SIMULTANEOUS ESTIMATION OF LAMIVUDINE, ABACAVIR AND DOLUTEGRAVIR BY UPLC METHOD

SOMSHANKAR DUBEY, MAHESH DUGGIRALA

Gandhi Institute of Technology and Management
Email: somshankarbhu@yahoo.co.in

Received: 06 Jul 2017, Revised and Accepted: 28 Nov 2017

INTRODUCTION

Antiretroviral therapy (ART) has evolved significantly over the last three decades since the development of the first nucleoside analogues NRTIs (nucleoside reverse transcriptase inhibitors). Since the arrival of triple therapy, the challenge of sustained and complete viral suppression has been solved for the majority of patients [1]. The major limiting factors for improving the long-term success of ART are tolerability and convenient administration of the pill burden [2]. The latest class of the antiretroviral drugs developed was integrase inhibitors (INI). Dolutegravir (fig. 1) is an integrase inhibitor, particularly focused on maintaining a favorable safety profile and a high-efficiency rate within a single-tablet regimen (STR). It improves resistance barrier and allowing co-formulation with an NRTI backbone. Dolutegravir has been compared against both other classes of Human Immunodeficiency Virus (HIV) antiretrovirals as well as other integrase nuclear strand inhibitors. In August 2013, Dolutegravir was approved by Food and Drug Administration (FDA) for its use in both patients who have never taken ART (ART-naïve) and patients who have taken ART (ART-experienced) [3-5]. It is predicted that very soon an STR containing dolutegravir, abacavir and lamivudine will become available.

Fig. 1: Chemical structure of dolutegravir

Abacavir (fig. 2) [6] is a synthetic analogue of the naturally occurring purine nucleoside, guanine and it is a type of NRTI (nucleoside analog reverse transcriptase inhibitor) with the HIV antiretroviral activity agent. It differs from other reverse transcriptase inhibitors (didanosine, lamivudine, stavudine, zalcitabine and zidovudine) in structure. It belongs to the class of a carbocyclic nucleosides analogue rather than a dideoxynucleoside analogue. It is converted by intracellular enzymes to the carbovir triphosphate, active metabolites. Abacavir is vigorous in vitro against HIV-1 and HIV-2. It is a poor inhibitor of cellular Deoxyribonucleic acid (DNA) polymerases α, β and γ. After oral administration of abacavir sulphate is rapidly absorbed and it is distributed extensively. An absolute bioavailability of abacavir sulphate is ~83%, which is not affected by food. In December 1998, abacavir is approved by FDA.

Fig. 2: Chemical structure of abacavir

Lamivudine (fig. 3) [7] is a drug in the same category of nucleoside reverse transcriptase inhibitors as abacavir. It is an analogue of cytidine and it can reduce both types of the reverse transcriptase of hepatitis B virus and HIV reverse transcriptase. Lamivudine administered orally, it is rapidly absorbed with a bioavailability of 80% to 87%. FDA approval granted in 1995 for lamivudine to use pediatric and adult based on increases in CD4 T-lymphocyte count [8] on a regimen of zidovudine and lamivudine compared with either drug alone or compared with a combination of zidovudine and zidovudine was initial approval [9]. Lamivudine is in combinations with several triple nucleoside analogues has been shown to lead to high virologic failure in previously untreated individuals [10-13].
In the literature, numerous methods were described to determine separately or in a combination of lamivudine, abacavir and dolutegravir with other drugs in pharmaceutical formulation [14-23]. Still, very few methods were reported to determine these drugs simultaneously in biological matrices by using high-performance liquid chromatography (HPLC), tetratrim and UV-visible spectrophotometer [24-35]. Literature survey results, till now no UPLC analytical work on the determination of this combination.

