Research Article

Distance-Based Topological Polynomials Associated with Zero-Divisor Graphs

Ali Ahmad and S. C. López

1College of Computer Science & Information Technology, Jazan University, Jazan, Saudi Arabia
2Departament De Matemàtica, Universitat de Lleida, Av. Pla de la Massa, Igualada 8 08700, Spain

Correspondence should be addressed to Ali Ahmad; ahmadsms@gmail.com

Received 18 April 2021; Accepted 21 May 2021; Published 28 May 2021

Academic Editor: Michal Kawulok

Copyright © 2021 Ali Ahmad and S. C. López. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let $R$ be a commutative ring with nonzero identity and let $Z(R)$ be its set of zero divisors. The zero-divisor graph of $R$ is the graph $\Gamma(R)$ with vertex set $V(\Gamma(R)) = Z(R)^*$, where $Z(R)^* = Z(R) \setminus \{0\}$, and edge set $E(\Gamma(R)) = \{x, y : x \cdot y = 0\}$. One of the basic results for these graphs is that $\Gamma(R)$ is connected with diameter less than or equal to 3. In this paper, we obtain a few distance-based topological polynomials and indices of zero-divisor graph when the commutative ring is $\mathbb{Z}_p \mathbb{Z}_q^2$, namely, the Wiener index, the Hosoya polynomial, and the Shultz and the modified Shultz indices and polynomials.

1. Introduction

Algebraic structures have been investigated significantly for their nearby connection with representation theory and number theory; likewise, they have been widely concentrated in combinatorics [1, 2]. Despite the expansive theoretical research in these areas, restricted rings and fields got consideration for their applications to cryptography and coding theory.

In mathematical chemistry, a graphical structure of a chemical compound is a representation of the structural formula. In a chemical graph, vertices and edges represent the atoms and their chemical bonds of the compound, respectively. Molecular descriptors for a particular chemical compound are calculated on basis of the corresponding molecular graph. A topological index is a graph invariant that is obtained from it. In [3], the first topological index, namely, the Wiener index, was introduced. Nowadays, it is widely used in QSAR (“Quantitative Structure Activity Relationship”), whose properties are surveyed in [4, 5].

Topological indices are classified as degree based [6–9] and distance based of graphs. Some well-known topological indices based on the degrees of a graph are the Randić connectivity index, Zagreb indices, Harmonic index, atom bond connectivity, and geometric arithmetic index. The Wiener index, Hosaya index, and Estrada index are distance-based topological indices [10, 11]. Topological indices formulate the criteria for the development of compound structures, and numerical activities on these structures extend multidisciplinary research. In what follows, we cite some of them.

A relationship among the stability of linear alkanes and the branched alkanes is examined using the $ABC$ index, which helped in computation of strain energy for cycle alkanes [12, 13]. The $GA$ index is more appropriate and efficient to correlate certain physico-chemical characteristics for predictive power than the Randić connectivity index [14, 15]. The Zagreb indices are powerful tools for the calculation of total $p$-electron energy of the molecules with precise approximation [16]. The degree-based topological indices are more useful to examine the chemical characteristics of distinct molecular structures. Eccentricity-based topological indices are useful as a key for the judgement of toxicological, physico-chemical, and pharmacological properties of a compound through the structure of its molecules. The study of the QSAR is known for this sort of analysis [17]. By exploring [18, 19], further applications of topological indices can be obtained.

1.1. Distance-Based Topological Indices and Polynomials.

In this section, we introduce the topological indices and polynomials that will be obtained for the graphs studied in...
this paper. We recall some concepts from graph theory. Let
$G$ be a (undirected) graph. If there is a path between any two
distinct vertices of $G$, then $G$ is a connected graph. For two
distinct vertices $x, y \in V(G)$, we denote $d(x, y)$ the length of
a shortest path connecting $x$ and $y$ ($d(x, x) = 0$ and,
$d(x, y) = \infty$ if no such a path exists). The diameter of
the graph $G$ is the maximum length of the shortest path con-
necting two distinct vertices of $G$, that is, $\text{diam}(G) = \max\{d(x, y): x \neq y \in V(G)\}$. The number of edges inci-
dence a vertex $x$ of simple graph $G$ is called the degree of the
vertex $x$, denoted as $d_x$.

