Abstract. Let R be a semi-local regular domain containing an infinite perfect field k, and let K be the field of fractions of R. Let G be a reductive semi-simple simply connected R-group scheme such that each of its R-indecomposable factors is isotropic. We prove that for any Noetherian affine scheme $A =$ Spec A over k, the kernel of the map
\[H^1_{\text{ét}}(A \times_{\text{Spec } k} \text{Spec } R, G) \to H^1_{\text{ét}}(A \times_{\text{Spec } k} \text{Spec } K, G) \]
induced by the inclusion of R into K, is trivial. If R is the semi-local ring of several points on a k-smooth scheme, then it suffices to require that k is infinite and keep the same assumption concerning G. The results extend the Serre—Grothendieck conjecture for such R and G, proved in [PaStV].

1. Introduction

Recall that an R-group scheme G is called reductive (respectively, semi-simple; respectively, simple), if it is affine and smooth as an R-scheme and if, moreover, for each ring homomorphism $s : R \to \Omega(s)$ to an algebraically closed field $\Omega(s)$, its scalar extension $G_{\Omega(s)}$ is a reductive (respectively, semi-simple; respectively, simple) algebraic group over $\Omega(s)$. This notion of a simple R-group scheme coincides with the notion of a simple semi-simple R-group scheme of [SGA3, Exp. XIX, Def. 2.7 and Exp. XXIV, 5.3].

Such an R-group scheme G is called simply-connected (respectively, adjoint), if for any homomorphism $s : R \to \Omega(s)$ of R to an algebraically closed field $\Omega(s)$, the group $G_{\Omega(s)}$ is a simply-connected (respectively, adjoint) $\Omega(s)$-group scheme (see [SGA3, Exp. XXII, Def. 4.3.3]). A simple group scheme G is called isotropic, if it contains a split torus $G_{m,R}$.

We prove the following theorem, which is an extension of the results on the Serre—Grothendieck conjecture obtained in [PaStV].

Theorem 1.1. Let R be a regular semi-local domain containing an infinite perfect field k. Let K be the field of fractions of R. Let G be an isotropic simple simply connected R-group scheme.

For any Noetherian affine scheme $A =$ Spec A over k, the map
\[H^1_{\text{ét}}(A \times_{\text{Spec } k} \text{Spec } R, G) \to H^1_{\text{ét}}(A \times_{\text{Spec } k} \text{Spec } K, G) \]
induced by the inclusion of R into K, has trivial kernel.

The first author acknowledges support of the RFBR projects 09-01-91333-NNIO-a and 10-01-00551. The second author acknowledges support of DFG SFB/TR 45; RFBR 10-01-00551; research program 6.38.74.2011 of St. Petersburg State University.
This theorem is deduced, via a theorem of D. Popescu, from its following “geometric” version.

Theorem 1.2. Let \(R \) be a semi-local ring of several points on a \(k \)-smooth scheme over an infinite field \(k \). Let \(K \) be the field of fractions of \(R \). Let \(G \) be an isotropic simple simply connected \(R \)-group scheme.

For any Noetherian affine scheme \(A = \text{Spec} \, A \) over \(k \), the map

\[
H^1_{\text{ét}}(A \times_{\text{Spec} \, k} \text{Spec} \, R, G) \to H^1_{\text{ét}}(A \times_{\text{Spec} \, k} \text{Spec} \, K, G)
\]

induced by the inclusion of \(R \) into \(K \), has trivial kernel.

The proof of this theorem is given in Section 3. It uses, on one hand, the constructions and results of \([\text{PaStV}]\). On the other hand, it requires the following extension of Quillen’s local-global principle for projective modules \([\text{Q}, \text{Theorem } 1]\), due to L.-F. Moser (previously announced without proof by Raghunathan \([\text{R1, Theorem } 2]\), and hinted in \([\text{BCW}]\)).

Theorem. \([\text{Mo, Korollar } 3.5.2]\) Let \(A \) be a Noetherian commutative ring, \(G \) a group scheme over \(A \) admitting a closed embedding \(G \to \text{GL}_n,A \) for some \(n \geq 1 \). Let \(E \) be a \(G \)-torsor over \(A \), such that \(E \) is trivial on \(A_{\{0\}} \times \text{Spec} \, A \) for all elements \(U_i \) of a Zariski covering \(\text{Spec} \, A = \bigcup U_i \), and on the zero-section \(\{0\} \times \text{Spec} \, A \). Then \(E \) is trivial.

