On the origin of Lyα absorption in nearby starbursts and implications for other galaxies

Hakim Atek¹, Daniel Schaerer²,³, Daniel Kunth¹

1 Institut d’Astrophysique de Paris (IAP), 98bis boulevard Arago, 75014 Paris, France
2 Observatoire de Genève, Université de Genève, 51 Ch. des Maillettes, 1290 Sauverny, Switzerland
3 Laboratoire d’Astrophysique de Toulouse-Tarbes, Université de Toulouse, CNRS, 14 Avenue E. Belin, 31400 Toulouse, France

Received date; accepted date

ABSTRACT

Context. Despite the privileged position that Lyman-α (Lyα) emission line holds in the exploration of the distant universe and modern observational cosmology, the origin of the observed diversity of Lyα profiles remains to be thoroughly explained. Observations of nearby star forming galaxies bring their batch of apparent contradictions between Lyα emission and their physical parameters, and call for a detailed understanding of the physical processes at work. IZw 18, one of the most metal-poor galaxies known is of particular interest in this context.

Aims. Fitting the Lyα spectrum of IZw 18 to understand the origin of the damped absorption profile and its spatial variations across the NW region. To establish a general picture of the physical parameters governing the Lyα strength and profile both in local and in high-z galaxies.

Methods. We use a 3D Lyα radiation transfer code to model Hubble Space Telescope (HST) observations of IZw 18. Observational constraints of relevant parameters such as dust or H i column density are derived from previous studies and from the present analysis. Different geometrical configurations of the source and the neutral gas are explored.

Results. The integrated Lyα profile of NW region of IZw 18 is reproduced using the observed small amount of dust ($E(B-V) \approx 0.05$) and a spherical H i shell with $N_{\text{HI}} = 6.5 \times 10^{21}$ cm$^{-2}$. Such a high column density makes it possible to transform a strong Lyα emission ($E_{\text{Lyα}} = 60$ Å) into a damped absorption even with a small extinction. When a slab geometry is applied and a given line of sight is chosen, the Lyα profile can be successfully reproduced with no dust at all and $N_{\text{HI}} = 3 \times 10^{21}$ cm$^{-2}$. The spatial variations of the profile shape are naturally explained by radiation transfer effects, i.e. by scattering of Lyα photons, when the observed surface brightness profile of the source is taken into account. In the case of outflowing Inter Stellar Medium (ISM), as commonly observed in Lyman Break Galaxies (LBGs), a high N_{HI} and dust content are required to observe Lyα in absorption. For nearly static neutral gas as observed in IZw 18 and other low luminosity galaxies only a small amount of dust is required provided a sufficiently high N_{HI} covers the galaxy. We also show how geometrical and apertures effects affect the Lyα profile.

Key words. Galaxies: starburst – Galaxies: ISM – Ultraviolet: galaxies – Radiative transfer – Galaxies: individual: IZw 18

1. Introduction

The detection of high redshift (z) galaxies has become, through the last decade, a routine fact, although the discovery of primordial galaxies that are forming their first stars still remains a challenge. Depending on the selection techniques, mainly two classes of galaxies are found: Lyman Break Galaxies (LBGs) selected by their UV continuum break, and Lyman-Alpha Emitters (LAEs) selected upon their Lyman-α emission. For nearly static neutral gas as observed in IZw 18 and other low luminosity galaxies only a small amount of dust is required provided a sufficiently high N_{HI} covers the galaxy. We also show how geometrical and apertures effects affect the Lyα profile.

See Schaerer (2007) for an overview.

¹ Based on observations made with the Hubble Space Telescope obtained from the ESO/ST-ECF Science Archive Facility.

¹ See Schaerer (2007) for an overview.
ity fields in the ISM (Kunth et al. 1998, Lequeux et al. 1995), an inhomogeneous ISM (Neufeld 1991; Giavalisco et al. 1996; Hansen & Peng Oh 2000), underlying stellar absorption (Valls-Gabaud 1993), and star formation duty cycles (Valls-Gabaud 1993; Malhotra & Rhoads 2002).

Also an “unifying” scenario to explain the observed diversity of Lyα profiles in terms of an evolutionary sequence of starburst driven super-shells/superwind has been presented by Tenorio-Tagle et al. (1999), and has been confronted with local starburst observations by Mas-Hesse et al. (2003). For distant galaxies, Schaerer & Verhamme (2008); Verhamme et al. (2008) have recently shown – using radiation transfer models and empirical constraints – that Lyα line profiles of high-z LBGs and LAEs can widely be reproduced and that the diversity of Lyα from emission to absorption is mainly due to an increase of the dust content and the H\textsc{i} column density. Despite this progress, a global picture identifying the main processes and explaining this diversity also in a quantitative manner is still missing for Lyα in local/nearby galaxies. Furthermore differences between the high and low redshift samples – if any – must be understood. We here provide a first step towards these goals by examining and modeling one of the most metal-poor star forming galaxies in the local Universe, IZw 18, and by putting it into context.

Since its discovery by Zwicky (1966), IZw 18 has been studied extensively, and it remains one of the most metal-poor galaxies known today (Skillman & Kennicutt 1993; Izotov & Thuan 1999). Its main H\textsc{i} region (called the NW region, cf. Fig. 1) showing strong optical emission lines is clearly a site of very recent (< 10 Myr) and/or ongoing massive star formation (cf. Hunter & Thronson 1993; de Mello et al. 1998; Brown et al. 2002). Therefore the finding of a broad damped Lyα absorption line by Kunth et al. (1994, 1998) came as a surprise, where strong emission was predicted, giving the strong optical H recombination lines and the low dust content expected for such low metallicities (cf. Kunth et al. 1994; Terlevich et al. 1993). Observations of SBS 0335-052, nearly as metal-poor as IZw 18, showed later a similarly broad profile (Thuan & Izotov 1997). However, since compared to IZw 18, SBS 0335-052 has a higher extinction and is now known to harbour more dust both in absolute terms (dust mass) and in relative terms (LIR/L*\textsubscript{UV}) (Thuan et al. 1999; Houck et al. 2004; Wu et al. 2007; Engelbracht et al. 2008), it is a priori more challenging to explain Lyα absorption in IZw 18 than in SBS 0335-052. For these reasons IZw 18 represents an ideal test case to understand how strong intrinsic Lyα emission is transformed to the observed broad Lyα absorption, in a dust poor (but not dust-free), very metal-poor galaxy.

Kunth et al. (1994, 1998) suggested that both dust absorption and multiple scattering of Lyα photons out of their narrow (2.0″ x 2.0″) GHRS/HST aperture are the most natural explanation for the observed weakness of Lyα in IZw 18. They also noted that all galaxies showing Lyα absorption (4/8 in their small sample) showed nearly static neutral gas, which must increase the mean free path of Lyα photons. However, the IUE spectrum of IZw 18 taken with an entrance hole of 20″ x 10″ shows basically the same profile, indicating that at least over 5–10 times larger scales no significant amount of Lyα emission is recovered. In any case, whether quantitatively these explanations are viable remains to be seen. This is one of the concrete goals of the present paper.

To address the above questions we will use the most recent observations of IZw 18 and our state-of-the-art 3D Lyα and UV continuum radiation transfer code MCLya (Verhamme et al. 2006). This will in particular allow us to carefully examine in a quantitative manner the possible explanations leading to Lyα absorption in IZw 18. Finally we will also discuss other nearby starbursts with Lyα absorption, and place the local objects in a broader context.

