Fractional exclusion statistics: the method for describing interacting particle systems as ideal gases

Dragoș-Victor Anghel

Department of Theoretical Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, PO Box MG-6, Măgurele, Jud. Ilfov, Romania
E-mail: dragos@theory nipne.ro

Received 29 April 2012
Accepted for publication 27 June 2012
Published 30 November 2012
Online at stacks.iop.org/PhysScr/T151/014079

Abstract
I show that if the total energy of a system of interacting particles may be written as a sum of quasiparticle energies, then the system of quasiparticles can be viewed, in general, as an ideal gas with fractional exclusion statistics (FES). The general method for calculating the FES parameters is also provided. The interacting particle system cannot be described as an ideal gas of Bose and Fermi quasiparticles except in trivial situations.

PACS numbers: 05.30.—d, 05.30.Ch, 05.30.Pr

(Some figures may appear in color only in the online journal)

1. Introduction
A fractional exclusion statistics (FES) system [1, 2] consists of a countable number of finite-dimensional species. I will count the species using the indexes i and j. Each species contains G_i single-particle states and N_j particles. The FES character consists in the dependence of the dimensions of all the other species change according to $\delta N_i = \alpha_{ij} \delta N_j$, for any i and j. The parameters α_{ij} are called the FES parameters. In practice, the species may be different types of particles that coexist in the same system, quasiparticle excitations in the lowest Landau level in the fractional quantum Hall effect [1, 2], excitations [1] or motifs of spins in spin chains [3, 4], elementary volumes obtained by coarse graining in the phase space of a system [5–8] and so on.

The thermodynamics and statistical mechanics of systems was calculated mainly by Wu [2] and Isakov [5], but some amendments have recently been introduced [6–11]. In this paper, I shall use the ansatz

$$\alpha_{ij} = G_i a_{ij} + a_i \delta_{ij},$$

which applies quite generally to quasicontinuous systems [8].

The equilibrium distribution of particles in the species may be calculated in two equivalent formulations: I call them the Bose and Fermi perspectives [8].

In the Bose perspective I use G_i to denote the number of available single-particle states of species i. In such a case, the number of microconfigurations in which we can find the system is $W = \prod_i [(G_i + N_i - 1)/[N_i!(G_i - 1)!]]$. If we add a small perturbation, δN_i, to the particle distribution, W becomes

$$W_B = \prod_i \left[\frac{G_i + N_i - 1 + (1-a_i) \delta N_i - \sum_j \alpha_{ij} \delta N_j}{(N_i + \delta N_i)!(G_i - 1 - a_i \delta N_i - \sum_j \alpha_{ij} \delta N_j)!}\right].$$

In the Fermi perspective, $T_i = G_i + N_i - 1$ and $W_F = \prod_i [T_i!/[(N_i!(T_i - N_i)!)]$. At the variations δN_i,
we obtain
\[
W_\text{F} = \prod_i \left\{ \left(T_i - a_i \delta N_i - G_i \sum_j a_j \delta N_j \right)! \right\} \frac{1}{\left(T_i - N_i - (1 + a_i) \delta N_i - T_i \sum_j a_j \delta N_j \right)! (N_i + \delta N_i)!} \tag{4}
\]
and the equations for the equilibrium particle populations, \(f_i = N_i / T_i \), are \[8\]
\[
\beta(\mu_i - \bar{\epsilon}_i) + \ln \left[\frac{1 - f_i}{f_i} \right]^{1-a_i} = - \sum_j T_j a_{ji} \ln[1 - f_j]. \tag{5}
\]

I will show below that systems of interacting particles may be described as ideal FES systems. For interacting bosons, more natural is the Bose perspective, whereas for interacting fermions it is more convenient to employ the Fermi perspective.

Equations (3) and (5) can be readily transformed into integral equations in the quasicontinuous case. If, instead of the index \(i \) (or \(j \)), we introduce the quasicontinuous variable \(i \) (or \(j \)—which may be a multidimensional variable, like the quasimomentum, or a one-dimensional (1D) variable, like the quasienergy—of density of states (DOS) \(\sigma(\bar{\epsilon}) \), then equations (3) and (5) become \[8\]
\[
\beta(\mu_i - \bar{\epsilon}_i) + \ln \left[\frac{1 + b_i^{1-a_i}}{b_i} \right] = \int \sigma(j) \ln[1 + b_j] \delta_{ij} \tag{6}
\]
and
\[
\beta(\mu_i - \bar{\epsilon}_i) + \ln \left[\frac{1 - f_i}{f_i} \right] = \int \sigma(j) \ln[1 - f_j] \delta_{ij} \tag{7}
\]
respectively.

