DARK MATTER AND COSMOLOGICAL QCD PHASE TRANSITION

W-Y. P. HWANG
The Research Center for Cosmology and Particle Astrophysics
Center for Theoretical Sciences, Institute of Astrophysics
and Department of Physics, National Taiwan University
Taipei 106, Taiwan
wyhwang@phys.ntu.edu.tw

In this talk, we take the wisdom that the cosmological QCD phase transition, which happened at a time between 10^{-5} sec and 10^{-4} sec or at the temperature of about 150 MeV and accounts for confinement of quarks and gluons to within hadrons, would be of first order, i.e., would release latent “heat” or latent energy. I wish to base on two important points, i.e. (1) that we have 25% dark matter in the present Universe, and (2) that when the early universe underwent the cosmological QCD phase transition it released $1.02 \times 10^9 \text{gm/cm}^3$ in latent energy huge compared to $5.88 \times 10^9 \text{gm/cm}^3$ radiation (photon) energy, to deduce that the two numbers are in fact closely related. It is sufficient to approximate the true QCD vacuum as one of degenerate \textit{\theta}-vacua and can be modelled effectively via a complex scalar field with spontaneous symmetry breaking. We examine how “pasted” or “patched” domain walls are formed, how such walls evolve in the long run, and we believe that the majority of dark matter could be accounted for in terms of such domain-wall structure and its remnants. The latent energy released due to the conversion of the false vacua to the true vacua, in the form of “pasted” or “patched” domain walls at first and their evolved objects, make it obsolete the “radiation-dominated” epoch or later on the “matter-dominated” epoch.

\textit{Keywords}: Origin and formation of the Universe; cosmology; observational cosmology.

PACS Nos.: 98.80.Bp, 98.80.-k, 98.80.Es.

1. Introduction

The discovery1 of fluctuations or anisotropies, at the level of 10^{-5}, associated with the cosmic microwave background (CMB) has helped transformed the physics of the early universe into a main-stream research area in astronomy and in particle astrophysics, both theoretically and observationally.2 CMB anisotropies3 and polarizations,4 the latter even smaller and at the level of 10^{-7}, either primary (as imprinted on the last scattering surface just before the universe was $(379 \pm 8) \times 10^3$ years old) or secondary (as might be caused by the interactions of CMB photons with large-scale structures along the line of sight), are linked closely to the inhomogeneities produced in the early universe.
Over the last three decades, on the other hand, the standard model of particle physics has been well established to the precision level of 10^{-5} or better in the electroweak sector, or to the level of $10^{-3} - 10^{-2}$ for the strong interactions. This gives the basis for describing the early Universe. In the theory, the electroweak (EW) phase transition, which endows masses to the various particles, and the QCD phase transition, which gives rise to confinement of quarks and gluons within hadrons in the true QCD vacuum, are two well-established phenomena. Presumably, the EW and QCD phase transitions would have taken place in the early universe, respectively, at around 10^{-11} sec and at a time between 10^{-5} sec and 10^{-4} sec, or at the temperature of about 300 GeV and of about 150 MeV, respectively. Indeed, it has become imperative to formulate the EW and QCD phase transitions in the early universe if a quantitative theory of cosmology can ever be reached.

The purpose of this talk is to focus our attention on cosmological QCD phase transition. It turns out that the latent “heat” or latent energy released, of course evolving into different forms, could be linked with dark matter - by a simple arithmetic. In the framework which we consider, we could describe the intermediate solutions based on the so-called “pasted” or “patched” domain walls when the majority of the false vacua get first eliminated – but how it would evolve from there and how long it would evolve still uncertain.

2. The Background Universe in the Standard Description

A prevailing view regarding our universe is that it originates from the joint making of Einstein’s general relativity and the cosmological principle while the observed anisotropies associated with the cosmic microwave background (CMB), at the level of about one part in 100,000, may stem, e.g., from quantum fluctuations in the inflation era.

Based upon the cosmological principle which state that our universe is homogeneous and isotropic, we use the Robertson-Walker metric to describe our universe.

$$ds^2 = dt^2 - R^2(t)[\frac{dr^2}{1-kr^2} + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2]. \hspace{1cm} (1)$$

Here the parameter k describes the spatial curvature with $k = +1, -1, \text{ and } 0$ referring to an open, closed, and flat universe, respectively. The scale factor $R(t)$ describes the size of the universe at time t.

