Tumor Lysis Syndrome in Patients With Solid Tumors: A Systematic Review of Reported Cases

Riyadh M. Alqurashi 1, Husam H. Tamim 1, Ziyad D. Alsubhi 1, Alyazid A. Alzahrani 1, Emad Tashkandi 2, 1
1. College of Medicine, Umm Al-Qura University, Makkah, SAU 2. Medical Oncology, King Abdullah Medical City, Makkah, SAU

Corresponding author: Riyadh M. Alqurashi , riy4dh.m@gmail.com

Abstract

Tumor lysis syndrome (TLS) in patients with solid tumors is a rare and potentially fatal condition associated with anti-cancer treatment. Its outcome depends on awareness, identification of high-risk patients, and implementation of appropriate preventive measures. A systematic review was conducted according to PRISMA guidelines of case reports describing the occurrence of TLS in patients with solid tumors, primarily to identify potentially unrecognized or unusual clinical findings and outcomes. We searched the PubMed, EMBASE, and Cochrane databases and conference abstracts and performed manual searches for case reports and case series published in English and describing patients who developed TLS.

A total of 124 studies (118 case reports and six case series) describing the findings for 132 patients were included. The most common cancers were hepatocellular carcinoma (17%, n = 22), lung cancer (13%, n = 17), and melanoma (10%, n = 15). The most common risk factor was metastatic disease (75%, n = 100). TLS was induced by chemotherapy in 48% (n = 64) of the patients. Clinical manifestations of TLS developed within three days of anti-cancer treatment in 37% of the patients (n = 49), while 52% (n = 68) received the full dose of anti-cancer treatment. Gastrointestinal symptoms occurred in 33% of the patients (n = 44), hyperuricemia in 95% (n = 125), and elevated creatinine level occurred in 85% of the patients (n = 112), while 58% (n = 77) of the patients received intravenous fluids, only 49% received allopurinol, and 24% (n = 32) received rasburicase. A total of 101 patients (77%) were treated in the ward, and 54% (n = 71) died. The mortality rate associated with TLS in patients with solid tumors remains high. Adequate management requires awareness, early recognition, and identification of patients at high risk. Interdisciplinary team management is essential to reduce mortality.

Introduction And Background

Tumor lysis syndrome (TLS) is an oncological emergency that occurs secondary to the breakdown of intracellular components such as potassium, phosphorus, and nucleic acids [1]. The release of these products into the bloodstream leads to hyperkalemia, hyperphosphatemia, hyperuricemia, and hypocalcemia, inducing severe complications such as acute renal failure, cardiac arrhythmia, heart failure, seizure, and ultimately death if the patient is not managed appropriately [2,3]. Although the rapid destruction of malignant cells occurs after exposure to anti-cancer treatments such as chemotherapy, radiotherapy, monoclonal antibody treatment, radiofrequency ablation (RFA), corticosteroid treatment, hormonal therapy, and surgery, it can also occur in the absence of anti-cancer treatments, especially if the tumor is bulky or rapidly proliferating. These cases are categorized as spontaneous TLS [4-6].

TLS is commonly observed in hematological malignancies such as Burkitt or non-Burkitt lymphoma and acute leukemia. However, since solid tumors have a relatively prolonged doubling time and slower growth rate, and the effect of therapy takes longer time than hematological malignancies, TLS is rarely observed in solid tumors. However, some cases of TLS have been reported in patients with small-cell lung cancer, breast cancer, melanoma, and sarcoma [7-13]. The risk factors for TLS could be due to patient-related factors such as dehydration, chronic renal failure, elevated pretreatment lactate dehydrogenase (LDH) or uric acid levels, and azotemia or tumor-related factors such as bulkiness, rapid growth, or a tendency to spread to other organs, specifically the bone marrow [14]. TLS is an oncological emergency that needs to be recognized urgently, and if treated early, complications can be prevented, thereby improving the outcomes [15]. The Cairo-Bishop laboratory and clinical criteria are used to diagnose TLS (Table 1) [16]. The presence of two or more laboratory abnormalities starting either three days before or seven days after treatment of the tumor can be used to define laboratory TLS. However, clinical TLS is characterized by the appearance of two laboratory abnormalities and one or more clinical symptoms [17,18].

How to cite this article

Alqurashi R M, Tamim H H, Alsubhi Z D, et al. (October 25, 2022) Tumor Lysis Syndrome in Patients With Solid Tumors: A Systematic Review of Reported Cases. Cureus 14(10): e30652. DOI 10.7759/cureus.30652
Laboratory criteria
(≥2 of the following): Uric acid ≥ 476 μmol/mL (8 mg/dL) or 25% increase from baseline; Phosphorus ≥ 1.45 mmol/L (4.5 mg/dL) or 25% increase from baseline; Potassium ≥ 6.0 mmol/L (6 mEq/L) or 25% increase from baseline; Calcium ≤ 1·75 mmol/L or 25% decrease from baseline

Clinical criteria
Any of following with laboratory criteria: Creatinine ≥ 1.5 upper limit of normal. Cardiac arrhythmia or sudden death. Seizures.

TABLE 1: Cairo-Bishop criteria for tumor lysis syndrome

TLS is a potentially fatal condition in patients with solid tumors and is associated with worse outcomes if it occurs spontaneously [16]. It has a poor prognosis, especially if it is not diagnosed early; therefore, awareness, recognition, prevention, and early intervention are warranted to prevent the fatal consequences of TLS.

In this paper, we present a systematic review of the reported cases of TLS in patients with solid tumors that developed spontaneously or as adverse effects of anti-cancer treatments such as chemotherapy, immunotherapy, targeted therapy, and hormonal therapy. By describing the occurrence of TLS in patients with solid tumors, we primarily aim to identify potentially unrecognized or unusual clinical findings and outcomes. Also, determine the most common clinical manifestations, time to TLS, number of doses administered before TLS, treatment dosage used, presenting symptoms, and laboratory abnormalities. We also reported the management and clinical outcomes to identify patterns that could facilitate early diagnosis and management of this potentially fatal condition.

Review

Materials and methods

Search Method

Digital databases were used including PubMed, EMBASE, and Cochrane from 1983 to July 1, 2020, for case reports and case series of TLS in patients with solid tumors. In addition, abstracts and presentations from relevant conference proceedings, including the American Society of Clinical Oncology (ASCO) and the European Society for Medical Oncology (ESMO) have been used.

Study Selection and Eligibility criteria

Two independent reviewers (ZA and HT) initially screened the abstracts and titles. Then, two other reviewers (AA and RA) assessed the full texts of the retrieved articles and resolved disagreements in conjunction with a third reviewer (HT). The eligibility criteria were as follows: case reports published in English, describing adults with solid tumors, and reporting spontaneous TLS or TLS that developed after anti-cancer treatments such as chemotherapy, targeted therapy, hormonal therapy, immunotherapy, or radiotherapy. We excluded studies involving hematological tumors, pediatric patients, and non-case reports/series. Keywords for the literature search included published case reports, case series, TLS, solid tumors, and anti-cancer treatment. The search strategy is provided in Appendix 1.

Data Extraction

This study was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement [19]. A protocol was created in advance, and data extraction for reported cases of spontaneous TLS or TLS that developed as an adverse effect of anti-cancer treatment was performed independently by two reviewers (ZA and AA), with disagreements resolved by a third reviewer (RA).

We extracted data on patient characteristics (first author, year of publication, age, sex, type of cancer), risk factors (metastasis, elevated pre-treatment LDH level, bulky tumor, and pre-existing renal compromise), and comorbidities. The anti-cancer treatments administered in the cases included chemotherapy, immunotherapy, targeted therapy, hormonal therapy, and radiotherapy. The most common clinical parameters were time to TLS (1-2 days, ≥3 days, spontaneous), number of doses administered before TLS (1 dose, 2-5 doses, >5 doses, spontaneous), dosage of treatment used (full or reduced dose), presenting symptoms, and laboratory abnormalities (uric acid, phosphorus, potassium, calcium, creatinine, urea, and LDH levels). Lastly, we collected information regarding management and clinical outcomes, use of anti-TLS measures, location of treatment received (ward or ICU), and outcome (dead or alive).

Quality Assessment

We assessed the quality of each study by using the criteria recommended by the International Society for Pharmacoepidemiology (ISPE) and the International Society of Pharmacovigilance [20]. Two independent reviewers (HT and RA) assessed the quality of the included studies across the following domains: (i) relevance of the title for TLS, (ii) adequate description of clinical characteristics (demographics, medical
history, physical examination, and outcomes (alive or dead)), (iii) adequate description of anti-cancer drugs (identification of the drug class, dosage, drug reaction, and concomitant therapy) and time to develop adverse events; (iv) adequate description of the adverse event (TLS); and (v) discussion section supporting the relationship between the anti-cancer drug and the reported adverse events (TLS). Each aspect was classified as yes, partial, or no. Any disagreements were resolved by a third reviewer. The results of the assessment are presented in Appendix 2.

Data Synthesis and Analysis

All data were analyzed using IBM SPSS Statistics for Windows, Version 25.0 (Released 2017; IBM Corp., Armonk, New York, United States). Descriptive statistics (mean, percentage, and standard deviation) were used to report continuous variables, and frequencies and percentages were used to present categorical variables.

Results

Study Characteristics

In total, 238 citations were retrieved. After the removal of duplicates, we identified 172 relevant citations and reviewed the full publications. We excluded 17 studies since they were not case reports. We included 124 studies reporting on 132 patients as provided in Figure 1. The characteristics of the included studies are given in Appendix 3.

Quality Appraisal

The quality of the included studies was moderate to high since all included studies had relevant titles,
adequate descriptions of patients’ demographic data (96.7%), current health status (95.1%), medical history (87.9%), physical examination findings (97.5%), and disposition (98%). The anti-cancer drugs were identified for all reported cases of drug-induced TLS, but the drug dosage was not provided in approximately one-quarter of the cases. The duration of drug administration, route, and first dose were reported (70.9%). Furthermore, concomitant therapy had no potential influence (94.3%). A description of the adverse event and severity was reported (92.7%), and an appropriate discussion supporting a causal link between the drug and the adverse events was provided (92.7%).

Patient Characteristics

The median age was 58 years (Interquartile range (IQR) 19-94 years) and the proportion of males was 62% (n = 83). The most common tumors were hepatocellular carcinomas (17%, n = 22), lung cancer (13%, n = 17), melanoma (10%, n = 13), breast cancer (10%, n = 13), prostate cancer (8%, n = 10), and colon cancer (8%, n = 11). The risk factors were metastatic disease in 75% of the patients (n = 100), elevated pre-treatment LDH level in 26% (n = 35), and bulky tumors in 25% (n = 33). The main comorbidities were hypertension, hepatitis B, and diabetes mellitus in 11%, 8%, and 6% of patients, respectively (Table 2).

Patient characteristics	N (%)
Median age	58, (range 19-94) years
Sex	
Male	83 (62%)
Female	49 (37%)
Cancers	
HCC	22 (17%)
Lung cancer	17 (13%)
Melanoma	13 (10%)
Breast cancer	13 (10%)
Colon cancer	11 (8%)
Prostatic cancer	10 (8%)
Renal cell carcinoma	6 (5%)
Gastric cancer	6 (5%)
Ovarian cancer	5 (4%)
Uterine cancer	5 (4%)
Germ cell tumors	3 (2%)
Othera	21 (16%)
Risk factors	
Metastasis	100 (75%)
Elevated pre-treatment LDH	35 (26%)
Bulky tumor	33 (25%)
Large tumor burden	14 (11%)
Pre-existing renal compromise	2 (2%)
NA	21 (16%)
Main Comorbidities	
HTN	14 (11%)
Hepatitis B	10 (8%)
DM	8 (6%)
Dyslipidemia	4 (3%)
COPD	3 (2%)
TABLE 2: Characteristics of patients in the reported cases

Condition	N (%)
CKD	3 (2%)
Coronary artery disease	3 (2%)
Other\(^A^\)	6 (5%)
NA	94 (71%)

\(^A^\) Other tumors included choriocarcinoma, osteosarcoma, oligodendroglioma, neuroendocrine tumors, Merkel cell carcinoma, vulvar tumor, gastrointestinal stromal tumors, pheochromocytoma, thymoma, and retroperitoneal soft tissue sarcoma.

\(^B^\) Other comorbidities included congestive heart failure, cirrhosis, and arthritis

Anti-Cancer Treatment Characteristics

The most common anticancer treatments that induced TLS were chemotherapy (48%; n = 64), targeted therapy (8%; n = 11), and radiotherapy (7%; n = 9). Details of the classes and names are displayed in Table 3.

