On one generalization of finite nilpotent groups

Zhang Chi *
Department of Mathematics, University of Science and Technology of China,
Hefei 230026, P. R. China
E-mail: zcqxj32@mail.ustc.edu.cn

Alexander N. Skiba
Department of Mathematics and Technologies of Programming, Francisk Skorina Gomel State University,
Gomel 246019, Belarus
E-mail: alexander.skiba49@gmail.com

Abstract

Let \(\sigma = \{ \sigma_i | i \in I \} \) be a partition of the set \(\mathbb{P} \) of all primes and \(G \) a finite group. A chief factor \(H/K \) of \(G \) is said to be \(\sigma \)-central if the semidirect product \((H/K) \rtimes (G/C_G(H/K)) \) is a \(\sigma_i \)-group for some \(i = i(H/K) \). \(G \) is called \(\sigma \)-nilpotent if every chief factor of \(G \) is \(\sigma \)-central. We say that \(G \) is semi-\(\sigma \)-nilpotent (respectively weakly semi-\(\sigma \)-nilpotent) if the normalizer \(N_G(A) \) of every non-normal (respectively every non-subnormal) \(\sigma \)-nilpotent subgroup \(A \) of \(G \) is \(\sigma \)-nilpotent.

In this paper we determine the structure of finite semi-\(\sigma \)-nilpotent and weakly semi-\(\sigma \)-nilpotent groups.

1 Introduction

Throughout this paper, all groups are finite and \(G \) always denotes a finite group. Moreover, \(\mathbb{P} \) is the set of all primes, \(\pi \subseteq \mathbb{P} \) and \(\pi' = \mathbb{P} \setminus \pi \). If \(n \) is an integer, the symbol \(\pi(n) \) denotes the set of all primes dividing \(n \); as usual, \(\pi(G) = \pi(|G|) \), the set of all primes dividing the order of \(G \).

In what follows, \(\sigma = \{ \sigma_i | i \in I \} \) is some partition of \(\mathbb{P} \), that is, \(\mathbb{P} = \bigcup_{i \in I} \sigma_i \) and \(\sigma_i \cap \sigma_j = \emptyset \) for all \(i \neq j \). By the analogy with the notation \(\pi(n) \), we write \(\sigma(n) \) to denote the set \(\{ \sigma_i | \sigma_i \cap \pi(n) \neq \emptyset \} \); \(\sigma(G) = \sigma(|G|) \). A group is said to be \(\sigma \)-primary if it is a \(\sigma_i \)-group for some \(i \).

A chief factor \(H/K \) of \(G \) is said to be \(\sigma \)-central (in \(G \)) if the semidirect product \((H/K) \rtimes (G/C_G(H/K)) \) is \(\sigma \)-primary. The normal subgroup \(E \) of \(G \) is called \(\sigma \)-hypercentral in \(G \) if either \(E = 1 \) or every chief factor of \(G \) below \(E \) is \(\sigma \)-central.

Recall also that \(G \) is called \(\sigma \)-nilpotent if every chief factor of \(G \) is \(\sigma \)-central.

*Research of the first author is supported by China Scholarship Council and NNSF of China(11771409)

Keywords: finite group, \(\sigma \)-soluble group, \(\sigma \)-nilpotent group, semi-\(\sigma \)-nilpotent group, weakly semi-\(\sigma \)-nilpotent group.

Mathematics Subject Classification (2010): 20D10, 20D15, 20D30
An arbitrary group G has two canonical σ-nilpotent subgroups of particular importance in this context. The first of these is the σ-Fitting subgroup $F_\sigma(G)$, that is, the product of all normal σ-nilpotent subgroups of G. The other useful subgroup is the σ-hypercentre $Z_\sigma(G)$ of G, that is, the product of all σ-hypercentral subgroups of G.

Note that in the classical case, when $\sigma = \sigma^1 = \{\{2\}, \{3\}, \ldots\}$ (we use here the notation in [2]), $F_\sigma(G) = F(G)$ is the Fitting subgroup and $Z_\sigma(G) = Z_\infty(G)$ is the hypercentre of G.

In fact, the σ-nilpotent groups are exactly the groups G which can be written in the form $G = G_1 \times \cdots \times G_t$ for some σ-primary groups G_1, \ldots, G_t [1], and such groups have proved to be very useful in the formation theory (see, in particular, the papers [3, 4] and the books [5, Ch. IV], [6, Ch. 6]). In the recent years, the σ-nilpotent groups have found new and to some extent unexpected applications in the theories of permutable and generalized subnormal subgroups (see, in particular, [1, 2], [7]–[18] and the survey [19]).

In view of the results in the paper [20], the σ-nilpotent groups can be characterized as the groups in which the normalizer of any σ-nilpotent subgroup is σ-nilpotent. Groups in which normalizers of all non-normal σ-nilpotent subgroups are σ-nilpotent may be non-σ-nilpotent (see Example 1.3 below), and in the case when $\sigma = \sigma^1$ such groups have been described in [21, Ch. 4, Section 7] (see also [22]). In this paper, we determine the structure of such groups G for the case arbitrary σ.

Definition 1.1. We say that G is (i) **semi-σ-nilpotent** if the normalizer of every non-normal σ-nilpotent subgroup of G is σ-nilpotent;

(ii) **weakly semi-σ-nilpotent** if the normalizer of every non-subnormal σ-nilpotent subgroup of G is σ-nilpotent;

(iii) **weakly semi-nilpotent** if G is weakly semi-σ^1-nilpotent.

Remark 1.2. (i) Every σ-nilpotent group is semi-σ-nilpotent, and every semi-σ-nilpotent group is weakly semi-σ-nilpotent.

(ii) The semi-σ^1-nilpotent groups are exactly the **semi-nilpotent groups** studied in [21, Ch. 4, Section 7] (see also [22]).

(iii) We show that G is (weakly) semi-σ-nilpotent if and only if the normalizer of every non-normal (respectively non-subnormal) σ-primary subgroup of G is σ-nilpotent. Since every σ-primary group is σ-nilpotent, it is enough to show that if the normalizer of every non-normal (respectively non-subnormal) σ-primary subgroup A of G is σ-nilpotent, then G is σ-semi-nilpotent (respectively weakly semi-σ-nilpotent). First note that $A \neq 1$ and $A = A_1 \times \cdots \times A_n$, where $\{A_1, \ldots, A_n\}$ is a complete Hall σ-set of A. The subgroups A_i are characteristic in A, so $N_G(A) = N_G(A_1) \cap \cdots \cap N_G(A_n)$, where either $N_G(A_n) = G$ or $N_G(A_n)$ is σ-nilpotent. Since A is non-normal (respectively non-subnormal) in G, there is i such that $N_G(A_i)$ is σ-nilpotent. Therefore $N_G(A)$ is σ-nilpotent by Lemma 2.2(i) below. Hence G is semi-σ-nilpotent (respectively weakly semi-σ-nilpotent).

Example 1.3. Let $p > q > r > t > 2$ be primes, where q divides $p - 1$ and t divides $r - 1$, and
let $\sigma = \{\{p\}, \{q\}, \{p,q\}\}$. Let R be the quaternion group of order 8, A a group of order p, and let $B = C_p \times C_q$ be a non-nilpotent group of order pq and C a non-nilpotent group of order rt. Then $B \times R$ is a non-σ-nilpotent semi-σ-nilpotent group and $B \times C$ is not semi-σ-nilpotent.

