Urban malaria in sub-Saharan Africa: dynamic of the vectorial system and the entomological inoculation rate

P. Doumbe-Belisse¹,², E. Kopya¹,², C. S. Ngadjeu¹,², N. Sonhafouo-Chiana¹,³, A. Talipouo¹,², L. Djamouko-Djonkam¹,⁴, H. P. Awono-Ambene¹, C. S. Wondji⁵, F. Njokou² and C. Antonio-Nkondjio¹,⁵*

Abstract
Sub-Saharan Africa is registering one of the highest urban population growth across the world. It is estimated that over 75% of the population in this region will be living in urban settings by 2050. However, it is not known how this rapid urbanization will affect vector populations and disease transmission. The present study summarizes findings from studies conducted in urban settings between the 1970s and 2020 to assess the effects of urbanization on the entomological inoculation rate pattern and anopheline species distribution. Different online databases such as PubMed, ResearchGate, Google Scholar, Google were screened. A total of 90 publications were selected out of 1527. Besides, over 200 additional publications were consulted to collate information on anopheline breeding habitats and species distribution in urban settings. The study confirms high malaria transmission in rural compared to urban settings. The study also suggests that there had been an increase in malaria transmission in most cities after 2003, which could also be associated with an increase in sampling, resources and reporting. Species of the Anopheles gambiae complex were the predominant vectors in most urban settings. Anopheline larvae were reported to have adapted to different aquatic habitats. The study provides updated information on the distribution of the vector population and the dynamic of malaria transmission in urban settings. The study also highlights the need for implementing integrated control strategies in urban settings.

Keywords: Malaria, Urbanization, Sub-Saharan Africa, Anopheles, Entomological inoculation rate, Bionomic

Background
Sub-Saharan Africa still bears the highest burden of malaria morbidity and mortality worldwide despite improvements in the diagnostic of the pathogens and large-scale deployment of vector control measures, such as Long-Lasting Insecticidal Nets (LLINs) and Indoor Residual Spraying (IRS) [1]. In 2019 over 229 million cases and 409,000 deaths were recorded across the world [1]. Although the whole sub-Saharan Africa region is exposed to malaria transmission risk, high heterogeneity in malaria transmission patterns exists on the continent, particularly between urban and rural settings [2–4]. It is considered that people living in rural settings are more exposed to malaria transmission risk compared to those living in urban settings [3, 5]. Studies conducted so far suggested higher densities and a greater diversity of malaria vector population sizes in rural compared to urban settings [6]. Many factors have been reported to affect malaria transmission intensity in urban settings including pollution, which can affect anopheline larval habitats and reduce their population size as well as impact mosquito life cycles and consequently their vectorial capacity. Urban dwellers may also have greater

*Correspondence: antonio_nk@yahoo.fr
1 Institut de Recherche de Yaoundé (IRY), Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
Full list of author information is available at the end of the article

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
mosquito avoidance behaviour, including the use of repel-
ents, screens on windows, insecticides spray and coils [2,
7–9]. During the last decade, sub-Saharan Africa regis-
tered an unprecedented growth of it urban population.

The urban population which was estimated at 491 mil-
lion in 2015 is projected to grow to nearly 1.5 billion by
2050 [10]. However the rapid unplanned urbanization
observed in many sub-Saharan Africa cities character-
ized by the colonization of lowland areas for house con-
struction, the absence of drainage system for water, the
presence of standing water collection everywhere due
to the bad state of roads and poor housing are all con-
sidered to affect the distribution of vector population
and malaria transmission pattern [11]. Now, many cit-
ies are reporting increase practice of urban agriculture
in both the city centre and periphery; all these activi-
ties create favourable breeding habitats for mosquitoes
[12–14]. The rapid unplanned urbanization appears as
a potential risk factor promoting malaria and arboviral
diseases transmission in urban settings [15, 16]. Studies
conducted so far suggested higher densities and a greater
diversity of malaria vectors in rural compared to urban
settings [2, 6, 17]. Besides, it has been reported that the
most efficient malaria vectors Anopheles gambiae sensu
lato (s.l) namely Anopheles gambiae, Anopheles coluzzii,
Anopheles arabiensis, which had a strong preference for
unpolluted water [13] now displays a great adaptation
pattern to polluted waters in urban cities [18, 19] and
breed in different human-made habitats including con-
tainers filled with water, swimming pools, tyre tracks,
water tanks [20]. Housing construction sites or construc-
tion materials were also found to be productive habitats
for malaria vectors [21, 22]. The situation of malaria in
sub-Saharan African cities is further becoming complex
with the recent invasion of the Asian malaria vectors
Anopheles stephensi [23, 24]. Although the epidemiologi-
ical consequences of such invasion is still not well under-
stood, it is likely that the addition of new competent
vectors in the urban environment may further negatively
affect malaria control strategies in urban areas. Conside-
ring the potential public health impact that urban malaria
could have and potential effects on the economic devel-
opment of countries, there have been during the last
decade a renewed interest with several studies assess-
ing malaria transmission pattern and vector bionomic
in urban settings across sub-Saharan Africa [11, 18, 21,
25–29]. However there have been so far not enough stud-
ies summarising findings from previous works in order to
capture the general trend of malaria transmission, vec-
tor distribution and larvae preferred breeding habitats in
urban settings. For instance, there have been fewer stud-
ies providing an overview of the general distribution pat-
tern of main species in urban settings across Africa. The

present study's objective is to carry out a review of the
existing literature on malaria transmission across sub-
Saharan Africa in order to provide a better understand-
ing of the evolution of vector populations and malaria
transmission pattern.

Methods

Literature search

A search for studies on urban malaria in Africa was con-
ducted to capture the general trend of malaria trans-
mission using the following online databases PubMed,
Research Gate, Google scholar and Google. Search
terms included a combination of key words such as “EIR
Anopheles”, “Urban malaria”, “malaria urban SSA”, “Africa
mosquitoes”, “malaria transmission”, “Urbanization”, “cit-
ties”, “malaria Pl. falciparum”, “malaria epidemiology”,
“urban population”, “malaria prevalence”.

Literature selection process

The selection included papers published between the
1970s to 2020. Initial selection using the above combina-
tion of keywords yielded a total of 1527 scientific publica-
tions. All studies not conducted in Africa were discarded
(n = 381). The remaining papers were then selected using
the following criteria (i) description of malaria transmis-
sion or prevalence in urban and/or rural and/or periur-
ban settings; (ii) studies conducted in sub-Saharan
Africa. Papers which did not estimate the EIR or malaria
prevalence or appearing several times in the selection
were also excluded from the review. After applying this
selection criteria, 1047 studies were discarded. Further
reading of the abstract and the whole paper permitted
to exclude an additional 9 papers living 90 for the study
(Fig. 1).

Besides, an additional selection was performed to col-
late information on breeding habitats and anopheline
species distribution in urban cities. Over 200 scientific
publications were consulted for this purpose. Terms used
to guide this search included the name of main cities in
West, East and Central Africa followed by a combina-
tion of key words such as “malaria Anopheles”; “malaria
Anopheles larvae”; “Anopheles urban breeding sites”,
“Anopheles aquatic habitats”.

Data analysis

Available information retrieved from each selected
publication were registered in a Microsoft Excel
spreadsheet for data analysis. This included authors
names, the year of publication, country, study site,
types of settings, sampling method, study type, malaria
transmission indices (entomological inoculation rate
(EIR), human biting rate (HBR)), vectors involved in
the transmission, abundance of vectors, study period, malaria prevalence, and parasites (Additional file 1).

EIRs estimates were not always available in selected papers in an adequate format for analysis. The following steps were taken in order to adjust data presentation. (i) When many EIRs were estimated for the same site (EIRs for districts within a city), the average EIR from the area was estimated and used for analysis; (ii) when the EIR value was presented for two different periods in the same site, the highest value was considered; (iii) when indoor and outdoor EIRs were reported, the EIRs were summed to have the total EIR from the area; (iv) when EIRs were presented as daily or monthly or seasonal EIRs, the annual EIR was estimated.

The Spearman correlation coefficient was used to assess the correlation between EIRs and biting rates. The Kruskal–Wallis and Mann–Whitney tests were used to compare EIRs averages between urban, periurban and rural settings. The EIR was also compared between periods before 2003 and after 2003 because after 2003 studies conducted were using more molecular tools for mosquito processing (PCR, ELISA) than before. Analyses were performed using R software version 3.4.0 and GraphPad Prism 7.