To a reasonable first approximation, the universe can be described by a perfect fluid, i.e., a fluid with the energy-momentum tensor $T^\mu_{\ \nu} = diag(\rho, -p, -p, -p)$ where ρ is the energy density and p the pressure. Thus, the Einstein equation, $G^\mu_{\ \nu} = 8\pi G_N T^\mu_{\ \nu} + \Lambda g^\mu_{\ \nu}$, gives rise to only two independent equations, i.e., from $(\mu, \nu) = (0, 0)$ and (i, i) components,

$$\frac{\dot{R}^2}{R^2} + \frac{k}{R^2} = \frac{8\pi G_N}{3} \rho + \frac{\Lambda}{3}. \hspace{1cm} (2)$$
\[2 \frac{\ddot{R}}{R} + \frac{\dot{R}^2}{R^2} + \frac{k}{R^2} = -8\pi G_N p + \Lambda. \tag{3}\]

Combining with the equation of state (EOS), i.e. the relation between the pressure \(p \) and the energy density \(\rho \), we can solve the three functions \(R(t) \), \(\rho(t) \), and \(p(t) \) from the three equations. Further, the above two equations yields

\[\frac{\dot{R}}{R} = -\frac{4\pi G_N}{3}(\rho + 3p) + \frac{\Lambda}{3}, \tag{4}\]

showing either that there is a positive cosmological constant or that \(\rho + 3p \) must be somehow negative, if the major conclusion of the Supernovae Cosmology Project is correct, i.e. the expansion of our universe still accelerating (\(\ddot{R}/R > 0 \)).

Assuming a simple equation of state, \(p = w\rho \), we obtain, from Eqs. (2) and (3),

\[2 \frac{\ddot{R}}{R} + (1 + 3w)\left(\frac{\dot{R}^2}{R^2} + \frac{k}{R^2}\right) - (1 + w)\Lambda = 0, \tag{5}\]

which is applicable when a particular component dominates over the others – presumably in the inflation era (before the hot big bang era), the radiation-dominated universe (e.g. the early stage of the hot big bang era), and the matter-dominated universe (i.e., the late stage of the hot big bang era, before the dark energy sets in to dominate everything else). In light of cosmological QCD phase transition, we would like to examine if the radiation-dominated universe and the matter-dominated universe can ever exist at all, although this has become a dogma in the thinking of our Universe.

For the Inflation Era, we could write \(p = -\rho \) and \(k = 0 \) (for simplicity), so that

\[\dot{R} - \frac{\dot{R}^2}{R} = 0, \tag{6}\]

which has an exponentially growing, or decaying, solution \(R \propto e^{\pm\alpha t} \), compatible with the so-called “inflation” or “big inflation”. In fact, considering the simplest case of a real scalar field \(\phi(t) \), we have

\[\rho = \frac{1}{2} \dot{\phi}^2 + V(\phi), \quad p = \frac{1}{2} \dot{\phi}^2 - V(\phi), \tag{7}\]

so that, when the “kinetic” term \(\frac{1}{2} \dot{\phi}^2 \) is negligible, we have an equation of state, \(p \sim -\rho \). In addition to its possible role as the “inflaton” responsible for inflation, such field has also been invoked to explain the accelerating expansion of the present universe, as dubbed as “quintessence” or “complex quintessence”.

Let’s look at the standard textbook argument leading to the radiation-dominated universe and the matter-dominated universe:

For the Radiation-Dominated Universe, we have \(p = \rho/3 \). For simplicity, we assume that the curvature is zero \((k = 0) \) and that the cosmological constant is negligible \((\Lambda = 0) \). In this case, we find from Eq. (5)

\[R \propto t^{\frac{2}{3}}. \tag{8}\]
Another simple consequence of the homogeneous model is to derive the continuity equation from Eqs. (2) and (3):

$$d(R^3) + pd(R^3) = 0.$$ (9)

Accordingly, we have $p \propto R^{-4}$ for a radiation-dominated universe ($p = \rho/3$) while $p \propto R^{-3}$ for a matter-dominated universe ($p \ll \rho$). The present universe is believed to have a matter content of about 5%, or of the density of about $5 \times 10^{-31} g/cm^3$, much bigger than its radiation content $5 \times 10^{-35} g/cm^3$, as estimated from the 3° black-body radiation. However, as $t \to 0$, we anticipate $R \to 0$, extrapolated back to a very small universe as compared to the present one. Therefore, the universe is necessarily dominated by the radiation during its early enough epochs.

For the radiation-dominated early epochs of the universe with $k = 0$ and $\Lambda = 0$, we could deduce, also from Eqs. (2) and (3),

$$\rho = \frac{3}{32\pi G_N} t^{-2}, \quad T = \left(\frac{3e^2}{32\pi G_N a}\right)^{\frac{1}{7}t^{-\frac{2}{3}}} \equiv 10^{10} t^{-1/2}(^\circ K).$$ (10)

These equations tell us a few important times in the early universe, such as $10^{-11} sec$ when the temperature T is around $300 GeV$ during which the electroweak (EW) phase transition is expected to occur, or somewhere between $10^{-5} sec$ ($\approx 300 MeV$) and $10^{-4} sec$ ($\approx 100 MeV$) during which quarks and gluons undergo the QCD confinement phase transition.

For the **Matter-Dominated Universe**, we have $p \approx 0$, together with the assumption that $k = 0$ and $\Lambda = 0$. Eq. (5) yields

$$R \propto t^{\frac{2}{3}}.$$ (11)

As mentioned earlier, the matter density ρ_m scales like R^{-3}, or $\rho_m \propto t^{-2}$, the latter similar in the radiation-dominated case.

