Inter-laboratory proficiency testing scheme for tumour next-generation sequencing in Ontario: a pilot study

T. Spence PhD,* N. Stickle,* C. Yu CCRP,* H. Chow,* H. Feilotter PhD,† B. Lo MD PhD,‡ E. McCready PhD,§ B. Sadikovic PhD,|| L.L. Siu MD,* P.L. Bedard MD,* and T.L. Stockley PhD*

ABSTRACT

Background A pilot inter-laboratory proficiency scheme for 5 Ontario clinical laboratories testing tumour samples for the Ontario-wide Cancer Targeted Nucleic Acid Evaluation (OCTANE) study was undertaken to assess proficiency in the identification and reporting of next-generation sequencing (NGS) test results in solid tumour testing from archival formalin-fixed, paraffin-embedded (FFPE) tissue.

Methods One laboratory served as the reference centre and provided samples to 4 participating laboratories. An analyte-based approach was applied: each participating laboratory received 10 FFPE tissue specimens profiled at the reference centre, with tumour site and histology provided. Laboratories performed testing per their standard NGS tumour test protocols. Items returned for assessment included genes and variants that would be typically reported in routine clinical testing and variant call format (VCF) files to allow for assessment of NGS technical quality.

Results Two main aspects were assessed:

- Technical quality and accuracy of identification of exonic variants
- Site-specific reporting practices

Technical assessment included evaluation of exonic variant identification, quality assessment of the VCF files to evaluate base calling, variant allele frequency, and depth of coverage for all exonic variants. Concordance at 100% was observed from all sites in the technical identification of 98 exonic variants across the 10 cases. Variability between laboratories in the choice of variants considered clinically reportable was significant. Of the 38 variants reported as clinically relevant by at least 1 site, only 3 variants were concordantly reported by all participating centres as clinically relevant.

Conclusions Although excellent technical concordance for NGS tumour profiling was observed across participating institutions, differences in the reporting of clinically relevant variants were observed, highlighting reporting as a gap where consensus on the part of Ontario laboratories is needed.

Key Words External quality assessment, inter-laboratory comparison, next-generation sequencing, tumour molecular profiling

Curr Oncol. 2019 December;26(6):e717-e732 www.current-oncology.com

INTRODUCTION

Next-generation sequencing (NGS) for molecular profiling of solid tumours is rapidly becoming standard-of-care testing in molecular laboratories in Canada because of the simultaneous yield of clinically useful genetic information, benefit of tissue preservation by avoiding sequential testing, and declining cost of NGS equipment and operations.
Proficiency testing (PT) schemes (also known as external quality assessment if offered by an external body), in which laboratories are assessed on blinded analysis of samples with known results, is an integral part of ensuring quality of NGS and other molecular tests\(^1\)-\(^2\). However, a national PT scheme for molecular pathology laboratory testing (using NGS or any method) does not exist in Canada, likely because of the effort of establishing a scheme potentially subscribed to by only a small number of Canadian laboratories, and because of the effort of sample acquisition and PT assessment. In Ontario, all licensed and accredited clinical laboratories offering testing for patient care are required to participate in PT as mandated by the provincial accreditation body (Institute for Quality Management in Healthcare), based on the International Organization for Standardization 15189 standard. The Institute for Quality Management in Healthcare requires that, to maintain accreditation, clinical laboratories complete PT for 4 samples within a 12-month period for each clinical test. In the absence of a PT program offered by a Canadian organization for tumour molecular profiling, accredited laboratories must identify suitable alternatives, such as international PT programs or informal sample exchange, to meet the Ontario requirements.

A key consideration in the design of a PT scheme for tumour molecular profiling is the selection of sample source material. To perform both pre-analytic and analytic comparisons of laboratory proficiency, the optimal material is formalin-fixed, paraffin-embedded (FFPE) tumour tissue, because that sample source allows for an assessment of pre-analytic variables. However, obtaining FFPE tumour tissue for PT is often hampered by a small tumour amount and suboptimal quality of the available clinically relevant material. Tumour heterogeneity can also lead to potential differences in results. Although tracking of FFPE sections sent to participating laboratories is possible, that approach does not ameliorate the risk of error. An alternative approach is to use DNA extracted from FFPE tissue\(^3\), with the inherent limitation that use of DNA prevents identification of any potential issues related to the pre-analytic phase. Other source material could also be used, such as cell lines embedded in paraffin or synthetic DNA controls, each with its own limitations. Any of those sample issues might lead to inappropriate discrepancies in PT testing results originating solely in the material sent within the PT scheme.

The other significant aspect in PT schemes is whether the scheme assesses only the technical aspects (for example, by requesting return of variants only) or also assesses the post-analytic clinical interpretation and reporting aspects (for example, by requesting that variant interpretations or mock clinical reports be returned). For testing of solid tumours, general guidelines about reporting aspects for laboratory tests are available\(^4\); however, those guidelines might not be sufficiently detailed for PT schemes, which are often specific to a gene or a disease indication. Proficiency testing schemes might also request return of various types of data—for example, only the Human Genome Variation Society nomenclature for identified variants, or variants plus data files for data quality analysis, which typically compares data across laboratories rather than scoring based on an evaluative scheme.

In the present study, a pilot PT scheme (Figure 1) was implemented for Ontario laboratories participating in the Ontario-Wide Cancer Targeted Nucleic Acid Evaluation (octane) study, which is an ongoing prospective trial open at 5 academic cancer centres. The trial aims to enable genotype–drug matching through somatic NGS testing of FFPE solid tumour tissue from patients with advanced cancer and to facilitate clinical and genomic data-sharing. The PT scheme was designed as a pre- to post-analytic scheme, with dissemination of FFPE tumour material and return of variants, variant call format (VCF) files, and information about clinically reportable genes and variants. We highlight the successes and challenges of that approach to PT schemes for solid tumour molecular profiling in the Ontario context.

METHODS

Participating Laboratories

Participating laboratories included the Princess Margaret Cancer Centre (PMCC), University Health Network, Toronto (which acted as the reference site for source materials and result evaluations); the Juravinski Cancer Centre (JCC), Hamilton; the London Health Sciences Centre (LHSC), London; The Ottawa Hospital (OttH), Ottawa; and the Kingston Health Sciences Centre (KHSC), Kingston. A laboratory director from each site was involved in the study design.

