Development of Prediction Equation of Diffusing Capacity of Lung for Koreans

Yong Il Hwang, M.D.1,2, Yong Bum Park, M.D.2,3, Hyoung Kyu Yoon, M.D.4, Seong Yong Lim, M.D.5, Tae-Hyung Kim, M.D.6, Joo Hun Park, M.D.7, Won-Yeon Lee, M.D.8, Seong Ju Park, M.D.9, Sei Won Lee, M.D.10, Woo Jin Kim, M.D.11, Ki Uk Kim, M.D.12, Kyeong Cheol Shin, M.D.13, Do Jin Kim, M.D.14, Hui Jung Kim, M.D.15, Tae-Eun Kim, M.D.16, Kwang Ha Yoo, M.D.17 and Jae Jeong Shim, M.D.18

*Author affiliations appear at the end of this article.

Background: The diffusing capacity of the lung is influenced by multiple factors such as age, sex, height, weight, ethnicity and smoking status. Although a prediction equation for the diffusing capacity of Korea was proposed in the mid-1980s, this equation is not used currently. The aim of this study was to develop a new prediction equation for the diffusing capacity for Koreans.

Methods: Using the data of the Korean National Health and Nutrition Examination Survey, a total of 140 nonsmokers with normal chest X-rays were enrolled in this study.

Results: Using linear regression analysis, a new predicting equation for diffusing capacity was developed. For men, the following new equations were developed: carbon monoxide diffusing capacity (DLco)=–10.4433–0.1434×age (year)+0.2482×heights (cm); DLco/alveolar volume (VA)=6.01507–0.02374×age (year)–0.00233×heights (cm). For women the prediction equations were described as followed: DLco=–12.8895–0.0532×age (year)+0.2145×heights (cm) and DLco/VA=7.69516–0.02219×age (year)–0.01377×heights (cm). All equations were internally validated by k-fold cross validation method.

Conclusion: In this study, we developed new prediction equations for the diffusing capacity of the lungs of Koreans. A further study is needed to validate the new predicting equation for diffusing capacity.

Keywords: Korean; Pulmonary Diffusing Capacity; Diffusion; Carbon Monoxide
Introduction

The advantages of physiologic tests for measuring diffusing capacity are that they permit diagnosis of an impaired surface area for transfer gases from the alveoli to the pulmonary capillaries, sometimes even during early stages of disease. The diffusing capacity of the lung to exchange gas across the alveolar-capillary interface is determined by its structural and functional properties. A single breath carbon monoxide diffusing capacity (DLco) is commonly used to measure diffusing capacity of lung. So, the methodology of measuring diffusing capacity has been standardized in an attempt to ensure quality control and reduce between laboratory variability.

In addition to the interlaboratory variability, the differences among prediction equations may also lead to misinterpretation of diffusing capacity. Since the ethnic difference in diffusing capacity have been addressed in many studies, it is necessary to use the prediction equation of its own ethnicity.

In Korea, the prediction equation for diffusing capacity was developed in mid-80s. However, this equation has not been widely used for interpreting the diffusing capacity even though this equation had been demonstrated to be clinically useful. Instead, foreign prediction equations derived from Caucasians have been used.

The aim of this study was to develop a new prediction equation for diffusing capacity for Koreans using the data of Korean National Health and Nutrition Examination Survey.

Materials and Methods

1. Study design

This study was a part of quality control program of spirometry in 6th Korean National Health and Nutrition Examination Survey (KNHANES). The KNHANES is an ongoing surveillance system in the Republic of Korea that assesses the health and nutritional status of Koreans, monitors trends in health risk factors and the prevalence of major chronic diseases, and provides data for the development and evaluation of health policies and programs in Korea. The KNHANES uses rolling sampling survey method for the sample in each year to represent the whole nation and to be similar by years. Twenty households were selected throughout 192 regions each year and 10,000 individuals aged 1 year and over were targeted for KNHANES.

