CLINICAL PROFILE OF DOWN SYNDROME IN CHILDREN LESS THAN 14 YEARS IN A TERTIARY CARE HOSPITAL

Leena Das¹, Mangal Charan Murmu², Satyapriya Sahoo³

¹Associate Professor, Department of Paediatrics, SCB Medical College, Cuttack, Odisha, India.
²Associate Professor, Department of Paediatrics, SCB Medical College, Cuttack, Odisha, India.
³Resident Physician, SCB Medical College, Cuttack, Odisha, India.

ABSTRACT

BACKGROUND
Down syndrome is the most common and most easily recognised condition causing intellectual disability. Down syndrome occurs in 1 in 700 to 1 in 1000 live births. The aim of this study was to evaluate the incidence and clinical profile of Down syndrome in children below 14 years.

MATERIALS AND METHODS
Children below 14 years who presented with symptoms of Down syndrome from 1st December 2015 to 30th November 2017 were included in this hospital-based case series study.

RESULTS
The hospital-based incidence was found to be 0.1%. The mean age of presentation was found to be 28.6 months. The ratio of male: female was 1.57. The mean maternal age at delivery was found to be 27.6 years. About 9.5% of Down syndromes were diagnosed antenatally. The first order children were more common (42.9%) followed by second order (32.5%). Diagnosis by using Hall’s criteria was done in 94.4% cases. On karyotyping 94.4% had non-disjunction and 4.6% patient had translocation.

CONCLUSION
The chromosomal non-disjunction was the most common type of chromosomal abnormality in Down syndrome. Down syndrome is associated with significant systemic abnormalities and is not infrequent among mothers younger than 25 years of age. Early diagnosis and proper screening should be undertaken among these patients.

KEY WORDS
Down Syndrome, Intellectual Disability, Karyotyping.
MATERIALS AND METHODS
After obtaining the ethical committee clearance from the Institutional Ethical Committee, the study was conducted. The children below 14 years who presented with symptoms of Down syndrome from 1st December 2015 to 30th November 2017.

It is a hospital-based case series study. Selection of cases: All the children below 14 years with clinical and laboratory evidence of Down syndrome reported/admitted to outdoor/indoor of SVP PGIP and SCB Medical College during study period fulfilling the inclusion criteria were taken as cases after taking consent from parents. 126 patients were selected for the study.

Inclusion Criteria: All the children below 14 years of age presenting with the signs and symptoms of Down syndrome or diagnosed by Karyotyping and neonate fitting to Hall’s criteria were included in the study.

Exclusion Criteria: The children with other syndromic associations, suspected with single gene disorders, inborn error of metabolism and multifactorial genetic diseases or other anomalies which are not diagnosed as Down syndrome were excluded from the study.

Hall's Criteria: Hypotonia, poor Moro's reflex, flat face, upward slanted palpebral fissure, small dysplastic ears, joint hyperflexibility, short neck, short fifth digit clinodactyly, single transverse palmar crease and pelvic dysplasia.

Investigation
The following investigations were carried out in each case to determine the associated conditions. A. Blood: Complete blood count, comment on peripheral smear, thyroid function test, B. Bone marrow study, C. Radiological study: X-ray. Ultrasound of brain, abdomen, CT scan/ MRI, Barium meal follow-through, D. ECG, E. Echocardiography, F. EEG, G. Karyotyping, H. Ophthalmological examination: Slit lamp biomicroscopy, visual acuity testing, ophthalmoscopy; I. Audiological investigation: OAE, BERA.

Statistical Analysis
For statistical analyses, the data were done by chi-square test. The calculated p-value is below the threshold chosen for statistical significance
P-value ≤ 0.05 was considered for statistical significance.

RESULTS

Incidence: 126/112949	Male	Female	Frequency	%
Total Patients	77	49	126	100
<1 year	46	26	72	57.1
1 to 5 years	20	12	32	25.4
>5 years	11	11	22	17.5
			126	0.1

Table 1. Distribution of Incidence

The hospital-based incidence was found to be 0.1%. Male: Female ratio being 1.57.

Maternal Age at Delivery in Years	Frequency	%
<20	13	10.3
20-25	37	29.4
26-30	27	21.4

The mean maternal age at delivery was found to be 27.6 years.

