Non-genetic inheritance and changing environments

Abstract
Climate change continues to impact species worldwide. Understanding and predicting how populations will respond is of clear importance. Here, we review a mechanism by which populations may respond rapidly to these changes: Trans-Generational Plasticity (TGP). TGP exists when the environment experienced by the parents affects the shape of the reaction norm in their offspring; that is, the parental and offspring environments interact to determine the offspring phenotype. We survey 80 empirical studies from 63 species (32 orders, 9 phyla) that demonstrate TGP. Overall, TGP is taxonomically widespread and present in response to environmental drivers likely to be impacted by climate change. Although many examples now exist, we also identify areas of research that could greatly improve our understanding of TGP. We conclude that TGP is sufficiently established both theoretically and empirically to merit study as a potential coping tactic against rapid environmental changes.

Keywords
Transgenerational plasticity • Maternal effect • Inter-generational • Cross-generational • Acclimation

Defining TGP
We use TGP to indicate instances in which the environment experienced by the parents affects the shape of the reaction norm in their offspring. In the simplest case, the parental environment and the offspring environment interact to determine the offspring phenotype (Figure 1). We make the distinction between TGP and the more generic term 'maternal effects' for two reasons. First, either parent may contribute to TGP (see below for specific examples). Second, TGP is only manifest when there is variation in the environment in both generations. The notion of TGP has appeared under various names, including maternal environmental effects [13], intergenerational effects [14], legacy or carry-over effects [15], cross-generational plasticity [16], and trans-generational acclimation [17].

For an additional characterization, we turn to the experiments of Salinas and Munch [18], who raised sheephead minnows (Cyprinodon variegatus) for an entire generation in the laboratory at 21-22°C, then transferred individuals to 24, 29, or 34°C. They removed eggs quickly after females spawned and then measured the growth rates of the offspring in the same three temperatures. They showed that the offspring reaction norms depended upon the temperature that the parent experienced.
Non-genetic inheritance and changing environments

Given this taxonomic breadth, TGP should be considered as a potential mechanism alongside migration, within-generation phenotypic plasticity, and adaptation by which organisms can respond to changing environments. In constructing Table 1, we focused exclusively on cases where TGP was shown or thought to be adaptive, even though that is not necessarily always the case [20]. Table 1 includes species in which the parental environment may be confounded with the gestational environment. This adds a layer of complexity, although it is possible to test for TGP in internal fertilizers with a proper experimental design [21]. Given the many names that TGP-like phenomena have received over the years, Table 1 is surely incomplete.

Table 1 reveals some common features of species and the environments they occupy when exhibiting TGP: i) strong autocorrelation in environmental conditions during the reproductive period of the parents that lasts into the early offspring larval and/or climatic processes (Figure 3, Table 1). Given this taxonomic breadth, TGP should be considered as a potential mechanism alongside migration, within-generation phenotypic plasticity, and adaptation by which organisms can respond to changing environments.

In constructing Table 1, we focused exclusively on cases where TGP was shown or thought to be adaptive, even though that is not necessarily always the case [20]. Table 1 includes species in which the parental environment may be confounded with the gestational environment. This adds a layer of complexity, although it is possible to test for TGP in internal fertilizers with a proper experimental design [21]. Given the many names that TGP-like phenomena have received over the years, Table 1 is surely incomplete.

Table 1 reveals some common features of species and the environments they occupy when exhibiting TGP: i) strong autocorrelation in environmental conditions during the reproductive period of the parents that lasts into the early offspring larval and/
Figure 3. Species that exhibit TGP in response to various environmental stimuli (red = temperature, blue = precipitation, cyan = carbon dioxide, green = others) span many branches of the tree of life. [By permission of Oxford University Press, USA, ASSEMBLING THE TREE OF LIFE edited by Joel Cracraft and Michael J. Donoghue (2004) Ch. 34 “Assembling the tree of life: where we stand at the beginning of the 21st century” by Joel Cracraft and Michael J. Donoghue pp. 553-561, Figure 34.1 from p. 555 (adapted)].
Table 1. Studies reporting evidence of TGP. Species order within environmental stimulus follows the pattern in Figure 3.

