ICAS is a viable treatment option in the case of symptomatic intracranial atherosclerotic disease. Due to the high stroke risk under medical treatment, patients with high-grade (>70%) symptomatic intracranial stenosis represent the main target group for alternative endovascular treatment concepts such as ICAS. During follow-up, ISR seems to be a major target group for alternative endovascular treatment concepts. ISR was 31.2%, with 31.0% of the lesions being symptomatic. Especially younger patients with intracranial stenosis of the ICA or the M1 segment of the middle cerebral artery have shown a high risk of developing ISR, which may cause stroke in the first 12 months in ≤5% of the cases. Whether restenosis rates are relevant is still under discussion, but it remains undisputable that follow-up is necessary.

Conventional iaDSA is the current criterion standard follow-up examination after ICAS, and as such, it has been primarily used in studies evaluating ISR rates. Due to its invasive nature, iaDSA carries the risk of neurologic complications, especially in elderly patients with known cardiovascular disease and when fluoroscopic times are ≥10 minutes. Recent studies have shown that, within a high-volume neurointerventional department, the risk for neurologic complications during iaDSA is close to zero. Nevertheless, the accessibility of a high-volume institution is not always guaranteed for patients having their follow-up after ICAS, and even in high-volume centers, it is impossible to ensure that every iaDSA will be performed by an experienced operator. A new noninvasive technique for the depiction of intracranial vessels after ICAS is the ivACT. Buhk et al demonstrated, in a small series, that ivACT, in comparison with MDCTA, is a
feasible follow-up option for the delineation of in-stent pathologies or the exclusion of ISR. While MDCTA has been proved a reliable tool for screening intracranial artery stenosis, in vitro studies have shown that it is insufficient for the assessment of ISR. Trousback et al concluded that it is impossible to visualize the different stenoses subjectively—that is, without using image-analysis software—in a series of in vitro examinations delineating different grades of ISR in 3 and 4 mm stents for intracranial angioplasty. Similar conclusions have been drawn in studies evaluating MDCTA in the assessment of ISR in coronary stents. On the other hand, earlier studies have already presented the potential of ACT in the evaluation of small coronary stents. In their study, Mahnken et al noted that ACT proved to be superior to MDCT for in vitro visualization of coronary artery stents because the improved spatial resolution of ACT enabled better depiction of the stent lumen. This characteristic of ACT also allows the cross-sectional evaluation of normal or abnormal deployment of small intracranial stents, which is impossible with other imaging modalities such as MDCT, DSA, or MR imaging.

Other noninvasive techniques allowing the detection of ISR include transcranial duplex sonography and quantitative MR angiography. However, both of these lack the ability to provide anatomic data of the stent region, and especially duplex sonography is limited due to its dependence on operator experience and the anatomy of the temporal bone window.

The purpose of this study was the evaluation of ivACT in the detection of ISR and the comparison with iaDSA findings in the follow-up of 17 cases after ICAS.

Materials and Methods

Patients

Fourteen patients were treated with ICAS of a symptomatic intracranial artery stenosis from July 2006 to May 2009 (10 men, 4 women; mean age, 60 years; range, 45–75 years). One patient received 2 intracranial stents (petros ICA and M1), and in another patient, 3 follow-up examinations were performed in the time period mentioned above: the first, 3 months after ICAS; the second and third, 7 and 4 months after the first and second PTA of a recurrent high-grade ISR, respectively. Locations of stenoses, presenting symptoms, and applied stent systems are shown in On-line Table 1. All patients were admitted for standard follow-up within an average of 7 months (range, 3–12 months) after ICAS.

Approval of the local ethics committee and informed patient consent were obtained.

Image Acquisition

IvACT acquisitions and iaDSA examinations were performed on a biplane angiography system equipped with flat panel detectors (Axiom Artis dBA, Siemens, Erlangen, Germany). DSA data included only standard angiography series. For the acquisition of ivACT, we used the DynaCT program of our suite (Siemens) with the following parameters: 20 seconds of rotation; 538 projections; 220° total angle; CTDIv, approximately 35 mGy (manufacturer information); and a 30 × 40 cm detector, which allows the reconstruction of a nontruncated volume of approximately 22 cm (in-plane) and 16 cm (in the z-direction). While planning the DynaCT, we placed the stented segment near the center of the FOV, because a higher image quality is guaranteed near the central plane of the conebeam. However, we avoided placing the stented segment exactly in the center of the conebeam because ring artifacts can negatively affect the image quality.

