Exploring the State-of-the-Art Language Modeling Methods and Data Augmentation Techniques for Multilingual Clause-Level Morphology

Emre Can Acikgoz
KUIS-AI, Koç University
eacikgozl7@ku.edu.tr

Tilek Chubakov
KUIS-AI, Koç University
tchubakov@ku.edu.tr

Müge Kural
KUIS-AI, Koç University
mkural@ku.edu.tr

Gözde Gül Şahin
KUIS-AI, Koç University
gosahin@ku.edu.tr

Deniz Yuret
KUIS-AI, Koç University
dyuret@ku.edu.tr

Abstract

This paper describes the KUIS-AI NLP team’s submission for the 1st Shared Task on Multilingual Clause-level Morphology (MRL2022). We present our work on all three parts of the shared task: inflection, reinflection, and analysis. We mainly explore two approaches: Transformer models in combination with data augmentation, and exploiting the state-of-the-art language modeling techniques for morphological analysis. Data augmentation leads a remarkable performance improvement for most of the languages in the inflection task. Prefix-tuning on pretrained mGPT model helps us to adapt reinflection and analysis tasks in a low-data setting. Additionally, we used pipeline architectures using publicly available open source lemmatization tools and monolingual BERT-based morphological feature classifiers for reinflection and analysis tasks, respectively. While Transformer architectures with data augmentation and pipeline architectures achieved the best results for inflection and reinflection tasks, pipelines and prefix-tuning on mGPT received the highest results for the analysis task. Our methods achieved the first place in each of the three tasks and outperforms mT5-baseline with 89% for inflection, 80% for reinflection and 12% for analysis. Our code is publicly available.

1 Introduction

The shared task on multilingual clause-level morphology was designed to provide a benchmark for morphological analysis and generation at the level of clauses for various typologically diverse languages. The shared task is composed of three subtasks: inflection, reinflection and analysis. For the inflection task, participants are required to generate an output clause, given a verbal lemma and a specific set of morphological tags (features) as an input. In the reinflection task the input is an inflected clause, accompanied by its features (tags). Participants need to predict the target word given a new set of tags (features). Finally, the analysis task requires predicting the underlying lemma and tags (features) given the clauses.

The shared task includes eight languages with different complexity and varying morphological characteristics: English, French, German, Hebrew, Russian, Spanish, Swahili, and Turkish.

In this work, we explored two main approaches: i) character-based Transformer architectures with data augmentation tricks, and ii) adapting recent tuning methods to language modeling for multilingual morphological tasks. Additionally, we have utilized pipeline architectures for reinflection and analysis tasks. For reinflection, we first identify the lemma of clause. Then, we use the top performing

Task1: Inflection
Source
Features
Target

Task2: Reinflection
Source
Features
Desired Features
Target

Task3: Analysis
Source
Target
Features

Table 1: Description of the each three task: inflection, reinflection, analysis. Task1 (Inflection). For the given lemma and the features, target is the desired clause. Task2 (Reinflection). Input is the clause, its features, and the desired output features. Target is the desired clause that represented by the desired features in the source. Task3 (Analysis). For a given clause, output is the corresponding lemma and the morphological features.
model for the inflection task to generate the target clause from it. For the analysis task, we carry out lemmatization and morphological tagging as separate tasks.

2 Methods

Our methods can be summarized as follows: training models with Transformer architectures Vaswani et al. (2017); Wu et al. (2021) for each task (2.1), prefix-tuning (Li and Liang, 2021) on the pretrained mGPT model (Shliazhko et al., 2022) for reinflection and analysis tasks (2.2), using data augmentation for inflection (2.3), and designing pipelines for reinflection and analysis (2.4).

2.1 Transformer & TagTransformer

Vanilla Transformer. We used a smaller version of a vanilla Transformer architecture that contains 4 layers of encoder and decoder with 4 multi-head attentions. The embedding size and the feed-forward dimension is set to 256 and 1024, respectively.

