Effects of hypohydration and fluid balance in athletes’ cognitive performance: a systematic review

Adiele Dube, Chantell Gouws, Gerrit Breukelman

University of Zululand, Human Movement Sciences.

Abstract
Background: The effects of progressive body fluid loss on athletic and cognitive performance are known to result from exposure to environmental heat stress, morphologic factors, and limited fluid replenishment. Athletes need to restore lost body water. However, athletes may fail to maintain euhydration during exercise. This systematic review investigated hypohydration and fluid balance effects on an athlete’s cognitive function.

Methods: The PubMed, Sports Discuss, and Ebsco databases were searched for studies reporting on hypohydration, fluid balance and heat on cognitive performance in sport. Multiple phrases including hydration, dehydration, fluid balance, mood, cognition, vigilance, decision making, and brain were explored. Participants in the studies did either receive fluid or did not receive fluid during exercise.

Results: Twenty-four trials (n=493 participants) from 24 articles met the inclusion criteria. Significant hypohydration, >2% body mass loss was reported consistently in 16 publications. Five articles where hypohydration was associated with heat stress and limited fluid intake (3-5% body mass loss) impaired cognitive performance. Mood disturbance, fatigue, and ratings of perceived exertion constantly complemented hypohydration impairment on cognition.

Conclusion: Findings show that hypohydration impairs cognitive performance and mood at higher levels of 3-5% body mass loss. However, sport-specific cognitive protocols of accessing hypohydration and fluid balance in individual and team sports remain equivocal.

Keywords: Hypohydration; cognition; mood; fluid replenishment.

DOI: https://dx.doi.org/10.4314/ahs.v22i1.45
Cite as: Dube A, Gouws C, Breukelman G. Effects of hypohydration and fluid balance in athletes’ cognitive performance: a systematic review. Afri Health Sci. 2022;22(1):367-76. https://dx.doi.org/10.4314/ahs.v22i1.45

Introduction
Mega sporting events will continue to take place in diverse hot geographical environment across the globe as they have been in the past and in the present. As always, hypohydration can be expected in these events. The events include the Olympic Games: Beijing 2008; Rio 2016, Tokyo 2021; World Athletics Championships Doha 2019, and Federation International Football Association World Championships Qatar 2022 1, 2. With such exposure to hot environments, athletes mainly in prolonged vigorous exercise, racket and intermittent team sports experience significant and exceeding >2% body fluid loss due to thermoregulation 3, 4. Inadequate and/or no fluid loss replacement can cause endurance capacity impairment associated with physiological and cognitive function alterations 5, 6. Indeed excessive dehydration impacts are major cause of concern to athletic trainers and sports medical staff.

Dehydration and hypohydration deleterious effects on athletic performance and cognition have been widely researched 1, 3, 5, 7. It is well known that a 2% body mass loss can impair endurance performance in humid/hot environments 6, 7. There has been limited research on the impact of hypohydration on athlete’s cognitive performance and mood during individual and intermittent team sport 8, 9. Literature has supported that dehydration may impair cognitive performance 10, 11 and functional task 12. However, it is known that rehydration may cause minimal or no effect on athletic, cognition and immunological performance if the outcome to be assessed is insensitive to the modest (up to 2% of body weight) fluid losses 3, 8. Severe dehydration may disturb, aggravated fatigue, dizziness, confusion and often severe cases lead to delirium, coma and death 14-19. Various studies have demonstrated that heat-stress and exercise-induced dehydration did not alter cognitive performance 5, 11, 20, 21.
However, inconsistent conclusions exist in the current literature. Some studies have demonstrated discrepancies in literature may be due to task complexity, test duration, magnitude of heat stress, test combined. Prolonged exercising in hot, humid environments with inadequate fluid replenishment may increase core body temperature (hyperthermia) to ~4°C provoking an athlete’s mental status that worsens in moderately and untrained athletes. Despite that elite acclimated athletes may physiologically negotiate hyperthermic conditions, athletic trainers, sports scientists and sports medical staff tirelessly work to uncover cooling techniques to curb core body temperature, delayed onset peripheral and central fatigue. Thus, researchers have investigated dehydration, hypohydration and fluid ingestion aspects and their subsequent athletic performance effects remains unclear. To date, no papers have reviewed and collectively discussed these aspects to equip professionals better understand impact on individual and team sport performances. Therefore, the aim of this systematic review was to summarise the literature assessing impact on hypohydration and fluid balance in relation to cognitive function in semi-professional to elite athletes exercising in humid, hot environments.

Methods
The study protocol was devised following the specifications outlined in the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) Statement.

Literature Search strategy
Relevant research studies on dehydration and hypohydration effects on cognitive function when training in hot, humid environments identified on electronic database from 2005 until May 2020. Available literature before 2005 focused mainly on athletic performance of elite athletes. For the purpose of the current review focus was on cognitive function and mood of semi-professional compared to elite athletes. The database include: PubMed/Medline, Sports Discuss, and Ebsco. Keywords and terms search were hydration, athletic, exercise, mood, attention, vigilance, decision making, reaction time, sweat loss, individual/team sport, ad libitum, water, fluid (eg. administration, consumption, ingestion, intake, replacement, replenishment), hydration (de-, eu-, hypo-, re-), each combined with cognitive/cognition (aspects, function), brain were explored.

