Gold(I)-Catalyzed Aromatization: Expeditious Synthesis of Polyfunctionalized Naphthalenes

HIGHLIGHTS

A general method for the construction of multi-functionalized naphthalenes

First 6-endo-dig diazo-yne carbocyclization leading to the vinyl gold carbene

Expeditious access to naphthalenes with broad functional group compatibility

Applications for the synthesis of chiral 1,2-binaphthalene ligands and CPHs

Zhang et al., iScience 21, 499–508
November 22, 2019 © 2019 The Authors.
https://doi.org/10.1016/j.isci.2019.10.042
Gold(I)-Catalyzed Aromatization: Expeditious Synthesis of Polyfunctionalized Naphthalenes

Cheng Zhang,1,2 Kemiao Hong,1,2 Shanliang Dong,2 Chao Pei,2 Xiaolu Zhang,2 Ciwang He,2 Wenhao Hu,1,* and Xinfang Xu1,2,3,*

SUMMARY
A gold-catalyzed 6-endo-dig carbocyclization of alkyne with the pendent diazo group is reported. It provides an expeditious approach for the synthesis of multi-functionalized naphthalene derivatives under mild conditions. Mechanistic studies suggest that a vinyl gold carbene is generated as the key intermediate in this cascade transformation that smoothly delivers naphthalene products through an unprecedented stepwise aromatization or an intermolecular aromatic substitution process. The unique endocyclic vinyl is inaccessible with other precursors; thus, novel carbene cascade transformations could be envisioned with the current catalytic model. Functional groups, such as alkenyl, hydroxyl, amino, and carboxyl groups, remain untouched under these conditions. In addition, the utility of these generated 2-carboxyl naphthalenes is illustrated by the synthesis of chiral 1,2-bi-naphthalene ligands and π-conjugated polycyclic hydrocarbons (CPHs).

INTRODUCTION
Naphthalene derivatives are one of the most prevalent key motifs in π-conjugated polycyclic hydrocarbons (CPHs) (Frederickson et al., 2017), and polycyclic systems related to naphthalene derivatives have shown versatile applications in physical organic chemistry (Frederickson et al., 2017; Huang et al., 2016), organometallic chemistry (Edelmann, 2017), materials science (Cao et al., 2015), and bioactive molecules (Stockdale and Williams, 2015). During the past decades, a variety of approaches for aromatic ring modification either through metal- (Tanaka, 2013; Phipps and Gaunt, 2009; Meng et al., 2017; Zhu et al., 2016; Della Ca’ et al., 2016) or organo-catalysis (Qi et al., 2018) have been reported. Nevertheless, most of these methods are less efficient for sterically hindered substrates including naphthalenes and usually require a pre-installation of leaving groups or directional groups (Figure 1A, path a). On the other hand, transition-metal-catalyzed aromatization reactions provide a convenient way in the practical construction of substituted naphthalenes, including but not limited to the [2+2+2]-cycloaddition of alkenes (path b) (Pérez et al., 2013), oxidative dehydrogenation of cyclic hydrocarbons (path c) (Josub and Stahl, 2016; Wu and Jiang, 2012), ring-closing metathesis followed by aromatization (path d) (Donohoe et al., 2006; van Otterlo and de Koning, 2009), the electrocyclization reactions, and others (Tanaka, 2013). Recently, alkyne benzannulation has emerged as a straightforward approach for accessing densely functionalized naphthalene compounds, complementing the above-described methods (Hein et al., 2017). Despite these advances, polyfunctionalized naphthalenes of interest are still challenging to prepare and many of the substitution patterns are beyond the scope of the current synthetic methods; these include the methods for accessing naphthalenes with versatile functional groups such as the hydroxyl, amino, and carboxyl groups (Izawa et al., 2011; Hein et al., 2017; Raviola et al., 2016). These groups not only act as the key pharmacophores in pharmaceuticals (Stockdale and Williams, 2015) but also can be used for further transformations in preparing other complex molecules. Therefore, the development of novel and practical synthetic methods to construct naphthalenes with broad functional group compatibility still remains highly desirable and appealing.

In the last two decades, gold-catalyzed alkyne carbocyclizations have experienced explosive development in the construction of cyclic molecules with structural complexity (Pfla¨ sterer and Hashmi, 2016; Chen et al., 2018; Gorin and Toste, 2007; Dorel and Echavarren, 2015; Zheng et al., 2016). After the first reports of Hashmi on benzene ring formation by gold catalysis (Hashmi et al., 2000, 2001, 2002; Zeiler et al., 2015), another early example of 5-exo-dig diazo-yne carbocyclization was disclosed by Toste for the synthesis of indanone derivatives (Witham et al., 2007; Padwa et al., 1993; Mueller et al., 1993). Recently, Hashmi (Nössel et al., 2013) and Tang (Liu et al., 2013) have reported on the catalytic oxidative dyne 5-exo-dig cyclization in the presence of gold and rhodium catalysts, respectively. Although the catalytic 6-endo-dig carbocyclization of alkynes has also been studied (Yuan et al., 2016), no example of analogous diazo-yne cyclization has been reported for the construction of 6-membered carbocyclic rings.
Inspired by these advances, and as the continuation of our interest in the carbene/alkyne metathesis (CAM) transformations (Figure 1B) (Pei et al., 2018; Le and May, 2015; González-Rodríguez et al., 2015; Torres et al., 2015; Zheng et al., 2015; Dong et al., 2018; Hashmi et al., 2008), we are intrigued by the possibility that nucleophilic addition of the diazo compound onto the gold-activated alkyne through an unprecedented 6-endo-dig diazo-ylene carbocyclization followed by the expulsion of dinitrogen can be used to generate the endocyclic vinyl gold carbene species A (Figure 1C, path e) (Hashmi et al., 2000; Lu et al., 2010). With this concept, the side reactions in general carbene/alkyne metathesis through carbene species B (path f), and in particular the β-H shift process of α-alkyl carbene intermediate B (X = CHR) (Lonca et al., 2017; Goto et al., 2011; Zhang et al., 2019), can be avoided, which would substantially expand the chemistry of the CAM process (Lauterbach et al., 2013, 2015; Rode et al., 2018). Herein, we report our recent results in this direction: the first example of gold-catalyzed 6-endo-dig diazo-ylene carbocyclization and the generated key intermediate A that is a versatile synthon for the construction of naphthalene frameworks via a stepwise aromatization or an intermolecular electrophilic aromatic substitution (Figure 1C). As a result of this new synthetic approach, naphthalene structures with a variety of...
functional groups were uncovered, such as alkenyl, hydroxyl, amino, and carboxyl groups, remaining untouched under these conditions.

RESULTS AND DISCUSSION

To test the feasibility of our proposed approach for the construction of naphthalene frameworks, o-alkynylphenyl diazoacetate 1a was used as a model substrate in the presence of various metal catalysts in 1,2-dichloroethane (DCE) at 25°C (Table 1). With its sterically demanding ligand, JohnPhos(CH$_3$CN)AuSbF$_6$ exhibited superior reactivity for the selective formation of naphthalene 2a in 91% isolated yield (entry 1). The corresponding chloride salt, JohnPhosAuCl, showed very low reactivity, and most of 1a was recovered (entry 2). All of the other metal catalysts including Rh-, Cu-, Pd-, and Ag-catalysts predominantly delivered the β-H shift product 3a (entries 3–6). Further investigation of the ligands and counterions of the gold catalysts indicated that the steric effect of the ligand plays a crucial role in the selectivity control (entry 8 versus 9), and the gold catalyst bearing a triphenylphosphine ligand catalyzed the reaction to predominantly form the β-H shift product alkene 3a (entries 9 and 10). For the extensive examination of the ligand effect, see Table S2. On the other hand, the counter anion of these catalysts shows no obvious effects on the reaction outcomes (entries 7–10) (Schießl et al., 2018a, 2018b). Notably, the observed 6-endo-dig diazo-yne cyclization process shows a unique effect for the gold catalysis that preferentially activates the C-C triple bond in the presence of a diazo group (Zheng et al., 2015). Reactions with other metal catalysts formed the β-H shift product 3a as the major/only product, indicating that the reaction mechanism of this gold-catalyzed carbocyclization is distinctly different and that initial catalytic decomposition of the diazo group to form the corresponding carbenoid intermediate does not occur in this case.

Table 1. Reaction Optimization

Entry	Catalyst	2a (%)	3a (%)
1	JohnPhosAu(CH$_3$CN)SbF$_6$	94 (91)	<5
2	JohnPhosAuCl	–	<10
3	Rh$_2$(OAc)$_4$	<5	<5(70)
4	Cu(CH$_3$CN)$_2$BF$_4$	<5	91
5	Pd$_2$(dba)$_3$	22	47
6	AgSbF$_6$	<5	96(90)
7	JohnPhosAuCl + AgSbF$_6$	92	<5
8	JohnPhosAuCl + AgNTf$_2$	90	<5
9	PPh$_3$AuNTf$_2$	<5	87
10	PPh$_3$AuSbF$_6$	<5	86

Optimization conditions: 1a (58 mg, 0.2 mmol) and catalyst (0.01 mmol) in DCE (1,2-dichloroethane, 2.0 mL) at 25°C for 12.0 h, unless otherwise stated.

aYield determined by proton NMR using 1,3,5-trimethoxybenzene as the internal standard.

bIsolated yields.

cMost of 1a (>90%) was recovered.

dThe results in parentheses is the reaction that was conducted at 60°C instead of 25°C.

Under the optimal reaction conditions, we investigated the scope of this unprecedented 6-endo-dig diazo-yne cyclization for the synthesis of 2,3-disubstituted naphthalenes (Scheme 1A). The impact of the ester part was examined first. It was found that the reaction could be applied to alkyl, benzyl, and 3-phenylallyl esters without a noticeable yield deterioration (2a–2e, 89%–92% yields). Then, the nature of the alkyne terminus was investigated. The electronic effects and the position of the substituent groups on the phenyl...
group of the substrates had little influence, and the corresponding products 2f–2m were produced in high to excellent yields (67%–92%). Moreover, the 1-naphthyl-, 2-thienyl-, and alkyl-substituted substrates underwent the reaction smoothly, leading to naphthalene products 2n–2q in >76% yields. Subsequently, diazoketones were used instead of diazoacetates, and it was found that they were also tolerated under these conditions. The corresponding products 2r and 2s were isolated in 81% and 62% yields, respectively. In addition, the reaction performed well on a gram scale with 94% isolated yield (note b, on 4.0 mmol).

Encouraged by these promising results, we envisioned that this catalytic system may also facilitate other challenging substrates for the synthesis of multi-functionalized naphthalene derivatives, with the results from these investigations summarized in Scheme 1B. Initially, α-hydroxyl substrate 4a was used under the method A;
however, no corresponding naphthalene product was observed. To our delight, when the substrates protected either with the Ts (4b) or TMS (4c) groups were used under the optimized reaction conditions, the reaction directly delivered the deprotected α-naphthol product 5a in 76% and 91% yields, respectively. The ester variants, 4d and 4e, also provided the corresponding 1,2,3-trisubstituted naphthalenes in high yields (>87%). Notably, naphthylamine 5f was isolated in 81% yield under the current conditions from 4f.

To further demonstrate the generality of the present transformation, 1,3-dicarbonyl diazo compound 14 without α-methylene linkage was prepared and the interception reaction of the corresponding vinyl carbene intermediate A (Figure 1C, X = CO) was envisioned. To our delight, the C(sp²)-H insertion products 15 were isolated in good to excellent yields (Scheme 1C, 53%–94% yields) when the reaction was performed at 60°C in the presence of nucleophiles such as indoles, furan, and pyrrole.

To demonstrate the synthetic utility of the present method, further transformations of carbocyclization products 2 were conducted for the synthesis of π-CPHs. For example, the tetracyclic fused lactam 6 was generated in one-pot from 1t after the ester-amide exchange reaction with the internal amino group (Figure 2A). In addition, these 2-carbonyl naphthalenes were smoothly converted under acidic conditions to polycyclic hydrocarbons (Figures 2B and 2C), with 7a and 7o isolated in 84% and 95% yields, respectively.
Notably, chiral 1,2'-binaphthalene products could be prepared in high yield and 1:1 dr with (−)-L-menthol derived diazo compound 1u (Figure 2D). The two diastereoisomers were separated by column chromatography with the (S)-isomer confirmed by single-crystal X-ray analysis. Moreover, the optically pure chiral phosphate derivative (R)-10u and chiral oxazole ligand 11u with 1,2'-binaphthalene frameworks were
synthesized in high yields. Although ligands with the 1,1'-binaphthalene skeletons have been studied well and have broad applications, chiral ligands derived from 1,2'-binaphthalene motifs are rare, mainly because of the limited methods for access to this class of compounds (Lotter et al., 2016).

Control experiments were conducted to investigate the mechanism of this reaction. To verify the existence of the vinyl gold carbene intermediate, the interception reaction with 1c in the presence of diphenyl sulfide was carried out at \(-20^\circ\)C and the corresponding ketone product 12 was isolated in 41% yield combined with 2c in 50% yield (Figure 3A) (Witham et al., 2007; Padwa et al., 1993; Mueller et al., 1993; Nösel et al., 2013; Liu et al., 2013). Evidence for the stepwise aromatization and protodeauration process was confirmed by an isotope-labeling experiment (Figure 3B, 2a-d with 58% D). Moreover, the deuterated product 2a was also obtained when the reaction was carried out in the presence of CD_{3}OD under standard conditions (Figure 3C, with 80% D). In addition, an intermolecular kinetic isotope effect (KIE) experiment (Figure 3D, \(k_{H}/k_{D} = 1.0\)) demonstrated that the deprotonation process is not the rate-limiting step. Based on these results and previously studied gold-catalyzed transformations (Witham et al., 2007; Padwa et al., 1993; Mueller et al., 1993; Nösel et al., 2013; Liu et al., 2013; Yuan et al., 2016; Pei et al., 2018; Le and May, 2015; González-Rodríguez et al., 2015; Torres et al., 2015; Zheng et al., 2015; Dong et al., 2018; Hashmi et al., 2008; Lu et al., 2010 Lonca et al., 2017; Goto et al., 2011; Qiu et al., 2016; Hashmi, 2010), a possible reaction mechanism is proposed in Figure 4. Initially, the gold catalyst coordinates the \(\pi\)-bond of alkyne to form a gold \(\pi\)-complex followed by a 6-endo-dig cyclization with the carbon on the diazo group to generate intermediate I that delivered the vinyl gold carbene II followed by a stepwise aromatization (deprotonation, \(X = CHR\)) and protodeauration process to form the naphthalene product 2 or 5 via III. Alternatively, direct formation of the key intermediate III from I through deprotonation with synchronous dinitrogen extrusion is also possible. Intermolecular electrophilic aromatic substitution interception of the vinyl gold carbene II would lead to the formation of C(sp\(^{3}\))H insertion product 15. It should be noted that the reaction pathway through direct catalytic gold carbene formation followed by cyclopropanation and gold-catalyzed rearrangement of the cyclopropene to form the vinyl gold carbene intermediate II was ruled out in this reaction (Hashmi et al., 2000, 2001; Zeiler et al., 2015; Archambeau et al., 2015; Hoye et al., 1990; Bauer et al., 2008; Xu et al., 2013), which is consistent with the results of the comparison experiments (Figure 3E). For example, no corresponding direct carbene insertion product via IV was obtained when the reaction was carried out in the presence of MeOH or anisole, and the carbocyclization product 2l was isolated as the only product in 83% and 80% yields, respectively. In addition, using the catalysts that prefer to activate the diazo group instead of the alkyne part, such as PPh\(_{3}\)AuNTf\(_{2}\) and Rh\(_{2}\)(OAc)\(_{4}\), the formation of carbene intermediate IV would occur initially (Figure 4, side reactions in dotted box), and the \(\beta\)-H shift product 3l and O-H insertion product 13l were generated predominantly via common carbene intermediate IV (Figure 3E).
Conclusion
In summary, we have developed a gold-catalyzed 6-endo-dig carbocyclization of alkyne with the pendent diazo groups that provides an expeditious approach for the synthesis of multi-functionalized naphthalene derivatives in high to excellent yields under mild conditions with broad substrate scope; functional groups, such as alkenyl, hydroxyl, amino, and carboxyl groups, are well tolerated under current conditions. The generated 2-carboxyl naphthalenes are useful for further diversification, as exemplified by the synthesis of chiral 1,2′-binaphthalene ligands and π-CPHs. Mechanistic studies indicate that the naphthyl-gold complex and the vinyl gold carbene species are the key intermediates in this cascade transformation, and side reactions in the usual carbene/alkyne metathesis process can be avoided under the current conditions, particularly for the β-H shift process. Synthetic applications based on the interception of these unique on-ring vinyl carbene intermediates, including the development of novel cascade reactions and synthesis of aromatic products with structural diversity, could be expected in due course.

Limitations of the Study
The asymmetric version for the formal C-H insertion reaction has not been realized, which is the main challenge in gold catalysis.

METHODS
All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY
The crystallography data have been deposited at the Cambridge Crystallographic Data Center (CCDC) under accession number CCDC: 1828269 ((S)-3u) and can be obtained free of charge from www.ccdc.cam.ac.uk/getstructures.

SUPPLEMENTAL INFORMATION
Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.10.042.

ACKNOWLEDGMENTS
This project was supported by National Natural Science Foundation of China (21602148), and the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (No. 2016ZT06Y337) is greatly acknowledged.

AUTHOR CONTRIBUTIONS
X.X. supervised the project. C.Z., K.H., S.D., C.P., X.Z., and C.H. conducted the experimental work. C.Z., W.H., and X.X. co-wrote the manuscript.

DECLARATION OF INTERESTS
The authors declare no competing interests.
Donohoe, T. J., Orr, A. J., and Bingham, M. (2006). Ring-closing metathesis as a basis for the construction of aromatic compounds. Angew. Chem. Int. Ed. 45, 2664–2670.

Dorel, R., and Echavarren, A. M. (2015). Gold(i)-catalyzed activation of alkynes for the construction of molecular complexity. Chem. Rev. 115, 9028–9072.

Edelmann, F. T. (2013). Lanthanides and actinides: Annual survey of their organometallic chemistry covering the year 2016. Coord. Chem. Rev. 338, 27–140.

Frederickson, C. K., Rose, B. D., and Haley, M. M. (2017). Explorations of the indenofluorenes and expanded quinoidal analogues. Acc. Chem. Res. 50, 977–987.

González-Rodríguez, C., Suárez, J. M., Varela, J. A., and Saá, C. C. (2015). Nucleophilic addition effects in homogeneous gold catalysis. Nature Chem. 7, 3703–3708.

Hashmi, A. S. K. (2001). Gold catalysis: on the phenol synthesis. Angew. Chem. Int. Ed. 40, 115–1155.

Hashmi, A. S. K., Frost, T. M., and Bats, J. W. (2000). Highly selective gold catalyzed arene synthesis. J. Am. Chem. Soc. 122, 1533–1554.

Hashmi, A. S. K., Frost, T. M., and Bats, J. W. (2001). Gold catalysis: on the phenol synthesis. Org. Lett. 3, 3761–3771.

Hashmi, A. S. K., Frost, T. M., and Bats, J. W. (2002). Homogeneous gold-catalyzed synthesis of biphenyls and furyl-substituted arenes. Catal. Today 72, 19–27.

Hashmi, A. S. K., Rudolph, M., Siehl, H.-U., Tanaka, M., Bats, J. W., and Frey, W. (2008). Gold catalysis: deuterated substrates as the Key for an experimental insight into the mechanism and selectivity of the phenol synthesis. Chem. Eur. J. 14, 3703–3708.

Hen, S. J., Lehnherr, D., Arslan, H., Uribe-Romo, F. J., and Dichtel, W. R. (2017). Alkylene benzannulation reactions for the synthesis of novel aromatic architectures. Acc. Chem. Res. 50, 2776–2788.

Hoye, T. R., Dinsmore, C. J., Johnson, D. S., and Korkowski, P. F. (1990). Alkyne insertion catalyzed activation of alkynes for the synthesis of substituted aromatics and other unsaturated products. ACS Catal. 6, 8201–8213.

Izawa, Y., Pun, D., and Stahl, S. S. (2011). Palladium-catalyzed aerobic dehydrogenation of cyclohydrocarbons for the synthesis of substituted aromatics and other unsaturated products. ACS Catal. 1, 8201–8213.

Iosub, A. V., and Stahl, S. S. (2016). Palladium-insertion reactions derived from type II o-alkynyl-substituted o-diazoo ketones synthesis of polysubstituted β-naphthols via α,ω-diazo ketones. J. Org. Chem. 81, 6429–6437.

Pei, C., Zhang, C., Qian, Y., and Xu, X. (2018). Aryne cycloaddition reactions in the synthesis of large polycyclic aromatic compounds. J. Am. Chem. Soc. 140, 1566–15666.

Pflüger, D., Peña, D., and Gutiérrez, E. (2013). Aryne cycloaddition reactions in the synthesis of large polycyclic aromatic compounds. J. Am. Chem. Soc. 140, 15981–16013.

Pla-Quintana, A. (2015). Enantioselective carbene/carbonate alkyne metathesis (CAM): a versatile strategy for alkyne bifunctionalization. Org. Biomol. Chem. 13, 8677–8685.

Qi, L.-W., Mao, J.-H., Zhang, J., and Tan, B. (2018). Organoasymmetric arylation of indoles enabled by azo groups. Nat. Chem. 10, 58–64.

Qi, H., Srinivas, H. D., Zavalij, P. Y., and Doyle, M. P. (2016). Unprecedented intramolecular [4 + 2]-cycloaddition between a 1,3-diene and a diazo ester. J. Am. Chem. Soc. 138, 1808–1811.

Ravìoli, C., Pratti, S., Ravelli, D., and Fagnoni, M. (2016). Aromaticity from dienes, enediones and enyne–allenes. Chem. Rev. 45, 4364–4390.

Rode, N., Marinelli, F., Arcadì, A., Adak, T., Rudolph, M., Rominger, F., and Hashmi, A. S. K. (2018). Sequential gold-catalyzed carbene transfer/ring closure: oxidative cyclization of β-(2-alkynylphenyl)-β,γ-ynes to indeno[2,1]benzofurans. Adv. Synth. Catal. 360, 4790–4794.

Schießl, J., Schulmeister, J., Doppia, A., Wörner, E., Rudolph, M., Karch, R., and Hashmi, A. S. K. (2018a). An industrial perspective on counter anions in gold catalysis: on alternative counter anions. Adv. Synth. Catal. 360, 3949–3959.

Schießl, J., Schulmeister, J., Doppia, A., Wörner, E., Rudolph, M., Karch, R., and Hashmi, A. S. K. (2018b). An industrial perspective on counter anions in gold catalysis: underestimated with respect to “ligand effects.” Adv. Synth. Catal. 360, 2493–2502.

Stockdale, T. P., and Williams, C. M. (2015). Pharmaceuticals that contain polycyclic hydrocarbon scaffolds. Chem. Soc. Rev. 44, 7737–7763.

Tanaka, K. (2013). Transition-metal-mediated Aromatic Ring Construction (John Wiley & Sons, Hoboken, Wiley-VCH).

Torres, O., Farella, T., Solis, M., Roglans, A., and Pla-Quintana, A. (2015). Enantioselective rhodium(III) donor carbene-mediated cascade triggered by a base–free decomposition of arylsulfonyl hydrazones. Chem. Eur. J. 21, 16240–16245.
van Otterlo, W.A.L., and de Koning, C.B. (2009). Metathesis in the synthesis of aromatic compounds. Chem. Rev. 109, 3743–3782.

