Synthesis, Crystal Structures, and Density Functional Theory Studies of Two Salt Cocrystals Containing Meldrum’s Acid Group

Wulan Zeng, Xia Wang, and Yunju Zhang

ABSTRACT: Two salt cocrystals, C_{11}H_{14}N_4O_8 (DDD) and C_{17}H_{26}N_2O_8 (MDD), were synthesized and their structures were determined by single-crystal X-ray diffraction. DDD is made up of one (C_{11}H_{14}O_8)^{−} anion, one (C_{6}H_{10}N_2)^{+} cation, and one S,6-dimethyl-1H-benzo[d]imidazole molecule. MDD consists of one (C_{17}H_{26}O_8)^{+} cation and one (C_{13}H_{13}O_8)^{−} anion. DDD and MDD belong to the monoclinic, P21/c space group and triclinic, P-1 space group, respectively. A 1D-chained structure of DDD was constituted by N···N and N···O hydrogen bonds. However, a 1D-chained structure of MDD was bridged by N···H···O hydrogen bonds. Their density functional theory-optimized geometric structures with a B3LYP/6-311G(d,p) basis set fit well with those of crystallographic studies. By calculating their thermodynamic properties, the correlation equations of C_{E}^{	ext{exp}} S^\circ m, H^\circ m, and temperature T were obtained. By comparing the experimental electronic spectra with the calculated electronic spectra, it is found that the PBE-PBE/6-311G(d,p) method can simulate the UV–Vis spectra of DDD and MDD. In addition, the fluorescence spectra in the EtOH solution analysis show that the yellowish-green emission occurs at 570 nm (λ_{ex} = 310 nm) for DDD and the purplish-blue emission occurs at 454 nm (λ_{ex} = 316 nm) for MDD.

1. INTRODUCTION

As an important kind of N-heterocycle, imidazole and its derivatives have been widely applied in various fields including medicinal chemistry,8 bio-organic chemistry,9 fuel cells and solar cells,10 mild steel corrosion,11 electrocatalysts,12 agriculture,13 industry,14 organic light-emitting diodes (OLEDs),15,16 colorimetric and fluorometric chemosensors,17 and luminescent materials.18 As another kind of N-heterocycle, benzimidazole and its derivatives have also received significant attention owing to their potential applications in fluorescent sensors,13,14 fluorescent probes,15 chemodosimeters,16 OLEDs,17 and phosphorescent organic light-emitting diodes (PhOLEDs).18 Recently, Meldrum’s acid plays an increasingly important role in the synthesis of pharmacologically active compounds such as dual inhibitors of AChE and BChE in the treatment of Alzheimer’s disease,19 antibacterial agents,20 anticancer agents,21 and antioxidant agents.22 In particular, C-5-substituted derivatives of Meldrum’s acid have attracted considerable interest owing to their structure and unique properties. Different synthetic routes toward the C(5)-position of Meldrum’s acid have been reported.23–26 Based on the above facts, a series of C-5-substituted derivatives of Meldrum’s acid were prepared by our group during the past 10 years.27–30 However, to the best of our knowledge, most of the reported preparation methods are step by step, and each intermediate needs to be isolated and purified. In this work, two salt cocrystals containing Meldrum’s acid group are available via a simple one-pot eco-friendly method. Furthermore, less theoretical calculations or vibrational analyses have been carried out on Meldrum’s derivatives coupled with a benzo[d]imidazole or imidazole nucleus. As a part of ongoing research, two new compounds (Chart 1), S,6-dimethyl-1H-benzo[d]imidazol-3-ium-5-((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methyl)-2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ide,5,6-dimethyl-1H-benzo[d]imidazole (DDD) and 2-methyl-1H-imidazol-3-ium-5-((2,2-dimethyl-4,6-dioxo-1,3-dioxanylidenemethyl)-2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ide (MDD), were obtained by reacting Meldrum’s acid with 5,6-dimethyl-1H-benzo[d]imidazole and 2-methyl-1H-imidazole in the mixture of trimethoxymethane and ethanol. Their crystal structures, vibrational frequencies, thermodynamic properties, and electronic spectra along with density functional theory (DFT) or time-dependent DFT (TD-DFT) calculational results are also reported.