Tumour Tissue Specimens

From a cohort of FFPE tissues banked at the reference laboratory, 10 FFPE specimens of tumour tissue were chosen from resections in patients enrolled in the octane trial (NCT02906943 at https://ClinicalTrials.gov) with approval from the Ontario Cancer Research Ethics Board (ID: 16-018). All 10 specimens had previously been tested by NGS at the reference laboratory. Specimens were chosen so as to provide to each of the 4 participating sites a variety of genes and variants, and to meet these additional criteria: tumour cellularity greater than or equal to 20% in the tumour area, and sufficient FFPE material to provide 2 unstained sections at 7 μm thickness and 1 slide stained with haematoxylin and eosin. Sections were numbered as cut, and the section numbers distributed to each laboratory were recorded to enable tracking of the location within the tumour block in case of tumour heterogeneity for variants. Unstained and uncircled sections were provided on air-dried, uncoated slides. Tumour site and histology as determined by a study pathologist at the reference site were also provided to the participating laboratories.

Molecular Profiling Assays

The participating laboratories used 2 NGS panels in testing DNA samples. The reference laboratory (PMCC) used a custom hybridization capture NGS panel of 555 cancer-related genes [UHN Hi5 panel (SureSelect: Agilent, Santa Clara, CA, U.S.A.)] sequenced on the NextSeq platform (Illumina, San Diego, CA, U.S.A.). The other 4 participating laboratories (JCC, LHSC, TOH, KHSC) used a commercial amplicon-based hotspot panel that included regions of 50 genes (Ion AmpliSeq Cancer Hotspot Panel v2: Thermo Fisher, Waltham, MA, U.S.A.) and was sequenced on the...
Ion Torrent PGM platform (Thermo Fisher) at each site. Those 4 laboratories were accredited by the Ontario provincial laboratory accreditation body (the Institute for Quality Management in Healthcare), and the remaining laboratory (pmcc) was accredited by the College of American Pathologists (CAP) and was certified as meeting the U.S. Clinical Laboratory Improvement Amendments. Laboratories were instructed to not communicate results with other laboratories and to treat the samples in a manner similar to other clinical samples as much as possible for the entire workflow.

Variant Assessment and Reporting

For each of the 10 specimens, participating laboratories were requested to return the following information to the reference laboratory within 4 weeks (supplemental Appendix 1):

- A list of genes for each tumour site the laboratory would consider to be clinically reportable from the panel in use
- The variants identified in each of the 10 specimens that the laboratory considered to be clinically reportable, with variant interpretations
- A list of variants that met laboratory-defined minimum technical quality metrics for high-quality variants (that is, all high-quality variants whether considered clinically reportable or not)
- The vcf files from the relevant ngs panel test at each site

The khsc provided vcf files that were pre-filtered according to their current laboratory practice; the jcc, toh, and lhsc provided unfiltered vcf files. Clinically reportable variants were defined as variants that would routinely be reported based on the clinical reporting practices for the octane study at that laboratory. Variant interpretations were requested to be performed and returned according to each laboratory’s typical process for the octane study. Laboratories were requested to include Human Genome Variation Society nomenclature and any other nomenclature system typically used for reports generated for the octane study.

Assessment of Technical and Reporting Performance

A comparative analysis was conducted to assess concordance in the variant information returned from each participating site with the variants identified by the reference site. Because the reference site used different ngs chemistry, analyses included assessment of concordance between the participating sites, but discordance with the reference laboratory results. That approach was instituted to rule out the bias of considering the reference laboratory results to be “true.”

Variants were assessed by the accuracy with which reported variants were identified, including correct Human Genome Variation Society nomenclature. Technical quality metrics were assessed using the vcf files and BEDTools (version 2.23.0)\(^5\), with an intersection browser extensible data file created to identify overlapping regions in the UHN Hi5 panel and the Ion AmpliSeq Cancer Hotspot Panel v2, and to identify common and unique variants in the reference laboratory dataset and in each of the datasets from the 4 participating laboratories.

To assess reporting, the genes and variants that each laboratory provided as being clinically reportable were manually compared.
RESULTS

Reportable Genes by Tumour Site

Participating laboratories provided the list of genes typically reported clinically at their institution for each tumour site in the PT specimens, per their usual practice within the octane study. The list of reportable genes for each tumour site differed significantly between the participating centres (Table I). Of the participating laboratories, 2 chose to report on all genes on their panel, and 1 elected to report only variants in genes that were routinely reported in clinical practice at their institution, regardless of tumour type.

Comparison of Base Calling and Quality Assessment of Raw Data

An analysis of the agreement in technical detection of variants identified in the vcf files for each case demonstrated 100% concordance (98 of 98 variants) in the identification of exonic variants from all sites for the 10 cases (Table II). Of the 98 exonic variants detected, a subset was identified below the lower variant allele frequency (vaf) and quality thresholds defined for PT evaluation—that is, less than 5% VAF and less than 100× (pmcc) or 500× (jcc, lhsc, toh, khscc) coverage. Of those low-vaf or low-coverage variants, none was considered clinically reportable by more than 1 laboratory.

Specimen ID	Tumour site and classification	Laboratory ID	Genes reported*
1	Melanoma	1	BAP1, BRAF, KIT, HRAS, NRAS
	Melanoma	2	All genes on panel
		3	BRAF, NRAS
		4	Not provided
		5	All genes on panel
2	Gastrointestinal cancer	1	BRAF, HER2/ERBB2, IDH1, IDH2, KRAS, NRAS, PIK3CA
	Colorectal adenocarcinoma	2	All genes on panel
		3	BRAF, KRAS, NRAS
		4	Not provided
		5	All genes on panel
3	Gynecologic cancer	1	BRCA1, BRCA2, TP53, KRAS, PIK3CA
	Low-grade ovarian serous carcinoma	2	All genes on panel
		3	Genes not reported for this site
		4	Not provided
		5	All genes on panel
4	Gynecologic cancer	1	BRCA1, BRCA2, TP53, KRAS, PIK3CA
	High-grade ovarian serous carcinoma	2	All genes on panel
		3	Genes not reported for this site
		4	Not provided
		5	All genes on panel
5	Liver cancer	1	BRAF, HER2/ERBB2, IDH1, IDH2, KRAS, NRAS, PIK3CA
	Adenocarcinoma	2	All genes on panel
		3	Genes not reported for this site
		4	Not provided
		5	All genes on panel
6	Head-and-neck cancer	1	BRAF, EGFR, EZH2, KIT, PIK3CA
	Parathyroid carcinoma	2	All genes on panel
		3	Genes not reported for this site
		4	Not provided
		5	All genes on panel
Variants Considered Clinically Reportable
The results provided by each institution included a list of variants in each case that were considered clinically reportable per routine practice in the octane study (Table III). A high degree of variability in the variants considered clinically reportable was also observed, with only 3 variants from the 10 cases being concordantly reported by all 5 participating centres. Concordant reporting of 5 variants by 4 or more centres and of 10 variants by 3 or more centres was observed.

