Cactus material-based adsorbents for the removal of heavy metals and dyes: a review

Abdelfattah Amari1,2, Basem Alalwan1, Moutaz M Eldirdier1, Wissem Mnif3-6 and Faouzi Ben Rebah1,6

1 Department of Chemical Engineering, College of Engineering, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
2 Research Laboratory: Energy and Environment, National School of Engineers, Gabes University, Gabes 6072, Tunisia
3 Faculty of Sciences and Arts in Bishah, University of Bishah, PO Box 60, Bishah-Sabt Al Olaya 61985, Saudi Arabia
4 LR11-ES31 Laboratory of Biotechnology and Valorisation of Bio-Geo Resources, Higher Institute of Biotechnology of Sidi Thabet, BiotechPole of Sidi Thabet, University of Manouba, BiotechPole Sidi Thabet, 2020 Ariana, Tunisia
5 Department of Chemistry, College of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
6 Higher Institute of Biotechnology of Sfax (ISBS), Sfax University, PO Box 263, Sfax 3000, Tunisia

E-mail: abdelfattah.amari@enig.rnu.tn and benrebah@yahoo.fr

Keywords: cactus materials, adsorption, wastewater, heavy metals, dyes, biosorbent

Abstract

Cactus is cultivated in many regions over the world. Because of its chemical composition and its valuable nutritional and biological characteristics, cactus finds applications in different sectors such as the pharmaceutical and the food industries. Interestingly, cactus materials (cladodes, fruit seeds, peel, etc.) have been explored for their probable use as adsorbents for the removal of toxic heavy metals and dyes from wastewater. Various preparations methods were used to produce cactus material-based biosorbents. These biosorbents have been investigated and successfully used for the elimination of both heavy metal and dyes from aqueous solutions. Related results showed very promising pollutant removal efficiency associated with an interesting adsorption capacity similar to other materials from various origins. This paper explores various cactus biosorbents preparations. Furthermore, their efficiency in depollution and factors controlling the adsorption capacity will be discussed.

1. Introduction

Water pollution is an increasing environmental problem associated mainly to industrial development. For their processes, industries utilize large quantity of water generating contaminated effluents. Because freshwater resources are limited, the use of treated wastewater for industrial processing is gradually becoming a familiar practice worldwide (Vishali and Karthikeyan, 2015). The reuse of wastewater through the employment of various treatment methods is beneficial to resolve water shortage, to preserve the high-quality resources for potable use only and to decrease pollution of surface waters. Heavy metals and dyes are two examples of the largely widespread pollutants in industrial effluents that may have severe problems for the environment including the human health (Jaishankar et al 2014, Tchounwou et al 2012). Decontamination processes involved physical, biological and chemical techniques. The available technologies are classified into conventional methods (particularly activated sludge, coagulation-flocculation, chemical precipitation, adsorption and filtration), established recovery methods (ion exchange, oxidation, solvent extraction, electrochemical treatments, membrane bioreactors, etc) and emerging methods (advanced oxidation, biosorption, adsorption into non-conventional materials, nanofiltration, etc) (Crini and Lichtfouse 2019). Because of diverse factors related to economical and technological considerations, limit number of wastewater treatment processes is universally used by various industries to treat their effluents. Interestingly, the adsorption, which is considered as safe, clean, efficient and technical feasible process, is frequently employed to remove various pollutants such as heavy metals and dyes. Therefore, the adsorption method is an interesting separation technique using suitable material called absorbent characterized by high surface area and porosity and allowing rapid adsorption equilibrium kinetics (Crini and Badot 2010, Amari et al 2018). Various factors (high efficiency, ecofriendly, low cost, capacity to remove different inorganic and organic pollutants, absorbent material resistance to toxic
substances, high effectiveness, simple design and easy operation) make this technology the most widespread method for water depollution (Farooq et al 2010, Salleh et al 2011, Bazrafshan et al 2016).

The adsorption is a procedure based on pollutant transfer from aqueous solution to the adsorbent (Crini and Badot 2010). Using experimental data, equilibrium modelling, kinetics and thermodynamic factors should be studied to determine the suitability and the applicability of an adsorbent in removing pollutant (Douven et al 2015, Allen et al 2004). Generally, data of the equilibrium adsorption were analyzed using mainly the Langmuir, Freundlich, Temkin, Dubinin-Radushkevik and the Halsey isotherm models. However, kinetics results were described commonly via pseudo first order, pseudo second order, Elovich equation and intra particle diffusion models (Malkoc and Nuhoglu 2007, Mahamadi and Nharingo 2010, Nharingo and Hunga 2013, Nharingo et al 2013). Activated carbon is mostly applied as adsorbent for pollutants removal from wastewater (Agrawal et al 2017). Nevertheless, carbon adsorption is very expensive and the process cost is related to the used material and its regeneration after exhausting (Li et al 2015). The loss of adsorption efficiency after regeneration, may limit its use. Consequently, the substitution of activated carbons with other useful material was studied by many investigators. Excellent alternative material of activated carbon should be available, inexpensive and chemically regenerable with efficient quantitative recovery. In this perspective, various green adsorbents materials were investigated (Kyzas and Kostoglou 2014, Mahfoudhi and Boufi 2017). These new materials included natural materials, agricultural by-products and industrial wastes (Ali and Gupta 2006, Bhatnagar and Sillanpaa 2010, Sharma et al., Abdolalia et al 2014). Among the studied materials, cactus based materials reached large consideration in water treatment due to its abundance accessibility, biodegradability and safe behaviour. In this context, it was reported its successful use and its efficient removal rate of various pollutants (dyes, pesticides, turbidity, carbon, heavy metals, etc) by treated or untreated cactus materials.

This paper will review the use of cactuses and their modified materials as adsorbents for the removal of toxic heavy metals and dyes.

2. Cactuses: origin and characteristics

Cactus is a member of the plant family Cactaceae originated from arid and semi-arid zones. The Cactaceae family consists of large number of genera and species, which were found in many regions over the world (South America, North Africa, Australia, Asia, etc) (De Leo et al 2010, Matthaus and Ozcan 2011, Finti et al 2013, Abdel-Hameed et al 2014, Betatache et al 2014, Osuna-martinez et al 2014, Saravanakumar et al 2015). Cactus parts mainly, cladodes, fruits, and flowers of different species have been well studied and characterized.

Table 1 summarized the proximate composition protein, lipid, ash and carbohydrates), the major minerals and fatty acids content of cactus samples collected from various regions. Generally, cactus contains protein and lipid at low concentrations, however carbohydrates represent the major component for all samples (percentage on dry weight base ranged between 40 and 93%). According to Hernandez-Urbiola et al (2011), this amount increased with cactus age. Besides, cactus is a good source of minerals mainly Ca, K, Mg, Mn and Na which represent the major minerals. Concerning the lipid content, palmitic (C16:0), linoleic, linolenic and oleic were the main fatty acids recorded in samples. In addition to data presented in table 1, it was demonstrated by many researchers that cactus species contain various bioactive molecules with interesting nutritional and biological properties (antimicrobial, antioxidant, etc) valuable in different sectors (food industry, pharmaceutical industry, etc) (Ammar et al 2012, Sharif et al 2013, El-Mostafa et al 2014, Ammar et al 2015, Silva-Hughes et al 2015, Slimen et al 2016, Ondarra 2016, Tilahun, Welegerima (2018)). Moreover, other chemicals (phenolics, carotenoids, flavonoids, flavonols, ascorbic acid, betalains, vitamins, terpenes, etc) were evaluated in cactus samples (Saravanakumar et al 2015, El-Mostafa et al 2014, Jimenez-Aguilar et al 2014), Nadia et al 2013, Khatabi et al 2013, Hernandez-Urbiola et al 2010).

The data reported by the literature showed slight variation of cactus chemical composition depending on diverse factors (sample handling and preparation, species, location, age, etc). Because of their chemical compositions, cactuses were used mainly in food for humans and forage for animals. Moreover, cactus could be used for wastewater treatment processes including the coagulant/flocculant, the adsorption, the biofiltration, sludge conditioning, etc (Ben Rebah and Siddeeg 2017).

3. Heavy metal removal

The majority of heavy metals are poisonous or carcinogenic even at low concentrations. Their presence represents an important environmental health problem. Exposition to heavy metals attacks the function of the central nervous and damages the blood content and many other organs such as lungs, liver, etc. Moreover, exposure may cause other health problems such as muscular and neurological degeneration (Jaishankar et al 2014, Tchounwou et al 2012) Consequently, the elimination of metals, mainly from aqueous solutions via
Table 1. Chemical characteristics of cactus materials collected from various locations.

