A NOTE ON ENVELOPES OF HOLOMORPHY

MAREK JARNICKI AND PETER PFLUG

Abstract. Let \(p : X \to M \) be a Riemann domain over a connected \(n \)-dimensional complex submanifold \(M \) of \(\mathbb{C}^N \) and let \(\mathcal{F} \subset \mathcal{O}(X) \) be such that \(p \in \mathcal{F}^N \). Our aim is to discuss relations between the \(\mathcal{F} \)-envelope of holomorphy of \((X, p)\) in the sense of Riemann domains over \(M \) and the \(\mathcal{F} \)-envelope of holomorphy of \(X \) in the sense of complex manifolds.

1. Introduction

Let \(M \) be a connected \(n \)-dimensional complex submanifold of \(\mathbb{C}^N \), let \((X, p) \) (\(p : X \to M \)) be a Riemann domain over \(M \), and let \(\mathcal{F} \subset \mathcal{O}(X) \) be such that \(p \in \mathcal{F}^N \) (cf. §2). Our aim is to discuss the notion of the \(\mathcal{F} \)-envelope of holomorphy of \(X \). More precisely, we like to discuss relations between the \(\mathcal{F} \)-envelope of holomorphy of \((X, p)\) in the sense of Riemann domains over \(M \) and the \(\mathcal{F} \)-envelope of holomorphy of \(X \) in the sense of complex manifolds. We will see that, even in the case of domains in \(\mathbb{C}^n \), both approaches lead to some fundamental difficulties. Notice that the problem does not appear in the case where \(\mathcal{F} = \mathcal{O}(X) \).

Let \(\varphi : (X, \mathcal{F}) \to (\bar{X}, \bar{\mathcal{F}}) \) be the \(\mathcal{F} \)-envelope of holomorphy of \(X \) in the sense of complex manifolds (cf. [Vig 1982], see also §3) and let \(\bar{p} \in \bar{\mathcal{F}}^N \) be such that \(\bar{p} \circ \bar{\varphi} \equiv p \). Observe that \(\bar{p} : \bar{X} \to M \) (cf. the proof of Theorem 3.4). Put \(Z_p := \{ a \in \bar{X} : \bar{p} \text{ is not biholomorphic near } a \} \); the set \(Z_p \) is an analytic subset of \(\bar{X} \) with \(\dim Z_p \leq n - 1 \). The following result characterizes relations between the \(\mathcal{F} \)-envelopes of holomorphy of \(X \).

Theorem 1.1 (cf. Theorem 3.1). Under the above notation, \(\varphi : (X, p) \to (\bar{X} \setminus Z_p, \bar{p}) \) is the \(\mathcal{F} \)-envelope of holomorphy in the sense of Riemann domains over \(M \). Moreover, if \(\mathcal{F} = \mathcal{O}(X) \), then \(Z_p = \emptyset \). In particular, if \(\mathcal{F} = \mathcal{O}(X) \), then \((\bar{X}, \bar{p})\) must be a Stein Riemann domain over \(M \).

The case where \(\mathcal{F} = \mathcal{O}(X) \) has been discussed in [Ker 1959]. The proof will be given in §6.

Using the above result we get the following examples (details will be given in §§6, 7).

Example 1.2. Let \(\mathbb{D} \subset \mathbb{C} \) be the unit disc and let \(\mathbb{D}_* := \mathbb{D} \setminus \{0\} \). Take \(M := \mathbb{C} \), \(X := \mathbb{D}_* \), \(\mathcal{F} := \mathcal{H}^\infty(\mathbb{D}_*) \). Then \(\text{id} : (\mathbb{D}_*, \mathcal{H}^\infty(\mathbb{D}_*)) \to (\mathbb{D}, \mathcal{H}^\infty(\mathbb{D})) \) is the \(\mathcal{H}^\infty(\mathbb{D}_*) \)-envelope of holomorphy of \(\mathbb{D}_* \) in the sense of complex manifolds.

• If \(p := \text{id} \), then \(Z_p = \emptyset \).
• If \(p := \text{id}^2 \), then \(Z_p = \{0\} \).

Consequently, the \(\mathcal{H}^\infty(\mathbb{D}_*) \)-envelope of holomorphy of \((\mathbb{D}_*, p) \) depends on a particular choice of the projection \(p \) (notice that \(\mathbb{D} \) and \(\mathbb{D}_* \) are not homeomorphic).

Example 1.3. Let \(M := \mathbb{C} \), \(X := \mathbb{C} \setminus \{(-\infty, 1] \cup [1, +\infty)\} \) (note that \(X \) is simply connected), \(\mathcal{F} = \{f_1, f_2\} := \{\text{id}, X \ni \lambda \mapsto \sqrt{1 - \lambda^2}\} \) (the branch of the square root is arbitrarily fixed),

\[\varphi := (f_1, f_2) : X \to \bar{X} := \{(z_1, z_2) \in \mathbb{C}^2 : z_1^2 + z_2^2 = 1\} \]

(\(\bar{X} \) is a connected one dimensional complex manifold), \(\bar{\mathcal{F}} = \{\bar{f}_1, \bar{f}_2\} := \{z_1|\bar{x}, z_2|\bar{x}\} \). Then

\[\varphi : (X, \mathcal{F}) \to (\bar{X}, \bar{\mathcal{F}}) \]

is the \(\mathcal{F} \)-envelope of holomorphy in the sense of complex manifolds.

2010 Mathematics Subject Classification. 32D10, 32D15, 32D25.

Key words and phrases. Riemann domain, envelope of holomorphy.

The research was partially supported by grant no. UMO-2011/03/B/ST1/04758 of the Polish National Science Center (NCN).
Taking \(p := f_1 = \text{id} \), we get \(\tilde{p} = \tilde{f}_1 \), which implies that \(Z_p = \{(0, -1), (0, +1)\} \). Consequently,
\[
\varphi : (X, \text{id}) \longrightarrow (\tilde{X} \setminus \{(0, -1), (0, +1)\}, z_1)
\]
is the \(\mathcal{F} \)-envelope of holomorphy in the sense of Riemann domains.

