SCATTERING FOR A CLASS OF NON-RADIAL INHOMOGENEOUS BI-HARMONIC HARTREE EQUATIONS

TAREK SAANOUNI AND HANENE HEZZI

ABSTRACT. This manuscript proves the energy scattering of global solutions to a repulsive fourth-order generalized Hartree equation with non-radial data in the inter-critical regime. This work uses a new approach due to Dodson-Murphy [4] and extends the previous work [14] by removing the spherically symmetric assumption on the data.

1. Introduction

This work treats the energy scattering theory for the following inhomogeneous focusing Choquard equation

\[
\begin{cases}
 i \dot{u} + \Delta^2 u - (I_\alpha \ast | \cdot |^b |u|^p) |x|^b |u|^{p-2} u = 0; \\
u(0, \cdot) = u_0.
\end{cases}
\]

(1.1)

Here and hereafter \(u : \mathbb{R} \times \mathbb{R}^N \to \mathbb{C} \), for a natural integer \(N \geq 5 \). The singular inhomogeneous term is \(| \cdot |^b \), for a certain \(b < 0 \). The Riesz-potential is defined on \(\mathbb{R}^N \) by

\[
I_\alpha : x \mapsto \frac{\Gamma(\frac{N-\alpha}{2})}{\Gamma(\frac{\alpha}{2}) \pi^{\frac{N}{2}} 2^\alpha |x|^{N-\alpha}}, \quad 0 < \alpha < N.
\]

The limiting case \(b = 0 \) corresponds to the homogeneous fourth-order Schrödinger problem considered first in [8, 9] to take into account the role of small fourth-order dispersion terms in the propagation of intense laser beams in a bulk medium with a Kerr non-linearity.

The equation (1.1) is invariant under the scaling

\[
u_\lambda = \lambda^{\frac{4+2b+\alpha}{2(p-1)}} u(\lambda^4 \cdot, \lambda \cdot), \quad \lambda > 0.
\]

The homogeneous Sobolev norm gives the critical Sobolev index denoted by \(s_c \) as follows

\[
\| u_\lambda \|_{H^s} = \lambda^{\frac{s - \left(\frac{N}{2} - \frac{4+2b+\alpha}{2(p-1)}\right)}{}} \| u(\lambda^4 \cdot) \|_{H^s} : = \lambda^{s - s_c} \| u(\lambda^4 \cdot) \|_{H^s},
\]

Date: September 20, 2021.
2010 Mathematics Subject Classification. 35Q55.
Key words and phrases. Fourth-order Schrödinger equation, inhomogeneous, non-radial, scattering.
In this note, one considers the inter-critical regime $0 < s_c < 2$, which corresponds to the mass super-critical and energy sub-critical case.

Let us recall give a brief literature about the inhomogeneous bi-harmonic non-linear Schrödinger equation (IBNLS). The finite time blow-up of solutions to the IBNLS for negative energy with a source term $|x|^{-2}|u|^\frac{2}{3}u$ was considered in [3]. The local well-posedness in the energy space was treated in [7]. See also [12], for the well-posedness in H^s, $0 < s \leq 2$ and [2] for existence of global and non-global solutions in $\dot{H}^{s_c} \cap \dot{H}^2$. The case of a non-local source term was considered by the author in [5]. The scattering of global spherically symmetric solutions under the ground state threshold was established recently by the author [14]. Moreover, the scattering without any radial assumption for the IBNLS with a local source term was proved very recently [1].

It is the aim of this note to extend [14] to the non-radial regime and [1] to the generalized Hartree equation. The challenge of this work is to deal with the non-local source term with use of a Hardy-Littlewood-Sobolev estimate. The main ingredient here is the use of the decay of the inhomogeneous term $| \cdot |^b$ instead of the spherically symmetric assumption. So, the scattering in the limiting case $b = 0$ is not a consequence of this manuscript.

The rest of the note is organized as follows. In section 2, one gives the main result and some useful estimates. Section three contains a proof of a Morawetz identity. In section four one proves a scattering criterion. The last section proves the main theorem.

Here and hereafter, C denotes a constant which may vary from line to another. Denote the Lebesgue space $L^r := L^r(\mathbb{R}^N)$ with the usual norm $\| \cdot \|_r := \| \cdot \|_{L^r}$ and $\| \cdot \| := \| \cdot \|_2$. The inhomogeneous Sobolev space $H^2 := H^2(\mathbb{R}^N)$ is endowed with the norm

$$\| \cdot \|_{H^2} := \left(\| \cdot \|^2 + \| \Delta \cdot \|^2 \right)^\frac{1}{2}.$$

Let us denote also $C_T(X) := C([0, T], X)$ and X_r the set of radial elements in X. Moreover, for an eventual solution to (1.1), $T^* > 0$ denotes it’s lifespan. Finally, x^+ is a real numbers near to x satisfying $x^+ > x$.

2. Background and main results

This section contains the contribution of this paper and some standard estimates needed in the sequel.

2.1. Preliminary. Take for $R > 0$, $\psi_R := \psi(\frac{\cdot}{R})$, where $0 \leq \psi \leq 1$ is a radial smooth function satisfying

$$\psi \in C_0^\infty(\mathbb{R}^N), \quad supp(\psi) \subset \{|x| < 1\}, \quad \psi = 1 \text{ on } \{|x| < \frac{1}{2}\}.$$
The mass-critical and energy-critical exponents for the Choquard problem (1.1) are
\[p_* := 1 + \frac{\alpha + 4 + 2b}{N} \quad \text{and} \quad p^* = 1 + \frac{4 + 2b + \alpha}{N - 4}. \]

Solutions of the Choquard problem (1.1) satisfy the conservation of the mass and the energy
\[M[u] := \|u\|^2; \]
\[E[u] := \|\Delta u\|^2 - \frac{1}{p} \int_{\mathbb{R}^N} (I_\alpha \cdot |b| |u|^p) |x| |u|^p \, dx. \]

