Eukaryotic coupled translation of tandem cistrons: identification of the influenza B virus BM2 polypeptide

Curt M. Horvath, Mark A. Williams and Robert A. Lamb

Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208-3500, USA

Communicated by D. Kolakofsky

1Present address: La Jolla Cancer Research Foundation, La Jolla, CA 92037, USA

Previous nucleotide sequence analysis of RNA segment 7 of influenza B virus indicated that, in addition to the reading frame encoding the 248 amino acid M1 protein, there is a second overlapping reading frame (BM2ORF) of 585 nucleotides that has the coding capacity for 195 amino acids. To search for a polypeptide product derived from BM2ORF, a genetically engineered β-galactosidase–BM2ORF fusion protein was expressed in Escherichia coli and a polyclonal rabbit antiserum was raised to the purified fusion protein. This antiserum was used to identify a polypeptide, designated BM2 protein (Mᵦ ≈ 12 000), that is synthesized in influenza B virus-infected cells. To understand the mechanism by which the BM2 protein is generated from influenza B virus RNA segment 7, a mutational analysis of the cloned DNA was performed and the altered DNAs were expressed in eukaryotic cells. The expression patterns of the M1 and BM2 proteins from the altered DNAs indicate that the BM2 protein initiation codon overlaps with the termination codon of the M1 protein in an overlapping translational stop—start pentanucleotide, TAATG, and that the expression of the BM2 protein requires 5’-adjacent termination of M1 synthesis. Our data suggest that a termination—reinitiation scheme is used in translation of a bicistronic mRNA derived from influenza B virus RNA segment 7, and this strategy has some analogy to prokaryotic coupled stop—start translation of tandem cistrons.

Key words: BM2 protein/overlapping reading frames/translation stop—start

Introduction

Research in the past several years has shown that eukaryotic cells have adopted a variety of strategies to expand their genomic coding capacity beyond the linear blocks of nucleotide sequence originally thought to encode individual proteins. These recently described coding strategies create not only diversity by increasing the number of proteins encoded but also provide a means by which to regulate the expression of these proteins. For example, segments of immunoglobulin genes encoding variable and constant regions of immunoglobulin molecules rearrange at the DNA level during B cell development thereby providing protein coding diversity. Through the specific recombination events of V–J joining and loss of gene segments, these gene families encode a vast repertoire of antibody molecules from a relatively small proportion of the genome (Hozumi and Tonegawa, 1976; reviewed in Lewis and Gellert, 1989).

Splicing of precursor RNAs into mRNAs to join together the interrupted coding regions is a process common to the majority of gene transcripts (reviewed in Padgett et al., 1986). An additional level of diversity is provided by differential splicing of RNA transcripts from genes containing alternate exons which results in the production of more than one protein from a single precursor RNA (reviewed in Breitbart et al., 1987). Another form of alteration to RNA transcripts that provides an additional level of flexibility to the genome coding potential involves the addition or exchange of nucleotides. A form of RNA transcript modification called RNA editing occurs post-transcriptionally in trypanosome mitochondrial RNAs (Beene et al., 1986; Feagin et al., 1988). This editing process results in the mature mRNA containing uridine residues which are not coded in the genome sequence. Another type of RNA editing phenomenon occurs with RNA transcripts derived from the mammalian apolipoprotein B gene as two mRNAs have been found, one of which has a U residue in place of a templated C (Chen et al., 1987; Powell et al., 1987). With the paramyxoviruses the site-specific addition of non-templated guanine nucleotides to a mRNA, presumably during transcription, permits the expression of two proteins from a single genomic sequence (Thomas et al., 1988; Cattaneo et al., 1989, Vidal et al., 1990).

At the translational level, diversity of polypeptide production can arise by the selection of alternate initiation sites for translation on bicistronic or polycistronic mRNAs. This may involve translation of overlapping reading frames such as with the Sendai virus P/C gene mRNA which encodes multiple protein species in both overlapping and non-overlapping reading frames (Giorgi et al., 1983; Curran et al., 1986; Curran and Kolakofsky, 1997). Ribosomal frameshifting is another example of a translational mechanism by which two separate overlapping genes or reading frames are used to produce a single fusion polypeptide such as is found with many RNA tumor viruses, human immunodeficiency viruses, and the coronavirus infectious bronchitis virus (Jacks and Varms, 1985; Jacks et al., 1987, 1988; Brierley et al., 1987, 1989).