Antenatal Diagnosis	Frequency	Percentage
No	114	90.5
Yes	12	9.5
Total	126	100

Table 2. Distribution of Maternal Age at Delivery

About 9.5% of Down syndrome were diagnosed antenatally.

Order	Frequency	Percentage
1st	54	42.9
2nd	41	32.5
3rd	24	19
4th	6	4.8
5th	1	0.8
Total	126	100

Table 3. Distribution of Order of Births

The first order children were found to be more common (42.9%) followed by second order (32.5%).

Diagnosis using Hall’s Criteria	Frequency	%
No	7	5.6
Yes	119	94.4
Total	126	100

Table 4. Distribution of Antenatal Diagnosis

The diagnosis by using Hall's criteria was 94.4%.

Karyotyping	Frequency	Percentage
Non-disjunction	94	74.6
Translocation	5	4
Not done	27	21.4
Total	126	100

Table 5. Distribution of diagnosis using Hall’s Criteria

On karyotyping, 94.4% had non-disjunction and 4.6% patient had translocation.

Features	Frequency	Present	
Craniofacial dysmorphism	Epicantic fold	115	91.3
	Flat facial facies	99	78.6
	Mongoloid slant	117	92.9
	Small dysplastic ear	58	46
	Brachycephaly	28	22.2
	Cleft lip	9	7.1
	Cleft palate	2	1.6
	Protruding tongue	37	29.4
	Low set ear	56	44.4
	Hypotonia	81	64.3
	Poor Moro reflex	39	31
	Motor develop delay	65	51.6
	Speech impairment	38	30.2
	Cognitive impairment	26	20.6
	Hearing impairment	77	61.1

Table 6. Distribution of Karyotyping

CNS Feature	Frequency	Present
Seizures 4 3.2
Autistic disorder 1 0.8
Behavioural disorder 0 0
ASD 5 4
ECD 10 7.9
Eisenmenger complex 2 1.6
Normal 95 75.4
TOF 4 3.2
VSD 10 7.9

Sl. No.	Disease	Order of Birth	Present	Normal	Total	P-value
1	GI Malformation	1st	10	44	54	0.4279
		2nd	9	32	41	
		3rd	4	20	24	
		4th	3	3	6	
		5th	0	1	1	
2	Haematological Disorder	1st	9	45	54	0.6678
		2nd	7	34	41	
		3rd	2	22	24	
		4th	0	6	6	
		5th	0	1	1	
3	CVS Disorder	1st	10	44	54	0.2775
		2nd	12	29	41	
		3rd	7	17	24	
		4th	1	5	6	
		5th	0	1	1	
4	Hypothyroidism	1st	4	50	54	0.8749
		2nd	3	38	41	
		3rd	3	21	24	
		4th	1	5	6	
		5th	0	1	1	

Table 8. Disease/Deformity associated with Maternal Age

There is no statistical significance seen as far as maternal age and disease is concerned.

DISCUSSION

Out of total number of 112949 reported cases in OPD and IPD, Department of Paediatrics in the expected age group during the study period, 126 cases fulfilling the inclusion criteria were included in the present study.

The incidence of Down syndrome in our study was found to be 0.1%. Jaruratanasirikul S et al found a prevalence of Down syndrome to be 1.21 per 1000 births in a population-based study in Southern Thailand. Ram Lakhan(10) et al found the prevalence of Down syndrome to be 1.45 in tribal population, which is greater than our study. It might be due to environmental and genetic factors. Hospital based
incidence could not be compared with large population-based study, as the incidence or prevalence were calculated in a large scale population and in community based manner.

The ratio of male-to-female being 1.57 in our study. Kava MP and Tullu MS, Muranjan MM and Girisha KM (2005) found this ratio of 1.37 in their study, which was just lower to our study. This might be due to lesser sample size of our study. KR Lahiri and Satish observed that this ratio of 1.47, which is almost similar to our study. The excess of male appears to be universal and was reported in all studies in different countries and ranged from 1:1 to 1:2.3: 1. Kovaleva NV study concluded that the sex ratio was skewed towards excess of males in majority.

