Heme attenuates beta-endorphin levels in leukocytes of HIV positive individuals with chronic widespread pain

Saurabh Aggarwal\(^a\), Jennifer J. DeBerry\(^a\), Israr Ahmad\(^a\), Prichard Lynn\(^b\), Cary Dewitte\(^a\), Simran Malik\(^a\), Jessica S. Merlin\(^b,d,e\), Burel R. Goodin\(^f\), Sonya L. Heath\(^g\), Sadis Matalon\(^a\)

\(^a\) Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, USA
\(^b\) Division of Infectious Disease, USA
\(^c\) Department of Psychology, USA
\(^d\) School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
\(^e\) Divisions of General Internal Medicine and Infectious Diseases, University of Pittsburgh, Pittsburgh, PA, USA

ABSTRACT

The prevalence of chronic widespread pain (CWP) in people with HIV is high, yet the underlying mechanisms are elusive. Leukocytes synthesize the endogenous opioid, \(\beta\)-endorphin, within their endoplasmic reticulum (ER). When released into plasma, \(\beta\)-endorphin dampens nociception by binding to opioid receptors on sensory neurons. We hypothesized that the heme-dependent redox signaling induces ER stress, which attenuates leukocyte \(\beta\)-endorphins levels/release, thereby increasing pain sensitivity in people with HIV. Results demonstrated that HIV positive individuals with CWP had increased plasma methemoglobin, erythrocytes membrane oxidation, hemolysis, and low plasma heme scavenging enzyme, hemopexin, compared to people with HIV without CWP and HIV-negative individuals with or without pain. In addition, the leukocytes from people with HIV with CWP had attenuated levels of the heme metabolizing enzyme, heme oxygenase-1, which metabolizes free heme to carbon-monoxide and biliverdin. These individuals also had elevated ER stress, and low \(\beta\)-endorphins. To mimic hemolytic effects in a preclinical model, C57BL/6 mice were injected with phenylhydrazine hydrochloride (PHZ). PHZ increased cell-free heme and ER stress, decreased leukocyte \(\beta\)-endorphin levels and hindpaw mechanical sensitivity thresholds. Treatment of PHZ-injected mice with hemopexin blocked these effects, suggesting that heme-induced ER stress and a subsequent decrease in leukocyte \(\beta\)-endorphin is responsible for hypersensitivity in people with HIV.

1. Background

In the modern treatment era, individuals infected with human immunodeficiency virus-1 (HIV-1) who are diagnosed and treated early can have a near-normal life expectancy. However, chronic widespread pain (CWP) in HIV is associated with a high rate of disability and reduced quality of life [1], with prevalence estimates ranging from 25% to 85% [2–4].

Leukocytes (neutrophils, monocytes/macrophages, and lymphocytes) are a rich source of endogenous opioid peptides [5–13] that inhibit nociceptive transmission by binding to peripheral opioid receptors [14–16]. During inflammation, leukocytes are recruited to the site of damage [17]. Upon stimulation with mediators such as interleukin-1 (IL-1), corticotropin-releasing factor (CRF), or norepinephrine, they release opioid peptides (i.e., \(\beta\)-endorphin which exert an anti-hyperalgesic effect in inflamed tissues [12,18–22], [18,19,21,22]). Blocking the action of endogenous opioids with antibodies or elimination of peripheral immune cells that produce and release them decreases this effect [14,18,22]. Preclinical studies support a role for immune cells in endogenous analgesia. For example, drug-induced immunosuppression in rats increases mechanical and thermal hyperalgesia [23], while and adoptive transfer of allogenic polymorphonuclear leukocytes (PMNs) after innate PMN depletion restores opioid receptor-mediated analgesia during inflammation [24]. Macrophages, in particular,
generate and release opioid peptides in response to inflammation or injury, with greater opioid content and release by the M2-polarized, pro-resolution phenotype than the pro-inflammatory, M1 phenotype [25]. Promoting the polarization of naive macrophages toward the M2 phenotype [26,27] can attenuate clinical postoperative pain [28] and decrease tactile hypersensitivity in animals [29].

Encapsulated heme plays an essential role in various physiological functions. However, when liberated from red blood cells (RBCs), cell-free heme is deleterious. Cell-free heme is transported from plasma to macrophages in liver by the heme scavenging enzyme, hemopexin, and to cellular injury [30]. We and others have shown that cell-free heme, a pro-inflammatory molecule, induces endoplasmic reticulum (ER) stress and cellular injury [30–33]. Heme activates toll-like receptor 4 signaling in macrophages [34,35], causing the release of pro-inflammatory, pro-agonistic cytokines (e.g., IL-1α, IL-6, TNF-α) [36–38]. In macrophages, heme-induced ER stress promotes apoptosis and polarization to the pro-inflammatory, M1 phenotype [32,39,40]. Clinical and preclinical studies have shown that cell-free heme is correlated with acute painful vaso-occlusive crises in children with sickle cell disease and in transgenic sickle mice [41,42]. Animal studies have demonstrated that heme oxygenase-1, a heme metabolizing protein, ameliorates hyperalgesia due to nerve injury [43] and inflammation [44]. However, whether cell-free heme is directly involved in chronic pain is not known.

The objective of the present study was to examine the role of cell-free heme as a mediator of CWP in HIV, since HIV infection is associated with susceptibility to hemolysis due to secondary sequelae [45–50]. Specifically, we hypothesized that increased cell-free heme impairs peripheral endogenous analgesic mechanisms by increasing ER stress in peripheral immune cells, leading to increased pain. Using a multifaceted approach, the current study provides evidence that elevated cell-free heme and low heme oxygenase-1 contributes to CWP and characterizes mechanisms of this effect.

2. Methodology

Human participants: This study was conducted at the University of Alabama at Birmingham (UAB) and approved by the UAB Institutional Review Board (IRB Protocols 300000860 and 170119003). Participants were categorized as 1) Healthy controls, based on negative HIV status and absence of any pain or chronic disease which may cause hemolysis, 2) HIV-negative with chronic low back pain, 3) HIV-positive individuals without any perceived chronic pain, and 4) HIV-positive individuals with self-report of CWP. HIV-positive and -negative participants were recruited from the UAB Center for AIDS Research Network of Integrated Clinical System (CNICS) site. Pain Patient Reported Outcomes (PROMs) were part of CNICS as reported earlier [51]. The pain PROMs consisted of a Brief Chronic Pain Questionnaire about the intensity and duration of the pain. Participants with chronic low back pain were recruited via flyers posted at the Pain Treatment Clinic within the UAB Department of Anesthesiology and Perioperative Medicine and the surrounding community. Participants were included if they were active patients at the UAB Pain Treatment Clinic, and reported chronic low back pain that had persisted for at least three consecutive months and was present on at least half the days in the past six months [28]. Participants were only included if they denied any type of low back surgery or significant trauma/accident within the past year. Low back pain was the primary pain complaint reported for all participants with chronic low back pain. Demographic and clinical information was recorded from all participants and blood was drawn. Blood samples were processed, aliquoted, and RBCs and plasma were isolated and stored at −80 °C using Freezer works Sample Inventory Management software (Data works Development, Inc, Mountlake Terrace, WA, USA). No samples underwent freeze-thaw cycles prior to use.

