Valley-magnetophonon resonance for interlayer excitons

Dmitry S Smirnov, Johannes Holler, Michael Kempf, Jonas Zipfel, Philipp Nagler, Mariana V Ballottin, Anatolie A Mitioglu, Alexey Chernikov, Peter C M Christianen, Christian Schüller and Tobias Korn

1 Ioffe Institute, 194021 St. Petersburg, Russia
2 Spin Optics Laboratory, St. Petersburg State University, 198504 St. Petersburg, Russia
3 Institut für Experimentelle und Angewandte Physik, Universität Regensburg, 93040 Regensburg, Germany
4 Institut für Physik, Universität Rostock, 18059 Rostock, Germany
5 Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
6 High Field Magnet Laboratory (HFML—EMFL), Radboud University, 6525 ED Nijmegen, The Netherlands
7 Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
* Author to whom any correspondence should be addressed.
E-mail: smirnov@mail.ioffe.ru

Keywords: excitons, transition metal dichalcogenide, heterobilayer, magnetophonon resonance, photoluminescence, intervalley scattering

Supplementary material for this article is available online

Abstract

Heterobilayers consisting of MoSe$_2$ and WSe$_2$ monolayers can host optically bright interlayer excitons with intriguing properties such as ultralong lifetimes and pronounced circular polarization of their photoluminescence due to valley polarization, which can be induced by circularly polarized excitation or applied magnetic fields. Here, we report on the observation of an intrinsic valley-magnetophonon resonance for localized interlayer excitons promoted by intervalley hole scattering. It leads to a resonant increase of the photoluminescence polarization degree at the same field of 24.2 Tesla for H-type and R-type stacking configurations despite their vastly different excitonic energy splittings. As a microscopic mechanism of the hole intervalley scattering we identify the scattering with chiral TA phonons of MoSe$_2$ between excitonic states mixed by the long-range electron hole exchange interaction.

1. Introduction

Two-dimensional (2D) crystals and their van der Waals heterostructures (HSs) are promising candidates for novel optoelectronic devices. Among the 2D crystals, the semiconducting transition metal dichalcogenides (TMDCs) like MoS$_2$ have garnered a lot of attention due to their intriguing properties: in the monolayer (ML) limit, they are direct-gap semiconductors [1, 2] with large exciton binding energies [3] and peculiarities such as spin–valley locking [4]. The latter phenomenon, coupled with helicity-dependent interband selection rules, allows for optical initialization and readout of a coupled spin–valley polarization [5]. Many combinations of different TMDC MLs yield a type-II band alignment, which leads to interlayer charge separation. Spatially separated electron hole pairs can form so-called interlayer excitons (ILEs) in these heterobilayers [6]. Depending on the specific material combination, these ILEs may be optically bright only for specific crystallographic alignments [7] (interlayer twist) and their energy may be tunable via control of interlayer twist [8, 9]. These ILEs inherit some properties, such as spin–valley polarization [10], from the constituent TMDC MLs. However, in contrast to ML excitons, they are characterized by ultralong lifetimes [11–13] and diffusion over mesoscopic distances [10, 14], which makes them attractive for exciton-based optoelectronic devices, see [15] for a recent review.

Magneto-optical studies in high magnetic fields have been used very successfully to elucidate properties of TMDC MLs, such as exciton g factors [16], magnetic-field-induced valley polarization [17], exciton Bohr radii and masses [18, 19], dark exciton [20] and Rydberg exciton states [21, 22], as well as
the substructure and dynamics of more complex quasiparticles like biexcitons [23–26], see also [27] for a recent review. More recently, ILEs in TMDC heterobilayers have also been subjected to high magnetic fields, revealing a unique ability to engineer their effective g factor by changing the twist angle [28], which can be much larger and of the opposite sign as compared with excitons in TMDC MLs [29, 30].

For the specific material combination of WSe$_2$ and MoSe$_2$, optically bright ILEs are only observable for interlayer twist angles close to 0 or 60 degrees [7]. These configurations are also referred to as R-type (0 degree) or H-type (60 degrees) in accordance to the prevalent stacking polymorphs of TMDC multilayers. The optical selection rules for ILEs in these HSs depend on the local interlayer atomic registry [31], and therefore, the helicity of the emitted PL is not directly linked to ILE valley polarization, in contrast to TMDC MLs. In heterobilayers, the interlayer atomic registry can vary spatially due to two different effects:

- the formation of a moiré lattice [30, 32], which arises from an angular misalignment of the individual layers;
- atomic reconstruction [33, 34], in which the individual layers are slightly distorted to yield domains with perfect interlayer atomic registry separated by domain walls.

Both effects lead to exciton localization, which can be used to study highly tunable manybody phases of excitons and individual charge carriers [31, 35–37].

