Calculated Magnetic Exchange Interactions in High-Temperature Superconductors

Xiangang Wan\textsuperscript{1}, Thomas A. Maier \textsuperscript{2}, Sergej Y. Savrasov\textsuperscript{3}

\textsuperscript{1}National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
\textsuperscript{2}Center for Nanophase Materials Sciences and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 and
\textsuperscript{3}Department of Physics, University of California, Davis, One Shields Ave, Davis, CA 95616

(Dated: March 24, 2009)

Using a first principles linear response approach, we study the magnetic exchange interactions $J$ for a series of superconducting cuprates. We reproduce the observed spin-wave dispersions together with other experimental trends, and show that different cuprates have similar $J$'s regardless their $T_c$. The nearest neighbor $J$ is not sensitive to the hole-doping, which agrees with recent experiments. For the undoped cuprates, the second nearest neighbor $J$ is ferromagnetic, but changes its sign with hole-doping. We also find that, in contrast to the hopping integral, the exchange interaction is not sensitive to the position of apical oxygen. To see the effect of the long-range nature of the exchange on the superconducting $T_c$, we study the dynamical spin susceptibility $\chi(q, \omega)$ within the $t$-$J$ model using a dynamical cluster approximation.

PACS numbers: 75.30.Et, 71.15.-m, 75.10.-b, 74.20.Mn

INTRODUCTION

After more than two decades of intensive studies of high-temperature superconductors (HTSCs), it is now well accepted that magnetic exchange interactions in the cuprates play a fundamental role. Despite a general lack of consensus on the pairing mechanism in the cuprates, it is believed to be of magnetic origin\textsuperscript{\footnote{We refer to \textsuperscript{1}, \textsuperscript{11}, \textsuperscript{12}, \textsuperscript{13} and \textsuperscript{14}}}. In support of this scenario, a direct relationship $T_c \propto J$ between $T_c$ and the in-plane exchange interaction $J$ was extracted from magnetic measurements for one family of the cuprates in Ref. \textsuperscript{13}. Despite vast efforts devoted to understanding the magnetic properties of the cuprates\textsuperscript{\footnote{See, for example, \textsuperscript{19}, \textsuperscript{20}, \textsuperscript{21}.}}, there are still several important issues which need to be clarified. Among them is the long range nature of the exchange interactions $J$ between the Cu-ions, and its effect on the dynamical spin susceptibility $\chi(q, \omega)$ and the critical temperature $T_c$. Studies of model Hamiltonians, such as the $t$-$J$ model show a strong dependence of the calculated properties on the value of $J$\textsuperscript{\footnote{See, for example, \textsuperscript{22}, \textsuperscript{23}.}}. In particular, numerical calculations suggest a direct relationship between the magnitude of the magnetic exchange coupling and the pair binding energy\textsuperscript{\footnote{See, for example, \textsuperscript{24}}}. Therefore, obtaining accurate estimates for the exchange constants and studying their trends across different HTSCs including their doping dependence and influence on $\chi(q, \omega)$ is an interesting problem which we address in the present work.

Experiments provide estimates for the magnitude of the exchange interaction, but despite many studies there is a spread in obtained values even for the nearest-neighbor magnetic coupling $J_1$ in the most studied compound La$_2$CuO$_4$ where it varies from 110 to 150 meV \textsuperscript{\footnote{See, for example, \textsuperscript{8}-\textsuperscript{11}.}}. The latter result does not only depend on the experimental technique being used but also on how the results are fitted, i.e., depending on whether higher order exchange terms are included. Nevertheless, based on recent high-resolution inelastic neutron scattering (INS) experiments, there is an overall agreement that at least for the undoped La$_2$CuO$_4$, a simple nearest-neighbor Heisenberg model is not sufficient and the high-order magnetic exchange interaction is quite important. However, all high-order terms have similar effects on the spin-wave dispersion and its intensity dependence, therefore, even INS, the most powerful technique for exploring magnetic excitations, cannot determine the magnetic exchange coupling very accurately. Worse than La$_2$CuO$_4$, for most other HTSC compounds, the difficulty in synthesizing large single crystals limits the capability of performing accurate measurements. Thus, the experimental information on the exchange interactions is very limited.

