USING THE LASSO FOR GENE SELECTION IN BLADDER CANCER DATA

Stéphane Chrétien(1), Christophe Guyeux(2), Michael Boyer-Guittaut, Régis Delage-Mouroux(3) and Françoise Descotes(4)
(1) Laboratoire de Mathématiques de Besançon, Université de Franche-Comté, 16, route de Gray, 25000 Besançon, France.
(2) FEMTO-ST Institute, UMR 6174 CNRS, DISC Computer Science Department Université de Franche-Comté, 16, route de Gray, 25000 Besançon, France.
(3) EA 3922/IFR133 Université de Franche-Comté - UFR Sciences et Techniques EA 3922/IFR133 - 25030 Besançon.
(4) Service de Biochimie et Biologie Moléculaire Sud, Pavillon 3D, Centre Hospitalier Lyon Sud, Pierre Bénite Cedex 69495, France.
Corresponding author:stephane.chretien@univ-fcomte.fr

Keywords: bladder cancer, gene marker, generalized LASSO, gaussian mixtures, model selection, clustering.

Abstract. Given a gene expression data array of a list of bladder cancer patients with their tumor states, it may be difficult to determine which genes can operate as disease markers when the array is large and possibly contains outliers and missing data. An additional difficulty is that observations (tumor states) in the regression problem are discrete ones. In this article, we solve these problems on concrete data using first a clustering approach, followed by Least Absolute Shrinkage and Selection Operator (LASSO) estimators in a nonlinear regression problem involving discrete variables, as described in the brand-new research work of Plan and Vershynin. Gene markers of the most severe tumor state are finally provided using the proposed approach.

1 Introduction

In this article, we present a methodology to perform selection among genes based on their expression in various groups of patients, in order to find new genetic markers for specific pathologies. Our approach is based on clustering the denoised data and computing a LASSO (Least Absolute Shrinkage and Selection Operator) estimator, in order to select the relevant genes. This latter belongs to the class of penalized regression estimators where the penalty is a multiple of the ℓ_1-norm of the regression vector.

We apply the proposed methodology to a set of gene expression data from patients with bladder cancer, where four possible subtypes of tumor state are considered thus making the observations discrete in the regression problem. Our primary objective in the present work is to extract a set of relevant genes for the bladder cancer under study. A secondary objective is to emphasize the following fact: although the regression problem we consider is nonlinear and involves discrete variables, the LASSO can still be used if selection is performed for prediction. This is due to the recent work of Plan and Vershynin [14], which merits advertising in applications to biology where much of methodology concentrates on the binary logistic model and too often neglects more complicated outputs.

The remainder of this article is as follows. The bladder cancer data that have been used for illustration purpose in this study are described in the next section. Recalls about Gaussian mixture and selection model are provided in Section 3, together with a

\[\text{For instance, the data in our study can be modelled using ordered polytomic regression and needs a penalized likelihood estimator. This latter is hard to find in current statistical software libraries whereas the LASSO is widely available.}\]
principal component analysis (PCA) of the data under study. The generalized LASSO of Vershynin and Plan is recalled and applied to our data in Section 4. This research work ends by a conclusion that proposes a gene marker for the last tumor state.

2 Presentation of the data

To accurately diagnose bladder cancer is a Public Health priority as for instance, in 2013, 10,000 new patients were affected by this cancer in France. A promising way to improve the diagnosis and to design efficient treatments is to determine which genes are responsible for such a cancer. Obviously, such medical treatments must depend on how much the tumor is developed. To achieve this goal, gene expression data together with corresponding state of the malignant tumor in the bladder have been recently collected from 100 patients in the Lyon region, France [8].

In this study, 34 genes of interest have been chosen, while the tumor state has been decomposed in 4 classes, namely:

- T_a: noninfiltrating tumor in Urothelium;
- T_1a: noninfiltrating tumor in Urothelium and parts of the chorion;
- T_1b: noninfiltrating tumor in Urothelium and the full chorion;
- $> T_1$: infiltrating tumor.

Remark that, in the standard classification, the last group of the list above incorporates states from T_2 to T_4b. Mathematically speaking, the data are thus constituted by this first column providing the tumor state (discrete), followed by 34 other columns that quantify the expression of the selected genes. Each row of the 100×35 matrix is associated to one of the 100 given patients, and the objective is to determine, for each tumor state, which gene(s) must be selected as the best marker candidate(s). However, due to its experimental origin, this raw array contains outliers and corrupted data.

