On regular algebraic surfaces of \mathbb{R}^3 with constant mean curvature

J. Lucas M. Barbosa and Manfredo P. do Carmo *

Abstract

We consider regular surfaces M that are given as the zeros of a polynomial function $p : \mathbb{R}^3 \to \mathbb{R}$, where the gradient of p vanishes nowhere. We assume that M has non-zero mean curvature and prove that there exist only two examples of such surfaces, namely the sphere and the circular cylinder.

1 Introduction

An algebraic set in \mathbb{R}^3 will be the set

$$M = \{(x, y, z) \in \mathbb{R}^3; p(x, y, z) = 0\}$$

of zeros of a polynomial function $p : \mathbb{R}^3 \to \mathbb{R}$. An algebraic set is regular if the gradient vector $\nabla p = (p_x, p_y, p_z)$ vanishes nowhere in M; here p_x, p_y and p_z denotes the derivative of p with respect to x, y or z respectively.

The condition of regularity is essential in our case. It allows to parametrize the set M locally by differentiable functions $x(u, v)$, $y(u, v)$, $z(u, v)$ (not necessarily polynomials), so that M becomes a regular surface in the sense of differential geometry (see [2] chapter 2 section 2.2, in particular Proposition 2); here (u, v) are coordinates in an open set of \mathbb{R}^2.

Since M is a closed set in \mathbb{R}^3, it is a complete surface. In addition, being a regular surface, it is properly embedded, i. e., the limit set of M (if any)

*Both authors are partially supported by CNPq, Brazil
does not belong to M (cf. [15], chapter IV, A.1 p. 113). In particular, regular algebraic surfaces are locally graphs over their tangent planes.

From now on, M will denote a regular algebraic surface in \mathbb{R}^3. Due to the regularity condition, one can define on M the basic objects of Differential Geometry of surfaces and pose some differential-algebraic questions within this algebraic category.

For instance, in the last 60 years (namely after the seminal work [4] of Heinz Hopf in 1951), many questions have been worked out on differentiable surfaces of non-zero constant mean curvature H. See also [5].

In our case, we have two examples of algebraic regular surfaces that have non-zero constant mean curvature, namely,

1. Spheres, $(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = r^2$ with center $(x_0, y_0, z_0) \in \mathbb{R}^3$ and radius $r = 1/H$.

2. Circular right cylinders, $(x-x_0)^2 + (y-y_0)^2 = r^2$, whose basis is a circle in the plane xy with center (x_0, y_0) and whose axis is a straight line passing through the center and parallel to the z axis.

A first natural question is: Are there further examples?

The first time we heard about this question was in a preprint of Oscar Perdomo (recently published in [13]) where he proves that for polynomials of degree three there are no such surfaces.

In this note, we prove the following general result:

Theorem: Let M be a regular algebraic surface in \mathbb{R}^3. Assume that it has constant mean curvature $H \neq 0$. Then M is a sphere or a right circular cylinder.

Acknowledgements. We want to thank Fernando Codá Marques for a crucial observation, Oscar Perdomo for having written [13] and Karl Otto Stöhr for his help in our first attempts to solve the problem.

2 Preliminaries

We first observe that, in the compact case, this theorem follows immediately from Alexandrov’s well-known result: An embedded compact surface in \mathbb{R}^3 with constant mean curvature is isometric to a sphere.
The second observation is that the total curvature of an algebraic surface is finite. This was first proved by Osserman [11] in the case that the surface is an immersion parametrized by polynomials in two variables.

Here we give a proof of the finiteness of the total curvature for a (implicitly defined) regular algebraic surface M.

Proposition 1: Let M be a regular algebraic surface in \mathbb{R}^3. Assume that it is complete non-compact. Then its total curvature is finite. More precisely,

$$\int_M |K| dM \leq 4\pi C(d),$$

where K is the Gaussian curvature of M and $C(d)$ is a constant that depends only on the degree d of the polynomial defining M.

Proof. Let $g : M \to S^2(1)$ be the Gauss map of M. It is well known the Gauss curvature $K = \det(dg)$, where dg is the differential of the map g. Of course the result is true if M is either a plane or a circular cylinder. So, we ruled out these two cases from our proof. Let M^* be the set of points in M where $K \neq 0$. Then, restricted to M^*, g is a local diffeomorphism; that is, given $q \in g(M^*)$ and $m_\alpha \in \{g^{-1}(q)\}$, α belonging to a set of indices A, there exist neighborhoods U of q and V_α of m_α such that, for each α, g maps V_α diffeomorphically onto U. In fact, g restrict to M^* is a covering of $N(M^*)$ without ramification points. Since

$$\int_M |K| dM = \int_{M^*} |K| dM$$

the theorem is proved if we show that the mentioned covering has only a finite number of leaves.

