March 2021

Ethnic heterogeneity of knowledge on termites and human consumption in southern Cameroon

Sevilor KEKEUNOU 75278164
University of Yaounde I, F.Sc

Koche MOUSTAPHA
University of Yaounde I, FMBS

Christian Landry DJUIDEU TCHOUAMOU
University of Yaounde I, F.Sc

Mercy Bih LOH ACHU
University of Yaounde I, F.Sc

Barthelemy NGAMENI
University of Yaounde I, FMBS

See next page for additional authors

Follow this and additional works at: https://scholarcommons.usf.edu/jea

Recommended Citation
KEKEUNOU, Sevilor 75278164; MOUSTAPHA, Koche; DJUIDEU TCHOUAMOU, Christian Landry; ACHU, Mercy Bih LOH; NGAMENI, Barthelemy; PIEME, Constant Anatole; and TAMESSE, Joseph Lebel. "Ethnic heterogeneity of knowledge on termites and human consumption in southern Cameroon." Journal of Ecological Anthropology 22, no. 1 (2020): 20-33.

Available at: https://scholarcommons.usf.edu/jea/vol22/iss1/2

This Data Notes is brought to you for free and open access by the Anthropology at Scholar Commons. It has been accepted for inclusion in Journal of Ecological Anthropology by an authorized editor of Scholar Commons. For more information, please contact scholarcommons@usf.edu.
Ethnic heterogeneity of knowledge on termites and human consumption in southern Cameroon

Cover Page Footnote
We thank the plant protection team for their help in the data collection.

Authors
Sevilor KEKEUNOU 75278164, Koche MOUSTAPHA, Christian Landry DJUIDEU TCHOAMOU, Mercy Bih LOH ACHU, Barthelemy NGAMENI, Constant Anatole PIEME, and Joseph Lebel TAMESSE

This data notes is available in Journal of Ecological Anthropology: https://scholarcommons.usf.edu/jea/vol22/iss1/2
Ethnic Heterogeneity of Knowledge on Termites and Human Consumption in Southern Cameroon

Sevilor Kekeunou
Koche Moustapha
Christian Landry Djuideu Tchoamou

Mercy Bih Loh Achu
Bathelemy Ngameni
Constant Anatole Pieme
Joseph Lebel Tamesse

ABSTRACT

Termites are both pests and non-conventional food resources in Sub-Saharan Africa. Many are reluctant to eat them, and the reasons for this rejection are poorly known. This study examined level of knowledge, and acceptance by members of the 10 main ethnic groups of southern Cameroon. Most respondents (86 percent) were aware of termites as food with sixteen vernacular names in the study areas. Acceptance among ethnic groups for consumption varied between 96 percent and 8 percent of people in a group. Barriers included being raised to not eat termites, not having many opportunities to eat termites, and dislike of the taste.

INTRODUCTION

Demographic forecasts for the next 100 years show that famine and protein-energy malnutrition problems will not improve—especially for Africa, where the population may reach 4.2 billion people in 2100 (Leridon 2015). In this context, new sources of food are needed, and non-timber forest products of animal origin (e.g., insects) could be an alternative solution. Mushrooms, snails and insects have been shown to be non-timber forest products (NTFPs) of great importance (Mbétid-Bessane 2005). Insects have significant advantages in terms of their nutritional value, accessibility, simple breeding and very rapid growth and reproduction rate (Rumpold and Schlüter 2013). Typically poorly exploited by humans, they could be an approach to a solution that offers cheap, effective and available opportunities to address food insecurity by providing high-quality, emergency protein sources that improve traditional diets (Van Huis et al. 2014). Some edible insects have higher protein, fat and energy levels than do meat and fish (DeFoliart 1992).
There are more than 1700 species of edible insects and the most widely consumed in the world belong to the following Orders: Lepidoptera, Orthoptera, Coleoptera, Isoptera, Homoptera, Hymenoptera and Diptera (Johnson 2010). In West and Central Africa, insects are not only used as emergency food during periods of famine, but are an integral part of the normal diet of some peoples according to the periods of appearance of different edible species during the year (Banjo et al. 2006). Studies in Uganda, Cameroon, Nigeria and Côte d’Ivoire indicate termites are among the most widely consumed and appreciated insects by people on the African continent (Niaba et al. 2012, Adepoju and Omotayo 2014, Tamesse et al. 2016).

Termites—Order Isoptera—are widely distributed throughout the world, especially in the tropics (Eggleton et al. 1995, Bignell and Eggleton 2000). They are recognized as major pests of crops, buildings, and furniture and annually cause billions of dollars of damages worldwide (Cowie et al. 1989, Logan et al. 1990, Ambele et al. 2018). They live in colonies and have a very specialized caste organization—alates, workers and soldiers—ensuring different functions for the maintenance of the colony and species (Bignell et al. 2011). Winged termites are known and consumed in both rural and urban areas (Tamesse et al. 2016). They are mostly consumed for their good taste and medicinal properties (De Figueirêdo et al. 2015, Tamesse et al. 2016). Studies in Nigeria found termites to be rich in proteins, vitamins (A, B2, and C), and minerals (calcium, phosphorus, iron, and magnesium) (Banjo et al. 2006). They are also important sources of fatty acids such as palmitic, oleic, and linoleic acids (Womeni et al. 2009).

