Interval to surgery after neoadjuvant treatment for colorectal cancer

Nir Wasserberg, Department of Surgery B, Rabin Medical Center, Beilinson Campus, Petach Tikva and Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel

Author contributions: Wasserberg N solely contributed to this paper.

Correspondence to: Nir Wasserberg, MD, Department of Surgery B, Rabin Medical Center, Beilinson Campus, Petach Tikva and Sackler School of Medicine, Tel Aviv University, Haim Levanon 55, 69978 Tel Aviv, Israel. nirw@clalit.org.il Telephone: +972-3-9376202 Fax: +972-3-9376202

Received: September 28, 2013 Revised: November 11, 2013 Accepted: January 14, 2014 Published online: April 21, 2014

Abstract

The current standard treatment of low-lying locally advanced rectal cancer consists of chemoradiation followed by radical surgery. The interval between chemoradiation and surgery varied for many years until the 1999 Lyon R90-01 trial which compared the effects of a short (2-wk) and long (6-wk) interval. Results showed a better clinical tumor response (71.7% vs 53.1%) and higher rate of positive and pathologic tumor regression (26% vs 10.3%) after the longer interval. Accordingly, a 6-wk interval between chemoradiation and surgery was set to balance the oncological results with the surgical complexity. However, several recent retrospective studies reported that prolonging the interval beyond 8 or even 12 wk may lead to significantly higher rates of tumor downstaging and pathologic complete response, without increasing surgical difficulty or complications. The data so far are derived largely from retrospective studies using a wide variation of treatments. Further investigations with a higher level of evidence are required to definitively resolve this issue.

Key words: Rectal cancer; Chemoradiation therapy; Neoadjuvant; Surgery; Interval to surgery; Colorectal cancer

Core tip: The traditional 6-wk interval between chemoradiation and surgery in the treatment of rectal cancer was based primarily on a single publication. There has been a trend in recent years to prolong this interval based on studies showing that it may be advantageous in terms of tumor downstaging and pathologic complete response, without increasing surgical difficulty or complications. The data so far are derived largely from retrospective studies using a wide variation of treatments. Further investigations with a higher level of evidence are required to definitively resolve this issue.

INTRODUCTION

Colorectal cancer is the fourth most common malignancy in the United States and the second most frequent cause of cancer-related death[1]. Approximately 50% of rectal cancers are diagnosed at the locally advanced stage, with metastatic spread to the lymph nodes in two-thirds of these cases[2]. The standard treatment of rectal cancer is curative surgical resection, combined with preoperative chemoradiation therapy (CRT) for T3 and/or node-positive tumors of the mid/low rectum (located 12 cm from the anal verge), and additional adjuvant therapy if indicated[3]. Local recurrence rates following CRT and surgery...
are less than 10%, especially when modern surgical techniques such as total mesorectal excision are used\[8\]. Studies have shown that the addition of CRT has a beneficial effect on tumor downstaging and pathologic complete response (pCR)\[9,10\], with improved tumor resectability, possibly increased sphincter preservation rates\[11,12\], and maybe even increased overall survival rates\[13\]. Recent evidence suggests that CRT-induced tumor regression may allow for a “watch and wait” approach that avoids surgery altogether in selected patients\[14\].

Several strategies have been suggested to improve the response to CRT, including better patient selection\[15\], case-personalized approach with specific genetic fingerprinting\[16,17\], variations in the radiation and chemotherapy regimens\[18-20\], and additional chemotherapy during a “rest interval” after CRT\[21\]. In recent years, researchers have directed attention to optimizing the CRT-surgery interval\[22\], which remains controversial\[23\]. Ideally, the most favorable interval should facilitate maximal tumor regression, defined by maximal tumor downstaging and downsizing, with minimal risk of deterioration in the surgical results, defined by low short-term morbidity in mainly relation to perineal and anastomotic complications and better long-term oncological and functional outcomes.

