Risk Factors, Etiology and Treatment Modalities for Localized Alveolar Ischemia (The So-called Alveolar Osteitis): A Comprehensive Critical Review

Mosaad Abdaljawwad Khalifah
Oral and Maxillofacial Surgery Department, Kafr El-Sheikh University, Egypt

ABSTRACT
Dry socket is a typically common post-odontectomy complication. Although blood clot disintegration is known to be the cause of the condition due to fibrinolysis, the exact pathogenesis of the clot loss is still poorly understood, and agreement is lacking regarding the relative merits of various treatment methods. The aim of the current review therefore was to perform a comprehensive critical review after qualitatively analyzing a large body of the literature in order to provide the practitioners with a more thorough insight for pathogenicity, risk factors and treatment.

In the current review, and in regards with risk factors; age, surgical trauma, smoking, oral contraceptives and poor oral hygiene seemed to be a major risk factors. In the treatment domain, Ozone based therapies were considered the most effective curative treatments followed by curettage. With regard to palliation, the most effective treatments were local anaesthetics, Zinc oxide eugenol after saline irrigation and. Although healers group provided a better healing promotion, but that does not necessitate a relevance with pain relief.

To conclude, I hypothesize that ischemia causes the blood clot loss, and I propose renaming the condition “localized alveolar ischemia”.

Keywords: Alveolar, Ischemia, Osteitis, Treatment, Pathogenesis, Terminology

Introduction
Alveolar osteitis (AO) is one of the most common complications of dental extraction (1). Despite multiple attempts to introduce a term that is more suitable than “dry socket” (2), “dry socket” remains the most widely used term, along with “alveolar osteitis”(1). Although Birn’s suggestion(3) that OA results from blood clot disintegration has gained wide acceptance, the exact etiology is still poorly understood (4) (5). Pain is the most important aspect of OA according to Fazakerlev and Field (6), and although a variety of treatment methods have been attempted to treat or alleviate this pain, considerable controversy exists regarding their relative efficacies (4)(7)(8). The aim of the current review was to critically address the available literature concerned with risk factors and treatment methods in order to provide dentists with a comprehensive overview of that common complication particularly in regards with its treatment modalities.

1. Nomenclature
Since 1896 when Crawford has introduced the term “dry socket” (5), this term is still widely used. Other term that is also commonly used is “alveolar osteitis”. However, other terms including “localized osteitis”, “alveolitis”, “localized alveolar osteitis”, “alveolitis sicca dolorosa”, “alveolalgia”, “necrotic socket”, “septic socket” did not gain the same acceptance even the term “fibrinolytic alveolitis” that was proposed by Birn. (3,7–9)

2. Definition
A variety of definitions has been reported. Blum considered “postoperative pain inside and around the extraction site, which increases in severity at any time between the first and third day after the extraction, accompanied by a partial or total disintegrated blood clot within the alveolar socket with or without halitosis” as a definition for that condition(8). Other identifiers for defining the condition included greyish discharge (10), inflamed gingival margin (11), low grade fever and ipsilateral regional lymphadenopathy (12,13); however, did not gain the same acceptance such as pain and clot loss either complete or partial.

3. Pathophysiology
Birn hypothesized that blood clot disintegration due to increased local fibrinolysis is the cause of the condition (3,14,15). The direct or indirect activation of plasminogen pathway was supposed as the underlying mechanism for fibrinolysis. While direct activators are produced by alveolar bone cells due to trauma, indirect activators are produced by bacteria (16). However, the initial causative mechanism for initiation of plasminogen activation and in turn blood clot disintegration is still not understood.
4. Risk factors

4.1 Age: Since AO is associated with the age range from 20 to 40 years (17,18) with a peak of incidence at 30 to 34 years (3), various authors agree that age is a major risk factor for the development of AO. Lehner tried to correlate that age range to the period of third molar eruption (18), nevertheless, Fridrich and Olson refuted that concept relying on the fact that third molar concept does not provide explanation for the total period from 20 to 40 years (12). Almost no cases were reported before 18 or after 50 years of age (17,18).

4.2 Gender: Gender as a risk factor was an area of debate. Although Cohen and Simecek (19); and MacGregor(17) associated AO increased incidence with female gender even if were not on contraceptives, Larsen (20) and Colby (21) denied that correlation. Reports before the 1960s shows no gender predilection (18,22). Schow reported that no difference in incidence between males and females who were not on contraceptives (23). Catellani showed similar results as Schow (24). The author reanalyzed data offered by Almeida et al (25) using Chi square with Yates correction and Fisher’s exact tests and found out a statistically insignificant difference between males and females not taking oral contraceptives (Chi square = 2.261, the two-tailed P value = 0.1327, the two-tailed P value of Fisher’s exact test = 0.1235).

4.3 Surgical Trauma: The greater the surgical trauma, the higher the incidence of AO (3,7,9,21,26–29). That might be the reason behind the higher incidence of AO in cases of surgical extraction, third molar extraction (30,31) and lack of experience in extraction or oral surgery (7,20,32,33).

4.4 Oral Contraceptives: Despite the fact that Larsen did not consider oral contraceptives as a risk factor for higher incidence of AO (20), oral contraceptives use have been associated with the occurrence of AO (23,25,34–37) and in a dose dependent manner (38). Various authors agree that the fibrinolytic effect of oral contraceptives is responsible for the increased incidence of AO (24,35,39,40).

