Entomogen galls in a Seasonal Semideciduous Forest area in Sorocaba, Southeast of São Paulo State, Brazil

Leticia Salvioni Ansaloni1, Julia Rodrigues Salmazo1 & Maria Virginia Urso Guimarães1*

1Universidade Federal de São Carlos, Sorocaba, SP, Brasil
*Corresponding author: Maria Virginia Urso Guimarães, e-mail: mvirginiaurso@gmail.com

ANSALONI, L. S., SALMAZO, J. R., URSO-GUIMARÃES, M. V. Entomogen galls in a Seasonal Semideciduous Forest area in Sorocaba, Southeast of São Paulo State, Brazil. Biota Neotropica. 18(4): e20180523. http://dx.doi.org/10.1590/1676-0611-BN-2018-0523

Abstract: In this paper we studied the occurrence of insect galls and gall makers in a Seasonal Semideciduous Forest area in Sorocaba Municipality, Southeast of São Paulo State, Brazil. One hundred and thirteen morphotypes of galls on 54 species of host plants of 24 different families were found. The families of host plants richer in gall morphotypes were Fabaceae (N = 26) and Malpighiaceae (N = 19); the super host plants species were Copaifera langsdorffii Desf. (Fabaceae) (N = 16), Stigmaphyllon lalandianum (Aubl.) Marchand (Malpighiaceae) (N = 11), Protium heptaphyllum A. Juss. (Burseraceae) (N = 10), Serjania lethalis A.St.-Hil. (Sapindaceae) (N = 5). Most of the galls were found empty, but insects of the family Cecidomyiidae (Diptera) were responsible for the induction of 92% (N = 11) of the galls and Hymenoptera (N = 1) for 8%. We registered insects of the order Hymenoptera (N = 11) as parasitoids and as successors Hemiptera (N = 8), Acari (N = 7), Psocoptera (N = 4), Hymenoptera (Formicidae, N = 2), Collembola and Thysanoptera (N = 1 each). Two species of Cecidomyiidae with inquiline habit were also obtained, Neolasioptera sp. and Trotteria sp. Five plant species were registered as hosts for cecidomyiids for the first time: Aloysia virgata (Ruiz & Pav.) Juss., Calliandra foliolosa Benth., Myrcia splendens (Sw.) DC., Serjania lethalis A.St.-Hil., and Tapirira guianiensis Aubl. This is the first study of gall characterization, gall makers and associated fauna of the Southeast of the State of São Paulo.

Keywords: Atlantic Forest Biome, biodiversity, gall makers, Neotropical region, plant-insect interaction.

Galhas entomógenas em uma área de Mata Estacional Semidecidual em Sorocaba, Sudeste do Estado de São Paulo, Brasil

Resumo: Neste trabalho, estudamos a ocorrência de galhas entomógenas e insetos galhadores em uma área de Mata Estacional Semidecidual em Sorocaba, Sudeste do Estado de São Paulo, Brasil. Cento e treze morfotipos de galhas em 54 espécies de plantas hospedeiras de 24 famílias distintas foram encontradas. As famílias de plantas hospedeiras mais ricas em morfotipos de galhas foram Fabaceae (N=26) e Malpighiaceae (N=19) e as espécies de plantas super hospedeiras foram Copaifera langsdorffii Desf. (Fabaceae) (N = 16), Stigmaphyllon lalandianum (Aubl.) Marchand (Malpighiaceae) (N = 11), Protium heptaphyllum A. Juss. (Burseraceae) (N = 10), Serjania lethalis A.St.-Hil. (Sapindaceae) (N = 5). A maioria das galhas foi encontrada vazia, mas insetos da família Cecidomyiidae (Diptera) foram responsáveis pela indução de 92% (N=11) das galhas e Hymenoptera (N = 1) por 8%. Nós registramos insetos da Ordem Hymenoptera (N = 11) como parasitoides e Hemiptera (N = 8), Acari (N = 7), Psocoptera (N = 4), Hymenoptera (Formicidae, N = 2), Collembola e Thysanoptera (N = 1 cada) como sucessores. Duas espécies de Cecidomyiidae com hábito inquilino também foram obtidas, Neolasioptera sp. e Trotteria sp. Cinco espécies de plantas foram registadas como hospedeiras para cecidomiídeos pela primeira vez: Aloysia virgata (Ruiz & Pav.) Juss., Calliandra foliolosa Benth., Myrcia splendens (Sw.) DC., Serjania lethalis A.St.-Hil. e Tapirira guianiensis Aubl. Este é o primeiro estudo de caracterização de galhas entomógenas, galhadores e fauna do Sudeste do Estado de São Paulo.

Palavras-chave: Bioma Mata Atlântica, biodiversidade, galhador, região Neotropical, interação ineto-planta.
Introduction

Studies on the occurrence and characterization of galls in Brazil have increased significantly in the last 30 years, especially in Cerrado Biome (Fernandes et al. 1988, Fernandes et al. 1997, Urso-Guimarães et al. 2003, Maia & Fernandes 2004, Scareli-Santos et al. 2005, Urso-Guimarães & Scareli-Santos 2006, Maia et al. 2008, Saito & Urso-Guimarães 2012, Carneiro et al. 2009, Coelho et al. 2009, Malves & Frieiro-Costa 2012, Maia 2012, Araújo et al. 2013, Bergamini et al. 2017), Restinga and Ombrophilous Forest from Atlantic Forest Biome (Maia et al. 2008, Bregonci et al. 2010, Maia 2013a, Maia 2013b, Rodrigues et al. 2014, Maia et al. 2014, Maia & Carvalho-Fernandes 2016).

