Surface Lymphotoxin α/β Complex Is Required for the Development of Peripheral Lymphoid Organs

By Paul D. Rennert,* Jeffrey L. Browning,* Reina Mebius, Fabienne Mackay,* and Paula S. Hochman*

From *Biogen Inc., Cambridge, Massachusetts 02142; and the Department of Cell Biology and Immunology, Vrije Universiteit, 1081 BT Amsterdam, The Netherlands

Summary

For more than a decade, the biological roles and the apparent redundancy of the cytokines tumor necrosis factor (TNF) and lymphotoxin (LT) have been debated. LTα exists in its soluble form as a homotrimer, which like TNF only binds the TNF receptors, TNF-R55 or TNF-R75. The cell surface form of LT exists as a heteromer of LTα and LTβ subunits and this complex specifically binds the LTβ receptor (LTβ-R). To discriminate the functions of the LT and TNF systems, soluble LTβ-R-immunoglobulin (Ig) or TNF-R–Ig fusion proteins were introduced into embryonic circulation by injecting pregnant mice. Exposure to LTβ-R–Ig during gestation disrupted lymph node development and splenic architecture in the progeny indicating that both effects are mediated by the surface LTα/β complex. These data are the first to identify a cell surface ligand involved in immune organ morphogenesis. Moreover, they unambiguously discriminate the functions of the various TNF/LT ligands, provide a unique model to study compartmentalization of immune responses and illustrate the generic utility of receptor–Ig fusion proteins for dissecting/ordering ontogenetic events in the absence of genetic modifications.

TNF, lymphotoxin (LT)α, and LTβ are members of the TNF superfamily (1). While TNF is expressed by many cell types, LTα is basically restricted to activated lymphocytes. Both molecules can be secreted as homotrimers, yet TNF also exists as a cell surface homotrimer retained by a transmembrane domain. LTα (also called TNFβ) and TNF homotrimers bind and signal via either of two TNF receptors, TNF-R55 or TNF-R75, to mediate host defense processes (1, 2). Unlike LTα, LTβ has not been detected in a secreted form nor as a homotrimer, rather, LTβ as a type II integral membrane protein complexes with LTα to form membrane anchored heteromers (3, 4). The predominant surface LTα/β complex does not bind the TNF receptors, but does bind to a unique receptor termed the LTβ-R (5). Recent reports have shown that recombinant soluble human LTα/β complexes bind LTβ-R to mediate cytolysis of a subset of human adenocarcinomas (6a) but only inefficiently mediate proinflammatory activities (6a).

In addition to initiating proinflammatory processes, studies suggest that TNF and LTα can regulate immune function directly (7, 8). For example, in vitro TNF signaling can affect thymocyte proliferation and differentiation, B cell activation and proliferation, and mixed lymphocyte responses. The direct involvement of LTα in the development/organization of peripheral lymphoid organs was demonstrated using the targeted gene disruption approach. LTα−/− mice lack LNs and Peyer's patches, and their spleens have indistinct follicular marginal zones, T/B cell disorganization, and fail to form germinal centers (GC) (9-11). Such effects were not noted in mice lacking TNF-R75 (12-14). TNF-R55-deficient mice express more limited alterations, i.e., the absence of only Peyer's patches (15, 16), the failure to express MAdCAM-1 on splenic marginal zone cells, and the inability to form GC (8). Since the TNF-R do not appear to mediate the development of the peripheral lymphoid system, it was postulated that the membrane LTα/β/LTβ-R pathway may regulate LN genesis (9). Recently, it has been suggested that lymphotoxin mediates “neoorganogenesis,” a pathologic process mimicking normal lymph node genesis (17). Restricted expression of LTα in the pancreas and kidney of transgenic mice caused inflammation in the target tissue manifested by the induction of LN-like structures within these organs.