2. Study subjects

We recruited the life time non-smoker with normal spirometry results who were participating in KNHANES. The study subjects also did not show any respiratory symptoms at least past 3 months and did not have any co-morbidities assessed by KNHANES. The study subjects also showed normal chest X-ray findings. The list of co-morbidities assessed by KNHANES were as followed: hypertension, hyperlipidemia, stroke, myocardial infarction, angina, osteoarthritis, rheumatic arthritis, osteoporosis, pulmonary tuberculosis, bronchial asthma, sinusitis, bronchiectasis, allergic rhinitis, depression, diabetes mellitus, and lung cancer.

We also excluded the subjects who had history of lung resection operation, congestive heart failure and other condition that might influence the result of diffusing capacity.

3. Procedures

1) Spirometry

Spirometry was performed using dry rolling seal spirometers (Model 2130; SensorMedics, Yorba Linda, CA, USA) and the American Thoracic Society (ATS)/European Respiratory Society (ERS) criteria for the standardization of pulmonary function test. The results of spirometry in each enumeration districts were stored on web-hard to investigate whether the results satisfied acceptability and reproducibility criteria of spirometry for quality control and quality assurance. For analysis on results of spirometry, only results showing two or more acceptable curves and meeting reproducibility criteria were used.

2) Measurement of diffusing capacity

After performing spirometry, eligible subjects, who were showing normal spirometry and chest X-ray result, were asked to participate in this study. When the subjects agreed to participate, informed consents were obtained. Then the subjects were transferred to regional teaching hospitals to perform diffusing capacity of lung test. A total of 16 hospitals participated in this study. The diffusing capacity tests were performed by experienced technicians who had at least 200 experiences of diffusing capacity test. Diffusing capacity was measured by single-breath technique using standardized method recommended by ATS/ERS recommendation using commercialized equipment (Autobox; SensorMedics). The protocol of measuring diffusing capacity is briefly summarized as followed. The subject was seated comfortably throughout the test procedure. When the mouthpiece and nose clip were in place, tidal breathings were carried out for a sufficient time to assure that the subject is comfortable with the mouthpiece. After exhaling to the residual volume, the subject inspired the gas mixture rapidly to the total lung capacity (TLC), followed by breath-holding at full lung inflation and then performed rapid exhalation. A total of 85% of inspired volume was completed in ~4.0 seconds. The breath-hold time was 10±2 seconds, and the total exhalation time did not exceed 4 seconds (with sample collection time <3 seconds). We used only methane gas as tracer. The composition of inspired gas mixture was as followed: 0.3% CO, 0.3% CH₄,
We adopted the acceptability and repeatability criteria proposed by ATS/ERS recommendation. The average of two acceptable tests that meet this repeatability requirement was reported.

4. Analysis

Statistical analysis was carried out using SPSS version 24.0 (IBM Corp., Armonk, NY, USA). Data are presented as mean±standard deviation. We used regression equation to develop new prediction equation for diffusing capacity. Prediction equations for DLco and DLco/alveolar volume (VA) were derived separately for both sexes. The k-fold cross validation method was used to validate the regression equation. In cross validation, some of the data is used as a training set and the rest is used as a test set. A regression equation is made by using the training set and applied to the test set to validate the equation. Because the test set is not involved in the choice of the regression model, the performance of the regression equation in the test set can be a more accurate way to validate the usefulness of the regression model. In k-fold cross-validation, the original sample is randomly partitioned into k equal sized subsamples. Of the k subsamples, a single subsample is retained as the validation data for testing the model, and the remaining k-1 subsamples are used as training data. The cross-validation process is then repeated k times (the folds), with each of the k subsamples used exactly once as the validation data. The k results from the folds can then be averaged to produce a single estimation. The advantage of this method over repeated random sub-sampling is that all observations are used for both training and validation, and each observation is used for validation exactly once. Ten-fold cross-validation is commonly used. We also compared the predicted values of other reference equations.

5. Ethical statement

The study protocol was reviewed and approved by the ethics and review board of each teaching hospital where the DLco was measured (Hallym University Sacred Heart Hospital, IRB No. 2015-I069). All study subjects provided written informed consent before taking DLco test.