Now, fix a plane P passing through the origin of \mathbb{R}^3 and in P fix an orthonormal basis $\{e_1, e_2\}$. Then, there exists a point $m \in M$ such that, up to translations, $P = T_m(M)$ if and only if

$$\frac{\nabla_p}{|\nabla_p|}(m) \perp P$$

what is equivalent to the system of equations

$$\begin{align*}
\langle \frac{\nabla_p}{|\nabla_p|}(m), e_1 \rangle &= 0 \\
\langle \frac{\nabla_p}{|\nabla_p|}(m), e_2 \rangle &= 0
\end{align*}$$

(1)
Set $e_1 = \sum a_i U_i$ and $e_2 = \sum b_i U_i$ where $U_1 = (1, 0, 0)$, $U_2 = (0, 1, 0)$, $U_3 = (0, 0, 1)$ is the canonical basis of \mathbb{R}^3. Then, since $|\nabla p| \neq 0$, then (1) takes the form

$$
\begin{align*}
& \left\{ \begin{array}{ll}
px a_1 + py a_2 + pz a_3 = 0 \\
px b_1 + py b_2 + pz b_3 = 0
\end{array} \right.
\end{align*}
$$

(2)

where the a_i, b_i, $i = 1, 2, 3$ are real numbers.

The equations in (2) describe algebraic surfaces, Σ_1 and Σ_2, which correspond to the coefficients a_i and b_i respectively, and whose degrees are $\leq (d-1)$, where d is the degree of p.

The surfaces Σ_1 and Σ_2, together with the original surface M determines points $m \in M$ as follows:

Σ_j interset M, $j = 1, 2$, in a curve C_j. If the intersection $C_1 \cap C_2$ contains a point $m \in M^*$, since $K(m) \neq 0$, such intersection is unique in a neighborhood of m. By Bezout’s theorem the total number of intersections is bounded above by $(d-1)^2$, as we wished. This proves the proposition.

Since $\int_M |K| \, dM$ is finite, it follows from a theorem of Huber [6] that the surface M of Proposition 1 is finitely connected, i.e., it is a compact surface with a finite number of ends.

The proof of our Theorem uses in a crucial way the structure theory for embedded, complete finitely connected surfaces with non-zero constant mean curvature developed by Korevaar, Kusner and Solomon in [7] after some preliminary work by Meeks [9]. The statement that we need from these papers is as follows:

Theorem A: ([9] and [7].) Let M be a complete, non-compact, properly embedded surface in \mathbb{R}^3 with non-zero constant mean curvature. Assume that M is finitely connected. Then, the ends of M are cylindrically bounded. Furthermore, for each end E of M, there exists a Delaunay surface $\Sigma \subset \mathbb{R}^3$ such that E and Σ can be expressed as cylindrical graphs ρ_E and ρ_Σ so that, near infinity, $|\rho_E - \rho_\Sigma| < Ce^{-\lambda x}$ where $C \geq 0$ and $\lambda > 0$ are constants.

Remark: The first assertion in Theorem A comes from [9]. The final assertion is from [7], theorem 5.18.
3 Proof of the Theorem

We can assume that M is complete and non-compact; otherwise it is a sphere. Thus, by Proposition 1, M has finite total curvature, and hence, by Huber’s theorem, M is compact with finitely many ends. By Theorem A, each end E of M converges exponentially to a Delaunay surface Σ. Since M is embedded, the Delaunay surface Σ to which an end E converges has to be an onduloid or a right circular cylinder.

We first claim that the Delaunay surface Σ towards which E converges is actually a cylinder.

Suppose it is not. By a rigid motion, we can assume that the axis of Σ is parallel to the y axis and meets the z axis. Then, there is a value z_0 of z such that the line $y \to (0, y, z_0)$ intersects Σ infinitely often. Since E approaches Σ at infinity, the algebraic equation $p(0, y, z_0) = 0$ has infinitely many solutions. This is impossible. So Σ is a cylinder as we claimed.

We claim now that E contains a open set of the cylinder Σ.