In two independent magneto-optical studies on ILEs in H-type HSs [28, 38], a peculiar enhancement of ILE valley polarization was found in magnetic fields of about 24 Tesla. In the latter study, this enhancement was associated with a coupling between ILEs and chiral optical phonons [39–41]. The strong electron–phonon and exciton–phonon interactions were also shown to limit the mobility [42–45], lead to formation of polarons [46–49], and produce phonon cascades [50–53].

Here, we present a joint experimental and theoretical study of ILEs in both H-type and R-type WSe$_2$/MoSe$_2$ HSs. In magneto-photoluminescence measurements, we observe a pronounced enhancement of the ILE valley polarization at about 24.2 Tesla for both types of HSs, even though their g factors, and the corresponding valley Zeeman splitting of the ILEs differ by a factor of about 3. This observation is explained as a valley-magnetophonon resonance of a hole in the localized exciton. Our theoretical analysis demonstrates that the dominant mechanism of the valley-magnetophonon resonance is the electron-spin-conserving scattering with a chiral TA phonon originating from the MoSe$_2$ ML between the excitonic states mixed by the long-range exchange interaction.

The magnetophonon resonance was predicted more than half a century ago by Gurevich and Firsov [54] as an intrinsic resonance between a pair of Landau levels and the optical phonon energy. Soon after, the spin–magnetophonon resonance between opposite electron spin states was predicted [55] and observed [56]. Spin-conserving intervalley magnetophonon resonances were also studied in conventional semiconductors [57], graphene [58] and TMDC MLs [49]. Eventually the magnetophonon resonance evolved into a powerful tool to study both the phonon and electron properties of metals, semiconductors and semiconductor nanostructures [57, 59–61]. However, despite numerous investigations and applications of the magnetophonon resonance, an intervalley spin-flip resonance was never observed before to the best of our knowledge. Thus the hole valley–magnetophonon resonance represents a novel aspect of this tool highly relevant for TMDC HSs.

2. Experimental results

Our results are summarized in figure 1. ILEs in H-type and R-type HSs are directly distinguishable by their emission energy and spectral linewidth, even in zero-field photoluminescence (PL) spectra [62]. As figure 1(a) shows, at 0 Tesla the ILE in the H-type HS has its emission peak at around 1399 meV, with a linewidth of about 13 meV. By contrast, the ILE in R-type HS emits at the significantly lower energy of about 1368 meV and has a larger linewidth of about 37 meV. In a high magnetic field (29 T spectra are depicted in figure 1(a)), helicity-resolved PL spectra reveal a pronounced energetic splitting of σ^+ and σ^- polarized emission, combined with a pronounced change in relative emission intensities. For both H-type and R-type HSs, the lower-energy emission becomes more intense than the high-energy emission. However, for the two HSs, σ^+ and σ^- components shift in opposite ways: for H-type, the σ^- component shifts to higher energies, while for R-type, it is the σ^+ component. It is also directly evident that the magnitude of the field-induced shifts is far larger in the H-type HS. In order to quantify these observations, we performed continuous sweeps of the magnetic field from 0 T to 30 T (H-type) or 29 T (R-type), with helicity-resolved PL spectra taken at fixed time intervals corresponding to about 27 mT spacing between spectra. For each spectrum, the ILE signal was analyzed using an automatized Gaussian fit routine to extract its peak position and integrated intensity. From these datasets, we were able to determine the dependence of the valley splitting ΔE (defined as $\Delta E = E_{\sigma^+} - E_{\sigma^-}$) on magnetic field, as depicted in figure 1(b) (the curves consist of ~1000 connected discrete points). We clearly see a linear dependence for both types of HSs, with opposite sign
Figure 1. (a) PL spectra of R-type and H-type HSs at 0 T (black lines) and helicity-resolved PL spectra at 29 T. The vertical dashed lines indicate the splitting between σ^+ and σ^- emission at 29 T. (b) Valley splitting in R-type (orange line) and H-type (black line) HSs as a function of magnetic field. The red lines show linear fits to the data. The vertical dashed line indicates the resonance field of 24.2 T. The red arrows indicate the valley splitting values for the different HSs at this field. (c), (d) Helicity-resolved PL intensity for H-type (c) and R-type (d) HSs as a function of magnetic field. The blue arrows indicate the resonantly increased (c)/decreased (d) PL intensity at the resonance field. The light blue arrows indicate the weaker resonant features. (e), (f) ILE PL circular DOP for H-type (e) and R-type (f) HSs calculated from data in (c) and (d). The red solid lines in (e) and (f) show fits to the data using the theoretical model. Blue arrows indicate the resonantly enhanced DOP.

and different slope. A linear fit yields the effective ILE g factors of $g_{\text{eff}} = -14.8$ for the H-type and $g_{\text{eff}} = +4.7$ for the R-type HS. Close to the resonance field of 24.2 T, we note a slight deviation of the measured valley splitting from the linear behavior for both HSs. Noteworthy, the valley splitting at this resonance field differs by a factor of more than 3 between the HSs, as indicated by the red arrows.

