Kinetics of CO Oxidation Catalyzed by Supported Gold: A Tabular Summary of the Literature

Veronica Aguilar-Guerrero · Bruce C. Gates

Abstract The literature of CO oxidation catalyzed by supported gold is extensive, but reports of the kinetics of the reaction are incomplete and fragmented. This paper is a summary of such information presented in tables that state (1) how the catalysts were made, treated, and tested; (2) their physical properties, such as the average gold particle size; and (3) kinetics data, including turnover frequencies, reaction orders, and apparent activation energies.

Keywords Gold catalyst · Supported gold · CO oxidation · Kinetics of CO oxidation

1 Introduction

Extensive research on catalysis by supported gold has been reported since the pioneering discoveries by Hutchings [1] and Haruta [2] demonstrating high catalytic activities of highly dispersed gold. CO oxidation and the water gas shift are among the best investigated of the reactions catalyzed by supported gold; most of the work has focused on the former [3], as it apparently offers the advantages of taking place at low temperatures combined with the simplicity of small reactant molecules and the value of CO as a sensitive probe of surface structure [4].

Notwithstanding the extensive research on supported gold catalysts for CO oxidation, the mechanism(s) of the reaction and the catalytically active species remain matters of debate, and the reports of quantitative kinetics of the reaction, although numerous, are largely incomplete. The lack of thorough kinetics data reflects the complexities of the catalyst performance, influenced by catalyst activation and deactivation, which are often rapid; it is sometimes difficult to determine from published reports whether the reaction rates or conversions characterize fresh or deactivated catalysts.

Our goal was to provide a summary facilitating access to the literature of the kinetics of CO oxidation catalyzed by supported gold. The literature is summarized here in tabular form; earlier, much less complete summaries were reported by Bond et al. [5], Deng et al. [6], and Kung et al. [7]. Some issues regarding the challenges of comparing supported gold catalysts on the basis of performance were addressed by Long et al. [8]. We have limited the content here by excluding catalysts with doped supports (except when they were part of a set including undoped supports) and results characterizing “preferential oxidation” of CO in the presence of excess H₂. Otherwise, the compilation contains most of the literature that includes kinetics data for CO oxidation catalyzed by supported gold, although it is not exhaustive, with a number of examples of only partially documented kinetics data being omitted.

2 Tables of Data

The data are presented in three tables, with the entries linked by the entry number shown in the left-hand column of each table. Table 1 is a list of supported gold catalysts used for CO oxidation, how they were made and treated, their gold contents and surface areas, and the average gold particle sizes and methods used to determine them. Table 2 is a summary of the conditions under which the kinetics data were determined, with information about the degree of deactivation of the catalyst. Table 3 is a summary of the kinetics data,
Table 1 Characteristics of the supported gold CO oxidation catalysts