Using this local-global principle one more time, we obtain the following corollary of Theorem 1.1.

Corollary 1.3. Let \(S \) be a Noetherian ring such that for any maximal ideal \(m \) of \(S \), the local ring \(S_m \) satisfies the conditions imposed on \(R \) in Theorem 1.1 or in Theorem 1.2. Let \(G \) be a simple simply connected \(S \)-group scheme admitting a closed embedding \(G \to \text{GL}_n,S \) for some \(n \geq 1 \), and such that for any maximal ideal \(m \) of \(S \), the group \(G_{S_m} \) is isotropic. Let \(K \) be the field of fractions of \(S \). Then the natural map

\[
H^1_{\text{ét}}(S[t], G) \to H^1_{\text{ét}}(K(t), G)
\]

has trivial kernel.

Proof. Consider the composition

\[
H^1_{\text{ét}}(S[t], G) \to H^1_{\text{ét}}(K[t], G) \to H^1_{\text{ét}}(K(t), G).
\]

By \([? , \text{Prop. } 2.2]\) the map \(H^1_{\text{ét}}(K[t], G) \to H^1_{\text{ét}}(K(t), G) \) has trivial kernel. It remains to prove that \(H^1_{\text{ét}}(S[t], G) \to H^1_{\text{ét}}(K[t], G) \) has trivial kernel. By the local-global principle, we can substitute \(S \) by its localization at a maximal ideal, and then apply Theorem 1.1 for \(A = A_k \).

Remark 1. The conditions of Corollary 1.3 on \(S \) are satisfied, in particular, if \(S \) is a (not necessarily semilocal) regular ring containing an infinite perfect field, or if \(\text{Spec} \, S \) is a smooth affine scheme over an infinite field.

Corollary 1.4. Let \(S, G \) be as in Corollary 1.3. Assume moreover that the field of fractions \(K \) of \(S \) is perfect. Then the map

\[
H^1_{\text{ét}}(S[t], G) \to H^1_{\text{ét}}(S, G)
\]

...
induced by evaluation at $t = 0$, has trivial kernel.

Proof. We have a commutative diagram

\[
\begin{array}{ccc}
H^1_{\text{ét}}(S[t], G) & \xrightarrow{t=0} & H^1_{\text{ét}}(S, G) \\
\downarrow & & \downarrow \\
H^1_{\text{ét}}(K[t], G) & \xrightarrow{t=0} & H^1_{\text{ét}}(K, G).
\end{array}
\]

Since K is perfect, the bottom line is an isomorphism by the main result of [RR]. The left vertical line has trivial kernel by Corollary 1.3.

Remark 2. The conditions of Corollary 1.4 on S are satisfied, in particular, if S is a (not necessarily semilocal) regular ring containing \mathbb{Q}, or if $\text{Spec } S$ is a smooth affine scheme over a field of characteristic 0.

Remark 3. All the above results can be easily extended to the case where G is not simple but semisimple, and satisfies the following isotropy condition: every semisimple normal subgroup of G is isotropic. This follows from Faddeev—Shapiro lemma [SGA3, Exp. XXIV Prop. 8.4] (see also [PaStV, Section 12]).

2. Construction of a bundle over an affine line

Let k, R, K, G be as in Theorem 1.2. Let \mathcal{A} be any scheme over k. In this section we show that any (étale) principal G-bundle over $\mathcal{A} \times_{\text{Spec } k} \text{Spec } R$ which becomes trivial over $\mathcal{A} \times_{\text{Spec } k} \text{Spec } K$ can be substituted by a principal G-bundle P_t over $\mathcal{A} \times \mathbb{A}^1_R \times \mathcal{A}$, for some monic polynomial $f \in R[t]$, in such a way that the triviality of this new bundle implies the triviality of P. The argument is an extension of the argument of [PaStV, §6].

For compatibility with [PaStV], in this section we denote R by \mathcal{O}. We set

$Y := \mathcal{A} \times_{\text{Spec } k} \text{Spec } \mathcal{O} = \mathcal{A} \times_{\text{Spec } k} \text{Spec } R$

for shortness.

