Research article

Magnetic polymeric core-shell as a carrier for gradual release in-vitro test drug delivery

Maryam Zhalechina, Shahram Moradi Dehaghi a,*, Mostafa Najafi b, Abolghasem Moghimi a

a Department of Chemistry, Tehran North Branch, Islamic Azad University, Tehran, Iran
b Department of Chemistry, Faculty of Science, Imam Hossein University, Tehran, Iran

ARTICLE INFO
Keywords:
Nanotechnology
Pharmaceutical chemistry
Core-shell
Nilotinib
Gradual release
Magnetic
Graphene oxide
Drug delivery

ABSTRACT
At first functionalized graphene oxide was selected as a basic substrate obtained through process of functionalization of graphene oxide with diethylenetriamine as substrates. Then magnetic nanoparticle sediments were formed and coated on the functionalized graphene oxide as the core center. The core nanoparticle was added to a gel containing poly (lactic-co-glycolic acid), polyethylene glycol, and polyvinylpyrrolidone and nilotinib drug for forming a shell on the core. After separation and freeze-drying, single core-shell particles were obtained. The second shell was coated by dispersing first core-shell in a new gel containing polyactic acid, polyvinyl alcohol, polyethylene glycol, and nilotinib. The third layer was laminated on core-dual shell particle by entering in sodium alginate, polyethylene glycol, poly (lactic-co-glycolic acid), polylactic acid and nilotinib gel according to the same method used above. In order to determine the gradual release, the core-single, dual-layer and triple shell nanoparticles dispersed in phosphate buffer saline at the several pHs (3, 5.4, 7.4) and as well as monitoring the released concentration of nilotinib by UV-Vis spectrophotometer technique. Core-triple shell particle had gradual release at three different rates over the long time. Finally, the average release rate for 400 mg of drug, in single layer, double-layer and three layers were reported to be equal to 15.8, 10.4 and 6.6 mg/h at intervals of 24, 37 and 60 h, respectively. The release rate of the drug reduced by increasing the pH value. All products were characterized using several techniques.

1. Introduction
Nowadays, the core-shell particles have been applied for smart drug delivery. Different methods and materials have been used for preparation of core-shell nanoparticles. The synergistic effect, loading capacity, power of influence, biocompatibility, biodegradability, dissolution, and stability environment all were considered to be the determinant parameters in the construction of core-shell composites [1, 2, 3]. In recent years, the core-shell composites have been used in different cases including smart drug delivery, bio imaging, sensing, replacement, support, tissues, catalysis and electronics. Biocompatible polymers used in the preparation of core-shell composites for drug delivery and making pharmaceutical carriers are of interest to researchers [2, 4].

Core-shell particles were prepared usually by two methods including two-step or multi-step process methods. In these methods, initially, the core particles were synthesized and the shell was formed on the core particle using different methods, such as sol-gel, hydrolysis and hydrothermal [1, 2, 4].

The hollow shell, rattle-like, yolk shell, Nano porous core-shell all were different types of core-shell [4]. Core-shell and some of the organic and inorganic polymers have been used for the preparation microspheres [5, 6, 7, 8, 9, 10, 11]. Core-shell in medication applications has been used for drug delivery of nilotinib (Figure 1) [12,13,14], Doxorubicin [15, 16], 5-Flu [17, 18] and other drugs in the treatment of cancer and other diseases [19].

In this study, the core-shell was produced by deposition of super paramagnetic particles onto graphene oxide functionalized with diethylenetriamine. This composite was milled to fine spherical particles using a disk mill. After separation and drying, the spherical particles were introduced into a gel containing multiple biodegradable natural polymers. Then, a certain amount of nilotinib was added to the mixture. The gel was milled by the disk mill until the core-shell nanostructures were obtained. Multiple single-layered structures owning different percentages of polymer and drug were obtained. Drug release for all three types of nanoparticles, including core-shell particles (CSP), core-dual shell particles (CDSP) and core-triple shell particles (CTSP) was

* Corresponding author.
E-mail address: shm_moradi@iau-tnb.ac.ir (S.M. Dehaghi).

https://doi.org/10.1016/j.heliyon.2021.e06652
Received 23 June 2019; Received in revised form 7 September 2019; Accepted 1 October 2019
2405-8440/ © 2021 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
evaluated in the phosphate buffer saline environment at 37 °C and three

pHs (3, 5.4, 7.4) [20,21,22]. Different single-layered structures were

prepared using polymer structural parameters including polymerization

degree, hydrolysis degree, and molecular mass. It was found that the

release time differed based on the properties of the employed polymers.