4.5 Smoking: Smoking is a well-accepted risk factor by several authors (8,28,36,41,42). Sweet and Butler noticed a dose dependent risk of increased AO incidence (35).

4.6 Oral Hygiene: Bacterial infection could lead to indirect activation of fibrinolysis and hence could be a risk factor that gained some acceptance (38,43,44). Other risk factors such as systemic diseases (26), local anaesthetics with vasoconstrictors (18), remaining bone fragments (3) and saliva (45) have been suggested, but no scientific evidence to support these claims.

5. Treatment:

5.1 Alvogyl (alv): It is a combination of eugenol which serves as an obtundent, iodoform as an antimicrobial and butamen as an anesthetic. Although alvogyl was an accepted treatment modality by several authors (7,46–48), other authors opposed its use (49,50).

5.2 Zinc oxide eugenol pack of freshly prepared mix (ZOE) Zinc oxide eugenol is a commonly used treatment agent (4,8,46,47,51–55). It is almost always applied after irrigating extraction socket with a normal saline.

5.3 Saline irrigation: Irrigating extraction socket with normal saline as a sole agent was scarcely recorded in the literature as a treatment for the condition. Up to the best of my knowledge, only two papers could be addressed in this regard (51,55).

5.4 G.E.C.B. Pastille: These pastilles are composed of 3% eugenol, 3% guaiacol (a precursor to eugenol) and 1.6% chlorobutanol (a weak local anaesthetic) as effective ingredients, and Balsam Peru as a base, and hence was its name. Haghighat et al advocated its use (54).

5.5 SalicCept Patch: Since consisting of Acemannnan hydrogel which is obtained from the clear inner gel of Aloe Vera, it functions as a healing promotor, immune-stimulant, reticuloendothelial function enhancer, antiviral, antibacterial and anti-inflammatory. Kaya et al recommended it (48).

5.6 Plasma rich in growth factors (PRGF): PRGF contains fibrinogen and platelets, so it promotes wound healing and osteogenesis as well. Of the growth factors found in PRGF are Platelet-derived Growth Factor (PDGF) and Tissue Growth Factor (TGF). It was described as a treatment by Pal et al (55) and as a preventive measure by Haraji et al (56).

5.7 Topical anesthetics: Burgoyne et used an antiseptic and anesthetic gel containing 2.5% prilocaine and 2.5% lidocaine and supported its use over zinc oxide eugenol (53).

5.8 Neocone : It is a mixture of the topical antibiotics polymyxin B sulfate (for Gram negative bacterial infection), tyrothricin (for Gram positive bacterial infection) and neomycin sulfate (for streptomycin-resistant bacteria); in addition to tetracaine hydrochloride (anaesthetic). It was used by Faizel et al as a recommended treatment (4).
5.9 **Vitamin C**: It is a well-known antioxidant and wound healing promoter which reduces infection and inflammation. It was proposed by Halberstein et al in the tablet form after performing curettage and irrigation of the socket. They reported a more than 50% remission by 2 days of treatment and a 100% remission by the fourth day (57).

5.10 **Low level laser therapy (LLLT)**: A 808 nm, 100-mW, 60 seconds and 7.64 J/cm² continuous mode Gallium-Aluminum arsenide diode laser has an antimicrobial potential and wound healing promotion capabilities; and thus, it was recommended by Kaya et al (48).

5.11 **Curettage (Cur)**: Although socket curettage and irrigation was an accepted maneuver by several authors (48,57–60), it was contraindicated by others (61–63). Khalifah MA (64) conducted a large prospective study in order to assess whether curettage is indicated or contraindicated and concluded that curettage is an accepted modality.

5.12 **Ozone gas (O₃)**: Medical grade Ozone is one treatment method that was advocated by Khalifah MA. Ozone has a potent germicidal action by both direct attack to the micro-organisms and by increasing the phagocytic capacity (65,66). Ozone increases Oxygen delivery to ischaemic tissues (67). Ozone is a powerful healer (68,69). O₃ is a recommended treatment by Khalifah MA (70).

5.13 **Ozonized water (OW)**: Mazánek et al (71) and Khalifah MA (70) supported OW as a treatment method.

5.14 **Ozonized oil (Oleozon) (Ole)**: Ole is an ozonized olive oil. Ole is recommended by Martinez-Abreu et al and by Khalifah MA (70).

Comparisons between two or more agents are scare in oral surgery literature (4). Nevertheless, Faizel et al recommended Neocone over alv and ZOE for a rapid and complete healing where they considered alv to be superior to ZOE and Neocone for initial pain relief (4). On contraire, Khalifah MA supported ZOE over alv (47). Although Pal et al advocated PRGF over ZOE with regards to healing, their study showed that ZOE was superior to PRGF in alleviating pain (55). Despite the fact that Kaya et al recorder better results for LLLT rather than those for alv, SalicCept and curettage, they considered alv and SalicCept to have the same results. It is worth noting that they performed curettage and irrigation for all patients (48).