In our study, 9.5% of patients of Down syndrome were diagnosed in antenatal period. Gilany et al found in a study on Down syndrome in Mansoura, Egypt found all Down syndrome cases diagnosed after birth. About 42.9% were first child of their mother, which could be compared to the study of Gilany et al. About 94.4% of children were diagnosed by Hall’s criteria in our study.

Out of 99 patients in whom karyotyping was done, 94.4% showed non-disjunction and 4.6% had translocation. 21.4% patients did not get it done in our study. Kava et al found free trisomy (non-disjunction in 95%), translocation in 3.2% and mosaicism in 1.8%. Gilany et al found non-disjunction was most common (96.1%) followed by translocation (3.1%) than mosaic (0.8%). DS Wang YF et al found that 93.02% had non-disjunction and translocation in 3.4% patients. All the studies done were found to have almost similar proportion in karyotyping.

In our study physical finding that were most prominent were epicantal folds, flat facial facies, mongoloid slant, small dysplastic ear, brachycephaly, cleft lip and cleft palate which corresponds to 78.6%, 91.3%, 92.9%, 46%, 22.2%, 7.1% and 1.6% respectively. Low set ear were found in 44.4% of cases. Kava et al noted mongoloid slant in 83.9%, epicantal fold in 56.9%, ear abnormality in 66.9% and flat facial facies in 50.9% cases. Kallen B et al studied that there was elevated risk ratio of cleft lip and cleft palate around 3 - 5 in cases of Down syndrome in their 5581 collected samples. Irfan Ahmed et al showed that brachycephaly was seen in 40% of cases in their study. This might be due to geographical variation.

Around 64.3% children had hypotonia, 31% children showed poor Moro reflex, all of them were below 8 months age. 51.6% patients did not get it done in our study. Kava et al found that 56.9% patients did not get it done in our study. Kava MP et al found CHD in 39.4% cases which included VSD in 36.9% cases, which was higher than our study. Irfan Ahmed et al said that in their study CHD was seen in 25.8% cases, ASD in 15.5% cases and ASD in 12.1% cases. Benhaouerech Sanna et al in their study from 2156 patients with CHD, 128 were identified with Down syndrome where most common was Endocardial cushion defects in 29% followed by VSD in 21.5% cases comparable to our study. In the study of Gilany et al they had seen CHD in 18.9% cases of Down syndrome cases, which were 24.6% cases. In their study, most common defect was VSD in 7.9% cases, which was similar to our study. Irfan Ahmed et al found CHD in 39.4% cases which included VSD in 36.9% cases, which included VSD in 36.9% cases, ECD in 33% cases, ASD in 14.5% cases and TOF in 7.8% of children. Lahiri et al said that ECD to be the most common CHD followed by VSD in their study. The most common ophthalmological finding was Hypertelorism in 31.7% cases followed by Cataract and Nystagmus in 3.2% cases separately, Brushfield spot in 2.4% patients and Strabismus in 2.4% cases. Kava MP et al found Hypertelorism (33.9%), Nystagmus (3.2%), Brushfield spot (3.2%), Strabismus (2.7%) and Cataract (1.9%) which is comparable to our study. Irfan Ahmed et al demonstrated Hypertelorism (62.4%), Nystagmus (6.1%), Brushfield spot (5.4%), Strabismus (6.4%) and Cataract (1.9%), which was slightly higher than our study. Wong V et al found strabismus in 20% and nystagmus in 11% of cases in their study. Dermatoglyphics features like sandal gap, Kennedy line, brachydactyly, clinodactyly, polydactyly, simian crease, Sydney line, increased ATD angle and Ulnar loop represents 42.1%, 53.2%, 37.3%, 36.5%, 4%, 33%, 24.6%, 40.5% and 100% cases respectively. Kava et al found sandal gap in 46.2% simian crease in 33.2%, clinodactyly in 36.1% and brachydactyly in 11.1% respectively which could be comparable to our study. Irfan Ahmed et al said that in their study sandal gap was present in 46.4% cases, clinodactyly in 24.7% simian crease in 64.7% and brachydactyly in 23.7% cases. Rajangam et al told that in their study, out of 235 Down syndrome cases the ATD angle deferred significantly from control, i.e. more than 80 and mostly ulnar loop pattern observed in all cases. Castilla EE et al found association between polydactyly and Down syndrome in a retrospective study.

