Tannaka duality and convolution for duoidal categories

Thomas Booker∗ and Ross Street†

2000 Mathematics Subject Classification. 18D35; 18D10; 20J06
Key words and phrases. duoidal; duoid; bimonoid; tannaka; monoidal category.

Abstract
Given a horizontal monoid \(M \) in a duoidal category \(\mathcal{F} \), we examine the relationship between bimonoid structures on \(M \) and monoidal structures on the category \(\mathcal{F}^* \) of right \(M \)-modules which lift the vertical monoidal structure of \(\mathcal{F} \). We obtain our result using a variant of the Tannaka adjunction. The approach taken utilizes hom-enriched categories rather than categories on which a monoidal category acts (“actegories”). The requirement of enrichment in \(\mathcal{F} \) itself demands the existence of some internal homs, leading to the consideration of convolution for duoidal categories. Proving that certain hom-functors are monoidal, and so take monoids to monoids, unifies classical convolution in algebra and Day convolution for categories. Hopf bimonoids are defined leading to a lifting of closed structures on \(\mathcal{F} \) to \(\mathcal{F}^* \). Warped monoidal structures permit the construction of new duoidal categories.

Contents
1 Introduction 2
2 The monoidality of hom 4
3 Duoidal \(\mathcal{V} \)-categories 10
4 Duoidales and produoidal \(\mathcal{V} \)-categories 12
5 Enrichment in a duoidal \(\mathcal{V} \)-category base 15
6 The Tannaka adjunction revisited 17
7 Hopf bimonoids 24
8 Warped monoidal structures 30

∗This author was supported by an Australian Postgraduate Award.
†This author gratefully acknowledges the support of an Australian Research Council Discovery Grant DP1094883.
1 Introduction

This paper initiates the development of a general theory of duoidal categories. In addition to providing the requisite definition of a duoidal V-category, various “classical” concepts are reinterpreted and new notions put forth, including: produnoidal V-categories, convolution structures and duoidal cocompletion, enrichment in a duoidal V-category, Tannaka duality, lifting closed structures to a category of representations (Hopf opmonoidal monads), and discovering new duoidal categories by “warping” the monoidal structure of another. Duoidal categories, some examples, and applications, have appeared in the Aguiar-Mahajan book \[1\] (under the name “2-monoidal categories”), in the recently published work of Batanin-Markl \[2\] and in a series of lectures by the second author \[23\]. Taken together with this paper, the vast potential of duoidal category theory is only now becoming apparent.

An encapsulated definition is that a duoidal V-category F is a pseudomonoid in the 2-category $\text{Mon}(\text{Mon}(V\text{-Cat}))$ of monoidal V-categories, monoidal V-functors and monoidal V-natural transformations. Since $\text{Mon}(\text{Mon}(V\text{-Cat}))$ is equivalently the category of pseudomonoids in $V\text{-Cat}$ we are motivated to call a pseudomonoid in a monoidal bicategory a monoidale (i.e. a monoidal object). Thus a duoidal V-category is an object of $V\text{-Cat}$ equipped with two monoidal structures, one called horizontal and the other called vertical, such that one is monoidal with respect to the other. Calling such an object a duoidal encourages one to consider duoidales in other monoidal bicategories, in particular $\mathcal{M} = V\text{-Mod}$. By giving a canonical monoidal structure on the $V = \mathcal{M}(I, I)$ valued-hom for any left unit closed monoidal bicategory \mathcal{M} (see Section 2), we see that a duoidal in $\mathcal{M} = V\text{-Mod}$ is precisely the notion of promonoidal category lifted to the duoidal setting, that is, a produnoidal V-category.

A study of duoidal cocompletion (in light of the produnoidal V-category material) leads to Section 5 where we consider enrichment in a duoidal V-category base. We observe that if \mathcal{F} is a duoidal V-category then the vertical monoidal structure \circ lifts to give a monoidal structure on $\mathcal{F}_h\text{-Cat}$. If \mathcal{F} is then a horizontally left closed duoidal V-category then \mathcal{F} is in fact a monoidale $(\mathcal{F}_h, \hat{\circ}, \lfloor 1 \rfloor)$ in $\mathcal{F}_h\text{-Cat}$ with multiplication $\hat{\circ} : \mathcal{F}_h \circ \mathcal{F}_h \longrightarrow \mathcal{F}_h$ defined using the evaluation of homs. That is, \mathcal{F}_h is an \mathcal{F}_h-category.

Section 6 revisits the Tannaka adjunction as it pertains to duoidal V-categories. We write $\mathcal{F}_h\text{-Cat} \downarrow \text{ps} \mathcal{F}_h$ for the 2-category $\mathcal{F}_h\text{-Cat} \downarrow \mathcal{F}_h$ restricted to having 1-cells those triangles that commute up to an isomorphism. Post composition with the monoidal multiplication $\hat{\circ}$ yields a tensor product \mathcal{F} on $\mathcal{F}_h\text{-Cat} \downarrow \text{ps} \mathcal{F}_h$ and we write $\mathcal{F}\text{-Cat} \downarrow \text{ps} \mathcal{F}$ for this monoidal 2-category. Let \mathcal{F}_{*M} be the \mathcal{F}_h-category of Eilenberg-Moore algebras for the monad $\sim M$. There is a monoidal functor $\text{mod} : (\text{Mon}\mathcal{F})^{\text{op}} \longrightarrow \mathcal{F}\text{-Cat} \downarrow \text{ps} \mathcal{F}$ defined by taking a monoid \mathcal{M} to the object $U_M : \mathcal{F}_{*M} \longrightarrow \mathcal{F}_h$. Here $\text{Mon}\mathcal{F}$ is only being considered as a monoidal category, not a 2-category. Representable objects of $\mathcal{F}\text{-Cat} \downarrow \text{ps} \mathcal{F}$ are closed under the monoidal structure \mathcal{F} which motivates restricting to $\mathcal{F}\text{-Cat} \downarrow \text{rep} \mathcal{F}$. Since representable functors are “tractable” and the functor $\text{end} : \mathcal{F}\text{-Cat} \downarrow \text{rep} \mathcal{F} \longrightarrow \text{Mon}\mathcal{F}$ is strong monoidal we have the biadjunction

\[
\begin{array}{c}
\text{Bimon} \mathcal{F}_h^{\text{op}} \downarrow \text{end} \\
\downarrow \text{mod} \\
\text{Mon}_{\text{ps}}(\mathcal{F}\text{-Cat} \downarrow \text{rep} \mathcal{F})
\end{array}
\]
giving the correspondence between bimonoid structures on M and isomorphism classes of monoidal structures on $F^\otimes M$ such that the underlying functor is strong monoidal into the vertical structure on F. The non-duoidal version of this result is attributed to Bodo Pareigis (see [3], [4] and [5]).

The notion of a Hopf opmonoidal monad is found in the paper of Bruguières-Lack-Virelizier [6]. We adapt their work to the duoidal setting in order to lift closed structures on the monoidale (monoidal F-category) $(F, \circ, [1])$ to the F^\otimes-category of right modules $F^\otimes M$ for a bimonoid M. In particular, Proposition 22 says that a monoidal F^\otimes-category $(F, \circ, [1])$ is closed if and only if F_v is a closed monoidal V-category and there exists V-natural isomorphisms $X \circ (W \ast Y) \cong W \ast (X \circ Y) \cong (W \ast X) \circ Y$. In light of F being a duoidal V-category, Proposition 23 gives a refinement of this result which taken together with Proposition 22 yields two isomorphims

$$X \ast (J \circ Y) \cong X \circ Y \cong Y \ast (X \circ J)$$

and

$$Y \circ (W \ast 1) \cong W \ast Y \cong (W \ast 1) \circ Y.$$

This result implies that in order to know \circ we only need to know \ast and $J \circ -$ or $- \circ J$. Similarly to know \ast we need only know \circ and $1 \ast -$ or $- 1$. This extreme form of interpolation motivates the material of Section 8.

We would like a way to generate new duoidal categories. One possible method presented here is the notion of a warped monoidal structure. In its simplest presentation, a warping for a monoidal category $A = (\mathcal{A}, \otimes)$ is a perturbation of A’s tensor product by a “suitable” endo-functor $T: \mathcal{A} \to \mathcal{A}$ such that the new tensor product is defined by

$$A \Box B = TA \otimes B.$$

We lift this definition to the level of a monoidale A in a monoidal bicategory \mathcal{M}. Proposition 26 observes that a warping for a monoidale determines another monoidale structure on A. If F is a duoidal V-category satisfying the right-hand side of the second isomorphism above then a vertical warping of F by $T = - \ast 1$ recovers F^\otimes. This is precisely a warping of the monoidale F_v in $\mathcal{M} = V$-Cat. The last example given generates a duoidal category by warping the monoidal structure of any lax braided monoidal category viewed as a duoidal category with $\ast = \circ = \otimes$ and $\gamma = 1 \otimes c \otimes 1$.

3
2 The monoidality of hom

Let (V, \otimes) be a symmetric closed complete and cocomplete monoidal category. Recall from [17] that a V-natural transformation θ between V-functors $T, S : A \to X$ consists of a V-natural family

$$\theta_A : TA \to SA, A \in A,$$

such that the diagram

$$\begin{array}{ccc}
A(A, B) & \xrightarrow{T} & X(TA, TB) \\
S & & \downarrow \cong \\
X(SA, SB) & \xrightarrow{\theta_A \otimes 1} & X(TA, SB)
\end{array}$$

commutes in the base category V.

If (\mathcal{C}, \boxtimes) is a monoidal V-category with tensor product \boxtimes then the associativity isomorphisms $a_{A, B, C} : (A \boxtimes B) \boxtimes C \to A \boxtimes (B \boxtimes C)$ are necessarily a V-natural family, which amounts to the commutativity of the diagram

$$\begin{array}{ccc}
\mathcal{C}(A, A') \otimes \mathcal{C}(B, B') & \xrightarrow{\boxtimes (1 \otimes 1)} & \mathcal{C}((A \boxtimes B) \boxtimes C, (A' \boxtimes B') \boxtimes C') \\
\cong & & \\
\mathcal{C}(A, A') \otimes (\mathcal{C}(B, B') \boxtimes \mathcal{C}(C, C')) & \xrightarrow{\mathcal{C}(1, a_{A', B'}, C')} & \mathcal{C}((A \boxtimes B) \boxtimes C, A' \boxtimes (B' \boxtimes C'))
\end{array}$$

Similarly the V-naturality of the unit isomorphisms

$$\ell_A : I \boxtimes A \to A \quad \text{and} \quad r_A : A \boxtimes I \to A$$

amounts to the commutativity of

$$\begin{array}{ccc}
\mathcal{C}(A, A') & \xrightarrow{\ell_{A'}} & \mathcal{C}(I \boxtimes A, I \boxtimes A') \\
\cong & & \\
\mathcal{C}(A, A') & \xrightarrow{\ell_{A'}} & \mathcal{C}(I \boxtimes A, I \boxtimes A')
\end{array} \quad \begin{array}{ccc}
\mathcal{C}(A, A') & \xrightarrow{r_A} & \mathcal{C}(A \boxtimes I, A' \boxtimes I) \\
\cong & & \\
\mathcal{C}(A, A') & \xrightarrow{r_A} & \mathcal{C}(A \boxtimes I, A')
\end{array}$$

Proposition 1 If (\mathcal{C}, \boxtimes) is a monoidal V-category then the V-functor

$$\mathcal{C}(-, -) : \mathcal{C}^{\text{op}} \otimes \mathcal{C} \to V$$

is equipped with a canonical monoidal structure.

Proof For $\mathcal{C}(-, -)$ to be monoidal we require the morphisms

$$\boxtimes : \mathcal{C}(W, X) \otimes \mathcal{C}(Y, Z) \to \mathcal{C}(W \boxtimes Y, X \boxtimes Z)$$
and

\[j_I : I \rightarrow C(I, I) \]

to satisfy the axioms

\[
\begin{align*}
(C(U, V) \otimes C(W, X)) \otimes C(Y, Z) & \xrightarrow{\cong} C(U \otimes W, V \otimes X) \otimes C(Y, Z) \\
& \cong C(U) \otimes (C(W, X) \otimes C(Y, Z)) \\
& \cong C(U) \otimes C(W \otimes Y, X \otimes Z) \\
& \cong C(U \otimes (W \otimes Y), V \otimes (X \otimes Z))
\end{align*}
\]

and

\[
\begin{align*}
C(I, I) \otimes C(Y, Z) & \xrightarrow{j_I \otimes 1} C(I \otimes Y, I \otimes Z) \\
& \xrightarrow{C(\eta^{1, 1}_I)} C(I \otimes Y, I \otimes Z) \\
& \xrightarrow{1 \otimes j_I} C(Y, Z) \\
& \xrightarrow{c_{Y, Z}^{-1}} C(W \otimes Y, Z \otimes X)
\end{align*}
\]

These diagrams are simply reorganizations of the diagrams \(Nat_a, Nat_l, \) and \(Nat_r \) above.