Animals: Adult male C57BL/6 mice (20–25 g) were purchased from Charles River (Wilmington, MA), Heme oxygenase-1 knockout (HO-1−/−) mice on a mixed C57BL/6 and FVB background and wildtype (WT) littermates were obtained from Dr. Anupam Agarwal at UAB, details of which have been published earlier [52]. All mice were housed in conventional polycarbonate cages with woodchip bedding under a 12 h: 12 h light/dark cycle with ad libitum access to a standard diet and water. Euthanasia protocol based on intraperitoneal injections of ketamine and xylazine was used in the study for mice to minimize pain and distress. All animal care and experimental procedures were approved by the Institutional Animal Care and Use Committee at the University of Alabama in Birmingham (Protocol number: 21416).

Chemicals: Hemin (ferric chloride heme; product no. H9039), phenylhydrazine hydrochloride (PHZ) (for induction of hemolytic anemia; product no. 114715), norepinephrine (NE, product no. N5785), biliverdin hydrochloride (product no. 30891), and CORM-A1 (a carbon monoxide donor, product no. SML0315) were obtained from Sigma-Aldrich (St. Louis, MO). Sodium 4-phenylbutyrate (4-PBA; product no. ALX-270-303), a chemical chaperone that reduces ER stress [53], was obtained from Enzo Life Sciences (Farmingdale, NY). Hx (heme scavenger; product no. 16-16-080513) was obtained from Athens Research and Technology (Athens, GA).

Blood plasma and cell concentration measurements: Heme concentration in plasma samples from humans and mice was measured using the QuantiChrom heme assay kit (product no. DHM-250; BioAssay Systems, Hayward, CA), according to the manufacturer’s instructions. Plasma concentration of hemopexin was measured in humans using the human hemopexin ELISA kit (product no. GBW-48601A; GenWay Biotech, Inc. San Diego, CA) and in mice using the mouse hemopexin ELISA kit (product no. GBW-D5D320; GenWay Biotech, Inc.). Plasma levels of methemoglobin (product no. LS-F40208; LSBio, Seattle, WA), carboxyhemoglobin (product no. LS-F39492; LSBio, and bilirubin (Bilirubin Assay Kit; Sigma-Aldrich) were analyzed by the human methemoglobin, carboxyhemoglobin, and bilirubin ELISA kits respectively according to the manufacturer’s protocol. A panel of 10 cytokines ([IFN-γ, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12 (p70), IL-13, and TNF-α] were assessed in plasma from human participants using a V-PLEX Proinflammatory Panel 1 (human) cytokine kit (product no. K15049-1D, Mesa Scale Diagnostics, LLC, Rockville, Maryland). Cytokine concentrations were measured using a Meso QuickPlex SQ 120 electrochemiluminescence plate reader. Human plasma and mouse J774A.1 cell concentrations of β-endorphin were measured using QuickDetect beta-Endorphin ELISA kits (human: product no. E4458-100; mouse: product no. E4459-100; BioVision, Milpitas, CA). Human plasma and leukocyte and mouse J774A.1 cell concentrations of the 78-kDa glucose-regulated protein (GRP78) also known as the Binding immunoglobulin protein (BIP) were measured using the GRP78/BIP ELISA kit (product no. AD1-900-214-0001; Enzo Life Sciences). Human lactate dehydrogenase (LDH) activity in plasma was assessed using a LDH cytotoxicity assay kit (product no. 88953, Thermo Scientific, Rockford, IL).

RBC fragility assay: Blood was obtained from participants in the presence of an anticoagulant. Plasma was separated and the RBCs were washed with isotonic solution 3 times to remove traces of plasma. RBCs were then re-suspended in normal saline. The RBC suspensions along with 4x4mm glass beads (Pyrex) in DPBS were then rotated 360° for 2 h at 24 rpm at 37 °C. The RBC suspension was then centrifuged at 13,400g for 4 min to separate the intact or damaged cells from the supernatant containing heme/hemoglobin from the lysed cells during this mechanical stress. Free heme/hemoglobin was transferred into a new tube and the absorbance of the supernatant recorded at 540 nm as described earlier [54]. Subsequently, 100% hemolysis of RBCs was achieved by treating them with 1% Triton x-100 solution. The fractional hemolysis of the sample was then obtained by dividing the optical density of the sample by the optical density of the 100% hemolyzed sample.

Measurement of protein carbonyl adducts: Protein carbonyl adducts in RBC ghosts were measured as previously described [33]. Briefly, RBCs were separated from plasma and hemolyzed with 20 mM hypotonic HEPES buffer. The mixture was centrifuged at 14000 x g for 20 min
and RBC membrane pellet was dissolved in radio-immuno-precipitation assay (RIPA) buffer (Product number: 89901, Thermo Scientific). Protein was quantified using a BCA kit (product no. 23225, Thermo Scientific, Rockford, IL) and equal amounts of protein (10 μg) were loaded onto each lane of a 4–20% gradient gel. Separated proteins were stained with Amido Black (Sigma-Aldrich, St Louis, MO). The presence of protein carbonyl adducts in RBC ghosts was assessed using an Oxyblot protein oxidation detection kit (product no. S7150; EMD Millipore, Billerica, MA) according to the manufacturer’s protocol. The abundance of protein carbonylation was assessed using densitometry and normalization for protein loading by SDS-PAGE gel quantification.

Leukocyte isolation from blood: Blood drawn from human participants or mice was mixed with an equal volume of 3% dextran for 30 min to separate leukocyte-rich plasma. Leukocytes containing supernatant was centrifuged (10 min, 1000 rpm, 4 °C). The supernatant was discarded, and the remaining RBC and leukocytes were collected. The RBCs were lysed by adding hypotonic solution and leukocytes were resuspended in 1x PBS/glucose [55] and analyzed immediately.

Phenyldihyrazine hydrochloride (PHZ) and hemopexin administration: Mice were challenged with an intraperitoneal injection of PHZ (25 or 50 mg/kg BW) or saline (vehicle) on 2 consecutive days. Six hours after the second injection, mice were given a single, intraperitoneal injection of either saline (vehicle) or hemopexin in 1x phosphate buffered saline (PBS) (4 μg/kg final concentration). Hemopexin stocks were prepared daily in sterile PBS with injection volumes of 75 μL.

Cell culture: J774A.1 cells (ATCC), macrophages from adult female BALB/cN mice, were cultured to confluence in DMEM media (product no. 11995–065, Thermo Scientific) and then exposed for 24 h to hemin (25 μM) or vehicle (dimethyl sulfoxide, DMSO) in the presence or absence of 4-PBA (10 μM). Five min before the end of incubation, NE (100 nM) was added to the cells to induce secretion of β-END into the supernatant. In a separate set of experiments, the cellular levels of heme oxygenase-1 were genetically attenuated in J774A.1 cells using mouse siRNA (heme oxygenase siRNA; m; product no. sc-3555; Santa Cruz Biotechnology, Dallas, Tx) for 48 h. Control cells received control siRNA (product no. sc-37007; Santa Cruz Biotechnology). Cellular β-endorphin levels were measured at the end of the experiment.

