Insular and Hippocampal Gray Matter Volume Reductions in Patients with Major Depressive Disorder

Mirjam Stratmann1,*, Carsten Konrad1,*, Harald Kugel1, Axel Krug1, Sonja Schöning3, Patricia Ohrmann2, Christina Uhlmann2, Christian Postert2,4, Thomas Suslow5, Walter Heindel1, Volker Arolt2, Tilo Kircher1, Udo Dannlowski1,2

1 Department of Psychiatry, University of Marburg, Marburg, Germany, 2 Department of Psychiatry, University of Münster, Münster, Germany, 3 Department of Clinical Radiology, University of Münster, Münster, Germany, 4 Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Münster, Münster, Germany, 5 Department of Psychosomatic Medicine and Psychotherapy, University of Leipzig, Leipzig, Germany

Abstract

Background: Major depressive disorder is a serious psychiatric illness with a highly variable and heterogeneous clinical course. Due to the lack of consistent data from previous studies, the study of morphometric changes in major depressive disorder is still a major point of research requiring additional studies. The aim of the study presented here was to characterize and quantify regional gray matter abnormalities in a large sample of clinically well-characterized patients with major depressive disorder.

Methods: For this study one-hundred thirty two patients with major depressive disorder and 132 age- and gender-matched healthy control participants were included, 35 with their first episode and 97 with recurrent depression. To analyse grey matter abnormalities, voxel-based morphometry (VBM8) was employed on T1 weighted MRI data. We performed whole-brain analyses as well as a region-of-interest approach on the hippocampal formation, anterior cingulate cortex and amygdala, correlating the number of depressive episodes.

Results: Compared to healthy control persons, patients showed a strong gray-matter reduction in the right anterior insula. In addition, region-of-interest analyses revealed significant gray-matter reductions in the hippocampal formation. The observed alterations were more severe in patients with recurrent depressive episodes than in patients with a first episode. The number of depressive episodes was negatively correlated with gray-matter volume in the right hippocampus and right amygdala.

Conclusions: The anterior insula gray matter structure appears to be strongly affected in major depressive disorder and might play an important role in the neurobiology of depression. The hippocampal and amygdala volume loss cumulating with the number of episodes might be explained either by repeated neurotoxic stress or alternatively by higher relapse rates in patients showing hippocampal atrophy.

Citation: Stratmann M, Konrad C, Kugel H, Krug A, Schöning S, et al. (2014) Insular and Hippocampal Gray Matter Volume Reductions in Patients with Major Depressive Disorder. PLoS ONE 9(7): e102692. doi:10.1371/journal.pone.0102692

Editor: Bogdan Draganski, Centre Hospitalier Universitaire Vaudois - CHUV, UNIL, Switzerland

Received January 13, 2014; Accepted June 20, 2014; Published July 22, 2014

Copyright: © 2014 Stratmann et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The study was supported by grants of Innovative Medizinische Forschung (IMF) of the Medical Faculty of Münster (DA120309 to UD, DA111107 to UD, and DA211012 to UD) and Rolf-Dierichs-Stiftung (ZUW80037 to UD) to Udo Dannlowski. Furthermore this work was supported by a grant to Carsten Konrad by the Interdisciplinary Center for Clinical Research (IZKF FG4) of the University of Münster, Germany. Financial Disclosures: Prof. Volker Arolt, MD, PhD is member of advisory boards and/or gave presentations for the following companies: Astra-Zeneca, Janssen-Organon, Eli Lilly, Lundbeck, Pfizer, Servier, and Wyeth. He also received grants from Astra-Zeneca, Lundbeck, and Wyeth. He chaired the committee for the "Wyeth Research Award Depression and Anxiety". Carsten Konrad has received a travel grant by Lundbeck. These co-operations have no relevance to the work covered in the manuscript. All other authors (Mirjam Stratmann, Harald Kugel, Axel Krug, Sonja Schöning, Patricia Ohrmann, Christina Uhlmann, Christian Postert, Thomas Suslow, Walter Heindel, Tilo Kircher, Udo Dannlowski) have no conflicts of interest to declare, financial or otherwise. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: Prof. Volker Arolt, MD, PhD is member of advisory boards and/or gave presentations for the following companies: Astra-Zeneca, Janssen-Organon, Eli Lilly, Lundbeck, Pfizer, Servier, and Wyeth. He also received grants from Astra-Zeneca, Lundbeck, and Wyeth. He chaired the committee for the "Wyeth Research Award Depression and Anxiety". Carsten Konrad has received a travel grant by Lundbeck. These cooperations have no relevance to the work covered in the manuscript. All other authors (Mirjam Stratmann, Harald Kugel, Axel Krug, Sonja Schöning, Patricia Ohrmann, Christina Uhlmann, Christian Postert, Thomas Suslow, Walter Heindel, Tilo Kircher, Udo Dannlowski) have no conflicts of interest to declare, financial or otherwise. This does not alter the authors’ adherence to PLOS ONE policies on sharing data and materials.

* Email: Carsten.Konrad@uk-gm.de
9 These authors contributed equally to this work.

Introduction

Major depressive disorder (MDD) is an affective disorder causing significant disability and suffering. With a lifetime prevalence of about 16% [1] it is the most prevalent mood disorder and one of the leading causes of burden of disease [2]. The neuroanatomical substrates of major depression are so far inconsistent and still under debate. To understand the neurobi-
Table 1. Sociodemographic characteristics of the whole sample.

Comparison: Controls with	Category	Patients	Controls	Statistics *
All patients	n	132	132	
Age in years (SD)	37.86 (11.87)	37.82 (11.42)	t = –0.026	p = 0.979
Female/male	76/56	74/58	x² = 0.062	p = 0.804
MWT-B (SD)	112.02 (13.42)	118.43 (11.52)	t = 4.163	p = 0.001
Patients with first depressive episode	n	35	35	
Age in years (SD)	34.86 (11.69)	35.14 (11.14)	t = 0.105	p = 0.917
Female/male	21/14	19/16	x² = 0.233	p = 0.629
MWT-B (SD)	110.06 (11.96)	117.69 (11.27)	t = 2.801	p = 0.007
Patients with recurrent depressive episodes	n	97	97	
Age in years (SD)	38.94 (11.81)	38.78 (11.41)	t = –0.093	p = 0.926
Female/male	55/42	55/42	x² = 0.000	p = 1.000
MWT-B (SD)	112.73 (13.89)	118.70 (11.81)	t = 3.223	p = 0.001

SD = standard deviation.
MWT-B: Multiple-choice vocabulary test.
* Group differences were computed using independent sample t-test for continuous and Chi-square-test for categorial variables. The level of statistical significance was set at p < 0.05.
doi:10.1371/journal.pone.0102692.t001

In the context of the study, a voxel-based morphometry (VBM) approach was employed to analyze the structural brain changes associated with major depressive disorder (MDD). The goal was to gain insights into the neuroanatomical correlates of depression, particularly focusing on recurrent MDD.