Corollary 2 If \(C \) is a comonoid and \(A \) is a monoid in the monoidal \(V \)-category \(C \) then \(C(C, A) \) is canonically a monoid in \(V \).

Proof We observe that monoidal \(V \)-functors take monoids to monoids and \((C, A) \) is a monoid in \(C^{op} \otimes C \).

Proposition 3 If \(C \) is a braided monoidal \(V \)-category then

\[C(-, -) : C^{op} \otimes C \rightarrow V \]

is a braided monoidal \(V \)-functor.

Proof Let \(c_{X,Y} : X \boxtimes Y \rightarrow Y \boxtimes X \) denote the braiding on \(C \). The requirement of \(V \)-naturality for this family of isomorphisms amounts precisely to the commutativity of

\[
\begin{align*}
C(W, X) \otimes C(Y, Z) & \xrightarrow{\cong} C(W \otimes Y, X \otimes Z) \\
& \cong C(Y, Z) \otimes C(W, X) \\
& \cong C(Y \otimes W, Z \otimes X)
\end{align*}
\]

which is exactly the braiding condition for the monoidal functor \(C(-, -) \) of Proposition 1.

We now give a spiritual successor to the above by moving to the level of monoidal bicategories.
Proposition 4 If \mathcal{M} is a monoidal bicategory then the pseudofunctor

$$\mathcal{M}(-,-) : \mathcal{M}^\text{op} \times \mathcal{M} \longrightarrow \text{Cat}$$

is equipped with a canonical monoidal structure.

Proof We avail ourselves of the coherence theorem of [13] by assuming that \mathcal{M} is a Gray monoid (see [10]). The definition of a monoidal pseudofunctor (called a “weak monoidal homomorphism”) between Gray monoids is defined on pages 102 and 104 of [10]. Admittedly Cat is not a Gray monoid, but the adjustment to compensate for this is not too challenging.

In the notation of [10], the pseudonatural transformation χ is defined at objects to be the functor

$$\otimes : \mathcal{M}(A, A') \times \mathcal{M}(B, B') \longrightarrow \mathcal{M}(A \otimes B, A' \otimes B')$$

and at the morphisms to be the isomorphism

$$\mathcal{M}(A, A') \times \mathcal{M}(B, B') \xrightarrow{\otimes} \mathcal{M}(A \otimes B, A' \otimes B') \xrightarrow{\cong} \mathcal{M}(C, C') \times \mathcal{M}(D, D') \xrightarrow{\otimes} \mathcal{M}(C \otimes D, C' \otimes D')$$

whose component

$$(f'u)f \otimes (g'v)g \cong (f' \otimes g')(u \otimes v)(f \otimes g)$$

at $(u, v) \in \mathcal{M}(A, A') \times \mathcal{M}(B, B')$ is the canonical isomorphism associated with the pseudofunctor $\otimes : \mathcal{M} \times \mathcal{M} \longrightarrow \mathcal{M}$ (see the top of page 102 of [10]). For ι, we have the functor $1 \longrightarrow \mathcal{M}(I, I)$ which picks out 1_I. For ω, we have the natural isomorphism

$$\mathcal{M}(A, A') \times \mathcal{M}(B, B') \times \mathcal{M}(C, C') \xrightarrow{\otimes \times 1} \mathcal{M}(A \otimes B, A' \otimes B') \times \mathcal{M}(C, C') \xrightarrow{\otimes} \mathcal{M}(A \otimes B \otimes C, A' \otimes B' \otimes C')$$

whose component at (u, v, w) is the canonical isomorphism

$$(u \otimes v) \otimes w \cong u \otimes (v \otimes w)$$

associated with $\otimes : \mathcal{M} \times \mathcal{M} \longrightarrow \mathcal{M}$. For ξ and κ, we have the natural isomorphisms

$$\mathcal{M}(A, A') \times \mathcal{M}(I, I) \xrightarrow{1 \times 1 \times 1} \mathcal{M}(A \otimes B \otimes C, A' \otimes B' \otimes C')$$

$$\mathcal{M}(A, A') \xrightarrow{1 \times \iota} \mathcal{M}(A \otimes I, A')$$

$$\mathcal{M}(A, A') \xrightarrow{\iota \times 1} \mathcal{M}(I \otimes A, A')$$

6
and

\[
\begin{array}{c}
M(I, I) \times M(A, A') \\
\downarrow \cong \\
\downarrow \\
M(A, A') \\
\downarrow \\
M(A, A')
\end{array}
\]

with canonical components

\[u \otimes 1_I \cong u \text{ and } 1_I \otimes u \cong u.\]

The two required axioms are then a consequence of the coherence conditions for pseudofunctors in the case of \(\otimes : M \times M \to M\).

Corollary 5 (page 110, Proposition 4) If \(A\) is a pseudomonoid and \(C\) is a pseudocomonoid in a monoidal bicategory \(M\) then the category \(M(C, A)\) is equipped with a canonical monoidal structure.

Proposition 6 If \(M\) is a braided monoidal bicategory then

\[M(-, -) : M^{op} \times M \to Cat\]

is a braided monoidal pseudofunctor.

Proof The required data of page 122, Definition 14 in \([16]\) is provided by the invertible modification

\[
\begin{array}{c}
M(A, A') \times M(B, B') \\
\downarrow \cong \\
\downarrow \\
M(A \otimes B, A' \otimes B') \\
\downarrow \\
M(B \otimes A, B' \otimes A')
\end{array}
\]

whose component at \((u, v)\) is

\[
\begin{array}{c}
B \otimes A \\
\cong \\
\cong \\
\cong \\
\cong \\
B \otimes A
\end{array}
\]

What we really want is a presentation of these results lifted to the level of enriched monoidal bicategories.

Suppose \(M\) is a monoidal bicategory. Put \(V = M(I, I)\), regarding it as a monoidal category under composition \(\circ\). There is another “multiplication” on \(V\) defined by the composite

\[
M(I, I) \times M(I, I) \to M(I \otimes I, I \otimes I) \cong M(I, I)
\]

with the same unit \(1_I\) as \(\circ\). By Proposition 5.3 of \([16]\), a braiding is obtained on \(V\).
Furthermore, each hom category $\mathcal{M}(X,Y)$ has an action
\[
\mathcal{M}(I,I) \times \mathcal{M}(X,Y) \xrightarrow{\otimes} \mathcal{M}(I \otimes X, I \otimes Y) \cong \mathcal{M}(X,Y)
\]
by \mathcal{V} which we abusively write as
\[
(v,m) \mapsto v \otimes m .
\]
We call \mathcal{M} left unit closed when each functor
\[
- \otimes m : \mathcal{V} \longrightarrow \mathcal{M}(X,Y)
\]
has a right adjoint
\[
[m,-] : \mathcal{M}(X,Y) \longrightarrow \mathcal{V} .
\]
That is, we have a natural isomorphism
\[
\mathcal{M}(X,Y)(v \otimes m,n) \cong \mathcal{V}(v,[m,n]) .
\]
In particular, this implies \mathcal{V} is a left closed monoidal category and that each hom category $\mathcal{M}(X,Y)$ is \mathcal{V}-enriched with \mathcal{V}-valued hom defined by $[m,n]$. Furthermore, since \mathcal{V} is braided, the 2-category \mathcal{V}-Cat of \mathcal{V}-categories, \mathcal{V}-functors and \mathcal{V}-natural transformations is monoidal; see Remark 5.2 of [16].

Proposition 7 If the monoidal bicategory \mathcal{M} is left unit closed then the monoidal pseudofunctor of Proposition \[lifts to a monoidal pseudofunctor
\[
\mathcal{M}(-,-) : \mathcal{M}^{\text{op}} \times \mathcal{M} \longrightarrow \mathcal{V}$-$\text{Cat}
\]
where $\mathcal{V} = \mathcal{M}(I,I)$ as above.

Proof We use the fact that, for tensored \mathcal{V}-categories \mathcal{A} and \mathcal{B}, enrichment of a functor $F : \mathcal{A} \longrightarrow \mathcal{B}$ to a \mathcal{V}-functor can be expressed in terms of a lax action morphism structure
\[
\nabla_{\mathcal{V},A} : V \otimes F A \longrightarrow F(V \otimes A)
\]
for $V \in \mathcal{V}$, $A \in \mathcal{A}$. Given such \mathcal{V}-functors $F,G : \mathcal{A} \longrightarrow \mathcal{B}$, a family of morphisms
\[
\theta_A : F A \longrightarrow G A
\]
is \mathcal{V}-natural if and only if the diagrams
\[
\begin{array}{ccc}
V \otimes F A & \xrightarrow{\nabla_{\mathcal{V},A}} & F(V \otimes A) \\
\downarrow 1 \otimes \theta_A & & \downarrow \theta_{V \otimes A} \\
V \otimes G A & \xrightarrow{\nabla_{\mathcal{V},A}} & G(V \otimes A)
\end{array}
\]
commute. Therefore, to see that the functors
\[
\mathcal{M}(f,g) : \mathcal{M}(X,Y) \longrightarrow \mathcal{M}(X',Y') ,
\]
for $f : X' \to X$ and $g : Y \to Y'$, are \mathcal{V}-enriched, we require 2-cells

$$v \otimes (g \circ m \circ f) \to g \circ (v \otimes m) \circ f$$

which constitute a lax action morphism. As in the proof of Proposition 4, we assume that \mathcal{M} is a Gray monoid where we can take these 2-cells to be the canonical isomorphisms. It is then immediate that the 2-cells $\sigma : f \Rightarrow f'$ and $\tau : g \Rightarrow g'$ induce \mathcal{V}-natural transformations $\mathcal{M}(\sigma, \tau) : \mathcal{M}(f, g) \Rightarrow \mathcal{M}(f', g')$.

For the monoidal structure on $\mathcal{M}(\cdot, \cdot)$, we need to see that the effect of the tensor of \mathcal{M} on homs defines a \mathcal{V}-functor

$$\otimes : \mathcal{M}(A, A') \otimes \mathcal{M}(B, B') \to \mathcal{M}(A \otimes B, A' \otimes B').$$

Again we make use of the coherent isomorphisms; in this case they are

$$v \otimes (m \otimes n) \cong (v \circ m) \otimes (v \circ n)$$

for $v : I \to I$, $m : A \to A'$, $n : B \to B'$. It is clear that ι can be regarded as a \mathcal{V}-functor $\iota : \mathcal{I} \to \mathcal{M}(I, I)$. The \mathcal{V}-naturality of all the 2-cells involved in the monoidal structure on $\mathcal{M}(\cdot, \cdot)$ now follows automatically from the naturality of the Gray monoid constraints.

Proposition 8 In the situation of Proposition 4 if \mathcal{M} is also symmetric then so is $\mathcal{M}(\cdot, \cdot)$.

Proof If \mathcal{M} is symmetric, so too is $\mathcal{V} = \mathcal{M}(I, I)$. Consequently, \mathcal{V}-Cat is also symmetric. Referring to the proof of Proposition 6 we see that the techniques of the proof of Proposition 4 apply.