Let \(\phi \) a ground state solution to the elliptic problem
\[\phi + \Delta^2 \phi - (I_\alpha \cdot |b| |\phi|^p) |x| |\phi|^{p-2} \phi = 0, \quad 0 \neq \phi \in H^2, \]
and \(u \) a solution to (1.1). The following scale invariant quantities describe the dichotomy of global/non-global existence of solutions [6].
\[\mathcal{ME}[u] := \left(\frac{E[u]}{E[\phi]} \right) \left(\frac{M[u]}{M[\phi]} \right)^{\frac{2-\alpha}{2-\alpha_e}}; \]
\[\mathcal{MG}[u] := \left(\frac{\|\Delta u\|}{\|\Delta \phi\|} \right) \left(\frac{\|u\|}{\|\phi\|} \right)^{\frac{2-\alpha}{2-\alpha_e}}. \]

The local well-posedness of the above problem (1.1) in the energy space for \(2 \leq p < p^* \) was proved in [5] under the assumptions denoted for simplicity \((N, \alpha, b)\) satisfies (C) if, \(0 < \alpha < N \) and \(\max\{- (N + \alpha), -4 (1 + \frac{\alpha}{2}), N - 8 - \alpha \} < 2b < 0 \) and \([N \geq 5 \text{ or } 3 \leq N \leq 4 \text{ and } 2\alpha + 4b + N > 0]\). Moreover, the global existence versus finite time blow-up of energy solutions under the ground state threshold was obtained in [14]. Precisely,

Theorem 2.1. Let \((N, \alpha, b)\) satisfying (C) and \(\max\{p_*, x_\alpha\} < p < p^* \) such that \(p \geq \max\{2, \frac{3}{2} + \frac{\alpha}{N}\} \). Let \(u_0 \in H^2_r \) satisfying
\[\max \left\{ \mathcal{ME}[u_0], \mathcal{MG}[u_0] \right\} < 1. \quad (2.2) \]

Take \(u \in C_{T^*}(H^2_r) \) be a maximal solution to (1.1). Then, \(u \) is global and there exists \(u_\pm \in H^2 \) such that
\[\lim_{t \to \pm \infty} \|u(t) - e^{it\Delta} u_\pm\|_{H^2} = 0. \]

Remarks 2.2. Note that
1. \(x_\alpha \) is the positive root of the polynomial
\[(X - 1)(2X - 1) - \frac{4 + 2b + \alpha}{N - 4}; \]
2. the proof follows a new approach due to [4];
3. the spherically symmetric assumption is essential in the used method.

The following variational estimates [14] are needed in the proof of the scattering of global solutions to the focusing Choquard problem (1.1).
Lemma 2.3. Take \((N, \alpha, b)\) satisfying (C) and \(p_s < p < p^*\) such that \(p \geq 2\). Let \(u_0 \in H^2\) satisfying (2.2) and \(u \in C(\mathbb{R}, H^2)\) be the solution to (1.1). Then,

1. there exists \(0 < \delta < 1\) such that
 \[
 \max \left\{ \sup_{t \in \mathbb{R}} \mathcal{M}E[u(t)], \sup_{t \in \mathbb{R}} \mathcal{M}G[u(t)] \right\} < 1 - \delta.
 \]
2. There exists \(R_0 := R_0(\delta, M(u), \phi) > 0\) such that for any \(R > R_0\),
 \[
 \sup_{t \in \mathbb{R}} \| \psi_R u(t) \|^{2-s_c} \| \Delta(\psi_R u(t)) \|^{s_c} \leq (1 - \delta) \| \phi \|^{2-s_c} \| \Delta \phi \|^{s_c}.
 \]

Moreover, there exists \(\delta' > 0\) such that
\[
\| \Delta(\psi_R u) \|^2 - \frac{B}{2p} \int_{\mathbb{R}^N} (I_\alpha * | \cdot |^b |\psi_R u|^p) |x|^b |\psi_R u|^p \ dx \geq \delta' \| \psi_R u \|^{2p} \frac{2N}{N+\alpha+2b}.
\]

2.2. Main result. The main goal of this manuscript is to prove the following scattering result.

Theorem 2.4. Let \((N, \alpha, b)\) satisfying (C) and \(p_s < p < p^*\) such that \(p \geq 2\) and \(N \geq 5\). Let \(u_0 \in H^2\) satisfying (2.2) and \(u \in C_T(H^2)\) be the maximal solution to (1.1). Then, \(u\) is global and there exists \(u_\pm \in H^2\) such that
\[
\lim_{t \to \pm \infty} \| u(t) - e^{it\Delta} u_\pm \|_{H^2} = 0.
\]

Remarks 2.5. Note that

1. the global existence of solutions under the assumption (2.2) was proved in [5];
2. the proof follows a new approach due to [4] and avoids the concentration-compactness method introduced by [10];
3. the main novelty here is the removal of the spherically symmetric method introduced by [10];
4. one exploits the decay of the inhomogeneous term \(| \cdot |^b\) of the source term, instead of the spherically symmetric assumption;
5. the condition \(N \geq 5\) is used in the scattering criteria;
6. it seems that the scattering for non-radial data in lower dimensions still remains open;
7. in the limiting case \(b = 0\), it seems that the scattering for non-radial data is still open.