The solubility of the polymers reduced and the release time increased

when the molecular mass and polymerization degree were increased.

Ultimately, core-dual and core-triple nanostructures were prepared

based on the results obtained from single-layered core-shell nano-

structures. Also, release time and proportional release rate for an

extended period were obtained based on the results.

2. Experimental

2.1. Materials

The major reagents used in this research were as follows: Graphene

Oxide was purchased from Shanghai Yifan Graphite Co., Ltd.; Diethylene

Triamine, Oxalyl Chloride, Dimethyl Formamid (DMF), Tetra Hydro

Furan (THF), Ferric Chloride hexahydrate (FeCl₃·6H₂O, 99%), anhy-

drous Dimethyl Sulfoxide (DMSO), Acetic Acid, Sulphuric Acid, Phos-

phate Buffered Saline (PBS) and Nilotinib, were purchased from Sigma

Aldrich Co.; Polyvinylpyrrolidone (PVP, K30) was purchased from MYM

Biological Technology Co., Ltd. poly (lactic-co-glycolic acid (PLGA),

Polylactic acid (PLA), Na Alginate and Glycerol monostearate (GMS),

Polyethylene glycol (PEG) were purchased from Sigma Aldrich Co.

2.2. Synthesis method

2.2.1. Preparation of functionalized graphene oxide (FGO)

Graphene oxide was converted into chloroacetic acid form through

the reaction with oxalyl chloride. Chloroacetic acid form of graphene

oxide reacted with diethylenetriamine under the influence of microwave

irradiations based on the procedure presented in the study by Moradi

[23]. The method was as follows.

2.2.2. Acylation of graphene oxide (G-COCl)

0.1 g of GO was dispersed in 60 mL of Dimethylformamide (DMF) by

the sonication treatment for 15 min. Next, 8 mL of oxalyl chloride was

added drop wise to the dispersion of GO at 0 °C under nitrogen gas and

the mixture was stirred at 0 °C for 2h and then was kept at room tem-

perature for 2h. The excess oxalyl chloride was removed by heating the

reaction mixture at 70 °C for 12 h the G-COCl was collected by fil-

tration through a membrane (pore size of 0.2 μm) and was dried under vacuum.

2.2.3. Amidation of chloroacetic acid form of graphene oxide

0.1 g of G-COCl was heated with 0.05 mol of DMF at 100 °C for 7

days, separately. After being washed with ethanol to remove the excess

amine, the black solid was treated with Tetrahydrofuran (THF). The

brownish mixture was filtered through a coarse filter paper and the black

filtrate was taken to be dried in a rotary evaporator.

2.2.4. Synthesis of magnetic FGO (MFGO)

The method presented in the reference was modi

dified [24, 25, 26, 27], to synthesize and stabilize iron magnetic nanopar

cles on FGO. Initially, FGO was dissolved in aqueous solution and a solution of FeCl₃ and FeCl₂

with a 2:1 M ratio was added to it. Then, 1.0 M of trimethyl ammonium

hydroxide was prepared and was added slowly to the solution until the

pH of the solution reached about 12. The solution was sonicated for 20

min then was stirred for 3 h to be homogenized. Then, MFGO particles

were separated using a permanent magnet from suspension and were

washed several times with deionized water and were dried in an oven at

around 60 °C for 48 h under vacuum. The samples were then pressurized

using an abrasive stirrer to form spherical particles as well as achieving

better interactions between FGO and magnetic nanoparticles. Function-

alized graphene oxide coated with magnetic nanoparticles, MFGO was

prepared according to this method, as shown in Figure 2.

