Randomized Least Squares Regression: Combining Model- and Algorithm-Induced Uncertainties

Ilse C.F. Ipsen

Joint work with: Jocelyn T. Chi

North Carolina State University
Raleigh, NC, USA

Research supported in part by NSF DGE and DMS
Least Squares/Regression Models

Given: Design matrix $X \in \mathbb{R}^{n \times p}$ with $\text{rank}(X) = p$

1. Gaussian linear regression model

$$y = X\beta_0 + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2 I_n)$$

Unknown parameter vector β_0

2. Least squares problem

$$\min_{\beta} \|X\beta - y\|_2$$

Unique maximum likelihood estimator $\hat{\beta} = (X^T X)^{-1} X^T y$

3. Randomized (row compression) algorithm

$$\min_{\beta} \|S(X\beta - y)\|_2$$

Minimal norm solution $\tilde{\beta} = (SX)^\dagger (Sy)$
Objective

Determine combined mean and variance of $\hat{\beta}$ w.r.t.
- Gaussian linear model $\epsilon \sim \mathcal{N}(0, \sigma^2 I_n)$
- Randomized row compression S

Inspiration

Ping Ma, Michael Mahoney, Bin Yu
A statistical perspective on algorithmic leveraging
J. Mach. Learn. Res., vol. 16, pp 861-911 (2015)

Overview

Existing work
Examples
Structural perturbation bounds
Model-induced uncertainty, conditioned on algorithm-induced uncertainty
Combined model-induced and algorithm-induced uncertainty
Summary
Existing Work

(Numerical) row-compression methods for least squares

Drineas, Mahoney, Muthukrishnan 2006
Zhou, Lafferty, Wasserman 2007
Boutsidis, Drineas 2009
Drineas, Mahoney, Muthukrishnan, Sarlós 2011
Meng, Saunders, Mahoney 2014
Bartels, Hennig 2016
Becker, Kawas, Petrick, Ramamurthy 2017

Statistical properties

Ma, Mahoney, Yu 2015
Raskutti, Mahoney 2016
Ahfock, Astle, Richardson 2017
Thanei, Heinze, Meinshausen 2017
Lopes, Wang, Mahoney 2018
Examples
Model-Induced Uncertainty

Gaussian linear model: $\mathbf{y} = \mathbf{X} \beta_0 + \mathbf{\epsilon}$ with $\mathbf{\epsilon} \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_n)$

Design matrix:

$$\mathbf{X} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad \mathbf{X}^\dagger = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

Left inverse: $\mathbf{X}^\dagger \mathbf{X} = \mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Maximum likelihood estimator: $\hat{\mathbf{\beta}} = \mathbf{X}^\dagger \mathbf{y}$

Unbiased estimator: $\mathbb{E}_y[\hat{\mathbf{\beta}}] = \mathbf{X}^\dagger \mathbb{E}_y[\mathbf{y}] = \mathbf{X}^\dagger \mathbf{X} \beta_0 = \beta_0$

Variance: $\text{Var}_y[\hat{\mathbf{\beta}}] = \mathbf{X}^\dagger \text{Var}_y[\mathbf{y}] (\mathbf{X}^\dagger)^T = \sigma^2 \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix}$
Model-Induced Uncertainty
Conditioned on Algorithm-Induced Uncertainty (1)

\[
\min_\beta \| S \mathbf{X} \beta - S \mathbf{y} \|_2 \text{ has solution } \hat{\beta} = (S \mathbf{X})^\dagger S \mathbf{y}, \quad \mathbb{E}_y[y] = \mathbf{X} \beta_0
\]

Sketching preserves rank: \(\text{rank}(S \mathbf{X}) = \text{rank}(\mathbf{X}) \)

\[
S \mathbf{X} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = (S \mathbf{X})^\dagger
\]

Unbiased estimator:

\[
\mathbb{E}_y \left[\hat{\beta} \middle| S \right] = (S \mathbf{X})^\dagger S \quad \mathbb{E}_y[y] = (S \mathbf{X})^\dagger S \mathbf{X} \beta_0 = \beta_0
\]

Variance has increased:

\[
\text{Var}_y \left[\hat{\beta} \middle| S \right] = \sigma^2 (S \mathbf{X})^\dagger S \left((S \mathbf{X})^\dagger S \right)^T = \sigma^2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \equiv \sigma^2 \begin{pmatrix} 1/2 & 0 \\ 0 & 1 \end{pmatrix}
\]
Model-Induced Uncertainty
Conditioned on Algorithm-Induced Uncertainty (2)

\[\min_\beta \| S (X \beta - y) \|_2 \] has solution \(\tilde{\beta} = (SX)^\dagger S y, \quad \mathbb{E}_y[y] = X \beta_0 \)