When $t = 10^9 sec$, we have $\rho_\gamma = 6.4 \times 10^{-18} gm/cm^3$ and $\rho_m = 3.2 \times 10^{-18} gm/cm^3$, which are close to each other and it is almost near the end of the radiation-dominated universe. The present age of the Universe is 13.7 billion years – for a large part of it, it is matter-dominated although now we have plenty of dark energy ($65\% \sim 70\%$).

However, it is generally believed that our present universe is already dominated by the dark energy (the simplest form being of the cosmological constant; about 70%) and the dark matter (about 25%). The question is when this was so – when the dark part became dominant.

There is another basic point – trivial but important. For both the electroweak and QCD phase transitions in the early Universe, if the phase transitions are described (approximately) by the complex fields ϕ, then the density of the system is given by

$$\rho = \rho_\phi + \rho_\gamma + \rho_m + \ldots,$$ (12)
before or after or during the phase transition is being taking place. For the electroweak or QCD phase transition, we know that $\rho_m << \rho_\gamma$, but the role played by ρ_ϕ is clearly of importance in our considerations.

What would be wrong in the standard textbook argument? We would come back in Section 6 to this important point, after we set up the general framework and have gained enough of insights. The crucial point is whether cosmological QCD phase transition is the first-order phase transition — if it is, there is the latent “heat” or energy released in the transition; the story would change dramatically if the amount of energy density turns out to be greater than either ρ_γ or ρ_m in the previous radiation-dominated or matter-dominated era.

3. The Cosmological QCD Phase Transition

At the temperature $T > T_c \sim 150 MeV$, i.e., before the phase transition takes place, free quarks and gluons can roam anywhere. As the Universe expands and cools, eventually passing the critical temperature T_c, the bubbles nucleate here and there. These bubbles “explode”, as we call it “exploding solitons”. When it reaches the “supercooling” temperature, T_s, or something similar, the previous bubbles become too many and in fact most of them become touched each other — now the false vacua or “bubbles” of different kind (where quarks and gluons can move freely) start to collapse — or we call it “imploding solitons”. When all these bubbles of different kind implode completely, the phase transition is now complete.

There is some specialty regarding the cosmological QCD phase transition. Namely, the collapse of the false vacuum does depend on the inside quark-gluon content — e.g., if we have a three-quark color-singlet combination inside, the collapse of the false vacuum would stop (or stabilize) at a certain radius (we called the bag radius, like in the MIT bag radius); of course, there are meson configurations, glueballs, hybrids, six-quark or multi-quark configurations, etc. The cosmological QCD phase transition does not eliminate all the false vacua; rather, the end state of the transition could have at least lots of baryon or meson states, each of them has some false vacuum to stabilize the system.

How big can a bubble grow? It is with the fastest speed which the bubble can grow is through the speed of light or close to the speed of light. The bubble could sustain from the moment it creates, say, $T \approx T_c$ to the moment of supercooling, $T_s \sim 0.95 \cdot T_c$, or during the time span $t \sim 3 \times 10^{-5} \times 0.05 \text{sec}$ (or $1.5 \times 10^{-7} \text{sec}$). So, the bubble can at most grow into $c \cdot 1.5 \times 10^{-7} \text{sec}$ or $4.5 \times 10^3 \text{cm}$.

How big was the Universe during the cosmological QCD phase transition? How many bubbles are there when the space were filled up by the bubbles (when the phase transition was complete)? The point is that two bubbles are separated by the domain wall of certain structure (with some energy deposited in there — some surface energy). The domain walls cannot disappear — not only sometime because of the possible nontrivial topology but that there should be some QCD dynamics to annihilate the walls. See below for more discussions on the possible domain walls in the longer term.
As a yardstick, we note that, at \(t \sim 10^{-5} \) sec or \(T \sim 300 \) MeV, we have
\[
\rho_{\gamma} \sim 6.4 \times 10^{10} \text{gm/cm}^3, \quad \rho_m \sim 3.2 \times 10^3 \text{gm/cm}^3. \quad (13)
\]
Or, slightly later when QCD phase transition has completed, at \(t \sim 10^{-4} \) sec or \(T \sim 100 \) MeV, we have
\[
\rho_{\gamma} \sim 6.4 \times 10^8 \text{gm/cm}^3, \quad \rho_m \sim 1.0 \times 10^2 \text{gm/cm}^3. \quad (14)
\]

When the low-temperature bubbles fill up the space, the neighboring two bubbles would in general be labelled by different \(\theta_{i,j} \) representing different but degenerate vacua – we assume that there are infinite many choices of \(\theta \); they are degenerate but complete equivalent. The domain wall is used to separate the two regions. Three different regions would meet in a line – which we call a vortex. We have to estimate the total energy associated with the domain walls and the vortices – particularly when these objects persist to live on for a “long” time – say, \(\tau \gg 10^{-4} \) sec. These domain walls and vortices are governed, in the QCD phase transition in the early Universe, by the QCD dynamics – this is an important point; if not, what else?

