Determinant of Laplacian on a non-compact 3-dimensional hyperbolic manifold with finite volume

Andrei A. Bytsenko

State Technical University, St. Petersburg 195251, Russia

Guido Cognola and Sergio Zerbini

Dipartimento di Fisica, Università di Trento and Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Trento, Italia

September 1996

Abstract: The functional determinant of Laplace-type operators on the 3-dimensional non-compact hyperbolic manifold with invariant fundamental domain of finite volume is computed by quadratures and making use of the related terms of the Selberg trace formula.

PACS numbers: 02.30.Sa, 02.70.Hm

1 Introduction

In the last years there has been a lot of investigations about functional determinants on topologically nontrivial manifolds. Most of them have been concerned with Riemann flat or spherical spaces (see for exampleRefs. [1, 2] and references therein) or orbifold factors of spheres [3, 4]. The case of compact hyperbolic manifolds has also been considered (see for example Refs. [5, 6, 7, 8, 9, 10, 11, 2, 12, 13]). In this case one is dealing with 2-dimensional H^2/Γ and 3-dimensional H^3/Γ compact hyperbolic manifolds, H^N being the Lobachevsky space and Γ a discrete group of isometries acting on H^N and containing loxodromic, hyperbolic and elliptic elements (see Refs. [14, 15, 16, 17, 12]). Such manifolds are relevant in string theory and in cosmological scenarios.

For non-compact Riemannian surfaces of finite area, the functional determinant of Laplace operator has been computed in Refs. [18, 19]. In this paper we extend the analysis to the 3-dimensional case, considering a Laplace-type operator acting on functions in a non-compact, 3-dimensional manifold H^3/Γ. In our example, the discrete subgroup of isometry can be chosen in the form $SL(2,\mathbb{Z} + i\mathbb{Z})/\{\pm Id\}$, Id being an isolated identity element of Γ. It is generated by parabolic mappings and is associated with a non-compact manifold having an invariant fundamental domain of finite volume.
Making use of the Selberg trace formula, we shall investigate the asymptotic expansion of the heat kernel trace \(\text{Tr} \exp(-tL) \), \(L \) being a Laplace-like operator. We shall find that the presence of parabolic elements in \(\Gamma \) leads to the appearance of logarithmic factor in the small \(t \) asymptotic expansion. For non-compact Riemannian surfaces of finite area, this fact has been observed in Refs. [18,19]. In this case the meromorphic continuation of the \(\zeta \)-function has been shown to be regular at \(s = 0 \), thus the determinant of the Laplacian has been evaluated by means of the standard \(\zeta \)-function regularisation \([20,21]\). In the 3-dimensional case, we shall show that \(\zeta(s|L) \) is still a meromorphic function regular at \(s = 0 \), allowing the use of \(\zeta \)-function regularisation.

In the computation of functional determinant of Laplacian on the generalized cone, the appearance of a non-standard logarithmic term has been recently pointed out in Ref. [22] and this fact was first noted by Cheeger \([23]\) and others authors \([24,25]\). However, in Ref. [22] the things have been arranged in order to avoid the logarithmic term, by dealing with a conformally coupled free massless field. A similar fact has been recently shown to happen in an ultrastatic space-time of the form \(\mathbb{R} \times H^3/\Gamma \) \([13]\).

The contents of the paper are the following. In Section 2 we summarize some properties of the combined contributions to the Selberg trace formula we shall use in the paper. In Section 3 the heat kernel trace and the \(\zeta \)-function for a Laplace type operator are studied by making use of the trace formula. In Section 4 the functional determinant is evaluated by means of the quadrature method. Finally we end with some conclusions in Section 5.

2 Fundamental domain of the discrete group \(SL(2,\mathbb{Z}+i\mathbb{Z})/\{\pm \text{Id}\} \) and the Selberg trace formula associated with the cusp form

Here we summarise the geometry and local isometry associated with a simple 3-dimensional complex Lie group. We shall consider discrete subgroup \(\Gamma \subset SL(2,\mathbb{C})/\{\pm \text{Id}\} \), where \(\text{Id} \) is the \(2 \times 2 \) identity matrix and is an isolated element of the \(\Gamma \). The group \(\Gamma \) acts discontinuously at the point \(z \in \mathbb{C} \), \(\mathbb{C} \) being the extended complex plane. We recall that a transformation \(\gamma \neq \text{Id}, \gamma \in \Gamma \), with

\[
\gamma z = \frac{az + b}{cz + d}, \quad ad - bc = 1, \quad (\text{Tr} \; \gamma)^2 = (a + d)^2, \quad a, b, c, d \in \mathbb{C}, \tag{2.1}
\]

is called elliptic if \((\text{Tr} \; \gamma)^2 \) satisfies \(0 \leq (\text{Tr} \; \gamma)^2 < 4 \), hyperbolic if \((\text{Tr} \; \gamma)^2 > 4 \), parabolic if \((\text{Tr} \; \gamma)^2 = 4 \) and loxodromic if \((\text{Tr} \; \gamma)^2 \in \mathbb{C} \setminus [0,4] \). The classification of these transformations can also be based on the properties of their fixed points, the number of which is one for the parabolic transformations and two for all other cases.