Anti-cancer therapy

Treatment	N (%)
Chemotherapy	
Alkylating agents (cisplatin, cyclophosphamide, carboplatin, dacarbazine, oxaliplatin, ifosfamide)	64 (48%)
Plant alkaloids (paclitaxel, vincristine, docetaxel, vinblastine, hydroxycamptothecin)	
Anthracyclines (doxorubicin, epirubicin, Adriamycin, mitoxantrone)	
Topoisomerase inhibitors (etoposide, irinotecan)	
Antibiotics (bleomycin, actinomycin, mitomycin)	
Targeted therapy	
Kinase inhibitor (paclizabine, sorafenib, sunitinib, imatinib)	11 (8%)
Anti-Her2 (trastuzumab, pertuzumab)	
Anti-EGFR (cetuximab)	
Anti-VEGF (bevacizumab)	
Radiotherapy	
Radiotherapy	9 (7%)
Immunotherapy	
Interleukin-2 Anti CTLA4 (ipilimumab)	4 (3%)
Autologous lymphocyte therapy	
Hormonal therapy	
Anti ER/PR receptors (letrozole)	3 (2%)
Anti-androgens (bicalutamide)	
Antiestrogen (tamoxifen)	
Combined androgen blockade (goserelin acetate)	
Others\(^A^\)	7 (5%)

Table 3: Characteristics of the anti-cancer treatments

Treatment	N (%)
Her2: human epidermal growth factor receptor 2; eGFR: epidermal growth factor receptor; VEGF: vascular endothelial growth factor; CTLA4: cytotoxic T-lymphocyte-associated protein 4; ER: estrogen receptor; PR: progesterone receptor.	
Due to the use of combination therapies such as chemo-targeted, immune-targeted, and chemo-radiation, some variables may not add up to 100%.	

\(^A^\) Others included corticosteroid, eribulin, immunomodulatory therapy (thalidomide), bone-modifying agent (zoledronic acid), and surgery.

Clinical Manifestations of TLS in Patients with Solid Tumors

TLS occurred spontaneously in 24% (n = 32) of the cases and was treatment-induced in the remaining 76% (n = 100). The number of doses before TLS development was variable, with 17% of the cases showing TLS occurrence after the first dose (n = 23). Time to TLS development was within 5 days of anti-cancer treatment in 37% (n = 49) of the cases, while 52% (n = 68) of the patients received a full dose of anti-cancer treatment. The most commonly reported symptoms were gastrointestinal, genitourinary, and central nervous system symptoms in 33%, 35%, and 26%, respectively. The most reported laboratory abnormalities were hyperuricemia in 95% of the cases (n = 125), followed by elevated creatinine levels in 85% (n = 112) and hyperphosphatemia in 83% (n = 110) of the cases (Table 4).
TABLE 4: Clinical manifestations of TLS in patients with solid tumors

TLS: tumor lysis syndrome; GI: gastrointestinal; CNS: central nervous system; GU: genitourinary; NA: not available

TLS manifestation	N (%)
Spontaneous	32 (24%)
Treatment-induced	100 (76%)
Number of doses before TLS	
1	23 (17%)
2-3 or more	5 (4%)
NA	72 (55%)
Time to TLS development	
Spontaneous	32 (24%)
1-2 days	37 (28%)
≥3 days	49 (37%)
NA	13 (10%)
Dose of anti-cancer treatment	
Spontaneous	32 (24%)
Full-dose	68 (52%)
Dose reduction	3 (2%)
NA	29 (22%)
Presenting symptoms	
GI symptoms	44 (33%)
GU symptoms	44 (33%)
CNS symptoms	34 (26%)
Respiratory symptoms	25 (19%)
Constitutional symptoms	15 (11%)
Others	13 (10%)
Cardiovascular Symptoms	11 (8%)
NA	20 (15%)
Presenting laboratory findings	
Elevated uric acid	125 (95%)
Elevated creatinine	112 (85%)
Elevated phosphate	110 (83%)
Elevated LDH	95 (72%)
Elevated potassium	95 (72%)
Low calcium	79 (60%)
Elevated urea	68 (52%)

Management and Clinical Outcomes

Treatment of TLS was mainly based on hydration (58%; n = 77), allopurinol administration (49%; n = 65), and dialysis (50%; n = 40). However, rasburicase use was reported in 24% of patients (n = 32). The majority (77%, n = 101) of the patients were treated in the ward, while 16% (n = 21) were treated in the ICU. More than half...
(54%, n = 71) of the patients who developed TLS died, and 45% (n = 59) survived (Table 5).

Table 5: Management and clinical outcomes in reported cases

Management	N (%)
IVF	77 (58%)
Allopurinol	65 (49%)
Dialysis	40 (30%)
Diuretics	34 (26%)
Rasburicase	32 (24%)
Mechanical ventilation	10 (8%)
Urate oxidase	2 (2%)
NA	16 (12%)

Location	
Ward	101 (77%)
ICU	21 (16%)
ED	10 (8%)

Outcomes	
Dead	71 (54%)
Alive	59 (45%)
NA	2 (2%)

IVF: intravenous fluid; NA: not available; ICU: intensive care unit; ED: emergency department

Discussion

Our results showed that males aged 58 years are at higher risk for TLS, which is similar to the findings reported by Mirrakhimov et al. [21]. However, we also observed that hepatocellular carcinoma and lung cancer were the most common cancers, in contrast to the findings reported by Mirrakhimov et al. [21]. This is because our review is more up-to-date and the incidence of TLS in solid tumors is increasing due to advancements in novel anti-cancer treatments [22]. Our review demonstrated that metastatic cancer was a major risk factor for TLS, which is similar to the findings reported by Jallad et al. [23] and Vodopivec et al. [24]. Lastly, chemotherapy was the most common anti-cancer treatment attributed to TLS (48%), as reported by Vodopivec et al. (58%) [24].

To the best of our knowledge, this is the first report to address the manifestations of TLS in solid tumors. TLS occurred spontaneously in 24% of the patients and was induced by the treatment in the remaining 76%. Time to TLS development was >5 days following anti-cancer treatment, and 52% of the patients received the full dose of anti-cancer treatment. Additionally, the most commonly reported symptoms were gastrointestinal and genitourinary symptoms in 33% of the patients. The most reported laboratory abnormalities were hyperuricemia (95%), followed by elevated creatinine level (85%), as reported by Vodopivec et al. [24].

In patients with solid tumors who had risk factors for TLS development, large amounts of fluids and allopurinol should be administered before the start of treatment [25]. Once the patient is diagnosed with TLS, treatment should be started using massive amounts of fluids and xanthine oxidase inhibitors such as rasburicase [26]. Our systematic review demonstrated that 58% of patients received intravenous fluids, 49% received allopurinol, and only 24% received rasburicase. These findings illustrate the need for continuous education programs and awareness campaigns to enhance the knowledge of physicians to identify patients at risk and start anti-TLS treatment early and effectively. Moreover, 77% of the patients were treated in the ward, not in the ICU setting. Surprisingly, we found that the mortality rate was 54%, and this is the first report describing the mortality rate associated with TLS in patients with solid tumors. Previous reports evaluating TLS in patients with hematological malignancies described mortality rates ranging from 20% to 50%, with the highest reported rate of 79% in AML patients [27-30].

Our systematic review has several strengths, including the fact that it is the largest and most comprehensive systematic review of case reports describing TLS in patients with solid tumors, manifestations of TLS
following anti-cancer treatment, and the most common symptoms. However, our study also has several limitations: an important caveat for interpreting our study findings is the nature of case reports, since authors report unique cases and the findings may not account for unpublished reports of TLS. One inherent weakness of this study is the limited availability of data in case reports. Another important limitation is that the reporting of the drug dosage, number of doses, and schedule was incomplete in several case reports, and we were unable to determine whether the number of doses influenced the incidence of TLS.

We believe that the management of TLS should focus on risk assessment, prophylaxis, and treatment [31]. Aggressive hydration with oral and intravenous fluids should be initiated before the start of anti-cancer treatment, and oral hydration and adequate urine output should be maintained for several days after the completion of the treatment [32]. Urate-lowering agents, such as allopurinol or rasburicase, are recommended for prophylaxis and management of TLS [26]. Febuxostat is also a urate-lowering agent that can provide better control of hyperuricemia in TLS with a good safety profile if allopurinol is contraindicated or not available.

The findings show that TLS is a lethal condition, and early identification with prompt initiation of preventative measures is essential to save patient lives. Although the data indicated modest prognostic benefits, early initiation of anti-TLS measures will improve oncological outcomes. Care of patients with TLS requires an interdisciplinary approach including nephrologists, intensivists, oncologists, and internists in closed observation units, such as intermediate care or ICUs [33,34].

Conclusions
In this systematic review, we found that older men had a higher tendency to develop TLS. Hepatocellular carcinoma was the most common type of cancer leading to TLS development, followed by lung cancer and melanoma. Metastatic cancer was a contributing risk factor for TLS development. Chemotherapy was the most common class of anti-cancer treatment that induced TLS. Manifestations of TLS developed within ≥3 days following anti-cancer treatment, and half of the patients received the full dose of anti-cancer treatment. Gastrointestinal and genitourinary symptoms were the most commonly reported, and almost all patients showed high uric acid and elevated creatinine levels.

Appendices
Appendix 1

Pubmed:	Keywords
#	
1	"tumor lysis syndrome"
2	"spontaneous tumor lysis syndrome"
3	"Acute tumor lysis syndrome"
4	"tumour lysis syndrome"
5	OR/1-4
6	("Solid tumor" OR "Solid cancer" OR "solid carcinoma" OR "solid neoplasm")
7	("breast cancer" OR "breast carcinoma")
8	("lung cancer" OR "lung carcinoma")
9	("liver cancer" OR "hepatic carcinoma")
10	("ovarian cancer" OR "ovarian carcinoma" OR "ovarian tumor")
	("colon cancer" OR "colon carcinoma" OR "colon tumor")
11	("gastric cancer" OR "gastric tumor")
12	("Brain cancer" OR "brain tumor")
13	("prostate cancer" OR "prostate tumor")/"skin tumor"
14	"skin tumor"
15	sarcoma
16	("bone cancer" OR "bone carcinoma")
17	("pancreatic cancer" OR "pancreatic carcinoma" OR "pancreatic tumor")
18	"cervical cancer"
20 "cervix carcinoma"
21 ("endometrial cancer" OR "endometrial tumor" OR "endometrial adenocarcinoma")
22 ("esophageal cancer" OR "esophageal tumor")
23 ("hepatocellular cancer" OR "hepatocellular carcinoma") ("small cell cancer" OR "small cell carcinoma" OR "small cell tumor")
24 ("small cell cancer" OR "small cell carcinoma" OR "small cell tumor")
25 ("germ cell cancer" OR "germ cell tumor")
26 osteosarcoma
27 neuroblastoma
28 medulloblastoma
29 ("renal cancer" OR "renal carcinoma" OR "renal cell cancer" OR "renal cell carcinoma" OR "renal cell tumor")
30 mesothelioma
31 glioblastoma
32 melanoma
33 OR/6-32
34 5 AND 33
35 English
36 Human
37 Adult(+19)
38 OR 35-37
39 34 And 38

Ovid:
Keywords
1 All of resources were selected except books
2 "tumor lysis syndrome"
3 "spontaneous tumor lysis syndrome"
4 "Acute tumor lysis syndrome"
5 "tumour lysis syndrome"
6 OR/2-5
7 ("Solid tumor" OR "Solid cancer" OR "solid carcinoma" OR "solid neoplasm")
8 ("breast cancer" OR "breast carcinoma")
9 ("lung cancer" OR "lung carcinoma")
10 ("liver cancer" OR "hepatic carcinoma")
11 ("ovarian cancer" OR "ovarian carcinoma" OR "ovarian tumor")
12 ("colon cancer" OR "colon carcinoma" OR "colon tumor")
13 ("gastric cancer" OR "gastric tumor")
14 ("Brain cancer" OR "brain tumor")
15 ("prostate cancer" OR "prostate tumor")
16 "skin tumor"
17 sarcoma
18 ("bone cancer" OR "bone carcinoma")
19 ("pancreatic cancer" OR "pancreatic carcinoma" OR "pancreatic tumor")
20	“cervical cancer”
21	“cervix carcinoma”
22	(“endometrial cancer” OR “endometrial tumor” OR “endometrial adenocarcinoma”)
23	(“esophageal cancer” OR “esophageal tumor”)
24	(“hepatocellular cancer” OR “hepatocellular carcinoma”)
25	(“small cell cancer” OR “small cell carcinoma” OR “small cell tumor”)
26	(“germ cell cancer” OR “germ cell tumor”)
27	Osteosarcoma
28	neuroblastoma
29	medulloblastoma
30	(“renal cancer” OR “renal carcinoma” OR “renal cell cancer” OR “renal cell carcinoma” OR “renal cell tumor”)
31	mesothelioma
32	glioblastoma
33	Melanoma
34	OR/7-33
35	6 AND 34
36	D duplicates from ovid
37	English
38	Human
39	Adult(+19)
40	OR 36-39
41	35 And 40