On the other hand, Burgoyne et al recommended topical anaesthetic gel over ZOE (53). G.E.C.B. Pastilles were the treatment modality recommended by Haghighat over ZOE (54). Mazánek et al (71) supported Ole over alv. Khalifah MA concluded that Ozone in the gaseous form is the most potent form of ozone therapy. Although ozonized oil shows the weakest form, ozonized water had an intermediate potency (70).

Discussion

Since AO is by far one of the most common complication of odontectomy (3), a plethora of treatment protocols have been suggested to prevent and to treat this condition. However, results are quite controversial (46). Therefore, the author conducted the current review in order to provide a comprehensive critical qualitative analysis for a considered body from the literature for better understanding of the condition.

In regards with risk factors; age, oral contraceptives, surgical trauma, smoking and poor oral hygiene seemed to be major risk factors. AO is restricted with an age range of 18-50 years with a high incidence between 20 and 40 years and a peak of incidence at 30 to 34 years (3). This relationship could qualitatively be described as a somewhat steady increase of the incidence of AO between the age of 20 to 30 years, followed by a peak between 30 and 34 years before it steeply decreases between 34 to 40 years to end with a steady decrease to the age of 50 years. In more summarized description, it is an increase to reach a peak at thirties to decrease again. This scheme readily correlates with the that described by several authors (72) for the changes in Young’s modulus of elasticity with age. That means bone yields well at newborn and childhood period, followed by an adulthood period when it shows marked resistance to stresses to end again with somewhat yielding period as age increases.

Since extraction depends on socket dilatation, forces delivered to the bone should be well-withstood otherwise, undue compression of bone could result in ischemia. Resilient bone would readily yield and regain its previous condition as stress is removed. Age range related to the incidence of AO is that age range associated with marked bone stiffness (increased Young’s modulus of elasticity). The same principle could apply for surgical trauma as a risk factor. Fibrinolysis could account for considering oral contraceptives, poor oral hygiene as risk factors. Smoking might lead to poor circulation due to nicotine effect; and so, ischemia could issue.

Aging leads to increased bone porosity (73) and a decrease in bone toughness after the age of 35 years (74). As a result, porosity and increased microfractures on extraction are two factors to allow for channels through which circulation could have an access the blood clot and thus can maintain it. This could give reasons for the decreased incidence of
AO after the thirties. Moreover, Ritchie et al mentioned that by reviewing the national survey in their country, there is “one in two women and one in four men over the age of 50 suffers osteoporosis” (75). This might give account for the absence of AO cases over the age of 50 years.

Other risk factors are not supported by sufficient scientific evidence. Gender in particular should be precisely addresses away from the effect of oral contraceptives; and hence; the author does not consider gender to have a sufficient advocating scientific evidence as a risk factor.

Within the domain of treatment, the author grouped and categorized the reviewed treatment methods into seven categories. Obtundents are the first category where eugenol is the “main player “ in that group. Alv, ZOE and GECB are the members of that category. The second group is the group of the anaesthetic agents which include butamen, chlorobutanol, tetracaine and the alike drugs. The third group is the healers group and includes acemannan (Salicept), Vit C, LLLT and PRGF. This group promotes healing and could act as antimicrobial and anti-inflammatory. Antimicrobials are the fourth group and could have their effect by rehabilitating the extraction socket environment for better and faster healing by diminishing the bioburden. Normal saline acts as an osmolar that raises the saline content of the outermost layer of ES, and hence raising osmolarity at that side of ES which could ultimately lead to “recruiting” more blood through the ES walls. Enhanced circulation through the ES wall might have some role in eliminating the noxious substances and in providing that layer with nourishment and Oxygen. The sixth group consists of surgical curettage modality which depends on the removal of the existing socket walls to provoke bleeding in order to re-establish a new blood clot that would be capable of maintaining a more secure anatomical and physiological contact with the newly formed ES. The physiologic contact might be in the form of providing the clot with the necessary circulation which was previously prohibited in the case of the presence of the removed layer. The last group is Ozone dependent group which might rely on reversing the ischemic state that affected the bone of the socket. Members of this group are OW, Ole and O₂. The first two categories act on the free nerve endings within the bone by either denaturation or anaesthesia mechanisms respectively, thus it proceeds to eliminate pain and not to treat the pain source. The third and the fourth groups might have their effects by promoting healing. The fifth and the sixths categories depend on considering the outermost layer of the existing extraction socket wall as a barrier layer between the old blood clot and the inner layers of the extraction socket bone due to ischemia occurred in that layer as a result of failure to withstand the extraction forces. Therefore, saline was used in an attempt to reinvade that barrier layer with sufficient circulation in addition to removing the noxious and fibrinolytic substances liberated by the ischemic process. The last group is the direct anti-ischaemics in addition of possessing a potent germicidal and potent healing effects.

