STRONGLY GRADED LEAVITT PATH ALGEBRAS

PATRIK NYSTEDT

Department of Engineering Science,
University West, SE-46186 Trollhättan, Sweden

JOHAN ÖINERT

Department of Mathematics and Natural Sciences,
Blekinge Institute of Technology, SE-37179 Karlskrona, Sweden

Abstract. Let \(R \) be a unital ring, let \(E \) be a directed graph and recall that the Leavitt path algebra \(L_R(E) \) carries a natural \(\mathbb{Z} \)-gradation. We show that \(L_R(E) \) is strongly \(\mathbb{Z} \)-graded if and only if \(E \) is row-finite, has no sink, and satisfies Condition (Y). Our result generalizes a recent result by Clark, Hazrat and Rigby, and the proof is short and self-contained.

1. Introduction

Given an associative unital ring \(R \) and a directed graph \(E \), one may define the Leavitt path algebra \(L_R(E) \) (see Section 2.2). Since their introduction in 2005, Leavitt path algebras have grown into a common theme within modern algebra on the interface between ring theory and operator algebra. For an excellent account of the history of the subject and a review of some of its main developments, we refer the reader to Abrams’ survey article [1].

Every Leavitt path algebra comes equipped with a natural \(\mathbb{Z} \)-gradation (see Remark 2.3) and there are multiple examples of when the graded structure has been utilized in the study of \(L_R(E) \). On the other hand, there are only a few examples of when properties of the \(\mathbb{Z} \)-gradation itself have been studied. Notably, Hazrat has shown that for a finite graph \(E \), the Leavitt path algebra \(L_R(E) \) with coefficients in a unital ring \(R \) is strongly \(\mathbb{Z} \)-graded if and only if \(E \) has no sink (see [7, Theorem 3.15]). The authors of the present article have shown that if \(E \) is a finite graph, then \(L_R(E) \) is always epsilon-strongly \(\mathbb{Z} \)-graded (see [8, Theorem 1.2]).

E-mail addresses: patrik.nystedt@hv.se, johan.oinert@bth.se.
Date: February 18, 2020.
2010 Mathematics Subject Classification. 16S99, 16W50.
Key words and phrases. strongly graded ring, Leavitt path algebra.
In their recent article [6], Clark, Hazrat and Rigby introduced the following condition.

Definition 1.1 (Clark et al [6]). A directed graph E satisfies *Condition (Y)* if for every $k \in \mathbb{N}$ and every infinite path p, there exists an initial subpath α of p and a finite path β such that $r(\beta) = r(\alpha)$ and $|\beta| - |\alpha| = k$.

Using results on Steinberg algebras, in the case when K is a commutative unital ring, they showed that $L_K(E)$ is strongly \mathbb{Z}-graded if and only if E is row-finite, has no sink, and satisfies Condition (Y) (see [6, Theorem 4.2]).

We now introduce the following seemingly weaker condition, which can actually be shown to be equivalent to Condition (Y).

Definition 1.2. A directed graph E satisfies *Condition (Y1)* if for every infinite path p, there exists an initial subpath α of p and a finite path β such that $r(\beta) = r(\alpha)$ and $|\beta| - |\alpha| = 1$.

Our main result is the following generalization of [6, Theorem 4.2].

Theorem 1.3. Let R be a unital ring and let E be a directed graph. Consider the Leavitt path algebra $L_R(E)$ with its canonical \mathbb{Z}-gradation. The following three assertions are equivalent:

(i) $L_R(E)$ is strongly \mathbb{Z}-graded;

(ii) E is row-finite, has no sink, and satisfies Condition (Y);

(iii) E is row-finite, has no sink, and satisfies Condition (Y1).

In the context of graph C^*-algebras, Chirvasitu [5, Theorem 2.14] has shown that the assertions on E made in Theorem 1.3(ii) are equivalent to freeness of the full gauge action on the graph C^*-algebra $C^*(E)$.

Here is an outline of this article.

In Section 2 we record definitions and results that will be used in the sequel. In Section 3 we prove Lemma 3.1 which establishes the implication (i)\Rightarrow(ii) in Theorem 1.3. Notice that the implication (ii)\Rightarrow(iii) is trivial. In Section 4 we prove Proposition 4.3 which establishes the implication (iii)\Rightarrow(i) in Theorem 1.3, thereby finishing the proof of Theorem 1.3.

2. **Preliminaries**

In this section we will record definitions and results that will be used in the rest of this article.