Cochrane library:
1	“tumor lysis syndrome”
2	“spontaneous tumor lysis syndrome”
3	“Acute tumor lysis syndrome”
4	“tumour lysis syndrome”
5	OR/1-4
6	(“Solid tumor” OR “Solid cancer” OR “solid carcinoma” OR “solid neoplasm”)
7	(“breast cancer” OR “breast carcinoma”)
8	(“lung cancer” OR “lung carcinoma”)
9	(“liver cancer” OR “hepatic carcinoma”)
10	(“ovarian cancer” OR “ovarian carcinoma” OR “ovarian tumor”)
11	(“colon cancer” OR “colon carcinoma” OR “colon tumor”)
12	(“gastric cancer” OR “gastric tumor”)
13	(“Brain cancer” OR “brain tumor”)
14	(“prostate cancer” OR “prostate tumor”)
15	“skin tumor”
16	sarcoma
17	(“bone cancer” OR “bone carcinoma”)
18	(“pancreatic cancer” OR “pancreatic carcinoma” OR “pancreatic tumor”)
19	“cervical cancer”
20 "cervix carcinoma"
21 ("endometrial cancer" OR "endometrial tumor" OR "endometrial adenocarcinoma")
22 ("esophageal cancer" OR "esophageal tumor")
23 ("hepatocellular cancer" OR "hepatocellular carcinoma")
24 ("small cell cancer" OR "small cell carcinoma" OR "small cell tumor")
25 ("germ cell cancer" OR "germ cell tumor")
26 osteosarcoma
27 neuroblastoma
28 medulloblastoma
29 ("renal cancer" OR "renal carcinoma" OR "renal cell cancer" OR "renal cell carcinoma" OR "renal cell tumor")
30 mesothelioma
31 glioblastoma
32 Melanoma
33 OR/ 6-32
34 5 AND 33

TABLE 6: Search methodology

Author	Year	Title	Demographics (age, sex)	Current health status	Medical history	Physical exam	Patient disposition	Drug identification	Dosage	Drug reaction interface	Concomitant therapy	Adverse events	Discuss
Katiman	2012		Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	
Kekre	2012		Yes	Yes	Yes	Yes	Yes	No	No	No	No	Yes	
Mouallem	2013		Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	
Durham	2017		Yes	Yes	Yes	Yes	Yes	No	Yes	No	No	No	
D’Alessandro	2010		Yes	Yes	Yes	Yes	Yes	No	No	No	No	Yes	
Drakos	1994		Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	
Tomlinson	1984		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Marinella	1999		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Castro	1999		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Han	2008		Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	
Lehner	2005		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Sklarin	1995		Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	Yes	
Borne	2009		Yes	Yes	No	Yes	Yes	Yes	Yes	Partial	Yes	Yes	
Author	Year	Yes	No	Yes	Yes								
-----------------	------	-------	-------	-------	-------	-------	-------	-------	-------	------	-------	-------	
Hsieh 2009		Yes	No	Yes	Yes								
Kim 2017		Yes	Yes	Yes	Yes	Partial	Yes	No	No	No	No	Yes	
van Kalleveen	2018	Yes	No	Yes	Yes								
Vaidya 2015		Yes	No	Yes	Yes								
Baeksgaard 2003		Yes	No	Yes	Yes								
Farooqi 2015		Yes	Yes	Yes	Yes	Yes	No	Yes	No	No	No	Yes	
Gbaguidi 2016		Yes	Yes	Yes	Yes	Partial	Yes	No	NO	NO	NO	NO	Yes
Bilgrami 1993		Yes	No	Yes	Yes								
Camarata 2013		Yes	No	Yes	Yes								
Geum 2008		Yes	No	Yes	Yes								
Blanke 2000		Yes	No	Yes	Yes								
Wang 2010		Yes	No	No	Yes	Yes							
Bhardwaj 2018		Yes	No	Yes	Yes								
Ajzensztejn 2006		Yes	No	Yes	Yes								
Chan 2005		Yes	Yes	Yes	No	Yes	Yes	Yes	No	Yes	No	Yes	
Baudon 2016		Yes	Partial	Yes	No	Yes							
Berwal 2002		Yes	Partial	Yes	No	Yes							
Godoy 2010		Yes	No	Yes	No	Yes							
Gongona 2019		Yes	Partial	Yes	No	Yes							
Gold 1993		Yes	No	Yes	No	Yes							
Yoshimura 2008		Yes	Yes	No	Yes	Yes	Yes	No	No	No	No	yes	
Boikos 2013		Yes	Yes	Yes	No	Yes	Yes	Yes	Partial	Yes	No	Yes	
Dar 2014		Yes	Yes	Yes	No	Yes	Yes	Yes	Partial	Yes	No	Yes	
Woo 2001		Yes	Yes	Yes	Yes	Yes	No	No	No	No	No	No	
Vogelzang 1983		Yes	Partial	Yes	No	Yes							
Yahata 2008		Yes											
Chao 2012		Yes	Yes	Yes	Yes	No	No	No	Yes	No	Yes	Yes	
Author	Yes	Yes	Yes	Yes	No	Yes	No	Yes	Yes	Yes	No	Yes	Yes
--------	-----	-----	-----	-----	----	-----	----	-----	-----	-----	----	-----	-----
Baumann 1983 [58]	Yes	Yes	Yes	Yes	No	Yes	No	Yes	Yes	Yes	No	Yes	Yes
Abbass 2011 [59]	Yes	No	Yes	No									
Vishwanathan 2019 [60]	No	Yes	Yes	Yes	Yes	Yes	No	No	No	No	Yes	Yes	
Stoves 2001 [61]	Yes	No	Yes	No									
Tsai 2012 [62]	Yes	Yes	Yes	Yes	Yes	Yes	No	No	Yes	No	Yes	Yes	
Hirai 2011 [63]	Yes	Partial	Yes	No	Yes	Yes							
Henrich 2008 [64]	Yes	No	Yes	Yes									
Hussein 1990 [65]	Yes	No	Yes	Yes									
Burney 1998 [66]	Yes	Yes	Yes	Yes	Yes	Yes	Partial	Partial	No	Yes	Yes		
Chian 2015 [67]	Yes	Yes	Partial	Yes	No	Yes	Yes	Yes	Yes	No	Yes	Yes	
Agarwala 2017 [68]	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	Yes	Yes	
Catania 2017 [69]	Yes	Yes	Yes	Yes	No	No	No	No	No	No	Yes	Yes	
Ignaszewski 2017 [70]	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	Yes	Yes	
Jallad 2011 [71]	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	Yes	Yes	
Stuart 2017 [72]	Yes	Yes	partial	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	Yes
Jiang 2016 [73]	Yes	No	Yes	Yes	Yes								
Kallab 2001 [74]	Yes	No	Yes	Yes	Yes								
Kaplan 2012 [75]	Yes	No	Yes	Yes	Yes								
Sewani 2002 [76]	Yes	No	Yes	Yes	Yes								
Sakamoto 2007 [77]	Yes	No	Yes	Yes	Yes								
Taira 2015 [78]	Yes	No	Yes	No	Yes	Yes							
Sorscher 2004 [79]	Yes	No	Yes	Yes	Yes								
Shibata 2008 [80]	Yes	No	Yes	Yes	Yes								
Ragnault 2016 [81]	Yes	No	Yes	Yes	Yes								
Wright 2005 [82]	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	Yes	partial	
Weil 2018 [83]	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	Yes	Yes	
Mazzoni 2016 [84]	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	Yes	Yes	

2022 Alqurashi et al. Cureus 14(10): e30652. DOI 10.7759/cureus.30652
Study	Yes	No	Yes	Yes											
Krishnan 2008	Yes	No	Yes	Yes											
Lee 2006	Yes	No	No	Yes											
Salem 2015	Yes	Yes	Yes	Yes	Yes	No	No	No	No	Yes	Yes				
Zigrossi 2001	No	Yes	No	No	Yes	Yes	No	No	No	Yes	No				
Kalenderian 1997	Yes	No	Yes	Yes											
Habib 2002	Yes	No	Yes	Yes											
Stark 1987	Yes	No	Yes	Yes											
Meeks 2016	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	No	Yes	Yes				
Busam 2004	Yes	Yes	Yes	No	Yes	Partial	Yes	Yes	No	No	Yes				
Mehrzad 2014	Yes	No	No	No	Yes										
Michels 2010	Yes	No	Yes	Yes											
Nakamura 2009	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	No	Yes	Yes				
Gouveia 2018	Yes	Partial	No	No	Yes										
Huang 2009	Yes	No	Yes	Yes											
Lin 2007	Yes	No	No	No	Yes										
Nicholas 2007	Yes	No	No	No	Yes										
Norberg 2014	Yes	Yes	Yes	No	Yes	No	No	No	No	Yes	Yes				
Oztop 2004	Yes	No	Yes	Yes											
Pabon 2018	Yes	Yes	Partial	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes				
Pindak 2019	Yes	No	Yes	Yes											
Rostom 2000	Yes	No	Yes	Yes											
Romo 2019	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	No	No	No				
Okay 2019	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	No	partial	No	No	No		
Dhakal 2018	Yes	Yes	Yes	Yes	Yes	No	No	No	No	Yes	Yes				
Shizawa 2010	Yes	Yes	Yes	No	Yes	No	Yes	No	Partial	Yes	No	No			
Dirix 1991	Yes	No	Yes	Yes											
Shamseddine. 1993	Yes	No	Yes	Partial											
Reference	Yes	No	No	No	No	Yes	Yes								
--------------------	-----	-----	-----	-----	-----	-----	-----	-----	-----	----	----	----	----	-----	-----
Song, 2011										Yes	Yes	Yes	Yes	Yes	Yes
Takeuchi, 2016	Yes	No	No	No	No	No	Yes	Yes							
Kim, 2014	Yes	Partial	Yes	No	Yes	Yes	Yes								
Chow, 2015	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	No	Yes	Yes	Yes	Yes
Cech, 1986	No	Yes	No	Yes	Yes	Yes									
Feld, 2000	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	No	Yes	Yes	Yes	Yes
Boisseau, 1996	Yes	No	Yes	No	Yes	No									
Alaigh, 2017	Yes	No	Yes	Yes	Yes	Yes									
Pinder, 2007	Yes	No	Yes	Yes	Yes	Yes									
Kurt, 2005	Yes	Yes	Yes	No	No	Yes									
Kawai, 2006	Yes	Yes	Yes	No	Yes	Yes	Yes	No	Yes	No	Yes	Yes	Yes	Yes	Yes
Vaisban, 2003	Yes	No	No	No	No	No	Yes	Yes	Yes						
Okamoto, 2015	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	No	Yes	Yes	Yes	Yes
Boyd, 2017	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	No	Yes	Yes	Yes	Yes
Vodopivec, 2012	Yes	No	Yes	No	Yes	Yes	Yes	Yes	Yes						
Tseng, 2016	Yes	No	Yes	Yes	Yes	Yes									
Berringer, 2017	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	No	Yes	Yes	Yes	Yes
Sommerhalder, 2017	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	No	Yes	Yes	Yes	Yes
Shenoy, 2009	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	No	Yes	Yes	Yes	Yes
Lee, 2013	Yes	No	Yes	Yes	Yes	Yes									
Tamvetyanon, 2004	Yes	No	Yes	Yes	Yes	Yes									
Ustundag, 1997	Yes	Partial	Yes	No	Yes	Yes	Yes	Yes							
Abbouda, 2009	Yes	No	Yes	Yes	Yes	Yes									
Barton, 1989	Yes	No	Yes	Yes	Yes	Yes									
Mott, 2005	Yes	Partial	Yes	No	Yes	Yes	Yes	Yes							
Qian, 2009	Yes	No	Yes	Yes	Yes	Yes									
TABLE 7: Quality assessment of included studies

