SUMO-specific proteases/isopeptidases: SENPs and beyond

Arnab Nayak and Stefan Müller*

Abstract
We summarize the evolutionary relationship, structure and subcellular distribution of SUMO proteases (or SUMO isopeptidases). We also discuss their functions and allude to their involvement in human disease.

Keywords: SUMO, SUMO isopeptidase, SUMO-specific protease, SENP, Desi-1, Desi-2, USPL1

Introduction
The ubiquitin-like SUMO (small ubiquitin-related modifier) system is a post-translational protein modification pathway in eukaryotes [1,2]. SUMOylation is a highly dynamic process, where deconjugation (deSUMOylation) is catalyzed by a family of cysteine proteases, termed SUMO-specific proteases or SUMO isopeptidases. A subset of these enzymes also functions in processing of the SUMO precursor proteins, which is a prerequisite for their conjugation. In this review, we summarize the current view of SUMO deconjugating enzymes. We discuss their evolutionary relationships, subcellular distributions and functions as well as their involvement in human disease.

SUMO belongs to the family of ubiquitin-like proteins. Like ubiquitin, it functions as a protein modifier that is covalently attached to ε-amino groups of lysine residues of target proteins [1,2]. Lower eukaryotes attach a single SUMO form (known as smt3) to target proteins, whereas the human SUMO system makes use of three related SUMO forms (SUMO1, SUMO2 and SUMO3). All SUMO/smt3 forms are expressed as precursor proteins that require carboxy-terminal proteolytic processing prior to their conjugation. Processing exposes a carboxy-terminal di-glycine motif, which is essential for conjugation. Subsequent conjugation proceeds by a pathway that typically involves an E1-E2-E3 enzymatic cascade. Modification by SUMO generally controls protein-protein interactions by recruiting binding partners that harbor specific SUMO-interaction motifs (SIMs).

Regulated deconjugation of SUMO from its substrates is a central element of the SUMO system as it assures the plasticity of protein interaction networks. The deconjugation process is catalyzed by a family of cysteine proteases, termed SUMO isopeptidases or SUMO-specific proteases. Members of this enzyme class function as deconjugating enzymes for isopeptide-linked SUMO-protein conjugates and also depolymerize isopeptide-linked poly-SUMO2/3 chains. Moreover, some family members act as processing factors for the carboxy-terminal maturation of the SUMO precursor. The known SUMO-specific isopeptidases and proteases are cysteine proteases that are classified into three distinct families: the Ulp/SENP (ubiquitin-like protease/sentrin-specific protease) family, the Desi (deSUMOylating isopeptidase) family and USPL1 (ubiquitin-specific peptidase-like protein 1).

Gene organization and evolutionary history
All identified SUMO isopeptidases/proteases are cysteine proteases. They share a similar catalytic mechanism but belong to different superfamilies that are distinguished by the fold of their respective catalytic domains.

Ulp/SENP proteins belong to the C48 family subgroup of the CE superfamily of thiol proteases whose founder member is Ulp1, first discovered in the yeast Saccharomyces cerevisiae [3]. Subsequently, Ulp2 was identified as a second SUMO-deconjugating enzyme in yeast [4]. Ulp1/2-related isopeptidase genes are also found in the genome of Drosophila melanogaster [5,6]. In higher eukaryotes, the family is more diverse. Seven human proteins were initially classified as Ulp family members and annotated as SENPs [7]. (The term sentrin was coined by Ed Yeh as an alternative name for SUMOs.) Notably, however, later experimental work revealed that SENP8 acts on the ubiquitin-family member Nedd8, but not on SUMO paralogs [8,9]. The human genome therefore
encodes six dedicated SUMO-specific members of the Ulp/SENP family: SENP1, SENP2, SENP3, SENP5, SENP6 and SENP7. Sequence analyses and phylogenetic comparison of the human SENPs with Ulp1 and Ulp2 from lower eukaryotes illustrate that SENP1, SENP2, SENP3 and SENP5 are evolutionarily related to the Ulp1 branch, whereas SENP6 and SENP7 are related to the Ulp2 branch (Figure 1). The tree further reveals the pairwise similarity of SENP1 to SENP2, SENP3 to SENP5 and SENP6 to SENP7.