Example Let \mathcal{V} be any braided monoidal category which is closed complete and cocomplete. Put $\mathcal{M} = \mathcal{V}$-$\text{Mod}$, the bicategory of \mathcal{V}-categories, \mathcal{V}-modules (i.e. \mathcal{V}-distributors or equivalently \mathcal{V}-profunctors), and \mathcal{V}-module morphisms. This \mathcal{M} is a well-known example of a monoidal bicategory 10. We can easily identify \mathcal{V} with \mathcal{V}-$\text{Mod}(I, I)$ and the action on $\mathcal{M}(A, X)$ with the functor

$$\mathcal{V} \times \mathcal{V}$-$\text{Mod}(A, X) \to \mathcal{V}$-$\text{Mod}(A, X)$$

given by the mapping

$$(V, M) \to V \otimes M$$

defined by $(V \otimes M)(X, A) = V \otimes M(X, A)$ with left module action

$$\mathcal{A}(A, B) \otimes V \otimes M(X, A) \xrightarrow{\iota \otimes 1} V \otimes \mathcal{A}(A, B) \otimes M(X, A) \xrightarrow{1 \otimes \text{act}_{\ell}} V \otimes M(X, B)$$

and right module action

$$V \otimes M(X, A) \otimes \mathcal{X}(Y, X) \xrightarrow{1 \otimes c} V \otimes M(Y, A),$$

where c is the braiding of \mathcal{V} and we have ignored associativity isomorphisms. To see that $\mathcal{M} = \mathcal{V}$-$\text{Mod}$ is left unit closed we easily identify $[M, N] \in \mathcal{V}$ for $M, N \in \mathcal{V}$-$\text{Mod}(I, I)$. However, we do not have a natural transformation $\mathcal{M}(I, \mathcal{V}(I, I)) : \mathcal{M}(I, I)$ $\Rightarrow \mathcal{V}(I, I)$.
\mathcal{V}-$\text{Mod}(A, \mathcal{X})$ with the usual \mathcal{V}-valued hom for the \mathcal{V}-category $[\mathcal{X}^{\text{op}} \otimes A, \mathcal{V}]$; namely,

$$[M, N] = \int_{X,A} [M(X, A), N(X, A)],$$

the “object of \mathcal{V}-natural transformations”. Therefore, in this case, Proposition 7 is about the pseudofunctor

$$\mathcal{V}$-$\text{Mod}^{\text{op}} \times \mathcal{V}$-$\text{Mod} \longrightarrow \mathcal{V}$-$\text{Cat},$$
given by the mapping

$$(A, \mathcal{X}) \mapsto [\mathcal{X}^{\text{op}} \otimes A, \mathcal{V}],$$

asserting monoidality. When \mathcal{V} is symmetric, Proposition 8 assures us the pseudofunctor is also symmetric.

Remark There is presumably a more general setting encompassing the results of this section. For a monoidal bicategory \mathcal{K}, it is possible to define a notion of \mathcal{K}-bicategory \mathcal{M} by which we mean that the homs $\mathcal{M}(X, Y)$ are objects of \mathcal{K}. For Proposition 1 we would take \mathcal{K} to be \mathcal{V} as a locally discrete bicategory and \mathcal{M} to be \mathcal{C}. For Proposition 4, \mathcal{K} would be Cat. For Proposition 7, \mathcal{K} would be \mathcal{V}-Cat. Then, as in these cases, we would require \mathcal{K} to be braided in order to define the tensor product of \mathcal{K}-bicategories and so monoidal \mathcal{K}-bicategories. With all this properly defined, we expect

$$\mathcal{M}(-,-) : \mathcal{M}^{\text{op}} \otimes \mathcal{M} \longrightarrow \mathcal{K}$$
to be a monoidal \mathcal{K}-pseudofunctor.

3 Duoidal \mathcal{V}-categories

Throughout \mathcal{V} is a symmetric monoidal closed, complete and cocomplete category. The following definition agrees with that of Batanin and Markl in [2] and, under the name 2-monoidal category, Aguiar and Mahajan in [1].

Definition 1 A duoidal structure on a \mathcal{V}-category \mathcal{F} consists of two \mathcal{V}-monoidal structures

$$\ast : \mathcal{F} \otimes \mathcal{F} \longrightarrow \mathcal{F}, \quad r_j : 1 \longrightarrow \mathcal{F}, \quad (3.1)$$

$$\circ : \mathcal{F} \otimes \mathcal{F} \longrightarrow \mathcal{F}, \quad r_1 : 1 \longrightarrow \mathcal{F}, \quad (3.2)$$

such that either of the following equivalent conditions holds:

(i) the \mathcal{V}-functors \circ and r_1 of (3.2) and their coherence isomorphisms are monoidal with respect to the monoidal \mathcal{V}-category \mathcal{F}_h of (3.1).

(ii) the \mathcal{V}-functors \ast and r_j of (3.1) and their coherence isomorphisms are opmonoidal with respect to the monoidal \mathcal{V}-category \mathcal{F}_e of (3.2).
We call the monoidal \(\mathcal{V} \)-category \(\mathcal{F}_h \) of (3.1) *horizontal* and the monoidal \(\mathcal{V} \)-category \(\mathcal{F}_v \) of (3.2) *vertical*; this terminology comes from an example of derivation schemes due to [2] (also see [23]). The extra elements of structure involved in (i) and (ii) are a \(\mathcal{V} \)-natural middle-of-four interchange transformation

\[
\gamma : (A \circ B) \ast (C \circ D) \longrightarrow (A \ast C) \circ (B \ast D),
\]

and maps

\[
1 \ast 1 \longrightarrow J \begin{array}{c} \mu \end{array} J \begin{array}{c} \tau \end{array} J \circ J
\]

such that the diagrams

\[
\begin{aligned}
& ((A \circ B) \ast (C \circ D)) \ast (E \circ F) \xrightarrow{\sim} (A \circ B) \ast ((C \circ D) \ast (E \circ F)) \\
& \gamma \ast 1 \xrightarrow{\sim} \gamma \xrightarrow{1 \gamma} \\
& ((A \ast C) \circ (B \ast D)) \ast (E \circ F) \xrightarrow{\sim} (A \circ B) \ast ((C \ast E) \circ (D \ast F)) \\
& \gamma \xrightarrow{\gamma} \gamma \xrightarrow{\gamma} \\
& ((A \ast C) \circ (B \ast D) \ast F) \xrightarrow{\sim} (A \ast (C \ast E)) \circ (B \ast (D \ast F)) \\
& \gamma \xrightarrow{\gamma} \gamma \xrightarrow{\gamma} \gamma \xrightarrow{\gamma} \\
& ((A \ast B) \ast (C \circ D)) \ast (E \circ F) \xrightarrow{\sim} (A \ast (B \circ C)) \ast (D \circ (E \circ F)) \\
& \gamma \xrightarrow{\gamma} \gamma \xrightarrow{\gamma} \gamma \xrightarrow{\gamma} \\
& ((A \ast B) \ast (D \circ E)) \circ (C \ast F) \xrightarrow{\sim} (A \ast D) \circ ((B \circ C) \ast (E \circ F)) \\
& \gamma \xrightarrow{\gamma} \gamma \xrightarrow{\gamma} \gamma \xrightarrow{\gamma} \\
& ((A \ast D) \circ (B \circ E) \ast C \ast F) \xrightarrow{\sim} (A \ast D) \circ ((B \ast E) \circ (C \ast F)) \\
\end{aligned}
\]

and

\[
\begin{aligned}
& J \ast (A \circ B) \xrightarrow{\delta \ast 1} (J \ast J) \circ (A \circ B) \xrightarrow{\sim} (A \circ B) \ast J \xrightarrow{1 \ast \delta} (A \circ B) \ast (J \circ J) \\
& \gamma \xrightarrow{\gamma} \gamma \xrightarrow{\gamma} \gamma \xrightarrow{\gamma} \\
& A \circ B \xrightarrow{\sim} (J \ast A) \circ (J \ast B) \xrightarrow{\gamma} \gamma \xrightarrow{\gamma} \gamma \xrightarrow{\gamma} \\
& (A \ast B) \ast J \xrightarrow{\sim} (A \ast B) \circ (B \ast J) \xrightarrow{\sim} \gamma \xrightarrow{\gamma} \gamma \xrightarrow{\gamma} \\
\end{aligned}
\]

\[
\begin{aligned}
& 1 \ast (A \ast B) \xrightarrow{\mu \circ 1} (1 \ast 1) \ast (A \ast B) \xrightarrow{\sim} (A \ast B) \ast 1 \xrightarrow{1 \ast \mu} (A \ast B) \circ (1 \ast 1) \\
& \gamma \xrightarrow{\gamma} \gamma \xrightarrow{\gamma} \gamma \xrightarrow{\gamma} \\
& A \ast B \xrightarrow{\sim} (1 \ast A) \ast (1 \ast B) \xrightarrow{\gamma} \gamma \xrightarrow{\gamma} \gamma \xrightarrow{\gamma} \\
& (A \ast B) \ast 1 \xrightarrow{\sim} (A \ast 1) \ast (B \ast 1) \xrightarrow{\gamma} \gamma \xrightarrow{\gamma} \gamma \xrightarrow{\gamma}
\end{aligned}
\]

commute, together with the requirement that \((1, \mu, \tau)\) is a monoid in \(\mathcal{F}_h \) and \((J, \delta, \tau)\) is a comonoid in \(\mathcal{F}_v \).

Example A braided monoidal category \(\mathcal{C} \) with braid isomorphism \(c : A \ast B \cong B \ast A \) is an example of a duoidal category with \(\otimes = \ast = \circ \) and \(\gamma \), determined by \(1_A \otimes c \otimes 1_D \) and re-bracketing, invertible.
Example Let C be a monoidal \mathcal{V}-category. An important example is the \mathcal{V}-category $F = [C^\text{op} \otimes C, \mathcal{V}]$ of \mathcal{V}-modules $C \rightarrow C$ and \mathcal{V}-module homomorphisms. We see that F becomes a duoidal \mathcal{V}-category with $*$ the convolution tensor product for $C^\text{op} \otimes C$ and \circ the tensor product “over C”. This example can be found in [23].

Definition 2 A duoidal functor $F: \mathcal{F} \rightarrow \mathcal{F}'$ is a functor F that is equipped with monoidal structures $F_h: \mathcal{F} \rightarrow \mathcal{F}'_h$ and $F_v: \mathcal{F} \rightarrow \mathcal{F}'_v$ which are compatible with the duoidal data γ, μ, δ, and τ.

Definition 3 A bimonoidal functor $T: \mathcal{F} \rightarrow \mathcal{F}'$ is a functor T that is equipped with a monoidal structure $T_h: \mathcal{F} \rightarrow \mathcal{F}'_h$ and an opmonoidal structure $T_v: \mathcal{F} \rightarrow \mathcal{F}'_v$ both of which are compatible with the duoidal data γ, μ, δ, and τ.

Definition 4 A bimonoid A in a duoidal category \mathcal{F} is a bimonoidal functor $\begin{bmatrix} A \end{bmatrix} : 1 \rightarrow \mathcal{F}$. That is, it is an object A equipped with the structure of a monoid for $*$ and a comonoid for \circ, compatible via the axioms

\[
\begin{array}{ccc}
A \ast A & \xrightarrow{\mu} & A \\
\delta \ast \delta \downarrow & & \downarrow \mu \circ \mu \\
(A \circ A) \ast (A \circ A) & \xrightarrow{\gamma} & (A \ast A) \circ (A \ast A)
\end{array}
\]

\[
\begin{array}{ccc}
A \ast A & \xrightarrow{\mu} & A \\
\epsilon \ast \epsilon \downarrow & & \downarrow \epsilon \\
1 \ast 1 & \xrightarrow{\mu} & 1 \\
\end{array}
\]

\[
\begin{array}{ccc}
J \circ J & \xrightarrow{\delta} & J \\
\ell \downarrow & & \downarrow \eta \\
A \circ A & \xrightarrow{\delta} & A
\end{array}
\]

\[
\begin{array}{ccc}
J & \xrightarrow{\eta} & A \\
\tau \downarrow & & \downarrow \epsilon \\
1 & \xrightarrow{} & 1
\end{array}
\]

These are a lifting of the usual axioms for a bimonoid in a braided monoidal category.

4 Duoidales and produoidal \mathcal{V}-categories

Recall the two following definitions and immediately following example from [10] where \mathcal{M} is a monoidal bicategory.

Definition 5 A pseudomonoid A in \mathcal{M} is an object A of \mathcal{M} together with multiplication and unit morphisms $\mu: A \otimes A \rightarrow A$, $\eta: 1 \rightarrow A$, and invertible 2-cells $a: \mu(\mu \otimes 1) \Rightarrow \mu(1 \otimes \mu)$, $\ell: \mu(\eta \otimes 1) \Rightarrow 1$, and $r: \mu(1 \otimes \eta) \Rightarrow 1$ satisfying the coherence conditions given in [10].
Definition 6 A (lax-)morphism \(f \) between pseudomonoids \(A \) and \(B \) in \(\mathcal{M} \) is a morphism \(f : A \rightarrow B \) equipped with

\[
\begin{array}{ccc}
M \otimes M & \xrightarrow{\mu} & M \\
\downarrow \circ f & & \downarrow f \\
N \otimes N & \xrightarrow{\mu} & N
\end{array}
\]

and

\[
\begin{array}{ccc}
I & \xrightarrow{\eta} & M \\
\downarrow \circ f & & \downarrow f \\
I & \xrightarrow{\eta} & N
\end{array}
\]

subject to three axioms.

Example If \(\mathcal{M} \) is the cartesian closed 2-category of categories, functors, and natural transformations then a monoidal category is precisely a pseudomonoid in \(\mathcal{M} \).