Cactus materials/species/location	Proximate composition (%w/w)	Major minerals (mg/100 g)	Major fatty acid (%w/w)	References
Cladodes *O. ficus-indica* (L.) (Central Kenya)	1.03% P; 0.4% L; 4.03% A and 92.57% C	Ca: 316.5; K: 108.8 Mg: 63.4; Mn: 37.8 Na: 18.7	nd	Chiteva and Wairagu 2013
Cladodes (dried at 60 °C) *O. ficus indica* (Mexico)	52% P; 2.3% L; 20.46% A and 68.09% C	nd	Palmitic: 26.83% Linoleic: 28.61% Linolenic: 21.58% lecic: 11.03%	Lopez-Cervantes et al 2011
Cladodes *O. sulphurea* (Argentina)	3.8% P; 0.8% L; 19.5% A and 42.5% C	nd	Linoleic: 25.58% Linolenic: 27.41% Oleic: 11.4%	Carreira et al 2014
Cladodes *O. ficus indica* (Mexico)	7.44%–6.77% P; 1.79%–2.27% L; 18.58%–23.28% A and 45.21%–58.22% C	Ca: 1795–3440; K: 5520–6335 Mg: 8–29 Mn: 880–955 Na: 20–55	nd	Hernandez-Urbiola et al 2011
Cladodes *O. streptacantha* (Mexico)	11.2% P; 0.73% L; 12.6% A and 75.47% C	nd	nd	Astello-Garcia et al 2015
Cladodes *O. hyptiacantha* (Mexico)	11% P; 0.8% L; 15.1% A and 73.1% C	nd	nd	Astello-Garcia et al 2015
Cladodes *O. megalacantha* (Mexico)	10.7% P; 0.69% L; 13.6% A and 75.01% C	nd	nd	Astello-Garcia et al 2015
Cladodes *O. ficus-indica* (Algeria)	1.72% P; 0.14% L; 23.45% A and 74.69% C	nd	nd	Abdessemed et al 2014
Cladodes *O. ficus-indica* (Mexico)	11.2% P; 0.69% L; 14.4% A and 73.71% C	nd	nd	Astello-Garcia et al 2015
Cladodes *O. ficus-indica* (Egypt)	7.78% P; 2.36% L; 28.96% A and 60.9% C	Ca: 627; K: 2430 Mn: 13.8; Na: 63	nd	El-safy 2013
Cladodes *O. albicarpa* (Mexico)	11.6% P; 0.75% L; 13.2% A and 74.45% C	Ca: 647; K: 1957 Mn: 24.1; Na: 77	nd	Astello-Garcia et al 2015
Cladodes *O. ficus indicar Inermis* (Tunisia)	6.9% P; 4.9% L; 21.4% A and 66.8% C	Mg: 78.7; Ca: 44.2 Zn: 15.2	nd	Bakari et al 2017
Mucilage *O. stricta* (Ethiopia)	5.86% P; 0.43% L; 33.9% A and 59.81% C	nd	nd	Gebresamuel and Gebre-Mariam 2012
Mucilage *O. ficus-indica* (Mexico)	8.74% P; 3.95% L; 25.65% A and 60.36% C	nd	nd	Torres et al 2014
Mucilage *O. ficus-indica* (Ethiopia)	7.71% P; 0.47% L; 38.43% A and 53.39% C	nd	nd	Gebresamuel and Gebre-Mariam 2012
Mucilage *O. ficus-indica* (Mexico)	Protein: 1.18% P; 2.62% L; 22.93% A and 73.25% C	Ca: 310	nd	Espino-Díaz et al (2010)
Fruits *O. joconostle* (Mexico)	0.71%–1.56% P; *0.1% L; 0.49%–0.65% A and 5.81%–7.98% C	Nd	nd	Contreras et al 2011
Flowers: *O. ficus-indica f. inermis* (Tunisia)	8%–16.9% P; 1.2%–3.5% L; 1.2%–7.2% A and 72.7%–89.6% C	Ca: 399–655; K: 1612–1945 Mg: 286–381 Na: 73–126 Fe: 6.3–14	nd	Ennouri et al 2014

P: protein; L: lipid; A: ash; C: carbohydrate; nd: not determined.
Table 2. Examples of cactus material-based biosorbents for heavy metal removal from aqueous solutions.

Cactus material-based biosorbent preparation	Removal efficiency (Y in %)/biosorption capacity (Q in mg/g) /conditions/isotherm	References
Water extraction of cactus polyelectrolyte with water (132 g in 750 ml water, stirred for 30 min).	Y : 38.50% for Cu (II)	Gad et al 2010
	Y : 16.12% for Cd (II)	
	Y: 30.12% for Fe (III) (dosage 10% (v/v), 150 rpm, 30°C)	
	Q: 30.42 mg l⁻¹ for Cd (II) (dosage 2 g l⁻¹, pH 5.8 and 25°C)	Barka et al 2013a
O. ficus-indica cactus (cladodes): Sundried (3 weeks), cutted into small pieces, dried (60 °C, 24 h) and powdered (*100 μm)	Q: 98.62 mg g⁻¹ for Pb(II) (dosage of 2 g l⁻¹, pH 3.5 and 25°C)	
	Q: 19.68 mg g⁻¹ for Cr(VI); Langmuir	
Ficus carica bast fiber	Q: 3.5 mol kg⁻¹ for Cu (II) (dosage 6.7 g l⁻¹, pH 6.5, 25°C and 24 h reaction time,); Langmuir	Gupta et al 2013
Activated biochar prepared from O. ficus indica catus fibres (cladodes): sundried, disintegrated, washed, dehydrated (70 °C), carbonization (200 °C, 30 min and 600 °C, 1 h), activated with HNO₃ (12 M at room temperature and 5 h at 80 °C), washed with water, neutralized, dried (100 °C), ground and sieved (200–500 μm)	Q: 0.65 mol kg⁻¹ for Cu (II)	Hadjittos et al 2014
	Phosphorylated cactus fiber	
	Q: 0.30 mol kg⁻¹ for Cu (II)	
	MnO₂-coated cactus fiber	
	Q: 1.56 mol kg⁻¹ for Cu (II) (dosage 6.7 g l⁻¹, pH 6.5, 23 °C and 24 h reaction time,), Langmuir	
	Non treated cactus fiber:	Prodromou and Pashalidis 2013
Cactus (cladodes): washed with water, cutted in to small pieces, epidermis removed, gel dried (80–90 °C) and ground into powder	Y: 65% for Pb and Cd (dose : 1 g l⁻¹, 2 °C in the presence of 1 g/l NaCl), Frunkin isotherm	Derbe et al 2015
O. ficus-indica cactus mucilage biocomposite (non-gelling extract): cactus mucilage (0.5–2 mg/l) mixed with sodium alginate (3%–5%) and added to CaCl₂ solution (0.5–1 mg/l). The liquid extract filtered, precipitated (acetone), washed (ethanol-water), dried and pulverized with ceramic mortar	Y: 59.8% and Q: 97.1 mg/g for As(V) (formulation with 1.25 mg l⁻¹ gelling mucilage, 4% sodium alginate and 0.75 mol l⁻¹ CaCl₂)	Vecino et al 2016
O. ficus-indica cactus mucilage biocomposite (gelling extract): cactus mucilage (0.5–2 mg/l) mixed with sodium alginate (3%–5%) and added to CaCl₂ solution (0.5–1 mg/l). Extract precipitated (acetone and sodium hexametaphosphate/NaOH), stirred, filtered, adjustment to pH 2 of the filtrate pH adjusted (pH 2 with HCl), precipitated (HCl, 5 °C), centrifuged, residue pH adjusted (pH 8 with NaOH), filtrated (1.2 μm 0.45 μm membrane), re-precipitated (acetone), washed, dried and pulverized with a ceramic mortar	Y: 63% and Q: 101.6 mg/g for As(V) (formulation with 1.25 mg l⁻¹ gelling mucilage, 4% sodium alginate and 0.75 mol l⁻¹ CaCl₂)	Vecino et al 2016
O. ficus-indica cactus mucilage (gelling extract): cactus cutted, heated (20 min, 80–85 °C, 1% NaCl), blended, neutralized (NaOH, 1 M), centrifuged (4000 rpm, 10 min), the residue used for the extraction.	Q: 2.8–0.14 mg/g for As(V)	Fox et al 2012
Ectodermis of cactus fruits: washed, su-dried (7days), dehydrated (343 K, 24 h), crushed, milled, sieved, treated with formaldehyde (0.2%) or HCl (10–4 M) and redried (343 K).	Q: 30.1 mg g⁻¹ (with formaldehyde) and Q: 15.2 mg g⁻¹ (with HCl) for Cr(VI), Langmuir	Lopez-Gonzalez et al (2012)
Cactus peel: washed with water, air-dried (4–6 days), powdered and sieved (10, 15 and 20 mm)	Q: 30.1 mg g⁻¹ (with formaldehyde) and Q: 15.2 mg g⁻¹ (with HCl) for Cr(VI), Langmuir	
Cactus cladodes: washed with water, cutted (4 cm), dried (60 °C for 48 h), ground and sieved (1 mm), treated	Y: 36.02%, 17.1% and 22.8% for Mn (dosage 0.5 g l⁻¹ and particle size 10, 15 and 20 mm respectively)	Belayneh and Batu 2015
		Fernandez-Lopez et al 2014
Table 2. (Continued.)

