Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Introduction: Pulmonary embolism (PE) is a disease with a high mortality and morbidity rate, and the pathogenesis of PE remains still unclear. We aimed to investigate the gene expression differences of the complement system in peripheral blood mononuclear cells (PBMCs) from patients with symptomatic PE and controls.

Methods: Twenty cases of PE patients and twenty sex and age matched controls were recruited into the study. Human cDNA microarray analysis was used to detect the gene expression difference of the complement system between the two groups.

Results: 1). Expression of twenty-one genes encoding complement components was detected. In PE patients, expression of the genes encoding C1qα, C1qβ, C4b, C5 and Factor P was significantly greater ($P<0.05$) than controls, while C6, C7, C9, mannose-binding lectin (MBL) and mannose-binding lectin serine peptidase 1 (MASP1) mRNAs were lower ($P<0.05$) than controls. 2). Expression of seven genes encoding complement receptors was examined. In PE patients, CR1, integrin αM, integrin αX and C5aR mRNAs were significantly up-regulated ($P<0.01$) compared with controls. 3). Seven genes encoding complement regulators were examined. The mRNA expression of CD59 and CD55 was significantly up-regulated ($P<0.05$), whereas Factor I mRNA was significantly down-regulated ($P<0.05$) in PE patients than controls.

Conclusions: In PE patients, the mRNA expressions of complement components, receptors and regulators were unbalanced, suggesting dysfunction and/or deficiency of the complement system, which leads to decreased function of MAC-induced cell lysis in PE patients finally.

Smeeth et al. [5] have reported that acute infections were associated with an increased risk of VTE. Previously, we reported that VTE was found in multiple organs including the lungs, spleen, pancreas, kidneys, and adrenal glands from a patient who died of severe acute respiratory syndrome [6]. In addition, our previous study showed significantly down-regulated mRNA expression of genes associated with natural killer (NK) cells and T cells in patients with symptomatic PE [7], and declined cellular immune function in patients with acute PE and CTEPH respectively [8,9]. These previous studies indicate that the occurrence and progress of symptomatic PE are closely associated with both the innate and adaptive immunity.

The complement system plays an important role in both the innate and adaptive immune systems to defense against pathogens [10]. It is composed of more than 30 different proteins, including complement components, receptors and regulators. In clinical practice, it’s hard to detect the levels of all the proteins in the complement system currently. Therefore, in the present study, human microarray analysis was used to examine the mRNA expression of the complement components, receptors and regulators in PBMCs isolated...
from symptomatic PE patients and controls. We designed this in vitro study to investigate the changes in the function of the complement system in patients with symptomatic PE.

Patients and Methods

Patients

Twenty patients with PE were recruited from Tongji Hospital of Tongji University from 2007 to 2008. A diagnosis of PE required any two of the following three criteria: 1) Selectivity pulmonary angiography shows pulmonary artery obstruction or filling defect; 2) Lung ventilation/perfusion scan shows single or multiple blood perfusion defect, normal or abnormal ventilation, and V/Q does not match. 3) Clinical diagnosis: there are risk factors for PE and other cardiovascular diseases can be excluded by clinical performance, electrocardiogram and chest film, arterial blood gas analysis suggests hypoxemia and hypocapnia, and D-dimer detection, echocardiography, chest computed tomography support PE diagnosis. We chose twenty patients admitted in our department of cardiology at the same time as control in the study. The patients were divided into two groups: 1) PE patient group: 20 patients (11 males and 9 females), with a mean age of 70 ± 14 (44 – 89) yr, include 3 cases of CTEPH; 2) Control group: 20 patients (11 males and 9 females) without PE, DVT, arterial thrombosis, and congenital coagulation abnormality, mean age with a mean age of 72 ± 14 (44 – 91) yr, which were matched in sex and age with the PE group. There was no significant statistical difference between the age of the two groups (P > 0.05). The clinical trial has been approved by the Ethics Committee of Tongji University, and informed consent form was also obtained.

