Modeling of the Labour Force Redistribution in Investment Projects with Account of their Delay

I.D. Kolesin2, O.A. Malafeyev2, I.V. Zaitseva*1, A.N. Ermalakova1, D.V. Shlaev1

1Stavropol State Agrarian University, 12, Zootechnicheskiy Lane, Stavropol, Russia, 355017
2Saint-Petersburg State University, 7-9, University Emb., Saint-Petersburg, Russia, 199034

*1zirinazirina2015@yandex.ru, 1dannar@list.ru, 1shl-dmitrij@yandex.ru, 2malafeyeva@mail.ru

September 19, 2017

Abstract. The mathematical model of the labour force redistribution in investment projects is presented in the article. The redistribution mode of funds, labour force in particular, according to the equal risk approach applied to the loss of some assets due to delay in all the investment projects is provided in the model. The sample of the developed model for three investment projects with the specified labour force volumes and their defined unit costs at the particular moment is given.

Key words: model, modeling, investments, labour force
Mathematics Subject Classification (2010): 90-00, 90B50, 90B70

1. Introduction

The introduction of investment projects in volatile conditions is followed by the risk to lose the major part of the assets due to the investments delay. These losses are stipulated by, for instance, inflation. In this case, having received the initial sum of money, a company could pay for some equal (without priority) work or resources. As the inflation level varies for different resources, it is reasonable to follow the principle of equity and allot some assets for every investment projects with the equal loss risk due to delay. Since all the investment projects are equal, the terms of delay is also supposed to be equal [1-3].

It should be noted that the principle of equity allows the company avoiding the conflict with a customer if it hasn’t apply any other approach.

We’ll define the problem of the specified assets redistribution per labour force following the risk equity [4-7].

2. The Mathematic Model of the Labour Force Redistribution in Investment Projects

2.1. Problem Setting

\(n \) of investment projects are considered. It is required to allot the resources (as well as labour force) in volume \(V_1, \ldots, V_n \) in \(n \) investment projects. Suppose, this
work requires \(S_i = c_i V_i, i = 1,n \). But the assets at present \((B)\) are not enough for the labour force payment in \(n \) all the investment projects, i.e.

\[
S_1 + S_2 + \cdots + S_n > B.
\]

If only a part of labour force is employed in an investment project, it could require more investing till the further funds are received because of inflation. Suppose, at present the labour resources are divided in volumes

\[
\left(u_1 + \cdots + u_n = B \right).
\]

Then, the following investments are required to complete the balance:

\[
S'_i = c'_i (V_i - u_i), c'_i > c_i, i = 1,n,
\]

where, \(c_i \) - costs per unit at the time \(t_0 = 0 \), \(c'_i \) - costs per unit after the time \(t \).

Let us assume costs growth pro rata time \(t \):

\[
c'_i = c_i + k_i t, k_i > 1, i = 1,n.
\]

We comprise the ratio:

\[
\frac{S'_i}{S_i} = r_i, 1,n.
\]

We call \(r_i \) - investment project failure risk.

It is required to allot the assets \((B)\) according to the equal risk approach in all the investment projects.

\[
r_1 = \cdots = r_n,
\]

i.e. to find such \(u_1, \ldots, u_n \), that the formula

\[
\frac{c'_i (V_i - u_i)}{c_i u_i} = r
\]

is fulfilled and, where \((r \text{ is unknown value})\).

2.2. Method of Solution

Suppose, the terms of delay \(T_1, \ldots, T_n \) are set. Then, \(c'_i = c_i + k_i T_i, i = 1,n \).

Comprising the ratio \(\frac{c'_i (V_i - u_i)}{c_i u_i} = r \), \(i \in 1,n \), we find the formula for \(u_i \) out of every expression

\[
u_i = \frac{c'_i V_i}{c'_i + c_i u_i}, i \in 1,n.
\]

Let us substitute these formulas to the equation \(c_1 u_1 + \cdots + c_n u_n = B \) and suppose \(r_i = r, i \in 1,n \). We get the equation as to the unknown \(r \). Suppose, its solution is \(r = r \). Substituting the value found \(r \) to the expression for \(u_i \), we find all \(u_i \).

2.3. Sample

Suppose, there are three investment projects \((n)\) with labour force volumes:

\[
V_1 = 100, V_2 = 300, V_3 = 250
\]

and costs per unit at the time \(t_0 = 0 \) are \(c_1 = 2, c_2 = 3, c_3 = 1 \). Suppose, all the works are delayed at the time \(T_1 = T_2 = T_3 = 10 \), the labour force inflation rises respectively to time, and the proportionality coefficients are defined:

\[
k_1 = 0.1, k_2 = 0.4, k_3 = 0.2.
\]

