THE 3D INDEX OF AN IDEAL TRIANGULATION AND ANGLE STRUCTURES

STAVROS GAROUFALIDIS

With an appendix by Sander Zwegers

Abstract. The 3D index of Dimofte-Gaiotto-Gukov is a partially defined function on the set of ideal triangulations of 3-manifolds with r torii boundary components. For a fixed $2r$ tuple of integers, the index takes values in the set of q-series with integer coefficients.

Our goal is to give an axiomatic definition of the tetrahedron index, and a proof that the domain of the 3D index consists precisely of the set of ideal triangulations that support an index structure. The latter is a generalization of a strict angle structure. We also prove that the 3D index is invariant under 3-2 moves, but not in general under 2-3 moves.

Contents

1. Introduction 2
2. Index structures, angle structures and the 3D index 3
 2.1. Index structures 3
 2.2. Angle structures 5
 2.3. The Neumann-Zagier matrices 5
 2.4. On the topological invariance of the index 7
3. Axioms for the tetrahedron index 8
4. Properties of a tetrahedron index 10
 4.1. Part (d) of Theorem 3.2 10
 4.2. The rank of V: part (a) of Theorem 3.2 10
 4.3. The rank of V_4: part (b) of Theorem 3.2 10
 4.4. Proof of triality: part (c) of Theorem 3.2 11
 4.5. I_Δ is a tetrahedron index 12
 4.6. The degree of I_Δ 13
 4.7. Proof of Theorem 3.7 13
5. Convergence of the 3D index 13
 5.1. Proof of Theorem 2.4 13
 5.2. An independent proof of convergence for strict index structures 16

Date: August 7, 2012.
Supported in part by NSF grant DMS-11-05678.

1991 Mathematics Classification. Primary 57N10. Secondary 57M25.
Key words and phrases: 3D index, tetrahedron index, quantum dilogarithm, gluing equations, Neumann-Zagier equations, hyperbolic geometry, ideal triangulations, 2-3 moves, pentagon, angle structures, index structures, q-holonomic sequences.
1. Introduction

In a series of papers [DGGb, DGGa], Dimofte-Gaiotto-Gukov studied topological gauge theories using as input an ideal triangulation \mathcal{T} of a 3-manifold M. These gauge theories play an important role in

- Chern-Simons perturbation theory (that fits well with the earlier work on quantum Riemann surfaces of [Dim] and the later work on the perturbative invariants of [DG]),
- categorification and Khovanov Homology, that fits with the earlier work [Wit].

Although the gauge theory depends on the ideal triangulation \mathcal{T}, and the 3D index in general may not converge, physics predicts that the gauge theory ought to be a topological invariant of the underlying 3-manifold M. When ∂M consists of r torii, the low energy description of these gauge theories gives rise to a partially defined function

\[I : \{\text{ideal triangulations}\} \longrightarrow \mathbb{Z}((q^{1/2}))^{\mathbb{Z}^r \times \mathbb{Z}^r}, \quad \mathcal{T} \mapsto I_\mathcal{T}(m_1, \ldots, m_r, e_1, \ldots, e_r) \in \mathbb{Z}((q^{1/2})) \]

for integers m_i and e_i, which is invariant under some partial 2-3 moves. The building block of the 3D index $I_\mathcal{T}$ is the tetrahedron index $I_\Delta(m, e)(q) \in \mathbb{Z}[[q^{1/2}]]$ defined by

\[I_\Delta(m, e) = \sum_{n=(-e)_+}^{\infty} (-1)^n q^{\frac{1}{2}n(n+1)-(n+\frac{1}{2}e)m} (q)_n (q)_{n+e} \]

where

\[e_+ = \max\{0, e\} \]

and $(q)_n = \prod_{i=1}^n (1 - q^i)$. If we wish, we can sum in the above equation over the integers, with the understanding that $1/(q)_n = 0$ for $n < 0$.

Roughly, the 3D index $I_\mathcal{T}$ of an ideal triangulation \mathcal{T} is a sum over tuples of integers of a finite product of tetrahedron indices evaluated at some linear forms in the summation.
variables. Convergence of such sums is not obvious, and not always expected on physics grounds. For instance, the following sum
\[
\sum_{e \in \mathbb{Z}} I_\Delta(0, e) q^e
\]
converges in \(\mathbb{Z}((q^{1/2}))\) if and only if \(v > 0\). This follows easily from the fact that the degree \(\delta(e)\) of the summand is given by
\[
\delta(e) = e + \begin{cases}
0 & \text{if } e \geq 0 \\
\frac{e^2}{2} - \frac{e}{2} & \text{if } e \leq 0
\end{cases}
\]
Our goal is to
(a) prove that the 3D index \(I_T\) exists if and only if \(T\) admits an index structure (a generalization of a strict angle structure); see Theorem 2.12 below.
(b) give a complete axiomatic definition of the tetrahedron index \(I_\Delta\) focusing on the combinatorial and \(q\)-holonomic aspects; see Section 3.
(c) to show that the 3D index is invariant under 3 → 2 moves, but not in general under 2 → 3 moves, and give a necessary and sufficient criterion for invariance under 2 ↔ 3 moves; see Section 6.

2. Index structures, angle structures and the 3D index

2.1. Index structures. Consider two \(r \times s\) matrices \(A\) and \(B\) with integer entries and a column vector \(v \in \mathbb{Z}^r\), and let \(M = (A|B|v)\).

Definition 2.1. (a) We say that \(M\) supports an index structure if the rank of \((A|B)\) is \(r\) and for every \(Q: \{1, \ldots, s\} \to \{1, 2, 3\}\) there exists \((\alpha, \beta, \gamma) \in \mathbb{Q}^{3s}\) that satisfies
\[
A\alpha + B\gamma = \nu, \quad \alpha + \beta + \gamma = (1, \ldots, 1)^T
\]
and \(Q(\alpha, \beta, \gamma) > 0\). The latter means that for every \(i = 1, \ldots, s\) the following inequalities are satisfied:
\[
\begin{cases}
\alpha_i > 0 & \text{if } Q(i) = 1 \\
\beta_i > 0 & \text{if } Q(i) = 2 \\
\gamma_i > 0 & \text{if } Q(i) = 3
\end{cases}
\]
(b) We say that \(M\) supports a strict index structure if the rank of \((A|B)\) is \(r\) and there exists \((\alpha, \beta, \gamma) \in \mathbb{Q}_+^{3s}\) that satisfies (2.1), where \(\mathbb{Q}_+^+\) is the set of positive rational numbers.

It is easy to see that if \(M\) supports a strict index structure, then it supports an index structure, but not conversely. As we will see in Section 2.2, ideal triangulations \(T\) give rise to matrices \(M\), and a strict index structure on \(M\) is a strict angle structure on \(T\). On the other hand, index structures are new and motivated by Theorem 2.4 below.

The next definition discusses two actions on \(M\): an action of \(\text{GL}(r, \mathbb{Z})\) on the left which allows for row operations on \(M\), and a cyclic action of order three at the pair of the \(i\)th columns of \((A|B)\).
Definition 2.2. (a) There is a left action of GL(r, \mathbb{Z}) on M, defined by
\[P \in \text{GL}(r, \mathbb{Z}) \quad M = (A|B|v) \quad PM = (PA|PB|Pv) \]
An index structure on M is also an index structure on PM.
(b) There is a left action of $(\mathbb{Z}/3)^s$ on M acting on the ith columns $(a_i|b_i)$ of $(A|B)$ (and fixing all other columns) given by
\[(a_i|b_i|v) \xrightarrow{S} (-b_i|a_i - b_i|v - b_i), \]
where
\[S(a|b|v) = (-b|a - b|v - b) \]
satisfies $S^3 = \text{Id}$. We extend S to act on an index structure (α, β, γ) of M by
\[(\alpha_i, \beta_i, \gamma_i) \xrightarrow{S} (\beta_i, \gamma_i, \alpha_i) \]
and fixing all other coordinates of (α, β, γ). It is easy to see that if (α, β, γ) is an index structure on M and $S \in (\mathbb{Z}/3)^s$, then $S(\alpha, \beta, \gamma)$ is an index structure of SM.

Definition 2.3. Given M, and $m = (m_1, \ldots, m_s), e = (e_1, \ldots, e_s) \in \mathbb{Z}^s$ consider the sum
\[I_M(m, e)(q) = \sum_{k \in \mathbb{Z}^r} q^{\frac{1}{2} \nu(k)} \prod_{i=1}^s I_\Delta(m_i - b_i \cdot k, e_i + a_i \cdot k) \]

Theorem 2.4. $I_M(m, e)(q) \in \mathbb{Z}((q^{1/2}))$ is convergent for all $m, e \in \mathbb{Z}^s$ if and only if M supports an index structure. In that case, I_M is q-holonomic in the variables (m, e).

Remark 2.5. q-holonomicity in Theorem 2.4 follows immediately from [WZ92]. Convergence is the main difficulty.

Remark 2.6. By definition, I_M is a generalized Nahm sum in the sense of [GL], where the summation is over a lattice.

Corollary 2.7. Applying Theorem 2.4 to the case $r = 1$, $s = 3$, $M = (A|B|v) = (111|000|2)$ and the strict index structure $2 = \frac{2}{3} \cdot 1 + \frac{2}{3} \cdot 1 + \frac{2}{3} \cdot 1$, it follows that the right hand side of the pentagon identity (3.5) is convergent in $\mathbb{Z}((q^{1/2}))$.

The next remark discusses the invariance of the index under the actions of Definition 2.2.

Remark 2.8. Fix M that supports an index structure. Then, for $P \in \text{GL}(r, \mathbb{Z})$ and $S \in (\mathbb{Z}/3)^s$, it follows that PM and SM also supports an index structure. In that case, Theorem 2.4 implies that I_M, I_{PM} and I_{SM} are all convergent. We claim that
\[I_{PM} = I_M, \quad I_{SM} = I_M. \]
The first equality follows by changing variables $k \mapsto PK$ in the definition of I_M given by (2.6). The second equality follows from the fact that the tetrahedron index I_Δ satisfies Equation (3.2); this is shown in part (a) of Theorem 3.7.

The next corollary follows easily from Theorem 2.4 and the definition of an index structure on $(A|0|v_0)$.

\[\]
Corollary 2.9. Fix an $r \times s$ matrix A with integer entries and columns v_i for $i = 1, \ldots, s$, and let $v_0 \in \mathbb{Z}^r$, and let $M = (A|0|v_0)$. The following are equivalent:

(a) $I_M(q)$ converges.
(b) $\text{rk}(A) = r$ and there exist $\alpha_i > 0$ for $i = 1, \ldots, s$ such that $v_0 = \sum_{i=1}^s \alpha_i v_i$.

Question 2.10. Compare the q-series $I_{(A|0|v)}$ with the vector partition functions of Sturmfels [Stu95] and Brion-Vergne [BV97], and the q-hypergeometric systems of equations of [S00].