2.2.5. Preparation of core-shell, core -double shell and core-triple shell nano

particles

In the production process, at first, the single-layered core-shell

nanostructures were prepared. The preparation procedure was the same

except some parameters such as molecular mass and polymerization

degree. The preparation process is brought in Table 1. It describes the

type and properties of utilized polymers in the production of single

layered core-shells in order to the optimization of used polymers ratios.

As shown in Figure 2, MFGO was used as a core for the preparation of

core-shell composite. MFGO was added to the hydro-alcoholic gel

Figure 1. Nilotinib drug structure as a sample test.

Figure 2. The central structure forms core in the core-shell composite.
containing Polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) and nilotinib drug. The poly lactic-co-glycolic acid (PLGA) was dissolved in chloroform and was added to an insignificant amount of glycerin mono stearate (GMS) as an emulsifier. After mixing the whole pellet containing the resulting mixture, the gel was added in the first step. The mixture was stirred until the solvent was evaporated and the gel was coated on functionalized graphene oxide nano particles (FGONP), and the mixture was tightly mixed by an abrasive stirrer to fit uniformly, so that the mixture can be crossed completely and easily from sieve with mesh 800, then was diluted with double distilled water. The mixture was quickly sprayed onto liquid nitrogen and remained for 1 h for complete freezing. The frozen nanoparticles were transferred to a petri dish and it was lyophilized (freeze-dryer bone (FDB-5503), Operon. company) for 5 days in order to dry the first nano particles. The CSP were prepared. Then, again, a part of CDSP was added to the new hydro-alcoholic gel containing PEG and PVP and a new dose of the nilotinib drug at $0/C14$ was mixed with polylactic acid (PLA) solution in chloroform and was added to an in signifi cant amount of glycerin mono-stearate as an emulsifier. The mixture was stirred and the second layer was laminated to be placed on CDSP. According to the same method used for the preparation of the first core-shell nano particles, CDSP was dried and separated. In the third step, again, some of the CDSP were added to another hydro-alcoholic gel containing hydroxy propyl cellulose (HPC), PEG, Na alginate, PLGA, PLA and was mixed with the other dose of the nilotinib drug according to the same method. The final gel was added to the calcium chloride solution, was stirred gently for 2 h. The resulting paste was shaken and tiny particles were sieved. The mixture was prepared according to the same method before lyophilization. CTSP were prepared. The image of the core and the structure of multi-layer core-shell particles are presented in Figure 3.

Nilotinib drug values in CSP were 0.4 g. In CDSP, added nilotinib drug mass amounts were 0.2 g in the inner shell and 0.2g in the outer layers. Nilotinib drug amounts in CTSP from inside to outside of the shells were 0.1, 0.15 and 0.15 g, respectively.

2.3. Drug release

Drug release in phosphate buffered saline (PBS) was investigated at pH values of 3, 5.4 and 7.4 and the temperature at 37°C. The drug release for CSP, CDSP and CTSP in the above conditions was evaluated separately. The amount of drug released during a specific time was measured by UV-Vis spectroscopy. Table 1 shows the drug release in various conditions. Table 1 and Graph 1 provide the rate and process of drug release for all core-shell nano particles.

3. Results and discussion

3.1. Characterization

The results of the FT-IR (Thermo Nicolet Nexus 870 FT-IR spectroscopy) to determine the functional groups, 1H NMR, 13C NMR (Fourier transform Nuclear Magnetic Resonance (FT-NMR) Bruker, 300 MHz) To determine the structure of functionalized graphene oxide, Vibrating Sample Magnetometer (VSM, Homade 2 T) In order to investigate the magnetic properties of iron oxide nanoparticles, Scanning Electron Microscopy (SEM, XL30, 15–30 KV, Philips Company Electron Microscopes) in order to evaluate the morphology of the surface of the core-shell, Transmission Electron Microscopy (TEM,CM 30, 300 KV) to study the core-shell particle size, Thermogravimetric Analysis TGA (LINSEIS

Table 1. Provides the rate and drug releases process for all core-shell.

