Hydrophobic Pocket of SARS-Cov-2 Spike Glycoprotein are Potential as Binding Pocket

A Fitri¹, H Basultan¹ and Iryani¹

¹Department of Chemistry, Universitas Negeri Padang, Padang, Indonesia,

*fitriamelia@fmipa.unp.ac.id

Abstract. Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 was recently spread all over the world. Spike glycoprotein of SARS-CoV-2 (SARS-CoV-2 S-glycoprotein) is the main agent for host cell recognition. Finding the potential of binding pocket of S-glycoprotein may help to find the specific anti-coronavirus drug. Here we analysed potential binding pocket of SARS-CoV-2 Spike-glycoprotein which is suitable for anti-SARS-CoV-2. In pursuit this aim, dogsitescorer, site finder, and DEPTH were used for binding pocket prediction. Molecular interaction protein-ligands were performed using MOE 2009.10. Based on pocket prediction by Dogsitescorer, there are seven out of eleven pockets which have druggability score above 0.8. Molecular interaction studies revealed that interaction between six potential pockets and ligands resulted in negative scores at all. Our result shows that pocket_4 and pocket_6 are located on upper of SARS-CoV-2 S-glycoprotein and have big volume, 878.94 and 683.05 (Å³) respectively, yet lower number of hydrogen bond. Hydrophobic pocket zero, three, and five which is located in the middle of S-Glycoprotein have high number of interaction. These suggest that hydrophobicity of pocket and both upper and middle positions of S-Glycoprotein pocket are considered for developing anti-coronavirus drugs. We propose that hydrophobic pocket of SARS-CoV-2 S-glycoprotein is important for drug design.

1. Introduction
A novel respiratory SARS-CoV-2 was recognized at December 2019 and become an outbreak in Wuhan, China [1]. It has been reported by World Health Organization (WHO) that 17.889.134 cases have been confirmed and at least 686.145 have died [2]. Thus, an effective drug is urgently required.

SARS-CoV-2 is a novel beta-coronavirus and enters the host cell as SARS-CoV through the Spike glycoprotein (S-glycoprotein) [3]. S-glycoprotein forms homotrimers (chain A, B, and C) [4] and consist of two functional subunits; S1 subunit for binding with host receptor and S2 subunit for the membrane fusion machinery [5]. SARS-CoV-2 employed human Angiotensin-Converting enzyme 2 (ACE2) receptors to enter human host cell. The type II transmembrane serine protease (TMPRSS2) located on the surface of the host cell cleave SARS-CoV-2 S-glycoprotein to allow the viral entry [6] (Figure 1).

S-Glycoprotein’s activity is dominated in binding pocket which consist key residues for various interactions with ligand [7]. Thus, finding a potential drug/ligand that could prevent interaction SARS-CoV-2 to ACE2 is one of the strategies that we could employed.

Many in silico strategies could be used in SARS-CoV-2 drug discovery process, such as analysis of binding pockets and docking. Binding pocket analysis is an important step in the drug discovery process. To this date, analysis binding pockets of S-glycoprotein had not been exposed yet. Therefore, this research aims to determine the potential binding pocket from the S-glycoprotein for antiviral inhibition.
We analysed the binding pocket using drugability score and location of the pockets. Furthermore, we clarified this potential pocket using molecular docking of nafamostat, nelfinavir, and chloroquin diphosphate. We demonstrated that hydrophobic pockets facilitated good binding with both hydrophilic and hydrophobic ligand.

2. **Material and Methods**

2.1. **Binding pocket analysis**

SARS-Cov-2 S-glycoprotein(PDB ID: 6VYB) retrieved from the Protein Data Bank (PDB) database (http://www.rcsb.org/pdb/) that was used to assess the binding pocket. Binding pocket of the SARS-Cov-2 S-glycoproteinsurface were predicted using dogsite scorer server (https://proteins.plus/)[8], Site Finder MOE2009.10 software, and Depth server (http://cospi.iiserpune.ac.in/depth)[9]. DoGSiteScorer server provides not only potential pockets prediction of a protein but also volume, surface area, druggability, and depth of the pockets[8].

