The density of visible points in the Ammann-Beenker point set

Gustav Hammarhjelm

April 11, 2021

Abstract

The relative density of visible points of the integer lattice \(\mathbb{Z}^d \) is known to be \(1/\zeta(d) \) for \(d \geq 2 \), where \(\zeta \) is Riemann’s zeta function. In this paper we prove that the relative density of visible points in the Ammann-Beenker point set is given by \(2(\sqrt{2} - 1)/\zeta_K(2) \), where \(\zeta_K \) is Dedekind’s zeta function over \(K = \mathbb{Q}(\sqrt{2}) \).

1 Introduction

A locally finite point set \(\mathcal{P} \subset \mathbb{R}^d \) has an asymptotic density (or simply density) \(\theta(\mathcal{P}) \) if

\[
\lim_{R \to \infty} \frac{\#(\mathcal{P} \cap RD)}{\text{vol}(RD)} = \theta(\mathcal{P})
\]

holds for all Jordan measurable \(D \subset \mathbb{R}^d \). The density of a set can be interpreted as the asymptotic number of elements per unit volume. For instance, for a lattice \(\mathcal{L} \subset \mathbb{R}^d \) we have \(\theta(\mathcal{L}) = \frac{1}{\text{vol}(\mathbb{R}^d/\mathcal{L})} \). Let \(\hat{\mathcal{P}} = \{ x \in \mathcal{P} \mid tx \notin \mathcal{P}, \forall t \in (0,1) \} \) denote the subset of the visible points of \(\mathcal{P} \). If \(\mathcal{P} \) is a regular cut-and-project set (see Definition 3.1 below) then it is known that \(\theta(\hat{\mathcal{P}}) \) exists. In [5, Theorem 1], J. Marklof and A. Strömbergsson proved that \(\theta(\hat{\mathcal{P}}) \) also exists and that \(0 < \theta(\hat{\mathcal{P}}) \leq \theta(\mathcal{P}) \) if \(\theta(\mathcal{P}) > 0 \). In particular, for such \(\mathcal{P} \) the relative density of visible points \(\kappa_P := \frac{\theta(\hat{\mathcal{P}})}{\theta(\mathcal{P})} \) exists, but is not known explicitly in most cases.

For \(d \geq 2 \) we have \(\hat{\mathcal{Z}}^d = \{ (n_1, \ldots, n_d) \in \mathbb{Z}^d \mid \gcd(n_1, \ldots, n_d) = 1 \} \) and \(\theta(\hat{\mathcal{Z}}^d) = 1/\zeta(d) \) gives the probability that \(d \) random integers share no common factor. This can be derived in several ways, see for instance [6]; we sketch another proof in Section 2 below. More generally, \(\theta(\hat{\mathcal{L}}) = \frac{1}{\text{vol}(\mathbb{R}^d/\mathcal{L})} \) for a lattice \(\mathcal{L} \subset \mathbb{R}^d \), see e.g. [3 Prop. 6].

A well-known point set, which can be realised both as the vertices of a substitution tiling and as a cut-and-project set, is the Ammann-Beenker point set. The goal of this paper is to prove that the relative density of visible points in the Ammann-Beenker point set is \(2(\sqrt{2} - 1)/\zeta_K(2) \). This density was computed by B. Sing in the presentation [7], but he has not published a proof of this result.

2 The density of the visible points of \(\mathbb{Z}^d \)

In this section we show that \(\theta(\hat{\mathcal{Z}}^d) = 1/\zeta(d) \). We shall see that a lot of inspiration can be drawn from this example when calculating the density of the visible points in the Ammann-Beenker point set.
Fix \(R > 0 \), a Jordan measurable \(D \subset \mathbb{R}^d \) and let \(\mathbb{P} \subset \mathbb{Z} > 0 \) denote the set of prime numbers. For each invisible point \(n \in \mathbb{Z}^d \setminus \hat{\mathbb{Z}}^d \), there is \(p \in \mathbb{P} \) such that \(\frac{n}{p} \in \mathbb{Z}^d \). Setting \(\mathbb{Z}^d_\ast = \mathbb{Z}^d \setminus \{(0, \ldots, 0)\} \) there are only finitely many \(p_1, \ldots, p_n \in \mathbb{P} \) such that \(p_i \mathbb{Z}^d_\ast \cap RD \neq \emptyset \).

By inclusion-exclusion counting we have

\[
\#(\hat{\mathbb{Z}}^d \cap RD) = \# \left((\mathbb{Z}^d_\ast \cap RD) \setminus \bigcup_{p \in \mathbb{P}} (p \mathbb{Z}^d_\ast \cap RD)\right) = \# \left((\mathbb{Z}^d_\ast \cap RD) \setminus \bigcup_{i=1}^{n} (p_i \mathbb{Z}^d_\ast \cap RD)\right) \\
= \#(\mathbb{Z}^d_\ast \cap RD) + \sum_{k=1}^{m} (-1)^k \left(\sum_{1 \leq i_1 < \ldots < i_k \leq m} \#(p_{i_1} \mathbb{Z}^d_\ast \cap \ldots \cap p_{i_k} \mathbb{Z}^d_\ast \cap RD)\right).
\]