Now let $G = A \times (Q \times R)$, where Q is a simple $\mathbb{F}_q R$-module which is faithful for R. Then for every subgroup V of R we have $N_G(V) = A \times Q$, so G is weakly semi-σ-nilpotent. On the other hand, QV is supersoluble for every subgroup V of R of order 2 and so for some subgroup L of Q with $1 < L < Q$ we have $V \leq N_G(L)$ and $[L,V] \neq 1$. Hence G is not semi-σ-nilpotent.

Recall that G^{σ_0} is the σ-nilpotent residual of G, that is, the intersection of all normal subgroups N of G with σ-nilpotent quotient G/N.

Our goal here is to determine the structure of weakly semi-σ-nilpotent and semi-σ-nilpotent groups. In fact, the following concept is an important tool to achieve such a goal.

Definition 1.4. Let H be a σ-nilpotent subgroup of G. Then we say that H is σ-Carter subgroup of G if H is an \mathfrak{S}_σ-covering subgroup of G [6, p. 101], that is, $U_{\mathfrak{S}_\sigma} H = U$ for every subgroup U of G containing H.

Note that in Example 1.3, the subgroup $C_q C$ is a σ-Carter subgroup of the group $B \times C$. It is clear also that a group H of a soluble group G is a Carter subgroup of G if and only if it is a σ^1-Carter subgroup of G.

A complete set of Sylow subgroups of G contains exactly one Sylow p-subgroup for each prime p dividing $|G|$. In general, we say that a set \mathcal{H} of subgroups of G is a complete Hall σ-set of G if every member H of \mathcal{H} is a σ_i-Carter subgroup of G for some i and \mathcal{H} contains exactly one Hall σ_i-subgroup of G for every $\sigma_i \in \sigma(G)$.

Our first result is the following

Theorem A. If G is weakly semi-σ-nilpotent, then:

(i) G has a complete Hall σ-set $\{H_1, \ldots, H_t\}$ such that for some $1 \leq r \leq t$ the subgroups H_1, \ldots, H_r are normal in G, H_i is not normal in G for all $i > r$, and

\[
\langle H_{r+1}, \ldots, H_t \rangle = H_{r+1} \times \cdots \times H_t.
\]

(ii) If G is not σ-nilpotent, then $N_G(H_i)$ is a σ-Carter subgroup of G for all $i > r$.

(iii) $F_{\sigma}(G)$ is a maximal σ-nilpotent subgroup of G and $F_{\sigma}(G) = F_{0\sigma}(G)Z_{\sigma}(G)$, where $F_{0\sigma}(G) = H_1 \cdots H_r$.

(iv) $V_G = Z_{\sigma}(G)$ for every maximal σ-nilpotent subgroup V of G such that $G = F_{\sigma}(G)V$.

(v) $G/F(G)$ is σ-nilpotent.

On the basis of Theorem A we prove also the following

Theorem B. Suppose that G is semi-σ-nilpotent, and let $\{H_1, \ldots, H_t\}$ be a complete Hall σ-set
of G, where H_1, \ldots, H_r are normal in G and H_i is not normal in G for all $i > r$. Suppose also that non-normal Sylow subgroups of any Schmidt subgroup $A \leq H_i$ have prime order for all $i > r$. Then:

(i) $G/F_\sigma(G)$ is abelian.

(ii) If U is any maximal σ-nilpotent non-normal subgroup of G, then U is a σ-Carter subgroup of G and $U_G = Z_\sigma(G)$.

(iii) If the subgroups H_1, \ldots, H_r are nilpotent, then $G/F_\sigma(G)$ is cyclic.

(iv) Every quotient and every subgroup of G are semi-σ-nilpotent.

Now we consider some of corollaries of Theorems A and B in the three classical cases. First of all note that in the case when $\sigma = \sigma^1$, Theorems A and B not only cover the main results in [21, Ch. 5 Section 7] but they also give the alternative proofs of them. Moreover, in this case we get from the theorems the following results.

Corollary 1.4. If G is weakly semi-nilpotent, then:

(i) G has a complete set of Sylow subgroups $\{P_1, \ldots, P_t\}$ such that for some $1 \leq r \leq t$ the subgroups P_1, \ldots, P_r are normal in G, P_i is not normal in G for all $i > r$, and $(P_{r+1}, \ldots, P_t) = P_{r+1} \times \cdots \times P_t$.

(ii) $F(G)$ is a maximal nilpotent subgroup of G and $F(G) = F_{0\sigma}(G)Z_\infty(G)$, where $F_{0\sigma}(G) = P_1 \cdots P_r$.

(iii) If G is not nilpotent, then $N_G(P_i)$ is a Carter subgroup of G for all $i > r$.

Corollary 1.5 (See Theorem 7.6 in [21, Ch. 4]). If G is semi-nilpotent and $F_0(G)$ denotes the product of its normal Sylow subgroups, then $G/F_0(G)$ is nilpotent.

Corollary 1.6 (See Theorem 7.8 in [21, Ch. 4]). If G is semi-nilpotent, then:

(a) $F(G)$ is a maximal nilpotent subgroup of G.

(b) If U is a maximal nilpotent subgroup of G and U is not normal in G, then $U_G = Z_\infty(G)$.

Corollary 1.7 (See Theorem 7.10 in [21, Ch. 4]). The class of all semi-nilpotent groups is closed under taking subgroups and homomorphic images.

In the other classical case when $\sigma = \sigma^\pi = \{\pi, \pi'\}$, G is σ^π-nilpotent if and only if G is π-decomposable, that is, $G = O_\pi(G) \times O_{\pi'}(G)$.

Thus G is semi-σ^π-nilpotent if and only if the normalizer of every π-decomposable non-normal subgroup of G is π-decomposable; G is weakly semi-σ^π-nilpotent if and only if the normalizer of every π-decomposable non-subnormal subgroup of G is π-decomposable. Therefore in this case we get from Theorems A and B the following results.

Corollary 1.8. Suppose that G is not π-decomposable. If the normalizer of every π-decomposable non-subnormal subgroup of G is π-decomposable, then:

(i) G has a Hall π-subgroup H_1 and a Hall π'-subgroup H_2, and exactly one of these subgroups,
H_1 say, is normal in G.

(ii) $G/F(G)$ is π-decomposable.

(iii) $N_G(H_2)$ is an \mathfrak{F}-covering subgroup of G, where \mathfrak{F} is the class of all π-decomposable groups.

(iv) $O_\pi(G) \times O_{\pi'}(G) = H_1 \times O_{\pi'}(G)$ is a maximal π-decomposable subgroup of G and every element of G induces a π'-automorphism on every chief factor of G below $O_{\pi'}(G)$.

Corollary 1.9. Suppose that G is not π'-closed and the normalizer of every π-decomposable non-normal subgroup of G is π-decomposable. Then $G = H_1 \times H_2$, where H_1 is a Hall π-subgroup and H_2 is a Hall π'-subgroup of G. Moreover, if non-normal Sylow subgroups of any Schmidt subgroup $A \leq H_2$ have prime order, then:

(i) $G/O_\pi(G) \times O_{\pi'}(G)$ is abelian.

