Highlights

- Bone mass deficits in children with leukemia following HSCT are multifactorial.
- Attention is needed to children with less potential to recover from low BMD.
- Risk factors for ON include older age at HSCT, steroids, cGvHD and prior ON.
- Management of ON in children with ALL following HSCT remains challenging.
Review article

Guidance to bone morbidity in children and adolescents undergoing allogeneic hematopoietic stem cell transplantation

Short title: Bone morbidity in children after HSCT

Authors: Michaela Kuhlen¹,², Marina Kunstreich², Riitta Niinimaki³, Desiree Dunstheimer¹, Anita Lawitschka⁴, Edit Bardit⁵, André Willasch⁶, Peter Bader⁶, Wolfgang Högler⁵, Christina Peters⁴ and Adriana Balduzzi⁷

¹ University Children's Hospital Augsburg, Swabian Children's Cancer Center, Augsburg, Germany
² Department of Pediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
³ Department of Children and Adolescents, Oulu University Hospital and University of Oulu, Oulu, Finland
⁴ Department of Pediatrics, Medical University Vienna, St. Anna Children's Hospital, Vienna, Austria
⁵ Department of Pediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
⁶ University Hospital Frankfurt/Main, Goethe University, Department for Children and Adolescents, Division for Stem Cell Transplantation and Immunology, Frankfurt/Main, Germany
⁷ Clinica Pediatrica Università degli Studi di Milano Bicocca, Ospedale San Gerardo, Monza, Italy

Corresponding author

Michaela Kuhlen, University Children's Hospital Augsburg, Swabian Children's Cancer Center, Stenglinstr 2, 86156 Augsburg, Germany, Phone/Fax: +49 821 400 169307/179201, Email: Michaela.Kuhlen@uk-augsburg.de

Word counts

Abstract 109
Financial Disclosure Statement

MK has received honorarium and travel support from Amgen. PB has received consulting fees from Amgen, Cellgene and Novartis; institutional research funding from Medac, Neovii Biotech, and RIEMSER; he is a patent holder with Medac. CP has received honoraria from EUSA Pharma, Medac Pharma; consulting fees from Medac Pharma, EUSA Pharma, Pfizer; Speakers’ Bureau: Amgen, Novartis, Medac Pharma, Fresenius Biotech; Research Funding: Amgen, Fresenius Biotech, Genzyme, Medac, RIEMSER Pharma. All other authors have no conflicts of interests to disclose.

Abstract

Allogeneic hematopoietic stem cell transplantation (HSCT) is widely performed in children and adolescents with hematologic diseases including very high-risk leukemia. With increasing success and survival rates, the long-term sequelae of HSCT have become important. Here, we provide guidance to the prevention and treatment of the most common bone morbidities – osteoporosis and osteonecrosis – emerging in the context of HSCT in children and adolescents. We give an overview on definitions, symptoms and diagnostics and propose an algorithm for clinical practice based on discussions within the International BFM SCT Committee and the Pediatric Disease Working Party of the European Society for Blood and Marrow Transplantation, our expert knowledge and a literature review.
Introduction

Allogeneic hematopoietic stem cell transplantation (HSCT) is the standard of care in children with very high-risk acute leukemia. (1-3) Through advances in donor selection and supportive care strategies, cure rates in patients with high-risk acute lymphoblastic leukemia (ALL) are approaching 70% in large multi-institutional trials. (4) However, this success comes at the cost of complications and sequelae from chemotherapy and HSCT with negative impact on quality of life (QoL). These complications are increasingly being recognized and become the focus of research in childhood leukemia survivors. (5, 6) Whilst little is known on complications specifically attributable to allogeneic HSCT in children with high-risk leukemia compared to chemotherapy alone, their overall greater number and severity are uncontroversial. (7-9) Notably, side effects vary between conditioning regimens, e.g., depending on the use of total body irradation and the drugs administered.

One of the most prevalent and debilitating complications from ALL therapy and HSCT is bone morbidity including osteoporosis (OP) and osteonecrosis (ON). (7) Reported incidences range between 20-60% for reduced bone mass accrual, including OP, and 4-40% for ON, respectively. However, these estimates are mostly based on retrospective studies using dual energy X-ray absorptiometry (DXA) for bone mineral density (BMD) assessment, and include several HSCT approaches and heterogeneous underlying diseases. (10-15)

In the setting of leukemia, clinically relevant fractures are associated with low BMD. A prospective surveillance study in children (STOPP) confirmed a vertebral fracture prevalence of 16% already at diagnosis of ALL. (16) The proportion of children with fractures at any skeletal site over the 6- year observation period was 36%, with 71% of all incident fractures occurring in the first 2 years of chemotherapy. (17) Other studies reported a two- to six-fold increase in the fracture rates during chemotherapy compared with healthy controls. (18-20) Due to lack of vertebral fractures assessment (VFA) and only DXA based studies, it is difficult to determine the real extent of bone morbidity in older studies. (16, 21, 22) Noteworthy, studies exploring bone health in children and adolescents prior to and following allogeneic HSCT for high-risk ALL are very sparse. In the STOPP study, only 4.8% of 186 ALL patients underwent HSCT. Across all ALL patients, predictors for incident fractures were cumulative corticosteroid dose and vertebral fractures at diagnosis. (17) Hence, it remains unclear
whether allogeneic HSCT adds additional risk to bone health compared to standard ALL treatment. Notwithstanding, a number of studies reporting on quantitative computed tomography (QCT) measures in long-term survivors of allogeneic HSCT in childhood demonstrated significant deficits including growth, spine and tibia trabecular volumetric BMD, cortical dimensions, and muscle cross-sectional area at a median of 5 years after HSCT. (12, 23)

Timely recognition of bone disease is crucial for initiation of treatment and for prevention of fractures, pain, loss of mobility and deformity and, thus, reducing long-term morbidity and adverse consequences on QoL. Therefore, assessment of bone health is indicated at diagnosis of leukemia and regularly after allogeneic HSCT.

Here, we present guidance to the most important bone morbidities ‘reduced bone mass accrual / OP’ and ‘ON’ in children and adolescents undergoing allogeneic HSCT and recommendations for clinical practice. For patients affected by sickle cell disease, specific guidelines should be considered, as – compared to other HSCT patients - further mechanisms add to their bone disease. (24-26)

Methods

In order to improve outcome of allogeneic HSCT in children and adolescents, the International BFM Stem Cell Transplantation (I-BFM SCT) Committee and the Pediatric Disease Working Party (PDWP) of the European Society for Blood and Marrow Transplantation (EBMT) address and discuss various topics associated with allogeneic HSCT in working groups aiming at providing guidance for care. As ‘bone morbidity’ is a complex topic requiring particular consideration, a pediatric bone specialist and member of the European Society for Pediatric Endocrinology (ESPE) working group on bone and growth plate was involved in this process to approach this topic as an interdisciplinary team.

