Direct, diffuse and total solar radiation data set in La Guajira, Magdalena and Cesar departments -Colombia

Marley Vanegas Chamorroa,\ast, Edwin Espinel Blancob, Jhan Piero Rojasc

a Facultad de Ingeniería, Grupo de investigación en gestión eficiente de la energía – kái. Universidad del Atlántico, Carrera 30 Número 8-49, Área Metropolitana de Barranquilla, 080007 Puerto Colombia, Colombia

b Facultad de Ingeniería, Universidad Francisco de Paula Santander; Vía Acolsure. Sede el Algodonal Ocaña, Ocaña-Norte de Santander 546552, Colombia

c Facultad de Ingeniería, Universidad Francisco de Paula Santander, Avenida Gran Colombia No. 12E-96, Cúcuta 540003, Colombia

Article Info

Article history:
Received 18 July 2020
Revised 30 September 2020
Accepted 7 October 2020
Available online 15 October 2020

Keywords:
Solar radiation
Transmittance
Bird and Hulstrom model
Solarimetric information

Abstract

This article aims to show direct, diffuse, and total solar radiation in the departments of La Guajira, Magdalena, and Cesar, located on the Caribbean coast of Colombia. In addition, data on climatic variables such as temperature, pressure, and relative humidity measured through different sensors located in these meteorological stations are presented. The data obtained by these stations correspond to measurements from 1993 to 2013 allowed the estimation of the parameters of the total, direct and diffuse solar radiation for each department, by mean of the Bird and Hulstrom model and parameterizations of the Mächler and Iqbal model. In addition, five climatological scenarios that could occur using these data were calculated.

© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

* Corresponding author.
E-mail addresses: marleyvanegas@mail.uniatlantico.edu.co (M.V. Chamorro), eespinelb@ufps.edu.co (E.E. Blanco).

https://doi.org/10.1016/j.dib.2020.106397
2352-3409/© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Specifications Table

Subject area	Renewable energy
More specific subject area	Solar field, solar energy
Type of data	Raw, Graphs, figures, tables
How data was acquired	Pressure sensor Lambrecht Ref. 8121, temperature sensor Siap + Micros Ref. T001-TTEP-N and relative humidity Siap + Micros Ref. T003-TEH-V.
Data format	Raw data and analyzed
Parameters for data collection	The data mentioned in this article was administrated by the stations managed by the Hydrology, Meteorology, and Environmental Studies Institute (IDEAM).
Description of data collection	The data was collected through the sensors in the weather stations.
Data source location	Caribbean region in Colombia, Departments of La Guajira, Magdalena and Cesar.
Data accessibility	Repository name: Mendeley data: https://data.mendeley.com/datasets/hytc559th51
Data identification number	10.17632/hytc559th51
Related research article	M. Vanegas, O. Churio, G. Valencia, E. Vilicaña, and A. Ospino, “Calculation of total, direct and diffuse radiation, through the atmospheric transmissivity in the departments of Cesar, La Guajira and Magdalena (Colombia),” Revista Espacios, vol. 38, no. 7, 2017 [1].

Value of the Data

- The data provided in this article can be used as a starting point for further research on the behavior of solar radiation in the country, specifically in the Caribbean region of Colombia.
- The raw data presented can be used for the validation of new irradiation calculation models, either empirical or through neural networks.
- These data can be used to make a comparative analysis of solar potential with respect to different regions of the world.

1. Data Description

The data shown in this article are climatic measurements obtained from the stations located in the departments of La Guajira, Magdalena, and Cesar (Colombia). They were obtained from daily averages for each station, from which the direct (IDH), diffuse (IdH) and total (ITH) solar radiation data for different atmospheres were calculated using the Bird and Hulstrom model [2]. This model makes it possible to quantify the different atmospheric transmittances (τ) that are required for the calculation of radiation using the Angström turbidity coefficient (β). This coefficient allows analyzing radiation in different types of atmosphere: (β = 0.0) extremely clean, (β = 0.1) clear, (β = 0.2) medium, (β = 0.3) cloudy, and (β = 0.4) very cloudy. To complete the missing data, it was necessary to apply an interpolation of the available measures as described in Fig. 1. Therefore, daily averages of temperature and humidity were generated for each location in the departments under study.