The studies on MDD have consistently reported volumetric reductions in the anterior cingulate cortex (ACC) [11, 19–23], while other studies have included patients with recurrent episodes [17, 24–29]. Additionally, the presence of melancholic depression [17] was considered, and studies varied significantly in terms of the number of depressive episodes, duration of illness, and medication status.

The morphological correlates of subgroups of MDD, such as patients with comorbid panic or anxiety disorder, have been the subject of several studies, with a notable increase in research on melancholic depression [17]. Most studies have employed MRI and voxel-based morphometry (VBM) techniques to analyze these changes. However, the results have been inconsistent, with some studies reporting significant gray matter reductions in the ACC and other regions, while others did not find significant differences.

The aim of this study was to characterize and quantify regional gray matter abnormalities in a large sample of clinically well-characterized patients with major depressive disorder by using voxel-based morphometry (VBM). As one particularity of this study, analysis of patient sub-groups, e.g., patients with first depressive episodes and patients with recurrent episodes, was performed.
Using state-of-the-art 3T-MR imaging, in the first step, gray-matter reductions in patients with MDD in comparison to healthy control subjects were investigated in an exploratory whole-brain analysis. According to the literature, we hypothesize, that there are widespread gray matter volume reductions in patients with MDD, involving structures of the mentioned networks. We hypothesized, that gray matter volume reductions were stronger in patients with a long duration of illness.

Because of inconsistent results of previous studies, we were especially interested in gray matter alterations of the limbic system. Therefore, in the next step, the role of the limbic system was prompted using ROI-analyses on pre-defined limbic regions (hippocampus, amygdala). According to the literature we hypothesize, that significant structural changes will occur in the hippocampus in patients with first depressive episode and in patients with recurrent depressive episodes. We further hypothesize, that structural changes will occur in the amygdala in patients with first and recurrent depressive episodes. We hypothesize, that gray matter volume reductions in hippocampus and amygdala were stronger in patients with a long duration of illness.

In further post-hoc analyses, we explored the influence of severity of depressive symptoms (BDI, HDRS), comorbid anxiety disorder, and possible influences of medication on regional gray matter volume in exploratory whole-brain analyses.

Methods and Materials

Subjects

One-hundred thirty two patients with MDD and 132 healthy control participants were recruited at the University Hospital of Münster from 2005 to June 2011. MDD and control groups were matched concerning age and gender (Table 1). The patients’ ages ranged from 18 to 60 years. All participants were right-handed according to the Edinburgh Handedness Inventory [37].

MDD participants were assessed by an experienced psychiatrist and met criteria for diagnosis of DSM-IV MDD. Inclusion criteria were diagnosis of either first (n = 35) or recurrent episode (n = 97) of unipolar depression, verified by the standardized SCID-I Interview (Structured Clinical Interview for DSM-IV; German version, [38]). Patients with a history of hypomanic and manic episodes as well as patients with comorbid alcohol or substance abuse (life time diagnosis) were excluded from this study. Anxiety disorder as comorbidity was not an exclusion criteria provided that it was not the primary reason for current hospitalization. Forty-one patients with a comorbid anxiety disorder were included (Table 2). Patients with further comorbid axis-I and axis-II disorders were excluded from the study. Serious head injury in the past, past or current serious medical or neurological disease, neurodegenerative diseases as well as MRI contraindications were further exclusion criteria. None of the patients had a history of electroconvulsive therapy in the past. One-hundred twenty-six patients were treated according to current treatment guidelines [39] and six patients did not receive any medication. The following antidepressants were prescribed as antidepressive monotherapy (n = 76), antipsychotic monotherapy (n = 2), combined antidepressive therapy (n = 22), or combined antidepressive/antipsychotic therapy (n = 26): selective serotonin-noradrenaline-reuptake-inhibitors (SSNRI) (n = 62), Mirtazapine (n = 44), selective serotonin-reuptake-inhibitors (SSRI) (n = 37), selective noradrenaline-reuptake-inhibitors (SNRI) (n = 6), tricyclic antidepressants (n = 4), Agomelatine (n = 3), Bupropion (NDRI) (n = 2), atypical antipsychotics (n = 27). Eight patients were taking lithium.

Table 2. Clinical characteristics of the patients’ sample (n = 132).

	MDD first depressive episode n = 35	MDD recurrent depressive episodes n = 97	Statistics*
Age in years (SD)	34.86(11.69)	38.94(11.81)	t = –1.758
Female/male	21/14	55/42	p = 0.081
Verbal IQ (MWT-B)	110.06(11.96)	112.73(13.89)	x² = 0.115
Number of depressive episodes	1	4.9 (4.5); 2–20	x² = 0.003
Time since diagnosis (months)	14.66 (15.73)	121.75 (109.64)	x² = 0.003
HDRS mean (standard deviation)	19.46 (9.94)	20.85 (8.10)	x² = 0.003
BDI mean (standard deviation)	21.06 (10.71)	22.83 (11.13)	x² = 0.003
Comorbidities			
No comorbidities	24	67	
Comorbidities: anxiety disorders	11	30	
Medication			
No medication	2	4	
Antidepressive monotherapy	22	54	
Antipsychotic monotherapy	0	2	
Combined antidepressive therapy	5	17	
Combined antidepressive/antipsychotic therapy	6	20	

MDD: major depressive disorder. SD = standard deviation. MWT-B: Multiple-choice vocabulary test. HDRS: Hamilton Depression Rating Scale. BDI: Beck’s Depression Inventory. * Group differences were computed using independent sample t-test for continuous and Chi-square-test for categorical variables. The level of statistical significance was set at p<0.05. doi:10.1371/journal.pone.0102692.t002
alone or in combination with other antidepressive or antipsychotic medication; five patients were taken mood stabilizers (Lamotrigine \((n = 4)\), Topiramate \((n = 1)\)). None of the patients was taking benzodiazepines at the time of testing. (Details concerning medication: Table 2 and Table S1).