The influenza A, B and C viruses are a group of enveloped negative-stranded RNA viruses characterized by their segmented genome. Influenza virus genes have been found to contain several seemingly hidden reading frames which expand their genome coding capacity (reviewed in Lamb, 1989). For example, the influenza A virus membrane (M1) protein is synthesized from an mRNA that is colinear with genome RNA segment 7. A second protein, M2, is synthesized from a spliced mRNA that is processed from the colinear transcript, and the splicing permits access of the translating ribosome to an overlapping reading frame (Lamb et al., 1981; Lamb and Lai, 1982). With both influenza A
and B viruses, unspliced and spliced RNAs are synthesized from genome RNA segment 8 and these mRNAs are translated to yield the non-structural proteins NS1 and NS2, respectively (Lamb and Lai, 1980; Briedis and Lamb, 1982). It has been demonstrated that the coding potential of the influenza B virus genome is also expanded in that it utilizes a functionally bicistronic mRNA containing initiating ATG codons that are separated by four nucleotides such that two proteins are expressed, the NB glycoprotein and the neuraminidase glycoprotein (NA), from two overlapping reading frames (Shaw et al., 1983; Williams and Lamb, 1986, 1989).

The nucleotide sequence of influenza B virus strain B/Lee/40 RNA segment 7 indicated that in addition to the gene encoding the 248 amino acid M1 protein, there is a second overlapping open reading frame (ORF) in the +2 frame which has a coding capacity of 195 amino acids and is designated BM2ORF (see Figure 1; derived from Briedis et al., 1982). The entire BM2ORF is conserved (86% amino acid identity) in RNA segment 7 of other influenza B virus isolates, which suggests that the BM2ORF has been maintained because the gene is essential to the virus (Hiebert et al., 1986; DeBorde et al., 1988). However, neither a BM2ORF-specific mRNA nor a corresponding polypeptide product has been identified. We describe here the identification of the BM2 protein in influenza B virus-infected cells. Our data indicate that the ATG initiation codon for BM2 overlaps the termination codon for the M1 protein and that the BM2 protein and the M1 protein are synthesized from a bicistronic mRNA. In addition, our data indicate that the synthesis of the BM2 protein is dependent upon the initiation and termination of the upstream M1 protein and suggest that BM2 protein expression requires a coupled translational termination—reinitiation mechanism.

Results

Identification of a previously unrecognized influenza B virus RNA segment 7 specific polypeptide

Previous nucleotide sequence analysis of influenza B virus RNA segment 7 indicated that in addition to a reading frame that encoded the M1 protein there is a second ORF, designated BM2ORF, of 195 residues which overlaps the M1 reading frame by 86 amino acids (Briedis et al., 1982) (see Figure 1). A protein utilizing this BM2ORF has not been reported. Although influenza A virus synthesizes its M2 protein from a spliced mRNA (reviewed in Lamb, 1989), we have not been able to identify a spliced mRNA derived from influenza B virus RNA segment 7. In addition, the influenza B virus RNA segment 7-derived colinear mRNA transcript lacks consensus 5′ and 3′ splice sites that could be used to create an in-frame M1—BM2ORF hybrid protein. If a frameshift was to occur in the region of overlap between M1 and BM2ORF, the putative protein encoded by the BM2ORF could be as large as 355 amino acids.

The method that was chosen to search for a putative polypeptide product derived from the BM2ORF was to generate an antibody to a genetically engineered fusion protein. The lacZ gene and the BM2ORF (B-M-DNA nucleotides 532–1191, Briedis et al., 1982) were ligated in the plasmid pUR278 (Ruther and Muller-Hill, 1983) (see Figure 2) such that a β-galactosidase—BM2ORF fusion protein could be expressed in Escherichia coli. The fusion protein was purified and antiserum raised to it in rabbits. The antiserum was shown to have specificity for both β-galactosidase and the purified β-galactosidase—BM2ORF fusion protein by immunoblotting (data not shown).