Our aim was to develop a simple, accurate, sensitive method for simultaneous determination of lamivudine, abacavir and dolutegravir in combined pharmaceutical dosage form by UPLC with UV detection, where simple mobile phase composition was used for chromatographic separation without any ion-pairing agent. Total retention time for analysis was short with a good resolution between these components. All these reasons make this new method really lucrative. This method was also validated for linearity, sensitivity, precision, accuracy, selectivity and degradation studies according to the International Conference on Harmonization (ICH) guidelines.

MATERIALS AND METHODS

Chemicals and reagents

Lamivudine, abacavir and dolutegravir were obtained from Pharmatrain (Kukatpally, Hyderabad). The chemicals and solvents used in this study were of analytical grade and HPLC grade, respectively. Potassium dihydrogen phosphate (KH₂PO₄), dipotassium hydrogen phosphate (K₂HPO₄), orthophosphoric acid and acetonitrile were obtained from Merck (Mumbai, India). Milli-Q-Water purification system manufactured by Millipore (USA) generated water having a resistivity of 18.2 MΩcm.

Equipment

Waters-AQCUITY UPLC consisted of binary solvent manager with part number: 186015001, sample manager with part number: 186015005, single column manager with part number: 186015007 and PDA detector with part number: 186015026 with Waters Empower 2 PC workation used for method development and validation.

Chromatographic conditions

The chromatographic analysis was performed in an isocratic elution mode for 8 min run time at ambient column temperature. The mobile phase consists of phosphate buffer (2.95 g of potassium dihydrogen phosphate and 5.45 g of dipotassium hydrogen phosphate in 1 l Milli-Q-Water) and adjusted pH to 3.0 with orthophosphoric acid-methanol (30:70%v/v), the flow rate of pump was set to 0.25 ml/min, Zodiac SIL RP C18 column (length 250 mm × 4.6 mm inner diameter, 3 μm particle size), the chromatogram was monitored with UV detector at 260 nm and injection volume was 5 μl. The mobile phase was used as diluent.

Methodology

Preparation of standard solution

The standard stock solution was prepared by taking accurately weighted 15 mg, 30 mg and 2.5 mg of lamivudine, abacavir and dolutegravir working standards into 10 ml clean and dried volumetric flask, add diluent let it be dissolved completely and using the same diluent make volume up to the mark. Take 1 ml of the above solution into 10 ml volumetric flask and add diluent to make it up to the mark. For the preparation of the standard solution, 1.6 ml of solution was taken from above stock solution into 10 ml volumetric flask and added diluent to make it up to the mark.

Preparation of sample solution

For the preparation of sample solution, 10 tablets were accurately weighed and crushed to obtain a fine powder. The quantity of powder equivalent to 15 mg of lamivudine, 30 mg of abacavir and 2.5 mg of dolutegravir was transferred to 10 ml volumetric flask and add diluent, let it be dissolved completely and using the same diluent make the volume up to the mark. Take 1 ml of the above solution into 10 ml volumetric flask and add diluent to make it up to the mark. The obtained solution was appropriately diluted with the mobile phase to get the final dilution of 0.024 mg/ml lamivudine, 0.048 mg/ml abacavir and 0.004 mg/ml dolutegravir.