Witham, C.A., Mauleón, P., Shapiro, N.D., Sherry, B.D., and Toste, F.D. (2007). Gold(I)-catalyzed oxidative rearrangements. J. Am. Chem. Soc. 129, 5838–5839.

Wu, W., and Jiang, H. (2012). Palladium-catalyzed oxidation of unsaturated hydrocarbons using molecular oxygen. Acc. Chem. Res. 45, 1736–1748.

Xu, X., Zavalij, P.Y., and Doyle, M.P. (2013). A donor–acceptor cyclopropene as a dipole source for a silver(I) catalyzed asymmetric catalytic [3+3]-cycloaddition with nitrones. Chem. Commun. 49, 10287–10289.

Yuan, Z., Cheng, R., Chen, P., Liu, G., and Liang, S.H. (2016). Efficient pathway for the preparation of aryl(isoquinoline)iodonium(III) salts and synthesis of radiofluorinated isoquinolines. Angew. Chem. Int. Ed. 55, 11882–11886.

Zeiler, A., Ziegler, M.J., Rudolph, M., Rominger, F., and Hashmi, A.S.K. (2015). Scope and limitations of the intermolecular furan–yne cyclization. Adv. Synth. Catal. 357, 1507–1514.

Zhang, C., Li, H., Pei, C., Qiu, L., Hu, W., Bao, X., and Xu, X. (2019). Selective vinylogous reactivity of carbene intermediate in gold-catalyzed alkyne carbocyclization: synthesis of indenols. ACS Catal. 9, 2440–2447.

Zheng, Y., Mao, J., Weng, Y., Zhang, X., and Xu, X. (2019). Cyclopentadiene construction via Rh-catalyzed carbene/alkyne metathesis terminated with intramolecular formal [3 + 2] cycloaddition. Org. Lett. 17, 5638–5641.

Zheng, Z., Wang, Z., Wang, Y., and Zhang, L. (2016). Au-Catalysed oxidative cyclisation. Chem. Soc. Rev. 45, 4448–4458.

Zhu, R.-Y., Farmer, M.E., Chen, Y.-Q., and Yu, J.-Q. (2016). A simple and versatile amide directing group for C–H functionalizations. Angew. Chem. Int. Ed. 55, 10578–10599.
Supplemental Information

Gold(I)-Catalyzed Aromatization: Expeditious Synthesis of Polyfunctionalized Naphthalenes

Cheng Zhang, Kemiao Hong, Shanliang Dong, Chao Pei, Xiaolu Zhang, Ciwang He, Wenhao Hu, and Xinfang Xu
Supplemental Figures

Figure S1. 1H NMR spectra (400 MHz) of 2a in CDCl$_3$, related to Table 1 and Scheme 1.

Figure S2. 13C NMR spectra (400 MHz) of 2a in CDCl$_3$, related to Table 1 and Scheme 1.
Figure S3. 1H NMR spectra (400 MHz) of 3a in CDCl₃, related to Table 1.

Figure S4. 13C NMR spectra (400 MHz) of 3a in CDCl₃, related to Table 1.
Figure S5. 1H NMR spectra (400 MHz) of 2b in CDCl$_3$, related to Scheme 1.

Figure S6. 13C NMR spectra (400 MHz) of 2b in CDCl$_3$, related to Scheme 1.
Figure S7. 1H NMR spectra (400 MHz) of 2c in CDCl$_3$, related to Scheme 1.

Figure S8. 13C NMR spectra (400 MHz) of 2c in CDCl$_3$, related to Scheme 1.
Figure S9. 1H NMR spectra (400 MHz) of 2d in CDCl$_3$, related to Scheme 1.

Figure S10. 13C NMR spectra (400 MHz) of 2d in CDCl$_3$, related to Scheme 1.
Figure S11. 1H NMR spectra (400 MHz) of 2e in CDCl$_3$, related to Scheme 1.

Figure S12. 13C NMR spectra (400 MHz) of 2e in CDCl$_3$, related to Scheme 1.
Figure S13. 1H NMR spectra (400 MHz) of 2f in CDCl$_3$, related to Scheme 1.

Figure S14. 13C NMR spectra (400 MHz) of 2f in CDCl$_3$, related to Scheme 1.
Figure S15. 1H NMR spectra (400 MHz) of 2g in CDCl$_3$, related to Scheme 1.

Figure S16. 13C NMR spectra (400 MHz) of 2g in CDCl$_3$, related to Scheme 1.
Figure S17. 1H NMR spectra (400 MHz) of 2h in CDCl$_3$, related to Scheme 1.

Figure S18. 13C NMR spectra (400 MHz) of 2h in CDCl$_3$, related to Scheme 1.
Figure S19. 1H NMR spectra (400 MHz) of 2i in CDCl$_3$, related to Scheme 1.

Figure S20. 13C NMR spectra (400 MHz) of 2i in CDCl$_3$, related to Scheme 1.
Figure S21. 1H NMR spectra (400 MHz) of 2j in CDCl$_3$, related to Scheme 1.

Figure S22. 13C NMR spectra (400 MHz) of 2j in CDCl$_3$, related to Scheme 1.
Figure S23. 19F NMR spectra (400 MHz) of 2j in CDCl$_3$, related to Scheme 1.

Figure S24. 1H NMR spectra (400 MHz) of 2k in CDCl$_3$, related to Scheme 1.
Figure S25. 13C NMR spectra (400 MHz) of 2k in CDCl$_3$, related to Scheme 1.

Figure S26. 1H NMR spectra (400 MHz) of 2l in CDCl$_3$, related to Scheme 1.
Figure S27. 13C NMR spectra (400 MHz) of 2l in CDCl$_3$, related to Scheme 1.

Figure S28. 1H NMR spectra (400 MHz) of 2m in CDCl$_3$, related to Scheme 1.
Figure S29. 13C NMR spectra (400 MHz) of 2m in CDCl$_3$, related to Scheme 1.

Figure S30. 19F NMR spectra (400 MHz) of 2m in CDCl$_3$, related to Scheme 1.
Figure S31. 1H NMR spectra (400 MHz) of 2n in CDCl$_3$, related to Scheme 1.

Figure S32. 13C NMR spectra (400 MHz) of 2n in CDCl$_3$, related to Scheme 1.
Figure S33. 1H NMR spectra (400 MHz) of 2o in CDCl$_3$, related to Scheme 1.

Figure S34. 13C NMR spectra (400 MHz) of 2o in CDCl$_3$, related to Scheme 1.
Figure S35. 1H NMR spectra (400 MHz) of 2p in CDCl$_3$, related to Scheme 1.

Figure S36. 13C NMR spectra (400 MHz) of 2p in CDCl$_3$, related to Scheme 1.
Figure S37. 1H NMR spectra (400 MHz) of 2q in CDCl$_3$, related to Scheme 1.

Figure S38. 13C NMR spectra (400 MHz) of 2q in CDCl$_3$, related to Scheme 1.
Figure S39. 1H NMR spectra (400 MHz) of 2r in CDCl$_3$, related to Scheme 1.

Figure S40. 13C NMR spectra (400 MHz) of 2r in CDCl$_3$, related to Scheme 1.
Figure S41. 1H NMR spectra (400 MHz) of 2s in CDCl$_3$, related to Scheme 1.

Figure S42. 13C NMR spectra (400 MHz) of 2s in CDCl$_3$, related to Scheme 1.
Figure S43. 1H NMR spectra (400 MHz) of 5a in CDCl$_3$, related to Scheme 1.

Figure S44. 13C NMR spectra (400 MHz) of 5a in CDCl$_3$, related to Scheme 1.
Figure S45. 1H NMR spectra (400 MHz) of 5d in CDCl$_3$, related to Scheme 1.

Figure S46. 13C NMR spectra (400 MHz) of 5d in CDCl$_3$, related to Scheme 1.
Figure S47. 1H NMR spectra (400 MHz) of 5e in CDCl$_3$, related to Scheme 1.

Figure S48. 13C NMR spectra (400 MHz) of 5e in CDCl$_3$, related to Scheme 1.
Figure S49. 1H NMR spectra (400 MHz) of 5f in CDCl$_3$, related to Scheme 1.

Figure S50. 13C NMR spectra (400 MHz) of 5f in CDCl$_3$, related to Scheme 1.
Figure S51. 1H NMR spectra (400 MHz) of 15a in CDCl$_3$, related to Scheme 1.

Figure S52. 13C NMR spectra (400 MHz) of 15a in CDCl$_3$, related to Scheme 1.
Figure S53. 1H NMR spectra (400 MHz) of 15b in CDCl$_3$, related to Scheme 1.

Figure S54. 13C NMR spectra (400 MHz) of 15b in CDCl$_3$, related to Scheme 1.
Figure S55. 1H NMR spectra (400 MHz) of 15c in CDCl$_3$, related to Scheme 1.

Figure S56. 13C NMR spectra (400 MHz) of 15c in CDCl$_3$, related to Scheme 1.
Figure S57. 1H NMR spectra (400 MHz) of 15d in CDCl$_3$, related to Scheme 1.

Figure S58. 13C NMR spectra (400 MHz) of 15d in CDCl$_3$, related to Scheme 1.
Figure S59. 1H NMR spectra (400 MHz) of 15e in CDCl$_3$, related to Scheme 1.

Figure S60. 13C NMR spectra (400 MHz) of 15e in CDCl$_3$, related to Scheme 1.
Figure S61. ^{19}F NMR spectra (400 MHz) of 15e in CDCl$_3$, related to Scheme 1.

Figure S62. ^1H NMR spectra (400 MHz) of 15f in CDCl$_3$, related to Scheme 1.
Figure S63. 13C NMR spectra (400 MHz) of 15f in CDCl$_3$, related to Scheme 1.

Figure S64. 1H NMR spectra (400 MHz) of 15g in CDCl$_3$, related to Scheme 1.
Figure S65. 13C NMR spectra (400 MHz) of 15g in CDCl$_3$, related to Scheme 1.

Figure S66. 1H NMR spectra (400 MHz) of 15h in CDCl$_3$, related to Scheme 1.
Figure S67. 13C NMR spectra (400 MHz) of 15h in CDCl$_3$, related to Scheme 1.

Figure S68. 1H NMR spectra (400 MHz) of 15i in DMSO-d_6, related to Scheme 1.
Figure S69. 13C NMR spectra (400 MHz) of 15i in DMSO-d_6, related to Scheme 1.

Figure S70. 1H NMR spectra (400 MHz) of 15j in DMSO-d_6, related to Scheme 1.
Figure S71. 13C NMR spectra (400 MHz) of 15j in DMSO-d_6, related to Scheme 1.

Figure S72. 1H NMR spectra (400 MHz) of 15k in CDCl$_3$, related to Scheme 1.
Figure S73. 13C NMR spectra (400 MHz) of 15k in CDCl$_3$, related to Scheme 1.

Figure S74. 19F NMR spectra (400 MHz) of 15k in CDCl$_3$, related to Scheme 1.
Figure S75. 1H NMR spectra (400 MHz) of 15l in CDCl$_3$, related to Scheme 1.

Figure S76. 13C NMR spectra (400 MHz) of 15l in CDCl$_3$, related to Scheme 1.
Figure S77. 1H NMR spectra (400 MHz) of $15m$ in CDCl$_3$, related to Scheme 1.

Figure S78. 13C NMR spectra (400 MHz) of $15m$ in CDCl$_3$, related to Scheme 1.
Figure S79. 1H NMR spectra (400 MHz) of 15n in CDCl$_3$, related to Scheme 1.

Figure S80. 13C NMR spectra (400 MHz) of 15n in CDCl$_3$, related to Scheme 1.
Figure S81. 1H NMR spectra (400 MHz) of 15o in CDCl$_3$, related to Scheme 1.

Figure S82. 13C NMR spectra (400 MHz) of 15o in CDCl$_3$, related to Scheme 1.
Figure S83. 1H NMR spectra (400 MHz) of 15p in CDCl$_3$, related to Scheme 1.

Figure S84. 13C NMR spectra (400 MHz) of 15p in CDCl$_3$, related to Scheme 1.
Figure S85. 1H NMR spectra (400 MHz) of 15q in CDCl$_3$, related to Scheme 1.

Figure S86. 13C NMR spectra (400 MHz) of 15q in CDCl$_3$, related to Scheme 1.
Figure S87. 1H NMR spectra (400 MHz) of 15r in CDCl$_3$, related to Scheme 1.

Figure S88. 13C NMR spectra (400 MHz) of 15r in CDCl$_3$, related to Scheme 1.
Figure S89. 1H NMR spectra (400 MHz) of 6 in DMSO-d_6, related to Figure 2A.

Figure S90. 13C NMR spectra (400 MHz) of 6 in DMSO-d_6, related to Figure 2A.
Figure S91. 1H NMR spectra (400 MHz) of 7a in CDCl$_3$, related to Figure 2B.

Figure S92. 13C NMR spectra (400 MHz) of 7a in CDCl$_3$, related to Figure 2B.
Figure S93. 1H NMR spectra (400 MHz) of 7o in CDCl$_3$, related to Figure 2C.

Figure S94. 13C NMR spectra (400 MHz) of 7o in CDCl$_3$, related to Figure 2C.
Figure S95. 1H NMR spectra (400 MHz) of (S)-2u in CDCl$_3$, related to Figure 2D.

Figure S96. 13C NMR spectra (400 MHz) of (S)-2u in CDCl$_3$, related to Figure 2D.
Figure S97. 1H NMR spectra (400 MHz) of (R)-2u in CDCl$_3$, related to Figure 2D.

Figure S98. 13C NMR spectra (400 MHz) of (R)-2u in CDCl$_3$, related to Figure 2D.
Figure S99. 1H NMR spectra (400 MHz) of (R)-8u in CDCl$_3$, related to Figure 2D.

Figure S100. 13C NMR spectra (400 MHz) of (R)-8u in CDCl$_3$, related to Figure 2D.
Figure S101. 1H NMR spectra (400 MHz) of (S)-9u in DMSO-d_6, related to Figure 2D.

Figure S102. 13C NMR spectra (400 MHz) of (S)-9u in DMSO-d_6, related to Figure 2D.
Figure S103. 1H NMR spectra (400 MHz) of (R)-10u in CDCl$_3$, related to Figure 2D.

Figure S104. 13C NMR spectra (400 MHz) of (R)-10u in CDCl$_3$, related to Figure 2D.
Figure S105. 1H NMR spectra (400 MHz) of (S)-11u in CDCl$_3$, related to Figure 2D.

Figure S106. 13C NMR spectra (400 MHz) of (S)-11u in CDCl$_3$, related to Figure 2D.
Figure S107. 1H NMR spectra (400 MHz) of 12 in CDCl$_3$, related to Figure 3A.

Figure S108. 13C NMR spectra (400 MHz) of 12 in CDCl$_3$, related to Figure 3A.
Figure S109. Proton NMR of 2a-d with 58% D, related to Figure 3B

Figure S110. Proton NMR of 2a with 80% D, related to Figure 3C.
Figure S111. Intermolecular Kinetic Isotope Effect (KIE) Experiment, related to Figure 3D.

Figure S112. 1H NMR spectra (400 MHz) of 3l in CDCl$_3$, related to Figure 3E.
Figure S113. 13C NMR spectra (400 MHz) of 3l in CDCl$_3$, related to Figure 3E.

Figure S114. 1H NMR spectra (400 MHz) of 13l in CDCl$_3$, related to Figure 3E.
Figure S115. 13C NMR spectra (400 MHz) of 13I in CDCl$_3$, related to Figure 3E.
Supplemental Tables

Table S1. Preparation of Au(I)-Catalysts, related to Table 1.
Table S2. Ligand Effects on Product Distribution, related to Table 1.

Ligand	Product Distribution								
L1	0%; 89%	L2	0%; 87%	L3	0%; 86%	L4	< 5%; 85%	L5	0%; 65%
L6	0%; 88%	L7	< 5%; 75%	L8	0%; 85%	L9	0%; 84%	L10	< 5%; 86%
L11	41%; 55%	L12	92%; < 5%	L13	0%; 78%	L14	0%; 73%	L15	75/25
L16	70%; 26%	L17	92%; < 5%	L18	52%; 42%	L19	92%; < 5%	L20	94%; < 5%
L21	92%; < 5%	L22	56%; 40%	L23	45%; 50%	L24	0%; 95%		
L25	71%; 25%	L26	0%; 93%	L27	< 5%; 81%	L28	0%; 95%	L29	0%; 79%
Table S3. X-ray crystal structures of (S)-2u, related to Figure 2D.

Datablock: cu_zc20180305_0m

Bond precision:	C-C = 0.0020 Å	Wavelength=1.54178	
Cell:	a=8.6525(3)	b=11.6262(3)	c=25.3640(7)
	alpha=90	beta=90	gamma=90
Temperature:	120 K		
Volume	2551.51(13)	2551.51(13)	
Space group	P 21 21 21	P 21 21 21	
Hall group	P 2ac 2ab	P 2ac 2ab	
Moiety formula	C32 H34 O3	C32 H34 O3	
Sum formula	C32 H34 O3	C32 H34 O3	
Mr	466.59	466.59	
Dx, g cm⁻³	1.215	1.215	
Z	4	4	
Mu (mm⁻¹)	0.597	0.597	
F000	1000.0	1000.0	
F000’	1002.79		
h,k,lmax	10,14,32	10,14,32	
Nref	5446 [3096]	5403	
Tmin, Tmax	0.867, 0.887	0.698, 0.754	
Tmin’	0.788		

Correction method= # Reported T Limits: Tmin=0.698 Tmax=0.754
AbsCorr = MULTI-SCAN

Data completeness= 1.75/0.99 Theta(max)= 77.963
R(reflections)= 0.0281(5338) wR2(reflections)= 0.0772(5403)
S = 1.055 Npar= 320
Table S4. HPLC spectra of compound (R)-10u, related to Figure 2D.

Condition: hexane : 2-propanol = 90:10.
Flow rate = 1.0 mL/min, λ = 272 nm, Chiral IA-3.
Transparent Methods

General Information
All of the reactions were carried out under argon atmosphere using oven-dried glassware. Super dry dichloroethane (DCE), ethyl diazoacetate, indoles, phosphine ligand, and metal catalysts were purchased from chemical companies and were used without further treatment. Flash column chromatography was performed using a silica gel (300-400 mesh). Analytical thin-layer chromatography was performed using glass plates precoated with 200-300 mesh silica gel impregnated with a fluorescent indicator (254 nm). All of the new compounds were fully characterized. 1H NMR and 13C NMR spectra were recorded in CDCl$_3$ or DMSO-d_6 using a 400/600 MHz spectrometer, and chemical shifts are reported in ppm with the solvent signals as the reference, and coupling constants (J) are given in Hz. The peak information is described as: s = singlet, br = broad, d = doublet, t = triplet, q = quartet, m = multiplet, and comp = composite. High-resolution mass spectra (HRMS) were recorded using a commercial apparatus (ESI Source).
Experimental Procedures

General Procedure for the Preparation of Diazo Compounds 1a - 1u, related to Scheme 1.

Synthesis of 1-(bromomethyl)-2-(phenylethynyl)benzene: To a solution of (2-iodophenyl)methanol (9.36 g, 40.0 mmol), Pd(PPh₃)₂Cl₂ (280.8 mg, 1.0 mol %), CuI (76.2 mg, 1.0 mol%) in Et₃N (40.0 mL), was added a solution of phenylacetylene (4.91 g, 48.0 mmol) in Et₃N (20.0 mL) slowly at 0℃ under argon atmosphere. The reaction mixture was stirred overnight and the reaction temperature was warmed to room temperature slowly. Upon completion (monitored by TLC), the solvent was evaporated under vacuum after filtering through Celite, and the obtained (2-(phenylethynyl)phenyl)methanol was directly used for the next step without further purification.

To a 100 mL oven-dried round-bottom flask containing a magnetic stirring bar, triphenylphosphine (12.60 g, 48.0 mmol) in CH₂Cl₂ (40.0 mL), was added bromine (7.67 g, 48.0 mmol) dropwise, and the mixture was stirred vigorously at ambient temperature for 30 min. Then a solution of the above obtained product in CH₂Cl₂ (16.0 mL) was added to the reaction mixture dropwise and the reaction mixture was stirred for additional 1 hour. n-Hexane (40.0 mL) was then added to quench the reaction, and the solvent was evaporated under vacuum after filtering through Celite. The residue was purified by flash chromatography on Al₂O₃ (ethyl acetate/petroleum ether = 1/20) to afford the product 1-(bromomethyl)-2-(phenylethynyl)benzene (9.65 g, 89 % based on (2-iodophenyl)methanol).

Synthesis of 1a: To a 100 mL oven-dried round-bottom flask containing a magnetic stirring bar, sodium hydride (60 % dispersion in mineral oil, 0.60 g, 15.0 mmol) in dry THF (30 mL), was added methyl acetoacetate (1.74 g, 15.0 mmol) dropwise at 0 ℃ under nitrogen atmosphere. After the mixture turned clear, a solution of 1-(bromomethyl)- 2-(phenylethynyl)benzene (2.71 g, 10.0 mmol) in THF (10.0 mL) was added dropwise at ambient temperature, and the reaction was refluxed for 4 hours. Saturated NH₄Cl (20.0 mL) was added to quench the reaction, the organic phase was separated, and the aqueous layer was extracted with Et₂O (3 × 20.0 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄. The solvent was evaporated under vacuum after filtration, and the residue was directly used for the next step without further purification.

To a 50-mL oven-dried flask containing a magnetic stirring bar, the above obtained crude product, 4-acetamidobenzenesulfonyl azide (p-ABSA, 2.89 g, 12.0 mmol) in DCM (20.0 mL), was added a solution of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, 2.29 mg, 15.0 mmol) in DCM (5.0 mL) slowly at 0 ℃. The reaction mixture was
stirred at 0 °C for 12 hours. Upon completion (monitored by TLC), the solvent was evaporated under vacuum after filtering through Celite, and the resulting residues was purified by column chromatography on silica gel (ethyl acetate/petroleum ether = 1/10) to give the pure diazoacetate 1a (2.06 g, 71% yields based on 1-(bromomethyl)-2-(phenylethynyl)benzene).

The synthesis of other substrates (1b-1u) is similar to that of 1a.

Methyl 2-diazo-3-(2-(phenylethynyl)phenyl)propanoate.

![Structure 1a](image)

2.06 g, 71% yield. 1H NMR (400 MHz, CDCl3) (δ, ppm) 7.50 – 7.43 (comp, 3H), 7.31 – 7.24 (comp, 4H), 7.23 – 7.16 (comp, 2H), 3.81 (s, 2H), 3.67 (s, 3H); 13C NMR (100 MHz, CDCl3) (δ, ppm) 167.8, 139.4, 132.7, 131.7, 129.3, 128.8, 128.6, 128.5, 127.3, 123.1, 123.0, 94.2, 87.4, 52.1, 28.3. HRMS (TOF MS ESI+) calculated for C18H14N2NaO2+ [M+Na]+: 313.0953, found 313.0939.

Isopropyl 2-diazo-3-(2-(phenylethynyl)phenyl)propanoate.