The thermodynamics of different FES systems have been calculated by several authors (see, e.g., \[2, 5, 8, 12–22\]).

2. The quasiparticles

2.1. The ideal gas description

Suppose that we have a system of interacting particles that we wish to describe as an ideal gas of quasiparticles. For this, we introduce the quasiparticle energies, \(\{\bar{\epsilon}_i\} \), which we want to satisfy three conditions, specific to ideal gases:

1. \(E(\{\bar{\epsilon}_i\}) = \sum_i n_i \bar{\epsilon}_i \), \(\tag{8a} \)
2. the energies \(\{\bar{\epsilon}_i\} \) are well defined and therefore independent of the set of occupation numbers, \(\{n_i\} \), \(\tag{8b} \)
3. the equilibrium populations, \(\langle n_i \rangle (T, \mu, \bar{\epsilon}_i) \), are functions of only \(T, \mu \) and \(\bar{\epsilon}_i \) and are independent of the populations. \(\tag{8c} \)

The heat capacity of any system (in units of \(k_B \)) is
\[
\frac{C_V}{k_B} = \left(\frac{\partial U}{\partial T} \right)_N = \left(\frac{\partial U}{\partial \mu} \right)_T \left(\frac{\partial N}{\partial \mu} \right)_T^{-1} \tag{9}
\]
If conditions (8) are satisfied, then
\[
\left(\frac{\partial U}{\partial (k_B T)} \right)_\mu = \sum_i \bar{\epsilon}_i \left(\frac{\partial \langle n_i \rangle}{\partial (k_B T)} \right)_\mu, \tag{10a}
\]
\[
\left(\frac{\partial U}{\partial \mu} \right)_T = \sum_i \bar{\epsilon}_i \left(\frac{\partial \langle n_i \rangle}{\partial \mu} \right)_T, \tag{10b}
\]
\[
\left(\frac{\partial N}{\partial \mu} \right)_T = \sum_i \left(\frac{\partial \langle n_i \rangle}{\partial \mu} \right)_T, \tag{10c}
\]
where we have used the notation \(U(T, \mu) \equiv \langle E \rangle_T,\mu \) for the internal energy of the system, at temperature \(T \) and chemical potential \(\mu \).

For an ideal gas of fermions in the quasicontinuous limit and with a DOS of the form \(\sigma(\bar{\epsilon}) \equiv C \bar{\epsilon}^2 \), with \(C \) and \(s \) being two constants \[23, 24\], the total particle number and the internal energy are
\[11a\]
\[11b\]
respectively, where the function \(\text{Li}_n \) is the polylogarithmic function of order \(n \) \[25, 26\].

Using equation (10) we calculate the specific heat (also in units of \(k_B \)):
\[
\frac{c_V}{k_B} \equiv \frac{C_V}{k_B N} = \left[(s + 1)(s + 2) \frac{\text{Li}_{s+1}(\bar{\epsilon}^2)-\text{Li}_{s+2}(\bar{\epsilon}^2)}{\text{Li}_{s+1}(\bar{\epsilon}^2)} \right], \tag{11c}
\]
In the low-temperature limit \(\beta \mu \gg 1 \) and in the lowest orders of approximation, equations (11) become
\[12a\]
\[12b\]
\[12c\]
where equation (12a) defines the Fermi energy, \(\bar{\epsilon}_F = [(s + 1)N/C]^{\frac{1}{s+1}} \), and equation (12c) may be put into the low-temperature universal form \[19, 27\]
\[
\frac{C_V}{k_B} \equiv \frac{N C_V}{k_B} = \frac{\pi^2}{3} k_B T \tilde{\sigma}(\bar{\epsilon}_F). \tag{13}
\]

2.2. The quasiparticle gas

The gases of quasiparticles used for describing systems of interacting particles do not satisfy, in general, conditions (8). An example shown in [28] is Landau’s Fermi liquid theory (FLT). The quasiparticle energy, $\tilde{\epsilon}_i$, depends on the occupation of the other quasiparticle states, i.e., $\tilde{\epsilon}_i \equiv \tilde{\epsilon}_i ([n_j])$, where $\{n_j\}$ denotes the set of all occupation numbers. In such a case condition (8b) is not satisfied and through $\tilde{\epsilon}_i$, the population $\{n_i\}(T, \mu, \tilde{\epsilon}_i)$ depends on the populations of the other quasiparticle levels, violating condition (8c) as well. Moreover, in the FLT the sum of the energies of the quasiparticles is not equal to the total energy of the system, violating also condition (8a) (see [28]).