Western Blot analysis: Mouse liver and human leukocytes were separately homogenized in RIPA buffer containing protease inhibitors. The samples were sonicated for 3 × 10 s on ice in 1.5 ml Eppendorf tubes using an ultrasonic liquid processor and centrifuged at 14,000 g for 20 min at 4 °C. Protein concentration was measured in cleared supernatants with a BCA assay kit. Equal amounts of protein (25 μg) were loaded in 10% Tris-HCl Criterion precast gels (Product no. 567–1093, Bio-Rad Laboratories, Hercules, CA) and transferred to polyvinylidene difluoride membranes (Product no. 162–0177, Bio-Rad Laboratories). Protein carbonyls were detected by closed supernatant onto each lane of a 4–177 precast gels (Product no. 567–1093, Bio-Rad Laboratories) and exposed for 24 h to hemin (25 μM). Data demonstrated that the HIV cohort with CWP had significantly higher (2–3 fold increase) cell-free heme levels than other groups (Fig. 1A). However, hemopexin concentrations were comparatively lower in people with HIV with than without CWP, suggesting that heme scavenging machinery is attenuated in the context of pain (Fig. 1B). Ex vivo RBC mechanical fragility was assayed by quantification of heme/hemoglobin (Hb) release in response to mechanical stress using freshly obtained RBCs from participants [54]. Data demonstrated that HIV positive individuals had significantly higher RBC fragility, resulting in hemolysis, compared to HIV-negative individuals (Fig. 1C). Further, hemolysis was also greater in people with HIV infected with CWP compared to individuals without chronic pain. The plasma levels of hemoglobin (a form of oxidized hemoglobin) were also greater in HIV cohort with CWP compared to individuals from other groups (Fig. 1D). In addition, RBC membranes were isolated for measurement of carbonyl (aldehyde and ketone) adducts, a hallmark of protein oxidation. Protein carbonylation in RBCs was significantly higher in people with HIV with CWP compared to the HIV-negative individuals with low back pain and both pain-free groups (Fig. 1E). Together, these results suggested that people with HIV with CWP were prone to hemolysis and

Table 1

Group (Number of participants)	HIV+	PainF	HIV-	PainF	HIV+	PainF
Avg. age (SD)	48.7 (13.3)	45.3 (14.5)	50.1 (8.7)	52.3 (7.5)		
Avg. CD4 (SD)	681.2	785.2				
Avg. Nadir CD4 (SD)	168.4 (249)	221.9				
Avg. VL (SD)	34 (63)	42.9 (95.1)				
Avg. Highest VL (SD)	180456	253200				

CA. Data are presented as mean ± SEM. Statistical significance was determined by unpaired t-test for two groups or one-way ANOVA followed by Tukey’s post-hoc test for more than two groups. A value of p < 0.05 was considered significant.

3. Results

People with HIV who self-report CWP have increased plasma levels of cell-free heme and impaired heme scavenging. As a first step in establishing cell-free heme as a contributing factor to HIV-associated chronic pain, plasma concentrations of cell-free heme, plasma methemoglobin, RBC membrane oxidation and fragility, and the heme scavenging protein, hemopexin, were measured in HIV-positive and -negative cohort with or without CWP. The most common sites of pain reported by people with HIV are low back (86%), hands/feet (81%), and knee (66%) [51]; therefore, HIV-negative individuals with chronic low back pain were included as a second control group in addition to people with HIV without chronic pain.

General demographic characteristics of participants were not significantly different among groups (age range 45–52 years; race distribution 66–68% African American), with the exception of sex (M > F) (Table 1). Reflective of the patient population of the clinic from which HIV-positive individuals were recruited, the proportion of men in the HIV-positive group was 52% vs. 33% in the HIV-negative groups. Distribution of participants or mice was mixed with an equal volume of 3% dextran for 30 min to separate leukocyte-rich plasma. Leukocytes containing supernatant was centrifuged (10 min, 1000 rpm, 4 °C). The supernatant was discarded, and the remaining RBC and leukocytes were collected. The RBCs were lysed by adding hypotonic solution and leukocytes were resuspended in 1x PBS/glucose [55] and analyzed immediately.
thus exhibited elevated plasma levels of cell-free heme. All HIV positive individuals (with or without pain) were on anti-retroviral therapy (ART) and had low VL (mean VL = 34–42 copies/ml of blood) suggesting that RBC hemolysis and elevated cell-free heme are not dependent on VL or ART.

People with HIV with CWP exhibit a pro-algesic immune profile. Immune cells release both pro-inflammatory, algesic, and anti-inflammatory, analgesic mediators, the balance of which contributes to the presence of hyperalgesia or allodynia. We have previously demonstrated that heme increases pro-inflammatory cytokines [33]. In the current study, plasma profile of 10 cytokines was quantified in the participants. Data showed that people with HIV with CWP exhibited significantly higher levels of proalgesic cytokines including IL-1β (Fig. 2A), IL-6 (Fig. 2B), and TNF-α (Fig. 2C), that are produced predominantly by pro-inflammatory, rather than pro-resolution, immune cells [57–59]. In addition, people with HIV with CWP had significantly lower levels of anti-inflammatory cytokine, IL-10 (n = 13–25) than HIV-negative individuals with low back pain (D). Leukocyte levels of β-endorphins were significantly lower in HIV positive individuals with CWP compared to CWP compared to HIV-negative, pain-free controls and HIV positive people without pain (n = 6–15) (E). Circulating β-endorphins in plasma were higher in HIV-negative individuals with low back pain, but lower in HIV-positive group without pain. HIV-positive group with CWP had the lowest concentration of plasma β-endorphins (n = 13–25) (F). Individual values and means ± SEM. *P < 0.05 vs. groups at the end of individual lines; one-way ANOVA followed by Tukey post-hoc testing.

Fig. 1. People with HIV with CWP have increased plasma levels of cell-free heme and impaired heme scavenging. Total (free and protein bound) cell-free heme was measured in plasma. HIV positive individuals with CWP had significantly higher heme than without CWP and HIV-1 negative controls (n = 15–25) (A). Plasma hemopexin (Hx) levels were lower in people with HIV with CWP than without pain (n = 12–15) (B). People with HIV with CWP had increased RBC hemolysis compared to other groups (n = 6–25) (C). HIV positive individuals with CWP had elevated plasma levels of methemoglobin compared to other groups (n = 15) (D). Protein carbonylation in RBC membrane was significantly higher in HIV positive people with CWP compared to the no-pain groups and the HIV-negative group with low back pain (n = 10–12) (E). Individual values and means ± SEM. *P < 0.05 vs. groups at the end of individual lines; one-way ANOVA followed by Tukey post-hoc testing.

Fig. 2. People with HIV with CWP have increased pro-algesic cytokines and reduced β-endorphins. HIV positive individuals with CWP had significantly higher levels of pro-inflammatory and pro-algesic cytokines in plasma, including IL-1β (n = 15–25) (A), IL-6 (n = 15–25) (B), and TNF-α (n = 15–25) (C). HIV with CWP group also had significantly lower levels of anti-inflammatory cytokine, IL-10 (n = 13–25) than HIV-negative individuals with low back pain (D). Leukocyte levels of β-endorphins were significantly lower in HIV positive individuals with CWP compared to HIV-negative, pain-free controls and HIV positive people without pain (n = 6–15) (E). Individual values and means ± SEM. *P < 0.05 vs. groups at the end of individual lines; one-way ANOVA followed by Tukey post-hoc testing.
isolated from HIV-negative individuals with low back pain and both no-pain groups (Fig. 2E). In addition, the mean circulating β-endorphins concentration in plasma of healthy individuals (100 pg/ml) was twice that of pain-free people with HIV (50 pg/ml) and four-fold higher than that of HIV positive individuals with CWP (25 pg/ml) (Fig. 2F). This was not due to diurnal variation in opioid release [60], since blood was collected between 9am-11am to minimize this effect.