Gene Expression Profiling

Agilent G4112A Whole Human Genome Oligo Microarrays were purchased from Agilent (USA). A microarray is composed of 44,290 spots including 41675 genes or transcripts, 314 negative control spots, 1924 positive control spots and 359 blank spots. The functions of more than 70% of genes in the microarray have been known. All patients were subjected to microarray analysis.

Total RNA Isolation

5 ml of peripheral blood samples anti-coagulated with EDTA were drawn from patients suspected with PE immediately after admitting to the hospital and from those patients without PE, respectively. Mononuclear cells were obtained through density gradient centrifugation with Ficoll solution and remaining red blood cells were destroyed with erythrocyte lysis buffer (Qiagen, Hilden, Germany). Mononuclear cell RNA was extracted with TRIzol (Invitrogen, Carlsbad, USA) according to the manufacturer’s instructions. Original signals were obtained Agilent scanner and Feature Extraction software. The standardization of original signals was carried out with RNA standardized method and standardized signal values were used for screening of differentially expressed genes.

RT-PCR

Three differential genes in the microarray were selected and their expressions were confirmed by RT-PCR. Among genes with differential expressions, 3 genes were randomly selected and these genes and house keeping gene (GAPDH) were subjected to RT-PCR. The relative expressions were expressed as the expressions of target genes normalized by that of GAPDH (2^ (-ΔΔCT)). Melting curve and 2^ (-ΔΔCT) method were used to compare the difference in the expressions between control group and PE group. Results from RT-PCR were consistent with microarray analysis.

Statistical Analysis

Independent-Samples T Test was used to compare mRNA levels in samples from PE patients and controls. Statistical tests were performed using SPSS 17.0, and p values < 0.05 were considered significant. Before t test, test for equality of variances was performed, if variances were not equal, t test result would be corrected.

Results

Gene Expression of Complement Components

The results showed that mRNA expressions of complement early components including C1q, C1qβ, C1qγ, C1r, C1s, C2, C3, C4b, Factor B, Factor D, Factor P, MBL, MAS1P1 and MAS2P2 in PBMCs from patients with PE and controls were detected (Fig. 1A). In PBMCs from PE patients, expression of the genes encoding C1q, C1qβ, C4b and Factor P was significantly greater (P < 0.01) than that in controls. Gene expression of MBL and MAS1P1 was lower (P < 0.05) in PBMCs from PE patients compared with controls.

Gene expressions of complement late components including C5, C6, C7, C8α, C8β, C8γ and C9 in PBMCs from PE patients and controls were also detected (Fig. 1B). In PE patients, mRNA expression of C5 was significantly up-regulated (P < 0.05), whereas C6, C7 and C9 were significantly down-regulated (P < 0.05) compared with controls.

Gene Expression of Complement Receptors

The results showed that mRNA expressions of complement receptors including CR1, CR2, C3aR, integrin αM, integrin αX, integrin β2 and C5aR in PBMCs from PE patients and controls were examined (Fig. 2A). CR3 consists of integrin αM and integrin β2, and CR4 comprises integrin αX and integrin β2. In PE patients, expressions of all the seven genes mRNAs were up-regulated, and mRNA expressions of CR1, integrin αM, integrin αX and C5aR were significantly up-regulated (P < 0.01) compared with controls.

Gene Expression of Complement Regulators

Gene expressions of complement regulators C4b binding protein, α (C4BPα), C4b binding protein, β (C4BPβ), Factor H, Factor I, CD59, CD55 and CD46 in PBMCs from PE patients and controls were detected (Fig. 2B). CD59 and CD55 mRNAs were both significantly up-regulated (P < 0.05), while Factor 1 mRNA was significantly down-regulated (P < 0.05) in PBMCs from PE patients than controls.
Discussion

The complement system is an important component of the innate immunity, however, it also plays an important role in the adaptive immune system to defend against pathogens [10]. Three distinct pathways activate the complement system: the classical, lectin, and alternative pathways. All of them share a common terminal pathway which leads to the formation of membrane attack complex (MAC) which forms a transmembrane pore in the target cells’ membrane that causes cell lysis and death [11].