2.3. Useful estimates. Let us gather some classical tools needed in the sequel.

Definition 2.6. Take \(N \geq 1\) and \(s \in [0, 2)\). A couple of real numbers \((q, r)\) is said to be s-admissible (admissible for 0-admissible) if
\[
\frac{2N}{N-2s} \leq r < \frac{2N}{N-4}, \quad 2 \leq q, r \leq \infty \quad \text{and} \quad N\left(\frac{1}{2} - \frac{1}{r}\right) = \frac{4}{q} + s.
\]

Denote the set of s-admissible pairs by \(\Gamma_s\) and \(\Gamma := \Gamma_0\). If \(I\) is a time slab, one denotes the Strichartz spaces
\[
S^s(I) := \cap_{(q, r) \in \Gamma_s} L^q(I, L^r).
\]

Recall the Strichartz estimates [13, 6].
Proposition 2.7. Let $N \geq 1$, $0 \leq s < 2$ and $t_0 \in I \subset \mathbb{R}$, an interval. Then,

1. sup_{(q,r)\in \Gamma} \|u\|_{L^q(I,L^r)} \lesssim \|u(t_0)\| + \inf_{(q,r)\in \Gamma} \|iu + \Delta^2 u\|_{L^q(I,L^r)};
2. sup_{(q,r)\in \Gamma} \|\Delta u\|_{L^q(I,L^r)} \lesssim \|\Delta u(t_0)\| + \|iu + \Delta^2 u\|_{L^q(I,L^r)};
3. sup_{(q,r)\in \Gamma} \|u\|_{L^q(I,L^r)} \lesssim \|u(t_0)\|_{H^s} + \inf_{(q,r)\in \Gamma_{\alpha}} \|iu + \Delta^2 u\|_{L^q(I,L^r)}.

Let us recall a Hardy-Littlewood-Sobolev inequality [11, 15].

Lemma 2.8. Take $N \geq 1$.

1. Let $0 < \lambda < N$ and $1 < r, s < \infty$ satisfying $2 = \frac{1}{r} + \frac{s}{s} + \frac{N}{N}$. Thus,
 \[\int_{\mathbb{R}^N} \frac{u(x)v(y)}{|x - y|^\lambda} \, dx \, dy \leq C_{N,s,\lambda} \|u\|_r \|v\|_s, \forall u \in L^r, \forall v \in L^s. \]
2. Let $0 < \alpha < N$ and $1 < r, s, q < \infty$ satisfying $1 + \frac{\alpha}{N} = \frac{1}{q} + \frac{1}{s} + \frac{1}{\alpha}$. Thus,
 \[\|I_\alpha * u\|_{r'} \leq C_{N,s,\alpha} \|u\|_s \|v\|_q, \forall u \in L^s, \forall v \in L^q; \]
3. Let $0 < \alpha < N$ and $1 < r, s, q < \infty$ satisfying $1 + \frac{2 - \gamma - \mu}{N} = \frac{1}{q} + \frac{1}{s} + \frac{1}{\alpha}$ and $0 < -\gamma < \frac{N}{s'}, 0 < -\mu < \frac{N}{s'}$. Thus,
 \[\|(I_\alpha * | \cdot |^\gamma u) \cdot |^\mu v\|_{r'} \leq C_{N,s,\alpha,\gamma,\mu} \|u\|_s \|v\|_q, \forall u \in L^s, \forall v \in L^q. \]

Finally, let us give an abstract result [14].

Lemma 2.9. Let $T > 0$ and $X \in C([0,T], \mathbb{R}_+)$ such that
\[X \leq a + bX^\theta \text{ on } [0,T], \]
where $a, b > 0$, $\theta > 1$, $a < (1 - \frac{1}{\theta})(\theta b)^{\frac{1}{\theta - 1}}$ and $X(0) \leq (\theta b)^{\frac{1}{\theta - 1}}$. Then
\[X \leq \frac{\theta}{\theta - 1} a \text{ on } [0,T]. \]

3. Morawetz identity

One adopts the convention that repeated indexes are summed. Recall a classical Morawetz estimate [14] satisfied by the energy global solutions to the inhomogeneous Choquard problem (1.1).

Lemma 3.1. Take (N, α, b) satisfying (C), $p_* < p < p^*$ such that $p \geq 2$ and $u \in C_T(H^2)$ be a local solution to (1.1). Let $a : \mathbb{R}^N \to \mathbb{R}$ be a convex smooth function and the real function defined on $[0,T]$, by
\[M_a : t \to 2 \int_{\mathbb{R}^N} \nabla a(x) \cdot \Im \left(\nabla u(t,x) \bar{u}(t,x) \right) \, dx. \]
Then, the following equality holds on $[0,T]$,
\[M'_a = 2 \int_{\mathbb{R}^N} \left(2\partial_{jk}\Delta a \partial_j u \partial_k u - \frac{1}{2}(\Delta^3 a)|u|^2 - 4\partial_{jk} a \partial_k u \partial_j u + \Delta^2 a |\nabla u|^2 \right) \]
\[+ 2 \left(1 - \frac{2}{p} \right) \int_{\mathbb{R}^N} \Delta a (I_\alpha * |^p u^p) |x|^p |u|^p \, dx - \frac{2}{p} \int_{\mathbb{R}^N} \partial_k a \partial_k (|x|^p [I_\alpha * |^p u^p]) |u|^p \, dx. \]

Let us write the main result of this section.
Proposition 3.2. Take \((N, \alpha, b)\) satisfying \((C)\) and \(p_* < p < p^*\) such that \(p \geq 2\). Let \(u_0 \in H^2\) satisfying \((2.2)\). Then, for any \(T > 0\), one has

\[
\int_0^T \|u(t)\|_{L^{2p} \mathbb{R}^{Np+2x(x|<R)}}^{2p} dt \leq CT^{1/(1-b)}.
\]

Proof. Take a smooth real function such that

\[
f : r \rightarrow \begin{cases} r^2, & \text{if } 0 \leq r \leq 1; \\
r, & \text{if } r \geq 2,
\end{cases}
\]

moreover,

\[
\min \{f', f''\} \geq 0, \quad \text{on } [1, 2].
\]

Note that for \(|x| \leq 1\), confusing for \(x \in \mathbb{R}^N\), \(f(x) := f(|x|)\), one has

\[
f_{ij} = \delta_{ij}, \quad \Delta f = N \quad \text{and} \quad \partial^\gamma f = 0 \quad \text{for } |\gamma| \geq 3.
\]

Finally, one denotes for \(R > 0\), the smooth radial function defined on \(\mathbb{R}^N\) by \(f_R := R^2 f(|\cdot|)\) and the real function \(M_R := M_{f_R}\). Using the estimate \(\|\nabla^\gamma f_R\|_\infty \lesssim R^{2-|\gamma|}\), one has

\[
|\int_{\mathbb{R}^N} \Delta^2 f_R |\nabla u|^2 \, dx| + |\int_{\mathbb{R}^N} \partial_{jk} \Delta f_R \partial_j u \partial_k \bar{u} \, dx| \lesssim R^{-2};
\]

\[
|\int_{\mathbb{R}^N} (\Delta^3 f_R) |u|^2 \, dx| \lesssim R^{-4}.
\]

