UNIQUENESS OF MEROMORPHIC FUNCTIONS WITH THEIR HOMOGENEOUS AND LINEAR DIFFERENTIAL POLYNOMIALS SHARING A SMALL FUNCTION

Indrajit Lahiri and Bipul Pal

Abstract. In this paper we study the uniqueness question of meromorphic functions whose certain differential polynomials share a small function.

1. Introduction, definitions and results

Let \(f \) be a meromorphic function in the open complex plane \(\mathbb{C} \). We use the standard notations of Nevanlinna’s value distribution theory such as \(m(r, f) \), \(N(r, f) \), \(\overline{N}(r, f) \), \(T(r, f) \) etc. as available in [2]. We denote by \(S(r, f) \) any quantity satisfying \(S(r, f) = o(T(r, f)) \) as \(r \to \infty \) possibly outside a set of finite linear measure.

A meromorphic function \(a = a(z) \) is called a small function of \(f \) if \(T(r, a) = S(r, f) \). We denote by \(S(f) \) the collection of all small functions of \(f \). Clearly \(\mathbb{C} \subset S(f) \).

Let \(f \) and \(g \) be two meromorphic functions in \(\mathbb{C} \) and \(a \in S(f) \cap S(g) \). We say that \(f \) and \(g \) share the function \(a = a(z) \) CM (counting multiplicities) or IM (ignoring multiplicities) if \(f - a \) and \(g - a \) have the same set of zeros counting multiplicities or ignoring multiplicities respectively.

For \(a \in \mathbb{C} \cap \{\infty\} \) the quantities

\[
\delta(a; f) = 1 - \limsup_{r \to \infty} \frac{N(r, a; f)}{T(r, f)} \quad \text{and} \quad \Theta(a; f) = 1 - \limsup_{r \to \infty} \frac{\overline{N}(r, a; f)}{T(r, f)}
\]

are respectively called the deficiency and ramification index of \(a \) for the function \(f \), where \(N(r, a; f) = N(r, \frac{1}{f-a}) \), \(\overline{N}(r, a; f) = \overline{N}(r, \frac{1}{f-a}) \), \(N(r, \infty; f) = N(r, f) \) and \(\overline{N}(r, \infty; f) = \overline{N}(r, f) \).

Also \(\rho(f) = \limsup_{r \to \infty} \frac{\log T(r, f)}{\log r} \) and \(\tau(f) = \limsup_{r \to \infty} \frac{T(r, f)}{r^{\rho(f)}} \) (0 < \(\rho(f) < \infty \)) are respectively called the order and type of \(f \). A meromorphic function \(f \)
is said to be of minimal type if $\tau(f) = 0$, which can be found, for example, in [2, pp. 16–17].

In 1976 Yang [10] asked to investigate the relationship between two nonconstant entire functions f and g if f and g share the value 0 CM and $f^{(1)}$ and $g^{(1)}$ share the value 1 CM. Many authors, including Shibazaki [9], Yi [13, 14], Yang and Yi [11], Hua [4], Mues and Reinders [8], Lahiri [5, 6], studied the question. Further, Yi [16], Chen, Wang and Zhang [1], Li and Li [7] and others also worked on this question and its extensions.

In 1990 Yi [13] proved the following result.

Theorem A ([13]). Let f and g be two nonconstant entire functions such that f, g share the value 0 CM and $f^{(n)}$, $g^{(n)}$ share the value 1 CM. If $\delta(0; f) > \frac{1}{2}$, then either $f \equiv g$ or $f^{(n)} \cdot g^{(n)} \equiv 1$.

Shibazaki [9] did not consider the sharing of zeros and proved the following theorem.

Theorem B ([9]). Let f and g be two nonconstant entire functions of finite order such that $f^{(1)}$, $g^{(1)}$ share the value 1 CM. If $\delta(0; f) > 0$ and 0 is a Picard exceptional value of g, then either $f \equiv g$ or $f^{(1)} \cdot g^{(1)} \equiv 1$.

Yi and Yang [17], Hua [4] and many others improved Theorem B in different manners. Yi and Yang [17] proved the following result.

Theorem C ([17]). Let f and g be two nonconstant meromorphic functions such that $f^{(n)}$ and $g^{(n)}$ share the value 1 CM. If $\Theta(\infty; f) = \Theta(\infty; g) = 1$ and $\delta(0; f) + \delta(0; g) > 1$, then either $f \equiv g$ or $f^{(n)} \cdot g^{(n)} \equiv 1$.

Also Yi [16] proved the following improvement of Theorem B.

Theorem D ([16]). Let f and g be two nonconstant meromorphic functions such that $f^{(n)}$ and $g^{(n)}$ share the value 1 CM. If $\delta(0; f) + \delta(0; g) + (n + 2)\Theta(\infty; f) > n + 3$,

then either $f \equiv g$ or $f^{(n)} \cdot g^{(n)} \equiv 1$.

In [16] Yi proved some others results which improve previous ones.

Theorem E ([16]). Let f and g be two nonconstant meromorphic functions such that $f^{(n)}$ and $g^{(n)}$ share the value 1 CM. If $2\delta(0; f) + (n + 4)\Theta(\infty; f) > n + 5$ and $2\delta(0; g) + (n + 4)\Theta(\infty; g) > n + 5$,

then either $f \equiv g$ or $f^{(n)} \cdot g^{(n)} \equiv 1$.