The above examples might suggest that the \(\mathcal{F} \)-envelope of holomorphy in the sense of complex manifolds is perhaps better. Unfortunately, the following result shows that this is not so.

Theorem 1.4. For every \(n \geq 2 \) there exists a domain \(X \subset \mathbb{C}^n \) and a family \(\mathcal{F} \subset \mathcal{O}(X) \) such that the \(\mathcal{F} \)-envelope of holomorphy of \(X \) in the sense of complex manifolds is neither Stein nor a Riemann domain over \(\mathbb{C}^n \).

The proof will be given in §8

2. Riemann domains over complex manifolds

The aim of this section is to recall basic terminology related to Riemann domains over complex manifolds — cf. [Jar-Pfl 2000]. Let \(M \) be a connected \(n \)-dimensional complex manifold (e.g. \(M = \mathbb{C}^n \)). Denote by \(\mathcal{R}(M) \) the family of all Riemann regions over \(M \), i.e. the family of all pairs \((X, p)\), where \(X \) is a Hausdorff topological space and \(p : X \longrightarrow M \) is locally homeomorphic (each point \(a \in X \) has an open neighborhood \(U \) such that \(p(U) \) is open in \(M \) and \(p|_U : U \longrightarrow p(U) \) is homeomorphic). The projection \(p \) introduces on \(X \) a structure \(\text{Str}(X, p) \) of an \(n \)-dimensional complex manifold (such that \(p \) is locally biholomorphic). Let \(\mathcal{R}_c(M) \) be the subfamily of those \((X, p) \in \mathcal{R}(M)\) for which \(X \) is connected.

Let \((X, p), (Y, q) \in \mathcal{R}(M)\). We say that a continuous mapping \(\varphi : X \longrightarrow Y \) is a morphism if \(q \circ \varphi \equiv p \). We shortly write \(\varphi : (X, p) \longrightarrow (Y, q) \) is a morphism. Each morphism is locally biholomorphic. We say that \(\varphi : X \longrightarrow Y \) is an isomorphism if \(\varphi \) is bijective and \(\varphi^{-1} : (Y, q) \longrightarrow (X, p) \) is also a morphism. Notice that a morphism \(\varphi : (X, p) \longrightarrow (Y, q) \) is an isomorphism iff \(\varphi \) is bijective. Each locally biholomorphic mapping \(\varphi : X \longrightarrow Y \) induces a homomorphism \(\mathcal{O}(Y) \ni g \mapsto g^\varphi = g \circ \varphi \in \mathcal{O}(X) \). Observe that \(\varphi^\ast \) is injective iff each connected component of \(Y \) intersects \(\varphi(X) \). If \(\varphi^\ast \) is injective and \(g \circ \varphi = f \), then we write \(g = f^\varphi \).

Let \((X, p), (Y, q) \in \mathcal{R}_c(M)\) and \(\emptyset \neq \mathcal{F} \subset \mathcal{O}(X) \). We say that a morphism \(\varphi : (X, p) \longrightarrow (Y, q) \) is an \(\mathcal{F} \)-extension if \(\mathcal{F} \subset \varphi^\ast(\mathcal{O}(Y)) \). We put \(\mathcal{F}^\varphi := \{f^\varphi : f \in \mathcal{F}\} \). Note that \(\varphi^\ast|_{\mathcal{F}^\varphi} : \mathcal{F}^\varphi \longrightarrow \mathcal{F} \) is bijective. We say that an \(\mathcal{F} \)-extension \(\varphi : (X, p) \longrightarrow (X, \tilde{p}) \) is an \(\mathcal{F} \)-envelope of holomorphy if for every \(\mathcal{F} \)-extension \(\psi : (X, p) \longrightarrow (Y, q) \) there exists a morphism \(\sigma : (Y, q) \longrightarrow (X, \tilde{p}) \) such that \(\sigma \circ \psi \equiv \varphi \). Observe that in fact \(\sigma : (Y, q) \longrightarrow (X, \tilde{p}) \) is an \(\mathcal{F} \)-extension. Such an \(\mathcal{F} \)-envelope of holomorphy is uniquely determined up to an isomorphism. By the Thullen theorem the \(\mathcal{F} \)-envelope of holomorphy always exists — cf. [Jar-Pfl 2000], Theorem 1.8.4 for the case \(M = \mathbb{C}^n \) (the general case goes in the same way). Moreover, if \(M \) is Stein, then the \(\mathcal{F} \)-envelope of holomorphy is also Stein — cf. [Jar-Pfl 2000], Cartan–Thullen Theorem 1.10.4 (the case \(M = \mathbb{C}^n \)) and Theorem [X3] (the general case). We say that \((X, p) \) is an \(\mathcal{F} \)-domain of holomorphy if \(\text{id} : (X, p) \longrightarrow (X, p) \) is the \(\mathcal{F} \)-envelope of holomorphy.

Our main problem is to discuss the following situation. Suppose that \((X, p), (X, q) \in \mathcal{R}_c(M)\) are such that \(\text{Str}(X, p) = \text{Str}(X, q) \) (equivalently: \(q \) is holomorphic in the sense of \(\text{Str}(X, p) \) and \(p \) is holomorphic in \(\text{Str}(X, q) \)). Let \(\varphi_p : (X, p) \longrightarrow (\tilde{X}, \tilde{p}), \varphi_q : (X, q) \longrightarrow (\tilde{X}, \tilde{q}) \) be the \(\mathcal{F} \)-envelopes of holomorphy. We are interested in the situation when there exists a biholomorphic mapping \(\tau : \tilde{X}_p \longrightarrow \tilde{X}_q \) such that \(\tau \circ \varphi_p \equiv \varphi_q \). It is known that in the case where \(\mathcal{M} = \mathbb{C}^n, \mathcal{F} = \mathcal{O}(X) \) such a biholomorphic mapping \(\tau \) exists (cf. [Jar-Pfl 2000], Theorem 2.12.1). Consequently, if \(M = \mathbb{C}^n \) and \(\mathcal{F} = \mathcal{O}(X) \), then the \(\mathcal{O}(X) \)-envelope of holomorphy depends only on the complex structure \(\text{Str}(X, p) \).