Thus, by Morawetz estimate in Lemma 3.1, one gets

\[
M'_R = - \frac{4}{p} \int_{\mathbb{R}^N} \partial_k f_R \partial_k [I_{\alpha} * | |^b |u|^p] |x|^b |u|^p \, dx + O(R^{-2})
\]

\[
+ 2 \left(N \left(1 - \frac{2}{p} \right) \int_{\{|x|<R\}} (I_{\alpha} * | |^b |u|^p) |x|^b |u|^p \, dx - 4 \int_{\{|x|<R\}} |\Delta u|^2 \, dx \right)
\]

\[
+ 2 \left(1 - \frac{2}{p} \right) \int_{\{|x|>R\}} \Delta f_R (I_{\alpha} * | |^b |u|^p) |x|^b |u|^p \, dx - 4 \int_{\{|x|>R\}} \partial_{jk} f_R \partial_k u \partial_{ij} \bar{u} \, dx \right).
\]

Moreover, denoting the radial derivative by \(\partial_r := \nabla \cdot \frac{x}{|x|}\), one writes

\[
\partial_{jk} f_R = \left(\delta_{jk} - \frac{x_j x_k}{r^2} \right) \partial_r f_R + \frac{x_j x_k}{r^2} \partial_r^2 f_R.
\]
\[
\int_{\{x > R\}} \partial_{jk} f_R \partial_{ik} u \partial_{ij} \bar{u} \, dx = \int_{\{x > R\}} \left[\left(\frac{\delta_{jk}}{r} - \frac{x_j x_k}{r^3} \right) \partial_r f_R + \frac{x_j x_k}{r^2} \partial_r^2 f_R \right] \partial_{ik} u \partial_{ij} \bar{u} \, dx \\
= \sum_{i=1}^N \int_{\{x > R\}} \left(|\nabla u_i|^2 - \frac{|x \cdot \nabla u_i|^2}{|x|^2} \right) \partial_r f_R \, dx \\
+ \sum_{i=1}^N \int_{\{x > R\}} \frac{|x \cdot \nabla u_i|^2}{|x|^2} \partial_r^2 f_R \, dx \\
= \sum_{i=1}^N \int_{\{x > R\}} |\nabla u_i|^2 \partial_r f_R \, dx + \sum_{i=1}^N \int_{\{x > R\}} \frac{|x \cdot \nabla u_i|^2}{|x|^2} \partial_r^2 f_R \, dx,
\]

where the angular gradient is \(\nabla := \nabla - \frac{x \nabla}{|x|^2} x \). Then,

\[
-M_R' \geq \frac{4}{p} \int_{\mathbb{R}^N} \partial_{jk} f_R \partial_{ik} [(I_\alpha * | \cdot |^b |u|^p) |x|^b |u|^p] \, dx + O(R^{-2}) \\
+ 2 \left(4 \int_{\{x < R\}} |\Delta u|^2 \, dx - N \left(1 - \frac{2}{p} \right) \int_{\{x < R\}} (I_\alpha * | \cdot |^b |u|^p) |x|^b |u|^p \, dx \right) \\
- \left(1 - \frac{2}{p} \right) \int_{\{x > R\}} \Delta f_R (I_\alpha * | \cdot |^b |u|^p) |x|^b |u|^p \, dx.
\]

Take the quantity

\[
(A) := \int_{\mathbb{R}^N} \partial_{jk} f_R \partial_{ik} [(I_\alpha * | \cdot |^b |u|^p) |x|^b |u|^p] \, dx \\
= - \left(N - \alpha \right) \int_{\mathbb{R}^N} \nabla f_R \left(\frac{\cdot}{|x|^2} I_\alpha * | \cdot |^b |u|^p \right) |x|^b |u|^p \, dx + b \int_{\mathbb{R}^N} \frac{\nabla f_R \cdot x}{|x|^2} (I_\alpha * | \cdot |^b |u|^p) |x|^b |u|^p \, dx \\
:= -(N - \alpha)(I) + b(II).
\]

With the properties of \(f_R \), one writes

\[
(II) = \int_{\{|x| < R\}} (I_\alpha * | \cdot |^b |u|^p) |x|^b |u|^p \, dx + O \left(\int_{\{|x| > R\}} (I_\alpha * | \cdot |^b |u|^p) |x|^b |u|^p \, dx \right).
\]

With calculus done in [14], one has

\[
(I) = \frac{1}{2} \int_{\{|x| < R\}} \int_{\{|y| < R\}} I_\alpha (x - y) |y|^b |u(y)|^p |x|^b |u(x)|^p \, dx + O \left(\int_{\{|x| > R\}} (I_\alpha * | \cdot |^b |u|^p) |x|^b |u|^p \, dx \right) \\
= \frac{1}{2} \int_{\{|x| < R\}} (I_\alpha * | \cdot |^b |u|^p) |x|^b |u(x)|^p \, dx + O \left(\int_{\{|x| > R\}} (I_\alpha * | \cdot |^b |u|^p) |x|^b |u|^p \, dx \right).
\]

