Comparison of the effects of fibrates versus statins on plasma lipoprotein(a) concentrations: a systematic review and meta-analysis of head-to-head randomized controlled trials

Amirhossein Sahebkar1,2*, Luis E. Simental-Mendía3, Gerald F. Watts2,4, Maria-Corina Serban5, Maciej Banach6 and Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group

Abstract

Background: Raised plasma lipoprotein(a) (Lp(a)) concentration is an independent and causal risk factor for atherosclerotic cardiovascular disease. Several types of pharmacological approaches are under evaluation for their potential to reduce plasma Lp(a) levels. There is suggestive evidence that statins and fibrates, two frequently employed lipid-lowering drugs, can lower plasma Lp(a). The present study aims to compare the efficacy of fibrates and statins in reducing plasma concentrations of Lp(a) using a meta-analysis of randomized head-to-head trials.

Methods: Medline and Scopus databases were searched to identify randomized head-to-head comparative trials investigating the efficacy of fibrates versus statins in reducing plasma Lp(a) levels. Meta-analysis was performed using a random-effects model, with inverse variance weighted mean differences (WMDs) and 95% confidence intervals (CIs) as summary statistics. The impact of putative confounders on the estimated effect size was explored using random effects meta-regression.

Results: Sixteen head-to-head comparative trials with a total of 1388 subjects met the eligibility criteria and were selected for this meta-analysis. Meta-analysis revealed a significantly greater effect of fibrates versus statins in reducing plasma Lp(a) concentrations (WMD, −2.70 mg/dL; 95% CI, −4.56 to −0.84; P = 0.004). Combination therapy with fibrates and statins had a significantly greater effect compared with statin monotherapy (WMD, −1.60 mg/dL; 95% CI, −2.93 to −0.26; P = 0.019) but not fibrate monotherapy (WMD, −1.76 mg/dL; 95% CI, −5.44 to +1.92; P = 0.349) in reducing plasma Lp(a) concentrations. The impact of fibrates versus statins in reducing plasma Lp(a) concentrations was not found to be significantly associated with treatment duration (P = 0.788).

Conclusions: Fibrates have a significantly greater effect in reducing plasma Lp(a) concentrations than statins. Addition of fibrates to statins can enhance the Lp(a)-lowering effect of statins.

Keywords: Coronary heart disease, PPAR-α, 3-hydroxy-3-methyl-glutaryl-CoA, Apolipoprotein(a), Randomized controlled trial, Combination therapy

* Correspondence: sahebkara@mums.ac.ir; amir_saheb2000@yahoo.com

1Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
2School of Medicine, University of Western Australia, Perth, Australia

Full list of author information is available at the end of the article
Background

Aside from low-density lipoprotein cholesterol (LDL-C) and triglycerides, lipoprotein(a) (Lp(a)) is an important contributor to atherogenesis [1]. Lp(a) is a lipoprotein particle comprised of an LDL domain and a covalently bound apolipoprotein(a) (apo(a)). Lp(a) is characterized by a protein content of 26–31%, a long half-life, and an atherothrombotic effect likely due to its selective accumulation within atherosclerotic plaque and its inhibition of the fibrinolytic pathway [2]. Plasma concentrations of Lp(a) are an independent risk factor for early atherosclerotic cardiovascular disease [3–5]. Lp(a) is a low-density lipoprotein-like substance with a core of cholesteryl esters and a surface layer of phospholipids and unesterified cholesterol that contains a single molecule of apolipoprotein B-100 bound to a molecule of apo(a) by a disulfide linkage [6]. Values of plasma Lp(a) levels of more than 30 mg/dL are considered elevated [7, 8], and are associated with increased risk of atherogenesis and cardiovascular disease, especially when exceeding 50 mg/dL [9]. A single molecule of apo(a) is secreted by the liver and has a structure similar to plasminogen but without protease activity [10]. In addition to the atherogenic properties afforded by the presence of apoB-100, the apo(a) component of Lp(a) confers thrombogenic effects to the particle [11]. A growing body of evidence for an atherogenic and pro-thrombotic effect of Lp(a) has been reported, as well as its likely causal association with risk of coronary heart disease and stroke [12, 13]. Thus, therapeutic strategies to reduce plasma Lp(a) concentrations in patients with hyper-Lp(a) are particularly important to reduce cardiovascular mortality. In this regard, various therapeutic interventions for lowering Lp(a) levels have been reported, including apheresis techniques, nicotinic acid, statins, fibrates, and aspirin, among others [14–17]. It has been reported that plasma Lp(a) levels are decreased by monoclonal antibodies targeting proprotein convertase subtilisin/kexin type 9 (PCSK9) [18–21]. PCSK9 inhibitors act by increasing the density of LDL receptors on the surface of hepatocytes, which subsequently causes a marked reduction of plasma LDL and LDL-apoB [22–24]. Since the availability of LDL-apoB plays a key role in the formation of Lp(a) particles [25], LDL-lowering activity of PCSK9 inhibitors is accompanied by a significant fall in plasma Lp(a) levels, as suggested by pooled analyses and meta-analyses [22–24]. Several lines of clinical evidence have also shown that statins and fibrates, as the most widely used lipid-lowering drug classes, can lower plasma Lp(a) concentrations [14]. However, evidence from comparative trials has not been conclusive.

Mixed dyslipidemia is characterized by high serum concentrations of total and LDL-C as well as of triglycerides [26]. Statins and fibrates are among the first-line pharmacotherapies for mixed dyslipidemia. Findings of clinical trials have shown that the combination of statins and fibrates results in a significantly greater reduction in LDL-C and triglyceride levels and greater increases in high-density lipoprotein cholesterol (HDL-C) compared with monotherapy with either drug [27]. In addition, both statins and fibrates have been shown to reduce cardiovascular morbidity and mortality [28, 29]. Moreover, these classes of drug affect different aspects of lipoprotein metabolism. Fibrates decrease serum levels of cholesterol and triglycerides and increase HDL-C levels in hyperlipidemic patients, thereby reducing the risk of developing atherosclerosis [30]. The main mechanisms of action of fibrates are induction of lipoprotein lipolysis [31], induction of hepatic fatty acid uptake and reduction of hepatic triglyceride production [32, 33], enhancement of hepatic removal of LDL particles [34], reduction of plasma triglyceride-rich lipoproteins [35], and elevation of HDL production [36].

