Sepsis, parenteral vaccination and skin disinfection

Ian F. Cook

University of Newcastle, Callaghan, New South Wales, Australia

ABSTRACT

Disinfection should be required for all skin penetrative procedures including parenteral administration of vaccines. This review analyses medically attended infectious events following parenteral vaccination in terms of their microbiological aetiology and pathogenesis. Like ‘clean’ surgical site infections, the major pathogens responsible for these events were Staphylococcal species, implicating endogenous contamination as a significant source of infection. As 70% isopropyl alcohol swabbing has been shown to effectively disinfect the skin, it would be medico-legally difficult to defend a case of sepsis with the omission of skin disinfection unless the very low risk of this event was adequately explained to the patient and documented prior to vaccination. There was a significant cost-benefit for skin disinfection and cellulitis. Skin disinfection in the context of parenteral vaccination represents a new paradigm of medical practice; the use of a low cost intervention to prevent an event of very low prevalence but of significant cost.

Introduction

Skin disinfection\(^1\) has been shown to significantly reduce surgical wound infection,\(^7\) infection associated with vascular catheters,\(^9\) blood cultures\(^4\) collection of blood components\(^5\) and yet is not routinely recommended prior to parenteral administration of vaccines and other therapeutic agents.

This procedure is not addressed in the National Immunization Technical Advisory Groups (NITAGs) guidelines from Argentina,\(^6\) Canada,\(^8\) Dubai,\(^9\) India,\(^9\) Sri Lanka\(^11\) and USA\(^11\); is considered unnecessary in Australia\(^12\) and the UK\(^13\); if used in Ireland\(^14\) and New Zealand,\(^15\) the skin site should be allowed to dry for 30 seconds and 2 minutes after alcohol swabbing respectively, while in Brazil\(^16\) the skin should be cleaned for 30 seconds and allowed to dry for 30 seconds.

There is very limited evidence for the omission of skin disinfection prior to parenteral injection. Hutin et al\(^17\) provides data from 6 small studies with insulin (\(n = 176\)) in 2 retrospective and 4 retrospective studies, 16/21 case reports where exogenous sources of infection were implicated and an experimental study\(^18\) involving introduction of coagulase positive Staphylococcus aureus into the skin of 26 young healthy adults. Del Mar et al\(^19\) reported 3 very small randomized trials, 2 venous access studies (Sutton et al,\(^20\) \(n = 194\) and Grabe et al,\(^21\) \(n = 187\)) and one small insulin site comparative study (Koivisto & Felig,\(^22\) \(n = 13\)). It is noteworthy that Del Mar et al\(^19\) made recommendation about skin disinfection prior to intramuscular injection yet none of their collated studies involved this route of administration. Clearly, accepting these limited data is supporting the null hypothesis that there is no difference between skin disinfection and no skin disinfection in terms of sepsis post parenteral injection is likely to be a type II error.\(^23\)

70% isopropyl alcohol swabbing has been shown to effectively disinfect the skin. Sherman et al\(^24\) reported it decreased the proportion of contaminants (odds ratio 21, 95% CI 3.1–142.2), with 20 of 26 patients who were initially culture positive being culture negative after disinfection. One patient remained culture positive despite disinfection.

Reichel et al\(^25\) observed that disinfection depended on skin site (lumbar area 81–90%, abdomen 57–82%, upper back 55–60% and forehead 32–34%) but was not time dependent with 3 and 4 minutes not being significantly better than 2 minutes.

Khawaja et al\(^26\) concluded that skin disinfection was unnecessary to prevent skin sepsis in a small study (\(n = 51\)) where a 47% reduction in colony forming units was found with cultures taken prior to the skin being swabbed for 30 seconds with a drying time of 30 seconds and post injection at the prepared site.

Medically attended infectious events\(^27\) following parenteral vaccination range from any condition for which medical attention is sought to more serious adverse events resulting in hospitalisation, persistent or significant disability and death. Due to their more significant nature, they are likely to be brought to the attention of healthcare workers who report them as case reports and/or to vaccine surveillance programs. However due to their method of reporting\(^28\) there is likely to be a bias toward under-reporting of less severe events like cellulitis, often treated on an outpatient basis without probable report.
In this review, medically attended infectious events following parenteral vaccination were collated with a view to assessing the role of skin contamination in the microbiological aetiology and pathogenesis of sepsis following vaccination.

Results

Medically attended infectious events following parenteral vaccination can be subdivided into 2 groups:

1. Localized Clinical Syndromes (cellulitis, infectious abscess, necrotizing fasciitis, pyomyositis, osteomyelitis and septic arthritis).
2. Systemic Syndromes (bacteraemia and sepsis, septic [toxic] shock syndrome) often complicating local syndromes.

Clinical syndrome reports were collated only for healthy patients with case reports with overlapping syndromes entered only once as the most significant syndrome.

Localized clinical syndromes

Cellulitis

Cellulitis is the most common infectious event following parenteral administration of vaccines. It has been defined by the Brighton Collaborative Local Reaction Working Group as “an acute, infectious and expanding inflammatory condition of the skin.”

Table 1. VAERS database Cellulitis (Level 1a of certainty) and microbiology.

Sex/Age	Vaccine	Clinical History/ Microbiology
F/61	13-valent pneumococcal vaccine (Prevnar 13[®])	Site: warm, swollen, red Culture: Staphylococcal species
M/25	Smallpox (Dryvax[®])	Site: tender, indurated area with central eschar and surrounding cellulitis Culture: 4+: Staph aureus
F/11	Meningococcal conjugate vaccine (Menveo[®])	Site: oedema, redness, firmness, warmth, pain/tenderness Culture: Staph aureus
M/1	Measles/Mumps/Rubella (MMRII[®])	Site: pain, redness, arm swelling Culture: MRSA at site of vaccine injection
F/53	Influenza (seasonal) (Afluria[®])	Site: swelling, pain, redness Culture: Strep/Staph positive

Level 1a of diagnostic certainty – includes at least 3 of the following signs/symptoms: localized pain or tenderness (pain to touch) erythema, induration or swelling and warmth AND reaction at the injection site and laboratory confirmation by culture.

Level 2 of diagnostic certainty – at least 3 of the signs/symptoms for level 1a and reaction at the injection site and diagnosed by a qualified healthcare provider. Exclusion criteria – spontaneous, rapid resolution and fluctuate.

Vaccine Adverse Events Reporting Scheme (VAERS) database

Search of the VAERS database for cellulitis codes listed in the methods section, retrieved 5 cases of cellulitis satisfying the Level 1a of diagnostic certainty, 4 due to staphylococcal species (1 MRSA) and 1 due to mixed streptococcal/staphylococcal infection (Table 1).

576 entries from the VAERS database satisfied the Level 2 of diagnostic certainty (major vaccines; combination 179, pneumococcal 166, varicella 90, DTPa 64 and influenza vaccine 41).

The rate of hospitalization for cellulitis in these VAERS patients was 16.2% which is much greater than rates observed in other studies^{30,31} and presumably reflects a bias to reporting more severe reactions in passive surveillance systems like the VAERS. Goettsch et al.³⁰ using data from the National Morbidity Registration in the Netherlands, estimated that 7% of all patients with bacterial cellulitis and erysipelas of the leg required hospitalization while McCall et al.³¹ noted a 4% admission rate for cellulitis in Medicare + Choice (M + C) enrollees in the USA.

Vaccine Safety Datalink (VSD) program

Review of studies drawn from data collected through the Vaccine Safety Datalink program,³² an active collaboration between a number of health maintenance organisations and the National Immunization Program of the Center for Diseases Control, also gave reports of vaccine related cellulitis. Improved diagnostic certainty of these data was made by chart review and only studies with this level of analysis were included in this review. In 5 studies, 288 cases of cellulitis were reported (Table 2).

Other vaccine surveillance programs

Two reports of injection site cellulitis have been reported for influenza vaccines by the National Vaccine Injury Compensation Program³⁸ and the Korean National Adverse Events Following Immunization Surveillance System.³⁷

Table 2. Vaccine Safety Datalink studies and cellulitis.