Brink DS found that transient myeloproliferative disorder of Down syndrome occurred in approximately 10% of Down syndrome neonates and in phenotypically normal neonates with trisomy 21 mosaicism which is similar to our study. John K Choi found that up to 10% of all Down syndrome patients have transient myeloproliferative disorder, although more recent studies found lower percentage (3 to 6%). In all three studies including our study, transient myeloproliferative disorder was the most common haematological disorder.
Irfan Ahmed et al[7] found hypothyroidism in 7.1% cases and Gilany et al found 7.9% of cases of Down syndrome which is comparable to our study. Kava et al found GI anomalies in 7 cases, Down syndrome which included 3 cases of imperforated anus, 2 cases of Hirschsprung disease, 1 case of duodenal atresia and 1 case of Mongagni hernia; whereas Irfan et al found 1.7% cases of imperforated anus, tracheooesophageal fistula in 1.3% cases, Hirschsprung disease in 1% and duodenal atresia in 0.7% cases which is lower than our study. Fawzi Elhami Ali et al[31] had observed that Atlantoaxial instability affected 10 - 20% of individuals, which is comparable to our study.

G Ram et al[32] found around 45% of 1 - 3 years old children followed by less than 1 year of age were admitted for respiratory cause, which is similar to our study. Ondarza A et al[33] found delayed eruption of teeth in patients with Down syndrome. On contrary to this in our study, only 19.8% cases had delayed dentition.

Irfan Ahmed et al found that 56.7% with trisomy had maternal age of ≥ 35 years, which is different from our study. Jyothy et al[34] documented that the Down syndrome cases were born to younger mothers (< 25 years).

The statistically insignificant values were observed in almost all cases. It might be due to less number of cases, shorter duration of study period or the changing pattern of presentation of Down syndrome. Further studies are required to obtain statistical significance.

SUMMARY
The hospital-based incidence was found to be 0.1%. The mean age of presentation was found to be 28.6 months. The ratio of male: female was 1.57. The mean maternal age at delivery was found to be 27.6 years. About 9.5% of Down syndrome were diagnosed antenatally. The first order children were found to be more common (42.9%) followed by second order (32.5%). The diagnosis by using Hall’s criteria was 94.4%. On karyotyping, 94.4% had non-disjunction and 4.6% patients had translocation. The distribution of craniofacial dysmorphism showed flat facies in 78.6% epicantal fold in 91.3% cases, Mangoloid slant in 92.9% cases, small dysplastic ear in 46%, brachycephaly in 22.2% cases, cleft lip in 7.1%, cleft palate in 1.6%, patients with open mouth protruding tongue in 29.4% cases and lowest ear in 44.4% cases. In CNS features, Hypotonia was present in 64.3% of cases. Poor Moro’s reflex in 31% cases, motor developmental delay in 51.6% cases, speech impairment in 30.2% cases, cognitive impairment in 20.6% cases, hearing impairment in 61.1% cases, seizures in 3.2% of cases and autism in 0.8% cases. In Echocardiography finding ECD and VSD both were present in 7.9% of cases, ASD in 4% cases, TOF in 3.2% cases and Eisenmenger complex in 1.6% cases. In ophthalmological finding hypertelorism being most common was present in 31.7% cases, nystagmus and cataract was found in 31.2% cases each, Brushfield spot and strabismus in 2.4% cases. Umb and dermatoglyphics feature showed sandal gap in 42.1% cases, Kennedy crease in 53.2% cases brachydactyly in 37.3% cases, clinodactyly in 36.5% cases, polydactyly in 4% cases, simian crease in 33.3% cases, Sydney line in 24.6% cases and increased ATD angle in 40.5% cases. We found mostly ulnar loops in fingerprints in 100% cases. Transient myeloproliferative disorder (8.7%) was found to be most common haematological disorder in our study followed by AML (4%) and ALL (1.6%). Hypothyroidism was found to be present in 8.7% of cases in our study. Duodenal atresia was found to be most common GI malformation, i.e. 6.3% cases followed by tracheo-oesophageal fistula in 4% cases, annular pancreas in 3.2% cases, imperforated anus in 2.4% cases and coeliac disease in 1.6% cases. Atlantoaxial instability was found to be the most common (18.3%) followed by hip dysplasia (7.1%) and scoliosis in 3.2% cases in musculoskeletal defects. Around 87.3% cases were coming to hospital for recurrent respiratory tract infections. Around 23.8% cases were having seborrhoeic dermatitis and 19.8% of cases were having delayed tooth eruption. Most number of Down syndrome patients (29.4%) have delivered from mother of age group of 20 - 25 years followed by 31 - 34 years (24.6%) cases and 26 - 30 years of age in 21.4% of cases.