The Wiener index [11] was introduced by Wiener in
1947 to illustrate the connection between physico-chemical
properties of organic compounds and the index of their
molecular graphs:

$$W(G) = \frac{1}{2} \sum_{u \in V(G)} \sum_{v \in V(G)} d(u, v). \tag{1}$$

Randić [20] and Randić et al. [21] introduced a modified
version of the Wiener index that is used for predicting
physico-chemical properties of organic components. The
new index was called the hyper-Wiener index and it is
defined as follows:

$$WW(G) = \frac{1}{2} \sum_{u \in V(G)} \sum_{v \in V(G)} (d(u, v) + d(u, v)^2). \tag{2}$$

The Hosoya polynomial was introduced in 1989 [22].
The definition is as follows:

$$H(G, x) = \frac{1}{2} \sum_{u \in V(G)} \sum_{v \in V(G)} x^{d(u,v)}. \tag{3}$$

Dobrynin and Kochetova [23], and independently,
Gutman [24] introduced a degree distance index, which is
known as the Schultz index. Let $G$ be a connected graph and
$d_u$ be the degree of $u \in V(G)$. Then, the Schultz index or the
degree distance of $G$ is defined as follows:

$$\text{Sc}(G) = \frac{1}{2} \sum_{u \in V(G)} \sum_{v \in V(G)} (d_u + d_v) d(u, v). \tag{4}$$

Klavžar and Gutman defined, in [25], the modified
Schultz index of a graph as follows:

$$\text{Sc}^*(G) = \frac{1}{2} \sum_{u \in V(G)} \sum_{v \in V(G)} (d_u \cdot d_v) d(u, v). \tag{5}$$

Finally, Gutman, in [24], introduced two topological
polynomials, namely, the Schultz polynomial $\text{Sc}(G, x)$ and
the modified Schultz polynomial $\text{Sc}^*(G, x)$ as follows:

$$\text{Sc}(G, x) = \frac{1}{2} \sum_{u \in V(G)} \sum_{v \in V(G)} (d_u + d_v) x^{d(u,v)},$$

$$\text{Sc}^*(G, x) = \frac{1}{2} \sum_{u \in V(G)} \sum_{v \in V(G)} (d_u \cdot d_v) x^{d(u,v)}. \tag{6}$$

The connection between the above polynomials and the
previous two indices is stated below:

$$\text{Sc}(G) = \frac{\partial \text{Sc}(G, x)}{\partial x} \bigg|_{x=1}^z,$$

$$\text{Sc}^*(G) = \frac{\partial \text{Sc}^*(G, x)}{\partial x} \bigg|_{x=1}^z. \tag{7}$$

1.2. Zero-Divisor Graphs. Let $R$ be a commutative ring with
nonzero identity and let $Z(R)$ be its set of zero divisors.
The zero-divisor graph of $R$ is the graph $\Gamma(R)$ with vertex set
$V(\Gamma(R)) = Z(R)\setminus\{0\}$, and edge set
$E(\Gamma(R)) = \{x, y: x \cdot y = 0\}$. As usual, an edge $\{x, y\}$ is
simply denoted as $xy$. Zero-divisor graphs were introduced by
Beck [2] in 1988 and then studied by Anderson and Naseer [26].
These authors were interested in colorings and the original
definition included all elements in $R$, even the zero. Later on,
Anderson and Livingston [27] made emphasis on the relationship
between ring-theoretical properties and graph-theoretical properties and reformu-
lated the definition as it appears in the lines above. One of
the basic results in this relationship is the following one.

**Theorem 1** (see [27]). Let $R$ be a commutative ring. Then,
$\Gamma(R)$ is connected with diameter less or equal to $3$.

The study conducted in [28, 29] may serve as a survey
that is very interesting to find the relation between ring-
theoretic properties and graph-theoretic properties of $\Gamma(G)$.
Some applications and relation between algebraic theory and
chemical graph theory can be seen in [1, 18, 30]. In this paper,
we presented some results that interplay in the relation be-
tween a zero-divisor graph and chemical graph theory. The
structure of the paper is as follows. In Section 2, we describe
the family of zero-divisor graphs of the form $\Gamma(Z_{p^i q^j})$, where
$p$ and $q$ are different primes, and we also count pairs of
vertices that are exactly at distance $i$, for $i = 1, 2, 3$. In Section
3, we obtain the Wiener index and the Hosoya, the Shultz, and
the modified Shultz polynomials of $\Gamma(Z_{p^i q^j})$. We also obtain
the Shultz and the modified Shultz indices of $\Gamma(Z_{p^i q^j})$.

2. The Zero-Divisor Graph on $\Gamma(Z_{p^i q^j})$

Let us start by introducing some notation that will be used
along the paper. We assume that $p$ and $q$ are different
positive primes.

