Ancient hybridization fuels rapid cichlid fish adaptive radiations

Joana I. Meier1,2,3, David A. Marques1,2,3, Salome Mwaiko1,2, Catherine E. Wagner1,2,4, Laurent Excoffier3,5 & Ole Seehausen1,2

Understanding why some evolutionary lineages generate exceptionally high species diversity is an important goal in evolutionary biology. Haplochromine cichlid fishes of Africa’s Lake Victoria region encompass >700 diverse species that all evolved in the last 150,000 years. How this ‘Lake Victoria Region Superflock’ could evolve on such rapid timescales is an enduring question. Here, we demonstrate that hybridization between two divergent lineages facilitated this process by providing genetic variation that subsequently became recombined and sorted into many new species. Notably, the hybridization event generated exceptional allelic variation at an opsin gene known to be involved in adaptation and speciation. More generally, differentiation between new species is accentuated around variants that were fixed differences between the parental lineages, and that now appear in many new combinations in the radiation species. We conclude that hybridization between divergent lineages, when coincident with ecological opportunity, may facilitate rapid and extensive adaptive radiation.
Heterogeneity in diversification rates among lineages is a major factor shaping biodiversity. Yet, biological and environmental factors underlying this variation are incompletely understood. Adaptive radiations are prime study systems to learn about these factors as they are characterized by a rapid origin of many species showing a diversity of ecological adaptations. This process requires high levels of heritable variation in traits related to ecological and reproductive isolation. However, adaptive radiations are often too rapid for the emergence of new relevant mutations between successive speciation events and are thus more likely to stem from standing variation. Hybridization between species can instantaneously boost genetic variation, which may facilitate speciation and adaptive radiation.

Hybridization among members of an adaptive radiation, has been suggested to potentially facilitate speciation events, an idea known as the ‘syngameon hypothesis’. Introgresion of traits involved in adaptation or reproductive isolation has been demonstrated among members of several adaptive radiations (for example, traits related to host shift in Rhabdovirus fruit flies, wing patterns in Heliconius butterflies or beak shape in Darwin’s finches). In other radiations, the hybrid ancestry of some species has been inferred, but a direct link between introgressed traits and speciation awaits further testing (for example, cichlid fishes of Lakes Tanganyika, Malawi, Victoria, Malawi, and Barombi Mbo).

Another hypothesis for a perhaps more fundamental role of hybridization in adaptive radiation, distinct from the ‘syngameon hypothesis’, is the idea that hybridization between distinct lineages may seed the onset of an entire adaptive radiation. Such hybridization can be common when allopatric lineages come into secondary contact, and selection against hybrids may be weak during colonization of new environments. In this situation, the formation of a hybrid swarm, if coincident with ecological opportunity, may accelerate adaptive radiation by (i) providing functional genetic variation that can recombine into novel trait combinations favoured by selection and mate choice, and (ii) breaking genetic correlations that constrained the evolvability of parental lineages. In addition, hybridization may facilitate speciation when multiple fixed differences that confer reproductive isolation between the two parental species decouple and segregate in a hybrid swarm, such that selection on incompatibility gene combinations can generate more than two new reproductively isolated species.

This ‘hybrid swarm origin of adaptive radiation’ hypothesis has been more challenging to test. So far the only adaptive radiation for which a hybrid origin has been robustly demonstrated is the Hawaiian silverswords, which have radiated from an allopolyploid hybrid population between two North American tarweed species. Because gene and genome duplication are also proposed to facilitate adaptive radiation, it is difficult to distinguish between effects of hybridization per se and those of gene or genome duplication in this case. Evidence consistent with a hybrid swarm origin of entire radiations has also been found in Alpine whitefish, the ‘mbuna’ group of the Lake Malawi cichlid fish radiation, and allopolyploid Hawaiian endemic mints and possibly other polyploid plant radiations on Hawaii. However, it remains to be tested if, in these systems, hybridization occurred before or after the radiation had started, and if hybridization-derived polymorphisms played a role in speciation and adaptive diversification.

The Lake Victoria Region Superflock of cichlid fish (LVRs) is a group of 700 haplochormine cichlid species endemic to the region around Lake Victoria and nearby western rift lakes in East Africa that started diversifying about 100–200 thousand years ago. It includes several adaptive radiations, one in each of the major lakes of the region (Lakes Victoria, Edward, Albert and Kivu). The largest of them is in Lake Victoria, which has at least 500 endemic species that evolved in the past 15,000 years. Each radiation comprises enormous diversity in habitat occupation, trophic ecology, colouration and behaviour. The high diversification rate but also the high nuclear genomic variation in the LVRs suggests that large amounts of standing genetic variation must have been present at the onset of the radiation. Previous work showing cytonuclear discordance in phylogenetic reconstructions between LVRs and several riverine cichlid species raised the possibility of ancient hybridization between divergent species at the base of the radiation but could not demonstrate it. Hybridization on secondary contact is not unlikely, as allopatric cichlid species, divergent by even millions of years, readily produce fertile offspring in the lab.

Using genomic data from riverine haplochormine cichlids sampled from all major African drainage systems, and representative species from all lineages within the Lake Victoria region, we demonstrate here that the LVRs evolved from a hybrid swarm. All lake radiations show very similar proportions of mixed ancestry derived from two distantly related haplochormine lineages that had evolved in isolation from one another in different river systems for more than a million years before hybridizing in the Lake Victoria region. We find evidence that this hybridization event facilitated subsequent adaptive radiation by providing genetic variation that has been recombined and sorted into many new species. Variants that were fixed between the parental lineages show accentuated differentiation between young Lake Victoria species, but appear in many new combinations in the different species. Notably, each of the two major allele classes of an opsin gene involved in adaptation and speciation among Lake Victoria cichlid is likely derived from one of the two parental lineages. This indicates that a major part of the variation at this gene segregating in the LVRs stems from hybridization between these lineages. Our results suggest that hybridization between relatively distantly related species, when coincident with ecological opportunity, may facilitate rapid adaptive radiation. Thus, hybridization, even in the distant past, may have important implications for understanding variation in extant species richness between lineages as well as variation in recent rates of diversification.