The next problem appears when \(p : X \longrightarrow M \) and \(q : X \longrightarrow M' \) are Riemann domains over different connected \(n \)-dimensional Stein manifolds such that \(\text{Str}(X, p) = \text{Str}(X, q) \). Observe that \(\text{id} : (M, \text{id}) \longrightarrow (M, \text{id}) \) is the \(\mathcal{F} \)-envelope of holomorphy over \(M \) for any \(\mathcal{F} \). This may lead to some pathological situations, e.g. \(\text{id} : (\mathbb{D}_a, \text{id}) \longrightarrow (\mathbb{D}_a, \text{id}) \) is the \(H^\infty(\mathbb{D}_a) \)-envelope of holomorphy over \(M = \mathbb{D}_a \) but not over \(M = \mathbb{C} \). If \(M \) and \(M' \) are biholomorphic, then the situation is simple: if \(\Phi : M \longrightarrow M' \) is biholomorphic, then the mapping \(\mathcal{R}(M) \ni (X, p) \longrightarrow (X, \Phi \circ p) \in \mathcal{R}(M') \) is bijective and \(\text{Str}(X, p) = \text{Str}(X, \Phi \circ p) \); moreover, \(\varphi : (X, p) \longrightarrow (Y, q) \) is an \(\mathcal{F} \)-extension (resp. \(\mathcal{F} \)-envelope of holomorphy) over \(M \) iff \(\varphi : (X, \Phi \circ p) \longrightarrow (Y, \Phi \circ q) \) is an
\mathcal{F}-extension (resp. \mathcal{F}-envelope of holomorphy) over M'. In particular, by the Remmert embedding theorem, we may always assume that our Stein manifold M is a connected n-dimensional complex submanifold of \mathbb{C}^N.

3. Domains over Stein manifolds vs. domains over \mathbb{C}^N

The aim of this section (inspired by [Ros 1963]) is to show that in fact many properties of the Riemann domains over Stein manifolds may be easily deduced from the corresponding properties of Riemann domains over \mathbb{C}^N. Let M be a connected n-dimensional complex submanifold of \mathbb{C}^N and let $\sigma : S \rightarrow M$ be a holomorphic retraction, where $S \subset \mathbb{C}^N$ is a domain (cf. [Gun-Ros 1965], Ch. VIII, C, Theorem 8).

Lemma 3.1. Let $(X, p) \in \mathcal{R}(M)$. Put

$$\tilde{X}_0 := \{(x, v) \in X \times \mathbb{C}^N : p(x) + v \in S, \sigma(p(x) + v) = p(x)\}, \quad p_0 : \tilde{X}_0 \rightarrow S, \quad p_0(x, v) := p(x) + v.$$

Then $(\tilde{X}_0, p_0) \in \mathcal{R}(\mathbb{C}^N)$.

Proof. Fix a point $(x_0, v_0) \in \tilde{X}_0$. Let $U \subset X$ be an open neighborhood of x_0 such that $p|_U : U \rightarrow p(U)$ is biholomorphic. Define $V := \tilde{X}_0 \cap (U \times \mathbb{C}^N)$, $V' := \sigma^{-1}(p(U))$. It suffices to show that $p_0|_V : V \rightarrow V'$ is homeomorphic. Clearly, $p_0(V) \subset V'$. Define $g : V' \rightarrow X \times \mathbb{C}^N$, $g(z) := ((p|_U)^{-1}(\sigma(z)), z - \sigma(z))$. Observe that $g(V') \subset V$. Moreover, $p_0 \circ g = \text{id}_V$ and $g \circ p_0 = \text{id}_V$. □

As a direct corollary we get the following proposition.

Proposition 3.2. Let $(X, p) \in \mathcal{R}_c(M)$ and let (\tilde{X}_0, p_0) be as in Lemma 3.1. Let X_0 be the connected component of \tilde{X}_0 that contains $X \times \{0\}$. Then:

- $(X_0, p_0) \in \mathcal{R}_c(\mathbb{C}^N)$,
- $X \times \{0\} \simeq X_0$ is a submanifold of X_0,
- the mapping $X_0 \ni (x, v) \mapsto x \in X \simeq X \times \{0\}$ is a holomorphic retraction.

Lemma 3.3. Let $(X, p), (Y, q) \in \mathcal{R}_c(M)$, $\emptyset \neq \mathcal{F} \subset \mathcal{O}(X)$, and let $\varphi : (X, p) \rightarrow (Y, q)$ be an \mathcal{F}-extension (over M). Assume that (X_0, p_0) and (Y_0, q_0) are constructed according to Proposition 3.2. Put $X_0 \ni (x, v), (\varphi(x), v) \in Y \times \mathbb{C}^N$, $F_0 := \{f \circ \sigma_X : f \in \mathcal{F}\} \subset \mathcal{O}(X_0)$. Then $\varphi_0 : (X_0, p_0) \rightarrow (Y_0, q_0)$ is an F_0-extension (over \mathbb{C}^N).

Proof. First observe that $\varphi_0 : X_0 \rightarrow Y_0$ is well defined: $q(\varphi(x)) + v = p(x) + v \in S$ and $\sigma(q(\varphi(x)) + v) = \sigma(p(x) + v) = p(x) = q(\varphi(x))$. It is clear that $q_0 \circ \varphi_0 = p_0$ and $\varphi_0(X \times \{0\}) \subset Y \times \{0\}$. Thus $\varphi_0(X_0) \subset Y_0$. Moreover, for each $f \in F$ we have $(f \circ \sigma_Y) \circ \varphi_0 = f \circ \sigma_X$. □

Let $\psi : (X_0, p_0) \rightarrow (Z, r)$ be an F_0-extension (over \mathbb{C}^N). Put $Z^M := r^{-1}(M)$. Observe that $(Z^M, r) \in \mathcal{R}(M)$ and $\psi(X \times \{0\}) \subset Z^M$. Let $Z^{M,\psi}$ be the connected component of Z^M that contains $\psi(X \times \{0\})$. Then $\psi : (X, p) \rightarrow (Z^{M,\psi}, r)$ is an \mathcal{F}-extension (over M); recall that $X \simeq X \times \{0\}$.