![Structure 1b](image)

1.97 g, 62% yield. 1H NMR (400 MHz, CDCl3) (δ, ppm) 7.58 – 7.51 (comp, 3H), 7.39 – 7.34 (comp, 4H), 7.33 – 7.24 (comp, 2H), 5.18 – 4.98 (m, 1H), 3.88 (s, 2H), 1.23 (d, J = 6.3 Hz, 6H); 13C NMR (100 MHz, CDCl3) (δ, ppm) 166.9, 139.6, 132.7, 131.7, 129.4, 128.7, 128.6, 128.5, 127.2, 123.2, 123.1, 94.1, 87.5, 68.5, 28.3, 22.2. HRMS (TOF MS ESI+) calculated for C20H19N2O2+ [M+H]+: 319.1441, found 319.1438.

tert-Butyl 2-diazo-3-(2-(phenylethynyl)phenyl)propanoate.

![Structure 1c](image)

2.30 g, 69% yield. 1H NMR (400 MHz, CDCl3) (δ, ppm) 7.58 – 7.53 (comp, 3H), 7.40 – 7.33 (comp, 5H), 7.33 – 7.23 (m, 2H), 3.85 (s, 2H), 1.47 (s, 9H); 13C NMR (100 MHz, CDCl3) (δ, ppm) 166.9, 139.6, 132.7, 131.7, 129.4, 128.7, 128.6, 128.5, 127.2, 123.2, 123.1, 94.1, 87.5, 68.5, 28.3, 22.2. HRMS (TOF MS ESI+) calculated for C21H21N2O2+ [M+H]+: 333.1598, found 333.1596.
Benzyl 2-diazo-3-(2-(phenylethynyl)phenyl)propanoate.

![Chemical Structure](image)

2.20 g, 60% yield. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 7.64 – 7.55 (comp, 4H), 7.42 – 7.39 (comp, 4H), 7.38 – 7.36 (comp, 4H), 7.34 – 7.29 (comp, 2H), 5.26 (s, 2H), 3.96 (s, 2H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 167.1, 139.3, 136.1, 132.7, 131.6, 129.3, 128.7, 128.6, 128.4, 128.2, 128.1, 127.3, 122.61, 122.56, 94.2, 87.4, 66.5, 28.3. HRMS (TOF MS ESI$^+$) calculated for C$_{24}$H$_{19}$N$_2$O$_2$ $^+\ [M+H]^+$: 367.1441, found 367.1435.

Cinnamyl 2-diazo-3-(2-(phenylethynyl)phenyl)propanoate.

![Chemical Structure](image)

2.28 g, 58% yield. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 7.61 – 7.53 (comp, 4H), 7.40 – 7.35 (comp, 8H), 7.30 – 7.27 (comp, 2H), 6.67 – 6.59 (m, 1H), 6.32 – 6.23 (m, 1H), 4.86 – 4.81 (m, 2H), 3.93 (s, 2H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 167.1, 139.3, 136.3, 134.1, 132.7, 131.7, 129.4, 128.8, 128.7, 128.6, 128.5, 128.1, 127.3, 126.7, 123.5, 123.11, 123.06, 94.2, 87.4, 65.4, 28.4. HRMS (TOF MS ESI$^+$) calculated for C$_{26}$H$_{21}$N$_2$O$_2$ $^+\ [M+H]^+$: 393.1598, found 393.1599.

Methyl 2-diazo-3-(2-(p-tolylethynyl)phenyl)propanoate.

![Chemical Structure](image)

2.19 g, 72% yield. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 7.55 (d, J = 7.5 Hz, 1H), 7.42 (d, J = 7.9 Hz, 2H), 7.37 – 7.33 (m, 1H), 7.31 – 7.24 (comp, 2H), 7.17 (d, J = 7.9 Hz, 2H), 3.88 (s, 2H), 3.75 (s, 3H), 2.38 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 167.7, 139.3, 138.8, 132.6, 131.6, 129.31, 129.26, 128.6, 127.3, 123.2, 120.1, 94.4, 86.8, 52.0, 28.3, 21.6. HRMS (TOF MS ESI$^+$) calculated for C$_{19}$H$_{16}$N$_2$NaO$_2$ $^+\ [M+Na]^+$: 327.1104, found 327.1098.
Methyl 2-diazo-3-(2-(m-tolylethynyl)phenyl)propanoate.

2.22 g, 73% yield. \[^1\text{H}	ext{ NMR}\ (600\text{ MHz, CDCl}_3)\ (\delta, \text{ ppm})\ 7.58\, -\, 7.54\ (m, 1H), 7.49 (d, \ J = 7.5\text{ Hz, 1H}), 7.37\, -\, 7.33\ (m, 1H), 7.33\, -\, 7.27\ (comp, 2H), 7.26\, -\, 7.23\ (comp, 2H), 7.21\, -\, 7.16\ (m, 1H), 3.90 (s, 2H), 3.75 (s, 3H), 2.51 (s, 3H); \[^{13}\text{C NMR}\ (150\text{ MHz, CDCl}_3)\ (\delta, \text{ ppm})\ 167.8, 145.9, 140.2, 139.0, 132.8, 132.1, 129.7, 128.8, 128.7, 127.3, 125.8, 123.4, 123.0, 93.2, 91.3, 52.1, 28.3, 21.0. HRMS (TOF MS ESI\(^+\)) calculated for C\(_{19}\)H\(_{16}\)N\(_2\)O\(_2\)[M+Na\(^+\)]: 327.1102, found 327.1102.

Methyl 2-diazo-3-(2-(o-tolylethynyl)phenyl)propanoate.

1.98 g, 65% yield. \[^1\text{H}	ext{ NMR}\ (600\text{ MHz, CDCl}_3)\ (\delta, \text{ ppm})\ 7.51\, -\, 7.47\ (m, 1H), 7.30\, -\, 7.28\ (comp, 2H), 7.27\, -\, 7.24\ (m, 1H), 7.23\, -\, 7.21\ (m, 1H), 7.21\, -\, 7.17\ (comp, 2H), 7.11 (d, \ J = 7.6\text{ Hz, 1H}), 3.83 (s, 2H), 3.70 (s, 3H), 2.31 (s, 3H); \[^{13}\text{C NMR}\ (100\text{ MHz, CDCl}_3)\ (\delta, \text{ ppm})\ 171.3, 139.4, 138.2, 132.7, 132.3, 129.5, 129.3, 128.8, 128.7, 128.4, 127.3, 123.2, 123.0, 94.4, 87.1, 52.1, 28.3, 21.4. HRMS (TOF MS ESI\(^+\)) calculated for C\(_{19}\)H\(_{16}\)N\(_2\)O\(_2\)[M+Na\(^+\)]: 327.1102, found 327.1107.

Methyl 2-diazo-3-(2-((4-methoxyphenyl)ethynyl)phenyl)propanoate.

1.67 g, 52% yield. \[^1\text{H}	ext{ NMR}\ (600\text{ MHz, CDCl}_3)\ (\delta, \text{ ppm})\ 7.54 (d, \ J = 7.3\text{ Hz, 1H}), 7.48\, -\, 7.45\ (m, 2H), 7.34 (d, \ J = 7.3\text{ Hz, 1H}), 7.30\, -\, 7.23\ (m, 2H), 6.90 (d, \ J = 8.7\text{ Hz, 2H}), 3.87 (s, 2H), 3.83 (s, 3H), 3.75 (s, 3H); \[^{13}\text{C NMR}\ (150\text{ MHz, CDCl}_3)\ (\delta, \text{ ppm})\ 167.7, 159.9, 139.1, 133.2, 132.5, 129.3, 128.4, 127.3, 123.4, 115.2, 114.1, 94.3, 86.2, 55.4, 52.0, 28.3. HRMS (TOF MS ESI\(^+\)) calculated for C\(_{19}\)H\(_{17}\)N\(_2\)O\(_3\)[M+H\(^+\)]: 321.1234, found 321.1227.
Methyl 2-diazo-3-(2-((4-fluorophenyl)ethynyl)phenyl)propanoate.

\[
\text{MeCO}_2\text{N}_2\text{Me}
\]

2.16 g, 70% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)) (\(\delta\), ppm) 7.45 – 7.38 (comp, 3H), 7.25 – 7.21 (m, 1H), 7.21 – 7.17 (m, 1H), 7.17 – 7.12 (m, 1H), 6.98 – 6.91 (comp, 2H), 3.76 (s, 2H), 3.63 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) (\(\delta\), ppm) 167.6, 162.7 (d, \(J = 249.9\) Hz), 139.3, 133.6 (d, \(J = 8.4\) Hz), 132.7, 129.3, 128.8, 127.3, 122.8, 119.2 (d, \(J = 3.5\) Hz), 115.8 (d, \(J = 22.1\) Hz), 93.1, 87.1, 52.0, 28.3; \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -110.46. HRMS (TOF MS ESI\(^+\)) calculated for C\(_{18}\)H\(_{14}\)FN\(_2\)O\(_2\) [M+H]\(^+\): 309.1034, found 309.1029.

Methyl 3-(2-((4-Chlorophenyl)ethynyl)phenyl)-2-diazopropanoate.

\[
\text{MeCO}_2\text{N}_2\text{Cl}
\]

2.14 g, 66% yield. \(^1\)H NMR (600 MHz, CDCl\(_3\)) (\(\delta\), ppm) 7.54 (d, \(J = 7.6\) Hz, 1H), 7.45 (d, \(J = 8.4\) Hz, 2H), 7.37 – 7.29 (m, 4H), 7.28 – 7.24 (m, 1H), 3.86 (s, 2H), 3.74 (s, 3H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)) (\(\delta\), ppm) 167.5, 139.4, 134.6, 132.9, 132.7, 129.3, 129.0, 128.8, 127.3, 122.7, 121.6, 93.0, 88.4, 52.0, 28.3. HRMS (TOF MS ESI\(^+\)) calculated for C\(_{18}\)H\(_{13}\)ClN\(_2\)NaO\(_2\) [M+Na]\(^+\): 347.0558, found 347.0550.

Methyl 3-(2-((4-bromophenyl)ethynyl)phenyl)-2-diazopropanoate.

\[
\text{MeCO}_2\text{N}_2\text{Br}
\]

1.96 g, 53% yield. \(^1\)H NMR (600 MHz, CDCl\(_3\)) (\(\delta\), ppm) 7.49 (d, \(J = 7.4\) Hz, 1H), 7.46 – 7.42 (comp, 2H), 7.35 – 7.31 (comp, 2H), 7.30 – 7.24 (comp, 2H), 7.23 – 7.19 (m, 1H), 3.81 (s, 2H), 3.69 (s, 3H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)) (\(\delta\), ppm) 167.7, 139.4, 133.1, 132.8, 131.8, 129.4, 129.0, 127.4, 122.9, 122.7, 122.1, 93.1, 88.6, 52.1, 28.4. HRMS (TOF MS ESI\(^+\)) calculated for C\(_{18}\)H\(_{13}\)BrN\(_2\)NaO\(_2\) [M+Na]\(^+\): 391.0053, found 391.0145.
Methyl 2-diazo-3-(2-((4-(trifluoromethyl)phenyl)ethynyl)phenyl)propanoate.

1.97 g, 55% yield. 1H NMR (600 MHz, CDCl$_3$) (δ, ppm) 7.70 – 7.47 (comp, 5H), 7.39 – 7.26 (comp, 2H), 7.26 – 7.18 (m, 1H), 3.87 (s, 2H), 3.72 (s, 3H); 13C NMR (150 MHz, CDCl$_3$) (δ, ppm) 167.3, 139.5, 132.8, 131.8, 130.0 (q, $J = 32.7$ Hz), 129.3, 129.2, 127.2, 126.8, 125.2 (q, $J = 3.8$ Hz), 122.2, 92.6, 89.7, 51.8, 28.2. HRMS (TOF MS ESI$^+$) calculated for C$_{19}$H$_{13}$F$_3$N$_2$NaO$_2$ $^+$ [M+Na]$^+$: 381.0821, found 381.0828.

Methyl 2-diazo-3-(2-(naphthalen-1-ylethynyl)phenyl)propanoate.

1.67 g, 49% yield. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 8.45 (d, $J = 8.3$ Hz, 1H), 7.92 – 7.86 (comp, 2H), 7.83 – 7.79 (m, 1H), 7.74 – 7.70 (m, 1H), 7.68 – 7.61 (m, 1H), 7.60 – 7.54 (m, 1H), 7.53 – 7.47 (m, 1H), 7.45 – 7.40 (m, 1H), 7.39 – 7.32 (comp, 2H), 4.02 (s, 2H), 3.76 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 167.7, 139.2, 133.3, 133.2, 132.8, 130.7, 129.3, 128.9, 128.4, 127.4, 127.0, 126.5, 126.1, 125.4, 123.1, 120.7, 92.3, 92.2, 52.0, 28.4. HRMS (TOF MS ESI$^+$) calculated for C$_{22}$H$_{17}$N$_2$O$_2$ $^+$ [M+H]$^+$: 341.1285, found 341.1297.

Methyl 2-diazo-3-(2-((2-methoxynaphthalen-1-yl)ethynyl)phenyl)propanoate.

2.11 g, 57% yield. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 8.30 (d, $J = 8.3$ Hz, 1H), 7.85 – 7.74 (comp, 2H), 7.70 – 7.65 (m, 1H), 7.59 – 7.52 (m, 1H), 7.45 – 7.33 (comp, 2H), 7.33 – 7.26 (comp, 2H), 7.27 – 7.22 (m, 1H), 4.04 (s, 2H), 4.01 (s, 3H), 3.73 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 168.2, 159.2, 139.4, 134.3, 132.4, 130.5, 129.3, 128.7, 128.6, 128.2, 127.5, 127.2, 125.3, 124.3, 123.7, 112.6, 106.2, 97.0, 88.9, 56.5, 52.0, 28.0. HRMS (TOF MS ESI$^+$) calculated for C$_{23}$H$_{19}$N$_2$O$_3$ $^+$ [M+H]$^+$: 371.1390, found 371.1400.
Methyl 2-diazo-3-(2-(thiophen-2-ylethynyl)phenyl)propanoate.

![Chemical structure of Methyl 2-diazo-3-(2-(thiophen-2-ylethynyl)phenyl)propanoate](image)

1.24 g, 42% yield. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 7.52 – 7.48 (m, 1H), 7.34 – 7.26 (comp, 4H), 7.24 – 7.19 (m, 1H), 7.00 – 6.96 (m, 1H), 3.81 (s, 2H), 3.72 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 167.3, 139.4, 132.5, 132.2, 129.3, 128.9, 127.7, 127.3, 127.2, 123.0, 122.6, 91.1, 87.4, 52.0, 28.4. HRMS (TOF MS ESI$^+$) calculated for C$_{16}$H$_{13}$N$_2$O$_2$S $^+ [M+H]^+$: 297.0698, found 297.0694.

Methyl 3-(2-(cyclopropylethynyl)phenyl)-2-diazopropanoate.

![Chemical structure of Methyl 3-(2-(cyclopropylethynyl)phenyl)-2-diazopropanoate](image)

1.35 g, 53% yield. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 7.43 – 7.38 (m, 1H), 7.32 – 7.26 (m, 1H), 7.26 – 7.16 (comp, 2H), 3.79 (s, 3H), 3.77 (s, 2H), 1.52 – 1.44 (m, 1H), 0.94 – 0.80 (comp, 4H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 167.7, 139.3, 132.6, 129.1, 127.8, 127.0, 123.7, 98.5, 73.9, 51.9, 28.2, 8.7, 0.4. HRMS (TOF MS ESI$^+$) calculated for C$_{15}$H$_{14}$N$_2$NaO$_2$ $^+ [M+Na]^+$: 277.0947, found 277.0961.

3-Diazo-4-(2-(phenylethynyl)phenyl)butan-2-one.

![Chemical structure of 3-Diazo-4-(2-(phenylethynyl)phenyl)butan-2-one](image)

1.67 g, 61% yield. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 7.60 – 7.53 (comp, 3H), 7.41 – 7.27 (comp, 6H), 3.94 (s, 2H), 2.25 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 190.5, 139.0, 132.6, 131.6, 129.6, 128.8, 128.6, 128.5, 127.3, 123.0, 94.0, 87.4, 68.2, 27.5. HRMS (TOF MS ESI$^+$) calculated for C$_{18}$H$_{14}$N$_2$NaO$_2$ $^+ [M+Na]^+$: 297.0998, found 297.0994.

2-Diazo-1-phenyl-3-(2-(phenylethynyl)phenyl)propan-1-one.

![Chemical structure of 2-Diazo-1-phenyl-3-(2-(phenylethynyl)phenyl)propan-1-one](image)
2.42 g, 72% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)) (δ, ppm) 7.61 – 7.55 (comp, 3H), 7.55 – 7.50 (comp, 2H), 7.49 – 7.39 (comp, 3H), 7.39 – 7.32 (comp, 5H), 7.31 – 7.27 (m, 1H), 4.12 (s, 2H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) (δ, ppm) 189.2, 138.9, 137.7, 132.8, 131.7, 131.5, 129.7, 128.9, 128.6, 128.5, 127.5, 127.3, 123.2, 123.0, 94.3, 87.4, 28.8. HRMS (TOF MS ESI\(^+\)) calculated for C\(_{23}\)H\(_{17}\)N\(_2\)O\(_2\)\([M+H]^+\): 337.1335, found 337.1330.

Methyl 3-(2-((2-aminophenyl)ethynyl)phenyl)-2-diazopropanoate.

1.22 g, 40% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)) (δ, ppm) 7.58 – 7.53 (m, 1H), 7.38 – 7.24 (comp, 4H), 7.18 – 7.12 (m, 1H), 6.76 – 6.70 (comp, 2H), 4.35 (s, 2H), 3.89 (s, 2H), 3.74 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) (δ, ppm) 167.7, 148.0, 138.8, 132.6, 132.3, 130.0, 129.1, 128.7, 127.2, 123.1, 117.9, 114.5, 107.6, 92.4, 90.9, 52.0, 28.2. HRMS (TOF MS ESI\(^+\)) calculated for C\(_{18}\)H\(_{15}\)N\(_3\)NaO\(_2\)\([M+Na]^+\): 328.1056, found 328.1064.

(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl 2-diao-3-(2-((2-methoxynaphthalen-1-yl)ethynyl)phenyl)propanoate.

2.92 g, 59% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)) (δ, ppm) 8.32 (d, J = 8.4 Hz, 1H), 7.88 – 7.78 (comp, 2H), 7.72 – 7.66 (m, 1H), 7.60 – 7.54 (m, 1H), 7.46 – 7.37 (comp, 2H), 7.36 – 7.27 (comp, 3H), 4.76 (td, J = 10.9, 4.4 Hz, 1H), 4.06 (s, 2H), 4.05 (s, 3H), 2.04 – 1.95 (m, 1H), 1.70 – 1.60 (comp, 2H), 1.54 – 1.40 (m, 1H), 1.40 – 1.27 (comp, 2H), 1.14 – 1.06 (m, 1H), 1.05 – 0.99 (m, 1H), 0.98 – 0.95 (m, 1H), 0.90 – 0.81 (comp, 6H), 0.75 (d, J = 6.9 Hz, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) (δ, ppm) 167.2, 159.2, 144.7, 139.8, 134.4, 132.4, 130.5, 128.64, 128.61, 128.3, 127.6, 127.1, 125.3, 124.3, 123.7, 112.6, 106.4, 97.1, 88.8, 74.9, 56.6, 53.6, 47.2, 41.4, 34.7, 34.3, 31.5, 26.0, 22.1, 20.8, 16.2. HRMS (TOF MS ESI\(^+\)) calculated for C\(_{32}\)H\(_{35}\)N\(_2\)O\(_3\)\([M+H]^+\): 495.2642, found 495.2650.
The preparation of diazo compounds 4a – 4e, related to Scheme 1.

Synthesis of 4a: To a solution of ethyl diazoacetate (EDA, 1.37 g, 12.0 mmol) in CH₃CN (10.0 mL), a solution of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU 1.53 g, 10.0 mmol) and 2-(phenylethynyl)benzaldehyde (2.07 g, 10.0 mmol) in CH₃CN (10.0 mL) were added in sequence at 0 °C under nitrogen atmosphere. After the mixture was stirred at 0 °C for 15 hours, the reaction was quenched with saturated aqueous NaHCO₃ and then extracted with CH₂Cl₂ (3 × 20.0 mL). The combined organic phase was dried over Na₂SO₄ and the solvent was evaporated under vacuum after filtration. The resulting residues was purified by flash column chromatography on silica gel (ethyl acetate/petroleum ether = 1/3) to afford the pure diazoacetate 4a (2.85 g, 89% yield based on 2-(phenylethynyl)benzaldehyde).

The synthesis of other substrate 4g is similar to that of 4a.

Synthesis of 4b: To a solution of diazoacetate 4a (0.32 g, 1.0 mmol) and 4-toluenesulfonyl chloride (TsCl, 0.19 g, 1.0 mmol) in dry CH₂Cl₂ (5.0 mL), and triethylamine (0.12 g, 1.2 mmol) in dry CH₂Cl₂ (1.0 mL) were added in sequence at 0 °C under argon atmosphere. After the mixture was stirred at 0 °C for 15 hours, the reaction was quenched with saturated aqueous NH₄Cl and extracted with CH₂Cl₂ (2 × 5.0 mL). Then the combined organic phase was washed with brine and dried over Na₂SO₄. The solvent was removed in vacuo after filtration, and the resulting residues was purified by flash column chromatography on silica gel (ethyl acetate/petroleum ether = 1/10) to afford the pure diazoacetates 4b (370 mg, 78% yield based on 4a).

The synthesis of other substrates (4c-4e) is similar to that of 4b.

Ethyl 2-diazo-3-hydroxy-3-(2-(phenylethynyl)phenyl)propanoate.

2.85 g, 89% yield. ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.74 (d, J = 7.8 Hz, 1H), 7.62 – 7.50 (comp, 3H), 7.45 – 7.38 (m, 1H), 7.37 – 7.28 (comp, 4H), 6.37 (s, 1H), 4.26 – 4.17 (m, 2H), 3.96 (s, 1H), 1.23 – 1.16 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 166.4, 140.9, 132.3, 131.7, 128.7, 128.5, 128.3, 127.9, 125.6, 122.9, 120.7,
95.6, 86.0, 67.5, 61.1, 14.4. HRMS (TOF MS ESI⁺) calculated for C₁₉H₁₆N₂NaO₃⁺ [M+Na]⁺: 343.1053, found 343.1051.

Ethyl 2-diazo-3-(2-(phenylethynyl)phenyl)-3-(tosyloxy)propanoate.

![Structure 4b]

370.0 mg, 78% yield. ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.80 – 7.67 (m, 1H), 7.65 – 7.55 (m, 1H), 7.54 – 7.48 (m, 1H), 7.47 – 7.33 (comp, 4H), 7.33 – 7.15 (comp, 6H), 6.22 (s, 1H), 4.11 – 4.01 (m, 2H), 2.39 (s, 3H), 1.38 – 1.19 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 139.2, 132.5, 131.8, 129.7, 128.6, 128.5, 128.3, 128.2, 127.2, 126.4, 125.8, 123.0, 121.6, 95.5, 86.0, 73.1, 61.1, 22.3, 14.4. HRMS (TOF MS ESI⁺) calculated for C₂₆H₂₂N₂NaO₅⁺ [M+Na]⁺: 497.1147, found 497.1141.

Ethyl 2-diazo-3-(2-(phenylethynyl)phenyl)-3-((trimethylsilyl)oxy)propanoate.