The last sum can be rewritten to

\[
\sum_{n \in \mathbb{Z} > 0} \mu(n) \cdot \#(n \mathbb{Z}^d_\ast \cap RD),
\]

where \(\mu \) is the Möbius function. Hence

\[
\frac{\#(\hat{\mathbb{Z}}^d \cap RD)}{\text{vol}(RD)} = \sum_{n \in \mathbb{Z} > 0} \frac{\mu(n) \cdot \#(n \mathbb{Z}^d_\ast \cap RD)}{\text{vol}(RD)} = \sum_{n \in \mathbb{Z} > 0} \frac{\mu(n) \#(\mathbb{Z}^d_\ast \cap n^{-1}RD)}{n^d \text{vol}(n^{-1}RD)}.
\]

Letting \(R \to \infty \), switching order of limit and summation (for instance justified by finding a constant \(C \) depending on \(D \) such that \(\#(\mathbb{Z}^d_\ast \cap RD) \leq C \text{vol}(RD) \) for all \(R \)), using \(\theta(\mathbb{Z}^d_\ast) = 1 \) and \(1/\zeta(s) = \sum_{n \in \mathbb{Z} > 0} \frac{\mu(n)}{n^s} \) for \(s > 1 \), we find that

\[
\theta(\hat{\mathbb{Z}}^d) = \lim_{R \to \infty} \frac{\#(\hat{\mathbb{Z}}^d \cap RD)}{\text{vol}(RD)} = 1/\zeta(d).
\]

3 Cut-and-project sets and the Ammann-Beenker point set

The Ammann-Beenker point set can be obtained as the vertices of the Ammann-Beenker tiling, a substitution tiling of the plane using a square and a rhombus as tiles, see e.g. [2, Chapter 6.1]. In this paper however, the Ammann-Beenker set is realised as a cut-and-project set, a certain type of point set which we will now define. Cut-and-project sets are sometimes called (Euclidean) model sets. We will use the same notation and terminology for cut-and-project sets as in [4, Sec. 1.2]. For an introduction to cut-and-project sets, see e.g. [2, Ch. 7.2].

If \(\mathbb{R}^n = \mathbb{R}^d \times \mathbb{R}^m \), let

\[
\pi : \mathbb{R}^n \to \mathbb{R}^d \\
(x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_d)
\]

\[
\pi_{\text{int}} : \mathbb{R}^n \to \mathbb{R}^m \\
(x_1, \ldots, x_n) \mapsto (x_{d+1}, \ldots, x_n)
\]

denote the natural projections.

Definition 3.1. Let \(\mathcal{L} \subset \mathbb{R}^n \) be a lattice and \(\mathcal{W} \subset \overline{\pi_{\text{int}}(\mathcal{L})} \) be a set. Then the cut-and-project set of \(\mathcal{L} \) and \(\mathcal{W} \) is given by \(\mathcal{P}(\mathcal{W}, \mathcal{L}) = \{ \pi(y) \mid y \in \mathcal{L}, \pi_{\text{int}}(y) \in \mathcal{W} \} \).
If \(\partial W \) has measure zero with respect to any Haar measure on \(\pi_{\text{int}}(\mathcal{L}) \) we say that \(\mathcal{P}(\mathcal{W}, \mathcal{L}) \) is regular. If the interior of \(\mathcal{W} \) (the window) is non-empty, \(\mathcal{P}(\mathcal{W}, \mathcal{L}) \) is relatively dense and if \(\mathcal{W} \) is bounded, \(\mathcal{P}(\mathcal{W}, \mathcal{L}) \) is uniformly discrete (cf. [3, Prop. 3.1]). To realise the Ammann-Beenker point set in this way, let \(K \) be the number field \(\mathbb{Q}(\sqrt{2}) \), with algebraic conjugation \(x \mapsto \bar{x} \) (we will also write \(\bar{x} = (x_1, \ldots, x_n) \) for \(x = (x_1, \ldots, x_n) \in K^n \)) and norm \(N(x) = xx^* \). The ring of integers \(\mathcal{O}_K = \mathbb{Z}[\sqrt{2}] \) of \(K \) is a Euclidean domain with fundamental unit \(\lambda := 1 + \sqrt{2} \). With \(\zeta := e^{\pi i/4} \) and \(\ast : K \to K, x \mapsto x^* \) the automorphism generated by \(\zeta \mapsto \zeta^3 \), the Ammann-Beenker point set is in [2, Example 7.7] realised as

\[
\{ x = x_1 + x_2 \zeta \mid x_1, x_2 \in \mathcal{O}_K, x^* \in W_8 \},
\]

where \(W_8 \subset \mathbb{C} \) is the regular octagon of side length 1 centered at the origin, with sides perpendicular to the coordinate axes.

Let

\[
\mathcal{L} = \{ (x, \bar{x}) \mid x = (x_1, x_2) \in \mathcal{O}_K^2 \} \subset \mathbb{R}^4
\]

be the Minkowski embedding of \(\mathcal{O}_K^2 \) and let

\[
\tilde{\mathcal{L}} = \{ (x, \bar{x}) \in \mathcal{L} \mid (x_1 - x_2)/\sqrt{2} \in \mathcal{O}_K \}.
\]

Then, after a straight-forward translation it is seen that the Ammann-Beenker point set \(\mathcal{A} \) can be realised in \(\mathbb{R}^2 \) as \(\mathcal{A} = \frac{1}{\sqrt{2}} \mathcal{P}(\mathcal{W}_A, \tilde{\mathcal{L}}) \), where \(\mathcal{W}_A := \sqrt{2}W_8 \), i.e. \(\mathcal{A} \) is the scaling of a cut-and-project set according to [Definition 3.1]