Theorem 3.4. Under the above notation if $\psi : (X_0, p_0) \rightarrow (Z, r)$ is the F_0-envelope of holomorphy (over \mathbb{C}^N), then $\psi : (X, p) \rightarrow (Z^{M,\psi}, r)$ is the F-envelope of holomorphy (over M). Moreover, $Z^{M,\psi}$ is Stein.

Consequently, for any Riemann domain $(X, p) \in \mathcal{R}_c(M)$ and for any family of functions $\emptyset \neq \mathcal{F} \subset \mathcal{O}(X)$, $\psi : (X, p) \rightarrow (Z^{M,\psi}, r)$ is the \mathcal{F}-envelope of holomorphy (over M), then \tilde{X} is Stein.

Proof. We only need to show that the extension $\psi : (X, p) \rightarrow (Z^{M,\psi}, r)$ is maximal. Suppose that $\varphi : (X, p) \rightarrow (Y, q)$ is an \mathcal{F}-extension (over M). Then, by Lemma 3.3, $\varphi_0 : (X_0, p_0) \rightarrow (Y_0, q_0)$ is an F_0-extension (over \mathbb{C}^N). Thus, there exists a morphism $\tau : (Y_0, q_0) \rightarrow (Z, r)$ such that $\tau \circ \varphi_0 = \psi$. It remains to observe that $r(Y \times \{0\}) \subset Z^{M,\psi}$.

We know that Z is a Stein manifold (cf. Jar-Pfl 2000, Carstan–Thullen Theorem 1.10.4). Let $M = \{z \in \mathbb{C}^N : g_j(z) = 0, \; j = 1, \ldots, k\}$, where $g_1, \ldots, g_k \in \mathcal{O}(\mathbb{C}^N)$. Then $Z^M = \{z \in Z : g_j \circ r(z) = 0, \; j = 1, \ldots, k\}$. Hence Z^M is a submanifold of Z and, therefore, Z^M is Stein. Consequently, $Z^{M,\psi}$ is Stein. □
4. \(F\)-ENVELOPES IN THE SENSE OF COMPLEX MANIFOLDS

The aim of this section is to recall a more general notion of the \(F\)-envelope of holomorphy (cf. [Ker 1959], [Vig 1982]). Let \(S\) be the family of all pairs \((Y, G)\) such that:

- \(Y\) is a connected \(n\)-dimensional complex manifold,
- \(G \subset \mathcal{O}(Y)\),
- for every \(a \in Y\) there exist a \(g \in \mathcal{G}^n\) and an open neighborhood \(U\) of \(a\) such that \(g(U)\) is open and \(g|U : U \rightarrow g(U)\) is biholomorphic.

One may prove that if \((Y, G)\) in \(S\), then \(Y\) is countable at infinity (cf. [Gra 1953]). Observe that if \(M\) is a connected submanifold of \(\mathbb{C}^N\), \((Y, q) \in \mathcal{R}_c(M)\), and \(G \subset \mathcal{O}(Y)\) is such that \(q \in \mathcal{G}^N\), then \((Y, G)\) is in \(S\). We fix a pair \((X, F) \in S\). Let \((Y, G), (Z, H) \in S\). We say that a holomorphic mapping \(\varphi : Y \rightarrow Z\) is a \(C\)-morphism if \(\varphi^*|_H : H \rightarrow G\) is biholomorphic. We write "\(\varphi : (Y, G) \rightarrow (Z, H)\) is a \(C\)-morphism". Note that if \(\varphi : (X, p) \rightarrow (Y, q)\) is an \(F\)-extension in the sense of Riemann domains over \(M\) with \(p \in F^N\), then \(\varphi : (X, F) \rightarrow (Y, F^\sigma)\) is a \(C\)-morphism.

We say that a \(C\)-morphism \(\varphi : (X, F) \rightarrow (\tilde{X}, F)\) is the \(F\)-extension of holomorphy if for every \(C\)-morphism \(\psi : (X, F) \rightarrow (Y, G)\) there exists a holomorphic mapping \(\sigma : Y \rightarrow \tilde{X}\) such that \(\sigma \circ \psi \equiv \varphi\). Notice that in fact \(\sigma : (Y, G) \rightarrow (\tilde{X}, F)\) is a \(C\)-morphism. Such an \(F\)-extension of holomorphy is uniquely determined up to a \(C\)-isomorphism. It is clear that the \(F\)-extension has no defects of the \(F\)-extension in the sense of Riemann domains, i.e. it depends only on \(F\).

Theorem 4.1 (cf. [Vig 1982]). For arbitrary \((X, F) \in S\) the \(F\)-extension of holomorphy exists.

5. MAIN RESULT

Let \((X, p) \in \mathcal{R}_c(M), \) where \(M\) is a connected submanifold of \(\mathbb{C}^N\). Let \(F \subset \mathcal{O}(X)\) be such that \(p \in F^N\). Assume that \(\varphi : (X, F) \rightarrow (\tilde{X}, F^\sigma)\) is the \(F\)-extension of holomorphy.

Let \(\tilde{p} \in \tilde{F}^N\) be such that \(\tilde{p} \circ \varphi \equiv p\); note that \(\tilde{p} : \tilde{X} \rightarrow M\). Put \(Z_p := \{a \in \tilde{X} : \tilde{p} \neq \text{biholomorphic near } a\}\). Notice that \(Z_p\) is an analytic subset of \(\tilde{X}\) with \(\dim Z_p \leq n - 1\).

Theorem 5.1. Under the above notation we have:

(a) \(\varphi : (X, p) \rightarrow (\tilde{X} \setminus Z_p, \tilde{p})\) is the \(F\)-extension of holomorphy (over \(M\)).

(b) \(Z_p = \emptyset\) iff the \(F\)- and \(F\)-extension of holomorphy coincide.

(c) If \(F = \mathcal{O}(X)\), then the \(\mathcal{O}(X)\)- and \(\mathcal{O}(X)\)-extension of holomorphy coincide.