Results
Identifying the closest relatives of the LVRs. To identify the closest relatives of the LVRs, we use comprehensive sampling of haplochormine cichlids from the LVRs and from all major river systems harbouring haplochromines (Fig. 1, Supplementary Data 1). Maximum likelihood phylogenetic trees were reconstructed from 3.15 Mb of concatenated restriction site associated DNA (RAD) sequences (436,166 SNPs, 8.1% missing data, Supplementary Data 2), and from two mitochondrial markers (1,897 bp). In the nuclear phylogeny, the entire LVRs forms a well-supported clade that also includes cichlids from the lower Nile in Egypt (Haplochromis spp. Egypt) and Haplochromis sp. ‘Nyanga’ from the Rusizi River, the outflow of Lake Kivu and an inflow to Lake Tanganyika (orange labels in Fig. 1, Supplementary Fig. 1, Supplementary Discussion). Astatotilapia stappersi from the Kalambo River (an inflow to Lake Tanganyika, Congo drainage, referred to as Haplochromis sp. ‘Chipwa’ in Meyer et al.11), and an undescribed Astatotilapia species from the middle Congo (A. sp. ‘Yaekama’, DRC), together hereafter called the ‘Congolese lineage’ (red labels), form the superflock’s closest relatives. The sister group to the LVRs plus the Congolese lineage taxon is a clade including lineages in...
endorheic (that is, closed) drainage systems of the Eastern Rift and in Indian Ocean drainage systems, east of the Lake Victoria region (‘Eastern taxa’, dark blue), as well as ‘Haplochromis’ gracilior from Lake Kivu and Thoracochromis pharyngalis from Lake Edward (light blue, Supplementary Discussion). Although the latter two species are sympatric with LVRS members, they are clearly not part of the tree, because they are confined to the region that was historically the uppermost Nile drainage. Consistent with previous publications, we estimate the split of this lineage from the Congolese lineage to date to 1.6–5.8 million years ago, coinciding with the uplift of the flanks of the Western branch of the East African Rift truncating the paleo-river network and isolating the LVRs (the new Upper Nile) from the Congo (Supplementary Table 1; Supplementary Fig. 3).

Our genome-wide nuclear sampling provides unprecedented resolution of the relationships between radiations within the LVRs (Fig. 1, Supplementary Fig. 1). The radiations in Lake Victoria (including its major tributary, the Kagera River), in Crater Lake Saka and associated Mpana River, and in Lake Albert, each form monophyletic clades. In contrast, the Lake Edward members of the LVRs are a paraphyletic group that includes taxa basal to the radiations of Lakes Victoria and Saka, and others that form a clade together with species from Lake Kivu. These findings are consistent with the hypothesis that Lake Edward constitutes the oldest extant radiation within the LVRs, from which the radiations in the others lakes are derived, and that connections between Lakes Edward and Kivu existed until recently.

Tests of hybridization. Phylogenetic reconstruction based on concatenated sequence data assumes a single history across the genome, although recombination, incomplete lineage sorting, and introgressive hybridisation can cause extensive genome-wide variation in genealogy. To account for such genealogical variation, we reconstructed a SNP-based species tree. The resulting tree supports the sister relationship of the LVRs with the Congolese taxa, but reveals incongruence between this group and the Eastern clades and Upper Nile clade (Supplementary Fig. 2). To test for genetic admixture, we computed Patterson’s D statistics (ABBA-BABA test). We found that all LVR radiations show strong signals of admixture with the two Upper Nile species, H. gracilior and T. pharyngalis (Fig. 2, Supplementary Table 2, Supplementary Fig. 4). Excess allele sharing between the LVRs and either species is equally strong (Supplementary Table 3, rows 2.1-2.4, Supplementary Fig. 5). Importantly, neither H. gracilior nor T. pharyngalis show greater admixture with the LVR species with which they live in sympathy than with allopatric members of the LVRs from other lakes that have been geographically isolated for many thousands of years (Fig. 2 and Supplementary Fig. 5).

To test the directionality of gene flow, we applied an extended version of the partitioned D statistic (5 population test,
Figure 2 | Evidence for Congo-Nilotic hybridization in the ancestry of the LVRS. (a) Schematic genealogy with taxa used for D statistics \((n = 73\) individuals, see Supplementary Data 2). Abbreviations used in other panels are given in parentheses and the color scheme is the same as in Figure 1. The inferred gene flow edge is shown with an arrow (Note the directionality of gene flow is inferred with the five-population test not shown in this figure). (b) D statistics to test for potential gene flow between each Eastern and Upper Nile taxon (P3) separately (abbreviations given in a) and cichlids from each LVR lake radiation (P1) or the Congolese taxon A. stappersi (P2). Vertical bars correspond to three standard errors. Positive D values indicate gene flow between P1 (LVR lake radiation) and P3 (Eastern or Upper Nile taxon), whereas negative D values indicate gene flow between P2 (A. stappersi) and P3 (Eastern or Upper Nile taxon) as illustrated in (c). Exact values and more test results are given in Supplementary Table 2.

Figure 3 | Congo-Nilotic ancestry blocks in LVRS genomes. (a) The size distribution of putative ancestry blocks shows mostly small ancestry blocks and slightly larger Congolese (red) than Upper Nile blocks (blue). The plot shows the counts of ancestry blocks in different size categories summed up for five LVRS radiation species across all scaffolds calculated with 3 kb windows. As most blocks do not span multiple windows of 3 kb and many blocks cannot be clearly allocated to Congolese or Upper Nile ancestry (grey) (Supplementary Fig. 8), the average ancestry block size is likely 3 kb or smaller, consistent with hybridization many thousands of years ago. (b) Correlation of ancestry blocks between whole-genome sequenced LVRS members is high overall but decreases with phylogenetic distance. The boxplots show correlation of \(f_d\) (ref. 78) in 10 kb windows between single individuals of conspecifics (Pundamilia individuals of the same species), sister species (\(Pu.\) pandamilla versus \(Pu.\) nyererei), more distantly related Lake Victoria (LV) species (\(Paralabidochromis\) flavus versus \(Pu.\) pandamilla and \(Pu.\) nyererei), Lake Kivu (LK) species (\(Pa.\) paucidens versus Harpagochromis vittatus) and Lake Victoria against Lake Kivu species. This suggests that all radiation member species share the same hybridization event in their ancient history but vary in how long after that event they remained part of the same recombining population. It also suggests that some of the admixture variation still segregates within individual species (indicated by the deviation from an \(f_d\) correlation of 1 among conspecifics).