**Lemma 1.** Let $0 \leq i, j \leq 2$. Let $A_{i,j} = (p^i q^j) \subset Z_{p^i q^j}$, for
$0 \leq i + j \leq 4$ and $A_{i,j} = \emptyset$, otherwise. Then,

(i) $|A_{i,j}| = p^{2-i} q^{2-j}$

(ii) $A_{i+1,j} \cup A_{i,j+1} \subset A_{i,j}$

(iii) $A_{i+1,j} \cap A_{i,j+1} = A_{i+1,j+1}$, whenever $i + j + 2 \leq 4$

The vertices of $\Gamma(Z_{p^i q^j})$ can be split into blocks such that
all vertices in the same block have the same behavior. From
this partition, we can easily describe the structure of $\Gamma(Z_{p^i q^j})$,
that is, the content of the following lemma.

**Lemma 2.** For $0 \leq i, j \leq 2$ and $0 < i + j < 4$, let $B_{i,j} = A_{i,j} \setminus (A_{i+1,j} \cup A_{i,j+1})$. Then,
\[ B_{i,j} = \begin{cases} p^{i,j}q^{j,i} - p^{i,j} - p^{i,j}q^{j,i} + p^{i,j}q^{i,j}, & \text{if } \max[i, j] = 1, \\ q^{i,j} - q^{j,i}, & \text{if } i = 2, \\ p^{i,j} - p^{j,i}, & \text{if } j = 2. \end{cases} \] \tag{8}

Moreover,
(i) If \( i, j \geq 1 \), then \( \Gamma[B_{i,j}] \) is a clique. Otherwise, \( \Gamma[B_{i,j}] \) is a set of independent vertices.
(ii) Let \( B_{i,j} \) and \( B_{i',j'} \) such that \( i + i' = j + j' = 2 \). Then, the edges \( uv, u \in B_{i,j} \) and \( v \in B_{i',j'} \), define a complete bipartite graph.

According to the definition, all vertices in the same block of the zero-divisor graph on \( \mathbb{Z}_{p^i q^j} \) have the same degree. For more details on this graph, see [30]. Let \( d_{ij} \) be the degree of any vertex in \( B_{i,j} \). Following the notation of the previous lemma, we also conclude the following information.

**Lemma 3.** For \( 0 \leq i, j \leq 2 \) and \( 0 < i + j < 4 \), then
\[ d_{ij} = \begin{cases} p^2 q^i j - i - j, & \text{if } \max[i, j] = 1, \\ p^2 q^j j - j - 1, & \text{if } i = 2, \\ p^2 q^j j - i - 1, & \text{if } j = 2. \end{cases} \] \tag{9}

Figure 1 shows the structure of the zero-divisor graph \( \mathbb{Z}_{p^i q^j} \). White vertices represent blocks of independent vertices in \( \mathbb{Z}_{p^i q^j} \), whereas black vertices represent cliques.

The structure shown in Lemmas 2 and 3 can be completed by showing the distance between pairs of vertices, which only depends on the block they belong to. This information appears in Table 1.

Let \( TP_i(G) \), \( i \in \mathbb{Z} \) and \( i > 0 \), the number of pairs of vertices at distance \( i \) in a graph \( G \).

**Lemma 4.** Let \( \Gamma(\mathbb{Z}_{p^i q^j}) \) be a zero-divisor graph; then,
\[ TP_i(\Gamma(\mathbb{Z}_{p^i q^j})) = 3pq(p - 1)(q - 1) + \frac{1}{2} (pq - 1)(pq - 2). \] \tag{10}

**Proof.** The size of \( \Gamma(\mathbb{Z}_{p^i q^j}) \) is given by
\[ |B_{1,2}|(|B_{2,0}| + |B_{1,0}|) + |B_{2,1}|(|B_{0,2}| + |B_{0,1}|) + |B_{2,0}||B_{0,2}| + \left| E(K_{\mathbb{Z}_{[B_{1,2}],[B_{1,0}],[B_{0,2}],[B_{0,1}]}}) \right|. \] \tag{11}

That is, by introducing the values described in Lemma 2, the result follows.

**Lemma 5.** Let \( \Gamma(\mathbb{Z}_{p^i q^j}) \) be a zero-divisor graph; then,
\[ TP_2(\Gamma(\mathbb{Z}_{p^i q^j})) = pq \left( \frac{p(q + 2)(q - 1) - 1}{2} (q - 1) + \frac{q(p + 2)(p - 1) - 1}{2} (p - 1) \right). \] \tag{15}

Hence, after simplification, the result follows.

**Lemma 6.** Let \( \Gamma(\mathbb{Z}_{p^i q^j}) \) be a zero-divisor graph; then,
Proof. The number of pairs at distance exactly 3, TP₃, is given by the following expression:

\[ \text{TP}_3\left( \Gamma\left( Z_{p,q}^3 \right) \right) = |B_{0,1}| |B_{2,0}| + |B_{0,1}| |B_{1,0}| + |B_{0,2}| |B_{1,1}|. \]  

(17)

Thus, by Lemma 2, we get the result. 

\[ TP_3\left( \Gamma\left( Z_{p,q}^3 \right) \right) = pq(p - 1)(q - 1)(pq - 1). \]  

(16)

3. Distance-Based Topological Indices and Polynomials of \( \Gamma\left( Z_{p,q}^3 \right) \)

Now, we are ready to state and prove the following theorems.