Inclusion
All research studies with fulfilling the following criteria were eligible for inclusion;

- All relevant South Africa and international studies.
- Studies with standardized dehydration protocol.
- Focussed on male or female humans with no underlying medical conditions (≥ 13 years of age).
- Fluid consumption was done in limited time ≤ 4 hours between dehydration protocol and subsequent performance test.
- A cognitive function and athletic performance outcome measured.

Exclusion
- Unpublished experimental observations, published abstracts records that contain irrelevant terms (elderly, patient, disease, and rat/mouse) were excluded.
- Experimental designs without cognitive performance outcome measured.

Data Extraction
All published scientific research peer-reviewed articles meeting the inclusion criteria were extracted and considered for the following characteristics; participant, exercise and hydration protocol, change in body mass, study findings, and study limitations. Research studies that contained more than one intervention and eligible for inclusion tested cognitive performance under two different conditions were treated as separate trials. These trials derived from one study are denoted and cited by letters (a-b). Where necessary information was not given, the author considered it as unavailable.

Fluid balance terminology
An athlete is responsible for maintaining normal hydration status (euhydration) for optimal body performance. Armstrong suggests that change in body fluid balance
is a resultant of baseline mass value compared to the
individual body mass. Hydration status can be explained
using terms such as; euhydration (normal baseline body
water content), hypohydration (excessive body water
deficit) and dehydration (progressive body water loss
from normal baseline to hypohydration).

Search results

567 articles were potentially relevant. After the exclu-
sion of duplicates, articles published before 2005, arti-
cles focusing on athletic performance, ageing, diseases
and children below 13 years and review of full-text ver-
sions, 24 articles were selected for review as shown in
Fig 1 and Table 1 below.