Cactus material-based biosorbent preparation	Removal efficiency (Y in %)/biosorption capacity (Q in mg/g)/conditions/isortherm	References
with H2SO4(30 rpm, 24 h), washed with millipore water and redried at room temperature.	Y: 81% and Q: 5.1 mg/g for Cr (VI) (dose 2 g L⁻¹, pH 2 and 24 and 24 h contact time), Langmuir and Freundlich	
Ectodermis of cactus fruit: washed with water, cutted (4 cm), dried (60 °C for 48 h), grounded and sieved (1 mm), treated with H2SO4 (30 rpm, 24 h), washed with millipore water and redried at room temperature.	Y: 83% and Q: 5 mg/g for Cr (VI) (dose 2 g L⁻¹, pH 2 and 24 and 24 h contact time), Langmuir and Freundlich	Fernandez-Lopez et al 2014
Untreated cactus	Y: 36.0% for Zn; Y: 33.2% for Mn	Abhra et al 2019
Cactus treated with NaOH	Y: 95.9% for Zn; Y: 88.6% for Mn	Abhra et al 2019
Cactus treated with HCl	Y: 84.6% for Zn; Y: 71% for Mn	Abhra et al 2019
Cactus fruit peel	Q: 14.03 mg/g for Cd (dosage 0.1 g L⁻¹, pH 4, T: 25 °C and 24 h contact time), Langmuir	Keshri et al 2017
Cactus fruit peel: boiled in distilled water, sun-dried (20 days), washed with bidistilled water, dried (40–50 °C) and crushed (<0.315 mm)	Y: 93% and Q: 129.87 mg/g for Zn, Langmuir	Seghier et al 2017a

Different preparations of cactus material used as biosorbent, was studied by many researchers (Table 2). Generally, results varied depend mainly on the used preparation and the operating conditions (pH, temperature, heavy metal concentrations, biosorbent dosage and size, etc.). In order to describe the adsorption equilibrium data and selecting optimum operating conditions, kinetic study is required. Generally, several models could be used to investigate the adsorption kinetics of heavy metals on cactus-based materials. The pseudo first-order kinetic model, the pseudo-second-order model, the intra-particle diffusion model and the Elovich model are the most commonly used to provide the mechanism involved in the sorption process (Louati et al 2018). These models are frequently used in several works in the same field showing a good determination coefficient (R²) sometimes close to 1 (Kumar and Barakat 2013, Fernández-López et al 2014, Sakr et al 2019). Equilibrium adsorption isotherm of pollutants such as heavy metals and dyes on cactus-based materials were analyzed using several mathematical models: Langmuir, Freundlich, Sips, Dubinin-Raduskevich, Temkin, Redlich, Peterson and BET (Abdelkarim et al 2017, Louati et al 2018, Georgin et al 2019, Abhra et al 2019). Adsorption isotherms data are important for the design of the sorption in flow systems. However, the Freundlich and Langmuir models are the most frequently used to predict the adsorption equilibrium between the liquid phase and the solid phase concentrations (Benderdouche et al 2003). As indicated in table 2, these two models were the most adopted models for heavy metal removals by cactus-based materials. The Langmuir model assumes that the adsorption occurs on a specific homogeneous surface by monolayer adsorption. It is also considering that the coverage of adsorbate is of equal energy of adsorption on the surface of adsorbent. The binding sites have equal affinity and can be either chemical or physical. The Freundlich isotherm is an empirical model that assumes adsorption occurs on a heterogeneous surface as well as multilayer adsorption (Pelaez-Cid et al 2013).

As reported in table 2, both cladodes and fruit ectodermis of O. ficus-indica cactus were evaluated as biosorbents (Fernandez-Lopez et al 2014). These materials were washed, cutted, dried (48 h at 60 °C), crushed and sieved (<18 mesh) to be used to remove Cr(VI) from aqueous solution. A higher level of biosorption (>80%) was achieved at 1 g L⁻¹ of biosorbent, pH 2 and at Cr(II) initial concentration of 2 mg/l. Fruit ectodermis and cladodes showed maximum adsorption round 5 mg g⁻¹. Similarly, dried and powdered cactus (O. ficus-indica) cladodes allowed high maximum adsorption ability of both Pb (98.62 mg g⁻¹ obtained with a dosage of 10 mg l⁻¹ and pH 3.5) and Cd (30.42 mg g⁻¹ obtained with a dosage of 4 g l⁻¹ and pH 3.5) (Barka et al 2013a). Dried cactus peels with different sizes (10–20 mm) were also tested for the removal of Mn. Interestingly, the highest removal level (36.02%) was obtained with 0.5 g of 10 mm particle size of cactus peels (Belayneh and Batu 2015).

Another strategy was developed by Hadjittotfi et al (2014) using fiber of cactus materials to produce biochar useful to remove Cu(II) from water. Cladodes were sundried, disintegrated, washed, dehydrated (70 °C), carbonization (200 °C for 30 min and 600 °C for 1 h), activated with nitric acid 12 M (24 h at room temperature and 3 h at 80 °C), washed with water, neutralized, dried (100 °C), grounded and sieved (200–500 μm). The biochar adsorption capacity reached 222 mg g⁻¹ (3.5 mol kg⁻¹) at pH 6.5, 25 °C, dosage of 6.7 g l⁻¹ and 24 h reaction time (Hadjittotfi et al 2014). Cr(II) removal was also investigated using phosphorylated (with 1.5 M H3PO4) and MnO2-coated cactus fiber samples and compared to untreated cactus fiber (Prodromou and Pashalidis 2013). Interestingly, the highest adsorption capacity (1.56 mol kg⁻¹) was obtained by MnO2-coated cactus fiber under optimal conditions (pH 6.5, 23 °C, 24 h reaction time and dosage 6.7 g L⁻¹) (Prodromou and
Pashalidis 2013). Likewise, the Cr(VI) removal ability by ectodermis (from Opuntia cactus) materials modified with formaldehyde or HCl was demonstrated in the work of Lopez-Gonzalez et al. (2012). The modified materials increase the Cr adsorption at pH 2 with value comparable to materials from other origins Lopez-Gonzalez et al. (2012). In the same context, the use NaOH and HCl enhance Zn and Mn sorption capacity of cladodes fiber. Zn removal passed from 36% (untreated cactus fiber) to 84.6% (after HCl treatment) and 95.9% (after NaOH treatment). However, for Mn, these values were 33.2%, 71% and 88.6%, respectively (Abhra et al. 2019). Removal enhancement may be contributed to the presence of the carboxylic group and the effect of the treatment which may enhance the surface available for metal sorption.

In the work of Vecino et al. (2016), biocomposites were formulated using gelling extract (obtained from O. ficus indica cactus mucilage), sodium alginate and calcium chloride. These materials allowed of 63% removal of As from contaminated water with an adsorption capacity of 101.6 mg g$^{-1}$ obtained at optimal formulation (Vecino et al. 2016).