4 The density of visible points of \(\mathcal{A} \)

All notation used in this section is defined in and taken from [Section 3]. Since, for any \(\mathcal{P} \subset \mathbb{R}^d \) whose density exists, and any \(c > 0 \) it holds that \(\theta(c\mathcal{P}) = c^{-d}\theta(\mathcal{P}) \) and \(c\mathcal{P} = \mathcal{P} \), finding \(\theta(\mathcal{A}) \) with \(\mathcal{A}' := \sqrt{2}\mathcal{A} = \mathcal{P}(\mathcal{W}_A, \tilde{\mathcal{L}}) \) will give the value of \(\theta(\mathcal{A}) \). As a first step, in [Section 4.1] the asymptotic density of the visible points of the simpler set \(\mathcal{B} = \mathcal{P}(\mathcal{W}_A, \mathcal{L}) = \{ x \in \mathcal{O}_K^2 \mid \bar{x} \in \mathcal{W}_A \} \subset \mathcal{O}_K^2 \) will be calculated. In [Section 4.2] this result will be used to obtain \(\theta(\mathcal{A}) \).

4.1 The density of visible points of \(\mathcal{B} \)

The following general counting formula for bounded subsets of visible points of a point set \(\mathcal{P} \) will be needed. Let \(\mathcal{P}_* := \mathcal{P} \setminus \{(0, \ldots , 0)\} \).

Proposition 4.1. Let \(\mathcal{P} \subset \mathbb{R}^d \) be locally finite and fix a set \(C \subset \mathbb{R}_{>1} \) such that for each \(x \in \mathcal{P} \setminus \mathcal{P} \) there exists \(c \in C \) with \(x/c \in \mathcal{P} \). Let \(R > 0 \) and a bounded set \(D \subset \mathbb{R}^d \) be given. Then

\[
\#(\mathcal{P} \cap RD) = \sum_{F \subset C} (-1)^F \#(\left(\mathcal{P} \cap \bigcap_{c \in F} c\mathcal{P}_* \right) \cap RD).
\]

Proof. The set \(C_R := \{ c \in C \mid \mathcal{P}_* \cap c\mathcal{P}_* \cap RD \neq \emptyset \} \) is finite. Indeed, suppose this is not true and pick distinct \(c_1, c_2, \ldots \in C_R \) and corresponding \(x_i \in \mathcal{P}_* \cap c_i\mathcal{P}_* \cap RD \). Since \(\mathcal{P} \) is locally finite, the sequence \(x_1, x_2, \ldots \) contains only finitely many distinct elements. Thus, a subsequence \(x_{k_1}, x_{k_2}, \ldots \) which is constant can be extracted, so that \(x_{k_i}/c_{k_i} \in \mathbb{R}^d \).
\(\mathcal{P}_x \cap \overline{\mathcal{RD}} \subset \mathcal{P}_x \cap \mathcal{RD} \) are all distinct, contradiction to \(\mathcal{P} \) being locally finite. Thus, we can write \(C_R = \{ c_1, \ldots, c_n \} \) for some \(c_1, \ldots, c_n \in C \). Then

\[
\#(\mathcal{P} \cap \mathcal{RD}) = \# \left((\mathcal{P}_x \cap \mathcal{RD}) \setminus \bigcup_{c \in C} (\mathcal{P}_x \cap c\mathcal{P}_x \cap \mathcal{RD}) \right)
\]

\[
= \#(\mathcal{P}_x \cap \mathcal{RD}) - \# \left(\bigcup_{i=1}^{n} (\mathcal{P}_x \cap c_i\mathcal{P}_x \cap \mathcal{RD}) \right),
\]

from which the result follows from the inclusion-exclusion counting formula for finite unions of finite sets.

A set \(C \) as in Proposition 4.1 for \(\mathcal{B} \) will be needed, and to this end a visibility condition for the elements of \(\mathcal{B} \) is required. Given \(x_1, x_2 \in \mathcal{O}_K \), let \(\gcd(x_1, x_2) \) be a fixed generator of the ideal generated by \(x_1, x_2 \) and write \(\gcd(x_1, x_2) = 1 \) when \(x_1, x_2 \) are relatively prime. In the following proposition a visibility condition of the complex realisation of the Ammann-Beenker point set given in [1, p. 477] is adapted to our situation.

Proposition 4.2. The visible points of \(\mathcal{B} \) are given by

\[
\hat{\mathcal{B}} = \{ x = (x_1, x_2) \in \mathcal{B} \mid \gcd(x_1, x_2) = 1, \lambda\mathcal{P} \notin \mathcal{W}_A \}.
\]

Proof. First the necessity of the visibility conditions is established. Take \(x = (x_1, x_2) \) and suppose that \(\gcd(x_1, x_2) \neq 1 \) so that there exists \(c \in \mathcal{O}_K \) with \(|N(c)| > 1 \) and \(c \mid x_1, x_2 \). Scaling \(c \) by units we may assume that \(1 < c < \lambda \). Suppose first that \(|N(c)| = |\mathcal{P}|c \geq 3 \), which implies \(|c| > 1 \). By noting that \(\mathcal{W}_A \) is star-shaped with respect to the origin and \(\mathcal{W}_A = -\mathcal{W}_A \) it follows that \(x/c \in \mathcal{B} \), so \(x \) is invisible. If \(|N(c)| = 2 \), then each prime factor of \(c \) must divide \(2 = \sqrt{2} \cdot \sqrt{2} \), so it can be assumed that \(c = \sqrt{2} \) and hence \(x \) is occluded by \(x/\sqrt{2} \). If \(\lambda\mathcal{P} \in \mathcal{W}_A \) it follows immediately that \(x/\lambda \in \mathcal{B} \).