Interpretation of Clinically Reportable Variants
Variants considered clinically reportable were classified by 4 of the laboratories using a published somatic variant classification scheme. The joint guideline from the Association for Molecular Pathology (AMP), the American Society of Clinical Oncology (ASCO), and CAP (AMP/ASCO/CAP) published by Li et al. was applied by 3 laboratories, and the Sukhai et al. guideline was used by 1 laboratory. Significant variability was observed in the classifications provided for specific variants (Table III). For example, one laboratory indicated that the TP53 p.Leu252del variant identified in case 8 was a tier II variant, while another indicated that the same variant was a tier III variant. That same variant was classified as class 3A by a 3rd site and was not clinically reported by the remaining 2 laboratories. Similarly, the TP53 p.Ser127Phe variant identified in case 1 was reported as tier II by 1 site and as tier III by 1, with the other 3 sites not reporting it. Furthermore, 1 site chose to include variants classified as tier III or IV according to the AMP/ASCO/CAP guideline as clinically reportable.

DISCUSSION
The present study set out to evaluate the performance of solid tumour molecular profiling at the 5 Ontario sites (JCC, LHSC, TOH, KHSC, and PMCC) that provide NGS molecular profiling for the octane study. An analyte-based PR approach was used, with FFPE tumour tissue being sent out, and information related to variants considered clinically relevant being returned, in an end-to-end evaluation of laboratory performance.

Although the use of FFPE tissue allows for an evaluation of the pre-analytic phase, it can also adversely affect other aspects of the PR scheme. At the reference laboratory, it was difficult to source sufficient FFPE tumour tissue material meeting all parameters specified in the Methods section for distribution to the 4 participant sites. Of the 10 samples,
TABLE II
Comparison of base calling and quality assessment of raw data for 98 exonic variants

Specimen tumour	Gene	Variant type	Genomic coordinates	Variant	Laboratory ID^1
1 Melanoma	NRAS	Nonsynonymous SNV	chr1:115256528	NRAS:NM_002524:exon3:c.C181A:p.Q61K	X X X X X
	KIT	Nonsynonymous SNV	chr4:55972974	KIT:NM_002253:exon11:c.A1416T:p.Q472H	X X X X X
	KDR	Nonsynonymous SNV	chr4:55927974	KDR:NM_002253:exon11:c.A1416T:p.Q472H	X X X X X
	TP53	Nonsynonymous SNV	chr17:7578546	TP53:NM_000546:exon5:c.C380T:p.Q379P	X X X X X
	TP53	Nonsynonymous SNV	chr17:7579472	TP53:NM_000546:exon4:c.C215G:p.P72R	X X X X X
	FGFR3	Synonymous SNV	chr4:1807894	FGFR3:NM_00142:exon14:c.G1935A:p.T61T	X X X X X
	PDGFRA	Synonymous SNV	chr4:55141050	PDGFRA:NM_00206:exon12:c.A1701G:p.P567P	X X X X X
	APC	Synonymous SNV	chr5:112175769	APC:NM_00038:exon16:c.G4479A:p.T493T	X X X X X
	EGFR	Synonymous SNV	chr7:55249063	EGFR:NM_005228:exon20:c.G234T:p.T769H	X X b X X X X
	RET	Synonymous SNV	chr10:43613843	RET:NM_020975:exon13:c.G2307T:p.L769H	X X X X X
	HRAS	Synonymous SNV	chr11:534242	HRAS:NM_005343:exon2:c.T81C:p.H27H	X X X X X
2 Colorectal adenocarcinoma	KRAS	Nonsynonymous SNV	chr12:25398280	KRAS:NM_003360:exon2:c.G355A:p.G12D	X X X X X
	KIT	Nonsynonymous SNV	chr4:55972974	KIT:NM_002253:exon11:c.A1416T:p.Q472H	X X X X X
	TP53	Nonsynonymous SNV	chr17:7577120	TP53:NM_000546:exon14:c.G1907A:p.R632H	X X X X X
	TP53	Nonsynonymous SNV	chr17:7579472	TP53:NM_000546:exon4:c.C215G:p.P72R	X X X X X
	APC	Stop codon gain	chr5:112175769	APC:NM_00038:exon16:c.G4479A:p.T493T	X X X X X
	FGFR3	Synonymous SNV	chr4:1807894	FGFR3:NM_00142:exon14:c.G1935A:p.T61T	X X X X X
	PDGFRA	Synonymous SNV	chr4:55141050	PDGFRA:NM_00206:exon12:c.A1701G:p.P567P	X X X X X
	APC	Synonymous SNV	chr5:112175769	APC:NM_00038:exon16:c.G4479A:p.T493T	X X X X X
	EGFR	Synonymous SNV	chr7:55249063	EGFR:NM_005228:exon20:c.G234T:p.T769H	X X b X X X X
	RET	Synonymous SNV	chr10:43613843	RET:NM_020975:exon13:c.G2307T:p.L769H	X X X X X
3 Low-grade ovarian serous carcinoma	KRAS	Nonsynonymous SNV	chr12:2539820	KRAS:NM_003360:exon2:c.G355A:p.G12D	X X X X X
	KIT	Nonsynonymous SNV	chr4:55972946	KIT:NM_002253:exon11:c.A1416T:p.Q472H	X X X X X
	TP53	Nonsynonymous SNV	chr17:7577120	TP53:NM_000546:exon14:c.G1907A:p.R632H	X X X X X
	IDH1	Synonymous SNV	chr2:209113192	IDH1:NM_00142:exon14:c.G1935A:p.T61T	X X X X X
	FGFR3	Synonymous SNV	chr4:1807894	FGFR3:NM_00142:exon14:c.G1935A:p.T61T	X X X X X
	PDGFRA	Synonymous SNV	chr4:55141050	PDGFRA:NM_00206:exon12:c.A1701G:p.P567P	X X X X X
	EGFR	Synonymous SNV	chr7:55249063	EGFR:NM_005228:exon20:c.G234T:p.T769H	X X X X X
	RET	Synonymous SNV	chr10:43613843	RET:NM_020975:exon13:c.G2307T:p.L769H	X X X X X
	HRAS	Synonymous SNV	chr11:534242	HRAS:NM_005343:exon2:c.T81C:p.H27H	X X X X X
TABLE II Continued