Study design
A flowchart representing the study design show data collected in selected papers, indicators assessed and comparisons performed in the review (Fig. 2).

Results
Literature review of EIR estimates in rural, periurban and urban settings
A total of 90 studies conducted in 136 sites in 23 countries were consulted for the present review (Table 1). Data presented derive from studies in 88 rural sites, 18 periurban sites and 31 urban sites.

Dynamic of the EIR between rural, periurban and urban settings
A high heterogeneity in EIR estimates was recorded between urban, periurban and rural settings. The average EIR was 144.05 infective bites per person per year (ib/p/yr) 95% CI [141.9–146.22] in rural area, 45.70 ib/p/yr 95% CI [42.86–48.7] in periurban area and 32.73 ib/p/yr 95% CI [31.13–34.38] in urban sites. A significant difference was recorded when comparing the EIR between rural, periurban and urban areas (P < 0.05). When comparing EIR estimates of the urban
centre between the period before 2003 (1977–2003) and the period after 2003 (2004–2020) it appears a significant increase in malaria transmission estimates in urban centres since 2003 (P = 0.0001), no such increase was recorded for periurban and rural settings (Fig. 3).

Evolution of EIR in main sub-Saharan Africa cities
When comparing the EIR estimates in urban centres between 1977 and 2020, it appears that before 2003 there were many cities reporting very low or no transmission of malaria from mosquitoes to man whereas between 2004 and 2020 almost all studies indicated evidence of malaria transmission (Fig. 4). Average EIR values varying annually from 30 to 100 ib/p/yr were recorded in most urban settings (Fig. 4). Extreme values of EIR above 500 ib/p/yr have also been reported in Yaoundé [30] and Bioko [31], but these values were not included in the present analysis. *Plasmodium falciparum* was the main parasite detected in most cases.

Larval sites distribution in urban area
Anopheles larvae were frequently found in man-made water habitats, such as drains, puddles, market gardens, urban agricultural sites, pools drains and tyre tracks. *Anopheles* larvae were also reported in natural breeding sites such as swamps, streams or rivers bed although they are less common and scattered in urban areas. The number of studies highlighting the specific breeding sites of anopheline in urban areas both natural and artificial is presented in Table 2.

Diversity of the Anopheline fauna in urban cities
A total of 12 anopheline species were reported in studies conducted in urban cities. Species of *An. gambiae* complex, including *Anopheles gambiae* sensu stricto (s.s.), *Anopheles coluzzii* and *Anopheles arabiensis* were the most common. Additional species present in urban settings included *Anopheles melas*, *Anopheles funestus* s.s. and *Anopheles stephensi*. Other anopheLINE species such as *Anopheles coustani*, *Anopheles*
Authors	Year	Country	Locality	EIR		
Abraham et al. [78]	2017	Ethiopia	Sille	63.6		
Akogbeto et al. [79]	2000	Benin	Cotonou	12	47	29
Adja et al. [80]	2011	Côte d’ivoire	Gbatta, Kpehiri	298.8	478.8	
Akono et al. [30]	2015	Cameroon	Akonolinga, Yaoundé	813.95	552.61	
Akono et al. [81]	2015	Cameroon	Logbessou	47.28		
Antonio-Nkondjio et al. [82]	2002	Cameroon	Simbock	368		
Antonio-Nkondjio et al. [14]	2012	Cameroon	Douala	31		
Amawulu et al. [83]	2016	Nigeria	Bayelsa	80.5		
Amek et al. [84]	2012	Kenya	Nyanza	26.6		
Amvongo-Adjia et al. [85]	2018	Cameroon	Tiko, Manfe, Santchou	8.4;16.8;26.88		
Appawu et al. [86]	2004	Ghana	Kassera Nankana	1218		
Beier et al. [45]	1993	Cameroon	Kisian, Saracidi	299;237		
Bockarie et al. [87]	1994	Sierra Leone	Bo	21–36		
Cano et al. [31]	2004	Equatorial Guinea	Bioko	814.27		
Cano et al. [88]	2006	Equatorial Guinea	Yengue	298.8		
Carnevale et al. [89]	1985	Congo	Brazzaville	80–850		
Carnevale et al. [90]	1992	Cameroon	Mbebe	182		
Coene [91]	1993	RD Congo	Kinshasa	455		
Degefa et al. [92]	2015	Ethiopia	Jimma	0–4781.5		
Diallo et al. [93]	1998	Senegal	Dakar	0		
Diallo et al. [94]	2000	Senegal	Dakar	0		
Daygena et al. [95]	2017	Ethiopia	Gato	103.2		
Elissa et al. [96]	1999	Gabon	Franceville	365	81	
Epopa et al. [97]	2019	Burkina Faso	Bana, Pala, Souroukoudingan	393.47;199.65;151.84		
Getachew et al. [98]	2019	Ethiopia	Ghibe	13.8		
Lwetoijera et al. [99]	2014	Tanzania	Kilombero	392.31		
Djamouko-Djonkam et al. [37]	2020	Cameroon	Yaoundé	106.83	9.78	
Dossou-yovo et al. [100]	1995	Ivory Coast	Bouake	230		
Dossou-yovo et al. [101]	1994	Ivory Coast	Bouake	126.88		
Doumbe-Belisse et al. [11]	2018	Cameroon	Yaoundé	0–92		
Drakeley et al. [102]	2003	Tanzania	Ifakara	30.7		
Fontenille et al. [103]	1992	Madagascar	St Marie Island	100		
Fontenille et al. [104]	1997	Senegal	Dieimbo	159		
Fontenille et al. [105]	1997	Senegal	Ndiop	31		
Fouque et al. [106]	2010	French Guinea	Loca, Twenke	10;5		
Govoetchan et al. [107]	2014	Benin	Sonsoro, Ganssosso	130.75	6.45	
Hakizimana et al. [108]	2018	Rwanda	Karambi, Mashesha, Kicukiro	1–329.8	107.5	
Himeidan et al. [109]	2011	Sudan	Koka, Um Salala	109.5;3.65		
Karch et al. [110]	1992	Congo	Kinshasa	620	66	3
Kasasa et al. [111]	2013	Ghana	Navrongo	1.132–157		
Kerah-Hinzoumbé [112]	2009	Chad	Goulmoun	311		
Kibret et al. [113]	2014	Ethiopia	Ziway	0.25–27.3		
Klinkenberg et al. [13]	2008	Ghana	Accra	6.6–19.2		
Krafsur et al. [114]	1977	Western Ethiopia	Gambela	97		
Lemasson et al. [115]	1997	Senegal	Barkedji	114		
Lindsay et al. [116]	1990	Gambia	Banjul	1.3		
Lochouarn et al. [117]	1993	Burkina Faso	Bobo-Dioulasso	2		
Gadiaga et al. [118]	2011	Senegal	Dakar	17.6		
Table 1 (continued)

