Outcome reporting from clinical trials of non-valvular atrial fibrillation treated with traditional Chinese medicine or Western medicine: a systematic review

Ruijin Qiu,1 Jiayuan Hu,1 Ya Huang,1 Songjie Han,1 Changming Zhong,1 Min Li,1 Tianmai He,1 Yi Yi Lin,1 Manke Guan,1 Jing Chen,2 Hongcai Shang1,3

ABSTRACT

Objectives To examine variation in outcomes, outcome measurement instruments (OMIs) and measurement times in clinical trials of non-valvular atrial fibrillation (NVAF) and to identify outcomes for prioritisation in developing a core outcome set (COS) in this field.

Design This study was a systematic review.

Data sources Clinical trials published between January 2015 and March 2019 were obtained from PubMed, the Cochrane Library, Web of Science, Wanfang Database, the China National Knowledge Infrastructure and SinoMed.

Eligibility criteria Randomised controlled trials (RCTs) and observational studies were considered. Interventions included traditional Chinese medicine and Western medicine. The required treatment duration or follow-up time was ≥4 weeks. The required sample size was ≥30 and ≥50 in each group in RCTs and observational studies, respectively. We excluded trials that aimed to investigate the outcome of complications of NVAF, to assess the mechanisms or pharmacokinetics, or for which full text could not be acquired.

Data extraction and synthesis The general information and outcomes, OMIs and measurement times were extracted. The methodological and outcome reporting quality were assessed. The results were analysed by descriptive analysis.

Results A total of 218 articles were included from 25 255 articles. For clinical trials of antiarrhythmic therapy, 69 outcomes from 16 outcome domains were reported, and 28 (31.82%, 28/88) outcomes were reported only once; the most frequently reported outcome was ultrasonic cardiogram. Thirty-one outcomes (44.93%, 31/69) were provided definitions or OMIs; the outcome measurement times ranged from 1 to 20 with a median of 3. For clinical trials of surgery, 82 outcomes from 18 outcome domains were reported; 38 (29.23%, 38/130) outcomes were reported only once. The most frequently reported outcome was ischaemic stroke. Forty (48.78%, 40/82) outcomes were provided OMIs or definitions; and the outcome measurement times ranged from 1 to 27 with a median of 8.

Conclusion Outcome reporting in NVAF is inconsistent. Thus, developing a COS that can be used in clinical trials is necessary.

Strengths and limitations of this study

- This systematic review is the first to describe variation in outcomes, outcome measurement instruments and outcome measurement time reporting in clinical trials for non-valvular atrial fibrillation (NVAF).
- The methodology is reproducible and transparent and has been assessed during a peer-review process.
- English and Chinese databases were searched, and randomised controlled trials and observational studies were considered.
- The aim of this review was to provide a list of outcomes for clinical trials of NVAF in traditional Chinese medicine, which is focused on Chinese herbal medicine therapy. Thus, clinical trials of surgery were not considered.

INTRODUCTION

According to a systematic review, atrial fibrillation (AF) is the main contributor to many diseases, such as ischaemic heart disease, stroke, renal disease and peripheral arterial disease. In addition, AF usually results in major cardiovascular events, cardiovascular and all-cause mortality, and sudden cardiac death.1 Thus, treating AF is important.

There are different kinds of classifications for AF. According to the aetiology, AF can be classified as isolated AF, valvular AF, non-valvular AF (NVAF) and so on. NVAF refers to AF occurring without rheumatic mitral stenosis, mechanical/bioprosthetic or mitral valve repair.2 According to the characteristics and timing of AF onset, AF can be classified as first diagnosed AF, paroxysmal AF, persistent AF, long-standing persistent AF and permanent AF.3

Current evidence has shown that catheter ablation and drug therapy are beneficial for controlling heart rhythm, maintaining ventricular rate, and preventing thrombosis and stroke. However, the arrhythmogenic
effects and risk of death after taking antiarrhythmic drugs cannot be ignored. With the increasing number of traditional Chinese medicine (TCM) clinical trials in treating AF, the efficacy and safety of TCM have been proven. However, there are some problems in these TCM clinical trials; for example, similar clinical trials reported different outcomes. Therefore, some trials cannot be included in systematic reviews/meta-analyses because of outcome reporting heterogeneity. In TCM clinical trials, the long-term outcomes, patient-reported outcomes and safety outcome reporting are limited; thus, these trials cannot provide appropriate evidence for TCM in treating AF. Developing a core outcome set (COS) may resolve these problems.

A COS is a minimum set that should be measured and reported in all clinical trials for a specific condition. According to the characteristics and advantages of TCM, we intend to develop a COS for TCM clinical trials for NVAF, with registered and published protocols.

According to the study protocol, conducting a systematic review is the first step in the development of a COS for NVAF to develop a long list of outcomes. In this research, we will report the results of the systematic review, including assessing the quality of outcome reporting and the quality of trials, as well as examining the variation in outcome reporting, outcome measurement instrument (OMI) reporting and measurement time point reporting.

METHODS

Search strategy
In clinical trials and clinical practice, TCM, especially Chinese herbal medicine therapy is often used as an adjuvant therapy in internal medicine treatment; thus, obtaining a comprehensive list of outcomes for TCM clinical trials is difficult. In this systematic review, we focused on clinical trials of TCM, integrated medicine and Western medicine in internal medicine. The literature database included PubMed, the Cochrane Library, Web of Science, Wanfang database, the China National Knowledge Infrastructure and SinoMed. A literature search was conducted two times. The first search was conducted from January 2015 to June 2017, and the second search was conducted from May 2017 to March 2019. The search strategy for English databases is shown in online supplementary additional file 1.

Inclusion criteria
According to the protocol, both randomised controlled trials (RCTs) and observational studies were considered. Patients with NVAF who accepted interventions including TCM or Western medicines were eligible. The required treatment duration or follow-up time was ≥4 weeks. For RCTs, the required number of participants was ≥30 in each group. For observational studies, the required number of participants was ≥50.

Exclusion criteria
We excluded clinical trials that aimed to investigate the outcome of complications of NVAF, to assess the mechanism of drug action or pharmacokinetics, or for which full text could not be acquired.

Inclusion criteria
According to the protocol, both randomised controlled trials (RCTs) and observational studies were considered. Patients with NVAF who accepted interventions including TCM or Western medicines were eligible. The required treatment duration or follow-up time was ≥4 weeks. For RCTs, the required number of participants was ≥30 in each group. For observational studies, the required number of participants was ≥50.

Exclusion criteria
We excluded clinical trials that aimed to investigate the outcome of complications of NVAF, to assess the mechanism of drug action or pharmacokinetics, or for which full text could not be acquired.

Methodological quality has little influence on developing a long list of outcomes in the development of a COS. However, we excluded some studies with serious problems, such as a Jadad score of 0 for RCTs, contradictions...
Study ID	Study type	Country	Patients recruited	Course of treatment	Follow-up duration	Quality of outcome reporting	Quality of study	Interventions	Comparisons
Kang	RCT	China	98	1 Year	/	2	2/5	Triple antithrombotic therapy+CT	Dual antithrombotic therapy+CT
Guo et al	RCT	China	62	1 Year	/	2	2/5	Atorvastatin+CT	CT
Li et al	RCT	China	76	8–10 Days	6 Months	0	2/5	Amiodarone+dabigatran	Warfarin
Bu et al	RCT	China	192	/	1 Year	2	3/5	Low-dose warfarin	Normal-dose warfarin
Pan and Liu	RCT	China	90	6 Months	/	0	3/5	Candesartan+rosuvastatin	CT+candesartan
Li	RCT	China	80	4 Weeks	1 Year	2	2/5	Dabigatran+CT	Warfarin+CT
Chen et al	RCT	China	80	1 Year	/	2	2/5	Warfarin+CT	Aspirin+CT
Sang et al	RCT	China	80	/	1 Year	2	2/5	Valsartan+rosuvastatin+CT	CT
Guo	RCT	China	60	1 Month	6 Months	2	2/5	Amiodarone+irbesartan	Amiodarone
Zuo et al	RCT	China	180	/	3 Months	2	3/5	Dabigatran	Warfarin
Liu, et al	RCT	China	140	/	1 Year	0	2/5	Dabigatran	Warfarin
Wang et al	RCT	China	120	/	1 Year	0	2/5	Amlodipine+amiodarone	Candesartan+amiodarone
Li et al	RCT	China	60	3 Months	/	0	2/5	Candesartan+amiodarone	Amiodarone
Yang et al	RCT	China	88	2 Months	/	0	3/5	Sotalol+irbesartan	Sotalol
Li et al	CoS	China	74	4 Weeks	/	0	5/9	Valsartan	Hydrochlorothiazide
Lin et al	RCT	China	120	6 Months	6 Months	2	2/5	Rosuvastatin+CT	CT
Qin et al	RCT	China	360	/	2 Years	0	2/5	Warfarin	Aspirin
Qin et al	RCT	China	360	/	2 Years	0	2/5	Low-dose warfarin	High-dose warfarin; aspirin
Chen et al	RCT	China	77	1 Year	/	0	2/5	Dabigatran+clopidogrel	Warfarin
Wang et al	RCT	China	150	/	1 Year	3	2/5	Aspirin+warfarin	Aspirin; warfarin
Liu and Zhang	RCT	China	150	3 Months–1 year	/	0	2/5	Low-dose warfarin	High-dose warfarin; aspirin
Zhang	RCT	China	118	/	1 Year	0	2/5	Irbesartan+CT	Irbesartan
Zhang	RCT	China	120	/	30 Days	0	2/5	Amiodarone	Propafenone
Huang et al	RCT	China	76	1 Year	/	2	2/5	Irbesartan+amiodarone+CT	Amiodarone+CT
Xu et al	RCT	China	234	/	2 Years	0	2/5	Aspirin	Low-dose warfarin; high-dose warfarin
Lin et al	RCT	China	158	/	10 Months	0	2/5	Candesartan+amiodarone+CT	Amiodarone+CT
Zhang and Zong	RCT	China	62	/	3 Months	0	2/5	High-dose warfarin	Normal-dose warfarin
Guo	RCT	China	100	1 Year	/	0	2/5	Amiodarone+irbesartan	Amiodarone+metoprolol
Zhang	RCT	China	160	1 Year	/	0	3/5	Indapamide+valsartan+CT	Valsartan+CT
Yang and Yao	RCT	China	150	3 Months	/	0	3/5	Methimazole+bisoprol+CT	Bisoprol+CT