Statins mainly act through enhancement of plasma clearance of LDL and reduction of hepatic very low-density lipoprotein production [37]. Statins reduce hepatic cholesterol biosynthesis through inhibition of 3-hydroxy-3-methyl-glutaryl-CoA reductase, causing depletion of intracellular cholesterol content and resulting in an increase in the expression and density of hepatic LDL receptors [38].

Owing to the importance of Lp(a) as an emerging coronary risk factor, and the wide use of statins and fibrates in the management of dyslipidemias, the present study aimed to compare the effects of these two classes of drugs on plasma Lp(a) concentrations through a systematic review and meta-analysis of head-to-head clinical trials. A secondary aim was to assess if combination therapy with statins and fibrates is associated with a greater effect on plasma Lp(a) levels compared with monotherapy with either of the agents.

Methods

Search strategy

This study was designed in accordance with the instructions of the 2009 preferred reporting items for systematic reviews and meta-analysis (PRISMA) statement [39], SCOPUS (http://www.scopus.com) and Medline (http://www.ncbi.nlm.nih.gov/pubmed) databases were searched using the following search terms in titles and abstracts (also in combination with MESH terms): (rosuvastatin OR pravastatin OR fluvastatin OR simvastatin OR atorvastatin OR pitavastatin OR lovastatin OR cerivastatin) AND (fenofibrate OR bezafibrate OR clofibrate OR ciprofibrate OR gemfibrozil OR “fibric acid” OR “clofibrate acid” OR procetofen) AND (lipoprotein(a) OR “lipoprotein (a)” OR Lp(a) OR “Lp (a)”). The wild-card term “*” was used...
to increase the sensitivity of the search strategy. The search was limited to studies in human. The literature was searched from inception to October 3, 2016.

Study selection
Trials comparing the effects of statins versus fibrates on serum/plasma concentrations of Lp(a) were included in this meta-analysis. Non-interventional studies and studies not providing sufficient information on baseline or follow-up Lp(a) concentrations were excluded from the meta-analysis. Before excluding a study for the latter, the author(s) were contacted and asked to provide the necessary data.

Quality assessment
Risk of bias in the studies considered in this meta-analysis was evaluated according to the Cochrane instructions [40]. Selection bias, performance bias, attrition bias, detection bias, reporting bias, and other sources of bias were judged to be high, low, or unclear in each of the included studies.

Data extraction
Studies meeting the inclusion criteria were reviewed and data regarding authors, study location, publication date, number of studied population, trial design, dose and duration of intervention, control group allocation, baseline characteristics of studied population (including age, sex, systolic and diastolic blood pressure, body mass index (BMI), and plasma lipid concentrations), and changes in plasma concentrations of Lp(a). When the values were only presented graphically, GetData Graph Digitizer 2.24 software (http://getdata-graph-digitizer.com/) was used to digitize and extract the data.

Quantitative data synthesis
Comprehensive Meta-Analysis (CMA) V2 software (Biostat, NJ) [41] and Review Manager, version 5.2 (Cochrane Collaboration) were used for statistical procedures. All reported Lp(a) concentrations were harmonized in mg/dL. Inverse variance-weighted standardized mean difference and 95% confidence intervals (CIs) were used as the summary statistic, considering a correlation coefficient (R) of 0.5. Conversion of median and inter-quartile range to mean and standard deviation was performed as suggested by Hozo et al. [42]. When plasma Lp(a) levels were presented in multiple time points, data belonging to the longest duration of treatment was included in the meta-analysis. Meta-analysis was performed using a random-effects model (using DerSimonian–Laird method) and the generic inverse variance weighting method. Heterogeneity was quantitatively assessed using I^2 index and Cochrane Q. Sensitivity analysis was performed using the leave-one-out method [43–46]. A subgroup analysis was conducted to explore the impact of treatment duration (<12 weeks vs. ≥ 12 weeks) on plasma Lp(a) concentrations.

