Treatment with apolipoprotein A-1 mimetic peptide reduces lupus-like manifestations in a murine lupus model of accelerated atherosclerosis

Jennifer MP Woo1, Zhuofeng Lin1, Mohamad Navab2, Casey Van Dyck1, Yvette Trejo-Lopez1, Krystal MT Woo1, Hongyun Li1, Lawrence W Castellani3, Xuping Wang3, Noriko Iikuni1, Ornella J Rullo4, Hui Wu1, Antonio La Cava1, Alan M Fogelman5, Aldons J Lusis2 and Betty P Tsao*1

Abstract

Introduction: The purpose of this study was to evaluate the effects of L-4F, an apolipoprotein A-1 mimetic peptide, alone or with pravastatin, in apoE-/-Fas-/-C57BL/6 mice that spontaneously develop immunoglobulin G (IgG) autoantibodies, glomerulonephritis, osteopenia, and atherosclerotic lesions on a normal chow diet.

Methods: Female mice, starting at eight to nine weeks of age, were treated for 27 weeks with 1) pravastatin, 2) L-4F, 3) L-4F plus pravastatin, or 4) vehicle control, followed by disease phenotype assessment.

Results: In preliminary studies, dysfunctional, proinflammatory high-density lipoproteins (piHDL) were decreased six hours after a single L-4F, but not scrambled L-4F, injection in eight- to nine-week old mice. After 35 weeks, L-4F-treated mice, in the absence/presence of pravastatin, had significantly smaller lymph nodes and glomerular tufts ($PL, LP < 0.05$), lower serum levels of IgG antibodies to double stranded DNA (dsDNA) ($P_L < 0.05$) and oxidized phospholipids (oxPLs) ($P_L, LP < 0.005$), and elevated total and vertebral bone mineral density ($P_L, LP < 0.01$) compared to vehicle controls. Although all treatment groups presented larger aortic root lesions compared to vehicle controls, enlarged atheromas in combination treatment mice had significantly less infiltrated CD68+ macrophages ($P_L, LP < 0.01$), significantly increased mean α-actin stained area ($P_L < 0.05$), and significantly lower levels of circulating markers for atherosclerosis progression, CCL19 ($P_L, LP < 0.0005$) and VCAM-1 ($P_L < 0.0002$).

Conclusions: L-4F treatment, alone or with pravastatin, significantly reduced IgG anti-dsDNA and IgG anti-oxPLs, proteinuria, glomerulonephritis, and osteopenia in a murine lupus model of accelerated atherosclerosis. Despite enlarged aortic lesions, increased smooth muscle content, decreased macrophage infiltration, and decreased pro-atherogenic chemokines in L-4F plus pravastatin treated mice suggest protective mechanisms not only on lupus-like disease, but also on potential plaque remodeling in a murine model of systemic lupus erythematosus (SLE) and accelerated atherosclerosis.

Introduction

Premenopausal women with systemic lupus erythematosus (SLE or lupus) are at an estimated 10- to 50-fold increased risk for developing myocardial infarction and cardiovascular disease (CVD) compared to age-matched controls [1-3]. Moreover, subclinical atherosclerosis is more prevalent in women with SLE, as measured by carotid plaques [4] and coronary artery calcification [5,6]. Traditional Framingham risk factors for atherosclerosis cannot fully account for accelerated atherosclerosis in SLE [1], which is also influenced by SLE-related factors [7-9]. These SLE-related factors, including the use of corticosteroid therapy, chronic inflammation, and the extent of disease damage, are also under investigation as potential risk factors for decreased bone mineral density (BMD) frequently observed in SLE patients [10,11].
Studies of the pathogenesis of accelerated atherosclerosis in SLE patients are confounded by complex SLE-related factors. As a result, murine models have been developed to simultaneously express both atherosclerosis and lupus-like manifestations on either normal chow or high fat diet [7,12,13]. Apolipoprotein E-deficient (apoE-/-) C57BL/6 (B6) mice are established models of atherosclerosis that develop advanced atherosclerotic lesions when kept on a high fat diet [14]. Mice that are homozygous for lpr (lymphoproliferation or Faslpr/lpr) or gld (generalized lymphoproliferative disease or FasLgld/gld) develop lymphadenopathy and present symptoms of lupus-like autoimmunity [7,15]. These symptoms include IgG autoantibodies commonly elevated in SLE patients, which result from mutations in Fas, a cell-surface protein that mediates apoptosis, or its ligand, FasL. We previously established the apoE-/- and Fas-/- double knockout B6 mouse as a model of accelerated atherosclerosis in lupus [16]. Compared to single knockout parental strains, double knockouts, fed a normal chow diet, simultaneously exhibit advanced accelerated atherosclerosis, glomerulonephritis, osteopenia, and lupus-like autoimmunity starting at five months of age [16].

Statins, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors involved in cholesterol biosynthesis, are widely used as lipid-lowering agents in the treatment of hypercholesterolemia and have been reported to possess anti-inflammatory and immunomodulatory properties [17]. Interestingly, statin treatments are not lipid-modulating in rodents as is commonly observed in humans, allowing focus to remain on potential anti-inflammatory and immunomodulatory effects [18]. Independent of cholesterol-lowering effects, daily injections of simvastatin (intraperitoneally (i.p.) 0.125 mg/kg/day) in young gld apoE-/- B6 mice maintained on a high-fat diet for 12 weeks prevented the development of both atherosclerosis and lupus-like disease via a shift from Th1 to Th2 phenotype [7,19]. Similarly, mono-therapy of oral pravastatin inhibited atherogenesis and plaque rupture in apoE-/- B6 mice at high doses (≥ 40 mg/kg in drinking water) [20,21] and at low doses (≤ 5 mg/kg) in combination with additional therapy [20,22,23].

Apolipoprotein A-1 (apoA-1), a major component of high-density lipoproteins (HDL), plays an important role in the anti-inflammatory effects of HDL and mediates protection against atherosclerosis in animal models [24-26]. The apoA-1 mimetic peptide 4F, synthesized from either D (D-4F) or L (L-4F) amino acids, promotes the ability of HDL to protect low-density lipoprotein (LDL) from oxidation in animal models of atherosclerosis [27]. Oral administration of D-4F converts HDL from proinflammatory to anti-inflammatory, improves HDL-mediated cholesterol efflux, reverses transport of cholesterol from macrophages, and reduces aortic lesions in apoE-/- mice without affecting plasma cholesterol levels [23,28,29].

