QCD and a New Paradigm for Nuclear Structure

Anthony W. Thomas

Next generation nuclear physics with JLab12 and EIC
FIU Miami: February 10th 2016
Fundamental Question for Nuclear Physics

• Is the nucleon immutable?

• i.e. When immersed in a nuclear medium with applied scalar field strength of order half its mass is it really unchanged??

• When looked at in the context of QCD as the theory of the strong force clearly NO.

• Is this irrelevant to nuclear structure? NO

• Indeed, we argue it is of fundamental importance.....
Relevance of QCD to Nuclear Structure

• Insight into origin of saturation – unexpected!

• Behaviour at very high density (neutron star) – transition from hadronic to quark matter

• EFT assumes relevant degrees of freedom (d.o.f): beware lesson of drunk looking for keys under lamp post

 – i.e. EFT has symmetries of QCD

 BUT we need to know the relevant d.o.f. too

• Working at quark level can provide guidance
Outline

• Start from a QCD-inspired model of hadron structure

• Ask how that internal structure is modified in-medium

• This naturally leads to saturation + predictions for all hadrons (e.g. hypernuclei...)

• Derive effective forces (Skyrme type): apply to finite nuclei

• Test predictions for quantities sensitive to internal structure: DIS structure functions, form factors in-medium....
A different approach: QMC Model

(Guichon, Saito, Tsushima et al., Rodionov et al.
- see Saito et al., Progress Part. Nucl. Phys. 58 (2007) 1 for a review)

- Start with quark model (MIT bag/NJL...) for all hadrons

- Introduce a relativistic Lagrangian with σ, ω and ρ mesons coupling to non-strange quarks

- Hence **only 3 parameters**: $g^q_{\sigma,\omega,\rho}$

 - determine by fitting to saturation properties of nuclear matter (ρ_0, E/A and symmetry energy)

- Must solve self-consistently for the internal structure of baryons in-medium
Quark-Meson Coupling Model (QMC): Role of the Scalar Polarizability of the Nucleon

The response of the nucleon internal structure to the scalar field is of great interest... and importance.

\[M^*(\vec{R}) = M - g_\sigma \sigma(\vec{R}) + \frac{d}{2} \left(g_\sigma \sigma(\vec{R}) \right)^2 \]

Non-linear dependence through the scalar polarizability $d \sim 0.22 \ R$ in original QMC (MIT bag).

Indeed, in nuclear matter at mean-field level (e.g. QMC), this is the ONLY place the response of the internal structure of the nucleon enters.
Summary: Scalar Polarizability

Consequence of polarizability in atomic physics is many-body forces:

\[V = V_{12} + V_{23} + V_{13} + V_{123} \]

- same is true in nuclear physics:
- scalar polarizability is natural source of 3-body force
Explicit Demonstration of Origin of 3-Body Force

Since early 70’s tremendous amount of work in nuclear theory is based upon effective forces

- Used for everything from nuclear astrophysics to collective excitations of nuclei
- Skyrme Force: Vautherin and Brink

\[
H_{QMC} = \sum_i \frac{\mathbf{\nabla}_i \cdot \mathbf{\nabla}_i}{2M} + \frac{G_\sigma}{2M^2} \sum_{i \neq j} \mathbf{\nabla}_i \delta(\mathbf{R}_{ij}) \cdot \mathbf{\nabla}_i
\]
\[
+ \frac{1}{2} \sum_{i \neq j} \left[\nabla_i^2 \delta(\mathbf{R}_{ij}) \right] \left[\frac{G_\omega}{m_\omega^2} - \frac{G_\sigma}{m_\sigma^2} + \frac{G_\rho}{m_\rho^2} \frac{\mathbf{\tau}_i \cdot \mathbf{\tau}_j}{4} \right]
\]
\[
+ \frac{1}{2} \sum_{i \neq j} \delta(\mathbf{R}_{ij}) \left[G_\omega - G_\sigma + G_\rho \frac{\mathbf{\tau}_i \cdot \mathbf{\tau}_j}{4} \right]
\]
\[
\left(\frac{dG_\sigma^2}{2} \right) \sum_{i \neq j \neq k} \delta^2(ijk) - \frac{d^2G_\sigma^3}{2} \sum_{i \neq j \neq k \neq l} \delta^3(ijkl)
\]
\[
+ \frac{i}{4M^2} \sum_{i \neq j} A_{ij} \mathbf{\nabla}_i \delta(\mathbf{R}_{ij}) \times \mathbf{\nabla}_i \mathbf{\bar{\sigma}}_i,
\]