Continued
Study ID	Country	Patients recruited	Intervention	Interventions	Comparisons
Zhang and Gu	China	70	2/5	Amiodarone + CT	Warfarin
Hou and Liu	China	138	2/5	Amiodarone + CT	Warfarin
Jiang and Xu	China	70	2/5	Amiodarone + CT	Warfarin
Song et al	China	70	2/5	Amiodarone + CT	Warfarin
Yang and Yuan	China	96	2/5	Amiodarone + CT	Warfarin
Yan et al	China	92	2/5	Amiodarone + CT	Warfarin
Jiang and Xu	China	68	2/5	Amiodarone + CT	Warfarin
Song et al	China	60	2/5	Amiodarone + CT	Warfarin
Wang and Yuan	China	80	2/5	Amiodarone + CT	Warfarin
Ou et al	China	74	2/5	Amiodarone + CT	Warfarin
Geng et al	China	198	2/5	Amiodarone + CT	Warfarin
Chu	China	90	2/5	Amiodarone + CT	Warfarin
Zhang and Yin	China	92	2/5	Amiodarone + CT	Warfarin
Huang and Qin	China	60	2/5	Amiodarone + CT	Warfarin
Yang et al	China	88	2/5	Amiodarone + CT	Warfarin
Zhou et al	China	88	2/5	Amiodarone + CT	Warfarin
Li et al	China	88	2/5	Amiodarone + CT	Warfarin
Chen et al	China	88	2/5	Amiodarone + CT	Warfarin
Zhu et al	China	88	2/5	Amiodarone + CT	Warfarin
Duan et al	China	88	2/5	Amiodarone + CT	Warfarin
Wei and Li	China	88	2/5	Amiodarone + CT	Warfarin
Chen et al	China	88	2/5	Amiodarone + CT	Warfarin
Su et al	China	88	2/5	Amiodarone + CT	Warfarin
Yu et al	China	88	2/5	Amiodarone + CT	Warfarin
Li et al	China	88	2/5	Amiodarone + CT	Warfarin
Wen et al	China	88	2/5	Amiodarone + CT	Warfarin
Chen et al	China	88	2/5	Amiodarone + CT	Warfarin
Su et al	China	88	2/5	Amiodarone + CT	Warfarin
Yu et al	China	88	2/5	Amiodarone + CT	Warfarin
Li et al	China	88	2/5	Amiodarone + CT	Warfarin
Wen et al	China	88	2/5	Amiodarone + CT	Warfarin
Chen et al	China	88	2/5	Amiodarone + CT	Warfarin

Table 1: Continued
Study ID	Study type	Country	Patients recruited	Course of treatment	Follow-up duration	Quality of outcome reporting	Quality of study	Interventions	Comparisons
Xu et al	RCT	China	200	/	1 Year	0	2/5	Metoprolol; metoprolol+spironolactone; metoprolol+valsartan	No treatment
Huang et al	RCT	China	153	1 Year	/	2	3/5	Rosuvastatin+amiodarone + CT	Amiodarone+CT
Zhao and Dong	RCT	China	98	1 Year	/	0	3/5	Atorvastatin+CT	CT
Feng et al	RCT	China	64	4 Weeks	/	0	2/5	Maixuekang+warfarin+CT	CT+warfarin
Bo et al	RCT	China	160	1 Month	6 Months	2	2/5	Amiodarone+wexin granule	Amiodarone
Zhang and Peng	RCT	China	80	30 Days	/	2	3/5	CT+modified Buuyang huanwu decoction	CT
Chen et al	RCT	China	60	3 Months	/	2	2/5	Jianxin pinyin pill+wexin granule+metoprolol	Warfarin+metoprolol
Cao et al	RCT	China	220	4 Weeks	/	2	3/5	CT+shensong yangxin capsule	CT
Chang and Zhou	RCT	China	88	8 Weeks	/	2	3/5	Atorvastatin+wexin granule+CT	CT+amiodarone
Fan	RCT	China	112	6 Months	/	0	1/5	Losartan+amiodarone + shensong yangxin capsule	Losartan+amiodarone
Ye	RCT	China	80	4 Weeks	/	0	2/5	Wexin granule+propafenone	Propafenone
Wang	RCT	China	60	3 Months	/	0	2/5	Taoren honghua decoction+warfarin	Warfarin
Cheng et al	RCT	China	200	180 Days	/	0	3/5	Yangxin guicao decoction+CT	CT
Han et al	RCT	China	60	4 Weeks	/	2	3/5	Xifeng Zhiji decoction+metoprolol	Metoprolol
Peng	RCT	China	96	1 Year	/	0	2/5	CT+Amiodarone+shexiang baoxin pill	CT+amiodarone
Zhang	RCT	China	180	12 Weeks	/	2	2/5	Wexin granule+CT	CT
Pan et al	RCT	China	65	3 Months	/	0	2/5	Amiodarone+jianxin pinyin pill	Amiodarone
Huang	RCT	China	120	1 Year	/	0	2/5	CT+valsartan+dabuuyan decoction	CT+valsartan
Li et al	RCT	China	90	1 Month	/	0	3/5	Shensong yangxin capsule+Amiodarone	Amiodarone+CT
Wang and Wang	RCT	China	72	3 Months	/	0	3/5	Wexin granule+CT	CT
Cui	RCT	China	80	8 Weeks	/	2	2/5	Zhigancao decoction+metoprolol	Metoprolol
Bi	RCT	China	70	8 Weeks	/	0	3/5	Dingxin granule	Amiodarone
Study ID	Study type	Country	Patients recruited	Course of treatment	Follow-up duration	Quality of outcome reporting	Quality of study	Interventions	Comparisons
----------	------------	---------------	--------------------	---------------------	-------------------	-----------------------------	--------------------	--	--
Zhang	RCT	China	116	24 Weeks	/	0	3/5	Shensong yangxin capsule + CT	CT
Chen et al	RCT	China	60	4 Weeks	/	2	3/5	Zhigancao decoction + amiodarone	Amiodarone
Liu et al	RCT	China	68	4 Weeks	/	2	2/5	Dingxin granule + metoprolol	Metoprolol
Zhang	RCT	China	84	6 Months	/	0	1/5	CT + amiodarone + wenxin granule	CT + amiodarone
Granger et al	RCT	International	13397	1–4 Years	/	4	3/5	Apixaban	Warfarin
Held et al	RCT	International	18201	1–4 Years	/	4	3/5	Apixaban	Warfarin
Jaspers et al	RCT	International	18201	1–4 Years	30 Months*	2	3/5	Apixaban	Warfarin
Liu et al	RCT	China	18140	1–4 Years	/	2	3/5	Edoxaban	Warfarin
Alexander et al	RCT	International	17370	1–4 Years	1.8 Years†	2	3/5	Higher-dose edoxaban; lower-dose edoxaban	Warfarin
Hu et al	RCT	International	18 201	1–4 Years	1 Year	4	3/5	Apixaban	Warfarin
Peng et al	RCT	Italy	180	/	≥30 Days	2	3/5	Pharmacogenetic warfarin dosing	Standard warfarin dosing
Steffel et al	RCT	International	2492	907 Days†	2.8 Years†	1	5/5	Edoxaban	Warfarin
Yamashita et al	RCT	International	1943	907 Days†	2.8 Years†	6	5/5	Warfarin	Edoxaban
Kato et al	RCT	International	21 105	907 Days†	2.8 Years†	4	5/5	Higher-dose edoxaban; lower-dose edoxaban	Warfarin
Meng et al	RCT	China	180	/	12 Months	3	3/5	Wenxin granule	Sotalol
Wang et al	RCT	China	151	1 Year	1 Year	4	3/5	Aspirin + naoxintong capsule	Warfarin
Brambatti et al	RCT	USA	18 113	/	2 Years	3	5/5	Dabigatran	Warfarin
Verdecchia et al	RCT	USA	10 372	/	2 Years	3	5/5	Dabigatran	Warfarin
Tan et al	RCT	China	126	/	2 Years	2	5/5	Fluvastatin	Placebo
Shah et al	RCT	International	5205	1 Year	668 Days†	2	3/5	Aspirin	Rivaroxaban
Sun et al	RCT	International	14 236	1 Year	668 Days†	2	3/5	Rivaroxaban	Warfarin
Yao et al	RCT	China	92	1 Year	/	0	3/5	Fluvastatin + benazepril	Fluvastatin
Goette et al	RCT	International	21 999	28 Days	30 Days	4	3/5	Edoxaban	Enoxaparin-warfarin
Magnani et al	RCT	International	14 071	907 Days	2.8 Years	5	5/5	Edoxaban	Warfarin
Senoo et al	RCT	UK	4556	/	11.6 Months	3	3/5	SR34006	Warfarin or acenocoumarol
Hijazi et al	RCT	USA	16 869	1 Year	/	4	3/5	Apixaban	Warfarin
Cadrin et al	RCT	Canada	1376	/	37 Months†	3	4/5	Rhythm control	Rate control therapy
Study ID	Study type	Country	Patients recruited	Course of treatment	Follow-up duration	Quality of outcome reporting	Quality of study	Interventions	Comparisons
---------------	------------	-----------	--------------------	---------------------	--------------------	-------------------------------	------------------	--	---
Maciag et al	RCT	Poland	74	/	/	5	4/5	Antazoline	Control
Ng	RCT	International	5599	/	1.1 Years	4	4/5	Apixaban	Acetylsalicylic acid
Inoue et al	RCT	Japan	127	2 Weeks	/	5	3/5	5 mg fixed dose β-Blockers	10mg dose-escalation group; 20mg dose-escalation group
Dong et al	RCT	China	79	/	19.84 Months†	2	2/5	Intravenous ibutilide	Intravenous amiodarone+ Intravenous ibutilide
Hong et al	RCT	South Korea	183	4 Weeks	7 Days	4	5/5	Rivaroxaban	Warfarin sodium
Tan et al	RCT	China	118	2 Years	/	2	2/5	Fluvasatin+CT	CT
Zhang et al	RCT	China	120	1 Year	/	0	2/5	CT+low-dose rosuvastatin; CT+high-dose rosuvastatin	CT
Zhou et al	RCT	China	186	6 Months	/	2	3/5	Telmisartan	Non-ARB and non-ACEI
Qian et al	RCT	China	85	4 Weeks	/	0	3/5	TCM+CT	CT
Di et al	RCT	China	50	6 Months	/	3	2/5	Telmisartan+amiodarone	Amiodarone
Liu	RCT	China	200	2 Months	/	0	3/5	Valsartan	Nifedipine
Yu et al	RCT	China	146	/	1 Year	2	2/5	Amiodarone +rosuvastatin+valsalartan	Amiodarone+valsalartan
Zhang and Jiao	RCT	China	158	/	1–2 Years	2	2/5	Warfarin+CGA	Warfarin
Li et al	RCT	China	120	1 Year	/	0	1/5	Telmisartan+CT	Amlodipine+CT
Pang et al	RCT	China	60	6 Months	/	2	2/5	Valsartan	Amlodipine
Wang	RCT	China	126	12 Weeks	/	2	3/5	Atorvastatin+irbesartan+CT	Irbesartan+CT
Yan et al	RCT	China	124	1 Year	/	0	3/5	Benapril+amiodarone+CT	Amiodarone+CT
Huang et al	RCT	China	125	6 Months	/	2	2/5	Valsartan+CT	Nifedipine+CT
Yuan and Liu	RCT	China	92	1 Year	/	2	2/5	Candesartan+CT	CT
Chen et al	RCT	China	102	/	1 Year	2	2/5	Rivaroxaban	Warfarin
Tu	RCT	China	124	/	1 Year	0	2/5	Warfarin	Aspirin
Bassand et al	CoS	International	17 162	/	2 Years	0	7/9	Antithrombotic treatment	VKAs
Haas et al	CoS	International	9934	/	1 Year	0	7/9	VKAs	VKAs
Chan et al	CoS	China	571	/	2.6 Years*	4	5/9	Dabigatran	Warfarin
Chan et al	CoS	China	2153	/	4.2 Years*	4	6/9	Dabigatran	Warfarin
Xie et al	CoS	USA	127 068	/	30 days	2	7/9	Apixaban	Warfarin
Bengtson et al	CoS	USA	61648	/	15 Months†	4	5/9	Dabigatran; rivaroxaban	Warfarin
Table 1 Continued