2.2. Angle structures. In this section we define the 3D index of an ideal triangulation. A generalized angle structure on a combinatorial ideal tetrahedron Δ is an assignment of real numbers (called angles) at each edge of Δ such that the sum of the three angles around each vertex is 1.2 It is easy to see that opposite edges are assigned the same angle, thus a generalized angle structure is determined by a triple $(\alpha, \beta, \gamma) \in \mathbb{R}^3$ that satisfies $\alpha + \beta + \gamma = 1$:

A generalized angle structure is strict if $\alpha, \beta, \gamma > 0$. Let T denote an ideal triangulation of an oriented 3-manifold M with torus boundary. A generalized angle structure on T is the assignment of angles at each edge of T such that the sum of angles around every edge of T is 2. A generalized angle structure on T is strict if its restriction to each tetrahedron is strict. For a detailed discussion of angle structures and their duality with normal surfaces, see [HRS, LT08, Til]. Generalized angle structures are linearizations of the gluing equations, that may be used to construct complete hyperbolic structures, and intimately connected with the theory of normal surfaces on M [JO84].

The existence of a strict angle structure imposes restrictions on the topology of M: it implies that M is irreducible, atoroidal and each boundary component of M is a torus; see for example [LT08]. On the other hand, if M is a hyperbolic link complement, then there exist triangulations which admit a strict angle structure, [HRS]. In fact, such triangulations can be constructed by a suitable refinement of the Epstein-Penner ideal cell decomposition of M. Note that not all such triangulations are geometric [HRS].

2.3. The Neumann-Zagier matrices. Fix is an oriented ideal triangulation T with N tetrahedra of a 3-manifold M with torii boundary components. If we assign variables Z_i, Z'_i, Z''_i at the opposite edges of each tetrahedron Δ_i respecting its orientation,
then we can read off matrices $N \times N$ matrices \tilde{A}, \tilde{B} and \tilde{C} whose rows are indexed by the N edges of \mathcal{T} and whose columns are indexed by the Z_i, Z_i', Z_i'' variables. These are the so-called Neumann-Zagier matrices that encode the exponents of the gluing equations of \mathcal{T}, originally introduced by Thurston [NZ85, Thu77]. In terms of these matrices, a generalized angle structure is a triple of vectors $\alpha, \beta, \gamma \in \mathbb{R}^N$ that satisfy the equations

\begin{equation}
\tilde{A}\alpha + \tilde{B}\beta + \tilde{C}\gamma = (2, \ldots, 2)^T, \quad \alpha + \beta + \gamma = (1, \ldots, 1)^T.
\end{equation}

A quad Q for \mathcal{T} is a choice of pair of opposite edges at each tetrahedron Δ_i for $i = 1, \ldots, N$. Q can be used to eliminate one of the three variables $\alpha_i, \beta_i, \gamma_i$ at each tetrahedron using the relation $\alpha_i + \beta_i + \gamma_i = 1$. Doing so, Equations (2.7) take the form

$$A\alpha + B\gamma = \nu.$$

The matrices $(A|B)$ have some key symplectic properties, discovered by Neumann-Zagier when M is a hyperbolic 3-manifold (and \mathcal{T} is well-adapted to the hyperbolic structure) [NZ85], and later generalized to the case of arbitrary 3-manifolds in [Neu92]. Neumann-Zagier show that the rank of $(A|B)$ is $N - r$, where r is the number of boundary components of M; all assumed tori. If we choose $N - r$ linearly independent rows of $(A|B)$, then we obtain matrices $(A'|B')$ and a vector ν', which combine to $M = (A'|B'|\nu')$. In addition, the exponents of meridian and longitude loops at each boundary torus give additional matrices (a^T, b^T) and (c^T, d^T) of size $r \times 2N$.

Definition 2.11. The 3D index of \mathcal{T} is defined by

\begin{equation}
I_\mathcal{T}(m, e)(q) = I_M(dm - be, -cm + ae)(q)
\end{equation}

Implicit in the above definition is a choice of quad Q and a choice of rows to remove. However, the index is independent of these choices; see Remark 2.8. Keep in mind the action of $(\mathbb{Z}/3)^N$ given by acting on the ith columns \bar{a}_i, \bar{b}_i and \bar{c}_i of \tilde{A}, \tilde{B} and \tilde{C} by

$$S(\bar{a}_i|\bar{b}_i|\bar{c}_i) = (\bar{b}_i|\bar{c}_i|\bar{a}_i),$$

(and fixing all other columns) and on the ith coordinates of an angle structure by

$$S(\alpha_i, \beta_i, \gamma_i) = (\beta_i, \gamma_i, \alpha_i)$$

(and fixing all other coordinates) and on the ith columns a_i and b_i of A and B by

$$S(a_i|b_i|\nu) = (-b_i|a_i - b_i|\nu - b_i).$$

(and fixing all other columns). Since the rank of $(A|B)$ is $N - r$ and A, B are $(N - r) \times N$ matrices, it follows that M admits a strict structure if and only \mathcal{T} admits a strict angle structure. In addition, \mathcal{T} admits an index structure if for every choice of quad Q there exist a solution (α, β, γ) of Equations (2.7) that satisfies the inequalities (2.2). Theorem 2.4 implies the following.

Theorem 2.12. The index $I_\mathcal{T} : \mathbb{Z}^r \times \mathbb{Z}^r \rightarrow \mathbb{Z}((q^{1/2}))$ is well-defined if and only if \mathcal{T} admits an index structure. In particular, $I_\mathcal{T}$ exists if \mathcal{T} admits a strict angle structure.

See Section 6.3 for an example of an ideal triangulation \mathcal{T} of the census manifold $m136$ [CHW99] which admits a semi-strict angle structure (i.e., angles are nonnegative real numbers), does not admit a strict angle structure, and which has a solution of the gluing equations.
that recover the complete hyperbolic structure. A case-by-case analysis shows that this example admits an index structure, thus the index I_T exists. This example appears in [HRS, Example 7.7]. We thank H. Segerman for a detailed analysis of this example.

2.4. **On the topological invariance of the index.** Physics predicts that when defined, the 3D index I_T depends only on the underlying 3-manifold M. Recall that [HRS] prove that every hyperbolic 3-manifold M that satisfies

$$H_1(M, \mathbb{Z}/2) \to H_1(M, \partial M, \mathbb{Z}/2)$$

is the zero map

(eg. a hyperbolic link complement) admits an ideal triangulation with a strict angle structure, and conversely if M has an ideal triangulation with a strict angle structure, then M is irreducible, atoroidal and every boundary component of M is a torus [LT08].

A simple way to construct a topological invariant using the index, would be a map

$$M \mapsto \{I_T \mid T \in \mathcal{S}_M\}$$

where M is a cusped hyperbolic 3-manifold with at least one cusp and \mathcal{S}_M is the set of ideal triangulations of M that support an index structure. The latter is a nonempty (generally infinite) set by [HRS], assuming that M satisfies (2.9). If we want a finite set, we can use the subset \mathcal{S}_M^{EP} of ideal triangulations T of M which are a refinement of the Epstein-Penner cell-decomposition of M. Again, [HRS] implies that \mathcal{S}_M^{EP} is nonempty assuming (2.9). But really, we would prefer a single 3D index for a cusped manifold M, rather than a finite collection of 3D indices.

It is known that every two combinatorial ideal triangulations of a 3-manifold are related by a sequence of 2-3 moves [Mat87, Mat07, Pie88]. Thus, topological invariance of the 3D index follows from invariance under 2-3 moves.

Consider two ideal triangulations T and \tilde{T} with N and $N+1$ tetrahedra related by a $2-3$ move shown in Figure 1.

![Figure 1. A 2–3 move: a bipyramid split into N tetrahedra for T and $N + 1$ tetrahedra for \tilde{T}.](image)

Proposition 2.13. If \tilde{T} admits a strict angle structure structure, so does T and $I_{\tilde{T}} = I_T$.

For the next proposition, a special index structure on T is given in Definition 6.2.
Proposition 2.14. If T admits a special strict angle structure, then \tilde{T} admits a strict angle structure and $I_{\tilde{T}} = I_T$.

Remark 2.15. The asymmetry in Propositions 2.13 and 2.13 is curious, but also necessary. The origin of this asymmetry is the fact that 3-2 moves always preserve strict angle structures but 2-3 moves sometimes do not. If 2-3 moves always preserved strict angle structures, then all ideal triangulations of a fixed manifold would admit strict angle structures as long as one of them does. On the other hand, an ideal triangulation that contains an edge which belongs to exactly one (or two) ideal tetrahedra does not admit a strict angle structure since the angle equations around that edge should add to 2. Such triangulations are easy to construct, even for hyperbolic 3-manifolds (eg. the 4_1 knot).

3. AXIOMS FOR THE TETRAHEDRON INDEX

In this section we discuss an axiomatic approach to the tetrahedron index. Let $\mathbb{Z}((q^{1/2}))$ (resp., $\mathbb{Z}[[q^{1/2}]]$) denote the ring of series of the form

$$f(q) = \sum_{n \in \mathbb{Z}} a_n q^n$$

where there exists $n_0 = n_0(f)$ such that $a_n = 0$ for all $n < n_0$ (resp., $n < 0$). For $f(q) \in \mathbb{Z}((q^{1/2}))$, its degree $\delta(f(q))$ is the largest half-integer (or infinity) such that $f(q) \in q^{d(f)}\mathbb{Z}((q^{1/2}))$. We will say that $f(q) \in \mathbb{Z}((q^{1/2}))$ is q-positive if $\delta(f(q)) \geq 0$.

Definition 3.1. A tetrahedron index is a function $f : \mathbb{Z}^2 \rightarrow \mathbb{Z}((q^{1/2}))$ that satisfies the equations

$$q^{\frac{e}{2}} f(m + 1, e) + q^{-\frac{m}{2}} f(m, e + 1) - f(m, e) = 0 \quad (3.1a)$$

$$q^{\frac{e}{2}} f(m - 1, e) + q^{-\frac{m}{2}} f(m, e - 1) - f(m, e) = 0 \quad (3.1b)$$

for all integers m, e, together with the parity condition $f(m, e) \in q^{\frac{e\cdot m}{2}}\mathbb{Z}((q))$ for all m and e. Let V denote the set of all tetrahedron indices, and V_+ denote the set of all q-positive tetrahedron indices.

Theorem 3.2. (a) V is a free q-holonomic $\mathbb{Z}((q))$-module of rank 2.

(b) V_+ is a free q-holonomic $\mathbb{Z}[[q]]$-module of rank 1.

(c) If $f \in V$, then it satisfies the equation

$$f(m, e)(q) = (-q^{\frac{1}{2}})^{-e} f(e, -e - m)(q) = (-q^{\frac{1}{2}})^m f(-e - m, m)(q) \quad (3.2)$$

for all integers m and e.

(d) If $f \in V$, then it satisfies the equations

$$f(m, e + 1) + (q^{e+\frac{m}{2}} - q^{-\frac{m}{2}} - q^{\frac{m}{2}}) f(m, e) + f(m, e - 1) = 0 \quad (3.3a)$$

$$f(m + 1, e) + (q^{-\frac{e}{2} - m} - q^{-\frac{e}{2}} - q^{\frac{e}{2}}) f(m, e) + f(m - 1, e) = 0 \quad (3.3b)$$

for all integers m, e.

