How Does Proline Treatment Promote Salt Stress Tolerance During Crop Plant Development?
Ahmed El Moukhtari, Cecile Cabassa-Hourton, Mohamed Farissi, Arnould Savouré

To cite this version:
Ahmed El Moukhtari, Cecile Cabassa-Hourton, Mohamed Farissi, Arnould Savouré. How Does Proline Treatment Promote Salt Stress Tolerance During Crop Plant Development?. Frontiers in Plant Science, Frontiers, 2020, 11, 10.3389/fpls.2020.01127. hal-02929221

HAL Id: hal-02929221
https://hal.sorbonne-universite.fr/hal-02929221
Submitted on 3 Sep 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
How Does Proline Treatment Promote Salt Stress Tolerance During Crop Plant Development?

Ahmed El Moukhtari1,2, Cécile Cabassa-Hourton1, Mohamed Farissi2 and Arnould Savouër1*

1 Sorbonne Université, UPEC, CNRS, IRD, INRA, Institut d’Ecologie et Sciences de l’Environnement de Paris, IEES, Paris, France, 2 Laboratory of Biotechnology & Sustainable Development of Natural Resources, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, Morocco

INTRODUCTION

Salinity is a major abiotic stress that severely affects crop plant growth and development from seed germination to harvest. In recent years, increasing deleterious effects on agricultural productivity have been observed especially in arid and semiarid regions where rainfall is low and evapotranspiration is high (Jha et al., 2019). It is estimated that more than 7% of total land and almost 20% of arable land are affected by salinity with affected areas increasing at an annual rate of...
1–2% (Zhu and Gong, 2014; Rizwan et al., 2015). It is indeed predicted that more than 50% of arable land will be rendered unproductive by 2050 due to the levels of salt stress induced in crops (Vinocur and Altman, 2005; Bianco and Defez, 2009). This trend coincides with the increasing challenge of ensuring global food security, so it is even more urgent to be able to exploit more arable land and increase crop productivity even in infertile soil by developing efficient and tolerant crops able to grow in saline conditions (Rengasamy, 2006; Safdar et al., 2019). Thus, new alternative approaches to allow crops to efficiently tolerate salt stress are needed. Indeed, the use of exogenous compounds, which are both ecofriendly and easily available, such as silicon (Zhu and Gong, 2014; Rizwan et al., 2015), trehalose (Nounjan et al., 2012), glycine betaine (Hossain and Fujita, 2010), and proline (Hoque et al., 2008; Deivanai et al., 2011; Wani et al., 2016), is a sustainable approach to overcoming the negative effects of salt stress on seed germination, plant growth, and productivity.

Proline is the most common endogenous osmolyte accumulated under various abiotic stresses including salinity (Szabados and Savouré, 2010; Slama et al., 2015). When applied as an exogenous compound to crops, proline can improve salt tolerance (Heuer, 2010). For example, in salt-stressed Zea mays, foliar application of proline increased plant growth with a positive effect on yield characteristics (Alam et al., 2016). The beneficial effects of exogenous proline application on salt stress tolerance has been the subject of several reviews. For example, Ashraf and Foolad (2007) focused on the effect of exogenous proline on seed germination, seedling growth and Na+/K+ ratio. More recently Meena et al. (2019) considered some beneficial effects of exogenous proline on plant tolerance to varying environments. Some of the latest progress in the subject addresses aspects related to ionic toxicity reduction, biological nitrogen fixation, and salt tolerance related-gene expression. Therefore, this review integrates this most recent research with current thinking on proline and plant salt tolerance in the context of some key developmental stages of crop growth.

IMPACTS OF SALINITY ON DEVELOPMENTAL PHYSIOLOGY OF CROP PLANTS

With the exception of halophytes, which represent 1–3% of the flowering plants, most crops, and especially crops, are salt-sensitive during their life cycle. Salt stress reduces plant growth and productivity (for review see van Zelm et al., 2020) and may be a direct effect due to the accumulation of Na+ and Cl− or an indirect effect due to water deprivation (Ghars et al., 2008; Safdar et al., 2019).

Seed germination may be drastically affected by salinity in both glycyphytes and halophytes (Ghoulam and Fares, 2001; Liu et al., 2018). Salinity inhibits *Lentus culinaris* seed germination by disturbing hydrolytic enzyme activities such as α-amylase, β-amylase and α-glucosidase (Sidari et al., 2008). Salt-inhibited *Medicago sativa* seed germination is correlated with the inhibition of the seed reserve mobilization (Farissi et al., 2011). Furthermore, salinity is known to inhibit seed germination by disturbing the homeostasis of plant growth regulators such as abscisic acid and gibberellic acid, the two of the main phytohormones participating in the regulation of germination (Holdsworth et al., 2008; Skubaciz et al., 2016). Salinity causes secondary stress, known as oxidative stress, when reactive oxygen species (ROS) accumulate in cells. At high levels, ROS disturb normal metabolism by peroxidizing proteins, lipids, and nucleic acids (Hayat et al., 2012; Farissi et al., 2014). Salinity-induced oxidative stress and membrane damage during germination and seedling growth have been described in several plant species and explain some of the deleterious effects of salt stress on seed germination (Wang et al., 2010; Zhang et al., 2015). The proposed effects of salinity on plant during seed germination are summarized in Figure 1.

As the radicle and later the roots emerge, the presence of salt triggers osmotic stress which makes water uptake more difficult. In addition, high salt concentrations in soil disrupt mineral nutrition leading to ion imbalance in the cells. Accumulation of excess sodium in plant cells has a toxic effect as it leads to precipitation or partial denaturation of proteins, phytohormone imbalances, generation of ROS, and changes in membrane permeability (Figure 2). Salinity was also reported to affect N metabolism at different steps including N uptake, NO3− reduction and NH4+ assimilation by disturbing the activities of the main enzymes involved in nitrogen metabolism such as nitrate reductase, nitrite reductase, glutamate synthetase, and glutamate synthase (Ashraf et al., 2018).

As the seedling establishes itself to become autotrophic, photosynthesis, essential for growth, is very vulnerable to salt stress (Figure 2) (Safdar et al., 2019). Numerous studies have reported that photosynthesis is suppressed by salinity in several plant species. Smaller leaf area, fewer photosynthesis pigments, lower quantum efficiency of photosystem II (Fv/Fm) and less gas exchange were reported under salty conditions, which clearly contributed to the reduction observed in length and biomass of both shoots and roots (Ben Ahmed et al., 2011; Wani et al., 2016). Likewise, salinity was reported to induce the activity of some enzymes that degrade chlorophyll (Jamil et al., 2007). As a consequence of chlorophyllase induction, the total amount of chlorophyll decreases and chloroplast structure is disturbed, which directly influence photosynthesis rate and hence plant growth. Under osmotic stress, plants close their stomata to prevent water loss by transpiration (Yang et al., 2006). However, this mechanism also limits the assimilation of CO2, which then slows the photosynthesis rate and limits plant growth and productivity. High levels of salt may also affect cell division (Munns and Tester, 2008).

Legume-rhizobium symbiosis is a specific relationship established between legumes and nitrogen-fixing bacteria such as rhizobia. During this mutualistic symbiosis, inside a newly formed organ called a nodule, rhizobia are able to provide enough nitrogen to the host legume through the specific activity of nitrogenase and in return they receive a variety of
carbon-based compounds from photosynthates and some micronutrients e.g., Fe, S, Mo (Checcucci et al., 2017). Legume–rhizobium symbiosis represents one of the main ecological processes in the agroecosystem due to its benefits on soil fertility (Farissi et al., 2014). However, this symbiotic process is drastically limited by salt stress, affecting both the micro- and macro-symbiont. Indeed, depending on their sensitivity, salinity affects the survival and distribution of rhizobia in the soil (Zahran, 1999). Salinity was also reported to inhibit legume–rhizobium symbiosis establishment by reducing the number of root hairs containing infection threads (Zahran and Sprent, 1986). In addition, if symbiosis is already established, salinity decreases symbiotic performance by reducing leghemoglobin synthesis and nitrogenase activity (López et al., 2008). Studies also showed that salt stress limits the supply of carbon sources to the bacteroids by reducing the activity of phosphoenolpyruvate carboxylase and malate dehydrogenase, and so the number of bacteroids inside the nodule (López et al., 2008). The main effects of salt stress on legume–rhizobium symbiosis are summarized in Figure 3.