![Fig.1. PRISMA Flow Chart of study selection process](image-url)
Citation	Participants	Protocol	Hydration loss levels (% A body mass)	Fluid Type	Key Findings	Cognitive domains assessed	Hypothetica and Hydropathy effects on cognition	Limitations										
Ad Libitum et al. (39)	USA	Cross-country designed, 90min rate prescribed military march in standardised military attire, at the heat with a 24kg backpack Fluid restriction and or prescribed fluid intake throughout the exercise. Cognitive test battery Envir Conditions: 39.5±4.1°C, 284% RH	2.2% (HYP when no fluid) Ad Libitum water	HYP	↑Thirst, ↑Core body temp., ↑HR, ↑RPF, ↑Throm. EUY: No significant difference in core body temp perceived thirst	Information processing, memory, impulsivity, attention, and concentration, response time domains	HYP: Working memory (response time), attention task (depression, accuracy) No significant effect on immediate or delayed memory, accuracy, and response speed	Participants not blinded to hydration status										
Wilschut et al. (35)	Healthy recreationally active adults USA	6-week, Counterbalanced 180min trial (-template exercise protocol) Three experimental; no exercise heat stress (CON), exercise heat stress with fluid replacement (EUY), exercise heat stress without fluid replacement (HYP) Fluid assimilation time =35min Envir Conditions: 47°C, 15% RH CO2: 2%, 38% RH	31.1 (men, HYP); 31.1 (women) 0.2 EUY HYP: No fluid, only mouth rinse once per hour	EUY, Dehy, water equivalent to sweat	EUY: Thermal temp. RPE, Throm.	Cognitive functioning, Accuracy, reaction time	EUY, DeHY: Visionary performance impaired A significant effect on processing accuracy, and reaction time	Participants not blinded to hydration status										
Mau and et al. (31)	Healthy semi professional elite hockey players UK	Experimental session, 50min Hockey innsitute treadmill protocol with prescribed fluid intake to replace sweat losses and or fluid intake; or no fluid Cognitive testing after treadmill protocol Envir Conditions: Hum: 32.3±3.1°C, 58.6% RH Moderato: 13.1±3.9°C, 55% RH	-2.0 (no fluid) 0.0 (fluid replacement) Ad Libitum water	HYP	↑RPE, ↑Most (HYP) prior to treadmill protocol No significant effect on HR and Temp (body core)	Process speed, working memory, perceptive discrimination, visual scanning, processing speed	HYP: (Psychomotor function, visual scanning/ process speed EUY: ↑ working memory	Participants not blinded to hydration status										
Pal et al. (33)	Recruitment active Cyprus, Denmark, Greece, Spain (Compiled in Greece)	Laboratory experiment, (EUY, DEHY) Occupational study (urine sampling). 8M for laboratory experiment in an environmental chamber with fluid replacement. Data collection for battery pre- & post-environmental Manufacturing. 29°C ±5 °C Agriculture: 29 °C, 50% Police officers: 27 °C, 5% Tourism: 30 °C, 50% RH Construction: 26 °C, 5% RH Environmental chamber: 40 °C, 25% RH	-2.0 (no fluid) 0.0 (fluid replacement) Water	HYP	↑RPE, ↑Core body temp.; ↑Thermal comfort, ↑Throm. ↑HR	Process speed, working visual scanning/ processing speed	No significant effect on cognitive domains	Participants unsure of the researcher’s hypothesis and naive to the purpose of the studies										
Van-den Heuvel et al. (33)	Healthy, non-smoking Australia	Three Passive thermal-hydration protocol (water immersion) with states and then clamped using controlled, isotonic fluid administration. Unique immersion protocol establishment in the first trial and replicated in subsequent trials averaging 38min (137-242min) Envir Conditions: Temperature: 34-35 °C Warm air, 40-41 °C	3 and 5 (HYP) 0.0 (EUY trial) medium Chloride NaCl+	HYP	↑HR, Thermal state, Core body temp., in HYP at 3% and 5%	Visual perception, working memory	HYP: Decision process modified (Depression, Discriminative ability (hyperthermia) No significant effect visual and working memory following 5-5% dehydration	Participants not blinded to hydration status										
Gamage et al. (32)	22yrs, elite cricket players UK	Fluid restriction (drink 1L or fluid provision (12-15 ml/kg/h) during 2h of standardised cricket training Envir Conditions: Outdoors: 27.2±2.8 °C, 85 RH, 2m/s wind speed	3.7 fluid restriction trial 0.9 fluid provision trial Not reported Not reported	HYP	↑HR↑altered skin temp. ↑Thirst, ↑fatigue	Process speed, working memory, perceptive discrimination, visual scanning, processing speed	Not reported	Participants not blinded to hydration status Fluid type unknown No validity or reliability testing of sport (cricket) skill										
Wilschut et al. (33)	Healthy recreationally active USA	Vigorous exercise intensity for 4min Fluid assimilation time >50min Envir Conditions: Ambient temp 18-2°C, 85 RH	1.5 Water	HYP	↑HR↑altered skin temp. ↑Thirst, ↑fatigue	Process speed, working memory, perceptive discrimination, visual scanning, processing speed	No effect	Participants not blinded to hydration status Exercise intensity not mentioned										
Wilson et al. (34)	Healthy UK	Exercise for 45 minutes Fluid assimilation time ~35min	1.8 Water Not reported	HYP	↑HR↑altered skin temp. ↑Thirst, ↑fatigue	Process speed, working memory, perceptive discrimination, visual scanning, processing speed	Not reported	Participants not blinded to hydration status										
Owen et al. (35)	20 yr olds, soccer semi	LEIS protocol (8min) with prescribed fluid intake to replace sweat losses and or fluid intake, water	0.1 (water intake) Ad Libitum water	RPE: (no fluid than water intake)	Process speed, working memory, perceptive discrimination, visual scanning, processing speed	No effect	Participants were not blinded to hydration status											
Study	Sample Size	Study Design	Test Conditions	Cognitive Tests	Result Notes													
-------	-------------	--------------	----------------	----------------	--------------													
Wilson et al. (34)	88	EM Licensed jockeys	UK	Exercise for 45 minutes	Fluid assimilation time ~35min	1.8 Water	Not reported	Response inhibition	No effect	Participants not blinded to hydration status								
Olsen et al. (35)	13 15M	22 yr olds, soccer semi-professionals	UK	LST protocol (90min) with prescribed fluid intake to replace 89% sweat loss, ad libitum, water intake, or no fluid	LLST and LLSTP performed after LST protocol	Envi Conditions: 19.4°C, 56.4% RH	0.3 (water intake)	1.1 (ad libitum water)	2.5 (no fluid)	Ad libitum water	No effect	Participants were not blinded to hydration status						