The effect of the operating conditions including the contact time, adsorbent dose and temperature on the adsorption of Pb and Cd ions by cactus powder was performed by Derbe et al. (2015). Generally, Pb and Cd removal rates increase by rising the contact time and adsorbent dose. For example, the highest rates were obtained after incubation time of 120 min (58% for Pb and 43% for Cd) at a dose of 1 g l$^{-1}$. This fact is related to the end point at which adsorption phase reached the equilibrium. However, the temperature affects negatively the removal capability of cactus powder and significantly decreases both Pd and Cd removals, which could be explained by the physiosorption process. Moreover, it was reported that NaCl interact with the functional group of cactus powder limiting the adsorption of heavy metals and consequently metal removal capability decreases by increasing the NaCl dose (Derbe et al. 2015).

For many reasons (low cost, abundance, sustainability, reliability, renewable, environmental safety, etc), cactus materials ensure the environmental rules for the treatment of contaminated water with heavy metals. This ability involves chemisorption exchange between metallic ions and functional group including mainly carboxyl, carbonyl and hydroxyl groups present in cactus materials as demonstrated by spectroscopic studies. In some cases, cactus materials can be easily used as biosorbent without chemical addition. At the same time, various preparations using high temperature and chemicals were evaluated. The majority of experiments were conducted to remove heavy metal from aqueous solution. As far as we know, few data describing the employment of cactus based-biorsorbents for heavy metal elimination from real wastewaters was reported. For example, Fe and Cr were significantly reduced at acceptable levels while treating tannery wastewater using sun-dried cactus cladodes (Swathi et al. 2014).

Generally, the results presented in this review confirm that biosorbents obtained from cactus materials exhibit reasonable heavy metal adsorption capacity while compared to many other cheap materials (table 3). However, variations among results can be explained by the used biosorbent preparation processes and by the operating conditions (biosorbent dose, heavy metal initial concentration, pH, temperature, contact time, etc), which varied between experiments. Hence, is very important to point out the importance of the operating conditions, which should be optimized for each material used as biosorbent. Generally, pH is an important parameter that control the biosorption process (Barka et al. 2011). According to the literature, there is no range or fixed value of pH at which the maximum adsorption capacity is attained, and this is related to the nature of adsorbent materials and the adsorbate. The difference in biosorption trend for the same pH range may be attributed to the differences in behaviour among metals and their ions in solution. Also, the pH affects the speciation of the metal (metal distribution, precipitation and complexation), its stability and the chemical state of its reactive groups (protonation/deprotonation) (Fernandez-Lopez et al. 2014). Interestingly, the removal efficiency of metals is highly dependent on the quantity of the biosorbent. The initial dose is a key parameter to overcome mass transfer resistance between the aqueous and solid phases. Moreover, the removal rate increases with the increasing of adsorbent mass until an appropriate dose, and further increasing did not show any significant change on heavy metal removal. This due to the fact that active site of the biosorbent materials already occupied by adsorbent and the solution reaches equilibrium between the heavy metals and the used biosorbent materials (ALOthman et al. 2013)). Also, the particle size of the materials influences slightly the biosorption process. The decrease in particle size increases the biosorption yield at equilibrium. Small particle size allowed higher biosorption capacity. This could be explained by the fact that smaller particles offer larger surface area of the biosorbent (Barka et al. 2013b). The effect of the contact time was also investigated by allowing the solution to agitate for different periods. Sufficient contact time and stirring rate allow good mass transfer by minimizing the boundary layer width involving the adsorbate and the adsorbent (Barka et al. 2011). Concerning the temperature effects, the decrease of the adsorption with temperature is due to the weak binding interaction between the active site of the used material and the metal ions which support physiosorption process (Derbe et al. 2015). Furthermore, increasing the temperature could cause more pores expansion that can lead to leaching the heavy metal adsorbed (Uwah et al. 2013).
4. Dye removal

Different industrial activities discharge large quantity of coloured effluents in the environment, which may cause health and ecological problems as reported above. Human health problems varied depending on dye nature, time contact and concentration. In the aquatic environment, dyes avoid light penetration decreasing the photosynthetic activities (Hassaan and El Nemr 2017). Generally, dyes such as azo dyes are found to be toxic for flora and fauna. They cause the decline of microorganisms in soil affecting the agricultural activities. Dyes were also recognized by their poisonous and mutagens effects on organisms. To reduce the harmful impact of water polluted with chemical colorants, various treatment processes were commonly applied by the industries. These treatments included the coagulation-floculation, bioprocess, membrane filtration, advanced oxidation and adsorption (Venkatesh et al 2017, Robinson et al 2000). Recently, the adsorption technique is frequently used and many researches were done in order to select a new suitable material useful as absorbent. In this context, various preparations of cactus materials (fruit peel, mucilage and cladodes) were evaluated as biosorbents for decolorization. Interestingly, cactus based biosorbents exhibit very high maximum adsorption capacities when applied for the dyes removal from aqueous solution or from real wastewaters. Before use, cactus materials were subject to treatments including simple sun- dehydration, heat treatment and/or chemical treatments. As reported in table 4, sun-dried cactus cladodes were subject to dehydration at 60 °C (for 24 h) before being used for decolorization of solutions containing Methylene Blue, Eriochrome Black T and Alizarin S. Depending on

Adsorbents	Adsorption capacity (mg/g)	References
Arsenic		
Cactus mucilage	0.14–2.8	Fox et al 2012
Cactus mucilage	101.6	Vecino et al 2016
Cactus mucilage	97.1	Vecino et al 2016
Sorghum	2.7	Baig et al 2010
Human Hairs	0.01	Mamishebei et al 2009
Hexavalent Chromium		
Cactus cladodes	18.51	Fernandez-Lopez et al 2014
Cactus fruit ectodermis	16.43	Fernandez-Lopez et al 2014
Cactus fruit ectodermis	15.2–30.1	Lopez-Gonzalez et al 2012
Ficus carica fiber	19.68	Gupta et al 2013
Walnut hull	98.13	Nurchi and Villaescusa 2008
Saw-dust	41.5	Gupta and Babu 2009
Pinus silvestris	238.10	Ucun et al 2008
Almond green hull	2.04	Sahranavard et al 2011
Cadmium(II)		
Cactus cladodes	30.42	Barka et al 2013b
Cactus fruit peel	14.03	Keshri et al 2017
Wheat bran	62	Yao, et al 2012
Spent grain	17.30	Li et al 2010
Scolymus hispanicus L.	54.05	Barka et al 2010
Flammulina velutipes		Zhang et al 2010
Lead(II)		
Cactus cladodes	98.62	Barka et al 2013b
Spent grain	35.5	Li et al 2010
Wheat bran	21	Yao et al 2012
Citrus peels	480.7	Nijkam and Schiewer 2012
Flammulina velutipes	14.34	Zhang et al 2010
Table 4. Examples of cactus material-based biosorbents for heavy dye removal.