CWP in HIV is associated with increased ER stress. ER stress is one of the adverse effects triggered by the presence of cell-free heme [32]. Given the observed elevation in heme in people with HIV with CWP, the presence of ER stress was examined in plasma and peripheral leukocytes by measurement of glucose-regulated protein 78 (GRP78/BiP), an important regulator of the unfolded protein response (UPR). GRP78/BiP is the only ER stress marker that is secreted from the cell, allowing it to be measured in both cells and in circulation [32]. The results of this experiment demonstrated that HIV positive individuals with CWP had almost 2-fold higher GRP78/BiP in leukocytes (Fig. 3A) and 3-fold higher GRP78/BiP in plasma (Fig. 3B) compared to HIV-negative individuals with pain and both non-pain groups. Since prolonged ER stress causes cell death, plasma activity of lactate dehydrogenase (LDH), a stable enzyme that leaks from cells upon plasma membrane damage [61], was also measured. Consistent with evidence of ER stress, HIV cohort with CWP had significantly elevated plasma LDH activity compared to people in other groups (Fig. 3C).

Heme-induced ER stress reduces β-endorphin levels in immune cells. To establish a direct link between cell-free heme and ER stress with decreased endogenous opioid production, β-endorphin levels/release in murine immune cells (monocyte/macrophage-like J774A.1 cells) was assessed following exposure to heme (ferric chloride heme) in vitro. Compared to DMSO (vehicle)-treated cells, β-endorphin secretion induced by exposure to norepinephrine (NE) was significantly reduced in cells exposed to heme (Fig. 4A). This effect was blocked by incubation with sodium 4-phenylbutyrate (4-PBA), a chemical chaperone that reduces ER stress [53]. Further, intracellular β-endorphin content was depleted in heme-exposed cells, but not in cells treated with hemin + 4-PBA (Fig. 4B). Taken together, these results indicate that heme-induced ER stress attenuates β-endorphin levels and release by immune cells.

Heme scavenging ameliorates disrupted opioid homeostasis and mechanical hyperalgesia in a mouse model of hemolysis. To translate our clinical and in vitro findings to an in vivo model, phenyl-hydradine hydrochloride (PHZ) was used to induce hemolysis in adult C57BL/6 mice and hindpaw mechanical thresholds were assessed over time. Exposure to PHZ for two consecutive days induced a significant reduction in paw withdrawal thresholds compared to baseline, and this effect was blocked by administration of purified human hemopexin 6 h following the second dose of PHZ (Fig. 5A). In the same mice, plasma concentrations of cell-free heme were elevated 24 h following the second dose of PHZ, while the plasma levels of cell-free heme were significantly lower in the mice that received hemopexin (Fig. 5B). Using separate cohorts of mice, we found that PHZ-treated mice had elevated levels of GRP78/BiP (Fig. 5C) and attenuated concentration of β-endorphin in leukocytes (Fig. 5D) and plasma (Fig. 5E) relative to saline-treated mice. However, each of these changes were mitigated in mice treated with hemopexin (Fig. 5C-E). These results directly link elevated heme with reduced β-endorphin levels and mechanical pain threshold.

Mice lacking heme oxygenase-1 exhibit mechanical hyperalgesia and reduced leukocyte β-END. Previous studies have reported that upregulation of heme oxygenase-1, a heme degrading enzyme, mitigates inflammation- and injury-induced hyperalgesia in mice [43,44,62,63]. The underlying mechanisms of this effect are not known. In the present study, we determined whether global knockdown of heme oxygenase-1 in mice was associated with reduced circulating β-endorphins and a predisposition toward increased noiception. To validate this model, heme oxygenase-1 protein was measured in mouse liver homogenates, and complete knockdown in heme oxygenase-1 knockout (HO-1−/−) mice was demonstrated (Fig. 6A). The plasma concentration of the heme scavenging protein, hemopexin, was not different in the HO-1−/− mice compared to their wild type (WT) counterparts (Fig. 6B). Next, mechanical sensitivity was assessed in HO-1−/− and WT mice at baseline and two days after administration of PHZ. Because HO-1−/− mice are unable to metabolize heme and thus highly sensitive to hemolysis with very high mortality, half of the PHZ dose given in previous experiments (i.e., Fig. 5) was administered. Interestingly, HO-1−/− mice exhibited significantly lower paw withdrawal thresholds than WT mice at baseline, prior to PHZ treatment (Fig. 6C). Administration of low-dose PHZ did not further increase mechanical hypersensitivity in HO-1−/− mice, and withdrawal threshold in WT mice did not differ from HO-1−/− mice.
Fig. 5. Heme scavenging increases mechanical pain threshold in a rodent model of hemolysis. Phenylhydrazine hydrochloride (PHZ, 50 mg/kg, IP) or saline was administered to adult male C57BL/6 mice on two consecutive days. Six hours following the second injection, subset of mice were given purified human hemopexin (Hx) (4 mg/kg, IP) or saline. Mechanical hypersensitivity was assessed at baseline and on day two by measuring paw withdrawal thresholds to application of von Frey filaments. PHZ-challenged mice exhibited decreased paw withdrawal thresholds compared to mice that received Hx post-PHZ (n = 9–10) (A). On day two, mice exposed to PHZ had elevated plasma levels of cell-free heme (n = 10–13) (B), higher levels of the ER stress marker, Grp78/BiP, in peripheral leukocytes (n = 5–10) (C) and lower levels of β-endorphin in both leukocytes (n = 5–10) (D) and plasma (n = 14–16) (E). Hx treatment abrogated the effects of PHZ. Individual values and means ± SEM. *P < 0.05 vs. groups at the end of individual lines; unpaired t-tests (A) or one-way ANOVA followed by Tukey post hoc testing (B–E).

Fig. 6. Heme oxygenase-1 (HO-1) knockout mice have low mechanical pain threshold and β-endorphin levels. Immunoblot from liver homogenate validated that HO-1−/− mice (adult male) lack HO-1 expression compared to wild type (WT) mice (n = 4) (A). The plasma levels of the heme scavenging protein, hemopexin, was not different between the WT and HO-1−/− mice (n = 8–9) (B). Mechanical hypersensitivity was assessed at baseline and after administration of phenylhydrazine hydrochloride (PHZ, 25 mg/kg, intraperitoneal) or saline (vehicle) on two consecutive days by measuring paw withdrawal thresholds to application of von Frey filaments. Paw withdrawal thresholds were lower at baseline in the HO-1−/− mice compared to wild type (WT) mice (n = 6) (C). PHZ did not further lower pain threshold in these mice. One day following the 2nd dose of PHZ, HO-1−/− mice had increased plasma levels of cell-free heme (n = 7) (D), higher leukocyte (n = 5–7) (E) and plasma (n = 6) (F) glucose-regulated protein 78 (Grp78/BiP) levels, and lower leukocyte (n = 5–7) (G) and plasma (n = 6) (H) β-endorphin levels. HO-1−/− mice that were not exposed to PHZ also had low β-endorphin levels (G–H). Individual values and means ± SEM. *P < 0.05 vs. groups at the end of individual lines; unpaired t-tests (B–C) or one-way ANOVA followed by Tukey post hoc testing (D–H).
following PHZ (Fig. 6C).