TagTransformer. Following Wu et al. (2021), we used special positional encodings and type embeddings in the encoder part of the vanilla Transformer. These special encodings count the positions of the characters in positional encoding and set all the features to zero. It overcomes the issue of different distances between a specific character and a set of morphological features. It also adds a special token to make distinctions between a feature and a character. Also, we have used layer normalization before the self-attention and feed-forward layers of the network that leads to slightly better results.

2.2 Prefix-Tuning

Using prefix-tuning reduces computational costs by optimizing a small continuous task-specific vectors, called prefixes, while keeping frozen all the other parameters of the LLM as a conditional generation tasks. We have added two prefixes at the beginning of the each layer and the gradient optimization made across these prefixes that is described in the Figure 1. It outperforms the fine-tuning methods in low-data resource settings and better adapts to unseen topics during prompt training as Li and Liang (2021) showed. Additionally, this method can be applied both for auto-regressive (GPT-based) and sequence-to-sequence (BART-based) architectures.

2.3 Data augmentations

Hallucinating the data for low-resource languages results with a remarkable performance increase for inflection Anastasopoulos and Neubig (2019). The hallucinated data is generated by replacing the stem characters of the aligned word with random characters by using the validation or test sets like in Figure 2. This way, the increase in the training data helps the model to learn and generalize rare seen samples, properly. On the other hand, the amount of data that will be hallucinated and added to the training data (hyperparameter N), is also another parameter that affects the accuracy which needs to be decided for each language according to its complexity and topology. Therefore, the hyperparameter N is selected according to our specific observations for each language after a grid search.

We used a simple method to handle modelling of compound verbs for Turkish models. For all compound verbs, the space token between the constituent verbs was replaced with an underscore to ken both in input and target clauses. The replacement was done automatically by detecting compound verbs using POS tagging of clauses.

2.4 Pipelines

Reinflection Pipeline For German and French we design a pipeline as follows: first, the lemma for the input clause is extracted using an external lemmatizer, and then the respective best performing model for the Inflection task is used to generate the target clause. For German, we have used the ParZu Dependency Parser (Sennrich et al., 2009, 2013) to handle both lemmatization and separable verbs. For French, we have used the spaCy pipeline (Honnibal et al., 2020). Both for German and French, we additionally handled clauses involving auxiliary verbs.

Analysis Pipeline For German, French, and Russian the task was split into two parts: lemmatization
and morphological tagging. For the lemmatization part, we have used the ParZu Dependency Parser for German, and spaCy pipelines for French and Russian. For the morphological tagging subtask in the analysis task, we have trained simple linear classifiers on top of BERT/RoBERTa embeddings of the input clause. For German, we have used the base cased BERT model from HuggingFace (Chan et al., 2020); for French, we have used the CamemBERT base cased model from HuggingFace (Martin et al., 2020); and for Russian, we have used the pre-trained base cased RuBERT model from DeepPavlov.AI (Kuratov and Arkhipov, 2019).

3 Experimental Settings

3.1 Dataset

There are eight languages with varying linguistic complexity that comes from different language families: English, French, German, Hebrew, Russian, Swahili, Spanish, Turkish. For Hebrew there are two versions as Hebrew-vocalized and Hebrew-unvocalized.

For each language in each three tasks as described before; there is one training set, one development set, and one test set which does not have labels. Training data for each language contains 10,000 instances, and there are 1,000 samples in development and test sets. However, Swahili and Spanish are surprise languages that announced two weeks before the final submission day, together with the unlabeled test data for each language.

3.2 Evaluation

Models are evaluated according to Exact Match (EM), Edit Distance (ED), and F1 accuracy. For task1 (inflection) and task2 (reinflection) ED is the leaderboard metric. On the other hand, F1 score is the leaderboard metric for task3 (analysis).

EM accuracy represents the ratio of correctly predicted lemma and features, and ED is calculated based on Levenshtein Distance which indicates how different two strings are, (the ground truth and prediction for our case) from each other. F1 accuracy is the harmonic mean of the precision and recall. F1 accuracy is upweighted for the lemma score in our task. In the leaderboard, the results are averaged across each language.