Thus,

\[
(A) = (b - \frac{N - \alpha}{2}) \int_{\{|x| < R\}} (I_\alpha * | \cdot |^b |u|^p) |x|^b |u(x)|^p \, dx + O \left(\int_{\{|x| > R\}} (I_\alpha * | \cdot |^b |u|^p) |x|^b |u|^p \, dx \right).
\]
\[-M'_R \geq 2 \left(4 \int_{|x|<R} |\Delta u|^2 dx - N(1 - \frac{2}{p}) \int_{|x|<R} (I_\alpha \ast |\cdot|^b|u|^p)|x|^b|u|^p dx \right) \\
+ \frac{4}{p}(A) + O(R^{-2}) + O\left(\int_{|x|>R} |\Delta f_R(I_\alpha \ast |\cdot|^b|u|^p)|x|^b|u|^p dx \right) \\
\geq 2 \left(4 \int_{|x|<R} |\Delta u|^2 dx - N(1 - \frac{2}{p}) \int_{|x|<R} (I_\alpha \ast |\cdot|^b|u|^p)|x|^b|u|^p dx \right) \\
+ \frac{4}{p}(b - \frac{N - \alpha}{2}) \int_{|x|<R} (I_\alpha \ast |\cdot|^b|u|^p)|x|^b|u(x)|^p dx \\
+ O(R^{-2}) + O\left(\int_{|x|>R} (I_\alpha \ast |\cdot|^b|u|^p)|x|^b|u|^p dx \right). \]

Let us write
\[
\int_{|x|>R} (I_\alpha \ast |\cdot|^b|u|^p)|x|^b|u|^p dx \leq R^b \int_{\mathbb{R}^N} (I_\alpha \ast |\cdot|^b|u|^p)|u|^p dx \\
\leq R^b \int_{\mathbb{R}^N} \left(\int_{\{|y|<1\}} \int_{\{|y|>1\}} I_\alpha(x-y)|y|^b|u(y)|^p|u(x)|^p dy |u|^p dx \right).
\]

Now, with Hardy-Littlewood-Sobolev estimate, one has
\[
\int_{\mathbb{R}^N} \int_{\{|y|<1\}} I_\alpha(x-y)|y|^b|u(y)|^p|u(x)|^p dy |u|^p dx \ \lesssim \ ||| \cdot|^b||_{L^p(|x|<1)}||u||_{2p}^p,
\]
where
\[
1 + \frac{\alpha}{N} = \frac{1}{a} + \frac{2p}{r}.
\]
Taking \(a < \frac{N}{b} \), one gets \(1 + \frac{\alpha}{N} - \frac{2p}{r} > \frac{b}{N} \) and equivalently
\[
\frac{2Np}{N + \alpha + b} < r.
\]
Since \(p < p^* \), there is \(r \in [2, \frac{2N}{N-4}] \) satisfying the above estimate. Thus,
\[
\int_{\mathbb{R}^N} \int_{\{|y|<1\}} I_\alpha(x-y)|y|^b|u(y)|^p|u(x)|^p dy |u|^p dx \ \lesssim \ ||u||_{H^2}^{2p}.
\]

Now, with Hardy-Littlewood-Sobolev estimate, one has
\[
\int_{\mathbb{R}^N} \int_{\{|y|>1\}} I_\alpha(x-y)|y|^b|u(y)|^p|u(x)|^p dy |u|^p dx \ \lesssim \ ||| \cdot|^b||_{L^p(|x|>1)}||u||_{2p}^p,
\]
where
\[
1 + \frac{\alpha}{N} = \frac{1}{a} + \frac{2p}{r}.
\]
Taking \(a > \frac{N}{b} \), one gets \(1 + \frac{\alpha}{N} - \frac{2p}{r} < \frac{b}{N} \) and equivalently
\[
r < \frac{2Np}{N + \alpha + b}.
\]
Since \(p_* < p \), there is \(r \in \left[2, \frac{2N}{N-4} \right] \) satisfying the above estimate. Thus,
\[
\int_{\mathbb{R}^N} \int_{\{|y| > 1\}} I_\alpha(x-y)|y|^b|u(y)|^p|u(x)|^p \, dy \, dx \lesssim \|u\|^{2p}_{H^2}.
\]
Thus,
\[
-M'_R \geq 8 \left(\int_{|x| < R} |\Delta u|^2 \, dx - \frac{B}{2p} \int_{|x| < R} (I_\alpha \ast | \cdot |^b|u|^p)|x|^b|u|^p \, dx \right) + O(R^b).
\]
On the other hand, an expansion via the properties of \(\psi \) gives
\[
\|\Delta(\psi_R u)\|^2 \leq \|\psi_R \Delta u\|^2 + C(u_0, \phi)R^{-2}
\]
\[
\leq \int_{|x| < R} |\Delta u|^2 - \int_{\frac{R}{2} < |x| < R} (1 - \psi_R^2)|\Delta u|^2 \, dx + C(u_0, \phi)R^{-2}.
\]
Moreover,
\[
\int_{\mathbb{R}^N} (I_\alpha \ast | \cdot |^b\psi_R u^p)|x|^b\psi_R u^p \, dx - \int_{\mathbb{R}^N} (I_\alpha \ast | \cdot |^b(1 - \psi^p)|u|^p)|x|^b|u|^p \, dx
\]
\[
= \int_{\mathbb{R}^N} (I_\alpha \ast | \cdot |^b|u|^p)|x|^b\psi_R u^p \, dx
\]
\[
= \int_{|x| < R} (I_\alpha \ast | \cdot |^b|u|^p)|x|^b|u|^p \, dx - \int_{\frac{R}{2} < |x| < R} (I_\alpha \ast | \cdot |^b|u|^p)|x|^b(1 - \psi_R^p)|u|^p \, dx.
\]
Then,
\[
\int_{\mathbb{R}^N} (I_\alpha \ast | \cdot |^b\psi_R u^p)|x|^b\psi_R u^p \, dx = \int_{|x| < R} (I_\alpha \ast | \cdot |^b|u|^p)|x|^b|u|^p \, dx + O(R^b).
\]
So, with Lemma 2.3, one gets
\[
\sup_{[0,T]} |M| \geq 8 \int_0^T \left(\int_{\mathbb{R}^N} |\Delta(\psi_R u)|^2 \, dx - \frac{B}{2p} \int_{\mathbb{R}^N} (I_\alpha \ast |\psi_R u|^p)|\psi_R u|^p \, dx \right) dt + O(R^b)T
\]
\[
\geq 8\delta' \int_0^T \|\psi_R u(t)\|^{2p}_{\frac{2Np}{N+\alpha+2p}} dt + O(R^b)T
\]
\[
\geq 8\delta' \int_0^T \|u(t)\|^{2p}_{\frac{2Np}{L^{N+\alpha+2p}}} \|u(t)\|_{L^{N+\alpha+2p}}(\{|x| < R\}) dt + O(R^b)T.
\]
The previous calculus gives
\[
\int_0^T \|u(t)\|^{2p}_{\frac{2Np}{L^{N+\alpha+2p}}(\{|x| < R\})} dt \leq C \left(\sup_{[0,T]} |M| + TR^b \right)
\]
\[
\leq C \left(R + TR^b \right).
\]
Taking \(R = T^{1/(1-b)} \gg 1 \), one gets the requested estimate. For \(0 < T \ll 1 \), the proof follows with Sobolev injections.
\[
\text{As a consequence, one has the following energy evacuation.}
\]
Lemma 3.3. Take \((N, \alpha, b)\) satisfying (C). Let \(p_* < p < p^*\) such that \(p \geq 2\) and \(u_0 \in H^2\) satisfying (2.2). Then, there exists a sequence of real numbers \(t_n \to \infty\) such that the global solution to (1.1) satisfies

