An integrated framework for affordable housing demand projection and site selection

N H Adi Maimun1,*, S Ismail2, M Junainah3, M N Razali4, M Z Tarmidi5 and N H Idris5

1Centre for Real Estate Studies, Institute for Smart Infrastructure and Innovative Construction, Faculty of Geoinformation and Real Estate, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
2Faculty of Architecture and Ekistics, Universiti Malaysia Kelantan, Malaysia.
3Faculty of Architecture, Planning and Surveying, Universiti Teknologi MARA Perak Branch, Seri Iskandar Campus, Seri Iskandar, 32610 Perak, Malaysia
4Department of Real Estate, Faculty of Geoinformation and Real Estate, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
5Department of Geoinformation, Faculty of Geoinformation and Real Estate, UniversitiTeknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
nurulhana@utm.my

Abstract. Highly priced properties cause affordability problems among low and middle-income buyers. To overcome this, the Malaysian government introduces affordable housing through National Urbanisation Policy, National Physical Plan, National Housing Policy, and Eleventh Malaysia Plan. Whilst having good market response, some areas experience either shortage or surplus of houses reflecting ineffective affordable housing policies. Inappropriate estimation technique and aggregate location estimations limit the accuracy and usability of demand estimations. Thus, this research aims to establish a framework to estimate local demands for affordable housing. This study selects and reviews the theoretical and modelling framework of Artificial Neural Network Model (ANN) due to its superior performance in forecasting demand. The ANN theoretical and modelling framework guides the modelling process, which includes data collection and preparation, model development, data analysis and model evaluation. Potential sites for affordable housing development identified from the model’s coefficients are visualised spatially through Geographic Information System (GIS). Localised housing demand forecasts are highly beneficial for policy-makers and housing developers to allocate the number of supplies across locations. This allows maximum take-up rate for affordable housing, avoids supply and demand mismatch and thus achieving the national housing policy agenda.

1. Introduction

The process of urbanization creates a high demand for houses. This has caused a rapid increase in house prices including the low and middle cost houses [1]. Highly priced houses for the lower income market segment have caused oversupply in residential stocks. [2] reported that half of the total nation's unsold residential stocks are those below RM300,000 which represents the lower and middle cost housing. The oversupply of housing reflects the unaffordability of people from lower to middle income earners to purchase houses. An average Malaysian can only afford houses priced below RM165,060 [3]. Nonetheless, an economic report published by the Bank Negara Malaysia in 2015 highlighted that only 21% of new houses launched in Malaysia are priced below RM 250,000. There was increased severity of housing affordability observed especially in the three main states in Malaysia, Kuala Lumpur, Pulau Pinang, and Johor [4]. Moreover, the developers were less interested
to develop low and medium cost houses [5] due to low profit margin [1]. Apart from high prices, poor
take up rate in this property segment also include inconvenient location, lack of accessibility,
unsuitable home design and the inability of buyers to secure end-financing [6][7].

In response to this severe housing situation, the Malaysian government and its agencies have
launched various affordable housing policies. Nonetheless, they noted the challenge in matching the
demand to supply based on spatial and affordability of people [8]. Imbalanced or mismatch of supply
and demand would lead to either undersupply or oversupply of houses. Oversupply of houses caused
by mismatch in demand would lead to waste in time, money, and resources. In most urban areas,
houses are undersupplied implying ineffective low-cost houses policies by the government. Thus, it is
irrelevant to allocate 30 percent low-cost houses in a housing development since it does not reflect the
actual demand for low-cost houses [9].

Despite the crucial need to address the housing supply and demand mismatch, very few studies
have focused on forecasting the housing demand, particularly the low-cost housing demand. The
current literature was limited to the works of [9][10][11][12][13][14][15]. A forecast of housing
demand using ANN model by these researchers suggest good predictive performance. Nonetheless,
these studies were carried out based on a very general, aggregated data sampling area such as Johor
Bahru [11][13] and Batu Pahat [12]. Inadequate information for a particular location would cause
inaccurate house construction decisions by policy makers and developers [16]. Therefore, there is a
need to predict the housing demand based on local areas to avoid oversupply or undersupply of
houses.