Our paper is structured as follows. In Sect. 2 we describe the main observations from HST and other facilities and summarize the main observational constraints. In Sect. 3 we set out to explain the Lyα absorption in IZw 18, discussing our radiation transfer modeling tool, geometrical effects, and presenting modeling results for different ISM geometries. Our results for IZw 18 are discussed and compared to other nearby and high-z starbursts in Sect. 4. In Sect. 5 we summarize our main conclusions.

2. Observations

The main observational data used in this paper are summarized in Table 1.

Instrument	Filter/Grating	Band	Exposure time [s]	Proposal ID
STIS	G140M	Lyα	1764	GO-8302
STIS	G140L	Lyα	40360	GO-9054
STIS	F25SRF2	FUV	5331	GO-9054
STIS	F250TQ	NUV	5786	GO-9054
WFCPC2	F487N	Hzγ	2500	GO-6536
WFCPC2	F658N	Hzα	4600	GO-5434
WFCPC2	F450W	B	4600	GO-5434
WFCPC2	F675W	R	2000	GO-5434

Instrument	Filter/Grating	Band	Exposure time [s]	Proposal ID
STIS	G140M	Lyα	1764	GO-8302
STIS	G140L	Lyα	40360	GO-9054
STIS	F25SRF2	FUV	5331	GO-9054
STIS	F250TQ	NUV	5786	GO-9054
WFCPC2	F487N	Hzγ	2500	GO-6536
WFCPC2	F658N	Hzα	4600	GO-5434
WFCPC2	F450W	B	4600	GO-5434
WFCPC2	F675W	R	2000	GO-5434

Note: Total integration time in the 7 slit positions

2.1. Spectroscopy

We use in this work archival spectroscopic observations obtained, with the Space Telescope Imaging Spectrograph (STIS) onboard HST, under program GO-9054, by Brown et al. (2002). G140L grating was used combined with the 52′′ x 0.5′′ slit. IZw 18 was spatially covered with seven adjacent slit positions along its main axis (see Fig. 1). Standard calibrations were performed using the CALSTIS pipeline (Ver 2.26), and exposures (two) for each position are registered and co-added. In addition, data were corrected for geocoronal Lyα emission by fitting and subtracting the nearby background regions in individual spectra. This calibration and spectra extraction were performed using IRAF and IDL routines.

In Fig. 2 we show the spatial variations of the Lyα profile across the NW region. Spectra were extracted from the seven adjacent positions of the STIS long slit covering the galaxy in the NE-SW axis, providing spatial information in two directions. Flux was then integrated in each slit along a 4′′ aperture centered on the NW component of IZw 18. Finally, an integrated spectrum of the NW region was also constructed from these integrated slit spectra. The strength of the Lyα absorption in these spectra is quantified by its equivalent width and corresponding H\textsc{i} column density, N\textsubscript{HI}, determined assuming a Voigt profile and b = 20 km s-1 (cf. below). These values are reported in Table 2.
Hakim Atek, Daniel Schaerer, Daniel Kunth: On the origin of Lyα absorption in starbursts

Fig. 1. FUV Image of IZw 18 showing the different observation apertures. The FOV is 16″ × 18″. The first slit position is in the NE direction and the seventh toward the SW. The integration is performed within a region of 4″ along the spatial axis of the North-West region and is marked with dashed lines.

Fig. 2. STIS spectra of the NW region of IZw 18 taken at different locations (cf. Fig. 1). The slit positions 4 to 7 show the variation of the profile shape from the center to the edge of NW region. For comparison, the integrated spectrum in the seven slits over the center of NW region is over-plotted. All spectra were normalized to the continuum value determined in Fig. 3. For the sake of clarity, a cut-off is applied on geocoronal emission residuals and spectra are smoothed with a 3-pixels boxcar.

Earlier, Lyα observations of IZw 18 were obtained by Kunth et al. (1994) and later on by Kunth et al. (1998) using the Large Science Aperture (LSA, 2″ × 2″) of GHRS onboard HST (see Fig. 1). Mas-Hesse et al. (2003) (hereafter MH03) re-observed the galaxy with better settings using STIS with G140M grating through a 52″ × 0.5″ longslit, translating to a spectral resolution around 0.15Å (37 km s⁻¹ at Lyα wavelength). The longer wavelength range of the STIS observations allows a better coverage of the Lyα absorption red wing, as compared to GHRS spectrum, and confirms the large damped Lyα absorption. In Fig. 3, we plot together the STIS and GHRS spectra. Due to differences in the instrument apertures, the spectra had to be matched. To fit and estimate the UV continuum (dashed line) we used the archival STIS observations that allows a broad wavelength coverage to include the absorption wings. All the spectra were then normalized to the value where the Lyα red wing reaches this continuum (∼1300Å). The different Lyα profiles obtained are in good agreement. A correct estimation of the continuum around Lyα is particularly important for the modeling of the Lyα spectral profile (see Sect. 3.2).

Clearly, Lyα shows a broad absorption over the entire extent of the NW region. The width of the profile corresponds to an H\textsc{i} column density of N\textsubscript{H\textsc{i}} ∼ (0.3 – 3) × 1021 cm-2, in agreement with earlier determinations (N\textsubscript{H\textsc{i}} ∼ (1.0 – 3.2) × 1021 cm-2) from UV observations by Kunth et al. (1998), although this method does not give systematically the true value of N\textsubscript{H\textsc{i}}, as we will see later on. Beyond the scale of the H\textsc{i} NW region (∼ 250 pc), the UV-optical part of IZw 18 is known to be embedded in a large neutral H\textsc{i} cloud extending over several kpc (van Zee et al. 1998). Furthermore, the strength of the Lyα absorption decreases clearly from the center to the border of the NW, as shown in Fig. 2 for slits 4 to 7 (slits 3 to 1 show also a slight decrease), corresponding to an apparent change of N\textsubscript{H\textsc{i}} by up to a factor of

Fig. 3. IZw 18 spectroscopic data. The figure presents a compilation of spectroscopic informations available for IZw 18. Geocoronal Lyα emission has been subtracted from all the spectra. Dark solid line represents the best STIS spectrum around the Lyα absorption. The red dotted line is the GHRS spectrum which covers a part of the absorption and a part of the UV continuum. The blue dot-dashed line shows the STIS spectrum with a large wavelength coverage ([1100-1750 Å]) extracted from the center of the NW region. The green long dot-dashed line is the result of an integration over all the slits in the NW region, previously shown in Fig. 2. It has been used to fit the UV continuum (black dashed line). All the spectra were then normalized to match the continuum value around 1280 Å (i.e. at v ∼ 16000 km s-1). References and legend are given in the inset.
Table 2. Spatial variations of Lyα properties in STIS slit positions. Columns (2) and (4) indicate respectively the Hα column density and the Lyα line equivalent width derived by fitting each Lyα absorption with a Voigt profile with $b = 20$ km s$^{-1}$. The errors in cols. (3) and (5) are determined from the lower and upper limits of the fits. Last column is the integrated flux in FUV (1500 Å) image over the NW region and in simulated slits in order to match the aperture used for the extraction of STIS spectra. Same quantities are also given for integrated spectrum in the entire NW region and for the MH03 STIS spectrum.