Authors	Year	Country	Locality	EIR	Rural	Periurban	Urban
Githeko et al. [119]	1993	Kenya	Ahero	91–416			
Machault et al. [28]	2009	Senegal	Dakar			0–168	
Mala et al. [120]	2011	Kenya	Kamarimir, Tirion	1.44; 1.61			
Manga et al. [121]	1992	Cameroon	Yaoundé	3, 13			
Massebo et al. [122]	2013	Ethiopia	Chano	0–73.2			
Mbogo et al. [123]	2003	Kenya	Malindi	0–120			
Mbogo et al. [124]	1993	Kenya	Kilifi	8		1.5	
Mbogo et al. [125]	1995	Kenya	Kilifi	0–59.6			
Mourou et al. [39]	2012	Gabon	Libreville	33.9			
Mourou et al. [41]	2010	Gabon	Libreville, Port-Gentil	3.45;66.45			
Mutuku et al. [126]	2011	Kenya	Kidomaya, Jego	5.16			
Muturi et al. [127]	2008	Kenya	Kiamachiri, Mbujieru, Murinduko	4.06; 2.55; 2.50			
Mwangangi et al. [128]	2013	Kenya	Kimudia, Kiwalwa, Mwarusa, Njoro	31.95; 123.92; 59.78; 45.06			
Mwanziza et al. [129]	2011	Tanzania	Gichamera	0.51			
Ndenga et al. [130]	2006	Kenya	Iguhu, Kombewa, Marani, Mbale	16.6;31.1;0.4;1.1			
Njan Nloga et al. [131]	1993	Cameroon	Ebogo	355			
Okello et al. [132]	2006	Uganda	Jinja, Arua, Apac, Tororo, Mubende, Kyenjojo, Kanungu	397; 1586; 562; 4; 7; 6			
Okwa et al. [133]	2009	Nigeria	Bungudu-Gusau, Badagry, Onitsha, Bonny	23.31		74.1;32.1;	34.5
Olayemi et al. [134]	2011	Nigeria	Ilorin and Minna	0.83			
Overgaard et al. [135]	2012	Equatorial Guinea	Bioko	163–840			
Owusu-Agyei et al. [136]	2009	Ghana	Kintampo	269			
Richard et al. [137]	1988	Congo	Mayombe	80; 397			
Robert et al. [89]	1985	Burkina Faso	Bobo-Dioulasso	50; 60; 55; 133			
Robert et al. [138]	1986	Burkina Faso	Bobo-Dioulasso	5	0.105		
Robert et al. [139]	1993	Cameroon	Edea	4; 30			
Robert et al. [140]	1998	Senegal	Niakhar	9; 12.26			
Rossi et al. [141]	1986	Burkina Faso	Ouagadougou	92.82; 430	10; 23	7.00	
Salako et al. [50]	2018	Benin	Alibon, Donga	285.48		49.8	
Shiff et al. [142]	1995	Tanzania	Coastal Tanzania	94–703			
Shililu et al. [143]	2003	Eritrea	Anseb, Debub, Gash-Barka, Northern Red Sea	3.45; 15.95; 66.45; 0			
Smith et al. [144]	1993	Tanzania	Kilombero	329			
Tabue et al. [145]	2017	Cameroon	Garoua, mayo Oulo, Pitoa	71.54		33.9	3.45
Tanga et al. [146]	2010	Cameroon	Likoko	460.1			
Tchouassi et al. [147]	2012	Ghana	Kpone-on-sea	62.1			
Tchuinkam et al. [51]	2010	Cameroon	Djutitsa, Dschang, Santchou	0; 90.5		62.8	
Thompson et al. [148]	1997	Mozambique	Maputo	20			
Trape and Zoulani [149]	1997	Congo	Brazzaville	101		0.3	
Trape et al. [150]	1992	Senegal	Pikine, Dakar	0.4		0.01	
Vercruysse [151]	1981	Senegal	Pikine, Dakar	43			
Vercruysse [152]	1985	Senegal	North Senegal	1.65			
Yadouleton et al. [12]	2010	Benin	Cotonou, Parakou, Porto Novo	102.2; 54.7; 83.95			
Zogo et al. [153]	2019	Côte d'Ivoire	Korhogo	2.46			
ziemanni, Anopheles marshallii, and Anopheles rufipes were reported, but in very low densities (Table 3). Great diversity and higher densities of species in rural areas compared to periurban and urban centres were recorded (Fig. 5). For instance, in the city of Yaoundé, it was common to find fewer than four species at the city centre whereas this number could rise up to ten species in the nearby rural settings.

Discussion
The present study is an update of previous reviews on urban malaria in sub-Saharan Africa [2–4, 29, 32, 33], it provides new data on malaria transmission pattern and anopheline species distribution. Urbanization is increasingly blamed of influencing the epidemiology and evolution of vector-borne diseases in sub-Saharan Africa. More than half of the world’s population now lives in towns or cities and it is projected that this number could rise to 75% by 2050 [34]. From the review it appears that, the Entomological Inoculation Rate (EIR) is highly heterogeneous in cities across the continent [18, 35, 36]. In many cities centre, malaria transmission is low or absent while others register high EIR estimates [11, 37]. The difference between cities could derive from the scale of urban development, population size and the magnitude of unplanned urbanization. Unplanned urbanization characterized by the colonization of lowland areas for habitat construction, poor drainage system in urban settings, the development of slums and spontaneous habitats and the practice of agriculture in the city centre was reported to deeply influence malaria transmission intensity [15, 38]. Although EIR estimates were always higher in rural and peri-urban settings compared to urban centres [2], it also appeared that, because of increase poverty in urban settings there are an increasing number of people exposed to malaria transmission risk. In the city of Libreville for instance, a high transmission rate was recorded in the city centre characterized by poor
housing, high population density, low socio-economic level and inadequate management of waste, compared to the periphery where the population had a high socio-economic level and good management infrastructure [39]. In the city of Yaoundé, where slum-like conditions are common across the city, malaria transmission was highly prevalent in both the city centre and the periphery [11]. The close association between malaria and the economic status of the household has been highlighted in different studies across the continent [4]. Additional factors including river overflowing, city landscape and seasonal variations were also found to influence the intensity and pattern of malaria transmission [14, 40]. Important differences were noted when comparing malaria transmission intensity in the city centre before and after 2003. The comparison of the two periods suggested an increase in malaria transmission intensity in urban settings across sub-Saharan Africa after 2003 [11, 13, 31, 39, 41]. Transmission estimates surpassing 50 infected bites/person/year were frequently reported in cities across Africa supporting the existence of high parasite reservoirs in urban settings including migrants coming from highly endemic rural settings or population moving from urban to rural settings which could be infecting mosquito populations [30, 37]. It is also possible that the introduction of new techniques for the detection of Plasmodium infections in mosquitoes, such as ELISA and PCR techniques which were not used before could have increased the EIR estimates [42–44]. These highly sensitive techniques were reported to overestimate the true infection rate after salivary gland dissection by 1.1 to 1.9 folds [45–48]. The use of new molecular techniques or genomic advances could be vital for malaria control and elimination in Africa and there is a need to promote the use of new techniques to improve malaria vector control and surveillance in Africa [49].

The study also indicated high diversity of the vectorial system in different cities [12, 50–53]. Yet members of An. gambiae complex were largely predominant in most urban settings [11, 14, 54, 55]. This is in conformity with these species capacities to adapt to anthropogenic and/or environmental changes and to feed exclusively on humans [56]. The preferential breeding habitats of species of the An. gambiae complex are temporary water

Type of breeding site	West Africa	References	Central Africa	References	East Africa	References
Artificial						
Urban farms	10	[12, 13, 18, 21, 26, 28, 154–157]	4	[27, 158–160]		
Tyre tracks	4	[18, 28, 161, 162]	1	[19]	6	[22, 158, 160, 163–165]
Drains/gutter	4	[154, 159, 162, 166]	4	[19, 167–169]	5	[170, 158, 159, 164, 165]
Swimming pool	1	[21]	4	[22, 27, 159, 171]		
Pools	4	[161, 162, 166, 172]	1	[168]	5	[160, 164, 165, 173, 174]
Polluted water	3	[13, 18, 155]	1	[19]	1	[175]
Pipes	1	[13]	2	[176, 177]		
Dam	1	[155]	1	[178]		
Brick holes	1	[155]				
Domestic containers	2	[162, 166]	2	[19, 168]	3	[163, 165, 179]
Footprint	2	[19, 167]	2	[163, 165]		
Ditches/pts	1	[154]	1	[169]	4	[163–165, 174]
Rice paddies	1	[180]	2	[163, 165]		
Puddles	1	[154]	2	[19, 169]	4	[159, 164, 173]
Holes	1	[164]	1	[164]		
Canoes	2	[168, 169]				
Total	33		18	[19]	43	
Natural						
Swamps	3	[28, 154, 155]	1	[19]	4	[159, 160, 163, 164]
Streams/rivers/lagoon	6	[21, 154, 156, 161, 32, 181]	1	[182]	3	[159, 164, 173]
Ponds	1	[161]	2	[178, 183]	1	[159]
Well	1	[13]	1	[168]		
Ground water/springs	2				2	[27, 158]
Tree holes	2	[166, 168]	1	[184]		
Clay soil	1	[21]	1	[27]		
Flood plain/ravine	1	[155]			1	[171]
Total	13	7	13			
Table 3 Composition of anopheline species recorded in main cities across Africa