However, environments such as Pantanal (Julião et al. 2002, Urso-Guimarães et al. 2012), Caatinga (Carvalho-Fernandes et al. 2012, Santos et al. 2011), Amazonic Forest (Julião et al. 2015) and Seasonal Semideciduous Forest of Atlantic Forest Biome (Santos et al. 2010, Carvalho et al. 2015) are considered little sampled and their biodiversity is still poorly understood. Particularly, the Seasonal Semideciduous Forest is considered priority area for conservation in Atlantic Forest Biome due to two factors: the biological richness and the fast degradation in recent years to economic activities in the Southeast region of Brazil (Martins et al. 2003).

Considering that gall morphotypes are used as a surrogate for species of gall-inducing insects because of the host-specificity of insect and host plant species (Carneiro et al. 2009, Bergamini et al. 2017), we described in this study the gall morphotypes with the register of the association between gall maker and their host plant species in a Seasonal Semideciduous Forest area in Sorocaba Municipality, the first survey to the Southeast region of São Paulo State, Brazil.

Material and Methods

1. Study area

The Seasonal Semideciduous Forest fragment of the sampling area is located on the campus of the Universidade Federal de São Carlos (UFSCar), located in the municipality of Sorocaba (47º 31 ‘28 “W and 23º 34’ 53” S), Southeast region of São Paulo State, 580 m altitude and climate Cwa-Köppen classification. This area is located in the transition between the Planalto Atlântico and the São Paulo State Peripheral Depression. Among forest remnants, Cerrado elements are found in the flatter areas and Seasonal Semideciduous Forest in the areas closest to water bodies or slopes (Corrêa et al. 2014). The Sorocaba campus of UFSCar is 700,000 m² in size and has a vegetative mosaic composed by two typical phytophysiognomies of the region, the Seasonal Semideciduous Forest and the Cerrado, remaining of continuous forest before its exploration for economic activities (Fig. 1).

2. Sampling

The samplings of this study were carried out between the years 2014 to 2016, with seasonal frequency (trimonthly), in twelve samplings of four hour each, totaling 48 hours of sampling effort. Branches of the host plants with galls were collected, pictured and placed for rearing in labeled plastic pots to obtain the adults of the associated fauna. All individuals obtained were preserved in 80% alcohol.

3. Treatment of the samples

The gall midges were mounted later on microscope slides following Gagné (1994) methodology. The Cecidomyiids were identified using keys of Gagné (1994). Other arthropods and host plant species were sent to specialists for identification. The gall morphotypes were characterized according Isais et al. (2013). The specimens of the associated fauna are deposited in the Laboratório de Sistemática de Diptera/UFSCar and the exsiccates of host plants with reproductive material will be deposited in Herbário UFSCar Sorocaba (SORO).

Results and Discussion

A total of 113 gall morphotypes were found in 54 species of 24 host family families in the remnants of Seasonal Semideciduous Forest in the Southeast of São Paulo State. The average of gall morphotypes per plant species is 2.1, a high average when compared with other areas with the same phytophysiognomy (Table 1) and comparable to dry environments (see Urso-Guimarães et al. 2017 for detailed discussion). The morphotypes are characterized in Table 2 and are presented in Figures 2 to 6.

The morphotypes were obtained most frequently in leaves (70%) followed by stems (30%), flower bud (2%), tendril and fruit (1%). Three morphotypes occurred in more than one vegetal organ; the fusiform morphotypes on leaf and stem of Protium heptaphyllum, the globoid morphotype on leaf vein and stem of Copaifera langsdorffii, and the amorphous morphotype on flower and fruit of Eugenia pluriflora. Our results are slightly lower than other surveys conducted in different environments (Maia, 2001, Urso-Guimarães et al. 2003, Fernandes & Negreiros, 2006 Maia et al. 2008, Saito & Urso-Guimarães 2012, Maia & Carvalho-Fernandes 2016, Bergamini et al. 2017, Urso-Guimarães et al. 2017) where the percentage of leaf galls ranges from 75 to 90%. The shape of galls more frequent was globoid (42%) followed by lenticular (26%), fusiform (18%), conical (7%), cylindrical (3%), amorphous, concave and marginal roll (2% each), and linear (1%). The color more frequently sampled in galls were green (42%) and brown (27%), followed by cream (10%), red and yellow (3% each) with other colors appearing in less than 1%. Frequently there are changes of color along the development of gall and as observed in the most galls, it passes from green to brown. In Campomanesia sp., Eugenia pluriflora, Copaifera langsdorffii, Moquiniastrum polymorphum, and Serjania lethalis it was observed changing in three different colors during maturation process. Lithraea molleoides presented the largest color variation found on galls in this study: four different colors – pink, red, green, and brown. In relation to the pubescence and internal chambers, most galls were glabrous (94%) and unilocular (100%) (for detailed discussion about presence/absence of trichomes, see Saito & Urso-Guimarães, 2012). In the Table 2 are presented a detailed morphological description of the collected galls.

In a decreasing order of occurrence of galls morphotypes appear the Fabaceae (N = 26), followed by Malpighiaceae (N = 19), Myrtaceae (N = 11), Burseraceae (N = 10), Asteraceae (N = 7), Anacardiaceae and Sapindaceae (N = 5 each).