Slit	$N_{\text{H} \alpha}$ [cm$^{-2}$]	$σ_{N_{\text{H} \alpha}}$ ($\times 10^{21}$)	EW$_{\alpha}$ [Å]	$σ_{\text{EW}}$ [Å]	f(1500 Å) [erg s$^{-1}$ cm$^{-2}$]
1	1.8×10^{21}	0.7	-31	5	2.8×10^{-16}
2	2.4×10^{21}	0.5	-32	3	9.6×10^{-16}
3	2.8×10^{21}	0.5	-35	3	3.0×10^{-15}
4	2.8×10^{21}	0.8	-34	5	4.1×10^{-15}
5	2.0×10^{21}	0.7	-30	5	2.9×10^{-15}
6	1.0×10^{21}	0.6	-20	6	1.3×10^{-15}
7	2.5×10^{20}	0.1	-10	3	5.8×10^{-16}
NW	2.1×10^{21}	0.7	-31	5	1.3×10^{-14}
MH03	2.2×10^{21}	0.7	-30	4	2.6×10^{-15}

Overall the extinction in IZw 18 and in its NW region is known to be very low. Mas Hesse (1990) found that the Balmer decrement of the whole NW region is consistent with no extinction. However, Dufour et al. (1988) reported an extinction of $E(B-V) \sim 0.17$ in their 2.5” × 6” slit. Ground-based spectroscopic observations revealed typical values ranging from $E(B-V) = 0.03$ to 0.2 (e.g. Vilchez & Iglesias-Páramo 1998; Izotov et al. 1997; Martin 1996). The main reasons of such discrepancies may be differences in the aperture size and the location of the slits on the galaxy, as the dust does not seem to be homogeneously distributed in IZw 18 (see Fig. 1). In the present work, we define a circular aperture (3.2” radius) centered on the NW region. We exclude (1” circular aperture) the central region, where Hα and Hβ emission are much weaker and Balmer ratio gives unreasonably low values, from our measurement. The mean color excess derived in this way is $E(B-V) \approx 0.042$. This value agrees with the determinations by Cannon et al. (2002) ($E(B-V) = 0.09$) obtained in different parts of the NW region, and with Péquignot (2008). We also find no extinction when the central region is not excluded, in agreement with Mas Hesse (1990). Subsequently we will adopt an average value of $E(B-V) = 0.05$ for the NW region.

2.2. Imaging

UV images, part of the same observing program GO-9054 as that of the STIS spectroscopy, were retrieved from the ESO/ST-ECF archive. IZw 18 was observed with F255RF2 filter with bandpass centered at 1457 Å. Standard calibrations were performed through CALSTIS pipeline. Images were then corrected for misalignment, divided by the exposure time, and co-added. The final FUV image was then multiplied by PHOTFLAM and PHOTBW header keywords to obtain flux calibrated image.

We also retrieved from the archive HST optical images obtained with the Wide Field Planetary Camera 2 (WFPC2) under programs GO-6536 and GO-5434. Data consist of Hα and Hβ narrow band imaging and corresponding broad continuum images (see Table 1). Data were first processed through the standard HST pipeline that gives images in units of counts per second. Multiplying by PHOTFLAM keyword gives fluxes in erg s$^{-1}$ cm$^{-2}$ Å$^{-1}$. Finally all images are rotated and aligned to the same orientation and co-added in each filter using inverse variance weighting. OWe estimated the line flux contribution to the continuum images using the appropriate filter throughput ratios at Hα and Hβ wavelengths and filter width given by PHOTBW. Continuum images were scaled and subtracted from online images, then multiplied by the filter bandwidth to obtain pure emission line fluxes. Continuum subtracted Hα and Hβ images of IZw 18 are e.g. shown in Cannon et al. (2002). We measured the total Hα flux (uncorrected for reddening) of 3.28 ± 10^{-11} erg s$^{-1}$ cm$^{-2}$ within a circular aperture of 10.5” radius, in agreement with values found by de Mello et al. (1998) and Cannon et al. (2002).
Fig. 4. I Zw 18 imaging. Left: Intrinsic Ly α emission map in a logarithmic scale. It has been obtained by correcting the observed Hα image with the extinction map and assuming case B recombination theory (see text for details). The result has been smoothed using a median filter (width=5). Right: shows the extinction map, in linear scale, obtained from the Balmer decrement Hα/Hβ then median filtered (width=5). Inverted color scale is used showing higher emission and dust content in darker color. The NW integration box (cf. Fig. [1]) is also shown in dashed line. The size of the field of view is about 13′′ × 15′′ and the orientation is the same as in Fig. [1].

age has been corrected for reddening, scaled to Lyα wavelength using a UV slope of β ~ −2, and used together with the intrinsic Lyα map to construct the theoretical EW_{Lyα} map. Over the entire NW region we obtain EW_{Lyα} ~ 50 Å, compatible with expectations for a young starburst. However, as shown in Fig. 5, we observe very high values around the UV-bright central region.

Taken together the observations of strong Lyα absorption across the entire NW region despite the presence of intrinsic strong Lyα emission and a very low amount of extinction clearly call for a physically consistent explanation of these apparent contradicting phenomena.

2.3. Other observational constraints

A mean velocity offset, Δν(em - abs), between the systemic velocity, measured from the optical lines, and metallic absorption lines of O i and Si ii, was measured by Kunth et al. (1998) in the small GHRS aperture centered on the NW region. They found Δν(em - abs) ~ 25 km s^{-1}, indicating that the neutral gas is mostly static with respect to the central Hii region. Recent FUSE observations including other ISM absorption lines confirm the absence of an outflow in I Zw 18 on a large aperture including by far all the UV emitting regions of this galaxy; Grimes et al. (2008) measure velocity shifts between ~ 0 and 40 km s^{-1} with a mean offset of 8 km s^{-1}.

The Doppler parameter b describes the thermal motion of hydrogen atoms. H i velocity dispersion observed by van Zee et al. (1998) is about 12 - 14 km s^{-1}, which translates to b ~ 17 - 20 km s^{-1}. A slightly higher value (b ~ 27 km s^{-1}) was quoted by Kunth et al. (1994) from their VLA observations. Given the very damped profile of the Lyα absorption, variations within this range of values does not affect the model fit.

The Full Width at Half Maximum (FWHM) of the Lyα emission line can be constrained using FWHM(Hα). Dufour et al. (1988) found FWHM(Hα) ~ 6.1 Å (280 km s^{-1}) from their spectrophotometry observations but with a resolution of 275 km s^{-1}. Observations with a better resolution (R ~ 11 km s^{-1} FWHM) indicates FWHM(Hα) ~ 150 km s^{-1} (Martin 1996). This is consistent with a relatively narrow emission line and we will adopt
FWHM(\(\text{Ly}\alpha\)) \(=\) 100 km s\(^{-1}\), although our results are insensitive to the differences found in the observations.

3. Explaining the \(\text{Ly}\alpha\) absorption in IZw 18

3.1. General considerations

To transform the intrinsic \(\text{Ly}\alpha\) emission (emitted in the H\(\alpha\) region) to a pure absorption profile can in principle only be achieved in two ways: 1) by true destruction of \(\text{Ly}\alpha\) photons (by dust or possibly by conversion to two-photon continuous emission in the ionised region), or 2) by geometrical effects leading to the scattering of \(\text{Ly}\alpha\) photons out of the line of sight, or by a combination of both.