To search for evidence in the field of acute leukemia/HSCT and low BMD/OP/ON, a PubMed-based literature search was conducted using the MeSH terms children/adolescents, acute leukemia (ALL, AML, leukemia), HSCT, and low BMD, reduced bone mass accrual, osteoporosis, vertebral fractures, and osteonecrosis, respectively. The titles and abstracts of identified articles were checked against the cohort and conditions reported (only those studies were kept which primarily reported on children and adolescents, leukemia and allogeneic HSCT). Preference was given to articles written in English.
One author (MK) prepared an evidence-based summary of the literature relating to the topics bone mass deficits and osteonecrosis and circulated it among all authors. The best available evidence was used to develop recommendations. Recommendations and evidence are described as follows: Level of evidence (LoE) I: Evidence from at least one randomized trial, Level II: Evidence from cohort studies, case control studies, time series, Level III: Opinions of respected authorities, based on clinical experience, descriptive studies or reports of expert committees), and provide our practice whenever no evidence is available. Authors presented the revised summaries to the group for discussion at three consecutive rounds. All authors approved the recommendations of this guidance. This guidance includes the cumulative evidence up to the end of 2018.

As OP and ON are two completely different conditions with regard to the underlying pathophysiology, risk factors, diagnostic steps, and treatment, we subsequently summarize our guidance in two paragraphs. The paragraphs are consistently structured in a brief overview on definitions, symptoms, diagnostics, and a summary of published evidence including incidence and risk factors (supplemented by an overview of studies) followed by our suggestion for clinical practice (including a diagnostic workflow). In addition, references on treatment recommendations are given, whenever available.

Recommendations

Low bone mass accrual and osteoporosis

Definition: According to the International Society for Clinical Densitometry (ISCD), low BMD is defined as a low bone mineral content or areal BMD Z-score that is less than or equal to -2.0, adjusted for age, gender, and body size, as appropriate. The diagnosis of OP requires at least one vertebral compression fracture or a combination of low BMD and a clinically significant fracture history. The latter is defined as at least two long bone fractures before the age of 10 years, or three or more long-bone fractures before the age of 19 years, in the absence of high-energy trauma. (27)

Symptoms: Vertebral fractures often remain asymptomatic and, thus, will be missed and OP not diagnosed unless imaging is performed. However, back pain is a well-known sign of vertebral fractures.
Diagnostics: Bone mass is measured using a dual-energy X-ray absorptiometry (DXA) scan of the lumbar spine (L1-L4) and/or whole body and expressed relative to age- and body size-matched (Z-score) norms. (28) Low bone mass is defined as a BMD Z-score at or below -2.0. For children under the age of 5 years, DXA reference values are lacking as children have to lay still during measurement. Since BMD is underestimated in children with short stature and since chronically ill children are frequently short, adjustments for height and bone volume are necessary. Typical adjustments used are the calculation of lumbar spine bone mineral apparent density (BMAD, in g/cm³) or BMD adjustments for height Z-score at the lumbar spine and removing the head from the total body scan (total body less head BMD). (27, 29)

Suspected (extremity) fractures should be confirmed using conventional x-ray. Particular attention is needed to vertebral compression fractures. These are usually not recognized clinically at the time of their occurrence. However, their detection confirms the presence of OP and poses a substantial risk for subsequent fractures independent of BMD. (30) Noteworthy, a BMD Z-score >-2.0 does not preclude the possibility of skeletal fragility and increased fracture risk. Thus, screening for vertebral fractures using vertebral fracture assessment (VFA) by DXA, lateral spine x-rays, or MRI at regular intervals is necessary. (30, 31)

Summary of published evidence: It was long believed that adolescents who fail to appropriately accrue bone mass and/or lose part of it as after HSCT are at risk for life-long osteopenia, early onset OP, and fractures. (5, 7, 12, 14, 18, 32, 33) However, this ‘peak bone mass’ concept has been heavily disputed. (34) Moreover, a number of studies demonstrated, that children with ALL have the potential to recover from the leukemia- and treatment-related skeletal morbidities, once the skeleton regains its adaptive biomechanical competence. (23, 35, 36)

The development of bone mass deficits in children and adolescents with leukemia undergoing allogeneic HSCT is multifactorial in origin, including the underlying (malignant) disease, osteotoxic chemo- and particularly glucocorticoid therapy, prolonged reduced physical activity and poor muscle mass, poor nutrition, total body irradiation, immunosuppressive therapies, and cytokine activation
such as graft versus host disease (GvHD). In addition, cranial and spinal radiation, untreated hypogonadism, growth hormone deficiency, vitamin D deficiency, and hypophosphatemia are risk factors for incomplete bone mass accrual and accelerated bone resorption.

To go beyond, various studies demonstrated that myeloablative treatment regimens directly damage osteoprogenitor (OPG) cells, thereby negatively affecting the RANKL-OPG system and bone formation. GvHD and dysregulation of the immune system activate osteoclasts and reduce the number and function of osteoblasts.

The STOPP prospective trial has demonstrated that vertebral fractures are most frequent and severe in the first 2 years of ALL therapy. In survivors of childhood HSCT, who are at potentially greater risk for inadequate bone accrual and metabolism, having had more osteotoxic therapy, the incidence of clinically asymptomatic and symptomatic fractures still needs to be studied.

An overview on studies reporting on BMD deficits and fractures in children, adolescents and young adults following HSCT is given in table 1.

Suggestions for clinical practice (prevention):

To date, there is no evidence that shows a benefit for the prevention of fractures or bone mass deficits in ALL, or in the context of HSCT. The first biochemical signs of osteomalacia is an increasing parathyroid hormone (PTH) and indicates low dietary calcium, low vitamin D status or malabsorption. Osteoporosis, in contrast to osteomalacia and rickets, cannot be prevented by giving vitamin D.

We therefore only provide general recommendations:

→ Measurement of calcium, phosphorus, alkaline phosphatase (ALP), PTH, and 25-hydroxy vitamin D (25(OH)D) on a regular basis (e.g. every six months during the first year, afterwards yearly; adapted in patients with chronic GvHD (cGvHD)). (LoE 2) (17, 35, 48)

→ Adequate calcium and vitamin D intake are important for preventing osteomalacia and rickets but will not prevent or treat osteoporosis. The minimum intakes known to prevent rickets are ≥ 500 mg/day of calcium and 10 µg (400 IU)/day of vitamin D; higher vitamin D intakes (12.5-25 µg or 500-1,000 IU) have been recommended for children and adolescents at-risk of vitamin D deficiency due to factors and conditions that reduce synthesis or intake (e.g. restricted exposure to
sun, high latitude during winter/spring season, and low dietary calcium intake). Target 25(OH)D levels should be above 50 nmol/L. There is no benefit in higher 25(OH)D levels from vitamin D supplementation. (LoE 1) (50, 51) The regular use of dairy products and vitamin D supplements should be taken into account especially in countries in which this is common practice (for instance in Scandinavia). (52, 53)

→ Linear growth should be evaluated prior to and on a regular basis after HSCT. (LoE 2) (12, 17, 18, 54-56)

→ Pubertal delay due to hypogonadism and other endocrinopathies need to be assessed on a regular basis and if necessary pediatric endocrinologists consulted. (LoE 2) (35, 42, 48, 57-63)

→ Muscle force enhances bone accrual. Thus, promoting physical activity and exercise during and after HSCT is of particular importance, within the limits of illness. (LoE 2) (62) Regular age-adapted work programs should be established.