Importance of the ancient hybridization event. Many phenotypic traits known to contribute to ecological adaptation and reproductive isolation have diverged in multiple speciation events in each of the LVRS radiations (for example, tooth shapes, male nuptial colouration, opsin alleles)\(^{39,40}\). Some of these traits are also divergent between the Congolese \(Astatotilapia\) and Upper Nile \(Thoracocephromis\) species\(^ {37,42}\). Intrinsic incompatibilities have also been found in experimental hybrid crosses of similarly divergent \(Astatotilapia\) species\(^ {38}\). In addition, some of the allelic variation in the lake radiations has been shown to predate the origin of the LVRS (refs 49,50), perhaps most notably that of the long-wavelength sensitive (LWS) opsin gene, one of the best-studied genes in Lake Victoria cichlids\(^ {31}\). This gene codes for the protein moiety of red-sensitive visual pigments in retinal cones and is exceptionally diverse in Lake Victoria Region cichlids\(^ {31}\). It plays a crucial role in adaptation on the steep ambient light gradients associated with water depth and turbidity gradients that are characteristic for the lakes in the Lake Victorian Basin. We find evidence for gene flow from \(H.\) gracilior (g in Fig. 2b) and from \(T.\) pharyngalis (t in Fig. 2b) into each LVRS lake radiation, but no evidence for gene flow in the opposite direction (Supplementary Table 3, rows 1.1–1.4). Using F4-ratio tests\(^ {48}\), we estimated the Upper Nile ancestry proportion to be \(\sim 20\%\) in all LVRS radiations (Supplementary Fig. 6 and Supplementary Table 4). Whole-genome sequencing of Lake Victoria and Lake Kivu radiation species, and \(A.\) stappersi, \(T.\) pharyngalis and \(H.\) gracilior, confirms excess allele sharing between LVRS members and the Upper Nile lineage, and reveals ancestry blocks of \(\sim 3\) kb, consistent with evidence that the admixture event occurred many thousands of generations ago in the common ancestor of all super flock radiations in the different lakes (Fig. 3a, Supplementary Fig. 8). The genome-wide signatures of admixture are correlated among different species from Lake Victoria and Lake Kivu (Fig. 3b), in line with a shared admixture event at the onset of the LVRS.
Victoria region. More red-shifted LWS opsins variants are beneficial in deep and murky water where the light spectrum is relatively more red-shifted because of particulate matter absorbing and scattering light of shorter wave lengths. This opsins likely also plays a role in behavioural reproductive isolation because divergence in colour perception between species with different LWS opsins genotypes is often associated with divergent male breeding colouration, which is an important mate choice cue.

The LWS opsins gene is highly diverse in the LVRS with two deeply divergent haplotype clades, often referred to as haplotype classes because the alleles within each clade are functionally similar to each other. A substitution at amino acid position 177 in the cichlid LWS gene shifts peak absorbance towards longer wavelength (red) in haplotype class I relative to class II by 7 nm (refs 49,51) and also other substitutions influence spectral sensitivity (Supplementary Discussion, Supplementary Data 3). The two haplotype classes are often associated with different light environments, class I with shallow and clear water, and class II with deep and turbid waters. For example, rocky shore algae scrapers of the genera Neochromis and Mbipia and mud bottom detritivores of the genus Enterochromis, likely representing an early divergence event in the Lake Victoria radiation, occupy the opposite ends of the light spectrum in Lake Victoria: clear and shallow versus murky and deep. All 438 LWS haplotypes previously sequenced from Neochromis and Mbipia algae scrapers are part of the haplotype class I, whereas 11 of the 12 Enterochromis LWS haplotypes belong to class II (ref. 39). Within ecologically variable lineages, young sister species occupying shallow versus deep or clear versus turbid waters, often have different frequencies of these two LWS haplotype classes or recombinants between them, and LWS variation is consistently associated with divergence in male nuptial coloration (Fig. 4, Supplementary Discussion). We sequenced the LWS opsins gene in Congolese and Upper Nile taxa, and found that the two haplotype classes in the LVRS are each shared exclusively with just one of these parental lineages (Fig. 4, Supplementary Fig. 7, Supplementary Data 3, Supplementary Discussion). All haplotypes in individuals from the Congolese lineage take basal positions in the class I clade, whereas the Upper Nile lineage haplotypes take basal positions in the class II clade.

To see if similar patterns of sorting of admixture variation could be detected elsewhere in the genomes, we tested if genomic SNPs that are highly differentiated among LVRS species were commonly derived from admixture between the two parental lineages. We inferred the origin of bi-allelic SNPs in six phenotypically diverse Lake Victoria species, the insectivore Pandamilia pandamilia, the insectivore/mudskippers P. nyererei, the algae grazer Neochromis omnicaudus, the paedophagous Lipochromis melanopterus, the insectivore Paralabidochromis chilotes and the piscivore Harpagochromis cf. serranus (Fig. 5). We found that at 30% of sites that are exceptionally strongly differentiated between Lake Victoria species (LV outliers), one of the alleles was indeed likely introduced into the ancestry of the radiation through Upper Nile lineage introgression (categories 3 + 4 in Fig. 5a, Supplementary Discussion). Sites at which the Congolese and Upper Nile lineage taxa are fixed for alternative alleles (category 4 in Fig. 5a) are enriched for LV outliers and show a pattern consistent with mosaic-like sorting of ancestral variants amongst Lake Victoria species (Fig. 5b). The enrichment for LV outliers in category 4 SNPs does not seem to be because of inherently increased fixation probability of these loci, as in pairwise comparisons of six control group cichlid species from outside the radiation, LV outliers were not more often differentially fixed in the control groups than non-outliers among category 4 SNPs (Supplementary Table 5, Supplementary Discussion). The mosaic-like ancestry pattern is also corroborated by our whole-genome sequence data (Supplementary Fig. 8).

Discussion

Here we demonstrate that multiple large animal adaptive radiations arose from a hybrid swarm. Our results suggest ancient admixture between two lineages of haplochromines, one from the Upper Congo and one from the Upper Nile drainage, at the origin of the entire Lake Victoria Region Superlock of cichlid fish. Contemporary Upper Nile lineage introgression or earlier independent introgression events into each lake radiation are unlikely given (i) the highly supported genomic monophyly of the entire Lake Victoria Region Superlock (Fig. 1, Supplementary Fig. 1), (ii) similar Congo and Upper Nile lineage ancestry proportions in all lake radiations (Supplementary Fig. 6) and (iii) highly correlated Congolese and Upper Nile lineage ancestry tracts (Fig. 3). In addition, the fact that neither H. gracilior (Lake Kivu) nor T. pharyngalis (Lake Edward) show greater admixture into LVRS species that are sympatric with them than with allopatric members of the LVRS from other lakes (Fig. 2 and Supplementary Fig. 5) speaks against recent introgression. The radiations in Lakes Albert, Saka and Victoria have been geographically separated from Lakes Edward and Kivu, and hence from T. pharyngalis and H. gracilior, for between 4,000 (Saka) and 100,000 (Victoria) years and show similar ancestry proportions.