![Flow chart of the number of studies identified and included into the meta-analysis](image-url)
Author	Study design	Target Population	Treatment duration	n	Age, years	Female, n (%)	BMI, kg/m²	Total cholesterol, mg/dL	LDL-C, mg/dL	HDL-C, mg/dL	Triglycerides, mg/dL	Lp(a), mg/dL	Lp(a) change, mg/dL	
Athyros et al. (2002) [52]	Randomized, open-label trial	Type 2 diabetes and combined hyperlipidemia	24 weeks	40	57 (44–67)a	17	ND	252 ± 17	161 ± 15	346 ± 3.2	278 ± 24	184 ± 3.7	20 ± 4.0	
					58 (48–69)a	18 (45.0)	ND	253 ± 17	163 ± 15	348 ± 3.4	278 ± 23	192 ± 4.1	20 ± 4.0	
					58 (50–68)a	17 (42.5)	ND	255 ± 19	163 ± 16	351 ± 3.5	278 ± 23	192 ± 4.1	20 ± 4.0	
				40			ND	1323 ± 203	125 ± 10	351 ± 3.5	278 ± 23	192 ± 4.1	20 ± 4.0	
Bedie et al. (1996) [55]	Randomized, double-blind, placebo-controlled trial	Familial combined hyperlipidemia	12 weeks	41	504 ± 108	9 (21.9)	14 (35.0)	266 ± 2.7	150 ± 15	324 ± 7.3	278 ± 23	192 ± 4.1	20 ± 4.0	
				40	53.4 ± 94	18	ND	2900 ± 378	57.7 ± 382	35 ± 1.7	278 ± 23	192 ± 4.1	20 ± 4.0	
					2822 ± 371	157.7 ± 382	35 ± 1.7	278 ± 23	192 ± 4.1	20 ± 4.0				
Hansen et al. (1994) [60]	Randomized, cross-over trial	Familial defective apolipoprotein B-100	8 weeks	17	45.8 ± 17.1	12 (70.5)	7 (53.8)	235.8 ± 42.5	50.2 ± 19.3	ND	115.1	141.7	10.5	
					40.8 ± 12.3	7 (53.8)	ND	3209 ± 646	464.7 ± 7.7	ND	115.1	141.7	10.5	
					2474 ± 541	464.7 ± 7.7	ND	115.1	141.7	10.5				
Perez-Jimenez et al. (1995) [61]	Randomized, cross-over trial	Patients with heart transplant	8 weeks	17	54 ± 2	2 (11.1)	ND	302 ± 7	213 ± 5	54 ± 3	170 ± 15	34 ± 9	50 ± 3	
					307 ± 5	213 ± 5	54 ± 3	170 ± 15	34 ± 9	50 ± 3				
					307 ± 5	213 ± 5	54 ± 3	170 ± 15	34 ± 9	50 ± 3				
Melenovsky et al. (2002) [51]	Randomized, open-label, cross-over trial	Combined hyperlipidemia	10 weeks	15	480 ± 69	ND	ND	27.7 ± 23	174.7 ± 464	494.8 ± 8.8	492.4 ± 440.2	4650 ± 372.8	24 ± 29	28 ± 29
					464 ± 89	ND	ND	27.7 ± 23	174.7 ± 464	494.8 ± 8.8	492.4 ± 440.2	4650 ± 372.8	24 ± 29	28 ± 29
					2830 ± 359	168.5 ± 232	47.9 ± 15.8	492.4 ± 440.2	4650 ± 372.8	24 ± 29	28 ± 29			
Ohwall et al. (1995) [54]	Randomized, double-blind, cross-over trial	Diabetes and hyperlipo-proteinemia	4 months	25	637 (48-78)a	9 (31.0)	ND	2320 ± 402	152.7 ± 433	36.7 ± 69	1160 ± 525	37.7 ± 54.7	0.9	
					367 (48-78)a	9 (31.0)	ND	2320 ± 402	152.7 ± 433	36.7 ± 69	1160 ± 525	37.7 ± 54.7	0.9	
					3656 ± 34	104.6 ± 25	36.7 ± 69	1160 ± 525	37.7 ± 54.7	0.9				
Ramires et al. (1995) [62]	Randomized clinical trial	Hyperlipidemia and hyperlipo-proteinemia	12 weeks	14	54 ± 7	5 (55.5)	3 (30.0)	2989 ± 123	209.9 ± 208	31.7 ± 7.3	2958 ± 230	298 ± 5.7	7.5	
					55 ± 9	3 (30.0)	ND	2993 ± 112	208 ± 11.9	34.4 ± 6.1	2816 ± 203	278 ± 4.1	7.5	
					2989 ± 123	209.9 ± 208	31.7 ± 7.3	2958 ± 230	298 ± 5.7	7.5				
Bairaktari et al. (1999) [50]	Open-label trial	Mixed hyperlipidemia	16 weeks	45	49 ± 8	16 (35.9)	15 (32.6)	278 ± 34	198 ± 29	40 ± 11	271 ± 59	14 ± 1.2	1.2	
					46 ± 10	16 (35.9)	15 (32.6)	278 ± 34	198 ± 29	40 ± 11	271 ± 59	14 ± 1.2	1.2	
Davidson et al. (2009) [53]	Randomized, double-blind trial	Dyslipidemia	12 weeks	74	563 ± 98	39 (52.7)	ND	254.4 ± 442	165.0 ± 377	42.7	265.1	690 ± 67.5	9.3	
					564 ± 105	39 (52.7)	ND	251.9 ± 475	166.6 ± 467	41.2	267.3	660 ± 63.3	9.3	
					549 ± 107	39 (52.7)	ND	2520 ± 401	156.2 ± 336	43.3	270.2	768 ± 74.5	9.3	
Greten et al. (1994) [64]	Primary hypercholesterolemia	12 weeks	64	530 (18-75)a	37	ND	352.7 ± 894	268.9 ± 88.5	55.2 ± 12.2	143.2 ± 480	120 ± 10	1.0		
					518 (22-70)a	37	ND	3403 ± 767	257.4 ± 756	55.2 ± 12.6	143.2 ± 480	120 ± 10	1.0	
Table 1 Demographic characteristics of the included studies (Continued)