In addition to the valley-selective shifts of ILE energies, the magnetic field also modifies the relative intensities of σ^+ and σ^- emission. We plot the helicity-resolved integrated PL intensities as functions of magnetic field for both HSs in figures 1(c) (H-type) and 1(d) (R-type). For the H-type HS, the σ^+ emission increases almost monotonously with magnetic field, while σ^- decreases almost monotonously. However, we note a pronounced, resonant increase of the σ^+ emission at the resonance field of 24.2 T (marked by blue arrow). In the H-type HS, this is accompanied by a resonant reduction of the σ^- emission at the same field. By contrast, in the R-type HS, the σ^- emission initially increases up to about 10 T, then decreases. The σ^+ emission decreases almost monotonously, but we notice a pronounced, resonant decrease at the resonance field (marked by blue arrow). In the R-type HS, this is not accompanied by an increased emission in the opposite helicity. Looking more closely, we also see two weaker resonant features for both HSs at fields slightly above and below the resonance field (marked by light blue arrows).

From these datasets, we calculate the circular degree of polarization (DOP) of the ILE emission, defined as

$$DOP = \frac{p^+ - p^-}{p^+ + p^-}$$

with the helicity-resolved PL intensities p^+ and p^-. The DOP as a function of magnetic field is depicted in figures 1(e) and (f). We note that, based on our definition (1), it is positive for the H-type HS and negative for the R-type HS. For both HSs, the absolute value of the DOP increases with increase of magnetic field. In both cases, we clearly see a resonantly increased absolute value of the DOP at the resonance field, accompanied by two additional, weaker resonant features below and above the main resonance. While the DOP for the H-type HS reaches values above 90 percent at the largest applied magnetic field, the maximum absolute value for the R-type HS is smaller than 37 percent and actually achieved at the resonance field. This difference in the maximum DOP closely corresponds to the difference of the valley splittings.

Our most surprising observation is the resonant enhancement of the DOP at the same field of 24.2 T despite the large difference of the valley splittings.
Below, we demonstrate that this is a consequence of the hole valley-magnetophonon resonance.

3. Theory

The effective exciton g factors for H-type and R-type HSs and the oscillator strengths inferred from the bright PL indicate the dominant contribution of H^h_{h} (A′A′) [28, 35, 63] and R^h_{h} (A′B′) [29, 64] interlayer atomic registries to the optical properties in agreement with the previous studies of MoSe$_2$/WSe$_2$ HSs. These g factors stem from the individual electron and hole g factors as $-g_e \mp g_h$, respectively, where ‘hole’ refers to the vacant state in the valence band. From the measured values of -14.8 and $+4.7$ we estimate the electron and hole g factors to be $g_e = 5.05$ and $g_h = 9.75$ in agreement with first principle calculations [65–68].

The resonant changes of the PL at the same magnetic field $B_{\text{res}} = 24.2$ T in both H-type and R-type HSs suggest a common resonance. Despite the large difference in the exciton valley splittings the individual electron and hole Zeeman energies are the same at a given magnetic field for both stacking configurations. Therefore, we attribute the observed resonances to the individual charge carriers.

Electron or hole intervalley scattering requires a spin flip and absorption or emission of a chiral phonon at the corner of the Brillouin zone (K points). The large density of chiral phonon states strongly increases the scattering rate. Intervallel spin-magnetophonon resonances were never observed before to the best of our knowledge. Here we coin it valley-magnetophonon resonance for brevity.

The electron and hole Zeeman splittings in the field B_{res} are $g_e\mu_B B_{\text{res}} = 7.1$ meV and $g_h\mu_B B_{\text{res}} = 13.7$ meV. Calculations of the phonon energies in MoSe$_2$ and WSe$_2$ [43, 69–73] demonstrate the absence of K phonon modes at the Zeeman splitting of the electron. However in the vicinity of the hole Zeeman splitting there are the chiral ZA phonon mode of WSe$_2$ at 15 meV and the TA phonon mode of MoSe$_2$ at 14.7 meV. The exact energies of chiral phonons can be measured using inelastic x-ray scattering [74]. Taking into account the possible phonon energy renormalization [75, 76] we conclude that we observe a valley-magnetophonon resonance of a hole.

3.1. Valley-magnetophonon resonance in PL polarization

In order to demonstrate that the hole valley magnetophonon resonance leads to the resonant enhancement of the PL polarization we consider the exciton spin dynamics using rate equations for the four lowest intravalley and intervalley excitonic states shown in figures 2(a) and (b) (see supplementary material). We take into account radiative and nonradiative exciton recombination times, τ_R and τ_{NR}, respectively, as well as the electron, $\tau_e(B)$, and hole, $\tau_h(B)$, intervalley scattering times to the lower energy states. Note that the actual hole scattering mechanism may be quite complex and involve both charge carriers in a single scattering event, as shown in the next subsection. The scattering times to the higher energy states are larger by the corresponding factors $\exp(g_e \mu_B B/k_BT)$ with T being the temperature and k_b being the Boltzmann constant.