Although much appreciated with numerous virtues, termites are not consumed by everyone, even in Sub-Saharan regions where they are appreciated by many groups (Niaba et al. 2012, Tamesse et al. 2016). Many studies have evaluated people’s perception of termites, mainly for their role as pests (Sileshi et al. 2009, Loko et al. 2017, Ewetola et al. 2018). Less research has focused on their perception as edible insects (Tamesse et al. 2016, Akullo et al. 2017), and very little information is known about the consumer’s acceptance and non-acceptance of these insects as foods in Africa. Acceptance and non-acceptance vary among ethnic groups (Van Huis 2003). Cameroon is one of the world’s most ethnically and culturally diverse countries (Fearon 2003). In order to highlight the reasons for use of termites in the southern Cameroon to combat poverty and famine in Africa, this study assessed different ethnic groups: 1) level of knowledge about termites, 2) level of acceptance of termites, and 3) reasons for non-acceptance of termites.

METHODOLOGY

The Study Sites

The study took place in January and February, 2018, in the Centre, South and East regions of Cameroon (Figure 1). Ten sites were selected in these regions to represent the ten main ethnic groups: Ewondos (Mbikombe), Etons (Obala), Bafias (Bafia), Yambasas (Bokito), Bassas (Makak), Bulus (Ebolowa), Ntumus (Ambam), Pygmies (Kribi) and Makas (Abong-Mbang). For each ethnic group, the most populated village was selected (Santoir and Bouopda 1995). The main economic activity of all of these ethnic groups is the practice of slash-and-burn agriculture. The main food crops are banana (*Musa paradisiaca*), banana-plantain (*Musa xparadisiaca*), cocoyam (*Xanthosoma sagittifolium*), cassava (*Manihot esculenta*), yam (*Discorea spp.*) and peanut (*Arachis hypogaea*). Cucurbits (*Cucumis sativus*), okra (*Abelmoschus esculentus*), vegetables (*Apiaceae, Alliaceae, Fabiaceae, Cucurbitaceae* etc.) and spices (*Capsicum annum, Curcuma longa, Zingiber officinalis* etc.) are secondary crops, while cocoa (*Theobroma cacao*) and coffee (*Coffee spp.*) are the main cash crops in these areas.
In terms of eating habits, the Bulu, Eton and Ewondo consume respectively ndo'o, okok and kwen sauces from leaves and roots of vegetables and crops like cassava and peanut (Kekeunou et al. 2006). These ethnic groups’ sites were all situated between 2 and 5 degrees latitude north. This zone is influenced by an equatorial Guinean climate with four seasons: long dry season (mid-November to mid-March); short rainy season (mid-March to June); short dry season (July to August) and long rainy season (September to mid-November). The temperature is between 22 and 29 degrees Celsius. The warm and very rainy equatorial climate has led to the alteration of the original rock material towards a ferralitic type pedogenesis where all the elements of the source rock are hydrolyzed. Residual components (e.g., quartz, kaolinite, iron hydroxide) form the bulk of the soil. This results in soils with low mineral levels but whose physical characteristics are good when clay content is good (Santoir and Bopda 1995).

Data Collection

Teams used a cross-sectional survey with individuals in each sample village, and a semi-structured questionnaire for discussions occurred with people from different ethnic groups. A total of 501 people (about 50 per ethnic group) were interviewed in total. The samples consisted of 47 percent men and 53 percent women. In each village, respondents were randomly selected following random routes (Bauer 2014). Participants were 15-85 years old (average 36 ± 16 for men, 35 ± 15 for women. The most represented age group was 20-30 years—comprising 33 percent of survey respondents. Single individuals were the most represented (38 percent), and most of them (37 percent).
cent) were self-employed. The questionnaire, in French, was divided into four sections composed of 27 questions relating to socio-demographics, knowledge of termites, and reasons for acceptance and non-acceptance of termites. An image of the insect was presented at the beginning of each interview to the respondent in order to facilitate its recognition.

Data Analysis

The collected data were entered and stored in the Microsoft Excel version 2010 software and analyzed using the SPSS software version 20.0. The frequencies of responses to each question were calculated in relation to the number of respondents to the question.

RESULTS

Termite Knowledge in Southern Cameroon

Most surveyed knew termites as food (87 percent). However, as many people who knew termites amongst the Bulus as did not. Termite knowledge was different between the different ethnic groups (Table 1). Termites were known under 16 vernacular names (Figure 2), with *beb* (Bafias), *afabadoudouk* (Ntumus), *bandi* (Pygmies), *béédé* (Batangas), *sil* (Etons) and *sombo'o* (Bassas) most common. The name *sil* was common to the Ewondos, Etons and Bulus.

The places of capture of edible termites varied from one ethnic group to another (Table 2). Generally, mounds were the first places of capture of the edible termites followed by houses. Pygmies capture termites mostly in forests.

For the periods of harvest, termites were captured throughout the day—especially in the mornings and evenings (Table 3). Captures were mainly in the evening among the Batangas, Ntumus, Ewondos, Bassas and Makas. Captures were more frequent in the mornings among the Pygmies and the Etons.

For the main periods of harvest, 63 percent (250 respondents) said that termites were abundant during the short rainy season (Table 4), although that opinion was not evenly distributed between the different ethnic groups. For instance, the Ntumus, Pygmies and Makas collected more termites during the long rainy season. There were many termite harvesting methods, including nets, light traps, manual picking, basins/buckets filled with water, holes, bowls, and baskets. Traps employing bright lights and manual collection were the most commonly used methods for capture.

