Seasonal variations of indoor aerosols (PM$_{2.5}$) in urban households of Jammu (J&K), India

Nishu
Department of Environmental Sciences University of Jammu, Jammu - 180006 (J&K), India

Raj Kumar Rampal*
Department of Environmental Sciences University of Jammu, Jammu - 180006 (J&K), India

*Corresponding author. E. mail: rajkrampal@gmail.com

INTRODUCTION

One of the most important environmental issues has been reported to be particulate air pollution which adversely affects health. As per the estimate of The Global Burden of Disease Study (2021), indoor air pollutants due to inefficient and incomplete combustion of solid fuel (SF) has been reported to be responsible for 3.55 million deaths, with higher risks in women and children, due to their higher exposure duration and unique physical properties. (Ali et al., 2021). The short-term effects of particulate matter on the respiratory system have been manifested as stimulation and corrosion of the alveolar wall, damaging the respiratory and lung function resulting in cough, expectoration, wheezing, and chronic bronchitis emphysema, chronic obstructive pulmonary disease (COPD) and other diseases (Huang et al., 2018). The use of fire for cooking and warming was the prehistoric times of the start of air pollution. Air pollution is increasing at an alarming rate today due to the addition of harmful chemicals into the Earth’s atmosphere (Fullerton et al., 2008).

India’s current population has been reported to be 1.34 billion (www.indianonlinepages.com), but about 89% of rural India has been reported to use biomass for cooking purposes and urban India has been reported to use mainly LPG, which is reported to meet demands up to 64% in urban India. Dung cake, kerosene, coke, fire chips and other fuel resources are reported to meet demand upto1%,7%,2%,18% and 8%, respectively, in urban India (PHFI, 2017). Besides outdoor sources and cooking sources, various chemicals in cleaning supplies, building products, furniture and carpeting, pet dander, mold, bacteria, dust mites and even radon gas are additional sources of particulate matter in our indoor spaces (Smith, 2000). Particulate matter has been reported to exhibit variations during different seasons at residential, commercial and industrial sites (Shukla and Sharma, 2008; Kamath and Lokeshappa, 2014; Ni et al., 2016; Cheng and Wang-Li, 2019). In the present investigation, an attempt was made to study seasonal variations of indoor aerosols (PM$_{2.5}$) in Jammu (J&K) urban households during the two year study period of 2017-2019.

How to Cite

Nishu and Rampal, R. K. (2021). Seasonal variations of indoor aerosols (PM$_{2.5}$) in urban households of Jammu (J&K), India. Journal of Applied and Natural Science, 13(3), 853 - 860. https://doi.org/10.31018/jans.v13i3.2731

Abstract

Indoor pollution is more harmful as people spend more than 90% of their time indoors getting enhanced chances of penetrating aerosols (PM$_{2.5}$) deeply into the lungs. In the present investigation, an attempt has been made to study seasonal variations of indoor aerosols (PM$_{2.5}$) in urban households of Jammu (J&K), in the northern region of India. The status of indoor aerosols (PM$_{2.5}$) and their seasonal variations due to temperature and humidity conditions have been studied for the first time in urban households of Jammu (J&K). The two year study period (2017-2019) revealed that all types of households of urban areas with non-wood fuel as well as wood fuel burning practices exhibited significantly (p<0.05) higher values of indoor PM$_{2.5}$ during summer season (74.36 µg/m3 and 156.46 µg/m3) followed by winter season (62.77 µg/m3 and 143.5 µg/m3) and lower values during the rainy season (58.47 µg/m3 and 132.52 µg/m3). All these values were observed to be above the CPCB prescribed annual limit of 40 µg/m3, thereby exposing the residents to diseases of the respiratory and cardiovascular systems. The data generated in the present study will act as baseline data for future studies pertaining to indoor aerosols (PM$_{2.5}$) as well as suggesting mitigation measures.

Keywords: Aerosol, Cooking fuel, Households, Indoor air, PM$_{2.5}$, Season
MATERIALS AND METHODS

Study area
The study was conducted in an Urban area (U) (within the municipal area) of Jammu (J&K). The study area was divided into three Sub-areas: 1) Residential area (R), 2) Commercial area (C) and 3) Industrial area (I). Each site was further divided into seven sites based on the kitchen’s cooking fuel and ventilation conditions (Fig.1).

