A population genetic assessment of coral recovery on highly disturbed reefs of the Keppel Island archipelago in the southern Great Barrier Reef

Madeleine J van Oppen, Vimoksalehi Lukoschek, Ray Berkelmans, Lesa M Peplow, Alison M Jones

[p] Coral reefs surrounding the islands lying close to the coast are unique to the Great Barrier Reef (GBR) in that they are frequently exposed to disturbance events including floods caused by cyclonic rainfall, strong winds and occasional periods of prolonged above-average temperatures during summer. In one such group of islands in the southern GBR, the Keppel Island archipelago, climate-driven disturbances frequently result in major coral mortality. Whilst these island reefs have clearly survived such dramatic disturbances in the past, the consequences of extreme mortality events may include the loss of genetic diversity, and hence adaptive potential, and a reduction in fitness due to inbreeding, especially if new recruitment from external sources is limited. Here we examined the level of isolation of the Keppel Island group as well as patterns of gene flow within the Keppel Islands using 10 microsatellite markers in nine populations of the coral, \textit{Acropora millepora}. Bayesian cluster analysis and assignment tests indicated gene flow is restricted, but not absent, between the outer and inner Keppel Island groups, and that extensive gene flow exists within each of these island groups. Comparison of the Keppel Island data with results from a previous GBR-wide study that included a single Keppel Island population, confirmed that \textit{A. millepora} in the Keppel Islands is genetically distinct from populations elsewhere on the GBR, with exception of the nearby inshore High Peak Reef just north of the Keppel Islands. We compared patterns of genetic diversity in the Keppel Island populations with those from other GBR populations and found them to be slightly, but significantly lower, consistent with the archipelago being geographically isolated, but there was no evidence for recent bottlenecks or deviation from mutation-drift equilibrium. A high incidence of private alleles in the Keppel Islands, particularly in the outer islands, supports their relative isolation and contributes to the
conservation value of the archipelago. The lack of evidence for genetic erosion, in combination with our observation that the North Keppel Island population samples collected in 2002 and 2008, respectively, exhibited a pairwise genetic distance of zero, supports previous published work indicating that, following bleaching, *Acropora* corals in the Keppel Islands predominantly recover from regrowth of small amounts of remaining live tissue in apparently dead coral colonies. This is likely supplemented by recruitment of larvae from genetically similar, less disturbed populations at nearby reefs, particularly following extreme flood events. [p]
A population genetic assessment of coral recovery on highly disturbed reefs of the Keppel Island archipelago in the southern Great Barrier Reef

Abstract

Coral reefs surrounding the islands lying close to the coast are unique to the Great Barrier Reef (GBR) in that they are frequently exposed to disturbance events including floods caused by cyclonic rainfall, strong winds and occasional periods of prolonged above-average temperatures during summer. In one such group of islands in the southern GBR, the Keppel Island archipelago, climate-driven disturbances frequently result in major coral mortality. Whilst these island reefs have clearly survived such dramatic disturbances in the past, the consequences of extreme mortality events may include the loss of genetic diversity, and hence adaptive potential, and a reduction in fitness due to inbreeding, especially if new recruitment from external sources is limited. Here we examined the level of isolation of the Keppel Island group as well as patterns of gene flow within the Keppel Islands using 10 microsatellite markers in nine populations of the coral, *Acropora millepora*. Bayesian cluster analysis and assignment tests indicated gene flow is restricted, but not absent, between the outer and inner Keppel Island groups, and that extensive gene flow exists within each of these island groups. Comparison of the Keppel Island data with results from a previous GBR-wide study that included a single Keppel Island population, confirmed that *A. millepora* in the Keppel Islands is genetically distinct from populations elsewhere on the GBR, with exception of the nearby inshore High Peak Reef just north of the Keppel Islands. We compared patterns of genetic diversity in the Keppel Island populations with those from other GBR populations and found them to be slightly, but significantly lower, consistent with the archipelago being geographically isolated, but there was no evidence for recent bottlenecks or deviation from mutation-drift equilibrium. A high incidence of private alleles in the Keppel Islands, particularly in the outer islands, supports their relative isolation and contributes to the conservation value of the archipelago. The lack of evidence for genetic erosion, in combination with our observation that the North Keppel Island population samples collected in 2002 and 2008, respectively, exhibited a pairwise genetic distance of zero, supports previous published
work indicating that, following bleaching, *Acropora* corals in the Keppel Islands predominantly recover from regrowth of small amounts of remaining live tissue in apparently dead coral colonies. This is likely supplemented by recruitment of larvae from genetically similar, less disturbed populations at nearby reefs, particularly following extreme flood events.

Madeleine J. H. van Oppen1,2, Vimoksalehi Lukoschek3, Ray Berkelmans1, Lesa M. Peplow1, Alison M. Jones4

1Australian Institute of Marine Science, PMB 3, Townsville Mail Centre, Queensland, 4810, Australia
2School of BioSciences, The University of Melbourne, Parkville, Melbourne, 3010, Victoria, Australia
3ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
4Central Queensland University, Rockhampton, Queensland, 4702, Australia

Corresponding author

Madeleine J. H. van Oppen
Australian Institute of Marine Science, PMB 3, Townsville Mail Centre, Queensland, 4810, Australia
School of BioSciences, The University of Melbourne, Parkville, Melbourne, 3010, Victoria, Australia
Phone: +61-0409267577
E-mail: m.vanoppen@aims.gov.au
Introduction

Coral reefs along the East Australian coastline are shaped by a range of factors and forces that include coastal geomorphology, freshwater inundation and sediment runoff, hydrodynamics, unusually warm summer sea surface temperatures caused by climate warming, as well as local weather patterns. These forces cause recurring perturbations and in some regions result in frequent, high levels of coral mortality.

