Data Article

Dataset on synthesis and crystallographic structure of phenyl(TMP)iodonium(III) acetate

Hideyasu Chinat, Daichi Kosekia, Kazuki Samuraa, Kotaro Kikushimaa, Yasuko Inb, Toshifumi Dohia,∗

a College of Pharmaceutical Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
b Osaka University of Pharmaceutical Science, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan

1. Data

Recently, utilization of the auxiliary and the dummy ligand in diaryliodonium (III) salts for a selective aryl-transfer has been actively investigated after the discovery of Mes-iodonium (III) reagents (Koseki et al., 2019). The organic salts consisting of phenyl (2,4,6-trimethoxyphenyl)iodonium (III) cation (Ph(TMP)IOAc), the single-crystal X-ray diffraction measurement together with NMR analysis, like also the method of synthesis and crystallization are presented. The X-ray structure analysis has revealed that the two types of geometries regarding the acetate anion attached to phenyl (TMP)iodonium (III) cation are found in the crystal states.

The data in this article are related to research article “Efficient N-arylation ofazole compounds utilizing selective aryl-transfer TMP-iodonium (III) reagents (Koseki et al., 2019). For the title compound, phenyl(2,4,6-trimethoxyphenyl)iodonium(III) acetate (Ph(TMP)IOAc), the single-crystal X-ray diffraction measurement together with NMR analysis, like also the method of synthesis and crystallization are presented. The X-ray structure analysis has revealed that the two types of geometries regarding the acetate anion attached to phenyl (TMP)iodonium (III) cation are found in the crystal states.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
work, the aryl (TMP)iodonium (III) salts were applied as the efficient arylating agents for the copper-catalyzed N-arylation of azole compounds, which turned out that these iodonium (III) salts have high reactivities even in the metal-catalyzed coupling together with the reported exclusive aryl-group transfer behavior [1]. Therefore, the synthesis and structural information for Ph(TMP)IOAc are very important. The first example of the X-ray structural analysis is worth to notice. Our original method for preparation of the diaryliodonium (III) salts [12] enables to obtain the studied compound of high purity suitable for single-crystal growth (see Tables 1–4).

Ph(TMP)IOAc was synthesized by direct condensation between phenyliodine (III) diacetate (PIDA) and 1,3,5-trimethoxybenzene (TMP) in fluoroalcohol medium under mild conditions (Scheme 1). The structure of Ph(TMP)IOAc was determined by two-dimensional NMR analyses (Figs. 3 and 4). The 1H NMR spectrum in Fig. 1 supports the high purity of Ph(TMP)IOAc obtained in this study. X-ray structural analysis have suggested that two geometrical states for Ph(TMP)IOAc appear in a crystal in the three-dimensional structure (Figs. 5 and 6).

2. Experimental design, materials, and methods

2.1. Materials

The solvents, starting materials, and reagents were purchased from Nacalai tesque and Tokyo Chemical Industry CO. Ltd.

2.2. Synthesis of Ph(TMP)IOAc

Ph(TMP)IOAc was prepared according to our reported procedure [12]. Thus, to a solution of 1,3,5-trimethoxybenzene (TMP, 168 mg, 1.0 mmol) in 2,2,2-trifluoroethanol (TFE, 2 mL) was added
Table 1
X-ray experimental details for Ph(TMP)IOAc.

Crystal data	Crystal data
Chemical formula	C\textsubscript{17}H\textsubscript{19}IO\textsubscript{5}
\(M_w\)	430.22
Crystal system, space group	Orthorhombic, \(Pbc\\alpha\)
Temperature (K)	120
\(a, b, c\) (Å)	15.7731 (1), 12.6253 (1), 17.1040 (2)
\(V\) (Å3)	3406.09 (5)
\(Z\)	8
Radiation type	Cu \(K\alpha\)
\(\mu\) (mm-1)	14.98
Crystal size (mm)	0.46 \(\times\) 0.26 \(\times\) 0.13

Data collection

Diffractometer

X-ray crystallographic analysis was performed on a HPC diffractometer (Rigaku XtaLAB P200).

Absorption correction

Multi-scan CrysAlis PRO 1.171.39.2a (Rigaku Oxford Diffraction, 2015)

Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

\(T_{\text{min}}\) - \(T_{\text{max}}\)

No. of measured, independent and observed \(|I > 2\sigma(I)|\) reflections

\(R_{\text{int}}\)

0.106

\(\sin \theta/\lambda_{\text{max}}\) (Å-1)

0.625

Refinement

\(R\) \(|F^2 > 2\sigma(F^2)\), \(wR\) \((F^2), S\)

0.056, 0.156, 1.09

No. of reflections

3456

No. of parameters

208

H-atom treatment

H-atom parameters constrained

\(\Delta p_{\text{max}}, \Delta p_{\text{min}}\) (e Å3)

2.50, −3.39

Computer programs: CrysAlis PRO 1.171.39.3a (Rigaku OD, 2015), SHELXT-2014/5 (Sheldrick, 2014), SHELXL2014/7. (Sheldrick, 2014).