Received: March 23, 2022
Accepted: June 9, 2022
Published: July 13, 2022
2. EXPERIMENTAL AND THEORETICAL METHODS

2.1. Physical Methods. IR data were obtained on a Nicolet 5700 FT-IR Spectrometer. The UV–Vis absorption and fluorescence spectra were collected on a TU-1901 spectrometer and an RF-5301PC fluorospectrophotometer, respectively. The C, H, and N atoms of the two compounds were recorded on an Elementar Vario EL III elemental instrument. The NMR (¹H and ¹³C) spectra in CDCl₃ were obtained on a Bruker AVANCE III HD instrument (400 MHz).

2.2. Preparation of Two Cocrystals. The synthetic method of the two compounds was the same as that in our earlier report. Briefly, a mixture of Meldrum’s acid (0.72 g, 5 mmol) and trimethoxymethane (0.635 g, 6 mmol) was dissolved in EtOH (20 mL) and refluxed at 70 °C for 2−2.5 h. Then, 2-methyl-1H-imidazole (0.41 g, 5 mmol) was added to the reaction solution and the mixture continued refluxing for another 5 h. The solution was cooled, and the product was filtered, washed, dried, and recrystallized at room temperature in EtOH to collect red block-shaped crystals of MDD. Yield, 48.5%. Found: C, 53.62%; H, 5.38%; N, 7.41%. Calc. for C₁₇H₂₀N₂O₈: C, 53.68%; H, 5.30%; N, 7.37%. m.p.: 172.6−173.0 °C. FT-IR(KBr) cm⁻¹: 1718, 1678 (C=O), 1456 (C−N), 1275, 1190 (C−O).

¹H NMR (400 MHz, CDCl₃, δ ppm): 7.52 (s, 1H), 7.00 (s, 1H), 5.45 (s, 1H), 3.53 (s, 3H), 2.73 (s, 1H), 2.18 (s, 1H), 1.76 (s, 6H), 1.25 (s, 6H). ¹³C NMR (125 MHz, CDCl₃, δ ppm): 150, 118, 101, 94, 26, 19.

The preparation method of DDD was the same as that of MDD except that 5,6-dimethyl-1H-benzo[d]imidazole (0.73 g, 5 mmol) replaced 2-methyl-1H-imidazole (0.41 g, 5 mmol) to get a red powder (DDD). Yield, 28.5%. m.p.: 173.8−174.5 °C. Found: C, 63.58%; H, 5.85%; N, 9.52%. Calc. for C₃₁H₃₄N₄O₈: C, 63.04%; H, 5.80%; N, 9.49%. FT-IR(KBr) cm⁻¹: 1698, 1633 (C==O), 1449 (C−N), 1272, 1197 (C−O).

2.3. X-ray Diffraction Analysis of DDD and MDD. The X-ray data of DDD and MDD were collected on a Spider Rapid IP (Rigaku, Japan) detector. The molecular structures of the two compounds were ascertained by SHELXL-2015 and SHELXT-2015. The H atoms of the two compounds were placed in calculated positions and refined using the riding coordinates with C−H distances of 0.93−0.97 Å and N−H distances of 0.86 Å. \(U_{iso}(H) = 1.2U_{eq}(C) \) for aromatic/amide H atoms, and \(U_{iso}(H) = 1.5U_{eq}(C) \) for methyl H atoms.

2.4. Computational Methods. DFT calculations of DDD and MDD were performed with the Gaussian 09 package using a hybrid functional, namely, B3LYP or PBEPBE at the basis set 6-311G(d,p). TD-DFT calculations were used to predict the electronic spectra of the two compounds. The calculated vibrational frequencies and electronic spectra were obtained at the B3LYP/6-311G(d,p) level and the PBEPBE/6-311G(d,p) level.

3. RESULTS AND DISCUSSION

3.1. Crystal Structures of the Two Salt Cocrystals. The key parameters of the two salts are summarized in Table 1. Their molecular structures with hydrogen atoms are shown in Figure 1.

