Current Strategies for Tumor Photodynamic Therapy Combined With Immunotherapy

Jianfeng Hua1, Pan Wu1, Lu Gan1, Zhikun Zhang1, Jian He1, Liping Zhong1, Yongxiang Zhao1 and Yong Huang1,2*

1 National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China, 2 The First People’s Hospital of Changde City, Changde, China

Photodynamic therapy (PDT) is a low invasive antitumor therapy with fewer side effects. On the other hand, immunotherapy also has significant clinical applications in the treatment of cancer. Both therapies, on their own, have some limitations and are incapable of meeting the demands of the current cancer treatment. The efficacy of PDT and immunotherapy against tumor metastasis and tumor recurrence may be improved by combination strategies. In this review, we discussed the possibility that PDT could be used to activate immune responses by inducing immunogenic cell death or generating cancer vaccines. Furthermore, we explored the latest advances in PDT antitumor therapy in combination with some immunotherapy such as immune adjuvants, inhibitors of immune suppression, and immune checkpoint blockade.

Keywords: photodynamic therapy, immunotherapy, combination, tumor, nanoparticle

INTRODUCTION

Cancers are chronologic diseases that seriously threaten human life. Many strategies have been developed for cancer treatment, including chemotherapy, radiotherapy, surgery, and targeted therapy, which are found to be effective for some malignant tumors (1, 2). However, metastasis, recurrence, heterogeneity, resistance to chemotherapy and radiotherapy, and avoidance of immunological surveillance are the most common reasons for cancer treatment failure. Therefore, new therapies with targeted and less invasive features are needed for cancer treatment. In 1903, Tappeiner and Jesionek used white light and eosin to treat skin tumors, setting a photodynamic therapy (PDT) model to treat tumors (3). PDT is a minimally invasive therapy that generates cytotoxic reactive oxygen species (ROS) through a light source, molecular oxygen, and organic macrocycles called photosensitizers (PSs) (4, 5). Currently, nanomaterials are widely used as PS carriers due to their better cytocompatibility, lower cytotoxicity, and excellent tumor targeting compared with traditional small-molecule PSs (6, 7). The enhanced permeability and retention (EPR) effect-based nanomedicine has been widely used for tumor targeting during the past decades. PDT only produces ROS in the tumor after local irradiation with excitation light, making it less invasive and confined. Furthermore, PDT has shown promising results in the diagnosis and treatment of cancers, such as breast, colorectal, and skin cancers, because of the mechanism of action of PSs, which does not cause drug tolerance (8–10). PDT can also induce immunogenic cell death (ICD), promote the release of tumor-associated antigens (TAAs) from tumor cell remnants, and increase the
proliferation, activation, and infiltration of antigen-presenting cells and antigen-specific T cells (11–13).

Tumor immunotherapy is an innovative therapy that modulates the immune microenvironment and activates the immune system. It depends on autoimmune functions to kill cancer cells and tumor tissues (14, 15). This approach has the advantage of producing long-term immunological memory effects while causing no harm to normal tissues or cells (16). In recent years, with the discovery of tumor immune checkpoint molecules, such as cytotoxic T lymphocyte (CTL)-associated protein-4 (CTLA-4), programmed cell death protein-1 (PD-1), and its ligand PD-L1, important breakthroughs have been made in the study of antitumor immune mechanisms, and immunotherapy has become a promising tumor treatment (17, 18). Currently, the main strategies in cancer immunotherapy include tumor vaccines, adoptive cellular immunotherapy (ACI), and immune checkpoint blockade (ICB) therapy (19–21). However, immune drugs alone are not effective for all patients. Drug resistance or adverse effects, including skin rashes, itching, diarrhea, pneumonia, and thyroid malfunction, may occur in some people (22). In addition, immune side effects, including the cascade of inflammatory mediators, hematopoietic system dysfunction, and organ toxicity, also limit the optimization of immunotherapy methods (23–25). Therefore, it is needed to develop appropriate combined cancer therapies to enhance the effectiveness of immunotherapy and to reduce side effects. It has been revealed that combining PDT with antitumor immunotherapy not only can improve the PDT-induced antitumor immune response but also can promote the proliferation and activation of immune memory cells, inhibit tumor metastasis, and prevent tumor recurrence (26, 27).

In this review, we explain the principles and damage mechanisms of PDT and discuss the immune response induced by PDT. We also summarize the combined treatment strategies of PDT and some immunotherapies, such as immune adjuvants, inhibitors of immune suppression, and ICB for cancer. We believe that this combination therapy strategy will be further developed and functionalized to meet the application in biomedicine, thereby making remarkable contributions to human health.

THE PRINCIPLE AND DAMAGE MECHANISM OF PHOTODYNAMIC THERAPY

The exact mechanism of PDT has not yet been elucidated. However, the widely accepted theory is based on photophysical principles and guided by the Jablonski Diagram. The Jablonski Diagram clarifies the different electronic states of molecules and the process of their transitions, which are considered as the basic principles for designing phototherapeutic reagents (28, 29). As shown in Figure 1, PS is excited by light irradiation, and the electronic state changes from the ground state (S₀) to the singlet excited state (S₁) and then relaxes to the lowest energy level of the singlet excited state (S₁) through internal conversion (IC). The PS at the S₁ state can consume energy in three ways, resulting in diverse outcomes (30, 31). 1). The molecules at the S₁ state emit a photon with a longer wavelength to S₀. The

![Figure 1](https://example.com/figure1.png)

Figure 1: The photophysical mechanism and the two classic types of photodynamic therapy (PDT). The photosensitizer absorbs light energy to jump from the ground state to the excited state, which then leads to a long-lived excited triplet state through intersystem crossing and finally generate reactive oxygen species through type I reaction or type II reaction.
The photon emission process can be applied to fluorescence imaging. 2) S\textsubscript{1} state molecules release heat by colliding with each other and relax to the S\textsubscript{0} state in a non-radiative manner, which is often used in photothermal therapy. 3) The PS at the S\textsubscript{1} state transitions to the lowest energy level of the triplet state (T\textsubscript{1}) through intersystem crossing (ISC) (32–34). The molecules at the T\textsubscript{1} state can relax to the S\textsubscript{0} state by emitting photons. This phenomenon is called phosphorescence. In addition, molecules in the T\textsubscript{1} state can also perform two different types of PDT by generating free radicals or singlet oxygen (35–37). In type I reaction, T\textsubscript{1} state chemicals form free radicals by directly interacting with endogenous substrates, such as cell membranes or biological macromolecules, and subsequently react with oxygen to produce ROS (38). In the type II reaction, T\textsubscript{1} state molecules directly transfer energy to oxygen molecules in the surrounding environment to generate singlet oxygen, which may oxidize the macromolecular cellular components, resulting in cellular death through either apoptosis or necrosis (39, 40). However, it should be noted that most PSs exert their antitumor effects by causing cell damage through the generation of singlet oxygen from the type II reaction (41). Singlet oxygen can act on protein sulphydryl and amino groups to denature proteins and reduce enzymatic activity in cells (42, 43). Singlet oxygen can also alter the structure and function of cell membranes, mitochondrial membranes, and DNA molecules (44, 45).

