CDK1 substitutes for mTOR kinase to activate mitotic cap-dependent protein translation

Masahiro Shuda, Celestino Velásquez, Erdong Cheng, Daniel G. Cordek, Hyun Jin Kwun, Yuan Chang1, and Patrick S. Moore1

Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213

This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2012.

Contributed by Patrick S. Moore, March 23, 2015 (sent for review February 13, 2015)

Mitosis is commonly thought to be associated with reduced cap-dependent protein translation. Here we show an alternative control mechanism for maintaining cap-dependent translation during mitosis revealed by a viral oncoprotein, Merkel cell polyomavirus small T (MCV sT). We find MCV sT to be a promiscuous E3 ligase inhibitor targeting the anaphase-promoting complex, which increases cell mitogenesis. MCV sT binds through its Large T stabilization domain region to cell division cycle protein 20 (Cdc20) and, possibly, cdc20 homolog 1 (Cdh1) E3 ligase adapters. This activates cyclin-dependent kinase 1/cyclin B1 (CDK1/CYCB1) to directly hyperphosphorylate eukaryotic initiation factor 4E (eIF4E)-binding protein 4 (4E-BP1) at authentic sites, generating a mitosis-specific, mechanistic target of rapamycin (mTOR) inhibitor-resistant, 4E-BP1 phosphorylated isoform not present in small T–interphase cells. Using mitotic cell population having higher inactive cyclin-dependent kinase 1/cyclin B1 and, possibly, higher Cdk1/Large T stabilization domain region, shows an orthogonal pH3+–mitotic cell population in bulk culture, and even under stringent conditions, high levels of interphase cell contamination can occur. (ii) Many studies of mitotic cap-dependent translation rely on cell cycle synchronization studies with microtubule inhibitors (e.g., nocodazole), which are also mitotic translation inhibitors (15). Under these conditions, comparisons of interphase and mitotic translation can be imprecise. Single-cell measurements, such as flow cytometry, can potentially overcome these concerns. Additionally, a highly hyperphosphorylated 4E-BP1 isoform called sT-4E-BP1 is present in mitotic cells (10, 16). This hyperphosphorylated isoform is predicted to promote rather than inhibit cap-dependent protein translation and is therefore inconsistent with the standard model.

Our studies on Merkel cell polyomavirus (MCV) provide insights into these issues. MCV is a small double-stranded DNA virus discovered in 2008 by our laboratory that causes most cases of the human skin cancer Merkel cell carcinoma (MCC) (17) (for review, see refs. 18–20). The 19-kDa MCV small T (sT) antigen is a transforming oncoprotein required for MCC cell growth (21, 22). A region of the sT protein spanning amino acid residues 91–95, called the Large T stabilization domain (LSD), promotes sT-4E-BP1 hyperphosphorylation (23), rodent cell transformation (24), and fibroblast proliferation in a mouse transgenic model (21, 25). Expression of the phosphorylation-defective, dominant-positive 4E-BP1 (26) with alanine substitution mutations at priming T37/T46 (4E-BP1(37A/46A)) reverses sT-induced rodent fibroblast transformation, suggesting a direct link between 4E-BP1 phosphorylation status and sT-induced transformation (21).

Eukaryotic initiation factor 4E (eIF4E)-binding protein (eIF4E)-binding protein 4 (4E-BP1) is a principal target for mechanistic target of rapamycin complex 1 (mTORC1) (1–3). mTOR regulates a variety of metabolic signaling pathways related to ribosomal biosynthesis and autophagy that contribute to cancer cell survival (1, 3–6). Increasing evidence indicates that direct mTORC1 phosphorylation of 4E-BP1 may be the key event in mTOR-associated tumorigenesis (2). In the absence of activated mTOR, hypophosphorylated 4E-BP1 sequesters eIF4E to prevent assembly of eIF4F complex components onto capped mRNA, inhibiting cap-dependent translation. When 4E-BP1 is phosphorylated by mTOR (7), first at critical priming threonine (T) 37 and T46 residues and then at other sites, 4E-BP1 is inactivated and releases eIF4E to allow initiation of cap-dependent translation (8). Other non-mTOR kinases, including cyclin-dependent kinase 1 (CDK1), have shown to be able to phosphorylate 4E-BP1 (9–12) but have not been extensively examined in vivo for their effects on 4E-BP1–regulated cap-dependent translation.

Protein synthesis has been described to decrease during mitosis relative to interphase in reports dating back to the 1960s (13, 14). There are two issues, however, with this conclusion: (i) Mitotic cells represent less than 1% of the total cell population in bulk culture, and even under stringent conditions, high levels of interphase cell contamination can occur. (ii) Many studies of mitotic cap-dependent translation rely on cell cycle synchronization studies with microtubule inhibitors (e.g., nocodazole), which are also mitotic translation inhibitors (15).

In the current work, we show that CDK1 substitutes for mTOR interphase functions to phosphorylate eukaryotic initiation factor 4E-binding protein 4 (4E-BP1) to a mitosis-specific 4E-BP1 phosphorylated isoform. Flow cytometric assays reveal that mitotic cells have high levels of inactivated 4E-BP1 and do not generally show specific loss of cap-dependent translation compared with interphase cells. This appears to be due to cyclin-dependent kinase 1 (CDK1) activity during mitosis. Mitotic cells typically represent less than 1% of all cells in bulk culture, and mitosis-arresting drugs, such as nocodazole, can directly inhibit mitotic protein translation, potentially explaining differences between our findings and previous studies showing reduced cap-dependent translation during mitosis.