Biochemical analysis of plasma and leukocytes from WT and HO-1−/− mice was performed 24 h following two consecutive daily treatments with PHZ. We observed a significant increase in the plasma concentrations of cell-free heme (40 μM vs. 250 μM) (Fig. 6D), and in leukocyte (Fig. 6E) and plasma (Fig. 6F) concentrations of Grp78/BiP in HO-1−/− mice, relative to WT mice. Further, the mean plasma concentration of cell-free heme in HO-1−/− mice following 25 mg/kg of PHZ was higher than that of C57BL/6 mice given 50 mg/kg of PHZ (Fig. 5), likely due to increased sensitivity to hemolysis in the context of heme oxygenase-1 knockdown. The concentrations of β-endorphin in leukocytes (Fig. 6G) and plasma (Fig. 6H) were lower in the HO-1−/− mice irrespective of PHZ treatment, suggesting that heme oxygenase-1 may regulate β-endorphins independently of heme-induced ER stress.

Therefore, to determine the mechanism responsible for low β-endorphins in HO-1−/− mice under basal conditions, we treated J774A.1 cells with the heme oxygenase-1 siRNA in vitro, to deplete the expression of the protein (Fig. 7A). Cells lacking the heme oxygenase-1 enzyme had lower levels of β-endorphins than the cells treated with the control (scrambled) siRNA (Fig. 7B) suggesting that the reduction in heme oxygenase-1 attenuates β-endorphin. Further, the treatment of J774A.1 cells with different concentrations of carbon monoxide donor, CORM-A1, or biliverdin, which are end products of heme metabolism by heme oxygenase-1, demonstrated that CORM-A1 (1 and 10 mM) increased cellular β-endorphins by more than 2 fold (Fig. 7C). Biliverdin did not alter the levels of β-endorphins in the cells suggesting that heme oxygenase-1 mediated analgesia may be mediated by carbon monoxide dependent increase in β-endorphins.

In parallel experiments, we demonstrated that the expression of leukocyte heme oxygenase-1 was significantly lower in HIV positive cohort with CWP than HIV positive people without pain (Fig. 8A), even though these individuals had significantly higher levels of cell-free heme (Fig. 1A). Further, HIV positive individuals with CWP had lower carboxyhemoglobin levels than HIV positive cohort without pain (Fig. 8B). However, the plasma levels of total bilirubin were higher in HIV cohort with CWP compared to HIV cohort without pain (n = 15–16) (B). Individual values and means ± SEM. *P < 0.05 vs. groups at the end of individual lines; one-way ANOVA followed by Tukey post hoc testing.

4. Discussion

This study demonstrates a relationship between self-reported CWP in people with HIV, with elevated cell-free heme and ER stress markers in plasma, and increased ER stress and diminished levels of β-endorphins in leukocytes. Furthermore, it demonstrates that in vitro exposure to heme attenuates β-endorphin content/release in murine monocyte/macrophage-like J774A.1 cells. This effect was reversed by the inhibition of ER stress. Similarly, the induction of hemolysis in C57BL/6 mice increased ER stress and reduced β-endorphin levels in leukocytes, and was accompanied by a decrease in mechanical sensitivity thresholds. The data also demonstrated that cells and animals, which lacked heme...
especially susceptible to oxidative damage by lipid peroxidation [32, 33]. In the plasma, we found a 15-40 fold higher risk of acquired thrombotic microangiopathy [45-47], which is an important cause of hemolysis. Further, HIV positive individuals are at risk of hemolysis secondary to the use of ART [48] or other drugs for HIV-associated infections such as the use of amphotericin B and trimethoprim for cryptococcal meningitis [49] and use of interferon and ribavirin for hepatitis C [50].

Chronic inflammatory diseases, such as sickle cell disease [35, 41, 42], lupus arthritis [64], malaria [65], and following treatment with widely used platinum-based anticancer drugs [66]. However, the role of heme in HIV associated co-morbidities has not been yet elucidated. There have been few case reports suggesting that hemolysis, heme scavenging, and heme metabolizing mechanisms are impaired in a subset of HIV-positive individuals. For instance, in a recent case report, hemolysis was the main presentation of acute HIV infection in a 22-year-old patient with G6PD-deficiency [67], although the presence or absence of pain in this case was not reported. It is to be noted that the prevalence of G6PD deficiency in HIV-positive individuals is estimated to be 6.8%-13% [68, 69]. HIV also confers a 15% higher risk of acquired thrombotic microangiopathy [45-47], which is an important cause of hemolysis. Further, HIV positive individuals are at risk of hemolysis secondary to the use of ART [48] or other drugs for HIV-associated infections such as the use of amphotericin B and trimethoprim for cryptococcal meningitis [49] and use of interferon and ribavirin for hepatitis C [50].

People with HIV have high reactive species production in peripheral immune cells [70,71] and elevated lipid peroxidation products in plasma [72]. We and others have previously shown that RBCs are especially susceptible to oxidative damage by lipid peroxidation [32,33,73], resulting in release of hemoglobin (Hb), metHb, free heme, and free iron [74]. In this study we also found that HIV positive individuals who self-report CWP had elevated levels of methemoglobin in plasma and carbonyl adducts in RBC membranes. Elevated levels of methemoglobin in the plasma indicate that these individuals have elevated oxidative stress within the RBCs and the oxygen carrying ferrous iron (Fe²⁺) in the hemoglobin is oxidized to the ferric state (Fe³⁺), which can predispose the RBCs to oxidative damage [75]. This could be due to either deficiency of methemoglobin reductase enzyme or exposure to chemicals or drugs such as nitrobenzene, nitrates, dapsone, chloroquine etc. Oxidative stress-induced carboxylation of proteins creates neoantigens against which autoantibodies may develop, as earlier reported in diseases such as COPD [76]. Therefore, it is possible that people with HIV with CWP have these autoantibodies that contribute to hemolysis. These individuals also had increased inflammatory cytokine profiles, suggesting that persistent inflammation may be driving hemolysis. In this regard, environmental and social factors or HIV-associated inflammatory diseases may be responsible for higher oxidative stress seen in HIV-positive individuals with CWP. Moreover, cell-free heme released post-hemolysis is highly inflammatory and may further cause hemolysis, leading to a feed-forward loop of hemolysis-heme-hemolysis [77].

Physiologically, heme concentrations in the blood are maintained at low levels [78] by the high binding affinity of serum heme scavenging proteins, hemopexin and haptoglobin [79-82]. Cell-free hemooglobin binds with circulating haptoglobin, resulting in a heterodimeric complex that is internalized by the transmembrane CD163 receptor on monocytes/macrophages [83]. Similarly, cell-free heme binds with hemopexin and the complex is internalized by the CD91 receptor [84]. Once inside the cell, heme and hemoglobin are degraded by heme oxygenase-1 [85]. Immune cells from heme oxygenase-1-deficient mice are more susceptible to oxidative stress [86]. A recent case report described impaired CD163-mediated heme scavenging with non-detectable hemopexin in an HIV-positive individual with severe inflammation [87]. In our study, we found that hemopexin levels in plasma and heme oxygenase-1 levels in leukocytes were diminished in HIV positive individuals with CWP compared to the people without pain. These results suggested that the increased hemolysis and diminished heme metabolism are responsible for elevated plasma cell-free heme in HIV cohort with CWP.