Entry number	Catalyst	Catalyst surface area (m²/g)	Catalyst precursor	Preparation method⁴	Catalyst treatment	Gold content (wt %)	Average gold particle size (nm)	Method of determining gold particle size	References
1	Au/SiO₂	Not stated	AuCl₃	IW	1 h in H₂ (1 bar, 2,500 h⁻¹) at 723 K	1.8	30	XRD [9]	
2	Au/TiO₂	2 hi nH₂ at 473 K, 1 bar, 2,500 h⁻¹	2.3	25					
3	Au/TiO₂	1 h in H₂ at 773 K, 1 bar, 2,500 h⁻¹	2.3	25					
4	Au/TiO₂	1 h in H₂ at 773 K, 1 bar, 2,500 h⁻¹	2.3	25					
5	Au/TiO₂	1 h in H₂ at 773 K, 1 bar, 2,500 h⁻¹	2.3	25					
6	Au/TiO₂	1 h in H₂ at 773 K, 1 bar, 2,500 h⁻¹ followed by a calcination with 20% O₂ in He at 673 K for 1 h, then 2 h under H₂ at 473 K 1 bar, 2,500 h⁻¹	2.3	25					
7	Au/TiO₂ (after deactivation)	1 h in H₂ at 773 K 1 bar, 2,500 h⁻¹ followed by a calcination with 20% O₂ in He at 673 K for 1 h, then 2 h under H₂ at 473 K 1 bar, 2,500 h⁻¹ after deactivation							
8	Au/TiO₂(HTR/C/LTR)-I	1 h in H₂ at 773 K 1 bar, 2,500 h⁻¹ followed by a calcination with 20% O₂ in He at 673 K for 1 h, then 2 h under H₂ at 473 K 1 bar, 2,500 h⁻¹							
9	Au/TiO₂(HTR/C/LTR)-I	1 h in H₂ at 773 K 1 bar, 2,500 h⁻¹ followed by a calcination with 20% O₂ in He at 673 K for 1 h, then 2 h under H₂ at 473 K 1 bar, 2,500 h⁻¹							
10	Au/Fe₂O₃	Not stated	HAuCl₄	CP	Calcination at 673 K in air for 4 h	10	3.6	XRD [10]	
11	Au/Co₃O₄	73							
12	Au/Co₃O₄	69							
13	Au/Co₃O₄	116							
14	Au/Fe₂O₃	20	HAuCl₄	CP	Calcination in air at 673 K for 4 h	5⁶	Not stated	Not stated [11]	
15	Au/MnO₂	Not stated							
16	Au/CeO₂	74c							
17	Au/Co₂O₂	Not stated	Au(CH₃)(C₅H₇O₂)₂	GR	48 h under CO oxidation conditions at 353 K	1	Mononuclear Au species EXAFS [12, 13]		
18	Au/Co₂O₂	173.3c	Au(CH₃)(C₅H₇O₂)₂	GR	48 h under CO oxidation conditions at 353 K followed by 48 h under CO oxidation conditions at 303 K	1	0.8	EXAFS [12, 13]	
19	Au/TiO₂	173.3c	HAuCl₄	DP	Calcination in air at 673 K for 4 h	0.7	3.1 ± 0.7	TEM [14]	
20	Au/TiO₂	50c	HAuCl₄	DP	Calcination in air at 673 K for 4 h	0.7–1.8	2.7 ± 0.6	TEM [15]	
21	Au/TiO₂	DP							
22	Au/TiO₂	DP							
23	Au/TiO₂	DP							
Entry number	Catalyst	Catalyst surface area (m²/g)	Catalyst precursor	Preparation methoda	Catalyst treatment	Gold content (wt %)	Average gold particle size (nm)	Method of determining gold particle size	References
-------------	----------	------------------------------	-------------------	--------------------	-------------------	-------------------	-------------------------------	--------------------------------	-------------
26	Au/TiO₂	DP				1.8	2.7 ± 0.6		
27	Au/TiO₂	DP				2.3	2.5 ± 0.6		
28	Au/TiO₂	DP				3.1	2.9 ± 0.5		
29	Au/TiO₂	DP				1.0	4.6 ± 1.5		
30	Au/TiO₂	PD				3.6	6.0 ± 2.5		
31	Au/TiO₂	IMP		No treatment		1.0	Not stated		
32	Au/TiO₂	Not stated	HAuCl₄	DP (supplied by the World Gold Council)	Calcined at 573 K	1.5	3.7	TEM	[16]
33	Au/MgO	Not stated	Not stated	Gold clusters prepared on single crystal surfaces of TiO₂	Not stated	Not stated	2.5–6	STM/STS/STM [17]	
34	Unsupported nanoporous gold	Not stated	Silver/gold alloy	Deallloying of silver from silver/gold alloy	Not stated	Not stated	5–20	SEM [18]	
35	Nanoporous gold foams	Not stated	Silver/gold alloy	Selective leaching of silver from a silver/gold alloy	Untreated	Not stated	~Tens	SEM [19]	
36	Au/MgO	Not stated	Au₄[(p-tolyl)NCN(p-tolyl)]₄	GR	Treated in O₂ at 773 K for 3 h. Annealing at 972	Not stated	Not stated	TEM [20]	
37	Au/MgO	Not stated	HAuCl₄	DP (supplied by the World Gold Council)	Not stated	4.3			
38	Au/MgO	Not stated	Au₄[(p-tolyl)NCN(p-tolyl)]₄	GR	Treated in O₂ at 773 K for 3 h. Annealing at 1,073	Not stated	3.8		
39	Au/MgO	Not stated	High purity gold foils	VD	None	Not stated	2.6	XPS, LHSI (low energy ion spectroscopy) [23]	
40	Au/TiO₂	Not stated	Gold clusters prepared on single crystal surfaces of TiO₂	Not stated	Not stated	2–4.5	STM [21]		
41	Au/TiO₂	Not stated	HAuCl₄	DP (supplied by the World Gold Council)	Not stated	1.47	3.7	TEM [22]	
42	Au/TiO₂	Not stated	High purity gold foils	VD	None	Not stated	2.6	XPS, LHSI (low energy ion spectroscopy) [23]	
43	Au/TiO₂	50⁰F	HAuCl₄	CP	Calcined in air at 673 K for 5 h	3.3	3.6 ± 1.3	EXAFS, TEM, XRD [24]	
44	Au/Fe₂O₃	37⁰F	HAuCl₄	CP	Calcined in air at 673 K for 5 h	0.66	4.0		
45	Au/Co₃O₄	59⁰F	HAuCl₄	CP	Calcined in air at 673 K for 5 h	1.1	6–7		
Entry number	Catalyst	Catalyst surface area (m²/g)	Catalyst precursor	Preparation method	Catalyst treatment	Gold content (wt %)	Average gold particle size (nm)	Method of determining gold particle size	References
--------------	----------	-------------------------------	-------------------	-------------------	------------------	-------------------	-------------------------------	--	------------
46	Au/Fe₂O₃	Not stated	HAuCl₄	DP	Calcined in O₂ at 673 K for 30 min (20 mL/min, 100 mbar)	Not stated	2.3–7	STEM, XRD [25]	
47	Au/Fe₂O₃	Not stated	Not stated						
48	Au/Fe₂O₃	CP		CP					
49	AuNiO₂	CP		CP					
50	AuCoO₂	IMP		IMP					
51	AuTiO₂	IMP		IMP					
52	AuMg(OH)₂	CP		CP					
53	AuMgO	CP		CP					
54	AuAl₂O₃	IMP		IMP					
55	AuAl₂O₃	Not stated	HAuCl₄	DP	Calcined in He at 673 K for 4 h (100 mL/min)	1.08	2.5 ± 1.1	STEM, EXAFS [26]	
56	AuFe₂O₃	Not stated	HAuCl₄	DP					
57	AuFe₂O₃	Not stated	HAuCl₄	DP					
58	AuFe₂O₃	Not stated	HAuCl₄	DP					
59	AuFe₂O₃	63	6 h, air, 673 K⁰			2.8	12		
60	AuFe₂O₃	99	20 h, vacuum, 573 K⁰, air, 673 K			3.5	9		
61	AuFe₂O₃	76	4 h, air, 673 K⁰			2.9	11		
62	AuFe₂O₃	130	4 h, air, 673 K⁰			3.5	9		
63	AuFe₂O₃	Not stated	HAuCl₄	DP	Heating from room temperature to 573 K in N₂ followed by 30 min in H₂/O₂/N₂ 25/25/50	Not stated	3.0 ± 0.6	TEM [8]	
64	AuAl₂O₃	Not stated	HAuCl₄	DP					
65	AuAl₂O₃	44.2							
66	AuAl₂O₃	41.1							
67	AuAl₂O₃	Not stated	Leached			0.7	Not stated		
68	AuAl₂O₃	146.3				4.7	5.0		
69	AuAl₂O₃	161.6				0.5	Not stated		
70	AuAl₂O₃	Not stated	Leached			0.5	Not stated		
71	AuAl₂O₃	Not stated	Leached			0.5	Not stated		
72	AuAl₂O₃	Not stated	Leached			0.5	Not stated		
73	AuAl₂O₃	Not stated	Leached			0.5	Not stated		
74	AuAl₂O₃	21⁰c				1	2–7		
75	AuAl₂O₃	21⁰c				1	2–7		
76	AuAl₂O₃	Not stated	HAuCl₄	DP					
77	AuAl₂O₃	Not stated	HAuCl₄	DP					
78	AuAl₂O₃	150c				4.4	2		
79	AuMgO	60⁰c				1.0	3.0		