Cactus material-based biosorbent preparation	Removal efficiency (Y in %)/biosorption capacity (Q in mg/g)	References
Cactus cladodes sun dried (3 weeks), cutted, dried at 60 °C (24 h) and powdered	Q: 189.83 mg/g for Methylene Blue Q: 200.22 mg/g for Eriochrome Black T Q: 118.35 mg/g for Alizarin S	Barka et al 2013b
Fruit peels: dried and treated with H₂SO₄ (1 M) and NaClO₃ (1 M)	Q: 167 mg/g for Brilliant Green (at pH 3 and 20 °C)	Kumar and Barakat 2013
Natural cladodes of O. ficus indica, crushed, sieved (< 40 μ) Dried cladodes of O. ficus indica, crushed, sieved (< 40 μ)	Q: 3.44 mg/g for Methylene Blue, Langmuir Q: 10.04 mg/g for Methylene Blue, Langmuir	Sakr et al 2019
Cactus fruit: dried (40 °C, sunlight, 15 days) washed several times (H₂O), dried at 40 °C, ground and sieved (< 315 nm)	Q: 222.22 mg g⁻¹ for Methylene Blue, Langmuir	Seghier et al 2017b
Activated carbon from cellulose waste, old cactus cladodes of O. ficus indica Activated carbon of prickly pear seeds of O. ficus indica after oil extraction.	Q: 750 mg/g for Methylene Blue (contact time 30 min) Q: 1200 mg/g for Methylene Blue (contact time 30 min)	Ouhammou et al 2019
O. ficus indica cladodes: washed, air-dried, re-dried (105 °C, 48 h), ground and sieved	Y: 61% for Methylene Blue at room temperature, Freundlich	Sakr et al 2015
O. ficus indica cladodes: dried at low temperature and powdered	Q: 198.9 mg/g for Acid Orange 51 Q: 45 mg/g for Reactive Red, Langmuir	Louati et al 2018
O. ficus indica fruit: washed, cutted, sun dried and stove dried (313 K, 24 h) and sieved (0.84–2 mm)	Q: 188.7 mg/g for Basic Blue 9, Langmuir	Pelaez-Cid et al 2013
O. ficus indica fruit: dried, activated (NaClO₃ 12%, 323 K), cooled, washed (H₂O), dried at (313 K, 24 h) and sieved (0.84–2 mm)	Q: 277.8 mg/g for Basic Blue 9, Langmuir	Pelaez-Cid et al 2013
O. ficus indica fruit: dried, activated (NaOH 25%, 323 K), cooled, washed (H₂O), dried at (313 K, 24 h) and sieved (0.84–2 mm)	Q: 34.6 mg/g for Basic Blue 9, Langmuir	Pelaez-Cid et al 2013
Cactus pear seed cake: dried (110 °C, 24 h), crushed, sieved (< 200 μ), activated (H₃PO₄, 85%), 60 °C, 1 h, dried (110 °C, 12 h), carbonization (400–600 °C, 1–2 h), washed (H₂O, pH 6–7), dried (110 °C, overnight) and ground (< 100 μm).	Y: 56.48% and Q: 260 mg/g for Methylene Blue (dosage 0.2 g l⁻¹, 20 °C, pH 7, contact time 180 min), Freundlich Y: 100% and Q: 336.12 mg/g for Methyl Orange (dosage 2 g l⁻¹, 20 °C, pH 7, contact time 180 min), Freundlich	El Magana et al 2019
Palm cactus: ground, sieved (<0.2 mm), washed with ethanol (60% v/v, 343 K, 2 h), washed (H₂O) and dried (333K, 8 h)	Q: 173–220 mg/g for Crystal Violet	Pang et al 2019
Fruit peels (O. ficus indica): sundried, cutted, activated with H₃PO₄ (85.5 v/v, 24 h), carbonization (673 K, 3 h), washed (H₂O), dried (393 K, 38 h), ground and sieved (0.25–0.841 mm)	Y: 76%–99% for textile effluent Q: 294 mg/g for Indigo Carmine, Langmuir Q: 909 mg/g for Solophenyl Blue, Langmuir Q: 416 mg/g for Methylene Blue, Langmuir Q: 312 mg/g for Crystal Violet, Langmuir	Pelaez-Cid et al 2016
Cactus fruit peel: boiled in distilled water, sun-dried (20 days), washed (H₂O), dried (40–50 oC) and crushed (< 0.315 mm)	Y: 94% and Q: 151.51 mg/g for Acid Red dye from textile industry, Langmuir	Seghier et al 2017a
Cladodes of Tacinga palmadora: cutted (10 cm size), dried (50 C, 96 h), milled, sieved (<0.20 mm), washed with ethanol (60% v/v, 70 °C, 2 h), washed (H₂O) and dried (60 °C, 36 h)	Q: 228.74 mg/g for Crystal Violet (dosage 0.5/l, 55 °C, pH 10), Langmuir Y: 93% for simulate effluent (dose: 4.5 g l⁻¹)	Georgin et al 2019

pH, the biosorption capacity reached 190 mg g⁻¹, 118 mg g⁻¹ and 200 mg g⁻¹ respectively for Methylene Blue (at pH basic), Eriochrome Black T (at pH acid) and Alizarin S (at pH acid) (Barka et al 2013b). Advantageous results were also obtained with activated carbon obtained using cladodes (activation with phosphoric acid at 450 °C) while applied for the removal of Methylene blue and Iodine (Ouhammou et al 2019). In addition to cladodes, cactus fruit peel was subject to various treatments. For example, fruit peels sample was boiled in distilled water, sun-dried (20 days), washed with bidistilled water, redried (40–50 °C) and crushed (< 0.315 mm). The obtained powder showed high potential as biosorbent for Methylene blue, with sorption capacity of 222 mg/l (Seghier et al 2017b). Likewise, an efficient biosorbent was obtained by treating dried fruit peels with sulfuric acid (1 M) and sodium perchlorate (1 M). The allowed Brilliant Green adsorption capacity achieved 167 mg g⁻¹ at 20 °C and pH 3 (Kumar and Barakat 2013). Similarly, sodium hydroxide and sodium perchlorate was also used to treat separately other fruit peel samples. Interestingly, sodium perchlorate and sodium hydroxide enhanced significantly the removal rate (up to 96%) of basic dye and anionic dye, respectively.
Table 5. Comparative table of the maximum adsorption capacity of cactus material with other materials and for crystal violet and methylene blue.

Adsorbent based materials	Adsorption capacity (mg/g)	References
Crystal violet		
Cactus fruit peels (treated with H₃PO₄)	312	Pelaez-Cid et al 2016
Palm cactus (treated with ethanol)	173–220	Pang et al 2019
Leaves of cactus (Tacinga palmadora)	228.74	Georgin et al 2019
Elephant grass	4.8	Aniagor and Menkiti 2018
Ginger waste	277.7	Kumar, Ahmad (2011)
T. arjuna sawdust waste	46	Shakoor and Nasar 2018
Rice husk (treated with NaOH)	293.30	Chakraborty et al 2011
Sapindus mukorossi biomass	28	Samal et al 2019
Methylene blue		
Cactus fruit peels (treated with H₃PO₄)	416	Pelaez-Cid et al 2016
Cactus pear seed cake (treated with H₃PO₄)	260	El Maguana et al 2019
Cactus cladodes (activated carbon)	750	Ouhammou et al 2019
Cactus prickly pear seeds (free of oil)	1200	Ouhammou et al 2019
Cactus cladodes (without treatment)	3.44	Saker et al 2019
Cactus cladodes (dried)	198.83	Barka et al 2013b
Cactus fruit peel	222	Seghier et al 2017b
Black stone cherries	321.75	Arana and Mazzocco 2010
Walnut shell	315	Yang and Qiu 2010
Hazelnut husks	204	Ozor et al 2012
Plant leaf powder	61.22	Gunasekar and Ponnusami 2012
Wood apple rind	40	Malavizhi and Ho 2014

(Pelaez-Cid et al 2013). Using other preparation methods, granular activated carbon was prepared using cactus pear peels. In this process, cactus residue was sun-dried, cut down to strips and activated with phosphoric acid for 24. After carbonization (673 K, 3 h), the material was washed with water, dried (393 K, 38 h) and grounded. The obtained materials were applied to remove various dyes (Methylene Blue, Solophenyl Blue, Indigo Carmine and Crystal Violet) from water. Based on Langmuir isotherms, the obtained granular activated carbon with size (0.25–0.841 mm) reached adsorption capacity ranged of 284 mg g⁻¹ (for Indigo Carmine), 909 mg g⁻¹ (for Solophenyl blue) and 416 mg g⁻¹ (for Methylene blue.) These results were comparable to that obtained for white sapote seeds and broccoli stems (Pelaez-Cid et al 2016). Interestingly, these materials were also useful for textile wastewaters with removal rates (76%–90%) comparable to that obtained with commercial powdered carbon (Pelaez-Cid et al 2016). In the same context, a real tannery wastewater was used to perform the feasibility of dried cladodes adsorbent as treatment option. The cactus material was able to remove up to 70% of both COD and BOD, 90% of sulphate and 98% of iron. In addition to that, it was demonstrated that the biosorbent capacity tolerates pH ranged from 6 to 10 and increases with working temperature (Swathi et al 2014). More recently, dried and powdered biomass of Tacinga palmadora cactus showed decolorization rate of 93% (adsorption capacity of 228.74 mg g⁻¹) from simulated textile wastewater loaded with crystal violet. This result was obtained with adsorbent dose of 0.5 g L⁻¹ and at pH 10 (Georgin et al 2019). Nevertheless, it is very important to point out the increase of dye sorption by the dosage allowing high number of reactive vacant sites, high transfer and high gradient concentration (Ghaedi et al 2015).