Environmental variable	Trait(s)	Common name	Scientific name	Reference	Ref. number*
TEMPERENCE					
Mean temperature	Growth, timing of bud burst, freezing injury	Norway spruce	Picea abies	Johnsen et al. 2005. New Phytol.	[1]
	Germination rate, root growth, biomass, seed production	Thale cress	Arabidopsis thaliana	Blodner et al. 2007. Plant Cell Environ.	[2]
	Seed production	Thale cress	Arabidopsis thaliana	Whittle et al. 2009. Botany.	[3]
Heat stress	Number of rosette leaves and rosette diameter	Thale cress	Arabidopsis thaliana	Suter and Widmer. 2013. PLoS ONE.	[4]
Mean temperature	Tuberculosis formation	Potato	Solanum tuberosum	Went. 1959. Am J Bot.	[5]
Mean temperature	Seed size, germination %, growth, age at maturation	Ribwort plantain	Plantago lanceolata	Lacey. 1996. Evolution. + Alexander and Wulff, 1985. J Ecol.	[6,7]
Mean temperature	Development time, age at maturation, growth	Milkweed bug	Oncopeltus fasciatus	Groeters and Dingle. 1988. J Evol Biol.	[8]
Mean temperature	Size, knockdown temperature	Fruit fly	Drosophila melanogaster	Crill et al. 1996. Evolution.	[9]
Mean temperature	Development time, pre-adult mortality	Yellow dung fly	Scaphophaga stercoraria	Blanckenhorn. 2000. Evol Ecol.	[10]
Mean temperature	Larval time, pupal time, larval growth rate, egg size, pupal mass	Butterfly	Bicyclus anynana	Steigenga and Fischer. 2007. J Thermal Biol.	[11]
Mean temperature	Development time, hatching lipid and protein content	Butterfly	Bicyclus anynana	Geister et al. 2009. J Comp Physiol B.	[12]
Mean temperature	Relative proportion of successfully metamorphosed larvae	Spiral-tufted bushy bryozoan	Bugula neritina	Burgess and Marshall. 2011. J Exp Biol.	[13]
Mean temperature	Vertebral and ray counts	Mangrove rivulus	Rivilus marmoratus	Swain and Lindsey. 1986. Can J Zool.	[14]
Mean temperature	Survival	Least killifish	Heterandria formosa	Travis et al. 1999. Am Zool.	[15]
Mean temperature	Growth	Sheepshead minnow	Cyprinodon variegatus	Salinas and Munch. 2012. Ecol Lett.	[16]
Mean temperature	Aerobic scope	Spiny chromis damselfish	Acanthochromis polycanthus	Donelson et al. 2012. Nature Clim Change.	[17]
Mean temperature	Vertebral count	Zebrfish	Brachydanio rerio	Denty and Lindsey. 1978. Can J Zool.	[18]
PRECIPITATION					
Drought stress	Biomass	Orange jewelweed	Impatiens capensis	Riggins et al. 2007. Am J Bot.	[19]
Drought stress	Root system growth, biomass	Redshank	Polygonum persicaria	Sultan et al. 2009. Ecology.	[20]
Drought stress	Survival	Redshank	Polygonum persicaria	Herman et al. 2012. Integr Comp Biol.	[21]
Relative humidity	Dehydration resistance	American dog tick	Dermacentor variabilis	Yoder et al. 2006. J Insect Physiol.	[22]
CO2					
CO2 concentration	Biomass	Blue lupine	Lupinus perennis	Lau et al. 2008. Oecologia.	[23]
CO2 concentration	Development time, size	Sydney rock oyster	Saccostrea glomerata	Parker et al. 2012. Global Change Biol.	[24]
CO2 concentration	Metabolic rate, growth, survival	Cinnamon clownfish	Amphiprion melanopus	Miller et al. 2012. Nature Clim Change.	[25]
OTHER ABIOTIC VARIABLES					
UV-C exposure	Level of homologous recombination	Thale cress	Arabidopsis thaliana	Molinier et al. 2006. Nature.	[26]

*Please check list of Table references
Environmental variable	Trait(s)	Common name	Scientific name	Reference	Ref. number*
Salinity stress	Rosette diameter	Thale cress	Arabidopsis thaliana	Suter and Widmer. 2013. *PLoS ONE.*	[4]
Nutrient levels	Number of viable seeds	Redstem filaree	Erodium cicutarium	Jacobs and Lesmeister. 2012. *Func Ecol.*	[27]
Light level	Seed mass, days to germination	American bellflower	Campanula americana	Etterson and Galloway. 2002. *Am J Bot.*	[28]
Light level	Rosette survival, adult survival, fruit number, seeds per fruit	American bellflower	Campanula americana	Galloway and Etterson. 2007. *Science.*	[29]
Nutrient and light levels	Seed mass, germination %, days to germination	American bellflower	Campanula americana	Galloway. 2001. *Am J Bot.*	[30]
Nutrient levels	Time to flowering, total biomass, total non-structural carbohydrate storage	Ribwort plantain	Plantago lanceolata	Latzel et al. 2013. *Oikos.*	[31]
Nutrient level	Total biomass	Blackseed plantain	Plantago rugelii	Miao et al. 1991. *Ecology.*	[32]
Nutrient level	Leaf weight, phosphorus concentration	Lamb’s quarters	Chenopodium album	Wulf et al. 1999. *Can J Bot.*	[33]
Light and nutrient levels, soil moisture	Mass, emergence time, root length	Redshank	Polygonum persicaria	Sultan. 1996. *Ecology.*	[34]
Soil type	Photosynthetic rate, biomass	Barbed goatgrass	Aegilops tricuclis	Dyer et al. 2010. *Evol Appl.*	[35]
Salinity	Salinity tolerance, vigor	Sorghum	Sorghum bicolor	Amzallag. 1994. *New Phytol.*	[36]
Photoperiod	Resting egg production	Daphnia	Daphnia pulicaria	Alekseev and Lampert. 2001. *Nature.*	[37]
Copper exposure	Growth, size-specific heart beat rate	Daphnia	Daphnia pulex	Fernandez-Gonzalez et al. 2011. *Rev Chil Hist Nat.*	[38]
Copper exposure	Fecundity, survival	Intertidal harpacticoid copepod	Tigrionus japonicus	Kwok et al. 2009. *Ecotox Environ Safe.*	[39]
Copper exposure	Size, swimming time, copper resistance	Spiral-tufted bushy bryozoan	Bugula neritina	Marshall. 2008. *Ecology.*	[40]
Salinity	Survival to 8-cell stage	Serpulid polychaete	Galeolaria caespitosa	Tait et al. 1984. *Aust J Mar Freshw Res.*	[41]
Salinity	Development rate	Gray sea star	Luidia clathrata	Hintz and Lawrence. 1994. *Mar Biol.*	[42]
Contaminant exposure	Size, RNA:DNA	Mummichog	Fundulus heteroclitus	Nye et al. 2007. *Aquat Toxicol.*	[43]
Salinity	Growth rate, food conversion efficiency	Desert pupfish	Cyprinodon macularius	Kinne. 1962. *Comp Biochem Physiol.*	[44]
Cadmium exposure	Larval time to 50% mortality	Tilapia	Oreochromis mossambicus	Lin et al. 2000. *J Fish Biol.*	[45]
Copper exposure	Survival	Fathead minnow	Pimephales promelas	Sellin and Kolok. 2006. *J Fish Biol.*	[46]
Hypoxia	Time to loss of equilibrium	Zebrafish	Danio rerio	Burggren and Blank. 2009. *Sci Mar. + Ho and Burggren, 2012. *J Exp Biol.*	[47,48]
Carotenoid level in diet	Hepatic carotenoid concentration	Chicken	Galius galius	Karadas et al. 2005. *Comp Biochem Physiol B.*	[49]
OTHER BIOTIC VARIABLES					
Predation	Seed mass, early plant growth	Radish	Raphanus raphanistrum	Agrawal. 2002. *Ecology.*	[50]
Support availability	Number of leaves	Twining vine	Ipomoea purpurea	Gianoli and Gonzalez-Teuber. 2005. *Plant Ecol.*	[51]
Predation	Leaf biomass	Ribwort plantain	Plantago lanceolata	Latzel et al. 2010. *Oikos.*	[52]

