Classifying spaces of compact Lie groups that are p–compact for all prime numbers

KENSHI ISHIGURO

We consider a problem on the conditions of a compact Lie group G that the loop space of the p–completed classifying space be a p–compact group for a set of primes. In particular, we discuss the classifying spaces BG that are p–compact for all primes when the groups are certain subgroups of simple Lie groups. A survey of the p–compactness of BG for a single prime is included.

55R35; 55P15, 55P60

A p–compact group (see Dwyer–Wilkerson [8]) is a loop space X such that X is F_p–finite and that its classifying space BX is F_p–complete (see Andersen–Grodal–Møller–Viruel [2] and Dwyer–Wilkerson [11]). We recall that the p–completion of a compact Lie group G is a p–compact group if $\pi_0(G)$ is a p–group. Next, if $C(\rho)$ denotes the centralizer of a group homomorphism ρ from a p–toral group to a compact Lie group, according to [8, Theorem 6.1], the loop space of the p–completion $\Omega(BC(\rho))^\wedge$ is a p–compact group.

In a previous article [19], the classifying space BG is said to be p–compact if $\Omega(BG)^\wedge_p$ is a p–compact group. There are some results for a special case. A survey is given in Section 1. It is well-known that, if Σ_3 denotes the symmetric group of order 6, then $B\Sigma_3$ is not 3–compact. In fact, for a finite group G, the classifying space BG is p–compact if and only if G is p–nilpotent. Moreover, we will see that BG is p–compact toral (see Ishiguro [20]) if and only if the compact Lie group G is p–nilpotent (see Henn [14]). For the general case, we have no group theoretical characterization, though a few necessary conditions are available. This problem is also discussed in the theory of p–local groups (see Broto, Levi and Oliver [6, 7]) from a different point of view.

We consider the p–compactness of BG for a set of primes. Let Π denote the set of all primes. For a non–empty subset \mathbb{P} of Π, we say that BG is \mathbb{P}–compact if this space is p–compact for any $p \in \mathbb{P}$. If G is connected, then $\Omega(BG)^\wedge_p \simeq G_p^\wedge$ for any prime p, and hence BG is Π–compact. The connectivity condition, however, is not necessary. For instance, the classifying space of each orthogonal group $O(n)$ is also Π–compact. Since $\pi_0(O(n)) = \mathbb{Z}/2$ is a 2–group, $BO(n)$ is 2–compact, and for any odd prime p,
the p–equivalences $BO(2m) \cong_p BO(2m + 1) \cong_p BSO(2m + 1)$ tell us that $BO(n)$ is Π–compact.

Next let $\mathbb{P}(BG)$ denote the set of primes p such that BG is p–compact. In [20] the author has determined $\mathbb{P}(BG)$ when G is the normalizer NT of a maximal torus T of a connected compact simple Lie group K with Weyl group $W(K)$. Namely

$$\mathbb{P}(BNT) = \begin{cases}
\Pi & \text{if } W(K) \text{ is a 2–group,} \\
\{p \in \Pi \mid |W(K)| \not\equiv 0 \mod p\} & \text{otherwise.}
\end{cases}$$

Other examples are given by a subgroup $H \cong SU(3) \times \mathbb{Z}/2$ of the exceptional Lie group G_2 and its quotient group $\Gamma_2 = H/\langle \mathbb{Z}/3 \rangle$.

A result of [19] implies that $\mathbb{P}(BH) = \Pi$ and $\mathbb{P}(B\Gamma_2) = \Pi - \{3\}$.

In this paper we explore some necessary and sufficient conditions for a compact Lie group to be Π–compact. First we consider a special case. We say that BG is \mathbb{P}–compact toral if for each $p \in \mathbb{P}$ the loop space $\Omega(BG)_p^\wedge$ is expressed as an extension of a p–compact torus T_p^\wedge by a finite p–group π so that there is a fibration $(BT)_p^\wedge \longrightarrow (BG)_p^\wedge \longrightarrow B\pi$. Obviously, if BG is \mathbb{P}–compact toral, the space is \mathbb{P}–compact. A necessary and sufficient condition that BG be p–compact toral is given in [20]. As an application, we obtain the following:

Theorem 1 Suppose G is a compact Lie group, and G_0 denotes its connected component with the identity. Then BG is Π–compact toral if and only if the following two conditions hold:

(a) G_0 is a torus T, and the group $G/G_0 = \pi_0 G$ is nilpotent.

(b) T is a central subgroup of G.

For a torus T and a finite nilpotent group γ, the product group $G = T \times \gamma$ satisfies conditions (a) and (b). Thus BG is Π–compact toral. Proposition 2.2 will show, however, that a group G with BG being Π–compact toral need not be a product group.
Next we ask if \(BH \) is \(\mathbb{P} \)-compact when \(H \) is a subgroup of a simple Lie group \(G \). For \(\mathbb{P} = \Pi \), the following result determines certain types of \((G, H_0)\) where \(H_0 \) is the connected component of the identity. We have seen the cases of \((G, H) = (G, NT)\) when \(W(G) = NT/T \) is a 2-group, and of \((G, H) = (G_2, SU(3) \times \mathbb{Z}/2)\) which is considered as a case with \((G, H_0) = (G_2, A_2)\). Recall that the Lie algebra of \(SU(n+1) \) is simple of type \(A_n \), and the Lie group \(SU(3) \) is of \(A_2 \)-type (see Bourbaki [4]).

Theorem 2 Suppose a connected compact Lie group \(G \) is simple. Suppose also that \(H \) is a proper closed subgroup of \(G \) with \(\text{rank}(H_0) = \text{rank}(G) \), and that the map \(BH \to BG \) induced by the inclusion is \(p \)-equivalent for some \(p \). Then the following hold:

(a) If the space \(BH \) is \(\Pi \)-compact, \((G, H_0)\) is one of the following types:

\[
(G, H_0) = \begin{cases}
(G, T_G) & \text{for } G = A_1 \text{ or } B_2 (= C_2) \\
(B_n, D_n) & \\
(C_2, A_1 \times A_1) & \\
(G_2, A_2) &
\end{cases}
\]

where \(T_G \) is the maximal torus of \(G \).