As shown in Figure 1, the molecular structure of DDD includes one \(\text{C}_{13}\text{H}_{13}\text{O}_{8}^- \) anion, one \(\text{C}_{6}\text{H}_{13}\text{N}_{2}^+ \) cation, and one 5,6-dimethyl-1H-benzo[d]imidazole molecule. However, MDD consists of one \(\text{C}_{13}\text{H}_{13}\text{O}_{8}^- \) and one \(\text{C}_{6}\text{H}_{13}\text{N}_{2}^+ \). The
The central C(7) atom is bridged by two Meldrum’s acid moieties, which forms the \((\text{C}_5\text{H}_7\text{O}_3)^-\) anion in the two compounds.

As shown in Table 2, bond lengths C7-C8 (1.384 (3) Å) and C7-C3 (1.374 (3) Å) (DDD) and C6-C7 (1.380 (2) Å) and C7-C8 (1.398 (2) Å) (MDD) are both larger than the C=C double bond and shorter than the C-C single bond, which form a conjugated system. Their bond angles (C3-C7=C8 (128.51 (19)°) (DDD) and C6-C7=C8 (130.91 (13)°) (MDD)) also both resemble that of our earlier report (131.19 (10)°). The two 1,3-dioxane rings of the \((\text{C}_5\text{H}_7\text{O}_3)^-\) anion in the two compounds are both in a distorted envelope conformation, with their puckering parameters as follows: for ring 1 (O1, O2, C1-C4) in

Table 1. Crystal Structure Details for DDD and MDD

	DDD	MDD
formula	\(\text{C}_5\text{H}_7\text{N}_2\text{O}_4\)	\(\text{C}_6\text{H}_8\text{N}_2\text{O}_4\)
CCDC	1817941	2014484
color/shape	red/block	red/block
\(M_t\)	380.35	380.35
crystal system, space group	monoclinic, \(P2_1/c\)	triclinic, \(P\)
\(a\), \(b\), \(c\) (Å)	13.2783 (6), 16.0197 (6), 14.3536 (6)	9.936 (2), 10.556 (2), 10.880 (2)
\(\alpha\), \(\beta\), \(\gamma\) (°)	90, 103.2430 (10), 90	113.33 (3), 100.27 (3), 11.39 (3)
crystal size (mm)	0.1 x 0.8 x 0.04	0.25 x 0.18 x 0.10
wavelength (Å)	0.71073	0.71073
\(\theta\) ranges (°)	3.06-27.484	3.476-27.47
V (\(Å^3\))	3135.5 (2)	893.0 (3)
\(Z\)	4	2
\(F(000)\)	1248	400
\(D_0\) (g·cm\(^{-3}\))	1.251	1.415
\(-h\), \(h-l\), \(k-l\), \(l\)	-17, 17/+-20, 21/-18, 18, 13	-12, 12/-13, 13/-14, 13, 13
total, unique, and \([I > 2\sigma(I)]\) reflections	30,494, 7196, 2955	8284, 3960, 3295
no. of reflections, restraints, parameters	7196, 0, 396	3960, 0, 244
\(R(int)\)	0.0462	0.0393
\(R_c\), \(wR_c\), \(S\)	0.0541, 0.1311, 0.890	0.0539, 0.1383, 1.108
\((\Delta\rho)_{ ext{min}}\) (\((\Delta\rho)_{ ext{max}}\) (\(e/Å^3\))	0.290, -0.194	0.386, -0.356

Table 2. Main Bond Lengths (Å) and Bond Angles (°) by X-ray and DFT Calculations for DDD and MDD

	DDD	MDD	
bond	exp. calc.	bond	exp. calc.
\(C7-C8\)	1.384 (3) 1.405	\(C7-C8\)	1.398 (2) 1.399
\(C3-C7\)	1.374 (3) 1.385	\(C6-C7\)	1.380 (2) 1.383
\(O5-C9\)	1.214 (3) 1.204	\(O7-C4\)	1.2096 (19) 1.202
\(O6-C11\)	1.222 (3) 1.237	\(O8-C5\)	1.2211 (17) 1.223
\(O8-C11\)	1.350 (3) 1.367	\(O6-C5\)	1.3559 (19) 1.361
\(O8-C13\)	1.425 (4) 1.446	\(O6-C3\)	1.4450 (17) 1.448
\(O7-C9\)	1.367 (3) 1.391	\(O5-C4\)	1.3634 (2) 1.384
\(O7-C10\)	1.432 (3) 1.418	\(O5-C3\)	1.433 (2) 1.422
\(N(1)-C(14)\)	1.339 (3) 1.324	\(N1-C14\)	1.374 (3) 1.381
\(N(1)-C(15)\)	1.377 (3) 1.389	\(N1-C16\)	1.330 (2) 1.332