Mud and et al. (3)	8	SF 22yr olds, elite field hockey players	UK	2-day experiment	Day 1: Baseline hockey skill measurement	Passive heat stress (19.9°, 71 RH) → controlled fluid intake to induce HYPO or EUH	Day 2: 60 min hockey-imitated and designed intermittent treadmill protocol	Hockey skills test in a gymnasium	Envi Conditions: Treadmill protocol, 33.3° C, 9 RH Gym 16.3 - 22.2 °C	-2 (HYP trial)	Ad libitum water	No significant effect on HR and Temp (brain core)	Process speed, working memory, perceptive discrimination, visual scanning/processing speed	j decision making time (skills test) ~7 slower (HYP vs EUH) prior to treadmill protocol	No significant effect on decision making time post treadmill protocol	Protocol, not field sport-specific but intermittent treadmill protocol	Use of Day 1 passive heat stress for Day 2 trials may be invalid	Participants not blinded to hydration status
Hoffman et al. (36)	10 10F	21 yr division 1 college Basketball players	USA	40 min live scrimmage exercise	Quick board lower body reaction agility, DynaVision 2D visual reaction time, visual prior and post live scrimmage	Envi Conditions: Indoors 22.6°C, 50.9% RH	2.5 (no fluid)	Not availed (water intake)	1st match: 2 to 3	Water	No significant effect on HR and player load	Psychomotor function/process	No significant effect on visual reaction time	No significant effect on visual function/process	No difference in fluid change in the 2 trials	Fluid assimilation time ~35min	No controlled trial (EUV)	
Beaudry & Guetz (37)	12	12F 24yr Basketball Elite players	Canada	A descriptive study covering 2 international indoor matches	Envi Conditions: 22.5 – 23.5° C 44.0% RH	HYP (no fluid replacement)	IHR	Process speed, working memory, perceptive discrimination, visual scanning/processing speed	1HR	Process speed, working memory, perceptive discrimination, visual scanning/processing speed	j decision making time (skills test) ~7 slower (HYP vs EUH) prior to treadmill protocol	No significant effect on field goal percentage	Adverse relation (goal vs body mass loss in the 2nd match)	Carbohydrate has the confounding potential effect on Goal percentage	No controlled trial (EUV)			
Ely et al. (38)	32	32M Healthy and non-heat	UK	5-week experiment	EUY and HYP trials	5wk work-out cycle	4	Sodium chloride (NaCl) + water	HYP (no fluid replacement)	Process speed, working memory, perceptive discrimination, visual scanning/processing speed	No significant effect on mood and cognition	Carbohydrate ingestion may have confounding	Participants were not blinded to hydration status					
Carvalho et al. (39)	12 12F	14-15yr Basketball national team players	Portugal	60min training session	EUY and HYP trials	Basketball drill before and after training	Envi Conditions: Indoors 21.6-26.0° C 50-64% 3 RH	2.5 (no fluid)	1.1 (fluid intake)	Ad libitum water	HYP trial:	↑ HR in	Process speed, working memory, perceptive discrimination, visual scanning/processing speed	No difference in reaction time	No difference in fluid change in the 2 trials	Fluid assimilation time ~35min	No controlled trial (EUV)	
Ahuja et al. (40)	10 10F	18yr Premier division players	New Zealand	A USL protocol with fluid intake (15ml/kg) or without LLST performed before, during, and after LLST	Envi Conditions: Not scaled	Water	HYP trial:	↑ RPE and ↑Thirst (HYP) prior to treadmill protocol	No significant effect on field goal percentage	Process speed, working memory, perceptive discrimination, visual scanning/processing speed	j decision making time (skills test) ~7 slower (HYP vs EUH) prior to treadmill protocol	No significant effect on decision making time post treadmill protocol	Protocol, not field sport-specific but intermittent treadmill protocol	Use of Day 1 passive heat stress for Day 2 trials may be invalid	Participants not blinded to hydration status			
Lins et al. (41)	24M	Physically fit	UK	8-day laboratory experiments	DEHY = Diabetic	Water	↑ HR in	Process speed, working memory, perceptive discrimination, visual scanning/processing speed	No effect on reaction time	Process speed, working memory, perceptive discrimination, visual scanning/processing speed	↑ RPE and ↑Thirst	No significant effect on field goal percentage	Adverse relation (goal vs body mass loss in the 2nd match)	Carbohydrate has the confounding potential effect on Goal percentage	No controlled trial (EUV)			
Bandelow et al. (42)	20M	University soccer players	UK	Cognitive battery test: Sternberg Core block test, Finger tapping test	Envi Conditions: Trials before, of half-time, after the match	HYP trial:	↑ RPE and ↑Thirst (HYP) prior to treadmill protocol	No significant effect on field goal percentage	Process speed, working memory, perceptive discrimination, visual scanning/processing speed	↑ RPE and ↑Thirst	No significant effect on field goal percentage	Adverse relation (goal vs body mass loss in the 2nd match)	Carbohydrate has the confounding potential effect on Goal percentage	No controlled trial (EUV)				
Pien et al. (43) a	16M, 16L	University lacrosse and rowing athletes	USA	HYP trial, HYP trial + Coach-run, hard natural practice Cognitive test battery post-practice	Envi Conditions: ↑HR not assessed	Water	HYP trial:	↑RPE (no fluid than water intake)	↑HR (no fluid than water intake and ad libitum water)	Process speed, working memory, perceptive discrimination, visual scanning/processing speed	↑HR, ↑RPE and ↑Thirst (HYP vs EUH) prior to treadmill protocol	↑HR, ↑RPE and ↑Thirst (HYP vs EUH) prior to treadmill protocol	Protocol, not field sport-specific but intermittent treadmill protocol	Use of Day 1 passive heat stress for Day 2 trials may be invalid	Participants not blinded to hydration status			
Pien et al. (43) b	12M, 12F	University lacrosse, rowing, and American football athletes	USA	HYP trial, HYP trial + Coach-run, hard natural practice Cognitive test battery post-practice	Envi Conditions: ↑HR not assessed	Water	HYP trial:	↑RPE (no fluid than water intake)	↑HR (no fluid than water intake and ad libitum water)	Process speed, working memory, perceptive discrimination, visual scanning/processing speed	↑HR, ↑RPE and ↑Thirst (HYP vs EUH) prior to treadmill protocol	↑HR, ↑RPE and ↑Thirst (HYP vs EUH) prior to treadmill protocol	Protocol, not field sport-specific but intermittent treadmill protocol	Use of Day 1 passive heat stress for Day 2 trials may be invalid	Participants not blinded to hydration status			
Adam et al. (20)
N=8
PM: Active soldiers (6),
USA
- Heat exposure for 300 min
- Environmental Conditions:
 20°C, 50% RH
 Wind speed 1 to 2.2 m/s
3.0
- No fluid
- 1HR: Throat, thermal discomfort; altered skin temp; fatigue; ↑HR
- Processing speed, working memory, perceptual discrimination, vigilance, visual scanning
No significant effect on cognitive domains
EUY trial not available (control)