Fix a smooth affine k-scheme X and a finite family of points x_1, x_2, \ldots, x_n on X, such that $\mathcal{O} = O_X,\{x_1, x_2, \ldots, x_n\}$. Set $U := \text{Spec}(\mathcal{O})$. Let

$\text{can} : U \to X$

be the canonical map. Further, consider a simple simply-connected U-group scheme G.

Let P be a principal G-bundle over the scheme Y which is trivial over $Y \times_{\text{Spec } \mathcal{O}} \text{Spec } K$. We may and will assume that for certain $f \in \mathcal{O}$ the principal G-bundle P is trivial over $Y \times_{\text{Spec } \mathcal{O}} \text{Spec } \mathcal{O}_f$. Shrinking X if necessary, we may secure the following properties

(i) The points x_1, x_2, \ldots, x_n are still in X.

(ii) The group scheme G is defined over X and it is a simple group scheme. We will often denote this X-group scheme by G_X and write G_U for the original G.

(iii) The principal G-bundle P is defined over $Y \times_{\text{Spec } \mathcal{O}} X$ and the function $f \in \mathcal{O}$ belongs to $k[X]$.

(iv) The restriction P_f of the bundle P to the open subset $Y \times_{\text{Spec} \mathcal{O}} X_f$ is trivial and f vanishes at each x_i’s.

In particular, now we are given the smooth irreducible affine k-scheme X, the finite family of points x_1, x_2, \ldots, x_n on X, and the non-zero function $f \in k[X]$ vanishing at each point x_i. It was shown in [PaStV, Section 5] that, starting with these data, one can construct what is called there a nice triple [PaStV, Def. 4.1], of the form $(q_U : X \to U, f, \Delta)$. This triple fits into a commutative diagram

$$
\begin{array}{ccc}
\mathcal{X} & \xrightarrow{q_X} & X \\
\downarrow q_U \quad \quad \quad \downarrow \Delta_{\text{can}} \\
U & \xrightarrow{\Delta} & X
\end{array}
$$

where

$$q_X \circ \Delta = \text{can}$$

and

$$q_U \circ \Delta = \text{id}_U.$$

Moreover, $f := q_X^*(f)$. We did that shrinking X along the way, but all properties (i) to (iv) were preserved.

In particular, the restriction P_f of the bundle P to the open subscheme $Y \times_{\text{Spec} \mathcal{O}} X_f$ is trivial by Item (iv) above.

Set $G_X := (q_X)^*(G)$, and let G_{const} be the pull-back of G_U to \mathcal{X} via q_U. By [PaStV, Theorem 4.3] there exists a morphism of nice triples [PaStV, Def. 4.2]

$$\theta : (\mathcal{X}', f', \Delta') \to (\mathcal{X}, f, \Delta)$$

and an isomorphism

$$\Phi : \theta^*(G_{\text{const}}) \to \theta^*(G_X) =: G_{\mathcal{X}'}$$

of \mathcal{X}'-group schemes such that $(\Delta')^*(\Phi) = \text{id}_{G_{\mathcal{X}'}}$.

Set

$$q_X' = q_X \circ \theta : \mathcal{X}' \to X.$$

Recall that

$$q_U' = q_U \circ \theta : \mathcal{X}' \to U,$$

since θ is a morphism of nice triples.

Consider the pullback $(q_X')^*(P)$ of P from $Y \times_U X$ to $Y \times_U \mathcal{X}'$ as a principal $(q_U')^*(G_U) = \theta^*(G_{\text{const}})$-bundle via the isomorphism Φ.

Recall that P is trivial as a G-bundle over $Y \times_U X_f$. Therefore, $(q_X')^*(P)$ is trivial as a principal $G_{\mathcal{X}'}$-bundle over $Y \times_U \mathcal{X}'_{q_U(f')}$. Since θ is a nice triple morphism one has $f' = \theta^*(f) \cdot g'$, and thus the principal $G_{\mathcal{X}'}$-bundle $(q_X')^*(P)$ is trivial over $Y \times_U \mathcal{X}_{f'}$.
We conclude that \((q'_X)^*(P)\) is trivial over \(Y \times_U \mathcal{X}'_f\), when regarded as a principal \(G_U\)-bundle (more precisely, \((q'_U)^*(G_U)\)-bundle; we omit this base change from the notation) via the isomorphism \(\Phi\).