The deSUMOylating isopeptidases Desi-1 and Desi-2 belong to the evolutionarily distinct C97 family of cysteine proteases [10]. Orthologs of Desi-1 and Desi-2 are found in plants and metazoa, but are missing in lower eukaryotes such as yeast.

USPL1 is, to date, the only known mammalian SUMO-specific protease of the C98 family [11]. USPL1-related deconjugases are found in metazoan vertebrates and invertebrates. USPL1 is not related to the Ulp/SENP and Desi families, but the catalytic domain of USPL1 shows homology to the C19 family of ubiquitin-specific proteases. For example, within this region, USPL1 shares around 20% sequence identity with the ubiquitin-deconjugating enzyme USP1.

Characteristic structural features

The common characteristic of the Ulp/SENP family is their conserved catalytic domain, which spans around 200 amino acids in the carboxy-terminal part of the protein (Figure 2). This domain has sequence and structural similarity to the catalytic region of adenoviral proteases, which cleave viral and cellular proteins. The human Ulp/SENP family members share 20 to 60% sequence identity within their catalytic domains. The SENP1-

![Figure 1](http://genomebiology.com/2014/15/1/422)

Figure 1 Evolutionary relationship of Ulp/SENP family members. The phylogenetic tree displays the relationship between Saccharomyces cerevisiae (S.c), Drosophila melanogaster (Dm) and human Ulp/SENP family members. Confidence numbers generated by the bootstrapping procedure are shown for each branch in the tree. The following sequences were used for input: SENP1 UniProtKB, Q9P0U3; SENP2 UniProtKB, Q9HC62; SENP3 UniProtKB, Q9H4L4; SENP5 UniProtKB, Q9G10; SENP6 UniProtKB, Q9GZ1; SENP7 UniProtKB, Q9BGQ6; Dm_Ulp1, GenBank: AAF49933.1; Dm_Ulp2 (Velo; verloren), GenBank: AAS65070.1; S_c_Ulp1, UniProtKB/Swiss-Prot Q02724.1; S_c_Ulp2, UniProtKB/Swiss-Prot P40537.

![Figure 2](http://genomebiology.com/2014/15/1/422)

Figure 2 Structural organization of SUMO-specific-proteases/isopeptidases. The domain organizations of Ulp/SEPNs and Desi family members are shown. Green ovals represent the catalytic domain. The sequence determinants that are responsible for subcellular targeting are represented by orange ovals. The length of the proteins as total number of amino acids is presented on the right side. For the catalytic domains of SENP family members, sequence identity shared with SENP1 is also shown.

SENPs have amino-terminal regions of variable length that have crucial regulatory functions. These regions frequently contain interaction domains for cellular adaptor proteins that determine the subcellular distribution of Ulp/SENP family members [17-19]. Post-translational modifications, such as phosphorylation or ubiquitylation, within these regions provide additional regulatory layers for the recruitment of binding partners or the control of...
Ulp/SENP stability [20-23]. Interestingly, most SENPs contain one or more SIM modules in their amino-terminal region, which probably contribute to the selection of substrates or facilitate the targeting of specific SENPs to poly-SUMO chains.

Desi-1 and Desi-2 are small proteins characterized by PPPDE (permutated papain fold peptidases of the double-stranded RNA viruses and eukaryotes) domains of around 140 amino acids. Desi-1 and Desi-2 share about 20% sequence identity within this region. Structural data from Desi-1 revealed that the protein forms a homodimer, in which the groove between the two subunits forms the active site. This region contains two conserved cysteine and histidine residues that form a catalytic dyad [10,24]. Interestingly, the active-site groove of Desi-1 is occupied by its own carboxy-terminal segment [24], which is very different from the open cleft in SENPs.

The catalytic domain of USPL1 contains a catalytic triad composed of Cys-His-Asp-residues [11,25].