Question 3.3. What is a basis for V?
Remark 3.4. The proof of part (a) of Theorem 3.2 implies that if \(f(m, e) \) is a tetrahedron index, then \(f(m, e) \) is a unique \(\mathbb{Z}[q^{1/2}] \) linear combination of \(A \) and \(B \) where \((f(0, 0), f(1, 0)) = (A, B) \). For example, if \(C = \langle f(m, e) \rangle_{-2 \leq m, e \leq 2} \), then \(C = M_A A + M_B B \) where

\[
M_A = \begin{pmatrix}
1 - \frac{1}{q^2} + \frac{1}{q^3} - q^2 & \frac{1}{q} - q & -1 & -\frac{1}{q} & -\frac{1}{q} + \frac{1}{q} \\
1 - \frac{1}{q} & 1 & 0 & -\frac{1}{q} & 1 - \frac{1}{q} \\
-1 & 0 & 1 & 0 & -1 \\
-q & -1 & 1 - \frac{1}{q} & 1 - \frac{1}{q} & 1 - \frac{1}{q} + \frac{1}{q} - q^2 \\
1 - \frac{1}{q} & -\frac{1}{q} + 2q - q^2 & 2 - q & -1 + \frac{1}{q} & \frac{1}{q} - \frac{2}{q^2}
\end{pmatrix}
\]

\[
M_B = \begin{pmatrix}
\frac{1}{q} - \frac{2}{q^2} - \frac{1}{q} + q + 2q - q^3 & 1 - \frac{1}{q} + 2q - q^2 & 2 - q & -1 + \frac{1}{q} & \frac{1}{q} - \frac{2}{q^2} \\
-1 + \frac{1}{q} - \frac{2}{q} + q & -\frac{1}{q} - q + \sqrt{q} & 1 & \frac{1}{q} & -1 + \frac{1}{q} \\
-2 + \frac{1}{q} & -1 & 0 & 1 & 2 - q \\
1 - q & -\sqrt{q} & -1 & -\frac{1}{q} & \sqrt{q} - q + 2q - q^2 \\
2q - q^2 & 1 - q & -2 + \frac{1}{q} & -1 + \frac{1}{q} & -\frac{1}{q} - \sqrt{q} - q + 2q - q^2 \\
\end{pmatrix}
\]

Remark 3.5. The proof of part (b) of Theorem 3.2 implies that if \(f(m, e) \) is a tetrahedron index, then \(f(m, e) \) is uniquely determined by \(f(0, 0) = \sum_{n=0}^{\infty} a_n q^n \). In particular, if \(f(1, 0) = \sum_{n=0}^{\infty} b_n q^n \), then \(b_n \) are \(\mathbb{Z} \)-linear combinations of \(a_k \) for \(k \leq n \). For example, we have:

\[
\begin{align*}
b_0 &= a_0 \\
b_1 &= a_0 + a_1 \\
b_2 &= 2a_0 + a_1 + a_2 \\
b_3 &= 4a_0 + 2a_1 + a_2 + a_3 \\
b_4 &= 9a_0 + 4a_1 + 2a_2 + a_3 + a_4 \\
b_5 &= 20a_0 + 9a_1 + 4a_2 + 2a_3 + a_4 + a_5 \\
b_6 &= 46a_0 + 20a_1 + 9a_2 + 4a_3 + 2a_4 + a_5 + a_6 \\
b_7 &= 105a_0 + 46a_1 + 20a_2 + 9a_3 + 4a_4 + 2a_5 + a_6 + a_7 \\
b_8 &= 242a_0 + 105a_1 + 46a_2 + 20a_3 + 9a_4 + 4a_5 + 2a_6 + a_7 + a_8 \\
b_9 &= 557a_0 + 242a_1 + 105a_2 + 46a_3 + 20a_4 + 9a_5 + 4a_6 + 2a_7 + a_8 + a_9 \\
b_{10} &= 1285a_0 + 557a_1 + 242a_2 + 105a_3 + 46a_4 + 20a_5 + 9a_6 + 4a_7 + 2a_8 + a_9 + a_{10} \\
b_{11} &= 2964a_0 + 1285a_1 + 557a_2 + 242a_3 + 105a_4 + 46a_5 + 20a_6 + 9a_7 + 4a_8 + 2a_9 + a_{10} + a_{11} \\
b_{12} &= 6842a_0 + 2964a_1 + 1285a_2 + 557a_3 + 242a_4 + 105a_5 + 46a_6 + 20a_7 + 9a_8 + 4a_9 + 2a_{10} + a_{11} + a_{12} \\
\end{align*}
\]

In fact, it appears that \(b_n \) is a \(\mathbb{N} \)-linear combination of \(a_k \) for \(k \leq n \), although we do not know how to show this, nor do we know of a geometric significance of this experimental fact.

The next lemma computes the degree of the tetrahedron index.

Lemma 3.6. The degree \(\delta(m, e) \) of \(I_\Delta(m, e)(q) \) is given by:

\[
\delta(m, e) = \frac{1}{2} (m_+ (m + e)_+ + (-m)_+ e_+ + (-e)_+ (-e - m)_+ + \max\{0, m, -e\})
\]
It follows that $\delta(m, e)$ is a piece-wise quadratic polynomial given by

$$m = 0$$

$$e = 0$$

$$\frac{m(e+m)}{2} + \frac{m}{2} = e + m = 0$$

The next theorem gives an axiomatic characterization of the tetrahedron index I_{Δ}.

Theorem 3.7. I_{Δ} is uniquely characterized by the following equations:

(a) $I_{\Delta} \in V_+$, $I_{\Delta}(0,0)(0) \neq 0$

(b) I_{Δ} satisfies the pentagon identity

$$I_{\Delta}(m_1-e_2, e_1)I_{\Delta}(m_2-e_1, e_2) = \sum_{e_3 \in \mathbb{Z}} q^{e_3} I_{\Delta}(m_1, e_1+e_3)I_{\Delta}(m_2, e_2+e_3)I_{\Delta}(m_1+m_2, e_3),$$

for all integers m_1, m_2, e_1, e_2.

Remark 3.8. The uniqueness part of Theorem 3.7 uses only the facts that $I_{\Delta} \in V$, $\delta(I_{\Delta}(0, e)) \geq 0$ for all e and I_{Δ} satisfies the special pentagon

$$I_{\Delta}(0,0)^2 = \sum_{e \in \mathbb{Z}} I_{\Delta}(0, e)^3 q^e.$$
where \(p_1(e), p_2(e) \in \mathbb{Z}[q] \) are polynomials of maximum \(q \)-degree \(e^2/2 + e/2 \) and constant term \((-1)^{e-1}\) and \((-1)^e\) respectively. For example, we have:

\[
\begin{align*}
 f(0, -1) &= A - B \\
 qf(0, -2) &= A(-1 + q) + B(1 - 2q) \\
 q^3 f(0, -3) &= A(1 - q - 2q^2 + q^3) + B(-1 + 2q + 2q^2 - 3q^3) \\
 q^6 f(0, -4) &= A(-1 + q + 2q^2 + q^3 - 2q^4 - 3q^5 + q^6) \\
 &\quad + B(1 - 2q - 2q^2 + q^3 + 4q^4 + 3q^5 - 4q^6) \\
 q^{10} f(0, -5) &= A(1 - q - 2q^2 - q^3 + 5q^5 + 3q^6 + q^7 - 3q^8 - 4q^9 + q^{10}) \\
 &\quad + B(-1 + 2q + 2q^2 - q^3 - 2q^4 - 7q^5 + 3q^7 + 6q^8 + 4q^9 - 5q^{10})
\end{align*}
\]

Let us write

\[
A = \sum_{n=0}^{\infty} a_n q^n \quad \text{and} \quad B = \sum_{n=0}^{\infty} b_n q^n.
\]

If we assume that \(f(0, e) \in \mathbb{Z}[[q]] \), this imposes a system of linear equations on the coefficients \(a_n \) and \(b_n \) of \(A \) and \(B \). In fact, for fixed \(e < 0 \), the system of equations \(\text{coeff}(f(0, e), q^j) = 0 \) for \(j = -e^2/2 - e/2, \ldots, -2, -1 \) is a triangular system of linear equations with unknowns \(b_j \) for \(j = 0, 1, \ldots, e^2/2 - e/2 - 1 \) where all diagonal entries of the coefficient matrix are 1. For example, we have:

\[
\begin{pmatrix}
 1 & 0 & 0 & 0 & 0 \\
 -2 & 1 & 0 & 0 & 0 \\
 -2 & -2 & 1 & 0 & 0 \\
 1 & -2 & -2 & 1 & 0 \\
 3 & 4 & 1 & -2 & -2 & 1
\end{pmatrix}
\begin{pmatrix}
 b_0 \\
 b_1 \\
 b_2 \\
 b_3 \\
 b_4 \\
 b_5
\end{pmatrix} =
\begin{pmatrix}
 -a_0 \\
 a_0 - a_1 \\
 2a_0 + a_1 - a_2 \\
 a_0 + 2a_1 + a_2 - a_3 \\
 -2a_0 + a_1 + 2a_2 + a_3 - a_4 \\
 -3a_0 - 2a_1 + a_2 + 2a_3 + a_4 - a_5
\end{pmatrix}
\]

It follows that \(b_n \) is a \(\mathbb{Z} \)-linear combination of \(a_k \) for \(k \leq n \). This proves that the rank of the \(\mathbb{Z}[[q]] \)-module \(V_+ \) is at most 1. Since \(I_\Delta \in V_+ \) (as follows from the proof of Theorem 3.7), it follows that the rank of the \(\mathbb{Z}[[q]] \)-module \(V_+ \) is exactly 1. This proves part (b) of Theorem 3.2.

Corollary 4.1. The above proof implies that \(f \in V_+ \) is uniquely determined by its initial condition \(f(0, 0) \in \mathbb{Z}[[q]] \). It follows that if \(f, g \in V_+ \), then

\[
(4.2) \quad g(0, 0)f(m, e) = f(0, 0)g(m, e)
\]

for all integers \(m \) and \(e \).

4.4. Proof of triality: part (c) of Theorem 3.2. In this section we prove part (c) of Theorem 3.2. Equation (3.2) concerns the following \(\mathbb{Z}/3 \)-action on \(V \).

Definition 4.2. Consider the action \(f \mapsto Sf \) on a function \(f : \mathbb{Z}^2 \rightarrow \mathbb{Z}((q^{1/2})) \) given by:

\[
(4.3) \quad Sf(m, e) = (-q^{1/2})^{-e}f(e, -e - m).
\]
Proposition 4.3. (a) We have: $S^2 = Id$.
(b) If $f \in V$, then $Sf = f$, and of course, also $S^2f = f$.

Part (c) of Theorem 3.2 follows from part (b) of the above proposition.