Theorem F ([16]). Let f and g be two nonconstant meromorphic functions such that $f^{(n)}$ and $g^{(n)}$ share the value 1 IM. If $5\delta(0; f) + (4n + 7)\Theta(\infty; f) > 4n + 11$ and
5\delta(0; g) + (4n + 7)\Theta(\infty; g) > 4n + 11,

then either \(f \equiv g \) or \(f^{(n)} \cdot g^{(n)} \equiv 1 \).

In 1990 Yi [14] considered the uniqueness of entire functions when they share the value 0 CM and that their derivatives share the value 1 CM. The following result of H. X. Yi [14] is an answer to the question of C. C. Yang under a general setting.

Theorem G ([14]). Let \(f \) and \(g \) be two nonconstant entire functions and let \(k \) be a positive integer. If \(f \) and \(g \) share the value 0 CM, \(f^{(k)} \) and \(g^{(k)} \) share the value 1 CM and \(\delta(0; f) > \frac{1}{2} \), then either \(f \equiv g \) or \(f^{(k)} \cdot g^{(k)} \equiv 1 \).

Recently Li and Li [7] considered the problem of replacing the derivatives by linear differential polynomials generated by entire functions.

Let \(h \) be a nonconstant meromorphic function. An expression of the form

\[(1.1) \quad P(h) = h^{(k)} + a_{k-1}h^{(k-1)} + \cdots + a_{1}h^{(1)} + a_{0}h,\]

where \(a_{0}, a_{1}, \ldots, a_{k-1} \) are complex constants and \(k \) is a positive integer, is called a linear differential polynomial generated by \(h \).

Considering following example Li and Li [7] exhibited that it is not possible to replace \(f^{(k)} \) and \(g^{(k)} \) in Theorem G respectively by \(P(f) \) and \(P(g) \).

Example 1.1 ([7]). Let \(f = \frac{i}{2}e^{-2z} \) and \(g = e^{-2z} \). If \(P(h) = h^{(2)} + 2h^{(1)} \), then \(f, g \) share the value 0 CM, \(P(f), P(g) \) share the value 1 CM and \(\delta(0; f) = 1 \) but \(f \not\equiv g \) and \(P(f) \cdot P(g) \not\equiv 1 \).

We recall the following results from Li and Li [7].

Theorem H ([7]). Let \(f \) and \(g \) be two nonconstant entire functions. Suppose that \(f \) and \(g \) share the value 0 CM, \(P(f) \) and \(P(g) \) share the value 1 CM and \(\delta(0; f) > \frac{1}{2} \). If \(\rho(f) \neq 1 \), then \(f \equiv g \) unless \(P(f) \cdot P(g) \equiv 1 \).

Theorem I ([7]). Let \(f \) and \(g \) be two nonconstant entire functions. Suppose that \(f \) and \(g \) share the value 0 CM, \(P(f) \) and \(P(g) \) share the value 1 IM and \(\delta(0; f) > \frac{1}{2} \). If \(\rho(f) \neq 1 \), then \(f \equiv g \) unless \(P(f) \cdot P(g) \equiv 1 \).

We can easily note that in Example 1.1, \(P(f) \equiv 0 \) and \(P(g) \equiv 0 \). On the other hand, in the following example we see that if \(P(f) \) and \(P(g) \) are nonconstant, then for an entire function of order 1 the conclusion of Theorem H may hold.

Example 1.2. Let \(f = e^{z} \) and \(g = e^{-z} \) and \(P(h) = h^{(3)} - h^{(2)} - h^{(1)} \). Then \(f \) and \(g \) share the value 0 CM, \(P(f) = -e^{z} \) and \(P(g) = -e^{-z} \) share the value 1 CM and \(\delta(0; f) = 1 \). Also \(P(f) \cdot P(g) \equiv 1 \).

In the present paper we extend the results of Li and Li [7] by including the class of entire functions of order 1. We also extend some previous results to homogeneous differential polynomials.
Let h be a nonconstant meromorphic function. An expression of the form

\begin{equation}
P(h) = \sum_{k=1}^{n} a_k \prod_{j=0}^{p}(h^{(j)})^{l_{kj}},
\end{equation}

where $a_k \in S(h)$ for $k = 1, 2, \ldots, n$ and l_{kj} are nonnegative integers for $k = 1, 2, \ldots, n$; $j = 0, 1, 2, \ldots, p$ and $d = \sum_{j=0}^{p} l_{kj}$ for $k = 1, 2, \ldots, n$, is called a homogeneous differential polynomial of degree d generated by h. Also we denote by Q the quantity $Q = \max_{1 \leq k \leq n} \sum_{j=0}^{p} j l_{kj}$.

Let f and g be two nonconstant meromorphic functions. When we consider $P(f)$ and $P(g)$, as defined by (1.2), and generated by f and g respectively, then we understand that the coefficients a_k ($k = 1, 2, \ldots, n$) belong to $S(f) \cap S(g)$.

We now state the results of the paper.

Theorem 1.1. Let f and g be two nonconstant meromorphic functions and $a = a(z) \in S(f) \cap S(g)$ and $a \not\equiv 0, \infty$. Suppose that $P(f)$ and $P(g)$, as defined by (1.2), are nonconstant. If $P(f)$ and $P(g)$ share $a = a(z)$ IM and (1.3)

\[
\min \left\{ 5 \delta(0; f) + \frac{4Q + 7}{d} \Theta(\infty; f), \quad 5 \delta(0; g) + \frac{4Q + 7}{d} \Theta(\infty; g) \right\} > \frac{4Q + 4d + 7}{d},
\]

then either $P(f) \equiv P(g)$ or $P(f) \cdot P(g) \equiv a^2$.