Early trials conducted from the 1970s to the late 1990s used a broad range of CRT-surgery intervals with widely varying results\[23-27\]. The 1999 Lyon R90-91 trial\[28\] was the first to specifically address this issue. A cohort of 201 patients with rectal cancer were prospectively randomized to undergo surgery at 2 or 6 wk after completion of radiotherapy. The longer-interval group was found to have a better tumor response and improved pathological downstaging, with similar rates of complications and survival to the shorter-interval group. The authors concluded that 2 wk may be too short a time to achieve maximum benefits of radiation-induced tumor regression. As a consequence of this study, surgery at 6 wk after completion of radiotherapy became the standard of care. However, later data suggested that the response to CRT in patients with rectal cancer is time-dependent, and complete tumor regression may take months\[29\]. Thus, the interval between CRT and surgery should be sufficient to attain greater tumor regression and to permit the acute radiation effects of tissue swelling and local inflammation to dissipate before surgery. At the same time, a too-long interval poses a risk of tumor progression during the wait for surgery, with a higher rate of distant metastasis. Furthermore, the accelerated repopulation of tumor cells that are not completely eradicated could lead to multidrug resistance. These drawbacks may explain the reported lack of change in survival in patients with rectal cancer despite the improvements in local control\[30\]. Others have raised concerns that delaying surgery beyond 6 to 8 wk from CRT could also increase the technical operative risk due to radiation-induced pelvic fibrosis, thereby increasing the rate of surgical complications\[31\] and locoregional recurrence\[32,33\].

The purpose of the present review was to summarize the current data on the optimal timing of surgical resection after CRT for rectal cancer.

EFFECT OF PROLONGED CRT-SURGERY INTERVAL ON ONCOLOGICAL OUTCOME

Tumor regression and rate of pCR

The time elapsed from after preoperative CRT is one of the factors affecting the process of T or N stage reduction. Foster et al\[22\] systematically reviewed 15 studies, each based on different neoadjuvant treatment indications and regimens and different CRT-surgery intervals. Four of the 9 studies that evaluated the effect of a prolonged interval on tumor regression reported a significant improvement. Most of the studies did not apply a histologically based tumor regression grade to estimate the degree of postoperative tumor regression and fibrosis\[34\], although proven to be of prognostic significance\[35\]. The only randomized study among these publications was the Lyon R90-01 trial\[28\], in which the longer-interval group had significantly higher rates of a positive clinical tumor response (71.7% vs 53.1%) and pathologic tumor regression (26% vs 10.3%) than the shorter-interval group (P < 0.05 for both factors). They also had a nonsignificantly higher rate of pCR (13.8% vs 7.1%).

The Dutch surgical colorectal audit is the most recent published study to address the CRT-surgery interval in terms of tumor regression\[36\]. A total of 1593 patients with rectal cancer were evaluated. The results showed that delaying surgery by 10-11 wk from the end of CRT was associated with the highest chance of a pCR. Accordingly, in a study of predictive factors of pCR, Kalady et al\[35\] concluded that an extended interval between completion of neoadjuvant therapy and surgery was the single most important determinant. This finding was in line with the study of Garcia-Aguilar et al\[36\], which analyzed the impact of both prolonging the CRT-surgery interval and adding resting-period chemotherapy. Rates of tumor downstaging and pCR significantly increased after longer intervals to surgery (18% vs 25%).

Using another approach, Perez and co-workers\[39\] investigated changes in labeled fluoro-2-deoxy-d-glucose uptake on positron emission tomography/computed tomography (PET/CT) imaging, at baseline and 6 and 12 wk after CRT. The maximal standard uptake value (SUVmax) was measured at 1 and 3 h at each time point. The authors found that patients with an increase in early SUVmax were less likely to have significant tumor downstaging, suggesting that the variation in PET/CT SUVmax at 6 wk might serve as a criterion for selecting patients who may be expected to benefit from a longer CRT-surgery interval.

A few studies of the impact of the CRT-surgery interval included an analysis of nodal regression\[40-42\]. No significant impact of a longer interval was found. The Lyon R90-01 trial, however, yielded a significant effect of a longer interval on nodal regression in patients with N2 disease\[38\]. Similar results were noted in the Dutch colorectal surgery\[43\] audit in which surgery was per-
formed 15-16 wk from the start of CRT. Others found that nodal retrieval is time-dependent, with a negative correlation after longer post-CRT time[45]. Thus, it is possible that lymph nodes have a more rapid response to CRT which may override the effect of prolonging the CRT-surgery interval[46].

Surgical margins
The status of the resection margins, including the distal mucosal and mesorectal margins, and specifically, the circumferential margins, is one of the most important factors determining disease recurrence after surgery[47,48]. Neoadjuvant CRT has been associated with reduced rates of local recurrence and tapering of the recommended margins[49]. Among the studies that examined the effect of a prolonged CRT-surgery interval on resection margin clearance[41,44], one found microscopically involved margins (R1) in 2% of patients who underwent surgery before 44 d from CRT and in 1% of patients who underwent surgery later[48]. Another reported a similar rate of positive circumferential resection margins (2.8%) with short (< 41 d) or longer intervals[41]. In neither was the effect of a prolonged interval on resection margins significant. This was true of other studies as well[22].