Case (Author, year, reference no.)	Age (years)	Gender (M/F)	Primary cancer	Anti-cancer treatment: Full dose or reduced (class and name)	Number of doses: days preceding presentation	Any comorbidities	Presenting symptoms	Risk factors
Katiman, 2012 [2]	55	M	HCC	chemotherapy: TACE (doxorubicin)	1 cycle: 1 dose: 1 day after initiation	HTN, hepatitis B	right hypochondrial pain, nausea, haematuria.	bulky tumor
Kekre, 2012 [3]	76	M	HCC	spontaneous	none	hemochromatosis, arthritis, DM, CKD, HTN, dyslipidemia, erectile dysfunction.	nausea, vomiting, diarrrhea, epigastric pain, and decreased appetite.	bulky tumor, pre-existing renal compromise.
Mouallem, 2013 (Case 1) [4]	68	M	melanoma	chemotherapy: dacarbazine	3 courses: 3 days after the last course	N/A	nausea, vomiting, weakness, confusion and oliguria	bulky and metastatic tumor
Mouallem, 2013 (Case 2) [4]	69	M	melanoma	spontaneous	N/A	N/A	rectal bleeding	bulky and metastatic tumor
Durham, 2018 [5]	59	M	melanoma	spontaneous	N/A	N/A	abdominal pain, nausea	metastatic tumor
D’Alessandro, 2010 [6]	22	M	germ cell tumor	spontaneous	N/A	DM	abdominal fullness, epigastric pain, weight loss and lethargic	metastatic tumor
Drakos, 1994 [7]	32	F	breast carcinoma	Chemotherapy: mitoxantrone 14 mg/m2: 22 mg, full dose	1 cycle: 2 doses: 4 days after initiation.	N/A	nausea, vomiting, abdominal pain, confusion	rapidly growing tumors with spreading to other organ, and pretreatment high LDH
Tomlinson, 1984 [8]	34	F	medulloblastoma	Radiotherapy: cobalt-60 100 radiation per day, full dose	fourth day after total of 300 radiation	N/A	oliguria	metastatic cancer, pretreatment high LDH
Marinella, 1999 [9]	52	M	SCLC	Chemotherapy: etoposide (100 mg/m2) and cisplatin 30 mg/m2, full dose	1 cycle: 1 days after initiation	DM and HTN	lethargic, hematochezia	metastatic tumor
Castro, 1999 [10]	61	M	melanoma	Biochemotherapy: interleukin-2 MIU/M2/day IV, interferon-α 5MIU/M2/day SQ, dacarbazine 800mg/m2/day,	1 cycle: 4 days after initiation	N/A	oliguria	metastatic and bulky tumor
Study	Age	Sex	Tumor Location	Treatment Description	Toxicity	Toxicity Description		
------------------	-----	------	-------------------	--	-------------------------------	---		
Han, 2008 [11]	38	M	gastric cancer	vinblastine 1.6mg/m2/day IV, cisplatin 20mg/m2/day IV, full dose	N/A	bulky and metastatic tumor		
						pretreatment high LDH and the tumor is highly sensitive to chemotherapy		
Lehnar, 2005 [12]	64	M	HCC	radiofrequency ablation 2 portions of ablation: 2 days after initiation	N/A	hypoxia dyspnea, oliguria, arrhythmia		
						bulky		
Sikarin. 1995 [13]	62	F	breast cancer	spontaneus	N/A	dyspnea		
						metastatic cancer, high baseline LDH		
Borne, 2009 [14]	42	M	melanoma	corticosteroid high dose 48 hours after initiation	N/A	N/A		
						metastatic cancer, bulky tumor		
Hsieh (case 1), 2009 [15]	76	F	HCC	chemotherapy: TACE with 20 mg adriamycin, full dose 1 cycle: 1 dose: 3 days after initiation	N/A	acute renal insufficiency		
						N/A		
Hsieh (case 2), 2009 [15]	56	M	HCC	chemotherapy: TACE with 10 mg of lipiodol + 20 mg adriamycin, full dose 1 cycle: 1 dose: same night of TACE initiation.	hepatitis B	oliguria		
						N/A		
Kim, 2017 [17]	35	F	cervical cancer	spontaneus	N/A	general weakness		
van Kalleveen, 2018 [18]	58	M	RCC	targeted therapy: pazopanib 800mgm, full dose 1 cycle: 6 days after administration	N/A	nausea, vomiting and diarrhea		
						metastatic cancer		
Vaidya, 2015 [35]	52	F	breast cancer	chemotherapy: paclitaxel 80mg/m2, full dose 1 cycle: 1 dose: 1 week after administration	N/A	confusion and sluggishness		
						metastatic cancer		
Baeksgaard, 2003 [25]	23	M	medulloblastoma	chemotherapy (cisplatin 20mg/m2, etoposide 50mg/m2) for five days every 3 weeks full dose 1 cycle 2 dose 2 days after initiation	N/A	fatigue, difficulty in breathing, and low urine output		
						pretreatment high LDH, and metastatic cancer		
Farooqi 2015 [36]	52	M	colorectal cancer (cecum)	targeted therapy (regorafenib) 1 week after initiation	HTN, asthma, and recent stroke	nausea, and vomiting		
						metastatic tumor		
Gibaguidi, 2016 [37]	88	F	RCC	spontaneus	N/A	HTN, heart failure, and CKD		
						vomiting		
						bulky and metastatic tumor, acute medical condition (infection).		
Bilgrami , 1993 [38]	47	F	Advanced ovarian cancer	combination chemotherapy: carboplatin 400mg/m2 and cyclophosphamide 1 cycle: 1 dose: 4 days after initiation	N/A	bulky and rapidly growing tumors		
Study, Year	Age	Gender	Diagnosis	Treatment Details	Followup	Side Effects	Metastatic/Tumor Status	
------------	-----	--------	-----------	-------------------	----------	-------------	------------------------	
Camarata, 2013 [39]	63 F		serous ovarian cancer	500mg/m², full dose	combination chemotherapy: carboplatin and paclitaxel 75mg/m², full dose	1 cycle: 1 dose: 2 days after initiation	high output heart failure	bulky and metastatic tumor
Geun, 2008 [40]	52 M		NSCLC	palliative radiotherapy: total dosage of 30 Gy divided by 10 fractions, full dose	second fractions (total of 60Gy)			
Blanke, 2000 [41]	52 M		Choriocarcinoma	Chemotherapy: etoposide 100mg/m² and cisplatin 20mg/m², full dose		1 cycle: 2 days after initiation	HTN, osteoarthritis, hypercholesterolemia, oliguria	metastatic cancer, pretreatment high LDH
Wang, 2010 [42]	54 F		HCC	chemotherapy: TACE with doxorubicin 60 mg and lipiodol 20ml, full dose		1 cycle: 1 dose: 5 days after initiation.		decreased urine output
Bhardwai, 2018 [43]	67 M		prostatic cancer	Chemotherapy: docetaxel 75 mg/m², full dose		1 cycle: 1 dose: 3 days after initiation		
Ajzensztejn, 2006 [44]	65 M		NSCLC	Chemotherapy: docetaxel 75 mg/m², full dose		1 cycle: 1 dose: 3 days after initiation	COPD	metastatic cancer, and large tumor burden
Chan, 2005 [45]	62 F		ovarian cancer	Chemotherapy: topotecan		2 cycle 2 weeks after initiation		
Baudon, 2016 [46]	58 F		breast cancer	target therapy: trastuzumab, pertuzumab		1 cycle: 2 days after her first course	TB	hypovolemic shock
Beriwal, 2002 [47]	68 M		SCLC	chemotherapy: topotecan		1 cycle: 1 dose: 1 day after initiation		low urinary output 200ml
Godoy, 2010 [48]	60 F		endometriat cancer	chemotherapy: carboplatin, paclitaxel		1 cycle: 4 days after initiation		shortness of breath, weakness, and fatigue
Gongora, 2019 [49]	46 M		prostatic cancer	chemotherapy: carboplatin, etoposide		5 days after initiation		
Gold 1993 [50]	66 M		gastric leiomyosarcoma	chemotherapy: cyclophosphamide 2 g/m²; immunotherapy: autolymphocyte therapy, full dose		1 cycle: 1 dose: 16 hours after initiation of the adaptive chemoimmunotherapy	HTN	nausea, fever, and abdominal pain
Yoshimura, 2019	59 M		gastric cancer	Chemotherapy: irinotecan and 5-fluorouracil		After second cycle of	N/A	mild edema of the
Year	Age	Gender	Site	Treatment	Duration	Side Effects	Diagnosis	
-------	-----	--------	-----------------	---	---	--	-------------------------	
2008	70	F	SCLC	chemotherapy: cisplatin, etoposide	1 cycle: 8 days after initiation	N/A	legs	
Boikos, 2013	65	M	melanoma	palliative radiotherapy	5 radiation sessions 7 days after the last session	N/A	general illness, renal insufficiency metastatic cancer	
Dar, 2014	36	M	gastric cancer	spontaneous		N/A	abdominal fullness and pain metastatic cancer	
Woo, 2001	57	F	SCLC	chemotherapy: docorubicin50% dose reduction, cisplatin, etoposide, and vincristine sulfate	1 cycle: 1 dose: 36 hours after initiation	N/A	respiratory distress metastatic cancer	
Vogelzang, 1983	53	M	ovarian cancer	paclitaxel 100mg, full dose	5 days after administration	N/A	oliguria N/A	
Yahata, 2006	51	M	HCC	chemotherapy: TACE; type of drugs use not mentioned		N/A	abdominal pain, oliguria, and fever N/A	
Chao, 2012	78	M	SCLC	chemotherapy: doxorubicin 30mg, cyclophosphamide 900mg, vincristine 2.0mg, full dose	7 days after initiation	N/A	oliguria metastatic cancer	
Baumann, 1983	53	M	melanoma	sorafenib 800 mg/day, full dose	7 days after initiation	hepatitis B	somnolent, and pretreatment high LDH	
Abbass, 2011	43	M	HCC	chemotherapy and immunotherapy: cisplatin 30mg/m2 and dacarbazine 250mg/m2 on days 1-3 and interferon alpha 10MU/m2 on days 1-5 of treatment, full dose	1 cycle: 2 days after initiation	N/A	oliguria ascites metastatic cancer	
Vishwanathan, 2019	51	M	uterine cancer	spontaneous		N/A	fatigue, weakness, abdominal girth and pain, vaginal spotting, and hematuria N/A	
Stoves, 2001	36	F	HCC	chemotherapy and TACE; name of drugs and doses not mentioned		N/A	large tumor burden	
Tsai, 2012	62	M	melanoma	chemotherapy: PVE and TACE; name of drugs and doses not mentioned	1 cycle: 2 days after initiation	hepatitis B	large, bulky and metastatic cancer pretreatment high LDH	
Hiraiuzumi, 2011	62	M	uterine leiomyosarcoma	chemotherapy: vincristine, actinomycin-D, and cyclophosphamide	2 cycle: 7 days after the second cycle of chemotherapy	N/A	confused and decreased urine output large, bulky and metastatic cancer	
Hentrich, 2008	36	F	colon cancer	chemotherapy and target therapy: bevacizumab 5 mg/kg IV, irinotecan 50	1 cycle: 2 days after	N/A	metastatic cancer	
Reference	Age	Gender	Diagnosis	Chemotherapy Details	Course Details	Side Effects		
-----------------	-----	--------	-----------	--	----------------	---		
Hussein, 1990	57	M	SCLC	Chemotherapy: cyclophosphamide 750 mg/m², doxorubicin 45 mg/m², and vincristine 2 mg (all intravenously), full dose	1 cycle: 4 days after chemotherapy started	N/A		
Burney, 1998 (case 1)	44	M	HCC	Chemotherapy: TACE (cisplatin 60 mg/m²), full dose	1 cycle: 1 dose 8 hours after infusion	oliguria N/A		
Burney, 1998 (case 2)	46	M	HCC	Chemotherapy: TACE, drugs not mentioned	N/A	N/A		
Cihan, 2015	61	M	unknown primary tumor	Chemotherapy: cetuximab 400mg/m², irinotecan 125mg/m², full dose	1 cycle: 1 dose 16 hours after infusion	N/A		
Agarwala, 2017	26	F	HCC	spontaneous	N/A	hepatitis B		
Catania, 2017	65	F	ESOS	spontaneous	N/A	abdominal pain		
Ignaszewski, 2017	69	M	prostate adenocarcinoma	spontaneous	N/A	HTN, hyperlipidemia		
Jallad, 2011	75	F	SCLC	spontaneous	TLS appeared 3 days following radiotherapy	N/A		
Stuart, 2017	Mid	M	BAC	palliative radiotherapy	N/A	seizure and global weakness		
Jiang, 2016	52	M	HCC	Chemotherapy: TACE (iodised oil 20 ml with 5-fluorouracil 500 ml, epirubicin 30 mg)	1 cycle: 1 dose: 1 day after TACE	liver cirrhosis and chronic hepatitis B virus		
Kallab, 2001	61	M	SCLC	Chemotherapy: cisplatin 80 mg/m² on day 1 and etoposide 120 mg/m² on day 1-3, full dose	1 cycle: 1 dose of cisplatin and 3 doses of etoposide 4 days after initiation of chemotherapy	N/A		
Kaplan, 2012	60	M	prostate cancer	Palliative radiotherapy: total of 30 Gy radiotherapy in 10 fractions, full dose	Day 3 of radiotherapy	oliguria and dyspnea		

