ON THE DIRICHLET’S TYPE OF EULERIAN POLYNOMIALS

SERKAN ARACI, MEHMET ACIKGOZ, AND DEYAO GAO

Abstract. In the present paper, we introduce Eulerian polynomials attached to χ by using p-adic q-integral on \mathbb{Z}_p. Also, we give new interesting identities via the generating functions of Dirichlet’s type of Eulerian polynomials. After, by applying Mellin transformation to this generating function of Dirichlet’s type of Eulerian polynomials, we derive L-function for Eulerian polynomials which interpolates of Dirichlet’s type of Eulerian polynomials at negative integers.

2010 Mathematics Subject Classification. 11S80, 11B68.

Keywords and phrases. Eulerian polynomials, p-adic q-integral on \mathbb{Z}_p, Mellin transformation, L-function.

1. Introduction

Recently, Kim et al. have studied to Eulerian polynomials. They gave not only Witt’s formula for Eulerian polynomials but also relations between Genocchi, Tangent and Euler numbers (for more details, see [1]). In arithmetic works of T. Kim have introduced many different generating functions of families of Bernoulli, Euler, Genocchi numbers and polynomials by using p-adic q-integral on \mathbb{Z}_p (see [1-5]). After, many mathematicians are motivated from his papers and introduced new generating function for special functions (for more information about this subject, see [16-28]). Y. Simsek also gave new q-twisted Euler numbers and polynomials and (h, q)-Bernoulli numbers and polynomials by using Kim’s p-adic q-integral on \mathbb{Z}_p. He also derived some interesting properties in his works [26], [27], [28].

The p-adic q-integral on \mathbb{Z}_p was originally defined by Kim. He also investigated that p-adic q-integral on \mathbb{Z}_p is related to non-Archimedean combinatorial analysis in mathematical physics. That is, the functional equation of the q-zeta function, the q-Stirling numbers and q-Mahler theory and so on (for details, see[5], [6]).

We firstly list some properties of familiar Eulerian polynomials for sequel of this paper as follows:

As it is well-known, the Eulerian polynomials, $A_n(x)$ are given by means of the following generating function:

$$e^{A(x)t} = \sum_{n=0}^{\infty} A_n(x) \frac{t^n}{n!} = \frac{1 - x}{e^{t(1-x)} - x}$$
where $A^n(x) := A_n(x)$ as symbolic. To find Eulerian polynomials, it has the following recurrence relation:

\begin{equation}
(A(t) + (t - 1))^n - tA_n(t) = \begin{cases}
1 - t & \text{if } n = 0 \\
0 & \text{if } n \neq 0,
\end{cases}
\end{equation}

(for details, see [1]).

Suppose that p be a fixed odd prime number. Throughout this paper, we use the following notations. By \mathbb{Z}_p, we denote the ring of p-adic rational integers, \mathbb{Q} denotes the field of rational numbers, \mathbb{Q}_p denotes the field of p-adic rational numbers, and \mathbb{C}_p denotes the completion of algebraic closure of \mathbb{Q}_p. Let \mathbb{N} be the set of natural numbers and $\mathbb{N}^* = \mathbb{N} \cup \{0\}$.

The p-adic absolute value is defined by $|p|_p = \frac{1}{p}$.

In this paper we assume $|q - 1|_p < 1$ as an indeterminate. Let $UD(\mathbb{Z}_p)$ be the space of uniformly differentiable functions on \mathbb{Z}_p. For a positive integer d with $(d, p) = 1$, set

\begin{align*}
X &= X_m = \lim_{m \to \infty} \mathbb{Z}/dp^m\mathbb{Z}, \\
X^* &= \bigcup_{0 < a < dp} \bigcap_{(a, p) = 1} a + dp\mathbb{Z}_p
\end{align*}

and

\[a + dp^m\mathbb{Z}_p = \{ x \in X \mid x \equiv a \pmod{dp^m} \}, \]

where $a \in \mathbb{Z}$ satisfies the condition $0 \leq a < dp^m$.

