A meta-analysis evaluating the relationship between B-type Raf kinase mutation and cervical lymphatic metastasis in papillary thyroid cancer

Hongzhi Ma, MDa,∗, Ru Wang, MDa, Jugao Fang, MDa, Qi Zhong, MDa, Xiao Chen, MDa, Lizhen Hou, MDa, Ling Feng, MDa, Xiaohong Chen, MDa, Zhigang Huang, MDa, Huanhu Zhao

Abstract

Background: B-type Raf kinase (BRAF) mutation is proved to be a critical predictive factor in papillary thyroid cancer (PTC) with aggressive characteristics. However, the association between BRAF mutation and cervical lymphatic metastasis in PTC is controversial.

Methods: We searched papers on the study of BRAF mutation and cervical lymphatic metastasis in PTC patients through PubMed, Web of Science, Embase, and Cochranelibrary. The BRAF (+) cases, BRAF (−) cases, and cervical lymphatic metastatic cases in both BRAF (+) and BRAF (−) groups were collected. After Quality assessment, statistical Analysis (funnel plot and Harbord evaluation, Random-effect model, heterogeneity, subgroup analysis, sensitivity analysis, and metacum analysis) were done by the Review Manager (RevMan) 5.3 and stata14 statistical software.

Results: There were 78 cross-section studies which met our inclusion criteria. And all of them had no selection bias, publication bias, or any other bias. A significant association existed between BRAF mutation and cervical lymph node metastasis (LNM) (odds ratio [OR] = 1.63; 95% confidence interval [CI]: 1.44–1.84; P < .05). Overall, 46 studies were conducted among East Asians. Twenty four articles had provided the data of central lymph node metastasis (CLNM), 11 articles with the data of lateral lymph node metastasis (LLNM), and classic/conventional PTC (CPTC) was analyzed in 10 studies. Subgroup analyses were performed based on ethnicity, metastatic site, and subtype of PTC. Significant association between BRAF (+) mutation and cervical LNM were indicated in East Asians (OR = 1.73; 95% CI: 1.49–2.02; P < .05), in non-East Asians (OR = 1.57; 95% CI: 1.26–1.96; P < .05), and in CLNM (OR = 1.80; 95% CI: 1.56–2.07; P < .05). While no significant association was found in LLNM (OR = 1.37; 95% CI: 0.76–2.48; P = .29 > .05) and in CPTC (OR = 1.32; 95% CI: 0.97–1.80; P = .08 > .05). We did not find any other major changes when sensitivity analysis was performed. The metacum analysis showed no significant association existed before 2012. While a significant association began to exist between BRAF mutation and LNM from 2012, and this association became stable from 2017.

Conclusions: We consider that a significant association exists between BRAF mutation and cervical LNM. Further meta-analysis on subgroup may reveal some valuable factors between BRAF gene mutation and LNM. And we do not recommend that BRAF (+) as the biomarker for LNM in PTC.

Abbreviations: BRAF = B-type Raf kinase, CIs = confidence intervals, CLNM = central lymph node metastasis, CPTC = classic/conventional PTC, LLNM = lateral lymph node metastasis, LNM = lymphatic metastasis, OR = odds ratio, PTC = papillary thyroid cancer, RevMan = Review Manager.

Keywords: B-type Raf kinase mutation, lymphatic metastasis, meta-analysis, papillary thyroid cancer

Editor: Bernhard Schaller.

Ethical approval and informed consent is not applicable in this study.

This work was supported by the “Capital Health Research and Development of Special Fund (2018–2–2054),” “Wu Jeiping Medical Foundation (320.6750.18229),” and “Thyroid Research of Young and Middle-aged Physicians.”

The authors have no conflicts of interest to disclose.

∗ Department of Otologyngology, Head and Neck Surgery, Thyroid Center, Beijing Tong Ren Hospital, Capital Medical University, Beijing. School of Pharmacy, Minzu University of China, China.

Correspondence: Hongzhi Ma, Jugao Fang, Department of Otologyngology, Head and Neck Surgery, Thyroid Center, Beijing Tong Ren Hospital, Capital Medical University, Beijing, China (e-mail: ma_hz@126.com, fangjuga@163.com).
1. Introduction

The B-type Raf kinase (BRAF) gene, found on chromosome 7q24, encodes a cytoplasmic serinethreonine protein kinase, is the major activator of MAPK signal pathway, and is proved to play a key role in the development of many malignant tumors.\(^1\)\(^\text{–}\)\(^3\) The study on BRAF gene in thyroid cancers began in the early of 21st century, and BRAF mutation is considered as one of the most important molecular biomarkers in papillary thyroid cancer (PTC). Approximately 99.8% of BRAF mutation in thyroid nodules is associated with thyroid cancer. The average frequency of BRAF mutation in PTC is around 45%, making BRAF mutations the most common defined genetic abnormality in thyroid cancers.\(^4\)\(^,\)\(^5\) Studies in the past years showed that BRAF mutation is a critical predictive factor in PTC with aggressive characteristics. BRAF (+) mutation was associated with T stage, extracapsule invasion, RAI refractory, and low overall survival (OS).\(^6\)\(^\text{–}\)\(^10\) However, the association between BRAF mutation and cervical lymph node metastasis (LNM) in PTC is controversial. Few studies had done researches on the association between BRAF and cervical metastatic sites of LNM, such para-tracheal region (which is defined as central lymph node metastasis) and Level II, III, IV, V (defined as lateral lymph node metastasis). Chen et al.\(^1\)\(^1\) Jeong et al.\(^1\)\(^2\) Lu et al.\(^1\)\(^3\) thought there were a significant relationship between BRAF mutation and LNM, while Tuccilli et al.\(^1\)\(^4\) Eloy et al.\(^1\)\(^5\) Guan et al.\(^1\)\(^6\) did not agree with them according to their studies. The incidence of thyroid nodules has been rising in recent years. Studies showed that about 19% to 67% of the population was affected by thyroid nodules, and among which 5% to 15% had malignant nodules.\(^1\)\(^7\) Thyroid carcinoma is the most common endocrine malignancy and accounts for 3% to 4% of all cancers in the United States. The estimated incidence in 2017 is 57,000 (15,000 men, 42,000 women) with 2000 deaths (900 men, 1100 women).\(^1\)\(^8\) The prevalence of cervical central lymph node metastasis (CLNM) can reach as high as 7% to 65%.\(^1\)\(^9\)\(^–\)\(^2\)\(^1\) High resolution ultrasound is preferred for the detection of metastatic lymph nodes. However, it is difficult to evaluate the metastatic lymph nodes in PTC because of the narrow central area surrounded by bones. Surgeries including resection of primary tumor and neck dissection are the major treatment of PTC. But neck dissection is associated with the risk of damage to recurrent laryngeal nerve and mistaken removal of parathyroid gland, leading to vocal fold paralysis, dyspnea, or even permanent tracheotomy and spasm due to the permanent hypoparathyroidism. So it will bring great advantages to patients, if an effective method to predict the LNM in PTC can be found. According to the studies before, BRAF has a great possibility to be such a biomarker to predict LNM in PTC.