Table 3. Intra- and Intermolecular Interactions and π⋯π Stacking Interactions of DDD and MDD

D–H⋯A	symmetry	D–A (Å)	\(\angle\)D–H–A (°)
DDD			
N1–H1⋯O2	1 – x, y, z	1 – z	2.723 (5) 167
N2–H2⋯O7	1 – x, y, z	2 – x, y, 1/2	2.953 (6) 115
N2–H2⋯O8	2 – x, y, 1/2	1 – z	2.833 (6) 157
C3g–C3g	x, y, z	2.467 (9)	
MDD			
N4–H4⋯O4	1 – x, y, 1/2, 1/2	1 – z	2.754 (2) 157.6
N1–H1⋯O6	intra	2.743 (3) 171.3	
N3–H3⋯N2	intra	2.685 (2) 174.2	

3C ring denotes ring N1, N2, and C14–C16.

Figure 1. ORTEP drawings of DDD and MDD with 30% probability thermal ellipsoids.
(3) Å, respectively. However, the \((\text{C}_9\text{H}_{10}\text{N}_2)^+\) cation and \(\text{C}_9\text{H}_{11}\text{N}_2\) molecule are linked by N–H···N intramolecular interactions, and the distances of N3···N2 are 2.685 (2) Å. The bond angle of N3–H3···N2 is 174.2°. The 1D-chained structure of DDD was connected by N–H···O intermolecular interactions (Figure 2). The 1D chain further constitutes the 3D-net structure (Figure 3).

3.2. Optimization of Molecular Geometry for MDD and DDD. The optimized geometric structures of the two compounds are carried out using DFT at the B3LYP/6-311G(d,p) level, and the values are also listed in Table 2.

As shown in Table 2, most of the predicted bond lengths and angles are slightly larger than the ones measured in the experiments. It is likely because the experimental parameters of the two compounds are described in the solid state; however, the predicted values are obtained in the gas phase. Comparing the predicted values with the experimental ones, it can be found that the maximum differences in bond lengths and bond angles are 0.025 Å and 3.60° (DDD) and 0.011 Å and 1.97° (MDD), respectively, indicating that the predicted results are satisfactory and the B3LYP/6-311G(d,p) level is suitable to simulate the two crystal structures.

3.3. Thermodynamic Properties. Three main thermodynamic properties (capacity \((C^0_{p,m})\), entropy \((S^0_{m})\), and enthalpy \((H^0_{m})\)) of MDD and DDD are listed in Table 4. As shown in Table 4, all the values of thermodynamic parameters increase with the temperature rising from 100.0 to 1000.0 K, which is mainly due to the enhancement of the two molecular vibrations when the temperature rises.

The correlation equations of \(C^0_{p,m} S^0_{m} H^0_{m}\) and temperature \(T\) are as follows:

\[
\begin{align*}
C^0_{p,m} = 44.478 + 1.459T - 6.163 \times 10^{-4} T^2, \\
S^0_{m} = 25135 \\
H^0_{m} = 4.78 \times 10^{22} \times 10^{-4} T^2
\end{align*}
\]

The correlation equations are obtained using the least squares method. The values of the correlation coefficient are given in Table 4.
3.4. Electronic Analysis. The experimentally obtained absorption spectra of the two compounds in EtOH and the calculated spectra in the gas state using the TD-DFT method at the PBE0-PBE/6-311G(d,p) level are shown in Figure 4.