By [PaStV, Theorem 4.5] there exists a finite surjective morphism \(\sigma : \mathcal{X}' \to \mathbb{A}^1 \times U\) of \(U\)-schemes satisfying

1. \(\sigma\) is étale along the closed subset \(\{f' = 0\} \cup \Delta'(U)\).
2. For a certain element \(g'_{f',\sigma} \in \Gamma(\mathcal{X}', \mathcal{O}_{\mathcal{X}'}\) and a unitary polynomial \(N(f') \in \mathcal{O}[t] \to \Gamma(\mathcal{X}', \mathcal{O}_{\mathcal{X}'})\), defined by the distinguished \(\sigma\) as in [PaStV, Section 4], one has
 \[
 \sigma^{-1}\left(\{f' = 0\}\right) = \{N(f') = 0\} = \{f' = 0\} \cup \{g'_{f',\sigma} = 0\}.
 \]
3. Denote by \((\mathcal{X}')^0 \to \mathcal{X}'\) the largest open sub-scheme, where the morphism \(\sigma\) is étale. Write \(g'\) for \(g'_{f',\sigma}\) from now on. Then the square
 \[
 (\mathcal{X}')^0_0 = (\mathcal{X}')^0_{g'} \xrightarrow{\text{inc}} (\mathcal{X}')^0_{g'}
 \]

is an elementary Nisnevich square. (Here \(\sigma_{g'}^0\) and \(\sigma_{g'}^0\) stand for the corresponding restrictions of \(\sigma\).)

4. One has \(\Delta'(U) \subset (\mathcal{X}')^0_g\).

Regarded as a principal \(G_U\)-bundle via the isomorphism \(\Phi\), the bundle \((q'_X)^*(P)\) over \(Y \times_U \mathcal{X}'\) becomes trivial over \(Y \times_U \mathcal{X}'_f\), and a fortiori over \(Y \times_U (\mathcal{X}')^0_{g'}\). Now, glueing the trivial \(G_U\)-bundle over \(Y \times_U (\mathbb{A}^1 \times U)_{N(f')}\), to the bundle \((q'_X)^*(P)\) along the isomorphism

\[
\psi : Y \times_U (\mathcal{X}')^0_{N(f')} \times U G_U \to (q'_X)^*(P)|_{Y \times_U (\mathcal{X}')^0_{N(f')}}
\]

of principal \(G_U\)-bundles, we get a principal \(G_U\)-bundle \(P_\mathcal{X}\) over \(Y \times_U (\mathbb{A}^1 \times U)\) such that

1. it is trivial over \(Y \times_U (\mathbb{A}^1 \times U)_{N(f')}\),
2. \((\sigma)^*(\mathcal{P}_1)\) and \((q'_X)^*(\mathcal{P})\) are isomorphic as principal \(G_U\)-bundles over \(Y \times_U (\mathcal{X}')^0_{g'}\).

Here \((q'_X)^*(\mathcal{P})\) is regarded as a principal \(G_U\)-bundle via the \(\mathcal{X}'\)-group scheme isomorphism \(\Phi\) from \((3)\);

3. over \(Y \times_U (\mathcal{X}')^0_{N(f')}\) the two \(G_U\)-bundles are identified via the isomorphism \(\psi\) from \((9)\).

Finally, form the following diagram

\[
\begin{array}{ccc}
\mathbb{A}^1_U & \xrightarrow{\sigma_{g'}^0 = \sigma_{\mathcal{X}'}^0} & (\mathcal{X}')^0_g' \\
pr & \downarrow{\mathcal{q}_U} & \downarrow{\Delta'} \\
U & \xrightarrow{\mathcal{q}_U^*} & X
\end{array}
\]

This diagram is well-defined since by Item (4) above the image of the morphism \(\Delta'\) lands in \((X')^0_{g'}\).
Lemma 2.1. The unitary polynomial $h = N(f') \in \Theta [t]$, the principal G_U-bundle P_t over $Y \times U \mathbb{A}^1_U$, the diagram [(10)] and the isomorphism [(5)] constructed above has the following properties:

$(1^*) \; q'_U = \text{pr} \circ \sigma$,

$(2^*) \; \sigma$ is étale,

$(3^*) \; q'_U \circ \Delta' = \text{id}_U$,

$(4^*) \; q'_X \circ \Delta' = \text{can}$,

(5^*) the restriction of P_t to $Y \times_U (\mathbb{A}^1_U)_h$ is a trivial G_U-bundle,

$(6^*) \; (\sigma)^*(P_t)$ and $(q'_X)^*(P)$ are isomorphic as principal G_U-bundles over $Y \times_U (\mathcal{X})^0_f$. Here $(q'_X)^*(P)$ is regarded as a principal G_U-bundle via the group scheme isomorphism Φ.