One-hundred thirty-two control persons, belonging to the same sociodemographic environment as the patients were recruited by advertisement in the local newspaper. All control subjects underwent an initial telephone screening to ensure matching criteria, and received a full SCID-interview to exclude psychiatric diagnoses. Further exclusion criteria were neurological and neurodegenerative diseases, serious medical diseases, any psychotropic medication as well as MRI contraindications.

Verbal intelligence was estimated using the multiple-choice vocabulary test [MWT-B] [40]. Current depression severity was assessed by means of the Hamilton Depression Rating Scale (HDRS) [41] and Beck Depression Inventory (BDI) [42].

Ethics Statement

The study was conducted in accordance with the Declaration of Helsinki. Approval was obtained from the ethics committee at the University of Münster. After a comprehensive description of the study to the participants, written informed consent was obtained.

MRI data acquisition

MRI data acquisition was performed in a 3 Tesla whole-body scanner (Intera T 3.0, Philips, Best, NL). A circularly polarized transmit/receive birdcage head coil with an HF reflecting screen at the cranial end was used for spin excitation and resonance signal acquisition. For each participant, a T1 structural MRI image was acquired using a 3D last gradient echo sequence (‘Turbo Field Echo’, TR = 7.4 ms, TE 3.4 ms, FA = 9°, 2 signal averages, inversion prepulse every 814.5 ms, acquired over a field of view of 256 (FH)\(\times\)204 (AP)\(\times\)160 (RL) mm, phase encoding in AP and RL direction, reconstructed to cubic voxels of 0.5 mm edge length). All MRI images were visually inspected for artifacts and anatomical abnormalities as well as neurodegenerative changes.

There was an upgrade of the scanner gradient system in 2008 (“Master” Gradient System to “Quasar Dual” Gradient System). 69 patients and 50 controls were included before and 63 patients and 82 controls were included after the upgrade \((N = 132)\). All MRI scans were conducted seven weeks apart, probably reflecting the much shorter period between the two time points.

Voxel-based morphometry

Data were preprocessed using the VBM8-toolbox (http://dbm. neuro.uni-jena.de/vbm.html). Default settings were used. Structural images were bias-corrected, tissue-classified and normalized to Montreal Neurological Institute space using linear (12-parameter affine) and nonlinear transformations, within a unified model [43] including high-dimensional DARTEL normalization. Gray-matter volume per voxel was calculated by applying an absolute threshold masking of 0.2 and modulating the normalized segmented images with a non-linear only warping. This results in an analysis of relative differences in regional gray-matter volumes, which are corrected for different brain sizes. To check the quality of the segmentation and normalization procedures, the normalized, bias-corrected images were visually inspected. In addition, covariance between normalized segmented images was calculated to check homogeneity of variance and to identify potential outliers. MRI images with artifacts, anatomical abnormalities as well as neurodegenerative changes were excluded from this study. Finally the normalized, segmented and modulated volumes were smoothed with an 8 mm full width at half maximum (FWHM) Gaussian kernel.

Statistical analyses

Statistical analyses of the structural MRI images were conducted using 2nd level models implemented in SPM8 software (Wellcome Department of Imaging Neuroscience Group, London, UK; http://www.fil.ion.ucl.ac.uk/spm). Group statistics were calculated using independent sample t-tests, correlation analyses were conducted using multiple regression analyses. Whole brain analyses as well as region-of interest (ROI) approaches were conducted. Time of gradient upgrade, age, sex and MWT-B [40] were entered as covariates of no interest in all analyses.

To control for multiple statistical testing within the entire brain, we maintained a cluster-level false-positive detection rate at p < 0.05 using a voxel-level threshold of p < 0.001 with a cluster extend \((k)\) empirically determined by Monte Carlo simulations \((n = 1000\) iterations), by means of AlphaSim procedure [44], implemented in the REST toolbox (http://www.restfmri.net/forum/REST_V1.7) [45]. AlphaSim procedure is a well-accepted and established approach to control for multiple statistical testing determined by Monte Carlo simulations within the entire brain as well as in ROI-analyses [44,46]. The empirically determined cluster threshold for whole brain analyses was \(k = 139\) voxels. The anatomical labelling of the identified cluster regions were done by reference to the AAL-definitions [47].

According to previously described affected brain regions in patients with MDD we defined the following ROIs using the AAL-definitions [47]: hippocampus + parahippocampal gyrus, amygdala and ACC, each bilaterally. ROI-Masks were created by means of the Wake Forest University (WFU) PickAtlas toolbox, Version 2.5.2. (http://fmr.i.wfubmc.edu/cms/software). To control for multiple statistical testing in ROI-analyses, we performed the AlphaSim procedure as described above. In comparison to whole brain analyses, we used a voxel-level threshold of p < 0.01. The empirically determined clusters thresholds were \(k = 109\) for the bilateral hippocampus + parahippocampal gyrus mask, \(k = 10\) for the bilateral amygdala mask and \(k = 120\) for the bilateral ACC mask.

In a first step, we compared structural gray-matter volume differences between all patients \((n = 132)\) and all healthy control subjects \((n = 132)\) participating in the study. To evaluate possible
differences between patients with first episode of MDD and patients with recurrent episodes, as compared to healthy control subjects, we further compared patients with first episodes (n = 35) versus controls (n = 35) and patients with recurrent episodes (n = 97) versus controls (n = 97). In all analyses, MDD and control samples were matched according to age and gender. Time of gradient upgrade, age, sex and MWT-B [40] were entered as covariates of no interest in all multiple regression analyses. AlphaSim procedure was performed to control for multiple statistical testing in all multiple regression analyses as described above.

In addition, we also compared patients with first depressive episode and patients with recurrent depressive episodes. To assess the correlation between regional gray-matter volume and number of depressive episodes in patients with MDD (n = 132) we performed whole brain multiple regression analyses. To access specifically the influence of number of depressive episodes on hippocampus, amygdala and ACC, we performed multiple regression analyses in predefined regions of interest as described above. Time of gradient upgrade, age, sex and MWT-B [40] were entered as covariates of no interest in all multiple regression analyses. AlphaSim procedure was performed to control for multiple statistical testing in all multiple regression analyses as described above.