For the moment, QCD enables us to make some estimates. Let us focus on \(t \sim 10^{-4} \) sec, where \(\rho_m = 1.0 \times 10^2 \) gm/cm\(^3\). Or, considering a unit volume of 1.0 cm\(^3\), the amount of the matter would be 100gm or 5.609 \times 10^{31} \text{GeV}/c\(^2\). One proton or neutron weighs about 1 GeV/c\(^2\) so, in a volume 1.0 cm\(^3\) at \(t \sim 10^{-4} \) sec, we had at least 5.609 \times 10^{31} \text{baryons} or, in the MIT bag model language, 5.609 \times 10^{31} \text{bags} or \(R = 1.0 \text{ fermi} \) false vacua associated with the system. Remembering 1 cm\(^3\) = 10\(^{39}\) fermi\(^3\), most space had to collapse into the true vacua with different \(\theta_i \).

4. Exploding Solitons

Let’s put some of the discussions into mathematics – to get some estimates from what we can understand. We begin by an isolated bubble – expanding, that is, inside the bubble, it is the true vacuum labelled by some \(\theta \); outside the bubble, the false vacuum; we are thinking of the Universe cooling down and expand.

Consider a spherical wall of radius \(R \) and thickness \(\Delta \) separating the true vacuum inside from the false vacuum outside. The energy density difference of the vacua is \(B \), the bag constant in the most simplified situation, and the energy \(\tau \) per unit area associated with the surface tension on the separating wall is a quantity to be calculated but nevertheless is small compared to the latent heat. If the wall expands outward for a distance \(\delta R \), then the energy budget arising from the vacuum change is
\[
B \cdot 4\pi R^2 \cdot \delta R - \tau \cdot 4\pi \{(R + \delta R)^2 - R^2\} = -\rho \delta V, \quad (15)
\]
where \(\rho \) is the pressure and is so defined that a negative pressure would push the wall outward. (We use the notation \(\tau \) here, since \(\sigma \) and \(\rho \) are reserved for other purposes.)
When the surface tension energy required for making the wall bigger is much less than the latent heat required from the expansion of the bubble, the bubble of the stable vacuum inside will grow in an accelerating way, possibly resulting in explosive growth of the bubble. The scenario may be as follows: When the universe expands and cools, to a temperature slightly above the critical temperature T_c, bubbles of lower vacua will nucleate at the spots where either the temperature is lower, and lower than T_c, or the density is higher, and higher than the critical density ρ_c. As the universe continues to expand and cool further, most places in the universe have the temperature slightly below T_c; that is, the destiny arising from eternal expansion of the universe is driving the average temperature of the entire universe toward below the critical temperature. The universe must find a way to convert itself entirely into another vacuum, the true vacuum at the lower temperature.

Therefore, we have a situation in which bubbles of true vacua pop up (nucleate) here and there, now and then, and each of them may grow explosively in the environment made of the false vacuum for now, but previously the true vacuum when the temperature was still near the critical temperature T_c. In the expanding universe which cooled down relatively rapidly, i.e. from T_c to the supercooling temperature T_s, the situation is awfully complicated. When the temperature becomes lower than T_s, the problem can be modelled, in the simplest way, by characterizing the vacuum structure by a complex scalar field interacting via the potential $V(\phi)$:

$$V(\phi) = \frac{\mu^2}{2} \phi^* \phi + \frac{\lambda}{4} (\phi^* \phi)^2, \quad \mu^2 < 0, \quad \lambda > 0.$$ \hspace{1cm} (16)

For $T > T_c$, we have $\mu^2(T) > 0$ and $\lambda > 0$, so it is between T_c and T_s when the situations are awfully complicated (and we try to avoid in this paper). Note also that, in the complex scalar field description, the true vacua have degeneracy described by a continuous real parameter θ. $\phi = 0$ everywhere in the spacetime describes the false vacuum for the universe at a temperature below the critical temperature T_c. Consider the solution for a bubble of true vacuum in this environment. It is required that the field ϕ must satisfy the field equation everywhere in spacetime, including crossing the wall of thickness Δ to connect smoothly the true vacuum inside and the false vacuum outside. This is why we may call the bubble solution “a soliton”, in the sense of a nontopological soliton of T. D. Lee’s. However, the soliton grows in an accelerating way, or the name “exploding soliton”.

The situation must have changed so explosively that at a very short instant later the universe expands even further and cools to even a little more farther away from T_c and most places in the universe must be in the true vacuum, making the previously false vacuum shrink and fractured into small regions of false vacua, presumably dominantly in spherical shape, which is shrinking in an accelerating way, or “implosively”. Using again the complex scalar field as our language, we then have “imploding solitons”.

In what follows, we attempt to solve the problem of an exploding soliton, as-
summing that the values of both the potential parameters μ^2 and λ are fairly stable during the period of the soliton expansion. The scalar field must satisfy:

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \phi}{\partial r} \right) - \frac{\partial^2 \phi}{\partial t^2} = V'(\phi).$$

(17)

The radius of the soliton is $R(t)$ while the thickness of the wall is Δ:

$$\phi = \phi_0, \quad \text{for} \quad r < R_0 + vt - \frac{\Delta}{2},$$

$$= 0, \quad \text{for} \quad r > R_0 + vt + \frac{\Delta}{2},$$

(18)

with $R(t) = R_0 + vt$ and v the radial expansion velocity of the soliton.