We detected the early complement components of three complement pathways in the two groups, and we found that C1qα, C1qβ, C4b and Factor P mRNAs were significantly up-regulated, while MBL and MASP1 mRNAs were significantly down-regulated in PE patients compared with controls (Fig. 1). The up-regulation of C1qα, C1qβ, C4b mRNAs in PE patients suggests that there exists pathogen invasion, leading to the activation of the classical pathway. When mannose-bind lectin (MBL) or Ficolin bind to carbohydrate on the surface of pathogens, the MBL-associated serine proteases (MASPs) are activated, then the lectin pathway is activated [12]. Previous studies have shown that people with MBL deficiency are susceptible to a variety of infections, especially when their adaptive immunity is immature [13–15]. Therefore, the down-regulation of MBL and MASP1 mRNAs in PE patients indicates deficiency or decline of the lectin pathway function in PE patients.

C5b initiates the formation of MAC, which consists of C5b, C6, C7, C8, and multiple molecules of C9 [10]. Recent research has shown that C5, C6, C7, C8 or C9 deficiencies increase susceptibility to infections [16]. Our results showed lower mRNA expression of C6, C7 and C9 in PE patients, suggesting decreased MAC-mediated cell lysis of infected cells in PE patients.

We detected the gene expression of complement receptors (Fig. 2A), and our results showed that CR1, integrin αM, integrin αX and C5aR mRNAs were significantly up-regulated in PE patients. Thus, the interactions between some complement effector molecules (C3b, iC3b, C5a) and their receptors were enhanced.

Gene expressions of several complement regulators were also examined in the present study (Fig. 2B). Our results showed that the mRNA expression of CD59 and CD55 which is also known as decay acceleration factor (DAF) was significantly increased, however, mRNA expression of Factor I was significantly decreased. CD55, C4BP and Factor H can regulate the complement activation through inhibiting the activity of C3 convertase [10]. CD59 can bind to C8 (α chain) and C9 during MAC complex formation and protects host cells from MAC-mediated lysis [17]. Thus, the up-regulation of CD59 and CD55 mRNAs suggests inhibition of MAC-mediated lysis in PE patients. However, in our present study, it is unclear whether the cause of the up-regulation of CD55 and CD59 mRNAs is inherited or acquired. It has been reported that Factor I deficiency was associated with recurrent bacterial infections [18]. In our present study, Factor I mRNA expression was down-regulated in PE patients compared with controls, suggesting that PE patients are susceptible to bacterial infections.

Our results showed that mRNA expression of various components, receptors and regulators of the complement pathways were unbalanced in PE patients, indicating that the function of some segments
The pathogens then activate the coagulation system directly or with prevention or elimination once they invade and circulate in the blood. To defend against pathogens, the innate immune system mainly comprises the complement proteins, phagocytes, and the alternative pathway and complement receptors mRNAs were significantly up-regulated, suggesting complement activation in PE patients. However, mRNA expression of several components of MBL dysfunction of CD3+ CD8+ T cell immunity. Am J Respir Crit Care Med 2011;183:417–8 [Epub 2011/02/04].

Acknowledgements

This study was supported by “12th five year” National Science and Technology Supporting Program (2011BAI11B16).