This example motivates calling a pseudomonoid in a monoidal bicategory \(\mathcal{M} \) a monoidale (short for a monoidal object of \(\mathcal{M} \)). A morphism \(f : M \rightarrow N \) of monoidales is then a morphism of pseudomonoids (i.e. a monoidal morphism between monoidal objects). We write \(\text{Mon}(\mathcal{M}) \) for the 2-category of monoidales in \(\mathcal{M} \), monoidal morphisms, and monoidal 2-cells. If \(\mathcal{M} \) is symmetric monoidal then so is \(\text{Mon}(\mathcal{M}) \).

Definition 7 A duoidale \(F \) in \(\mathcal{M} \) is an object \(F \) together with two monoidale structures

\[
\begin{align*}
\ast : F \otimes F \rightarrow F, & \quad J : I \rightarrow F \\
\circ : F \otimes F \rightarrow F, & \quad 1 : I \rightarrow F
\end{align*}
\]

(4.1)

(4.2)

such that \(\circ \) and \(1 \) are monoidal morphisms with respect to \(\ast \) and \(J \).

Remark If \(\mathcal{M} = \mathcal{V}\text{-Cat} \) then a duoidale in \(\mathcal{M} \) is precisely a duoidal \(\mathcal{V} \)-category.

Let \(\mathcal{M} = \mathcal{V}\text{-Mod} \) be the symmetric monoidal bicategory of \(\mathcal{V} \)-categories, \(\mathcal{V} \)-modules, and \(\mathcal{V} \)-module morphisms. By Proposition 8 there is a symmetric monoidal pseudofunctor

\[
\mathcal{M}(I, -) : \mathcal{M} \rightarrow \mathcal{V}\text{-Cat}
\]

defined by taking a \(\mathcal{V} \)-category \(A \) to the \(\mathcal{V} \)-category \([A^{\text{op}}, \mathcal{V}] \) of \(\mathcal{V} \)-functors and \(\mathcal{V} \)-natural transformations.

Definition 8 A produoidal \(\mathcal{V} \)-category is a duoidale in \(\mathcal{V}\text{-Mod} \).
If \mathcal{F} is a produoidal \mathcal{V}-category then there are \mathcal{V}-modules

\[
S : \mathcal{F} \otimes \mathcal{F} \to \mathcal{F}, \quad H : \mathcal{I} \to \mathcal{F},
\]

\[
R : \mathcal{F} \otimes \mathcal{F} \to \mathcal{F}, \quad K : \mathcal{I} \to \mathcal{F},
\]

where R and K are monoidal with respect to S so that there are 2-cells γ, δ, and τ:

\[
\begin{array}{c}
\mathcal{F} \otimes \mathcal{F} \otimes \mathcal{F} \otimes \mathcal{F} \cong \mathcal{F} \otimes \mathcal{F} \otimes \mathcal{F} \otimes \mathcal{F} \\
\mathcal{F} \otimes \mathcal{F} \otimes \mathcal{F} \otimes \mathcal{F} \cong \mathcal{F} \otimes \mathcal{F} \otimes \mathcal{F} \otimes \mathcal{F}
\end{array}
\]

\[
\begin{array}{c}
\delta \quad \gamma \\
\mu \quad \tau
\end{array}
\]

compatible with the two pseudomonoid structures. By composition of \mathcal{V}-modules these 2-cells have component morphisms

\[
\begin{array}{c}
\int^{X,Y} R(X; A, B) \otimes R(Y; C, D) \otimes S(E; X, Y) \\
\int^{U,V} S(U; A, C) \otimes S(V; B, D) \otimes R(E; U, V)
\end{array}
\]

\[
\begin{array}{c}
H(A) \quad \delta \quad \gamma \\
\mu \quad \tau
\end{array}
\]

in \mathcal{V}.

Given any duoidal \mathcal{V}-category \mathcal{F} we obtain a produoidal \mathcal{V}-category structure on \mathcal{F} by setting

\[
S(A; B, C) = \mathcal{F}(A, B \ast C)
\]

and

\[
R(A; B, C) = \mathcal{F}(A, B \circ C)
\]

that is, we pre-compose the \mathcal{V}-valued hom of \mathcal{F} with \ref{3.1} and \ref{3.2} of Definition 1.

Proposition 9 If \mathcal{F} is a produoidal \mathcal{V}-category then $\mathcal{M}(\mathcal{I}, \mathcal{F}) = [\mathcal{F}^{\text{op}}, \mathcal{V}]$ is a duoidal \mathcal{V}-category.
Proof Consider the \(\mathcal{V} \)-category of \(\mathcal{V} \)-functors and \(\mathcal{V} \)-natural transformations \([\mathcal{F}^{\text{op}}, \mathcal{V}]\). The two monoidale structures on \(\mathcal{F} \) translate to two monoidal structures on \([\mathcal{F}^{\text{op}}, \mathcal{V}]\) by Day-convolution

\[
(M \ast N)(A) = \int^{X,Y} S(A; X,Y) \otimes M(X) \otimes N(Y) \tag{4.3}
\]

\[
(M \circ N)(B) = \int^{U,V} R(B; U,V) \otimes M(U) \otimes N(V) \tag{4.4}
\]

such that the duoidale 2-cell structure morphisms lift to give a duoidal \(\mathcal{V} \)-category. More specifically the maps \((\gamma, \delta, \mu, \tau)\) lift to \([\mathcal{F}^{\text{op}}, \mathcal{V}]\) and satisfy the axioms (3.3), (3.4), (3.5) and (3.6) in Definition 1. Demonstrating the lifting and commutativity of the requisite axioms uses iterated applications of the \(\mathcal{V} \)-enriched Yoneda lemma and Fubini’s interchange theorem as in [17]

Our final theorem for this section permits us to apply the theory of categories enriched in a duoidal \(\mathcal{V} \)-category \(\mathcal{F} \) even if the monoidal structures on \(\mathcal{F} \) are not closed.

Theorem 10 Let \(\mathcal{F} \) be a duoidal \(\mathcal{V} \)-category. The Yoneda embedding \(y : \mathcal{F} \rightarrow [\mathcal{F}^{\text{op}}, \mathcal{V}] \) gives \([\mathcal{F}^{\text{op}}, \mathcal{V}]\) as the duoidal cocompletion of \(\mathcal{F} \) with both monoidal structures closed.

Proof This theorem is essentially an extension of some results of Im and Kelly in [14] which themselves are largely extensions of results in [8] and [17]. In particular, if \(\mathcal{A} \) is a monoidal \(\mathcal{V} \)-category then \(\mathcal{A} = [\mathcal{A}^{\text{op}}, \mathcal{V}] \) is the free monoidal closed completion with the convolution monoidal structure. If \(\mathcal{F} \) is a duoidal \(\mathcal{V} \)-category then, by Proposition 4.1 of [14], the monoidal structures \(\ast \) and \(\circ \) on \(\mathcal{F} \) give two monoidal biclosed structures on \(\hat{\mathcal{F}} = [\mathcal{F}^{\text{op}}, \mathcal{V}] \) with the corresponding Yoneda embeddings strong monoidal functors. As per [14] the monoidal products are given by Day convolution

\[
P \circ Q = \int^{A,B} P(A) \otimes Q(B) \otimes \mathcal{F}(-, A \ast B) \tag{4.5}
\]

\[
P \circ Q = \int^{A,B} P(A) \otimes Q(B) \otimes \mathcal{F}(-, A \circ B) \tag{4.6}
\]

as the left Kan-extension of \(y \otimes y \) along the composites \(y \ast \) and \(y \circ \) respectively. Write \(\hat{J} \) and \(\hat{1} \) for the tensor units \(y(J) = \mathcal{F}(-, J) \) and \(y(1) = \mathcal{F}(-, 1) \) respectively. The duoidal data \((\gamma, \mu, \delta, \tau)\) lifts directly to give duoidal data \((\hat{\gamma}, \hat{\mu}, \hat{\delta}, \hat{\tau})\) for \(\hat{\mathcal{F}} \).

5 Enrichment in a duoidal \(\mathcal{V} \)-category base

Let \(\mathcal{F} \) be a duoidal \(\mathcal{V} \)-category. There is a 2-category \(\mathcal{F}_{h}\)-Cat of \(\mathcal{F}_{h}\)-categories, \(\mathcal{F}_{h}\)-functors, and \(\mathcal{F}_{h}\)-natural transformations in the usual Eilenberg-Kelly sense; see [17]. We write \(\mathcal{J} \) for the one-object \(\mathcal{F}_{h}\)-category whose hom is the horizontal unit \(J \) in \(\mathcal{F} \).

Let \(\mathcal{A} \) and \(\mathcal{B} \) be \(\mathcal{F}_{h}\)-categories and define \(\mathcal{A} \circ \mathcal{B} \) to be the \(\mathcal{F}_{h}\)-category with objects pairs \((A, B)\) and hom-objects \((\mathcal{A} \circ \mathcal{B})((A, B), (A', B')) = \mathcal{A}(A, A') \circ
Composition is defined using the middle of four map γ as follows

$$(A \circ B)((A', B'), (A'', B'')) \ast (A \circ B)((A, B), (A', B'))$$

$\cong (A(A', A'') \circ B(B', B'')) \ast (A(A, A') \circ B(B, B'))$$

$\gamma (A(A', A'') \ast A(A, A') \circ B(B', B'') \ast B(B, B'))$

$\cong (A \circ B)((A, B), (A', B''))$.

Identities are given by the composition

$$J \xrightarrow{\delta} J \circ J \xrightarrow{id_J \circ id_B} \mathcal{A}(A, A) \circ B(B, B).$$

The monoidal unit is the \mathcal{F}_h-category \mathbf{T} consisting of a single object \bullet and hom-object $\mathbf{T}(\bullet, \bullet) = 1$.

Checking the required coherence conditions proves the following result of [2].

Proposition 11 The \circ monoidal structure on \mathcal{F}_h lifts to a monoidal structure on the 2-category \mathcal{F}_h-\mathbf{Cat}.

We write \mathcal{F}-\mathbf{Cat} for the monoidal 2-category \mathcal{F}_h-\mathbf{Cat} with \circ as the tensor product.

Let \mathcal{F} be a duoidal \mathcal{V}-category such that the horizontal monoidal structure \ast is left-closed. That is, we have

$$\mathcal{F}(X \ast Y, Z) \cong \mathcal{F}(X, [Y, Z])$$

with the “evaluation” counit $ev : [Y, Z] \ast Y \to Z$.

This gives \mathcal{F}_h as an \mathcal{F}_h-category in the usual way by defining the composition operation $[Y, Z] \ast [X, Y] \to [X, Z]$ as corresponding to

$$([Y, Z] \ast [X, Y]) \ast X \cong [Y, Z] \ast ([X, Y] \ast X) \xrightarrow{1 \ast ev} [Y, Z] \ast Y \xrightarrow{ev} Z$$

and identities $\hat{id}_X : J \to [X, X]$ as corresponding to $\ell : J \ast X \to X$.

The duoidal structure of \mathcal{F} provides a way of defining $[X, X'] \circ [Y, Y'] \to [X \circ Y, X' \circ Y']$ using the the middle-of-four interchange map:

$$([X, X'] \circ [Y, Y']) \ast (X \circ Y) \to X' \circ Y'$$

(5.1)
The above shows that \mathcal{F}^* is a monoidal (pseudo-monoid) in the category of \mathcal{F}_h-categories with multiplication given by the \mathcal{F}_h-functor $\hat{o} : \mathcal{F}_h \circ \mathcal{F}_h \rightarrow \mathcal{F}_h$ as defined.

Let $\text{Mon}(\mathcal{F}_h)$ be the category of (horizontal) monoids $(M, \mu : M \ast M \rightarrow M, \eta : J \rightarrow M)$ in \mathcal{F}_h. Let M and N be objects of $\text{Mon}(\mathcal{F}_h)$ and define the monoid multiplication map of $M \circ N$ to be the composition

$$(M \circ N) \ast (M \circ N) \xrightarrow{\gamma} (M \ast M) \circ (N \ast N) \xrightarrow{\mu \circ \mu} M \circ N$$

and the unit to be

$$J \xrightarrow{\delta} J \circ J \xrightarrow{\eta \circ \eta} M \circ N.$$

This tensor product of monoids is the restriction to one-object \mathcal{F}_h-categories of the tensor of \mathcal{F}-Cat. So we have the following result which was also observed in [1].

Proposition 12 The monoidal structure \circ on \mathcal{F} lifts to a monoidal structure on the category $\text{Mon}(\mathcal{F}_h)$.

We write $\text{Mon} \mathcal{F}$ for the monoidal category $\text{Mon}(\mathcal{F}_h)$ with \circ.

Remark A monoid in $(\text{Mon} \mathcal{F})^{\text{op}}$ is precisely a bimonoid in \mathcal{F}.