Specimen tumour	Gene	Variant type	Genomic coordinates	Variant	Laboratory ID					
					1 2 3 4 5					
4 High-grade ovarian serous carcinoma	TPS3	Stop codon gain	chr17:7577046	TP53:NM_000546:exon8:c.G892T:p.E298X	X X X X X					
	KIT	Nonsynonymous SNV	chr4:55593464	KIT:NM_000222:exon10:c.A1621C:p.M541L	X X X X X					
	MET	Nonsynonymous SNV	chr7:116141990	MET:NM_001127500:exon14:c.C3029T:p.T1010I	X X X X X					
	TPS3	Nonsynonymous SNV	chr17:7579472	TP53:NM_000546:exon4:c.C215G:p.P72R	X X X X X					
	FGFR3	Nonsynonymous SNV	chr4:1807894	FGFR3:NM_000142:exon14:c.G1953A:p.T651T	X X X X X					
	PDGFRA	Nonsynonymous SNV	chr4:55141050	PDGFRA:NM_000620:exon12:c.A1701G:p.P567P	X X X X X					
	PDGFRA	Nonsynonymous SNV	chr4:55152040	PDGFRA:NM_000620:exon18:c.C2472T:p.V824V	X X X X X					
	APC	Nonsynonymous SNV	chr5:112175769	APC:NM_000038:exon16:c.G4479A:p.T1493T	X X X X X					
	EGRF	Nonsynonymous SNV	chr7:55249063	EGRF:NM_000282:exon20:c.G2361A:p.Q787Q	X X X X X					
	RET	Nonsynonymous SNV	chr10:43613843	RET:NM_0020975:exon13:c.G2307T:p.L769I	X X X X X					
	RET	Nonsynonymous SNV	chr10:43615633	RET:NM_0020975:exon15:c.G2712G:p.S904S	X X X X X					
	HRAS	Nonsynonymous SNV	chr11:534242	HRAS:NM_005343:exon2:c.T816:p.H271H	X X X X X					
5 Liver adenocarcinoma	IDH1	Nonsynonymous SNV	chr2:209113113	IDH1:NM_005896:exon4:c.C315T:p.R132C	X X X X X					
	APC	Nonsynonymous SNV	chr5:112175240	APC:NM_000038:exon16:c.G3949A:p.E1317Q	X X X X X					
	TPS3	Nonsynonymous SNV	chr17:7579472	TP53:NM_000546:exon4:c.C215G:p.P72R	X X X X X					
	IDH1	Nonsynonymous SNV	chr2:209113112	IDH1:NM_005896:exon4:c.C315T:p.R132C	X X X X X					
	FGFR3	Nonsynonymous SNV	chr4:1807894	FGFR3:NM_000142:exon14:c.G1953A:p.T651T	X X X X X					
	PDGFRA	Nonsynonymous SNV	chr4:55141050	PDGFRA:NM_000620:exon12:c.A1701G:p.P567P	X X X X X					
	APC	Nonsynonymous SNV	chr5:112175769	APC:NM_000038:exon16:c.G4479A:p.T1493T	X X X X X					
	EGRF	Nonsynonymous SNV	chr7:55249063	EGRF:NM_000282:exon20:c.G2361A:p.Q787Q	X X X X X					
	RET	Nonsynonymous SNV	chr10:43613843	RET:NM_0020975:exon13:c.G2307T:p.L769I	X X X X X					
	RET	Nonsynonymous SNV	chr10:43615633	RET:NM_0020975:exon15:c.G2712G:p.S904S	X X X X X					
6 Parathyroid carcinoma	PIK3CA	Nonsynonymous SNV	chr3:178927410	PIK3CA:NM_0006218:exon7:c.A1173G:p.B911M	X X X X X					
	ATM	Nonsynonymous SNV	chr11:10813003	ATM:NM_000051:exon17:c.T2572C:p.F858L	X X X X X					
	TPS3	Nonsynonymous SNV	chr17:7579472	TP53:NM_000546:exon4:c.C215G:p.P72R	X X X X X					
	FGFR3	Nonsynonymous SNV	chr4:1807894	FGFR3:NM_000142:exon14:c.G1953A:p.T651T	X X X X X					
	PDGFRA	Nonsynonymous SNV	chr4:55141050	PDGFRA:NM_000620:exon12:c.A1701G:p.P567P	X X X X X					
	PDGFRA	Nonsynonymous SNV	chr4:55152040	PDGFRA:NM_000620:exon18:c.C2472T:p.V824V	X X X X X					
	APC	Nonsynonymous SNV	chr5:112175769	APC:NM_000038:exon16:c.G4479A:p.T1493T	X X X X X					
	EGRF	Nonsynonymous SNV	chr7:55249063	EGRF:NM_000282:exon20:c.G2361A:p.Q787Q	X X X X X					
	RET	Nonsynonymous SNV	chr10:43613843	RET:NM_0020975:exon13:c.G2307T:p.L769I	X X X X X					
	RET	Nonsynonymous SNV	chr10:43615633	RET:NM_0020975:exon15:c.G2712G:p.S904S	X X X X X					
Specimen tumour	Gene	Variant type	Genomic coordinates	Variant	Laboratory ID	1	2	3	4	5
-----------------	---------	-----------------------	------------------------------	--	---------------	---	---	---	---	---
7 Lung adenocarcinoma	ERBB2	In-frame insertion	chr17:37880981	ERBB2:NM_004448:exon20:c.2310_2311insGCATACGTTGATG:p.E770delInsEAYVM	X	X	X	X	X	
	TP53	Nonsynonymous SNV	chr17:7577509	TP53:NM_000546:exon7:c.G772A:p.E528K	X^b	X	X	X	X	
	KIT	Nonsynonymous SNV	chr4:55593464	KIT:NM_000222:exon10:c.A1621C:p.M541L	X	X	X	X	X	
	KDR	Nonsynonymous SNV	chr4:55972974	KDR:NM_002253:exon11:c.A1416T:p.Q472H	X	X	X	X	X	
	TP53	Nonsynonymous SNV	chr17:7579472	TP53:NM_000546:exon4:c.C215G:p.P72R	X	X	X	X	X	
	FGFR3	Synonymous SNV	chr4:1807894	FGFR3:NM_000042:exon14:c.G1953A:p.T651T	X	X	X	X	X	
	PDGFRA	Synonymous SNV	chr4:55141050	PDGFRA:NM_006206:exon12:c.A1701G:p.P567P	X	X	X	X	X	
	APC	Synonymous SNV	chr5:112175769	APC:NM_000338:exon16:c.G4479A:p.T1493T	X	X	X	X	X	
	EGFR	Synonymous SNV	chr7:55249063	EGFR:NM_000228:exon20:c.G2361A:p.Q787Q	X	X	X	X	X^b	
	RET	Synonymous SNV	chr10:43613843	RET:NM_0020975:exon13:c.G2307T:p.L769L	X	X	X	X	X	
8 High-grade ovarian serous carcinoma	TP53	Non-frameshift deletion	chr17:7577518	TP53:NM_000546:exon7:c.754_756del:p.252_252del	X	X	X	X	X	
	TP53	Nonsynonymous SNV	chr17:7579472	TP53:NM_000546:exon4:c.C215G:p.P72R	X^b	X	X	X	X	
	FGFRA	Synonymous SNV	chr4:1807894	FGR3:NM_000042:exon14:c.G1953A:p.T651T	X	X	X	X	X	
	APC	Synonymous SNV	chr5:112175769	APC:NM_000038:exon16:c.G4479A:p.T1493T	X	X	X	X	X	
	EGFR	Synonymous SNV	chr7:55249063	EGFR:NM_000228:exon20:c.G2361A:p.Q787Q	X^b	X	X	X	X	
	NOTCH1	Synonymous SNV	chr9:13997767	NOTCH1:NM_001761:exon27:c.G5034T:p.L1678L	X^b	X	X	X	X	
	RET	Synonymous SNV	chr10:43613843	RET:NM_0020975:exon13:c.G2307T:p.L769L	X	X	X	X	X	
	RET	Synonymous SNV	chr10:43615633	RET:NM_0020975:exon15:c.C2712G:p.S904S	X	X	X	X	X	
	HRAS	Synonymous SNV	chr11:534242	HRAS:NM_005343:exon2:c.T81C:p.H27H	X	X	X	X	X	
9 High-grade ovarian serous carcinoma	TP53	Nonsynonymous SNV	chr3:28610183	TP53:NM_000546:exon6:c.A659G:p.Y220C	X	X	X	X	X	
	VHL	Nonsynonymous SNV	chr3:10188296	VHL:NM_000551:exon2:c.A439G:p.I147V	X	X	X	X	X	
	MET	Nonsynonymous SNV	chr7:11634026	MET:NM_001127500:exon2:c.A124G:p.N375S	X	X	X	X	X	
	TP53	Nonsynonymous SNV	chr17:7578190	TP53:NM_000546:exon4:c.C215G:p.P72R	X	X	X	X	X	
	FGFRA	Synonymous SNV	chr4:1807894	FGR3:NM_000042:exon14:c.G1953A:p.T651T	X	X	X	X	X	
	APC	Synonymous SNV	chr5:112175769	APC:NM_000338:exon16:c.G4479A:p.T1493T	X	X	X	X	X	
	EGFR	Synonymous SNV	chr7:55249063	EGFR:NM_000228:exon20:c.G2361A:p.Q787Q	X	X	X	X	X	
	MET	Synonymous SNV	chr7:11633967	MET:NM_001127500:exon2:c.C514T:p.S178S	X	X	X	X	X	
	RET	Synonymous SNV	chr10:43613843	RET:NM_0020975:exon13:c.G2307T:p.L769L	X	X	X	X	X	
TABLE II