In addition to the experiment, the magnetic interactions of the undoped cuprates have been studied in a number of theoretical works\textsuperscript{\footnote{See, for example, \textsuperscript{25}, \textsuperscript{26}, \textsuperscript{27}.}}. However, most of them use a cluster approximation and map the total energy differences obtained by a first principle calculation to a model Hamiltonian which prevents detailed studies of the long range nature of the $J$'s. It is, for example, well known that the long-range hopping integrals are very important for the electronic properties in the cuprates\textsuperscript{\footnote{See, for example, \textsuperscript{28}.}} and even the effective third nearest neighbor hopping $t''$ has a considerable effect on the interatomic exchange\textsuperscript{\footnote{See, for example, \textsuperscript{29}.}}. Therefore it is desirable to re-investigate the exchange interaction in cuprates by a first principle calculation.

In contrast to the undoped cuprates, investigations of $J$’s in doped HTSCs are scarce, regardless the superconductivity actually happens only after introducing doping. Based on a model calculation, Si et al. suggested that $J_1$ will decrease rapidly with doping\textsuperscript{\footnote{See, for example, \textsuperscript{31}.}}. On the other hand, the commonly used $t$-$J$ model uses the same $J$ for different doping levels\textsuperscript{\footnote{See, for example, \textsuperscript{22}.}}; therefore study the effect of doping on the exchange interaction based on a first prin-
principle calculation is quite interesting. Unfortunately, \textit{ab initio} techniques for extracting \( J \)'s (like the cluster approximations mentioned above) are not efficient for the doped case, and there are no extensive calculations of this type reported in the literature. In this work, we use a recently developed linear response approach\cite{32}, and perform detailed studies of exchange interactions for both parent and doped HTSCs. Beyond this, we also investigate the effect of the long–range \( J \)'s on the spin susceptibility \( \chi(q, \omega) \) and the superconducting transition temperature \( T_c \), within the framework of the dynamical cluster approximation (DCA) for the \( t–J \) model.

**EXCHANGE INTERACTION AND SPIN WAVES**

**Method**

We perform our electronic structure calculations based on density functional theory (DFT) within the full potential linearized-muffin-tin-orbital (LMTO) method\cite{33}. To take into account the effect of the on–site electron–electron interaction we supplement the local density approximation (LDA) to DFT by adding a correction due to Hubbard \( U \) using so–called LDA+U approach\cite{34}, with the parameters \( U=10 \) eV and \( J=1.20 \) eV for the Cu \textit{d} orbitals as deduced from the constrained LDA calculation\cite{35}. Experimental lattice parameters have been used for all materials.

With the electronic structure information, one can evaluate the magnetic exchange parameters \( J \) of a Heisenberg model \( H=\sum_{ij} J_{ij}S_i \cdot S_j \) based on a magnetic force theorem\cite{36} which assumes a rigid rotation of atomic spin. In this formalism, the interatomic exchange constant \( J \) is given as a second derivative of the total energy difference induced by the rotation of moments at sites \( R+\tau \) and \( R'–\tau \)\cite{32}:

\[
J^\beta_{R\tau R'\tau'} = \sum_{\alpha} \sum_{k,j,j'} f_{kj} - f_{kj'} \epsilon_{kj} - \epsilon_{kj'} \langle \psi_k | [\sigma \times B_{\tau R')]_\alpha | \psi_{kj'} \rangle \times \langle \psi_{kj'} | [\sigma \times B_{\tau R}]_\alpha | \psi_k \rangle e^{i\pi (R-R')},
\]

where \( f, \sigma, \) and \( B \) are the Fermi function, Pauli matrix, and the effective magnetic field in the calculation given by the difference in the electronic self-energies for spin-up and spin-down electrons, respectively. \( \psi \) and \( \epsilon \) are the eigenstate and eigenvalue from the LDA+U calculation. This technique has been used successfully for evaluating magnetic interactions in a series of transition metal oxides\cite{32}.

**Parent Compounds**

We now discuss our results for La\(_2\)CuO\(_4\) and find that the exchange constants \( J_1, J_2 \) and \( J_3 \) within the CuO\(_2\) plane (see Fig. 1) decrease rapidly with increasing distance between two Cu ions. After taking into account the effect of quantum renormalization\cite{24}, the measurement of two–magnon Raman scattering gives \( J_1=116 \) meV\cite{3], which is slightly larger than our numerical \( J_1 \) (109 meV) as shown in Table I. Early neutron scattering experiments give a larger value of \( J_1 \sim 130 \) meV\cite{9][10], which may be partially due to the use of only a nearest–neighbor Heisenberg model to fit their spin-wave velocities. Our \( J_1 \) agrees very well with one cluster calculation (105 meV)\cite{25} but is smaller than the result of other calculations (\( \sim 140 \) meV)\cite{13][26]. Turning to the discussion of the next nearest neighbor coupling, our calculated \( J_2 \) is slightly larger than the one deduced from neutron scattering\cite{9}. In contrast to the early cluster calculations\cite{27}, our \( J_2 \) is ferromagnetic (FM) and thus enhances the antiferromagnetic correlations.