Localization
The different SUMO isopeptidases have characteristic subcellular distributions, which seems to be a way of restricting their activity to a specific set of substrates. The Ulp/SENP family members are predominantly concentrated in distinct subnuclear regions (Figure 3). SENP1 and SENP2, as well as the yeast Ulp1 enzyme, are concentrated at the nuclear envelope through their interaction with components of the nuclear pore complex [18,26-28]. Within the nucleus SENP1 and SENP2 are excluded from the nucleolus, but enriched in nuclear foci that partially overlap with PML nuclear bodies. In mitosis, SENP1 and SENP2 redistribute from the nuclear envelope to the kinetochores [29]. It is worth noting that despite its predominately nuclear localization, SENP2 was reported to shuttle between the nucleus and the cytoplasm [30]. Moreover, distinct splice variants of SENP2 may exhibit specific subcellular distributions [31].

SENP3 and SENP5 are compartmentalized in the nucleolus, where they act on proteins that are involved in the early steps of ribosome maturation [17,32-34]. A subfraction of SENP3 and SENP5 also resides in the nucleoplasm and the cytoplasm. Interestingly, at G2/M transition, prior to nuclear envelope breakdown, SENP5 translocates to the mitochondrial surface [35]. SENP6 and SENP7 mainly exhibit a nucleoplasmic distribution. In contrast to SENPs, Desi family members are primarily concentrated in the cytoplasm [35]. USPL1 is a predominately nuclear protein and co-localizes with coilin in Cajal bodies [11,25].

Function

SUMO maturation versus SUMO deconjugation

Ulp/SENP family members can act as deconjugating or maturation/processing enzymes. The yeast Ulp family was covered in a recent review [31] and will not be further discussed here. Distinct human SENPs exert different activities in either processing or deconjugation (Figure 4). Moreover, preferences for specific SUMO paralogs have been reported for specific SENPs as outlined below. The maturation process removes the amino acids carboxy-terminal to a di-glycine motif, whose exposure is essential for conjugation. The substrate specificity of SENPs for processing is

Figure 3 Schematic representation of the subcellular distribution of mammalian SUMO-specific isopeptidases of the SENP and Desi families. The predominant subcellular distribution of the respective SENPs is indicated by the green color. Mit, mitochondria; NE, nuclear envelope; No, nucleolus; PML, promyelocytic leukemia nuclear bodies.
also rather inefficient in deconjugating monomeric SUMO and SENP7 exert only very weak processing activity and are processing and deconjugase activity for SUMO1 [32,39]. SENP6 SUMO2 and SUMO3 and does not exhibit significant processing and deconjugation of SUMO3 [14,37,38]. The SENP3-SENP5 couple shows a very strong preference for processing and deconjugation of SUMO2 and SUMO3 and is most efficient for SUMO2 over SUMO1 and SUMO3 [14,37,38]. The SENP3-SENP5 couple shows a very strong preference for processing and deconjugation of SUMO2 and SUMO3 and does not exhibit significant processing and deconjugase activity for SUMO1 [32,39]. SENP6 and SENP7 exert only very weak processing activity and are also rather inefficient in deconjugating monomeric SUMO from substrates. Importantly, however, SENP6 and SENP7, as well as the related Ulp2 from yeast, are excellent enzymes for deconjugating SUMO moieties from SUMO2-SUMO3 di-SUMOylated substrates and from polymeric chains of SUMO2 and SUMO3 [39-42]. Their main function seems to be the editing of lysine-linked SUMO-SUMO chains.

In contrast to Ulp/SENP family members, the Desi-1 and Desi-2 enzymes exert isopeptidase activity on a selected substrate, but have only an extremely low processing activity for the pre-SUMO precursor protein [10,24]. USP1 is active in processing and deconjugation.

Substrate specificity of SUMO proteases

With only nine SUMO isopeptidases identified to date, the SUMO-deconjugating machinery appears to be less complex than the de-ubiquitylating system. Even if there are unidentified SUMO isopeptidases or additional alternative splice variants of SENPs, their total number is likely to remain far below the currently known 100 ubiquitin deconjugases. The situation is similar when comparing the number of E3 ubiquitin ligases and E3 SUMO ligases. Why the modification and demodification of hundreds of different SUMO conjugates are controlled by only a limiting set of enzymes is a central question in the field. One scenario is that the SUMO system, including the deconjugation machinery, coordinately regulates groups of proteins that are functionally and physically linked [43]. In this scenario, a given SUMO isopeptidase is likely to act on a larger set of proteins, which in many cases are associated in larger protein complexes. For example, the human SENP3 enzyme deconjugates a number of SUMO2/3 conjugates at nuclear pre-60S ribosomes [33,34,44-47]. The concept of group modification or demodification complicates the interpretation of experimental approaches that had concentrated on individual SUMO substrates for a given isopeptidase. In the following, we will try to integrate the available data to provide a more general picture and to define cellular pathways that are controlled by a distinct SUMO isopeptidase.