pH – 3.0	Loaded drug (mg/g)	Released drug (mg)	Average rate of released (mg/h)	Duration time (h)	% Released
CSP	400	380	15.8	24	95
CDSP	Outer shell 200	198	11.64	17	99
CDSP	Inner shell 200	192	9.6	20	96
Total	400	390	10.4	37	97.5
CTSP	Outer shell 150	150	8.33	22	99.6
CTSP	Middle shell 150	148	6.72	22	98.6
CTSP	Inner shell 100	98	4.9	20	98.6
Total	400	396	6.6	60	99

pH – 5.4	Loaded drug (mg/g)	Released drug (mg)	Average rate of released (mg/h)	Duration time (h)	% Released
CSP	400	340	8.5	40	85
CDSP	Outer shell 200	190	7.0	27	95
CDSP	Inner shell 200	185	7.4	25	92.5
Total	400	375	7.2	52	93.75
CTSP	Outer shell 150	150	6.8	22	100
CTSP	Middle shell 150	147	5.65	26	98
CTSP	Inner shell 100	90	4.0	24	90
Total	400	387	5.4	72	96.75

pH – 7.4	Loaded drug (mg/g)	Released drug (mg)	Average rate of released (mg/h)	Duration time (h)	% Released
CSP	400	320	6.6	48	80
CDSP	Out shell 200	170	6.1	28	85
CDSP	Inner shell 200	150	5.0	30	75
Total	400	320	5.5	58	80
CTSP	Out shell 150	145	5.0	28	96
CTSP	Middle shell 150	140	4.0	35	93
CTSP	Inner shell 100	75	2.5	30	75
Total	400	360	3.9	93	90
Thermal Analysis STA PT 1600) were presented separately for each product, which is as follows:

3.2. FT-IR

At the end of each stage of the process including the production of magnetic nanoparticles, functionalization of graphene oxide with diethylenetriamine and nilotinib, and production of CSP, CDSP and CTSP, and FT-IR spectroscopy was implemented for all the samples. Stretching vibrational (SV) and bending vibrational (BV) frequency range of functional groups in the compounds were presented and described below (Figure 4).

Stretching vibration of N–H and NH2 groups of diethylene tri-amine and the functional amine group of Nilotinib in the range of 3400–3580 cm−1 can be seen. Carbonyl functional group stretching vibrations in the amide group are observed in the functionalized graphene oxide in the core and nilotinib drug structure in the range of 1610–1710 cm−1. Other significant signals of functional groups for the ingredients in core-shells, respectively, are presented below.

- **FGO**: ν_{max} (KBr disc): 3470 s (NH, NH2) (SV); 1710w (C=O) (SV); 1610 m (CONH) (SV); 1090 w (C–N) (BV), cm$^{-1}$. (s: strong, m: medium, w: weak).
- **MFGO**: ν_{max} (KBr disc): 3480 s (NH, NH2) (SV); 1700 s (C=O), 630 (Fe3O4) (BV), cm$^{-1}$.
- **CSP**: ν_{max} (KBr disc): 3400s (NH, NH2) (SV); 1610s (CO) (SV); 640w (Fe3O4) (BV); cm$^{-1}$.
- **CDSP**: ν_{max} (KBr disc): 3400s, (NH, NH2) (SV); 1610s, (C=O) (SV); 1420m, (Fe3O4) (BV); 670w, (NH) (BV), cm$^{-1}$.
- **CTSP**: ν_{max} (KBr disc): 3400s, (NH, NH2) (SV); 1610s, (C=O) (SV); 1420m, (Fe3O4) (BV); 670w, (NH) (BV), cm$^{-1}$.

3.3. NMR

Figure 5 shows the MFGO spectral specification represented by determining the functional groups and their chemical shift in the 13C and 1H-NMR spectrum. Since the oxidation process differed from the graphene sheets, it's completely different functional groups position and is non-uniform. The functional groups on graphene oxide structure are non-repeatability. In the functionalization spectrum obtained is decentralized and dispersed in a close range together. For this reason, broad peaks were observed extensively. Diethylenetriamine, amide group created after attaching it to graphene. NH groups of di-ethylenetramine was existed in two form, amine and amide group and due to the hydrogen bonding in 1H NMR was observed in the range of 8–9 ppm with broad singlet peak that is exchanged hydrogen with D2O. Methylene hydrogens that connected to the amine and amide groups in 1H NMR and the appearing of methylene carbon in the 13C NMR is expressed, respectively.