Author	Study Population	Vaccine	Cellulitis
Jackson et al³³	Children 4–6 y old. n = 233, 616	5th dose of DTaP	230 cellulitis and 378 prescribed antibiotics for injection site infection
Jackson et al³⁴	Children and young adults, 9–25 y old. n = 128,297	DT	11 cellulitis, 8 treated with antibiotics
Jackson et al³⁵	Children and young adults, 9–25 years old. n = 436, 828	Td	23 cellulitis, 20 treated with antibiotics (16 oral and 4 parenteral)
Jackson et al³⁶	Older adults (mean age 73 ± 7 years) n = 603	3rd dose of 23-valent pneumococcal vaccine	2 cellulitis, treated with oral cephalexin
Hambidge et al³⁷	Children 6–23 months n = 45,356	Inactivated trivalent influenza vaccine	22 cellulitis
Choe et al.\(^\text{38}\) reported cellulitis in 7/45 vaccine recipients with serious adverse events following administration of trivalent, inactivated influenza vaccine over the period 2003–2010, with 2 satisfying the level 1 and 5, the level 2 of diagnostic certainty. Kim et al.\(^\text{39}\) reported an 8 y old male who developed cellulitis following injection of a novel influenza A (H1N1) vaccine.

In the Italian region of Veneto, 13 patients were reported\(^\text{10}\) as having cellulitis as a serious event following vaccination during the period 1992–2008.

In the Canadian Province of Ontario, 19 cases of cellulitis were reported\(^\text{41}\) in recipients of DTaP-IPV over the period 2009–2013.

Post-marketing vaccine safety studies

Schmidt et al.\(^\text{42}\) reported 36 cases of cellulitis in a retrospective study in Kaiser Permanente Northwest (KPNW) clinics, 7/13,210 patients who received 2 doses of an inactivated, trivalent influenza vaccine within 28 days and 29/59,905 patients who received a single dose of this vaccine.

Burwen et al.\(^\text{43}\) reported 42 cases of cellulitis/abscess (ICD-9-CM code 682.3) requiring hospital admission in a retrospective study of Medicare vaccination data.

Case reports of cellulitis

Twenty-three reports of vaccine related cellulitis have been made in 6 studies (Table 3). In two VSD studies, with zoster vaccine in adults\(^\text{51}\) and trivalent inactivated influenza in children aged 24–59 months,\(^\text{52}\) relative risks of 1.30 (95%CI 1.18–1.44) and 3.27 (95% CI 0.36 – 29.70) were reported for cellulitis and infection and cellulitis and skin reaction respectively.

Also in a study\(^\text{53}\) of emergency department visits and hospital admission following quadrivalent human papilloma vaccines, vaccination odds ratio for skin infection days 1 to 14 post vaccination was 1.8 (95% CI 1.3 – 24). However in those 3 studies the number of patients satisfying the case definitions for cellulitis are unknown.

Infectious abscess

The Brighton Collaboration Local Reaction Working Group level 1 of diagnostic certainty for abscess of infectious aetiology requires\(^\text{54}\) "spontaneous or surgical drainage of material from the mass" and "laboratory confirmation (Gram stain, culture or either test) of microbiological organisms with or without polymorphonuclear leukocytes in material drained or aspirated from the mass."

VAERS database infectious abscess (Level 1 of certainty and microbiology)

Fifty three cases of infectious abscess with level 1 of certainty were retrieved from the VAERS database, 30 Staphylococcus aureus (including 5 MRSA, 5 coagulase negative strains), 6 group A (GAS) Streptococcus, 4 mixed growth (Staphylococcus/Streptococcus), 3 Serratia Marcescens, 2 acid fast bacillus and 1 each of Streptococcus viridans, Haemophilus influenzae type b, Haemophilus influenzae (not specified), Haemophilus parainfluenzae, Streptococcus pneumoniae, Enterobacter faecalis, Enterobacter agglomerans, and mixed skin flora. The vaccines involved were Combination 18, DTP 10, influenza 7, Hepatitis B 5, TD/TT 5, pneumococcal 3, DTaP 2, Hepatitis A 2 and DTP – IPV/Hib/HPV/Hepatitis B 1.

Published reports of infectious abscess formation

Mycobacterial infection (254/307) accounted for the majority of infectious abscess formation. Mycobacterium tuberculosis (167 cases), Mycobacterium chelonae (47 cases) and Mycobacterium fortuitum (40 cases) (Table 4).

Oka and Sato\(^\text{55}\) and Tamura et al.\(^\text{56}\) reported 62 and 102 cases of cutaneous Mycobacterium tuberculosis infection following vaccination with pertussis and typhoid vaccines respectively. Although the role of infected vaccinators is uncertain, the potential for needle contamination as the source of these infections is supported\(^\text{57}\) by a recent outbreak of Mycobacterium tuberculosis following acupuncture in which failure to disinfect needles was implicated.
Table 4. Infectious abscess post vaccination.

Author	Sex/Age	Vaccine	Clinical History/Investigation	Cause
Oka & Sato	62 infants	Pertuss	209 infants aged 4 months to 2 y old were vaccinated subcutaneously with pertussis vaccine. 62 infants were diagnosed as having "inoculation" tuberculosis with lesions at the subcutaneous vaccination site. 17 and 33 specimens from the vaccination site and axillary nodes were smear/culture and culture positive respectively.	The doctor and nurse who administered the vaccine were found to have sputum positive pulmonary tuberculosis.
Tamura et al.	102 children	Typhoid	102 of 631 children vaccinated with a double course of typhoid vaccine developed lesions at the site of injection, 1 to 6 months after vaccination, tubercule bacilli were identified in 29 cases and cutaneous and axillary lymph nodes had positive histopathology for tuberculosis was in 17 and 45 patients respectively.	One of the vaccinators, female physician, was found to have pulmonary tuberculosis. The authors noted that there was a relationship between the infected vaccinator and tubercule introduction but that there was not sufficient correlation between the children who reacted and who were inoculated by this person to suggest that this was the only or even possible source of contamination. They also note that the infected vaccinator gave injections of the same typhoid vaccine at another school where no cases of tuberculosis were found.
Dixit et al.	5 month old	DTP	'cold' abscess left thigh grew Mycobacterium tuberculosis	Source of infection not determined.
Mishra et al.	8 month old	DTP	'cold' abscess in right thigh after vaccination, fine needle aspiration showed caseating granulomata suggestive of a tubercule and staining for acid fast bacilli was positive.	No source for infection identified.
Agrawal & Jain	11 month old	DTP	'cold' abscess right gluteal for 8 months, given DTP at age 31/2 months. Zeil Neilson staining was positive for AFB, PCR was positive for Mycobacterium tuberculosis.	No source of infection found.
Borghans & Sanforth	47 children, 3 to 15 months	DTP-IPV	Children developed lump at the injection site 1–13 months after injection. 7 abscesses showed the same strain type of Mycobacterium chelonae	The contamination of a number of vials with the same mycobacterium strain over a 6 month period is unexplained.
Owen et al.	40 patients	36 Polyvalent influenza, 4 DTP-IPV	Lesions developed on average about 3 months after injection. 15 given influenza vaccine grew Mycobacterium fortuitum	The source of infection could not be found.
Cayton & Morris	4 children	DTP	4/10 children vaccinated developed abscess at injection site. Group A Streptococcus (GAS)	Same serotype isolated from nose of doctor, throat of nursing attendant and the scissors used at the clinic.
Chi-Thuong et al.	3 (2 male, 1 female)	Hep B x 2, MMR	Developed abscess with community acquired MRSA encoding gene for the Panton-Valentine-Leukocidin toxin	One vaccinator had asymptomatic carriage of this MRSA in her nose and throat.
Simon et al.	9 children	DTP	9 children injected with vaccine from the same vial at a clinic in Colorado. 8 developed abscesses which required surgical drainage. Group A streptococcus was cultured from all abscesses with staphylococcus aureus being also isolated from 4 abscesses.	Infection was likely caused by use of a single vaccine vial with the mixed infections in 4 cases suggesting skin contaminant.
Stetler et al.	12 children in Georgia and 7 in Oklahoma	DTP	In Georgia, of 14 children who received lot A vaccine 12 developed abscess on 19 & 20/7/82, no abscesses were found in 31 children vaccinated with the same lot of vaccine on 15/7/82. In Oklahoma 7 children, 6 children had received vaccine from the same vial. Group A Streptococcus was isolated from 9/12 abscesses in Georgia and 4/7 in Oklahoma. All isolates were the same strain in both states but with different strains in both states.	Infection of a multidose vial implicated.
Greaves et al.	7 children in Indiana	DTP	Culture positive in 6 children with Group A Streptococcus, same streptococcal strain in all cases	Infection of a multidose vial implicated.