We now turn to the sufficiency of the visibility conditions. Take \(x = (x_1, x_2) \in \mathcal{B} \setminus \hat{\mathcal{B}} \) and \(c > 1 \) such that \(x/c \in \mathcal{B} \). As \(\mathcal{B} \) is uniformly discrete, we may assume that \(y := x/c \in \hat{\mathcal{B}} \). This implies, by necessity above, that \(\gcd(y_1, y_2) = 1 \). Now, since \(x_i = cy_i \) it follows that \(c \in \mathcal{K} \). Write \(c = a/b \) with \(a, b \in \mathcal{O}_K \) relatively prime. If \(b \) is not a unit, \(\gcd(y_1, y_2) = 1 \) is contradicted, hence \(c \in \mathcal{O}_K \).

If \(|N(c)| \neq 1 \) then \(\gcd(x_1, x_2) \neq 1 \). Otherwise, \(c > 1 \) is a unit, i.e. \(c = \lambda^k \) for some integer \(k > 0 \). Thus \(\frac{\mathcal{P}}{\lambda} = \frac{\mathcal{P}}{\lambda} \in \mathcal{W}_A \). Since \(\frac{1}{\lambda} = -\lambda \) we get \((-\lambda)^k \mathcal{P} \in \mathcal{W}_A \) and thus also \(\lambda\mathcal{P} \in \mathcal{W}_A \). This establishes sufficiency of the visibility conditions.

Remark. Note that the proof works just as well for more general windows, that is, \(\mathcal{P}(\mathcal{W}, \mathcal{L}) = \{ x \in \mathcal{P}(\mathcal{W}, \mathcal{L}) \mid \gcd(x_1, x_2) = 1, \lambda\mathcal{P} \notin \mathcal{W} \} \) if \(\mathcal{W} \subset \mathbb{R}^2 \) is bounded with non-empty interior, star-shaped with respect to the origin and \(-\mathcal{W} = \mathcal{W} \).

Let now \(\mathbb{P} = \{ \pi \in \mathcal{O}_K \mid \pi \text{ prime}, 1 < \pi < \lambda \} \) and \(C = \mathbb{P} \cup \{ \lambda \} \) so that \(\mathbb{P} \) is a set that contains precisely one associate of every prime of \(\mathcal{O}_K \). Then we have the following proposition.

Proposition 4.3. For each \(x \in \mathcal{B} \setminus \hat{\mathcal{B}} \) there is \(c \in C \) such that \(x/c \in \mathcal{B} \).
Proof. Fix \(x \in B \setminus \hat{B} \). As seen in the proof of Proposition 4.2 there is \(c \in \mathcal{O}_K, c > 1 \), such that \(x/c \in B \). If \(c \) is not a unit, fix \(\pi \in \mathbb{P} \) so that \(\pi \mid c \). It can be verified by hand that \(\{ (x, \pi) \mid x \in \mathcal{O}_K \} \cap ((1, \lambda) \times (-1, 1)) = \emptyset \), hence \(|\pi| > 1 \) and \(x/\pi \in B \). If \(c \) is a unit, \(x/\lambda \in B \) is immediate. \(\square \)

Given a finite set \(F \subset \mathcal{O}_K \) let \(I_F \) be the (principal) ideal generated by the elements of \(F \) if \(F \neq \emptyset \) and \(I_F = \mathcal{O}_K \) otherwise. Let \(\ell_F \) denote a fixed least common multiple of \(F \), that is, a generator of the ideal \(\cap_{c \in F} c\mathcal{O}_K \). Let also \(m_F = \min\{1, \min_{c \in F} |c|\} \) and \(\mathcal{L}_F = \{(\ell_F x, \ell_F \overline{x}) \mid x \in \mathcal{O}_K^2\} \). Write \(I \triangleleft \mathcal{O}_K \) when \(I \subset \mathcal{O}_K \) is an ideal and define the absolute norm \(N(I) \) of \(I \) by \(|N(x)| \), where \(x \) is any generator of \(I \). Recall Dedekind’s zeta function \(\zeta_K(s) = \sum_{I \triangleleft \mathcal{O}_K} \frac{1}{N(I)^s} \) for \(s \in \mathbb{C} \) with Re\((s) > 1 \).

Given a finite set \(F \subset C \) it is verified that \(B_s \cap \bigcap_{c \in F} cB_s = \{ (m_F \mathcal{W}_A, \mathcal{L}_F) \setminus \{0\} \}. \) For any \(R > 0 \) and bounded \(D \subset \mathbb{R}^2 \), Propositions 4.1, 4.3 imply that

\[
\#(B \cap \mathcal{B}) = \sum_{F \subset C} (-1)^{#F} \#(\{ (m_F \mathcal{W}_A, \mathcal{L}_F) \setminus \{0\} \} \cap RD).
\]

(1)

