DIFFERENTIAL POSTURAL EFFECTS OF PLANTAR-FLEXOR MUSCLES FATIGUE
UNDER NORMAL, ALTERED AND IMPROVED VESTIBULAR AND NECK SOMATOSENSORY CONDITIONS

Nicolas PINSAULT¹ and Nicolas VUILLERME¹*

¹ Laboratoire TIMC-IMAG, UMR UJF CNRS 5525, La Tronche, France

* Address for correspondence:
Nicolas VUILLERME
Laboratoire TIMC-IMAG, UMR UJF CNRS 5525
Faculté de Médecine
38706 La Tronche cédex
France.
Tel: (33) (0) 4 76 63 74 86
Fax: (33) (0) 4 76 51 86 67
Email: nicolas.vuillerme@imag.fr

Article published in Experimental Brain Research DOI 10.1007/s00221-008-1500-z
Abstract

The aim of the present study was to assess the effects of plantar-flexor muscles fatigue on postural control during quiet standing under normal, altered and improved vestibular and neck somatosensory conditions. To address this objective, young male university students were asked to stand upright as still as possible with their eyes closed in two conditions of No Fatigue and Fatigue of the plantar-flexor muscles.

In Experiment 1 (n=15), the postural task was executed in two Neutral head and Head tilted backward postures, recognized to degrade vestibular and neck somatosensory information. In Experiment 2 (n=15), the postural task was executed in two conditions of No tactile and Tactile stimulation of the neck provided by the application of strips of adhesive bandage to the skin over and around the neck.

Centre of foot pressure displacements were recorded using a force platform.

Results showed that (1) the Fatigue condition yielded increased CoP displacements relative to the No Fatigue condition (Experiment 1 and Experiment 2), (2) this destabilizing effect was more accentuated in the Head tilted backward posture than Neutral head posture (Experiment 1) and (3) this destabilizing effect was less accentuated in the condition of Tactile stimulation than that of No tactile stimulation of the neck (Experiment 2).

In the context of the multisensory control of balance, these results suggest an increased reliance on vestibular and neck somatosensory information for controlling posture during quiet standing in condition of altered ankle neuromuscular function.

Key-words: Balance; Sensory re-weighting; Muscle fatigue; Head posture; Cutaneous; Ankle; Neck; Centre of foot pressure.
Introduction

In recent years, a growing number of investigations have focused on the effects of plantar-flexor muscles fatigue on postural control during quiet standing. A deteriorated postural control was generally observed following plantar-flexor muscles fatigue, hence stressing the importance of intact ankle neuromuscular function on upright balance control (Ledin et al., 2004; Vuillerme et al., 2002a,b, 2006). Interestingly, this destabilizing effect, reported in the absence of vision, further has been shown to be at least partly alleviated by providing additional visual information (Ledin et al., 2004; Vuillerme et al., 2006), somatosensory cues from the ankle (Vuillerme and Demetz, 2007) and haptic cues from the finger (Vuillerme and Nougier, 2003). These results could reflect a re-weighting of sensory cues in balance control (e.g., Peterka, 2002; Peterka and Loughlin, 2004; Oie et al., 2002; Vuillerme et al., 2001; Vuillerme and Pinsault, 2007), according to which the human postural control system could modulate its dependence upon a given sensory input adaptively to preserve adequate postural control dependent upon current environmental conditions. In conditions of altered ankle neuromuscular function induced by plantar-flexor muscles fatigue, it is thus possible that the central nervous system increases the reliance on visual information (Ledin et al., 2004; Vuillerme et al., 2006), cutaneous inputs from the foot and shank (Vuillerme and Demetz, 2007) and haptic cues from the finger (Vuillerme and Nougier, 2003) to maintain adequate upright stance. Among the sensory inputs relevant to postural control, vestibular and neck somatosensory cues also have been demonstrated to play an important role (e.g. Kavounoudias et al., 1999; Lacour et al., 1997; Peterka and Benolken, 1995; Vuillerme et al., 2005). However, whether the central nervous system increases the reliance on these sensory inputs following plantar-flexor muscles fatigue has not been established yet.

The present study was thus designed to specifically address this issue, by comparing the effects of plantar-flexor muscles fatigue on postural control during quiet standing under
normal, altered and improved vestibular and neck somatosensory conditions. We hypothesized that (1) plantar-flexor muscles fatigue would decrease postural control during quiet standing under normal vestibular and neck somatosensory conditions (*hypothesis 1*), (2) this destabilizing effect would be exacerbated under altered vestibular and neck somatosensory conditions (*hypothesis 2*) and (3) this destabilizing effect would be mitigated under improved vestibular and neck somatosensory conditions (*hypothesis 3*).

Methods

Fifteen young male university students (age = 23.3 ± 2.3 years; body weight = 71.0 ± 5.9 kg; height = 179.7 ± 6.1 cm; mean ± S.D.) voluntarily participated in Experiment 1. Fifteen other young male university students (age = 22.7 ± 3.4 years; body weight = 73.3 ± 9.2 kg; height = 177.8 ± 5.7 cm; mean ± S.D.) voluntarily participated Experiment 2. Subjects had to be healthy without any history of injury or pathology to either lower extremity, neck pain, neurological or vestibular impairment, injury or operation in the cervical spine. They gave their informed consent to the experimental procedure as required by the Helsinki declaration (1964) and the local Ethics Committee.

