Supplementary table S1. Number of grids surveyed and used for analyses at each year for all sites and locations (ND = No Data, sites not surveyed that year).

Site	Depth	2010	2011	2012	2013	2014	2017
Abrolhos Islands							
Geebank	15 m	3	3	3	3	3	3
	25 m	3	3	3	2	2	3
Coral Patches	15 m	3	2	3	3	3	ND
	40 m	3	ND	3	3	1	3
Snapper Bank	25 m	ND	3	3	3	3	3
Jurien Bay							
North	15 m	3	2	2	3	ND	ND
	25 m	3	2	2	3	ND	ND
	40 m	3	3	3	ND	ND	ND
South	40 m	3	3	3	3	ND	ND
New	25 m	ND	3	3	ND	ND	ND
Rottnest Island							
North	15 m	3	3	3	3	ND	3
	25 m	3	2	2	3	ND	3
	40 m	3	2	2	3	ND	3
South	15 m	3	2	2	3	ND	3
	25 m	3	3	3	3	ND	3
	40 m	3	2	2	2	ND	2
Supplementary figure S1. Mean percent cover (± SE) of sand at each depth and location from 2010 - 2017. The estimates of percent cover are means of ~ 90 to 180 images within each depth per year.
Supplementary figure S2: Mean percent cover (± SE) of unbleached coral (a) and bleached coral (b) at each depth at Houtman Abrolhos Islands, WA. The grey box highlights 2011, the year of the marine heatwave. The estimates of percent cover are means of ~90 to 180 images within each depth per year.
Supplementary figure S3. Mean percent cover (± SE) of turf at each depth and location from 2010 - 2017. The estimates of percent cover are means of ~ 90 to 180 images within each depth per year.

Supplementary figure S4. Mean percent cover (± SE) of fine branching red algae at each depth and location from 2010 - 2017. The estimates of percent cover are means of ~ 90 to 180 images within each depth per year.

Giraldo Ospina et al.
Depth moderate loss of marine foundation species after an extreme marine heatwave: Could deep temperate reefs act as refuge?
Supplementary figure S5. Mean percent cover (± SE) of Foliose Coral at each depth at Houtman Abrolhos Islands, WA. The estimates of percent cover are means of ~ 90 to 180 images within each depth per year.

Supplementary figure S6. Mean percent cover (± SE) of encrusting red algae at each depth and location from 2010 - 2017. The estimates of percent cover are means of ~ 90 to 180 images within each depth per year.
Supplementary figure S7. Mean percent cover (± SE) of *Ecklonia radiata* at each depth and location from 2010 - 2017. The estimates of percent cover are means of ~ 90 to 180 images within each depth per year.

Supplementary figure S8. Mean percent cover (± SE) of *Sargassum sp.* at each depth and location from 2010 - 2017. The estimates of percent cover are means of ~ 90 to 180 images within each depth per year.
Supplementary figure S9. Mean percent cover (± SE) of seagrass at each depth and location from 2010 - 2017. The estimates of percent cover are means of ~ 90 to 180 images within each depth per year.

Supplementary figure S10. Mean percent cover (± SE) of Scytophialia dorycarpa at each depth and location from 2010 - 2017. The estimates of percent cover are means of ~ 90 to 180 images within each depth per year.
Supplementary figure S11. Mean percent cover (± SE) of sponges at each depth and location from 2010 - 2017. The estimates of percent cover are means of ~ 90 to 180 images within each depth per year.

Supplementary figure S12. Mean percent cover (± SE) of staghorn coral at each depth and location from 2010 – 2017. The estimates of percent cover are means of ~ 90 to 180 images within each depth per year.
Supplementary figure S13. Mean percent cover (± SE) of tabulate coral at each depth and location from 2010 – 2017. The estimates of percent cover are means of ~ 90 to 180 images within each depth per year.

Supplementary table S2. Summary statistics of one-way ANOVA to test for the effect of year in the percent cover of *E. radiata*, turf, encrusting red algae and *S. dorycarpa*, at each depth and location. Values in bold show significant differences between treatment plots. Values marked with * denote non-parametric tests (Kruskal-Wallis chi-squared values). Tukey tests were performed when ANOVAs were significant, and Dunn’s test when Kruskal-Wallis tests were significant.