RESULTS AND DISCUSSION

To optimize the RP-UPLC parameters, to reach a good resolution and peak tailing for lamivudine, abacavir and dolutegravir, many chromatographic parameters were tested. Several mobile phases of different ratios were analyzed to get good resolution, peak shape and to provide sufficient selectivity for the drugs. The phosphate buffer provided a higher sensitivity and selectivity than other buffers did. Using methanol and acetonitrile as organic components shown results of higher sensitivity, but varying the amounts of methanol and acetonitrile in the mobile phase affected the resolution, tailing factor, theoretical plates and run time. Varying the pH of the mobile phase resulted in poor peak shapes and poor resolution. So we introduced potassium dihydrogen phosphate and dipotassium hydrogen phosphate into the mobile phase to adjust the pH of the buffer to 3.0. The optimized mobile phase consisted of 2.95 g of potassium dihydrogen phosphate and 5.45 g of dipotassium hydrogen phosphate in 1 l Milli-Q-Water and adjusted pH to 3.0 with orthophosphoric acid-methanol (30:70%v/v). The column elution was monitored at 260 nm and the injection volume was 5 μl. The column oven temperature was maintained at 25 °C (ambient). The Zodiac SIL RP C18 (4.6 mm × 250 mm with a particle size of 3 μm) was used with a constant flow rate of 0.25 ml/min in isocratic mode. Retention times (Rt) of the drugs were evaluated for lamivudine, abacavir and dolutegravir. The theoretical plate numbers (N) were calculated for the principal peak and its degradation product. The theoretical plate numbers (N) were 27100, 2247 and 3175 respectively, in all the analytical runs. The standard and sample chromatograms were shown in fig. 4 and 5.

System suitability test

Before sample analysis, the chromatographic parameters used in this analysis must confirm the system suitability parameters within the limits. The retention time (Rt), tailing factor (T) and theoretical plate number (N) for the principal peak and its degradation product were evaluated for lamivudine, abacavir and dolutegravir. The tailing factors were 1.23, 1.25 and 1.29 for lamivudine, abacavir and dolutegravir, respectively. The theoretical plate numbers (N) were 2755, 2190 and 2693 respectively. The retention times (Rt) of the drugs were 1.763 min, 2.247 min and 3.175 min respectively, in all the analytical runs. The standard and sample suitability parameters (table 1) satisfied the USP guidelines and ICH guidelines.

Parameters	Lamivudine	Abacavir	Dolutegravir
Retention time	1.763	2.247	3.175
USP plate count	2755	2190	2693
USP tailing	1.23	1.25	1.29
Standard area	935905	185063	27100
Assay of pharmaceutical formulation

The proposed method was effectively applied to find lamivudine, abacavir and dolutegravir in their tablet dosage form. The results obtained (table 2) were comparable with the corresponding labelled amounts.

Method validation

According to the international conference on harmonization (ICH) guideline, ICH Q2(R1) [33], this method was validated.

Linearity

Calibration plots for the analytes were prepared with standard stock solutions to yield the concentration ranges of 15-75 µg/ml for lamivudine, 30-150 µg/ml for abacavir, 2.5-12.5 µg/ml for dolutegravir into the UPLC system. In between the ranges given above, five concentrations were taken and triplicate injection of each concentration was performed.

Calibration curves were plotted between analyte concentrations versus that analyte area. Linearity regression analysis of the data gave correlation coefficient value, slope and intercept. For concentration between 15 µg/ml and 150 µg/ml, the calibration curves were linear. By the values of the correlation coefficients (R), the linearity of the calibration curves was validated. The correlation coefficient was 0.999 for these three drugs. The results of the linearity experiment were listed in table 3. Linearity graphs were shown in fig. 6, 7 and 8.

Parameters	Lamivudine	Abacavir	Dolutegravir
Concentration range(µg/ml)	15-75	30-150	2.5-12.5
Correlation coefficient	0.999	0.999	0.999
Intercept	1397	21826	10988
Slope	14378	6610	59803
Accuracy/Recovery

Accuracy was performed using a standard addition technique by recovery studies. The pre-analyzed samples were spiked with extra 50%, 100%, and 150% of each standard lamivudine, abacavir and dolutegravir and by using the proposed method mixtures were analyzed. The recovery studies were conducted in triplicate. The proposed method afforded a recovery of 98.60–101.69% after the additional standard drug solution was spiked with the presciently analyzed test solutions. The recovery percentages were in the ranges from 98.96 to 100.92 %, from 99.80 to 101.69 % and from 99.60 to 100.34% respectively. The values of the recovery (%) were shown in table 4, which indicates the accuracy of the proposed method.
For the precision, repeatability expressed the same chromate-