Baker et al. (41)
N=11
10M 17-25yr male competitive basketball players
USA
- Experimental: 3hr interval walking in hot chamber, EUY trials; EUY trials, ILP trials, 80 min stimulus match
- Attention variables test: baseline, post chamber; post-match
- Environment:
 outdoor room temp. (indoor match)
- ILP:
 1%: 2%, 3%, 4%
 No fluid
 Florested water
 EUY: 0
- HYP trial [1-4%]:
 ↑highland heat, fatigue
 ↑attention variables, perceptual discrimination, vigilance, visual scanning
- HYP trial [1-4%]:
 ↑commission and omission errors (response time: 6-8%)
- Participants were not blinded to hydration status
- Rationale of induced heat stress to attention variables test before a basketball match was unrealistic

Edwards et al. (42)
N=11
11M moderately active soccer players
New Zealand
- 60 min exercise:
 45 min cycling,
 45 min soccer match (100 fluid loss replacement)
 Post-match mental concentration test (number identification)
 Environment:
 24-25°C, 60%RH (cycling),
 21°C, 40%RH (soccer match)
0.7 (fluid intake)
2.1 (mouth rinse)
2.4 (no fluid)
- Water mouth rinse
 No fluid
- ↑1HR: ↑Thermal discomfort; altered skin temp.
- ↑Vigil; ↑fatigue
- Processing speed, visual scanning
No significant effect on mental concentration
Participants were not blinded to hydration status
The rationale of cycling before a match in soccer is doubtful

Selvaraj & Marais (43)
N=8
8M
25yrs
Healthy volunteers
Australia
- Osmo discontinuous fluid-intensity exercise:
 experimental condition 1 (full fluid replacement), half fluid replacement, no fluid
 outdoor bicycle mounted on the electromagnetically braked cycle trainer
 Environment:
 31.1°C, 42-164.9% RH
 Wind speed 2m/s
2.0 (full fluid)
1.0 (half fluid)
1.7 (no fluid)
- Water
 No fluid
 ↑1HR
 ↑Skin temp., ↑Thirst
 No effect of core body temp. in full and half fluid conditions
- Processing speed, working memory, perceptual discrimination, vigilance, visual scanning
No significant effect on cognitive domains
Participants were not blinded to hydration status
No sport can employ a discontinuous fixed-intensity nature of exercise protocol

Seunou et al. (44)
N=13
8M
25-33yrs
Health non-smoking volunteers
Switzerland
- Experimental trial in random order EXP, CON
 Female: Pre and post menstrual
 Male: Cognitive tests
 Environment: Cognitive tests 22°C
1.75 CON
3.26 DEHY
- Mineral water
 No fluid
 ↑1HR
 ↑Fatigue
 ↑Thirst
 ↑Alertness
- Processing speed, working memory, perceptual discrimination, vigilance, visual scanning, reaction time
No significant effect on cognitive domains in moderate dehydration
Participants were not blinded to hydration status

Discussion
This systematic review aimed to summarise literature assessing the impact of hypohydration and fluid balance on cognitive function in semi-professional to elite athletes exercising in humid, hot environments. The discussion considered the risk factors posed by an increase in sweat loss to ≥2% body mass loss. Major causes of hypohydration were discussed as environmental factors, exercise intensity, and/or limited fluid replacement in relation to the brain and cognitive performance. Effects on cognitive performance and mood in the studies included in this review considered individual and team sports with training or competition duration of more than 1 hour.
Although hypohydration risk levels may vary in different sports, the review takes the notion that individual risk factors among athletes may be altered between low- and high-level categories depending on humidity, timing day/season and intensity level, hydrating behaviours, social and cultural considerations.

Fluid balance and the Brain
The brain, a complex active part of the human body is known for its high metabolism. It accounts for ~15% of resting cardiac output and a relatively higher total body aerobic metabolism of ~20%.[45, 46] To maintain its high metabolism, the brain depends solely on adequate circulation of oxygen, metabolic substrates, and metabolic by-products elimination. Heat stress, hyperthermia, and dehydration are known physiological stressors to alter cerebral circulation and metabolism. Hypohydration was found to mediate brain function reduction by reducing cerebral blood flow and brain cell volume, hence increasing blood-brain permeability. Exercise stimulus causes adjustments to Cerebral Blood Flow (CBF). A study by Kety and Schmidt showed that CBF could not be altered during the athletic rest-to-exercise transition. Recent temporal resolution methods showed a ~20% CBF rise due to endurance and moderate exercise intensities.[46-49] Indeed, CBF is subdued with high exercise intensities and significantly surpass rest levels due to exhaustion.[50-51]