Results

1. Demographic characteristics

A total of 140 subjects (male 43, female 97) were enrolled in this study. The mean age of the study participants was 45.5±14.5 years. The age distribution of the study participants was as followed: 23 in 20s, 27 in 30s, 28 in 40s, 37 in 50s, 19 in 60s, and six in 70s. The mean values of forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV1) were 3.7±0.8 L and 3.0±0.7 L, respectively.

Characteristic	Value (n=140)	Male	Female	
Male:Female		43 (30.7):97 (69.3)		
Age, yr	45.5±14.5			
Heights, cm	162.3±8.9			
Body weight, kg	63.0±11.6			
Age group, yr				
20–29	23 (16.4)			
30–39	27 (19.3)			
40–49	28 (20.0)			
50–59	37 (26.4)			
60–69	19 (13.6)			
70–79	6 (4.3)			
FVC, L	3.7±0.8			
FVC, % predicted	97.0±12.5			
FEV1, L	3.0±0.7			
FEV1, % predicted	97.0±11.5			
Hb, g/dL	14.1±1.6			
DLco, mL/mm Hg/min	21.0±5.8			
VA, L	4.6±1.0			

Values are presented as number (%) or mean±SD. FVC: forced vital capacity; FEV1: forced expiratory volume in 1 second; Hb: hemoglobin; DLco: diffusing capacity of lung for carbon monoxide; VA: alveolar volume.

Table 2. Comparison of baseline characteristics according to sex

Characteristic	Male	Female
Age, yr	41.1±16.4	47.4±13.1
Heights, cm	171.9±6.5	157.9±5.9
Body weight, kg	72.5±11.2	58.8±9.0
FVC, L	4.6±0.6	3.2±0.5
FVC, % predicted	96.3±10.2	97.3±13.5
FEV1, L	3.8±0.6	2.6±0.4
FEV1, % predicted	96.3±8.9	97.3±13.5
Hb, g/dL	13.7±1.3	13.3±1.1
DLco, mL/mm Hg/min	27.1±5.0	18.3±3.7
VA, L	5.7±0.7	4.1±0.6

Values are presented as mean±SD. FVC: forced vital capacity; FEV1: forced expiratory volume in 1 second; Hb: hemoglobin; DLco: diffusing capacity of lung for carbon monoxide; VA: alveolar volume.
L and 3.0±0.7 L, respectively (Table 1). Tables 2 and 3 showed the baseline characteristics according to sex and age groups, respectively.

2. Development of new prediction equation for DLco

Bases on clinical significance and other prediction equations\(^8\text{–}^{15}\), we chose age, heights and body weight for the variables of the equation of DLco. The body weight was not significant variable for the prediction equation after multiple linear regression analysis (Table 4). Finally, we developed the new prediction equation for DLco and DLco/VA after adjusting hemoglobin (Hb) levels as below.

For men,

\[
DLco = -10.4433 - 0.1434 \times \text{age (year)} + 0.2482 \times \text{heights (cm)}
\]

\[
DLco/VA = 6.01507 - 0.02374 \times \text{age (year)} - 0.00233 \times \text{heights (cm)}
\]

For women,

\[
DLco = -12.8895 - 0.0532 \times \text{age (year)} + 0.2145 \times \text{heights (cm)}
\]

\[
DLco/VA = 7.69516 - 0.02219 \times \text{age (year)} - 0.01377 \times \text{heights (cm)}
\]

The mean squared error obtained by k-fold cross validation

Table 3. Comparison of baseline characteristics according to age groups

Characteristic	20–29	30–39	40–49	50–59	60–69	70–79
Age, yr	23.2±2.0	34.5±2.8	45.0±2.3	54.5±2.9	62.6±2.4	73.7±2.2
Heights, cm	168.7±9.1	164.1±7.9	163.4±8.5	158.7±6.4	156.7±8.7	161.2±11.0
Body weight, kg	65.3±13.8	60.5±15.5	62.6±9.6	64.0±9.6	61.4±9.6	66.0±7.2
FVC, L	4.1±1.0	3.7±0.9	3.9±0.8	3.3±0.6	3.4±0.6	3.4±0.8
FVC, % predicted	90.8±11.4	91.0±11.0	102.4±10.9	97.1±10.1	104.6±13.6	95.0±19.0
FEV\(_1\), L	3.6±0.7	3.1±0.7	3.1±0.6	2.6±0.5	2.7±0.5	2.4±0.5
FEV\(_1\), % predicted	92.9±8.8	91.7±5.3	99.3±10.4	96.4±10.7	106.2±10.5	98.7±27.4
Hb, g/dL	14.5±1.7	14.2±1.8	13.7±1.6	13.7±1.4	14.3±1.1	14.3±1.1
DLco, mL/mm Hg/min	25.8±7.0	22.0±5.6	21.9±5.2	18.7±4.1	18.1±4.5	17.8±4.7
VA, L	5.0±1.1	4.6±1.0	5.0±0.9	4.3±0.9	4.4±0.8	4.4±0.8