For the hole valley relaxation time we assume the following form:

$$\frac{1}{\tau_h(B)} = \frac{1}{\tau_{\text{res}}} \exp\left[\frac{(B - B_{\text{res}})^2}{\Delta B^2}\right] + \frac{1}{\tau_e^{(0)}} \left(\frac{B}{B_{\text{res}}}\right)^2.$$

Here the first term stands for the resonant intervalley scattering at field B_{res} with the minimum time τ_{res} and the width of the resonance ΔB. The second term describes the phenomenological scattering time $\tau_e(B) \propto 1/B^2$, which corresponds to the direct spin–phonon coupling in strained HSs in small magnetic fields [77]. Similarly to this, for the electron intervalley scattering we assume $\tau_e(B) = \tau_e^{(0)}(B_{\text{res}}/B)^2$.

Figures 1(e) and (f) show that this model nicely fits the PL DOP almost in the whole range of magnetic fields from 0 to 29 T including the resonant enhancement at 24.2 T. The fit parameters are given...
3.2. Mechanism of hole valley-magnetophonon resonance

Direct intervalley scattering between Kramers degenerate states of the hole is forbidden by time reversal symmetry [43, 78, 79]. However, it becomes possible in the presence of an external magnetic field [80] or hole electron exchange interaction [81]. The excitons in our MoSe$_2$/WSe$_2$ HSSs are localized either due to the moiré potential or the domains formed by atomic reconstruction. We find that the dominant mechanism of the hole valley-magnetophonon resonance in this case is a two-step process (see supplementary material), as illustrated in figure 2(c). To be specific, let us consider the scattering from an intervalley excitonic state with longer lifetime to an intravalley state with shorter lifetime, when a hole in the exciton scatters from K_- to K_+ valley decreasing the exciton energy, as shown in figure 2(c). At the first step, an electron from the K_+ valley virtually scatters to the upper (spin split) subband in the K_- valley emitting a chiral TA phonon of the MoSe$_2$ ML. The phonon emission ensures energy conservation for the entire two-step scattering, and the intermediate (auxiliary) exciton state has a very short lifetime limited by the time-energy uncertainty relation. At the second step, the exciton scatters as a whole from the K_- valley to the ground state in the K_+ valley due to the long-range electron hole exchange interaction. This step can be described as emission and reabsorption of a virtual longitudinal photon [78, 82, 83]. The efficiency of this scattering is ensured by the brightened spin-triplet exciton states and specific optical selection rules for H^e_0 and R^e_0 interlayer atomic registrys [84]. In total, the electron remains in the same state, but the hole flips its valley. The hole scattering from an intravalley exciton state in K_- valley to the K_+ valley has the same rate, and the scattering with increase of the energy is suppressed by a Boltzmann factor.

For the scattering shown in figure 2(c), Fermi's golden rule for the scattering rate reads

$$\frac{1}{\tau_{\text{res}}} = \frac{2\pi}{\hbar} \sum_{q} \left| \langle f_q | \mathcal{H}_{\text{exch}} | a_q \rangle | \langle a_q | \mathcal{H}_{\text{e-ph}} | f_q \rangle \right|^2 \delta(E_i - E_f - \hbar \Omega_q),$$

(3)

where i, a_q, f_q represent the initial, auxiliary and final states of exciton and emitted phonon with the wave vector K_-, q and energy $\hbar \Omega_q$, $E_{i,f,a}$ are the exciton energies in the corresponding states, and $\mathcal{H}_{\text{exch}}$ and $\mathcal{H}_{\text{e-ph}}$ stand for the exchange and electron–phonon interaction Hamiltonians. In the vicinity of the magnetophonon resonance one has $E_i - E_f = \Delta_c + (g_h - g_e^c)\mu_B B_{\text{res}}$, where Δ_c is the spin orbit splitting of the MoSe$_2$ conduction band and g_e^c is the electron valley g factor [85, 86].

From the symmetry analysis we find that the interaction of electrons with chiral TA phonons in MoSe$_2$ ML is described by (see supplementary material)

$$\mathcal{H}_{\text{e-ph}} = \sum_{q, \pm} \frac{\hbar}{2\rho \Omega_q a^e} \Xi q \pm | b_{K_+}^e + q e^{-iq r_e} + \text{H.c.},$$

(4)

where $b_{K_+}^e$ are the phonon creation operators, ρ is 2D mass density of the ML, A is the normalization area, $q = (q_x \pm i q_y)/\sqrt{2}$, Ξ is the intervalley deformation potential, r_e is the electron coordinate, and r_{K_+} are the electron valley rising and lowering operators, which conserve the electron spin. This Hamiltonian can be derived taking into account the fact that electrons and phonons at K_\pm valleys have orbital angular momenta ± 1 and ∓ 1, respectively, and that the angular momentum modulo 3 should be conserved during the scattering. The phonon dispersion at the corners of the Brillouin zone has the form $\hbar \Omega_q = \hbar \Omega_0 + (\hbar q)^2/(2M)$ [71], where M is the effective phonon mass at the K point.