Remark 1. If $P(f)$ and $P(g)$ share $a = a(z)$ CM, then the condition (1.3) of Theorem 1.1 can be replaced by the following

\[
\min \left\{ 2 \delta(0; f) + \frac{Q + 4}{d} \Theta(\infty; f), \quad 2 \delta(0; g) + \frac{Q + 4}{d} \Theta(\infty; g) \right\} > \frac{Q + d + 4}{d}.
\]

Theorem 1.2. Let f and g be two nonconstant meromorphic functions and $a = a(z) \not\equiv 0, \infty \in S(f) \cap S(g)$. Suppose that $P(f)$ and $P(g)$, as defined by (1.2), are nonconstant. If f and g share the values 0 CM and ∞ IM and $P(f)$, $P(g)$ share $a = a(z)$ IM and

\[
5 \delta(0; f) + \frac{4Q + 7}{d} \Theta(\infty; f) > \frac{4Q + 4d + 7}{d},
\]

then either $P(f) \equiv P(g)$ or $P(f) \cdot P(g) \equiv a^2$.

Theorem 1.3. Let f and g be two nonconstant entire functions and $a = a(z) \not\equiv 0, \infty \in S(f) \cap S(g)$. Suppose that $P(f)$ and $P(g)$, as defined by (1.2), are nonconstant. If f and g share the value 0 CM and $P(f)$, $P(g)$ share $a = a(z)$ CM and $\delta(0; f) > \frac{1}{2}$, then either $P(f) \equiv P(g)$ or $P(f) \cdot P(g) \equiv a^2$.

Remark 2. If $P(f)$ and $P(g)$ share $a = a(z)$ IM, then the condition $\delta(0; f) > \frac{1}{2}$ of Theorem 1.3 has to be replaced by $\delta(0; f) > \frac{1}{5}$.

As the consequences of the main results we obtain the following corollaries.
Corollary 1.1. Let \(f \) and \(g \) be two nonconstant meromorphic functions. Suppose that \(\alpha(f^{(k)})^n \) and \(\alpha(g^{(k)})^n \) are nonconstant and share the value 1 IM, where \(\alpha(\not=0) \) is a constant and \(k, n \) are positive integers. If
\[
\min \left\{ 5\delta(0; f) + \frac{4kn+7}{n}\Theta(\infty; f), 5\delta(0; g) + \frac{4kn+7}{n}\Theta(\infty; g) \right\} > \frac{4kn+4n+7}{n},
\]
then either \(\alpha^2(f^{(k)}g^{(k)})^n \equiv 1 \) or \(f \equiv \omega g \), where \(\omega^n = 1 \).

If, in addition, \(f(z_0) = g(z_0) \neq 0 \) for some \(z_0 \in \mathbb{C} \), then \(\omega = 1 \).

Corollary 1.2. Let \(f \) and \(g \) be two nonconstant entire functions such that \(P(f) \) and \(P(g) \), as defined by (1.1), are nonconstant. Suppose that \(f \) and \(g \) share the value 0 CM and \(P(f) \), \(P(g) \) share the value 1 CM. If \(\delta(0; f) > \frac{1}{2} \), then either \(f \equiv g \) or \(P(f) \cdot P(g) \equiv 1 \) under any one of the following hypotheses:

(i) \(\rho(f) \neq 1 \),
(ii) \(\rho(f) = 1 \) and

(a) \(f \) has at most a finite number of zeros, or
(b) \(f \) has infinitely many zeros and \(f \) is of minimal type.

We now recall some well known notations of the value distribution theory. Let \(F \) and \(G \) be two nonconstant meromorphic functions, which share the value 1 IM. We denote by \(\overline{N}_L(r, 1; F) \) the reduced counting function of those zeros of \(F - 1 \) in \(\{ z : |z| < r \} \), which have larger multiplicities than those of the corresponding zeros of \(G - 1 \). Also we denote by \(N_L^1(r, 1; F) \) the reduced counting function of common simple zeros of \(F - 1 \) and \(G - 1 \) in \(\{ z : |z| < 1 \} \), and denote by \(\overline{N}_E^1(r, 1; F) \) the counting function of those common multiple zeros of \(F - 1 \) and \(G - 1 \) in \(\{ z : |z| < 1 \} \), where each such common multiple zero of \(F - 1 \) and \(G - 1 \) has the same multiplicity related to \(F - 1 \) and \(G - 1 \). Likewise we define \(\overline{N}_L(r, 1; G) \), \(N_L^1(r, 1; G) \) and \(N^1_E(r, 1; G) \).

Also we denote by \(N_{12}(r, 0; F) \) the counting function of simple zeros of \(F \) and by \(\overline{N}_{12}(r, 0; F) \) the reduced counting function of multiple zeros of \(F \) in \(\{ z : |z| < r \} \).

2. Lemmas

In this section we present some necessary lemmas.