We searched 476 articles from PubMed, Web of Science, Embase, and Cochranelibrary, which included the relationship between BRAF mutation and LNM. Seventy-eight cross-sectional studies were selected into our study carefully. A strict standard meta-analysis was performed with the largest studies, and subgroup meta-analysis was first done in 3 subgroups: ethnicity, metastatic site, and subtype of PTC. The association between BRAF mutation and cervical LNM were considered and analyzed comprehensively in our study.

2. Materials and methods

Ethical approval was not necessary, because this is a meta-analysis of 78 cross-section studies which have been published without ethical controversies.

2.1. Inclusion criteria

Studies selected into this meta-analysis should be cross-sectional studies investigating the association between BRAF mutation and the risk of cervical LNM in papillary thyroid cancer, and written in English. Papers without the BRAF (+) cases, BRAF (−) cases, and cervical lymphatic metastatic cases in both BRAF (+) and BRAF (−) group should be removed. Papers including people <18 years old were excluded from our study. BRAF mutation should be detected from the primary thyroid tumor, and BRAF mutation got from metastatic sites or blood were also excluded from our study.

2.2. Literature search

We searched PubMed, Web of Science, Embase, and Cochranelibrary up to November 28, 2018 with the search strategy: PubMed: \(((\text{"Thyroid cancer", papillary"}) \text{ OR } \text{"Papillary thyroid carcinoma"} [\text{Title/Abstract}]) \text{ OR } \text{"Papillary Carcinoma Of Thyroid"} [\text{Title/Abstract}] \text{ OR } \text{"Thyroid carcinoma, papillary"} [\text{Title/Abstract}] \text{ OR } \text{"Nonmedullary Thyroid Carcinoma"} [\text{Title/Abstract}] \text{ OR } \text{"Familial Nonmedullary Thyroid Cancer"} [\text{Title/Abstract}] \text{ AND } (((\text{"Lymphatic Metastasis"}) \text{ OR } \text{"Lymphatic Metastases"} [\text{Title/Abstract}] \text{ OR } \text{“Metastases, Lymphatic"} [\text{Title/Abstract}] \text{ OR } \text{“Metastasis, Lymphatic"} [\text{Title/Abstract}]) \text{ AND } (((\text{“BRAF protein, human”}) \text{ OR } \text{“v-raf murine sarcoma viral oncogene homolog B1, human”} [\text{Title/Abstract}] \text{ OR } \text{“B-Raf protein, human”} [\text{Title/Abstract}]) \text{ OR } \text{“B Raf kinase”} [\text{Title/Abstract}]);

Web of science: (“Papillary thyroid carcinoma” \text{ OR } (“Papillary papillary carcinoma” \text{ OR } “Papillary thyroid cancer”) \text{ AND } (“B Raf kinase” \text{ OR } (“B Raf Kinases” \text{ OR } “B-Raf protein, human”)) \text{ AND } (“Lymphatic Metastasis” \text{ OR } “lymph node metastasis”);

Embase: “thyroid papillary carcinoma” AND “lymph node metastasis” AND “B Raf kinase”

Cochranelibrary: (“Thyroid neoplasms” \text{ OR } (“Thyroid Cancers; Thyroid Carcinomas”) \text{ AND } (“Lymphatic Metastasis” \text{ OR } (“Proto-Oncogene Proteins B-raf” \text{ OR } “B-Raf Kinases; BRAF Kinases”)).

Additionally, if the same author published >1 studies based on the same case series, we will select the study of most recent publication or with the largest sample size. Any disagreement was settled by discussion and subsequently consensus with the authors.

2.3. Quality assessment

The quality assessment of each study was carried out independently by 2 authors. Quality appraisal of quantitative and qualitative studies was carried out using CochraneROB quality assessment scale. The checklists from the CochraneROB were used to assess and assign a quality score. Any disagreement regarding the quality of the study were resolved after discussion, and referred to a third author, if necessary.

2.4. Data extraction

We extracted the following information from each study: the first author, year of publication, patient sex, association of BRAF (+) with cervical LNM in each paper, the number of BRAF (+) cases, the number of LNM cases in BRAF (+) group, the number of BRAF (−) cases, the number of LNM cases in BRAF (−) group, and the details of subgroups (including ethnicity, metastatic site, and subtype of PTC if provided).
2.5. Statistical analysis

The Review Manager (RevMan) 5.3, stata14, and R 3.6.1 statistical software were employed to deal with quantitative data. Firstly, funnel plot and Harbord were constructed to evaluate whether publication bias might influence the validity of the estimates. A fixed or random effect model was then used to measure the risk of cervical LNM (odds ratio: OR) and its 95% confidence intervals (CIs) through RevMan5.3. The significance of the pooled estimate was made using the Z-test, and if \(P < .05 \), is considered to be statistical significant. Cochran Q-statistic was applied to estimate the degree of heterogeneity among studies. The \(I^2 \) test was also used to quantify the heterogeneity (range from 0% to 100%). Random-effect model was used when a significant Q-test with \(P < .05 \) or \(I^2 > 50\% \). Fixed-effects model was adopted when there was no statistical heterogeneity. In order to explore the potential sources of heterogeneity, subgroup analyses were performed based on ethnicity (East Asians, Non East Asians), metastatic site (central lymph node metastasis: CLNM, lateral lymph node metastasis: LLNM), and subtype of PTC (classic/conventional PTC: CPTC). To evaluate the influence of individual study on overall estimate, we performed a sensitivity analysis by omitting each study in turn. Finally, we use Meta cum to assess the stability of the results. All tests were 2-sided and a \(P \) value of <.05 was considered statistically significant.