→ Yearly screening by DXA scan of the lumbar spine (L1-L4) and whole body should be performed prior to and 12 months after HSCT. (LoE 2) (17, 64) In case of the presence of vertebral fractures, age and taking into consideration growth potential and future health, the endocrine team should be consulted for consideration of bisphosphonate (BP) therapy.

→ Yearly screening for vertebral fractures using either DXA VFA or lateral spine X-rays should be performed and assessed by a pediatric radiologist using the Genant score. (LoE 2) (17, 65) For stable patients without new risk factors and no vertebral fractures, spine X-ray screening for vertebral fractures can be stopped 2 years after HSCT.

→ In patients with back pain at any time, lateral spine radiographs or MRI should be conducted to check for vertebral fractures. (LoE 2) (17)

A diagnostic workflow for low BMD and fractures is depicted in figure 1.

Suggestions for clinical practice (treatment):

Principally, assessment of treatment indication and OP treatment should be performed in consultation with the pediatric endocrinologist or metabolic bone specialist.
→ Basically, diagnosis and treatment of OP in children and adolescents should follow the ISCD guidance of pediatric OP. *(LoE 2)* (27) Therein, BP treatment is reserved for older patients with overt bone fragility and low potential for BMD restitution and vertebral body reshaping.

→ In case of significant functional impairment limiting QoL, age becomes less important and treatment may be initiated. *(LoE 2)* (27)

→ However, the ISCD guidance only provides recommendations for children with standard ALL. As in children and adolescents with ALL undergoing HSCT more complications and poor outcome are probably more likely, BP therapy may be used in younger patients with serious complications, bone pain and therefore less potential for recovery, as long as ISCD criteria of OP are fulfilled. *(LoE 3)* (17, 23, 60)

References on prevention and treatment recommendations: By mineral ion supplementation according to the general consensus, osteomalacia and rickets can be prevented. (49) In marked contrast to that, low BMD and OP cannot be prevented by dietary or supplemental calcium and vitamin D therapy. Only few studies have assessed the efficacy of BPs in increasing BMD and reducing pain due to vertebral fractures in children with ALL. (66, 67) To date, there is no evidence supporting the routine use of bone-targeted therapy such as BPs in the absence of fractures in children with ALL undergoing HSCT and low BMD. Hence, attention is needed to secondary prevention in children with less potential to recover spontaneously from low BMD and/or fractures and therefore increased risk of disease progression and disability. (48)

In children and adolescents, the potential to recover from bone fragility depends on the severity of bone morbidity, the remaining growth potential, and the persistence of risk factors. Consequently, children with limited or no potential of recovery including children of older age with restricted linear growth potential qualify for bone-targeted therapy. Furthermore, younger children with potential for spontaneous recovery may warrant BP treatment if OP due to pain and functional limitation significantly impacts their QoL. (27, 48)

The treatment of leukemia- and HSCT-related osteoporotic fractures should follow these general principles of bone-targeted treatment of OP in children.
For the future, alternative agents may become further treatment options. For example, the receptor activator of nuclear factor κB ligand (RANKL) inhibitor denosumab operates by inhibiting bone resorption and, to a lesser degree, bone formation, and is commonly used in postmenopausal women. (68) Efficacy and particularly safety in children need prospective studies. Under development but far from routine use are other promising therapies which target bone formation pathways (anti-transforming growth factor beta antibody and anti-sclerostin antibody). (69-71)

Osteonecrosis (ON)

Definition: ON - also known as avascular necrosis – is defined as the death of a bone segment due to an imbalance between the actual and required blood flow due to various reasons. (72)

Symptoms: The clinical picture of ON is multifaceted and usually depends on ON stage and location. Most commonly, ON occurs in the midshaft of long bones and remains asymptomatic and completely harmless. However, in ON affecting the major joints, this is frequently associated with pain. At first, the pain is mostly stress-induced, caused by the pressure on the affected bone, typically on the lower limbs. Subsequently, it becomes more constant and appears also at rest. In case of further disease progression, including joint collapse, the joint surface loses its smooth shape and severe pain interferes with daily life. Other symptoms include restrictions in activities of daily living such as climbing stairs and putting on shoes as well as gait abnormalities, while particularly joint swelling, mobility restrictions and stiffening and taking a relieving posture are generally symptoms of a far progressed joint disease. The time between first symptoms and collapse of the bone may vary from several months to more than a year.

Diagnoses: Magnetic resonance imaging (MRI) is the only appropriate imaging to show osteonecrotic lesions and allowing their grading. Standard X-ray images may look normal in early stages and become significant in advanced stages only.
Summary of published evidence: Risk factors for the development of ON include older age at HSCT, steroid treatment, cGvHD and ON prior to HSCT. Other factors such as gender, obesity, total body irradiation and other immunosuppressants have only inconsistently been reported to increase the incidence of ON. (11, 13, 73-75) In addition, children already presenting with grade 1 ON at MRI screening within 6-8 months of ALL therapy are at increased risk of developing symptomatic ON grade 2 to 4. (76)

In an MRI-based single center study, the prevalence of ON in children following HSCT is reported to be approximately 30%. (15) In contrast, the cumulative incidence of symptomatic ON following HSCT in children and adolescents is reported to be 4-9%. (10, 11, 75) Most ON are diagnosed within two years following HSCT with hips and knees being most frequently affected (75) with lesion size being the best predictor of clinical outcome in hip ON. (77) In the majority of symptomatic patients, the clinical course is multi-articular and bilateral. Empirically, most commonly, ON in the hips and shoulders are diagnosed already in an advanced stage and it is hard to impede further disease progression, whereas ON in the knees may improve over time. Typically, diaphyseal lesions evolve favorably, are not associated with fractures and do not need MRI follow-up. (78)

An overview of studies reporting on ON in children, adolescents and young adults following HSCT is given in table 3.

Suggestions for clinical practice:

→ Prior to and at each follow-up evaluation following HSCT, patients should be asked for pain. In addition, age-appropriate pain self-assessment scores, assessment of self-care ADLs and monitoring of the gait pattern should be included in routine clinical evaluation. (LoE 3)

→ MRI screening of asymptomatic patients to identify (asymptomatic) ON prior to and/or following allogeneic HSCT should only be performed within studies, as no evidence-based interventions are available yet. (LoE 3) (79)

→ In case of a pre-existing ON diagnosis before HSCT, the use of steroids might be limited and alternative immunosuppressants might be chosen for subsequent lines of treatment in multiple
resistant GvHD. However, there are no studies supporting this recommendation and, hence, focus should be laid on best possible GvHD treatment. (LoE 3)

→ Physicians in charge should be aware of ON as a frequent and debilitating complication, in order to accelerate the diagnostic process at the onset of the first symptoms. This becomes even more important, when patients are referred back to the referring centers and are not managed within the tertiary transplant centers. (LoE 3)

→ In symptomatic patients, ON should be investigated by MRI. (LoE 3) (79) As ON in weight-bearing joints most commonly occur in multiple locations, we would recommend to do lower limb MRI including hips, knees, and ankles. (LoE 2) (80)

→ As evidence is lacking, the use of crutches is controversially discussed. In other ON conditions such as Perthes disease, reduced weight bearing is a regular part of care aiming at reducing pain and mechanic destruction. In case crutches are used, upper limb MRI including shoulders should be considered to exclude extended still asymptomatic ON. (LoE 3)

→ In patients presenting with persisting symptoms suggestive of ON but without corresponding findings in a first MRI, other reasons for pain should be sought and MRI should be repeated after 3 months. (LoE 3)

→ For reasons of comparability, ON should be classified according to the radiological classification system developed by Niinimäki et al., (LoE 2) (81) which allows to score all joints and districts. In addition, there are joint specific classification systems (Steinberg, Ficat and ARCO) for grading ON of the hips. In addition, the Delphi consensus on ON by the Ponte Di Legno toxicity working group can be used for clinical classification. (LoE 3) (79)

A diagnostic workflow for ON is depicted in Figure 2.

