Transferrin isoform analysis from dried blood spots and serum samples by gel isoelectric focusing for screening congenital disorders of glycosylation

Anna Bogdańska¹, Dariusz Kozłowski¹, Magdalena Pajdowska¹, Patryk Lipiński² and Anna Tylki-Szymańska¹

¹Department of Biochemistry, Radioimmunology and Experimental Medicine, Children’s Memorial Health Institute, Warsaw, Poland; ²Department of Pediatrics, Nutrition and Metabolic Diseases, Children’s Memorial Health Institute, Warsaw, Poland

Congenital disorders of glycosylation (CDG) are a growing, heterogeneous group of genetic disorders caused by a defect in the glycoprotein synthesis. The first and still widely used method for routine CDG screening was isoelectric focusing (IEF) of serum transferrin. Dried blood spot (DBS) testing is commonly used in newborn screening procedures to detect inborn errors of metabolism. The aim of this study was to demonstrate the reliability of the IEF method in DBS testing. Dried blood spot testing can help in the postmortem diagnosis of CDG disorders when other material is unavailable. The patterns and concentrations of transferrin isoforms in serum and DBS are comparable, and slight differences do not affect interpretation of results.

Keywords: isoelectric focusing, dried blood spot, congenital disorders of glycosylation, transferrin isoforms

INTRODUCTION

Congenital disorders of glycosylation (CDG) are a heterogeneous group of genetic disorders caused by a defect in the glycoprotein synthesis (defects in protein N-glycosylation, and O-glycosylation), or glycosphingolipid, glycosylphosphatidylinositol anchor glycosylation defects and multiple glycosylation pathway defects (Jaeken et al., 1984). Mass spectrometry (MS) techniques are currently giving more detailed insights into the glycan structural abnormalities (van Schepenzenzel et al., 2016). Electrospray (ESI) MS and matrix assisted laser desorption ionization (MALDI) MS are useful for underglycosylation analyses of intact serum transferrin (Tf). MALDI MS analysis of N-linked glycans released from total plasma or targeted glycoproteins, is the mainstream tool to explore abnormal glycosylation in CDG-II patients (Sturiale et al., 2011).

N-glycosylation of proteins

The N-glycan synthesis starts on the cytoplasmic side of the endoplasmic reticulum membrane. Two N-acetylglucosamine (GlcNAc) residues are transferred to dolichol phosphate (Dol-P) using UDP-GlcNAc as GlcNAc donor. This process is catalyzed by two enzymes: GlcNAc-1-P transferase and chitobiase synthase. Thus formed GlcNAc2-P-P-Dol structure, is extended by five mannosyltransferases using GDP-mannose as the donor substrate. Next the formed Man5GlcNAc2 structure is translocated to the luminal side. A flipping enzyme catalyzes this process. There, further elongation of the oligosaccharide chain takes place by mannosyltransferases and glucosyltransferases to a Glc3Man9GlcNAc2 oligosaccharide. Next, lipid-linked oligosaccharide structure (LLO) is transposed in N-linkage to an asparagine residue of nascent protein by oligosaccharyl transferase (OST). After the removal of glucose (Glc) residues by glucosidases and one mannose (Man) by mannosidase, the glycoprotein structure is transferred to the Golgi by vesicular transport. In the Golgi, mannosidases cleave mannosides and GlcNAc-transferases attach GlcNAc. Both antennas are then elongated by the addition of galactose (Gal) and sialic acid (Sia) residues to form the Sia2Gal2GlcNAc2Man3GlcNAc2 structure. Fucosyltransferase VIII attaches a fucose residue to some of the glycoproteins. In this way, several types of glycans are created based on a common core consisting of two N-acetylglucosamine residues and three mannose residues. The glycoproteins are then transported from the Golgi to their destinations. Defects related to the LLO chain synthesis and its transfer to a protein are termed CDG type I glycosylation defects. Defects in processing of the protein-bound glycans are classified as CDG type II (Marquardt et al., 2003; Kornfeld et al., 1985).

Transferrin

Serum transferrin (Tf) is used for routine screening of CDG with an N-glycosylation defect. This glycoprotein...
is synthesized in the liver, and its function is iron transport. Tf is composed of a single polypeptide chain that carries two Asn-linked complex-type N-glycan chains (Brunnel et al., 2020). Depending on the structure of glycans, there are several isoforms of transferrin. In healthy people, the serum has five fractions of Tf with a predominance of tetrasialotransferrin, with two sialic acid residues on each of the two glycans. The disialotransferrin, trisialotransferrin, pentasialotransferrin and hexasilatransferrin, containing glycans with one or three sialic acid residues, are present in much smaller amounts. In CDG-I, the lack of N-glycan chains leads to a decrease in the tetrasialo- and a marked relative increases in the disialo- and asialotransferrin isoforms. In CDG-II, deficient N-glycans lead to a more or less combined increase in the trisialo-, disialo- and asialotransferrin isoforms by trimming processing (Brunnel et al., 2020).