Eyes closed, subjects stood barefoot on the force platform in a natural position (feet abducted at 30°, heels separated by 3 cm), their arms hanging loosely by their sides and were asked to stand as still as possible (Zok et al., 2008). Note that this postural task was executed in the absence of visual information insofar as vision previously was shown to substantially reduce the postural effect caused by plantar-flexor muscles (Ledin et al., 2004; Vuillerme et al., 2006). The eyes closed condition thus avoided visual information interfering with the induced postural behaviours and allowed to isolate/evaluate the specific effect of vestibular
and neck somatosensory conditions following localised fatigue of the plantar-flexor muscles on postural control during quiet standing.

In Experiment 1, the postural task was executed in two Neutral head and Head tilted backward postures (Figure 1, upper panel). The Head tilted backward posture is recognised to induce (1) a modification in the orientation of the vestibular organs that may place the utricular otoliths well beyond their working range and render balance related vestibular information unreliable to the central nervous system (e.g., Brandt et al., 1981, 1986; Jackson and Epstein, 1991; Straube et al., 1992) and (2) abnormal sensory inputs arising from neck proprioceptors (e.g. Jackson and Epstein, 1991; Karlberg, 1995; Ryan and Cope, 1955), that represent a challenge for the postural control system. In the Neutral head posture, subjects were asked to keep their head in a straight-ahead direction. In the Head tilted backward posture, they were asked to tilt their head backward for at least 45° in the sagittal plane (e.g., Anand et al., 2002, 2003; Brandt et al., 1981; Buckley et al., 2005; Jackson and Epstein, 1991; Simoneau et al., 1992; Vuillerme and Rougier, 2005). The experimenter always stood by the subjects to monitor their posture and their head position throughout the trial. Subjects were asked to adopt the required posture and to stabilise their body sway. Ten seconds later, the sampling was initiated.

In Experiment 2, the postural task was performed in two conditions of No tactile stimulation and Tactile stimulation of the neck with the head in a neutral position. The No tactile stimulation condition served as a control condition. In the Tactile stimulation condition, four pieces of 3-cm strips of adhesive bandage (Elastoplast, BSN Medical) were applied directly to the skin over and around the neck. The two first strips, starting from
external occipital protuberances and ending to the medial angle of scapulas, were positioned directly on the skin over the upper portion of each trapezius muscles. The two last strips, starting from mastoid process of temporal bones and ending on the sternocostoclavicular joint, were applied directly on the skin over each sternocleidomastoid muscles (Figure 1, lower panel). These strips of tape were used to selectively provide cutaneous sensory feedback over and around the neck without adding any mechanical constriction and mechanical pressure on subcutaneous structures (e.g., Simoneau et al., 1997; Vuillerme and Pinsault, 2007). Results of unpublished work performed in our laboratory have indicated that a similar tactile stimulation of the neck to that used in the present experiment has yielded to improved cervical joint position sense in young healthy adults.

For both Experiment 1 and Experiment 2, this experimental procedure was executed the same day before (No Fatigue condition) and after a fatiguing procedure whose aim was to induce a muscular fatigue at the ankle plantar-flexor of both legs until maximal exhaustion (Fatigue condition). As previously done in other studies (Ledin et al., 2004; Vuillerme et al., 2006, 2007), standing subjects were asked to perform toe-lifts as many times as possible following the beat of a metronome (40 beats/min). The examiner gave verbal encouragement and checked the exercise performance to ensure that the subjects worked maximally. The fatigue level was reached when subjects were no more able to complete the exercise. Immediately on the cessation of exercise, the subjective exertion level was assessed through the Borg CR-10 scale (Borg, 1990). Subjects rated their perceived fatigue at the plantar-flexors muscles as almost “extremely strong” (mean Borg ratings of 8.3 and 8.5, for Experiment 1 and 2, respectively). The recovery process after fatigue procedures is often considered as a limitation for all fatigue experiments. In the present experiments, to ensure that balance measurement in the Fatigue condition was obtained in a genuine fatigued state, various rules were respected. (1) The fatiguing exercise took place beside the force platform
to minimise the time between the exercise-induced fatiguing exercise and the balance measurements (2) the fatiguing exercise was repeated prior to each trial, and (3) the examiner checked that the subjects showed visible signs of fatigue and failed to perform the exercises due to fatigue. In doubtful cases, the examiner encouraged the subject to continue with a few more exercises.

The order of presentation of the two head postures (Experiment 1) and the two conditions of tactile stimulation of the neck (Experiment 2) was randomised over subjects. In Experiment 1, for each condition of No Fatigue and Fatigue of the plantar flexor muscles and each head posture (Neutral and Tilted backward), subjects performed three 32-s trials, for a total of 12 trials. In Experiment 2, for each condition of No Fatigue and Fatigue of the plantar flexor muscles and each condition of tactile stimulation of the neck (No tactile vs. Tactile), subjects also performed three 32-s trials, for a total of 12 trials. The sketch of the entire experimental procedure is illustrated in Figure 2 (upper and lower panels for Experiments 1 and 2, respectively).