Ethnic group	Yes	No	Total
Bafia	100	0	100
Batanga	65	35	100
Eton	100	0	100
Bulu	58	42	100
Ntumu	83	17	100
Ewondo	98	2	100
Bassa	76	24	100
Pygmies	100	0	100
Maka	94	6	100
Yambassa	100	0	100
General mean	86	14	100

Values in table refer to the percentage of respondents per ethnic group and values in parentheses refer to the number of respondents. The answers obtained in this table were mutually exclusive and people reported only yes or no as response.
Reasons for the Acceptance of Termites as Food

Food is the main reason for termite use in southern Cameroon (63 percent; Table 5), and the trend was the same among the ethnic groups. People consumed termites for several reasons (Table 6) including: good taste, high nutritional value, and cultural values. Taste was the main reason for termite consumption in all groups except Batangas, Bulus, Ntumus and Bassas. Respondents consumed termites in different forms (Table 7). The fried form was the most common, followed by the grilled form, and by consumption in cakes. For the Bassas, Makas and Yambassas, termite consumption was preferably in the grilled form. Winged termites and soldiers were the only termite castes consumed by people in Southern Cameroon; all groups consumed winged termites, and only a few consumed soldiers.

Table 2. Places of capture of termites in 10 ethnic groups of southern Cameroon (percent per ethnic group)

Place	Farms	Forest	Fallows	Houses	Markets	Soil	Water	Lampposts	Mounts	Total
Bafia	35 (18)	14 (7)	0 (0)	19 (10)	0 (0)	2 (1)	0 (0)	12 (6)	71 (37)	100 (52)
Batanga	7 (2)	0 (0)	0 (0)	52 (16)	16 (5)	0 (0)	0 (0)	29 (9)	31 (3)	100 (31)
Eton	22 (13)	0 (0)	0 (0)	17 (10)	0 (0)	0 (0)	0 (0)	16 (9)	100 (58)	
Bulu	9 (3)	11 (4)	0 (0)	14 (5)	26 (9)	11 (4)	0 (0)	23 (8)	29 (10)	100 (35)
Ntumu	21 (8)	0 (0)	0 (0)	59 (23)	16 (5)	0 (0)	15 (5)	20 (15)	65 (25)	100 (40)
Ewondo	36 (18)	0 (0)	0 (0)	40 (20)	9 (4)	1 (1)	0 (0)	49 (19)	42 (15)	100 (47)
Bassa	20 (8)	5 (2)	0 (0)	15 (6)	13 (5)	3 (1)	0 (0)	18 (7)	45 (18)	100 (40)
Pygmies	7 (2)	81 (25)	0 (0)	10 (3)	0 (0)	3 (1)	0 (0)	0 (0)	55 (17)	100 (31)
Maka	10 (5)	6 (3)	0 (0)	6 (3)	2 (1)	35 (17)	2 (1)	25 (12)	48 (23)	100 (48)
Yambassa	28 (13)	4 (2)	0 (0)	32 (15)	0 (0)	0 (0)	0 (0)	13 (6)	66 (31)	100 (47)
General mean	21 (90)	10 (43)	1 (1)	26 (112)	6 (26)	7 (30)	1 (1)	19 (80)	49 (210)	100 (431)

Values in table refer to the percentage of respondents per ethnic group and values in parentheses refer to the number of respondents. The answers obtained in this table were not mutually exclusive and people can report more than one response.
People consumed various quantities of termites daily: a spoonful, a handful, a glass or a cup (Table 8). However, most respondents said they consumed whatever quantity of termites and whenever available to them.

Methods of Cooking Termites

Almost half of the people interviewed knew about specific methods of cooking termites. The Bafias, Etons, Ewondos and pygmies were the main ethnic groups who cook termites. We identified eight termite cooking methods in the three regions (Table 9). In all methods, a preliminary cleaning consists of removing non-digestible parts of the insect, such as wings. Most respondents who prepared termites used method 6 (45 percent)—used in all ethnic groups except the Ntumus, Bassas, and the Pygmies. Others preferred method 2 (25 percent) and method 4 (22 percent).

Reasons for the Rejection of Termites as Food

Despite the high level of termite consumption in southern Cameroon, some individuals disliked termites for different reasons (Table 10). Cultural barri-
ers and the bad taste of termites were the main reasons. Respondents of different ethnic groups said eating termites was as an ancestral habit. Many who do not eat termites reported that eating insects or specifically termites is an aberrant practice—justifying their response with the fact that their ancestors never considered insects as food:

I don’t eat termites because never in my family lineage or in my ancestors’ feeding practices have I heard about eating termites. Eating insects is not part of our culture (Bulu respondent).

Eating termites in our culture is comparable to eating cockroaches or worms, it is disgusting! My people don’t practice such obscenity, and we prefer to eat meat (Batanga respondent).

Cultural barriers hindered termite use among the Ntumu and Batangas. Those who chose to eat termites were encouraged by friends in other ethnic groups without cultural barriers:

I never considered eating termites before because this practice is not well seen in my culture. But when some friends of mine, just for the reason with the fact that their ancestors never considered insects as food:

Ethnic group	Consumption	Medicine	Trade value	Happiness prediction	Total
Bafia	96 (50)	0 (0)	0 (0)	0 (0)	100 (52)
Batanga	23 (7)	0 (0)	0 (0)	1 (2)	100 (31)
Eton	95 (55)	2 (1)	0 (0)	0 (0)	100 (58)
Bulu	42 (15)	0 (0)	0 (0)	0 (0)	100 (36)
Ntumu	8 (3)	0 (0)	0 (0)	0 (0)	100 (39)
Ewondo	78 (39)	3 (1)	3 (1)	5 (2)	100 (50)
Bassa	34 (14)	0 (0)	0 (0)	0 (0)	100 (41)
Pygmée	74 (23)	0 (0)	0 (0)	0 (0)	100 (31)
Maka	79 (38)	0 (0)	0 (0)	0 (0)	100 (48)
Yambassa	64 (30)	3 (9)	0 (0)	0 (0)	100 (47)

General mean 63 (274) 1 (3) 1 (1) 1 (4) 100 (433)

Values in table refer to the percentage of respondents per ethnic group and values in parentheses refer to the number of respondents. The answers obtained in this table were not mutually exclusive and people can report more than one response.