The two compounds both present two absorption bands at 245 and 379 nm (DDD) and at 241 and 377 nm (MDD): the first absorption band is owing to the $\pi \rightarrow \pi^*$ transition of the $(C_9H_{11}N_2)^+$ cation or $(C_4H_7N_2)^+$ cation and the second band is due to the $n \rightarrow \pi^*$ transition of the $(C_{13}H_{13}O_8)^-$ anion. The results resemble those of the literature reported (243 and 384). The calculated spectra of the two compounds were also found to exhibit two bands at 268 and 352 nm (DDD) and at 265 and 342 nm (MDD), which illustrates that the PBE0-PBE/6-311G(d,p) method can simulate the experimental electronic spectra. The charge densities of four frontier molecular orbitals of the two compounds are listed in Figure 5. The HOMO-1 and HOMO electrons are mostly localized on both the 1,3-dioxane ring and C6-C7=C8 bonds of the $(C_{13}H_{13}O_8)^-$ anion in the two compounds; however, the LUMO and LUMO+1 electrons are localized on the
Two new salt cocrystals, C$_7$H$_{14}$N$_4$O$_4$ (DDD) and C$_{17}$H$_{36}$N$_2$O$_4$ (MDD), were synthesized and characterized by elemental analysis, infrared, UV–Vis, and NMR (1H and 13C) spectroscopy and single-crystal X-ray diffraction. Their crystal structures show that DDD belongs to the monoclinic, $P2_1/c$ space group, and MDD belongs to the triclinic, P-1 space group. In DDD, the (C$_{13}$H$_{12}$O$_4$)$^-$ anion, (C$_{6}$H$_{15}$N$_2$)$^{+}$ cation, and C$_6$H$_{10}$N$_2$ molecule were linked by N–H···O and N–H···N molecular interactions. However, in MDD, the (C$_{13}$H$_{12}$O$_4$)$^-$ anion and (C$_{6}$H$_{14}$N$_2$)$^{+}$ cation were bridged by N–H···O intermolecular interactions. The optimized geometric structure method at the PBEPBE/6-311G(d,p) level is suitable to simulate the molecular structures of DDD and MDD. The calculated results of the two compounds with the TD-DFT method at the PBEPBE/6-311G(d,p) level are in accordance with experimental values.

ASSOCIATED CONTENT

Accession Codes
CCDC 1817941 (DDD) and 2014484 (MDD) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0)1222-336033; email: deposit@ccdc.cam.ac.uk].

AUTHOR INFORMATION

Corresponding Author
Wulan Zeng — Department of Chemistry, Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China; orcid.org/0000-0001-5029-6493; Email: wulanzeng@163.com

Authors
Xia Wang — Department of Chemistry, Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
Yunjru Zhang — School of Chemistry and Chemical Engineering, Key Laboratory of Photoinduced Functional Materials, Mianyang Normal University, Mianyang 621000, PR China

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.2c01761

Author Contributions
W.Z. designed the experiment, synthesized the two compounds, and wrote the draft. X.W. provided the funds. Y.Z. calculated the vibration spectra and electronic spectra. All authors have read and agreed to the published version of the manuscript.

Funding
This research was funded by the National Natural Science Foundation of China (no. 22108208) and the State Key...
Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (no. 2021-K02).

Notes
The authors declare no competing financial interest.

REFERENCES

(1) Almansour, A. I.; Arumugam, N.; Kumar, R. S.; Kotresha, D.; Manohar, T. S.; Venketesh, S. Design, synthesis and cholinesterase inhibitory activity of novel spiropyrrolidinyl tethered imidazole heterocyclic hybrids. Bioorg. Med. Chem. Lett. 2020, 30, No. 126789.

(2) Chaudhry, F.; Naureen, S.; Ashraf, M.; Al-Rashida, M.; Jahan, B.; Munawar, M. A.; Khan, M. A. Imidazole-pyrazolehydrids: synthesis, characterization and in-vitro bioevaluation against α-glucosidase enzyme with molecular docking studies. Bioorg. Chem. 2019, 82, 267–273.

(3) Yang, P.; Zhang, B.; Wu, H.; Cao, L.; He, X.; Jiang, Z. Imidazolium-functionalized carbon nanotubes crosslinked with imidazole poly(ether ether ketone) for fabricating anion exchange membranes with high hydroxide conductivity and dimension stability. Electrochem. Acta 2019, 318, 572–580.

(4) Wu, D.; Chen, W.; Wang, T.; Li, F.; Li, J.; Wang, E. Synthesis of copper(II)-imidazole complex modified sandwich-type polyoxometalates for enhancing the power conversion efficiency in dye sensitized solar cells. Dyes Pigment. 2019, 168, 151–159.

(5) Ouakki, M.; Galai, M.; Rbaa, M.; Abousalem, A. S.; Lakhriissi, B.; Rif, E. H.; Cherkaoui, M. Quantum chemical and experimental evaluation of the inhibitory action of two imidazolyl derivatives on mild steel corrosion in sulphuric acid medium. Helvion 2019, S, No. e02759.