1H NMR (CDCl3 solution): δ 8–9 s (NH) broad singlet exchange D2O; 5.4–3.4, m (CO–NH–CH2); 3.0–3.4, m (CH2–NH); ppm. 13C (1H) NMR (CDCl3 solution): δ 170 (C=O); 163, 161 (C, GO); 57 (CO–N–CH2); 30–41 (NH–CH2); ppm.

3.4. SEM and TEM images

The first row of Figure 6 shows the SEM images for all samples in which the spherical structure was confirmed and the average particle size for the MFGO, CSP, CDSP and CTSP core-shell was determined to be equal to 60, 110, 230 and 330 nm, respectively.

Second row of Figure 6 shows the results obtained from the TEM images, with a high similarity ratio, in which the spherical structure of the shell-core nano particle was confirmed and the average particle size for MFGO, CSP, CDSP and CTSP was determined to be equal to 65, 110,
222 and 325 nm, respectively. The layered structure in the core shell particles was clearly visible in the TEM images. The increase in the size of the particle by increasing each layer on the substrate was easily recognizable.

3.5. Vibrating sample magnetometer

Figure 7 shows the Vibrating Sample Magnetometer (VSM) images, according to VSM results, the magnetic properties of MFGO particles showed the maximum saturation magnetization which was equal to 40.1emu/g indicating a typical super paramagnetic behavior. By placing the first shell on the core, the magnetic properties are reduced, with the second and third layers reaching 37.5, 30.0 and 26.8emu/g, respectively. The amount of magnetic nanoparticles in the core is fixed. Padding is done on the same core. With increasing each layer on the core, the ratio of magnetic mass in core is reduced to the total mass of core-shell nanoparticles. The loss of the magnetic properties due to reduction mass of the magnetic core compared to the total mass of core-shell nanoparticles.

3.6. TGA thermogram interpretation

Figure 8 shows the Thermogravimetric analysis (TGA) thermogram, the results of Thermogravimetric Analysis for CTSP show that there are layers decomposing along with a slowly increasing temperature. The weight loss of about 30% for sodium alginate was observed at a temperature of 180–250°C [28]. A thermal degradation was observed for the PLGA at the temperature range of 250–320°C in which the composite weight decreased about 11% The composite weight decreased by 11% due to the weight loss of the PLA at the temperature range of 320–370°C [29, 30].

The next weight loss was observed at the temperature range of 370 up to 400°C and 400 up to 470, which is attributed to the weight loss of PVAI was and it was reported to be about 10% of the composite weight and PVP about 10% [31, 32]. Weight loss associated with the nilotinib and diethylenetriamin at the temperature range of 470 up to 620°C, it was reported to be about 16% of the composite weight. Weight loss associated with the graphene oxide continued to the temperature of 700°C, it was reported to be about 10% of the total composite weight less than 2% of the composite weight remained constant and was not changed with the change in the temperature, which belonged to the magnetic iron oxide present in the composite sample.

4. Discussion

The experience we obtained in the process of production of nanoparticles can be represented as follows. At first, the magnetic nanoparticles were added to the mixture of drug and polymer without the functionalized graphene oxide support. In this case, the structure did not own the core, and also the magnetic charges of the nanoparticles were distributed all over the nanoparticles due to scatteredness of magnetic nanoparticles in the solution. Therefore, the effect of external magnetic field on the concentration of the drug was insignificant. In the next stage, the magnetic nanoparticles were loaded on FGO support. The presence of amine groups and their interaction with iron salts in the production stage induced the precipitation of magnetic nanoparticles within the FGO layers and formation of strong intermolecular forces. This process caused more concentration of magnetic nanoparticles. Also using the disk mill/mixer made the particles to become more spherical and dense. These particles were significantly attracted to the magnetic field due to their high concentration and density. The noticeable point is that these particles collapsed partially in further stages. Moreover, increasing the number of layers on the core reduced the magnetic effect due to the reduction of the ratio of core magnetic mass to the whole particle mass.