The tumor damage mechanism caused by PDT mainly includes the following types. 1) Direct killing effect of ROS on tumor cells, including apoptosis, necrosis, and autophagy. 2) PSs target the vascular system to form thrombi, causing hypoxic infarction of tumor tissues. 3) Tumor cells that undergo apoptosis or necrosis release inflammatory factors, which trigger an inflammatory response that leads to an antitumor immune response (46–48) (Figure 2). It is worth mentioning that apoptosis, autophagy, and cell cycle arrest after PDT may occur simultaneously during a single treatment session. Sasnauskienė et al. (49) found that the degree of oxidative stress damage to cells is dose-dependent. Cells showed increased autophagy and cell cycle arrest but no apoptosis when the cytotoxic dose was increased to 50%. However, the cells displayed significant apoptosis, autophagy, and cell cycle arrest when the cytotoxic dose was greater than 70%. The damage to blood vessels by PDT is based on the characteristics of tumor tissue with wide vascular gaps and poor integrity, which are conducive to PS aggregation (50). After photoactivation, PS enrichment in tumor vascular endothelial cells causes many physiological responses, including platelet aggregation and vasoconstriction, which lead to tumor vascular blockage,
ischemia, and hypoxia (51, 52). The direct ablation effect of PDT on tumor cells also releases inflammatory mediators, thereby recruiting a variety of white blood cells, such as neutrophils, macrophages, and dendritic cells (DCs) (53). These white blood cells will then activate the immune cascade to further suppress the tumor (54, 55).

PHOTODYNAMIC THERAPY AND ANTITUMOR IMMUNE RESPONSE

Photodynamic Therapy-Mediated Immunogenic Cell Death

The current elaboration on the mechanism of PDT antitumor immune response tends to focus on PDT-induced oxidative stress in tumor cells, causing ICD and release of TAAs and damage-associated molecular patterns (DAMPs) (56, 57). ICD is a specific cell death mode that translocates calreticulin (CRT) to the cell surface and releases high mobility group box 1 protein (HMGB1), adenosine triphosphate (ATP), and heat shock proteins (HSPs) to the extracellular surface (58, 59). Inflammation-related signaling pathways, the release of immune-related cytokines, neutrophil infiltration, and the complement cascade are all triggered by these DAMPs (60, 61). DCs are specialized antigen-presenting cells that link the innate immune response to the adaptive immune response, taking up TAAs, binding DAMPs through pattern recognition receptors (PRRs), and processing antigens as they migrate to lymph nodes and mature. The antigens are presented to T cells for proliferation and differentiation into CTLs, which exert antitumor immune effects (62–64).

After the determination of the important role of immunogenic DAMPs in the PDT-mediated antitumor immune response, many studies have been conducted to improve the ICD triggered by PDT. Deng et al. (65) designed reduction-sensitive Ds-sP nanocarriers loaded with an efficient endoplasmic reticulum (ER)-targeting PS TCPP-T-ER. The unique ER targeting ability of PS TCPP-T-ER results in an elevated level of oxidative stress in the ER of tumor cells, which in turn releases more DAMPs and enhances the immune effect. This strategy can effectively address the problems of short ROS half-life and limited intracellular diffusion depth. However, a hypoxic tumor microenvironment (TME) can limit the efficacy of PDT and reduce the efficiency of ICD induction (66). Therefore, increasing the oxygen content of tumor tissues is essential to improve the efficiency of PDT treatment. Liang and colleagues (67) developed gold nanocages (AuNCS) with hollow structures and coated them with a layer of manganese dioxide to synthesize core-shell nanoparticles (AuNC@MnO2). In the acidic microenvironment of tumor tissue rich in H2O2, manganese dioxide reacts as follows: MnO2 + H2O2 + 2H+ → Mn2+ + 2H2O + O2↑ generates a large amount of oxygen to promote the accumulation of ROS in the tumor and enhances the efficacy of PDT by improving tumor hypoxia to achieve ICD. The released oxygen and Mn2+ can provide fluorescence (FL)/photoacoustic (PA)/magnetic resonance multimodal imaging function to evaluate the integration of tumor diagnosis and treatment. In short, the induction of ICD by enhanced PDT to promote antitumor immune response is a promising tumor treatment strategy (Figure 3).

Photodynamic Therapy-Generated Cancer Vaccines

Tumor cell lysates and TAAs produced by PDT can also induce specific immune responses and are more effective than tumor cell lysates produced by ionizing radiation and ultraviolet rays (68). Similar to the inoculation mechanism of conventional vaccines that directly introduce microorganisms into the body to produce protective antibodies, cancer vaccines stimulate the activation of the body’s immune system through tumor cell death (69, 70). DCs have played a major role in the development of cancer vaccine therapy as critical mediators of antigen presentation, reversing a major component of tumor-mediated immune suppression (71, 72). Tumor residues after PDT can be used as a cancer vaccine to dramatically increase DC activation and release inflammatory cytokines to boost immune response in a mouse breast cancer model, according to a study using chlorin e6 (Ce6) as a PS (73). A promising tumor treatment strategy is to use PDT-treated tumor cells as a DC vaccine to develop a PDT-DC vaccination that can more efficiently destroy tumors and trigger a powerful antitumor immune response (74, 75).

Antigens produced by PDT ablation of tumors may have insufficient immunogenicity as a DC vaccine and are limited to immunosuppressed “cold” tumors (76). Korbelik made a vaccine against SCCVII cells using PDT to destroy the cells and used this vaccine in the SCCVII tumor model to show that it inhibits tumors growth (77). However, the levels of splenic myeloid-derived suppressor cells (MDSCs) were significantly enhanced. Therefore, the immune adjuvant N-dihydrogalactochitosan (GC) was added to the PDT vaccine group to reduce the number of MDSCs (precursors of DCs, macrophages, and granulocytes) and alleviate immunosuppression (78). Ni et al. (79) used the amphipathic 4T1 breast cancer cell membrane to load PS Ce6 and the chemotherapeutic drug, i.e., doxorubicin hydrochloride (Dox), and coated the cell membrane surface with calcium carbonate to construct nanodrug delivery systems. Ce6-based PDT and Dox cause DNA damage, induce tumor ICD, and release TAA. The ROS generated during this process is expected to form in situ PDT-DC vaccination by mimicking inflammatory mechanisms to recruit DCs. In PDT-DC vaccinated mice, the growth of both primary 4T1 and untreated distant tumors was suppressed, indicating the establishment of an efficient immune response. Moreover, serum levels of inflammatory cytokines in mice increased continuously, peaking and then stabilizing the day after vaccination. It provides a novel antitumor combination therapy for improving the immunogenicity of the PDT-DC vaccine by introducing adjuvants or chemotherapeutic drugs. This therapy enhances body-specific immune responses, eliminates tumors, and builds long-term immunological memory.
COMBINED TUMOR TREATMENT STRATEGY BASED ON PHOTODYNAMIC THERAPY AND IMMUNOTHERAPY

Photodynamic Therapy and Immune Adjuvants

Immune adjuvants are chemicals that boost the cellular or humoral immune response to an antigen (80, 81). Vaccines, which are one of the most successful medicinal discoveries against a variety of infectious diseases, occasionally require a molecule in conjugation to boost the immune response (82). It is therefore expedient to co-administer these with an adjuvant to ensure a high-quality/high-quantity, memory-enhanced antibody response. In chronological order of appearance, the first immune adjuvant to be used clinically was Alum, followed by the development of oil-in-water emulsions and toll-like receptor (TLR) agonists (83, 84). TLR agonists are currently being used as immune adjuvants to activate TLR signaling pathways and boost immunological responses and are found to be promising agents for cancer treatment (85, 86). This review focuses on summarizing the strategies of TLR agonists in combination with PDT.