![Structure 4c]

326.0 mg, 83% yield. ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.68 – 7.62 (m, 1H), 7.62 – 7.53 (comp, 3H), 7.42 – 7.32 (comp, 4H), 7.33 – 7.27 (m, 1H), 6.35 (d, J = 1.6 Hz, 1H), 4.46 – 3.99 (m, 2H), 1.17 (t, J = 7.1 Hz, 3H), 0.19 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 165.6, 142.4, 132.4, 131.8, 128.6, 128.5, 128.4, 127.8, 125.9, 123.1, 120.5, 95.7, 86.2, 68.2, 60.9, 14.5, 0.01. HRMS (TOF MS ESI⁺) calculated for C₂₂H₂₄N₂NaO₃Si⁺ [M+Na]⁺: 415.1448, found 415.1454.

Ethyl 3-acetoxy-2-diazo-3-(2-(phenylethynyl)phenyl)propanoate.

![Structure 4d]

631.0 mg, 87% yield. ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.63 – 7.51 (comp, 3H), 7.49 – 7.44 (m, 1H), 7.41 – 7.29 (comp, 5H), 7.21 (s, 1H), 4.26 – 4.08 (m, 2H), 2.17 (s, 3H), 1.17 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 169.6, 164.7, 138.1, 132.7, 131.8, 128.7, 128.5, 128.4, 128.3, 125.4, 122.8, 121.2, 96.2, 85.8, 70.0, 61.2, 21.0, 14.3. HRMS (TOF MS ESI⁺) calculated for C₂₁H₁₈N₂NaO₄⁺ [M+Na]⁺: 385.1159, found 385.1169.
2-Diazo-3-ethoxy-3-oxo-1-(2-(phenylethynyl)phenyl)propyl 4-methoxybenzoate.

818.0 mg, 90% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)) (δ, ppm) 8.18 – 8.07 (comp, 2H), 7.67 – 7.52 (comp, 4H), 7.43 (s, 1H), 7.40 – 7.29 (comp, 5H), 7.02 – 6.90 (comp, 2H), 4.25 – 4.09 (m, 2H), 3.85 (s, 3H), 1.17 (t, \(J = 7.1\) Hz, 3H); \(^1^3\)C NMR (100 MHz, CDCl\(_3\)) (δ, ppm) 171.2, 165.0, 163.8, 138.5, 132.8, 132.0, 131.9, 128.7, 128.5, 128.4, 128.3, 125.6, 122.9, 122.2, 121.2, 113.8, 96.2, 86.0, 70.4, 61.2, 55.5, 14.2. HRMS (TOF MS ESI\(^+\)) calculated for C\(_{27}\)H\(_{22}\)N\(_2\)NaO\(_5\)\(^+\) [M+Na]\(^+\): 477.1426, found 477.1432.

The preparation of diazo compound 4f, related to Scheme 1.

Synthesis of 4f: To a solution of 2-alkynylbenzaldehyde S-6 (412.5 mg, 2.0 mmol), arylsulfonamide (342.5 mg, 2.0 mmol) and triethylamine (506.0 mg, 5.0 mmol) in dry CH\(_2\)Cl\(_2\) (10.0 mL), was added titanium tetrachloride (455.2 mg, 2.4 mmol) at 0°C under argon atmosphere. The reaction mixture was stirred under these conditions for 12 h, and then quenched with brine. The aqueous phase was extracted with CH\(_2\)Cl\(_2\) (10.0 mL X 2), and the combined organic layers were dried over anhydrous Na\(_2\)SO\(_4\) and concentrated in vacuo after filtration, and the resulting residues was purified by recrystallization (solvents: CH\(_2\)Cl\(_2\)/petroleum ether = 5 : 1) to afford 432.0 mg of S-7 in 60% yield (based on S-6).

To a solution of ethyl diazoacetate (0.14 g, 1.2 mmol) in anhydrous CH\(_3\)CN (1.0 mL), was added a solution of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, 0.15 g, 1.0 mmol) in anhydrous CH\(_3\)CN (1.0 mL) and S-7 (0.36 g, 1.0 mmol) in anhydrous CH\(_3\)CN (1.0 mL) in sequence at 0°C under nitrogen atmosphere. After the mixture was stirred at room temperature for 15 h, the reaction was quenched with saturated aqueous NaHCO\(_3\) and extracted with CH\(_2\)Cl\(_2\) (2 X 5.0 mL). Then the combined organic phase was washed with brine and dried over Na\(_2\)SO\(_4\). The solvent was removed in vacuo after filtration, and the precipitated solid was washed with petroleum ether (6.0 mL X 2). Then the solid was dried under vacuum to give the corresponding diazoacetate 4f.
(407.0 mg, 86% yield based on S-7) without further purification. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 7.82 – 7.79 (comp, 2H), 7.71 – 7.69 (m, 1H), 7.53 – 7.45 (comp, 3H), 7.37 – 7.35 (comp, 2H), 7.30 – 7.27 (comp, 2H), 7.25 – 7.20 (m, 1H), 7.19 – 7.14 (comp, 2H), 6.00 (d, J = 5.6 Hz, 1H), 5.84 (d, J = 7.6 Hz, 1H), 4.05 – 3.98 (m, 2H), 2.32 (s, 3H), 1.34 – 1.31 (m, 3H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 165.4, 143.6, 139.6, 137.0, 132.9, 131.8, 129.8, 129.7, 128.8, 128.5, 128.1, 127.3, 127.0, 126.5, 122.0, 95.9, 86.4, 61.2, 52.6, 21.6, 14.3. HRMS (TOF MS CI$^+$) calculated for C$_{26}$H$_{23}$N$_3$NaO$_4$S$^+$ [M+Na]$^+$: 496.1301, found 496.1311.

The preparation of diazo compounds 14, related to Scheme 1.

To a 50-mL oven-dried flask containing a magnetic stirring bar, 4g (2.38 g, 6.8 mmol, prepared according to the above method for 4a) in CH$_2$Cl$_2$ (20 mL) was added MnO$_2$ (8.88 g, 102.0 mmol) at 25 °C, and the reaction mixture was stirred under this condition for 12 hours. After the reaction was finished, the mixture was filtered through a short pad of silica, then the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography on silica gel (ethyl acetate/petroleum ether = 1/10) to give pure diazoacetate 14 (2.0 g, 85% yield based on 4g). 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 7.53-7.51 (m, 1H), 8.45-8.35 (comp, 5H), 6.89-6.85 (m, 2H), 4.15 (q, J = 7.1 Hz, 2H), 3.80 (s, 3H), 1.09 (t, J = 7.1 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 187.4, 161.1, 160.0, 140.4, 133.1, 131.9, 130.5, 127.9, 127.2, 121.5, 114.8, 114.1, 94.3, 85.5, 61.7, 55.3, 14.0. HRMS (TOF MS ESI$^+$) calculated for C$_{20}$H$_{17}$N$_2$O$_4$ [M+H]$^+$: 349.1183, found 349.1192.
General Procedure for the Preparation of Au(I)-Catalysts, related to Table S1.

(Me_2S)AuCl (294.5 mg, 1.0 equiv) was added to a solution of the corresponding phosphine (1.0 equiv) in CH_2Cl_2 (2.0 mL) under argon at 25 °C and the solution was left stirring for 6 hours. After TLC indicated complete consumption of the starting material, the reaction solution was concentrated under reduced pressure to yield the desired Au(I) complexes (Mauleón et al., 2009; Gorin et al., 2005; Hashmi et al., 2014).

Chloro(triphenyl phosphate)gold(I) (L1AuCl)

\[
\text{(PhO)}_3\text{PAuCl}
\]

^1H NMR (400 MHz, CDCl₃) (δ, ppm) 7.45 – 7.37 (comp, 6H), 7.33 – 7.27 (m, 3H), 7.25 – 7.15 (comp, 6H); ^13C NMR (100 MHz, CDCl₃) (δ, ppm) 149.49 (d, J = 4.5 Hz), 130.58 (d, J = 1.2 Hz), 126.78 (d, J = 1.8 Hz), 121.24 (d, J = 5.7 Hz); ^31P NMR (162 MHz, CDCl₃) (δ, ppm) 110.49.

Chloro[tris(2,4-di-tert-butylphenyl) phosphate]gold(I) (L2AuCl)

\[
\text{H}_{3} \text{PAuCl}
\]

^1H NMR (400 MHz, CDCl₃) (δ, ppm) 7.59 – 7.34 (comp, 6H), 7.19 – 7.03 (m, 3H), 1.45 (s, 27H), 1.30 (s, 27H); ^13C NMR (100 MHz, CDCl₃) (δ, ppm) 148.27 (s), 147.39 (d, J = 5.9 Hz), 139.26 (d, J = 6.9 Hz), 124.89 (d, J = 121.3 Hz), 119.34 (d, J = 8.9 Hz), 35.00 (d, J = 43.1 Hz), 31.10 (d, J = 83.2 Hz). ^31P NMR (162 MHz, CDCl₃) (δ, ppm) 101.26.

Chloro(triphenylphosphine)gold(I) (L3AuCl)

\[
\text{Ph}_3\text{PAuCl}
\]

^1H NMR (400 MHz, CDCl₃) (δ, ppm) 7.63 – 7.39 (comp, 15H); ^13C NMR (150 MHz, CDCl₃) (δ, ppm) 134.25 (d, J = 13.7 Hz), 132.12 (d, J = 1.7 Hz), 129.36 (d, J = 11.9 Hz), 128.81 (d, J = 62.4 Hz); ^31P NMR (162 MHz, CDCl₃) (δ, ppm) 33.77.

Chloro(tri-o-tolylphosphine)gold(I) (L4AuCl)

\[
\text{Me} \text{PAuCl}
\]

^1H NMR (400 MHz, CDCl₃) (δ, ppm) 7.54 – 7.40 (m, 3H), 7.42 – 7.29 (m, 3H), 7.20 (t, J = 7.6 Hz, 3H), 7.05 – 6.77 (m, 3H), 2.68 (s, 9H); ^13C NMR (100 MHz, CDCl₃) δ
143.09 (d, J = 11.8 Hz), 133.65 (d, J = 9.7 Hz), 132.57 (d, J = 9.1 Hz), 132.12 (d, J = 2.4 Hz), 126.85 (d, J = 10.4 Hz), 125.17 (d, J = 61.1 Hz), 23.43 (d, J = 11.2 Hz); 31P NMR (162 MHz, CDCl₃) (δ, ppm) 8.85.

Chloro[tris(4-(trifluoromethyl)phenyl)phosphine]gold(I) (L₅AuCl)

1H NMR (600 MHz, CDCl₃) (δ, ppm) 7.85 – 7.77 (m, 6H), 7.74 – 7.59 (m, 6H); 13C NMR (150 MHz, CDCl₃) (δ, ppm) 134.8 (qd, J = 33, 2.7 Hz, Ar-C(F₃)), 134.7 (d, J = 14.6 Hz, ArCH), 131.8 (d, J = 60.6 Hz, Ar-CP), 126.7 (dq, J = 12.2, 3.5 Hz, Ar-CH), 123.2 (d, J = 271.1 Hz, CF₃); 19F NMR (564 MHz, CDCl₃) (δ, ppm): −63.4 (m); 31P NMR (162 MHz, CDCl₃) (δ, ppm) 33.6.

Chloro[tris(4-methoxyphenyl)phosphine]gold(I) (L₆AuCl)

1H NMR (400 MHz, CDCl₃) (δ, ppm) 7.52 – 7.31 (m, 6H), 7.01 – 6.85 (m, 6H), 3.82 (s, 9H); 13C NMR (150 MHz, CDCl₃) (δ, ppm) 162.42 (s), 135.61 (d, J = 15.3 Hz), 120.41 (d, J = 68.4 Hz), 114.83 (d, J = 13.0 Hz), 55.55 (s); 31P NMR (162 MHz, CDCl₃) (δ, ppm) 29.77.

Chloro[(1,1'-biphenyl)-2-yl)diphenylphosphine]gold(I) (L₇AuCl)

1H NMR (400 MHz, CDCl₃) (δ, ppm) 7.65 – 7.30 (comp, 14H), 7.28 – 7.24 (m, 2H), 7.10 – 6.90 (comp, 3H); 13C NMR (100 MHz, CDCl₃) (δ, ppm) 148.22 (d, J = 15.0 Hz), 140.06 (d, J = 6.7 Hz), 134.58 (d, J = 14.0 Hz), 133.79 (d, J = 6.7 Hz), 132.12 (d, J = 8.2 Hz), 131.88 (d, J = 2.3 Hz), 131.53 (d, J = 2.2 Hz), 129.94 (d, J = 62.1 Hz), 129.82, 129.26 (d, J = 12.0 Hz), 128.58, 128.54, 127.66 (d, J = 8.9 Hz), 127.658 (d, J = 61.5 Hz); 31P NMR (162 MHz, CDCl₃) (δ, ppm) 60.51.

dppm(AuCl)₂ (L₈(AuCl)₂)

1H NMR (600 MHz, CDCl₃) (δ, ppm) 7.85 – 7.77 (m, 6H), 7.74 – 7.59 (m, 6H); 13C NMR (150 MHz, CDCl₃) (δ, ppm) 134.8 (qd, J = 33, 2.7 Hz, Ar-C(F₃)), 134.7 (d, J = 14.6 Hz, ArCH), 131.8 (d, J = 60.6 Hz, Ar-CP), 126.7 (dq, J = 12.2, 3.5 Hz, Ar-CH), 123.2 (d, J = 271.1 Hz, CF₃); 19F NMR (564 MHz, CDCl₃) (δ, ppm): −63.4 (m); 31P NMR (162 MHz, CDCl₃) (δ, ppm) 33.6.
Chloro((methyldiphenylphosphine)gold(I)) (L9AuCl)

![Diagram of Chloro((methyldiphenylphosphine)gold(I))](image)

1H NMR (600 MHz, DMSO-d6) (δ, ppm)

7.80 – 7.73 (m, 8H), 7.51 (t, J = 7.4 Hz, 4H), 7.47 – 7.40 (m, 8H), 4.67 (t, J = 12.8 Hz, 2H); **13C NMR (150 MHz, DMSO-d6) (δ, ppm)**

133.36 (t, J = 7.0 Hz), 132.16 (s), 129.16 (t, J = 5.9 Hz), 128.76 (d, J = 33.3 Hz), 24.55 (t, J = 33.5 Hz); **31P NMR (162 MHz, CDCl3) (δ)**

24.61.

1,1'-Bis(di-tert-butylphosphinof)ferrocene-(AuCl)2 (L10(AuCl2))

![Diagram of 1,1'-Bis(di-tert-butylphosphinof)ferrocene-(AuCl)2](image)

1H NMR (600 MHz, CDCl3) (δ, ppm)

7.66 – 7.58 (m, 4H), 7.55 – 7.48 (m, 2H), 7.48 – 7.44 (m, 4H), 2.13 (d, J = 10.4 Hz, 3H); **13C NMR (150 MHz, CDCl3) (δ, ppm)**

132.80 (d, J = 13.4 Hz), 132.09 (d, J = 2.6 Hz), 130.50 (d, J = 62.3 Hz), 129.41 (d, J = 11.7 Hz), 14.90 (d, J = 39.9 Hz); **31P NMR (162 MHz, CDCl3) (δ, ppm)**

17.44.

Chloro[(1,1'-biphenyl)-2-yldicyclohexylphosphine]gold(I) (L11AuCl)

![Diagram of Chloro[(1,1'-biphenyl)-2-yldicyclohexylphosphine]gold(I)](image)

1H NMR (400 MHz, CDCl3) (δ, ppm)

7.81 – 7.65 (m, 1H), 7.64 – 7.37 (m, 5H), 7.35 – 7.27 (m, 1H), 7.23 – 7.07 (m, 2H), 2.17 – 1.90 (m, 4H), 1.87 – 1.71 (m, 4H), 1.68 – 1.55 (m, 4H), 1.51 – 1.39 (m, 2H), 1.35 – 1.11 (m, 8H); **13C NMR (150 MHz, CDCl3) (δ, ppm)**

148.97 (d, J = 10.5 Hz), 141.45 (d, J = 5.2 Hz), 134.32 (d, J = 7.3 Hz), 132.55 (d, J = 7.4 Hz), 130.82 (s), 129.02 (d, J = 94.3 Hz), 128.41 (s), 127.57 (d, J = 8.9 Hz), 124.91 (d, J = 51.6 Hz), 36.66 (d, J = 33.6 Hz), 31.26 (d, J = 3.7 Hz), 29.51 (s), 26.563 (s), 26.556 (d, J = 26.0 Hz), 25.69 (s); **31P NMR (162 MHz, CDCl3) (δ, ppm)**

44.51.
Chloro[1,1'-biphenyl]-2-ylid-tert-butylphosphine]gold(I) (L12AuCl)

![Structure](image)

^1H NMR (400 MHz, CDCl₃) (δ, ppm) 7.89 – 7.82 (m, 1H), 7.59 – 7.54 (m, 1H), 7.54 – 7.46 (m, 2H), 7.45 – 7.39 (m, 2H), 7.33 – 7.28 (m, 1H), 7.16 – 7.10 (m, 2H), 1.41 (d, J = 15.6 Hz, 18H); ^13C NMR (100 MHz, CDCl₃) (δ, ppm) 150.30 (d, J = 13.5 Hz), 142.25 (d, J = 6.5 Hz), 133.62 (d, J = 2.7 Hz), 133.37 (d, J = 7.4 Hz), 130.68 (d, J = 2.3 Hz), 129.07 (d, J = 52.4 Hz), 128.35 (s), 126.84 (d, J = 6.7 Hz), 126.21 (d, J = 45.5 Hz), 37.91 (d, J = 25.9 Hz), 31.00 (d, J = 6.7 Hz); ^31P NMR (162 MHz, CDCl₃) (δ, ppm) 26.74.

Chloro[4-(di-tert-butylphosphaneyl)-N, N-dimethylaniline]gold(I) (L13AuCl)

![Structure](image)

^1H NMR (600 MHz, CDCl₃) (δ, ppm) 7.77 – 7.76 (m, 2H), 6.70 (d, J = 8.0 Hz, 2H), 3.02 (s, 6H), 1.37 (d, J = 15.4 Hz, 18H); ^13C NMR (150 MHz, CDCl₃) (δ, ppm) 152.26 (s), 138.29 (s), 111.83 (s), 111.44 (d, J = 11.5 Hz), 40.06 (s), 36.64 (d, J = 28.0 Hz), 30.37 (d, J = 5.9 Hz); ^31P NMR (162 MHz, CDCl₃) (δ, ppm) 76.69.

Chloro[di-tert-butyl(phenyl)phosphane]gold(I) (L14AuCl)

![Structure](image)

^1H NMR (400 MHz, CDCl₃) (δ, ppm) 8.12 – 7.82 (m, 2H), 7.62 – 7.51 (m, 1H), 7.50 – 7.37 (m, 2H), 1.40 (d, J = 15.6 Hz, 18H); ^13C NMR (100 MHz, CDCl₃) (δ, ppm) 136.37 (s), 131.94 (d, J = 2.3 Hz), 128.59 (d, J = 10.7 Hz), 127.67 (d, J = 47.6 Hz), 36.43 (d, J = 26.2 Hz), 30.22 (d, J = 5.9 Hz); ^31P NMR (162 MHz, CDCl₃) (δ, ppm) 79.65.

Chloro[1-(di-tert-butylphosphaneyl)-2-phenyl-1H-pyrrole]gold(I) (L15AuCl)

![Structure](image)
\(^1\)H NMR (400 MHz, CDCl\(_3\)) (\(\delta\), ppm) 7.62 (t, \(J = 7.5\) Hz, 1H), 7.56 – 7.41 (m, 2H), 7.24 – 7.10 (m, 2H), 7.08 – 6.97 (m, 1H), 6.87 (d, \(J = 3.9\) Hz, 1H), 6.49 – 6.31 (m, 1H), 1.35 (d, \(J = 16.1\) Hz, 18H);

\(^1\)H NMR (400 MHz, CDCl\(_3\)) (\(\delta\), ppm) 8.01 – 7.79 (m, 1H), 7.62 – 7.40 (m, 3H), 7.37 – 7.28 (m, 1H), 7.27 – 7.17 (m, 2H), 7.07 – 6.76 (m, 1H), 2.03 (s, 3H), 1.43 (dd, \(J = 15.5, 9.7\) Hz, 18H);

\(^1\)C NMR (150 MHz, CDCl\(_3\)) (\(\delta\), ppm) 149.68 (d, \(J = 13.8\) Hz), 141.28 (d, \(J = 6.3\) Hz), 135.50 (s), 133.95 (d, \(J = 2.2\) Hz), 133.41 (d, \(J = 7.6\) Hz), 131.31 (s), 130.99 (s), 130.24 (s), 128.70 (s), 127.03 (s), 126.74 (d, \(J = 6.6\) Hz), 125.43 (s), 38.01 (dd, \(J = 26.0, 14.0\) Hz), 31.18 (dd, \(J = 122.0, 6.5\) Hz), 20.81 (s);

\(^3\)P NMR (162 MHz, CDCl\(_3\)) (\(\delta\), ppm) 60.40.

Chloro(di-tert-butyl(1,1-diphenylprop-1-en-2-yl)phosphine)gold(I) (L16AuCl)

\(\text{Ph} \quad \text{Me} \quad \text{P}-\text{AuCl} \quad \text{Bu} \quad \text{Bu} \)

\(^1\)H NMR (600 MHz, CDCl\(_3\)) (\(\delta\), ppm) 7.46 – 7.39 (m, 1H), 7.39 – 7.26 (comp, 4H), 7.24 – 7.20 (m, 1H), 7.17 – 7.00 (comp, 4H), 2.07 (d, \(J = 7.5\) Hz, 3H), 1.51 (d, \(J = 15.3\) Hz, 18H);

\(^1\)C NMR (150 MHz, CDCl\(_3\)) (\(\delta\), ppm) 162.32 (d, \(J = 13.9\) Hz), 143.59 (d, \(J = 11.9\) Hz), 142.49 (d, \(J = 9.9\) Hz), 129.22 (d, \(J = 46.0\) Hz), 127.73 (d, \(J = 100.5\) Hz) 127.42 (d, \(J = 177.3\) Hz), 123.27 (d, \(J = 38.8\) Hz), 37.66 (d, \(J = 25.7\) Hz), 31.46 (d, \(J = 6.6\) Hz), 22.01 (d, \(J = 2.9\) Hz);

\(^3\)P NMR (162 MHz, CDCl\(_3\)) (\(\delta\), ppm) 66.93.

Chloro(di-tert-butyl(2'-methyl-[1,1'-biphenyl]-2-yl)phosphine)gold(I) (L17AuCl)

\(\text{Ph} \quad \text{Me} \quad \text{P}-\text{AuCl} \quad \text{Bu} \quad \text{Bu} \)

\(^1\)H NMR (400 MHz, CDCl\(_3\)) (\(\delta\), ppm) 8.01 – 7.79 (m, 1H), 7.62 – 7.40 (m, 3H), 7.37 – 7.28 (m, 1H), 7.27 – 7.17 (m, 2H), 7.07 – 6.76 (m, 1H), 2.03 (s, 3H), 1.43 (dd, \(J = 15.5, 9.7\) Hz, 18H);

\(^1\)C NMR (150 MHz, CDCl\(_3\)) (\(\delta\), ppm) 149.68 (d, \(J = 13.8\) Hz), 141.28 (d, \(J = 6.3\) Hz), 135.50 (s), 133.95 (d, \(J = 2.2\) Hz), 133.41 (d, \(J = 7.6\) Hz), 131.31 (s), 130.99 (s), 130.24 (s), 128.70 (s), 127.03 (s), 126.74 (d, \(J = 6.6\) Hz), 125.43 (s), 38.01 (dd, \(J = 26.0, 14.0\) Hz), 31.18 (dd, \(J = 122.0, 6.5\) Hz), 20.81 (s);

\(^3\)P NMR (162 MHz, CDCl\(_3\)) (\(\delta\), ppm) 60.40.