Please check list of Table references
Table 1. Studies reporting evidence of TGP. Species order within environmental stimulus follows the pattern in Figure 3.

Environmental variable	Trait(s)	Common name	Scientific name	Reference
Predation	Recruit, egg size, age and size at maturation, fecundity, survival	Soil mite	Sancassania berlesii	Piaistow et al. 2006. Am Nat. [53]
Food availability	Long-distance dispersal propensity	Lattice web spider	Erigone dentipalpis	Mestre and Bonte. 2012. Behav Ecol. [54]
Food availability	Mode of reproduction	Daphnia	Daphnia pulex	LaMontagne and McCauley. 2001. Ecol Lett. [55]
Food availability	Infection rate	Daphnia	Daphnia magnä	Mitchell and Read. 2005. Proc. R Soc B. [56]
Bacterial pathogens	Fecundity, age at maturation	Daphnia	Daphnia magnä	Little et al. 2003. Curr Biol. [57]
Cyanobacterial toxins	Fitness, time to maturity, time to first clutch	Daphnia	Daphnia magnä	Gustafsson et al. 2005. Ecology. [58]
Predation	Helmet length	Daphnia	Daphnia cucullata	Zadereev et al. 2003. Aquat Ecol. [59]
Conspecific density	Reproductive mode	Water flea	Moina macrocopa	Lopatina ad Zadereev. 2012. J Siber Fed Univ. [60]
Food quantity	Resting egg production	Water flea	Moina brachiata	Triggs and Knell. 2012. Funct Ecol. [61]
Food availability	Age at maturity, reproductive output	Springtail	Folsomia candida	Hafer et al. 2011. Biol Lett. [62]
Predation	Immobility time, survival	Fall field cricket	Gryllus pennsylvania	Storm and Lima. 2010. Am Nat. [63]
Conspecific density	Probability of being solitary, nymph coloration	Desert locust	Schistocerca gregaria	Islam et al. 1994. J Insect Physiol. [64]
Host species	Fecundity, longevity	Pea aphid	Acyrthosiphon pisum	Via. 1991. Evolution. [65]
Conspecific density	Proportion of alate morph	Milkwed-oleander aphid	Aphis nerii	Zehnder and Hunter. 2007. Ecol Entomol. [66]
Diet type	Larval development time	Rove beetle	Tachypterus hypnorum	Kynne and Toft. 2006. Ecol Entomol. [67]
Bacterial pathogens	Antimicrobial activity in haemolymph	Mealworm beetle	Tenebrio molitor	Moret. 2006. Proc R Soc B. [68]
Host type	Number of eggs laid	Leaf beetle	Ophraella notulata	Futuyma et al. 1993. Oecologia. [69]
Diet quality	Development time	Australian neris fly	Telostylinus angusticollis	Bonduriansky and Head. 2007. J Evol Biol. [70]
Food quantity	Egg-to-adult viability	Fruit fly	Drosophila melanogaster	Vijendravarma et al. 2010. Biol Lett. [71]
Food quantity	Blood meal size, fecundity	Mosquito	Anopheles stephens	Grech et al. 2007. Malar J. [72]
Food quality	Phenoloxidase activity, haemocyte count, weight	Indianmeal moth	Plodia interpunctella	Triggs and Knell. 2012. Funct Ecol. [73]
Host quality	Pupal mass, larval duration (males only), forewing length	Small heath butterfly	Coenonympha pamphilus	Cahenzli and Erhardt. 2013. Proc R Soc B. [74]
Level of protein in diet	Larval mass	Small white butterfly	Pieris rapae	Rotem et al. 2003. Ecol Entomol. [75]
Food availability	Fecundity, timing of reproduction	Nematode worm	Caenorhabditis elegans	Harvey and Orbidans. 2011. PLoS ONE. [76]
Food quantity	Lifespan	Rotifer	Brachionus plicatilis	Kaneko et al. 2011. Funct Ecol. [77]
Food availability	Age and size at maturation, egg size, hatching size	Mangrove rivulus	Rivulus marmoratus	Lin and Dunson. 1995. Ecology. [78]
Food availability	Juvenile size, male age at maturation	Guppy	Poecilia reticulata	Bashey. 2006. Evolution. [79]
Level of protein in diet	Growth rate, sprint speed	Spotted skink	Niveoscincus ocellatus	Cadby et al. 2011. J Exp Biol. [80]

Please check list of Table references
or juvenile stages, and ii) low dispersal relative to the degree of environmental heterogeneity such that offspring experience an environment similar to the parents’ environment. These are precisely the theoretical conditions required for TGP to be advantageous[22] and are likely to occur in many species. Thus, we hypothesize that TGP is more common and widespread than previously thought.