(Continued)
In three other cases of primary cutaneous tuberculosis (PCTB) caused by M. tuberculosis, contamination of the needle could not be excluded. M. fortuitum and M. chelonea are rapidly growing mycobacteria (RGM) with contaminated tap water considered to be major reservoir of these pathogens. This source is more likely to explain the 47 cases reported by Borghans & Stanford, than the contamination of a number of vials with the same mycobacterial strain over a 6 month period. Similarly, this source could explain the 40 cases of M. fortuitum reported by Owen et al.

Exogenous source of infection also accounted for infectious abscess formation in another 43 cases (7 contaminated vaccine, 4 Group A Streptococcus [GAS] and 3 MRSA encoding the Panton-Valentine-Leukocidin toxin) and contaminated multi-dose vials (9 children Colorado, 12 children Georgia and 7 children Oklahoma) in 10 cases, (8 Singapore, 1 Turkey and 1 USA) the source of infection was not identified.

Abscesses following vaccination have been reported in clinical trials, number in parenthesis, from Niger (5), Burkina Faso (16, 1), Kenya (17), India (16) and Ethiopia (10) and also in the review by Klar et al. However as microbiological data were not provided in these reports it is uncertain whether these were infectious or "sterile" abscesses.

Necrotizing fasciitis

Necrotizing fasciitis is an infection of the subcutaneous tissue (between the skin and the underlying muscle) which often overlaps with myonecrosis and is complicated by sepsis. It has been classified in 4 groups; Type 1 (polymicrobial), Type 2 (Group A Streptococcus), Clostridium fasciitis and Clostridium myonecrosis.

Seven case reports of this condition have been reported post vaccination with an additional 5 cases being retrieved from the VAERS database (Table 5). Definitive treatment of this condition involves early debridement of all necrotic tissue.

Pyomyositis

Pyomyositis is a very uncommon primary infection of skeletal muscle mainly caused by Staphylococcus aureus. Bae et al. reported this condition in a 17 month old female patient due to Mycobacterium tuberculosis following Hepatitis A (Havrix) vaccination. The case was considered to have incidentally occurred at the vaccination site “rather than being a syringe-transmitted infection or that it was associated with BCG vaccination.”

Two cases of pyomyositis were retrieved from the VAERS database;

- A 17 y old female vaccinated with HPV (Gardasil) vaccine developed an oval, tender, swollen and erythematous reaction with fever. Blood culture and aspiration culture negative, WCC 13.7 (80% neutrophils), CT scan showed subcutaneous infiltration, no abscess formation and MRI positive for inflammation.

- A 4 y old female vaccinated with 23-valent pneumococcal vaccine (Pneumovax) developed severe leg pain, fever and diffuclty walking. MRI and Ultrasound revealed diffuse fasciitis with abscess formation and patient was diagnosed with cellulitis and myositis.

Osteomyelitis

Osteomyelitis is a not uncommon disease of bone which can be divided into 3 categories in terms of its source of infection; haematogenous, contiguous spread with or without vascular insufficiency.

Search of the VAERS database retrieved 10 cases of osteomyelitis, 9 due to contiguous spread and one due to haematogenous spread (Table 6).

Septic arthritis

Septic arthritis, infection of the joint, can occur via 3 routes; haematogenous, direct contamination into the joint and indirect contamination – spread from nearby structures.

Search of the VAERS database revealed 7 cases of septic arthritis, 4 due to haematogenous spread, 2 due to direct contamination and 1 due to indirect contamination (Table 7).

Systemic syndromes

Bacteraemia

A consensus conference between the American College of Chest Physicians (ACCP) and the Society of Critical Care...
Table 5. Necrotoxing fasciitis post vaccination.

Author	Sex/Age	Vaccine	Clinical History/ Investigation	Comment
Pitta et al.79	M/30	Influenza	Pain, oedema, erythema left upper limb with fever 12 hours after vaccination. Arm debrided with fasciotomy. No bacteria cultured.	The authors report “one can suspect that some kind of contamination occurred during the process – in the handling of needles - or even some break in aseptic technique, allowing skin micro-organisms to penetrate the patient’s tissues”
Senaran et al.80	M/ 18 months old	Hepatitis B vaccine	Admitted 2 d after vaccination with erythema and swelling of his left shoulder. Patient required debridement of shoulder muscles. All cultures were negative.	The authors note: “The possible cause of local soft tissue infection and NF in our case might be contamination of needle during handling or manipulation and direct inoculation of the microorganism into the subcutaneous and muscular tissues rather than the vaccine itself”
Thapa et al.81	F/7 days old, healthy, negative parental history of HIV	BCG	Baby was presented 18 hours after vaccination in the left arm with warm, tender, erythematous swelling of the outer aspect of the middle third of the left arm. The baby had radical debridement of the shoulder. Blood cultures positive MRSA. The baby was revaccinated with BCG at 1 month of age in the right arm and “spirit and cotton swab was used for preparation of the proposed vaccination site.”	Authors report that “isolation of the pathogenic organism from the lesion confirmed the etiology.”
Okeniyi et al.82	F/13 days old, healthy child, negative TB and HIV	BCG	Child was presented 6 d after BCG vaccination in left arm with extensive skin necrosis with the limb being hyperaemic and oedematous. The child had radical excision of necrotic tissue. Wound culture grew mixed growth of Pseudomonas aeruginosa and Staphylococcus aureus.	Authors note that “most plausibly, the inoculation provided a nidus for bacterial infection.”
Thomas83	F/80	Influenza (Influvac)	Two days prior to admission influenza vaccine was administered to the left upper arm. The left forearm and hand had blue discoloration with bullae and soft tissue crepitus and cold, pulseless left hand. Bullae aspirate grew Clostridium septicum with no growth from the batch of influenza vaccine. Despite left forequarter amputation patient died post operatively.	Author noted “an alternative explanation is that C. septicum spores were inoculated along the tract of the intramuscular injection.”
Pora et al.84	F/71	H1N1, influenza vaccine	Patient presented 3 d after H1N1 influenza vaccination with fever and progressive left shoulder pain. She was febrile (38.2°C), hypotensive (100/70) and the left arm was swollen, discoloured with crepitus. X-ray showed extensive subcutaneous emphysema. The patient died a few hours after presentation. Blood and wound cultures were positive for Clostridium septicum.	The authors suggest “a causative association” between fatal gas gangrene and influenza vaccine administration.

(Continued)
Medicine (SCCM) defined bacteraemia90 as the presence of viable bacteria in the blood. This condition can be divided into complicated and uncomplicated bacteraemia with the criteria for the latter91 being:

i. Exclusion of endocarditis
ii. No implanted prosthesis
iii. Negative results of follow-up blood cultures drawn 2–4 d after the initial set
iv. Defervescence within 72 hours after the initiation of effective antibiotic therapy and
v. No evidence of metastatic infection

Uncomplicated bacteraemia

A case of uncomplicated Staphylococcus aureus bacteraemia was drawn from the VAERS database. A 64 y old male given influenza (H1N1) [Sanofi®] vaccine had induration, swelling and pain at the injection site with blood culture positive for coagulase negative S. aureus. Using the 5 predictors of systemic inflammatory response syndrome (SIRS) validated by Elzi et al92 to differentiate between blood culture contamination and blood stream infection due to coagulase-negative S. aureus, the probability of blood stream infection in this case was 42.4%, as the while cell count was greater than $12 \times 10^9/l$.

Complicated bacteraemia

Complicated bacteraemia has been reported93 to include a wide range of metastatic infectious syndromes (infective endocarditis, septic arthritis, deep tissue abscess, vertebral osteomyelitis, epididymal abscess, septic thrombophlebitis, psosas abscess, meningitis and embolic stroke).

Chae et al.94 reported a case of multiple subcutaneous abscesses complicating Staphylococcus aureus bacteraemia in a 42 day old female vaccinated with BCG.

One case of haematogenous osteomyelitis (Table 6) was drawn from the VAERS database, a 73 y old female vaccinated with influenza vaccine (Fluzone®) and 23-valent pneumococcal vaccine (Pneumovax®). A case of arterial stroke was also drawn from the VAERS database, a 1.1 y old male presented with febrile seizure and left arm weakness the morning after vaccination with a combination of hepatitis A (Vaqta®), 7-valent pneumococcal conjugate vaccine (Prevnar7®) and varicella (Varivax®) vaccines. MRI showed thrombosis of the right middle cerebral artery and blood cultures were positive for S.