Prognosis
Both tumor downstaging and pCR are correlated with a better oncological outcome after CRT for rectal cancer[30,31]. Some studies reported an improved prognosis after a longer CRT-surgery interval[22,28]. Tulchinsky et al[50] compared patients operated on at an interval of more or less than 7 wk after CRT. The longer-interval group had a significantly higher overall survival rate (93% vs 81%) and significantly lower distant metastasis rate (6% vs 19%) than the shorter-interval group. However, there was no between-group difference in local recurrence rate. Similarly, Coucke et al[51] demonstrated that delaying surgery for more than 5 d after hyperfractionated accelerated radiotherapy (41.6 Gy/26 Fx bid) led to a significantly higher rate of overall survival (69% vs 47% for < 5 d, P = 0.002), disease-free survival (62% vs 41%, P = 0.0003), and cancer-specific survival (82% vs 57%, P = 0.0007) at a median follow-up of 39 mo. In this study, too, there was no difference in local control rate between the groups. de Campos-Lobato et al[52] found a significant 3-year local recurrence benefit for delaying surgery for more than 8 wk after CRT (10.5% vs 1.2%), and Wolthuis et al[53] reported significantly improved 5-year cancer-specific survival (91% vs 83%) and recurrence-free survival (73% vs 83%) when CRT-surgery intervals were prolonged. Pach et al[54] randomized 154 patients to receive preoperative short-course radiation and surgery after 7 d vs surgery after 4-6 wk. Long CRT-surgery interval was associated with more tumor downstaging and tumor regression. Nevertheless, survival was similar in the two groups. On analysis of the oncological results of the Lyon R90-01 trial after a median follow-up of 6.3 years (range 6.1-7.2 years), Glehen et al[55] failed to find any significant between-group differences. These results were supported by a Korean study in which 397 patients were randomized to undergo surgery 28-41 or 42-59 d after long-course CRT[56]. Rates of local and distal recurrence and of overall survival were similar in the two groups. By contrast, a retrospective multivariate analysis of 102 patients with low rectal cancer demonstrated that delaying surgery beyond 16 wk from rectal cancer diagnosis had a negative impact on overall and metastasis-free survival (OR = 2.59; 95%CI: 1.33-5.79, P = 0.005)[57]. A long interval between radiation therapy and surgery (6-8 wk) was not recommended for patients who may not benefit from tumor downstaging by sphincter preservation.

Table 1 reviews the literature on the effect of a prolonged CRT-surgery interval on oncological outcome[26,30,36,44,49,51,52,54,62].

EFFECT OF A PROLONGED CRT-SURGERY INTERVAL ON SURGICAL OUTCOME

Sphincter preservation
The benefit of preoperative CRT in increasing the sphincter preservation rate in patients with low-lying rectal cancer is controversial. The German CAO/ARO/AIO 94 Preoperative vs Postoperative Rectal Trial[11] reported that the preoperative administration of CRT led to a higher rate of sphincter preservation in clinical candidates for abdominoperineal resection. By contrast, a systematic review and meta-analysis of trials comparing preoperative radiation with preoperative chemoradiation showed that although preoperative CRT significantly increased the rate of pCR (P < 0.001), this did not translate into a higher rate of sphincter preservation (P = 0.29)[53]. The original Lyon R90-01 trial[29] suggested that extending the interval from CRT to surgery from 2 to 6 wk led to a trend of reduced rates of abdominoperineal resection in the longer-interval group. Yet in neither this study nor others that investigated sphincter preservation rates by CRT-surgery interval were the findings statistically significant[22,28,51].