TLRs are one of the PRRs that are expressed by a wide range of immune cells and have received more attention. To date, 13 different TLRs (TLR1–13) have been identified in mammals (87). The TLR7 agonist imiquimod (R837) is a synthetic imidazoquinoline-like molecule, approved by the US Food and Drug Administration (FDA) as a single drug and commonly used in the treatment of various skin diseases, including basal cell carcinomas (88). R837 interacts with TLR7 on the DC surface and endosomes that results in the stimulation of DC maturation and release of pro-inflammatory cytokines through elevated expression of co-stimulatory molecules (89). PDT using the PS 5-aminolevulinic acid (ALA) in combination with imiquimod cream has been proven to be useful in the treatment of squamous cell carcinoma of the skin (90). This combination therapy ameliorates the poor oncogenic effect caused by insufficient local penetration of the PS into the tumor. Because of the limitations of topical use of imiquimod cream, this agent can only be used for superficial skin cancer treatment. If tumors in internal organs of the body are to be destroyed, R837 must be delivered locally to the tumor through blood circulation. R837, being a small-molecule, is diffused after local injection, and few of them eventually reach the tumor site (91). Furthermore, R837
causes direct cell death by inducing autophagy and has concentration-dependent cytotoxicity (92–94). The use of nanomaterials to encapsulate immune adjuvants and decrease their harmful effects is a viable technique for addressing such issues. Xu et al. (95) used the hydrophobic region between UCNP and PEG to load the PS chlorin e6 (Ce6) and the TLR7 agonist R837. The results showed that TAA released from PDT-killed tumor cells and R837 induced DC maturation and released cytokines related to innate and adaptive immunity, such as TNF-α and IL-12, by upregulating the expression of co-stimulatory molecules such as CD80 and CD86. Resiquimod (R848), a second-generation derivative of R837, shares a similar structure and properties with R837. However, in contrast to R837, R848 can be used as an agonist of both TLR7 and TLR8 (96, 97). Many studies on R848 immunotherapy, both alone and in combination with chemotherapy and photothermal therapy, have been reported, suggesting that R848 can enhance immunity and improve anticancer therapeutic effectiveness (98–100). However, studies on the combined application of R848 with PDT have not been reported, which may be a promising direction for future research.

Other TLR agonists have been used in PDT immunotherapy to enhance the immune response. According to the reported study, the combination of PDT and TLR5 agonist flagellin (FlaB-Vax) effectively inhibited bilateral melanoma in mice, enhanced TME tumor antigen cross-presentation, and promoted tumor CD8+ T-cell infiltration and systemic IFN-γ secretion (101). CpG oligodeoxynucleotides (CpG ODN) are synthetic DNA fragments that function as TLR9 agonists by interacting with DC-expressed TLR9 and enhancing antigen-specific immune responses (102). Ni and co-workers (103) used the cationic PS 5,10,15,20-tetra(p-benzoato)porphyrin (TBP) to adsorb the anion CpG to achieve efficient PDT and effective delivery of CpG. In a mouse breast cancer model, the combination of PDT and CpG was found to provide excellent tumor suppression, with about 97% of tumors being eliminated. Cai et al. (104) designed a metal–organic framework (MOF) nanoparticle formed by the self-assembly of the PS H2TCPP and zirconium ions. The porous internal structure of MOF was used to load the TLR9 agonist CpG ODN. When compared with the control and the treatment group alone, the combination of CpG ODN and PDT dramatically increased the expression of MHC-II, CD317, and co-stimulatory molecules including CD80/CD86. Remarkably, CpG ODN also reduced the immunosuppressive activity of MDSCs and improved the tumor immunosuppressive microenvironment (105). However, CpG ODN is still mostly used as an immunostimulant in PDT immunotherapy, and there is a significant research gap in improving immunosuppression.

Many immune adjuvants such as glycated chitosan (GC), lactobacillus BCG, mycobacterial cell wall extract (MCWE), complete Freund (CF) adjuvant, and incomplete Freund (IF) adjuvant can stimulate the immune response similar to that of TLR agonists (106). Previously, it was demonstrated that GC, a water-soluble compound synthesized from galactose and chitosan, was shown to stimulate TNF-α secretion by macrophages and induce tumor-specific immune responses (107). Cai’s group (108) found the highest levels of apoptotic and inflammatory responses and the highest infiltration of immune cells in tumors in the synergistic treatment group of PDT and GC. Additionally, mice treated with a combination of PDT and GC had a significantly better survival rate in the EMT6 mammary tumor and 4T1 metastatic mammary tumor models. In short, PDT adjuvant by immune adjuvant has promising research potential because of its ability to inhibit tumor metastasis and recurrence.

Photodynamic Therapy and Inhibitors of Immune Suppression

PDT can activate the immune system to some extent, but the intensity of the PDT-induced immune response may not be sufficient to destroy the tumors or prevent their metastasis and recurrence due to the immunosuppressive effect of the TME and immune escape of tumor cells (109, 110) (Figure 4). Moreover, PDT causes local inflammation and immunosuppression due to contact hypersensitivity (CHS) (111). Therefore, it is necessary to explore suitable immune inhibitors to inhibit tumor immunosuppressive signals and enhance PDT-induced immune responses.

Immunosuppressive cells such as MDSCs and regulatory T cells (Tregs) in the TME suppress the antitumor immune responses and promote tumor progression and invasion (112, 113). Specifically, MDSCs suppress T-cell function through multiple mechanisms, including production of nitric oxide and immunosuppressive metabolites, secretion of immunosuppressive cytokines such as TGF-β and IL-10, and upregulation of cyclooxygenase 2 (Cox2) and prostaglandin E2 (PGE2) (114, 115), while Tregs suppress T-cell function through CTL antigen 4 to inhibit the expression of DC co-stimulatory molecules including CD80 and CD86 (116). Recently, it has been found that PDT vaccination significantly increased MDSC and Treg levels, while low doses of GC and cyclophosphamide were found to reduce the elevated levels of immunosuppressive cells (77, 117). The findings demonstrated the feasibility of using small-molecule inhibitors to weaken immunosuppressive cells and alter the immunosuppressive TME, thereby enhancing the PDT-DC vaccine-induced immune responses.

Apart from their role in tumor development and immune escape, the reprogramming of tumor cells’ metabolism influences immune cell metabolism (118). Tryptophan (Trp) metabolism in T cells is mediated by tumor cells through an elevated level of indoleamine 2,3-dioxygenase (IDO) expression, which converts Trp to kynurenine (Kyn) (119). Lack of Trp inhibits CTL activation, while abnormal accumulation of Kyn recruits Treg to suppress effector T-cell function (120, 121). Reducing the level of immunosuppression by PDT nanoparticles loaded with IDO inhibitors is a more appropriate strategy. Zhao et al. (122) constructed self-delivery photo-immune stimulators (iPSs) through non-covalent interactions between the PS Ce6 and IDO inhibitor, i.e., NLG919. They first demonstrated that iPSs can promote DC maturation by inducing apoptosis and ICD in CT26 cells via PDT and cellular release of CRT and HMGB1. Following PDT treatment with iPSs, increased CD4+/CD8+ T-cell infiltration was observed in the mouse CT26 tumor tissues, while a significant decrease in Kyn/Trp ratio was observed in the serum. Additionally, transcriptomic analysis of mouse tumor tissues demonstrated that...
iPS-based PDT could effectively stimulate the tumor immune microenvironment and enhance tumor immunotherapy efficacy. A variety of PSs and IDO inhibitors, such as self-assembled nanoparticles, are being developed extensively. Yang’s group (123) designed pH-responsive nanovesicles (pRNVs) as carriers to synthesize PRNVS/HPPH/IND smart nanoparticles by encapsulating the PS HPPH and the IDO inhibitor indoximod (IND) through hydrophobic interactions. They found that PDT treatment of the nanoparticles inhibits mouse melanoma growth, and the release of IND stimulates CD8+ T cells to destroy distant tumors by increasing P-S6K phosphorylation.