\[
\lim_{n} \int_{\{|x| < R\}} |u(t_n, x)|^2 \, dx = 0, \quad \text{for all } R > 0.
\]

Proof. Take \(t_n \to \infty\). By Hölder estimate

\[
\int_{\{|x| < R\}} |u(t_n, x)|^2 \, dx \leq R^{\frac{2p}{N}} \|u(t_n)\|_{L^{\frac{2Np}{N + \alpha + 2b}}(|x| < R)}^2 \to 0.
\]

Indeed, by the previous Lemma

\[
\|u(t_n)\|_{L^{\frac{2Np}{N + \alpha + 2b}}(|x| < R)} \to 0.
\]

\[
\square
\]

4. Scattering Criterion

In this section one proves the next result.

Proposition 4.1. Take \((N, \alpha, b)\) satisfying (C). Let \(p_* < p < p^*\) such that \(p \geq 2\). Let \(u \in C(\mathbb{R}, H^2)\) be a global solution to (1.1). Assume that

\[
0 < \sup_{t \geq 0} \|u(t)\|_{H^2} := E < \infty.
\]

There exist \(R, \epsilon > 0\) depending on \(E, N, p, b, \alpha\) such that if

\[
\liminf_{t \to +\infty} \int_{|x| < R} |u(t, x)|^2 \, dx < \epsilon,
\]

then, \(u\) scatters for positive time.

Proof. By Lemma 2.3, \(u\) is bounded in \(H^2\). Take \(\epsilon > 0\) near to zero and \(R(\epsilon) >> 1\) to be fixed later. Let us give a technical result [14].

Lemma 4.2. Let \((N, b, \alpha)\) satisfying (C) and \(p_* < p < p^*\) satisfying \(p \geq 2\). Then, there exists \(\theta \in (0, 2p - 1)\) such that the global solution to (1.1) satisfies

\[
\|u - e^{i \Delta u_0}\|_{S^\infty(I)} \lesssim \|u\|_{L^\infty(I, H^2)}^\theta \|u\|_{L^0(I, L^r)}^{2p - 1 - \theta},
\]

for certain \((a, r) \in \Gamma_{sc}\).

The following result is the key to prove the scattering criterion.

Proposition 4.3. Take \((N, \alpha, b)\) satisfying (C). Let \(p_* < p < p^*\) such that \(p \geq 2\). Let \(u_0 \in H^2\) satisfying (2.2). Then, for any \(\epsilon > 0\), there exist \(T, \mu > 0\) such that the global solution to (1.1) satisfies

\[
\|e^{i(-T)\Delta^2} u(T)\|_{L^a(T, \infty, L^r)} \lesssim \epsilon^\mu.
\]
Proof. Let $0 < \beta < 1$ and $T > \varepsilon^{-\beta} > 0$. By the integral formula

$$e^{i(-T)\Delta^2}u(T) = e^{i\Delta^2}u_0 + i \int_0^T e^{i(s)\Delta^2} [(I_\alpha * | \cdot |^b|u|^p)|x|^b|u|^{p-2}u] \, ds$$

$$= e^{i\Delta^2}u_0 + i \left(\int_0^{T-\varepsilon^{-\beta}} + \int_0^T \right) e^{i(s)\Delta^2}N \, ds$$

$$= e^{i\Delta^2}u_0 + F_1 + F_2.$$

Take the real numbers

$$a := \frac{2(2p-\theta)}{2-s_c}, \quad d := \frac{2(2p-\theta)}{2+(2p-1-\theta)s_c};$$

$$r := \frac{2N(2p-\theta)}{(N-2s_c)(2p-\theta) - 4(2-s_c)}.$$

The condition $\theta = 0^+$ gives

$$(a, r) \in \Gamma_{s_c}, \quad (d, r) \in \Gamma_{-s_c} \quad \text{and} \quad (2p-1-\theta)d' = a.$$

- The linear term. Since $(a, d) \in \Gamma_{s_c}$, by Strichartz estimate and Sobolev injections, one has

$$\|e^{i\Delta^2}u_0\|_{L^2((T,\infty),L^r)} \lesssim \|\nabla_x e^{i\Delta^2}u_0\|_{L^2((T,\infty),L^r)}^{\frac{s_c}{N+s_{sc}}} \lesssim \|u_0\|_{H^2}.$$

- The term F_2. Using Hardy-Littlewood-Sobolev and Hölder inequalities, via the fact that $0 < \psi_R < 1$, one has

$$\|\psi_R N\|_{r'} = \|(I_\alpha * | \cdot |^b|u|^p)|x|^b|u|^{p-2}\psi_R u\|_{r'} \lesssim \|u\|_{r'}^{2p-1-\theta} \|\psi_R u\|_{r_1}^{\theta}, \quad \text{(4.3)}$$

where

$$\frac{2b+\alpha}{N} + \frac{2p-\theta}{r} + \frac{\theta}{r_1}.$$

Thus,

$$N + \alpha + 2b = \frac{N(2p-\theta)}{r} + \frac{N\theta}{r_1}$$

$$= \frac{(N-2s_c)(2p-\theta) - 4(2-s_c)}{2} + \frac{N\theta}{r_1}$$

$$= N + \alpha + 2b + \frac{N\theta}{r_1} - \theta \frac{4 + 2b + \alpha}{2(p-1)}.$$