(ii) Every maximal π-decomposable non-normal subgroup of G is an \mathfrak{F}-covering subgroup of G, where \mathfrak{F} is the class of all π-decomposable groups.

(iii) If H_1 is nilpotent, then $G/O_\pi(G) \times O_{\pi'}(G)$ is cyclic.

In fact, in the theory of π-soluble groups ($\pi = \{p_1, \ldots, p_n\}$) we deal with the partition $\sigma = \sigma^{1_\pi} = \{\{p_1\}, \ldots, \{p_n\}, \pi'\}$. Moreover, G is σ^{1_π}-nilpotent if and only if G is π-special \[23\], that is, $G = O_{p_1}(G) \times \cdots \times O_{p_n}(G) \times O_{\pi'}(G)$.

Thus G is semi-σ^{1_π}-nilpotent if and only if the normalizer of every π-special non-normal subgroup of G is π-special; G is weakly semi-σ^{1_π}-nilpotent if and only if the normalizer of every π-special non-subnormal subgroup of G is π-special. Therefore in this case we get from Theorems A and B the following results.

Corollary 1.10. Let P_i be a Sylow p_i-subgroup of G for all $p \in \pi = \{p_1, \ldots, p_n\}$. If the normalizer of every π-special non-subnormal subgroup of G is π-special, then:

(i) G has a Hall π'-subgroup H and at least one of subgroups P_1, \ldots, P_n, H is normal in G.

(ii) $O_{p_1}(G) \times \cdots \times O_{p_n}(G) \times O_{\pi'}(G)$ is a maximal π-special subgroup of G.

(iii) $G/F(G)$ is π-special.

Corollary 1.11. Suppose that the normalizer of every π-special non-normal subgroup of G is π-special. If non-normal Sylow subgroups of any Schmidt π'-subgroup of G have prime order, then:

(i) $G/(O_{p_1}(G) \times \cdots \times O_{p_n}(G) \times O_{\pi'}(G))$ is abelian.

(ii) Every maximal π-special non-normal subgroup of G is an \mathfrak{F}-covering subgroup of G, where \mathfrak{F} is the class of all π-special groups.

(iii) If every normal in G subgroup $A \in \{P_1, \ldots, P_n, H\}$ is nilpotent, then $G/(O_{p_1}(G) \times \cdots \times O_{p_n}(G) \times O_{\pi'}(G))$ is cyclic.
2 Preliminaries

Recall that \(G \) is said to be: a \(D_\pi \)-group if \(G \) possesses a Hall \(\pi \)-subgroup \(E \) and every \(\pi \)-subgroup of \(G \) is contained in some conjugate of \(E \); a \(\sigma \)-full group of Sylow type \(\Pi \)-section 2.2 if every subgroup \(E \) of \(G \) is a \(D_\sigma \)-group for every \(\sigma_i \in \sigma(E) \); \(\sigma \)-soluble \(\Pi \) if every chief factor of \(G \) is \(\sigma \)-primary.

Lemma 2.1 (See Theorem A and B in \([13]\)). If \(G \) is \(\sigma \)-soluble, then \(G \) is a \(\sigma \)-full group of Sylow type and, for every \(i \), \(G \) has a Hall \(\sigma_i \)-subgroup and every two Hall \(\sigma_i \)-subgroups of \(G \) are conjugate.

A subgroup \(A \) of \(G \) is said to be \(\sigma \)-subnormal in \(G \) \([1]\) if there is a subgroup chain \(A = A_0 \leq A_1 \leq \cdots \leq A_n = G \) such that either \(A_{i-1} \leq A_i \) or \(A_i/(A_{i-1}) \) is \(\sigma \)-primary for all \(i = 1, \ldots, n \). Note that a subgroup \(A \) of \(G \) is subnormal in \(G \) if and only if \(A \) is \(\sigma^1 \)-subnormal in \(G \) (where \(\sigma^1 = \{\{2\}, \{3\}, \ldots\} \)).

Lemma 2.2.

(i) The class of all \(\sigma \)-nilpotent groups \(\Pi_\sigma \) is closed under taking direct products, homomorphic images and subgroups. Moreover, if \(H \) is a normal subgroup of \(G \) and \(H/H \cap \Phi(G) \) is \(\sigma \)-nilpotent, then \(H \) is \(\sigma \)-nilpotent (See Lemma 2.5 in \([13]\)).

(ii) \(G \) is \(\sigma \)-nilpotent if and only if every subgroup of \(G \) is \(\sigma \)-subnormal in \(G \) (See \([18\) Proposition 3.4]).

(iii) \(G \) is \(\sigma \)-nilpotent if and only if \(G = G_1 \times \cdots \times G_n \) for some \(\sigma \)-primary groups \(G_1, \ldots, G_n \) (See \([18\) Proposition 3.4]).

Lemma 2.3 (See Lemma 2.6 in \([1]\)). Let \(A, K \) and \(N \) be subgroups of \(G \). Suppose that \(A \) is \(\sigma \)-subnormal in \(G \) and \(N \) is normal in \(G \).

1. If \(N \leq K \) and \(K/N \) is \(\sigma \)-subnormal in \(G/N \), then \(K \) is \(\sigma \)-subnormal in \(G \).
2. \(A \cap K \) is \(\sigma \)-subnormal in \(K \).
3. If \(A \) is \(\sigma \)-nilpotent, then \(A \leq F_\sigma(G) \).
4. \(AN/N \) is \(\sigma \)-subnormal in \(G/N \).
5. If \(A \) is a Hall \(\sigma_i \)-subgroup of \(G \) for some \(i \), then \(A \) is normal in \(G \).

In view of Proposition 2.2.8 in \([6\), we get from Lemma 2.2 the following

Lemma 2.4. If \(N \) is a normal subgroup of \(G \), then \((G/N)^{\Omega_{\sigma}} = G^{\Omega_{\sigma}} N/N \).

Lemma 2.5. If \(G \) is \(\sigma \)-soluble and, for some \(i \) and some Hall \(\sigma_i \)-subgroup \(H \) of \(G \), \(N_G(H) \) is \(\sigma \)-nilpotent, then \(N_G(H) \) is a \(\sigma \)-Carter subgroup of \(G \).

Proof. Let \(N = N_G(H) \) and \(N \leq U \leq G \). Suppose that \(U^{\Omega_{\sigma}} N \neq U \) and let \(M \) be a maximal subgroup of \(U \) such that \(U^{\Omega_{\sigma}} N \leq M \). Then \(M \) is \(\sigma \)-subnormal in \(U \) by Lemmas 2.2(i, ii) and 2.3(1), so \(U/M_U \) is a \(\sigma_j \)-group for some \(j \) since \(U \) is clearly \(\sigma \)-soluble. Therefore \(|U : M| \) is a \(\sigma_j \)-number, so \(j \neq i \) and hence \(H \leq M_U \). But then \(U = M_U N_U(H) \leq M < U \) by Lemma 2.1 and the Frattini argument. This contradiction completes the proof of the lemma.

It is clear that if \(A \) is \(\sigma \)-Carter subgroup of \(G \), then \(A \) is a \(\sigma \)-Carter subgroup in every subgroup
of G containing A. Moreover, in view of Proposition 2.3.14 in [6], the following useful facts are true.

