$\Delta\rho\pi$ interaction leading to N^* and Δ^* resonances *

Ju-Jun Xie · A. Martínez Torres · E. Oset · P. González.

Abstract We have performed a calculation for the three body $\Delta\rho\pi$ system by using the fixed center approximation to Faddeev equations, taking the interaction between Δ and ρ, Δ and π, and ρ and π from the chiral unitary approach. We find several peaks in the modulus squared of the three-body scattering amplitude, indicating the existence of resonances, which can be associated to known $I = 1/2, 3/2$ and $J^P = 1/2^+, 3/2^+$ and $5/2^+$ baryon states.

Keywords Fixed center approximation · Three body system · Chiral unitary model

1 Introduction

Our knowledge on the baryon resonances mainly comes from πN experiments and is still under debate [1,3,4]. The information extracted from photon nucleon reactions have helped in making progress in this field, reconforming many known resonances and claiming evidence for new ones [5,6,7,8,9,10,11]. The fact that some known resonances are explained in terms of three body systems of two mesons and one baryon [12,13] should certainly stimulate work looking for resonances in three body final states of reactions. In this sense a suggestion is made in [14] to look for a predicted state of $N\bar{K}K$ [15,16] in the $\gamma p \rightarrow K^+K^-p$ reaction close to threshold.

* Presented at the 21st European Conference on Few-Body Problems in Physics, Salamanca, Spain, 30 August - 3 September 2010.

Ju-Jun Xie
Instituto de Física Corpuscular (IFIC), Centro Mixto CSIC-Universidad de Valencia, Institutos de Investigación de Paterna, Aptd. 22085, E-46071 Valencia, Spain
Department of Physics, Zhengzhou University, Zhengzhou, Henan 450001, China
E-mail: xiejjun@ific.uv.es

A. Martínez Torres
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

E. Oset and P. González
Departamento de Física Teórica and Instituto de Física Corpuscular (IFIC), Centro Mixto CSIC-Universidad de Valencia, Institutos de Investigación de Paterna, Aptd. 22085, E-46071 Valencia, Spain
The main aim of the present work is to investigate the three-body $\Delta\rho\pi$ system considering the interaction of the three components among themselves keeping in mind the expected strong correlations of the $\Delta\rho$ system which generate the N^* and/or Δ^* bound states. For this purpose, we have solved the Faddeev equations by using the fixed center approximation (FCA) in terms of two body $\Delta\pi$ and $\rho\pi$ scattering amplitudes.

The FCA to the Faddeev equations is a tool which has proved to be efficient and accurate to study the interaction of particles with bound states of a pair of particles at very low energies, or below threshold $[17,18,19,20]$. Recently, this approach was used in Ref. $[21]$ to describe the $f_2(1270), \rho_3(1690), f_4(2050), \rho_5(2350)$ and $f_6(2510)$ resonances as multi-ρ states, and in Ref. $[22]$ to study the $K^*_2(1430), K^*_3(1780), K^*_4(2045), K^*_5(2380)$, and a not yet discovered K^*_6 resonances as $K^*-\text{multi-}\rho$ states. The success of these works encourages us to extend the method to study the present $\Delta\rho\pi$ system.

2 Formalism and results

For the three body $\Delta\rho\pi$ system, we consider $\Delta\rho$ as a bound state of $N^*(I_{\Delta\rho} = 1/2)$ resonance or $\Delta^*(I_{\Delta\rho} = 3/2)$ resonance, which allows us to use the FCA to solve the Faddeev equations. The external π meson interacts successively with the Δ baryon and the ρ meson which form the $\Delta\rho$ cluster. In terms of two partition functions T_1 and T_2, the FCA equations are

\begin{align*}
T_1 &= t_1 + t_1 G_0 T_2, \quad (1) \\
T_2 &= t_2 + t_2 G_0 T_1, \quad (2) \\
T &= T_1 + T_2, \quad (3)
\end{align*}

where T is the total three-body scattering amplitude and $T_i (i = 1, 2)$ accounts for the diagrams starting with the interaction of the external particle with the particle i of the compound system and t_i represents the two body $\Delta\pi$ and $\rho\pi$ unitarized scattering amplitudes.