Firstly, for introducing fermionic p-adic q-integral, we need some basic information which we state here. A measure on \mathbb{Z}_p with values in a p-adic Banach space B is a continuous linear map

\[f \mapsto \int f(x)\mu = \int_{\mathbb{Z}_p} f(x)\mu(x) \]

from $C^0(\mathbb{Z}_p, \mathbb{C}_p)$, (continuous function on \mathbb{Z}_p) to B. We know that the set of locally constant functions from \mathbb{Z}_p to \mathbb{Q}_p is dense in $C^0(\mathbb{Z}_p, \mathbb{C}_p)$ so.

Explicitly, for all $f \in C^0(\mathbb{Z}_p, \mathbb{C}_p)$, the locally constant functions

\[f_n = \sum_{i=0}^{p^n-1} f(i)1_{i+p^m\mathbb{Z}_p} \to f \text{ in } C^0 \]

Now, set $\mu(i + p^n\mathbb{Z}_p) = \int_{\mathbb{Z}_p} 1_{i+p^m\mathbb{Z}_p} \mu$. Then $\int_{\mathbb{Z}_p} f\mu$, is given by the following Riemannian sum

\[\int_{\mathbb{Z}_p} f\mu = \lim_{m \to \infty} \sum_{i=0}^{p^n-1} f(i)\mu(i + p^m\mathbb{Z}_p) \]

The following q-Haar measure is defined by Kim in [3] and [5]:

\[\mu_q(a + p^m\mathbb{Z}_p) = \frac{q^a}{|p^m|_q} \]
ON THE DIRICHLET’S TYPE OF EULERIAN POLYNOMIALS

So, for \(f \in UD(\mathbb{Z}_p) \), the \(p \)-adic \(q \)-integral on \(\mathbb{Z}_p \) is defined by Kim as follows:

\[
I_q(f) = \int_{\mathbb{Z}_p} f(\eta) \, d\mu_q(\eta) = \lim_{n \to \infty} \frac{1}{[p^n]_q} \sum_{\eta=0}^{p^n-1} q^n f(\eta).
\]

The bosonic integral is considered as the bosonic limit \(q \to 1 \), \(I_1(f) = \lim_{q \to 1} I_q(f) \). In [10], [11] and [12], similarly, the \(p \)-adic fermionic integration on \(\mathbb{Z}_p \) defined by Kim as follows:

\[
I_{-q}(f) = \lim_{q \to -q} I_q(f) = \int_{\mathbb{Z}_p} f(x) \, d\mu_{-q}(x).
\]

By (4), we have the following well-known integral equation:

\[
q^n I_{-q}(f_n) + (-1)^{n-1} I_{-q}(f) = [2]_q \sum_{l=0}^{n-1} (-1)^{n-1-l} q^l f(l).
\]

Here \(f_n(x) := f(x+n) \). By (5), we have the following equalities:

If \(n \) odd, then

\[
q^n I_{-q}(f_n) + I_{-q}(f) = [2]_q \sum_{l=0}^{n-1} (-1)^l q^l f(l).
\]

If \(n \) even, then we have

\[
I_{-q}(f) - q^n I_{-q}(f_n) = [2]_q \sum_{l=0}^{n-1} (-1)^l q^l f(l).
\]

Substituting \(n = 1 \) into (6), we readily see the following

\[
q I_{-q}(f_1) + I_{-q}(f) = [2]_q f(0).
\]

Replacing \(q \) by \(q^{-1} \) in (6), we easily derive the following

\[
I_{-q^{-1}}(f_1) + q I_{-q^{-1}}(f) = [2]_q f(0).
\]

In [1], Kim et al. is considered \(f(x) = e^{-x(1+q)t} \) in (6), then they gave Witt’s formula of Eulerian polynomials as follows:

For \(n \in \mathbb{N}^* \),

\[
I_{-q^{-1}}(x^n) = \frac{(-1)^n}{(1+q)^n} A_n(-q).
\]

Now also, we consider \(I_{-q^{-1}}(\chi(x) x^n) \) in the next section. We shall call as Dirichlet’s type of Eulerian polynomials. After we shall give arithmetic properties for Dirichlet’s type of Eulerian polynomials.

