Evaluation of HBsAg, anti-HCV and HIV Positivity Rates in Emergent and Selective Surgery Patients in General Surgery in One Year Period

Kazim Duman1*, Ali Aksu2, Baris Gulturk2, Ahmet Bozdag2, Gulden Eser Karlıdag3, Fatih Erol1, Burhan Hakan Kanat2, Mehmet Bugra Bozan1

1Department of General Surgery, Fatih Sultan Mehmet Education and Training Hospital, Istanbul, Turkey
2Department of General Surgery, Elazig Education and Training Hospital, Elazig, Turkey
3Department of Infections Diseases, Elazig Education and Training Hospital, Elazig, Turkey

*Corresponding author: Kazim Duman, Fatih Sultan Mehmet Education and Training Hospital, Department of General Surgery, Istanbul, Turkey. Tel: +905383859511; Email: drkduman@gmail.com

Citation: Duman K, Aksu A, Gulturk B, Bozdag A, Karlıdag GE, et al. (2017) Evaluation of HBsAg, anti-HCV and HIV Positivity Rates in Emergent and Selective Surgery Patients in General Surgery in One Year Period. J Surg: JSUR-165. DOI: 10.29011/2575-9760.000065

Received Date: 28 August, 2017; Accepted Date: 10 October, 2017; Published Date: 17 October, 2017

Abstract

Introduction: Healthcare workers are more vulnerable for blood-borne diseases due to various blood-related procedures. According to World Health Organization’s worldwide annual report, there are approximately 3 million interventional injury cases of health workers. Knowing the potential risk before surgical intervention will ensure that the healthcare personnel and the surgeon act more cautiously. The aim of this study was to determine the rates of pre-operative HBV, HCV and HIV positivity in patients operated and followed emergently and electively in our clinic between January 2012 and December 2012, and to determine the rates of exposure to blood pathogens and to emphasize the necessity of precautions to be taken.

Materials and Methods: HBV Surface Antigen (HbsAg), anti-HCV and anti-HIV antibody levels, which are measured using Enzyme Linked Immuno-Sorbent Assay (ELISA), were obtained from the files of 587 patients followed up after emergency and elective surgery in our General Surgery Clinic between January 2012-December 2012, and from the blood samples collected preoperatively. These results and demographic data, surgeries performed are retrospectively analyzed.

Results: While HbsAg was positive in 20 of 587 cases (3.4%), anti-HCV and anti-HIV were not positive in any patient. A total of 103 patients (17.5%) underwent emergency surgery and HbsAg was detected in 1 patient (0.97%). HbsAg was positive in 19 patients (3.93%) who underwent elective surgery. None of the patients were positive for anti-HIV and anti-HCV.

Conclusions: Performing pre-operative viral serological tests on patients who will undergo surgery can cause the surgery team to work more cautiously. We propose that, assuming that the serological tests are positive in order to reduce the transmission will be useful for the health safety of the operating room personnel.

Keywords: Anti- HCV; Anti- HIV; HbsAg

Introduction

Healthcare workers are more vulnerable for blood-borne diseases due to various blood-related procedures [1-3]. Especially surgeons working in the emergency room, or the operating room, anesthesia specialists and assistant health personnel, and laboratory and hemodialysis unit workers constitute the greatest risk group [1-6]. Injury during different interventional procedures create threats to the health care workers in terms of infectious body fluids (blood, saliva, etc.) and blood pathogens [2]. Hepatitis vi-ruses (Hepatitis B and Hepatitis C viruses) and HIV have a signifi-cant role among these transmitted blood pathogens [1-6]. Fear of contamination can also cause various psychiatric stress disorders among health professionals [7]. According to the World Health Organization, the interventional injuries of the health workers in the world are stated as 3 million per year. As a result, up to 100000 people can develop HBV, up to 15000 can develop HCV and up to 1000 can develop HIV infections [2]. Although different depart-ments have risks, surgeons have the highest risk of transmission.
Protection from these infectious diseases will help both to increase in work safety for healthcare professionals and reduce potential contagiousness. For this purpose, knowing the potential risks of the patient before surgery will help healthcare personnel and the surgeon to behave more carefully, even though they reduce the likelihood of infection and take technical precautions in the rooms before surgical intervention [8-10]. The aim of this study was to determine the rates of pre-operative patients with HBV, HCV and HIV who were operated and followed emergently and electively in our clinic between January 2012 and December 2012, and to determine the rates of exposure to blood pathogens and to emphasize the necessity of precautions to be taken.