a The abbreviations regarding the preparation methods are as follows: DP deposition precipitation, JW incipient wetness, CP co-precipitation, IMP impregnation, PD photochemical deposition, GR grafting, VD vapor deposition

b Atom %

c This value corresponds to the surface area of the support

d Treatment of the support
Table 2 Reaction conditions under which the supported gold CO oxidation catalysts were tested

Entry number	Catalyst	Degree of deactivation	Catalyst mass (mg)	Reactor type	Total feed flow rate (mL/min)	Feed flow conditions	Space velocity (mL/min gcat)	Feed partial Pressures (mbar)	Reaction temperature (K)	References	
1	Au/SiO₂	Not stated	600–1,000	Plug flow	50	Normal temperature and pressure	50–83.3	50.7	49.3	313	[9]
2	Au/TiO₂										
3	Au/TiO₂										
4	Au/TiO₂										
5	Au/TiO₂										
6	Au/TiO₂	Not stated	350	Plug flow	35	Normal temperature and pressure	100	50.7	48	313	
7	Au/TiO₂ (after deactivation)										
8	Au/TiO₂										
9	Au/TiO₂										
10	Au/Fe₂O₃	Not stated	200	Fixed bed	66	Normal temperature and pressure	330	10.1	208	203	[10]
11	Au/Co₃O₄										
12	Au/NiO										
13	Au/CoO										
14	Au/Fe₂O₃	Initial activities are above 90% decreasing 10% after 167 h	150	Fixed bed (integral mode; high X)	10	1 bar	66.6	10.1	5.1	303,323,348	[11]
15	Au/MnO₂										
16	Au/Co₃O₄										
17	Au/Co₃O₄	Activates during CO oxidation at 353 K increasing activity during CO oxidation at room temperature	25	Plug flow	200	298 K, 1 bar	800	20.3	10.1	298	[12, 13]
18	Au/Co₃O₄	Catalyst activated during CO oxidation at 353 K then stabilized at 303 K after 48 h of reaction	25	Plug flow	200	298 K, 1 bar	800	20.3	20.3	303	[12, 13]
19	Au/TiO₂	Not stated	200	Fixed bed	67	Normal temperature and pressure	1,340	10.1	208	300	[14]
20	Au/TiO₂										
21	Au/TiO₂										
22	Au/TiO₂										
23	Au/TiO₂	Not stated	50	Fixed bed	17	Normal temperature and pressure	340	10.1	208	313	[15]
24	Au/TiO₂										
25	Au/TiO₂										
26	Au/TiO₂										
27	Au/TiO₂										
28	Au/TiO₂										
29	Au/TiO₂										
30	Au/TiO₂										
31	Au/TiO₂										
32	Au/TiO₂	Not stated	55	Fixed bed	25	Not stated	454.5	10.1	10.1	243–363	[16]
33	Au/MgO	Not stated	Not stated	Fixed bed UHV	Not stated	Total pressure: 53.3 mbar	Not stated	8.6	43.3	300	[17]
Entry number	Catalyst	Degree of deactivation	Catalyst mass (mg)	Reactor type	Total feed flow rate (mL/min)	Feed flow conditions	Space velocity (mL/min gcat)	Feed partial Pressures (mbar)	Reaction temperature (K)	References	
--------------	----------	------------------------	-------------------	-------------	-----------------------------	----------------------	-----------------------------	-----------------------------	-----------------------------	------------------------	
34	Unsupported nanoporous gold	Not stated	66.7	Not stated	10.1	101.3	243, 273, 303	[18]			
35	Nanoporous gold	Not stated	60	Fixed bed	15	1 bar	187.5	[19]			
36	Au/MgO	Not stated	Not stated	Fixed bed	45	Not stated	373	222.3	10.1	[18]	
37	Au/MgO	Not stated	Not stated	Fixed bed	45	Not stated	373	222.3	10.1	[18]	
38	Au/MgO	Not stated	Not stated	Fixed bed	45	Not stated	373	222.3	10.1	[18]	
39	Au/MgO	Not stated	Not stated	Plug flow	Not stated	373	222.3	10.1	[18]		
40	Au/TiO₂	Not stated	Not stated	Plug flow	Not stated	373	222.3	10.1	[18]		
41	Au/TiO₂	Not stated	Not stated	Plug flow	Not stated	373	222.3	10.1	[18]		
42	Au/TiO₂	Not stated	200	Fixed bed	67	Not stated	373	222.3	10.1	[18]	
43	Au/Fe₂O₃	Not stated	Not stated	Plug flow	Not stated	373	222.3	10.1	[18]		
44	Au/Co₃O₄	Not stated	Not stated	Plug flow	Not stated	373	222.3	10.1	[18]		
45	Au/Fe₂O₃	Not stated	Not stated	Plug flow	Not stated	373	222.3	10.1	[18]		
46	Au/Fe₂O₃	Not stated	Not stated	Plug flow	Not stated	373	222.3	10.1	[18]		
47	Au/Fe₂O₃	Not stated	Not stated	Plug flow	Not stated	373	222.3	10.1	[18]		
48	Au/Fe₂O₃	Not stated	Not stated	Plug flow	Not stated	373	222.3	10.1	[18]		