2. On the Dirichlet’s type of Eulerian polynomials

Firstly, we consider the following equality by using (6): For \(d \) odd natural numbers,

\[
\int_{\mathbb{Z}_p} f(x+d) \, d\mu_{q^{-1}}(x) + q^d \int_{\mathbb{Z}_p} f(x) \, d\mu_{q^{-1}}(x)
= [2]_q \sum_{0 \leq l \leq d-1} (-1)^l q^{d-l+1} f(l).
\]
Let \(\chi \) be a Dirichlet’s character of conductor \(d \), which is any multiple of \(p \) \((= \text{odd})\). Then, substituting \(f(x) = \chi(x) e^{-x(1+q)t} \) in (11), then we compute as follows:

\[
\int_{\mathbb{Z}_p} \chi(x + d) e^{-(x+d)(1+q)t} d\mu_{q-1}(x) + q^d \int_{\mathbb{Z}_p} \chi(x) e^{-x(1+q)t} d\mu_{q-1}(x) = [2]_q \sum_{0 \leq l \leq d-1} (-1)^l q^{d-l+1} \chi(l) e^{-l(1+q)t}
\]

After some applications, we discover the following theorem.

By (12) and (13), we state the following theorem which is the Witt’s formula for Dirichlet’s type of Eulerian polynomials.

Definition 1. For \(n \in \mathbb{N}^* \), then we define the following:

\[
\sum_{n=0}^{\infty} A_{n, \chi}(-q)^{\frac{t^n}{n!}} = [2]_q \sum_{l=0}^{d-1} (-1)^l q^{d-l+1} \chi(l) \frac{e^{-l(1+q)t}}{e^{-d(1+q)t} + q^d}.
\]

By (12) and (13), we state the following theorem which is the Witt’s formula for Dirichlet’s type of Eulerian polynomials.

Theorem 2.1. The following identity holds true:

\[
I_{-q^{-1}}(\chi(x)x^n) = \frac{(-1)^n}{(1+q)^n} A_{n, \chi}(-q).
\]

By using (13), we discover the following applications:

\[
\sum_{n=0}^{\infty} A_{n, \chi}(-q)^{\frac{t^n}{n!}} = [2]_q \sum_{l=0}^{d-1} (-1)^l q^{d-l+1} \chi(l) \frac{e^{-l(1+q)t}}{e^{-d(1+q)t} + q^d} = [2]_q \sum_{l=0}^{d-1} (-1)^l q^{d-l+1} \chi(l) e^{-l(1+q)t} \sum_{m=0}^{\infty} (-1)^m q^{-md} e^{-md(1+q)t} = q [2]_q \sum_{m=0}^{\infty} (-1)^m \chi(m) q^{-m} e^{-m(1+q)t}.
\]

Thus, we get the following theorem.

Theorem 2.2. The following

\[
\mathcal{F}_q(t | \chi) = \sum_{n=0}^{\infty} A_{n, \chi}(-q)^{\frac{t^n}{n!}} = [2]_q \sum_{m=0}^{\infty} \frac{(-1)^m \chi(m) q^{-m} e^{-m(1+q)t}}{q^{m-1}}
\]

is true.