A mismatch of supply and demand for affordable houses highlighted the need for forecasting the
demand of affordable houses at specific locations. With demand estimations in place, the suppliers can
react accurately to the actual market demand and thus avoiding a supply-demand mismatch.

2. Affordable Housing

2.1. Definition of affordable housing
There is a growing demand for affordable housing due to the rising costs of living in Malaysia
especially within the urban areas [17][18]. Affordable housing is subsidised houses priced below the
market price offered to the low and median income groups under the provision of a local or state
legislation [19]. Different countries have different affordable housing policies targeting different
groups. Thus to give a specific definition on the affordable housing is a difficult task [17]. In
Malaysia, there is no specific definition for affordable housing. Each agency outlines different
meanings for the term affordable housing.

2.2. Affordable housing in Malaysia
In Malaysia, affordable housing are built for low, low-medium and medium income households
because of their low housing affordability. The lower the income, the lower the housing affordability
[20]. Households earning less than RM1,500.00 per month is thought to have a critical housing
affordability [21]. Taking affordability into concern, these affordable houses should be within the
capability of these income groups. Houses are considered affordable if it can be bought without
serious financial risks where less than 30 percent of the household income is used to pay the monthly
rent or mortgage [18]. Thus, most countries have set this as a basis or reference for assessing an
individual’s financial situation [17][22].

Apart from the household’s affordability, the state government highlighted that affordable houses
are houses that give comfort to the households (size and design) and community. Thus, based on these
discussions, affordable housing can be defined as houses that are comfortable and financially
accessible to low, low-medium and medium income households.

Affordable houses are categorized into three cohorts. These are determined based on the price
ranges of each cohort. Low cost houses are houses priced below RM 42,000, low-medium cost houses
are priced between RM 42,000 and RM 80,000, and medium cost houses are priced between RM
81,000 and RM 300,000.

2.3. Affordable housing demand
Based on the previous studies conducted by [9][11][12][13][14][23] the demand for housing can be
assessed through a number of demographic and economic factors. These include birth rate, GDP rate,
housing stock, income rate, inflation rate, mortality baby rate, population growth, poverty rate, and unemployment rate.

The population growth indicates the temporal population trend in the form of percentage [24]. The population size is determined by child birth, child mortality and migration rates [15]. Thus, an increasing or decreasing child birth rate, child mortality rate, and migration rate will have either a positive or negative impact on the population growth. These statistics illustrate the socioeconomics of the population and best describes the demograhic. Therefore, [25] claim that they are the most appropriate indicator in determining the housing demand.

Inflation rate is used to compare the prices between goods or services in a different time period [24]. Income reflects an amount earned for self use or benefit [26]. Previous researchers such as [27][28][29] found strong links between household income and housing demand. Gross domestic product is the total value of goods and services for a period after removing goods and services costs and before removing fixed capital consumption allowance [24]. Housing stock shows the annual numbers of constructed or under construction housing units in a year [24]. Poverty rate refers to the numbers of people whose income is below the poverty line [24]. Finally, unemployment rate is the numbers of unemployed labor force [24].

The analysis of housing demand has recently become important for the decision makers and market actors due to the wide spread effects of housing sector on the economy. Thus, many researchers have attempted to examine the housing demand through various econometric models including OLS model [23][30][31][32][33] and the ANN model [9][11][12][13][14]. Although OLS is simple in application, it is marred with imprecision and inaccuracy [34]. Compared to the OLS, ANN produces a more accurate estimation and prediction. This is illustrated in OLS and ANN comparative works by [34] and [35].

3. Artificial Neural Network Model (ANN)

3.1. Definition of Artificial Neural Network Model (ANN)

As its name would suggest, this model replicates the human brain’s neural architecture by simulating the human brain’s functions [36]. In a human’s brain, their brain neurons will respond to the inputs from other brain neurons and transport the outputs through other neurons [37]. In ANN, nodes are used to represent the brain’s neurons and these nodes are connected to each other in layers of processing. ANN comprises of interconnected input, hidden, and output node layers. The input layer, which consists independent variables are processed in the hidden layer(s) before finally transferred to the output layer, represented in the form of dependent variable(s).