6 The Tannaka adjunction revisited

Let \mathcal{F} be a horizontally left closed duoidal \mathcal{V}-category. Each object M of \mathcal{F} determines an \mathcal{F}_h-functor

$$- \ast M : \mathcal{F}_h \rightarrow \mathcal{F}_h$$

defined on objects by $A \mapsto A \ast M$ and on homs by taking

$$- \ast M : [A, B] \rightarrow [A \ast M, B \ast M] \quad (6.1)$$

to correspond to

$$[A, B] \ast (A \ast M) \cong ([A, B] \ast A) \ast M \xrightarrow{\text{ev} \ast 1} B \ast M.$$

If M is a monoid in \mathcal{F}_h then $- \ast M$ becomes a monad in \mathcal{F}_h-Cat in the usual way.

We write $\mathcal{F}^{\ast M}$ for the Eilenberg-Moore \mathcal{F}_h-category of algebras for the \mathcal{F}_h-monad $- \ast M$; see [18] and [22]. It is the \mathcal{F}_h-category of right M-modules in \mathcal{F}. If \mathcal{F} has equalizers then $\mathcal{F}^{\ast M}$ is assured to exist; the \mathcal{F}_h-valued hom is the equalizer of the pair

$$[A, B] \xrightarrow{[\alpha, 1]} [A \ast M, B]$$

$$[A \ast M, B \ast M] \xrightarrow{[1, \beta]} [A \ast M, B \ast M] \quad (6.2)$$

17
where $\alpha : A \ast M \to A$ and $\beta : B \ast M \to B$ are the actions of A and B as objects of $\mathcal{F}^{\ast M}$.

Let $U_M : \mathcal{F}^{\ast M} \to \mathcal{F}_h$ denote the underlying \mathcal{F}_h-functor which forgets the action and whose effect on homs is the equalizer of (6.2). There is an \mathcal{F}_h-natural transformation

$$
\chi : U_M \ast M \longrightarrow U_M
$$

which is the universal action of the monad $- \ast M$; its component at A in $\mathcal{F}^{\ast M}$ is precisely the action $\alpha : A \ast M \to A$ of A.

An aspect of the strong enriched Yoneda Lemma is the \mathcal{F}_h-natural isomorphism

$$
\mathcal{F}^{\ast M}(M, B) \cong U_M B.
$$

In this special case, the result comes from the equalizer

$$
B \xrightarrow{\hat{\beta}} [M, B] \xrightarrow{[\mu, 1]} [M \ast M, B].
$$

In other words, the \mathcal{F}_h-functor U_M is representable with M as the representing object.

Each \mathcal{F}_h-functor $U : \mathcal{A} \to \mathcal{F}_h$ defines a functor

$$
U \ast - : \mathcal{F} \longrightarrow \mathcal{F}_h\text{-}\text{Cat}(\mathcal{A}, \mathcal{F}_h)
$$

(6.5)

taking $X \in \mathcal{F}$ to the composite \mathcal{F}_h-functor

$$
\mathcal{A} \xrightarrow{U} \mathcal{F}_h \longrightarrow \mathcal{F}_h
$$

and $f : X \to Y$ to the \mathcal{F}_h-natural transformation $U \ast f$ with components

$$
1 \ast f : UA \ast X \longrightarrow UA \ast Y.
$$

We shall call $U : \mathcal{A} \to \mathcal{F}_h$ tractable when the functor $U \ast -$ has a right adjoint denoted

$$
\{U, -\} : \mathcal{F}_h\text{-}\text{Cat}(\mathcal{A}, \mathcal{F}_h) \longrightarrow \mathcal{F}.
$$

(6.6)

This means that morphisms $t : X \to \{U, V\}$ are in natural bijection with \mathcal{F}_h-natural transformations $\theta : U \ast X \to V$.

Let us examine what \mathcal{F}_h-naturality of $\theta : U \ast X \to V$ means. By definition it means commutativity of

$$
\begin{array}{ccc}
[A(A, B), VB] & \xrightarrow{[\theta_A, 1]} & [UA \ast X, VB] \\
\downarrow & & \downarrow \quad [1, \theta_B]
\end{array}
$$

$$
\begin{array}{ccc}
[A(A, B), VB] & \xrightarrow{[\theta_A, 1]} & [UA \ast X, VB] \\
U_{A,B} & & \downarrow \quad [1, \theta_B]
\end{array}
$$

$$
\begin{array}{ccc}
[U A \ast X, UB \ast X] & & [UA \ast X, VB] \\
\downarrow & & \downarrow \quad [1, \theta_B]
\end{array}
$$

$$
\begin{array}{ccc}
[U A \ast X, VB] & \xrightarrow{[\theta_A, 1]} & [UA \ast X, VB] \\
\downarrow & & \downarrow \quad [1, \theta_B]
\end{array}
$$

18
This is equivalent to the module-morphism condition

\[
\mathcal{A}(A, B) \ast U A \ast X \xrightarrow{1 \circ \theta_A} \mathcal{A}(A, B) \ast V A
\]

(6.8)

under left closedness of \(F \). Notice that tractability of an object \(Z \) of \(F \), regarded as an \(F_h \)-functor \(Z : J \to F_h \), is equivalent to the existence of a horizontal right hom \(\{ Z, - \} \):

\[
F(X, \{ Z, Y \}) \cong F(Z \ast X, Y).
\]

(6.9)

Assuming all of the objects \(UA \) and \(\mathcal{A}(A, B) \) in \(F \) are tractable, we can rewrite (6.8) in the equivalent form

\[
\{ UA, VA \} \xrightarrow{\{ 1, Y_{AB} \}} \{ UA, \{ A(A, B), VB \} \}
\]

(6.10)

Proposition 13 If \(F \) is a complete, horizontally left and right closed, duoidal \(V \)-category and \(\mathcal{A} \) is a small \(F_h \)-category then every \(F_h \)-functor \(U : \mathcal{A} \to F_h \) is tractable.

However, some \(U \) can still be tractable even when \(\mathcal{A} \) is not small.

Proposition 14 (Yoneda Lemma) If \(U : \mathcal{A} \to F_h \) is an \(F_h \)-functor represented by an object \(K \) of \(\mathcal{A} \) then \(U \) is tractable and

\[
\{ U, V \} \cong V K.
\]

Proof By the “weak Yoneda Lemma” (see [17]) we have

\[
F_h \text{-Cat}(U \ast X, V) \cong F_h \text{-Cat}(U, [X, V]) \cong F(J, [X, VK]) \cong F(X, VK).
\]

Consider the 2-category \(F_h \text{-Cat} \downarrow^{\text{ps}} F_h \) defined as follows. The objects are \(F_h \)-functors \(U : \mathcal{A} \to F_h \). The morphisms \((T, \tau) : U \to V\) are triangles

\[
\mathcal{A} \xrightarrow{T} \mathcal{B} \]

(6.11)
in \(\mathcal{F}_h\text{-Cat} \). The 2-cells \(\theta : (T, \tau) \Rightarrow (S, \sigma) \) are \(\mathcal{F}_h\)-natural transformations \(\theta : T \Rightarrow S \) such that

\[
\begin{array}{ccc}
A & \xrightarrow{\theta} & B \\
\downarrow^T & & \downarrow^T \\
\mathcal{F}_h & \xleftarrow{S} & \mathcal{F}_h \\
U & \approx & V
\end{array}
\]

We define a \textit{vertical tensor product} \(\circ \) on the 2-category \(\mathcal{F}_h\text{-Cat} \), making it a monoidal 2-category, which we denote by \(\mathcal{F}\text{-Cat} \). For \(\mathcal{F}_h\)-functors \(U : A \rightarrow \mathcal{F}_h \) and \(V : B \rightarrow \mathcal{F}_h \), define \(U \circ V : A \circ B \rightarrow \mathcal{F}_h \) to be the composite

\[
A \circ B \xrightarrow{U \circ V} \mathcal{F}_h \circ \mathcal{F}_h \xrightarrow{\delta} \mathcal{F}_h.
\]

The unit object is \(\downarrow 1 : 1 \xrightarrow{} \mathcal{F}_h \). The associativity constraints are explained by the diagram

\[
\begin{array}{ccc}
(A \circ B) \circ C & \xrightarrow{\cong} & A \circ (B \circ C) \\
(U \circ V) \circ W & \xrightarrow{\cong} & U \circ (V \circ W) \\
(F_h \circ F_h) \circ F_h & \xrightarrow{\cong} & F_h \circ (F_h \circ F_h) \\
\delta \circ 1 & \cong & 1 \circ \delta \\
F_h \circ F_h & \xrightarrow{a} & F_h \circ F_h \\
\mathcal{F}_h & \xrightarrow{\delta} & \mathcal{F}_h \\
\mathcal{F}_h & \xrightarrow{\delta} & \mathcal{F}_h
\end{array}
\]

where \(a \) is the associativity constraint for the vertical structure on \(\mathcal{F} \). The unit constraints are similar.

\textbf{Remark} We would like to emphasise that, although there are conceivable 2-cells for \(\text{Mon} \mathcal{F} \) as a sub-2-category of \(\mathcal{F}_h\text{-Cat} \) (see \[22\]), we are only regarding \(\text{Mon} \mathcal{F} \) as a monoidal category, not a monoidal 2-category.

Next we specify a monoidal functor

\[
\text{mod} : (\text{Mon} \mathcal{F})^{\text{op}} \longrightarrow \mathcal{F}\text{-Cat} \downarrow^{\text{ps}} \mathcal{F}.
\]

For each monoid \(M \) in \(\mathcal{F}_h \), we put

\[
\text{mod} M = (U_M : \mathcal{F}^M \longrightarrow \mathcal{F}_h).
\]

For a monoid morphism \(f : N \longrightarrow M \), we define

\[
\begin{array}{ccc}
\mathcal{F}^M & \xrightarrow{\text{mod } f} & \mathcal{F}^N \\
U_M & \cong & U_N \\
\mathcal{F} & \xrightarrow{\text{mod } f} & \mathcal{F}^N
\end{array}
\]

\[20\]
by

\[(\text{mod } f) (A * M \xrightarrow{\alpha} A) = (A * N \xrightarrow{1 \circ f} A * M \xrightarrow{\alpha} A)\).

To see that mod \(f\) is an \(\mathcal{F}_h\)-functor, we recall the equalizer of (6.2) and point to the following diagram in which the empty regions commute.

Alternatively, we could use the universal property of mod \(N\) as the universal action of the monad \(- \ast N\) on \(\mathcal{F}\).

For the monoidal structure on mod, we define an \(\mathcal{F}_h\)-functor \(\Phi_{M,N}\) making the square

\[
\begin{array}{ccc}
\mathcal{F}^* M \circ \mathcal{F}^* N & \xrightarrow{\Phi_{M,N}} & \mathcal{F}^* (M \circ N) \\
U_M \circ U_N & \downarrow & U_{M \circ N} \\
\mathcal{F}_h \circ \mathcal{F}_h & \xrightarrow{\delta} & \mathcal{F}_h
\end{array}
\]

commute; put

\[
\Phi_{M,N}(A * M \xrightarrow{\alpha} A, B * N \xrightarrow{f} B) = ((A \circ B) \ast (M \circ N) \xrightarrow{\gamma} (A * M) \circ (B * N) \xrightarrow{\alpha \circ \beta} A \circ B)
\]

and use the universal property of mod\((M \circ N)\) to define \(\Phi_{M,N}\) on homs.

For tractable \(U : A \rightarrow \mathcal{F}_h\), we have an evaluation \(\mathcal{F}_h\)-natural transformation

\[ev : U \ast \{U, V\} \rightarrow V,\]

corresponding under the adjunction (6.6), to the identity of \(\{U, V\}\). We have a “composition morphism”

\[\mu : \{U, V\} \ast \{V, W\} \rightarrow \{U, W\}\]

corresponding to the composite

\[U \ast \{U, V\} \ast \{V, W\} \xrightarrow{ev \ast 1} V \ast \{V, W\} \xrightarrow{ev} W.\]

In particular,

\[\mu : \{U, U\} \ast \{U, U\} \rightarrow \{U, U\}\]

together with

\[\eta : J \rightarrow \{U, U\},\]

corresponding to \(U \ast J \cong U\), gives \(\{U, U\}\) the structure of a monoid, denoted end \(U\), in \(\mathcal{F}_h\).
Proposition 15 For each tractable F_h-functor $U : A \to F_h$, there is an equivalence of categories

$$(\text{Mon } F_h)(M, \text{end } U) \simeq (F_h \downarrow \text{ps } F_h)(U, \text{mod } M)$$

pseudonatural in monoids M in F_h.