Study	Design	Condition	Duration	n	Treatment 1	Treatment 2	Outcome 1	Outcome 2	Outcome 3	Outcome 4	Outcome 5	Outcome 6	Outcome 7	Outcome 8	Outcome 9	Outcome 10									
Kehely et al. (1995)	Randomized, double-blind trial	Mixed hyperlipidemia	3 months	53	27	26	Placebo	Simvastatin 20 mg/day	Bezafibrate 400 mg/day	ND															
							52 ± 9	49 ± 10	ND	ND	ND	ND	298.5 ± 518	1890 ± 549	425.8 ± 8.1	2869 ± 122.2	198 ± 28	5.7 ± 0.8							
May et al. (2008)	Randomized, double-blind, placebo-controlled trial	Diabetes and mixed dyslipidemia	12 weeks	100	100	100	Fenofibrate 160 mg/day	Simvastatin 20 mg/day	ND																
							616 ± 115	135 (450)	ND																
Ramires et al. (1997)	Randomized clinical trial	Hypercholesterolemia and hyperlipoproteinemia	12 weeks	14	13	2000 mg/day	Lovastatin 40-80 mg/day	Gemfibrozil 1200 mg/day	54 ± 7	55 ± 9	5 (360)	6 (590)	ND	ND	306 ± 13	307 ± 11	215 ± 21	213 ± 12	33 ± 7	35 ± 6	294 ± 23	280 ± 20	51 ± 10	48 ± 7	−13.0 ± 2.0
Saougos et al. (2007)	Clinical trial	Hyperlipidemia	2 months	50	50	Rosuvastatin 10 mg/day	Fenofibrate 200 mg/day	ND	278.4 ± 27.0	278.4 ± 27.0															
							546 ± 146	35.9 ± 11	31 (82.0)	32 (600)	258.4 ± 42	343 ± 7	2977 ± 502	2358 ± 348	208.8 ± 425	146.9 ± 348	580 ± 116	502 ± 116	1417 ± 531	1417 ± 531	40 (20-60)	10.0 ± 0.1			
Vigna et al. (1999)	Randomized, double-blind trial	Men with mixed hyperlipidemia	2 months	15	15	200 mg/day	Simvastatin 20 mg/day	Gemfibrozil 1200 mg/day	536 ± 117	509 ± 99	0 (00)	0 (00)	267.1 ± 19	250 ± 2.5	2802 ± 301	2812 ± 388	208.5 ± 301	206.7 ± 378	461 ± 99	444 ± 82	461 ± 99	444 ± 82	257 ± 226	226 ± 21	92.1 ± 1.8
de Lorgeril et al. (1999)	Randomized, double-blind trial	Dyslipidemic coronary patients	12 weeks	32	32	200 mg/day	Simvastatin 20 mg/day	Fenofibrate 200 mg/day	ND	ND	ND	ND	2784 ± 270	2784 ± 270	193.3 ± 270	197.2 ± 232	464.9 ± 116	464.8 ± 77	1860 ± 797	1862 ± 885	34 ± 62	32 ± 39	−60 ± 20		

Values are expressed as mean ± SD
*Median (interquartile range)
*Mean only
BMI: body mass index, ND: no data
Meta-regression
Random effects meta-regression was performed using the unrestricted maximum likelihood method to evaluate the association between calculated weighted mean differences (WMD) in plasma Lp(a) concentrations and duration of treatment.

Publication bias
Presence of publication bias in the meta-analysis was investigated using assessment of Begg’s funnel plot and statistical tests as previously described [47, 48]. The “trim and fill” method was used to adjust the effect size for potential publication bias [49].

Results
Flow of included studies
Briefly, after multiple database searches, 880 published studies were identified and the abstracts reviewed; 844 did not meet the inclusion criteria and were excluded. Next, 36 full text articles were carefully assessed and reviewed, of which 20 studies were excluded for not measuring Lp(a) concentrations (n = 8), having a non-interventional design (n = 1), being non-original research (n = 1), presenting incomplete data (n = 3), lack of statin treatment arm (n = 1), lack of fibrate treatment arm (n = 3), having an inappropriate control group (n = 2), and duplicate reporting (n = 1). Finally, 16 studies with 19 treatment arms were found to be eligible and included in the systematic review and meta-analysis. The study selection process is shown in Fig. 1.

Characteristics of included studies
A total of 1388 individuals were recruited in the 15 randomized controlled studies, including 588, 587, and 213 subjects in the fibrate monotherapy, statin monotherapy, and statin/fibrate combination therapy arms (participants of the cross-over trials were considered in both fibrate and statin monotherapy arms), respectively (Table 1). Included studies were published between 1994 and 2009. The clinical trials used different types and doses of fibrates and statins and evaluated atorvastatin 10 mg/day (n = 2) [50, 51], atorvastatin 20 mg/day (n = 1) [52], atorvastatin 40 mg/day (n = 1) [53], simvastatin 10 mg/day (n = 1) [54], simvastatin 20 mg/day (n = 5) [55–59], pravastatin 40 mg/day (n = 1) [60], lovastatin 10 mg/day (n = 1) [61], lovastatin 40–80 mg/day (n = 1) [62, 63], fluvastatin 40 mg/day (n = 1) [64], rosuvastatin 10 mg/day (n = 1) [65], fenofibrate 200 mg/day (n = 5) [50–52, 59, 65], fenofibrate 145 mg/day (n = 1) [53], fenofibrate 160 mg/day (n = 1) [57], gemfibrozil 1200 mg/day (n = 6) [54, 55, 58, 60, 62, 63], and bezafibrate 400 mg/day (n = 3) [56, 61, 64]. The range of intervention periods was from 8 weeks [60, 61] to 24 weeks [52]. Study designs of included studies were cross-over [51, 54, 60, 61] and parallel-group [53, 55–59, 62–65]. Selected trials enrolled subjects with diabetes [52, 54, 57], combined hyperlipidemia [50–59, 62, 63], familial defective apoB [60], heart transplantation [61], primary dyslipoproteinemia [54], mixed dyslipidemia combined with hyper-Lp(a) [62], primary hypercholesterolemia combined with hyper-Lp(a) [63], primary hypercholesterolemia [64, 65], and primary hypertriglyceridemia [65].

Lp(a) assay methods
Different assays methods were used to measure plasma Lp(a) concentrations. On this regard, some studies [50, 52, 56, 61, 65] measured Lp(a) levels in plasma using an enzyme-linked immunosorbent assay with a monoclonal anti-Lp(a) antibody (Terumo Medical, Elktron, MD). Other trials [54, 55, 60, 62, 63] determined Lp(a) concentrations by measuring the apoprotein(a) moiety in a commercially solid-phase two-site immunoradiometric assay using two different specific anti-apoprotein(a) monoclonal antibodies (Pharmacia, Uppsala, Sweden). Melenovsky et al. [51] measured serum levels of Lp(a) by Laurell rocket immunoelectrophoresis using a commercial antisera (Immuno, Austria). Davidson et al. [53] measured Lp(a) concentrations by nuclear magnetic resonance (LipoScience Inc., Raleigh, North Carolina). Vigna et al. [58] determined Lp(a) levels by enzyme-linked immunosorbent assay with a polyclonal anti-apoprotein(a) antibody (Italiana Laboratori Bouty S.p.A., Milan, Italy). Three studies did not specify the