2.1. **Strongly \mathbb{Z}-graded rings.** Recall that an associative ring S is said to be *\mathbb{Z}-graded* if, for each $n \in \mathbb{Z}$, there is an additive subgroup S_n of S such that $S = \oplus_{n \in \mathbb{Z}} S_n$ and for all $n, m \in \mathbb{Z}$ the inclusion $S_n S_m \subseteq S_{n+m}$ holds. If, in addition, for all $n, m \in \mathbb{Z}$, the equality $S_n S_m = S_{n+m}$ holds, then S is said to be *strongly \mathbb{Z}-graded*.

Throughout the rest of this subsection S denotes a, not necessarily unital, \mathbb{Z}-graded ring.
Proposition 2.1. The ring S is strongly \mathbb{Z}-graded if and only if for every $n \in \mathbb{Z}$ the S_0-bimodule S_n is unital, and the equalities $S_1S_{-1} = S_{-1}S_1 = S_0$ hold.

Proof. The "only if" statement is immediate. Now we show the "if" statement. Take positive integers m and n. First we show by induction that $S_m = (S_1)^m$. The base case $m = 1$ is clear. Next suppose that $S_m = (S_1)^m$. Then we get that $S_{m+1} = S_0S_{m+1} = S_1S_{-1}S_{m+1} \subseteq S_1S_{-1}S_m = S_1(S_1)^m = (S_1)^{m+1} \subseteq S_{m+1}$. Next we show by induction that $S_{n-S} = (S_1)^n$. The base case $n = 1$ is clear. Next suppose that $S_{n-S} = (S_1)^n$. Then we get that $S_{n-S-1} = S_{n-S-1}S_0 = S_{n-S-1}S_{-1} \subseteq S_{n-S-1}S_{-1} = S_{n-S-1} = (S_1)^{n-S-1}S_1 = (S_1)^{n-S} \subseteq S_{n-S}$.

Case 1: $S_mS_n = (S_1)^m(S_1^n) = (S_1)^{m+n} = S_{m+n}$.

Case 2: $S_{m-n}S_n = (S_1)^m(S_1^{-n}) = (S_1)^{m+n} = S_{m-n}$.

Case 3: Now we show that $S_mS_n = S_{m-n}$. We get that $S_mS_n = (S_1)^m(S_1^{-n}) = (S_1)^{m+n} = S_{m-n}$, if $m \geq n$, or $(S_1)^m(S_1^{-n}) = (S_1)^{n-m} = S_{m-n}$, otherwise.

Case 4: $S_{m-n}S_n = S_{n-m}$. This is shown in a similar fashion to Case 3, using the equality $S_{-1}S_1 = S_0$, and is therefore left to the reader. □

2.2. Leavitt path algebras. Let R be an associative unital ring and let $E = (E^0, E^1, r, s)$ be a directed graph. Recall that r (range) and s (source) are maps $E^1 \to E^0$. The elements of E^0 are called vertices and the elements of E^1 are called edges. A vertex v for which $s^{-1}(v)$ is empty is called a sink. A vertex v for which $r^{-1}(v)$ is empty is called a source. If $s^{-1}(v)$ is a finite set for every $v \in E^0$, then E is called row-finite. If $s^{-1}(v)$ is an infinite set, then $v \in E^0$ is called an infinite emitter. If both E^0 and E^1 are finite sets, then we say that E is finite. A path μ in E is a sequence of edges $\mu = \mu_1 \ldots \mu_n$ such that $r(\mu_i) = s(\mu_{i+1})$ for $i \in \{1, \ldots, n-1\}$. In such a case, $s(\mu) := s(\mu_1)$ is the source of μ, $r(\mu) := r(\mu_n)$ is the range of μ, and $|\mu| := n$ is the length of μ. For any vertex $v \in E^0$ we put $s(v) := v$ and $r(v) := v$. The elements of E^1 are called real edges, while for $f \in E^1$ we call f^* a ghost edge. The set $\{f^* \mid f \in E^1\}$ will be denoted by $(E^1)^*$. We let $r(f^*)$ denote $s(f)$, and we let $s(f^*)$ denote $r(f)$. For $n \geq 2$, we define E^n to be the set of paths of length n, and $E^* = \cup_{n \geq 0} E^n$ is the set of all finite paths. If $\mu = \mu_1 \mu_2 \mu_3 \ldots$, where $\mu_i \in E^1$, for all $i \in \mathbb{N}$, and $r(\mu_i) = s(\mu_{i+1})$ for all $i \in \mathbb{N}$, then μ is said to be an infinite path. The set of all infinite paths is denoted by E^{∞}. If $p \in E^* \cup E^{\infty}$ and some $\alpha \in E^*$, $p' \in E^* \cup E^{\infty}$ satisfy $p = \alpha p'$, then α is said to be an initial subpath of p.

