Comparison of *Salvia officinalis* L. essential oil and antifungal agents against *candida* species

Parisa Badiee*, Abdol Reza Nasirzadeh and Mahshid Motaffaf

Correspondence: badieep@gmail.com

1 Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.

2 Beasat Research Center, Agricultural Faculty, Shiraz University, Shiraz, Iran.

Abstract

Background: Systemic fungal infections due to pathogenic yeasts are increasing in high-risk patients, and a need is emerging for novel antifungal agents with potent inhibitory activity toward a wide range of pathogenic fungi. In this study we investigated the composition and antifungal activity of the essential oil of *Salvia officinalis* (Lamiaceae) against standard species of *Candida* and compared the results with commercial antifungal agents.

Methods: The aerial parts of *Salvia officinalis* were collected in May 2011. The essential oil was extracted and analyzed by gas chromatography–mass spectrometry. The susceptibility profiles of different *Candida* species were determined by microbroth dilution assays with oil extracts and a panel of antifungal agents.

Results: The minimum inhibitory concentrations of essential oil extracts against *C. albicans*, *C. parapsilosis*, *C. krusei* (standard species), *C. albicans* and *C. glabrata* (isolated from patients) were 15.6, 3.9, 31.3, 31.3 and 1.9 µg/ml, respectively. Chemical analysis of the essential oil revealed the presence of 40 components that made up 99.58% of the total composition. Cineole, borneol, α-thujone, ledene, β-pinene, α-humulene and trans-caryophyllene were the major components of the oil.

Conclusion: The oil extract of *Salvia officinalis* showed good antifungal activity, and could serve as a natural alternative to synthetic fungicides for the control of some important fungal diseases.

Keywords: Antifungal activity, *Candida albicans*, Cineole, *Candida glabrata*

Background

Salvia (*S*) officinalis L., a member of the Lamiaceae family popularly known as salvia or sage, is an aromatic plant widely distributed in the world. Common sage, since ancient times, has been an ingredient in perfumes, a flavoring in a variety of food preparations, and a medicinal plant used in the healthy Mediterranean diet. Hence its name, *Salvia*, which derives from the Latin meaning “to heal” [1-3].

The increase in nosocomial systemic fungal infections due to pathogenic yeast has led researchers to seek novel antifungal agents with potent inhibitory activity toward a wide range of pathogenic fungi and low side effects for patients. Essential oil (EO) extracted from *S. officinalis* is used in the treatment of a large range of diseases such as respiratory and digestive syndromes, heart and blood circulation, metabolic and endocrine diseases, as well as for its many other therapeutic effects [4,5]. Many properties have been reported for this plant, including its antibacterial activity against gram-positive cocci and bacilli such as *Staphylococcus aureus* and *Bacillus subtilis*, and against gram-negative bacilli such as *Escherichia coli*. The EO also has cytotoxic activity against Vero cells and antiviral activity against HIV, *Herpes simplex* virus 1 and vesicular stomatitis virus [6-8], anti-angiogenic and antitumor effects [9], and antioxidant activity due to osmarinic acid, carnosic acid and phenolic components [10-13]. Recent studies have identified diterpenoids, triterpenoids, flavonoids and phenolic glycosides isolated from the plant [14-16].

In this study, we investigated the composition and antifungal activity of *S. officinalis* EO extracted from the flowers and leaves against standard species of *Candida* (*C.*) *albicans* (a frequent pathogenic species), *Candida glabrata* (one of the most resistant fungi to routine antifungal agents [17,18]), *Candida krusei* and *Candida parapsilosis*. We compared this activity with polyene and azole antifungal agents in broth microdilution assays.

Methods

The aerial parts of *S. officinalis* L. were collected from the pharmacological plant garden of Isfahan University of Medical Sciences in Isfahan, central Iran, in May 2011.
Vouchers were deposited in the herbarium of the Faculty of Science and identified by one of the authors (ARN). The leaves and flowers were harvested and cleaned in a shaded, well-aired place for 15 days. Fifty grams of the dried plant material was cut into small pieces and placed in 500 ml distilled water for 2.5 hours at 100 °C after boiling at 290 °C with a clevenger apparatus [19]. The oils were obtained with n-pentane as a collecting solvent, and were dried over anhydrous sodium sulfate (Fluka, Steinheim, Germany). The EO was extracted at a yield of 4% per 50 g dried plant material, and was stored in amber vials at 4 °C until analysis.