49	Au/CoOₓ	Not stated	Not stated	Plug flow	Not stated	373	222.3	10.1	[18]		
50	Au/CoOₓ	Not stated	Not stated	Plug flow	Not stated	373	222.3	10.1	[18]		
51	Au/TiOₓ	Not stated	Not stated	Plug flow	Not stated	373	222.3	10.1	[18]		
52	Au/Mg(OH)₂	Not stated	Not stated	Plug flow	Not stated	373	222.3	10.1	[18]		
53	Au/MgO	Not stated	Not stated	Plug flow	Not stated	373	222.3	10.1	[18]		
54	Au/Al₂O₃	Not stated	Not stated	Plug flow	Not stated	373	222.3	10.1	[18]		
55	Au/Al₂O₃	Not stated	Not stated	Plug flow	Not stated	373	222.3	10.1	[18]		
56	Au/Al₂O₃	Not stated	Not stated	Plug flow	Not stated	373	222.3	10.1	[18]		
57	Au/TiO₂	Not stated	Not stated	Plug flow	Not stated	373	222.3	10.1	[18]		
58	Au/TiO₂	Not stated	200	Fixed bed	67	Not stated	373	222.3	10.1	[18]	
59	Au/TiO₂	Not stated	200	Fixed bed	67	Not stated	373	222.3	10.1	[18]	
60	Au/TiO₂	Not stated	200	Fixed bed	67	Not stated	373	222.3	10.1	[18]	
61	Au/TiO₂	Not stated	200	Fixed bed	67	Not stated	373	222.3	10.1	[18]	
62	Au/TiO₂	Not stated	200	Fixed bed	67	Not stated	373	222.3	10.1	[18]	
Entry number	Catalyst	Degree of deactivation	Catalyst mass (mg)	Reactor type	Total feed flow rate (mL/min)	Feed flow conditions	Space velocity (mL/min gcat)	Feed partial pressures (mbar)	Reaction temperature (K)	References	
--------------	----------	------------------------	-------------------	-------------	-------------------------------	---------------------	--------------------------	-----------------------------	--------------------------	------------	
63	Au/\(\text{TiO}_2\)	Catalyst activity showed a slight decrease in activity in the first hour on stream	0.2	Plug flow	27	1 bar, room temperature	135,000	10.1	208	293	[8]
64	Au/\(\text{Al}_2\text{O}_3\)	Not stated	5–100	Plug flow	75–250	1 bar, room temperature	1,000–15,000	3–70	3–70	298	[29]
65	Au/\(\text{Fe}_2\text{O}_3\)	Not stated	10–50	Plug flow	150	1 bar, room temperature	3,000–15,000	20.3	10.1	303	[6]
66	Au/\(\text{Fe}_2\text{O}_3\)	Not stated	10–50	Plug flow	150	1 bar, room temperature	3,000–15,000	20.3	10.1	303	[6]
67	Au/\(\text{Fe}_2\text{O}_3\)	Not stated	10–50	Plug flow	150	1 bar, room temperature	3,000–15,000	20.3	10.1	303	[6]
68	Au/\(\text{CeO}_2\)	Not stated	Not stated	Plug flow	Not stated	1 bar, room temperature	15,000\(^a\)	10.1	208	298	[30]
69	Au/\(\text{CeO}_2\)	Not stated	Not stated	Plug flow	Not stated	1 bar, room temperature	333–1,333	10.1	208	200–500	[31]
70	Au/\(\text{CeO}_2\)	Not stated	Not stated	Plug flow	Not stated	1 bar, room temperature	333–1,333	10.1	208	200–500	[31]
71	Au/\(\text{Al}_2\text{O}_3\)	Not stated	Not stated	Plug flow	Not stated	1 bar, room temperature	15,000\(^a\)	10.1	208	298	[30]
72	Au/\(\text{Al}_2\text{O}_3\)	Not stated	Not stated	Plug flow	Not stated	1 bar, room temperature	333–1,333	10.1	208	200–500	[31]
73	Au/\(\text{Al}_2\text{O}_3\)	Not stated	Not stated	Plug flow	Not stated	1 bar, room temperature	333–1,333	10.1	208	200–500	[31]
74	Au/\(\text{SiO}_2\)	Not stated	Not stated	Plug flow	Not stated	1 bar, room temperature	333–1,333	10.1	208	200–500	[31]
75	Au/\(\text{TiO}_2\)	Not stated	Not stated	Plug flow	Not stated	1 bar, room temperature	333–1,333	10.1	208	200–500	[31]
76	Au/\(\text{TiO}_2\)	Not stated	Not stated	Plug flow	Not stated	1.22 bar, room temperature	1,500–8,500	20.2	20.2	273	[32]
77	Au/\(\text{Al}_2\text{O}_3\)	Not stated	Not stated	Plug flow	Not stated	1.22 bar, room temperature	1,500–8,500	20.2	20.2	273	[32]
78	Au/\(\text{Al}_2\text{O}_3\)	Not stated	Not stated	Plug flow	Not stated	1.22 bar, room temperature	1,500–8,500	20.2	20.2	273	[32]
79	Au/\(\text{MgO}\)	Not stated	Not stated	Plug flow	Not stated	1.22 bar, room temperature	1,500–8,500	20.2	20.2	273	[32]

\(^a\) CO in feed, was \(^{13}\text{C}\text{O}\); total pressure was greater than atmospheric (1,216 mbar)

\(^b\) Oxygen in feed was \(^{16}\text{O}_2\)

\(^c\) Values are for gas hour space velocity
Table 3 Kinetics data reported for the supported gold CO oxidation catalysts considered in this work