The ANN equation is formulated as follows:

$$X_j = \sum W_{ij}Y_i$$

where X_j is the net input to artificial neuron j, Y_i is the value of input signal from artificial neuron i, W_{ij} is the weight from artificial neuron i to artificial neuron j, and n is the number of input signals to artificial neuron i.

The output from artificial neuron j is a function of the transfer function as follows:

$$O_j = f(X_j)$$

where O_j is the output signal from artificial neuron j and $f(X_j)$ is the transfer function of artificial neuron j.

3.2. Key Strengths of Artificial Neural Network Model (ANN)

There are a number of strengths relating to the use of ANN model. The most notable strength of ANN model is the ability to consider linear and non-linear relationships of dependent and independent variables. The self-learning ability of ANN permits incomprehensible data analysis, discovering relationships among data, and forecasting of future trends [38].
Due to these advantages, ANN was used for various purposes including estimation, forecasting, and classification across diverse fields including computer science, economics, engineering, genetics, linguistics, and psychology.

3.3. *Real Estate Applications of Artificial Neural Network Model (ANN)*

The real estate applications of ANN began in the 1990s. These house pricing studies have shown superior forecasting performance for ANN compared to the traditional method (Ordinary Least Squares or OLS). Besides house price forecasting, there is a recent growing interest for forecasting housing demand using ANN.

Previous studies including [9][10][11][12][13][14] have applied the ANN model to forecast the demand for housing in various location. These studies demonstrated excellent forecasting performance by ANN model. [10] employed the ANN method alongside Autoregressive Integrated Moving Average (ARIMA) method to forecast the low cost housing demand in Malaysian urban areas. The study observed superior forecasting performance for ANN model. [11] and [13] analysed the Johor Bahru low cost housing demand over four years period through ANN model. The results indicate good predictive performance with a MAPE of only 16.44%. In the same year, [12] observed excellent forecasting performance for another urban location based in Johor, which is Batu Pahat. The model produces no excess in MAPE value (0%) implying a hundred percent forecasting accuracy of the ANN model. In another study in Pahang and using the same method, [14] discovered a good predictive performance for ANN model with 2.63% of MAPE value between actual data and forecasted data. In contrast to previous studies, [9] attempted to enhance the ANN model by establishing a new algorithm and tested the model’s predictive accuracy in forecasting the demand for Johor low cost housing. The new method shows good prediction performance with a 6.62% of MAPE value.

3.4. *Integration of Artificial Neural Network Model (ANN) and Geographic Information System (GIS)*

Advances in technology particularly GIS facilitates decision-making, improves understanding and enhances strategic planning through integrated information and visualisation. In real estate, GIS is used for various reasons including site selection and land suitability analysis. Locational data such as demographics and aerial photographs analysed through GIS facilitates ideal locations for real estate development. As a result, the success of a location can be optimised and the opening of suboptimal locations can be avoided [39]. Any type of analysis models can be enhanced with the integration of geographic information system [40], [41] emphasised that locational issues are best addressed with the integration of GIS and formal locational analysis. [42] supports this notion arguing that a GIS analysis without considering formal locational analysis would create a “black box” and is detrimental rather than beneficial.

In the past years, many researchers have adopted GIS and ANN in their studies. For instance, [40] integrates ANN with GIS to produce an automated property valuation system. A total of 591 house transactions in Albacete, Spain was used to estimate prices through ANN. A study based in Indonesia conducted by [43] demonstrated the effectiveness of ANN and GIS to assess the suitability of land for wetland rice. Meanwhile [44] improved methods for geospatial site selection to identify new and suitable landfill sites in Perak by using ANN as decision rules. The study demonstrated excellent results through high modeling accuracy and reduced cost. Thus, this paper proposes the utilisation of GIS alongwith ANN to ensure high accuracy in selecting potential sites for affordable housing.

