A Case of Painful Legs and Moving Toes Syndrome in a Young Woman

Hyeoun Bae*, Dae-seop Shin*, Mi-kyoung Kang, Hyun Chang Lee, Ki-Young Jung

1Department of Neurology, Keimyung University School of Medicine, Daegu, 2Department of Neurology, Seoul National University Hospital, Seoul, 3Program in Neuroscience, Seoul National University College of Medicine, Seoul, 4Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea

INTRODUCTION

Painful legs and moving toes syndrome (PLMT) is a rare syndrome characterized by pain in the lower extremities and involuntary movements of single or multiple toes.1 The largest case series on PLMT reported that the age of onset was 24–86 years.2 However, there are no previous reports of PLMT in young adults in Korea. Herein, we report the first case of PLMT in a 29-year-old Korean adult with a lumbosacral intervertebral disc herniation.

CASE REPORT

A 29-year-old woman presented to our clinic with complaints of bilateral foot pain and involuntary toe movements that she has been experiencing for the past three months. The symptoms began insidiously on the left side, but were recently noted intermittently on the right side as well. The patient described the pain as an intense pressure or a feeling of her toes being pulled. The pain was unendurably severe in the second toe. The pain and movements worsened when the patient lay down, and were relieved when she wore shoes or socks. She denied having an urge to move her feet or toes.

This patient had no history of trauma, neuroleptic drug use, or family history of this condition. Three years prior, she had developed left leg paresthesia with back pain and was diagnosed with lumbosacral intervertebral disc herniation at the L4/5 and L5/S1 levels. The symptoms decreased for one year after transforaminal lumbar epidural steroid injection. Before visiting our clinic, she had been prescribed pregabalin at another hospital. However, she discontinued the medication because it had no effect on the movements or pain in her toes. She was not taking any medications at the time of her visit.

Keywords: Painful legs and moving toes syndrome; Dyskinesias; Leg pain.
sion of the left toes approximately once every 5–6 seconds (Supplementary Video 1 in the online-only Data Supplement). Her serum ferritin level was 5.2 ng/mL (range: 9–89 ng/mL) and hemoglobin was 11.5 g/dL (range: 12–16 g/dL). Blood electrolyte, liver, kidney, and thyroid function levels were unremarkable. Nerve conduction study (NCS) and needle electromyography (EMG) were conducted at another hospital. The patient was informed that no abnormalities were present.

Intervertebral disc herniation in the left L4/5 and L5/S1 segments was detected upon lumbosacral spine magnetic resonance imaging performed 2 years ago (Fig. 1).

Oxcarbazepine (150 mg per day) and haloperidol (1.5 mg per day) were prescribed. However, the patient's symptoms persisted. Intravenous iron supplementation (ferric carboxymaltose, 1,000 mg) was also ineffective.

This study was approved by the Institutional Review Board of Seoul National University Hospital (IRB No. H-2108-153-1248).

DISCUSSION

PLMT is a rare syndrome characterized by foot or leg pain and repetitive, stereotypical, and non-rhythmic toe movements. The age of onset is typically higher than the age of our patient at the time the symptoms appeared, and the mean reported age at onset in 76 patients with PLMT was 58 years. In Korea, PLMT has been reported in patients aged 71 and 16 years, but not in young adults. To the best of our knowledge, this is the first case of this condition in a young Korean adult patient.

However, the cause of PLMT remains unclear. Cryptogenic PLMT accounts for the majority of cases, but secondary causes such as peripheral neuropathy, radiculopathy, spinal cord lesions, mono-neuropathy, posttraumatic injury, and the use of neuroleptics have also been implicated.

Several mechanism have been proposed for PLMT. One proposed mechanism is that peripheral nerve injury leads to changes in the afferent neuronal connections, which triggers involuntary movements of the digits. However, central neuromodulation has also been suggested as the mechanism of PLMT. In our case, pre-existing lumbosacral intervertebral disc herniation could be considered as a secondary cause. Initially, peripheral injury due to disc herniation might have evoked a peripheral pathophysiological process that progressed to central reorganization. This process may have led to the symptomatic progression (from unilateral to bilateral involvement). PLMT with unilateral lesions presenting with bilateral involvement has been reported previously. A pathophysiologic mechanism, similar to that noted in our case, has been reported in a Korean case of painless moving toes syndrome. In this condition, radiculopathy is thought to cause maladaptive changes in the peripheral connection and central reorganization, resulting in bilateral movements. In our case, because the patient no longer visited our hospital, NCS and EMG follow-up tests for the evaluation of radiculopathy could not be performed.