A dilution of the EO in hexane (10 mg/ml) was analyzed by gas chromatography-FID (Agilent Technologies 7890A, Turin, Italy) with a 30 m×0.32 mm capillary column, a film thickness of 0.25 μm and injector temperature of 280°C with nitrogen as the carrier gas. Mass spectrometry was performed (Agilent 5975C) under the following conditions: 30 m capillary column, film thickness 0.25 μm, temperature program 60°C for 5 min, then heating to 210°C at a rate of 3°C/min, injector temperature 280°C, with helium as the carrier gas. The constituents were identified by comparison of their mass spectra fragmentation, retention indices, and standard materials with authentic compounds or with data from the literature [20].

As laboratory standard species, we used C. albicans ATCC 90028, C. parapsilosis ATCC 22019 and C. krusei ATCC 6258 along with three species of each C. albicans and C. glabrata [17] isolated from patients and identified with the API system (bioMerieux, Marcy l’Etoile, France). The susceptibility patterns of the species were determined by microbroth dilution assay tested with S. officinalis EO and fluconazole, amphotericin B, ketoconazole (Sigma-Aldrich Chemie, Steinheim, Germany), itraconazole (Jenssen Pharmaceutical, Beere, Belgium), posaconazole (Noxafil, Schering-Plough, Kenilworth, NJ, USA), caspofungin (Merck & Co., Whitehouse Station, NJ, USA) and voriconazole (Pfizer, Tadworth, UK), according to CLSI M27-A2 guidelines [21].

Stock solutions of antifungal agents were prepared in dimethyl sulfoxide or water. Briefly, 100 μL RPMI 1640 broth (RPMI, Sigma Chemical Co., St. Louis, MO, USA) buffered to pH 7.0 with 0.165 M morpholine propanesulfonic acid buffer (Sigma) was poured into each well of 96-well plates. In the first column of wells, 100 μL of each antifungal agent or EO was added. To dissolve the oil extract in RPMI, 5 μL Tween 80 was added and after pipetting 5 times, 100 μL of the solution was transferred to the second column. Ten serial two-fold dilutions of the EO and antifungal agents were prepared and evaluated for minimum inhibitory concentration (MIC). The density of the Candida spp. suspensions used as the inoculum was adjusted spectrophotometrically to 0.5 McFarland standard (equivalent to 1–5 × 10^8 Cfu/ml) and diluted 1:1000 in RPMI 1640 medium (Sigma). Then 100 μL of the fungal suspension was added to each well except for negative controls. In each series, the positive control received no antifungal or EO extract, and one negative control with no fungal suspension was also used.

Antifungal activity was seen at 30 to 0.064 mg/ml for aqueous EO, at final concentrations from 8 to 0.016 μg/ml for amphotericin B, concentrations from 16 to 0.032 μg/ml for itraconazole, ketoconazole, voriconazole, posaconazole and caspofungin, and concentrations from 128 to 0.250 μg/ml for fluconazole. The plates were incubated at 35°C for 24 and 48 h. The MIC for amphotericin B and EO was defined as the lowest drug concentration that zone determined the point of complete inhibition (100%), and for itraconazole, fluconazole, voriconazole, ketoconazole, posaconazole and caspofungin the growth should be decreased by 80%, compared with the respective controls after 24 or 48 hours of visual growth. The results are reported as the mean values of the data recorded in three different experiments.

Results

The EO was effective against Candida spp. and inhibited the growth of all fungi tested in a dose-dependent manner, at a concentration comparable to that of some other antifungal agents. The MIC of the EO extract was 15.6 μg/ml against C. albicans, 3.9 μg/ml against C. parapsilosis, 31.3 μg/ml against C. krusei (standard species), 31.3 μg/ml against C. albicans, and 1.9 μg/ml against C. glabrata (isolated from the patients). Because we compared the EO activity with that of antifungal agents, we report our results in μg/ml rather than mg/ml, as in similar studies. The MIC of the EO and other antifungal agents are shown in Table 1.