(b) For any odd prime \(p \), all above types are realizable. Namely, there are \(G \) and \(H \) of types as above such that \(BH \to BG \) is \(\Pi \)-compact, together with the \(p \)-equivalent map \(BH \to BG \). When \(p = 2 \), any such pair \((G, H)\) is not realizable.

We make a remark about covering groups. Note that if \(\alpha \to \tilde{G} \to G \) is a finite covering, then \(\alpha \) is a central subgroup of \(\tilde{G} \). For a central extension \(\alpha \to \tilde{G} \to G \) and a subgroup \(H \) of \(G \), we consider the following commutative diagram:

\[
\begin{array}{ccc}
\alpha & \to & \tilde{G} \\
\| & & \uparrow \\
\alpha & \to & \tilde{H} \\
\end{array}
\]

Obviously the vertical map \(H \to G \) is the inclusion, and \(\tilde{H} \) is the induced subgroup of \(\tilde{G} \). We will show that the pair \((G, H)\) satisfies the conditions of **Theorem 2** if and only if its cover \((\tilde{G}, \tilde{H})\) satisfies those of **Theorem 2**. Examples of the type \((G, H_0) = (B_n, D_n)\), for instance, can be given by \((SO(2n+1), O(2n))\) and the double cover \((\text{Spin}(2n+1), \text{Pin}(2n))\).

For the case \((G, H_0) = (G_2, A_2)\), we have seen that \(H \) has a finite normal subgroup \(\mathbb{Z}/3 \), and that for its quotient group \(\Gamma_2 \) the classifying space \(B\Gamma_2 \) is \(p \)-compact if and only if \(p \neq 3 \). So \(\mathbb{P}(B\Gamma_2) \neq \Pi \). The following result shows that this is the only case. Namely, if \(\Gamma \) is such a quotient group for \((G, H_0) \neq (G_2, A_2)\), then \(\mathbb{P}(B\Gamma) = \Pi \).
Theorem 3 Let \((G, H)\) be a pair of compact Lie groups as in Theorem 2. For a finite normal subgroup \(\nu\) of \(H\), let \(\Gamma\) denote the quotient group \(H/\nu\). If \((G, H_0) \neq (G_2, A_2)\), then \(B\Gamma\) is \(\Pi\)–compact.

The author would like to thank the referee for the numerous suggestions.

1 A survey of the \(p\)–compactness of \(BG\)

We summarize work of earlier articles [19, 20] together with some basic results, in order to introduce the problem of \(p\)–compactness. For a compact Lie group \(G\), the classifying space \(BG\) is \(p\)–compact if and only if \(\Omega(BG)^\wedge_p\) is \(F\)–finite. So it is a mod \(p\) finite \(H\)–space. The space \(B\Sigma_3\) is not \(p\)–compact for \(p = 3\). We notice that \(\Omega(B\Sigma_3)^\wedge_p\) is not a mod 3 finite \(H\)–space, since the degree of the first non–zero homotopy group of \(\Omega(B\Sigma_3)^\wedge_p\) is not odd. Actually there is a fibration \(\Omega(B\Sigma_3)^\wedge_p \rightarrow (S^3)^\wedge_p \rightarrow (S^3)^\wedge_p\) (see Bousfield and Kan [5]).

First we consider whether \(BG\) is \(p\)–compact toral, as a special case. When \(G\) is finite, this is the same as asking if \(BG\) is \(p\)–compact. Note that, for a finite group \(\pi\), the classifying space \(B\pi\) is an Eilenberg–MacLane space \(K(\pi, 1)\). Since \((BT)^\wedge_p\) is also Eilenberg–MacLane, for \(BG\) being \(p\)–compact toral, the \(n\)–th homotopy groups of \((BG)^\wedge_p\) are zero for \(n \geq 3\). A converse to this fact is the following.

Theorem 1.1 [20, Theorem 1] Suppose \(G\) is a compact Lie group, and \(X\) is a \(p\)–compact group. Then we have the following:

(i) If there is a positive integer \(k\) such that \(\pi_n((BG)^\wedge_p) = 0\) for any \(n \geq k\), then \(BG\) is \(p\)–compact toral.

(ii) If there is a positive integer \(k\) such that \(\pi_n(BX) = 0\) for any \(n \geq k\), then \(X\) is a \(p\)–compact toral group.

This theorem is also a consequence of work of Grodal [12, 13]

A finite group \(\gamma\) is \(p\)–nilpotent if and only if \(\gamma\) is expressed as the semidirect product \(\nu \rtimes \gamma_p\), where \(\nu\) is the subgroup generated by all elements of order prime to \(p\), and where \(\gamma_p\) is the \(p\)–Sylow subgroup. The group \(\Sigma_3\) is \(p\)–nilpotent if and only if \(p \neq 3\). Recall that a fibration of connected spaces \(F\rightarrow E\rightarrow B\) is said to be preserved by the \(p\)–completion if \(F^\wedge_p\rightarrow E^\wedge_p\rightarrow B^\wedge_p\) is again a fibration. When \(\pi_0(G)\) is a \(p\)–group, a result of Bousfield and Kan [5] implies that the fibration \(BG_0\rightarrow BG\rightarrow B\pi_0G\) is preserved by the \(p\)–completion, and \(BG\) is \(p\)–compact.

We have the following necessary and sufficient conditions that \(BG\) be \(p\)–compact toral.

Geometry & Topology Monographs 10 (2007)
Theorem 1.2 [20, Theorem 2] Suppose \(G \) is a compact Lie group, and \(G_0 \) is the connected component with the identity. Then \(BG \) is \(p \)-compact toral if and only if the following conditions hold:

(a) \(G_0 \) is a torus \(T \) and \(G/G_0 = \pi_0 G \) is \(p \)-nilpotent.

(b) The fibration \(BT \longrightarrow BG \longrightarrow B\pi_0 G \) is preserved by the \(p \)-completion.

Moreover, the \(p \)-completed fibration \((BT)_p^\wedge \longrightarrow (BG)_p^\wedge \longrightarrow (B\pi_0 G)_p^\wedge \) splits if and only if \(T \) is a central subgroup of \(G \).