To re-summarize, there are three strategies where all reviewed treatments could accordingly be categorized under. The first strategy depends on direct addressing of the nerve and could be named as “the local analgesic strategy” and includes the first two categories mentioned here-above in the previous paragraph. The second strategy is “the healer strategy” and comprises the third and the fourth groups. The third strategy is “the anti-ischemic strategy” which consists of the fifth, the sixth and the seventh groups since saline osmolarity could help in enhancing perfusion and curettage removes the ischemic layer and on the other hand; OW, Ole and O₂ acts as reoxygenating agents. In the light of the current review, the recommendation of Neocone over ZOE in promoting healing made by Faizel et al (4) seems logic since Neocone contains multiple antimicrobials which promotes healing and anaesthetic, where ZOE acts only as a nerve obtundent. An outstanding finding in that study of Faizel et al (4) is that Neocone was superior to Neocone and ZOE for initial pain relief. In a study by Khalifah MA (47), he supported ZOE over alv after briefly irrigating the socket with 2mL of normal saline for only removing the debris and mentioned that Faizel et al used alv after irrigating the socket with warm normal saline in both alv and ZOE groups, but they did not record the amount of saline they used. In a similar manner, Pal et al (55) advocated PRGF over ZOE for healing promotion and the vice versa for pain relief and that could be logic from my point of view. Kaya et al (48) performed curettage and irrigation for all patients followed by applying different protocols for three groups all of which were healing promotion protocols and found out that Salicept was equivalent to alv where LLLT was better than alv and Salicept and curettage in healing promotion. The findings of Burgoyne et al (53) that a mixture of prilocaine and lidocaine topical anaesthetic performed better than ZOE which is only obtundent; and that findings of and Haghhighat et al (54) that GECB (which contains Eugenol and Eugenol precursor among other constituents) was superior than ZOE alone is accepted in the context of the current review as well. A worth noting hint is that healing promotion was independent of initial pain relief in two studies (4,55).

Khalifah MA conducted a series of studies structured on the same scheme, and so their results are quite comparable (47,51,64,70). Khalifah MA considered that patients of AO are a heterogenous group and should not be dealt with

http://www.aohdr.com
as one population and hence he divided AO patients into four populations (four groups) according a pain scale he introduced as group I for patients had KPS1 pain (mild pain group), group II for patients had KPS2 (moderate pain), group III for patients had KPS 3 (severe pain group) and group IV for patients had KPS 4 (agonizing pain group). Each group was then randomly divided into subgroups according to the treatment modality they received (47,51,64,70).

In addition, Khalifah MA set definitive criteria of for assessing treatment effectiveness to be curative, palliative or ineffective. On qualitatively comparing the results, we can conclude that the most effective curative treatments were as follows: ZOE after saline irrigation, Ole, I+O, O₃, and curettage for group I patients; Ole, O₃, and curettage for group II patients; and O₃ and curettage for group III and group IV patients. He recommended O₃ as a definitive therapy for AO. With regard to palliation, the most effective treatments were Alv for group I patients, ZOE after saline irrigation for group II patients, and I+O for group III and IV patients (47,51,64,70).

The wide controversy alleged to AO treatment could now be alleviated or even refuted as it could be a result of addressing heterogenous groups of patients according to Khalifah MA or an attempt to use one treatment out of the capabilities of its category or its strategy as depicted in the current review.

Although AO is accepted to be a result of interrupted healing (3) and its treatment is principally pain relief-based till healing resumed (6), the cause of healing interruption is still unknown (4,5). In the light of the current comprehensive review, and despite the fact that healers helped well in the attempt of reinitiating the healing process, some results showed that was irrelevant with pain relief. Moreover, local analgesics strategy could have a considered effect in alleviating pain, but that was a palliative role rather than a definitive curative task. Anti-ischemic strategy was the most effective in treating AO and it might be the only strategy targeted the core cause of AO development.

Analysis of risk factors and treatment modalities in addition to the above-mentioned deductions suggest that AO is a condition caused by ischemia in extraction socket walls and probably in particular, the outer most layer. The mechanism may well relate to the role of the ES walls in maintaining the blood clot “in-situ” and providing the necessary blood supply for it. If ES walls lacks the resiliency to withstand compressive forces applied during dental extraction, ischemia would be inevitable, leading to formation of some sort of barrier layer between the alveolar cancellous bone and the newly-formed blood clot, and in turn ultimately leading to clot disintegration and loss. In addition, release of chemicals because of ischemia might contribute to fibrinolysis blood clot disintegration. Thus, dry socket could be a condition of “Localized Alveolar Ischemia” (LAI) [the term I suggest for the condition] that results in fibrinolysis and blood clot loss and subsequent pain and delayed, slow-paced healing. This hypothesis seems to merit testing.

Conclusion

Dry socket (alveolar osteitis) results from blood clot disintegration. Until now, there has been no generally agreed on treatment of choice. In the current review, and in regards with risk factors; age, surgical trauma, smoking, oral contraceptives and poor oral hygiene seemed to be major risk factors. The former three factors could directly be related with ischemia development. However, the latter two factors could have a direct fibrinolytic effect. In the treatment domain, the most effective curative treatments were as follows: I+Z, Ole, I+O, O₃, and Cur for KPS1 patients; Ole, O₃, and Cur for group KPS2 patients; and O₃ and Cur for KPS3 and KPS4 patients. O₃ was the definitive therapy for “dry socket”. With regard to palliation, the most effective treatments were local anaesthetics and Alv for KPS1 patients, I+Z for KPS2 patients, and I+O for KPS3 and KPS4 patients. The findings suggest that ischemia is the pathogenic mechanism for “dry socket”; hence I propose renaming the condition “localized alveolar ischemia” (LAI).