Since well–defined spin–wave excitations throughout the Brillouin Zone have been observed by the INS\cite{11}, it is interesting to perform the comparisons with our calculated spin–wave dispersions. For cuprates the quantum fluctuations may be large due to the smallness of the spin \( S=\frac{1}{2} \) and the low dimensionality \( D=2 \). On the basis of the Holstein–Primakoff transformation using \( 1/S \) expansion, it has been found that a renormalization factor is necessary for the spin–wave excitation energy\cite{24}, in order to compare it with the result of standard linear spin–wave theory\cite{28}. With this correction, the spin–wave dispersion can be expressed as:

\[
E_q = 2Zc \sqrt{A_q^2 - B_q^2}
\]

where \( A_q = J_1 - J_2 [1 - \cos(2\pi q_x) \cos(2\pi q_y)] - J_3 [1 - \frac{1}{2} \cos(4\pi q_x) + \cos(4\pi q_y)] \), \( B_q = \frac{1}{2} J_1 \cos(2\pi q_x) + \cos(2\pi q_y) \), and \( Z_c \) is the renormalization factor, respectively. Here based on the above formula with the quantum renormalization factor \( Z_c=1.18 \)\cite{24}, and using the obtained numerical \( J_1, J_2, \) and \( J_3 \), we calculate the spin–
wave dispersion for La$_2$CuO$_4$, and display the result in Fig. 2 by the solid line. For comparison, in Fig. 2 we also show the INS data by symbols [11]. Our results agree well with the experiments near the zone center. A small discrepancy exists around the zone boundary which may be due to the four–particle cyclic exchange interaction $J_r$, which recently attracted much attention [17, 19].

We now turn to our predictions of exchange interactions for other HTSC materials where the experimental values of $J$ are limited. The experiment [14, 15] shows the $J_1$ of Sr$_2$CuO$_2$Cl$_2$ is about 10 meV smaller than that of La$_2$CuO$_4$. This is reproduced by our numerical calculation as shown in Table I. The $J_1$ of YBa$_2$Cu$_3$O$_6$ has been measured by neutron scattering, and the obtained value is about 120 meV [12, 13]. After considering the quantum renormalization effect [24], the experimental $J_1$ will be reduced to 100 meV, which is very close to our numerical result 93 meV. It is interesting to note that our theoretical study reproduces the experimental trend across the materials studied (La$_2$CuO$_4$ has largest $J_1$, Sr$_2$CuO$_2$Cl$_2$ is intermediate, and $J_1$ in YBa$_2$Cu$_3$O$_6$ is smallest [13]). As it is seen from Table I, all parent HTSCs have almost the same $J_1$ (around 110 meV) regardless of their number of CuO$_2$ layers and their different $T_c$’s. $J_2$ is also similar and shows FM behavior while $J_3$ is AFM like. Using the quantum renormalization factor [24] and linear spin–wave theory, we also calculate the spin–wave dispersion for all other compounds and show the results for HgBa$_2$CaCu$_2$O$_6$, Sr$_2$CuO$_2$Cl$_2$ and YBa$_2$Cu$_3$O$_6$ in Fig. 3. Since different compound have similar exchange interactions the shape of the spin–wave curve is quite similar while YBa$_2$Cu$_3$O$_6$ has smaller spin–wave excitation.

To further check the possible relationship between $J$ and $T_c$, we also study a high–pressure phase of HgBa$_2$Ca$_2$Cu$_3$O$_8$, for which $T_c$ increases considerably [27]. Applying pressure reduces the lattice parameter, and, as a result, increases the magnitude of $J$, but this enhancement is too weak to relate it with rising $T_c$. For example, we find the values of $J_1$ are 114.3 and 116.4 meV at 3 and 8 GPa, respectively, which is very close to the value at ambient pressure as shown in Table I.

**The effect of apical oxygen**

It is believed that the apical oxygen has a dramatic effect on $T_c$ [39, 40, 41, 42]. However, there is a debate on whether $T_c$ is positively correlated with the magnitude of the effective next nearest neighbor hopping $t'$ [41], or if an intersite super-repulsion term is important [42]. We therefore study the effect of the position of the apical oxygen on the exchange interaction. The apical oxygen in La$_2$CuO$_4$ is located at the (0,0,$z_o$) site. By adjusting the internal atomic coordinate $z_o$, we perform the calculation for different distances $d_A$ between the apical oxygen and Cu.