Proof. By the very choice of σ it is an U-scheme morphism, which proves (1^*). Since $(\mathcal{X})^0 \hookrightarrow \mathcal{X}'$ is the largest open sub-scheme where the morphism σ is étale, one gets (2^*). Property (3^*) holds for Δ' since $(\mathcal{X}', f', \Delta')$ is a nice triple and, in particular, Δ' is a section of q'_U. Property (4^*) can be established as follows:

$$q'_X \circ \Delta' = (q_X \circ \theta) \circ \Delta' = q_X \circ \Delta = \text{can}.$$

The first equality here holds by the definition of q'_X, see [(3)]; the second one holds, since θ is a morphism of nice triples; the third one follows from [(3)]. Property (5^*) is just Property 1 in the above construction of P_t. Property (6^*) is precisely Property 2 in our construction of P_t. \hfill \square

One readily sees that the properties in Lemma 2.1 imply that if the G-bundle P_t is trivial on $Y \times_U \mathbb{A}^1_U$, then the original bundle P is trivial on Y.

Indeed, if P_t is trivial, then by Property (6^*) in Lemma 2.1, the G_U-bundle $(q'_X)^*(P)$ over $Y \times_U (\mathcal{X})^0_f$ is trivial as well. Hence, using Property (4^*), we deduce that the bundle $(\Delta')^*((q'_X)^*(P)) = \text{can}^*(P)$ is a trivial $(\Delta')^*((q'_X)^*(G)) = \text{can}^*(G)$-bundle over $Y \times_U U = Y$.

3. Proofs of Theorems 1.1 and 1.2

The following easy lemma was essentially proved inside the proof of [PaStV, Theorem 8.6]. Here we provide a more detailed proof in a slightly more general situation.

Lemma 3.1. Let R be a semilocal ring, G a simply connected semisimple group scheme over R. There exists a closed embedding $G \to \text{GL}_{n,R}$ for some $n \geq 1$.

Proof. We can assume without loss of generality that R is connected. Let $U = \text{Spec} R$. The U-group scheme G is given by a 1-cocycle $\xi \in Z^1(U, \text{Aut}(G_0))$, where G_0 is the split simply connected simple group scheme over U of the same type as G, and $\text{Aut}(G_0)$ is the automorphism group scheme of G_0. Recall that $\text{Aut}(G_0) \cong G_0^{\text{ad}} \rtimes N$, where N is the finite group of automorphisms of the Dynkin diagram of G_0, and G_0^{ad} is the adjoint group corresponding to G_0. Since $\text{Aut}(G_0) \cong G_0^{\text{ad}} \rtimes N$, we have an exact sequence of pointed sets

$$\{1\} \to H^1(U, G_0^{\text{ad}}) \to H^1(U, G_0^{\text{ad}} \rtimes N) \to H^1(U, N).$$
Thus there is a finite étale morphism \(\pi : V \to U \) such that \(G_V := G \times_U V \) is given by a 1-cocycle \(\xi_V \in Z^1(U, G^{ad}_0) \). We can choose \(V \) so that \(V/U \) is moreover a Galois extension.

For each fundamental weight \(\lambda \) of \(G_0 \), there is a central (also called center preserving, see \cite{PeSt}) representation \(\rho_\lambda : G_0 \to GL_{V_\lambda \otimes \mathbb{Z} U} \), where \(V_\lambda \) is the Weyl module over \(\mathbb{Z} \) corresponding to \(\lambda \). This gives a commutative diagram of \(U \)-group morphisms

\[
\begin{array}{ccc}
G_0 & \xrightarrow{\rho_\lambda} & GL_{V_\lambda \otimes \mathbb{Z} U} \\
\downarrow & & \downarrow \\
G^{ad}_0 & \xrightarrow{\bar{\rho}_\lambda} & PGL_{V_\lambda \otimes \mathbb{Z} U}.
\end{array}
\]

Considering the product of \(\rho_\lambda \)'s with \(\lambda \) running over the set \(\Lambda \) of all fundamental weights, we obtain the following commutative diagram of algebraic \(k \)-group homomorphisms:

\[
\begin{array}{ccc}
G_0 & \xrightarrow{\rho} & \prod_{\lambda \in \Lambda} GL_{V_\lambda \otimes \mathbb{Z} U} \\
\downarrow & & \downarrow \\
G^{ad}_0 & \xrightarrow{\bar{\rho}} & \prod_{\lambda \in \Lambda} PGL_{V_\lambda \otimes \mathbb{Z} U}.
\end{array}
\]

By the definition of Weyl modules, \(\rho \) is a closed embedding (cf. \cite{PeSt} Lemma 2).