Tumor tissues secrete large amounts of vascular endothelial growth factor (VEGF) to promote the proliferation of immunosuppressive cells and inhibit DC maturation by NF-κB pathway activation (124, 125). Excess VEGF leads to abnormalities in tumor vascular structure and function, exacerbating the hypoxic state of the TME and affecting the efficacy of PDT therapy (126). Zhou et al. (127) developed a self-assembled nanoplatform containing the PS Ce6, the VEGF receptor (VEGFR) inhibitor axitinib (AXT), and the IDO inhibitor dextro-1-methyl tryptophan (1MT) to alleviate immunosuppression by promoting vascular normalization and improving the tumor hypoxic microenvironment, thereby enhancing PDT immunotherapy. According to the obtained results, the enhanced PDT immunotherapy has significant effects on both primary melanoma and lung metastases in mice.

The PS-based PDT induces tumor ICD and stimulates immune activation, while the inhibitor of immune suppression promotes PDT-induced immune response by weakening tumor immune escape (128). It is about the immunosuppressive TME of MDSCs and Tregs and immunosuppressive molecules like IDO-1 and VEGF. PDT should be combined with compounds that can inhibit MDSCs and/or Tregs and IDO or VEGF.

Photodynamic Therapy and Immune Checkpoint Blockade

Various immunosuppressive mechanisms can impair the efficiency of antitumor immunotherapy during tumor progression. For example, immune checkpoint molecules are considered to be the primary anticancer immunotherapy targets, as they have a negative immunomodulatory effect (129). The development of target-specific antibodies to block the underlined immune checkpoints is a hot topic in immunotherapy. However, due to the low tumor immunogenicity, the response rate of some patients to ICB therapy is unsatisfactory (130). The efficiency of ICB therapy can be improved by enhancing tumor immunogenicity and sensitivity through PDT-mediated ICD induction (131, 132). Herein, three immune checkpoints, including CTLA-4, PD-1/PD-L1, and CD47, have been described, followed by summarizing their combined treatment strategies along with PDT.

CTLA-4 Checkpoint Blockade

CTLA-4 is an immune checkpoint receptor expressed on Tregs and other activated T cells (133). It binds CD80 and CD86 ligands on DCs, weakening T-cell activation and inability to perform
normal immune functions (134). It is considered the first immune checkpoint receptor to be used clinically for cancer immunotherapy. Additionally, ipilimumab, an anti-CTLA-4 monoclonal antibody used to treat metastatic melanoma, has been approved by the FDA (135). The combination of anti-CTLA-4 antibody and PDT is essential for the eradication of systemic tumors and may be an effective therapeutic strategy for advanced cancers (136). Wang et al. (137) developed bullet-shaped magnetic mesoporous organosilica nanoparticles (M-MONs) with Fe₃O₄ at the head and a mesoporous silica framework at the tail. Next, the redox/pH dual-responsive M-MONs@Ce6 nanoparticles were developed with M-MONs (pores size of ~3.8 nm) and loaded with the PS Ce6. M-MONs@Ce6 induced more severe ICD by simultaneous PDT and magnetothermal treatment under the combined action of laser and alternating-current magnetic field (ACMF), releasing DAMPs to trigger specific immune responses and significantly inhibiting the growth of mouse and human breast cancers. In a mouse model of breast cancer with lung metastasis, the PDT+anti-CTLA-4 antibody treatment group and the magnetothermal treatment+anti-CTLA-4 antibody treatment group showed an inhibitory effect on lung metastatic tumor. This inhibitory effect was further enhanced when the two treatments were combined, accompanied by an increase in CTL and a decrease in Treg. Furthermore, the nanoparticles used for PDT treatment had no severe side effects when combined with ICB treatment, indicating that this is a safe and effective strategy for the treatment of metastatic cancer.

PD-1 and PD-L1 Checkpoint Blockade

Following the success of CTLA-4 checkpoint blockade in antitumor immunotherapy, more consideration has been paid to the exploration of new immune checkpoints. PD-1, also known as CD279, is an immunosuppressive signaling molecule highly expressed on tumor-specific T cells. PD-1 binds to PD-L1 (PD-1 ligand) present on the tumor cells. Consequently, the inhibition of T-cell proliferation and activation, elevated levels of T-cell apoptosis, and reduced cytokine secretion were observed (138, 139). PD-1/PD-L1 signaling promotes tumor immune escape and severely affects the efficacy of cancer immunotherapy (140). For this reason, several anti-PD-1/PD-L1 antibodies have been developed for restoring T-cell viability and promoting antitumor immune response (141). It has been reported that PDT significantly increases tumor PD-L1 levels, while the majority of recruited CD8⁺ T cells express PD-1, emphasizing the importance of a combined anti-PD-1/PD-L1 antibody therapeutic strategy (142, 143). Liu et al. (144) used PS-g-PEG micelles to encapsulate the PS, i.e., BDP-I-N, to improve its water solubility, followed by modifying the micelles with functional groups to attach anti-PD-L1 antibodies that result in the synthesis of BDP-I-N-anti-PD-L1 multifunctional nanoparticles. Unlike the conventional therapeutic strategy to achieve the combination with PDT by intravenous injection of anti-PD-1/PD-L1 antibodies, this work assembled anti-PD-L1 antibodies and PSs into nanoparticles and accomplished the efficient accumulation in tumor tissues through the active targeting of immune checkpoint antibodies and the EPR effect of nanoparticles. In vivo results demonstrate that BDP-I-N-anti-PD-L1 nanoparticles eliminate MC38 mouse colon tumors by synergistic action of PDT and ICB, generate immune memory to prevent tumor recurrence, and have an excellent biosafety profile.

Anti-PD-1/PD-L1 antibodies have demonstrated excellent efficacy in tumor immunotherapy; however, the high cost of these antibodies adds to the financial burden of cancer patients (145). To address the high cost of anti-PD-L1 antibodies, Zhang and colleagues (146) extracted PD-1-expressing HEK293T cell membranes to replace anti-PD-L1 antibodies to bind PD-L1 on 4T1 cells. They developed PDT-mediated PFTBA@HSA-DVMS (PHD) nanoemulsions against hypoxic tumors by wrapping the oxygen supply agent perfluorotributylamine (PFTBA) in human serum albumin (HSA), followed by loading it with the PS sinoporphyrin sodium (DVMS). In addition, they developed PHD@PM nanoplateform by encapsulating PHD nanoemulsion inside PD-1-expressing cell membranes to realize the combination of PDT and ICB. Their work demonstrates that PHD@PM nanoplateform is an innovative therapeutic platform. This platform has high clinical application because of its low cost, high biocompatibility, and active targeting. Furthermore, it has the ability to improve TME, which is hypoxic and immunosuppressive.