Class	Location	Depth	df	F-value	p-value	Post-hoc
Ecklonia radiata	Abrolhos	15 m	2	0.29732	*	0.8619
		25 m	2	0.725		
		40 m	2	2.343		0.158
	Jurien	15 m	2	0.45226	*	0.7976
		25 m	2	0.023		0.978
		40 m	2	0.0042	*	0.9979
	Rottnest	15 m	2	1.131		0.351
Depth moderate loss of marine foundation species after an extreme marine heatwave: Could deep temperate reefs act as refuge?
Supplementary table S3. Univariate PERMANOVA to test for percent cover differences of main benthic categories between depths and years at each location. PERMANOVA derived from square root transformation and Euclidian distance similarity matrices.

Benthic category	Location	Effects	Numerator df	Denominator df	Pseudo-F	p	Unique permutations
Coral	Abrolhos	Year	5	2413	5.09	0.0002	9963
		Depth^2	2	2413	622.48	0.0001	9945
		Year x Depth	9	2413	5.98	0.0001	9939
Bleached Coral	Abrolhos	Year	5	2413	26.131	0.0001	9948
		Depth^2	2	2413	33.299	0.0001	9947
		Year x Depth	9	2413	14.697	0.0001	9933
Coral-Staghorn	Abrolhos	Year	5	2413	16.13	0.0001	9941
		Depth	2	2413	335.11	0.0001	9948
		Year x Depth	9	2413	10.68	0.0001	9941
Coral-Foliose	Abrolhos	Year	5	2413	2.26	0.0443	9925
		Depth	2	2413	94.63	0.0001	9943
		Year x Depth	9	2413	4.14	0.0001	9926
Coral-Tabulate	Abrolhos	Year	5	2413	3.13	0.0072	9951
		Depth	2	2413	343.65	0.0001	9953
		Year x Depth	9	2413	3.27	0.0006	9931
Macroalgae	Abrolhos	Year	5	2413	25.329	0.0001	9840
		Depth	2	2413	116.37	0.0001	9941

Giraldo Ospina et al.

Depth moderate loss of marine foundation species after an extreme marine heatwave: Could deep temperate reefs act as refuge?
	Year	Depth	Year x Depth	Depth	Year x Depth	Depth	Year x Depth	Depth
Rottnest								
	9	2413	14.87	0.0001	9838			
Jurien								
	3	1548	69.04	0.0001	9936			
Macroalgae -								
Ecklonia								
Abrolhos	5	2413	19.808	0.0001	9952			
	2	2413	62.225	0.0001	9940			
	9	2413	8.821	0.0001	9947			
Rottnest								
	4	2355	1.2873	0.2763	9958			
Jurien								
	3	1548	4.865	0.002	9942			
Macroalgae -								
Sargassum								
Abrolhos	5	2413	5.419	0.0001	9953			
	2	2413	77.164	0.0001	9955			
	9	2413	3.820	0.0003	9948			
Rottnest								
	4	2355	36.549	0.0001	9958			
Macroalgae -								
Turf								
Abrolhos	5	2413	34.008	0.0001	9947			
	2	2413	125.68	0.0001	9954			

Giraldo Ospina et al.

Depth moderate loss of marine foundation species after an extreme marine heatwave: Could deep temperate reefs act as refuge?
	Year x Depth	Depth	Year x Depth	Depth	Depth	Year x Depth	Depth	Year x Depth	Depth	Depth	Year x Depth	Depth
Rottnest	4	2355	7.973	0.0001	9954							
	2	2355	0.580	0.5566	9950							
	8	2355	4.956	0.0001	9926							
Jurien	3	1548	64.997	0.0001	9940							
	2	1548	49.855	0.0001	9944							
	6	1548	83.203	0.0001	9943							
Macroalgae – Fine branching red	**Abrolhos**	5	2413	46.374	0.0001	9948						
	2	2413	182.78	0.0001	9949							
	9	2413	16.015	0.0001	9941							
Rottnest	4	2355	18.362	0.0001	9957							
	2	2355	8.238	0.0002	9947							
	8	2355	8.959	0.0001	9940							
Jurien	3	1548	39.354	0.0001	9952							
	2	1548	67.283	0.0001	9954							
	6	1548	17.338	0.0001	9935							
Macroalgae – Encrusting red	**Abrolhos**	5	2413	45.266	0.0001	9956						
	2	2413	70.205	0.0001	9946							
	9	2413	21.739	0.0001	9919							
Rottnest	4	2355	7.499	0.0001	9933							
	2	2355	5.726	0.0034	9948							
	8	2355	4.596	0.0001	9935							
Jurien	3	1548	39.292	0.0001	9954							

Giraldo Ospina et al.

