THE BISHOP-PHELPS-BOLLOBÁS PROPERTY FOR OPERATORS FROM $\mathcal{C}(K)$ TO UNIFORMLY CONVEX SPACES

SUN KWANG KIM AND HAN JU LEE

Abstract. We show that the pair $(\mathcal{C}(K), X)$ has the Bishop-Phelps-Bollobás property for operators if K is a compact Hausdorff space and X is a uniformly convex space.

1. Introduction

In this paper, we deal with strengthening of the famous Bishop-Phelps theorem. In 1961, Bishop and Phelps [8] showed that the set of all norm attaining functionals on a Banach space X is dense in its dual space X^* which is now called Bishop-Phelps theorem. This theorem has been extended to operators between Banach spaces X and Y. In general, the set of norm attaining operators $\mathcal{N}(X, Y)$ is not dense in the space of linear operators $\mathcal{L}(X, Y)$. However, it is true for some pair of Banach spaces (X, Y). One of very well-known examples is the pair of every reflexive Banach space X and every Banach space Y, which was shown by Lindenstrauss [24]. After that, this was generalized by Bourgain to Banach space X with Radon-Nikodým property [10], and also there have been many efforts to find other positive examples [12, 13, 15, 17, 19, 26, 27].

Meanwhile, Bollobás sharpened Bishop-Phelps theorem as follows. From now on, the unit ball and the unit sphere of a Banach space X will be denoted by B_X and S_X, respectively.

Theorem 1.1. ([9]) For an arbitrary $\epsilon > 0$, if $x^* \in S_{X^*}$ satisfies $|1 - x^*(x)| < \frac{\epsilon^2}{4}$ for $x \in B_X$, then there are both $y \in S_X$ and $y^* \in S_{X^*}$ such that $y^*(y) = 1$, $\|y - x\| < \epsilon$ and $\|y^* - x^*\| < \epsilon$.

This Bishop-Phelps-Bollobás theorem shows that if a functional almost attains its norm at a point, then it is possible to approximate simultaneously both the functional and the point by norm attaining functionals and their corresponding norm attaining points. Clearly, Bishop-Phelps-Bollobás theorem implies Bishop-Phelps theorem.

Similarly to the case of Bishop-Phelps theorem, Acosta, Aron, García and Maestre [1] started to extend this theorem to bounded linear operators between Banach spaces and introduced the new notion Bishop-Phelps-Bollobás property.

Definition 1.2. ([1, Definition 1.1]) Let X and Y be Banach spaces. We say that the pair (X, Y) has the Bishop-Phelps-Bollobás property for operators (BPBp) if, given $\epsilon > 0$, there exists $\eta(\epsilon) > 0$ such that if there exist both $T \in S_{\mathcal{L}(X, Y)}$ and $x_0 \in S_X$ satisfying $\|Tx_0\| > 1 - \eta(\epsilon)$, then there exist both an operator $S \in S_{\mathcal{L}(X, Y)}$ and $u_0 \in S_X$ such that

$$\|Su_0\| = 1, \|x_0 - u_0\| < \epsilon \text{ and } \|T - S\| < \epsilon.$$

Acosta et al. showed [1] that the pair (X, Y) has the BPBp for finite dimensional Banach spaces X and Y, and that the pair (ℓ^p_∞, Y) has the BPBp for every n if Y is a uniformly convex space. In the same paper, they asked if the pairs (ℓ^p_0, Y) and (ℓ^p_∞, Y) have the BPBp for uniformly convex spaces Y. The
first author solved the c_0 case and proved [20] that (c_0, Y) have the Bishop-Phelps-Bollobás property for all uniformly convex spaces Y.

Let $X = L_\infty(\mu)$ or $X = c_0(\Gamma)$ for a set Γ. Very recently, Lin and authors [23] proved that (X, Y) has the BPBp for every uniformly convex space Y. So $(L_\infty(\mu), L_p(\nu))$ has the BPBp for all $1 < p < \infty$ and for all measures ν. They also proved that (X, Y), as a pair of complex spaces, has the BPBp for every uniformly convex space Y. In particular, $(L_\infty(\mu), L_1(\nu))$, as a pair of complex spaces, has the BPBp, since $L_1(\nu)$ is uniformly complex convex [18].