Chemical analysis of the EO revealed the presence of 40 components making up to 99.58% of the total material (Table 2). The major components were cineole (13.69%), borneol (13.77%), α-thujone (12.46%), ledene (11.05%), β-pinene (7.00%), α-humulene (6.92%), trans-caryophyllene (5.28%), β-thujone (4.56%), camphor (3.58%) and naphthalene (3.27%). Oxygen-containing monoterpenes including cineole, borneol, camphor, α-thujone and ledene predominated.

Discussion

The species of fungus used in this study were chosen primarily on the basis of their pathogenicity and susceptibility to antifungal agents. The standard species were used in this study because of the sufficient knowledge about the susceptibility pattern of these fungi and C. albicans, and C. glabrata are, the routine pathogenic fungi isolated from the patients. Resistance to antifungal agents such as fluconazole and itraconazole in some species of fungi involved in human infection including C. glabrata and C. krusei has reportedly increased in recent years [22–24]. At the same time, interest has grown in the possible use of natural medicinal plants and plant products as alternatives to inhibit fungal growth.

Our data show that the MIC for all species treated with EO was lower than in other reports, and the EO extracts exhibited substantial antifungal activity against C. glabrata,
Table 1. Minimum inhibitory concentrations of *Salvia officinalis* L. essential oil and known antifungal agents after 24 hours.

Candida species	Essential oil (µg/ml)	Amphotericin B (µg/ml)	Itraconazole (µg/ml)	Fluconazole (µg/ml)	Voriconazole (µg/ml)	Ketoconazole (µg/ml)	Posaconazole (µg/ml)	Caspofungin (µg/ml)
C. albicans	31.3	0.38	0.004	1.5	0.023	0.016	0.125	0.094
C. glabrata	1.9	0.064	3.0	64	0.125	1.0	2.0	0.064
C. albicans	15.6	0.50	0.064	2.0	0.032	0.016	0.032	0.064
C. parapsilosis	3.9	0.25	0.032	1.0	0.032	0.032	0.032	0.064
C. krusei	31.3	0.5	0.5	16	0.25	0.5	0.25	0.032

* Standard species

Table 2. Chemical composition of the essential oil of *Salvia officinalis* aerial parts.

No	Compound	Percent of compound	Retention indices
1	Borneol	13.77	13.896
2	Cineole	13.69	8.717
3	Alpha-Thujone	12.46	11.487
4	Ledene	11.05	31.239
5	Beta-Pinene	7.00	6.966
6	Alpha-Humulene	6.92	25.803
7	Trans-Caryophyllene	5.28	24.413
8	Beta-Thujiene	4.56	11.864
9	Alpha-Pinene	3.89	5.771
10	Camphor	3.58	12.946
11	Naphthalene	3.27	46.877
12	Camphene	2.86	6.165
13	Bicyclo	1.75	18.839
14	Limonene	0.94	8.586
15	Caryophyllene oxide	0.84	30.821
16	Beta-Mycene	0.69	7.310
17	Alpha Terpineol	0.64	14.823
18	Gamma-Terpineole	0.63	9.616
19	Oxabicyclo	0.47	31.817
20	Cyclohexen	0.37	14.279
21	Alpha-Thujiene	0.33	5.570
22	Dimethyl	0.33	32.807
23	Alpha-Terpinene	0.32	8.157
24	Alpha-Terpinolene	0.32	10.714
25	Linalool	0.32	11.224
26	Delta-Cadinene	0.27	28.538
27	Sabinene	0.25	6.835
28	Bicyclo	0.25	9.919
29	Cyclohexadiene	0.24	12.751
30	Aromadendrene	0.22	25.162
31	H-Cycloprop	0.22	26.043
32	H-Cycloprop	0.22	30.615
33	cis-Ocimene	0.21	8.849
34	Benzene	0.19	8.425
35	Isoaromadendrene epoxide	0.18	32.664
36	Naphthalenemethanol	0.18	33.310
37	Bicyclo	0.17	11.126
38	Alpha-Amorphene	0.17	26.690
39	Phenanthrene	0.15	42.288
40	Isoaromadendrene epoxide	0.14	34.077