Please insert Figure 2 about here

A force platform (Equi+, model PF01), constituted of an aluminium plate (80 cm each side) laying on three uniaxial load cells, was used to measure the displacements of the centre of foot pressure (CoP) (64 Hz sampling frequency). CoP displacements were processed through a space-time domain analysis including the calculation of the surface area covered by the trajectory of the CoP with a 90% confidence interval (Tagaki et al., 1985) and the variances of positions of the CoP along the medio-lateral (ML) and antero-posterior (AP) axes.
The means of the three trials performed in each experimental condition were used for statistical analyses. A Kolmogorov-Smirnov test of equality of variances first showed that the distributions used for the analysis did not depart from normality ($P_s > 0.05$).

For Experiment 1, data obtained for the surface area covered by the trajectory of the CoP were then submitted to a 2 Fatigues (No Fatigue vs. Fatigue) \times 2 Head postures (Neutral vs. Tilted backward) analysis of variance (ANOVA) with repeated measures on both factors. To further investigate whether the effects of Fatigue and Head posture were similar according to the ML or AP axes, a 2 Fatigues (No Fatigue vs. Fatigue) \times 2 Head postures (Neutral vs. Tilted backward) \times 2 Axes (Medio-lateral vs. Antero-posterior) ANOVA with repeated measures on all factors was applied to the variance of the CoP displacements.

For Experiment 2, data obtained for the surface area covered by the trajectory of the CoP were then submitted to a 2 Fatigues (No Fatigue vs. Fatigue) \times 2 Tactile stimulations of the neck (No tactile vs. Tactile) ANOVA with repeated measures on both factors. To further investigate whether the effects of Fatigue and Head posture were similar according to the ML or AP axes, a 2 Fatigues (No Fatigue vs. Fatigue) \times 2 Tactile stimulations of the neck (No tactile vs. Tactile) \times 2 Axes (Medio-lateral vs. Antero-posterior) ANOVA with repeated measures on all factors was applied to the variance of the CoP displacements.

Post-hoc analyses (Newman-Keuls) were performed whenever necessary. Level of significance was set at 0.05.

Results

Experiment 1

Please insert Figure 3 about here

Surface area covered by the trajectory of the CoP

Analysis of the surface area covered by the trajectory of the CoP showed main effects of Fatigue ($F(1,14) = 23.92, P < 0.001$) and Head posture ($F(1,14) = 17.54, P < 0.01$), and a significant two way-interaction of Fatigue \times Head posture ($F(1,14) = 5.72, P < 0.05$) (Figure 3).

The decomposition of this interaction into its simple main effects indicated that (1) the Fatigue condition yielded increased CoP surface area relative to the No Fatigue condition in the Neutral head posture ($P < 0.05$), and (2) this effect was more accentuated in the Head tilted backward posture ($P < 0.001$).

Variance of the CoP displacements along the ML and AP axes

Analysis of the variance of the CoP displacements showed main effects of Fatigue ($F(1,14) = 20.14, P < 0.001$), Head posture ($F(1,14) = 16.50, P < 0.01$) and Axis ($F(1,14) = 34.98, P < 0.001$), three significant two-way interactions of Fatigue \times Head posture ($F(1,14) = 6.17, P < 0.05$), Fatigue \times Axis ($F(1,14) = 16.18, P < 0.01$) and Head posture \times Axis ($F(1,14) = 7.59, P < 0.05$), and a significant three-way interaction of Fatigue \times Head posture \times Axis ($F(1,14) = 8.72, P < 0.05$) (Figure 4).

The decomposition of the two-way interactions of Fatigue \times Head posture, Fatigue \times Axis and Head posture \times Axis indicated that (1) the Fatigue condition yielded larger increased variance of the CoP displacements relative to the No Fatigue condition in the Head tilted backward ($P < 0.001$) than Neutral head posture ($P < 0.05$), (2) the Fatigue condition yielded larger increased variance of the CoP displacements relative to the No Fatigue condition along the AP ($P < 0.001$) than ML axis ($P < 0.05$), and (3) the Head tilted backward posture yielded
larger increased variance of the CoP displacements relative to the Neutral head posture along the AP ($P < 0.001$) than ML axis ($P < 0.05$), respectively.

The decomposition of the three-way interaction of Fatigue \times Head posture \times Axis further indicated that the destabilizing effect of Fatigue observed in the Head tilted backward posture was larger along the AP ($P < 0.001$) than ML axis ($P < 0.01$).

Experiment 2

Please insert Figure 5 about here

Surface area covered by the trajectory of the CoP

Analysis of the surface area covered by the trajectory of the CoP showed main effects of Fatigue ($F(1,14) = 9.69$, $P < 0.01$) and Tactile stimulation ($F(1,14) = 7.19$, $P < 0.05$), and a significant two way-interaction of Fatigue \times Tactile stimulation ($F(1,14) = 5.58$, $P < 0.05$) (Figure 5).