Proof Morphisms $t : M \to \text{end } U$ in F are in natural bijection (using (6.6)) with F_h-natural transformations $\theta : U * M \to U$. It is easy to see that t is a monoid morphism if and only if θ is an action of the monad $- * M$ on $U : A \to F_h$. By the universal property of the Eilenberg-Moore construction \[22\], such actions are in natural bijection with liftings of U to F_h-functors $A \to F^*$. This describes a bijection between $(\text{Mon } F_h)(M, \text{end } U)$ and the full subcategory of $(F_h \downarrow \text{ps } F_h)(U, \text{mod } M)$ consisting of the morphisms

\[
\begin{array}{ccc}
A & \xrightarrow{T} & F^* M \\
\downarrow \tau \cong & & \downarrow U_M \\
F_h & \xrightarrow{U_M} & U
\end{array}
\]

for which τ is an identity. It remains to show that every general such morphism (T, τ) is isomorphic to one for which τ is an identity. However, each (T, τ) determines an action

$$U * M \xrightarrow{\tau} U_M T * M = (U_M * M)T \xrightarrow{\chi_T} U_M T \xrightarrow{\tau^{-1}} U$$

of the monad $- * M$ on U. By the universal property, we induce a morphism

\[
\begin{array}{ccc}
A & \xrightarrow{T'} & F^* M \\
\downarrow U_M & & \downarrow U_M \\
F_h & \xrightarrow{=} & U
\end{array}
\]

and an invertible 2-cell $(T, \tau) \cong (T', 1)$ in $F_h \downarrow \text{ps } F_h$. \[\Box\]

In other words, we have a biadjunction

$$(\text{Mon } F_h)^{\text{op}} \downarrow \text{end } \text{mod } F_h \text{Cat } \downarrow \text{ps } F_h$$

where the 2-category on the right has objects restricted to the tractable U. As a consequence, notice that end takes each 2-cell to an identity (since all 2-cells in $\text{Mod } F_h$ are identities). Notice too from the notation that we are ignoring the monoidal structure in (6.18). This is because tractable U are not generally closed under the monoidal structure of $\text{Cat } \downarrow \text{ps } F$.

Proposition 16 Representable objects of $\text{F-Cat } \downarrow \text{ps } F$ are closed under the monoidal structure.
Proof

\[
\begin{array}{ccc}
\mathcal{A} \circ B & \xrightarrow{\mathcal{A}(A,\cdot) \circ \mathcal{B}(B,\cdot)} & \mathcal{F}_h \circ \mathcal{F}_h \\
\cong & \mathcal{F}_h \circ \mathcal{F}_h & \delta
\end{array}
\]

and

\[
\Gamma 1 = \mathcal{T}(\bullet, -) : \mathcal{T} \rightarrow \mathcal{F}_h.
\]

Let \(\mathcal{F}\)-Cat \(\downarrow^{\text{ps}}_{\text{rep}}\mathcal{F}\) denote the monoidal full sub-2-category of \(\mathcal{F}\)-Cat \(\downarrow^{\text{ps}}\mathcal{F}\) consisting of the representable objects. The biadjunction (6.18) restricts to a biadjunction

\[
(\text{Mon } \mathcal{F}_h)^{\text{op}} \rightleftarrows \mathcal{F}_h\text{-Cat }\downarrow^{\text{ps}}_{\text{rep}} \mathcal{F}_h
\]

and we have already pointed out that mod is monoidal; see (6.17). In fact, we shall soon see that this is a monoidal biadjunction.

First note that, if \(U : \mathcal{A} \rightarrow \mathcal{F}_h\) is represented by \(K\) then we have a monoidal isomorphism

\[
\text{end } U = \{U, U\} \cong UK \cong \mathcal{A}(K, K).
\]

In particular, for a monoid \(M\) in \(\mathcal{F}_h\), using Proposition 4, we obtain a monoid isomorphism

\[
\text{end } \text{mod } M \cong M
\]

which is in fact the counit for (6.19), confirming that mod is an equivalence on homs.

Proposition 17 The 2-functor end in (6.19) is strong monoidal.

Proof The isomorphism (6.20) gives

\[
\text{end } (\mathcal{A} \circ \mathcal{B})((A, B), -) \cong (\mathcal{A} \circ \mathcal{B})(\mathcal{A}(A, B), (A, B)) \cong \mathcal{A}(A, A) \circ \mathcal{B}(B, B) \cong \text{end } \mathcal{A}(A, -) \circ \text{end } \mathcal{B}(B, -)
\]

and

\[
\text{end } \mathcal{T}(\bullet, -) \cong \mathcal{T}(\bullet, \bullet) \cong 1.
\]

As previously remarked, a monoid in \((\text{Mon } \mathcal{F}_h)^{\text{op}}\) is precisely a bimonoid in \(\mathcal{F}\); see Definition 4. Since Mon \(\mathcal{F}\) has discrete homs, these monoids are the same as pseudomonoids. The biadjunction (6.18) determines a biadjunction

\[
(\text{Bimon } \mathcal{F}_h)^{\text{op}} \rightleftarrows \text{Mon}_{\text{ps}}(\mathcal{F}\text{-Cat }\downarrow^{\text{ps}}_{\text{rep}}\mathcal{F}).
\]

A pseudomonoid in \(\mathcal{F}\)-Cat \(\downarrow\mathcal{F}\) is a monoidal \(\mathcal{F}_h\)-category \(A\) together with a strong monoidal \(\mathcal{F}_h\)-functor \(U : \mathcal{A} \rightarrow \mathcal{F}_h\) (where \(\mathcal{F}_h\) has \(\delta\) as the monoidal structure).

This leads to the following lifting to the duoidal setting of a result attributed to Bodo Pareigis (see [3], [4] and [5]).
Theorem 18 For a horizontal monoid M in a duoidal \mathcal{V}-category \mathcal{F}, bimonoid structures on M are in bijection with isomorphism classes of monoidal structures on \mathcal{F}^{*M} such that $U_M: \mathcal{F}^{*M} \rightarrow \mathcal{F}$ is strong monoidal into the vertical structure on \mathcal{F}.

Proof For any horizontal monoid M in \mathcal{F} we (in the order they appear) have (6.18), Proposition 17 and (6.21) giving

\[
(F\text{-Cat} \downarrow \mathcal{F})(\text{mod } M \circ \text{mod } M, \text{mod } M) \sim (\text{Mon } \mathcal{F})(M, \text{end mod } M \circ \text{end mod } M) \sim (\text{Mon } \mathcal{F})(M, M \circ M)
\]

and

\[
(F\text{-Cat} \downarrow \mathcal{F})(\text{mod } M) \simeq (\text{Mon } \mathcal{F})(M, 1).
\]

By Proposition 17, each bimonoid structure on M yields a pseudomonoid structure on mod M; and each pseudomonoid structure on mod M yields a bimonoid structure on end mod $M \cong M$. The above equivalences give the bijection of the Theorem. □

7 Hopf bimonoids

We have seen that a bimonoid M in a duoidal \mathcal{V}-category \mathcal{F} leads to a monoidal \mathcal{F}_h-category \mathcal{F}^{*M} of right M-modules. In this section, we are interested in when \mathcal{F}^{*M} is closed. We lean heavily on papers [6] and [7].

A few preliminaries from [21] adapted to \mathcal{F}_h-categories are required. For an \mathcal{F}_h-category \mathcal{A}, a right \mathcal{A}-module $W: \mathcal{J} \rightarrow \mathcal{A}$ is a family of objects WA of \mathcal{F} indexed by the objects A of \mathcal{A} and a family

\[W_{AB}: WA \ast A(B, A) \rightarrow WB \]

of morphisms of \mathcal{F} indexed by pairs of objects A, B of \mathcal{A}, satisfying the action conditions. For modules $W, W': \mathcal{J} \rightarrow \mathcal{A}$, define $[W, W']$ to be the limit as below when it exists in \mathcal{F}.

\[
\begin{array}{ccc}
[W, W'] & \xrightarrow{\text{[1, W'AB]}} & [WA \ast A(B, A), W'BA] \\
\downarrow & & \downarrow \\
[WB, W'B] & \xrightarrow{W_{AB}} & [WA \ast A(B, A), W'B]
\end{array}
\] (7.1)

Example A monoid M in \mathcal{F}_h can be regarded as a one object \mathcal{F}_h-category. A right M-module $A: \mathcal{J} \rightarrow M$ is precisely an object of \mathcal{F}^{*M}.

Example For any \mathcal{F}_h-functor $S: \mathcal{A} \rightarrow \mathcal{X}$ and object X of \mathcal{X}, we obtain a right \mathcal{A}-module $\mathcal{X}(S, X): \mathcal{J} \rightarrow \mathcal{A}$ defined by the objects $\mathcal{X}(SA, X)$ of \mathcal{F} and the morphisms

\[
\mathcal{X}(SA, X) \ast A(B, A) \xrightarrow{1 \ast S_{BA}} \mathcal{X}(SA, X) \ast \mathcal{X}(SB, SA) \xrightarrow{\text{comp}} \mathcal{X}(SB, X).
\]
Recall from [21] that the colimit \(\text{colim}(W,S) \) of \(S : A \rightarrow X \) weighted by \(W : J \rightarrow A \) is an object of \(X \) for which there is an \(F_h \)-natural isomorphism

\[
\mathcal{X}(\text{colim}(W,S), X) \cong [W, \mathcal{X}(S, X)]
\]

(7.2)

By Yoneda, such an isomorphism is induced by the module morphism

\[
\lambda : W \rightarrow \mathcal{X}(S, \text{colim}(W,S)) .
\]

(7.3)

The \(F_h \)-functor \(S : A \rightarrow X \) is dense when \(\lambda = 1 : \mathcal{X}(S,Y) \rightarrow \mathcal{X}(S,Y) \) induces

\[
\text{colim}(\mathcal{X}(S,Y), S) \cong Y
\]

(7.4)

for all \(Y \) in \(X \).

Proposition 19 The \(F_h \)-functor \(\lceil J \rceil : J \rightarrow F_h \) is dense.

Proof From (7.2) we see that

\[
[Y, X] \cong [J, [Y, X]]
\]

implies

\[
\text{colim}([J, Y], J) \cong Y,
\]

which is (7.1) in this case.

Another element of our analysis is to recast the middle-of-four interchange morphisms as a 2-cell in \(F_h \)-Cat.

Proposition 20 The family of morphisms

\[
\gamma : (X \circ Y) * (C \circ D) \rightarrow (X * C) \circ (Y * D)
\]

defines an \(F_h \)-natural transformation

\[
\begin{array}{ccc}
\delta & & \gamma \\
\downarrow & & \downarrow \\
\mathcal{F} & & \mathcal{F} \circ \mathcal{F}
\end{array}
\]

for all objects \(C \) and \(D \) of \(\mathcal{F} \).

Proof Regard the commutative diagram

\[
\begin{array}{ccc}
([X, U] \circ [Y, V]) * ((X \circ C) \circ (Y \circ D)) & \xrightarrow{1*\gamma} & ([X, U] \circ [Y, V]) * (X \circ Y) * (C \circ D) \\
\gamma & & \gamma*1 \\
([X, U] * X * C) \circ ([Y, V] * Y * D) & \xleftarrow{1*\gamma} & (([U, X] * X) \circ ([V, Y] * Y)) * (C \circ D)
\end{array}
\]

in which we have written as if * were strict.
Proposition 21 Suppose \(\theta : F \Rightarrow G : \mathcal{X} \to \mathcal{Y} \) is an \(\mathcal{F}_h \)-natural transformation between \(\mathcal{F}_h \)-functors \(F \) and \(G \) which preserve colimits weighted by \(W : \mathcal{J} \to A \). If each \(\theta_{SA} : FSA \to GSA \) is invertible then so is

\[
\theta_{\text{colim}(W,S)} : F \text{colim}(W,S) \to G \text{colim}(W,S).
\]

Proof

\[
\begin{align*}
F \text{colim}(W,S) & \xrightarrow{\theta_{\text{colim}(W,S)}} G \text{colim}(W,S) \\
\cong & \quad \cong \\
\text{colim}(W,FS) & \xrightarrow{\theta_{\text{colim}(\theta_S)}} \text{colim}(W,GS).
\end{align*}
\]

Definition 9 For a bimonoid \(M \) in a duoidal category \(\mathcal{F} \), the composite \(v_\ell \):

\[
(J \circ M) \ast M \xrightarrow{1+8} (J \circ M) \ast (M \circ M) \xrightarrow{\gamma} (J \ast M) \circ (M \ast M) \xrightarrow{\ell_0 \mu} M \circ M
\]

is called the left fusion morphism. The composite \(v_r \):

\[
(M \circ J) \ast M \xrightarrow{1+8} (M \circ J) \ast (M \circ M) \xrightarrow{\gamma} (M \ast M) \circ (J \ast M) \xrightarrow{\mu_0 \ell} M \circ M
\]

is called the right fusion morphism. We call \(M \) left Hopf when \(v_\ell \) is invertible and right Hopf when \(v_r \) is invertible. We call \(M \) Hopf when both \(v_\ell \) and \(v_r \) are invertible.