Lemma 2.6. Let H and R be subgroups of G, where R is normal in G.

(i) If H is a σ-Carter subgroup of G, then HR/R is a σ-Carter subgroup of G/R.

(ii) If U/R is a σ-Carter subgroup of G/R and H is a σ-Carter subgroup of U, then H is a σ-Carter subgroup of G.

Lemma 2.7. Suppose that G possesses a σ-Carter subgroup. If G is σ-soluble, then any two of its σ-Carter subgroups are conjugate.

Proof. Assume that this lemma is false and let G be a counterexample of minimal order. Then $|\sigma(G)| > 1$.

Let A and B be σ-Carter subgroups of G, and let R be a minimal normal subgroup of G. Then AR/R and BR/R are σ-Carter subgroups of G/R by Lemma 2.6(i). Therefore for some $x \in G$ we have $AR/R = B^xR/R$ by the choice of G. If $AR \neq G$, then A and B^x are conjugate in AR by the choice of G and so A and B are conjugate.

Now assume that $AR = G = B^xR = BR$. If $R \leq A$, then $A = G$ is σ-nilpotent and so $A = B$. Therefore we can assume that $A_G = 1 = B_G$.

Since G is σ-soluble, R is a σ_i-group for some i. Let H be a Hall σ_i'-subgroup of A. Since $|\sigma(G)| > 1$, it follows that $H \neq 1$ and so $N = N_G(H) \neq 1$. Since A and B be σ-Carter subgroups of G, both these subgroups are σ-nilpotent. Hence $A \leq N$ and, for some $x \in G$, $B^x \leq N$ by Lemma 2.1. But then the choice of G implies that A and B^x are conjugate in N. So we again get that A and B are conjugate. The lemma is proved.

If $G \notin \mathfrak{M}_\sigma$ but every proper subgroup of G belongs to \mathfrak{M}_σ, then G is called an \mathfrak{M}_σ-critical or a minimal non-σ-nilpotent group. If G is an \mathfrak{M}_{σ_i}-critical group, that is, G is not nilpotent but every proper subgroup of G is nilpotent, then G is said to be a Schmidt group.

Lemma 2.8 (See [5] Ch. V, Theorem 26.1). If G is a Schmidt group, then $G = P \rtimes Q$, where $P = G^{\sigma_1} = G'$ is a Sylow p-subgroup of G and $Q = \langle x \rangle$ is a cyclic Sylow q-subgroup of G with $\langle x^0 \rangle \leq Z(G) \cap \Phi(G)$. Hence $Q^G = G$.

Lemma 2.9. If G is an \mathfrak{M}_{σ_i}-critical group, then G is a Schmidt group.

Proof. For some i, G is an \mathfrak{M}_{σ_0}-critical group, where $\sigma_0 = \{\sigma_i, \sigma_i'\}$. Hence G is a Schmidt group by [20].

Lemma 2.10. Let $Z = Z_\sigma(G)$. Let A, B and N be subgroups of G, where N is normal in G.

(i) Z is σ-hypercentral in G.

(ii) If $N \leq Z$, then $Z/N = Z_\sigma(G/N)$.

(iii) $Z_\sigma(B) \cap A \leq Z_\sigma(B \cap A)$.

(iv) If A is σ-nilpotent, then ZA is also σ-nilpotent. Hence Z is contained in each maximal
\(\sigma\)-nilpotent subgroup of \(G\).

(v) If \(G/Z\) is \(\sigma\)-nilpotent, then \(G\) is also \(\sigma\)-nilpotent.

Proof. (i) It is enough to consider the case when \(Z = A_1A_2\), where \(A_1\) and \(A_2\) are normal \(\sigma\)-hypercentral subgroups of \(G\). Moreover, in view of the Jordan-Hölder theorem for the chief series, it is enough to show that if \(A_1 \leq K < H \leq A_1A_2\), then \(H/K\) is \(\sigma\)-central. But in this case we have \(H = A_1(H \cap A_2)\), where \(H \cap A_2 \not\supset K\) and so from the \(G\)-isomorphism \((H \cap A_2)/(K \cap A_2) \cong (H \cap A_2)K/K = H/K\) we get that \(C_G(H/K) = C_G((H \cap A_2)/(K \cap A_2))\) and hence \(H/K\) is \(\sigma\)-central in \(G\).

(ii) This assertion is a corollary of Part (i) and the Jordan-Hölder theorem for the chief series.

(iii) First assume that \(B = G\), and let \(1 = Z_0 < Z_1 < \cdots < Z_t = Z\) be a chief series of \(G\) below \(Z\) and \(C_i = C_G(Z_i/Z_{i-1})\). Now consider the series

\[1 = Z_0 \cap A \leq Z_1 \cap A \leq \cdots \leq Z_t \cap A = Z \cap A.\]

We can assume without loss of generality that this series is a chief series of \(A\) below \(Z \cap A\).

Let \(i \in \{1, \ldots, t\}\). Then, by Part (i), \(Z_i/Z_{i-1}\) is \(\sigma\)-central in \(G\), \((Z_i/Z_{i-1}) \times (G/C_i)\) is a \(\sigma_k\)-group say. Hence \((Z_i \cap A)/(Z_{i-1} \cap A)\) is a \(\sigma_k\)-group. On the other hand, \(A/A \cap C_i \cong C_i A/C_i\) is a \(\sigma_k\)-group and

\[A \cap C_i \leq C_A((Z_i \cap A)/(Z_{i-1} \cap A)).\]

Thus \((Z_i \cap A)/(Z_{i-1} \cap A)\) is \(\sigma\)-central in \(A\). Therefore, in view of the Jordan-Hölder theorem for the chief series, we have \(Z \cap A \leq Z_{\sigma}(A)\).

Now assume that \(B\) is any subgroup of \(G\). Then, in view of the preceding paragraph, we have

\[Z_{\sigma}(B) \cap A = Z_{\sigma}(B) \cap (B \cap A) \leq Z_{\sigma}(B \cap A).\]

(iv) Since \(A\) is \(\sigma\)-nilpotent, \(ZA/Z \cong A/A \cap Z\) is \(\sigma\)-nilpotent by Lemma 2.2(i). On the other hand, \(Z \leq Z_{\sigma}(ZA)\) by Part (iii). Hence \(ZA\) is \(\sigma\)-nilpotent by Part (i).

(v) This assertion follows from Part (i).

The lemma is proved.

The following lemma is a corollary of Lemmas 2.2(i) and 2.10(v).

Lemma 2.11. \(F_\sigma(G)/\Phi(G) = F_\sigma(G/\Phi(G))\) and \(F_\sigma(G)/Z_{\sigma}(G) = F_\sigma(G/Z_{\sigma}(G))\).

3 Proofs of the main results

Proof of Theorem A. Assume that this theorem is false and let \(G\) be a counterexample of minimal order. Then \(G\) is not \(\sigma\)-nilpotent.
(1) Every proper subgroup \(E \) of \(G \) is weakly semi-\(\sigma \)-nilpotent. Hence the conclusion of the theorem holds for \(E \).

Let \(V \) be a non-subnormal \(\sigma \)-nilpotent subgroup of \(E \). Then \(V \) is not subnormal in \(G \) by Lemma 2.3(2), so \(N_G(V) \) is \(\sigma \)-nilpotent by hypothesis. Hence \(N_E(V) = N_G(V) \cap E \) is \(\sigma \)-nilpotent by Lemma 2.2(i).