Significance

Cancer cell proliferation is highly dependent on cap-dependent protein synthesis, which is generally assumed to be inhibited during mitosis. Using a viral oncoprotein that enforces mitosis, we show that CDK1 substitutes for mTOR interphase functions to phosphorylate eukaryotic initiation factor 4E-binding protein 4 (4E-BP1) to a mitosis-specific 4E-BP1 isoform. Flow cytometric assays reveal that mitotic cells have high levels of inactivated 4E-BP1 and do not generally show specific loss of cap-dependent translation compared with interphase cells. This appears to be due to cyclin-dependent kinase 1 (CDK1) activity during mitosis. Mitotic cells typically represent less than 1% of all cells in bulk culture, and mitosis-arresting drugs, such as nocodazole, can directly inhibit mitotic protein translation, potentially explaining differences between our findings and previous studies showing reduced cap-dependent translation during mitosis.

Author contributions: M.S., C.V., E.C., Y.C., and P.S.M. designed research; M.S., C.V., E.C., Y.C., and P.S.M. performed research; M.S., C.V., and H.J.K. contributed new reagents/analytic tools; M.S., C.V., E.C., D.G.C., H.J.K., Y.C., and P.S.M. analyzed data; and M.S., C.V., E.C., H.J.K., Y.C., and P.S.M. wrote the paper.

The authors declare no conflict of interest.

Freely available online through the PNAS open access option.

See QnAs on page S562.

1To whom correspondence may be addressed. Email: psms9@pitt.edu or yc70@pitt.edu.

This article contains supporting information online at www.pnas.org/cgi/doi/10.1073/pnas.1505787112/DCSupplemental.
MCV sT promotes mitosis by targeting APC/C E3-ubiquitin ligases and myc-Cdh1 proteins. Weak interaction Shuda et al. μ-transduced cells. (Δmutant protein, whereas partial interaction expressed did not (Δδ-expression through δ-expression. CYCD1, which expression. Similarly, MCV sT expression stabi-

Results

MCV sT Increases Mitogenesis by Targeting the Cellular APC E3 Ligase. To search for factors contributing to MCV sT-induced mitogenesis, the viral oncoprotein was expressed in hTERT-immortalized primary BJ-tert (BJ-T) human foreskin fibroblasts. These cells displayed a rounded phenotype in culture with increased phospho-histone H3 serine 10 (pH3S10) phosphorylation, characteristic for mitosis (Fig. 1A). Increased pH3S10 and increased expression of mitotic markers [including cyclin B1 (CYCB1) and phospho-aurora kinase B (pAURKB)] were also observed in 293 cells expressing MCV sT (Fig. S1). Immuno-precipitation of sT revealed an in vivo complex with the APC/C substrate recognition subunit cell division cycle protein 20 (Cdc20) that was dependent on an intact LSD (Fig. 1B). MCV sT also interacted with another APC/C substrate recognition subunit, cdc20 homolog 1 (Cdh1), but substantial Cdh1 binding occurred with sTLSD having alanine substitutions at residues 91–95, suggesting that sT may bind Cdh1 at other sites in addition to the LSD. In line with these results, known APC/C E3 targets, including AURKA and AURKB, Skp2, polo-like kinase 1 (Pik1), and CYCA2, showed markedly reduced turnover in the presence of sT. AURKA and AURKB are stabilized by MCV sT expression. Similarly, MCV sT expression stabilized FLAG-tagged AURKA and endogenous CYCB1, but not CYCD1, after nocodazole release of 293 cells, whereas MCV sTLSD expression did not (Fig. S2).

MCV sT Induces mTOR-Independent δ-4E-BP1 Phosphorylation. We next examined the role of MCV sT in 4E-BP1 hyperphosphorylation. 4E-BP1 hyperphosphorylation isozymes are named α through δ according to ascending molecular mass (Fig. 2A). In our cells, we observed that the highest molecular mass form, δ, was increased in MCV sT-expressing cells but not in empty vector controls. CYCD1 is not directly regulated by Cdh1, and its half-life was unchanged by MCV sT expression. A representative α-tubulin loading control is shown. Representative results are shown from three independent experiments.

Suprisingly, sT-induced δ-4E-BP1 hyperphosphorylation is not dependent on mTOR activity (21). The sT LSD region is known to bind the Fbw7 E3 ligase to promote cell proliferation, but Fbw7 targeting is not sufficient to explain either cell transformation or 4E-BP1 hyperphosphorylation (24). We show here that MCV sT, through its LSD domain, also promotes mitogenesis and 4E-BP1 hyperphosphorylation by functioning as a promiscuous E3 ligase inhibitor that targets cellular anaphase-promoting complex/cyclosome (APC/C) E3 ligase activity. During sT-induced mitosis, sT-induced CDK1/CYCB1 rather than mTOR directly phosphorylates 4E-BP1 to the mitosis-specific δ isoform. Using a flow cytometry-based method to directly measure mitotic cap-dependent protein synthesis for the first time, to our knowledge, we do not detect a general shift from cap-dependent to cap-independent protein translation in mitotic cells compared with interphase cells. Mitotic cells actually show higher saturation levels of p4E-BP1T47E, consistent with 4E-BP1 inactivation, than interphase cells. Consistent with this, and in contrast to previous studies, we find that δ-4E-BP1-positive mitotic cells show high levels of cap-dependent protein translation that is reduced by the cap translation inhibitor 4E1RCat. When accentuated or sustained, high levels of mitotic cap-dependent protein translation may play a role in cancer cell transformation and contribute to mTOR inhibitor resistance in subsets of cancers.