Abnormal transferrin isoforms are also observed in untreated fructoseemia and galactosemia in genetic diseases causing secondary hypoglycosylation. Patients with these diseases typically present with an abnormal transferrin pattern of type I, which is completely normalized or reaches normal values during dietary treatment (Adamowicz et al., 2007; Pronicka et al., 2007). Abnormal profile suggestive for type I is also observed in case of increased alcohol intake (Jaeken et al., 2017).

In some neonatal cases, it has been reported that the serum transferrin cathode fractions are slightly elevated, (mainly asialo-, monosialo- and sometimes also disialotransferrins), resembling a mild type II pattern (Peanne et al., 2018). Hypoglycosylation has been observed in patients with impaired liver function and infections with neuraminidase-producing microorganisms (Jaeken et al., 2017; Jansen et al., 2020, Bogdańska et al., 2021).

MATERIALS AND METHODS

Sample collection

Serum and DBS samples were collected from 12 patients with congenital disorders of glycosylation: eight from phosphomannomutase 2 deficiency (PMM2-CDG) patients, two from mannose phosphate isomerase deficiency (MPI-CDG) patients, one from vascular ATPase assembly factor (VMA21-CDG) patient and one from alpha-1,3-mannosyltransferase deficiency (ALG3-CDG) patient; two samples were from patients with transferrin polymorphism and 36 from healthy control group patients. Samples were stored at −20°C.

Dried blood samples were applied to filter paper (Whatman 903) and dried at room temperature for 24 h before being stored at −20°C.

Preparation of dried blood spot samples

Preparation of 48 dried blood spot samples was carried out according to the method described by Wolking et al (Wolking et al., 2019). Five discs with 3 mm diameter were punched out from dried spot cards (filter paper Whatman 903). Then, 50 µl of ultrapure water were added and incubated overnight at about 7°C. Next, 10 µl of eluate were mixed with 1.25 µl of 10 mM iron (III) citrate and incubated at room temperature for 10 min. Then, 1.25 µl of 0.1 M NaHCO₃ was added and mixed (Wolking et al., 2019).

Preparation of serum samples

Serum samples were prepared by the method described by van Eijk et al. 20 µl of serum were mixed with 80 µl of 0.9% NaCl. Next, 2 µl of 10 mM Fe(III) citrate and 2 µl of 0.1 M NaHCO₃ were added and incubated for half an hour at room temperature (van Eijk et al., 1983).

Isoelectric focusing (IEF)

Transferin isoform analysis from dried spot cards and serum was analyzed by isoelectric focusing agarose gel electrophoresis according to the method described by van Eijk et al., Stibler et al., Jaeken and others (van Eijk et al., 1983; Stibler 1979; Jaeken et al., 1993). IEF is a very efficient fine separation technique of Tf glycoforms (Brunnel et al., 2020).

Preparation of a 1% agarose gel

First, 45 mg of agarose was added to 4.5 ml of distilled water and incubated in a boiling water bath for 10 minutes. Next, 230 µl of amphotilines in a pH range of 5.0–7.0 was added. After mixing, the liquid gel was poured out over a plastic plate (Gel-Fix) placed on an LKB table heated to 50°C (van Eijk et al., 1983; Stibler 1979; Jaeken et al., 1993).

Electrofocusing and immunofixing

Electrode wicks were soaked with electrode solution: anode – 0.04 M glutamic acid, cathode – 0.5M NaOH, and then were placed on agarose gel in the Multiphor apparatus. The gel ampholine gradient was obtained by pre-focusing, which was carried out for 15 minutes at a constant current of 1.5 W. Serum samples (1 µL) were applied to the gel, 2 cm from the cathode, and separated for 20 minutes. During this period, the current decrease occurred in the range of 6 mA to 3 mA, and the voltage increased in the range of 300 V to 500 V. After 20 minutes, the power was turned off, the electrode wicks were removed and 200 µl of polyecylonal rabbit anti-human transferrin antibodies were applied to the gel surface to form transferrin-antibody complexes. The gel was transferred to a moist chamber where it remained for 20 minutes. After this time, the antibodies from the gel surface were rinsed with 0.9% NaCl, and the gel was placed in 0.9% NaCl overnight. The next day, the gel was rinsed with distilled water for 30 minutes (van Eijk et al., 1983; Stibler 1979; Jaeken et al., 1993).