On the other hand, there have been several researches about the BPBp for operators into $C(K)$ spaces (or uniform algebras). Even though Schachermayer showed [26] that the set of norm attaining operators is not dense in $\mathcal{L}(L_1[0,1], C[0,1])$, there are some positive results about the BPBp. It is shown [4] that $(X, C(K))$ has the BPBp if X is an Asplund space. This result was extended so that (X, A) has the BPBp if X is Asplund and A is a uniform algebra [11]. The authors also proved [21] that $(X, C(K))$ has the BPBp if X^* admits a uniformly simultaneously continuous retractions. It is also worthwhile to remark that the pair $(C(K), C(L_1))$ of the spaces of real-valued continuous functions has the BPBp for every compact Hausdorff spaces K and L_1 [2]. Concerning the results about L_∞ spaces, it is shown [7] that $(L_1(\mu), L_\infty[0,1])$ has the BPBp and this was generalized [14] so that $(L_1(\mu), L_\infty(\nu))$ has the BPBp if μ is any measure and ν is a localizable measure. These are the strengthening of the results that the set of norm-attaining operators is dense in $\mathcal{L}(L_1(\mu), L_\infty(\nu))$ [17, 25] for every measure μ and every localizable measure ν. Finally we remark that if X is uniformly convex, then (X, Y) has the BPBp for every Banach space Y [3, 5, 22].

Throughout this paper, we consider only real Banach spaces. It is the main result of this paper that $(C(K), X)$ has the BPBp for every compact Hausdorff space K and for every uniformly convex space X. Recall that Schachermayer showed [26] that every weakly compact operator from $C(K)$ into a Banach space can be approximated by norm attaining weakly compact operators (cf. [6, Theorem 2]). So the set of all norm attaining operators is dense in $\mathcal{L}(C(K), Y)$ for every reflexive space Y. Notice that the reflexivity of Y is not sufficient to prove that $(C(K), Y)$ has the BPBp. Indeed, if we take a reflexive strictly convex space Y_0 which is not uniformly convex, then $(\ell^1(2), Y_0)$ does not have the BPBp [1, 5]. If we take K_0 as the set consisting of only two points, then $C(K_0)$ is isometrically isomorphic to 2-dimensional $\ell^1(2)$ space. Hence $(C(K_0), Y_0)$ does not have the BPBp. However, if X is uniformly convex, then it will be shown that $(C(K), X)$ has the BPBp.

2. Main Result

Given a Banach space X, the modulus of convexity $\delta_X(\epsilon)$ of the unit ball B_X is defined by for $0 < \epsilon < 1$,

$$
\delta_X(\epsilon) = \inf \left\{ 1 - \frac{\|x + y\|}{2} : x, y \in B_X, \|x - y\| \geq \epsilon \right\}.
$$

A Banach space X is said to be uniformly convex if $\delta_X(\epsilon) > 0$ for all $0 < \epsilon < 1$. It is well known that every uniformly convex space is reflexive.

In [20], the following result was shown: Let $1 > \epsilon > 0$ be given and X be a reflexive Banach space and Y be a uniformly convex Banach space with modulus of convexity $\delta_X(\epsilon) > 0$. If $T \in \mathcal{L}(X, Y)$ and $x_1 \in S_X$ satisfy

$$
\|Tx_1\| > 1 - \frac{\epsilon}{2\delta_X(\epsilon)}\frac{\epsilon}{2},
$$

then there exist $S \in \mathcal{L}(X, Y)$ and $x_2 \in S_X$ such that $\|Sx_2\| = 1$, $\|S - T\| < \epsilon$ and $\|Tx_1 - Sx_2\| < \epsilon$.

This says that for a reflexive space X and a uniformly convex space Y, the pair (X, Y) has a little weaker property than BPBp. The only difference from the BPBp and the above is approximating the image of a point if the given operator almost attains its norm. Since the set of all norm attaining operators is dense in $\mathcal{L}(X, Y)$ for every Y if X is reflexive, the following result generalize the result mentioned above [20].
Proposition 2.1. Let X be a Banach space and Y be a uniformly convex space. Suppose that the set of norm attaining operators is dense in $L(X,Y)$. Then, given $0 < \varepsilon < 1$, there exists $\eta(\varepsilon) > 0$ such that if $T \in S_{L(X,Y)}$ and $x_1 \in S_X$ satisfy $\|Tx_1\| > 1 - \eta(\varepsilon)$, then there exist $S \in S_{L(X,Y)}$ and $x_2 \in S_X$ such that $\|Sx_2\| = 1$, $\|S - T\| < \varepsilon$ and $\|Tx_1 - Sx_2\| < \varepsilon$.