Highly similar amounts of allele sharing between the LVRS species and both H. gracilior and T. pharyngalis (Supplementary Table 3, rows 2.1–2.4, Supplementary Fig. 3) suggests that the taxon that hybridized with the Congolese ancestor of the LVRS was a close relative of both Upper Nile species, or their ancestor. It is likely that the Congolese lineage colonized the Lake Victoria region through capture of Malagarasi (Congo) tributaries during a humid phase (for example, 145,000–120,000 years ago, Supplementary Fig. 3) and encountered representatives of the Upper Nile lineage that would by then have occupied the Lake Victoria region. The existence of large lakes in the Lake Victoria region at that time is likely to have provided ecological opportunity for diversification, which could be exploited by a genetically diverse hybrid swarm.

The finding that the two LWS opsins haplotype classes of the LVRS are each shared uniquely with one of the parental lineages (Fig. 4, Supplementary Fig. 7) suggests that the ancient Congo-Nilotic admixture event was the source of the high functional variation among LVRS cichlids at the LWS opsins gene. Recombination between the ancestral haplotypes within the admixed populations further enhanced the functional variation of LWS haplotypes available for the LVRS radiation (Supplementary Discussion, Supplementary Data 3). This gene is particularly important for adaptation to the red-shifted end of ambient aquatic light spectra that characterize the waters of Lake Victoria. Bringing together the Congolese and Upper Nile opsins haplotypes thus appears to have facilitated adaptation to an extreme range of light conditions and visual ecologies, with many transitions between them at both early as well as late stages of the radiation. Divergence into major ecologically differentiated clades (Enterochromis vs Neochromis/Mbipia), but also major habitat shifts between young sister species are associated with recruitment of Congolese versus Upper Nile lineage derived haplotypes at the LWS locus (Supplementary Discussion).

Our data suggest a much more general impact of the ancient admixture event on evolution in this set of young adaptive
radiations. Experimental crosses of cichlids have shown that intrinsic incompatibilities and phenotypic novelty both increase with genetic distance between the crossed species. Both kinds of variation could be important in speciation. The divergence time of the Congolese and Upper Nile lineage taxa, interpreted in the context of this previous experimental work, lets us predict that a hybrid swarm between these lineages would contain both intrinsic incompatibilities and transgressive trait variation. In agreement with this prediction, we found that genomic sites with alternative alleles fixed in the two parental lineages are enriched for outlier loci likely involved in divergent adaptation and species differentiation in Lake Victoria (Fig. 5). This suggests that speciation has commonly been associated with sorting of alternative haplotype classes between ecologically divergent genera such as shallow water rocky shore algae scrapers of Neochromis and *Mbipia* versus mud bottom detritivores of the genus *Enterochromis*, and by the young incipient species pair of *Pundamilia macrocephala* ‘blue’ (living very shallow) and ‘yellow’ (living deeper) which have predominantly alleles of haplotype class I and II, respectively (Photo credits: Ole Seehausen, Adrian Indermaur, ‘Teleos’, Oliver Selz, Uli Schliewen).

Figure 4 | High LWS opsin diversity likely because of the ancient hybridization event. The two major LWS opsin haplotype classes, I and II, in the LVRS (orange) are each shared exclusively with either the Congolese (*A. stappersi* and *A. sp. ‘Yaekama’, red) or the Upper Nile lineage (*H. gracilior* and *T. pharyngalis*, blue), respectively (details in Supplementary Fig. 7; Supplementary Data 3). LWS haplotype class I is generally associated with cichlids living in shallow and clear water habitats, whereas class II is associated with deeper and more turbid habitats. Speciation by divergence in habitat type seems to have been accompanied by fixation of alternative LWS haplotypes both at early and at late stages of the adaptive radiation. This is exemplified by near fixation of alternative haplotype classes between ecologically divergent genera such as shallow water rocky shore algae scrapers of *Neochromis* and *Mbipia* versus mud bottom detritivores of the genus *Enterochromis*, and by the young incipient species pair of *Pundamilia macrocephala* ‘blue’ (living very shallow) and ‘yellow’ (living deeper) which have predominantly alleles of haplotype class I and II, respectively (Photo credits: Ole Seehausen, Adrian Indermaur, ‘Teleos’, Oliver Selz, Uli Schliewen).

The combined evidence from the LWS opsin gene and the genome-wide patterns of sorting of ancestral variation is consistent with an important role of the ancestral hybridization for the evolution of the Lake Victoria Region Superflock. The resulting large genetic variation may help to explain how multiple adaptive radiations in the Lake Victoria Region, together forming 700 species, could arise in just 100–200 thousand years, including 500 genetically and phenotypically well-differentiated species endemic to Lake Victoria which evolved in probably just 15,000 years. Hence, our data provide evidence for the hypothesis that hybridization between divergent lineages, when coincident with novel ecological opportunity such as colonisation of newly formed lakes, may facilitate rapid adaptive radiation through recombination and sorting of admixture-derived polymorphisms by natural and sexual selection.

That hybridization may fuel entire adaptive radiations has been hypothesized for several systems, but robust evidence has so far...
been confined to the allopolyploid Hawaiian silverswords. Here, we report strong evidence that hybrid ancestry fuelled diversification in several large animal adaptive radiations. Thanks to the advent of high-throughput sequencing, our power to test for ancient hybridization and to study its impact on subsequent evolution has increased enormously. Future studies will reveal if hybridization in the ancestry of major adaptive radiations is widespread, and whether its occurrence may explain some of the observed large variation in the rates and volume of species diversification among lineages.

Methods

Experimental design. To identify the closest relatives of the Lake Victoria Region Superflock (LVRS) and identify potential hybridization events, we performed restriction associated DNA (RAD) sequencing with haplochromine cichlid species from all major drainage systems that are either currently connected to the Lake Victoria region, or have been in the past, and representatives of all major radiations of the Lake Victoria Region Superflock. The closest relatives were inferred with maximum likelihood trees based on these data and on mitochondrial sequences of the same fish. D statistics, five population tests, and F4-ratio tests, were used to identify hybridization between lineages, determine the direction of gene flow and quantify ancestry proportions, respectively. Whole-genome sequencing was then performed with fish of the lineages identified as ancestral to the LVRS plus representatives of the superflock in order to corroborate the signatures of hybridization and to estimate ancestry block sizes.