The decomposition of this interaction into its simple main effects indicated that (1) the Fatigue condition yielded increased CoP surface area relative to the No Fatigue condition in the No tactile stimulation condition ($P < 0.001$), and (2) this effect was less accentuated in the Tactile stimulation condition ($P < 0.01$).

Please insert Figure 6 about here

Variance of the CoP displacements along the ML and AP axes

Analysis of the variance of the CoP displacements showed main effects of Fatigue ($F(1,14) = 10.88$, $P < 0.01$), Tactile stimulation ($F(1,14) = 4.61$, $P < 0.05$) and Axis ($F(1,14) =$
10.04, $P < 0.01$), two significant two-way interactions of Fatigue × Tactile stimulation ($F(1,14) = 6.02, P < 0.05$) and Fatigue × Axis ($F(1,14) = 8.75, P < 0.05$), and a significant three-way interaction of Fatigue × Tactile stimulation × Axis ($F(1,14) = 4.83, P < 0.05$) (Figure 6).

The decomposition of the two-way interactions of Fatigue × Tactile stimulation and Fatigue × Axis indicated that (1) the Fatigue condition yielded smaller increased variance of the CoP displacements relative to the No Fatigue condition in the Tactile stimulation ($P < 0.01$) than No tactile stimulation condition ($P < 0.001$), and (2) the Fatigue condition yielded increased variance of the CoP displacements relative to the No Fatigue condition along the AP ($P < 0.001$), whereas no significant difference was observed along than ML axis ($P > 0.05$), respectively.

The decomposition of the three-way interaction of Fatigue × Tactile stimulation × Axis further indicated that the destabilizing effect of Fatigue observed along the AP axis was smaller in the Tactile stimulation ($P < 0.001$) than No tactile stimulation condition ($P < 0.01$).

Discussion

The aim of the present study was to assess the effects of plantar-flexor muscles fatigue on postural control during quiet standing under normal, altered and improved vestibular and neck somatosensory conditions. To address this objective, young male university students were asked to stand upright as still as possible with their eyes closed in two conditions of No Fatigue and Fatigue of the plantar-flexor muscles.

In Experiment 1 (n=15), the postural task was executed in two Neutral head and Head tilted backward postures, recognized to degrade vestibular and neck somatosensory information. In Experiment 2 (n=15), the postural task was executed in two conditions of No tactile and Tactile stimulation of the neck, provided by the application of strips of adhesive bandage to the skin over and around the neck.
Centre of foot pressure displacements were recorded using a force platform.

Under normal vestibular and neck somatosensory condition, plantar-flexor muscles fatigue worsened postural control during quiet standing, as indicated by the increased surface area covered by the trajectory of the CoP observed in the Fatigue relative to the No Fatigue condition (Neutral head posture condition in Experiment 1, Figure 3, left part and No tactile stimulation of the neck condition in Experiment 2, Figure 5, left part). Analysis of the variance of the CoP displacements further indicated that the destabilizing effect of Fatigue was more accentuated along the AP than ML axis (Figures 4 and 6). These results, in accordance with previous reports (Ledin et al., 2004; Vuillerme et al., 2006), support our hypothesis 1. If one considers postural control mainly as a perceptual-motor process (Schmidt, 1975), these results could stem from an alteration of both the sensory (e.g., Vuillerme et al., 2007; Vuillerme and Boisgontier, 2008) and the motor sides (e.g., Trappe et al., 2001) of this process, caused by the fatigue of the plantar-flexor muscles. On the one hand, degraded senses of position (Vuillerme et al., 2007) and force (Vuillerme and Boisgontier, 2008) at the ankle joint have recently been reported following plantar-flexor muscles fatigue. On the other hand, the observations of impaired postural control only when individuals could not used visual sensory cues (Ledin et al., 2004; Vuillerme et al., 2006), somatosensory cues from the ankle (Vuillerme and Demetz, 2007) and haptic cues from the finger (Vuillerme and Nougier, 2003), could suggest that fatigue-induced plantar-flexor muscles weakness (Trappe et al., 2001), per se, could not have caused the increased CoP displacements observed in the Fatigue condition. Although a similar thought process/interpretation recently has been given by Bulter et al. (2008), further investigations are nevertheless necessary to address this issue. Although these two non exclusive propositions are supported by larger destabilising effects observed along the AP than ML axis, when considering what the fatiguing exercise involved in terms of joints and tendons
receptors stimulation and muscles recruitment (i.e. ankle plantar-flexors muscles), another explanation for subjects’ increased postural sway in the fatigue condition could be the increased ventilation rate induced by muscular exercise. At this point, we would like to mention that respiration rate was not measured quantitatively. To address this issue, as previously done by Davidson et al. (2004), a small control experiment was performed on three subjects to (1) quantify the increase in respiration rate due to the fatiguing exercise, and (2) determine if an identical increase in respiration rate in the absence of plantar-flexors muscles increases CoP displacements. For these 3 subjects, respiration rate was measured before and following the fatiguing exercise. An increased respiration rate (+ 3 breaths/min) was observed following the fatiguing exercise. These three subjects were asked to stand as still as possible while breathing at their respiration rate measured following the fatiguing exercise. Results showed that the increased in respiration rate in absence of plantar-flexor muscles fatigue induced weak but non significant effects on CoP displacements (P>0.05). This suggests that the increase in respiration rate in our study resulting from the fatiguing exercise did not contribute significantly to the large increase in CoP displacements reported in the Fatigue condition. Note that similar conclusions were made by Nardone et al. (1997) and Davidson et al. (2004).