3.3 Shared Tasks

3.3.1 Task1: Inflection

We have achieved the best results by using either a vanilla Transformer architecture or TagTransformer. Data hallucination method improved our results significantly, except for Russian and Spanish. It decreased our accuracy both for EM and ED accuracy in Russian and Spanish, so, we did not apply any augmentation techniques for these languages. We have achieved the best performances with \(N=5,000 \) hallucinated data for German, French, Hebrew/Hebrew-unvoc, Swahili, and \(N=2,500, N=1,000 \) for English and Turkish, respectively.

As suggested in Wu et al. (2021), we examined the effect of the large batch sizes that results with an increase in accuracy. Thus, we set the batch size to 400 and we trained our models for 20 epochs. We used Adam optimizer by setting \(\beta_1 \) to 0.9 and \(\beta_2 \) to 0.98. We started with a learning rate of 0.001 and linearly increase it with 4,000 warm-up steps. Then, we decrease it with the inverse of the square-root for the remaining steps. We have used label smoothing with a factor of 0.1 and applied the same dropout rate of 0.3.

3.3.2 Task2: Reinflection

For all the models that we used for reinflection task; we tried both (i) giving the all source data as input, and (ii) using only the inflected clause and its desired features. We have examined that, both our EM and ED accuracy increased when we
Task1: Inflection	Task2: Reinflection	Task3: Analysis		
Deu	Transformer + Hall (N=5000)	Pipeline		
EM↑	ED↓	EM↑	ED↓	F1↑
89.43 ± 0.011	0.464 ± 0.025	88.50	0.464	95.90
Eng	Transformer + Hall (N=2500)	Prefix-Tuning		
EM↑	ED↓	EM↑	ED↓	F1↑
97.13 ± 0.006	0.118 ± 0.008	95.23 ± 0.016	0.126 ± 0.035	99.21 ± 0.013
Fra	Transformer + Hall (N=5000)	Pipeline		
EM↑	ED↓	EM↑	ED↓	F1↑
93.43 ± 0.002	0.202 ± 0.056	92.20	0.327	97.90
Heb	Transformer + Hall (N=5000)	Transformer		
EM↑	ED↓	EM↑	ED↓	F1↑
95.67 ± 0.005	0.135 ± 0.017	84.25 ± 0.036	0.800 ± 0.301	95.37 ± 0.014
Heb-unvoc	Transformer + Hall (N=5000)	TagTransformer		
EM↑	ED↓	EM↑	ED↓	F1↑
92.77 ± 0.002	0.288 ± 0.015	65.50 ± 0.023	0.923 ± 0.019	86.00 ± 0.014
Rus	Transformer + Hall (N=5000)	Transformer		
EM↑	ED↓	EM↑	ED↓	F1↑
92.23 ± 0.005	0.912 ± 0.129	89.23 ± 0.012	0.985 ± 0.020	95.50
Swa	Transformer + Hall (N=5000)	Transformer		
EM↑	ED↓	EM↑	ED↓	F1↑
97.70 ± 0	0.039 ± 0.001	74.20 ± 0.024	0.391 ± 0.024	85.79 ± 0.009
Spa	Transformer	Transformer		
EM↑	ED↓	EM↑	ED↓	F1↑
94.13 ± 0.005	0.227 ± 0.024	75.77 ± 0.022	0.547 ± 0.044	95.90 ± 0.008
Tur	TagTransformer + Hall (N=1000)	TagTransformer		
EM↑	ED↓	EM↑	ED↓	F1↑
99.90 ± 0	0.001 ± 0	68.90 ± 0.025	0.849 ± 0.099	94.56 ± 0.012
Average				
EM↑	ED↓	EM↑	ED↓	F1↑
94.71 ± 0.004	0.265 ± 0.030	81.53 ± 0.022	0.601 ± 0.077	94.01 ± 0.048

Table 2: Development results for all tasks and languages with the corresponding models. **Task1: Inflection** and **Task2: Reinflection** objectives are Exact Match (EM) and Edit Distance (ED), and F1 score for **Task3: Analysis**. Results are averaged over 3 runs and the official shared MRL2022 evaluation script was used to get the exact results.
ignore source clause’s features. We used the same vanilla Transformer architecture for Hebrew, Russian, Swahili, and Spanish and the same TagTransformer model for Heb-unvoc and Turkish. All the training parameters are exactly the same with ones that are described in the Inflection part.