Chloro[2'-(di-tert-butylphosphaneylel)-N,N-dimethyl-[1,1'-biphenyl]-2-amine]gold(I) (L18AuCl)

\(\text{(H}_3\text{C})_2\text{N} \quad \text{Ph} \quad \text{Me} \quad \text{P}-\text{AuCl} \quad \text{Bu} \quad \text{Bu} \)

\(^1\)H NMR (400 MHz, CDCl\(_3\)) (\(\delta\), ppm) 8.01 – 7.79 (m, 1H), 7.62 – 7.40 (m, 3H), 7.37 – 7.28 (m, 1H), 7.27 – 7.17 (m, 2H), 7.07 – 6.76 (m, 1H), 2.03 (s, 3H), 1.43 (dd, \(J = 15.5, 9.7\) Hz, 18H);

\(^1\)C NMR (150 MHz, CDCl\(_3\)) (\(\delta\), ppm) 149.68 (d, \(J = 13.8\) Hz), 141.28 (d, \(J = 6.3\) Hz), 135.50 (s), 133.95 (d, \(J = 2.2\) Hz), 133.41 (d, \(J = 7.6\) Hz), 131.31 (s), 130.99 (s), 130.24 (s), 128.70 (s), 127.03 (s), 126.74 (d, \(J = 6.6\) Hz), 125.43 (s), 38.01 (dd, \(J = 26.0, 14.0\) Hz), 31.18 (dd, \(J = 122.0, 6.5\) Hz), 20.81 (s);

\(^3\)P NMR (162 MHz, CDCl\(_3\)) (\(\delta\), ppm) 60.40.
\(^1\)H NMR (600 MHz, CDCl\(_3\)) (\(\delta\), ppm) 7.89 – 7.82 (m, 1H), 7.59 – 7.49 (comp, 2H), 7.48 – 7.42 (m, 1H), 7.37 – 7.31 (m, 1H), 7.13 (d, \(J = 8.1\) Hz, 1H), 7.07 (t, \(J = 7.3\) Hz, 1H), 6.96 (d, \(J = 7.3\) Hz, 1H), 2.46 (s, 6H), 1.53 (d, \(J = 15.6\) Hz, 9H), 1.25 (d, \(J = 15.3\) Hz, 9H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)) (\(\delta\), ppm) 151.23 (s), 149.24 (d, \(J = 13.3\) Hz), 136.37 (d, \(J = 5.5\) Hz), 134.52 (d, \(J = 7.8\) Hz), 133.94 (s), 131.13 (d, \(J = 76.3\) Hz), 129.43 (s), 127.10 (d, \(J = 46.2\) Hz), 126.37 (d, \(J = 5.9\) Hz), 122.44 (s), 121.18 (s), 44.05 (s), 38.14 (d, \(J = 26.1\) Hz), 37.65 (d, \(J = 25.8\) Hz), 31.70 (d, \(J = 6.8\) Hz), 30.34 (d, \(J = 6.3\) Hz); \(^{31}\)P NMR (162 MHz, CDCl\(_3\)) (\(\delta\), ppm) 62.01.

Chloro[(1,1'-binaphthalen)-2-yldi-tert-butylphosphine]gold(I) (L19AuCl)

![Diagram](image)

\(^1\)H NMR (400 MHz, CDCl\(_3\)) (\(\delta\), ppm) 8.23 (d, \(J = 8.3\) Hz, 1H), 8.11 – 7.97 (comp, 3H), 7.93 (d, \(J = 8.1\) Hz, 1H), 7.62 – 7.51 (comp, 2H), 7.50 – 7.42 (m, 1H), 7.36 – 7.30 (m, 1H), 7.26 – 7.18 (comp, 2H), 7.03 – 6.86 (comp, 2H), 1.44 (dd, \(J = 15.5\), 11.5 Hz, 18H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) (\(\delta\), ppm) 147.90 (d, \(J = 13.2\) Hz), 136.26 (d, \(J = 7.9\) Hz), 134.69 (d, \(J = 9.0\) Hz), 134.13 (d, \(J = 1.9\) Hz), 133.56 (s), 129.44 (d, \(J = 13.0\) Hz), 128.87 (d, \(J = 3.3\) Hz), 128.65 (d, \(J = 1.0\) Hz), 127.44 (d, \(J = 7.1\) Hz), 124.98 (s), 38.16 (dd, \(J = 25.3\), 22.9 Hz), 31.38 (dd, \(J = 89.8\), 6.8 Hz); \(^{31}\)P NMR (162 MHz, CDCl\(_3\)) (\(\delta\), ppm) 62.51.

Chloro[di-tert-butyl(2',4',6'-triisopropyl-[1,1'-biphenyl]-2-yl)phosphine]gold(I) (L20AuCl)

![Diagram](image)

\(^1\)H NMR (400 MHz, CDCl\(_3\)) (\(\delta\), ppm) 7.93 – 7.82 (m, 1H), 7.57 – 7.43 (comp, 2H), 7.36 – 7.28 (m, 1H), 7.06 (s, 2H), 2.98 (dt, \(J = 13.8\), 6.9 Hz, 1H), 2.33 (dt, \(J = 13.4\), 6.7 Hz, 2H), 1.41 (d, \(J = 15.4\) Hz, 18H), 1.37 (d, \(J = 6.9\) Hz, 6H), 1.28 (d, \(J = 6.8\) Hz, 6H), 0.91 (d, \(J = 6.6\) Hz, 6H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) (\(\delta\), ppm) 150.21 (s), 148.65 (d, \(J = 14.3\) Hz), 145.77 (s), 135.61 (d, \(J = 5.6\) Hz), 135.03 (d, \(J = 8.0\) Hz), 134.53 (d, \(J = 3.1\) Hz), 130.29 (d, \(J = 2.3\) Hz), 128.43 (d, \(J = 43.1\) Hz), 126.48 (d, \(J = 7.0\) Hz), 121.94 (s), 38.43 (d, \(J = 26.4\) Hz), 34.31 (s), 31.39 (d, \(J = 6.5\) Hz), 30.94 (s), 26.29 (s), 24.46 (s), 23.11 (s); \(^{31}\)P NMR (162 MHz, CDCl\(_3\)) (\(\delta\), ppm) 59.17.
Chloro(di-tert-butyl(2',4',6'-triisopropyl-3,4,5,6-tetramethyl-[1,1'-biphenyl]-2-yl)phosphine)gold(I) (L21AuCl)

\[\text{Me} \quad \text{Bu} \quad \text{P} \quad \text{Au} \quad \text{Cl} \]

1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 7.04 (s, 2H), 3.03 – 2.94 (m, 1H), 2.61 (s, 3H), 2.41 – 2.34 (m, 2H), 2.30 (s, 3H), 2.23 (s, 3H), 1.57 – 1.45 (comp, 21H), 1.38 (d, J = 6.9 Hz, 6H), 1.29 (d, J = 6.8 Hz, 6H), 0.85 (d, J = 6.6 Hz, 6H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 150.38 (s), 146.31 (d, J = 20.4 Hz), 145.88 (s), 140.34 (d, J = 2.5 Hz), 138.17 (d, J = 3.4 Hz), 137.78 (d, J = 1.4 Hz), 137.69 (d, J = 2.7 Hz), 135.66 (d, J = 7.1 Hz), 128.32 (d, J = 35.6 Hz), 122.68 (s), 41.98 (d, J = 20.5 Hz), 34.36 (s), 33.58 (d, J = 8.3 Hz), 30.80 (s), 28.12 (d, J = 1.6 Hz), 25.31 (s), 25.17 (s), 24.76 (s), 22.33 (d, J = 2.7 Hz), 17.65 (d, J = 47.4 Hz); 31P NMR (162 MHz, CDCl$_3$) (δ, ppm) 77.67.

Chloro[3-(di-tert-butylphosphaneyl)-1-phenyl-1H-indole]gold(I) (L22AuCl)

\[\text{Me} \quad \text{Ph} \quad \text{P} \quad \text{Au} \quad \text{Cl} \]

1H NMR (600 MHz, CDCl$_3$) (δ, ppm) 7.77 – 7.69 (comp, 2H), 7.63 – 7.57 (comp, 2H), 7.26 – 7.25 (m, 1H), 7.25 – 7.19 (comp, 4H), 6.90 – 6.85 (m, 1H), 1.44 (d, J = 16.3 Hz, 18H); 13C NMR (150 MHz, CDCl$_3$) (δ, ppm) 141.65 (d, J = 4.7 Hz), 137.83 (s), 130.42 (s), 130.24 (s), 130.04 (s), 126.52 (d, J = 7.6 Hz), 126.15 (d, J = 58.0 Hz), 124.65 (s), 121.34 (d, J = 34.8 Hz), 113.56 (d, J = 4.6 Hz), 111.98 (s), 38.08 (d, J = 29.4 Hz), 30.37 (d, J = 6.5 Hz); 31P NMR (162 MHz, CDCl$_3$) (δ, ppm) 48.86.

Chloro[3-(di-tert-butylphosphaneyl)-1-phenyl-1H-indole]gold(I) (L23AuCl)

\[\text{Cy} \quad \text{Cy} \quad \text{P} \quad \text{Au} \quad \text{Cl} \]

1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 7.93 – 7.78 (m, 1H), 7.66 (d, J = 7.8 Hz, 1H), 7.62 – 7.49 (m, 2H), 7.47 – 7.33 (comp, 2H), 7.34 – 7.26 (m, 1H), 7.24 – 7.13 (m, 1H), 6.68 – 6.20 (m, 1H), 3.50 (s, 3H), 2.50 – 2.19 (m, 1H), 2.02 – 1.88 (m, 2H), 1.88 –
1.49 (m, 10H), 1.41 – 1.09 (m, 9H). 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 139.33 (d, $J = 9.9$ Hz), 137.49 (s), 137.41 (d, $J = 5.6$ Hz), 135.14 (d, $J = 9.1$ Hz), 134.05 (d, $J = 7.0$ Hz), 130.88 (d, $J = 2.2$ Hz), 128.90 (d, $J = 9.0$ Hz), 127.54 (s), 122.46 (s), 120.72 (s), 120.37 (s), 104.97 (s), 37.02 (d, $J = 32.9$ Hz), 35.82 (d, $J = 33.9$ Hz), 31.82 (d, $J = 5.6$ Hz), 30.96 (s), 30.25 (d, $J = 2.0$ Hz), 29.75 (d, $J = 2.9$ Hz), 26.73 (dd, $J = 12.4, 7.5$ Hz), 26.45 (dd, $J = 12.4, 7.5$ Hz), 25.68 (s). 31P NMR (162 MHz, CDCl$_3$) (δ, ppm) 46.55.

Chloro[S-dimethylene-[7,7’-(1,1’-spiroindan)]-phenylphospholine]gold(I)

(L24AuCl)

1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 7.53 – 7.45 (m, 1H), 7.38 – 7.27 (comp, 4H), 7.26 – 7.22 (m, 1H), 7.21 – 7.11 (comp, 3H), 6.85 (t, $J = 7.5$ Hz, 1H), 5.94 (d, $J = 7.6$ Hz, 1H), 3.76 (dd, $J = 16.0, 12.9$ Hz, 1H), 3.50 (dd, $J = 14.5, 8.6$ Hz, 1H), 3.12 – 2.98 (comp, 3H), 2.98 – 2.84 (comp, 3H), 2.32 (dd, $J = 12.4, 6.4$ Hz, 1H), 2.24 (dd, $J = 12.4, 6.5$ Hz, 1H), 2.06 – 1.94 (m, 1H), 1.94 – 1.83 (m, 1H); 13C NMR (151 MHz, CDCl$_3$) (δ, ppm) 147.94 (d, $J = 4.6$ Hz), 147.71 (d, $J = 5.3$ Hz), 143.98 (d, $J = 3.6$ Hz), 143.80 (d, $J = 3.1$ Hz), 133.73 (d, $J = 12.6$ Hz), 132.38 (d, $J = 2.5$ Hz), 130.69 (d, $J = 6.2$ Hz), 129.89 (d, $J = 4.6$ Hz), 128.84 (d, $J = 3.8$ Hz), 128.56 (d, $J = 11.1$ Hz), 127.21 (d, $J = 4.3$ Hz), 127.07 (d, $J = 2.9$ Hz), 126.73 (s), 125.64 (d, $J = 11.4$ Hz), 124.96 (d, $J = 4.1$ Hz), 124.69 (d, $J = 3.5$ Hz), 61.78 (d, $J = 2.1$ Hz), 38.21 (d, $J = 42.4$ Hz), 31.75 (d, $J = 28.4$ Hz), 30.48 (d, $J = 23.2$ Hz), 26.21 (d, $J = 34.8$ Hz); 31P NMR (162 MHz, CDCl$_3$) (δ, ppm) 27.00.

Chloro[di-tert-butyl(1-methyl-2,2-diphenylcyclopropyl)phosphine]gold(I)

(L25AuCl)

1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 7.56 – 7.45 (m, 2H), 7.45 – 7.37 (m, 2H), 7.32 – 7.24 (m, 5H), 7.21 – 7.14 (m, 1H), 2.45 (dd, $J = 15.3, 5.3$ Hz, 1H), 1.67 – 1.49 (m, 19H), 1.42 (d, $J = 7.7$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 143.21 (s), 141.37 (d, $J = 5.9$ Hz), 130.47 (s), 129.65 (d, $J = 1.6$ Hz), 129.34 (s), 128.84 (s), 127.72 (s), 126.87 (s), 42.40 (s), 39.51 (dd, $J = 309.9, 25.3$ Hz), 32.22 (dd, $J = 97.0, 5.1$ Hz), 27.40 (s), 25.37 (d, $J = 35.8$ Hz), 24.26 (s); 31P NMR (162 MHz, CDCl$_3$) (δ, ppm) 77.64.
Chloro[tri-tert-butylphosphine]gold(I) (L26AuCl)

\[(^3\text{Bu})_3\text{PAuCl} \]

^1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 1.52 (d, $J = 13.9$ Hz, 27H); ^{13}C NMR (100 MHz, CDCl$_3$) (δ, ppm) 39.61 (d, $J = 20.9$ Hz), 32.38 (d, $J = 4.0$ Hz); ^{31}P NMR (162 MHz, CDCl$_3$) (δ, ppm) 91.18.

Chloro[di-tert-butyl(methyl)phosphine]gold(I) (L27AuCl)

\[
\begin{align*}
&\text{Bu}^t \\
&\text{Me}
\end{align*}
\]

^1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 1.49 (d, $J = 9.3$ Hz, 3H), 1.33 (d, $J = 15.2$ Hz, 18H); ^{13}C NMR (101 MHz, CDCl$_3$) (δ, ppm) 34.48 (d, $J = 29.6$ Hz), 29.16 (d, $J = 5.2$ Hz), 5.77 (d, $J = 31.6$ Hz); ^{31}P NMR (162 MHz, CDCl$_3$) (δ, ppm) 58.18.

Chloro(tricyclohexylphosphine)gold(I) (L28AuCl)

\[\text{Cy}_3\text{PAuCl}\]

^1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 2.04 – 1.90 (m, 9H), 1.90 – 1.78 (m, 6H), 1.75 – 1.67 (m, 3H), 1.52 – 1.38 (m, 6H), 1.36 – 1.18 (m, 9H); ^{13}C NMR (101 MHz, CDCl$_3$) (δ, ppm) 33.44 (d, $J = 31.0$ Hz), 30.89 (s), 27.10 (d, $J = 12.2$ Hz), 25.94 (d, $J = 1.2$ Hz); ^{31}P NMR (162 MHz, CDCl$_3$) (δ, ppm) 54.65.

Chloro(trimethylphosphine)gold(I) (L29AuCl)

\[(\text{CH}_3)_3\text{PAuCl}\]

^1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 1.62 (d, $J = 11.3$ Hz, 9H); ^{13}C NMR (100 MHz, CDCl$_3$) (δ, ppm) 16.25 (d, $J = 40.3$ Hz); ^{31}P NMR (162 MHz, CDCl$_3$) (δ, ppm) -9.80.
General Procedure for the Optimization of Ligands, related to Table S2.

The LnAuCl complex (0.01 mmol) and AgSbF$_6$ (3.34mg, 0.01 mmol) were suspended in DCE (0.5 mL). The reaction was stirred at room temperature for 2.0 hours. The solvent was evaporated and the mixture dissolved in 0.5 mL of DCE. Then the mixture was filtered through a pad of Celite, which was added into a solution of 1a (58mg, 0.2mmol) in DCE (0.5 mL) at 25 °C for 12.0 hours. Afterwards, 1,3,5-trimethoxybenzene (16.8 mg, 0.1mmol) was added into the reaction mixture, and yield determined by proton 1H NMR using 1,3,5-trimethoxybenzene as the internal standard. E.g., “L1, 0%; 89%” is equal to “L1AuCl, 0% 2a; 89% 3a”.

General Procedure for the Gold-Catalyzed Aromatization, related to Scheme1

Method A

A solution of diazoacetate 1 or 4 (0.2 mmol) in 1,2-dichloroethane (2.0 mL) was added over 5 min to a 10-mL oven-dried flask containing a magnetic stirring bar, and JohnphosAu(CH$_3$CN)SbF$_6$ (7.7 mg, 0.01 mmol, 5.0 mol %) in dry 1,2-dichloroethane (2.0 mL) using a syringe at room temperature under argon atmosphere. After the addition, the reaction mixture was stirred at 25 °C for 12 hours. Then, the solvent was removed under reduced pressure and the crude product was purified by column chromatography on a silica gel (solvents: ethyl acetate/petroleum ether = 1/10) to afford the pure naphthalene derivatives 2 or 5 in 62%-94% yields.

(The experimental procedure for the synthesis of 6 is same to that mentioned above in Method A, related to Figure 2A.)

Method B

A solution of diazoacetate 14 (69.6 mg, 0.2 mmol) in dry 1,2-dichloroethane (2.0 mL) was added over 5 min to a 10-mL oven-dried flask containing a magnetic stirring bar, JohnphosAu (CH$_3$CN)SbF$_6$ (7.7 mg, 0.01 mmol, 5.0 mol %), and nucleophiles (0.3 mmol, 1.5 equiv) in dry 1,2-dichloroethane (2.0 mL) using a syringe at room temperature under argon atmosphere. After the addition, the reaction mixture was stirred at 60 °C for 3 hours (performed for 12 h in the case of 15i). Then, the solvent was removed under reduced pressure and the crude product was purified by column chromatography on a silica gel (solvents: ethyl acetate/petroleum ether = 1/10 to 1/5) to afford the pure products 15 in 53%-94% yields.
Methyl 3-phenyl-2-naphthoate.

![Structure 2a]

47.7 mg, 91% yield. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 8.41 (s, 1H), 7.95 (d, $J = 8.0$ Hz, 1H), 7.87 (d, $J = 8.1$ Hz, 1H), 7.83 (s, 1H), 7.63 – 7.52 (comp, 2H), 7.48 – 7.35 (comp, 5H), 3.71 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 169.1, 141.6, 138.9, 134.5, 131.7, 131.1, 129.9, 129.2, 128.7, 128.6, 128.4, 128.2, 127.9, 127.2, 126.9, 52.2. HRMS (TOF MS ESI$^+$) calculated for C$_{18}$H$_{14}$NaO$_2^+$[M+Na]$^+$: 285.0886, found 285.0881.

Isopropyl 3-phenyl-2-naphthoate.

![Structure 2b]

52.8 mg, 91% yield. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 8.38 (s, 1H), 7.96 (d, $J = 7.9$ Hz, 1H), 7.87 (d, $J = 8.0$ Hz, 1H), 7.82 (s, 1H), 7.61 – 7.52 (comp, 2H), 7.44 – 7.34 (comp, 5H), 5.05 (dt, $J = 12.5$, 6.3 Hz, 1H), 1.07 (d, $J = 6.3$ Hz, 6H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 168.5, 141.7, 138.8, 134.3, 131.7, 130.7, 130.3, 129.7, 128.8, 128.6, 128.2, 128.1, 127.9, 127.1, 126.8, 68.8, 21.5. HRMS (TOF MS Cl$^+$) calculated for C$_{20}$H$_{18}$NaO$_2^+$[M+Na]$^+$: 313.1199, found 313.1215.

tert-Butyl 3-phenyl-2-naphthoate.

![Structure 2c]

54.8 mg, 90% yield. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 8.35 (s, 1H), 7.95 (d, $J = 7.8$ Hz, 1H), 7.86 (d, $J = 7.9$ Hz, 1H), 7.79 (s, 1H), 7.61 – 7.51 (m, 2H), 7.46 – 7.35 (m, 5H), 1.29 (s, 9H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 168.2, 142.2, 138.8, 134.2, 131.8, 131.5, 130.6, 129.6, 128.9, 128.6, 128.1, 128.0, 127.9, 127.0, 126.7, 81.5, 27.7. HRMS (TOF MS ESI$^+$) calculated for C$_{21}$H$_{20}$NaO$_2^+$[M+Na]$^+$: 327.1356, found 327.1351.
Benzyl 3-phenyl-2-naphthoate.

![Chemical Structure](image)

60.2 mg, 89% yield. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 8.44 (s, 1H), 7.95 (d, $J = 8.0$ Hz, 1H), 7.87 (d, $J = 8.1$ Hz, 1H), 7.84 (s, 1H), 7.62 – 7.58 (m, 1H), 7.57 – 7.53 (m, 1H), 7.44 – 7.36 (comp, 5H), 7.33 – 7.28 (comp, 3H), 7.20 – 6.97 (comp, 2H), 5.17 (s, 2H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 168.7, 141.6, 138.8, 135.5, 134.5, 131.70, 131.65, 131.2, 129.9, 129.3, 128.71, 128.70, 128.5, 128.4, 128.3, 128.2, 127.9, 127.2, 126.8 67.2. HRMS (TOF MS ESI$^+$) calculated for C$_{24}$H$_{18}$NaO$_2$ $^{[M+Na]}$: 361.1199, found 361.1194.

Cinnamyl 3-phenyl-2-naphthoate.

![Chemical Structure](image)

67.1 mg, 92% yield. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 8.45 (s, 1H), 7.96 (d, $J = 8.1$ Hz, 1H), 7.88 (d, $J = 8.1$ Hz, 1H), 7.84 (s, 1H), 7.63 – 7.58 (m, 1H), 7.58 – 7.53 (m, 1H), 7.47 – 7.38 (comp, 4H), 7.37 – 7.32 (comp, 5H), 7.30 – 7.26 (m, 1H), 6.52 – 6.42 (m, 1H), 6.07 – 5.95 (m, 1H), 4.77 (dd, $J = 6.4$, 1.3 Hz, 2H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 168.6, 141.7, 138.9, 136.4, 134.5, 134.2, 131.7, 131.2, 129.9, 129.4, 128.8, 128.74, 128.4, 128.2, 128.1, 127.9, 126.7, 122.9 65.7 HRMS (TOF MS ESI$^+$) calculated for C$_{26}$H$_{20}$NaO$_2$ $^{[M+Na]}$: 387.1356, found 387.1370.

Methyl 3-(p-tolyl)-2-naphthoate.