When vestibular and somatosensory information from the neck was altered by asking subject to adopt a head tilted backward posture (e.g., Brandt et al., 1981, 1986; Jackson and Epstein, 1991; Karlberg, 1995; Ryan and Cope, 1955; Straube et al., 1992) (Experiment 1), the destabilizing effect of plantar-flexor muscles fatigue was more accentuated, as indicated by the significant two-way interaction of Fatigue × Head posture observed for the surface area covered by the trajectory of the CoP (Figure 3). This result supports our hypothesis 2. Furthermore, the observation of a significant three-way interaction of Fatigue × Head posture × Axis for the variance of the CoP displacements indicated that the destabilizing effect of
Fatigue observed in the Head tilted backward head posture was more accentuated along the AP than ML axis (Figure 4). This result can be explained by the fact that the fatiguing exercise applied to the ankle plantar-flexor muscles and the head extended posture have been shown to separately induce larger destabilising effects along the AP than ML axis (Ledin et al., 2004; Vuillerme et al., 2006; Vuillerme and Rougier, 2005).

When somatosensory information from the neck was improved by increasing cutaneous feedback through the application of strips of adhesive bandage to the skin over and around the neck (e.g., Simoneau et al., 1997; Vuillerme and Pinsault, 2007) (Experiment 2), the destabilizing effect of plantar-flexor muscles fatigue was mitigated, as indicated by the significant two-way interaction of Fatigue × Tactile stimulation observed for the surface area covered by the trajectory of the CoP (Figure 5). This result supports our hypothesis 3. Furthermore, the observation of a significant three-way interaction of Fatigue × Tactile stimulation × Axis for the variance of the CoP displacements indicated that the stabilizing effect of Tactile stimulation observed in the Fatigue condition was more accentuated along the AP than ML axis (Figure 6). Considering (1) results of unpublished work performed in our laboratory reporting the ability of young healthy adults to take advantage of increased neck cutaneous information provided by the by strips of adhesive bandage applied to the neck to improve their cervical joint position sense, and (2) the relationship existing between cervical joint position sense and postural control during quiet standing (e.g., Treleaven et al., 2006; 2008), it is possible that the stabilizing effect of tactile stimulation under fatigue condition (Experiment 2, Figures 5 and 6), stem from an increased cervical proprioceptive acuity induced by the tactile stimulation of the neck. Note that similar postural control improvements have previously been reported when tactile stimulation was provided at other joints, such as hip (McNair and Heine, 1999), knee (Birmingham et al., 2001; Hassan et al., 2001; Kaminski and Perrin, 1996), or ankle (Vuillerme and Pinsault, 2007; Vaillant et al., 2008).
On the whole, results of both experiments 1 and 2 suggest an increased reliance on vestibular and neck somatosensory information for controlling posture during quiet standing in condition of altered ankle neuromuscular function induced by plantar-flexor muscle fatigue. These results could lend support to the hypothesis of the sensory re-weighting hypothesis of human postural control (e.g. Peterka, 2002; Peterka and Loughlin, 2004; Oie et al., 2002; Vuillerme et al., 2001, 2005; Vuillerme and Pinsault, 2007). Sensory reweighting mechanism, first suggested by Nashner and colleagues more than 30 years ago (e.g., see Nashner 1976; Nashner et al. 1982), is recognised as a crucial component of postural control. It supposes that he central nervous system is able to dynamically and selectively adjust the relative contributions of sensory inputs (i.e., the sensory weights) to control balance depending on the sensory contexts and the neuromuscular constraints acting on the subject. For instance, previous studies have reported an increased reliance on vestibular and/or neck somatosensory cues when somatosensory information from the support surface was altered by standing either on a compliant (e.g., Buckley et al., 2005; Horak and Hlavacka, 2001; Vuillerme et al., 2005, 2008), sway-referenced (e.g., Cenciarini and Peterka, 2006; MacDougall et al., 2006), unstable (e.g. Fitzpatrick et al., 1994; Ivanenko et al., 1999) or moving support surface (e.g. Hlavacka and Horak, 2006; Inglis et al., 1995), and when proprioceptive information from the ankles was degraded by vibratory stimulation (e.g., Dzurková and Hlavacka, 2007; Fransson et al., 2007; Hlavacka et al., 1995; Kavounoudias et al., 1999; Vuillerme and Cuisinier, 2008). Our results extend this observation to a more normal upright posture and to situations everyone could encountered in which afferent signals and efferent outputs in lower-limb muscles are impaired by a fatiguing exercise, that is in conditions everyone could encountered in sportive, occupational or daily activities. As above-mentioned, such a sensory re-weighting in postural control following plantar-flexor muscles fatigue is not limited to vestibular and neck somatosensory inputs. Indeed, previous studies
have evidenced the ability of the central nervous system to up-weight visual information (Ledin et al. 2004; Vuillerme et al., 2006), cutaneous inputs from the foot and shank (Vuillerme and Demetz, 2007) and haptic cues from the finger (Vuillerme and Nougier, 2003), providing more accurate and reliable information for ensuring adequate postural control in conditions of plantar-flexor muscles fatigue.