Table 2 Methods used to measure Lp(a) in included studies

Study	Method	Kringle assay
Athyros et al. (2002) [52]	ELISA	NS
Bredie et al. (1996) [55]	IRA	NS
Hansen et al. (1994) [60]	IRA	NS
Perez-Jimenez et al. (1995) [61]	ELISA	NS
Melenovsky et al. (2002) [51]	IEP	NS
Ohrvall et al. (1995) [54]	IRA	NS
Ramires et al. (1995) [62]	IRA	NS
Baiaraktari et al. (1999) [50]	ELISA	NS
Davidson et al. (2009) [53]	NMR	NS
Greten et al. (1994) [64]	NS	NS
Kehely et al. (1995) [56]	ELISA	NS
May et al. (2008) [57]	NS	NS
Ramires et al. (1997) [63]	IRA	NS
Saougos et al. (2007) [65]	ELISA	NS
Vigna et al. (1999) [58]	ELISA	NS
de Lorgeil et al. (1999) [59]	NS	NS

ELISA enzyme-linked immunosorbent assay, IRA immunoradiometric assay, IEP immunoelectrophoresis, NMR nuclear magnetic resonance, NS not specified
method used to determine plasma Lp(a) concentrations [57, 59, 64]. Finally, all included studies were characterized by a lack of sufficient information regarding the allele-specific assay (Table 2).

Quality assessment

Most of the included studies were characterized by lack of information about the random sequence generation, allocation concealment, blinding of outcome assessment, and blinding of participants and personnel. On this regard, several trials showed high risk of bias for blinding of participants and personnel. Also, some studies had other biases related with the study design. However, almost all evaluated studies showed low risk of bias according to selective outcome reporting. Details of the quality of bias assessment are shown in Table 3.

Quantitative data synthesis

Fibrate monotherapy versus statin monotherapy

In a single-arm analysis of randomized controlled study arms (without control group), statin therapy was found to increase plasma Lp(a) concentrations (WMD, 4.14 mg/dL; 95% CI, 0.15 to 8.12; *P* = 0.042), while the same effect was not observed with fibrates (WMD, 0.64 mg/dL; 95% CI, −1.59 to 2.87; *P* = 0.574). The lp(a)-raising effect of statins in single-arm analysis was diminished after exclusion of the trial with rosuvastatin (WMD, 4.56 mg/dL; 95% CI, −1.09 to 10.22; *P* = 0.113). Combination therapy with statins and fibrates did not exert a significant alteration in plasma Lp(a) concentrations (WMD, 4.52 mg/dL; 95% CI, −7.74 to 16.79; *P* = 0.470) (Fig. 2). Meta-analysis of data from 15 comparative trials showed a significantly greater effect of fibrates versus statins in reducing plasma Lp(a) concentrations (WMD, −2.70 mg/dL; 95% CI, −4.56 to −0.84; *P* = 0.004) (Fig. 3). This effect size was robust in sensitivity analysis and the overall estimated effect size was not significantly changed by the omission of a single study (Fig. 3). In the subgroup analysis, a greater effect of fibrates versus statins in reducing plasma Lp(a) levels was observed in the subset of trials with elevated baseline Lp(a) concentrations (≥30 mg/dL) (WMD, −10.84 mg/dL; 95% CI, −16.66 to −5.03; *P* < 0.001) compared with trials having baseline Lp(a) levels < 30 mg/dL (WMD, −2.08 mg/dL; 95% CI, −3.94 to −0.23; *P* = 0.027; *P* = 0.005 for between-subgroup comparison) (Fig. 4). With respect to treatment duration, the greater effect of fibrates versus statins in reducing plasma Lp(a) levels was observed in the subset of trials with ≥12 weeks length (WMD, −3.16 mg/dL; 95% CI, −5.52 to −0.79; *P* = 0.009); yet there was no significant difference between statins and fibrates in the subset of trials with a duration of <12 weeks (WMD, +0.09 mg/dL; 95% CI, −0.26 to +0.44; *P* = 0.609; *P* = 0.008 for between-subgroup comparison) (Fig. 5).

Statin monotherapy versus statin/fibrate combination therapy

Meta-analysis of data from five comparative trials showed a significantly greater effect of combination therapy with fibrates and statins versus statin monotherapy

Study	Random sequence generation	Allocation concealment	Selective reporting	Other bias	Blinding of participants and personnel	Blinding of outcome assessment	Incomplete outcome data
Athyros et al. (2002) [52]	L	U	L	L	H	U	L
Bredie et al. (1996) [55]	U	U	L	L	U	U	L
Hansen et al. (1994) [60]	U	U	L	L	H	U	L
Perez-Jimenez et al. (1995) [61]	U	U	L	U	H	U	L
Melenovsky et al. (2002) [51]	H	U	L	U	H	U	L
Ohrvall et al. (1995) [54]	U	U	L	L	U	U	L
Ramires et al. (1995) [62]	U	U	L	H	H	U	U
Bairaktari et al. (1999) [50]	H	U	L	U	U	U	L
Davidson et al. (2009) [53]	L	L	L	L	L	L	L
Greten et al. (1994) [64]	U	U	L	U	U	U	L
Kehely et al. (1995) [56]	U	U	L	L	U	U	L
May et al. (2008) [57]	L	U	L	U	L	U	U
Ramires et al. (1997) [63]	U	U	L	U	U	U	L
Saougos et al. (2007) [65]	H	U	L	U	U	U	L
Vigna et al. (1999) [58]	U	U	L	U	U	U	L
de Lorgeril et al. (1999) [59]	U	U	U	U	U	U	U

L low risk of bias, H high risk of bias, U unclear risk of bias
in reducing plasma Lp(a) concentrations (WMD, –1.60 mg/dL; 95% CI, –2.93 to –0.26; P = 0.019) (Fig. 6).

