Role of Interleukin-6 in Prediction of Early Complications After Minimally Invasive Oesophagectomy—a Pilot Study

Sivaraman Kumarasamy1 · Hemanth Kumar1 · Vishal Sharma2 · Harshal Mandavdhare2 · Sant Ram3 · Harjeet Singh4

Received: 2 July 2022 / Accepted: 22 March 2023 / Published online: 29 March 2023
© The Author(s), under exclusive licence to Indian Association of Surgical Oncology 2023

Abstract
Infectious complications following oesophagectomy are associated with significant morbidity. Early prediction of these complications may mitigate significant morbidity and mortality. Patients undergoing minimally invasive oesophagectomy for carcinoma oesophagus between January 2019 and June 2020 were included in the study. All patients underwent standard preoperative investigations and preparation. Post-operative complications including infectious complications were recorded. Association of post-operative serum interleukin-6 (IL-6) levels with post-operative complications were analysed. A total of twenty-two participants were included in the study (median age; 51 years, 13 (%) male). The tumour site was middle 1/3rd of oesophagus in 13 (59.1%), lower 1/3rd of oesophagus in 9 (40.9%). The tumour histology was squamous cell carcinoma in all patients. Eight (36.4 %) patients developed major complications and five of them developed anastomotic leak. IL-6 levels were significantly higher on POD 3 in patients who developed major complications (p = 0.009) and anastomotic leak (p = 0.031). At receiver operating characteristic curve (ROC curve) analysis, an IL-6 cut-off level of 36.4 pg/ml on POD 3 yielded a sensitivity of 87% and a specificity of 79% for the prediction of major complication and cut-off level of 44.3 pg/ml on POD 3 yielded a sensitivity of 80% and a specificity of 82% for the prediction of anastomotic leak. A high post-operative IL-6 level helps in the prediction of major complications and cervical oesophagogastric anastomotic leak.

Keywords Oesophageal cancer · IL-6 · Complication · Anastomotic leak · MIE

Introduction
Oesophagectomy is associated with significant morbidity. Respiratory complications, anastomotic leak, systemic inflammatory response syndrome (SIRS), sepsis are the most serious complications following oesophagectomy. Even though minimally invasive oesophagectomy (MIE) were associated with less blood loss and decreased length of stay but pulmonary complications and anastomotic leak were comparable with open techniques [1]. Early prediction of patients at high risk for developing complications helps in clinical decision making and directed therapy thereby improving their outcome.

Various markers have been investigated for their ability to predict complications after oesophagectomy. Among these different markers, serum albumin, C-reactive protein and interleukin-6 (IL-6) are regarded as the most favourable prognostic markers available. Only few studies have assessed the predictive value of IL-6 for early diagnosis of post-operative systemic inflammatory response syndrome (SIRS), pneumonia, gastroesophageal anastomotic leakage and pulmonary complications [2–5]. These studies have heterogenous study population, including major abdominal surgery for both oesophageal and gastric malignancies, thoracic surgeries for lung, pleura and oesophagus.

So in this prospective study, we planned to evaluate the feasibility of IL-6 as a predictive biomarker in the
early prediction of complications after minimally invasive oesophagectomy (MIE) for oesophageal cancer.

Methods

Study Design and Participants

This is a single-centre prospective study performed at a tertiary care institute in North India between January 2019 and June 2020. The study was approved by the institutional ethical committee. All participants gave written informed consent. All procedures followed were in accordance with the ethical standards and with the Helsinki Declaration of 1975, as revised in 2008. Consecutive patients of biopsy-proven carcinoma of the middle or lower third of oesophagus including gastroesophageal junction (GEJ) tumour were assessed for inclusion. Patient demographic characteristics including comorbidities were recorded for all included patients. All patients underwent upper gastrointestinal endoscopy and staging was done using contrast-enhanced computed tomography (CECT) of the neck, chest and abdomen. After staging, locally advanced/advanced cT3 N+ patients will be subjected to neoadjuvant chemoradiotherapy (NACRT) in the form of platinum/taxane doublet + 40 Gy/20# over 4 weeks. The restaging was done using CECT neck, chest and abdomen, 6–8 weeks after completion of NACRT. Patients with poor performance status, unresectable disease, previous thoracic surgery, conversion to open thoracotomy and those who refused consent were excluded.

Surgical Procedure

Oesophagectomy was done using McKeown minimally invasive oesophagectomy (MIE). First, mobilisation was done via video-assisted thoracoscopic surgery (VATS)—right thoracoscopic approach in the prone position. The abdominal dissection was done via laparoscopic or open approach as per the surgeons’ discretion. Reconstruction was done using gastric conduit with a left cervical oesophago-gastric anastomosis in all patients using hand sewn or stapled technique as per surgeon’s discretion. A jejunostomy tube was placed in all patients for enteral nutrition.

Post-Operative Management and Outcome Assessment

Patients were encouraged for early ambulation and chest physiotherapy. They were started on enteral nutrition via jejunostomy tube on the first post-operative day (POD 1). Daily chest drain output volume and character were monitored and recorded. Chest drain was removed when output was < 50 ml/day.