Guichon and Thomas, Phys. Rev. Lett. 93, 132502 (2004)
Derivation of Density Dependent Effective Force

Physical origin of density dependent forces of Skyrme type within the quark meson coupling model

P.A.M. Guichon a,*, H.H. Matevosyan b, c, N. Sandulescu a, d, e, A.W. Thomas b

Nuclear Physics A 772 (2006) 1–19

• Start with classical theory of MIT-bag nucleons with structure modified in medium to give \(M_{\text{eff}} (\sigma) \).

• Quantise nucleon motion (non-relativistic), expand in powers of derivatives

• Derive equivalent, local energy functional:

\[
\left\langle H (\vec{r}) \right\rangle = \rho M + \frac{\tau}{2M} + \mathcal{H}_0 + \mathcal{H}_3 + \mathcal{H}_{\text{eff}} + \mathcal{H}_{\text{fin}} + \mathcal{H}_{\text{so}}
\]
Derivation of effective Force (cont.)

\[H_0 + H_3 = \rho^2 \left[\frac{-3G_\rho}{32} + \frac{G_\sigma}{8(1 + d\rho G_\sigma)^3} - \frac{G_\sigma}{2(1 + d\rho G_\sigma)} + \frac{3G_\omega}{8} \right] \]

\[+ (\rho_n - \rho_p)^2 \left[\frac{5G_\rho}{32} + \frac{G_\sigma}{8(1 + d\rho G_\sigma)^3} - \frac{G_\omega}{8} \right], \]

\[H_{\text{eff}} = \left[\left(\frac{G_\rho}{8m_\rho^2} - \frac{G_\sigma}{2m_\sigma^2} + \frac{G_\omega}{2m_\omega^2} + \frac{G_\sigma}{4M_N^2} \right) \rho_n + \left(\frac{G_\rho}{4m_\rho^2} + \frac{G_\sigma}{2M_N^2} \right) \rho_p \right] \tau_n \]

\[+ p \leftrightarrow n, \]

\[H_{\text{fin}} = \left[\left(\frac{3G_\rho}{32m_\rho^2} - \frac{3G_\sigma}{8m_\sigma^2} + \frac{3G_\omega}{8m_\omega^2} - \frac{G_\sigma}{8M_N^2} \right) \rho_n \]

\[+ \left(\frac{-3G_\rho}{16m_\rho^2} - \frac{G_\sigma}{2m_\sigma^2} + \frac{G_\omega}{2m_\omega^2} - \frac{G_\sigma}{4M_N^2} \right) \rho_p \right] \nabla^2 (\rho_n) + p \leftrightarrow n, \]

\[H_{\text{so}} = \nabla \cdot J_n \left[\left(\frac{-3G_\sigma}{8M_N^2} - \frac{3G_\omega(-1 + 2\mu_s)}{8M_N^2} - \frac{3G_\rho(-1 + 2\mu_s)}{8M_N^2} \right) \rho_n \]

\[+ \left(\frac{-G_\sigma}{4M_N^2} + \frac{G_\omega(1 - 2\mu_s)}{4M_N^2} \right) \rho_p \right] + p \leftrightarrow n. \]

Note the totally new, subtle density dependence.
These authors tested 233 widely used Skyrme-type forces against 12 standard nuclear properties: only 17 survived including two QMC potentials.