Let us now see how the heat capacity of the system can be calculated. For this I will suppose that condition (8a) is true; otherwise the gas of quasiparticles may not be used for this purpose [28].

If $\tilde{\epsilon}_i$ is a function of $\{n_j\}$, then equations (10a) and (10b) are not valid because $\tilde{\epsilon}_i$ varies with T and μ:

$$\frac{\partial \tilde{\epsilon}_i(T, \mu)}{\partial (k_B T)} = \sum_j \frac{\partial \tilde{\epsilon}_i(T, \mu) \partial (n_j)(T, \mu)}{\partial (k_B T)} .$$ \hfill (14a)

$$\frac{\partial \tilde{\epsilon}_i(T, \mu)}{\partial \mu} = \sum_j \frac{\partial \tilde{\epsilon}_i(T, \mu) \partial (n_j)(T, \mu)}{\partial \mu} .$$ \hfill (14b)

On the other hand, the derivatives of the populations are given by the equations

$$\frac{\partial (n_j)(T, \mu)}{\partial (k_B T)} = \frac{\partial (n_j)(T, \mu, \tilde{\epsilon}_i)}{\partial (k_B T)} + \frac{\partial (n_j)(T, \mu, \tilde{\epsilon}_i) \partial \tilde{\epsilon}_i(T, \mu)}{\partial (k_B T)} .$$ \hfill (15a)

$$\frac{\partial (n_j)(T, \mu)}{\partial \mu} = \frac{\partial (n_j)(T, \mu, \tilde{\epsilon}_i)}{\partial \mu} + \frac{\partial (n_j)(T, \mu, \tilde{\epsilon}_i) \partial \tilde{\epsilon}_i(T, \mu)}{\partial \mu} .$$ \hfill (15b)

Plugging equations (14) into (15) we obtain a self-consistent system of equations for the variation of the occupation numbers with T and μ.

Using the solutions to equation (15) together with equation (14), we can calculate $\partial U/\partial (k_B T)$, $\partial U/\partial \mu$, $\partial N/\partial (k_B T)$ and $\partial N/\partial \mu$ to finally obtain the heat capacity (9), where equations (10a) and (10b) become

$$\left(\frac{\partial U}{\partial (k_B T)} \right)_T = \sum_i \left[\tilde{\epsilon}_i \left(\frac{\partial (n_j)}{\partial (k_B T)} \right)_T \right] .$$ \hfill (16a)

$$\left(\frac{\partial U}{\partial \mu} \right)_T = \sum_i \left[\tilde{\epsilon}_i \left(\frac{\partial (n_j)}{\partial \mu} \right)_T \right] .$$ \hfill (16b)

3. The ideal FES gas

Assuming that we choose the quasiparticle energies, $\tilde{\epsilon}_i$, in such a way that condition (8a) is satisfied, let us see how we can also satisfy conditions (8b) and (8c).

The principle of the method is given in [7, 29, 30]. I change to the quasicontinuous description, $i \rightarrow i_1$, and I assume for simplicity that i is a 1D quantity (e.g. the energy of the free particles, ϵ [7, 29, 30]). The quasiparticle energy, $\tilde{\epsilon}_i([n_j])$, is then a functional of the occupation numbers, $\{n_j\}$, or for the equilibrium distribution, it is a functional of the populations, $\tilde{\epsilon}_i([n_j])$.

I choose i and $\tilde{\epsilon}_i$ in such a way that if $i \leq j$, then $\tilde{\epsilon}_i([n_k]) \lesssim \tilde{\epsilon}_i([n_k])$. In this way I establish a bijective correspondence between i and $\tilde{\epsilon}_i$, which one may invert and write $\tilde{\epsilon}_i([n_j])$ or $\tilde{\epsilon}_i([n_j])$.