Our results are shown in Table II. In contrast to the hopping integral, which is quite sensitive to the position of the apical oxygen [41, 42], the magnitude of the exchange interaction in the CuO$_2$ plane only slightly increases with $d_A$ as shown in Table II. In the Hg-based cuprates with $d_A \sim 2.7$ Å $J$ is found smaller than the one in La$_2$CuO$_4$ with the same $d_A$, so it is likely that the exchange interaction is more sensitive to the detail of the electronic structure, rather than just to the distance $d_A$. 

---

**FIG. 2**: Comparison between calculated (solid lines) and experimental (symbols) spin–wave dispersions for La$_2$CuO$_4$. The triangles and squares are the experimental results at $T=10$ K and 295 K, respectively [11].

**FIG. 3**: Calculated spin–wave dispersions for HgBa$_2$CaCu$_2$O$_6$, Sr$_2$CuO$_2$Cl$_2$ and YBa$_2$Cu$_3$O$_6$. 

---

**TABLE I**

| Material          | $J_1$ (meV) | $J_2$ (meV) | $J_3$ (meV) | $T_c$ (K) |
|-------------------|-------------|-------------|-------------|-----------|
| La$_2$CuO$_4$     | 110         | 30          | 5           | 38        |
| Sr$_2$CuO$_2$Cl$_2$ | 90          | 20          | 3           | 34        |
| YBa$_2$Cu$_3$O$_6$ | 120         | 40          | 1           | 38        |
| HgBa$_2$CaCu$_2$O$_6$ | 115         | 35          | 2           | 36        |
| Sr$_2$CuO$_2$Cl$_2$ | 100         | 25          | 4           | 35        |
| YBa$_2$Cu$_3$O$_6$ | 125         | 45          | 2           | 37        |

**TABLE II**

| Material          | $J_1$ (meV) | $J_2$ (meV) | $J_3$ (meV) | $T_c$ (K) |
|-------------------|-------------|-------------|-------------|-----------|
| HgBa$_2$CaCu$_2$O$_6$ | 100         | 20          | 2           | 35        |
| Sr$_2$CuO$_2$Cl$_2$ | 110         | 30          | 4           | 36        |
| YBa$_2$Cu$_3$O$_6$ | 125         | 45          | 2           | 37        |

---

**FIG. 3**: Calculated spin–wave dispersions for HgBa$_2$CaCu$_2$O$_6$, Sr$_2$CuO$_2$Cl$_2$ and YBa$_2$Cu$_3$O$_6$. 

---
TABLE I: Experimental $T_c$ (K), and calculated exchange interactions (meV) for parent HTSC materials. $J_1$, $J_2$, and $J_3$ are the nearest-neighbor, second nearest-neighbor and the third nearest neighbor exchange interactions as shown in Fig.1. $N_{\text{layer}}$ is the number of CuO$_2$ layer, $T_c$ is critical temperature.

| $N_{\text{layer}}$ | $T_c$ (K) | $J_1$ (meV) | $J_2$ (meV) | $J_3$ (meV) |
|-------------------|-----------|-------------|-------------|-------------|
| CaCuO$_2$         | 1         | 110.0       | -10.1       | 3.8         |
| Tl$_2$Ba$_2$CuO$_6$ | 1         | 97          | 109.1       | -10.9       | 4.0 |
| HgBa$_2$CuO$_4$   | 1         | 94          | 108.9       | -11.1       | 3.3 |
| La$_2$CuO$_4$     | 1         | 42          | 108.8       | -12.0       | -0.2 |
| Sr$_2$CuO$_2$Cl$_2$ | 1         | 28          | 99.2        | -8.2        | 1.6 |
| HgBa$_2$Ca$_2$Cu$_2$O$_6$ | 2     | 128        | 110.4       | -11.9       | 2.9 |
| Tl$_2$Ba$_2$Cu$_3$O$_8$ | 2       | 125        | 108.7       | -10.7       | 2.5 |
| YBa$_2$Cu$_3$O$_6$      | 2         | 90          | 93.0        | -4.7        | 2.4 |
| HgBa$_2$Ca$_2$Cu$_2$O$_8$ | 3     | 135        | 109.9       | -10.1       | 2.8 |

TABLE II: The calculated exchange interaction in La$_2$CuO$_4$, with different $d_A$, where $d_A$ is the distance between apical oxygen and Cu atom. $d_A$ is in Å and $J$ is in meV.