Information about richness of morphotypes of other families and species is given in Table 3. This study corroborates others in the Neotropical region that indicates the richest families as the...
richer in the number of gall morphotypes (Gagné 1994, Araújo 2011, Santana & Isaias 2014). It’s important to highlight the high number of morphotypes found in the same plant species (the super host plants sensu Veldtman & McGeoch 2003). The presence of super hosts increase the counting of morphotypes per family in the studied area, as related by Araújo (2011) to Goiânia (GO, Brazil) and Ribeiro et al. (submitted Papéis Avulsos de Zoologia) to Altinópolis (SP, Brazil). The presence of Copaifera langsdorffii with 16 morphotypes, Stigmaphyllon lalandianum with 11, Protium heptaphyllum with 10, and Serjania lethalis with five morphotypes in this study are examples of it. Protium heptaphyllum was referred before as super host in Maia & Fernandes (2004) and Copaifera langsdorffii in Oliveira et al. (2008), Fernandes et al. (1988) and Drummond et al. (2008), both from cerrado areas in Minas Gerais State.

Most of the galls were found empty. Although only 12% of gall makers were obtained (Table 4), insects of the family Cecidomyiidae (Diptera) were responsible for the induction of 92% of galls (N = 11) and the order Hymenoptera (N = 4), Psocoptera (N = 1) for 8%. The other insects associated with galls (30%, N = 34) were considered parasitoids, successors or inquilines. As parasitoids were registered insects of the order Hymenoptera (N = 11) and as successors, the orders Hemiptera (N = 8), Acari (N = 7, Iphiseiodes zuluagai Denmark & Muma, Iphiseiodes saopaulus Denmark & Muma), Psocoptera (N = 4), Hymenoptera (Formicidae, N = 2), Collembola and Thysanoptera (N = 1 each). Two species of Cecidomyiidae with inquiline habit were also obtained, Neolasioptera sp. and Trotteria sp.

This is the first survey of the association of gall, gall makers, host plants and associated fauna in Seasonal Semidecidual Forest to the Southeast of the State of São Paulo. In addition to the associations, five plant species were registered as hosts for cecidomyiids for the first time: Aloysia virgata, Calliandra foliolosa, Myrcia splendens, Serjania lethalis and Tapirira guianensis. In the Southeast of the State of São Paulo there are several areas preserved in Conservation Units (UC), but the majority is dedicated to the protection of Dense Ombrophylous Forest vegetation. Few fragments of Seasonal Semideciduous Forest are included in that Conservation Units. Studies like this are still essential for the registration of host plants that may be at risk of extinction as well as the entire trophic network dependent on them in Seasonal Semideciduous Forest environments, a priority area for conservation in Atlantic Forest Biome, due to the biological richness and the fast degradation in recent years to economic activities in the Southeast region of Brazil, as stated to Martins et al. (2003).
Table 2. Characterization of insect galls recorded in Sorocaba, Southeast of São Paulo State, Brazil by host plant. “Figure” refers to gall morphotype’s picture, and “-” refers to no pictured morphotypes.

Host plant family	Host plant species	Organ	Shape	Color	Pube-scence	Figure
Anacardiaceae	Lithraea molleoides (Vell.) Engl.	Leaf	Globoid	Pink/Red/Green/Brown	No	2A
	Lithraea molleoides	Stem	Globoid	Brown	No	2B
	Tapirira guianensis Aubl.	Stem	Globoid	Cream	No	2C
	Tapirira guianensis	Leaf	Lenticular	Green	No	2D
	Schinus terebinthifolia Raddi	Leaf	Marginal roll	Red	No	2E
Annonaceae	Annona dioica A.St.-Hil.	Leaf	Globoid	Cream	No	2F
Apocynaceae	Oxypetalum banksii R.Br. ex Schult.	Leaf	Lenticular	Green/Brown	No	2H
	Condylocarpon sp.	Stem	Globoid	Cream	No	2I
Asteraceae	Chromolaena laevigata (Lam.) R.M.King & H.Rob.	Leaf	Lenticular	Brown	No	2J
	Bidens segetum Mart. ex Colla	Leaf	Lenticular	Yellowish	No	2K
	Calea pinnatifida (R.Br.) Less.	Stem	Fusiform	Green	No	2L
	Mikania sp.	Leaf	Globoid	Green	No	2M
	Mikania sp.	Leaf	Lenticular	Green	No	2N
	Moquiniastrum polymorphum (Less.) G. Sancho	Leaf	Lenticular	Green/Yellowish/Brown	No	2O
Bignoniaceae	Bignoniaceae sp.	Leaf	Lenticular	White	No	2Q
Burseraceae	Protium heptaphyllum (Aubl.) Marchand	Leaf	Conical	Brown	Yes	2R
	Protium heptaphyllum	Leaf	Lenticular	Brown	No	2S
	Protium heptaphyllum	Leaf	Globoid	Brown	Yes	2T
	Protium heptaphyllum	Leaf	Globoid	Green/Brown	No	3A
	Protium heptaphyllum	Leaf	Globoid	Green	No	3B
	Protium heptaphyllum	Leaf vein	Fusiform	Brown	No	3C
	Protium heptaphyllum	Leaf vein	Cylindrical with apical projection	Brown	No	3D
	Protium heptaphyllum	Stem	Globoid	Brown	No	-
	Protium heptaphyllum	Stem	Fusiform	Brown	No	3E
	Protium heptaphyllum	Leaf/Stem	Fusiform	Green/Brown	No	3F
Cannabaceae	Celtis iguanaea (Jacq.) Sarg.	Leaf	Conical	Green	No	3G
	Celtis iguanaea	Stem	Fusiform	Brown	No	3H
	Celtis iguanaea	Leaf	Globoid	Green	No	3I
Caryocaraceae	Caryocar brasiliense Cambess.	Leaf	Globoid	Green	No	3J
Celastraceae	Hippocratea volubilis L.	Leaf	Lenticular	Brown	Yes	3K
Convolvulaceae	Ipomoea sp.	Stem	Globoid	Cream	No	3L
Fabaceae	Andira humilis Mart. ex Benth.	Leaf	Globoid	Green	No	3M
	Bauhinia sp.	Leaf	Fusiform	Green	No	-
	Bauhinia forficata Link	Stem	Fusiform	Brown	No	3N
	Bauhinia holophylla (Bong.) Steud.	Leaf	Globoid	Green	No	3O
	Bauhinia holophylla	Stem	Fusiform	Green	No	3P
	Bauhinia longifolia (Bong.) Steud.	Leaf	Globoid	Green	No	3Q
Continued Table 1.