Finally, we believe that the present findings could have implications in clinical and rehabilitative areas. Indeed, while results of Experiment 2 evidenced that the effects of plantar-flexor muscles fatigue on postural control were mitigated in conditions of improved neck somatosensory information provided by the application of strips of adhesive bandage to the skin over and around the neck, whether individuals could benefit from an artificial head position-based biofeedback to preserve (Vuillerme and Cuisinier, 2008; Vuillerme et al., 2008) postural control in conditions of plantar-flexor muscles fatigue is currently being investigated.
Acknowledgements

This work was partially supported by MENRT-France. The authors would like to thank subject volunteers and the anonymous reviewers for helpful comments and suggestions. Special thanks also are extended to R. Murphy, M. Gillet and R. Bertrand for their help in data collection and M. Harcelle for various contributions.
References

Anand V, Buckley J, Scally A, Elliott DB (2002) The effect of refractive blur on postural stability. Ophthalmic Physiol Opt 22:528-534.

Anand V, Buckley J, Scally A, Elliott DB (2003) Postural stability in the elderly during sensory perturbations and dual tasking: the influence of refractive blur. Invest Ophthalmol Vis Sci 44:2885-2891.

Birmingham TB, Kramer JF, Kirkley A, Inglis JT, Spaulding SJ, Vandervoort AA (2001) Knee bracing after ACL reconstruction: effects on postural control and proprioception. Med Sci Sports Exerc 33:1253-1258.

Borg G (1990) Psychological scaling with applications in physical work and the perception of exertion. Scand. J. Work Environ. Health 16:55-58.

Brandt T, Krafczyk S, Malsbenden I (1981) Postural imbalance with head extension: improvement by training as a model for ataxia therapy. Ann N Y Acad Sci 374:636-649.

Brandt TH, Buchele W, Krafczyk S (1986) Training effects on experimental postural instability: a model for clinical ataxia therapy. In: Disorders of Posture and Gait (Bles W, Brandt TH, eds), pp 353-365 New York, Elsevier Science Publishers.

Buckley JG, Anand V, Scally A, Elliott DB (2005) Does head extension and flexion increase postural instability in elderly subjects when visual information is kept constant? Gait Posture 21:59-64.

Butler AA, Lord SR, Rogers MW, Fitzpatrick RC (2008) Muscle weakness impairs the proprioceptive control of human standing. Brain Res. (in press), doi:10.1016/j.brainres.2008.03.094

Cenciarini M, Peterka RJ (2006) Stimulus-dependent changes in the vestibular contribution to human postural control. J Neurophysiol 95:2733-2750.
Davidson BS, Madigan ML, Nussbaum MA (2004) Effects of lumbar extensor fatigue and fatigue rate on postural sway. Eur J Appl Physiol 93:183-189.

Dzurková O, Hlavacka F (2007) Velocity of body lean evoked by leg muscle vibration potentiate the effects of vestibular stimulation on posture. Physiol Res 56:829-832.

Fitzpatrick R, Burke D, Gandevia SC (1994) Task-dependent reflex responses and movement illusions evoked by galvanic vestibular stimulation in standing humans. J Physiol Lond 478: 363-372.

Fransson PA, Hjerpe M, Johansson R (2007) Adaptation of multi-segmented body movements during vibratory proprioceptive and galvanic vestibular stimulation. J Vestib Res 17:47-62.

Hassan BS, Mockett S, Doherty M (2002) Influence of elastic bandage on knee pain, proprioception, and postural sway in subjects with knee osteoarthritis. Ann Rheum Dis 61:24-28.

Hlavacka F, Horak FB (2006) Somatosensory influence on postural response to galvanic vestibular stimulation. Physiol Res 55:S121-S127.

Hlavacka F, Krizková M, Horak FB (1995) Modification of human postural response to leg muscle vibration by electrical vestibular stimulation. Neurosci Lett 189:9-12.

Horak FB, Hlavacka F (2001) Somatosensory loss increases vestibulospinal sensitivity. J Neurophysiol 86:575-585.

Inglis JT, Shupert CL, Hlavacka F, Horak FB (1995) The effect of galvanic vestibular stimulation on human postural responses during support surface translations. J Neurophysiol 73:896-901.

Ivanenko YP, Talis VL, Kazennikov OV (1999) Support stability influences postural responses to muscle vibration in humans. Eur J Neurosci. 11:647-654.
Jackson RT, Epstein CM (1991) Effect of head extension on equilibrium in normal subjects. Ann Otol Rhinol Laryngol 100:63-67.