4. The Proposed Framework for Affordable Housing Demand Estimation and Site Selection

4.1. *Phase 1: Input criteria*

The proposed framework for site selection consists of four stages; namely the input criteria, data processing and establishing ANN dataset, ANN modelling and evaluation and spatial visualisation (Figure 1). Stage 1 ascertains the demand factors or criterias for affordable housing. Significant macro demand factors identified based on the literature is taken as a basis in data collection for each local area. These data include a ten-year monthly data series on the local birth rate, GDP rate, housing stock, income rate, inflation rate, mortality baby rate, population growth, poverty rate, and unemployment rate and applications for affordable housing. Statistical data (census publications) are collected from the Department of Statistics Malaysia and local authorities while number of applications for affordable housing is collected from the Ministry of Urban Wellbeing, Housing, and Local Government.
4.2. Phase 2: Data processing and establishing ANN dataset
Upon completion of data collection, the data is prepared by going through processes of data cleansing, data quantification and data format conversion in stage 2. This study applies the feed forward structure with one hidden layer and back propagation algorithm to minimize forecasting errors in the training set by adjusting the weight and thresholds of the network.

4.3. Phase 3: ANN modelling
The dataset is divided into three sets for training, testing, and validation purposes. The dependent variable or the output layer (numbers of qualified affordable housing applications) is regressed against the input layer or independent variables (birth rate, GDP rate, housing stock, income rate, inflation rate, mortality baby rate, population growth, poverty rate, and unemployment rate).

A series of trials and errors are performed to ascertain the learning and momentum rates. The number of hidden neurons are identified randomly by increasing the numbers of hidden neurons after each training and testing process. The variance between given and predicted outputs are observed through minimum average error. The error is minimised when the value decreases. This simulation is performed for up to 30,000 cycles of test sets. The result of this process will suggest the best neural network to forecast demand.

4.4. Phase 4: Model evaluation and spatial visualisation
At the fourth stage, the ANN model results are evaluated through statistical tests such as Root Mean Squared Error (RMSE), Mean Absolute Deviation Error (MAD), and Mean Absolute Percentage Error (MAPE). Low values of RMSE, MAD, and MAPE signifies good forecasting performance. In addition, coefficients of each independent variable derived from the model will also be examined if they reflect the current market situation. Affordable housing demand are estimated based on local urban locations within a district using coefficients derived from the model. Finally, housing demands for a district and local urban locations are visualised through GIS to illustrate the existing and future demand for affordable houses.

Figure 1. An integrated framework of ANN and GIS for affordable housing demand projection and site selection
5. Conclusion
Under the [45], the government of Malaysia is dedicated to provide Malaysians, particularly the low income group sufficient and good quality affordable housing. An estimated total of 653,000 affordable housing units are targeted to be built within the year 2016-2020 time frame [45]. These houses will be allocated under Program Bantuan Rumah (PBR), Perumahan Penjawat Awam 1Malaysia (PPA1M), Program Perumahan Rakyat (PPR), Perumahan Rakyat 1Malaysia (PRIMA), Rumah Mesra Rakyat 1Malaysia (RMR1M), and Rumah Wilayah Persekutuan (RUMAWIP) programs. This shows the Malaysian government commitments with the [46], which calls for adequate, shelter for all. Therefore, the proposed framework will provide support to the government in attaining the national agenda, which is to provide sufficient, affordable homes especially to the low-income groups.

Acknowledgments
The authors are grateful to Universiti Teknologi Malaysia for the GUP Tier 2 financial support. The authors would also like to thank the reviewers for their constructive feedbacks to enhance the quality of this paper.