To investigate the role of LTα/β and TNF in signaling immune system development, we used a novel strategy. Since human IgG1 binds the murine Fc receptor FcRn and crosses the yolk sac (18), it was considered that introduc-
tion of receptor decoys, i.e., soluble receptor human IgG1 fusion proteins during gestation might interfere with developmental processes in the absence of permanent genetic alterations.

Materials and Methods

Animals. Timed pregnant Balb/c mice were purchased from The Jackson Laboratory (Bar Harbor, ME), housed under conventional barrier protection, and handled in accordance with institutional guidelines. Receptor-Ig proteins or mAbs were injected i.v. into the tail vein.

Fusion Proteins and Antibodies. Fusion proteins comprised of the extracellular domain of either murine LTβ-R or LFA-3 (which does not bind murine CD2) fused to the hinge, C2, and C3 domains of human IgG1 were prepared as described (19, 20). The murine TNF-R55-IgG, was created in a similar manner (Browning, J., manuscript in preparation). The absolute specificity of the human receptors for their ligands has been demonstrated in cell-based assays (6). In the murine LT system, binding of LTβ-R–Ig requires expression of both LTα and LTβ proteins (19). Murine LTβ-R–Ig fusion protein can inhibit the activity of LTα/β in a mouse LTβ-R–based cytotoxicity assay in which murine TNF-R55–Ig is inactive. Likewise, the specificity of the interaction of TNF-R55 with LTα has been well-characterized in human systems and we have shown further that both human and mouse TNF-R55-Ig can block the activity of recombinant murine LTα in a TNF-R55–based cytotoxicity assay (Mackay, F., and J. Browning, manuscript in preparation). A hamster IgG mAb BBF6 specific for murine LTβ was prepared by conventional methodology (Browning, J., manuscript in preparation). Anti-LTβ mAb BBF6 can block murine LTα/β signaling in an LTβ-R–based cytotoxicity assay (Mackay, F., and J. Browning, manuscript in preparation). Polyclonal hamster IgG (PharMingen, San Diego, CA) was used as a control.

ELISAs. Analyses for receptor-Ig in plasma used mAbs specific for murine LTβ-R (Browning, J., J. Szym, P. Lawton, P. Bourdon, P. Rennert, G. Majeau, C. Ambrose, C. Hession, K. Miatkowski, D. Griffiths et al., manuscript in preparation), LFA-3 (20), or the C3 domain of human IgG1 (CD55, prepared at Biogen, Cambridge, MA) directly immobilized (10 μg/ml) on 96-well microtiter plates for capture, and donkey anti-human IgG–horseradish peroxidase for detection (1:4,000 dilutions; Jackson Immunoresearch Laboratories, West Grove, PA). ELISA for hamster mAbs in plasma used immobilized goat anti-hamster IgG (10 μg/ml; Southern Biotechnology Associates, Birmingham, AL) for capture, and goat anti-hamster IgG–horseradish peroxidase for detection (1:6,000; Southern Biotechnology Associates).

Immunohistochemistry. Tissues were fixed in 10% buffered formalin, embedded in paraffin, and sectioned for hematoxylin/eosin staining. For immunofluorescence staining, frozen spleen sections were acetone fixed, air dried, and probed with 5 μg/ml anti-CD16/CD32 Fc block (PharMingen) in Tris-buffered saline with 0.25% BSA, 0.05% Tween 20, and 10% heat-aggregated rabbit serum. Cells were stained with 5 μg/ml biotinylated anti-B220 mAb (PharMingen) in the same buffer, followed by 10 μg/ml fluorescein conjugated–neutralite (FITC-avidin; Southern Biotechnology Associates) and 5 μg/ml PE-conjugated anti-CD4 mAb (PharMingen). Slides were viewed under ×100 optics and separate red and green images, digitized. Each of the images was analyzed with Adobe Photoshop in a consistent manner followed by overlaying of the green and red images in the screen mode. The final images are representative of these sections. Staining of sections for MAdCAM-1 expression used mAb MECA 367 (PharMingen) followed by PE-conjugated goat anti-rat IgG (PharMingen).