Chemotherapy: 1 cycle: 1 dose:

** Pretreatment high LDH: metastatic cancer, pretreatment high LDH

** Pretreatment high LDH: metastatic cancer, metastatic cancer, metastatic cancer, metastatic cancer, high tumor burden and metastatic cancer.
Name	Year	Gender	Diagnosis	Treatment Description	Duration	Side Effects	Cancer Type
Sewani, 2002		M	mixed SCLC and NSCLC	carboplatin 830 mg, paclitaxel 440 mg, full dose	1 day	Abdominal pain and fever	metastatic
Sakamoto, 2007		M	HCC	chemotherapy: TOCE (15 mL of iodized oil, 50 mg of epirubicin hydrochloride, and embolization with two sheets of gelatin sponge)	2 cycles	hepatitis B, fever, decrease urine output, severe diarrhea, anuria cough, hemoptysis, and dyspnea, bulky tumor with high LDH level before TOCE	
Taira, 2015	69	F	breast cancer	targeted therapy: trastuzumab	1 cycle	cardiac arrhythmia	-metastatic
Sorscher, 2004	80	M	Prostate cancer	chemotherapy: docetaxel at 35 mg/m2, full dose	1 cycle	N/A	-Metastatic
Shiba, 2008	77	M	HCC	chemotherapy: TACE (hydrochloric acid epirubicin 70 mg, 20 mL of iodized oil esters, and 160 mg of porous gelatine grains, full dose)	1 cycle	fatigue, fever and oliguria	large tumor burden
Regnault, 2016	73	M	nodular melanoma	Immunotherapy: Ipilimumab	1 cycle	cardiac arrhythmia	Metastatic
Wright, 2005	60	M	prostate cancer	chemotherapy: paclitaxel 100 mg/m2, full dose	1 cycle	anuria	metastatic
Weil, 2018	64	F	small cell carcinoma of the cervix	spontaneous	N/A	DM, HTN, dyslipidemia, weakness, fatigue and abdominal pain, high pretreatment LDH and metastatic cancer	
Mazzoni, 2016	62	M	prostate cancer	palliative radiotherapy: external beam radiation therapy, TURP, and hormonal therapy (bicatalumide)	N/A	fatigue, weakness, confusion and anuric	metastatic
Krishnan, 2008	64	M	colon cancer	targeted therapy: cetuximab 400mg/m2, full dose	1 cycle	N/A	metastatic
Lee, 2006	62	M	HCC	immuno-target therapy: thalidomide 300mg per day, full dose	1 cycle	SOB	N/A
Saleh, 2015	56	F	pancreatic cancer	spontaneous	N/A	generalised weakness	metastatic
Zigrossi, 2001		F	breast cancer	hormonal therapy: letrozole	N/A	shock, bilateral pleural effusion, cardiac tamponade, and oliguria	N/A
Kalemkerian,				Chemotherapy: cisplatin 80 mg/m2 on day 1 and	1 cycle	lethargic and	metastatic tumor and
Year	Age	Gender	Diagnosis	Treatment	Symptoms	Details	
------------	-----	--------	----------------------	---	---	---	
Kalemkerian, 1997 [88]	74	F	SCLC	chemotherapy: cisplatin 80 mg/m2 on day 1 and etoposide 100 mg/m2 on days 1 to 3, full dose	lethargic and oliguric	metastatic tumor and pretreatment high LDH	
Stark, 1987 [90]	53	F	breast adenocarcinoma	Chemotherapy: fluorouracil 400 mg/m2, doxorubicin 40 mg/m2, cyclophosphamide 400 mg/m2, full dose	N/A	metastatic cancer, rapidly growing tumors, pretreatment high LDH, and high tumor burden	
Meeks, 2016 [91]	46	M	unknown primary cancer	Steroid: dexamethasone 4 mg per 6 hours, full dose	2 days after initiation	anemia, lower back pain	metastatic cancer and bulky tumor
Stark, 1987 [90]	53	F	breast adenocarcinoma	Chemotherapy: fluorouracil 400 mg/m2, doxorubicin 40 mg/m2, cyclophosphamide 400 mg/m2, full dose	N/A	metastatic cancer, rapidly growing tumors, pretreatment high LDH, and high tumor burden	
Meeks, 2016 [91]	46	M	unknown primary cancer	Steroid: dexamethasone 4 mg per 6 hours, full dose	2 days after initiation	anemia, lower back pain	metastatic cancer and bulky tumor
Busam, 2004 [92]	36	F	melanoma	bio-chemo therapy: cisplatin, vinblastine, dacarbazine, interferon-α, interleukin-2	N/A	metastatic cancer	}

Notes:
- DM: diarrhea
- SOB: shortness of breath
- HCC: hepatocellular carcinoma
- N/A: not available
- High LDH: high levels of lactate dehydrogenase
- Metastatic cancer: cancer that has spread beyond the original site of the tumor
- Bulky tumor: tumor that is large and can cause pressure on surrounding tissues or organs
- Customized treatments and management strategies are described as per the respective studies.
| Reference | Age | Gender | Diagnosis | Treatment | Onset | Symptoms | Complications | |
|---|---|---|---|---|---|---|---|---|
| Michels, 2010 | 70 | M | HCC | Targeted therapy: sunitinib 50 mg daily for 4 weeks | Day 18 after initiation of treatment | N/A | fever, headache, vomiting | bulky tumor and metastatic tumor |
| Nakamura, 2009 | 48 | M | RCC | Chemotherapy: cisplatin 70mg/m², full dose | N/A | N/A | weakness and malaise | metastatic tumor and bulky |
| Gouveia, 2018 | 51 | F | colorectal cancer | Palliative chemotherapy: oxaliplatin 85 mg/m², 5-fluorouracil 400 mg/m² bolus, 2400 mg/m² continuous infusion, full dose | after completing three cycles | HTN, obesity | asthenia, giddiness, fine tremor | metastatic tumor; pretreatment high LDH |
| Huang, 2009 | 55 | M | HCC | Targeted therapy: sorafenib 400 mg twice every day, full dose | 30 days after sorafenib started | Hepatitis B | jaundice, oliguria, weakness | N/A |
| Lin, 2007 | 72 | M | prostate carcinoma | Spontaneous | N/A | N/A | anorexia, fatigue, and severe pedal edema | metastatic tumor |
| Nicholasou, 2007 | 67 | F | RCC | Targeted therapy: sunitinib | between days 3-9 of treatment | N/A | watery stools, nausea, vomiting, and fatigue | metastatic tumor |
| Norberg, 2014 | 56 | M | RCC | Spontaneous | N/A | HTN | severe back pain, night sweats, weight loss and low-grade fevers | metastatic tumor |
| Oztolci, 2004 | 66 | M | colon cancer | Chemotherapy: irinotecan 180 mg/m² 5-fluorouracil 400 mg/m² bolus 600 mg/m² continuous infusion leucovorin 200mg/m², full dose | 1 cycle: 72 hours after initiation | N/A | oliguria | metastatic tumor |
| Pabon, 2018 | Mid age | F | uterine leiomyosarcoma | Chemotherapy: rubin mesylate 1.4mg/m², full dose | cycle 1 : day 8 after initiation | N/A | fatigue, dyspnoea, and poor appetite | metastatic tumor and bulky tumor |
| Pindak, 2019 | 19 | M | testicular germ cell tumor | Surgery: radical resection of the tumor | during the surgery | N/A | cardiac arrhythmia | bulky tumor and metastatic tumor |
| Rostom, 2000 | 73 | M | breast cancer | Radiotherapy: upper hemi-body radiation (UHBr) total breast dose 9.65 Gy, full dose | 48 hours after initiation | DM | drowsy, confused | metastatic tumor |
| Romo, 2019 | 28 | M | oligodendroglioma | Radiotherapy: IMRT with a cumulative dose of 5940 cGy over 33 fractions | N/A | N/A | N/A | metastatic tumor and rapidly growing tumor |
| Okay, 2019 | 61 | M | HCC | Chemotherapy: TACE (ethanol and lipiodol) | 2 weeks after initiation | Chronic myeloid leukemia | N/A | N/A |
| Dhakal, 2018 | 70 | M | small cell neuroendocrine carcinoma | Spontaneous | N/A | Coronary artery disease | N/A | N/A |