The average climatic variables for each department are presented in Table 1 (Magdalena), Table 2 (La Guajira), and Table 3 (Cesar). Besides, the monthly trends in temperature and humidity in these places are presented in Fig. 2 (Magdalena), Fig. 3 (La Guajira), and Fig. 4 (Cesar).

The data set is completed with the behavior of direct, diffuse and total solar radiation in the study departments considering the atmospheres presented in Fig. 5 for t(0.0), in Fig. 6 for t(0.1), in Fig. 7 for t(0.2), in Fig. 8 for t(0.3), and in Fig. 9 for t(0.4), based on data collected for 20 years every day. This collection process allowed us to determine the monthly behavior in every
Fig. 1. Flowchart for the treatment of meteorological data.

Table 1
Climate variables for the weather stations in the Magdalena department.

No	Name	Elevation (msnm)	Pressure (Pa)	HR\(^*\) (%)	T\(^{\circ}\) (°C)
1	Apto Simón Bolívar	4	101278.5	76.1	28.3
2	Prado Sevilla	18	101115.8	78.2	26.8
3	La ye	20	101092.6	75.4	28.9
4	Padelma	20	101092.6	79.5	25.4
5	Media Luna	20	101092.6	79.9	26.6
6	Los Álamos	25	101034.6	79.9	28.2
7	Tayrona	30	100976.6	87.6	26.4
8	El Seis	50	100745.1	75.2	26.9
9	Alto de Mira	1080	89509.9	92.3	209

\(^*\): relative humidity.
\(^{\circ}\): temperature.
Table 2
Climate variables for the weather stations in the La Guajira department.

No.	Name	Elevation (msnm)	Pressure (Pa)	HR∗ (%)	T** (°C)
1	Manaure	1	101313.4	73.1	28.7
2	Pto. Bolívar	10	101208.7	74.2	28.4
3	Matitas	20	101092.6	80.9	27.6
4	Rancho Grande	50	100745.1	65.8	27.7
5	La Mina	80	100398.7	71.6	28.3
6	Nazareth	85	100341.1	81.3	27.2
7	Carraipía	118	99961.7	78.3	27.3
8	Camp. Intercor	122	99915.8	72.7	28.0
9	Urumita	255	98401.8	68.4	27.7

∗ : relative humidity.
** : temperature.

Table 3
Climate variables for the weather stations in the Cesar department.

No.	Name	Elevation (msnm)	Pressure (Pa)	HR∗ (%)	T** (°C)
1	Chiriguaná	40	100860.8	74.3	26.8
2	Guaymaral	50	100745.1	60.5	28.5
3	Hda. La Guaira	50	100745.1	76.1	28.5
4	Col. Agro. Pailitas	50	100745.1	71.7	25.2
5	Villa Rosa	70	100514.0	66.4	27.8
6	Centenario Hda	100	100168.4	76.4	28.1
7	La Llana	120	99938.7	85.4	27.3
8	Apto Alfonso López	138	99732.4	60.0	19.4
9	Socomba	170	99366.7	76.0	27.9
10	Motilonia Codazzi	180	99252.7	69.0	27.6
11	El Rincón	350	97334.5	76.5	26.3
12	San José de Oriente	850	91904.8	79.5	24.9

∗ : relative humidity.
** : temperature.

Table 4
Information of each column in the raw dataset.

Symbol	Description	Symbol	Description
Max	Maximum daily temperature (°C)	R7	Relative humidity at 7:00 a.m. (%)
Min	Minimum daily temperature (°C)	R13	Relative humidity at 1:00 p.m. (%)
Max-Min	Temperature difference, (°C)	R19	Relative humidity at 7:00 p.m. (%)
T-7	Dry bulb temperature at 7:00 a.m. (°C)	Mean	Mean daily relative humidity, (%)
T-13	Dry bulb temperature at 1:00 p.m. (°C)	P7	Pressure at 7:00 a.m. (inHg)
T-19	Dry bulb temperature at 7:00 p.m. (°C)	P13	Pressure at 1:00 p.m. (inHg)
Mean	Mean daily dry bulb temperature, (°C)	P19	Pressure at 7:00 p.m. (inHg)
T7	Wet bulb temperature at 7:00 a.m. (°C)	Mean	Mean daily pressure (inHg)
T13	Wet bulb temperature at 1:00 p.m. (°C)	Tr7	Dew temperature at 7:00 a.m.
T19	Wet bulb temperature at 7:00 p.m. (°C)	Tr13	Dew temperature at 1:00 p.m.
Mean	Mean daily wet bulb temperature, (°C)	Tr19	Dew temperature at 7:00 p.m.