Lemma 2.1. Let \(f \) be a nonconstant meromorphic function and \(P(f) \) be defined by (1.2). Then
\[
T(r, P) \leq dT(r, f) + Q\overline{N}(r, \infty; f) + S(r, f)
\]
and
\[
N(r, 0; P) \leq T(r, P) - dT(r, f) + dN(r, 0; f) + S(r, f)
\leq Q\overline{N}(r, \infty; f) + dN(r, 0; f) + S(r, f).
\]
Proof. Since
\[N(r, P) \leq dN(r, f) + QN(r, \infty; f) + S(r, f) \] and
\[m(r, f) \leq m(r, \frac{P}{f^d}) + m(r, f^d) = dm(r, f) + S(r, f), \] we get
\[(2.1) \quad T(r, P) \leq dT(r, f) + QN(r, \infty; f) + S(r, f). \]

Now
\[m(r, 0; f^d) \leq m(r, 0; P) + m(r, \frac{P}{f^d}) = m(r, 0; P) + S(r, f) \] and so
\[T(r, f^d) - N(r, 0; f^d) \leq T(r, P) - N(r, 0; P) + S(r, f) \] i.e.,
\[(2.2) \quad N(r, 0; P) \leq T(r, P) - dT(r, f) + dN(r, 0; f) + S(r, f). \]

The lemma follows from (2.1) and (2.2). □

Lemma 2.2 ([16]). Let \(F \) and \(G \) be two nonconstant meromorphic functions such that \(F \) and \(G \) share 1 IM. Then
\[T(r, F) \leq N(r, 0; F) + N(r, \infty; F) + N(r, 0; G) + N(r, \infty; G) + N_F(1; F) \]
\[+ N_L(1; F) - N_0(r, \infty; F^{(1)}) - N_0(r, 0; G^{(1)}) + S(r, F) + S(r, G), \]
where \(N_0(r, 0; F^{(1)}) \) denotes the counting function corresponding to the zeros of \(F^{(1)} \) that are not zeros of \(F \) and \(F - 1 \), \(N_0(r, 0; G^{(1)}) \) denotes the counting function corresponding to the zeros of \(G^{(1)} \) that are not zeros of \(G \) and \(G - 1 \).

Lemma 2.3 ([2, p. 47]). Let \(f \) be a nonconstant meromorphic function and \(a_1, a_2, a_3 \) be three distinct members of \(S(f) \). Then
\[T(r, f) \leq N(r, 0; f - a_1) + N(r, 0; f - a_2) + N(r, 0; f - a_3) + S(r, f). \]

Lemma 2.4 ([3]). Let \(f \) be a transcendental meromorphic function and \(P(f) \), defined by (1.2), be nonconstant and \(d \geq 1 \). Then
\[dT(r, f) \leq N(r, \infty; f) + N(r, 1; P(f)) + dN(r, 0; f) - N_0(r, 0; (P(f))^{(1)}) + S(r, f), \]
where \(N_0(r, 0; (P(f))^{(1)}) \) denotes the counting function corresponding to the zeros of \((P(f))^{(1)} \) which are not the zeros of \(P(f) \) and \(P(f) - 1 \).

Remark 3. In fact Lemma 2.4 is a special case of Lemma 1 [3].

Lemma 2.5 ([12, p. 92]). Suppose that \(f_1, f_2, \ldots, f_n \) (\(n \geq 3 \)) are meromorphic functions which are not constants except for \(f_n \). Furthermore, let \(\sum_{j=1}^n f_j \equiv 1 \).

If \(f_n \neq 0 \) and
\[\sum_{j=1}^n N(r, 0; f_j) + (n - 1) \sum_{j=1}^n N(r, \infty; f_j) < \{ \lambda + o(1) \} T(r, f_k), \]
where $r \in I$, a set of infinite linear measure, $k = 1, 2, \ldots, n - 1$ and $0 < \lambda < 1$, then $f_n \equiv 1$.

3. Proof of theorems and corollaries

Proof of Theorem 1.1. Let $F = \frac{P(f)}{a}$ and $G = \frac{P(g)}{a}$. Then F and G share 1 IM and so by Lemma 2.2 we get

$$T(r, F) \leq \overline{N}(r, 0; F) + \overline{N}(r, \infty; F) + \overline{N}(r, 0; G) + \overline{N}(r, \infty; G) + N_E^1(r, 1; F)$$

(3.1)

$$+ \overline{N}_L(r, 1; F) - N_0(r, 0; F^{(1)}) - N_0(r, 0; G^{(1)}) + S(r, F) + S(r, G).$$

Let

$$H = \left(\frac{F^{(2)}}{F^{(1)}} - \frac{2F^{(1)}}{F - 1} \right) - \left(\frac{G^{(2)}}{G^{(1)}} - \frac{2G^{(1)}}{G - 1} \right).$$

We suppose that $H \neq 0$. Then by a simple calculation we see that

$$N_E^1(r, 1; F) \leq N(r, 0; H)$$

(3.2)

$$\leq T(r, H)$$

$$\leq N(r, \infty; H) + S(r, F) + S(r, G)$$

and

$$N(r, \infty; H) \leq \overline{N}_2(r, 0; F) + \overline{N}(r, \infty; F) + \overline{N}_2(r, 0; G) + \overline{N}(r, \infty; G)$$

$$+ \overline{N}_L(r, 1; F) + \overline{N}_L(r, 1; G) + N_0(r, 0; F^{(1)}) + N_0(r, 0; G^{(1)}).$$

(3.3)

