Besicovitch Covering Property for homogeneous distances on the Heisenberg groups

Séverine Rigot

(Univ. Nice Sophia Antipolis)

Workshop *Geometric Analysis on sub-Riemannian manifolds*
IHP
September 29 - October 3, 2014
The **Besicovitch Covering Property (BCP)** holds on \((M, d)\) if there exists \(N \geq 1\) such that if \(A \subset M\) is bounded and \(\mathcal{B}\) is a family of balls such that each point of \(A\) is the center of some ball of \(\mathcal{B}\), then there is a subfamily \(\mathcal{F} \subset \mathcal{B}\) such that
\[
11_A \leq \sum_{B \in \mathcal{F}} 11_B \leq N.
\]

A family \(\mathcal{B} = \{B_d(x_B, r_B)\}\) of balls in \((M, d)\) is a family of **Besicovitch balls** if
- \(\text{Card } \mathcal{B} < +\infty\),
- \(x_B \notin B'\) for all \(B, B' \in \mathcal{B}, B \neq B'\),
- \(\bigcap_{B \in \mathcal{B}} B \neq \emptyset\).

The **Weak Besicovitch Covering Property (w-BCP)** holds on \((M, d)\) if there exists \(N \geq 1\) such that \(\text{Card } \mathcal{B} \leq N\) for every family \(\mathcal{B}\) of Besicovitch balls.
BCP \Rightarrow w-BCP

If (M, d) is doubling then BCP \Leftrightarrow w-BCP
We say that the differentiation theorem holds for the locally finite Borel measure μ on (M, d) if

$$\lim_{r \to 0^+} \frac{1}{\mu(B_d(p, r))} \int_{B_d(p, r)} f(q) \, d\mu(q) = f(p)$$

for μ-almost every $p \in M$ and for each $f \in L^1(\mu)$.

Theorem (Besicovitch - Preiss)

Let (M, d) be a complete separable metric space. Then the differentiation theorem holds for each locally finite Borel measure μ on (M, d) iff $M = \bigcup_{n \in \mathbb{N}} M_n$ where, for each $n \in \mathbb{N}$, w-BCP holds for family of balls centered on M_n with radii less than r_n for some $r_n > 0$.
Examples of metric spaces satisfying BCP:
- The Euclidean space \mathbb{R}^n
- Finite dimensional normed vector spaces
- Riemannian manifolds of class C^2

Examples of metric spaces that do not satisfy BCP:
- Infinite dimensional Hilbert spaces
- The Heisenberg group equipped with the (Cygan-)Korányi distance [Sawyer-Wheeden, Korányi-Reimann]
- The Heisenberg group equipped with the Carnot-Carathéodory distance [R]
The validity of BCP depends strongly (and only) on the shape of the balls in the metric space \((M, d)\).

It is in particular not stable under a bi-Lipschitz change of distance.

Theorem (Preiss, Le Donne-R)

Let \((M, d)\) be a metric space. Assume that there exists an accumulation point in \((M, d)\). Let \(0 < c < 1\). Then there exists a distance \(\overline{d}\) on \(M\) such that \(c \, d \leq \overline{d} \leq d\) and for which \(w\)-BCP, and hence BCP, does not hold.
The Heisenberg group $\mathbb{H}^1 \cong \mathbb{R}^3$

- **Group law:**
 \[(x, y, z) \cdot (x', y', z') := (x + x', y + y', z + z' + \frac{1}{2}(x y' - y x'))\]

- **Dilations:** $\delta_\lambda(x, y, z) = (\lambda x, \lambda y, \lambda^2 z)$

Definition

We say that a distance d on \mathbb{H}^1 is homogeneous if

\[
d(p \cdot q, p \cdot q') = d(q, q')
\]

\[
d(\delta_\lambda(p), \delta_\lambda(q)) = \lambda \ d(p, q)
\]

for all $p, q, q' \in \mathbb{H}^1$ and all $\lambda > 0$.
Let $A \subset \mathbb{H}^1$ be compact. Assume that

- $p \in A, q \in A, t \in [0, 1] \Rightarrow \delta_t(p) \cdot \delta_{1-t}(q) \in A$
- $p \in A \Rightarrow p^{-1} \in A$.