Study ID	Study type	Country	Patients recruited	Course of treatment	Follow-up duration	Quality of outcome reporting	Quality of study	Interventions	Comparisons
Chan et al156	CS	China	5426	3.6 Years*	2	4/9	Warfarin	Dabigatran; aspirin; no therapy	
Laliberte et al157	CoS	Canada	5246	3.6 Years*	2	4/9	Warfarin	Aspirin; no therapy	
Lee et al158	CoS	Korea	321	2.3 Months*	3	6/9	VKAs	Rivaroxaban	
Lau et al159	CoS	China	8152	501 Days*	0	6/9	Warfarin	Rivaroxaban	
Ho et al170	CoS	China	8754	3 Years*	4	5/9	Warfarin	Aspirin	
Chan et al171	CoS	China	9727	2 Years	2	6/9	Warfarin	Dabigatran; warfarin	
Chao et al172	CoS	China	101243	4.9 Years*	0	7/9	Betablockers	Calcium channel blockers; digoxin	

* Denotes significant difference from control group.
| Study ID | Study type | Country | Patients recruited | Course of treatment | Follow-up duration | Quality of outcome reporting | Quality of study | Interventions | Comparisons |
|-----------|------------|-------------|--------------------|---------------------|--------------------|------------------------------|------------------|---|---|
| Pastori et al 173 | CoS | Italy | 815 | / | 33.2 Months† | 2 | 6/9 | Digoxin | |
| Chen et al 174 | CoS | China | 10384 | / | 3.2 Years | 2 | 6/9 | Anticoagulation and antiplatelet therapy | |
| Engelberger et al 175| CoS | Switzerland | 537 | / | 3 Months | 4 | 5/9 | Rivaroxaban | |
| Li et al 176 | RCT | China | 137 | / | 1 Year | 0 | 2/5 | Low-dose warfarin | Unclear |
| Tung et al 177 | CS | Canada | 148,446 | / | 5 Years | 1 | 10/20 | Warfarin | |
| Wu et al 178 | CoS | China | 4638 | / | 2.4 Years† | 4 | 8/9 | Statin | Non-statin |
| Kodani et al 179 | CoS | Japan | 6616 | / | 5 Years | 1 | 6/9 | Warfarin; NOACs | No anticoagulation therapy |
| Yamashita et al 180 | CoS | Japan | 6404 | / | 2 Years | 0 | 7/9 | Warfarin | |
| Pastori et al 181 | CoS | Japan | 6404 | / | 2 Years | 0 | 7/9 | Warfarin+statin | Warfarin alone |
| Blin et al 182 | CoS | France | 8894 | / | 28–29 Months | 2 | 8/9 | VKAs: | |
| Piccini et al 183 | CoS | USA | 10135 | / | 2.3 Years† | 0 | 5/9 | Unclear | |
| Allen et al 184 | CoS | USA | 9619 | / | 22 Months* | 3 | 7/9 | Digoxin | |
| Genovesi et al 185 | CoS | Italy | 290 | / | 2 Years | 0 | 7/9 | Warfarin | |
| Qin et al 186 | CoS | USA | 5952 | / | 26.1 Months | 4 | 7/9 | Antiarrhythmic drugs | |
| Purmah et al 187 | CoS | International | 3119 | / | 1 Year | 2 | 7/9 | Rate control | Rhythm control |
| Pasca et al 188 | CS | Italy | 143 | / | 1 Year | 2 | 15/20 | Oral anticoagulant therapy | No oral anticoagulant therapy |
| Nielsen et al 189 | CoS | Denmark | 55644 | / | 2.3 Years* | 1 | 8/9 | NOACs | Warfarin |
| Bo et al 190 | CoS | Italy | 452 | / | 300.5 Days* | 2 | 7/9 | Oral anticoagulant therapy | No oral anticoagulant therapy |
| Jacobs et al 191 | CoS | USA | 5254 | / | 243 Days* | 2 | 7/9 | DOACs | Warfarin |
| Lip et al 192 | CoS | International | 29338 | / | 90–127 Days | 2 | 8/9 | Warfarin | Apixaban, dabigatran or rivaroxaban. |
| Hanon et al 193 | CS | France | 405 | / | 6 Months | 4 | 14/20 | Rivaroxaban | |
| Patti et al 194 | CoS | International | 6412 | / | 1 Year | 2 | 8/9 | Antithrombotic therapies | |
| Graham et al 195 | CoS | USA | 118,891 | / | 108 and 111 Days*| 4 | 6/9 | Dabigatran | Rivaroxaban |
| Tampieri et al 196 | CS | Italy | 218 | / | 30 Days | 1 | 15/20 | Anticoagulation | |
| Lee et al 197 | CoS | South Korea | 754 | / | 3.2–3.5 years* | 2 | 7/9 | VKAs | No vitamin K antagonist |
| Stolk et al 198 | CoS | Netherlands | 30,146 | / | 1–3 Years | 2 | 5/9 | DOACs; VKAs; low-dose aspirin or mixed users | |
| Boriani et al 199 | CoS | International | 2589 | / | 1 Year | 2 | 7/9 | According to AF type | |

Table 1 Continued
Study ID	Study type	Country	Patients recruited	Course of treatment	Follow-up duration	Quality of outcome reporting	Quality of study	Interventions	Comparisons
Eisen et al^200	RCT	International	21105	907 Days^8	2.8 Years^8	3	7/9	Digoxin	No Digoxin
Wan and Deng^201	RCT	China	292	3 Months	3 Months	0	2/5	Dabigatran+clopidogrel	Clopidogrel
Jian^202	RCT	China	128	3 Months	/	0	2/5	Dabigatran+CT	Warfarin+CT
Gao^203	RCT	China	71	/	1 Year	0	3/5	Low-dose warfarin	Normal-dose warfarin
Wang^204	RCT	China	84	/	1 Year	0	3/5	Warfarin	Warfarin
DM Zhang and HM Zhang^205	RCT	China	81	/	1 Year	0	2/5	Warfarin	Warfarin
Haergingowa et al^206	RCT	China	146	6 Months	/	2	3/5	Rivaroxaban+CT	Warfarin+CT
Chen et al^207	RCT	China	86	1 Year	/	2	3/5	Rivaroxaban+CT	Warfarin+CT
Chen et al^208	RCT	China	160	/	6 Months	2	1/5	Maixuekang capsule	Aspirin
Li and Yue^209	RCT	China	76	4 Weeks	/	0	3/5	TCM+dabigatran+aspirin	Dabigatran+aspirin
Yu^210	RCT	China	80	4 Weeks	/	0	2/5	Xuefu Zhuyu decoction+dabigatran	Dabigatran
RR et al^211	RCT	International	245	/	1 Year	5	5/5	Targeted therapy+CT	CT
Ezekowitz et al^212	RCT	International	1500	/	30 and 90 Days^*	2	3/5	Apixaban	Heparin/VKA
Li X et al^213	RCT	China	66	/	6 Months	1	2/5	Genotype-based anticoagulant therapy with warfarin	Routine warfarin therapy
Yamashita et al^214	RCT	Japan	220	4 weeks	/	4	2/5	Bisoprolol transdermal patch	Bisoprolol fumarate oral formulation
Bartlett et al^215	CoS	USA	286	12.4 months†	16.5 Months†	6	7/9	Rivaroxaban with concomitant diltiazem	Rivaroxaban
Andersson et al^216	CoS	Denmark	9212	/	1 Year	2	8/9	Dabigatran	Warfarin
Deitelzweig et al^217	CoS	USA	25857	/	5–6 Months†	1	8/9	Apixaban	Rivaroxaban, dabigatran, warfarin
Friberg and Oldgren^218	CoS	Sweden	68056	/	0.71 and 1.74 Years†	3	8/9	NOAC	Warfarin
Hernandez et al^219	CoS	USA	41336	/	185–294 Days*	5	8/9	Apixaban; dabigatran; rivaroxaban; warfarin	Never used oral anticoagulation
Pohjantaht et al^220	CoS	Finland	200	/	1 Year	6	7/9	Vemakalant	Flecainide
Koretsune et al^221	CoS	Japan	18261	/	1 Year	5	8/9	Dabigatran	Warfarin