Fig. 1. MCV sT promotes mitosis by targeting APC/C E3-ubiquitin ligases. (A) MCV sT induces cellular mitogenesis. BJ-T cells stably transduced with MCV sT have increased mitotic rounding and a 6–18-fold increase in pH3S10+. Mitotic cells compared with empty vector or sTLSD transduced cells. (B) MCV sT interacts with APC/C E3 ligase substrate recognition subunit Cdc20 and Cdh1 proteins. HA-tagged Cdc20 or myc-tagged Cdh1 expression plasmids were cotransfected with MCV sT, MCV sTLSD, or SV40 sT expression plasmids into 293 cells and immunoprecipitated 48 h later with anti-HA or anti-myc antibodies, followed by immunoblotting using mixed anti-MCV sT (CMBE6) and anti-SV40 sT (PAb419) antibodies. Cdc20 interaction with MCV sT was nearly eliminated in the sTLSD mutant protein, whereas partial interaction was retained between MCV sTLSD and myc-Cdh1 proteins. Weak interaction between SV40 sT and myc-Cdh1 only was detected. Asterisk indicates IgG heavy chain. (C) APC/C target proteins (AURKA/B, Cdc20, Skp2, Pik1, CYCA2, and clasin) are stabilized by MCV sT expression. BJ-T cells were treated with CHX (100 μg/ml) to inhibit new protein synthesis and harvested at the indicated time points. The half-lives of proteins regulated by APC/C are extended by expression of MCV sT but not empty vector or MCV sTLSD controls. CYCD1 is not directly regulated by Cdh1, and its half-life was unchanged by MCV sT expression. A representative α-tubulin loading control is shown. Representative results are shown from three independent experiments.
T37/T46 and S65/S101, after transfection of the sT expression vector into 293 cells, as previously described (21). A 2D gel immunoblot (Fig. 2A, Right) aligned to the corresponding 1D SDS/PAGE immunoblot shows that during MCV sT expression, a new phosphoisoform appears at the δ position (arrows) staining for p4E-BP1 T37/T46 and p4E-BP1 S65/S101. MCV sT expression prolonged 4E-BP1 phosphorylation (Fig. 2B) in the presence of the mTOR inhibitor PP242 (29) compared with empty vector control and sT mLSD transfected cells, indicating that δ-4E-BP1 phosphorylation may be independent of mTOR kinase activity.

CDK1/CYCB1 Directly Phosphorylates 4E-BP1, in the Presence and Absence of sT, to the δ Isoform During Mitosis. The 4E-BP1 phosphorylation is induced by microtubule assembly inhibitors such as nocodazole and paclitaxel that arrest cells in mitosis (15, 16). To assess the role of various kinases on mitotic 4E-BP1 phosphorylation, nocodazole-treated HeLa mitotic cell lysates were reacted with recombinant GST-4E-BP1 and kinase inhibitors, including PP242 (mTORC1 and mTORC2), RO-3306 (CDK1), and VX-680 (pan AURK) (Fig. 3A). GST–4E-BP1 was robustly phosphorylated at authentic sites by mitotic HeLa lysates, and this was reversed by inhibition of CDK1 but not by mTOR or AURK inhibition. Evidence that CDK1 is responsible for δ-4E-BP1 mitotic phosphorylation was also obtained by treatment of nocodazole-arrested HeLa cells with the CDK1 inhibitor RO-3306 (Fig. S3A). δ-4E-BP1 hyperphosphorylation could not be fully restored by RO-3306/MG132 cotreatment. A technical issue in using mitotic kinase inhibitors to assess 4E-BP1 phosphorylation is the occurrence of mitotic slippage, a side effect of kinase inhibition concurrently causing enforced exit from mitosis with general loss of mitotic kinase activities (30, 31). Mitotic slippage can be prevented by simultaneous inhibition of APC/C-mediated protein degradation with the proteasome inhibitor MG132, which in effect “freezes” the mitotic phenotype. Like RO-3306, treatment of nocodazole-arrested HeLa cells with the AURK inhibitor VX-680 also eliminated δ-4E-BP1 phosphorylation (Fig. S3B). Unlike RO-3306, however, this was completely reversed by cotreatment with VX-680/MG132, suggesting that AURK inhibition effects on 4E-BP1 phosphorylation are due to mitotic slippage. Extensive in vitro phosphorylation studies also failed to reveal evidence for direct 4E-BP1 phosphorylation by purified AURKδ. To confirm direct 4E-BP1 phosphorylation by CDK1/CYCB1, we generated an in vitro phosphorylation reaction using purified CDK1/CYCB1 and GST–4E-BP1 (Fig. 3B). CDK1 phosphorylation of 4E-BP1 was ATP-dependent and -inhibitable by RO-3306. CDK1 phosphorylation occurred at the previously described T70 residue (10) as well as at authentic 4E-BP1 phosphorylation sites, including T37/T46 and S65/S101, which are known to regulate 4E-BP1 binding to eIF4E.