(2) Every proper quotient \(G/N \) of \(G \) (that is, \(N \neq 1 \)) is weakly semi-\(\sigma \)-nilpotent. Hence the conclusion of the theorem holds for \(G/N \).

In view of Remark 1.2(iii) and the choice of \(G \), it is enough to show that if \(U/N \) is any non-subnormal \(\sigma \)-primary subgroup of \(G/N \), then \(N_{G/N}(U/N) \) is \(\sigma \)-nilpotent. We can assume without loss of generality that \(N \) is a minimal normal subgroup of \(G \).

Since \(U/N \) is not subnormal in \(G/N \), \(U/N < G/N \) and \(U \) is not subnormal in \(G \). Hence \(U \) is a proper subgroup of \(G \), which implies that \(U \) is \(\sigma \)-soluble by Claim (1). Hence \(N \) is a \(\sigma \)-group for some \(i \).

If \(U/N \) is a \(\sigma \)-group, then \(U \) is \(\sigma \)-primary and so \(N_G(U) \) is \(\sigma \)-nilpotent. Hence \(N_{G/N}(U/N) = N_G(U)/N \) is \(\sigma \)-nilpotent by Lemma 2.2(i). Now suppose that \(U/N \) is a \(\sigma \)-group for some \(j \neq i \). Then \(N \) has a complement \(V \) in \(U \) by the Schur-Zassenhaus theorem. Moreover, from the Feit-Thompson theorem it follows that at least one of the groups \(N \) or \(U/N \) is soluble and so every two complements to \(N \) in \(U \) are conjugate in \(U \). Therefore \(N_G(U) = N_G(NV) = NN_G(V) \). Since \(U = NV \) is not subnormal in \(G \), \(V \) is not subnormal in \(G \) by Lemma 2.3(1, 4) and so \(N_G(V) \) is \(\sigma \)-nilpotent. Hence \(N_{G/N}(U/N) = N_G(U)/N \) is \(\sigma \)-nilpotent.

(3) If \(A \) is an \(\mathfrak{N}_\sigma \)-critical subgroup of \(G \), then \(A = P \times Q \), where \(P = A^R = A' \) is a Sylow \(p \)-subgroup of \(A \) and \(Q \) is a Sylow \(q \)-subgroup of \(A \) for some different primes \(p \) and \(q \). Moreover, \(P \) is subnormal in \(G \) and so \(P \leq O_p(G) \).

The first assertion of the claim directly follows from Lemmas 2.8 and 2.9. Since \(A \) is not \(\sigma \)-nilpotent, \(P \) is subnormal in \(G \) by hypothesis. Therefore \(P \leq O_p(G) \) by Lemma 2.3(3).

(4) \(G \) is \(\sigma \)-soluble.

Suppose that this is false. Then \(G \) is a non-abelian simple group since every proper section of \(G \) is \(\sigma \)-soluble by Claims (1) and (2). Moreover, \(G \) is not \(\sigma \)-nilpotent and so it has an \(\mathfrak{N}_\sigma \)-critical subgroup \(A \). Claim (3) implies that for some Sylow subgroup \(P \) of \(A \) we have \(1 < P \leq O_p(G) < G \). This contradiction shows that we have (4).

(5) Statements (i) and (ii) hold for \(G \).

Since \(G \) is \(\sigma \)-soluble by Claim (4), it is a \(\sigma \)-full group of Sylow type by Lemma 2.1. In particular, \(G \) possesses a complete Hall \(\sigma \)-set \(\{ H_1, \ldots, H_t \} \). Then there is an index \(k \) such that \(H_k \) is not subnormal in \(G \) by Lemma 2.3(5) since \(G \) is not \(\sigma \)-nilpotent. Then \(N_G(H_k) \) is \(\sigma \)-nilpotent by hypothesis, so \(N_G(H_i) \) is a \(\sigma \)-Carter subgroup of \(G \) by Lemma 2.5 for all \(i > r \).
If for some $j \neq k$ the subgroup H_j is not subnormal in G, then $N_G(H_j)$ is also a σ-Carter subgroup of G. But then $N_G(H_k)$ and $N_G(H_j)$ are conjugate in G by Lemma 2.7. Hence for some $x \in G$ we have $H^x_k \leq N_G(H_j)$. Therefore, since G is not σ-nilpotent, there is a complete Hall σ-set \{L_1, \ldots, L_t\} of G such that for some $1 \leq r < t$ the subgroups L_1, \ldots, L_r are normal in G, L_i is not normal in G for all $i > r$, and $\langle L_{r+1}, \ldots, L_t \rangle = L_{r+1} \times \cdots \times L_t$.

(6) Every subgroup V of G containing $F_\sigma(G)$ is σ-subnormal in G, so $F_\sigma(V) = F_\sigma(G)$.

From Claim (5) it follows that $H_1, \ldots, H_r \leq F_\sigma(G)$ and

$$G/F_\sigma(G) = F_\sigma(G)(H_{r+1} \cdots H_t)/F_\sigma(G) \simeq (H_{r+1} \cdots H_t)/(H_{r+1} \cdots H_t \cap F_\sigma(G))$$

is σ-nilpotent. Hence every subgroup of $G/F_\sigma(G)$ is σ-subnormal in $G/F_\sigma(G)$ by Lemma 2.2(ii). Therefore V is σ-subnormal in G by Lemma 2.3(1), so $F_\sigma(V) \leq F_\sigma(G) \leq F_\sigma(V)$ by Lemma 2.3(3). Hence we have (6).

(7) Statement (iii) holds for G.

First note that $F_\sigma(G)$ is a maximal σ-nilpotent subgroup of G by Claim (6). In fact, $F_\sigma(G) = F_{0\sigma}(G) \times O_{\sigma_{i_1}}(G) \times \cdots \times O_{\sigma_{i_m}}(G)$ for some $i_1, \ldots, i_m \subseteq \{r + 1, \ldots, t\}$. Moreover, in view of Claim (5), we get clearly that $G/C_G(O_{\sigma_{i_k}}(G))$ is a σ_{i_k}-group and so $O_{\sigma_{i_k}}(G) \subseteq Z_\sigma(G)$. Hence $F_\sigma(G) = F_{0\sigma}(G)Z_\sigma(G)$.

(8) Statement (iv) holds for G.

First we show that $U_G \leq Z_\sigma(G)$ for every σ-nilpotent subgroup U of G such that $G = F_\sigma(G)U$. Suppose that this is false. Then $U_G \neq 1$. Let R be a minimal normal subgroup of G contained in U and $C = C_G(R)$. Then

$$G/R = (F_\sigma(G)R/R)(U/R) = F_\sigma(G/R)(U/R),$$

so

$$U_G/R = (U/R)G/R \leq Z_\sigma(G/R)$$

by Claim (2). Since G is σ-soluble, R is a σ_i-group for some i. Moreover, from $G = F_\sigma(G)U$ and Lemma 2.1 we get that for some Hall σ_i'-subgroups E, V and W of G, of $F_\sigma(G)$ and of U, respectively, we have $E = VW$. But $R \leq F_\sigma(G) \cap U$, where $F_\sigma(G)$ and U are σ-nilpotent. Therefore $E \leq C$, so $R/1$ is σ-central in G. Hence $R \leq Z_\sigma(G)$ and so $Z_\sigma(G/R) = Z_\sigma(G)/R$ by Lemma 2.10(ii). But then $U_G \leq Z_\sigma(G)$. Finally, if V is any maximal σ-nilpotent subgroup of G with $G = F_\sigma(G)V$, then $Z_\sigma(G) \leq V$ by Lemma 2.11(iv) and so $V_G = Z_\sigma(G)$.