Postprocessing of the rotational image data to a volume dataset was performed by using dedicated commercial software on a Leonardo medical workstation (InSpace 3D; Siemens). The software includes system-specific algorithms to correct beam-hardening, scattered radiation, truncated projections, and ring artifacts. Reconstruction resulted in a volume dataset of approximately 400 sections with a 512 × 512 matrix and an isotropic spatial resolution of approximately 0.1 × 0.1 × 0.1 mm³. The ivACT datasets were further processed to multiplanar reformations parallel and perpendicular to the stent region with a section thickness of 0.2–0.3 mm and maximum intensity projections of the other intracranial vessels. Before acquisition, 100 mL of iomeprol (Imeron 400; Bracco ALTANA Pharma, Konstanz, Germany) had been injected into a cubital vein at a flow rate of 5 mL/s by using a power injector. The start delay for rotational acquisition was 14–20 seconds, depending on the age and cardiopulmonary status of the patient. During ivACT, the patient was asked to close his or her eyes and to breath-hold during the 20 seconds of the C-arm rotation.

Image Analysis

Two neuroradiologists (M.-N.P., A.X.) independently performed the image viewing and rating on the above-mentioned Leonardo medical workstation by using the Warfarin-Aspirin Symptomatic Intracranial Disease study technique. As in the study of Albuquerque et al, ISR was defined as >50% stenosis within or adjacent (within 5 mm) to the stent as well as >20% absolute luminal loss at follow-up imaging. Moreover, all restenotic lesions, even those not fulfilling the criteria of ISR, were categorized by using the modified Mehran classification system. This system, originally developed to describe ISR after coronary PTA with stent placement, divides ISR into 4 subgroups: class I, a focal group with lesions involving <50% of the stented segment; class II, a diffuse intrastent group (>50% of the stented segment); class III, a proliferative group with lesions expanding beyond the confines of the stent; and class IV, a complete stent occlusion group.

Statistical Analysis

The mean value of each pair of measurements (rater 1, rater 2) was then calculated and used for further statistical analysis. The correlation between ISR percentage measures on ivACT and iaDSA examinations was assessed by the Pearson correlation coefficient r. Additionally, a simple linear regression of ivACT versus iaDSA was performed. Considering iaDSA as the criterion standard for the detection of ISR, we calculated empiric sensitivity and specificity, as well as the positive and negative predictive values for ivACT as a detection method. Statistical significance was assumed for P values < .05. All analyses were conducted with the free software R (version 2.8, http://www.r-project.org).

Results

Follow-up imaging with iaDSA and ivACT was obtained for 17 stenotic lesions. Measurements and descriptive results can be seen in On-line Table 2. Nine lesions had been treated with a self-expanding intracranial nitinol stent (Wingspan; Boston Scientific, Natick, Massachusetts), 4 with a relatively new balloon-mounted stent designed for intracranial use (Pharos; Micrus Endovascular, Renens, Switzerland), and another 4 le-
The cases presented in Fig 1 illustrate 2 examples in which ISR was excluded. In case 2, a Wingspan stent (2.5 mm) had been placed in a symptomatic stenosis of the right internal carotid artery (ICA) and had been successfully eliminated by a second PTA. The patient was admitted for standard follow-up imaging 7 months after ICAS of a symptomatic BA stenosis, the patient was admitted for standard follow-up imaging. Seven months after ICAS of a symptomatic BA stenosis, the patient was admitted for standard follow-up imaging.
2.5-mm Wingspan stent self-expanded to a diameter of 1.8 mm, as well as the streak artifacts near the confines of the stent (Fig 2).

Regarding the radiation dose, the use of a 20-second ACT protocol results in a CTDI value ~ 3.5 mGy, which is comparable with or even lower than the usual MDCTA or conven-
tional cranial CT protocols (~60 mGy).29,30 The dose could be further reduced with the application of a 5-second (CTDI_w ~ 9 mGy) or an 8-second ACT protocol. However, longer rotating time is currently necessary to achieve sufficient contrast resolution for the depiction of ISR. Kyriakou et al.31 report in their publication that “the sampling artifacts, originating from the small number of projections in high speed (5 seconds), are quite distinct, and in high-speed protocols low tissue resolution is nearly nonexistent.” In contrast to other studies that have used a high-dose 20-second ACT protocol with a CTDI_w ~ 75 mGy, we used the low-dose protocol solely in our study.23,31

The amount of contrast media used for ivACT in our study is higher than the amount being used in a conventional MDCTA (~60 mL in our department). The reason for this difference is the necessity of a longer acquisition time with the ACT protocol. To achieve an adequate contrast throughout the whole rotation, one must inject large amounts of contrast media continuously. We are currently using a modified protocol with 90 mL of contrast medium followed by 30 mL of saline flush, but a definite solution to the contrast dosage issue will be the deployment, in the future, of a shorter rotation protocol, with contrast and spatial resolution comparable with the currently used 20-second ACT.