One of the largest inshore reef systems of the southern Great Barrier Reef (GBR) is comprised of the fringing reefs surrounding the 15 islands of Keppel Bay, located ~12 km from the mainland coast. The Keppel Islands are renowned for their high disturbance regime, causing repeated widespread coral mortality. A major flooding event occurred here in 1991 (Byron & O'Neill 1992; Furnas 2003; Jones & Berkelmans 2014), which caused bleaching and a mortality of almost 85% of all corals and total mortality of *Acropora* spp. down to 1.3 m below lowest tide level (Van Woesik et al. 1995). Thermal mass coral bleaching affected >60% of the corals in this area in 1998, 2002 and 2006 and caused significant coral cover loss (e.g., ~40% loss in 2006; Jones et al. 2011), particularly in shallow (0-6 m) reef areas (Berkelmans et al. 2004; Jones et al. 2008; Diaz-Pulido et al. 2009).

Typically, larval recruitment on tropical reefs occurs either from local, sexually mature and healthy corals or from nearby and occasionally distant source populations. Spatial and temporal patterns of recruitment are often variable and can be driven by factors such as local wind patterns, prevailing winds, the direction and strength of wind-driven currents, the proximity of other reefs, water depth, and structural complexity (Hughes et al. 2000; Whitaker 2004; Underwood et al. 2007; van Oppen et al. 2008; Almany et al. 2009).

Preliminary genetic analyses indicate the Keppel Islands are likely an isolated system (van Oppen et al. 2011). Because larval input from external sources is generally considered crucial for recovery on reefs that have suffered extensive coral mortality (Lukoschek et al. 2013), it is important to validate that larval dispersal into the Keppel Island archipelago is restricted. However, the importance of external larval sources may be overestimated if partial, rather than whole colony, mortality is common and rapid.
regrowth of surviving tissues ensues (Riegl & Piller 2001; Gilmour et al. 2013), a process that is a key mechanism of recovery from bleaching for Acropora spp. in the Keppel Islands (Diaz-Pulido et al. 2009).

Here we examine the mechanisms underlying recovery in the common reef-building coral, Acropora millepora (Cnidaria; Scleractinia; Acroporidae), in the Keppel Islands using a population genetics approach. Specifically, we explore genetic structure, connectivity and diversity on nine shallow reefs throughout the Keppel Island region using high-resolution DNA microsatellite markers. We also compare population genetic diversity and local population genetic structure of A. millepora in the Keppel Islands to that of 19 reefs spanning much of the latitudinal range of the GBR and including one of the nine Keppel Island reefs sampled six years earlier (van Oppen et al. 2011). We discuss the implications of our findings in terms of the future management of the Keppel Island reefs.

Material and methods

The Keppel Bay Island archipelago lies ~30 km north of the mouth of the Fitzroy River near Rockhampton (Fig. 1). Like much of the inshore GBR, the reefs principally fringe the bay heads of the islands and, to a lesser extent, the rocky coastal headlands (Hopley 2006). Wherever substantial reefs exist, these are dominated by large stands of fast-growing ‘structural’ species such as the acroporids, pocilloporids and poritids (Jones et al. 2011). One such coral, A. millepora (Scleractinia: Acroporidae), grows prolifically between 0–6.0 m (lowest astronomical tide) forming shallow, expansive reef flats on the leeward shores of islands in the Bay (Fig. 2). A. millepora is a common and ecologically important species on the GBR, particularly on the inshore reefs. Like most Acroporidae, A. millepora reproduces sexually via a single annual broadcast spawning event, and to a lesser extent via asexual reproduction through fragmentation (Smith & Hughes 1999).
Coral sampling

Branches of *A. millepora* were collected between December 2008 and April 2009 under the Great Barrier Reef Marine Park Authority collection permit numbers G09/30237.1 and G08/26114.1, and their genotypes were determined at 10 microsatellite loci. The nine sampled reefs (Halfway Island, Outer Rocks, Man and Wife Rocks, Barren Island, North Keppel Island, Passage Rocks, Miall Island, Half tide Rocks and Humpy Island; Fig. 1) were chosen to include both inshore and offshore islands within the archipelago.

At each site, 29–50 samples were collected from colonies located at depths between 0–6.0 m by removing a single branch from each colony. Samples were preserved in absolute ethanol. Samples at each site were collected from areas less than 500 m², targeting colonies >5 m apart on haphazard swim trajectories using SCUBA. This approach minimises the likelihood of sampling colonies generated asexually via fragmentation from the source colony, as fragments of *A. millepora* on reef flat habitats are rarely dispersed further than 4 m from their source colonies and typically have low survival and reattachment rates (Smith & Hughes 1999).

Genetic characterisation

DNA was extracted from the preserved samples based on a slightly modified version of the method by Wilson et al. (2002). PCR primers and protocols for the ten microsatellite loci are described in van Oppen et al. (2011) and Wang et al. (2009). Twelve microsatellite markers were used in the PCR reactions and run in four multiplex reactions (Suppl. Table S1), however, two loci were not used because of inconsistent amplification success.

Data analysis

MegaBACE Genetic Profiler Software Suite version 2 (GE Healthcare) was used to determine the fragment sizes (alleles) of all samples. All automatic scoring was checked manually, and samples that
yielded ambiguous or no signal were re-amplified and re-run or removed from the analysis. The new data acquired in this study were first analysed separately and subsequently combined with previously obtained data on the same species and using the same loci, but from 20 GBR locations spanning 12° of latitude (van Oppen et al. 2011) and including one site in the Keppel Islands (Nth Keppel Island). Because the van Oppen et al. (2011) data were scored with a different software package (CEQ8800 system software, version 10), the possibility existed that alleles were scored differently and a shift in allele size had occurred between the two methods. A subset of 3-5 samples from the van Oppen et al. (2011) data set harbouring the most common alleles was therefore selected for each locus, and rescored using the MegaBACE software. Based on this comparison, the allele sizes of all samples and loci were adjusted to match the van Oppen et al. (2011) study. The combined data set of the two studies is available in Supplemental Data S1.