For the LLM tuning approach, we have used a conditional generation procedure based on the prefix-tuning method described in Li and Liang (2021), only for English. The source and target are given together with the trainable prefixes, i.e. continuous prompt vectors, and the gradient optimization made across these prefixes. For the mGPT-based Prefix-Tuning model, we have used the Huggingface, Wolf et al. (2019) and the corresponding model weights sberbank-ai/mGPT. The prefixes were trained for 7 epochs with a batch size of 5. We used Adam optimizer with weight decay fix which is introduced in Loshchilov and Hutter (2017) with $\beta_1=0.9$ and $\beta_2=0.999$. The learning rate is initialized to 5×10^{-5} and a linear scheduler is used without any warm-up steps.

3.3.3 Task3: Analysis

We have used the prefix-tuning method, again for analysis, because of its success in the low-level source of data: English, Swahili, Spanish and Turkish compared to other LMs. The prefix template was given as the source and the features were masked. Vanilla Transformer model was used for Hebrew and unvocalized Hebrew. The clause-level input was given and target lemma together with its features were expected from the output like a machine translation task. mGPT prefix tuning was done for 10 epochs and all other training parameters identical for the ones used in reinflection task. Also, Transformer training parameters are identical to the ones used in reinflection task.

For morphological tagging, the classifier models have 2 linear layers of size matching the LLM’s embedding dimensions with drop-out layers in between with a drop-out rate of 0.2, followed by a ReLU activation. The mean of the cross entropy losses for all morphological features (tags) was taken as the loss. All classifiers were trained for 20 epochs.

3.4 Results

Our development results for each task and language are provided in Table 2. The announced results by the shared task are in the Table 3 which are evaluated among the provided unlabeled test set.

Model	Inflection	Reinflection	Analysis
Transformer Baseline	3.278	4.642	0.800
mT5 Baseline	2.577	2.826	0.845
KUIS-AI	0.266	0.560	0.950

Table 3: Submitted results for MRL shared task that is averaged across 9 languages. Metrics for the inflection and reinflection tasks is the edit distance, and for analysis the metric is averaged F1 score with the lemma being treated as an up-weighted feature.

In task1, the vanilla Transformer mostly beats TagTransformer except for Turkish. TagTransformer’s special embeddings work surprisingly well for Turkish and it achieves 99.9% EM accuracy and 0.001 ED on development data, which is almost perfect. For Task2, the vanilla Transformer works better since it achieved the best results across 4 languages. Our pipeline increased our results compared to transformer models for German and French. On the other hand, the prefix-tuning method works well for English with mGPT. Finally, in task3, prefix-tuning achieves the best results for four different languages. Again, it achieves a remarkable accuracy score for English. On the other hand, our pipeline gives promising results for German, French, and Russian. Vanilla Transformer works quite well for Hebrew, but it still needs to be improved for Hebrew-unvocalized case.

When we look the Table 2 in row-vise for each language, our pipelines beat other models for German and French. Prefix-tuning is the winner model for English across each task. Transformer achieved the best results for Hebrew, Hebrew-unvoc, Russian, Swahili, Spanish and TagTransformer is the most successful model for Turkish.

4 Related Work

Word-level morphological tasks have been studied to a great extent, with LSTM (Wu and Cotterell, 2019; Cotterell et al., 2016; Malaviya et al., 2019; Sahin and Steedman, 2018), GRU (Conforti et al., 2018), variants of Transformer Vaswani et al. (2017); Wu et al. (2021) and other neural models (e.g., invertible neural networks (Sahin and Gurevych, 2020)). Unlike word-level, there is limited work on clause-level morpho-syntactic modeling. Goldman and Tsarfaty (2022) presents a new dataset for clause-level morphology covering 4 typologically-different languages (English, German, Turkish, and Hebrew); motivates redefining
the problem at the clause-level to enable the cross-linguistical study of neural morphological modeling; and derives clause-level inflection, reinflection, and analysis tasks together with baseline model results.