Synergistic effects of suboptimal dosages of pravastatin and D-4F have been shown to inhibit atherogenesis in young apoE-/- mice and to reduce lesion progression of established plaques in older mice where mono-therapies of pravastatin or D-4F alone were unsuccessful [23]. Here, low dose L-4F was administered i.p. (due to its rapid degradation by gut proteases when administered orally) [27]. Using a combination treatment of L-4F and pravastatin, we assessed the therapeutic effects of both drug types in the apoE-/- Fas-/- murine model of accelerated atherosclerosis in lupus and identified potential biomarkers of disease activity for possible future applications in the treatment and monitoring of atherosclerosis in SLE.

Materials and methods

L-4F and pravastatin

L-4F was synthesized similar to the methods previously described [30,31]. Pravastatin sodium was purchased from LKT Laboratories, Inc. (St. Paul, MN, USA).

Mice and experimental protocol

ApoE-/- Fas-/- B6 mice were originally produced by breeding apoE-/- and Fas-/- single knockout mice purchased from the Jackson Laboratories (Bar Harbor, ME, USA) and then further maintained in a colony [16]. At eight to nine weeks of age, female apoE-/- Fas-/- mice were randomly grouped to receive one of four different treatment regimens: 1) pravastatin (5 mg/kg body weight in drinking water, n = 14), 2) L-4F (15 mg/kg in 50 mM ammonium bicarbonate buffer, pH 7.0, containing 0.1 mg/ml Tween-20 (ABCT) i.p., five days/week, n = 25), 3) L-4F plus pravastatin (administered as described for groups 1 and 2, n = 9), and 4) vehicle control (ABCT i.p., five days/week, n = 23) (Figure 1b). After 27 weeks, mice were fasted overnight and euthanized. At time of death, blood samples were collected via cardiac puncture. The mice were profused using phosphate buffered saline (PBS) (9.5 mM phosphate, pH 7.4, 2.7 mM KCl and 137 mM NaCl) prior to harvest of the spleen, lymph nodes, and kidneys (Figure 1b). All mice were treated in conformity with Public Health Service Policy. The mice were fed normal chow diet and maintained in a temperature-controlled room with a 12-hour light/dark cycle according to the approved protocol by the University of California, Los Angeles Animal Research Committee.

Autoantibody analysis using enzyme-linked immunosorbant assay (ELISA)

Serum and plasma samples were collected from each mouse at euthanasia. An ELISA kit was used to test relative levels of total IgG antibodies. Serum samples were...
Figure 1 Preliminary studies and experimental protocol

(a) Preliminary studies to determine the use of L-4F as a potential treatment in apoE−/− Fas−/− mice showed that HDL taken six hours after injection of L-4F was more successful in reducing LDL-induced monocyte chemotactic activity in cultures of human aortic endothelial cells compared to scrambled L-4F (Scr-L-4F). The value for No Addition (no LDL or HDL added to endothelial cultures) was subtracted from all values, the value for Std. LDL was taken as 1.0 and inflammatory index for LDL + HDL was calculated. Each pool represents HDL fractions from three to four mice.

(b) Thirty-six week experimental protocol.

Randomly grouped at 8 – 9 weeks old

Control (n = 23)
ABCT buffer, i.p. 5 days/week

Pravastatin (n = 14)
5 mg/kg bWt. in drinking water

L-4F (n = 25)
15 mg/kg bWt. in ABCT buffer, i.p. 5 days/week

L-4F + Pravastatin (n = 9)
Prav.: 5 mg/kg bWt. in drinking water
L-4F: 15 mg/kg bWt. in ABCT buffer, i.p. 5 days/week

ELISA for IgG autoantibodies
Kidney Histology
Immunoassay
BMD: DEXA and μCT analysis
Atherosclerotic lesion analysis

Figure 1 Preliminary studies and experimental protocol (a) Preliminary studies to determine the use of L-4F as a potential treatment in apoE−/− Fas−/− mice showed that HDL taken six hours after injection of L-4F was more successful in reducing LDL-induced monocyte chemotactic activity in cultures of human aortic endothelial cells compared to scrambled L-4F (Scr-L-4F). The value for No Addition (no LDL or HDL added to endothelial cultures) was subtracted from all values, the value for Std. LDL was taken as 1.0 and inflammatory index for LDL + HDL was calculated. Each pool represents HDL fractions from three to four mice. (b) Thirty-six week experimental protocol. *P ≤ 0.05.
diluted 1:200 to measure relative levels of IgG anti-
dsDNA using a streptavidin-biotin method of ELISA, and an
IgG anti-cardiolipin ELISA was used to measure levels of
IgG antibodies to oxidized phospholipids (oxPLs) -1-
-palmitoyl-2(5-oxovaleroyl)-sn-glycero-3-phosphorylcho-
line (POVPC) and 1-palmitoyl-2-glutaroyl-sn-glycero-3-
phosphorylcholine (PGPC) - as previously described [16].
A standard curve was generated using serially diluted
pooled sera from mice with known high concentrations
of the desired antibody. Samples were measured using a
goat anti-mouse IgG Fc antibody conjugated with either
alkaline phosphatase enzyme or horseradish peroxidase
(Bethyl Laboratories, Inc.; Montgomery, TX, USA).

Kidney histology

Following euthanasia, one kidney from each mouse was
fixed in 10% formalin. The samples were embedded in
paraffin, sectioned at 3 μm, and stained using either peri-
odic acid-Schiff (PAS) or hematoxylin and eosin (H&E).
Stained sections were photographed electronically with a
microscope fitted with a digital camera (Nikon Eclipse
600, Melville, NY, USA), assigned anonymous identifica-
tion numbers, and analyzed using computer-assisted
imaging software (Image ProPlus; Media Cybernetics,
Bethesda, MD, USA) by a blinded observer. Twenty-five
to thirty glomeruli for each sample were observed in rep-
resentative fields on duplicate slides and were measured
to calculate the mean glomerular tuft size for each mouse.