Values are presented as mean±SD. FVC: forced vital capacity; FEV\(_1\): forced expiratory volume in 1 second; Hb: hemoglobin; DLco: diffusing capacity of lung for carbon monoxide; VA: alveolar volume.

Table 4. Development of new prediction equations for DLco and DLco/VA

	DLco	DLco/VA									
	Estimate	SE	t-value	p-value	r\(^2\)	Estimate	SE	t-value	p-value	r\(^2\)	
Male	Intercept	-10.9092	15.107	-0.72	0.475	0.499	5.74985	2.60388	2.21	0.033	0.326
	Age	-0.1424	0.034	-4.21	<0.001	-0.02316	0.00583	-3.97	<0.001	0.326	
	Height	0.2460	0.085	2.9	0.006	-0.0036	0.01461	-0.25	0.007	0.316	
	Weight	0.0111	0.048	0.23	0.816	0.00634	0.00821	0.77	0.444	0.307	
Female	Intercept	-10.4433	14.797	-0.71	0.484	0.498	6.01507	2.56814	2.34	0.024	0.316
	Age	-0.1434	0.033	-4.33	<0.001	-0.02374	0.00575	-4.13	<0.001	0.316	
	Height	0.2482	0.083	2.98	0.005	-0.00233	0.01444	-0.16	0.873	0.307	
Female	Intercept	-11.6196	9.723	-1.2	0.235	0.257	7.99271	1.85793	4.3	<0.001	0.217
	Age	-0.0709	0.028	-2.56	0.012	-0.02632	0.00529	-4.97	<0.001	0.217	
	Height	0.1876	0.060	3.13	0.002	-0.02008	0.01147	-1.75	0.083	0.217	
	Weight	0.0650	0.038	1.72	0.089	0.01522	0.00722	2.11	0.038	0.217	
Female	Intercept	-12.8895	9.797	-1.32	0.192	0.233	7.69516	1.88687	4.08	<0.001	0.178
	Age	-0.0532	0.026	-2.05	0.043	-0.02219	0.00501	-4.43	<0.001	0.178	
	Height	0.2145	0.059	3.66	<0.001	-0.01377	0.01127	-1.22	0.230	0.178	

DLco: diffusing capacity of lung for carbon monoxide; VA: alveolar volume.
The test of DLco for men and women were 11.5 and 10.0, respectively.

3. Comparison of other prediction equations

We calculated the difference of observed values and predicted values of other prediction equations. Except for Burrow’s equations, all of other equations overestimated the diffusing capacity (Table 5).

Discussion

In this study, we developed new prediction equations of DLco and DLco/VA using linear regression analysis after adjusting Hb levels following global standardized methodology. For men, the following new equations were developed: DLco=–10.4433–0.1434×age (year)+0.2482×heights (cm); DLco/VA=6.01507–0.02374×age (year)–0.00233×heights (cm). For women, the prediction equations were described as followed: DLco=–12.8895–0.0532×age (year)+0.2145×heights (cm) and DLco/VA=7.69516–0.02219×age (year)–0.01377×heights (cm). Our new equations for DLco had positive association with heights and negative association with age in both sex. For the equation of DLco/VA, both age and heights had negative association. These associations were consistent with those from other prediction equations. Our new equation did not include body weight as a significant variable (Table 4), this finding was not new, because body weight excluded in many other prediction equations.