Following Hazrat [7] we make the following definition.

Definition 2.2. The Leavitt path algebra of E with coefficients in R, denoted by $L_R(E)$, is the algebra generated by the sets $\{v \mid v \in E^0\}$, $\{f \mid f \in E^1\}$ and $\{f^* \mid f \in E^1\}$ with the coefficients in R, subject to the relations:

1. $uv = \delta_{u,v}v$ for all $u, v \in E^0$;
Then for all \(m, n \) the desired properties. Now we show the claim.

\[\text{Lemma 2.4.} \]

The Leavitt path algebra \(L_R(E) \) carries a natural \(\mathbb{Z} \)-gradation. Indeed, put \(\deg(v) = 0 \) for each \(v \in E^0 \). For each \(f \in E^1 \) we put \(\deg(f) = 1 \) and \(\deg(f^*) = -1 \). By assigning degrees to the generators in this way, we obtain a \(\mathbb{Z} \)-gradation on the free algebra \(F_R(E) = R \langle v, f, f^* \mid v \in E^0, f \in E^1 \rangle \). Moreover, the ideal coming from relations (1)–(4) in Definition 2.2 is homogeneous. Using this it is easy to see that the natural \(\mathbb{Z} \)-gradation on \(F_R(E) \) carries over to a \(\mathbb{Z} \)-gradation on the quotient algebra \(L_R(E) \).

\[\text{Remark 2.3.} \]

The following lemma follows from a general result concerning non-emptiness of inverse limits in [4] Chapter III § 7.4. For the convenience of the reader, we give a short direct proof adapted to the situation at hand.

\[\text{Lemma 2.4.} \]

If \((X_n)_{n \in \mathbb{N}} \) is a sequence of finite non-empty sets and for all \(n \in \mathbb{N} \), \(g_n \) is a function \(X_{n+1} \to X_n \), then there exists an element \((x_1, x_2, x_3, \ldots) \in \prod_{n \in \mathbb{N}} X_n \) such that for each \(n \in \mathbb{N} \) the equality \(g_n(x_{n+1}) = x_n \) holds.

\[\text{Proof.} \]

We claim that there exists a sequence of sets \((Z_n)_{n \in \mathbb{N}} \) such that for all \(n \in \mathbb{N} \), \(Z_n \) is a non-empty subset of \(X_n \) and \(g_n(Z_{n+1}) = Z_n \). Let us assume for a moment that the claim holds. Define an element \((x_1, x_2, x_3, \ldots) \in \prod_{n \in \mathbb{N}} Z_n \) inductively in the following way. Let \(x_1 \) be any element in \(Z_1 \). Take \(m \in \mathbb{N} \). Suppose that we have defined \(x_n \in Z_n \) for all \(n \leq m \). Then let \(x_{m+1} \) be any element in \(g_m^{-1}(x_m) \cap Z_{m+1} \). It is clear that the element \((x_1, x_2, x_3, \ldots) \) has the desired properties. Now we show the claim. For all \(m, n \in \mathbb{N} \) put

\[Y^m_n = (g_n \circ g_{n+1} \circ \cdots \circ g_{m+n-1})(X_{m+n}). \]

Then for all \(m, n \in \mathbb{N} \), the set \(Y^m_n \) is a finite and non-empty subset of \(X_n \), and the relations

\[Y^{m+1}_n \subseteq Y^m_n \quad (1) \]

and

\[g_n(Y^m_{n+1}) = Y^{m+1}_n \quad (2) \]

hold. For all \(n \in \mathbb{N} \) put \(Z_n = \bigcap_{m \in \mathbb{N}} Y^m_n \). From (1) it follows that every \(Z_n \) is a finite and non-empty subset of \(X_n \). In fact, for all \(n \in \mathbb{N} \), there is \(p(n) \in \mathbb{N} \) with the property that for all \(k \geq p(n) \), the equalities \(Y^k_n = Y^{p(n)}_n = Z_n \) hold. Take \(n \in \mathbb{N} \) and \(k = \max(p(n+1), p(n)) \). Then, from (2), we get that

\[g_n(Z_{n+1}) = g_n(Y^{p(n+1)}_{n+1}) = g_n(Y^k_{n+1}) = Y^{k+1}_n = Z_n \]

which shows the claim. \(\square \)
3. Necessary conditions

In this section we will prove Lemma 3.1 which establishes the implication (i) \(\Rightarrow\) (ii) in Theorem 1.3.