In further post-hoc analyses, we explored the influence of severity of depressive symptoms (BDI, HDRS), comorbid anxiety disorder, and possible influences of medication on regional gray matter volume. To prevent possible influences of lithium-medication, we repeated the described whole brain group analyses in the same way after excluding patients with a lithium-medication (n = 8). Furthermore, we performed a whole brain group analysis comparing patients with (n = 28) and without (n = 104) antipsychotic medication to evaluate possible influences of antipsychotics on gray matter volume. To evaluate possible differences between patients with co-morbid anxiety disorder (n = 41) and patients without co-morbidity we performed a whole brain group analyses. We explored the influence of severity of depressive symptoms by performing whole brain multiple regression analyses both with BDI and HAMD as additional covariates. Time of gradient upgrade, age, sex and MWT-B [40] were entered as covariates of no interest in all described analyses. AlphaSim procedure was performed to control for multiple statistical testing as described above.

Results

Demographic data and clinical characteristics of the subjects

In order to ensure comparability between patients and control persons, age ranges as well as gender ratios were balanced (Table 1). We found that in the overall sample patients with MDD had significant lower verbal intelligence (MWT-B) values than healthy controls (Table 1). Therefore, MWT-B was included as covariate.

Comparing patients with first depressive episode (n = 35) and patients with recurrent depressive episodes (n = 97), there were no significant differences according to age, gender and MWT-B. The average number of depressive episodes of all patients was 3.9 (4.2; range: 1–20). The average duration of the current depressive episode (n = 71) was 29.31 weeks (range: 1–144, SD: 33.12). Cumulative duration of depressed episodes (n = 75) was 28.09 months (range: 0–180, SD: 31.95). The average time since diagnosis (n = 132) was 93.36 months (range: 0–564, SD: 105.49). The average HDRS and BDI scores for depressed patients were 20.48 (8.61) and 22.35 (11.01) respectively. There were no significant differences according to acuity, comorbid anxiety disorder and medication between the patients groups (Table 2).

VBM-analyses: regional gray matter alterations in MDD versus control participants

There were no significant differences in global gray-matter volume (MDD: 625.75 (Standard deviation (SD): 58.99), controls: 629.27 (SD: 54.37), t = .505, p = .614), global white matter volume (MDD: 518.00 (SD: 56.71), controls: 513.92 (SD: 61.19), t = .561, p = .575) and total brain volume (MDD: 1143.75 (SD: 106.39), controls: 1143.19 (SD: 108.95), t = −.041, p = .697) between patients and controls.

Whole-brain analyses. According to our hypothesis, we found widespread gray matter volume reductions in patients with MDD. Compared to healthy control participants, patients with MDD showed significant gray-matter reductions in the right
Table 3. Results of whole brain voxel-based morphometry (VBM) analyses.

Contrast	Anatomical region	Side	Cluster size	MNI Coordinates (mm)	Z-Score	p-value (uncorr.)
A) Con>Pat	Insula	R	775	36 23 -5	4.47	<0.001
	SPL	L	393	-24 -72 45	4.36	<0.001
	STG	L	757	-60 -1 -3	3.98	<0.001
	STG	R	338	56 -7 -12	3.94	<0.001
	Parahippocampal Gyrus	L	446	-27 -31 -20	3.80	<0.001
B) Con>Pat with first depressive episode	No significant differences found in any region					
C) Con>Pat with rec. depressive episodes	SPL	L	434	-24 -72 46	4.47	<0.001
	MTG	L	1224	-62 -10 -9	4.40	<0.001
	STG	R	945	60 -7 -11	4.32	<0.001
	Insula	R	470	38 23 -5	4.29	<0.001
	MTG	R	174	52 -69 4	3.48	<0.001

Contrasts: A) all MDD patients (n = 132) versus healthy controls (n = 132), B) patients with first depressive episode (n = 35) versus healthy controls (n = 35), C) patients with recurrent depressive episodes (n = 97) versus healthy controls (n = 97). Analyses where conducted at p < 0.001, uncorrected, k = 139 voxels.

MDD: major depressive disorder.
Con: controls; Pat: patients.
STG: superior temporal gyrus.
SPL: superior parietal lobule.
MTG: middle temporal gyrus.
L: left; R: right.
doi:10.1371/journal.pone.0102692.t003
anterior insula, superior temporal gyrus bilaterally, left superior parietal gyrus and left parahippocampal gyrus. (Table 3, Figure 1). We could not find significant gray matter deficits in the anterior cingulate cortex as well as in the frontal cortex, orbitofrontal cortex, ventral striatum and thalamus.

According to our hypothesis, gray matter volume reductions were stronger in patients with a long duration of illness. There were no differences in regional gray-matter volumes between patients with first depressive episodes and healthy control subjects (Table 3, Figure 1). Patients with recurrent depressive episodes showed significant gray-matter reductions in the right anterior insula, right superior temporal gyrus, bilateral middle temporal gyrus and left superior parietal gyrus compared to healthy control subjects (Table 3, Figure 1).

In contrast to our hypotheses, patients with recurrent depressive episodes did not show significant regional gray-matter reductions compared to patients with first depressive episode.

According to our hypotheses, there were no gray-matter volume increases in patients with MDD detectable.

Region of interest analyses of the limbic system. According to our hypothesis, patients with first as well as with recurrent depressive episodes showed gray matter volume reductions in the hippocampal formation. Patients with recurrent episodes showed parahippocampal volume reductions in the left hemisphere, while in patients with first depressive episodes volume reductions were evident in both hemispheres (Table 4, Figure 2).

In contrast to our hypothesis, ROI analyses of ACC and amygdala revealed no significant gray-matter volume reductions in patients with MDD.

VBM-analyses: clinical correlations
In the whole brain analysis, the number of depressive episodes was negatively correlated with the gray-matter volume in the right superior frontal gyrus (p<0.001, k = 139) (Table 5). According to our hypotheses, ROI analyses (Table 5) revealed significant negative correlations of the number of depressive episodes and gray-matter volume in the right hippocampus (p = 0.003, k = 109) (Figure 3) as well as in the right amygdala (p = 0.004, k = 10).

ROI analyses of ACC revealed no significant negative correlations of the number of depressive episodes and gray-matter volume.