Figure 5 | Differential sorting of hybridization-derived variation in the LVRS. (a) Sites fixed for alternative alleles in the Congolese (C) and Upper Nile (N) taxa are enriched for high global FST outlier SNPs in Lake Victoria. Of the 12,890 biallelic SNPs among six sympatric Lake Victoria species (shown in (b)), 340 are outliers of high global FST (LV outliers). We assigned SNPs to five different ancestry categories according to the presence or absence of the two alleles in the Congolese (C) and Upper Nile (N) lineage taxa. The grey bars show the proportion of LV outliers among all SNPs in each ancestry category. Total SNP counts in each category and P-values of two-sided Fisher’s exact tests are shown on top. Ancestry category (1) includes all SNPs for which only one of the two LV alleles was found in the Congolese and Upper Nile taxa together (novel LV allele or unsampled in parental lineages), (2) both LV alleles found in the Congolese taxa (polymorphic in LVRS even without Upper Nile hybridization), (3) only one allele found in Congolese but both alleles found in Upper Nile taxa (not available in LVRS without hybridization), and (4) Congolese and Upper Nile taxa each fixed for alternative LV alleles (not available in LVRS without hybridization) potentially including Bateson-Dobzhansky-Muller incompatibilities. Category 5 includes sites with similar initial allele frequency in Lake Victoria (16%) than sites fixed for alternative alleles in the parental lineages (category 4) to test if the enrichment in category 4 could simply be because of high initial allele frequency. (b) Differential sorting of parental alleles between Lake Victoria cichlid species at LV outliers fixed for alternative alleles in the Congolese and Upper Nile lineage taxa (mean global FST among LV species = 0.52). Each square represents a SNP coloured according to the allele frequency in that species ranging from red (fixed for Congolese allele) to blue (fixed for Upper Nile allele). All except two sites (2 + 3 from the right) are located on different scaffolds of the Pundamilia nyererei reference genome. If known, chromosomal positions on the Oreochromis niloticus genome are shown below. At least 10 of the 22 chromosomes are involved in mosaic-like allele sorting between radiation species at loci that were fixed for alternative alleles in the parental lineages of the ancestral hybrid swarm (Photo credits: Oliver Selz, Ole Seehausen, Adrian Indermaur, ‘Teleos’, Uli Schiewen).
from other collectors haplochromines belonging to all phylogenetic lineages and from almost all African river drainages hosting haplochromines. We also included members of the haplochromine species blocks of the other Great Lakes Malawi, Tanganyika and Mweru (Fig. I, Supplementary Data 1). Samples were collected under research and sample export permissions of the Tanzania Fisheries Research Institute and the Tanzanian Ministry of Agriculture, Livestock and Fisheries; the Ugandan National Fisheries Research Institute, and Ministry of Agriculture, Animal Industry and Fisheries; and the Department of Fisheries Zambia. All samples were collected in compliance with applicable international and national guidelines for the use of animals, and ethical standards.

RAD sequencing. DNA was extracted from fin clips or muscle tissue with a standard phenol-chloroform-isooamyl alcohol extraction method. Restriction-site Associated DNA sequencing (RADseq) was performed following a standard protocol. Restriction digestion was done overnight (8–10 h) using the restriction endonucleases HF-DpII (NewEngland Biolabs) and 400–1,000 ng DNA per sample. P1 adapters contained 5–8 bp long barcodes differing by at least two nucleotides from all other barcodes. The DNA was sheared with a Covaris S220 Focused-Ultra sonicator and fragments of 300–600 bp length were extracted from an agarose gel. We performed 18 PCR cycles to amplify the RAD fragments (30 °C 98 °C, × 18 (10 s 98 °C, 30 s 65 °C, 30 s 72 °C), 5 min 72 °C). All libraries were single-end sequenced on an Illumina HiSeq 2,500 sequencer. The reads were de-multiplexed and trimmed to 80 nucleotides (nt, after barcode removal) with the process_radtags script from the Stacks pipeline, correcting single errors in the barcode and discarding reads with incomplete restriction sites. The length of 84 nt results from removing the barcode (mostly 6 nt long) and trimming off the last 10 nt because of reduced quality at the read ends. The FastX toolkit (http://hannonlab.cshl.edu/fastx_toolkit) was used to remove all reads containing at least one base with a Phred quality score below 10 and reads with more than 10% of bases with quality less than 30.

The reads of each individual were then mapped to the *Pundamilia nyererei* reference genome using Bowtie2 (ref. 61) with the end-to-end alignment option. Single nucleotide polymorphisms (SNPs) and genotypes were called using GATK Unified Genotyper v. 3.1 (ref. 62). All sites were then filtered with a custom-made Python script and vcftools v. 1.12 (ref. 63). SNPs within 5 nt from indels (insertions and deletions) were removed to avoid false SNPs because of misalignment problems, and SNPs were required to have a quality value of at least 30.

Mitochondrial sequencing. Two mitochondrial markers (NADH Dehydrogenase Subunit 2 (ND2)) and ND2Trp-R 5′-GAG CGC CCG TCT TGT AA-3′ were amplified with PCR and Sanger sequenced for the same individuals (insertions and deletions) were removed to avoid false SNPs because of misalignment problems, and SNPs were required to have a quality value of at least 30.

Phylogenetic analyses. Phylogenies were reconstructed for the concatenated mitochondrial genes and the concatenated RAD sequences separately, including both variant and invariant sites using a maximum likelihood approach (RAxML v. 7.7.7 and ExaML v. 1.0.4)7. For the mitochondrial dataset, a maximum likelihood tree was reconstructed using three partitions, one for Dloop, one for the first and the second codon positions of ND2, and one for the third codon position of ND2. For each dataset, we performed a RAxML analysis with 100 rapid bootstraps using the GTR+Γ+I model of rate heterogeneity. For the RAD-seq dataset, we used all concatenated sites with no more than 40 individuals missing (25%) to reconstruct a maximum likelihood tree with RAxML (ref. 67) and ExaML (ref. 68). Each of 100 bootstraps was performed by randomly sampling with replacement sites from the concatenated dataset to get a dataset of the original size. The maximum likelihood tree was then inferred for each resampled dataset with ExaML (ref. 68) using a GTR+Γ+I model of rate heterogeneity, as recommended in the RAxML-light manual. We calculated bootstrap support values based on these 100 topologies with RAxML (ref. 67). The nuclear and mitochondrial trees were rooted with the reference genome of *Oreochromis niloticus* and ladderized and plotted with the R-package Ape v. 3.1 (ref. 69).

We then used RAxL-derived SNP data to infer the species tree for the LVRS groups and their closest relatives with SNAPP (ref. 47). SNAPP bypasses gene tree inference by estimating species trees directly from independently inherited markers that are discordant for the same individuals and 1,817 sites. We ran SNAPP for 1,000,000 iterations, sampling every 1,000th iteration using default priors. We discarded the first 50% of the trees as burn-in and visualized the posterior distribution of the remaining 500 trees as consensus trees in *Desmites*.