We have previously reported that cell-free heme induced cellular toxicity is mediated by ER stress in both animals and humans after bromine gas exposure [32,33]. Accumulation of misfolded proteins in the ER leads to ER stress and activation of the unfolded protein response (UPR) which serves to reduce translation of proteins in order to prevent further accumulation of mutant proteins [88,89]. Recent studies have shown significantly higher levels of misfolded proteins and UPR markers such as Grp78/Bip in people infected with HIV-1 [90-93]. We found that the levels of the Grp78/Bip, a master regulator of UPR [94], were higher in HIV-positive individuals with CWP, which corresponded with high levels of cell-free heme in this subset of individuals. However, heme may not be the only inducer of ER stress in people with HIV. For instance, the HIV-1 transactivator of transcription (Tat) and glycoprotein (gp) 120 proteins have been shown to induce ER stress and cytotoxicity contributing to HIV-associated neuropathogenesis [95,96]. Whether, these HIV proteins increase ER stress independent of cell-free heme or they cause hemolysis and thereby induce heme-dependent ER stress need further investigation.

ER stress has been implicated in inflammatory pain [97] and diabetic peripheral neuropathic pain [98]. However, the mechanism by which ER stress modulates pain sensation is unknown. Our in vitro analysis showed that heme-induced ER stress attenuated the levels and release of β-endorphins from immune cells. The data also showed that people with HIV who self-report CWP with high ER stress have 4-fold lower plasma levels of β-endorphins compared to the healthy controls and 2-fold lower β-endorphins than HIV cohort without CWP. We also found that the leukocytes, which are an important source of opioids, have diminished capacity to produce β-endorphins in HIV-positive individuals with CWP. An earlier study compared plasma and brain β-endorphins in 48 HIV-positive and 19 healthy subjects and found that HIV-positive individuals had significantly low levels of β-endorphins compared to the controls and that the decrease was not correlated to the CD4+ T lymphocytes number [99]. Similarly, β-endorphins in our study did not correlate with CD4+ cells as all HIV-positive individuals had low viral load and high CD4+ cells. However, the low levels of β-endorphins were inversely proportional to cell-free heme and ER stress.

To determine, whether enhancing heme scavenging by hemopexin or heme metabolism by heme oxygenase-1 would increase β-endorphins and attenuate hypersensitivity, we generated an animal model of PHZ-induced hemolysis. Adult, male C57BL/6 mice challenged with the hemolytic agent, PHZ (50 mg/kg body weight), over two consecutive days had a significant increase in plasma concentration of cell-free heme. A molytic agent, PHZ (50 mg/kg body weight), over two consecutive days induced hemolysis. Adult, male C57BL/6 mice challenged with the hemolytic agent, PHZ (50 mg/kg body weight), over two consecutive days had a significant increase in plasma concentration of cell-free heme. The treatment of the PHZ challenged mice with hemopexin prevented the decline in β-endorphins and the induction of hyperalgesia.

In our heme oxygenase-1 KO (HO-1−/−) mice, the plasma and leukocyte levels of β-endorphins were significantly lower at baseline compared to the corresponding WT mice which correlated with low paw withdrawal threshold in these mice. At baseline, cell-free heme and ER stress was not elevated in HO-1−/− mice. However, β-endorphins were still lower suggesting that heme oxygenase-1 may directly influence endogenous opioid levels in cells independent of heme. The induction of heme oxygenase-1 enzyme has been historically associated with reduction in inflammatory pain [44,101,102]. Heme oxygenase-1 has been shown to induce endotelial and cell-free hyperalgesia with an increase in the expression of the µ-opioid receptors [103]. However, the exact mechanism by which heme oxygenase-1 reduces pain has not been elucidated till now. In our in vitro study, we found that attenuating heme oxygenase-1 by siRNA, reduced β-endorphins in immune cells. However, treating the cells with the carbon monoxide donor, CORM-A1, increased the levels of β-endorphins by more than 2 fold. It is to be noted that a minimum concentration of 1 mM of CORM-A1 was required to increase β-endorphins. Together, these results indicate that heme oxygenase-1
dependent carbon monoxide may reduce pain by upregulating β-endorphins and this could be related to the anti-inflammatory properties of carbon monoxide. Although, CORMs have earlier been reported to reduce pain in rats [104,105], this is the first study to report that they increase endogenous opioids.

Interestingly in our HIV cohorts, people with CWP had much lower levels of heme oxygenase-1 in leukocytes compared to people without pain. These individuals also had a small but significant reduction in levels of heme oxygenase-1 in leukocytes compared to people without pain. The physiological relevance of this reduction in carboxyhemoglobin may not be significant but taken together with low heme oxygenase-1 levels, it may be postulated that this cohort has diminished endogenous carbon monoxide production, which may influence the inflammatory status of these individuals and also reduce β-endorphins.

Our data also demonstrated that people with HIV with CWP had elevated plasma levels of total bilirubin. Although, it may be impossible to make a clear association, the data suggests that these individuals may have some degree of concurrent liver abnormalities like viral or drug-induced hepatitis, which is quite common in HIV and is not clinically evident in most cases. This may also explain, why this cohort had low levels of hemopexin (produced by liver), compared to their HIV positive counterparts without pain. The physiological relevance of this reduction in carboxyhemoglobin may not be significant but taken together with low heme oxygenase-1 levels, it may be postulated that this cohort has diminished endogenous carbon monoxide production, which may influence the inflammatory status of these individuals and also reduce β-endorphins.

Funding

Supported by CFAR pilot funding P30 AI027767-32 (SA), CCTS pilot funding UL1TR003096 (SA), NIH/NHLBI K12 HL143958 (SA), NIEHS SU01 ES026458 05 (SM), NIH/NIDDK K01 DK101681 05 (JD), and NIH/NIDDK RO3 DK119464 02 (JD), NIH/NIMHD R01010441 (BRG), and NIH/NHLBI R01 HL147603 (BRG).

Declaration of competing interest

The authors have declared that no conflict of interest exists.

Acknowledgments

The authors would like to thank Dr. Gang Liu and Dr. Sami Banerjee for providing J774A.1 cells, and Dr. Anupam Agarwal and Ms. Amie Traylor for providing HO-1−/− and WT mice in support of the study.