Furthermore, we considered weaker constraints arising from giant resonance experiments on isoscalar and isovector effective nucleon mass in SNM and BEM, Landau parameters and low-mass neutron stars. If these constraints are taken into account, the number of CSkkP reduces to 9, GSkl, GSklII, KDE0v1, LNS, NRAPR, QMC700, QMC750 and SKRA, the CSkkP* list.

Truly remarkable – force derived from quark level does a better job of fitting nuclear structure constraints than phenomenological fits with many times # parameters!
Systematic Study of Finite Nuclei
Systematic approach to finite nuclei

J.R. Stone, P.A.M. Guichon, P. G. Reinhard & A.W. Thomas: axViv:1601.08131, to appear in PRL

• Allow 3 basic quark-meson couplings to vary so that nuclear matter properties reproduced within errors

-17 < E/A < -15 MeV
0.14 < ρ₀ < 0.18 fm⁻³
28 < S₀ < 34 MeV
L > 20 MeV
250 < K₀ < 350 MeV

• Fix at overall best description of finite nuclei
Overview of 106 Nuclei Studied – Across Periodic Table

Element	Z	N	Element	Z	N
C	6	6-16	Pb	82	116-132
O	8	4-20	Pu	94	134-154
Ca	20	16-32	Fm	100	148-156
Ni	28	24-50	No	102	152-154
Sr	38	36-64	Rf	104	152-154
Zr	40	44-64	Sg	106	154-156
Sn	50	50-86	Hs	108	156-158
Sm	62	74-98	Ds	110	160
Gd	64	74-100			

i.e. We look at most challenging cases of p- or n-rich nuclei
data	rms error %	
	QMC	SV-min
fit nuclei:		
binding energies	0.36	0.24
diffraction radii	1.62	0.91
surface thickness	10.9	2.9
rms radii	0.71	0.52
pairing gap (n)	57.6	17.6
pairing gap (p)	25.3	15.5
ls splitting: proton	15.8	18.5
ls splitting: neutron	20.3	16.3
superheavy nuclei:	0.1	0.3
N=Z nuclei	1.17	0.75
mirror nuclei	1.50	1.00
other	0.35	0.26

Stone et al., PRL (2016)
Superheavies: 0.1% accuracy

Stone et al., PRL (2016)
Quadrupole Deformation of Superheavies

Stone et al., PRL (2016)
Deformation in Gd (Z=64) Isotopes
Spin-orbit splitting

Element	States	Exp [keV]	QMC [keV]	SV-bas [keV]
	proton 1p\(_{1/2}\) - 1p\(_{3/2}\)	6.3 (1.3)a)	5.8	5.0
O\(_{16}\)	neutron 1p\(_{1/2}\) - 1p\(_{3/2}\)	6.1 (1.2)a)	5.7	5.1
Ca\(_{40}\)	proton 1d\(_{3/2}\) - 1d\(_{5/2}\)	7.2 b)	6.3	5.7
	neutron 1d\(_{3/2}\) - 1d\(_{5/2}\)	6.3 b)	6.3	5.8
Ca\(_{48}\)	proton 1d\(_{3/2}\) - 1d\(_{5/2}\)	4.3 b)	6.3	5.2
	neutron 1d\(_{3/2}\) - 1d\(_{5/2}\)		5.3	5.2
Sn\(_{132}\)	proton 2p\(_{1/2}\) - 2p\(_{3/2}\)	1.35(27)a)	1.32	1.22
	neutron 2p\(_{1/2}\) - 2p\(_{3/2}\)	1.65(13)a)	1.47	1.63
	neutron 2d\(_{3/2}\) - 2d\(_{5/2}\)		2.71	2.11
Pb\(_{208}\)	proton 2p\(_{1/2}\) - 2p\(_{3/2}\)		0.91	0.93
	neutron 3p\(_{1/2}\) - 3p\(_{3/2}\)	0.90(18)a)	1.11	0.89
Shape evolution of Zr (Z=40) Isotopes

- Shape co-existence sets in at N=60 – Sotty et al., PRL115 (2015)172501
- Usually difficult to describe
 – e.g. Mei et al., PRC85, 034321 (2012)