Drying and staining the gel. After removing the gel from the water, it was dried with a 0.5 cm layer of filter paper for 30 minutes using a Paragon blotting equipment and then dried for 5 minutes with a hair dryer until a transparent film was obtained. The gel was stained for 10 minutes in a 0.5% Coomassie Brilliant Blue solution (500 mg Coomassie Brilliant Blue in 100 ml of destaining solution). To remove excess stain, the gel was placed in a destaining solution (350 ml ethanol, 100 ml acetic acid, 650 ml distilled water) three times for a few minutes until background color was removed and transferrin bands were clearly visible (van Eijk et al., 1983; Stibler 1979; Jaeken et al., 1993).

Quantification of IEF results

The percentage of transferrin fractions was assessed using a densitometer (Beckman).
Transferrin isoforms were determined in patients of the control group (n=36) (see Fig. 1). The relative amounts of isoforms and the mean of the DBS and serum results are presented in Table 1. For all patients, there was a difference in the relative amounts of isoforms in DBS when compared to serum. The most significant difference was observed for the disialotransferrin fraction, where values higher up to 14.7% occurred in the serum. This material also showed higher values for trisialotransferrin (by 1.25%) and for hexasialotransferrin (by 1.5%). In the case of the disialo- and pentasialotransferrin fractions, the values were higher for DBS by 0.95% and 0.5%, respectively. Taking into account the mean values, the isoform values differed very slightly (by 0.1%) for tri-, pentasialo- and hexasialotransferrins. In the case of disialo- and tetrasialotransferrin the difference is larger (higher by 0.6%). There were no asialo- and monosialotransferrins in dried blood spots, similar to results obtained for the serum. The concentrations of transferrin isoforms in the serum and DBS are comparable, and the differences do not affect the clinical interpretation of the results.

Analysis of a dried blood spot sample from the patient with PMM2-CDG, ALG3-CDG and MPI-CDG shows patterns consistent with increased disialo- and asialotransferrins and increased tetrasialotransferrin. The patient with VMA21-CDG type shows a usual type II pattern with increased asialo-, monosialo- disialo- and trisialotransferrins and increased tetrasialotransferrin (see Table 2, Fig. 2).

There are some slight but significant differences between dried blood spot and serum samples from patients with milder outcomes in type I. In DBS, the lack of the asialo- fraction and a slight disialotransferrin presence do not indicate CDG type I, affecting the clinical interpretation.

DISCUSSION

Dried blood spot testing is used in newborn screening procedures widely available worldwide, aiming to detect inborn errors of metabolism (Winter et al., 2018; Elliott et al., 2016). There are only single reports in the literature regarding the IEF methods using dried spot cards for detection of underglycosylated serum transferrins (Bean et al., 1996; Wolking et al., 2020).

In this study, DBS from PMM2-CDG, MPI-CDG, VMA21-CDG, ALG3-CDG and from patients with transferrin polymorphism was used. Determining the transferrin isoforms by the IEF method in dried blood spots and serum samples from patients with PMM2-CDG, ALG3-CDG and MPI-CDG, a characteristic pattern of type I CDG with a clearly elevated isoform of asialo- and disialotransferrins and decreased tetrasialotransferrin can be observed. In the case of a mild PMM2-CDG pattern, slightly increased serum asialo- and disialotransferrins can be observed by the IEF method. In DBS using the IEF method, we observed

Table 1. Relative amounts of transferrin isoforms in the DBS and serum in the control group (normal pattern).

Transferrin Isoform	Range (n=36)	Mean (n=36)	DBS %	Mean DBS %
AsialoTF	0.0	0.0	0.0	0.0
MonosialoTF	3.5-4.1	3.8	2.8-3.6	3.2
DisialoTF	5.3-13	9.1	5.8-12.8	9.0
TrisialoTF	16.4-25.3	21.3	19.6-24.0	21.4
TetrasialoTF	3.4-6.4	4.8	3.7-5.8	4.7
PentasialoTF	3.5-4.1	3.8	2.8-3.6	3.2
HexasialoTF	5.3-13	9.1	5.8-12.8	9.0
HexasialoTF	16.4-25.3	21.3	19.6-24.0	21.4

Table 2. Transferrin isoforms in DBS and serum in CDG type I and CDG type II patients.