The element \(\gamma \in SL(2,\mathbb{C}) \) acts on \(z = (y,w) \in H^3, w = x_1 + ix_2 \) by means of the following linear-fractional transformation:

\[
\gamma z = \left(\frac{y}{cw + d^2 + |c|^2y^2}, \frac{(aw + b)(cw + d) + acy^2}{cw + d^2 + |c|^2y^2} \right). \tag{2.2}
\]

The isometric circle of a transformation \(\gamma \in SL(2,\mathbb{C})/\{\pm \text{Id}\} \) for which \(\infty \) is not a fixed point is defined to be the circle

\[
I(\gamma) = \{ z : |\gamma z| = 1 \}, \quad \text{or} \quad I(\gamma) = \{ z : |z + d/c| = |c|^{-1} \}, \quad c \neq 0. \tag{2.3}
\]

A transformation \(\gamma \) carries its isometric circle \(I(\gamma) \) into \(I(\gamma^{-1}) \).

The isometric fundamental domain of a Fuchsian group (Kleinian group without loxodromic elements) has the following structure: it is bounded by arcs of circles orthogonal to the invariant circle and consists either of two symmetric components or of a single component, while the mappings connecting its equivalent sides, generate the whole group. In many cases, it is more
The centralisers related to these representations read
\[\Gamma \]
The remaining conjugacy classes have the representatives in \(\infty \) has, within a conjugation, one maximal parabolic subgroup \(\Gamma \).
\[\gamma \]
is the ring of integer numbers. The element \(\gamma \in \Gamma \) will be identified with \(-\gamma\). The group \(\Gamma \) has, within a conjugation, one maximal parabolic subgroup \(\Gamma_\infty \). Thus, the fundamental domain related to \(\Gamma \) has one parabolic vertex and can be taken in the form \([26, 27]\)
\[F(\Gamma) = \{(y, w) : x_1^2 + x_2^2 + y^2 > 1, \ -\frac{1}{2} < x_2 < x_1 < \frac{1}{2}\} \] (2.4)

Remark. Let a free abelian group of isometries be generated by the two parabolic mappings
\[g_1(z) = z + 1, \quad g_2(z) = z + i, \] (2.5)
then, if we identify the faces of the polyhedron, Eq. (2.4), we get a manifold \(M(\Gamma) \) that is homeomorphic to a punctured torus \(S^1 \otimes S^1 \otimes [-\frac{1}{2}, \frac{1}{2}] = U_c \otimes S^1 \), where \(U_c = \{z : 0 < |z| \leq \frac{1}{2}\} \) is a punctured cylinder. It is turned into a hyperbolic manifold by removing the boundary \(\partial M(\Gamma) \), which is homeomorphic to the torus \(S^1 \otimes S^1 \).

Now we are ready to start the discussion of the Selberg trace formula, which can be constructed as an expansion in eigenfunctions of the automorphic Laplacian. To begin with, we assume that the group \(\Gamma \) is generated by parabolic mappings. Since the discrete group \(\Gamma \) has a cusp at \(\infty \) (\(c = 0 \)), each element of the stabiliser \(\Gamma_\infty \) is a translation. Computing the conjugacy class \(\{\gamma\}_\Gamma, \gamma \in \Gamma_\infty \) with \(\gamma \) different from identity, one easily gets