Two plasmids, pGEM/B-M-DNA and pGEM/BM2ORF, were constructed so that further testing of the antiserum could be performed. This method inevitably involved a circular argument until a BM2ORF polypeptide product was identified in influenza B virus-infected cells. In pGEM/BM2ORF, an artificial ATG codon for the initiation of protein synthesis was introduced in-frame into the 5′ end of BM2ORF (see Figure 3). (For ease of description, methionine initiation codons are referred to as ATG as DNA was sequenced.) To facilitate the experiments, this 5′ end synthetic ATG codon was placed in a nucleotide sequence context that is considered weak for the favorable initiation of protein synthesis (Kozak, 1986). Translation of synthetic RNAs derived from this plasmid was expected to yield a protein product derived from the entire BM2ORF. In addition, it was expected to permit the scanning of ribosomes beyond

![Fig. 1. Schematic diagram of the open reading frames in the B/Lee/40 segment 7 cDNA (B-M-DNA). The M1 protein coding region encodes 247 amino acids following the first ATG codon (stippled box). The +2 frame with respect to the M1 frame contains a termination codon-free region capable of encoding 195 amino acids (BM2ORF, hatched box) (derived from Briedis et al., 1982).](image)

![Fig. 2. Strategy for the synthesis of a β-galactosidase—BM2ORF fusion protein. To produce an inducible β-galactosidase—BM2ORF fusion protein in E. coli, a lacZ—BM2ORF fusion gene was constructed in the lac operon-containing plasmid, pUR278 (Ruther and Muller-Hill, 1983) as described in Materials and methods. After the BamHI site at the junction of the lacZ—BM2ORF a synthetic ATG was incorporated into the construction so that the recombinant DNA molecule could also be used for other experiments. The fusion protein was induced in E. coli and then purified from a cell lysate and used for the production of antiserum in rabbits.](image)
the 5'-proximal initiation codon such that protein products would be synthesized that initiate at internal ATG codons. We have observed previously that the position of internal ATG codons can be efficiently mapped by in vitro translation of synthetic RNA transcripts (Thomas et al., 1988). The positions of the ATG codons in both the M1 and BM2 reading frames of the B-M-DNA and BM2ORF recombinant DNA constructions are shown by vertical lines in Figure 3.

Synthetic RNAs were transcribed from the two plasmids, pGEM/B-M-DNA and pGEM/BM2ORF, and the RNAs translated in vitro using wheat germ extracts. The radiolabeled in vitro synthesized protein products were either analyzed directly by SDS-PAGE (Figure 4, panel A), or following immunoprecipitation with the BM2ORF fusion protein antiserum (Figure 4, panel B) or immunoprecipitation with the M1 protein-specific antiserum (Figure 4, panel C). In addition, influenza B/Lee/40 virus-infected cell lysates were analyzed in parallel. Translation of RNA transcripts derived from pGEM/BM2ORF yielded several polypeptide species ranging from M, = 24 000 to M, = 6000 (Figure 4A, lane BM2ORF), and the species designated nos 1–6 could be precipitated by the BM2ORF fusion protein antiserum (Figure 4B, lane BM2ORF). Species no. 1 (M, = 24 000) corresponds in size to that expected for initiation of protein synthesis at the synthetic ATG codon, and species nos 2–6 correspond in size to those expected for initiation at the ATG codons 1–6 in the BM2ORF (Figure 3). Translation of RNA transcripts derived from pGEM/B-M-DNA yielded polypeptide species ranging in electrophoretic mobility from that expected for M1 (M, = 27 000) to M, = 6000 (Figure 4A, lane B-M-DNA). Immunoprecipitation of these products with the BM2ORF fusion protein antiserum also yielded species nos 2–6, suggesting that internal initiation of protein synthesis takes place at the same ATG codons in BM2ORF regardless of whether the transcripts are derived from pGEM/BM2ORF or pGEM/B-M-DNA. The reason for the difference in amount of species nos 2–6 that accumulated in vitro is not known, but it may reflect the ability of ribosomes to initiate protein synthesis at different internal ATG codons. Immunoprecipitation of the B-M-DNA-derived translation products with the M1-specific serum yielded the M1 polypeptide [see also influenza B virus-infected cell lane (Figure 4C)] and two other products presumed to arise from internal initiation in the M1 frame. A large amount of a small polypeptide (M, = 6000) derived from translation of the BM2ORF transcript could be precipitated by the M1-specific antiserum and it is thought likely that this species arises by initiation at an ATG codon (the eleventh) in the part of the M1 reading frame contained in the BM2ORF transcript (see Figure 3).