It is well known that Caucasians have higher lung volumes such as FEV$_1$, vital capacity, and TLC compared to Asians. Also, studies about the ethnic differences in DLco and DLco/VA showed that predicted values for the Chinese population were overestimated by the prediction equations from Caucasians. We compared the predicted values from other prediction equations from Caucasians and the observed values. The differences of observed and predicted value were statistically significant in both sexes, which means that prediction equations from Caucasian ethnicity cannot be applicable for Koreans. We also calculated the predicted value from the old Korean prediction equation, and compared the observed values. The difference was also significant, especially in women (Table 5).

As this study enrolled subjects who were participating in the KNHANES, the study population could represent the whole Korean population. Therefore, there is no arguing about the representativeness of study population. So, the new prediction equations derived from this study can be applied in daily practice and used for constructing national database. The old Korean prediction equation was derived from single province of Korea with relatively short lists of exclusion criteria in spite of its usefulness. Also, as the global standardization for measuring diffusing capacity has been addressed recently, the old Korean equations could not follow the global standardization.

Table 5. The differences of predicted value and measured values of other equations

Equations	Observed value	Predicted value	Observed–Predicted	p-value	
Park’s equation6	Total	21.38±5.63	22.64±4.90	−1.23±3.54	<0.001
	Male	26.89±5.25	27.31±4.92	−0.42±3.68	0.494
	Female	18.83±3.62	20.48±3.04	−1.64±3.43	<0.001
Burrow’s equation11	Total	21.38±5.63	21.51±4.34	−0.13±3.98	0.730
	Male	26.89±5.25	25.04±5.39	1.86±4.37	0.018
	Female	18.83±3.62	19.88±2.43	−1.05±3.32	0.006
Morris/Crapo’s equation12	Total	21.38±5.63	28.45±6.01	−7.07±3.62	<0.001
	Male	26.89±5.25	35.22±4.72	−8.33±3.82	<0.001
	Female	18.83±3.62	25.31±2.95	−7.86±3.40	<0.001
Paoletti’s equation13	Total	21.38±5.63	29.49±5.17	−8.11±3.38	<0.001
	Male	26.89±5.25	35.55±5.08	−8.65±3.76	<0.001
	Female	18.83±3.62	26.69±1.56	−7.86±3.17	<0.001
Roca’s equation14	Total	21.38±5.63	26.04±5.37	−4.66±3.33	<0.001
	Male	26.89±5.25	32.36±4.72	−5.46±3.64	<0.001
	Female	18.83±3.62	23.12±2.21	−4.29±3.13	<0.001
ECSC equation15	Total	21.38±5.63	25.67±4.72	−4.28±3.49	<0.001
	Male	26.89±5.25	30.30±4.36	−3.40±3.60	<0.001
	Female	18.83±3.62	23.52±2.93	4.69±3.13	<0.001

Values are presented as mean±SD.
However, a large study will be needed to validate the new prediction equations. This study had some limitations. First is the relatively small number of participating subjects. Although the sampling strategy of present study was more strict than that of the study for prediction equation of spirometry, the sample size was statistically adequate to generate the equations in both genders. And the second is the relatively young age of participating subjects. Lack of availability of sufficient number of normal elderly subjects who could perform acceptable test maneuvers was inevitable. Therefore, caution is required in extrapolating these equations to elderly patients.

In summary, the prediction equations for DLco and DLco/VA were developed from the subjects participating in KNHANES. The age and heights were significant variables for the DLco. A further study is needed to validate the new predicting equation for diffusing capacity.

Author affiliations

1. Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang.
2. Lung Research Institute of Hallym University College of Medicine, Chuncheon.
3. Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangdong Sacred Heart Hospital, Seoul.
4. Division of Pulmonology, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul.
5. Division of Pulmonary and Critical Care Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul.
6. Division of Pulmonology, Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri.
7. Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ajou University School of Medicine, Suwon.
8. Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju.
9. Division of Pulmonary, Allergy and Critical Care Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju.
10. Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul.
11. Department of Internal Medicine, Kangwon National University School of Medicine, Chunchon.
12. Department of Internal Medicine, Pusan National University School of Medicine, Yangsan.
13. Regional Center for Respiratory Disease, Yeungnam University Medical Center, Yeungnam University College of Medicine, Daegu.
14. Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon.
15. Division of Pulmonary and Critical Care Medicine, Wonkwang University Sanbon Hospital, Wonkwang University School of Medicine, Gunpo.
16. Department of Clinical Pharmacology, Konkuk University School of Medicine, Seoul.
17. Department of Internal Medicine, Konkuk University Medical Center, Seoul.
18. Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Seoul, Korea.