PROLINE METABOLISM IN PLANTS

In higher plants, biosynthesis of proline occurs via two pathways depending on the relative availability of the alternative

FIGURE 1 | Proposed mechanisms for the regulation of seed dormancy release and seed reserve mobilization under salt-stressed and unstressed conditions. Abbreviations: ABA, abscisic acid; GA, gibberellic acid.

FIGURE 2 | Key impacts of salinity on a developing plant.
substrates, glutamate (Glu) and ornithine (Orn) (Figure 4). The Glu pathway starts with pyrrolin-5-carboxylate synthetase (P5CS) that uses ATP and NAD(P)H+H+ to reduce Glu to glutamate-semialdehyde (GSA), which spontaneously converts to pyrroline-5-carboxylate (P5C) (Szabados and Savouré, 2010). Then, P5C is reduced to proline by the action of P5C reductase (P5CR) using NADPH and H⁺ (Szabados and Savouré, 2010). In most plant species, P5CS is encoded by two genes, P5CS1 and P5CS2, while P5CR is encoded by only one gene (Szabados and Savouré, 2010). However, in some species like *Medicago truncatula*, P5CS is possibly encoded by three genes (Kim and Nam, 2013; Nguyen et al., 2013). The Orn pathway has mostly been considered as an alternative pathway for proline biosynthesis. Ornithine-δ-aminotransferase (OAT) transaminates Orn to produce GSA and P5C, which is then reduced to proline by the action of P5CR (Mansour and Ali, 2017). According to You et al.
transgenic lines of rice constitutively overexpressing OAT produce higher levels of proline than wild type, pointing to a more pivotal role of the Orn pathway in proline biosynthesis.

Although the genes and enzymes involved in proline biosynthesis have been well studied, the preferential use of Glu or Orn as substrate is still unclear. Some authors have reported that the preferred pathway is dependent on the developmental stage, the Orn pathway having a particularly crucial role in seedling development (Schmid et al., 2005; Hayat et al., 2012). Others however, have documented that the pathway preference is species-dependent. Indeed, AbdElgawad et al. (2015) noted that the Glu pathway involving P5CS and P5CR is predominant in grass, while the Orn pathway with OAT and P5CR is predominant in legumes. This difference may be related to the N nutritional status. In fact, Delauney et al. (1993) found that OAT is nitrogen-dependent. Another aspect to consider is the environmental control over which proline biosynthetic pathway is used. Zhen and Ma (2009) showed that P5CS activity (Glu pathway) increased upon salt stress treatment, while OAT activity (Orn pathway) appeared not to be affected, suggesting that the Glu pathway rather than the Orn pathway plays a more significant role in proline accumulation during osmotic regulation. In Vigna aconitifolia, Delauney et al. (1993) showed that salt stress induced the accumulation of P5CS mRNA while OAT mRNA levels were suppressed. Lei et al. (2016) and Mansour and Ali (2017) confirmed that the accumulation of proline under salt stress is related to the up-regulation of P5CS (Glu pathway) genes and down-regulation of Proline dehydrogenase (PDH) genes. In comparison, Funck et al. (2008) demonstrated that OAT is localized in mitochondria and it is not essential for proline biosynthesis.

For catabolism, proline is converted back to Glu in the mitochondria by the sequential action of PDH and P5C dehydrogenase (P5CDH). Although the Nomenclature Committee of The International Union of Biochemistry and Molecular Biology (IUBMB) recommended the name glutamate γ-semialdehyde dehydrogenase (GSALDH), an enzyme name derived from its substrate, for the second enzyme of proline catabolism, the name P5CDH is kept in the review for clarity for the research community. PDH oxidizes proline to P5C which is converted to Glu by P5CDH using NAD⁺ as electron acceptor (Servet et al., 2012; Schertl et al., 2014). In some plant species including Arabidopsis thaliana, Nicotiana tabacum, and M. sativa, PDH is encoded by two genes, whereas P5CDH is encoded by a single gene (Miller et al., 2005; Ribarits et al., 2007; Servet et al., 2012).

INFLUENCES OF PROLINE METABOLISM ON PHYSIOLOGICAL AND BIOCHEMICAL PROCESSES

Proline has been widely reported to be a multifunctional amino acid that acts at different plant growth stages (Szabados and Savoure, 2010). Indeed, proline metabolism plays a key role in the oxidative pentose phosphate pathway (OPPP) by generating NAD(P)⁺ in the cytosol (Signorelli, 2016). Since the OPPP is involved in triggering seed germination, it is believed that proline metabolism has a beneficial effect on seed germination (Kavi Kishor and Sreenivasulu, 2014). When stomata are closed under osmotic stress to avoid water losses by transpiration, CO₂ assimilation is limited (Yang et al., 2006). This phenomenon reduces carbon fixation and NAD(P)H consumption by the Calvin cycle and leads to accumulation of ROS by electrolyte leakage. However, proline biosynthesis requires the oxidation of two NAD(P)H⁺ molecules to NADP⁺ (Figure 4), which helps to reduce NAD(P)H and recycle NAD(P)⁺. Furthermore, the oxidation of NAD(P)H to NADP⁺ during proline biosynthesis increases NADP⁺ which will be reduced in the pentose phosphate pathway to NAD(P)H⁺ generating one molecule of CO₂ (Figure 5). Thus, the CO₂ generated allows carbon reduction to continue under stressful conditions, while the NAD(P)H will be used in proline biosynthesis to prevent ROS production (Verslues and Sharma, 2010; Signorelli et al., 2015). Proline was also reported to contribute to photosynthesis improvement by protecting RuBisCo activity and mitochondrial

FIGURE 5 | Possible influence of proline metabolism on physiological and biochemical processes. The oxidative pentose phosphate pathway is shown by black lines, the proline anabolic pathway with blue lines, the proline catabolic pathway with red lines, and proline scavenging reactive oxygen species with green lines.
electrotransport chain complex II (Solomon et al., 1994; Hamilton and Heckathorn, 2001). Furthermore, proline anabolism allows plants to adjust their osmotic homeostasis which helps to restore plant water content particularly under osmotic stress (Misra and Gupta, 2005). Proline metabolism has also been documented to play an important role during biological nitrogen fixation (BNF) particularly under stressed conditions. Indeed, a high positive correlation between the expression of \(\text{StP}5\text{CS} \) and two nodulation-related genes and one leghemoglobin gene was reported by Ren et al. (2018). Likewise, proline catabolism was reported to provide energy to the bacteroids during the BNF (Kohl et al., 1988) suggesting that both proline anabolism and catabolism improved BNF efficiency. In addition, proline has been reported in several studies to play a role in non-enzymatic antioxidant activities (Matysik et al., 2002; Signorelli et al., 2015). These proposed roles of proline metabolism in key physiological and biochemical are illustrated in Figure 5.

EFFECT OF EXOGENOUS PROLINE DURING SALT STRESS

Exogenous Proline Application and Proline Metabolism Under Salt Stress

Many studies show that salt stress triggers the induction of genes involved in proline biosynthesis, which leads to proline accumulation (Armengaud et al., 2004; Kim and Nam, 2013; Nguyen et al., 2013). According to Székely et al. (2008), knocking out the function of \(P5\text{CS} \) in \(A. \text{thaliana} \) indicates a key role for this enzyme in plant salt tolerance because the \(p5cs1 \) plants are hypersensitive to salt. Exogenous application of proline can effectively improve tolerance of plants to salt stress through the regulation of endogenous proline metabolism, partly achieved through differential expression of specific proline-related genes. For example, de Freitas et al. (2018) demonstrated that foliar application of proline to \(Z. \text{mays} \) resulted in a decrease in \(P5\text{CS} \) activity and an increase in \(P\text{DH} \) under salt stress. Similar results in salt-stressed \(S. \text{bicolor} \) were reported more recently (de Freitas et al., 2019). Adding exogenous proline led to a decrease in \(P5\text{CS} \) activity in both stressed and unstressed \(E. \text{emarginata} \), but to an increase in \(P\text{DH} \) activity only in unstressed plants (Zheng et al., 2015). Under salt stress, \(T. \text{aestivum} \) seed priming with exogenous proline significantly decreased the content of proline and \(P5\text{C} \) with a reduction in the activity of \(P5\text{CS} \), while \(P\text{DH} \) activity was significantly increased (Rady et al., 2019). The effect of exogenous proline on \(P\text{DH} \) expression was also reported by Kiyosue et al. (1996) and Nakashima et al. (1998) in \(A. \text{thaliana} \). Deuschle et al. (2010) reported that, in addition to \(P\text{DH} \), exogenous proline increased \(P5\text{CDH} \) transcript levels, and suggested that this response may protect plants against proline toxicity. However, other authors like Nounjan et al. (2012) have shown that applying exogenous proline significantly increased expression of \(P5\text{CS} \) and \(P5\text{CR} \) in salt-stressed \(O. \text{sativa} \).