Lemma 3.1. Let \(R\) be a unital ring and let \(E\) be a directed graph. Consider the Leavitt path algebra \(L_R(E)\) with its canonical \(\mathbb{Z}\)-gradation. If \(L_R(E)\) is strongly \(\mathbb{Z}\)-graded, then the following three assertions hold:

(i) \(E\) has no sink;
(ii) \(E\) is row-finite;
(iii) \(E\) satisfies Condition (Y).

Proof. Suppose that \(S = L_R(E)\) is strongly \(\mathbb{Z}\)-graded.

(i) Seeking a contradiction, suppose that there is a sink \(v\) in \(E\). Then \(v \in S_0 = S_1S_{-1}\). Using that \(v\) is a sink, we get that \(v = v^2 \in vS_1S_{-1} = \{0\}\). This is a contradiction.

(ii) Let \(v \in E^0\) be an arbitrary vertex. From the strong gradation we get that \(v \in S_0 = S_1S_{-1}\), i.e., \(v = \sum_{i=1}^{n} \alpha_i \beta_i^* \gamma_i \delta_i^*\) where \(\alpha_i \beta_i^* \in S_1\) and \(\gamma_i \delta_i^* \in S_{-1}\). Notice that \(|\delta_i| > 0\) for each \(i\). Seeking a contradiction, suppose that \(v\) is an infinite emitter. Then \(f = vf = \sum_{i=1}^{n} \alpha_i \beta_i^* \gamma_i \delta_i^* f\) for infinitely many \(f\)’s. But that is not possible since \(n < \infty\). This is a contradiction. We conclude that \(E\) is row-finite.

(iii) Let \(p\) be an infinite path and let \(k > 0\) be an arbitrary integer. Put \(v = s(p)\). Using that \(S_0 = S_{-k}S_k\) we may write

\[v = \sum_{i=1}^{n} \alpha_i \beta_i^* \gamma_i \delta_i^* \]

where \(\alpha_i \beta_i^* \in S_{-k}\) and \(\gamma_i \delta_i^* \in S_k\). Let \(p'\) be an initial subpath of \(p\) such that \(|p'| > |\delta_i|\) for each \(i\). Clearly, \(vp' = s(p')p' = p'\). Hence there must be some \(m\) such that \(\delta_m\) is an initial subpath of \(p'\) (and thus also of \(p\)), for otherwise we would have ended up with \(vp' = 0\). Using the notation of Definition 1.1, put \(\alpha := \delta_m\) and \(\beta := \gamma_m\) and notice that \(r(\delta_m) = r(\gamma_m)\) and \(|\gamma_m| - |\delta_m| = k\).

This shows that \(E\) satisfies Condition (Y).

\[\square \]

4. Sufficient conditions

In this section we will prove Proposition 4.3 which establishes the implication (iii) \(\Rightarrow\) (i) in Theorem 1.3.

Lemma 4.1. Let \(R\) be a unital ring and let \(E\) be a directed graph. Consider the Leavitt path algebra \(S = L_R(E)\) with its canonical \(\mathbb{Z}\)-gradation. If \(E\) is row-finite and has no sink, then \(S_1S_{-1} = S_0\).

Proof. It suffices to show that \(E^0 \subseteq S_1S_{-1}\). Take \(v \in E^0\). Then \(v = \sum_{s(f)=v} ff^* \in S_1S_{-1}\).

\[\square \]

Definition 4.2. If \(\alpha \in E^n\), for some \(n \in \mathbb{N}\), then we say that \(r(\alpha)\) is a turning node for \(\alpha\) if there exists \(\beta \in E^{n+1}\) with \(r(\alpha) = r(\beta)\).
Proposition 4.3. Let R be a unital ring and let E be a directed graph. Consider the Leavitt path algebra $L_R(E)$ with its canonical \mathbb{Z}-gradation. If E is row-finite, has no sink, and satisfies Condition (Y1), then $L_R(E)$ is strongly \mathbb{Z}-graded.

Proof. Put $S = L_R(E)$. Notice that, by Lemma 4.1, $S_0 = S_1S_{-1}$. Using that S has a set of local units which is contained in S_0, it is clear that S_n is a unital S_0-bimodule for every $n \in \mathbb{Z}$. In view of Proposition 2.4, it remains to show that $S_0 = S_{-1}S_1$. Clearly, any vertex $v \in E^0$ which is not a source belongs to $S_{-1}S_1$, since $v = r(f) = f^*f$ for some $f \in E^1$. Thus, in order to show that $L_R(E)$ is strongly \mathbb{Z}-graded it remains to show that $v \in S_{-1}S_1$ for every source v.