Mitic δ-4E-BP1 phosphorylation was also examined in nocodazole-arrested 293 cells in the presence of CDK1 and mTOR inhibitors (Fig. 3C). MG132 was added to nocodazole-arrested cells 30 min before RO-3306 treatment to prevent CDK1 inhibition-induced mitotic slippage (30). In this experiment, phospho–mitotic–α-tubulin cells were 90% of the total asynchronous (no cell cycle arrest) cell population (Fig. 3C, Left and Fig. S1). MCV sT expression promotes formation of PP242-resistant δ-4E-BP1 that is lost after treatment with RO-3306. Notably, S6235/S6236 phosphorylation, a known phosphorylation mark for mTORC1 kinase activity (32, 33), is nearly ablated by PP242 but not by RO-3306. These results are consistent with sT induction of δ-4E-BP1 through CDK1 rather than mTOR kinase activity.

Distinctive 4E-BP1 phosphorylation patterns were seen during nocodazole (prometaphase) and mimose (late G1) cell cycle arrest (Fig. 3C). During nocodazole arrest, the δ-4E-BP1 isoforms became prominent even in the absence of MCV sT expression. In contrast, δ-4E-BP1 isoforms were nearly absent under all conditions for cells arrested in G1 by mimose. Whereas δ-4E-BP1 was resistant to mTOR inhibition, CDK1 inhibition during nocodazole mitotic arrest ablated δ-4E-BP1. These results were confirmed in HeLa cells treated with nocodazole and kinase inhibitors (Fig. S3).

To confirm these findings in the absence of chemical inhibitors, we used mechanical shake-off to induce mitotic cells from sT-expressing BJ T cells (Fig. S4). This maneuver enriched the mitotic cell fraction from ~2% to ~66% as determined by flow cytometry with propidium iodide (PI) and pH3/S10 staining (Fig. S4A). Shake-off cells exclusively expressed the δ-4E-BP1 isoform, whereas adherent cells expressed only α–γ isoforms of 4E-BP1 (Fig. S4B). In vitro lambda phosphatase treatment of sT-expressing and nocodazole-arrested 293 cells lysates showed that the high-molecular-mass 4E-BP1 isoforms were phosphorylated to a lesser extent than another type of posttranslational modification (Fig. S5).

Although PP242-inhibitable mTOR kinase activity contributes to mitotic 4E-BP1 hyperphosphorylation, particularly for lower molecular mass α and β forms (Fig. 3C), mTOR may be dispensable for mitotic 4E-BP1 hyperphosphorylation under some conditions. U2OS cells were arrested at the G2/M boundary for 24 h using 10 μM RO-3306 (31, 34) (Fig. 3D). After RO-3306 removal, cells progressed through mitosis, with most exiting mitosis 3 h after RO-3306 release. PP242 pretreatment markedly reduced pS6235/S6236 but not δ-4E-BP1, consistent with mTOR-independent phosphorylation of 4E-BP1 during mitosis. The 293 cells failed to arrest in G2 with RO-3306 and could not be examined.

The 4E-BP1 δ Isoform Is Induced in Mitosis During Normal Cell Cycling. Nocodazole-arrest experiments suggest that δ-4E-BP1 accumulates during mitosis even in the absence of MCV sT expression. To confirm this in the absence of drug treatment, 293 cells were synchronized by double-thymidine block and release, harvested
CDK1/CYCB1 phosphorylates 4E-BP1 during mitosis. (A) CDK1 inhibition in mitotic lysates reduces 4E-BP1 phosphorylation. Mitotic HeLa cell lysates (10 μg) enriched by nocodazole arrest were mixed with 0.2 μg GST–4E-BP1, reacted for 30 min at 30 °C in the presence or absence of 5 μM mTOR (PP242), CDK1 (RO-3306), or AURK (VX-680) kinase inhibitors and then immunoblotted with antibodies as shown. ATP-dependent 4E-BP1 phosphorylation was sensitive to CDK1 inhibitor but resistant to mTOR and AURK inhibitors. Equal loading of total 4E-BP1, CYCB1, and α-tubulin is shown. Representative results are shown from three independent experiments. (B) Recombinant CDK1/CYCB1 kinase phosphorylates GST–4E-BP1 at the known regulatory residues T70, S65/S101, and T37/T46. CDK1/CYCB1 (20 units) was mixed with bacterial-expressed GST–4E-BP1 in kinase reaction buffer for 30 min at 30 °C and immunoblotted with phospho-specific antibodies. ATP-dependent 4E-BP1 phosphorylation by CDK1/CYCB1 occurred at phospho-specific sites and was sensitive to the CDK1 active site inhibitor RO-3306. Representative results are shown from two independent experiments. (C) 4E-BP1 is induced during mitosis and inhibited by a CDK1 inhibitor. The 293 cells were transfected with empty vector or MCV sT and arrested for 20 h with DMSO (asynchronous), nocodazole (prometaphase), and mimosine (late G1). Cells were treated at 16 h with kinase inhibitors (5 μM PP242, 10 μM RO-3306, and 10 μM MG132) as indicated. MCV sT induces 4E-BP1 in asynchronous cells sensitive to RO-3306 but not PP242. Nocodazole arrest induces similarly RO-3306-sensitive and PP242-resistant 4E-BP1 even in the absence of sT, whereas 4E-BP1 is only weakly induced by sT in mimosine-arrested cells. Markers for mitosis (pH3β, CYCB1), a CDK1 substrate (cdc25C), and an mTORC1 downstream substrate (pS6/S235/S236) showed active drug treatments. Representative results are shown from two independent experiments. (D) 4E-BP1 phosphorylation during mitosis occurs in the absence of active mTOR. U2OS cells were arrested at the G2/M boundary with 10 μM RO-3306 for 24 h, released by washing, and harvested at the time points shown. Cells were treated for 3 h prerelease with DMSO or 5 μM PP242. In the absence of mTOR inhibition, no 4E-BP1 is found at 0 h but accumulates, together with β and γ isoforms, during mitotic transit. During PP242 inhibition, 4E-BP1 still accumulates during mitosis, but lower molecular mass (β-γ) isoforms are reduced. Results shown are from a single experiment.