Generally, cactus based-material offered an adsorption ability comparable to other biosorbents as summarized in table 5. This indicates that adsorbents prepared from cactus are useful for the removal of various dyes, with fast kinetics (Georgin et al 2019). However, decolourization rates are managed by various parameters such preparation methods and the operating conditions (pH, temperatures, contact time, dosage, etc) as reported for heavy metals. However, the pH remains the most important factors affecting dye adsorption. Depending on dye nature, high pH is favorable for cationic dye adsorption and low pH is favorable for anionic dye adsorption. Moreover, the pH affects the surface behavior of the adsorbent (Salleh et al 2011). Consequently, it is important to optimize the pH value for each adsorption experiments.

As reported for heavy metals, functional groups of cactus are involved in the sorption process. Furthermore, chemical treatments permit the conversion of cactus functional group, which may enlarge the biosorbent specific surface area (Kumar and Barakat 2013, Pelaez-Cid et al 2013). Each activated cactus material is marked by its particular pore surface and its index of adsorption. The two properties varied depending on the activation methods and on the used biomass. Although the similarity in structure, rigidity and porosity, differences were observed while compared cactus to other materials (such as date, pumpkin seed shell, etc) (Li et al 2015).
5. Conclusion

This study summarized recent reports in which cactus materials (cladodes, fruit seeds, peel, etc) have been employed to produce efficient adsorbents. Cactus-based biosorbents were prepared using various methods including heat and chemical treatments. The obtained materials (untreated, sun-dried, thermally and chemically treated materials) were tested for decolorization and metal removal. The removal efficiency and biosorption capacity were controlled by various factors including the preparation methods, the pollutant subject to removal and the operating conditions (dosage, pH, temperature, contact time, etc). Based on the experimental data, promising removal efficiencies were observed for both heavy metals and dyes. Generally, kinetic results fit well with Langmuir isotherm. However, the majority of experiment was conducted for pollutants in aqueous solutions and only few data dealing with real wastewater were reported. Therefore, more researches are needed to evaluate the process efficiency using real wastewater at large scale. Moreover, in order to evaluate the competitive applicability of cactus materials, economical and environmental study should be addressed taking in consideration the adsorbents properties (alteration, bacterial degradation, regeneration, life cycle, etc) and the disposal of the generated wastes including the loaded pollutants and chemical related to the adsorption/desorption process.

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through General Research Project under grant number (G.R.P-312–40).

Funding

This research was funded by Deanship of Scientific Research at King Khalid University

ORCID iDs

Wissem Mnif @ https://orcid.org/0000-0002-8123-4743
Faouzi Ben Rebah @ https://orcid.org/0000-0003-0574-4490

References

Abdel-Hameed E, Nagaty M, Salman M and Bazaid S 2014 Phytochemicals, nutritional and antioxidant properties of two prickly pear cactus cultivars (Opuntia ficus indica Mill.) growing in Taif, KSA Food Chem. 160 31–8
Abdelkarim S, Mohammedi, H and Nouredine B 2017 Scopering of Methylene Blue Dye from Aqueous Solution Using an Agricultural Waste. Trends in Green Chem. 3 1–7
Abdessemes D, Nezari M, Mohamedi, Hadi A R, Abdessemes D, Bahadi F and Helloim A 2014 Emulsifying effect of pectin from Opuntia ficus-indica cladode Journal of Chemical and Pharmaceutical Research 6 198–201
Abdolalia A, Guo S W, Ngoa H H, Chenb S S, Nguyenb N C and Tungc K L 2014 Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: a critical review Bioresour. Technol. 160 57–66 Abdel
Abhra Y W, Kyoe H and Kang J 2019 Chemically treated cactus (Opuntia) as a sustainable biosorbent for the removal of heavy metals from aqueous solution: Characterization and adsorption capacity Desalin. Water Treat. 144 345–54
Agrawal V R, Vairagade V S and Kedar A P 2017 Activated carbon as adsorbent in advance treatment of wastewater IOSR Journal of Mechanical and Civil Engineering 14 36–40
Ali I and Gupta V K 2006 Advances in water treatment by adsorption technology Nature protocol 1 2661–7
Allen S J, McKay G and Porter J F 2004 Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems J. Colloid Interface Sci. 280 322–33
ALOthman Z A, Naushad M and Ali R 2013 Kinetic, equilibrium isotherm and thermodynamic studies of Cr(VI) adsorption onto low-cost adsorbent developed from peanut shell activated with phosphoric acid Environmental Science and Pollution Research 20 5351–65
Amari A, Gannouni H, Khan M I, Almesfer M K, Elkhalefa M A and Gannouni A 2018 Effect of structure and chemical activation on the adsorption properties of green clay minerals for the removal of cationic dye Applied Sciences 8 2302
Ammar I, Ennouri M and Attia H 2015 Phenolic content and antioxidant activity of Cactus (Opuntia ficus-indica L.) flowers are modified according to the extraction method Ind. Crops Prod. 64 97–104
Ammar I, Ennouri M, Khemakhem B, Yangui T and Attia H 2012 Variation in chemical composition and biological activities of two species of Opuntia flowers at four stages of flowering Ind. Crops Prod. 37 34–40
Aniagor C O and Menkiti M C 2018 Kinetics and mechanistic description of adsorptive uptake of crystal violet dye by lignified elephant grass complexed isolate Journal of Environmental Chemical Engineering 6 2105–18
Arana J M R and Mazzocco R R 2010 Adsorption studies of methyl blue and phenol onto black stone cherries prepared by chemical activation J. Hazard. Mater. 180 656–61
Astello–Garcia M G, Cervantes I, Nair V, Santos–Diaz M S, Reyes–Aguierto A, Guerard F, Negre–Salvayre A, Rossignol M, Cisneros–Zevallos L and Barba de la Rosa A P 2015 Chemical composition and phenolic compounds profile of cladodes from Opuntia s cultivars with different domestication gradient J. Food Compos. Anal. 43 119–30
Baig J A, Kazi T G, Shah A Q, Kandhbro G A, Afridi H I, Khan S and Kolachi N F 2010 Biosorption studies on powder of stem of Acacia nilotica: Removal of arsenic from surface water J. Hazard. Mater. 178 941–8

Bakari S, Dadud A, Felhi S, Smadui S, Gharallah N and Kadri A 2017 Proximate analysis, mineral composition, phytochemical contents, antioxidant and antimicrobial activities and GC-MS investigation of various solvent extracts of cactus cladode Food Science and Technology, Cambnua 37 286–93

Barka N, Abdennouri M, Boussouad A and Makhfouk M E L 2010 Biosorption characteristics of cadmium (II) onto Scolymus hispanicus L. as low-cost natural biosorbent Desalinization 258 66–71

Barka N, Abdennouri M and Makhfouk M E L 2011 Removal of methylene blue and eriochrome black T from aqueous solutions by biosorption on Scolymus hispanicus L. Kinetics, equilibrium and thermodynamics Journal of the Taiwan Institute of Chemical Engineers 42 320–26

Barka N, Abdennouri M, El Makhfouk M and Qourzal S 2013 Biosorption characteristics of cadmium and lead onto eco-friendly dried cactus (opuntia ficus indica) cladodes Journal of environmental chemical 1 144–9

Barka N, Ouzoua K, Abdennouri M and Makhfouk M E 2013a Dried prickly pear cactus (Opuntia ficus indica) cladodes as a low-cost and eco-friendly biosorbent for dyes removal from aqueous solutions J. Taiwan Inst. Chem. Eng. 44 52–60

Bazrafshan E, Amiran P, Mahri A H and Moghaddam A 2016 Application of adsorption processes for phenolic compounds removal from aqueous environments: a systematic review Global Nest Journal 18 146–63

Belayneh A and Batu W 2015 Application of biosorbent derived from cactus pell fr from removal of colourful manganese ions from grown water Journal of water resources and ocean science 4 18–23

Benderdouche N, Bestani B, Benstaali B and Derriche Z 2003 Enhancement of the adsorptive properties of a desert Salsola vermiculata Mater. Res. Express 012002 A Amari 701 4483 01

Ben Rebeh F and Siddeeg S M 2017 Cactus an eco-friendly material for wastewater treatment: a review Journal of Materials and Environmental Science 8 1770–82

Betache H, Aouabed A, Drouiche N and Lounici H 2014 Conditioning of sewage sludge by prickly pear Cactus Cladodes J. Med. Food 17 771–9

Chakraborty S, Chowdhury S and Das Saha P 2011 Adsorption of crystal violet from aqueous solution onto NaOH treated rice husk Carbohydrate Polym. 86 1533–41

Chiteva R and Wairagu N 2013 Chemical and nutritional content of Opuntia species J. Food Science and Technology 50 901–8