Table 2
Selected bond lengths (Å) of Ph(TMP)IOAc.

Bond	Length (Å)	Bond	Length (Å)
I1A–C1B	2.085 (5)	C9B–O3B	1.425 (6)
I1A–C1C	2.130 (5)	C9B–H9B1	0.9600
C1B–C2B	1.398 (7)	C9B–H9B2	0.9600
C1B–C6B	1.408 (6)	C9B–H9B3	0.9600
C2B–O1B	1.363 (5)	C1C–C2C	1.372 (7)
C2B–C3B	1.392 (7)	C1C–C6C	1.372 (7)
C3B–C4B	1.392 (7)	C2C–C3C	1.396 (7)
C3B–H3B	0.9300	C2C–H2C	0.9300
C4B–O2B	1.353 (6)	C3C–C4C	1.381 (9)
C4B–C5B	1.395 (7)	C3C–H3C	0.9300
C5B–C6B	1.384 (6)	C4C–C5C	1.394 (9)
C5B–H5B	0.9300	C4C–H4C	0.9300
C6B–O3B	1.359 (5)	C5C–C6C	1.382 (8)
C7B–O1B	1.431 (6)	C5C–H5C	0.9300
C7B–H7B1	0.9600	C6C–H6C	0.9300
C7B–H7B2	0.9600	C1D–O2D	1.237 (6)
C7B–H7B3	0.9600	C1D–O1D	1.267 (6)
C8B–O2B	1.447 (7)	C1D–C2D	1.514 (7)
C8B–H8B1	0.9600	C2D–H2D1	0.9600
C8B–H8B2	0.9600	C2D–H2D2	0.9600
C8B–H8B3	0.9600	C2D–H2D3	0.9600
Selected torsion angles (°) of Ph(TMP)IOAc.

	Value		Value		Value
C6B—C2B—C1B—O1B	−179.3 (4)	I1A—C1B—C6B—C5B	178.0 (3)		
I1A—C1B—C2B—O1B	3.4 (5)	C3B—C2B—O1B—C7B	−0.8 (7)		
C6B—C2B—C3B—C6B	−0.3 (6)	C1B—C2B—O1B—C7B	178.1 (4)		
I1A—C1B—C2B—C3B	−177.6 (3)	C3B—C4B—O2B—C8B	−0.6 (7)		
O1B—C2B—C3B—C4B	179.3 (4)	C5B—C4B—O2B—C8B	179.1 (4)		
C1B—C2B—C3B—C4B	0.5 (7)	C5B—C6B—O3B—C9B	−1.7 (6)		
C2B—C3B—C4B—O2B	178.6 (4)	C1B—C6B—O3B—C9B	179.1 (4)		
C2B—C3B—C4B—C5B	−1.0 (7)	C6C—C1C—C2C—C3C	0.3 (8)		
O2B—C4B—C5B—C6B	−178.3 (4)	I1A—C1C—C2C—C3C	−177.8 (4)		
C3B—C4B—C5B—C6B	1.4 (6)	C1C—C2C—C3C—C4C	0.5 (9)		
C4B—C5B—C6B—C3B	179.7 (4)	C2C—C3C—C4C—C5C	0.1 (9)		
C4B—C5B—C6B—C1B	−1.2 (6)	C3C—C4C—C5C—C6C	−1.4 (10)		
C2B—C1B—C6B—O3B	179.9 (4)	C2C—C1C—C6C—C5C	−1.6 (8)		
I1A—C1B—C6B—O2B	−2.8 (5)	I1A—C1C—C6C—C5C	176.5 (5)		
C2B—C1B—C6B—C5B	0.7 (6)	C4C—C5C—C6C—C1C	2.2 (10)		

Table 4

Selected bond angles (°) of Ph(TMP)IOAc.