CD47 Checkpoint Blockade

Aside from the two most widely studied immune checkpoints mentioned above, one of the current hot spots in cancer ICB therapy is targeting the CD47–SIRPα signaling axis. CD47 is a membrane protein expressed by almost all cells, while signal-regulating protein α (SIRPα) is only expressed by myeloid cells such as macrophages and monocytes (147, 148). CD47 on the surface of tumor cells binds to SIRPα on macrophages releasing a “don’t eat me” signal that inhibits macrophage phagocytosis and thus promotes tumor immune escape (149). A reported study has revealed that thrombospondin-1 (TSP-1) in the TSP-1/CD47/SIRP-α signal axis could significantly improve treatment outcomes by blocking it, laying the groundwork for the clinical use of PDT cancer vaccines (150). Chang et al. (151) designed Cu₂O@CaCO₃ nanoparticles for the target-specific treatment of colorectal cancer (CRC). In the acidic microenvironment of CRC, the CaCO₃ shell decomposed to release the PS precursor Cu₂O. Exposed Cu₂O reacted with endogenous H₂S in the CRC, producing Cu₂S₈ and ROS to achieve PDT under 1,064-nm laser radiation. It was found that the oxidative stress induced by Cu₂O@CaCO₃ nanoparticles could also promote macrophages from immunosuppressed M2 phenotype to immune-activated M1 phenotype. Combined treatment with anti-CD47 antibody resulted in improved phagocytosis of macrophages, promoted antigen presentation, and induced antitumor immune response by T cells, achieving effective inhibition of CRC metastasis and recurrence. Furthermore, recent studies have also indicated that the combination of PDT and CD47 monoclonal antibodies may have the potential for the treatment of human bladder cancer (152).

The combination of PDT and ICB can effectively inhibit tumor metastasis and recurrence compared with the individual therapeutic effect of PDT. Moreover, the combination strategy also improves the failure of ICB treatment due to insufficient immunogenicity of tumor cells. Current studies have identified several new immune checkpoints, such as V-domain Ig...
FIGURE 5 | Schematic overview of synergized photodynamic immunotherapy. Photodynamic therapy enhances the antitumor immune response, thus killing primary and distant tumors in combination with different immunotherapeutic strategies (immune adjuvants, immune inhibitors and immune checkpoint blockade).

TABLE 1 | Summary of photodynamic therapy synergized immunotherapy.

Combination strategies	Photosensitizers/λ_{ex} (nm)	Immunotherapy reagents	Tumor models	Effector cells and cytokines	Ref
PDT and immune adjuvants	5-Aminolevulinic acid/630	TLR7 agonist (imiquimod)	SCC invasive squamous cell carcinoma	CD4+ and CD8+ T cells, IFN-α, TNF-α, IL-6, IL-8, CXCL9 and CXCL10	(90)
	UCNP-Ce6/980	Imiquimod (R837)	CT26 mouse colon adenocarcinoma	DCs, CD8+ T cells, Treg, TEm, IL-12p40, IFN-γ, TNF-α	(95)
	Phoephorbide A/671	TLR5 agonist (FlaB-Vax)	B16-F10 mouse melanoma	memory CD8+ T cells, CD103+ DCs, IFN-γ	(101)
	W-TBP/650	TLR9 agonist (CpG)	TUBO murine breast adenocarcinoma	DCs, CD4+/CD8+ T cells, TNF-α, IFN-γ, IL-12p70	(103)
	H2TCP/670	TLR9 agonist (CpG)	H22 mouse hepatocellular carcinoma	DCs, CD4+/CD8+ T cells, IFN-α, IL-6	(104)
	Photofrin/630	Glycated chitosan	EMT6 and 4T1 murine breast carcinoma		
PDT and immune inhibitors	Chlorin e6/630	IDO-1 inhibitor (NLG919)	CT26 murine colorectal cancer	DCs, CD4+/CD8+ T cells, Treg, Kyn/Trp	(122)
	HPPH/671	IDO inhibitor	B16F10 mouse melanoma	DCs, CD4+/CD8+ T cells, IL-6 and TNF-α	(123)
	Chlorin e6/660	VEGFR inhibitor (Axitinib (AXT))	B16F10 mouse melanoma	T cells, TAM, IL-2, IL-6, IFN-γ	(127)
PDT and immune checkpoint blockades	Bremachlorin/662	Anti-CTLA-4 antibody	MC38 and CT26 colorectal cancer	CD8+ T cells, CD4+ regulatory T cells	(135)
	Chlorin e6/660	Anti-CTLA-4 antibody	MC38 murine colorectal cancer	DCs, CTLs, Treg, TNF-α, IFN-γ, IL-6	(137)
	BDP-I-N	Anti-PD-L1 antibody	MCF-7 and 4T1 breast carcinoma		

(Continued)
suppressor of T-cell activation (VISTA), T-cell immunoglobulin and ITIM domain (TIGIT), and T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) (153, 154). Taken together, the combination of immune checkpoints and PDT may be a promising direction for future research.

Figure 5 shows the combined treatment strategies of different types of PDT immunotherapy. These strategies exert significant effects in cancer treatment mainly by enhancing the antitumor immune response or by reducing the suppression of the immune system. The specific details of the combination of PDT and different types of immunotherapies are summarized in Table 1.

CONCLUSION

In this review, we have explained the classification and photophysical mechanism of PDT based on the Jablonski Diagram. By inducing ICD, PDT has been shown to successfully activate the immune response. However, due to insufficient immunogenicity or immunosuppression, the immune reaction induced by a single PDT is greatly restricted. Therefore, PDT with other immunotherapies has been integrated to solve such problems. However, optimizing the in vivo safety assessment is still a challenge and needs further research to enhance the efficacy of PDT immunotherapy for effective tumor treatment.

Immunotherapy has been extensively studied in clinical trials, but clinical studies on PDT and its effects on the human immune system are very rare. Although a large number of PSs have been developed and used for PDT in animal studies, Photofrin and aminolevulinic acid (ALA) are the few two used in clinical research. And only a few of these studies have investigated on the effect of PDT on the human immune system (155, 156). Determining the relationship between PDT and immune response in clinical research and combining it with immunotherapy will be a major focus for future research. We hope that PDT immunotherapy can be proven to be an excellent cancer treatment in clinical trials.

AUTHOR CONTRIBUTIONS

YH contributed to the conception and design of the review. JHu and PW wrote the manuscript. LG, ZZ, JHe, LZ, and YZ revised the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by the National Natural Science Foundation of China (No. 82072340), the Major national science and technology projects-Major new drug creation (2019ZX09301-132), Changjiang Scholars and Innovative Research Team in University (No. IRT_15R13), and Guangxi Science and Technology Base and Talent Special Project (No. AD17129003).