Materials And Methods

Between January 2012 and December 2012, our General Surgery Clinic reported 587 patient files that were emergently and electively operated and followed up, preoperative blood samples of the patients were taken and results of HBV Surface Antigen (HBsAg), anti-HCV and anti-HIV antibodies were obtained by Enzyme Linked Immuno Sorbent Assay (ELISA) method. HBsAg, anti-HIV, anti-HCV, age, gender, surgery performed and emergent or elective operation were retrospectively screened. The SPSS 11.5 package program was used in the data analysis.

Results

The mean age of the 587 patients who were operated on was 250 males (42.6%) and 337 females (57.4%) was 41.08 ± 17.25 years (min-max: 7-92 years). Of the 587 cases, HBsAg was positive in 20 patients (3.4%), whereas anti-HCV and anti-HIV were not positive in any patient. In a total of 103 patients (17.5%), 1 patient (0.9%) was HBsAg-positive and none were found to have anti-HIV and anti-HCV positivity (Table 1).

SEX	HBsAg	Anti-HCV	Anti-HIV			
	Positive	Negative	Positive	Negative	Positive	Negative
FEMALE	6 (2.4%)	244 (97.6%)	14 (4.15%)	323 (95.85%)	587	
MALE	14 (4.15%)	323 (95.85%)	0 (0%)	337 (100%)	587	

Table 1: HBsAg, Anti-HCV and Anti-HIV Positive Rates According to Gender of Patients.

In 19 (3.93%) patients among electively operated patients were HBsAg-positive and no anti-HCV and anti-HIV positivity were found. 14 (70%) of the HBsAg positive patients were male and 6 (30%) were female. Seven cases (35%) of HBsAg positive cases were operated from inguinal hernia, 5 (25%) were from benign anorectal diseases (anal fistula, fissure, hemorrhoidal disease and anal abscess), 3 (15%) were from pilonidal sinus, 2 (10%) were from multinodular goiter and 1 (5%) was from acute appendicitis (Table 2).
Discussion

General surgical specialization includes a large number of surgical interventional procedures in both emergency and elective conditions. This increases the likelihood of direct contact with contaminated devices and body fluids during surgical procedures in surgical clinics [11-12]. Surgeons are in the highest risk group of injury, and staff in the operating room are in contact with the patients’ blood for half of the procedures [13]. Surgeons have a 5.5 times higher risk than other physicians [14-17]. Despite taking all precautions, surgeons get injured in up to 6% of the surgeries [3]. In our country, the rate of exposure to infected body fluids percutaneously or mucosally is 50.1% [3]. The likelihood of injury depends on many factors such as the surgeon’s experience, duration of surgical procedure, and type of surgical procedure [18]. The HBsAg positivity in terms of HBV rate in Turkey is 8% (2-10%) [12,19]. 3.4 million people were found to be carriers [20]. For this reason, Turkey is regarded as a mid-level endemic region for HBV and as a low-level endemic region for HCV [20]. The incidence of viral hepatitis in health care personnel is 3 to 6 times higher than other occupations and in various studies, the seroprevalence of HBsAg and HCV have been reported as 3.3-16.4% and 0.9% [20-22]. In various studies, HBV and HCV infection risk as a result of con-taminant syringe infusion was reported to be 7-30 % and 4-10 %, respectively [23]. Following percutaneous injury, the risk of HIV transmission ranges from 0.1 to 0.25 % [24]. The risk of HIV co-contamination with mucosal contact is 0.09% [24]. It is recommended to follow the surgical disinfection rules in order to be protected from possible contamination and it is suggested to follow different ways for the protection from the contact (double glove use, face and eye protectors, plastic aprons) [1,14,24]. In addition, vaccina-tion appears to be an important protection way against possible risk of transmission [24].