Theorem 2. The Winner index of \( \Gamma\left( Z_{p,q}^3 \right) \) is

\[ W\left( \Gamma\left( Z_{p,q}^3 \right) \right) = 3p^2 q^2 (p - 1)(q - 1) + pq\left( pq\left( p^2 + q^2 - 6 \right) + p + q + 2 \right) + \frac{1}{2} \left( pq - 1 \right) (pq - 2). \]  

(18)

Proof. The diameter of \( \Gamma\left( Z_{p,q}^3 \right) \) is 3. Thus, there are pairs of vertices at distance 1, 2, and 3, and the Winner index can be obtained as follows:

\[ W\left( \Gamma\left( Z_{p,q}^3 \right) \right) = TP_1 + 2TP_2 + 3TP_3. \]  

(19)

By Lemmas 4–6, we get TP₁, TP₂, and TP₃, respectively. Thus, by introducing these values in (19), we get, after simplification, the required result.

\[ H\left( \Gamma\left( Z_{p,q}^3 \right), x \right) = \frac{p^2 q^2 - 1}{2} + \left( 3pq(p - 1)(q - 1) + \frac{1}{2} \left( pq - 1 \right) (pq - 2) \right) x \]

\[ + \frac{1}{2} pq\left( pq\left( p^2 + q^2 - 6 \right) + p + q + 2 \right) x^2 \]

\[ + pq(p - 1)(q - 1)(pq - 1)x^3. \]  

(20)

Lemma 7. The Hosoya polynomial of \( \Gamma\left( Z_{p,q}^3 \right) \) is \((p^2 q^2 - 1)/2 + (TP_1)x + (TP_2)x^2 + (TP_3)x^3\).

Theorem 3. The Hosoya polynomial of \( \Gamma\left( Z_{p,q}^3 \right) \) is

\[ WW\left( \Gamma\left( Z_{p,q}^3 \right) \right) = 12p^2 q^2 (p - 1)(q - 1) + pq\left( pq\left( 3p^2 + 3q^2 - 23 \right) + 9p + 9q - 3 \right) + 2. \]  

(21)

Proof. The result follows by Lemma 8 and by Lemmas 4–6, after some simplifications.

\[ \text{Sc}(\Gamma, x) = \{a_{10}\left( |B_{0,1}| + |B_{2,0}| \right) + a_{01}\left( |B_{1,0}| + |B_{2,0}| \right) + a_{20}|B_{0,1}| + a_{02}|B_{1,1}| \}x^3 \]

\[ + \left( |B_{0,1}| + |B_{2,0}| \right)(a_{12} + a_{11}) + \left( |B_{1,0}| + |B_{2,0}| \right)(a_{21} + a_{11}) + \left( d_{12} - |B_{1,1}| \right)(a_{20} + a_{10}) + \left( d_{21} - |B_{2,1}| \right)(a_{02} + a_{01}) \}x^2 \]

\[ + \sum_{u \in V(\Gamma)} d_u x + 2|E(\Gamma)|. \]  

(22)
Proof. Since the diameter of $\Gamma$ is 3, 3 is by definition the degree of $\text{Sc}(\Gamma, x)$. The 3rd coefficient of the polynomial is given by
\begin{align*}
|B_{0,1}||B_{1,0}|(d_{10} + d_{01}) + |B_{2,0}|d_{02} &+ |B_{0,2}|d_{10} + (d_{20} + d_{01}) \nonumber \\
+ |B_{0,3}|B_{1,0}(d_{02} + d_{10}). \tag{23}
\end{align*}
That is, $\alpha_{10}|B_{0,1}| + \alpha_{01}|B_{1,0}| + \alpha_{20}|B_{0,2}| + \alpha_{02}|B_{2,0}|$. From this expression, we clearly obtain the 3rd coefficient that appears in the statement.