![Chemical Structure](image)

49.8 mg, 90% yield. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 8.37 (s, 1H), 7.92 (d, $J = 8.0$ Hz, 1H), 7.80 (s, 1H), 7.59 – 7.49 (comp, 2H), 7.32 – 7.28 (comp, 2H), 7.26 – 7.21 (comp, 2H), 3.72 (s, 3H), 2.41 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 169.2, 138.9, 138.6, 136.9, 134.5, 131.6, 131.0, 129.8, 129.2, 128.9, 128.6, 128.5, 128.3, 127.9, 126.7, 52.2, 21.3. HRMS (TOF MS ESI$^+$) calculated for C$_{19}$H$_{16}$NaO$_2$ $^{[M+Na]}$: 299.1043, found 299.1044.
Methyl 3-(m-tolyl)-2-naphthoate.

49.2 mg, 89% yield. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 8.38 (s, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.87 (d, J = 8.1 Hz, 1H), 7.83 (s, 1H), 7.62 – 7.50 (comp, 2H), 7.37 – 7.29 (m, 1H), 7.28 – 7.23 (m, 1H), 7.23 – 7.15 (comp, 2H), 3.72 (s, 3H), 2.43 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 169.3, 141.5, 139.0, 137.8, 134.5, 131.7, 131.0, 129.8, 129.34, 129.28, 128.7, 128.3, 128.03, 128.01, 127.9, 126.8, 125.8, 52.2, 21.6. HRMS (TOF MS ESI$^+$) calculated for C$_{19}$H$_{16}$NaO$_2$ $^+$ [M+Na$^+$]: 299.1043, found 299.1049.

Methyl 3-(o-tolyl)-2-naphthoate.

44.8 mg, 81% yield. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 8.56 (s, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.71 (s, 1H), 7.66 – 7.50 (comp, 2H), 7.35 – 7.23 (comp, 3H), 7.19 (d, J = 7.2 Hz, 1H), 3.69 (s, 3H), 2.11 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 167.9, 141.7, 139.1, 135.8, 134.7, 131.7, 131.4, 130.0, 129.5, 129.0, 128.9, 128.7, 128.5, 127.8, 127.4, 126.8, 125.4, 52.1, 20.2. HRMS (TOF MS ESI$^+$) calculated for C$_{19}$H$_{16}$NaO$_2$ $^+$ [M+Na$^+$]: 299.1043, found 299.1042.

Methyl 3-(4-methoxyphenyl)-2-naphthoate (2i).

52.0 mg, 89% yield. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 8.38 (s, 1H), 7.93 (d, J = 8.1 Hz, 1H), 7.86 (d, J = 7.9 Hz, 1H), 7.81 (s, 1H), 7.64 – 7.50 (comp, 2H), 7.43 – 7.32 (comp, 2H), 7.04 – 6.95 (comp, 2H), 3.87 (s, 3H), 3.74 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 169.3, 159.0, 138.4, 134.5, 133.9, 131.5, 131.0, 129.71, 129.66, 129.3, 128.6, 128.3, 127.8, 126.7, 113.7, 55.4, 52.2. HRMS (TOF MS ESI$^+$) calculated for C$_{19}$H$_{16}$NaO$_3$ $^+$ [M+Na$^+$]: 315.0992, found 315.0986.
Methyl 3-(4-fluorophenyl)-2-naphthoate.

51.6 mg, 92% yield. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 8.42 (s, 1H), 7.95 (d, $J = 8.1$ Hz, 1H), 7.86 (d, $J = 8.1$ Hz, 1H), 7.79 (s, 1H), 7.62 – 7.53 (comp, 2H), 7.39 – 7.33 (comp, 2H), 7.20 – 7.08 (comp, 2H), 3.73 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 168.8, 162.4 (d, $J = 246.0$ Hz), 137.9, 137.6 (d, $J = 3.4$ Hz), 134.5, 131.7, 131.4, 130.2 (d, $J = 8.0$ Hz), 130.0, 128.9, 128.8, 128.5, 127.9, 127.0, 115.1 (d, $J = 21.5$ Hz), 52.3; 19F NMR (376 MHz, CDCl$_3$) (δ, ppm) -115.69. HRMS (TOF MS ESI$^+$) calculated for C$_{18}$H$_{13}$FNaO$_2$+$^{[M+Na]^+}$: 303.0792, found 303.0785.

Methyl 3-(4-chlorophenyl)-2-naphthoate.

52.2 mg, 88% yield. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 8.44 (s, 1H), 7.95 (d, $J = 8.0$ Hz, 1H), 7.86 (d, $J = 8.1$ Hz, 1H), 7.78 (s, 1H), 7.64 – 7.53 (comp, 2H), 7.44 – 7.37 (comp, 2H), 7.35 – 7.29 (comp, 2H), 3.74 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 168.7, 140.1, 137.8, 134.5, 133.3, 131.8, 131.5, 129.99, 129.97, 128.8, 128.7, 128.6, 128.3, 127.9, 127.1, 52.3. HRMS (TOF MS ESI$^+$) calculated for C$_{18}$H$_{13}$ClNaO$_2$+$^{[M+Na]^+}$: 319.0496, found 319.0500.

Methyl 3-(4-bromophenyl)-2-naphthoate.

56.0 mg, 82% yield. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 8.44 (s, 1H), 7.95 (d, $J = 8.0$ Hz, 1H), 7.86 (d, $J = 8.1$ Hz, 1H), 7.77 (s, 1H), 7.64 – 7.52 (comp, 4H), 7.31 – 7.23 (comp, 2H), 3.74 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 168.6, 140.6, 137.8, 134.5, 131.8, 131.6, 131.3, 130.3, 129.9, 128.8, 128.62, 128.55, 127.9, 127.1, 121.5, 52.3. HRMS (TOF MS ESI$^+$) calculated for C$_{18}$H$_{13}$BrNaO$_2$+$^{[M+Na]^+}$: 362.9991, found 362.9992.
Methyl 3-(4-(trifluoromethyl)phenyl)-2-naphthoate.

\[
\text{Methyl 3-(4-(trifluoromethyl)phenyl)-2-naphthoate.}
\]

44.3 mg, 67% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)) (\(\delta\), ppm) 8.49 (s, 1H), 7.97 (d, \(J = 8.0\) Hz, 1H), 7.88 (d, \(J = 8.1\) Hz, 1H), 7.79 (s, 1H), 7.69 (d, \(J = 8.0\) Hz, 2H), 7.66 – 7.55 (comp, 2H), 7.54 – 7.47 (comp, 2H), 3.73 (s, 3H); \(^1^3\)C NMR (100 MHz, CDCl\(_3\)) (\(\delta\), ppm) 168.4, 145.5, 137.7, 134.5, 132.0, 131.8, 130.2, 129.1, 128.9, 128.8, 128.3, 128.0, 127.4, 125.1 (q, \(J = 3.7\) Hz), 52.3; \(^1^9\)F NMR (376 MHz, CDCl\(_3\)) (\(\delta\), ppm) -62.32. HRMS (TOF MS ESI\(^+\)) calculated for C\(_{19}\)H\(_{13}\)F\(_3\)NaO\(_2\)\[M+Na\]\(^+\): 353.0760, found 353.0755.

Methyl [1,2'-binaphthalene]-3'-carboxylate.

51.9 mg, 83% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)) (\(\delta\), ppm) 8.65 (s, 1H), 8.05 (d, \(J = 7.4\) Hz, 1H), 7.96 – 7.87 (comp, 4H), 7.67 – 7.55 (comp, 4H), 7.52 – 7.46 (comp, 2H), 7.42 – 7.36 (m, 1H), 3.45 (s, 3H); \(^1^3\)C NMR (100 MHz, CDCl\(_3\)) (\(\delta\), ppm) 167.9, 139.9, 137.6, 134.9, 133.3, 132.5, 132.0, 131.4, 130.7, 128.9, 128.6, 128.3, 127.9, 127.7, 127.0, 126.4, 126.1, 125.7, 125.3, 52.0. HRMS (TOF MS ESI\(^+\)) calculated for C\(_{22}\)H\(_{16}\)NaO\(_2\)\[M+Na\]\(^+\): 335.1048, found 335.1041.

Methyl 2-methoxy-[1,2'-binaphthalene]-3'-carboxylate.

62.3 mg, 91% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)) (\(\delta\), ppm) 8.70 (s, 1H), 8.10 – 8.01 (m, 1H), 7.95 (d, \(J = 9.0\) Hz, 1H), 7.91 – 7.81 (comp, 3H), 7.65 – 7.56 (comp, 2H), 7.49 – 7.43 (m, 1H), 7.42 – 7.38 (m, 1H), 7.37 – 7.30 (comp, 2H), 3.83 (s, 3H), 3.58 (s, 3H); \(^1^3\)C NMR (100 MHz, CDCl\(_3\)) (\(\delta\), ppm) 167.7, 153.6, 134.9, 133.7, 133.5, 132.0, 131.7, 131.5, 130.1, 129.2, 129.1, 129.0, 128.2, 128.1, 127.9, 126.8, 126.4,
HRMS (TOF MS ESI⁺) calculated for C₂₃H₁₈NaO₃⁺ [M+Na]⁺: 365.1154, found 365.1151.

Methyl 3-(thiophen-2-yl)-2-naphthoate.

![Methyl 3-(thiophen-2-yl)-2-naphthoate](image)

43.5 mg, 81% yield. ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 8.31 (s, 1H), 7.95 (s, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.61 – 7.52 (comp, 2H), 7.40 – 7.35 (m, 1H), 7.14 – 7.06 (comp, 2H), 3.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 169.0, 142.5, 134.2, 131.9, 130.8, 130.6, 130.5, 129.7, 128.6, 128.4, 127.9, 127.3, 127.2, 126.4, 125.8, 52.4. HRMS (TOF MS ESI⁺) calculated for C₁₆H₁₂NaO₂S⁺ [M+Na]⁺: 291.0456, found 291.0457.

Methyl 3-cyclopropyl-2-naphthoate.

![Methyl 3-cyclopropyl-2-naphthoate](image)

34.4 mg, 76% yield. ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 8.37 (s, 1H), 7.86 (d, J = 8.1 Hz, 1H), 7.76 (d, J = 8.1 Hz, 1H), 7.65 – 7.49 (comp, 2H), 7.48 – 7.42 (m, 1H), 3.98 (s, 3H), 2.77 – 2.63 (m, 1H), 1.09 – 0.95 (comp, 2H), 0.84 – 0.69 (comp, 2H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 168.9, 140.4, 135.0, 131.2, 130.9, 130.0, 128.7, 128.1, 127.3, 126.0, 125.3, 52.2, 14.4, 8.2. HRMS (TOF MS ESI⁺) calculated for C₁₅H₁₄NaO₂⁺ [M+Na]⁺: 249.0892, found 249.0876.

1-(3-Phenylnaphthalen-2-yl)ethan-1-one.

![1-(3-Phenylnaphthalen-2-yl)ethan-1-one](image)

39.9 mg, 81% yield. ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 8.10 (s, 1H), 7.95 (d, J = 7.9 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.85 (s, 1H), 7.63 – 7.51 (comp, 2H), 7.51 – 7.39 (comp, 5H), 2.13 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 204.4, 141.1, 139.4, 137.6, 134.2, 131.9, 129.6, 129.1, 128.9, 128.8, 128.6, 128.1, 127.9, 127.8, 126.9, 30.6. HRMS (TOF MS ESI⁺) calculated for C₁₈H₁₄NaO⁺ [M+Na]⁺: 269.0937, found 269.0941.
Phenyl (3-phenyl)naphthalen-2-yl)methanone.

![Phenyl (3-phenyl)naphthalen-2-yl)methanone](image)

38.2 mg, 62% yield. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 8.04 (s, 1H), 8.00 – 7.87 (comp, 3H), 7.78 – 7.68 (comp, 2H), 7.63 – 7.54 (comp, 2H), 7.47 – 7.42 (m, 1H), 7.38 – 7.34 (comp, 2H), 7.33 – 7.28 (comp, 2H), 7.27 – 7.22 (comp, 2H), 7.22 – 7.17 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 198.4, 140.5, 138.6, 137.8, 137.5, 134.2, 133.0, 131.7, 130.2, 129.5, 129.3, 129.2, 128.6, 128.4, 128.3, 128.1, 128.0, 127.3, 127.0. HRMS (TOF MS ESI$^+$) calculated for C$_{23}$H$_{16}$NaO$^+$ [M+Na]$^+$: 331.1093, found 331.1089.

(R)-(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl 2-methoxy-[1,2'-binaphthalene]-3'-carboxylate.

![R-(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl 2-methoxy-[1,2'-binaphthalene]-3'-carboxylate](image)

42.0 mg, 45% yield. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 8.72 (s, 1H), 8.12 – 8.03 (m, 1H), 7.95 (d, J = 9.0 Hz, 1H), 7.90 – 7.83 (comp, 2H), 7.81 (s, 1H), 7.65 – 7.55 (comp, 2H), 7.45 – 7.28 (comp, 4H), 4.67 – 4.54 (m, 1H), 3.80 (s, 3H), 1.86 – 1.75 (m, 1H), 1.61 – 1.52 (m, 1H), 1.49 – 1.41 (m, 1H), 1.39 – 1.18 (comp, 3H), 0.97 – 0.89 (m, 1H), 0.87 – 0.83 (m, 3H), 0.70 – 0.60 (m, 1H), 0.50 (d, J = 6.9 Hz, 3H), 0.63 (d, J = 6.9 Hz, 3H), 0.43 – 0.30 (m, 1H);13C NMR (100 MHz, CDCl$_3$) 167.2, 153.5, 134.8, 134.0, 133.5, 132.0, 131.6, 131.4, 130.9, 129.03, 128.98, 128.9, 128.0, 127.9, 127.8, 126.7, 126.3, 125.4, 123.4, 113.0, 74.5, 56.4, 46.5, 40.3, 34.2, 31.2, 25.6, 23.0, 22.1, 20.7, 15.9. (δ, ppm) HRMS (TOF MS ESI$^+$) calculated for C$_{32}$H$_{35}$O$_3$ [M+H]$^+$: 467.2581, found 467.2593.
(S)-(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 2-methoxy-[1,2'-binaphthalene]-3'-carboxylate.

42.0 mg, 45% yield. 1H NMR (400 MHz, CDCl$_3$) 8.77 (s, 1H), 8.19 – 8.11 (m, 1H), 8.02 (d, $J = 9.0$ Hz, 1H), 7.99 – 7.87 (comp, 3H), 7.75 – 7.64 (comp, 2H), 7.49 (d, $J = 9.0$ Hz, 1H), 7.44 – 7.39 (m, 1H), 7.37 – 7.33 (comp, 2H), 4.63 (td, $J = 10.8, 4.4$ Hz, 1H), 3.93 (s, 3H), 1.65 – 1.51 (comp, 4H), 1.43 – 1.26 (comp, 2H), 0.98 – 0.90 (m, 1H), 0.82 (d, $J = 7.0$ Hz, 3H), 0.79 (d, $J = 6.5$ Hz, 3H), 0.73 – 0.66 (m, 1H), 0.64 (d, $J = 7.0$ Hz, 3H), 0.07 – 0.04 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 167.1, 153.6, 134.9, 134.2, 133.3, 132.0, 131.6, 131.5, 130.9, 129.0, 128.9, 128.8, 128.0, 127.79, 127.75, 126.6, 126.4, 125.3, 125.0, 123.4, 113.3, 74.3, 56.4, 46.6, 39.7, 34.1, 31.1, 25.6, 22.9, 22.0, 21.0, 15.8. HRMS (TOF MS ESI$^+$) calculated for C$_{32}$H$_{35}$O$_3$\([M+H]^+\): 467.2581, found 467.2593.

Ethyl 1-hydroxy-3-phenyl-2-naphthoate.

76% yield with 4b and 91% yield with 4c. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 12.32 (s, 1H), 8.46 (d, $J = 8.3$ Hz, 1H), 7.74 (d, $J = 8.1$ Hz, 1H), 7.65 – 7.60 (m, 1H), 7.57 – 7.51 (m, 1H), 7.41 – 7.31 (comp, 5H), 7.21 (s, 1H), 4.05 (q, $J = 7.1$ Hz, 2H), 0.79 (t, $J = 7.1$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 171.9, 161.5, 143.8, 139.6, 135.7, 129.9, 128.6, 127.6, 127.5, 126.6, 125.9, 124.2, 124.1, 121.3, 106.1, 61.1, 13.1. HRMS (TOF MS ESI$^+$) calculated for C$_{19}$H$_{16}$NaO$_3$\([M+Na]^+\): 315.0992, found 315.0986.

Ethyl 1-acetoxy-3-phenyl-2-naphthoate.

62.2 mg, 93% yield. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 7.97 – 7.83 (comp, 2H),
7.78 (s, 1H), 7.63 – 7.54 (comp, 2H), 7.50 – 7.35 (comp, 5H), 4.08 (q, J = 7.1 Hz, 2H), 2.48 (s, 3H), 0.95 (t, J = 7.1 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 169.3, 166.8, 145.7, 140.6, 138.1, 134.6, 128.6, 128.4, 128.2, 127.6, 127.3, 127.0, 126.0, 123.6, 122.2, 61.5, 20.8, 13.7. HRMS (TOF MS ESI$^+$) calculated for C$_{21}$H$_{18}$NaO$_4^+$ [M+Na]$^+$: 357.1097, found 357.1105.

Ethyl 1-((4-methoxybenzoyl)oxy)-3-phenyl-2-naphthoate

74.1 mg, 87% yield. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 8.28 (d, J = 8.8 Hz, 2H), 7.91 (d, J = 8.6 Hz, 2H), 7.81 (s, 1H), 7.61 – 7.56 (m, 1H), 7.55 – 7.49 (comp, 3H), 7.45 – 7.37 (comp, 3H), 7.07 – 7.01 (comp, 2H), 4.00 (q, J = 7.1 Hz, 2H), 3.92 (s, 3H), 0.88 (t, J = 7.1 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 166.8, 164.7, 164.3, 145.8, 140.5, 138.1, 134.7, 132.8, 128.7, 128.5, 128.2, 127.6, 127.3, 127.0, 126.4, 124.2, 122.5, 121.3, 114.2, 61.5, 55.7, 13.7. HRMS (TOF MS ESI$^+$) calculated for C$_{27}$H$_{22}$NaO$_5^+$ [M+Na]$^+$: 449.1359, found 449.1359.

Ethyl 1-((4-methylphenyl)sulfonamido)-3-phenyl-2-naphthoate.

72.2 mg, 81% yield. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 8.72 – 8.63 (m, 1H), 8.24 (s, 1H), 7.86 – 7.79 (m, 1H), 7.76 (s, 1H), 7.68 – 7.57 (comp, 2H), 7.51 – 7.42 (comp, 2H), 7.39 – 7.29 (comp, 3H), 7.25 – 7.21 (comp, 2H), 7.15 (d, J = 8.1 Hz, 2H), 3.38 (q, J = 7.2 Hz, 2H), 2.33 (s, 3H), 0.47 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 168.6, 143.7, 141.7, 137.9, 136.0, 134.9, 133.3, 130.4, 129.6, 129.3, 128.9, 128.2, 128.0, 127.6, 127.4, 127.2, 126.9, 126.2, 61.6, 21.6, 12.7. HRMS (TOF MS ESI$^+$) calculated for C$_{26}$H$_{23}$NNaO$_4$S$^+$ [M+Na]$^+$: 468.1240, found 468.1257.

Benzof[j]phenanthridin-6(5H)-one (Gao, et al., 2019).
45.6 mg, 93% yield. \(^{1}H\) NMR (400 MHz, DMSO-\(d_6\)) (\(\delta\), ppm) 11.55 (s, 1H), 9.08 (s, 1H), 8.98 (s, 1H), 8.56 – 8.50 (m, 1H), 8.24 – 8.15 (comp, 2H), 7.75 – 7.69 (m, 1H), 7.66 – 7.61 (m, 1H), 7.51 – 7.46 (m, 1H), 7.38 – 7.34 (m, 1H), 7.32 – 7.28 (m, 1H); \(^{13}C\) NMR (100 MHz, DMSO-\(d_6\)) (\(\delta\), ppm) 161.1, 136.4, 134.9, 131.6, 130.4, 129.5, 129.1, 128.6, 128.5, 128.1, 126.8, 124.1, 123.5, 122.4, 121.5, 118.0, 116.3. HRMS (TOF MS ESI\(^{+}\)) calculated for \(C_{17}H_{11}NNaO^+\) [M+Na\(^+\)]: 268.0733, found 268.0720.

Ethyl 1-hydroxy-4-(1H-indol-3-yl)-3-(4-methoxyphenyl)-2-naphthoate (15a).

72.6 mg, 83% yield. White solid, mp: 175-176 °C. \(^{1}H\) NMR (400 MHz, CDCl\(_3\)) (\(\delta\), ppm) 12.30 (s, 1H), 8.55 – 8.53 (m, 1H), 7.98 (s, 1H), 7.53 – 7.50 (m, 2H), 7.44 – 7.40 (m, 1H), 7.33 – 7.30 (m, 1H), 7.19 – 7.16 (m, 2H), 7.05 – 7.01 (m, 2H), 6.74 – 6.71 (m, 2H), 6.62 (d, \(J = 2.4\) Hz, 1H), 6.43 (dd, \(J = 8.5, 2.5\) Hz, 1H), 4.01 – 3.95 (m, 2H), 3.69 (s, 3H), 0.74 (t, \(J = 7.1\) Hz, 3H); \(^{13}C\) NMR (100 MHz, CDCl\(_3\)) (\(\delta\), ppm) 172.4, 160.5, 157.8, 139.2, 136.6, 135.6, 135.4, 130.6, 129.6, 129.5, 127.3, 125.6, 125.0, 124.3, 123.92, 123.90, 121.8, 120.2, 119.7, 114.0, 112.2, 111.0, 107.5, 61.1, 55.3, 13.3. HRMS (TOF MS ESI\(^{+}\)) calculated for \(C_{28}H_{23}NO_4Na^+\) [M+Na\(^+\)]: 460.1519, found 460.1508.

Ethyl 4-(4-chloro-1H-indol-3-yl)-1-hydroxy-3-(4-methoxyphenyl)-2-naphthoate.

79.1 mg, 84% yield. White solid, mp: 204-205 °C. \(^{1}H\) NMR (400 MHz, CDCl\(_3\)) (\(\delta\), ppm) 12.49 (s, 1H), 8.53 (d, \(J = 8.1\) Hz, 1H), 8.05 (s, 1H), 7.52 – 7.48 (m, 1H), 7.45 – 7.38 (m, 2H), 7.14 – 7.12 (m, 1H), 7.05 – 6.96 (comp, 4H), 6.70 (dd, \(J = 8.3, 2.6\) Hz, 1H), 6.66 (d, \(J = 2.3\) Hz, 1H), 6.48 (dd, \(J = 8.4, 2.6\) Hz, 1H), 4.02 – 3.95 (m, 2H), 3.66 (s, 3H), 0.75 (t, \(J = 7.1\) Hz, 3H); \(^{13}C\) NMR (100 MHz, CDCl\(_3\)) (\(\delta\), ppm) 172.5, 160.9, 157.6, 139.0, 137.9, 136.8, 135.8, 130.6, 129.8, 129.6, 127.1, 126.4, 126.1, 125.8, 125.5, 124.5, 123.9, 123.7, 122.5, 120.5, 113.7, 112.29, 112.25, 109.9, 107.1, 61.0, 55.2, 13.2. HRMS (TOF MS ESI\(^{+}\)) calculated for \(C_{28}H_{22}ClNO_4Na^+\) [M+Na\(^+\)]: 494.1130, found 494.1096.
Ethyl 4-(4-bromo-1H-indol-3-yl)-1-hydroxy-3-(4-methoxyphenyl)-2-naphthoate.