Because $p_* < p < p^*$, one gets

$$2 < r_1 = \frac{2N(p-1)}{4 + 2b + \alpha} < \frac{2N}{N-4}. $$
So, denoting $I_2 := (T - \varepsilon^{-\beta}, T)$, it follows that for $\lambda := \lambda_N \in (0, 1)$,
\[
\|\psi R\mathcal{N}\|_{L^\theta(I_2, L^\theta')} \lesssim \|u\|_{L^\theta(I_2, L^\theta')}^2 \|\psi Ru\|_{L^\theta_{r_1}}^\theta \\
\lesssim \frac{\varepsilon^{-2\beta\theta(1-\theta)}}{\alpha} \|\psi Ru\|_{L^\theta_{r_1}}^\theta \\
\lesssim \frac{\varepsilon^{-2\beta\theta(1-\theta)}}{\alpha} \|\psi Ru\|_{\theta^\lambda}.
\]

Now, by the assumptions of the scattering criterion, one has
\[
\int_{\mathbb{R}^N} \psi_R(x)|u(T, x)|^2 \, dx < \varepsilon^2.
\]

Moreover, a computation with use of (1.1) and the properties of ψ give
\[
\left|\frac{d}{dt} \int_{\mathbb{R}^N} \psi_R(x)|u(t, x)|^2 \, dx\right| \lesssim R^{-1}.
\]

Then, for any $T - \varepsilon^{-\beta} \leq t \leq T$ and $R > \varepsilon^{-2-\beta}$, yields
\[
\|\psi_R u(t)\| \leq \left(\int_{\mathbb{R}^N} \psi_R(x)|u(T, x)|^2 \, dx + C\frac{T - t}{R}\right)^{\frac{1}{2}} \leq C\varepsilon.
\]

Then, for small $\beta > 0$, there exists $\eta > 0$ such that
\[
\|\psi R\mathcal{N}\|_{L^\theta(I_2, L^\theta')} \lesssim \varepsilon^{-2\beta\theta(1-\theta)} \|\psi Ru\|_{\theta^\lambda}^\theta \\
\lesssim \varepsilon^{\theta(1-\lambda) - 2\beta\theta(1-\theta)} \\
\lesssim \varepsilon^\eta.
\]

On the other hand, by Hardy-Littlewood-Sobolev inequality
\[
\|\psi_R\mathcal{N}\|_{L^\theta} = \|(I_\alpha * | \cdot |^b|u|^p)| \cdot |^b|u|^{p-2}(1 - \psi_R)u\|_{r'} \\
\lesssim \| |x|^b\|_{L^{p_1}(|x|<1)} \|u\|_{r'}^{2p-1-\theta} \|u\|_{L^{\infty}}^\theta \| |x|^b\|_{L^{p_2}(|x|>\frac{2}{\theta})} \\
+ \| |x|^b\|_{L^{p_1}(|x|>1)} \|u\|_{r'}^{2p-1-\theta} \|u\|_{L^{\infty}}^\theta \| |x|^b\|_{L^{p_2}(|x|>\frac{2}{\theta})} \\
\lesssim R^{N+b\mu_2} \|u\|_{r'}^{2p-1-\theta} \|u\|_{r_1}^\theta + R^{N+b\mu} \|u\|_{r'}^{2p-1-\theta} \|u\|_{r_1}^\theta,
\]

where
\[
N + b\mu < 0; \\
N + b\mu_1 > 0; \\
N + b\mu_2 < 0; \\
1 + \frac{\alpha}{N} = \frac{2p - \theta}{r} + \frac{\theta}{2} + \frac{2}{\mu}; \\
1 + \frac{\alpha}{N} = \frac{2p - \theta}{r} + \frac{\theta(N - 4)}{2N} + \frac{1}{\mu_1} + \frac{1}{\mu_2}.
\]
Compute
\[N + \alpha = \frac{N(2p - \theta)}{r} + \frac{\theta N}{2} + \frac{2N}{\mu} \]
\[= \theta(s_c - \frac{N}{2}) - 2(2 - s_c) + 2(p - 1)(\frac{N}{2} - s_c) + 2(\frac{N}{2} - s_c) + \frac{\theta N}{2} + \frac{2N}{\mu} \]
\[= \theta s_c - 2(2 - s_c) + 4 + 2b + \alpha + 2(\frac{N}{2} - s_c) + \frac{2N}{\mu}. \]

Thus,
\[\mu = \frac{2N}{-2b - \theta s_c} > -\frac{N}{b}. \]

Moreover,
\[N + \alpha = \frac{N(2p - \theta)}{r} + \frac{\theta(N - 4)}{2} + N \left(\frac{1}{\mu_1} + \frac{1}{\mu_2} \right) \]
\[= \theta(s_c - \frac{N}{2}) - 2(2 - s_c) + 2(p - 1)(\frac{N}{2} - s_c) + 2(\frac{N}{2} - s_c) + \theta(\frac{N}{2} - 2) + N \left(\frac{1}{\mu_1} + \frac{1}{\mu_2} \right) \]
\[= \theta(s_c - 2) - 2(2 - s_c) + 4 + 2b + \alpha + 2(\frac{N}{2} - s_c) + N \left(\frac{1}{\mu_1} + \frac{1}{\mu_2} \right) \]
\[= \theta(s_c - 2) + 2b + \alpha + N + N \left(\frac{1}{\mu_1} + \frac{1}{\mu_2} \right). \]

Taking \(\epsilon < \theta(2 - s_c) \) and \(\frac{N}{\mu_1} = -b + \epsilon \), one gets
\[\frac{N}{\mu_2} = -b - \epsilon - \theta(s_c - 2) > -b. \]