Proof. Let $\delta_Y(\cdot)$ be the modulus of convexity of Y and $0 < \varepsilon_1 < \varepsilon$. Choose $\varepsilon_2 > 0$ such that $(1 - \varepsilon_2^2)^2 - 2q_2 - \varepsilon_2^2 > 1 - \delta_Y(\varepsilon_1)$ and $\varepsilon_2^2 + 2q_2 + \varepsilon_1 < \varepsilon$.

We show that $\eta(\varepsilon) = \varepsilon_2^2$ is a suitable number. Assume $\|Tx_1\| > 1 - \varepsilon_2^2$. Choose $y^* \in S_{Y^*}$ such that $y^*Tx_1 = \text{Re} \ y^*Tx_1 > 1 - \varepsilon_2^2$ and define an operator \tilde{T}_1 by

$$\tilde{T}_1 x = Tx + \varepsilon_2 y^*(Tx)Tx_1$$

for every $x \in X$.

It is easy to see that $1 - \varepsilon_2 < (1 - \varepsilon_2^2)(1 + \varepsilon_2(1 - \varepsilon_2^2)) \leq \|\tilde{T}_1 x_1\| \leq \|\tilde{T}_1\| \leq 1 + \varepsilon_2$.

Let $T_1 = \tilde{T}_1/\|\tilde{T}_1\|$. Since the set of norm attaining operators is dense in $L(X,Y)$, there exist an operator S and $z \in S_X$ such that $\|T_1 - S\| < \varepsilon_2^2$ and $\|Sz\| = \|S\| = 1$. Since $\|Sz - T_1z\| < \varepsilon_2^2$, we see that $\|T_1z\| > 1 - \varepsilon_2^2$, which means that

$$\|Tz + \varepsilon_2 y^*(Tz)Tx_1\| > (1 - \varepsilon_2^2)\|\tilde{T}_1\| > (1 - \varepsilon_2^2)(1 + \varepsilon_2(1 - \varepsilon_2^2)).$$

Hence, we have $|y^*T(z)| > (1 - \varepsilon_2^2)^2 - 2q_2 - \varepsilon_2^2 > 1 - \delta_Y(\varepsilon_1)$. Choose $\alpha = \pm 1$ satisfying $y^*T(\alpha z) = |y^*T(z)|$ and let $x_2 = \alpha z$.

Then

$$\frac{\|Tx_1 + Tx_2\|}{2} > \frac{y^*Tx_1 + y^*Tx_2}{2} > 1 - \delta_Y(\varepsilon_1).$$

Hence, we see that $\|Tx_1 - Tx_2\| < \varepsilon_2$. Moreover,

$$\|Sx_2 - Tx_1\| \leq \|Sx_2 - T_1x_2\| + \|T_1x_2 - \tilde{T}_1x_2\| + \|\tilde{T}_1x_2 - Tx_2\| + \|Tx_2 - Tx_1\|$$

$$\leq \|T_1 - S\| + \|\tilde{T}_1 - 1\| + \varepsilon_2 + \varepsilon_1$$

$$< \varepsilon_2^2 + \varepsilon_2 + \varepsilon_1 < \varepsilon.$$

This completes the proof. \qed

Now we state the main theorem of this paper.

Theorem 2.2. Let X be a uniformly convex space and K be a compact Hausdorff space. Then the pair $(C(K), X)$ has the BPBp.