Since \(\ell_F \mathcal{O}_K^2 \subset \pi_{\text{im}}(\mathcal{L}_F) \subset \mathbb{R}^2 \) is dense we have

\[
\theta(\mathcal{P}(m_F \mathcal{W}_A, \mathcal{L}_F) \setminus \{0\}) = \frac{\text{vol}(m_F \mathcal{W}_A)}{\text{vol}(\mathcal{L}_F)}
\]

from [4 Prop. 3.2]. Dividing (1) by \(\text{vol}(RD) \), letting \(R \to \infty \) and switching order of limit and summation (to be justified in Proposition 4.6 below) we find that

\[
\theta(\hat{B}) = \sum_{F \subset C} (-1)^{#F} \frac{\text{vol}(m_F \mathcal{W}_A)}{\text{vol}(\mathcal{L}_F)} = \sum_{F \subset C} (-1)^{#F} m_F^2 (1 + \sqrt{2}) \frac{N(\ell_F)^2}{2N(\ell_F)^2},
\]

since \(\text{vol}(\mathcal{W}_A) = 4(1 + \sqrt{2}) \) and \(\text{vol}(\mathcal{L}_F) = 8N(\ell_F)^2 \). The value of the right hand sum will be shown to be \(1/\zeta_K(2) \) in Theorem 4.7 below. The following lemma gives a bound on the number of points in the intersection of a lattice and a box in terms of the volume of the box, provided that the box is "not too thin".

Lemma 4.4. Let \(\mathcal{L} \subset \mathbb{R}^d \) be a lattice and let \(c > 0 \) be given. For any \(a_i, b_i \in \mathbb{R} \) with \(b_i - a_i > a \) set \(B = \prod_{i=1}^d [a_i, b_i] \). Then there is a constant \(L \) depending only on \(\mathcal{L} \) and \(c \) such that \(\#(B \cap \mathcal{L}) \leq L \text{vol}(B) \).

Proof. Let \(n_i = \lceil \frac{b_i - a_i}{c} \rceil \in \mathbb{Z}_+ \). Then \(\frac{b_i - a_i}{c} \leq n_i < \frac{b_i - a_i}{c} + 1 = \frac{b_i - a_i}{c} + \frac{c}{c} < 2\frac{b_i - a_i}{c} \). Hence, with \(n = \prod_{i=1}^d n_i \) it follows that \(n \leq 2^d \text{vol}(B) \) \(c \). From \(b_i \leq a_i + cn_i \) also \(B \subset \prod_{i=1}^d [a_i, a_i + cn_i] \). Let \(a = (a_1, \ldots, a_d) \) and consider \(-a + \prod_{i=1}^d [a_i, a_i + cn_i] = \prod_{i=1}^d [0, cn_i] \). We have \(\prod_{i=1}^d [0, cn_i] = \bigcup_{m \in \mathbb{N}^d, 0 \leq m < n} (mc + [0, c]^d) =: B' \). Find now \(D > 0 \) depending on \(\mathcal{L} \) and \(c \) such that \(\text{sup}_{x \in \mathbb{R}^d} \#(\mathcal{L} \cap (t + [0, c]^d)) = D \). Hence \(\#(B \cap \mathcal{L}) \leq \#(B' \cap \mathcal{L}) \leq nD \leq \frac{2^d \text{vol}(B)}{c} \), so one can take \(L = \frac{2^d \text{vol}(B)}{c} \).

The following bound will be crucial in the justification of interchanging limit and summation in (1) after division by \(\text{vol}(RD) \).

Lemma 4.5. Let \(D \subset \mathbb{R}^2 \) be Jordan measurable. Then there is a constant \(\tilde{L} > 0 \) depending only on \(D \) such that for every \(R > 0 \) and \(F \subset C \) with \(\#F < \infty \),

\[
\#((\mathcal{P}(m_F \mathcal{W}_A, \mathcal{L}_F) \cap RD) \setminus \{0\}) \leq \frac{\tilde{L} R^2}{N(\ell_F)^2}.
\]
Proof. By definition

\[\#((P(m_F W_A, \mathcal{L}_F) \setminus \{0\}) \cap RD) = \#((x \in \ell_F \mathcal{O}_K^2 \mid x \in m_F W_A \setminus \{0\}) \cap RD). \]

Note that this number is independent of the choice of \(\ell_F \). There is a bijection

\[\left(\{x \in \ell_F \mathcal{O}_K^2 \mid x \in m_F W_A \setminus \{0\}\} \cap RD\right) \rightarrow \left(\{x \in \ell_F \mathcal{O}_K^2 \mid x \in m_F W_A \setminus \{0\}\} \cap RD\right) \]

given by \(x \mapsto \frac{x}{\ell_F} \), so it suffices to estimate the number of elements in the latter set. Since \(m_F \leq 1 \) it follows that \(\left(\mathcal{L} \cap \left(R \mathcal{D} \times \frac{m_F W_A}{\ell_F}\right)\right) \setminus \{0\} \subset \left(\mathcal{L} \cap \left(R \mathcal{D} \times \frac{W_A}{\ell_F}\right)\right) \setminus \{0\} \). Fix real numbers \(m_1, m_2 > 1 \) so that \(D \subset [-m_1, m_1]^2 =: B_1 \) and \(W_A \subset [-m_2, m_2]^2 =: B_2 \).

Fix a number \(c \) so that \(c' < c \) implies \((\mathcal{L} \cap (\lambda D \times c'W_A)) \setminus \{0\} = \emptyset \). This can be done, for otherwise \((\mathcal{L} \cap (\lambda D \times c'W_A)) \setminus \{0\} \) would be non-empty for each \(c' > 0 \), hence \(\mathcal{L} \cap (\lambda D \times W_A) \) would contain infinitely many points, contradiction, since \(\mathcal{L} \) is a lattice and \(\lambda D \times W_A \) is bounded.