3. Results

3.1. Baseline characteristics of included studies

Figure 1 shows the PRISMA diagram of how the studies were identified and screened. A total of 476 articles associated with the searched keywords were identified at first (PubMed: 126 papers; Embase: 290 papers; Web of Science: 59 papers, and Cochranelibrary: 1 paper). Of these articles, 95 were excluded due to the duplicates; 26 studies were removed because we could not get the full text. The full text of the left 355 papers was obtained. Another 270 papers were eliminated after reviewing the full text, and also 7 papers were removed for they were from the same author with the same case series. Eventually, 78 studies met our inclusion criteria were enrolled in our qualitative research after removing all unqualified records and the review papers. [11-16,22-93]

Table 1 lists the studies that were included in this meta-analysis and shows the baseline characteristics of all eligible studies. These 78 retrospective cohort studies included 25,906 PTC patients, among which 17,196 cases are BRAF mutation positive while 8710 are BRAF mutation negative. Overall, 46 studies were conducted among East Asians (China, South Korea, and Japan). Real-time PCR was performed to detect the BRAF mutation in 75 studies. Twenty four articles had provided the data of CLNM.
	First author	Year	Country	CPTC analysis	CLNM analysis	LLNM analysis	BRAF+ LNM in BRAF+	BRAF- LNM in BRAF-
1	Adegboye Ie Chen	2018	China	y	191	92	34	7
2	Agnieszka Walczyk	2014	Poland	y	37	35	20	10
3	Ah Young Park	2014	South Korea	y	476	148	212	38
4	Alexander Abrosimov	2006	Russian Federation	y	23	10	17	11
5	Ali S. Alzahran	2013	USA	y	96	39	185	38
6	Alona Finke	2016	Israel	y	49	12	10	3
7	Arik Chakraborty	2012	India	y	46	35	40	12
8	Aylin Yazgan	2016	Turkey	y	75	21	4	1
9	Azliana Mohamad Yusof	2018	Malaysia	y	8	6	3	1
10	Bo Hyun Kim	2015	South Korea	y	103	12	56	30
11	Brian Hung-Hin Lang	2014	South Korea	y	628	235	217	50
12	Bülent Kurt	2012	Turkey	y	40	16	6	1
13	C.L. Shi	2015	China	y	87	39	5	1
14	Carol Li	2013	USA	y	253	150	62	32
15	Chae-Kwon Jung	2010	South Korea	y	100	45	37	19
16	Chiara Tuccilli	2018	Italy	y	48	17	93	18
17	Christine J. O'Neill	2010	Australia	y	110	33	23	2
18	Christopher Gouveia	2013	USA	y	136	115	31	13
19	Dafeng Wang	2011	Malaysia	y	34	13	6	1
20	Dongjun Jeong	2013	South Korea	y	65	45	29	12
21	E. Takacsova	2017	Slovakia	y	103	58	96	67
22	Eun Sook Kim	2012	South Korea	y	224	110	55	26
23	F. Francis	2008	India	y	125	40	198	27
24	Fei Wang	2016	China	y	1024	437	524	44
25	Fei Wang	2018	USA	y	72	36	84	22
26	Gesta Gandolfi	2013	Italy	y	56	23	74	11
27	Guibin Zheng	2017	China	y	105	27	25	7
28	Hao Li	2017	China	y	19	5	22	12
29	Hyung Seok Kim	2012	South Korea	y	581	265	116	40
30	J. Lukas	2014	the Czech Republic	y	42	14	42	14
31	Jeong-Soo Pyo	2013	South Korea	y	96	37	21	12
32	Ji-Yong Joo	2012	South Korea	y	79	28	69	10
33	Jong-Soo Pyo	2014	South Korea	y	2219	914	728	219
34	Jung-Soo Pyo	2013	South Korea	y	110	60	12	5
35	Kuai-Lu Lin	2010	China	y	115	373	206	116
36	Kwang-Tae Huh	2012	South Korea	y	103	12	56	30
37	Li-Bo Yang	2015	China	y	465	346	154	100
38	Liewei Yi	2008	Japan	y	106	77	100	63
39	M. Li	2017	China	y	115	36	158	44
40	Metting Huang	2018	China	y	1444	943	364	116
41	Min Hee Kim	2014	nm (TCGA)	y	83	41	25	16
42	Miyeong Jang	2017	South Korea	y	581	265	116	40
43	Nael Sayed	2013	South Korea	y	110	60	12	5
44	Nathaniel Kurganov	2012	Turkey	y	125	40	198	27
45	Nekooe Saeedeh	2018	Iran	y	56	23	74	11
46	Nesthan Kurtulus	2012	Russia	y	48	17	93	18
47	Neslihan Kurtulmus	2013	Turkey	y	103	58	96	67
48	N.R. da Silva	2015	Brazil	y	74	37	42	15
49	Rafael Gonzalez	2016	China	y	465	343	154	100
50	Salvador Uliase	2012	Italy	y	44	15	47	25
51	Sara Watutani-Fernando	2018	Italy	y	14	11	10	5
52	Seo Ki Lim	2016	South Korea	y	2530	1111	577	207
53	Shi-Yang Dong	2017	China	y	171	125	116	64
54	Song Young Chung	2013	South Korea	y	86	43	25	8
55	Suh-Hwan Kim	2012	South Korea	y	361	133	168	42
56	Sun Y	2013	South Korea	y	73	11	29	7
57	Tung-Han Huang	2014	China	y	31	21	9	2
58	Ue Cho	2017	South Korea	y	12	2	140	5
59	Vito Rodolico	2007	Italy	y	88	23	126	19
60	Wael Y. Park	2016	South Korea	y	214	103	44	20
61	Weimin Wang	2016	China	y	312	128	145	59
62	Won Seo Park	2013	South Korea	y	98	50	23	8
63	Xi Wei	2014	China	y	254	170	72	32
64	Xiaolei Guan	2017	China	y	28	16	16	3
65	Yongbo Huang	2013	China	y	33	19	36	17
66	Yuan Kyoung Soo	2017	South Korea	y	44	22	27	7
67	Young Min Kim	2015	South Korea	y	393	239	74	32
68	Young Jun Choi	2016	South Korea	y	156	93	128	84
69	Zhanna Mussaitov	2013	Japan	y	20	11	16	10
articles with the data of LLNM, and CPTC was analyzed in 10 studies.