Proposition 1 Let
\[\gamma = \begin{pmatrix} 1 & n_1 + in_2 \\ 0 & 1 \end{pmatrix}, \quad n_1, n_2 \in \mathbb{Z}. \] (2.6)
The conjugacy class with representative \(\gamma \) consists in element \(\gamma \) and \(\gamma^{-1} \), where
\[\gamma^{-1} = \begin{pmatrix} 1 & -n_1 - in_2 \\ 0 & 1 \end{pmatrix}. \] (2.7)
The remaining conjugacy classes have the representatives in \(\Gamma_\infty \) of the form
\[\gamma_1 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad \gamma_2 = \begin{pmatrix} i & 1 \\ 0 & -i \end{pmatrix}, \quad \gamma_3 = \begin{pmatrix} i & -i \\ 0 & -i \end{pmatrix}, \quad \gamma_4 = \begin{pmatrix} i & 1 - i \\ 0 & -i \end{pmatrix}. \] (2.8)
The centralisers related to these representations read
\[\Gamma^\gamma = \begin{pmatrix} 1 & m_1 + im_2 \\ 0 & 1 \end{pmatrix}, \quad m_1, m_2 \in \mathbb{Z}, \] (2.9)
\[\Gamma^1 = \Gamma^{\gamma_1} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} i & 1 \\ 0 & -i \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \right\}, \]
\[\Gamma^2 = \Gamma^{\gamma_2} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} i & 1 \\ 0 & -i \end{pmatrix}, \begin{pmatrix} i & 0 \\ 2 & -i \end{pmatrix}, \begin{pmatrix} 1 & i \\ 2i & 1 \end{pmatrix} \right\}, \]
\[\Gamma^3 = \Gamma^{\gamma_3} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} i & -i \\ 0 & -i \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix}, \begin{pmatrix} i & 0 \\ 2i & -i \end{pmatrix} \right\}, \]
\[\Gamma^4 = \Gamma^{\gamma_4} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} i & 1 - i \\ 0 & -i \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 + i & -i \end{pmatrix}, \begin{pmatrix} 1 & -1 - i \\ 1 - i & -1 \end{pmatrix} \right\}. \]
Let us consider an arbitrary integral operator with kernel \(k(z, z') \). Invariance of the operator is equivalent to fulfillment of the condition \(k(\gamma z, \gamma z') = k(z, z') \) for any \(z, z' \in H^3 \) and \(\gamma \in PSL(2, \mathbb{C}) \). So the kernel of the invariant operator is a function of the geodesic distance between \(z \) and \(z' \). It is convenient to replace such a distance with the fundamental invariant of a pair of points \(u(z, z') = |z - z'|^2/yy' \), thus \(k(z, z') = k(u(z, z')) \). Let \(\lambda_i \) be the isolated eigenvalues of the self-adjoint extension of the Laplace operator and let us introduce a suitable analytic function \(h(r) \) and \(r_j^2 = \lambda_j - 1 \). It can be shown that \(h(r) \) is related to the quantity \(k(u(z, \gamma z)) \) by means of the Selberg transform. Let us denote by \(g(u) \) the Fourier transform of \(h(r) \), namely
\[
g(u) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-iru} h(r) dr . \tag{2.10}
\]

For one parabolic vertex let us introduce a subdomain \(F_Y \) of the fundamental region \(F(\Gamma) \) by means
\[
F_Y = \{ z \in F(\Gamma), z = \{ y, x \} | y \leq Y \} , \tag{2.11}
\]
where \(Y \) is a sufficiently large positive number.

Lemma 1 Suppose \(h(r) \) to be an even analytic function in the strip \(| Im r | < 1 + \varepsilon \ (\varepsilon > 0) \) and \(h(r) = O(1 + |r|^2)^{-2} \). Then for \(N = 3 \) the following formula holds [26]:
\[
\sum_j h(r_j) = \lim_{Y \to \infty} \left\{ \int_{F_Y} \sum_{\{ \gamma \} \in \Gamma} k(u(z, \gamma z)) \ d\mu(z) - \frac{1}{2\pi} \int_0^\infty h(r) \int_{F_Y} |E(z, 1 + ir)|^2 \ d\mu(z) \ dr \right\} , \tag{2.12}
\]

where \(d\mu(z) = y^{-3} dy dx_1 dx_2 \) is the invariant measure on \(H^3 \) and \(E(z, s) \) is the Eisenstein-Maass series associated with one cusp, namely
\[
E(z, s) = \sum_{\gamma \in (\Gamma/\Gamma_{\infty})} y^s(\gamma z) , \quad x_2(z) = Im z . \tag{2.13}
\]