Effect of Proline Treatment on Seed Germination Under Salt Stress

Seed germination is one of the most critical stages in the plant life cycle (Hubbard et al., 2012) because it is very sensitive to abiotic stress. In particular, salt stress causes osmotic stress that limits seed water absorption and ion toxicity due to the high accumulation of \(\text{Na}^+ \) and \(\text{Cl}^- \) (Murillo-Amador et al., 2002; Farissi et al., 2011). In recent years, there have been numerous papers about the effect of exogenous compounds like hormones, mineral elements, and amino acids in alleviating salinity stress during seed germination (Atia et al., 2009; Dallali et al., 2012; Rizwan et al., 2015; Coskun et al., 2016). However, the effect of exogenous proline on seed germination under salt stress is poorly understood as only a few studies have been published. Deivanai et al. (2011) demonstrated that exogenous proline had a positive concentration-dependent effect on seed germination under salt stress. Application of 1 mM proline alleviates the negative effect of 400 mM NaCl, but 100 mM proline did not have a significant effect. Similarly, 50 mM proline treatment improved seed germination of two cultivars of \(S. \text{bicolor} \) under salt conditions (Nawaz et al., 2010). Therefore, exogenous proline application at suitable concentrations may alleviate the negative effect of salt stress by regulating cellular osmotic balance, but detailed studies behind these data are still needed to better understand the molecular mechanisms involved.

Effects of Proline Treatment on Plant Growth and Biomass Under Salt Stress

It is well documented that certain concentrations of exogenous proline regulate different aspects of plant growth and development under salt stress including rises in biomass and productivity (Huang et al., 2009; Nawaz et al., 2010; Nounjan et al., 2012; Wu et al., 2017). Addition of exogenous proline improved the growth of calli from two \(M. \text{sativa} \) cultivars upon salt stress, but dry weight and proline contents between the two were different with a better salt tolerance correlated with higher proline accumulation (Ehsanpour and Fatahian, 2003). Khan et al. (2014) tested the effects of 30 and 60 mM proline applied as a foliar spray to \(H. \text{annuus} \), concentrations that induced tolerance to 60 and 120 mM NaCl. They found that exogenous proline mitigates the salt stress effects on plant growth as proven by longer shoots and roots, and greater fresh and dry weights of shoots and roots, and this positive effect was more pronounced at the lower proline concentration (30 mM). Similarly, Wani et al. (2016) reported that a foliar spray of 20 mM proline alleviates the negative effects of salt stress on \(B. \text{juncea} \) by increasing lengths and fresh and dry masses of both shoots and roots, and the area of leaves. In addition, exogenous proline supply significantly increased plant height and number of roots in salt stressed \(O. \text{sativa} \) (Teh et al., 2016). Likewise, application of proline increased dry mass of leaves and roots and their soluble protein contents in salt stressed \(Z. \text{mays} \) (de Freitas et al., 2018). In some cases, exogenous proline stimulates yield under salt stress. Exogenous proline increased fresh and dry biomass, grain yield and 1000-grain weight of salt-stressed \(T. \text{aestivum} \) (Rady et al., 2019). In salt-stressed \(Z. \text{aestivum} \) (Teh et al., 2016).
mays, foliar-applied proline increased the number of seeds per plant, total grain weight and the 100-grain weight (Alam et al., 2016). In general, exogenous application of proline increased plant growth and productivity under salt-induced stress but the underlying mechanisms, probably linked to some hormonal regulation, still remain elusive.

Exogenous Proline Alters Stress-Responsive Gene Expression Under Salt Stress

Evidence for the mechanisms by which exogenous proline improves plant salt tolerance is still scarce. In order to gain some insight into such mechanisms at the gene level, Nounjan et al. (2012) studied the effect of exogenous proline on the expression of proline metabolism-related genes $P5CS$ and $P5CR$ as well as genes encoding antioxidant enzymes, superoxide dismutases ($Cu/ZnSOD, MnSOD$), ascorbate peroxidase ($CytAPX$), and catalase ($CatC$), in salt-stressed O. sativa seedlings. Results showed that after six days of salt treatment, exogenous proline upregulated $P5CS$ and $P5CR$ transcript levels. Likewise, the genes encoding antioxidant-related enzymes were upregulated by exogenous proline added to the salt-stressed rice plants. In a different study on salt-stressed N. tabacum, exogenous proline was found to increase transcript levels of genes encoding SOD, cationic peroxidase (POX) and CAT (Hoque et al., 2008). To understand more about the mechanistic role of gene regulation in exerting the effect of exogenous proline as plant salt tolerance, additional genetic experiments are required to particularly investigate the expression of genes related to the transport and translocation of Na$^+$ and Cl$^-$. More needs to be known about the relationship between the addition of proline and the expression of aquaporin-related genes under salt stress.

Exogenous Proline Influences Plant–Water Relations Under Salt Stress

Much research has documented how exogenous proline substantially alleviates salt stress by increasing leaf water potential, water content and restoring water use efficiency (Table 1). In Brassica juncea, Wani et al. (2016) noted that the leaf water potential was reduced under salt stress, but 20 mM proline applied as a foliar spray completely reversed the loss in water potential. Similarly, Huang et al. (2009) demonstrated that, under saline conditions, exogenous proline could alleviate the growth inhibition of salt-sensitive Cucumis sativus, and this was accompanied with leaves having higher water content. Studying salt-stressed O. europaea plants, Ben Ahmed et al. (2011) found that the relative water content is 1.05 and 1.09-fold higher under 25 and 50 mM of exogenous proline, respectively, than in the absence of proline. In the same way, 20 mM exogenous proline significantly alleviated the negative effects of 200 mM NaCl and raised the leaf water content in Eurya emarginata (Zheng et al., 2015). The role of exogenous proline in maintaining higher plant water content under salinity was also reported in Onobrychis vicifolia (Wu et al., 2017) and S. bicolor (de Freitas et al., 2019).

Many authors have suggested that the increase in water content and water potential of leaves in response to exogenous proline under salt stress could be because the proline triggers the accumulation of some organic and inorganic compounds such as proline, glycine betaine, soluble sugars and K$^+$ that help plants adjust their cellular osmotic potential and hence maintain higher water content (Ben Ahmed et al., 2011; Nounjan et al., 2012; Khan et al., 2014; Zheng et al., 2015). Another possibility is that maintaining a favorable water content under osmotic stress may be attributed to the regulation of the expression of root aquaporin genes in response to exogenous proline. These possible mechanisms for mediating osmotic stress tolerance and improving plant water content need to be studied in more detail at the molecular level.

Exogenous Proline Balances Mineral Nutrient Uptake and Assimilation Under Salt Stress

Salinity not only increases Na$^+$ and Cl$^-$ in plants but also induces decreases in Ca$^{2+}$, K$^+$, Mg$^{2+}$, NO$_3^-$, S, and other essential nutrients leading to overall nutrient deficiency (Manchanda and Garg, 2008; Farissi et al., 2014). The positive effects of exogenous proline on plant tolerance to salt stress have been linked to increased assimilation of nutrients in many studies. Abdelhamid et al. (2013) reported that exogenous proline application increased P, K, NO$_3^-$ and NO$_2^-$ contents in Phaseolus vulgaris under different levels of salinity (three fields with electrical conductivities of 1.84, 6.03, or 8.97 d S m^{-1}). Similarly, exogenous proline increased leaf N, Ca$^{2+}$ and K$^+$ contents in Cucumis melo exposed to stress from 150 mM salt (Kaya et al., 2007). Also under salty conditions, exogenous proline increased Ca$^{2+}$ and K$^+$ in S. bicolor (de Freitas et al., 2019) and O. europaea (Ben Ahmed et al., 2011). Alam et al. (2016) suggested that exogenous proline may increase the uptake of N, P, K$^+$ and S in Z. mays under salinity. As well as nutrient uptake, the activities of some enzymes involved in nutrient assimilation are triggered by exogenous proline under salty conditions. Nitrate reductase is one of the most important enzymes involved in nitrogen assimilation and exogenous proline stimulates its activity in H. annuus (Khan et al., 2014) and C. melo (Yan et al., 2011) exposed to salt stress. Recently, Teh et al. (2016) reported that exogenous proline alleviated the negative effects of salt stress and enhanced nitrate reductase and Glu synthase activities in O. sativa. Some authors have suggested that proline may provide a good way to store and recycle nitrogen under stress conditions (Heuer, 2010; Szabados and Savouré, 2010; Verslues and Sharma, 2010; Ben Rejeb et al., 2014; Mansour and Ali, 2017). Consistent with this line of reasoning is evidence that PDH is stimulated in P. vulgaris under nitrogen deficiency suggesting that proline may be used as a nitrogen source for growth (Hayat et al., 2012). Similarly, exogenous proline was also used as a source of nitrogen by Vigna radiata L. seedlings under stress conditions (Posmyk and Janas, 2007).