Surgical difficulty and complications
Neoadjuvant radiotherapy for rectal cancer increases postoperative complications, predominantly because of an increased risk of anastomotic leaks and delayed perineal wound healing after abdominoperineal resection[31,64]. Delaying surgery after CRT is based on the rationale that it will allow more time for resolution of the acute inflammatory response to radiotherapy. At the same time, however, it could make dissection in the narrow pelvis more complex owing to the establishment of postradiation fibrosis[58]. Garcia-Aguilar et al[59] examined the surgical difficulty and complication rate in 144 patients who underwent total mesorectal excision at 6 or 11 wk after CRT. The longer-interval group also received 2 cycles of modified FOLFOX-6 during the late resting period. There were no significant between-group differences in operative time, blood loss, or rates of diverting...
CONCLUSION

The traditional 6-wk CRT-surgery interval used for years in the treatment of rectal cancer was based primarily on a single study showing its oncological benefit compared to a 2-wk interval, which was apparently too short to yield significant post-radiation changes. Recent studies that sought to further improve outcome in patients with locally advanced, low-lying rectal tumors found that prolonging the interval beyond 6 wk was advantageous, mainly in terms of tumor downstaging and pCR rates, without increasing surgical difficulty or complications. These findings appear to have prompted a recent trend towards increasing the time from neoadjuvant CRT to surgery 4-8 wk later. The study will include an estimated 840 patients. An interim analysis of 303 patients showed that short-course CRT and surgery at 7-11 d was associated with a trend for more complications. In another study begun in 2009 in the United Kingdom, patients are randomly assigned to undergo CRT and surgery after 6 or 12 wk; and long-course CRT followed by surgery 4-8 wk later; and short-course CRT followed by surgery 4-8 wk later. The final cohort will include 218 patients at the end of recruitment. Also from the United Kingdom, the STARRCAT Trial: Surgical Timing after Radiotherapy for Rectal Cancer, is a one-year pilot study assessing the same variables in addition to quality of life outcome. The findings will have important implications for the treatment of patients with rectal cancer.

Several centers are currently conducting prospective randomized control studies to determine the optimal interval between CRT and surgery. The multicenter Swedish Stockholm III trial that is testing different regimens of radiotherapy will be completed in 2018. Participants are divided into 3 groups: short-course CRT followed by surgery one week later; short-course CRT followed by surgery 4-8 wk later; and long-course CRT followed by surgery 4-8 wk later. The study will include an estimated 840 patients. An interim analysis of 303 patients showed that short-course CRT and surgery at 7-11 d was associated with a trend for more complications. In another study begun in 2009 in the United Kingdom, patients are randomly assigned to undergo CRT and surgery after 6 or 12 wk. The final cohort will include 218 patients at the end of recruitment. Also from the United Kingdom, the STARRCAT Trial: Surgical Timing after Radiotherapy for Rectal Cancer is a one-year pilot study assessing the same variables in addition to quality of life outcome. The findings will have important implications for the treatment of patients with rectal cancer.

REFERENCES

1 Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin 2010; 60: 277-300 [PMID: 20610543 DOI: 10.3322/caac.20073]
2 Cohen SM, Neugut AI. Adjuvant therapy for rectal cancer in the elderly. Drugs Aging 2004; 21: 437-451 [PMID: 15132712 DOI: 10.2165/00022425-200421070-00003]
3 Cellini F, Valentini V. Current perspectives on preoperative integrated treatments for locally advanced rectal cancer: a review of agreement and controversies. Oncology (Williston Park) 2012; 26: 730-735; 741 [PMID: 22957406]
4 Popek S, Tsikitis VL. Neoadjuvant vs adjuvant pelvic radiotherapy for locally advanced rectal cancer: which is superior? World J Gastrointest Endosc 2011; 17: 846-854 [PMID: 21412494 DOI: 10.3748/wjg.v17.i7.848]
5 Du CZ, Chen YC, Cai Y, Xue WC, Gu J. Oncologic outcomes
of primary and post-irradiated early stage rectal cancer: a retrospective cohort study. *World J Gastroenterol* 2011; 17: 3229-3234 [PMID: 21912472 DOI: 10.3748/wjg.v17.i27.3229]

6 Petersen SH, Harling H, Kirkeby LT, Wille-Jørgensen P, Mocellin S, Putter H, Larsen G, Sorensen B, Engelund H. Preoperative adjuvant radiotherapy in rectal cancer operated for cure. *Cochrane Database Syst Rev* 2012; 3: CD004078 [PMID: 22419291 DOI: 10.1002/14651858.CD004078.pub2]

7 National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Rectal cancer. Accessed: September, 26, 2013. Available from: URL: http://www.nccn.org/clinicalMF/ colorectal/english/rectal.pdf.