Africa subregion	Country	Cities	Main species (> 90% total)	Others species < 10%	References
Central Africa	Cameroon	Garoua	An. gambiae s.s	An. rufipes/An. pharoensis/An. paludis	[145, 180, 52]
		Yaoundé	An. gambiae s.s./An. coluzzii/An. funestus	An. nili/An.marshalli/An. ziemanni/An.moucheti	[1, 11, 19, 30, 37, 121, 185, 59, 186]
		Douala	An. coluzzi	An. gambiæ s.s/An. ziemanni	[14, 167, 168]
Gabon		Libreville	An. gambiae s.s	An. melas/An. gambiæ s.s	[11, 19, 30, 37, 121, 185, 59, 186]
		Port-Gentil	An. melas/An. gambiæ s.s	An. melas/An. gambiæ s.s	[96]
		Franceville	An. funestus/An. gambiæ s.s	An. melas/An. gambiæ s.s	[86]
Equatorial Guinea		Bioko	An. funestus/An. gambiæ s.s	An. melas	[13, 187–191]
Tchad		N’Djamena	An. gambiæ s.s/An. arabiensis/An. coluzzi	An. melas/An. gambiæ s.s	[192–194]
Angola		Lobito	An. coluzzi/An. gambiæ s.s	An. melas	[195, 196]
		Luanda	An. gambiæ s.s	An. melas	[197]
Congo		Brazzaville	An. gambiæ s.s	An. melas	[149]
Democratic Republic of Congo	Lodja/Kapokowe	An. gambiæ s.s	An. gambiæ s.s/An. funestus/An. paludis	An. melas/An. gambiæ s.s	[180, 183]
		Kribi	An. gambiæ s.s/An. funestus/An. paludis	An. melas	[202]
		Kibali	An. gambiæ s.s/An. funestus/An. paludis	An. melas	[206]
Central Africa Republic	Benin	Cotonou	An. gambiæ s.l	An. pharoensis/An. ziemanni/An. funestus	[12]
		Porto Novo	An. gambiæ s.l	An. pharoensis/An. ziemanni/An. funestus	[12]
West Africa		Côte d’ivoire	An. gambiæ s.l	An. funestus/An. funestus/An. melas	[207]
		Yamoussoukro	An. gambiæ s.l	An. funestus/An. funestus/An. melas	[207]
		Abidjan	An. gambiæ s.s	An. funestus/An. funestus/An. melas	[208, 209]
		Bouaké	An. gambiæ s.s	An. funestus/An. funestus/An. melas	[210]
Gambia		Bakau	An. arabiensis/An. coluzzii	An. gambiæ s.s/An. gambiæ s.s/An. coluzzii hybrids	[211]
Senegal		Dakar	An. gambiæ s.l/An. arabiensis	An. melas/An. pharoensis	[212]
		Kedougou	An. coustani/An. funestus	An. melas/An. pharoensis	[212]
Guinea		Conakry	An. coluzzii/An. gambiæ s.s	An. melas/An. pharoensis	[54, 213, 214]
		Siguiri	An. gambiæ s.s/An. funestus	An. melas/An. pharoensis	[215]
Guinea-Bissau		Bissau	An. gambiæ s.s/An. coluzzii/An. arabiensis	An. melas/An. pharoensis	[216–220]
Mauritania		Nouakchott	An. gambiæ s.s/An. arabiensis	An. melas/An. pharoensis	[221, 222]
Burkina Faso		Bobo-Dioulasso	An. arabiensis	An. melas/An. pharoensis	[223, 223–225]
		Ouagadougou	An. gambiæ s.l/An. coluzzii/An. arabiensis	An. melas/An. pharoensis	[154, 226, 227]
Cabo-Verde		Praia	An. arabiensis	An. coluzzii/An. gambiæ s.s	[228, 229]
Liberia		Montserrado	An. gambiæ s.s	An. coluzzii/An. gambiæ s.s	[230, 231]
		Monrovia	An. gambiæ s.s/An. coluzzii	An. coluzzii/An. gambiæ s.s	[232]
Nigeria		Ilorin and Minna	An. gambiæ s.s	An. melas/An. pharoensis	[134]
		Lagos	An. gambiæ s.s/An. arabiensis	An. niveolorum/An. funestus	[233–236]
		Bayelsa	An. gambiæ s.s	An. niveolorum/An. funestus	[83]
Mali		Bamako	An. coluzzii/An. gambiæ s.s	An. arabiensis/An. coluzzii	[237–239]
Ghana		Accra	An. gambiæ s.s/An. coluzzii	An. gambiæ s.s/An. coluzzii	[13, 170, 240]
Niger		Niamey	An. gambiæ s.s/An. arabiensis	An. gambiæ s.s/An. coluzzii	[40]
Togo		Tessaoua	An. coluzzii/An. gambiæ s.s	An. melas/An. pharoensis/An. ziemanni	[194]
		Lomé	An. gambiæ s.s/An. coluzzii	An. melas/An. pharoensis/An. ziemanni	[241]
collections exposed to sunlight. However, these species were reported to also breed in different types of habitats, including drains, septic tanks, artificial containers, standing water collection full of organic matters in urban settings [2, 15]. Moreover, it appears from the study that species composition could vary significantly between cities [51]. The following observation, highlights the influence of different factors genetic and tolerance level shaping the adaptation capacity of species in different environments [57, 58]. In the city of Yaoundé, the predominance of An. coluzzii over An. gambiae was attributed to the high tolerance of the species to organic pollutants, such as ammonia [59]. In coastal cities along the Atlantic Ocean, such as Libreville and Malabo, An. gambiae was found to be highly predominant whereas it was less abundant in Douala where An. coluzzii was the predominant species [60]. Explaining species distribution relying only on species specific data could be more complex as highlighted in a recent meta-analysis [61] and deserve further investigation. Urban agriculture coupled with uncontrolled disposal of containers to collect rainwater is creating an increasing number of favourable aquatic breeding habitats for Anopheles in urban cities. It has been reported that some Anopheles species are now adapting to this new environment, as described for An. stephensi, which breeds in man-made water containers, such as household water storage containers and garden reservoirs [24, 62]. The invasion of Africa by new species, such as An. stephensi, which is now found in many countries across East Africa such as Djibouti, Somalia, Sudan, and Ethiopia, could pose a great challenge for malaria elimination in Africa particularly in urban settings [1, 23, 63–65]. The invasion of Djibouti by Anopheles stephensi in 2012 was associated with a 30-fold increase in malaria cases, from 1684 in 2012 to 49,402 in 2019 [1]. Anopheles stephensi was also reported to display high resistance to pyrethroids, carbamates and organophosphates [64]. The species bites outdoors and displays a highly opportunistic behaviour feeding on both human and animals, a behaviour which could affect the efficiency of current control measures [64]. Some cities exhibited a high species diversity with three to six species commonly reported whereas low species diversity was recorded in others. This heterogeneity between cities could derive from difference in vegetation, altitude, urbanization level and seasons [66–70]. The presence of forest fringes as observed in the close neighbourhood of some cities [51] could increase the number of potential breeding sites exploited by mosquitoes and explain the diversity. Mosquitoes found in the urban environment are also exposed to a high selection pressure induce by the use of insecticide-treated nets, pollution, deforestation, anthropogenic changes and environmental changes which could reduce the diversity and distribution of species [15]. Indeed high intensity insecticide resistance affecting almost all insecticide families was

Table 3 (continued)

Africa subregion	Country	Cities	Main species (> 90% total)	Others species < 10%	References
Ethiopia	Kebbi Dehar	An. stephensi			[23, 242]
	Arjo-Didessa	An. arabiensis	An. amharicus/An. coustani/An. pharoensis/An. funestus		[159, 243]
Djibouti	Djibouti	An. arabiensis/An. stephensi			[244, 245]
Sudan	Khartoum	An. arabiensis			[246–250]
Tanzania	Dar es Salaam	An. arabiensis	An. funestus/An. gambiae s.s./An. coustani		[55, 251]
	Morogoro	An. arabiensis	An. gambiae s.s./An. coustani/An. quadranulatus		[162, 252]
East Africa	Kenya	Nairobi	An. arabiensis/An. funestus	An. rivulorum/An. leeson, An. parensis/An. longipalpis/An. vaneedeni	[253, 254]
		Kisumu	An. funestus	An. rivulorum/An. leeson, An. parensis/An. longipalpis/An. vaneedeni	[255]
		Kilifi	An. funestus	An. rivulorum/An. leeson, An. parensis/An. longipalpis/An. vaneedeni	[255, 256]
				An. funestus/An. ziemanni/An. coustani/An. mouchet/An. gambiae s.s.	[108, 257]
		Rwandan	An. arabiensis		[258]
		Kigali	An. arabiensis	An. gambiae s.s	[259]
		Kanzi	An. demeilloni/An. arabiensis/An. funestus		
		Tororo	An. arabiensis	An. gambiae s.s	

Reference:

[1] Doumbe-Belisse et al. Malar J. (2021) 20:364
reported in *An. gambiae s.l.* populations from most urban settings [12, 19, 71–73]. The rapid expansion of multiresistance pattern was reported to reduce bed nets efficacy in different epidemiological settings [74–76]. In urban settings where vector populations display resistance to insecticide, and outdoor feeding behaviour [11], the addition of targeted interventions such as larval control in hotspot areas could be keys for effective reduction of malaria transmission.