Sketching causes loss of rank: \(\text{rank}(SX) < \text{rank}(X) \)

\[
SX = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 \\
0 & 0
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
0 & 1 \\
1 & 0 \\
0 & 0
\end{pmatrix}
= \begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix}
= (sx)^\dagger
\]

Biased estimator:

\[
\mathbb{E}_y \left[\tilde{\beta} \mid S \right] = (SX)^\dagger SX \beta_0 = \begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix} \beta_0 \neq \beta_0
\]

Variance is singular:

\[
\text{Var}_y \left[\tilde{\beta} \mid S \right] = \sigma^2 (SX)^\dagger S \left((SX)^\dagger S \right)^T = \sigma^2 \begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix}
\]
Model-Induced Uncertainty
Conditioned on Algorithm-Induced Uncertainty (3)

\[
\min_\beta \| S(X\beta - y) \|_2 \text{ has solution } \hat{\beta} = (SX)^{\dagger}Sy, \quad \mathbb{E}_y[y] = X\beta_0
\]

Summary: Model-induced uncertainty conditioned on \(S \)

- Sketching preserves rank: \(\text{rank}(SX) = \text{rank}(X) \)

 Left inverse: \((SX)^\dagger = (X^TS^TX)^{-1}(SX)^T \)

 \(\hat{\beta} \) is an unbiased estimator: \(\mathbb{E}_y[\hat{\beta}] \mid S = \beta_0 \)

- Sketching causes loss of rank: \(\text{rank}(SX) < \text{rank}(X) \)

 No left inverse: \((X^TS^TX)^{-1} \) does not exist

 \(\hat{\beta} \) is a biased estimator: \(\mathbb{E}_y[\hat{\beta}] \mid S \neq \beta_0 \)

Variance \(\text{Var}_y[\hat{\beta}] \mid S \) is singular
Combined Uncertainty: Uniform Sampling with Replacement (1)

Sampling 2 out of 4 rows: \(S_{ij} = \sqrt{2} \begin{pmatrix} e_i^T \\ e_j^T \end{pmatrix}, \quad 1 \leq i, j \leq 4 \)

\[
S_{11}x = \sqrt{2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \sqrt{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}
\]

\[
S_{42}x = \sqrt{2} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \sqrt{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]

Unbiased estimator of the identity:

\[
\mathbb{E}_s[S^T S] = \sum_{i=1}^4 \sum_{j=1}^4 \frac{1}{16} S_{ij}^T S_{ij} = I = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}
\]
Combined Uncertainty: Uniform Sampling with Replacement (2)

\[
\min_\beta \|S(X\beta - y)\|_2 \text{ has solution } \tilde{\beta} = (SX)^\dagger Sy
\]

Conditional mean: \[E_y[\tilde{\beta} \mid S] = (SX)^\dagger SX\beta_0\]

Sequential conditioning:

\[E[\tilde{\beta}] = E_s \left[E_y \left[\tilde{\beta} \mid S \right] \right] = E_s \left[(SX)^\dagger SX \right] \beta_0\]

Biased estimator:

\[E_s \left[(SX)^\dagger SX \right] = \sum_{i=1}^4 \sum_{j=1}^4 \frac{1}{16} (S_{ij}X)^\dagger (S_{ij}X) = \frac{1}{16} \begin{pmatrix} 12 & 0 \\ 0 & 7 \end{pmatrix} \neq \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\]

12 out of 16 sketched matrices \(S_{ij}X\) are rank deficient.
Structural Perturbation Bounds
Perturbed Solution

Exact problem \(\min_\beta \| X\beta - y \|_2 \)

Hat matrix \(P_x = X(X^T X)^{-1} X^T = XX^\dagger \)

Range \(\mathcal{R}(P_x) = \mathcal{R}(X) \)

Solution \(\hat{\beta} = X^\dagger y = X^\dagger P_x y \)

Perturbed problem \(\min_\beta \| S(X\beta - y) \|_2 \)

\((X^T S^T S X)^{-1} \) does not work!