The series (2.13) converges absolutely for \(Re s > 1 \) and uniformly in \(z \) on compact subset of \(H^3 \). All poles of \(E(z, s) \) are contained in the union of the region \(Re s < 1/2 \) and the interval \([1/2, 1]\) and those contained in such an interval are simple. Furthermore, for each \(s \), the series \(E(z, s) \) is a real analytic function on \(H^3 \), automorphic relative to the group \(\Gamma \) and satisfies the eigenvalues equation
\[
\Delta E(z, s) = s(s - 1)E(z, s) , \tag{2.14}
\]
\(\Delta \) being the Laplace operator. The asymptotic expansion of the second integral in Eq. (2.12) can be found with the help of Maass-Selberg relation [26]. For \(Y \to \infty \) one has
\[
\frac{1}{2\pi} \int_0^\infty h(r) \int_{F_Y} |E(z, 1 + ir)|^2 \ d\mu(z) \ dr = g(0) \ln Y + \frac{h(0)}{4} S(1) - \frac{1}{4\pi} \int_{-\infty}^{\infty} h(r) S'(1 + ir) \ dr + O(1) . \tag{2.15}
\]
The function \(S(s) \) (in the general case it is the S-matrix) is given by a generalised Dirichlet series, convergent for \(Re s > 1 \),
\[
S(s) = \frac{\sqrt{\pi} \Gamma(s - \frac{1}{2})}{\Gamma(s)} \sum_{c \neq 0} \sum_{0 \leq d < |c|} |c|^{-2s} , \tag{2.16}
\]
where the sums are taken over all pairs \(c, d\) of the matrix \(\begin{pmatrix} * & * \\ c & d \end{pmatrix} \subset \Gamma_\infty \backslash \Gamma / \Gamma_\infty\). Also the poles of the meromorphic function \(S(s)\) are contained in the region \(\text{Re} \, s < 1/2\) and in the interval \([1/2, 1]\). The functions \(E(z, s)\) and \(S(s)\) can be analytically extended on the whole complex s-plane, where they satisfy the functional equations

\[
S(s)S(1 - s) = Id, \quad S(s) = S(\bar{s}), \quad E(z, s) = S(s)E(z, 1 - s). \quad (2.17)
\]

It should be noted that the terms of the trace formula associated with the elements \(\gamma\) and \(\gamma^{-1}\) coincide. Then the contribution to the first integral in Eq. (2.12), which comes from all conjugacy classes of the \(\gamma\)-type \((\gamma \in \Gamma\gamma)\), for \(Y \to \infty\) can be written as follows

\[
\int_{F_Y} \sum_{(\gamma) \Gamma_\infty} k(u(z, \gamma z)) \, d\mu(z) = (\ln Y + C) g(0) + \frac{h(0)}{4} - \frac{1}{4\pi} \int_{-\infty}^{\infty} h(r) \psi(1 + \frac{ir}{2}) \, dr + O(1), \quad (2.18)
\]

where \(\psi(s)\) is the logarithmic derivative of the Euler \(\Gamma\)-function and \(C\) a computable constant which reads \([26]\)

\[
C = \frac{5 \ln 2}{16} - \frac{\gamma}{2} + C_0,
\]

\[
C_0 = \lim_{N \to \infty} \frac{1}{4\pi} \sum_{i=1}^{N} \left[|\xi i|^2 - 2\pi \ln \frac{1}{|\xi i|} \right] - \frac{1}{2} \ln |\xi i|. \quad (2.19)
\]

In the latter equation \(\gamma\) is the Euler-Mascheroni constant and \(\xi\) a two-dimensional vector, such that \(\gamma z = \{y, \omega + \xi\}, \xi \neq 0, |\xi i| \geq |\xi|^\frac{1}{2}\).

For the derivation of the Selberg trace formula, one has to consider the contributions coming from the identity and the non-parabolic elements in \(\Gamma\), the normalised Eisenstein-Maass series, Eq. (2.13) and all \(\gamma\)-type conjugacy classes, Eq. (2.18). The final result we state should be considered as an explicit addition to Lemma \([1]\).

Theorem 1 For the special discrete group \(SL(2, \mathbb{Z} + i\mathbb{Z})/\{\pm Id\}\) and \(h(r)\) satisfying the conditions of Lemma \([1]\), we have the Selberg’s trace formula

\[
\sum_{j} h(r_j) - \sum_{\gamma \neq Id, \gamma\text{-non-parabolic}} \int k(u(z, \gamma z)) \, d\mu(z) - \frac{1}{4\pi} \int_{-\infty}^{\infty} h(r) \frac{S'(1 + ir)}{S(1 + ir)} \, dr + \frac{h(0)}{4} S(1)
\]

\[
= V(F) \int_{0}^{\infty} \frac{r^2}{2\pi^2} h(r) \, dr + C g(0) + \frac{h(0)}{4} - \frac{1}{4\pi} \int_{-\infty}^{\infty} h(r) \psi(1 + \frac{ir}{2}) \, dr. \quad (2.20)
\]

The first term in the r.h.s. of Eq. (2.20) is the contribution of the identity element, while \(V(F)\) is the (finite) volume of the fundamental domain \(F\) with respect to the measure \(d\mu\).