Variant	Gene	Genomic coordinates	Laboratory ID	Variant type Genomic variant	Laboratory ID					
10	Lung squamous cell carcinoma	chr17:7577120	TP53:NM_000546:exon8:c.G818T:p.R273L	X X X X X	KIT:NM_000222:exon10:c.A1621C:p.M541L	X X X X X	FGFR3:NM_000142:exon14:c.G1953A:p.T651T	X X X X X	APC:NM_000038:exon16:c.G4479A:p.T1493T	X X X X X
		chr17:7579472	TP53:NM_000546:exon4:c.C215G:p.P72R	X X X X X	PDGFRA:NM_006206:exon12:c.A1701G:p.P567P	X X X X X	RET:NM_020975:exon13:c.G2170T:p.P761L	X X X X X		
		chr4:55141050	PDGFRA:NM_006206:exon12:c.A1701G:p.P567P	X X X X X	RET:NM_020975:exon13:c.G2170T:p.P761L	X X X X X				

An "X" indicates a variant identified above the threshold defined for the proficiency testing evaluation (≥5% variant allele frequency and ≥100× for the Princess Margaret Cancer Centre, Toronto; ≥500× for the Juravinski Cancer Centre, Hamilton; the London Health Sciences Centre, London; The Ottawa Hospital, Ottawa; and the Kingston Health Sciences Centre, Kingston). Variant was identified at below laboratory-defined thresholds.

Another issue related to the use of FFPE tumour tissue is potential tumour heterogeneity, which can contribute to variability in the detection of variants. A recent survey involving 111 laboratories assessed inter-laboratory technical performance for NGS-based solid tumour oncology assays and identified substantial agreement (>98%) in the accuracy of detection for single nucleotide variants occurring at a VAF more than 15%. Indeed, although we observed no difference in the final exonic variants identified in the present study (98 of 98), variability in the VAF and depth of coverage was evident during quality assessment of the vcf file data. Although that variability might be attributable to tumoural heterogeneity, it might also result from differences in pre-analytic sample processing or NGS quality or in differences in the sequencing technology, and further delineating the causes of those differences in VAF and coverage depth is not possible. It is also noteworthy that, although complete concordance was observed in the technical identification of the 98 variants, 28 of 98 variants were identified by 1 or more sites below the lower VAF and quality threshold cut-offs defined in the study.

With respect to the interpretation and reporting of variants in tumour molecular profiling, discrepancies were observed: only 3 variants were selected as clinically reportable by all participating sites, and only 10 variants were concordantly reported by 3 or more sites. In part, those results reflect site-specific interpretation of the instructions for the PT scheme (supplemental Table 1), because some laboratories reported only variants in genes routinely reported in clinical practice at that institution (rather than those reported in the OCTANE study), regardless of tumour type. This site-specific reporting practice highlights the significant gap in the classification of what is considered a "clinically reportable" variant in the Ontario context and likely reflects practice in other Canadian provinces, because national standards for somatic variant interpretation do not currently exist. With respect to using published classification schemes to classify variants as “actionable,” there was also no consensus concerning the classification scheme applied, with 3 sites applying the AMP/ASCO/CAP guideline, 1 using the Sukhai et al. guideline, and 1 not using a guideline. Of the sites that used the AMP/ASCO/CAP guideline, 2 included only tier i or ii variants as “clinically reportable”; another laboratory included tier i–iv variants. That observation underscores issues related to the understanding of the PT instructions, because tier iii and iv variants are generally not considered clinically actionable or reportable.
TABLE III
Clinically reported variants, variant annotations, and number of concordantly reported variants by participant site