Acknowledgements

I am deeply grateful to Dr. Barbara Gastel, Texas A&M University, for help in refining this paper.

Reference

1. Kolokythas A, Olech E, Miloro M. Alveolar Osteitis: A Comprehensive Review of Concepts and Controversies. Int J Dent [Internet]. 2010;2010:1–10. Available from: http://www.pubmedcentral.nih.gov/articlerender.cgi?artid=2905714&tool=pmcentrez&rendertype=abstract
2. Crawford J. Dry socket. Dent Cosm. 1896;38:929–31.
3. Birn H. Etiology and pathogenesis of fibrinolytic alveolitis (“dry socket”). Int J Oral Surg [Internet]. 1973;2:215–63. Available from: https://www.sciencedirect.com/science/article/pii/S0300975873800456
4. Faizel S, Thomas S, Yuvaraj V, Prabhu S, Tripathi G. Comparison Between Neocate, Alvogyl and Zinc Oxide Eugenol Packing for the Treatment of Dry Socket: A Double Blind Randomised Control Trial. J Maxillofac Oral Surg [Internet]. 2014;14(2):312–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26028852
5. Gowda GG, Viswanath D, Kumar M, Umashanker D. Dry Socket (Alveolar Osteitis): Incidence, Pathogenesis,
Review Article R-12

Prevention and Management. J Indian Acad Oral Med Radiol [Internet]. 2013;25(3):196–9. Available from: http://www.jaypeejournals.com/eJournals/ShowText.aspx?id=6534&type=FREE&typ=top&in=eJournals/images/JPLOGO.gif&IID=493&isPDF=YES

6. Fazakerley M, Field E. Dry socket: a painful postextraction complication (a review). Dent Update [Internet]. 1991;18:31–5. Available from: https://www.ncbi.nlm.nih.gov/pubmed/1936428

7. Alexander R. Dental extraction wound management: a case against medicating postextraction sockets. J Oral Maxillofac Surg [Internet]. 2000;58(5):538–51. Available from: https://www.ncbi.nlm.nih.gov/pubmed/10800910

8. Blum IR. Contemporary views on dry socket (alveolar osteitis): a clinical appraisal of standardization, aetopathogenesis and management: a critical review. Int J Oral Maxillofac Surg [Internet]. 2002;31:309–17. Available from: http://dx.doi.org/10.1054/ijom.2002.0263

9. Torres-Lagares D, Serrera-Figallo MA, Romero-Ruiz MM, Infante-Cossio P, García-Calderón M, Gutiérrez-Pérez JL. Update on dry socket: a review of the literature. Med Oral Patol Oral Cir Bucal [Internet]. [cited 2018 Jan 21];10(1):81-5-81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15627911

10. Thoma K. Oral Surgery. 5th ed. Saint Louis, Mo, USA: CV Mosby; 1969.

11. Hinde M, Gibbs A. The incidence of dry socket following the use of an occlusive dressing. J Dent. 1977;5(4):288–293.

12. Fridrich K, Olson R. Alveolar osteitis following surgical removal of mandibular third molars. Anesth Prog. 1990;37(1):32–41.

13. Vezzau PJ. Dental extraction wound management: medicating postextraction sockets. J Oral Maxillofac Surg. 2000;58(5):531–7.

14. Birn H. Bacteria and fibrinolytic activity in “dry socket. Acta Odontol Scand. 1970;28(6):773–783.

15. Birn H. Fibrinolytic activity of alveolar bone in “dry socket. ActaOdontologica Scand. 1972;30(1):23–32.

16. Lucas M, Fretto L, McKee P. The binding of human plasminogen to fibrin and fibrinogen. J Biol Chem. 1983;258(7):4249–4256.

17. MacGregor A. Aetiology of dry socket: a clinical investigation. Br J Oral Surg. 1968;6(1):49–58.

18. Lehner T. Analysis of one hundred cases of dry socket. Dent Pract Dent Rec. 1958;8:275–279.

19. Cohen ME, Simecek JW. Effects of gender-related factors on the incidence of localized alveolar osteitis. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology [Internet]. 1995 Apr 1 [cited 2018 Jan 22];79(4):416–22. Available from: http://www.sciencedirect.com/science/article/pii/S1079210405801209

20. Larsen P. Alveolar osteitis after surgical removal of impacted mandibular third molars: identification of the patient at risk. Oral SurgeryOralMedicine Oral Pathol. 1992;73(4):393–397.

21. Colby R. The general practitioner’s perspective of the etiology, prevention, and treatment of dry socket. Gen Dent. 1997;45(5):461–472.

22. Krogh HW. Incidence of Dry Socket. J Am Dent Assoc Dent Cosm [Internet]. 1937 Nov 1 [cited 2018 Jan 26];24(11):1829–36. Available from: http://linkinghub.elsevier.com/retrieve/pii/S037584513711013X

23. Schow S. Evaluation of postoperative localized osteitis in mandibular third molar surgery. Oral Surg Oral Med Oral Pathol. 1974;38(3):352–358.