Proteinuria measurement

Morning urine was regularly collected from each mouse
throughout the duration of the treatment protocol.
Albustix strips (Bayer; Elkhart, IN, USA) were used to
to estimate proteinuria levels from fresh urine samples. Le-
vels of proteinuria were expressed as follows: 0 = none, 1 =
trace, 2 = approximately 30 mg/dl, 3 = approximately 100
mg/dl, 4 = approximately 300 mg/dl, and 5 = >2,000 mg/
dl.

BMD analysis and three-dimensional microtomography

Following euthanasia, female mice were subsequently
scanned using dual-energy X-ray absorptiometry (DEXA)
with a Lunar PIXImus2 Densitometer (GE Medical Sys-
tems; Madison, WI, USA). BMD was measured for the
whole skeleton excluding the skull, the lumbar spine (L2
to L6), and the femurs. Femoral BMD was calculated by
averaging the BMD measurements for both femurs; in
cases in which the left femur was used for bone marrow
RNA extraction, femoral BMD was based on the BMD of
the right femur alone.

L5 vertebrae were extracted from a random sample of
mice and fixed in formalin. The vertebrae were packed in
1× PBS for evaluation using three-dimensional microto-
mography (μCT) (μCT 40, Scanco Medical; Bassedorf,
Switzerland) in 12 μm slices at a threshold of 275 nm.

Bone volume density, trabecular number, connectivity
density, trabecular thickness, and trabecular separation
were measured.

Atherosclerotic lesions and immunohistochemistry

The basal portion of the heart and the proximal aorta
were harvested to assess atherosclerotic manifestations,
embedded in Tissue-Tec OCT medium, frozen in liquid
nitrogen, and stored at -80°C. Tissue from the aortic root
was selected for evaluation since most studies involving
mouse models of atherosclerosis use it as reference tissue
for plaque evaluation. Serial 10 μm thick cryosections
were stained with Oil Red O and hematoxylin, counter-
stained with fast green, and analyzed via light microscope
for atheromatous lesions [16].

Serial 10 μm thick cryosections of aortic root were indi-
vidually immunohistochemically stained for either 1).
macrophages (rat anti-mouse CD68; Vector Labs, Burl-
ingame, CA, USA), 2) α-actin (alkaline phosphatase-con-
jugated monoclonal anti-α-smooth muscle actin; Sigma)
[32], 3) T-cells (rat anti-mouse CD4; Vector Labs), or 4) VCAM-1 (rat anti-mouse VCAM-1; AbD Serotec;
Raleigh, NC, USA). Slides were treated as previously
described by Roque et al. using a biotinylated anti-rat IgG
secondary antibody and Avidin/Biotinylated Enzyme
Complexes (ABC Elite; Vector Labs) and visualized using
VECTOR Red (P-nitrophenyl phosphate; VECTOR Red
substrate kit; Vector Labs) [32]. Negative controls were
prepared by omission of the primary antibody.

The slides were analyzed using similar methodology
listed under Kidney histology. Images were taken of three
to six samples from duplicate slides, which were analyzed
by a blinded observer to calculate a mean stained area per
lesion area for each mouse. Additional slides were stained
for various tissue components (elastic fibers, ground sub-
stance, muscle, collagen, and fibrinoid and fibrin) using a
Movat pentachrome stain.

Plasma lipid profiles and monocyte chemotaxis assay

Plasma samples collected during euthanasia were ana-
lyzed for lipid levels (triglycerides, total cholesterol, HDL
cholesterol, non-HDL cholesterol, unesterified choles-
terol, and free fatty acids) using enzymatic colorimetric
assays as previously described [33]. Mouse HDL was iso-
lated from pooled plasma samples before and six hours
after injection of L-4F or scrambled L-4F (that is, identi-
cal amino acids as contained in L-4F but arranged in a
random sequence that markedly reduces lipid binding)
using fast-protein liquid chromatography (FPLC) frac-
tionation [34]. In order to assess the anti-inflammatory
properties of L-4F, 10 mice from both the control group
and the L-4F-treated group were randomly selected,
totaling 20 mice, and combined to form three pools (with
three to four mice per pool) for each group. Mouse LDL
was isolated by FPLC from pooled plasma samples from both groups and tested for its ability to induce monocyte chemotactic activity in cultures of human aortic endothelial cells as previously described [34]. Plasma samples were pooled for this assay in order to isolate sufficient concentrations of LDL and HDL particles; sample volumes obtained from individual mice did not provide adequate lipoprotein levels to determine monocyte chemotactic activity.

Chemokine analysis and flow cytometry
Luminex-based beadarray (RodentMap version 1.6; Rules Based Medicine, Inc., Austin, TX, USA) was used to simultaneously assess for 69 different antigens in plasma samples from 8 to 16 randomly selected mice per group. Fifteen of the 69 assays were not present at detectable levels (calbindin, EGF, endothelin-1, FGF-9, GM-CSF, GST-α, GST-μ, INF-γ, IL-11, IL-12p70, IL-17, IL-2, IL-3, IL-4, and NGAL) (See Supplemental table S1 in Additional file 1 for a complete list of chemokines/cytokines included in the Luminex assay).

Fluorescence-activated cell sorting (FACS) analysis was performed on spleen samples from the four different treatment groups to identify potential changes in immune cell subsets. Multi-color flow cytometry analysis was used to characterize populations of B cells (CD19, T1, T2, FO, MZ, and plasma cells), T cells (CD4 and CD8), and NK, CD11c, and CD11b cells. After standard Fc blocking, the fluorochrome-conjugated anti-mouse antibodies that were used for staining included FITC-, PE-, PerCP-, and APC-conjugated antibodies to CD19 (MB19-1), IgM (II/41), IgD (11-26c [11-26]), CD21 (eBio8D9 [8D9]), CD23 (B3B4), B220 (RA3-6B2), CD93 (AA4.1), CD62L (MEL-14), CD4 (GK1.5), CD8 (H35-17.2), NK1.1 (PKI36), CD11c (N418), Ly6C (HK1.4), CD11b (M1/70) (all eBioscience; San Diego, CA, USA), CD138 (281-2) (BD Biosciences; San Jose, CA, USA). Samples were acquired on a FACSCalibur flow cytometer (BD Biosciences) and analyzed using FloJo software (Tree Star, Ashland, OR, USA).