We may write

$$\phi \equiv f(r + vt); \quad w \equiv (1 - v^2)r,$$

(19)

so that the field equation becomes

$$\frac{d^2 f}{dw^2} + \frac{2}{w} \frac{df}{dw} = (1 - v^2)^{-1} \lambda f(\mid f \mid^2 - \phi_0^2).$$

(20)

We will be looking for a solution of f across the wall so that it connects smoothly the true-vacuum solution inside and the false vacuum solution outside.

Introducing $g \equiv w f(w)$, we find

$$g'' = (1 - v^2)^{-1} \lambda g \{ \frac{g}{w} - \phi_0^2 \},$$

(21)

an equation which we may solve in exactly the same manner as the colliding-wall problem to be elucidated in the next section.

5. Colliding Walls – Formation of “Pasted” Domain Walls

When bubbles of true vacua grow explosively, the nearby pair of bubbles will soon squeeze or collide with each other, resulting in merging of the two bubbles while producing cosmological objects that have specific coupling to the system. The situation is again extremely complicated. We try to disentangle the complexities by looking at between the two bubble walls that are almost ready to touch and for the initial attempt neglecting the coupling of the vacuum dynamics to the matter content. Between the two bubble walls, especially between the centers of the two bubbles, it looks like a problem of plane walls in collision – and this is where we try to solve the problem to begin with.

In fact, we have to consider one bubble first – the spherical situation as in the previous section but the bubble is “very” large we could look at the z-direction in the sufficiently good plane approximation (i.e. all bubble surfaces are just like planes). At this point, we have one wall, with thickness Δ, moving with velocity v in the z-direction; on the left of the wall is the false vacuum, and on the right the true vacuum.
The wall, of thickness Δ, separates the true vacuum on one side from the false vacuum on the other side of the wall. For the sake of simplicity, the wall is assumed parallel to the (xy)-plane and are infinite in both the x and y directions. In addition, at some instant the wall is defined between $z = -\Delta$ and $z = \Delta$ with the instantaneous velocity $+v$.

For $z > R + \Delta$ and all x and y, the complex scalar field ϕ assumes ϕ_0, a value of the true vacuum (the ground state). On the other hand, for $z < -R - \Delta$ and all x and y, the complex scalar field ϕ assumes $\phi = 0$, the false vacuum. As indicated earlier, the field ϕ must satisfy the field equation everywhere in spacetime:

$$\frac{\partial^2 \phi}{\partial z^2} - \frac{\partial^2 \phi}{\partial t^2} = V'(\phi).$$ \hspace{1cm} (22)

We may write the wall on the right hand side but moving toward the left with the velocity v:

$$\phi = f(z - vt), \quad \text{for } z - vt > 0, \ t < R/v.$$ \hspace{1cm} (23)

so that

$$(1 - v^2)f'' = \lambda f(|f|^2 - \sigma^2), \quad \sigma \equiv |\phi_0| > 0.$$ \hspace{1cm} (24)

In fact, we are interested in the situation that the function in Eq. (19) is complex:

$$f \equiv ue^{i\theta},$$ \hspace{1cm} (25)

so that, with $\tilde{\lambda} \equiv \lambda/(1 - v^2)$,

$$u'' - u(\theta')^2 = \tilde{\lambda}u(u^2 - \sigma^2),$$ \hspace{1cm} (26)

$$2u\theta' + u\theta'' = 0.$$ \hspace{1cm} (27)

Integrating the second equation, we find

$$u^2\theta' = K,$$ \hspace{1cm} (28)

with K an integration constant. The equation for u is thus given by

$$u'' = \frac{K}{u^3} + \tilde{\lambda}u(u^2 - \sigma^2),$$ \hspace{1cm} (29)

provided that the θ function is defined (in the region of the true vacuum and the wall).

Let us try to focus on the last two basic equations - for u and θ, say, as the functions of ξ (e.g. $\xi = z \pm vt$). For $\xi \geq \Delta$, we have $\phi = \sigma e^{i\theta}$ (the true vacuum) and, for $\xi < 0$, we have $\phi = 0$ (the false vacuum; with θ undetermined). We find, for $\xi \to 0^+$,

$$\theta = \frac{1}{2} \sqrt{-K(\ln \xi)(1 + F(\xi))} + C_0,$$ \hspace{1cm} (30)

with C_0 a constant and $F(\xi)$ regular near $\xi \sim 0$. Therefore the $\theta(\xi)$ function could be “mildly singular” or blow up near $\xi \sim 0$ – this is in fact a very important point.
Of course, the equation for u can be integrated out to obtain the result. For the “wall” region (i.e. $0 < \xi < \Delta$), the solution reads as follows:

$$
\xi = \frac{\sigma^2}{2} \int_0^{u^2/\sigma^2} \frac{dy}{\sqrt{-K + \alpha y - 2\beta y^2 + \beta y^3}},
$$

(31)

with

$$
\Delta = \frac{\sigma^2}{2} \int_0^1 \frac{dy}{\sqrt{-K + \alpha y - 2\beta y^2 + \beta y^3}}.
$$

(32)

Here $\beta \equiv \frac{\lambda}{2} \sigma^6$, and K and α parameters related to the integration constants. Of course, the solution in true-vacuum region can be obtained by extension.