Before we present the proof of the main result, we begin with preliminary comments on vector measure and two lemmas. Recall that a vector measure $G : \Sigma \to X$ on a σ-algebra Σ is said to be countably additive if, for every mutually disjoint sequence of Σ-measurable subsets $\{A_i\}_{i=1}^\infty$, we have

$$G \left(\bigcup_{i=1}^\infty A_i \right) = \sum_{i=1}^\infty G(A_i).$$

For a Σ-measurable subset A, the semi-variation $\|G\|(A)$ of G is defined by

$$\|G\|(A) = \sup \{|x^*G|(A) : x^* \in B_{X^*}\},$$

where $|x^*G|(A)$ is the total variation of the scalar-valued countably additive measure x^*G on A. The vector measure G on a Borel σ-algebra is said to be regular if for each Borel subset E and $\varepsilon > 0$ there exists a compact subset K and an open set O such that $K \subset E \subset O$ and $\|G\|(O \setminus K) < \varepsilon$.

It is well known that if X is reflexive, each operator T in $L(C(K), X)$ has a X-valued countably additive representing Borel measure G and the measure is regular (see [16, VI. Theorem 1, 5 and Corollary 14] for a reference). That is, for all $f \in C(K)$ and $x^* \in X^*$, we have

$$Tf = \int_K f \, dG, \quad x^*T(f) = \int_K f \, d^*G \quad \text{and} \quad \|T\| = \|G\|(K).$$
If \(G \) is a countably additive representing measure for an operator \(T \) in \(\mathcal{L}(C(K), X) \), then it is easy to see that for any bounded Borel measurable function \(h : K \to \mathbb{R} \), the mapping \(S \), defined by \(Sf = \int fh \, dG \), is a bounded linear operator and \(\|S\| \leq \|T\| \cdot \|h\|_\infty \), where \(\|h\|_\infty = \sup\{|h(k)| : k \in K\} \).

Lemma 2.3. Let \(G \) be a countably additive, Borel regular \(X \)-valued vector measure on a compact Hausdorff space \(K \) with \(\|G\|(K) = 1 \) and let \(0 < \eta, \gamma < 1 \). Assume that \(f \in S_{C(K)} \) and \(x^* \in S_X^* \) satisfy
\[
\int_K f \, dx^* G > 1 - \eta.
\]
Then, we have
\[
|\lambda G((K \setminus (A^+ \cup A^-))) < \frac{2\eta}{\gamma} + \eta,
\]
where \(A^+_t = \{t \in K \mid f(t) \geq 1 - \gamma\} \) and \(A^-_t = \{t \in K \mid f(t) \leq -1 + \gamma\} \). Moreover, there exist mutually disjoint compact sets \(F^+, F^- \) such that \(x^* G \) is positive on \(F^+ \), negative on \(F^- \) and
\[
\int_{(F^+ \cap A^+_t) \cup (F^- \cap A^-_t)} f \, dx^* G > 1 - \frac{2\eta}{\gamma}.
\]

Proof. The Hahn decomposition of \(x^* G \) and the regularity of \(G \) show that there exist mutually disjoint compact sets \(F^+, F^- \) such that \(x^* G \) is positive on \(F^+ \), negative on \(F^- \) and \(\|G\|(K \setminus (F^+ \cup F^-)) < \eta \).

\[
1 - \eta \leq \int_K f \, dx^* G = \int_{F^+} f \, dx^* G + \int_{F^-} f \, dx^* G + \int_{K \setminus (F^+ \cup F^-)} f \, dx^* G
\]
\[
= \int_{F^+ \cap A^+_t} f \, dx^* G + \int_{F^- \cap A^-_t} f \, dx^* G + \int_{F^+ \setminus A^+_t} f \, dx^* G + \int_{F^- \setminus A^-_t} f \, dx^* G + \int_{K \setminus (F^+ \cup F^-)} f \, dx^* G
\]
\[
\leq x^* G(F^+ \cap A^+_t) + (1 - \gamma)x^* G(F^+ \setminus A^+_t) - x^* G(F^+ \cap A^-_t) - (1 - \gamma)x^* G(F^- \setminus A^-_t) + \eta
\]
\[
= x^* G(F^+ - x^* G(F^-) - \gamma(x^* G(F^+ \setminus A^+_t) - x^* G(F^- \setminus A^-_t)) + \eta.
\]

Since \(x^* G(F^+) - x^* G(F^-) = |x^* G((F^+ \cup F^-)) \leq \|G\|(K) = 1 \), we get
\[
|\lambda G((F^+ \setminus A^+_t) \cup (F^- \setminus A^-_t)) = x^* G(F^+ \setminus A^+_t) - x^* G(F^- \setminus A^-_t) \leq \frac{2\eta}{\gamma}.
\]