References on treatment recommendations: Management of ON in children and adolescents with ALL following HSCT is challenging and evidence-based guidelines or consensus on management of these children is still lacking. Effective pain management is crucial. Beyond that, treatment should be decided on an individual basis, in close collaboration with orthopedic surgeons and the pain team. If
possible, affected patients should be enrolled in prospective clinical trials evaluating treatment options.

Previous studies in children and adolescents with ALL exploring pharmacological interventions for ON including BPs and prostacyclin analogs lack sufficient quality evidence, as previously reviewed; (82)) studies in children with ON after allogeneic HSCT are completely missing. New therapies targeting pathways in bone metabolism such as anti-sclerostin antibody may deserve prospective clinical trials in children after allogeneic HSCT.

In general, surgical management is based on patient factors and lesion characteristics. In late stage ON with joint infarction, surgical interventions comprise arthroplasty and surface replacement. In precollapse lesions, joint-preserving procedures including core decompression (CD) may be attempted. In non-cancer related ON, data indicate that CD combined with cellular therapies (autologous or allogeneic bone marrow cells, mesenchymal stem cells, human bone morphogenetic protein), vascularized bone grafts, avascular grafts, combinations of the aforementioned or rotational osteotomies is beneficial. (83-89)

Therapeutic approaches in children and adolescents with ALL have been previously reviewed. (82, 90, 91)

Summarizing remarks and outlook

Children and adolescents undergoing allogeneic HSCT are at increased risk of OP and ON. Bone health monitoring is therefore an important component of the care plan for these patients. The combination of international efforts and prospective intervention studies incorporating standardized diagnostic strategies and novel therapeutic treatment options will be necessary to determine the true scale of bone morbidity in those patients. Both the I-BFM SCT and the PDWP of EBMT provide a strong basis to establish prospective studies on bone morbidity in children and adolescents undergoing allogeneic HSCT.

Conflict of Interest
M. Kuhlen, M. Kunstreich, DD, RN, EB, AL, AW, PW, WH, PB, CP, and AB declare that they have no conflict of interest.

Acknowledgements
The authors thank all members of the I-BFM SCT Committee and the PDWP of the EBMT for their critical discussion of the topic within the framework meetings. M. Kuhlen is supported by the German Childhood Cancer Foundation (DKS 2011.11).

Authorship Contributions
M. Kuhlen screened the literature, collected data and wrote the manuscript. M. Kunstreich screened the literature, collected the data, compiled the tables and drafted the figures. RN, DD, AL, EB, AW, PB, and CP critically revised the manuscript for important intellectual content. WH screened the literature and critically revised the manuscript for important intellectual content. AB screened the literature and critically revised the manuscript for important intellectual content. All authors approved the final version of the manuscript.

References
1. Schrappe M, Hunger SP, Pui CH, Saha V, Gaynon PS, Baruchel A, et al. Outcomes after induction failure in childhood acute lymphoblastic leukemia. The New England journal of medicine. 2012 Apr 12;366(15):1371-81.
2. von Stackelberg A, Volzke E, Kuhl JS, Seeger K, Schrauder A, Escherich G, et al. Outcome of children and adolescents with relapsed acute lymphoblastic leukaemia and non-response to salvage protocol therapy: a retrospective analysis of the ALL-REZ BFM Study Group. European journal of cancer. 2011 Jan;47(1):90-7.
3. Rasche M, Zimmermann M, Borschel L, Bourquin JP, Dworzak M, Klingebiel T, et al. Successes and challenges in the treatment of pediatric acute myeloid leukemia: a retrospective analysis of the AML-BFM trials from 1987 to 2012. Leukemia. 2018 Oct;32(10):2167-77.
4. Peters C, Schrappe M, von Stackelberg A, Schrauder A, Bader P, Ebell W, et al. Stem-cell transplantation in children with acute lymphoblastic leukemia: A prospective international multicenter trial comparing sibling donors with matched unrelated donors-The ALL-SCT-BFM-2003 trial. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2015 Apr 10;33(11):1265-74.

5. Dvorak CC, Gracia CR, Sanders JE, Cheng EY, Baker KS, Pulsipher MA, et al. NCI, NHLBI/PBMTC first international conference on late effects after pediatric hematopoietic cell transplantation: endocrine challenges-thyroid dysfunction, growth impairment, bone health, & reproductive risks. Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation. 2011 Dec;17(12):1725-38.

6. Visentin S, Auquier P, Bertrand Y, Baruchel A, Tabone MD, Pochon C, et al. The Impact of Donor Type on Long-Term Health Status and Quality of Life after Allogeneic Hematopoietic Stem Cell Transplantation for Childhood Acute Leukemia: A Leucemie de l'Enfant et de L'Adolescent Study. Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation. 2016 Nov;22(11):2003-10.

7. Baker KS, Bresters D, Sande JE. The burden of cure: long-term side effects following hematopoietic stem cell transplantation (HSCT) in children. Pediatric clinics of North America. 2010 Feb;57(1):323-42.

8. Dietz AC, Duncan CN, Alter BP, Bresters D, Cowan MJ, Notarangelo L, et al. The Second Pediatric Blood and Marrow Transplant Consortium International Consensus Conference on Late Effects after Pediatric Hematopoietic Cell Transplantation: Defining the Unique Late Effects of Children Undergoing Hematopoietic Cell Transplantation for Immune Deficiencies, Inherited Marrow Failure Disorders, and Hemoglobinopathies. Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation. 2017 Jan;23(1):24-9.

9. Jackson TJ, Mostoufi-Moab S, Hill-Kayser C, Balamuth NJ, Arkader A. Musculoskeletal complications following total body irradiation in hematopoietic stem cell transplant patients. Pediatric blood & cancer. 2018 Apr;65(4).
10. Faraci M, Calevo MG, Lanino E, Caruso S, Messina C, Favr C, et al. Osteonecrosis after allogeneic stem cell transplantation in childhood. A case-control study in Italy. Haematologica. 2006 Aug;91(8):1096-9.

11. Girard P, Auquier P, Barlogis V, Contet A, Poiree M, Demeocz F, et al. Symptomatic osteonecrosis in childhood leukemia survivors: prevalence, risk factors and impact on quality of life in adulthood. Haematologica. 2013 Jul;98(7):1089-97.