Suppose that v is a source. Using v we will now inductively define a sequence $(X_n)_{n \in N}$ of sets in the following way. Put
\[
X_1 = \{ f \in E^1 \mid s(f) = v, \text{and } r(f) \text{ is not a turning node for } f \}
\]
and notice that it is a finite set since E is row-finite. Suppose that we have defined the finite set $X_n \subseteq E^n$ for some $n \in \mathbb{N}$. Put
\[
X_{n+1} = \{ \alpha f \in E^{n+1} \mid \alpha \in X_n, f \in E^1, s(f) = r(\alpha), \text{and } r(f) \text{ is not a turning node for } \alpha f \}.\]
By finiteness of X_n and row-finiteness of E we conclude that X_{n+1} is finite. Seeking a contradiction, suppose that X_n is non-empty for every $n \in \mathbb{N}$. For each $n \in \mathbb{N}$, we define a function $g_n : X_{n+1} \to X_n$ by putting $g_n(\alpha f) = \alpha$, for $\alpha f \in X_{n+1}$. By Lemma 2.4, there exists an element $(x_1, x_2, x_3, \ldots) \in \prod_{n \in \mathbb{N}} X_n$ such that for all $n \in \mathbb{N}$ the equality $g_n(x_{n+1}) = x_n$ holds. In other words, $x_1x_2x_3 \cdots$ is an infinite path in E such that $s(x_1) = v$ and with the property that for all $n \in \mathbb{N}$, $r(x_n)$ is not a turning node for $x_1x_2 \cdots x_n$. This contradicts condition (Y1). Therefore, for some $n \in \mathbb{N}$, the set X_n is empty.

Put $k = \min \{ n \in \mathbb{N} \mid X_n = \emptyset \}$.

We claim that $v = \sum_{i=1}^m \alpha_i \alpha_i^* \in E^*$ for some $m \in \mathbb{N}$ and $\alpha_1, \ldots, \alpha_m \in E^*$ such that, for each $i \in \{1, \ldots, m\}$, $r(\alpha_i)$ is a turning node for α_i. If we assume that the claim holds, then for each $i \in \{1, \ldots, m\}$ there is some $\beta_i \in E^*$ such that $r(\alpha_i) = r(\beta_i)$ and $|\beta_i| - |\alpha_i| = 1$. Thus,
\[
v = \sum_{i=1}^m \alpha_i \alpha_i^* = \sum_{i=1}^m \alpha_i r(\alpha_i) \alpha_i^* = \sum_{i=1}^m \alpha_i \beta_i \beta_i^* \alpha_i^* \in S_{-1}S_1
\]
as desired.

Now we show the claim. Using that E is row-finite and that v is not a sink, we may write
\[
v = \sum_{i=1}^{m'} f_i f_i^*
\]
with $\{f_1, \ldots, f_{m'}\} = s^{-1}(v)$. If, for some i, $r(f_i)$ is not a turning node for f_i, then we may replace $f_i f_i^* = f_i r(f_i) f_i^* = f_i \sum_{h \in s^{-1}(r(f_i))} hh^* f_i^*$ in
Equation (3). By repeating this procedure (if necessary) it is clear that we, in a finite number of steps, will be able to identify \(m \in \mathbb{N} \) and \(\alpha_1, \ldots, \alpha_m \in E^* \) such that \(|\alpha_i| \leq k \), and with the properties that \(v = \sum_{i=1}^{m} \alpha_i \alpha_i^* \) and for each \(i \in \{1, \ldots, m\} \), \(r(\alpha_i) \) is a turning node for \(\alpha_i \). \(\square \)

References

[1] G. Abrams, Leavitt path algebras: the first decade, Bull. Math. Sci. 5 (2015), no. 1, 59–120.
[2] G. Abrams, G. Aranda Pino, The Leavitt path algebra of a graph, J. Algebra 293 (2005), no. 2, 319–334.
[3] P. Ara, M. A. Moreno and E. Pardo, Nonstable K-theory for graph algebras, Algebr. Represent. Theory 10 (2007), no. 2, 157–178.
[4] N. Bourbaki, Elements of mathematics. Theory of sets., Translated from the French Hermann, Publishers in Arts and Science, Paris; Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. (1968), viii+414 pp.
[5] A. Chirvasitu, Gauge freeness for Cuntz-Pimsner algebras, arXiv:1805.12318 [math.OA]
[6] L. O. Clark, R. Hazrat, S. W. Rigby, Strongly graded groupoids and strongly graded Steinberg algebras, J. Algebra 530 (2019), 34–68.
[7] R. Hazrat, The graded structure of Leavitt path algebras, Israel J. Math. 195 (2013), no. 2, 833–895.
[8] P. Nystedt, J. Öinert, Group gradations on Leavitt path algebras. To appear in Journal of Algebra and Its Applications.