department considering all of their weather stations, as seen in the original data raw file in the attachment. The information of each column in the raw dataset is presented in Table 4. All raw data is available in https://data.mendeley.com/datasets/hytc559th5/1.
Fig. 2. Temperature and humidity for weather stations in Magdalena from 1993 to 2013, (a) Apto Simón Bolívar, (b) Prado Sevilla, (c) La Ye, (d) Padelma, (e) Media Luna, (f) Los Alamos, (g) Tayrona, (h) El seis, and (i) Alto de Mira.

Table 5

Measurement	Precision
Barometric pressure	± 1hPa
Temperature	30 to +60°C; ±0.3°C
Relative humidity	±0.5% RH

2. Experimental Design, Materials and Methods

2.1. Meteorological data

The meteorological stations are located in the departments of La Guajira, Magdalena, and Cesar. These departments are located at the coordinates 11° 14'31" N 74° 12'19" W, 11° 33'N 72° 54'W and 10° 29'00" N 73° 15'00" W. IDEAM provided the temperature, relative humidity, and pressure data required to carry out this study. These measurements were made through the sensors whose specifications are presented in Table 5 and Fig. 10.
Fig. 3. Temperature and humidity for weather stations in La Guajira from 1993 to 2013, (a) Manaure, (b) Pto. Bolivar, (c) Matitas, (d) Rancho Grande, (e) La Mina, (f) Nazareth, (g) Carraipía, (h) Camp. Intercor, and (i) Urumita.

2.2. Method

2.2.1. Bird and Hulstrom model for calculating solar radiation

Taking into account the physical and meteorological conditions of the departments of Magdalena, La Guajira and Cesar, located on the Caribbean coast of Colombia, the Bird and Hulstrom model [2] were used, which is a physical and empirical model based on data and measurements taken in different stations over a certain time. From these measurements, it calculates the atmospheric transmittances that will allow the calculation of total, direct, and diffuse radiation. This model is considered the most suitable because it allows us to identify different coefficients responsible for radiation attenuation due to the presence of different particles in the atmosphere. This model determines direct (IDH) and diffuse (IdH) radiation to know in this way the value of total radiation (ITH).

The direct radiation on a horizontal surface is determined from Eq. (1), considering different cloudiness levels.

\[I_{DH} = 0.9662 \cdot C_r \cdot \tau_{prom} \cdot \text{sen}(A) \ (\text{W/m}^2) \]

(1)

where \(\tau_{prom} \) corresponds to the average transmittance calculated from the transmittance by air molecules dispersion (\(\tau_r \)), the transmittance by ozone molecules dispersion (\(\tau_o \)), the transmittance by miscible gasses molecules (\(\tau_g \)), the transmittance by water vapor (\(\tau_w \)), the transmittance by aerosol sprays molecules (\(\tau_a \)), it is also taken into account the daily solar constant which is a function of the Julian day measured in W/m². Also, the 0.9662 belonging to the Eq. (1) is the correction factor adjusted to the wavelength Interval where 96% of the radiation is
concentrated and (A) is the angle of solar altitude. For every one of these transmittance values, different parameters must be considered, which are related in Table 6.

The value (β) can vary from 0.0 for extremely clean atmospheres, until 0.4 as maximum limit for atmospheres with very high murkiness. Where there are no available measurements, like in this case, the expression proposed by Mächler [3] taken from Buckius and King can be used [4], represented by the Eq. (2), where VIS corresponds to the sky visibility value in km.

$$\beta = 0.55^{\alpha} \cdot \left(\frac{3.912}{\text{VIS}} - 0.01162 \right) \cdot [0.024722 \cdot (\text{VIS} - 5) + 1.132]$$

(2)

Where α indicates the particle size, Mächler suggests as an approximate median value 1.3 μm, if it is about a natural atmosphere. According to Eq. (2), the values in the parameter β will give the visibility in km as shown in Table 7 [4].