The Hamiltonian of the long-range exchange interaction between auxiliary and final states can be obtained similarly to the ML case [83]. It reads

$$\mathcal{H}_{\text{exch}} = \frac{2\pi e^2 \delta(\rho) (Kp_{\text{ex}}^e) (Kp_{\text{ex}}^f)}{\rho_0 m_0 \omega_0 \Gamma_0} K,$$

(5)

where ρ is the distance between electron and hole, ω_0 is the background dielectric constant, m_0 is the free electron mass, ω_0 is the exciton resonance frequency, K is the exciton center of mass momentum, and p_{ex}^e,f are the interband momentum matrix elements for the auxiliary and final states.

To calculate the scattering rate we consider the wave function of the localized exciton $\propto e^{-\rho/a_0 - R^2/(2\ell^2)}$, where a_0 and ℓ are the exciton Bohr radius and the localization length, and R is the exciton center of mass coordinate. Then, under the assumption of low temperatures, $k_B T \ll g_h \mu_B B_{\text{res}}$ we obtain the hole intervalley scattering rate (see supplementary material)

$$\frac{1}{\tau_{\text{res}}} = \frac{\pi m e^2}{4\hbar^3} \Gamma_0 \eta_0 \xi E_{\text{loc}} \Xi^2 (B - B_{\text{res}}) \theta(B - B_{\text{res}}) \exp \left(-\frac{M g_h \mu_B (B - B_{\text{res}})}{m E_{\text{loc}}} \right),$$

(6)

where $E_{\text{loc}} = h^2/(m\ell^2)$ is the exciton localization energy with m being the exciton mass, $k = \sqrt{2\hbar \omega_0}/c$ is the light wave vector, and $\Gamma_0 = 2\pi k^2 e^2 [\xi^2 \varphi(0)^2] / (h^2 \omega_0^2 m_0^3)$ are the free exciton radiative decay rates in the auxiliary and final states with $\varphi(0) = \sqrt{2/\pi a_0}$ being the wave function of the relative electron hole motion at $\rho = 0$. We note...
that a spread of exciton localization energies in the sample does not affect the position of the resonance.

One can see that the hole intervalley scattering rate vanishes at magnetic fields below B_{res}, as there are no phonons of the required energy, which is described by the Heaviside step function $\theta(B - B_{\text{res}})$. Just above B_{res} the scattering rate grows linearly with increase of $B - B_{\text{res}}$ because of the increase of the electron-phonon interaction matrix element. However at high magnetic fields the phonons with large wave vectors are needed, so the exciton-phonon matrix element decreases exponentially because of the exciton localization. As a result, the hole intervalley scattering rate has a narrow maximum at $B \approx B_{\text{res}}$ with the width of the order of $mE_{\text{loc}}/(\hbar g_\text{\mu B} M)$. In the maximum it reaches

$$\frac{1}{\tau_{\text{res}}} = \frac{\pi m^2 M^2 \Upsilon^2 \Gamma_0^f E_{\text{loc}}^2 \Xi^2}{4\hbar^2 \rho k^2 (E_a - E_g)^2 g_\text{\mu B} B_{\text{res}}}.$$ \hspace{1cm} (7)

Substitution of the material parameters yields (see supplementary material) $\tau_{\text{res}} = 12$ ns and 20 ns for H-type and R-type HSs, which agrees with the timescales observed for ILE PL polarization saturation [62].

4. Discussion and conclusion

The resonant increase of the PL polarization in the same magnetic field for H-type and R-type HSs unambiguously reveals a valley-magnetophonon resonance.

The dominant microscopic mechanism of the hole valley-magnetophonon resonance is found to be the scattering with a chiral TA phonon of MoSe$_2$ ML between the excitonic states mixed by the long-range exchange interaction. Noteworthy it has a few solid advantages: (a) it does not require spin-dependent electron–phonon interaction, (b) it profits from the large density of chiral phonon states, (c) it is free of van Vleck cancellation, (d) the long-range exchange interaction is enhanced by exciton localization, and (e) optical selection rules for excitons in H$_{\text{HH}}$ and R$_{\text{HH}}$ atomic registries exactly match the requirements for the exchange interaction. The unique observation of the valley-magnetophonon resonance in TMDC HSs is made possible by the strong spin splittings of the bands.

The weaker resonances observed about 3.8 T below and above the main resonance in both HSs may be related to two-phonon processes involving an additional zone-center phonon with an energy of about 2 meV. This might be an interlayer phonon [75], such as the interlayer shear mode [76, 87], which is observable in the samples used in our study (see supplementary material). The tiny splitting of the main resonance in figure 1(c) of the order of 50 mT is probably related to the small spread of g factors between the localization sites. We note that doping and transverse electric fields can be used to tune the exciton oscillator strength. This would change the electron hole long-range exchange interaction, see equation (5), and thus the hole intervalley scattering rate. This could potentially be used to identify this scattering mechanism in other experiments.