In the wall region, we could compute the surface energy per unit area (i.e. surface tension mentioned earlier in Eq. (15)):

$$
\tau = \int_0^\Delta d\xi \frac{1}{2} \{(u')^2 + u^2(\theta')^2\},
$$

(33)

some integral easy to calculate.

There is an important note – that is, the solution for ϕ obtained so far applies for the true vacuum and the wall, and which is continuous in the region; how about the false vacuum? This is an important question because in the false vacuum we know that $u = 0$ but θ is left undetermined. So, in first-order phase transitions we have certain function undefined in the false-vacuum region(s). This is a crucial point to keep in mind with.

As a parenthetical footnote, we note that the equation for the exploding or imploding spherical soliton, Eq. (21), may be integrated and solved in an identical manner.

Now let us focus on the merge of the two bubbles – the growing of the two true-vacuum bubbles such that the false-vacuum region gets squeezed away. This is another difficult dynamical question. In fact, we can make the false-vacuum region approaching to zero, i.e., the region with the solution $u = 0$ gets squeezed away; one true-vacuum region with θ_1 and Δ_1 (the latter for the wall) is connected with the one with θ_2 and Δ_2 – we could use (K_1, K_2) to label the new boundary; to be precise, we could call it “the pasted domain wall” or “the patched domain wall”. It is in fact two walls pasted together – if we look at the boundary condition in between, we realize that the structure would persist there for a while to go. The pasted domain wall could evolve further but this may not be relevant for counting the energies involved. The evolved forms of the pasted domain walls could be determined by the topology involved – for the purpose of this paper, we can ignore this fine aspect.

Suppose that the cosmological QCD phase transition was just completed – we have to caution that, not everywhere, the false vacua be replaced by the true vacua so that in between the walls be replaced (approximately) by the pasted domain walls. There are places for color-singlet objects (i.e. hadrons) which quarks and gluons tried to hide; these places are still called by the “false vacua” with the
volume energies. Thus, the volume energy, i.e. B in Eq. (15) or defined suitably via λ and μ^2 (in Eq. (16)), or at least some portion of it, may convert itself into the surface energy and others – $B = 57 \text{MeV/fm}^3$ using the so-called “bag constant” in the MIT bag model8 or Columbia bag model.9

This energy density $B = 57 \text{MeV/fm}^3 = 1.0163 \times 10^{14} \text{gm/cm}^3$ is huge as compared to the radiation density ρ_r (which is much bigger than the matter density ρ_m) at that time, $t \approx 10^{-5} \sim 10^{-4} \text{sec}$ (see Eq. (13) or (14)). Some exercise indicates that this quantity of energy is exactly the latent “heat” or energy released in the first-order phase transition.

The cosmological QCD phase transition should leave its QCD mark here – since the volume energy that stays with the “false vacuum” is simply reduced because the volumes with the “false vacua” are greatly reduced – but not eliminated because quarks and gluons, those objects with colors, still have some places to go (or, to hide themselves).

6. Toward a Conjecture with Basic Estimates

Let us begin by making a simple estimate - the expansion factor since the QCD phase transition up to now. The present age of the Universe is $13.7 \times 10^9 \times 365.25 \times 24 \times 3600$ or 4.323×10^{17} seconds. As indicated earlier (cf. the end of Sec. 2), about the 10^9sec period of the hot big bang is previously-believed radiation-dominated. Consider the length 1.0fermi at $t \approx 10^{-5}\text{sec}$, it will be expanded by a factor of 10^7 up to $t \approx 10^9\text{sec}$ (radiation-dominated) and expanded further by another factor of 5.7×10^5 until the present time – so, a total expansion factor of 5.7×10^{12}; changing a length of 2fermi at $t \approx 10^{-5}\text{sec}$ into a distance of 1cm now. A proton presumably of $R = 1 \text{fermi}$ at $t \approx 10^{-5}\text{sec}$ should be more or less of the same size now; or, the bag constant or the energy associated with the false vacuum should remain the same.

What would happen to the pasted or patched domain walls as formed during the cosmological QCD phase transition? According to Eqs. (28) and (29) together with Eq. (30), we realize that the solutions in previously two different true-vacuum regions cannot be matched naturally – unless the K values match accidently. But it is clear that the system cannot be stretched or over-stretched by such enormous factor, 10^{12} or 10^{13}. I believe that the field ϕ, being effective, cannot be lonely; that is, there are higher-order interactions such as

$$c_0 \phi G^a \mu, \quad c_1 \phi GGG, \quad ..., \quad d_0 \phi \bar{\psi} \psi,$$

some maybe being absent because of the nature of ϕ. In other words, we may believe that the strong interactions are primarily responsible for the phase transition in question, such that the effective fiend ϕ couples to the gluon and quark fields; the details of the coupling are subject to investigations.