According to Global Learning and Observations to Benefit the Environment [5], it is defined that for $\beta=0.0$ the atmosphere is extremely clean in which the sky presents a deep blue color,
Fig. 5. Analysis of direct, diffuse and total radiation at La Guajira, Magdalena and Cesar weather stations from 1993 to 2013 for a $\tau(0.0)$.

Fig. 6. Analysis of direct, diffuse and total radiation at La Guajira, Magdalena and Cesar weather stations from 1993 to 2013 for a $\tau(0.1)$.

Fig. 7. Analysis of direct, diffuse and total radiation at La Guajira, Magdalena and Cesar weather stations from 1993 to 2013 for a $\tau(0.2)$.

Fig. 8. Analysis of direct, diffuse and total radiation at La Guajira, Magdalena and Cesar weather stations from 1993 to 2013 for a $\tau(0, 3)$.
Fig. 9. Analysis of direct, diffuse and total radiation at La Guajira, Magdalena and Cesar weather stations from 1993 to 2013 for a $\tau(0.4)$.

Table 6
Parameters to be taken into account for the values of transmittances.

Transmission Coefficient	Parameters
Air molecules	Atmospheric mass (ma)
Miscible gasses	Atmospheric mass (ma)
Ozone	Thickness of the ozone layer
Water	Amount of precipitable water on site
Aerosols	Turbidity Coefficient (β)

Table 7
Sky visibility according to Angström coefficients (β).

β	0.0	0.1	0.2	0.3	0.4
km	340	30	11	7	<5

unusual situation in Earth, so for this case of study a value of $\beta=0.1$ is taken, the atmosphere is clear, which indicates a cloudiness-free sky, of blue color, which has place only in determined occasions. For a $\beta=0.2$, the atmosphere presents clear sky conditions with slight cloudiness, a characteristic that is more common and some authors identify them as a light blue sky, with some haze. For a $\beta=0.3$ the atmosphere presents a degree of turbidity that indicates greater cloudiness, under these conditions it has a pale blue color, with more lime. For a $\beta=0.4$, the atmosphere appears cloudy; in this case, the sky presents a "milky" color characteristic of extreme haze.

Regarding the diffuse radiation, the model considers three solar components, the I_{dr} due to the existence of air molecules, I_{da} due to the existence of dust particles, and I_{dm} which is by multiple reflection between the soil and the atmosphere [6].
The diffuse radiation due to the existence of air molecules is described by the Eq. (3).

\[l_{dr} = \left[\frac{0.79 \cdot C_r \cdot \tau_0 \cdot \tau_g \cdot \tau_w \cdot \tau_{aa}}{2} \right] \cdot \left[\frac{1 - \tau_r}{1 - m_a + m_a^{0.02}} \right] \cdot \text{sen}(A) \ (\text{W/m}^2) \]

where \(\tau_{aa} \) corresponds the transmittance due to the absorption of aerosols which is a function of the air mass \((ma) \) and the transmittance due to aerosols \(\tau_a \) used for the calculation of direct radiation.

In this model, the transmittance value by scattering \((\tau_r)\) evaluates the change of direction that the solar radiation experiences due to the air molecules presence and it’s determined from the Eq. (4).

\[\tau_r = e^{-0.0903 \cdot m_a^{0.84} (1+m_a - m_a^{1.01})} \]

For their calculation, it is necessary to determine the optical mass of the air \((m_a) \) which is corrected by pressure as shown by the Eq. (5).

\[m_a = \frac{P_T \cdot m_{rel.}}{1,013,25} \]

Where \(P_T \) es the total pressure of the air in Pa and it is determined in function of the altitude \((z)\) with the Eq. (6) [6].

\[P_T = 101,325 \cdot e^{-0.0001184 \cdot z} \]
To calculate the air mass value, it is required to evaluate first the relative air mass value (m_{rel}). This is determined by Eq. (7).