2.2. **Preparation of SARS-Cov-2 S-glycoprotein structure and standard ligands**

The native ligands and water molecules were removed from the SARS-Cov-2 S-glycoprotein structure (PDB ID: 6VYB). Preparation of SARS-Cov-2 S-glycoprotein were performed by MOE 2009.10 software using current forcefield as partial charges method, adjust hydrogen and lone pairs as required, adjust H and LP, gradient 0,05, and forcefield partial charges calculation. We choosed nafamostat, nelfinavir, and chloroquin diphosphate as positive control ligands based on their good binding result in previous research[10][11][12]. These three ligand structure were obtained from Pubchem database (https://pubchem.ncbi.nlm.nih.gov/) and then optimized by MOE2009.10 software[13].

2.3. **Molecular docking**

Molecular docking was used to predict and evaluate interaction between protein and ligands. This process was performed using the MOE 2009.10 software with several parameters; triangle matcher with 2500000 iterations as placement, one time rescoring, London dG, 100 repetitions for the first retain, and force field refinement[13][14][15].

![Figure 1. Mechanism of SARS-Cov-2 entry into human host cell. a) SARS-Cov-2 virus structure. b) SARS-Cov-2 virus bind to human ACE2 and fuse into cell trigerring by TMPRSS2](image-url)
3. Result

3.1 Binding pocket prediction
In order to analyse the potential pocket for binding with ligand, we carried out analysis of SARS-Cov-2 S-glycoprotein (PDB ID: 6VYB) using Dogsitescorder server. Table 1 shows the ranking of pockets based on its volume and druggable. There are seven out of eleven pockets high volume score which have druggable score > 0.8 (Table 1). Recently, the cutoff of 0.7 used for druggability score as the based on the average score[16]. In the present study, we utilized the score > 0.8 for the top scorers instead providing better discerning between the druggable and non-druggable pockets.

The pocket 0 (P_0) was the biggest pocket which has 4450.65 volume (A³). P_0 had 0.81 of the druggability score and high polar and nonpolar residues percentages. The pocket 5 (P_5) was predicted as the highest potential drug binding pocket followed by P_6, P_10, P_4, P_0, P_3, and P_14.

Table 1. The Potential binding site of SARS-Cov-2 S-glycoprotein (PDB ID: 6VYB) based on drugability analysed by Dogsitescorder

Pocket	Volume (A³)	Druggability	Nonpolar (%)	Polar (%)	Charge (%)
P_5	715.03	0.85	50	42	8
P_6	683.05	0.83	57	32	11
P_10	562.54	0.83	44	36	20
P_4	878.94	0.82	50	32	18
P_0	4450.65	0.81	41	41	18
P_3	973.74	0.81	47	40	13
P_14	446.04	0.81	50	41	9
P_2	1102.81	0.80	39	44	17
P_9	583.67	0.80	50	25	25
P_11	535.13	0.80	55	33	12
P_15	442.61	0.80	48	41	11