In addition to manipulative experiments (such as those shown in Table 1), there is evidence suggestive of TGP in nature. For example, Hurst et al. [23] measured the thermal reaction norms of growth in three yearly cohorts of Pacific cod, showing that the cold-conditioned cohort came from a year in which anomalously cold conditions were present during the spawning period. While developmental plasticity in the offspring alone could also explain the observed differences in the cohort reaction norms (e.g., [24,25]), the temperature time series data does not rule out TGP since it demonstrates a link between parent and offspring environmental conditions. In Atlantic salmon, maternal early growth and condition at time of spawning influenced offspring growth and survival independently of egg size[28]. Obviously, it is difficult to unambiguously separate transgenerational from offspring within-generation phenotypic plasticity using time series data, so that manipulations of wild populations (e.g., [27]) may be the most reliable way of uncovering TGP in the field.

Temperature was the most common environmental variable used in TGP studies. This is not surprising: thermal regimes exhibit periods of strong temporal autocorrelation [28] and many taxa display a seasonal phenology in timing of reproduction. Temperature time series data from the field can therefore be a useful indicator for inferring the predictability of the parent-offspring environment when TGP is suspected. In laboratory experiments demonstrating thermal TGP in the larval and juvenile stages of a marine bryozoan, the parental temperature environment was well correlated with the offspring temperature environment for the duration of the early life-history stages affected [29]. In fact, Burgess and Marshall [29] showed that the temperature that mothers experienced was more influential on the dispersal potential of their offspring than was the temperature the offspring actually experienced (dispersal potential was higher in offspring from mothers reared in warmer water compared to mothers from colder water, contrary to expectations based on the temperature control of marine larval dispersal).

TGP Can (and Should) Profoundly Alter Our Views of the Consequences of Environmental Change

The effects of environmental change on population dynamics are well documented [10,30]. In addition, TGP can play a large role in the dynamics of populations in time and space. For example, delayed density dependence was observed in soil mites exposed to different food environments as a result of transgenerational effects on various life history traits [14]. Effects were still observed after three generations [14], which can lead to highly complex population dynamics (e.g., [31]). Van Allen and Rudolf [32] empirically confirmed that an interaction of previous and current habitat in Tribolium castaneum leads to very different patch carrying capacities and growth rates, thereby impacting meta-population dynamics. Dispersal, another key component of the dynamics of populations, can be easily influenced via TGP [29,33,34]. The ubiquity of TGP (Table 1) and pervasive effects on ecological dynamics implies that ignoring TGP is likely to lead to incorrect population projections.

As the environment changes, it will be critical to the persistence of populations to be able to track a moving fitness optimum. Bonduriansky et al. [22] reviewed modeling efforts of non-genetic inheritance, finding that this form of transmission can rapidly track fitness peaks, even in the absence of genetic variation (for an interesting possible counter-example, with epigenetics mediating the effects of inbreeding depression, see [35]). What happens once a population is close to the peak remains contentious. Moreover, not accounting for TGP in calculating heritability may lead to incorrect estimates, as the covariance between parents and offspring will be biased in the presence of TGP. This can, in turn, lead to erroneous predictions based on them. Any model of evolution under a changing climate that does not incorporate some form of non-genetic inheritance needs to be re-assessed given current knowledge.

Future Research Directions

As with any emerging field, the excitement that followed the realization of strong TGP effects is now giving way to an abundance of questions. A number of these questions are relevant in assessing the role of TGP as organisms cope with climate change:

1. How predictable does the environment have to be? Key variables such as temperature will become more unpredictable in the future [4]. Hence, the correspondence between parent and offspring environment may be lost, depending on how long parents spend in assessing the environment and modifying the offspring’s reaction norm. Knowing the length of this key imprinting period relative to the predictability of the environment could help assess whether TGP will be a coping mechanism or a maladaptive trait. In sheepshead minnows, 7 days of exposure to a temperature is not enough to force a transgenerational effect, but 30 days is [18]. The study of anticipatory regulation [36-38] may also help in answering these questions.

2. What are the molecular mechanisms for transducing parental environments into heritable epigenetic variation? Molecular (e.g., whole methylome analysis) and experimental (e.g., demethylating agents) advances have already begun to answer this question. DNA methylation is the most common, but certainly not the only, method of transgenerational information transfer [39]; others include chromatin states, histone modification, and prions [40]. But in most cases, just how the environmental signal (e.g., temperature) results in variation in methylation profiles is unknown. Whether each mechanism acts differently (fidelity of replication, rate of epimutation, etc.) will have consequences to the long-term reliance of inherited variation.
3. How many generations are required for the non-genetic effects of the environment to be erased? Is there a reduced response after a few generations? In some cases, the environmental signal is lost after one generation while in others, multi-generation responses are evident [41]. This question is particularly relevant to population forecasting and when thinking of “genes as followers” in the process of adaptation [42].