Mitochondrial chronograms. Dated phylogenies were reconstructed based on mitochondrial D-loop60 and ND2 (ref. 64) sequences using BEAST v. 2.3.0 (ref. 71) and four different sets of calibration nodes (Supplementary Methods). We caution that the mitochondrial tree only shows the phylogeny of the maternal line and that time estimates more recent than one million years are most likely overestimated because of the increase of molecular rates towards the recent (Supplementary Methods).

To compare the splitting time between cichlid lineages with the major relevant geological events, we reconstructed paleogeographic maps at different time points based on previously published data and reviews (see Supplementary Methods).

Patterson’s D statistics. To test for evidence of ancient admixture among lineages, we computed Patterson’s D statistic (ABBA–BABA test), a method to detect admixture based on the frequencies of discordant SNP genealogies in a four-taxon tree, with the software package ADMIXTOOLS v. 1.1 (ref. 48). Genotypes were discarded if they had less than 6 reads or a genotype quality Phred score < 20 (that is, error probability > 1%). Significance of D statistics was assessed with a block jackknife procedure using a z score of three standard errors as a threshold.

We used three individuals of *Astatotilapia flavirostris* from Lake Kinneret as the outgroup population and we tested for evidence of gene flow from each Eastern and Upper Nile clade into the LVRS relative to allele sharing with the closest relative of the LVRS, the Congo drainage taxa *A. stoperi* from Zambia (Fig. 2). We also included *A. yacama* from the central Congo. For these analyses we used all individuals with at least 50% of the sites sequenced at a depth of at least 10 reads. To exclude the possibility that the D statistics are biased by the alignment of the reads to the Lake Victoria species *Pundamilia nyererei*, we also aligned the reads to the *Astatotilapia burtoni* reference genome, which is an outgroup to all taxa used in the D statistics. To rule out that the choice of outgroup (A. flavirostris) biases the D statistics, we repeated the tests with *A. burtoni* or *A. desfontainii* as outgroups. All species combinations with number of individuals and SNPs included are given in Supplementary Table 2.

Five population tests. To infer directionality of gene flow between the LVRS and the Nilotic taxa, we used an extended version of the partitioned D statistic test developed by Eaton & Ree (ABBA–BABA test). Similar to the D statistics, this test is based on discordant allele sharing patterns, but by considering five populations it allows one to infer the directionality of gene flow. The five taxa with the topology ((P1,P2), (P3a,P3b),O) include the potential source of gene flow (for example, P3a), the taxon receiving gene flow (for example, P1), a close relative of each of these two taxa (for example, P3b and P2) and an outgroup (O, see also Supplementary Table 3 for visualization). If genes had introgressed from for example, P3a into P1, a close relative (P3b) of the introgression donor (P3a) would also show excess allele sharing with P1, but to a lesser extent than P3a. This is because many derived alleles that introgressed from P3a into P1 will be shared by P3a and P3b because of their recent common ancestry. In contrast, we would not expect that a close relative (P2) of the receiver of gene flow, P1, would show excess allele sharing with P3a and P3b. In the genomic data, this would be seen as an excess number of ABBA patterns, where P1 shares a derived allele (‘B’) with both P3a and P3b, whereas P2 has the outgroup allele (‘A’). This is compared with the number of ABBB patterns, where the potential introgressed allele with both P3 taxa). On the other hand, if the direction of gene flow was from P1 into P3a, P3b would not show excess allele sharing with P1 but instead, P2 would show excess allele sharing with P3a because of ancestrally shared alleles between P1 and P2 that introgressed into P3a. Therefore, gene flow from P1 into P3a would not affect the relative frequencies of ABBA and ABBB patterns, but the pattern BBBAA (P1, P2 and P3a share a derived allele) would be more frequent than BBABA (P1 and P2 share a derived allele with P3b, see Supplementary Table 3). Counting discordant allele sharing patterns thus allows us to infer the direction of gene flow.

We computed the five population tests with a custom made script using the three individuals with least missing data for each LVRS group and the single individual with the most complete data for all other taxa. In contrast to the D statistics computed with ADMIXTOOLS, which are based on allele frequencies, our five population tests are calculated from a single individual for each focal population, following Eaton & Ree (2017). We tested each of the three LVRS groups separately and report the means for each radiation. At heterozygous sites, one allele was chosen at random. For each combination of individuals tested, we counted the eight patterns needed to compute the four D statistics (Supplementary Table 3) using all sites without missing data. We calculated z scores in units of z.d. from 100 bootstrapped datasets (sites resampled with replacement) as in Eaton and Ree (2017).

Estimation of ancestry proportions. The absolute value of D statistics does not only depend on the admixture proportion but also on the demographic history, the divergence between the hybrid parental lineages, and the genetic distance between
we compiled data from Tables 1 to 6 using the Carleton & Kocher primer combinations F2 (5′-TGT GAG GGC CCC AAT TAC CA-3'), R2 (5′-TCC ACA CAG CAA GGT AGC AC-3') and F3 (5′-ACT GGC CTC ATG GAC TGA AG-3') and R4 (5′-TCC CAA AAT GGA GAA CAT GGT-3') (http://cichlid.umd.edu/cichlidlabs/protocols/Basic/rcprimers.html). We used both alignments with all available Lake Victoria cichlid LWS sequences from GenBank using ClustalW implemented in BioEdit 7.2.5 (ref. 66) and then manually curated. For sequences used, see Supplementary Data 3. A maximum likelihood tree was reconstructed including both variant and invariant sites using the GTR+I+G model of rate heterogeneity with RAxML v. 7.7.7 (ref. 67). We used one partition with concatenated introns, one for non-coding and invariant sites using the GTRGAMMA model of rate heterogeneity with RAxML v. 7.7.7 (ref. 67). We used one partition with concatenated exons 2 to 6 using the Carleton & Kocher primer combinations F2 (5′-GGT CCC AAT TAC CA-3') and R4 (5′-TTT GAG 0-3) opsin gene from Pundamilia pundamilia, or with less than five total ABBA and BABA patterns were excluded. As only positive f values indicate gene flow between the Lake Victoria species was generated using PCR-free library preparation79 and Illumina HiSeq 3000 paired-end sequencing for 11 individuals. Three additional individuals, sequenced on the same way on the same machine, were taken from McGenius et al.77 (see Supplementary Data 1 for sample information). Local alignment against the Astatotilapia burtoni reference genome80 was performed with Bowtie 2 (ref. 61). For variant calling and genotyping we used Haplotype Caller (GATK v. 3.5)62. Genotypes with fewer than five reads, multiallelic sites, and indels were removed using samtools v. 1.1.4 (ref. 63). Whole-genome D statistics were calculated with ADMIXTOOLS v. 1.1 (ref. 48) using all biallelic sites with a 1% minor allele frequency cutoff and a maximum missing data proportion of 20% across all 14 genomes. The reference genome (A. burtoni) was used as an outgroup.