In the sensitivity analysis, there was a partial sensitivity to the study by May et al. [57], which resulted in a borderline significant effect size (WMD, –2.06 mg/dL; 95% CI, –4.41 to +0.28; P = 0.085) (Fig. 6).

Fibrate monotherapy versus statin/fibrate combination therapy

Meta-analysis of data from four comparative trials did not suggest any significant difference between fibrate monotherapy and combination therapy with statins in terms of reducing plasma Lp(a) concentrations (WMD,
–1.76 mg/dL; 95% CI, –5.44 to +1.92; \(P = 0.349 \) (Fig. 7). This effect size was robust in sensitivity analysis and the overall estimated effect size was not significantly changed by the omission of a single study (Fig. 7).

Meta-regression

Meta-regression analysis was conducted to assess the association between changes in plasma Lp(a) concentrations with duration of treatment with statins and fibrates as a potential moderator. The impact of fibrates versus statins in reducing plasma Lp(a) concentrations was not found to be significantly associated with treatment duration (slope, +0.06; 95% CI, –0.40 to +0.53; \(P = 0.788 \)) (Fig. 8).

Publication bias

The funnel plot of the study precision (inverse standard error) by effect size (mean difference) was asymmetric and suggested potential publication bias. Although the results of Begg’s rank correlation (Kendall’s Tau with continuity correction = 0.02, \(Z = 0.10 \), two-tailed \(P \) value = 0.921) was not significant, Egger’s linear regression analysis suggested potential publication bias (intercept, –1.63; standard error, 0.76; 95% CI, –3.28 to +0.02; \(t = 3.01; \) df = 13.00; two-tailed \(P = 0.053 \)). An attempt was made to address publication bias using trim-and-fill correction. Two potentially missing studies on the right side of funnel plot were imputed leading to a corrected effect size that was still significant (WMD, –2.12 mg/dL; 95% CI, –3.95 to –0.29). The “fail safe N” method indicated that 116 theoretically missing studies would be required to make the overall estimated effect size non-significant. Funnel plot of the impact of fibrates versus statins on plasma Lp(a) concentrations is illustrated in Fig. 9.

Discussion

The findings of the present meta-analysis suggest that fibrates are more efficacious than statins in lowering plasma Lp(a) concentrations. In the absence of specific Lp(a)-lowering agents, statins and fibrates have been shown to reduce Lp(a) levels in hyperlipidemic subjects. However, the magnitude of the Lp(a)-lowering effect of these agents relative to each other has not been adequately investigated, and results of head-to-head analysis.
comparative trials have not been fully clarified. Evidence of beneficial effect of statins on elevated plasma Lp(a) concentrations is still limited and variable [14, 66, 67]. In our single-arm analysis, statin therapy was found to increase plasma Lp(a) concentrations. This result is in contrast with some previous reports on the Lp(a)-lowering effect of statin therapy. While the limitation of our single-arm analysis in including only trials in which statins and fibrates were concomitantly studied should be considered, a possible reason for the observed increase in plasma Lp(a) concentrations could be attributed to the effect of rosuvastatin. There is evidence from previous trials indicating that, unlike atorvastatin and simvastatin, rosuvastatin therapy may significantly increase plasma Lp(a) levels [68, 69]. This is consistent with the results of our single-arm analysis, as excluding the only arm with rosuvastatin [65] from the analysis resulted in a non-significant overall effect of statin therapy on Lp(a) levels. Moreover, the results of the Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER) trial showed a small but statistically significant positive shift in plasma Lp(a) levels following rosuvastatin therapy. The JUPITER trial also demonstrated that elevated plasma Lp(a) levels are a significant determinant for the residual cardiovascular risk in patients on optimal rosuvastatin therapy [70].

Statins have been shown to modestly decrease Lp(a) levels in individuals with familial hypercholesterolemia [71], but the mechanism of this effect remains elusive. This slight reduction could be explained by the strong genetic regulation of Lp(a) expression, as plasma Lp(a) concentration is significantly determined by genetic variability at the apo(a) gene locus or at other closely related loci [14]. With respect to fibrates, the effect on Lp(a) could be related to the induction of PPAR-α, and subsequent activation of farnesoid X receptor [72]. Inhibition of apoprotein(a) transcription by farnesoid X receptor has been shown to be mediated via translocation of the receptor to the nucleus, competitive inhibition of the binding of hepatocyte nuclear factor-4-α, and stimulation of fibroblast growth factor factor 19 expression in the intestine [73, 74]. Release of fatty acids from adipose tissue is another mechanism that may contribute to the Lp(a)-lowering effect of fibrates [55], but the specific mechanism remains unclear. Since Lp(a) may be bound to triglyceride-rich lipoproteins [75], the reduction of triglyceride-
rich lipoproteins by fibrates could modify plasma Lp(a) concentrations [76], although this mechanism needs to be verified.

The results of two recent large randomized outcome trials with fenofibrate, Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) [77] and Action to Control Cardiovascular Risk in Diabetes (ACCORD) [78], have not supported a benefit of fenofibrate on primary endpoints (myocardial infarction and death from coronary heart disease) in patients with type 2 diabetes taking statin. However, as our analysis revealed, the Lp(a)-lowering effect of fibrates might be more pronounced in individuals with elevated Lp(a) levels at baseline. FIELD and ACCORD trials were not designed to look at Lp(a) changes, and hyper-Lp(a) was not among the inclusion criteria of neither of these trials. Since sub-analyses in subjects with atherogenic dyslipidemia in the above-mentioned trials have shown incremental benefits of adding fenofibrate to statin in diabetic patients, similar sub-analyses in patients with hyper-Lp(a) could be worthwhile and deserve attention. However, it must be noted that the design in FIELD and ACCORD trials did not involve a head-to-head comparison of statins and fibrates, as opposed to the present meta-analysis.