3 The heat kernel and the \(\zeta\)-function

As discussed in the Introduction, the determinant of an elliptic differential operator requires a regularisation. It is convenient to introduce the operator \(L_\delta = -\Delta + \delta^2 - 1\), with \(\delta\) a suitable parameter. One of the most used regularisation is the \(\zeta\)-function regularisation \([21, 28, 21]\). By means of it one has

\[
\ln \det L_\delta = -\zeta' (0|L_\delta), \quad (3.1)
\]
where the ζ' is the derivative with respect to s of the ζ-function. In the standard cases, the ζ-function at $s = 0$ is well defined and so by means of the latter formula one gets a finite result.

The meromorphic structure of the analytically continued ζ-function, as well as the ultraviolet divergences of the one-loop effective action, can be related to the asymptotic properties of the heat-kernel trace. For the rank-1 symmetric space H^3/Γ the trace of the operator $\exp [-tL_{\delta}]$ may be computed by using Theorem 1 (Eq. (2.2)) with the choice $h(r) = \exp [-t(r^2 + \delta^2)]$ (we use units in which the curvature $\kappa = R/6$ of H^3 is equal to -1). We have

$$
g(u) = \frac{e^{-t\delta^2} - e^{-u^2/4t}}{\sqrt{4\pi t}}, \quad g(0) = \frac{e^{-t\delta^2}}{\sqrt{4\pi t}}, \quad h(0) = e^{-t\delta^2}. \quad (3.2)
$$

In this and next Sections we shall consider additive terms of the ζ-function associated with identity and parabolic elements of group Γ only (the heat kernel and ζ-function analysis for co-compact discrete group Γ has been done, for example, in Refs. [2,12]).

As a result

$$
\text{Tr} e^{-tL_{\delta}} = e^{-t\delta^2} \left[\frac{V(F)}{(4\pi t)^{3/2}} + \frac{C}{(4\pi t)^{1/2}} + \frac{1}{4} \frac{1}{4\pi} \int_{-\infty}^{\infty} \psi(1 + i\pi r^2) e^{-tr^2} \, dr \right]. \quad (3.3)
$$

The asymptotic behaviour of the last integral for $t \to 0$ can be easily evaluated. In fact we may rewrite

$$
\text{Tr} e^{-tL_{\delta}} = e^{-t\delta^2} \left[\ln t - \frac{V(F)}{8\sqrt{\pi t}} + \frac{C + \ln 2 + \frac{1}{8}}{(4\pi t)^{1/2}} - t \frac{1}{\pi t} \int_{-\infty}^{\infty} e^{-tr^2} f(\frac{i\pi}{t}) \, dr \right]. \quad (3.4)
$$

The function $f(z)$ is defined by (see Ref. [29])

$$
f(z) = \frac{1}{2} \sum_{k=1}^{\infty} \frac{k}{(k+1)(k+2)} \sum_{n=1}^{\infty} \frac{1}{(n+z)^{k+1}}, \quad (3.5)
$$

and has an asymptotic expansion for large $|z|$ in terms of the Bernoulli numbers B_k given by

$$
f(z) \sim \sum_{k=1}^{\infty} \frac{B_{2k}}{2k(2k-1)z^{2k-1}}. \quad (3.6)
$$

The contribution for short t comes from this asymptotics. Thus we have

Proposition 2 The asymptotic behavior of the heat kernel for $t \to 0$ reads

$$
\text{Tr} e^{-tL_{\delta}} \simeq e^{-t\delta^2} \left[\ln t - \sum_{n=0}^{\infty} K_n t^{n-\frac{3}{2}} \right] = \sum_{r=0}^{\infty} (A_r + P_r \ln t) t^{r-\frac{3}{2}}, \quad (3.7)
$$

where the first K_n coefficients are given by

$$
K_0 = \frac{V(F)}{(4\pi)^{3/2}}, \quad K_1 = \frac{C + \ln 2 + \frac{1}{8}}{\sqrt{4\pi}}, \quad K_2 = \frac{1}{6\sqrt{\pi}}, \quad (3.8)
$$

and

$$
A_r = \sum_{n=0}^{r} (-1)^n \frac{B_{r-n} \delta^{2n}}{n!}, \quad P_0 = 0, \quad P_r = (-1)^{r-1} \frac{\delta^{2(r-1)}}{8\sqrt{\pi (r-1)!}}, \quad (3.9)
$$