1. Sites of Residential area (UR):
 i) URLE (Urban Residential LPG Exhaust)
 Household with LPG as a mode of cooking fuel and exhaust in the kitchen. This house was located in the residential area (Nanak Nagar),
 ii) URLWE (Urban Residential LPG without Exhaust)
 Household with LPG as mode of cooking fuel and without exhaust in the kitchen. This house was located in residential area (Muthi),
 iii) URM (Urban Residential LPG Modular)
 Household with LPG as a cooking fuel and modular kitchen mode. This house was located in residential area (Channi),
 iv) URLHE (Urban Residential LPG Heater Exhaust)
 Household with LPG –Heater (Induction) as mode of cooking and exhaust in the kitchen. This house was located in residential area (Newplot).
 v) URLHWE (Urban Residential LPG Heater without Exhaust)
 Households with LPG –Heater (Induction) as a mode of cooking fuel and without exhaust in the kitchen. This house was in a residential area (Rehari),
 vi) URMH (Urban Residential LPG Heater Modular)
 Households with LPG –Heater (Induction) as a mode of cooking fuel and modular kitchen. This house was located in a residential area (Janipur),
 vii) URC (Urban Residential Chullah)
 Households with Wood fuel burning (Chullah) as a mode of cooking. This house was located in a residential area (Muthi).

2. Sites of Commercial area (UC):
 i) UCLE (Urban Commercial LPG Exhaust)
 Household with LPG as mode of cooking fuel and exhaust in the kitchen. This house was located in commercial area (Newplot)
ii) UCLWE (Urban Commercial LPG without Exhaust): Household with LPG as mode of cooking fuel and without exhaust in the kitchen. This house was located in a commercial area (Bantalab).

iii) UCLM (Urban Commercial LPG Modular): Household with LPG as mode of cooking fuel and modular kitchen. This house was located in a commercial area (Gandhi Nagar).

iv) UCLHE (Urban Commercial LPG Heater Exhaust): Household with LPG – Heater (Induction) as a mode of cooking and exhaust in the kitchen. This house was located in a commercial area (Paloura).

v) UCLHWE (Urban Commercial LPG Heater without Exhaust): Household with LPG – Heater (Induction) as mode of cooking fuel and without exhaust in the kitchen. This house was located in a commercial area (TalabTillo).

vi) UCLHM (Urban Commercial LPG Heater Modular): Households with LPG – Heater (Induction) as a mode of cooking fuel and modular kitchen. This house is located in a commercial area (Shastrigarh).

vii) UCC (Urban Commercial Chullah): Household with Wood fuel burning (Chullah) as a mode of cooking. This house was located in a commercial area (Shastri Nagar).
compared with respective residential, commercial and industrial sites during summer, rainy and winter seasons of two year study period (Tables 1-3). Modular exhaust in URLM, UCLM and UILM households was observed to be responsible for significant (p<0.05) lowest values of indoor aerosols (PM$_{2.5}$) and this observation was supported by the findings of Parajuli et al. (2016) who reported that the ventilation played the vital role to control Indoor Air Quality (IAQ) and recommended a greater focus on ventilation. The critical analysis of urban households with non-wood fuel-burning practice revealed that among Urban

Table 1. Indoor PM$_{2.5}$ levels in urban residential sites of study area during different seasons.

SITE	Summer	Rainy	Winter	One-way ANOVA (season wise)	Significance value (p)
URLM	46.40±12.12	30.74±11.04	38.34±9.92		0.043
URLM	74.22±8.88	45.56±9.21	54.23±7.74		0.033
URLHE	64.58±8.61	34.72±5.67	46.75±6.57		0.023
URLWE	81.59±13.47	65.73±11.53	72.60±15.19		0.023
URLWE	53.69±8.82	35.73±11.49	40.08±13.36		0.039
URLHM	43.51±6.27	20.92±4.81	27.77±8.33		0.023
URC	124.64±1.86	116.26±0.93	118.64±0.83		

CPCB prescribed annual limit of 40 µg/m3; URLE- Households with LPG as mode of cooking fuel and exhaust in the kitchen; URLWE- Households with LPG as mode of cooking fuel and without exhaust in the kitchen; URLM- Households with LPG as mode of cooking fuel and modular kitchen; URLHE- Households with LPG –Heater (Induction) as mode of cooking and exhaust in the kitchen; URLWE- Households with LPG –Heater as mode of cooking fuel and without exhaust in the kitchen; URLHM- Households with LPG –Heater (Induction) as mode of cooking fuel and modular kitchen; URC- Households with Wood fuel burning (Chullah) as mode of cooking.

Table 2. Indoor PM$_{2.5}$ levels in Urban commercial sites of study area during different seasons.