The probabilities of identity by random sexual mating (Waits et al. 2001) were calculated using an AMOVA (Analysis of Molecular Variance) approach (Excoffier et al. 1992) in GenAlEx v6.501 (Peakall & Smouse 2006). Individuals sharing the same multilocus genotype (MLG) were inferred to be clone mates if probabilities of identity by random sexual mating were small. If asexual reproduction was inferred, all but one individual with this MLG were removed prior to further data analysis.

Genotypic Linkage Disequilibrium (LD) was assessed in GENEPOP (web version 4.0.10) by estimation of exact p-values using the Markov chain method (Raymond & Rousset 1995) using default settings. A previous study for A. millepora using the same loci that included one site (Nth Keppel) from the Keppel Islands, showed that despite the presence of null alleles, heterozygote deficits were mostly due to biological rather than methodological factors (van Oppen et al. 2011). Despite the occurrence of some instances of deviations from HWE (Suppl. Table S2), all analyses were therefore conducted on data uncorrected for null alleles.
Various aspects of genetic diversity and uniqueness were estimated in GenAlEx v6.501 including the number of alleles per locus (Na), allelic richness (Ar), allelic evenness (Ae), observed (H_O) and expected (H_E) heterozygosities and private alleles. Differences in rarefacted allelic richness (using 22 individuals per site, the smallest sample size in the data set) between the nine Keppel Island sites and the 19 other sites from throughout the GBR were assessed in FSTAT 2.9.3 using a Mann–Whitney U test (Goudet 1995).

Populations that have experienced a recent reduction in their effective population size exhibit a reduction in the allele numbers and transient heterozygous (H_O) excess at polymorphic loci compared to that under HWE (H_E) (Cornuet & Luikart 1996). If HWE is assumed (i.e., no recent bottleneck), there is an equal probability of having a positive or a negative difference between the observed and the expected heterozygosities. In contrast, following a recent bottleneck, heterozygous excess is expected to occur more often than heterozygous deficit. Therefore, if the number of loci for which there is heterozygous excess is significantly larger than that for which there is a heterozygous deficit, a recent bottleneck can be inferred (Luikart & Cornuet 1998). The heterozygosity distribution under the assumption of HWE and the infinite allele mutation model was calculated for each of the nine Keppel Island sites and for each locus in the software package Bottleneck 1.2.02. Bottlenecks are also expected to change the allele frequency distribution (Cornuet & Luikart 1996). Therefore, the allele frequency distribution was established to see whether it was approximately L-shaped (as expected under HWE) or not.

Population structure within the Keppel Islands and the combined data sets was estimated using F_{ST} values calculated using an AMOVA approach (Excoffier et al. 1992) in GenAlEx v6.501 (Peakall & Smouse 2006) with significance tested using 999 permutations. Genetic differentiation between sites was estimated in the following ways: (1) F_{ST} values were calculated using an AMOVA approach in GenAlEx v6.501. To assess the significance of differentiation between sites, we applied a Fisher exact test (Goudet 1995).
176 1995) using Genepop v4.0 with the default Markov chain parameters. Statistical significance for all
177 pairwise tests was adjusted for multiple comparisons by the B-Y False Discovery Rate (FDR) method
178 (Narum 2006). (2) Jost’s (Jost 2008) actual measure of differentiation (D_{est}) was computed in SMOGD
179 version 1.2.5 (Crawford 2010). To visualise the genetic relationships among populations, the genetic
180 distance measures between pairs of Keppel Island sites were plotted using a Principal Coordinates
181 Analysis (PCoA) with GenAlEx v6.501. To determine whether there was a pattern of isolation-by-
182 distance (IBD), pairwise D_{es} values were regressed onto over-water distances between sites and
183 significance tested using Mantel permutation test in IBD Web Service (Jensen et al. 2005).
184
185 Two fully Bayesian model-based clustering methods implemented in the programs STRUCTURE ver.
186 2.3.3 (Pritchard et al. 2000) and TESS ver. 2.3 (Chen et al. 2007; François & Durand 2010) were used to
187 further examine spatial genetic structure for the Keppel Islands (n = 370) and Keppel Islands plus the
188 GBR (n = 1292) datasets. STRUCTURE analyses were conducted using both the admixture and no-
189 admixture models, each with correlated allele frequencies, using the sampling sites as prior (LOCPRIOR),
190 which has been shown to better resolve genetic structure when there is low genetic divergence (Hubisz et
191 al. 2009). MCMC chains used a burn-in of 50,000 chains followed by 500,000 of MCMC replications.
192 Ten independent chains were run for each K from K of 1 to 9 for the KI data and K of 1 to 15 for the
193 combined data. In each case, the most likely value of K was evaluated using the method of Evanno et al.
194 (2005) as implemented in STRUCTURE HARVESTER (Earl 2009). STRUCTURE implements an
195 algorithm that puts a strong emphasis on the prior of the existence of clusters, which may make it prone to
196 errors when geographical sampling is discrete along clines (Chen et al. 2007). TESS aims to address this
197 issue by using a spatially continuous prior based on the geographical coordinates of each sampled
198 individual. TESS was run using the CAR admixture model, which assumes spatial autocorrelation of the
199 genomes of individuals in closer geographical proximity compared with those further apart. The strength
200 of this autocorrelation is represented by a spatial interaction parameter (ψ), which was set to the default
201 value of 0.6 for analysis. TESS was run with a burn-in of 10,000 sweeps followed by 25,000 sweeps, with
202 20 independent runs conducted for each value of K from K of 2 to 9 for the KI data and K of 2 to 15 for
203 the combined KI plus GBR data (TESS does not implement analyses for K = 1). For each value of K, the
204 ten runs with the lowest DIC scores were used to calculate the average DIC and evaluate the most likely
205 number of genetic clusters. The coefficient of ancestry was calculated for each individual across all runs
206 for the most likely value of K in CLUMPP version 1.1.2 (Jakobsson & Rosenberg 2007) and results
207 visualized with the program DISTRICT version 1.1 (Rosenberg 2004).
208
209 GeneClass2 (Piry et al. 2004) was used to examine first generation migrants (i.e., recent gene flow) within
210 the Keppel Island archipelago (only the Keppel Island data were used for this analysis). In the first step of
211 this analysis, migrants were identified using the criteria and computational algorithm of Rannala and
212 Mountain (1997) with 10,000 simulated genotypes and an alpha of 0.01. The test statistic \(L_h \) was used as
213 not all potential source populations had been sampled (Paetkau et al. 2004). Migrants were excluded from
214 the data set, and this adjusted data set served as the reference data set to which migrants were assigned.
215 Migrants were assigned to populations if the assignment probabilities were greater than 0.1.
216
217 Results
218
219 Genetic diversity
220
221 All loci were polymorphic in all populations sampled, with numbers of alleles ranging from 2 to 17
222 (Suppl. Table S2). Expected heterozygosities ranged from 0.232 to 0.885 (Suppl. Table S2). Three MLGs
223 in the Keppel Islands data set were repeated twice each; two of these MLGs occurred at Barren Island and
224 one at Man & Wife Rocks. One sample from each pair was removed prior to further analyses. The
225 resulting data set consisted of 370 MLGs from nine locations. Five, three, three, six, one, one, and two
226 instances (out of 45 pairwise comparisons within each population) of LD were observed in Barren Island,
227 Outer Rocks, Man & Wife Rocks, Half tide Rocks, Nth Keppel Island, Humpy Island, and Passage Rocks,
228 respectively (Suppl. Table S3). No cases of LD were observed in the Miall and Halfway Island
229 populations.
In the combined data set, rarefacted allelic richness was slightly, but statistically significantly lower between the Keppel Island populations and all other GBR populations included in this study (6.7 versus 7.3 alleles respectively, p = 0.006). Plots of allelic evenness (Suppl. Figs. S1A and B) confirm that, with the exception of Man & Wife Rocks, genetic diversity is consistently lower in the Keppel Islands compared to elsewhere on the GBR. The Bottleneck analyses indicated all loci in all populations fit the mutation-drift equilibrium, and there were no deviations from an L-shaped allele frequency distribution, suggesting no recent bottlenecks have occurred.