Some limitations of the present analysis deserve acknowledgment. Several studies included in this meta-analysis did not provide sufficient information about the methods used for random sequence generation, allocation concealment, blinding of outcome assessment, and blinding of participants and personnel, resulting in uncertainty on their overall quality. Overall, there was a small population size in statin/fibrate combination therapy group, leading to a relatively low number of subjects in the pooled analysis; however, sensitivity analysis was conducted using the removal of one study (leave-one-out approach) in order to evaluate the influence of each study on the overall effect size. As another limitation, difference in the dose and duration of treatment as well as assays methods that were used to measure the Lp(a) concentrations might have introduced heterogeneity to the results. In this meta-analysis, the impact of this heterogeneity was tried to be minimized by applying a random-effects model and performing subgroup and meta-regression analyses. Finally, none of the included studies defined elevated Lp(a) concentrations among their inclusion criteria, which necessitates additional studies in patients with hyper-Lp(a).

Conclusion

In conclusion, results of this meta-analysis suggest that fibrates have a significantly greater effect in reducing plasma Lp(a) concentrations compared with statins. Likewise, addition of fibrates to statins can enhance the Lp(a)-lowering effect of statins. Thus, combination...
therapy with fibrates and statins can provide an additional beneficial effect in decreasing the risk of developing cardiovascular disease by reducing apo(a) expression and enhancing Lp(a) clearance, especially in the subgroup of patients with hyper-Lp(a). Future investigations are recommended to explore the impact of other conventional Lp(a)-lowering therapies [79, 80] as well as novel lipid-modifying agents in comparison with fibrates and statins [81–84]. Moreover, further randomized head-to-head trials with different treatment durations could be helpful to clarify if prolongation of treatment could result in further reductions in plasma Lp(a) concentrations.

Authors’ contributions

AS and MB conceived and designed the work. AS and LES-M performed the searches and extracted data. AS performed the statistical analysis. AS and LES-M prepared the first draft of the manuscript. All authors contributed to the interpretation of the work and revised the manuscript critically for important intellectual content. All authors approved the final manuscript and agreed to its submission to BMC Medicine.

Competing interests

Dr. Banach has served on speaker’s bureau and as an advisory board member for Amgen, Sanofi-Aventis, and Lilly. Dr. Watts has received honoraria for lectures and commentaries, outside the submitted work, from Genfit, MSD, Amgen, and Sanofi-Aventis in the previous 3 years. There are no other relationships or activities that could appear to have influenced the submitted work.

Author details

1Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. 2School of Medicine, University of Western Australia, Perth, Australia. 3Biomedical Research Unit, Mexican Social Security Institute, Durango, Mexico. 4Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, Australia. 5Department of Functional Sciences, Discipline of Pathophysiology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania. 6Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland.