SITE	Summer	Rainy	Winter	One-way ANOVA (season wise)	Significance value (p)
UCLE	87.72±9.47	67.12±11.66	70.86±13.30		0.031
UCLE	90.65±18.58	71.33±14.52	74.37±14.26		0.024
UCLM	59.33±11.61	48.99±13.29	53.77±13.85		0.037
UCLM	93.39±18.36	73.64±13.68	76.26±14.21		0.034
UCLHE	98.72±18.88	80.42±14.48	82.21±13.66		0.023
UCLHE	70.90±10.49	55.08±10.18	58.86±10.75		0.043
UCC	169.6±9.5	138.9±7.62	154.19±5.28		0.024

CPCB prescribed annual limit of 40 µg/m3; UCLE- Households with LPG as mode of cooking fuel and exhaust in the kitchen. UCLHE- Households with LPG as mode of cooking fuel and without exhaust in the kitchen. UCLM- Households with LPG as mode of cooking fuel and modular kitchen. UCLHE- Households with LPG –Heater (Induction) as mode of cooking fuel and exhaust in the kitchen. UCLM- Households with LPG –Heater as mode of cooking fuel and without exhaust in the kitchen. UCLHE- Households with LPG –Heater (Induction) as mode of cooking fuel and modular kitchen. UCC- Households with Wood fuel burning (Chullah) as mode of cooking.
Table 3. Indoor PM$_{2.5}$ levels in Urban industrial sites of study area during different seasons.

SITE	Summer	Rainy	Winter	One-way ANOVA (season wise) Significance value (p)
UILE	77.05±12.58	63.32±12.53	66.77±15.02	0.033
	(62.96-92.82)	(53.24-80.55)	(55.32-86.80)	
UILWE	82.24±14.79	67.04±11.06	70.63±16.38	0.031
	(65.74-100.64)	(57.87-82.40)	(56.48-92.36)	
UILM	51.61±12.83	46.94±11.92	49.41±10.35	0.035
	(39.35-68.51)	(34.95-63.42)	(38.42-62.96)	
UILHE	82.05±10.27	72.95±12.24	75.69±13.75	0.032
	(68.98-93.75)	(61.80-88.88)	(62.96-93.75)	
UILHWE	91.12±12.15	76.00±13.44	79.89±13.71	0.036
	(79.86-107.63)	(64.35-93.51)	(68.51-98.37)	
UILHM	63.42±7.77	54.16±9.97	55.04±8.06	0.039
	(55.55-74.30)	(43.98-68.05)	(46.75-65.97)	
UIC	175.16±9.5	142.37±7.62	157.67±2.32	0.031
	(170.25-179.18)	(139.25-145.18)	(156.25-159.18)	

CPCB prescribed annual limit of 40 µg/m3. UILE- Households with LPG as mode of cooking fuel and exhaust in the kitchen; UILWE- Households with LPG as mode of cooking fuel and without exhaust in the kitchen; UILM- Households with LPG as mode of cooking fuel and modular kitchen; UILHE- Households with LPG – Heater (Induction) as mode of cooking fuel and modular kitchen; UILHWE- Households with LPG – Heater (Induction) as mode of cooking fuel and modular kitchen.; UIC- Households with Wood fuel burning (Chullah) as mode of cooking.

Residential Sites (URLE, URLWE, URLM, URLHE, URLHWE and URLHM), URLHWE exhibited the highest value of 81.59±13.47µg/m3, among Urban Commercial Sites (UCLE, UCLWE, UCLM, UCLHE, UCLHWE and UCLHM), UCLHWE exhibited the highest value of 98.72±18.88 µg/m3 and among Urban Industrial Sites (i.e. UILE, UILWE, UILM, UILHE, UILHWE and UILHM), UILHWE exhibited the highest value of 91.12 ±12.15µg/m3 during the summer season which was above the CPCB prescribed annual limit of 40 µg/m3 thereby exposing the residents to the probability of diseases of the respiratory and cardiovascular systems as per Pozzer et al. (2019) who concluded that 11.3% of the total deaths due to diseases of the respiratory and cardiovascular systems were attributable to long-term exposure to PM$_{2.5}$ pollution. During the rainy season, which was below the CPCB prescribed annual limit of 40 µg/m3.