Exploring the influence of depression severity, there was a negative correlation between HDRS-score and gray-matter volume in the right postcentral gyrus (p<0.001; k = 291). In contrast, no significant correlation between BDI and gray-matter volume was observed.

In comparison to patients without anxiety comorbidities, patients with anxiety comorbidities showed gray-matter volume reductions in the right postcentral gyrus (p<0.001; k = 171).

Excluding patients with lithium medication from the group comparison between patients with MDD and healthy controls did not change the results. There were no significant differences in regional gray matter volume between patients with and without antipsychotic medication.

Discussion
In this study we used VBM to investigate gray-matter volume differences between a large group of patients with unipolar major depression and a well-matched healthy control group and related our findings to clinical characteristics such as number of depressive episodes. In comparison to other studies with comparable sample sizes [33,48], all patients were investigated in one institution with the same 3T-scanner and under identical measurement conditions. As one particularity of this study, analysis of patient sub-groups, e.g. patients with first depressive episodes and patients with recurrent episodes within the same sample, was performed. We could demonstrate gray matter volume reductions in insular as well as limbic regions.

In the present study, the most significant gray-matter reductions in patients with MDD in comparison to healthy controls were identified in the right anterior insula. The majority of the studies, investigating insula morphology [16,18,19], including our own, reported gray-matter reductions in the anterior parts of the insula. Importantly, the laterality of gray-matter reduction of the insula varies across these studies. A majority of studies describe volume reductions of the left insula [16–18], while others report bilateral volume reductions [19,49] or volume reductions in the right

Figure 2. Gray matter volume reductions in the region-of interest (ROI) parahippocampal gyrus+hippocampus bilaterally. Gray matter volume reduction in ROI gyrus+hippocampus bilaterally in all MDD patients versus healthy controls (orange), patients with first depressive episode versus healthy controls (yellow) and patients with recurrent depressive episodes versus healthy controls (red) (Table 4). (Region-of-interest analyses, p<0.01, k = 109; view: MNI: −27 −29 −20). doi:10.1371/journal.pone.0102692.g002
Table 4. Results of region-of-interest (ROI) analyses of the ROI hippocampus + parahippocampal gyrus bilaterally.

Contrast	Anatomical region	Side	Cluster size	MNI Coordinates (mm)	Z-Score	p-value (uncorr.)
A) Con. Pat | Parahippocampal gyrus | L | 288 | 0 27 27 | 3.71 | <0.001
B) Con | Parahippocampal gyrus | L | 125 | 2 26 43 | 3.02 | <0.001
P < 0.01, uncorrected, k = 109 voxels.

Contrasts: A) MDD patients (n = 132) versus healthy controls (n = 132), B) patients with first depressive episode (n = 35) versus healthy controls (n = 35), C) patients with recurrent depressive episodes (n = 97) versus healthy controls (n = 97) and D) patients with first depressive episode (n = 35) versus patients with recurrent depressive episodes (n = 97). Analyses were conducted at p < 0.01, uncorrected, k = 109 voxels.

ROI: region of interest.
MDD: major depressive disorder.
Con: controls; Pat: patients.
L: left; R: right.

While only a minority of studies does not share this reported structural abnormality in major depressive disorder [11,16,30,31]. Reduced hippocampal volume is a frequently studies reporting parahippocampal gray-matter volume reductions to healthy control subjects. These results are consistent with other studies reporting parahippocampal gray-matter volume reductions [11,16,30,31]. Reduced hippocampal volume is a frequently reported structural abnormality in major depressive disorder [66,67] while only a minority of studies does not share this
observation [68–71]. Meta-analyses confirmed that in the aggregate the hippocampus is reduced in patients with major depression [66,67,72,73]. Study results differ in localization of hippocampal volume loss with studies showing bilateral [11,28,49,74–77], left unilateral [30,78–80] and right unilateral [31,81,82] atrophy, which might be due to potential influencing factors like age, illness duration, recurrences, illness severity, comorbidity, medication or definition of hippocampal borders in MR images [83]. With respect to clinical variables influencing hippocampal volume, findings are inconsistent [67,84]. In a meta-analysis, McKinnon et al [67] could demonstrate that decreased hippocampal volumes were apparent only in patients with more than one depressive episode or with an illness duration of more than 2.5 years. In contrast, there are also studies reporting hippocampal atrophy in first episode depression [66,80,85] and even in healthy subjects at high risk for depression [86–88] and with early life stress [89,90]. In the present study we could demonstrate that decreased gray-matter volume in the hippocampal formation was evident already in patients with a first depressive episode as well as in patients with recurrent depressive episodes in comparison to healthy controls. Furthermore we could demonstrate a negative correlation between the gray-matter volume of the right hippocampus and the number of depressive episodes. This finding is consistent with other studies describing inverse correlations between hippocampal gray-matter volume and illness duration/number of depressive episodes [91–94]. Our study results support the idea that hippocampal volume reductions and long illness duration [91,95] respectively duration of untreated depressive symptoms [96] may be related. This is in accordance with the neurotoxicity hypothesis of hippocampal atrophy in MDD, explaining hippocampal volume reduction by prolonged exposure to stress-induced biochemical abnormalities, mediated e.g. via HPA-axis, BDNF, or inflammatory processes [46,97]. Arnone et al [96] reported gray matter increase in the hippocampus following acute treatment and remission. The study results are consistent with preclinical studies showing that neuroplastic changes in the hippocampus follow antidepressant treatment [98,99]. Comparable results have been reported after successful treatment with electroconvulsive therapy [100]. Taken together, there is growing evidence, that hippocampal atrophy is state dependent.

An alternative explanation for hippocampal atrophy in MDD is provided by the vulnerability hypothesis, suggesting that hippocampal atrophy is a pre-existing risk factor for MDD [97] and is therefore already evident in first depressive patients. A limitation of our study is the lack of information about early life stress and genetic information. Therefore we could not test the influence of these factors on hippocampal volume in patients and healthy controls.

