Search for the Radiative Decays $B \to \rho \gamma$ and $B^0 \to \omega \gamma$

The BaBar Collaboration

B. Aubert,¹ R. Barate,¹ D. Boutigny,¹ J.-M. Gaillard,¹ A. Hicheur,¹ Y. Karyotakis,¹ J. P. Lees,¹ P. Robbe,¹ V. Tisserand,¹ A. Zhigachev,¹ A. Palano,² A. Pompli,² J. C. Chen,³ N. D. Qi,³ G. Rong,³ P. Wang,³ Y. S. Zhu,³ G. Eisen,⁴ I. Ofte,⁴ B. Steigu,⁴ G. S. Abrams,⁵ A. W. Borgland,⁵ A. B. Breon,⁵ D. N. Brown,⁵ J. Button-Shaffer,⁵ R. N. Cahn,⁵ E. Charles,⁵ C. T. Day,⁵ M. S. Gill,⁵ A. V. Gritsan,⁵ Y. Groysman,⁵ R. G. Jacobsen,⁵ R. W. Kadel,⁵ J. Kadyk,⁵ L. T. Kerth,⁵ Yu. G. Kolomensky,⁵ J. F. Kral,⁵ G. Kukartsev,⁵ C. LeClerc,⁵ M. E. Levi,⁵ G. Lynch,⁵ L. M. Mir,⁵ P. J. Oddone,⁵ T. J. Orimoto,⁵ M. Pripstein,⁵ N. A. Roe,⁵ A. Romosan,⁵ M. T. Ronan,⁵ V. G. Shkelkov,⁵ A. V. Telnov,⁵ W. A. Wenzel,⁵ T. J. Harrison,⁶ C. M. Hawkes,⁶ D. J. Knowles,⁶ R. C. Penny,⁶ A. T. Watson,⁶ N. K. Watson,⁶ T. Deppermann,⁶ K. Goetzenn,⁶ H. Koch,⁷ B. Lewandowski,⁷ M. Pelizaeus,⁷ K. Peters,⁷ H. Schmucker,⁷ M. Steinknecht,⁷ N. R. Barlow,⁸ W. Bhihnoj,⁸ J. T. Boyd,⁸ N. Chevalier,⁸ W. N. Cottingham,⁸ C. Mackay,⁸ F. F. Wilson,⁸ C. Heard,⁹ T. S. Mattison,⁹ J. A. McKenna,⁹ D. Thiessen,⁹ P. Kyberd,¹⁰ A. K. McKemey,¹⁰ V. E. Blinov,¹¹ A. D. Bukin,¹¹ V. B. Golubev,¹¹ V. N. Ivanchenko,¹¹ E. A. Kravchenko,¹¹ A. P. Ounich,¹¹ S. I. Serednyakov,¹¹ Yu. I. Skovpen,¹¹ E. P. Solodov,¹¹ A. N. Yushkov,¹¹ D. Best,¹² M. Chao,¹² D. Kirkby,¹² A. J. Lankford,¹² M. Mandelkern,¹² S. McMahon,¹² R. K. Mommesen,¹² W. Roetzel,¹² D. P. Stoker,¹² C. Buchanan,¹³ H. K. Hadavand,¹⁴ E. J. Hill,¹⁴ D. B. MacFarlane,¹⁴ H. P. Paar,¹⁴ Sh. Rahatli,¹⁴ U. Schwulke,¹⁴ V. Sharma,¹⁴ J. W. Berryhill,¹⁵ C. Campagnari,¹⁵ B. Dahmes,¹⁵ N. Kuznetsova,¹⁵ S. L. Levy,¹⁵ O. Long,¹⁵ A. Lu,¹⁵ M. A. Mazur,¹⁵ J. D. Richman,¹⁵ W. Verkerke,¹⁵ J. Beringer,¹⁶ A. M. Eisner,¹⁶ C. A. Heusch,¹⁶ W. S. Lockman,¹⁶ T. Schall,¹⁶ R. E. Schmitz,¹⁶ B. A. Schumm,¹⁶ A. Seiden,¹⁶ M. Turri,¹⁶ W. Walkowiak,¹⁶ D. C. Williams,¹⁶ M. G. Wilson,¹⁶ J. Albert,¹⁷ E. Chen,¹⁷ M. P. Dorsten,¹⁷ G. P. Dubois-Felsmann,¹⁷ A. Dvoretskii,¹⁷ D. G. Hitlin,¹⁷ I. Narosky,¹⁷ F. C. Porter,¹⁷ A. Ryd,¹⁷ A. Samuel,¹⁷ S. Yang,¹⁷ S. Jayatilleke,¹⁸ G. Mancinelli,¹⁸ B. T. Meadows,¹⁸ M. D. Sokoloff,¹⁸ T. Barillari,¹⁹ F. Blain,¹⁹ P. Bloom,¹⁹ P. J. Clark,¹⁹ W. T. Ford,¹⁹ U. Nauenberg,¹⁹ A. Olivas,²⁰ P. Rankin,²¹ J. J. Roy,²¹ J. G. Smith,²¹ W. C. van Hoeck,²¹ L. Zhang,²¹ J. L. Harton,²¹ T. Hu,²¹ A. Soffer,²¹ W. H. Toki,²¹ R. J. Wilson,²¹ J. Zhang,²¹ D. Altenburg,²¹ T. Brandt,²¹ J. Brose,²¹ T. Colberg,²¹ M. Dickopp,²¹ R. S. Dubitzky,²¹ A. Hauke,²¹ H. M. Lackers,²¹ E. Maly,²¹ R. Müller-Pfefferkorn,²¹ R. Nagowski,²¹ S. Otto,²¹ K. R. Schubert,²¹ R. Schwierz,²¹ B. Spaan,²¹ L. Wilden,²¹ D. Bernard,²² G. R. Bonneau,²² F. Brochard,²² J. Cohen-Tanugi,²² Th. Thiebaux,²² G. Vasileiadis,²² M. Verderi,²² A. Khan,²³ D. Lavin,²³ F. Muheim,²³ S. Playfer,²³ J. E. Swain,²³ J. Tinslay,²³ C. Bozzi,²⁴ L. Piemontese,²⁴ A. Sarti,²⁴ E. Treadwell,²⁵ F. Anulli,²⁵ R. Baldini-Ferroli,²⁶ A. Calcaterra,²⁶ R. de Sangro,²⁶ D. Falciai,²⁶ G. Finocchiaro,²⁶ P. Patrle,²⁶ I. M. Peruzzi,²⁶ S. Piccolo,²⁶ A. Zallo,²⁶ A. Buzzo,²⁶ R. Contris,²⁶ G. Crosetti,²⁷ M. Lo Vetere,²⁷ M. Macri,²⁷ M. R. Monge,²⁷ S. Passaggio,²⁷ F. C. Pastore,²⁷ C. Patrignani,²⁷ E. Robutti,²⁷ A. Santroni,²⁷ S. Tosi,²⁷ S. Bailey,²⁸ M. Morii,²⁸ M. L. Spinwall,²⁸ D. A. Bowerman,²⁹ P. D. Dauncey,²⁹ U. Egede,²⁹ I. Eschrich,²⁹ G. W. Morton,²⁹ J. A. Nash,²⁹ P. Sanders,²⁹ G. P. Taylor,²⁹ G. J. Grenier,³⁰ S.-J. Lee,³⁰ U. Mallik,³⁰ J. Cochran,³¹ H. B. Crawler,³¹ J. Lamsa,³¹ W. T. Meyer,³¹ S. Prell,³¹ E. I. Rosenberg,³¹ J. Yi,³¹ M. Davier,³² G. Grosdidier,³² A. Höcker,³² S. Laplace,³² F. Le Diberder,³² V. Lepeltier,³² A. M. Lutz,³² T. C. Petersen,³² S. Plaszczynski,³² M. H. Schune,³² L. Santot,³² G. Wormser,³² R. M. Bionta,³³ V. Briljevic,³³ C. H. Cheng,³³ D. J. Lange,³³ D. M. Wright,³³ J. A. Bevan,³³ J. R. Fry,³³ E. Gabathuler,³³ R. Gamet,³⁴ M. Kay,³⁴ D. J. Payne,³⁴ R. J. Sloane,³⁴ C. Touramanis,³⁴ J. J. Back,³⁵ G. Bellodi,³⁵ P. F. Harrison,³⁵ H. W. Shorthouse,³⁵ P. Strother,³⁵ P. B. Vidal,³⁵ G. Cowan,³⁶ H. U. Flachere,³⁶ S. George,³⁶ M. G. Green,³⁶ A. Kurup,³⁶ C. E. Marker,³⁶ T. R. McManus,³⁶ S. Ricciardi,³⁶ F. Salvatore,³⁶ G. Vaitasas,³⁶ M. A. Winter,³⁶ D. Brown,³⁶ C. L. Davis,³⁷ J. Allison,³⁷ R. J. Barlow,³⁸ A. C. Forti,³⁸ P. A. Hart,³⁸ F. Jackson,³⁸ G. D. Lafferty,³⁸ A. J. Lyon,³⁸ J. H. Weatherall,³⁸ J. C. Williams,³⁸ A. Farbin,³⁹ A. Jawahery,³⁹ D. Kovalskyi,³⁹
A search for the exclusive radiative decays $B \to \rho(770)\gamma$ and $B^0 \to \omega(782)\gamma$ is performed on a sample of about 84 million $B\bar{B}$ events collected by the BABAR detector at the PEP-II asymmetric-energy e^+e^- storage ring. No significant signal is seen in any of the channels. We set upper limits on the branching fractions $B(B^0 \to \rho^0\gamma) < 1.2 \times 10^{-6}$, $B(B^+ \to \rho^+\gamma) < 2.1 \times 10^{-6}$,
Within the Standard Model (SM), the decays $B \to \rho \gamma$ and $B^0 \to \omega \gamma$ proceed primarily through an underlying $b \to d \gamma$ electromagnetic “penguin” diagram that contains a top quark in the loop. These processes are analogous to the $B \to K^* \gamma$ process mediated by the $b \to s \gamma$ transition, but with the final-state s-quark replaced by a d-quark, and the relevant element of the CKM matrix changed from V_{td} to V_{ts}. The analysis uses data collected by the BABAR detector at the PEP-II asymmetric-energy e^+e^- storage ring. The data sample consists of 84.4 ± 0.9 million $B\overline{B}$ events corresponding to 78 fb$^{-1}$ on the $\Upsilon(4S)$ resonance (“on-resonance”), and 9.6 fb$^{-1}$ recorded 40 MeV below the $\Upsilon(4S)$ resonance (“off-resonance”).