Comparison Hat matrix* \(P = X(SX)^\dagger S \)

Range \(\mathcal{R}(P) \subset \mathcal{R}(X) = \mathcal{R}(P_x) \)

If \(\text{rank}(SX) = \text{rank}(X) \) then \(\mathcal{R}(P) = \mathcal{R}(X) \)

Solution \(\tilde{\beta} = (SX)^\dagger S y = X^\dagger P y \)

*More general than [Raskutti, Mahoney 2016]
Example: Hat Matrix, and Comparison Hat Matrix

Design matrix, and Hat matrix:

\[X = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad P_x = XX^\dagger = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 1 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \]

Sketching matrix with \(\text{rank}(SX) = \text{rank}(X) \), and Comparison Hat matrix:

\[S = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad P = X(SX)^\dagger S = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad \mathcal{R}(P) = \mathcal{R}(X) \]

Sketching matrix with \(\text{rank}(SX) < \text{rank}(X) \), and Comparison Hat matrix:

\[S = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad P = X(SX)^\dagger S = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad \mathcal{R}(P) \subset \mathcal{R}(X) \]
Perturbed Solution

Exact problem \(\min_{\beta} \| X \beta - y \|_2 \)

Hat matrix \(P_x = X (X^T X)^{-1} X^T = XX^\dagger \)

Solution \(\hat{\beta} = X^\dagger P_x y \)

Perturbed problem \(\min_{\beta} \| S(X \beta - y) \|_2 \)

Comparison Hat matrix \(P = X(SX)^\dagger S \)

Solution \(\tilde{\beta} = X^\dagger Py \)

Difference between perturbed and exact solution

\[
\tilde{\beta} = \hat{\beta} + X^\dagger (P - P_x)y
\]

proportional to difference between Hat and Comparison Hat matrix
Multiplicative Perturbation Bounds

Ingredients:

- Condition number: $\kappa_2(X) = \|X\|_2 \|X^\dagger\|_2$
- Angle between y and $\text{range}(X)$: $0 < \theta < \pi/2$

Relative error in perturbed solution:

$$\frac{\|\hat{\beta} - \tilde{\beta}\|_2}{\|\hat{\beta}\|_2} \leq \frac{\kappa_2(X)}{\cos \theta} \left(\frac{\|P - P_x\|_2}{\text{Amplifier}} \right) \frac{\|P - P_x\|_2}{\text{Perturbation}}$$

Least squares solution insensitive to multiplicative perturbations, if

1. Matrix X well-conditioned with respect to (left) inversion
2. Righthand side y close to $\text{range}(X)$

Tighter than [Drineas, Mahoney, Muthukrishnan, Sarlós 2011]
Model-Induced Uncertainty, Conditioned on Algorithm-Induced uncertainty
Conditioning on S: Mean

\[\min_\beta \|SX\beta - Sy\|_2 \text{ has solution } \tilde{\beta} = (SX)^\dagger Sy \]

Conditional mean

\[\mathbb{E}_y \left[\tilde{\beta} \mid S \right] = (SX)^\dagger S \mathbb{E}_y[y] = (SX)^\dagger SX \beta_0 \]

- If $\text{rank}(SX) = \text{rank}(X)$ then $\tilde{\beta}$ is unbiased estimator

\[\mathbb{E}_y \left[\tilde{\beta} \mid S \right] = (SX)^\dagger (SX) \beta_0 = \beta_0 \]

- If $\text{rank}(SX) < \text{rank}(X)$ then $\tilde{\beta}$ is biased estimator

\[\mathbb{E}_y \left[\tilde{\beta} \mid S \right] = \beta_0 + \left(I - (SX)^\dagger (SX) \right) \beta_0 \]

Bias of $\tilde{\beta}$ increases with rank deficiency of SX
Conditioning on \mathbf{S}: Variance

$$\min_\beta \| \mathbf{S} \mathbf{X} \beta - \mathbf{S} \mathbf{y} \|_2 \text{ has solution } \hat{\beta} = \mathbf{X}^\dagger \mathbf{P} \mathbf{y}$$

Ingredients:

Hat matrix: $\mathbf{P}_x = \mathbf{X} \mathbf{X}^\dagger$

Comparison Hat matrix: $\mathbf{P} = \mathbf{X} (\mathbf{S} \mathbf{X})^\dagger \mathbf{S}$

Model variance: $\text{Var}_y[\hat{\beta}] = \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1} = \sigma^2 \mathbf{X}^\dagger (\mathbf{X}^\dagger)^T$

Conditional variance:

$$\text{Var}_y \left[\hat{\beta} \mid \mathbf{S} \right] = \sigma^2 \mathbf{X}^\dagger \mathbf{P} \mathbf{P}^T (\mathbf{X}^\dagger)^T$$

$$= \text{Var}_y[\hat{\beta}] + \sigma^2 \mathbf{X}^\dagger \left(\mathbf{P} \mathbf{P}^T - \mathbf{P}_x \right) (\mathbf{X}^\dagger)^T$$