Dolutegravir

Abacavir

Lamivudine

Drug

Robustness of the method was performed by making slight
deliberate changes in the analytical methodology like flow rate and

Limit of detection (LOD) and limit of quantification (LOQ)

The lowest amount of analyte in the drug, which can be detected, but
not necessarily quantified, indicates the limit of detection (LOD). The
lowest amount of analyte in the drug, which can be quantitatively
determined with suitable precision and accuracy indicates the limit of
quantification (LOQ). The limit of quantification (LOQ) and limit of
detection (LOD) were determined based on the slope and the standard
deviation of the response using the signal-to-noise ratio (S/N) as per
ICH guidelines Q2(R1) 2005. The LODs for lamivudine, abacavir and
dolutegravir were found to be 0.021, 0.330 and 0.038 µg/ml and the
LOQs were 0.056, 1.320 and 0.095 µg/ml, respectively (table 6).

Robustness

Robustness of the method was performed by making slight
deliberate changes in the analytical methodology like flow rate and
solvent ratio. It was observed that this method did not significantly
affect in system suitability parameters like USP tailing factor,
theoretical plates and resolution, which confirmed that the
developed UPLC method is robust (table 7).

Table 4: Accuracy results of lamivudine, abacavir and dolutegravir

Drug name	% concentration	Area	Amount added (mg)	Amount found (mg)	% recovery	mean recovery
Lamivudine	50%	573733	7.5	7.42	98.96	99.9
	100%	1158357	15	14.98	99.9	100.92
	150%	175375	22.5	22.70	101.00	
Abacavir	50%	732134	15	15.2	101.52	101.00
	100%	1557348	30	29.94	99.8	100.92
	150%	2380289	45	45.76	101.69	100.92
Dolutegravir	50%	541198	1.25	1.25	100.34	99.98
	100%	1074405	2.5	2.49	99.6	100.92
	150%	1618551	3.75	3.75	100.02	100.92

Data of n=3 replicates

Table 5: Precision and inter-day precision results for lamivudine, abacavir and dolutegravir

Injection	Precision	Inter-day precision				
	Lamivudine	Abacavir	Dolutegravir	Lamivudine	Abacavir	Dolutegravir
Injection 1	641219	831356	654221	637987	828667	652517
Injection 2	641645	831763	654574	638983	829544	654557
Injection 3	642197	832877	655600	639198	829935	654622
Injection 4	643020	833975	656731	639852	830731	654726
Injection 5	644273	835545	657468	639951	830995	655234
Injection 6	642460	833403	656718	640553	831033	655761
Average	642469.0	833153.2	655885.3	639420.6	830151.0	654697.9
Standard deviation	1083.8	1529.5	1302.6	899.8	942.9	1104.5
% RSD	0.17	0.18	0.20	0.14	0.11	0.17

Data of n= 6 replicates

Table 6: LOD and LOQ values of lamivudine, abacavir and dolutegravir

Drug	LOD concentration (µg/ml)	LOQ concentration (µg/ml)
Lamivudine	0.021	0.056
Abacavir	0.330	1.32
Dolutegravir	0.038	0.095

Table 7: Robustness study for the UPLC method

Drug	Parameter	Retention time	Peak area	USP plate count	USP tailing
Lamivudine	Flow1	1.950	712143	2504	1.26
	Flow2	1.607	731317	2563	1.25
	Low Organic	1.666	582337	2537	1.24
	High Organic	1.550	712143	2504	1.26
Abacavir	Flow1	2.475	928580	2698	1.32
	Flow2	2.039	757879	2904	1.29
	Low Organic	2.485	761420	2229	1.33
	High Organic	2.375	928580	2698	1.32
Dolutegravir	Flow1	3.488	731317	2809	1.38
	Flow2	2.877	596086	2421	1.34
	Low Organic	4.705	595173	3060	1.44
	High Organic	3.988	731317	2809	1.38
Degradation studies

According to stability testing of new drug substances and products, a guideline of ICH desires that to clarify the inherent stability characteristics of the active component stress testing was implemented. The aim of this work was to carry out the stress degradation studies on the lamivudine, abacavir and dolutegravir using the proposed method.