Cellular pathways regulated by SUMO-specific isopeptidases

SENP1

The inactivation of transcription factors by SUMO conjugation and their activation by SUMO deconjugation is a recurrent theme. SENP1-mediated deSUMOylation seems to be crucial for the activation of transcriptional programs in innate immune responses and in the development of B and T cells. In these processes, IRF8, STAT5 and Bcl11b have been defined as relevant SENP1 targets [48-50], but SENP1 probably acts on a broader spectrum of transcription factors in these pathways and other processes. Along this line, it has been shown that deSUMOylation of HIF1α by SENP1 under conditions of hypoxia is required for stabilization of HIF1α and the expression of HIF1α target genes. Recruitment of SENP1 to specific substrates could be coordinated by posttranslational modifications as exemplified by the phosho-dependent binding of SENP1 to Bcl11b [50].

Figure 4 SUMO processing and SUMO deconjugation activities of human SENP family members. Schematic representation of SENP processing and deconjugation activities towards distinct SUMO paralogs. The left part summarizes the activities of SENPs in maturation/processing of human SUMO paralogs. The maturation process removes the amino acids carboxy-terminal to a di-glycine (GG) motif (sequences are given for the human SUMO variants). The middle part describes the specificity for deconjugating distinct SUMO forms from substrates (isopeptidase activity). The right part highlights the activity of SENP6 and SENP7 for editing lysine (K)-linked SUMO2/3 chains. These chains are predominantly formed terminal to the di-glycine motif. (sequences are given for the human SUMO variants).
In mitotic cells, SENP1 appears to target selected substrates at the kinetochore. This is critical for mitotic progression because the knockdown of SENP1 delays sister chromatid separation at metaphase [29].

SENP2

Like SENP1, SENP2 is involved in the regulation of gene expression programs in developmental processes. Yeh and co-workers [51] demonstrated that deletion of the SENP2 gene in mice causes defects in cardiac development resulting from the reduced expression of Gata4 and Gata6. This reduced expression has been linked to the lack of SENP2-mediated deSUMOylation of a subunit of the polycomb repressive complex 1 (PRC1). PRC1 represses transcription of Gata4, Gata6 and numerous other developmental regulator genes, indicating a central role for SENP2 in early embryonic development.

SENP3

SENP3 has a well-established function in the control of ribosome biogenesis and particularly affects the maturation of the 28S rRNA [33,34]. This is likely to involve the SENP3-catalyzed removal of SUMO2 or SUMO3 from various 60S maturation factors acting on nucleolar pre-60S ribosomal particles. In addition to its role in ribosome biogenesis, a nucleoplasmic subfraction of SENP3 controls transcriptional processes through demodification of transcriptional co-regulators and components of chromatin-modifying complexes [52]. Recent data show that SENP3-mediated deSUMOylation controls the expression of osteogenic differentiation factors and of other developmental regulators through deSUMOylation of MLL1/2 histone-methyltransferase complexes [53].

SENP3 abundance and subcellular distribution are tightly regulated by environmental stimuli. Redox-sensitive cysteine residues in the amino-terminal region trigger the stabilization of SENP3 in response to redox stress, whereas the PERK1 kinase pathway induces its lysosomal degradation in response to oxygen or glucose deprivation [20,54]. In mitosis, SENP3 is heavily phosphorylated, which may control its substrate specificity and/or subcellular distribution [21].

SENP5

The nucleolar function of SENP5 is also related to the ribosome biogenesis pathway, where it is involved in RNA polymerase I-mediated transcription of the 47S rRNA [34]. As mentioned above, upon G2/M transition, SENP5 translocates to mitochondria, where the deSUMOylation of mitochondrial proteins seems to drive mitochondrial fragmentation during mitosis [35,55].