Noting that $\overline{N}(r, 0; F) + \overline{N}_2(r, 0; F) \leq N(r, 0; F)$ and combining (3.1), (3.2) and (3.3) we get

$$T(r, F) \leq N(r, 0; F) + 2\overline{N}(r, \infty; F) + N(r, 0; G) + 2\overline{N}(r, \infty; G)$$

$$+ 2\overline{N}_L(r, 1; F) + \overline{N}_L(r, 1; G) + S(r, F) + S(r, G).$$

(3.4)

Now by Lemma 2.1 and (3.4) we get

$$N(r, 0; F) \leq T(r, F) - dT(r, F) + dN(r, 0; f) + S(r, f)$$

$$\leq N(r, 0; F) + 2\overline{N}(r, \infty; F) + Q\overline{N}(r, \infty; g) + dN(r, 0; g)$$

$$+ 2\overline{N}(r, \infty; g) + 2\overline{N}_L(r, 1; F) + \overline{N}_L(r, 1; G) - dT(r, f)$$

$$+ dN(r, 0; f) + S(r, f) + S(r, g)$$

and so

$$dT(r, f) \leq dN(r, 0; f) + 2\overline{N}(r, \infty; f) + dN(r, 0; g) + (Q - 2)\overline{N}(r, \infty; g)$$

$$+ 2\overline{N}_L(r, 1; F) + \overline{N}_L(r, 1; G) + S(r, f) + S(r, g).$$

(3.5)

Again using Lemma 2.1 we obtain

$$\overline{N}_L(r, 1; F) \leq N(r, 1; F) - \overline{N}(r, 1; F)$$

$$\leq N(r, 0; F^{(1)})$$

$$\leq N(r, 0; F) + \overline{N}(r, \infty; F) + S(r, F)$$
\[
\leq dN(r, 0; f) + (Q + 1)\overline{N}(r, \infty; f) + S(r, f).
\]

Similarly
\[
\overline{N}_L(r, 1; G) \leq dN(r, 0; g) + (Q + 1)\overline{N}(r, \infty; g) + S(r, g).
\]

Combining (3.5), (3.6) and (3.7) we obtain
\[
T(r, f) \leq 3N(r, 0; f) + \frac{2Q + 4}{d}N(r, \infty; f) + 2N(r, 0; g)
\]
\[
+ \frac{2Q + 3}{d}\overline{N}(r, \infty; g) + S(r, f) + S(r, g).
\]

Likewise we have
\[
T(r, g) \leq 3N(r, 0; g) + \frac{2Q + 4}{d}N(r, \infty; g) + 2N(r, 0; f)
\]
\[
+ \frac{2Q + 3}{d}\overline{N}(r, \infty; f) + S(r, f) + S(r, g).
\]

Adding (3.8) and (3.9) we obtain
\[
T(r, f) + T(r, g) \leq 5N(r, 0; f) + \frac{4Q + 7}{d}N(r, \infty; f) + 5N(r, 0; g)
\]
\[
+ \frac{4Q + 7}{d}\overline{N}(r, \infty; g) + S(r, f) + S(r, g),
\]

which implies a contradiction to the hypothesis. Therefore \(H \equiv 0\) and so on integration we get
\[
\frac{1}{G - 1} = \frac{A}{F - 1} + B,
\]

where \(A(\neq 0)\) and \(B\) are constants. This gives
\[
G = \frac{(B + 1)F + (A - B - 1)}{BF + A - B}
\]
\[
(3.10)
\]
and
\[
F = \frac{(B - A)G + (A - B - 1)}{BG - (B + 1)}.
\]
\[
(3.11)
\]

We now consider the following three cases.

Case 1: Let \(B \neq 0, -1\). From (3.11) we have \(\overline{N}(r, \frac{B + 1}{B}; G) = \overline{N}(r, \infty; F)\).