To study signatures of admixture along the genome, we used f2 statistics by Martin et al.78. In comparison to D statistics, f2 is more suited for small genomic regions77. ABBA and BABA pattern counts were calculated using allele frequencies by weighting each segregating site according to its fit to the ABBA or BABA pattern29. As an example, if a site has derived allele frequencies of 0.5 and 0.5, and in P1, P2, P3 and the outgroup, respectively, it would count as half ABBA site. We used A. stappersii as P1, different LVRS individuals as P2, H. gracilior and T. pharyngalis as P3 and A. burtoni as outgroup (Supplementary Fig. 8). Note that P1 and P2 are switched as compared to D statistics, where LVRS are used as P1, different LVRS individuals as P2, A. burtoni as P3 and the outgroup. This difference is simply for consistency with the datasets of Martin et al.78, and thus here ABBA represents sites with a derived allele shared between LVRS and Upper Nile, whereas BABA represents sites with a derived allele shared between Congolese and Upper Nile lineage taxa. As an example, if a site has derived allele frequencies of 0.5 and 0.5, and in P1, P2, P3 and the outgroup, respectively, it would count as half ABBA site. We used A. stappersii as P1, different LVRS individuals as P2, H. gracilior and T. pharyngalis as P3 and A. burtoni as outgroup (Supplementary Fig. 8).
Putative Congolese or Upper Nile ancestry was assessed by comparing the frequency of ABBA sites (LVRS shares the derived allele exclusively with Upper Nile taxa) with the frequency of BBAA sites (LVRS shares the derived allele exclusively with the Congolese lineage representative A. stappersii) in non-overlapping sliding windows of 3 kb. Scaffolds with <100 kb data were removed. As for the \(I_d \) statistic, ABBA and BBAA pattern counts were calculated using allele frequencies by weighting each segregating site according to its fit to the ABBA or BBAA pattern. Only windows with a total ABBA and BBAA pattern count exceeding one were used. Windows with a minimum ABBA proportion (ABBA/(ABBA+BBAA)) of 0.7 were defined as candidate windows of Upper Nile lineage ancestry and are coloured in blue, whereas genomic regions with a BBAA proportion of 0.3 or less were defined as putative Congolese lineage derived windows and are highlighted in red. Ancestry tracts were defined as consecutive sliding windows of the same colour (red or blue) ignoring single sliding windows without data. Expected ancestry block sizes were calculated using a formula from Racimo et al.\(^{23}\). Assuming \(\lambda \approx 50,000-100,000 \) generations since admixture, a recombination rate of \(2.5 \times 10^{-8} \) and an Upper Nile proportion of 0.20, the expected mean length of the admixture tracts is \((0.8 \times 2.5 \times 10^{-8} \times (50,000 \text{ to } 100,000) - 1)^{-1} = 500 \text{ bp to } 1 \text{ kb} \) (ref. 79). The breakup of ancestry blocks may have slowed as the original hybrid population began to undergo genomic stabilization, speciated and formed geographically isolated radiations in separate lakes each of which underwent further stabilization independent of each other, likely associated with differential sorting of the ancestral variation.

Data availability. Mitochondrial and LWS opsin sequences are available on GenBank under the accession numbers KY366716-KY366843 for ND2, KY366844-KY366970 for D-loop, and KY366971-KY366986 for LWS opsin sequences. RADseq and whole-genome sequencing reads generated in this study can be downloaded from the NCBI Sequence Read Archive under Bioproject PRJNA355227. The JAVA program for 5-population tests is publicly available on GitHub (https://github.com/joannam/scripts).