Entry number	Catalyst	Conversion (%)	Temperature range (K) for activation energy	Apparent activation energy (kJ/mol)	TOF (s⁻¹)	Details about TOF calculations	Reaction order	Comments	References	
1	Au/SiO₂	<15	312–454	15.1⁺	2.0 × 10⁻²	Lower limit based on total number of Au atoms	Not stated	Not stated	[9]	
2	Au/TiO₂	Not stated	Not stated	Not stated	0.2–0.6 b, c	0.4 b, c				
3	Au/TiO₂	Not stated	Not stated	Not stated	0.2–0.6 b, c	0.4 b, c				
4	Au/TiO₂	Not stated	Not stated	Not stated	0.2–0.6 b, c	0.4 b, c				
5	Au/TiO₂	Not stated	Not stated	Not stated	0.2–0.6 b, c	0.4 b, c				
6	Au/TiO₂	<15	312–454	3.1 ± 1.6⁺	2.4 × 10⁻¹	Not stated				
7	Au/TiO₂	(after deactivation)	Not stated	Not stated	0.2–0.6 b, c	0.4 b, c				
8	Au/TiO₂	Not stated	Not stated	Not stated	0.2–0.6 b, c	0.4 b, c				
9	Au/TiO₂	Not stated	Not stated	Not stated	0.2–0.6 b, c	0.4 b, c				
10	Au/CoO₃	50	Not stated	Not stated	Not stated	Not stated				
11	Au/MnO	50	Not stated	Not stated	Not stated	Not stated				
12	Au/CuO	50	Not stated	Not stated	Not stated	Not stated				
13	Au/Fe₂O₃	~100	313	33³	Not stated	Not stated				
14	Au/Fe₂O₃	~100	313	8.4⁺	Not stated	Not stated				
15	Au/MnO	50	Not stated	Not stated	Not stated	Not stated				
16	Au/CoO₂	>80	Not stated	Not stated	Not stated	Not stated				
17	Au/CoO₂	<5	333–348	138 ± 2⁺	(6.5 ± 0.6) × 10⁻⁴	Lower limit based on total number of Au atoms	Not stated	Not stated	[12, 13]	
18	Au/CoO₂	<5	303–333	54 ± 8⁺	(5.6 ± 0.2) × 10⁻²	Lower limit based on total number of Au atoms	0.19	0.18	~0.4	
19	Au/TiO₂	<15	243–310	19⁺	3.4 × 10⁻²	Lower limit based on total number of Au atoms	Zero	0.25	Not stated	
20	Au/TiO₂	Not stated	Not stated	Not stated	0.2–0.6 b, c	0.4 b, c				
21	Au/TiO₂	Not stated	Not stated	Not stated	0.2–0.6 b, c	0.4 b, c				
22	Au/TiO₂	Not stated	Not stated	Not stated	0.2–0.6 b, c	0.4 b, c				
23	Au/TiO₂	<15	190–250	75⁺	3.7 × 10⁻²	Lower limit based on total number of Au atoms	Not stated	Not stated	[14]	
24	Au/TiO₂	Not stated	Not stated	Not stated	0.2–0.6 b, c	0.4 b, c				
25	Au/TiO₂	364–526	19⁺	3.4 × 10⁻²	3.7 × 10⁻²	Lower limit based on total number of Au atoms	Not stated	Not stated	[15]	
26	Au/TiO₂	323–434	18⁺	1.2 × 10⁻¹	3.7 × 10⁻²	Lower limit based on total number of Au atoms	Not stated	Not stated	[15]	
27	Au/TiO₂	Not stated	Not stated	Not stated	3.4 × 10⁻²	1.2 × 10⁻¹				
28	Au/TiO₂	Not stated	Not stated	Not stated	2.6 × 10⁻¹	6.8 × 10⁻²				
29	Au/TiO₂	Not stated	Not stated	Not stated	2.6 × 10⁻¹	6.8 × 10⁻²				
30	Au/TiO₂	Not stated	Not stated	Not stated	2.6 × 10⁻¹	6.8 × 10⁻²				
31	Au/TiO₂	450–1,060	58⁺	8.3 × 10⁻⁶	Not stated	Based on surface metal atoms determined assuming fcc structure, amount of gold loading determined by ICP, X-ray fluorescence and TEM	Not stated	Not stated		
Entry number	Catalyst	Conversion (%)	Temperature range (K) for activation energy	Apparent activation energy (kJ/mol)	TOF (s⁻¹)	Details about TOF calculations	Reaction order	Comments	References	
--------------	----------	----------------	---	------------------------------------	-----------	---------------------------------	---------------	----------	------------	
32	Au/TiO₂	Not stated	Not stated	Not stated	Not stated	Not stated		e	[16]	
33	Au/MgO	Not stated	Not stated	(5 × 10⁻²)- (2.5 × 10⁻¹)	Not stated	Based on surface metal atoms determined by constant–current topographic images		Not stated	[17]	
34	Unsupported nanoporous gold	~100	Not stated	3.4 × 10⁻²	Not stated	Not stated		Not stated	[18]	
35	Nanoporous gold foams	60–100	Not stated	Not stated	Not stated	Not stated		Not stated	[19]	
36	Au/MgO	1	Not stated	Not stated	Not stated	Not stated		Not stated	[20]	
37	Au/MgO	3	Not stated	Not stated	Not stated	Not stated		Not stated	[20]	
38	Au/MgO	12	Not stated	Not stated	Not stated	Not stated		Not stated	[20]	
39	Au/MgO	22	Not stated	Not stated	Not stated	Not stated		Not stated	[20]	
40	Au/TiO₂	Not stated	Not stated	(7.1 × 10⁻¹)-(2 × 10⁻⁰)	Not stated	Lower limit based on total number of Au atoms		Not stated	[21]	
41	Au/TiO₂	Not stated	Not stated	4.3 × 10⁻²	Not stated	Lower limit based on total number of Au atoms		Not stated	[22]	
42	Au/TiO₂	294–385 K	11.4 ± 2.8⁸	Not stated	1.1 ± 0.1	h	Proposed rate-determining step is decomposition of carbonate intermediates		Not stated	[23]
43	Au/TiO₂	<10	263–338	3.5 × 10⁻²	0.05	Based on surface metal atoms determined by TEM assuming fcc structure		0.24	[24]	

Authors suggested that CO₂ desorption appears to be rate-limiting step, suggesting negative reaction order in CO₂.