Received: 2 October 2016 Accepted: 7 January 2017

References

1. Djurovic S, Berg K. Epidemiology of Lp(a) lipoprotein: its role in atherosclerotic/thrombotic disease. Clin Genet. 1997;52(5):281–92.
2. Lippi G, Guidi G. Lipoprotein(a): an emerging cardiovascular risk factor. Crit Rev Clin Lab Sci. 2003;40(1):1–42.
3. Bennet A, Di Angelantonio E, Eirou S, Eiriksdottir G, Sigurdsson G, Woodward M, Rumley A, Love GD, Danesh J, Gudnason V. Lipoprotein(a) levels and risk of future coronary heart disease: large-scale prospective data. Arch Intern Med. 2008;168(6):598–608.
4. Kamstrup PR, Tybjærg-Hansen A, Steffensen R, Nordestgaard BG. Genetically elevated lipoprotein(a) and increased risk of myocardial infarction. JAMA. 2009;301(22):2331–9.
5. Dank J, Relf N, Buring JE, Ridker PM. Lipoprotein(a), measured with an assay independent of apolipoprotein(a) isoform size, and risk of future cardiovascular events among initially healthy women. JAMA. 2006;296(11):1363–70.
6. Scaniu AM. Lp(a) lipoprotein—coping with heterogeneity. N Engl J Med. 2003;349(22):2089–90.
7. Hajjar M, Katherine A, Nachman M, Ralph L. The role of lipoprotein(a) in atherogenesis and thrombosis. Annu Rev Med. 1996;47(1):423–42.
8. Rader DJ, Hoeg JM, Brewer HB. Quantitation of plasma apolipoproteins in the primary and secondary prevention of coronary artery disease. Ann Intern Med. 1994;120(12):1012–25.
9. Kolski B, Tsimikas S. Emerging therapeutic agents to lower lipoprotein(a) levels. Curr Opin Lipidol. 2012;23(6):560–8.
10. Frank S, Hrenjak A, Blaschitz A, Dohr G, Kostner G. Role of various tissues in apoa) fragmentation and excretion of fragments by the kidney. Eur J Clin Invest. 2001;31(6):504–12.
11. Tsimikas S, Brilakis ES, Miller ER, McConnell JP, Lennon RJ, Kormann KS, Wittum JL, Berger PB. Oxidized phospholipids, Lp(a) lipoprotein, and coronary artery disease. N Engl J Med. 2005;353(1):46–57.
12. Collaboration ERF. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA. 2009;302(4):412.
13. Kamstrup PR. Lipoprotein(a) and ischemic heart disease—a causal association? A review. Atherosclerosis. 2010;211(1):15–23.
14. Lippi G, Targher G. Optimal therapy for reduction of lipoprotein(a). J Clin Pharm Ther. 2012;37(1):1–3.
15. Sahebkar A, Simental-Mendia LE, Stefanutti C, Piero M. Supplementation with coenzyme Q10 reduces plasma lipoprotein(a) concentrations but not other lipid indices: a systematic review and meta-analysis. Pharmacol Res. 2016;105:198–209.
16. Serban MC, Sahebkar A, Mikhalidis DP, Toth PP, Jones SR, Muntner P, Blaha MJ, Andrica F, Martin SS, Borza C, et al. Impact of L-carnitine on plasma lipoprotein(a) concentrations: a systematic review and meta-analysis of randomized controlled trials. Sci Rep. 2016;6:19188.
17. Florentin M, Eilsa MS, Rizos CV, Nikolau B, Bilanou E, Pitsavos C, Liberopoulos EN. L-Carnitine/Simvastatin Reduces Lipoprotein (a) Levels.
lipoproteins, apolipoprotein-CIII and lipoprotein (a) in familial combined hyperlipidaemia. Neth J Med. 1996;49(2):59–67.
56. Kehely A, MacMahon M, Barbir M, Wray R, Hunt B, Prescott R, Thompson G. Combined bezafibrate and simvastatin treatment for mixed hyperlipidaemia. QJM. 1995;88(8):421–7.
57. May HT, Anderson JV, Pearson RR, Jensen JR, Home BD, Lavasani F, Vannucci HD, Muhlestein JB. Comparison of effects of simvastatin alone versus fenofibrate alone versus simvastatin plus fenofibrate on lipoprotein subclass profiles in diabetic patients with mixed dyslipidemia (from the Diabetes and Combined Lipid Therapy Regimen study). Am J Cardiol. 2008;101(4):486–9.
58. Vigna G, Donega P, Passaro A, Zanca R, Cattin L, Fonda M, Paucillo P, Marotta G, Fellin R, Gasparini S. Post-prandial effects of gemfibrozil vs simvastatin in hypercholesterolemic subjects with borderline hypertriglyceridemia. Nutr Metab Cardiovasc Dis. 1999;9(5):234–43.
59. de Lorgeril M, Salen P, Bontemps L, Belichard P, Geyssant A, Itti R. Effects of lipid-lowering drugs on left ventricular function and exercise tolerance in dyslipidemic coronary patients. J Cardiovasc Pharmacol. 1999;33(3):473–8.
60. Hansen P, Meinertz H, Gerdes L, Klausen I, Faergeman O. Treatment of patients with familial defective apolipoprotein B-100 with pravastatin and gemfibrozil: a two-period cross-over study. Clin Investig. 1994;72(2):1065–70.
61. Perez-Jimenez F, Hidalgo L, Zambrana JL, Arzin JM, Jimenez-Perezereza JA, Concha M, Espino A, Blanco J, Valles F, Lopez-Miranda J. Comparison of lovastatin and bezafibrate on lipoprotein (a) plasma levels in cardiac transplant recipients. Am J Cardiol. 1995;75(7):648–50.
62. Ramires JA, Mansur AP, Solimene MC, Maranhão R, Chamone D, da Luz P, Pileggi F. Effect of gemfibrozil versus bezafibrate on increased serum lipoprotein(a) levels of patients with hypercholesterolemia. Int J Cardiol. 1995;48(2):115–20.
63. Ramires J, Sposito AC, Mansur AP, Solimene MC, Chamone D, da Luz PL, Pileggi F. Gemfibrozil reduces elevated lipoprotein(a) levels in hypercholesterolemic patients. Arq Bras Cardiol. 1997;68(4):257–60.
64. Greten H, Bell FU, Schneider J, Weisewiller P, Armstrong WW, Keller C, Kör H-U, von Hodenberg E, Weidinger G, Esköther H. Treatment of primary hypercholesterolemia: fluvastatin versus bezafibrate. Am J Med. 1994;96(6):S55–63.
65. Saqueos VG, Tambaki AP, Kalogirou M, Kostapanos M, Gazi IF, Wollert R, Elksa M, Tsileps AD. Differential effect of hypolipidemic drugs on lipoprotein-associated phospholipase A2. Arterioscler Thromb Vasc Biol. 2007;27(10):2326–33.
66. Gombert S, Malinsky S, Sposito AC, Lauener H, Doucet C, Chapman MJ, Thillert J. Atorvastatin lowers lipoprotein (a) but not apolipoprotein (a) fragment levels in hypercholesterolemic subjects at high cardiovascular risk. Atherosclerosis. 2002;164(2):305–11.
67. Tzontalos K, Athyros VG, Wierzbicki AS, Mikhailidis DP. Lipoprotein(a): where are we now? Curr Opin Cardiol. 2009;24(4):351–7.
68. Irudayaj JB, Sivaraj R, Nirmala P. Effect of statins on lipoprotein(a) in dyslipidemic patients. Int J Basic Clin Pharmacol. 2014;3(6):1024–9.
69. McNenney JM, Jones PH, Bays HE, Knopp RH, Kashyap ML, Ruoff GE, McGovern ME. Comparative effects on lipid levels of combination therapy with a statin and extended-release niacin or ezetimibe versus a statin alone (the COMPELL study). Atherosclerosis. 2007;192(2):432–7.
70. Khera AV, Everett BM, Caufield MF, Hantash FM, Wohlgemuth J, Richer PM, Mora S. Lipoprotein(a) concentrations, rosuvastatin therapy, and residual vascular risk: an analysis from the JUPITER Trial (Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin). Circulation. 2014;129(6):635–42.
71. van Wissen S, Smilde TJ, Trij MD, de Boo T, Kastelein JJ, Stalenhoef AF. Long term statin treatment reduces lipoprotein(a) concentrations in heterozygous familial hypercholesterolemia. Heart. 2003;89(8):893–6.
72. Staels B, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E, Fruchart J-C. Mechanism of action of fibrate on lipid and lipoprotein metabolism. Circulation. 1998;98(19):2088–93.
73. Chennamsetty I, Claudet T, Kostner KM, Baghdasarian A, Kratky D, Levak-Frank S, Frank S, Gonzalez FJ, Trauner M, Kostner GM. Farnesoid X receptor represses hepatic human APOA gene expression. J Clin Invest. 2011;121(9):3724.
74. Chennamsetty I, Claudet T, Kostner KM, Trauner M, Kostner GM. FGFR1 signaling cascade suppresses APOA gene expression. Arterioscler Thromb Vasc Biol. 2012;32(5):1220–7.