Most importantly for the experiments described here, the BM2ORF fusion protein antiserum immunoprecipitated a polypeptide from radiolabeled influenza B/Lee/40 virus-infected cells labeled with Tran-35S-label (Figure 4B, lane inf. cells), but not from uninfected cell extracts. This M, = 12 000 species co-migrated on gels with species no. 2 synthesized from the synthetic RNA transcripts and has been designated BM2. Our working hypothesis regarding the origin of BM2 is that BM2 initiates its protein synthesis at the first natural ATG codon in the BM2ORF (see Figure 3A), and this codon overlaps the termination codon for the M1 protein within the nucleotide sequence 5'-TAATG-3'. The BM2 polypeptide was detected on in vitro translating poly(A)-containing RNA isolated from influenza B virus-infected MDCK cells in wheat germ extracts (data not shown), but due to the paucity of material synthesized, further experiments using mRNAs isolated from infected cells were not pursued.

BM2 is synthesized in cells infected with different strains of influenza B virus

Strain-specific electrophoretic mobility differences of viral polypeptides is a characteristic of influenza viruses (Ritchey et al., 1976; Lamb and Choppin, 1979). To extend the observation that BM2 is synthesized in influenza B/Lee/40 virus-infected cells, MDCK cells were infected with influenza B virus strains B/Lee/40, B/AA/1/66, B/TX/1/84, B/Vic/2/87, and B/MB/50 and at 7 h post-infection were labeled with Tran-35S-label for 2 h. Lysates were prepared in RIPA buffer and were either analyzed by gel electrophoresis directly (Figure 5A) or after immunoprecipitation with the β-galactosidase–BM2ORF fusion protein antiserum (Figure 5B) or pre-immune serum (Figure 5C). Although the pre-immune and BM2ORF fusion protein serum immunoprecipitated, presumably non-specifically, the influenza B virus polypeptides HA, NP and NS1 it can be observed that the BM2ORF fusion protein serum specifically immunoprecipitated BM2 from influenza B virus-infected cells. Small but distinct differences in the mobility of BM2 polypeptide could be observed among the strains in the same host cell type, providing further evidence that BM2 is virus-encoded and not a cellular polypeptide induced by viral infection.

Expression of the BM2 polypeptide is linked to termination of M1 polypeptide synthesis

To provide evidence for the hypothesis that the BM2 initiation codon overlaps the M1 protein termination codon in the sequence 5'-TAATG-3' and to investigate a possible relationship between M1 protein termination and BM2 protein expression, the B-M-DNA was altered by site-specific mutagenesis either to eliminate the first ATG codon in the
BM2ORF or to alter the position of the M1 termination codon (Figure 6). With each mutant the sequence context surrounding the putative BM2 initiation codon remained unaltered at the -3 and +4 positions with respect to the A residue (+1) of the ATG codon, as the nature of these nucleotides can affect translation initiation efficiency (Kozak, 1986). The mutations introduced into the B-M-DNA are shown schematically in Figure 6. The nucleotide sequence of the M1 protein termination codon and the putative BM2 initiation codon is shown as an expanded insert and the specific changes in this region are shown accordingly. In mutant ATGM2Δ, the putative BM2 initiation codon was eliminated by changing it to a threonine codon, while the M1 termination codon was conserved (TAACC), thus enabling direct examination of the use of this ATG codon in BM2 protein synthesis. To look for a role for M1 protein termination in synthesis of the BM2 protein, four mutants were constructed. In mutant TAAATΔ, the M1 termination codon was changed to a leucine codon (TTATG), which made the M1 ORF longer but at the same time conserved the putative BM2 initiation codon. In mutant INSTA, two nucleotides (TA) were inserted between the M1 termination codon and the putative BM2 initiation codon (TAATAATG). In mutant M1TRUNC, a new termination codon (TAA) was introduced 27 nucleotides upstream of the normal M1 termination codon to synthesize a smaller M1 protein while leaving the nucleotides surrounding the putative BM2 initiation codon unchanged. To address, indirectly, the possibility that ribosomes could be entering the mRNA at a site other than at the 5' end of the mRNA, the mutant M1+BM2 fusion was constructed in which the M1 and BM2 reading frames were fused near the beginning of BM2ORF to create one large ORF.