Proof. (a) Let \(\tilde{\varphi} : (X, p) \rightarrow (\tilde{X}, \tilde{p})\) be the \(F\)-extension of holomorphy in the sense of Riemann domains over \(M\). Then \(\tilde{\varphi} : (X, F) \rightarrow (\tilde{X}, F^\sigma)\) is a \(C\)-morphism. Consequently, there exists a \(C\)-morphism \(\sigma : (\tilde{X}, F^\sigma) \rightarrow (\tilde{X}, F)\) such that \(\sigma \circ \tilde{\varphi} \equiv \varphi\).

On the other hand, \((\tilde{X} \setminus Z_p, \tilde{p})\) is a Riemann domain over \(M\). Since \(\tilde{p} \circ \varphi \equiv p\), we get \(\varphi(X) \subset \tilde{X} \setminus Z_p\). Consequently, \(\varphi : (X, p) \rightarrow (\tilde{X} \setminus Z_p, \tilde{p})\) is an \(F\)-extension. Thus, there exists a morphism \(\tau : (\tilde{X} \setminus Z_p, \tilde{p}) \rightarrow (\tilde{X}, \tilde{p})\) such that \(\tau \circ \varphi \equiv \tilde{\varphi}\). Then \((\sigma \circ \tau) \circ \varphi \equiv \sigma \circ \tilde{\varphi} \equiv \varphi\), which by the identity principle gives \(\sigma \circ \tau = \text{id}\). Moreover, \(\tilde{p} \circ \sigma \circ \varphi \equiv \tilde{p} \circ \varphi \equiv p \equiv \tilde{p} \circ \tilde{\varphi}\). Consequently, \(\tilde{p} \circ \sigma \equiv \tilde{p}\), which implies that \(\sigma(\tilde{X}) \subset \tilde{X} \setminus Z_p\). Hence \(\tau \circ \sigma = \text{id}\) and, therefore, \(\tau\) is an isomorphism.

(b) If \(\varphi : (X, F) \rightarrow (\tilde{X} \setminus Z_p, \tilde{F}^\sigma)\) is the \(F\)-extension of holomorphy, then there exists a holomorphic mapping \(\sigma : \tilde{X} \rightarrow \tilde{X} \setminus Z_p\) such that \(\sigma \circ \varphi \equiv \varphi\). Then \(\sigma = \text{id}\), which gives \(Z_p = \emptyset\).

(c) Put \(\tilde{X} := \tilde{X} \setminus Z_p\). We have \(\mathcal{O}(\tilde{X})|_{\tilde{X}} = \mathcal{O}(\tilde{X})\). In particular, the spaces \(\mathcal{O}(\tilde{X})\) and \(\mathcal{O}(\tilde{X})\) endowed with the Fréchet topologies of locally uniform convergence are isomorphic.

We know that \((\tilde{X}, \tilde{p})\) is Stein (cf. Theorem 4.4). In particular, \(\tilde{X}\) is holomorphically convex, i.e. for every compact \(K \subset \tilde{X}\) its holomorphically convex hull \(\tilde{K}\) is compact.

Suppose that \(Z_p \neq \emptyset\) and let \(a \in Z_p\). Let \(U\) be a relatively compact open neighborhood of \(a\). Then there exists a compact set \(K \subset \tilde{X}\) such that \(U \subset \tilde{K}\) (cf. [Jar-Pfl 2000], Remark 1.4.5(l)). Thus \(U \setminus Z_p \subset \tilde{K} \subset \tilde{X}\). Consequently, \(a \in U \subset U \setminus Z_p \subset \tilde{X}\) — a contradiction. \(\square\)
Theorem 5.2. Let \((X, p), (X, q) \in \mathfrak{R}_c(M)\) be such that \(\text{Str}(X, p) = \text{Str}(X, q)\) and let \(F \subset \mathcal{O}(X)\) be such that \(p, q \in F^N\). Let \(\varphi_p : (X, p) \rightarrow (\tilde{X}, \tilde{p})\) and \(\varphi_q : (X, p) \rightarrow (\tilde{X}, \tilde{q})\) be \(F\)-envelopes of holomorphy (over \(M\)). Let \(\varphi : (X, F) \rightarrow (\tilde{X}, \tilde{F})\) be the \(F\)-envelope of holomorphy and let \(Z_p\) and \(Z_q\) be as in Theorem 5.1. Then the following conditions are equivalent:

(i) there exists a biholomorphic mapping \(\tau : \tilde{X}_p \rightarrow \tilde{X}_q\) such that \(\tau \circ \varphi_p \equiv \varphi_q\);

(ii) \(Z_p = Z_q\).

Proof. By Theorem 5.1 we may assume that \(\varphi_p = \varphi_q = \varphi, (\tilde{X}, \tilde{p}) = (X \setminus Z_p, \tilde{p}),\) and \((\tilde{X}, \tilde{q}) = (X \setminus Z_q, \tilde{q})\). If \(Z_p = Z_q\), then we take \(\tau := \text{id}\). Conversely, if \(\tau : \tilde{X} \setminus Z_p \rightarrow \tilde{X} \setminus Z_q\) is such that \(\tau \circ \varphi \equiv \varphi\), then \(\tau = \text{id}\) and hence \(Z_p = Z_q\).

\(\square\)

6. Proof of Example 1.3

In view of Theorem 5.1(a) the only problem is to prove that \(\text{id} : (\mathbb{D}, \mathcal{H}_c(\mathbb{D})) \rightarrow (\mathbb{D}, \mathcal{H}_c(\mathbb{D}))\) is the \(\mathcal{H}_c(\mathbb{D})\)-envelope of holomorphy. It is clear that it is a \(C\)-morphism. Let \(\varphi : (\mathbb{D}, \mathcal{H}_c(\mathbb{D})) \rightarrow (\tilde{X}, \tilde{F})\) be the \(\mathcal{H}_c(\mathbb{D})\)-envelope of holomorphy. Then there exists a \(C\)-morphism \(\sigma : (\mathbb{D}, \mathcal{H}_c(\mathbb{D})) \rightarrow (\tilde{X}, \tilde{F})\) such that \(\varphi = \sigma\) on \(\mathbb{D}\). Let \(\tilde{p} \in \tilde{F}\) be such that \(\tilde{p} \circ \sigma \equiv \text{id}\). Observe that \(\tilde{p}(\tilde{X}) \subset \mathbb{D}\). In fact, since \(\tilde{p} \neq \text{const},\) we only need to show that \(\tilde{p}(\tilde{X}) \subset \mathbb{D}\). Suppose that \(z_0 \in \tilde{p}(\tilde{X}) \setminus \mathbb{D}\). Put \(f(z) := 1/(z - z_0)\). Then \(f \in \mathcal{H}_c(\mathbb{D})\).