The BABAR detector consists of five subdetectors. Charged particle trajectories are measured by a combination of a five-layer silicon vertex tracker (SVT) and a 40-layer drift chamber (DCH) in a 1.5-T solenoidal magnetic field. Photons and electrons are detected in a CsI(Tl) electromagnetic calorimeter (EMC), with photon energy resolution $\sigma_E/E = 0.023(E/\text{GeV})^{-1/4} \pm 0.019$. A ring-imaging Cherenkov detector (DIRC) is used for charged-particle identification. The magnetic flux return is instrumented with resistive plate chambers to identify muons.

The decay $B \to \rho \gamma$ is reconstructed with $\rho^0 \to \pi^+\pi^-$ and $\rho^+ \to \pi^+\pi^0$, while $B^0 \to \omega \gamma$ is reconstructed with $\omega \to \pi^+\pi^-\pi^0$. Charge-conjugate channels are implied throughout this paper. Background high-energy photons are produced primarily in continuum u, d, s, and c quark-antiquark events through $\pi^0/\eta \to \gamma \gamma$ decays or via initial-state radiation. The reconstruction uses quantities both in the laboratory and $\Upsilon(4S)$ center-of-mass frames, where the latter are denoted by an asterisk.

The primary photon in the B decay is identified as an energy deposition in the EMC. The deposition must meet a number of criteria (described in detail in our paper on $B \to K^*\gamma$) that are designed to eliminate background from charged particles, hadronic showers, and π^0 and η decays.

As in Ref. 8, the charged tracks used in identifying the ρ/ω meson are well-measured tracks with a momentum transverse to the beam direction greater than 0.1 GeV/c. A charged pion selection based on dE/dx measurements in the SVT and DCH, and on Cherenkov photons reconstructed in the DIRC is used to reduce backgrounds from the $b \to s \gamma$ processes by rejecting charged kaons (e.g. K^+ from $B^0 \to K^{\ast0}\gamma$). Figure 1(a) shows the particle identification performance measured with a control sample of $D^* \to D^0 (\to K^+\pi^-)\pi^+$ decays.

Neutral pion candidates are identified using two photon candidates reconstructed in the calorimeter, each with energy greater than 50 MeV. The invariant mass of the pair is required to satisfy $115 < m_{\pi\pi} < 150$ MeV/c^2, which removes pairs whose invariant mass differs from the true $m_{\pi\pi}$ by more than about 3 times the experimental resolution. A kinematic fit with $m_{\pi\pi}$ constrained to $m_{\pi\pi}$ is used to improve the momentum resolution.

A ρ^0 candidate is reconstructed by selecting two identified pions that have opposite charge and a common vertex. The ρ^+ candidates are obtained by pairing π^0 candidates with an identified charged pion. We select ρ candidates with invariant mass $m_{\pi\pi}$ within 250 MeV/c^2 of $m_{\rho} = 770$ MeV/c^2 and momentum $2.3 < p_{\pi^\mp} < 2.85$ GeV/c. The ω candidates are reconstructed from combinations of oppositely charged identified pions with a common vertex and π^0 candidates with invariant mass $m_{\pi^\mp\pi^\mp\pi^0}$ within 23 MeV/c^2 of $m_{\omega} = 783$ MeV/c^2 and momentum $2.4 < p_{\pi^\mp\pi^\mp\pi^0} < 2.8$ GeV/c. The $m_{\pi^\mp\pi^\mp\pi^0}$ resolution is slightly poorer in data than in Monte Carlo (MC) simulation. The resulting change in signal efficiency of the $m_{\pi^\mp\pi^\mp\pi^0}$ selection is accounted for as a systematic error in the signal efficiency.

The photon and ρ/ω meson candidates are combined to form the B meson candidates. We define $\Delta E^* \equiv E_{\pi^0}^* - E_{\text{beam}}^*$, where E_{beam}^* is the energy of each beam and $E_{\pi^0}^* = E_{\pi^0} + E_{\rho/\omega}^*$ is the energy of the B meson candidate. The signal candidates are centered at $\Delta E^* = 0$ with resolution of about 50 MeV and a tail towards negative ΔE^* due to the asymmetric energy response of the EMC. We also define the beam-energy-substituted mass $m_{ES} \equiv \sqrt{E_{\pi^0}^2 + p_{\rho/\omega}^2} - E_{\text{beam}}^*$, where $p_{\rho/\omega}^*$ is the momentum of the B candidate modified by scaling the photon energy to make $E_{\pi^0}^* + E_{\rho/\omega}^* - E_{\text{beam}}^* = 0$. This procedure reduces the tail in the signal m_{ES} distribution that results from the asymmetric calorimeter response. The signal candidates peak at $m_{ES} = m_B$ with a resolution of about 3 MeV/c^2, dominated by the beam-energy spread.
We consider candidates in the “fit region” $-0.3 < \Delta E^* < 0.3$ GeV and $5.20 < m_{ES} < 5.29$ GeV/c^2. For the small fraction of events (8% for MC $B^0 \rightarrow \rho^0 \gamma$ events) in which more than one B meson candidate satisfies all the cuts, the candidate with the smallest value of $|\Delta E^*|$ is selected.