For delocalized ILEs, the same mechanism would give a step-like enhancement of the PL polarization and decrease of the ILE lifetime at fields above B_{res}, provided the spin relaxation time exceeds τ_{res}. Thus, the valley-magnetophonon resonance could be observed also in measurements of ILE diffusion despite the fact that the contribution from the valley-magnetophonon resonance to the momentum relaxation is expected to be much smaller than that from scattering by static disorder.

In summary, we have observed a hole valley-magnetophonon resonance of localized ILEs in both H-type and R-type MoSe$_2$/WSe$_2$ HSs at a magnetic field of 24.2 T. It leads to a resonant enhancement of the PL DOP under nonresonant excitation at low temperatures. The hole spin-flip intervalley scattering involves a chiral TA phonon originating from the MoSe$_2$ ML and long-range exchange interaction. The valley-magnetophonon resonance is important for both the transport properties in moiré HSs and optical manipulation of the valley degree of freedom of charge carriers.

5. Methods

5.1. Sample preparation

Our HSs were fabricated by means of a deterministic transfer process [88] using bulk crystals supplied by HQ graphene. MLs of the constituent materials are prepared on an intermediate polydimethylsiloxane substrate and reliably identified based on their absorption contrast in microscopy. They are subsequently stacked on top of each other on a silicon substrate covered with a silicon oxide layer. In order to achieve crystallographic alignment, we pre-select ML flakes which have at least one very long (>30 µm) straight edge, which indicates that the edge is along a crystallographic high-symmetry direction. Then the well-cleaved edges of the constituent layers are optically aligned parallel to each other during the transfer to reach well-defined interlayer twist angles close to zero or 60 degrees. While this process does not allow us to specifically achieve H-type or R-type alignment, this was identified a posteriori based on the effective g factors and emission energies of ILEs in the samples, see supplementary material. Further details are published elsewhere [62].

5.2. Optical spectroscopy

Low-temperature PL measurements in high magnetic fields were performed at the HFML facility in
Nijmegen. The sample was placed on a x−y−z piezo-electric stage and cooled down to 4.2 K in a cryostat filled with liquid helium. Magnetic fields up to 30 T were applied by means of a resistive magnet in Faraday configuration. A diode laser (emission wavelength 640 nm) was used for excitation. The laser light was linearly polarized and focused onto the sample with a microscope objective resulting in a spot size of about 4 μm. The polarization of the PL was analyzed with a quarter-wave plate and a linear polarizer. The PL was then coupled into a grating spectrometer, where it was detected using a CCD sensor. For field sweeps, the magnetic field was ramped continuously from 0 T up to 30 T (for technical reasons, the field sweep for the R-type HS was limited to 29 T), and spectra for a fixed detection helicity were recorded at fixed time intervals. At the maximum field, the detection helicity was flipped and the field was ramped down continuously to 0 T, so that spectra for the other helicity could be recorded.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Acknowledgments

We thank M M Glazov and S A Tarasenko for fruitful discussions, B Peng and K Lin for sharing the phonon dispersion curves, RF President Grant No. MK-5158.2021.1.2, the Foundation for the Advancement of Theoretical Physics and Mathematics 'BASIS'. We gratefully acknowledge financial support by the DFG via the following Projects: GRK 1570 (J H, P N, C S), KO3612/3-1 (Project-ID 631210, T K), KO3612/4-1 (Project-ID 648265, T K), SFB1277 (Project B05, T K, M K, A C, C S), SPP2244 (Project-ID 670977 C S, T K). This work was supported by HFML-RU/NWO-I, member of the European Magnetic Field Laboratory (EMFL). Theoretical analysis of the mechanism of the hole valley-magneto phonon resonance by D S S was supported by HFML-RU/NWO-I, member of the European Magnetic Field Laboratory (EMFL). The data that support the findings of this study are available upon reasonable request from the authors.

ORCID iDs

Dmitry S Smirnov https://orcid.org/0000-0001-9872-6130
Jonas Zipfel https://orcid.org/0000-0002-3149-9567
Anatolie A Mitioglu https://orcid.org/0000-0002-1089-762X