8 Peeters KC, Marijnissen CA, Nagtegaal ID, Kranenbarg EK, Petersen SH, Wilmink JT, Marijnen CA, Nagtegaal ID, Kranenbarg EK, Ruiter SI, Winter K, 1996; 2006; 2008; 2011; 2012; 2013. Preoperative magnetic resonance imaging in predicting curative therapy in locally advanced rectal cancer: a systematic review of the literature. *Dis Colon Rectum* 2013; 56: 921-930 [PMID: 23739201 DOI: 10.1007/D012.0174]

9 Sauer R, Becker H, Hohenberger W, Rödel C, Buecher B, Gouraud W, Campion L, Jezéquel P, Lemaire C, Wasserberg N, Nichols C, Shane R, Hayostek C, Willett C. Randomized phase II study of neoadjuvant combined-modality chemoradiation for distal rectal cancer: Radiation Therapy Oncology Group Trial 0121. *J Clin Oncol* 2006; 24: 650-655 [PMID: 1646336 DOI: 10.1200/JCO.2006.03.6695]

10 Wilshtre KL, Ward IG, Swallow C, Oza AM, Cummings B, Pond GR, Catton P, Kim J, Ringash J, Wong CS, Wong R, Liu LL, Moore M, Brierley J. Preoperative radiation with concurrent chemotherapy for resectable rectal cancer: effect of dose escalation on pathologic complete response, local recurrence-free survival, disease-free survival, and overall survival. *Int J Radiat Oncol Biol Phys* 2006; 64: 709-716 [PMID: 16242252 DOI: 10.1016/j.ijrobp.2005.08.012]

11 Wong SJ, Winter K, Meropol NJ, Anne PR, Kachnic L, Rashid A, Watson JC, Mitchell E, Pollock J, Lee R, Haddock M, Erickson BA, Willett CG. Radiation Therapy Oncology Group 0247: a randomized Phase II study of neoadjuvant capcitabine and irinotecan or capecitabine and oxaliplatin with concurrent radiotherapy for patients with locally advanced rectal cancer. *Int J Radiat Oncol Biol Phys* 2012; 82: 1367-1375 [PMID: 21773070 DOI: 10.1016/j.ijrobp.2011.05.027]

12 Habr-Gama A, Perez RO, Sabbaga J, Nadalin W, São Júlio GP, Gama-Rodrigues J. Increasing the rates of complete response to neoadjuvant chemoradiotherapy for distal rectal cancer: results of a prospective study using additional chemotherapy during the resting period. *Dis Colon Rectum* 2009; 52: 1927-1934 [PMID: 19934911 DOI: 10.1016/j.dcr.08.013e31816a.024]

13 Foster JD, Jones EL, Falk S, Cooper EJ, Francis NK. Timing of surgery after long-course neoadjuvant chemoradiotherapy for rectal cancer: a systematic review of the literature. *Dis Colon Rectum* 2013; 56: 921-930 [PMID: 23739201 DOI: 10.1007/D012.0174]

14 Kligerman MM, Urdaneta N, Knowlton A, Vidone R, Hartman PV, Vera R. Preoperative irradiation of rectosigmoid carcinoma including its regional lymph nodes. *Am J Roentgenol Rad Ther Nucl Med* 1972; 114: 498-503 [PMID: 4622149 DOI: 10.2214/ajr.114.3.498]

15 Rider WD, Palmer JA, Mahoney LJ, Robertson CT. Preoperative irradiation in operable cancer of the rectum: report of the Toronto trial. *Cancer* 1977; 20: 335-338 [PMID: 871980]

16 Higgins GA, Humphrey EW, Dwight RW, Roswitz B, Lee LE, Keehn RJ. Preoperative radiation and surgery for cancer of the rectum. Veterans Administration Surgical Oncology Group Trial II. *Cancer* 1986; 58: 352-359 [PMID: 3521005]

17 Gérard A, Buyse M, Nordlinger B, Loyer J, Pène F, Kempf P, Bosset JF, Gignoux M, Arnaud JP, Desaive C. Preoperative radiotherapy and adjuvant treatment in rectal cancer. Final results of a randomized study of the European Organization for Research and Treatment of Cancer (EORTC). *Ann Surg* 1988; 208: 606-614 [PMID: 3056288 DOI: 10.1097/00000659-19881100-000031]

18 Randomized study on preoperative radiotherapy in rectal carcinoma. Stockholm Colorectal Cancer Study Group. *Ann Surg* 1996; 17: 243-430 [PMID: 8876683 DOI: 10.1057/pb012367f]