which is highly resistant to itraconazole and fluconazole, two routine antifungal agents used in clinical practice, and posaconazole, a new antifungal agent [17,18]. According to Table 1, the MIC of the *S. officinalis* EO extract was lower for *C. glabrata* than for other fungi. The EO obtained from anise seeds (*Pimpinella anisum* L., Apiaceae) showed antifungal activity against some pathogenic *Candida* species, but no activity against *C. glabrata* [25]. Earlier research showed that the antifungal activity of any agent depends on the species of fungus and on the plant species. *Salvia dominica* and *S. officinalis* inhibited the growth of *C. albicans*, but *Salvia spinosa* showed no activity against this yeast [26]. The EO of other *Salvia* species was previously shown to have antifungal activity against various *Candida* species [27,28]. In one report from Turkey, the MIC ranged from 3.12 to 25 mg/ml and as the authors reported “all the extracts exhibited a strong antifungal effect against the fungal cultures” [30]. Bioassays with the EO of *Salvia lachnocalyx* showed significant inhibition against fungi, with an MIC in the range of 5-10 mg/ml [31].

In the present study, the lower MIC for *S. officinalis* EO maybe related to regional variations in the composition of this species. Chemically, EO are primarily composed of mono- and sesquiterpenes and aromatic polypropanoids [30,31] with different amounts and types of oxygenated monoterpene components such as α-thujone, 1,8-cineol, camphor, borneol and bornyl acetate or sesquiterpene components, humulene, viridiflorol and manool [14,28,32]. The antifungal activities of sesquiterpenoid constituents were superior to those of monoterpene constituents. Among active sesquiterpenoids, T-murolol and α-cadinol possess the greatest activity against plant pathogenic fungi. Limonene and β-myrcene also showed weak antifungal activity [33].

The major components of *Salvia* species growing in Turkey are α-pinene, β-pinene, β-thujone, camphor, carvacrol, linalyl acetate, sabirol acetate and cineole [28]. The main differences between the compositions of the EO of sage from Turkey and the sage used in the present study were in the proportions of α-pinene, limonene, linalool and especially viridiflorol, humulene, manool, which were lower in our material.

Drinking sage (*S. officinalis*) tea could have a hepatotoxicity effect due to free radical formation of CCl₄,[34] and
considering the toxicity of some components like thujone as reported [35]. However, there are some studies, which have not reported any level of hepatotoxicity [36]. Therefore, further studies are needed to make the findings more definitive.

Conclusions
Our results support the antifungal activity of the EO extract of \textit{S. officinalis}.L. against pathogenic \textit{Candida} species. More investigations of the antifungal elements of EO and purification of these products will contribute to the development of new natural antifungal drugs for resistant strains of fungi, which could replace currently available synthetic agents.

List of abbreviations
\textbf{S}: \textit{Salvia}

\textbf{EO}: essential oil

\textbf{MIC}: minimum inhibitory concentration

Competing interests
The authors report no competing interests related to this study.

Authors’ contributions
PB conceived and designed the study, participated in the analysis and interpretation of the data and drafted the manuscript. ARN identified the plant species and performed gas chromatography-mass spectrometry analyses. MM extracted the essential oils. All authors read and approved the final manuscript.

Acknowledgements and funding
Our sincere thanks go to Dr. Hassan Khajehei for copyediting the manuscript and to K. Shashok (Author AID in the Eastern Mediterranean) for improving the use of English in the manuscript. This work was supported by Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.

Publication history
Received: 08-Aug-2012 Revised: 17-Sep-2012
Re-Revised: 24-Sep-2012 Accepted: 08-Oct-2012
Published: 22-Oct-2012

References
1. Malamas M, Marselos M: The tradition of medicinal plants in Zagori, Epirus (northwestern Greece). \textit{J Ethnopharmacol} 1992, 37:197-203. [Article] [PubMed]
2. Kasimu R, Tanaka K, Tezuka Y, Gong ZN, Li JX, Basnet P, Namba T, Kadota S: Comparative study of seventeen \textit{Salvia} plants: aldosreductase inhibitory activity of water and MeOH extracts and liquid chromatography-mass spectrometry (LC-MS) analysis of water extracts. \textit{Chem Pharm Bull} (Tokyo) 1998, 46:500-504. [Article] [PubMed]
3. Lian-Niang Li: Biologically active components from traditional Chinese medicines. \textit{Pure Appl Chem}, 1998, 70:547-554. [Article]
4. Istudor V (2001) Farmacognozie fitochimie fitoterapie. \textit{Medicola}, Bucharest? 2, 13, 60. [Article] [PubMed Abstract] [PubMed Full Text]
5. Lima CF, Valenteo PC, Andrade PB, Seabra RM, Fernandes-Ferreira M, Pereira-Wilson C: Water and methanolic extracts of \textit{Salvia officinalis}