Continued
Study ID	Study type	Country	Patients recruited	Course of treatment	Follow-up duration	Quality of outcome reporting	Quality of study	Interventions	Comparisons
Lai et al	CoS	China	2592	/	3.86–4.95 Years*	3	8/9	Amiodarone; amiodarone+digoxin	Digoxin
Li WH et al	CoS	China	2099	/	21.7 Months*	6	8/9	Warfarin	Rivaroxaban; dabigatran
Link et al	CoS	International	21099	907 Days*	1022 Days†	5	7/9	Warfarin	High-dose edoxaban; low-dose edoxaban
Lip et al	CoS	Denmark	14020	/	2.6 Years*	3	8/9	Apixaban; dabigatran; rivaroxaban	Warfarin
Noseworthy et al	CoS	USA	107 373	/	3 Years	2	8/9	Warfarin	Apixaban; dabigatran; rivaroxaban
Lip et al	CoS	USA	321 182	/	1 Year	4	8/9	Apixaban; warfarin; dabigatran; rivaroxaban	
Martinez et al	CoS	The USA	6836	/	1.4 Years†	3	8/9	Rivaroxaban	
Gieling et al	CoS	The UK	31 497	/	0.95–2.94 Years*	6	8/9	NOACs; VKA; aspirin; mixed	Warfarin
Go et al	CoS	The USA	50578	66 Days†	102–123 Days*	3	8/9	Dabigatran	
Forslund et al	CoS	Sweden	22 198	/	1.07 and 1.61 Years*	6	8/9	Dabigatran; rivaroxaban; apixaban	Warfarin
Sjalander et al	CoS	Sweden	64 382	208–407 Days*	/	3	8/9	Dabigatran; rivaroxaban; apixaban	Warfarin
Corbalan et al	CoS	International	21 105	/	2.8 Years	5	8/9	Edoxaban	Warfarin
Bae et al	CS	Korea	1350	/	3 Years	3	16/20	Non-VKA	VKA

*Mean follow-up.†Median follow-up.

ACEI, angiotensin-converting enzyme inhibitors; ARB, angiotensin II receptor antagonist; CGA, comprehensive geriatric assessment; CS, case series; CT, conventional therapy; CoS, cohort study; DOACs, direct oral anticoagulants; NOACs, non-vitamin K antagonist oral anticoagulants; TCM, traditional Chinese medicine; VKAs, vitamin K antagonists.
in the research or the authors are in the institutions who do not have the ability to conduct RCTs in China.

Study identification

Two reviewers (RQ and SH) independently assessed the titles and abstracts from searches. Then, the full texts of the potential articles were retrieved and assessed for further identification. Any disagreement was resolved by discussion or consulting the third investigator (HS).

Data extraction

Two reviewers (RQ and JH) independently extracted information. The information included the first author’s name, publication time, number of participants, country of authors (if the authors are from different countries, it was stated as ‘international’), interventions, comparisons, course of treatment, follow-up duration, outcomes, the definition of outcomes, OMI and measurement time (intervention duration or follow-up time). Any disagreement was resolved by discussion or consulting the third investigator (HS).

In addition, we assessed the quality of outcome reporting according to the method used in other studies. There were six items; if the information of eligible studies completely meet the items, then 1 point was awarded. If this information did not meet or fully meet the items, then 0 point was awarded. If the outcome was objective, then the definition is unnecessary.

The items include the following:
1. Is the primary outcome clearly stated?
2. Is the primary outcome clearly defined so that another researcher would be able to reproduce its measurement? Where appropriate, this outcome should include a clear description of time points, the person measuring the outcome, how the outcome was measured (for example, tools and methods used) and where the outcome was measured.
3. Are the secondary outcomes clearly stated?
4. Are the secondary outcomes clearly defined?
5. Do the authors explain the use of the outcomes they have selected?
6. Are methods used to enhance the quality of outcome measurement (for example, repeated measurement, training) if appropriate?

The methodological quality was assessed according to the type of study. The Jadad score was used to assess the quality of RCTs, and the Newcastle-Ottawa Scale was used to assess the quality of cohort studies (CoSs). The tool developed by Canadian Institute of Health Economics can be used to assess the quality of case series studies.

Two reviewers (RQ and JH) independently assessed the quality of outcome reporting and the methodological quality. Any disagreement was resolved by discussion or consulting the third investigator (HS).

Merging outcomes and grouping under outcome domains
Two researchers (RQ and CZ) merged the overlapping outcomes according to the definition of outcomes independently. If no definition was provided, they discussed and achieved consensus if necessary. For example, death, death from any cause, mortality, overall mortality, total mortality, all causes of death and all causes of mortality were aggregated as ‘all-cause mortality’.

The original list of outcomes from systematic review is usually very long and unwieldy, so researchers developed a taxonomy for outcome classification that included 38 outcome domains. Two researchers (RQ and CZ) grouped individual outcomes into the appropriate outcome domain together and achieved consensus.

Statistical analysis
The results were analysed by descriptive analysis.

Patient and public involvement
Patients and the public were not involved in the design or planning of the study. Patients will be involved in the larger study to develop the COS. Informed consent will be obtained from patients who will participate in the later research.

RESULTS

Characteristics of literature
In this systematic review, a total of 25,255 articles from Chinese and English databases were retrieved. After removing duplicates, there were 17,240 articles. By reading the titles and abstracts, ineligible articles were removed, and full texts for 1233 potential eligible articles were retrieved. A total of 1015 articles were removed for various reasons, and 218 articles were finally included. The flowchart of this systematic review is shown in figure 1.

In the included studies, 88 studies were for antiarrhythmic therapy, and 130 studies were for anticoagulant therapy. A total of 110 articles were in Chinese, and 108 articles were in English. Thirty articles were TCM clinical trials, and 188 were Western medicine clinical trials. Seventy-five articles were observational studies (including 66 CoS and 9 case series), while 143 articles were RCTs. The general characteristics of the included articles are shown in table 1.

The majority of RCTs were conducted in China. The USA had more CoSs than other countries did (figure 2). Because of the limited information provided in the articles, 35.32% (77/218) of the studies received 0 points for the quality of outcome reporting, and the majority were RCTs (figure 3). Compared with other countries, China had a much lower quality of outcome reporting (figure 4). The majority of RCTs were poor quality, while the majority of observational studies were high quality.

The list of outcomes
There are two main types of therapy for NVAF: antiarrhythmic treatment and anticoagulation treatment. Some differences exist in the outcome reporting between these...
Table 2 The outcomes reporting for clinical trials of antiarrhythmic treatment (N=88)

Domains/outcomes	Outcomes reporting (n)	OMIs/definitions (n)	Measurement time point (n)
Mortality/survival			
All-cause mortality	11	0	8
Cardiovascular death	5	0	3
Vascular outcomes			
Non-central nervous system embolism	6	0	2
Cardiac outcomes			
ECG outcomes	18	2	14
Time to conversion	7	1	5
Mean sinus rhythm maintenance time	1	1	6
Time to first AF recurrence	4	1	3
Conversion to sinus rhythm	26	1	12
Sinus rhythm maintenance	15	3	6
AF recurrence	36	2	2
AF progression	6	2	3
AF controlling rate	2	0	2
AF persistence	11	2	5
Number of electrical cardioversion	1	0	1
Number of taking antiarrhythmic drugs	1	0	1
Number of undertaking ablation	1	0	1
Ultrasonic cardiogram	39	1	10
Heart rate	21	2	14
NYHA classification grading of cardiac function	3	1	2
Myocardial infarction	2	0	2
Bradycardia	1	0	0
Ventricular arrhythmia	2	1	1
Heart failure	2	0	2
Blood pressure	20	0	6
NT-proBNP	3	0	3
Blood and lymphatic system outcomes			
D-dimer	2	0	2
APTT	1	0	1

Table 2 Continued

Domains/outcomes	Outcomes reporting (n)	OMIs/definitions (n)	Measurement time point (n)
TT	1	0	1
PT	1	0	1
FIB	3	1	3
Nervous system outcomes			
Haemorrhagic stroke	11	0	6
Ischaemic stroke	6	0	4
Immune system outcomes			
IFN-γ	1	0	1
IL-10	1	0	1
IL-4	1	0	1
IL-6	10	1	4
TNF-α	9	1	4
MMP2	4	1	3
Solubility P-selectin	1	1	1
Connective tissue growth factor	1	1	1
TIMP2	1	1	1
Endocrine outcomes			
Aldosterone	1	0	1
ANP	1	1	1
TSH	2	0	1
Renin, AngII	4	1	1
Adiponectin	1	1	1
Hepatobiliary outcomes			
ALT	1	0	3
AST	1	0	3
Renal and urinary outcomes			
BUN	6	1	3
Serum creatinine	1	0	3
Urine sodium	1	0	1
Metabolism and nutrition outcomes			
HDL-C	3	0	4
LDL-C	7	1	4
TC	6	0	4
TG	5	0	4
Serum homocysteine	3	1	3
General outcomes			
Body mass index	1	0	1
Mean drug onset time	1	0	1
Symptoms	9	2	7
CRP	6	1	5
hs-CRP	12	2	4

Continued
therapies. This review shows the outcomes according to the type of interventions in the original study.

For clinical trials of antiarrhythmic therapy, 69 outcomes from 16 outcome domains were reported (table 2). Twenty-eight (31.82%, 28/88) outcomes were reported only once; the most frequently reported outcome was ultrasonic cardiogram, which was reported 39 times (44.32%, 39/88). None of the outcomes were reported more than 50 times. In the 16 outcome domains, 5 outcome domains (vascular outcomes, adherence/compliance, adverse events/effects; physical functioning; withdrawal from treatment) consisted of only one outcome. These outcomes were reported between 1 and 26 times, and the median outcome reporting time was 1. Cardiac outcomes consisted of the largest number of outcomes, including 22 outcomes. In cardiac outcomes, ultrasonic cardiogram (39 times), AF recurrence (36 times), conversion to sinus rhythm (26 times), heart rate (21 times) and blood pressure (20 times) were reported much more often than other outcomes.