References

[1] P.J. Ellis, D. Rosario, D.B. Clifford, J.C. McArthur, D. Simpson, J.C. Alexander, B. B. Gelman, F. Vaida, A. Collier, C.M. Marra, et al., Continued high prevalence and adverse clinical impact of human immunodeficiency virus-associated sensory neuropathy in the era of combination antiretroviral therapy: the CHARITY Study, Arch. Neurol. 67 (5) (2010) 552–558.
[2] C. Miaskowski, J.M. Penko, D. Guzman, J.E. Mattson, D.R. Bangsberg, M. B. Kshelb, Occurrence and characteristics of chronic pain in a community-based cohort of indigent adults living with HIV infection, J. Pain : Off. J. Am. Pain Soc. 12 (9) (2011) 1004–1016.
[3] J.S. Merlin, A.O. Westfall, J.L. Raper, A. Zinski, W.E. Norton, J.H. Willig, R. Gross, C.S. Ritchie, M.S. Saag, M.J. Magavero, Pain, mood, and substance abuse in HIV: implications for clinic visit utilization, antiretroviral therapy adherence, and virologic failure, J. Acquir. Immune Defic. Syndr. 61 (2) (2012) 164–170.
[4] J.S. Merlin, L. Cen, A. Praestgaard, M. Turner, A. Obando, S. Woodston, D. Casaret, J. Kostman, R. Gross, et al., Pain and physical and psychological symptoms in ambulatory HIV patients in the current treatment era, J. Pain Symptom Manag. 43 (3) (2012) 638–645.
[5] S.A. Mousa, M. Shakhbaisi, N. Sitte, M. Schafer, C. Stein, Subcellular pathways of beta-endorphin synthesis, processing, and release from immune cells in inflammatory pain, Endocrinology 145 (3) (2004) 1331–1341.
[6] B. S. Linker, Linner, What do we know about the expression of proopiomelanocortin transcripts and related peptides in lymphoid tissue? Endocrinology 133 (5) (1993) 1921A–B.
[7] N.E. Sibinga, A. Goldstein, Opioid peptides and opioid receptors in cells of the immune system, Annu. Rev. Immunol. 6 (1988) 219–249.
[8] R. Przewlocki, A.H. Hassan, W. Lason, C. Epstein, A. Herz, C. Stein, Gene expression and localization of opioid peptides in immune cells of inflamed tissue: functional role in antinociception, Neuroscience 48 (2) (1992) 491–500.
[9] N.N. Scheff, A. Bhattacharya, E. Dowse, R.X. Dang, J.C. Dolan, S. Wang, H. Kim, D.G. Albertson, B.L. Schmidt, Neutrophil-mediated endogenous analgesia contributes to sex differences in oral cancer pain, Front. Integr. Neurosci. 12 (2018) 52.
[10] H. Awad, M. Abas, H. Elgharably, R. Tripathi, T. Theofilos, S. Bhandary, C. Sai-Sudhakar, C.K. Sen, S. Roy, Endogenous opioids in wound-site neutrophils of stentotomy patients, PloS One 7 (10) (2012), e47569.
[11] S.C. Madhha, J. Busch, F. Stein, B lymphocytes express pome mRNA, processing enzymes and beta-endorphin in painful inflammation, J. Neuroimmunol. Pharmacol. : Off. J. Soc. Neuro Immunol. Pharmacol. 12 (1) (2017) 180–186.
[12] D. Labuz, A. Schreiter, Y. Schmidt, A. Brack, H. Machelska, T Lymphocytes containing beta-endorphin ameliorate mechanical hypersensitivity following nerve injury, Brain Behav. Immun. 24 (7) (2010) 1045–1053.
[13] K. Kido, Y. Shindo, S. Toda, E. Masaki, Expression of beta-endorphin in peripheral tissues after systemic administration of lipopolysaccharide as a model of endotoxic shock in mice, Ann. Endocrinol. 80 (2) (2019) 117–121.
[14] P.J. Cabot, L. Carter, M. Schafer, C. Stein, Methionine-enkephalin-and Dynorphin A-release from immune cells and control of inflammatory pain, Pain 93 (3) (2001) 207–212.
[15] P.J. Cabot, L. Carter, C. Gaiddun, Q. Zhang, M. Schafer, J.P. Loeffler, C. Stein, Immune cell-derived beta-endorphin. Production, release, and control of inflammatory pain in rats, J. Clin. Investig. 100 (1) (1997) 142–148.
[16] H. Machelska, P.J. Cabot, S.A. Mousa, Q. Zhang, C. Stein, Pain control in inflammatory pain: involvement of innate immune cells, immune-like glial cells and cytokines, J. Neuroimmunol. 229 (1-2) (2010) 26-50.

[17] P.J. Austin, G.M. Vercellotti, Heme in neuropathic pain: involvement of innate immune cells, immune-like glial cells and cytokines, J. Neuroimmunol. 229 (1-2) (2010) 109-112.

[18] W. Binder, S.A. Mousa, N. Sitte, M. Kaiser, C. Stein, M. Schafer, Sympathetic activation triggers endogenous opioid release and analgesia within peripheral inflamed tissue, J. Neurosci. 20 (1) (2004) 92-100.

[19] S. Saleh, X. Li, X. Shi, J.D. Clark, Roles of Gr-1 leukocytes in postinflammatory nociception sensitization and inflammation, Anesthesiology 117 (3) (2012) 602-612.

[20] M.A. Bouhlel, B. Derudas, E. Rigamonti, R. Dievart, J. Brozek, S. Haulon, Chemokines and adhesion molecules in opioid analgesia, J. Neuroimmunol. 229 (1-2) (2012) 377-383.

[21] M. Athar, S.M. Rowe, M.T. Dransfield, et al., Heme scavenging reduces hypernociception in rats by a mechanism dependent on sGMP-ATP-sensitive K+ channels, Inflamm. Res. : Off. J. Eur. Histamine Res. Soc. et al. (2007) 57 (8) 407-422.

[22] S. Becker, G. Fusco, J. Rama, S. Gangjee, C. Reimann, J. Feinberg, Collaborations in HIVsor, HIV-associated thrombotic microangiopathy in the era of highly active antiretroviral therapy: an observational study, Clin. Infect. Dis. : Off. Publ. Infect. Dis. Soc. Am. 39 (Suppl 5) (2004) S267-S275.

[23] S. Louw, R. Gouden, E.S. Mayne, Thrombotic thrombocytopenic purpura (TTP)-like syndrome in the HIV era, Thromb. J. 16 (2018) 35.

[24] P.A. Burke Jr., D. Aljardi, T. Raman, Diagnosis, management, and pathogenesis of TTP/HUS in an HIV positive patient, Del. Med. J. 82 (9) (2010) 309-312.

[25] J. East, L.S. Blanton, Symptomatologic hyperbilirubinemia secondary to dapsone-induced hemolysis and azathioprine therapy, Antimicrob. Agents Chemother. 56 (3) (2012) 1081-1083.

[26] C.R. Camara-Lemarroy, H. Flores-Cantu, M.A. Diaz-Torres, H.J. Villareal-Velazquez, Drug-induced isoenzymes, malaria, thalassemia and thalassemia intermedia induced proinflammatory phenotypic switching of macrophages in a mouse model of L5 spinal nerve ligation, Pain Med. 17 (2) (2016) 220-229.

[27] H.V. Chavez, D.R. do Val, K.A. Ribiero, J.C. Lemos, R.B. Souza, J.F. Gomes, R.M. da Cunha, V. de Paulo Teixeira Pinto, G.C. Filho, M. de Souza, et al., Heme oxygenase-1/biliverdin/carbon monoxide pathway downregulates hypernociception in rats by a mechanism dependent on sGMP-ATP-sensitive K+ channels, Inflamm. Res. : Off. J. Eur. Histamine Res. Soc. et al. (2018) 67 (5) 400-407.

[28] S. Ghosh, O.A. Adisa, Y. Hu, S. Ghosh, D.A. Ayre, I. Osunkwo, S.F. Ofori-Aquah, Association between plasma free hemoglobin and incidence of vaso-occlusive episodes and acute chest syndrome in children with sickle cell disease, Br. J. Haematol. 162 (5) (2013) 702-705.

[29] S. Ghosh, O.A. Adisa, P. Chappa, F. Tan, K.A. Jackson, D.R. Archer, S.F. Ofori-Aquah, Extracellular hemin crisis triggers acute chest syndrome in sickle mice, Br. J. Haematol. 123 (1) (2004) 45-49.

[30] X. Liu, Z. Zhang, Z. Cheng, J. Zhang, S. Xu, H. Liu, H. Jia, Y. Jiu, Spinal heme oxygenase-1 (HO-1) exerts antiinflammatory effects against neuropathic pain in a mouse model of L5 spinal nerve ligation, Pain Med. 17 (2016) 220-229.