$$m_{rel} = \frac{1}{\cos U + 0.15 \cdot [93.885 \cdot U]^{-1.253}}$$

(7)

Diffuse radiation due to the presence of aerosol sprays, represented by the Eq. (8), is calculated from the C Model of Iqbal [7], which is function of the energy percentage that approaches to the Earth surface due to the aerosol spray dispersion (F_c). In this case, its value can be estimated from the parametrization realized by Mac, whose calculation is function of the atmospheric mass (m_a) [8].

$$I_{da} = 0.79 \cdot C_r \cdot \tau_0 \cdot \tau_g \cdot \tau_w \cdot \tau_{aa} \cdot F_c \cdot \left[\frac{1 - \tau_{as}}{1 - m_a + m_a^{1.02}} \right] \cdot \text{sen}(A) \text{ (W/m2)}$$

(8)

In this equation the transmittance is used (τ_{as}) which is due to the aerosol spray diffusion which is function of (τ_a) and (τ_{aa}).

The calculation of the diffuse radiation by multiple reflection, represented by the Eq. (9), requires having the surface reflection coefficients (ρ_0), this value is generally tabulated. In the same way, it is required to evaluate the atmospheric albedo; that is, the multiple reflection between the soil and the sky ($\rho' a$) which is function of F_c and the transmittance due in exclusiveness to diffusion by aerosol sprays [9].

$$I_{dm} = [I_{DH} \cdot \text{sen}(A) + I_d + I_{da} \cdot \left(\frac{\rho_g \cdot \rho_a}{1 - \rho_g \cdot \rho_a} \right)] \text{ (W/m2)}$$

(9)

As it was mentioned earlier, this model indicates that the solar irradiation is equivalent to the sum of the direct and diffuse irradiation as presented in the Eq. (10).

$$I_{TH} = I_{DH} + I_{dH}$$

(10)

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Marley Vanegas Chamorro: Conceptualization, Methodology, Validation, Writing - original draft. Edwin Espinel Blanco: Data curation, Funding acquisition. Jhan Piero Rojas: Formal analysis, Resources.

Acknowledgments

The authors want to acknowledge the support of the Universidad del Atlántico, Universidad Francisco de Paula Santander, and Hydrology, Meteorology, Environmental Studies Institute (IDeAM) and Colciencias on the development of this research by providing access to their facility.

Supplementary Materials

Supplementary material associated with this article can be found, in the online version at doi: 10.1016/j.dib.2020.106397.
References

[1] M. Vanegas, O. Churio, G. Valencia, E Villicaña, A. Ospino, Calculation of total, direct and diffuse radiation, through the atmospheric transmissivity in the departments of Cesar, La Guajira and Magdalena (Colombia), Revista Espacios 38 (07) (2017) 18 n.

[2] R. Bird, R. Hulstrom, A Simplified Clear Sky Model for Direct and Difusse Insolation on Horizontal Surfaces, EEUU: Solar Energy Research Institute, 1981.

[3] M. Mächler, Parameterization of solar irradiation under clear skies, Departamento de Ingeniería Mecánica, Universidad de Columbia, Canada, 1983.

[4] R. Buckius, R. King, Direct solar transmittance for clear sky, Solar Energy (1979) 297–301.

[5] GLOBE. (2012). Global Learning and Observations to Benefit the Environment, [Internet]. Available from: [Accessed in July 2015].

[6] O. Pinazo, Manual de climatización, Tomo II, Universidad Politécnica de Valencia, España, 1995.

[7] M. Iqbal, An Introduction to Solar Radiation, Academic Press, Toronto, 1983.

[8] O. Villacaña, Tesis Doctoral: Método de Evaluación De La Radiación Solar Por Transmisibilidad Atmosférica., Universidad de Oviedo: Departamento de Energía, 2012.

[9] J. Boscá, M. Pinazo, J. Cañada, Obtención Del Coeficiente de Turbiedad atmosférica De Angström de Valencia y Sevilla, Utilizando Medidas De Radiación Solar, Departamento de Termodinámica Aplicada. Universidad Politécnica de Valencia, España, 1993.