Private alleles were found in 54 out of 1292 colonies of *A. millepora* from the combined GBR-Keppel Islands data set, 23 (43%) of which occurred in the Keppel Islands. Given the relatively small sample size from Keppel Island populations (320 out of 1292, i.e., 25% of the total sample size), private alleles are overrepresented in this archipelago. Twenty-one of the 23 Keppel Island samples with private alleles were from the outer island group.

Population structure, gene flow and isolation by distance

AMOVA showed that 5% of the total variance in the Keppel Island data set was partitioned among populations (Global $F_{ST} = 0.055$, $p < 0.001$). Pairwise F_{ST} values were significant for all comparisons (B-Y FDR; $\alpha_{CRIT} = 0.012$) except for Halfway Island-Miall Island, Halfway Island-Nth Keppel Island and Miall Island-Nth Keppel Island (Suppl. Table S4). The Barren Island population was highly divergent, with most F_{ST} values >0.1. Twenty-six of 36 pairwise D_{est} values were statistically significant, and the D_{est} values also indicated that the Barren Island population was highly divergent, with most values >0.2 (Table 1). This pattern is clearly visualised in the PCoA of pairwise D_{est} values (Suppl. Fig. S2). There was no evidence of IBD ($r^2 = 0.07$, $p = 0.150$; Suppl. Fig. S3), which is consistent with the pattern of some geographically disparate pairs of sites being genetically similar (e.g., Halfway Island vs. Nth Keppel...
Island; Humpy Island vs. Nth Keppel Island; Table 1), while other geographically proximate sites are genetically divergent (e.g., Man & Wife Rocks vs.Halftide Rocks; Table 1).

Forty-two of the 370 Keppel Island individuals included in this study were identified as first generation migrants based on the GeneClass2 analysis (Suppl. Table S5). In the outer Keppel Islands, five out of 29 (Barren), three out of 28 (Man & Wife) and six out of 50 (Outer) were identified as recent migrants. Four of these could not be assigned (i.e., had assignment probabilities <0.1 to all sampled populations), seven had the greatest probabilities for assignment to other outer reefs, three had high assignment probabilities to both inner and outer Keppel Island populations, while none were assigned to inner island populations only. Of the 28 migrants identified in the inner islands, 19 were assigned. Eight of these were assigned to one or more of the outer island populations, six to both inner and outer populations, and five to other inner island populations. These results suggest recent gene flow has occurred both within and between island groups, and that gene flow occurs from east to west and vice versa, but likely more frequently from east (outer islands) to west (inner islands).

STRUCTURE using the admixture model indicated that two or three genetic clusters best explained the genetic patterns of the multilocus genotypes of the 370 colonies of *A. millepora* in the Keppel Islands, with highest ΔK for K = 2 followed by K = 3 (Suppl. Fig. S4). Similarly, TESS DIC scores declined sharply between K = 2 and K = 3 and then declined much more slowly while variances in DIC increased markedly, providing support for three genetic cluster (Suppl. Fig. S4). STRUCTURE using the no-admixture model did not provide a clear result. TESS and STRUCTURE using the admixture model for K = 2 returned almost identical genetic patterns, with Passage Rocks, Halftide Rocks, Halfway, Humpy, Miall and Nth Keppel Islands forming a panmictic cluster, while Barren Island, Man & Wife and Outer Rocks had some individuals from the panmictic cluster and others from the second genetic cluster (Suppl. Fig. S5). TESS for K = 3 returned a similar pattern to K = 2 except that Man & Wife Rocks was distinct from Barren Island and Outer Rocks, with colonies that did not belong to the panmictic cluster belonging
to the third genetic cluster (Suppl. Fig. S5). By contrast, STRUCTURE for K = 3 found admixture between the panmictic and the third genetic cluster within all individuals at Passage Rocks and approximately half the individuals at Humpy Island (Suppl. Fig. S5). This result, combined with the higher ΔK for K = 2 than K = 3 suggests that, unlike TESS, the algorithm implemented in STRUCTURE was unable to resolve Man and Wife Rocks as a distinct genetic cluster.