Results and Discussion

Gestational Blockade of LTα/β Disrupts LN Genesis. The loss of TNF signaling as revealed by the genetic ablation of murine TNF-R55 leads to defects in the initiation of acute inflammatory cascades, an inability to defend against intracellular parasites, failure to generate GC, and the absence of Peyer’s patches (8, 12–14, 16). In contrast, mice with a disrupted LTα gene lack LNs and Peyer’s patches, and possess spleens with indistinct follicular marginal zones and T/B cell disorganization (9–11). These genetic experiments suggest that disruption of cell surface LTα/β heterotrimers mediates most aspects of the defects in the LTα/β knockout mice. To evaluate the role of murine LTα/β complexes in the development of the secondary lymphoid organs, the actions of surface LT ligand in the fetus and young mice were blocked by introducing either murine LTβ-R–Ig or murine TNF-R55–Ig fusion proteins, i.e., soluble receptor decoys, into the fetus via maternal transfer or by direct injection into neonates.

The regimen of fusion protein administration chosen was influenced by (a) the reported time of LN development during rodent embryogenesis (21); (b) in situ hybridization studies showing that LTβ mRNA is expressed in thymocytes and lymph nodes (but not spleen) in mouse embryos at day 16.5 of gestation (French, L., J. Tschopp, and J. Browning, manuscript in preparation); and (c) observations that LTβ-R message is detected in embryos as early as 7 d after coitus (22), and is expressed in some epithelial tissues and thymus at day 14.5 of gestation (French, L., J. Tschopp, and J. Browning, manuscript in preparation). Thus, mice were injected i.v. with 200 μg of fusion protein on days 14 and 17 of gestation, and the progeny were visually inspected for the presence of LNs at various ages. All LNs and Peyer’s patches were readily detected in young mice that received either PBS, LFA-3-Ig, or TNF-R55–Ig. In contrast, inguinal and popliteal LNs and Peyer’s patches were absent in the progeny of mice treated with LTβ-R–Ig (Table 1). Microscopic examination revealed the presence of juxtaposed lymphatic and circulatory vessels but no anlage of lymphoid organs at the sites where these nodes are usually observed (Fig. 1). Interestingly, brachial and mesenteric LNs were present in the progeny of mice that had been treated with LTβ-R–Ig and murine TNF-R55–Ig fusion proteins, i.e., soluble receptor decoys, into the fetus via maternal transfer or by direct injection into neonates.

ELISA analyses showed that all three IgG1 fusion proteins were present but not at equivalent levels in the circulation of the progeny (Table 2). To determine that the effect
of LTβ-R decoy did not merely reflect better maternal-fetal transport, the dose of LTβ-R-Ig given to pregnant mice was titrated. The progeny of mice that received a single i.v. injection of as little as 1 (but not 0.2) μg of LTβ-R-Ig on day 14 of gestation, and had a plasma concentration below the levels of ELISA detection (10 ng/ml) at 2 d of age lacked popliteal and inguinal LNs. Activity of this low dose indicates the effect of the LTβ-R-Ig decoy on LN genesis is specific and not simply due to achieving higher levels of the former in the fetus. The presence of Peyer’s patches in TNF-R55-Ig treated mice (Table 1) contrasts to their absence in TNF-R55-deficient mice (16). Although repeated administration of the TNF-R55-Ig has in vivo effects (see the effects of fusion proteins on splenic MAdCAM-1 expression below), and as the TNF-R55-Ig serum level did not persist comparably to that of LTβ-R-Ig fusion protein in the progeny (Table 2), it is possible that TNF-R55-Ig was not present at sufficient levels to disrupt development of Peyer’s patches which occurs after birth.