SENP6

SENP6 is the principal chain-editing enzyme in human cells and accordingly regulates multiple signaling pathways that are controlled by poly-SUMOylation. A well-characterized poly-SUMO2/3-regulated process is SUMO-mediated ubiquitylation by SUMO-targeted ubiquitin-ligases (StUBLs). StUBLs, whose prototypic member is RNF4, are poly-SUMO2/3-binding ubiquitin ligases that are recruited to poly-SUMOylated substrates to trigger their ubiquitylation. Among the established targets of RNF4 are the promyelocytic leukemia (PML) protein and the inner kinetochore protein CENP-I. SENP6 counterbalances this poly-SUMO-RNF4-dependent degradation pathway by preventing the polySUMOylation of PML or CENP-I, as evidenced by the accumulation of both proteins in the absence of SENP6 [56-58]. Other defined substrates for SENP6 are the NF-kB regulator NEMO and the replication factor RPA70 [59,60]. How SENP6 is selectively targeted to its substrates under specific conditions is currently not understood.

SENP7

Similar to SENP6, SENP7 preferentially acts on SUMO-SUMO chains. Small interfering RNA (siRNA)-mediated SENP7 depletion experiments point to the crucial involvement of SENP7 in chromatin remodeling and chromatin dynamics. It has been proposed that chromatin relaxation in response to DNA damage is promoted by SENP7-mediated removal of SUMO2/3 chains from the KRAB-associated protein 1 (KAP1) [19]. This allows the recruitment of the chromatin remodeler CHD3, which triggers chromatin relaxation. Importantly, the heterochromatin protein HP1 seems to function as the chromatin-targeting adaptor for SENP7 and may itself be a substrate for SENP7. Interestingly, recent work identified a shorter splice variant of SENP7, which lacks the HP1 binding domain and accordingly is unable to deSUMOylate HP1 [61]. These data exemplify the possible role of alternative splicing of SENPs for substrate selection.

Desi-1/2 and USPL1

Only limited functional data on Desi-1/2 and USPL1 are currently available. Desi-1 and -2 seem to have a more restricted substrate specificity, with the transcriptional repressor BZEL being the only substrate identified to date [10]. Consistent with its localization to Cajal bodies, USPL1 has been shown to be important for small nuclear ribonucleic particle (snRNP) assembly and pre-mRNA splicing, but the relevant substrates have not yet been identified [11,25].

Frontiers

Among the most burning questions in the field is the target specificity of distinct SUMO isopeptidases. Quantitative mass-spectrometry approaches that monitor
SUMOylation in cells or tissues in which specific family members are depleted might be one promising approach to answer this question. Unraveling the substrate specificity of distinct SENP splice variants would also be an important aspect along this line. Considering that USP1 exerts essential non-catalytic functions [11], it is also crucial to define potential functions of other SUMO isopeptidases that are not linked to their catalytic activity. Knock-in mice expressing catalytic-dead variants of the respective enzymes would be the best model system to tackle this search.

Future work will also need to uncover how the misregulation of SENPs is linked to human disease. Most studies have focused on an involvement of SENPs in the development and/or progression of cancer [62]. Overexpression of SENP1 has been correlated with prostate cancer aggressiveness and metastatic potential [63–65]. This is at least partially mediated through induction of HIF1α-dependent signaling pathways. SENP1 additionally activates other oncogenic signaling pathways, such as c-Jun and androgen-receptor-mediated transcription. Like SENP1, SENP3 accumulates in several human cancers, with colon carcinomas having the highest ratio of SENP3 expression [54,66]. These and other data indicate a potential significance for SENPs as diagnostic markers and also make this enzyme class an attractive drug target in distinct human tumors [67,68].

Abbreviations
Desi: deSUMOylating isopeptidase; KAP1: KRAB-associated protein 1; PML: promyelocytic leukemia; siRNA: small interfering RNA; snRNP: small nuclear ribonucleic particle; StUbL: SUMO-targeted ubiquitin-ligase; SUMO: small ubiquitin-related modifier; Ulp/SENP: ubiquitin-like protease/sentrin-specific protease; USPL1: ubiquitin-specific peptidase-like protein 1.