We construct a number of variables that distinguish the signal from the continuum $q\bar{q}$ background. As in Ref. 8, we calculate the thrust angle θ_T^*, the B-production angle θ_B^*, and the helicity angle θ_H. For $B^0 \rightarrow \omega\gamma$, θ_H is defined as the angle between the normal to the decay plane of the ω and the flight direction of the B meson, both computed in the ω rest frame. We also calculate several additional discriminating variables. The energy flow of the event excluding the B-meson daughters in 10° cones centered on the photon-candidate momentum provides discrimination between the jet-like continuum background and the more spherical signal events. For suppression of the initial-state radiation background, we consider R_0, the ratio of second- to zeroth-order Fox-Wolfram moments 9 in the frame recoiling from the photon momentum. We define the net flavor content as $\sum_i |N_i^+ - N_i^-|$, where N_i^\pm are the number of e^\pm, μ^\pm, K^\pm, and slow pions of each sign identified in the event 11. On average, $B\bar{B}$ events have larger net flavor than continuum events. In the $B^0 \rightarrow \rho^0\gamma$ and $B^0 \rightarrow \omega\gamma$ analyses, we use the separation along the beam axis of the B-meson candidate vertex and that of the rest of the event. Due to the finite B lifetime, this should be larger in magnitude in $B\bar{B}$ events than in continuum background. In the $B^0 \rightarrow \omega\gamma$ analysis, we use the ω Dalitz angle θ_D, which is defined as the angle between the π^0 and the $\pi^+ \pi^-$ rest frame 12; $\cos \theta_D$ follows a $\sin^2 \theta_D$ distribution for true ω decays, as opposed to the uniform distribution of combinatorial background.

The background-suppression variables are combined into one discriminating variable via a neural network, which responds non-linearly to the input variables and exploits correlations between the variables 13. A separate neural network is trained for each mode.

The output for the neural network trained for $B^0 \rightarrow \rho^0\gamma$ is shown in Fig. 1(b), where the MC simulation of the continuum background is compared with the off-resonance data, and the output for MC-simulated $B^0 \rightarrow D^-\pi^+$ decays is compared with $B^0 \rightarrow D^-\pi^+$ decays reconstructed in the on-resonance data. The latter comparison provides a cross-check of those input variables that depend on the properties of the other B meson in the event. This includes all of the variables except for θ_H and θ_D, which, for this check, are modeled using the signal MC distributions.

To suppress the continuum background, we make a selection on the neural-network output that is optimized for minimum statistical error as determined using MC samples of signal and background. The efficiency of this selection for the $B \rightarrow D\pi$ control sample differs slightly between the data and MC. We account for this difference as a systematic error in the signal efficiency. For $B^+ \rightarrow \rho^+\pi^0$, we also require $|\cos \theta_H| < 0.6$ to reject $B^+ \rightarrow \rho^+\pi^0$ events, which have a $\cos^2 \theta_H$ distribution, as opposed to the expected $\sin^2 \theta_H$ distribution of the signal process.

After applying the neural-network, $\cos \theta_H$, and fit-region selection to the on-resonance data, 449 events remain in the $B^0 \rightarrow \rho^0\gamma$ data, 480 events for $B^+ \rightarrow \rho^+\pi^0$ and 54 events for $B^0 \rightarrow \omega\gamma$. MC studies indicate that about 90% of the background in these samples comes from continuum events, and only about 10% from $B\bar{B}$.
distribution for signal m signal PDFs used in the fit. The first of these is “additive” this analysis: the modeling of backgrounds and found to be within the range expected. By comparing the overall likelihood of the fit with values fractions for B^+ → ρ^0γ, B^+ → ρ^+γ, and B^0 → ωγ in the on-resonance data sample. The “Upper Lim.” is a 90% C.L. limit. The efficiencies include the partial branching fractions for the ρ/ω decays considered.