Pocket 1, Pocket 2 etc are shown as P_1, P_2, etc

Identification of potential binding site was analysed based not only on the drugability of the pockets, but also on their position and interaction with the ligand. Then, we next evaluated the pocket position on the SARS-Cov-2 S-glycoprotein. Figure 2 shows the position of each pocket. P_3, P_4, P_6, and P_9 are located on upper, P_0, P_2, P_5, P_10, and P_11 are located on the middle, while P_14, P_15 are located on lower site of the SARS-Cov-2 S-glycoprotein. As shown in figure 1, the lower pocket of the SARS-Cov-2 S-glycoprotein is attached on the surface of virus, therefore the P_14 and P_15 are not suitable for drug binding site. Together with analyzing of the drugability P_0, P_3, P_4, P_5, P_6, and P_10 were selected as the potential pockets for anti-S-Glycoprotein in our study.
All ligands are expected to bind in the binding pocket of SARS-CoV-2 S-glycoprotein. By analyzing the amino acids in the pockets, the ligand/inhibitor of SARS-CoV-2 S-glycoprotein would be easy to developed. In order to explore amino acid residues in pocket and its properties, we analyzed the amino acids residues on P_0, P_3, P_4, P_5, P_6, and P_10 using dogsitescorer. All binding sites of SARS-CoV-2 S-glycoprotein have hydrophobic area rather than hydrophilic (Table 1 and Table 2). To confirm the dogsitescorer result, a pocket analysis was also performed using sitefinder MOE, and Depth. Unexpectedly, hydrophobicity pockets are strongly predicted in that of P_0, followed by P_5, P_3 and P_10. This result indicated that hydrophobicities of the pocket are varied, yet tends to have polar pocket.

Perola et al (2012) showed that among the pockets of drug targets analysis, the median hydrophobicity was found to be around −0.13 for the drug target set [17], suggesting highly hydrophobic pockets are preferable for drug discovery.

Table 2. Amino Acid Residues in binding pockets of SARS-CoV-2 S-glycoprotein along with its properties

Pocket	Hydrophobic	Hydrophilic	Charges	Special charges	
P_0	TYR_A756	LEU_B962	GLN_A762	GLN_B1011	
	PHE_A759	PHE_B970	GLN_A954	GLN_C762	
	LEU_A763	ILE_B997	GLN_A957	GLN_C954	
	ALA_A766	LEU_B1001	THR_A961	GLN_C957	
	ILE_A770	LEU_B1004	GLN_A965	THR_C961	
	VAL_A951	TYR_B1007	THR_A998	GLN_C965	
	ALA_A955	VAL_B100	GLN_A1002	THR_C998	ARG_B765
	LEU_A962	LEU_B1012	SER_A1003	GLN_C1002	LYS_B776
	PHE_A970	ILE_B1013	GLN_A1005	SER_C1003	LYS_B947
	LEU_A1004	ALA_B1015	THR_A1006	GLN_C1005	ARG_B995
				GLU_C1017	PRO_A728
	TYR_A1007	ALA_B1016	THR_A1009GL	THR_C1006	ARG_B1014
	VAL_A1008	ILE_B1018	N_A1010	THR_C1009	ARG_B1019
	LEU_A1012	ALA_B1020	SER_A1021	GLN_C1010	ARG_C765
	LE_A1013	TYR_C756	THR_C732	GLN_C1011	ARG_C995
	ALA_A1015	PHE_C759	THR_C734	SER_C1021	ARG_C1014
	ALA_A1016	LEU_C763	SER_C735	ASN_C1023	ARG_C1019
	ILE_A1018A	ALA_C766	SER_C738	GLN_B762	GLU_B776
	LA_A1020M	ILE_C770	GLN_B762	GLN_B774	GLU_B774
	ET_B731VA	VAL_C951	GLN_B762	GLN_B954	GLU_B955
	L_B736	ALA_C958	GLN_B954		PRO_B728
	TYR_B756	LEU_C962	ASN_B955		
-----	-----	-----	-----	-----	
PHE_B759	PHE_C970	GLN_B957			
LEU_B763	ILE_C997	THR_B961			
ALA_B766	LEU_C1001	GLN_B965			
LEU_B767	TYR_C1007	THR_B998			
ILE_B770	VAL_C1008	GLN_B100			
ALA_B771	LEU_C1012	SER_B1003			
VAL_B951	ILE_C1013	GLN_B1005			
ALA_B956	ALA_C1016	THR_B1006			
ALA_B958	ILE_C1018	THR_B1009			
LEU_B959	ALA_C1020	GLN_B1010			