To extract the relevant features in a given dataset is a difficult task, recently resolved in the non-negative data case with the Non-negative Matrix factorization (NMF) method. The objective of our previous research work [8] was to extend this method to the case of missing and/or corrupted data due to outliers. To do so, data have been denoised, missing values have been imputed, and outliers have been detected while performing a low-rank non-negative matrix factorization of the recovered matrix. To achieve this goal, a mixture of Bregman proximal methods and of the Augmented Lagrangian scheme have been used on our dataset in [8], in a similar way to the so-called Alternating Direction of Multipliers method. In what follows, we thus deal with two arrays: the raw one and the denoised one. A principal component analysis of this latter
Proceedings of CIBB 2015

3

is provided in Figure[1]. Next stages consist of determining if these denoised data can be clusterized well (which is not the case for the raw data), if the optimal number of clusters corresponds well to the number of tumor states, and if each cluster is coherent, that is, if each patient being in tumor state k is too in cluster number k.

3 Clustering of the gene expression data

3.1 Gaussian mixtures

Finite Gaussian mixture models (GMM) are widely used in a great number of application fields as a mean to perform model based classification. From pattern recognition to biology, from quality control to finance, many examples have shown the pertinence of the Gaussian mixture model approach [11]. In GMM data Y_1, \ldots, Y_n are assumed independent and identically distributed (i.i.d.) and to be drawn from the density:

$$
\sum_{k=1}^{K} p_k f^{(d)}(y; \mu_k, \Sigma_k)
$$

where

$$
f^{(d)}(y; \mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^d \det(\Sigma)}} \exp \left(-\frac{1}{2} (y - \mu^*)^t \Sigma^{-1} (y - \mu^*) \right)
$$

and where the vector $\theta^* = (p_1^*, \ldots, p_K^*, \mu_1^*, \ldots, \mu_K^*, \Sigma_1^*, \ldots, \Sigma_K^*)$ is an unknown multidimensional parameter. To this model, we traditionally associate an extended model using the notion of complete data. In mixture models, the complete data are i.i.d. couples of the form (Y_i, Z_i), where Z_i is a multinomial random variable taking values in $\{1, \ldots, K\}$ with $P(Z_i = k) = p_k^*$. This latter represents the index of the mixture component from which observation i was drawn. We assume that, conditionally on the event $Z_i = k$, Y_i has density

$$
\frac{1}{\sqrt{(2\pi)^d \det(\Sigma_k^*)}} \exp \left(-\frac{1}{2} (y - \mu_k^*)^t \Sigma_k^{-1} (y - \mu_k^*) \right).
$$

The variables Z_1, \ldots, Z_n being unobserved, they are usually called “latent variables”. The standard approach for estimating θ^* is the maximum likelihood methodology that consists of finding $\hat{\theta}$ which maximizes the log-likelihood function

$$
l(\theta) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} p_k f^{(d)}(y; \mu_k, \Sigma_k) \right)
$$

over the set

$$
\Theta = \left\{ (p_1, \ldots, p_K, \mu_1, \ldots, \mu_K, \Sigma_1, \ldots, \Sigma_K) \mid p_k \in \mathbb{R}_+, \mu_k \in \mathbb{R}^d, \Sigma_k \in S_d^+, \text{ and } \sum_{k=1}^{K} p_k = 1 \right\}
$$

where S_d^+ denotes the set of all symmetric positive semidefinite matrices and \mathbb{R}_+ is the set of nonnegative real numbers. The usual way to maximize the log-likelihood is the so-called EM algorithm [9][11], or its more efficient componentwise variants, e.g., [4][10].

3.2 Results

The problem of choosing the number of clusters K a priori is a difficult one. This is usually done by comparing the penalized maximum likelihood values for different values of K and choosing the maximum one. Model selection can be performed using the Bayesian Information Criterion (BIC). This criterion is the opposite of the maximum likelihood value penalized with $\log(n) \times$ the number of real parameters to estimate.
The first attempt on raw data failed to provide any useful information, due to outliers and missing data. This criterion has then been applied on the gene expression part of our denoised array, to determine the best way to cluster the set of genes. The number of mixture components has ranged from 1 to 29, and at each time the Bayesian information criterion for the current model fit has been computed (more precisely, for pretty prints, the logarithm of $x - \min BIC$, where $\min BIC$ is the smallest obtained BIC). As can be seen in obtained plot depicted in Figure 2, the criterion has not provide any obvious result when considering the whole data. However, applying it on the 3 principal components shown in Figure 1 emphasizes that the optimal number of clusters is 4. Such a result were encouraging, as we have 4 tumor states in the array. We then have performed a PCA on the raw data while colorizing each of the 4 clusters provided by the Gaussian mixture model. Obtained results are depicted in Figure 3, they are coherent with the tumor state of each patient. Note that, at this stage, each cluster is a Gaussian one.