The selective effect of LTβ-R-Ig treatment could result from its specific engagement of LTα/β complexes or its binding to an undefined alternative ligand. Although we cannot yet ascertain if the endogenous LTβ-R is the mediating receptor, the role of the LTβ protein was directly examined. LN development was ablated by gestational treatment with a hamster anti-murine LTβ mAb (Table 1) that blocks murine LTα/β signaling of murine LTβ-R in an in vitro assay (Mackay, F., and J. Browning, manuscript in preparation). The LN deficient phenotype of the LTα/β−/− mice and of mice treated with either LTβ-R-Ig or murine LTβ-specific mAb indicate that the LTα/β complex is required to mediate LN genesis during ontogeny. The identity of the LTα/β+ fetal cell type required for LN genesis is being investigated. Although LTα/β is an activation antigen restricted in expression to T and B lymphocytes and NK cells in adult mice (Browning, J., et al., manuscript submitted for publication), the ligand is apparently expressed

Table 1. The Development of LNs and Peyer’s Patches Is Disrupted in the Progeny of Mice Treated with LTβ-specific Reagents
Treatment regime

Receptor-Ig*
LTβ-R
TNF-R55
LFA-3
Hamster antibodies*
LTβ specific
Control IgG

* A minus sign denotes the absence and a plus sign the presence of popliteal and inguinal LNs, Peyer’s patches, spleens, or thymi as designated. Of the 79 mice treated with LTβ-R, none showed any signs of possessing popliteal or inguinal nodes.

Progeny of mice injected i.v. on days 14 and 17 with 200 μg of soluble receptor -Ig or 500 μg of either hamster anti-LTβ RBF6 or polyclonal hamster IgG were examined at various ages for the presence or absence of lymphoid organs. Detection of popliteal and inguinal LNs was aided by injecting 100 μl of India ink into rear footpads 2 h before examination.

2001 Rennert et al.
Table 2. Concentration of Receptor-Ig or mAbs Present in the Plasma of the Progeny of Treated Mice

Treatment	Days after birth			
	2–4	7–8	14–18	21–24
	µg/ml	µg/ml	µg/ml	µg/ml
Receptor-Ig				
LTβ-R	31 ± 6.3 (7)	9 ± 8 (6)	3.3 ± 1.5 (5)	2 ± 2 (8)
TNF-R55	9 ± 0.8 (4)	0 (6)	ND	ND
LFA-3	6 ± 1.7 (7)	0.5 ± 0.25 (2)	0.01 ± 0.02 (5)	0 (2)
Hamster antibodies				
Anti-LTβ	1.5 ± 1 (5)	0.5 ± 0.25 (2)	0 (2)	ND
Control IgG	10 ± 4 (4)	7 ± 2 (2)	0.2 (1)	ND

Progeny of mice that had been injected i.v. with either 200 µg of receptor-Ig or 200 µg of hamster antibody on days 14 and 17 of gestation were killed on the days indicated. Mean ± SD and sample size (n) represent that of progeny of multiple mothers from multiple experiments. ND, not done.

in the absence of extrinsic activation on a fetal cell population.

Ordering of LN Development. By varying the gestational day of LTβ-R-Ig injection, the genesis of LNs and Peyer’s patches was ordered and shown to be as follows: mesenterics; brachials; axillaries; inguinals and popliteals; Peyer’s patches (Table 3). This may reflect the extension of the lymphatic and circulatory vasculature during murine ontogeny as peripheral LN development appears to proceed in an anterior-to-posterior order. Interestingly, mesenteric LNs were detected in the progeny of mice that had been treated with LTβ-R-Ig as early as gestational day 9, suggesting that an additional LTα-specific pathway may be involved in the genesis of the mesenteric nodes. Alternatively, effective yolk sac transport may not occur early enough during development to ablate the formation of these nodes. Together with the inability to detect an empty anlage, these data indicate that LTβ-R-Ig binds its specific ligand to influence the development of LNs rather than to obliterate LNs already established during embryogenesis. Ongoing studies that do not show the gross deletion of the LN anlage in normal adult mice treated with LTβ-R-Ig (Mackay, F., and J. Browning, manuscript in preparation) or in mice expressing an LTβ-R-Ig transgene after birth (22a) also suggest that the effect of LTβ-R-Ig on LN genesis has a specific temporal requirement corresponding to the time of LN formation during ontogeny.