Author	Sex/Age	Vaccine	Clinical History/ Investigation	Comment
VAERS M/11	No comorbid health issues reported	Influenza vaccine (Fluzone®) and 23-valent pneumococcal vaccine (Pneumovax®)	Patient developed right arm pain the morning after vaccinations. The arm had swelling, erythema, pain and discolouration. Patient had 2 debridements and skin grafts, wound cultured pseudomonas thought to be a colonizing bacteria.	Patient admitted 1 day after vaccination with necrotizing fasciitis of right shoulder which was surgically debrided. Gram stain and wound culture was negative.
VAERS F/42	No history of comorbid diagnoses given	23-valent pneumococcal vaccine (Pneumovax®)	Patient had pain and ache at injection site with fever. MRI showed necrotizing fasciitis. Patient had debridement which was culture negative.	Patient reported painful, blistering reaction over right deltoid muscle after vaccination. CT scan revealed gas and extensive oedema consistent with necrotizing fasciitis. Blood and wound cultures were negative. Patient required debridement of right deltoid muscle.
VAERS F/62	No history of comorbid diagnoses given.	23-valent pneumococcal vaccine (Pneumovax®)	Patient required debridement of right deltoid muscle.	Following vaccination the patient developed erythema, warmth, tenderness and oedema at the injection site. The patient had a debridement of the soft tissue of the left upper arm which showed acute inflammation and focal gangrenous necrosis.
VAERS M/30	Patient had sigmoid diverticulitis and chronic back pain	23-valent pneumococcal vaccine (Pneumovax®)	Following vaccination the patient developed erythema, warmth, tenderness and oedema at the injection site. The patient had a debridement of the soft tissue of the left upper arm which showed acute inflammation and focal gangrenous necrosis.	Following vaccination the patient developed erythema, warmth, tenderness and oedema at the injection site. The patient had a debridement of the soft tissue of the left upper arm which showed acute inflammation and focal gangrenous necrosis.

Table 5. (Continued)
2553

Table 6. Osteomyelitis cases and VAERS database.

No.	Sex/Age(years)	Vaccine/Site	Clinical History/ Investigations	Source, Mode of Spread
1.	F/12	HPV (Gardasil®), right arm	Pain and swelling 48 hours after injection. CT scan right humerus – osteomyelitis. Blood cultures positive for S. aureus. Had necrotic bone resected.	Contiguous
2.	M/0.1	DTap-IPV-HepB (Pentacel®) and 13-valent pneumococcal vaccine, left leg.	Developed MSSA abscess, X-ray – periosteal elevation left femur.	Contiguous
3.	F/0.3	DTap-IPV-HepB (Pediarix®), left leg	MRSA left periosteal abscess with CT scan confirmation inflammatory changes in subcutaneous fat and muscle.	Contiguous
4.	F/4	DTap (Infanrix®), Varicella (Varivax®), right leg	Fever and pain. Surgery to aspirate infection in bone, staph – species unknown.	Contiguous
5.	M/0.3	Hib (Pedvaxhib®) Polio (Ipol®), Left leg	Fever and MRI – myositis of left lower thigh and mild periosteal reaction left mid distal femur.	Contiguous
6.	F/age unknown	Tdap (Adacel®), right arm	Pain and limited arm movement. MRI revealed osteomyelitis	Contiguous
7.	M/4	13-valent pneumococcal (Prevnar®), Left leg	Fever, headache. MRI – left femoral osteomyelitis	Contiguous
8.	F/11	23-valent pneumococcal (Pneumovax®), right arm	Severe redness, tenderness at injection site. MRI – cellulitis/osteomyelitis right humerus	Contiguous
9.	M/2	Dtap (Daptacel®), Hepatitis A (Vata®), MMRV (Proquad®), left leg, Hib (Pedvaxhib®) left arm.	Left arm and left leg swelling and erythema. MRI multi-loculated abscess of distal humeral shaft, osteomyelitis proximal radius and ulna. Gram +ve cocci.	Contiguous, possible haematogenous spread.
10.	F/73	Influenza (no brand name given), right arm	Right arm cellulitis, L3–4 vertebral osteomyelitis due to Group B Strep.	Haematogenous

aureas. Fullerton et al.95 have concluded that “infection may act as a trigger for childhood arterial ischaemic stroke, while routine vaccinations appear protective.”

Two other cases of complicated bacteremia were obtained from the VAERS database. A 72 y old male vaccinated with influenza H1N1 (Novartis®) developed sudden onset of pain and swelling in right wrist and arm and left ankle had GAS cultured from the right wrist. A 0.6 y old female vaccinated with a combination of Hib and Hep B (Comvax®), DTaP (Tripedia®), 7 valent pneumococcal vaccine (Prevnar®) and polio inactivated (IPOL®) developed Streptococcus pneumoniae bacteremia with bacterial meningitis.

Sepsis/severe sepsis/septic (toxic) shock syndrome

Systemic inflammatory response syndrome (SIRS), is characterized by more than 38°C, heart rate higher than 90 minute, hyperventilation evidenced by respiratory rate higher than 20/min or PaCO₂ lower than 32 mm Hg or white cell count higher than 12×10⁹/l or lower than 4×10⁹/l. Sepsis is defined as SIRS in the presence of infection with severe sepsis being associated with organ dysfunction, hypoperfusion or hypotension and septic shock being sepsis-induced hypotension despite adequate fluid resuscitation.

Septic/Toxic shock is rarely seen following vaccination and then likely to be due to contamination of needles/syringes or vaccines or transfer of infectious agents from the vaccinator to the vaccine recipient (Table 8).

In total 1534 reports of sepsis following parenteral vaccination were retrieved from databases and published reports in this review with this number being dominated by cellulitis, 1011 (65.9%).

Discussion

“Clean” surgical site infections (an uninfected operative wound in which no inflammation is encountered and the respiratory, alimentary, genital or uninfected urinary tract is not entered) have been suggested to be due to endogenous Staphylococcal species at the site of incision. This contention has been supported by a study using Technetium-99 m pertechnetate labeled albumin microspheres to differentiate between surgeon and patient derived infection.

Staphylococcal species infection prevalence at “clean” surgical sites varies from 54.8% (orthopaedic surgery), 67.3% (superficial site, open heart surgery) to 87.9% (post arthroscopy) with the latter authors concluding that “their predominance supports the need for careful skin preparation and sterile technique when performing arthroscopy.”

Similarly in this review, Staphylococcal species were identified in 59/92 (64.1%) cases, when suspected/proven cases due to exogenous infection were excluded; cellulitis 5/5, infectious abscess 43/63, necrotising fasciitis 1/4, osteomyelitis 4/6, septic...
This implicates endogenous contamination as a significant source of infection during parenteral vaccination, a thesis supported by the probable/proven exogenous contamination in only 421 of the 1534 (27.4%) of the medically attended infectious events collated in this review.

Table 7. Septic arthritis.

No.	Sex/Age (years)	Vaccine/Site	Clinical Features/Investigations	Route of Spread
1.	M/72	Influenza (H1N1) [Novartis] Left arm	Pain and swelling right wrist, arm and left ankle. GAS cultured from right wrist aspirate.	Haematogenous spread
2.	F/1.1	Hepatitis A (Vaqta®) and Varicella (Varivax®) Left leg	Unable to move left elbow. Aspirate from left elbow grew light growth of Alcaligenes faecalis	Haematogenous spread
3.	M/ age not given	Hepatitis B (Foreign) left leg	Pain and decreased movement in left leg. Septic arthritis left hip and ankle. Blood cultures MSSA, left ankle ulcer cultured MSSA	Haematogenous spread
4.	M/16	Meningococcal conjugate (Menactra®) and Tdap (Adacel®) Right arm	MRSA bacteraemia with left sacroiliac joint Septic arthritis on bone scan and MRI	Haematogenous spread
5.	F/74	23-valent pneumococcal vaccine right arm. Influenza [seasonal] (Fluvirin®) left arm	Pain, swelling, redness right deltoid. Ultrasound showed large glenohumeral joint effusion. Synovial fluid 86,033 neutrophils (90% polymorphs), culture negative.	Direct contamination
6.	M/91	13-valent pneumococcal vaccine (Prevnar®) Right arm	Pain, redness, swelling and severe bruising around injection site. Ultrasound – joint effusion right shoulder	Direct contamination
7.	F/0.9	Haemophilus B conjugate-Hib (Acthib®) Left leg Hepatitis B (Engerix-B®) left leg 7 valent pneumococcal vaccine (Prevnar®) left leg	Cellulitis left thigh, septic arthritis left knee. Culture MRSA	Indirect contamination

Table 8. Septic/toxic shock.