This shows that
\[
|\lambda G((K \setminus (A^+_t \cup A^-_t))) \leq \|G\|(K \setminus (F^+ \cup F^-)) + |\lambda G((F^+ \cup F^-) \setminus (A^+_t \cup A^-_t))
\]
\[
\leq \|G\|(K \setminus (F^+ \cup F^-)) + |\lambda G((F^+ \setminus A^+_t) \cup (F^- \setminus A^-_t))
\]
\[
< \frac{2\eta}{\gamma} + \eta
\]
and
\[
\int_{(F^+ \cap A^+_t) \cup (F^- \cap A^-_t)} f \, dx^* G = \int_{F^+} f \, dx^* G - \int_{(F^+ \cap A^+_t) \cup (F^- \cap A^-_t)} f \, dx^* G
\]
\[
\geq \int_K f \, dx^* G - \|G\|(K \setminus (F^+ \cup F^-)) - |\lambda G((F^+ \setminus A^+_t) \cup (F^- \setminus A^-_t))
\]
\[
> 1 - 2\eta - \frac{2\eta}{\gamma} > 1 - 4\frac{\eta}{\gamma}.
\]

This completes the proof.

Lemma 2.4. Let \(X \) be a uniformly convex space with the modulus of convexity \(\delta_X \) and \(T \in S_{\mathcal{L}(C(K), X)} \) be an operator represented by the countably additive, Borel regular vector measure \(G \). Let \(0 < \epsilon < 1 \) and \(A \) be a Borel set of \(K \). Suppose that an operator \(S \), defined by \(Sf = \int_A f \, dG \), satisfies \(\|S\| > 1 - \delta_X(\epsilon) \). Then
\[
\|T - S\| \leq \sup_{f \in B_{C(K)}} \left\| \int_{K \setminus A} f \, dG \right\| < \epsilon.
\]
Proof. Choose \(x^* \in S_{X^*}, f_0 \in S_{C(K)} \) such that \(\|Sf_0\| = x^*Sf_0 > 1 - \delta_X(\varepsilon) \). By the regularity of \(G \), we may choose a compact set \(A_1 \subset A \) such that

\[
\int_{A_1} f_0 dx^* G > 1 - \delta_X(\varepsilon).
\]

Fix a closed set \(B \subset K \setminus A \) and \(g \in B_{C(B)} \). Then, choose \(g_+, g_- \in B_{C(K)} \) satisfying

\[
g_+(t) = g_-(t) = f_0(t) \quad \text{for } t \in A_1 \quad \text{and} \quad g_+(t) = -g_-(t) = g(t) \quad \text{for } t \in B.
\]

So, we have

\[
1 - \delta_X(\varepsilon) < \int_{A_1} f_0 dx^* G \leq \left\| \int_{A_1} f_0 dG \right\| = \frac{1}{2} \left\| \int_{A_1 \cup B} g_+ dG + \int_{A_1 \cup B} g_- dG \right\|.
\]

Note that \(\left\| \int_{A_1 \cup B} g_+ dG \right\|, \left\| \int_{A_1 \cup B} g_- dG \right\| \leq 1 \). Thus, from the uniform convexity of \(X \), we get that

\[
\left\| 2 \int_{B} g dG \right\| = \left\| \int_{A_1 \cup B} g_+ dG - \int_{A_1 \cup B} g_- dG \right\| < \varepsilon.
\]

This implies \(\|T - S\| < \varepsilon \) and the proof is done. \(\square \)

Proof of Theorem 2.2. Let \(\delta_X \) be the modulus of convexity for \(B_X \). Fix \(0 < \varepsilon < \frac{1}{6} \) and let \(\eta \) be the function which appears in Proposition 2.1 for the pair \((C(K), X)\), and let \(\gamma(t) = \min \{ \eta(t), \delta_X(t), \varepsilon \} \) for \(t \in (0, 1) \). Assume that \(T \in S_{L(C(K)), X} \) and \(f_0 \in S_{C(K)} \) satisfy that

\[
\|Tf_0\| > 1 - \frac{\varepsilon}{6} \gamma \left(\frac{\varepsilon}{6} \delta_X \left(\frac{\varepsilon}{6} \right) \right).
\]