Among Residential sites, URLM exhibited the lowest value of 30.74±11.04µg/m3, among Commercial sites, UCLM exhibited the lowest value of 48.99±13.29µg/m3 during the rainy season, which was below the CPCB prescribed annual limit of 40 µg/m3 whereas among Industrial sites. UILM exhibited the lowest value of 46.94±11.92µg/m3 during the rainy season which was above the CPCB prescribed annual limit of 40 µg/m3. Kamath and Lokeshappa (2014), while investigating air pollutant concentration at residential, industrial and sensitive areas of Bangalore, also observed that concentration of pollutants was more in summer than in pre-monsoon and post-monsoon monsoon seasons.

The analysis of compiled data of indoor PM$_{2.5}$ during different seasons of two year study period revealed that all types of households of urban areas with non-wood fuel burning practice exhibited significantly (p<0.05) higher values of indoor PM$_{2.5}$ during the summer season (74.36±9.20 µg/m3) followed by winter season (62.77±8.81 µg/m3) and then the lower values during rainy season (58.47±10.94 µg/m3) (Table 4). Humidity and penetration of outdoor PM$_{2.5}$ could be the reason for seasonal variability. Low humidity and dry air during summer with the accumulation of more outdoor PM$_{2.5}$ due to the working of dessert coolers, air conditioners and opening of windows during electric failure has been observed to be the cause of higher PM$_{2.5}$ during summer. This observation finds support from the work of Yang et al. (2018), who reported that outdoor concentration was an important factor for indoor PM$_{2.5}$, and that Shao et al. (2019) reported the penetration of the particles from the ambient environment as a major source of indoor PM$_{2.5}$ pollution. Consequently, the closer of windows and non-working of dessert coolers, air conditioners restricted the entry of outdoor PM$_{2.5}$, thereby decreasing the values of indoor PM$_{2.5}$ during winter and very high humidity during the rainy season was observed to be the cause of lowest indoor PM$_{2.5}$.

857
Shukla and Sharma (2008), while studying the seasonal variability in ambient aerosols over Kanpur, also observed the highest concentration of PM$_{10}$ during the monsoon period and higher variability in summers because of higher wind speed in summers. Cheng and Wang-Li (2019), while carrying out spatial and temporal variations of PM$_{2.5}$ in North Carolina, also reported PM$_{2.5}$ concentrations higher in summer and lower in the winter.

The analysis of compiled data of indoor aerosols (PM$_{2.5}$) revealed that all types of urban households with non-wood fuel-burning practice at commercial sites exhibited significantly (p<0.05) higher values of indoor PM$_{2.5}$ as compared with that of industrial sites followed by residential sites during all the seasons of two-year study period (Tables 1-3). Commercial areas were observed to have more complex anthropogenic activities, thereby emitting more particulate matter than industrial and residential areas. As already discussed, the more the outdoor PM$_{2.5}$, the more would be indoor PM$_{2.5}$ as reported by Yang et al. (2018) in Beijing and Shao et al. (2019) in Nanjing, China.

Indoor PM$_{2.5}$ variations among different types of households with wood fuel burning practice (Chullah) at Urban Residential Sites (URC), Urban Commercial Sites (UCC), Urban Industrial Sites (UIC) were also observed to be insignificant (p>0.05) during a specific season. But households at Urban Residential Sites (URC), Urban Commercial Sites (UCC) and Urban Industrial Sites (UIC) exhibited significantly (p<0.05) higher values of indoor PM$_{2.5}$ during the summer season (156.46±27.70 µg/m3), followed by winter season (143.5±21.59 µg/m3) and lowest during rainy seasons (132.52±14.18 µg/m3) of two-year study period (Tables 1-3). But all these values were observed to be well above the CPCB prescribed annual limit of 40 µg/m3.

Overall comparison of indoor PM$_{2.5}$ data of all types of households of study area revealed that households with wood fuel burning practice (Chullah) exhibited significantly (p<0.05) higher value (144.09±21.28µg/m3) of indoor PM$_{2.5}$ as compared with the value (65.20±9.51 µg/m3) of households without wood-fuel burning practice. (Table 4). Parajuli et al. (2016) also reported higher indoor PM$_{2.5}$ concentration (1336 lg/m3) for Traditional Cooking Stoves (TCS) and low indoor PM$_{2.5}$ concentration (825.4±730.9 µg/m3) for Improved Cooking Stove (ICS). The present observation that indoor PM$_{2.5}$ of households with wood fuel burning practice (Chullah) exhibited 2.2 times higher value as compared with households with non-wood fuel burning practice supports the observation of Deepthi et al. (2018) reporting the PM concentrations in biomass households as 2.1 and 3.8 times of combination of biomass and LPG and; only LPG respectively. Moreover, smoke emitted from biomass had significantly high concentrations of toxic chemicals and particulate matter.}