Author	Sex/ Age	Vaccine	Clinical Details	Source of Infection
Sood97	Measles vaccine	Severe reaction 115 children, 79 deaths, 105 fever, 92 vomiting, 91 diarrhea 99% after vaccination with fever, vomiting	Unsterile syringe and needles and perhaps use of contaminated vaccines.	
Sokhey76	F/9yrs	Tetanus toxoid	48 hours after vaccination with fever, vomiting	Re-used syringes and needles
Plueckhahn & Banks98	F/16/12	Influenza vaccine	Group A streptococcal toxic shock. Blood cultures positive for group A streptococcus	Contamination of multidose vaccine vials
Chi Thuong et al.65	M/13/12	MMR	Two children vaccinated with MMR, one died and one had neurological sequelae. Varicella vaccinated child recovered.	Contamination originating from vaccinator
Rutishauser et al.99	F/5yrs	Tetanus toxoid	Toxic shock syndrome	Contamination originating from vaccinator
Italiano et al.100	F/49yrs	Varicella	Streptococcal toxic shock syndrome	Unknown source of Infection
VAERS	F/11yrs	Hepatitis A (Havrix®), Meningococcal conjugate (Menactra®), HPV (Gardasil®), Tdap (Boostrix®)	Necrotising fasciitis complicated by fatal GAS toxic shock syndrome	Group A streptococcus
VAERS	M/0.4yrs	DTaP-IPV/Hib (Pentacel®), 13-valent pneumococcal conjugate vaccine (Prevnar®)	Patient died due to toxic shock syndrome	Group A streptococcus
VAERS	No sex given/ 2.5yrs	Hepatitis A (Havrix®), 7-valent pneumococcal conjugate vaccine (Prevnar®)	Patient died due to toxic shock syndrome	Group A streptococcus
Consequently it would be difficult to defend a case of sepsis if skin preparation was omitted unless the risk of this very low prevalence event was adequately explained to the patient and documented prior to vaccine administration.

Cellulitis, a syndrome of uncertain microbiological etiology, was the major event post parenteral vaccination in this review, 1011/1534 (65.9%). In a review of prospective and retrospective laboratory studies of the 16% of patients with positive needle aspirate and/or punch biopsy cultures from intact skin, the ratio of Staphylococcus aureus to group A streptococcus was almost 2:1 (51% : 27%).

This trend was reversed when microbiological diagnosis was made with blood culture and serology, (anti-streptolysin O (ASOT) and anti-DNase B) (beta haemolytic streptococcus 57–75% and 70% respectively).

A Kaiser Permanente of Northern California study of the microbiology of skin and soft tissue infections (2006–2009) held beta haemolytic streptococci accounted for 9% of cultured cellulitis and abscess.

In the presented review, GAS accounted for 13.5% of cultured cellulitis and abscesses when mixed growth culture with Staphylococcus aureus were combined.

Cutaneous tuberculosis can be classified as, inoculation tuberculosis from an exogenous source, tuberculosis from an endogenous source and haematogenous tuberculosis.

In this review Mycobacterial infection was dominant in the infectious abscess post vaccination group, 254/307 (82.7%), 167 cases due to Mycobacterium tuberculosis and 87 cases due to rapid growing mycobacteria (Mycobacterium chelonae 47 and Mycobacterium fortuitum 40). These infections are “inoculation” tuberculosis due to inadequately sterilised needles in the M tuberculosis group and probable use of contaminated tapwater, the major reservoir of rapidly growing mycobacteria (RGM) in the cluster of cases of Mycobacterium chelonae and Mycobacterium fortuitum.

A cost benefit analysis for skin disinfection with 70% isopropyl alcohol swabs can be made for cellulitis from the data collated in this review.

The prevalence of cellulitis in the 6 randomized, controlled trials collated in this review ranged from 1/143 to 1/22,070 infections with the mean being 1/5290 injections. If the 2 extreme outliers are excluded then mean prevalence of cellulitis is 1/2383 infections. The cost per swab is 2.2 c USA and 2.9c Australian.

As decontamination rates after swabbing with isopropyl alcohol have varied from 47% to 77%, with the former measurement made after injection, a mean effectiveness of swabbing of 66% would seem to be acceptable with this presumably translating into a similar rate of reduction of injection site cellulitis.

The cost of swabbing 2383 patients is $52.5 USA and $69.1 Australia.

The cost of managing a case of cellulitis includes outpatient and inpatient components. The outpatient component is $37.05 standard consultation (concession card holders) and $68 (private billing) jwith $6.10 to $10 respectively for a course of Cephalexin in Australia. In the USA the consultation charge would be $10–50 for insured patients and $50–200 for uninsured patients respectively with $7 for a course of Cephalexin.

An inpatient component is added to the cost of managing cellulitis as 4–7% of these patients require hospital admission. In the USA this is costed at between $6,000 to $25,000 while in Australia (2011–2012) this was costed at an average of $3800 with a range of $1900 to $4000 for major metropolitan hospitals and at an average of $4000 (range 2700 to 5300) for major regional hospitals. If this is averaged at $4000 per admission in 2016 and the mean rate of admission for cellulitis is also averaged at 5.5% then the increment of cost added to the care of all cases of cellulitis is $220.

The total cost per patient for the management of cellulitis in Australia is thus $263.15 and $298 for concession card holders and privately billed patients respectively and as 66% of patients are protected against cellulitis by swabbing the cost saved per patient is $173.6 and $196.7 for these groups.

The cost-benefit for skin disinfection prevention of cellulitis is the cost saved per case ($173.6 and $196.7) minus the cost of swabbing to prevent 1 case of cellulitis (2.9 c × 2383 = $69.1), $104.5 and $127.6. This significant cost-benefit takes no account of indirect costs such as loss of income.

Evidence based medicine has been championed as a paradigm which results in improved medical practice. However, it is evident from the body of data collated in this review that very large randomized trials would be needed to adequately address the issue of skin disinfection prior to vaccine administration and the prevention of sepsis.

Consequently, a new paradigm might be evoked to cover this clinical issue, namely the use of a very low cost intervention (disposable skin swab) to prevent a very low prevalence event (sepsis related to parenteral vaccination) of high cost (medical attention including hospitalisation with morbidity/ mortality).

Methods

Data for this review were sought from the following databases: Medline via Ovid (1996 to present), Embase via Ovid (1980 to present, Cochrane Central Register of Controlled Trials (CENTRAL), Cumulative Index to Nursing and Allied Health Literature (CINAHL) via EBSCO (1982 to present), using search terms and their word variants; “cellulitis,” “infected abscess formation,” “necrotizing fasciitis,” “pyomyositis,” “osteomyelitis,” “septic arthritis,” “bacteraemia,” “sepsis” and “toxic shock syndrome” and “vaccine administration,” “vaccine studies,” “vaccine trials” and “post marketing vaccine safety.”

Additional data were obtained by hand searching journals for “safety data” and “vaccine studies/trials.” The following journals were searched for these data from the date in parentheses to December 2015; Acta Paediatrica (1998), Acta Tropica (1989), American Journal of Medicine (1946), American Journal of Public Health (1971), American Journal of Tropical Medicine and Hygiene (1998), Annals of Internal Medicine (1960), Archives of Diseases of Child Health (1926), Bio Drugs (1998), Biologicals (1990), British Medical Journal (1991), Canadian Medical Association Journal (1911), Clinical Infectious Diseases (1999), Clinical Therapeutics (1995), Clinical and Vaccine Immunology (2006), European Journal of Clinical Microbiology and Infectious Diseases (1997), European Journal of Pediatrics (1997), Infection and Immunity (1970), Infection (1997), International Journal of Infectious Diseases (1996), Journal of American Medical
Association (1983), Journal of Hygiene (1903), Journal of Infectious Disease (1999), Journal of Medical Microbiology (1996), Journal of Pediatrics and Childhood (1998), Journal of Pediatrics (1999), Journal of Travel Medicine (1997), Journal of Tropical Pediatrics (1996), Lancet (1990), Medical Journal of Australia (2004), New England Journal of Medicine (1993), Pediatrics (1966), Pediatric Infectious Diseases Journal (1995), Public Health (1995), Scandinavian Journal of Infectious Disease (1997), Transactions of the Royal Society of Tropical Medicine and Hygiene (1920) and Vaccine (1983). Bibliographies of all relevant publications obtained by these searches were then searched for additional data.