(9) Statement (v) holds for G.

In view of Lemma 2.2(i), it is enough to show that $D = G^{\pi_\sigma}$ is nilpotent. Assume that this is false. Then $D \neq 1$, and for any minimal normal subgroup R of G we have that $(G/R)^{\pi_\sigma} = RD/R \simeq D/D \cap R$ is nilpotent by Claim (2) and Lemmas 2.2(i) and 2.4. Moreover, Lemma 2.2(i) implies that R is a unique minimal normal subgroup of G, $R \leq D$ and $R \notin \Phi(G)$. Since G is not σ-nilpotent,
Claim (3) and [24] Ch. A, 15.6 imply that $R = C_G(R) = O_p(G) = F(G)$ for some prime p. Then $R < D$ and $G = R \rtimes M$, where M is not σ-nilpotent, and so M has an \mathfrak{H}_σ-critical subgroup A. Claim (3) implies that for some prime q dividing $|A|$ and for a Sylow q-subgroup Q of A we have $1 < Q \leq F(G) \cap M = R \cap M = 1$. This contradiction completes the proof of (9).

From Claims (5), (7), (8) and (9) it follows that the conclusion of the theorem is true for G, contrary to the choice of G. The theorem is proved.

Proof of Theorem B. Assume that this theorem is false and let G be a counterexample of minimal order. Then G is not σ-nilpotent. Nevertheless, G is σ-soluble by Theorem A. Let $F_0(\sigma)(G) = H_1 \cdots H_r$ and $E = H_{r+1} \cdots H_t$. Then E is σ-nilpotent by Theorem A(ii).

1. Every proper subgroup E of G is semi-σ-nilpotent. Hence Statements (i) and (ii) hold for E (See Claim (1) in the proof of Theorem A).

2. The hypothesis holds for every proper quotient G/N of G. Hence Statements (i), (ii) and (iv) hold for G/N.

It is not difficult to show that G/N is semi-σ-nilpotent (see Claim (2) in the proof of Theorem A).

Now let U/N be any Schmidt σ_i-subgroup of G/N such that $U/N \leq W/N$ for some non-normal in G/N Hall σ_i-subgroup W/N of G/N. In view of Lemma 2.1, we can assume without loss of generality that $W/N = H_iN/N$. Let L be any minimal supplement to N in U. Then $L \cap N \leq \Phi(L)$ and, by Lemma 2.8, $U/N = LN/N \simeq L/L \cap N$ is a σ_i-group and $L/L \cap N = (P/L \cap N) \times (Q/L \cap N)$, where $P/L \cap N = (L/L \cap N)^R = (L/L \cap N)^q$ is a Sylow p-subgroup of $L/L \cap N$ and $Q/L \cap N = \langle x \rangle$ is a cyclic Sylow q-subgroup of $L/L \cap N$ with $V/L \cap N = \langle x^q \rangle = \Phi(Q/L \cap N) \leq \Phi(L/L \cap N) \cap Z(L/L \cap N)$ and $p, q \in \sigma_i$. Suppose that $|Q/L \cap N| > q$. Then $L \cap N < V$.

In view of Lemma 2.2(i), a Sylow p-subgroup of L is normal in L. Hence, in view of Lemma 2.8, for any Schmidt subgroup A of L we have $A = A_p \rtimes A_q$, where A_p is a Sylow p-subgroup of A, A_q is a Sylow q-subgroup of A and $(A_q)^A = A$. We can assume without loss of generality that $A_q(L \cap N)/(L \cap N) \leq Q/L \cap N$. Then $A_q(L \cap N)/(L \cap N) \leq V/L \cap N$ since $V \leq \Phi(L)$. It follows that $A_q \not\leq N$. Since $W/N = H_iN/N$ is not normal in G/N, H_i is not normal in G. But for some $x \in G$ we have $A^x \leq H_i$, so $|A^x_q| = |A_q| = q$ by hypothesis.

Note that $|Q/V| = q$ since $Q/L \cap N$ is cyclic and $V/L \cap N = \Phi(Q/L \cap N)$. Hence

$$(V/L \cap N)(A_q(L \cap N)/(L \cap N)) = (V/L \cap N) \times (A_q(L \cap N)/(L \cap N)) = Q/(L \cap N),$$

which implies that $Q/(L \cap N)$ is not cyclic. This contradiction shows that $|Q/L \cap N| = q$, so for a Sylow q-subgroup S of U/N we have $|S| = q$. Therefore the hypothesis holds for G/N. Hence we have (2) by the choice of G.

3. If A is an \mathfrak{H}_σ-critical subgroup of G, then $A = P \rtimes Q$, where $P = A^R = A'$ is a Sylow p-subgroup of A and Q is a Sylow q-subgroup of A for some different primes p and q. Moreover, the
subgroup P is normal in G. Hence G has an abelian minimal normal subgroup R (See Claim (3) in the proof of Theorem A).

(4) Statement (i) holds for G.

In view of Lemma 2.2(i), it is enough to show that G' is σ-nilpotent. Suppose that this is false.

(a) $R = C_G(R) = O_p(G) = F(G) \not\in \Phi(G)$ for some prime p and $|R| > p$.

From Claim (2) it follows that for every minimal normal subgroup N of G, $(G/N)' = G'/G' \cap N$ is σ-nilpotent. If $R \neq N$, it follows that $G'/((G' \cap N) \cap (G' \cap R)) = G'/1$ is σ-nilpotent by Lemma 2.2(i). Therefore R is a unique minimal normal subgroup of G, $R \leq D$ and $R \not\in \Phi(G)$ by Lemma 2.2(i). Hence $R = C_G(R) = O_p(G) = F(G)$ by Theorem 15.6 in [24 Ch. A], so $|R| > p$ since otherwise $G/R = G/C_G(R)$ is cyclic, which implies that $G' = R$ is σ-nilpotent.

(b) $F_\sigma(V) = F_\sigma(G)$ for every subgroup V of G containing $F_\sigma(G)$ (See Claim (6) in the proof of Theorem A).

(c) $G = H_1 \rtimes H_2$, where $R \leq H_1 = F_\sigma(G)$ and H_2 is a minimal non-abelian group.

From Theorem A and Claim (a) it follows that $r = 1$ and $R \leq H_1 = F_\sigma(G)$.

Now let $W = F_\sigma(G)V$, where V is a maximal subgroup of E. Then $F_\sigma(G) = F_\sigma(W)$ by Claim (b), so $W/F_\sigma(W) = W/F_\sigma(G) \simeq V$ is abelian by Claim (1). Therefore E is not abelian but every proper subgroup of E is abelian, so $E = H_2$ since E is σ-nilpotent. Hence we have (c).