Suppose \(A \) and \(\mathcal{X} \) are monoidal \(\mathcal{F}_h \)-categories and \(U : A \to \mathcal{X} \) is a monoidal \(\mathcal{F}_h \)-functor. Writing \(\circ \) for the tensor and \(1 \) for the tensor unit, we must have morphisms

\[
\varphi : U A \circ UB \to U(A \circ B) \quad \text{and} \quad \varphi_0 : 1 \to U 1
\]

satisfying the usual Eilenberg-Kelly [12] conditions. Suppose \(A \) and \(\mathcal{X} \) are left closed and write \(\hom(A,B) \) and \(\hom(X,Y) \) for the left homs. As pointed out by Eilenberg-Kelly, the monoidal structure \(\varphi, \varphi_0 \) is in bijection with left closed structure

\[
\varphi^l : U \hom(A,B) \circ UB \to U \hom(UA,UB) \quad \text{and} \quad \varphi_0 : 1 \to U 1,
\]

where \(\varphi^l \) corresponds under the adjunction to the composite

\[
U \hom(A,B) \circ U A \xrightarrow{\varphi} U(\hom(A,B) \circ A) \xrightarrow{U \ev} UB
\]

Following [11], we say \(U \) is strong left closed when both \(\varphi^l \) and \(\varphi_0 \) are invertible.

Recall from [6] (and [7] for the enriched situation) that the Eilenberg-Moore (enriched) category for an opmonoidal monad \(T \) on \(\mathcal{X} \) is left closed and the forgetful \(U_T : \mathcal{X}^T \to \mathcal{X} \) is strong left closed if and only if \(T \) is "left Hopf". The monad \(T \) is left Hopf when the left fusion morphism

\[
v_\ell(X,Y) : T(X \circ TY) \xrightarrow{\varphi} TX \circ T^2Y \xrightarrow{\ell_0 \mu} TX \circ TY \quad (7.5)
\]

satisfies

\[
\begin{align*}
\varphi &: (\varphi^l_{UT}) \circ U_T(X) \to U_T(X) \circ U_T(Y) \\
\varphi_0 &: U_T(1) \to U_T(1) \circ U_T(Y)
\end{align*}
\]
is invertible for all X and Y. It is right Hopf when the right fusion morphism

$$v_r(X, Y) : T(TX \circ Y) \xrightarrow{\varphi} T^2X \circ TY \xrightarrow{\mu \circ 1} TX \circ TY$$

(7.6)

is invertible.

In particular, for a bimonoid M in \mathcal{F}, taking $T = - * M$, we see that $v_r(X, Y)$ is the composite

$$
\begin{array}{c}
(X \circ (Y * M)) \ast M \xrightarrow{1 \ast \delta} (X \circ (Y \ast M)) \ast (M \circ M) \\
\downarrow v_r(X, Y) \\
(X \ast M) \circ (Y \ast M) \xrightarrow{\gamma} (X \ast M) \circ ((Y \ast M) \ast M) \\
\cong 1 \circ \alpha \\
(X \ast M) \circ (Y \ast M) \xrightarrow{1 \circ (1 \ast \mu)} (X \ast (M \ast M)) \circ (Y \ast M).
\end{array}
$$

and that $v_r(X, Y)$ is

$$
\begin{array}{c}
((X \ast M) \circ Y) \ast M \xrightarrow{1 \ast \delta} ((X \ast M) \circ Y) \ast (M \circ M) \\
\downarrow v_r(X, Y) \\
((X \ast M) \ast M) \circ (Y \ast M) \xrightarrow{\gamma} ((X \ast M) \ast M) \circ (Y \ast M) \\
\cong 1 \circ \alpha \\
((X \ast M) \circ (Y \ast M)) \circ (X \ast (M \ast M)).
\end{array}
$$

Recall from Section 5 that, when \mathcal{F} is horizontally left closed, not only does it become an \mathcal{F}_h-category, it becomes a pseudomonoid in $\mathcal{F}_h\text{-Cat}$ using the tensor $\hat{\ast}$. That is, $(\mathcal{F}, \hat{\ast}, \lceil \ast \rceil)$ is a monoidal \mathcal{F}_h-category.

We are interested in when $(\mathcal{F}, \hat{\ast}, \lceil \ast \rceil)$ is closed and when the closed structure lifts to $\mathcal{F} \ast M$ for a bimonoid M in \mathcal{F}.

Proposition 22 The monoidal \mathcal{F}_h-category $(\mathcal{F}, \hat{\ast}, \lceil \ast \rceil)$ is closed if and only if

(i) \mathcal{F}_v is a closed monoidal \mathcal{V}-category, and

(ii) there exist \mathcal{V}-natural isomorphisms

$$X \circ (W \ast Y) \cong W \ast (X \circ Y) \cong (W \ast X) \circ Y.$$

Proof To say $(\mathcal{F}, \hat{\ast}, \lceil \ast \rceil)$ is left closed is to say we have a “left hom” $\ellom(X, Y)$ and an \mathcal{F}_h-natural isomorphism

$$[X \circ Y, Z] \cong [X, \ellom(Y, Z)].$$

By Yoneda, this amounts to a \mathcal{V}-natural isomorphism

$$\mathcal{F}(W, [X \circ Y, Z]) \cong \mathcal{F}(W, [X, \ellom(Y, Z)]).$$
Since \([\cdot, \cdot]\) is the horizontal left hom for \(F\), this amounts to
\[
F(W \ast (X \circ Y), Z) \cong F(W \ast X, \ell om(Y, Z)).
\] (7.9)

Taking \(W = J\), we obtain
\[
F(X \circ Y, Z) \cong F(X, \ell om(Y, Z)),
\]
showing that \(\ell om\) is a left hom for \(F_v\) as a monoidal \(V\)-category. So (i) is implied. Now we have this, we can rewrite (7.9) as
\[
F(W \ast (X \circ Y), Z) \cong F((W \ast X) \circ Y, Z)
\]
which, again by Yoneda, is equivalent to
\[
W \ast (X \circ Y) \cong (W \ast X) \circ Y.
\] (7.10)

Similarly, to say \((F, \delta, 1)\) is right closed means
\[
[X \circ Y, Z] \cong [Y, rom(X, Z)],
\]
which means
\[
F(W \ast (X \circ Y), Z) \cong F(W \ast Y, rom(X, Z)).
\]
Taking \(W = J\), we see that \(rom\) is a right hom for \(F_v\), and this leads to
\[
W \ast (X \circ Y) \cong X \circ (W \ast Y).
\] (7.11)

This completes the proof.

Remark Under the condition of Proposition 22 it follows that the \(F_h\)-functors
\[
- \ast X, \quad - \circ X, \quad X \circ - : F_h \longrightarrow F_h
\]
all preserve weighted colimits.

Proposition 23 For any duoidal \(V\)-category \(F\), condition (ii) of Proposition 22 is equivalent to

(ii)$'$ there exist \(V\)-natural isomorphisms
\[
X \ast (J \circ Y) \cong X \circ Y \cong Y \ast (X \circ J).
\] (7.12)

Proof (ii)\implies(ii)$'$ The second isomorphism of (ii)$'$ comes from the first isomorphism of (ii) with \(Y = J\) and \(W\) replaced by \(Y\). The first isomorphism of (ii)$'$ comes from the second isomorphism of (ii) with \(X = J\) and \(W\) replaced by \(X\).

(ii)$'$ \implies (ii) Using (ii)$'$, we have
\[
X \circ (W \ast Y) \cong (W \ast Y) \ast (X \circ J) \\
\cong W \ast (Y \ast (X \circ J)) \\
\cong W \ast (X \circ Y), \text{ and}
\]
\[
(W \ast X) \circ Y \cong (W \ast X) \ast (J \circ Y) \\
\cong W \ast (X \ast (J \circ Y)) \\
\cong W \ast (X \circ Y).
\]
Theorem 24 Suppose \mathcal{F} is a duoidal \mathcal{V}-category which is horizontally left closed, has equalizers, and satisfies condition (ii)' of Proposition 23. Suppose M is a bimonoid in \mathcal{F} and regard \mathcal{F}^*M as a monoidal \mathcal{F}_h-category as in Theorem 18. The following conditions are equivalent:

(i) M is a (left, right) Hopf bimonoid;

(ii) $- * M$ is a (left, right) Hopf opmonoidal monad on \mathcal{F}_h.

If \mathcal{F}_v is a closed monoidal \mathcal{V}-category then these conditions are also equivalent to

(iii) \mathcal{F}^*M is (left, right) closed and $U_M : \mathcal{F}^*M \longrightarrow \mathcal{F}_h$ is strong (left, right) closed.

Proof (ii) \iff (iii) under the extra condition on \mathcal{F}_v by [BLV] as extended by [CLS].

(ii) \implies (i) by taking $X = Y = J$ in (7.7), we see that $v_t(X,Y) = v_t$.

(i) \implies (ii) Proposition 23 (ii)' and associativity of $*$ yield the isomorphisms

\[X \circ (Y * J) \cong Y * (X \circ J), \]
\[(Y * J) \circ X \cong Y * (J \circ X), \] and
\[(Y * J) * X \cong Y * (J * X), \]

showing that $X \circ -, - \circ X$ and $- * X$ preserve the canonical weighted colimit of Proposition 13 (since $\text{colim}(W,S) \cong W * S$ when $S : \mathcal{J} \longrightarrow \mathcal{F}_h$).

Using Proposition 22 we see that $v_t(X,Y)$ is an \mathcal{F}_h-natural transformation, in the variables X and Y, between two \mathcal{F}_h-functors that preserve weighted colimits of the form

\[\text{colim}(Z,J) \cong Z * J \cong Z. \]

By Proposition 21 $v_t(X,Y)$ is invertible if $v_t(J,J) = v_t$.

Example Any braided closed monoidal \mathcal{V}-category \mathcal{F}, regarded as duoidal by taking both * and \circ to be the monoidal structure given on \mathcal{F}, is an example satisfying the conditions of Proposition 22.

Remark One reading of Proposition 24 (ii)' is that, to know \circ we only need to know * and either $J \circ -$ or $- \circ J$. Proposition 22 (ii) also yields

\[Y \circ (W * 1) \cong W * Y \cong (W * 1) \circ Y \] (7.13)

showing that to know * we only need to know \circ and $- * 1$. From (7.12) we deduce

\[1 * (J \circ X) \cong X \cong 1 * (X \circ J) \] (7.14)

and from (7.13) we deduce

\[J \circ (X * 1) \cong X \cong (X * 1) \circ J \] (7.15)
showing each of the composites

\[
\begin{align*}
\mathcal{F} & \xrightarrow{- \circ J} \mathcal{F} \xrightarrow{1} \mathcal{F}, \\
\mathcal{F} & \xrightarrow{\circ J -} \mathcal{F} \xrightarrow{1} \mathcal{F}, \\
\mathcal{F} & \xrightarrow{- \circ 1} \mathcal{F} \xrightarrow{J \circ -} \mathcal{F}, \\
\mathcal{F} & \xrightarrow{- \circ 1} \mathcal{F} \xrightarrow{- \circ J} \mathcal{F}
\end{align*}
\]

(7.16)

to be isomorphic to the identity \(\mathcal{V}\)-functor of \(\mathcal{F}\). From the first and last of these we see that \(- \circ J\) is an equivalence and

\[
1 \ast - \cong - \ast 1
\]

(7.17)

both sides being inverse equivalences for \(- \circ J\). From the second of (7.16) it then follows that \(1 \ast -\) is an inverse equivalence for \(J \circ -\). Consequently

\[
J \circ - \cong - \circ J.
\]

(7.18)

8 Warped monoidal structures

Let \(\mathcal{A} = (\mathcal{A}, \otimes, I)\) be a monoidal category. The considerations at the end of Section 7 suggest the possibility of defining a tensor product on \(\mathcal{A}\) of the form

\[
A \Box B = TA \otimes B
\]

for some suitable functor \(T : \mathcal{A} \rightarrow \mathcal{A}\). In the case of Section 7 the functor \(T\) was actually an equivalence but we will not assume that here in the first instance.