Blockade of LTα/β Alters Splenic Architecture. The presence of the thymus and spleen in the progeny of LTβ-R-Ig-treated mice and in LTα−/− mice shows that LTα/β

Table 3. LTβ-R-Ig Treatment Orders the Development of Peripheral Lymphoid Organs

Gestational day treated*	Lymph nodes*	Peyer’s patches*	Spleen*			
	Mesenteric	Brachial	Axillary	Inguinal	Popliteal	
9	+	–	–	–	–	ND +
10	+	–	–	–	–	ND +
11	+	–	–	–	–	ND +
12	+	–	–	–	–	ND +
13	+	+	–	–	–	ND +
14	+	+	–	–	–	ND +
15	+	+	+	–	–	ND +
16	+	+	+	+	–	ND +
17	+	+	+	+	–	– +
18	+	+	+	+	–	– +

*Plus sign indicates that lymphoid organ is present; minus sign indicates its absence.
*Pregnant mice were injected i.v. with 100 µg LTβ-R-Ig on indicated day of gestation. Six or more progeny were evaluated for the presence of secondary lymphoid organs.
Figure 2. Effects of LTα/β inhibition on splenic architecture. (Top) Hematoxylin/eosin staining of spleens of mice treated in utero and postnataally with either a (A) control protein LFA-3-Ig or (B) LTβ-R-Ig. Pregnant mice were injected i.v. with 200 μg of soluble receptor on days 14 and 18 of gestation. Pups were then injected i.p. on 7, 14, 21, and 28 d after birth and their spleens were analyzed at 5 wk. (Bottom) Comparison of the disruption of the T and B cell spleen zones in the LTα−/− mice with those of the progeny of mice injected with LTβ-R-Ig. Frozen spleen sections were stained for CD4+ T cells (red) or B220+ B cells (green). Yellow color shows overlapping staining. Shown are spleen sections from (C) an adult LTα++ mouse, (D) an LTα−/− mouse, (E) a 5-wk-old mouse whose mother was injected with 200 μg of LTβ-R-Ig on days 14 and 17 of gestation, and (F) a 5-wk-old mouse derived as per E but with continued injections i.p. at 7, 14, 21 and 28 d after birth.
Figure 3. Expression of MAdCAM-1 on splenic marginal zone cells. MAdCAM-1 expression on splenic marginal zone cells of progeny derived from pregnant mice treated i.v. (A) on days 14 and 17 of gestation with 200 μg of LFA-3-Ig (control), (B) on days 14 and 17 of gestation with 200 μg of LTβ-R-Ig followed by ip. injections on days 7, 14, 21, and 28 after birth with LFA-3-Ig, and (C) as per B but all injections were with LTβ-R-Ig. Each digital image was processed in an identical manner.

engagement is not required for their morphogenesis. To probe for more subtle effects, histological examinations of the spleens and thymi from treated and control mice were performed. As the spleen is populated with lymphocytes in the weeks after birth, injections of soluble LTβ-R-Ig-treated progeny were continued postnatally (100 μg once weekly for 5 wk). Histological analyses showed that thymi had clearly defined cortical and medullary zones (data not shown) and that both red and white pulp components are detected in the spleens of LTβ-R-Ig mice treated only during fetal development. However, after multiple LTβ-R-Ig injections the red and white pulp became disorganized (Fig. 2, A and B) as in LTα-/- mice (9, 10). Moreover, immunohistochemical analyses showed alterations in lymphocyte positioning in the white pulp. Although T cells still appeared to concentrate around the central arterioles, these paratrigonal lymphoid sheaths were reduced in size, the B cells follicles had ragged edges, and T and B cells failed to segregate exclusively into these zones (Fig. 2 F) as in spleens of control mice (Fig. 2 C). Such lymphocyte disorganization was observed in LTα-/- (Fig. 2 D, and 9, 11) but not in TNF-R55-/- mice (8).