The results showed that, CTSP compared to CDSP have a lower average release rate and a longer period was reported for the release. In these samples, the drug used was the same in all nano medicines and the dose of the drug was equal to 400 mg. According to the results, the drug
Figure 5. 1H NMR(A) and 13C NMR(B) images for all the spherical structure MFGO.
The use of auxiliary polymers such as Polyvinyl alcohol (PVAI), and PVP led to an appropriate dispersion of medication at the time of mixing with PLGA and PLA to create a proper distribution.

By increasing the number of shells, the amount of drug loading increased in each of the nanoparticles, and by determining the type of polymer and its degree of polymerization, its release rate can be controlled.

In addition, different drugs can be loaded simultaneously or in different shells. By increasing the number of shells to a thickness of 5,000 nm, a significant amount of the drug can be released in a long time.

Finally, in this study, the nilotinib drug was loaded into shells of core-shell nanoparticles containing one to three shells. The environmental conditions were investigated for drug release in the stomach environment with pH~3.4, in the cancer cellular environment with pH~5.4 and also in neutral environments with pH~7.4 in the PBS environment. In fact, these three pHs have direct contact with the iso-electric point of

Figure 6. The above figure is related to SEM and the bottom image is TEM for all the spherical structure MFGO, CSP, CDSP, and CTSP.

Figure 7. The VSM images related to magnetic properties of MFGO particles.
ever, such a process would have more utilization in clinical trials, but in the scatteredness of the drug and concentrating it in the desired spot. How-

loading and slow releasement of nilotinib drug was evaluated through

5. Conclusion

the drug carriers. The remarkable point is that the carrier can be used to slow down the release of insoluble drugs such as nilotinib was used in preparation of the core-shell, was biocompatible and did not keep them from being attracted to the external magnetic field. It is usually prescribed with high doses, which only a slight amount is absorbed into the body and the rest of it is excreted. Super magnetic particles were embedded in the core-shell. An external magnetic field was used to focus its release on the damaged site. Super magnetic particles are activated and absorbed into the magnetic field. This feature can be employed for preventing scatteredness and lack of concentration of the particles which keep them from being attracted to the external magnetic field.

- We employed disk mills in order to production and compression of magnetic and core-shell nanoparticles somehow that the densest nanoparticles with high range of grain size are obtained. These properties were achieved through a change in the pressure of the mill disks.

- Finding the correlation between the molecular mass of the polymers and their mixture ratios was implemented in order to achieve the desired releasement time. Increasing the molecular mass of poor soluble polymers such as PLA and PLGA (molecular mass from 33000 to 55000 and 88000) in PBS environment allows us to extend the releasement time. On the other hand, in the case of PVAI, increasing the hydrolysis degree of acetate groups in PVAI up to 98% promoted the formation of hydrogen bonding in the mentioned molecule. This phenomenon enhanced the formation of a low-soluble and sturdy polymer film which helped to slow down the releasement process.

- The role of PVP and GMS as emulsifiers were considerable since PVP, PVAI, and the drug are produced in water and alcohol environment, while PLA and PLGA are produced in chloroform. PVP and GAAS facilitated the interactions between those two phases and promoted the formation of some tiny but stable micelles which dispersed the particles and homogenized the mixture well.

- We used numerous samples to find the optimized mixture ratio.

- Using sodium alginate in the outer shell had some tangible benefits as it aided well formation of the outer shell and the spherical growth of the core-shell. As soon as the final mixture was homogenized, the gel was introduced into the disk mill which was placed in calcium chloride solution. Then, the particles rapidly started to gain spherical shapes. As a matter of fact, sodium alginate has a significant ability to absorb water. This improves a facilitated dissolution with the absorption of water and more drug releasement from the outer shell. In other words, the drug releasement rate in a sodium alginate support is extremely higher than PLA and PLGA. Adding sodium alginate is for the releasement in the first moments. Drug releasement from the outer shell in the samples without sodium alginate was nearly zero in some hours.