12. Kaste SC, Shidler TJ, Tong X, Srivastava DK, Rochester R, Hudson MM, et al. Bone mineral density and osteonecrosis in survivors of childhood allogeneic bone marrow transplantation. Bone marrow transplantation. 2004 Feb;33(4):435-41.

13. Li X, Brazauxkas R, Wang Z, Al-Seraihy A, Baker KS, Cahn JY, et al. Avascular necrosis of bone after allogeneic hematopoietic cell transplantation in children and adolescents. Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation. 2014 Apr;20(4):587-92.

14. Mattano L. The skeletal remains: porosis and necrosis of bone in the marrow transplantation setting. Pediatric transplantation. 2003;7 Suppl 3:71-5.

15. Sharma S, Leung WH, Deqing P, Yang J, Rochester R, Britton L, et al. Osteonecrosis in children after allogeneic hematopoietic cell transplantation: study of prevalence, risk factors and longitudinal changes using MR imaging. Bone marrow transplantation. 2012 Aug;47(8):1067-74.

16. Halton J, Gaboury I, Grant R, Alos N, Cummings EA, Matzinger M, et al. Advanced vertebral fracture among newly diagnosed children with acute lymphoblastic leukemia: results of the Canadian Steroid-Associated Osteoporosis in the Pediatric Population (STOPP) research program. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2009 Jul;24(7):1326-34.

17. Ward LM, Ma J, Lang B, Ho J, Alos N, Matzinger MA, et al. Bone Morbidity and Recovery in Children With Acute Lymphoblastic Leukemia: Results of a Six-Year Prospective Cohort Study. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2018 Aug;33(8):1435-43.
18. Hogler W, Wehl G, van Staa T, Meister B, Klein-Franke A, Kropshofer G. Incidence of skeletal complications during treatment of childhood acute lymphoblastic leukemia: comparison of fracture risk with the General Practice Research Database. Pediatric blood & cancer. 2007 Jan;48(1):21-7.

19. van der Sluis IM, van den Heuvel-Eibrink MM, Hahnen K, Krenning EP, de Muinck Keizer-Schrama SM. Altered bone mineral density and body composition, and increased fracture risk in childhood acute lymphoblastic leukemia. The Journal of Pediatrics. 2002 Aug;141(2):204-10.

20. Atkinson SA, Halton JM, Bradley C, Wu B, Barr RD. Bone and mineral abnormalities in childhood acute lymphoblastic leukemia: influence of disease, drugs and nutrition. Int J Cancer Suppl. 1998;11:35-9.

21. Niinimaki T, Harila-Saari A, Niinimaki R. The diagnosis and classification of osteonecrosis in patients with childhood leukemia. Pediatric blood & cancer. 2015 Feb;62(2):198-203.

22. Alos N, Grant RM, Ramsay T, Halton J, Cumpnings EA, Miettunen PM, et al. High incidence of vertebral fractures in children with acute lymphoblastic leukemia 12 months after the initiation of therapy. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2012 Aug 1;30(22):2760-7.

23. Mostoufi-Moab S, Brodsky J, Isaacoff EJ, Tsampalieros A, Ginsberg JP, Zemel B, et al. Longitudinal assessment of bone density and structure in childhood survivors of acute lymphoblastic leukemia without cranial radiation. The Journal of clinical endocrinology and metabolism. 2012 Oct;97(10):3584-92.

24. Gualandro SF, Fonseca GH, Yokomizo IK, Gualandro DM, Suganuma LM. Cohort study of adult patients with haemoglobin SC disease: clinical characteristics and predictors of mortality. British journal of haematology. 2015 Nov;171(4):631-7.

25. Marti-Carvajal AJ, Sola I, Agreda-Perez LH. Treatment for avascular necrosis of bone in people with sickle cell disease. The Cochrane database of systematic reviews. 2016 Aug 9(8):CD004344.

26. Vanderhave KL, Perkins CA, Scannell B, Brighton BK. Orthopaedic Manifestations of Sickle Cell Disease. J Am Acad Orthop Surg. 2018 Feb 1;26(3):94-101.
27. Bishop N, Arundel P, Clark E, Dimitri P, Farr J, Jones G, et al. Fracture prediction and the definition of osteoporosis in children and adolescents: the ISCD 2013 Pediatric Official Positions. J Clin Densitom. 2014 Apr-Jun;17(2):275-80.

28. Bianchi ML, Leonard MB, Bechtold S, Hogler W, Mughal MZ, Schonau E, et al. Bone health in children and adolescents with chronic diseases that may affect the skeleton: the 2013 ISCD Pediatric Official Positions. J Clin Densitom. 2014 Apr-Jun;17(2):281-94.

29. Zemel BS, Leonard MB, Kelly A, Lappe JM, Gilsanz V, Oberfield S, et al. Height adjustment in assessing dual energy x-ray absorptiometry measurements of bone mass and density in children. The Journal of clinical endocrinology and metabolism. 2010 Mar;95(3):1265-73.

30. Schousboe JT, Vokes T, Broy SB, Ferrar L, McKiernan F, Reux C, et al. Vertebral Fracture Assessment: the 2007 ISCD Official Positions. J Clin Densitom. 2008 Jan-Mar;11(1):92-108.

31. Crabtree NJ, Chapman S, Hogler W, Hodgson K, Chapman D, Bebbington N, et al. Vertebral fractures assessment in children: Evaluation of DXA imaging versus conventional spine radiography. Bone. 2017 Apr;97:168-74.

32. Tauchmanova L, Serio B, Del Puente A, Risitano AM, Esposito A, De Rosa G, et al. Long-lasting bone damage detected by dual energy x-ray absorptiometry, phalangeal osteosono grammetry, and in vitro growth of marrow stromal cells after allogeneic stem cell transplantation. The Journal of clinical endocrinology and metabolism. 2002 Nov;87(11):5058-65.

33. Makitie O, Heikkinen R, Toiviainen-Salo S, Henriksson M, Puukko-Viertomies LR, Jahnukainen K. Long-term skeletal consequences of childhood acute lymphoblastic leukemia in adult males: a cohort study. European journal of endocrinology / European Federation of Endocrine Societies. 2013 Feb;168(2):281-8.

34. Gafni RI, Baron J. Childhood bone mass acquisition and peak bone mass may not be important determinants of bone mass in late adulthood. Pediatrics. 2007 Mar;119 Suppl 2:S131-6.

35. Gurney JG, Kaste SC, Liu W, Srivastava DK, Chemaitilly W, Ness KK, et al. Bone mineral density among long-term survivors of childhood acute lymphoblastic leukemia: results from the St. Jude Lifetime Cohort Study. Pediatric blood & cancer. 2014 Jul;61(7):1270-6.
36. Marinovic D, Dorgeret S, Lescoeur B, Alberti C, Noel M, Czernichow P, et al. Improvement in bone mineral density and body composition in survivors of childhood acute lymphoblastic leukemia: a 1-year prospective study. Pediatrics. 2005 Jul;116(1):e102-8.

37. Mostoufi-Moab S, Halton J. Bone morbidity in childhood leukemia: epidemiology, mechanisms, diagnosis, and treatment. Current osteoporosis reports. 2014 Sep;12(3):300-12.