Table 2 Continued

Domains/outcomes	Outcomes reporting (n)	OMi(s)/definitions (n)	Measurement time point (n)	
Adherence/compliance	Therapeutic compliance	1	0	5
Withdrawal from treatment	Withdrawal from treatment	1	0	1
Physical functioning	6 Min walk test	1	1	1
Adverse events/effects	Adverse events/side effects	26	0	8
Resource use: Hospital	All-cause hospitalisation	5	0	3
Cardiovascular hospitalisations	Hospital length of stay	1	0	0
Readmission rates	1	0	1	

ALT, alanine aminotransferase; ANP, atrial natriuretic peptide; APTT, activated partial thromboplastin time; AST, aspartate aminotransferase; BUN, blood urea nitrogen; CRP, C reactive protein; ECG, electrocardiogram; FIB, fibrinogen; HDL-C, High density lipoprotein cholesterol; IFN-γ, interferon-γ; IL, interleukin; LDL-C, low-density lipoprotein cholesterol; MMP2, matrix metalloproteinase-2; NT-proBNP, N terminal pro B type natriuretic peptide; NYHA, New York Heart Association; PT, prothrombin time; TC, total cholesterol; TG, total triglyceride; TIMP2, tissue inhibitor of metalloproteinase 2; TNF-α, tumour necrosis factor-α; TSH, thyroid stimulating hormone; TT, thrombin time.

Table 3 The outcomes reporting for clinical trials of anticoagulant treatment (N=130)

Domains/outcomes	Outcomes reporting (n)	OMi(s)/definitions (n)	Measurement time point (n)	
Mortality/survival	All-cause mortality	52	2	40
Cardiovascular death	26	2	13	
Death from ischaemic events	3	0	1	
Death from stroke	1	1	1	
Death from bleeding	1	0	1	
Non-cardiovascular death	1	0	1	
Vascular outcomes	Non-central nervous system embolism	73	1	31
Major bleeding	75	10	42	
Time to first major bleeding event	2	0	3	
Minor bleeding	21	2	8	
Clinically relevant non-major bleeding	15	4	5	
Time to first clinically relevant non-major bleeding event	1	0	2	
Time to the first SEE	2	0	1	
Cardiac outcomes	Acute coronary syndrome	31	0	27
Ultrasonic cardiogram	1	1	1	
Blood pressure	1	0	1	
Heart failure	1	0	1	
NT-proBNP	2	1	3	
Blood and lymphatic system outcomes	INR	17	1	7
Prothrombin time	8	1	5	
APTT	8	1	5	
PT	10	2	6	
TT	5	1	5	
FIB	4	1	3	
Thrombin time	5	1	4	
Time spent in the therapeutic range	5	0	3	
PLT	2	0	2	
RBC	1	0	1	
HGB	1	0	1	
D-dimer	3	0	3	
Haemorheology	1	1	1	
Thromboela-stogram	1	1	1	

Continued
Table 3 Continued

Domains/outcomes	Outcomes reporting (n)	OMs/definitions (n)	Measurement time point (n)
Plasma P selectin	1	1	1
TXB2	1	1	1
Nervous system outcomes			
Ischaemic stroke	105	2	56
Haemorrhagic stroke	75	2	39
Transient ischaemic attack	18	0	10
Intracranial bleeding	14	2	11
Time to the first stroke	3	0	2
Score standard of neural function deficient degree	1	1	1
Dementia	1	0	1
Hepatobiliary outcomes			
ALT	2	0	2
AST	2	0	2
TBIL	1	0	1
Renal and urinary outcomes			
Serum creatinine	1	1	1
Glomerular filtration rate	1	0	1
BUN	1	1	1
Creatinine clearance	1	0	1
Carbamide	1	0	1
β₂-microglobulin	1	1	1
Musculoskeletal and connective tissue outcomes			
Hip fracture	2	0	1
Pelvic fracture	1	0	1
Vertebral fracture	1	0	1
General outcomes			
Symptoms	3	0	3
Warfarin dosage	2	0	1
INR variance growth rate	1	1	1
Time to stable anticoagulation	1	0	1
Weight	1	0	1
Traditional Chinese medicine syndrome	2	1	2
CRP	1	0	1
CGA score	1	1	2
Physical functioning			
Modified Rankin Scale score	1	1	1
Disability	1	0	1
Satisfaction/patient preference	3	3	4

Continued
For clinical trials of anticoagulation therapy, there were 82 outcomes from 18 outcome domains in the studies of anticoagulation therapy (table 3). Thirty-eight (29.23%, 38/130) outcomes were reported only once; the most frequently reported outcome was ischaemic stroke, which was reported 105 times (80.77%, 105/130). Only 5 (3.85%, 5/130) outcomes were reported more than 50 times. In the 18 outcome domains of anticoagulation therapy studies, 5 outcome domains (satisfaction/patient preference, withdrawal from treatment, global quality of life, economic and adverse events/effects) consisted of only one outcome. These outcomes were reported between 1 and 16 times, and the median outcome reporting time was 3. Blood and lymphatic system outcomes included the largest number of outcomes, which was 14 outcomes; the international normalised ratio (INR) was reported more frequently than other outcomes.

There were 24 duplicated outcomes between antiarrhythmic therapy and anticoagulation therapy. After removing duplicates, there were 127 outcomes. Figure 5 shows a summary of outcomes reporting times. Figure 6 shows the number of outcomes in different outcome domains in antiarrhythmic treatment trials. Figure 7 shows the number of outcomes in different outcome domains in anticoagulation treatment trials.

A large number of clinical trials did not provide definitions or OMIs. In the outcomes of antiarrhythmic treatment trials, 31 outcomes (44.93%, 31/69) were provided definitions or OMIs. Twenty-three (33.33%, 23/69) outcomes were provided one OMI or definition, seven (10.14%, 7/69) outcomes were provided two OMIs or definitions and one (1.45%, 1/69) outcome was provided three OMIs or definitions. Sinus rhythm maintenance had three different OMIs or definitions, which was higher than that of other outcomes. In the outcomes of anticoagulant therapy trials, 40 (48.78%, 40/82) were provided OMIs or definitions. Twenty-eight (35.37%, 28/82) outcomes were provided one OMI or definition, seven (8.54%, 7/82) outcomes were provided two OMIs or definitions and five (6.10%, 5/82) outcomes were provided definitions or OMIs.
Figure 7 The number of outcomes in different outcome domains in anticoagulant treatment trials.

three or more OMIs or definitions. Major bleeding had more definitions than other outcomes did.

In addition, there were many different measurement times for the same outcome. In the clinical trials of antiarrhythmic treatment, the outcome measurement times ranged from 1 to 14 times, and the median time was 3. Forty-three outcomes (62.32%, 43/69) had two or more measurement times. Heart rate and ECG outcomes had more measurement times than other outcomes did. In clinical trials of anticoagulant therapy, the outcome measurement times ranged from 1 to 56, with a median of 1.5; among these outcomes 41 (50.00%, 41/82) had two or more measurement times. In addition, ischaemic stroke had more measurement times than other outcomes did.

DISCUSSION

This systematic review is the first to evaluate the quality of outcome reporting of clinical trials of TCM and western medicine for treating NVAF. The results showed variations in the outcome reporting, OMIs/outcome definitions and outcome measurement time reporting in different clinical trials. These problems may result in the exclusion of some studies from systematic reviews/meta-analyses due to the heterogeneity of outcomes or outcome measurements; thus, these studies cannot provide a higher level of evidence for clinical practice.

In clinical trials for NVAF, investment wastes also exist because approximately 1/3 of outcomes were reported only once in included trials of anticoagulation therapy and antiarrhythmic therapy. For example, conversion to sinus rhythm, which is important to the results of clinical trials of antiarrhythmic therapy, was reported by 29.55% (26/88) of articles. Some long-term outcomes, such as all-cause mortality and cardiovascular deaths, were reported in 12.50% (11/88) and 5.68% (5/88) of articles, respectively.

In addition, adverse events/effects were inadequately reported. In clinical trials of anticoagulant therapy, safety outcomes such as haemorrhage were grouped under vascular outcomes according to the degree of bleeding (such as major bleeding, clinically relevant non-major bleeding and minor bleeding). Then, only 12.31% (16/130) of the included articles reported other kinds of adverse events/effects. For clinical trials of antiarrhythmic therapy, only 29.55% (26/88) of the included articles reported adverse events/effects.

For all of the outcomes in the list, patient’ perspectives could not be identified sufficiently. For example, among all of the included 88 articles for antiarrhythmic therapy, none of them reported quality of life, while in all of the included 130 articles for anticoagulant therapy, only 4 of them reported quality of life.

There were 30 articles for clinical trials of TCM. TCM syndrome, which could reflect the characteristics of TCM, was reported only two times. A few other articles reported symptoms related to TCM syndrome. This phenomenon cannot reflect the characteristics and advantages of TCM.

After assessing the quality of outcome reporting and studies, the results showed that the majority of included trials had poor quality. Although the poor quality of studies may not influence the result of developing a long list of outcomes, the poor quality of outcome reporting made it difficult to extract sufficient information from the articles. The reasons for poor quality of studies and outcome reporting may be because most studies in China do not follow the Consolidated Standards of Reporting Trials (CONSORT) statement or observational studies reporting items. Moreover, the majority of journals in Chinese do not require studies to follow the CONSORT statement; thus, some studies provided limited information on key methodological issues. In addition, Chinese researchers prefer to report comprehensive outcomes rather than individual outcomes, and studies have reported only primary outcomes.

Only a small number of included studies provided OMIs or definitions, which made it difficult to assess
the quality of outcome measures. Additionally, the variation in OMIs or definitions can make it impossible to conduct meta-analyses. In addition, selecting OMIs with good measurement properties is very important after developing a COS to ensure that reliability, validity and ethical standards are achieved.

The measurement time was much shorter in Chinese journals than in English journals. In general, long-term outcomes were usually reported in observational studies, while short-term outcomes were usually reported in RCTs. It is a challenge for a single trial to measure all of these outcomes in a meaningful way, especially an outcome such as mortality, which requires longer follow-up and a larger sample size. Therefore, recommending measurement times for different outcomes is important.

Developing a COS for NVAF may reduce the heterogeneity of outcome reporting in different clinical trials, so that clinical trials can be included in systematic reviews/meta-analyses to provide a higher quality of evidence for clinical practice. Moreover, if the majority of clinical trials can be included in systematic review, it may help reduce investment wastes. Reviewers can easily determine if publication bias is present when a COS is used. For TCM clinical trials, a COS may help improve the quality of studies if researchers report consensus outcomes, which may help improve the development of TCM.