That is, when the field ϕ responsible for the pasted or patched domain walls is effective – the ϕ field couples, in the higher-order (and thus weaker) sense, to
the gluon and quark fields. It is very difficult to estimate what time is needed for pasted domain walls to disappear, if there are no nontrivial topology involved. If there is some sort of nontrivial topology present, there should left some kind of topological domain nugget – however, energy conservation should tell us that it cannot be expanded by too many orders.

To summarize, the energy associated with the cosmological QCD phase transition, mainly the vacuum energy associated with the false vacuum, disappeared in several ways, viz.: (1) the bag energies associated with the baryons and all the other color-singlet objects, (2) the energies with all kinds of topological domain nuggets or other topological objects, and (3) the decay products from pasted or patched domain walls with trivial topology.

Let us begin with the critical temperature \(T = T_c \approx 150 \text{ MeV} \) or \(t \approx 3.30 \times 10^{-5} \text{ sec} \). At this moment, we have

\[
\rho_{\text{vac}} = 1.0163 \times 10^{14} \text{ gm/cm}^3, \quad \rho_\gamma = 5.88 \times 10^9 \text{ gm/cm}^3, \quad \rho_m = 6.51 \times 10^2 \text{ gm/cm}^3.
\]

Here the first term is what we expect the system to release – the so-called “latent heat”; I call it “latent energy” for obvious reasons. The identification of the latent “heat” with the bag constant is well-known in Coulomb bag models.\(^9\)

This can be considered just before the cosmological QCD phase transition which took place – at the moment the energy components which we should take into consideration.

As time went on, the Universe expanded and the temperature cooled further – from the critical temperature to the supercooling temperature \((T_s \sim 0.95 \times T_c \text{ with the fraction 0.95 in fact unknown}) \) and even lower, and then the cosmological QCD phase transition was complete. When the phase transition was complete, we should estimate how the energy \(\rho_{\text{vac}} \) is to be divided.

Let’s assume that the QCD phase transition was completed at the point \(T_s \) (in fact maybe a little short after \(T_s \)). Let’s take \(T_s = 0.95 T_c \) for simplicity. We would like to know how the energy \(\rho_{\text{vac}} \) is to be divided. First, we can estimate those remained with the baryons and other color-singlet objects – the lower limit is given by the estimate on the baryon number density: \(\rho_m = 6.51 \times 10^2 \text{ gm/cm}^3 \) or \(3.65 \times 10^{26} \text{ GeV/c}^2/\text{cm}^3 \). So, in the volume \(1.0 \text{ cm}^3 \) or \(10^{39} \text{ fermi}^3 \), we have at least \(3.65 \times 10^{26} \) baryons. One baryon has the volume energy (i.e. the bag energy or the false vacuum energy) \(57 \text{ MeV/fermi}^3 \times \frac{4}{3} \pi (1.0 \text{ fermi})^3 \) (which is 238.8 MeV). So, in the volume \(1.0 \text{ cm}^3 \), we have at least \(238.8 \text{ MeV} \times 3.65 \times 10^{26} \) or \(8.72 \times 10^{25} \text{ GeV} \) in baryon bag energy. Or, in different units \(8.72 \times 10^{25}/(0.5609 \times 10^{24}) \text{ gm/c}^2 \) or \(155.5 \text{ gm/c}^2 \). Only a tiny fraction of \(\rho_{\text{vac}} \) is to be hidden in baryons or other color-singlet objects after the QCD phase transition in the early Universe.

So, where did the huge amount of the energy \(\rho_{\text{vac}} \) go? In the beginning of the end of the phase transition, the pasted domain walls with the huge kinetic energies seem to be the main story. A pasted domain wall is forming by colliding two domain
walls while eliminating the false vacuum in between. The kinetic energies associated with the previously head-on collision become vibration, center-of-mass motion, etc. Of course, the pasted domain walls would evolve much further such as through the decaying interactions given earlier or forming the “permanent” structures. In any case, the total energy involved is known reasonably – a large fraction of ρ_{vac}, much larger than the radiation ρ_{γ} (with ρ_m negligible at this point).

The story is relatively simple when the cosmological QCD phase transition was just completed and most “pasted” domain walls still have no time to evolve. We return to Eqs. (2) and (3) (i.e. Einstein equations) for the master equations together with the equation of state determined by

$$\rho = \frac{1}{2}(\dot{\phi}^2 + (\nabla \phi)^2) + V_{\text{vac}}(\phi), \quad p = \frac{1}{2}(\dot{\phi}^2 + (\nabla \phi)^2) - V_{\text{vac}}(\phi).$$

(36)

Unless the potential term, apart from driving the QCD phase transition, is important, we could ignore it for the moment. Of course, Eq. (4) is still valid:

$$\frac{\dot{R}}{R} = -\frac{4\pi G_N}{3}(\rho + 3p) + \frac{\Lambda}{3}.$$

(37)

This has an important consequence – the idea of the previous universe expansion usually based on the radiation alone from $t \sim 10^{-10} \text{ sec}$ (after the cosmological electroweak phase transition had taken place) to $t \sim 10^9 \text{ sec}$ (when it was close that $\rho_{\gamma} = \rho_m$) has to be modified because the latent energy ρ_{vac} was about 2×10^5 times the radiation energy at the moment of the cosmological QCD phase transition.