Proof. (of Proposition 4.3) Part (a) is elementary. For part (b), assume that f satisfies Equation (3.1a) for all (m, e). Replace (m, e) by $(e, -1 - e - m)$ in (3.1a) and we obtain that

$$-f(e, -1 - e - m) + q^{-\frac{m}{2}} f(e, -e - m) + q^{-\frac{1}{2} - \frac{m}{2}} f(1 + e, -1 - e - m) = 0.$$

Now, replace f by Sf in the left hand side of Equation (3.1a), and compute that the result is given by

$$(-1)^{e+1} \left(-f(e, -1 - e - m) + q^{-\frac{m}{2}} f(e, -e - m) + q^{-\frac{1}{2} - \frac{m}{2}} f(1 + e, -1 - e - m)\right)$$

The above vanishes from Equation (4.4).

Likewise, assume that f satisfies Equation (3.1b) for all (m, e). Replace (m, e) by $(e, 1 - e - m)$ in (3.1b) and we obtain that

$$q^{\frac{1}{2} - \frac{m}{2}} f(-1 + e, 1 - e - m) + q^{-\frac{m}{2}} f(e, -e - m) - f(e, 1 - e - m) = 0$$

Now, replace f by Sf in the left hand side of Equation (3.1b), and compute that the result is given by

$$(-1)^{e+1} \left(q^{\frac{1}{2} - \frac{m}{2}} f(-1 + e, 1 - e - m) + q^{-\frac{m}{2}} f(e, -e - m) - f(e, 1 - e - m)\right)$$

It follows that if $f \in V$, then the above vanishes from Equation (4.5). In other words, if $f \in V$ then $Sf \in V$. To conclude that $f = Sf$, it suffices to show (by part (a) of Theorem 3.2) that $f(0, 0) = (Sf)(0, 0)$. If $f(0, 0) = A$, $f(0, 1) = B$, using Remark 3.4 we have:

$$(Sf)(0, 0) = f(0, 0) = A \quad (Sf)(0, 1) = f(0, 1) + q^{-\frac{1}{2}} f(1, -1) = B + q^{-\frac{1}{2}} (-Bq^{\frac{1}{2}}) = 0.$$

This concludes the proof of Proposition 4.3.

\[\square\]

4.5. I_Δ is a tetrahedron index. Observe that by its definition,

$$I_\Delta(m, e) = \sum_{n \in \mathbb{Z}} S(m, e, n)$$

is given by a one-dimensional sum of a \textit{proper q-hypergeometric term} ([WZ92, PWZ96])

$$S(m, e, n) = (-1)^n q^{\frac{1}{2} n(n+1) - (n+\frac{1}{2})m} (q) (q)_{n+e}.$$

It follows by [WZ92] that $I_\Delta(m, e)$ is q-holonomic in both variables m and e. Moreover, recursion relations for $I_\Delta(m, e)$ can be found by the creative telescoping method of [WZ92]. For instance, S satisfies the recursion

$$q^{\frac{1}{2}} S(m - 1, e, n) + q^{-\frac{m}{2}} S(m, e - 1, n) - S(m, e, n) = 0.$$
which implies that I_Δ satisfies Equation (3.1b). To prove Equation (4.6), divide by $S(m, e, n)$ and use the fact that
\[q^{-\frac{1}{2}} S(m - 1, e, n) S(m, e, n) = q^{e + n} \quad q^{-\frac{1}{2}} S(m, e - 1, n) S(m, e, n) = 1 - q^{e + n}. \]
The proof of Equation (3.1a) is similar. For an alternative proof, using the quantum dilogarithm, see Section B.

4.6. The degree of I_Δ.

Proof. (of Lemma 3.6) Consider the fan F of \mathbb{R}^2 with rays $(1, 0)$, $(0, 1)$ and $(1, -1)$. Observe that the linear transformation $(m, e) \mapsto (e, -e - m)$ (which appears in Definition 4.2) rotates the three cones of the fan F, and preserves the piece-wise quadratic polynomial that appears in Lemma 3.6. Since $I_\Delta \in V$ (by Section 4.5) and V is pointwise invariant under S (by Proposition 4.3), it suffices to compute $\delta(m, e)$ when (m, e) lies in the cone $m \leq 0, e \geq 0$. In that case, Equation (1.2) gives
\[I_\Delta(m, e) = \sum_{n=0}^{\infty} (-1)^n q^{\frac{n(n+1)-(n+\frac{1}{2})m}{2}} \delta(m, e, n) = 1 + O(q). \]

If $\delta(m, e, n)$ denotes the degree of the summand, using $m \leq 0, n \geq 0$ we get
\[\delta(m, e, n) = \frac{1}{2} (n(n+1)) - \left(n + \frac{1}{2}e\right) m \geq -\frac{em}{2}, \]

with equality achieved uniquely at $n = 0$. It follows that the degree of $I(m, e)$ in this cone is given by $-em/2$. \hfill \square

4.7. Proof of Theorem 3.7. First we show that I_Δ satisfies the required equations:

(a) $I_\Delta \in V$ from Section 4.5. Lemma 3.6 and Equation (3.4) manifestly imply that $\delta(I_\Delta(m, e)) \geq 0$ for all integers m and e. Thus, $I_\Delta \in V_+$. Moreover, $I_\Delta(0, 0) = 1 + O(q)$.

(b) I_Δ satisfies the pentagon identity from Section A.

It remains to show the uniqueness part in Theorem 3.7. Suppose $f \in V_+$ satisfies the pentagon and $f(0, 0)(0) \neq 0$. Corollary 4.1 implies that $f(m, e)(q) = C(q) I_\Delta(e, m)(q)$ for some $C(q) \in \mathbb{Q}(\langle q \rangle)$. Consider the special pentagon for f and I_Δ:
\[f(0, 0)^2 = \sum_{e \in \mathbb{Z}} f(0, e)^3 q^e \quad I_\Delta(0, 0)^2 = \sum_{e \in \mathbb{Z}} I_\Delta(0, e)^3 q^e. \]

It follows that $C(q)^2 = C(q)^3$ and since $C(q) \neq 0$, we get $C(q) = 1$. This concludes the uniqueness part of Theorem 3.7. \hfill \square

5. Convergence of the 3D Index

5.1. Proof of Theorem 2.4. In this section we prove Theorem 2.4. We begin by a well-known lemma due to Farkas [Zie95].

Lemma 5.1. Fix finite collections $\mathcal{A} = \{a_1, \ldots, a_r\}$ and $\mathcal{B} = \{b_1, \ldots, b_s\}$ of vectors in \mathbb{R}^N. The following are equivalent:
Proof. (a) is equivalent to

(c) there does not exist \(v \neq 0 \) such that \(a_i \cdot v \geq 0 \) for \(i = 1, \ldots, r \) and \(b_j \cdot v = 0 \) for \(j = 1, \ldots, s \).

(b) \(\mathcal{A} \cup \mathcal{B} \) span \(\mathbb{R}^N \) and there exist \(\alpha_i > 0 \) for \(i = 1, \ldots, r \) and \(\gamma_j \in \mathbb{R} \) for \(j = 1, \ldots, s \) such that \(0 = \sum_i \alpha_i a_i + \sum_j \gamma_j b_j \).

Proof. (a) is equivalent to

(c) there does not exist \(v \neq 0 \) such that \(a_i \cdot v \geq 0 \) for \(i = 1, \ldots, r \) and \(b_j \cdot v \geq 0 \) for \(j = 1, \ldots, s \).

(c) implies (b). Let \(C \) denote the cone spanned by \(\mathcal{A} \cup \mathcal{B} \cup -\mathcal{B} \). (c) states that \(C \) is not contained in any half-space through the origin. By Farkas’ lemma [Zie95], it follows that \(C = \mathbb{R}^N \). Thus, \(\mathcal{A} \cup \mathcal{B} \) spans \(\mathbb{R}^N \) and \(-\sum_i a_i \in C \). (b) follows.

(b) implies (c): consider \(v \) such that \(a_i \cdot v = 0 \) and \(b_j \cdot v = 0 \) for all \(i, j \). We know there exist \(\alpha_i > 0 \) and \(\gamma_j \) real such that \(0 = \sum_i \alpha_i a_i + \sum_j \gamma_j b_j \). Taking inner product with \(v \), it follows that \(0 = \sum_i \alpha_i a_i \cdot v \). Since \(\alpha_i > 0 \) and \(a_i \cdot v \geq 0 \) for all \(i \), it follows that \(a_i \cdot v = 0 \) for all \(i \). Thus, \(v \) is perpendicular to \(\mathcal{A} \cup \mathcal{B} \) which is assumed to span \(\mathbb{R}^N \). Thus \(v = 0 \) and (c) follows.

The next lemma concerns super-linear polynomial functions on a cone.

Lemma 5.2. Suppose \(C \) is a closed cone in \(\mathbb{R}^r \) and \(p : C \to \mathbb{R} \) is a polynomial that satisfies \(p(nx) \geq c_x n \) for \(n > 0, x \in C \setminus \{0\} \) and \(c_x > 0 \). Then, there exists \(c > 0 \) and \(c' > 0 \) such that \(p(x) \geq c|x| \) for all \(x \in C \) with \(|x| \geq c' \).

Proof. Let \(S = \{ x \in \mathbb{R}^r \mid |x| = 1 \} \) denote the unit sphere and let \(p = \sum_{k=0}^d p_k(x) \) denote the decomposition of \(p \) into homogeneous polynomials \(p_k \) of degree \(k \). Since \(p(nx) = \sum_k n^k p_k(x) \), it follows that that for every \(x \in S \cap C \) there exists \(i \) such that \(p_j(x) = 0 \) for \(j > i \) and \(p_i(x) > 0 \). In particular, \(p_d : S \cap C \to [0, \infty) \).

Case 1: \(p_d(S \cap C) \subset (0, \infty) \). By compactness, \(p_d(x) \geq c_0 > 0 \) for \(x \in S \cap C \) and \(|p_k(x)| \leq c_k \) for \(x \in S \cap C \) and \(k = 1, \ldots, d-1 \). Thus \(p(x) \geq c_0 |x|^d - \sum_{k=0}^{d-1} |x|^k c_k \geq c|x| \) for some \(c > 0 \).

Case 2: There exists \(x \in S \cap C \) such that \(p_d(x) = 0 \) and \(p_{d-1}(x) > 0 \). Argue as above using the complement of a neighborhood of \(x \) where \(p_1 \) is strictly positive, and conclude the proof by induction on the depth of a point. \(\square \)

Consider the restriction

\[
I_\mathcal{M}^p(m, c)(q) = \sum_{n \in \mathbb{N}} q^{\frac{n}{n^k_0}} \prod_{i=1}^r I_\Delta(m_i - nb_i \cdot k_0, e_i + na_i \cdot k_0)
\]

of the sum that defines \(I_\mathcal{M} \) on a ray \(\rho = Nk_0 \) for \(k_0 \in \mathbb{Z}^r \), \(k_0 \neq 0 \). Consider the union \(R \) of the 3 rays in \(\mathbb{R}^2 \).
THE 3D INDEX OF AN IDEAL TRIANGULATION AND ANGLE STRUCTURES

If \(\rho = Nk_0 \) is a fixed ray, let \(x = B^Tk_0 = (x_1, \ldots, x_s) \) and \(y = A^Tk_0 = (y_1, \ldots, y_s) \).