Then

$$d(p, q) := \inf(t > 0; \delta_{\frac{1}{t}}(p^{-1} \cdot q) \in A)$$

defines a homogeneous distance on \mathbb{H}^1. It is the homogeneous distance such that $B_d(0, 1) = A$.

Let $B_\alpha := \{(x, y, z) \in \mathbb{H}^1; x^2 + y^2 + z^2 \leq \alpha^2\}$. Then

$$d_\alpha(p, q) := \inf(t > 0; \delta_{\frac{1}{t}}(p^{-1} \cdot q) \in B_\alpha)$$

defines a homogeneous distance on \mathbb{H}^1 for all $\alpha < \alpha^*$ for some $\alpha^* > 0$ [Hebisch-Sikora].

\[1\]This holds true more generally for any Carnot group.
Theorem (Le Donne-R)

Let $\alpha > 0$ be such that d_α defines a homogeneous distance on \mathbb{H}^1. Then BCP holds for the homogeneous distance d_α on \mathbb{H}^1.

More generally, BCP holds in \mathbb{H}^n equipped with a homogeneous distance whose unit ball centered at the origin is an Euclidean ball centered at the origin.
The distance \(d_\alpha \)

- **Analytic expression of \(d_\alpha \)**

 Let \(p = (x_p, y_p, z_p) \in \mathbb{H}^1 \) and set \(\rho_p := \sqrt{x_p^2 + y_p^2} \).

 \[
 d_\alpha(0, p) = r \iff d_\alpha(0, \delta_1(p)) = 1
 \iff \frac{\rho_p^2}{r^2} + \frac{z_p^2}{r^4} = \alpha^2
 \]

 \[
 d_\alpha(0, p) = \sqrt{\frac{\rho_p^2 + \sqrt{\rho_p^4 + 4\alpha^2 z_p^2}}{2\alpha^2}}.
 \]
The distance \(d_\alpha \)

\[
d_\alpha(p, q) = \sqrt{\frac{\rho(p, q)^2 + d_{K,\alpha}(p, q)^2}{2\alpha^2}}
\]

\(\rho(p, q) := \sqrt{(x_q - x_p)^2 + (y_q - y_p)^2} \) is a homogeneous pseudo-distance.

\(d_{K,\alpha}(p, q) := 4\sqrt{\rho(p, q)^4 + 4\alpha^2(z_q - z_p)^2} \).

For \(\alpha = 2 \), \(d_{K,2} \) is the (Cygan-)Korányi distance.

For \(0 < \alpha \leq 2 \), \(d_{K,\alpha} \) is a homogeneous distance on \(\mathbb{H}^1 \).

For \(0 < \alpha \leq 2 \), \(d_\alpha \) defines a homogeneous distance on \(\mathbb{H}^1 \).
The distance d_α already appeared in other problems.

- Lee and Naor proved that the distances d_α are of negative type on \mathbb{H}^1, i.e., $(\mathbb{H}^1, \sqrt{d_\alpha})$ is isometric to a subset of a Hilbert space.

- Combined with the fact that \mathbb{H}^1 equipped with a homogeneous distance does not admit a bi-Lipschitz embedding into L^1 [Cheeger-Kleiner], this allowed them to provide a counterexample to the Goemans-Linial conjecture of theoretical computer science.

NB: The (Cygan-)Korányi distance $d_{K,2}$ is not of negative type on \mathbb{H}^1.
Let d be a homogeneous distance on \mathbb{H}^1.

Then BCP does not hold in (\mathbb{H}^1, d) in the following cases:

- One can find $p \in \partial B_d(0, 1)$ and $\lambda > 0$ such that $d(p, \delta_\lambda(p)) > 1$ for all $0 < \lambda < \lambda$.