Depth moderate loss of marine foundation species after an extreme marine heatwave: Could deep temperate reefs act as refuge?
Giraldo Ospina et al.

Depth moderate loss of marine foundation species after an extreme marine heatwave: Could deep temperate reefs act as refuge?

	Depth	Year x Depth	Depth	Year x Depth	Depth	Year x Depth	
--------------------------	-------	--------------	-------	--------------	-------	--------------	
Macroalgae - Scytothalia							
Rottnest							
	2	1548	643.85	**0.0001**	9960		
	6	1548	14.646	**0.0001**	9936		
Macroalgae – Canopy							
Abrolhos							
	2	2355	5.664	**0.037**	9955		
	2	2355	8.291	**0.0001**	9942		
	2	2355	11.552	**0.0001**	9949		
	2	2413	88.42	**0.0001**	9953		
	9	2413	7.085	**0.0001**	9947		
Jurien							
	2	1548	45.512	**0.0001**	9952		
	6	1548	22.252	**0.0001**	9954		
Seagrass							
Abrolhos							
	2	2413	31.811	**0.0001**	9959		
	9	2413	3.675	**0.0003**	9940		
Jurien							
	2	1548	6.587	**0.0003**	9948		
	6	1548	22.252	**0.0001**	9952		
Sponges							
Abrolhos							
	2	2413	108.89	**0.0001**	9964		
	9	2413	11.53	**0.0001**	9931		
Rottnest							
	2	2355	129.99	**0.0001**	9954		
	2	2355	129.99	**0.0001**	9954		

Giraldo Ospina et al.

Depth moderate loss of marine foundation species after an extreme marine heatwave: Could deep temperate reefs act as refuge?
Supplementary figure S14. Temperature data series (in degrees Celsius) for the yearly summer (December – April) averages (a), and yearly anomalies (b) at each location and for average depth of 10 m (5-15 m range), 30 m (25–35 m depth range) and 40 m (35–45 m depth range). Anomalies calculated over the 20-year period averages. The grey line highlights 2011, the year of the marine heatwave. Temperature data was used to identify the temperature signal of the marine heatwave at each of the locations and across the three target depths. Data was gathered from the Australian Shelf Temperature Data Atlas which groups temperature data collected from 1995 to 2014 from a range of sources including AUV deployments, Argo profiles, glider deployments, moorings, and CTD casts (Integrated Marine Observing System, 2015). Data within a 30 km radius from the study locations was selected for the analysis (see electronic supplementary tables S4-S6 for details of temperature data). The average temperature for the summer months (December – April) was calculated for each year (1995-2014) at each location and depth. Temperature data was not available for all years and months for Abrolhos and Jurien Bay, yet, the average summer temperature was calculated over the 20-year period and temperature anomalies were calculated over this average.
Supplementary table S4. Summer average temperatures in degrees Celsius (± standard error) for each location at three depth bins 10, 30 and 40 m from 1995 to 2015 (Integrated Marine Observing System, 2015). Depth bins group data from a range of depths so that 10 m bin include 5-15 m, the 30 m bin include 25-35 m and the 40 m bin includes 35-45 m of depth. Summer months included the temperatures from December to April. The standard error of some temperatures was not calculated due to lack of data (one or 2 observations only). ND indicates that there is no data available for that location and depth.