89.8 mg, 87% yield. White solid, mp: 215-216 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) (δ, ppm) 12.51 (s, 1H), 8.57 – 8.49 (m, 1H), 8.06 (s, 1H), 7.52 – 7.48 (m, 1H), 7.45 – 7.41 (m, 1H), 7.35 (d, \(J = 8.0\) Hz, 1H), 7.18 (d, \(J = 8.0\) Hz, 2H), 7.03 – 6.93 (comp, 3H), 6.71 – 6.68 (m, 2H), 6.50 – 6.44 (m, 1H), 4.03 – 3.94 (m, 2H), 3.65 (s, 3H), 0.75 (t, \(J = 7.1\) Hz, 3H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) (δ, ppm) 172.5, 161.0, 157.5, 139.1, 138.2, 136.5, 135.8, 130.6, 129.7, 129.6, 127.3, 127.2, 126.1, 125.5, 124.2, 124.0, 123.8, 123.7, 122.8, 114.5, 114.4, 112.3, 110.6, 107.1, 61.1, 55.2, 13.2. HRMS (TOF MS ESI\(^+\)) calculated for C\(_{28}\)H\(_{22}\)BrNO\(_4\)Na\(^+\) [M+Na\(^+\)]: 538.0624, found 538.0589.

Ethyl 1-hydroxy-3-(4-methoxyphenyl)-4-(5-methyl-1H-indol-3-yl)-2-naphthoate.

64.4 mg, 71% yield. White solid, mp: 184-185 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) (δ, ppm) 12.31 (s, 1H), 8.57 (d, \(J = 8.0\) Hz, 1H), 7.86 (s, 1H), 7.56 – 7.51 (m, 2H), 7.46 – 7.40 (m, 1H), 7.18 (d, \(J = 8.8\) Hz, 1H), 7.05 – 6.99 (comp, 3H), 6.79 – 6.72 (m, 2H), 6.55 (d, \(J = 2.3\) Hz, 1H), 6.45 (dd, \(J = 8.4, 2.4\) Hz, 1H), 4.04 – 3.97 (m, 2H), 3.69 (s, 3H), 2.36 (s, 3H), 0.77 (t, \(J = 7.1\) Hz, 3H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) (δ, ppm) 172.4, 160.4, 157.7, 139.1, 136.6, 135.6, 133.8, 130.6, 129.8, 129.6, 128.9, 127.4, 125.6, 125.1, 124.3, 124.1, 123.9, 123.4, 119.7, 113.4, 112.3, 112.2, 110.7, 107.5, 61.1, 55.2, 21.6, 13.2. HRMS (TOF MS ESI\(^+\)) calculated for C\(_{29}\)H\(_{25}\)NO\(_4\)Na\(^+\) [M+Na\(^+\)]: 474.1676, found 474.1695.
Ethyl 4-(5-fluoro-1H-indol-3-yl)-1-hydroxy-3-(4-methoxyphenyl)-2-naphthoate.

77.4 mg, 85% yield. White solid, mp: 172-173 °C. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 12.37 (s, 1H), 8.55 (d, J = 8.2 Hz, 1H), 7.99 (s, 1H), 7.54 – 7.42 (comp, 3H), 7.20 – 7.16 (m, 1H), 7.02 (dd, J = 8.4, 1.9 Hz, 1H), 6.92 – 6.87 (m, 1H), 6.82 (dd, J = 9.6, 2.3 Hz, 1H), 6.76 – 6.70 (m, 2H), 6.68 (d, J = 2.3 Hz, 1H), 6.46 (dd, J = 8.4, 2.5 Hz, 1H), 3.99 (q, J = 7.1 Hz, 2H), 3.69 (s, 3H), 0.75 (t, J = 7.1 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 172.3, 159.2 (d, J = 284.0 Hz), 158.1 (d, J = 234.6 Hz), 139.4, 136.4, 135.4, 131.9, 130.5, 129.8, 129.7, 129.6, 126.9, 126.7, 125.7, 124.2, 123.9, 123.1, 114.2, 112.3, 111.7 (d, J = 9.6 Hz), 110.3 (d, J = 26.5 Hz), 107.4, 104.8 (d, J = 23.5 Hz), 61.1, 55.3, 13.2; 19F NMR (376 MHz, CDCl$_3$) (δ, ppm) -124.4. HRMS (TOF MS ESI$^+$) calculated for C$_{28}$H$_{22}$FNO$_4$Na$^+$ [M+Na]$^+$: 478.1425, found 478.1464.

Ethyl 4-(5-chloro-1H-indol-3-yl)-1-hydroxy-3-(4-methoxyphenyl)-2-naphthoate (15f)

76.3 mg, 81% yield. White solid, mp: 195-196 °C. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 12.37 (s, 1H), 8.55 (d, J = 8.3 Hz, 1H), 8.03 (s, 1H), 7.55 – 7.51 (m, 1H), 7.45 – 7.44 (m, 2H), 7.19 – 7.08 (comp, 3H), 7.00 (dd, J = 8.4, 2.0 Hz, 1H), 6.76 – 6.70 (m, 2H), 6.65 (d, J = 2.4 Hz, 1H), 6.46 (dd, J = 8.4, 2.6 Hz, 1H), 3.99 (q, J = 7.1 Hz, 2H), 3.69 (s, 3H), 0.75 (t, J = 7.1 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 172.2, 160.7, 157.8, 139.4, 136.5, 135.4, 133.8, 130.5, 130.4, 129.8, 129.6, 126.9, 126.3, 125.8, 125.5, 124.3, 124.0, 123.1, 122.2, 119.4, 113.8, 112.3, 112.2, 112.1, 107.4, 61.2, 55.3, 13.2. HRMS (TOF MS ESI$^+$) calculated for C$_{28}$H$_{22}$ClNO$_4$Na$^+$ [M+Na]$^+$: 494.1130, found 494.1160.
Ethyl 4-(5-bromo-1H-indol-3-yl)-1-hydroxy-3-(4-methoxyphenyl)-2-naphthoate.

88.5 mg, 86% yield. White solid, mp: 210-211 °C. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 12.37 (s, 1H), 8.55 (d, $J = 8.3$ Hz, 1H), 8.03 (s, 1H), 7.55 – 7.51 (m, 1H), 7.45 (d, $J = 3.4$ Hz, 2H), 7.30 (d, $J = 1.7$ Hz, 1H), 7.23 (dd, $J = 8.6$, 1.8 Hz, 1H), 7.13 (d, $J = 8.6$ Hz, 1H), 7.00 (dd, $J = 8.4$, 2.1 Hz, 1H), 6.76 – 6.70 (m, 2H), 6.63 (d, $J = 2.4$ Hz, 1H), 6.47 (dd, $J = 8.5$, 2.6 Hz, 1H), 3.99 (q, $J = 7.1$ Hz, 2H), 3.69 (s, 3H), 0.75 (t, $J = 7.1$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 172.2, 160.7, 157.8, 139.5, 136.4, 135.4, 134.0, 131.1, 130.5, 129.9, 129.6, 126.9, 126.2, 125.8, 124.8, 124.3, 124.0, 123.0, 122.4, 113.8, 113.1, 112.6, 112.4, 112.3, 107.4, 61.2, 55.3, 13.2. HRMS (TOF MS ESI$^+$) calculated for C$_{28}$H$_{22}$BrNO$_4$Na$^+$ [M+Na]$^+$: 538.0624, found 538.0642.

Ethyl 1-hydroxy-4-(5-methoxy-1H-indol-3-yl)-3-(4-methoxyphenyl)-2-naphthoate

70.0 mg, 75% yield. White solid, mp: 177-178 °C. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 12.28 (s, 1H), 8.54 (d, $J = 8.3$ Hz, 1H), 7.91 (s, 1H), 7.55 – 7.50 (m, 2H), 7.46 – 7.41 (m, 1H), 7.18 (d, $J = 8.8$ Hz, 1H), 7.02 – 7.00 (m, 1H), 6.82 (dd, $J = 8.8$, 2.4 Hz, 1H), 6.78 – 6.75 (m, 1H), 6.72 – 6.69 (m, 1H), 6.60 – 6.59 (m, 2H), 6.46 – 6.44 (m, 1H), 4.02 – 3.96 (m, 2H), 3.68 (s, 3H), 3.67 (s, 3H), 0.75 (t, $J = 7.1$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 172.3, 160.4, 157.8, 154.2, 139.2, 136.6, 135.5, 130.6, 129.9, 129.64, 129.60, 127.3, 125.7, 125.6, 124.3, 124.0, 123.9, 113.8, 112.3, 112.2, 111.8, 107.6, 101.5, 61.1, 55.8, 55.2, 13.2. HRMS (TOF MS ESI$^+$) calculated for C$_{29}$H$_{25}$NO$_5$Na$^+$ [M+Na]$^+$: 490.1625, found 490.1601.
Ethyl 4-(5-cyano-1H-indol-3-yl)-1-hydroxy-3-(4-methoxyphenyl)-2-naphthoate

84.1 mg, 91% yield. White solid, mp: 289-290 °C. 1H NMR (400 MHz, DMSO) (δ, ppm) 11.63 (s, 1H), 10.68 (s, 1H), 8.38 (d, $J = 8.3$ Hz, 1H), 7.58 – 7.51 (m, 2H), 7.46 (t, $J = 7.3$ Hz, 1H), 7.39 – 7.37 (m, 2H), 7.33 (d, $J = 8.4$, 1H), 7.26 (d, $J = 2.2$, 1H), 7.12 (s, 1H), 6.80 (s, 1H), 6.71 (s, 1H), 6.56 (s, 1H), 3.94 (q, $J = 7.1$ Hz, 2H), 3.62 (s, 3H), 0.84 (t, $J = 7.1$ Hz, 3H); 13C NMR (100 MHz, DMSO) (δ, ppm) 168.6, 157.7, 151.9, 138.2, 137.3, 134.7, 132.5, 130.9, 129.7, 128.18, 128.17, 126.3, 125.5, 124.3, 124.2, 123.7, 122.8, 122.0, 120.6, 115.9, 112.9, 112.3, 100.9, 60.5, 54.9, 13.4. HRMS (TOF MS ESI$^+$) calculated for C$_{29}$H$_{22}$N$_2$O$_4$Na$^+$ [M+Na]$^+$: 485.1472, found 485.1484.

Methyl 3-(3-(ethoxycarbonyl)-4-hydroxy-2-(4-methoxyphenyl)naphthalen-1-yl)-1H-indole-5-carboxylate

88.7 mg, 90% yield. White solid, mp: 320-321 °C. 1H NMR (400 MHz, DMSO) (δ, ppm) 11.44 (s, 1H), 10.62 (s, 1H), 8.39 (d, $J = 8.3$ Hz, 1H), 7.70 (dd, $J = 8.6$, 1.5 Hz, 1H), 7.63 (s, 1H), 7.60 – 7.54 (m, 1H), 7.46 – 7.43 (m, 2H), 7.35 (d, $J = 8.4$ Hz, 1H), 7.16 (d, $J = 2.2$ Hz, 2H), 6.72 – 6.53 (comp, 3H), 3.95 (q, $J = 7.1$ Hz, 2H), 3.73 (s, 3H), 3.62 (s, 3H), 0.85 (t, $J = 7.1$ Hz, 3H); 13C NMR (100 MHz, DMSO) (δ, ppm) 168.4, 167.1, 157.7, 151.5, 138.10, 134.7, 132.5, 128.3, 128.1, 127.9, 126.5, 125.5, 124.1, 122.7, 122.5, 122.0, 121.2, 120.4, 116.2, 113.2, 112.3, 111.6, 60.5, 54.9, 51.6, 13.4. HRMS (TOF MS ESI$^+$) calculated for C$_{30}$H$_{25}$NO$_6$Na$^+$ [M+Na]$^+$: 518.1574, found 518.1528.
Ethyl 4-(6-fluoro-1H-indol-3-yl)-1-hydroxy-3-(4-methoxyphenyl)-2-naphthoate.

79.2 mg, 87% yield. White solid, mp: 178-179 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) (δ, ppm) 12.36 (s, 1H), 8.55 (d, J = 8.3 Hz, 1H), 7.99 (s, 1H), 7.57 – 7.39 (comp, 3H), 7.08 – 7.01 (m, 2H), 6.94 (dd, J = 9.6, 2.2 Hz, 1H), 6.80 – 6.71 (comp, 3H), 6.62 (d, J = 2.3 Hz, 1H), 6.46 (dd, J = 8.4, 2.6 Hz, 1H), 3.99 (m, 2H), 3.69 (s, 3H), 0.76 (t, J = 7.1 Hz, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) (δ, ppm) 172.3, 160.8 (d, J = 51.4 Hz), 158.3 (d, J = 93.7 Hz), 139.3, 136.6, 135.4, 135.27 (d, J = 12.6 Hz), 130.6, 129.7, 129.5, 127.0, 126.0, 125.7, 125.2 (d, J = 3.5 Hz), 124.3, 123.9, 123.5, 120.7 (d, J = 10.1 Hz), 114.1, 112.3 (d, J = 8.1 Hz), 108.5 (d, J = 24.4 Hz), 107.4, 97.34 (d, J = 26.1 Hz), 61.1, 55.2, 13.2; \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) (δ, ppm) -121.6. HRMS (TOF MS ESI\(^+\)) calculated for C\(_{28}\)H\(_{22}\)FNO\(_4\)Na\(^+\) [M+Na\(^+\)]\(^+\): 478.1431, found 478.1452.

Ethyl 4-(6-chloro-1H-indol-3-yl)-1-hydroxy-3-(4-methoxyphenyl)-2-naphthoate.

87.6 mg, 93% yield. White solid, mp: 198-199 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) (δ, ppm) 12.36 (s, 1H), 8.54 (d, J = 8.3 Hz, 1H), 7.98 (s, 1H), 7.54 – 7.50 (m, 1H), 7.46 – 7.41 (m, 2H), 7.26 (s, 1H), 7.07 (d, J = 8.4 Hz, 1H), 7.03 – 6.97 (m, 2H), 6.72 (d, J = 8.3 Hz, 2H), 6.62 (d, J = 2.3 Hz, 1H), 6.45 (dd, J = 8.5, 2.6 Hz, 1H), 4.02 – 3.96 (m, 2H), 3.70 (s, 3H), 0.75 (t, J = 7.1 Hz, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) (δ, ppm) 172.3, 160.7, 157.8, 139.4, 136.5, 135.7, 135.4, 130.6, 129.7, 129.5, 128.0, 127.8, 126.9, 125.7, 125.6, 124.3, 124.0, 123.2, 120.9, 120.5, 114.2, 112.4, 112.3, 111.0, 107.4, 61.2, 55.3, 13.2. HRMS (TOF MS ESI\(^+\)) calculated for C\(_{28}\)H\(_{22}\)ClNO\(_4\)Na\(^+\) [M+Na\(^+\)]\(^+\): 494.1130, found 494.1088.
Ethyl 1-hydroxy-3-(4-methoxyphenyl)-4-(6-methyl-1H-indol-3-yl)-2-naphthoate.

66.7 mg, 74% yield. White solid, mp: 216-217 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) (\(\delta\), ppm) 12.31 (s, 1H), 8.56 (d, \(J = 8.3\) Hz, 1H), 7.82 (s, 1H), 7.55 – 7.50 (m, 2H), 7.44 – 7.40 (m, 1H), 7.10 – 7.03 (comp, 3H), 6.88 (d, \(J = 8.6\) Hz, 1H), 6.77 – 6.73 (m, 2H), 6.53 (d, \(J = 2.3\) Hz, 1H), 6.45 (dd, \(J = 8.4, 2.5\) Hz, 1H), 4.03 – 3.97 (m, 2H), 3.69 (s, 3H), 2.46 (s, 3H), 0.76 (t, \(J = 7.1\) Hz, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) (\(\delta\), ppm) 172.3, 160.4, 157.7, 139.0, 136.6, 135.9, 135.6, 131.5, 130.6, 129.60, 129.57, 127.4, 127.3, 125.6, 124.4, 124.3, 124.1, 123.9, 121.5, 119.8, 113.7, 112.3, 112.2, 111.0, 107.5, 61.1, 55.2, 21.8, 13.2. HRMS (TOF MS ESI\(^+\)) calculated for C\(_{29}\)H\(_{25}\)NO\(_4\)Na\(^+\) [M+Na\(^+\)]: 474.1676, found 474.1658.

Ethyl 1-hydroxy-3-(4-methoxyphenyl)-4-(7-methyl-1H-indol-3-yl)-2-naphthoate

54.1 mg, 60% yield. White solid, mp: 161-162 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) (\(\delta\), ppm) 12.34 (s, 1H), 8.56 (d, \(J = 8.0\) Hz, 1H), 7.86 (s, 1H), 7.51 (d, \(J = 7.9\) Hz, 2H), 7.44 – 7.37 (m, 1H), 7.06 (d, \(J = 6.7\) Hz, 2H), 7.00 – 6.95(m, 2H), 6.80 – 6.72 (m, 2H), 6.61 (d, \(J = 2.3\) Hz, 1H), 6.45 (dd, \(J = 8.4, 2.3\) Hz, 1H), 4.00 (m, 2H), 3.69 (s, 3H), 2.43 (s, 3H), 0.77 (t, \(J = 7.1\) Hz, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) (\(\delta\), ppm) 172.4, 160.4, 157.7, 139.1, 136.6, 135.6, 135.0, 130.6, 129.7, 129.6, 129.0, 127.3, 125.6, 124.7, 124.3, 124.1, 123.8, 122.4, 120.1, 119.9, 117.9, 114.4, 112.4, 112.2, 107.5, 61.1, 55.2, 16.6, 13.2. HRMS (TOF MS ESI\(^+\)) calculated for C\(_{29}\)H\(_{25}\)NO\(_4\)Na\(^+\) [M+Na\(^+\)]: 474.1676, found 474.1627.
Ethyl 4-(7-chloro-1H-indol-3-yl)-1-hydroxy-3-(4-methoxyphenyl)-2-naphthoate

80.1 mg, 85% yield. White solid, mp: 144-145 °C. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 12.36 (s, 1H), 8.54 (d, J = 8.2 Hz, 1H), 8.25 (s, 1H), 7.54 – 7.50 (m, 1H), 7.45 – 7.40 (m, 2H), 7.18 – 7.16 (m, 1H), 7.07 (d, J = 7.9 Hz, 1H), 7.02 (dd, J = 8.4, 2.1 Hz, 1H), 6.94 (t, J = 7.7 Hz, 1H), 6.74 – 6.71 (comp, 3H), 6.46 (dd, J = 8.5, 2.6 Hz, 1H), 4.01 – 3.96 (m, 2H), 3.71 (s, 3H), 0.75 (t, J = 7.1 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 172.3, 160.7, 157.9, 139.4, 136.5, 135.3, 132.8, 130.8, 130.6, 129.7, 129.5, 127.0, 125.7, 125.6, 124.3, 124.0, 123.2, 121.3, 120.6, 118.8, 116.5, 115.2, 112.4, 107.5, 61.2, 55.3, 13.3. HRMS (TOF MS ESI$^+$) calculated for C$_{28}$H$_{22}$ClNO$_4$Na$^+$ [M+Na]$^+$: 494.1130, found 494.1093.

Methyl 3-(3-(ethoxycarbonyl)-4-hydroxy-2-(4-methoxyphenyl)naphthalen-1-yl)-1H-indole-7-carboxylate

80.2 mg, 81% yield. White solid, mp: 189-190 °C. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 12.36 (s, 1H), 9.71 (s, 1H), 8.55 (d, J = 8.2 Hz, 1H), 7.90 – 7.82 (m, 1H), 7.53 – 7.49 (m, 1H), 7.47 – 7.41 (m, 2H), 7.40 – 7.36 (m, 1H), 7.04 (t, J = 7.7 Hz, 2H), 6.82 (d, J = 2.2 Hz, 1H), 6.75 – 6.68 (m, 2H), 6.43 (dd, J = 8.5, 2.5 Hz, 1H), 3.99 (comp, 5H), 3.69 (s, 3H), 0.75 (t, J = 7.1 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 172.3, 168.0, 160.6, 157.8, 139.5, 136.6, 135.34, 135.28, 130.6, 130.5, 129.7, 129.5, 127.0, 126.0, 125.8, 125.7, 124.3, 124.3, 124.0, 123.3, 119.0, 114.0, 112.5, 112.4, 112.3, 107.4, 61.1, 55.2, 52.0, 13.2. HRMS (TOF MS ESI$^+$) calculated for C$_{30}$H$_{25}$NO$_6$Na$^+$ [M+Na]$^+$: 518.1574, found 518.1541.
Ethyl 1-hydroxy-3-(4-methoxyphenyl)-4-(1H-pyrrol-2-yl)-2-naphthoate

52.7 mg, 68% yield. White solid, mp: 146-147 °C. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 1H NMR (400 MHz, Chloroform-d) δ 12.29 (s, 1H), 8.50 – 8.45 (m, 1H), 7.78 – 7.74 (m, 1H), 7.64 (s, 1H), 7.56 – 7.49 (m, 2H), 6.97 – 6.93 (m, 2H), 6.76 – 6.72 (m, 2H), 6.60 – 6.59 (m, 1H), 6.17 – 6.15 (m, 1H), 6.06 – 6.04 (m, 1H), 3.97 (q, J = 7.1 Hz, 2H), 3.78 (s, 3H), 0.76 (t, J = 7.1 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 172.1, 160.8, 158.1, 138.9, 136.4, 134.7, 130.04, 129.95, 127.1, 126.6, 125.8, 124.2, 123.8, 123.5, 117.2, 112.7, 111.4, 108.1, 107.1, 61.2, 55.3, 13.2. HRMS (TOF MS ESI$^+$) calculated for C$_{24}$H$_{21}$NO$_4$Na$^+$ [M+Na]$^+$: 410.1363, found 410.1375.