38. Delvin E, Alos N, Rauch F, Marcil V, Morel S, Boisvert M, et al. Vitamin D nutritional status and bone turnover markers in childhood acute lymphoblastic leukemia survivors: A PETALE study. Clin Nutr. 2018 Feb 21.

39. Orgel E, Mueske NM, Wren TA, Gilsanz V, Butturini AM, Freyer DR, et al. Early injury to cortical and cancellous bone from induction chemotherapy for adolescents and young adults treated for acute lymphoblastic leukemia. Bone. 2016 Apr;85:131-7.

40. Strauss AJ, Su JT, Dalton VM, Gelber RD, Sallan SE, Silverman LB. Bony morbidity in children treated for acute lymphoblastic leukemia. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2001 Jun 15;19(12):3066-72.

41. Hogler W, Shaw N. Childhood growth hormone deficiency, bone density, structures and fractures: scrutinizing the evidence. Clinical endocrinology. 2010 Mar;72(3):281-9.

42. Baek KH, Lee WY, Oh KW, Kim HS, Han JH, Kang MI, et al. Changes in the serum growth factors and osteoprotegerin after bone marrow transplantation: impact on bone and mineral metabolism. The Journal of clinical endocrinology and metabolism. 2004 Mar;89(3):1246-54.

43. Baek KH, Oh KW, Lee WY, Tae HJ, Rhee EJ, Han JH, et al. Changes in the serum sex steroids, IL-7 and RANKL-OPG system after bone marrow transplantation: influences on bone and mineral metabolism. Bone. 2006 Dec;39(6):1352-60.

44. Lee WY, Kang MI, Oh ES, Oh KW, Han JH, Cha BY, et al. The role of cytokines in the changes in bone turnover following bone marrow transplantation. Osteoporos Int. 2002 Jan;13(1):62-8.

45. te Winkel ML, Pieters R, Hop WC, Roos JC, Bokkerink JP, Leeuw JA, et al. Bone mineral density at diagnosis determines fracture rate in children with acute lymphoblastic leukemia treated according to the DCOG-ALL9 protocol. Bone. 2014 Feb;59:223-8.
46. Cummings EA, Ma J, Fernandez CV, Halton J, Alos N, Miettunen PM, et al. Incident Vertebral Fractures in Children With Leukemia During the Four Years Following Diagnosis. The Journal of clinical endocrinology and metabolism. 2015 Sep;100(9):3408-17.

47. Uday S, Hogler W. Spot the silent sufferers: A call for clinical diagnostic criteria for solar and nutritional osteomalacia. The Journal of steroid biochemistry and molecular biology. 2019 Apr;188:141-6.

48. Hogler W, Ward L. Osteoporosis in Children with Chronic Disease. Endocr Dev. 2015;28:176-95.

49. Munns CF, Shaw N, Kiely M, Specker BL, Thacher TD, Ozono K, et al. Global Consensus Recommendations on Prevention and Management of Nutritional Rickets. The Journal of clinical endocrinology and metabolism. 2016 Feb;101(2):394-415.

50. Reid IR. Vitamin D Effect on Bone Mineral Density and Fractures. Endocrinol Metab Clin North Am. 2017 Dec;46(4):935-45.

51. Kaste SC, Qi A, Smith K, Surprise H, Lovorn E, Boyett J, et al. Calcium and cholecalciferol supplementation provides no added benefit to nutritional counseling to improve bone mineral density in survivors of childhood acute lymphoblastic leukemia (ALL). Pediatric blood & cancer. 2014 May;61(5):885-93.

52. Holick MF. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. The American journal of clinical nutrition. 2004 Dec;80(6 Suppl):1678S-88S.

53. Lumme J, Mottonen M, Pokka T, Makitie O, Harila-Saari A, Niinimaki R. Vitamin D Status in Children With Hemato-Oncological Diseases in Northern Finland. Clinical pediatrics. 2019 Feb;58(2):241-4.

54. Mostoufi-Moab S, Seidel K, Leisenring WM, Armstrong GT, Oeffinger KC, Stovall M, et al. Endocrine Abnormalities in Aging Survivors of Childhood Cancer: A Report From the Childhood Cancer Survivor Study. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2016 Sep 20;34(27):3240-7.
55. Petryk A, Bergemann TL, Polga KM, Ulrich KJ, Raatz SK, Brown DM, et al. Prospective study of changes in bone mineral density and turnover in children after hematopoietic cell transplantation. The Journal of clinical endocrinology and metabolism. 2006 Mar;91(3):899-905.

56. Petryk A, Polgreen LE, Zhang L, Hodges JS, Dengel DR, Hoffmeister PA, et al. Bone mineral deficits in recipients of hematopoietic cell transplantation: the impact of young age at transplant. Bone marrow transplantation. 2014 Feb;49(2):258-63.

57. Anandi P, Jain NA, Tian X, Wu CO, Pophali PA, Koklanaris E, et al. Factors influencing the late phase of recovery after bone mineral density loss in allogeneic stem cell transplantation survivors. Bone marrow transplantation. 2016 Aug;51(8):1101-6.

58. Berbis J, Michel G, Chastagner P, Sirvent N, Demeocq F, Plantaz D, et al. A French cohort of childhood leukemia survivors: impact of hematopoietic stem cell transplantation on health status and quality of life. Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation. 2013 Jul;19(7):1065-72.

59. Leung W, Ahn H, Rose SR, Phipps S, Smith T, Gan K, et al. A prospective cohort study of late sequelae of pediatric allogeneic hematopoietic stem cell transplantation. Medicine (Baltimore). 2007 Jul;86(4):215-24.

60. Mostoufi-Moab S, Ginsberg JP, Bunin N, Zemel B, Shults J, Leonard MB. Bone density and structure in long-term survivors of pediatric allogeneic hematopoietic stem cell transplantation. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2012 Apr;27(4):760-9.

61. Mostoufi-Moab S, Ginsberg JP, Bunin N, Zemel BS, Shults J, Thayu M, et al. Body composition abnormalities in long-term survivors of pediatric hematopoietic stem cell transplantation. The Journal of pediatrics. 2012 Jan;160(1):122-8.

62. Mostoufi-Moab S, Ward LM. Skeletal Morbidity in Children and Adolescents during and following Cancer Therapy. Horm Res Paediatr. 2018 Nov 27:1-15.

63. Perkins JL, Kunin-Batson AS, Youngren NM, Ness KK, Ulrich KJ, Hansen MJ, et al. Long-term follow-up of children who underwent hematopoietic cell transplant (HCT) for AML or ALL at less than 3 years of age. Pediatric blood & cancer. 2007 Dec;49(7):958-63.
64. Mostoufi-Moab S, Kelly A, Mitchell JA, Baker J, Zemel BS, Brodsky J, et al. Changes in pediatric DXA measures of musculoskeletal outcomes and correlation with quantitative CT following treatment of acute lymphoblastic leukemia. Bone. 2018 Jul;112:128-35.

65. Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 1993 Sep;8(9):1137-48.

66. Goldbloom EB, Cummings EA, Yhap M. Osteoporosis at presentation of childhood ALL: management with pamidronate. Pediatric hematology and oncology. 2005 Oct-Nov;22(7):543-50.