By considering Taylor expansion of \(e^{-m(1+q)t} \) in (15), we procure the following theorem.
ON THE DIRICHLET’S TYPE OF EULERIAN POLYNOMIALS

Theorem 2.3. For \(n \in \mathbb{N} \), then we have

\[
\sum_{n=1}^{\infty} \frac{(-1)^n m^n}{q^m} A_{n,\chi} (-q) = \frac{\chi (n) m^n}{q^m}.
\]

From (14) and (16), we easily derive the following corollary:

Corollary 2.4. For \(n \in \mathbb{N} \), then we procure the following

\[
\lim_{m \to \infty} \sum_{x=1}^{\infty} \frac{(-1)^x \chi (x) x^n}{q^x} = 2 \sum_{m=1}^{\infty} \frac{(-1)^m m^n}{q^{m^2}}.
\]

Now, we give distribution formula for Dirichlet’s type of Eulerian polynomials by using \(p \)-adic \(q \)-integral on \(\mathbb{Z}_p \), as follows:

\[
\int_{\mathbb{Z}_p} \chi (x) x^n d\mu_{-q^{-1}} (x) = \lim_{m \to \infty} \frac{1}{[dp^m]_{-q^{-1}}} \sum_{x=0}^{p^m-1} (-1)^x \chi (x) x^n q^{-x^x}
\]

\[
= \frac{d^n}{[d]_{-q^{-1}}} \sum_{a=0}^{d-1} (-1)^a \chi (a) q^{-a} \left(\lim_{m \to \infty} \frac{1}{[p^m]_{-q^{-d}}} \sum_{x=0}^{p^m-1} (-1)^x \left(\frac{a}{d} + x \right)^n q^{-dx} \right)
\]

\[
= \frac{d^n}{[d]_{-q^{-1}}} \sum_{a=0}^{d-1} (-1)^a \chi (a) q^{-a} \int_{\mathbb{Z}_p} \left(\frac{a}{d} + x \right)^n d\mu_{-q^{-d}} (x).
\]

Thus, we state the following theorem.

Theorem 2.5. The following identity holds true:

\[
\frac{(-1)^n}{(1+q)^n} A_{n,\chi} (-q) = \frac{d^n}{[d]_{-q^{-1}}} \sum_{a=0}^{d-1} (-1)^a \chi (a) q^{-a} \int_{\mathbb{Z}_p} \left(\frac{a}{d} + x \right)^n d\mu_{-q^{-d}} (x).
\]

From this, we notice that the above equation is related to \(q \)-Genocchi polynomials with weight zero, \(\widetilde{G}_{n,q} (x) \), and \(q \)-Euler polynomials with weight zero, \(\widetilde{E}_{n,q} (x) \), which is defined by Araci et al. and Kim and Choi in [25] and [15] as follows:

\[
\frac{\widetilde{G}_{n+1,q} (x)}{n+1} = \lim_{m \to \infty} \frac{1}{[p^m]_{-q}} \sum_{y=0}^{p^m-1} (-1)^y (x+y)^n q^y
\]

and

\[
\widetilde{E}_{n,q} (x) = \int_{\mathbb{Z}_p} (x+y)^n d\mu_{-q} (y).
\]

By expressions of (17), (18) and (19), we easily discover the following corollary.

Corollary 2.6. For \(n \in \mathbb{N}^* \), then we have

\[
\frac{(-1)^n}{(1+q)^n} A_{n,\chi} (-q) = \frac{d^n}{(n+1)[d]_{-q^{-1}}} \sum_{a=0}^{d-1} (-1)^a \chi (a) q^{-a} \widetilde{G}_{n+1,q-a} \left(\frac{a}{d} \right).
\]
Moreover,
\[
\frac{(-1)^n}{(1 + q)^n} A_{n, \chi}(-q) = \frac{d^n}{[d]_{-q}} \sum_{a=0}^{d-1} (-1)^a \chi(a) q^{-a} E_{n, q^{-d}} \left(\frac{a}{d} \right).
\]