REFERENCES

1. Wang P, Sun S, Ma H, Sun S, Zhao D, Wang S, et al. Treating Tumors With Minimally Invasive Therapy: A Review. *Materials Sci Eng C Materials Biol Appl* (2020) 108:110198. doi: 10.1016/j.msec.2019.110198
2. Xu X, Lu H, Lee R. Near Infrared Light Triggered Photo/Immuno-Therapy Toward Cancers. *Front Bioeng Biotechnol* (2020) 8:488. doi: 10.3389/fbioe.2020.00488
3. Von Tappeiner H. Therapeutische Versuche Mit Fluoreszierenden Stoffen. *Munch Med Wochenschr* (1903) 1:2042–4.
4. Nguyen VN, Yan Y, Zhao J, Yoon J. Heavy-Atom-Free Photosensitizers: From Molecular Design to Applications in the Photodynamic Therapy of Cancer. *Acc Chem Res* (2021) 54(1):207–20. doi: 10.1021/acs.accounts.0c00606
5. Wang ZX, Peng HM, Shi W, Gan L, Zhong LP, He J, et al. Application of Photodynamic Therapy in Cancer: Challenges and Advancements. *Biocell* (2021) 45(3):489–500. doi: 10.32604/biocell.2021.014439
6. Liu H, Yao J, Guo H, Cai X, Jiang Y, Lin M, et al. Tumor Microenvironment-Responsive Nanomaterials as Targeted Delivery Carriers for Photodynamic Anticancer Therapy. *Front Chem* (2020) 8:758. doi: 10.3389/fchem.2020.00758
7. Hou X, Tao Y, Pang Y, Li X, Jiang G, Liu Y. Nanoparticle-Based Photothermal and Photodynamic Immunotherapy for Tumor Treatment. *Int J Cancer* (2018) 143(12):3050–60. doi: 10.1002/ijc.31717
8. Dolatkah M, Hashemzadeh N, Barar J, Adibkia K, Aghanejad A, Barzegar-Jalali M, et al. Graphene-Based Multifunctional Nanosystems for Simultaneous Detection and Treatment of Breast Cancer. *Colloids Surf B Biointerfaces* (2020) 193:111104. doi: 10.1016/j.colsurfb.2020.111104
9. Kačycz-Krupka A, Bogaj AM, Latos W, Zaremba K, Wawrzyniec K, Sieron A. Photodynamic Therapy in Colorectal Cancer Treatment: The State of the Art in Clinical Trials. *Photodiagnosis Photodyn Ther* (2015) 12(3):545–53. doi: 10.1016/j.pdpdt.2015.04.004
10. Champeau M, Vignoud S, Mortier L, Mordon S. Photodynamic Therapy for Skin Cancer: How to Enhance Drug Penetration? *J Photochem Photobiol B* (2019) 197:111544. doi: 10.1016/j.jphotobiol.2019.111544
51. Baluk P, Hashizume H, McDonald DM. Cellular Abnormalities of Blood Vessels as Targets in Cancer. Curr Opin Genet Dev (2005) 15(1):102–11. doi: 10.1016/j.gde.2004.12.005

52. Li S, Zhang B, Wang X, Shi H, Yu L, Wang X. Effects of Statin Therapy on Mean Platelet Volume in Patients With Risk of Cardiovascular Diseases: A Systematic Review and Meta-Analysis. Biosci Rep (2019) 39(7): e20190180. doi: 10.1024/bsr20190180

53. Nath S, Obaid G, Hasan T. The Course of Immune Stimulation by Photodynamic Therapy: Bridging Fundamentals of Photochemically Induced Immunogenic Cell Death to the Enrichment of T-Cell Repertoire. Photochem Photobiol (2019) 95(6):1288–305. doi: 10.1111/php.13173

54. Sai D, Lee J, Nguyen D, Kim Y. Tailoring Photosensitive ROS for Advanced Photodynamic Therapy. Exp Mol Med (2021) 53(4):495–504. doi: 10.1038/s41744-020-02961-y

55. Huang Y, Tanaka M, Vecchio D, Garcia-Diaz M, Chang J, Morimoto Y, et al. Photodynamic Therapy Induces an Immune Response Against a Bacterial Pathogen. Expert Rev Clin Immunol (2012) 8(5):247–99. doi: 10.1586/12232276.2012.605997

56. Beltran Hernandez I, Angelier ML, Del Buono D’Ondes T, Di Maggio A, Yu Y, Oliveira S. The Potential of Nanobody-Targeted Photodynamic Therapy to Trigger Immune Responses. Cancers (Basel) (2020) 12(4):978–94. doi: 10.3390/cancers12040978

57. Shang T, Yu X, Han S, Yang B. Nanomedicine-Based Tumor Photothermal Therapy Synergized Immunotherapy. Biomater Sci (2020) 8(19):5241–59. doi: 10.1039/d0bm01158d

58. Garg AD, Agostinis P. ER Stress, Autophagy and Immunogenic Cell Death in Photodynamic Therapy-Induced Anti-Cancer Immune Responses. Photochem Photobiol Sci (2014) 13(3):474–87. doi: 10.1039/c3pp00533j

59. Pizova K, Tomankova K, Daskova A, Binder S, Bajgar, Kolarova H. Photodynamic Therapy for Enhancing Antitumor Immunity. Biomed Papers (2012) 156(2):93–102. doi: 10.5507/bjp.2012.056

60. Radogna F, Diezderich M. Stress-Induced Cellular Responses in Immunogenic Cell Death: Implications for Cancer Immunotherapy. Biochem Pharmacol (2018) 153:12–23. doi: 10.1016/j.bcp.2018.02.006

61. Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. Dendritic Cells in Cancer Immunology and Immunotherapy. Nat Rev Immunol (2020) 20(1):7–24. doi: 10.1038/s41577-019-0210-z

62. Yap XZ, Lundie RJ, Beeson JG, O’Keeffe M. Dendritic Cell Responses and Function in Malaria. Front Immunol (2019) 10:357. doi: 10.3389/fimmu.2019.00357

63. Garg AD, Veksy DV, Vandenameele P, Agostinis P. DAMPs and PDT-Mediated Photo-Oxidative Stress: Exploring the Unknown. Photochem Photobiol Sci (2011) 10(9):670–80. doi: 10.1039/c0pp00294a

64. Deng H, Zhou Z, Yang W, Lin LS, Wang S, Niu G, et al. Endoplasmic Reticulum Targeting to Amplify Immunogenic Cell Death for Cancer Immunotherapy. Nano Lett (2020) 20(3):1928–33. doi: 10.1021/acs.nanolett.9b05210

65. Alzetbik R, Mishchenko TA, Shylagnya NY, Balalava IV, Vedunova MV, Krysko DV. Targeting Immunogenic Cancer Cell Death by Photodynamic Therapy: Past, Present and Future. J ImmunoTher Cancer (2021) 9(1): e001926. doi: 10.1111/jic.2020.001926

66. Liang R, Liu L, He H, Chen Z, Han Z, Luo Z, et al. Oxygen-Boosted Immunogenic Photodynamic Therapy With Gold Nanocages (Manganese Dioxide to Inhibit Tumor Growth and Metastases. Biomaterials (2018) 177:149–60. doi: 10.1016/j.biomaterials.2018.05.051

67. Zhang Q, Li L. Photodynamic Combinational Therapy in Cancer Treatment. J BUON (2020) 23(3):561–7.

68. Morse MA, Gwin WR3rd, Mitchell DA. Vaccine Therapies for Cancer: Then and Now. Target Oncol (2021) 16(2):121–52. doi: 10.1007/s11767-020-00788-w

69. Hwang HS, Shin H, Han J, Na K. Combination of Photodynamic Therapy (PDT) and Anti-Tumor Immunity in Cancer Therapy. J Pharm Investig (2018) 48(2):143–51. doi: 10.1016/j.jpi.2018.01.037

70. Caneno R, Shurin G, Tourkova I, Shurin M. Chemomodulation of Human Dendritic Cell Function by Antineoplastic Agents in Low Nontoxic Concentrations. J Trans Med (2009) 7:58. doi: 10.1186/1479-5876-7-58

71. Koya T, Date I, Kawaguchi H, Watanabe A, Sakamoto T, Togi M, et al. Dendritic Cells Pre-Pulsed With Wilms’ Tumor 1 in Optimized Culture for Cancer Vaccination. Pharmaceutics (2020) 12(4):305. doi: 10.3390/pharmacy12040305

72. Pan H, Shi H, Fu P, Shi P, Yang J. Liposomal Dendritic Cell Vaccine in Breast Cancer Immunotherapy. ACS Omega (2021) 6(5):3991–8. doi: 10.1021/acsomega.0c05924