Acknowledgments
We thank all members of our institute for support and stimulating discussions. This work was funded by the DFG Priority program SPP1365, SFB684, SFB815 and LOEWE Ub-Net.

Published online: 31 July 2014

References
1. Flotho A, Melchior F: SUMOylation: a regulatory protein modification in health and disease. Annu Rev Biochem 2013, 82:357–385.
2. Gareau JR, Lima CD: The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 2010, 11:861–871.
3. Li SJ, Hochstrasser M: A new protease required for cell-cycle progression in yeast. Nature 1999, 398:246–251.
4. Li SJ, Hochstrasser M: The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Mol Cell Biol 2000, 20:2367–2377.
5. Benidk D, Favaloro V, Luo L: The SUMO protease Verloren regulates dendrite and axon targeting in olfactory projection neurons. J Neurosci 2012, 32:8331–8340.
6. Bhaskar V, Smith M, Courey AJ: Conjugation of Smt3 to dorsal may potentiate the Drosophila immune response. Mol Cell Biol 2002, 22:492–504.
7. Yeh ET, Gong L, Kamitani T: Ubiquitin-like proteins: new wines in new bottles. Proteins 2000, 48:1–14.
8. Gan-Erdene T, Nagamalleswari K, Lin Y, Wu K, Pan QZ, Wilkinson KD: Identification and characterization of DEN1, a deiodinase of the ULP family. J Biol Chem 2003, 278:28982–28990.
9. Mendoza HM, Shen LN, Botting C, Lewis A, Chen J, Ink B, Hay RT: NEDP1, a highly conserved cysteine protease that deNEDDylates Culmins. J Biol Chem 2003, 278:25557–25563.
10. Shin EJ, Shin HW, Nam E, Kim WS, Kim JH, Oh BH, Yun Y: DeSUMOylating isopeptidase: a second class of SUMO protease. EMBO Rep 2012, 13:339–346.
11. Schulte S, Chachami G, Kozackiewicz L, Winter U, Stankovic-Valentin N, Haas P, Hofmann K, Urlaub H, Ovaa H, Wittenbrodt J, Meulemeester E, Melchor F: Ubiquitin-specific protease-like 1 (USPL1) is a SUMO isopeptidase, essential, non-catalytic functions. EMBO Rep 2012, 13:930–938.
12. Massessova E, Lima CD: Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol Cell 2000, 9:865–876.
13. Reverter D, Lima CD: A basis for SUMO protease specificity provided by analysis of human Senp2 and a Senp2-SUMO complex. Structure 2004, 12:1519–1531.
14. Reverter D, Lima CD: Structural basis for SENP2 protease interactions with SUMO precursors and conjugated substrates. Nat Struct Mol Biol 2006, 13:1060–1068.
15. Shen L, Tatham MH, Dong C, Zagorska A, Naismith JH, Hay RT: SUMO protease SENP1 induces isomerization of the scissile peptide bond. Nat Struct Mol Biol 2006, 13:1069–1077.
16. Shen LN, Dong C, Liu H, Naismith JH, Hay RT: The structure of SENP1-SUMO-2 complex suggests a structural basis for discrimination between SUMO paralogues during processing. Biochem J 2006, 397:279–288.
17. Nishida T, Tanaka H, Yasuda H: A novel mammalian Smt3-specific isopeptidase (1 SMT3P1) localized in the nucleus at interphase. Eur J Biochem 2000, 267:6423–6427.
18. Hang J, Dasio M: Association of the human SUMO-1 protease SENP2 with the nuclear pore. J Biol Chem 2002, 277:1961–1966.
19. Garvin AJ, Densham RM, Blair-Reid SA, Pratt KM, Stone HR, Weekes D, Lawrence KJ, Morris JR: The deSUMOylase SENP7 promotes chromatin relaxation for homologous recombination DNA repair. EMBO Rep 2013, 14:975–983.
20. Guo C, Hildick KL, Luo J, Dearden L, Wilkinson KA, Henley J: SENP3-mediated deSUMOylation of dynamin-related protein 1 promotes cell death following ischaemia. Mol Cell Biol 2009, 20:410–418.
21. Klein UR, Haindl M, Nigg EA, Muller S, RanBP2 and SENP3 function in a mitotic SMO2/3 conjugation-deconjugation cycle on Borealin. Mol Biol Cell 2009, 20:3387–3398.
22. Kuo ML, den Besten W, Thomas MC, Sherr CJ: Arf-induced turnover of the nuclear nucleophosmin-associated SMO2-3 protease Senp3. Cell Cycle 2008, 7:3379–3387.
23. Wang Y, Yang J, Yang K, Cang H, Huang ZX, Li H, Yi J: The biphasic redox sensing of SENP3 accounts for the HIF-1 transcriptional activity shift by oxidative stress. Acta Pharmacol Sin 2012, 33:953–963.
24. Suh HY, Kim JH, Woo JS, Ku B, Shin EJ, Yun Y, Oh BH: Crystal structure of DeS1-1, a novel deSUMOylase belonging to a putative isopeptidase superfamily. Proteins 2012, 80:2099–2104.
25. Hutton S, Chachami G, Winter LJ, Melchor F, Lランドon AI: A role for the Cajal-body-associated SUMO isopeptidase USP11 in snRNA transcription mediated by RNA polymerase II. J Cell Sci 2014, 127:1065–1078.
26. Goeres J, Chan PK, Mukhopadhyay D, Zhang H, Raught B, Matunis MJ: The SUMO-specific isopeptidase SENP2 associates dynamically with nuclear pore complexes through interactions with karyopherins and the Nup107-160 nucleoporin subcomplex. Mol Biol Cell 2011, 22:4868–4882.
27. Takahashi Y, Mizoi J, Toh EA, Kikuchi Y, Ye et Ulp1, an Smt3-specific protease, associates with nucleoporins. J Biochem 2000, 128:723–725.
28. Zhang H, Saitho H, Matunis MJ: Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex. Mol Cell Biol 2002, 22:6498–6508.
29. Cubero-Potts C, Goeres JD, Matunis MJ: SENP1 and SENP2 affect spatial and temporal control of sumoylation in mitosis. Mol Cell Biol 2013, 23:3483–3495.
30. Itahana Y, Yeh ET, Zhang Y: Nucleocytoplasmic shuttling modulates activity and ubiquitination-dependent turnover of SUMO-specific protease 2. Mol Cell Biol 2006, 26:4675–4689.
31. Hickey CM, Wilson NR, Hochstrasser M: Function and regulation of SUMO proteases. Nat Rev Mol Cell Biol 2012, 13:755–766.
Control of nuclear activities by substrate-selective NAYAK and MÜLLER