2022 Alqurashi et al. Cureus 14(10): e30652. DOI 10.7759/cureus.30652
Name, Year	Age	Gender	Diagnosis/Condition	Initial Therapy	Duration	Metastatic/Deterioration
Shozawa, 2010 [108]	79	F	HCC	targeted therapy: sorafenib	1 cycle: 10 days after initiation	hepatitis C and liver cirrhosis
Dirix, 1991 [109]	65	F	Merkel cell carcinoma	chemotherapy: doxorubicin 50mg/m2 IV bolus, and 5 g/m2 continuous infusion over 24 hours of ifosfamide, full dose	1 cycle: 4 days after chemotherapy initiation	N/A
Shamseddine, 1993 [110]	66	F	Valvular cancer	chemotherapy: cisplatin, 50 mg as continuous infusion over 4 hours daily for 3 days, 5 FU, 1500 mg as continuous infusion over 24 hours for 5 days, full dose.	1 cycle	N/A
Song, 2011 [111]	46	M	Melanoma	spontaneous	N/A	N/A
Takeuchi, 2016 [112]	62	M	Melanoma	spontaneous	N/A	DM
Kim, 2014 [113]	59	M	Colon cancer	chemotherapy: 5-FU, leucovorin, and oxaliplatin	2nd cycle: 3 days after chemotherapy initiation, and 3rd cycle: 3 days after chemotherapy.	N/A
Chow, 2015 [114]	47	M	Testicular cancer	hormonal therapy: tamoxifen 10mg by mouth twice a day, full dose	one week after initiation	N/A
Cech, 1986 [115]	94	F	Breast cancer	hormonal therapy: tamoxifen 10mg by mouth twice a day, full dose	N/A	N/A
Feld, 2000 [116]	72	M	Lung adenocarcinoma	spontaneous	N/A	N/A
Boisseau, 1996 [117]	42	F	Colon cancer	Chemotherapy: irinotecan 300mg/m2, reduced dose	8 days after initiation	N/A
Alaigh, 2017 [118]	58	F	Leiomyosarcoma	spontaneous	N/A	N/A
Pinder, 2007 [119]	81	M	Gastrointestinal stromal tumor (GIST)	target therapy: imatinib 400mg once daily, full dose	2 days after initiation	N/A
Author, Year	Age	Gender	Primary Diagnosis	Treatment Type	Onset Duration	Symptoms
---	---	---	---	---	---	---
Kurt, 2005	52	M	lung adenocarcinoma	bone modifying therapy: zoledronic acid IV infused within 15 minutes	4 days	N/A
Kawai, 2006	26	M	testicular cancer	chemotherapy: bleomycin, etoposide and cisplatin (BEP)	1 day	N/A
Vaisban, 2003	82	F	colon cancer	spontaneous	N/A	weakness, oliguria, and confusion
Vaisban, 2003	80	M	pheochromocytoma	spontaneous	N/A	abdominal pain, fever, and vomiting
Vaisban, 2003	72	M	HCC	spontaneous	N/A	abdominal pain, dyspnea, and weakness
Okamoto, 2015	62	F	ovarian cancer	spontaneous	N/A	lower abdominal pain, back pain, and anuria
Boyd, 2017	56	M	prostate cancer	chemotherapy: oxaliplatin, docetaxel, 5-fluorouracil, and leucovorin	N/A	N/A
Vodopivec, 2012	57	M	gastric adenocarcinoma	chemotherapy: oxaliplatin, docetaxel, 5-fluorouracil, and leucovorin	7 days	Nausea, vomiting, oliguria, and generalized weakness
Tseng, 2016	65	M	colon cancer	chemotherapy: oxaliplatin 160 mg, 5-fluorouracil 2800 mg (1500 mg/m2) for 1 day	1st cycle	chest tightness, altered level of consciousness, and ventricular tachycardia
Berringer, 2017	48	M	colon cancer	spontaneous	N/A	abdominal pain, jaundice, weakness, and anorexia
Sommerhalder, 2017	49	F	colon cancer	spontaneous	N/A	edema of bilateral extremities associated with worsening dyspnea
Shenoy, 2009	74	M	SCLC	spontaneous	N/A	COPD, coronary artery disease, and HTN
Lee, 2013	40	F	thymoma	chemotherapy: IV paclitaxel 175mg/m2, IV ifosfamide 2500mg/m2, full dose	second day	tachypnea, tachycardia, and oliguria
Tanvetyanon, 2004	77	M	prostate cancer	hormonal therapy: goserelin acetate 10.8mg, full dose	6 days	Lethargic and flapping tremor
Ustundag, 1997	56	F	breast cancer	chemotherapy: paclitaxel IV infusion for 24 hours, full dose	one day	orthopnea, oliguria, and anuria
Authors	Year	Age	Sex	Diagnosis	Treatment Details	Time to onset
------------------	------	-----	-----	----------------------------	---	---------------
Abbouda, 2009	53	M	maxillary sinus cancer	adjuvant chemoradiation: 66 Gy to the tumor bed and 50 Gy to the upper neck area, full dose	4 days after initiation	N/A
Barton, 1989	57	F	breast cancer	chemotherapy: cyclophosphamid e 500mg/m2, methotrexate 30mg/m2 and 5-fluorouracil 500mg/m2, full dose	1 day after initiation	N/A
Barton, 1989	58	M	seminoma	chemotherapy: vinblastine 0.2 mg/kg/d and IV bleomycin 30 units daily, full dose	2 days after initiation	N/A
Mott, 2005	47	F	breast cancer	chemotherapy: fluorouracil/epirubicin/cyclophosphamide, full dose	1 day after initiation	N/A
Mott, 2005	44	F	breast cancer	chemotherapy: gemcitabine and cisplatin, full dose	1 day after initiation	N/A
Mott, 2005	76	F	SCLC	chemotherapy: carboplatin and etoposide full dose	4 days after initiation	N/A
Qian, 2009	44	M	primary retroperitoneal soft tissue sarcoma	chemotherapy: cisplatin 30 mg/m2 intravenously on days 1 through 4, doxorubicin 30 mg/m2 intravenously on days 1 and 3, dacarbazine 400 mg/m2 intravenously on days 1 through 3, full dose	3 days after initiation	N/A
Yuan, 2017	43	M	GIST	targeted therapy: Imatinib 400mg, full dose	1 day after initiation	N/A
Lin, 2007	75	F	RCC	chemotherapy: gemcitabine monotherapy at a dosage of 1200 mg/m2 as a 30 minutes intravenous infusion, full dose	2 weeks after initiation	CKD
Ling, 2012	40	M	pancreatic cancer	Chemotherapy: gemcitabine	2 days after initiation	N/A
Sharma, 2006	63	M	HCC	chemotherapy: TACE (fluourouracil 1gm, Cisplatin 80mg, mitomycin 20mg and lipiodol	1 day after initiation	hepatitis B
Additional Information

Disclosures

Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following.

Payment/services info: All authors have declared that no financial support was received from any organization for the submitted work.

Financial relationships: All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work.

Other relationships: All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

References

1. Gemici C: Tumour lysis syndrome in solid tumours. Clin Oncol (R Coll Radiol). 2006, 18:775-80. 10.1016/j.clinon.2006.09.005
2. Katiman D, Manlikam J, Goh KL, Abdullah B, Mahadeva S: Tumour lysis syndrome: a rare complication of trans-arterial chemo-embolisation with doxorubicin beads for hepatocellular carcinoma. J Gastrointest Cancer. 2012, 43 Suppl 1:S187-90. 10.1007/s12053-012-9734-6
3. Kerek N, Djordjevic B, Touchie C: Spontaneous tumour lysis syndrome. CMAJ. 2012, 184:913-6. 10.1503/cmaj.111251
4. Mouzali M, Zemer-Wassercug N, Kugler E, Sahar N, Shapira-Frommer R, Schiby G: Tumor lysis syndrome and malignant melanoma. Med Oncol. 2015, 30:564. 10.1007/s12052-012-0564-z
5. Durham CG, Herrington J, Seago S, Williams C, Holguin MI: From skin to spontaneous lysis: a case of spontaneous tumor lysis syndrome in metastatic melanoma. J Oncol Pharm Pract. 2018, 24:221-5. 10.1177/1078151718794345
6. D’Alessandria V, Greco A, Clemente C, et al.: Severe spontaneous acute tumor lysis syndrome and hypoglycemia in patient with germ cell tumor. Tumori. 2010, 96:1040-5.
7. Drakos F, Bar-Ziv J, Catanese R: Tumor lysis syndrome in nonhematologic malignancies. Report of a case and review of the literature. Am J Clin Oncol. 1994, 17:502-5. 10.1097/00000421-199412000-00010
8. Tomlinson GC, Solberg LA Jr: Acute tumor lysis syndrome with metastatic medulloblastoma: a case report. Cancer. 1984, 53:1783-5. 10.1002/1097-0142(19840301)53:8<1783::AID-CNCR2820530829>3.0.CO;2-F
9. Marinella MA: Fatal tumor lysis syndrome and gastric hemorrhage associated with metastatic small-cell lung carcinoma. Med Pediatr Oncol. 1999, 32:464-5. 10.1002/(sici)1096-911x(199902)32:6<464::aid-mpo19>3.0.co;2-e
10. Castro MP, VanAukem J, Spencer-Cisek P, Legha S, Sponzo RW: Acute tumor lysis syndrome associated with concurrent biochemotherapy of metastatic melanoma: a case report and review of the literature. Cancer. 1999, 85:1055-9. 10.1002/(sici)1097-0142(19990901)85:5<1055::aid-cncr2820850530>3.0.co;2-3
11. Han SK, Park SB, Kim SY, et al.: Tumor lysis syndrome after capetabine plus cisplatin treatment in advanced gastric cancer. J Clin Oncol. 2008, 26:1006-8. 10.1200/jco.2007.14.7231
12. Lehner SG, Gould JE, Saad WE, Brown DB: Tumor lysis syndrome after radiofrequency ablation of hepatocellular carcinoma. AJR Am J Roentgenol. 2005, 185:1307-9. 10.2214/AJR.04.1265
13. Sklarin NT, Markham M: Spontaneous recurrent tumor lysis syndrome in breast cancer. Am J Clin Oncol. 1995, 18:71-3. 10.1097/00000421-199502000-00015
14. Borne E, Serafi R, Piette F, Morlier L: Tumour lysis syndrome induced by corticosteroid in metastatic melanoma presenting with initial hyperkalemia. J Eur Acad Dermatol Venereol. 2009, 23:855-6. 10.1111/j.1468-3083.2008.03058.x
15. Hishie PM, Hung KC, Chen YS: Tumor lysis syndrome after transarterial chemoembolization of hepatocellular carcinoma: case reports and literature review. World J Gastroenterol. 2009, 15:4726-8. 10.3748/wjg.15.4726
16. Cairo MS, Bishop M: Tumor lysis syndrome: new therapeutic strategies and classification. Br J Haematol. 2004, 127:3-11. 10.1111/j.1365-2141.2004.05094.x
17. Kim YK, Ham JY, Lee WK, Song KE: Spontaneous tumour lysis syndrome in cervical cancer. J Obstet Gynaecol. 2017, 37:679-80. 10.1002/ijgo.129970
18. van Kalleveen MW, Walraven M, Hendriks MP: Pazopanib-related tumor lysis syndrome in metastatic clear cell renal carcinoma: a case report. Invest New Drugs. 2018, 36:513-6. 10.1007/s10637-018-0576-y
19. Moher D, Shamseer L, Clarke M, et al.: Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. *J Clin Epidemiol.* 2016, 70:6-14. 10.1016/j.jclinepi.2015.10.002
20. Kelly WN, Arellano FM, Barnes J, et al.: Guidelines for submitting adverse event reports for publication. *Pharmacoepidemiol Drug Saf.* 2007, 16:581-7. 10.1002/pds.1399
21. Mirrakhimov AE, Ali AM, Khan M, Barbaryan A: Tumor lysis syndrome in solid tumors: an up to date review. Rare Tumors. 2014, 6:5389. 10.4081/rt.2014.5389
22. Findakly D, Luther RD 3rd, Wang J: Tumor lysis syndrome in solid tumors: a comprehensive literature review, new insights, and novel strategies to improve outcomes. Curesus. 2020, 12:88355. 10.7759/curesus.88355
23. Jallal B, Hamdi T, Latta S, Alhosaini MN, Kheir F, Iroegbu N: Tumor lysis syndrome in small cell lung cancer: a case report and review of the literature. Oncologie. 2011, 34:129-31. 10.1159/0003524791