Deviation of \mathbf{P} from orthogonal projector

\mathbf{P}_x is orthogonal projector onto $\mathcal{R}(\mathbf{X})$ with $\mathbf{P}_x^T = \mathbf{P}_x = \mathbf{P}_x^2$
Conditioning on S: Summary

$$\min_{\beta} \| S X \beta - S y \|_2$$ has solution $\tilde{\beta} = X^\dagger P y$

Comparison Hat matrix $P = X (S X)^\dagger S$

Model-induced uncertainty of $\tilde{\beta}$ conditioned on S governed by $\text{rank}(S X)$

- Bias increases with deviation of $S X$ from full column-rank
- If $\text{rank}(S X) = \text{rank}(X)$ then $\tilde{\beta}$ is unbiased
- Conditional variance close to model variance, if P close to being an orthogonal projector onto $\mathcal{R}(X)$
 X well-conditioned with respect to inversion
- If $\text{rank}(S X) < \text{rank}(X)$ then $\text{Var}_y[\tilde{\beta} \mid S]$ is singular
Combined Model-induced and Algorithm-Induced Uncertainty
Combined Uncertainty: Mean

$$\min_{\beta} \|SX\beta - Sy\|_2$$ has solution $$\tilde{\beta} = (SX)^\dagger Sy$$

Total mean

$$E[\tilde{\beta}] = \beta_0 + E_s \left[(SX)^\dagger(SX) - I\right] \beta_0$$

- Deviation of combined uncertainties from model-induced uncertainties governed by expected deviation of sketched matrix from rank deficiency
- Total bias proportional to expected deviation of SX from having full column-rank
Combined Uncertainty: Variance

\[\min_\beta \| S X \beta - S y \|_2 \text{ has solution } \tilde{\beta} = (S X)^\dagger S y \]

Deviation of total variance from model variance

\[\text{Var}[\tilde{\beta}] = \text{Var}_y[\hat{\beta}] + \sigma^2 X^\dagger E_s [P P^T - P_x] (X^\dagger)^T \]
\[+ \text{Var}_s \left[\left((S X)^\dagger (S X) - I \right) \beta_0 \right] \]

- \(X^\dagger E_s [P P^T - P_x] (X^\dagger)^T\)
 Expected deviation of \(P\) from orthogonal projector onto \(\mathcal{R}(X)\), amplified by conditioning of \(X\)

- \(\text{Var}_s \left[\left((S X)^\dagger (S X) - I \right) \beta_0 \right]\)
 Expected deviation of \(S X\) from having full column-rank
Example: Best Case for Uniform Sampling

Columns of Hadamard matrix: Best Coherence

\[
X = \begin{pmatrix}
1 & 1 \\
1 & -1 \\
1 & 1 \\
1 & -1 \\
\end{pmatrix}, \quad P_x = XX^\dagger = \frac{1}{2} \begin{pmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
\end{pmatrix}
\]

\(S \) samples 2 rows uniformly and with replacement

- Expected deviation of \(SX \) from full column-rank

\[
\mathbb{E}_s [(SX)^\dagger(SX) - I] = -\frac{4}{16} \begin{pmatrix} 1 & 0 \\
0 & 1 \end{pmatrix}
\]

- Expected deviation of \(P \) from orthogonal projector onto \(\mathcal{R}(X) \)

\[
\mathbb{E}_s[PP^T - P_x] = \frac{3}{16} \begin{pmatrix} 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \end{pmatrix}
\]
Example: Worst Case for Uniform Sampling

Columns of identity matrix: Worst Coherence

\[X = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad P_x = XX^\dagger = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \]

\(S \) samples 2 rows uniformly and with replacement

- Expected deviation of \(SX \) from full column-rank

\[\mathbb{E}_s [(SX)^\dagger(SX) - I] = -\frac{9}{16} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]

- Expected deviation of \(P \) from orthogonal projector onto \(\mathcal{R}(X) \)

\[\mathbb{E}_s[PP^T - P_x] = \frac{9}{16} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \]
Summary

- Randomized (row) sketching for full column-rank regression
- Exact expressions for uncertainties, induced by model and algorithm, under very general assumptions
- Introduced Comparison Hat matrix, to allow comparison between problems of different dimensions
- Tighter multiplicative perturbation bounds
- Total mean and variance governed by expected deviation of Sketched matrix from full column-rank Comparison Hat matrix from orthogonal projector

Examples illustrate applicability

J.T. Chi and I.C.F. Ipsen,
Randomized Least Squares Regression: Combining Model- and Algorithm-Induced Uncertainties, arXiv:1808.0594