Year	Location	10 m	30 m	40 m
1995	Abrolhos	25.286 ± 0.064	25.298 ± 0.052	25.267 ± 0.033
1996	Abrolhos	22.96 ± 0.257	22.916 ± 0.286	22.739 ± 0.361
1997	Abrolhos	ND	ND	ND
1998	Abrolhos	ND	ND	ND
1999	Abrolhos	22.346	22.237	22.147
2000	Abrolhos	ND	ND	ND
2001	Abrolhos	ND	ND	ND
2002	Abrolhos	ND	ND	ND
2003	Abrolhos	ND	ND	ND
2004	Abrolhos	ND	ND	ND
2005	Abrolhos	20.574	20.575	20.569
2006	Abrolhos	ND	ND	ND
2007	Abrolhos	ND	ND	ND
Year	Area	ND	ND	ND
------	----------	-----	-----	-----
2008	Abrolhos	ND	ND	ND
2009	Abrolhos	ND	ND	ND
2010	Abrolhos	22.537	22.151	22.007
2011	Abrolhos	25.008	25.024	ND
2012	Abrolhos	24.067	23.833	ND
2013	Abrolhos	23.705	23.551	23.138
2014	Abrolhos	23.193 ± 0.09	23.16 ± 0.074	23.106 ± 0.064
1995	Jurien	ND	ND	ND
1996	Jurien	22.127 ± 0.199	22.014 ± 0.22	21.847 ± 0.278
1997	Jurien	ND	ND	ND
1998	Jurien	ND	ND	ND
1999	Jurien	21.734	21.629	20.905
2000	Jurien	ND	ND	ND
2001	Jurien	21.762	ND	21.388
2002	Jurien	ND	ND	ND
2003	Jurien	ND	ND	ND
2004	Jurien	ND	ND	ND
2005	Jurien	23.011	22.984	22.976
2006	Jurien	ND	ND	ND
2007	Jurien	ND	ND	ND
2008	Jurien	ND	ND	ND
2009	Jurien	ND	ND	ND
2010	Jurien	21.653 ± 0.695	21.801 ± 0.12	21.632 ± 0.31
2011	Jurien	24.459 ± 0.342	24.201 ± 0.333	23.934 ± 0.181
2012	Jurien	23.31 ± 0.23	23.622 ± 0.151	23.63 ± 0.166
2013	Jurien	23.507 ± 0.21	23.562 ± 0.219	23.557 ± 0.136
2014	Jurien	22.986 ± 0.247	22.802 ± 0.255	22.717 ± 0.298
1995	Rottnest	21.547 ± 0.418	21.626 ± 0.422	21.537 ± 0.416
1996	Rottnest	22.599 ± 0.245	22.502 ± 0.239	22.498 ± 0.245
1997	Rottnest	22.288 ± 0.413	22.114 ± 0.42	22 ± 0.469
1998	Rottnest	22.142 ± 0.25	22.026 ± 0.275	21.931 ± 0.288
1999	Rottnest	23.141 ± 0.287	23.064 ± 0.298	22.994 ± 0.296
2000	Rottnest	22.165 ± 0.402	22.121 ± 0.455	21.928 ± 0.515
2001	Rottnest	21.609 ± 0.169	21.537 ± 0.159	21.642 ± 0.195
2002	Rottnest	21.505	21.486	21.409
2003	Rottnest	19.413 ± 0.167	19.238 ± 0.282	19.162 ± 0.36
2004	Rottnest	21.53 ± 0.272	21.202 ± 0.167	21.078 ± 0.139
2005	Rottnest	20.258 ± 0.366	19.937 ± 0.275	19.792 ± 0.223
2006	Rottnest	22.177 ± 0.407	21.937 ± 0.343	21.838 ± 0.305
2007	Rottnest	21.865	21.813	21.754
2008	Rottnest	22.201 ± 0.845	21.497 ± 0.81	21.314 ± 0.835
2009	Rottnest	21.95 ± 0.114	21.603 ± 0.162	21.528 ± 0.174
2010	Rottnest	21.74 ± 0.211	21.207 ± 0.221	21.023 ± 0.243
2011	Rottnest	23.961 ± 0.184	23.585 ± 0.225	23.447 ± 0.232
2012	Rottnest	23.159 ± 0.28	22.807 ± 0.254	22.685 ± 0.255
2013	Rottnest	23.05 ± 0.144	22.594 ± 0.173	22.332 ± 0.2
2014	Rottnest	21.681 ± 0.3	21.382 ± 0.314	21.171 ± 0.331
2015	Rottnest	ND	ND	19.473

Giraldo Ospina et al.