Host plant family	Host plant species	Organ	Shape	Color	Pube-science	Figure
Bauhinia longifolia	Stem	Fusiform	Brown	No	3R	
Calliandra foliolosa Benth.	Stem	Globoid	Brown	No	3S	
Calliandra foliolosa	Stem	Fusiform	Brown	No	3T	
Copaifera langsdorfii Desf.	Leaf	Lenticular	Green/Yellowish/Brown	No	4A	
Copaifera langsdorfii	Leaf	Cylindrical	Pink/Green/Brown	No	4B	
Copaifera langsdorfii	Leaf	Conical	Brown	No	-	
Copaifera langsdorfii	Leaf	Globoid	White/Pink	No	-	
Copaifera langsdorfii	Leaf	Globoid	Black	No	4C	
Copaifera langsdorfii	Leaf	Globoid	Green	No	-	
Copaifera langsdorfii	Leaf	Globoid	Green/Brown	No	-	
Copaifera langsdorfii	Leaf	Globoid	Cream	Yes	-	
Copaifera langsdorfii	Leaf	Globoid	Green	No	4D	
Copaifera langsdorfii	Leaf vein/Stem	Globoid	Brown	No	-	
Copaifera langsdorfii	Stem	Fusiform	Cream	No	-	
Copaifera langsdorfii	Stem	Globoid	Green	No	-	
Copaifera langsdorfii	Stem	Globoid	Green	No	-	
Copaifera langsdorfii	Stem	Globoid	Brown	No	-	
Copaifera langsdorfii	Stem	Globoid	Cream	No	4E	
Copaifera langsdorfii	Stem	Globoid	Brown	No	4F	
Copaifera langsdorfii	Leaf	Globoid	Green	Yes	4G	
Inga edulis Mart.	Flower	Amorphous	Green	No	4H	
Lauraceae	Nectandra grandiflora Ness	Stem	Globoid	Cream	No	4I
	Persea sp.	Leaf	Globoid	Green	No	4J
	Persea wilddenovii Kosterm.	Leaf	Globoid	Green	No	4J
Malpighiaceae	Diplopterys pubipetala (A.Juss.) W.R.Anderson & C.C.Davis	Leaf	Conical	Green	No	4K
	Diplopterys pubipetala	Leaf	Lenticular	Brown	No	4L
	Diplopterys pubipetala	Stem	Fusiform	Brown	No	4M
	Byrsonima intermedia A.Juss.	Leaf	Lenticular	Brown	No	4N
	Byrsonima intermedia	Stem	Globoid	Cream	No	4O
	Janusia guaranitica (A.St.-Hil.) A.Juss.	Leaf	Globoid	Green	Yes	4P
	Janusia guaranitica	Stem	Fusiform	Brown	No	4Q
	Niedenzuella multiglandulosa (A.Juss.) W.R.Anderson	Leaf	Lenticular	Green	No	-
	Stigmaphyllon lalandianum A.Juss.	Leaf	Fusiform	Brown	No	4R
	Stigmaphyllon lalandianum	Leaf	Conical	Green	No	-
	Stigmaphyllon lalandianum	Leaf	Conical	Green	No	-
	Stigmaphyllon lalandianum	Leaf	Concave	Green	No	4S
	Stigmaphyllon lalandianum	Leaf	Lenticular	Green	No	4T
	Stigmaphyllon lalandianum	Leaf	Lenticular	Green	No	-
	Stigmaphyllon lalandianum	Leaf	Lenticular	Yellowish	No	-
	Stigmaphyllon lalandianum	Stem	Fusiform	Cream	No	-
	Stigmaphyllon lalandianum	Stem	Fusiform	Red	No	-
Continued Table 1.