The Vaccine Adverse Events Reporting System (VAERS) database November 2015 was searched manually by the author for code 10075095 (administration site cellulitis), code 10007882 (cellulitis), code 10007921 (cellulitis staphylococcal), code 10007922 (cellulitis streptococcal) and code 10050057 (injection site cellulitis), code 10022044 (injection site abscess), code 10041917 (staphylococcal abscess), code 10042343 (subcutaneous abscess), code 10069556 (vaccination site abscess), code 10028885 (necrotising fasciitis), code 10028887 (necrotising fasciitis staphylococcal), code 10021918 (infective myositis), code 10028653 (myositis), code 10037652 (pyomyositis), code 10031252 (osteomyelitis), code 10031253 (osteomyelitis acute), code 10031256 (osteomyelitis chronic), code 10064250 (staphylococcal osteomyelitis), code 10053555 (arthritis bacterial), code 10060968 (arthritis infective), code 10064111 (injection site inflammation), code 10040059 (septic arthritis haemophilus), code 10067323 (septic arthritis streptococcal); code 10003997 (bacteraemia), code 10058922 (haemophilus bacteraemia), code 10058859 (pneumococcal bacteraemia), 10051017 (staphylococcal bacteraemia), code 10058922 (haemophilus bacteraemia), code 10058859 (pneumococcal bacteraemia), 10051017 (staphylococcal bacteraemia), code 10014665 (endocarditis), code 10014666 (endocarditis bacterial), code 10014684 (endocarditis staphylococcal); code 10058975 (haemophilus sepsis), code 10054047 (pneumococcal sepsis), code 10056430 (staphylococcal sepsis), code 10048960 (streptococcal sepsis); code 10044248 (toxic shock syndrome), code 10044250 (toxic shock syndrome staphylococcal), code 10044251 (toxic shock syndrome streptococcal) AND all vaccine products. Data were included from these search domains if adverse events were reported or reviewed by a healthcare professional and if the vaccine name was provided.

Abbreviations

NITAGs National Immunization Technical Advisory Groups
VAERS Vaccine Adverse Effect Reporting System
VSD Vaccine Safety Datalink
KPNW Kaiser Permanente North West
PCTB Primary Cutaneous Tuberculosis
RGM Rapid Growing Mycobacteria
MRSA Methicillin Resistant Staphylococcus Aureus
SIRS Systemic Inflammatory Response Syndrome
GAS Group A Streptococcus

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

References

[1] McDonnell G. Sterilization and disinfection. Encyclopaedia of Microbiology (3rd edition) 2009; 529-48.
[2] Darouiche RO, Wall MJ, Itani KMF, Otterson MF, Webb AL, Carrick MM, Miller HJ, Awad SS, Crosby CT, Mosier MC, et al. Chlorhexidine – Alcohol versus Povidine - Iodine for surgical-site antisepsis. N Engl J Med 2010; 362:18-26; PMID:20054046; http://dx.doi.org/10.1056/NEJMoa0810988
[3] Chaiyakunapruk N, Veenstra DL, Lipsky B, Saint S. Chlorhexidine compared with povidine-iodine solution for vascular catheter-site care. A meta-analysis. Ann Intern Med 2002; 136:792-801; PMID:12044127; http://dx.doi.org/10.1073/pnas.0003-4819-136-11-200206040-0007
[4] Hall KK, Lyman JA. Updated review of blood culture contamination. Clin Micro Rev 2006; 19:788-802; PMID:17041144; http://dx.doi.org/10.1128/CMR.00062-05
[5] Lee CK, Ho PL, Chan NK, Mak A, Hong J, Lin CK. Impact of donor arm skin disinfection on the bacterial contamination rate of platelet concentrates. Vox Sang 2002; 83:204-8; PMID:12366700; http://dx.doi.org/10.1046/j.1423-0410.2002.00219.x
[6] Recomendaciones nacionales de Vacunacion, Ministerio de Salud, Argentina 2012.
[7] Canadian Immunization Guide Part 1. Public Health Agency of Canada 2013.
[8] Immunization Guidelines, Dubai Health Authority, Department of Public Health & Safety. Health Policy and Strategy Sector
[9] IAP Committee on Immunization. Indian Academy of Pediatrics Mumbai, India 2012.
[10] Immunisation Handbook. Epidemiology Unit, Ministry of Health, Sri Lanka 2012.
[11] Centers For Disease Control and Prevention. General recommendations on Immunization: Recommendations of the Advisory Committee on Immunization Practices (ACIP) MMWR 2011; 60(RR02):1-60.
[12] The Australian Immunization Handbook. National Health and Medical Research Council 2014.
[13] Immunisation against Infectious Disease (The Green Book), Department of Health, London, UK 2013.
[14] Immunisation Guidelines, HSE National Immunisation Office, Dublin, Ireland 2014.
[15] New Zealand Immunisation Handbook. Ministry of Health, Wellington, New Zealand 2014.
[16] Manual de Normas e Procedimentos para Vacinação, Ministerio da Saude, Brazil. 2014
[17] Hutin Y, Hauer A, Chiarello L, Catlin M, Stiwhel B, Ghebrehiwet T, Garner J. Injection Safety Best Practices Development Group. Best infection control practices for intradermal, subcutaneous and intramuscular needle injections. Bull WHO 2003; 81:491-500; PMID:12973641
[18] Elek SD, Conen PE. The virulence of Staphylococcus pyogenes for man. A study of the problems of wound infection. Brit J Exp Path 1957; 38:573-86; PMID:13499821
[19] Del Mar CB, Glasziou PP, Spinks AB, Sanders SL. Is Isopropyl alcohol swabbing before injection really necessary? Med J Aust 2001; 174:306; PMID:11297122
[20] Sutton CD, White SA, Edwards R, Lewis MH. A prospective controlled trial of the efficacy of isopropyl alcohol wipes before venesection in surgical patients. Ann R Coll Surg England 1999; 81:183-6.
[21] Grabe N, Jakoben C-JB, Damm MD. Skin disinfection before intravenous cannulation – intraluminal contamination after disinfection with 70% isopropyl alcohol. Acta Anaesthesiol Scand 1985; 29:764-6; PMID:8062876; http://dx.doi.org/10.1111/j.1399-6576.1985.tb02297.x
[22] Koivisto VA, Felig P. Is skin preparation necessary before insulin nouse cannulation? Lancet 1978; 1072-3; PMID:77369; http://dx.doi.org/10.1016/S0140-6736(78)90916-9.
[23] Såkapal TV. Sample size estimation in clinical trial. Perspect Clin Res 2010; 1:67-9; PMID:21829786.
[24] Sherman T, Ferguson J, Davis W, Russo M, Argintar E. Does the use of ultrasound affect contamination of musculoskeletal injection sites. Clin Orthop Relat Res 2015; 473:351-7; PMID:25163689; http://dx.doi.org/10.1007/s11999-014-3903-4.
[25] Reichel M, Heisig P, Kohlmann T, Kampf G. Alcohol for skin antisepsis at clinically relevant skin sites. Antimicrob Agents Chemother 2009; 53:4778-82; http://dx.doi.org/10.1128/AAC.00582-09.

[26] Khawaja RA, Sikander R, Qureshi R, Jareno RJM. Routine skin preparation with 70% isopropyl alcohol swabs: Is it necessary before injection? Quasi study. IJUMHS 2013; 12:109-14.

[27] Chandela S, Penazetti MA, Crandall P, Cavagnino NE, Nio L, Di Mario S, Dragosevic V, Groth N, Magrini N; SaFoH1N1 working group. An early (3–6 weeks) active surveillance study to assess the safety of pandemic influenza vaccine, Focetria, in a province of Emilia – Romagna region, Italy – part one. Vaccine 2013; 31:1431-7; PMID:22766247; http://dx.doi.org/10.1016/j.vaccine.2012.06.030.

[28] Hatz C, Beck B, Steffen R, Genton B, d’Acremont V, Louton L, Hartmann K, Herzog C. Real-life versus package insert: a post-marketing study on adverse-event rates of the virosomal hepatitis A vaccine Epaxal® in healthy travellers. Vaccine 2011; 29:5000-6; PMID:21569813; http://dx.doi.org/10.1016/j.vaccine.2011.04.099.

[29] Halperin S, Kohl KS, Gidudu J, Ball L, Hammer SJ, Heath P, Hennig R, Labadie J, Rothstein E, Schuind A, et al. Cellulitis at injection site: Case definition and guidelines for collection, analysis and presentation of immunization safety data. Vaccine 2007; 25:5830-20; PMID:17548135; http://dx.doi.org/10.1016/j.vaccine.2007.04.059.