Next we consider the general case. What are the conditions that \(BG \) be \(p \)-compact? For example, for the normalizer \(NT \) of a maximal torus \(T \) of a connected compact Lie group \(K \), it is well-known that \((BNT)_p^\wedge \cong (BK)_p^\wedge \) if \(p \) does not divide the order of the Weyl group \(W(K) \). This means that \(BNT \) is \(p \)-compact for such \(p \). Using the following result, we can show the converse.

Proposition 1.3 [20, Proposition 3.1] If \(BG \) is \(p \)-compact, then the following hold:

(a) \(\pi_0 G \) is \(p \)-nilpotent.

(b) \(\pi_1((BG)_p^\wedge) \) is isomorphic to a \(p \)-Sylow subgroup of \(\pi_0 G \).

The necessary condition of this proposition is not sufficient, even though the rational cohomology of \((BG)_p^\wedge \) is assumed to be expressed as a ring of invariants under the action of a group generated by pseudoreflections.

Theorem 1.4 [19, Theorem 1] Let \(G = \Gamma_2 \), the quotient group of a subgroup \(SU(3) \times \mathbb{Z}/2 \) of the exceptional Lie group \(G_2 \). For \(p \) = 3, the following hold:

(1) \(\pi_0 G \) is \(p \)-nilpotent and \(\pi_1((BG)_p^\wedge) \) is isomorphic to a \(p \)-Sylow subgroup of \(\pi_0 G \).

(2) \((BG)_p^\wedge \) is rationally equivalent to \((BG_2)_p^\wedge \).

(3) \(BG \) is not \(p \)-compact.

We discuss invariant rings and some properties of \(B\Gamma_2 \) and \(BG_2 \) at \(p = 3 \). Suppose \(G \) is a compact connected Lie group. The Weyl group \(W(G) \) acts on its maximal torus \(T^n \), and the integral representation \(W(G) \longrightarrow GL(n, \mathbb{Z}) \) is obtained (see Dwyer and Wilkerson \[9, 10\]). It is well-known that \(K(BG) \cong K(BT^n)_{W(G)}^{W(G)} \) and \(H^*(BG; \mathbb{F}_p) \cong H^*(BT^n; \mathbb{F}_p)^{W(G)}_{W(G)} \) for large \(p \). Let \(W(G)^* \) denote the dual representation of \(W(G) \).

Although the mod 3 reductions of the integral representations of \(W(G_2) \) and \(W(G_2)^* \) are not equivalent, there is \(\psi \in GL(2, \mathbb{Z}) \) such that \(\psi W(G_2) \psi^{-1} = W(G_2)^* \) \[19, Lemma 3\]. Consequently, \(K(BT^2; \mathbb{Z}_3)\)\(^{W(G_2)} \cong K(BT^2; \mathbb{Z}_3)\)\(^{W(G_2)^*} \). Since \(K(B\Gamma_2; \mathbb{Z}_3) \cong K(BT^2; \mathbb{Z}_3)\)\(^{W(G_2)^*} \), we have the following result.
Theorem 1.5 [19, Theorem 3] Let Γ_2 be the compact Lie group as in Theorem 1.4. Then the following hold:

(1) The 3–adic K-theory $K(B\Gamma_2; \mathbb{Z}_3)$ is isomorphic to $K(BG_2; \mathbb{Z}_3)$ as a λ–ring.

(2) Let Γ be a compact Lie group such that $\Gamma_0 = PU(3)$ and the order of $\pi_0(\Gamma)$ is not divisible by 3. Then any map from $(B\Gamma)_3^{\wedge}$ to $(BG_2)_3^{\wedge}$ is null homotopic. In particular $[(B\Gamma_2)_3^{\wedge}, (BG_2)_3^{\wedge}] = 0$.

We recall that if a connected compact Lie group G is simple, the following results hold:

(1) For any prime p, the space $(BG)_p^{\wedge}$ has no nontrivial retracts (see Ishiguro [15]).

(2) Assume $|W(G)| \equiv 0 \bmod p$. If a self-map $(BG)_p^{\wedge} \longrightarrow (BG)^p$ is not null homotopic, it is a homotopy equivalence (see Möller [22]).

(3) Assume $|W(G)| \equiv 0 \bmod p$, and let K be a compact Lie group. If a map $f : (BG)_p^{\wedge} \longrightarrow (BK)_p^{\wedge}$ is trivial in mod p cohomology, then f is null homotopic (see Ishiguro [16]).

Replacing G by Γ_2 at $p = 3$, we will see that (3) still holds. On the other hand it is not known if (1) and (2) hold, though on the level of K-theory they do.

2 Π–compact toral groups

Recall that a finite group γ is p–nilpotent if and only if γ is expressed as the semidirect product $\nu \rtimes \gamma_p$, where the normal p–complement ν is the subgroup generated by all elements of order prime to p, and where γ_p is the p–Sylow subgroup. For such a group γ, we see $(B\gamma)_p^{\wedge} \simeq B\gamma_p$. For a finite group G, one can show that $\mathbb{P}(BG) = \{p \in \Pi \mid G$ is p–nilpotent$\}$. Consequently, if $G = \Sigma_n$, the symmetric group on n letters, then $\mathbb{P}(B\Sigma_2) = \Pi$, $\mathbb{P}(B\Sigma_3) = \Pi - \{3\}$, and $\mathbb{P}(B\Sigma_n) = \{p \in \Pi \mid p > n\}$ for $n \geq 4$.

In [14], Henn provides a generalized definition of p–nilpotence for compact Lie groups. A compact Lie group G is p–nilpotent if and only if the connected component of the identity, G_0, is a torus; the finite group π_0G is p-nilpotent, and the conjugation action of the normal p–complement is trivial on T. We note that such a p–nilpotent group need not be semidirect product.
Let $\gamma = \pi_0 G$. Then, from the inclusion $\gamma_p \to \gamma$, a subgroup G_p of G is obtained as follows:

$$
\begin{array}{ccc}
T & \to & G \\
\downarrow & & \downarrow \\
T & \to & G_p
\end{array}
$$

A result of Henn [14] shows $(BG)_p^\wedge \simeq (BG_p)_p^\wedge$ if and only if the compact Lie group G is p–nilpotent.

Lemma 2.1 A classifying space BG is p–compact toral if and only if the compact Lie group G is p–nilpotent.