Then,
\[\| (1 - \psi_R)N \|_{L^a(I_2, L^r')} \lesssim (R^{N + b_{\mu_2}} + R^{N + b_{\mu_1}}) \| u \|_{2p - 1 - \theta} \]
\[\lesssim (R^{N + b_{\mu_2}} + R^{N + b_{\mu_1}}) \| I_2 \|_{2p - 1 - \theta} \]
\[\lesssim (R^{N + b_{\mu_2}} + R^{N + b_{\mu_1}}) \| I_2 \|^{2p - 1 - \theta} \]
\[\lesssim (R^{N + b_{\mu_2}} + R^{N + b_{\mu_1}}) \epsilon^{-\beta}. \]

Regrouping the above estimates and choosing \(R > \max\{ [\epsilon^{1 + \beta\frac{2p - 1 - \theta}{\beta}}]^{\frac{1}{\beta + \beta_2}}, [\epsilon^{1 + \beta\frac{2p - 1 - \theta}{\beta}}]^{\frac{1}{\beta + \beta_3}} \} \),
one gets for some \(\lambda > 0 \),
\[\| F_2 \|_{L^a((T, \infty), L^r')} \lesssim \epsilon^{\lambda}. \]

• The term \(F_1 \). Following lines in [1] via the estimate (4.3), which gives \(\| N \|_{\nu'} \lesssim \| u \|_{L^r(2p - 1)} \), there is a positive real number denoted also by \(\lambda > 0 \) such that one gets
\[\| F_1 \|_{L^a((T, \infty), L^r')} \lesssim \epsilon^{\lambda}. \]

The proof is closed via the three above points. \(\square \)
Now, one proves the scattering criterion. Taking account of Duhamel formula, there exists $\mu > 0$ such that
$$
\|e^{i\Delta^2}u(T)\|_{L^a((0,\infty),L^r)} = \|e^{i(-T)\Delta^2}u(T)\|_{L^a((T,\infty),L^r)} \lesssim e^{\mu}.
$$
So, with Lemma 4.2 via the absorption result Lemma 2.9, one gets
$$
\|u\|_{L^a((0,\infty),L^r)} < \infty.
$$
With Lemma 4.2, one gets for $u_+ := e^{-iT\Delta^2}u(T) + i \int_T^\infty e^{-is\Delta^2}N \, ds$,
$$
\|u(t) - e^{it\Delta^2}u_+\|_{H^2} = \| \int_t^\infty e^{i(t-s)\Delta^2}N \, ds\|_{H^2} \lesssim \|u\|_{L^h((t,\infty),H^2)} \|u\|_{L^a((t,\infty),L^r)}^{2q-1-\theta} \to 0.
$$
This finishes the proof. \hfill \blacksquare

5. SCATTERING

Theorem 2.4 about the scattering of energy global solutions to the focusing problem (1.1) follows with Proposition 4.1 via Lemma 3.3.

REFERENCES

[1] Campos, L., Guzmán, C.M., Scattering for the non-radial inhomogenous biharmonic NLS equation, arXiv:2107.12359v1 [math.AP], (2021).
[2] Cardoso, M., Guzmán, C.M., Pastor, A., Global well-posedness and critical norm concentration for inhomogeneous biharmonic NLS, arXiv:2011.04715v1 [math.AP], (2020).
[3] Cho, Y., Ozawa, T., Wang, C., Finite time blowup for the fourth-order NLS, Bull. Korean Math. Soc. 53, no. 2 (2016), 615-640.
[4] Dodson, B., Murphy, J., A new proof of scattering below the ground state for the 3D radial focusing cubic NLS, Proc. Amer. Math. Soc. 145, no. 2 (2017), 615-640.
[5] Ghanmi, R., Saanouni, T., A note on the inhomogeneous fourth-order Schrödinger equation, submitted.
[6] Guo, Q., Scattering for the focusing L^2-supercritical and H^2-subcritical bi-harmonic NLS equations. Comm. Part. Diff. Equ. 41, no. 2 (2016), 185-207.
[7] Guzmán, C.M., Pastor, A., On the inhomogeneous bi-harmonic nonlinear schrödinger equation: local, global and stability results, Nonl. Anal.: Real World App. 56 (2020), 103-174.
[8] Karpman, V.I., Stabilization of soliton instabilities by higher-order dispersion: fourth-order nonlinear Schrödinger equation, Phys. Rev. E. 53, no. 2 (1996), 1336-1339.
[9] Karpman, V.I., Shagalov, A.G., Stability of soliton described by nonlinear Schrödinger type equations with higher-order dispersion, Phys D. 144 (2000), 194-210.
[10] Kenig, C, Merle, F., Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math. 201, no. 2 (2008), 147-212.
[11] Lieb, E., Analysis, 2nd ed., Graduate Studies in Mathematics, Vol. 14, American Mathematical Society, Providence, RI (2001).
[12] X. Liu, X., Zhang, T., Bilinear Strichartz’s type estimates in Besov spaces with application to inhomogeneous nonlinear biharmonic Schrödinger equation, J. Differential Equations, 296 (2021), 335-368.
[13] Pausader, B., Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case, Dyn. Partial Differ. Equ. 4, no. 3 (2007), 197-225.
[14] **Saanouni, T.**, *Energy scattering for radial focusing inhomogeneous bi-harmonic Schrödinger equations*, Calculus of Variations and Partial Differential Equations, 60, 113 (2021).

[15] **E. Stein, G. Weiss**, *Fractional integrals on n-dimensional Euclidean space*, J. Math. Mech. 7 (1958) 503–514.

Department of Mathematics, College of Sciences and Arts of Uglat Asugour, Qassim University, Buraydah, Kingdom of Saudi Arabia.

University of Tunis El Manar, Faculty of Science of Tunis, LR03ES04 partial differential Equations and applications, 2092 Tunis, Tunisia.

Email address: t.saanouni@qu.edu.sa

Email address: tarek.saanouni@ipeiem.rnu.tn

Email address: hezzi_82hanen@yahoo.fr