Specimen tumour	Gene	Transcript	HGVS	Variant reported by site	Concordantly reported variants
1 Melanoma	KDR	NM_002253.2	c.1416A>T p.Gln472His	X	X
	KIT	NM_000222.2	c.1621A>C p.Met541Leu	X	X
	NRAS	NM_002524.4	c.181C>A p.Glu61Lys	X	X
	TPS3	NM_000546.5	c.215G>C p.Pro72Arg	X	X
2 Colorectal adenocarcinoma	APC	NM_000038.5	c.4285C>T p.Gln1429Ter	X	X
	KDR	NM_002253.2	c.1416A>T p.Gln472His	X	X
	KRAS	NM_000546.5	c.35G>A p.Glu11Asp	X	X
	TPS3	NM_000546.5	c.215G>C p.Pro72Arg	X	X
3 Low grade ovarian serous carcinoma	KIT	NM_000222.2	c.1621A>C p.Met541Leu	X	X
	KRAS	NM_0035360.2	c.35G>A p.Glu11Asp	X	X
	TPS3	NM_000546.5	c.215G>C p.Pro72Arg	X	X
4 High grade ovarian serous carcinoma	KIT	NM_000222.2	c.1621A>C p.Met541Leu	X	X
	MET	NM_00112750.2	c.309C>T p.Asp103Glu	X	X

Current Oncology, Vol. 26, No. 6, December 2019 © 2019 Multimed Inc.
Specimen tumour	Gene	Transcript	HGVS	Variant reported by site	Concordantly reported variants								
		cDNA	Protein	Site 1	Site 2	Site 3	Site 4	Site 5	All sites	≥4 Sites	≥3 Sites	≥2 Sites	1 Site
4 High grade ovarian serous carcinoma continued	TP53	NM_00546.5	c.892G>T	p.Glu298Ter	X	X	X	Tr. II/Cl. 2	X	Tr. II/Cl. 2			
	TP53	NM_00546.5	c.215C>G	p.Pro72Arg	X	Tr. II/Cl. 2							
5 Liver adenocarcinoma	APC	NM_00038.5	c.394G>C	p.Glu1317Gln	X	Tr. II/Cl. 2							
	IDH1	NM_005896.2	c.394C>T	p.Arg132Cys	X	Tr. I/Cl. 1	X	Tr. II/Cl. 2	X	Tr. II/Cl. 2			
	TP53	NM_00546.5	c.215C>G	p.Pro72Arg	X	Tr. IV/Cl. 4							
6 Parathyroid carcinoma	ATM	NM_000051.3	c.2572T>C	p.Phe858Leu	X	Tr. III/Cl. 3							
	PIK3CA	NM_006218.3	c.1173A>G	p.Ile391Met	X	Tr. IV/Cl. 4							
	TP53	NM_00546.5	c.215C>G	p.Pro72Arg	X	Tr. IV/Cl. 4							
7 Lung adenocarcinoma	ERBB2	NM_004448.2	c.2313_2324	dupATACGT	X	Tr. III/Cl. 3	X	Tr. II/Cl. 2	X	Tr. II/Cl. 2			
	KDR	NM_002253.2	c.1416A>T	p.Gln472His	X	Tr. III/Cl. 3							
	KIT	NM_000222.2	c.1621A>G	p.Met541Leu	X	Tr. IV/Cl. 4							
	TP53	NM_000546.5	c.215C>G	p.Pro72Arg	X	Tr. IV/Cl. 4							
	TP53	NM_000546.5	c.772G>A	p.Glu258Lys	X	Tr. III/Cl. 3	X	Tr. II/Cl. 2	X	Tr. II/Cl. 2			
8 High grade ovarian serous carcinoma	NOTCH1	NM_017617.4	c.5034G>T	p.Leu1678=	X	Tr. III/Cl. 3							
Specimen tumour	Gene	Transcript	HGVS	Variant reported by site	Concordantly reported variants								
-----------------	--------	------------	--------------	--------------------------	-------------------------------								
	cDNA	Protein	Site 1	Site 2	Site 3	Site 4	Site 5	All sites	≥4 Sites	≥3 Sites	≥2 Sites	1 Site	
8 High grade ovarian serous carcinoma continued	TP53	NM_000546.5	c.215C>G	p.Pro72Arg	X	Tr. IV/Cl. 4	X						
9 High grade ovarian serous carcinoma	MET	NM_001127500.1	c.1124A>G	p.Asn375Ser	X	Tr. IV/Cl. 4	X						
	TP53	NM_000546.5	c.215C>G	p.Pro72Arg	X	Tr. IV/Cl. 4	X						
	TP53	NM_000546.5	c.659A>G	p.Tyr220Cys	X	Tr. II/Cl. 2	X	Tr. II/Cl. 2	X				
	VHL	NM_000551.3	c.439A>G	p.Ile147Val	X	Tr. III/Cl. 3	X	Tr. III/Cl. 3	X				
10 Lung squamous cell carcinoma	KIT	NM_000222.2	c.1621A>C	p.Met541Leu	X	Tr. IV/Cl. 4	X						
	TP53	NM_000546.5	c.818G>T	p.Arg273Leu	X	Tr. III/Cl. 3	X	Tr. III/Cl. 2	X	Tr. II/Cl. 2	X		
	TP53	NM_000546.5	c.215C>G	p.Pro72Arg	X	Tr. IV/Cl. 4	X						

HGVS = Human Genome Variation Society; cDNA = complementary DNA; X = variant reported; Tr = tier; Cl = class; NC = variant not classified, but clinically reported.
CONCLUSIONS

Our pilot molecular profiling pt scheme for solid tumours at 5 clinical laboratories in Ontario demonstrates the value of an analyte-based end-to-end pt approach, and also highlights issues related to selection of sample source material, evaluation of ngs quality, and discrepancies in somatic variant interpretation and reporting. Although complete concordance in the technical identification of variants was observed across laboratories and sequencing platforms, significant variability was found in the definition of those variants considered to be “clinically reportable,” compounded by site-specific practices for reporting and variant classification practices. Our pilot study demonstrates a successful pt scheme within the Canadian clinical laboratory context and also demonstrates a need to define the clinically relevant genes and variants to be reported and an appropriate variant classification scheme in solid tumour molecular profiling to reduce cross-institutional inconsistencies.

ACKNOWLEDGMENTS

We thank Daria Grafodatskaya (Hamilton Health Sciences and St. Joseph’s Healthcare, Hamilton, ON), Henry Wong (Kingston Health Sciences Centre, Kingston, ON), and Laura Semenuk (Kingston Health Sciences Centre, Kingston, ON) for technical contributions.

The octane study was conducted with the support of the Ontario Institute for Cancer Research through funding provided by the Government of Ontario (grant nos. POCT.051 and P.AO.075).