The above studies provide preliminary evidence that exogenous proline alleviates the negative effects of salt by...
TABLE 1 | Effects of exogenous proline on seed germination, plant growth, photosynthesis, nutrient acquisition, water uptake, ionic toxicity, proline metabolism, gene expression, antioxidant activities, and biological nitrogen fixation in different plant species under salt stress.

Plant name	Salt concentration	Exogenous proline concentration	Application method	Variable	Effect of exogenous proline	References
Cucumis melo	150 mM	10 mM	Foliar spray	Growth	+	Kaya et al. (2007)
				Chlorophyll content	+	
	100 mM	10 mM	Foliar spray	Proline content	+	
				Electrolyte leakage	+	
				Relative water content	+	
				Stomatal density	+	
				Nutrient acquisition and Na/K ratio	+	
Cucumis sativus	150 mM	10 mM	Foliar spray	Proline content	+	Huang et al. (2009)
				Relative water content	+	
Eurya emarginata	200 mM	10 mM	Nutrient solution	Growth	–	Zheng et al. (2015)
				MDA	–	
				Na+, Cl− and K+ content	–	
	15 mM	25 mM	Not shown	Number of nodules	–	Sabagh et al. (2017)
Helianthus annus	60 mM	30 mM	Foliar spray	Growth	+	Khan et al. (2014)
	120 mM	60 mM		Chlorophyll content	+	
				Na+ and K+ content	+	
				Nitrate reductase activity	-	
				Protein content	+	
				Total amino acids	+	
				Total sugars	-	
Mung bean	300 mM	15 mM	Nutrient solution	Glutathione	Not shown	Hossain and Fujita (2010)
				Antioxidant enzyme activities		
Nicotiana tabacum	200 mM	20 mM	Medium solution	Non enzymatic antioxidant activities	Not shown	Hoque et al. (2008)
Olea europaea	100 mM	25 mM	Nutrient solution	Relative water content and leaf water potential	Not shown	Ben Ahmed et al. (2011)
	200 mM	50 mM		Gas exchange	+	
				Photosynthetic pigment	+	
				Compatible solute	-	
				Mineral ion contents	+	
Oryza sativa	100 mM	1 mM	Seed pretreatment	Seed germination	-	Deivanai et al. (2011)
				Growth	-	
	200 mM	5 mM		Chlorophyll content	+	Nourjan et al. (2012)
	300 mM	10 mM		Proline content	+	
	400 mM	10 mM		Protein content	+	
	100 mM	10 mM	Nutrient solution	Growth	-	
				Na+/K+ ratio	+	
				Proline content	+	
				H2O2 content	+	
				Antioxidant enzyme activities	+	
				P5CS gene expression	+	

(Continued)
improving uptake of some nutrients as well as stimulating the activity of some enzymes involved in nutrient assimilation. However, research into the effect of exogenous proline on the translocation of micronutrients is limited.

Proline Treatment Mediates Reduction in Ion Toxicity Due to Salt Stress

High salt concentrations increase Na⁺ and Cl⁻ contents in plants and decrease the abundance of other cations such as K⁺ and Ca²⁺, which leads to mineral nutrient imbalance (Zhu and Gong, 2014). Indeed, under salty conditions, sustaining ion homeostasis is one of the adaptive strategies that tolerant plants use to cope with salt stress. These strategies may help the plant to prevent potentially toxic effects of the build-up of ions like Na⁺ and Cl⁻ that cause various types of damage to lipids, proteins and nucleic acids (Zhu and Gong, 2014; Bargaz et al., 2015; Rizwan et al., 2015). Application of 5 mM proline in a foliar spray decreased Na⁺ content and increased K⁺/Na⁺ ratio in *P. vulgaris*

Table 1 (Continued)

Plant name	Salt concentration	Exogenous proline concentration	Application method	Variable	Effect of exogenous proline
	Without stress	With stress	References		
150 mM	5 mM	Growth medium	P5CR gene expression	+	Teh et al. (2016)
	10 mM		Antioxidant enzyme expression	+	
			Growth	+	
Pisum sativum	100 mM	60 mM	Foliar spray	Nitrogen-metabolism enzyme activities	Shahid et al. (2014)
			Nitrogen content	-	
				+	
Sorghum bicolor	75 mM	30 mM	Foliar spray	Growth	de Freitas et al. (2019)
			Membrane damage	+	
			Relative water content	-	
			Gas exchange	+	
			Chlorophyll content	+	
			Relative water content	+	
			Amino acids	-	
			Proline content	+	
			P5CS activity	-	
			OAT activity	-	
			ProDH activity	+	
			P5CS gene expression	-	
			OAT gene expression	+	
			ProDH gene expression	+	
				+	
Triticum durum	120 mM	12 mM	Seed pretreatment	Growth	Rady et al. (2019)
			Photosynthetic activities	-	
			K⁺/Na⁺ ratio	-	
			Proline content	-	
			P5CS gene expression	-	
			OAT gene expression	-	
			Non-enzymatic antioxidant activities	+	
Zea mays	25 mM	25 mM	Foliar spray	Growth	Alam et al. (2016)
			Grain yield	Not shown	
			Chlorophyll	+	
			Nutrient uptake	+	
			K⁺/Na⁺ ratio	+	
	50 mM	50 mM			
		100 mM			
	80 mM	30 mM	Foliar spray	Growth	de Freitas et al. (2018)
			Ion content	-	
			K⁺/Na⁺ ratio	-	
			Proline content	+	
			P5CS activity	+	
			ProDH activity	+	
			Antioxidant enzyme activities	-	
			Non enzymatic antioxidant activities	-	
			MDA and H2O2 content	-	

+ and - indicate positive and negative effects, respectively.
reported that external application of proline decreased both Na⁺ and Cl⁻ contents, but increased the K⁺ content and the K⁺/Na⁺ ratio in salt-stressed Z. mays. Similar results have been reported in *S. bicolor* (de Freitas et al., 2019). Khan et al. (2014) demonstrated that exogenous proline alleviated the negative effect of 120 mM salt, and enhanced K⁺ content, and reduced Na⁺ concentration in *H. annuus*. In salt-stressed *O. europaea*, exogenous proline improved salt tolerance through maintaining a low Na⁺ content, a high K⁺ content and lowered Na⁺/K⁺ and Na⁺/Ca²⁺ ratios in both young and old leaves (Ben Ahmed et al., 2011). Compared to salt-stressed plants, exogenous proline application increased the K⁺/Na⁺ ratio in *O. sativa* under 100 mM NaCl (Sobahan et al., 2012) and in Z. mays under 50 mM NaCl (Alam et al., 2016). Recently, Wu et al. (2017) reported that 2.5 mM exogenous proline decreased the Na⁺/K⁺ ratio in *Onobrychis vicifolia* Scop under 100 mM NaCl.