3. On the Eulerian-L function

Our goal in this section is to introduce Eulerian-L function by applying Mellin transformation to the generating function of Dirichlet’s type of Eulerian polynomials. By (15), for \(s \in \mathbb{C} \), we define the following
\[
LE(s \mid \chi) = \frac{1}{\Gamma(s)} \int_0^\infty t^{s-1} \mathcal{F}_q(t \mid \chi) \, dt
\]
where \(\Gamma(s) \) is the Euler Gamma function. It becomes as follows:
\[
LE(s \mid \chi) = q \sum_{m=0}^{\infty} (-1)^m \chi(m) q^{-m} \left\{ \frac{1}{\Gamma(s)} \int_0^\infty t^{s-1} e^{-m(1+q)t} \, dt \right\}
\]
\[
= \frac{q}{(1 + q)^{s-1}} \sum_{m=1}^{\infty} (-1)^m \chi(m) \frac{m s}{q^m m^s}
\]
So, we give definition of Eulerian L-function as follows:

Definition 2. For \(s \in \mathbb{C} \), then we have
\[
LE(s \mid \chi) = \frac{q}{(1 + q)^{s-1}} \sum_{m=1}^{\infty} (-1)^m \chi(m) \frac{m s}{q^m m^s}.
\]

Substituting \(s = -n \) into (16), then, relation between Eulerian L-function and Dirichlet’s type of Eulerian polynomials are given by the following theorem.

Theorem 3.1. The following equality holds true:
\[
LE(-n \mid \chi) = \begin{cases}
- A_{n, \chi}(-q) & \text{if } n \text{ odd,} \\
A_{n, \chi}(-q) & \text{if } n \text{ even.}
\end{cases}
\]

References

[1] D. S. Kim, T. Kim, W. J. Kim and D. V. Dolgy, A note on Eulerian polynomials, Abstract and Applied Analysis (Article in press).
[2] T. Kim, On explicit formulas of \(p \)-adic \(q \)-functions, Kyushu. J. Math. 48 (1994), 73-86.
[3] T. Kim, On a \(q \)-analogue of the \(p \)-adic log gamma functions and related integrals, J. Number Theory 76 (1999), 320-329.
[4] T. Kim and S. H. Rim, A note on \(p \)-adic Carlitz’s \(q \)-Bernoulli numbers, Bull. Austral. Math. Soc. Vol. 62 (2000), 227-234.
[5] T. Kim, \(q \)-Volkenborn integration, Russ. J. Math Phys., 19 (2002), 288-299.
[6] T. Kim, Non-archimedean \(q \)-integrals associated with multiple Changhee \(q \)-Bernoulli Polynomials, Russ. J. Math Phys., 10 (2003), 91-98.
[7] T. Kim, \(p \)-adic \(q \)-integrals associated with the Changhee-Barnes’ \(q \)-Bernoulli Polynomials, Integral Transform. Spec. Funct., 15 (2004), 415-420.
[8] T. Kim, Analytic continuation of multiple \(q \)-zeta functions and their values at negative integers, Russ. J. Math Phys., 11 (2004), 71-76.
[9] T. Kim, \(q \)-Generalized Euler Numbers and polynomials, Russian Journal of Mathematical Physics, Vol. 13, No. 3, 2006, pp. 293-308.
ON THE DIRICHLET’S TYPE OF EULERIAN POLYNOMIALS

[10] T. Kim, Some identities on the q-Euler polynomials of higher order and q-stirling numbers by the fermionic p-adic integral on \mathbb{Z}_p, Russian J. Math. Phys. 16 (2009), 484–491.

[11] T. Kim, On the q-extension of Euler and Genocchi numbers, J. Math. Anal. Appl. 326 (2007) 1458–1465.

[12] T. Kim, On the analogs of Euler numbers and polynomials associated with p-adic q-integral on \mathbb{Z}_p at $q = 1$, J. Math. Anal. Appl. 331 (2007) 779–792.

[13] T. Kim, Some Identities on the integral representation of the product of several q-Bernstein-type polynomials, Abstract and Applied Analysis, Volume 2011, Article ID 634675, 11 pages.

[14] T. Kim, S. H. Lee, H. H. Han and C. S. Ryoo, On the values of the weighted q-Zeta and L-functions, Discrete Dynamics in Nature and Society, Volume 2011, Article ID 476381, 7 pp.