Author affiliations
1Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
2Baokang Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
3Evidence-based Medicine Center, Jiangxi University of Chinese Medicine, Nanchang, China

Contributors RQ, JC and HS contributed to the study design. RQ extracted data from articles and drafted the manuscript. SH, YH, TH, CZ and JH contributed to the data extracting and assessment. ML, JC, YL, MG and HS revised the manuscript. All authors read and approved the final manuscript.

Funding This work was supported by the National Natural Science Foundation of China [81403098].

Competing interests None declared.

Patient consent for publication Not required.

Ethics approval Ethical approval has been granted by the Ethics Committee of Dongzhimen Hospital, Beijing University of Chinese Medicine (DZMEC-KY-2017-81).

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement The data are from published papers and do not include identifiable patient data.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

REFERENCES
1. Odutayo A, Wong CX, Hsiao AJ, et al. Atrial fibrillation and risks of cardiovascular disease, renal disease, and death: systematic review and meta-analysis. BMJ 2016;354.
2. January CT, Wann LS, Alpert JS, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American heart association Task force on practice guidelines and the heart rhythm society. J Am Coll Cardiol 2014;64:e1–76.
3. Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Rev Esp Cardiol 2017;70.
4. Heart Rhythm Society of the Chinese Society of Biomedical Engineering, Nao Xin Tong Zhi Committee of the Chinese Association of Integrative Medicine. Expert consensus on Wenxin granule for treatment of cardiac arrhythmias. Chin Med J 2017;130:203–10.
5. COMET Initiative. Available: http://www.comet-initiative.org/ [Accessed 1 Apr 2019].
6. Shang H, Qiu R, Zhang X, et al. A core outcome set for clinical trials of traditional Chinese medicine in non-valvular atrial fibrillation. Available: http://www.comet-initiative.org/studies/details/941 [Accessed 1 Apr 2019].
7. Qiu R, Li M, Zhang X, et al. Development of a core outcome set (COS) and selection of outcome measurement instruments (OMIs) for non-valvular atrial fibrillation in traditional Chinese medicine clinical trials: study protocol. Trials 2018;19:541.
8. Durnea CM, Pergialiotis V, Duffy JM, et al. A systematic review of outcome and outcome-measure reporting in randomised trials evaluating surgical interventions for anterior-compartment vaginal prolapse: a call to action to develop a core outcome set. Int Urogynecol J 2018;29:1727–45.
9. Alkhaffaf B, Blazey JM, Williamson PR, et al. Reporting of outcomes in gastric cancer surgery trials: a systematic review. BMJ Open 2018;8:e017592.
10. Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 1996;17:1–12.
11. Wells G, Shea B, O’Connell D, et al. The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Available: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp [Accessed 1 Apr 2019].
12. Moga C, Guo B, Schopflocher D. Development of a quality appraisal tool for case series studies using a modified Delphi technique. Edmundton AB: Institute of Health Economics, 2012. https://www.ije.ca/research-programs-rmd/qqscac/qqscac-info [Accessed 1 Apr 2019].
13. Hopkins JC, Howes N, Chalmers K, et al. Outcome reporting in bariatric surgery: an in-depth analysis to inform the development of a core outcome set, the BARI ACT study. Obes Rev 2015;16:88–106.
14. Dodd S, Clarke M, Becker L, et al. A taxonomy has been developed for outcomes in medical research to help improve knowledge discovery. J Clin Epidemiol 2016;69:84–92.
15. Pirinsen CAC, Voogt S, Rose MR, et al. How to select outcome measurement instruments for outcomes included in a "Core Outcome Set" - a practical guideline. Trials 2016;17:449.
16. Marcum ZA, Steinman MA. Developing a core outcome set for trials to improve medication use: guidelines or guidance? J Am Geriatr Soc 2018;66:1058–9.
17. Kang DW. Antithrombotic therapy for coronary heart disease complicated with atrial fibrillation [In Chinese]. Gansu Med J 2015;34:118–20.
18. Guo SG, Guo JR, Xu HL, et al. Effect of atorvastatin on the prognosis in patients with coronary heart disease complicated with chronic heart failure and atrial fibrillation [In Chinese]. Hainan Med J 2015;26:486–9.
19. Li L, Luo XL, Wang HY. Analysis on efficacy and safety of amiodarone combined with dabigatran etexilate in treatment of non-valvular atrial fibrillation [In Chinese]. Lab Med Clin 2015;12:1997–8.
20. Bu QF, Jiao DL, LiFX. Effectivity and safety of low-intensity warfarin anticoagulation in elderly patients with nonvalvular atrial fibrillation [In Chinese]. Clin J Med Off 2015;43:969–70.
21. Pan XM, Lii S. Effects of candesartan and rosuvastatin on the left atrial structure of patients with atrial fibrillation [In Chinese]. Chinese Baby 2016;9:11–12.
22. Li D. Effect of dabigatran on coagulation function in elderly patients with non-valvular atrial fibrillation [In Chinese]. Shandong Med J 2015;55:85–6.
23. Chen J, Hong HS, Zhou YW. Study on Application of Warfarin in Treatment of Non Valvular Atrial Fibrillation Anticoagulation [In Chinese]. China Contin Med Educ 2015;7:117–9.
24. Sang J, Sui LJ, Gao CZ. Effects of valsartan combined with rosuvastatin on plasma levels of C-reactive protein, tumor necrosis factor-α and interleukin-6 in elderly patients with...
complicated with paroxysmal atrial fibrillation [In Chinese], Jiangsu Med J 2016;42:2702–2.
72. Wen H. Clinical study of different doses of aspirin in preventing thrombosis in patients with atrial fibrillation [In Chinese]. Pharmolving 2016;39:57–8.
73. Chen YL. Antithrombotic effect of different doses of warfarin in elderly patients with paroxysmal atrial fibrillation [In Chinese], J Bethune Mil Med Coll 2016;14:71–2.
74. Xu ZT, Feng ZX, Wang Q, et al. Compared the therapeutic effect of metoprolol combined with spironolactone with metoprolol combined with valsartan in the treatment of isolated paroxysmal atrial fibrillation [In Chinese], Prev Treat Cardio Cerebral Vasc Dis 2016;16:48–50.
75. Huang H, He XQ, Zhang HM, et al. Effects of rosuvastatin on hypertension with paroxysmal atrial fibrillation [In Chinese], J Trop Med 2016;16:1132–6.
76. Zhao TB, Dong HY. Effect of atorvastatin calcium on elderly patients with chronic heart failure complicated with atrial fibrillation [In Chinese], China Prescription Drug 2017;15:
77. Feng WJ, Zhang R, Li LL, et al. Therapeutic effect and safety of combined therapy of Maxuekang capsule and low-intensity-anticoagulation warfarin with aspirin on acute cerebral infarction in elderly patients with non-valvular atrial fibrillation [In Chinese], Hebei Med J 2015;37:663–5.
78. Jin Y, Li WL, Pan XM. Clinical observation of the effect of amiodarone combined with wuxin granules on conversion and maintenance of sinus rhythm in 80 patients with atrial fibrillation [In Chinese], Chin J Ethnomed Ethnopharm 2016;14:598–601.
79. Zhang BG, Peng ZX. Clinical observation of buynghuaxue capsule in the treatment of chronic heart failure with rapid atrial fibrillation [In Chinese], Heilongjiang Med Pharm 2016;39:57–8.
80. Chen YN, Yan ZQ, He XP, et al. Effect of Jianxin Granule on the incidence of atrial fibrillation in patients with myocardial infarction [In Chinese], Bethune Mil Med Coll 2016;14:71–2.
81. Zhong Z, Zhang WC, Wang SP, et al. Effect of Jincheng capsule on rapid atrial fibrillation caused by hyperthyroidism [In Chinese]. Chin J Pract Med 2016;36:11–12.
82. Li FN, Kuan P, Chen Y, et al. Effect of Shensongyangxin capsules combined with amiodarone on MMP-2 and hs-CRP of patients with paroxysmal atrial fibrillation [In Chinese], Intern Med China 2016;11:694–7.
83. Wang L, Wang X. Effect of the Wuxin granules on inflammatory cytokines of patients with permanent atrial fibrillation [In Chinese], Chin J Pract Med 2016;43:123–5.
84. Cui XT. Effect of Zhigancao decoction combined with metoprolol on ventricular rate and plasma Hcy level in patients with chronic atrial fibrillation [In Chinese], Mod J Integr Tradit Chin West Med 2017;26:162–3.
85. Jin HM. Effect of Dingxin granule on early blood pressure in patients with hypertension complicated with paroxysmal atrial fibrillation [In Chinese], Chin Foreign Med Res 2016;14:110–1.
86. Zhang XS. Efficacy observation of sotolol combined with shensong yangxin capsule in the treatment of coronary heart disease with rapid atrial fibrillation [In Chinese], Med Innov China 2017;14:99–102.
87. Chen T, Zhang ZL, Fan XH, et al. Effect of Zhigancao decoction combined with amiodarone on paroxysmal atrial fibrillation and atrial remodeling [In Chinese]. China Mod Doct 2017;55:118–21.
88. Liu J, Liu Y, Yang Y. Effect of Dingxin granules combined with metoprolol on P wave dispersion and serum inflammatory factors in patients with paroxysmal atrial fibrillation [In Chinese], Mod J Integr Tradit Chin West Med 2016;26:2564–6.
89. Zhang RZ. Curative effect observation of Wexin Granule combined with amiodarone in treating 94 cases of paroxysmal atrial fibrillation [In Chinese], Clin J Chin Med 2016;8:37–8.
90. Granger CB, Lopes RD, Hanna M, et al. Clinical events after transitioning from apixaban versus warfarin to warfarin at the end of the apixaban for reduction in stroke and other thromboembolic events in atrial fibrillation (ARISTOTLE) trial. Am Heart J 2015;169:25–30.
91. Held C, Hylek EM, Alexander JH, et al. Clinical outcomes and management associated with major bleeding in patients with atrial fibrillation treated with apixaban or warfarin: insights from the ARISTOTLE trial. J Am Heart J 2015;169:32–42.
92. Jaspers Focke J, Brouwer MA, Wijdkema DM, et al. Polypolymerase chain reaction and effects of apixaban versus warfarin in patients with atrial fibrillation: post hoc analysis of the ARISTOTLE trial. BMJ 2016;353.
93. Bahit MC, Lopes RD, Wijdkema DM, et al. Non-major bleeding with apixaban versus warfarin in patients with atrial fibrillation. Heart 2017;103:623–8.
94. Alexander JH, Andersson U, Lopes RD, et al. Apixaban 5 Mg twice daily and clinical outcomes in patients with atrial fibrillation and advanced age, low body weight, or high creatinine: a secondary analysis of a randomized clinical trial. JAMA Cardiol 2016;1:673–81.
95. Hu PT, Lopes RD, Stevens SR, et al. Efficacy and safety of apixaban compared with warfarin in patients with atrial fibrillation and peripheral artery disease: insights from the ARISTOTLE trial. J Am Heart Assoc 2017;6:e004699.
96. Pengo V, Zambon C-F, Fogar P, et al. A randomized trial of pharmacogenetic warfarin dosing in naive patients with Non-Valvular atrial fibrillation. PLoS One 2015;10:e0145318.
97. Stefelli J, Giugliano RP, Braunwald E, et al. Edoxaban versus warfarin in patients with atrial fibrillation on amiodarone: a subgroup analysis of the engage AF-TIMI 48 trial. Eur Heart J 2015;36:2239–45.
98. Yamashita T, Koresutane Y, Yang Y, et al. Edoxaban versus Warfarin in East Asian Patients with atrial fibrillation- An ENGAGE AF-TIMI 48 subanalysis. Circ J 2015;79:889–90.
99. Kato ET, Giugliano RP, Ruff CT, et al. Efficacy and safety of edoxaban in elderly patients with atrial fibrillation in the engage AF-TIMI 48 trial. J Am Heart Assoc 2016;5:e003432.
100. Meng Z, Tan J, He Q, et al. Wexin keli versus sotolol for paroxysmal atrial fibrillation caused by hyperthyroidism: a prospective, open label, and randomized study. Evid Based Complement Altern Med 2015:2015:1–9.
101. Wang H, Zhou X-K, Zheng L-F, et al. Comparison of aspirin and Naoxitong capsule (with adjusted-dose warfarin in elderly patients with high-risk of non-valvular atrial fibrillation and genetic variants of vitamin K epoxide reductase. Chin J Integr Med 2018:24:247–53.
102. Brambati M, Darius H, Oldgren J, et al. Comparison of dabigatran versus warfarin in diabetic patients with atrial fibrillation: results from the RE-LY trial. Int J Cardiol 2015;196:127–31.
103. Arsicchio P, Reboli G, Angelis F, et al. Dabigatran vs. warfarin in relation to the presence of left ventricular hypertrophy in patients with atrial fibrillation- the randomized evaluation of long-term anticoagulation therapy (RE-LY) study. European 2018;20:253–62.
104. Tan F, Fathah S, Zou X, et al. Rivastigmin therapy might not decrease progression of paroxysmal atrial fibrillation in non-valvular disease patients. Anatol J Cardiol 2017;18:103–7.
105. Shah R, Hellkamp A, Lokhnygina Y, et al. Use of concomitant aspirin in patients with atrial fibrillation: findings from the rocket AF trial. Am Heart J 2016;179:77–86.
106. Sun Y, Hu D, Stevens S, et al. Efficacy and safety of rivaroxaban versus warfarin in patients from mainland China with nonvalvar
117. Yao H, Jiang L, Lin X, et al. Fluvastatin combined with benazepril may contribute to the favorable prognosis of patients with atrial fibrillation. Eur Heart J. 2016;37:887–92.