Flow cytometry showed peak pH3S10+ mitotic entry occurring reproducibly at 10 h, which began to diminish by 12 h after release (Fig. 4A and Fig. S6). This same pattern occurred with PP242 pretreatment, although mitotic entry was more abundant at 8 h postrelease. Unexpectedly, pH3S10+ mitotic 293 cells formed an orthogonal population with the highest per-cell saturation levels of 4E-BP1T37/T46 compared with any other stage of the cell cycle. PP242 pretreatment reduced 4E-BP1T37/T46+ staining for interphase cells at 2–8 h (note leftward shift for 4E-BP1T37/T46+ staining among pH3S10+ cells) consistent with mTOR regulation of 4E-BP1. At peak mitotic entry (8–10 h postrelease), however, pH3S10+ cells were resistant to loss of 4E-BP1T37/T46+ staining with PP242 treatment.

Immunoblots performed on these same cell fractions at each time point (Fig. 4B) showed prominent α-γ 4E-BP1 phosphorylation at early time points (0–6 h), which was sensitive to mTOR inhibition. The δ isoform emerged 8–12 h after release, corresponding to maximum pH3S10+ and 4E-BP1T37/T46+ staining, and was resistant to PP242 inhibition. Similar results, but with a less abundant orthogonal pH3S10+/4E-BP1T37/T46+ cell population, were seen in U2OS cells (Fig. S7).

CDK1/CYCB1 Activates Cap-Dependent Translation During Mitosis. According to the existing model for 4E-BP1-regulated protein synthesis, high levels of 4E-BP1T37/T46+ are predicted to promote cap-dependent translation during pH3S10+ mitosis (35). We directly examined this by using cap-binding assays for mitosis-enriched...
and -depleted cells and by using a flow cytometry method designed to directly measure single-cell cap-dependent protein synthesis.

We performed mGTP cap resin pulldown assays to assess the functional correlates of our flow cytometry and immunoblot findings. Highly enriched mitotic BJ-T cells expressing MCV sT, isolated by shake-off (nonadherent), showed mGTP cap binding to eIF4G that was unaffected by PP242 treatment (Fig. 5A). In contrast, although interphase-enriched BJ-T cells (adherent) had comparable levels of eIF4G, eIF4G cap binding remained sensitive to PP242. Input 4E-BP1 protein from mitosis-enriched cells was almost exclusively in the δE-4E-BP1 isoform. This is consistent with mTOR-independent cap binding during mitosis and mTOR-dependent cap binding during interphase. Qualitatively similar results were found for HeLa cells using G2/M arrest enrichment and shake-off (Fig. S8). For mitosis-enriched HeLa cells, modest but reproducible reduction in eIF4G-mGTP cap association was present with RO-3306 treatment alone but not PP242 treatment alone. Combined RO-3306 and PP242 treatment nearly eliminated eIF4G association to mGTP. These results were confirmed by metabolic labeling using the Click-iT thioisocyanate analog with Alexa Fluor 488-alkyne by the copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition (Click-iT) reaction (37) and measured by flow cytometry. Costaining for pH3(S10) allowed segregation of individual cells into “mitotic” (pH3(S10)+) and “interphase” (pH3(S10)-) populations. Up to 74% of DMSO-treated mitotic cells were AHA positive in comparison with 91% of DMSO-treated interphase cells with AHA positivity. PP242 treatment reduced new protein synthesis for pH3(S10) interphase BJ-T cells but had no effect on protein synthesis for pH3(S10+) mitotic BJ-T cells (Fig. 5B). Similar analyses using double thymidine block and release synchronization of 293 cells, however, revealed that PP242 reduced new protein synthesis for both mitotic and interphase cells (Fig. S9), suggesting that PP242 resistance may be cell line specific.