The coefficients of $x^2$ and $x$ (see Table 1) are given, respectively, by
\begin{align*}
s_2 &= 2\left(\frac{|B_{1,0}|}{2}\right)d_{10} + 2\left(\frac{|B_{2,0}|}{2}\right)d_{20} + 2\left(\frac{|B_{0,1}|}{2}\right)d_{01} + 2\left(\frac{|B_{0,2}|}{2}\right)d_{02} \\
&\quad + |B_{2,0}||B_{1,0}|(d_{20} + d_{10}) + |B_{1,1}||B_{0,1}|(d_{11} + d_{01}) + |B_{1,0}||B_{0,1}|(d_{11} + d_{01}) + |B_{0,1}||B_{0,2}|(d_{02} + d_{11}) + |B_{0,2}||B_{1,1}|(d_{02} + d_{11}) \\
&\quad + |B_{1,2}||B_{0,1}|(d_{12} + d_{01}) + |B_{2,1}||B_{0,1}|(d_{12} + d_{01}) + |B_{2,1}||B_{1,0}|(d_{21} + d_{10}) + |B_{2,1}||B_{2,0}|(d_{21} + d_{10}) \tag{24}
\end{align*}
\begin{align*}
s_1 &= 2\left(\frac{|B_{1,1}|}{2}\right)d_{11} + 2\left(\frac{|B_{2,1}|}{2}\right)d_{12} + 2\left(\frac{|B_{0,2}|}{2}\right)d_{21} + |B_{2,1}||B_{0,2}|(d_{21} + d_{02}) + |B_{1,2}||B_{1,0}|(d_{12} + d_{10}) + |B_{2,1}||B_{0,2}|(d_{12} + d_{10}) + |B_{2,1}||B_{1,1}|(d_{12} + d_{10}) + |B_{1,1}||B_{2,1}|(d_{12} + d_{10}) \\
&\quad + |B_{2,1}||B_{1,2}|(d_{21} + d_{12}).
\end{align*}

By doing similar transformations as above, we obtain the $2^n$ and the 1st coefficient, respectively, that appears in the statement. Finally, the independent term appears when we apply the formula to each vertex. \hfill \Box

\begin{align*}
\text{Sc}(\Gamma, x) &= \left\{p(p-1)q(q-1)(2p^2q + 2pq^2 - 4pq - p^2 - q^2 + 2)\right\}x^3 \\
&\quad + \left\{pq(4p^3q^2 + 4p^2q^3 - 3p^3q - 12p^2q^2 - 3pq^3 + 2pq^2 + 2p^2q + 6pq + 2p^2 + 2q^2 - 4)\right\}x^2 \\
&\quad + \left\{(p-1)(q-1)(p^3 + q^3 + pq^3 + 2pq^2 + 2p^2q + 2pq^2 - 10pq + 4) + (p-1)(pq^2 - 2)^2 \right\}x \\
&\quad + (p-1)(pq^2 - 2)^2 \bigg\} + (p-1)(q-1)(5pq - 2) + (p-1)(pq^2 - 2) \tag{25}
\end{align*}

Proof. Consider the formula obtained in Lemma 9. Note that
\begin{align*}
\sum_{u \in \text{V}(\Gamma)} d_u^2 &= \alpha_{20}(d_{20} + \alpha_{02}d_{02} + \alpha_{10}d_{10} + \alpha_{01}d_{01} + \alpha_{11}d_{11} \\
&\quad + \alpha_{12}d_{12} + \alpha_{21}d_{21}) \tag{26}
\end{align*}
and $2|E(\Gamma)| = \alpha_{00} + \alpha_{01} + \alpha_{02} + \alpha_{10} + \alpha_{11} + \alpha_{12} + \alpha_{21}$. By introducing the values of $|B_{i,j}|$, $d_{ij}$ (collected in Lemmas 2 and 3), and $\alpha_{ij}$ in terms of $p$ and $q$, the result follows. \hfill \Box

Theorem 5. Let $p$ and $q$ be different primes. Then, the Schultz polynomial of $\Gamma = \Gamma(\mathbb{Z}_{p^2q^2})$ is equal to

Corollary 1. The Schultz index or the degree distance of $\Gamma = \Gamma(\mathbb{Z}_{p^2q^2})$ is equal to
\[ \text{Sc}(\Gamma, x) = 3p(p - 1)q(q - 1)(2p^2q + 2pq^2 - 4pq - p^2 - q^2 + 2) + 2pq \]
\[ - \left( 4p^3q^2 + 4p^2q^3 - 3p^3q + 12p^2q^2 - 3pq^3 + 2pq^2 + 2p^2q + 2p^2 + q^2 - 4 \right) \]
\[ + (p - 1)(q - 1)(p^3q + p^2q^2 + pq^3 + 2p^2q + 2pq^2 - 10pq + 4) + (p - 1)(pq^2 - 2)^2 \]
\[ + (q - 1)(pq^2 - 2)^2. \]