For the signal extraction, we perform an unbinned extended maximum likelihood fit to the selected events. For B → ργ, the fit uses m^{ES}, ΔE^*, and m_{ππ}, whereas for B^0 → ωγ, only m^{ES} and ΔE^* are used. The measured variables are largely uncorrelated, even after the p_{ππ}^∗ (or p_{ππ+2γ}^∗) cut, allowing the probability density function (PDF) to be constructed as a product of independent distributions for each variable. Since the BB backgrounds have PDFs that largely resemble continuum but are much smaller, the signal extraction uses only a continuum component to describe the background. Biases due to B^n B backgrounds are considered below. The signal m^{ES} and ΔE^* distributions are described by the Crystal Ball shape [14], with the exception of the m^{ES} distribution for B^0 → ρ^0γ, where the Gaussian distribution is used. The relativistic Breit-Wigner lineshape is used for the signal m_{ππ} distribution. The signal PDF parameters are obtained from MC simulation. The background m^{ES} and ΔE^* distributions are described by the ARGUS threshold function [15] and a second-order polynomial, respectively. The background m_{ππ} function is a sum of a Breit-Wigner component and a combinatorial component described by a first order polynomial. The background PDF parameters are determined in the fit, with the exception of the m_{ππ} resonant fraction, which is fixed to the value measured in off-resonance data.

The ΔE^* vs. m^{ES} distributions of the selected B → ργ and B^0 → ωγ candidates are shown in Fig.2 and the fitted signal yields are shown in Table I. No significant signal is seen in any mode. The quality of the fit is checked by comparing the overall likelihood of the fit with values obtained from an ensemble of parameterized MC simulations and found to be within the range expected.

We consider three sources of systematic uncertainty in this analysis: the modeling of B^n B backgrounds, the signal reconstruction efficiency, and the fixed parameters of the PDFs used in the fit. The first of these is “additive” in that it could result in background adding to the fitted signal yields. The last two are “multiplicative” in that they affect the way a given signal is interpreted as a branching fraction.

The effect that B^n B backgrounds have on the fitted signal yields is studied in parameterized MC simulations in which the B^n B background shape in the m^{ES}-ΔE^* plane is modeled with both one- and two-dimensional distributions. Also, the rates of the dominant background modes are varied within wide ranges. For b → sγ (including B → K^*γ), the normalization is varied between zero and twice the nominal value to conservatively account for uncertainties in kaon misidentification. For B^+ → ρ^0π^0 decays the branching fraction is varied between zero and twice the expected rate of 2 × 10^{-5} [17]. Much lower branching fractions are expected for B^0 → ρ^0π^0 and B^0 → ωπ^0 [10], so these cause negligible backgrounds. The small biases shown in Table II confirm that the B^n B PDFs are similar to those of continuum background. All signal-efficiency systematic uncertainties, except those related to the neural network and the ω mass, which are described above, are estimated in Ref. [8]. The largest uncertainties, which arise from the neural net efficiencies, are 5%, 5%, and 10% for B^0 → ρ^0γ, B^+ → ρ^+γ, and B^0 → ωγ respectively. The π^0 efficiency also contributes a 5% uncertainty to B^+ → ρ^0γ and B^0 → ωγ. The fixed parameters of the signal PDFs are studied in fits to data for the topologically and kinematically similar, but much more common, B → K^*γ decays: B^0 → K^{*0}γ, K^{*0} → K^+π^− for B^0 → ρ^0γ and B^+ → K^{*+}γ, K^{*+} → K^0π^+ for B^+ → ρ^+γ and B^0 → ωγ. In these fits, the signal PDF parameters are allowed to float. The signal event yields are compared to those expected from the branching fractions measured in Ref. [8] and found to agree.