24. Catellani JE. Review of factors contributing to dry socket through enhanced fibrinolysis. J Oral Surg [Internet]. 1979 Jan [cited 2018 Jan 26];37(1):42–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/363986

25. Almeida LE, Pierce S, Klar K, Sherman K. Effects of oral contraceptives on the prevalence of alveolar osteitis after mandibular third molar surgery: a retrospective study. Int J Oral Maxillofac Surg [Internet]. 2016 Oct 1 [cited 2018 Jan 22];45(10):1299–302. Available from: http://www.ncbi.nlm.nih.gov/pubmed/273712101

26. Lilly G, Osbon D, Rael E, HS S, JC J. Alveolar osteitis associated with mandibular third molar extractions. J Am Dent Assoc. 1974;88(4):802–806.

27. Brekke J, Bresner M, Reitman M. Effect of surgical trauma and poly lactate cubes and granules on the incidence of alveolar osteitis in mandibular third molar extraction wounds. J Can Dent Assoc (Tor). 1986;52(4):315–319.

28. Nusair Y, Abu Younis M. Prevalence, clinical picture, and risk factors of dry socket in a Jordanian Dental Teaching Center. J Contemp Dent Pract. 2007;8(3):53–63.

29. Ogunlewe MO, Adeyemo WL, Ladeinde AL TO. Incidence and pattern of presentation of dry socket following non-surgical tooth extraction. Nig Q J Hosp Med. 2007;17:126–30.

30. Jaafar N, Nor G. The prevalence of post-extraction complications in an outpatient dental clinic in Kuala Lumpur Malaysia–a retrospective survey. Singapore Dent J. 2000;23(1):24–28.

31. Amarantunga N, Senaratne C. A clinical study of dry socket in Sri Lanka. Br J Oral Maxillofac Surg. 1988;26(5):410–418.

32. Oginni F, Fatusi O, AO A. A clinical evaluation of dry socket incidence and pattern of presentation of dry socket following non-surgical tooth extraction. Nig Q J Hosp Med. 2007;17:126–30.

33. Sisk AL, Hammer WB, Shelton DW, Joy ED. Complications following removal of impacted third molars: The role of the experience of the surgeon. J Oral Maxillofac Surg [Internet]. 1986 Nov 1 [cited 2018 Jan 22];44(11):855–9. Available from: http://www.sciencedirect.com/science/article/pii/0278239186902211

34. Cohen M, Simecek J. Effects of gender-related factors on the incidence of localized alveolar osteitis. Oral Surgery,

http://www.aohdr.com
35. Sweet J, Butler D. Increased incidence of postoperative localized osteitis in mandibular third molar surgery associated with patients using oral contraceptives. Am J Obstet Gynecol. 1977;127(5):518–519.

36. Bienek DR, Filliben JJ. Risk assessment and sensitivity meta-analysis of alveolar osteitis occurrence in oral contraceptive users. J Am Dent Assoc [Internet]. 2016 Jun [cited 2018 Jan 22];147(6):394–404. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27017181

37. Hermesch CB, Hilton TJ, Biesbrock AR, Baker RA, Cain-Hamlin J, McClanahan SF, et al. Perioperative use of 0.12% chlorhexidine gluconate for the prevention of alveolar osteitis: Efficacy and risk factor analysis. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology [Internet]. 1998 Apr 1 [cited 2018 Jan 22];85(4):381–7. Available from: http://www.sciencedirect.com/science/article/pii/S017921049800610

38. Catellani JE, Harvey S, Erickson SH, Cherkin D. Effect of Oral Contraceptive Cycle on Dry Socket (Localized Alveolar Osteitis). J Am Dent Assoc [Internet]. 1980 Nov 1 [cited 2018 Jan 22];101(5):777–80. Available from: http://www.sciencedirect.com/science/article/pii/S0002817780150133

39. Hedlin AM, Monkhouse FC. Changes in spontaneous fibrinolytic activity during use of oral contraceptives. Obstet Gynecol [Internet]. 1971 Feb [cited 2018 Jan 26];37(2):225–532. Available from: http://www.ncbi.nlm.nih.gov/pubmed/5539358

40. Ygge J, Brody S, Korsan-Bengtsen K, Nilsson L. Changes in blood coagulation and fibrinolysis in women receiving oral contraceptives. Comparison between treated and untreated women in a longitudinal study. Am J Obstet Gynecol [Internet]. 1969 May 1 [cited 2018 Jan 26];104(1):87–98. Available from: http://www.ncbi.nlm.nih.gov/pubmed/4180662

41. Bortoluzzi MC, Capella DL, Barbieri T, Marchetti S, Dresch CP, Tirello C. Does smoking increase the incidence of postoperative complications in simple exodontia? Int Dent J [Internet]. 2012 Apr 1 [cited 2018 Jan 22];62(2):106–8. Available from: http://doi.wiley.com/10.1111/j.1875-595X.2011.00098.x

42. Sweet JB, Butler DP. The relationship of smoking to localized osteitis. J Oral Surg [Internet]. 1979 Oct [cited 2018 Jan 22];37(10):732–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/289736

43. Peñarrocha M, Sanchis JM, Sáez U, Gay C, Bagán JV. Oral hygiene and postoperative pain after mandibular third molar surgery. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology [Internet]. 2001 Sep [cited 2018 Jan 22];92(3):260–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11552141