| $d_A$ (Å) | $J_1$ (meV) | $J_2$ (meV) | $J_3$ (meV) |
|-----------|-------------|-------------|-------------|
| 2.5       | 111.1       | -12.4       | -0.4        |
| 2.6       | 112.9       | -13.1       | 0.1         |
| 2.7       | 114.2       | -13.8       | 1.2         |
| 2.8       | 116.0       | -14.6       | 2.1         |

The effect of doping

It may not be surprising that the $J$’s of the parent HTSCs do not directly correlate with their $T_c$’s which characterize the corresponding doped materials. We therefore study the effect of hole doping for La$_2$CuO$_4$ using the virtual-crystal approximation (VCA), which has been used successfully for the phonon properties of La$_2$–xSr$_x$CuO$_4$ [38]. For the doped case, our scheme is rough, but nevertheless does include major ingredients of the system, such as, superexchange, double exchange and RKKY exchange interactions [31]. Naively, one may think the hole induced by doping can hop through the Cu ion, and result in a ferromagnetic like double-exchange interaction, which would consequently suppress $J_1$. But if the doping level is not high, this effect is not large as seen in Table III. Since the spin–wave velocity is mainly controlled by $J_1$, our results agree with the recent INS experiments, which showed clearly that for La$_2$–xSr$_x$CuO$_4$ the spin–wave velocity is doping insensitive [10]. Hole doping enhances $J_3$ slightly as seen in Table III. Different from $J_1$ and $J_3$, doping has a large affect on $J_2$, which changes from FM-like to AFM-like resulting in considerable spin fluctuation.

TABLE III: Doping effect on exchange interactions in La$_2$CuO$_4$, where $x$ is the hole-doping concentration. $J$ is in meV.

| $x$ | $J_1$ (meV) | $J_2$ (meV) | $J_3$ (meV) |
|-----|-------------|-------------|-------------|
| 0.0  | 108.8       | -12.0       | -0.2        |
| 0.1  | 110.9       | -7.9        | -3.0        |
| 0.2  | 117.8       | -0.3        | -3.1        |
| 0.3  | 124.6       | 6.4         | -3.8        |

**EFFECT ON $T_c$**

Now, we aim to address the following questions: (1) Can the variation in exchange parameters for different materials explain the difference in $T_c$? (2) What is the effect of varying exchange parameters on the dynamic spin fluctuation spectrum? To answer these questions, we use a dynamic cluster approximation (DCA) [43, 44] to calculate the properties of a t-J model. A similar study was performed in Ref. [45]. There, a combined DFT-LDA and DCA-QMC approach was used to study the parameter dependence of $T_c$ in a three-band Hubbard model. These calculations showed that $T_c$ is a very strong function of the hopping parameters, and very sensitive to even small variations in the long-range hopping integrals.

Here, we want to study the dependence of $T_c$ on the exchange parameters $J$. We therefore consider a two-dimensional t–J model

$$H = -t \sum_{\langle ij \rangle, s} (\tilde{c}^\dagger_{is} \tilde{c}_{js} + \tilde{c}^\dagger_{js} \tilde{c}_{is}) + \sum_{ij} J_{ij} S_i S_j, \quad (2)$$

where $S_i = \tilde{c}^\dagger_{is} \sigma_{ss'} \tilde{c}_{is'}$ and $\tilde{c}_{is}$ is a projected fermion operator defined as $c_{im}(1 - n_{i-})$.

The general idea of the DCA is to map the bulk lattice problem onto an effective periodic cluster embedded in a self-consistent dynamic host designed to represent the remaining degrees of freedom. Correlations within the cluster are treated explicitly, while those beyond the cluster size are treated on the mean-field level. The hybridization of the cluster to the host accounts for fluctuations arising from the coupling between the cluster and the rest of the system.

The mean-field nature of the approach allows us to study transitions to symmetry broken phases such as the superconducting state even in small clusters. For example, using a dynamic cluster quantum Monte Carlo approximation for a small four-site $2 \times 2$ cluster, the properties of a 2D Hubbard model were calculated in Ref. [46]. The obtained phase-diagram is remarkably similar to the universal cuprate phase diagram, exhibiting antiferromagnetic and d-wave superconducting phases as well as pseudogap behavior. As discussed in Ref. [44], a four-site cluster DCA calculation provides a mean-field result for the transition to a superconducting state with a $d_{x^2-y^2}$-wave order parameter. DCA calculations for larger clus-
ter sizes show a reduction in the superconducting \( T_c \) due to the inclusion of pair-field phase fluctuations, but the qualitative aspects of the results including the pairing mechanism are similar to the four-site cluster results [47].