Progressive dehydration during individual and/or intermittent team sports without concomitant hyperthermia increases CBF. However, when the athlete is resting, a 1.5°C increase in body core temperature causes a ~15% CBF reduction. It should be noted that both dehydration and hyperthermia changes CBF mechanisms in different exercises, intensities, and environments. Dehydration ≥3% body mass loss during endurance exercise in a hot, humid environment reduces CBF due to cerebrovascular instability and Cardiovascular drift.
In contrast, CBF reduction is attenuated when there is equilibrium between body fluid lost through sweating and fluid replenishment during exercise. Heat-induced stress, hyperthermia, and dehydration effects on CBF are associated with prolonged aerobic exercise. Previous studies reveal that CBF reduction is worsened during acute-intensity exercise in hot and humid environments compared to cold and temperate environments. Similarly, elite athletes’ dehydration levels during training or competition in hot environments are compensable despite reduced CBF and work rate than their untrained counterparts. When athletes maintain euhydration status, the mechanisms and dynamics of CBF tend to normalise. Therefore, endurance exercising in a hot and humid environment provokes dehydration, and hyperthermia enhancing cerebrovascular strain with CBF decline.

Hypohydration and Cognition
Excessive dehydration (hypohydration) effects on cognitive performances have been widely researched across different ages and populations of varied physical fitness. Scientific evidence shows inconsistent findings. Some studies revealed that hypohydration does not affect cognition, others showed a reduction in cognitive function among military, athletes, young healthy adults, and the elderly. Despite evidence of fluid intake benefits on cognitive function observed, literature lacks a clear indication of better treatment efficacy on specific cognitive domains. Cheuvront & Kenefick indicated a lack of clear mechanism by which hypovolemia or hyperosmolality cause cognitive impairment. Studies, however, consistently report hypohydration effects on brain function through 1-4% body mass loss reported in cognitive performance literature. Prolonged exercise in hot environments without fluid replacement elevates core body temperature thereby creating a cognitive burden. The symptoms of hypohydration including thirst and negative mood states have an equal effect on accomplishing cognitive tasks and consequently impair function. Cognitive trials conducted in less than 5 minutes after dehydration protocol ended found that ≤ 2.8% body mass loss induced through fluid deprivation had no impact on cognitive-motor performance. Although many studies did not clearly show the time from the end of dehydration protocol to commencement of the cognitive tests, a significant raise in ratings of thirst, concentration, and ratings of perceived effort was found.

In all the above trials, the long-lasting effects of physiological stressors employed may obstruct fluid intake influencing cognitive performance. Fluid replenishment attenuates Total Mood Disturbance in 3 of the 5 trials where mood was measured. Considering that mood effects and cognition were independent, it should be noted that the above three findings were objective compared to the subjective. However, if not clearly stated, self-reported mood questionnaires are subjective and consider mood effects as dependent variables. It is certain that the influence of fluid replenishment on cognitive function and mood needs further research.

It should be noted that rehydration may have no or little effect on cognitive function in cases where outcome measured is not receptive to the modest fluid loss effects. The amount of fluid ingested, and the time when the fluid was administered has varied physiological responses. These may be confounded in response to dehydration protocol (control and intervention trials) which could have implications on cognitive and athletic performance.

Conclusion
Considering that, most of the studies measured up to 2.7% body mass loss, the impact of hypohydration and fluid balance on cognitive performance in individual and team sports remains equivocal. In all the studies involved, measures of cognitive function altered include processing speed, vigilance, and reaction time for working memory. It is important to note that visuomotor reaction, mental concentration, and visual scanning and perception were not significantly affected by fluid balance and hypohydration. This inconsistency should inform the need to consider objectivity, subjectivity, validity, reliability, and sensitivity of cognitive function assessment tools for the athletic population. The current review serves to draw attention to areas for future research.

Conflict of interest
The authors declare no conflict of interest.

References
1. MacLeod H, Cooper S, Bandelow S, Malcolm R, Sunderland C. Effects of heat stress and dehydration on cognitive function in elite female hockey players. Sport Sci Med Rehab. 2018;10-12.
2. Rodríguez MÁ, Piedra JV, Sánchez-Fernández M,
1. Del Valle M, Crespo I, Olmedillas H. A Matter of Degrees: A Systematic Review of the Ergogenic Effect of Pre-Cooling in Highly Trained Athletes. *Int J Environ Res Public Health*. 2020; 17(8):2952.

2. MacLeod H, Sunderland C. Previous-day hypohydration impairs skill performance in elite female field hockey players. *Scand J Med Sci Sports*. 2012; 22(3):430-438.

3. Belval LN, Hosokawa Y, Casa DJ, Adams WM, Armstrong LE, Baker LB, Burke L, Cheuvront S, Chiampas G, González-Alonso J, Huggins RA, Kavouras SA, Lee EC, McDermott BP, Miller K, Schlader Z, Sims S, Stearns RL, Troyanos C, Wingo J. Practical Hydration Solutions for Sports. *Nutrients*. 2019;11(7):1550.