Ethnic group	High nutritive value	Therapeutic virtues	Good taste	Part of culture	Part of eating habit	Natural food	Curiosity	Total
Bafia	40 (21)	0 (0)	73 (38)	62 (32)	0 (0)	2 (1)	0 (0)	100 (52)
Batanga	3 (1)	0 (0)	23 (7)	3 (1)	0 (0)	0 (0)	13 (4)	100 (31)
Eton	67 (39)	2 (1)	71 (41)	40 (23)	3 (2)	7 (4)	0 (0)	100 (58)
Bulu	6 (2)	0 (0)	30 (11)	0 (0)	0 (0)	0 (0)	22 (8)	100 (36)
Ntumu	5 (2)	0 (0)	8 (3)	0 (0)	0 (0)	0 (0)	0 (0)	100 (39)
Ewondo	54 (27)	0 (0)	60 (30)	12 (6)	0 (0)	4 (2)	0 (0)	100 (50)
Bassa	24 (10)	0 (0)	29 (12)	7 (3)	0 (0)	0 (0)	2 (1)	100 (41)
Pygmées	26 (8)	0 (0)	68 (21)	71 (22)	3 (1)	0 (0)	0 (0)	100 (31)
Maka	10 (5)	0 (0)	71 (34)	15 (7)	25 (12)	2 (1)	8 (4)	100 (48)
Yambassa	36 (17)	0 (0)	62 (29)	34 (16)	0 (0)	2 (1)	0 (0)	100 (47)

General mean 31 (132) 1 (1) 52 (226) 25 (110) 4 (15) 2 (9) 4 (17) 100 (433)

Values in table refer to the percentage of respondents per ethnic group and values in parentheses refer to the number of respondents. The answers obtained in this table were not mutually exclusive and people can report more than one response.
especially the Etons, shared with me their meal of termites, I felt in love with termites because it was very delicious (Batanga respondent).

In the Bassas' biophysical environment, edible termites are scarce. They do not consider termites an alternative food—but they are not against the practice of eating insects. Bad taste was the main reason for termite refusal among the Bulus, Ewondos, Pygmies, and Yambassas.

DISCUSSION

Termites are well known to the ethnic groups of southern Cameroon probably because it is an edible insect. The knowledge of termites as food in sub-Saharan Africa has been reported by several authors cited by Fombong and Kinyuru (2018). In fact, termite popularity is not only due to their fatty acid (44.8–47.3 g/100 g) and protein content (33.5–39.7 g/100g dry weight) (Fombong and Kinyuru 2018),

Table 7. Forms of consumption of termites in 10 ethnic groups of southern Cameroon (percent per ethnic group)

Ethnic group	In soup	Fried	Braised	Raw	Grilled	In cake	Total
Bafia	0 (0)	85 (41)	0 (0)	13 (6)	19 (8)	40 (19)	100 (48)
Batanga	14 (1)	100 (7)	0 (0)	14 (1)	14 (1)	14 (1)	100 (7)
Eton	7 (4)	80 (44)	2 (1)	6 (3)	24 (13)	66 (36)	100 (54)
Bulu	7 (1)	60 (9)	0 (0)	0 (0)	33 (5)	0 (0)	100 (15)
Ntumu	0 (0)	67 (2)	0 (0)	0 (0)	33 (1)	0 (0)	100 (3)
Ewondo	5 (2)	84 (36)	2 (1)	5 (2)	2 (1)	21 (9)	100 (43)
Bassa	7 (1)	50 (7)	0 (0)	7 (1)	57 (8)	14 (2)	100 (14)
Pygmies	9 (2)	83 (19)	0 (0)	35 (8)	9 (2)	2 (2)	100 (23)
Maka	3 (1)	42 (16)	0 (0)	0 (0)	76 (29)	8 (3)	100 (38)
Yambassa	7 (2)	43 (13)	0 (0)	3 (1)	53 (16)	27 (8)	100 (30)
General mean	5 (14)	70 (190)	1 (2)	8 (22)	31 (85)	30 (80)	100 (275)

Values in table refer to the percentage of respondents per ethnic group and values in parentheses refer to the number of respondents. The answers obtained in this table were not mutually exclusive and people can report more than one response.