Here, we have used a non-crossing approximation [48, 49, 50] (NCA) to determine the spin susceptibility \( \chi(q, \omega) \) and \( T_c \) for a four-site \( 2 \times 2 \) cluster. We perform the simulations in the superconducting state by allowing for a finite anomalous Green’s function [48]. With increasing temperature, \( T_c \) is determined by the temperature where the anomalous Green’s function vanishes. Similar calculations for fixed nearest-neighbor exchange integral \( J = 0.3t \) were performed in Ref. [50]. Many results of this study were shown to be reminiscent of experiments in the cuprates. Here, we focus on the effect of varying longer-ranged exchange parameters on the spin-susceptibility and the superconducting \( T_c \).

Results showing the imaginary part of the spin susceptibility, \( \chi''(q, \omega) \) versus \( \omega \) for \( q = (\pi, \pi) \), calculated at a temperature \( T = 0.08t \) and fixed \( J_1 = 0.3t \), are plotted in Fig. 4 for various values of the next-nearest-neighbor and third-nearest-neighbor exchange interactions \( J_2 \) and \( J_3 \). As one can see, a ferromagnetic \( J_2 < 0 \) and an antiferromagnetic \( J_3 > 0 \) enhance the spectral weight in \( \chi''(q, \omega) \) at the antiferromagnetic wave vector \( q = (\pi, \pi) \) at low frequencies.

Previous DCA quantum Monte Carlo and NCA simulations have addressed the question of the pairing mechanism in the Hubbard and \( t-J \) models [47]. The results of a recent DCA/NCA and Lanczos study of the superconducting gap function were found to be consistent with a simple phenomenological form for the \( d \)-wave pairing interaction [51].

\[
V_d(k, \omega, k', \omega') = \frac{3}{2} \epsilon^2 \chi(k - k', \omega - \omega') - \bar{J} (\cos k_x - \cos k_y)(\cos k'_x - \cos k'_y).
\]

Here, \( \bar{U} \) and \( \bar{J} \) are effective coupling constants of the retarded spin fluctuation part and the non-retarded exchange contribution, respectively. It was shown that the dominant contribution to the pairing interaction \( V_d \) comes from the spin fluctuations [51].

From this one would expect that variations in the spectral weight in \( \chi''(q, \omega) \) will directly affect the strength of \( V_d \) and thus \( T_c \). Fig. 5 shows the DCA/NCA results for \( T_c \) for different values of the next-nearest-neighbor and third-nearest-neighbor exchange integrals \( J_2 \) and \( J_3 \). Here, we have fixed the nearest-neighbor exchange \( J_1 = 0.3t \) and the filling \( \langle n \rangle = 0.8 \). Consistent with Eq. (3), one finds that the magnitude of \( T_c \) tracks the magnitude of the spectral weight in \( \chi''(q, \omega) \) for \( q = (\pi, \pi) \). E.g., the highest \( T_c \) is obtained for \( J_2 = -0.2J_1, J_3 = 0 \), i.e. when the spectral weight in \( \chi''(q, \omega) \) is maximal for \( q = (\pi, \pi) \).

We emphasize, however, that \( T_c \) is rather insensitive to changes in the long-range exchange parameters \( J_2 \) and \( J_3 \). E.g. a change in \( J_2 \) from \( J_2 = 0 \) to \( J_2 = -0.2J_1 \) only induces a \( \approx 5\% \) increase in \( T_c \) and the effects of \( J_3 \) on \( T_c \) are almost negligible. Note, however, that the third-nearest-neighbor exchange \( J_3 \) is not directly represented on a \( 4 \)-site \( 2 \times 2 \) cluster. In this approximation, the spins on the cluster only know about \( J_3 \) through their effective coupling to the spin-fluctuation host. Therefore, it is possible that larger variations in \( T_c \) would be found in larger cluster simulations. From the present results, however, we conclude that the differences in the long-ranged exchange terms cannot explain the differences in \( T_c \) between different cuprates.
CONCLUSION