Lemma 5.3. (a) If \((-x_i, y_i) \notin R\) for some \(i = 1, \ldots, s \), then \(I_M^\rho(m, e) \) converges for all \(m, e \). (b) If \((-x_i, y_i) \in R\) for all \(i = 1, \ldots, s \). Then, there exist \(Q \in \{1, \ldots, s\} \rightarrow \{1, 2, 3\} \) such that \((-x_i, y_i) \in \rho_Q(i)\) for all \(i = 1, \ldots, s \). Then \(I_M^\rho \) does not converge if and only if all of the following inequalities hold:

\[
\begin{align*}
(5.2a) & \quad b_i \cdot k_0 = 0, \quad a_i \cdot k_0 \geq 0, \quad (-v) \cdot k_0 \leq 0 \quad \text{if} \quad Q(i) = 1 \\
(5.2b) & \quad (a_i - b_i) \cdot k_0 = 0, \quad (-b_i) \cdot k_0 \geq 0, \quad (-v + b_i) \cdot k_0 \leq 0 \quad \text{if} \quad Q(i) = 2 \\
(5.2c) & \quad (-a_i) \cdot k_0 = 0, \quad (-a_i + b_i) \cdot k_0 \geq 0, \quad (-v - a_i) \cdot k_0 \leq 0 \quad \text{if} \quad Q(i) = 3
\end{align*}
\]

Proof. (a) Without loss of generality, let us assume \(m = e = 0 \). In that case, the degree of the summand in Equation (5.1) is given by

\[
n^2 \sum_{i=1}^{s} \delta_2(-x_i, y_i) + n \sum_{i=1}^{s} \delta_1(-x_i, y_i) + \frac{n}{2} v \cdot k_0
\]

where \(\delta_1 \) and \(\delta_2 \) are piece-wise quadratic and linear functions given by

\[
\begin{align*}
\delta_2 & \quad x = 0 \\
y = \frac{y(x+y)}{2} & \quad x + y = 0
\end{align*}
\]

\[
\begin{align*}
\delta_1 & \quad x = 0 \\
y = \frac{-y}{2} & \quad x + y = 0
\end{align*}
\]

If \((-x_i, y_i) \notin R\) for some \(i = 1, \ldots, s \), it follows that the degree of the summand is a quadratic function of \(n \) with nonvanishing leading term, thus \(I_M^\rho \) converges.

(b) The above computation shows that \(I_M^\rho(0, 0) \) diverges if and only if \(\delta_2(-x_i, y_i) = 0 \) for all \(i = 1, \ldots, s \) and in addition the coefficient of \(n \) is less than or equal to zero. The first condition is equivalent to \((-x_i, y_i) \in R\) for all \(i \) and together with the second one, they are equivalent to the inequalities (5.2).

Proof. (of Theorem 2.4) Lemma 5.2 implies that \(I_M \) converges if and only if \(I_M^\rho \) converges for all rays \(\rho \). This is true since the degree of the summand of \(I_M \) is a piece-wise quadratic polynomial. Lemma 5.3 gives necessary and sufficient conditions for the convergence of \(I_M^\rho \). It remains to match these conditions with the definition of an index structure on \(M \) using Lemma 5.1.

The above discussion implies that \(I_M \) is convergent if and only if for every \(Q: \{1, \ldots, s\} \rightarrow \{1, 2, 3\} \), there does not exist \(k_0 \neq 0 \) such that Equation (5.2) holds. Assume for simplicity that \(s = 1 \).

Case 1: If \(Q(1) = 1 \) Inequality (5.2) and Lemma 5.1 implies that there exist \(\alpha_1 > 0 \) and \(\gamma_1 \) real such that \(v = \alpha_1 a_1 + \gamma_1 b_1 \). Define \(\beta_1 = 1 - \alpha_1 - \gamma_1 \).

Case 2: If \(Q(1) = 2 \) Inequality (5.2) and Lemma 5.1 implies that there exist \(\alpha'_1 > 0 \) and \(\gamma'_1 \) real such that \(v - b_1 = \alpha'_1 (-b_1) + \gamma'_1 (a_1 - b_1) \). Letting \((\alpha_1, \beta_1, \gamma_1) = (\gamma'_1, \alpha'_1, -\gamma'_1 - \alpha'_1 + 1) \) it follows that

\[
v = \alpha_1 a_1 + \gamma_1 b_1, \quad \beta_1 > 0.
\]
Case 3: If \(Q(1) = 3 \) Inequality (5.2) and Lemma 5.1 implies that there exist \(\alpha_1' > 0 \) and \(\gamma'_1 \) real such that \(v - a_1 = \alpha_1'(-a_1 + b_1) + \gamma'_1(-a_1) \). Letting \((\alpha_1, \beta_1, \gamma_1) = (1 - \alpha_1' - \gamma'_1, \gamma'_1, \alpha_1') \) it follows that

\[
v = \alpha_1 a_1 + \gamma_1 b_1, \quad \gamma_1 > 0.
\]

It follows that \(M \) admits an index structure.

The general case of \(s \) follows as above. Indeed for each \(Q : \{1, \ldots, s\} \rightarrow \{1, 2, 3\} \), assume \((-x_i, y_i) \in \rho\) for \(i = 1, \ldots, s \). Then \(I_M^k \) converges if and only if there exists \((\alpha, \beta, \gamma) \) that satisfies Equations (2.1) and inequalities (2.2). This completes the convergence proof of Theorem 2.4. \(q \)-holonomicity follows from the main theorem of Wilf-Zeilberger [WZ92], using the fact that \(I_M(m, e) \) is a 2r-dimensional sum of a proper \(q \)-hypergeometric summand.

5.2. An independent proof of convergence for strict index structures. Theorem 2.4 implies that \(I_M \) converges when \(M \) admits a strict index structure. In this section we give an independent proof of this fact without using the restriction of the summand of the index to a ray.

Proposition 5.4. If \(M \) supports a strict index structure, then \(I_M(m, e)(q) \in \mathbb{Z}((q^{1/2})) \) is convergent for all \(m, e \in \mathbb{Z}^s \).

The proof of proposition 5.4 requires some lemmas.

Lemma 5.5. Fix positive real numbers \(\alpha, \beta > 0 \) with \(\alpha + \beta < 1/2 \) and let \(\gamma = \min\{\alpha, \beta, 1/2 - \alpha - \beta\} \). Then for all for all integers \(m, e \) we have:

\[
\delta(I_\Delta(m, e)q^{-\beta m + \alpha e}) \geq \gamma \max\{|m|, |e|, |m + e|\}.
\]

Proof. (of Lemma 5.5) Let \(L_+(m, e) = \max\{|m|, |e|, |m + e|\} \). \(L_+(m, e) \) is a piece-wise linear function given by

With the notation of Lemma 3.6, we need to show that

\[
(5.3) \quad \delta(m, e) - \beta m + \alpha e \geq \gamma L_+(m, e).
\]

First, consider the three rays of \(\delta(m, e) \):

ray	left hand side of (5.3)	right hand side of (5.3)
\(m = 0, e \geq 0 \)	\(\alpha e \)	\(\gamma e \)
\(e = 0, m \leq 0 \)	\(-\beta m \)	\(-\gamma m \)
\(m = -e \geq 0 \)	\(m(1/2 - \alpha - \beta) \)	\(\gamma m \)

This proves inequality (5.3) in the three rays and shows that the choice of \(\gamma \) is optimal. Now, in the interior of each of the 6 cones of linearity of \(L_+ \), \(\delta(m, e) - \beta m + \alpha e \) is given by a quadratic polynomial of \(m, e \). The degree 2 (resp. 1) part of this polynomial is always greater than or equal to \(1/2L_+(m, e) \) (resp. \((1/2 - \gamma)L_+(m, e) \)) by a case computation. For
example, in the cone $m \geq 0, e \leq 0, e + m \geq 0$ with rays $\mathbb{R}_+(1, 0)$ and $\mathbb{R}_+(1, -1)$ we have

$$\delta(m, e) = \frac{m(m + e)}{2} + \frac{m}{2}$$

and

$$L_+(m, e) = m.$$

The other cases are similar. □

The next lemma is well-known [Zie95].

Lemma 5.6. Consider the convex polytope P in \mathbb{R}^r defined by

$$P = \{ x \in \mathbb{R}^r | v_i \cdot x \leq c_i \ i = 1, \ldots, s \}$$

where $v_i \in \mathbb{R}^r$ and $c_i \in \mathbb{R}$ for $i = 1, \ldots, s$. Then P is compact if and only if the linear span of the set $\{v_i|i = 1, \ldots, s\}$ is \mathbb{R}^r and 0 is a $\mathbb{R}_{\geq 0}$-linear combination of elements of $\{v_i|i = 1, \ldots, s\}$.

Proof. (of Proposition 5.4) Let a_i and b_i for $i = 1, \ldots, s$ denote the columns of $(A|B)$. If M admits a strict index structure then there exist $\alpha_i, \gamma_i > 0$ that satisfy $a_i + \gamma_i < 1$ for all i such that

$$\sum_{i=1}^s \alpha_i a_i + \gamma_i \beta_i = \nu.$$

It follows that

$$I_M(m, e)(q) = \sum_{k \in \mathbb{Z}^d} \prod_{i=1}^s I(m_i - b_i \cdot k, e_i + a_i \cdot k)(q) q^\frac{\beta_i b_i \cdot k + \alpha_i a_i \cdot k}{2}.$$

Applying Lemma 5.5, it follows that for every $k \in \mathbb{Z}^d$, the degree of the summand is bounded below by

$$\sum_{i=1}^s (\beta_i m_i - \alpha_i e_i) + \gamma' \sum_{i=1}^s (|m_i + b_i \cdot k| + |e_i + a_i \cdot k|).$$

Now, Lemma 5.6 and admissibility implies that for fixed N_0, there are finitely many $k \in \mathbb{Z}^d$ such that the above degree is less than N_0. Proposition 5.4 follows. □

6. **Invariance of the 3D index under 2 ↔ 3 moves**
6.1. **Invariance under the $3 \to 2$ move.** Consider two ideal triangulations \mathcal{T} and $\tilde{\mathcal{T}}$ with N and $N + 1$ tetrahedra, respectively, related by a $2 - 3$ move.

The above figure matches the conventions of [DG, Sec.3.6]. For a variable, matrix or vector f associated to \mathcal{T}, we will denote by \tilde{f} the corresponding variable, matrix or vector associated to $\tilde{\mathcal{T}}$. Let us use variables (Z, Z', Z'') and $(\tilde{Z}, \tilde{Z}', \tilde{Z}'')$ to denote the angles of \mathcal{T} and $\tilde{\mathcal{T}}$ respectively, where

\begin{equation}
Z := (X_1, X_2, Z_3, ..., Z_N), \quad \tilde{Z} := (W_1, W_2, W_3, Z_3, ..., Z_N).
\end{equation}

We fix a quad type assigning these variables to \mathcal{T} and $\tilde{\mathcal{T}}$ as in Figure 1. When calculating the Neumann-Zagier matrices, we will assume that we keep the edge equation which comes from the internal edge of the 2-3 bipyramid.