It should be noted that, besides the usual terms one has for the heat kernel in 3-dimensions, there exist terms with logarithmic factors due to the presence of parabolic elements in Γ. These terms are absent for co-compact group Γ (compact hyperbolic manifolds). Furthermore, the contribution of hyperbolic elements is exponentially small in t. Thus, in general, the result of Proposition 2 still holds true.
Let us analyse the consequences of the presence of logarithmic terms in the latter expansion. As usual, we may introduce the \(\zeta \)-function associated with the elliptic operator \(L_\delta \) by means of the Mellin transform
\[
\zeta(s|L_\delta) = \frac{1}{\Gamma(s)} \int_0^\infty dt \, t^{s-1} \text{Tr} e^{-tL_\delta},
\]
valid for \(\text{Re} \, s > 3/2 \). In order to get the meromorphic structure of the function \((3.10) \), we split the integration range in the two intervals \([0, 1)\) and \([1, \infty)\) obtaining in this way two integrals.

The last one is regular for \(s \to 0 \), while the behaviour of the first one can be estimated by using the asymptotics, Eq. (3.7). Thus we have

Proposition 3 The meromorphic structure of the \(\zeta \)-function reads
\[
\zeta(s|L_\delta) = \frac{1}{\Gamma(s)} \sum_{r=0}^\infty \left[\frac{A_r}{s+r-\frac{3}{2}} - \frac{P_r}{(s+r-\frac{3}{2})^2} \right] + J(s) \quad \frac{\Gamma(s)}{\Gamma(s)},
\]
where \(J(s) \) is an analytic function.

From this, it follows that the analytic continuation of \(\zeta \)-function is regular at \(s = 0 \). It has to be noted also the presence of double poles, caused by the logarithmic terms.

We conclude this Section by computing the asymptotic behaviour for very large \(\delta \) of the derivative of \(\zeta \)-function evaluated in zero. To this aim, again the asymptotic behavior for small \(t \) gives

Proposition 4
\[
\zeta'(0|L_\delta) = \frac{V(F)\delta^3}{6\pi} + \frac{1}{2} \delta \ln \delta - \delta \left(C + \frac{1}{2} \ln 2 + \frac{1}{2} \right) + O(1/\delta).
\]

4 The functional determinant

In this Section, making use of the trace formula, we shall compute the functional determinant of a Laplace-type operator on \(H^2/\Gamma \). We briefly explain the method which is based on \(\zeta \)-function regularization and an evaluation by quadratures with an appropriate choice of the function \(h(r) \) appearing in the trace formula \[6, 7, 18\]. The \(\zeta \)-function, for \(\text{Re} \, s \) sufficiently large, can be rewritten in the form
\[
\zeta(s|L_\delta) = \sum_\sigma \rho_\sigma \left(\lambda_\sigma + \delta^2 - 1 \right)^{-s} = \sum_i \left(\lambda_i + \delta^2 - 1 \right)^{-s} + \int_0^\infty \left(\lambda + \delta^2 - 1 \right)^{-s} \rho_\lambda \, d\lambda,
\]
where the sum over \(i \) run over the discrete spectrum, \(\lambda_i \) being the eigenvalues. For the continuous spectrum, \(\rho_\lambda \) is proportional to the logarithmic derivative of the S-matrix \(S(s) \). One has
\[
\zeta'(s|L_\delta) = - \sum_\sigma \rho_\sigma \left(\lambda_\sigma + \delta^2 - 1 \right)^{-s} \ln(\lambda_\sigma + \delta^2 - 1).
\]

From the latter equation one gets
\[
\frac{d}{d\delta} \left(\frac{1}{2\delta} \frac{d}{d\delta} \zeta'(s|L_\delta) \right) = 2\delta \sum_\sigma \rho_\sigma \left(\lambda_\sigma + \delta^2 - 1 \right)^{-s-2} + O(s).
\]

A standard Tauberian argument and Eq. (3.7) gives a Weyl’s estimate for large \(\sigma \), namely
\[
(\lambda_\sigma + \delta^2 - 1)^{-1} \simeq \sigma^{-2/3}.
\]
As a consequence, in the limit \(s \to 0 \), the r.h.s. of Eq. (4.3) is finite. This works for \(D = 2 \) as well as for \(D = 3 \) dimensions. In higher dimensions it is necessary to take further derivatives with respect to \(\delta \).
On the other hand, we may rewrite the formula Eq. (2.2) as (here \(r^2 + 1 = \lambda \) and \(\gamma \) is the identity or parabolic element in \(\Gamma \))

\[
G(\delta) = \sum_\sigma \rho_\sigma h_\delta(r_\sigma) = \sum_j h_\delta(\lambda_j) - \frac{1}{4\pi} \int_{-\infty}^{\infty} h_\delta(r) \frac{S'(1 + ir)}{S(1 + ir)} \, dr + \frac{h_\delta(0)}{4} S(1). \tag{4.4}
\]