Removing Na⁺ from the cytosol and compartmentalizing it in the vacuole are important strategies to maintain a low Na⁺ concentration (Bargaz et al., 2015). Transgenic *Saccharum officinarum* overexpressing the *P5CS1* gene had a low Na⁺ content compared to wild type (Guerzoni et al., 2014). Ben Ahmed et al. (2011) had previously suggested that the lower accumulation of Na⁺ in proline-treated *O. europaea* under salt stress may be due to the effect of exogenous proline on the ability of root to exclude the salt ions Na⁺ and Cl⁻ from the xylem to the shoot. The activity of some transporters, like a plasma membrane Na⁺/H⁺ antiporter encoded by the *SALT overly sensitive (SOS)* gene, facilitates the export of Na⁺ from the cytosol to the leaves, protecting the plant from its toxicity (Zhu, 2003; Bargaz et al., 2015). Proline does not always act in this way to induce salt tolerance. Indeed, in *C. sativus*, exogenous proline has no significant effect on Na⁺ and K⁺ concentrations in leaves but improves leaf water content under 100 mM NaCl (Huang et al., 2009). This higher water content due to the exogenous application of proline may dilute the salt and therefore limit salt toxicity leading to better plant growth. This was confirmed by Ben Ahmed et al. (2011) who reported that the large reduction in Na⁺ accumulation in leaves and roots in response to exogenous proline application was due to its interference in osmotic adjustment and/or its dilution. Additional studies on the effect of exogenous proline on membrane transporters, such as Na⁺/H⁺ antiporters and K⁺/H⁺ symporters, are needed to investigate the mechanism by which exogenous proline reduces salt ion toxicity.

Exogenous Proline Improves Photosynthesis Under Salt Stress

Abiotic stresses, including salt stress, cause stomata to close and chlorophyll synthesis to slow down (Hayat et al., 2012), while activating chlorophyllase activities (Jamil et al., 2007), damaging chloroplast structure and destabilizing pigment protein complexes (Singh and Dubey, 1995). These effects lead to a reduction in photosynthesis and, as a result, plant growth inhibition (Farissi et al., 2018). The beneficial effect of exogenous proline on plant growth under salt stress has often been associated with a change in photosynthesis parameters (Table 1) (Hayat et al., 2012; Mansour and Ali, 2017). Ben Ahmed et al. (2011) found that proline supplements to two-year-old *O. europaea* exposed to 100 or 200 mM NaCl resulted in higher levels of net photosynthesis, chlorophyll *a* and *b* and carotenoid contents as compared to salt-stressed plants without supplements. In a similar study, Wani et al. (2016) reported that exogenous proline increased various photosynthetic attributes including net photosynthesis, leaf area, stomatal conductance, intercellular CO₂, transpiration rate, and quantum efficiency of photosystem II (Fv/Fm) in two salt-stressed *B. juncea* cultivars. Similar results were obtained in *Solanum melongena* (Shahbaz et al., 2013) and in *Pisum sativum* (Shahid et al., 2014). Nawaz et al. (2010) also reported a positive effect of exogenous proline on chlorophyll *a* and total chlorophyll contents in salt-stressed *S. bicolor*. However, there was no equivalent significant difference in chlorophyll *b* content under 50 and 100 mM of NaCl. These findings strongly suggest that exogenous proline influences plant growth under salt stress by enhancing photosynthetic processes.

Exogenous Proline Application Reduces Oxidative Stress in Salt-Stressed Plants

ROS are continuously generated in stressed plants due to the incomplete reduction of oxygen. Some of them can play a role as second messengers to trigger tolerance to abiotic stresses (Ben Rejeb et al., 2014). Proline has been considered to be a molecular chaperone due to its capacity to scavenge ROS, to stabilize protein and other macromolecular complexes, and to provide cellular redox potential (Szabados and Savoure, 2010; Ben Rejeb et al., 2014). Furthermore, under salt stress, exogenous proline increases enzymatic and non-enzymatic antioxidant activities, which improves plant tolerance. Indeed, Hussain and Fujita (2010) reported that exogenous application of 15 mM proline to the growth medium of mung bean exposed to 300 mM NaCl significantly decreased malondialdehyde (MDA) and H₂O₂ contents, and this decrease correlated significantly with an increase in glutathione content and glutathione peroxidase, glutathione-S-transferase and glutathione reductase activities. In the previously cited study by Wani et al. (2016), 20 mM proline sprayed on two *B. juncea* cultivars growing under three different concentrations of salt (2.8, 4.2, and 5.6 dS.m⁻¹), reduced electrolyte leakage and increased the activities of some antioxidant enzymes like CAT, SOD and POX. At the same time, proline itself can contribute to ROS scavenging and hence plant salt tolerance, including when it is supplied exogenously (Ben Rejeb et al., 2014). However, Nounjan et al. (2012) showed that exogenous application of 10 mM proline to salt stressed *O. sativa* seedlings decreased the activity of SOD, POX, and CAT and increased H₂O₂ content. In agreement with those results, Huang et al. (2009) reported that foliar spray of proline lowered the MDA content and the SOD activity in a salt-sensitive *C. sativus* cultivar under 100 mM NaCl. An increase in POX activity in response to exogenous proline was also measured in the salt-stressed cucumber. Mansour and Ali (2017) suggested that the decrease in antioxidant activities under salt stress in response to exogenous proline may be involved in the improvement
of salt tolerance through ROS signaling. Species-specific differences may explain these contradictory results on proline effects.

Symbiotic Nitrogen Fixation Is Enhanced by Proline Treatment Under Salt Stress Conditions

Soil inorganic nitrogen deficiency is one of the most limiting factors for plant growth. However, the biological reduction of atmospheric nitrogen to ammonium by rhizobia-legume symbiosis can provide enough nitrogen to maximize growth and yield (Zahran, 1999; Kraiser et al., 2011). Encouraging rhizobia-legume symbiosis is a sustainable approach to increasing crop production, while decreasing dependency on chemical nitrogen fertilizer in traditional agriculture, which causes widespread environmental pollution (Ferguson et al., 2005). Salt stress limits the distribution, survival, and infectivity of rhizobia by decreasing the number and the biomass of nodules, and diminishing leghemoglobin synthesis and nodule respiration leading to a decrease in nitrogenase activity and nitrogen fixation rate (Zahran, 1999; Faghire et al., 2011; Monica et al., 2013). Improving BNF under salt stress is considered to be a major goal for crop scientists. Several strategies have been adopted to improve BNF under high-salt conditions including the selection of the most tolerant rhizobium–legume combinations, use of arbuscular mycorrhizal fungi, improvement of agricultural practice, genetic breeding and plant genetic modification, seed priming and exogenous application of compounds like hormones and osmoprotectants (Faghire et al., 2011; Faghire et al., 2013; Sabagh et al., 2017; Farooq et al., 2017).

Although positive correlations between endogenous proline and BNF under salt stress have been reported in many studies (Tejera et al., 2005; Verdooy et al., 2006; Fahmi et al., 2011; Kim and Nam, 2013; Bargaz et al., 2015), very few studies have focused on the effect of exogenous proline. Sabagh et al. (2017) studied salt-stressed Glycine max induced by 15 mM NaCl, and supplied 25 mM proline in the growing medium. The result was an increase in nodule number and biomass. Furthermore, the loss in nitrogenase activity caused by salinity was overcome when proline was applied (Sabagh et al., 2017). Similar results were observed in Cicer arietinum growing under conditions of cadmium toxicity, where 20 mM exogenous proline alleviated the negative effect of cadmium (25 mg/kg) and increased the number of nodules, the leghemoglobin content and the nitrogenase activity (Alyemeni et al., 2016). Moreover, the positive effect of exogenous proline on nitrogenase activity under salt stress has been reported not only in plants but also in some bacterial strains like Klebsiella pneumoniae (Le Rudulier et al., 1982). Investigating the relationship between proline metabolism and BNF, Ren et al. (2018) demonstrated that overexpression of StP5CS enhanced the relative expression of two nodulation-related genes and one leghemoglobin gene. This was reflected by an increase in nodulation and nitrogen fixation under salt stress. Furthermore, overexpression of P5CS from Vigna aconitifolia in M. truncatula enhanced tolerance to salt stress and improved nitrogenase activity (Verdooy et al., 2006). In addition, Kim and Nam (2013) demonstrated that P5CS regulated M. truncatula nodule number under salt stress. The above studies show that exogenous proline may improve BNF under salt stress, but the detailed mechanisms behind this relationship are still not clear as well as its relevance to field conditions.