Let \(f \in \tilde{F}\) be such that \(\tilde{f} \circ \sigma \equiv f\). Thus, by the identity principle, \(\tilde{f} \circ (\tilde{p} - z_0) \equiv 1\) — a contradiction.

Finally, \(\sigma : \mathbb{D} \rightarrow \tilde{X}\) is biholomorphic and \(\sigma^{-1} = \tilde{p}\).

7. Proof of Example 1.3

(1) It is clear that \(\varphi : (X, F) \rightarrow (\tilde{X}, \tilde{F})\) is a \(C\)-morphism. Suppose that \(\varphi^0 : (X, F) \rightarrow (X^0, F^0)\) is the \(F\)-envelope of holomorphy and let \(\sigma : (X, F) \rightarrow (X^0, F^0)\) be a \(C\)-morphism such that \(\sigma \circ \varphi \equiv \varphi^0\). Let \(f^0 \in F^0\) be such that \(f^0 \circ \varphi^0 \equiv f_j, j = 1, 2\). Then \(\|(f^0_1)^2 + (f^0_2)^2\| \circ \varphi^0 \equiv 1\), which shows that \(f^0 : (f^0_1, f^0_2) : X^0 \rightarrow \tilde{X}\). Moreover, \(\sigma \circ f^0 \circ \varphi^0 = \sigma \circ \varphi = \varphi^0\). Consequently, \(\sigma \circ f^0 \equiv \text{id}\), which implies that \(\sigma\) is a \(C\)-isomorphism.

8. Proof of Theorem 1.4

Let \(Y := \{(z_1, \ldots, z_{n+1}) \in \mathbb{C}^{n+1} : z_1^2 + \cdots + z_{n+1}^2 = 0\}, Y_0 := Y \setminus \{0\}\). Observe that \(Y_0\) is a connected \(n\)-dimensional complex manifold. Let \(X_0 := Y_0 \setminus M_{n+1}\), where \(M_{n+1} := \{(z_1, \ldots, z_{n+1}) \in Y_0 : z_{n+1} = 0\}, (p_0, p_0) \in \mathfrak{R}_c(\mathbb{C}^n)\). Put \(F_0 := \mathcal{H}_c(X_0) \cup \{z_j|X_0 : j = 1, \ldots, n+1\}\).

(a) First we will prove that \(\text{id} : (X_0, F_0) \rightarrow (Y_0, \mathcal{G})\) is the \((F_0)_c\)-envelope of holomorphy, where \(\mathcal{G} := \mathcal{H}_c(Y_0) \cup \{z_j|X_0 : j = 1, \ldots, n+1\}\).

By the Riemann removable singularities theorem we see that \(\text{id} : (X_0, F_0) \rightarrow (Y_0, \mathcal{G})\) is the \((F_0)_c\)-extension. Let \(\varphi_0 : (X_0, F_0) \rightarrow (\tilde{X}_0, \tilde{F}_0)\) be the \((F_0)_c\)-envelope of holomorphy. Observe that \(\tilde{F}_0 = \mathcal{H}_c(\tilde{X}_0) \cup \{F_1, \ldots, F_{n+1}\}\), where \(F_j \in \mathcal{O}(\tilde{X}_0)\) is such that \(F_j \circ \varphi_0 \equiv z_j|X_0, j = 1, \ldots, n+1\). Let \(\sigma : (Y_0, \mathcal{G}) \rightarrow (\tilde{X}, \tilde{F})\) be a \(C\)-morphism with \(\sigma = \varphi_0\) on \(X_0\). Clearly, \(F_j \circ \sigma \equiv z_j|X_0, j = 1, \ldots, n+1\). Let \(N := \{x \in \tilde{X}_0 : F_j(x) = 0, j = 1, \ldots, n+1\}\); \(N\) is an analytic subset of \(\tilde{X}_0\) with \(\text{dim} N \leq n\). Put \(F := (F_1, \ldots, F_{n+1}) : \tilde{X}_0 \rightarrow \mathbb{C}^{n+1}\). Observe that \(F : \tilde{X}_0 \rightarrow Y\). It is clear that \(\sigma : Y_0 \rightarrow \tilde{X}_0 \setminus N\) is

(1) To see that \(\tilde{X}\) is connected it suffices to observe that \(\mathbb{C} \setminus \{0\} \ni \lambda \rightarrow (\frac{1}{2}(\lambda + 1/\lambda), \frac{1}{2}(\lambda - 1/\lambda))\) in \(\tilde{X}\) is a global parametrization.

(2) To see that \(Y_0\) is connected we may argue as follows. Since \(Y_0\) is a \(C_*\)-cone \((C_* := \mathbb{C} \setminus \{0\})\), it suffices to show that the any two points from \(Q := Y_0 \cap \partial B_{n+1}\) may be joined in \(Y_0\) with a continuous curve, where \(B_k := \{z \in \mathbb{C}^k : \|z\| < 1\}\) is the unit Euclidean ball. We have \(Q = \{x + iy \in \mathbb{R}^{n+1} + i\mathbb{R}^{n+1} : \|x\| = \|y\| = 1/\sqrt{2}, \langle x, y \rangle = 0\}\). Any orthogonal operator \(A \in \mathcal{O}(n+1, \mathbb{R})\) acts on \(Q\) according to the formula \(x + iy \rightarrow Ax + iAy\). Since the special orthogonal group \(\text{SO}(n+1, \mathbb{R})\) is connected, each point \(a \in Q\) may be joined in \(Q\) with a point \(b\) of the form \((b', 0) + i(b', b')\) with \(\|b'\| = \|b\| = 1/\sqrt{2}\). Taking a suitable rotation \(\zeta \in \mathbb{R}^\mathbb{C}\) we may join \(b\) in \(Y_0\) with a point \(c = (c', c_n) := \zeta b\) such that \(\|c'\| = c_n = 1/\sqrt{2}\). It remains to use the fact that \(\partial B_n(1/\sqrt{2})\) is connected.
biholomorphic \((\sigma^{-1} = F)\). Thus, it remains to show that \(N = \emptyset\). Suppose that \(a \in N\). By the definition of the class \(S\) there exist an open neighborhood \(U \subset \mathbb{X}_0\) and a mapping \(f_0 = (\tilde{f}_0^1, \ldots, \tilde{f}_0^n) \in \tilde{F}^n\) such that

\[\tilde{f}_0^1|_U : U \rightarrow f_0^1(U) \text{ is biholomorphic. There are essentially the following three possibilities:} \]