For the combined GBR plus Keppel Island data set, STRUCTURE results showed that ΔK was highest for K = 2 followed by K = 3 and then peaked again at K = 5, while TESS DIC values declined steeply between K = 2 and K = 5 and then declined more slowly (Suppl. Fig. S6). Although ΔK for K = 5 (ΔK = 20) was smaller than for K = 2 (ΔK = 230) and K = 3 (ΔK = 35), all were much larger than for all other values of K (typically ΔK <1).). Given that TESS clearly delineated three genetic clusters for the Keppel Islands alone, we present K = 5 for the combined dataset. All sites in the Keppel Island archipelago were genetically distinct from GBR populations in the far northern, northern and central GBR reefs, as well as most southern GBR reefs except High Peak (Fig. 1), which may receive larvae from the Keppel Islands via the predominantly north-east flowing sea surface currents in this part of the GBR (Luick et al. 2007). In particular, Barren Island and some individuals from Man & Wife and Outer Rocks belonged to a genetic cluster not found elsewhere on the GBR. Temporal samples from Nth Keppel Island (July 2002, van Oppen et al. 2011; and 2008, this study) were genetically similar (Fig. 1) and had F_{ST} values not significantly different from zero (results not shown).

Discussion

Limited gene flow between inner and outer island clusters

The Barren Island population is a genetic outlier with D_{est} values ranging from 0.175 to 0.253 (Table 1), and most of the individuals sampled belong to a genetic cluster distinct from any other cluster observed on the GBR (Fig. 1). The reasons underlying the extreme genetic distinctiveness of this population are unclear. Outer and Man & Wife Rocks have smaller numbers of individuals of the same distinct genetic
affinity. Despite this, all three outer island populations contain some individuals that are of the inner islands genetic affinity. Further, they show a signature of admixture with some colonies being comprised of the distinct as well as the more typical inner island genetic cluster, suggesting some level of gene flow exists between outer and inner islands. This was confirmed by assignment tests, which in addition suggested gene flow is higher from east to west than from west to east, consistent with the predominant direction of sea surface currents (Luick et al. 2007). A genetic parentage study of two coral reef fish species found that recent dispersal rates were higher among the inner Keppel Islands than between Barren Island and the inner islands (Harrison et al. 2012), consistent with our observations for *A. millepora*.

Coral larval competency is unlikely a limiting factor for gene flow of *A. millepora* as larvae of this species are competent to metamorphose and settle around 4–5 days after spawning (Babcock & Heyward 1986), with maximum rates of metamorphosis occur at eight days after spawning (Heyward & Negri 1999). Maximum longevity of *Acropora* coral larvae in the water column, however, is much longer (~60–200 days) (Nishikawa et al. 2003; Graham et al. 2008). Larval dispersal is affected by surface water circulation patterns. Numerical particle experiments indicate that during the northward-current season (the austral summer in which coral mass spawning takes place), cross-shelf particle dispersal is limited (Luick et al. 2007), likely contributing to the population structure observed here. Alternatively, realised dispersal may be lower than the actual dispersal potential due to maladaptation of outer island genotypes to inner island environmental conditions and vice versa (Prada & Hellberg 2014). While the environmental factors light, temperature and habitat profile, current strength and reef rugosity (3-D habitat complexity) do not show an east-west pattern (Jones et al. 2011) that explains the genetic differences observed between inner and outer Keppel Island populations, further research is required to address the possibility that maladapted genotypes are unable to survive despite cross-shelf dispersal and recruitment.

Mechanisms of recovery
A. millepora populations in the Keppel Island archipelago are genetically isolated from most other populations on the GBR (Fig. 1) and are therefore largely self-sustaining. Along the GBR, south easterly trade winds dominate throughout the year but are seasonally displaced by northerly monsoonal winds during the austral summer (Pickard 1977). The nearest mid-shelf reefs to the Keppel Islands are those of the Capricorn Bunker Group, >65 km to the east. South easterly winds could theoretically drive recruitment between the Capricorn Bunkers and the Keppel Island group, but A. millepora is relatively rare in the former (MvO & VL, pers. obs.) and these reefs therefore unlikely serve as a source of larvae for the Keppel Island populations. A. millepora has a relatively high dispersal potential due to its broadcast-spawning mode of reproduction and long larval competency period. We hypothesise that, in the Keppel Islands, other coral species with similarly high dispersal potential to A. millepora, as well as species that disperse over shorter spatial distances, will also consist of primarily self-sustaining populations (although the Capricorn Bunkers may be a source for high dispersal coral species that occur at higher abundance there). This suggests that the archipelago is vulnerable to perturbations that cause widespread high coral mortality, as recovery through the arrival of recruits from reefs outside the Keppel Islands will be slow.