Conflicts of Interest

No potential conflict of interest relevant to this article was reported.

References

1. Gold WM. Pulmonary function testing. In: Mason RJ, Budgen VC, Murray JE, Nadel JA, editors. Murray and Nadel's textbook of respiratory medicine. 4th ed. Philadelphia: Elsevier Saunders; 2005. p. 695-703.
2. Macintyre N, Crapo RO, Viegi G, Johnson DC, van der Grinten CP, Brusasco V, et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur Respir J 2005;26:720-33.
3. Crapo RO, Gardner RM. DLCO reference equations: a perspective. Am Rev Respir Dis 1986;134:856.
4. Yang SC, Yang SP, Lin PJ. Prediction equations for single-breath carbon monoxide diffusing capacity from a Chinese population. Am Rev Respir Dis 1993;147:599-606.
5. Korotzer B, Ong S, Hansen JE. Ethnic differences in pulmonary function in healthy nonsmoking Asian-Americans and European-Americans. Am J Respir Crit Care Med 2000;161(4 Pt 1):1101-8.
6. Pesola GR, Huggins G, Sherpa TY. Abnormal predicted diffusion capacities in healthy Asians: an inequality with a solution. Respiration 2006;73:799-807.
7. Chhabra SK, Kumar R, Gupta UA. Prediction equations for diffusing capacity (transfer factor) of lung for North Indians. Lung India 2016;33:479-86.
8. Park JO, Choi IS, Park KO. Normal predicted values of single-breath diffusing capacity of the lung in healthy nonsmoking adults. Korean J Intern Med 1986;1:178-84.
9. Song EH, Oh YM, Hong SB, Shim TS, Lim CM, Lee SD, et al. Selection of reference equations for lung volumes and diffusing capacity in Korea. Tuberc Respir Dis 2006;61:218-26.
10. Ra SW, Park TS, Hong Y, Hong SB, Shim TS, Lim CM, et al. Clinical usefulness and the accuracy of Korean reference equation for diffusing capacity. Tuberc Respir Dis 2008;64:80-6.
11. Burrows B, Kasik JE, Niden AH, Barclay WR. Clinical usefulness of the single-breath pulmonary diffusing capacity test. Am Rev Respir Dis 1961;84:789-906.
12. Crapo RO, Morris AH. Standardized single breath normal values for carbon monoxide diffusing capacity. Am Rev Respir Dis 1981;123:185-9.

13. Paoletti P, Viegi G, Pistelli G, Di Pede F, Fazzi P, Polato R, et al. Reference equations for the single-breath diffusing capacity: a cross-sectional analysis and effect of body size and age. Am Rev Respir Dis 1985;132:806-13.

14. Roca J, Rodriguez-Roisin R, Cobo E, Burgos F, Perez J, Clausen JL. Single-breath carbon monoxide diffusing capacity prediction equations from a Mediterranean population. Am Rev Respir Dis 1990;141(4 Pt 1):1026-32.

15. Standardization of lung function tests. Report working party. Bull Eur Physiopathol Respir 1983;19 Suppl 5:1-95.

16. Korean Center for Disease Control and Prevention. Korean National Health & Nutrition Examination Survey. Cheongju: Korean Center for Disease Control and Prevention; 2017 [cited 2017 Oct 10]. Available from: https://knhanes.cdc.go.kr/knhanes/main.do.

17. Hwang YI, Park YB, Yoo KH. Recent trends in the prevalence of chronic obstructive pulmonary disease in Korea. Tuberc Respir Dis 2017;80:226-9.

18. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J 2005;26:319-38.

19. Choi JK, Paek D, Lee JO. Normal predictive values of spirometry in Korean population. Tuberc Respir Dis 2005;58:230-42.