In summary, we have calculated the magnetic exchange interactions for a series of HTSC cuprates using the LDA+U based linear response approach. Our calculated spin wave dispersions were found in good agreement with high-resolution inelastic neutron scattering experiments. Our simulations show that for different parent HTSCs, the nearest neighbor and next-nearest neighbor exchange parameters are similar, while the third nearest neighbor $J$ appears to be material dependent. Furthermore, we find that $J_1$ is insensitive to the hole doping, which agrees with recent experiments and supports the implicit assumption of the t−J model with a fixed magnitude of $J$. In contrast to the hopping integral, which strongly depends on the position of the apical oxygen, our results show that the magnetic exchange interaction is rather insensitive to the position of the apical oxygen. In addition to the LDA+U calculations, we studied the dependence of the dynamic spin susceptibility $\chi(q, \omega)$ and superconducting transition temperature $T_c$ on the exchange parameters in a t−J model using a dynamic cluster approximation. We find that both $\chi(q, \omega)$ and $T_c$ are only weakly affected by variations in the exchange parameters beyond nearest neighbor. Based on these results, we conclude that differences in long-range exchange terms between different materials cannot explain their different superconducting transition temperatures.

ACKNOWLEDGMENT

The authors acknowledge useful conversations with J. M. Dong, J. X. Li, G. Kotliar, J. An and Q. H. Wang. X.G.W. acknowledges support from National Key Project for Basic Researches of China (No. 2006CB921802), Natural Science Foundation of China under Grant No. 10774067, and NSF of Jiangsu Province through Grant No. BK2007127. We acknowledge the support from DOE SciDAC Grant DE-FC0206ER25793. The work of S.Y.S. was supported by NSF DMR Grant No. 0606498.

[1] A.V. Chubukov and D. Pines, in The physics of Superconductors Vol. 2 (eds K.H. Bennemann and J.B. Ketterson) 495-590 (Springer, Berlin, 2003).
[2] A.J. Millis, H. Monien, and D. Pines, Phys. Rev. B 42, 167 (1990).
[3] P.W. Anderson, P.A. Lee, M. Randeria, T.M. Rice, N. Trivedi, and F.C. Zhang, J. Phys.: Condens. Matt. 16 R755 (2004).
[4] E. Demler, W. Hanke, and S.-C. Zhang, Rev. Mod. Phys. 76, 909 (2004).
[5] D. Scalapino, Phys. Rep. 250, 329 (1995); T. Moriya and K. Ueda, Rep. Prog. Phys. 66, 1299 (2003).
[6] R. Ofer, G. Bazalitsky, A. Kanigel, A. Keren, A. Auerbach, J.S. Lord, and A. Amato, Phys. Rev. B 74, 220508(R) (2006).
[7] P. Dai, H.A. Mook, S.M. Hayden, G. Aeppli, T.G. Perring, R.D. Hunt, F. Dogan, Science 284, 1344 (1999).
[8] K.B. Lyons, P.A. Fleury, J.P. Remeika, A.S. Cooper, and T.J. Negran, Phys. Rev. B 37, 2353 (1988).
[9] S. M. Hayden, G. Aeppli, R. Osborn, A.D. Taylor, T.G. Perring, S-W. Cheong, and Z. Fisk, Phys. Rev. Lett. 67, 3622 (1991).
[10] G. Aeppli et al., Phys. Rev. Lett. 62, 2052 (1989); R.R.P. Singh, P.A. Fleury, K.B. Lyons, and P.E. Sulewski, ibid. 62, 2736 (1989); T. Thio et al., Phys. Rev. B 38, 905 (1988).
[11] R. Coldea et al., Phys. Rev. Lett. 86, 5377 (2001).
[12] J. M. Tranquada, G. Shirane, B. Keimer, S. Shamoto and M. Sato, Phys. Rev. B 40, 4503 (1989).
[13] S. Shamoto, M. Sato, J. M. Tranquada, B. J. Sternlieb, and G. Shirane, Phys. Rev. B 48, 13817 (1993).
[14] D. Vaknin, S.K. Sinha, C. Stassis, L.L. Miller, and D.C. Johnston, Phys. Rev. B 41, 1926 (1990).
[15] B. Keimer et al., Phys. Rev. B 45, 7430 (1992).
[16] N.B. Christensen et al., Phys. Rev. Lett. 93, 147002 (2004).
[17] A. M. Toader, J.P. Goff, M. Roger, N. Shannon, J.R. Stewart, and M. Enderle, Phys. Rev. Lett. 94, 197202 (2005).
[18] J. Lorenzana, J. Eroles, and S. Sorella, Phys. Rev. Lett. 83, 5122 (1999).
[19] I. de P. R. Moreira, C.J. Calzado, J.-P. Malrieu, and F. Illas, Phys. Rev. Lett. 97, 087003 (2006).
[20] T. Zhou, J.X. Li, and Z. D. Wang, Phys. Rev. B 75, 054512 (2007); Y. Lubashevsky and A. Keren, ibid. 78, 020505 (2008).
[21] S.M. Hayden et al., Nature (London) 429, 531 (2004); J.P. Hill et al., Phys. Rev. Lett. 100, 097001 (2008).
[22] E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).
[23] M. Boninsegni and E. Manousakis, Phys. Rev. B 47, 11897 (1993); D.J. Scalapino and S.R. White, ibid. 58, 8222 (1998).
[24] J. Igarashi, Phys. Rev. B 46, 10763 (1992); R.R.P. Singh, ibid. 39, 9760 (1989).
[25] R.L. Martin and F. Illas, Phys. Rev. Lett. 79, 1539 (1997).
[26] D. Munoz, F. Illas, and I. de P.R. Moreira, Phys. Rev. Lett. 84, 1579 (2000).
[27] J.F. Annett, R.M. Martin, A.K. McMahan and S. Satpathy, Phys. Rev. B 40, R2620 (1989).
[28] P.W. Anderson, Phys. Rev. 86, 694 (1952); R. Kubo, ibid. 87, 568 (1952).
[29] A. Damaselli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003).
[30] J.-Y.P. Delannoy, M.J.P. Gingras, P.C.W. Holdsworth, J.P. Hill, M.J. Pashaioff, and G. Shirane, Phys. Rev. B 40, 13817 (1989).
[31] Q. Si, Y. Zha, K. Levin and J.P. Lu Phys. Rev. B 47, 9055 (1993).
[32] X. Wan, Q. Yin and S.Y. Savrasov, Phys. Rev. Lett. 95, 146602 (2006).
[33] S. Y. Savrasov, Phys. Rev. B 54, 16470 (1996).
[34] V.I. Anisimov, J. Zaanen, and O.K. Andersen, Phys. Rev. B 44, 943 (1991).
[35] V. I. Anisimov, M.A. Korotin, I.A. Nekrasov, Z.V.
Pchelkina, and S. Sorella, Phys. Rev. B 66, 100502 (2002).