Site	Average Two Year Indoor aerosols (PM$_{2.5}$) level (µg/m3)	Average Indoor aerosols (PM$_{2.5}$) level in Non wood fuel burning households of Jammu during different seasons of two year study period.
Residential	122.24±11.09	179.56±123.84;One-way ANOVA (site and season wise) variations Significant(p<0.05); Average Indoor aerosols (PM$_{2.5}$) level in Non wood fuel burning households and residential areas. As already discussed, the more the outdoor PM$_{2.5}$, the more would be indoor PM$_{2.5}$ as reported by Yang et al. (2018) in Beijing and Shao et al. (2019) in Nanjing, China.
which was responsible for numerous respiratory health syndromes – particularly in women and children who used to spend the most time at home cooking, as reported by Roshan and Isaifan (2018) while reviewing health hazards of air pollution from burning biomass for cooking and heating in Asia and Africa and Paulsen et al. (2019), in rural Guatamala.

The present observation that indoor PM_{2.5} of households with wood fuel burning practice exhibited 2.6 times higher value and households with non-wood fuel burning practice exhibited 1.6 times higher value as compared with CPCB prescribed annual limit of 40 µg/m³ supports the findings of Pokhrel et al. (2015) who observed the mean household PM_{2.5} concentrations during all seasons of the year as 656 mg/m³ from biomass, 169 mg/m³ from kerosene; 101 mg/m³ from LPG; and 80 mg/m³ from electric stoves and these were observed to be 11, 2.8, 1.7 and 1.3 times higher as compared with Nepal’s national 24-h indoor air quality standard for PM_{2.5} (60 mg/m³).

Compilation of data of indoor PM_{2.5} of households with wood fuel burning practice and households with non-wood fuel burning practice exhibited significantly (p<0.05) highest value (115.4µg/m³) of indoor PM_{2.5} during summer seasons followed by winter season (103.1 µg/m³) and lowest during rainy seasons (95.5 µg/m³) of two year study period with overall average indoor PM_{2.5} value of 104.68±44.33 µg/m³ (Table 4) thereby exposing the residents to diseases of the respiratory and cardiovascular systems due to long-term exposure to PM_{2.5} pollution. as reported by Pozzer et al. (2019). in Verona, Italy.

Conclusion

Average indoor aerosols (PM_{2.5}) in wood fuel burning urban households of Jammu exhibited a value (144.09±21.36µg/m³) almost two times higher than the value (65.20µg/m³) of non-wood fuel-burning urban households of Jammu. Average indoor aerosols (PM_{2.5}) exhibited the highest value (115.4µg/m³) during summer seasons followed by winter season (103.1 µg/m³) and lowest during rainy seasons (95.5 µg/m³) of two year study period with overall average indoor PM_{2.5} value of 104.68±44.33 µg/m³ thereby exposing the residents to diseases of the respiratory and cardiovascular systems due to long-term exposure to PM_{2.5} pollution. . Variations in indoor aerosols values among various types of households (except at Household with modular kitchen) at each area during 1st year as well as 2nd were observed to be insignificant (p>0.05) whereas area wise and season wise variations in data were observed to be significant (p<0.05) as depicted by One-way ANOVA and Post Hoc Test. Wood fuel burning for cooking should be totally replaced by non-wood burning fuels as wood fuel burning urban households exhibited 2.2 times higher value of indoor aerosols than that of non-wood fuel-burning urban households of Jammu.

ACKNOWLEDGEMENTS

We are thankful to Mr. Drinder Singh Manhas Geographic Information Systems (GIS) Analyst Western Himalayan Regional Centre, National Institute of Hydrology Jammu, for drafting the study area map.

Conflict of interest

The authors declare that they have no conflict of interest.