Formulation drug products were exposed to thermal stress, oxidative stress, photolytic, hydrolytic stress under acidic medium and basic medium. An ideal stability indicating method, quantifies the standard drug alone and also resolves its degradation products. So described different types of stress used were thermal, oxidative, photolytic, acidic and basic hydrolysis. Some unknown degradant peaks were observed in the acidic, basic, peroxide, photolytic and thermal studies. But based on the peak purity, no degradant peaks were reported at the retention time (RT) of lamivudine, abacavir and dolutegravir. Therefore, the drugs were stable up to the specified period of 12 h when the proposed method is used, or they are susceptible to acids, alkali, hydrogen peroxide, photolytic and thermal.

Hydrolytic degradation under acidic conditions

Pipette 3 ml from standard stock solution containing 0.15 mg/ml, 0.3 mg/ml and 0.025 mg/ml of lamivudine, abacavir and dolutegravir into a 10 ml flask and added 1.0 ml of 0.1N HCl. Then, the volumetric flask was kept at room temperature (RT) for 6 h and then neutralized with 0.1N NaOH and added with diluents up to the mark. By using 0.45-micron syringe filters, filtered the solution and placed in vials. The results showed multiple peaks for the degradation products. The degradations percentage of the drugs observed were 5.00%, 8.03% and 20.69% (table 8), here no degradant peaks were observed at a retention time (RT) of lamivudine, abacavir and dolutegravir.

Hydrolytic degradation under alkaline conditions

Pipette 3 ml from a standard stock solution containing 0.15 mg/ml, 0.3 mg/ml and 0.025 mg/ml of lamivudine, abacavir and dolutegravir into a 10 ml flask and added 1 ml of 0.1N NaOH. Then the volumetric flask was kept at room temperature (RT) for 6 h and then neutralized with 0.1N HCl and filled with diluents up to the mark. By using 0.45-micron syringe filters, filtered the solution and placed in vials. The results showed multiple peaks for the degradation products. The degradations percentage of the drugs observed were 5.00%, 8.03% and 20.69% (table 8), here no degradant peaks were observed at a retention time (RT) of lamivudine, abacavir and dolutegravir.

Table 8: Degradation results of lamivudine, abacavir and dolutegravir

Type of degradation	Lamivudine	Abacavir	Dolutegravir						
Sample area	% recovered	% of degradation	% recovered	% of degradation	% recovered	% of degradation			
Acid	889116	95.00	5.00	179391	91.97	8.03	214934	79.31	20.69
Alkali	801257	85.61	14.39	168274	86.27	13.73	225846	83.34	16.66
Thermal	786258	84.01	15.99	185487	95.09	4.91	254892	82.89	17.11
Oxidative	842575	90.03	9.97	160578	82.32	17.68	224635	94.06	5.94
Photolytic	852547	89.96	11.04	162587	83.35	16.65	221578	81.76	18.24

This method is specific for the determination of lamivudine, abacavir and dolutegravir with no interference and with good linearity, accuracy and precision. We achieved good separation for selected drugs. In addition, this separation technique uses simple, low cost and short runtime. The chromatographic conditions of this method were optimized for a short 8 min run time in RP-UPLC. It is an excellent method for the quantification of lamivudine, abacavir and dolutegravir in their pharmaceutical dosage forms.

At present, only HPLC methods were available in this combination. No UPLC methods were found till date.