Ethyl 4-(furan-2-yl)-1-hydroxy-3-(4-methoxyphenyl)-2-naphthoate

69.3 mg, 89% yield. White solid, mp: 116-117 °C. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 12.49 (s, 1H), 8.52 – 8.46 (m, 1H), 7.59 – 7.51 (m, 2H), 7.50 – 7.46 (m, 1H), 7.39 (dd, J = 1.8, 0.8 Hz, 1H), 7.00 – 6.96 (m, 2H), 6.76 – 6.72 (m, 2H), 6.29 (dd, J = 3.2, 1.9 Hz, 1H), 5.93 (dd, J = 3.2, 0.7 Hz, 1H), 3.99 (q, J = 7.1 Hz, 2H), 3.79 (s, 3H), 0.77 (t, J = 7.1 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 172.1, 161.8, 158.3, 150.7, 141.6, 140.7, 136.4, 134.4, 130.2, 130.0, 126.1, 125.9, 124.2, 124.0, 121.4, 112.5, 111.3, 110.6, 107.0, 61.3, 55.4, 13.2. HRMS (TOF MS ESI$^+$) calculated for C$_{24}$H$_{20}$O$_3$Na$^+$ [M+Na]$^+$: 411.1203, found 411.1189.
The Preparation of π-conjugated polycyclic hydrocarbons (CPHs), related to Figure 2B.

\[
\begin{align*}
\text{Ph} & \quad \text{CO}_2\text{Me} & \quad \text{H}_2\text{SO}_4 & \quad \text{rt} & \quad \text{O} & \quad 7\text{a}, 84\% \text{ yield} \\
2\text{a} & \quad \text{Ph} & \quad \text{CO}_2\text{Me} & \quad \text{H}_2\text{SO}_4 & \quad \text{rt} & \quad \text{O} & \quad 7\text{a}, 84\% \text{ yield} \\
\end{align*}
\]

Synthesis of 7a: To a 50-mL oven-dried round-bottom flask containing a magnetic stirring bar, 2a (52.5 mg, 0.2 mmol) was added sulphuric acid (8.0 ml) in 5 min at 0 °C. The reaction mixture was stirred overnight and the reaction temperature was warmed to room temperature slowly. Then, water (50 mL) was added to the reaction mixture and the reaction mixture was stirred for 1-2 h. The yellow solid precipitated out and was filtered under vacuum. The crude product was purified by column chromatography on silica gel (solvents: petroleum ether/ethyl acetate = 20 : 1) to afford 38.7 mg 7a in 84% yield. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 8.17 (s, 1H), 7.94 – 7.78 (comp, 3H), 7.77 – 7.68 (comp, 2H), 7.59 – 7.51 (comp, 2H), 7.50 – 7.43 (m, 1H), 7.37 – 7.32 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 193.3, 145.0, 138.5, 137.1, 136.3, 135.2, 133.8, 132.9, 131.0, 129.3, 129.1, 128.9, 127.1, 125.8, 124.6, 121.1, 119.2. HRMS (TOF MS Cl$^+$) calculated for C$_{17}$H$_{10}$NaO$^+$ [M+Na]$^+$: 253.0624, found 253.0630.

\[
\begin{align*}
\text{Ph} & \quad \text{CO}_2\text{Me} & \quad \text{MsOH} & \quad 100 \text{ C} & \quad \text{O} & \quad 7\text{b}, 95\% \text{ yield} \\
2\text{b} & \quad \text{Ph} & \quad \text{CO}_2\text{Me} & \quad \text{MsOH} & \quad 100 \text{ C} & \quad \text{O} & \quad 7\text{b}, 95\% \text{ yield} \\
\end{align*}
\]

Synthesis of 7b: To a 25-mL oven-dried round-bottom flask containing a magnetic stirring bar, 2b (68.5 mg, 0.2 mmol), and methanesulphonic acid (8.0 mL) were added in sequence under argon at room temperature. Then the reaction mixture was refluxed at 100 °C for 2 h. After cooling to room temperature, water (50 mL) was added to the reaction mixture and the reaction mixture was stirred for 1-2 h. The yellow solid precipitated out and was filtered under vacuum. The crude product was purified by column chromatography on silica gel (ethyl acetate/petroleum ether = 1/3) to give 59.0 mg 7b in 95% yield. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 9.57 (s, 1H), 9.07 (s, 1H), 8.81 – 8.74 (m, 1H), 8.09 – 7.98 (comp, 2H), 7.93 (d, J = 8.1 Hz, 1H), 7.85 (d, J = 9.1 Hz, 1H), 7.62 – 7.49 (comp, 3H), 7.38 (d, J = 9.1 Hz, 1H), 4.16 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 184.3, 158.6, 136.1, 135.1, 131.6, 131.5, 131.2, 130.5, 130.2, 129.6, 129.4, 129.3, 129.14, 129.10, 128.6, 128.3, 128.0, 126.7, 124.1,
114.7, 112.8, 56.3. HRMS (TOF MS CI$^+$) calculated for C$_{22}$H$_{14}$NaO$_2$ $^+$ [M+Na]$^+$: 333.0886, found 333.0891.

The Preparation of chiral 1,2'-dinaphthalene ligands, related to 2D.

Synthesis of (R)-8u: To a 10-mL oven-dried flask containing a magnetic stirring bar, compound (R)-2u (93.3 mg, 0.2 mmol) in dry THF (4.0 mL), was added LiAlH$_4$ (15.2 mg, 0.4 mmol) portion-wise at 0 °C under argon atmosphere. After completion of addition, the reaction mixture was allowed to warm up to room temperature and stirred for 2 h. After the consumption of starting material (monitored by TLC analysis), the reaction mixture was quenched by addition of Na$_2$SO$_4$·10H$_2$O followed by saturated NH$_4$Cl, and extracted with DCM (2 X 5 mL). The combined organic phase was dried over Na$_2$SO$_4$ and the solvent was evaporated under vacuum after filtration. The resulting residues was purified by column chromatography on silica gel (eluent: petroleum ether /EtOAc = 1 : 1) to give 61.0 mg (R)-8u in 97% yield. $\left[\alpha\right]_D^{20}$ = -54.2°, (c = 0.34, CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 8.14 (s, 1H), 8.03 – 7.94 (comp, 2H), 7.92 – 7.82 (comp, 2H), 7.74 (s, 1H), 7.61 – 7.50 (comp, 2H), 7.46 – 7.34 (comp, 2H), 7.34 – 7.27 (comp, 2H), 4.54 – 4.41 (comp, 2H), 3.84 (s, 3H), 2.24 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 154.0, 153.8, 138.7, 134.1, 133.4, 133.3, 133.1, 130.3, 129.8, 129.3, 128.1, 128.0, 127.8, 127.2, 126.8, 126.2, 126.2, 125.1, 124.0, 123.2, 113.6, 64.1, 56.8. HRMS (TOF MS CI$^+$) calculated for C$_{22}$H$_{18}$NaO$_2$ $^+$ [M+Na]$^+$: 337.1199, found 337.1210.

Synthesis of (R)-10u: To a 10-mL oven-dried flask containing a magnetic stirring bar, (R)-8u (31.4 mg, 0.1 mmol), triethylamine (0.02 mL, 0.3 mmol), and DMAP (1.3 mg, 0.01 mmol) in THF (1.0 mL), was added diphenyl phosphorochloridate (26.9 mg, 0.1 mmol, 100 mol %) over 30 min at 0 °C under argon atmosphere. The reaction mixture was stirred overnight and the reaction temperature was warmed to room temperature slowly. After the consumption of starting material (monitored by TLC analysis), the solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel (eluent: petroleum ether /EtOAc = 1:1) to give 46.0 mg (R)-10u in 84%. > 99% ee, $\left[\alpha\right]_D^{20}$ = -312.5°, (c = 0.16, CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 8.02 (s, 1H), 7.96 (d, J = 9.1 Hz, 1H), 7.89 – 7.81 (m, 3H), 7.73 (s, 1H), 7.57 – 7.50 (comp, 2H), 7.41 – 7.33 (comp, 2H), 7.31 – 7.26 (comp,
3H), 7.25 – 7.17 (comp, 3H), 7.17 – 7.09 (comp, 2H), 7.08 – 7.02 (comp, 2H), 7.02 – 6.90 (comp, 2H), 5.22 (dd, J = 12.7, 7.3 Hz, 1H), 5.05 (dd, J = 12.6, 7.0 Hz, 1H), 3.79 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) (δ, ppm) 154.1, 150.6 (d, J = 7.3 Hz), 150.50 (d, J = 7.3 Hz), 133.9, 133.4, 133.32, 133.28, 133.1, 132.9, 130.5, 130.1, 129.79, 129.749, 129.750, 129.2, 128.2, 128.1, 127.8, 127.1, 126.9, 126.6, 126.4, 125.4 (d, J = 1.0 Hz), 125.3 (d, J = 1.1 Hz), 125.0, 123.8, 121.8, 120.22 (d, J = 4.9 Hz), 120.15 (d, J = 4.9 Hz), 113.2, 68.89 (d, J = 5.6 Hz), 56.4; \(^{31}\)P NMR (162 MHz, CDCl\(_3\)) (δ, ppm) -12.04. HRMS (TOF MS CI\(^{+}\)) calculated for \(C_{34}H_{28}O_3P\) \([M+H]^{+}\): 547.1669, found 547.1681.

HPLC conditions for determination of enantiomeric excess: Chiral IB-3, λ = 272 nm, hexane : 2-propanol = 95:5, flow rate = 1.0 mL/min, \(t_s = 27.7\) min, \(t_R = 35.2\) min.

Synthesis of (S)-2u: To a 10-mL oven-dried flask containing a magnetic stirring bar, and KOH (112.0 mg, 2.0 mmol) in THF (6.0 mL) and CH\(_2\)OH (2.0 mL), was added the white solid (S)-2u (93.3 mg, 0.2 mmol) at 0 °C. The reaction mixture was stirred at room temperature overnight. Then the solvent was removed under vacuum and the reaction mixture was acidified with 6 N HCl (10.0 mL). The precipitated solid was filtrated and washed with water (3 X 15 mL) to give 58.5 mg pure (S)-9u in 86% yield. \n
\[[\alpha]_D^{20} = +22.4^\circ, \; (c = 0.08, \text{CHCl}_3). \]

\(^{1}\)H NMR (400 MHz, DMSO-\(d_6\)) (δ, ppm) 12.38 (s, 1H), 8.62 (s, 1H), 8.19 – 8.11 (m, 1H), 8.01 – 7.94 (comp, 2H), 7.93 – 7.87 (m, 1H), 7.79 (s, 1H), 7.68 – 7.59 (comp, 2H), 7.51 (d, J = 9.1 Hz, 1H), 7.37 – 7.23 (comp, 3H), 3.75 (s, 3H); \(^{13}\)C NMR (100 MHz, DMSO-\(d_6\)) (δ, ppm) 167.9, 153.3, 153.1, 134.1, 134.3, 133.1, 133.0, 131.4, 131.2, 131.1, 130.5, 128.72, 128.68, 128.6, 128.1, 127.9, 127.5, 126.8, 126.2, 124.5, 124.4, 123.1, 113.8, 56.2. HRMS (TOF MS CI\(^{+}\)) calculated for \(C_{22}H_{16}NaO_3\) \([M+Na]^{+}\): 351.0992, found 351.1000.

Synthesis of 11u: To a 10-mL oven-dried flask containing a magnetic stirring bar, (S)-9u (32.8 mg, 0.1 mmol), \(N,N'\)-dicyclohexylcarbodiimide (DCC, 41.2 mg, 0.2 mmol), benzotriazol-1-ol (16.2 mg, 0.12 mmol), and (R)-2- amino-3-methylbutan-1-ol (12.4 mg, 0.12 mmol), and dry THF (1.0 mL) were added in sequence at -5 °C. The reaction mixture was stirred for 1 h under these conditions, and then stirred at room temperature overnight. The solvent was evaporated under vacuum after filtration, the obtained white solid was directly used for the next step without further purification.

To a 10-mL oven-dried flask containing a magnetic stirring bar, the above obtained white solid, 4-(dimethylamino)pyridine (1.3 mg, 0.01 mmol), and CH\(_2\)Cl\(_2\) (1.0 mL), was added triethylamine (22.2 mg, 0.22 mmol) under argon atmosphere at 0 °C. Then
a solution of \(p \)-toluenesulfonyl chloride (38.2 mg, 0.2 mmol) in \(\text{CH}_2\text{Cl}_2 \) (0.5 mL) was added to the above reaction mixture at 0 °C. The reaction mixture was stirred at room temperature for 12 h. Then the solvent was evaporated under reduced pressure, and the resulting residues was purified by silica gel column chromatography (petroleum ester/ethyl acetate = 1:1) to give 33.2 mg 11u in 84% yield. 98% ee, \(\left[\alpha \right]_{D}^{20} = +30.5^\circ \), (\(c = 0.18, \text{CHCl}_3 \)). \(^1\text{H} \) NMR (400 MHz, CDCl\(_3\)) (\(\delta \), ppm) 8.59 (s, 1H), 8.03 – 7.97 (m, 1H), 7.89 – 7.78 (comp, 4H), 7.60 – 7.53 (comp, 2H), 7.42 – 7.28 (comp, 4H), 4.06 – 3.98 (m, 1H), 3.85 – 3.77 (comp, 4H), 3.55 (t, \(J = 8.1 \) Hz, 1H), 1.47 (td, \(J = 13.3, 6.6 \) Hz, 1H), 0.65 (d, \(J = 6.7 \) Hz, 3H), 0.62 (d, \(J = 6.7 \) Hz, 3H); \(^{13}\text{C} \) NMR (100 MHz, CDCl\(_3\)) (\(\delta \), ppm) 164.9, 153.9, 134.4, 133.9, 133.1, 132.2, 131.3, 130.6, 129.1, 129.0, 128.7, 127.9, 127.8, 127.7, 126.7, 126.5, 125.4, 124.8, 123.5, 113.5, 72.1, 70.5, 56.8, 32.6, 18.6, 18.0. HRMS (TOF MS CI\(^+\)) calculated for \(\text{C}_{27}\text{H}_{26}\text{NO}_2^+ \ [\text{M+H}]^+ \): 396.1958, found 396.1969.
Experimental procedure for the interception reaction of vinyl gold carbenoid intermediate, related to Figure 3A.

\[
\begin{align*}
\text{CO}_2^\text{Bu} & \quad \text{standard conditions} \\
1c & \quad \xrightarrow{-20 ^\circ\text{C}, 12 \text{ h}} \\
\text{Ph}_2\text{SO} (0.4 \text{ mmol}) & \quad 12, \ 41\% \ \text{yield}
\end{align*}
\]

To a 10-mL oven-dried flask containing a magnetic stirring bar, JohnphosAu (CH$_3$CN)SbF$_6$ (7.7 mg, 0.01 mmol, 5.0 mol %), and Ph$_2$SO (81.0 mg, 0.4 mmol) in dry 1,2-dichloroethane (2.0 mL), was added a solution of diazoacetate 1c (66.5 mg, 0.2 mmol) in dry 1,2-dichloroethane (2.0 mL) by a syringe in 5 mins at -20 °C under argon atmosphere. After addition, the reaction mixture was stirred at -20 °C for 12 h. Then the solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel (solvents: petroleum ether/ethyl acetate = 10 : 1) to afford 2c (30.5 mg, 50% yield) and 12 (26.3 mg, 41% yield).

Compound 12. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 8.05 – 7.96 (comp, 2H), 7.71 (d, $J = 7.6$ Hz, 1H), 7.58 – 7.42 (comp, 4H), 7.39 – 7.30 (m, 1H), 7.26 – 7.21 (m, 1H), 3.93 (s, 2H), 1.72 (s, 9H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 153.3, 149.2, 147.7, 144.8, 135.9, 132.8, 129.1, 128.8, 128.1, 127.2, 125.6, 125.2, 120.5, 85.5, 33.1, 28.2. HRMS (TOF MS Cl$^+$) calculated for C$_{21}$H$_{21}$O$_3$+ [M+H]$^+$: 321.1485, found 321.1490.

Experimental procedure for the deuterated reaction of 1a-d to 2a-d, related to Figure 3B.

\[
\begin{align*}
\text{CO}_2^\text{Me} & \quad \text{DCE, 25 ^\circ\text{C}, 12 hours} \\
1a-d (100\% \ D) & \quad 2a-d (58\% \ D)
\end{align*}
\]

To a 10-mL oven-dried flask containing a magnetic stirring bar, JohnphosAu (CH$_3$CN)SbF$_6$ (7.7 mg, 0.01 mmol, 5.0 mol %) in dry 1,2-dichloroethane (2.0 mL), was added a solution of diazoacetate 1a-d (58.4 mg, 0.2 mmol) in dry 1,2-dichloroethane (2.0 mL) by a syringe in 5 mins at room temperature under argon atmosphere. After addition, the reaction mixture was stirred at room temperature for 12 h. Then the solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel (solvents: petroleum ether/ethyl acetate = 10 : 1) to afford 47.0 mg 2a-d (58% D, see Figure S2) in 89% yield.
Experimental procedure for the deuterated reaction of 1a to 2a, related to Figure 3C.

![Chemical structure diagram]

To a 10-mL oven-dried flask containing a magnetic stirring bar, JohnphosAu(CH$_3$CN)SbF$_6$ (7.7 mg, 0.01 mmol, 5.0 mol %) and CD$_3$OD (36.1 mg, 1.0 mmol) in dry 1,2-dichloroethane (2.0 mL), was added a solution of diazoacetate 1a (58.0 mg, 0.2 mmol) in dry 1,2-dichloroethane (2.0 mL) by a syringe in 5 mins at room temperature under argon atmosphere. After addition, the reaction mixture was stirred at room temperature for 12 h. Then the solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel (solvents: petroleum ether/ethyl acetate = 10 : 1) to give 46.5 mg 2a (80% D, see Figure S1) in 88% yield.

Intermolecular kinetic isotope effect (KIE) experiment, related to Figure 3C.

![Chemical structure diagram]

To a dried NMR tube, 1a (14.5 mg, 0.05 mmol) and 1a-d (14.6 mg, 0.05 mmol) in dry CDCl$_3$ (1.0 mL), was added JohnphosAu(CH$_3$CN)SbF$_6$ (3.8 mg, 0.005 mmol, 5.0 mol %). And the reaction mixture was analyzed by proton NMR after 5 minutes at room temperature (Figure S3). And these results intermolecular kinetic isotope effect (KIE) experiment turned out that $k_H/k_D = 1:1$.

Experimental procedure for the β-H shift reaction of 1a to 3a, related to Table 1.

To a 10-mL oven-dried flask containing a magnetic stirring bar, AgSbF$_6$ (3.4 mg, 0.01 mmol, 5.0 mol %) in dry 1,2-dichloroethane (2.0 mL), was added a solution of diazooacetate 1a (58.0 mg, 0.2 mmol) in 1,2-dichloroethane (2.0 mL) by a syringe in 5 mins at room temperature under argon atmosphere. After addition, the reaction mixture was stirred at room temperature for 12 h. Then the solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel (solvents: petroleum ether/ethyl acetate = 10 : 1) to give 47.5 mg 3a in 90% yield. 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 8.15 – 8.05 (m, 1H), 7.87 – 7.74 (comp, 2H), 7.68 – 7.58 (comp, 2H), 7.42 – 7.39 (comp, 4H), 7.07 (d, J = 11.5 Hz, 1H), 6.16 (d, J = 15.3 Hz, 1H), 3.81 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 167.5, 142.3, 137.0, 131.9, 131.3, 131.1, 129.4, 129.1, 128.8, 128.6, 126.8, 123.0, 122.7, 100.5, 86.0, 51.8. HRMS (TOF MS Cl$^+$) calculated for C$_{18}$H$_{14}$NaO$_2$$^+$: [M+Na]$^+$: 285.0886, found 285.0890.

Experimental procedure for the β-H shift reaction of 11 to 31, related to Figure 3E.

To a 10-mL oven-dried flask containing a magnetic stirring bar, Ph$_3$PAuNTf$_2$ (7.4 mg, 0.01 mmol, 5.0 mol %) and MeOH (32.0 mg, 1.0 mmol, 5.0 equiv.) or anisole (108.1 mg, 1.0 mmol, 5.0 equiv.) in dry 1,2-dichloroethane (1.0 mL), was added a solution of diazooacetate 11 (73.8 mg, 0.2 mmol) in dry 1,2-dichloroethane (1.0 mL) by a syringe in 5 minutes at room temperature under argon atmosphere. After addition, the reaction mixture was stirred overnight at room temperature. Then the solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel (eluent: ethyl acetate/petroleum ether = 1/10) to afford
61.5 mg 3l in 90% yield with MeOH (85% yield with anisole). 1H NMR (400 MHz, CDCl$_3$) (δ, ppm) 8.26 (d, $J = 16.1$ Hz, 1H), 7.70 – 7.62 (m, 1H), 7.60 – 7.54 (m, 1H), 7.54 – 7.48 (comp, 2H), 7.48 – 7.41 (comp, 2H), 7.41 – 7.32 (comp, 2H), 6.57 (d, $J = 16.1$ Hz, 1H), 3.83 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) (δ, ppm) 167.5, 142.8, 135.8, 133.2, 133.0, 128.9, 126.5, 123.8, 123.1, 122.0, 119.6, 94. 6, 88.2, 77.5, 52.0. HRMS (TOF MS CI$^+$) calculated for C$_{18}$H$_{14}$BrO$_2$$^+$ [M+H]$^+$: 341.0172, found 341.0164.

Experimental procedure for the carbocyclization of 1l to 2l with MeOH, related to Figure 3E.

![Diagram](attachment:image.png)

To a 10-mL oven-dried flask containing a magnetic stirring bar, JohnphosAu(CH$_3$CN)SbF$_6$ (7.7 mg, 0.01 mmol, 5.0 mol %) and CH$_3$OH (32.0 mg, 1.0 mmol, 5.0 equiv.) in dry 1,2-dichloroethane (1.0 mL), was added a solution of diazoacetate 1l (73.8 mg, 0.2 mmol) in dry 1,2-dichloroethane (1.0 mL) by a syringe in 5 minutes at room temperature under argon atmosphere. After addition, the reaction mixture was stirred overnight at room temperature. Then the solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel (eluent: ethyl acetate/petroleum ether = 1/10) to afford 56.6 mg 2l in 83% yield.

Experimental procedure for the Comparison with Rh$_2$(OAc)$_4$, related to Figure 3E.

![Diagram](attachment:image.png)

To a 10-mL oven-dried flask containing a magnetic stirring bar, Rh$_2$(OAc)$_4$ (4.4 mg, 0.01 mmol, 5.0 mol %) and CH$_3$OH (32.0 mg, 1.0 mmol, 5.0 equiv.) in dry 1,2-dichloroethane (1.0 mL), was added a solution of diazoacetate 1l (73.8 mg, 0.2 mmol) in dry 1,2-dichloroethane (1.0 mL) by a syringe in 5 minutes at 25℃ under...
argon atmosphere. After addition, the reaction mixture was stirred at 25°C for 12 hours. Then the solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel (eluent: ethyl acetate/petroleum ether = 1/10) to afford 13l (69.4 mg, 93% yield) and 3l (3.4 mg, 5% yield). Compound 13l: ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.54 – 7.44 (comp, 3H), 7.43 – 7.36 (comp, 2H), 7.28 – 7.17 (comp, 3H), 4.14 (dd, J = 8.4, 5.1 Hz, 1H), 3.68 (s, 3H), 3.35 (dd, J = 13.6, 5.1 Hz, 1H), 3.29 (s, 3H), 3.10 (dd, J = 13.6, 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 172.7, 139.0, 133.0, 132.2, 131.8, 130.7, 128.7, 127.0, 122.7, 122.7, 122.3, 92.8, 88.8, 80.7, 58.5, 52.1, 38.3. HRMS (TOF MS CI⁺) calculated for C₁₉H₁₈BrO₃⁺ [M+H]⁺: 373.0434, found 373.0450.
Supplemental References.

Gao, Y., Cai, Z., Li, S., and Li, G. (2019). Rhodium(I)-Catalyzed Aryl C–H Carboxylation of 2-Arylanilines with CO₂. Org. Lett. 21, 3663–3669.

Gorin, D. J., Davis, N. R., and Toste, F. D. (2005). Gold(I)-catalyzed intramolecular acetylenic schmidt reaction. J. Am. Chem. Soc. 127, 11260–11261.

Hashmi, A. S. K., Bechem, B., Loos, A., Hamzic, M., Rominger, F., and Rabaa, H. (2014). Gold catalysis: biarylphosphine ligands as key for the synthesis of dihydroisocoumarins. Aust. J. Chem. 67, 481–499.

Mauleón, P., M. Zeldin, R., González, A. Z., and Toste, F. D. (2009). Ligand-controlled access to [4 + 2] and [4 + 3] cycloadditions in gold-catalyzed reactions of allene-dienes. J. Am. Chem. Soc. 131, 6348–6349.