To see this, we take a rigid motion so that one of the straight lines of the cylinder Σ agrees with the coordinate y-axis. Thus, one of the intersection curves of E with the plane $x = 0$ is a curve β that converges to the y-axis. If y is large enough, β is given by

$$\beta(y) = (0, y, z(y)),$$

where $z(y)$ is a function that satisfies

$$\lim_{y \to \infty} z(y) = 0$$

Since the curve β belongs to the end E, we have

$$p(0, y, z(y)) = 0 \quad (3)$$

Observe that the polynomial p can be written as

$$p(x, y, z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0$$

where $a_k = a_k(x, y)$ is a polynomial in x and y of degree $\leq n$. By Theorem A, we have that

$$\lim_{y \to \infty} z(y) = \lim_{y \to \infty} Ce^{-\lambda y} = 0$$

5
By a known result in Calculus, we have, for any integer k,
\[\lim_{y \to \infty} y^k e^{-\lambda y} = 0 \]
for any integer k.

Thus, by computing the limit in the equation $p(0, y, z(y)) = 0$ as $y \to \infty$ along the curve β, we obtain that a_0 does not depend on Y, and $a_0 = 0$. This means that, for any y, the equation $p(0, y, z) = 0$ has $z = 0$ as a root, i.e., the straight line $y \to (0, y, 0)$ is contained in E.

The above argument applies to an arbitrary straight line of Σ. It follows that an open set in E is a cylinder. This proves our claim.

Thus, there exists an open set U in M with the property that the Gaussian curvature K vanishes in M. Since M is analytic, K vanishes identically in M. It is then well known (see e.g. [8]) that M is a cylinder. Since H is constant, this is a circular cylinder. This proves the Theorem.

Remark: A crucial point in the proof is that the convergence in [7] is exponential. It allows us to prove that not only an arbitrary line in the cylinder Σ converges to E but that actually it is contained in E.

4 Final Remarks

The case $H = 0$. There are many algebraic minimal surfaces in \mathbb{R}^3 (see p. 161 of the English translation of Nitsche’s book [10]). However, the examples we are most familiar with, namely, the Enneper surface and the Hennenberg surface, are not embedded; thus they are not regular algebraic surfaces.

In fact it is simple to prove the following proposition

Proposition: There are no regular algebraic minimal surfaces in \mathbb{R}^3 except the plane.

Proof: Let M be an algebraic surface in \mathbb{R}^3. As we have seen, such surface it is finitely connected, i.e., it is a compact surface with a finite number of ends. We also know that M is properly embedded.

Let E be one of its ends. Parametrically E can be described by a map $x : D - \{O\} \to \mathbb{R}^3$, where D is an open disk of \mathbb{R}^2 centered at the origin and O is the origin.
We may assume, after a rotation if necessary, that the Gauss map, which extends to \(O \) (see Osserman [12]), takes on the value \((0, 0, 1)\) at \(O \). The two simplest examples of such ends are the plane and (either end of) the catenoid.

Now we use a result proved by R. Schoen [14]. He showed that such an end is the graph of the function \(x_3 \) defined over the \((x_1, x_2)\)-plane and

When \(a \neq 0 \) the end is of catenoid type. When \(a = 0 \) the end of the planar type. In fact, if \(a \neq 0 \) the function \(x_3 \) will be asymptotic to the graph of the function \(\log \rho \); if \(a = 0 \) it will be asymptotic to the graph of a constant function (equal to \(\beta \)).

Let’s assume that \(E \) is of the catenoid type. Consider the curve \(\alpha \) intersection of the \(E \) with the plane \(x_2 = 0 \) in the region \(x_1 > 0 \). Since \(M \) is given by the equation \(p(x_1, x_2, x_3) = 0 \), then the curve \(\alpha \) is algebraic, given by \(p(x_1, 0, x_3) = 0 \). This curve must be asymptotic to the graph of the function \(x_3 = a \log x_1 \). But this is impossible. Hence, \(M \) can not have end of the catenoid type.

Thus, all the ends of \(M \) are of the planar type. But they are in finite number. Since \(M \) is embedded, the planes asymptotic to \(M \) must be parallel. It follows that there are two parallel planes such that \(M \) is contained in the region bounded by them. It follows by the halfspace theorem for minimal surfaces [3] that \(M \) must be a plane.