Host plant family	Host plant species	Organ	Shape	Color	Pube-scence	Figure
Stigmaphyllon lalandianum	Stem	Fusiform	Brown	No	5A	
Stigmaphyllon lalandianum	Stem	Fusiform	Green	No	5B	
Melastomataceae	**Miconia sp.**	Leaf vein	Conical	Brown	No	5C
Melastomataceae	**Miconia sp.**	Leaf	Globoid	Green	No	5D
Melastomataceae	**Miconia sp.**	Leaf	Lenticular	Cream	No	5E
Melastomataceae	**Miconia sp.**	Stem	Globoid	Brown	No	5F
Meliaceae	**Trichilia sp.**	Leaf	Lenticular	Green/Brown	No	5G
Myrtaceae	**Myrtaceae sp.1**	Leaf	Lenticular	Brown	No	-
Myrtaceae	**Myrtaceae sp.2**	Stem	Globoid	Brown	No	5H
Myrtaceae	**Campomanesia sp.**	Leaf	Lenticular	Yellowish/Red/Brown	No	5I
Myrtaceae	**Eugenia bimarginata DC.**	Leaf	Lenticular	Brown/Red	No	5J
Myrtaceae	**Eugenia bimarginata**	Leaf	Globoid	Green	No	5K
Myrtaceae	**Eugenia pluriflora DC.**	Flower/Fruit	Amorphous	Green	No	5L
Myrtaceae	**Eugenia pluriflora**	Leaf	Cylindrical	Cream/Red/Brown	No	5M
Myrtaceae	**Myrcia sp.**	Leaf	Globoid	Red	No	5N
Myrtaceae	**Myrcia sp.**	Leaf	Marginal	Green	No	-
Myrtaceae	**Myrcia splendens (Sw.) DC.**	Leaf vein	Globoid	Green	No	5O
Myrtaceae	**Myrcia splendens**	Leaf	Conical	Green	No	5P
Passifloraceae	**Passiflora pohlii Mast.**	Leaf	Lenticular	Green	No	5Q
Passifloraceae	**Passiflora crassifolia Killip**	Leaf	Lenticular	Green	No	-
Peraceae	**Pera glabrata (Schott) Poepp. ex Baill.**	Leaf	Lenticular	Green	No	5R
Piperaceae	**Piper sp.**	Leaf	Lenticular	Green	No	5S
Primulaceae	**Myrsine umbellata Mart.**	Leaf	Globoid	Brown	No	5T
Primulaceae	**Myrsine umbellata**	Leaf	Lenticular	Green	No	6A
Primulaceae	**Myrsine coriacea (Sw.) R.Br. ex Roem. & Schult.**	Stem	Globoid	Brown	No	6B
Rutaceae	**Zanthoxylum riedelianum Engl.**	Leaf	Lenticular	Yellowish	No	6C
Sapindaceae	**Serjania lethalis A.St.-Hil.**	Tendril	Fusiform	Green/Brown	No	6D
Sapindaceae	**Serjania lethalis**	Leaf	Concave	Green	Yes	6E
Sapindaceae	**Serjania lethalis**	Leaf	Linear	Green	No	6F
Sapindaceae	**Serjania lethalis**	Leaf	Globoid	Green	No	6G
Sapindaceae	**Serjania lethalis**	Leaf	Lenticular	Green/Brown/Black	No	6H
Smilacaceae	**Smilax quinquenervia Vell.**	Leaf	Globoid	Green	No	6I
Smilacaceae	**Smilax cf. fluminensis Steud.**	Leaf	Lenticular	Green	No	6J
Verbenaceae	**Aloysia virgata (Ruiz & Pav.) Juss.**	Leaf	Globoid	Green	No	6K
Figure 2. Gall morphotypes of Sorocaba, Southeast of São Paulo State, Brazil by host plant. Anacardiaceae: A-B. Lithraea molleoides, C-D. Tapirira guianensis, E. Schinus terebinthifolius. Annonaceae: F. Annona dioica, G. Duguetia furfuracea. Apocynaceae: H. Oxypetalum banksii, I. Condlyocarp sp. Asteraceae: J. Chromolaena laevigata, K. Bidens segetum, L. Calea pinnatifida, M-N. Mikania sp., O-P. Moquiniastrum polymorphum. Bignoniaceae: Q. Bignoniaceae sp. Burseraceae: R-T. Protium heptaphyllum. (Pictures: Ansaloni, L. S. and Salmazo, J. R.).
Figure 3. Gall morphotypes of Sorocaba, Southeast of São Paulo State, Brazil by host plant. Burseraceae: A-F. *Protium heptaphyllum*. Cannabaceae: G-I. *Celtis iguanaeana*. Caryocaraceae: J. *Caryocar brasiliense*. Celastraceae: K. *Hippocratea volubilis*, L. *Ipomoea* sp. Fabaceae: M. *Andira humilis*, N. *Bauhinia forficata*, O-P. *Bauhinia holophylla*, Q-R. *Bauhinia longifolia*, S-T. *Calliandra foliosa*. (Pictures: Ansaloni, L. S. and Salmazo, J. R.).
Figure 4. Gall morphotypes of Sorocaba, Southeast of São Paulo State, Brazil by host plant. Fabaceae: A-F. Copaifera langsdorffii. G. Inga edulis. Lauraceae: H. Nectandra grandiflora, I. Persea sp., J. Persea willdenovii. Malpighiaceae: K-M. Diplopterys pubipetala, N-O. Byrsonima intermedia, P-Q. Janusia guaranitica, R-T. Stigmaphyllon lalandianum. (Pictures: Ansaloni, L. S. and Salmazo, J. R.).
Figure 5. Gall morphotypes of Sorocaba, Southeast of São Paulo State, Brazil by host plant. Malpighiaceae: A-B. Stigmaphyllon lalandianum. Melastomataceae: C-F. Miconia sp. Meliaceae: G. Trichilia sp. Myrtaceae: H. Myrtaceae sp. 2, I. Campomanesia sp., J-K. Eugenia bimarginata, L-M. Eugenia pluriflora, N. Myrcia sp., O-P. Myrcia splendens. Passifloraceae: Q. Passiflora pohlii. Peraceae: R. Pera glabrata. Piperaceae; S. Piper sp. Primulaceae: T. Myrsine umbellata (Pictures: Ansaloni, L. S. and Salmazo, J. R.).
Figure 6. Gall morphotypes of Sorocaba, Southeast of São Paulo State, Brazil by host plant. Primulaceae: A. Myrsine umbellata, B. Myrsine coriacea, Rutaceae: C. Zanthxylum riedelianum, Sapindaceae: D-H. Serjania lethalis. Smilacaceae: I. Smilax quinquenervia, J. Smilax cf. fluminensis. Verbenaceae: K. Aloysia virgata. (Pictures: Ansaloni, L. S. and Salmazo, J. R.).
Table 3. Richness of gall morphotypes in plant host family and species in Sorocaba, Southeast of São Paulo State, Brazil.