Examples of line profiles due to dust absorption are shown e.g. in Verhamme et al. (2006, 2008) and Schaerer & Verhamme (2008). Effect 2) is illustrated in Fig. 6 showing how for example even a dust-free slab produces an absorption (Voigt) profile along the central line of sight from a point-like background source. This geometrical situation also corresponds to the “classical” case of damped \(\text{Ly}\alpha\) systems (DLA) in front of distant quasars, or other \(\text{Ly}\alpha\) forest observations. If the scattering foreground layer was truly dust-free, it is clear that the photons are conserved; hence the photons scattered away from line center (causing the apparent absorption line) must emerge somewhere. In a static configuration, radiation transfer effects redistribute the photons into the wings, leading to a symmetric double peak \(\text{Ly}\alpha\) profile (Neufeld 1990), as sketched in Fig. 6 for the distant, non-central lines of sight. Adding dust to effect 2), i.e. combining 1) and 2), will reduce the strength of the scattered component and further increase the depth of the central absorption profile.

Using radiation transfer models we will now examine whether these effects can quantitatively explain the observations of IZw 18, and which of these effects is dominant.

3.2. \(\text{Ly}\alpha\) and UV continuum radiation transfer modeling

3.2.1. MCLya code and input parameters

We use an improved version of the Monte Carlo radiation transfer code MCLya of Verhamme et al. (2006) including the detailed physics of \(\text{Ly}\alpha\) line and UV continuum transfer, dust scattering, and dust absorption for arbitrary 3D geometries and velocity fields. The following improvements have been included (see Hayes et al. 2009, for more details): angular redistribution functions taking quantum mechanical results for \(\text{Ly}\alpha\) into account (cf. Dijkstra & Loeb 2008; Stenflo 1980), frequency changes of \(\text{Ly}\alpha\) photons due to the recoil effect (e.g. Zheng & Miralda-Escudé 2002), the presence of deuterium (assuming a canonical abundance of \(D/H = 3 \times 10^{-5}\)) Dijkstra et al. (2006), and anisotropic dust scattering using the Henyey-Greenstein phase function (using parameters adopted in Witt & Gordon (2000)). Furthermore a relatively minor bug in the angular redistribution of \(\text{Ly}\alpha\) photons has been fixed, and the code has been parallelized for efficient use on supercomputers. For the physical conditions in the simulations used for the present paper, these improvements lead only to minor changes with respect to the MCLya version used by Schaerer & Verhamme (2008) and Verhamme et al. (2008). More details on the code upgrade will be given in Hayes et al. (2009).

For simplicity, and given the available observational constraints, all simulations carried out subsequently assume a homogeneous and co-spatial distribution of neutral hydrogen and dust with a constant density and temperature. The corresponding microscopic H\(\text{i}\) velocity distribution is described by the Doppler parameter \(b\). The remaining input parameters of the code are the H\(\text{i}\) geometry and velocity field, the spatial location and distribution of the UV continuum and line emission source(s), and the dust-to-gas ratio.

We consider the following H\(\text{i}\) geometries: spherically symmetric shells with a central source, and plane parallel slabs with a background or internal source (including different source geometries). These cases are described by 3 additional parameters: (i) the expansion velocity of the shell, \(v_{\text{exp}}\), or the velocity of the slab with respect to the source, (ii) the H\(\text{i}\) column density towards the source, \(N_{\text{HI}}\), and (iii) the dust absorption optical depth \(\tau_{\alpha}\), which expresses the dust-to-gas ratio. As discussed by Verhamme et al. (2006), \(\tau_{\alpha}\) is related to the usual color excess \(E(B-V)\) by \(E(B-V) \approx (0.06 - 0.11)\tau_{\alpha}\); we assume \(E(B-V) = 0.1\tau_{\alpha}\) for convenience. In short, for a given geometry we have 4 parameters (\(b, v_{\text{exp}}, N_{\text{HI}}, \tau_{\alpha}\); \(b = 20\) km s\(^{-1}\) and \(v_{\text{exp}} = 0\) km s\(^{-1}\)) are constrained by the observations (see Sect. 2.3), \(\tau_{\alpha}\) is varied between 0 (no dust) and 0.5, the maximum allowed by the observations (Sect. 2.3), and \(N_{\text{HI}}\) is varied to reproduce the observed \(\text{Ly}\alpha\) line profile.

For each parameter set a full Monte Carlo simulation is run allowing for sufficient statistics to compute both integrated and spatially resolved spectra in the \(\text{Ly}\alpha\) region. The radiation transfer calculations cover a sufficiently broad spectral range (here typically from \(-10000\) to \(+10000\) km s\(^{-1}\)) necessary to reach the continuum for the highest column density simulations. As described in Verhamme et al. (2008) our MC simulations are computed for a flat input spectrum, keeping track of the necessary information to recompute \(a\ posteriori\) simulations for arbitrary input spectra. For the \(\text{Ly}\alpha\) fits we assume an input spectrum given by a flat (stellar) continuum plus the \(\text{Ly}\alpha\) line, described by a Gaussian with variable equivalent width \(E_{\text{W1}\alpha}\) and full width at half maximum FWHM(\(\text{Ly}\alpha\)). \(E_{\text{W1}\alpha}\) is kept free, although con-
straints are available from our theoretical (intrinsic) Lyα map; a $FWHM = 100 \text{ km s}^{-1}$ is assumed as for Hα, although our results are basically independent of its exact value. Other continua, such as synthetic high resolution starburst spectra from Schaefer & Verhamme (2008), can also be used.

3.2.2. Shell models

To consider a simple geometry to understand the observed Lyα absorption of IZw 18, we examine predictions for the integrated spectrum of a spherical shell with/without dust. In this case no “loss” of photons by spatial diffusion is allowed. Hence to transform intrinsic Lyα emission into an absorption profile requires absorption by dust. We will now examine whether spatially integrated shells can recover the observed profile for reasonable amounts of dust and reasonable Ht columns.

Fig. 7. Comparison of the observed and fitted Lyα profile of IZw 18 assuming a spherical shell model. The observed STIS spectrum (from MH03) is represented by the dark line. The model fit, using a shell geometry, is plotted in red dashed line and the parameters used are: $N_{\text{HI}} = 6.5 \times 10^{21} \text{cm}^{-2}$, $\tau = 0.5$, $v=0 \text{ km s}^{-1}$, $b = 20 \text{ km s}^{-1}$. The blue dotted line represents the input spectrum of the simulation. It consists of a flat UV continuum plus a Gaussian Lyα emission line with $FWHM = 100 \text{ km s}^{-1}$. The intrinsic equivalent width adopted is $EW(\text{Ly}α) = 60 \text{ Å}$.

Adopting an average extinction of $E(B-V) \approx 0.05$ (i.e. $\tau_a = 0.5$ and $b = 20 \text{ km s}^{-1}$ we have computed several static shell models with varying N_{HI}. As shown in Fig. 7 the predicted profile agrees well with the observations for $N_{\text{HI}} = 6.5 \times 10^{21} \text{cm}^{-2}$ and for an input spectrum with a Lyα line equivalent width $EW(\text{Ly}α) = 60 \text{ Å}$. Note that we do not fit the absorptions in the blue wing, attributed to Si II $\lambda \lambda 1193, 1194.5$ and Si III $\lambda \lambda 1206.5, 1207.5$ (Schaefer & Verhamme 2008) and possibly to Galactic and intergalactic Ht absorption, since these are not taken into account in our model.