19 Francois Y, Nemoz CJ, Baulieux J, Vignal J, Grandjean JP, Partensky C, Souquet JC, Adeline P, Gerard J. Influence of the interval between preoperative radiation therapy and surgery on downsizing and on the rate of sphincter-sparing surgery for rectal cancer: the Lyon R90-01 randomized trial. *J Clin Oncol* 1999; 17: 2396 [PMID: 10561302]

20 Wang Y, Cummings B, Catton P, Dawson L, Kim J, Ringash J, Wong R, Yi QL, Brierley J. Primary radical external beam radiotherapy of rectal adenocarcinoma: long term outcome of 271 patients. *Radiother Oncol* 2005; 77: 126-132 [PMID: 16216364 DOI: 10.1016/j.radonc.2005.09.001]

21 Mohiuddin M, Mohiuddin MM, Marks J, Marks G. Future directions in neoadjuvant therapy of rectal cancer: maximizing pathological complete response rates. *Cancer Treat Rev* 2009; 35: 547-552 [PMID: 19593429 DOI: 10.1016/j.ctrv.2009.05.002]

22 Wong RK, Tandan V, De Silva S, Figueredo A. Pre-operative...
radiotherapy and curative surgery for the management of localized rectal carcinoma. Cochrane Database Syst Rev 2007; (2): CD002102 [PMID: 17445151]

32 Nozue M, Isaka N, Fukao K. Over-expression of vascular endothelial growth factor after preoperative radiation therapy for rectal cancer. Oncol Rep 2001; 8: 1247-1249 [PMID: 11605042]

33 Baeten CI, Castermans K, Lammering G, Hillen F, Wouters BG, Hillen HF, Griffioen AW, Baeten CG. Effects of radiotherapy and chemotherapy on angiogenesis and leukocyte infiltration in rectal cancer. Int J Radiat Oncol Biol Phys 2006; 66: 1219-1227 [PMID: 17145557 DOI: 10.1016/j.ijrobp.2006.07.1362]

34 Dworak O, Keilholz L, Hoffmann A. Pathological features of rectal cancer after preoperative chemoradiotherapy. Int J Colorectal Dis 1997; 12: 19-23 [PMID: 9112145 DOI: 10.1007/s003840050072]

35 Rödel C, Martus P, Papadopoulos T, Füzesi L, Klimpfinger M, Fietkau R, Liersch T, Hohenberger W, Raab R, Sauer R, Wittkeind C. Prognostic significance of tumor regression after preoperative chemoradiotherapy for rectal cancer. J Clin Oncol 2005; 23: 8688-8696 [PMID: 16246976 DOI: 10.1200/ JCO.2005.02.1329]

36 Slaight DA, Geijsen DE, van Leersum NJ, Punt CJ, Buskens CJ, Belenman WA, Tanis PJ. Optimal time interval between neoadjuvant chemoradiotherapy and surgery for rectal cancer. Br J Surg 2013; 100: 935-939 [PMID: 23536485 DOI: 10.1002/bjs.9112]

37 Kalady MF, de Campos-Lobato LF, Stocchi L, Geisler DP, Dietz D, Lavery IC, Fazio VW. Predictive factors of pathologic complete response after neoadjuvant chemoradiation for rectal cancer. Ann Surg 2009; 250: 582-589 [PMID: 19710605 DOI: 10.1097/SLA.0b013e3181f6e163]

38 Garcia-Aguilar J, Smith MD, Avila K, Bergland EB, Chu P, Krieg RM. Optimal timing of surgery after chemoradiation for advanced rectal cancer: preliminary results of a multicenter, nonrandomized phase II prospective trial. Ann Surg 2011; 254: 97-102 [PMID: 21494121 DOI: 10.1097/SLA.0b013e318219e616]

39 Perez RO, Habr-Gama A, Soa Juliao GP, Gama-Rodrigues J, Sousa AH, Campos FG, Imperiale AR, Lynn PB, Proscurshim I, Nahas SC, Ono CR, Buchpiguel CA. Effects of interval > 7 weeks between neoadjuvant chemotherapy and surgical excision. Histopathological study of lateral tumour spread of rectal cancer resection. Dis Colon Rectum 2003; 46: 448-453 [PMID: 12682535 DOI: 10.1007/s10350-004-6579-0]