73. Yang W, Zhu G, Wang S, Yu G, Yang Z, Lin L, et al. In Situ Dendritic Cell Vaccine for Effective Cancer Immunotherapy. ACS Nano (2019) 13(3):3083–94. doi: 10.1021/acsnano.8b08346

74. Zhang Q, Li L. Photodynamic Combinational Therapy in Cancer Treatment. Expert Rev Clin Immunol (2020) 16(2):121–52. doi: 10.1080/21645515.2020.112238
91. Wang L, He Y, He T, Liu G, Lin C, Li K, et al. Lymph Node-Targeted Immune-Activation Mediated by Imiquimod-Loaded Mesoporous Polydopamine-Based Nanocarriers. *Biomaterials* (2020) 255:120208. doi: 10.1016/j.biomaterials.2020.120208

92. Kog S-J, Tak J-H, Cho J-H, Lee H-J, Jung Y-J. Stimulation of the Endosomal TLR Pathway Enhances Autophagy-Induced Cell Death in Radiotherapy of Breast Cancer. *Genes Genomics* (2010) 32(6):599–606. doi: 10.1007/s13258-010-0139-x

93. Chuang KC, Chang CR, Chang SH, Huang SW, Chuang SM, Li ZY, et al. Imiquimod-Induced ROS Production Disrupts the Balance of Mitochondrial Dynamics and Increases Mitophagy in Skin Cancer Cells. *J Dermlatol Sci* (2020) 98(3):152–62. doi: 10.1016/j.jdermsci.2020.03.009

94. Cho J, Lee H, Ko H, Yoon B, Cho J, Kim K, et al. The TLR7 Agonist Imiquimod Induces Anti-Cancer Effects via Autophagic Cell Death and Enhances Anti-Tumoral and Systemic Immunity During Radiotherapy for Melanoma. *Oncotarget* (2017) 8(15):24932–48. doi: 10.18632/oncotarget.15326

95. Xu J, Xu L, Wang C, Yang R, Zhuang Q, Huang J, et al. Near-Infrared-Triggered Photodynamic Therapy With Multipattioning Upconversion Nanoparticles in Combination With Checkpoint Blockade for Immunotherapy of Colorectal Cancer. *ACS Nano* (2017) 11(5):4643–76. doi: 10.1021/acsnano.7b00715

96. Frega G, Wu Q, Le Naour J, Vacchelli E, Galluzzi L, Kroemer G, et al. Trial Watch: Experimental TLR7/TLR8 Agonists for Oncological Indications. *Oncotarget* (2020) 9(11):179602. doi: 10.18080/oncotarget.2162402X.2020.1796002

97. Yang Y, Cai K, Jiang S, Smith C, Tanji H, Huang J, et al. Tetrasubstituted Imidazoles as Incognito Toll-Like Receptor 8 antaGonists. *Nat Commun* (2021) 12(1):4351. doi: 10.1038/s41467-021-24536-4

98. Zhang H, Tang WL, Kheiroloomooy A, Fite RZ, Wu B, Lau K, et al. Development of Thermosensitive Resiquimod-Loaded Liposomes for Enhanced Cancer Immunotherapy. *J Control Release* (2021) 330:1080–94. doi: 10.1016/j.jconrel.2020.10.013

99. Figoeiato P, Lepland A, Scodeller P, Fontana F, Torrieri G, Tiboni M, et al. Peptide-Guided Resiquimod-Loaded Lignin Nanoparticles Convert Tumor-Associated Macrophages From M2 to M1 Phenotype for Enhanced Chemotherapy. *Acta Biomater* (2020) S1742-7061(20):30561–74. doi: 10.1016/j.actbio.2020.09.038

100. Chen PM, Pan WY, Wu CY, Yeh CY, Korupalli C, Luo PK, et al. Modulation of Tumor Microenvironment Using a TLR-7/8 Agonist-Loaded Nanoparticle System That Exerts Low-Temperature Hyperthermia and Immunotherapy for in situ Cancer Vaccination. *Biomaterials* (2020) 230:119629. doi: 10.1016/j.biomaterials.2019.119629

101. Hwang HS, Cherukula K, Bang YJ, Visvayan V, Moon MJ, Thiruppathi J, et al. Combination of Photodynamic Therapy and a Flagellin-Adjuvanted Cancer Vaccination Potentiated the Anti-PD-1-Mediated Melanoma Suppression. *Cells* (2020) 9(1):2432–50. doi: 10.3390/cells9112432

102. Bode C, Zhao G, Steinhagen F, Kinjo T, Kliman DM. CpG DNA as a Vaccine Adjuvant. *Expert Rev Vaccines* (2011) 10(4):499–511. doi: 10.1586/erv.10.174

103. Ni K, Luo T, Lan G, Culbert A, Song Y, Wu T, et al. A Nanoscale Metal-Organic Framework to Mediate Photodynamic Therapy and Deliver CpG Oligodeoxynucleotides to Enhance Antigen Presentation and Cancer Immunotherapy. *Angew Chem Int Ed Engl* (2020) 59(3):1108–12. doi: 10.1002/anie.201911429

104. Cai Z, Xin F, Wei Z, Wu M, Lin X, Du X, et al. Photodynamic Therapy Combined With Antibypxhic Signaling and CpG Adjuvant as an In situ Tumor Vaccine Based on Metal-Organic Framework Nanoparticles to Boost Cancer Immunotherapy. *Adv Healthc Mater* (2020) 9(1):e1900996. doi: 10.1002/adhm.201900996

105. Shirota Y, Shirota H, Kliman DM. Intratumoral Injection of CpG Oligonucleotides Induces the Differentiation and Reduces the Immunosuppressive Activity of Myeloid-Derived Suppressor Cells. *J Immunol* (2012) 188(4):1592–9. doi: 10.4049/jimmunol.1101304

106. Shen L, Zhou T, Fan Y, Chang X, Wang Y, Sun J, et al. Recent Progress in Tumor Photodynamic Immunotherapy. *Chin Chem Lett* (2020) 31(7):1709-16. doi: 10.1016/j.cjcl.2020.02.007

107. Zhou F, Song S, Chen XR, Xing D. Immunostimulatory Properties of Glycated Chitosan. *J Xray Sci Technol* (2011) 19(2):285–92. doi: 10.3233/XST-2011-0293
129. Aversa I, Malanga D, Fiume G, Palmieri C. Molecular T-Cell Repertoire Analysis as Source of Prognostic and Predictive Biomarkers for Checkpoint Blockade Immunotherapy. *Int J Mol Sci* (2020) 21(7):2378. doi: 10.3390/ijms21072378

130. Olivo Pimentel V, Marcus D, van der Wiel A, Lieuves N, Biemans R, Lieverse R, et al. Releasing the Brakes of Tumor Immunity With Anti-PD-L1 and Pushing Its Accelerator With L19-IL2 Cures Poorly Immunogenic Tumors When Combined With Radiotherapy. *J immunotherapy Cancer* (2021) 9(3):e001764. doi: 10.1136/j-itc-2020-001764

131. Cramer GM, Moon EK, Engel KA, Busch TM. Photodynamic Therapy and Immune Checkpoint Blockade (Dagger). *Photochem Photobiol* (2020) 96 (3):954–61. doi: 10.1111/php.13300

132. Ni K, Luo T, Nash GT, Lin W. Nanoscale Metal-Organic Frameworks for Cancer Immunotherapy. *Acc Chem Res* (2020) 53(9):739–48. doi: 10.1021/acs.accounts.0c00313

133. Cheng X, Zhao G, Zhao Y. Combination Immunotherapy Approaches for Pancreatic Cancer Treatment. *Can J Gastroenterol Hepatol* (2018) 2018:6240467. doi: 10.1155/2018/6240467

134. Van Coidille S, Wiernicki B, Xu J. Molecular and Cellular Functions of CTLA-4. *Cancers* (2021) 13(11):2635. doi: 10.3390/cancers13112635

135. Lipson EJ, Drake CG. Ipilimumab: An Anti-CTLA-4 Antibody for Metastatic Melanoma. *Clin Cancer Res* (2011) 17(22):6958–62. doi: 10.1158/1078-0432.CCR-11-1595

136. Kleinovink JW, Fransen MF, Lowik CW, Ossendorp F. Photodynamic-Immunotherapy Against Hypoxic Breast Tumor. *Cancers* (2021) 13(11):2635. doi: 10.3390/cancers13112635

137. Drakes M, Czerlanis C, Stiff P. Immune Checkpoint Blockade in Gynecologic Cancer. *J Cancer Res* (2019) 13(9):1281. doi: 10.1158/1940-6207.JC-18-0432.