118. Goette A, Merino JL, Ezekowitz MD, et al. Edoxaban versus enoxaparin-warfarin in patients undergoing cardioversion of atrial fibrillation (ENSURE-AF): a randomised, open-label, phase 3B trial. Lancet. 2016;388:1995–2003.

119. Maciani G, Giugliano RP, Ruff CT, et al. Efficacy and safety of edoxaban compared with warfarin in patients with atrial fibrillation and heart failure: insights from engage AF-TIMI 48. Eur J Heart Fail. 2016;18:1153–61.

120. Senoo K, Lip GYH, Lane DA, et al. Residual risk of stroke and death in anticoagulated patients according to the type of atrial fibrillation. Stroke. 2015;46:2523–8.

121. Hijazi Z, Hohnloser SH, Andersson U, et al. Efficacy and safety of apixaban compared with warfarin in patients with atrial fibrillation in relation to renal function over time. JAMA Cardiol. 2016;1:451–60.

122. Cadrin-Tourigny J, Shohoudi A, Roy D, et al. Decreased mortality with beta-blockers in patients with heart failure and coexisting atrial fibrillation an AF-CHF substudy. JACC Heart Fail. 2017;5:99–106.

123. Maciag A, Farkowski MM, Chwydzki T, et al. Efficacy and safety of anticoagulation in the rapid cardioversion of paroxysmal atrial fibrillation in the AnPAF study. Eur Heart J. 2017;38:19163–42.

124. Ng KH, Shestakovska O, Connolly SJ, et al. Efficacy and safety of apixaban compared with aspirin in the elderly: a subgroup analysis from the AVERROES trial. Age Ageing. 2016;45:77–83.

125. Inoue H, Atarashi H, Okumura K, et al. Effect of telmisartan on recurrence of paroxysmal atrial fibrillation [In Chinese]. Chin J Pract Diagn Ther. 2017;31:384–6.

126. Dong Z, Yao H, Miao Z, et al. Pretreatment with intravenous amiodarone improves the efficacy of ibutilide treatment on cardioversion rate and maintenance time of sinus rhythm in patients with persistent atrial fibrillation. Biomed Rep. 2017;6:866–90.

127. Hong K-S, Kwon SU, Lee SH, et al. Clinical effect of benazepril combined with atorvastatin in treatment of hypertension complicated with atrial fibrillation in paroxysmal atrial fibrillation [In Chinese]. J Korean Med Sci. 2015;42:538–41.

128. Tu Q, Li G, Yang Y, et al. Efficacy and safety of dabigatran in elderly patients with paroxysmal atrial fibrillation. Chin J Integr Med. 2017;23:1141–4.

129. Zhang YQ, Yin XR. Effects of different doses of rosuvastatin in patients with paroxysmal atrial fibrillation [In Chinese]. Pract Geriatr. 2016;30:904–6.

130. Zhou H, Wang ZJ, Zhou MF, et al. Clinical research of telismanat in preventing hypertension with paroxysmal atrial fibrillation [In Chinese]. Chin J Prim Med Pharm. 2016;23:3996–700.

131. Qian CS, Sun Y, Sheng CH, et al. Clinical observation of Yiqi Yangyin in treatment of DHF complicated with chronic atrial fibrillation [In Chinese]. Zhejiang J Clin Med. 2017;19:662–4.

132. Di Y, Wang ZJ, Zha WH, et al. Effect of telismanat on recurrence of paroxysmal atrial fibrillation in patients with hypertension and cardiac dysfunction [In Chinese]. J Clin Intern Med. 2017;34:316–9.

133. Liu ZY. Clinical observation of patients with hypertension complicated with atrial fibrillation [In Chinese]. Chin J Integr Med Cardio Cerebrovas Dis. 2017;15:1374–6.

134. Yu M, Yu AQ, Yu DJ. Influence of rosuvastatin combined with valsartan in C reactive protein and myocardium remodeling in patients with hypertension complicated with paroxysmal atrial fibrillation [In Chinese]. Chin J Lab Diagn. 2017;21:1141–4.

135. Zhang J, Jiao WW. Research advances of new oral anticoagulants. J Clin Neurology. 2015;42:538–41.

136. Liu J, Zhou G, Ma L, et al. Effect of telismanat on hypertension patients with paroxysmal atrial fibrillation [In Chinese]. Guangxi Med J. 2015;37:614–6.

137. Pang F, Gong YX, Zheng GM. Clinical observation of valsartan in the treatment of Jiafengtong hypertension complicated with atrial fibrillation [In Chinese]. Sci Technol Vis. 2015;349.

138. Wang B. Clinical observation on efficacy of ibrsenat combined with atorvastatin in treatment of hypertension complicated with paroxysmal atrial fibrillation [In Chinese]. Med Recapitulate. 2015;21:3972–4.

139. Yan Y, Zhang B, Wang XG, et al. Clinical effect of benazepril combined with amiodarone in patients with paroxysmal atrial fibrillation. China Pharm Econ. 2015;12:38–9.

140. Huang JZ, Peng J, Gao SL. The effects of valsartan on levels of inflammation markers and left atrial diameters in the elderly patients with hypertension complicated persistent atrial fibrillation [In Chinese]. Prev Treat Cardio Cerebr Vasc Dis. 2015;15:107–9.
warfarin in patients with atrial fibrillation: propensity weighted nationwide cohort study. BMJ 2016;353.

164. Kilikian Avci B, Vatan B, Ozden Tok O, et al. The trends in utilizing Nonvitamin K antagonist oral anticoagulants in patients with nonvalvular atrial fibrillation: a real-life experience. Clin Appl Thromb Hemost 2016;22:785–91.

165. Inoue H, Uchiyama S, Astarashi H, et al. Post-Marketing surveillance on the long-term use of dabigatran in Japanese patients with nonvalvular atrial fibrillation: preliminary report of the J-dabigatran surveillance. J Arrhythm 2016;32:145–50.

166. Chan P-H, Li W-H, Hai J-J, et al. Gastrointestinal haemorrhage in atrial fibrillation patients: impact of quality of anticoagulation control. Eur Heart J Cardiovasc Pharmacother 2015;1:265–72.

167. Laliberté F, Cloutier M, Crivera C, et al. Effects of rivaroxaban versus warfarin on hospitalization days and other health care resource utilization in patients with nonvalvular atrial fibrillation: an observational study from a cohort of matched users. Clin Ther 2015;37:554–62.

168. Lee S-J, Uhm J-S, Kim J-Y, et al. The safety and efficacy of vitamin K antagonist in patients with atrial fibrillation and liver cirrhosis. Int J Cardiol 2015;180:185–91.