Patients are examined for infectious and anastomotic leak complications and the findings were recorded. The complications occurring during the hospitalisation or within 30 days of the surgery were graded as per Clavien-Dindo classification into minor (grade I and II) or major (III and above) [6].

Biochemical IL-6 Analyses

Blood samples were collected from the patient in an EDTA vial of 3 ml before surgery on admission (preoperative) and then post-operatively on the morning of POD 1 and POD 3. Samples centrifuged and plasma were transferred to a polypropylene tube and stored in a freezer at –82 °C. The assays were performed in duplicate using human IL-6 ELISA kit.

Statistical Analysis

Data obtained from the study including all the demographic, operative and tumour characteristics, post-operative complications, Clavien-Dindo classification, preoperative, POD 1 and POD 3 values of IL-6 values were entered directly into the SPSS for analysis. Statistical analysis was performed using SPSS, version 26 for Windows (SPSS Inc., Chicago, IL.). Data for the clinical characteristics of patients (age, BMI, operative time, blood loss, serum albumin, CRP and IL-6) are expressed as median (IQR). Chi-square test was performed to determine the association between categorical variables. The clinical characteristics of the patients were compared using the Mann-Whitney U test according to the variable type and the data distribution. The Mann-Whitney U test was performed for two independent groups. The ROC analysis was performed to evaluate the diagnostic accuracy of IL-6. The cut-offs were determined along with sensitivity and specificity. Area under the curve (AUC) was computed and 95% confidence interval (CI) was estimated. $P < 0.05$ was taken as statistical significance for all the analyses.

Results

Patient Demographic and Tumour Characteristics

A total of 29 patients were evaluated for inclusion. One patient with poor performance status, one patient with conversion to open thoracotomy, two patients with unresectable disease on thoracoscopy and three patients with technical errors on sample storage were excluded. Thus, a total of 22 patients were included in the final analysis. The demographic and tumour characteristics are summarised in Table 1. The median (IQR) age was 51 (45, 60) years. The tumour site was middle 1/3rd in 13 (59.1%), lower 1/3rd of oesophagus in 9 (40.9%). The tumour histology was squamous cell carcinoma in all patients.
Intraoperative Characteristics

Total of 13 patients underwent totally minimally invasive oesophagectomy (TMIE) and 9 patients underwent hybrid minimally invasive oesophagectomy (HMIE) where abdominal dissection was done by open approach. The median (IQR) operative time was 270 min (240,300) and operative blood loss was 125 ml (100,300) (Table 1).

Post-Operative Outcome

Twelve patients developed post-operative complications and 8 patients had major Clavien – Dindo complications (Table 2). The cervical oesophagogastric anastomotic leak occurred in 5 (22.7%) patients. There was one post-operative mortality on POD 9 due to conduit perforation. Four patients underwent re-exploration. The median (IQR) post-operative hospital stay was 22 (19, 30) days.

Proinflammatory Markers and Complications

The relation of proinflammatory markers with post-operative complications and anastomotic leak is summarised in Table 3. Preoperative levels of IL-6, CRP and serum albumin were similar among the no major complication and major complication group. The median level of IL-6 was significantly higher in the major complication group on POD 3 (46.88 pg/mL vs 15.34 pg/mL; p = 0.009) (Fig. 1A). The median IL-6 levels in patients who developed cervical anastomotic leak were significantly higher on POD3 compared to no anastomotic leak group on POD 3 (48.28 pg/mL vs 19.4 pg/mL; p = 0.031) (Fig. 1B). Using an ROC curve, an IL-6 cut-off level of 36.4 pg/ml on POD 3 yielded a sensitivity of 87% and a specificity of 79% for the prediction of major complication (AUC: 0.839; 95% CI: 0.64–1.0) (Fig. 2A). An IL-6 cut-off level of 44.3 pg/ml on POD 3 yielded a sensitivity of 80% and a specificity of 82% for the prediction of cervical anastomotic leak (AUC: 0.824; 95% CI: 0.642–1.0) (Fig. 2B).

Discussion

In our prospective observational study, we evaluated the role of IL-6 in predicting the complication after MIE for carcinoma oesophagus. In our study, major complications (grades III–V) have been reported in nine patients (40.9%) and cervical anastomotic leak in five patients (22.7%). The raised IL-6 level on POD 3 helped in predicting major complications and cervical anastomotic leak.

There is a paucity of studies using proinflammatory markers as a predictor of complications after oesophageal resection for carcinoma oesophagus and most of these are retrospective studies. Therefore, in the present study, we evaluated the role of proinflammatory markers in predicting the complications after MIE for carcinoma oesophagus prospectively. Despite improvements in patient selection, preoperative staging, surgery and perioperative care, a significant number of patients develop complication after oesophagectomy. There is an overproduction of inflammatory mediators in the perioperative period which has been shown to predict the development of post-operative complications.
Various proinflammatory markers like serum albumin, CRP, procalcitonin and IL-6 have been studied in predicting complications after oesophagectomy with ambiguous results.
Only few studies were able to predict post-operative complications. The ambivalent nature of these results paved the way for further research into these proinflammatory markers.