(6) Pan, X.; Wang, X.; Wang, X.; Liu, G.; Lin, H.; Li, Y. Four octamolybdate-based complexes based on flexible bis-imidazole-bis amide ligands with different length structure, electrochemical and photocatalytic properties. Inorg. Chem. Acta 2019, 495, No. 118998.

(7) Blaskievicz, S. F.; Endo, W. G.; Zarbin, A. J. G.; Orth, E. S. Magnetic nanocatalysts derived from carbon nanotubes functionalized with imidazole: towards pesticide degradation. Appl. Catal. B 2020, 264, No. 118496.

(8) Huo, S.; Yang, S.; Wang, J.; Cheng, J.; Zhang, Q.; Hu, Y.; Ding, G.; Zhang, Q.; Song, P. A liquid phosphorus-containing imidazole derivative as flame-retardant curing agent for epoxy resin with high hydroxide conductivity and dimension stability. Appl. Catal., B 2019, 207, 715–723.

(9) Singh, N.; Jang, D. O. Benzimidazole-based tripodal receptor: highly selective fluorescent chemosensor for iodide in aqueous solution. Org. Lett. 2007, 9, 1991–1994.

(10) Maji, A.; Pal, S.; Lohar, S.; Mukhopadhyay, S. K.; Chattopadhyay, P. A new turn-on benzimidazole-based greenish-yellow fluorescent sensor for Zn2+ ions at biological pH applicable in cell imaging. New J. Chem. 2017, 41, 7583–7590.

(11) Wu, Y. C.; You, J. Y.; Jiang, K.; Wu, H. Q.; Xiong, J. F.; Wang, Z. Y. Novel benzimidazole-based ratiometric fluorescent probes for acidic pH. Dyes Pigment. 2018, 149, 1–7.

(12) Roy, S. B.; Prodhun, C.; Chaudhuri, K.; Rajak, K. K. A benzimidazole-based chemodosimeter for the fluorometric detection of Zn and Cu via 1,5 proton shifts and C–N bond cleavage. Photochem. Photobiol. Sci. 2017, 16, 1103–1116.

(13) Gao, Y.; Xu, W.; Ma, H.; Obolda, A.; Yan, W.; Dong, S.; Zhang, M.; Li, F. Novel luminescent benzimidazole-substituent tris(2, 4, 6-trichlorophenyl) methyl radicals: photophysics, stability, and highly efficient red-orange electroluminescence. Chem. Mater. 2017, 29, 6733–6739.

(14) Huang, J. J.; Hung, Y. H.; Ting, P. L.; Tsai, Y. N.; Gao, H. J.; Chiu, T. L.; Lee, J. H.; Chen, C. L.; Chou, P. T.; Leung, M. K. Orthogonally substituted benzimidazole-carbazole benzene as universal hosts for phosphorescent organic light-emitting diodes. Org. Lett. 2016, 18, 672–675.

(15) Mehioz, H.; Saeed, A.; Sharma, A.; Albericio, F.; Larik, F. A.; Jabeen, F.; Channar, P. A.; Flörke, U. Dual inhibition of AChE and BChE with the C-5 substituted derivative of meldonium’s acid: synthesis, structure elucidation, and molecular docking studies. Crystals 2011, 7, 221–225.

(16) Bagul, S. D.; Rajput, J. D.; Brende, R. S. Environmental chemistry letters synthesis of 3-carboxycoumarins at room temperature in water extract of banana peels. Environ. Chem. Lett. 2017, 15, 725–731.

(17) Kumar, S. S.; Biju, S.; Sadasivan, V. Synthesis, structure characterization and biological studies on a new aromatic hydrazone, 1H-5-(2-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl) ydraz hono)-2,2-dimethyl-1,3-dioxane-4,6-dione, and its transition metal complexes. J. Mol. Struct. 2018, 1156, 201–209.

(18) Kumar, S.; Mukesh, K.; Harjai, K.; Singh, V. Synthesis of coumarin based Knoevenagel-Ugi adducts by a sequential one pot five-component reaction and their biological evaluation as anti-bacterial agents. Tetrahedron Lett. 2019, 60, 8–12.