Pre-trained LLMs have been successfully applied to downstream tasks like sentiment analysis, question answering, named entity recognition, and part-of-speech (POS) tagging (Devlin et al., 2019; Yang et al., 2019; Raffel et al., 2020). Even though, there is limited work on applications of LLMs to morphological tasks, it has been demonstrated that using pretrained contextualized word embeddings can significantly improve the performance of models for downstream morphological tasks. Inoue et al. (2022) explored BERT-based classifiers for training morphosyntactic tagging models for Arabic and its dialect. Anastasyev (2020) explored the usage of ELMo and BERT embeddings to improve the performance of joint morpho-syntactic parser for Russian. Hofmann et al. (2020) used a fine-tuning approach to BERT for the derivational morphology generation task. Finally, Seker et al. (2022) presented a large pre-trained language model for Modern Hebrew that shows promising results at several tasks.

On the other hand, since fine-tuning LLMs requires to modify and store all the parameters in a LM that results with a huge computational cost, Rebuffi et al. (2017); Houlsby et al. (2019) used adapter-tuning which adds task-specific layers (adapters) between the each layer of a pre-trained language model and tunes only the 2%-4% parameters of a LM. Similarly, Li and Liang (2021) proposed prefix-tuning which is a light-weight alternative method for adapter-tuning that is inspired by prompting.

5 Conclusion

In this paper, we have adapted the state-of-the-art methods in language modeling into multilingual clause-level morphology tasks: inflection, reinflection, and analysis. Due to the different complexity between tasks and the varying morphological characteristics of languages, there is no single best model that achieves the best results for each task in each language. Thus, we have implemented different types of models with different objectives. On average, we have achieved the best results for every three tasks among all participants.

For inflection, the vanilla Transformer and TagTransformer model with special embeddings achieve the best results, and data hallucination substantially improves accuracy. However, the hyperparameter N (the number of hallucinated samples) has a crucial role in the accuracy and should be selected carefully for each language.

The reinflection task is more challenging compared to the other tasks due to its complex input form. To overcome this issue, we have removed the original feature tags from the input. We only used the inflected clause and target features in the input. We used mGPT-based prefix-tuning for English, vanilla Transformer for Hebrew, Russian, Swahili, Spanish, and TagTransformer for Hebrew-unvocalized and Turkish as our models. We also followed a pipeline to reduce the reinflection task to the inflection task by running lemmatization on the input clause and inference. We have used the top-performing model for the inflection tasks on the lemma for German and French for that.

Finally, for the analysis task, we have used a vanilla Transformer for Hebrew and Hebrew-unvocalized, prefix-tuning method for English, Swahili, Spanish and Turkish. We also designed a pipeline using external lemmatization tools and morphological feature classifiers using pre-trained LM embeddings for German, French, and Russian as our models.

Acknowledgements

This work is supported by KUIS-AI Center from Koç University, Istanbul. We gratefully acknowledge this support. Also, special thanks to Betül Özates for the help for Turkish dependency parser. Last but not least, we would like to kindly thank our organizers for answering our questions and for the effort they have made to fix the issues that we struggled with during the competition.

References

Antonios Anastasopoulos and Graham Neubig. 2019. Pushing the limits of low-resource morphological inflection. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pages 984–996. Association for Computational Linguistics.

D.G. Anastasyev. 2020. Exploring pre-trained models for joint morpho-syntactic parsing of Russian. volume 2020-June, page 1 – 12. Cited by: 4; All Open Access, Bronze Open Access.
Branden Chan, Stefan Schweter, and Timo Müller. 2020. German’s next language model. In Proceedings of the 28th International Conference on Computational Linguistics, COLING 2020, Barcelona, Spain (Online), December 8-13, 2020, pages 6788–6796. International Committee on Computational Linguistics.

Costanza Conforti, Matthias Huck, and Alexander M. Fraser. 2018. Neural morphological tagging of lemma sequences for machine translation. In Proceedings of the 13th Conference of the Association for Machine Translation in the Americas, AMTA 2018, Boston, MA, USA, March 17-21, 2018 - Volume 1: Research Papers, pages 39–53. Association for Machine Translation in the Americas.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman, David Yarowsky, Jason Eisner, and Mans Hulden. 2016. The SIGMORPHON 2016 shared task - morphological reinflection. In Proceedings of the 14th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, Berlin, Germany, August 11, 2016, pages 10–22. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 4171–4186. Association for Computational Linguistics.