Statistical analysis
Data was collected and analyzed using Excel (Microsoft Office) or Prism 3.0 (Graphpad, La Jolla, CA, USA). For comparisons between two groups, unpaired student’s t-test was used if the variance was normally distributed; Mann-Whitney U test was used for comparisons with a variance that was not normally distributed. Comparisons made between three or more groups were performed using one-way ANOVA. All results are presented as mean ± SD; P < 0.05 was considered significant. For Luminex-based beadarray of 69 plasma antigens, Bonferroni correction was applied for detectable antigens (n = 54); as a result, P < 0.0009, as calculated by (P < 0.05)/(n = 54) = (P < 0.0009), was considered significant.

Results
Treatment protocol
In apoE−/−Fas−/− B6 mice that develop accelerated atherosclerosis and autoimmunity, we used a dose of Apo-A1 mimetic peptide twice as much as previously used in apoE−/− B6 mice [23,35]. To determine an effective form of L-4F peptide, two groups of eight-week old double knockout mice (n = 10 per group) were fasted overnight, bled the following morning (0 h), injected with either 15 mg/kg i.p. L-4F or scrambled L-4F peptide, and harvested for blood samples six hours later. Compared to 0 h time point, two out of three blood sample pools from the L-4F group (three to four mice per pool), but none of the five sample pools from the scrambled L-4F group (two mice per pool), showed significant reduction in monocyte chemotactic activity after six hours (Figure 1a). These data suggest that 15 mg/kg of i.p. L-4F could improve HDL anti-inflammatory activity in young apoE−/−Fas−/− mice. Suboptimal dosage of pravastatin was determined as previously described by Navab et al. [23]. This suboptimal dose was administered in order to prevent masking potential additive synergistic effects contributed by L-4F.

Suppression of lupus-like autoimmunity with L-4F
After 26 to 27 weeks of treatment with 1) pravastatin, 2) L-4F, 3) L-4F plus pravastatin, or 4) vehicle control, mice treated with L-4F or L-4F plus pravastatin showed improved lupus-like autoimmune manifestations compared to vehicle controls.

There was no significant difference in total IgG levels among the four groups, suggestive of no general immune suppression (Figure 2a). Serum levels of IgG anti-dsDNA antibodies and IgG anti-cardiolipin were significantly reduced in mice treated with L-4F (Figure 2b, c). Similarly, mice treated with L-4F, with or without pravastatin, had significantly lower serum levels of IgG antibodies to oxPLs--PGPC and POVPBC compared to vehicle controls (Figure 2d). Although it appeared that pravastatin caused a mild canceling effect in combination treated mice, there was no significant difference in circulating levels of IgG anti-dsDNA and IgG anti-cardiolipin found between L-4F-treated mice and combination treatment mice.

Significantly smaller lymph nodes were present in both L-4F and L-4F plus pravastatin-treated mice compared to vehicle controls (0.17 ± 0.17 g and 0.16 ± 0.10 g vs. 0.40 ± 0.22 g; P = 0.001 and 0.004, respectively) (Figure 2e). However, upon comparison between treatment groups and vehicle controls, there was no significant difference in spleen size or splenocyte populations of B-cells, CD4+, CD8+ T-cells, NK, CD11c, CD11b cells as determined by multi-color flow analysis (data not shown).

Kidney disease was followed non-invasively via analysis of proteinuria levels during the course of treatment. L-4F
treatment was associated with lower proteinuria levels than in vehicle controls starting at Week 20 of the treatment protocol (Figure 3d). Upon histological analysis, the controls also had increased glomerular cell infiltration, analogous to diffuse proliferative glomerulonephritis (DPGN) in SLE patients (Figure 3a) [16]. L-4F or L-4F plus pravastatin-treated mice had decreased glomerular tuft size compared to vehicle controls (6,846 ± 1,062 μm² and 6,227 ± 1,007 μm² vs. 7,645 ± 1,201 μm²; \(P = 0.02 \) and 0.004, respectively), and combination treatment proved to be the most successful in preventing enlarged glomerular tufts (Figure 3a, b). Finally, immunofluorescence staining showed decreased amounts of IgG and C3 deposition in kidney sections of L-4F-treated mice compared to control mice (Figure 3c).

Prevention of BMD loss and trabecular bone decay with L-4F treatment

Compared to vehicle controls, total skeletal BMD (excluding the skull) and lumbar BMD, measured using DEXA, were significantly higher in female mice treated with pravastatin, L-4F, or L-4F plus pravastatin (total: 0.041 ± 0.002 vs. 0.043 ± 0.002 and 0.044 ± 0.002 and 0.044 ± 0.002 g/cm³, respectively and vertebral: 0.036 ± 0.004 vs. 0.051 ± 0.005 and 0.051 ± 0.005 and 0.053 ± 0.003 g/cm³, respectively), with no significant difference between the pravastatin, L-4F, and L-4F plus pravastatin-treated groups (Figure 4a). Additionally, there were no apparent treatment-dependent effects on femoral BMD. Concurrent µCT analysis showed that mice treated with L-4F had significantly higher bone volume density (\(P = 0.023 \)), trabecular number (\(P = 0.019 \)), and connectivity density (\(P = 0.00054 \)) and significantly lower trabecular separation compared to vehicle controls (\(P = 0.04 \)) (Figure 4b, c). In contrast, treatment with pravastatin alone was associated with a borderline reduction in bone volume density, and treatment with L-4F plus pravastatin did not show significant improvements in any of these trabecular characteristics.

Enlarged atheromas in L-4F-treated mice

Following 27 weeks of treatment then euthanasia, the basal portion of the heart and the proximal aorta showed enlarged aortic lesions in mice treated with pravastatin, L-4F, or L-4F plus pravastatin compared to controls (Figure 5a). Analysis of local plaque environment composition at the aortic root demonstrated significantly decreased CD68+ macrophage infiltration, when comparing the average total stained area per mean lesion area, in L-4F plus pravastatin-treated mice compared to age-matched vehicle controls (6.2 ± 1.2% vs. 9.8 ± 0.8%; \(P = 0.002 \)) (Figure 5b, c). L-4F plus pravastatin-treated mice also showed increased \(\alpha \)-actin smooth muscle content in aortic lesions compared to controls (7.8 ± 0.5% vs. 4.9 ± 2.3%; \(P = 0.04 \)) (Figure 5b, c). Mice treated with pravastatin-
tin or L-4F alone did not show any significant improvements in aortic lesion cellular composition compared to control mice. Analysis of Movat, CD4+ T-cell, or VCAM-1 stained lesions did not show any significant differences in atheroma composition of elastic fibers, ground substance, muscle, collagen, fibrinoid and fibrin (See Supplementary figure S1 in Additional file 2 for Movat staining of aortic root atheromas), CD4+ T-cells or VCAM-1 distribution between any of the treatment groups and the control group (data not shown).