- The mass amount of nilotinib drug (400 mg) and the super para-magnetic particles (0.01 g) and total MFGO mass (0.1 g) was constant in all the samples. In multi-layered samples, the sum of drug mass in each layer was 400 g. The change in the polymer types and their mass ratio are adjusted based on the drug releasement time. This change is depended on the solubility in PBS, so certain amounts of drugs can be released in a long time. As the last point to mention, nilotinib is a cancer drug, therefore its releasement behavior was evaluated in 3 common pHs in the body.

- This release rate in the acidic medium in CSP was on average 15.8 mg/h for 24 h. For CDSP, the average release rate was equal to 10.4 mg/h for 37 h and for CTSP average release rate was equal to 6.6 mg/h for 60 h. Based on the results and the experience gained in the construction of core-shell nanoparticles, it was found that they can be used for two or more drugs at the same time. Each layer can be assigned to a single drug. By increasing the size of the nanoparticles the drug load percentage can be increased.

- About CSP, the releasement rate increased when the pH reduced. 400 mg of nilotinib in pH of 7.4 had 48 h of releasement time, in pH of 5.4 it was 40 h, and in pH of 3, it was 24 h. About CDSP, the releasement time of 400 mg of nilotinib in three pH of 7.4, 5.4, and 3 was 58, 52, and 37 respectively. About CTSP and the same pHs, the releasement time was 93, 72, and 60 h respectively.

Declarations

Author contribution statement

Shahram Moradi Dehaghi: Conceived and designed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.
Maryam Zhalechin: Performed the experiments; Analyzed and interpreted the data.
Mostafa Najafi: Conceived and designed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data.
Abolghasem Moghimi: Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data.

Funding statement
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Competing interest statement
The authors declare no conflict of interest.

Additional information
No additional information is available for this paper.