The quality assessment of all eligible studies was done through CochraneROB quality assessment scale. All our 78 studies had no selection bias, performance bias, detection bias, attrition bias, reporting bias, or any other bias.

3.2. The results of publication bias

The funnel graph looks symmetrical (Fig. 2). And in Harbord evaluation, \(P \) value is \(.391 > .05 \), which indicates that there is no publication bias in our study. Table 2 showed the results of Harbord evaluation.

3.3. The main results of this meta-analysis

A total of 78 studies consisting of 25,906 patients were analyzed to evaluate the relationship between BRAF mutation and cervical LNM. LNM was detected in 7957 (46.27%) out of 17,196 patients with BRAF (+) mutation, and in 2867 (32.91%) out of 8710 patients without BRAF (+) mutation. A fixed effect model showed that there was a moderate heterogeneity of the data \((I^2 = 66\%, \ P < .1) \). Thereby the random effects model was carried out. A significant association existed between BRAF mutation and cervical LNM \((OR = 1.63; 95\% \ CI: 1.44–1.84; \ P < .05) \) (Fig. 3).

3.4. The results of subgroup meta-analysis

3.4.1. Ethnicity: East Asians and non-East Asians. Forty-six studies were conducted among East Asians, which included South Korea (26 studies), China (18 studies), and Japan (2 studies). Thirty studies were from USA, Italy, Portland, India, Australia, Russian, and are presented in Table 1. Data of study 51(66) and 77(92) was from TCGA. Random effects model showed significant association between BRAF (+) mutation and cervical LNM both in East Asians \((OR = 1.73; 95\% \ CI: 1.49–2.02; \ P < .05) \) (Fig. 4A) and in non-East Asians \((OR = 1.57; 95\% \ CI: 1.26–1.96; \ P < .05) \) (Fig. 4B).

3.4.2. Metastatic site: CLNM and LLNM. The data of CLNM were provided in 24 studies, and LLNM were provided in 11 studies, which were shown in Table 1. In CLNM, random effects model showed significant association between BRAF (+) mutation and cervical LNM \((OR = 1.80; 95\% \ CI: 1.56–2.07; \ P < .05) \) (Fig. 4C), while no significant association \((OR = 1.37; 95\% \ CI: 0.76–2.48; \ P = .29 > .05) \) (Fig. 4D) was found in LLNM.

3.4.3. Subtype of PTC: CPTC. The data of CPTC were provided in 10 studies. Random effects model showed no significant association between BRAF mutation and cervical LNM in CPTC \((OR = 1.32; 95\% \ CI: 0.97–1.80; \ P = .08 > .05) \) (Fig. 4E).

| Number of studies | Coef. | Std. Err. | \(T \) | \(P > |t| \) | [95% Conf. Interval] |
|-------------------|-------|-----------|------|----------|---------------------|
| 78 | | | | | |
| Sqrlt(0) bias | 0.3973862 | 0.0944881 | 4.21 | .000 | 0.209769 - 0.5861956|
| 0.3074126 | 0.3563126 | 0.86 | .391 | | -0.4026438 - 1.017469 |
| Test of H0: no small-study effects | \(P = .391 \) | | | | |

Note: Regress Zsqr(0) where \(Z \) is efficient score and \(V \) is score variance.
Figure 3. Forest plot of the association between BRAF mutation and Cervical LNM. BRAF=B-type Raf kinase, LNM=lymphatic metastasis.
3.5. The results of sensitivity analysis

Sensitivity analysis was performed and we did not find any other major changes when sensitivity analysis was performed. There was no any study that had a major contribution to the heterogeneity. Within this sensitivity meta-analysis, a significant association still existed between BRAF mutation and cervical LNM after exclusion of any 1 study (Fig. 5).

3.6. The results of metacum analysis

The metacum analysis is done sorted by year. No significant association existed before 2012. A significant association began after 2012.
to exist between BRAF mutation and LNM from 2012, and this association became stable from 2017 (Fig. 6).

4. Discussion

BRAF gene is considered as the key factor in the occurrence and development of PTC, and it has been proved that BRAF (+) mutation had a close relationship with the aggressiveness of PTC. However, the results of the researches on the association between BRAF (+) and cervical LNM are not the same. Even among the articles published in 2018, there still were 7 papers which indicate a positive association versus 4 papers with negative results. Many studies have discussed this question, and several meta-analyses have done on the association between BRAF (+) and cervical LNM. No agreed conclusion was obtained. And the statistic method was not strict or normative, which might lead to the wrong results.

We find 10 meta-analyses on this topic. Although most meta-analysis showed there were a statistical significance between BRAF (+) and cervical LNM, Lee study based on 12 primary studies indicated that the risk of cervical LNM in BRAF (+) mutation group was not higher than that in BRAF (-) mutation group (OR = 1.500; 95% CI: 0.992–2.268; P = 0.055) in 2007. In the above 10 meta-analysis, the study on the relationship between BRAF (+) mutation and LNM was only presented as a small part of the research on the relationship of BRAF (+) mutation and clinical characteristics in thyroid cancer, and subgroup analysis seldom was done or done in a nonstandard way. Almost all of them have some flaws on statistic methods. Heterogeneity was not evaluated regularly in most of the 10 meta-analysis. For example, a fixed-effects model was used despite the I² was 79% in one meta-analysis written by Jing-yong Song (m5) in 2018. And 3 of the 10 have an I² > 75%, which were not suitable for meta-analysis.

We learned from the above meta-analyses papers and improved our study to effectively avoid the bias through obeying the rules of the statistical methods, which made our results more accurate and comprehensive.