REFERENCES

1. Ali, M.U., Yu, Y., Yousaf,B.,Mehr Ahmed ,M., Munir,M., Ullah,S.,Zheng, C., Kuang, X. & Wong, M.U.(2021). Health impacts of indoor air pollution from household solid fuel on children and women. Journal of Hazardous Materials. 416, 1-16 https://doi.org/10.1016/j.jhazmat.2021.126127
2. Cheng, B. & Wang-Li, L. (2019). Spatial and temporal variations of PM_{2.5} in North Carolina. Aerosol and Air Quality Research, 19, 698–710.
3. Central Pollution Control Board (2014). National Air Quality Index, Ministry of Environment, Forest and Climate Change, Government of India.www.cpcb.nic.in.
4. Deepthi, Y., Nagendra, S.M.S. & Gummadi, S. N. (2019). Characteristics of indoor air pollution and estimation of respiratory dosage under varied fuel-type and kitchen-type in the rural areas of Telangana state in India. Science of the Total Environment, 650, 616–625.
5. Fullerton, D. G., Bruce, N. & Gordon, S. B. (2008). Indoor air pollution from biomass fuel smoke is a major health concern in the developing world. Science Direct, 102, 843-851.
6. Huang, J., Liu, Q. & Gao, X. (2018). Short-term effects of particulate air pollution on human health. Encyclopedia of Environmental Health, 2nd Edition.https://doi.org/10.1016/B978-0-12-409548-9.10991-1:1-8.
7. Kamath & Lokeshepaa. (2014). Air quality indexing for selected areas in Bangalore city, Karnataka state, India. International Journal of Innovative research in Science Engineering and Technology,3(8), 2319-8753.
8. Li, T., Cao, S., Fan, D., Zhang, Y., Wang, B., Zhao, X., Leaderer, B.P., Shen, G., Zhang, Y. & Duan, X. (2017). Household concentrations and personal exposure of PM_{2.5} among urban residents using different cooking fuels. Science of the Total Environment, 1–19.
9. Ni, K., Carter, E., Schauer, J.J., Ezzati, M., Zhang, Y., Niu, H., Lai, A.M., Shan, M., Wang, Y., Yang, X. & Baumgartner, J.(2016). Seasonal variation in outdoor, indoor, and personal air pollution exposures of women using wood stoves in the Tibetan Plateau: Baseline assessment for an energy intervention study. Environment International. http://dx.doi.org/10.1016/j.envint.2016.05.029.
10. PHFI (2017). Public health foundation of India. Air pollution and health in India: A review of the current evidence.
and opportunities for the future. http://www.ceh.org.in/wp-content/2017/10/Air-Pollution-and-Health-in-India.pdf.

11. Parajuli, I., Lee, H. & Shrestha, K R (2016). Indoor Air Quality and ventilation assessment of rural mountainous households of Nepal. International Journal of Sustainable Built Environment, 5, 301–311.

12. Paulsen, A D, Garland, C., Lascurain, J., Kunsia, T A., Rossanese, M., Jagoe, K., Carpenter, A L., Méndez-Vides, A., Delapena, S. & Yelvington, P. E. (2019). Emission Performance and User Acceptance of a Catalytic Biomass Cookstove in Rural Guatemala. American Chemical Society Omega, 4, 2981–2988.

13. Pokhrel, A K., Bates, M N., Acharya, J., Valentiner-Branth, P., Chandyo, R K., Shrestha, P S., Raut, A K. & Smith, K R. (2015). PM2.5 in household kitchens of Bhaktapur, Nepal, using four different cooking fuels. Atmospheric Environment, 113, 159-168.

14. Pozzer, A., Bacer, S., Sappadina, D Z., Predicatori, F. and Caleffi, A. (2019) Long-term concentrations of fine particulate matter and impact on human health in Verona, Italy. Atmospheric Pollution Research, 10, 731-738.

15. Roshan, D R. & Isaifan, R J. (2018). Household Air Pollution from Burning Biomass for Cooking and Heating – A Review of Health Hazards and Intervention Programs. Journal of Environmental Science and Pollution Research, 4(3), 289–296.

16. Shao, Z., Yin, X., Bi, J., Ma, Z. & Wang, J. (2019). Spatio-temporal Variations of Indoor PM_{2.5} Concentrations in Nanjing, China. International Journal of Environmental Research and Public Health, 144, 1-17.

17. Shukla, S.P. & Sharma, M. (2008) Source apportionment of atmospheric PM_{10} in Kanpur, India. Environmental Engineering Science, 25, 849–861. doi: 10.1089/ees.2006.0275.

18. Smith, K.R. (2000) National burden of disease in India from indoor air pollution. Proceedings of the National Academy of Sciences of the United States of America, 97 (24), 13286-13293.

19. Yang, Y., Liu, L., Xu, C., Li, N., Liu, Z., Wang, Q. & Xu, D. (2018). Source Apportionment and Influencing Factor Analysis of Residential Indoor PM_{2.5} in Beijing. International Journal of Environmental Research and Public Health, 686(15), 1-19 doi:10.3390.