Shown in Fig. 1 is our main result – even though it is a qualitative figure but it tells us a lot. At $t \sim 3.30 \times 10^{-5} \text{ sec}$, where did the latent energy 10^{14} gm/cm^3 evolve into? We should know that the curve for ρ_{γ}, for massless relativistical particles, is the steepest in slope. The other curve for ρ_m is the other limit for matter (which $P \approx 0$). In this way, the latent energy is connected naturally with the curve for ρ_{DM} – in fact, there seems to be no other choice.

![Fig. 1. The various densities of our universe versus time.](image-url)
Coming back to Eq. (37) or (4), we could assume for simplicity that when the cosmological QCD just took place the system follows with the relativistical pace (i.e. \(P = \rho/3 \)) but when the system over-stretched enough and had evolved long enough it was diluted enough and became non-relativistic (i.e. \(P \approx 0 \)). It so happens that in both cases the density to the governing equation, Eq. (37) or (4), looks like \(\rho \propto t^{-2} \) although it is \(R \propto t^{\frac{1}{2}} \) followed by \(R \propto t^{\frac{3}{2}} \).

It is so accidental that what we call “the radiation-dominated universe” is in fact dominated by the latent energy from the cosmological QCD phase transition in the form of “pasted” or “patched” domain walls and the various evolved objects. In our case, the transition into the “matter-dominated universe”, which happened at a time slightly different from \(t \sim 10^{9} \text{ sec} \), occurred when all the evolutions of the pasted domain walls ceased or stopped. In other words, it is NOT the transition into the “matter-dominated universe”, as we used to think of.

In fact, the way of thinking of the “dark matter”, or the majority of it, turns out to be very natural. Otherwise, where did the 25% content of our universe come from? Of course, one could argue about the large amount of the cosmological QCD phase transition. We believe that the curves in Fig. 1 make a lot of sense.

Of course, one should ask what would happen before the cosmological QCD phase transition. It might not be the radiation-dominated. I believe that it opens up a lot of important and basic questions.

7. Outlook

In this talk, I have taken the wisdom that the cosmological QCD phase transition, which happened at a time \(t \approx 3.30 \times 10^{-5} \text{ sec} \) or at the temperature of about 150 \(MeV \) and accounts for confinement of quarks and gluons to within hadrons in the true QCD vacuum, would be of first order. Thus, it is sufficient to approximate the true QCD vacuum as one of degenerate \(\theta \)-vacua and when necessary we try to model it effectively via a complex scalar field with spontaneous symmetry breaking. We examine how “pasted” or “patched” domain walls are formed, how such walls evolve further, and why the majority of dark matter might be accounted for in terms of these objects.

Our central result could be summarized by Fig. 1 together with the explanations. Mainly, we believe that the “radiation-dominated” epoch and the “matter-dominated” epoch, in the conventional sense, never exist once the cosmological QCD phase transition took place. That also explains why there is the 25% dark-matter content, larger than the baryon content, in our present universe.

Acknowledgments

The Taiwan CosPA project is funded by the Ministry of Education (89-N-FA01-1-0 up to 89-N-FA01-1-5) and the National Science Council (NSC 95-2752-M-002-007-PAE). This research is also supported in part as another National Science Council project (NSC 95-2119-M-002-034).
References

1. G. Smoot et al., *Astrophys. J.* 396, L1 (1992); C. Bennett et al., *Astrophys. J.* 396, L7 (1992); E. Wright et al., *Astrophys. J.* 396, L11 (1992).

2. C. L. Bennett, M. S. Turner and M. White, *Physics Today*, November 1997, p. 32, for an early general review.

3. See, e.g., the news in *Physics Today*, April 2003, p. 21; and the references therein.

4. See, e.g., the news in *Physics Today*, May 2006, p. 16; and the references therein.

5. E. W. Kolb and M. S. Turner, *The Early Universe* (Addison-Wesley Publishing Co., 1994).

6. S. Perlmutter et al. [Supernova Cosmology Project], *Astrophys. J.* 517, 565 (1999); A. G. Riess et al. [Supernova Search Team], *Astron. J.* 116, 1009 (1998).

7. R. R. Caldwell, R. Dave and P. J. Steinhardt, *Phys. Rev. Lett.* 80, 1582 (1998); Je-An Gu and W-Y. P. Hwang, *Phys. Lett.* B517, 1 (2001).

8. A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn and V. F. Weisskopf, *Phys. Rev.* D9, 3471 (1974); T. A. DeGrand, R. L. Jaffe, K. Johnson and J. Kiskis, *Phys. Rev.* D12, 2060 (1975). For the bag model parameters, see, e.g., W-Y. P. Hwang, *Phys. Rev.* D31, 2826 (1985).

9. R. Friedberg and T. D. Lee, *Phys. Rev.* D16, 1096 (1977); D18, 2623 (1978). For generalizations, see, e.g., W-Y. P. Hwang, *Phys. Lett.* 116B, 37 (1982) and D29, 1465 (1984).