67. Wiernikowski JT, Barr RD, Webber C, Guo CY, Wright M, Atkinson SA. Alendronate for steroid-induced osteopenia in children with acute lymphoblastic leukemia or non-Hodgkin's lymphoma: results of a pilot study. Journal of oncology pharmacy practice : official publication of the International Society of Oncology Pharmacy Practitioners. 2005 Jun;11(2):51-6.

68. Scott LJ. Denosumab: a review of its use in postmenopausal women with osteoporosis. Drugs & aging. 2014 Jul;31(7):555-76.

69. Ward LM, Rauch F. Anabolic Therapy for the Treatment of Osteoporosis in Childhood. Current osteoporosis reports. 2018 Jun;16(3):269-76.

70. Ishtiaq S, Fogelman I, Hampson G. Treatment of post-menopausal osteoporosis: beyond bisphosphonates. J Endocrinol Invest. 2015 Jan;38(1):13-29.

71. Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet. 2011 Apr 9;377(9773):1276-87.

72. Kunstreich M, Kummer S, Laws HJ, Borkhardt A, Kuhlen M. Osteonecrosis in children with acute lymphoblastic leukemia. Haematologica. 2016 Nov;101(11):1295-305.

73. McAvoy S, Baker KS, Mulrooney D, Blaes A, Arora M, Burns LJ, et al. Corticosteroid dose as a risk factor for avascular necrosis of the bone after hematopoietic cell transplantation. Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation. 2010 Sep;16(9):1231-6.
74. Tauchmanova L, De Rosa G, Serio B, Fazioli F, Mainolfi C, Lombardi G, et al. Avascular necrosis in long-term survivors after allogeneic or autologous stem cell transplantation: a single center experience and a review. Cancer. 2003 May 15;97(10):2453-61.

75. Kuhlen M, Bader P, Sauer M, Albert MH, Gruhn B, Gungor T, et al. Low incidence of symptomatic osteonecrosis after allogeneic HSCT in children with high-risk or relapsed ALL - results of the ALL-SCT 2003 trial. British journal of haematology. 2018 Oct;183(1):104-9.

76. Kawedia JD, Kaste SC, Pei D, Panetta JC, Cai X, Cheng C, et al. Pharmacokinetic, pharmacodynamic, and pharmacogenetic determinants of osteonecrosis in children with acute lymphoblastic leukemia. Blood. 2011 Feb 24;117(8):2340-7; quiz 556.

77. Karimova EJ, Rai SN, Howard SC, Neel M, Britton L, Pui CH, et al. Femoral head osteonecrosis in pediatric and young adult patients with leukemia or lymphoma. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2007 Apr 20;25(12):1525-31.

78. Niinimaki R, Suo-Palosaari M, Pokka T, Harila-Saari A, Niinimaki T. The radiological and clinical follow-up of osteonecrosis in cancer patients. Acta oncotologica. 2019 Jan 30:1-7.

79. Schmiegelow K, Attarbaschi A, Barzilai S, Escherich G, Frandsen TL, Halsey C, et al. Consensus definitions of 14 severe acute toxic effects for childhood lymphoblastic leukaemia treatment: a Delphi consensus. The Lancet Oncology. 2016 Jun;17(6):e231-9.

80. Mogensen SS, Harila-Saari A, Makitie O, Myrberg IH, Niinimaki R, Vestli A, et al. Comparing osteonecrosis clinical phenotype, timing, and risk factors in children and young adults treated for acute lymphoblastic leukemia. Pediatric blood & cancer. 2018 Oct;65(10):e27300.

81. Niinimaki T, Niinimaki J, Halonen J, Hanninen P, Harila-Saari A, Niinimaki R. The classification of osteonecrosis in patients with cancer: validation of a new radiological classification system. Clin Radiol. 2015 Dec;70(12):1439-44.

82. Te Winkel ML, Pieters R, Wind EJ, Bessem JH, van den Heuvel-Eibrink MM. Management and treatment of osteonecrosis in children and adolescents with acute lymphoblastic leukemia. Haematologica. 2014 Mar;99(3):430-6.
83. Hernigou P, Flouzat-Lachaniette CH, Delambre J, Poignard A, Allain J, Chevallier N, et al. Osteonecrosis repair with bone marrow cell therapies: state of the clinical art. Bone. 2015 Jan;70:102-9.

84. Hernigou P, Trousselier M, Roubineau F, Bouthors C, Chevallier N, Rouard H, et al. Stem Cell Therapy for the Treatment of Hip Osteonecrosis: A 30-Year Review of Progress. Clin Orthop Surg. 2016 Mar;8(1):1-8.

85. Zhao D, Cui D, Wang B, Tian F, Guo L, Yang L, et al. Treatment of early stage osteonecrosis of the femoral head with autologous implantation of bone marrow-derived and cultured mesenchymal stem cells. Bone. 2012 Jan;50(1):325-30.

86. Lieberman JR, Conduah A, Urist MR. Treatment of osteonecrosis of the femoral head with core decompression and human bone morphogenetic protein. Clinical orthopaedics and related research. 2004 Dec(429):139-45.

87. Petrigliano FA, Lieberman JR. Osteonecrosis of the hip: novel approaches to evaluation and treatment. Clinical orthopaedics and related research. 2007 Dec;465:53-62.

88. van der Jagt D, Mokete L, Pietrzak J, Zalavras CG, Lieberman JR. Osteonecrosis of the femoral head: evaluation and treatment. J Am Acad Orthop Surg. 2015 Feb;23(2):69-70.

89. Yen CY, Tu YK, Ma CH, Yu SW, Kao FC, Lee MS. Osteonecrosis of the femoral head: comparison of clinical results for vascularized iliac and fibula bone grafting. Journal of reconstructive microsurgery. 2006 Jan;22(1):21-4.

90. Kuhlen M, Kunstreich M, Krull K, Meisel R, Borkhardt A. Osteonecrosis in children and adolescents with acute lymphoblastic leukemia: a therapeutic challenge. Blood Advances. 2017;1(14):981-94.

91. Amin NL, James RM, Phillips R. QUESTION 1: Should we be using bisphosphonates for osteonecrosis complicating childhood acute lymphoblastic leukaemia? Archives of disease in childhood. 2016 Mar;101(3):287-90.
Figure legends

Figure 1

Figure 1: Workflow for prevention of osteomalacia and rickets and assessment of bone mass deficits and osteoporosis in children and adolescents undergoing hematopoietic stem cell transplantation.

Legend: Alkaline phosphatase, ALP; calcium, Ca; Dual-Energy X-Ray Absorptiometry, DXA; Hematopoietic stem cell transplantation, HSCT; Insulin-like growth factor 1, IGF-1; Parathyroid hormone, PTH; vertebral fracture assessment, VFA. *Minimum intakes of vitamin D and dietary calcium are given.*
Figure 2: Diagnostic workflow for children and adolescents undergoing hematopoietic stem cell transplantation (HSCT) and/or being suspicious of osteonecrosis following HSCT.