References

1. Wagner, C. E., Harmon, L. J. & Seehausen, O. Ecological opportunity and sexual selection together predict adaptive radiation. Nature **487**, 366–369 (2012).
2. Barrett, R. D. H. & Schluter, D. Adaptation from standing genetic variation. *Trends Ecol. Evol.* **23**, 38–44 (2008).
3. Seehausen, O. Hybridization and adaptive radiation. *Trends Ecol. Evol.* **19**, 198–207 (2004).
4. Abbott, R. et al. Hybridization and speciation. *J. Evol. Biol.* **26**, 229–246 (2013).
5. Rieseberg, L. H. Hybrid origins of plant species. *Annu. Rev. Ecol. Syst.* **28**, 359–389 (1997).
6. Mallet, J. Hybrid speciation. *Nature** **416**, 279–283 (2002).
7. Anderson, E. & Stebbins, G. L. Hybridization as an evolutionary stimulus. *Evolution* **8**, 378–388 (1954).
8. Carlquist, S. *Island Biology* **Vol. 581**, 5279 (Columbia Univ Press, 1974).
9. Arnold, M. L. Natural Hybridization and Evolution (Oxford University Press, 1997).
10. Feder, J. L. et al. Mayr, Dobzhansky, and Bush and the complexities of sympatric speciation in Rhaetoblastis. *Proc. Natl Acad. Sci. USA* **102**, 6573–6580 (2005).
11. The Heliconius Genome Consortium. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. *Nature* **477**, 94–98 (2012).
12. Pardo-Diaz, C. et al.Adaptive introgression across species boundaries in Heliconius butterflies. **PLOS Genet.** **8**, e1002752 (2012).
13. Lamichhaney, S. et al. Evolution of Darwin’s finches and their beaks revealed by genome sequencing. *Nature* **518**, 371–375 (2015).
14. Salzburger, W., Baric, S. & Sturmbauer, C. Speciation via introgressive hybridization in East African cichlids? *Mol. Biol. Evol.* **11**, 619–625 (2002).
15. Meyer, B. S., Matschiner, M. & Salzburger, W. Disentangling incomplete lineage sorting and introgression to refine species-tree estimates for Lake Tanganyika cichlid fishes. *Syst. Biol.* doi: 10.1093/sysbio/syw069 (2016).
16. Weiss, J. D., Cotterill, F. P. & Schluen, U. K. Lake Tanganyika—A Melting Pot of Ancient and Young Cichlid Lineages (Teleostei: Cichlidae)? *PLOS ONE** **10**, e0125043 (2015).
17. G内的, M. & Turner, G. F. Ancient hybridization and phenotypic novelty within Lake Malawi’s cichlid fish radiation. *Mol. Biol. Evol.* **29**, 195–206 (2012).
18. Keller, I. et al. Population genomic signatures of divergent adaptation, gene flow and hybrid speciation in the rapid radiation of Lake Victoria cichlid fishes. *Mol. Biol. Evol.* **22**, 2848–2863 (2015).
19. Meier, J. I. et al. Demographic modelling with whole-genome data reveals parallel origin of similar *Pundamilia* cichlid species after hybridization. *Mol. Evol.* **26**, 123–141 (2017).
51. Terai, Y., Mayer, W. E., Klein, J., Tichy, H. & Okada, N. The effect of selection on a long wavelength-sensitive (LWS) opsin gene of Lake Victoria cichlid fishes. Proc. Natl Acad. Sci. USA 99, 15501–15506 (2002).
52. Okullo, W. et al. Parameterization of the inherent optical properties of Murchison Bay, Lake Victoria. Appl. Opt. 46, 8553–8561 (2007).
53. Maen, M. E., Hofker, K. D., van Alphen, J. J. M. & Seehausen, O. Sensory drive in cichlid speciation. Am. Nat. 167, 947–954 (2006).
54. Miyagi, R. et al. Correlation between nuptial colors and visual sensitivities tuned by opsins leads species to rich in sympatric Lake Victoria cichlid fishes. Mol. Biol. Evol. 29, 1281–1296 (2012).
55. Selz, O. M., Pierotti, M. E. R., Maan, M. E., Schmid, C. & Seehausen, O. Female preference for male color is necessary and sufficient for assortative mating in 2 cichlid sister species. Behav. Ecol. 25, 612–626 (2014).
56. Stelkens, R. B., Schmid, C. & Seehausen, O. Hybrid breakdown in cichlid fish. PLoS ONE 10, e0127207 (2015).
57. Stelkens, R. B., Schmid, C., Selz, O. & Seehausen, O. Phenotypic novelty in experimental hybrids is predicted by the genetic distance between species of cichlid fish. BMC Evol. Biol. 9, 283–295 (2009).
58. Sambrook, J. & Russell, D. W. Molecular Cloning: A Laboratory Manual 3rd edn (Cold Spring Harbor Laboratory Press, 2001).
59. Baird, N. A. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3, e376 (2008).
60. Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).
61. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–354 (2012).
62. McKenna, A. et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
63. Danecek, P. et al. The variant call format and VCF tools. Bioinformatics 27, 2156–2158 (2011).
64. Kocher, T. D., Conroy, J. A., McKay, K. R., Stauffer, J. R. & Lockwood, S. F. Evolution of NADH dehydrogenase subunit 2 in east African cichlid fish. Mol. Phylogenet. Evol. 4, 420–432 (1995).
65. Kocher, T. D. et al. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc. Natl Acad. Sci. USA 86, 6196–6200 (1989).
66. Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acid Symp. 41, 95–98 (1999).
67. Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).
68. Stamatakis, A. et al. RAxML-Light: a tool for computing terabyte phylogenies. Bioinformatics 28, 2064–2066 (2012).
69. Popescu, A. A., Huber, K. T. & Paradis, E. ape 3.0: new tools for distance-based analyzing next-generation DNA sequencing data. PLoS ONE 9, e3376 (2012).
70. Bouckaert, R. R. DensiTree: making sense of sets of phylogenetic trees. Bioinformatics 26, 1372–1373 (2010).
71. Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).
72. Durand, E. Y., Patterson, N., Reich, D. & Slatkin, M. Testing for ancient admixture between closely related populations. Mol. Biol. Evol. 28, 2239–2252 (2011).
73. Reich, D., Thangaraj, K., Patterson, N., Price, A. L. & Singh, L. Reconstructing Indian population history. Nature 461, 489–494 (2009).
74. Carleton, K. L. & Kocher, T. D. Cone opsin genes of African cichlid fishes: tuning spectral sensitivity by differential gene expression. Mol. Biol. Evol. 18, 1540–1550 (2001).
75. Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Windows and Linux. Mol. Ecol. Resour. 10, 564–567 (2010).
76. Kozarewa, I. et al. Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of (G + C)-biased genomes. Nat. Methods 6, 291–295 (2009).
77. McGee, M. D., Neches, R. Y. & Seehausen, O. Evaluating genomic divergence and parallelism in replicate ecormorphs from young and old cichlid adaptive radiations. Mol. Ecol. 25, 260–268 (2016).
78. Martin, S. H., Davey, J. W. & Jiggins, C. D. Evaluating the use of ABBA–BABA statistics to locate introgressed loci. Mol. Biol. Evol. 32, 244–257 (2015).
79. Racimo, F., Sankararaman, S., Nielsen, R. & Huerta-Sánchez, E. Evidence for archaic adaptive introgression in humans. Nat. Rev. Genet. 16, 359–371 (2015).
80. Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. EOS 89, 93–94 (2008).

Acknowledgements
We thank all collaborators who provided tissue samples over the years: Sigal Balshine-Earn (McMaster), Roger Bills (SAIAB), Julia Day (UCL), Yves Fernson (Paris), John Friell (CUMa), Martin Genner (U Bristol), Sylvain Piry (Paris), Lukas Ruber (Bern Natural History Museum), Walter Salzburger (U Basel), Ui Schiewen (Zoologische Staats-sammlung Munich), Erwin Schraml (Augsburg), Jos Snoeks (Africa Museum Tervuren), Melanie Stassny (AMNH), George Turner (U Bangor), Sylvester Wandera (NAFIRI; Uganda) and Marco Welss (Kressberg). We also thank Matt McGee for help with DNA extraction, Keith Harshman of the Lusanne Genomic Technologies Facility and Cord Droegemueller, Tasso Leeb, Muriel Fragnière and Michele Ackermann of the NGS platform of the University of Bern for Illumina sequencing support, Aria Minder and Stefan Zoller of the Genetic Diversity Center (GDC) at ETH Zürich and Irene Keller of the Interfaculty Bioinformatics Unit at the University of Bern for lab and bioinformatics support and discussion, and Andy Cohen for comments on the paleogeographic maps. This research was supported by the Swiss National Science Foundation grant PDEMIP3 134657 to O.S. and L.E.

Author contributions
O.S., J.I.M. and C.E.W. designed the study; O.S. gathered and identified the cichlid samples; J.I.M., S.M. and D.A.M. performed the lab work (DNA extraction, mtDNA and LWS sequencing and RAD library preparation); J.I.M. conducted the analyses, with assistance from O.S., C.E.W., D.A.M. and L.E.; J.I.M. prepared the manuscript together with O.S. and C.E.W. and L.E. and D.A.M. contributed to writing.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Meier, J. I. et al. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat. Commun. 8, 14363 doi: 10.1038/ncomms14363 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2017