References

[1] Heit JA. The epidemiology of venous thromboembolism in the community. Arterioscler Thromb Vasc Biol 2008;28:370–2 [Epub 2008/02/26].
[2] Clagett GP, Anderson Jr FA, Heit J, Levine MN, Wheeler HB. Prevention of venous thromboembolism. Chest 1995;108:312S–345 [Epub 1995/10/01].
[3] Kahn SR, Lin W, Danna AS, Cushman M, Dentali F, Akk EA, et al. Prevention of VTE in nonsurgical patients: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012;141:e1935S–2265S [Epub 2012/02/15].
[4] Shackford SR, Rogers FR, Terrien CM, Bouchard P, Ratliff J, Zubiz R. A 10-year analysis of venous thromboembolism on the surgical service: the effect of practice guidelines for prophylaxis. Surgery 2008;144:3–11 [Epub 2008/06/24].
[5] Smillie L, Cook C, Thomas S, Hall AJ, Hubbard R, Vallance P. Risk of deep vein thrombosis and pulmonary embolism after acute infection in a community setting. Lancet 2006;367:1075–9 [Epub 2006/04/04].
[6] Xiang-Hua Y, Le-Min W, Ai-Bin L, Zhu C, Riquan L, Xu-You Z, et al. Severe acute respiratory syndrome and venous thromboembolism in multiple organs. Am J Respir Crit Care Med 2010;182:426–7 [Epub 2010/08/03].
[7] Gong Z, Liang AB, Wang LM, Zhang XY, Wang Q, Huang CY, et al. The expression and significance of immunity associated genes mRNA in patients with pulmonary embolism. Zhonghua Nei Ke Za Zhi 2009;48:665–9 [Epub 2009/12/04].
[8] Wang L, Song H, Gong Z, Duan Q, Liang A. Acute pulmonary embolism and dysfunction of CD3+ CD8+ T cell immunity. Am J Respir Crit Care Med 2011;184:1315 [Epub 2011/12/14].
[9] Haoming S, Lemin W, Zhu G, Albin L, Yuan X, Wei L, et al. T cell-mediated immune deficiency or compromise in patients with CTEPH. Am J Respir Crit Care Med 2011;183:417–8 [Epub 2011/02/04].
[10] Sarma JV, Ward PA. The complement system. Cell Tissue Res 2011;343:227–35 [Epub 2010/09/15].
[11] Peitsch MC, Tschopp J. Assembly of macrophomolecular pores by immune defense systems. Curr Opin Cell Biol 1991;3:710–6 [Epub 1991/08/01].
[12] Takahashi M, Mori S, Shigeta S, Fujita T. Role of MBL-associated serine protease (MASP) on activation of the lectin complement pathway. Adv Exp Med Biol 2007:598:93–104 [Epub 2007/09/26].
[13] Koch A, Melbye M, Sorensen P, Homoe P, Madsen HO, Molbak K, et al. Acute respiratory tract infections and mannose-binding lectin insufficiency during early childhood. JAMA 2001;285:1136–21 [Epub 2001/03/20].
[14] Peterslund NA, Koch C, Jensensius JC, Thiel S. Association between deficiency of mannose-binding lectin and severe infections after chemotherapy. Lancet 2001;358:637–8 [Epub 2001/09/01].
[15] Velemans M, Robinson J, Georgala A, Heymans C, Muaaza F, Paesmans M, et al. Low mannose-binding lectin concentration is associated with severe infection in patients with hematological cancer who are undergoing chemotherapy. Clin Infect Dis 2007;44:1593–601 [Epub 2007/05/23].
[16] Mayldyan KK. Complement genetics, deficiencies and disease. Protein Cell 2012;3:487–96 [Epub 2012/07/10].
[17] Huang Y, Qiao F, Abagyan R, Hazard S, Tomlinson S. Defining the CD59-C9 binding interaction. J Biol Chem 2006;281:27398–404 [Epub 2006/07/18].
[18] Grumach AS, Lettow MF, Aruk UC, Kirschhink M, Condino-Neto A. Recurrent infections in partial complement factor I deficiency: evaluation of three generations of a Brazilian family. Clin Exp Immunol 2006;143:297–304 [Epub 2006/01/18].
[19] Wang L, Zhang X, Duan Q, Lv W, Gong Z, Xie Y, et al. Rod-like bacteria and recurrent venous thromboembolism. Am J Respir Crit Care Med 2012;186:696 [Epub 2012/10/03].