Suppose first that \(\frac{1}{\sqrt{\ell_F}} < c \). Scale \(\ell_F \) by units so that \(1 \leq \frac{R}{\ell_F} < \lambda \) which gives \(\frac{1}{\sqrt{\ell_F}} < c \). Hence \(\left(\mathcal{L} \cap \left(R \mathcal{D} \times \frac{W_A}{\ell_F}\right)\right) \setminus \{0\} \subset \left(\mathcal{L} \cap \lambda D \times \left(W_A\right)\right) \setminus \{0\} = \emptyset \) and therefore

\[\# \left(\left(\mathcal{L} \cap \left(R \mathcal{D} \times \frac{W_A}{\ell_F}\right)\right) \setminus \{0\}\right) = 0. \]

Suppose now that \(\frac{R}{\ell_F} \geq \frac{1}{\sqrt{\ell_F}} \). Scale \(\ell_F \) so that \(\sqrt{c} \leq \frac{R}{\ell_F} < \lambda \sqrt{c} \). This implies that \(\frac{1}{\ell_F} \geq \frac{1}{\lambda} \sqrt{c} > \sqrt{c} \). Thus, \(\mathcal{O} \supset \frac{R \mathcal{D}}{\ell_F} \times \frac{W_A}{\ell_F} =: B \). From Lemma 4.4 we get a constant \(L \) only depending on \(\mathcal{L} \), \(\sqrt{c} \) such that \(\#(B \cap \mathcal{L}) \leq L\text{vol}(B) = L \cdot 16m_1^2m_2^2 \frac{R^2}{N(\ell_F)^2} \). Now, since \(\frac{R}{\ell_F} \times \frac{W_A}{\ell_F} \subset B \) we get that

\[\# \left(\left(\mathcal{L} \cap \left(R \mathcal{D} \times \frac{W_A}{\ell_F}\right)\right) \setminus \{0\}\right) \leq \frac{L R^2}{N(\ell_F)^2} \]

with \(L := 16m_1^2m_2^2L \).

\[\square \]

Proposition 4.6. The equality

\[\lim_{R \to \infty} \sum_{\begin{subarray}{c} F \subset C \\#F < \infty \\ \#F < \infty \end{subarray}} \frac{(-1)^\#F \#((P(m_F W_A, \mathcal{L}_F) \setminus \{0\}) \cap RD)}{\text{vol}(RD)} = \sum_{\begin{subarray}{c} F \subset C \\#F < \infty \\ \#F < \infty \end{subarray}} \frac{(-1)^\#F m_F^2 (1 + \sqrt{2})}{2N(\ell_F)^2} \]

holds for all Jordan measurable \(D \subset \mathbb{R}^2 \).

Proof. For a finite \(F \subset C \) let \(N(R, F) = \#((P(m_F W_A, \mathcal{L}_F) \setminus \{0\}) \cap RD) \). We know that

\[\lim_{R \to \infty} \frac{N(R, F)}{\text{vol}(RD)} = \frac{m_F^2 (1 + \sqrt{2})}{2N(\ell_F)^2} \]

so

\[\lim_{R \to \infty} \sum_{\begin{subarray}{c} F \subset C \\#F < \infty \\ \#F < \infty \end{subarray}} \frac{(-1)^\#F N(R, F)}{\text{vol}(RD)} = \sum_{\begin{subarray}{c} F \subset C \\#F < \infty \\ \#F < \infty \end{subarray}} \lim_{R \to \infty} \frac{(-1)^\#F N(R, F)}{\text{vol}(RD)} \]

must be justified. In view of Lemma 4.5

\[\sum_{\begin{subarray}{c} F \subset C \\#F < \infty \\ \#F < \infty \end{subarray}} \left| \frac{(-1)^\#F N(R, F)}{\text{vol}(RD)} \right| \leq \frac{\tilde{L}}{\text{vol}(D)} \sum_{\begin{subarray}{c} F \subset C \\#F < \infty \\ \#F < \infty \end{subarray}} \frac{1}{N(\ell_F)^2} \]

6
and we note that
\[
\sum_{F \in \mathcal{C}} \frac{1}{N(\ell_F)^2} = \sum_{F \in \mathcal{C}, \#F < \infty} \frac{1}{N(\ell_F)^2} + \sum_{F \in \mathcal{C}, \#F < \infty, \lambda \notin F} \frac{1}{N(\ell_F)^2} \leq 2 \sum_{I \in \mathcal{O}_K} \frac{1}{N(I)^2},
\]
hence the sums of both sides of (2) are absolutely convergent.

Fix \(\Delta > 0 \). We claim that there is only a finite number of non-empty \(F \subset C, \#F < \infty, \) such that \(|N(\ell_F)| < \Delta \). Given such \(F \) let \(\ell_F = \prod_{c \in F} c \). Also, since \(|\pi| > 1 \) for all \(\pi \in \mathbb{P} \) we have \(|\ell_F| \geq |\lambda| \). Hence, \(|N(\ell_F)| = \ell_F|\ell_F| \leq \Delta \) implies \(\ell_F \leq \frac{\lambda}{|\ell_F|} \leq \lambda\Delta \) and \(|\ell_F| \leq \frac{\lambda}{|\ell_F|} \leq \Delta < \lambda\Delta \) so \((\ell_F, \ell_F) \in \{(x, \pi) \mid x \in \mathcal{O}_K\} \cap \lambda[-\Delta, \Delta]^2 \) which is a finite set, thus elements of \(F \) can only contain prime factors that occur as factors in the components of elements in this finite set, giving only finitely many possibilities for \(F \).