We next generated capped, polyadenylated luciferase reporter mRNA using T7 polymerase (38, 39) and performed in vitro translation in commercial rabbit reticulocyte lysates (RLLs) to measure cap-dependent translation (Fig. 5C). Addition of 4E1RCat (40), a cap-dependent translation inhibitor that prevents eIF4F formation, virtually abolished translation. Addition of recombinant GST-4E-BP1 reduced cap-dependent translation in the reticulocyte lysates to ~20% of buffer control (Fig. 5B). This inhibition was reduced to 45% of buffer control when GST-4E-BP1 was phosphorylated (p4E-BP1) by a CDK1/CYCBl kinase reaction. This reversal of inhibition was antagonized by the CDK1 inhibitor RO-3306.

Measurement of cap-dependent protein synthesis in mitosis was directly determined for HeLa and U2OS cells after G2 release and synchronization using our AHA assay in cells treated with 4E1RCat (Fig. 5D). Costaining for pH3(S10) allowed segregation of cells into mitotic (pH3(S10)+) and interphase (pH3(S10)-) populations. Nonspecific AHA incorporation was determined using the ribosome translation elongation inhibitor CHX (Fig. 5D, vertical lines), and new protein synthesis was reflected by AHA fluorescence above this baseline.

Like BJ-T cells, fewer (27%) mitotic HeLa cells were positive for new protein synthesis compared with interphase (46%) HeLa cells (Fig. 5D). In contrast, percentages of mitotic and interphase U2OS cells with new protein synthesis were identical (42%) in mitotic and interphase cells). For both cell lines, however, nearly all new protein synthesis in both mitosis and interphase was cap-dependent and -sensitive to 4E1RCat treatment. Preliminary analyses revealed that MG132 treatment nonspecifically inhibited protein synthesis as previously reported (41), preventing us from accurately measuring the effects of CDK1 inhibition on mitotic translation under conditions that inhibit mitotic slippage. Using direct AHA uptake, however, we could confirm that nocodazole treatment specifically inhibits mitotic protein synthesis (Fig. S10).

Discussion
Tumor viruses have been central to cell biology because their oncogenes allow interrogation of specific cell proliferation and survival pathways. Among many critical findings, viral oncoproteins have been essential to the discovery of cellular oncoproteins (42) and the tumor suppressor p53 (43–45), the characterization of the G1/S checkpoint (46) and the Akt-mTOR pathway (47), and identification of common innate immune and tumor suppressor signaling networks (48). MCV sT, an oncoprotein for MCC, induces mTOR-resistant 4E-BP1 hyperphosphorylation and cell transformation (21), which led us to investigate mTOR-independent 4E-BP1 signaling and cap-dependent translation in mitosis.

In addition to targeting Fbw7 (24), MCV sT inhibits APC/C E3 ligases and induces mitogenesis in st-expressing cells. One consequence of this is increased mitotic CDK1/CYCBl activity that is responsible for 4E-BP1 phosphorylation and 6-4E-BP1 formation. Caution is appropriate in interpreting our data, as mitotic kinase inhibition can cause mitotic slippage and exit from the mitotic phenotype. Considerable effort by our group was devoted to evaluating AURKα and AURKβ as potential 4E-BP1 kinases, because AURK inhibitors (e.g., VX-680, MK-5108, and AZD-1152) also reduce 4E-BP1 hyperphosphorylation during mitosis. This was reversible, however, by cotreatment with MG132 to prevent APC/C-mediated mitotic egress, and we have no evidence that AURKs are directly responsible for 4E-BP1 phosphorylation.
In contrast, there is considerable evidence from this study and others (10,16) to indicate that CDK1/CYCB1 is a bona fide kinase for 4E-BP1.

This study suggests an alternative pathway for CDK1/CYCB1-regulated cap-dependent translation during mitosis (Fig. 6). We find that mitotic 4E-BP1 is highly phosphorylated at the priming residues T37 and T46 in pH3\(^{+}\) cells, which runs counter to what would be predicted if cap-dependent translation is reduced during mitosis through an mTOR-related mechanism. The high-molecular-mass δ-4E-BP1 isoform is specific to mitosis, and our data indicate that this results from CDK1-mediated phosphorylation. Although δ-4E-BP1 can form under mitotic conditions in which mTOR is inhibited, it seems likely that mTOR cooperates with CDK1/CYCB1 to generate the mitotic δ-4E-BP1 by phosphorylating lower molecular mass ε-4E-BP1 isoforms that may be precursors to the δ-4E-BP1 isoform. Another limitation to our study is that we measure only 4E-BP1 phosphorylation but not δ-4E-BP1 dephosphorylation or turnover. These are likely to affect steady-state p4E-BP1 levels as well.

Our findings contrast with studies suggesting that loss of mTOR activity leads to inhibition of mitotic eIF4G cap-association and cap-dependent translation. We see cap-dependent protein translation is sustained during mitosis using a pulse flow cytometry approach. Pharmacological (4E1RCat) cap-dependent translation inhibition provides evidence that this effect is generalizable. AHA pulse labeling allows direct measurement of translation in mitotic cells, which avoids confounding issues stemming from bulk culture measurements. Although most mitotic translation was cap-dependent in all of the cell lines tested by AHA uptake, differences in relative mitotic and interphase translation were present between cell lines. Like \(^{35}S\)methionine incorporation studies, AHA incorporation measurements require incubation of cells in low-methionine media.