Proof If BG is p–compact toral, we see from [20, Theorem 2] that the fibration $BT \to BG \to B\pi_0 G$ is preserved by the p–completion. Let $\pi = \pi_0 G$. Then we obtain the following commutative diagram:

$$
\begin{array}{ccc}
(BT)_p^\wedge & \to & (BG)_p^\wedge \\
\downarrow & & \downarrow \\
(BT)_p^\wedge & \to & (BG_p)_p^\wedge
\end{array}
$$

By [20, Theorem 2], the finite group π is p–nilpotent, so the map $(B\pi_p)_p^\wedge \to (B\pi)_p^\wedge$ is homotopy equivalent. Thus $(BG)_p^\wedge \simeq (BG_p)_p^\wedge$, and hence the result of [14] implies that G is p–nilpotent. Conversely, if G is p–nilpotent, then the following commutative diagram

$$
\begin{array}{ccc}
BT & \to & BG \\
\downarrow & & \downarrow \\
BT & \to & BG_p
\end{array}
$$

tells us that $BT \to BG \to B\pi$ is p–equivalent to the fibration

$(BT)_p^\wedge \to (BG)_p^\wedge \to (B\pi)_p^\wedge$.

From [20, Theorem 2], we see that BG is p–compact toral.

Proof of Theorem 1 First suppose BG is Π–compact toral. Lemma 2.1 implies that G_0 is a torus T and $G/G_0 = \pi_0 G$ is p–nilpotent for any p. According to [20, Lemma 2.1], the group $\pi_0 G$ must be nilpotent. We notice that for each p the normal p–complement of $\pi_0 G$ acts trivially on T. Thus $\pi_0 G$ itself acts trivially on T, and T is a central subgroup of G. Conversely, assume that conditions (a) and (b) hold. According to [14, Proposition 1.3], we see that G is p–nilpotent for any p. Therefore BG is Π–compact toral.
We will show that a group which satisfies conditions (a) and (b) of Theorem 1 need not be a product group. For instance, consider the quaternion group Q_8 in $SU(2)$. Recall that the group can be presented as $Q_8 = \langle x, y \mid x^4 = 1, x^2 = y^2, yxy^{-1} = x^{-1} \rangle$. Let $\rho : Q_8 \rightarrow U(2)$ be a faithful representation given by the following:

$$
\rho(x) = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad \rho(y) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}
$$

Let S denote the center of the unitary group $U(2)$ and let G be the subgroup of $U(2)$ generated by $\rho(Q_8)$ and S. Then we obtain the group extension $S \rightarrow G \rightarrow \mathbb{Z}/2 \oplus \mathbb{Z}/2$. Since $S \cong S^1$, this group G satisfies conditions (a) and (b). On the other hand, we see that the non–abelian group G can not be a product group. This result can be generalized as follows:

Proposition 2.2 Suppose $\rho : \pi \rightarrow U(n)$ is a faithful irreducible representation for a non–abelian finite nilpotent group π. Let S be the center of the unitary group $U(n)$ and let G be the subgroup of $U(n)$ generated by $\rho(\pi)$ and S with group extension $S \rightarrow G \rightarrow \pi_0 G$. Then this extension does not split, and G satisfies conditions (a) and (b) of Theorem 1.

Proof First we show that G satisfies conditions (a) and (b) of Theorem 1. Since π is nilpotent, so is the finite group $\pi_0 G \cong G/S$. Recall that the center of the unitary group $U(n)$ consists of scalar matrices, and is isomorphic to S^1. Thus we obtain the desired result.

Next we show that the group extension $S \rightarrow G \rightarrow \pi_0 G$ does not split. If this extension did split, then we would have $G \cong S \rtimes \pi_0 G$. Since the action of $\pi_0 G$ on the center S is trivial, it follows that G is isomorphic to the product group $S \times \pi_0 G$. Let $Z(\pi)$ denote the center of π. Since the representation $\rho : \pi \rightarrow U(n)$ is irreducible and faithful, Schur’s Lemma implies $S \cap \rho(\pi) = Z(\rho(\pi)) \cong Z(\pi)$. Thus we obtain the following commutative diagram:

$$
\begin{array}{ccc}
S & \longrightarrow & G \\
\uparrow & & \uparrow \\
Z(\pi) & \longrightarrow & \pi_0 G
\end{array}
$$

Regarding π as a subgroup of $G = S \times \pi_0 G$, an element $y \in \pi$ can be written as $y = (s, x)$ for $s \in S$ and $x \in \pi_0 G$. Notice that $\pi_0 G$ is nilpotent and this group has a non–trivial center, since π is non–abelian. The map $q : \pi \rightarrow \pi_0 G$ is an epimorphism. Consequently we can find an element $y_0 = (s_0, x_0)$ where $s_0 \in S$ and x_0 is a non–identity element of $Z(\pi_0 G)$. This means that y_0 is contained in $Z(\pi)$, though $q(y_0)$ is a non–identity element. This contradiction completes the proof.

Geometry & Topology Monographs 10 (2007)
3 Π–compact subgroups of simple Lie groups

We will need the following results to prove Theorem 2.

Lemma 3.1 Let K be a compact Lie group, and let G be a connected compact Lie group. If $(BK)^{\wedge}_p \simeq (BG)^{\wedge}_p$ for some p, we have a group extension as follows:

$$1 \longrightarrow W(K_0) \longrightarrow W(G) \longrightarrow \pi_0 K \longrightarrow 1$$

Proof It is well–known that $H^*((BG)^{\wedge}_p; \mathbb{Q}) = H^*((BT_G)^{\wedge}_p; \mathbb{Q})^{W(G)}$, and since $(BK)^{\wedge}_p \simeq (BG)^{\wedge}_p$, it follows that $H^*((BG)^{\wedge}_p; \mathbb{Q}) = H^*((BK)^{\wedge}_p; \mathbb{Q})$. Notice that $H^*((BK)^{\wedge}_p; \mathbb{Q}) = H^*((BK_0)^{\wedge}_p; \mathbb{Q})^{\pi_0 K} = (H^*((BT_K_0)^{\wedge}_p; \mathbb{Q})^{W(K_0)})^{\pi_0 K}$. Galois theory for the invariant rings (see Smith [23]) tells us that $W(K_0)$ is a normal subgroup of $W(G)$ and that the quotient group $W(G)/W(K_0)$ is isomorphic to $\pi_0 K$. This completes the proof. \(\Box\)

Lemma 3.2 For a compact Lie group K, suppose the loop space of the p–completion $\Omega(BK)^{\wedge}_p$ is a connected p–compact group. Then p doesn’t divide the order of $\pi_0 K$.