44. Rud J. Removal of impacted lower third molars with acute pericoronitis and necrotising gingivitis. Br J Oral Surg [Internet]. 1970 Mar [cited 2018 Jan 22];7(3):153–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/5272558

45. Krekmanov L. Alveolitis after operative removal of third molars in the mandible. Int J Oral Surg [Internet]. 1981 Jun 1 [cited 2018 Jan 22];10(3):173–9. Available from: http://www.sciencedirect.com/science/article/pii/S0300978581000518

46. Bloomer C. Alveolar osteitis prevention by immediate placement of medicated packing. Oral Surg Oral Med Oral Pathol Oral Radiol Endod [Internet]. 2000;90:282–4. Available from: https://www.ncbi.nlm.nih.gov/pubmed/10982947

47. Khalifah MAA. Alvogyl versus zinc oxide eugenol after saline irrigation as a treatment for alveolar osteitis. Int J Dent Res [Internet]. 2018 Jan 21 [cited 2018 Jan 23];6(1):10–2. Available from: https://www.sciencedirect.com/science/article/pii/IJDR/articleview/8766

48. Kaya GŞ, Yapici G, Savaş Z GM. Comparison of Alvogyl, SaliCept patch, and low-level laser therapy in the management of alveolar osteitis. J Oral Maxillofac Surg. 2011;69:1571–7.

49. Summers L, Matz LR. Extraction wound sockets. Histological changes and paste packs—a trial. Br Dent J [Internet]. 1976 Dec 21 [cited 2018 Jan 24];141(12):377–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1070322

50. Syrjänen SM, Syrjänen KJ. Influence of Alvogyl on the healing of extraction wound in man. Int J Oral Surg [Internet]. 1979 Feb [cited 2018 Jan 24];8(1):22–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/107131

51. Khalifah MAA. Which is Responsible for Pain Relief in Alveolar Osteitis Patients: Saline or Zinc Oxide Eugenol? JBR J Interdiscip Med Dent Sci [Internet]. 2017 Dec 21 [cited 2018 Jan 24];14(12):377–9. Available from: https://www.omicsonline.org/open-access/which-is-responsible-for-pain-relieve-in-alveolar-osteitis-patients-saline-or-zinc-oxide-eugenol-2376-032X-1000220-96656.html

52. Noroozi AR, Philbirt RF. Modern concepts in understanding and management of the “dry socket” syndrome: comprehensive review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod [Internet]. 2009;107:30–5. Available from: https://pdfs.semanticscholar.org/091a/a0e54a6a2fb243b3839a8622828e8c567b90c.pdf?_ga=2.24533626.1772767057.1513205441-1020121618.1513205441

53. Burgoyne CC, Giglio JA, Reese SE, Sima AP, Laskin DM. The Efficacy of a Topical Anesthetic Gel in the Relief of Pain Associated With Localized Alveolar Osteitis. J Oral Maxillofac Surg. 1995;79(4):416–422.

54. Catellani JE, Harvey S, Erickson SH, Cherkin D. Effect of Oral Contraceptive Cycle on Dry Socket (Localized Alveolar Osteitis). J Am Dent Assoc [Internet]. 1980 Nov 1 [cited 2018 Jan 22];101(5):777–80. Available from: http://www.sciencedirect.com/science/article/pii/S0002817780150133

55. summers L, Matz LR. Extraction wound sockets. Histological changes and paste packs—a trial. Br Dent J [Internet]. 1976 Dec 21 [cited 2018 Jan 24];141(12):377–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1070322

56. syrjänen SM, syrjänen KJ. Influence of Alvogyl on the healing of extraction wound in man. Int J Oral Surg [Internet]. 1979 Feb [cited 2018 Jan 24];8(1):22–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/107131

57. Khalifah MAA. Which is Responsible for Pain Relief in Alveolar Osteitis Patients: Saline or Zinc Oxide Eugenol? JBR J Interdiscip Med Dent Sci [Internet]. 2017 Dec 21 [cited 2018 Jan 24];14(12):377–9. Available from: https://www.omicsonline.org/open-access/which-is-responsible-for-pain-relieve-in-alveolar-osteitis-patients-saline-or-zinc-oxide-eugenol-2376-032X-1000220-96656.html

58. Noroozi AR, Philbirt RF. Modern concepts in understanding and man- agement of the “dry socket” syndrome: comprehensive review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod [Internet]. 2009;107:30–5. Available from: https://pdfs.semanticscholar.org/091a/a0e54a6a2fb243b3839a8622828e8c567b90c.pdf?_ga=2.24533626.1772767057.1513205441-1020121618.1513205441

59. Burgoyne CC, Giglio JA, Reese SE, Sima AP, Laskin DM. The Efficacy of a Topical Anesthetic Gel in the Relief of Pain Associated With Localized Alveolar Osteitis. J Oral Maxillofac Surg [Internet]. 2010 Jan [cited 2018 Jan 24];68(1):144–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20060169

60. Hung J, Chaitanya AV, Byravan M, Badrian H, Khalighinejad N, Goroohi H. The Effectiveness of GECB Pastille in Reducing Complications of Dry Socket Syndrome. Int J Dent [Internet]. 2012 Apr 22 [cited 2018 Jan 22];2018:10200121618.1513205441