Kaminski TW, Perrin DH (1996) Effect of prophylactic knee bracing on balance and joint position sense. J Athl Training 31:131-136.

Karlberg M (1995) The neck and human balance. Dissertation. Lund: University Hospital.

Kavounoudias A, Gilhodes JC, Roll R, Roll JP (1999) From balance regulation to body orientation: two goals for muscle proprioceptive information processing? Exp Brain Res 124:80-88.

Lacour M, Barthelemy J, Borel L, Magnan J, Xerri C, Chays A, Ouaknine M (1997) Sensory strategies in human postural control before and after unilateral vestibular neurotomy. Exp Brain Res 115:300-310.

Ledin T, Fransson PA, Magnusson M (2004) Effects of postural disturbances with fatigued triceps surae muscles or with 20% additional body weight. Gait & Posture 19:184-193.

MacDougall HG, Moore ST, Curthoys IS, Black FO (2006) Modeling postural instability with Galvanic vestibular stimulation. Exp Brain Res 172:208-220.

McNair PJ, Heine PJ (1999) Trunk proprioception: enhancement through lumbar bracing. Arch Phys Med Rehabil 80:96-99.

Nardone A, Tarantola J, Giordano A, Schieppati M (1997) Fatigue effects on body balance. Electroencephalogr Clin Neurophysiol 105:309-320.

Nashner LM (1976) Adapting reflexes controlling human posture. Exp Brain Res 26:59-72.

Nashner LM, Black FO, Wall III C (1982) Adaptation to altered support and visual conditions during stance: Patients with vestibular deficits. J Neurosci 2:536-544.

Oie KS, Kiemel T, Jeka JJ (2002) Multisensory fusion: simultaneous re-weighting of vision and touch for the control of human posture. Brain Res Cogn Brain Res. 14:164-176.
Peterka RJ (2002) Sensorimotor integration in human postural control. J Neurophysiol 88:1097-1118.

Peterka RJ, Benolken MS (1995) Role of somatosensory and vestibular cues in attenuating visually induced human postural sway. Exp Brain Res 105:101-110.

Peterka RJ, Loughlin PJ (2004) Dynamic regulation of sensorimotor integration in human postural control. J Neurophysiol 91:410-423.

Ryan GM, Cope S (1955) Cervical vertigo. Lancet 31:1355-1358.

Schmidt RA (1975) A schema theory of discrete motor skill learning. Psychol Rev 82:225-260.

Simoneau GG, Degner RM, Kramper CA, Kittleson KH (1997) Changes in ankle joint proprioception resulting from strips of athletic tape applied over the skin. J Athl Train 32:141-147.

Simoneau GG, Leibowitz HW, Ulbrecht JS, Tyrrell RA, Cavanagh PR (1992) The effects of visual factors and head orientation on postural steadiness in women 55 to 70 years of age. J Gerontol 47:M151-M158.

Straube A, Paulus W, Brandt T (1992) Do head position and active head movements influence postural stability? In: The head-neck sensory motor system (Berthoz A, Vidal PP, Graf W, eds), Oxford, New York.

Tagaki A, Fujimura E, Suehiro S (1985) A new method of statokinesigram area measurement. Application of a statistically calculated ellipse. In: Igarashi M, Black O (eds.) Vestibular and visual control on posture and locomotor equilibrium. Karger, Bâle, pp. 74-79.

Trappe SW, Trappe TA, Lee GA, Costill DL (2001) Calf muscle strength in humans. Int J Sports Med 22:186-191.

Treleaven J, Jull G, LowChoy N (2006) The relationship of cervical joint position error to balance and eye movement disturbances in persistent whiplash. Man Ther 11:99-106.
Treleaven J, Low Choy N, Darnell R, Panizza B, Brown-Rothwell D, Jull G (2008) Comparison of sensorimotor disturbance between subjects with persistent whiplash-associated disorder and subjects with vestibular pathology associated with acoustic neuroma. Arch Phys Med Rehabil 89:522-530.

Vaillant J, Barthalais N, Vuillerme N (2008). Ankle strapping and postural control: effect of underwrap. Science & Sports 23:78-82.

Vuillerme N, Boisgontier M (2008) Muscle fatigue degrades force sense at the ankle joint. Gait & Posture (doi:10.1016/j.gaitpost.2008.03.005).

Vuillerme N, Boisgontier M, Chenu O, Demangeot J, Payan Y (2007) Tongue-placed tactile biofeedback suppresses the deleterious effects of muscle fatigue on joint position sense at the ankle. Exp Brain Res 183:235-240.

Vuillerme N, Burdet C, Isableu B, Demetz S (2006) The magnitude of the effect of calf muscles fatigue on postural control during bipedal quiet standing with vision depends on the eye-visual target distance. Gait & Posture 24:169-172.

Vuillerme N, Cuisinier R (2008) Head position-based electrotactile tongue biofeedback affects postural responses to Achilles tendon vibration in humans. Exp Brain Res 186:503-508.