Plasmodium falciparum was the predominant malaria parasites recorded in almost all urban settings. This parasite is also the dominant species in rural settings [77]. Other species commonly found included *Plasmodium malariae* and *Plasmodium ovale* [53]. It is likely that the diversity of *Plasmodium* species in urban settings could be on the rise due to the intensification of travels between different regions of the globe. The exploration of factors favouring mosquito nuisance and malaria transmission in urban settings clearly shows the influence of urban expansion resulting from rapid population growth outpacing infrastructure development and highlight the need for further action by municipalities and public works services in the construction of drains or sewage systems to reduce breeding opportunities for mosquitoes [13].

Conclusion

The current review provides an update of the situation of malaria in urban settings in sub-Saharan Africa during the last decades. Although the risk of malaria transmission remains low in urban compared to rural settings, urban malaria is likely to increase as unplanned urbanization continues. Unplanned urbanization led to a proliferation of suitable breeding habitats for malaria vectors and thus increases the risk of exposition to mosquito bites and malaria transmission. To stop this trend in the disease burden, concerted actions need to be taken quickly at different levels to improve the management of malaria cases and control of vector populations. The development of integrated control approaches could be paramount for the effective control of vector-borne diseases in urban settings.

Abbreviations

EIRs: Entomological Inoculation Rate; PCR: Polymerase Chain Reaction; ELISA: Enzyme-Linked Immunosorbent Assay.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s12936-021-03891-z.

Additional file 1. Database of the entomological inoculation rate estimates reported in the 90 scientific publications selected for the review.
Acknowledgements
Not applicable.

Authors’ contributions
Conceived and designed the study: CAN; performed the literature search: PDB, EK; interpreted, analysed data and wrote the paper: CAN, PDB, EK with the contributions of other authors; critically reviewed the manuscript: NCS, SNC, AT, LDDD, HPAA, CSW, FN. All authors read and approved the final manuscript.

Funding
This work received financial support from Wellcome Trust Senior Fellowship in Public Health and Tropical Medicine (202687/Z/16/Z) to ANC. The funding body did not have any role in the design, collection of data, analysis and interpretation of data and in writing of the manuscript.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Institut de Recherche de Yaoundé (IRY), Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon. 2 Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon. 3 Faculty of Health Sciences, University of Buea, Cameroon, P.O. Box 63, Buea, Cameroon. 4 Faculty of Sciences, University of Dschang, Cameroon. P.O. Box 67, Dschang, Cameroon. 5 Vector Group Liverpool School of Tropical Medicine Pemboke Place, Liverpool L3 5QA, UK.

Received: 28 June 2021 Accepted: 20 August 2021
Published online: 08 September 2021

References
1. WHO. World malaria report. Geneva: World Health Organization, 2020. https://cdn.who.int/media/docs/default-source/malaria/world-malaria-reports/9789240015791-eng.pdf?sfvrsn=d7a8ec53_3&download=true
2. Robert V, Macintyre K, Keating J, Trape J-F, Duchemin J-B, Warren M, et al. Malaria transmission in urban sub-Saharan Africa. Am J Trop Med Hyg. 2003;68:169–76.
3. Hay SI, Guerra CA, Tatem AJ, Atkinson PM, Snow RW. Urbanization, malaria transmission and disease burden in Africa. Nat Rev Microbiol. 2005;3:81–90.
4. Keiser J, Utzinger J, De Castro MC, Smith TA, Tanner M, Singer BH. Urbanization in sub-Saharan Africa and implication for malaria control. Am J Trop Med Hyg. 2004;71:118–27.
5. Mathanga DP, Tembo AK, Mzilahowa T, Bauleni A, Mitmaukenena K, Taylor TE, et al. Patterns and determinants of malaria risk in urban and peri-urban areas of Blantyre. Malawi. Malar J. 2015;15:50.
6. De Castro MC, Yamagata Y, Matsiwa D, Tanner M, Utzinger J, Keiser J, et al. Integrated urban malaria control: a case study in Dar es Salaam, Tanzania. Am J Trop Med Hyg. 2004;71:103–17.
7. Wooding M, Naudé Y, Rohwer E, Bouwer M. Controlling mosquitoes with semiochemicals: a review. Parasit Vectors. 2020;13:80.
8. Norris EJ, Coats JR. Current and future repellent technologies: the potential of spatial repellents and their place in mosquito-borne disease control. Int J Environ Res Public Health. 2017;14:124.
9. Aguiar RWS, dos Santos SF, da Silva MF, Ascencio SD, de Mendonça LM, Viana RF, et al. Insecticidal and repellent activity of Siparuna guianensis Aubl. (Nегrima) against Aedes aegypti and Culex quinquefasciatus. PLoS ONE. 2015;10:e0116765.
10. Tuoholski C, Caylor K, Evans T, Avery R. Variability in urban population distributions across Africa. Environ Res Lett. 2019;14:085009.
11. Doumbe-Belisse P, Ngadjui CS, Sonhouafou-Chiana N, Talipouo A, Djamouko-Djonkam L, Kopya E, et al. High malaria transmission sustained by Anopheles gambiae s.l. occurring both indoors and outdoors in the city of Yaoundé, Cameroon. Wellcome Open Res. 2018;3:164.
12. Yadouleton A, Nguessan R, Allagbé H, Asidi A, Boko M, Osse R, et al. The impact of the expansion of urban vegetable farming on malaria transmission in major cities of Benin. Parasit Vectors. 2010;3:118.
13. Klinkenberg E, McCall P, Wilson MD, Ameasinghe FF, Donnelly MJ. Impact of urban agriculture on malaria vectors in Accra. Ghana Malar J. 2008;7:151.
14. Antonio-Nkondjio C, Defo-Talom B, Tagnie-Fosso R, Tene-Fosso B, Ndo C, Lehman LG, et al. High mosquito burden and malaria transmission in a district of the city of Douala, Cameroon. BMC Infect Dis. 2012;12:275.
15. De Silva PM, Marshall JM. Factors contributing to urban malaria transmission in sub-Saharan Africa: a systematic review. J Trop Med. 2012;2012:819563.
16. Ishengoma DS, Francis F, Mmbando BP, Lusingu JPA, Magistrado P, Alifrangis M. Accuracy of malaria rapid diagnostic tests in community studies and their impact on treatment of malaria in an area with declining malaria burden in north-eastern Tanzania. Malar J. 2011;10:176.
17. Trape J-F, Pison G, Speigel A, Enel C, Rogier C. Combating malaria in Africa. Trends Parasitol. 2002;18:22–30.
18. Matthey B, Vounatsou P, Raso G, Tschanhann AB, Beckett EG, Gosoniu L, et al. Urban farming and malaria risk factors in a medium-sized town in Cote d’Ivoire. Am J Trop Med Hyg. 2006;75:1223–31.
19. Antonio-Nkondjio C, Fossoog BT, Ndo C, Djantie BA, Togouett SZ, Awono-Ambene P, et al. Anopheles gambiae distribution and insecticide resistance in the cities of Douala and Yaoundé (Cameroon): influence of urban agriculture and pollution. Malar J. 2011;10:154.
20. Chinery W. Impact of rapid urbanization on mosquitoes and their disease transmission potential in Accra and Tema, Ghana. Afr J Med Sci. 1995;24:179.
21. Matthey B, Koudou B, Ng’orlan E, Vounatsou P, Gosoniu L, Koné M, et al. Spatial dispersion and characterisation of mosquito breeding habitats in urban vegetable-production areas of Abidjan. Cote d’Ivoire Ann Trop Med Parasit. 2010;104:69–69.
22. Impomvili DE, Keating J, Mboogo CM, Potts MD, Chowdhury RR, Beier JC. Abundance of immature Anopheles and culicines (Diptera: Culicidae) in different water body types in the urban environment of Malindi, Kenya. J Vector Ecol. 2008;33:107–17.
23. Carter TE, Yared S, Gebresilassie A, Bonnell V, Damodaran L, Lopez K, et al. First detection of Anopheles stephensi Liston, 1901 (Diptera: Culicidae) in Ethiopia using molecular and morphological approaches. Acta Trop. 2018;188:180–2.
24. Takken W, Lindsay S. Increased threat of urban malaria from Anopheles stephensi mosquitoes, Africa. Emerg Infect Dis. 2019;25:1431–3.
25. Antonio-Nkondjio C, Ndo C, Njokou F, Bigoda JD, Awono-Ambene P, Etang J, et al. Review of malaria situation in Cameroon: technical viewpoint on challenges and prospects for disease elimination. Parasit Vectors. 2019;12:501.
26. Afane YA, Klinkenberg E, Deechsel P, Ousouwa-Daalu K, Garmrs R, Kruppa T. Does irrigated urban agriculture influence the transmission of malaria in the city of Kumasi, Ghana? Acta Trop. 2004;89:125–34.
27. Dongus S, Nyika D, Kannady K, Mtsiswa D, Mshinda H, Gosoniu L, et al. Urban agriculture and Anopheles habitats in Dar es Salaam, Tanzania. Geospat Health. 2009;3:189–210.
28. Machault V, Gadilaga L, Vigilolles C, Jarjaval F, Bouzd K, Sokhna C, et al. Highly focused anopheline breeding sites and malaria transmission in Dakar. Malar J. 2009;8:138.
29. Massey NC, Garrod G,Wiebe A, Henry AJ, Huang Z, Moyes CL, et al. A global bionomic database for the dominant vectors of human malaria. Sci Data. 2016;3:160014.
30. Akono PN, Njiba JAM, Tonga C, Belong P, Ngo Hondt OE, Magne GT, et al. Impact of vegetable crop agriculture on anopheine aggressivity and malaria transmission in urban and less urbanized settings of the South region of Cameroon. Parasit Vectors. 2015;8:293.
31. Cano J, Berzosa P, Roche J, Rubio J, Moyano E, Guerra-Neira A, et al. Malaria vectors in the Bioko Island (Equatorial Guinea): estimation of vector dynamics and transmission intensities. J Med Entomol. 2004;41:158–61.