4. Trangmar SJ, González-Alonso J Heat, Hydration and the Human Brain, Heart and Skeletal Muscles. *Sp Med*. 2019:49 (Supp 1):S69-S85.

5. Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS. American College of Sports Medicine position stand. Exercise and fluid replacement. *Med Sci Sports Exerc*. 2007;39(2):377-390.

6. Cheuvront SN, Kenefick RW. Dehydration: physiology, assessment, and performance effects. *Compr Physiol*. 2014;4(1):257-285.

7. Nuccio RP, Barnes KA, Carter JM, Baker LB. Fluid Balance in Team Sport Athletes and the Effect of Hypohydration on Cognitive, Technical, and Physical Performance. *Sports Med*. 2017;47(10):1951-1982.

8. Masento NA, Golightly M, Field DT, Butler LT, van Reekum CM. Effects of hydration status on cognitive performance and mood. *Br J Nutr*. 2014;111:1841-1852.

9. Ely BR, Lovering AT, Horowitz M, Minson CT. Heat acclimation and cross tolerance to hypoxia. *Temp*. 2014;1(2):107-114.

10. Taylor L, Watkins SL, Marshall H, Dascombe BJ, Foster J. The Impact of Different Environmental Conditions on Cognitive Function: A Focused Review. *Front Physiol*. 2015;6:372.

11. Trinies V, Chard AN, Mateo T, Freeman MC. Effects of Water Provision and Hydration on Cognitive Function among Primary-School pupils in Zambia: A Randomized Trial. *PLoS One*. 2016;11(3):e0150071.

12. Pili JF, Lundbye-Jensen J, Tranmgar SJ, Nybo L. Performance in complex motor tasks deteriorates in hyperthermic humans. *Temperature*. 2017;1:1-9.

13. Cian C, Barraud PA, Melin B, Raphael C. Effects of fluid ingestion on cognitive function after heat stress or exercise-induced dehydration. *Int J Psychophysiol*. 2001; 42:243-251.
reporting items for systematic reviews and meta-analysis (PRISMA) statement on the quality of published systematic review and meta-analyses. *PLoS One.* 2013;8:e83138.

28. Armstrong LE. Assessing hydration status: the elusive gold standard. *J Am Coll Nutr.* 2007;26(5 Suppl):575S-584S.

29. Goodman SP, Moreland AT, Marino F. Maintaining euvhydration preserves cognitive performance, but is not superior to hypohydration. *J Cogn Enhanc.* 2019;3:338-348.

30. Wittbrodt MT, Sawka MN, Mizelle JC, Wheaton LA, Millard-Stafford ML. Exercise-heat stress with and without water replacement alters brain structures and impairs visuomotor performance. *Physiol Rep.* 2018;6(16):e13805.

31. Van den Heuvel AMJ, Haberley BJ, Hoyle DJR, Taylor NAS, Croft RJ. The independent influences of heat strain and dehydration upon cognition. *Eur J Appl Physiol.* 2017;117(5):1025-1037.

32. Gamage JP, De Silva AP, Nalliah AK, Galloway SD. Effects of Dehydration on Cricket Specific Skill Performance in Hot and Humid Conditions. *Int J Sport Nutr Exerc Metab.* 2016; 26(6):531-541.

33. Wittbrodt MT, Millard-Stafford M, Sherman RA, Cheatham CC. Fluid replacement attenuates physiological strain resulting from mild hypohydration without impacting cognitive performance. *Int J Sport Nutr Exe.* 2015; 25(5):439-447.

34. Wilson G, Hawken MB, Poole I, Sparks A, Bennett S, Drust B, Morton J, Close GL. Rapid weight-loss impairs simulated riding performance and strength in jockeys: implications for making-weight. *J Sports Sci.* 2014; 32(4):383-391.

35. Owen JA, Kehoe SJ, Oliver SJ. Influence of fluid intake on soccer performance in a temperate environment. *J Sports Sci.* 2013;31(1):1-10.

36. Hoffman JR, Stavsky H, Falk B. The effect of water restriction on anaerobic power and vertical jumping height in basketball players. *Int J Sports Med.* 1995;16(4):214-218.

37. Brandenburg JP, Gaetz M. Fluid balance of elite female basketball players before and during game play. *Int J Sport Nutr Exerc Metab.* 2012;22(5):347-352.

38. Ely BR, Sollanek KJ, Cheuvront SN, Lieberman HR, Kenefick RW. Hypohydration and acute thermal stress affect mood state but not cognition or dynamic postural balance. *Eur J Appl Physiol.* 2013;113(4):1027-1034.

39. Carvalho P, Oliveira B, Barros R, Padrão P, Moreira P, Teixeira VH. Impact of fluid restriction and ad libitum water intake or an 8% carbohydrate-electrolyte beverage on skill performance of elite adolescent basketball players. *Int J Sport Nutr Exerc Metab.* 2011;21(3):214-221.