Now by the second fundamental theorem and Lemma 2.2 we get
\[
T(r, G) \leq N(r, 0; G) + \frac{B + 1}{B}G + \overline{N}(r, \infty; G) + S(r, G)
\]
\[
\leq T(r, G) - dT(r, g) + dN(r, 0; g) + \overline{N}(r, \infty; F) + \overline{N}(r, \infty; G) + S(r, g)
\]
i.e.,
\[
dT(r, g) \leq dN(r, 0; g) + \overline{N}(r, \infty; f) + \overline{N}(r, \infty; g) + S(r, g).
\]
\[
(3.12)
\]
If \(A - B - 1 \neq 0 \), from (3.10) we have \(N(r, \frac{B+1-A}{B+1}; F) = N(r, 0; G) \). Hence by the second fundamental theorem and Lemma 2.2 we get
\[
T(r, F) \leq N(r, 0; F) + \overline{N}(r, \frac{B+1-A}{B+1}; F) + \overline{N}(r, \infty; F) + S(r, F)
\]
\[
\leq T(r, F) - dT(r, f) + dN(r, 0; f) + N(r, 0; G) + \overline{N}(r, \infty; f) + S(r, f)
\]
i.e.,
\[
dT(r, f) \leq dN(r, 0; f) + dN(r, 0; g) + \overline{N}(r, \infty; f)
\]
(3.13)
\[
+ Q\overline{N}(r, \infty; g) + S(r, f) + S(r, g).
\]
Combining (3.12) and (3.13) we obtain
\[
T(r, f) + T(r, g) \leq N(r, 0; f) + \frac{2}{d} \overline{N}(r, \infty; f) + 2N(r, 0; g)
\]
\[
\frac{Q+1}{d} \overline{N}(r, \infty; g) + S(r, f) + S(r, g),
\]
a contradiction.
Hence \(A - B - 1 = 0 \) and from (3.10) we get
\[
G = \frac{(B + 1)F}{BF + 1}.
\]
Therefore \(\overline{N}(r, 0; F + \frac{1}{B}) = \overline{N}(r, \infty; G) \). Again by the second fundamental theorem and Lemma 2.2 we obtain
\[
T(r, F) \leq N(r, 0; F) + \overline{N}(r, 0; F + \frac{1}{B}) + \overline{N}(r, \infty; F) + S(r, F)
\]
\[
\leq T(r, F) - dT(r, f) + dN(r, 0; f) + \overline{N}(r, \infty; g) + \overline{N}(r, \infty; f) + S(r, f)
\]
i.e.,
(3.14) \[
dT(r, f) \leq dN(r, 0; f) + \overline{N}(r, \infty; f) + \overline{N}(r, \infty; g) + S(r, f).
\]
Combining (3.12) and (3.14) we have
\[
T(r, f) + T(r, g) \leq N(r, 0; f) + N(r, 0; g) + \frac{2}{d} \overline{N}(r, \infty; f)
\]
\[
+ \frac{2}{d} \overline{N}(r, \infty; g) + S(r, f) + S(r, g),
\]
a contradiction.
Case 2: We suppose that \(B = 0 \). From (3.10) and (3.11) we have
\[
G = \frac{F + A - 1}{A} \quad \text{and} \quad F = AG + 1 - A.
\]
If \(A - 1 \neq 0 \), then it follows that
\[
N(r, 1 - A; F) = N(r, 0; G) \quad \text{and} \quad N(r, \frac{A - 1}{A}; G) = N(r, 0; F).
\]
Using the similar argument of Case 1 we arrive at a contradiction. Therefore \(A - 1 = 0 \) and so \(P(f) \equiv P(g) \).
Case 3: We suppose that \(B = -1 \). From (3.10) and (3.11) we get
\[
G = \frac{A}{A+1} \quad \text{and} \quad F = \frac{(A+1)G-A}{G}.
\]
If \(A+1 \neq 0 \), we obtain
\[
\mathcal{N}(r, A+1; F) = \mathcal{N}(r, \infty; G) \quad \text{and} \quad N(r, \frac{A}{A+1}; G) = N(r, 0; F).
\]
Using the similar argument of Case 1 we arrive at a contradiction. Therefore \(A+1 = 0 \) and so \(P(f)P(g) \equiv a^2 \). This proves the theorem. \(\square \)

Proof of Theorem 1.2. Let \(F = \frac{P(f)}{a} \) and \(G = \frac{P(g)}{a} \). Then \(F \) and \(G \) share 1 IM and so by Lemma 2.2 and Lemma 2.5 we get
\[
dT(r, f) \leq \mathcal{N}(r, \infty; f) + \mathcal{N}(r, 1; F) + dN(r, 0; f) + S(r, f)
\]
\[
= \mathcal{N}(r, \infty; g) + \mathcal{N}(r, 1; G) + dN(r, 0; g) + S(r, f)
\]
(3.15)
\[
\leq (1 + 2d + Q)T(r, g) + S(r, f) + S(r, g).
\]
Similarly
(3.16)
\[
dT(r, g) \leq (1 + 2d + Q)T(r, f) + S(r, f) + S(r, g).
\]
From (3.15) and (3.16) we get \(S(r, f) = S(r, g) \). The rest of the proof is similar to that of Theorem 1.1. This proves the theorem. \(\square \)

Proof of Corollary 1.1. By Theorem 1.1 we get either \(a^2(f^{(k)}g^{(k)})^n \equiv 1 \) or \((f^{(k)})^n \equiv (g^{(k)})^n \). We suppose that \((f^{(k)})^n \equiv (g^{(k)})^n \). Then \(f^{(k)} = \omega g^{(k)} \), where \(\omega \) is a constant satisfying \(\omega^n = 1 \). Integrating \(k \) times we obtain \(f = \omega g + p \), where \(p \) is a polynomial of degree at most \(k - 1 \). From the hypothesis it is clear that \(f \) and \(g \) are transcendental meromorphic functions. If \(p \neq 0 \), by Lemma 2.3 we get
\[
T(r, f) \leq N(r, 0; f) + N(r, 0; f - p) + \mathcal{N}(r, \infty; f) + S(r, f)
\]
(3.17)
\[
= N(r, 0; f) + N(r, 0; g) + \mathcal{N}(r, \infty; f) + S(r, f)
\]
and
\[
T(r, g) \leq N(r, 0; g) + N(r, 0; g + \frac{p}{\omega}) + \mathcal{N}(r, \infty; g) + S(r, g)
\]
(3.18)
\[
= N(r, 0; g) + N(r, 0; f) + \mathcal{N}(r, \infty; g) + S(r, g).
\]
Combining (3.17) and (3.18) we obtain
\[
T(r, f) + T(r, g) \leq 2N(r, 0; f) + 2N(r, 0; g) + \mathcal{N}(r, \infty; f)
\]
\[
+ \mathcal{N}(r, \infty; g) + S(r, f) + S(r, g),
\]
which contradicts the hypothesis. Therefore \(p \equiv 0 \) and so \(f \equiv \omega g \).