CONCLUSION
The chromosomal non-disjunction was the most common type of chromosomal abnormality in Down syndrome. The early presentation of Down syndrome in our setup is due to the hospital delivery and referral from the nearby community health centre. Down syndrome is associated with significant systemic abnormalities and is not infrequent among mothers younger than 25 years of age. Early diagnosis and proper screening should be undertaken among these patients. There must be a review for the recurrence risk in subsequent pregnancies and availability of prenatal diagnosis as provided in genetic counseling. The patients must be undergoing audiological evaluation annually, ophthalmologic evaluation every 2 years, TSH evaluation annually and other investigations must be at proper intervals. Effective early stimulation therapy, behavioural intervention, positive home environment, education, vocational training, occupational therapy, speech therapy and physiotherapy are helpful in improving the overall functioning and productivity of these children. Accurate and latest information must be provided in a supportive and empathetic manner.

Abbreviations
AAI: Atlantoaxial Instability.
ALL: Acute Lymphoblastic Leukaemia.
AML: Acute Myelooblatic Leukaemia.
ARDS: Acute Respiratory Distress Syndrome.
ASD: Atrial Septal Defect.
ASM: Autistic Spectrum Disorder.
ATD: Axial Triadius.
BERA: Brainstem Evoked Response Audiology.
CBC: Complete Blood Count.
CHD: Congenital Heart Disease.
CPS: Comment on Peripheral Smear.
CT: Computed Tomography.
CVS: Chorionic Villus Sampling.
ECB: Endocardial Cushion Defect.
ECG: Electrocardiograph.
EEG: Electroencephalograph.
GI: Gastrointestinal.
IQ: Intelligence Quotient.
MDD: Motor Developmental Delay.
MRI: Magnetic Resonance Imaging.
OAE: Otoacoustic Emissions.
TFT: Thyroid Function Test.
TMD: Transient Myeloproliferative Disorder.
REFERENCES

[1] Carr J. Down’s syndrome: children growing up. 1st edn. Cambridge, UK: Cambridge University Press 1995.

[2] Stoll C, Alemkib Y, Dott B, et al. Epidemiology of Down syndrome in 118,265 consecutive births. Am J Med Genet Suppl 1990;7:79-83.

[3] Fidler DJ. The emerging Down syndrome behavioral phenotype in early childhood: implications for practice. Infants and Young Children 2005;18(2):86-103.

[4] Jahoda A, Catermole M, Markova I. Quality of life: hope for the future or an echo from the distant past? In: Markova I, Farr R, eds. Representations of health, illness and handicap. Amsterdam: Harwood 1995: p. 205-24.

[5] Buckley SJ. Attaining basic educational skills: reading, writing and number. In: Lane D, Stratford B, eds. Current approaches to Down’s syndrome. Eastbourne: Holt, Rinehart & Winston 1985: p. 315-43.

[6] Karmiloff-Smith A. Development itself is the key to understanding developmental disorders. Trends Cogn Sci 1998;2(10):389-98.

[7] Jarrold C, Baddeley AD. Short-term memory for verbal and visuospatial information in Down’s syndrome. Cognitive Neuropsychiatry 1997;2(2):101-22.

[8] Jarrold C, Baddeley AD, Hewes AK. Genetically dissociated components of working memory: evidence from Down’s and Williams syndrome. Neuropsychologia 1999;37(6):637-51.

[9] Dykens EM, Rosner BA, Ly TM. Drawings by individuals with Williams syndrome: are people different from shapes? American Journal on Mental Retardation 2001;106(1):94-107.

[10] Lakanah R, Kishore MT. Down syndrome in tribal population in India: a field observation. J Neurosci Rural Pract 2016;7(1):40-3.