4. How do phenotypic plasticity, TGP, and evolution interact? Non-genetic inheritance’s role within evolutionary theory needs to be properly assessed. The question of whether genes are followers or leaders in evolution, for instance, remains a contested one [43], although new approaches have been proposed to unify the various forms of inheritance (e.g., [44]). A sound theoretical and empirical synthesis—or, at least, a re-evaluation of the current one—is needed.

5. Are the trade-offs and costs involved in TGP the same as those identified for within-generation phenotypic plasticity [45,46]? Are there others that are inherent to the parent-offspring relationship? Who suffers the costs: parents or offspring [47]? How do traits that are modified by the parental environment interact with other traits in the offspring [48]?

TGP appears to be taxonomically widespread. It is also sufficiently distinct, in terms of both ecological and evolutionary consequences, to merit study alongside migration, phenotypic plasticity, and evolutionary change as a mean of coping with climate change. Despite these conclusions, however, many questions remain, and we have tried to summarize some of them above. Better understanding of the mechanisms of TGP will help us predict how populations will respond to impending changes in the environment—perhaps the greatest challenge faced by evolutionary ecologists today.

Acknowledgments

This work was partially supported by NSF grants OCE-1130483 to M. Mangel, S.B. Munch, and S. Sogard, and NSF grant EF-0924195 to M. Mangel. For comments on a previous version of the manuscript, we thank Neil Youngson and two anonymous reviewers.

References

[1] Intergovernmental Panel on Climate Change I., Synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change, IPCC, Geneva, Switzerland, 2007. Available from: http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr.pdf
[2] Perry A.L., Low P.J., Ellis J.R., Reynolds J.D., Climate change and distribution shifts in marine fishes, Science, 2005, 308, 1912–1915, DOI: 10.1126/science.1113222
[3] Thompson R.M., Beardsley J., Beringer J., Grace M., Sardina P., Means and extremes: building variability into community-level climate change experiments, Ecology Letters, 2013, 16, 799–806, DOI: 10.1111/ele.12095
[4] Raffel T.R., Romansic J.M., Halstead N.T., McMahon T.A., Venesky M.D., Rohr J.R., Disease and thermal acclimation in a more variable and unpredictable climate, Nature Climate Change, 2013, 3, 146–151, DOI: 10.1038/nclimate1659
[5] Dore M.H.J., Climate change and changes in global precipitation patterns: What do we know? Environment International, 2005, 31, 1167–1181, DOI: 10.1016/j.envint.2005.03.004
[6] Doney S.C., Fabry V.J., Feely R.A., Knap A.J.A., Ocean acidification: the other CO2 problem, Annual Review of Marine Science, 2009, 1, 169–192, DOI: 10.1146/annurev.marine.010908.163834
[7] Binzer A., Guili C., Brose U., Rall B.C., The dynamics of food chains under climate change and nutrient enrichment, Philosophical Transactions of the Royal Society B, 2012, 367, 2935–2944, DOI: 10.1098/rstb.2010.0260.1
[8] Dukes J.S., Mooney H.A., Does global change increase the success of biological invaders? Trends in Ecology & Evolution, 1999, 14, 135–139, DOI: 10.1016/S0169-5347(98)01554-7
[9] Rohr J.R., Dobson A.P., Johnson P.T.J., Kilpatrick A.M., Paull S.H., Raffel T.R., et al., Frontiers in climate change-disease research, Trends in Ecology & Evolution, 2011, 26, 270–277, DOI: 10.1016/j.tree.2011.03.002
[10] Parmesan C., Ecological and evolutionary responses to recent climate change, Annual Review of Ecology Evolution and Systematics, 2006, 37, 637–669, DOI: 10.1146/annurev.ecolsys.37.091305.110100
[11] Nicotra A.B., Atkin O.K., Bonser S.P., Davidson A.M., Finneghan E.J., Mathies U., et al., Plant phenotypic plasticity in a changing climate, Trends in Plant Science, 2010, 15, 684–692, DOI: 10.1016/j.tplants.2010.09.008
[12] Bradshaw W.E., Evolutionary response to rapid climate change, Science, 2006, 312, 1477–1478, DOI: 10.1126/science.1127000
[13] Donohue K., Schmitt J., Maternal environmental effects in plants: adaptive plasticity? In: Mousseau T.A., Fox C.W. (Eds.), Maternal effects as adaptations, Oxford University Press, New York, 1998
[14] Plaistow S.J., Lapsley C.T., Benton T.G., Context-dependent intergenerational effects: the interaction between past and present environments and its effect on population dynamics, The American Naturalist, 2006, 167, 206–215, DOI: 10.1086/499380
[15] Parker L.M., Ross P.M., O’Connor W.A., Borysko L., Raftos D.A., Pörtner H.-O., Adult exposure influences offspring response to ocean acidification in oysters, Global Change Biology, 2012, 18, 82–92, DOI: 10.1111/j.1365-2486.2011.02520.x
[16] Sultan S.E., Phenotypic plasticity in plants: a case study in ecological development, Evolution & Development, 2003, 5, 25–33, DOI: 10.1046/j.1525-142X.2003.03005.x
[17] Donelson J.M., Munday P.L., McCormick M.I., Pitcher C.R., Rapid transgenerational acclimation of a tropical reef fish to climate change, Nature Climate Change, 2012, 2, 30–32, DOI: 10.1038/nclimate1323