Transferrin Isoform	SER %	DBS %							
AsialoTF	1.1	0.0	9.3	7.6	10.3	9.5	0.5	0.8	
MonosialoTF	1.5	0.0	1.4	2.2	1.9	2.1	1.8	3.6	
DisialoTF	7.9	0.0	6.5	31.9	29.9	28.7	22.5	15.9	14.1
TetrasialoTF	52.9	54.0	36.9	35.0	38.6	42.1	40.1	39.1	
PentasialoTF	21.5	24.6	10.2	12.0	10.7	13.2	7.2	7.7	
HexasialoTF	4.0	5.7	2.2	2.5	2.2	2.6	0.2	2.3	
that the isomers are almost normal. Only a slightly el-
evated disialotransferrin indicates a minor hypoglycosyla-
ion. Lack of the asialo- fraction and a slight presence of
disialotransferrin in DBS do not indicate CDG type I,
volution in dry blood spots.

Human transferrin can show genetic polymorphisms
(Scherpenzel et al., 2016). A profile characteristic of the
transferrin polymorphism is evident in DBS, the same as
in the serum (see Fig. 2).

CONCLUSIONS

This work aimed to demonstrate the reliability of the
IEF method in DBS testing. This method can be easily applied in laboratories per-
forming IEF in serum.

Dried blood spots collected routinely for neonatal
screening and stored at freezing temperatures may aid
the postmortem diagnosis of CDG disorders.

DBS isoform profile obtained by the IEF method
may be insufficient in the case of mild PMM2-CDG,
and a serum assay may be necessary.

Conflict of interest

All authors declare no conflict of interest.

Ethics approval

Ethical approval was granted by the Bioethical Com-
mitee of the Children’s Memorial Health Institute, No.
23/KBE/2020, Warsaw, Poland.

REFERENCES

Adamowicz M, Ploski R, Rokicki D, Morava E, Giszewska M, Mier-
zweska H, Pollak A, Lefeber DJ, Wevers RA, Pronicka E (2007)
Transferin hypoglycosylation in hereditary fructose intolerance: us-
ing the clues and avoiding the pitfalls. J Inherit Metab Dis 30: 407.
https://doi.org/10.1007/s10545-007-0569-z

Bean P, Suphin MS, Necessary P, Agopian MS, Liggmann K, Lud-
vigsen G, Peter JB (1996) Carbohydrate-deficient transferrin evalua-
tion in dry blood spots. Alcohol Clin Exp Res 20: 56–60. doi:
10.1111/j.1530-0277.1996.tb01044.x

Brunnell A, Choler S, Tran NT, Mai TD, Fenaille F (2020) CDG bio-
chemical screening: where do we stand? Biochim Biophys Acta Gen
Syst 1864: 129652. https://doi.org/10.1016/j.bbagrm.2020.129652

Elliott S, Bunkser N, Couroyer JJ, Potier AM, Tromter JD, Elbin
C, Schermer MJ, Kantola J, Boyce A, Turecek F, Gelb MH, Scott
CR (2016) Pilot study of newborn screening for six lysosomal stor-
age diseases using Tandem Mass Spectrometry. Mol Genet Metab
118: 304–309. https://doi.org/10.1016/j.ymgep.2016.05.013

Francisco R, Marques-da-Silva D, Brasil S, Pascoal C, Dos Reis Ferreira
V, Morava E, Jaeken J (2019) The challenge of CDG diagnosis. Mol
Genet Metab 126: 1–5. https://doi.org/10.1016/j.ymgep.2018.11.003

Jaeken J, Vanderschueren-Lodeweyckx M, Cassee P, Snoeck L, Gielis
J, Eggermont E, Eeckels R (1980) Fatal familial psychomotor retra-
dation with markedly fluctuating serum proteins, FSH and GH lev-
els, partial TBG deficiency, increased serum arylphosphatase A and
increased ESF proteins: a new syndrome? Pediatr Res 14: 170

Jaeken J, van Eijk HG, van der Heul C, Corbeil L, Eeckels R, Egger-
mont E. (1984) Sialic acid-deficient serum and cerebrospinal fluid
transferrin in a recently recognized genetic syndrome, Clin Chim Acta
144: 245–247. https://doi.org/10.1016/0009-8981(84)90009-7

Jaeken J, Carechon H, Stibler H (1993) The carbohydrate-deficient gly-
crotein syndromes: pre-Golgii and Golgi disorders? Glycobiology
3: 423–428. https://doi.org/10.1093/glycob/3.5.423

Jaeken J, Panné R (2017) What is new in CDG? J Inherit Metab Dis 40:
569–586. https://doi.org/10.1007/s10545-017-0560-6