[30] Goetsch WG, Bousves Ravinck JN, Harings RMC. Burden of illness of bacterial cellulitis and erysipelas of the leg in the Netherlands. JEADV 2006; 20:834-9; PMID:16898907.

[31] McCall N, Harlow D, Dayhoff D. Rates of hospitalization for ambulating care sensitive conditions in the Medicare + Choice population. Health Care Financ Rev 2001; 22:127-45; PMID:11312387; http://dx.doi.org/10.2139%2Fhcr.2001.22.127.

[32] Bags J, Lee J, Lewis E, Fowler G, Benson P, Lieu T, Naylor A, Klein NP, Baxter R, Belongia E, et al. The Vaccine Safety Datalink: a model for monitoring immunization safety. Pediatrics 2011; 127:S45-3; PMID:21502240; http://dx.doi.org/10.1542/peds.2010-1724H.

[33] Jackson LA, Yu O, Nelson JC, Dominguez C, Peterson D, Baxter R, Hambidge SJ, Naylor KE, Belongia EA, Nordin JD, et al. Injection site and risk of medically attended local reactions to acellular pertussis vaccine. Pediatrics 2011; 127:e581-7; PMID:21300679; http://dx.doi.org/10.1542/peds.2010-1886.

[34] Jackson LA, Yu O, Nelson J, Belongia EA, Hambidge SJ, Baxter R, Naylor A, Nordin J, Bags J, Iskander J. Risk of medically attended local reactions following diphtheria toxoid containing vaccines in adolescents and young adults: A Vaccine Safety Datalink study. Vaccine 2009; 27:4912-6; PMID:19567245; http://dx.doi.org/10.1016/j.vaccine.2009.06.038.

[35] Jackson LA, Yu O, Belongia EA, Hambidge SJ, Nelson J, Baxter R, Naylor A, Gay C, Nordin J, Bags J, et al. Frequency of medically attended adverse events following tetanus and diphtheria toxoid vaccine in adolescents and young adults: a Vaccine Safety Datalink study. BMC Infect Dis 2009; 9:323-30; http://dx.doi.org/10.1186/1471-2334-9-165.

[36] Jackson LA, Nelson JC, Whitney CG, Neuzil KM, Belongia EA, Nordin JD, et al. Safety of trivalent inactivated influenza vaccine in children aged 24–59 months in the Vaccine Safety Datalink. J Infect Dis 2010; 202:1076-87; PMID:20735271; http://dx.doi.org/10.1086/656190.

[37] Tregnaghi M, Lopez P, Rocha C, Rivera L, David M-P, Ruttimann R, Schuerman L. A new DTPw-HB/Hib comination vaccine for primary and booster vaccination of infants in Latin America. Rev Panam Salud Publica 2006; 19:179-88; PMID:16640847; http://dx.doi.org/10.1590/S0276-03742006000600006.

[38] Abdelnour A, Silas PE, Lamas MRV, Aragon CFG, Chiu N-C, Chiu C-H, Acuna TH, Castrejon Tde L, Izu A, Odrolini T, et al. Safety of a quadrivalent meningococcal serogroups A, C, W and Y conjugate vaccine (MenaCwYCRM) administered with routine infant vaccinations: results of an open-label, randomized, phase 3b controlled study in healthy infants. Vaccine 2014; 32:965-72; PMID:24397906; http://dx.doi.org/10.1016/j.vaccine.2013.12.034.

[39] Klopfner SO, Stek JE, Petreccz M, Reisenger KS, Black SB, Goveia MG, Nicholson O, Gardner JL, Grosso AD, Brown ML, et al. Analysis of safety data in children after receiving two doses of ProQuad® (MMRV). Vaccine 2014; 32:7154-60; PMID:22519563; http://dx.doi.org/10.1016/j.vaccine.2014.08.067.

[40] Rivera Medina DM, Valencia A, de Velasquez A, Huang L-M, Prymula R, Garcia-Sicilia J, Romero L, MD, Descamps D, Brown ML, et al. Safety and immunogenicity of the HPV-16/18 AS04-adjuvanted vaccine: A randomised, controlled trial in adolescent girls. J Adolec Health 2010; 46:414-21; http://dx.doi.org/10.1016/j.jadohealth.2010.02.006.

[41] Tseng HF, Liu A, Sy L, Marcy SM, Fireman B, Weintraub E, Bags J, Weinmann S, Baxter R, Nordin JD, et al. Safety of zoster vaccine in adults from a large managed care cohort: A Vaccine Safety Datalink study. J Intern Med 2012; 271:510-20; PMID:22026504; http://dx.doi.org/10.1111/j.1365-2996.2011.02474.x.

[42] Glanz JM, Newcomer SR, Hambidge SJ, Daley MF, Narwane K, Xu S, Lee GM, Bags J, Klein NP, Nordin JD, et al. Safety of trivalent inactivated influenza vaccine in children aged 24–59 months in the Vaccine Safety Datalink. Arch Pediatr Adolesc Med 2011; 165:749-55; PMID:21801067; http://dx.doi.org/10.1001/archpediatrics.2011.112.

[43] Klein NP, Hansen J, Chao C, Velicer C, Emery M, Slezak J, Lewis N, Deosaransingh K, Sy L, Ackerson B, et al. Safety of quadrivalent human papillomavirus vaccine administered routinely to females. Arch Pediatr Adolesc Med 2012; 46:1140-8; PMID:23027469; http://dx.doi.org/10.1001/archpediatrics.2012.1451.

[44] Kohl KS, Ball L, Gidudu J, Hammer SJ, Halperin S, Heath P, Hennig R, Labadie J, Rothstein E, Schuind A, et al. Abscess at injection site: case definition and guidelines for collection, analysis and presentation of immunization safety data. Vaccine 2007; 25:5821-38; PMID:17540845; http://dx.doi.org/10.1016/j.vaccine.2007.04.057.
I. F. COOK

Ouandaogo C-R, Yameogo TM, Diomande FVK, Sawadogo C, Ouedraogo B, Ouédraogo-Traoré R, et al. Adverse events following immunization with a new conjugate vaccine against group A meningococcus in Niger. September 2010. Vaccine 2012; 30:5229-34; PMID:22799955; http://dx.doi.org/10.1016/j.vaccine.2012.06.006.

Ouedraogo C-R, Yameogo TM, Diomande FVK, Sawadogo C, Ouedraogo B, Ouédraogo-Traoré R, et al. Adverse events following immunization during mass vaccination campaigns at first introduction of a meningococcal A conjugate vaccine in Burkina Faso 2010. Vaccine 2012; 30:B46-51; PMID:22230584; http://dx.doi.org/10.1016/j.vaccine.2011.12.112.

Bentsi-Enchill AD, Zongo I, Khamassi S, Pless R, Thombiani R, Tiendrebeogo S, Nelson CB, Duclos P. Monitoring of adverse events during the 2003 mass immunization campaign with a trivalent meningococcal A/C/W135 polysaccharide vaccine in Burkina Faso. Vaccine 2007; 25:A72-8; PMID:17544552; http://dx.doi.org/10.1016/j.vaccine.2007.04.045.

Borghans JGA, Stanford JL. Mycobacterium chelonae in abscesses requiring surgical drainage in a tertiary children hospital in Singapore. J Pediatr Infect Dis 2010; 5:139-47.

Bentsi-Enchill AD, Zongo I, Khamassi S, Pless R, Thombiani R, Tiendrebeogo S, Nelson CB, Duclos P. Monitoring of adverse events during the 2003 mass immunization campaign with a trivalent meningococcal A/C/W135 polysaccharide vaccine in Burkina Faso. Vaccine 2007; 25:A72-8; PMID:17544552; http://dx.doi.org/10.1016/j.vaccine.2007.04.045.

Smeets L, Bous A, Heymans O. Necrotizing fasciitis: case report and review of literature. Acta Chir Belg 2007; 107:29-36; PMID:17405595; http://dx.doi.org/10.1080/00015458.2007.11680007.

Sokhey J. Adverse events following immunization: 1990. Indian Pediatr 1991; 28:593-607; PMID:1748507.

Berkane Y, Worku A, Demissie M, Tesfaye N, Asefa N, Aniemaw W, Weldearegawi B, Kebede Y, Shiferaw T, Worku A, et al. Children who received PCV-10 vaccine from a Two-dose vial without preservative are not more likely to develop injection site abscesses compared with those who received pentavalent (DPT-Hepl B-Hib) vaccine: a longitudinal multi-site study. PLoS ONE 9(6):197376; PMID:24896582; http://dx.doi.org/10.1371/journal.pone.0097376.