Let \(G \) be the representing vector measure for \(T \) which is countably additive Borel regular on \(K \). Choose \(x_1^* \in S_{X^*} \) such that \(x_1^*Tf_0 > 1 - \frac{\varepsilon}{6} \gamma \left(\frac{\varepsilon}{6} \delta_X \left(\frac{\varepsilon}{6} \right) \right) \). By Lemma 2.3 there exist two mutually disjoint compact sets \(F^+, F^- \) such that \(x^*G \) is positive on \(F^+ \), negative on \(F^- \) and

\[
\int_{(F^+ \cap A_{1/2}) \cup (F^- \cap A_{1/2})} f dx^* G > 1 - \gamma \left(\frac{\varepsilon}{6} \delta_X \left(\frac{\varepsilon}{6} \right) \right),
\]

where \(A_{1/2} = \{ t \in K \mid f_0(t) > 1 - \frac{\varepsilon}{2} \} \) and \(A_{1/2} = \{ t \in K \mid f_0(t) < -1 + \frac{\varepsilon}{2} \} \).

Let \(A_1 = F^+ \cap A_{1/2}, A_2 = F^- \cap A_{1/2} \) and \(A = A_1 \cup A_2 \). Then, define \(S_1 \in B_{L(C(K)), X} \) by \(S_1 f = \int_A f dG \) for every \(f \in C(K) \). Then Lemma 2.4 shows that \(\|T - S_1\| < \frac{\varepsilon}{6} \). Choose \(f_1 \in S_{C(K)} \) such that

\[
f_1(t) = 1 \quad \text{for } t \in A_1 \quad \text{and} \quad f_1(t) = -1 \quad \text{for } t \in A_2.
\]

For \(f \in C(K) \), the restriction of \(f \) to \(A \) will be denoted by \(f|_A \). Now consider \(S_1 \) as an operator in \(L(C(A), X) \). Then we have

\[
\|S_1(f_1|_A)\| > 1 - \gamma \left(\frac{\varepsilon}{6} \delta_X \left(\frac{\varepsilon}{6} \right) \right),
\]

So Proposition 2.1 shows that there exist \(S_2 \in S_{L(C(A)), X} \) and \(f_2 \in S_{C(A)} \) such that \(\|S_2f_2\| = 1, \|S_2 - \frac{S_1}{\|S_1\|}\| < \frac{\varepsilon}{6} \delta_X \left(\frac{\varepsilon}{6} \right) \) and \(\|S_2f_2 - \frac{S_1(f_1|_A)}{\|S_1\|}\| < \frac{\varepsilon}{6} \delta_X \left(\frac{\varepsilon}{6} \right) \). Let \(G' \) be the representing vector measure for \(S_2 \) which is countably additive Borel regular on \(A \). Choose \(x_2^* \in S_{X^*} \) so that \(x_2^*S_2f_2 = \|S_2f_2\| = \int_A f_2 dx^* G' = 1 \).

Since

\[
x_2^*S_2(f_1|_A + f_2) \geq 2x_2^*S_2f_2 - \|S_2f_2 - S_2(f_1|_A)\|
\]

\[
\geq 2 - \left\| S_2f_2 - \frac{S_1(f_1|_A)}{\|S_1\|} \right\| - \left\| S_2(f_1|_A) - S_2(f_1|_A) \right\|
\]

\[
> 2 \left(1 - \frac{\varepsilon}{6} \delta_X \left(\frac{\varepsilon}{6} \right) \right),
\]

then

\[
x_2^*S_2(f_1|_A + f_2) > 1 - \delta_X(\varepsilon).
\]
we get
\[\int_{A} \frac{f_1 + f_2}{2} dx' G' > 1 - \frac{\epsilon}{6} \delta_X \left(\frac{\epsilon}{6} \right). \]

By applying Lemma 2.3 again, we get a compact subset \(F \) of \(A \) such that
\[F \subset \{ t \in A : |f_1(t) + f_2(t)| > 2(1 - \epsilon) \} \]
and
\[\left\| \int_{F} \frac{f_1 + f_2}{2} dG' \right\| > 1 - \delta_X \left(\frac{\epsilon}{6} \right). \]