Proof Since BK is p–compact, $\pi_0 K$ is p–nilpotent. So, if π denotes a p–Sylow subgroup of $\pi_0 K$, then $(B\pi_0 K)^{\wedge}_p \simeq B\pi$. Notice that $(BK)^{\wedge}_p$ is 1–connected. Hence the map $(BK)^{\wedge}_p \longrightarrow (B\pi_0 K)^{\wedge}_p$ induced from the epimorphism $K \longrightarrow \pi_0 K$ is a null map. Consequently the p–Sylow subgroup π must be trivial. \(\Box\)

For $K = NT$, the normalizer of a maximal torus T of a connected compact simple Lie group, the converse of Lemma 3.2 is true, though it doesn’t hold in general. Note that $\pi_0 \Gamma_2 = \mathbb{Z}/2$ and that $B\Gamma_2$ is not 3–compact [19].

Proof of Theorem 2 (1) Since $(BH)^{\wedge}_p \simeq (BG)^{\wedge}_p$ for some p, Lemma 3.1 says that the Weyl group $W(H_0)$ is a normal subgroup of $W(G)$. First we show that $W(H_0) \neq W(G)$. If $W(H_0) = W(G)$, the inclusion $H_0 \longrightarrow G$ induces the isomorphism $H^*(BH_0; \mathbb{Q}) \cong H^*(BG; \mathbb{Q})$, since rank$(H_0) = \mathrm{rank}(G)$. Hence $BH_0 \simeq BG$. Consequently if \tilde{H}_0 and \tilde{G} denote the universal covering groups of H_0 and G respectively, then $\tilde{H}_0 \cong \tilde{G}$. The maps $BH_0 \longrightarrow BH_0$ and $BG \longrightarrow BG$ are rational equivalences. According to [18, Lemma 2.2], we would see that $H_0 = H = G$. Since H must be a proper subgroup of G, we obtain the desired result.
We now see that $W(H_0)$ is a proper normal subgroup of $W(G)$. If $W(H_0)$ is a nontrivial group, a result of Asano [3] implies that (G, H_0) is one of the following types:

$$\begin{aligned}
(G, H_0) = \left\{ (B_n, D_n) , (C_n, A_1 \times \cdots \times A_1) , (G_2, A_2) , (F_4, D_4) \right\}
\end{aligned}$$

According to [20, Lemma 2.1 and Proposition 3.1], we notice (2) We first show that, for any odd prime p,

$$G = C \times Z$$

Thus the action of BNT is given by $a \times \cdots \times A_1$.

For (B_n, D_n), take $(G, H) = (SO(3), O(2))$. Since $\pi_0(O(2)) = \mathbb{Z}/2$ and $BO(2) \simeq BSO(3)$ for odd prime p, the space $BO(2)$ is Π–compact. In the case $G = B_2$, take $(G, H) = (G, NT_G)$ for $G = \text{Spin}(5)$. Then $\pi_0 H$ is a 2–group and $BNT_G \simeq BG$ for odd prime p, and hence BNT_G is Π–compact.

In the case of $(C_2, A_1 \times A_1)$, take $G = Sp(2)$ and $H = (Sp(1) \times Sp(1)) \times \mathbb{Z}/2\langle a \rangle$ where $a = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in Sp(2)$. For complex numbers z and w, we see that

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} z & 0 \\ 0 & w \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} w & 0 \\ 0 & z \end{pmatrix}.$$

Thus the action of $\mathbb{Z}/2\langle a \rangle$ is given by $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. We note that

$$W(Sp(2)) = D_8 = \left\{ \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} , \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} , \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}.$$
Consequently $\pi_0 H$ is a 2–group and $BH \cong_p BG$ for odd prime p, and hence BH is Π–compact. Finally, for (G_2, A_2), as mentioned in the introduction, take $G = G_2$ and $H = SU(3) \times \mathbb{Z}/2$. Then BH is Π–compact.

It remains to consider the case $p = 2$. Note that $|W(G)/W(H_0)|$ for each of such (G, H_0)’s is a power of 2. Lemma 3.1 implies that the finite group $\pi_0 H$ must be a 2–group. Lemma 3.2 says that $|\pi_0 H|$ is not divisible by 2, since $(BH)_{\wedge}^p \cong (BG)_{\wedge}^p$. Thus H is connected, and hence $H = G$. This completes the proof. \hfill \Box

Any proper closed subgroup of G which includes the normalizer NT satisfies the assumption of Theorem 2. So, this theorem shows, once again, that almost all BNT are not Π–compact [20]. Furthermore, for any connected compact Lie group G, it is well-known that $(BNT)_{\wedge}^p \cong (BG)_{\wedge}^p$ if p does not divide the order of the Weyl group $W(G)$, hence BNT is p–compact for such p. The converse is shown in [20].

Lemma 3.3 Let $\alpha \longrightarrow \tilde{G} \longrightarrow G$ be a central extension of compact Lie groups. Then BG is p–compact if and only if $B\tilde{G}$ is p–compact.

Proof First assume that BG is p–compact. Since $\alpha \longrightarrow \tilde{G} \longrightarrow G$ is a central extension, the fibration $B\alpha \longrightarrow B\tilde{G} \longrightarrow BG$ is principal. Thus we obtain a fibration $B\tilde{G} \longrightarrow BG \longrightarrow K(\alpha, 2)$. The base space is 1–connected, so the fibration is preserved by the p–completion, and hence we obtain the fibration

$$(B\alpha)^{\wedge}_p \longrightarrow (B\tilde{G})^{\wedge}_p \longrightarrow (BG)^{\wedge}_p.$$

Since the loop spaces $\Omega(B\alpha)^{\wedge}_p$ and $\Omega(BG)^{\wedge}_p$ are F_p–finite, so is $\Omega(B\tilde{G})^{\wedge}_p$. Thus $B\tilde{G}$ is p–compact.