MET_A740	LEU_A996	ASN_A856	SER_C591	ARG_A1000	ASP_A745	CY5_A743
TYR_A741	ILE_A997	SER_A967				
ILE_A742	VAL_C320	SER_A975				
PHE_A855	PHE_C541	ASN_A978				
LEU_A966	LEU_C546	GLN_C321				
VAL_A976	PHE_C565	THR_C547				
ALA_A977	LEU_C570	THR_C549				
ILE_A980	ILE_C587	THR_C572				
ILE_A993	PHE_C592	THR_C573				

VAL_B350	TYR_B423	SER_B399	LYS_B378	ASP_B398	CY5_B379
TYR_B351	LEU_B425	GLN_B409	ARG_B403	GLU_B406	GLY_B381
ALA_B352	PHE_B429	ASN_B422	LYS_B424	GLU_B425	GLY_B404
TRP_B353	VAL_B433	THR_B430	ARG_B466	PRO_B412	
TYR_B380	ALA_B435	SER_B514	ARG_B509	PRO_B426	
PHE_B400	TRP_B436	GLY_B431			
VAL_B401	PHE_B464	CY5_B432			
ILE_B402	TYR_B508				
VAL_B407	VAL_B510				
ILE_B410	VAL_B511				
ALA_B411	VAL_B512				
ILE_B418	LEU_B513				

VAL_A736a	LEU_A1004	SER_A735	LYS_A733	ASP_A737	CY5_A738
LEU_A763a	ALA_A766a	ASN_A764	THR_A768	GLY_A857	
LEU_A767a	ILE_C312	THR_A859	PRO_A862		
ALA_A771	TYR_C313	GLN_C314ASN	PRO_A863		
VAL_A772	PHE_C592	C517	GLY_C593		
LEU_A858	LEU_C611	SER_C596	GLY_C594		
LEU_A861	ALA_C647	GLN_C613	PRO_C665		
LEU_A864	ILE_C666	GLY_C667			

PHE_B338,	PHE_B392	THR_B376	LYS_B356	ASP_B398	CY5_B336
VAL_B341,	PHE_B395	ASN_B388	ARG_B357	LYS_B378	CY5_B337
PHE_B342a	PHE_B396	SER_B514	LYS_B378	CY5_B379	
ILE_B358	ALA_B397	CY5_B384			
ILE_B363	VAL_B433	CY5_B391			
TYR_B365	ILE_B434	CY5_B432			
LEU_B368	VAL_B511	GLY_B525			
TYR_B369	VAL_B512	GLY_B526			
ILE_B377	LEU_B513	PRO_B527			
LEU_B387	VAL_B524				
LEU_B390					

ILE_A312	ALA_B771	THR_A320	ASN_B764	ARG_A646	ASP_A614	PRO_A665
TYR_A313	VAL_B772	GLN_A314	THR_B768	GLY_B733	ASP_B775	GLY_B667
LEU_A611	VAL_B861	SER_A596	ARG_B765	PRO_B862		
ALA_A647	LEU_B864	GLN_A613	PRO_B863			
ILE_A666	THR_B761					

*a Green= residues predicted by dogsitescorer and sitefinder MOE
*b Yellow blocked= residues predicted by dogsitescorer, sitefinder MOE, and Depth
*c Black= residues predicted by dogsitescorer only
*d Blue= residues predicted by dogsitescorer and Depth
3.2 Molecular docking

Interaction of ligand to binding pocket provides the molecular basis for the activity of drug, therefore analyzing of binding pocket is the most important aspect in the discovery of new medicines. To test the ligand interaction with the binding pocket, molecular docking were performed using nafamostat, nelfinavir, chloroquin diphosphate as ligands[10],[11],[12]. The nafamostat binds strong pair of hydrogen bonds with P_0 followed by P_5, P_3, P_10, and P_6 throughout the docking simulation, whereas nelfinavir ligands bound remains the same on P_0, P_3, P_5 (Table 3). π-π interactions are only shown on the P_0 and P_1. The present study showed that hydrophobicity properties of the pocket in the S-Glycoprotein influence the ligand-protein binding and binding free energy using molecular docking (Table 3). This finding is consistent with our study showing specificity and directionality of hydrogen bonds in the hydrophobic pockets[18].