We suspect that technical issues, which have only recently been resolved, explain differences between our studies and those of others. Measurement of mitotic protein translation (both cap-dependent and -independent) has relied on separation of mitotic and interphase cells in bulk culture, for example, using nocodazole-induced mitotic enrichment. We confirm that nocodazole inhibits mitotic translation for synchronized 293 cells. This has been ascribed by Coldwell et al. (15) to inhibitory phosphorylation of eIF2 and eIF4GII by nocodazole downstream to 4E-BP1 regulation. This is consistent with our findings that nocodazole both promotes δ-4E-BP1 and inhibits mitotic translation. We have not tested other mitotic-arrest compounds (e.g., paclitaxel) to determine if...
they have similar limitations. A second technical challenge is that mitotic cells represent a small fraction of the total cell population. Interphase contamination with interphase cells is nearly inevitable in mitotic enrichment protocols and will dramatically alter conclusions, such as the role of mTOR in regulating 4E-BP1 during mitosis. In our experience, flow cytometry can help to resolve this dilemma by directly measuring mitotic status (pH3(10) or pMPM2 status) in cells while simultaneously determining translation regulator status, such as p4E-BP1 T37/T46. Finally, newly developed classes of cap-dependent translation inhibitors such as 4E1RCat now allow direct determination of cap-dependent translation. When used in combination with AHA incorporation, direct measurement of mitotic cap-dependent translation can be determined.

Both nocodazole and PP242 are nonetheless important inhibitors to measure 4E-BP1 phosphorylation and translation during mitosis. As indicated, nocodazole does not interfere with δ-4E-BP1 formation and is useful for accentuating mitotic regulation of 4E-BP1. mTOR regulates translation through ribosomal biosynthesis as well as direct phosphorylation of translation machinery components downstream from 4E-BP1, such as eIF4B (49) and eEF2 elongation factor (50). Further, eIF4B interacts with mTORC1 (51) and mTOR regulates translation through ribosomal biosynthesis as well as direct phosphorylation of translation machinery components downstream from 4E-BP1. mTOR regulates translation through ribosomal biosynthesis as well as direct phosphorylation of translation machinery components downstream from 4E-BP1 (49) and eEF2 elongation factor (50). Interphase 4E-BP1 is inhibited by mTORC1 kinase, whereas CDK1/CYCB1 is primarily responsible for δ-4E-BP1 inactivation during mitosis.

Cap-dependent translation of preformed mRNAs provides rapid regulation of gene expression that may be required for short-lived cellular responses, such as transit through mitosis. These changes generally cannot be accurately measured by standard mRNA expression techniques. Mounting evidence suggests that dysregulated cap-dependent translation from aberrant P38K–Akt–mTOR and MEF–RAF–MEK–ERK signaling contributes to cancer cell transformation (3, 52). Regardless of the contribution of activated cap-dependent translation to cancer cell transformation, such as in MCV-positive MCC, our findings point toward the possibility that combined mTOR and CDK1/CYCB1 inhibition may prove useful for cancer treatment, particularly for mTOR inhibitor-resistant cancers.

Materials and Methods

Plasmids, antibodies, primers, and standard methods are described in SI Materials and Methods.
reaction was then stopped by adding 10 μL of luciferase lysis buffer to the mixture. Translation was measured as firefly luciferase activity.

Nascent Protein Synthesis Analysis. BJ-T ST stable cells were labeled with an azide-linked methionine analog AHA (Life Technologies) at 25 μM for 45 min in the presence or absence of PP242 (5 μM), followed by mitotic shake-off to separate mitotic cells and interphase cells. To analyze mitotic cap-dependent translation in U2OS and HeLa cells, cells were arrested at the G2/M boundary by 10 μM RO-3306 treatment for 24 h (34). After 30 min of RO-3306 removal, cells were labeled with AHA (25 μM) for 90 min in methionine-depleted DMEM (Corning Cellgro) after optimization of preexperiments. Translation inhibitors [4E1RCat (50 μM) or CHX (100 μg/mL)] or DMSO (0.1%) were added to cells with AHA. Cells were trypsinized and fixed in 10% (vol/vol) formalin for 5 min. Fixed cells were permeabilized in PBS containing 0.1% saponin and 1% BSA for 30 min at room temperature. Cells were harvested and labeled with the Alexa Fluor 488 alkyne using the Click-it cell reaction buffer kit (Life Technology). FISH analysis in cells was analyzed by flow cytometry as a measure for nascent protein synthesis in interphase and mitotic cells.

Statistical Analysis. One-sided t test was performed for densitometric analysis of mGTP pulldown assays and two-sided t test (unequal variances) for in vitro translation assays. A P value less than 0.05 was considered to be significant.