The limitations of this study include its small sample size, the absence of bolus-tracking for ivACT, and the metal arti-
IvACT is a promising new noninvasive follow-up tool after ICAS. Although the first results are very promising, the absence of a bolus-tracking method after intravenous contrast medium administration could sometimes result in an insufficient depiction of intracranial vessels. This would mean repeated examinations and increased overall radiation and contrast dosage for the patient. We are currently working with the manufacturer on this issue, and we think that a viable method of bolus-tracking will be available in the months to come. Regarding the streak artifacts at the confines of the Wingspan stent, one should consider that an ISR that includes the confines of a stent is an infrequent one (modified Mehran IA). Moreover, with the development of new metal artifacts-reduction algorithms for ACT, even the marker region of the Wingspan stent may be visible without any streak artifacts in the near future.

Conclusions

IvACT is a promising new noninvasive follow-up tool after ICAS. In our sample, we could detect ISR on ivACT images with a high sensitivity and specificity. Further research is required to conclude that ivACT could replace iaDSA as a standard follow-up examination after ICAS.

Fig 4. Scatterplot of ivACT (%) versus iaDSA (%) plus an estimated regression line. facts around the markers of the Wingspan stent. Larger studies have to be conducted to verify the value of ivACT in the follow-up imaging after ICAS. Although the first results are very promising, the absence of a bolus-tracking method after intravenous contrast medium administration could sometimes result in an insufficient depiction of intracranial vessels. This would mean repeated examinations and increased overall radiation and contrast dosage for the patient. We are currently working with the manufacturer on this issue, and we think that a viable method of bolus-tracking will be available in the months to come. Regarding the streak artifacts at the confines of the Wingspan stent, one should consider that an ISR that includes the confines of a stent is an infrequent one (modified Mehran IA).