It follows that
\[
\lim_{R \to \infty} \left| \sum_{F \in \mathcal{C}, \#F < \infty} \frac{(-1)^{\#F} N(R, F)}{\text{vol}(RD)} \right| \leq \left(\frac{L}{\text{vol}(D)} + \frac{1 + \sqrt{2}}{2} \right) \sum_{F \in \mathcal{C}, \#F < \infty} \frac{1}{|N(\ell_F)| \geq \Delta} \frac{m_F^2 (1 + \sqrt{2})}{2N(\ell_F)^2}
\]
where the right hand side tends to 0 as \(\Delta \to \infty \) since \(\sum_{F \in \mathcal{C}, \#F < \infty, |N(\ell_F)| \geq \Delta} \frac{1}{N(\ell_F)^2} \) is the tail of an absolutely convergent sum, hence (2) has been justified.

From Proposition 4.6 it follows that \(\theta(\tilde{B}) = \sum_{F \in \mathcal{C}, \#F < \infty} \frac{(-1)^{\#F} m_F^2 (1 + \sqrt{2})}{2N(\ell_F)^2} \), and it will now be shown that the right hand side is equal to \(1/\zeta_K(2) \). Define the function \(\omega : \mathcal{O}_K \to \mathbb{C}, \omega(x) = \#\{\pi \in \mathbb{P} \mid x/\pi \in \mathcal{O}_K\} \), so that \(\omega(x) \) is the number of non-associated prime divisors of \(x \). Given \(I \triangleleft \mathcal{O}_K \), let \(\omega(I) = \omega(x) \) for any generator \(x \) of \(I \) and define a Möbius function on the ideals of \(\mathcal{O}_K \) by
\[
\mu(I) = \begin{cases} 0 & \text{if } \exists \pi \in \mathbb{P} \text{ such that } I \subset \pi^2 \mathcal{O}_K, \\ (-1)^{\omega(I)} & \text{otherwise}. \end{cases}
\]
One verifies that \(\mu(I_1 I_2) = \mu(I_1) \mu(I_2) \) for relatively prime ideals \(I_1, I_2 \). The function \(\zeta_K \) can be expressed as an Euler product for \(s \) with \(\text{Re}(s) > 1 \) as
\[
\zeta_K(s) = \prod_{P \in \mathcal{O}_K, P \text{ prime}} \frac{1}{1 - N(P)^{-s}}
\]
and in analogy with the reciprocal formula for Riemann’s zeta function we have
\[
\frac{1}{\zeta_K(s)} = \sum_{I \in \mathcal{O}_K} \frac{\mu(I)}{N(I)^s}.
\]

Theorem 4.7. The density of visible points of \(\mathcal{B} \) is given by
\[
\theta(\mathcal{B}) = \frac{1}{\zeta_K(2)} = \frac{48\sqrt{2}}{\pi^4}.
\]
\begin{proof}
By Proposition 4.6 we have

\[\theta(\mathcal{B}) = \sum_{\substack{F \in \mathcal{C} \\#Fc \in \mathcal{C}}} \frac{(-1)^{\#F}m_F^2(1 + \sqrt{2})}{2N(l_F)^2}. \]

Splitting the sum into two depending on whether \(\lambda \in F \) or not, and using that \(m_F = 1 \) unless \(\lambda \in F \), in which case \(m_F = |\lambda| = \sqrt{2} - 1 \), we get

\[\theta(\mathcal{B}) = \sum_{\substack{F \in \mathcal{C} \\#Fc \in \mathcal{C}}} \frac{(-1)^{\#F}(1 + \sqrt{2})}{2N(l_F)^2} + \sum_{\substack{\lambda \in \mathcal{C} \\#Fc \in \mathcal{C}}} \frac{(-1)^{\#F}|\lambda|^2(1 + \sqrt{2})}{2N(l_F)^2} \]

\[= \frac{(1 - |\lambda|)(1 + \sqrt{2})}{2} \sum_{I \in \mathcal{O}_K} \mu(I) \frac{N(I)^2}{N(I)^2} = \frac{1}{\zeta_K(2)}, \]

last equality by (3). From [8, Theorem 4.2] one can calculate \(\zeta_K(-1) = \frac{1}{12} \) and by the functional equation for Dedekind’s zeta function (cf. e.g. [8, p. 34]) one finds that \(\zeta_K(2) = \frac{\pi^4}{48\sqrt{2}} \) which proves the claim. \(\square \)

4.2 The density of visible points of \(\mathcal{A} \)

Observe that \(\mathcal{A}' = \sqrt{2} \mathcal{A} \subset \mathcal{B} \). It is now shown that \(C \) is also an occluding set for \(\mathcal{A}' \).

Proposition 4.8. For each \(x \in \mathcal{A}' \setminus \hat{\mathcal{A}} \) there is \(c \in C \) such that \(x/c \in \mathcal{A}' \).

\begin{proof}
Since \(\mathcal{A}' \subset \mathcal{B} \) we have \(\mathcal{A}' \setminus \hat{\mathcal{A}} \subset \mathcal{B} \setminus \hat{\mathcal{B}} \) and so for each \(x \in \mathcal{A}' \setminus \hat{\mathcal{A}} \) there exists \(c \in C \) such that \(x/c \in \mathcal{B} \). If \(c \neq \sqrt{2} \) then \(\sqrt{2} \mid \frac{a}{c} \) so \(x/c \in \mathcal{A}' \).