Depth moderate loss of marine foundation species after an extreme marine heatwave: Could deep temperate reefs act as refuge?
Supplementary table S5. Summer temperatures anomalies in degrees Celsius for each location at three depth bins 10, 30 and 40 m from 1995 to 2015 (Integrated Marine Observing System, 2015). Depth bins group data from a range of depths so that 10 m bin include 5-15 m, the 30 m bin include 25-35 m and the 40 m bin includes 35-45 m of depth. Summer months included the temperatures from December to April. ND indicates that there is no data available for that location and depth.

Year	Location	15 m Anomaly	25 m Anomaly	40 m Anomaly
1995	Abrolhos	1.989	2.104	2.557
1996	Abrolhos	-0.338	-0.278	0.029
1997	Abrolhos	ND	ND	ND
1998	Abrolhos	ND	ND	ND
1999	Abrolhos	-0.952	-0.957	-0.563
2000	Abrolhos	ND	ND	ND
2001	Abrolhos	ND	ND	ND
2002	Abrolhos	ND	ND	ND
2003	Abrolhos	ND	ND	ND
2004	Abrolhos	ND	ND	ND
2005	Abrolhos	-2.723	-2.619	-2.142
2006	Abrolhos	ND	ND	ND
2007	Abrolhos	ND	ND	ND
2008	Abrolhos	ND	ND	ND
2009	Abrolhos	ND	ND	ND
2010	Abrolhos	-0.760	-1.043	-0.703
2011	Abrolhos	1.710	1.830	ND
2012	Abrolhos	0.769	0.639	ND
2013	Abrolhos	0.408	0.357	0.427
2014	Abrolhos	-0.104	-0.034	0.395
1995	Jurien	ND	ND	ND
1996	Jurien	-0.600	-0.652	-0.662
1997	Jurien	ND	ND	ND
1998	Jurien	ND	ND	ND
1999	Jurien	-0.994	-1.038	-1.605
2000	Jurien	ND	ND	ND
2001	Jurien	-0.966	-1.287	-1.121
2002	Jurien	ND	ND	ND
2003	Jurien	ND	ND	ND
2004	Jurien	ND	ND	ND
2005	Jurien	0.283	0.318	0.467
2006	Jurien	ND	ND	ND
2007	Jurien	ND	ND	ND
2008	Jurien	ND	ND	ND
2009	Jurien	ND	ND	ND
2010	Jurien	-1.074	-0.865	-0.878
2011	Jurien	1.731	1.535	1.424

Giraldo Ospina et al.

Depth moderate loss of marine foundation species after an extreme marine heatwave: Could deep temperate reefs act as refuge?
Giraldo Ospina et al.

Depth moderate loss of marine foundation species after an extreme marine heatwave: Could deep temperate reefs act as refuge?

Supplementary table S6. Number of data points obtained to calculated averages, and anomalies of temperature at each year location and depth.

Depth	Year	Abrolhos	Jurien	Rottnest
15 m	1995	2	0	10
	1996	7	8	13
	1997	0	0	8
	1998	0	0	14
	1999	1	1	11
	2000	1	1	15
	2001	0	1	12
	2002	0	1	2
	2003	0	0	9
	2004	0	0	9
	2005	1	1	9
	2006	0	0	11
	2007	0	0	5
	2008	0	0	8
	2009	0	0	22
	2010	1	3	16
	2011	1	3	20
Depth moderate loss of marine foundation species after an extreme marine heatwave: Could deep temperate reefs act as refuge?

Year	25 m	40 m
2012	1	3
2013	4	4
2014	0	0
1995	2	0
1996	7	8
1997	0	0
1998	0	0
1999	1	1
2000	1	1
2001	0	0
2002	0	0
2003	0	0
2004	0	0
2005	1	1
2006	0	0
2007	0	0
2008	0	0
2009	0	0
2010	1	4
2011	1	3
2012	1	3
2013	1	2
2014	4	4
2015	0	0
1995	2	0
1996	6	8
1997	0	0
1998	0	0
1999	1	1
2000	1	1
2001	0	1
2002	0	1
2003	0	0
2004	0	0
2005	1	1
2006	0	0
2007	0	0
2008	0	0
2009	0	0
2010	1	3
2011	0	2
2012	0	2
2013	1	3
2014	3	4
References

Integrated Marine Observing System (2015), MARVL3 - Australian shelf temperature data atlas. f9b50e93-df47-4317-8f1f-f3ed2fed7093. Data accessed at (https://portal.aodn.org.au/)