**Lemma 10.** Let \( \alpha_{ij} = |B_{i,j}|d_{i,j} \), where \( d_{i,j} \) is the degree of any vertex in \( B_{i,j} \), \( 0 \leq i, j \leq 2 \) and \( 0 < i + j < 4 \). Then, the modified Schultz polynomial of \( \Gamma = \Gamma(\mathbb{Z}^2_{p,q}) = (V, E) \) is equal to

\[
\text{Sc}^*(\Gamma, x) = \alpha_{10}a_{01} + \alpha_{20}a_{01} + \alpha_{02}a_{10}x^3 + \left\{ \frac{\alpha_{10}(\alpha_{10} - d_{10})}{2} + \frac{\alpha_{20}(\alpha_{20} - d_{20})}{2} \right\} x^2 + \left\{ \frac{\alpha_{11}(\alpha_{11} - d_{11})}{2} \right\} x + \alpha_{02}a_{11} + \alpha_{12}a_{12} + \alpha_{21}a_{21} + \alpha_{11}a_{11} + \alpha_{02}a_{12} + \alpha_{11}a_{12} \]
\[ + \alpha_{12}a_{12} + \alpha_{21}a_{21} + \alpha_{22}a_{22} + \sum_{v \in V} d_{v}^2 \].

**Proof.** Since the diameter of \( \Gamma \) is 3, 3 is by definition the degree of \( \text{Sc}^*(\Gamma, x) \). The 3rd coefficient of the polynomial is given by
\[ |B_{1,0}|d_{10}d_{10} + |B_{2,0}|d_{20}d_{10} + |B_{0,2}|d_{20}d_{10}, \]
(29)

\[
s_2 = \left( \frac{|B_{1,1}|}{2} \right)d_{11}^2 + \left( \frac{|B_{2,1}|}{2} \right)d_{21}^2 + \left( \frac{|B_{0,1}|}{2} \right)d_{01}^2 + \left( \frac{|B_{2,2}|}{2} \right)d_{22}^2 + \left( \frac{|B_{1,2}|}{2} \right)d_{12}^2 + \left( \frac{|B_{2,1}|}{2} \right)d_{12}d_{11} + \left( \frac{|B_{0,2}|}{2} \right)d_{21}d_{20} + \left( \frac{|B_{2,2}|}{2} \right)d_{22}d_{20} + \left( \frac{|B_{1,2}|}{2} \right)d_{12}d_{10} + \left( \frac{|B_{2,1}|}{2} \right)d_{12}d_{10} + \left( \frac{|B_{1,0}|}{2} \right)d_{10}d_{10}, \]
(30)

\[ s_3 = \left( \frac{|B_{1,1}|}{2} \right)d_{11}^2 + \left( \frac{|B_{2,1}|}{2} \right)d_{21}^2 + \left( \frac{|B_{0,1}|}{2} \right)d_{01}^2 + \left( \frac{|B_{2,2}|}{2} \right)d_{22}^2 + \left( \frac{|B_{1,2}|}{2} \right)d_{12}^2 + \left( \frac{|B_{2,1}|}{2} \right)d_{12}d_{11} + \left( \frac{|B_{0,2}|}{2} \right)d_{21}d_{20} + \left( \frac{|B_{2,2}|}{2} \right)d_{22}d_{20} + \left( \frac{|B_{1,2}|}{2} \right)d_{12}d_{10} + \left( \frac{|B_{2,1}|}{2} \right)d_{12}d_{10} + \left( \frac{|B_{1,0}|}{2} \right)d_{10}d_{10}. \]

By doing similar transformations as above, we obtain the 2\textsuperscript{n} and the 1\textsuperscript{st} coefficient, respectively, that appears in the statement. Finally, the independent term appears when we apply the formula to each vertex.
Theorem 6. Let $p$ and $q$ be different primes. Then, the modified Schultz polynomial of $\Gamma = \Gamma(Z_{p^m q^n})$ is equal to

\[
\text{Sc}^* (\Gamma, x) = \left\{ \frac{p(p-1)^2q(q-1)^2}{2}(3pq-p-q-1) \right\} x^3
+ \left\{ \frac{(p-1)^2(q-1)^2}{2}\left(8p^2q^2 + \frac{(p^2q + pq^2)}{2} - p^2 - q^2 - 11pq - p - q\right) \right.
\]
\[
+ \left( p-1 \right)(q-1)(6p^3q^3 - 2p^3q - 2pq^3 - 6p^3q^3 - 4p^2q^2 - p^2 - q^2 - 3p^2
- 3q^2 + 10pq + 5p + 5q) x^2 + \left( (p-1)(q-1)(13p^3q^3 - 5p^3q^2 - 2p^3q - p^2q^3
- 8p^2q^2 - 8p^2q - 6pq^2 - 4pq + 14pq + 4p + 4q) + \frac{1}{2} \left( p-1 \right) \left( p-2 \right) (pq^2 - 2)^2
\right.
\]
\[
+ \frac{1}{2} \left( q-1 \right)(q-2) \left( p^2q^2 - 2 \right) \right\} x + \left( (p-1)(pq^2 - 2) + (q-1)(pq^2 - 2) \right)
\]
\[
\left. + \left( p-1 \right)(q-1)(p^3q + p^2q^2 + pq^3 + p^2q + pq^2 - 8pq + 4) \right). \tag{31}
\]