Proline Toxicity in Salt-Stressed Plants

Despite the protective roles of exogenous proline on salt-stressed plants, several papers reported that its positive effect is concentration-dependent, high concentration could cause a toxic effect in plants (Hellmann et al., 2000; Maggio et al., 2002). For example, while low concentrations (20–33 mM) alleviated the deleterious effect of salt stress, external supplementation of high proline concentration (50 and 100 mM) was found to be toxic for both salt-stressed and unstressed callus culture of mung bean (Kumar and Sharma, 1989). In agreement with that, Rodriguez and Heyser (1988) demonstrated that 10 mM of exogenous proline seriously inhibited the normal growth of Distichlis suspension cultures under 260 mM of salt stress. Similarly, in salt stressed Oryza sativa, while low concentrations (20–30 mM) of proline were effective in mitigating the adverse effect of 100 mM NaCl on growth, higher concentrations (40 to 50 mM) resulted in growth reduction (Roy et al., 1993). In addition, in contrast to 1 mM, the external supplementation of 10 mM of proline to salt stressed Solanum lycopersicum decreased leaf and root fresh weights, even leading to plant death if proline is added in high concentration (Heuer, 2003). Furthermore, Rajendrakumar et al. (1997) showed that proline at high concentration could destabilize the DNA helix, lower the DNA melting point, increase susceptibility to S1 nuclease and insensitivity to DNAase1. Interestingly p5csdh and prodh mutants were shown to be more sensitive to proline treatments (Mani et al., 2002; Nanjo et al., 2003; Deuschle et al., 2004; Cabassa-Hourton et al., 2016), indicating the importance of proline catabolism in the regulation proline level for plants. However, the underlying mechanism of proline toxicity remains elusive.

CONCLUSIONS AND PROSPECTS

Exogenous proline application can improve salt tolerance by regulating physiological, biochemical and enzymatic processes and have a positive effect on plant growth, development and productivity under salt stress conditions. To focus on where potential solutions will be found in future crop research, the proposed beneficial effects of exogenous proline on salt stress tolerance in developing plants are summarized in Figure 6. Exogenous proline reduces Na⁺ and Cl⁻ content and increases K⁺/Na⁺ ratio in many plant species (Table 1) (e.g. Abdelhamid et al., 2013; de Freitas et al., 2018; de Freitas et al., 2019). Na⁺/H⁺ is an antiporter plasma membrane transporter, encoded by an
SOS1 gene, that pumps Na⁺ from root cells to leaves, boosting salt stress tolerance (Zhu and Gong, 2014; Bargaz et al., 2015). High-affinity K⁺ transporter (HKT) is another transporter that mediates salt tolerance in various plant species through regulation of the transport of salt ions from root to shoot (Kaundal et al., 2019; Thouin et al., 2019). In view of the important roles of these two transporters in plant salt tolerance, it would be interesting to investigate how exogenous proline can regulate the SOS1 and HKT gene expression under salt stress and their relationship with salt tolerance.

Water restriction is one of the main effects of salt stress in plants (Farissi et al., 2014). Exogenous proline was widely reported to increase plant water content under salt stress (Table 1), and this may contribute to salt dilution and as a result plant growth improvement (Huang et al., 2009; Zheng et al., 2015). Aquaporins are a group of transporters that facilitate absorption of water by plant from soil. Under salt stress, there is a positive correlation between the expression of aquaporin genes and salt tolerance of *Eutrema salsugineum* (Qin et al., 2019). To better understand the mechanism by which exogenous proline improves plant water relations under salt stress, the effect of this osmoprotectant on the expression of aquaporin genes under salt stress will be interesting to investigate.

BNF is an important process that improves soil fertility but it is very sensitive to salt stress from the establishment of the symbiosis to nitrogen fixation (Zahran, 1999; Monica et al., 2013). The ability of exogenous proline to improve nitrogen acquisition under salt conditions was reported in several species (Kaya et al., 2007; Abdelhamid et al., 2013; Alam et al., 2016). The beneficial effect of this molecule in nitrogen nutrition of legumes through nitrogenase activity, however, is poorly understood and very few studies have been done. It will be important to focus on the effect of exogenous proline on nitrogenase gene expression under salt stress to better understand the effect of this multifunctional amino acid on BNF.

The effect of exogenous proline in alleviating the negative impact of salt stress appears to be both dose- and species-dependent. It is still not clear how proline works in reducing the detrimental effect of salt stress and further research is needed. Omics approaches can provide a more holistic molecular perspective of biological systems compared to traditional approaches. Transcriptome analysis has been widely applied to explore genes that are differentially expressed in response to abiotic stresses. These data are essential to identify and potentially manipulate genes that impact stress tolerance under diverse environmental conditions. Increasing amounts of data suggest that proline has certain regulatory functions. Using transcript profiling, Oono et al. (2003) showed that proline can also trigger expression of one third of rehydration-inducible plant genes. Most of the known proline-responsive genes have the conserved PRE cis-acting element in their promoter regions, which is a target of specific bZIP-type transcriptional activators (Oono et al., 2003; Satoh et al., 2004; Weltmeier et al., 2006). From this starting point, the proline-related signaling pathway requires further elucidation using multiomics technologies that dissect the multiple corresponding genes or metabolites. Therefore, further large-scale analyses of transcript, protein and metabolite responses are required to understand how plants respond to proline and the adaptive value of proline in plant stress adaptation.

AUTHOR CONTRIBUTIONS

AEM proposed and wrote the review. CC-H and MF commented on the content of the review and revised the text. AS revised the text at different stages of the writing process and contributed to...
the final version of the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING
This work was supported by the Hubert Curien Maghreb Partnership—PHC Maghreb, No. 19MAG41/41482RL—governed by the agreement signed between the French Ministry of Europe and Foreign Affairs and the Algerian, Moroccan and Tunisian Ministries of Higher Education and Scientific Research.

REFERENCES

AbdElgawad, H., De Vos, D., Zinta, G., Domagalska, M. A., Beemster, G. T. S., and Asard, H. (2015). Grassland species differentially regulate proline concentrations under future climate conditions: an integrated biochemical and modelling approach. New Phytol. 208, 354–369. doi: 10.1111/nph.13481

Abdelhamid, M., Radý, M. M., Osman, A. S., and Abdalla, M. A. (2013). Exogenous application of proline alleviates salt-induced oxidative stress in Phascolus vulgaris L. plants. J. Hortic. Sci. Biotechnol. 88, 439–446. doi: 10.1080/14620316.2013.1151299

Alam, R., Das, D., Islam, M., Murata, Y., and Hoque, M. (2016). Exogenous proline effects on water relations and ions constraints in grain and forage legumes. J. Crustacean Biol. 36, 354–362. doi: 10.1111/j.0031-9317.2004.00251.x

Asard, H. (2015). Grassland species differentially regulate proline metabolism: A review. J. Plant Nutr. 417, 221–227. doi: 10.1080/00220316.2015.1036096

Atia, A., Debez, A., Barhoumi, Z., Smaoui, A., and Abdelly, C. (2009). ABA, GA3, and nitrate may control seed germination of Arabidopsis thaliana. C. R. Biol. 332, 704–710. doi: 10.1016/j.crvi.2009.03.009

Bargaz, A., Zaman-Allah, M., Farissi, M., Lazali, M., Drevon, J.-J., Maougal, R., et al. (2015). Physiological and molecular aspects of tolerance to environmental constraints in grain and forage legumes. Int. J. Mol. Sci. 16, 18976–19008. doi: 10.3390/ijms160818976

Ben Ahmed, C., Magdich, S., Ben Rouina, B., Sensoy, S., Boukhris, M., and Ben Abdullah, F. (2011). Exogenous proline effects on water relations and ions contents in leaves and roots of young olive. Amino Acids 40, 565–573. doi: 10.1007/s00726-010-0677-1

Ben Rejeb, K., Abdelly, C., and Savouré, A. (2014). How reactive oxygen species and proline face stress together. Plant Physiol. Biochem. 80, 278–284. doi: 10.1016/j.plaphy.2014.04.007

Bianco, C., and Defez, R. (2009). Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. J. Exp. Bot. 60, 3097–3107. doi: 10.1093/jxb/erp140

Checcucci, A., DiCenzo, G. C., Bazzicalupo, M., and Mengoni, A. (2017). Trade, diplomacy, and warfare: the quest for elite rhizobia inoculant strains. Front. Microbiol. 8:2207. doi: 10.3389/fmicb.2017.02207

Coskun, D., Britto, D. T., Huynh, W. Q., and Kronzucker, H. J. (2016). The role of silicon in higher plants under salinity and drought stress. Front. Plant Sci. 7:1072. doi: 10.3389/fpls.2016.01072