Hippocampal volume reductions seem to be clinically relevant. In several studies [30,68,80,91–103], larger hippocampal volumes were associated with better clinical responses/remission and with lower relapse rates in comparison to patients with small hippocampal volumes. Therefore small hippocampal volumes may predict poor treatment outcome and increased risk of relapse of depression [84], which is extremely relevant in assessing the further prognosis. As part of the limbic system and limbic-cortical-striatal-pallidal-thalamic networks [84], the hippocampus plays an important role in memory-related cognitive processes as well as in motivation and emotion [75,76]. Hippocampal atrophy may therefore reflect impaired hippocampal function and connectivity, related to depressive symptomatology [75,76,84]. In conclusion, our results of hippocampal volume loss in patients with first as well as in patients with recurrent depressive episodes and the finding of an inverse correlation of number of depressive episodes and hippocampal volume reduction support the idea of a combination of the neurotoxicity and vulnerability hypothesis as an explanatory model for hippocampal volume loss in patients with MDD.

The amygdala is another important structure of the limbic system, closely related to the hippocampus. In the present study we found a negative correlation between gray-matter volume of the right amygdala and number of depressive episodes. On the other hand, we could not find reduced gray-matter volume of the amygdala in patients with MDD at group comparison level. Previous volumetric studies of the amygdala showed inconsistent results with studies reporting unchanged [104–106], increased [105,107–110] as well as reduced volumes [69,94,111–114] in patients with MDD. Also meta-analyses showed contradictory findings [3–5,115]. These discrepancies may be due to different clinical characteristics of the samples, such as medication [116], depression severity [94,109], or illness duration/number of
depressive episodes [3,105,107,108,114]. Our finding of an inverse correlation of number of depressive episodes and amygdala volume goes in line with study results of Kronenberg et al. [114] and may be an indicator that depression decreases amygdala volume [114]. In contrast, other authors did not report this association [69,105,117]. In the absence of significant differences at group comparison level, interpretation of our data should be taken very carefully and remain to some degree speculative. Therefore, it is still unclear, if volumetric changes in the amygdala are trait or state-markers. Longitudinal studies are needed to answer this question.

Methodological limitations
Brain-imaging analyses usually suffer from limitations in patients comparabilities. Heterogeneity of and even in the studied samples is one of the main problems in the inconsistency of MRI findings in depression. As mentioned in the introduction, there are diverse confounding factors. Especially the influences of co-morbidity and of the mostly unique medication history are hard to control and are likely to confound results. This has to be kept in mind, when interpreting study results. On the other hand, recruiting a sample of drug-naïve patients without any co-morbidity leads generally to small sample sizes.

A good approach for controlling possible pharmacological effects is to consider the cumulative drug dose that patients were exposed to prior to the MRI scan. To improve comparability of medication, equivalent dosages can be calculated. In terms of antipsychotic medication, chlorpromazine equivalence is an often used approach [118], but also other calculated (e.g. maximum dose and daily-defined dose,) and consensus approaches exist [118]. In terms of antidepressant medication, a classification of Sackeim et al. [119] is frequently used. As mentioned above, in the study presented, we included a large sample of patients with a great heterogeneity in medication. Stratification according to single antidepressants would have resulted in small subgroups. Unfortunately, medication history in many patients remained vague, thus calculation of cumulative drug dose would have been too speculative. Therefore we cannot comment on pharmacological effects and specific studies on medication effects on brain volume are needed. It is known that antidepressants may exert neurotrophic or neuroprotective effects [120–124]. However, this effect would lead to volume increases in patients and might have attenuated, but not caused the volume loss observed here. Nevertheless, excluding patients with lithium medication did not change our results. In addition, there were no significant differences in regional gray matter volume between patients with and without antipsychotic medication.

Comorbid disorders were carefully considered here. Comorbidity of depression and anxiety disorder is frequent in MDD [125–128]. In a VBM-study, van Tol [33] could demonstrate similar as well as different gray-matter volume differences in patients with and without anxiety disorder in comparison to healthy control subjects. In our study, the only structure differing between patients with and without anxiety disorder comorbidity was a gray-matter reduction in the right postcentral gyrus in patients with anxiety disorders.

A limitation of our study is the lack of information about early life stress and genetic information as well as psychiatric family history. These are important information to differ between state- and trait-dependent changes. We cannot exclude possible influences of these lacking information on brain volumes of healthy controls included in this study. Further studies are needed, including subjects who are at risk for MDD, for example relatives.
of MDD patients and persons with a history of abuse and stressful early life events.

Generally, the interpretation of results of this study and any VBM-based analysis should be taken with care. VBM cannot offer direct information about the underlying cellular mechanism mediating the observed effects. It is nonspecific with respect to the underlying tissue and does not provide information on the molecular and cellular mechanisms of the analyzed brain regions. Phenomena visible with VBM are never the result of a single process; moreover there are the result of a multifactorial process including multiple cellular modifications, for example cell density, cell size, myelination and vascularization. All these factors affect relaxation times and therefore influence voxel intensities on a T1-weighted image [129]. The exact molecular and cellular mechanisms of volumetric changes during the course of depressive disorder and their influences on brain function still remain unclear. Therefore deductive reasoning from volumetric changes to functional changes remains speculative to some degree, including the distinction of state versus trait markers [96].

Taking into account the mentioned limitations, studies combining the use of different neuroimaging techniques (VBM, DTI, fMRI) in combination with more precise anatomical techniques (e.g. manual or automated segmentation [13], measurement of cortical thickness, fiber tracking) and in combination with molecular techniques like MR-spectroscopy are needed. Taking into account possible influences and structural and functional brain studies over the course of depressive disorder, longitudinal studies are needed. In this connection, neuroimaging techniques offer the advantage, that they can be repeatedly performed in the same individual.

Supporting Information

Table S1 List of pharmacological treatment including antidepressants, antipsychotics, lithium and mood stabilizers.

Author Contributions

Conceived and designed the experiments: CK UD. Performed the experiments: CK UD. Analyzed the data: MS CK UD. Contributed reagents/materials/analysis tools: MS CK HK AK SS PO CU CP TS WH VA TK UD. Wrote the paper: MS CK UD.
29. Li CT, Lin CP, Chou KH, Chen YJ, Hsieh JC, et al. (2010) Structural and cognitive deficits in remitting and non-remitting recurrent depression: a voxel-based morphometry study. Neuroimage 50: 347–356.

30. Frodl TS, Koutsourikis N, Bottleder R, Born C, Jager M, et al. (2008) Depression-related variation in brain morphology over 3 years: effects of stress? Arch Gen Psychiatry 63: 1156–1163.