The 2002 Nth Keppel Island sample (collected prior to the 2002 bleaching event) exhibited no evidence of a genetic bottleneck, which was unexpected given the high mortality experienced during the 1998 mass bleaching event (Berkelmans et al. 2004). The same population showed an F_{ST} value not significantly different from zero when compared with the 2008 sample from the same location. In addition to the 2002 bleaching event, a mass bleaching episode occurred in the Keppel Islands in 2006, causing ~40% loss in coral cover (Jones et al. 2011). Given that severe bleaching reduces reproductive output in the subsequent spawning season (Michalek-Wagner & Willis 2001; Jones & Berkelmans 2011), and that it would take at least 2-3 years for new recruits to reach reproductive maturity even for the fast-growing Keppel Island Acropora spp. (Omori 2010), there was little scope for local colonies that survived the 2002 and 2006
bleaching events to contribute to coral recovery through larval recruitment by 2008. This, in combination with the lack of evidence for recent genetic bottlenecks in all Keppel Island populations studied here (which were collected in 2008 and 2009), supports the hypothesis that in spite of reports of widespread mortality, whole colony mortality was actually low following the 2002 and 2006 bleaching events (although visual surveys that did not examine cryptic remnant tissues indicated whole colony mortality was high) and that tissue regrowth, rather than external recruitment, was the main mechanism of recovery following the two bleaching events. This supports the work of Diaz-Pulido et al. (2009) showing that coral recovery had occurred unexpectedly rapidly (within 12 months) after bleaching from surviving tissues in apparently dead colonies. Coral recruitment during this period was low (Diaz-Pulido et al. 2009) and instead, recovery must have occurred through regrowth from cryptic remnant tissues, as supported by our genetic data. The unusually high growth rates of Acropora spp. in the Keppel Islands (Diaz-Pulido et al. 2009; Jones & Berkelmans 2010) appear to be key to this atypically rapid coral cover recovery following disturbance.

Preliminary observations show that the speed of recovery following flood events is slower than that following bleaching, likely reflecting the more common occurrence of whole colony mortality in areas affected by fresh water inundation, despite its more spatially restricted impact. For example, the 1991 flooding event (Byron & O'Neill 1992; Furnas 2003; Jones & Berkelmans 2014) caused total mortality of Acropora spp. down to 1.3 m below lowest tide (Van Woesik et al. 1995). Average coral cover at the southern/western side of Nth Keppel Island (site 4 in Byron & O'Neill 1992) dropped from pre-flood levels of 51-75% to 10% post-flood (Byron & O'Neill 1992) and had not yet fully recovered by February 1995 (~40% RB, unpubl.). Similarly coral cover on the southern/western side of Halfway Island (site 20 in Byron & O'Neill 1992) dropped from 76-100% before the 1991 flood to 50% post-flood but were fully recovered by August 1996 (~84%, RB, unpubl.). However, reefs on the northern and eastern sides of these islands generally showed little coral loss (Byron & O'Neill 1992; Van Woesik et al. 1995). Our interpretation of these observations, in light of the population genetic results presented here, is that while
whole colony mortality is more prominent during floods than bleaching, flooding has a spatially more
variable impact within the Keppel Islands. The slower recovery of flood impacted southern and western
sides of the islands was likely mostly due to larval recruitment from northern and eastern sites.

Management implications

The lack of evidence for genetic erosion in this study demonstrates that, despite four high mortality events
including flooding in 1991, and bleaching in 1998, 2002 and 2006, the resilience of coral populations in
the Keppel Islands was high prior to late 2008 - early 2009 when the sampling for this study was
conducted. However, in this isolated reef system, recruitment from external sources is limited, potentially
placing future recovery at risk if disturbance events are too frequent or are severe enough to cause
widespread whole-colony mortality.

The isolation of the Keppel Island archipelago and genetic distinctiveness of its coral populations have
implications for reef restoration actions and management interventions that may be considered in the
future. For instance, the introduction of coral genotypes from elsewhere, with the intent to accelerate
recovery and boost resilience (Hoegh-Guldberg et al. 2008; van Oppen et al. 2014), may have positive
effects as a consequence of introducing new gene variants into the Keppel Island populations if
introduced colonies interbreed with the remaining native corals, but could also have adverse effects due to
outbreeding depression. This requires testing under controlled conditions before such measures would be
implemented. The Keppel Island corals possess a set of valuable traits, including genetic distinctiveness,
high growth rates and recovery potential, which, in combination with their relative isolation from other
reefs should afford these ecosystems a high conservation status.

Conclusions

Our microsatellite genotyping results demonstrate that populations of the common reef builder, A. milletpora, in the Keppel Islands fall into two clusters with limited gene flow; those at the inner islands
versus those at the outer islands (i.e., Barren Island, Outer Rocks and Man & Wife Rocks). Further, populations of this species in the Keppel Island archipelago are self-sustaining and receive very little input from populations elsewhere on the GBR. Genetic diversity analyses suggest coral recovery in the Keppel Islands often occurs from surviving colony regrowth rather than by recruitment from external sources, especially following bleaching. However, when whole colony mortality is widespread within a reef but variable among reefs (as is the case with floods), recruitment from external, nearby reefs that suffered low mortality can facilitate recovery.

Acknowledgements

The authors would like to thank Scott Gardner for assistance with sampling.
References

Almany G, Connolly S, Heath D, Hogan J, Jones G, McCook L, Mills M, Pressey R, and Williamson D. 2009. Connectivity, biodiversity conservation and the design of marine reserve networks for coral reefs. *Coral Reefs* 28:339-351.

Babcock RC, and Heyward A. 1986. Larval development of certain gamete-spawning scleractinian corals. *Coral Reefs* 5:111-116.

Berkelmans R, De’ath G, Kininmonth S, and Skirving WJ. 2004. A comparison of the 1998 and 2002 coral bleaching events on the Great Barrier Reef: spatial correlation, patterns, and predictions. *Coral Reefs* 23:74-83.

Byron GT, and O’Neill JP. 1992. Flood induced coral mortality on fringing reefs in Keppel Bay. Workshop on the Impact of Flooding. Townsville, Australia: Great Barrier Reef Marine Park Authority.

Chen C, Durand E, Forbes F, and François O. 2007. Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. *Molecular Ecology Notes* 7:747-756.

Cornuet JM, and Luikart G. 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. *Genetics* 144:2001-2014.