Marginal zone cells bounding the T/B regions of the spleens from LTα-/- mice fail to express a characteristic marker, MOMA-1 (8). In our system, the expression of yet another marginal zone marker, MAdCAM-1, was lacking in spleens of mice treated multiple times with LTβ-R-Ig (Fig. 3 C) or TNF-R55-Ig (data not shown). Similar effects of LTβ-R-Ig but not TNF-R55-Ig on expression of other marginal zone markers (i.e., sialoadhesin) were also noted (data not shown). When LTβ-R-Ig was introduced only during gestation, relatively minor T and B cell disorganization was noted (Fig. 2 E), yet marginal zone MAdCAM-1 expression was diminished (Fig. 3 B) and the size of white pulp islands appears to be reduced (data not shown). This apparent continuum of LTβ-R-Ig splenic effects suggests that continuous interaction of LTα/β with LTβ-R or an alternative receptor influences the organization of cells in this secondary lymphoid organ.

In this work, we have reproduced most aspects of the phenotype of the LTα-/- mouse (except the absence of mesenteric LNs) by administering soluble LTβ-R-Ig, thus showing that membrane LTα/β and not LTα3 signals a specific molecular pathway which controls LN genesis, organization of lymphocytes within splenic follicles, and the integrity of the splenic marginal zone. It will be interesting to determine whether LTα/β acts as a master switch directing the expression of cell surface markers (i.e., MAdCAM-1 or MOMA-1) essential to these processes or controlling other activities of as yet undefined organizing cell types. TNF-R55-/- mice express MOMA-1 (8) but not MAdCAM-1 (23) in the splenic marginal zones, suggesting that MAdCAM-1 expression on marginal zone cells does not directly correlate with lymphocyte disorganization in the white pulp. Our data also show reasonable T/B organization when MAdCAM-1 expression is reduced (Figs. 2 E and 3 B) thus questioning the requirement of this adhesion
molecule for splenic lymphocyte organization. Moreover, experiments using toxic liposomes to eliminate MOMA-1+ splenic macrophages also did not show splenic disorganization (24). The failure of mutant ally mice (25, 26), relB-deficient mice (27, 28), and Ikaros knockout mice (29) to develop LNs and the disorganized lymphoid architecture in the spleen of the ally (26) and relB-deficient mice (27, 28) designates roles for other components in these processes. However, our data show that expression of the LTβ gene, like the Hox11 gene which controls the genesis of the deficient mice (27, 28), and Ikaros knockout mice (29) to tion (24). The failure of mutant splenic macrophages also did not show splenic disorganization caused by the absence of the immunocompromised phenotype noted in the ally mice, relB, and Ikaros-deficient mice. Moreover, LTαβ is distinct from these transcription factors, representing the first cell surface ligand identified to be critical for such immune morphogenetic processes.

LTβ-R is expressed on reticular dendritic cells in the red pulp of human fetal spleen (30a) and has not been found on T or B lymphocytes. Surface ligand in contrast has been observed only on activated human T and B lymphocytes and NK cells (31). Contact between trafficking/activated LTαβ+ lymphocytes and stromal elements such as dendritic cells in peripheral lymphoid organs could facilitate the subsequent positioning of lymphocytes as in GC formation and thus influence the maturation of the immune response. The absence of such a signal would result in the splenic phenotype and impaired GC formation observed in the LTα knockout mice (8). As the LTαβ−/− mice manifest an LTαβ− phenotype, the role of LTαβ in GC formation is under study using the tools described herein. Such a role for membrane LT is also consistent with reports that TNF superfamily members participate in cognate interactions (31, 32). Impairment of CD40/CD40L interactions causes profound immunodeficiency (33), and disruption of either the CD40/CD40L interaction or the TNF-R55 or LTα genes contributes to the failure to form GC (38). As CD40 ligation induces expression of LTαβ complexes on B cells (35, and Hochman, P., unpublished data), CD40 and surface LT may represent steps in a linear sequence of events. Alternatively, since both CD40 and LTβ-R share a cytoplasmic signal transduction element, TRAF-3 (36), these pathways may have interdependent roles in the formation and maintenance of GC.