	Value		Value		Value
C1B—C1A—C1C	91.08 (16)	O3B—C9B—H9B3	109.5		
C2B—C1B—C6B	119.1 (4)	H9B1—C9B—H9B3	109.5		
C2B—C1B—I1A	120.2 (3)	H9B2—C9B—H9B3	109.5		
C6B—C1B—C1A	120.6 (3)	C2B—O1B—C7B	118.5 (4)		
O1B—C2B—C3B	123.1 (4)	C4B—O2B—C8B	117.4 (4)		
O1B—C2B—C1B	115.6 (4)	C6B—O3B—C9B	117.6 (4)		
C3B—C2B—C1B	121.3 (4)	C2C—C1C—C6C	121.9 (5)		
C4B—C3B—C2B	118.0 (4)	C2C—C1C—I1A	119.0 (4)		
C4B—C3B—H3B	121.0	C6C—C1C—I1A	119.1 (4)		
C2B—C3B—H3B	121.0	C1C—C2C—C3C	119.0 (5)		
O2B—C4B—C3B	123.7 (5)	C1C—C2C—H2C	120.5		
O2B—C4B—C5B	114.1 (4)	C3C—C2C—H2C	120.5		
C3B—C4B—C5B	122.2 (4)	C4C—C3C—C2C	120.3 (5)		
C6B—C5B—C4B	118.9 (4)	C4C—C3C—H3C	119.8		
C6B—C5B—H5B	120.6	C2C—C3C—H3C	119.8		
C4B—C5B—H5B	120.6	C3C—C4C—C5C	119.1 (5)		
O3B—C6B—C5B	124.1 (4)	C3C—C4C—H4C	120.4		
O3B—C6B—C1B	115.3 (4)	C5C—C4C—H4C	120.4		
C5B—C6B—C1B	120.5 (4)	C6C—C5C—C4C	120.8 (5)		
O1B—C7B—H7B1	109.5	C6C—C5C—H5C	119.6		
O1B—C7B—H7B2	109.5	C4C—C5C—H5C	119.6		
H7B1—C7B—H7B2	109.5	C1C—C6C—C5C	118.8 (5)		
O1B—C7B—H7B3	109.5	C1C—C6C—H6C	120.6		
H7B1—C7B—H7B3	109.5	C5C—C6C—H6C	120.6		
H7B2—C7B—H7B3	109.5	O2D—C1D—O1D	125.4 (4)		
O2B—C8B—H8B1	109.5	O2D—C1D—C2D	118.9 (4)		
O2B—C8B—H8B2	109.5	O1D—C1D—C2D	115.6 (4)		
H8B1—C8B—H8B2	109.5	C1D—C2D—H2D1	109.5		
O2B—C8B—H8B3	109.5	C1D—C2D—H2D2	109.5		
H8B1—C8B—H8B3	109.5	H2D1—C2D—H2D2	109.5		
H8B2—C8B—H8B3	109.5	C1D—C2D—H2D3	109.5		
O3B—C9B—H9B1	109.5	H2D1—C2D—H2D3	109.5		
O3B—C9B—H9B2	109.5	H2D2—C2D—H2D3	109.5		
H9B1—C9B—H9B2	109.5				
to afford Ph(TMP)IOAc (350 mg, 0.81 mmol). Yield 81%. White powder. Melting point 121.8°C.

2.3. General information for NMR analyses

The ^1H and ^{13}C NMR spectra were recorded on an ECS 400 NMR spectrometer (JEOL Ltd., Tokyo, Japan) at 400 MHz and 100 MHz, respectively, using CDCl$_3$ as the solvent. The chemical shifts (δ) are expressed in ppm relative to tetramethylsilane (TMS) as an internal standard. Coupling constants (J) are expressed in Hz. Signal multiplicities are represented as singlet (s), doublet (d), and triplet (t). Assignments of the proton and carbon positions in the compound were performed by PFG-HMQC and PFG-HMBC analyses.

Scheme 1. Direct synthesis of Ph(TMP)IOAc by the reaction of PIDA with TMP.

Fig. 1. ^1H NMR spectrum of Ph(TMP)IOAc.
Fig. 2. 13C NMR spectrum of Ph(TMP)IOAc.

Fig. 3. HMQC spectrum of Ph(TMP)IOAc.
2.4. NMR

JEOL ECS 400 NMR spectrometer, solvent CDCl₃, TMS standard. Concentration: 13 mg in 0.75 mL (Figs. 1–4). ¹H NMR (400 MHz, CDCl₃): δ 1.95 (3H, s, CH₃CO), 3.83 (9H, s, OMe), 6.12 (2H, s, m-TMP), 7.29 (2H, t, J = 7.8 Hz, m-Ph), 7.41 (1H, t, J = 7.8 Hz, p-Ph), 7.92 (2H, d, J = 8.2 Hz, o-Ph). ¹³C NMR (100 MHz, CDCl₃): δ 24.6 (CH₃COO), 55.7 (p-OMe), 56.5 (o-OMe), 90.9 (m-TMP), 91.0 (ipso-TMP), 119.4 (ipso-Ph), 130.3 (p-Ph), 130.8 (m-Ph), 133.8 (o-Ph), 160.6 (o-TMP), 165.7 (p-TMP), 178.8 (CH₃COO).