There are nine linear relations among the shapes of the tetrahedra involved in the move; three come from adding dihedral angles on the equatorial edges of the bipyramid:

\begin{equation}
W'_1 = X_1 + X_2, \quad W'_2 = X'_1 + X''_2, \quad W'_3 = X''_1 + X'_2,
\end{equation}

and six from the longitudinal edges:

\begin{equation}
X_1 = W_2 + W'_3, \quad X'_1 = W_3 + W''_1, \quad X''_1 = W_1 + W'_2,
\end{equation}

\begin{equation}
X_2 = W''_2 + W_3, \quad X'_2 = W''_1 + W_2, \quad X''_2 = W''_3 + W_1.
\end{equation}

Moreover, due to the central edge of the bipyramid, there is an extra gluing constraint in $\tilde{\mathcal{T}}$:

\begin{equation}
W'_1 + W'_2 + W'_3 = 2\pi i.
\end{equation}

Let $\text{GA}(\mathcal{T})$ and $\text{A}(\mathcal{T})$ denote, respectively, the sets of generalized and strict angle structures of \mathcal{T}.

Lemma 6.1. Consider the map:

\begin{equation}
\mu_{3\to2}: \text{GA}(\tilde{\mathcal{T}}) \to \text{GA}(\mathcal{T}), \quad \mu_{3\to2}(\tilde{Z}, \tilde{Z}', \tilde{Z}'') = (Z, Z', Z'')
\end{equation}

defined by Equations (6.3). It induces a map

\begin{equation}
\mu_{3\to2}: \text{A}(\tilde{\mathcal{T}}) \to \text{A}(\mathcal{T})
\end{equation}

Proof. To check that $\mu_{3\to2}$ is well-defined we need to show that $X_i + X'_i + X''_i = 1$ is satisfied for $i = 1, 2$, assuming that Equation (6.4) holds and $W_i + W'_i + W''_i = 1$ for $i = 1, 2, 3$. This is easy to check. If $(\tilde{Z}, \tilde{Z}', \tilde{Z}'') \in \mathbb{R}_+^{3(N+1)}$ (where \mathbb{R}_+ is the set of positive real numbers), it is
manifest from the definition that \((Z, Z', Z'') \in \mathbb{R}^{3N}_+.\) In other words, \(\mu_{3 \to 2}\) sends strict angle structures on \(\tilde{T}\) to those on \(T.\)

This proves the first part of Proposition 2.13. To prove the remaining part, we study how are the gluing equation matrices of \(T\) and \(\tilde{T}\) related. Let \((\tilde{A}|\tilde{B}|	ilde{C})\) denote the matrix of exponents of the gluing equations of \(T.\) We will use column notation and write
\[
\tilde{A} = (\tilde{a}_1, \tilde{a}_2, \tilde{a}_i), \quad \tilde{B} = (\tilde{b}_1, \tilde{b}_2, \tilde{b}_i), \quad \tilde{C} = (\tilde{c}_1, \tilde{c}_2, \tilde{c}_i),
\]
where \(\tilde{a}_i\) meaning \((\tilde{a}_3, \tilde{a}_4, ..., \tilde{a}_N)\) and similarly for \(\tilde{b}_i\) and \(\tilde{c}_i.\) Eliminating the \(Z'\) variables, we obtain
\[
A = \tilde{A} - \tilde{B}, \quad B = \tilde{C} - \tilde{B}.
\]
In other words,
\[
(a_1, a_2, a_i) = (\tilde{a}_1 - \tilde{b}_1, \tilde{a}_2 - \tilde{b}_2, \tilde{a}_i - \tilde{b}_i) \quad (b_1, b_2, b_i) = (\tilde{c}_1 - \tilde{b}_1, \tilde{c}_2 - \tilde{b}_2, \tilde{c}_i - \tilde{b}_i).
\]
To compute the corresponding matrices of \(\tilde{T}\), use
\[
2 = \tilde{a}_1 X_1 + \tilde{a}_2 X_2 + \tilde{a}_i Z_i + \tilde{b}_1 X_1' + \tilde{b}_2 X_2' + \tilde{b}_i Z_i' + \tilde{c}_1 X_1'' + \tilde{c}_2 X_2'' + \tilde{c}_i Z_i''
\]
\[
= \tilde{a}_1 (W_2 + W_3'') + \tilde{a}_2 (W_2'' + W_3) + \tilde{a}_i Z_i
\]
\[
+ \tilde{b}_1 (W_3 + W_3'') + \tilde{b}_2 (W_1'' + W_2) + \tilde{b}_i Z_i'
\]
\[
+ \tilde{c}_1 (W_1 + W_2'') + \tilde{c}_2 (W_3'' + W_1) + \tilde{c}_i Z_i''.
\]
Collecting the coefficients of \(\tilde{Z}, \tilde{Z}', \tilde{Z}''\) it follows that the matrix of exponents of the gluing equations of \(\tilde{T}\) is given by
\[
\tilde{A} = \begin{pmatrix} 0 & 0 & 0 \\ \tilde{c}_1 + \tilde{c}_2 & \tilde{a}_1 + \tilde{b}_2 & \tilde{a}_2 + \tilde{b}_1 \end{pmatrix}, \quad \tilde{B} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & \tilde{b}_i \end{pmatrix}, \quad \tilde{C} = \begin{pmatrix} 0 & 0 & 0 \\ \tilde{b}_1 + \tilde{b}_2 & \tilde{a}_2 + \tilde{c}_1 & \tilde{a}_1 + \tilde{c}_2 \end{pmatrix}.
\]
Use a row operation via \(P = \begin{pmatrix} 1 & \tilde{b}_1 + \tilde{b}_2 \\ \tilde{b}_1 + \tilde{b}_2 & 0 \end{pmatrix}\) it follows that
\[
P\tilde{A} = \begin{pmatrix} 0 & 0 & 0 \\ \tilde{c}_1 + \tilde{c}_2 & \tilde{a}_1 + \tilde{b}_2 & \tilde{a}_2 + \tilde{b}_1 \end{pmatrix}, \quad P\tilde{B} = \begin{pmatrix} 1 & 1 & 1 \\ \tilde{b}_1 + \tilde{b}_2 & \tilde{b}_1 + \tilde{b}_2 & \tilde{b}_1 + \tilde{b}_2 \end{pmatrix}, \quad P\tilde{C} = \begin{pmatrix} 0 & 0 & 0 \\ \tilde{b}_1 + \tilde{b}_2 & \tilde{a}_2 + \tilde{c}_1 & \tilde{a}_1 + \tilde{c}_2 \end{pmatrix}.
\]
Since \(\tilde{A} = \tilde{A} - \tilde{B}\) and \(\tilde{B} = \tilde{C} - \tilde{B},\) the above combined with Equation \(6.6\) implies that
\[
P\tilde{A} = \begin{pmatrix} -1 & -1 & -1 \\ \tilde{b}_1 + \tilde{b}_2 & a_1 & a_2 \end{pmatrix}, \quad P\tilde{B} = \begin{pmatrix} -1 & -1 & -1 \\ 0 & a_2 + \tilde{b}_1 & a_1 + \tilde{b}_2 \end{pmatrix}.
\]
Since the 3D index is invariant under row operations (see Remark 2.8), Equation \(6.7\) and the pentagon identity \((3.5)\) concludes that \(I_{\tilde{T}} = I_T.\)
6.2. **Invariance under the $2 \to 3$ move.** In this section we will define what is a special angle structure on T, and show the partial invariance of the 3D index under a $2 \to 3$ move. We will use the same notation as in Section 6.1. To define a map $(Z, Z', Z'') \mapsto (\tilde{Z}, \tilde{Z}', \tilde{Z}'')$, we need to solve for W_i, W'_i, W''_i for $i = 1, 2, 3$ in terms of X_i, X'_i, X''_i for $i = 1, 2$ using Equations (6.2) and (6.3). The answer involves one free variable (say, W_1) and it is given by

\begin{align*}
(6.8a) \quad & (W_1, W_2, W_3) = (W_1, W_1 + X_1 + X_2 + X''_2 - 1, W_1 + X_1 + X_2 + X'_1 - 1) \\
(6.8b) \quad & (W'_1, W'_2, W'_3) = (X_1 + X_2, X'_1 - X_2 - X''_2 + 1, -X_1 - X'_1 + X'_2 + 1) \\
(6.8c) \quad & (W''_1, W''_2, W''_3) = (-W_1 + 1 - X_1 - X_2, -W_1 - X_1 - X'_1 + 1, -W_1 - X_2 - X'_2 + 1)
\end{align*}

If (Z, Z', Z'') is a strict angle structure on T, then $(\tilde{Z}, \tilde{Z}', \tilde{Z}'')$ is a strict angle structure if and only if Equations (6.8) have a strictly positive solution. It is easy to see that this is equivalent to the following condition

\begin{equation}
X_1 + X_2 < 1, \quad X'_1 + X'_2 < 1, \quad X'_1 + X''_2 < 1.
\end{equation}

These conditions are precisely equivalent to the $W'_1, W'_2, W'_3 < 1$, as follows by Equation (6.2). I.e., a special strict angle structure is an angle structure such that all angles of the bipyramid are less than 1.

Definition 6.2. We will say that (Z, Z', Z'') is a *special strict angle structure* on T if the inequality (6.9) is satisfied.

Let $A^{sp}(T)$ denote the set of special strict angle structures on T. Then, we have a map (more precisely, a section of $\mu_{3 \to 2}$)

$$
\mu_{2 \to 3} : A^{sp}(T) \to A(\tilde{T}), \quad \mu_{2 \to 3}(Z, Z', Z'') = (\tilde{Z}, \tilde{Z}', \tilde{Z}'').
$$

The conclusion is that if T admits a special strict angle structure, then so does \tilde{T}. In that case, I_T and $I_{\tilde{T}}$ both exist. An application of the pentagon identity as in Section 6.1 implies that $I_T = I_{\tilde{T}}$. \hfill \square

6.3. **An ideal triangulation of $m136$.** Let T denote the ideal triangulation [HRS, Ex.7.7] of the 1-cusped census manifold $m136$ using 7 tetrahedra. Its gluing equation matrices around the edges are given by:

$$
\begin{align*}
\mathbf{A} &= \begin{pmatrix}
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0
\end{pmatrix}, &
\mathbf{B} &= \begin{pmatrix}
0 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0
\end{pmatrix}, &
\mathbf{C} &= \begin{pmatrix}
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 2 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
\end{align*}
$$

A generalized angle structure is a solution to Equations (2.7). In our example, the set of generalized angle structures $GA(T)$ is an affine 8-dimensional subspace of \mathbb{R}^{21} and the intersection $SA(T) = GA(T) \cap [0, \infty)^{21}$ is the polytope of semi-angle structures. Regina [Bur] gives that $SA(T)$ is the convex hull of the following set of 11 points $(\alpha_1, \beta_1, \gamma_1, \ldots, \alpha_7, \beta_7, \gamma_7)$ in \mathbb{R}^{21}. \hfill \square
A computation shows that if \((\alpha, \beta, \gamma) \in \text{SA}(T)\), then \((a_6, b_6, c_6) = (t, 1, -t)\) for some \(t \in \mathbb{R}\), which explains why \(T\) has no strict angle structure. On the other hand, [HRS, Example 7.7] mention \(T\) has a solution

\[
(z_1, \ldots, z_6) = \left(2i, -1 + 2i, \frac{3}{5} + \frac{1}{5}i, -1, \frac{1}{5} + \frac{2}{5}i, 2, \frac{1}{2} + \frac{1}{2}i\right)
\]

of the gluing equations which recovers the complete hyperbolic structure on \(m_{136}\).