The altered DNAs, cloned into the expression vector pMT2 (Dorner et al., 1987), were transfected into COS-1 cells and at 70 h post-transfection the cells were labeled with Tran35S-label for 3 h, then lysed in RIPA buffer and immunoprecipitated with either the M1 protein-specific antiserum (Figure 7A) or the BM2 fusion protein antiserum (Figure 7B). The M1 proteins synthesized by the different mutants were observed to have the expected electrophoretic mobilities when analyzed by SDS-PAGE. In mutants ATGM2Δ and INSTA, the M1 proteins were of identical electrophoretic mobility to the wild-type (B-M-DNA), whereas the M1 protein synthesized by mutant TAAATΔ had a slower electrophoretic mobility and the truncation mutant, M1TRUNC, synthesized a M1 protein of faster electrophoretic mobility (Figure 7A). A second minor polypeptide species was observed with mutant TAAATΔ which migrated faster than the major species and had a mobility similar to wild-type M1 protein. To verify the authenticity of the mutant, the DNA sequence was reconfirmed and the expression of several clonal isolates of DNA were examined. All of the TAAATΔ clones gave the same polypeptide pattern. Thus, the two bands were not due to contamination with wild-type and it is possible that the
slower electrophoretic band arises from proteolytic cleavage of the extension to the M1 protein sequence or alternatively it may be a cross-reactive cellular polypeptide which is normally hidden by the wild-type M1 protein.

The BM2 polypeptide could be readily detected when immunoprecipitated from cells expressing the wild-type B-M-DNA (Figure 7B). In contrast, with mutant ATGM2Δ no synthesis of the BM2 polypeptide could be detected (Figure 7B). These data are consistent with the first natural ATG codon in the BM2orf being the initiation codon for BM2 synthesis. With the mutants M1TRUNC and TAAM1Δ, in which M1 synthesis terminates 27 nucleotides before or 75 nucleotides after the BM2 initiation codon respectively, no BM2 polypeptide synthesis could be detected (Figure 7B). However, with mutant INSTA, in which the M1 termination codon and the BM2 initiation codon are separated by two nucleotides, synthesis of the BM2 polypeptide could be detected (Figure 7B). With mutant M1+BM2 fusion, a hybrid polypeptide species of the expected size (Mr = 40 000) was found that could be immunoprecipitated with both the M1 antiserum and the BM2 fusion protein antiserum (Figure 8). However, no synthesis of the BM2 polypeptide could be detected with this mutant (Figure 8). Thus, all these data suggest that termination of M1 protein synthesis at a site very close to the BM2 initiation codon is necessary for the initiation of BM2 synthesis.

Discussion

We have identified a previously unreported polypeptide BM2 (Mr = 12 000) encoded by the second ORF of the mRNA derived from the influenza B virus genome RNA segment 7 by using an antiserum generated against a β-galactosidase–BM2orf fusion protein. As discussed below, initiation of BM2 polypeptide synthesis is thought to occur at the 5' proximal ATG codon in the BM2orf and thus the BM2 polypeptide is predicted to contain 109 amino acids. Attempts to verify the BM2 N-terminal amino acid sequence were unsuccessful as the N terminus is blocked. Computer assisted analysis (Devereux et al., 1984) of the BM2 polypeptide sequence predicts that it would be a soluble and globular polypeptide. No domains could be identified in BM2 that would be sufficiently hydrophobic to act as a signal sequence to initiate translocation across the endoplasmic reticulum membrane. Thus, BM2 can be expected to have very different properties from the influenza A virus M2 polypeptide which is the product of a second ORF on influenza A virus RNA segment 7 (Lamb et al., 1981). Influenza A virus M2 is an integral membrane protein and it has been suggested that its counterpart in influenza B virus is the NB integral membrane glycoprotein (Shaw et al., 1983; Williams and Lamb, 1986; reviewed in Lamb, 1989). There does not seem to be a counterpart to the BM2 polypeptide that is encoded by influenza A virus.