61. Annals of Oral Health and Dental Research, Vol. 1; Issue 2, January-March 2018
55. Pal US, Singh BP, Verma V. Comparative evaluation of zinc oxide eugenol versus gelatin sponge soaked in plasma rich in growth factor in the treatment of dry socket: An initial study. Contemp Clin Dent [Internet]. 2013 Jan [cited 2018 Jan 24];4(1):37–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23853450

56. Haraji A, Lassemi E, Motamedi MH, Alavi M, Adibnejad S. Effect of plasma rich in growth factors on alveolar osteitis. Natl J Maxillofac Surg [Internet]. 2012 Jan [cited 2018 Jan 24];3(1):38–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23251056

57. Halberstein RA, Abrahamson GM. Clinical management and control of alveolaralgia (dry socket) with vitamin C. Am J Dent [Internet]. 2003 Jun [cited 2018 Jan 24];16(3):152–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12967066

58. Turner P. A clinical study of “dry socket.” Int J Oral Surg. 1982;11(4):226–31.

59. Ogunlewe MO, Adeyemo WL, Ladeinde AL, Taiwo OA. Incidence and pattern of presentation of dry socket following non-surgical tooth extraction. Nig Q J Hosp Med [Internet]. [cited 2017 Nov 24];17(4):126–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18320756

60. Taberner-Vallverdú M, Nazir M, Sánchez-Garcés MÁ, Gay-Escoda C. Efficacy of different methods used for dry socket management: A systematic review. Med Oral Patol Oral Cir Bucal. 2015;20(5):e633–9.

61. Neville B, Damm DD, Allen CM, Chi AC. Oral & Maxillofacial Pathology. 4th ed. Missouri: Elsevier; 2016. 136 p.

62. Holmgren EP, Bagheri SC. Alveolar osteitis (Dry socket). In: Bagheri SC, editor. Clinical Review of Oral and Maxillofacial Surgery A Case-Based Approach. 2nd ed. Missouri: Elsevier (Mosby); 2014. p. 126.

63. Hupp JR. Prevention and management of extraction complication. In: Hupp JR, Ellis E, Tucker MR, editors. Text Book of Contemporary Oral and maxillofacial surgery. 6th ed. Missouri: Elsevier (Mosby); 2014. p. 174–87.

64. Khalifah MAA. Surgical Curettage as a Treatment Modality for Alveolar Osteitis: A Wide Controversy. Int J Clin Oral Maxillofac Surg [Internet]. 2018 Jan 8 [cited 2018 Jan 23];3(5):26–9. Available from: http://www.sciencepublishinggroup.com/journal/paperinfo?journalid=368&paperid=10028033

65. Sechi LA, Lezcano I, Nuñez N, Espim M, Dupre I PA. Antibacterial Activity of Ozonized Sunflower Oil (OLEOZON). J Appl Microbiol. 2001;90(2):279.

66. Viebahn-Hansler R. The use of ozone in medicine. 5th ed. ODREI publisher; 2007.

67. Boccì V. Ozone A new medical drug. 2nd ed. Dordrecht. The Netherlands: Springer; 2011. 168 p.

68. Guanche D. Effect of ozone/oxygen mixture on systemic oxidative stress and organic damage. Toxicol Mech Methods. 2010;20(1):25–30.

69. Putnins EE, Di Giovanni D BA. Dental unit waterline contamination and its possible implications during periodontal surgery. J Periodontol. 2001;72(3):393–400.

70. Khalifah M. A Comparative study for the efficacy of different forms of Ozone as a treatment for alveolar osteitis. Oral Surg. 2018;

71. Mazánek J, Hubálková H, Staňková H, Šmucler R, Linetský I, Seidler V VA. Dry Socket aND The Length of Healing Depending on the Type of the Treatment Part Two: Treatment with Ozonated Water. Czech Dent J. 2016;4:s. 96–101.

72. Waseem U. Effect of Age on the Elastic Modulus of Bone. J Bioeng Biomed Sci [Internet]. 2017 Mar 20 [cited 2018 Jan 26];7(1):219. Available from: https://www.omicsonline.org/open-access/effect-of-age-on-the-elastic-modulus-of-bone-2155-9538-1000219.php?aid=86918

73. Manilay Z, Novitskaya E, Sadovnikov E, McKitchie J. A comparative study of young and mature bovine cortical bone. Acta Biomater [Internet]. 2013 Feb [cited 2018 Jan 27];9(2):5280–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22939926

74. Brown CU, Yeni YN, Norman TL. Fracture toughness is dependent on bone location--a study of the femoral neck, femoral shaft, and the tibial shaft. J Biomed Mater Res [Internet]. 2000 Mar 5 [cited 2018 Jan 27];49(3):380–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10602071

75. Ritchie R, Buchler M, Hansma P. Plasticity and toughness in bone. Phys Today. 2009;62(6):41–7.

*Corresponding author: Mosaad Abdaljawwad Khalifah, Kafr El-Sheikh University, Al-Geish St., Kafr El-Sheikh, Kafr El-Sheikh, Egypt. Postal code: 33516. Phone: +21008603084 Email: mosaad_khalifa@den.kfs.edu.eg, mosaad78@hotmail.com

Financial or other Competing Interests: None.