Finally, we search articles in a thorough way. Loss of articles can result in bias which will draw the wrong conclusion. In order to make a further study on the relationship between BRAF (+) and LNM, we searched articles from the 4 official electronic documents database, and found 476 articles. After removing the duplicates with the same title and authors in the same journal at the time, we got 381 articles. Additionally, we check the duplicated papers with a strict and reasonable way. Papers published with the same author and use the repeated cases are also removed as duplicates, and there were 9 excluded papers in...
our study for this reason. And in this situation, we chose the latest paper or the paper with the largest cases as our included materials. Finally, 78 articles met our criteria and are selected into our meta-analysis which has the largest studies up to now. Papers analyzed in the past meta-analysis were almost papers published before 2017. In our study, 19 of the 78 papers are published in 2017 and 2018. So it is likely to give a different result from the meta-analyses before.

Before we did meta-analysis, we did the quality assessment through CochraneROB quality assessment scale. Because the included studies had no selection bias, performance bias, detection bias, attrition bias or reporting bias, the results gotten from these studies were more credible.

Secondly, we tried both Funnel and Harbord assessment to evaluate the publication bias. Funnel graph is more simple and popular. If the graph looks symmetrical, it is considered as no publication bias. But it is an evaluation with more subjective disturbance, and can be influenced by heterogeneity. Harbord is a quantitative analysis, and it is applied to binary variable. Our P value in Harbord was .391 (> .05) which showed that no publication bias existed in our study. After confirming the comprehensiveness and credibility of our selected 78 materials by evaluation of publication bias and Cochran Q-statistic, we then continue our meta-analysis.

Thirdly, we analyzed all the papers and did a further analysis on heterogeneity. We make clear what kind of studies they are. It may be a puzzle to most researchers. In most of our papers, they called it a retrospective cohort study, which sound like a cohort study, and RR is better for cohort study in meta-analysis than OR. In fact, they are cross-sectional studies because the data are obtained at one time point, so OR should be calculated in this kind of meta-analysis. There was a moderate heterogeneity ($I^2 = 66\%$, $P < .1$) in our study, and Random-effect model is carried out. The results of our study showed $P < .05$; OR = 1.63; 95% CI: 1.44 to 1.84, which indicated an association existed between the BRAF (+) mutation and LNM.

Heterogeneity is classified into low, moderate, and high heterogeneity respectively according to the I^2 value. If the I^2 value is > 75%, it indicates the heterogeneity is too big to accept and meta-analysis may be not suitable to apply. If the I^2 value is <25%, it indicates there is no heterogeneity. If the I^2 value is between 25% and 50%, the heterogeneity is low. And the I^2 value between 50% and 75% means the heterogeneity is moderate and further study should be done to explore the heterogeneity. So subgroup study should be carried out in our study. How to determine the subgroup? We cannot decide a subgroup randomly. Subgroup should be sorted by the factor that may affect both BRAF and LNM. Combined with the information provided by the 78 papers, we chose 3 subgroups: ethnicity (East Asians and non-East Asians), metastatic site (CLNM and LLNM), and the subtype of PTC (CPTC).

In the first subgroup, the relationship between BRAF mutation and cervical LNM may be different in different ethnic groups. We found more than half of the studies (46 papers) were got from East Asians; the other 30 were from the other regions other than East Asia. We did a subgroup meta-analysis, and P values were <.05 both in East Asians (OR 1.71; 95% CI, 1.47–1.99) and non-East Asian (OR 1.52; 95% CI, 1.22–1.90). So races (East Asians and non-East Asians) did not have any contribution to the
heterogeneity of our study. Subgroup meta-analysis also should be done on other ethnic groups, such as African/Caucasians, if the data of them were provided.

In the analysis of metastatic site subgroup, not all the 78 studies provided the information of CLNM and LLNM. We only got data of CLNM in 24 studies and data of LLNM in 11 studies. The outcomes were different in CLNM (OR = 1.80; 95% CI: 1.56–2.07; P < .05) and LLNM (OR = 1.37; 95% CI: 0.76–2.48, P = .29 > .05), so metastatic site may be a reason of the heterogeneity in our study. In addition, the results showed that there was no significant association between BRAF (+) and LLNM. We do not recommend BRAF (+) as the biomarker for lateral neck dissection in PTC although BRAF (+) mutation was considered as a predictor in aggressive PTC.

Only 10 articles provide the information of CPTC and <10 papers had mentioned the data of non-CPTC subtype (follicular PTC), so we tried to analyze the analysis with the data in CPTC. The outcome in CPTC (OR = 1.37; 95% CI: 0.76–2.48; P = .29 > .05) was different from the main results (OR = 1.63; 95% CI: 1.44–1.84; P < .05), which indicated that the subtype may be a source of heterogeneity. Similar to the recommendation above, we do not recommend BRAF (+) as the biomarker for neck dissection in CPTC.

Tumor size and invasion of extra capsule also may be factors influence both to BRAF mutation and LNM, but the data were not provided in almost all of these articles. So we could not make subgroup meta-analysis on these factors.

Finally, we do sensitivity analysis and metacum analysis to evaluate the stability of our outcomes. Sensitivity analysis showed all the estimate values were between the 95% CI: 1.44 to 1.84. So the main results of our study were stable. Further metacum analysis sorted by year indicated that no significant association was found in the early year of this kind of study. From 2012, significant association began to exist, and the OR value became stable from 2017.

Our comprehensively collected articles have no significant bias, and further meta-analysis showed the outcome has become stable. All these indicated that our results were credible. And our results showed a significant association existed between BRAF mutation and cervical LNM (OR = 1.63; 95% CI: 1.44–1.84; P < .05). However, this result will make us confused, if we the look into the details in our study. Thirty four out of our 78 papers have the positive results that agreed that there was association between BRAF (+) mutation and LNM in PTC, while another 43 papers showed negative outcomes. And 1 article based on the data of 766 patients in 2014 by ITO indicated that BRAF (+) mutation is a protective factor from LNM for PTC patients. The 46 papers with negative results were distributed evenly in the past years: 4 papers published in 2018, 5 in 2017, 6 in 2016, 2 in 2015, 5 in 2014, 8 in 2013, 7 in 2012, and 9 before 2012. And the
The above distribution of the negative papers indicated that the negative results in our study were not individual or accidental issues. More than half of our articles have a negative result, which seems opposite to our main result. Why? One reason is that the papers with positive results have a higher weight in the meta-analysis. Another reason is the heterogeneity. Heterogeneity is very popular in the meta-analyses of this topic. Our study has a moderate heterogeneity (66%). And further subgroup analysis indicated metastatic site (CLNM, LLNM) and subtype of PTC (CPTC) were the reasons of heterogeneity. Further studies on heterogeneity may reveal some valuable factors between BRAF gene mutation and LNM. Subgroups such as: tumor size and invasion of extra capsule, age and sex, etc, should be considered into the research of this kind of study.