Examples:

- The Carnot-Carathéodory distance [R].
- The unit ball centered at the origin has an inward cone-like singularity in the Euclidean sense at the poles [Le Donne-R].
One can find a sequence of points \((q_n)\) in \(\partial B_d(0, 1)\) and a positive sequence \((\lambda_n)\) such that

\[
d(q_k, \delta_{\lambda}(q_n)) > 1 \quad \text{for all } 0 \leq k < n \text{ and all } 0 < \lambda \leq \lambda_n.
\]

Example:

- The unit ball centered at the origin is given near the north pole by the subgraph \(\{z \leq \varphi(x, y)\}\) of a \(C^2\) function \(\varphi\) whose first and second order partial derivatives vanish at the origin [Le Donne-R].
 This applies to the \(d_\infty\) and the (Cygan-)Korányi distances.
The unit ball centered at the origin has an outward cone-like singularity in the Euclidean sense at the poles [Le Donne-R].

Ex: The l^1-sum of the pseudo-distance $\rho(p, q)$ with the (Cygan-)Korányi distance. More generally, any distance d of the form $d(p, q) := \beta \rho(p, q) + d_{K,\alpha}(p, q)$.

The distance d_α lies in between these two cases. Its unit ball centered at the origin is smooth with positive curvature in the Euclidean sense. Up to a multiplicative constant, it is the l^2-sum of the pseudo-distance $\rho(p, q)$ with the distance $d_{K,\alpha}$.
Proof. Recall that $\mathcal{F} = \{B_d(x_B, r_B)\}$ is a family of Besicovitch balls if

- $\text{Card } \mathcal{F} < +\infty$,
- $x_B \not\in B'$ for all $B, B' \in \mathcal{F}$, $B \neq B'$,
- $\bigcap_{B \in \mathcal{F}} B \neq \emptyset$.

We want to find some $N \geq 1$ such that $\text{Card } \mathcal{F} \leq N$ for every family \mathcal{F} of Besicovitch balls.
Proof of the validity of BCP for d_α

Step 1. One can find $R > 0$ large enough, $\theta > 0$ small enough, $a > 1$ large enough and $b < 1$ small enough, such that, if \mathcal{F} is a family of Besicovitch balls, one can find a family $\mathcal{B} = \{B(p_j, r_j)\}_{j=1}^{k}$ of Besicovitch balls such that:

- $\text{Card } \mathcal{F} \leq 2 \left(\frac{\pi}{\theta} + 1 \right) \text{Card } \mathcal{B} + 2$,
- $r_j = d(0, p_j)$, i.e., $0 \in \cap_{j=1}^{k} \partial B(p_j, r_j)$,
- $\rho_{p_1} \leq \rho_{p_2} \leq \cdots \leq \rho_{p_k}$,
- $R = \min_{\{j=1, \ldots, k\}} (r_j)$,
- $p_j \in C^- := \{p \in \mathbb{H}^1; |y_p| < x_p \tan \theta, z_p \leq 0\} \setminus U(0, R)$ for all $j = 1, \ldots, k$,
- $C^- \cap \{-b < z_p \leq 0\} \subset \mathcal{P}(a, b, \theta)$,
- $C^- \cap \{\rho_p < b\} \subset \mathcal{T}(a, b)$.

Here $U(0, R)$ denotes the open ball with center 0 and radius $R > 0$.
Proof of the validity of BCP for d_{α}
Proof of the validity of BCP for d_{α}

Step 2. We have

$$\text{Card}(\{p_j\}_{j=1}^k \cap \mathcal{P}(a, b, \theta)) \leq 1,$$

$$\text{Card}(\{p_j\}_{j=1}^k \cap \mathcal{T}(a, b)) \leq 1.$$

Step 3. We have

$$z_j < 2z_{j+1} \quad \text{and} \quad \rho_j < \cos(2\theta) \rho_{j+1}. $$
Theorem (Le Donne-R)

Let G be a Carnot group of step ≥ 3. Let d be a homogeneous distance on G whose unit ball centered at the origin is an Euclidean ball centered at the origin. Then BCP does not hold in (G, d).

More generally, assume that

$$B_d(0, 1) = \{ c_1 |x_1|^{\gamma_1} + \cdots + c_n |x_n|^{\gamma_n} \leq 1 \}.$$

Then BCP does not hold in (G, d).
Open questions

- For Carnot groups of step ≥ 3, does there exist homogeneous distances for which BCP holds?

- For Carnot groups of step 2 other than the Heisenberg groups,
 - does BCP hold for homogeneous distances whose unit ball centered at the origin is an Euclidean ball?
 - does there exist homogeneous distances for which BCP holds?