- \(\tilde{f}_0^j \in \mathcal{H}^\infty(\mathbb{X}_0), j = 1, \ldots, n.\)

Since \(Y_0\) is a \(C_2\)-cone, we easily conclude that for every \(f \in \mathcal{H}^\infty(Y_0)\) we get \(f(\lambda b) = f(b), \lambda \in \mathbb{C}_+, b \in Y_0\). Consequently, if \(f \in \mathcal{H}^\infty(X_0)\), then \(f(\sigma(\lambda b)) = f(\sigma(b)), \lambda \in \mathbb{C}_+, b \in Y_0\). In particular, \(f^0(\sigma(\lambda b)) = f^0(\sigma(b)), \lambda \in \mathbb{C}_+, b \in Y_0\). Taking \(b \in \sigma^{-1}(U \setminus N)\) we get a contradiction with injectivity of \(f^0|_U\).

- \(\tilde{f}_0^1 = F_1, \ldots, \tilde{f}_0^n = F_n, \tilde{f}_{s+1}^j, \ldots, \tilde{f}_n^0 \in \mathcal{H}^\infty(\mathbb{X}_0)\) for some \(1 \leq s \leq n - 1\).

Using the above argument we see that if \(b \in Y_0\) is such that \(b_1 = \cdots = b_s = 0\), then \(\tilde{f}_0^0(\sigma(\lambda b)) = \tilde{f}_0^0(\sigma(b)), \lambda \in \mathbb{C}_+.\) Thus, it is enough to show that \((U \setminus N) \cap N_1 \cap \cdots \cap N_s \neq \emptyset\), where \(N_j := \{x \in \mathbb{X}_0 : F_j(x) = 0\}, j = 1, \ldots, n+1.\) Suppose the contrary. Then \(N_j \cap \cdots \cap N_s \cap U \subset N_{s+1} \cap \cdots \cap N_{n+1}\). Let \(W := \sigma^{-1}(U \setminus N) \neq \emptyset\). We have \(\{z \in W : z_1 = \cdots = z_s = 0\} \subset \{z \in W : z_{s+1} = \cdots = z_{n+1} = 0\}\). Since \(n+1 - s \geq 2\), we get a contradiction.

- \(\tilde{f}_0^j = F_j, j = 1, \ldots, n.\)

Using local complex coordinates \((\zeta_1, \ldots, \zeta_n)\) in a neighborhood of \(a\) we have \(\frac{\partial F}{\partial \zeta_k}(x), k = 1, \ldots, n \neq 0\). Since

\[F_1^2 + \cdots + F_1^{n+1} = 0, \quad \text{we have} \quad F_1 \frac{\partial F}{\partial \zeta_k} + \cdots + F_n \frac{\partial F}{\partial \zeta_k} = -F_{n+1} \frac{\partial F}{\partial \zeta_k}, \quad k = 1, \ldots, n. \]

Thus, by Cramer’s formulas, \(F_j \equiv \Phi_j F_{n+1} \in \mathcal{H}^\infty(\mathbb{X}_0)\) in a neighborhood of \(a\), where \(\Phi_j\) is holomorphic, \(j = 1, \ldots, n.\) Consequently, \(\frac{\partial F_j}{\partial \zeta_k}(a) = \Phi_j(a) \frac{\partial F_{n+1}}{\partial \zeta_k}(a), j, k = 1, \ldots, n\), which gives a contradiction.

(b) Now we will prove that for every circular compact \(K \subset Y_0\) we have \(D_\ast : K \subset \tilde{K}_{\mathcal{O}(Y_0)}\), which directly implies that \(Y_0\) is not holomorphically convex. It suffices to prove that for any \(f \in \mathcal{O}(Y_0)\) and \(b \in Y_0\) the function \(\mathbb{C}_+ \ni \lambda \mapsto f(\lambda b)\) is bounded near \(\lambda = 0\) (and consequently extends holomorphically to \(\mathbb{C}\)). Indeed, then for every circular compact set \(K \subset Y_0\), \(f \in \mathcal{O}(Y_0), b \in K \land \lambda \in \mathbb{D}_\ast\), we have

\[|f(\lambda b)| = |f_b(\lambda)| \leq \max_{\partial \bar{D}} |f_b| = \max_{\lambda \in \partial \bar{D}} |f(\lambda b)| \leq \max_K |f|. \]

Fix an \(f\). Let \(M := \{(w_1, \ldots, w_n) \in \mathbb{C}^n : w_1^2 + \cdots + w_n^2 = 0\}; M\) is a one-codimensional analytic subset of \(\mathbb{C}^n\). Define

\[\mathbb{C} \times (\mathbb{C}^n \setminus M) \ni (\xi, w) \mapsto \left(\xi - f(w, \sqrt{-(w_1^2 + \cdots + w_n^2)})\right)\left(\xi - f(w, -\sqrt{-(w_1^2 + \cdots + w_n^2)})\right) =: \xi^2 + B(w)\xi + C(w), \]

where \(B, C \in \mathcal{O}(\mathbb{C}^n \setminus M)\). Observe that \(B, C\) are locally bounded in \(\mathbb{C}^n \setminus \{0\}\) — if \(w^0 \in M \setminus \{0\}\) and \(\mathbb{C}^n \setminus M \ni w^0 \rightarrow w^0\), then \(B(w^0) \rightarrow -2f(w^0, 0)\) and \(C(w^0) \rightarrow f^2(w^0, 0)\). Thus we may first assume that \(B, C \in \mathcal{O}(\mathbb{C}^n \setminus \{0\})\) and next, by the Hartogs theorem, that \(B, C \in \mathcal{O}(\mathbb{C}^n)\). In particular, the function \(\Delta := B^2 - 4C\) is holomorphic on \(\mathbb{C}^n\). This implies that the roots \(\xi_{\pm}(w) = \frac{1}{2}(B(w) \pm \sqrt{\Delta(w)})\) are locally bounded with respect to \(w \in \mathbb{C}^n\). Finally, \(f(\lambda b) \in \{\xi_{-}(\lambda b_1, \ldots, \lambda b_n), \xi_{+}(\lambda b_1, \ldots, \lambda b_n)\}\) is bounded near \(\lambda = 0\).