The statistical uncertainties of the PDF parameters, one of which is the resonant fraction in the background m_{ππ} distribution, are used as ranges within which we vary the parameters of the B → (ρ/ω)γ fits. The resulting variations in the fitted signal yield, which amount to 5% for B^0 → ρ^0γ and B^0 → ωγ and 10% for B^+ → ρ^+γ, are taken as systematic uncertainties. The total multiplicative systematic error, including the signal efficiency uncertainty, is 8% for B^0 → ρ^0γ and 13% for B^+ → ρ^+γ and B^0 → ωγ.

We assume B(T(4S) → B^0 B^0) = B(T(4S) → B^+ B^-) = 0.5. In calculating upper limits, we correct for bias from B^n B backgrounds by subtracting the smallest observed bias, which is found to be negative for all three modes, from the signal yield. We include the effects of the multiplicative systematic uncertainties by using an extension [17] of the method described in Ref. [13], wherein the systematic and statistical errors are convolved. The resulting 90% C.L. upper limits for the branching fractions are B(B^0 → ρ^0γ) < 1.2 × 10^{-6}, B(B^+ → ρ^+γ) < 2.1 × 10^{-6}, and B(B^0 → ωγ) < 1.0 × 10^{-6}. Although no significant signals are seen, Table IV shows the measured B for each mode. For this calculation, we subtract a bias corresponding to the center of the allowed range, treat the half-width of the range as the systematic error, and add

Mode	Yield (Events)	Bias (Events)	Upper Lim. (Events) (%)	ϵ	B
B^0 → π^π	4.8^{+4.7}_{-3.7}	[−0.5,0.8]	12.4	12.3	0.4^{+0.5}_{−0.4}
B^+ → ρ^0γ	6.2^{+7.6}_{−6.2}	[−0.1,2.0]	15.4	9.2	0.7^{+0.9}_{−0.8}
B^0 → ωγ	0.1^{+0.7}_{−0.2}	[−0.3,0.5]	3.6	4.6	0.0^{+0.7}_{−0.7}

Table I: The signal yields and errors obtained from the signal extraction fit, the ranges of observed biases from B^n B backgrounds, selection efficiencies (ϵ), and the inferred branching fractions (B) for B^0 → ρ^0γ, B^+ → ρ^+γ, and B^0 → ωγ in the on-resonance data sample. The “Upper Lim.” is a 90% C.L. limit. The efficiencies include the partial branching fractions for the ρ/ω decays considered.
systematic and statistical errors in quadrature.

We also calculate a combined limit for the generic process $B \rightarrow \rho \gamma$ by assuming $\Gamma(B \rightarrow \rho \gamma) = \Gamma(B^+ \rightarrow \rho^+\gamma) = 2 \times \Gamma(B^0 \rightarrow \rho^0\gamma)$ and using the lifetime ratio $\tau_{B^+}/\tau_{B^0} = 1.083 \pm 0.017$. The resulting 90% C.L. upper limit is $\mathcal{B}(B \rightarrow \rho \gamma) < 1.9 \times 10^{-6}$. Using the measured value of $\mathcal{B}(B \rightarrow K^{*}\gamma)$ [5], this corresponds to a limit of $\mathcal{B}(B \rightarrow \rho \gamma)/\mathcal{B}(B \rightarrow K^{*}\gamma) < 0.047$.

This limit may be used to constrain the ratio of CKM elements $|V_{td}/V_{ts}|$ by means of the equation [4]:

$$\frac{\mathcal{B}(B \rightarrow \rho \gamma)}{\mathcal{B}(B \rightarrow K^{*}\gamma)} = \left|\frac{V_{td}}{V_{ts}}\right|^2 \frac{1 - m_{\rho}/M_B}{1 - m_{K^{*}}/M_B} \frac{1}{\rho \gamma} \left[1 + \Delta R\right],$$

where ρ describes the flavor-SU(3) breaking between ρ and K^*, and ΔR accounts for annihilation diagrams. ΔR is different for ρ^0 and ρ^+, but we do not take this into account here. Both ρ and ΔR must be taken from theory and there are several different values published. As an example, we choose the values $\rho = 0.76 \pm 0.10$ and $\Delta R = 0.0 \pm 0.2$. We adjust both parameters down by one σ and find the limit $|V_{td}/V_{ts}| < 0.34$ at 90% C.L.