 Stone et al., PRL (2016)
Summary: Finite Nuclei

• The effective force was derived at the quark level based upon changing structure of bound nucleon

• Has many less parameters but reproduces nuclear properties at a level comparable with the best phenomenological Skyrme forces

• Looks like standard nuclear force

• BUT underlying theory also predicts modified internal structure and hence modified
 – DIS structure functions
 – elastic form factors......
Nuclear DIS Structure Functions

To address questions like this one MUST start with a theory that quantitatively describes nuclear structure – very, very few examples.....
Observation stunned and electrified the HEP and Nuclear communities 30 years ago

What is it that alters the quark momentum in the nucleus?

J. Ashman et al., Z. Phys. C57, 211 (1993)

J. Gomez et al., Phys. Rev. D49, 4348 (1994)
Theoretical Understanding

• Still numerous proposals but few consistent theories

• Initial studies used MIT bag\(^1\) to estimate effect of self-consistent change of structure in-medium – but better to use a covariant theory

• For that Bentz and Thomas\(^2\) re-derived change of nucleon structure in-medium in the NJL model

• This set the framework for sophisticated studies by Cloët and collaborators over the last decade

\(^1\) Thomas, Michels, Schreiber and Guichon, Phys. Lett. B233 (1989) 43
\(^2\) Bentz and Thomas, Nucl. Phys. A696 (2001) 138
Calculations for Finite Nuclei

(Spin dependent EMC effect TWICE as large as unpolarized)

FIG. 7: The EMC and polarized EMC effect in 11B. The empirical data is from Ref. [31].

FIG. 9: The EMC and polarized EMC effect in 27Al. The empirical data is from Ref. [31].

Cloët, Bentz & Thomas, Phys. Lett. B642 (2006) 210 (nucl-th/0605061)
Parity-Violating Deep Inelastic Scattering and the Flavor Dependence of the EMC Effect

I. C. Cloët, W. Bentz, and A. W. Thomas

\[
A_{PV} = \frac{G_F Q^2}{4 \sqrt{2} \pi \alpha_{em}} \left[a_2(x_A) + \frac{1 - (1 - y)^2}{1 + (1 - y)^2} a_3(x_A) \right]
\]

\[Z/N = 82/126 \text{ (lead)}\]

Ideally tested at EIC with CC reactions

Parity-violating EMC will test this at JLab 12 GeV
Modified Electromagnetic Form Factors In-Medium
In-medium electron-nucleon scattering

D.H. Lu, A.W. Thomas, K. Tsushima, A.G. Williams, K. Saito

\[\frac{G_{Ep}}{G_{Ep}^{\text{free}}} \]

\[\frac{G_{En}}{G_{En}^{\text{free}}} \]

\[\frac{G_{Mp}}{G_{Mp}^{\text{free}}} \]

\[\frac{G_{Mn}}{G_{Mn}^{\text{free}}} \]

\(\rho = 0.5\rho_0 \)
\(\rho = 1.0\rho_0 \)
\(\rho = 1.5\rho_0 \)
\(\rho = 2.0\rho_0 \)

QMC

Physics Letters B 417 (1998) 217–223
Recent Calculations Motivated by:

E01-015, PR-04-015 – Chen, Choi & Meziani

• Using NJL model with nucleon structure self-consistently solved in-medium

• Same model describing free nucleon form factors, structure functions and EMC effect
Response Function

RPA correlations repulsive
Significant reduction in Response Function from modification of bound-nucleon

\[
\frac{d^2\sigma}{d\Omega d\omega} = \sigma_{\text{Møller}} \left[\frac{q^4}{|q|^4} R_L(\omega, |q|) + \left(\frac{q^2}{2|q|^2} + \tan^2 \frac{\beta}{2} \right) R_\sigma(\omega, |q|) \right]
\]

Cloët, Bentz & Thomas (PRL 116 (2016) 032701)
Comparison with Unmodified Nucleon & Data

\[S_L(|q|) = \int_{\omega^+} |q| \, d\omega \frac{R_L(\omega, |q|)}{Z G_{Ep}^2(Q^2) + N G_{En}^2(Q^2)} \, |q| \, [\text{GeV}] \]