Legend: Activities of daily living, ADLs; Magnetic Resonance Imaging, MRI; osteonecrosis, ON; Turbo inversion recovery magnitude, TIRM; T1-weighted MRI scans, T1. *Some preliminary data suggest that interventions including core decompression plus mesenchymal stem cells may provide improved outcome if patients are treated at an early / precollapse stage. These data still need to be confirmed in children and adolescents with acute lymphoblastic leukemia. (reviewed in (90))
Table 1: Overview of studies on bone mass deficits and fractures in children and adolescents after hematopoietic stem cell transplantation

Reference	Year	Study design	Study population	HSCT	Disease	Age at HSCT (in years)	Incidence:	Follow up (in years)	Methods	Z Score	Risk factors and other important findings
Ward et al. [8]	2018	prospective, multicenter cohort study	186 pts recipients of allogeneic HSCT	ALL	n.a.	6 years	spine radiographs, spine bone mineral density (BMD)	across all pts cumulative corticosteroid dose vertebral fractures at diagnosis	0,94		
Bechard et al. [1]	2015	prospective, multicenter cohort study	26 pts allogeneic (12 pts sibling related)	ALL	7 pts ALL, 3 pts AML, 3 pts MDS, 3 pts CML, 2 pts lymphoma	7 yrs (±2)	whole body DXA	0,44 (0,24)			
Mostoufi-Moab et al. [4]	2012	cross sectional	55 pts HSCT recipients / 985 healthy controls	allogeneic	Leukemia, Bone marrow failure syndrome	5-26	0,84 (±1,2)	Vitamin D deficiency			
Petryk et al. [6]	2006	longitudinal	49 pts allogeneic, 2 pts autologous	Fanconi anemia, 10 pts ALL, 8 pts AML, 6 pts, adrenoleukodystrophy, 5 pts AA, 3 pts CML, 3 pts metachromatic leukodystrophy, 4 pts others	5-18	0,84 (-1,29 to -0,39)	osteocalcin possible biomarker for vulnerable pts				
Petryk et al. [7]	2014	cross sectional	75 pts HSCT recipients / 92 healthy siblings	116 pts allogeneic 35 pts autologous 26 pts lymphoid malignancy 78 pts myeloid	24,388,6	DXA of lumbar spine BMD Areal LBMDA L2-L4	0,84 (-1,29 to -0,39)	osteocalcin possible biomarker for vulnerable pts			
malignancy 17 pts, 13 pts allogeneic 3 pts autologous 3 pts AML 3 pts ALL 14 pts 6,99 (0,38-2,97) 1 pt osteoporosis 3 pts osteopenia 11,55 (3,25-22,53) TBMD 0,167 (0,167) 0,176 (0,176) 0,664 (0,176)

Refrains et al. [5] 2007 cross sectional 17 pts 13 pts allogeneic 4 pts autologous 3 pts AML 3 pts ALL 14 pts 6,99 (0,38-2,97) 1 pt osteoporosis 3 pts osteopenia 11,55 (3,25-22,53) TBMD 0,167 (0,167) 0,176 (0,176) 0,664 (0,176)

Campos et al. [2] 2014 retrospective case-control study 30 pts/25 controls 25 pts related allogeneic 25 pts unrelated allogeneic 5 pts AML 5 pts ALL 5 pts MDS 17 pts Fanconi anemia 5 pts adrenoleukodystrophy 10 pts severe aplastic anemia 5 pts CML 5 pts Wiskott-Aldrich syndrome 5 pts other 10,4 +/-4,6 whole body and lumbar spine DXA -1,14 (-1,53 to -0,74) (TB BMD +/-0,62) 0,750 +/-0,167 1,8 BMD 0,664 +/-0,176

Kasie et al. [1] 2004 retrospective 48 pts allogeneic 40 pts 10 pts AML 10 pts MDS 10 pts CML 5 pts other leukemias 5 pts other bone marrow failure 10,3 (6,6-10,4) 21% pts osteoporosis 26% pts osteopenia 5,1 (1,0-10,2) QC T MRI QC T Z Score 0,88 (3,3 to +2,33) decreased BMD risk factor for ON

Legend: ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; BMD, bone mineral density; CML, chronic myeloid leukemia; DXA, dual energy X-ray absorptiometry; GVHD, graft-versus-host disease; RICT, hematopoietic stem cell transplantation; LBMD(A), lumbar BMD; MDS, myelo-dysplastic syndrome; ON, osteonecrosis; pts, patients; pQCT, peripheral quantitative computed tomography; SD, standard deviation; TB1, total body irradiation; TBMD, tibia BMD, yrs, years)
Reference	Year	Study design	HSCT	Disease	Study population	Age	Incidence	Risk factors
Leung et al. [4]	2007	prospective	allogeneic	ALL, 84 pts myeloid malignancy, 40 pts lymphoblastic leukemia, 31 pts non malignancy	155 pts	median 9.5 yrs (0.5-21.4)	20 of 155 pts (13%)	• female sex
• age >8 yrs at HSCT								
Faraci et al. [1]	2006	retrospective case control study	allogeneic	ALL, 8 pts AML, 2 pts CML, 3 pts NHL, 6 pts non-malignant	43 pts (ON, allogeneic HSCT) matched to 129 controls	mean age 13.1 yrs	Multivariate logistic regression analysis	
• cGVHD (OR 1.7:0.7)								
• TBI (OR 2.9:2.0)								
• Older Age (OR 1.46)								
Sharma et al. [5]	2012	retrospective MRI control study	allogeneic	ALL, NHL, 118 pts malignant, 33 pts non-malignant	149 pts	median 19 yrs (0-25 yrs)	44 pts (ON) of 149 pts (29.9%)	• Age ≥10 yrs at HSCT (p=0.05)
• pre alloHSCT MRI positive (p<0.01)								
Kohlin et al. [3]	2018	retrospective	allogeneic	ALL	53 pts	median 10.3 yrs (0.3-26 yrs)	Cumulative incidence of ON at 5 years 9% (SD 1%)	• age at HSCT >10 yrs
• diagnosis of ON prior to HSCT								
• cGVHD								
Giraud et al. [2]	2013	retrospective	191 pts allogeneic, 65 pts autologous	ALL, 177 pts ALL, 79 pts AML	255 HSCT	6.65 (±0.31)	13 pts (ON) of 255 HSCT (5.1%: 1%-7.09)	Older age at HSCT (>10 yrs)
Higher total steroid dose post-transplant (>2,055mg/m²) (cGVHD)								
Kaste et al. [4]	2004	prospective	allogeneic	ALL, 10 pts AML, 10 pts NHL, 3 pts CML, 1 pts non leukemia	48 pts	mean 10.3 yrs (1.6-20.4)	13 of 48 pts (44%)	Female sex

Legend: ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; CML, chronic myeloid leukemia; CI, cumulative incidence; CML, chronic myeloid leukemia; (a) (c) (HV), acute (chronic) graft versus host disease; HL, Hodgkin lymphoma; HSCT; hematopoietic stem cell transplantation; HR, hazard ratio; MDS, myelodysplastic syndrome; MRI, magnetic resonance imaging; NHL, Non-Hodgkin lymphoma; ON, (symptomatic) osteonecrosis; OR, odds ratio; pts, patients; IR, interval rate; SD, standard deviation; TBI, total body irradiation; yr(s), year(s)