Plasma lipid profiles and decreased proinflammatory lipoprotein activity with L-4F treatment
Plasma lipid profiles for apoE−/−Fas−/− mice treated with L-4F or L-4F plus pravastatin did not show any significant differences in triglyceride, total cholesterol, HDL cholesterol, non-HDL cholesterol, unesterified cholesterol, and free fatty acid levels (Figure 6d). L-4F improved the anti-inflammatory function of plasma HDL and decreased the proinflammatory effects of LDL from mice injected with L-4F as determined in cultures of human aortic endothelial cells compared to LDL from vehicle control mice (Figure 6e).

Circulating plasma chemokines and cytokine levels remained mostly unaffected by L-4F treatment
To explore potential biomarkers associated with treatment response, plasma from female apoE−/−Fas−/− mice was analyzed for 69 chemokines and cytokines using Luminex-based beadarray. L-4F treatment resulted in a trend toward decreased levels of tissue damage and inflammation indicators, including CRP (C-reactive protein), fibrinogen, TNF-α (tumor necrosis factor-alpha), and CCL12 (monocyte chemotactic protein 5 (MCP-5)), when compared to control mice (data not shown).

After Bonferroni correction for multiple testing (54 detectable antigens), plasma levels of IL-10 (interleukin-10) - a cytokine secreted in response to damaged tissue
through growth and differentiation of NK and B cells and CCL9 (macrophage inflammatory protein-1γ (MIP-1γ)) - a chemoattractant for monocytes, neutrophils, and macrophages that contributes to monocyte infiltration in renal disease, were significantly lower in L-4F-treated mice (Figure 6a, b). Decreased levels of CCL19 -- a homeostatic interferon-regulated chemokine that binds to CCR7 and plays a role in recruiting T-cells and dendritic cells to target organs, promoting inflammatory responses, and unstable plaque formation in atherosclerosis [36] -- were present in mice treated with L-4F compared to control mice (Figure 6c). Similarly, the endothelial receptor VCAM-1, commonly associated with the recruitment of monocytes and lymphocytes during atherosclerotic plaque formation [37], was significantly decreased in plasma of mice treated with L-4F, as compared to control mice (Figure 6c). Pravastatin monotherapy alone did not significantly affect any of the levels of these circulating chemokines and cytokines.

Discussion

Treatment with L-4F, in the absence or presence of pravastatin, effectively reduced manifestations of lupus-like autoantibody production, glomerulonephritis, and osteopenia in our apoE−/−Fas−/− B6 murine model of accelerated atherosclerosis in SLE. Only mice treated with L-4F, with or without pravastatin, had significantly reduced glomerular tuft size, IgG anti-PGPC and IgG anti-POVPC antibodies, lower plasma proinflammatory cytokine/chemokine levels, and increased total and vertebral BMD compared to vehicle controls. Furthermore, mice treated with L-4F alone also had significantly lower levels of IgG anti-dsDNA and IgG anti-cardiolipin autoantibodies. Although larger aortic lesions were consistently present in all the treatment groups, lesion characteristics of the combination treatment group indicate decreased macrophage infiltration and inflammation, potentially suggestive of plaque remodeling. Despite the reported success of the immunomodulatory effects of statins in mouse models, no increased effects were appreciated in mice treated with L-4F alone compared to those receiving L-4F alone. To our knowledge, our L-4F treatment regimen has not been previously used in murine models of atherosclerosis in SLE.

Statins in SLE patients and murine models have shown varying degrees of success in recent trials [7,38-40]. Pravastatin was successful in reducing total cholesterol and LDL at both 10 mg/day and 40 mg/day doses, but

![Figure 4](http://arthritis-research.com/content/12/3/R93)
failed to exhibit anti-inflammatory properties in rheumatoid arthritis patients [38]. Conversely, atorvastatin showed positive results in the prevention of endothelial-dependent vasodilation and reduction in disease activity in SLE patients at 20 mg/day in a controlled trial, but failed as a mono-therapy in a NZB/NZW murine lupus model to control anti-dsDNA antibodies, proteinuria, and kidney disease [39,41]. Nachtigal et al. mentions that compared to human studies, higher doses of statins are normally required in mouse models; this is potentially a result of the inactivation of HMG-CoA reductase inhibitors by P450 enzyme induction and the elevation of HMG-CoA reductase levels [42-44]. These studies suggest that the efficacy of statins as treatment for systemic inflammation, characteristic of SLE, is dependent on the study protocol, dosage, and/or inclusion/exclusion criteria for study participation. In our attempt to achieve synergistic effects between our statin regimen and our administered novel peptide, our suboptimal dose of pravastatin alone did not significantly control the progression of either renal deterioration, production of IgG autoantibodies to dsDNA or oxPLs, or formation of atherosclerotic lesions in our model.

Since statin regimens have had such varied results among different studies, we added an apolipoprotein mimetic peptide to potentially contribute pleiotropic effects as seen in other murine models of atherosclerosis [23]. Recent studies have shown the effectiveness of piHDL as a predictor of subclinical atherosclerosis in SLE patients [45,46]. Since L-4F effectively reduced the proinflammatory effects of LDL in preliminary studies (Figure 1a), we believed L-4F could potentially be utilized to target inflammatory lipids and as a result, limit the progression of inflammation, including atherosclerotic manifestations, in our lupus model.

Renal involvement and glomerulonephritis are serious complications that can present in patients diagnosed with SLE. Elevated plasma levels of VCAM-1, which also plays a role in perpetuating atherosclerotic plaque formation, are associated with nephritis and increased disease activity in SLE patients [37]. Similarly, Yao et al. proposed a correlation between increased renal lesions, elevated levels of VCAM-1, and degree of symptom severity in patients with lupus nephritis [47]. In our study, lower circulating VCAM-1 levels were consistent with 11% and 19% smaller mean glomerular tuft areas seen in L-4F or
apoE-/-Fas-/- mice experienced a greater decrease in vertebral BMD in treatment mice, compared to vehicle controls. Feng et al. showed that five-month-old female mice treated with L-4F had significantly lower plasma levels of CCL9 than control mice, which correspond with improved trabecular bone characteristics observed in L-4F-treated mice compared to vehicle controls. Further, Graham et al. demonstrated that the production of RANKL by T lymphocytes could be induced by circulating oxPLs [49], indicating that osteopenic manifestations could be linked to atheroma formation as a result of elevated levels of circulating oxPLs.