Host Plant Families (N = 24)	Morphotypes (N = 113)	Number of species (N = 54)
Fabaceae	26	8
Malpighiaceae	19	6
Myrtaceae	11	7
Burseraceae	10	1
Asteraceae	7	5
Anacardiaceae	5	3
Sapindaceae	5	1
Melastomataceae	4	1
Cannabaceae	3	1
Lauraceae	3	3
Primulaceae	3	1
Annonaceae	2	2
Apocynaceae	2	2
Passifloraceae	2	2
Smilacaceae	2	2
Bignoniaceae	1	1
Caryocaraceae	1	1
Celastraceae	1	1
Convolvulaceae	1	1
Meliaceae	1	1
Peraceae	1	1
Piperaceae	1	1
Rutaceae	1	1
Verbenaceae	1	1

Table 4. Gall makers and associated fauna found in gall morphotypes in host plants from Sorocaba, Southeast of São Paulo State, Brazil.

Host plant family	Host plant species	Gall maker	Associated fauna	Figure	
Anacardiaceae	Tapirira guianensis	Cecidomyiidae	-	2D	
Annonaceae	Annona dioica	Contarinia or Prodiplosis (Cecidomyiidae)	Hemiptera	2F	
Annonaceae	Duguetia furcaracea	Hymenoptera	-	2G	
Asteraceae	Calea pinnatifida	-	Hymenoptera	2L	
Asteraceae	Mikania sp.	-	Hymenoptera	2M	
Asteraceae	Moquiniastrum polymorphum	-	Hymenoptera/Acari	2O	
Bignoniaceae	Bignoniaceae sp.	Cecidomyiinae (larva)	Acari	2Q	
Burseraceae	Protium heptaphyllum	-	Pscooptera	2R	
Burseraceae	Protium heptaphyllum	-	Hemiptera	2T	
Fabaceae	Bauhinia longifolia	Cecidomyiidae (larva)	Pscoptera	3R	
Fabaceae	Callindra foliolosa	Contarinia (Cecidomyiidae)	Hymenoptera	3T	
Fabaceae	Copaifera langsdorffii	-	Pscoptera/Hemiptera/Hymenoptera	4D	
Lauraceae	Persea willdenovii	-	Hemiptera	4J	
Malpighiaceae	Byrsonima intermedia	Asphondylia (Cecidomyiidae)	Hemiptera/Hymenoptera	4N	
Malpighiaceae	Stigmaphyllon lalandianum	Contarinia (Cecidomyiidae)	Hymenoptera/Collombola/Neolasioptera (Cecidomyiidae)	4S	
Melastomataceae	Miconia sp.	Bruggmanniella (Cecidomyiidae)	Thyasnoptera/Hemiptera/Hymenoptera	5C	
Myrtaceae	Myrtaceae sp.1	-	Pscoptera	-	
Myrtaceae	Eugenia pluriflora	Cecidomyiinae	Hymenoptera/Acari	5L	
Myrtaceae	Myrsia splendens	Dasineura sp. (Cecidomyiidae)	Hymenoptera	5O	
Primulaceae	Myrsine coriacea	-	Acari	6B	
Sapindaceae	Serjania lethalis	-	Trotteria (Cecidomyiidae)	Hymenoptera/Acari	6D
Smilacaceae	Smilax quinquenervia	-	Hymenoptera/Acari	6I	
Verbenaceae	Aloysia virgata	Cecidomyiidae	Hemiptera	6K	
Acknowledgments

The authors acknowledge Dr. Ingrid Koch (Unicamp), MSc. Ana Carolina Devides Castello (Unesp/Botucatu) and MSc. Ana Laura Scudeler (Unesp/Botucatu) for the identification of botanical species, Dr. Gilberto José de Moraes (Esalq/USP) for the identification of Acari species, and CNPq by scientific initiation grant of Leticia Salvioni Ansaloni (PIBIC/CNPq Proc. #101881/2015-0) and Julia Rodrigues Salmazo (PIBIC/CNPq Proc. #101881/2015-0).