[18] Salinas S., Munch S.B., Thermal legacies: transgenerational effects of temperature on growth in a vertebrate, Ecology Letters, 2012, 15, 159–163, DOI: 10.1111/j.1461-0248.2011.01721.x

[19] Finstad A.G., Jonsson B., Effect of incubation temperature on growth performance in Atlantic salmon, Marine Ecology Progress Series, 2012, 454, 75–82, DOI: 10.3354/meps09643

[20] Reed T.E., Waples R.S., Schindler D.E., Hard J.J., Kinnison M.T., Phenotypic plasticity and population viability: the importance of environmental predictability, Proceedings of the Royal Society B, 2010, 277, 3391–3400, DOI: 10.1098/rspb.2010.0771

[21] Jirtle R.L., Skinner M.K., Environmental epigenomics and disease susceptibility, Nature Reviews Genetics, 2007, 8, 253–262, DOI: 10.1038/nrg2045

[22] Bonduriansky R., Crean A.J., Day T., The implications of nongenetic inheritance for evolution in changing environments, Evolutionary Applications, 2012, 5, 192–201, DOI: 10.1111/j.1752-4571.2011.00213.x

[23] Hurst T.P., Munch S.B., Lavelle K.A., Thermal reaction norms for growth vary among cohorts of Pacific cod (Gadus macrocephalus), Marine Biology, 2012, 159, 2173–2183, DOI: 10.1007/s00227-012-2003-9

[24] Donelson J.M., Munday P.L., McCormick M.I., Nilsson G.E., Acclimation to predicted ocean warming through developmental plasticity in a tropical reef fish, Global Change Biology, 2010, 17, 1712–1719, DOI: 10.1111/j.1365-2486.2010.02339.x

[25] Scott G.R., Johnston I.A., Temperature during embryonic development has persistent effects on thermal acclimation capacity in zebrafish, Proceedings of the National Academy of Sciences USA, 2012, 109, 14247–14252, DOI: 10.1073/pnas.1205012109/-/DCSupplemental/pnas.201205012SI.pdf

[26] Burton T., McKelvey S., Stewart D.C., Armstrong J.D., Metcalfe N.B., Early maternal experience shapes offspring performance in the wild, Ecology, 2013, 94, 618–626, DOI: 10.1890/12-0462.1

[27] Grindstaff J.L., Hasselquist D., Nilsson J.A., Sandell M., Smith H.G., Stjernman M., Transgenerational priming of immunity: maternal exposure to a bacterial antigen enhances offspring humoral immunity, Proceedings of the Royal Society B, 2006, 273, 2551–2557, DOI: 10.1098/rspb.2006.3608

[28] Madden R.A., A simple approximation for the variance of meteorological time averages, Journal of Applied Meteorology, 1979, 18, 703–705, DOI: 10.1175/1520-0450(1979)018<0703:ASAFTV>2.0.CO;2

[29] Burgess S.C., Marshall D.J., Temperature-induced maternal effects and environmental predictability, Journal of Experimental Biology, 2011, 214, 2329–2336, DOI: 10.1242/jeb.054718

[30] Walther G.-R., Post E., Convey P., Menzel A., Parmesan C., Beebee T.J.C., et al., Ecological responses to recent climate change, Nature, 2002, 416, 389–395, DOI: 10.1038/416389a

[31] Inchausti P., Ginzburg L.R., Maternal effects mechanism of population cycling: a formidable competitor to the traditional predator-prey view, Philosophical Transactions of the Royal Society B, 2009, 364, 1117–1124, DOI: 10.1098/rstb.2008.0292

[32] Van Allen B.G., Rudolf V.H.W., Ghosts of habitats past: environmental carry-over effects drive population dynamics in novel habitat, The American Naturalist, 2013, 181, 596–608, DOI: 10.1086/670127

[33] Dyer A.R., Brown C.S., Espeland E.K., McKay J.K., Meinberg H., Rice K.J., The role of adaptive trans-generational plasticity in biological invasions of plants, Evolutionary Applications, 2010, 3, 179–192, DOI: 10.1111/j.1752-4571.2010.00118.x

[34] Jacobs B.S., Lesmeister S.A., Maternal environmental effects on fitness, fruit morphology and ballistic seed dispersal distance in an annual forb, Functional Ecology, 2012, 26, 588–597, DOI: 10.1111/j.1365-2435.2012.01964.x

[35] Vergeer P., Wagemaker N., Ouborg N.J., Evidence for an epigenetic role in inbreeding depression, Biology Letters, 2012, 8, 798–801, DOI: 10.1098/rsbl.2012.0494

[36] Bull C.D., Metcalfe N.B., Mangel M., Seasonal matching of foraging to anticipated energy requirements in anorexic juvenile salmon, Proceedings of the Royal Society B, 1996, 263, 13–18, DOI: 10.1098/rspb.1996.0003

[37] Tagkopoulos I., Liu Y.-C., Tavaozio S., Predictive behavior within microbial genetic networks, Science, 2008, 320, 1313–1317, DOI: 10.1126/science.1154456

[38] Mitchell A., Romano G.H., Groisman B., Yona A., Dekel E., Kupiec M., et al., Adaptive prediction of environmental changes by microorganisms, Nature, 2009, 460, 220–224, DOI: 10.1038/nature08112

[39] Richards E.J., Inherited epigenetic variation revisiting soft inheritance, Nature Reviews Genetics, 2006, 7, 395–401, DOI: 10.1038/nrg1834