(d) $H_1 = R$ is a Sylow p-subgroup of G and every subgroup $H \neq 1$ of H_2 acts irreducibly on R. Hence every proper subgroup H of H_2 is cyclic.

Suppose that $|\pi(H_1)| > 1$. There is a Sylow p-subgroup P of H_1 such that $H_2 \leq N_G(P)$ by Claim (c) and the Frattini argument. Let $K = PH_2$. Then $K < G$ and $P = H_1 \cap K$ is normal in K, so $R \leq P = F_\sigma(K)$ since $C_G(R) = R$ by Claim (a). Then $K/F_\sigma(K) = K/P \simeq H_2$ is abelian by Claim (1), a contradiction. Hence H_1 is a normal Sylow p-subgroup of G. Hence $H_1 \leq F(G) \leq C_G(R) = R$ by [24 Ch. A, 13.8(b)], so $H_1 = R$.

Now let $S = RH$. By the Maschke theorem, $R = R_1 \times \cdots \times R_n$, where R_i is a minimal normal subgroup of S for all i. Then $R = C_S(R) = C_S(R_1) \cap \cdots \cap C_S(R_n)$. Hence, for some i, the subgroup R_iH is not σ-nilpotent and so it has an $\forall \sigma$-critical subgroup A such that $1 < A'$ is normal in G by Claim (3). But then $R \leq A$. Therefore $i = 1$, so we have (d) since H is abelian by Claim (c).

(e) H_2 is not nilpotent. Hence $|\pi(H_2)| > 1$.

Suppose that $H_2 = Q \times H$ is nilpotent, where $Q \neq 1$ is a Sylow q-subgroup of H_2. If $H \neq 1$, then Q and H are proper subgroups of H_2 and so the groups Q, H and H_2 are abelian by Claim (c). Therefore $H_2 = Q$ is a q-group. Then, since every maximal subgroup of H_2 is cyclic by Claim (d), $q = 2$ by [25 Ch. 5, Theorems 4.3, 4.4]. Therefore $|R| = p$, contrary to Claim (a). Hence we have (e).

(f) $H_2 = A \rtimes B$, where $A = C_{H_2}(A)$ is a group of prime order $q \neq p$ and $B = \langle a \rangle$ is a group of
order \(r \) for some prime \(r \not\in \{p, q\} \).

From Claims (d) and (e) it follows that \(H_2 \) is a Schmidt group with cyclic Sylow subgroups. Therefore Claim (f) follows from the hypothesis and Lemma 2.8.

Final contradiction for (4). Suppose that for some \(x = yz \in RA \), where \(y \in R \) and \(z \in A \), we have \(xa = ax \). Then \(x \in N_G(B) \), so \(R \cap \langle x \rangle = 1 \) since \(B \) acts irreducible on \(R \) by Claim (d). Hence \(\langle x \rangle \) is a \(q \)-group and \(V = \langle x \rangle B \) is abelian group such that \(B \cap R = 1 \). Hence from the isomorphism \(G/R \cong H_2 \) we get that \(x = 1 \). Therefore \(a \) induces a fixed-point-free automorphism on \(RA \) and hence \(RA \) is nilpotent by the Thompson theorem [25, Ch. 10, Theorem 2.1]. But then \(A \leq C_G(R) = R \). This contradiction completes the proof of (4).

(5) Statement (ii) holds for \(G \).

Suppose that this is false. By Lemma 2.10(iv), \(\sigma(G) \leq U \). On the other, \(U/Z_\sigma(G) \) is a maximal \(\sigma \)-nilpotent non-normal subgroup of \(G/Z_\sigma(G) \) by Lemma 2.10(v). Hence in the case \(\sigma(G) \neq 1 \) Claim (2) implies that \(U/Z_\sigma(G) \) is a \(\sigma \)-Carter subgroup \(G/Z_\sigma(G) \), so \(U \) is a \(\sigma \)-Carter subgroup of \(G \) by Lemma 2.6(ii). Hence \(\sigma(G) = 1 \), so Theorem A(iii) implies that \(F_\sigma(G) = F_{0\sigma}(G) = H_1 \cdots H_r \). Hence \(E \cong G/F_{0\sigma}(G) \) is abelian by Claim (4).

Let \(V = F_\sigma(G)U \). If \(V = G \), then for some \(x \) we have \(H_{r+1}^x \leq U \) by Lemma 2.1. Hence \(U \leq N_G(H_{r+1}^x) \) and so \(U = N_G(H_{r+1}^x) \) is a \(\sigma \)-Carter subgroup of \(G \) by Theorem A(ii). Therefore \(V = F_\sigma(G)U \) is a normal proper subgroup of \(G \). Let \(x \in G \). If the subgroup \(U^x \) is normal in \(V \), then \(U^x \) is subnormal in \(G \) and so \(U^x, U \leq F_\sigma(G) \) by Lemma 2.3(3), which implies that \(U = F_\sigma(G) \) is normal in \(G \) since \(F_\sigma(G) \) and \(U \) are maximal \(\sigma \)-nilpotent subgroups of \(G \) by Theorem A(iii). This contradiction shows that \(U^x \) and \(U \) are non-normal maximal \(\sigma \)-nilpotent subgroups of \(V \). Since \(V < G \), Claim (1) implies that \(U^x \) and \(U \) are \(\sigma \)-Carter subgroups of \(V \). Since \(V \) is \(\sigma \)-soluble, \(U \) and \(U^x \) are conjugate in \(V \) by Lemma 2.7. Therefore \(G = V N_G(U) \) by the Frattini argument. Since \(U \) is a maximal \(\sigma \)-nilpotent non-normal subgroup of \(G \), \(U = N_G(U) \). Hence \(G = V U = (F_\sigma(G)U)U = F_\sigma(G)U < G \). This contradiction completes the proof of the fact that every maximal \(\sigma \)-nilpotent non-normal subgroup \(U \) of \(G \) is a \(\sigma \)-Carter subgroup of \(G \). But then \(G = F_\sigma(G)U \) since \(G/F_\sigma(G) \) is \(\sigma \)-nilpotent by Claim (4) and so \(U_G = Z_\sigma(G) \) by Theorem A(iv). Hence we have (5).

(6) If \(F_{0\sigma}(G) \leq F(G) \), then \(G/F_\sigma(G) \) is cyclic.

Assume that this is false.

(i) \(\Phi(F_{0\sigma}(G)) = 1 \). Hence \(F_{0\sigma}(G) \) is the direct product of some minimal normal subgroups \(R_1, \ldots, R_k \) of \(G \).

Suppose that \(\Phi(F_{0\sigma}(G)) \neq 1 \) and let \(N \) be a minimal normal subgroup of \(G \) contained in \(\Phi(F_{0\sigma}(G)) \leq \Phi(G) \). Then \(N \) is a \(p \)-group for some prime \(p \).