169. Lau WCY, Chan EW, Cheung C-L, et al. Association between dabigatran vs warfarin and risk of osteoporotic fractures among patients with nonvalvular atrial fibrillation. JAMA 2015;317:1151–8.

170. Ho C-W, Ho M-H, Chan P-H, et al. Ischemic stroke and intracranial hemorrhage with aspirin, dabigatran, and warfarin: impact of quality of anticoagulation control. Stroke 2015;46:23–30.

171. Chan P-H, Hai J, Yeung C-Y, et al. Benefit of anticoagulation therapy in Hypoodyrhythm-Related atrial fibrillatio. Clin Cardiol 2015;38:476–82.

172. Chao T-F, Liu C-J, Tuan T-C, et al. Rate-control treatment and mortality in atrial fibrillation. Circulation 2015;132:1604–12.

173. Pastori D, Farcomeni A, Bucci T, et al. Digoxin treatment is associated with increased total and cardiovascular mortality in anticoagulated patients with atrial fibrillation. Int J Cardiol 2015;180:1–5.

174. Chen P-C, Lip GYH, Yeh G, et al. Risk of bleeding and stroke with oral anticoagulation and antiplatelet therapy in patients with atrial fibrillation in Taiwan: a nationwide cohort study. PLoS One 2015;10:e125257.

175. Engelberger RP, Noll G, Schmidt D, et al. Analysis of normalized anticoagulant therapy for patients with non-valvular atrial fibrillation in clinical application [In Chinese]. Pract J Med Pharm 2016;33:584–5.

176. Tung JM, Mammad MM, Juurlink DN, et al. Rates of ischemic stroke during warfarin treatment for atrial fibrillation. Stroke 2015;46:1120–2.

177. Wu Y-L, Saver JL, Chen P-C, et al. Effect of statin use on clinical outcomes in ischemic stroke patients with atrial fibrillation. Medicine 2017;96:e5918.

178. Kodani E, Astarashi H, Inoue H, et al. Beneficial effect of non-vitamin K antagonist oral anticoagulants in patients with nonvalvular atrial fibrillation - Results of the J-RHYTHM registry 2. Circ J 2016;80:843–51.

179. Yamashita H, Tanaka H, Okumura K, et al. Warfarin anticoagulation intensity in Japanese nonvalvular atrial fibrillation patients: a J-RHYTHM registry analysis. J Cardio 2015;150:675–7.

180. Kumagai N, Nusser JA, Inoue H, et al. Effect of addition of a statin to warfarin in thromboembolic events in Japanese patients with nonvalvular atrial fibrillation and diabetes mellitus. Am J Cardiol 2017;120:290–5.

181. Blin P, Dureau-Pouzin C, Lassalle R, et al. A population database study of outcomes associated with vitamin K antagonists in atrial fibrillation before DOAC. Br J Clin Pharmacol 2016;81:569–78.

182. Piccini JP, Simon DN, Steinberg BA, et al. Differences in clinical and functional outcomes of atrial fibrillation in women and men: two-year results from the ORBIT-AF registry. JAMA Cardiol 2016;1:282–91.

183. Allen LA, Fonarow GC, Simon DN, et al. Digoxin use and subsequent outcomes among patients in a contemporary atrial fibrillation cohort. J Am Coll Cardiol 2015;65:2691–8.

184. Genovesi S, Rossi E, Gallieni M, et al. Warfarin use, mortality, bleeding and stroke in haemodialysis patients with atrial fibrillation. Nephrol Dial Transplant 2015;30:491–8.

185. Qin D, Lee G, Kow MB, et al. Comparative effectiveness of antiarrhythmic drugs for rhythm control of atrial fibrillation. J Cardio 2016;67:471–6.
209. Li D, Yue MZ. Clinical observation of Tongluo Dingxin Recipe in the treatment of blood stasis type of non-valvular atrial fibrillation and its effect on coagulation [In Chinese]. *Yunnan J Tradit Chin Med Mater Med* 2018;39:48–9.

210. Yu P. Clinical observation and safety evaluation of modified Xuefu Zhuyu decoction combined with dabigatran etexilate in the treatment of non - valvar atrial fibrillation. *Inform Tradit Chin Med* 2018;35:108–10.

211. De With RR, Rienstra M, Smit MD, et al. Targeted therapy of underlying conditions improves quality of life in patients with persistent atrial fibrillation: results of the RACE 3 study. *Europe* 2019;21:563–71.

212. Ezekowitz MD, Pollack CV, Halperin JL, et al. Apixaban compared with heparin and vitamin K antagonist in patients with atrial fibrillation scheduled for cardioversion: the EMANATE trial. *Eur Heart J* 2018;39:2959–71.

213. Li XL, Lu Y, Yin JF, et al. Genotype-Based anticoagulant therapy with warfarin for atrial fibrillation. *Int J Clin Exp Med* 2017;10:14056–62.

214. Yamashina T, Ikeda T, Akita Y. Comparison of heart rate reduction effect and safety between bisoprolol transdermal patch and bisoprolol fumarate oral formulation in Japanese patients with persistent/permanent atrial fibrillation (BISONO-AF study). *J Cardiol* 2019;73:386–93.

215. Bartlett JW, Renner E, Mouland E, et al. Clinical safety outcomes in patients with nonvalvular atrial fibrillation on rivaroxaban and diltiazem. *Ann Pharmacother* 2019;53:21–7.

216. Andersson NW, Svanström H, Lund M, et al. Comparative effectiveness and safety of dabigatran, rivaroxaban, and warfarin in patients with non-valvular atrial fibrillation. *Int J Cardiol* 2018;268:113–9.

217. Deitelzweig S, Luo X, Gupta K, et al. Comparison of effectiveness and safety of treatment with apixaban vs. other oral anticoagulants among elderly nonvalvular atrial fibrillation patients. *Curr Med Res Opin* 2017;33:1745–54.

218. Friberg L, Oldgren J. Efficacy and safety of non-vitamin K antagonist oral anticoagulants compared with warfarin in patients with atrial fibrillation. *Open Heart* 2017;4:e0082.

219. Hernandez I, Zhang Y, Saba S. Comparison of the effectiveness and safety of apixaban, dabigatran, rivaroxaban, and warfarin in newly diagnosed atrial fibrillation. *Am J Cardiol* 2017;120:1813–9.

220. Pohjantähti-Maaroos H, Hyppölä H, Lekkala M, et al. Intravenous verapamilant in comparison with intravenous flecainide in the cardioversion of recent-onset atrial fibrillation. *Eur Heart J* 2019;8:114–20.

221. Koretsune Y, Yamashita T, Yasaka M, et al. Comparative effectiveness and safety of warfarin and dabigatran in patients with non-valvular atrial fibrillation in Japan: a claims database analysis. *J Cardiol* 2019;73:204–9.

222. Lai K-C, Chen S-J, Lin C-S, et al. Digoxin and amiodarone on the risk of ischemic stroke in atrial fibrillation: an observational study. *Front Pharmacol* 2018;9:448.

223. Li W-H, Huang D, Chiang C-E, et al. Efficacy and safety of dabigatran, rivaroxaban, and warfarin for stroke prevention in Chinese patients with atrial fibrillation: the Hong Kong atrial fibrillation project. *Clin Cardiol* 2017;40:222–9.

224. Link MS, Giugliano RP, Ruff CT, et al. Stroke and mortality risk in patients with various patterns of atrial fibrillation: results from the engage AF-TIMI 48 trial (effective anticoagulation with factor Xa next generation in atrial Fibrillation-Thrombolysis in myocardial infarction 48). *Circ Arhythm Electrophysiol* 2017;10:e004267.

225. Lip GYH, Skjøth F, Nielsen PB, et al. Effectiveness and safety of standard-dose Nonvitamin K antagonist oral anticoagulants and warfarin among patients with atrial fibrillation with a single stroke risk factor: a nationwide cohort study. *JAMA Cardiol* 2017;2:872–81.

226. Noseworthy PA, Yao X, Gerah BJ, et al. Long-Term stroke and bleeding risk in patients with atrial fibrillation treated with oral anticoagulants in contemporary practice: providing evidence for shared decision-making. *Int J Cardiol* 2017;245:174–7.

227. Lip GYH, Keshishian A, Li X, et al. Effectiveness and safety of oral anticoagulants among nonvalvular atrial fibrillation patients. *Stroke* 2018;49:2933–44.

228. Martinez BK, Bunz TJ, Erikssoon D, et al. Effectiveness and safety of rivaroxaban vs. warfarin in patients with non-valvular atrial fibrillation and heart failure. *ESC Heart Fail* 2019;6:10–15.

229. Gieling EM, van den Ham HA, van Onzenoort H, et al. Risk of major bleeding and stroke associated with the use of vitamin K antagonists, nonvitamin K antagonist oral anticoagulants and aspirin in patients with atrial fibrillation: a cohort study. *Br J Clin Pharmacol* 2017;83:1844–59.

230. Go AS, Singer DE, Toh S, et al. Outcomes of dabigatran and warfarin for atrial fibrillation in contemporary practice: a population-based cohort study. *Ann Intern Med* 2017;167:845–54.

231. Forslund T, Wettermark B, Andersen M, et al. Stroke and bleeding with non-vitamin K antagonist oral anticoagulant or warfarin treatment in patients with non-valvular atrial fibrillation: a population-based cohort study. *Europe* 2018;20:420–8.

232. Själander S, Sjögren V, Renlund H, et al. Dabigatran, rivaroxaban and apixaban vs. high TTR warfarin in atrial fibrillation. *Thromb Res* 2018;167:113–8.

233. Corbalán R, Nicolau JC, López-Sendon J, et al. Edoxaban versus Warfarin in Latin American patients with atrial fibrillation: the ENGAGE AF-TIMI 48 trial. *J Am Coll Cardiol* 2018;72:1466–75.

234. Bae H-J, Heo JH, Jung K-H, et al. Targeted therapy of blood stasis type of non-valvular atrial fibrillation and its effect on coagulation [In Chinese]. *Mater Med* 2018;13:e202803. doi:10.1136/bmjopen-2018-028803

235. Martínez C, Piqueras JA, Rodríguez-Posada P, et al. Antithrombotic treatments before introduction of non-vitamin K antagonist oral anticoagulants into practice in Korea. *PLoS One* 2018;13:e020803.