If $\sigma (i)$ is the DOS in the variable i, then

$$\tilde{\sigma} (\tilde{\epsilon}) = \sigma (i) \left| \frac{d \tilde{\epsilon}}{d \epsilon} \right| \equiv \sigma (i) \left| \frac{d \tilde{\epsilon}^{-1}}{d \epsilon} \right| ,$$ \hfill (17)

where $\tilde{\sigma} (\tilde{\epsilon})$ is a functional of $\{n_j\}$. With the aid of $\sigma (i)$ and $\tilde{\sigma} (\tilde{\epsilon})$ we define the particle densities, $\rho (i) = \sigma (i) [n_j]$ and $\tilde{\rho} (\tilde{\epsilon}) = \tilde{\sigma} (\tilde{\epsilon}) [n_j]$.

Now I transform the quasiparticle gas into an ideal gas by simply changing the perspective: the usual perspective is to view the quantum numbers of the ideal gas, i, as fixed and the quasiparticle energies, $\tilde{\epsilon}_i([n_j])$, as functionals of the populations (figure 1(a)). When we invert the perspective, we view the quasiparticle energies, $\tilde{\epsilon}_i$, as fixed and the free particle quantum numbers as functionals of the populations, $i [\tilde{n}_j]$ (figure 1(b)).
From relation (17) and since $\sigma(i)$ is a quantity that is fixed by the properties of the single-particle states, $\tilde{\sigma}(\tilde{\epsilon})$ becomes a functional of the particle density, $\tilde{\rho}(\tilde{\epsilon})$. This property ensures FES.

To show this I coarse-grain both the axes, i and $\tilde{\epsilon}$. Each interval, $[m_i, m_{i+1}]$ on the i-axis or $[\epsilon_m, \epsilon_{m+1}]$ on the $\tilde{\epsilon}$-axis, represents a species, with $G_m = \sigma(m_i)(m_{i+1} - m_i) = \tilde{\sigma}(\epsilon_m)(\epsilon_{m+1} - \epsilon_m)$ and $N_m = \rho(m_i)(m_{i+1} - m_i) = \tilde{\rho}(\epsilon_m) \times (\epsilon_{m+1} - \epsilon_m)$ (assuming that the intervals are small enough to use the linear approximation); I use the letters m and n to designate the species.

In the FES perspective, the insertion of δN_m particles in the species m causes a change of the interval $[m_i, m_{i+1}]$ on the i-axis by

$$\delta N_m \left[\frac{\delta n_{i+1}}{\delta \rho(\epsilon_m)} - \frac{\delta n_i}{\delta \rho(\epsilon_m)} \right] = \delta N_m (m_{i+1} - m_i) \frac{d}{d \tilde{\epsilon}} \left[\frac{\delta \rho(\epsilon_m)}{\delta \rho(\epsilon_m)} \right].$$

(18)

where by $\delta n_i/\delta \rho(\epsilon_m)$ I denote the functional derivative, which I assume to be analytic.

A change in the interval $[m_i, m_{i+1}]$ leads to a change in the number of states in the species n by

$$\delta G_n = \delta N_m \left[\frac{\delta n_{i+1}}{\delta \rho(\epsilon_m)} - \frac{\delta n_i}{\delta \rho(\epsilon_m)} \right] \frac{d}{d \tilde{\epsilon}} \left[\frac{\delta \rho(\epsilon_m)}{\delta \rho(\epsilon_m)} \right] \sigma(i_n).$$

$$= \delta N_m (m_{i+1} - m_i) \frac{d}{d \tilde{\epsilon}} \left[\frac{\delta \rho(\epsilon_m)}{\delta \rho(\epsilon_m)} \right] \sigma(i_n).$$

(19)

Mapping back i onto $\tilde{\epsilon}$, I can express the change in the number of states in the species n as

$$\delta G_n = \delta N_m (\epsilon_{m+1} - \epsilon_m) \frac{d}{d \epsilon} \left[\frac{\delta \sigma(\tilde{\epsilon})}{\delta \rho(\epsilon_m)} \right] \equiv -\alpha_{\epsilon_m} \delta N_m.$$

(20)

where I denote by $\delta \epsilon_m/\delta \rho(\epsilon_m)$ the functional derivative of ϵ_m with respect to the variation of $\delta \rho(\epsilon_m)$, where i is fixed—this calculation trick does not change the noninteracting character of the quasiparticles.

The last part of equation (20) gives us the FES parameter, α_{ϵ_m}. We note that $\alpha_{\epsilon_m} \propto (\epsilon_{m+1} - \epsilon_m) = G_m/\sigma(\tilde{\epsilon})$, so it is proportional to the dimension of the species that it acts upon, in accordance with the ansatz (1) [6, 8] and with the general FES rules of [9].