TABLE 8: Characteristics of included studies

| HCC: hepatocellular carcinoma | TACE: trans arterial chemoembolisation | HTN: hypertension | DM: diabetes mellitus | CKD: chronic kidney disease | LDH: lactate dehydrogenase | RCC: renal cell carcinoma | NSCLC: non-small cell lung cancer | COPD: chronic obstructive pulmonary disease | SCLC: small cell lung cancer | PVE: portal vein embolisation | ESOS: extraskelletal osteosarcoma | SOB: shortness of breath | BAC: bronchialalveolar carcinoma | TLS: tumor lysis syndrome |
|------------------------------|--------------------------------------|-----------------|-------------------|-----------------|-------------------------|-------------------------|-----------------|-----------------|------------------|-----------------|-----------------|-------------------|-----------------|------------------|-------------------|
24. Vodopivec DM, Rubio JE, Fornoni A, Lenz O: An unusual presentation of tumor lysis syndrome in a patient with advanced gastric adenocarcinoma: case report and literature review. Case Rep Med. 2012, 2012:468452. 10.1155/2012/468452
25. Baekgaard L, Sørensen IJ: Acute tumor lysis syndrome in solid tumors--a case report and review of the literature. Cancer Chemother Pharmacol. 2005, 51:187-92. 10.1007/s00280-002-0556-x
26. Shaikh SA, Marinli BL, Hough SM, Perissinotti AI: Rational use of rasburicase for the treatment and management of tumor lysis syndrome. J Oncol Pharm Pract. 2018, 24:176-84. 10.1177/1078155216687352
27. Matsuzakizawa-Rowinska J, Małyzyko J: Prevention and treatment of tumor lysis syndrome in the era of onco-nephrology progress. Kidney Blood Press Res. 2020, 45:645-60. 10.1159/000099554
28. Montesinos P, Lorenzo I, Martín G, et al.: Tumor lysis syndrome in patients with acute myeloid leukemia: identification of risk factors and development of a predictive model. Haematologica. 2008, 93:67-74. 10.3324/haematol.11375
29. Durani U, Shah ND, Go RS: In-hospital outcomes of tumor lysis syndrome: a population-based study using the national inpatient sample. Oncologist. 2017, 22:1506-e. 10.1634/theoncologist.2017-0147
30. Darmon M, Guichard I, Vincent F, Schlemmer B, Aouazul E: Prognostic significance of acute renal injury in acute tumor lysis syndrome. Leuk Lymphoma. 2010, 51:221-7. 10.3109/10428190903456959
31. Howard SC, Jones DP, Pui CH: The tumor lysis syndrome. N Engl J Med. 2011, 364:1844-54. 10.1056/NEJMoa0904569
32. von Amsberg G: Oncological emergencies in chemotherapy: febrile neutropenia, tumor lysis syndrome, and extravasation (Article in German). Urologe A. 2018, 57:552-7. 10.1007/s00120-018-0607-5
33. Adeyinka A, Bashir K: Tumor lysis syndrome. StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL) 2022.
34. Puri I, Sharma D, Gunturu KS, Ahmed AA: Diagnosis and management of tumor lysis syndrome. J Community Hosp Intern Med Perspect. 2020, 10:679-92. 10.1080/20009666.2020.1764185
35. Vaidya GN, Acevedo D: Tumor lysis syndrome in metastatic breast cancer after a single dose of paclitaxel. Am J Emerg Med. 2015, 33:308.e1-2. 10.1016/j.ajem.2014.07.039
36. Farooqi B, Simmons J, Hao Z: Tumor lysis syndrome in metastatic colon cancer following treatment with regorafenib. J Gastrointest Cancer. 2015, 46:314-6. 10.1007/s12029-015-9711-6
37. Bghazzi K, Goodrich L, Roca F, Suel P, Chassagne P: Bulky solid tumors in elderly adults: beware of spontaneous tumor lysis syndrome. Am Geriatr Soc. 2016, 64:235-7. 10.1111/jgs.13901
38. Bilgirmi SF, Fallon BG: Tumor lysis syndrome after combination chemotherapy for ovarian cancer. Med Pediatr Oncol. 2019, 55:212-4. 10.1080/00268238.2019.1623072
39. Camarata M, Davies R, Copley S, Blagden S: Tumour lysis syndrome in a patient with intravascular spread from a recurrent epithelial ovarian cancer. BMJ Case Rep. 2015, 2015:10.1136/bcr-2015-019932
40. Noh GY, Cho DH, Kim CH, Lee JC: Fatal tumor lysis syndrome during radiotherapy for non-small-cell lung cancer. J Clin Oncol. 2008, 26:6005-6. 10.1200/JCO.2008.19.4308
41. Banke CD, Hemmer MP, Witte RS: Acute tumor lysis syndrome with ciclocarcinoma. South Med J. 2000, 93:916-9.
42. Wang K, Chen Z: Acute tumor lysis syndrome after transarterial chemoembolization for well-differentiated hepatocellular carcinoma with neuroendocrine features. Onkologie. 2010, 33:552-5. 10.1159/000319695
43. Bhardwaj S, Varma S: Hepatocellular carcinoma with neuroendocrine features. J Oncol Pharm Pract. 2018, 24:153-5. 10.1177/1078155217944992
44. Ajzensteyn D, Hegg DS, Lee SM: Tumor lysis syndrome after treatment with docetaxel for non-small-cell lung cancer. J Clin Oncol. 2006, 24:2389-91. 10.1200/JCO.2005.02.8753
45. Chan JK, Lin SS, McKeen DS, Berman ML: Patients with malignancy requiring urgent therapy: CASE 5. Tumor lysis syndrome associated with chemotherapy in ovarian cancer. J Clin Oncol. 2005, 23:6794-5. 10.1200/JCO.2005.08.115
46. Baudon C, Dufois FP, Sinaip J, Canon JL: Tumor lysis syndrome following trastuzumab and pertuzumab for metastatic breast cancer: a case report. J Med Case Rep. 2016, 10:178. 10.1186/s13256-016-0969-5
47. Beriwal S, Singh S, Garcia-Young JA: Tumor lysis syndrome in extensive-stage small-cell lung cancer. Am J Clin Oncol. 2002, 25:474-5. 10.1097/00000421-200210000-00010
48. Godoy H, Resterton JP, Lele S: Tumor lysis syndrome associated with carboplatin and paclitaxel in a woman with recurrent endometrial cancer. Int J Gynecol Obstet. 2010, 109:254. 10.1016/j.ijgo.2010.02.003
49. Gongora AB, Canedo FS, de Melo AL, Bezerra RO, Asprino PF, Camargo AA, Bastos DA: Tumor lysis syndrome after platinum-based chemotherapy in castration-resistant prostate cancer with a BRCA2 mutation: a case report. Clin Genitourin Cancer. 2019, 17:e61-e. 10.1177/1078155219694492
50. Gold JE, Malamud SC, LaRossa F, Orsland ME: Adoptive chemomunomotherapy using ex vivo activated memory T-cells and cyclophosphamide: Tumor lysis syndrome of a metastatic soft tissue sarcoma. Am J Hematol. 1993, 44:42-7. 10.1002/ajh.2830440109
51. Yoshimura K, Itoh K, Kitamura H, Takahashi Y, Yokote S, Kasa K, Hosoya T: A case report of glomerulopathy-associated podocyctic infolding in a patient with tumor lysis syndrome. Clin Exp Nephrol. 2008, 12:522-6. 10.1007/s10157-008-0099-5
52. Boikos SA, Forde PM, Chatterjee S, Hann CL: Tumor lysis syndrome in limited-stage small-cell lung cancer. J Thorac Oncol. 2015, 8:e61-2. 10.1097/TO.0000013e3182866b3b
53. Dar L, Gendelman O, Amital H: Tumor lysis syndrome presenting in a patient with metastatic melanoma treated with radiation therapy. Isr Med Assoc J. 2014, 16:436-7.
54. Woo IS, Kim JS, Park MJ, et al.: Spontaneous acute tumor lysis syndrome with advanced gastric cancer. J Korean Med Sci. 2001, 16:115-8. 10.3346/kjms.2001.16.1.115
55. Vogelzang NJ, Nelimirk RA, Nath KA: Tumor lysis syndrome after induction chemotherapy of small-cell bronchogenic carcinoma. JAMA. 1983, 259:515-4. 10.1001/jama.1983.03350820050932
56. Yahata T, Nishikawa N, Aoki Y, Tanaka K: Tumor lysis syndrome associated with weekly paclitaxel treatment in a case with ovarian cancer. Gynecol Oncol. 2006, 105:732-4. 10.1016/j.ygyno.2006.06.005
57. Zhao CY, Chiang CK: Rasburicase for huge hepatocellular carcinoma with tumor lysis syndrome: case report. Med Princ Pract. 2012, 21:498-500. 10.1159/0003309083
58. Baumann MA, Frick JC, Holowy PY: The tumor lysis syndrome. JAMA. 1983, 250:615.
59. Abbass K, Dewani S, Markert R, Kaplan MK, Baumann MA: All that glitters: sarenifin. Intern Med. 2011, 50:797. 10.1209/.InternalMedicine.30.4853
60. Vishwanathan S, Arumugrajah A, Ortega LM, Bousamra A: Rasburicase for tumor lysis syndrome. Am J...
hepatocellular carcinoma

Acute tumor lysis syndrome after transcatheter chemoembolization for hepatocellular carcinoma. J Formos Med Assoc. 2012, 111:724-5. 10.1016/j.fma.2011.12.009

Hiraizumi Y, Kamoi S, Inde Y, Kurose K, Ohaki Y, Takenaka T: A case of tumor lysis syndrome following chemotherapy for a uterine epitheloid leiomyosarcoma with focal chondroid differentiation. J Obstet Gynaecol Res. 2011, 37:947-52. 10.1111/j.1447-0756.2010.01454.x

Hentrich M, Schott X, Scheidt B, Reitmeyer M, Hoffmann U, Lutz L: Fatal tumor lysis syndrome after irinotecan/5-FU/folinic acid/bevacizumab-containing therapy in a patient heavily pretreated for metastatic colon cancer. Acta Oncol. 2008, 47:155-6. 10.1080/02841860701465533

Hussein AM, Feun LG: Tumor lysis syndrome after induction chemotherapy in small-cell lung cancer. Am J Clin Oncol. 1990, 13:10-3. 10.1097/00006292-199002000-00003

Burney IA: Acute tumor lysis syndrome after transcatheter chemoembolization of hepatocellular carcinoma. South Med J. 1998, 91:467-70. 10.1097/00007611-199805000-00012

Cihan S, Atasoy A, Yildirim B, Babacan NA, Kos TF: Hypersensitivity and tumor lysis syndrome associated with cetuximab treatment: should we be afraid? Tumori. 2015, 101:410-45. 10.5301/tj.5000246

Agrawala R, Batta A, Suryadevra V, Kumar V, Sharma V, Rana SS: Spontaneous tumor lysis syndrome in hepatocellular carcinoma presenting with hypocalcemic tetany: an unusual case and systematic literature review. Clin Res Hepatol Gastroenterol. 2017, 41:e29-31. 10.1016/j.clinre.2016.09.003

Catania VE, Vecchio M, Malaguerna M, Matteddu R, Malaguerna G, Lettieri S: Tumor lysis syndrome in an extraskelatal osteosarcoma: a case report and review of the literature. J Med Case Rep. 2017, 11:79. 10.1186/s13256-017-1241-3

Ignaszewski M, Kohlitz P: Treatment-naive spontaneous tumor lysis syndrome in metastatic prostate adenocarcinoma: an unusual suspect. Am J Emerg Med. 2017, 35:1384.e1-2. 10.1016/j.ajem.2017.05.044

Stuart S, Auers J: A rare seizure: tumor lysis syndrome after radiation therapy of a solid tumor. Am J Emerg Med. 2017, 35:941.e3-4. 10.1016/j.ajem.2017.03.054

Jiang RD, Jian WC, Jin N, Zhang ZL, Li T: Acute tumor lysis syndrome caused by transcatheter oily chemoembolization in a patient with a large hepatocellular carcinoma. Cardiovasc Intervent Radiol. 2007, 30:508-11. 10.1007/s00270-005-0240-8

Taira F, Horimoto Y, Saito M: Transarterial chemoembolization for hepatocellular carcinoma presenting with hypocalcemic tetany: an unusual case and systematic literature review. Cancer Chemother Pharmacol. 2004, 54:191-2. 10.1007/s00280-003-0827-5

Kallab AM, Jillella AP: Tumor lysis syndrome in small cell lung cancer. Med Oncol. 2001, 18:149-51. 10.1385/MO:18:2:149

Kaplan MA, Kuczukoner M, Alpagat G, Isikdogan A: Tumor lysis syndrome during radiotherapy for prostate cancer with bone and bone marrow metastases without visceral metastasis. Ann Saudi Med. 2012, 32:306-8. 10.5414/C20.2012.306-308

Sewani IH, Rahatian JT: Acute tumor lysis syndrome in a patient with mixed small cell and non-small cell tumor. Mayo Clin Proc. 2002, 77:722-8. 10.4065/77.7.722

Saleh RR, Rodrigues J, Lee TC: Acute tumor lysis syndrome after thalidomide therapy in advanced prostate cancer. Mayo Clin Proc. 2002, 77:222-8. 10.4065/77.7.722

Zugrossi P, Brustia M, Bobbio F, Campanini M: Tumor lysis syndrome: a serious complication of transcatheter arterial chemoembolization for hepatocellular carcinoma. Am J Med. 2016, 129:e173-5. 10.1016/j.amjmed.2016.04.019

Del Rio V, Jillella AP: Tumor lysis syndrome in premenopausal breast cancer patients: a report and review of the literature. Breast Cancer. 2015, 22:664-8. 10.1007/s12282-015-0448-4

Sorscher SM: Tumor lysis syndrome following docetaxel therapy for extensive metastatic prostate cancer. Cancer Chemother Pharmacol. 2004, 54:191-2. 10.1007/s00280-004-0827-9

Shihia H, Ishida Y, Wakiyama S, Sakamoto T, Misawa T, Yanaga K: Acute tumor lysis syndrome after transcatheter chemoembolization for hepatocellular carcinoma. Cancer Sci. 2008, 99:2104-5. 10.1111/j.1349-7266.2008.00958.x

Masson Regnault M, Ofaiche J, Boulinguez S, et al.: Tumor lysis syndrome: an unexpected adverse event associated with ipilimumab. Eur Acad Dermatol Venereol. 2017, 31:e173-4. 10.1111/edv.13733

Wright HL, Lin DW, Dewan P, Montgomery RB: Tumor lysis syndrome in a patient with metastatic, androgen independent prostate cancer. Int J Urol. 2005, 12:1012-3. 10.1111/j.1442-2440.2005.01196.x

Weil EL, Richards LJ, Saloner BR: 64-year-old woman with general malaise and hypercalcemia. Mayo Clin Proc. 2018, 93:1144-8. 10.1016/j.mayocp.2017.09.023

Mazzoni S: Tumor lysis syndrome in anti-androgen-treated metastastic prostate cancer. Int J Urol. 2016, 23:1837-8. 10.1007/s12096-016-1569-x

Krishnan G, D'Silva R, Al-Janadi A: Cetuximab-related tumor lysis syndrome in metastatic colon carcinoma. J Clin Oncol. 2008, 26:3406-8. 10.1200/JCO.2007.14.7563

Lee CC, Wu YH, Chung SH, Chen WJ: Acute tumor lysis syndrome after thalidomide therapy in advanced hepatocellular carcinoma. Oncologist. 2006, 11:87-8; author reply 89. 10.1634/104280.11.1-87

Saleh RR, Rodrigues J, Lee TC: A tumor lysis syndrome in a chemotherapy naive patient with metastatic pancreatic adenocarcinoma. BMJ Case Rep. 2015, 2015:2015. 10.1136/bcr-2014-207748

Zugrossi P, Brustia M, Bobbio F, Campanini M: Flare and tumor lysis syndrome with atypical features after letrozole therapy in advanced breast cancer. A case report. Ann Ital Med Int. 2001, 16:112-7. Accessed: June 20, 2020. https://pubmed.ncbi.nlm.nih.gov/11688358/.