40. Ali A, Gardiner R, Foskett A, Gant N. Fluid balance, thermoregulation and sprint and passing skill performance in female soccer players. *Scand J Med Sci Sports.* 2011;21(3):437-445.

41. Baker LB, Conroy DE, Kenney WL. Dehydration impairs vigilance-related attention in male basketball players. *Med Sci Sports Exerc.* 2007;39(6):976-983.

42. Edwards AM, Mann ME, Marfell-Jones MJ, Rankin DM, Noakes TD, Shillington DP. Influence of moderate dehydration on soccer performance: physiological responses to 45 min of outdoor match-play and the immediate subsequent performance of sport-specific and mental concentration tests. *Br J Sports Med.* 2007;41(6):385-391.

43. Serwah N, Marino FE. The combined effects of hydration and exercise heat stress on choice reaction time. *J Sci Med Sport.* 2006;9(1-2):157-164.

44. Szinnai G, Schachinger H, Arnaud MJ, Linder L, Keller U. Effect of water deprivation on cognitive-motor performance in healthy men and women. *Am J Physiol Regul Integr Comp Physiol.* 2005;289(1):R275-R280.

45. Lassen NA. Normal average value of cerebral blood flow in younger adults is 50 ml/100 g/min. *J Cereb Blood Flow Metab.* 1985;5:347-349.

46. Madsen PL, Holm S, Henning M, Lassen NA. Average blood flow and oxygen uptake in the human brain during resting wakefulness: a critical appraisal of the Kety–Schmidt technique. *J Cereb Blood Flow Metab.* 1993;13:646-655.

47. Kety SS, Schmidt CF. Measurement of cerebral blood flow and cerebral oxygen consumption in man. *Fed Proc.* 1946;5:264.

48. Nybo L, Nielsen B. Middle cerebral artery blood velocity is reduced with hyperthermia during prolonged exercise in humans. *J Physiol.* 2001;534:279-286.

49. Sato K, Ogoh S, Hirasawa A, Oue A, Sadamoto T. Relationship of middle cerebral artery blood flow and oxygen uptake in the human brain during resting wakefulness: a critical appraisal of the Kety–Schmidt technique. *J Cereb Blood Flow Metab.* 1993;13:646-655.

50. Moraine JJ, Lamotte M, Berre J, Niset G, Leduc LA, Naeijel R. Relationship of middle cerebral artery blood flow velocity to intensity during dynamic exercise in humans. *J Physiol.* 2011;589:2847-2856.

51. Trangmar SJ, Chiesa ST, Kalsi KK, Secher NH, Gonzalez- Alonso J. Whole body hyperthermia, but not skin hyperthermia, accelerates brain and locomotor limb circulatory strain and impairs exercise capacity in humans. *Physiol Rep.* 2017;5:e13108.
52. Fan JL, Cotter JD, Lucas RAI, Thomas K, Wilson L, Ainslie PN. Human cardiorespiratory and cerebrovascular function during severe passive hyperthermia: effects of mild hypohydration. *J Appl Physiol*. 2008;105:433-445.

53. Ogoh S, Sato K, Okazaki K, Miyamoto T, Hirasawa A, Morimoto K, Shibasaki M. Blood flow distribution during heat stress: cerebral and systemic blood flow. *J Cereb Blood Flow Metab*. 2013;33:1915-1920.

54. Kempton MJ, Ettinger U, Foster R, Williams SC, Calvert GA, Hampshire A, Zelaya FO, O’Gorman RL, McMorris T, Owen AM, Smith MS. Dehydration affects brain structure and function in healthy adolescents. *Hum Brain Mapp.* 2011;32(1):71-79.

55. Périard JD, Racinais S. Heat stress exacerbates the reduction in middle cerebral artery blood velocity during prolonged self-paced exercise. *Scand J Med Sci Sport.* 2015;25:135-144.

56. Watanabe K, Stöhr EJ, Akiyama K, Watanabe S, González-Alonso J. Dehydration reduces stroke volume and cardiac output during exercise because of impaired cardiac filling and venous return, not left ventricular function. *Physiol Rep.* 2020;8:e1443310.

57. Arnaoutis G, Kavouras SA, Stratakis N, Likka M, Mitrakou A, Papamichael C, Sidossis LS, Stamatelopoulos K. The effect of hypohydration on endothelial function in young healthy adults. *Eur J Nutr.* 2017;56:1211-1217.

58. Trangmar SJ, Chiesa ST, Stock CG, Kalsi KK, Secher NH, González-Alonso J. Dehydration affects cerebral blood flow but not its metabolic rate for oxygen during maximal exercise in trained humans. *J Physiol.* 2014; 592:3143-3160.

59. McGregor SJ, Nicholas CW, Lakomy HK, Williams C. The influence of intermittent high-intensity shuttle running and fluid ingestion on the performance of a soccer skill. *J Sports Sci.* 1999;17(11):895-903.

60. McCartney D, Desbrow B, Irwin C. The Effect of Fluid Intake Following Dehydration on Subsequent Athletic and Cognitive Performance: A Systematic Review and Meta-analysis. *Sports Med Open.* 2017;3(1):13.