Table 8. Termite quantities consumed daily in 10 ethnic groups of southern Cameroon (percent per ethnic group)

Ethnic group	Spoonful	Handful	Glass	Cup	Available quantity	Total
Bafia	8 (4)	31 (15)	25 (12)	0 (0)	33 (16)	100 (48)
Batanga	14 (1)	29 (2)	29 (2)	0 (0)	29 (2)	100 (7)
Eton	9 (5)	27 (15)	5 (3)	0 (0)	58 (32)	100 (55)
Bulu	47 (7)	20 (3)	20 (3)	7 (1)	7 (1)	100 (15)
Ntumu	8 (1)	60 (9)	0 (0)	7 (1)	33 (1)	100 (3)
Ewondo	14 (2)	43 (6)	0 (0)	7 (1)	36 (5)	100 (14)
Bassa	0 (0)	9 (2)	9 (2)	4 (1)	78 (18)	100 (23)
Pygmies	10 (4)	37 (14)	3 (1)	3 (1)	47 (18)	100 (38)
Maka	13 (4)	57 (17)	3 (1)	3 (1)	23 (7)	100 (30)
Yambassa	13 (4)	34 (91)	11 (31)	3 (9)	40 (108)	100 (271)

Values in table refer to the percentage of respondents per ethnic group and values in parentheses refer to the number of respondents. The answers obtained in this table were not mutually exclusive and people can report more than one response.
but also because of their crop pest status and their relatively intertropical zone ubiquity (Eggleton et al. 1995, Bignell and Eggleton 2000, Bignell et al. 2011).

Most ethnic groups had a vernacular name for each termite species (see Loko et al. 2017 for Benin). In general, knowledge of insects in the ancestral lineage propagates different vernacular names in association with cultural and linguistic diversity. Similar names appearing across ethnic groups may indicate phylogenetic linguistic relationships. For example, the Ewondo, Etons and Bulus use the name sil for termites and are grouped as the upper Betis ethnic group.

Traditionally, in African societies, animal naming was usually based on local criteria potentially related to the activities, functions, and uses of the species by the people. In Nepal, the praying mantis (order Mantodea)—although harmless and beneficial—was named after its alleged habit of pulling out people’s eyes (Gurung-Björnsen 2003). Such insect naming justifies the existence of local taxonomy. This local taxonomy of edible insects may be of help to nutritionists and biologists for the easily recognizing a species of interest.

Variation in place and time of termite capture according to the ethnicity is related to the fact that different termite species are used. The termite species depends on the type of vegetation, the soil and climatic conditions. For example, among edible termites, the Macrotermes spp. prefer disturbed environments whereas the Cubitermes spp. prefer forest underwood (Eggleton et al. 2002). The Bafias and Yambassas live in the savannas; the Etons are in a forest-savannah ecotone while the Ntumus, Bulus and Pygmies inhabit the forest areas. Fombong and Kinyuru (2018) also noticed—like we have—that termites are attracted by light. The winged adults are the most consumed stage because of their swarming habits during nuptial flights to establish new colonies, especially after rainfalls. They usually shed their wings after such flights, thus making them easily available for harvest (Fombong

Ethnic group	1. Clean, boil and fry termites with oil and spices	2. Clean and fry termites with little oil and spices	3. Wash termites with hot water and fry	4. Clean termites, crush, and mix with pistachio or peanut cakes	5. Grill termites to remove wings; fry with oil and spices	6. Clean and fry termites with spices but no oil	7. Clean termites, put them whole into peanut or pistachio cakes	8. Clean, boil and fry termites without oil	Total
Bafia	20 (6)	24 (7)	0 (0)	24 (7)	0 (0)	55 (16)	3 (1)	0 (0)	100 (30)
Batanga	0 (0)	25 (1)	0 (0)	0 (0)	0 (0)	50 (2)	25 (1)	0 (0)	100 (4)
Eton	2 (1)	23 (11)	0 (0)	44 (21)	0 (0)	63 (30)	0 (0)	2 (1)	100 (48)
Bulu	50 (1)	0 (0)	0 (0)	50 (1)	0 (0)	50 (1)	0 (0)	0 (0)	100 (2)
Ntumus	0 (0)	100 (1)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	100 (1)
Ewondo	7 (2)	56 (15)	7 (2)	4 (1)	4 (1)	18 (5)	7 (2)	0 (0)	100 (28)
Bassa	0 (0)	17 (1)	50 (3)	0 (0)	67 (4)	0 (0)	0 (0)	0 (0)	100 (6)
Pygmies	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	100 (19)	100 (19)
Maka	0 (0)	25 (5)	0 (0)	5 (1)	0 (0)	65 (13)	0 (0)	10 (2)	100 (20)
Yambassa	7 (1)	14 (2)	0 (0)	29 (4)	0 (0)	36 (5)	29 (4)	0 (0)	100 (14)
Mean	6 (11)	25 (43)	1 (2)	22 (38)	1 (1)	45 (77)	5 (8)	13 (22)	100 (172)

Values in table refer to the percentage of respondents per ethnic group and values in parentheses refer to the number of respondents. The answers obtained in this table were not mutually exclusive and people can report more than one response.
and Kinyuru 2018). The soldiers are also eaten, but they are mostly harvested from the mound itself by making holes and sending in twigs or sticks to get them out (Van Huis 2017, Fombong and Kinyuru 2018).

Termites are widely consumed by people around the world and are the second most consumed insects after locusts (De Figueirêdo et al. 2015). Termites are widely distributed in Cameroon with nearly 100 species recorded, some edible (Dibog et al. 1998). The level of consumption of termites in our study (63 percent) was higher than 46 percent obtained in Ghana (Anankware et al. 2016), but lower than 70 percent in Cameroon (Tamesse et al. 2016), 76 percent in Ivory Coast (Niaba et al. 2012) and 97 percent in Uganda (Akullo et al. 2017) for the sampled populations.

The most commonly consumed termite species, *Macrotermes*, are mainly savannah species rare in low disturbance area like forests (Eggleton et al. 2002), hence hindering consumption by many indigenous populations. This is why the Bassa ethnic group complained about scarcity of edible termites in their forested environment. Consumption of termites in southern Cameroon is mainly due to taste (see also Tamesse et al. 2016), and Niaba et al. (2012) also found taste as the main reason for termite consumption in Côte d’Ivoire.