Serum IL-6 response to surgical trauma has been characterised extensively. Surgical stress induces a rise in circulating IL-6 within hours of surgery and may remain elevated up to 72 h in uncomplicated cases [10]. In one study, serum IL-6 value of 310 pg/ml on POD 1 showed a sensitivity of 90% and specificity of 58% in diagnosing post-operative sepsis [11]. In another study, they did sequential measurements of serum IL-6 levels in patients who had undergone surgical resection of the oesophagus to differentiate between sepsis and post-operative SIRS. Persistently elevated serum IL-6 levels until POD 5 were used to predict and differentiate sepsis from post-operative SIRS [12]. In another study, high IL-6 levels on POD 1 recognised high-risk patients for complications even before changes in CRP levels [2].

In our study, IL-6 level on POD 3 was statistically higher in the complication group. To establish a threshold for the relationship between IL-6 and the development of major complications and cervical anastomotic leak after MIE, the receiver operator characteristics (ROC) curve was plotted. A threshold value of IL-6 levels to predict major complications (36.4 pg/ml) providing a sensitivity (87%) and specificity (79%) with a diagnostic accuracy of 0.839 and cervical anastomotic leak (44.3 pg/ml) providing a sensitivity (80%) and specificity (82%) with a diagnostic accuracy of 0.824. The early detection of complications is clinically important for the initiation of early goal-directed therapy to improve the patients’ outcome. Elevated IL-6 levels on POD 3 alarm further evaluation for detection and management of complications.

Though the study is limited by a small number of study population and single centre, it showed a significant association of IL-6 level in predicting early complication in minimally invasive oesophagectomy. Early initiation of directed therapy in these high-risk patients might help in improving clinical outcomes. However, a multicentre study with a large sample size is required to validate our results.

References

1. Watanabe M, Baba Y, Nagai Y, Baba H (2013) Minimally invasive esophagectomy for esophageal cancer: an updated review. Surg Today 43(3):237–244
2. Rettig TC, Verwijmeren L, Dijkstra IM, Boerma D, Van De Garde EM, Noordzij PG (2016) Postoperative interleukin-6 level and early detection of complications after elective major abdominal surgery. Ann Surg 263(6):1207–1212
3. Fink-Neuboeck N, Lindemann B, Jagic S, Maier A, Riedl R, Weinberg AM et al (2016) Clinical impact of interleukin 6 as a predictive biomarker in the early diagnosis of postoperative systemic inflammatory response syndrome after major thoracic surgery: a prospective clinical trial. Surg. 160(2):443–453
4. Song J-Q, He Y-Z, Fang Y, Wu W, Zhong M (2017) The predictive value of plasma cytokines on gastroesophageal anastomotic leakage at an early stage in patients undergoing esophagectomy. J Thorac Dis 9(8):2544
5. D’Journo XB, Michelet P, Marin V, Diesnis I, Blayac D, Daddodi C et al (2010) An early inflammatory response to oesophagectomy predicts the occurrence of pulmonary complications. Eur J Cardiothorac Surg 37(5):1144–1151
6. Clavien PA, Barkun J, De Oliveira ML, Vauthey JN, Dindo D, Schulick RD et al (2009) The Clavien-Dindo classification of surgical complications: five-year experience. Ann Surg 250(2):187–196
7. Ryan AM, Hearty A, Prichard RS, Cunningham A, Rowley SP, Reynolds JV (2007) Association of hypoalbuminemia on the first postoperative day and complications following esophagectomy. J Gastrointest Surg 11(10):1355–1360
8. Hoeboer SH, Groeneveld AJ, Engels N, van Genderen M, Wijnhoven BP, van Bommel J et al (2013) Risk assessment using a novel score to predict anastomotic leak and major complications after oesophageal resection. J Gastrointest Surg 16(6):1083–1095
9. Noble F, Curtis N, Harris S, Kelly JJ, Bailey IS, Byrne JP et al (2012) Risk assessment using a novel score to predict anastomotic leak and major complications after oesophageal resection. J Gastrointest Surg 16(6):1083–1095
10. Biffl WL, Moore EE, Moore FA, Peterson VM (1996) Interleukin-6 in the injured patient. Marker of injury or mediator of inflammation? Ann Surg 222(5):647
11. Mokart D, Merlin M, Sannini A, Brun J, Delpero J, Houvenaeghel G et al (2005) Procalcitonin, interleukin 6 and systemic inflammatory response syndrome (SIRS): early markers of post-operative sepsis after major surgery. Br J Anaesth 94(6):767–773
12. Durila M, Bronsky J, Harusiak T, Pazdro A, Pechova M, Cvačová K (2012) Early diagnostic markers of sepsis after oesophagectomy (including thromboelastography). BMC Anesthesiol 12(1):12

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.