The nature of the pain and involuntary movements in this patient were typical of those described previously. These symptoms include tormenting pain, toe pulling, intense pressure, abduction, adduction, and extension of the phalanges. Up to 58% of patients can have exacerbating factors such as position-dependent symptoms, diurnal variations, cold temperature, external pressure, and the Valsalva maneuver. This patient's symptoms were position-dependent and worsened when she lay down.

Differential diagnoses such as neuroleptic-induced dyskinesia, akathisia, restless legs syndrome, Wilson's disease, hyperthyroidism, multiple sclerosis, and Huntington's disease could be considered in young patients. Our patient had no history of psychological disorders or neuroleptic drug use, and had no remarkable family history. She did not complain of an urge to move, a key symptom of restless legs syndrome. Laboratory tests, including thyroid function tests, were negative, and physical examination did not indicate the possibility of other conditions.

In PLMT, the pain is more distressing than the movements. Our patient reported severe and unbearable pain. Therefore, pain mitigation is the primary management goal. There are no consistent guidelines for the treatment of this condition; however, gabapentin, pregabalin, carbamazepine, and antidepres-
Bae H et al.

Supplementary Video Legend
Video 1. The patient shows involuntary, repetitive abduction, adduction, and extension of the left toes.

Supplementary Materials
The online-only Data Supplement is available with this article at https://doi.org/10.13078/jsm.210026.

Conflicts of Interest
The authors have no potential conflicts of interest to disclose.

ORCID iDs
Hyoeun Bae https://orcid.org/0000-0003-2351-0460
Dae-seop Shin https://orcid.org/0000-0002-0844-9190
Mi-kyoung Kang https://orcid.org/0000-0001-7260-3984
Hyun Chang Lee https://orcid.org/0000-0002-4517-7024
Ki-Young Jung https://orcid.org/0000-0001-5528-9081

Author Contributions
Conceptualization: Ki-Young Jung. Data curation: Mi-kyoung Kang.

Hyun Chang Lee. Formal analysis: Hyoeun Bae, Dae-seop Shin. Investigation: Hyoeun Bae, Dae-seop Shin. Methodology: Ki-Young Jung. Supervision: Ki-Young Jung. Writing—original draft: Hyoeun Bae, Dae-seop Shin. Writing—review & editing: Ki-Young Jung.

Funding Statement
This work was supported by a National Research Foundation (NRF) grant funded by the Korean government (MSIP) (2017R1A2B2012280).

REFERENCES
1. Spillane JD, Nathan PW, Kelly RE, Marsden CD. Painful legs and moving toes. Brain 1971;94:541-556. http://doi.org/10.1093/brain/94.3.541.
2. Hassan A, Mateen FJ, Coon EA, Ahlskog JE. Painful legs and moving toes syndrome: a 76-patient case series. Arch Neurol 2012;69:1032-1038. http://doi.org/10.1001/archneurol.2012.161.
3. Park KY, Oh KM, Lee EA, Lee WY. A case of painful legs and moving toes syndrome responsive to gabapentin. J Korean Neurol Assoc 2000;18:805-807.
4. Kim SS, HwangYS, Kim YC. Painful legs and moving toes syndrome in a 16-year-old girl. Korean J Pediatrics 2016;59:381-383. http://doi.org/10.3345/kjp.2016.59.9.381.
5. Nathan PW. Painful legs and moving toes: evidence on the site of the lesion. J Neurol Neurosurg Psychiatry 1978;41:934-939. http://doi.org/10.1136/jnnp.41.10.934.
6. Wulff CH. Painful legs and moving toes. A report of 3 cases with neurophysiological studies. Acta Neurol Scand 1982;66:283-287. http://doi.org/10.1111/j.1600-0404.1982.tb04526.x.
7. Kwon SJ, Kim JM, Jeon BS. A case report of painless moving toes syndrome. J Clin Neurol 2008;4:33-35. http://doi.org/10.3988/jcn.2008.4.1.33.
8. Azzi J, Atweh S, Saade N, Jabbour R. Neuroleptics as a cause of painful legs and moving toes syndrome. BMJ Case Rep 2014;2014:bcr2014205117. http://doi.org/10.1136/bcr-2014-205117.