32. Wang S-I, Lengeler C, Smith TA, Vounatsou P, Akogbeto M, Tanner M. Rapid urban malaria appraisal (RUMA) IV: epidemiology of urban malaria in Cotonou (Benin). Malar J. 2006;5:45.

33. Tatem AJ, Guerra CA, Kabaria CW, Noor AM, Hay SI. Human population, urban settlement patterns and their impact on Plasmodium falciparum malaria endemicity. Malar J. 2008;7,218.

34. UNPD: United Nations Population Division. World Urbanization Prospects, 2014.

35. Bousema T, Drakeley C, Gesase S, Hashim R, Magesa S, Moshah F, et al. Identification of hot spots of malaria transmission for targeted malaria control. J Inf Dis. 2010;201:1764–74.

36. Parnell S, Walawege R. Sub-Saharan African urbanisation and global environmental change. Glob Environ Change. 2011;21:512–20.

37. Djamouko-Djoum L, Nkake DJ, Kopya E, Talipou A, Ngadjue CS, Doumbe-Belisse P, et al. Implication of Anopheles funestus in malaria transmission in the city of Yaoundé, Cameroon. Parasitology. 2020;27:10.

38. Kassahun S, Tiwari A. Urban development in Ethiopia: challenges and policy responses. J Gov Pub Pol. 2012;7:59–65.

39. Mourou J-R, Coffinet T, Jarjalvi F, Cotteaux C, Pradines E, Godeffroy L, et al. Malaria transmission and insecticide resistance of Anopheles gambiae in Libreville and Port-Gentil. Gabon Malar J. 2010;9:321.

40. Labbo R, Fandeur T, Jeanne I, Czeher C, Williams E, Arzika I, et al. Ecology of urban malaria vectors in Niamey, Republic of Niger. Malar J. 2016;15:314.

41. Mourou J-R, Coffinet T, Jarjalvi F, Pradines B, Amalvict R, Rogier C, et al. Dissecting functional components of reproductive isolation among closely related sympatric species of the Anopheles gambiae complex. Evol Appl. 2017;10:1102–20.

42. Noedl H, Yingyuen K, Laoboonchai A, Fukuda M, Sirichaisinthop J, Miller AJ, et al. Baseline entomologic data on malaria transmission in prelude to malaria vaccine study. PLoS ONE. 2013;8:e56828.

43. Bashir IM, Otsyula N, Awinda G, Spring M, Schneider P, Waitumbi JN. Baseline entomologic data on malaria transmission in the city of Yaoundé, Cameroon. Parasite. 2020;27:10.

44. Adungo N, Mahadevan S, Mulaya N, Situbi A, Githure J. Comparative analysis of Plasmodium falciparum ex vivo antigens as an alternative to IFAT for detection of malaria antibodies. Malar J. 2007;6:19.

45. Moessner R, Pak M, Plowe CV, Donaldson G, Gazzinelli R, Guerra CA, et al. Contribution of aestivating mosquitoes to the persistence of Anopheles gambiae in western Kenya in preparation for malaria vaccine trials. J Med Entomol. 1990;27:570–7.

46. Fontenille D, Meunier I-Y, Ndikondjo CA, Tchimunk T. Use of circumsporozoite protein enzyme-linked immunosorbsent assay compared with microscopic examination of salivary glands for calculation of malaria infectivity rates in mosquitoes (Diptera: Culicidae) from Cameroon. J Med Entomol. 2001;38:451–4.

47. Lyons CL, Coetzee M, Chown SL. Stable and fluctuating temperature effects on the development rate and survival of two malaria vectors, Anopheles gambiae and Anopheles funestus, in eastern Ethiopia. Parasit Vectors. 2013;6:1261–75.

48. Kouassi BL, de Souza DK, Guevrey C, Balde SM, Diakité L, Sagno A, et al. Low prevalence of Plasmodium and absence of malaria transmission in Conakry, Guinea: prospects for elimination. Malar J. 2016;15:175.

49. Ganguly KS, Modak S, Chattopadhyay AK, Ganguly KS, Mukherjee TK, Dutta A, et al. Forecasting based on a SARIMA model of urban malaria endemicity in Kolkata. Am J Epidemiol Infect Dis. 2016;42:33–9.

50. Tatem AJ, Guerra CA, Kabaria CW, Noor AM, Hay SI. Human population, urban settlement patterns and their impact on Plasmodium falciparum malaria endemicity. Malar J. 2008;7,218.