Figure 6. Metacum analysis for the association between BRAF mutation and cervical LNM. BRAF = B-type Raf kinase, LNM = lymphatic metastasis.
In conclusion, we consider that a significant association exists between BRAF mutation and cervical LNM. However, because of the high heterogeneity, subgroup meta-analysis may reveal more valuable outcomes. And we do not recommend that BRAF (+) as the biomarker for LNM in PTC.

Author contributions
Conceptualization: Hongzhi Ma.
Data curation: Ru Wang, Qi Zhong, Xiaohong Chen.
Formal analysis: Hongzhi Ma, Ru Wang.
Investigation: Jugao Fang, Ling Feng.
Methodology: Hongzhi Ma.
Project administration: Ru Wang, Qi Zhong, Xiaohong Chen.
Resources: Jugao Fang, Lizhen Hou, Zhigang Huang.
Software: Xiao Chen.
Validation: Xiao Chen, Zhigang Huang.
Visualization: Ling Feng.
Writing – original draft: Hongzhi Ma.
Writing – review & editing: Hongzhi Ma.

References
[1] Wojnowski L, Stancato LF, Larner AC, et al. Overlapping and specific functions of Braf and Craf-1 proto-oncogenes during mouse embryogenesis. Mech Dev 2000;91:97–104.
[2] Davies H, Bignell GR, Cox C, et al. Mutations of the BRF gene in human cancer. Nature 2002;417:949–54.
[3] Ritterhouse LL, Barletta JA. BRAF V600E mutation-specific antibody: a review. Semin Diagn Pathol 2015;32:400–8.
[4] D’Cruz AK, Vanish R, Vaidya A, et al. Molecular markers in well-differentiated thyroid cancer. Eur Arch Otorhinolaryngol 2018;275:1375–84.
[5] Kebekew E, Weng J, Bauer J, et al. The prevalence and prognostic value of BRAF mutation in thyroid cancer. Ann Surg 2007;246:466–70. discussion 470–71.
[6] Lupi C, Giannini R, Ugolini C, et al. Association of BRF V600E mutation with poor clinicopathological outcomes in 500 consecutive cases of papillary thyroid carcinoma. J Clin Endocrinol Metab 2007;92:4085–90.
[7] Xing M, Westra WH, Tufano RP, et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab 2005;90:6373–9.
[8] Xing M, Alzahrani AS, Carson KA, et al. Association between BRF V600E mutation and recurrence of papillary thyroid cancer. J Clin Oncol 2015;33:42–50.
[9] Xing M, Alzahrani AS, Carson KA, et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA 2013;309:1493–501.
[10] Zaballós MA, Santisteban P. Key signaling pathways in thyroid cancer. J Endocrionol 2017;235:R43–61.
[11] Chen J, Li X, Zhao CK, et al. Conventional ultrasound, immunohistochemical factors and BRAF(V600E) mutation in predicting central cervical lymph node metastasis of papillary thyroid carcinoma. Ultrasound Med Biol 2018;44:2296–306.
[12] Jeong D, Jeong Y, Park JH, et al. BRAF mutation analysis in papillary thyroid carcinomas by peptide nucleic acid clamp real-time PCR. Ann Surg Oncol 2013;20:579–66.
[13] Lu J, Gao J, Zhang J, et al. Association between BRAF V600E mutation and regional lymph node metastasis in papillary thyroid carcinoma. Int J Clin Exp Pathol 2015;8:793–9.
[14] Tuccilli C, Baldini E, Sorrenti S, et al. CTLA-4 and PD-1 Ligand Gene Expression in Epithelial Thyroid Cancers. Int J Endocrinol 2018;2018:1742931.
[15] Eloy C, Santos J, Cameselle-Teijeiro J, et al. TGF-beta/Smad pathway and BRAF mutation play different roles in circumscribed and infiltrative papillary thyroid carcinoma. Virchows Arch 2012;460:587–600.
[16] Guan H, Ji M, Hou P, et al. Hypermethylation of the DNA mismatch repair gene MLH1 and its association with lymph node metastasis and T1799A BRAF mutation in patients with papillary thyroid cancer. Cancer 2008;113:247–55.
[17] Krokowski RJ, Sadeghi-Nejad A. Role of RET protein-tyrosine kinase inhibitors in the treatment RET-driven thyroid and lung cancers. Pharmacol Res 2018;128:1–7.
[18] Jiang H, Tian Y, Yan W, et al. The prevalence of thyroid nodules and an analysis of related lifestyle factors in Beijing communities. Int J Environ Res Public Health 2016;13:442.
[19] Wada N, Duh QY, Sugino K, et al. Lymph node metastasis from 259 papillary thyroid microcarcinomas: frequency, pattern of occurrence and recurrence, and optimal strategy for neck dissection. Ann Surg 2003;237:399–407.
[20] Lin DZ, Qu N, Shi RL, et al. Risk prediction and clinical model building for lymph node metastasis in papillary thyroid microcarcinoma. Onco Targets Ther 2016;9:307–16.
[21] Chang YW, Kim HS, Kim HY, et al. Should central lymph node dissection be considered for all papillary thyroid microcarcinoma? Asian J Surg 2016;39:197–201.
[22] Waleczk A, Kowalska A, Kowalik A, et al. The BRAF(V600E) mutation in papillary thyroid microcarcinoma: does the mutation have an impact on clinical outcome? Clin Endocrinol (Oxf) 2014;80:898–904.
[23] Park AY, Son EJ, Kim JA, et al. Associations of the BRAF(V600E) mutation with sonographic features and clinicopathologic characteristics in a large population with conventional papillary thyroid carcinoma. PLoS One 2014;9:e108689.
Ma et al. Medicine (2020) 99:5 www.md-journal.com

Moon HJ, Kwak JY, Kim EK, et al. The role of BRAF V600E mutation in patients with papillary thyroid cancer. Auris Nasus Larynx 2012;39:198–203.