Deivasigaram, A., Raja, N., Gnanan, K., and Devasena, B. (2014). Nodulation of Phaseolus vulgaris lines with Azospirillum brasilense and Azotobacter spp. increases their nodulation and nitrogen fixation potential. J. Anim. Sci. 92, 175–183. doi: 10.2527/jasm.2013-0454

El Mouktari et al. Proline and Salt Stress Tolerance...
The role of the antioxidant potential in salt tolerance. *Arch. Biol. Sci.* 70, 413–423. doi: 10.2298/ABS1019001F

Faroq, M., Gogoi, N., Hanain, M., Barthakur, S., Paul, S., Bharadwaj, N., et al. (2017). Effects, tolerance mechanisms and management of salt stress in grain legumes. *Plant Physiol. Biochem.* 119, 199–217. doi: 10.1016/j.plaphy.2017.06.020

Fusco, B. J., Menegatti, D., Marques, T., Gómez-Serrano, J., and Lagrimini, L. M. (2018). A holistic view of nitrogen acquisition in plants. *J. Exp. Bot.* 69, 1455–1466. doi: 10.1093/jxb/erq425

Kumar, V., and Sharma, D. R. (1989). Effect of exogenous proline on growth and ion content in NaCl stressed and monstressed cells of mungbean, *Vigna radiata* var. radiata. *Indian J. Exp. Biol.* 27, 813–815.

Le Rudulier, D., Yang, S. S., and Coope, L. N. (2018). Nitrogen fixation in *Lebsilia pseudosinensis* during osmotic stress Effect of exogenous proline or proline overproducing plasmid. *Biochim. Biophys. Acta* 719, 273–283. doi: 10.1016/j.bjba.2014.11.009

Liu, R., Wang, L., Tanveer, M., and Song, J. (2018). Seed Heteromorphism: An Important Adaptation of Halophytes for Habitat Heterogeneity. *Front. Plant Sci.* 9:1515. doi: 10.3389/fpls.2018.01515

López, M., Herrera-Cervera, J. A., Irizarro, C., Tejera, N. A., and Lluch, C. (2008). Growth and nitrogen fixation in *Lotus japonicus* and *Medicago truncatula* under NaCl stress: nodule carbon metabolism. *J. Plant Physiol.* 165 (6), 641–650. doi: 10.1016/j.jplph.2007.05.009

Marques, T., and Lagrimini, L. M. (2002). Does proline accumulation play an active role in stress-induced growth reduction? *Plant J.* 31, 699–712. doi: 10.1046/j.1365-313X.2002.01389.x

Manchanda, G., and Garg, N. (2008). Salinity and its effects on the functional biology of legumes. *Acta Physiol. Plant.* 30, 595–618. doi: 10.1007/s11738-008-0173-3

Mani, S., Van De Cotte, B., Van Montagu, M., and Verbruggen, N. (2002). Altered chloride tolerance in *Pisum sativum* plants through stable transformation of the leaf chloride transporter gene. *Plant Physiol.* 130, 775–783. doi: 10.1104/pp.010530

Misra, N., and Gupta, A. K. (2005). Effect of salt stress on proline metabolism in *Pistacia chinensis*. *Ind. J. Pharm.* 67, 150–152. doi: 10.1007/s00425-005-1518-4

Misra, N., and Gupta, A. K. (2005). Effect of salt stress on proline metabolism in *Pistacia chinensis*. *Ind. J. Pharm.* 67, 150–152. doi: 10.1007/s00425-005-1518-4

Mistry, N., and Gupta, A. K. (2005). Effect of salt stress on proline metabolism in two high yielding genotypes of green gram. *Plant Sci.* 169 (2), 331–339. doi: 10.1016/j.plantsci.2005.02.013
Monica, N., Vidican, R., Pop, R., and Rotar, I. (2015). Stress factors affecting symbiosis activity and nitrogen fixation by Rhizobium cultured in vitro. ProEnvironment 7, 42–45.

Munns, R., and Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681. doi: 10.1146/annurev.arplant.59.032607.092911

Murillo-Amador, B., Lopez-Aguilar, R., Kaya, C., Larrinaga-Mayoral, J., and Flores-Hernandez, A. (2002). Comparative effects of NaCl and polyethylene glycol on germination, emergence and seedling growth of Cowpea. J. Agron. Crop Sci. 188, 235–247. doi: 10.1046/j.1439-037X.2002.00563.x

Nakashima, K., Satoh, R., Kiyosue, T., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1998). A gene encoding proline dehydrogenase is not only induced by proline and hypoosmolality, but is also developmentally regulated in the reproductive organs of Arabidopsis. Plant Physiol. 118, 1233–1241. doi: 10.1104/pp.118.4.1233

Nanjio, T., Fujita, M., Seki, M., Kato, T., Tabata, S., and Shinozaki, K. (2003). Toxicity of free proline revealed in an Arabidopsis T-DNA-tagged mutant deficient in proline dehydrogenase. Plant Cell Physiol. 44, 541–548. doi: 10.1093/pcp/pcg066

Nawaz, K., Talat, A., Hussain, K.I., and Majeed, A. (2010). Induction of salt tolerance in two cultivars of Sorghum (Sorghum bicolor L.) by exogenous application of proline at seedling stage. World Appl. Sci. J. 10, 93–99.

Nguyen, M. L., Kim, G. B., Hyun, S. H., Lee, S. Y., Lee, C. Y., Choi, H. K., et al. (2013). Physiological and metabolomic analysis of a knockout mutant suggests a critical role of MIP/PSCs gene in osmotic stress tolerance of Medicago truncatula. Euphytica 193, 101–120. doi: 10.1007/s10681-013-0957-4

Nounjia, N., Nghia, P. T., and Theerakulpisut, P. (2012). Exogenous proline and its metabolism in saltgrass (Distichlis spicata) suspension cultures. Plant Cell Rep. 31, 42–48. doi: 10.1007/s00299-011-1120-4

Sabagh, E. L., Sourour, S., Rabah, A., Saneoka, H., and Islam, M. (2017). The effect of exogenous application of proline and glycine betaine on the nodulation activity of soybean under saline condition. J. Agric. Biotechnol. 2, 1–5.

Saldar, H., Amin, A., Shaﬁq, Y., Ali, A., and Yasin, R. (2019). A review: Impact of salinity on plant growth. Nat. Sci. 17, 34–40. doi: 10.7537/marsnsj171109.06

Satoh, R., Fujita, Y., Nakashima, K., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2004). A novel subgroup of bZIP proteins functions as transcriptional activators in hypoosmolality-responsive expression of the ProDH gene in Arabidopsis. Plant Cell Physiol. 45, 309–317. doi: 10.1093/pcp/pcf036

Schertl, P., Cabassa, C., Saadallah, K., Bordenave, M., Saveoure, A., and Braun, H. P. (2014). Biochemical characterization of proline dehydrogenase in Arabidopsis mitochondria. FEBS J. 281, 2794–2804. doi: 10.1111/febs.12821

Schmid, M., Davison, T. S., Henni, S. R., Pape, U. J., Demar, M., Vingron, M., et al. (2005). A gene expression map of Arabidopsis thaliana development. Nat. Genet. 37 (5), 501–506. doi: 10.1038/ng1543

Servet, C., Ghelis, T., Richard, L., Zilberstein, A., and Saveoure, A. (2012). Proline dehydrogenase: a key enzyme in controlling cellular homeostasis. Front. Biosci. 17, 607–620. doi: 10.2741/3947

Shahbazi, M., Mushtaq, Z., Andaz, F., and Masood, A. (2013). Does proline application ameliorate adverse effects of salt stress on growth, ions and photosynthetic ability of eggplant (Solanum melongena L.)? Sci. Hortic. 164, 507–511. doi: 10.1016/j.scienta.2013.10.001

Shahid, M. A., Balal, R. M., Pervez, M. A., Abbas, T., Aqeel, M. A., Javaid, M. M., et al. (2014). Exogenous proline and proline-enriched Lolium perenne leaf extract protects against phytotoxic effects of nickel and salinity in Psittacinum sativum by altering polyamine metabolism in leaves. Turk. J. Bot. 38, 914–926. doi: 10.3906/bot-1312-13

Sidari, M., Santonoceto, C., Anastasi, U., Preti, G., and Muscolo, A. (2008). Variations in four genotypes of lentil under NaCl-Salinity stress. Ann. J. Agric. Sci. 3, 410–416. doi: 10.3844/ajaspp.2008.410.416

Signorelli, S., Dans, P. D., Coitinho, E. L., Borsani, O., and Monza, J. (2015). Connecting proline and γ-aminobutyric acid in stressed plants through nonenzymatic Reactions. PloS One 10, e0115349. doi: 10.1371/journal.pone.0115349

Signorelli, S. (2016). The fermentation analogy: a point of view for understanding the intriguing role of proline accumulation in stressed plants. Front. Plant Sci. 7:1339. doi: 10.3389/fpls.2016.01339

Singh, A. K., and Dubey, R. S. (1995). Changes in chlorophyll a and b contents and activities of photosystems 1 and 2 in rice seedlings induced by NaCl. Photosynth. Sci. 31, 489–499.