OxPLs, such as POVPc and PGPC, are commonly found in oxidized LDL and aid in the development of fatty streaks, which may contribute to accelerated atherosclerosis in SLE [50]. Mice with L-4F or combination treatment showed significantly decreased levels of IgG autoantibodies to both POVPc and PGPC without significant alteration in plasma lipid levels (Figure 6d). In addition, L-4F successfully improved the anti-inflammatory function of HDL and reduced the proinflammatory nature of LDL, as determined in cultures of human aortic endothelial cells (n = 10 mice per treatment group, three to four mice per pool). *p < 0.05.

Figure 6 Unaffected lipid profiles with modified plasma antigen levels and monocyte chemotactic activity in representative mice. Luminescence-based bead array was performed for plasma chemokinases and cytokines, including (a) IL-10 (interleukin-10; also known as human cytokine synthesis inhibitory factor, CSIF), a cytokine secreted in response to tissue damage, presented lower levels in L-4F-treated mice—consistent with increased tissue damage in control mice. (b) Plasma levels of CCL9 (also known as MIP-1γ), a chemotactant that contributes to monocyte infiltration in renal disease, were significantly less in mice treated with L-4F. (c) Indicators of atherosclerosis severity: CCL19 (also known as MIP-3-β) and VCAM-1. CCL19 recruits T-cells and dendritic cells to target organs and promotes inflammatory responses and was significantly decreased in mice treated with L-4F or combination treatment. Similar trends were seen with VCAM-1, an endothelial adhesion molecule involved in atherosclerotic plaque formation and progression of glomerulonephritis. After Bonferroni correction, *p-values less than 0.0009 for plasma markers were considered significant. (d) Plasma lipid levels, including total cholesterol, HDL cholesterol, and non-HDL cholesterol, were unaffected in all of the treatment groups compared to vehicle controls. (e) However, L-4F (L) significantly rendered mouse HDL anti-inflammatory and LDL less inflammatory compared to control (C) as determined in cultures of human aortic endothelial cells (n = 10 mice per treatment group, three to four mice per pool). *p < 0.05.
controls. In response, we investigated the composition of the local plaque environment at the aortic root to determine the relationship between size and stability of the atheromas in our model. In humans, advanced plaques, which are more vulnerable to rupture, are characterized by large populations of infiltrated macrophages, lower concentrations of smooth muscle cells, and lower collagen content with thinner fibers [51,52]. Aortic lesions from mice treated with L-4F plus pravastatin had 37% less mean macrophage area and 59% more mean smooth muscle cell area compared to vehicle controls (Figure 6b). Although these characteristics indicate improved plaque composition, tissue levels of VCAM-1 did not reflect the significantly decreased levels seen in circulation in L-4F-treated mice and showed minimal deviation across the four treatment groups. Similarly, collagen content of lesions from the different groups did not vary significantly. Despite this, the improved changes in atheroma cellular composition of both infiltrating macrophages and SMC content, in combination with circulating levels of IgG anti-oxPLs and atherogenic chemokines, possibly suggest improved stability and potential remodeling of atherosclerotic lesions in L-4F-treated mice compared to vehicle controls.

The histopathologic composition of the lesions indicated that oil red O and α-actin stained areas predominately contributed to the increased lesion size in the three treatment groups compared to the control group. This may be the result of elevated neutral triglycerides and lipids (as reflected by oil red O staining) and increased smooth muscle (as reflected by α-actin staining). However, there was no apparent increase in volume of infiltrated CD68+ macrophages, collagen content, and t-cell concentration in any of the treatment groups compared to the control group that could have contributed to the increased lesion size. In a previous study, daily treatment with oral pravastatin (50 μg/mouse) and subcutaneously injected L-4F (200 μg/mouse) did not show improvement of aortic plaques in a small cohort of nine-month-old female ApoE−/− B6 mice compared to baseline studies [53]. Similarly, daily suboptimal doses of oral atorvastatin (10 mg/kg) have been shown to mildly increase plaque size, albeit not significantly, in two-month-old female apoE−/−/LDL−/− mice when compared to controls [54].

Circulating proinflammatory cytokines and chemokines trended lower in mice receiving L-4F with or without pravastatin. The presence of circulating markers in the control mice, such as IL-10, a Th2 cytokine involved in B cell activity upregulation and linked to increased IgG anti-dsDNA autoantibodies [55], CCL19, and VCAM-1, indicate increased autoimmune response and increased risk for unstable atherosclerotic plaques due to their role in humoral immunity or monocyte recruitment to plaque sites [36,37,55,56]. Reduction of these circulating cytokines by L-4F or combination treatment may have contributed to limiting inflammation-induced glomerulonephritis by dampening autoimmune responses in our mice. Biomarkers such as these could potentially be developed into a chemokine score to monitor and assess disease activity in patients with SLE and atherosclerosis. Similarly, Bauer et al. proposed that monitoring CCL19 and other interferon-regulated chemokines would be beneficial for the assessment of current disease activity and prediction of future flares in patients with SLE [57].

Conclusions

L-4F in the presence or absence of pravastatin reduced IgG anti-dsDNA, IgG anti-oxPLs, and IgG anti-cardiolipin antibody production and symptoms of glomerulonephritis and osteopenia in our apoE−/−Fas−/− B6 murine lupus model of accelerated atherosclerosis. In addition, despite enlarged aortic atheromas present in all treatment groups, analysis of plaque composition is suggestive of potential remodeling. Atherosclerosis and its clinical manifestations are major contributors to morbidity and mortality in women with SLE. While traditional risk factors cannot fully predict the risk associated with the development of accelerated atherosclerosis in SLE, new mouse models, such as our apoE−/−/Fas−/− B6 model, that exhibit both autoimmune manifestations and advanced atherogenesis, may aid in the understanding of pathways that contribute to the onset and progression of systemic autoimmune diseases with cardiovascular involvement.