Takacsova E, Kralik R, Waczulikova I, et al. A different prognostic value of BRAF V600E mutation positivity in various age groups of patients with papillary thyroid cancer. Neoplasma 2017;64:156–64.

Kim ES, Lim DJ, Lee K, et al. Absence of galectin-3 immunostaining in fine-needle aspiration cytology specimens from papillary thyroid carcinoma is associated with favorable pathological indices. Thyroid 2012;22:1244–50.

Frasca F, Nucera C, Pellegriti G, et al. BRAF(V600E) mutation and the biology of papillary thyroid cancer. Endocr Relat Cancer 2008;15:191–205.

Wang F, Zhao S, Shen X, et al. BRAF V600E confers male sex disease-specific mortality risk in patients with papillary thyroid cancer. J Clin Oncol 2018;36:2787–95.

Howell GM, Nikiforova MN, Carty SE, et al. BRAF V600E mutation independently predicts central compartment lymph node metastasis in patients with papillary thyroid cancer. Ann Surg Oncol 2013;20:47–52.

Gandolfi G, Sansuciu V, Torricelli F, et al. Allele percentage of the BRAF V600E mutation in papillary thyroid carcinomas and corresponding lymph node metastases: no evidence for a role in tumor progression. J Clin Endocrinol Metab 2013;98:E934–42.

Zheng G, Zhang H, Hao S, et al. Patterns and clinical significance of cervical lymph node metastasis in papillary thyroid cancer patients with Delphian lymph node metastasis. Oncotarget 2017;8:57089–98.

Qu HJ, Qu XY, Hu Z, et al. The synergic effect of BRAF(V600E) mutation and multifocality on central lymph node metastasis in unilateral papillary thyroid carcinoma. Endocr J 2018;65:113–20.

Moon HJ, Kwak JY, Kim EK, et al. The role of BRAF(V600E) mutation and ultrasonography for the surgical management of a thyroid nodule suspicious for papillary thyroid carcinoma on cytology. Ann Surg Oncol 2009;16:3125–31.

Khadra H, Denwar A, Mohsin K, et al. Can suspicious ultrasound features predict BRAF(V600E) status in papillary thyroid cancer? Eur Thyroid J 2018;7:205–10.

Ahn HY, Chung YJ, Kim BS, et al. Clinical significance of the BRAF V600E mutation in multifocal papillary thyroid carcinoma in Korea. Surgery 2014;155:689–95.

Min HS, Choe G, Kim SW, et al. S100A4 expression is associated with lymph node metastasis in papillary microcarcinoma of the thyroid. Mod Pathol 2008;21:748–55.

Park HS, Jung CK, Lee SH, et al. Notch1 receptor as a marker of lymph node metastases in papillary thyroid cancer. Cancer Sci 2012;103:305–9.

Lucas J, Drabek J, Dudesek B, et al. Correlation among the BRAF gene mutation status, clinicopathological features of primary tumour, and lymph node metastasing of papillary thyroid carcinoma. Exp Clin Endocrinol Diabetes 2014;122:268–72.

Lim JY, Hong SW, Lee YS, et al. Clinicopathologic implications of the BRAF(V600E) mutation in papillary thyroid cancer: a subgroup analysis of 3130 cases in a single center. Thyroid 2013;23:1423–30.

Joo JY, Park JY, Yoon YH, et al. Prediction of occult central lymph node metastasis in papillary thyroid microcarcinoma (CN0): a study of 273 resections. Eur Rev Med Pharmacol Sci 2017;21:3801–7.

Huang M, Yan C, Wei H, et al. Clinicopathological characteristics and prognosis of thyroid cancer in northwest China: a population-based retrospective study of 2490 patients. Thorac Cancer 2018;9:1453–60.

Kim MH, Bae JS, Lim DJ, et al. Quantification of BRAF V600E alleles predicts papillary thyroid cancer progression. Endocr Relat Cancer 2014;21:891–902.

Yeo MK, Jung MK, Lee SY, et al. The usefulness of a novel fully automated PCR-based Idylla test for detection of the BRAF V600E mutation in thyroid tissue: comparison with PNA-clamping PCR, realtime PCR and pyrosequencing. J Clin Pathol 2010;63:460–5.

George N, Agarwal A, Kumari N, et al. Prognostic profile of papillary thyroid carcinoma in an endemic goiter region of North India. Indian J Endocrinol Metab 2018;22:503–10.

Kurtulmus N, Duren M, Ince U, et al. BRAF(V600E) mutation in four Turkish patients with papillary thyroid cancer: strong correlation with indicators of tumor aggressiveness. Endocrine 2012;42:404–10.

da Silva RC, de Paula HS, Leal CB, et al. BRAF overexpression is associated with BRAF V600E mutation in papillary thyroid carcinomas. Genet Mol Res 2015;14:5065–75.

Zeng RC, Jin LP, Chen ED, et al. Potential relationship between Hashimoto’s thyroiditis and BRAF(V600E) mutation status in papillary thyroid cancer. Head Neck 2016;38(suppl):E1019–23.

Ulisse S, Baldini E, Sorrenti S, et al. In papillary thyroid carcinoma BRAF V600E is associated with increased expression of the urokinase plasminogen activator and its cognate receptor, but not with disease-free interval. Clin Endocrinol (Oxf) 2012;77:780–6.

Wutanantri-Fernando S, Vianello F, Barollo S, et al. The hobnail variant of papillary thyroid carcinoma: clinical/molecular character-istics of a large monocentric series and comparison with conventional histotypes. Thyroid 2018;28:96–103.

Kim SK, Lee JH, Woo JW, et al. BRAF V600E mutation: differential impact on central lymph node metastasis by tumor size in papillary thyroid carcinoma. Head Neck 2016;38(suppl):E1203–9.