\(G(\delta) \) denoting the "geometrical" part

\[
G(\delta) = V(F) \int_0^\infty \frac{r^2}{2\pi^2} h_\delta(r) \, dr + Cg(0) + \frac{h_\delta(0)}{4} - \frac{1}{4\pi} \int_{-\infty}^{\infty} h_\delta(r) \psi(1 + \frac{\pi}{r}) \, dr. \tag{4.5}
\]

Let us choose the function \(h_\delta \) as

\[
h_\delta(r) = \frac{1}{r^2 + \delta^2} - \frac{1}{r^2 + a^2}, \quad g_\delta(0) = \frac{1}{2\delta} - \frac{1}{2a}, \tag{4.6}
\]

with \(a \) a non vanishing constant. Taking the derivative with respect to \(\delta \) we have

\[
2\delta \sum_\sigma \rho_\sigma (\lambda_\sigma + \delta^2 - 1)^{-2} = -\frac{d}{d\delta} G(\delta). \tag{4.7}
\]

Making the comparison between Eqs. (4.3) and (4.7), integrating twice in the variable \(\delta \) and taking the limit \(s \to 0 \) we finally obtain

\[
\zeta'(0|L_\delta) = -2 \int \delta G(\delta) \, d\delta + c_1 \delta^2 + c_2, \tag{4.8}
\]

where the constants \(c_1 \) and \(c_2 \) can be determined from the asymptotics for large \(\delta \). The primitive related to the geometrical part can be easily computed by making use of the Selberg trace formula with the choice (4.6). One has

\[
G(\delta) = -\frac{V(F)}{4\pi} (\delta - a) + \frac{C}{2} \left(\frac{1}{\delta} - \frac{1}{a} \right) + \frac{1}{4} \left(\frac{1}{\delta^2} - \frac{1}{a^2} \right) - \frac{1}{4} \left[\frac{\psi(1 + \delta/2)}{\delta} - \frac{\psi(1 + a/2)}{a} \right]. \tag{4.9}
\]

As a consequence,

\[
\zeta'(0|L_\delta) = \frac{V(F)\delta^3}{6\pi} + [c_1 + Q(a)]\delta^2 - C\delta - \frac{1}{2} \ln \delta + \ln \Gamma(1 + \frac{\delta}{2}) + c_2, \tag{4.10}
\]

where

\[
Q(a) = \frac{1}{4a^2} - \frac{V(F)a}{4\pi} + \frac{C}{2a} - \frac{\psi(1 + a/2)}{4a}. \tag{4.11}
\]

The inclusion of the contribution related to the hyperbolic elements in Eq. (4.10) is almost straightforward and can be found in Refs. [2, [12]. It is additive and reads simply \(\ln Z(1 + \delta) \), \(Z(s) \) being the Selberg zeta-function.

In the large \(\delta \) limit, \(\ln Z(1 + \delta) \) is vanishing and one has

\[
\zeta'(0|L_\delta) \simeq \frac{V(F)\delta^3}{6\pi} + [c_1 + Q(a)]\delta^2 + \frac{1}{2} \ln \delta - \delta \left(C + \frac{1}{2} \ln 2 + \frac{1}{2} \right) + \frac{1}{2} \ln \pi + c_2, \tag{4.12}
\]

which agrees with Eq. (3.12) if

\[
c_1 = -Q(a), \quad c_2 = -\frac{1}{2} \ln \pi. \tag{4.13}
\]

Summarizing we have proved the

Theorem 2 One has the identity

\[
\det L_\delta = \frac{2}{\sqrt{\pi \delta} \Gamma(\frac{\delta}{2})} \exp \left(-\frac{V(F)\delta^3}{6\pi} + C\delta \right) Z(1 + \delta). \tag{4.14}
\]
5 Conclusions

In this paper we have computed the functional determinant of a Laplace-like operator on a non-compact 3-dimensional hyperbolic manifold with finite volume fundamental domain, by the method of quadratures. In addition the contributions to the heat kernel and ζ-function associated with identity and parabolic elements of isometry group is analysed. The constant appearing in the quadrature process has been determined by means of the asymptotic behavior of the functional determinant, which may be achieved again making use of the trace formula for the heat kernel. This method is particular useful in the evaluation of the functional determinants, because it permits to avoid the problem of finding the analytical continuation of the zeta-function, which may present computational difficulties. On the other hand, the method requires the existence of a trace formula and its validity can be extended to more general cases (see for example [30, 31, 32]).