Contreras I L, Jaime O J, Castañeda O A, Anzore M J and Villanueva R S 2011 Sensory profile and chemical composition of Opuntia ficus-indica from Hidalgo, Mexico Journal of Horticulture and Postharvest Research 2 37–9

Crimi G and Badot P M 2010 Sorption Processes and Pollution. (Besançon: PUCFP) 489

De Leo M, De Abreu M B, Pavlovskia A M, Cioni P L and Braca A 2010 Profiling the chemical content of Opuntia ficus-indica flowers by HPLC-PDA-ESI-MS and GC/EIMS analyses Phytochem. Lett. 3 44–52

Derbe T, Dargo H and Batu W 2015 Cactus potencial in heavy metal (Pd and Cd) removal in water sample collected from rural area around Adigrat town Journal of the Taiwan Institute of Chemical Engineers 49 1–12

Drouiche N, Aouabed A, Betatache H and Lounici H 2014 Conditioning of sewage sludge by prickly pear Cactus Cladodes J. Med. Food 17 771–9

El Maguana Y, Elhadiri N, Bouchdoug M, Benchanaa M and Jaouad A 2019 Activated carbon from prickly pear seed cake: optimization of preparation conditions using experimental design and its application in dye removal International Journal of Chemical Engineering 2019 1–12

El-Mostafa K, El Khraissi Y, Badreddine A, Andreollet P, Vameq J, El Kebbaj M S, Latruffe N, Lizard G, Nasser B and Cherkaoui-Malki M 2010 Cactus cladodes as a bioactive ingredients of food, nutrition and health Molecules 19 14879–901

El-saby F S 2005 Evaluation and utilization of cladodes flour in formulating functional sponge cake World Applied Sciences Journal 27 512–23

Emouri M, Ammar J, Khemmehem B and Attia H 2014 Chemical composition and antibacterial activity of opuntia ficus-indica F. Inermis (Cactus Pear) flowers J. Med. Food 1–7

Espino-Diaz M, De Jesus Omerlas-Paz J, Martinez-Tellez M A, Santillan C, Barbosa-Canovas G Y, Zamudio-Flores P B and Olivas G 2010 Development and Characterization of Edible Films Based on Mucilage of Opuntia ficus-indica (L.) Journal of Food Science 75 E347–52

Faroq U, Kozinski J A, Khan M A and Athar M 2010 Biosorption of heavy metal ions using wheat based biosorbents—a review of the recent literature Biotechnol. 50 1043–53

Fernandez-Lopez J A, Angosto J M and Aviles M A 2014 Biosorption of Hexavalent Chromium from Aqueous Medium with Opuntia Biomass The Scientific World Journal 1–8

Finti A E L, Boullani R E L, Fallah M, Msanda F and Mousadik A E L 2013 Assessment of some agro-technological parameters of Cactus pear (Opuntia ficus-indica Mill.) in Morocco cultivars Journal of Medicinal Plants Research 7 2574–83

Fox D I, Pichler T, Yeh D H and Alcantar N A 2012 Using cactus mucilage as a low-cost and natural food additive: a review Journal of the Taiwan Institute of Chemical Engineers 43 6553–9

Gad A S, Attia M and Ahmed H A 2010 Heavy metals bio-remediation by immobilized Saccharomyces cervisiae and Opuntia ficus indica juice Journal of American Science 6 793–81

Gebresamuel N and Gebre-Mariam T 2012 Comparative physico-chemical characterization of the mucilages of two cactus pears (Opuntias) obtained from mekelle, northern ethiopia Journal of Biomaterials and Nanobiotechnology 3 79–86

Georgin J, Franco D S P, Drumm F C, Grassi P, Netto M S, Allasia D and Dotto G L 2012 Paddle cactus (Tacinga palmodara) as potential low-cost cost adsorbent to treat textile effluents containing crystal violet Chem. Eng. Commun. 1–12

Ghadei M, Shojaiipour E, Ghadai A M and Sahrabi R 2015 Isotherm and kinetics study of malachite green adsorption onto copper nanowires loaded on activated carbon: Artificial neural network modeling and genetic algorithm optimization Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 142 133–45

Gunasekar V and Ponnusami V 2012 Kinetics, equilibrium, and thermodynamic studies on adsorption of methylene blue by carbonized plant leaf powder Journal of Chemistry 13 1–6

Gupta S and Babu B V 2009 Removal of toxic metal Cr(VI) from aqueous solutions using sawdust as adsorbents: Equilibrium, kinetics and regeneration studies Chem. Eng. J. 130 352–65
Gupta V K, Pathania D, Agarwal S and Sharma S 2013 Removal of Cr(VI) onto Ficus carica biosorbent from water Environmental Science and Pollution Research 20 2633–44

Hadjiijoti L, Prodromou M and Pashalidis I 2014 Activated biochar derived from cactus fibres-preparation characterization and application 24 715–24

Hassan M A and El Nemr A 2017 Health and environmental impacts of dyes: mini review American Journal of Environmental Science and Engineering 1 64–7

Hernandez-Uribia M I, Perez-Torron E and Rodriguez-Garcia M E 2011 Chemical analysis of nutritional content of prickly pears (opuntia ficus indica) at varied ages in an organic harvest International Journal of Environmental Research and Public Health 8 1285–97

Jaishankar M, Tseten T, Anbalagan N, Mathew B R and Beevengouda K N 2014 Toxicity, mechanism and health effects of some heavy metals Interdisciplinary Toxicology 7 60–72

Jimenez-Aguilar D M, Mujica-Paz H and Welti-Chanes J 2014 Phytochemical characterization of prickly pear (Opuntia) and of its nutritional and functional properties: a review Current Nutrition and Food Science 10 57–69

Keshri N, Oraon A and Gupta A K 2017 Langmuir isotherm over biosorption capacity of cadmium from cactus and banana peels International Journal of advanced research in engineering and technology 8 75–82

Khatibi O, Hanine H, Elothmani D and Hasib A 2013 Extraction and determination of polyphenols and betalain pigments in the Moroccan prickly pear fruits (Opuntia ficus-indica) Arabus J. Chem. 2011–4

Kumar R and Ahmad R 2011 Biosorption of hazardous crystal violet dye from aqueous solution onto treated ginger waste Desalination 265 112–8

Kumar R and Barakat M A 2013 Decolorization of hazardous brilliant green from aqueous solution using binary oxidized cactus fruit peel Chemical Engineering 226 377–83

Kyzas G Z and Kostoglou M 2014 Green Adsorbents for Wastewaters: A Critical Review Mater. Res. Express 7 012002 A Amari

Li Q, Chai L, Wang Q, Yang Z, Yan H and Wang Y 2010 Fast esterification of spent grain for enhanced heavy metal ions adsorption Bioresource. Technol. 101 5796–9

Li Q, Q Y and Gao C 2015 Chemical regeneration of spent powdered activated carbon used in decolorization of sodium salicylate for the pharmaceutical industry J. Clean. Prod. 86 124–31

Lopez-Cervantes J, Sanchez-Machado D I, Campas-Bayopli O N and Bueno-Solano C 2011 Functional properties and proximate composition of cactus pear cladodes flour Ciênc. Tecnol. Aliment., Campinas, Campinas 31 654–9

Lopez-Gonzalez H, Serrano–Gómez J and Olguín M T 2012 Ectodermis of paddy cactus (Opuntia spp.) as biosorbent of chromium (VI) from aqueous solutions Chem. Ecol. 28 657–67

Louati1, Fersi M, Hadrigh B, Gharbi B, Nasri M and Mechichi T 2018 Prickly pear cactus cladoles powder of Opuntia ficus indica as a cost effective biosorbent for dyes removal from aqueous solutions 8 478

Mamisahbebi S, Khanki G R J, Torabian A, Nasseri S and Naddaf K 2009 Removal of arsenic from an aqueous solution by pretreated waste tea fungal biomass Iranian Journal of Environmental Health Science and Engineering 8 85–92

Matthaus B and Ozcan M M 2011 Habitat effects on yield, fatty acid composition and tocopherol contents of prickly pear (Opuntia ficus-indica L) seed oils Scientia Horticultrae 131 95–9

Nadia C, Hayette L, Safia M, Yasmine M, Yasmina H and Abderazak T 2013 Physico-chemical characterisation and antioxidant activity of some Opuntia ficus-indica varieties grown in North Algeria African Journal of Biotechnology 12 299–307