Dong SY, Zeng RC, Jin LP, et al. BRAF(V600E) mutation is not associated with central lymph node metastasis in all patients with papillary thyroid cancer: different histological subtypes and preoperative lymph node status should be taken into account. Oncol Lett 2017;14:4122–34.

Chung SY, Lee JS, Lee H, et al. Cytomorphological factors and BRAF mutation predicting risk of lymph node metastasis in preoperative liquid-based fine needle aspirations of papillary thyroid carcinoma. Pathol Res Pract 2018;214:1028–35.

Kim SJ, Lee KE, Myong JP, et al. BRAF V600E mutation is associated with tumor aggressiveness in papillary thyroid cancer. World J Surg 2012;36:310–7.

Choi SY, Park H, Kang MK, et al. The relationship between the BRAF (V600E) mutation in papillary thyroid microcarcinoma and clinicopathologic factors. World J Surg Oncol 2014;12:41.

Huang TS, Lee JH, Cheng SP. No evidence of association between human cytomegalovirus infection and papillary thyroid cancer. World J Surg Oncol 2014;12:41.

Cho U, Mete O, Kim MH, et al. Molecular correlates and rate of lymph node metastasis of non-invasive follicular thyroid neoplasm with papillary-like nuclear features and invasive follicular variant papillary thyroid carcinoma: the impact of rigid criteria to distinguish non-invasive follicular thyroid neoplasm with papillary-like nuclear features. Mod Pathol 2017;30:810–25.

Rodolico V, Cabibi D, Pizzolanti G, et al. BRAF V600E mutation and p27kip1 expression in papillary carcinomas of the thyroid <or=1 cm and their paired lymph node metastases. Cancer 2007;110:1218–26.

Park YY, Kim EK, Moon HJ, et al. The thyroid imaging reporting and data system on US, but not the BRAF(V600E) mutation in fine-needle aspirates, is associated with lateral lymph node metastasis in PTC. Medicine (Baltimore) 2016;95:e4292.
Wang W, Su X, He K, et al. Comparison of the clinicopathologic features and prognosis of bilateral versus unilateral multifocal papillary thyroid cancer: an updated study with more than 2000 consecutive patients. Cancer 2016;122:198–206.

Park WS, Chung KW, Young MS, et al. Differential protein expression of lymph node metastases of papillary thyroid carcinoma harboring the BRAF mutation. Anticancer Res 2013;33:4557–64.

Wei X, Li Y, Zhang S, et al. Prediction of thyroid extracapsular extension with cervical lymph node metastases (ECE-LN) by CEUS and BRAF expression in papillary thyroid carcinoma. Tumour Biol 2014;35:8559–64.

Guan X, Wang P, Chi J, et al. Relationships of BRAF mutation and HMGB1 to papillary thyroid carcinoma. Biochem Biophys Res Commun 2017;486:898–903.

Ito Y, Yoshida H, Kihara M, et al. BRAF(V600E) mutation analysis in papillary thyroid carcinoma: is it useful for all patients? World J Surg Oncol 2013;11:99.

Huang Y, Liao D, Pan L, et al. Expressions of miRNAs in papillary thyroid carcinoma and their associations with the BRAF(V600E) mutation. Eur J Endocrinol 2013;168:675–81.

So YK, Son YL, Park JY, et al. Preoperative BRAF mutation has different predictive values for lymph node metastasis according to tumor size. Otolarngol Head Neck Surg 2011;145:422–7.

Jung YY, Yoo JH, Park ES, et al. Clinicopathologic correlations of the BRAF(V600E) mutation, BRAF V600E immunohistochemistry, and BRAF RNA in situ hybridization in papillary thyroid carcinoma. Pathol Res Pract 2015;211:162–70.

Chai YJ, Yi JW, Jee HG, et al. Significance of the BRAF mRNA expression level in papillary thyroid carcinoma: an analysis of the cancer genome atlas data. PLoS One 2016;11:e0159233.

Mussazhanova Z, Matsuda K, Narude Y, et al. Significance of p53-binding protein 1 (53BP1) expression in thyroid papillary microcarcinoma: association with BRAF(V600E) mutation status. Histopathology 2013;63:726–34.

Liu C, Chen T, Liu Z. Associations between BRAF(V600E) and prognostic factors and poor outcomes in papillary thyroid carcinoma: a meta-analysis. World J Surg Oncol 2016;14:241.

Zhang Q, Liu SZ, Zhang Q, et al. Meta-analyses of association between BRAF(V600E) mutation and clinicopathological features of papillary thyroid carcinoma. Cell Physiol Biochem 2016;38:763–76.

Li F, Chen G, Sheng C, et al. BRAF(V600E) mutation in papillary thyroid microcarcinoma: a meta-analysis. Endocr Relat Cancer 2015;22:159–68.

Li C, Lee KC, Schneider EB, et al. BRAF V600E mutation and its association with clinicopathological features of papillary thyroid cancer: a meta-analysis. J Clin Endocrinol Metab 2012;97:4559–70.

Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev 2007;28:742–62.

Kim TH, Park YJ, Lim JA, et al. The association of the BRAF(V600E) mutation with prognostic factors and poor clinical outcome in papillary thyroid cancer: a meta-analysis. Cancer 2012;118:1764–73.

Tufano RP, Teixeira GV, Bishop J, et al. BRAF mutation in papillary thyroid cancer and its value in tailoring initial treatment: a systematic review and meta-analysis. Medicine (Baltimore) 2012;91:274–86.

Wang Z, Chen JQ, Liu JL, et al. Clinical impact of BRAF mutation on the diagnosis and prognosis of papillary thyroid carcinoma: a systematic review and meta-analysis. Eur J Clin Invest 2016;46:146–57.

Song JY, Sun SR, Dong F, et al. Predictive value of BRAF(V600E) mutation for lymph node metastasis in papillary thyroid cancer: a meta-analysis. Curr Med Sci 2018;38:785–97.

Lee JH, Lee ES, Kim YS. Clinicopathologic significance of BRAF V600E mutation in papillary carcinomas of the thyroid: a meta-analysis. Cancer 2007;110:38–46.