Conversely we assume that $B\tilde{G}$ is p–compact. Consider the fibration

$$\Omega(BG)^{\wedge}_p \longrightarrow (B\alpha)^{\wedge}_p \longrightarrow (BG)^{\wedge}_p.$$

Since the map $(B\alpha)^{\wedge}_p \longrightarrow (B\tilde{G})^{\wedge}_p$ is induced from the inclusion $\alpha \hookrightarrow \tilde{G}$, it is a monomorphism of p–compact groups. Hence its homotopy fiber $\Omega(BG)^{\wedge}_p$ is F_p–finite, and therefore BG is p–compact. \hfill \Box

Corollary 3.4 Let $\alpha \longrightarrow \tilde{G} \longrightarrow G$ be a central extension of compact Lie groups, and let H be a subgroup of G so that there is the commutative diagram:

$$\begin{array}{ccc}
\alpha & \longrightarrow & \tilde{G} \\
\downarrow & & \downarrow \\
\alpha & \longrightarrow & \tilde{H} \\
\downarrow & & \downarrow \\
\alpha & \longrightarrow & H
\end{array}$$

Geometry & Topology Monographs 10 (2007)
Then the pair \((G, H)\) satisfies the conditions of Theorem 2 if and only if so does the pair \((\tilde{G}, \tilde{H})\).

Proof Lemma 3.3 implies that \(BH\) is \(\Pi\)–compact if and only if \(B\tilde{H}\) is \(\Pi\)–compact. It is clear that \(\text{rank}(H_0) = \text{rank}(G)\) if and only if \(\text{rank}(\tilde{H}_0) = \text{rank}(\tilde{G})\). Finally we see \((BH)_p^0 \simeq (BG)_p^0\) if and only if \((B\tilde{H})_p^0 \simeq (B\tilde{G})_p^0\) from the following commutative diagram of fibrations:

\[
\begin{array}{ccc}
(B\alpha)_p^0 & \longrightarrow & (B\tilde{G})_p^0 \\
\| & & \| \\
(B\alpha)_p^0 & \longrightarrow & (B\tilde{H})_p^0
\end{array}
\]

This completes the proof. \(\square\)

Lemma 3.5 Let \(M \longrightarrow K \longrightarrow L\) be a short exact sequence of groups. If \(\nu\) is a normal subgroup of \(K\), the kernel \(\nu'\) of the composition \(\nu \longrightarrow K \longrightarrow L\) is a normal subgroup of \(M\).

Proof We consider the following commutative diagram:

\[
\begin{array}{ccc}
\nu' & \longrightarrow & M \\
\downarrow & & \downarrow \ \\
\nu & \longrightarrow & K \\
\downarrow & & \downarrow q \\
q(\nu) & \longrightarrow & L
\end{array}
\]

For \(x \in \nu'\) and \(m \in M\), it follows that

\[
q(mxm^{-1}) = q(m)q(x)q(m^{-1}) = q(m)q(m)^{-1} = e
\]

Thus \(mxm^{-1} \in \ker q\). Since \(\nu' \subset \nu\), \(M \subset K\), and \(\nu \triangleleft K\), we see that \(mxm^{-1} \in \nu\). So \(mxm^{-1} \in \ker q \cap \nu = \nu'\), and therefore \(\nu' \triangleleft M\). \(\square\)

Proof of Theorem 3 First suppose \((G, H_0) = (B_n, D_n)\) or \((C_2, A_1 \times A_1)\). Let \(\nu'\) be the kernel of the composition \(\nu \longrightarrow H \longrightarrow \pi_0 H\). Consider the following commutative
Lemma 3.5 says that $\nu' \triangleleft H_0$. Since ν' is a finite normal subgroup of H_0, it is a finite 2–group. As we have seen in the proof of Theorem 2, $\pi_0 H = W(G)/W(H_0)$ is a 2–group, and hence so is $q(\nu)$. Consequently ν is a 2–group.

Now consider the following commutative diagram:

\[
\begin{array}{ccc}
\nu' & \longrightarrow & H_0 \\
\downarrow & & \downarrow \\
\nu & \longrightarrow & H \\
\downarrow & & \downarrow \\
q(\nu) & \longrightarrow & \pi_0 H
\end{array}
\]

Since $\pi_0 \Gamma$ is a 2–group, the fibration $B\Gamma_0 \longrightarrow B\Gamma \longrightarrow B\pi_0 \Gamma$ is preserved by the 2–completion (see Bousfield and Kan [5]). Hence $B\Gamma$ is 2–compact. Next, for odd prime p, we see that $(B\Gamma)_p^\wedge \simeq (BH)_p^\wedge$, since ν is a 2–group. We see also that G has no odd torsion and $H^*(BH;\mathbb{F}_p) = H^*(BH_0;\mathbb{F}_p)^{\pi_0 H} \cong H^*(BG;\mathbb{F}_p)$. Consequently the space $(B\Gamma)_p^\wedge$ is homotopy equivalent to $(BG)_p^\wedge$. Therefore $B\Gamma$ is Π–compact.

It remains to consider the case $(G, H_0) = (G, T_G)$ for $G = A_1$ or $G = B_2 (= C_2)$. Since $H_0 = T_G$ and $H_0 \triangleleft H$, we see that H is a subgroup of the normalizer NT_G. Consider the following commutative diagram:

\[
\begin{array}{ccc}
T_G & \longrightarrow & NT_G \\
\downarrow & \uparrow & \downarrow \\
\downarrow & \uparrow & \downarrow \\
T_G & \longrightarrow & H \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
\pi_0 H & & \pi_0 H
\end{array}
\]

Since the map $BH \longrightarrow BG$ is p–equivalent for some p, it follows that $\pi_0 H = W(G)$. Consequently $H = NT_G$.

If ν is a finite normal subgroup of NT_G, then $B\nu$ is contained in the kernel of the map $(BG)_p^\wedge \simeq (BNT_G)_p^\wedge \longrightarrow (B\Gamma)_p^\wedge$. Since G is simple and $G \neq G_2$, according to [16, 17], the group ν is included in the center of G. Thus ν is a 2–group. Therefore
\((B\Gamma)_p^\wedge \simeq (BNT_G)_p^\wedge \simeq (BG)_p^\wedge\) for odd prime \(p\), and hence \(B\Gamma\) is \(p\)-compact for such \(p\).