40 Moore HG, Gittleman AE, Minsky BD, Wong D, Paty PB, Weiser M, Temple L, Saltz L, Shia J, Guillem JG. Rate of pathologic complete response with increased interval between preoperative combined modality therapy and rectal cancer resection. Dis Colon Rectum 2004; 47: 279-286 [PMID: 14991880 DOI: 10.1016/j.dcol.2003.06.062]

41 Sermier A, Gervaz P, Egger JF, Dao M, Allal AS, Bonet M, Morel P. Lymph node retrieval in abdominoperineal surgical specimen is radiation time-dependent. World J Surg Oncol 2006; 4: 29 [PMID: 16749931 DOI: 10.1186/1477-7819-4-29]

42 Bipat S, Glas AS, Slors FJ, Zwinderman AH, Bossuyt PM, Stoker J. Rectal cancer: local staging and assessment of lymph node involvement with endoluminal US, CT, and MR imaging—a meta-analysis. Radiology 2004; 232: 773-783 [PMID: 15273331 DOI: 10.1148/radiol.2323031368]

43 Quirke P, Durdy P, Dixon MF, Williams LS. Local recurrence of rectal adenocarcinoma due to inadequate surgical resection. Histopathological study of lateral tumour spread and surgical excision. Lancet 1986; 2: 996-999 [PMID: 2430152 DOI: 10.1016/s0140-6736(86)92612-7]

44 Wibe A, Rendredal PR, Svensson E, Norstein J, Eide T, Myrhold HE, Sereide O. Prognostic significance of the circumferential resection margin following total mesorectal excision for rectal cancer. Br J Surg 2002; 89: 327-334 [PMID: 11872058 DOI: 10.1016/j.bjs.2001.02.024x]

45 Wasserberg N, Gutman H. Resection margins in modern rectal cancer surgery. J Surg Oncol 2008; 98: 611-615 [PMID: 19072854 DOI: 10.1002/jso.21036]

46 de Campos-Lobato LF, Stocchi L, da Luz Moreira A, Kalady MF, Geisler D, Dietz D, Lavery IC, Remhi FH, Fazio VW. Downstaging without complete pathologic response after neoadjuvant treatment improves cancer outcomes for cII but not cII rectal cancers. Ann Surg Oncol 2010; 17: 1758-1766 [PMID: 20130105 DOI: 10.1245/s10434-010-0924-4]

47 Maas M, Nelemans PJ, Valenti V, Das P, Rödel C, Kuo LJ, Calvo FA, García-Aguilar J, Glyne-Jones R, Haustermans K, Mohiuddin M, Pucciarelli S, Small W, Suarez J, Theodopoulos G, Biondo S, Beets-Tan RG, Beets GL. Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol 2010; 11: 835-844 [PMID: 20692872 DOI: 10.1016/s1470-2045(10)70172-8]

48 Tulchinsky H, Shmueli E, Figar A, Klausner JM, Rabau M. An interval > 6 weeks between neoadjuvant therapy and surgery improves pathologic complete response and disease-free survival in patients with locally advanced rectal cancer. Ann Surg Oncol 2008; 15: 2661-2667 [PMID: 18389322 DOI: 10.1245/s10434-008-9993-5]

49 de Campos-Lobato LF, Geisler DP, da Luz Moreira A, Stocchi L, Dietz D, Kalady MF. Neoadjuvant therapy for rectal cancer: the impact of longer interval between chemoradiation and surgical excision. J Gastrointest Surg 2011; 15: 444-450 [PMID: 21140257 DOI: 10.1007/s11605-011-1197-9]

50 Wolthuis AM, Penninckx F, Haustermans K, De Hertogh G, Fieuws S, Van Cutsem E, D’Hoore A. Impact of interval between neoadjuvant chemoradiotherapy and TME for locally advanced rectal cancer on pathologic response and oncologic outcome. Ann Surg Oncol 2012; 19: 2833-2841 [PMID: 22451236 DOI: 10.1245/s10434-012-2327-1]

51 Pach R, Kulig J, Richter P, Gach T, Szura M, Kowalska T, Randomized clinical trial on preoperative radiotherapy 25 Gy in rectal cancer–treatment results at 5-year follow-up. Langenbecks Arch Surg 2012; 397: 801-807 [PMID: 22170083 DOI: 10.1007/s00423-011-1990-6]