Let \(B = \{ t \in A : f_1(t)f_2(t) \geq 0 \} \). Then, \(F \subset B \) and
\[\sup_{f \in B_{C(A)}} \left\| \int_{B} f dG' \right\| > \left\| \int_{F} \frac{f_1 + f_2}{2} dG' \right\| > 1 - \delta_X \left(\frac{\epsilon}{6} \right). \]

By Lemma 2.4, we have
\[\sup_{f \in B_{C(K)}} \left\| \int_{A \setminus B} f dG' \right\| < \frac{\epsilon}{6}. \]

Define \(S \in \mathcal{L}(C(A), X) \) by, for \(f \in C(A) \),
\[Sf = \int_{B} f dG' - \int_{A \setminus B} f dG' \]
and let
\[f_3 = \begin{cases} \frac{|f_2|}{3} & \text{for } t \in A_1, \\ -\frac{|f_2|}{3} & \text{for } t \in A_2. \end{cases} \]

So \(f_3 \in C(A) \) and \(f_3 = f_2\chi_B - f_2\chi_{A \setminus B} \), where \(\chi_S \) is the characteristic function on a set \(S \). Hence we have \(Sf_3 = S_2f_2 \) and \(\|Sf_3\| = \|S\| = 1 \) and \(\|S - S_2\| < \frac{\epsilon}{6} \). On the other hand, we have \(\|2f_3 - f_1\|_A \leq 1 \).

Since \(X \) is uniformly convex and we have \(Sf_3 = \frac{S(f_1) + S(2f_3 - f_1)}{2} \), we get
\[Sf_3 = \frac{S(f_1) + S(2f_3 - f_1)}{2}. \]

We now consider \(S_1, S_2, S \) as operators in \(\mathcal{L}(C(K), X) \) using the canonical extension. That is, \(S(f) = S(f|_A) \), \(S_i(f) = \frac{S_i(f)}{\|S_i\|} \) for all \(f \in C(K) \) and for \(i = 1, 2 \). Let \(C \) be the compact subset defined by
\[C = \{ t \in K : |f_1(t) - f_0(t)| \geq \epsilon \}. \]

Note that \(A \) and \(C \) are mutually disjoint. Indeed, if \(t \in A \), then \(|f_0(t) - f_1(t)| \leq \epsilon/2 \). So there is \(\phi \in C(K) \) such that \(0 \leq \phi \leq 1 \), \(\phi(k) = 1 \) for \(k \in A \) and \(\phi(k) = 0 \) for \(k \in C \). Let \(g = \phi f_1 + (1 - \phi)f_0 \). Then we see that \(\|Sg\| = 1 \),
\[\|S - T\| \leq \|S - S_2\| + \|S_2 - \frac{S_1}{\|S_1\|}\| + \|\frac{S_1}{\|S_1\|} - S_1\| + \|S_1 - T\| \]
\[< \frac{\epsilon}{3} + \frac{\epsilon}{6} + \frac{\epsilon}{3} + \frac{\epsilon}{6} = \epsilon \]
and \(\|g - f_0\| = \sup_{k \in K \setminus C} |\phi(k)(f_1(k) - f_0(k))| < \epsilon \). This completes the proof. \[\square \]

REFERENCES

[1] M. D. Acosta, R. M. Aron, D. García and M. Maestre, The Bishop-Phelps-Bollobás Theorem for operators, J. Funct. Anal. 254 (2008), 2780-2799.
[2] M. D. Acosta, J. Becerra-Guerrero, Y. S. Choi, M. Ciesielski, S. K. Kim, H. J. Lee, M. L. Lorencz and M. Martín, The Bishop-Phelps-Bollobás property for operators between spaces of continuous functions, Nonlinear Anal. 95 (2014), 323-332.
[3] M. D. Acosta, J. Becerra-Guerrero, D. García and M. Maestre, The Bishop-Phelps-Bollobás Theorem for bilinear forms, Trans. Amer. Math. Soc. 365 (2013) 5911-5932.
[4] R. M. Aron, B. Cascales and O. Kozhushkina, The Bishop-Phelps-Bollobás Theorem and Asplund operators, Proc. Amer. Math. Soc. 139 (2011), 3553-3560.
[5] R. M. Aron, Y. S. Choi, S. K. Kim, H. J. Lee and M. Martín, The Bishop-Phelps-Bollobás version of Lindenstrauss properties A and B, Preprint.
[6] J. Alaminos, Y. S. Choi, S. G. Kim and R. Payá, Norm attaining bilinear forms on spaces of continuous functions, Glasgow Math. J. 40 (1998), 467-482.