[31] H.V. Chavez, S. Bernardino, K.A. Ribiero, J.C. Lemos, R.B. Souza, J.F. Gomes, R.M. da Cunha, V. de Paulo Teixeira Pinto, G.C. Filho, M. de Souza, et al., Heme oxygenase-1/biliverdin/carbon monoxide pathway downregulates hypernociception in rats by a mechanism dependent on sGMP-ATP-sensitive K+ channels, Inflamm. Res. : Off. J. Eur. Histamine Res. Soc. et al. (2018) 67 (5) 400-407.

[32] J.A. Serpa, E. Villarreal-Williams, T.P. Giordano, Prevalence of G6PD deficiency in a large cohort of HIV-infected patients, J. Infect. 61 (5) (2010) 399-407.

[33] J.E. Groopman, L.M. Itri, Chemotherapy-induced anemia in adults: incidence and management, Blood 127 (4) (2016) 473-498.

[34] S. Matalon, Heme attenuation ameliorates irritant gas inhalation-induced acute lung injury, Antioxidants Redox Signal. 24 (2) (2016) 99-112.

[35] S. Rodriguez-Novoa, J. Morello, M. Gonzalez, E. Vispo, P. Barreiro, G. Gonzalez-Pardo, I. Jimenez-Nacher, J. Gonzalez-Lahoz, V. Soriano, Increase in bilirubin in HIV/hepatic patients is associated with atazanavir therapy following initiation of pegylated-interferon and ribavirin, AIDS 22 (18) (2008) 2535-2537.

[36] J.A. Serpa, E. Villarreal-Williams, T.P. Giordano, Prevalence of G6PD deficiency in a large cohort of HIV-infected patients, J. Infect. 61 (5) (2010) 399-407.

[37] J.A. Serpa, E. Villarreal-Williams, T.P. Giordano, Prevalence of G6PD deficiency in a large cohort of HIV-infected patients, J. Infect. 61 (5) (2010) 399-407.

[38] J.E. Groopman, L.M. Itri, Chemotherapy-induced anemia in adults: incidence and management, Blood 127 (4) (2016) 473-498.

[39] S. Rodriguez-Novoa, J. Morello, M. Gonzalez, E. Vispo, P. Barreiro, G. Gonzalez-Pardo, I. Jimenez-Nacher, J. Gonzalez-Lahoz, V. Soriano, Increase in bilirubin in HIV/hepatic patients is associated with atazanavir therapy following initiation of pegylated-interferon and ribavirin, AIDS 22 (18) (2008) 2535-2537.

[40] J.A. Serpa, E. Villarreal-Williams, T.P. Giordano, Prevalence of G6PD deficiency in a large cohort of HIV-infected patients, J. Infect. 61 (5) (2010) 399-407.

[41] O.A. Adisa, Y. Hu, S. Ghosh, D.A. Ayre, I. Osunkwo, S.F. Ofori-Aquah, Association between plasma free hemoglobin and incidence of vaso-occlusive episodes and acute chest syndrome in children with sickle cell disease, Br. J. Haematol. 162 (5) (2013) 702-705.

[42] S. Ghosh, O.A. Adisa, P. Chappa, F. Tan, K.A. Jackson, D.R. Archer, S.F. Ofori-Aquah, Extracellular hemin crisis triggers acute chest syndrome in sickle mice, Br. J. Haematol. 123 (1) (2004) 45-49.

[43] X. Liu, Z. Zhang, Z. Cheng, J. Zhang, S. Xu, H. Liu, H. Jia, Y. Jiu, Spinal heme oxygenase-1 (HO-1) exerts antiinflammatory effects against neuropathic pain in a mouse model of L5 spinal nerve ligation, Pain Med. 17 (2) (2016) 220-229.

[44] S. Rodriguez-Novoa, J. Morello, M. Gonzalez, E. Vispo, P. Barreiro, G. Gonzalez-Pardo, I. Jimenez-Nacher, J. Gonzalez-Lahoz, V. Soriano, Increase in bilirubin in HIV/hepatic patients is associated with atazanavir therapy following initiation of pegylated-interferon and ribavirin, AIDS 22 (18) (2008) 2535-2537.

[45] J.A. Serpa, E. Villarreal-Williams, T.P. Giordano, Prevalence of G6PD deficiency in a large cohort of HIV-infected patients, J. Infect. 61 (5) (2010) 399-407.
E.A. Ayaub, P.S. Kolb, Z. Mohammed-Ali, V. Tat, J. Murphy, P.S. Bellaye, J. Flemmig, D. Schlorke, F.W. Kuhne, J. Arnhold, Inhibition of the heme-induced hemolysis of red blood cells by the chlorite-based drug WF10, Free Radic. Res. 50 (12) (2016) 1386–1395.

J. Balla, G.M. Vercellotti, V. Jeney, A. Yachie, Z. Varga, H.S. Jacob, J.W. Eaton, G. Balla, Heme, hem oxygenase, and ferritin: how the vascular endothelium survives (and dies) in an iron-rich environment, Antioxidants Redox Signal. 11 (9) (2009) 2307–2316.

A. Shah, N.K. Vaidya, H.K. Ihat, A. Kumar, HIV-1 gp120 induces type-1 programmed cell death through ER stress employing IRE1alpha, JNK and AP-1 pathway, Sci. Rep. 6 (2016) 18929.

E.S. Yang, J.J. He, HIV-1 tat induces unfolded protein response and endoplasmic reticulum stress in astrocytes and causes neurotoxicity through glial fibrillary acidic protein (GFAP) activation and aggregation, J. Biol. Chem. 291 (43) (2016) 28198–28209.

K.R. Lin, H.F. Yang-Yen, H.W. Lien, W.H. Liao, C.J. Huang, L.I. Lin, C.L. Li, J. J. Yen, Murine tritubulin homolog 2 deficiency affects erythroid progenitor development and confers macrocytic anemia on mice, Sci. Rep. 6 (2016) 31444.

A. Tutukluai, Q.A. Nazary, D. Lebhr, S. Kerdine-Romer, F. Coudere, Induction of brain Nrf2-HO-1 pathway and antinociception after different physical training paradigms in mice, Sci. Rep. 209 (2018) 149–156.

A. Redondo, P.A.F. Chamorro, G. Riego, S. Leanez, O. Pol, Treatment with sulforaphane prevents neuroinflammation and improves morphine effects during inflammatory pain in mice, J. Pharmacol. Exp. Therapeut. 363 (3) (2017) 293–302.

A. Hervers, S. Leanez, R. Motterlini, O. Pol, Treatment with carbon monoxide-releasing molecules and an HO-1 inducer enhances the effects and expression of micro-opioid receptors during neuropathic pain, Anesthesiology 118 (5) (2013) 1180–1197.

A.M. Jurga, A. Piotrowska, J. Starnowska, E. Rojewska, W. Makut, J. Mika, Treatment with a carbon monoxide-releasing molecule (CORM-2) inhibits neuropathic pain and enhances opioid effectiveness in rats, Pharmacol. Rep. : PR 68 (1) (2016) 206–213.

P.C. Joshi, R. Raynor, X. Fan, D.M. Guidot, HIV-1 transgene expression in rats decreases alveolar macrophage zinc levels and phagocytosis, Am. J. Respir. Cell Mol. Biol. 39 (2) (2008) 218–226.

M. Hasegawa-Moriyama, T. Kurimoto, M. Nakama, K. Godai, M. Kojima, T. Kawai, Y. Yamada, Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone attenuates inflammatory pain through the induction of heme oxygenase-1 in macrophages, Pain 154 (8) (2013) 1402–1412.