Take now \(x \in \mathcal{A}' \setminus \hat{\mathcal{A}} \) such that for all \(c \in C \setminus \{\sqrt{2}\} \) we have \(x/c \notin \mathcal{B} \). Then \(x/\sqrt{2} \in \mathcal{B} \), hence \(\gcd(x_1, x_2) = \sqrt{2} \) for some \(n \geq 1 \). Since \(x \in \mathcal{A}' \setminus \hat{\mathcal{A}} \) there is \(c \in \mathbb{Q}(\sqrt{2}) \cap \mathbb{R}_{>1} \) such that \(x/c \in \mathcal{A}' \). Writing \(c = a/b \) with \(\gcd(a, b) = 1 \), the only possible \(\pi \in \mathbb{P} \) with \(\pi \mid a \) is \(\pi = \sqrt{2} \). If \(\sqrt{2} \mid a \), then it follows that \(x/\sqrt{2} \in \mathcal{A}' \).

It remains to check the case where \(a \) is a unit, i.e. \(c = \frac{\lambda}{\prod_{\pi \in \mathbb{P} \mid a} \pi^{m_\pi}} \) for some \(m : \mathbb{P} \to \mathbb{Z}_{\geq 0} \) with finite support. The facts that \(c > 1 \) and \(\pi > 1 \) for all \(\pi \in \mathbb{P} \) imply \(n > 0 \). We have \(x/\sqrt{2} \notin \mathcal{B} \), hence \(\pi \notin [\lambda]\mathcal{W}_\mathcal{A} \). Since \(x/c \in \sqrt{2} \mathcal{A} \) it follows that \(\pi \in [\pi]\mathcal{W}_\mathcal{A} \) and hence \(|\pi| > |\lambda| \). However

\[|\pi| = \frac{|\lambda|^n}{\prod_{\pi \in \mathbb{P} \mid \pi} |\pi|^{k(\pi)}} \leq |\lambda|^n \leq |\lambda|, \]

contradiction. \(\square \)

Theorem 4.9. We have \(\theta(\mathcal{A}') = \frac{1}{2\zeta_K(2)} \), hence \(\theta(\mathcal{A}) = \frac{1}{\zeta_K(2)} \).

\begin{proof}
Propositions 4.1, 4.8 imply

\[\frac{\#(\hat{\mathcal{A}} \cap RD)}{\text{vol}(RD)} = \sum_{\substack{F \in \mathcal{C} \\#Fc \in \mathcal{C}}} \frac{(-1)^{\#F} \#((\mathcal{A}' \cap \mathcal{C}_F \mathcal{A}') \cap RD)}{\text{vol}(RD)} \]

(4)
and it is straightforward to verify that $A'_c \cap \bigcap_{c \in F} c A'_c = \mathcal{P}(m_F W_A, \tilde{L}_F) \setminus \{0\}$ with $\tilde{L}_F = \{(\ell_F x, \ell_F x) \mid x \in \mathcal{O}_K^2, (x_1 - x_2) / \sqrt{2} \in \mathcal{O}_K\}$ a sublattice of L_F of index 2. Hence, by [1] Prop. 3.2, when letting $R \to \infty$ inside the sum (4) one obtains
\[
\sum_{F \subset C} \frac{(-1)^F \vol(m_F W_A)}{16N(\ell_F)},
\]
whence $\theta(\sqrt{2} A) = \frac{1}{2\zeta K(2)}$ follows by Proposition 4.6 and Theorem 4.7 and the other result is immediate as $\sqrt{2} A = A'$.

\[\square\]

Remark. The data of Table 2 of [1] shows that $\#(\hat{A} \cap RD) / \#(A \cap RD) \approx 0.577$ for a particular D and fairly large R. This agrees with our results, since
\[
\kappa_A = \lim_{R \to \infty} \frac{\#(\hat{A} \cap RD)}{\#(A \cap RD)} = \frac{\frac{1}{2}\zeta K(2)}{2\vol(W_A) = 2(\sqrt{2} - 1)} = 0.5773\ldots
\]

References

[1] M. Baake, F. Götze, C. Huck, and T. Jakobi, Radial spacing distributions from planar point sets, Acta crystallographica. Section A, Foundations and advances, 70 (2014), pp. 472–482.

[2] M. Baake and U. Grimm, Aperiodic Order, vol. 1, Cambridge University Press, 2013.

[3] M. Baake, R. V. Moody, and P. A. Pleasants, Diffraction from visible lattice points and kth power free integers, Discrete Mathematics, 221 (2000), pp. 3–42.

[4] J. Marklof and A. Strömbergsson, Free path lengths in quasicrystals, Communications in mathematical physics, 330 (2014), pp. 723–755.

[5] ———, Visibility and directions in quasicrystals, International mathematics research notices, 2015 (2014), pp. 6588–6617.

[6] J. Nymann, On the probability that k positive integers are relatively prime, Journal of number theory, 4 (1972), pp. 469–473.

[7] B. Sing, Visible Ammann-Beenker points. http://www.bb-math.com/bernd/pub/bcc.pdf, 2007.

[8] L. C. Washington, Introduction to cyclotomic fields, vol. 83, Springer Science & Business Media, 1997.