Acknowledgments

We thank Prof. F.L. Williams for useful remarks. A.A.B. would like to thank I.N.F.N. for financial support and Prof. M. Toller for kind hospitality at Department of Physics, University of Trento. The research of A.A.B. was supported in part by Russian Foundation for Fundamental Research grant No. 95-02-03568-a and by Russian Universities grant No. 95-0-6.4-1.

References

[1] R. Camporesi. Phys. Rep. 196, 1 (1990).
[2] E. Elizalde, S. D. Odintsov, A. Romeo, A.A. Bytsenko and S. Zerbini. Zeta Regularization Techniques with Applications. World Scientific, Singapore, (1994).
[3] G. Kennedy. Phys. Rev. D 23, 2884 (1981).
[4] P. Chang and J.S. Dowker. Nucl. Phys. B395, 407 (1993).
[5] E. D’Hoker and D.H. Phong. Commun. Math. Phys. 104, 537 (1986).
[6] P. Sarnak. Commun. Math. Phys. 110, 113 (1987).
[7] A. Voros. Commun. Math. Phys. 110, 439 (1987).
[8] E. D’Hoker and D.H. Phong. Rev. Mod. Phys. 60, 917 (1988).
[9] J. Bolte and F. Steiner. Commun. Math. Phys. 130, 581 (1990).
[10] A.A. Bytsenko, K. Kirsten and S.D. Odintsov. Mod. Phys. Lett. A 8, 2011 (1993).
[11] A.A. Bytsenko, E. Elizalde and S.D. Odintsov. J. Math. Phys. 36, 5084 (1995).
[12] A.A. Bytsenko, G. Cognola, L. Vanzo and S. Zerbini. Phys. Rep. 266, 1 (1996).
[13] A.A. Bytsenko, G. Cognola and S. Zerbini. Quantum Fields in Hyperbolic Space-Times with Finite Spatial Volume. Preprint Trento University UTF–377, hep-th/9605203 (1996), submitted.
[14] A.B. Venkov. Spectral Theory of Automorphic Functions and its Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands, (1990). Mathematics and Its Applications (Soviet Series) vol. 51.
[15] J. Elstrodt, F. Grunewald and J. Mennicke. Banach Center Publ. **17**, 83 (1985).

[16] J. Elstrodt, F. Grunewald and J. Mennicke. Math. Ann. **277**, 655 (1987).

[17] A.A. Bytsenko, G. Cognola and L. Vanzo. J. Math. Phys. **33**, 3108 (1992), Errata: J. Math. Phys., **34**, 1614 (1993).

[18] I. Efrat. Commun. Math. Phys. **119**, 443 (1988).

[19] W. Müller. Invent. Math. **109**, 265 (1992).

[20] D.B. Ray and I.M. Singer. Advances in Math. **7**, 145 (1971).

[21] S.W. Hawking. Commun. Math. Phys. **55**, 133 (1977).

[22] M. Bordag, K. Kirsten and J.S. Dowker. *Heat-Kernels and Functionals Determinants on the Generalized Cone*. Univ. Leipzig and Univ. Manchester [hep-th/9602089 (1996)], submitted.

[23] J. Cheeger. J. Diff. Geom. **18**, 575 (1983).

[24] C. Callias. Commun. Math. Phys. **88**, 357 (1983).

[25] J. Bruning and R. Seeley. Adv. in Maths. **58**, 133 (1985).

[26] A. B. Venkov. Proc. Steklov Math. Inst. **125**, 3 (1973).

[27] S. Lang. *SL(2,R)*. Springer-Verlag, (1985).

[28] J.S. Dowker and R. Critchley. Phys. Rev. D **13**, 3224 (1976).

[29] I.S. Gradshteyn and I.M. Ryzhik. *Table of Integrals, Series and Products*. Academic Press, New York, (1980).

[30] R. Gangolli. Illinois J. Math. **21**, 1 (1977).

[31] F. Williams. *Some Zeta Functions Attached to \(\Gamma/G_K \)*. In *In: New Developments in Lie Theory and their Applications*. Eds. J. Tirao and N. Wallach, editors, volume 105. Birkhauser Progress in Math. Ser., (1992).

[32] F. Williams. Contempor. Math. **191**, 245 (1995).