[40] Rando O.J., Verstrepen K.J., Timescales of genetic and epigenetic inheritance, Cell, 2007, 128, 655–688, DOI: 10.1016/j.cell.2007.01.023

[41] Jablonka E., Raz G., Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution, Quarterly Review of Biology, 2009, 84, 131–176, DOI: 10.1086/598822

[42] West-Eberhard M.J., Developmental plasticity and evolution, Oxford University Press, New York, 2003

[43] Schwander T., Leimar O., Genes as leaders and followers in evolutionary applications of genetic and nongenetic inheritance for evolution in changing environments, Evolutionary Applications, 2012, 5, 192–201, DOI: 10.1038/nrg2045

[44] Jablonka E., Raz G., Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution, Quarterly Review of Biology, 2009, 84, 131–176, DOI: 10.1086/598822

[45] West-Eberhard M.J., Developmental plasticity and evolution, Oxford University Press, New York, 2003
Non-genetic inheritance and changing environments

[46] van Buskirk J., Steiner U.K., The fitness costs of developmental canalization and plasticity. Journal of Evolutionary Biology, 2009, 22, 852–860, DOI: 10.1111/j.1420-9101.2009.01685.x

[47] Uller T., Developmental plasticity and the evolution of parental effects, Trends in Ecology & Evolution, 2008, 23, 432–438, DOI: 10.1016/j.tree.2008.04.005

Moran D.T., Dias G.M., Marshall D.J., Associated costs and benefits of a defended phenotype across multiple environments, Functional Ecology, 2010, 24, 1299–1305, DOI: 10.1111/j.1365-2435.2010.01741.x

Table references

[1] Johnsen O., Daehlen O.G., Ostreng G., Skroppa T., Daylength and temperature during seed production interactively affect adaptive performance of Picea abies progenies, New Phytologist, 2005, 168, 589–596, DOI: 10.1111/j.1469-8137.2005.01538.x

[2] Blödner C., Goebel C., Feussner I., Gatz C., Polle A., Warm and cold parental reproductive environments affect seed properties, fitness, and cold responsiveness in Arabidopsis thaliana progenies, Plant Cell & Environment, 2007, 30, 165–175, DOI: 10.1111/j.1365-3040.2006.01615.x

[3] Whittle C.A., Otto S.P., Johnston M.O., Krochko J.E., Suter L., Widmer A., Environmental heat and salt stress induce transgenerational phenotypic changes in Arabidopsis thaliana, PLoS ONE, 2013, 8, e60364, DOI: 10.1371/journal.pone.0060364.s006

[4] Went F.W., Effects of environment of parent and grandparent generations on tuber production by potatoes, American Journal of Botany, 1959, 277–282,

[5] Lacey E.P., Parental effects in Plantago lanceolata L. I. A growth chamber experiment to examine pre- and postzygotic temperature effects, Evolution, 1996, 865–878, DOI: 10.2307/2401858

[6] Alexander H.M., Wulf R.D., Experimental ecological genetics in Plantago: X. The effects of maternal temperature on seed and seedling characters in P. lanceolata, Journal of Ecology, 1985, 73, 271–282, DOI: 10.2307/2259783

[7] Groeters F.R., Dingle H., Genetic and maternal influences on life history plasticity in milkweed bugs (Oncopeltus); response to temperature, Journal of Evolutionary Biology, 1988, 1, 317–333, DOI: 10.1046/j.1420-9101.1988.1040317.x

[8] Crill W.D., Huey R.B., Gilchrist G.W., Within- and between-generation effects of temperature on the morphology and physiology of Drosophila melanogaster, Evolution, 1996, 1205–1218, DOI: 10.2307/2410681

[9] Blanckenhorn W.U., Temperature effects on egg size and their fitness consequences in the yellow dung fly Scathophaga stercoraria, Evol Ecol, 2000, 14, 627–643, DOI: 10.1023/A:1010911017700

[10] Steigenga M.J., Fischer K., Within- and between-generation effects of temperature on life-history traits in a butterfly, Journal of Thermal Biology, 2011, 32, 396–405, DOI: 10.1016/j.jtherbio.2007.06.001

[11] Geister T.L., Lorenz M.W., Hoffmann K.H., Fischer K., Energetics of embryonic development: effects of temperature on egg and hatching composition in a butterfly, Journal of Comparative Physiology B, 2009, 179, 87–98, DOI: 10.1007/s00360-008-0293-5

[12] Burgess S.C., Marshall D.J., Temperature-induced maternal effects and environmental predictability, Journal of Experimental Biology, 2011, 214, 2329–2336, DOI: 10.1242/jeb.054718

[13] Swain D.P., Lindsey C.C., Meristic variation in a clone of the cyprinodont fish Rivulus marmoratus related to temperature history of the parents and of the embryos, Canadian Journal of Zoology, 1986, 64, 1444–1455, DOI: 10.1139/z86-216

[14] Travis J., McManus M.G., Baer C.F., Sources of variation in physiological phenotypes and their evolutionary significance, Integrative and Comparative Biology, 1999, 39, 422–433, DOI: 10.1093/icb/39.2.422

[15] Travis J., McManus M.G., Baer C.F., Sources of variation in physiological phenotypes and their evolutionary significance, Integrative and Comparative Biology, 1999, 39, 422–433, DOI: 10.1093/icb/39.2.422