The reason for the resulting broad damped Lyα absorption is as follows: Due to the high Ht column density, even a small amount of dust destroys almost all photons in and around the Lyα line center. Scattering on hydrogen atoms with such a high column density, greatly increases the mean path of Lyα photons, and hence the probability to be absorbed by dust. Therefore, the net absorption is only caused by dust absorption, since, in the present case, we observe all the scattered photons escaping from the shell, without any line-of-sight effect.

Influence of V_{exp}: We adopted a static shell in our model to fit the Lyα absorption profile. As discussed in Verhamme et al. (2006), for increasing v_{exp} more Lyα photons will escape from the red part of the line, because Lyα photons are seen already redshifted by hydrogen atoms. However, since the high column density reduces the escape probability, we can vary the expansion velocity in a certain range without affecting the quality of the fit. The highest velocity allowed is around 50 km s$^{-1}$ which already exceeds the observed outflow velocity of IZw 18.

Influence of $EW_{\text{Ly}α}$: We can show that $EW_{\text{Ly}α}$ close to the maximum value expected by synthesis models (Schaefer 2003), for normal IMF populations, are allowed in our model to fit IZw 18 profile. Indeed, when we use an input Lyα line with $EW_{\text{Ly}α} = 200 \text{ Å}$ the fit remains globally unchanged. Again, in spite the large damped absorption, high intrinsic $EW_{\text{Ly}α}$ is not excluded by radiation transfer simulations because of the high Ht column density.

Other solutions: We need to invoke a relatively high column density ($N_{\text{HI}} = 6.5 \times 10^{21} \text{cm}^{-2}$) to obtain a good fit of the absorption wings. On the other hand, all photons which, in reality, will scatter away from the observer’s line of sight, are recovered in our simulation, since we integrate over the entire surface of the shell. Relaxing this assumption, i.e. considering different geometries, would in particular also allow us to lower N_{HI}.

The solution proposed here to fit IZw 18 profile is not unique, and different combinations of N_{HI} and τ_a can reproduce the absorption. For instance, the use of a higher value for the extinction ($\tau_a = 1$) and a lower Ht column density ($N_{\text{HI}} = 5 \times 10^{21} \text{cm}^{-2}$) produce the same fit quality. Overall, this somewhat academic case of a shell model for IZw 18 serves to show that even low dust and di ff erent combinations of N_{HI} and τ_a can reproduce the absorption. For instance, the use of a higher value for the extinction ($\tau_a = 1$) and a lower Ht column density ($N_{\text{HI}} = 5 \times 10^{21} \text{cm}^{-2}$) produce the same fit quality. Overall, this somewhat academic case of a shell model for IZw 18 serves to show that even low dust and/or sufficiently low outflow velocity, as also discussed in Sect.4. In any case, the radio observations of IZw 18 show very clearly a large spatial extension of Ht compared to the size of the NW region (and to that of the spectroscopic apertures). The effect of such geometries on Lyα will be addressed now.

3.2.3. Extended geometries and line of sight effects

The galaxy spectrum we observe in reality, could deviate significantly from the simple homogeneous shell model presented here, since the source is spatially resolved and the spectrum is not integrated over the whole shell surface. Furthermore the spectrum can depend on viewing angle and on the geometry of the ISM.

We show in Fig. 8 that IZw 18 absorption can be well adjusted with lower Ht column density than required for the shell model and without any dust ($E(B-V) = 0$). This result is achieved by taking a slab geometry with a static gas and applying sight-line selection criterium, where only photons in the observer’s direction are collected. Then the absorption is caused, not by dust destruction, but by diffusion of the photons out of the observer’s direction. Strictly speaking, no photon is destroyed. This demonstrates even better that Lyα absorption can be observed in dust-free galaxies (cf. Fig. 6 for a schematic overview).
In Sect. 2.1 (Fig. 2) we have shown that the Lyα profile shape: Homogeneous, static, and dust-free slab of neutral gas illuminated by a series of isotropic point sources emitting UV continuum radiation centered on Lyα wavelength. An extended source is simulated in this case with a varying emission strength, symbolized by the size of the individual point sources. The output spectra represent the observed profiles in different regions and in the observer’s line of sight perpendicular to the slab.

3.2.4. Spatial variations of Lyα profile

In Sect. 2.1 (Fig. 2) we have shown that the Lyα profile shows spatial variations between the different STIS slits. We now demonstrate, that given the observational constraints, the Lyα radiation transport explain fairly well these variations. We consider a large, static and uniform cloud of H\textsc{i} (N\textsc{HI} = 3 \times 10^{21} \text{cm}^{-2}, b = 20 \text{ km s}^{-1}, \tau_{a} = 0.5) represented by a slab geometry, covering the NW star-forming region. We then simulate the observed spatial variations of the emission strength by using weighted point sources located in front of the H\textsc{i} slab, emitting a flat UV continuum, as input to our radiation transfer code following the observed UV profile of Fig. 5. The addition of Lyα line emission will be discussed below.

The result of this simulation is shown in Fig. 9. The output spectrum is what an observer would see when his line-of-sight is perpendicular to the slab surface. At the center (1150 \leq \text{pixel} \leq 1155), in the direction of the brightest source, we observe the strongest (largest) Lyα absorption profile. The profile proves increasingly narrower as one moves away from the center, what reproduces the trend observed in IZw 18. The double-peak contribution, characteristic of diffused photons, can even be seen in the peripheral region (1135 \leq \text{pixel} \leq 1140).

Fig. 8. Lyα absorption fitting II. The observed spectrum (STIS MH03) is represented by the dark line. A slab geometry is used for the model spectrum and only photons in the observer’s sightline are collected. It is plotted in green dashed line and the parameters used are: N\textsc{HI} = 3 \times 10^{21} \text{cm}^{-2}, \tau = 0 \text{ (no dust)}, v = 0 \text{ km s}^{-1}, b = 20 \text{ km s}^{-1}. The blue dotted line represents the input spectrum of the simulation. It consists of a flat UV continuum plus a Gaussian Lyα emission line with FWHM=100 km s\(^{-1}\). The intrinsic equivalent width adopted is EW(Lyα)=60 Å.

Fig. 9. Predicted spatial variations of the Lyα profile. The simulation consists of an homogeneous H\textsc{i} slab with N\textsc{HI} = 3 \times 10^{21} \text{ cm}^{-2} and \tau_{a} = 0.5 illuminated with an isotropic, extended, UV source emitting a flat continuum. The emission strength is spatially varying from the center to the edge to reproduce the observed UV surface brightness of IZw 18. An observer line-of-sight perpendicular to the cube is chosen (θ = 0). The different plotted profiles correspond then to different regions at the surface of the slab and are marked in units of pixels corresponding to the position of the slits in Fig. 5. The observed profiles (cf. Fig. 2) are plotted in dotted lines. The blue wing of the profiles is not well fitted because it is affected by geocoronal emission and H\textsc{i} Galactic absorption which the model does not account for.