We showed chloroquine diphosphate has some interactions in the hydrophobic pocket of SARS-Cov-2 S-glycoprotein(Table 3, Figure 3), though chloroquine diphosphate is a hydrophilic drug [19]. This might be due the ratio of polar higher than nonpolar residues, but not significant different (Table 1). In fact, hydrophilic drugs have weak interactions and low entrapment efficiency in drug transport [19].

Pocket	Ligand	Binding Free Energy (kcal/mol)	Hydrogen Bond	pi-pi interaction	Ionic interaction
0	Nafamostat	-13,4518	5	1	0
	Nelfinavir	-13,7167	2	0	0
	Chloroquin diphosphate	-11,2096	1	2	1
3	Nafamostat	-13,8193	3	0	0
	Nelfinavir	-17,8084	2	0	0
	Chloroquin diphosphate	-12,6073	1	0	0
4	Nafamostat	-10,5998	0	0	0
	Nelfinavir	-12,2938	0	0	0
	Chloroquin diphosphate	-10,7605	1	0	0
5	Nafamostat	-13,0684	1	0	1
	Nelfinavir	-14,0162	3	0	0
	Chloroquin diphosphate	-12,7057	2	0	0
6	Nafamostat	-12,1221	1	0	0
	Nelfinavir	-16,1730	0	0	0
	Chloroquin diphosphate	-11,6616	0	0	0
10	Nafamostat	-13,9993	1	1	1
	Nelfinavir	-14,3682	0	0	0
	Chloroquin diphosphate	-12,4754	1	0	0

The present study determined that nafamostat and nelfinavir had ligand-protein interaction with almost all pockets of SARS-Cov-2 S-glycoprotein(Table 3, Figure 3). Sebastian (2014) showed that hydrogen bond are considered as the main facilitators of protein-ligand interaction [20]. We then, searched for a chemical structural using the PubChem database for its properties. Both nafamostat and nelfinavir have high number of hydrogen acceptor and donor, suggesting stronger protein-ligand interactions due to its properties. Thus, both hydrophobicity of pocket and hydrogen donor/acceptor play important role in facilitating complex ligand-protein interaction.
Figure 3. Interaction ligand nafamostat, nelfinavir, and chloroquine diphosphate with a) P_0, b) P_3, and c) P_5 of SARS-Cov-2 S-glycoprotein. , , , , and are shown as hydrogen bond from side chain acceptor, hydrogen bond from side chain donor, hydrogen bond from backbone acceptor, hydrogen bond from backbone donor, metal contact receptor, pi-pi (arene) interaction, respectively.

4. Conclusion
In conclusion, we have identified hydrophobic pocket (P_0, P_3, and P_5) are suitable for binding pocket in both hydrophobic and hydrophilic ligand, nafamostat, nelfinavir, and chloroquine diphosphate. These findings provide a potential insight in design of anti-SARS-Cov-2.

References
[1] Siti K, Hendra K, Rizki A, Suhartati S and Soetjipto S 2020 Potential Inhibitor of COVID-19 Main Protease (Mpro) From Several Medicinal Plant Compounds by Molecular Docking Study preprints
[2] (WHO) W H O 2020 WHO Director-General’s opening remarks at the media briefing on COVID-19 - 10 August 2020
[3] Chen L, Li X, Chen M, Feng Y and Xiong C 2020 The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2
Cardiovasc. Res. **116** 1097–1100

[4] Walls A C, Vees Y-J P, Tortorici M A, Wall A, McGuire A T and Veesler D 2020 Structure, Function, and Antigencinity of the SARS-CoV-2 Spike Glycoprotein *Cell* **180** 281–292

[5] Walls A C, Tortorici M A, Snijder J, Xiong X, Boschd B-J, Rey F A and Veesler D 2017 Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion *Proceedings of the National Academy of Sciences* pp 11157–62