Hypersurfaces in \(\mathbb{R}^{n+1}, n \geq 3 \). In this case we consider the zeros of a polynomial function \(p(x_0, x_1, \ldots, x_n) \), \(n \geq 3 \), with \(\nabla p \neq 0 \) everywhere, and call it regular algebraic hypersurfaces \(M^n \) of \(\mathbb{R}^{n+1} \). Similar to the case \(n = 2 \), the only compact example of such hypersurfaces are spheres. This follows immediately from Alexandrov theorem. So, we are left to consider the complete non-compact case. A generalized cylinder \(C^k \) in \(\mathbb{R}^{n+1} \) is a product \(B^k \times \mathbb{R}^{n-k} \), where the basis \(B^k \subset \mathbb{R}^{k+1} \subset \mathbb{R}^{n+1} \) is a hypersurface of \(\mathbb{R}^{k+1} \) and the product is embedded in \(\mathbb{R}^{n+1} \) in the canonical way, i.e., \(B^k \times \mathbb{R}^{n-k} \subset \mathbb{R}^{k+1} \times \mathbb{R}^{n-k} \). It is easily checked that when \(B \) is a \(k \)-sphere, \(C^k \) has nonzero constant mean curvature. The following lemma is again a consequence of Alexandrov’s theorem.

Lemma. Let \(C^k \) be an algebraic regular generalized cylinder in \(\mathbb{R}^{n+1} \) whose basis \(B \) is a compact hypersurface. If \(C^k \) has constant mean curvature then the bases \(B^k \) is a \(k \)-sphere.

We do not know any further examples of a regular algebraic hypersurfaces
in \mathbb{R}^{n+1}, $n > 2$, with nonzero constant mean curvature. We can ask a question similar to the one we answered for $n = 2$. The possible extension of our proof, however, needs new ideas. Although the total Gauss-Kronecker curvature is again finite, there is no Huber theorem for $n > 2$, and the proof of the structure theorem of [7] does not work for hypersurfaces in \mathbb{R}^{n+1}, $n > 2$.

References

[1] Alexandrov, A.D., *A characteristic property of spheres*, Ann. Math. Pura App. 58 (1962) 303-315.

[2] do Carmo, M., *Differential Geometry of Curves and Surfaces*, Prentice Hall, 1976.

[3] Hoffman, D. and Meeks III, W. H., *The strong halfspace theorem for minimal surfaces*. Inventiones Math. 101 (1990) 373-377.

[4] Hopf, H., "Über Flächen mit einer relation zwischen hauptkrümmungen," Math. Nachr. 4 (1951) 232-249.

[5] Hopf, H., *Differential Geometry in the large*, Springer Lecture Notes in Mathematics 1000, 2nd edition, 1989.

[6] Huber, A., *On subharmonic functions and differential geometry in the large*, Comment. Math. Helv. 32 (1957) 13-72.

[7] Korevaar, N.J., Kusner, R., and Solomon, B., *The structure of complete embedded surfaces with constant mean curvature*, J. Diff. Geometry 30 (1989) 465-503.

[8] Massey, W.S., *Surfaces of Gaussian curvature zero in Euclidean spaces*, Tohoku Math. J. 14 (1962) 73-79.

[9] Meeks III, W., *The topology and geometry of embedded surfaces of constant mean curvature*, J. Diff. Geometry 27 (1988) 539-552.

[10] Nitsche, J.C.C., *Lectures in Minimal surfaces*, vol. 1, Cambridge University Press, Cambridge, 1988.
[11] Osserman, R., *The total curvature of algebraic surfaces*, Contributions to Analysis and Geometry, 249-257, Johns Hopkins University Press, Baltimore, 1982.

[12] Osserman, R., *Global properties of minimal surfaces in E^3 and $E^n*\text{,} Annals of Mathematics 80 (1964) 340-364.

[13] Perdomo, O.M., *Algebraic constant mean curvature surfaces in Euclidean space*, Houston Journal of Mathematics 39 (2013) 127-136.

[14] Schoen, R., *Uniqueness, symmetry, and embeddedness of minimal surfaces*, Journal of Differential Geometry 18 (1983) 791-809.

[15] Whitney, H., *Geometric Integration Theory*, Princeton University Press, 1957.

Manfredo Perdigão do Carmo
Instituto Nacional de Matemática Pura e Aplicada - IMPA
Estrada Dona Castorina 110
22460-320 Rio de Janeiro - RJ
Brazil
manfredo@impa.br

João Lucas Marques Barbosa
Rua Carolina Sucupira 723 Ap 2002
60140-120 Fortaleza - Ce
Brazil
joaolucasbarbosa@terra.com.br