Both the size of the BM2 polypeptide on SDS–PAGE and the lack of detectable BM2 synthesis after deletion of the ATG codon at nucleotides 771–773 indicate that this ATG codon, which overlaps the termination codon for the M1 polypeptide, is the BM2 initiation codon. The data obtained from the mutants in which the sequences around the BM2 ATG initiation codon were altered are compatible with a stop–start model of initiation of translation where the initiation of BM2 synthesis is dependent on the prior termination of M1 protein synthesis and the data thus imply that
the mRNA is bicistronic. The process of reinitiation is fairly inefficient, as BM2 synthesis is ~25 mol% of M1 synthesis. However, this estimate is based on the accumulation of BM2 and M1 which may not be a reliable means of estimating the number of initiation events. In all the altered molecules, the nucleotide context of the BM2 ATG codon at the critical -3 and +4 positions, which favor promotion of initiation of protein synthesis (Kozak, 1989a), was maintained, avoiding an extra complication to the interpretation of the results. The simple notion that initiation of BM2 synthesis is due solely to migration of the ribosome scanning from the 5' end of the mRNA past 21 ATG codons in all three reading frames before reaching the BM2 initiation codon is unlikely given that BM2 synthesis did not occur when the M1 and BM2 reading frames were fused (mutant M1 + BM2 fusion). In addition, the lack of observed BM2 synthesis found with this mutant also makes it unlikely that the ribosome enters internally in the mRNA, utilizing a 'ribosome landing pad', as has been described for picornaviruses (Jang et al., 1988; Pelletier and Sonnenberg, 1988).

Reinitiation of translation at downstream ATG codons has been found to occur with both naturally occurring and artificially constructed bicistronic mRNAs (Jay et al., 1981; Hughes et al., 1984; Liu et al., 1984; Peabody et al., 1986; Grass and Manley, 1987). In these cases, as with the BM2 protein, initiation of protein synthesis at the downstream ATG codon depends on translational termination of the polypeptide encoded by the upstream ORF. In almost all of these natural or artificially created mRNAs, the upstream ORF is small and has been characterized as a 'mini-cistron' (Kozak, 1987). In a study on the effect of intercistronic length on the efficiency of reinitiation at downstream ATG initiation codons, it was found that when the terminator/initiator was in the nucleotide sequence 'TAATG', reinitiation was inefficient, but when the intercistronic distance was lengthened the efficiency of reinitiation was greatly increased (Kozak, 1987). It has been suggested that initiation factors may be released stochastically during chain elongation, and if these factors are needed for reinitiation, then the ability to reinitiate would be inversely proportional to the size of the upstream ORF (Kozak, 1987). The comparatively large size of the M1 ORF (248 amino acids) may in part explain the relative inefficiency of reinitiation. In addition, the BM2 ATG initiation codon is not in the most favored nucleotide context for initiation of protein synthesis (Kozak, 1986) as a C is present at the +4 position, which may affect the efficiency of reinitiation. The major difference between our analysis of the naturally occurring M1–BM2 bicistronic mRNA and the data obtained using artificial RNAs (Kozak, 1987) is that when the intercistronic distance was increased (mutant M1TRUNC) the synthesis of BM2...
may influence the reinitiation of translation. The frequent presence of internal ribosome entry sequences in prokaryotic but not eukaryotic mRNAs may account for one major difference between the M1–BM2 situation and prokaryotic coupled stop—start systems in that prokaryotic reinitiation events are often highly efficient.