If, further, \(f(z_0) = g(z_0) \neq 0 \) for some \(z_0 \in \mathbb{C} \), then clearly \(\omega = 1 \) and so \(f \equiv g \). This proves the corollary. \(\square \)
Proof of Corollary 1.2. By Theorem 1.3 we get either $P(f) \equiv P(g)$ or $P(f) \cdot P(g) \equiv 1$. Let $P(f) \equiv P(g)$ so that $P(g - f) \equiv 0$. Then

\[(3.19) \quad g - f = \sum_{j=1}^{m} p_j(z)e^{\alpha_j z},\]

where $m(\leq k)$ is a positive integer, α_j's are distinct complex constants and $p_j(z)$'s are nonzero polynomials.

Since f and g share 0 CM, we can put $g = f \cdot e^h$, where h is an entire function.

Let $e^h \neq 1$, otherwise we are done. So from (3.19) we get

\[f = \frac{\sum_{j=1}^{m} p_j(z)e^{\alpha_j z}}{e^h - 1}.\]

Since f is entire, we see that $N(r,0;e^h - 1) \leq N(r,0;\sum_{j=1}^{m} p_j(z)e^{\alpha_j z})$ and by the second fundamental theorem we get

\[T(r, e^h) \leq N(r,\infty; e^h) + N(r,0; e^h - 1) + S(r, e^h)\]

\[\leq N\left(r,0; \sum_{j=1}^{m} p_j(z)e^{\alpha_j z}\right) + S(r, e^h)\]

\[\leq T\left(r, \sum_{j=1}^{m} p_j(z)e^{\alpha_j z}\right) + S(r, e^h)\]

\[\leq \sum_{j=1}^{m} \{T(r,p_j(z)) + T(r, e^{\alpha_j z})\} + S(r, e^h)\]

(3.20)

\[= O(\log r) + O(r) + S(r, e^h).\]

If h is transcendental or a polynomial of degree at least 2, then from (3.20) we see that $T(r, e^h) = S(r, e^h)$, contradiction. Hence h is a polynomial of degree at most 1.

First we assume that h is a constant. Then $P(f) \equiv P(g) \equiv e^h P(f)$ and so $e^h \equiv 1$, which contradicts our assumption.

Next we assume that $h(z) = az + b$, where $a(\neq 0)$ and b are constants. Then

\[f = \frac{\sum_{j=1}^{m} p_j(z)e^{\alpha_j z}}{e^{az+b} - 1} \quad \text{and so} \quad \rho(f) \leq 1.\]

We now consider the following cases.

Case 1: Let $\rho(f) < 1$.

Then by Milloux basic result [2, Theorem 3.2, p. 57] we get

\[T(r,f) \leq N(r,0;f) + N(1;P(f)) + S(r,f)\]

\[= N(r,0;g) + N(1;P(g)) + S(r,f)\]

\[\leq T(r,g) + T(r,P(g)) + S(r,f)\]

(3.21)
\[T(r, g) + m(r, P(g)) + S(r, f) \]
\[\leq T(r, g) + m(r, g) + m\left(\frac{P(g)}{g}\right) + S(r, f) \]
\[= 2T(r, g) + S(r, g) + S(r, f). \]
(3.21)

Similarly
\[T(r, g) \leq 2T(r, f) + S(r, f) + S(r, g). \]
(3.22)

Since \(f \) and so \(g \) is of finite order, from (3.21) and (3.22) we see that \(\rho(f) = \rho(g) \). Therefore
\[\rho(e^{az+b}) = \rho\left(\frac{g}{f}\right) \leq \max\{\rho(f), \rho(g)\} < 1, \]
which is impossible as \(a \neq 0 \).

Case 2: Let \(\rho(f) = 1 \).

We now consider the following subcases.

Subcase 2.1: Let \(f \) have at most a finite number of zeros.

We put \(f(z) = q(z)e^{cz+d} \), where \(q(z) \) is a polynomial. Then
\[g(z) = q(z)e^{(a+c)z+(b+d)} \]
and so \(P(f) \equiv P(g) \) implies
\[q_1(z)e^{cz+d} = q_2(z)e^{(a+c)z+(b+d)}, \]
where \(q_1, q_2 \) are polynomials. This implies \(q_2(z)e^{az+b} = q_1(z) \), which is impossible as \(a \neq 0 \).

Subcase 2.2: Let \(f \) have infinitely many zeros and \(f \) be of minimal type.

We put
\[H_j(z) = -\frac{p_j(z)e^{\alpha_j z}}{f} \quad \text{for } 1 \leq j \leq m, \quad \text{and } H_{m+1}(z) = e^{az+b}. \]
Then \(f = \frac{\sum_{j=1}^{m} p_j(z)e^{\alpha_j z}}{e^{az+b} - 1} \) implies
\[\sum_{j=1}^{m+1} H_j(z) \equiv 1. \]
(3.23)