Crawford NG. 2010. smogd: software for the measurement of genetic diversity. *Molecular Ecology Resources* 10:556-557.

Diaz-Pulido G, McCook LJ, Dove S, Berkelmans R, Roff G, Kline DI, Weeks S, Evans RD, Williamson DH, and Hoegh-Guldberg O. 2009. Doom and boom on a resilient reef: Climate change, algal overgrowth and coral recovery. *PLoS ONE* 4:e5239.

Earl DA. 2009. Structure Harvester v 0.56.3, http://taylor0.biology.ucla.edu/struct_harvest/.

Evanno G, Regnaut S, and Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. *Molecular ecology* 14:2611–2620.
Excoffier L, Smouse PE, and Quattro JM. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. *Genetics* 131:479-491.

François O, and Durand E. 2010. Spatially explicit Bayesian clustering models in population genetics. *Molecular Ecology Resources* 10:773-784.

Furnas M. 2003. *Catchment and corals: Terrestrial runoff to the Great Barrier Reef*. Townsville: Australian Institute of Marine Science & CRC Reef Research Centre.

Gilmour JP, Smith LD, Heyward AJ, Baird AH, and Pratchett MS. 2013. Recovery of an isolated coral reef system following severe disturbance. *Science* 340:69-71.

Goudet J. 1995. Fstat version 1.2: a computer program to calculate Fstatistics. *Journal of Heredity* 86:485-486.

Graham EM, Baird AH, and Connolly SR. 2008. Survival dynamics of scleractinian coral larvae and implications for dispersal. *Coral Reefs* 27:529-539.

Harrison HB, Williamson DH, Evans RD, Almany GR, Thorrold SR, Russ GR, Feldheim KA, van Herwerden L, Planes S, Srinivasan M, Berumen ML, and Jones GP. 2012. Larval Export from Marine Reserves and the Recruitment Benefit for Fish and Fisheries. *Current Biology* 22:1023-1028.

Heyward A, and Negri A. 1999. Natural inducers for coral larval metamorphosis. *Coral Reefs* 18:273–279.

Hoegh-Guldberg O, Hughes L, McIntyre S, Lindenmayer DB, Parmesan C, Possingham HP, and Thomas CD. 2008. Assisted colonization and rapid climate change. *Science* 321:345-346.

Hopley D. 2006. Coral reef growth on the shelf margin of the Great Barrier Reef with special reference to the Pompey Complex. *Journal of Coastal Research* 22:150-174.

Hubisz MJ, Falush D, Stephens M, and Pritchard JK. 2009. Inferring weak population structure with the assistance of sample group information. *Molecular Ecology Resources* 9:1322-1332.
Hughes TP, Baird AH, Dinsdale EA, Moltschaniwskyj NA, Pratchett MS, Tanner JE, and Willis BL. 2000. Supply-side ecology works both ways: The link between benthic adults, fecundity, and larval recruits. *Ecology* 81:2241-2249.

Jakobsson M, and Rosenberg NA. 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. *Bioinformatics* 23:1801-1806.

Jensen JL, Bohonak AJ, and Kelley ST. 2005. Isolation by distance, web service. *BMC Genetics* 6:13.

Jones A, and Berkelmans R. 2010. Potential costs of acclimatization to a warmer climate: Growth of a reef coral with heat tolerant vs. sensitive symbiont types. *PLoS ONE* 5:e10437.

Jones AM, and Berkelmans R. 2011. Tradeoffs to thermal acclimation: energetics and reproduction of a reef coral with heat tolerant *Symbiodinium* type-D. *Journal of Marine Biology* 2011:doi:10.1155/2011/185890.

Jones AM, Berkelmans R. 2014. Flood Impacts in Keppel Bay, Southern Great Barrier Reef in the Aftermath of Cyclonic Rainfall. *PLoS ONE* 9:e84739.

Jones AM, Berkelmans R, and Houston W. 2011. Species richness and community structure on a high latitude reef: Implications for conservation and management. *Diversity* 3:329-355.

Jones AM, Berkelmans R, van Oppen MJH, Mieog JC, and Sinclair W. 2008. A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. *Proceedings of the Royal Society B-Biological Sciences* 275:1359-1365.

Jost L. 2008. G(ST) and its relatives do not measure differentiation. *Molecular ecology* 17:4015-4026.

Luick JL, Mason L, Hardy T, and Furnas MJ. 2007. Circulation in the Great Barrier Reef Lagoon using numerical tracers and in situ data. *Continental Shelf Research* 27:757-778.

Luikart G, and Cornuet JM. 1998. Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. *Conservation Biology* 12:228-237.
Lukoschek V, Cross P, Torda G, Zimmerman R, and Willis BL. 2013. The importance of coral larval recruitment for the recovery of reefs impacted by cyclone Yasi in the Central Great Barrier Reef. *PLoS ONE* 8: e65363.

Michalek-Wagner K, and Willis BL. 2001. Impacts of bleaching on the soft coral *Lobophytum compactum*. I. Fecundity, fertilization and offspring viability. *Coral Reefs* 19:231-239.

Narum SR. 2006. Beyond Bonferroni: Less conservative analyses for conservation genetics. *Conservation Genetics* 7:783-787.

Nishikawa A, Katoh M, and Sakai K. 2003. Larval settlement rates and gene flow of broadcast-spawning (*Acropora tenuis*) and planula-brooding (*Stylophora pistillata*) corals. *Marine Ecology Progress Series* 256:87-97.

Omori M. 2010. Degradation and restoration of coral reefs: Experience in Okinawa, Japan. *Marine Biology Research* 7:3-12.

Paetkau D, Slade R, Burden M and Estoup A. 2004. Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. *Molecular Ecology* 13:55-65.

Peakall R, and Smouse PE. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. *Molecular Ecology Notes* 6:288-295.