Another finding is that carbon oxide species formed on the surface of Au/TiO₂ authors suggested these were only spectators.

Gold supported on crystalline surfaces of TiO₂ (a low-surface-area model support).

Authors claimed that metallic gold plays a catalytic role in CO oxidation.

Authors carried out similar experiments with catalyst having higher loadings of silver. These samples had activities almost the same as others. Authors ruled out role of silver in CO oxidation catalysis.

Authors claimed strong metal–support interactions responsible for catalytic activity of Au/TiO₂. Model catalyst: support was thin TiO₂ film on Mo(112).

Authors concluded that desorption of CO₂ is a rate-limiting step in CO oxidation.

Proposed rate-determining step is decomposition of carbonate intermediates.

Authors concluded CO oxidation is structure sensitive. Rate of CO oxidation independent of or only slightly dependent on P_{CO} and P_{O₂}.

Authors proposed that CO₂ formation results from decomposition of bidentate carbonate species.
Entry number	Catalyst	Conversion (%)	Temperature range (K) for activation energy	Apparent activation energy (kJ/mol)	TOF (s\(^{-1}\))	Details about TOF calculations	Reaction order CO	Reaction order O\(_2\)	Reaction order CO\(_2\)	Comments	References
44	AuFe\(_2\)O\(_3\)			35.1\(^a\)	3.0 × 10\(^{-2}\)	0.05	Not stated	0.05	Not stated	Dominant reaction pathway concluded to involve adsorption of a mobile, molecular oxygen species on support, dissociation at the gold—support interface and reaction on gold particles and/or at the interface with CO adsorbed on the gold	[25]
45	AuCo\(_3\)O\(_4\)	Not stated		16.3\(^a\)	Not stated	Not stated	Not stated	0.27	Not stated		
46	AuFe\(_2\)O\(_3\)	<20	Not stated	29\(^d\)	1.3–3\(^d\)	Lower limit based on total number of Au atoms	Not stated	Not stated	Not stated		
47	AuFe\(_2\)O\(_3\)	Not stated		Not stated	2.9–6.7	Not stated	Not stated	1.6–3		Lower limit based on total number of Au atoms	
48	AuFe\(_2\)O\(_3\)	Not stated		Not stated	3.2–3.4	Not stated	Not stated	1.3–2			
49	AuNiO\(_x\)	Not stated		Not stated	1.3\(^f\)	Not stated	Not stated	1.3–3			
50	AuCoO\(_x\)	Not stated		Not stated	1.8\(^g\)	Not stated	Not stated	1.8–4			
51	AuTiO\(_2\)	21\(^d\)		1.6\(^d\)	Not stated	Not stated	Not stated	1.6–2			
52	AuMg(OH)\(_2\)	Not stated		Not stated	0.5–0.9\(^j\)	Not stated	Not stated	0.5–0.9			
53	AuMgO	Not stated		Not stated	0.3\(^j\)	Not stated	Not stated	0.3–1			
54	AuAl\(_2\)O\(_3\)	Not stated		Not stated	0.35\(^j\)	Not stated	Not stated	0.35–0.5			
55	AuAl\(_2\)O\(_3\)	13–23	273–329	10	1.6	Steady-state isotopic transient kinetics analysis used to evaluate the intrinsic turnover frequency	Not stated	0.05–0.8	0.05–1	Oxygen exchange proposed to occur between supports and CO\(_2\).	[26]
56	AuTiO\(_2\)						Not stated	0.05–0.8	0.05–1	Labeled oxygen found in H\(_2\)O exiting reactor appeared to originate from \(^{18}\)O associated with CO\(_2\) reactant	
57	AuTiO\(_2\)	5–20	303–353	72\(^d\), 20\(^d\)	Not stated	Not stated	Not stated	0.05–0.8	0.05–1	Authors concluded that dissociative adsorption of O\(_2\) not reversible and observed that oxygen in CO\(_2\) was exchanged by oxidation of C\(^{18}\)O with \(^{18}\)O\(_2\) of the support	[27]
58	AuTiO\(_2\)	5–20	303–353	33 ± 3	1.6\(^d\)	Not stated	Not stated	0.05–0.8	0.05–1	Authors concluded that the formation of a reaction inhibiting carbonate adlayer is the main origin or deactivation	[28]
59	AuTiO\(_2\)	5–20	303–353	36 ± 4	1.2\(^d\)	Not stated	Not stated	0.05–0.8	0.05–1	Authors concluded that the formation of a reaction inhibiting carbonate adlayer is the main origin or deactivation	[28]
60	AuTiO\(_2\)	5–20	303–353	34 ± 4	1.6\(^d\)	Not stated	Not stated	0.05–0.8	0.05–1	Authors concluded that the formation of a reaction inhibiting carbonate adlayer is the main origin or deactivation	[28]
61	AuTiO\(_2\)	5–20	303–353	31 ± 3	2.2\(^d\)	Not stated	Not stated	0.05–0.8	0.05–1	Authors concluded that the formation of a reaction inhibiting carbonate adlayer is the main origin or deactivation	[28]
62	AuTiO\(_2\)	5–20	303–353	28 ± 3	2.0\(^d\)	Not stated	Not stated	0.05–0.8	0.05–1	Authors concluded that the formation of a reaction inhibiting carbonate adlayer is the main origin or deactivation	[28]
63	AuTiO\(_2\)	1–2	260–294	28	Not stated	Not stated	Zero	0.18–0.20	0.18–0.20	Catalyst was thiol monolayer-protected gold clusters prepared from dendrimer templates and deposited onto high-surface-area titania, followed by removal of thiol in H\(_2\)/N\(_2\). Authors concluded that the monolayer-protected gold clusters are comparable in terms of gold particle size, rate laws, and apparent activation energies, to the standard catalysts available from the World Gold Council (WGC); however, these catalysts are 50% more active than the ones from WGC	[8]