In conclusion, we have found no evidence for the exclusive $b \rightarrow d\gamma$ transitions $B \rightarrow \rho \gamma$ and $B^0 \rightarrow \omega \gamma$ in 84.4 ± 0.9 million $B\overline{B}$ decays studied with the BABAR detector. The 90% C.L. upper limits on the branching fractions are significantly lower than previous values and start to restrict the range indicated by SM predictions [3].

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

‡ Also with IFIC, Instituto de Física Corpuscular, CSIC-Universidad de Valencia, Valencia, Spain
† Deceased

[1] For a review, see K. Lingel, T. Skwarnicki, and J.G. Smith, Ann. Rev. Nucl. Part. Sci. 48, 253 (1998).
[2] See, for example, S. Bertolini, F. Borzumati, and A. Masiero, Nucl. Phys. B 294, 321 (1987); H. Baer and M. Brhlik, Phys. Rev. D 55, 3201 (1997); J. Hewett and J. Wells, Phys. Rev. D 55, 5549 (1997); M. Carena et al., Phys. Lett. B 499, 141 (2001).
[3] S. W. Bosch and G. Buchalla, Nucl. Phys. B 621, 459 (2002).
[4] A. Ali and A. Y. Parkhomenko, Eur. Phys. J. C 23, 89 (2002).
[5] T.E. Coan et al. [CLEO Collaboration], Phys. Rev. Lett. 84, 5283 (2000); Y. Ushiroda et al. [Belle Collaboration], contributed to BCP4, Ise-Shima, Japan, Feb 2001, hep-ex/0104045.
[6] B. Aubert et al. [BABAR Collaboration], Nucl. Instrum. Meth. A 479, 1 (2002).
[7] PEP-II Conceptual Design Report, SLAC-0418 (1993).
[8] B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 88, 101805 (2002).
[9] K. Hagiwara et al. [Particle Data Group Collaboration], Phys. Rev. D 66, 101001 (2002).
[10] G.C. Fox and S. Wolfram, Nucl. Phys. B149, 413 (1979).
[11] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 66, 032003 (2002).
[12] H. Muirhead, “Notes on Elementary Particle Physics”, (Pergamon Press, Oxford, 1971), p. 135.
[13] We use the Stuttgart Neural Network Simulator (http://www-ra.informatik.uni-tuebingen.de/SNNS) to train a neural net with one hidden layer of 10 nodes.
[14] The “Crystal Ball” lineshape is a modified Gaussian distribution with a transition to a tail function on the low side: $f_{CB} \equiv \exp(-\frac{(x-\mu)^2}{2\sigma^2})$ for $\frac{x-\mu}{\sigma} > \alpha$ and $A \times [B - (\frac{x-\mu}{\sigma})^{-n}]$ for $\frac{x-\mu}{\sigma} < \alpha$ where $A \equiv \left(\frac{\sigma}{\alpha} \right)^n \exp(-\frac{1}{2\alpha^2})$ and $B \equiv \frac{\sigma}{\alpha} - |\alpha|$ are defined such as to maintain continuity of the function and its first derivative.
[15] We use the distribution $x \sqrt{1 - x^2} \times \exp[\zeta(1 - x^2)]$, where $x = m_{ES}/E_{beam}$, to describe the background m_{ES} distribution. H. Albrecht et al., Z. Phys. C 48, 543 (1990).
[16] Y-H. Chen et al., Phys. Rev. D 60, 094014 (1999).
[17] M. R. Convery, SLAC-TN-03-001 (2003).
[18] R. Cousins and V. Highland, Nucl. Instrum. Meth. A 320, 331 (1992).
[19] B. Grinstein and D. Pirjol, Phys. Rev. D 62, 093002 (2000).