[16] Salinas S., Munch S.B., Thermal legacies: transgenerational effects of temperature on growth in a vertebrate, Ecology Letters, 2012, 15, 159–163, DOI: 10.1111/j.1461-0248.2011.01721.x

[17] Donelson J.M., Munday P.L., McCormick M.I., Pitcher C.R., Rapid transgenerational acclimation of a tropical reef fish to climate change, Nature Climate Change, 2012, 2, 30–32, DOI: 10.1038/nclimate1323

[18] Denny W., Lindsey C.C., Vertebral variation in zebrafish (Brachydanio rerio) related to the prefertilization temperature history of their parents, Canadian Journal of Zoology, 1978, 56, 280–283, DOI: 10.1139/z78-037

[19] Riginos C., Heschel M.S., Schmitt J., Maternal effects of drought stress and inbreeding in Impatiens capensis (Balsaminaceae), American Journal of Botany, 2007, 94, 1984–1991, DOI: 10.1139/j06-039

[20] Sultan S.E., Barton K., Wilczek A.M., Contrasting patterns of transgenerational plasticity in ecologically distinct congeners, Evolution, 2009, 90, 1831–1839, DOI: 10.1500/08-1064.1

[21] Herman J.J., Sultan S.E., Horgan-Kobelski T., Riggs C., Adaptive transgenerational plasticity in an annual plant: grandparental and parental drought stress enhance performance of seedlings in dry soil, Integrative and Comparative Biology, 2012, 52, 77–88, DOI: 10.1093/icb/ic2s041
Agrawal A.A., Herbivory and maternal effects: mechanisms and consequences of transgenerational induced plant resistance, Ecology, 2002, 83, 3408–3415, DOI: 10.1890/0012-9658(2002)083[3408:HAMEMA]2.0.CO;2

Agrawal A.A., Laforsch C., Tollrian R., Transgenerational effects on offspring immunity, Functional Ecology, 2010, 24, 2379–2388, DOI: 10.1111/j.1365-2435.2012.02051.x

Agrawal A.A., Kott L., Parental effects in Pieris rapae in response to variation in food quality: adaptive plasticity across generations? Ecological Entomology, 2003, 28, 211–218, DOI: 10.1046/j.1365-2311.2003.00507.x

Islam S.M., Roessingh P., Simpson S.J., McCaffery A.R., Parental effects on the behaviour and colouration of nymphs of the desert locust Schistocerca gregaria, Journal of Insect Physiology, 1994, 40, 173–181, DOI: 10.1016/0022-1910(94)90089-2

Plaistow S.J., Lapsley C.T., Benton T.G., Context-dependent intergenerational effects: the interaction between past and present environments and its effect on population dynamics, The American Naturalist, 2006, 167, 206–215, DOI: 10.1086/499380

Futuyma D.J., Herrmann C., Milstein S., Keese M.C., Bonduriansky R., Head M., Maternal and paternal condition effects and current environment on vital rates of Aphis nerii, the milkweed–oleander aphid, Ecological Entomology, 2007, 32, 172–180, DOI: 10.1111/j.1365-2311.2007.00853.x

Bijen A., Toft S., Effects of maternal diet quality on offspring performance in the rove beetle Tachyporus hydropnorum, Ecological Entomology, 2006, 31, 322–330, DOI: 10.1111/j.1365-2311.2006.00775.x

Moret Y., “Trans-generational immune priming”: specific enhancement of the antimicrobial immune response in the mealworm beetle, Tenebrio molitor, Proceedings of the Royal Society B, 2006, 273, 1399–1405, DOI: 10.1098/rspb.2006.3465

Grech K., Maung L., Read A.F., The effect of parental larval diet on egg size and offspring traits in Drosophila, Biology Letters, 2010, 6, 238–241, DOI: 10.1098/rsbl.1998.0366

Cahenzli F., Erhardt A., Transgenerational acclimatization in an herbivore-host plant relationship, Proceedings of the Royal Society B, 2013, 280, 20122856, DOI: 10.1098/rspb.2012.2856

Rotem K., Agrawal A.A., Kott L., Parental effects in Plais rapae in response to variation in food quality: adaptive plasticity across generations? Ecological Entomology, 2003, 28, 211–218, DOI: 10.1046/j.1365-2311.2003.00507.x

Harvey S.C., Orbisdi H.E., All eggs are not equal: the maternal environment affects progeny reproduction and developmental fate in Caenorhabditis elegans, PLoS ONE, 2011, 6, e25840, DOI: 10.1371/journal.pone.0025840.1001
[77] Kaneko G., Yoshinaga T., Yanagawa Y., Ozaki Y., Tsukamoto K., Watabe S., Calorie restriction-induced maternal longevity is transmitted to their daughters in a rotifer, Functional Ecology, 2011, 25, 209–216, DOI: 10.1111/j.1365-2435.2010.01773.x

[78] Lin H.C., Dunson W.A., An explanation of the high strain diversity of a self-fertilizing hermaphroditic fish, Ecology, 1995, 593–605, DOI: 10.2307/1941216

[79] Bashey F., Cross-generational environmental effects and the evolution of offspring size in the Trinidadian guppy Poecilia reticulata, Evolution, 2006, 60, 348–361, DOI: 10.1111/j.0014-3820.2006.tb01111.x

[80] Cadby C.D., Jones S.M., Wapstra E., Potentially adaptive effects of maternal nutrition during gestation on offspring phenotype of a viviparous reptile, Journal of Experimental Biology, 2011, 214, 4234–4239, DOI: 10.1242/jeb.057349