Fig. 10. Geometrical effects on the Lyα profile shape: Homogeneous, static, and dust-free slab of neutral gas illuminated by a series of isotropic point sources emitting UV continuum radiation centered on Lyα wavelength. An extended source is simulated in this case with a varying emission strength, symbolized by the size of the individual point sources. The output spectra represent the observed profiles in different regions and in the observer’s line of sight perpendicular to the slab.

Only a nearly static neutral ISM is required, with N\textsc{HI} \sim 3 \times 10^{21} \text{ cm}^{-2} in this case.

In this case, we expect to recover the diffused photons in other directions and/or further from the source. On the other hand, in presence of dust, this diffuse part would be attenuated or suppressed. For example, for models with homogeneous gas and dust distributions, our Lyα transfer simulations (see Hayes et al. 2009) predict already quite low escape fractions for Lyα line photons, with f\text{esc} of the order of typically 5–10 % for column densities N\textsc{HI} \gtrsim 10^{21} \text{ cm}^{-2}, dust optical depths \tau_{a} = 0.2, and low expansion velocities (v\text{exp} \leq 50 \text{ km s}^{-1}). Much lower escape fractions (f\text{esc} \sim 10^{-3–4}) are predicted for larger amounts of dust, such as for the average value adopted for the NW region. Therefore we expect relatively small amounts of diffuse emission from Lyα line photons.
To understand these results, let us decipher the different contributions in the simulation. Figure 6 depicts the situation for this purpose. It shows the observed spectra in a simulation using a point source and isotropic emission behind a uniform slab of neutral gas. Observing the slab face-on, toward the source, we obtain an absorption profile. Only photons far from the line center are transmitted directly, forming the “continuum”. Photons in the line center are resonantly absorbed and reemitted, diffusing in frequency and in space, and leading to the lack of emission at and around the line core. These photons will be collected if we look at the cube at a position far from the source. A double-peak profile is then observed consisting of the diffused photons and the absence of photons that would have escape directly, without scattering, in this direction.

Figure 10 shows a combination of these single sources but with different intensities, illustrating the extended source simulation of Fig. 9. As for the single source, the spectrum of the central region shows a typical damped absorption. At the positions of the fainter peripheral sources two contributions lead to a narrower absorption profile: a) The transmitted flux is fainter than in the central region, and b) photons that have diffused from the brighter sources to escape further (double-peak emission), contributing to “fill the wings”. In the central region the direct transmission is stronger and the diffuse part is weaker. In this way spatial variations of the UV continuum combined with the resonant transport effects of Lyα radiation, can explain qualitatively the observed Lyα profile variations in IZw 18. The observed profile in slit 7 (Fig. 2), may even show a hint of the predicted double peak profile in its red wing, although the S/N is quite low in this region.

Now we discuss the effect of adding Lyα line emission on top of the UV continuum emission. Naively one could expect a very different behavior given the very large Lyα equivalent width of the source in the peripheral parts of the NW region (cf. Fig. 5). However, the final spectrum remains unchanged despite the high Lyα equivalent width used. It appears that the photons emitted at the core of the line are either destroyed by dust (τD = 0.5 here) or backscattered, and only photons with higher frequency shift diffuse and contribute to the double peak emission. Therefore, increasing EWLyα has no incidence on the output spectrum since with FWHM(Lyα)=100 km s^{-1}, all photons are emitted close to the center. This is easily confirmed by looking at the reflected spectrum (cf. Fig. 5) which increases with higher EWLyα. We need to use unreasonably high FWHM(Lyα) (>1000 km s^{-1}) to affect our result and see the double peak contribution increasing (in the profile wings). This implies in particular also that our model predictions are insensitive to the observed spatial variations of EWLyα (cf. Fig. 5).

In short, we conclude that the observed variations of the Lyα profile across the NW region can be understood by a combination of the line of sight effects discussed earlier and by radiation transfer effects related to an extended source.

3.3. Discussion

For the first attempt to reproduce the damped absorption profile of IZw 18, we used a simple expanding shell model (Sect. 3.2.2). If line-of-sight arguments could not be invoked, we would need a relatively high column density (N_{HI} = 6.5 \times 10^{21} cm^{-2}) and a minimum amount of dust (E(B−V) = 0), which in this case is the only way to lose Lyα photons. However, when we spatially select photons in the observer’s sight-line, we showed (Fig. 8) that one may observe Lyα in absorption even without any dust

(E(B−V) = 0). These conclusions also hold for the SE region of IZw 18 for which the integrated spectrum show a slightly larger Lyα absorption (a Voigt fit yields N_{HI} \approx 4 \times 10^{21} cm^{-2}). Martin (1996) found evidences of supergiant shell in IZw 18 expanding at a speed of 35–60 km s^{-1}. The geometry proposed is a bipolar shell seen almost perpendicularly to its main axis (cf. their Fig. 4). This configuration is comparable to the shell geometry adopted here (Sect. 3.2.2) given the negligible effects of such small expansion velocities on our model spectrum. However, the output spectrum of the shell model would be significantly affected if the Hii coverage is inhomogeneous and low column densities are observed in some sight-lines, which is still unclear here. For same reasons (low velocity and large Hii coverage), applying our extended geometry scenario (Sect. 3.2.3) to this configuration would yield same results, as our sight-line selection is still compatible with this ISM morphology.

From our shell model we derived an Hii column density of \[N_{HI} = 3 \times 10^{21} \] and without dust comparable to observational constraints, and also explained the spatial variations of the absorption profile. It is therefore more likely that if the emission region is embedded in an Hii region, the geometry would be not symmetric, with a higher column density in the front and/or ionised holes in the backside. Finally, it is worth noting that the geometry proposed by Martin (1996) is not an embedded-like source and the expanding shell is bipolar and asymmetric with an axis inclined by i = 55°.

4. Comparison of IZw 18 with other nearby and high-z starbursts

We have just shown how with a low extinction or even no dust at all it is possible to explain by radiation transfer and geometrical effects the transformation of a strong intrinsic Lyα emission into the broad Lyα absorption profile observed in IZw 18. We need now to understand whether this galaxy is unique or representative of a certain class of objects and what our results imply for other studies, including in particular Lyα observations of high-z objects.

4.1. Comparison with local starbursts

Four of the eight H ii galaxies observed with GHR/HST by Kunth et al. (1998) show broad Lyα absorption profiles: II Zw 70, Mrk 36, SBS 0335-052, and IZw 18 studied here. As already noted by these authors, these objects clearly differ from those with Lyα in emission by very low velocity shifts between the interstellar absorption lines and the systemic velocity. An example of this is given by the object mentioned above, II Zw 70, which has a systemic velocity of 200 km s^{-1} and a Lyα absorption velocity of 180 km s^{-1}. This suggests that the Lyα absorption is produced by a lower density component of the ISM, possibly due to the presence of a cold gas component.

Other studies, including in particular IZw 18, Kunth et al. (1998) show broad Lyα absorption profiles: II Zw 70, Mrk 36, SBS 0335-052, and IZw 18 studied here. As already noted by these authors, these objects clearly differ from those with Lyα in emission by very low velocity shifts between the interstellar absorption lines and the systemic velocity. An example of this is given by the object mentioned above, II Zw 70, which has a systemic velocity of 200 km s^{-1} and a Lyα absorption velocity of 180 km s^{-1}. This suggests that the Lyα absorption is produced by a lower density component of the ISM, possibly due to the presence of a cold gas component.