CONCLUSION

The proposed RP-UPLC method for determination of lamivudine, abacavir and dolutegravir was developed and validated in pharmaceutical formulations. The described method adapted the use of an economical and easily available mobile phase, stationary phase, convenient and easy extraction procedures. The method was sensitive enough to detect low concentration of 0.021 µg/ml, 0.330 µg/ml and 0.038 µg/ml for lamivudine, abacavir and dolutegravir respectively. Recovery of selected drugs from spiked control samples were >99% by using this method. A stability-indicating RP-UPLC method for the estimation of selected drugs in their solid dosage forms was established and validated in accordance with the ICH guidelines.

ABBREVIATION

ART: Antiretroviral therapy; INI: Integrase Inhibitors; STR: Single tablet regimen; NRTIs: Nucleoside Reverse Transcriptase Inhibitors; UV Detector: Ultraviolet Detector; RSD: Relative standard deviation; HPLC: High-Performance Liquid Chromatography; ICH: International Conference on Harmonization; SD: Standard deviation; PDA: Photo diode array; LOD: Limit of detection; LOQ: Limit of quantitation; DNA: Deoxyribonucleic acid; RNA: Ribonucleic acid; HIV: Human Immunodeficiency Virus; UPLC: Ultra Performance Liquid Chromatography; USP: United States Pharmacopeia; RT: Retention time; RT: Room temperature.

ACKNOWLEDGMENT

We thank Department of Chemistry, GITAM Institute of Technology, GITAM University, Visakhapatnam for providing the necessary facilities.

AUTHOR CONTRIBUTION

Corresponding author and first author proposed the design of the study. The first author drafted the manuscript and carried out the all
The authors declare that they have no conflict of interest. All the authors have contributed equally. The authors read and approved the final manuscript.

REFERENCES

1. Palella FJ Jr, Baker RK, Moorman AC, Cmiel JS, Wood KC, Brooks JT, et al. Mortality in the highly active antiretroviral therapy era: changing causes of death and disease in the HIV outpatient study. J Acquired Immune Defic Syndr 2006;43:27-34.

2. Nacchega P, Shilpa OA, Gross R, Dowdy DW, Sax PE, et al. Lower pill burden and once-daily dosing antiretroviral treatment regimens for HIV infection: a meta-analysis of randomized controlled trials. Clin Infect Dis 2014;58:1297-307.

3. Shah BM, Shafer J, Desimona JA. Dolutegravir: a new integrase strand transfer inhibitor for the treatment of HIV. Pharmacotherapy 2014;34:506-20.

4. Dinakar KR. Changes in the cd4 counts, hemoglobin and body weight in patients with hiv alone and hiv-tb co-infection. Asian J Pharma Clin Res 2014;7:35-8.

5. Sandeep B, Vasant RC, Rahgundenan M, Mohammad A, Suresh BS. Factors influencing the substitution of antiretroviral therapy in human immunodeficiency virus/acquired immune-deficiency syndrome patients on first-line highly active antiretroviral therapy. Asian J Pharma Clin Res 2014;7:117-20.

6. Rajasekaran A, Manasvi S. Solid state characterization and quantification of abacavir sulphate, lamivudine and zidovudine and its tablet formulation by X-ray powder diffraction method. Int J Pharm Pharm Sci 2016;8:141-4.

7. Nelson K, Varadarajan P, Narendra C, Kalyani P. Development and evaluation of oral controlled release matrix tablets of lamivudine: optimization and in vitro-in vivo studies. Int J Pharm Pharm Sci 2015;7:95-101.

8. Naveen P, Rohit D, Manubhai PM, Vijayal K. Adverse drug reactions with the second-line antiretroviral drug regimen. Asian J Pharma Clin Res 2014;7:75-9.

9. Eron JJ, Benoit SL, Jemsek J, MacArthur RD, Santana J, Quinn JB, et al. Treatment with lamivudine, zidovudine, or both in HIV-positive patients with 200 to 500 CD4+cells per cubic millimetre. New Engl J Med 1995;333:1662-9.

10. Gallant JE, Rodriguez AE, Weinberg WG, Young B, Berger DS, Lim ML, et al. Early virologic nonresponse to tenofovir, abacavir, and lamivudine in HIV-infected antiretroviral-naive subjects. J Infect Dis 2005;192:1921-30.