Finally we note that \(W(G)\) is a 2–group, and hence \(B\Gamma\) is 2–compact.

We will discuss a few more results. Basically we have been looking at three Lie groups \(H_0 \subset H \subset G\). The following shows a property of the (non–connected) middle group \(H\).

Proposition 3.6 Suppose \(G\) is a connected compact Lie group, and \(H\) is a proper closed subgroup of \(G\) with \(\text{rank}(H_0) = \text{rank}(G)\). If the order of \(\pi_0H\) is divisible by a prime \(p\), so is the order of \(W(G)/W(H_0)\).

Proof Assuming \(|W(G)/W(H_0)| \not\equiv 0 \mod p\), we will show \(\pi_0H \not\equiv 0 \mod p\). Notice that we have the following commutative diagram

\[
\begin{array}{c}
T \\
| \\
| \uparrow \downarrow \\
N_GT & \longrightarrow & W(G) \\
| \downarrow \\
T & \longrightarrow & N_{H_0}T & \longrightarrow & W(H_0),
\end{array}
\]

where the vertical maps are injective, since \(\text{rank}(H_0) = \text{rank}(G)\). We recall, from Jackowski, McClure and Oliver [21], that the Sylow theorem for compact Lie groups \(G\) holds. Namely \(G\) contains maximal \(p\)-toral subgroups, and all of which are conjugate to \(N_pT\), where \(N_p(T)/T\) is a \(p\)-Sylow subgroup of \(N(T)/T = W(G)\).

Suppose \(K\) is a \(p\)-toral subgroup of \(H\). Since \(|W(G)/W(H_0)| \not\equiv 0 \mod p\), we see that \(K\) is a subgroup of \(H_0\) up to conjugate. Consequently, the composite map \(K \hookrightarrow H \longrightarrow \pi_0H\) must be homotopy equivalent to a null map. Since \(H \longrightarrow \pi_0H\) is surjective, the \(p\)-part of \(\pi_0H\) is trivial.

For each pair mentioned in the part (a) of Theorem 2, we note that \(|W(G)/W(H_0)|\) is a power of 2. **Proposition 3.6** says, for instance, that \(\pi_0H\) is a 2–group for any \((G, H)\) such that \(|W(G)/W(H_0)|\) is a power of 2. As an application, one can show that if \(H\) is a non–connected proper closed subgroup of \(SO(3)\) with \(H_0 = SO(2)\), then \(H\) is isomorphic to \(O(2)\). A proof may use the fact that \(H\) is 2–toral, and that a maximal 2–toral subgroup in \(H\) is 2–stubborn [21]. A 2–compact version of this result also holds. Suppose \(X\) is a 2–compact group such that there are two monomorphisms of 2–compact groups \(BSO(2)^\wedge_2 \longrightarrow BX\) and \(BX \longrightarrow BSO(3)^\wedge_2\). Then, along the line of a similar argument, one can also show that \(BX\) is homotopy equivalent to \(BO(2)^\wedge_2\) if \(X\) is not connected. In the case of \(X\) being connected, the classifying space \(BX\) is either \(BSO(2)^\wedge_2\) or \(BSO(3)^\wedge_2\).
Theorem 2, Lie groups of type \((C_2, A_1 \times A_1)\) has been discussed. An example is given by \(Sp(1) \times Sp(1) \subset (Sp(1) \times Sp(1)) \rtimes \mathbb{Z}/2 \subset Sp(2)\). The middle group can be regarded as the wreath product \(Sp(1) \rtimes \Sigma_n\) for \(n = 2\). We ask for what \(n\) and \(p\) its classifying space is \(p\)-compact. Note that \(Sp(1) \rtimes \Sigma_n\) is a proper closed subgroup of \(Sp(n)\).

Proposition 3.7 Let \(\Gamma(n)\) denote the wreath product \(Sp(1) \rtimes \Sigma_n\). Then

\[
P(B\Gamma(n)) = \begin{cases}
\Pi & \text{if } n = 2 \\
\{p \in \Pi \mid p > n\} & \text{if } n \geq 3
\end{cases}
\]

Proof When \(n = 2\), the desired result has been shown in our proof of the part (b) of Theorem 2. Recall from [20] that if \(B\Gamma(n)\) is \(p\)-compact, then \(\pi_0 B\Gamma(n) = \Sigma_n\) must be \(p\)-nilpotent. For \(n \geq 4\), it follows that \(\Sigma_n\) is \(p\)-nilpotent if and only if \(p > n\). Since the group \(\Gamma(n)\) includes the normalizer of a maximal torus of \(Sp(n)\), we see \(B\Gamma(n) \simeq_p BSp(n)\) if \(p > n\). Thus \(P(B\Gamma(n)) = \{p \in \Pi \mid p > n\}\) for \(n \geq 4\).

For \(n = 3\), note that \(\Sigma_3\) is \(p\)-nilpotent if and only if \(p \neq 3\). So it remains to prove that \(B\Gamma(3)\) is not \(2\)-compact. We consider a subgroup \(H\) of \(\Gamma(3)\) which makes the following diagram commutative:

\[
\begin{array}{cccc}
\prod^3 Sp(1) & \longrightarrow & \prod^3 Sp(1) & \longrightarrow * \\
\downarrow & & \downarrow & \\
H & \longrightarrow & \Gamma(3) & \longrightarrow \mathbb{Z}/2 \\
\downarrow & & \downarrow & \\
\mathbb{Z}/3 & \longrightarrow & \Sigma_3 & \longrightarrow \mathbb{Z}/2
\end{array}
\]

The fibration \(BH \longrightarrow B\Gamma(3) \longrightarrow B\mathbb{Z}/2\) is preserved by the completion at \(p = 2\). Hence, if \(B\Gamma(3)\) were \(2\)-compact, the space \(\Omega(BH)_{\mathbb{Q}_2}\) would be a connected \(2\)-compact group so that the cohomology \(H^*(BH; \mathbb{Q}_2)\) should be a polynomial ring, (see Dwyer and Wilkerson [8, Theorem 9.7]). Though \(H^*(B\prod^3 Sp(1); \mathbb{Q}_2)\) is a polynomial ring, its invariant ring \(H^*(BH; \mathbb{Q}_2) = H^*(B\prod^3 Sp(1); \mathbb{Q}_2)_{\mathbb{Z}/3}\) is not a polynomial ring, since the group \(\mathbb{Z}/3\) is not generated by reflections. This contradiction completes the proof.