protect HepG2 cells from t-BHP induced oxidative damage. \textit{Chem Biol Interact} 2007, 167:107-115. [Article] [PubMed]
6. Geuenich S, Goffinet C, Venzke S, Nolkerper S, Baumann I, Plinkert P, Reichling J, Keppler OT: Aqueous extracts from peppermint, sage and lemon balm leaves display potent anti-HIV-1 activity by increasing the virion density. \textit{Retrovirology} 2008, 5:27. [Article] [PubMed Abstract] [PubMed Full Text]
7. Sivropoulou A, Nikolaidou E, Kapposki L, Kokkini S, Lanaras T: Antimicrobial, cytotoxic and antiviral activities of \textit{Salvia fruteciosa} essential oil. \textit{J Agric Food Chem} 1997, 45:3197-3201. [Article]
8. Tada M, Okuno K, Chiba K, Oknishi E, Yoshii T: Antiviral diterpenes from \textit{Salvia officinalis}. \textit{Phytochemistry} 1994, 35:539-541. [Article]
9. Keshavarz M, Bidmeshkipour A, Mostafaie A, Mansouri K, Mohammadi-Motlagh HR: Anti tumor activity of \textit{Salvia officinalis} is due to its anti-angiogenic, anti-migratory and anti-proliferative effects. \textit{J Cell [yakhteh]} 2011, 12:477-482. [Pdf]
10. Nakatani N: Chemistry of antioxidants from labiatae herbs. Phytochemicals for cancer prevention. \textit{ACS Sympos Ser}. Volume 547. Edited by Chi-Tang Ho, Toshihiko Osawa, Mou-Tuan Huang, and Robert T. Rosen: Chapter 16, pp 144-153. [Book]
11. Lu Y, Foo LY: Polyphenolics of \textit{Salvia}—a review. \textit{Phytochemistry} 2002, 59:117-140. [Article] [PubMed]
12. Cuelier ME, Richard H, Berret C: Antioxidative activity and phenolic composition of pilot-plant and commercial extracts of sage and rosemary. \textit{J Am Oil Chem Soc} 1996, 73:645-652. [Article]
13. Wang MF, Li JG, Rangaratjan M, Shao Y, Lavoie EJ, Huang TC, Ho CT: Antioxidative phenolic compounds from sage (\textit{Salvia officinalis}). \textit{J Agric Food Chem} 1998, 46:4869-4873. [Article]
14. Couladis M, Tzakou O, Mimiti-Dukic N, Janičič R, Stojanović D: Essential oil of \textit{Salvia officinalis}. \textit{L.} from Serbia and Montenegro. \textit{Flavor and Fragrance J} 2002, 17:119-126. [Article]
15. Durling NE, Catchpole OJ, Grey JB, Webby RF, Mitchell KA, Foo LY, Perry NB: Extraction of phenolic and essential oil from dried sage (\textit{Salvia officinalis}) using ethanol-water mixtures. \textit{Food Chem} 2007, 101:1417-1424. [Article]
16. Langer R, Mechtcher CH, Jurenitsc J: Composition of the essential oils of commercial samples of \textit{Salvia officinalis} \textit{L.} and \textit{S. fruteciosa Miller}, a comparison of oils obtained by extraction and steam distillation. \textit{Phytochem Anal} 1998, 7:289-293. [Article]
17. Badiei P, Alborzi A: Susceptibility of clinical \textit{Candida} species isolates to antifungal agents by E-test, Southern Iran: A five year study. \textit{Iran J Microbiol} 2011, 3:183-188. [Article] [PubMed Abstract] [PubMed Full Text]
18. Horowitz BJ: \textit{Myctec vulvovaginitis}: a broad overview. \textit{Am J Obstet Gynecol} 1991, 165:1188-1192. [Article] [PubMed]
19. European Pharmacopoeia (2004) 5th ed., Council of Europe, Strasbourg Cedex, France, 2, 8.12:217-218.
20. Adams RP (1995) Identification of essential oil components by gas chromatograph/mass spectroscopy. Carol Stream: Allured Publishing Corporation, 469-485.
21. Reference method for broth dilution antifungal susceptibility testing of yeasts (2002) Approved standard. 2nd ed. NCLS document M27-A2. Wayne, PA: National Committee for Clinical Laboratory Standards. [Article] [PubMed Abstract] [PubMed Full Text]