Author Contributions

Leticia Salvioni Ansaloni - Contribution in the: concept of the study; data collection; data analysis and interpretation; manuscript preparation, contribution to critical revision, adding design of the study; data collection; data analysis and interpretation; contribution to critical revision.

Julia Rodrigues Salmazo - Contribution in the: data collection; data analysis and interpretation; contribution to critical revision.

Maria Virginia Urso Guimarães - Contribution in the: concept and design of the study; data collection; data analysis and interpretation; manuscript preparation, contribution to critical revision, adding intellectual content.

Conflicts of interest

The authors declare that they have no conflict of interest related to the publication of this manuscript.

References

ARAÚJO, W.S. 2011. Can host plant richness be used as a surrogate for galling insect diversity? Tropical Conservation Science 4(4):420-427.

ARAÚJO, W.S., SCARELI-SANTOS, C., GUILHERME, F.A.G. & CUEVAS-REYES, P. 2013. Comparing galling insect richness among Neotropical savannas: effects of plant richness, vegetation structure and super-host presence. Biodiversity and Conservation 22(3):1083–1094.

BERGAMINI, B.A.R., BERGAMINI, L.L., SANTOS, B.B. & ARAÚJO, W.S. 2017. Occurrence and characterization of insect galls in the Floresta Nacional de Silvânia, Brazil. Papéis Avulsos de Zoologia 57(32):413–431.

BREGONCI, J.M., POLYCARPO, P.V., MAIA, V.C. 2010. Insect galls of the Parque Estadual Paulo César Vinha (Guarapari, ES, Brazil). Biota Neotropica 10(1):265–274.

CARNEIRO, M.A.A., BRANCO, C.S.A., BRAGA, C.E.D., ALMADA, E.D., COSTA, M.B.M., MAIA, V.C. & FERNANDES, G.W. 2009. Are gall midge species (Diptera, Cecidomyiidae) host-plant specialists? Revista Brasileira de Entomologia 53:365–378.

CARVALHO, L.L.G., SANTOS, R.N.S. & BARBOSA, J.S. 2015. Ocorrência de galhas entomógenas em plantas do Parque Florestal dos Pioneiros, em Maringá, Paraná, Brasil. Revista Uniní 23(1):21–23.

CARVALHO-FERNANDES, S.P., ALMEIDA-CORTEZ, J.S. & FERREIRA, A.L.N. 2012. Riqueza de galhas entomógenas em áreas antropizadas e preservadas de Caatinga. Revista Árvore, 36:269–277.

COELHO, M.S., ALMADA, E.D., FERNANDES, G.W., CARNEIRO, M.A.A., SANTOS, R.M. & SANCHEZ-AZOFEIFA, A. 2009. Gall inducing arthropods from a seasonally dry tropical Forest in Serra do Cipó, Brazil. Revista Brasileira de Entomologia 53(3):404–414.

CORRÊA, L.S., CARDOSO-LEITE, E., CASTELLO, A.C.D., COELHO, S., KORTZ, A.R., VILLELA, F.N.J., KOCH, I. 2014. Estrutura, composição florística e caracterização sucessional em remanescente de Floresta Estacional Semidecidual no Sudeste do Brasil. Revista Árvore 38(5):799–809.

DRUMMOND, M.M., MOREIRA, A.S.F., SOARES, G.L.G. & ISAIAS, R.M.S. 2008. Potencialidades morfogênicas de Copaifera langsdorffii Desf. (Fabaceae): super-hospedeira de herbívoros galhadores. Revista de Biologia Neotropical 5(1):31–39

FERNANDES, G.W. & NEGREIROS, D. 2006. A comunidade de insetos galhadores da RPPN Fazenda Bulcão, Aimorés, Minas Gerais, Brasil. Lundiana 7(2):111–120

FERNANDES, G.W., TAMEIÃO-NETO, E., MARTINS, R.P. 1988. Ocorrência e caracterização de galhas entomógenas na vegetação do campus Pampulha da Universidade Federal de Minas Gerais. Revista Brasileira de Zoologia 5:11–29.

FERNANDES, G.W., ARAÚJO, R.C., ARAÚJO, S.C., LOMBARDI, J.A., PAULA, A.S., LOYOLA-JR, R. & CORNELISSLSEN, T.G. 1997. Insect galls from savanna and rocky fields of the Jequitinhonha valley, Minas Gerais, Brazil. Naturalia 22:221–224.

GAGNÉ, R.J. 1994. The Gall Midges of the Neotropical Region. Cornell University Press, Ithaca, New York, p 352.

ISAIAS, R.M.S., CARNEIRO, R.G.S., OLIVEIRA, D.C. & SANTOS, J.C. 2013. Illustrated and Annotated Checklist of Brazilian Gall Morphotypes. Neotropical Entomology 42:230–259.

JULIÃO, G.R., AMARAL, M.E. & FERNANDES, G.W. 2002. Galhas de insectos e suas plantas hospedeiras no Pantanal Sul Mato Grossense. Naturalia 27:47–74.

JULIÃO, G.R., VENTICINQUE, E.M., FERNANDES, G.W. 2015. Richness and abundance of gall-forming insects in the Mamirauá Várzea, a flooded Amazonian forest. Revista Uai 1(1):39–42

MAIA, V.C. 2001. The gall midges (Diptera, Cecidomyiidae) from three restings of Rio de Janeiro State, Brazil. Revista Brasileira de Zoologia 18(2):583–629.