Twenty of the 587 patients included in our study were HBsAg positive (3.4%). This rate was similar to the seroprevalence rates of HBsAg in Turkey [20-22]. Anti-HCV positivity was not observed in any of our patients and the same was true for anti-HIV. Similar studies with the screening results of general population and the donors are present [11]. Although only 1 (0.9%) of HBsAg-positive case is found in emergency cases, injury cases without any serological examination may constitute the greatest possible risk. The most basic reason for this is that despite all the precautions taken, surgeons are injured in 6% of the surgeries [3]. Although none of the patients were positive for anti-HCV and anti-HIV, the probability of transmission of percutaneous injury and mucosal contact should not be ruled out.

Conclusion

Preoperative viral serologic examinations in patients who will undergo emergent or elective surgery may be a caution for more rigorous operation of the operating room team who are in the high risk group. The most important problem here is the patients whose blood results can not be waited. For these patients, we believe that approaching as if the serologic tests are positive may be useful in terms of minimising infectivity by the surgeon and the staff in the operating room. It should also be remembered that even if they are seronegative, patients may be in the window period and especially in the emergencies, they should be regarded as a potential carrier of disease.

This study was presented as a poster presentation in 9th National Hepatology Congress, 28 May - 01 June 2013, Istanbul/ Turkey.

References

1. Fry DE (2007) Occupational risks of blood exposure in the operating room. Am Surgeon 73: 637-646.
2. Phillips EK, Owusu-Ofori A, Jagger J (2007) Bloodborne pathogen exposure risk among surgeons in Sub-Saharan Africa. Infect Control Hosp Epidemiol 28:1334-1336.
3. Hosoglu S, Akalin S, Sünbül M, Oktun M, Öztürk R (2009) Predictive factors for occupational bloodborne exposure in Turkish hospitals. Am J Infect Control 37: 65-69.
4. Doebbeling NB and Wenzel RP (1995) Nosocomial viral hepatitis and infections transmitted by blood products: In: Mandell GL, Bennet JE, Dolin R (ed.) Principles and Practice of Infectious Diseases. 4th edition. New York: Churchill Livingstone 1995: 616-632.
5. Tsude K, Fujiyama S, Sato S, Kawano S, Taura Y, et al. (1992) Two cases of accidental transmission of hepatitis C to medical staff. Hepato-Gastroenterol 39: 73-75.
6. Öner M, Güney A, Halici M, Argün M, Kafadar İ (2007) Ortopedik cerrahi uygulanan oğularda hepatit B ve Hepatit C prevalansı: 10 yıldır retrospektif çalışma. Genel Tip Derg 17: 167-171.