51. Tchuinkam T, Simard F, Lélé-Defo E, Téné-Fossog B, Tateng-Ngouateu A, Antonio-Nkondjo C, et al. Biomimics of Anopheles gambiae and malaria transmission dynamics along an altitudinal transect in Western Cameroon. BMC Infect Dis. 2010;10:119.
73. Ranson H, Lissenden N. Insecticide resistance in African Anopholes mosqui- toes: a worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 2016;32:187–96.
74. N’guessan R, Boko P, Odjo A, Akogbeto M, Yates A, Rowland M. Chlorfenapyr: a pyrrole insecticide for the control of pyrethroid or DDT resistant Anopheles gambiae (Diptera: Culicidae) mosquitoes. Act Trop. 2007;102:69–78.
75. Fane M, Cissé O, Traoré CSF, Sabatier P. Anopheles gambiae resistance to pyrethroid-treated nets in cotton versus rice areas in Mali. Act Trop. 2012;122:1–6.
76. Haji KA, Khalil BO, Smith S, Ali AS, Devine GJ, Coetzee M, et al. Challenges for malaria elimination in Zanzibar: pyrethroid resistance in malaria vectors and poor performance of long-lasting insecticide nets. Parasit Vectors. 2013;6:82.
77. Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI. The global distribu- tion of clinical episodes of Plasmodium falciparum malaria. Nature. 2005;434:214–7.
78. Antonio-Nkondjio C, Awono-Ambene P, Toto J-C, Meunier J-Y, Zebaze-Doumbe-Belisse, zone péri-urbaine de Douala (Cameroun). Bull Soc Pathol Exot. 2002;95:350–5.
79. Akono PN, Tonga C, Mbida JM, Hondt ON, Ambene PA, Ndo C, et al. Anopheles gambiae, vecteur majeur du paludisme à Logbesou, zone péri-urbaine de Douala (Cameroun) Bull Soc Pathol Exot. 2015;108:360–8.
80. Antonio-Nkondjio C, Awono-Amigbene P, Toto J-C, Meunier J-Y, Zebaze-Kemleu S, Nyambam R, et al. High malaria transmission intensity in a village close to Yaounde, the capital city of Cameroon. J Med Entomol. 2002;39:350–5.
81. Amek N, Bayoch N, Hamel M, Lindblade KA, Gimnig JE, Odhiambo F, et al. Spatial and temporal dynamics of malaria transmission in rural western Kenya. Parasit Vectors. 2012;5:86.
82. Appavou M, Ouwusu-Agyei S, Dadzie D, Asoala V, Anto F, Karim K, et al. Malaria transmission dynamics at a site in northern Ghana proposed for testing malaria vaccines. Trop Med Int Health. 2004;9:164–70.
83. Bockarie M, Service M, Barnish G, Maude G, Greenwood B. Malaria in a seasonal malaria vector and transmission dynamics in western Burkina Faso. Malar J. 2019;18:113.
84. Lwetoijera DW, Harris C, Kivwa SS, Songus U, Devine GJ, McCall PJ, et al. Increasing role of Anopheles funestus and An. gambiae arabiensis in malaria transmission in the Kilombero Valley, Tanzania. Malar J. 2014;13:331.
85. Drakeley C, Schellenberg D, Kihonda J, Sousa C, Azer A, Lopes D, et al. An estimation of the entomological inoculation rate for Ifakara: a semi-urban area in a region of intense malaria transmission in Tanzania. Trop Med Int Health. 2003;8:767–74.
86. Fontenille D, Lepers JP, Pellozzi P, Campell GH, Rakotovao F, Coulanges P. Entomological study of the transmission of seasonal malaria in Ndolmo, a holoendemic area in Senegal. Am J Trop Med Hyg. 1996;55:247–53.
87. Fouque F, Gaborit P, Carinci R, Issaly J, Giraud R. Annual variations in the number of malaria cases related to two different patterns of Anopheles darlingi transmission potential in the Maroni area of French Guiana. Malar J. 2010;9:80.
88. Govecochran R, Gnonzouen V, Azondékon R, Agossa RF, Sovi A, Oké-Agbo F, et al. Evidence for perennial malaria in rural and urban areas under the Sudanian climate of Kandi, Northeastern Benin. Parasit Vectors. 2014;7:79.
89. Hakizimana E, Karera C, Munyakamanie D, Githure J, Mazarati JB, Tongren JE, et al. Spatio-temporal distribution of mosquitoes and risk of malaria infection in Rwanda. Acta Trop. 2018;182:149–57.
90. Himeidan YE, Elzaki MM, Kweka EJ, Ibrahim M, Elhassan IM. Pattern of malaria transmission along the Rahad River basin, Eastern Sudan. Parasit Vectors. 2011;4:109.
91. Karch S, Asidi N, Mnzambi Z, Salaun J. La faune anophélienne et la transmission du paludisme humain à Kinshasa (Zaïre). Commentaire. Bull Soc Pathol Exot. 1992;85:304–9.
92. Kasas A, Avgi A, Gisondi L, Anto F, Adjou M, Tindana C, et al. Spatio- temporal malaria transmission patterns in the Navorongou demographic surveillance site, northern Ghana. Malar J. 2013;12:63.
93. Diallo S, Konate L, Faye O, Ndri O, Faye M, Gueye A, et al. Malaria in the southern sanitary district of Dakar (Senegal). 2. Entomologic data (in French). Bull Soc Pathol Exot. 1998;91:259–63.
94. Diallo S, Konate L, Ndiir O, Dieng T, Dieng Y, Bah IB, et al. Le paludisme dans le district sanitare centre de Dakar (Sénégal). Données ento- mologiques, parasitologiques et cliniques. Sante. 2000;10:221–9.
95. Dayenga TY, Massebo F, Lindtjønn B. Variation in species composition and infection rates of Anopheles mosquitoes at different altitudinal transects, and the risk of malaria in the highland of Disarasa Woreda, south Ethiopia. Parasit Vectors. 2017;10:343.
113. Kibret S, Wilson GG, Tekie H, Petros B. Increased malaria transmission around irrigation schemes in Ethiopia and the potential of canal water management for malaria vector control. Malar J. 2014;13:360.

114. Krasafi E. The biomics and relative prevalence of Anopheles species with respect to the transmission of Plasmodium to man in western Ethiopia. J Med Entomol. 1977;14:180–90.

115. Lemasson J-J, Fontenille D, Locouarn L, Dia I, Simard F, Ba K, et al. Comparison of behavior and vector efficiency of Anopheles gambiae and An. arabiensis (Diptera: Culicidae) in Barakédi, a Sahelian area of Senegal. J Med Entomol. 1997;34:396–405.

116. Lindsay S, Campbell H, Adiamah J, Greenwood A, Bangali J, Greenwood B. Malaria in a peri-urban area of The Gambia. Ann Trop Med Parasit. 1990;84:553–62.

117. Locouarn L, Gazin P. La transmission du paludisme dans la ville de Bobo-Dioulasso (Burkina Faso). Ann Soc Belg Med Trop. 1993;73:287–90.

118. Gadiaga L, Machault V, Pagès F, Gaye A, Jarjaval F, Godefroy L, et al. G. medicus parasites and malaria transmission at Edea, Cameroon. Trop Med Parasitol. 1993;44:14–8.

119. Githeko A, Service M, Mbogo C, Atieli F, Juma F. Malaria in a peri-urban area of The Gambia. Ann Trop Med Parasit. 1993;77:287–90.

120. Mala AO, Irungu LW, Shililu JI, Muturi EJ, Mbogo CM, Njagi JK, et al. Effect of rice cultivation on malaria transmission in Central Kenya. Am J Trop Med Hyg. 2011;36:670–13.

121. Manga L, Robert V, Desfontaine M, Carnevale P. Le paludisme urban à Yaoundé, Cameroun: 1. Etude entomologique dans deux quartiers centraux. Mem Soc R Belg Entomol. 1992;35:155–62.

122. Massebo F, Balkew M, Chiiu J, Desfontaine M, Carnevale P. Malaria in a peri-urban area of The Gambia. Bull de Liaison et de Document. 1989;15:209–113.

123. Mbogo CM, Mwangangi JM, Nzovu J, Gu W, Yan G, Gunter JT, et al. Anopheles arabiensis sporozoite and entomological inoculation rates at the Ahero rice irrigation scheme and the Miwani sugar-belt in western Kenya. Ann Trop Med Parasit. 1993;87:379–91.

124. Mala AO, Irungu LW, Chiiu J, Muturi EJ, Mbogo CM, Ng'igi JK, et al. Comparison of behavior and vector efficiency of Anopheles gambiae and An. arabiensis (Diptera: Culicidae) in Barakédi, a Sahelian area of Senegal. J Med Entomol. 1997;34:396–405.

125. Mutuku FM, King CH, Mungai P, Mbogo C, Mwangangi J, Muchiri EM, et al. Vector density gradients and the epidemiology of urban malaria in Taveta District, Kenya. Parasit Vectors. 2012;5:212.

126. Mwanziva CE, Kitau J, Tungu PK, Mweya CN, Mkali H, Ndege CM, et al. Transmission intensity and malaria vector population structure in Magugu, Babati District in northern Tanzania. Tanzan J Health Res. 2011;13:54–61.

127. Njan Nloga A, Robert V, Toto J, Carnevale P. Enquête entomologique longitudinale sur la transmission du paludisme à Ouagadougou (Burkina Faso). Parasit Vectors. 1986;28:1–15.

128. Mwangangi JM, Nzovu J, Gu W, Yan G, Gunter JT, et al. Anopheles arabiensis sporozoite and entomological inoculation rates at the Ahero rice irrigation scheme and the Miwani sugar-belt in western Kenya. Ann Trop Med Parasit. 1993;77:287–90.

129. Ngwira P, Gibson A, Menzies L, Leaney SE, Ngwira P, Gibson A, et al. Characterization of malaria transmission at Edea, Cameroon. Trop Med Int Health. 1998;3:667–77.

130. Rossi P, Belli A, Mancini L, Sabatini G. Enquête entomologique longitudinale sur la transmission du paludisme à Ouagadougou (Burkina Faso). Parasit Vectors. 1986;28:1–15.