32. GONG, L. YEH ET: Characterization of a family of nuclear SUMO-specific proteases with preference for SUMO-2 or SUMO-3. J Biol Chem 2006, 281:15869–15877.

33. HANIDL M, HARASIM T, EICK D, MULLER S: The nuclear SUMO-specific protease SENP3 reverses SUMO modification of nuclear phosphoproteins and is required for rRNA processing. EMBO Rep 2008, 9:279–283.

34. YUN C, WANG Y, MUKHOPADHYAY D, Bocklund P, KOLLI N, VERGEY A, WILKINSON KD, DASO M: Nuclear protein B23/nucleophosmin regulates the vertebrate SUMO pathway through SENP3 and SENP6 proteases. J Cell Biol 2008, 183:589–595.

35. NAYAK A, BRASCH E, XU L, McBride HM: Translocation of SENPs from the nucleoli to the mitochondria regulates DRP1-dependent fission during mitosis. J Cell Biol 2009, 184:1783–1795.

36. SHARMA P, TAMAI K, LAUDELI M, DASSO M, KUEHN MR: SENP1 is essential for desumoylating SUMO1-modified proteins but dispensable for SUMO2 and SUMO3 desumoylation in the mouse embryo. Cell Rep 2013, 3:1640–1650.

37. BEKES M, PRUDDEN J, SRIKUMAR T, RAUGHT B, BODDY MN, SALVESEN GS: The dynamics and mechanism of SUMO chain deconjugation by SUMO-specific proteases. J Biol Chem 2011, 286:10238–10247.