2.5. Crystallization

The crystals were obtained at room temperature from chloroform/hexane mixture under a shading condition. Ph(TMP)IOAc was dissolved in chloroform and the insoluble material was removed by
filtration. Hexane was added to the filtrate in sample bottle to reach the chloroform/hexane ratio 2/5. After standing for 1 day, the several crystals suitable for the X-ray structural analysis were obtained.

2.6. X-ray

The single-crystal X-ray diffraction experiment was performed on the HPC diffractometer (Rigaku XtaLAB P200)). The two types of geometries for Ph(TMP)IOAc in a crystal state are shown in Fig. 5. In Fig. 5(A), it was found that the distance between the iodine atom in the cation and an oxygen atom in the anion is 2.77 Å. On the other hand, the distances between the iodine atom in the cation and oxygen atoms in the anion were 2.59 Å and 3.37 Å, respectively (Fig. 5(B)). In both geometries, the distances between the iodine atom in the cation and two oxygen atoms in the methoxy group were 3.10 Å (Fig. 5(A) and (B)).

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research (C) from JSPS. T.D. acknowledges the research fund of the Asahi Glass Foundation and support from the Ritsumeikan Global Innovation Research Organization (R-GIRO) project. D.K. thanks The Pharmaceutical Society of Japan (PSJ) for support of the Nagai Memorial Research Encouragement.

Transparency document

Transparency document associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2019.104063.

References

[1] D. Koseki, E. Aoto, T. Shoji, K. Watanabe, Y. In, Y. Kita, T. Dohi, Efficient N-arylation of azole compounds utilizing selective aryl-transfer TMP-iodonium(III) reagents, Tetrahedron Lett. 60 (2019).
[2] N.R. Deprez, M.S. Sanford, Reactions of hypervalent iodine reagents with palladium: Mechanisms and applications in organic synthesis, Inorg. Chem. 46 (2007) 1924–1935.
[3] D.R. Stuart, Aryl transfer selectivity in metal-free reactions of unsymmetrical diaryliodonium salts, Chem. Eur J. 23 (2017) 15852–15863.
[4] N. Yamaoka, K. Sumida, I. Itani, H. Kubo, Y. Ohnishi, S. Sekiguchi, T. Dohi, Y. Kita, Single-electron-transfer (SET)-induced oxidative biaryl coupling by polyalkoxybenzene-derived diaryliodonium(III) salts, Chem. Eur J. 19 (2013) 15004–15011.
[5] A. Pradal, P.F. dit Bel, P.Y. Toullec, V. Michelet, Gold-catalyzed C-H oxidative polyacloyoxylation reaction of hindered arenes, Synthesis 44 (2012) 2463–2468.
[6] J. Malmgren, S. Santoro, N. Jalalian, F. Himo, B. Olofsson, Arylation with unsymmetrical diaryliodonium salts: a chemo-selectivity study, Chem. Eur J. 19 (2013) 10334–10342.
[7] S. Altomonte, S. Telu, S. Lu, V.W. Pike, Pd(0)-Mediated 11C-carbonylation of aryl(mesityl)iodonium salts as a route to 11C arylcarboxylic acids and derivatives, J. Org. Chem. 82 (2017) 11925–11932.

[8] V. Carreras, A.H. Sandtorv, D.R. Stuart, Synthesis of aryl(2,4,6-trimethoxyphenyl)iodonium trifluoroacetate salts, J. Org. Chem. 82 (2017) 1279–1284.

[9] E.A. Merritt, B. Olofsson, Diaryliodonium salts: a journey from obscurity to fame, Angew. Chem. Int. Ed. 48 (2009) 9052–9070.

[10] A. Yoshimura, A. Saito, V.V. Zhdankin, Iodonium salts as benzyne precursors, Chem. Eur J. 24 (2018) 15156–15166.

[11] P. Villo, B. Olofsson, “Arylations Promoted by Hypervalent Iodine Reagents” in Patai’s Chemistry of Functional Groups (Hypervalent Halogen Compounds), John Wiley & Sons, Chichester, 2018.

[12] T. Dohi, N. Yamaoka, Y. Kita, Fluoroalcohols: versatile solvents in hypervalent iodine chemistry and syntheses of diaryliodonium(III) salts, Tetrahedron 66 (2010) 5775–5785.