Data Article

Data on the cenozoic pyrometamorphic rocks of NE Brazil

Zorano Sérgio de Souza a,b, Chao Wang a,*, Zhen-Min Jin a, Jian-Wei Li c, Junlong Yang a, Nilson Francisquini Botelho d, Rúbia Ribeiro Viana e, Larissa dos Santos f, Peng-Lei Liu a, Wei Li g

a State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, 388, Lumo Road, Wuhan, 430074, PR China
b Pós-Graduação em Geodinâmica e Geofísica (PPGG, UFRN) and Departamento de Geologia, Universidade Federal do Rio Grande do Norte, Avenida Senador Salgado Filho, 3000, Campus Universitário, 59078-970 Natal/RN, Brazil
c Faculty of Earth Resources, China University of Geosciences, 430074 Wuhan, PR China
d Instituto de Geociências, Universidade de Brasília, Campus Universitário Darcy Ribeiro, 70910-900 Brasília/DF, Brazil
e Instituto de Ciência e Tecnologia - Campus JK, Rodovia MGT 367 - km 583, n° 5000, Alto da Jacuba CEP 39100-000, Diamantina, Brazil
f Pós-Graduação em Geodinâmica e Geofísica (PPGG, UFRN), Avenida Senador Salgado Filho, 3000, Campus Universitário, 59078-970 Natal, Brazil
g Key Laboratory of Submarine Geosciences, The Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China

DOI of original article: https://doi.org/10.1016/j.lithos.2018.11.033.

*Corresponding author.
E-mail addresses: zorano@geologia.ufrn.br (Z. S. de Souza), wangchao@cug.edu.cn (C. Wang), cugyangjunlong@gmail.com (J. Yang), nilsonb@unb.br (N.F. Botelho), rrviana@gmail.com (R.R. Viana), larissadossantos88@gmail.com (L. Santos), liupengleiincug@aliyun.com (P.-L. Liu), lwttkl89@126.com (W. Li).

A R T I C L E I N F O

Article history:
Received 20 December 2018
Received in revised form 4 March 2019
Accepted 8 March 2019
Available online 22 May 2019

A B S T R A C T

The data presented in this article are related to the research paper entitled “Pyrometamorphic aureoles of Cretaceous sandstones and shales by Cenozoic basic intrusions, NE Brazil: Petrographic, textural, chemical and experimental approaches” Souza et al., 2018. Here, we report the complete data set for natural minerals and rocks as well as for experimental runs. These data include detailed oxide composition of minerals and glassy groundmass of the samples studied from electron microprobe and scanning electron microscopy analyzes. Rock samples and minerals are separated according to the protolith (sandstone, shale),
1. Data

We present oxide composition data for the following groups of samples: (i) minerals of buchites (Table 1); (ii) minerals and glasses produced by experiments of melting of sandstone and shale under 3 kbar and temperatures of 1000–1200 °C followed by quenching (Table 2); (iii) minerals of basalts and diabase intrusions responsible for the pyrometamorphic event (Table 3); (iv) whole rock composition of the glassy groundmass of dark and light buchites, and silica-rich rocks (Table 4).

2. Experimental design, materials, and methods

2.1. Analytical methods and procedures

Analytical methods and procedures for mineral chemistries (electron microprobe analyzes, scanning electron microscopy) are described in [1].
2.2. Apparatus and methodology used for experimental fusion

The experimental apparatus used is illustrated in Fig. 1. The experiments were conducted in a 150 ton non-end-loaded piston-cylinder (Quickpress 3.0) apparatus at the State Key Laboratory of Geological Processes and Mineral Resources of the China University of Geosciences, in Wuhan. The assembly consists of a Pt capsule sandwiched between two Boron Nitride (h-BN) rods in a graphite, Pyrex and salt sleeve. The Pt capsule was separated by a short h-BN sleeve from the graphite heater. The starting material (shale, sandstone, basalt, all with < ~40 μm and ~0.7 g total weight) was encapsulated in a graphite tube (2.2 mm internal diameter, 4.4 external diameter), which was then placed into a Pt capsule (4.5 mm internal diameter, 5.0 mm external diameter). The experimental temperature was monitored by inserting a W5Re-W26Re thermocouple into the high-pressure cell. The experiments were pressurized to 3 kbar and temperatures of 1200, 1100 and 1000 °C for different runs. They were ended by turning off the power to the press, resulting in quenching to below 200 °C within 10 s before the pressure was released. A quarter of the capsule was cut along the cylindrical axis using a low-speed diamond saw. The remaining part was mounted in epoxy and polished to expose the sample. After polishing and optical examination, identification of glass and fine-grained crystalline phases were done using a Quanta™ 450 FEG scanning electron microscope and points imaged by back-scattered electrons.

Acknowledgments

The experiments in this study were sponsored by the National Natural Science Foundation of China (grants 42325007 and 41372056) during the senior author’s sabbatical period at the China University of Geoscience, Wuhan, in the People’s Republic of China. Field and laboratory data were obtained in Brazil and were sponsored by the Brazilian governmental agency CNPq (grants 301738/2013–0 and 449616/2014–2).
Transparency document

Transparency document associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2019.103848.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.103848.

References

[1] W. Chao, J. Z.M., G. Shan, Z. JunFeng, Z. Shu, Eclogite-melt/peridotite reaction: experimental constraints on the destruction mechanism of the North China craton, Sci. China Earth Sci. 53 (2010) 797–809.

[2] Z.S. Souza, C. Wang, Z.M. Jin, J.W. Li, J. Yang, N.F. Botelho, R.R. Viana, L. Santos, P.L. Liu, W. Li, Pyrometamorphic aureoles of Cretaceous sandstones and shales by Cenozoic basic intrusions, NE Brazil: Petrographic, textural, chemical and experimental approaches, Lithos 326–327 (2018) 90–109.