Jansen JC, van Hock B, Metselaar HJ, van den Berg AP, Zijlstra F,
Huijbink K, van Scherpenzeel M, Drenth JPH, Lefeber DJ (2020)
Screening for abnormal glycosylation in a cohort of adult liver
disease patients. J Inherit Metab Dis 43: 1310–1320. https://doi.
org/10.1007/jmid.12273

Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosac-
charides. Anna Rev Biochem 54: 631–664. https://doi.org/10.1146/
annurev.bi.54.070185.003215

Bogdańska A, Lipiński P, Szymańska-Rożek P, Jankowska I, Socha P,
Tylki-Szymańska A (2021) Pediatric liver disease patients and sec-
ondary glycosylation abnormalities. Front Pediatr 8: 643322.4. https:
//doi.org/10.3389/fped.2020.013224

Marquardt T, Denecke J (2003) Congenital disorders of glycosylation:
review of their molecular bases, clinical presentations and specific
therapies. Eur J Pediatr 162: 359–379. https://doi.org/10.1007/
/s00431-002-1136-0

Panne R, de Lonlay P, Foulquier F, Kornak U, Lefeber DJ, Morava
E, Perez B, Seta N, Thiébaut Ch, Van Schaftingen E, Matthijs G,
Jaeken J (2018) Congenital disorders of glycosylation (CDG): Quo
vadis? Eur J Med Genet 61: 643–663. https://doi.org/10.1016/j.
ejmg.2017.10.012

Pronicka E, Adamowicz M, Kowalik A, Ploski R, Radomyska B, Ro-
gaszewska M, Rokicki D, Sykut-Cegielska J (2007) Elevated car-
biochemistry and glycosylation in cerebrospinal fluid and serum proteins.
J Neurol Sci 257: 275–281. https://doi.org/10.1016/j.jns.
2007.04.005

Stibler H (1979) Direct immunofixation after isoelectric focusing. An
improved method for identification of cerebrospinal fluid and serum proteins.
J Immunol Methods 32: 167–171. https://doi.org/10.1016/0022-
0702(79)90059-5

Sturiale L, Barone R, Garozzo D (2011) The impact of mass spec-
trometry in the diagnosis of congenital disorders of glycosylation. J
Inherit Metab Dis 34: 891–899. https://doi.org/10.1007/s10545-011-
9306-8

van Eijk HG, van Noort WJ, Dubelaar ML, van der Heul C (1983)
The microheterogeneity of human transferrins in biological flu-
luids. Clin Chim Acta 132: 167–171. https://doi.org/10.1016/0022-
0837(83)90244-9

van Scherpenzeel M, Willems E, Lefeber DJ (2016) Clinical diagnos-
tics and therapy monitoring in the congenital disorders of glycosylation.
Genotype J 35: 345–358. https://doi.org/10.1017/s10719-115:6399-
6

Verheijen J, Tahata S, Koziæ T, Witters P, Morava E (2020) Therape-
tic approaches in Congenital Disorders of Glycosylation (CDG) in-
volving N-linked glycosylation: an update. Genet Med 22: 268–279.
https://doi.org/10.1038/s41436-019-0647-2

Wollking AB, Park JH, Grüneberg M, Reunert J, Fingerhut R, Fobker
M, Marquardt T (2019) Transferrin glycosylation analysis from dried
blood spot cards and capillary blood samples. Anal Chim Acta 1041:
167–171. https://doi.org/10.1016/j.aca.2019.01.014

Winter T, Lange A, Hannemann A, Nauck M, Müller C (2018) Con-
tamination of dried blood spots – an underestimated risk in new-
born screening. Clin Chim Acta 56: 278–284. https://doi.org/10.1016/j.
cma.2017.07.020

Witters P, Honzik T, Bauchert E, Alfrass R, Pasceau T, Brunell A,
Vuziænner S, Seta N, Borgel D, Matthijs G, Jaeken J, Meersseman
W, Vassaxian D, Pascale de L, Morava E (2019) Long-term follow-
up in PMM2-CDG: are we ready to start treatment trials? Genet Med
21: 1181–1188. https://doi.org/10.1038/s41436-018-0301-4

Figure 2. IEF of transferrin from serum and DBS samples from
patients with CDG type I, CDG type II and transferrin polymor-
phism. 0, asialoTf; 1, monosialoTf; 2, disialoTf; 3, trisialoTf; 4, tetrasialoTf;
5, pentasialoTf; 6, hexasialoTf; DBS, dried blood samples; SER, ser-
um