Pickard GL. 1977. A review of the physical oceanography of the Great Barrier Reef and Western Coral Sea Australia 1. The Great Barrier Reef. *Australian Institute of Marine Science Monograph Series* 2:1-60.

Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, and Estoup A. 2004. GENECLASS2: A software for genetic assignment and first-generation migrant detection. Journal of Heredity 95: 536-539.

Prada C, and Hellberg ME. 2014. Strong natural selection on juveniles maintains a narrow adult hybrid zone in a marine broadcast spawner. *American Naturalist* 184:702-713.
Pritchard JK, Stephens M, and Donnelly P. 2000. Inference of population structure using multilocus genotype data. *Genetics* 155:945-959.

Rannala B, and Mountain JL. 1997. Detecting immigration by using multilocus genotypes. *Proceedings of the National Academy of Science, USA* 94:9197-9201.

Raymond M, and Rousset F. 1995 GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism *Journal of Heredity* 86:248-249.

Riegl B, and Piller WE. 2001. "Cryptic" tissues inside *Acropora* frame works (Indonesia): a mechanism to enhance tissue survival in hard times while also increasing framework density. *Coral Reefs* 20:67-68.

Rosenberg NA. 2004. DISTRICT: a program for the graphical display of population structure. *Molecular Ecology Notes* 4:137-138.

Smith LD, and Hughes TP. 1999. An experimental assessment of survival, re-attachment and fecundity of coral fragments. *Journal of Experimental Marine Biology and Ecology* 235:147-164.

Underwood JN, Smith LD, Van Oppen MJH, and Gilmour JP. 2007. Multiple scales of genetic connectivity in a brooding coral on isolated reefs following catastrophic bleaching. *Molecular Ecology* 16:771-784.

van Oppen MJH, Lutz A, De'ath G, Peplow L, and Kininmonth S. 2008. Genetic traces of recent long-distance dispersal in a predominantly self-recruiting coral. *PLoS ONE* 3:e3401.

van Oppen MJH, Peplow LM, Kininmonth S, and Berkelmans R. 2011. Historical and contemporary factors shape the population genetic structure of the broadcast spawning coral, *Acropora millepora*, on the Great Barrier Reef. *Molecular Ecology* 20:4899-4914.

van Oppen MJH, Puill-Stephan E, Lundgren P, De'ath G, and Bay LK. 2014. First generation fitness consequences of interpopulational hybridisation in a Great Barrier Reef coral and its implications for assisted migration management. *Coral Reefs* 33:607-611.

Van Woesik R, DeVantier LM, and Glazebrook JS. 1995. Effects of cyclone 'Joy' on nearshore coral communities of the Great Barrier Reef. *Marine Ecology-Progress Series* 128:261-270.
Waits LP, Luikart G, and Taberlet P. 2001. Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. *Molecular Ecology* 10:249-256.

Wang S, Zhang LL, and Matz M. 2009. Microsatellite characterization and marker development from public EST and WGS databases in the reef-building coral *Acropora millepora* (Cnidaria, Anthozoa, Scleractinia). *Journal of Heredity* 100:329-337.

Whitaker K. 2004. Non-random mating and population genetic subdivision of two broadcasting corals at Ningaloo Reef, Western Australia. *Marine Biology* 144:593-603.

Wilson K, Li Y, Whan V, Lehnert S, Byrne K, Moore S, Pongsomboon S, Tassanakajon A, Rosenberg G, E. B, Fayazi Z, Swan J, Kenway M, and Benzie J. 2002. Genetic mapping of the black tiger shrimp *Penaeus monodon* with amplified fragment length polymorphism. *Aquaculture* 204:297–309.
Figure 1. Map of sampling locations of *Acropora millepora* (black circles), in this (bottom) and the van Oppen et al (2011) (top) studies. Colour plots on the right-hand side of the maps represent the TESS results using the admixture model and K=5. Each bar represents an individual coral colony and the five colours represent the five genetic clusters.

Figure 2. Image showing a typical shallow water reef in the Keppel Island archipelago dominated by *Acropora millepora*. Photo credit: Alison Jones.
Table 1

Pairwise D_{est} values, below diagonal, p-values above diagonal. Most values are statistically significant; non-significant values have shaded background, and p-values larger than adjusted α are printed in bold face (adjusted $\alpha = 0.012$).
Table 1: Pairwise D_{est} values, below diagonal, p-values above diagonal. Most values are statistically significant; non-significant values have shaded background, and p-values larger than adjusted α are printed in bold face (adjusted $\alpha = 0.012$).

	Barren Island	Halftide Rocks	Halfway Island	Humpy Island	Man&Wife Rocks	Miall Island	Nth Keppel Island	Outer Rocks	Passage Rocks
Barren	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Halftide	0.253	**0.027**	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Halfway	0.212	0.012	0.024	0.001	**0.017**	0.392	0.088	0.001	
Humpy	0.192	0.038	0.015	0.001	0.080	0.020	0.016	0.003	
Man&Wife	0.176	0.077	0.054	0.059	0.001	0.002	0.009	0.001	
Miall	0.239	0.042	0.017	0.010	0.084	0.070	**0.037**	0.001	
Nth Keppel	0.221	0.030	0.001	0.018	0.064	0.011	**0.097**	0.001	
Outer	0.175	0.040	0.009	0.020	0.041	0.014	0.010	0.001	
Passage	0.242	0.119	0.091	0.032	0.125	0.100	0.089	0.110	
Figure 1

Map of sampling locations of *Acropora millepora* (black circles), in this (bottom) and the van Oppen et al (2011) (top) studies. Colour plots on the right-hand side of the maps represent the TESS results using the admixture model and K=5. Each bar represents an individual coral colony and the five colours represent the five genetic clusters.
Figure 2

Image showing a typical shallow water reef in the Keppel Island archipelago, dominated by *Acropora millepora*. Photo credit: Alison Jones.