References
[1] R. Hayes, A. Ahmed, T. Edge, H. Aifre Zhang, Core-shell nanoparticles: preparation, fundamentals and applications in high performance liquid chromatography, J. Chromatogr. A 1357 (2014) 36–52.
[2] G. Shim, M.G. Kim, J.Y. Park, Y.K. Oh, Graphene-based nanosheets for delivery of chemotherapeutics and biological drugs, Adv. Drug Deliv. Rev. 105 (2016) 205–227.
[3] K. Yang, L. Feng, Z. Liu, Stimuli responsive drug delivery systems based on nanographene for cancer therapy, Adv. Drug Deliv. Rev. 105 (2016) 228–241.
[4] R.G. Chaudhuri, S. Paria, Chem. Rev, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications, Chem. Rev. 112 (2012) 2373–2433.
[5] S.K. Shukla, S.R. Deshpande, S.K. Shukla, A. Tivari, Fabrication of a tunable glucose chemotherapeutics and biological drugs, Adv. Drug Deliv. Rev. 105 (2016) 299–311.
[6] J. Sunho, L. Byung-Seok, A. SeJin, H.Y. Kyung, H.S. Yeong, C. Youngmin, Characterization of physicochemical and thermal properties of chitosan and sodium alginate after bioactivity modification of multi-wall carbon nanotubes, Mater. Sci. Eng. 3 (2014) 26–32.
[7] K. Asadpour-Zeynali, F. Mollaraoushi, Novel electrochemical biosensor based on PVP coated CoFeO4@CoSe core-shell nanoparticles modified electrode for ultra-trace level determination of rifampicin by square wave adsorptive stripping voltammetry, Biosens. Bioelectron. 92 (2017) 509–516.
[8] C.I. Covaliu, I. Jitariu, G. Parasci, et al., Core–shell hybrid nanomaterials based on CoFe2O4 particles coated with PVP or PEG biopolymers for applications in biomedicine, Powder Technol. 237 (2013) 415–426.
[9] J. Cheng, B.A. Toply, J. Sheriff, et al., Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery, Biomaterials 28 (2008) 869–876.
[10] K. Miyamura, T. Miyamoto, M. Tanimoto, et al., Switching to nilotinib in patients with chronic myeloid leukemia in chronic phase with molecular suboptimal response to frontline imatinib: SENSOR final results and BIM polymorphism sub study, Leuk. Res. 51 (2016) 11–18.
[11] M.A. Nader, G.M. Atti, Beneficial effects of nilotinib, tyrosine kinase inhibitor on cyclosporine-A induced renal damage in rats, Int. Immunopharmac. 33 (2016) 1–7.
[12] M. Cramp, J. Garry, S.E. Langabeer, et al., Sustained molecular response with nilotinib in imatinib-intolerant chronic myeloid leukemia with an e19d2 BCR-ABL1 fusion, Hematol. Oncol. Stem Cell Ther. 9 (2016) 168–169.
[13] L.C. Ho, C.H. Hsu, C.M. Ou, et al., Unibody core-shell smart polymer as a thermoresponsive nanoneedle for drug delivery and MR imaging, Biomaterials 57 (2015) 436–446.
[14] L. Liu, J. Zeng, X. Zhao, K. Tian, P. Liu, Independent temperature and pH dual-responsive PMAA/PNIPAM microgels as drug delivery system: effect of swelling behavior of the core and shell materials in fabrication process, Colloid. Surface. Physicochem. Eng. Aspect. 526 (2017) 48–55.
[15] A. Dalmoro, A.Y. Sitenkov, S. Cascone, et al., Hydrophobic drug encapsulation in shell-core microcarriers by two stage polyelectrolyte complexation method, Int. J. Pharm. 518 (2017) 50–58.
[16] D. Liu, D.T. Auguste, Cancer targeted therapeutics: from molecules to drug delivery vehicles, J. Contr. Release 219 (2015) 632–643.
[17] R.A. Perez, H.W. Kim, Core-shell designed scaffolds for drug delivery and tissue engineering, Acta Biomater. 21 (2015) 2–19.
[18] Y. Zhu, J. Shi, Fluoride adsorption from aqueous solution by magnetic core-shell Fe3O4@alginatex-La particles fabricated via electro-coextrusion, Microporous Mesoporous Mater. 103 (2007) 243–249.
[19] J. Li, J. Zeng, X. Jia, L. Liu, T. Zhou, P. Liu, pH, temperature and reduction multi-responsive polymeric microspheres as drug delivery system for anti-tumor drug: effect of middle hollow layer between pH and reduction dual-responsive cores and temperature sensitive shell, J. Taiwan Inst. Chem. Eng. (2016) 1–8.
[20] M. Zhalechin, Sh Moradi, P. Aboomand Azar, Synthesis of nano shell by amino functionalization of multi-walled carbon nano tubes, J. Mater. Sci. Eng. 3 (2014) 112–119.
[21] Y. Zhang, X. Lin, Q. Zhou, X. Luo, Fluoride adsorption from aqueous solution by magnetic core-shell Fe3O4@alginatex-La particles fabricated via electro-coextrusion, Appl. Surf. Sci. 389 (2016) 34–45.
[22] J. Sunho, L. Byung-Seok, A. SeJin, H.Y. Kyung, H.S. Yeong, C. Youngmin, Characterization of physicochemical and thermal properties of chitosan and sodium alginate after bioactivity modification of multi-wall carbon nano tubes, Mater. Sci. Eng. 3 (2014) 26–32.
[23] K. Adedoyin-Adeyemo, F. Mollaraoushi, Novel electrochemical biosensor based on PVP coated CoFeO4@CoSe core-shell nanoparticles modified electrode for ultra-trace level determination of rifampicin by square wave adsorptive stripping voltammetry, Biosens. Bioelectron. 92 (2017) 509–516.
[24] C.I. Covaliu, I. Jitariu, G. Parasci, et al., Core–shell hybrid nanomaterials based on CoFe2O4 particles coated with PVP or PEG biopolymers for applications in biomedicine, Powder Technol. 237 (2013) 415–426.
[25] J. Cheng, B.A. Toply, J. Sheriff, et al., Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery, Biomaterials 28 (2008) 869–876.