6.4. **An ideal triangulation of** \(m_{064}\). There is an explicit triangulation of \(m_{064}\) that uses 7 ideal tetrahedra, communicated to us by Henry Segerman. Its gluing equation matrices are given by

\[
\bar{A} = \begin{pmatrix}
2 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1
\end{pmatrix}, \quad
\bar{B} = \begin{pmatrix}
2 & 0 & 0 & 0 & 0 & 0 & 1 \\
2 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0
\end{pmatrix}, \quad
\bar{C} = \begin{pmatrix}
1 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

This triangulation has no semi-angle structure, and its gluing equations has the following numerical shape solution

\[(1.60 + 0.34i, 0.74 + 0.40i, 0.86 - 0.33i, 1.68 + 0.39i, 0.51 + 0.54i, 0.51 + 0.54i, -0.61 + 1.25i)\]

that gives rise to the discrete faithful representation of \(m_{064}\). An explicit computation shows that this triangulation admits an index structure.

6.5. **An ideal triangulation with no index structure.** Consider an ideal triangulation \(T\) which contains an edge \(e\) and a tetrahedron \(\Delta_1\) such that goes around \(e\) five times with shapes \(Z, Z', Z', Z''\) and \(Z''\). Suppose that no other tetrahedron touches \(e\). Then the equation for a generalized angle structure around \(e\) reads

\[
\alpha + 2\beta + 2\gamma = 2, \quad \alpha + \beta + \gamma = 1
\]

This forces \(\alpha = 0\) so no generalized angle structure has \(\alpha > 0\). Note that the corresponding gluing equations around the edge \(e\) reads

\[
z(z')^2(z'')^2 = 1, \quad z z' z'' = -1, \quad z' = (1 - z)^{-1}
\]

which forces \(z = 1\). Thus the gluing equations have no non-degenerate solution, i.e., no solution with shapes in \(\mathbb{C} \setminus \{0, 1\}\).
More complicated examples can be arranged using special configurations of two or more edges and tetrahedra. In all examples that we could generate with no index structure, the triangulation is degenerate.

Of course, the arguments of a shape solution to the gluing equations is a generalized angle structure. The latter, however, need not be an index structure if some of the shapes are real, or have negative imaginary part; see for instance the triangulation of $m064$ in Section 6.4.

6.6. Acknowledgment. The author wishes to thank Greg Blekherman, Nathan Dunfield, Christoph Koutschan, Henry Segerman and Josephine Yu for enlightening conversations. The author wishes to especially thank Tudor Dimofte for explaining the 3D index, and for his generous sharing of his ideas.

The work was initiated during a Clay Conference in Oxford, UK. The author wishes to thank the Clay Institute and Oxford University for their hospitality.

Appendix A. I_Δ satisfies the pentagon identity

by Sander Zwegers

There are several proofs of the key pentagon identity of the tetrahedron index I_Δ. The proofs may use an integral representation of the quantum dilogarithm, or q-holonomic recursion relations, or algebraic identities of generating series of q-series of Nahm type [GL].

A.1. A generating series proof of the pentagon identity. In this section we will prove that I_Δ satisfies the pentagon identity using generating series. The proof

• starts from an associativity identity

$\frac{(z_1 z_2)_{\infty}}{(z_1)_{\infty} (z_2)_{\infty}} \cdot \frac{(x_1 z_1^{-1} q)_{\infty} (x_2 z_2^{-1} q)_{\infty}}{(x_1 x_2 z_1^{-1} z_2^{-1} q)_{\infty}} = \frac{(x_1 z_1^{-1} q)_{\infty}}{(z_1)_{\infty}} \cdot \frac{(x_2 z_2^{-1} q)_{\infty}}{(z_2)_{\infty}} \cdot \frac{(z_1 z_2)_{\infty}}{(x_1 x_2 z_1^{-1} z_2^{-1} q)_{\infty}}$

that uses 4 additional variables $\{x_1, x_2, z_1, z_2\}$ in addition to the 4 variables $\{m_1, m_2, e_1, e_2\}$,

• extracts coefficients with respect to (z_1, z_2) and

• specializes $(x_1, x_2) = (q^{-m_1}, q^{-m_2})$. This last part is not algebraic and requires to show convergence. The latter follows from Corollary 2.7.

Let us now give the details. Consider

$$F_e(x) = \sum_n (-1)^n q^{\frac{n}{2}+n(n+1)} x^n \in \mathbb{Z}[[x, q]].$$

Here and below, summation is over the set of integers, with the understanding that $1/(q)_n = 0$ for $n < 0$.

We will show that

$$q^{e_1 e_2} F_{e_1}(q^{e_2} x_1) F_{e_2}(q^{e_1} x_2) = \sum_{e_3} (x_1 x_2 q)^{e_3} F_{e_1 + e_3}(x_1) F_{e_2 + e_3}(x_2) F_{e_3}(x_1 x_2)$$

in the ring $\mathbb{Z}((x_1, x_2, q))$. Since

$$F_e(q^{-m}) = q^{\frac{em}{2}} I_\Delta(m, e),$$
the substitution \((x_1, x_2) = (q^{-m_1}, q^{-m_2})\) (which converges by Corollary 2.7) implies the pentagon identity of Equation 3.5.

Lemma A.1. For \(|q| < 1\) we have:

\[
\frac{1}{(x)_\infty} = \sum_n \frac{x^n}{(q)_n} \quad |x| < 1
\]

\[
(xq)_\infty = \sum_n (-1)^n q^{\frac{n}{2}(n+1)} x^n
\]

\[
\frac{(xy)_\infty}{(x)_\infty} = \sum_n \frac{(y)_n x^n}{(q)_n} \quad |x| < 1
\]

\[
\frac{(xy)_\infty}{(x)_\infty(y)_\infty} = \sum_{r,s} q^{r^2} x^r y^s \quad |x| < 1, |y| < 1
\]

\[
\frac{(xq)_\infty(yq)_\infty}{(xyq)_\infty} = \sum_{r,s} (-1)^{r+s} q^{\frac{1}{2}(r-s)^2 + \frac{1}{2}(r+s)} x^r y^s \quad |xyq| < 1
\]

Proof. The first three identities are well-known and appear in [Zag07, Prop. 2]. The last two follow from the first three:

\[
\sum_{r,s} q^{r^2} x^r y^s = \sum_r \frac{x^r}{(q)_r} \sum_s \frac{(q^r y)^s}{(q)_s} = \sum_r \frac{x^r}{(q)_r} \frac{1}{(x^r y^s)_\infty} = \frac{1}{(y)_\infty} \sum_r \frac{(y)_r x^r}{(q)_r} = \frac{(xyq)_\infty}{(x)_\infty(y)_\infty}.
\]

\[
\sum_{r,s} (-1)^{r+s} q^{\frac{1}{2}(r-s)^2 + \frac{1}{2}(r+s)} x^r y^s = \sum_r (-1)^r q^{\frac{1}{2}r^2 + \frac{1}{2}r} x^r \sum_s (-1)^s q^{\frac{1}{2}s^2 + \frac{1}{2}s} (q^{-r} y)^s
\]

\[
= \sum_r (-1)^r q^{\frac{1}{2}r^2 + \frac{1}{2}r} x^r \frac{(q^{1-r} y)_\infty}{(q)_r} = (yq)_\infty \sum_r \frac{(y^{-1})_r (xyq)_r}{(q)_r} = \frac{(xq)_\infty(yq)_\infty}{(xyq)_\infty}.
\]

\[
\]

Remark A.2. The identities of Lemma A.1 also hold in the ring \(\mathbb{Z}((x, y, q))\).

Observe that \(F_e(x)\) is an analytic function of \((x, q)\) when \(|q| < 1\) and \(x \in \mathbb{C}\). With \(|q| < 1\) and \(|y| < 1\), Lemma A.1 gives
implies that they also hold in the ring \mathbb{Z}.

Thus, the generating function of the left hand side of Equation (A.2) is

$$
\sum_{e_1, e_2} \sum_{n_1, n_2} (-1)^n q^{\frac{1}{2}n^2 + \frac{1}{2}n_1+n_2} \frac{y^e}{(q)_{n_1}} \frac{y^e}{(q)_{n_2+e}}
$$

$$
= \frac{1}{(y)_{\infty}} \sum_{n} (-1)^n q^{\frac{1}{2}n^2 + \frac{1}{2}n} (xy^{-1})^n = \frac{(xy^{-1})_{\infty}}{(y)_{\infty}}.
$$

Likewise, the generating function of the right hand side of Equation (A.2) is the same

$$
\sum_{e_1, e_2} \left(\sum_{e_3} \left(x_1 x_2 q \right)^e_3 F_{e_1 + e_3} (x_1) F_{e_2 + e_3} (x_2) F_{e_3} (x_1 x_2) \right) z^{e_1} z^{e_2}
$$

$$
= \left(\sum_{e_1} F_{e_1} (x_1) z^{e_1} \right) \left(\sum_{e_2} F_{e_2} (x_2) z^{e_2} \right) \left(\sum_{e_3} F_{e_3} (x_1 x_2) (x_1 x_2 z^{-1} z^{-1} q) e_3 \right)
$$

$$
= \frac{(x_1 z^{-1} q)_{\infty}}{(z_1)_{\infty}} \cdot \frac{(x_2 z^{-1} q)_{\infty}}{(z_2)_{\infty}} \cdot \frac{(z_1 z_2)_{\infty}}{(x_1 x_2 z^{-1} z^{-1} q)_{\infty}}.
$$

The above identities for each side of Equation (A.2) hold when $|q| < 1$, $|z_1| < 1$, $|z_2| < 1$ and $|x_1 x_2 z_1^{-1} z_2^{-1} q| < 1$. Remark A.2 implies that they also hold in the ring $\mathbb{Z}((x_1, x_2, z_1, z_2, q))$. Extracting the coefficient of $z^{e_1} z^{e_2}$ from the above concludes the proof of Equation (A.2).
A.2. A second proof of the pentagon identity. In this section we give a second proof of the pentagon identity using

\[
\frac{1}{(q)_m(q)_n} = \sum_{r,s,t} \frac{q^{rt}}{(q)_r(q)_s(q)_t},
\]

(A.3)

\[
\frac{q^{mn}}{(q)_m(q)_n} = \sum_{r,s,t} \frac{(-1)^s q^{\frac{1}{2}s^2 - \frac{1}{2}s}}{(q)_r(q)_s(q)_t} = \sum_s \frac{(-1)^s q^{\frac{1}{2}s^2 - \frac{1}{2}s}}{(q)_{m-s}(q)_{n-s}(q)_s}.
\]

The first identity is well-known [Zag07, Eqn.(13)], and the second follows from the first by replacing \(q \) by \(q^{-1} \) and multiplying both sides by \((-1)^{m+n} q^{-\frac{1}{2}(m-n)^2 - \frac{1}{2}(m+n)} \).