(c) Using Theorem 5.1 (a), we conclude that \(\tilde{p}_0 = (z_1|_{Y_0}, \ldots, z_n|_{Y_0})\). Hence \(Z_{p_0} = M_{n+1}\) and, consequently, \((X_0, p_0)\) is an \(F_\ast\)-domain of holomorphy. In particular, \(X_0\) is Stein.

(d) Observe that \((X_0, p_0)\) is a two-fold cover over \(\mathbb{C}^n\), i.e. every point \(a \in p_0(X_0)\) has an open neighborhood \(U\) such that \(p_0^{-1}(U) = U_1 \cup U_2, U_1 \cap U_2 = \emptyset\) and \(p_0|_{U_j} : U_j \rightarrow U\) is biholomorphic, \(j = 1, 2.\) Hence, there exists a domain \(X \subset \mathbb{C}^n\) such that \(\varphi : (X, \text{id}_X) \rightarrow (X_0, p_0)\) is the \(\mathcal{O}(X)\)-envelope of holomorphy in the sense of Riemann domains (cf. [For-Zam 1983], see also [Jar-Pit 2000], Theorem 4.5.18). Put \(F := \varphi^*(F_0)\). It remains to prove that \(\varphi : (X, F) \rightarrow (Y_0, \mathcal{G})\) is the \(F\)-envelope of holomorphy. It is obviously a \(C\)-morphism. Let \(\bar{\varphi} : (X, F) \rightarrow (\bar{X}, \bar{F})\) be the \(F\)-envelope of holomorphy. Then there exists a \(C\)-morphism \(\sigma : (Y_0, \mathcal{G}) \rightarrow (\bar{X}, \bar{F})\) such that \(\sigma \circ \varphi \equiv \bar{\varphi}\). Since \(\sigma|_{X_0} : (X_0, F_0) \rightarrow (\bar{X}, \bar{F})\) is a \(C\)-morphism, using (a) we conclude that there exists a \(C\)-morphism \(\tau : (\bar{X}, \bar{F}) \rightarrow (Y_0, \mathcal{G})\) such that \(\tau \circ \sigma|_{X_0} \equiv \text{id}_{X_0}\). Thus \(\tau \circ \sigma \equiv \text{id}\) and hence \(\tau\) is biholomorphic \((\tau^{-1} = \sigma)\).
We are going to prove that $\text{id} : (Y_0, \mathcal{O}(Y_0)) \rightarrow (Y_0, \mathcal{O}(Y_0))$ is the $\mathcal{O}(Y_0)_C$-envelope of holomorphy. Suppose that $\alpha : (Y_0, \mathcal{O}(Y_0)) \rightarrow (\tilde{Y}_0, \mathcal{O}(\tilde{Y}_0))$ is the $\mathcal{O}(Y_0)_C$-envelope of holomorphy. Then, by (a), $\alpha : (X_0, \mathcal{F}_0) \rightarrow (\tilde{Y}_0, \mathcal{F}_0')$ is a C-morphism. Consequently, there exists a C-morphism $\sigma : (\tilde{Y}_0, \mathcal{F}_0) \rightarrow (Y_0, \mathcal{G})$ such that $\sigma \circ \alpha \equiv \text{id}$.

Suppose that Y_0 is a Riemann domain over \mathbb{C}^n, i.e. there exists a locally biholomorphic mapping $q : Y_0 \rightarrow \mathbb{C}^n$. By Theorem 3.3 to get a contradiction it suffices to prove that (Y_0, q) is a domain of holomorphy. Suppose that $\alpha : (Y_0, q) \rightarrow (Z, r)$ is an $\mathcal{O}(Y_0)$-extension. Then $\alpha : (Y_0, \mathcal{O}(Y_0)) \rightarrow (Z, \mathcal{O}(Z))$ is a C-morphism. Consequently, by (e), there exists a C-morphism $\sigma : (Z, \mathcal{O}(Z)) \rightarrow (Y_0, \mathcal{O}(Y_0))$ such that $\sigma \circ \alpha \equiv \text{id}$. In particular, $q \circ \sigma \circ \alpha \equiv q \equiv r \circ \alpha$. Thus $\sigma : (Z, r) \rightarrow (Y_0, q)$ is a morphism.

References

[For-Zam 1983] J.-E. Fornæss, W.R. Zame, Riemann domains and envelopes of holomorphy, Duke Math. J. 50 (1983), 273–283.
[Gra 1955] H. Grauert, Charakterisierung der holomorph vollständigen komplexen Räume, Math. Ann. 129 (1955), 233–259.
[Gun-Ros 1965] R. Gunning, H. Rossi, Analytic Functions of Several Complex Variables, Pentice–Hall, Englewood Cliffs, 1965.
Jar-Pfl 2000] M. Jarnicki, P. Pflug, Extension of Holomorphic Functions, de Gruyter Expositions in Mathematics 34, Walter de Gruyter, 2000.
[Ker 1959] H. Kerner, Holomorphiehüllen zu K-vollständigen komplexen Räumen, Math. Ann. 138 (1959), 316–328.
[Ros 1963] H. Rossi, On envelopes of holomorphy, Communications Pure Appl. Math. 16 (1963), 9–17.
[Vig 1982] J.-P. Vigué, Construction d’enveloppes d’holomorphie par la méthode de H. Cartan et P. Thullen, Math. Ann. 259 (1982), 111–118.