The study also revealed that 70 percent of the people in southern Cameroon consume termites in fried form (similar to Tamesse et al. 2016 in Cameroon, and Niaba et al. 2012 in Côte d’Ivoire). The consumption of fried termites is not an uncommon practice in entomophagy, because it has been reported in other insects such as the grasshopper *Zonocerus variegatus* (Kekeunou and Tamesse 2016, Fombong and Kinyuru 2018) and cockchafers/doodlebugs (*Melolontha* spp.) (Womeni et al. 2009). This form of cooking optimizes the taste and reduces the cost of cooking, as the insect is fried in its own oil, while preserving its nutritional value (proteins and minerals of the insect). However, very little data are available on this subject, and it therefore requires a detailed study.

The method of cooking food is an element of cultural identity that can explain the plurality of methods noted in southern Cameroon. In this study, there are several methods of cooking but none of the ethnic groups eat raw termites. Cleaning, as reported by the respondents, is an ancestral practice which involves the removal of the parts of the insect that are non-

Table 10. Reasons for the non-acceptance (rejection) of termites in 10 ethnic groups of southern Cameroon (percent per ethnic group)

Ethnic group	Cultural barrier	Not part of eating habit	Scarcity of edible termites in the locality	Bad taste	Total
Bafia	2 (1)	0 (0)	0 (0)	3 (2)	100 (52)
Batanga	58 (18)	6 (2)	6 (2)	10 (1)	100 (31)
Eton	0 (0)	3 (2)	0 (0)	3 (2)	100 (58)
Bulu	8 (3)	17 (6)	3 (1)	31 (11)	100 (36)
Ntumu	92 (36)	0 (0)	0 (0)	0 (0)	100 (39)
Ewondo	0 (0)	4 (2)	2 (1)	18 (9)	100 (50)
Bassa	20 (8)	15 (6)	29 (12)	2 (1)	100 (41)
Pygmies	0 (0)	0 (0)	0 (0)	26 (8)	100 (31)
Maka	0 (0)	4 (2)	0 (0)	15 (7)	100 (48)
Yambassa	4 (2)	4 (2)	0 (0)	29 (14)	100 (47)
General mean	16 (68)	5 (22)	4 (16)	13 (56)	100 (433)

Values in table refer to the percentage of respondents per ethnic group and values in parentheses refer to the number of respondents. The answers obtained in this table were not mutually exclusive and people can report more than one response.
digestible by humans especially the wings, in order to optimize nutrients absorption (Johnson 2010). The same practice was reported in other insects such as grasshoppers (Idowu and Modder 1996). The use of the fatty mass of the insect gives a double advantage: 1) the fatty parts are transformed into substances that are easily assimilated by the body under the effect of heat, and 2) its cooking does not require additional supply of oil; hence, it is a significant economic benefit. Use of spices, highly valued in human nutrition, improves the flavor of the food alongside their important metabolic, antimicrobial and chemopreventive roles to the body (Lai and Roy 2004, Srinivasan 2005). This minimal processing is usually necessary to ensure safe consumption of products, though it decreases digestibility and availability of some micronutrients (Fombong and Kinyuru 2018).

The main reason for people rejecting termites in southern Cameroon was cultural barriers. These barriers are associated with the ancestral heritage of not considering termites or insects as food. These people do not eat termites because of their feelings or understandings of what they think these insects are. When some individuals have an opportunity to taste termites, they discover their prior beliefs and/or knowledge about termites are not very useful to them.

Children are taught at a young age what not to eat (Rozin and Vollmecke 1986), and also learn to like specific foods through exposure and social learning (Nicklaus and Issanchou 2006). This results in the rejection of some foods by people based on what they think of the food as non-edible. In terms of global aspects of local diets, the influence of Western societies on the feeding habits of African societies is not negligible. This is seen in young Africans who like to imitate Western habits in their social learning and thus turn against ancestral entomophagy (Van Huis 2003). Knowledge about the taste and usage of a food item are limited when prior experience or data is absent.

CONCLUSION

This study revealed that people interviewed in Southern Cameroon are very familiar with termites, and that this knowledge varies somewhat according to ethnic group. Termites were highly consumed in the study area mainly due to their good taste, and were cooked with various methods. Despite the reported high nutritional value of termites, cultural barriers via tradition hindered their acceptance as food by some people within the ethnic groups surveyed. These insects, with important nutritional values, could be promoted to encourage their consumption in Africa and elsewhere, in order to fight against the growing food insecurity and poverty.

Sevilor Kekeunou, Department of Animal Biology and Physiology, University of Yaounde I, skekeunou@gmail.com
Koche Moustapha, Faculty of Medicine and Bio-medical Sciences, University of Yaounde I
Christian Landry Djuideu Tchouamou, Department of Animal Biology and Physiology, University of Yaounde I
Mercy Bih Loh Achu, Department of Biochemistry, University of Yaounde I
Bathelemy Ngameni, Faculty of Medicine and Bio-medical Sciences, University of Yaounde I
Constant Anatole Pieme, Faculty of Medicine and Bio-medical Sciences, University of Yaounde I
Joseph Lebel Tamesse, Department of Biological Sciences, University of Yaounde I

ACKNOWLEDGMENTS

We thank the plant protection team for their help in the data collection, and the two anonymous reviewers for their critical insights.
REFERENCES CITED

Adepoju, O.T., and O.A. Omotayo. 2014 Nutrient composition and potential contribution of winged termites (Marcrotermes bellicosus Smeathman) to micronutrient intake of consumers in Nigeria. *British Journal of Applied Science & Technology* 4(7):1149-1158. https://doi.org/10.9734/BJAST/2014/4420.