138. Van Coidille S, Wiernicki B, Xu J. Molecular and Cellular Functions of CTLA-4. *Cancers* (2021) 13(11):2635. doi: 10.3390/cancers13112635

139. Van Coidille S, Wiernicki B, Xu J. Molecular and Cellular Functions of CTLA-4. *Cancers* (2021) 13(11):2635. doi: 10.3390/cancers13112635

140. Brahmer J, Reckamp K, Baas P, Crinò L, Eberhardt W, Poddubskaya E, et al. Nivolumab in Advanced Squamous-Cell Non-Small-Cell Lung Cancer: Results From CheckMate 067. *J Clin Oncol* (2015) 33(35):4126–34. doi: 10.1200/JCO.2015.64.3592

141. Belliere J, Mazieres J, Meyer N, Chebane L, Despas F. Renal Complications Related to Checkpoint Inhibitors: Diagnostic and Therapeutic Strategies. *Diagnostics* (Basel Switzerland) (2021) 11(7):1187. doi: 10.3390/diagnostics11071187

142. Bao R, Wang Y, Liu J, Zhu H, Zhao Y, Li S, et al. Enhancing Anti-PD-1/PD-L1 Immune Checkpoint Inhibitory Cancer Therapy by CD276-Targeted Nanoparticles for Cancer Imaging of Immune Checkpoint Programmed Death-Ligand 1 and Photodynamic/Immune Therapy. *ACS Nano* (2021) 15 (1):315–25. doi: 10.1021/acsnano.0c05317

143. Piek A, Lemans C, Bannenhoff R. Resection Margins in Head and Neck Cancer Surgery: An Update of Residual Disease and Field Censorization. *Cancers* (2021) 13(11):2635. doi: 10.3390/cancers13112635

144. Zhang Y, Liao Y, Tang Q, Lin J, Huang P. Biomimetic Nanoemulsion for Synergistic Photodynamic-Immunotherapy Against Hypoxic Breast Tumor. *Angew Chem Int Ed Engl* (2021) 60(19):10647–53. doi: 10.1002/anie.202015590

145. Waters W, Palmer M, Nonnecke B, Thacker T, Etes D, Larsen M, et al. Signal Regulatory Protein Alpha (SIRPa) Cells in the Adaptive Response to ESAT-6/CFP-10 Protein of Tuberculous Mycobacteria. *PloS One* (2009) 4 (7):e6414. doi: 10.1371/journal.pone.0006414

146. Aversa I, Malanga D, Fiume G, Palmieri C. Molecular T-Cell Repertoire Analysis as Source of Prognostic and Predictive Biomarkers for Checkpoint Blockade Immunotherapy. *Int J Mol Sci* (2020) 21(7):2378. doi: 10.3390/ijms21072378

147. Zhang S, Dehn S, DeBerge M, Rhee K, Hudson B, Thorp E, Phagocytic Myocyte Interactions and Consequences During Hypoxic Wound Healing. *Cell Immunol* (2014) 291:65–73. doi: 10.1016/j.cellimm.2014.04.006

148. Zhang Y, Zou F, Wang J, Yin G, Le V, Fei Z, et al. Photodynamic Therapy-Mediated Cancer Vaccination Enhances Stem-Like Phenotype and Immune Escape, Which can be Blocked by Thrombospondin-1 Signaling Through CD47 Receptor Protein. *J Biol Chem* (2015) 290(14):8975–86. doi: 10.1074/jbc.M114.624965

149. Chang M, Hou Z, Jin D, Zhou J, Wang M, Wang M, et al. Colorectal Tumor Microenvironment-Activated Bio-Decomposable and Metabolizable CuO@CaCO3 Nanocomposites for Synergistic Oncotherapy. *Adv Mater* (2020) 32 (43):e2004647. doi: 10.1002/adma.202004647

150. Zheng Y, Zou F, Wang J, Yin G, Le V, Fei Z, et al. Photodynamic Therapy-Mediated Cancer Vaccination Enhances Stem-Like Phenotype and Immune Escape, Which can be Blocked by Thrombospondin-1 Signaling Through CD47 Receptor Protein. *J Biol Chem* (2015) 290(14):8975–86. doi: 10.1074/jbc.M114.624965

151. Belliere J, Mazieres J, Meyer N, Chebane L, Despas F. Renal Complications Related to Checkpoint Inhibitors: Diagnostic and Therapeutic Strategies. *Diagnostics* (Basel Switzerland) (2021) 11(7):1187. doi: 10.3390/diagnostics11071187

152. Reginato E, Lindemann J, Langner C, Schweintzer N, Bambach I, Smolle-Juttner F, et al. Photodynamic Therapy Downregulates the Function of Regulatory T Cells in Patients With Esophageal Squamous Cell Carcinoma. *Photochemical photobiological Sci Of J Eur Photochemistry Assov Eur Soc Photobiol* (2014) 13(9):1281–9. doi: 10.1039/c4pp00186a

153. Qin S, Xu L, Yi M, Yu S, Wu K, Luo S. Novel Immune Checkpoint Targets: Moving Beyond PD-1 and CTLA-4. *Mol Cancer* (2019) 18(1):155. doi: 10.1186/s12934-019-1091-2

154. Reginato E, Lindemann J, Langner C, Schweintzer N, Bambach I, Smolle-Juttner F, et al. Photodynamic Therapy Downregulates the Function of Regulatory T Cells in Patients With Esophageal Squamous Cell Carcinoma. *Photochemical photobiological Sci Of J Eur Photochemistry Assov Eur Soc Photobiol* (2014) 13(9):1281–9. doi: 10.1039/c4pp00186a

155. Belliere J, Mazieres J, Meyer N, Chebane L, Despas F. Renal Complications Related to Checkpoint Inhibitors: Diagnostic and Therapeutic Strategies. *Diagnostics* (Basel Switzerland) (2021) 11(7):1187. doi: 10.3390/diagnostics11071187

156. Reginato E, Lindemann J, Langner C, Schweintzer N, Bambach I, Smolle-Juttner F, et al. Photodynamic Therapy Downregulates the Function of Regulatory T Cells in Patients With Esophageal Squamous Cell Carcinoma. *Photochemical photobiological Sci Of J Eur Photochemistry Assov Eur Soc Photobiol* (2014) 13(9):1281–9. doi: 10.1039/c4pp00186a

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Hua, Wu, Gan, Zhang, He, Zhong, Zhao and Huang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.