31. Abe O, Yamasue H, Kasai K, Yamada H, Aoki S, et al. (2010) Voxel-based analyses of gray/white matter volume and diffusion tensor data in major depression. Psychiatry Res 181: 64–70.

32. Salvadoro G, Nugent AC, Lemaire H, Luckenbaugh DA, Timney R, et al. (2011) Prefrontal cortical abnormalities in currently depressed versus previously depressed patients with major depressive disorder. Neuroimage 54: 2643–2652.

33. van Tol MJ, van der Wee NJ, van den Heuvel OA, Nielen MM, Demensena LR, et al. (2010) Regional brain volume in depression and anxiety disorders. Arch Gen Psychiatry 67: 1002–1011.

34. de Azevedo-Marecos Pe Nteric C, Duran FL, Zanetti MV, Santos LC, Murray RM, et al. (2011) A population-based morphometric MRI study in patients with first-episode psychotic bipolar disorder: comparison with geographically matched healthy controls and major depressive disorder subjects. Bipolar Disord 13: 95–104.

35. Schindler S, Geyer S, Strauß M, Anwander A, Hegedi Ú, et al. (2012) Structural studies of the hypothalamus and its nuclei in mood disorders. Psychiatry Res 201: 1–9.

36. Whitwell JL (2009) Voxel-based morphometry: an automated technique for the analysis of MRI data. Neurotherapeutics 6: 174–187.

37. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J (1961) An inventory for measuring depression. Arch Gen Psychiatry 4: 561–571.

38. Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23: 56–62.

39. Kaymak SU, Demir B, Sentürk S, Tatar I, Aldur MM, et al. (2010) Childhood stress, serotonin transporter gene and brain structures in major depression. Neuropsychopharmacology 35: 1383–1390.

40. Lehrl S, Triebig F, Fischer B (1995) Multiple-choice vocabulary test MWT as a tool for the preclinical detection of Alzheimer’s disease. Biol Psychiatry 37: 1933–1942.

41. Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23: 56–62.

42. Inkster B, Rao AW, Ridler K, Nichols TE, Saemann PG, et al. (2011) Improved assessment of significant activation in functional magnetic resonance imaging data processing. PLoS Comput Biol 7: e1002085.

43. Inkster B, Rao AW, Ridler K, Nichols TE, Saemann PG, et al. (2011) Improved assessment of significant activation in functional magnetic resonance imaging data processing. PLoS Comput Biol 7: e1002085.

44. Inkster B, Rao AW, Ridler K, Nichols TE, Saemann PG, et al. (2011) Improved assessment of significant activation in functional magnetic resonance imaging data processing. PLoS Comput Biol 7: e1002085.

45. Song XW, Dong ZY, Long XY, Li SF, Zuo XN, et al. (2011) REST: a toolkit for the analysis of brain connectivity. Neuroimage 54: 229–241.

46. Stephani C, Fernandez-Baca Vaca G, Maricain R, Kounbei M, Luders HO (2013) Functional neuroanatomy of the insular lobe. Brain Struct Funct 216: 157–149.

47. Shelley BP, Trimbler MR (2004) The insular lobe of Reil—its anatomo-functional, behavioural and neuropsychiatric attributes in humans—a review. World J Biol Psychiatry 5: 176–200.

48. Mesulam MM, Mufson EJ (1982) Insula of the old world monkey. I. Anatomical definition and interhemispheric connections. Brain Cereb Circulation 41: 519–540.

49. Arcevedo-Marques Freixo C, Duran FL, Zanetti MV, Santos LC, Murray RM, et al. (2011) A population-based morphometric MRI study in patients with first-episode psychotic bipolar disorder: comparison with geographically matched healthy controls and major depressive disorder subjects. Bipolar Disord 13: 95–104.

50. Schindler S, Geyer S, Strauß M, Anwander A, Hegedi Ú, et al. (2012) Structural studies of the hypothalamus and its nuclei in mood disorders. Psychiatry Res 201: 1–9.

51. Whessel JL (2009) Voxel-based morphometry: an automated technique for the analysis of MRI data. Neurotherapeutics 6: 174–187.

52. Medford N, Critchley HD (2010) Conjoint activity of anterior insular and rostral cingulate cortex in time perception in the anterior insula. Philos Trans R Soc Lond B Biol Sci 364: 1049–1061.

53. Lehrl S, Triebig F, Fischer B (1995) Multiple-choice vocabulary test MWT as a tool for the preclinical detection of Alzheimer’s disease. Biol Psychiatry 37: 1933–1942.

54. Kronmüller KT, Schröder J, Köhler S, Götz B, Victor D, et al. (2009) Reduced hippocampus volume in middle-aged patients with first-episode major depression. J Affect Disord 117: 135–143.