For \((G, H) = (Sp(n), Sp(1) \rtimes \Sigma_n)\), we note that \((G, H_0)\) is a type of \((C_n, A_1 \times \cdots \times A_1)\). This is one of the cases that the Weyl group \(W(H_0)\) is a normal subgroup of \(W(G)\).
(see Asano [3]) discussed in our proof of the part (a) of Theorem 2. Finally we talk about the only remaining case \((G, H_0) = (F_4, D_4)\). An example is given by \(\text{Spin}(8) \subset \text{Spin}(8) \rtimes \Sigma_3 \subset F_4\). Let \(\Gamma\) denote the middle group \(\text{Spin}(8) \rtimes \Sigma_3\). Then we can show that \(\mathbb{P}(B\Gamma) = \{p \in \Pi \mid p > 3\}\). To show that \(B\Gamma\) is not 2–compact, one might use the fact, (see Adams [1, Theorem 14.2]), that \(W(F_4) = W(\text{Spin}(8)) \rtimes \Sigma_3\), and that its subgroup \(W(\text{Spin}(8)) \rtimes \mathbb{Z}/3\) is not a reflection group.

References

[1] J F Adams, *Lectures on exceptional Lie groups*, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL (1996) MR1428422

[2] K Andersen, J Grodal, J Møller, A Viruel, *The classification of p–compact groups for p odd*, preprint

[3] H Asano, *On some normal subgroups of Weyl groups*, Yokohama Math. J. 13 (1965) 121–128 MR0212128

[4] N Bourbaki, *Lie groups and Lie algebras. Chapters 1–3*, Elements of Mathematics (Berlin), Springer, Berlin (1989) MR979493

[5] A K Bousfield, D M Kan, *Homotopy limits, completions and localizations*, Lecture Notes in Mathematics 304, Springer, Berlin (1972) MR0365573

[6] C Broto, R Levi, B Oliver, *The homotopy theory of fusion systems*, J. Amer. Math. Soc. 16 (2003) 779–856 MR1992826

[7] C Broto, R Levi, B Oliver, *The theory of p–local groups: a survey*, from: “Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K–theory”, Contemp. Math. 346, Amer. Math. Soc., Providence, RI (2004) 51–84 MR2066496

[8] W G Dwyer, C W Wilkerson, *Homotopy fixed-point methods for Lie groups and finite loop spaces*, Ann. of Math. (2) 139 (1994) 395–442 MR1274096

[9] W G Dwyer, C W Wilkerson, *The elementary geometric structure of compact Lie groups*, Bull. London Math. Soc. 30 (1998) 337–364 MR1620888

[10] W G Dwyer, C W Wilkerson, *Centers and Coxeter elements*, from: “Homotopy methods in algebraic topology (Boulder, CO, 1999)”, Contemp. Math. 271, Amer. Math. Soc., Providence, RI (2001) 53–75 MR1831347

[11] W G Dwyer, C W Wilkerson, *Normalizers of tori*, Geom. Topol. 9 (2005) 1337–1380 MR2174268

[12] J Grodal, *The transcendence degree of the mod p cohomology of finite Postnikov systems*, from: “Stable and unstable homotopy (Toronto, ON, 1996)”, Fields Inst. Commun. 19, Amer. Math. Soc., Providence, RI (1998) 111–130 MR1622342

Geometry & Topology Monographs 10 (2007)
Classifying spaces of compact Lie groups

[13] J Grodal, *Serre’s theorem and the Nil filtration of Lionel Schwartz*, from: “Cohomological methods in homotopy theory (Bellaterra, 1998)”, Progr. Math. 196, Birkhäuser, Basel (2001) 177–183 MR1851254

[14] H-W Henn, *Cohomological p-nilpotence criteria for compact Lie groups*, Astérisque (1990) 6, 211–220 MR1098971

[15] K Ishiguro, *Classifying spaces and p-local irreducibility*, J. Pure Appl. Algebra 49 (1987) 253–258 MR920940

[16] K Ishiguro, *Classifying spaces of compact simple Lie groups and p-tori*, from: “Algebraic topology (San Feliu de Guíxols, 1990)”, Lecture Notes in Math. 1509, Springer, Berlin (1992) 210–226 MR1185971

[17] K Ishiguro, *Retracts of classifying spaces*, from: “Adams Memorial Symposium on Algebraic Topology, 1 (Manchester, 1990)”, London Math. Soc. Lecture Note Ser. 175, Cambridge Univ. Press, Cambridge (1992) 271–280 MR1170585

[18] K Ishiguro, *Classifying spaces and homotopy sets of axes of pairings*, Proc. Amer. Math. Soc. 124 (1996) 3897–3903 MR1343701

[19] K Ishiguro, *Classifying spaces and a subgroup of the exceptional Lie group G2*, from: “Groups of homotopy self-equivalences and related topics (Gargnano, 1999)”, Contemp. Math. 274, Amer. Math. Soc., Providence, RI (2001) 183–193 MR1817010

[20] K Ishiguro, *Toral groups and classifying spaces of p-compact groups*, from: “Homotopy methods in algebraic topology (Boulder, CO, 1999)”, Contemp. Math. 271, Amer. Math. Soc., Providence, RI (2001) 155–167 MR1831352

[21] S Jackowski, J McClure, B Oliver, *Homotopy classification of self-maps of BG via G-actions I, II*, Ann. of Math. (2) 135 (1992) 183–226, 227–270 MR1147962

[22] J M Møller, *Rational isomorphisms of p-compact groups*, Topology 35 (1996) 201–225 MR1367281

[23] L Smith, *Polynomial invariants of finite groups*, Research Notes in Mathematics 6, A K Peters Ltd., Wellesley, MA (1995) MR1328644

Fukuoka University
Fukuoka 814-0180, Japan
kenshi@cis.fukuoka-u.ac.jp

Received: 3 June 2004 Revised: 14 February 2005