References
[1] Musa A R, Tawil N M, and Che-Ani H B 2015 An analysis of the selection criteria in purchasing a house in Klang Valley towards the quality affordable housing Life Science Journal 12 pp 51-57
[2] National Property Information Centre 2016 Property market report Putrajaya: NAPIC
[3] Bank Negara Malaysia 2015
[4] Department of Statistics Malaysia 2016 Household income and basic amenities survey reports Kuala Lumpur: DSM
[5] Bujang A A and Abu Zarin H 2008 Urban housing ownership: Factors influenced the problems faced by the Bumiputera in the District of Johor Bahru, Johor, Malaysia International Real Estate Research Symposium 28-30 April Kuala Lumpur: IRERS
[6] Buang S 2004 Solving the low-cost housing woe News Straits Time, Kuala Lumpur
[7] Au F Y 2016 Half of overhang units are homes priced at RM300,000 and below The Edge Property, Kuala Lumpur
[8] Economic Planning Unit 2015 Eleventh malaysian plan (2016-2020) Putrajaya: EPU
[9] Mohd Nawi N, Abdul Hamid N, Zainun N Y, Abdul Rahman I, and Eftekhari M 2012 Forecasting low cost housing demand in urban area in Malaysia using a modified back-propagation algorithm AWERProcedia Information Technology & Computer Science pp 913-21
[10] Yahya K and Abd Majid M Z 2002 Forecasting of low cost housing demand in urban areas- Artificial Neural Networks and ARIMA model approach 2nd eabcInternational Conference on Systems Thinking in Management, UK pp 14-19
[11] Zainun N Y and Eftekhari M 2010 Forecasting low-cost housing demand in urban area in Malaysia using Artificial Neural Networks (ANN). In: Ghafoori (Ed.) Challenges, Opportunities S885eerr dbcand Solutions in Structural Engineering and Construction (pp: 899-902). London: Taylor and Francis Group.
[12] Zainun N Y, Rahman I A, and Eftekhari M 2010 Forecasting low-cost housing demand in an urban area in Malaysia using Artificial Neural Networks: Batu Pahat, Johor. In: Brebbia, C.A. (Ed.) The Sustainable World. WIT Transactions on Ecology and the Environment Vol. 142 (pp: 51-58). Southampton: WIT Press.
[13] Zainun N Y, Rahman I A, and Eftekhari M 2010 Forecasting low-cost housing demand in Johor Bahru, Malaysia using Artificial Neural Networks (ANN) Journal of Mathematics Research 2(1) pp 14-19
[14] Zainun N Y, Rahman I A, and Eftekhari M 2011 Forecasting low-cost housing demand in Pahang, Malaysia using Artificial Neural Networks (ANN) International Journal of Sustainable Construction Engineering & Technology 2(1) pp 83-88
[15] Zainun N Y, Roslan N, and Memon A H 2014 Assessing low-cost housing demand in Melaka: PLS-SEM approach Advanced Materials Research 838-841(1) pp 3156-162
[16] Marriott O 1967 The property boom London: Abingdon Publishing
[17] Zulkifli Z and Bujang A A 2008 Housing affordability: A study on household expenditures ratio on the income for the lower and middle income groups. In: Abdullah, S. and Abu Zarin, H. (eds.) Sustaining Housing Market (pp 26-41). Johor Bahru: UTM Press.

[18] Bujang A A, Anthony Jiram W R, Abu Zarin H, and Md Anuar F H 2015 Measuring the Gen Y housing affordability problem International Journal of Trade, Economics and Finance 6(1) pp 22-26

[19] Oxford Oxford English Living Dictionaries Accessed online on 7th February 2017 via: https://en.oxforddictionaries.com/definition/affordable_housing. Oxford University Press.

[20] Goh B H 1998 Forecasting residential construction demand in Singapore: a comparative study of the accuracy of time series, regression and Artificial Neural Network technique. Engineering Construction and Architectural Management 5(3) pp: 261-75

[21] Sulaiman N, Baldry D, and Ruddock L 2005 Can low cost housing in Malaysia be considered as affordable housing? 12th Annual European Real Estate Society Conference. 15-18 June, Dublin: ERES.

[22] Jose H I A 2002 Major Impacting Affordable Housing Development in Mexico. Proquest Information and Learning, UMI. Georgia Institute of Technology: 3-4.