Next, we will show the results obtained from the scattering amplitude of the $\Delta\rho\pi$ system. We evaluate the scattering amplitude T matrix of Eq. 3 and associate the peaks of $|T|^2$ to resonances. In table 1 we show a summary of the findings obtained from our model and the tentative association to known states $[1]$.

3 Discussions and Conclusions

We have performed a Faddeev calculation for the three body $\Delta\rho\pi$ system by using the fixed center approximation, taking the interaction between Δ and ρ, Δ and π, and ρ and π from the chiral unitary approach. The $\Delta\rho$ interaction within the framework of the hidden-gauge formalism in $I = 1/2$ sector describes the $N^*(1675), JP = 5/2^-$ as a $\Delta\rho$ bound state, then we write the three-body interaction in terms of two-body ($\Delta\pi$ and $\rho\pi$) s-wave scattering amplitudes based on the chiral Lagrangians. The three body states found are degenerated in $JP = 1/2^+, 3/2^+, 5/2^+$. We found candidates in the PDG book which can be associated to the states obtained, but one of them, with isospin 3/2 and mass around 2000 MeV, is missing. It is very interesting to observe
Table 1 The properties of the generated resonances with our model and their possible PDG counterparts.

$I, \Delta \rho$	Mass of our model (MeV)	PDG data name	J^P	mass (MeV)	status
$\frac{1}{2}^-, \frac{3}{2}^+$	~ 1850	$N^*(1900)$	$3/2^+$	1900	**
$\frac{1}{2}^-, \frac{3}{2}^+$	~ 1800	$\Delta^*(1750)$	$1/2^+$	1750	*
		$\Delta^*(2000)$ 1/2	$5/2^+$	1724 ± 61	Ref. 23
		$\Delta^*(2000)$ 3/2	$5/2^+$	1752 ± 32	Ref. 24
	~ 1900	$\Delta^*(1905)$	$3/2^+$	1900 − 1970	****
	~ 2200	$\Delta^*(2000)$ 5/2	$5/2^+$	2200 ± 125	Ref. 25
$\frac{1}{2}^-, \frac{3}{2}^+$	~ 2000	$N^*(2000)$	$5/2^+$	2000	**
$\frac{1}{2}^-, \frac{3}{2}^+$	~ 2000	?	?	?	?

that, even if the $\Delta \rho \pi$ system allows for $I = 5/2$, the dynamics of the system precludes the formation of these exotic states.

Acknowledgements This work is partly supported by DGICYT Contract No. FIS2006-03438, the Generalitat Valenciana in the project PROMETEO and the EU Integrated Infrastructure Initiative Hadron Physics Project under contract RII3-CT-2004-506078. Ju-Jun Xie acknowledges Ministerio de Educaci´on Grant SAB2009-0116. The work of A. M. T. is supported by the Grant-in-Aid for the Global COE Program “The Next Generation of Physics, Spun from Universality and Emergence” from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