4 Generalized LASSO of Vershynin and Plan

4.1 Background

In our data set, we have to explain the tumor state based on the expression of certain genes. Since the state is a discrete variable, an appropriate model should be the multinomial logistic model. This model could be refined and a more appropriate one could be the ordered polytomous regression model. The main difficulty in this kind of model is that when the number of observations is of the same order as the number of covariates, the maximum likelihood estimator might not perform well. Moreover, selection of some of the most relevant covariates might be an important way to extract meaningful information from the data. Performing variable selection can be done using the Bayesian Information Criterion that we presented in Section 3.1. However, if one wants to try all models built on the expression of less than, e.g., 15 genes, the computational effort might be overwhelming in many gene expression studies.
In order to overcome this issue, an important contribution was made by Tibshirani [3]. The analysis was then extended to the case of even more covariates than observations in [3], while extension to Generalized Linear Models was then proposed, see [2] for a very useful and mathematically deep reference. The LASSO can be described as the solution of the following penalized least squares problem

\[
\min_{b \in \mathbb{R}^p} \frac{1}{2} \| y - Xb \|^2 + \lambda \| b \|_1,
\]

where \(\| b \|_1 \) is the \(\ell_1 \)-norm of \(b \), i.e., \(\| b \|_1 = \sum_{j=1}^p |b_j| \) and: \(y \) is the vector containing the \(n \) outputs (the tumor state), \(X \) is the matrix whose columns are the expression of each of the \(p \) genes in the \(n \) patients, while \(\lambda \) is the relaxation parameter.

Under certain properties of the matrix \(X \), the LASSO estimator enjoys good variable recovery properties [3, Thm 1.4]. If the matrix has very correlated columns, variable recovery will generally fail but under a mixture model, good prediction bounds can still be obtained as proven in [7]. Since in our study, we suspect that high correlations exist between the genes under study, we cannot expect to obtain good variable recovery with the LASSO. However, we can still believe that the variable selection performed with the LASSO is relevant with respect to prediction. Various theoretical values for the relaxation parameter \(\lambda \) have been proposed in the literature, see, e.g., [5] or [6].

4.2 The generalized LASSO

An important point to address in our study is the discrete nature of the output vector \(y \). However, as stated previously, extending the analysis of the LASSO to the ordered polytomic model seems quite difficult and cumbersome to obtain, while useful and robust software is currently not available. One very interesting question is whether the LASSO can still be applied in the nonlinear context where the output (tumor state) is ordered and discrete as in our problem? Fortunately, the answer is yes, as it was recently proven by Plan and Vershynin [14]. Moreover, their analysis applies to more general penalization terms than just the \(\ell_1 \) norm. One important assumption in [14] is that the design, i.e., \(X \), is Gaussian. Therefore, an important step before using this approach is that the data set must be clustered into Gaussian clusters, as it has been achieved via the mixture model in Section 3.1. Then the LASSO should be performed clusterwise. In what follows, we only focus on “black” cluster (> T1 tumor).

The choice of the relaxation parameter \(\lambda \) is still an important and difficult problem in practice. In the sequel, we restrict our attention to the results obtained using the LARS method, which consists of computing the estimator for a continuous set of values of \(\lambda \), and we analyze the obtained trajectory in order to select the most important genes.

5 Conclusion on experimental results

Eight genes still remain in the Gaussian infiltrating tumor cluster under consideration, corresponding in our array to columns: 1 and 2 (genes \(ATF3 \) and \(Bcl2 like14 \) respectively), 11 (\(HMGB2 \)), 20 (\(MMP11 \)), 21 (\(ORC6L \)), 25 (\(RAD54L \)), 29 (\(TK \)), and 34 (\(Vimentin \)). \(\lambda \) value of eq. (5) ranged between 0.1 and 0.03 with a step of 0.001, and for each \(\lambda \) the penalized least square problem has been solved. Each resolution has led to the associated parameter vector \(b \in \mathbb{R}^8 \), where the \(k \)-th coordinate of \(b \) corresponds to the \(k \)-th gene of the considered cluster, according to its column occurrence in the raw data array. We thus have plotted the LASSO result trajectories, putting \(\lambda \) in the abscissa axis and each coordinate of \(b \) in the ordinate axis, see Figure 4.