Two of the objects with Lyα in absorption, IZw 18 and SBS 0335-052, have also been observed with FUSE. In these objects, the absorption lines are significantly weaker and broader than in the case of IZw 18 and SBS 0335-052. This suggests that the absorption is produced by a lower density component of the ISM, possibly due to the presence of a cold gas component.

The measurements of Grimes et al. (2008) confirm the earlier finding of low velocity shifts, now also on a much larger aperture. The measurements of Grimes et al. (2008) confirm the earlier finding of low velocity shifts, now also on a much larger aperture.
sentially static ISM appears therefore as one of the main factors leading to Lyα absorption, as already concluded by these authors and as supported by our radiation transfer modeling.

Furthermore, among the Lyα absorbers, SBS 0335-052 and II Zw 70 show clearly higher extinction, with $E(B-V) = 0.18$ and 0.15, respectively (less than 0.02 for Mrk 36. Izotov & Thuan (1998)). Hence the ISM properties of these objects should fulfill the same conditions, which have allowed us to explain the Lyα absorption of I Zw 18, and dust destruction of Lyα photons should be equally or more important. Although very likely, we cannot fully prove this until HI column density measurements from the radio are available for all of them. For SBS 0335-052 N_{HI} reaches high values, up to 9.4×10^{20} cm$^{-2}$ (Pustilnik et al. 2001). Similarly, Mrk 36 shows a high column density peak up to 2.4×10^{21} cm$^{-2}$ (Bravo-Alfaro et al. 2004). Of course, depending on the efficiency of dust destruction, some spatial regions with diffuse Lyα emission may be expected; however, this is not necessarily the case. For example, for SBS 0335-052 we know that Lyα absorption is observed over a large area, showing that absorption by dust must be important (Atek et al. 2008).

The other half of the HST sample of Kunth et al. (1998) shows Lyα profiles in emission and varying amounts of dust ($E(B-V)$ ranging from 0.02 to 0.18). As already mentioned by these authors, the main difference with the other part of the sample showing Lyα absorption appears to be the clear signature of ISM outflows in the former. A continuity of ISM velocities between “static” and “outflowing” is expected and observed (see e.g. Atek et al. 2009). A more detailed analysis of the full sample of nearby starbursts observed in Lyα will be presented elsewhere (Atek et al. 2009).

4.2. Comparison with distant galaxies

Compared to distant galaxies it is clear that I Zw 18 and SBS 0335-052, or at least the regions of these objects showing intense star formation, show very high HI column density. For example, with $N_{\text{HI}} \sim (0.9 - 3) \times 10^{21}$ cm$^{-2}$, these two regions would correspond to the high N_{HI} tail of all DLA systems found in the SDSS DR3 survey (cf. Prochaska et al. 2005).

Also, few high-z starbursts with Lyα absorption as broad as in I Zw 18 and SBS 0335-052 are known. While ~ 25% of the LBGs of Shapley et al. (2003) show Lyα absorption, their stacked spectrum shows a narrower absorption profile. Among the broadest Lyα profiles of $z \gtrsim 3$ LBGs are the two lensed galaxies MS 1512-cB58 and FORJ0332-3557, whose absorption profiles correspond to $\sim (0.7 - 2.5) \times 10^{21}$ cm$^{-2}$ (Pettini et al. 2003, Cabanac et al. 2008).

However, LBGs in general and these two objects in particular differ in many properties compared to I Zw 18. The objects with strong Lyα absorption show significant dust extinction ($E_{\text{A}}(B-V) \sim 0.169 \pm 0.006$, where $E_{\text{A}}(B-V)$ is the color excess determined from stellar light), and high Star Formation Rate (SFR) (dust-corrected SFR ~ 52 ± 5 M_{\odot} yr$^{-1}$). Furthermore outflows with significant velocities ($v_{\text{exp}} \sim 100 - 300$ km s$^{-1}$) are generally observed in LBGs. In comparison, I Zw 18 is a very low luminosity, low SFR object (with a UV luminosity lower than that of LBGs by 2–3 orders of magnitude, SFR(UV) ~ 0.3 M_{\odot} yr$^{-1}$ (Grimes et al. 2008) with a low extinction ($E(B-V) \lesssim 0.05$), which shows a static ISM.

For LBGs Schaerer & Verhamme (2008) have shown with radiation transfer models that the absorption profile of MS 1512-cB58 is due to the relatively large amount of dust and the high column density; with the observed ISM conditions this suffices to transform intrinsic Lyα emission expected from the ongoing starburst to broad Lyα absorption, despite the relatively large outflow velocity ($v_{\text{exp}} \sim 220$ km s$^{-1}$). In I Zw 18 geometrical effects or a static high N_{HI} ISM with small amounts of dust are sufficient to do a similar “transformation”.

In short, we suggest schematically the following two explanations for Lyα absorption in nearby and distant starbursts: 1) On average the cold ISM (relevant for Lyα transfer) of LBGs shows the geometry of a spherically expanding shell with relatively large velocities and small variations ($v_{\text{exp}} \sim 100–300$ km s$^{-1}$) (cf. Shapley et al. 2003, Schaerer & Verhamme 2008, Verhamme et al. 2008). In such cases the main factors determining the escape fraction of Lyα photons are N_{HI} and τ_{α}, as shown by radiation transfer models (Verhamme et al. 2008, Hayes et al. 2009), and significant amounts of dust are required to obtain broad Lyα absorption profiles. 2) In nearby galaxies, small amounts of dust in a static/low velocity ISM with a high HI column density suffice to create Lyα absorption. Furthermore, the occurrence of Lyα absorption is most probably metallicity independent, at least to first order. In addition, geometrical effects due to small apertures may also increase the observed Lyα absorption.

The distinction between groups 1) and 2) is most likely simply due to the outflow properties, i.e. the wind velocity, which is known to increase with SFR, galaxy mass, and specific star formation rate (e.g. Martin 2005, Rupke et al. 2005, Schwartz et al. 2006, Grimes et al. 2008). Qualitatively this increase of the outflow velocity behavior is understood by increasing mechanical feedback on the ISM related to stronger SF activity (SFR) in galaxies with increasing mass or luminosity. At the low luminosity (SFR) end, feedback appears to be insufficient to “ignite” outflows, hence the nearly static ISM in I Zw 18 and alike objects. What ultimately settles the ISM geometry, N_{HI} and dust to gas ratio, and hence assures in particular a high HI column density in I Zw 18 and other local objects remains to be explained.

Clearly, the observed trends and diversity need to be examined further both qualitatively and quantitatively. This will be the scope of subsequent publications.

5. Summary and conclusion

Archival HST/STIS UV spectroscopy and imaging, and HST/WFPC2 optical imaging data of the nearby star forming galaxy I Zw 18 were obtained. We have applied the 3D Carlo Lyα radiative transfer code MCLya (Verhamme et al. 2006) to explain quantitatively the intriguing Lyα absorption in this galaxy and the apparent spatial variation of the Lyα profile. Then, using the example of I Zw 18, we have discussed under which physical conditions one observes Lyα in emission or absorption both in nearby or high-z galaxies. Our main results can be summarized as follows:

- We first examined the predictions of a spherical shell model to reproduce the integrated spectrum of the NW region of I Zw 18. This model described a static shell of HI mixed with dust grains, surrounding a central point source emitting UV continuum plus a Lyα emission line. Adopting dust extinction derived from observations ($E(B-V) = 0.05$) and $b = 20$ km s$^{-1}$, we were able to fit the Lyα profile with HI column density of $N_{\text{HI}} = 6.5 \times 10^{21}$ cm$^{-2}$. Even with a strong intrinsic Lyα emission E_{W1216} (up to 200 Å) a small amount of dust is sufficient to cause strong damped Lyα emission, since the probability to be absorbed by dust is greatly increased by the high column density and by a nearly static ISM. In this
model, the loss of Lyα photons is only possible by means of true dust absorption, since we spatially recover all photons.