Finally, this report documents a technique that disrupts a discrete developmental pathway without the need for genetic manipulation. Taken together with the Hox11 knockout (30), this strategy can generate powerful models to evaluate the compartmentalization of the immune system. Since soluble receptors can be introduced at specific points in ontogeny, the approach shown herein can order developmental events and facilitate the study of multifunctional pathways where genetic disruption has led to a lethal phenotype, as in the case of ablation of the α4 integrin gene (37).

We thank G. Majeau, P. Bourdon, K. Matzkowski, J. Amatucci, D. Griffiths, A. Ngam-ek, and W. Meier for preparation and characterization of the fusion proteins; W. Force, C. Hession and C. Ware for the murine LTβ-R cDNA; C. Benjamin, I. Sizing and C. Sumen for generation and characterization of the mAbs, and J. Saleh for assistance with FACS® analyses. We particularly thank D. Chaplin for providing the LTα knockout mice.

Address correspondence to Paula S. Hochman, Biogen, 14 Cambridge Center, Cambridge, MA 02142.

Received for publication 23 May 1996 and in revised form 6 August 1996.

References
1. Vandenabeele, P., W. Declercq, R. Beyaert, and W. Fiers. 1995. Two tumour necrosis factor receptors: structure and function. Trends Cell. Biol. 5:392–399.
2. Gruss, H.-J., and S.K. Dower. 1995. Tumor necrosis factor ligand superfamily: involvement in the pathology of malignant lymphomas. Blood. 85:3378–3404.
3. Browning, J.L., A. Ngam-ek, P. Lawton, J. DeManms, R. Tizard, E.P. Chow, C. Hession, G.B. O'Brien, S.F. Foley, and C.F. Ware. 1993. Lymphotoxin β, a novel member of the TNF family that forms a heteromeric complex with lymphotoxin on the cell surface. Cell. 72:847–856.
4. Browning, J.L., I. Dougas, A. Ngam-ek, P.R. Bourdon, B.N. Ehrenfels, K. Matzkowski, M. Zafari, A.M. Yampaglia, P. Lawton, W. Meier et al. 1995. Characterization of surface lymphotoxin forms. Use of specific monoclonal antibodies and soluble receptors. J. Immunol. 154:33–46.
5. Crowe, P., T.L. Van Andale, B.N. Walter, C.F. Ware, C. Hession, B. Ehrenfels, J.L. Browning, W.S. Din, R.G. Goodwin, and C.A. Smith. 1994. A lymphotoxin-β-specific receptor. Science (Wash. DC). 264:707–710.
6. Browning, J.L., K. Matzkowski, I. Sizing, D.A. Griffiths, M. Zafari, C.D. Benjamin, W. Meier, and F. Mackay. 1996. Signaling through the lymphotoxin-β receptor induces the death of some adenocarcinoma tumor lines. J. Exp. Med. 183:867–878.
6a.Hochman, P., G.R. Majeau, F. Mackay, and J.L. Browning. 1996. Proinflammatory responses are efficiently induced by homotrimetric but not heterotrimetric lymphotoxin ligands. J. Inflammation. 46:220–234.
7. Fiers, W. 1995. Biologic therapy with TNF: preclinical studies. In Biologic Therapy of Cancer. V. DeVita, S. Hellman, and S. Rosenberg, editors. J.B. Lippmann Co., Philadelphia, PA. 295–327.
8. Matsutomo, M., S. Marathasan, M.H. Nahm, F. Baranyay, J.J. Peschon, and D.D. Chaplin. 1996. Role of lymphotoxin and the type 1 TNF receptor in the formation of germinal