References

[1] Mak F K, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136803
[2] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C-Y, Galli G and Wang F 2010 Nano Lett. 10 1271
[3] Chernikov A, Berkelbach T C, Hill H M, Rigosi A, Li Y, Aslan O B, Reichman D R, Hybertsen M S and Heinz T F 2014 Phys. Rev. Lett. 113 076802
[4] Xiao D, Liu G-B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802
[5] Xu X, Yao W, Xiao D, Heinz T F and Wang F 2014 Nat. Phys. 10 334
[6] Rivera P, Yu H, Seyler K L, Wilson N P and Xu X 2018 Nat. Nanotechnol. 13 1004
[7] Nayak P K et al 2017 ACS Nano 11 4041
[8] Kunstmann J et al 2018 Nat. Phys. 14 801
[9] Tebyetekerwa M, Zhang J, Saji S E, Wibowo A A, Rahman S, Truong T N, Lu Y, Yin Z, Macdonald D and Nguyen H T 2021 Cell Rep. Phys. Sci. 2 100509
[10] Rivera P, Seyler K L, Yu H, Schadele J R, Yan J, Mandrus D G, Yao W and Xu X 2016 Science 351 688
[11] Rivera P et al 2015 Nat. Commun. 6 7242
[12] Miller B, Steinhoff A, Pano B, Klein J, Janhke F, Holleitner A and Wurstbauer U 2017 Nano Lett. 17 5229
[13] Nagler P et al 2017 2D Mater. 4 025112
[14] Unuchek D, Ciarrocchi A, Aysar V, Watanabe K, Taniguchi T and Kis A 2018 Nature 560 340
[15] Ciarrocchi A, Tagarelli F, Aysar V and Kis A 2022 Nat. Rev. Mater. 7 469–46
[16] MacNeill D, Heikes C, Mak K E, Anderson Z, Korn T K, Aysar V, Park J and Ralph D C 2015 Phys. Rev. Lett. 114 037401
[17] Mitioglu A A, Plochocka P, Granados del Aguila Á, Christiansen P C M, Deligeorgis G, Anghel S, Kulyuk L and Maude D K 2015 Nano Lett. 15 4387
[18] Stier A V, McCreary K M, Jonker B T, Kono J and Crooker S A 2016 Nat. Commun. 7 10463
[19] Gorycza M et al 2019 Nat. Commun. 10 4172
[20] Zhang X H et al 2017 Nat. Nanotechnol. 12 883
[21] Stier A V, Wilson N P, Velizhanin K A, Kono J, Xu X and Crooker S A 2018 Phys. Rev. Lett. 120 057405
[22] Wang T et al 2020 Nano Lett. 20 7635
[23] Nagler P et al 2018 Phys. Rev. Lett. 121 057402
[24] Barbone M et al 2018 Nat. Commun. 9 3721
[25] Li Z et al 2018 Nat. Commun. 9 3719
[26] Stevens C E et al 2018 Nat. Commun. 9 3720
[27] Arora A 2021 J. Appl. Phys. 129 120902
[28] Nagler P et al 2017 Nat. Commun. 8 1551
[29] Ciarrocchi A, Unuchek D, Aysar V, Watanabe K, Taniguchi T and Kis A 2019 Nat. Photon. 13 131
[30] Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W and Xu X 2019 Nature 567 66
[31] Yu H, Liu G-B, Tang J, Xu X and Yao W 2017 Sci. Adv. 3 e1701696
[32] Tran K et al 2019 Nature 567 71
[33] Rosenberger M R, Chuang H-J, Phillips M, Oleshko V P, McCreary K M, Sivaram S V, Hellberg C S and Jonker B T 2020 ACS Nano 14 4550
[34] Weston A et al 2020 Nat. Nanotechnol. 15 592
[35] Brotons-Gisbert M, Baek H, Molina-Sánchez A, Campbell A, Cottrell E, White D, Watanabe K, Taniguchi T, Bonato C and Gerardot B D 2020 Nat. Mater. 19 630
[36] Shabani S, Halberdial D, Wu W, Chen M, Liu S, Hone J, Yao W, Basov D N, Zhu X and Pasupathy A N 2021 Nat. Phys. 17 720
Zhang L, Wu F, Hou S, Zhang Z, Chou Y-H, Watanabe K, Taniguchi T, Forrest S R and Deng H 2021 Nature 591 61
Delhomme A et al 2020 2D Mater. 7 041002
Ribeiro-Soares J, Almeida R M, Barros E B, Araujo P T, Dresselhaus M S, Cançado L G and Jorio A 2014 Phys. Rev. B 90 115438
Zhang L and Niu Q 2015 Phys. Rev. Lett. 115 115502
He M et al 2020 Nat. Commun. 11 618
Kaasbjerg K, Thygesen K S and Jacobsen K W 2012 Phys. Rev. B 85 115317
Song Y and Dery H 2013 Phys. Rev. Lett. 111 026601
Li X, Mullen J T, Jin Z, Borysenko K M, Buongiorno Z, Zhang L and Niu Q 2015 Phys. Rev. B 91 041422
Christiansen D et al 2017 Phys. Rev. Lett. 118 187402
Li P-F and Wang Z-W 2018 J. Appl. Phys. 123 204308