- Given the large spatial extension of H i covering the NW region (van Zee et al. 1998), we also explored the slab geometry of neutral gas in front of the UV source. We have shown that considering only emission along the observer’s line of sight, we can reproduce the strong Lyα absorption without any dust (E (B − V) = 0). This is achieved by the diffusion of the photons out of the observer’s sightline provided a sufficiently high column density (at least NHI = 3 × 10^{21} cm^{-2}) and a nearly static ISM configuration.

- We have observed spatial variations in the Lyα profile shape in the different STIS slits. From observations we have constructed the 1D profile variations of the UV continuum and EW_{Lyα} across the NW region. Despite strong UV emission at the center and high EW_{Lyα} around, the Lyα profile is still in absorption in all the NW region and proves narrower toward the peripheral region. To understand these variations we have simulated an extended source with a spatially varying UV emission strength by following the 1D spatial profile, in front of a slab of neutral gas with N(H i) = 3 × 10^{21} cm^{-2} and E(B − V) = 0.05. Then, by observing the slab at different distances from the center, we have been able to reproduce the observed spatial variations. We have demonstrated qualitatively that this is due to radiative transfer effects, in particular, to the diffusion of Lyα photons and to the spatial variation of the UV continuum source. Finally, adding a Lyα recombination line to the source simulating the observed EW_{Lyα}, profile does not affect the final spectrum.

Other nearby galaxies with intense star formation, such as II Zw 70, Mrk 36 and SBS 0335-052, also show strong Lyα absorption (Kunth et al. 1998). They appear to show a nearly static cold ISM and more or less significant amounts of dust. At least two of these objects exhibit very high H i column density (up to 2.4 × 10^{21} cm^{-2}). We suggest that Lyα absorption in these objects is due to the same reasons as for I Zw 18: a very large number of scatterings in static, high column density gas leading to an efficient destruction of Lyα photons by even small amounts of dust. Furthermore line-of-sight effects can also be responsible for or increase Lyα absorption further.

The distinction between Lyα emission and absorption in local starbursts seems to be mainly related to presence or not of ISM outflows. Since high-z objects (LBGs, LAEs) show generally outflows with high, but relatively similar velocities (with bulk velocity typically ~ 100–200 km s^{-1}), the transition from Lyα absorption to emission in these objects is, on the other hand mostly determined by the dust content and H i column density (cf. Schaefer & Verhamme 2008; Verhamme et al. 2008).

These results and the global trends observed between Lyα strength and profile diversity, and relevant parameters need now to be tested with larger samples of galaxies. This is the main objective of upcoming publications (eg. Atek et al. 2009).

Acknowledgements. We would like to warmly thank Anne Verhamme, Matthew Hayes, Sally Heap and Françoise Combes for useful discussions. We are also grateful to Miguel Mas-Hesse for providing us with his UV spectra and for useful comments. Simulations were done on the regor PC cluster at the Geneva Observatory co-funded by Georges Meynet, Daniel Pfenniger, and DS. HA and DK are supported by the Centre National d’Etudes Spatiales (CNES). The work of DS is supported by the Swiss National Science Foundation.

References

Aoki, M., Taniguchi, Y., Fujita, S. S., et al. 2003, AJ, 126, 2091

Atek, H., Kunth, D., Hayes, M., Östlin, G., & Mas-Hesse, J. M. 2008, A&A, 488, 491

Atek, H., Kunth, D., Schaerer, D., & Deharveng, J. M. 2009, in preparation

Bravo-Alfaro, H., Brinks, E., Baker, A. J., Walter, F., & Kunth, D. 2004, AJ, 127, 264

Brocklehurst, M. 1971, MNRAS, 153, 471

Brown, T. M., Heap, S. R., Hubeny, I., Lanz, T., & Lindler, D. 2002, ApJ, 579, L75

Cabanac, R. A., Valls-Gabaud, D., & Lidman, C. 2008, MNRAS, 386, 2065

Cannon, J. M., Skillman, E. D., Garnett, D. R., & Dufour, R. J. 2002, ApJ, 565, 931

Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245

Charlot, S. & Fall, S. M. 1993, ApJ, 415, 580

Charlot, S. & Fall, S. M. 2000, ApJ, 541, 26

Charlot, S. & Fall, S. M. 2009, AJ, 137, 276

Chu, E. M., Cowie, L. L., & McMahon, R. G. 1995, ApJ, 495, 567

Cioni, M. R. L., de Mello, D. F., Schaerer, D., Heldmann, J., & Leitherer, C. 1998, A&A, 328, 75

Corno, M. R., Storchi-Bergmann, T., &Balcells, M. 2000, A&A, 357, 95

Crockett, B. R., & Jarrett, T. H. 2004, AJ, 128, 2388

Croxall, J. W., & Glass, I. S. 1984, ApJ, 279, 54

Cunha, K. 2005, ApJ, 621, 275

de Mello, D. F., Schaerer, D., Heldmann, J., & Leitherer, C. 1998, A&A, 307, 199

Deharveng, J. M., Joubert, M., & Kunth, D. 1985, in Star-Forming Dwarf Galaxies and Related Objects, ed. D. Kunth, T. X. Thuan, & J. Tran Thanh van, 431–+
Tapken, C., Appenzeller, I., Gabasch, A., et al. 2006, A&A, 455, 145
Tenorio-Tagle, G., Silich, S. A., Kunth, D., Terlevich, E., & Terlevich, R. 1999, MNRAS, 309, 332
Terlevich, E., Diaz, A. I., Terlevich, R., & Vargas, M. L. G. 1993, MNRAS, 260, 3
Thuan, T. X. & Izotov, Y. I. 1997, ApJ, 489, 623
Thuan, T. X., Izotov, Y. I., & Lipovetsky, V. A. 1997, ApJ, 477, 661
Thuan, T. X., Sauvage, M., & Madden, S. 1999, ApJ, 516, 783
Valls-Gabaud, D. 1993, ApJ, 419, 7
van Zee, L., Westphal, D., Haynes, M. P., & Salzer, J. J. 1998, AJ, 115, 1000
Verhamme, A., Schaerer, D., Atek, H., & Tapken, C. 2008, ArXiv e-prints, 805
Verhamme, A., Schaerer, D., & Maselli, A. 2006, A&A, 460, 397
Vilchez, J. M. & Iglesias-Páramo, J. 1998, ApJ, 508, 248
Witt, A. N. & Gordon, K. D. 2000, ApJ, 528, 799
Wu, Y., Charmandaris, V., Hunt, L. K., et al. 2007, ApJ, 662, 952
Zheng, Z. & Miralda-Escudé, J. 2002, ApJ, 578, 33
Zwicky, F. 1966, ApJ, 143, 192