centers. Science (Wash. DC). 271:1289–1291.
9. De Togni, P., J. Goelzner, N.H. Ruddle, P.R. Streeter, A. Fick, S. Mharihanan, S.C. Smith, R. Carlson, L.P. Shornick, J. Strauss-Schonberger et al. 1994. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin alpha. Science (Wash. DC). 264:703–707.
10. Banks, T.A., B.T. Rouse, M.K. Kerley, M.K. Kerley, P.J. Blair, V.L. Godfrey, N.A. Kukian, D.M. Bouley, J. Thomas, S. Kanagat, and M.L. Mucenski. 1995. Lymphotoxin-alpha-deficient mice: effects on secondary lymphoid development and humoral immune responsiveness. J. Immunol. 155:1685–1693.
11. Eugster, H.-P., M. Muller, U. Karrer, B.C. Car, B. Schnyder, V.M. Eng, G. Wofrefy, M. Le Hur, F. di Padova, M. Aguet, et al. 1996. Multiple immune abnormalities in tumor necrosis factor and lymphotoxin-b double-deficient mice. J. Immunol. 8:23–26.
12. Pfeffer, K., T. Matsuyama, T.M. Kundig, A. Wakeham, K. Kishihara, A. Shahnian, K. Wiegmann, P.S. Ohashi, M. Koba, R. Ya-
20. Miller, G.T., P.S. Hochman, W. Meier, R. Tizard, S.A. Bix-
40. Roberts, C.W.M., J.R. Shutter, and S.J. Korsmeyer. 1994. Hox11 controls the genesis of the spleen. Nature (Lond.). 368:747–749.
50. Murphy, M., L. Pike-Nobile, J.L. Browning, C.F. Ware and L.B. Epstein. 1995. Expression of lymphotoxin-beta receptor in human thymus and spleen. Proc. Ninth Int. Cong. of Immunol. 770. (Abstr.)
60. Ware, C.F., T.L. van Arsdale, P.D. Crowe, and J.L. Browning. 1995. The ligands and receptors of the lymphotoxin system. Current Topics Microbiol. Immunol. 198:175–218.
70. Smith, C.A., T. Farnham, and R.C. Goodwin. 1994. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation and death. Cell. 766:959–962.
80. Koretn, C.V., and J. Bancherean. 1996. CD40-CD40 ligand: a multifunctional receptor-ligand pair. Adv. Immunol. 61:1–77.
90. Han, S., K. Hathcock, B. Zheng, T. Kepler, R. Hodes, and G. Kelsoe. 1995. Cellular interaction in germinal centers: roles of CD40-ligand and B7-2 in established germinal centers. J. Immunol. 155:556–567.
100. Worm, M., and R.S. Geha. 1994. CD40 ligation induces lymphotoxin alpha gene expression in human B cells. Int. Immunol. 6:1883–1890.
110. Mosialos, G., M. Birkenbach, R. Yalamanchili, T. VanArs-
120. Yang, J.T., H. Rayburn, and R.O. Hynes. 1995. Cell adhesion events mediated by alpha 4 integrins are essential in placent al and cardiac development. Development. 121:549–560.
Author/s:
Rennert, PD; Browning, JL; Mebius, R; Mackay, F; Hochman, PS

Title:
Surface lymphotoxin alpha/beta complex is required for the development of peripheral lymphoid organs

Date:
1996-11-01

Citation:
Rennert, P. D., Browning, J. L., Mebius, R., Mackay, F. & Hochman, P. S. (1996). Surface lymphotoxin alpha/beta complex is required for the development of peripheral lymphoid organs. JOURNAL OF EXPERIMENTAL MEDICINE, 184 (5), pp.1999-2006. https://doi.org/10.1084/jem.184.5.1999.

Persistent Link:
http://hdl.handle.net/11343/260658

File Description:
Published version

License:
CC BY-NC-SA