Nharingo T and Hunga O 2013 Equilibrium isotherm analysis of the biosorption of Zn + ++ ions by treated Zea Mays leaf powder International Journal of Advanced Engineering Technology 6 128–39

Nharingo T, Muzondo M N, Malungwe E, Chigondo F, Guyo U and Nyamunda B 2013 Isotherm study of the biosorption of Cu(II) from aqueous solution by Vigna Subteranea (L.) Verdcull International Journal of Scientific & Technology Research 2 199–206

Nijkam E and Schiewer S 2012 Optimization and kinetic modeling of cadmium desorption from citrus peels: a process for biosorbent regeneration J. Hazard. Mater. 213/214 242–8

Nurcii V M and Villascausa I 2008 Agricultural biomasses as sorbents of some trace metals Coord. Chem. Rev. 252 1178–88

Ondarza M A 2016 Cactus mucilages: nutritional, health benefits and clinical trials Journal of Medical and Biological Science Research 2 87–103

Osuna-martinez U, Reyes-esparza J and Rodriguez-fragosos I 2014 Cactus (Opuntia ficus-indica): a review on its antioxidiant properties and potential pharmacological use in chronic diseases Natural Products Chemistry and Research 2 2–9

Ouhammou M, Lahnine L, Mghazi S, Hirad N, Bouchedoug M, Jauoud A, Mandi L and Mahrrouz M 2019 Valorisation of cellulosic waste basic cactus to prepare activated carbon Journal of the Saudi Society of Agricultural Sciences 18 133–40

Ozer C, Imamoglu M, Turhan Y and Boysan F 2012 Removal of methylene blue from aqueous solutions using phosphoric acid activated carbon from hazelnut husks Toxicol. Environ. Chem. 94 1283–93

Pang X, Sellaui L, Franco D, Dotto G L, Georgan J, Bajahzar A, Belmabrouke H, Ben Lamine A, Bonilla-Petriciolet A and Li Z 2019 Adsorption of crystal violet on biomasses from pecan nutshell, para chestnut husk, araucaria bark and palm cactus: experimental study and theoretical modeling via monolayer and double layer statistical physics models Chem. Eng. J. 378 1–9

Pelaez-Cid A A, Herrera-Gonzalez A M, Salazar-Villanueva M and Bautista-Hernandez A 2016 Elimination of textile dyes using activated carbons prepared from vegetable residues and their characterization J. Environ. Manage. 181 269–78

Pelaez-Cid A A, Velázquez-Ugalde I, Herrera-Gonzalez A M and García-Serrano J 2013 Textile dyes removal from aqueous solution using Opuntia ficus-indica fruit waste as adsorbent and its characterization J. Environ. Manage. 130 90–7

Prodromou M and Pashalidis I 2013 Copper(II) removal from aqueous solutions by adsorption on non-treated and chemically modified cactus fibres Water Science and Technol. 68 2497–504

Robinson T, Mcmusman G, Marchant R and Nigan P 2000 Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative Bioresearch. Technol. 77 247–55

Saharanavard M, Ahmadpour A and Doosti M R 2011 Biosorption of hexavalent chromium ions from aqueous solutions using almond green husk as a low-cost biosorbent European Journal of Scientific Research 58 392–400

12
Sakr F, Alahiane S, Sennaoui A, Dinne M, Bakas I and Assabbane A 2019 Removal of cationic dye (Methylene Blue) from aqueous solution by adsorption on two type of biomaterial of South Morocco Materials Today: Proceedings (Accepted) (https://doi.org/10.1016/j.matpr.2019.08.101)

Sakr F, Sennaoui A, Elouardi M, Tamimi M and Assabbane A 2015 Adsorption study of Methylene Blue on biomaterial using cactus Journal of Materials and Environmental Science 6 397–406

Salleh M A M, Mahmoud D K, Karim W A W A and Idris A 2011 Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review Desalination 280 1–13

Samal K, Raj N and Mohanty K 2019 Saponin extracted waste biomass of Sapindus mukorossi for adsorption of methyl violet dye in aqueous system Surfaces and Interfaces 14 166–74

Saravanakumar A, Ganesh M, Peng M M, Aziz A S and Jang H T 2015 Comparative antioxidant and antimycobacterial activities of Opuntia ficus-indica fruit extracts from summer and rainy seasons Frontiers in Life Science 8 82–191.

Seghier A, Hadjel M and Benderdouche N 2017a Sorption of methylene blue dye from aqueous solution using an agricultural waste Trends in Green Chemistry 3 4–7

Seghier A, Hadjel M and Benderdouche N 2017b Adsorption study of heavy metal and acid dye on an amphoteric biomaterial using barbary fig skin Arab. J. Sci. Eng. 42 1487–96

Shakoor S and Nasar A 2018 Adsorptive decontamination of synthetic wastewater containing crystal violet dye by employing Terminalia arjuna sawdust waste Groundwater for Sustainable Development 7 30–8

Sharif K M, Rahman M M, Zaidul I S M, Jannatul A, Akanda M J H, Mohamed A and Shamsudin S H 2013 Pharmacological relevance of primitive leafy cactuses peresokia Research Journal of Biotechnology 8 134–42

Sharma P, Kaur H, Sharma M and Sahore V 2011 A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste Environ. Monit. Assess. 183 151–95

Silva-Hughes A F, Wedge D E, Cantrell C L, Carvalho C R, Pan Z, Moraes R M, Madox V L and Rosa l H 2015 Diversity and antifungal activity of the endophytic fungi associated with the native medicinal cactus Opuntia humifusa (Cactaceae) from the United States Microbiol. Res. 175 67–77

Slimen I B, Najar T and Abderrabba M 2016 Opuntia ficus-indica as a source of bioactive and nutritional phytochemicals Journal of Food and Nutrition Sciences 4 162–9

Swathi M, Singh A S, Aravind S, Sudhakar P, Gobinath R and Devi D S 2014 Experimental studies on tannery wastewater using cactus powder as an adsorbent International Journal of Applied Science and Engineering Research 3 436–46

Tchounwou P B, Yedjou C G, Patlolla A K and Sutton D J 2012 Heavy metals toxicity and the environment ed A Luch Molecular, Clinical and Environmental Toxicology: Experientia Supplementum 101 (Basel: Springer)

Tilahun Y and Welegerima G 2018 Pharmacological potential of cactus pear (Opuntia ficus Indica): a review Journal Pharmacognosy and Phytochemistry 7 1360–3

Torres I G, Cadena G, Carpinteryo-urban S and Corzo I J 2014 New Galactomannans and mucilages with coagulant-flocculant activity for an environment-friendly treatment of wastewaters Journal of Environmental Science: Current Research 2 52–8

Ucun H, Bayhan K Y and Kaya Y 2008 Kinetic and thermodynamic studies of the biosorption of Cr(VI) by Pinus silvestri Linn J. Hazard. Mater. 153 52–9

Uwah I E, Ikeuba A I, Ugi B U and Udowo V M 2013 Comparative study of the inhibition effects of alkaloid and non alkaloid fractions of the ethanolic extracts of cosus after stem on the corrosion of mild steel in 3 M HCl solution Global J. Pure Appl. Sci. 19 23–32

Vecino X, Devesa-Rey R, de Lima Stebbins D M, Moldes A B, Cruz J M and Alcantar N A 2016 Evaluation of a cactus mucilage biocomposite to remove total arsenic from water Environmental Technology and Innovation 6 69–79

Venkatesh S, Venkatesh K and Quaff A R 2017 Dye decomposition by combined ozonation and anaerobic treatment: Cost effective technology Journal of Applied Research and Technology 160 20–7

Vishali S and Karthikeyan R 2015 Cactus opuntia (ficus-indica): an eco-friendly alternative coagulant in the treatment of paint effluent Desalin. Water Treat. 56 1489–1497

Yang J and Qiu K 2010 Preparation of activated carbons from walnut shells via vacuum chemical activation and their application for methylene blue removal Chem. Eng. J. 165 209–17

Yao S, Lai H and Shi Z 2012 Biosorption of methyl blue onto tartaric acid modified wheat bran from aqueous solution Journal of Environmental Health Science and Engineering 9 1–6

Zhang D, He H, Li W, Gao T and Ma P 2010 Biosorption of cadmium(II) and lead(II) from aqueous solutions by fruiting body waste of fungus Flammulina velutipes Desalin. Water Treat. 20 160–7