[6] Astuti I and Ysrafil 2020 Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response *Diabetes Metab. Syndr. Clin. Res. Rev.* **14** 407–12

[7] Damale M G, Patil R B, Ansari S A, Alkahtani H M, Almehizia A A, Shinde D B, Arotee R and Sangshetti J 2019 Molecular docking, pharmacophore based virtual screening and molecular dynamics studies towards the identification of potential leads for the management of H. pylori *RSC Adv.* **9** 26176–26208

[8] Fahrrolfes R, Bietz S, Flachsenberg F, Meyder A, Nittinger E, Otto T, Volkamer A and Rarey M 2017 ProteinsPlus: a web portal for structure analysis of macromolecules *Nucleic Acids Res.* **45**

[9] Tan K P, Nguyen T B, Patel S, Varadarajan R and Madhusudhan M S 2013 Depth: a web server to compute depth, cavity sizes, detect potential small-molecule ligand-binding cavities and predict the pKa of ionizable residues in proteins *Nucleic Acids Res.* **41**

[10] Mothay D and Ramesh K V. 2020 Binding site analysis of potential protease inhibitors of COVID-19 using AutoDock *Virusdisease* **31** 194–199

[11] Utomo R Y, Ikawati M and Meiyanto E 2020 Revealing the Potency of Citrus and Galangal Constituents to Halt SARS-CoV-2 Infection *Preprints*

[12] Braz H L B, Silveira J A de M, Marinho A D, Moraes M E A de, Filho de M M O, Monteiro, Helena Serra A, Jorge R J and Bezerra 2020 In silico study of azithromycin, chloroquine and hydroxychloroquine and their potential mechanisms of action against SARS-CoV-2 infection *Int. J. Antimicrob. Agents*

[13] Amelia F, Iryani, Sari P Y, Parikesit A A, Bakri R, Toepak E P and Tambunan U S F 2018 Assessment of Drug Binding Potential of Pockets in the NS2B/NS3 Dengue Virus Protein *IOP Conf. Series: Materials Science and Engineering* (IOP Conf. Series: Materials Science and Engineering) p 349

[14] Iryani, Amelia F and Iswendi 2018 Active sites prediction and binding analysis E1-E2 protein human papillomavirus with biphenylsulfonacetic acid *IOP Conf. Series: Materials Science and Engineering* (IOP Publishing)

[15] Amelia F Studi Interaksi Ligan Peptidoid Dan Peptida Dengan Enzim Protease NS3/NS2B Virus Dengue *J. Sainstek* **6** 24–9

[16] Schmidtke P and Barril X 2010 Understanding and Predicting Druggability. A High-Throughput Method for Detection of Drug Binding Sites *J. Med. Chem.* **53** 5858–5867

[17] Perola E, Herman L and Weiss J 2012 Development of a Rule-Based Method for the Assessment of Protein Druggability *J. Chem. Inf. Model.* **52** 1027–1038

[18] Amelia F, Iryani, Sari P Y, Parikesit A A, Bakri R, Toepak E P and Tambunan U S F 2018 Assessment of Drug Binding Potential of Pockets in the NS2B/NS3 Dengue Virus Protein *IOP Conference Series: Materials Science and Engineering* vol 349

[19] Lima T L C, Feitosa R de C, Santos-Silva E dos, Santos-Silva A M dos, Siqueira E M da S, Machado P R L, Corêllio A M, Egito E S T do, Freitas M de, Fernandes-Pedrosa, Farias K J S and Silva-Júnior A A da 2018 Improving Encapsulation of Hydrophilic Chloroquine Diphosphate into Biodegradable Nanoparticles: A Promising Approach against Herpes Virus Simplex-I Infection *Pharmaceutics* **10** 1–18

[20] Salentin S, Haupt V J, Daminelli S and Schroeder M 2014 Polypharmacology rescored: Proteineligand interaction profiles for remote binding site similarity assessment *Prog. Biophys. Mol. Biol.* **116** 1–13