[36] A. I. Liechtenstein et al., J. Magn. Magn. Mater. 67, 65 (1987); P. Bruno, Phys. Rev. Lett. 90, 087205 (2003).

[37] L. Gao et al., Phys. Rev. B 50, 4260 (1994).

[38] T. Thonhauser and C. Ambrosch-Draxl, Phys. Rev. B 67, 134508 (2003).

[39] J.A. Slezak et al., PNAS 105, 3203 (2008).

[40] Y. Ohta, T. Tohyama and S. Maekawa, Phys. Rev. B 43, 2968 (1991).

[41] E. Pavarini, I. Dasgupta, T. Saha-Dasgupta, O. Jepsen, and O.K. Andersen, Phys. Rev. Lett. 87, 047003 (2001).

[42] W.G. Yin and W. Ku, cond-mat://0702469.

[43] M.H. Hettler, A.N. Tahlvdar-Zadeh, M. Jarrell, T. Pruschke, and H.R. Krishnamurthy, Phys. Rev B 58, R7475 (1998); M.H. Hettler, M. Mukherjee, M. Jarrell, and H.R. Krishnamurthy, ibid. 61, 12739 (2000).

[44] T.A. Maier, M. Jarrell, T. Pruschke, and M. Hettler, Rev. Mod. Phys. 77, 1027 (2005).

[45] P.R.C. Kent, T. Saha-Dasgupta, O. Jepsen, O.K. Andersen, A. Macridin, T.A. Maier, M. Jarrell, T.C. Schultess, Phys. Rev. B 78, 035132 (2008).

[46] M. Jarrell et al., Europhys. Lett. 56, 563 (2001).

[47] T.A. Maier, M.S. Jarrell, and D.J. Scalapino, Phys. Rev. Lett. 96 047005 (2006); Phys. Rev. B 74 094513 (2006); ibid. 75, 134519 (2007); T.A. Maier, A. Macridin, M.S. Jarrell, and D.J. Scalapino, ibid. 76, 144516 (2007).

[48] Th. Maier et al., Eur. Phys. J B 13, 613 (2000).

[49] T.A. Maier, Physica B: Cond. Mat. 359-361, 512-514 (2005).

[50] K. Haule and G. Kotliar, Phys. Rev. B 76, 104509 (2007).

[51] T.A. Maier, D. Poilblanc, and D.J. Scalapino, Phys. Rev. Lett. 100, 237001 (2008).