Proof. Consider the formula obtained in Lemma 10. Recall that $\sum_{\alpha \in V(\Gamma)}d_{2}^{2} = a_{20}d_{20} + a_{01}d_{10} + a_{10}d_{10} + a_{02}d_{20} + a_{21}d_{11} + a_{12}d_{12} + a_{21}d_{21}$. By introducing the values of $|B_{ij}|$, $d_{ij}$ (collected in Lemmas 2 and 3), and $a_{ij}$ in terms of $p$ and $q$, the result follows. $\blacksquare$

Corollary 2. The modified Schultz index of $\Gamma = \Gamma(Z_{p^m q^n})$ is equal to

\[
\text{Sc} (\Gamma, x) = (p-1)^2(q-1)^2(25p^2q^2 - 2p^2q - 2pq^2 - p^2 - q^2 - 14pq - p - q)
\]
\[
+ \left( p-1 \right)(q-1) \left( 19p^3q^3 - 5p^3q^2 - 4p^3q - 6p^3q^3 - 12p^3q^2 - 3p^3 - 8pq^3
- 8pq^2 + 24pq - 9p - q^2 - 3q^2 + 9q \right)
\]
\[
+ \frac{1}{2} \left( q-1 \right)(q-2) \left( p^2q^2 - 2 \right). \tag{32}
\]

4. Conclusion

The structure of zero-divisor graphs of the form of $\Gamma(Z_{p^m q^n})$ is particularly interesting for studying distance-based topological indices. First, because its diameter is exactly 3, but also because there are defined blocks, with a complete bipartite connection between them, of either independent vertices or complete graphs (cliques). In this paper, we have focused on the Wiener index and the Hosoya, the Shultz, and the modified Shultz polynomials of $\Gamma(Z_{p^m q^n})$ and, finally, on the Shultz and the modified Shultz indices of $\Gamma(Z_{p^m q^n})$. For that reason, we have introduced some notation that could be useful not only for studying other distance-based topological indices of $\Gamma(Z_{p^m q^n})$ but also for other graphs of the form $\Gamma(Z_{p^m q^n})$, for $m,n$ positive integers. A key point in this notation is the study of pairs that are exactly a distance one (the size of the graph), two, or three. We think that a possible line of future research should include the study of paths connecting pairs of vertices a different distances and the extension to other indices, as for instance, the Estrada index.

Data Availability

All the data are provided within the manuscript.

Conflicts of Interest

The authors declare that they have no conflicts of interest.
Acknowledgments

The research conducted by the second author has been supported by Ministerio de Ciencia, Innovaci ón y Universidades (Spain), under project PGC2018-095471-B-I00.

References

[1] A. Ahmad and A. Haider, “Computing the radio labeling associated with zero-divisor graph of a commutative ring,” UPB Scientific Bulletin Series A, vol. 81, no. 1, pp. 65–72, 2019.

[2] I. Beck, “Coloring of commutative rings,” Journal of Algebra, vol. 116, no. 1, pp. 208–226, 1988.

[3] R. C. Entringer, D. E. Jackson, and D. A. Snyder, “Distance in graphs,” Czechoslovak Mathematical Journal, vol. 26, no. 2, pp. 283–296, 1976.

[4] A. A. Dobrynin, R. Entringer, and I. Gutman, “Wiener index of trees: theory and applications,” Acta Applicandae Mathematicae, vol. 66, no. 3, pp. 211–249, 2001.

[5] A. A. Dobrynin, I. Gutman, S. Klav zar, and P. Žigert, “Wiener index of hexagonal systems,” Acta Applicandae Mathematicae, vol. 72, no. 3, pp. 247–294, 2002.

[6] A. Ahmad, “On the degree based topological indices of benzene ring embedded in P-type-surface in 2D network,” Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 1, pp. 9–18, 2018.

[7] A. Ahmad, “Computation of certain topological properties of honeycomb networks and Graphene,” Discrete Mathematics, Algorithms and Applications, vol. 9, no. 5, 2017.

[8] S. Akhter, W. Gao, M. Imran, and M. R. Farahani, “On topological indices of honeycomb networks and graphene networks,” Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 1, pp. 19–35, 2018.