(19) Dey, T.; Ghosh, S.; Ghosh, S.; Mukherjee, A. K. S-Arylide derivatives of Meldrum’s acid: synthesis, structural characterization using single crystal and powder crystal X-ray diffraction, and electronic properties. J. Mol. Struct. 2015, 1092, 51–62.

(20) Kenchappa, R.; Bodke, Y. D.; Telkar, S.; Sindhe, M. A.; Giridhar, M. Synthesis, characterization, and antimicrobial activity of new benzofuran derivatives. Russ. J. Gen. Chem. 2016, 86, 2827–2836.

(21) Sandhu, H. S.; Sapra, S.; Gupta, M.; Nepali, K.; Gautam, R.; Yadav, S.; Kumar, R.; Jachak, S. M.; Chugh, M.; Gupta, M. K.; Suri, O. P.; Dhark, K. L. Synthesis and biological evaluation of aryldiene analogues of Meldrum’s acid as a new class of antimalarial and antioxidant agents. Bioorg. Med. Chem. 2010, 18, 5626–5633.

(22) Sun, X.; Anslay, E. V. An auto-inductive cascade for the optical sensing of thiols in aqueous media: application in the detection of a VX nerve agent mimic. Angew. Chem., Int. Ed. 2017, 56, 9522–9526.

(23) Zeng, W.; Wang, X. Crystal structures of spiro derivatives including 6,10-dioxaspiro[4.5]decan-7,9-dione group and their spectral studies. J. Chem. Crystallogr. 2019, 49, 139–145.

(24) Zeng, W.; Wang, X.; Jiang, J. Design and crystal structures of two new compounds fused with 3, 4, 5-trimethoxybenzyl group and 6, 10-dioxaspiro group. Crystals 2018, 8, 146.

(25) Zeng, W.; Jian, F. 2-(Fluorobenzylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione. Acta Crystallogr., Sect. E: Struct. Rep. Online 2009, 65, o2587.

(26) Zeng, W. 5,5’-[2,4-Dichlorophenyl)methylene]bis(2,2-dimethyl-1,3-dioxane-4,6-dione). Acta Crystallogr., Sect. E: Struct. Rep. Online 2011, 67, o1894.

(27) Zeng, W.; Jiang, J. Synthesis and crystal structure of a new hydrated benzimidazolium salt containing spiro structure. Crystals 2017, 7, 303.

(28) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2015, 71, 3–8.

(29) Sheldrick, G. M. SHELXT– Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect A 2015, 71, 3–8.

(30) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.; Izmaylov, A. F.; Blochl, P. E.; Wong, S. J.; Gaussian, Inc., Wallingford, CT, 2016.
P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.;
Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.;
Montgomery, J. A.; Peralta, J. E., Jr.; Ogliaro, F.; Bearpark, M.;
Heyd, J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.;
Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.;
Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, M.; Klene, M.;
Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.;
Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;
Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.;
Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.;
Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J.;
Cioslowski, J. J.; Fox, D. J. Gaussian 03; Gaussian, Inc.: Wallingford CT, 2013.

(35) Becke, A. D. A new mixing of Hartree-Fock and local density-
functional theories. J. Chem. Phys. 1993, 98, 1372−1377.

(36) Scalmani, G.; Frisch, M. J.; Mennucci, B.; Tomasi, J.; Cammi, R.;
Barone, V. Geometries and properties of excited states in the gas
phase and in solution: theory and application of a time-dependent
density functional theory polarizable continuum model. J. Chem. Phys.
2006, 124, No. 094107.

(37) Petersilka, M.; Gossmann, U. J.; Gross, E. K. U. Excitation
energies from time-dependent density-functional theory. Phys. Rev.
Lett. 1996, 76, 1212.

(38) Bauernschmitt, R.; Ahlrichs, R. Treatment of electronic
excitations within the adiabatic approximation of time dependent
density functional theory. Chem. Phys. Lett. 1996, 256, 454−464.

(39) Khemalapure, S. S.; Hiremath, S. M.; Hiremath, C. S.; Kattia, V.
S.; Basanagouda, M. M.; Khanal, G. P.; Karthick, T. Structural,
spectroscopic and computational investigations on (4,6-dimethyl-
benzofuran-3-yl)-acetic acid hydrazide. J. Mol. Struct. 2020, 1220,
No. 128748.