Sokhey J. Adverse events following immunization: 1990. Indian Pediatr 1991; 28:593-607; PMID:1748507.

Bentsi-Enchill AD, Zongo I, Khamassi S, Pless R, Thombiani R, Tiendrebeogo S, Nelson CB, Duclos P. Monitoring of adverse events during the 2003 mass immunization campaign with a trivalent meningococcal A/C/W135 polysaccharide vaccine in Burkina Faso. Vaccine 2007; 25:A72-8; PMID:17544552; http://dx.doi.org/10.1016/j.vaccine.2007.04.045.

Burton DC, Bigogo GM, Audi AO, Williamson J, Munge K, Wafuja J, et al. Risk of infection-site abscess among infants receiving a preservative-free, two-dose vial formulation of pneumococcal conjugate vaccine in Kenya. PLoS ONE 1896; 10(10):e014.

Smeets L, Bous A, Heymans O. Necrotizing fasciitis: case report and review of literature. Acta Chir Belg 2007; 107:29-36; PMID:17405595; http://dx.doi.org/10.1080/00015458.2007.11680007.

Pitta GBB, Dantas JM, Pitta MR, Raposo RC, Seganfredo IB, Gomes MM. Necrotizing fasciitis after influenza vaccine: case report. J Vasc Bras 2011; 10:185-8; http://dx.doi.org/10.1590/S1677-54492011000200017.

Senaran H, Karalezli N, Ogun TC. A very uncommon complication following vaccination: necrotizing fasciitis and myonecrosis: case report. Turk Klinikerleri J Med Sci 2010; 30:384-6; http://dx.doi.org/10.3336/medsci.2008-8341.

Thapa R, Mallick D, Biswas B. Necrotizing fasciitis following BCG vaccination. Indian Pediatr 2011; 48:235-7; PMID:21478557.

Okeniyi J, Adegbehingbe O, Dedeko I, Olorunisile O, Ogunesi T, Oginni LM. Post-BCG axillary necrotizing fasciitis. Internet J Pediatrics Neonatalol 2005; 6(1).
patients. Clin Microbiol Infect 2012; 18:E355-61; PMID:22784359; http://dx.doi.org/10.1111/j.1469-0691.2012.03964.x.

[93] Fowler VG, Olsen MK, Corey GR, Woods CW, Cabell CH, Reller LB, et al. Clinical identifiers of complicated Staphylococcus aureus bacteraemia. Arch Intern Med 2003; 163:2066-72; http://dx.doi.org/10.1001/archinte.163.17.2066.

[94] Chae SH, Kim DH, Kim JW, Kim YT, Kim JB, Choi YS. Multiple subcutaneous abscesses complicating Staphylococcus aureus bacteraemia associated with BCG vaccination. Soonchunhyang Med Sci 2013; 19:133-5; http://dx.doi.org/10.15746/smns.13.030.

[95] Fullerton HJ, Hills NK, Elkind MS, Dowling MM, Wintermark M, Glaser CA, Tan M, Rivkin MJ, Titomanlio L, Barkschov AJ, et al. Infection, vaccination and childhood arterial ischemic stroke. Neurology 2015; 85:1459-66; PMID:26423434; http://dx.doi.org/10.1212/WNL.0000000000002065.

[96] Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International sepsis definitions conference. Intens Care Med 2003; 29:530-8; http://dx.doi.org/10.1007/s00134-003-1662-x.

[97] Sood DK, Kumar S, Singh S, Sokhey J. Adverse reactions after measles vaccination of a health care worker. Med J Aust 2009; 190:451-3; PMID:19374621.

[98] Rutishauser J, Funke G, Lutticken R, Ruef C. Streptococcal toxic shock syndrome in two patients infected by a colonized surgeon. Clin Microbiol Infect 2012; 18:E355-61; PMID:22784359; http://dx.doi.org/10.1111/j.1469-0691.2012.03964.x.

[99] Chambers HF. Cellulitis by any other name. Clin Infect Dis 2013; 56:1763-4; PMID:23457076; http://dx.doi.org/10.1093/cid/cit126.

[100] Italiano CM, Toi CS, Chan SP, Dwyer DE. Prolonged varicella virae-mia and streptococcal toxic shock syndrome following varicella vaccination of a health care worker. Med J Aust 2009; 190:451-3; PMID:19374621.

[101] Kirby JP, Mazzuki JE. Prevention of surgical site infection. Surg Clin N Am 2009; 89:365-89; PMID:19281889; http://dx.doi.org/10.1016/j.suc.2009.01.001.

[102] Wiley AM, Ha’eri GB. Routes of infection: a study using “tracer particles” in the orthopaedic operating room. Clin Orthop Relat Res 1979; 139:150-5; PMID:455832.

[103] Li GQ, Guo FF, Ou Y, Dong GW, Zhou W. Epidemiology and outcomes of surgical site infections following orthopedic surgery. Am J Infect Control 2013; 41:1268-71; PMID:23890741; http://dx.doi.org/10.1016/j.ajic.2013.03.305.

[104] Yavuz SS, Tarcin O, Ada S, Dincer F, Toraman S, Birbudak S, Eren E, Yekeler I. Incidence, aetiology and control of sternal site infections. J Hosp Infect 2013; 85:206-12; PMID:24035582; http://dx.doi.org/10.1016/j.jhin.2013.07.010.

[105] Babcock HM, Matava MJ, Fraser V. Post arthroscopy surgical site infections: review of the literature. Clin Infect Dis 2002; 34:65-71; PMID:11731947; http://dx.doi.org/10.1086/324627.

[106] Diamond MR, O’Brien-Malone A. Vaccination, consent and multidose vials. Med J Aust 2011; 194:414-6; PMID:21495943.

[107] Chambers HF. Cellulitis by any other name. Clin Infect Dis 2013; 56:1763-4; PMID:23457076; http://dx.doi.org/10.1093/cid/cit126.

[108] Chira S, Miller LG. Staphylococcus aureus is the most common identified cause of cellulitis: A systematic review. Epidemol Infect 2010; 138:313-7; http://dx.doi.org/10.1017/S0950268809990483.

[109] Gunderson CG, Martinello RA. A systematic review of bacteremias in cellulitis and erysipelas. J Infect 2012; 64:148-55; PMID:22101078; http://dx.doi.org/10.1016/j.jinf.2011.11.004.

[110] Jeng A, Beheshti M, Li J, Nathan R. The role of β-hemolytic streptococi in causing diffuse, non-culturable cellulitis. Medicine 2010; 89:217-26; PMID:20616661; http://dx.doi.org/10.1097/MD.0b013e3181e8d635.

[111] Ray GT, Suaya JA, Baxter R. Microbiology of skin and soft tissue infections in the age of community-acquired methicillin-resistant Staphylococcus aureus. Diag Microbiol Infect Dis 2013; 76:24-30; http://dx.doi.org/10.1016/j.diagmicrobio.2013.02.020.

[112] Van Zyl L, du Plessis J, Viljoen J. Cutaneous tuberculosis overview and current treatment regimens. Tuberculosis 2015; 95:629-38; http://dx.doi.org/10.1016/j.tube.2014.12.006.

[113] www.walmart.com/ip/Curad-Sterile-Alcohol-Swabs-200-count.

[114] https://www.priceline.com.au/kendall-webcol-skin-cleansing-alcohol-swabs-200-pack.

[115] How much does cellulitis treatment cost? http://healthcosthelper.com/Health&PersonalCare>DermatologyandSkinCare>Cellulitis Treatment.

[116] Hospital performance. Costs of acute admitted patients in public hospitals in 2011-12. www.myhospitals.gov.au/our-reports/cost-of-acute-admitted-patients-in-public-hospitals-2011-12.

[117] Guyatt G, Cairns J, Churchill D, Cook D, Haynes B, Hirsh J, et al. Evidence–based medicine: a new approach to teaching the practice of medicine. JAMA 1992; 268:2420-5; PMID:1404801; http://dx.doi.org/10.1001/jama.1992.03490170092032.

[118] Eavey RB, Dye A, Heitger F, Michielon J, Watters P, Yeh C, et al. Evidence–based medicine: a new approach to teaching the practice of medicine. JAMA 1992; 268:2420-5; PMID:1404801; http://dx.doi.org/10.1001/jama.1992.03490170092032.

[119] Kault D. False negatives in evidence based medicine. J Med Stat Inform 2014; 2:5; http://dx.doi.org/10.7243/2053-7662-2-5.