When NAS Meets Robustness: In Search of Robust Architectures against Adversarial Attacks

Minghao Guo*, Yuzhe Yang*, Rui Xu, Ziwei Liu, Dahua Lin

(* indicates equal contribution)
Studies on Improving Adversarial Robustness

- Specialized learning algorithms / loss functions / data preprocessing / unlabeled data ...

Mądry, Makelov, Schmidt, Tsipras, Vladu. ICLR’18

Zhang, Yu, Jiao, Xing, Ghaoui, Jordan. ICML’19

Yang, Zhang, Katabi, Xu. ICML’19
Studies on Improving Adversarial Robustness

- Specialized learning algorithms / loss functions / data preprocessing / unlabeled data ...

Intrinsic influence of neural network architectures on adversarial robustness?

Zhang, Yu, Jiao, Xing, Ghaoui, Jordan. ICML'19

Carmon, Raghunathan, Schmidt, Liang, Duchi. NeurIPS'19

Yang, Zhang, Katabi, Xu. ICML'19
Robust Architecture Search Framework
Robust Architecture Search Framework

One-shot robust NAS

- PGD adversarial training for supernet
Robust Architecture Search Framework

One-shot robust NAS
- PGD adversarial training for supernet

Robustness evaluation
- 1,000 randomly sampled candidates
- finetune a few epochs for individual candidate architecture
Observation #1:
Densely connected pattern benefits network robustness

Strong correlation between Architecture Density & Robustness
Observation #2:
Architecture strategy under computational budget

Under small computational budget, adding convolution operations to direct edges is more effective.
Observation #3: FSP matrix distance as robustness indicator

A robust network has a lower FSP matrix loss in the deeper cells of network.

Flow of solution procedure (FSP) matrix:

\[
G_l(x; \theta) = \sum_{s=1}^{h} \sum_{t=1}^{w} \frac{F_{l,s,t}^{in}(x; \theta) \times F_{l,s,t}^{out}(x; \theta)}{h \times w}
\]
Family of Robust Architectures (RobNets)

- RobNets exhibit superior robustness on CIFAR, SVHN, ImageNet, etc. with fewer parameters
Check out our models at...

https://github.com/gmh14/RobNets https://www.mit.edu/~yuzhe/robnets.html