Twisting the \(V \)-group morphism \(\rho \) with the 1-cocycle \(\xi_V \) we get an \(V \)-group scheme morphism \(\rho_V : G_V \to \prod_{\lambda \in \Lambda} GL_1(A_\lambda) \), where the product is a product of group schemes over \(V \), and each \(A_\lambda \) is an Azumaya algebra over \(V \) obtained from \(\text{End}(V_\lambda \otimes \mathbb{Z} U) \) via the 1-cocycle \(\theta_\lambda = (\bar{\rho}_\lambda)_*(\xi_V) \in Z^1(V, PGL_{V_\lambda \otimes \mathbb{Z} U}) \). Composing \(\rho_V \) with the natural closed embedding \(\prod_{\lambda \in \Lambda} GL_1(A_\lambda) \hookrightarrow GL_{\oplus A_\lambda} \), we obtain a closed embedding

\[
G_V \hookrightarrow GL_{m,V},
\]

for a large enough integer \(m \).

One has

\[
\text{Hom}_V(G_V, GL_{m,V}) = \text{Hom}_U(G, R_{V/U}(GL_{m,V})),
\]

where \(R_{V/U} \) is the Weil restriction functor. Thus \(\rho_V \) determines an \(U \)-morphism

\[
\rho_U : G \hookrightarrow R_{V/U}(GL_{m,V}).
\]

Here \(\rho_U \) is a \(U \)-group scheme morphism, and, since \(\rho \) is a closed embedding, \(\rho_U \) is a closed embedding as well (étale descent).

Let \(d \) be the degree of the Galois extension \(V = \text{Spec} S \) over \(U = \text{Spec} R \). The \(U \)-group scheme \(R_{V/U}(GL_{m,V}) \) admits a natural closed embedding into \(GL_{md,U} \), such that, for any \(R \)-algebra \(X \), the image of \(g \in R_{V/U}(GL_{m,V})(X) = GL_m(X \otimes_R S) \) is the corresponding element of \(GL_{md}(X) \), the \(X \)-linear automorphism of \(X^{\otimes md} \cong (X \otimes_R S)^{\otimes m} \). Now, composing this embedding with \(\rho_U \), we obtain a closed embedding \(G \hookrightarrow R_{V/U}(GL_{m,V}) \hookrightarrow GL_{m,U} \), for \(n = md \).

\[\square\]
Theorem 3.2. Let B be a semi-local Noetherian ring containing an infinite field. Let G be an isotropic simply connected simple group scheme over B. Let P be a principal G-bundle over \mathbb{A}^1_B trivial over $(\mathbb{A}^1_B)_f$ for a monic polynomial $f \in B[t]$. Then P is trivial.

Proof. This theorem was proved in [PaStV]. Indeed, this is precisely [PaStV, Theorem 2.1], except that in that theorem the base ring B was required to be “of geometric type”, i.e. a semilocal ring of finitely many points on a smooth variety over an infinite field. However, tracing the proof of this statement, one readily sees that the only properties of B that are used are that B is semi-local, Noetherian, and contains an infinite field. (The “geometric type” assumption was an umbrella assumption in the most part of [PaStV], since it is crucial for the validity of the main theorem [PaStV, Theorem 1.2].)

Proof of Theorem 1.2. Consider the case where R is a semi-local ring of several points on a k-smooth scheme over an infinite field k (the “geometric case”). Let P be a principal G-bundle which is in the kernel of the map $H^1_{\text{ét}}(\mathcal{A} \times \text{Spec } k \text{Spec } R, G) \to H^1_{\text{ét}}(\mathcal{A} \times \text{Spec } k \text{Spec } K, G)$. By considerations in § 2 there is a principal G-bundle P_t over $\mathcal{A} \times_k \mathbb{A}^1_R$ trivial over $\mathcal{A} \times_k (\mathbb{A}^1_R)_f$ for a monic polynomial $f \in R[t]$, and such that if P_t is trivial on the whole $\mathcal{A} \times_k \mathbb{A}^1_R$, then the original G-bundle P over $\mathcal{A} \times_k \text{Spec } R$ is trivial as well. Thus, it is enough to show that P_t is trivial.