22. Badiei P, Alborzi A, Shahkiba E, Farshad S, Japoni A: Susceptibility of \textit{Candida} species isolated from immunocompromised patients to antifungal agents. \textit{East Mediterr Health J} 2011, 17:425-430. [Pdf] [PubMed]
23. Badiei P, Alborzi A, Davarpanah MA, Shahkiba E: Distributions and antifungal susceptibility of \textit{Candida} species from mucosal sites in HIV positive patients. \textit{Arch Iran Med} 2010, 13:282-287. [Pdf] [PubMed]
24. Badiei P, Alborzi A, Shahkiba E, Ziyaeyan M, Rasuli M: Molecular identification and in-vitro susceptibility of \textit{Candida albicans} and \textit{Candida dublinensis} isolated from immunocompromised patients. \textit{Iranian Red Cres Med J} 2009, 11:391-397. [Article]
25. Kosailec I, Pepelnjak S, Kustrad D: Antifungal activity of fluid extract and essential oil from anise fruits (\textit{Pimpinella anisum L.}, \textit{Apiaceae}). \textit{Acta Pharm} 2005, 55:377-385. [Article] [PubMed]
26. Hassawi D, Kharma A: Antimicrobial activity of some medicinal plants against Candida albicans. J BiolSci 2006, 6:109-114. | Article
27. Jirovetz L, Wilek K, Buchbauer G, Gochev V, Girova T: Antifungal activities of essential oils of Salvia lavandulifolia, Salvia officinalis and Salvia sclarea against various pathogenic Candida species. J Essential Oil Bearing Plants 2007, 10:430-439. | Article
28. Dulger B, Hacioglu N: Antifungal activity of endemic Salvia tigirina in Turkey. Trop J Pharmaceut Res 2008, 7:1051-1054. | Pdf
29. Salehi P, Sonboli A, Fathi F (2007) Essential oil composition and antimicrobial activity of Salvia lachnocalyx hedge from Iran. Int. J Essent Oil Ther 1: 45-48.
30. Croteau R (1986) Biochemistry of monoterpenes and sesquiterpenes of the essential oils. Herbs, spices and medicinal plants: Recent advances in botany, horticulture, and pharmacology 1: 81-135.
31. Guenther E (1972) The production of essential oils: methods of distillation, effleurage, maceration, and extraction with volatile solvents. In: Guenther E (ed) The essential oils. History, origin in plants, production analysis 1:85-188.
32. Balchin ML, Deans SG, Eaglesham E: Relationship between bioactivity and chemical composition of commercial essential oils. J Flavour Frag 1998, 13:98-104. | Article
33. Kordali S, Cakir A, Zengin H, Duru ME: Antifungal activities of the leaves of three Pistacia species grown in Turkey. Fitoterapia 2003, 74:164-167. | Article | PubMed
34. Lima CF, Fernandes-Ferreira M, Pereira-Wilson C: Drinking of Salvia officinalis tea increases CCl(4)-induced hepatotoxicity in mice. Food Chem Toxicol 2007, 45:456-464. | Article | PubMed
35. Committee on herbal medicinal products, public statement on Salvia officinalis L., Aetheroleum, European Medicines Agency. London, 12 November 2009. 7 Westferry Circus, Canary Wharf, London, E14 4HB, UK.
36. Sa CM, Ramos AA, Azevedo MF, Lima CF, Fernandes-Ferreira M, Pereira-Wilson C: Sage tea drinking improves lipid profile and antioxidant defences in humans. Int J Mol Sci 2009, 10:3937-3950. | Article | PubMed Abstract | PubMed Full Text

Citation:
Badiee P, Nasirzadeh A R and Motaffaf M: Comparison of Salvia officinalis L. essential oil and antifungal agents against candida species. journal of Pharmaceutical Technology and Drug Research 2012, 1:7.
http://dx.doi.org/10.7243/2050-120X-1-7