Breast mass	0 (0 %)	7 (100 %)	0 (0 %)	7 (100 %)	0 (0 %)	7 (100 %)	7
Ventral herni	0 (0 %)	1 (100 %)	0 (0 %)	1 (100 %)	0 (0 %)	1 (100 %)	1
Lipoma	0 (0 %)	4 (100 %)	0 (0 %)	4 (100 %)	0 (0 %)	4 (100 %)	4
Colon cancer	0 (0 %)	1 (100 %)	0 (0 %)	1 (100 %)	0 (0 %)	1 (100 %)	1
Ilies	0 (0 %)	1 (100 %)	0 (0 %)	1 (100 %)	0 (0 %)	1 (100 %)	1
Total	20 (3.4 %)	567 (96.6 %)	0 (0 %)	587 (100 %)	0 (0 %)	587 (100 %)	587
7. Gupta A, Anand S, Sastry J, Krisagar A, Basavaraj A et al. (2008) High risk for occupational exposure to HIV and utilization of post-exposure prophylaxis in a teaching hospital in Pune, India. BMC Infect Dis 8: 142.
8. Masood Z, Jawaid M, Khan RA, Rehman S (2005) Screening for Hepatitis B and C: A routine preoperative investigation? Pak J Med Sci 21: 455-459.
9. Ahmad I, Khan SB, Rehman H, Khan MH, Amwar S (2006) Frequency of hepatitis B and Hepatitis C among cataract patients. Gomal J Med Science 4: 61-64.
10. Ganiczak M and Szych Z (2009) Rationale for the implementation of preoperative testing for HCV in the light of HCV and HBsAg tests results in surgical patients from a teaching hospital. Przegl Epidemiol 63: 387-392.
11. Çöl C and Daglı Z (2004) Genel cerrahi hastalarında hepatit B virüsü prevalansı ve risk faktörlerinin analizi. MN Klinik Bilimler ve Doktor 10: 34-39.
12. Dursun M, Ertem M, Yılmaz S, Saka G, Özekinci T, et al. (2005) Prevalence of hepatitis B infection in the Southeastern Region of Turkey: Comparison of risk factors for HBV infection in rural and urban areas. Jpn J Infect Dis 58: 15-19.
13. Halpern SD, Asch DA, Shaked A, Stock P, Blumberg EA (2006) Inadequate hepatitis B vaccination and post-exposure evaluation among transplant surgeons: Prevalence, correlates, and implications. Ann Surg 244: 305-309.
14. Patterson JMM, Novak CB, Mackinnon SE, Patterson GA (1998) Surgeons' concern and practices of protection against bloodborne pathogens. Ann Surg 228: 266-272.
15. Myers DJ, Epling C, Dement J, Hunt D (2008) Risk of sharp device-related blood and body fluid exposure in operating rooms. Infect Control Hosp Epidemiol 29: 1139-1148.
16. Okpalugo CE and Oguntibeju OO (2008) Prevalence of human immunodeficiency virus and hepatitis B virus in preoperative patients: Potential risk of transmission to health professionals. Pak J Biol Sci 11: 298-301.
17. Berguer R and Heler PJ (2005) Strategies for preventing sharps injuries in the operating room. Surg Clin N Am 85: 1299-1305.
18. Mingoli A, Sapienza P, Sgarzini G, Modini C (1999) Letters to the editor. Ann Surg 230: 736-738.
19. Rantala M and van de Laar MJW (2008) Surveillance and epidemiology of hepatitis B and C in Europe a review. Eurosurveillance 13: 1-8.
20. Taşyaran M. Epidemiyoloji. Kılıçturgay K (1998) Viral Hepatit'98. Viral Hepatitle Savaşım Derneği, İstanbul 1998: 94-100.
21. Jagger J, De Carli G, Perry JL, Puro V, Ippolito G (2003) Occupational exposure to blood-borne pathogens: Epidemiology and prevention. In: Venzel RP (ed.) Prevention and Control of Nosocomial Infection. 4th edition. Philadelphia: Lippincott Williams & Wilkins 2003: 431-461.
22. Mistik R and Badur S (1998) Türkiye’de viral hepatitlerin epidemiyoloji’si (Bir metaanaliz); Kılıçturgay K (ed.) Viral Hepatit’98. Viral Hepatitle Savaalım Derneği, İstanbul 1998: 9-40.
23. Gerberding JL and Henderson DK (1992) Management of occupational exposures to blood-borne pathogens: Hepatitis B virus, hepatitis C virus, and human immunodeficiency virus, Clin Infect Dis 14: 1179-1185.
24. Caillot JL and Voiglio EJ (2008) First clinical study of a new virus inhibiting surgical glove. Swiss Med Wkly 138: 18-22.