Data: Morgenstern & Meziani
Calculations: Cloët, Bentz & Thomas (PRL 116 (2016) 032701)
Summary

• Intermediate range NN attraction is STRONG Lorentz scalar

• This modifies the intrinsic structure of the bound nucleon
 – profound change in shell model: what occupies shell model states are NOT free nucleons

• Scalar polarizability is a natural source of three-body force/ density dependence of effective forces
 – clear physical interpretation

• Derived, density-dependent effective force gives results better than most phenomenological Skyrme forces
Summary

• Initial systematic study of finite nuclei very promising
 – Binding energies typically within 0.3% across periodic table

• Super-heavies (Z > 100) especially good
 (average difference 0.1%)

• Deformation, spin-orbit splitting and charge distributions all look good

• BUT need empirical confirmation:
 – Response Functions & Coulomb sum rule (soon)
 – Isovector EMC effect; spin EMC
 – Your idea here.....................
Special Mentions......
We look forward to welcoming delegates to Adelaide, Australia for INPC 2016

September 11-16 2016
Key papers on QMC

- **Two major, recent papers:**
 1. Guichon, Matevosyan, Sandulescu, Thomas, Nucl. Phys. A772 (2006) 1.
 2. Guichon and Thomas, Phys. Rev. Lett. 93 (2004) 132502

- **Built on earlier work on QMC: e.g.**
 3. Guichon, Phys. Lett. B200 (1988) 235
 4. Guichon, Saito, Rodionov, Thomas, Nucl. Phys. A601 (1996) 349

- **Major review of applications of QMC to many nuclear systems:**
 5. Saito, Tsushima, Thomas, Prog. Part. Nucl. Phys. 58 (2007) 1-167 (hep-ph/0506314)
References to: Covariant Version of QMC

• Basic Model: (Covariant, chiral, confining version of NJL)
 - Bentz & Thomas, Nucl. Phys. A696 (2001) 138
 - Bentz, Horikawa, Ishii, Thomas, Nucl. Phys. A720 (2003) 95

• Applications to DIS:
 - Cloet, Bentz, Thomas, Phys. Rev. Lett. 95 (2005) 052302
 - Cloet, Bentz, Thomas, Phys. Lett. B642 (2006) 210

• Applications to neutron stars – including SQM:
 - Lawley, Bentz, Thomas, Phys. Lett. B632 (2006) 495
 - Lawley, Bentz, Thomas, J. Phys. G32 (2006) 667
Effect of scalar field on quark spinor

- MIT bag model: quark spinor modified in bound nucleon
 \[\frac{N}{4\pi} \left(i\beta_q \hat{\sigma} \cdot \hat{u} j_0(xu'/R_B) \right) \chi_m \]

- Lower component enhanced by attractive scalar field
 \[\beta_q = \sqrt{\frac{\Omega_0 - m_q^* R_B}{\Omega_0 + m_q^* R_B}} \]

- This leads to a very small (~1% at \(\rho_0 \)) increase in bag radius

- It also suppresses the scalar coupling to the nucleon as the scalar field increases
 \[g_\sigma = 3 g_\sigma^q \int_{Bag} d\vec{r} \bar{q} q(\vec{r}) \sim \frac{\Omega_0/2 + m_q^* R_B(\Omega_0 - 1)}{\Omega_0(\Omega_0 - 1) + m_q^* R_B/2} \]

- This is the “scalar polarizability”: a new saturation mechanism for nuclear matter
Can we Measure Scalar Polarizability in Lattice QCD?

- If we can, then in a real sense we would be linking nuclear structure to QCD itself, because scalar polarizability is sufficient in simplest, relativistic mean field theory to produce saturation

- Initial ideas on this published: the trick is to apply a chiral invariant scalar field − do indeed find polarizability opposing applied σ field

18th Nishinomiya Symposium: nucl-th/0411014 − published in Prog. Theor. Phys.