References:
[25]...
[26]...
[27]...
[28]...
Entry number	Catalyst	Conversion (%)	Temperature range (K) for activation energy	Apparent activation energy (kJ/mol)	TOF (s\(^{-1}\))	Details about TOF calculations	Reaction order	Comments	References
64	Au/Al\(_2\)O\(_3\)	10	298–377	12	0.02 at 298 K, 0.04 at 373 K	The turnover frequency is the reaction rate per Au atom in the catalyst normalized by the fraction of metal exposed	0.32	0.36	[29]
65	Au/Fe\(_2\)O\(_3\)	<5	324–343	13.4	Not stated	Not stated	Authors concluded that dry CO oxidation is much more facile on Au0 than on oxidized gold clusters	[6]	
66	Au/Fe\(_2\)O\(_3\)	<5	560–573	32.6	Not stated	Not stated			
67	Au/Fe\(_2\)O\(_3\)	<5	560–573	9.9	Not stated	Not stated			
68	Au/CeO\(_2\)	<5	Not stated	29.5	Not stated	Not stated			
69	Au/CeO\(_2\)	<5	Not stated	50.8	Not stated	Not stated			
70	Au/CeO\(_2\)	<5	Not stated	39.9	Not stated	Not stated			
71	Au/Al\(_2\)O\(_3\)	22	298–373	2.7	0.25	Not stated	Not stated		
72	Au/Al\(_2\)O\(_3\)	<5	23.7	0.07	Not stated	Not stated	Al\(_2\)O\(_3\) support was one-dimensional nanofibers	[30]	
73	Au/Al\(_2\)O\(_3\)	Not stated	238–500	22	3 \times 10\(^{-3}\)–2 \times 10\(^{-4}\) Values per surface Au atom	Not stated			
74	Au/SiO\(_2\)	Not stated	Not stated	1 \times 10\(^{-3}\)–4 \times 10\(^{-2}\)	Not stated	Not stated			[31]
75	Au/TiO\(_2\)	Not stated	200–263	25–26	3 \times 10\(^{-1}\) \text{–Saturation of CO conversion}	Not stated			
76	Au/TiO\(_2\)	<37	196–360	29	3.4 \times 10\(^{-1}\) Calculated dividing the global reaction rate by the dispersion of gold. Fraction of exposed gold was estimated from the inverse of the surface-average gold particle size determined by STEM	0.2	0.25	Authors suggested intrinsic rate of CO oxidation nearly independent of the support, suggesting that the ability of Au metal oxide to activate O\(_2\) is a key feature in determining the global reaction rate	[32]
77	Au/Al\(_2\)O\(_3\)	<20	196–360	8	1.8 \times 10\(^{-1}\)	Not stated	Not stated		
including values of TOF and how they were determined, reaction orders, and apparent activation energies.

We believe that these tables provide the most complete available statement of kinetics of CO oxidation catalyzed by supported gold.

3 Generalizations Based on the Data

Table 2 is a summary of the catalysts tested for CO oxidation; the catalysts were investigated at temperatures in the range of 203–373 K. Haruta [35] referred to a low-temperature regime (typically, ~210 K) and a high-temperature regime (typically, >300 K). The O₂ partial pressures were varied between 4 and 200 mbar, and the CO partial pressures between 10 and 40 mbar. The results indicate orders of reaction in CO and in O₂ in the range 0.0–0.6. The reaction order in CO has been approximated as zero by some researchers [24]. Correspondingly, numerous researchers have postulated that CO is adsorbed on the gold; some [4] have suggested that CO is bonded to gold at the gold-support interface. The roles of oxygen in the gold-catalyzed CO oxidation are evidently not fully elucidated. Some authors have postulated that oxygen adsorbed on the gold [4] or at the gold-support interface [36] may play a role. In contrast, Guzman et al. [37] reported evidence of the involvement of reactive oxygen species (such as superoxides) on their CeO₂ support; the influence of the presence of reactive oxygen species on some supports but not on others (e.g., γ-Al₂O₃ [38]) would suggest that the form of kinetics would differ from one support to another, but there are too few data to test this statement.

A few reports of the influence of CO₂ on the rate indicate that it inhibits the reaction; according to one report [16, 22], the desorption of CO₂ from Au/TiO₂ is rate limiting under some conditions. Others [39] have reported that CO₂ (rather than O₂) is the oxidizing agent of gold in supported gold catalysts, implying that the gold in the catalytic sites cycles between more than one oxidation state.

Haruta’s group [40] reported a detailed investigation of the influence of water in the reactant stream on CO oxidation catalyzed by TiO₂⁻, Al₂O₃⁻, and SiO₂⁻ supported gold. Water in low concentrations increases the activity of the catalyst.

The most thorough investigation of the kinetics of CO oxidation catalyzed by supported gold was reported by Vannice’s group [9]; the catalyst support was TiO₂. The authors tested several catalysts that had been subjected to various pretreatments, and kinetics parameters are reported for each (entry numbers 1–9 in Tables 1, 2, 3).

Many of the most active supported gold catalysts for CO oxidation are supported on TiO₂ or on various oxides of iron...
or of cerium. Turnover frequencies (rates of reaction per accessible gold site; Table 3) span a wide range, between 10^{-6} and 10^{-1} s$^{-1}$. There is one report of an intrinsic turnover frequency—that is, per active site [41] (entry numbers 55, 56, 64, 76, and 77, Tables 1, 2, 3)—determined in transient measurements with isotopically labeled reactant 13CO for Au/γ-Al$_2$O$_3$; the value is 1.6×10^{-1} s$^{-1}$ at 296 K and CO and O$_2$ partial pressures of 24.2 mbar each.

Only a few values of apparent activation energies of CO oxidation catalyzed by gold have been reported, and the information about the conditions under which they were determined is often lacking. The apparent activation energies range from values that are essentially indistinguishable from 0 to 138 kJ/mol (Table 3).