Akullo, J., B.B. Obaa, J.O. Acai, D. Nakimbugwe, and J.G. Agea. 2017 Knowledge, attitudes and practices on edible insects in Lango sub-region, Northern Uganda. *Journal of Insects as Food and Feed* 3(2):73-81. https://doi.org/10.3920/JIFF2016.0033.

Ambele, F.C., H.B. Bisseleua Daghela, O.O. Babalola, and S. Ekesi. 2018 Soil dwelling insect pests of tree crops in Sub-Saharan Africa, problems and management strategies - A review. *Journal of Applied Entomology* 142(6):539-552. https://doi.org/10.1111/jen.12511.

Anankware, J.P., E.A. Osekre, D. Obeng-Ofori, and C. Khamala. 2016 Identification and classification of common edible insects in Ghana. *International Journal of Entomological Research* 1(5):33-39.

Banjo, A.D., O.A. Lawal, and E.A. Songonuga. 2006 The nutritional value of fourteen species of edible insects in southwestern Nigeria. *African Journal of Biotechnology* 5:298-301. https://doi.org/10.5897/AJB05.250.

Bauer, J.J. 2014 Selection errors of random route samples. *Sociological Methods & Research* 43(3):519–544. https://doi.org/10.1177/0049124114521150.

Bignell, D.E., and P. Eggleton. 2000 “Termites in ecosystems,” in *Termites: Evolution, sociality, symbioses*. Edited by T. Abe, D.E. Bignell, M. Higashi, T. Higashi and Y. Abe, pp. 363-387. Dordrecht, Netherlands: Springer Netherlands. https://doi.org/10.1007/978-94-017-3223-9.

Bignell, D.E., Y. Roisin, and N. Lo, Eds. 2011 *Biology of termites: A modern synthesis*. Dordrecht, Netherlands: Springer Netherlands. https://doi.org/10.1007/978-90-481-3977-4.

Cowie, R.H., J.W. Logan, and T.G. Wood. 1989 Termite (Isoptera) damage and control in tropical forestry with special reference to Africa and Indo-Malaysia: A review. *Bulletin of Entomological Research* 79(2):173-184. https://doi.org/10.1017/S0266467498000610.

De Figueirêdo, R.E.C.R., A. Vasconcellos, I.S. Policarpo, and R.R.N. Alves. 2015 Edible and medicinal termites: A global overview. *Journal of Ethnobiology and Ethnomedicine* 11(1):29. https://doi.org/10.1186/s13002-015-0016-4.

DeFoliart, G.R. 1992 Insects as human food: Gene DeFoliart discusses some nutritional and economic aspects. *Crop Protection* 11(5):395-399. https://doi.org/10.1016/0261-2194(92)90020-6.

Dibog, L., P. Eggleton, and F. Forzi. 1998 Seasonality of soil termites in a humid tropical forest, Mbalmayo, Southern Cameroon. *Journal of Tropical Ecology* 14(6):841-850. https://doi.org/10.1017/S0266467498000601.

Eggleton, P., D.E. Bignell, S. Hauser, L. Dibog, L. Norgrove, and B. Madong. 2002 Termite diversity across an anthropogenic disturbance gradient in the humid forest zone of West Africa. *Agriculture, Ecosystem and Environment* 90(2):189-202. https://doi.org/10.1016/S0167-8809(01)00206-7.

Eggleton, P., D.E. Bignell, W.A Sands, B. Waite, T.G. Wood, and J.H. Lawton. 1995 The species richness of termites (Isoptera) under differing levels of forest disturbance in the Mbalmayo Forest Reserve, southern Cameroon. *Journal of Tropical Ecology* 11(1):85-98. https://doi.org/10.1017/S0266467498000843.

Ewetola, E.A., S.A. Babarinde, T. Omirin, and D.O. Ojewole. 2018 Farmers’ perception of the usefulness of vetiver grass for termite control on Ogbomoso Agricultural Zone farmlands, south-western Nigeria. *Journal of
Fearon, J.D. 2003 Ethnic and cultural diversity by country. *Journal of Economic Growth* 8(2):195-222. https://doi.org/10.1016/j.jegro.2003.04.001.

Fombong, F.T. and J.N. Kinyuru. 2018 “Termites as food in Africa,” in *Termites and sustainable management, sustainability in plant and crop protection*. Edited by M.A. Khan and W. Ahmad, pp. 217-240. Heidelberg: Springer. https://doi.org/10.1007/978-3-319-72110-1_11.

Gurung-Björnsen, A. 2003 Insects - a mistake in God’s creation? Tharu farmers’ perception and knowledge of insects: A case study of Gobardiha Village Development Committee, Dang-Deukhuri, Nepal. *Agriculture and Human Values* 20(4):337-370. https://doi.org/10.1023/B:AHUM.000005149.30242.7f.

Iduwu, A., and W. Modder. 1996 Possible control of the stinking grasshopper Zonocerus variegatus (L.) (Orthoptera: Pyrgomorphidae) in Ondo state, through human consumption. *Niger Field* 61:7-14.

Johnson, D.V. 2010 “The contribution of edible forest insects to human nutrition and to forest management” in *Forest insects as food: Humans bite back. Proceedings of a workshop on Asia-Pacific resources and their potential for development*, Chiang Mai, Thailand, 19-21 February, 2008. Edited by P.B Durst, D.V. Johnson, R.N. Leslie, and K. Shono, pp. 5-22. Rome: Food and Agriculture Organization of the United Nations Regional office for Asia and the Pacific.