References

1. C. Amsler et al. (Particle Data Group), Phys. Lett. B667, 1 (2008).
2. R. A. Arndt, W. J. Briscoe, I. I. Strakovsky and R. L. Workman, “Extended Partial-Wave Analysis of πN Scattering Data,” Phys. Rev. C 74, 045205 (2006).
3. R. Arndt, W. Briscoe, I. Strakovsky and R. Workman, “Partial-wave analysis and baryon spectroscopy,” Eur. Phys. J. A 35, 311 (2008).
4. R. A. Arndt, W. J. Briscoe, M. W. Paris, I. I. Strakovsky and R. L. Workman, “Baryon Resonance Analysis from SAID,” Chin. Phys. C 33, 1063 (2009).
5. V. D. Burkert and T. S. H. Lee, “Electromagnetic meson production in the nucleon resonance region,” Int. J. Mod. Phys. E 13, 1035 (2004).
6. A. Matsuyama, T. Sato and T. S. Lee, “Dynamical coupled-channel model of meson production reactions in the nucleon resonance region,” Phys. Rept. 439, 193 (2007).
7. B. Julia-Diaz, T. S. Lee, A. Matsuyama and T. Sato, “Dynamical Coupled-Channel Model of πN Scattering in the $W \leq 2 \text{ GeV}$ Nucleon Resonance Region,” Phys. Rev. C 76, 065201 (2007).
8. A. V. Anisovich, E. Klempt, V. A. Nikonov, M. A. Matveev, A. V. Sarantsev and U. Thoma, “Photoproduction of pions and properties of baryon resonances from a Bonn-Gatchina partial wave analysis,” Eur. Phys. J. A 44, 203 (2010).
9. I. Horn et al. [CB-ELSA Collaboration], “Evidence for a parity doublet $\Delta(1920) P_{33}$ and $\Delta(1940) D_{33}$ from $\gamma p \rightarrow \pi p^+\eta$,” Phys. Rev. Lett. 101, 202002 (2008).
10. E. Klempt, A. V. Anisovich, V. A. Nikonorov, A. V. Sarantsev and U. Thoma, “Phase Motion Of Baryon Resonances,” Eur. Phys. J. A 29, 307 (2006).
11. H. J. Arends, “Recent activities and perspectives at MAMI,” AIP Conf. Proc. 1056, 428 (2008).
12. A. Martinez Torres, K. P. Khemchandani and E. Oset, “Three body resonances in two meson-one baryon systems,” Phys. Rev. C 77, 042203 (2008).
13. K. P. Khemchandani, A. Martinez Torres and E. Oset, “The N*(1710) as a resonance in the πN system,” Eur. Phys. J. A 37, 233 (2008).
14. A. Martinez Torres, K. P. Khemchandani, U. G. Meissner and E. Oset, “Searching for signatures around 1920-MeV of a N* state of three hadron nature,” Eur. Phys. J. A 41, 361 (2009).
15. D. Jido and Y. Kanada-En’yo, “K anti-K N molecule state with I = 1/2 and J^P = 1/2+ studied with three-body calculation,” Phys. Rev. C 78, 035203 (2008).
16. A. Martinez Torres, K. P. Khemchandani and E. Oset, “Solution to Faddeev equations with two-body experimental amplitudes as input and application to J^P = 1/2+, S=0 baryon resonances,” Phys. Rev. C 79, 065207 (2009).
17. R. Chand and R. H. Dalitz, “Charge-independence in K−d capture reactions,” Annals Phys. 20, 1 (1962).
18. R. C. Barrett and A. Deloff, “Strong interaction effects in kaonic deuterium,” Phys. Rev. C 60, 025201 (1999).
19. A. Deloff, “ηd and K−d zero energy scattering: A Faddeev approach,” Phys. Rev. C 61, 024004 (2000).
20. S. S. Kamalov, E. Oset and A. Ramos, “Chiral unitary approach to the K−d scattering length,” Nucl. Phys. A 690, 494 (2001).
21. L. Roca and E. Oset, “A description of the f2(1270), ρ2(1690), f4(2050), ρ6(2350) and f6(2510) resonances as multi-ρ(770) states,” Phys. Rev. D 82, 054013 (2010).
22. J. Yamagata-Sekihara, L. Roca and E. Oset, “On the nature of the K_2^*(1430), K_2^*(1780), K_2^*(2045), K_2^*(2380) and K_2^* as K^*-multi-ρ states,” arXiv:1010.0525 [hep-ph], Phys. Rev. D, in print.
23. T. P. Vrana, S. A. Dytman, and T. S. H. Lee, “Baryon Resonance Extraction from πN Data using a Unitary Multichannel Model,” Phys. Rept. 328, 181 (2000).
24. D. M. Manley, and E. M. Saleski, “Multichannel Resonance Parametrization Of πN Scattering Amplitudes,” Phys. Rev. D 45, 4002 (1992).
25. R. E. Cutkosky et al., Presented at 4th Int. Conf. on Baryon Resonances, Toronto, Canada, Jul 14-16, 1980. Published in Baryon 1980:19 (QCD161:C45:1980).