ACKNOWLEDGMENTS. We thank Susanne Lens and Rutger Hengeveld for access to unpublished aurora kinase analyses, and Ioanna Tzani, Gary Loughran, and John Atkins, University of Cork, for access to unpublished ribosomal profiling studies. The authors also thank Susanne Lens, Nahum Sonenberg, and Chris Bakkenist for helpful scientific suggestions; Wei Qian for technical assistance; Jing Hu for providing reagents for cap-dependent translation analysis; Nahum Sonenberg for providing 4E-BP1 knockout MEFs used in unpublished comparative studies; and Joe Zavulin and Missy Mazzoli for help in writing the manuscript. This work was supported by NIH National Cancer Institute Grants R01CA136806, CA136363, and CA170354 and American Cancer Society Professorships (to P.S.M. and Y.C.). M.S. was supported in part by University of Pittsburgh Skin Cancer Specialized Program of Research Excellence (SPORE) Grant CA12197305. Flow cytometry was performed in the University of Pittsburgh Cancer Institute (UPCD) Cytometry Facility, which is supported in part by NIH Grant P30CA47904.

1. Mamane Y, Petroulakis E, Lebaquer O, Sonenberg N (2006) mTOR, translation initiation and cancer. Oncogene 25(48):6416–6422.
2. Hsieh AC, et al. (2010) Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to transcriptional control via 4EBP-1/4E translation. Cancer Cell 17(3):249–261.
3. She JQ, Wu Z, Pei X, Xie L, Ziegler H, Ziegler T (2011) 4E-BP1 as a key Akt downstream target of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell 18(1):39–51.
4. Wang X, Proud CG (2011) mTORC1 signaling: What we still don’t know. J Mol Biol Cell 34(4):206–220.
5. Arneggi F, et al. (2007) 4E-binding protein T: A key molecular “funnel factor” in human cancer with clinical implications. Cancer Res 67(16):7551–7555.
6. Sabatini DM (2006) mTOR and cancer: Insights into a complex relationship. Nat Rev Cancer 6(9):729–734.
7. Burne PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM (1998) RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci USA 95(4):1342–1347.
8. Gingras AC, et al. (2001) Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev 15(21):2852–2864.
9. Herbert TP, Tee AR, Proud CG (2002) The extra cellular signal-regulated kinase pathway phosphorylates the p70 S6 kinase 1 at multiple sites. J Biol Chem 277(13):11591–11596.
10. Hesoom KJ, Kampell A, Mellett H, Denton RM (2001) Cell cycle-dependent phosphorylation of the translational repressor eIF-4E binding protein 1 (4E-BP1). Curr Biol 11(17):1374–1377.
11. Shang ZF, et al. (2012) 4E-BP1 participates in maintaining spindle integrity and genome stability via interaction with PLK1. Cell Cycle 11(18):3463–3471.
12. Shin S, et al. (2014) Glycogen synthase kinase-3β specifically regulates protein synthesis and cell proliferation through the regulation of translation initiation factor 4E-binding protein 1. Oncogene 33(13):1690–1699.
13. Prescott DM, Bender MA (1962) Synthesis of RNA and protein during mitosis in mammalian tissue culture cells.Proc Natl Acad Sci 48(12):2682–2684.
14. Konrad CG (1963) Protein synthesis and RNA synthesis during mitosis in animal cells. J Cell Biol 19:267–277.
15. Coldwell MJ, et al. (2013) Phosphorylation of p70S6K and 4E-BP1 is required in response to nocodazole treatment: A reappraisal of translation initiation during mitosis. Cell Cycle 12(23):3615–3628.
16. Greenberg VL, Zimmer SG (2005) Paclitaxel induces the phosphorylation of the eukaryotic translation initiation factor 4E (4E-BP1) by a Cdk1-dependent mechanism. Oncogene 24(30):4851–4860.
17. Feng H, Shuda M, Chang Y, Moore PS (2008) Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319(5866):1096–1100.
18. Schrama D, Ugurel S, Becker JC (2012) Merkel cell carcinoma: Recent insights and new treatment options. Curr Opin Oncol 24(2):141–149.
19. Chang Y, Moore PS (2012) Merkel cell carcinoma: A virus-induced human cancer. Annu Rev Pathol 7:123–144.
20. Spurgeon ME, Lambert PF (2013) Merkel cell polyomavirus: A newly discovered human virus with oncogenic potential. Virology 453(1):118–130.
21. Shuda M, Kwon HJ, Feng H, Chang Y, Moore PS (2011) Human Merkel cell polyomavirus small T antigen is an oncprotein targeting the 4E-BP1 translation regulator. J Clin Invest 121(9):3632–3634.
22. Shuda M, Chang Y, Moore PS (2014) Merkel cell polyomavirus-positive Merkel cell carcinoma requires viral small T-antigen for cell proliferation. J Invest Dermatol 134(5):1479–1481.
23. Kwon HJ, et al. (2015) Restricted protein phosphorylation 2A targeting of Merkel cell polyomavirus small T antigen. J Virol 89(9):4191–4200.
24. Kwon HJ, et al. (2013) Merkel cell polyomavirus small T antigen controls viral replication and oncoprotein expression by targeting the cellular ubiquitin ligase SCFFb7. Cell Host Microbe 14(2):125–135.
25. Verhaegen ME, et al. (2014) Merkel cell polyomavirus small T antigen is oncogenic in transgenic mice. J Invest Dermatol 10,1038/jid.2014.446.
26. Gingras AC, et al. (1999) Regulation of 4E-BP1 phosphorylation: A novel two-step mechanism. Genes Dev 13(11):1422–1437.