Kekeunou, S., and J.L. Tamesse. 2016 Consumption of the variegated grasshopper in Africa: Importance and threats. *Journal of Insects as Food and Feed* 2(3):213-222. https://doi.org/10.3920/JIFF2015.0087.

Kekeunou, S., S. Weise, J. Messi, and M. Tamò. 2006 Farmers’ perception on the importance of variegated grasshopper (Zonocerus variegatus (L.)) in the agricultural production systems of the humid forest zone of Southern Cameroon. *Journal of Ethnobiology and Ethnomedicine* 2:17. https://doi.org/10.1186/1746-4269-2-17.

Kekeunou, S., P.S. Laïda, M.B. Achu-Loh, C.L. Djuideu Tchouamou, L. Simo-Guïadem, C.A. Pieme, B. Ngameni and. J.L. Tamesse. 2020 Ethnic heterogeneity of knowledge on Zonocerus variegatus and reasons for consumption and non-consumption in the south part of Cameroon. *Journal of Insects as Food and Feed* 6(1):273-286. https://doi.org/10.3920/JIFF2019.0035.

Lai, P.K., and J. Roy. 2004 Antimicrobial and chemopreventive properties of herbs and spices. *Current Medicinal Chemistry* 11(11):1451-1460. https://doi.org/10.2174/0929867043365107.

Leridon, H. 2015 Afrique subsaharienne: Une transition démographique explosive. *Futuribles* 407:5-21.

Logan, J.W., R.H. Cowie, and T.G. Wood. 1990 Termite (Isoptera) control in agriculture and forestry by non-chemical methods: A review. *Bulletin of Entomological Research* 80(3):309-330. https://doi.org/10.1017/S00074853000050513.

Loko, L.E.Y., A. Orobiyi, P. Agre, A. Dansi, M. Tamò, and Y. Roisin. 2017 Farmers’ perception of termites in agriculture production and their indigenous utilization in Northwest Benin. *Journal of Ethnobiology and Ethnomedicine* 13:64. https://doi.org/10.1186/s13002-017-0187-2.

Mbétid-Bessane, E. 2005 Commercialisation des chenilles comestibles en République Centrafricaine. *Tropicultura* 23 (1):3-5.

National Institute of Cartography (NIC). 2017 Mapping system of Cameroon. Yaoundé, Cameroon: NIC, Ministry of Higher Education.

Niaba, K.V., L.O. Atchibri, K.G. Gbassi, A.G. Beugre, M. Adou, A.B. Anon, D. Gnakri. 2012 Consumption survey of edible winged termites in Cote d’Ivoire. *International Journal of Agricultural & Food Science* 2(4):149-152.
Nicklaus, S., and S. Issanchou. 1974 “Children and food choice,” in Understanding Consumers of Food Products. Edited by L. Frewer and H.V. Trijp, pp. 329-358. Cambridge, United Kingdom: Woodhead Publishing.

Rozin, P., and T. A. Vollmecke. 1986 Food Likes and Dislikes. Annual Review of Nutrition 6:433-456. https://doi.org/10.1146/annurev.nu.06.070186.002245

Rumpold, B.A., and O.K. Schlüter. 2013 Potential and challenges of insects as an innovative source for food and feed production. Innovative Food Science and Emerging Technologies 17:1-11. https://doi.org/10.1016/j.ifset.2012.11.005.

Santoir, C., and A. Bopda, Eds. 1995 Atlas régional Sud-Cameroun. Paris: ORSTOM.

Sileshi, G., P. Nyeko, P. Nkunika, B. Sekematte, F. Akinnifesi, and O. Ajayi. 2009 Integrating ethno-ecological and scientific knowledge of termites for sustainable termite management and human welfare in Africa. Ecology and Society 14(1):48. https://www.jstor.org/stable/26268052.

Srinivasan, K. 2005 Spices as influencers of body metabolism: An overview of three decades of research. Food Research International 38(1):77-86. https://doi.org/10.1016/j.foodres.2004.09.001.

Tamesse, J.L., S. Kekeunou, L.J. Tchatchouang, O.L.M. Ndegue, L.M. Aissatou, D. Tombouck, and B. Youssa. 2016 Insects as food, traditional medicine and cultural rites in the west and south regions of Cameroon. Journal of Insects as Food and Feed 2(3):153-160. https://doi.org/10.3920/JIFF2015.0088.

Van Huis, A. 2003 Insects as food in sub-Saharan Africa. Insect Science and Its Application 23(3):163-185. https://doi.org/10.1017/S1742758400023572.

Van Huis, A., J. Van Itterbeeck, H. Klunder, E. Mertens, A. Halloran, G. Muir, and P. Vantomme. 2014 Insectes comestibles: Perspectives pour la sécurité alimentaire et l’alimentation animale. Rome: UN Food & Agriculture Org.

Van Huis, A. 2017 Edible insects: Marketing the impossible? Journal of Insects as Food and Feed 3(2):67-68. https://doi.org/10.3920/JIFF2017.x003.

Womeni, H.M., M. Linder, B. Tiencheu, F.T. Mbiapo, P. Villeneuve, J. Fanni, and M. Parmentier. 2009 Oils of insects and larvae consumed in Africa: Potential sources of polyunsaturated fatty acids. Oléagineux, Corps Gras Lipides 16(4):230-235. https://doi.org/10.1051/ocl.2009.0279.