Chen Q, Wang W and Peeters F M 2018 J. Appl. Phys. 123 214303
Glazov M M, Semina M A, Robert C, Urbasbek B, Amanze K and Marie X 2019 Phys. Rev. B 100 041301
Chow C M, Yu H, Jones A M, Schaibley J R, Koehler M, Mandrus D G, Merlin R, Yeo W and Xu X 2017 npj 2D Mater. Appl. 1 33
Shree S et al 2018 Phys. Rev. B 98 035302
Brem S, Selig M, Berghaue G and Malic E 2018 Sci. Rep. 8 8238
Paradisianos I, Wang G, Alexeev E M, Cadore A R, Marie X, Ferrari A C, Glazov M M and Urbasbek B 2021 Nat. Commun. 12 538
Gurevich V I and Firsov Y A 1961 Sov. Phys.-JETP 13 137
Pavlov P, Parfeniev R, Firsov Y A and Shalit S 1965 Sov. Phys.-JETP 21 1049
Aksel’rov M M and Tsidil’kovskii I M 1966 JETP Lett. 4 205
Firsov Y, Gurevich V, Parfeniev R and Tsidil’kovskii I 1991 Landau Level Spectroscopy (Modern Problems in Condensed Matter Sciences vol 27) G Landwehr and E I Rashba (Amsterdam: Elsevier) p 1181
Basko D M, Leszczyński P, Faugeras C, Binder J, Nicolet A A L, Kossacki P, Orłita M and Potemski M 2016 2D Mater. 3 015004
Langerak C J G M, Singleton J, van der Wal P J, Perenboom J A A J, Barnes D J, Nicholas R J, Hopkins M A and Foxon C T B 1988 Phys. Rev. B 38 13133
Barnes D J, Nicholas R J, Peeters F M, Wu X-G, Devreeze J T, Singleton J, Langerak C J G M, Harris J J and Foxon C T 1991 Phys. Rev. Lett. 66 794
Vaughan T A, Nicholas L, Langerak C J G M, Murdlin B N, Fidgeon C R, Mason N J and Walker P J 1996 Phys. Rev. B 53 16481
Holler J et al 2022 Phys. Rev. B 105 085303
Zhang L, Gogna R, Burg G W, Horn J, Paik E, Chou Y-H, Kim K, Tutuc E and Deng H 2019 Phys. Rev. B 100 041402
Joe A Y et al 2021 Phys. Rev. B 103 L161411
Woźniak T, Faria Junior P F, Seifert G, Chaves A and Kunstmann J 2020 Phys. Rev. B 101 235408
Xuan F and Quek S Y 2020 Phys. Rev. Res. 2 033256
Deilmann T, Krüger P and Rohlfing M 2020 Phys. Rev. Lett. 124 226402
Forst Tepliakov N V, Kruchinin S Y, Lindlau J, Funk V, Förg M, Watanabe K, Taniguchi T, Baimuratov A S and Høgøe A 2020 Nat. Commun. 11 4539
Horzum S, Sahin H, Cahanlogio S, Cudazzo P, Rubio A, Serin T and Peeters F M 2013 Phys. Rev. B 87 125415
Huang W, Da H and Liang G 2013 J. Appl. Phys. 113 104304
Peng B, Zhang H, Shao H, Yu X, Zhang X and Zhu H 2016 RSC Adv. 6 5767
Lin K-Q et al 2021 Nat. Commun. 12 5500
Lin K-Q, Holler J, Bauer J M, Parzefall P, Scheuch M, Peng B, Korn T, Bange S, Lupton J M and Schüller C 2021 Adv. Mater. 33 2008333
Tornatzky H, Gillen R, Uchiyama H and Maulitzsch J 2019 Phys. Rev. B 99 140309
Mahrouche F, Rezouali K, Mahtout S, Zaabar F and Molina-Sánchez A 2022 Phys. Status Solidi b 259 100321
Parzefall P et al 2021 2D Mater. 8 035030
Pearce A J and Burkard G 2017 2D Mater. 4 025114
Bir G L and Pikus G E 1974 Symmetry and Deformational Effects in Semiconductor (New York: Wiley)
Ivchenko E L, Lyanda-Geller Y B and Pikus G E 1990 Sov. Phys.-JETP 71 550
Khatafski A V and Nazarov Y V 2001 Phys. Rev. B 64 125316
Tatsisvili E, Baltz R V and Kalt H 2003 Phys. Rev. B 67 205330
Goupalov S V, Lavallard P, Lamouche G and Citrin D S 2003 Phys. Solid State 45 768
Glazov M M, Amand T, Marie X, Lagarde D, Bouet L and Urbasbek B 2014 Phys. Rev. B 89 201302
Yu H, Liu G-B and Yao W 2018 2D Mater. 5 035021
Wang G, Bouet L, Glazov M M, Amand T, Ivchenko E L, Palleau E, Marie X and Urbasbek B 2015 2D Mater. 2 034002
Durnev M V and Glazov M M 2018 Phys.-Usp. 61 825
Holler J, Meier S, Kempf M, Nagler P, Watanabe K, Taniguchi T, Korn T and Schüller C 2020 Appl. Phys. Lett. 117 013104
Castellanos-Gomez A, Buscema M, Molenaar R, Singh V, Janssen L, van der Zant H S J and Steele G A 2014 2D Mater. 1 011002