Additional material
Competing interests
Mohamad Navab and Alan M. Fogelman are principals in Bruin Pharma and Alan M. Fogelman is an officer in Bruin Pharma. The remaining authors have no competing interests.

Authors' contributions
JW contributed to acquisition of data, performed data analysis and interpretation, and drafted the manuscript. ZL, CVD, YTL, KW, HL, LC, XW, NI, OR and HW contributed to study conception and design and data interpretation. BT contributed to study conception and design, performed data analysis and interpretation, and helped draft the manuscript. All authors have read, revised and approved the final manuscript.

Acknowledgements
We would especially like to thank Richard Davis, Charles Farber and Zory Shaposhnik for their guidance and support. This study was supported in part by grants from the US Public Health Service (HL-30568) and the Lupus Foundation of America (BPT), including the Gina Finzi Memorial Student Summer Fellowship (JMPW).

Author Details
1Department of Medicine-Rheumatology, David Geffen School of Medicine, University of California, 1000 Veteran Avenue, Los Angeles, CA 90095, USA, 2Department of Medicine-Cardiology, David Geffen School of Medicine, University of California, 1000 Veteran Avenue, Los Angeles, CA 90095, USA, 3Department of Medicine, Department of Microbiology, Immunology, and Molecular Genetics, Department of Human Genetics, David Geffen School of Medicine, University of California, 1000 Veteran Avenue, Los Angeles, CA 90095, USA, 4Department of Medicine, David Geffen School of Medicine, University of California, 1000 Veteran Avenue, Los Angeles, CA 90095, USA and 5Department of Medicine, David Geffen School of Medicine, University of California, 1000 Veteran Avenue, Los Angeles, CA 90095, USA

Received: 26 January 2010 Revised: 26 April 2010 Accepted: 18 May 2010 Published: 18 May 2010

References
1. Esdaile JM, Abrahamowicz M, Grodzicky T, Li Y, Panaritis C, du Berger R, Côté R, Grover SA, Fortin PR, Clarke AE, Senecal CA: Traditional Framingham risk factors fail to fully account for accelerated atherosclerosis in systemic lupus erythematosus. Arthritis and Rheumatism 2003, 44:2331-2337.
2. Manzi S, Meilahn EN, Rairie JE, Conte CG, Medgier TA Jr, Jansen-McWilliams L, DiAgostino RB, Kuller LH: Age-specific incidence rates of myocardial infarction and angiina in women with systemic lupus erythematosus: comparison with the Framingham Study. Am J Epidemiol 1997, 145:408-415.
3. Turesspn C, Jacobsson LT, Matteson EL: Cardiovascular co-morbidity in rheumatic diseases. Vasc Health Risk Manag 2008, 4:605-614.
4. Roman MJ, Shanker BA, Davis A, Lockshin MD, Sammaritano L, Cohen PL, Eisenberg RA, Fazio S, Linton MF, Jackson C: Plaque rupture after short periods of fat feeding in the apolipoprotein E knockout mouse: model characterization and effects of pravastatin treatment. Circulation 2005, 111:1422-1430.
5. Zhou XX, Gao PJ, Sun BG: Pravastatin attenuates interferon-gamma action via modulation of STAT1 to prevent aortic atherosclerosis in apolipoprotein e null mice. Circ Res 2005, 96:1546-1552.
6. Badimon JJ, Badimon L, Fuster V: Atherosclerotic plaques and the inflammatory response. Arterioscler Thromb Vasc Biol 2001, 21:115-121.
7. Navab M, Anantharamaiah GM, Hama S, Hough G, Frank JS, Senecal JL: D-4F and statins synergize to render HDL antiinflammatory in mice and monkeys. Arterioscler Thromb Vasc Biol 2007, 27:621-627.
8. Navab M, Anantharamaiah GM, Hama S, Hough G, Frank JS, Senecal JL: D-4F and statins synergize to render HDL antiinflammatory in mice and monkeys. Arterioscler Thromb Vasc Biol 2007, 27:621-627.
9. Navab M, Anantharamaiah GM, Reddy ST, Hama S, Hough G, Frank JS, Senecal JL: D-4F and statins synergize to render HDL antiinflammatory in mice and monkeys. Arterioscler Thromb Vasc Biol 2007, 27:621-627.
10. Navab M, Anantharamaiah GM, Reddy ST, Hama S, Hough G, Frank JS, Senecal JL: D-4F and statins synergize to render HDL antiinflammatory in mice and monkeys. Arterioscler Thromb Vasc Biol 2007, 27:621-627.
11. Navab M, Anantharamaiah GM, Reddy ST, Hama S, Hough G, Frank JS, Senecal JL: D-4F and statins synergize to render HDL antiinflammatory in mice and monkeys. Arterioscler Thromb Vasc Biol 2007, 27:621-627.
improves high-density lipoprotein-mediated cholesterol efflux and reverse cholesterol transport from macrophages in apolipoprotein E-null mice. Circulation 2004, 109:3215-3220.
33. Datta G, Chaddha M, Hama S, Navab M, Fogelman AM, Garber DW, Mishra VK, Epand RM, Epand RF, Lund-Katz S, Phillips MC, Segrest JP, Anantharamaiah GM. Effects of increasing hydrophobicity on the physical-chemical and biological properties of a class A amphipathic helical peptide. J Lipid Res 2001, 42:1096-1104.
34. Nachtigal P, Pospisilova N, Jamborova G, Pospechova K, Solichova D, Ferreira GA, Navarro TP, Tell es RW, Andrade LEC, Sato EI. Oral administration of an Apo A-I mimetic peptide synthesized from D-amino acids dramatically reduces atherosclerosis in mice independent of plasma cholesterol. Circulation 2002, 105:290-292.
35. Roque M, Fallon JT, Badimon JJ, Zhang WX, Taubman MB, Reis ED. Mouse model of femoral artery denudation injury associated with the rapid accumulation of adhesion molecules on the luminal surface and recruitment of neutrophils. Arterioscler Thromb Vasc Biol 2000, 20:335-342.
36. Shi W, Wang X, Wang NJ, McBride WH, Lusis AJ. Differential effects of apolipoprotein A-I mimetic peptide on evolving and established atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2004, 24:2261-2266.
37. Gerdes LU, Gerdes C, Klausen IC, Faergeman O. Generation of analytic plasma lipoprotein profiles using two prepacked superose 6 columns. Clin Chim Acta 1992, 205:1-9.
38. Li X, Chyu KY, Faria Neto JR, Yano J, Nathwani N, Ferreira C, Dimayuga PC, Cereck B, Kaul S, Shah PK. Feedback regulation of 3-hydroxy-3-methyl-glutharyl coenzyme A reductase. Metabolism of lovastatin by rat and human liver microsomes. J Lipid Res 2004, 45:353-359.
39. Nachtigal P, Pampanakis GE, Gregersen PK, Behrens TW, Baechler EC. Arthritis Research & Therapy 2010, 12:R93 doi: 10.1186/ar3020 Cite this article as:}