Materials and methods

Plasmid construction and mutagenesis

The full length cDNA copy of genome RNA segment 7 of influenza B/Lee/40 virus (B-M-DNA) cloned at the Psrl site in pBR322 by G/C tailing was used as the basis for all plasmid constructions (Briedis et al., 1982). Fortunately, there is a Psrl site in the non-viral sequences present at the 5' end of the cDNA, so that the 5' G/C tail sequences could be removed and the cDNA released by Psrl digestion. The 1191 bp B-M-DNA fragment was subcloned into the Psrl site of plasmid pGEM2 (Promega Corp., Madison, WI) to create pGEM/B-M-DNA in which the insert DNA was oriented such that mRNA sense transcripts could be transcribed with bacteriophage T7 RNA polymerase. To generate a DNA fragment that contained the BM20RF and that could be easily subcloned into a plasmid to make a β-galactosidase–BM20RF fusion protein, the B-M-DNA in pBR322 was digested with RsaI which cleaves once within the B-M-DNA at nucleotide 532. A synthetic oligonucleotide linker that contained BamHI restriction site (5'-CATGGGATCCATG-3') was ligated to the RsaI fragments and the DNA fragments were then digested with BamHI. The 1995 bp DNA fragment that contains the 668 bp of the BM2ORF followed by 1327 bp of pBR322 was subcloned into the BamHI site of plasmid pJR278 (Ruther and Muller-Hill, 1983) creating an in-phase lacZ–BM2ORF gene fusion in a plasmid plexZ/BM2ORF (Figure 2.). The nucleotide sequence across the junction of the gene fusion was verified by DNA sequencing using the partial chemical cleavage method (Maxam and Gilbert, 1977).

The plexZ/BM2ORF DNA was digested with BamHI and Psrl to release the 668 bp BM2ORF fragment which was isolated and subcloned into pGEM2 to create pGEM/BM2ORF, such that BM2ORF mRNA transcripts could be transcribed by T7 RNA polymerase. To alter nucleotides around the M1 protein termination codon (nucleotides 769–771) by site-specific mutagenesis, a DNA fragment from pGEM/B-M-DNA (Srl–BamHI) which released the fragment containing B-M-DNA nucleotides 730–1191 was subcloned into the Srl and BamHI sites of the polyclinker of the replicative form of bacteriophage M13mp19. Uracil-bridged single-stranded bacteriophage DNA was used as a template for site-specific mutagenesis using the method of Kunkel (1985). The following mutagenic oligonucleotides shown in comparison with the B-M-DNA sequence (numbering from Briedis et al., 1982) were used:

(W.T.) (764) 5'-ACTTATAATGCTCGAACC-3'
ATGM2Δ 5'-ACTTATAACCCCTGACAC-3'
INSTA 5'-ACTTATAAATTGCTGCA-3'
TAA1MA (762) 5'-ATACCTTATTGCTCG-3'
M1TRUNC (743) 5'-CATGGGATAATCAG-3'

Oligonucleotides were synthesized by the Northwestern University Biotechnology Facility on a DNA synthesizer (Model 380B, Applied Biosystems Inc., Foster City, CA). All mutations were verified byideoxy-nucleotide sequencing (Sanger et al., 1977) of recombinant phage DNA. The M13 RF DNA of the mutants was digested with Srl and BamHI and the small DNA fragment reconstructed into the pGEM/B-M-DNA parent plasmid that had been digested with Srl and BamHI. A mutant, M1+BM2 fusion was made by digestion of pGEM/B-M-DNA with Apq718, incubation with Klenow fragment of E.coli DNA polymerase to blunt the overhang ends, and self-ligation to fuse the BM2ORF sequences in-frame with the upstream M1 coding region. For all the mutants, the full length 1191 bp Psrl DNA fragment from the altered pGEM/B-M-DNA plasmids was isolated and subcloned into the expression vector, pMT2 (Dorner et al., 1987), such that the DNAs were downstream of the adenovirus major late promoter.

In vitro transcription and translation

The plasmids pGEM/B-M-DNA and pGEM/BM2ORF were linearized with XbaI and the DNAs used as a template for the synthesis of synthetic RNA using T7 RNA polymerase in the presence of the cap analog 7m(5')Gppp(5')G as described (Hull et al., 1988). 1–5 µg of the synthetic mRNAs were translated in vitro using wheat germ extracts in the presence of...
of [35]S]methionine, essentially as described (Lamb et al., 1978) except that 100 μl reactions were used.