[23] Solak A O and Kabadayi B 2016 An econometric analysis of housing demand in Turkey. Advances in Management & Applied Economics 6(3) pp 47-57

[24] Department of Statistics Malaysia 2010 Population and housing census, Malaysia 2010 Putrajaya: DSM

[25] Sirat M, Che Mamat A F, Abd Aziz A R, Rahim A, Salleh H, and Hj Yaakob U 1999 Low-cost housing in urban industrial centres of Malaysia: Issue and challenges Kedah: Penerbit Universiti Sains Malaysia

[26] Department of Human Services 2017 Income Accessed online on 8th March 2017 via http://www.humanservices.gov.au.

[27] Leung T C and Tsang K P 2012 Love the neighbor: Income distribution and housing preferences Journal of Housing Economics 21(4) pp 322-35

[28] Hullgren M and Söderberg I 2013 The relationship between consumer characteristics and mortgage preferences: A case study from Sweden International Journal of Housing Markets and Analysis 6(2) pp 209-30

[29] Van Ommore J and Zijl M G 2013 Estimating household demand for housing attributes in rent-controlled markets Journal of Housing Economics 22(1) pp 11-19

[30] Bekmez S and Özpolat A 2013 Determinants of housing demand in Turkey: A dynamic analysis TISK Academy 8(16) pp 170-87

[31] Bekmez S and Özpolat A 2013 Estimation of income elasticity and urban transformation effect on housing demand: A VECM approach Akdeniz University Faculty of Economics & Administrative Sciences Faculty Journal 13(27) pp 99-113

[32] Bekmez S and Özpolat A 2014 A comparative regional analysis for housing demand in Turkey Journal of Business and Economics 5(10) pp 1854-1866

[33] Lebe F and Akbaş Y E 2014 Analysis of housing demand in Turkey: 1970-2011 Atatürk University Journal Economics and Administrative Sciences 28(1) pp 57-83

[34] Zurada J, Levitan A, and Guan J 2011 A comparison of regression and artificial intelligence methods in a mass appraisal context Journal of Real Estate Research 33 pp 349–87

[35] McCluskey W, McCord M, Davis P T, Haran M, and McIlhatton D 2003 Prediction accuracy in mass appraisal: A comparison of modern approaches Journal of Property Research 30(4) pp 239-65

[36] Do Q and Grudnitski G 1992 A neural network approach to residential property appraisal Real Estate Appraiser pp 38-45

[37] Kathman R 1993 Neural networks for the mass appraisal of real estate Computers, Environment and Urban Systems 17 pp 373-84

[38] Mohd Radzi M S, Muthuveerappan C, Kamarudin N, and Mohammad I S 2012 Forecasting house price index using Artificial Neural Network International Journal of Real Estate Studies 7(1) pp 43-48

[39] Shangle E L 2006 Real estate site selection: an application of artificial intelligence for military retail facilities MBA Professional Report, Navel Postgraduate School, California.

[40] Garcia N, Gamez M and Alfar E 2008 ANN+GIS- An automated system for property valuation Neurocomputing 71 pp 733-42
[41] Birkin M 1996 Retail location modelling in GIS. In Spatial analysis: modelling in a GIS environment. Longley, P. and M. Batty, M. (eds.). New York: John Wiley & Sons.

[42] Mar Iman A H, Atan Sipan I, and Ismail S 2012 Geographic information system & spatial analyses in real estate Johor Bahru: Penerbit UTM Press
Wang F 1994 The use of artificial neural networks in a geographical information systems for agricultural land-suitability assessment Environment and Planning A 26 pp 265-84

[43] Abujayyab S K M, Ahamad M S S, Yahya A S, and Saad A-M H Y 2015 A new framework for geospatial site selection using artificial neural networks as decision rules: A case study on landfill sites ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences Volume II-2/W2

[44] Government of Malaysia 2016 The eleventh Malaysia plan, 2016–2020 Kuala Lumpur: Percetakan Nasional Malaysia Berhad

[45] United Nations 1996 Istanbul declaration on human settlements. Accessed online on 7th February 2017 via: http://unhabitat.org/wp-content/uploads/2014/07/The-Habitat-Agenda-Istanbul-Declaration-on-Human-Settlements-20061.pdf. United Nations