Most reports of catalyst deactivation and how it occurs (e.g., [11]) do not include kinetics data, but the work of Vannice’s group [9] is exceptional, providing kinetics data for various catalysts before and after deactivation (Table 2).

Supported gold catalysts typically undergo rapid deactivation during CO oxidation, and this complication has hindered the collection of kinetics data. For example, the initial conversion observed with a zeolite-supported gold catalysts was about 40%, and this decreased to <5% within 15 min of operation in a once-through flow reactor at 298 K [42]. An Au/TiO$_2$ [27] catalyst, on the other hand, showed an initial conversion at 303 K of nearly 100%, and the conversion had declined to 10% after 2,000 min of operation in a flow reactor when O$_2$ was present in stoichiometric excess; but the decline in activity was more rapid when the O$_2$ was not present in stoichiometric excess. Other authors have also observed that the rate of catalyst deactivation was less when the reaction took place in an O$_2$-rich atmosphere [25].

It is clear that the available data do not lend themselves to conclusive integration and that much work remains to be done to consolidate the literature and to represent CO oxidation catalyzed by supported gold quantitatively.

4 Conclusions

The results summarized here show that the literature of CO oxidation catalyzed by supported gold is extensive but fragmented and not easily generalized; it is not easy to make meaningful comparisons of various supported gold catalysts for this reaction, and much work remains to be done to consolidate the literature of CO oxidation catalyzed by supported gold.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

1. Hutchings GJ (2005) Catal Today 100:55
2. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 405
3. Hashimi S, Hutchings GJ (2006) Angew Chem Int Ed 45:7896
4. Mihaylov M, Knözinger H, Hadjijivanov K, Gates BC (2007) Chem Ing Tech 79:795
5. Bond GC, Louis C, Thompson DT (2006) Catalytic series V.6: catalysis by gold. World Scientific Imperial College Press, London
6. Deng W, Carpenter C, Yi N, Flytzani-Stephanopoulos M (2007) Topics Catal 44:199
7. Kung MC, Davis RJ, Kung HH (2007) J Phys Chem C 111:11767
8. Long CG, Gilbertson JD, Vijayaraghavan G, Stevenson KJ, Pursell CJ, Chandler BD (2008) J Am Chem Soc 130:10103
9. Lin SD, Bollinger M, Vannice MA (1993) Catal Lett 17:245
10. Haruta M, Yamada N, Kobatashi T, Iijima S (1989) J Catal 101
11. Gardner S, Hoffund GB (1991) Langmuir 7:2135
12. Aguilar-Guerrero V, Gates BC (2007) Chem Comm 3210
13. Aguilar-Guerrero V, Gates BC (2008) J Catal 260:351
14. Haruta M (2004) J New Mat Electrochem Systems 7:163
15. Bamwenda GR, Tsubota S, Nakamura T, Haruta M (1997) Catal Lett 44:83
16. Chang B, Jang BW, Dai S, Overbury SH (2005) J Catal 236:392
17. Valden M, Lai X, Goodman DW (1998) Science 281:1647
18. Xu C, Su J, Xu X, Liu P, Zhao H, Tian F, Ding Y (2007) J Am Chem Soc 129:42
19. Zielasek V, Jürgens B, Schulz C, Biener J, Biener MM, Hamza AV, Bäumer M (2006) Angew Chem Int Ed 45:8241
20. Yan Z, Chintu S, Mohamed AA, Fackler JP, Goodman DW (2005) J Am Chem Soc 127:1604
21. Goodman DW (2005) Catal Lett 99:1
22. Clark JC, Dai S, Overbury SH (2007) Catal Today 126:135
23. Bondzie VA, Parker SC, Campbell CT (1999) Catal Lett 63:143
24. Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B (1993) J Catal 144:175
25. Schubert MM, Hackenberg S, van Veen AC, Mühler M, Plzak V, Behm RJ (2001) J Catal 197:113
26. Calla JT, Davis RJ (2006) J Catal 241:407
27. Denkwitz Y, Zhao Z, Hörmann U, Kaiser U, Plzak V, Behm RJ (2007) J Catal 251:363
28. Denkwitz Y, Geserik J, Hörmann U, Plzak V, Kaiser U, Hüsing N, Behm RJ (2007) Catal Lett 119:199
29. Calla JT, Davis RJ (2005) Ind Eng Chem Res 44:5403
30. Han Y, Zhong Z, Ramesh K, Chen F, Chen L (2007) J Phys Chem C 111:3163
31. Date M, Okumura M, Tsubota M, Haruta M (2004) Angew Chem Int Ed 43:2129
32. Calla JT, Bore MT, Datye AK, Davis RJ (2006) J Catal 238:458
33. Henao JD, Caputo T, Yang JH, Kung MC, Kung HH (2006) 10:8689
34. Guzman J, Gates BC (2004) 129:26
35. Haruta M (2008) In: Corain B, Schmid G, Toshima N (eds) Relevance of metal nanoclusters in catalysis and materials science: the issue of size control, ch 9, Elsevier, Amsterdam, p 183
36. Bond GC, Thompson DT (1999) Catal Rev Sci Eng 41:319
37. Guzman J, Carrettin S, Fierro-Gonzalez JC, Hau Y, Gates BC, Corma A (2005) Angew Chem Int Ed 117:4856
38. van Bokhoven JA, Louis C, Miller JT, Tromp M, Safonova OV, Glätzel P (2006) Angew Chem Int Ed 45:465
39. Mihaylov M, Ivanova E, Hau Y, Hadjijivanov K, Gates BC, Knözinger H (2008) Chem Comm 175
40. Daile M, Okumura M, Tsubota M, Haruta M (2004) Angew Chem Int Ed 43:21
41. Calla JT, Davis RJ (2005) J Phys Chem B 109:2307
42. Fierro-Gonzalez JC, Gates BC (2004) J Phys Chem B 108:16999

© Springer