Let one of \(\alpha_j \)'s, say \(\alpha_1 \) be zero. Then \(H_1 \neq 0 \) and we rewrite (3.23) as
\[\sum_{j=2}^{m+1} H_j(z) + H_1(z) \equiv 1. \]
Now
\[\sum_{j=1}^{m+1} N(r, 0; H_j) + m \sum_{j=1}^{m+1} N(r, \infty; H_j) = \sum_{j=1}^{m+1} N(r, 0; p_j) + m^{2}\overline{N}(r, 0; f) \]
\[= O(\log r) + m^{2}\overline{N}(r, 0; f). \]
(3.24)
Since $e^{\alpha z} = -\frac{H_j(z)}{p_j(z)} f$, we get
$$T(r, e^{\alpha z}) \leq T(r, H_j) + T(r, f) + O(\log r).$$
This implies
$$\frac{|\alpha|}{\pi} \leq \frac{T(r, H_j)}{r} + \frac{T(r, f)}{r} + o(1)$$
and so
$$\liminf_{r \to \infty} \frac{T(r, H_j)}{r} + \limsup_{r \to \infty} \frac{T(r, f)}{r} \geq \frac{|\alpha|}{\pi}.$$ Since f is of minimal type, we get
$$\liminf_{r \to \infty} \frac{T(r, H_j)}{r} \geq K \text{ for } j = 2, 3, \ldots, m,$$
where $K = \min_{2 \leq j \leq m} \frac{|\alpha_j|}{\pi} > 0$.

Hence for $j = 1, 2, \ldots, m$ we get
$$\limsup_{r \to \infty} \frac{N(r, 0; f)}{T(r, H_j)} \leq \limsup_{r \to \infty} \frac{T(r, f)}{r} \cdot \limsup_{r \to \infty} \frac{r}{T(r, H_j)} = 0.$$ Also
$$\limsup_{r \to \infty} \frac{N(r, 0; f)}{T(r, H_{m+1})} \leq \frac{\pi}{|a|} \limsup_{r \to \infty} \frac{T(r, f)}{r} = 0.$$ So from (3.24) we see that
$$\sum_{j=1}^{m+1} N(r, 0; H_j) + m \sum_{j=1}^{m+1} N(r, \infty; H_j) < \{\lambda + o(1)\} T(r, H_k)$$
for $k = 2, 3, \ldots, m+1$, where $\lambda (0 < \lambda < 1)$ is a suitable constant.

Therefore by Lemma 2.5 we get $H_1(z) \equiv 1$, which is impossible as $\rho(f) = 1$.
So, $\alpha_j \neq 0$ for $j = 1, 2, \ldots, m$. Now adopting the same technique as above we get $H_{m+1}(z) \equiv 1$, which contradicts our assumption that $e^h \neq 1$. This proves the corollary. \hfill \square

Remark 4. It is an interesting open problem to examine the validity of corollary 1.2 for entire functions f and g where f is of unit order with nonminimal type and f has infinitely many zeros.

Acknowledgement. The authors are thankful to the referee for valuable suggestions towards the improvement of the exposition of the paper.

References

[1] A. Chen, X. Wang, and G. Zhang, *Unicity of meromorphic function sharing one small function with its derivative*, Int. J. Math. Math. Sci. 2010 (2010), Article Id 507454, 11 pages.

[2] W. K. Hayman, *Meromorphic Functions*, The Clarendon Press, Oxford, 1964.

[3] J. D. Hinchliffe, *On a result of Chuang related to Hayman’s alternative*, Comput. Methods Funct. Theory 2 (2002), no. 1, 293–297.
[4] X. H. Hua, A unicity theorem for entire functions, Bull. London Math. Soc. 22 (1990), no. 5, 457–462.
[5] I. Lahiri, Uniqueness of meromorphic functions as governed by their differential polynomials, Yokohama Math. J. 44 (1997), no. 2, 147–156.
[6] I. Lahiri, Differential polynomials and uniqueness of meromorphic functions, Yokohama Math. J. 45 (1998), no. 1, 31–38.
[7] J. T. Li and P. Li, Uniqueness of entire functions concerning differential polynomials, Commun. Korean Math. Soc. 30 (2015), no. 2, 93–101.
[8] E. Mues and M. Reinders, On a question of C. C. Yang, Complex Var. Theory Appl. 34 (1997), no. 1-2, 171–179.
[9] K. Shibazaki, Unicity theorems for entire functions of finite order, Mem. Nat, Defence Acad. (Japan) 21 (1981), no. 3, 67–71.
[10] C. C. Yang, On two entire functions which together with their first derivatives have the same zeros, J. Math. Anal. Appl. 56 (1976), no. 1, 1–6.
[11] C. C. Yang and H. X. Yi, A unicity theorem for meromorphic functions with deficient value, Acta Math. Sinica 37 (1994), no. 1, 62–72.
[12] C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Science Press, Beijing and Kluwer Academic Publishers, New York, 2003.
[13] H. X. Yi, Uniqueness of meromorphic functions and a question of C. C. Yang, Complex Var. Theory Appl. 14 (1990), no. 1-4, 169–176.
[14] H. X. Yi, A question of C. C. Yang on the uniqueness of entire functions, Kodai Math. J. 13 (1990), no. 1, 39–46.
[15] H. X. Yi, Unicity theorems for entire or meromorphic functions, Acta Math. Sin. (N.S.) 10 (1994), no. 2, 121–131.
[16] H. X. Yi, Uniqueness theorems for meromorphic functions whose nth derivatives share the same 1-points, Complex Var. Theory Appl. 34 (1997), no. 4, 421–436.
[17] H. X. Yi and C. C. Yang, A unicity theorem for meromorphic functions whose nth derivatives share the same 1-points, J. Anal. Math. 62 (1994), 261–270.

Indrajit Lahiri
Department of Mathematics
University of Kalyani
West Bengal 741235, INDIA
E-mail address: ilahiri@hotmail.com

Bipul Pal
Department of Mathematics
University of Kalyani
West Bengal 741235, INDIA
E-mail address: palbipul86@gmail.com