Woo et al. Arthritis & Rheumatology 2010, 12:R93

http://arthritis-research.com/content/12/3/R93

Page 13 of 13

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

Atherosclerosis and systemic lupus erythematosus: the role of altered lipids and of autoantibodies. Lupus 2008, 17:368-370.
40. McMahon M, Grossman J, Skaggs B, Fitzgerald J, Sahakian L, Ragavendra N, Charles-Schoeman C, Watson K, Wong WK, Volkmann E, Chen W, Gorn A, Karpouzas G, Weissman M, Wallace DJ, Hahn BH. Dysfunctional proinflammatory high-density lipoproteins confer increased risk of atherosclerosis in women with systemic lupus erythematosus. Arthritis Rheumatol 2009, 60:2428-2437.
41. Yaco GH, Liu ZH, Zhang X, Zheng CX, Chen HP, Zeng CH, Li LS. Circulating thrombomodulin and vascular cell adhesion molecule-1 and renal vascular lesion in patients with lupus nephritis. Lupus 2008, 17:720-726.
42. Okamatsu Y, Kim D, Battaglino R, Sasaki H, Spate U, Stashenko P. MIP-1(gamma) promotes receptor activator of NF-{kappa}B ligand-induced osteoclast formation and survival. J Immunol 2004, 173:2084-2090.
43. Graham LS, Parhami F, Tintut Y, Kitchen CM, Demer LL, Effer RB. Oxidized lipids enhance RANKL production by T lymphocytes: implications for lipid-induced bone loss. Clin Immunol 2009, 133:265-275.
44. Nachtigal P, Pampanakis GE, Gregersen PK, Behrens TW, Baechler EC. Interferon-regulated chemokines as biomarkers of systemic lupus erythematosus disease activity: a validation study. Arthritis Rheum 2009, 60:3098-3107.
45. Li M, Geng YJ, Sukhova GK, Simon DI, Lee RT. Molecular determinants of atherosclerotic plaque vulnerability. Ann N Y Acad Sci 1997, 811:134-142.
46. Cook M, Fallon JT, Badimon JJ, Zhang WX, Taubman MB, Reis ED. Mouse model of femoral artery denudation injury associated with the rapid accumulation of adhesion molecules on the luminal surface and recruitment of neutrophils. Arterioscler Thromb Vasc Biol 2000, 20:335-342.
47. Shi W, Wang X, Wang NJ, McBride WH, Lusis AJ. Effect of macrophage-derived apolipoprotein E on established atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2004, 24:2261-2266.
48. Gerdes LU, Gerdes C, Klausen IC, Faergeman O. Generation of analytic plasma lipoprotein profiles using two prepacked superose 6 columns. Clin Chim Acta 1992, 205:1-9.
49. Li X, Chyu KY, Faria Neto JR, Yano J, Nathwani N, Ferreira C, Dimayuga PC, Cereck B, Kaul S, Shah PK. Differential effects of apolipoprotein A-I mimetic peptide on evolving and established atherosclerosis in apolipoprotein E-null mice. Circulation 2004, 110:701-1705.
50. Dasmas JK, Smith C, Oie E, Fevang B, Halvorsen B, Waehre T, Boullier A, Kjekshus J, Taskén K, Frøland SS, Gullestad L, Hansson GK, Quehenberger O, Aufrust P. Enhanced expression of the homeostatic chemokines CCL19 and CCL21 in clinical and experimental atherosclerosis: possible pathogenic role in plaque destabilization. Arterioscler Thromb Vasc Biol 2007, 27:614-620.
51. Svennungson E, Cederholm A, Jensen-Urdast K, Fei G-Z, De Faire U, Frostegård J. Endothelial function and markers of endothelial activation in relation to cardiovascular disease in systemic lupus erythematosus. Scandinavian Journal of Rheumatology 2008, 37:352-359.
52. Costenbader KH, Liang MH, Chilnik LB, Aizer J, Kwon H, Gall V, Karlsson EW. A pravastatin dose-escalation study in systemic lupus erythematosus. Rheumatol Int 2007, 27:1071-1077.
53. Graham K, Lee L, Higgins J, Steineman L, Utz P, Ho P. Failure of oral atorvastatin to modulate a murine model of systemic lupus erythematosus. Arthritis Rheumatol 2008, 58:2089-2104.
54. Kotyla PJ. Pravastatin, a 3-hydroxy-3-methyl-glutharyl coenzyme A inhibitor does not show pleiotropic effects in patients with systemic lupus erythematosus. Rheumatol Int 2009, 29:353-357.
55. Ferreira GA, Navarro TP, Telles RW, Andrade LEC. Sato EJ. Atorvastatin therapy improves endothelial-dependent vasodilation in patients with systemic lupus erythematosus: an 8 weeks controlled trial. Rheumatology 2007, 46:1560-1565.
56. Nachtigal P, Pospisilova N, Jamborova G, Pospechova K, Solichova D, Andrys C, Zdansky P, Micuda S, Semecky V. Atorvastatin has hypolipidemic and anti-inflammatory effects in apoE/LDL receptor-double-knockout mice. Life Sci 2008, 82:708-717.
57. Groespan MD, Tyanova J, Alberts AW, Argenbright LS, Arison BH, Smith JL. Metabolism of lovastatin by rat and human liver microsomes in vitro. Drug Metab Dispos 1988, 16:568-682.
58. Kita T, Brown MS, Goldstein JL. Feedback regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in livers of mice treated with mevinolin, a competitive inhibitor of the reductase. J Clin Invest 1980, 66:1094-1100.