[9] M. F. Nadeem, S. Zafar, and Z. Zahid, “On topological properties of the line graphs of subdivision graphs of certain nanostructures,” Applied Mathematics and Computation, vol. 273, pp. 125–130, 2016.

[10] S. Wang, M. R. Farahani, M. R. Kanna, M. K. Jamil, and R. P. Kumar, “The Wiener index and the Hosoya polynomial of the Jahangir graphs,” Applied and Computational Mathematics, vol. 5, no. 3, pp. 138–141, 2016.

[11] H. Wiener, “Structural determination of paraffin boiling points,” Journal of the American Chemical Society, vol. 69, pp. 17–20, 1947.

[12] E. Estrada, L. Torres, L. Rodriguez, and I. Gutman, “An atom-bond connectivity index: modelling the enthalpy of formation of alkanes,” Indian Journal Chemistry, vol. 37A, pp. 849–855, 1998.

[13] M. K. Siddiqui, M. Naeem, N. A. Rehman, and M. Imran, “Computing topological indices of certain networks,” Journal of Optoelectronics and Advanced Materials, vol. 18, pp. 884–892, 2016.

[14] Z. Shao, P. Wu, Y. Gao, I. Gutman, and X. Zhang, “On the maximum ABC index of graphs without pendent vertices,” Applied Mathematics and Computation, vol. 315, pp. 298–312, 2017.

[15] M. K. Siddiqui, M. Imran, and A. Ahmad, “On Zagreb indices, Zagreb polynomials of some nanostar dendrimers,” Applied Mathematics and Computation, vol. 280, pp. 132–139, 2016.

[16] Z. Shao, M. K. Siddiqui, and M. H. Muhammad, “Computing Zagreb indices and Zagreb polynomials for symmetrical nanotubes,” Symmetry, vol. 10, no. 44, 2018.

[17] S. Gupta, M. Singh, and A. K. Madan, “Application of graph theory: relationship of eccentric connectivity index and Wiener’s index with anti-inflammatory activity,” Journal of Mathematical Analysis and Applications, vol. 266, no. 2, pp. 259–268, 2002.

[18] K. Elahi, A. Ahmad, and R. Hasni, “Construction algorithm for zero-divisor graphs of finite commutative rings and their vertex-based eccentric topological indices,” Mathematics, vol. 6, no. 12, p. 301, 2018.

[19] M. Imran, M. K. Siddiqui, A. A. E Abunamous, D. Adi, S. H. Rafique, and A. Q. Baig, “Eccentricity based topological indices of an oxide network,” Mathematics, vol. 6, no. 126, 2018.

[20] M. Randi ć, “Novel molecular descriptor for structure-property studies,” Chemical Physics Letters, vol. 211, pp. 478–483, 1993.

[21] M. Randic, X. Guo, T. Osley, H. Krishnapriyan, and L. Naylor, “Wiener matrix invariants,” Journal of Chemical Information and Computer Sciences, vol. 34, no. 2, pp. 361–367, 1994.

[22] H. Hosoya, “On some counting polynomials in chemistry,” Discrete Applied Mathematics, vol. 19, pp. 239–257, 1989.

[23] A. A. Dobrynin and A. A. Kochetova, “Degree distance of a graph: a degree analog of the Wiener index,” Journal of Chemical Information and Computer Sciences, vol. 34, no. 5, pp. 1082–1086, 1994.

[24] I. Gutman, “Selected properties of the Schultz molecular topological index,” Journal of Chemical Information and Computer Sciences, vol. 34, no. 5, pp. 1087–1089, 1994.

[25] S. Klav zar and I. Gutman, “A comparison of the Schultz molecular topological index with the Wiener index,” Journal of Chemical Information and Computer Sciences, vol. 36, pp. 1001–1003, 2018.

[26] D. D. Anderson and M. Naseer, “Beck’s coloring of a commutative ring,” Journal of Algebra, vol. 159, no. 2, pp. 500–514, 1993.

[27] D. F. Anderson and P. S. Livingston, “The zero-divisor graph of a commutative ring,” Journal of Algebra, vol. 217, no. 2, pp. 434–447, 1999.

[28] D. F. Anderson, R. Levy, and J. Shapiro, “Zero-divisor graphs, von Neumann regular rings, and Boolean algebras,” Journal of Pure and Applied Algebra, vol. 180, no. 3, pp. 221–241, 2003.

[29] F. DeMeyer and L. DeMeyer, “Zero divisor graphs of semigroups,” Journal of Algebra, vol. 283, no. 1, pp. 190–198, 2005.

[30] A. N. A. Kaom, A. Ahmad, and A. Haider, “On eccentric topological indices based on edges of zero-divisor graphs,” Symmetry, vol. 11, no. 7, p. 907, 2019.