Skubacz, A., Daszkowska-Golec, A., and Szarejko, I. (2016). The role and regulation of ABIS (ABA-Insensitive 5) in plant development, abiotic stress responses and phytohormone crosstalk. Front. Plant Sci. 7:1884. doi: 10.3389/fpls.2016.01884

Slama, S., Boucherrou, A., Flowers, T., Abdelly, C., and Savoure, A. (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann. Bot. 115, 433–447. doi: 10.1093/aob/mcu239

Sobhan, M. A., Akter, N., Ohno, M., Okuma, E., Hirai, Y., Mori, I. C., et al. (2012). Effects of exogenous proline and glycinebetaine on the salt tolerance of rice cultivars. Biosci. Biotechnol. Biochem. 76, 1568–1570. doi: 10.1277/bib.120233

Solomon, A., Beer, S., Waisel, Y., Jones, G. P., and Paleg, L. G. (1994). Effects of NaCl on the carbohydrate activity of Rubisco from Tamaria jordanis in the presence and absence of proline-related compatible solutes. Physiol. Plant. 90, 198–204.. doi: 10.1111/j.1399-3044.1994.tb02211.x

Sobhados, L., and Saveoure, A. (2010). Proline: a multifunctional amino acid. Trends Plant Sci. 15, 89–97. doi: 10.1016/J.TPLANTS.2009.11.009

Szekely, G., Abrahám, E., Cséplő, Á., Rigó, G., Zsigmond, L., Csizsar, J., et al. (2008). Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J. 53, 11–28. doi: 10.1111/j.1365-313X.2007.03318.x

Teh, C.-Y., Shahruddin, N. A., Ho, C.-L., and Mahmood, M. (2016). Exogenous proline significantly affects the plant growth and nitrogen assimilation enzymes activities in rice (Oryza sativa) under salt stress. Acta Physiol. Plant 38, 1–10. doi: 10.1007/s10457-016-0216-3

Tejero, N. A., Campos, R., Sanjuan, J., and Lluch, C. (2005). Effect of sodium chloride on growth, nutrient assimilation, and nitrogen fixation of common bean plants in symbiosis with isogenic strains. J. Plant Nutr. 28, 1907–1921. doi: 10.1080/0190416050036458
Thouin, J., Guo, M. Y., Zribi, I., Pauly, N., Mouradi, M., Cherki, G., et al. (2019). The *Medicago truncatula* HKT family: Ion transport properties and regulation of expression upon abiotic stresses and symbiosis. *bioRxiv*, 720474. doi: 10.1101/720474

van Zelm, E., Zhang, Y., and Testerink, C. (2020). Salt tolerance mechanisms of plants. *Annu. Rev. Plant Biol.* 71, 1–24. doi: 10.1146/annurev-arplant-050718-100005

Verdoy, D., Coba de la Pena, T., Redondo, F. J., Lucas, M. M., and Pueyo, J. J. (2006). Transgenic *Medicago truncatula* plants that accumulate proline display nitrogen-fixing activity with enhanced tolerance to osmotic stress. *Plant Cell Environ.* 29, 1913–1923. doi: 10.1111/j.1365-3040.2006.01567.x

Verslues, P. E., and Sharma, S. (2010). Proline metabolism and its implications for plant-environment interaction. *Arabidopsis Book*, Vol. 8. (American Society of Plant Biologists), e0140. doi: 10.1199/tab.0140

Vinocur, B., and Altman, A. (2005). Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. *Curr. Opin. Biotechnol.* 16, 1–10. doi: 10.1016/j.copbio.2005.02.001

Wang, X.-D., Chao, O.-Y., Fan, Z.-R., Gao, S., and Tang, L. (2010). Effects of exogenous silicon on seed germination and antioxidant enzyme activities of *Momordica charantia* under salt stress. *J. Anim. Plant Sci.* 6 (3), 700–708.

Wani, A. S., Ahmad, A., Hayat, S., and Tahir, I. (2016). Is foliar spray of proline sufficient for mitigation of salt stress in *Brassica juncea* cultivars? *Environ. Sci. Pollut. Res.* 23, 13413–13423. doi: 10.1007/s11356-016-6533-4

Weltmeier, F., Ehler, A., Mayer, C. S., Dietrich, K., Wang, X., Schütze, K., et al. (2006). Combinatorial control of *Arabidopsis* proline dehydrogenase transcription by specific heterodimerisation of bZIP transcription factors. *EMBO J.* 25, 3133–3143. doi: 10.1038/sj.emboj.7601206

Wu, G.-Q., Feng, R.-J., Li, S.-L., and Du, Y.-Y. (2017). Exogenous application of proline alleviates salt-induced toxicity in sainfoin seedlings. *J. Anim. Plant Sci.* 27, 246–251. doi: 10.17221/665/2017-PSE

Yan, Z., Sun, J., and Guo, S. (2011). Effects of exogenous proline on nitrate reduction in melon seedlings under salt stress. *Plant Sci.* 179, 118–123. doi: 10.1016/j.plantsci.2009.03.010

Yan, Z., Chen, X., Ge, Q., Li, B., Tong, Y., Zhang, A., et al. (2006). Tolerance of photosynthesis to photoninhibition, high temperature and drought stress in flag leaves of wheat: a comparison between a hybridization line and its parents grown under field conditions. *Plant Sci.* 171, 389–397. doi: 10.1016/j.plantsci.2006.04.010

You, J., Hu, H., and Xiong, L. (2012). An ornithine *d*-amino transferase gene OsOAT confers drought and oxidative stress tolerance in rice. *Plant Sci.* 197, 59–69. doi: 10.1016/j.plantsci.2012.09.002

Zahran, H. H., and Sprent, J. II (1986). Effects of sodium chloride and polyethylene glycol on root-hair infection and nodulation of *Vicia faba* L. plants by *Rhizobium leguminosarum*. *Planta* 167 (3), 303–309. doi: 10.1007/BF00391332

Zahran, H. H. (1999). *Rhizobium*-*leguminosarum* symbiosis and nitrogen fixation under severe conditions and in an arid climate. *Microb. Mol. Biol. Rev.* 63 (4), 968–989. doi: 10.1128/MMBR.63.4.968-989.1999

Zhang, X. H., Zhou, D., Cui, J. J., Ma, H. L., Lang, D. Y., Wu, X. L., et al. (2015). Effect of silicon on seed germination and the physiological characteristics of *Glycyrrhiza uralensis* under different levels of salinity. *J. Hortic. Sci. Biotechnol.* 90, 439–443. doi: 10.1080/14620316.2015.11513207

Zhen, W. B., and Ma, Q. H. (2009). Proline metabolism in response to salt stress in common reed (*Phragmites australis* (Cav.) Trin. *Ex Steud. Bot. Mar.* 52, 341–347. doi: 10.1515/BOT.2009.007

Zheng, J. L., Zhao, L. Y., Wu, C. W., Shen, B., and Zhu, A. Y. (2015). Exogenous proline reduces NaCl-induced damage by mediating ionic and osmotic adjustment and enhancing antioxidant defense in *Eurya emarginata*. *Acta Physiol. Plant.* 37, 181. doi: 10.1007/s11738-015-1921-9

Zhu, Y., and Gong, H. (2014). Beneficial effects of silicon on salt and drought tolerance in plants. *Agron. Sustain. Dev.* 34, 455–472. doi: 10.1007/s13593-013-0194-1

Zhu, J.-K. (2003). Regulation of ion homeostasis under salt stress. *Curr. Opin. Plant Biol.* 6, 441–445. doi: 10.1016/S1369-5266(03)00085-2

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 El Moukhari, Cabassa-Hourton, Farissi and Savoure. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.