MAIA, V.C. 2012. Characterization of insect galls, galls makers, and associated fauna of Platô Bacaba (Porto de Trombetas, Pará, Brazil). Biota Neotropica 11(4):1–17.

MAIA, V.C. 2013a. Galhas de insetos em restingas da região sudeste do Brasil com novos registros. Biota Neotropica 13:183–209.

MAIA, V.C. 2013b. Insect galls of São Tomé das Letras (MG, Brazil). Biota Neotropica 13:164–189.

MAIA, V.C. & CARVALHO-FERNANDES, S.P. 2016. Insect galls of a protected remnant of the Atlantic Forest tableland from Rio de Janeiro State (Brazil). Revista Brasileira de Entomologia 60(1):40–56.

MAIA, V.C. & FERNANDES, G.W. 2004. Insect galls from Serra de São José (Tiradentes, MG, Brazil). Brazilian Journal of Biology 64(3a):423–445.

MAIA, V.C., MAGÊNTA, M.A., MARTINS, S.E. 2008. Ocorrência e caracterização de galhas de insetos em áreas de restinga de Bertioã (São Paulo, Brasil). Biota Neotropica 8(1):167–197.

MAIA, V.C., CARDOSO, L.J.T. & BRAGA, J.M.A. 2014. Insect galls from Atlantic Forest areas of Santa Teresa, Espírito Santo, Brazil: characterization and occurrence. Boletim do MBML 33:47–129.

MALVES, K. & FRIEIRO-COSTA, F.A. 2012. List of plants with galls induced by insects from the UNILAVRAS/Boqueirão Biological Reserve, Ingaí, State of Minas Gerais, Brazil. Checklist 8(3):426–431.

MARTINS, S.V., SILVA, N.R.S., SOUZA, A.L. & NETO, J.A.A. 2003. Distribuição de espécies arbóreas em um gradiente topográfico de Floresta Estacional Semidecidual em Viquoça, MG. Ciência Florestal 64:172–181.

OLIVEIRA, D., DRUMMOND, M.M., MOREIRA, A.S., SOARES, G. & ISAIAS, R. 2008. Potencialidades morfogênicas de Copaifera langsdorffii Desf. (Fabaceae): Super-hospedeira de herbívoros galhadores. Revista de Biologia Neotropical 5(1):31–39.

RIBEIRO, A.N., BALBI, M.I.P.A. & URSO-GUIMARÃES, M.V. (submitted). Characterization of insect galls from Seasonal Semideciduous Forest and Cerrado area in Altinópolis, São Paulo, Brazil. Papéis Avulsos de Zoologia (submitted to Papéis Avulsos de Zoologia).
RODRIGUES, A.R., MAIA, V.C., COURI, M.S. 2014. Insect galls of restinga areas of Ilha da Marambaia, Rio de Janeiro, Brazil. Revista Brasileira de Entomologia 58:173–197.

SAITO, V.S., URSO-GUIMARÃES, M.V. 2012. Characterization of galls, insect galls and associated fauna of Ecological Station of Jataí (Luiz Antônio, SP). Biota Neotropica 12:99–107.

SANTANA, A.P. & ISAIAS, R.M.S. 2014. Galling insects are bioindicators of environmental quality in a Conservation Unit. Acta Botanica Brasilica 28(4):594-608.

SANTOS, B.B., FERREIRA, H.D. & ARAÚJO, W.S. 2010. Ocorrência e caracterização de galhas entomógenas em uma área de Floresta Estacional Semidecídua em Goiânia, Goiás, Brasil. Acta Botanica Brasilica 24(1):243–249.

SANTOS, J.C., ALMEIDA-CORTEZ, J.S., FERNANDES, G.W. 2011. Richness of gall-inducing insects in the tropical dry forest (caatinga) of Pernambuco. Revista Brasileira de Entomologia 55(1):45–54.

SCARELI-SANTOS, C., URSO-GUIMARÃES, M.V. & VARANDA, E.M. 2005. Galhas, Galhadores e Insetos Associados. In: Pivelo V, Varanda EM (eds) O cerrado Pé-de-Gigante: ecologia e conservação: Parque Estadual de Vassununga. Secretaria do Meio Ambiente do Estado de São Paulo, São Paulo, pp 223–246.

URSO-GUIMARÃES, M.V. & SCARELI-SANTOS, C. 2006. Galls and Gall makers in plants from the Pé-de-Gigante Cerrado Reserve, Santa Rita do Passa Quatro, SP, Brazil. Brazilian Journal of Biology 66(1b):357–369.

URSO-GUIMARÃES, M.V., SCARELI-SANTOS, C., BONIFÁCIO-SILVA, A.C. 2003. Occurrence and characterization of entomogen galls in plants from natural vegetation areas in Delfinópolis, MG, Brazil. Brazilian Journal of Biology 63(4):705–715.

URSO-GUIMARÃES, M.V., CASTELO, A.C.D., KATAOKA, E. & KOCH, I. 2017. Characterization of entomogen galls from Mato Grosso do Sul, Brazil. Revista Brasileira de Entomologia 61(1):25–42.

VELDTMAN, R. & MCGEOCH, M.A. 2003. Gall-forming insect species richness along a non-scleromorphic vegetation rainfall gradient in South Africa: the importance of plant community composition. Austral Ecology, 28:1–13.

Received: 04/02/2018
Revised: 05/04/2018
Accepted: 21/06/2018
Published online: 16/07/2018