55. Malykhin NV, Carter R, Seres P, Coupland NJ (2010) Structural changes in the midbrain of patients with bipolar disorder. J Psychiatry Neurosci 35: 337–343.
85. Frodl T, Meisenzahl EM, Zetzsche T, Born C, Groll C, et al. (2002) Hippocampal changes in patients with a first episode of major depression. Am J Psychiatry 159: 1112–1118.
86. Baar WF, Vinberg M, Knudsen GM, Paulson OB, Langkilde AK, et al. (2010) Hippocampal volume changes in healthy subjects at risk of unipolar depression. J Psychiatr Res 44: 655–662.
87. Chen MC, Hamilton JP, Gotlib IH (2010) Decreased hippocampal volume in healthy girls at risk of depression. Arch Gen Psychiatry 67: 270–276.
88. Rao U, Chen LA, Bidesi AS, Shad MU, Thomas MA, et al. (2010) Hippocampal volume changes associated with early-life adversity and vulnerability to depression. Biol Psychiatry 67: 357–364.
89. Frodl T, O’Keane V (2012) Does the brain deal with cumulative stress? A review with focus on developmental stress, HPA axis function and hippocampal structure in humans. Neurobiol Dis.
90. Dannlowski U, Stuhrmann A, Beutelmann V, Zwanzer P, Lenzen T, et al. (2012) Limbic scars: long-term consequences of childhood maltreatment revealed by functional and structural magnetic resonance imaging. Biol Psychiatry 71: 296–293.
91. Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related hippocampal and amygdala changes in major depression: a 3-year prospective magnetic resonance imaging study. J Psychiatry Neurosci 33: 423–430.
92. Sheline YI, Wang PW, Gado MH, Csernansky JG, Vannier MW (1996) Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci U S A 93: 3908–3913.
93. MacQueen GM, Campbell S, McEwen BS, Macdonald K, Amano S, et al. (2013) State-dependent changes in hippocampal grey matter in depression. Mol Psychiatry 18: 1263–1272.
94. Sheline YI (2011) Depression and the hippocampus: cause or effect? Biol Psychiatry 70: 308–309.
95. Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59: 1116–1127.
96. Malberg JE, Esch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20: 9104–9110.
97. Nordenström P, Dahlström U, Larsson MR, Larsson EM, Knutsen L, et al. (2010) Increase in hippocampal volume after electroconvulsive therapy in patients with depression: a volumetric magnetic resonance imaging study. J ECT 26: 62–67.
98. Hou Z, Yuan Y, Zhang Z, Bai F, Hou G, et al. (2012) Longitudinal changes in hippocampal volumes and cognition in remitted geriatric depressive disorder. Behav Brain Res 227: 10–15.
99. Frodl T, Meisenzahl EM, Zetzsche T, Hohne T, Banac S, et al. (2004) Hippocampal and amygdala changes in patients with major depressive disorder and healthy controls during a 1-year follow-up. J Clin Psychiatry 65: 492–499.
100. MacQueen GM, Yucel K, Taylor VH, Macdonald K, Joffe R (2008) Posterior hippocampal volumes are associated with remission rates in patients with major depressive disorder. Biol Psychiatry 60: 880–883.
101. Mervava E, Fohr J, Könönen M, Valkonen-Korhonen M, Vainio P, et al. (2000) Quantitative MRI of the hippocampus and amygdala in severe depression. Psychiatr Med 30: 117–125.
102. Frodl T, Meisenzahl EM, Zetzsche T, Born C, Jager M, et al. (2003) Larger amygdala volumes in first depressive episode as compared to recurrent major depression and healthy control subjects. Biol Psychiatry 53: 330–341.
103. Munan MA, Alexopoulos J, Nishino T, Rabbi CM, Flaké LA, et al. (2007) Amygdala volume analysis in female twins with major depression. Biol Psychiatry 62: 415–422.
104. Lange C, Irlé E (2004) Enlarged amygdala volume and reduced hippocampal volume in young women with major depression. Psychol Med 34: 1059–1064.
105. Weniger G, Lange C, Irlé E (2006) Abnormal size of the amygdala predicts impaired emotional memory in major depressive disorder. J Affect Disord 94: 219–229.
106. Lorenzetti V, Allen NB, Whittle S, Yucel M (2010) Amygdala volumes in a sample of current depressed and remitted depressed patients and healthy controls. J Affect Disord 120: 112–119.
107. Malykhin NV, Carter R, Hegedorn KM, Seres P, Coupland NJ (2012) Fronto-limbic volumetric changes in major depressive disorder. J Affect Disord 136: 1104–1113.
108. Sheline YI, Gado MH, Price JL (1998) Amygdala core nuclei volumes are decreased in recurrent major depression. Neuroreport 9: 2023–2028.
109. Hickie IB, Naismith SL, Ward PB, Scott EM, Mitchell PB, et al. (2007) Serotonin transporter gene status predicts caudate nucleus but not amygdala or hippocampal volumes in older persons with major depression. J Affect Disord 90: 137–142.
110. von Gunten A, Fox NC, Cipolotti L, Ron MA (2000) A volumetric study of hippocampus and amygdala in depressed patients with subjective memory problems. J Neuropsychiatry Clin Neurosci 12: 493–498.
111. Kronenberg G, Tethart van Est L, Regen F, Deuschle M, Heuser I, et al. (2009) Reduced amygdala volume in newly admitted psychiatric in-patients with unipolar major depression. J Psychiatry Res 43: 1112–1117.
112. Sacher J, Neumann J, Fünfstück T, Soliman A, Villringer A, et al. (2011) Mapping the depressed brain: A meta-analysis of structural and functional alterations in major depressive disorder. J Affect Disord.
113. Hamilton JP, Siemer M, Gotlib IH (2008) Amygdala volume in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Mol Psychiatry 13: 993–1000.
114. Monkal ES, Hatch JP, Niccoliti MA, Spence S, Brambilla P, et al. (2007) Fronto-limbic brain structures in suicidal and non-suicidal female patients with major depressive disorder. Mol Psychiatry 12: 360–366.
115. Patel MX, Arika IA, Taylor M, Barnes TR (2013) How to compare doses of different antidepressics: a systematic review of methods. Schizophr Res 149: 141–148.
116. Sackeim HA (2001) The definition and meaning of treatment-resistant depression. J Clin Psychiatry 62 Suppl 16: 10–17.
117. Bremner JD, Vermetten E (2004) Neuroanatomical changes associated with pharmacotherapy in posttraumatic stress disorder. Ann N Y Acad Sci 1032: 154–157.
118. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, et al. (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301: 805–809.
119. Vythilingam M, Vernetti E, Anderson GM, Luckenbaugh D, Anderson ER, et al. (2004) Hippocampal volume, memory, and cortisol status in major depressive disorder: effects of treatment. Biol Psychiatry 56: 101–112.
120. Manji HK, Moore GJ, Chen G (2000) Clinical and preclinical evidence for the neurotrophic effects of mood stabilizers: implications for the pathophysiology and treatment of manic-depressive illness. Biol Psychiatry 48: 740–754.
121. Moore GJ, Bechbchi JM, Wilds IB, Chen G, Manji HK, et al. (2000) Lithium-induced increase in human brain grey matter. Lancet 356: 1241–1242.
122. Belzer K, Schnierer FR (2004) Comorbidity of anxiety and depressive disorders: issues in conceptualization, assessment, and treatment. J Psychiatr Pract 10: 296–306.
123. Klein Hofmeijer-Sevink M, Batelaan NM, van Megen HJ, Penning CW, Cath DC, et al. (2012) Clinical relevance of comorbidity in anxiety disorders: a report from the Netherlands Study of Depression and Anxiety (NISDA). J Affect Disord.
124. Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE (2005) Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 62: 617–627.
125. JM G (1996–1997) Comorbid depression and anxiety spectrum disorders. Depress Anxiety 9: 160–168.
126. Zatorre RJ, Fields RD, Johansen-Berg H (2012) Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci 15: 528–536.