[11] Kava MP, Tullu MS, Muranjan MN, et al. Down syndrome: clinical profile from India. Arch Med Res 2004;35(1):31-5.

[12] Kovaleva NV. Sex ratio in Down syndrome. [Article in Russian]. Tsitol Genet 2002;36(6):54-69.

[13] El-Gilany AH, Yahia S, Shoker M, et al. Cytogenetic and comorbidity profile of Down syndrome in Mansoura University Children’s Hospital, Egypt. Indian J Hum Genet 2011;17(3):157-63.

[14] Wang YF, Lin L, Chen ZY. Cytogenetic study of Down syndrome cases in southern Hainan Province and report of a rare case of abnormal karyotype. Nan Fang Yi Ke Da Xue Xue Bao 2010;30(11):2592-3, 2595.

[15] Källén B, Mastroiacovo P, Robert E. Major congenital malformations in Down syndrome. Am J Med Genet 1996;65(2):160-6.

[16] Ahmed I, Ghafoor T, Samore NA, et al. Down syndrome: clinical and cytogenetic analysis. J Coll Physicians Surg Pak 2005;15(7):426-9.

[17] Abbeduto L, Warren SP, Conners FA. Language development in Down syndrome: from the prelinguistic period to the acquisition of literacy. Ment Retard Dev Disabil Res Rev 2007;13(3):247-61.

[18] Kent RD, Vorperian HK. Speech impairment in Down syndrome: a review. Journal of Speech, Language and Hearing Research 2013;56(1):178-210.

[19] Pueschel SM, Louis S, McKnight P. Seizure disorders in Down syndrome. Arch Neurol 1991;48(3):318-20.

[20] Capone G, Goyal P, Ares W, et al. Neurobehavioral disorders in children, adolescents and young adults with Down syndrome. Am J Med Genet C Semin Med Genet 2006;142C(3):158-72.

[21] Arya R, Kabra M, Gulati S. Epilepsy in children with Down syndrome. Epileptic Disorders 2011;13(1):1-7.

[22] Lujic L, Bosnjak VM, Delin S, et al. Infantile spasms in children with Down syndrome. Collegium Antropologicum 2011;35(Suppl 1):213-8.

[23] Gupta AN, Kabra M. Diagnosis and management of Down syndrome. Indian J Pediatr 2014;81(6):560-7.

[24] Raut P, Siram B, Yeoh A, et al. High prevalence of hearing loss in Down syndrome at first year of life. Ann Acad Med Singapore 2011;40(11):493-8.

[25] Nightengale E, Yoon P, Wolter-Warmerdam K, et al. Understanding hearing and hearing loss in Down syndrome. Am J Audiol 2017;26(3):301-8.

[26] Wong V, Ho D. Ocular abnormalities in Down syndrome: an analysis of 140 Chinese children. Pediatr Neurol 1997;16(4):311-4.

[27] Rajangam S, Janakiram S, Thomas IM. Dermatoglyphics in Down’s syndrome. J Indian Med Assoc 1995;93(1):10-3.

[28] Castilla EE, Lugarinhor D, da Graça DM, et al. Associated anomalies in individuals with polydactyly. Am J Med Genet 1998;80(5):459-65.

[29] Brink DS. Transient leukemia (transient myeloproliferative disorder, transient abnormal myelopoesis) of Down syndrome. Adv Anat Pathol 2006;13(5):256-62.

[30] Choi JK. Hematopoietic disorders in Down syndrome. Int J Clin Exp Pathol 2008;1(5):387-95.

[31] Ali FE, Al-Bustan MA, Al-Busairi WA, et al. Cervical spine abnormalities associated with Down syndrome. Int Orthop 2006;30(4):284-9.

[32] Ram G, Chinen J. Infections and immunodeficiency in Down syndrome. Clin Exp Immunol 2011;164(1):9-16.

[33] Ondarza A, Jara L, Munoz P, et al. Sequence of eruption of deciduous dentition in a Chilean sample with Down’s syndrome. Arch Oral Biol 1997;42(5):401-6.

[34] Jyothy A, Rao GN, Kumar KS, et al. Translocation Down syndrome. Indian J Med Sci 2002;56(3):122-6.