Since R is a semilocal ring containing an infinite field, and f is monic, the Chinese remainder theorem implies that there is $a \in R$ with $f(a) \in R^\times$; changing the variable, we can assume that $f(0) \in R^\times$.

Set $B = \mathcal{A} \otimes_k R$. Note that B is a Noetherian commutative ring containing an infinite field k. By Theorem 3.2 for any localization B_m of B at a maximal ideal $m \subseteq B$, the bundle $P_t \times_{\text{Spec } B} \text{Spec } B_m$ is trivial. By Lemma 3.1 the group scheme G admits a closed embedding into some GL_n over R, and hence, by base change, over B. Thus, we are given a principal G-bundle P_t over $\mathbb{A}^1_B = \mathbb{A}^1_k \times_k \text{Spec } B$, which is trivial Zariski-locally in $\text{Spec } B$, as well as on $\{0\} \times \text{Spec } B$; and G is a linear group. Then by Moser’s local-global principle [Mo, Korollar 3.5.2] P_t is trivial on $\mathbb{A}^1_B = \mathcal{A} \times_k \mathbb{A}^1_R$.

Proof of Theorem 1.1. The claim follows from Theorem 1.2 via the well-known result of D. Popescu [Po, Sw]. Since the field k is perfect, the morphism $k \to R$ is geometrically regular. Therefore, by Popescu’s theory R is a filtered direct limit of smooth k-algebras. One readily sees that, since R is semilocal, these smooth k-algebras can also be chosen to be semilocal rings of several points on a smooth k-variety. Since the functor $H^1_{\text{ét}}(\mathcal{A}, G)$ commutes with filtered direct limits, the result follows.

References

[BCW] H. Bass, E.H. Connell, D.L. Wright, Locally polynomial algebras are symmetric algebras, Invent. Math. 38 (1976), 279–299.
[CTO] J.-L. Colliot-Thélène, M. Ojanguren, Espaces Principaux Homogènes Localement Triviaux, Publ. Math. IHES 75, no. 2 (1992), 97–122.

[SGA3] M. Demazure, A. Grothendieck, Schémas en groupes, Lecture Notes in Mathematics, Vol. 151–153, Springer-Verlag, Berlin-Heidelberg-New York, 1970.

[Mo] L.-F. Moser, Rational triviale Torsseure und die Serre-Grothendiecksche Vermutung, Diplomarbeit, 2008, http://www.mathematik.uni-muenchen.de/lfmoser/da.pdf

[PaStV] I. Panin, A. Stavrova, N. Vavilov, On Grothendieck–Serre’s conjecture concerning principal G-bundles over reductive group schemes: I, Preprint (2009), http://www.arxiv.org/abs/0905.1418

[PeSt] V. Petrov, A. Stavrova, Tits indices over semilocal rings, Transf. Groups 16 (2011), 193–217.

[Po] D. Popescu, Letter to the editor General Néron desingularization and approximation, Nagoya Math. J. 118 (1990), 45–53.

[Q] D. Quillen, Projective modules over polynomial rings, Invent. Math. 36 (1976), 167–171.

[R1] M.S. Raghunathan, Principal bundles on affine space. In: Ramanujam C.P. – a tribute, 187–206, Tata Inst. Fundam. Res. Studies in Math. 8, Springer, Berlin-New York, 1978.

[R2] M.S. Raghunathan, Principal bundles admitting a rational section. Invent. Math. 116, No.1–3, 409–423 (1994).

[R3] M.S. Raghunathan, Erratum: Principal bundles admitting a rational section. Invent. Math. 121, No.1, 223 (1995).

[RR] M.S. Raghunathan, A. Ramanathan, Principal bundles on the affine line, Proc. Indian Acad. Sci., Math. Sci. 93, 137–145 (1984).

[Sw] R. G. Swan, Néron-Popescu desingularization, in Algebra and Geometry (Taipei, 1995), Lect. Alg. Geom. 2 (1998), 135–198. Int. Press, Cambridge, MA.