A warping of \(\mathcal{A}\) consists of the following data:

(a) a functor \(T : \mathcal{A} \rightarrow \mathcal{A}\);

(b) an object \(K\) of \(\mathcal{A}\);

(c) a natural isomorphism

\[
v_{a,b} : T(TA \otimes B) \leftrightarrow TA \otimes TB;
\]

(d) an isomorphism

\[
v_0 : TK \leftrightarrow I; \text{ and}
\]

(e) a natural isomorphism

\[
k_A : TA \otimes K \leftrightarrow A;
\]
such that the following diagrams commute.

\[
\begin{align*}
T(TA \otimes B) \otimes TC & \xrightarrow{v_{a,b} \otimes 1} (TA \otimes TB) \otimes TC \quad (8.1) \\
T(T(TA \otimes B) \otimes C) & \xrightarrow{1 \otimes v_{a,b,c}} TA \otimes (TB \otimes TC) \\
T((TA \otimes TB) \otimes C) & \xrightarrow{v_{a,TB,C}} TA \otimes T(TB \otimes C) \\
T(TA \otimes (TB \otimes C)) & \xrightarrow{v_{A,TB} \otimes 1} (TA \otimes TB) \otimes IC \\
T(TA \otimes K) & \xrightarrow{v} TA \otimes TK \quad (8.2) \\
T(k_A) & \xrightarrow{1 \otimes v_0} TA \otimes I \\
\end{align*}
\]

Remark If \(T : \mathcal{A} \to \mathcal{A} \) is essentially surjective on objects and fully-faithful on isomorphisms then all we need to build it up to a warping is \(v_{A,B} \) as in (c) satisfying (8.1). For \(K \) and \(v_0 \) exist by essential surjectivity and \(k_A \) is defined by (8.2).

Proposition 25 A warping of \(\mathcal{A} \) determines a monoidal structure on \(\mathcal{A} \) defined by the tensor product

\[A \Box B = TA \otimes B \]

with unit object \(K \) and coherence isomorphisms

\[
\alpha : T(TA \otimes B) \otimes C \xrightarrow{v_{a,b} \otimes 1} (TA \otimes TB) \otimes C \xrightarrow{a} TA \otimes (TB \otimes C) \\
\ell : TK \xrightarrow{v_0 \otimes 1} I \otimes B \xrightarrow{\ell} B \\
r : TA \otimes K \xrightarrow{k} A .
\]

Proof The pentagon condition for \(\Box \) is obtained from (8.1) by applying \(- \otimes D \). Similarly, the unit triangle is obtained from (8.2) by applying \(- \otimes B \).

In investigating when \(\otimes \) and \(\Box \) together formed a duoidal structure on \(\mathcal{A} \), we realized we could use a lifting of Proposition 25 to a monoidal bicategory \(\mathcal{M} \). We now describe this lifted version. The duoidal structure formed by \(\otimes \) and \(\Box \) will be explained in an example.

A warping of a monoidale \(A = (A, m, i) \) in a monoidal bicategory \(\mathcal{M} \) consists of

(a) a morphism \(t : A \to A \);

(b) a morphism \(k : I \to A \);
(c) an invertible 2-cell

\[
\begin{array}{ccc}
A \otimes A & \xrightarrow{m} & A \\
\downarrow & & \downarrow \nu \\
A \otimes A & \xrightarrow{t \otimes 1} & A \\
A \otimes A & \xrightarrow{t \otimes t} & A \otimes A & \xrightarrow{m} & A \\
\end{array}
\]

(d) an invertible 2-cell

\[
\begin{array}{ccc}
A & \xrightarrow{k} & A \\
\downarrow & \downarrow \nu_0 \\
I & \xrightarrow{i} & A \\
I & \xrightarrow{1} & A \\
\end{array}
\]

(e) an invertible 2-cell

\[
\begin{array}{ccc}
A & \xrightarrow{t \otimes k} & A \\
\downarrow & \downarrow \kappa \\
I & \xrightarrow{1} & A \\
I & \xrightarrow{1} & A \\
\end{array}
\]

satisfying

\[
\begin{array}{ccc}
A \otimes A & \xrightarrow{m \otimes 1} & A \otimes 2 \\
\downarrow & \downarrow v \otimes 1 \\
A \otimes A & \xrightarrow{t \otimes 1} & A \otimes 2 \\
\end{array} \cong \begin{array}{ccc}
A \otimes 2 & \xrightarrow{t \otimes 1} & A \otimes 2 \\
\downarrow & \downarrow v \\
A \otimes 2 & \xrightarrow{t \otimes 1} & A \otimes 2 \\
\end{array}
\]

\[
\begin{array}{ccc}
A \otimes 3 & \xrightarrow{m \otimes 1} & A \otimes 3 \\
\downarrow & \downarrow v \otimes 1 \\
A \otimes 3 & \xrightarrow{t \otimes t \otimes 1} & A \otimes 3 \\
\end{array} \cong \begin{array}{ccc}
A \otimes 3 & \xrightarrow{1 \otimes t \otimes t} & A \otimes 3 \\
\downarrow & \downarrow 1 \otimes t \\
A \otimes 3 & \xrightarrow{1 \otimes t} & A \otimes 2 \\
\end{array}
\]

\[
\begin{array}{ccc}
A \otimes 2 & \xrightarrow{m \otimes 1} & A \otimes 2 \\
\downarrow & \downarrow 1 \otimes m \\
A \otimes 2 & \xrightarrow{m} & A \\
\end{array} \cong \begin{array}{ccc}
A \otimes 2 & \xrightarrow{m} & A \\
\downarrow & \downarrow m \\
A & \xrightarrow{t} & A \\
\end{array}
\]

\[
\begin{array}{ccc}
A & \xrightarrow{\alpha} & A \\
\downarrow & \downarrow m \\
A & \xrightarrow{t} & A \\
\end{array}
\]

\[
A \otimes 3 \xrightarrow{\text{identity}} A \otimes 3
\]

(8.3)
and
Proposition 26 A warping of a monoidale A determines a monoidale structure on A defined by

\[e_m : A \otimes A \xrightarrow{t\otimes 1} A \otimes A \xrightarrow{m} A \]

\[I \xrightarrow{k} A \]

Proof Conditions 8.3 and 8.4 yield the two axioms for a monoidale (A, t, m, k). \qed
Example Suppose \mathcal{F} is a duoidal \mathcal{V}-category satisfying the second isomorphism of (7.13). Define a \mathcal{V}-functor $T : \mathcal{F} \to \mathcal{F}$ by

$$T = - \ast 1.$$

The horizontal right unit isomorphism gives

$$T(J) = J \ast 1 \cong 1$$

and (7.13) gives

$$T(TA \circ B) = ((A \ast 1) \circ B) \ast 1 \cong (A \ast B) \ast 1 \cong A \ast (B \ast 1) \cong (A \ast 1) \circ (B \ast 1) \cong TA \circ TB.$$

Finally, we have

$$TA \circ J = (A \ast 1) \circ J \cong A \ast J \cong A.$$

This gives an example of a warping in $\mathcal{M} = \mathcal{V}$-Cat of the monoidalale (= monoidal \mathcal{V}-category) \mathcal{F}_v. Proposition 26 gives back \mathcal{F}_h.

Example Consider the case of $\mathcal{M} = \text{Mon}(\mathcal{V}$-Cat). A monoidalale is a duoidal \mathcal{V}-category $(\mathcal{F}_h, \circ, 1)$. A warping of this monoidalale consists of a monoidal \mathcal{V}-functor $T : \mathcal{F}_h \to \mathcal{F}_h$, a monoid K in \mathcal{F}_h, a horizontally monoidal \mathcal{V}-natural isomorphism $v : T(TA \circ B) \cong TA \circ TB$, a horizontal monoid isomorphism $v_0 : TK \cong 1$, and a horizontally monoidal \mathcal{V}-natural isomorphism $k : TA \circ K \cong A$, subject to the two conditions. Proposition 26 gives the recipe for obtaining a duoidal \mathcal{V}-category $(\mathcal{F}_h, (T-) \circ -, K)$. In particular, take $\mathcal{V} = \text{Set}$ and consider a lax braided monoidal category $\mathcal{A} = (\mathcal{A}, \otimes, I, c)$ as a duoidal category; the lax braiding gives the monoidal structure on $\otimes : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$. A warping consists of a monoidal functor $T : \mathcal{A} \to \mathcal{A}$, a monoid K in \mathcal{A}, a monoidal natural $v : T(TA \otimes B) \cong TA \otimes TB$, a monoid isomorphism $v_0 : TK \cong I$, and a monoidal natural $k : TA \otimes K \cong A$, satisfying the conditions (8.1) and (8.2). Proposition 26 then shows that the recipe of Proposition 25 yields a duoidal category $(\mathcal{A}, \otimes, I, \Box, K)$.

References

[1] Marcelo Aguiar and Swapneel Mahajan, *Monoidal Functors, Species and Hopf Algebras*, CRM Monograph Series 29, American Math. Soc. November 2010.

[2] Michael Batanin and Martin Markl, *Centers and homotopy centers in enriched and monoidal categories* (arXiv:1109.4084).
[3] Bodo Pareigis, *Quantum groups and non-commutative geometry,*
http://www.mathematik.uni-muenchen.de/~pareigis/Vorlesungen/02SS/QGandNCG.pdf

[4] Bodo Pareigis, *Non-additive Ring and Module Theory II. C-categories, C-functors, and C-morphisms,* Publ. Math. Debrecen **24** (1977) 351–361.

[5] Bodo Pareigis, *Morita Equivalence of Module Categories with Tensor Products,* Comm. in Alg. **9** (1981) 1455–1477.

[6] Alain Bruguères, Steve Lack and Alexis Virelizier, *Hopf monads on monoidal categories,* Advances in Math. **227** Number 2 (2011) 745–800.

[7] Dimitri Chikhladze, Steve Lack and Ross Street, *Hopf monoidal comonads, Theory and Applications of Categories* **24** Number 19 (2010) 554–563.

[8] Brian Day, *Construction of Biclosed Categories,* Ph.D. Thesis, University of New South Wales (2009).

[9] Brian Day, *On closed categories of functors,* Lecture Notes in Math. **137** (Springer-Verlag Berlin, 1970) 1–38.

[10] Brian Day and Ross Street, *Monoidal bicategories and Hopf algebroids,* Advances in Math. **129** (1997) 99-157.

[11] Brian Day and Ross Street, *Quantum categories, star autonomy, and quantum groupoids,* “Galois Theory, Hopf Algebras, and Semiabelian Categories” Fields Institute Communications **43** (American Math. Soc. 2004) 187–226.

[12] Samuel Eilenberg and G. Max Kelly, *Closed categories,* Proceedings of the Conference on Categorical Algebra (La Jolla, 1965), Springer (1966) 421–562.

[13] Robert Gordon, John Power and Ross Street, *Coherence for tricategories,* Memoirs of the American Math. Society **117** (1995) Number 558 (ISBN 0-8218-0344-1); MR96j:18002.

[14] Geun Bin Im and G. Max Kelly, *A universal property of the convolution monoidal structure,* J. Pure Appl. Algebra **43** (1986), no. 1, 75–88.

[15] André Joyal and Ross Street, *An introduction to Tannaka duality and quantum groups,* : Part II of Category Theory, Proceedings, Como 1990 (Editors A. Carboni, M.C. Pedicchio and G. Rosolini) Lecture Notes in Math. **1488** (Springer-Verlag Berlin, Heidelberg 1991) 411–492.

[16] André Joyal Ross Street, *Braided tensor categories,* Advances in Math. **102** (1993) 20–78; MR94m:18008.

[17] G. Max Kelly, *Basic concepts of enriched category theory,* London Mathematical Society Lecture Note Series **64** (Cambridge University Press, Cambridge, 1982).

http://www.tac.mta.ca/tac/reprints/articles/10/tr10.pdf
[18] Fred Linton, *Relative functorial semantics: Adjointness results*, Category Theory, Homology Theory and Their Applications III, Lecture Notes in Mathematics 99 (1969) 384–418.

[19] Saunders Mac Lane, *Categories for the Working Mathematician*, Second Edition, Graduate Texts in Mathematics 5 (1997) Springer-Verlag.

[20] Micah Blake McCurdy, *Cyclic Star-autonomous Categories and the Tannaka Adjunction via Graphical Methods*, Ph.D. Thesis, Macquarie University (2011).

[21] Ross Street, *Enriched categories and cohomology with author commentary*, Reprints in Theory and Applications of Categories 14 (2005) 1–18.

[22] Ross Street, *The formal theory of monads*, J. Pure Appl. Algebra 2 (1972) 149–168.

[23] Ross Street, *Monoidal category theory for manifold invariants*, “Category Theory, Algebra and Geometry” conference lecture notes, UCL Louvain-la-Neuve (2011).

[24] Ross Street, *Quantum Groups: a path to current algebra*, Australian Mathematical Society Lecture Series 19 (Cambridge University Press, Cambridge, 2007).

http://www.cambridge.org/catalogue/catalogue.asp?isbn=0521695244