Omer Goldman and Reut Tsarfaty. 2022. Morphology without borders: Clause-level morphological annotation. CoRR, abs/2202.12832.

Valentin Hofmann, Janet B. Pierrehumbert, and Hinrich Schütze. 2020. Dagobert: Generating derivational morphology with a pretrained language model. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, pages 3848–3861. Association for Computational Linguistics.

Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adrian Boyd. 2020. spacy: Industrial-strength natural language processing in python.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. Parameter-efficient transfer learning for NLP. CoRR, abs/1902.00751.

Go Inoue, Salam Khalifa, and Nizar Habash. 2022. Morphosyntactic tagging with pre-trained language models for arabic and its dialects. In Findings of the Association for Computational Linguistics: ACL 2022, Dublin, Ireland, May 22-27, 2022, pages 1708–1719. Association for Computational Linguistics.

Yuri Kuratov and Mikhail Y. Arkhipov. 2019. Adapta- tion of deep bidirectional multilingual transformers for russian language. CoRR, abs/1905.07213.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: Optimizing continuous prompts for generation. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6, 2021, pages 4582–4597. Association for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2017. Fixing weight decay regularization in adam. CoRR, abs/1711.05101.

Chaitanya Malaviya, Shijie Wu, and Ryan Cotterell. 2019. A simple joint model for improved contextual neural lemmatization. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 1517–1528. Association for Computational Linguistics.

Louis Martin, Benjamin Müller, Pedro Javier Ortiz Suárez, Yoann Dupont, Laurent Romary, Éric de la Clergerie, Djämë Seddah, and Benoît Sagot. 2020. Camembert: a tasty french language model. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pages 7203–7219. Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yangi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 21:140:1–140:67.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. 2017. Learning multiple visual domains with residual adapters. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 506–516.

Gözde Gül Sahin and Iryna Gurevych. 2020. Two birds with one stone: Investigating invertible neural networks for inverse problems in morphology. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 7814–7821. AAAI Press.

Gözde Gül Sahin and Mark Steedman. 2018. Character-level models versus morphology in semantic role labeling. In Proceedings of the
Amit Seker, Elron Bandel, Dan Bareket, Idan Brusilovsky, Refael Shaked Greenfeld, and Reut Tsarfaty. 2022. Alephbert: Language model pre-training and evaluation from sub-word to sentence level. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, pages 46–56. Association for Computational Linguistics.

Rico Sennrich, Gerold Schneider, Martin Volk, and Martin Warin. 2009. A new hybrid dependency parser for german. Proceedings of the German Society for Computational Linguistics and Language Technology, pages 115–124.

Rico Sennrich, Martin Volk, and Gerold Schneider. 2013. Exploiting synergies between open resources for german dependency parsing, pos-tagging, and morphological analysis. In Recent Advances in Natural Language Processing, RANLP 2013, 9-11 September, 2013, Hisar, Bulgaria, pages 601–609. RANLP 2013 Organising Committee / ACL.

Oleh Shliazhko, Alena Fenogenova, Maria Tikhonova, Vladislav Mikhailov, Anastasia Kozlova, and Tatiana Shavrina. 2022. mgpt: Few-shot learners go multilingual. CoRR, abs/2204.07580.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. CoRR, abs/1706.03762.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew. 2019. Huggingface’s transformers: State-of-the-art natural language processing. CoRR, abs/1910.03771.

Shijie Wu and Ryan Cotterell. 2019. Exact hard monotonic attention for character-level transduction. In Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pages 1530–1537. Association for Computational Linguistics.

Shijie Wu, Ryan Cotterell, and Mans Hulden. 2021. Applying the transformer to character-level transduction. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, EACL 2021, Online, April 19 - 23, 2021, pages 1901–1907. Association for Computational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019. Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 5754–5764.