Kalemkerian GP, Barretta R, Varterasian ML: Tumor lysis syndrome in small cell carcinoma and other solid tumors. Am J Med. 1997, 103:363-7. 10.1016/S0002-9343(97)00015-5

Habib GS, Saliba WR: Tumor lysis syndrome after hydrocortisone treatment in metastatic carcinoma: a case report and review of the literature. Am J Med Sci. 2002, 323:155-7. 10.1097/00000441-200203000-00007

Spark ME, Dyer MC, Cooley CJ: Fatal acute tumor lysis syndrome with metastatic breast cancer. Cancer. 1987, 60:762-4. 10.1002/1097-0142(19870515)60:4<762::AID-CNCN2820600409>3.0.CO;2-P

Meeks MW, Hammond MB, Robbins KR, Cheng KL, Lionberger JM: Tumor lysis syndrome and metastatic melanoma. Med Oncol. 2016, 33:154. 10.1159/000396113.158

Busam KJ, Wolchok J, Junghuth AA, Chapman P: Diffuse melanosis after chemotherapy-induced tumor lysis syndrome in a patient with metastatic melanoma. J Cutan Pathol. 2004, 31:274-80. 10.1111/j.1365-6898.2003.03154.x

Mehrazad R, Saito H, Krahni Z, Feinstein A: Spontaneous tumor lysis syndrome in a patient with metastatic hepatocellular carcinoma. Med Princ Pract. 2014, 23:574-6. 10.1159/000350652
94. Michels J, Lassau N, Gross-Goupil M, Massard C, Mejean A, Escudier B: Sunitinib inducing tumor lysis syndrome in a patient treated for renal carcinoma. Invest New Drugs. 2010, 28:690-5. 10.1007/s10637-009-9273-z

95. Nakamura Y, Nakamura Y, Hori E, et al.: Tumor lysis syndrome after transcatheter arterial infusion of cisplatin and embolization therapy for liver metastases of melanoma. Int J Dermatol. 2009, 48:763-7. 10.1111/j.1365-4632.2009.04087.x

96. Gouveia HS, Lopes SO, Faria AL: Management of tumour lysis syndrome during first-line palliative chemotherapy for high-volume colorectal cancer. BMJ Case Rep. 2018, 2018:2018. 10.1136/bcr-2017-217474

97. Huang WS, Yang CH: Sorafenib induced tumor lysis syndrome in an advanced hepatocellular carcinoma patient. World J Gastroenterol. 2009, 15:4464-6. 10.3748/wjg.15.4464

98. Lin CJ, Hsieh RK, Lim KH, Chen HH, Cheng YC, Wu CJ: Fatal spontaneous tumor lysis syndrome in a patient with metastatic, androgen-independent prostate cancer. South Med J. 2007, 100:916-7.

99. Nicolauo T, Wong R, Davis ID: Tumour lysis syndrome in a patient with renal-cell carcinoma treated with sunitinib malate. Lanecrt. 2007, 569:1925-4. 10.1002/1522-7534

100. Norberg SM, Orsos M, Birkenbach M, Bilunic M: Spontaneous tumor lysis syndrome in renal cell carcinoma: a case report. Clin Genitourin Cancer. 2014, 12:e225-7. 10.1016/j.clgc.2014.04.007

101. Oztop I, Demirkan R, Yaren A, et al.: Spontaneous tumor lysis syndrome in a patient with metastatic colon cancer as a complication of treatment with 5-fluorouracil/leucovorin and irinotecan. Tumori. 2004, 90:514-6. 10.1177/030089160409000515

102. Pabon C, Esmakula AK, Daily R: Tumour lysis syndrome following erinibulin for metastatic uterine leiomyosarcoma. BMJ Case Rep. 2018, 11: 10.1136/bcr-2018-224576

103. Pindia D, Rejekova K, Tomas M, Astir R, Rovenka E, Paukceva J, Mego M: Intraoperative tumor lysis syndrome in a giant teratoma: a case report. BMC Surg. 2019, 19:62. 10.1186/s12893-019-0526-4

104. Rostrom AY, Husseinysy G, Kandil A, Allam A: Tumor lysis syndrome following hemi-body irradiation for metastatic breast cancer. Ann Oncol. 2000, 11:1549-51. 10.1093/00857276/743

105. Romo CG, Pulskogen DN, Sivakumar T, et al.: Widely metastatic IDH1-mutant glioblastoma with oligodendrogial features and atypical molecular findings: a case report and review of current challenges in molecular diagnostics. Diagn Pathol. 2019, 14:16. 10.1186/s13000-019-0795-5

106. Okay M, Çetik S, Haznedaroglu IC: Tumor lysis syndrome due to targeting of hepatocellular carcinoma associated with chronic myelomonocytic leukemia. Turk J Haematol. 2019; 36:218-9. 10.4274/tj.alemanum.2019.01313

107. Dhakal P, Rai MP, Thrasher M, Sharma M: Spontaneous tumor lysis syndrome in small cell lung cancer: a rare phenomenon. BMJ Case Rep. 2018, 2018: 10.1136/bcr-2018-224512

108. Shiozawa K, Watanabe M, Takenaka H, Nagai H, Ishii K, Saiaki K, Sumino Y: Tumor lysis syndrome after sorafenib for hepatocellular carcinoma: a case report. Hepatogastroenterology. 2010, 57:688-90. Accessed: June 20, 2020; https://pubmed.ncbi.nlm.nih.gov/21035210/

109. Dirix LY, Prove A, Becquart D, Wouters E, Vermeulen P, van Oosterom A: Tumor lysis syndrome in a patient with metastatic melanoma. Cancer. 1991, 67:2207-10. 10.1002/1097-0142(19910415)67:8<2207::AID-CNCR2820670834>3.0.CO;2-R

110. Shamseddine AI, Khalil AM, Wehbeh MH: Acute tumor lysis syndrome with squamous cell carcinoma of the vulva. Gynecol Oncol. 1993, 51:238-60. 10.1006/gyno.1993.1285

111. Song M, Chan CC, Stoeker DA: Spontaneous tumor lysis syndrome in metastatic melanoma. J World Oncol. 2011, 2:204-7.

112. Takuruchi N, Miyazawa S, Ohno Z, Yoshida S, Tsukamoto T, Fujiwara M: A case of spontaneous tumor lysis syndrome in malignant melanoma. World J Oncol. 2016, 7:40-4. 10.14740/wjoi970w

113. Kim HD, Ha KS, Woo JH, Jung YH, Han CW, Kim TJ: Tumor lysis syndrome in a patient with metastatic colon cancer after treatment with 5-fluorouracil/leucovorin and oxaliplatin: case report and literature review. Cancer Res Treat. 2014, 46:204-7. 10.4143/11252.1442

114. Chow M, Yuwono A, Tan R: Tumour lysis syndrome: a rare acute presentation of locally advanced testicular cancer - case report and review of literature. Asian J Urol. 2016, 3:59-52. 10.1016/j.ajur.2015.09.005

115. Cech P, Block JB, Cone LA, Stone R: Tumor lysis syndrome after tamoxifen flare. N Engl J Med. 1986, 315:263-4. 10.1056/NEJM198607233150401

116. Field J, Mehta H, Burkes RL: Acute spontaneous tumor lysis syndrome in adenoacarcinoma of the lung: a case report. Am J Clin Oncol. 2003, 26:491-5. 10.1097/01.cno.0000080421-200001000-00012

117. Boisseau M, Bugat R, Mahjoubi M: Rapid tumour lysis syndrome in metastatic colorectal cancer increased by treatment with irinotecan (CPT-11). Eur J Cancer. 1996, 32:737-8. 10.1006/gyno.1993.1283

118. Alaigh V, Datta D: Spontaneous tumor lysis syndrome due to uterine leiomyosarcoma with hepatomas. Case Rep Crit Care. 2017, 2017:4141287. 10.1155/2017/4141287

119. Pinder EM, Atwal GS, Ayantunde AA, Khan S, Sokal M, McCulloch T, Parsons SL: Tumor lysis syndrome in a patient with metastatic prostate cancer. Mol Clin Oncol. 2017, 6:589-92. 10.3892/mco.2017.1186

120. Tseng RH, Wu CH, Wu KL, Lai GM, Lin JT: Tumor lysis syndrome in a patient with metastatic colon cancer after treatment with oxaliplatin and 5-Fu. J Cancer Res Pract. 2016, 13:124-7. 10.1016/j.jcrp.2016.03.001

121. Berringer R: Spontaneous tumor lysis syndrome in a patient with newly diagnosed metastatic colon adenoacarcinoma. CJD. 2018, 2015:51-3. 10.1016/j.cjm.2017.378
127. Sommerhalder D, Takalkar AM, Shackelford R, Peddi P: Spontaneous tumor lysis syndrome in colon cancer: a case report and literature review. Clin Case Rep. 2017, 5:2121-6. 10.1002/ccr3.1269
128. Shenoy C: Acute spontaneous tumor lysis syndrome in a patient with squamous cell carcinoma of the lung. QJM. 2009, 102:71-3. 10.1093/qjmed/hen129
129. Lee JY, Lim SH, Lee JY, et al.: Tumor lysis syndrome in a solid tumor: a case report of a patient with invasive thymoma. Cancer Res Treat. 2013, 45:343-8. 10.4143/crt.2013.45.4.345
130. Tanvetyanon T, Choudhury AM: Fatal acute tumor lysis syndrome, hepatic encephalopathy and flare phenomenon following combined androgen blockade. J Urol. 2004, 171:1627. 10.1097/01.ju.0000115884.21275.f4
131. Ustündağ Y, Boyacioğlu S, Haznedaroğlu IC, Baltali E: Acute tumor lysis syndrome associated with paclitaxel. Ann Pharmacother. 1997, 31:1548-9. 10.1177/106002809703101221
132. Abboud M, Shamseddine A: Maxillary sinus squamous cell carcinoma presenting with fatal tumor lysis syndrome: a case report and review of the literature. Case Rep Oncol. 2009, 2:229-33. 10.1159/000260525
133. Barton J C.: Tumor lysis syndrome in nonhematopoietic neoplasms. Cancer. 1989, 64:738-40. 10.1002/1097-0142(19890801)64:3<738::aid-cncr2820640328>3.0.co;2-z
134. Mott FE, Esana A, Chakmakjian C, Herrington JD: Tumor lysis syndrome in solid tumors. Support Cancer Ther. 2005, 2:188-91. 10.3816/SCT.2005.n.012
135. Qian KQ, Ye H, Xiao YW, Bao YY, Qi CJ: Tumor lysis syndrome associated with chemotherapy in primary retroperitoneal soft tissue sarcoma by ex vivo ATP-based tumor chemo-sensitivity assay (ATP-TCA). Int J Gen Med. 2009, 2:1-4. 10.2147/ijgm.s4760
136. Jeng-Nian Y, Anna Fen-Yau L, Chih-Yen C: Tumor lysis syndrome in gastrointestinal stromal tumor treated with the oral tyrosine kinase inhibitor imatinib: a case report. J Gastroenterol Res. 2017, 1:1. 10.5695/jestr.389
137. Lin CJ, Lim KH, Cheng YC, Chen HH, Wu CJ: Tumor lysis syndrome after treatment with gemcitabine for metastatic transitional cell carcinoma. Med Oncol. 2007, 24:455-7. 10.1007/s12032-007-0014-z
138. Ling W, Sachdeva P, Wong AS, Lee SC, Zee YK: Unprecedented case of tumor lysis syndrome in a patient with metastatic pancreatic adenocarcinoma. Pancreas. 2012, 41:659-61. 10.1097/MPA.0b013e318235d68d
139. Sharma D, Ren Z, Xia J, Ye S: Acute tumor lysis syndrome after transcatheter arterial chemoembolization in a patient with hepatocellular carcinoma. Eur J Radiol Extra. 2006, 58:49-51. 10.1016/j.ejrex.2006.02.005