CONFLICT OF INTEREST DISCLOSURES

We have read and understood Current Oncology’s policy on disclosing conflicts of interest, and we declare the following interests: HC reports grants from the Ontario Institute for Cancer Research during the conduct of the study. HF reports nonfinancial support from Thermo Fisher outside the submitted work. BL reports personal fees from Novartis, Bayer, Roche, and AstraZeneca outside the submitted work. BS reports fees from the Ontario Institute for Cancer Research during the conduct of the study. LLS reports other consideration from Merck (compensated), Pfizer (compensated), Celgene (compensated), AstraZeneca/Medimmune (compensated), MorphoSys (compensated), Roche (compensated), Geneseeq Technology (compensated), Loxo Oncology (compensated), Oncorus (compensated), Symphogen (compensated), Seattle Genetics (compensated); grants from Novartis, Bristol–Myers Squibb, Pfizer, Boehringer Ingelheim, GlaxoSmithKline, Roche/Genentech, Karyopharm, AstraZeneca/MedImmune, Merck, Celgene, Astellas, Bayer, AbbVie, Amgen, Symphogen, Intensity Therapeutics, Mirati Therapeutics, and Shattuck Labs; and other consideration from Agios Pharmaceuticals (spouse) outside the submitted work. PLB is a member of the steering committee for the American Association for Cancer Research Project genie, past chair of the Canadian Cancer Trials Group Investigational New Drug Committee, a member of the executive board for the Breast International Group, a section editor for The Oncologist and for JNCI Cancer Spectrum outside the submitted work. The remaining authors have no conflicts of interest to disclose.

AUTHOR AFFILIATIONS

*Toronto, ON: Advanced Molecular Diagnostics Laboratory, Princess Margaret Cancer Centre, University Health Network (Spence, Stockley); Bioinformatics and HPC Core, Princess Margaret Cancer Centre, University Health Network (Stickley); Cancer Genomics Program, Princess Margaret Cancer Centre, University Health Network (Yu, Chow, Siu); Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network (Siu, Bedard); Department of Medicine, University of Toronto (Siu, Bedard); Department of Clinical Laboratory Genetics, University Health Network (Stickley); Department of Laboratory Medicine and Pathobiology, University of Toronto (Stockley); †Kingston, ON: Molecular Diagnostics, Kingston Health Sciences Centre (Feilotter); Department of Pathology and Molecular Medicine, Queen’s University (Feilotter); 1Ottawa, ON: Molecular Oncology Diagnostics Laboratory, The Ottawa Hospital (Lo); Department of Pathology and Laboratory Medicine, University of Ottawa (Lo); 2Hamilton, ON: Hamilton Health Sciences and St. Joseph’s Healthcare (McCready); Department of Pathology and Molecular Medicine, McMaster University (McCready); 3London, ON: Pathology and Laboratory Medicine Program, London Health Sciences Centre (Sadikovic); Department of Pathology and Laboratory Medicine, Western University (Sadikovic).

REFERENCES

1. Nagarajan R, Bartley AN, Bridge JA, et al. A window into clinical next-generation sequencing–based oncology testing practices. Arch Pathol Lab Med 2017;141:1679–85.
2. Merker JD, Devereaux K, Iafrate AJ, et al. Proficiency testing of standardized samples shows very high interlaboratory agreement for clinical next-generation sequencing–based oncology assays. Arch Pathol Lab Med 2018;143:463–71.
3. Schriever I, Aziz N, Jennings LR, Richards CS, Voelkerding KV, Weck KE. Methods-based proficiency testing in molecular genetic pathology. J Mol Diagn 2014;16:283–7.
4. Jennings LJ, Arcila ME, Corless C, et al. Guidelines for validation of next-generation sequencing–based oncology panels: a joint consensus recommendation of the Association for Molecular Pathology and College of American Pathologists. J Mol Diagn 2017;19:341–65.
5. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010;26:841–2.
6. Li MM, Datto M, Duncavage EJ, et al. Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn 2017;19:4–23.
7. Sukhai MA, Craddock KJ, Thomas M, et al. A classification system for clinical relevance of somatic variants identified in molecular profiling of cancer. Genet Med 2016;18:128–36.
APPENDIX A: GENE LISTS FOR MOLECULAR PROFILING ASSAYS

TABLE AI
Gene list for the amplicon-based Ion AmpliSeq Cancer Hotspot Panel v2

Gene	Gene	Gene	Gene	Gene	Gene
ABL1	EGFR	GNAS	KRAS	PTPN11	PTPN11
AKT1	ERBB2	GNAQ	MET	RB1	RET
ALK	ERBB4	HNF1A	MLH1	RET	SMAD4
APC	EZH2	HRAS	MPL	SMARC1	SMO
ATM	FBXW7	IDH1	NOTCH1	SMARCB1	STK11
BRAF	FGFR1	JAK2	NPM1	SMO	TP53
CDH1	FGFR2	JAK3	NRAS	SRC	VHL
CDKN2A	FGFR3	IDH2	PDGFRA	STK11	
CSF1R	FLT3	KDR	PIK3CA		
CTNNB1	GNA11	KIT	PTEN		

Thermo Fisher, Waltham, MA, U.S.A. (includes regions of 50 genes; was used by the 4 participating Ontario laboratories: Juravinski Cancer Centre, Hamilton; London Health Sciences Centre, London; The Ottawa Hospital, Ottawa; and Kingston Health Sciences Centre, Kingston.)

TABLE AII
Gene list for the SureSelect custom hybridization capture panel of 555 cancer-related genes (“UHN Hi5 Panel”)