As can be seen, \(HMGB2 \) (column number 11) obviously steps out of line, appearing as the most important gene reflecting the infiltrating tumor cluster. This is not surprising, as the high mobility group box 2 (\(HMGB2 \)) overexpression has been observed in several human tumor types, and is involved in cancer progression and prognosis, especially in the bladder one [12][13]. Generally speaking, all genes have a positive impact,
Figure 4: Obtained trajectory in the Lars method on infiltrating tumor Gaussian cluster except the second most important gene, namely Bcl2 like14 (2), which has an effect diametrically opposed to the other ones. This can be explained by the well known fact that overexpression of this gene, a candidate tumor suppressor [1], induces apoptosis in cells. Finally, by order of importance, the two next genes are respectively ATF3 (1) and MMP11 (20), even though the small value of \(\lambda \) may blur the information raised by these trajectories. HMGB2 and these latter can thus act as genetic markers of \(>T1 \) tumors.

This work was partially funded by Éléments Transposables Franche-Comté grant.

References

[1] M. R. Pickard, M. Mourtada-Maarabouni, G. T. Williams. "Candidate tumour suppressor Fau regulates apoptosis in human cells: An essential role for Bcl-G." *Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease*. 1812 (9), 1146-1153, 2011.

[2] P. Bühlmann and S. Van De Geer. "Statistics for high-dimensional data: methods, theory and applications". *Springer Science & Business Media*. 2011

[3] E. J. Candès and Y. Plan. "Near-ideal model selection by \(\ell_1 \) minimization". *The Annals of Statistics*, 37(5A), 2145-2177. 2009.

[4] G. Celeux, S. Chrétien, F. Forbes, and A. Makhdri. "A component-wise EM algorithm for mixtures". *Journal of Computational and Graphical Statistics*, 10(4), 2001.

[5] S. Chatterjee and J. Jafarov. "Prediction error of cross-validated Lasso". arXiv preprint arXiv:1502.06291. 2015.

[6] M. Chichignoud, J. Lederer, and M. Wainwright. "Tuning Lasso for sup-norm optimality". arXiv preprint arXiv:1410.0247. 2014.

[7] S. Chrétien. "Mixture model for designs in high dimensional regression and the LASSO". arXiv preprint arXiv:1210.4762. 2012.

[8] S. Chrétien, C. Guyeux, B. Conesa, R. Delage-Mouroux, M. Jouvenot, P. Huetz, and F. Descôtes. "Estimating features with missing values and outliers: a Bregman-proximal point algorithm for robust Non-negative Matrix Factorization with application to gene expression analysis". In *ISBRA’15, 11th Int. Symposium on Bioinformatics Research and Applications*, Norfolk, Virginia, United States, pages ***–***, June 2015.

[9] A. P. Dempster, N. M. Laird, and D. B. Rubin. "Maximum likelihood from incomplete data via the EM algorithm". *Journal of the royal statistical society*. Series B (methodological), 1-38, 1977.

[10] J. A. Fessler and A. O. Hero. "Space-alternating generalized expectation-maximization algorithm". *IEEE Transactions on Signal Processing*. 42 (10), 2664–2677. 1994.

[11] G. McLachlan and D. Peel. "Finite mixture models". John Wiley & Sons. 2004

[12] W. Wang, H. Jiang, H. Zhu, H. Zhang, J. Gong, L. Zhang, Q. Ding."Overexpression of high mobility group box 1 and 2 is associated with the progression and angiogenesis of human bladder carcinoma". *Oncology Letters* 5(3), 884-888, 2013.

[13] P. Balani, J. Boulaire, Y. Zhao, J. Zeng, J. Lin, and S. Wang. "High Mobility Group Box2 Promoter-controlled Suicide Gene Expression Enables Targeted Glioblastoma Treatment". *Molecular Therapy*, 17(6), 1003-1011. 2009.

[14] Y. Plan and R. Vershynin. "The generalized Lasso with non-linear observations". arXiv:1502.04071 submitted.

[15] S. A. Van de Geer. "On non-asymptotic bounds for estimation in generalized linear models with highly correlated design". *Institute of Mathematical Statistics*. 121–134. 2007