Cells, viruses and DNA transfections

Monolayer cultures of MDCK cells and COS-1 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal calf serum (C. M. Horvath, 1991). Cells were inactivated at 5% CO₂ in a humidified atmosphere of 95% air and 5% CO₂ at 37°C. The medium was changed three times a week. Cells at 70 to 80% confluence were used for experiments.

Infection of COS-1 cells with influenza B virus was performed at a multiplicity of infection (MOI) of 100. At 24 h post-infection, the cells were harvested and the supernatant was collected as the virus stock. The virus stock was titrated on MDCK cells by plaque assay.

Antisera production

To produce antiserum specific for the M1 protein of influenza B virus, the polypeptides of purified virions were separated by preparative SDS-PAGE and the M1 protein was electroeluted from the Coomassie blue-stained gel as described (Williams and Lamb, 1986). The eluted M1 protein was dialyzed against PBS containing 0.1% SDS and the dialysate was used to immunize rabbits subcutaneously as described (Vaitukaitis et al., 1971).

Radioisotopic labeling of cells, immunoprecipitation and gel electrophoresis

Influenza B virus-infected MDCK cells at 7 h post-infection were washed with PBS and incubated for 15 min with DMEM deficient in cysteine and methionine (met ‘-’ cysteine) and then labeled with 100 μCi/ml Tran35S-label (ICN, Irvine, CA) for 1–3 h in DMEM met ‘-’. At 70 h post-transfection COS-1 cells transfected with recombinant DNA vectors were washed with PBS, incubated for 15 min in DMEM met ‘-’ and labeled with 100 μCi/ml Tran35S-label for 3 h in DMEM met ‘-’.

Acknowledgements

We thank Margaret Shaughnessy for excellent technical assistance, and members of the Lamb laboratory for helpful discussions and critical reading of this manuscript. C. M. H. is supported by a National Institutes of Health Training Program in Cell and Molecular Biology, GM-08061. This research was supported by Public Health Service Award AI-20201 from the National Institute of Allergy and Infectious Diseases.
Peabody, D.S., Subranami, S. and Berg, P. (1986) Mol. Cell. Biol., 6, 2704–2711.
Pelletier, J. and Sonenberg, N. (1988) Nature, 334, 320–325.
Perry, K.L., Ellege, S.J., Mitchell, B., Marsh, L. and Walker, G.C. (1985) Proc. Natl. Acad. Sci. USA, 82, 4331–4335.
Powell, L.M., Willis, S.C., Pease, R.J., Edwards, Y.A., Knott, T.J. and Scott, J. (1987) Cell, 50, 831–840.
Ruther, U. and Muller-Hill, B. (1983) EMBO J., 2, 1791–1794.
Ritchey, M.B., Palese, P. and Schulman, J.L. (1976) J. Virol., 20, 307–313.
Sanger, F., Nicklen, S. and Coulson, A.R. (1977) Proc. Natl. Acad. Sci. USA, 74, 5463–5467.
Schoner, B.E., Belagaje, R.M. and Schoner, R.G. (1986) Proc. Natl. Acad. Sci. USA, 83, 8506–8510.
Shaw, M.W., Choppin, P.W. and Lamb, R.A. (1983) Proc. Natl. Acad. Sci. USA, 80, 4879–4883.
Thomas, S.M., Lamb, R.A. and Paterson, R.G. (1988) Cell, 54, 891–902.
Vaitukaitis, J., Robbins, J.B., Nieschas, E. and Ross, G.T. (1971) J. Clin. Endocrin. Metab., 33, 988–991.
Vidal, S., Curran, J. and Kolakofsky, D. (1990) J. Virol., 64, 239–246.
Williams, M.A. and Lamb, R.A. (1986) Mol. Cell. Biol., 63, 28–35.
Williams, M.A. and Lamb, R.A. (1989) J. Virol., 63, 28–35.
Yanofsky, C., Platt, T., Crawford, I.P., Nichols, B.P., Christie, G.E., Horowitz, H., Van Cleemput, M. and Wu, A.M. (1981) Nucleic Acids Res., 9, 6647–6667.

Received on March 28, 1990; revised on April 27, 1990