131. Nyanj A, Njan Nloga A, Robert V, Toto J, Carnevale P. Le paludisme urbain à Yaoundé, Cameroun: 1. Etude entomologique dans deux quartiers centraux. Mem Soc R Belg Entomol. 1992;35:155–62.

132. Okello PE, Van Bortel W, Byaruhanga AM, Correwyn A, Roelants P, et al. Visualisation of the role of Anopheles coustani in indoor and outdoor malaria transmission in Taveta District, Kenya. Parasit Vectors. 2017;10:22.

133. Olayemi I, Ande A, Ayanwale A, Mohammed A, Bello I, Idris B, et al. Sea-sonal trends in epidemiological and entomological profiles of malaria transmission in North Central Nigeria. Pak J Biol Sci. 2011;14:293–9.

134. Oliveri E, Ande A, Ayanwale A, Mohammed A, Bello I, Idris B, et al. Seasonal trends in epidemiological and entomological profiles of malaria transmission in North Central Nigeria. Pak J Biol Sci. 2011;14:293–9.

135. Okello PE, Van Bortel W, Byaruhanga AM, Correwyn A, Roelants P, Taloisina A, et al. Anopheles arabiensis sporozoite and entomological inoculation rates at the Ahero rice irrigation scheme and the Miwani sugar-belt in western Kenya. Ann Trop Med Parasit. 1993;87:379–91.

136. Olwa O, Akimoloyan F, Carter V, Hurd T. Transmission dynamics of malaria in four selected ecological zones of Nigeria in the rainy season. Ann Afr Med. 2009;8:1–9.

137. Olayemi I, Ande A, Ayanwale A, Mohammed A, Bello I, Idris B, et al. Seasonal trends in epidemiological and entomological profiles of malaria transmission in North Central Nigeria. Pak J Biol Sci. 2011;14:293–9.

138. Okello PE, Van Bortel W, Byaruhanga AM, Correwyn A, Roelants P, Taloisina A, et al. Anopheles arabiensis sporozoite and entomological inoculation rates at the Ahero rice irrigation scheme and the Miwani sugar-belt in western Kenya. Ann Trop Med Parasit. 1993;87:379–91.

139. Okello PE, Van Bortel W, Byaruhanga AM, Correwyn A, Roelants P, Taloisina A, et al. Anopheles arabiensis sporozoite and entomological inoculation rates at the Ahero rice irrigation scheme and the Miwani sugar-belt in western Kenya. Ann Trop Med Parasit. 1993;87:379–91.

140. Okolo O, Akimoloyan F, Carter V, Hurd T. Transmission dynamics of malaria in four selected ecological zones of Nigeria in the rainy season. Ann Afr Med. 2009;8:1–9.
234. Oduola AO, Idowu ET, Oyebola MK, Adeogun AO, Olojede JB, Otubanjo OA, et al. Evidence of carbamate resistance in urban populations of Anopheles gambiae s.s. mosquitoes resistant to DDT and deltamethrin insecticides in Lagos, South-Western Nigeria. Parasit Vectors. 2012;5:116.

235. Awolola TS, Adeogun A, Olakigbe AK, Oyeniyi T, Olukosi YA, Okoh H, et al. Pyrethroids resistance intensity and resistance mechanisms in Anopheles gambiae from malaria vector surveillance sites in Nigeria. PLoS ONE. 2018;13:e0205230.

236. Fagbohun IK, Oyejniyi TA, Idowu TE, Otubanjo OA, Awolola ST. Cytochrome P450 mono-oxygenase and resistance phenotype in DDT and deltamethrin-resistant Anopheles gambiae (Diptera: Culicidae) and Culex quinquefasciatus in Kosofe, Lagos, Nigeria. J Med Entomol. 2019;56:817–21.

237. Klinkenberg E, Takken W, Huibers F, Toure Y. The phenology of malaria vectors in irrigated rice fields in Mali. Acta Trop. 2003;85:71–82.

238. Sogoba N, Vounatsou P, Bagayoko M, Doumbia S, Dolo G, Gosoniu L, et al. The spatial distribution of Anopheles gambiae sensu stricto and An. arabiensis (Diptera: Culicidae) in Mali. Geospat Health. 2007;1:213–22.

239. Tandina F, Doumbe‑Belisse, Yaro AS, Traré SF, Parola P, Robert V. Mosquitoes (Diptera: Culicidae) and mosquito-borne diseases in Mali, West Africa. Parasit Vectors. 2018;11:467.

240. Pwalia R, Joaannides J, Iddrissu A, Addae C, Acquah-Baidoo D, Obuobi D, et al. High insecticide resistance intensity of Anopheles gambiae (s.l.) and low efficacy of pyrethroid LLINs in Accra, Ghana. Parasit Vectors. 2019;12:299.

241. Ahadji‑Dabla KM, Amoudji AD, Nyamador SW, Apétogbo GY, Chabi Yared S, Gebressielasie A, Damodaran L, Bonnell V, Lopez K, Janies D, Demissew A, Hawaria D, Kibret S, Animut A, Tsegaye A, Lee M‑C, et al. Impact of sugarcane irrigation on malaria vector Anopheles arabiensis in Khartoum State, Sudan. PLoS ONE. 2013;8:e80549.

242. El Sayed BB, Arnot DE, Mukhtar MM, Baraka OZ, Daafalla AA, Elainem DEA, et al. A study of the urban malaria transmission problem in Khartoum. Acta Trop. 2000;75:163–71.

243. Ismail BA, Kafy HT, Sulieman JE, Subramaniam K, Thomas B, Mnzava A, et al. Temporal and spatial trends in insecticide resistance in Anopheles arabiensis in Sudan: outcomes from an evaluation of implications of insecticide resistance for malaria vector control. Parasit Vectors. 2018;11:122.

244. Ageep TB, Cox J, Mboaia MH, Knols BG, Benedict MQ, Malcolm CA, et al. Spatial and temporal distribution of the malaria mosquito Anopheles arabiensis in northern Sudan: influence of environmental factors and implications for vector control. Malar J. 2009;8:123.

245. Miacha YP, Chaki PP, Muhuli A, Massue DJ, Tanner M, Majambere S, et al. Reduced human-biting preferences of the African malaria vectors Anopheles arabiensis and Anopheles gambiae in an urban context: controlled, competitive host-preference experiments in Tanzania. Malar J. 2020;19:418.

246. Mathania MM, Kimera SI, Silayo RS. Knowledge and awareness of malaria and mosquito biting behaviour in selected sites within Morogoro and Dodoma regions Tanzania. Malar J. 2016;15:287.

247. Ogola EO, Odero JO, Mwangangi JM, Masiga DK, Tchouassi DP. Population genetics of Anopheles funestus funestus, the African malaria vector, Kenya. Parasit Vectors. 2019:12:15.

248. Braginets OP, Minakawa N, Mbougo CM, Yan G. Population genetic structure of the African malaria mosquito Anopheles funestus funestus in Kenya. Am J Trop Med Hyg. 2003;69:303–8.

249. Ogola EO, Fillinge U, Onidia MM, Villinger J, Masiga DK, Torto B, et al. Spatial genetic structure of the African malaria vector Anopheles arabiensis and Anopheles gambiae s.s. in Arjo-Didessa, Ethiopia. Malar J. 2019;18:769–76.

250. Hakizimana E, Karema C, Munyakanage D, Iranzi G, Githure J, Tongren JE, et al. Susceptibility of Anopheles gambiae to insecticides used for malaria vector control in Rwanda. Malar J. 2016;15:582.

251. Khazimana E, Karema C, Munyakanage D, Iranzi G, Githure J, Tongren JE, et al. Susceptibility of Anopheles gambiae to insecticides used for malaria vector control in Rwanda. Malar J. 2016;15:582.

252. Protopopoff N, Van Bortel W, Marcotty T, Van Herp M, Maes P, Baza D, et al. Spatial targeted vector control in the highlands of Burundi and its impact on malaria transmission. Malar J. 2010;9:577.

253. Okara RM, Sinka ME, Minakawa N, Mbougo CM, Hay SI, Snow RW. Distribution of the main malaria vectors in Kenya. Malar J. 2011;10:69.

254. Musiime AK, Smith DL, Kilama M, Rek J, Arinaitwe E, Nankabirwa J, et al. Impact of vector control interventions on malaria transmission among Anopheles funestus funestus mosquitoes, Kenya. Parasit Vectors. 2018;11:577.

255. Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.