[7] R. M. Aron, Y. S. Choi, D. García and M. Maestre, The Bishop-Phelps-Bollobás Theorem for $L(L_1(\mu),L_\infty[0,1])$, Adv. Math. 228 (2011) 617-628.

[8] E. Bishop and R. R. Phelps, A proof that every Banach space is subreflexive., Bull. Amer. Math. Soc. 67 (1961), 97-98.

[9] B. Bollobás, An extension to the theorem of Bishop and Phelps, Bull. London. Math. Soc. 2 (1970), 181-182.

[10] J. Bourgain, Dentability and the Bishop-Phelps property, Israel J. Math. 28 (1977), 265-271.

[11] B. Cascales, A. J. Guirao and V. Kadets, A Bishop-Phelps-Bollobás type theorem for uniform algebras, Adv. Math. 240 (2013), 370-382.

[12] Y. S. Choi and S. K. Kim, The Bishop-Phelps-Bollobás property and lush spaces, J. Math. Anal. Appl. 390 (2013) 549-555.

[13] Y. S. Choi and S. K. Kim, The Bishop-Phelps-Bollobás theorem for operators from $L_1(\mu)$ to Banach spaces with the Radon-Nikodým property, J. Funct. Anal. 261 (2013), 1446-1456.

[14] Y. S. Choi, S. K. Kim, H. J. Lee and M. Martín, The Bishop-Phelps-Bollobás theorem for operators on $L_1(\mu)$, J. Funct. Anal. 267 (2014), no. 1, 214-242.

[15] Y. S. Choi, H. J. Lee and H. G. Song, Denseness of norm-attaining mappings on Banach spaces, Publ. Res. Inst. Math. Sci. 46 (2010), 171-182.

[16] J. Diestel and J. J. Uhl, Jr, Vector Measures, Amer. Math. Soc., Math. Surveys. 15, 1977.

[17] C. Finet and R. Payá, Norm attaining operators from L_1 into L_∞, Israel J. Math. 108 (1998), 139-143.

[18] J. Globevnik, On complex strict and uniform convexity, Proc. Amer. Math. Soc. 47 (1975), 175-178.

[19] J. Johnson and J. Wolfe, Norm attaining operators, Studia Math. 65 (1979), 7-19.

[20] S. K. Kim, The Bishop-Phelps-Bollobás Theorem for operators from c_0 to uniformly convex spaces, Israel J. Math. 197 (2013), 425-435.

[21] S. K. Kim and H. J. Lee, Simultaneously continuous retraction and Bishop-Phelps-Bollobás type theorem, to appear in J. Math. Anal. Appl. (DOI: 10.1016/j.jmaa.2014.06.009)

[22] S. K. Kim and H. J. Lee, Uniform Convexity and Bishop-Phelps-Bollobás Property. Canad. J. Math. 66 (2014), no. 2, 373-386.

[23] S. K. Kim, H. J. Lee and P. K. Lin, The Bishop-Phelps-Bollobás theorem for operators from $L_\infty(\mu)$ to uniformly convex spaces. Preprint.

[24] J. Lindenstrauss, On operators which attain their norm, Israel J. Math. 1 (1963) 139-148.

[25] R. Payá and Y. Saleh, Norm attaining operators from $L_1(\mu)$ into $L_\infty(\nu)$, Arch. Math. 75 (2000), 380-388.

[26] W. Schachermayer, Norm attaining operators on some classical Banach spaces, Pacific J. Math. 105 (1983), 427-438.

[27] J. J. Uhl, Jr, Norm attaining operators on $L_1[0,1]$ and the Radon-Nykodým property, Pacific J. Math. 63 (1976), 293-300.

(Kim) Department of Mathematics, Kyonggi University, Suwon 443-760, Republic of Korea
E-mail address: sunkwang@kgu.ac.kr

(Lee) Department of Mathematics Education, Dongguk University - Seoul, 100-715 Seoul, Republic of Korea
E-mail address: hanjulee@dongguk.edu