If the function $[\delta \epsilon_m/\delta \rho(\epsilon_m)]\sigma(\epsilon_m)$ is singular at some point, $\tilde{\epsilon}_n$, then at that point $\alpha_{\epsilon_m} = 0$ will not be proportional to the dimension of the species G_m and might even disobey the ansatz (1) proposed in the introduction, but it should still obey the rules of [9]. Such a case was discussed in [7, 29], in relation to the FLT.

Once the FES parameters are known, the thermodynamics follows according to the formalism outlined in the introduction.

4. Conclusions

I showed that if a system of interacting particles is described as a gas of quasiparticles of energies, $\tilde{\epsilon}(n_i)$, such that $E(n_i) = \sum n_i \tilde{\epsilon}_i$ (condition (8a)), then the gas of quasiparticles may be viewed as an ideal gas that obeys FES. If condition (8a) is not satisfied, as it happens with Landau’s quasiparticles in the Fermi liquid theory, then the quasiparticle gas cannot be used for the calculation of the thermodynamic properties of the original interacting particle gas, except in some trivial cases.

The general method for calculating the FES parameters of the quasiparticle gas is also provided.

Acknowledgments

The work was supported by the Romanian National Authority for Scientific Research through projects PN-II-ID-PCE-2011-3-0960 and PN09370102/2009. The travel support received from the Romania-JINR Dubna collaboration project Titeica-Markov and project N4063 is gratefully acknowledged.

References

[1] Haldane F D M 1991 Phys. Rev. Lett. 67 937
[2] Wu Y-S 1994 Phys. Rev. Lett. 73 922
[3] Liu D, La P, Müller G and Karbach M 2011 Phys. Rev. E 84 021136
[4] Liu D, Vanasse J, Müller G and Karbach M 2012 Phys. Rev. E 85 011144
[5] Isakov S B 1994 Phys. Rev. Lett. 73 2150
[6] Anghel D V 2007 J. Phys. A: Math. Theor. 40 F1013 (arXiv:0710.0724)
[7] Anghel D V 2008 Phys. Lett. A 372 5745 (arXiv:0710.0728)
[8] Anghel D V 2010 Europhys. Lett. 90 10006 (arXiv:0909.0030)
[9] Anghel D V 2009 Europhys. Lett. 87 60009 (arXiv:0906.4836)
[10] Anghel D V 2010 Phys. Rev. Lett. 104 198901
[11] Wu Y-S 2010 Phys. Rev. Lett. 104 198902
[12] de Veigy A D and Ouvry S 1994 Phys. Rev. Lett. 72 600
[13] Isakov S B, Arovac D P, Myrheim J and Polychronakos A P 1996 Phys. Rev. A 54 299
[14] Bernard D and Wu Y S 1995 New Developments on Integrable Systems and Long-Ranged Interaction Models ed M L Ge and Y S Wu (Singapore: World Scientific) p 10 (arXiv:cond-mat/9404025)
[15] Murthy M V N and Shankar R 1994 Phys. Rev. Lett. 73 3331
[16] Murthy M V N and Shankar R 1999 Phys. Rev. B 60 6517
[17] Potter G G, Müller G and Karbach M 2007 Phys. Rev. E 76 61120
[18] Potter G G, Müller G and Karbach M 2007 Phys. Rev. E 76 61112
[19] Anghel D V 2011 Europhys. Lett. 94 60004
[20] Anghel D V 2002 J. Phys. A: Math. Gen. 35 7255
[21] Sutherland B 1997 Phys. Rev. B 56 4422
[22] Iguchi K and Sutherland B 2000 Phys. Rev. Lett. 85 2781
[23] Bagnato V, Pritchard D E and Kleppner D 1987 Phys. Rev. A 35 4354
[24] Bagnato V and Kleppner D 1991 Phys. Rev. A 44 7439
[25] Lewin L 1958 Dilogarithms and Associated Functions (London: Macdonald)
[26] Lee M H 2009 Acta Phys. Pol. B 40 1279
[27] Stone M 1994 Boxonisation (Singapore: World Scientific)
[28] Anghel D V 2012 arXiv:1204.4064
[29] Anghel D V 2012 Phys. Lett. A 376 892
[30] Anghel D V 2009 Rom. J. Phys. 54 281 (arXiv:0804.1474)