Gene	Gene	Gene	Gene	Gene	Gene	
ABL1	CDH2	EWSR1	IKBKB	MPL	PMS2	
ABL2	CDH20	EXT1	IKKB	MRE11A	POT1	
ACTG1	CDH23	EXT2	IKZF1	MSH2	POUS1F1	
ACVR2A	CDH5	EZH2	IL2	MSH6	PPARG	
ADAMTS20	CDK12	EZR	IL21R	MTR	PPP2R1A	
AFF1	CDK4	FAM175A	IL3	MTR	PP6C	
AFF3	CDK6	FAM46C	IL6ST	MTRR	PRCC	
AKAP9	CDK8	FAM5C	IL7R	MUC1	PRDM1	
AKT1	CDKN1B	FANCA	ING4	MUTYH	PRDM16	
AKT2	CDKN2A	FANCC	INHBA	MYB	PREX2	
AKT3	CDKN2B	FANCD2	INP4B	MYC	PRKAR1A	
ALK	CDKN2C	FANCE	IRF4	MYCL	PRKDC	
AMER1	CEBPA	FANCF	IRF8	MYCN	P53P1	
ANKRD24	CHEK1	FANCG	IRS2	MYD88	PTCH1	
APC	CHEK2	FANCL	ITGA10	MYH11	PTEN	
AR	CHIC2	FAS	ITGA9	MYH9	PTGS2	
ARAF	CIC	FBXW7	ITGB2	NBN	PTPN11	
ARFGAP3	CK51B	FGF10	ITGB3	NCOA1	PTPTD	
ARFRP1	CMPK1	FGF14	JAK1	NCOA2	RALGDS	
ARID1A	COL1A1	FGF19	JAK2	NCOA4	RALGDS	
ARID2	CRBN	FGF23	JAK3	NCOA2	RALGDS	
ARNT	CREB1	FGF3	JUN	NF1	RAD21	
ASPSCR1	CREB3L2	FGF4	KAT6A	NF2	RAD50	
ASXL1	CREBBP	FGF6	KAT6B	NFE2L2	RAD51C	
ATF1	CRKL	FGFRI	KDM5A	NFKB1	RALGDS	
ATM	CRLF2	FGFRI	KDM5C	NFKB2	RALGDS	
ATR	CRTC1	FGFRI	KDM6A	NFKBIA	TFE3	
ATRX	CSF1R	FGFR4	KDR	NIN	RARA	TGFβ1
-------	--------	--------	------	------	-------	--------
AURKA	CSF3R	F1H	KEAP1	NXX2–1	RB1	TGFβR2
AURKB	CSMD3	FIP1L1	KIT	NLRP1	RBM15	TCM7
AURKC	CSNK2B	FLCN	KL6	NOTCH1	REClQ4	TKB51
AXL	CTCF	FLJ1	KLI6	NOTCH2	REL	TIMP3
B2M	CTDNep1	FLT1	KMT2A	NOTCH4	RET	TLR2
BA1	CTNNA1	FLT3	KMT2C	NPM1	RHOH	TLR4
BAP1	CTNNB1	FLT4	KMT2D	NRAS	RICTOR	TLI1
BARD1	CUL3	FN1	KRAS	ND3	RNAEL	TMEM216
BCL10	CYLD	FOXA1	LAMP1	NTRK1	RNF2	TMRSS2
BCL11A	CYP2C19	FOXL2	LCK	NTRK2	RNF213	TNAFAP3
BCL11B	CYP2D6	FOXO1	LIFR	NTRK3	RNF43	TNFRSF14
BCL2	DAXX	FOXO3	LPHN3	NUMA1	ROS1	TNK2
BCL2L1	DCC	FOXP1	LPP	NUP214	RPL22	TQP1
BCL2L2	DDB2	FOXP4	LRP1B	NUP93	RP1n	TP53
BCL3	DDT3	FUS	LTF	NUP98	RP56K2A	TPM3
BCL6	DDR2	FZR1	LTK	PAK3	RPTOR	TPR
BCL9	DDX3X	G6PD	MAF	PALB2	RM1	TRAF3
BCR	DRS3	GATA1	MAFB	PARP1	RUNX1	TRIM24
BCO1L1	DICER1	GATA2	MAGE1	PAN3	RUNX1T1	TRIM33
BCR	DR3	GATA3	MACH	PAX3	RNF213	TNAFAP3
BIR2	DNLH9	CDNF	MALT1	PAX7	SBDS	TRRAP
BIRC3	DNMT3A	GID4	MAML2	PAX8	SDHA	TSC1
BIRC5	DOT1L	GNA11	MAP2K1	PBRM1	SDHB	TSC2
BM	DPDY	GNA13	MAP2K2	PBX1	SDHC	TSHR
BNNK	DST	GNAI3	MAP2K4	PCHDAC2	SDHD	TYK2
BMP11A	EGRF	GNAQ	MAP3K1	PDE4DIP	SEPT9	UAA1F1
BOD1L1	EGR1	GNAS	MAP3K7	PDGFB	SETBP1	UBR5
BRAF	EML4	GPR124	MAPK3	PDGFR4	SETD2	UGTLA1
BRCA1	EP300	GPS2	MAPK8	PDGFR8	SF3B1	UMODL1
BRCA2	EP400	GRN2A	MARK1	PDK1	SGK1	USP9X
BRD3	EPCAM	GRM8	MARK4	PER1	SH2B3	VHL
BRIP1	EPHA3	GSK3B	MBD1	PGAP3	SH2D1A	WAS
BTK	EPHA5	GUClY1A2	MCL1	PHF6	SMAD2	WHSC1
BUB1B	EPHA7	HCAR1	MDM2	PHIP2P2	SMAD4	WISP3
C1orf30	EPHB1	HGF	MDM4	PHOX2B	SMARCA4	WRN
CACNA1E	EPHB4	HIF1A	MECOM	PIK3C2B	SMARCB1	WT1
CALR	EPHB6	HIST1H1E	MED12	PIK3C3	SMC1A	XPA
CARD11	ERBB2	IGF1	MEF2B	PIK3CA	SMC3	XPC
CAS5	ERBB3	HNF1A	MEN1	PIK3CB	SMO	XPO1
CASP8	ERBB4	HNRNPK	MET	PIK3CD	SMUG1	XRC2C
CBFB	ERCC1	HOOK3	MITF	PIK3CG	SNX31	ZMYM2
TABLE AII Continued

Gene 1	Gene 2	Gene 3	Gene 4	Gene 5	Gene 6	Gene 7
CBL	ERCC2	HOXB13	MKL1	PIK3R1	SOCS1	ZNF217
CCND1	ERCC3	HRAS	MLF1	PIK3R2	SOCS3	ZNF384
CCND2	ERCC4	HSP90AA1	MLH1	PIM1	SOX10	ZNF521
CCND3	ERCC5	HSP90AB1	MLH3	PKD1L2	SOX11	ZNF703
CCNE1	ERG	ICK	MLLT1	PKHD1	SOX2	ZRSR2
CD74	ESR1	ID3	MLLT10	PLAG1	SP140	ZSWIM4
CD79A	ETS1	IDH1	MLLT3	PLCG1	SPEN	
CD79B	ETV1	IDH2	MLLT4	PLCG2	SPI1	
CDC73	ETV4	IGF1R	MMP2	PLEKHC5	SPOP	
CDH11	ETV5	IGF2R	MNX1	PML	SRC	
CDH11	ETV6	IGF2R	MNX1	PML	SRC	

a Agilent, Santa Clara, CA, U.S.A. (used at the reference laboratory, Princess Margaret Cancer Centre, Toronto).

UNH = University Health Network.