Vuillerme N, Danion F, Forestier N, Nougier V (2002a) Postural sway under muscle vibration and muscle fatigue in humans. Neurosci Lett 333:131-135.

Vuillerme N, Demetz S (2007) Do ankle foot orthoses modify postural control during bipedal quiet standing following a localized fatigue at the ankle muscles? Int J Sports Med 28:243-246.

Vuillerme N, Forestier N, Nougier V (2002b) Attentional demands and postural sway: the effect of the calf muscles fatigue. Med Sci Sports Exerc 34:1607-1612.
Vuillerme N, Marin L, Debû B (2001) Assessment of static postural control in teenagers with Down Syndrome. Adapt Phys Act Q 18: 417-433.

Vuillerme N, Nougier V (2003) Effect of light finger touch on postural sway after lower-limb muscular fatigue. Arch Phys Med Rehabil 84:1560-1563.

Vuillerme N, Pinsault N (2007) Re-weighting of somatosensory inputs from the foot and the ankle for controlling posture during quiet standing following trunk extensor muscles fatigue. Exp Brain Res 183:323-327.

Vuillerme N, Pinsault N, Chenu O, Demongeot J, Payan Y, Danilov Y (2008) Sensory supplementation system based on electrotactile tongue biofeedback of head position for balance control. Neurosci Lett 431:206-210.

Vuillerme N, Pinsault N, Vaillant J (2005) Postural control during quiet standing following cervical muscular fatigue: effects of changes in sensory inputs. Neurosci Lett 378:135-139.

Vuillerme N, Rougier P (2005) Effects of head extension on undisturbed upright stance control in humans. Gait Posture 21:318-325.

Zok M, Mazzà C, Cappozzo A (2008) Should the instructions issued to the subject in traditional static posturography be standardised? Med Eng Phys doi:10.1016/j.medengphy.2007.12.002.
Figure captions

Figure 1. Schematic representation of (1) the head postures adopted in two Neutral head and Head tilted backward postures in Experiment 1 (upper panel) and (2) the application of adhesive bandage strips over and around the neck proposed in the two conditions of No tactile stimulation and Tactile stimulation of the neck in Experiment 2 (lower panel).

Figure 2. Schematic representation of the experimental procedure used on the present study. The order of presentation of two Neutral head and Head tilted backward postures (Experiment 1, upper panel) and the two conditions of No tactile stimulation and Tactile stimulation of the neck (Experiment 2, lower panel) was randomised over subjects. Each experimental condition consisted in 3×32 seconds trials with 1 minute rest between trials. The Fatigue condition was executed 5 minutes after the No Fatigue condition.

Figure 3. Mean and standard error of mean of the surface area covered by the trajectory of the CoP obtained in the two Neutral head and Head tilted backward postures and the two conditions of No Fatigue and Fatigue of the plantar-flexor muscles. The two conditions of No Fatigue and Fatigue are presented with different symbols: No Fatigue (*white bars*) and Fatigue (*black bars*).

Figure 4. Mean and standard error of mean of the variance of the CoP displacements along the medio-lateral (ML) and antero-posterior (AP) axes obtained in the two Neutral and Head tilted backward postures and the two conditions of No Fatigue and Fatigue of the plantar-flexor muscles. The two conditions of No Fatigue and Fatigue are presented with different symbols: No Fatigue (*white bars*) and Fatigue (*black bars*).
Figure 5. Mean and standard error of mean of the surface area covered by the trajectory of the CoP obtained in the two conditions of No tactile stimulation and Tactile stimulation of the neck and the two conditions of No Fatigue and Fatigue of the plantar-flexor muscles. The two conditions of No Fatigue and Fatigue are presented with different symbols: No Fatigue (white bars) and Fatigue (black bars).

Figure 6. Mean and standard error of mean of the variance of the CoP displacements along the medio-lateral (ML) and antero-posterior (AP) axes obtained in the two conditions of No tactile stimulation and Tactile stimulation of the neck and the two conditions of No Fatigue and Fatigue of the plantar-flexor muscles. The two conditions of No Fatigue and Fatigue are presented with different symbols: No Fatigue (white bars) and Fatigue (black bars).
Figure 1

Experiment 1	
Neutral head	Head tilted backward

Experiment 2	
No tactile stimulation	Tactile stimulation
Figure 2

Experiment 1

No Fatigue	Fatigue
Neutral head	Neutral head
Head tilted backward	Head tilted backward

5-min rest period

Randomised order

Experiment 2

No Fatigue	Fatigue
No tactile stimulation	No tactile stimulation
Tactile stimulation	Tactile stimulation

5-min rest period

Randomised order
Figure 3

![Graph showing CoP surface area (mm²) for Neutral head and Head tilted backward under No Fatigue and Fatigue conditions.](image-url)
Figure 4

![Figure 4](image_url)
Figure 5

![Graph showing CoP surface area (mm²) for No Fatigue and Fatigue conditions with and without tactile stimulation.](image-url)
Figure 6

![Graph showing CoP variance (mm²) with conditions of No Fatigue and Fatigue, comparing tactile stimulation and no tactile stimulation for Medio-lateral and Antero-posterior movements.](image-url)