52 Gleenon O, Chapel O, Adham M, Nemoz JC, Gerard JP. Long-term results of the Lyons R0-01 randomized trial of preoperative radiotherapy with delayed surgery and its effect on sphincter-saving surgery in rectal cancer. Br J Surg 2003; 90: 996-998 [PMID: 12905554 DOI: 10.1016/j.bjs.2001.11.062]

53 Supiot S, Bennouna J, Rio E, Meurette G, Bardet E, Buecher B, Dravet F, Le Neel JC, Douillard JY, Mahé MA, Lebrun PA. Negative influence of delayed surgery on survival after preoperative resection.
Wasserberg N. CRT-surgery interval in rectal cancer.

radiotherapy in rectal cancer. *Colorectal Dis* 2006; 8: 430-435 [PMID: 16684088 DOI: 10.1111/j.1463-1318.2006.00990.x]

58 Evans J, Patel U, Brown G. Rectal cancer: primary staging and assessment after chemoradiotherapy. *Semin Radiat Oncol* 2011; 21: 169-177 [PMID: 21645861 DOI: 10.1016/j.semradonc.2011.02.002]

59 Kerr SF, Norton S, Glynne-Jones R. Delaying surgery after neoadjuvant chemoradiotherapy for rectal cancer may reduce postoperative morbidity without compromising prognosis. *Br J Surg* 2008; 95: 1534-1540 [PMID: 18942057 DOI: 10.1002/bjs.6377]

60 Dolinsky CM, Mahmoud NN, Mick R, Sun W, Whittington RW, Solin LJ, Haller DG, Giantonio BJ, O'Dwyer PJ, Rosato EF, Fry RD, Metz JM. Effect of time interval between surgery and preoperative chemoradiotherapy with 5-fluorouracil or 5-fluorouracil and oxaliplatin on outcomes in rectal cancer. *J Surg Oncol* 2007; 96: 207-212 [PMID: 17443718 DOI: 10.1002/jso.20815]

61 Habr-Gama A, Perez RO, Procurushim I, Nunes Dos Santos RM, Kiss D, Gama-Rodrigues J, Ceconello I. Interval between surgery and neoadjuvant chemoradiation therapy for distal rectal cancer: does delayed surgery have an impact on outcome? *Int J Radiat Oncol Biol Phys* 2008; 71: 1181-1188 [PMID: 18234443 DOI: 10.1016/j.ijrobp.2007.11.035]

62 Veenhof AA, Bloemena E, Engel AF, van der Peet DL, Meijer OW, Cuesta MA. The relationship of histological tumor regression grade (TRG) and two different time intervals to surgery following radiation therapy for locally advanced rectal cancer. *Int J Colorectal Dis* 2009; 24: 1091-1096 [PMID: 19415307 DOI: 10.1007/s00384-009-0722-2]

63 Ceelen W, Fierens K, Van Nieuwenhove Y, Pattyn P. Preoperative chemoradiation versus radiation alone for stage II and III rectable rectal cancer: a systematic review and meta-analysis. *Int J Cancer* 2009; 124: 2966-2972 [PMID: 19253365 DOI: 10.1002/ijc.24247]

64 Påhlman L, Glimelius B. Pre- or postoperative radiotherapy in rectal and rectosigmoid carcinoma. Report from a randomized multicenter trial. *Ann Surg* 1990; 211: 187-195 [PMID: 2405793 DOI: 10.1097/00000658-199002000-00011]

65 The Stockholm III Trial on Different Preoperative Radiotherapy Regimens in Rectal Cancer. Accessed: September, 26, 2013. Available from: URL: http://clinicaltrials.gov/show/NCT00904813

66 Pettersson D, Cedermark B, Holm T, Radu C, Påhlman L, Glimelius B, Martling A. Interim analysis of the Stockholm III trial of preoperative radiotherapy regimens for rectal cancer. *Br J Surg* 2010; 97: 580-587 [PMID: 2055787 DOI: 10.1002/bjs.6914]

67 Cancer Research United Kingdom. Treatment for rectal cancer. Accessed: September, 26, 2013. Available from: URL: http://www.cancerresearchuk.org/cancer-help/trials

68 STARRCAT Trial: Surgical timing after radiotherapy for rectal cancer. Accessed: September, 26, 2013. Available at: http://www.controlled-trials.com/ISRCTN88843062

P-Reviewers: Chen YJ, Kita H, Meshikhes AN, Stephane S, Wang XS
S-Editor: Gou SX L-Editor: A E-Editor: Wu HL