[15] T. Kim and J. Choi, On the q-Euler numbers and polynomials with weight 0, Abstract and Applied Analysis, vol. 2012, Article ID 795304, 7 pages, 2012.

[16] L. C. Jang, The q-analogue of twisted Lerch type Euler Zeta functions, Bull. Korean Math. Soc. 47 (2010), No. 6, pp. 1181-1188.

[17] L. C. Jang, V. Kurt, Y. Simsek, and S. H. Rim, q-analogue of the p-adic twisted l-function, Journal of Concrete and Applicable Mathematics, vol. 6, no. 2, pp. 169–176, 2008.

[18] H. Ozden, I. N. Cangul, Y. Simsek, Multivariate interpolation functions of higher order q-Euler numbers and their applications, Abstract and Applied Analysis 2008 (2008), Article ID 390857, 16 pages.

[19] I. N. Cangul, H. Ozden, Y. Simsek, A new approach to q-Genocchi numbers and their interpolation functions, Nonlinear Analysis 71 (2009), pp. 793-799.

[20] E. Cetin, M. Acikgoz, I. N. Cangul and S. Araci, A note on the (h, q)-Zeta type function with weight α, http://arxiv.org/pdf/1206.5299.pdf.

[21] S. Araci, M. Acikgoz, K. H. Park and H. Jolany, On the unification of two families of multiple twisted type polynomials by using p-adic q-integral on \mathbb{Z}_p at $q = -1$, Bulletin of the Malaysian Mathematical Sciences and Society (Article in press).

[22] S. Araci, M. Acikgoz and K. H. Park, A note on the q-analogue of Kim’s p-adic log gamma type functions associated with q-extension of Genocchi and Euler numbers with weight α, Bulletin of the Korean Mathematical Society (accepted for publication).

[23] S. Araci, D. Erdal and J. J. Seo, A study on the fermionic p-adic q-integral representation on \mathbb{Z}_p associated with weighted q-Bernstein and q-Genocchi polynomials, Abstract and Applied Analysis, Volume 2011, Article ID 649248, 10 pages.

[24] S. Araci, J. J. Seo and D. Erdal, New construction weighted (h, q)-Genocchi numbers and polynomials related to Zeta type function, Discrete Dynamics in Nature and Society, Volume 2011, Article ID 487490, 7 pages, doi:10.1155/2011/487490.

[25] S. Araci, M. Acikgoz and Feng Qi, On the q-Genocchi numbers and polynomials with weight zero and their applications, http://arxiv.org/abs/1202.2643.

[26] Y. Simsek, q-analogue of twisted l-series and q-twisted Euler numbers, Journal of Number Theory, vol. 110, no. 2, pp. 267–278, 2005.

[27] Y. Simsek, q-Dedekind type sums related to q-zeta function and basic L-series, Journal of Mathematical Analysis and Applications, vol. 318, no. 1, pp. 333–351, 2006.

[28] Y. Simsek, Twisted (h, q)-Bernoulli numbers and polynomials related to twisted (h, q)-zeta function and L-function, Journal of Mathematical Analysis and Applications, vol. 324, no. 2, pp. 790–804, 2006.

[29] M. Acikgoz and Y. Simsek, On Multiple Interpolation functions of the Nörlund-Type q-Euler polynomials, Abstract and Applied Analysis, Volume 2009, Article ID 382574, 14 pages.
University of Gaziantep, Faculty of Science and Arts, Department of Mathematics, 27310 Gaziantep, TURKEY
E-mail address: mtsrkn@hotmail.com

University of Gaziantep, Faculty of Science and Arts, Department of Mathematics, 27310 Gaziantep, TURKEY
E-mail address: acikgoz@gantep.edu.tr

Yuren Lab., No. 8 Tongsheng Road, Changsha, P. R. China
E-mail address: 13607433711@163.com