38. MIKOŁAJOCKI J, DRAG M, BEKES M, CAO JT, RONAI Z, SALVESEN GS: Small ubiquitin-like modifier (SUMO)-specific proteases: profiling the specificities and activities of human SENPs. J Biol Chem 2007, 282:26217–26224.

39. KOLLI N, MIKOŁAJOCKI J, DRAG M, MUKHOPADHYAY D, MOFFATT N, DASSO M, SALVESEN G, WILKINSON KD: Distribution and paralogue specificity of mammalian deSUMOylating enzymes. Biochem J 2010, 430:333–344.

40. DIOG M, MIKOŁAJOCKI J, KRISHNAKUMAR IM, HUANG Z, SALVESEN GS: Activity profiling of human deSUMOylating enzymes (SENPs) with synthetic substrates suggests an unexpected specificity of two newly characterized members of the family. Biochem J 2008, 409:461–469.

41. LIMA CD, REVERER D: Structure of the human SENP7 catalytic domain and poly-SUMO deconjugation activities for SENP6 and SENP7. J Biol Chem 2008, 283:32045–32055.

42. SHEN LN, GEORFFROY MC, JAFFRAY EG, HAY RT: Characterization of SENP7, a SUMO-2/3-specific isopeptidase. Biochem J 2009, 421:223–230.

43. JENTSCH T, PSAILHEY I: Control of nuclear activities by substrate-selective and protein-group SUMOylation. Annu Rev Genet 2013, 47:167–186.

44. CASTLE CD, CASSIMERE EK, DENCOURT C, LASIL interacts with the mammalian Rix1 complex to regulate ribosome biogenesis. Mol Biol Cell 2012, 23:716–728.

45. FINKBEINER E, HAINDL M, MULLER S: The SUMO system controls nucleolar partitioning of a novel mammalian ribosome biogenesis complex. EMBO J 2011, 30:1067–1078.

46. FINKBEINER E, HAINDL M, RAMAN N, MULLER S: SUMO routes ribosome maturation. Nucleus 2011, 2:527–532.

47. RAMAN N, NAYAK A, MULLER S: The SUMO system: a master organizer of nuclear protein assemblies. Chromosoma 2013, 122:475–485.

48. CHANG TH, XU S, TAILOR P, KANO T, TOZATO K: The small ubiquitin-like modifier-deconjugating enzyme sentrin-specific peptidase 1 switches IFN regulatory factor 8 from a repressor to an activator during macrophage activation. J Immunol 2012, 189:3548–3556.

49. VANG Nguyen T, ANGKASEKWANAI P, DOO H, LIN FM, LIU LS, CHENG J, CHIN Y, DONG C, YEH ET: SUMO-specific protease 1 is critical for early lymphoid development through regulation of STAT5 activation. Mol Cell 2012, 45:210–221.

50. ZHANG LJ, VOGEL WK, LIU X, TOPARK-NGARM A, ARBOGAST BL, MAIER CS, FITZ TM, LEID M: Coordinated regulation of transcription factor BcI1b activity in thymocytes by the mitogen-activated protein kinase (MAPK) pathways and protein sumoylation. J Biol Chem 2012, 287:26971–26988.

51. KANG X, QI Y, ZUO Y, WANG Q, ZOU Y, SCHWARTZ RJ, CHENG J, YEH ET: SUMO-specific protease 2 is essential for suppression of polycomb group protein-mediated gene silencing during embryonic development. Mol Cell 2010, 38:191–201.

52. HUANG C, HAN Y, WANG Y, SUN X, YAN S, YEH ET, CHENG J, CANG H, LI H, SHI G, CHENG J: SENP3 is responsible for Hif-1 transcription activity under mild oxidative stress via p300 de-SUMOylation. EMBO J 2009, 28:2748–2762.

53. NAYAK A, VALE-BOURONCLE S, MORSZCEK C, MULLER S: The SUMO-specific isopeptidase SENP3 regulates MLL1/MLL2 methyltransferase complexes and controls osteogenic differentiation. Mol Cell 2014, 55:47–58.