Using these equations, we will show here that

\[
q^{e_1e_2} \frac{(-1)^{n_1+n_2} q^{\frac{1}{2}n_1^2 + \frac{1}{2}n_2^2 + \frac{1}{2}n_1n_2 + e_1n_1 + e_2n_2}}{(q)_{n_1}(q)_{n_2}(q)_{n_1+e_1}(q)_{n_2+e_2}} = \sum_{r_1,r_2,r_3,e_3} (-1)^{r_1+r_2+r_3} q^{\frac{1}{2}r_1^2 + \frac{1}{2}r_2^2 + \frac{1}{2}r_3^2 + \frac{1}{2}r_1r_2 + \frac{1}{2}r_3 + e_3} \frac{(q)_r(q)_{r_1+e_1+e_3}(q)_{r_2}(q)_{r_2+e_2+e_3}(q)_{r_3}(q)_{r_3+e_3}}{(q)_{r_1+r_2+r_3+e_3=n_1+r_2+e_3=n_2}}.
\]

(A.4)

The sum on the right actually only has a finite number of non-zero terms, so there is no issue with convergence. If we multiply both sides with \(x_1^{n_1}x_2^{n_2} \) and sum over all \(n_1 \) and \(n_2 \), then we again find

\[
q^{e_1e_2} F_{e_1}(q^{e_2}x_1)F_{e_2}(q^{e_1}x_2) = \sum_{e_3} (x_1x_2q)^{e_3} F_{e_1+e_3}(x_1)F_{e_2+e_3}(x_2)F_{e_3}(x_1x_2).
\]

To prove (A.4) we use Equations (A.3) which give

\[
\frac{q^{(n_1+e_1)(n_2+e_2)}}{(q)_{n_1}(q)_{n_2}(q)_{n_1+e_1}(q)_{n_2+e_2}} = \sum_{r_1,r_2,r_3,e_3} (-1)^{r_3} q^{\frac{1}{2}r_3^2 - \frac{1}{2}r_3 + r_1r_2} \frac{(q)_r(q)_{r_2}(q)_{n_1+e_1-r_3}(q)_{n_2+e_2-r_3}(q)_{r_3}(q)_{r_3}}{(q)_{r_1+r_2+r_3+e_3=n_1+r_2+e_3=n_2}}.
\]
Replacing e_3 by $e_3 + r_3$ in this sum we get

$$
\frac{q^{(n_1+e_1)(n_2+e_2)}}{(q)_{n_1}(q)_{n_2}}(q)_{n_1+e_1}(q)_{n_2+e_2} = \sum_{r_1, r_2, r_3, e_3} (-1)^{r_3} q^{\frac{1}{2}r_3^2 - \frac{1}{2}r_3 + r_1r_2}
$$

Now multiplying both sides by $(-1)^{n_1+n_2} q^{\frac{1}{2}(n_1-n_2)^2 + \frac{1}{2}n_1 + \frac{1}{2}n_2}$ gives Equation (A.4).

Appendix B. The tetrahedron index and the quantum dilogarithm

Gukov-Gaiotto-Dimofte came up with the beautiful formula (1.2) for the tetrahedron index from a Fourier transform of the quantum dilogarithm. For completeness, we include this relation here, taken from [DGGa]. The quantum dilogarithm of Faddeev and Kashaev is a fundamental building block of quantum topology [FK94, Kas97, Kas94]. The q-series version of this analytic function is given by

$$
L(m, x, q) = \frac{(q^{\frac{m+1}{2}x^{-1}})_\infty}{(q^{-\frac{m}{2}x})_\infty} \in \mathbb{Z}((x))[q^{1/2}]
$$

We claim that

$$
\sum_e I(m, e)(q)x^e = L(m, x, q).
$$

To prove this, use the definition of $I(m, e)$, shift e to $e - n$ and use the first two identities of Lemma A.1. We get

$$
\sum_e I(m, e)(q)x^e = \sum_{n,e} (-1)^n q^{\frac{1}{2}n(n+1)-(n+\frac{1}{2}) m} x^n
$$

$$
= \sum_{n,e} (-1)^n q^{\frac{1}{2}n(n+1)} (q^{-\frac{m}{2}x^{-1}})^n (q^{-\frac{m}{2}x})^e
$$

$$
= \frac{(q^{\frac{m+1}{2}x^{-1}})_\infty}{(q^{-\frac{m}{2}x})_\infty}.
$$

Each of the recursion relations (3.1a), (3.1b), (3.3a) and (3.3b) is equivalent to the corresponding relation (B.3a)-(B.3d) for the generating series $L(m, x, q)$

(B.3a) \[-1 + q^{-\frac{m}{2}x^{-1}}L(m, x, q) + L(m + 1, q^{-\frac{m}{2}x}, q) = 0\]

(B.3b) \[(1 - q^{-\frac{m}{2}x^{-1}})L(m, x, q) + L(m - 1, q^{-\frac{m}{2}x}, q) = 0\]
(B.3c) \[(1 + x^2 - (q^m + q^{-m}))L(m, x, q) + xq^m L(m, qx, q) = 0\]

(B.3d) \[L(m-2, x, q) - (L(m-1, q^{\frac{1}{2}}x, q) + L(m-1, q^{-\frac{1}{2}}x, q) - q^{1-m}L(m-1, q^{-\frac{1}{2}}x, q)) + L(m, x, q) = 0\]

Equations (B.3a)-(B.3d) are easy to verify using the fact that \(L(m, q, x)\) is a proper hypergeometric function of \((m, q)\). This gives an alternative proof of part (a) of Theorem 3.7.

Observe finally that the recursions (3.1a) and (3.1b) have a solution space of rank 2. On the other hand, the recursions (B.3a) and (B.3b) have a solution space of rank 1.

References

[Bur] Benjamin A. Burton, *Regina: Normal surface and 3-manifold topology software*, http://regina.sourceforge.net.

[BV97] Michel Brion and Michèle Vergne, *Residue formulae, vector partition functions and lattice points in rational polytopes*, J. Amer. Math. Soc. 10 (1997), no. 4, 797–833.

[CHW99] Patrick J. Callahan, Martin V. Hildebrand, and Jeffrey R. Weeks, *A census of cusped hyperbolic 3-manifolds*, Math. Comp. 68 (1999), no. 225, 321–332.

[DG] Tudor Dimofte and Stavros Garoufalidis, *The quantum content of the gluing equations*, arXiv:1202.6268, Preprint 2012.

[DGGa] Tudor Dimofte, Davide Gaiotto, and Sergei Gukov, *3-manifolds and 3d indices*, arXiv:1112.5179, Preprint 2011.

[DGGb] Tudor Dimofte, Stavros Garoufalidis, and Sergei Gukov, *Gauge theories labelled by three-manifolds*, arXiv:1108.4389, Preprint 2011.

[Dim] Tudor Dimofte, *Quantum Riemann surfaces in Chern-Simons theory*, arXiv:1102.4847, Preprint 2011.

[FK94] L. D. Faddeev and R. M. Kashaev, *Quantum dilogarithm*, Modern Phys. Lett. A 9 (1994), no. 5, 427–434.

[GL] Stavros Garoufalidis and Thang T. Q. Lê, *Nahm sums, stability and the colored Jones polynomial*, arXiv:1112.3905, Preprint 2011.

[HRS] Craig D. Hodgson, J. Hyam Rubinstein, and Henry Segerman, *Triangulations of hyperbolic 3-manifolds admitting strict angle structures*, arXiv:1111.3168, Preprint 2011.

[JO84] William Jaco and Ulrich Oertel, *An algorithm to decide if a 3-manifold is a Haken manifold*, Topology 23 (1984), no. 2, 195–209.

[Kas94] R. M. Kashaev, *Quantum dilogarithm as a 6j-symbol*, Modern Phys. Lett. A 9 (1994), no. 40, 3757–3768.

[Kas97] R. M. Kashaev, *The hyperbolic volume of knots from the quantum dilogarithm*, Lett. Math. Phys. 39 (1997), no. 3, 269–275.

[Kou10] Christoph Koutschan, *HolonomicFunctions (user’s guide)*, Tech. Report 10-01, RISC Report Series, Johannes Kepler University Linz, 2010.

[LT08] Feng Luo and Stephan Tillmann, *Angle structures and normal surfaces*, Trans. Amer. Math. Soc. 360 (2008), no. 6, 2849–2866.

[Mat87] S. V. Matveev, *Transformations of special spines, and the Zeeman conjecture*, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), no. 5, 1104–1116, 1119.

[Mat07] Sergei Matveev, *Algorithmic topology and classification of 3-manifolds*, second ed., Algorithms and Computation in Mathematics, vol. 9, Springer, Berlin, 2007.

[Neu92] Walter D. Neumann, *Combinatorics of triangulations and the Chern-Simons invariant for hyperbolic 3-manifolds*, Topology ‘90 (Columbus, OH, 1990), Ohio State Univ. Math. Res. Inst. Publ., vol. 1, de Gruyter, Berlin, 1992, pp. 243–271.

[NZ85] Walter D. Neumann and Don Zagier, *Volumes of hyperbolic three-manifolds*, Topology 24 (1985), no. 3, 307–332.
[Pie88] Riccardo Piergallini, *Standard moves for standard polyhedra and spines*, Rend. Circ. Mat. Palermo (2) Suppl. (1988), no. 18, 391–414, Third National Conference on Topology (Italian) (Trieste, 1986).

[PWZ96] Marko Petkovšek, Herbert S. Wilf, and Doron Zeilberger, *A = B*, A K Peters Ltd., Wellesley, MA, 1996, With a foreword by Donald E. Knuth, With a separately available computer disk.

[S00] Mutsumi Saito, Bernd Sturmfels, and Nobuki Takayama, *Gröbner deformations of hypergeometric differential equations*, Algorithms and Computation in Mathematics, vol. 6, Springer-Verlag, Berlin, 2000.

[Stu95] Bernd Sturmfels, *On vector partition functions*, J. Combin. Theory Ser. A 72 (1995), no. 2, 302–309.

[Thu77] William Thurston, *The geometry and topology of 3-manifolds*, Universitext, Springer-Verlag, Berlin, 1977, Lecture notes, Princeton.

[Til] Stephan Tillmann, *Degenerations of ideal hyperbolic triangulations*, arXiv:math.GT/0508295, Preprint 2010, 31 pages.

[Wit] Edward Witten, *Fivebranes and knots*, arXiv:1101.3216, Preprint 2011.

[WZ92] Herbert S. Wilf and Doron Zeilberger, *An algorithmic proof theory for hypergeometric (ordinary and “q”) multism/integral identities*, Invent. Math. 108 (1992), no. 3, 575–633.

[Zag07] Don Zagier, *The dilogarithm function*, Frontiers in number theory, physics, and geometry. II, Springer, Berlin, 2007, pp. 3–65.

[Zie95] Günter M. Ziegler, *Lectures on polytopes*, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, New York, 1995.

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, USA

http://www.math.gatech.edu/~stavros

E-mail address: stavros@math.gatech.edu