We show that the hypothesis holds for \(G/N \). First note that \(G/N \) is semi-\(\sigma \)-nilpotent by Claim (2). Now let \(V/N \) be a normal Hall \(\sigma_i \)-subgroup of \(G/N \) for some \(\sigma_i \in \sigma(G/N) \). If \(p \in \sigma_i \), then \(V \) is normal Hall \(\sigma_i \)-subgroup of \(G \), so \(V \leq F(G) \) by hypothesis and hence \(V/N \leq F(G)N/N \leq F(G/N) \).
Now assume that $p \notin \sigma_i$ and let W be a Hall σ_i-subgroup of V. Then W is a Hall σ_i-subgroup of G. Moreover, every two Hall σ_i-subgroups of V are conjugate in V by Lemma 2.1, so $G = VN_G(W) = NW_NG(W) = N_NG(W) = N_G(W)$ by the Frattini argument. Therefore $W \leq F(G)$, so $V/N = WN/N \leq F(G/N)$. Hence $F_{0\sigma}(G/N) \leq F(G/N)$, so the hypothesis holds for G/N. The choice of G and Lemma 2.11 imply that $(G/N)/F_{\sigma}(G/N) = (G/N)/(F_{\sigma}(G)/F_{\sigma}(G)) \simeq G/F_{\sigma}(G)$ is cyclic, a contradiction. Hence $\Phi(F_{0\sigma}(G)) = 1$, so we have (i) by [24, Ch. A, Theorem 10.6(c)].

(ii) $Z_{\sigma}(G) = 1$. Hence $F_{0\sigma}(G) = F_{\sigma}(G) = F(G)$.

Since $Z_{\sigma}(G/Z_{\sigma}(G)) = 1$ by Lemma 2.10(ii), Lemma 2.11 and Theorem A(iii) imply that

\[F_{0\sigma}(G/Z_{\sigma}(G)) = F_{\sigma}(G/Z_{\sigma}(G)) = F_{\sigma}(G)/Z_{\sigma}(G) = F_{0\sigma}(G)Z_{\sigma}(G)/Z_{\sigma}(G), \]

where $F_{0\sigma}(G) \leq F(G)$ and so $F_{0\sigma}(G/Z_{\sigma}(G)) \leq F(G/Z_{\sigma}(G))$. Therefore the hypothesis holds for $G/Z_{\sigma}(G)$ and hence, in the case when $Z_{\sigma}(G) \neq 1$, $G/F_{\sigma}(G) \simeq (G/Z_{\sigma}(G))/F_{\sigma}(G/Z_{\sigma}(G))$ is cyclic by the choice of G. Hence we have (ii).

Final contradiction for (6). Since $E \simeq G/F(G)$ is abelian by Claims (4) and (ii) and G is not nilpotent, there is an index i such that $V = R_i \rtimes E$ is not nilpotent. Then $C_{R_i}(E) \neq R_i$. By the Maschke theorem, $R_i = L_1 \times \cdots \times L_m$ for some minimal normal subgroups L_1, \ldots, L_m of V. Then, since $C_{R_i}(E) \neq R_i$, for some j we have $L_j \times E \neq L_j \times E$. Hence $L_j E$ contains a Schmidt subgroup $A_p \rtimes A_q$ such that $A_p = R_i$, so $m = 1$. But then E acts irreducible on R_i and hence $G/F(G) \simeq E$ is cyclic. This contradiction completes the proof of (6).

From Claims (1), (2), (4), (5) and (6) it follows that the conclusion of the theorem is true for G, contrary to the choice of G. The theorem is proved.

References

[1] A.N. Skiba, On σ-subnormal and σ-permutable subgroups of finite groups, *J. Algebra*, 436 (2015), 1–16.

[2] A.N. Skiba, Some characterizations of finite σ-soluble $P\sigma T$-groups, *J. Algebra*, 495(1) (2018), 114–129.

[3] A. Ballester-Bolinches, K. Doerk, M.D. Pèrez-Ramos, On the lattice of \mathfrak{F}-subnormal subgroups, *J. Algebra*, 148 (1992), 42–52.

[4] A.F. Vasil’ev, A.F. Kamornikov, V.N. Semenchuk, On lattices of subgroups of finite groups, In N.S. Chernikov, Editor, *Infinite groups and related algebraic structures*, p. 27–54, Kiev, 1993. Institut Matematiki AN Ukrainy. Russian.

[5] L.A. Shemetkov, *Formations of finite groups*, Nauka, Main Editorial Board for Physical and Mathematical Literature, Moscow, 1978.
[6] A. Ballester-Bolinches, L.M. Ezquerro, *Classes of Finite Groups*, Springer-Verlag, Dordrecht, 2006.

[7] W. Guo, A.N. Skiba, Finite groups with permutable complete Wielandt sets of subgroups, *J. Group Theory*, 18 (2015), 191–200.

[8] J.C. Beidleman, A.N. Skiba, On τ_σ-quasinormal subgroups of finite groups, *J. Group Theory*, 20(5) (2017), 955–964.

[9] Kh. A. Al-Sharo, A.N. Skiba, On finite groups with σ-subnormal Schmidt subgroups, *Comm. Algebra*, 45 (2017), 4158–4165.

[10] W. Guo, A.N. Skiba, On Π-quasinormal subgroups of finite groups, *Monatsh. Math.*, doi: 10.1007/s00605-016-1007-9.

[11] W. Guo, A.N. Skiba, Groups with maximal subgroups of Sylow subgroups σ-permutably embedded, *J. Group Theory*, 20(1) (2017), 169–183.

[12] J. Huang, B. Hu, X. Wu, Finite groups all of whose subgroups are σ-subnormal or σ-abnormal, *Comm. Algebra*, 45(1) (2017), 4542–4549.

[13] A.N. Skiba, A generalization of a Hall theorem, *J. Algebra Appl.*, 15(4) (2015), 21–36.

[14] B. Hu, J. Huang, A.N. Skiba, Groups with only σ-semipermutable and σ-abnormal subgroups, *Acta Math. Hung.*, 153(1) (2017), 236–248.

[15] B. Hu, J. Huang, On finite groups with generalized σ-subnormal Schmidt subgroups, *Comm. Algebra*, doi:org/10.1080/00927872.2017.1404091.

[16] B. Hu, J. Huang, A.N. Skiba, Finite groups with given systems of σ-semipermutable subgroups, *J. Algebra Appl.*, 17(2) (2018), doi: http://dx.doi.org/10.1142/S0219498818500317

[17] W. Guo, A.N. Skiba, On the lattice of Π_3-subnormal subgroups of a finite group, *Bull. Austral. Math. Soc.*, 96(2) (2017), 233–244.

[18] W. Guo, A.N. Skiba, Finite groups whose n-maximal subgroups are σ-subnormal, *Science in China. Math.*, in Press.

[19] A.N. Skiba, On some results in the theory of finite partially soluble groups, *Comm. Math. Stat.*, 4 (2016), 281–309.

[20] V.A. Belonogov, Finite groups all of whose 2-maximal subgroups are π-decomposable, *Trudi Instituta Matematiki i Mekhaniki Uro RAN*, 20(2) (2014), 29–43.

[21] M. Weinstein ed., *Between Nilpotent and Solvable*, Polygonal Publishing House, 1982.
[22] Chih-Han Sah, On a generalization of finite nilpotent groups, *Math. Z.*, **68**(1) (1957), 189–204.

[23] S.A. Chunikhin, *Subgroups of finite groups*, Nauka i Tehnika, Minsk, 1964.

[24] K. Doerk, T. Hawkes, *Finite Soluble Groups*, Walter de Gruyter, Berlin, New York, 1992.

[25] D. Gorenstein, *Finite Groups*, Harper & Row Publishers, New York-Evanston-London, 1968.