References

1. Chinomowiz MI, Lynn MJ, Howlett-Smith H, et al. Comparison of warfarin and aspirin for symptomatic intracranial arterial stenosis. N Engl J Med 2005;352:1305–16
2. Turk AS, Levy EI, Albuquerque FC, et al. Influence of patient age and stenosis location on Wingspan in-stent restenosis. AJNR Am J Neuroradiol 2008;29:23–27. Epub 2007 Nov 7
3. Levy EI, Turk AS, Albuquerque FC, et al. Wingspan in-stent restenosis and thrombosis: incidence, clinical presentation, and management. Neurosurgery 2007;61:644–50, discussion 650–51
4. Derdeyn CP, Chinomowiz MI. Re: Turk et al and the “how do we spin Wingspan” commentary. AJNR Am J Neuroradiol 2008;29:e69; author reply e70. Epub 2008 Apr 3
5. Groeschl K, Schnaudigel S, Pilgram SM, et al. A systematic review on outcome after stenting for intracranial atherosclerosis. Stroke 2009;40:e340–47
6. Albuquerque FC, Levy EI, Turk AS, et al. Angiographic patterns of Wingspan in-stent restenosis. Neurosurgery 2008;63:23–27, discussion 27–28
7. SYSLVIA Study Investigators. Stenting of Symptomatic Atherosclerotic Lesions in the Vertebral or Intracranial Arteries (SYSLVIA): study results. Stroke 2004;35:1388–92
8. Willinsky RA, Taylor SM, TerBrugge K, et al. Neurologic complications of cerebral angiography: prospective analysis of 2,899 procedures and review of the literature. Radiology 2003;227:522–28
9. Thierx R, Norbash AM, Ferrihcs KU. The safety of dedicated-team catheter-based diagnostic cerebral angiography in the era of advanced noninvasive imaging. AJNR Am J Neuroradiol 2010;31:230–34
10. Bukh JH, Lingor P, Knauth M. Angiographic CT with intravenous administration of contrast medium is a noninvasive option for follow-up after intracranial stenting. Neuroradiology 2008;50:349–54
11. Nguyen-Huyhn MN, Wintermark M, English J, et al. How accurate is CT angiography in evaluating intracranial atherosclerotic disease? Stroke 2008;39:1184–88
12. Trosbach M, Hartmann M, Braun C, et al. Small vessel stents for intracranial angioplasty: in vitro evaluation of in-stent stenoses using CT angiography. Neuroradiology 2004;46:459–63
13. Haraldsdottir S, Gudnason T, Sigurdsson AF, et al. Diagnostic accuracy of 64-slice multidetector CT for detection of in-stent restenosis in an unselected, consecutive patient population. Eur J Radiol 2009 Jun 29. [Epub ahead of print]
14. Mahnken AH, Seyfarth T, Fohr T, et al. Flat-panel detector computed tomography for the assessment of coronary artery stents: phantom study in comparison with 16-slice spiral computed tomography. Invest Radiol 2005;40:486–93
15. Ebrahimi N, Claus B, Lee CY, et al. Stent conformity in curved vascular models with simulated aneurysm necks using flat-panel CT: an in vitro study. AJNR Am J Neuroradiol 2007;28:823–29
16. Groeschl K, Schnaudigel S, Bukh JH, et al. Intracranial stent restenosis diagnosed on routine duplex follow-up investigation. AJNR Am J Neuroradiol 2008;29:e65; author reply e66. Epub 2008 Jul 18
17. Prabhakaran S, Warrior L, Wells KR, et al. The utility of quantitative magnetic resonance angiography in the assessment of intracranial in-stent stenosis. Stroke 2009;40:991–93
18. Kyriakou Y, Struffert T, Dörfler A, et al. Basic principles of flat detector computed tomography (FD-CT) [in German]. Radiologie 2009;49:811–19
19. Prell D, Kyriakou Y, Kalender WA. Comparison of ring artifact correction methods for flat-detector CT. Phys Med Biol 2009;54:3881–95
20. Berkedel J, Zanella FE. Intracranial stenting of atherosclerotic stenoses: current status and perspectives. Klin Neurol Neurosci 2009;19:38–44
21. Schneider W, Huber R, Schütz BL. Stent-assisted intracranial angioplasty: potentials and limitations of pre- and postinterventional CT angiography [in German]. RoFo 2009;181:121–28. Epub 2009 Jan 27
22. Benndorf G, Strotzer CM, Claus B, et al. Angiographic CT in cerebrovascular stenting. AJNR Am J Neuroradiol 2005;26:1813–18
23. Struffert T, Hertel V, Kyriakou Y, et al. Imaging of cochlear implant electrode array with flat-detector CT and conventional multislice CT: comparison of image quality and radiation dose. Acta Otolaryngol 2010;130:443–52
24. Psychogios MN, Bukh JH, Schramm P, et al. Feasibility of angiographic CT in peri-interventional diagnostic imaging: a comparative study with multidetector CT. AJNR Am J Neuroradiol 2010;31:1226–31
25. Kalender WA, Kyriakou Y. Flat-detector computed tomography (FD-CT, EU Radiol 2007;17:2767–79
26. Sadasivan C, Cesar L, Seong J, et al. An original flow diversion device for the treatment of intracranial aneurysms: evaluation in the rabbit elastase-induced model. Stroke 2009;40:952–58
27. Wakkhoo AK, Mandell J, Gounis MJ, et al. Stent-assisted reconstructive endovascular repair of cranial fusiform atherosclerotic and dissecting aneurysms: long-term clinical and angiographic follow-up. Stroke 2008;39:3288–96
28. Bley T, Strrotzer CM, Puller K, et al. C-arm CT measurement of cerebral blood volume in ischemic stroke: an experimental study in canines. AJR Am J Neuroradiol 2010;31:536–40
29. Van der Molen AJ, Veldkamp WJ, Geleijns J. 16-slice CT: achievable effective doses of common protocols in comparison with recent CT dose surveys. Br J Radiol 2007;80:248–55. Epub 2006 Oct 12
30. Bundesamt fuer Strahlenschutz, Diagnostische Referenzwerte fuer radiologische Untersuchungen. Bundesanzeiger 2003;143:17503–10
31. Kyriakou Y, Richter G, Dorfler A, et al. Neuroradiologic applications with routine C-arm flat panel detector CT: evaluation of patient dose measurements. AJNR Am J Neuroradiol 2008;29:1930–36
32. Prell D, Kyriakou Y, Struffert T, et al. Metal artifact reduction for clipping and coiling in interventional C-arm CT. AJNR Am J Neuroradiol 2010;31:634–39. Epub 2009 Nov 26