11. Gulick RM, Ribaudo HJ, Shikuma CM, Lustgarten S, Squires KE, Meyer WA, et al. Lower pill burden and once-daily dosing antiretroviral treatment regimens for HIV infection: a meta-analysis of randomized controlled trials. Clin Infect Dis 2014;58:1297-307.

12. Shah BM, Shafer J, Desimona JA. Dolutegravir: a new integrase strand transfer inhibitor for the treatment of HIV. Pharmacotherapy 2014;34:506-20.

13. Dinakar KR. Changes in the cd4 counts, hemoglobin and body weight in patients with hiv alone and hiv-tb co-infection. Asian J Pharma Clin Res 2014;7:35-8.

14. Sandeep B, Vasant RC, Rahgundenan M, Mohammad A, Suresh BS. Factors influencing the substitution of antiretroviral therapy in human immunodeficiency virus/acquired immune-deficiency syndrome patients on first-line highly active antiretroviral therapy. Asian J Pharma Clin Res 2014;7:117-20.

15. Rajasekaran A, Manasvi S. Solid state characterization and quantification of abacavir sulphate, lamivudine and zidovudine and its tablet formulation by X-ray powder diffraction method. Int J Pharm Pharm Sci 2016;8:141-4.

16. Nelson K, Varadarajan P, Narendra C, Kalyani P. Development and evaluation of oral controlled release matrix tablets of lamivudine: optimization and in vitro-in vivo studies. Int J Pharm Pharm Sci 2015;7:95-101.

17. Naveen P, Rohit D, Manubhai PM, Vijayal K. Adverse drug reactions with the second-line antiretroviral drug regimen. Asian J Pharma Clin Res 2014;7:75-9.

18. Eron JJ, Benoit SL, Jemsek J, MacArthur RD, Santana J, Quinn JB, et al. Treatment with lamivudine, zidovudine, or both in HIV-positive patients with 200 to 500 CD4+cells per cubic millimetre. New Engl J Med 1995;333:1662-9.

19. Gallant JE, Rodriguez AE, Weinberg WG, Young B, Berger DS, Lim ML, et al. Early virologic nonresponse to tenofovir, abacavir, and lamivudine in HIV-infected antiretroviral-naive subjects. J Infect Dis 2005;192:1921-30.

20. Gulick RM, Ribaudo HJ, Shikuma CM, Lustgarten S, Squires KE, Meyer WA, et al. Triple-nucleoside regimens versus efavirenz-containing regimens for the initial treatment of HIV-1 infection. New Engl J Med 2004;350:1850–61.

21. Khanlou H, Yeh V, Guyer B, Farthing C. Early virologic failure in HIV-infected patients. AIDS Patient Care STDS 2005;19:135-40.

22. Naveen P, Rohit D, Manubhai PM, Vijayal K. Adverse drug reactions with the second-line antiretroviral drug regimen. Asian J Pharma Clin Res 2014;7:95-101.

23. Eron JJ, Benoit SL, Jemsek J, MacArthur RD, Santana J, Quinn JB, et al. Treatment with lamivudine, zidovudine, or both in HIV-positive patients with 200 to 500 CD4+cells per cubic millimetre. New Engl J Med 1995;333:1662-9.

24. Gallant JE, Rodriguez AE, Weinberg WG, Young B, Berger DS, Lim ML, et al. Early virologic nonresponse to tenofovir, abacavir, and lamivudine in HIV-infected antiretroviral-naive subjects. J Infect Dis 2005;192:1921-30.

25. Gulick RM, Ribaudo HJ, Shikuma CM, Lustgarten S, Squires KE, Meyer WA, et al. Triple-nucleoside regimens versus efavirenz-containing regimens for the initial treatment of HIV-1 infection. New Engl J Med 2004;350:1850–61.