Then in time \(T=10 \), the new costs per unit are:

\[
c'_1 = 3, c'_2 = 7, c'_3 = 3 \quad (c'_i = c_i + k_i T_i, i = 1,2,3).
\]
Suppose, the company obtains the assets in the amount of $B=295$ at the time $t_0 = 0$, whereas, the projecting costs of assets is

$$2 \cdot 100 + 3 \cdot 300 + 1 \cdot 250 = 1350.$$

It is necessary to allot the assets B in three investment projects, so that the total cost of labour force in volumes u_1, u_2, u_3 is equal to $B = 295$:

$$c_1 \cdot u_1 + c_2 \cdot u_2 + c_3 \cdot u_3 = 295.$$

Then we comprise the expression based on the equal risk approach:

$$\frac{c_1' (100 - u_1)}{c_1 u_1} = \frac{c_2' (300 - u_2)}{c_2 u_2} = \frac{c_3' (250 - u_3)}{c_3 u_3} = r.$$

Having expressed each of u_1, u_2, u_3 in r and substituted them in (*), we receive:

$$c_1 \frac{c_1' 100}{c_1 + c_1 r} + c_2 \frac{c_2' 300}{c_2 + c_2 r} + c_3 \frac{c_3' 250}{c_3 + c_3 r} = 295.$$

The only positive root r of this equation will be equal to $r^* = 8.3$ (residual 295-294.476=0.524).

Substituting r^* in the expression for u_i

$$u_i = \frac{c_i' v_i}{c_i' + c_i r}, \quad i = 1, 2, 3,$$

we find the required volumes of labour force:

$$u_1 = 15.3, u_2 = 65.8, u_3 = 66.4.$$

3. Results and Discussion

It should be mentions that theoretical and practical aspects of the sustainable growths of the economy, in general, and the economy of particular regions are not worked out sufficiently. At present, there is much concern about the labour force management. If the essence of the labour force management is clear enough, its basic principles are to be identified and studied.

Thus, the topicality of labour force redistribution for providing the stability and balance of positive geographical shifts is stipulated by the necessity to study social and economic factors of labour force development in the current economic environment.

The authors have studied the essence and performance of labour force in reasonable detail [15-16]. The problems concerning the labour force management on the basis of its structure were sufficiently considered, the main philosophy of formation management and major mathematical model-based methods were identified [17-18]. The economic methods of analysis, assessment and forecasting of the regional labour potential used to study the labour sector in agriculture Stavropol Territory were introduced [19-20].

4. Conclusion

In view of the above-mentioned, the research of the principles applied for the labour force alteration, the assessment of labour force planning and its impact on the regional economic development, the development and justification of methods and procedures used in the labour force management are turned out to be topical.

The concept of economy development based on the analysis considering the assessment and forecasting the labour force level could be formed as the result of
this research. The solution of the complex problems connected with the labour force management refers to the formulation of the new theoretical and methodological approach to the management system. Therefore, it’s required to create the corresponding economic and mathematic modeling apparatus, management and optimization procedures, to determine the quality criteria for transition processes and perspective management laws. The reference model differs by the ability to achieve the qualified take-off and immediate intellectual development of labour force at work getting more and more complex should be taken as a base.

Reference

1. Kolesin I.D. Identification of a model to describe relations between ethnic groups. Journal of Computer and Systems Sciences International. 2001; 40(1): 149-154.
2. Kolesin I.D. Identification of the subculture development model. Journal of Computer and Systems Sciences International. 2000; 39(4): 609-614.
3. Kolesin I.D. Mathematical model of interethnic relations. Journal of Computer and Systems Sciences International. 1998; 37(3): 475-481.
4. Kolesin I.D. Relaxation phenomena in a model of the development of a recurring epidemic. Differential Equations. 2001; 37(9): 1345-1346.
5. Kolesin I.D. The subculture phenomenon: modeling, possibilities of control. Journal of Computer and Systems Sciences International. 1997; 36(4): 651-655.
6. Malafeev O.A., Nemnyugin S.A. Generalized dynamic model of a system moving in an external field with stochastic components. Theoretical and Mathematical Physics. 1996; 107(3): 770.
7. Kolokoltsov V.N., Malafeyev O.A. Mean-field-game model of corruption. Dynamic Games and Applications. 2015; 1-14.
8. Alferov G.V., Malafeyev O.A. The robot control strategy in a domain with dynamical obstacles. Lecture Notes in Computer Science. 1996; 1093; 211-217.
9. Grigorieva X., Malafeev O. A competitive many-period postman problem with varying parameters. Applied Mathematical Sciences. 2014; 8(145-148): 7249-7258.
10. Kolesin I.D. Control in culturological systems. Journal Of Computer And Systems Sciences International. 2002; 41(5): 745-751.
11. Kolesin I.D. Self-organization and formation of small groups. Journal of Computer and Systems Sciences International. 2008; 47(2): 252-259.
12. Malafeev O.A. On the existence of nash equilibria in a noncoope rative n-person game with measures as coefficients. Communications in Applied Mathematics and Computational Science. 1995; 5(4): 689-701.
13. Pichugin Y., Alferov G., Malafeyev O. Parameters estimation in mechanism design. Contemporary Engineering Sciences. 2016; 9(1-4): 175-185.
14. Pichugin Y.A., Malafeyev O.A. Statistical estimation of corruption indicators in the firm. Applied Mathematical Sciences. 2016; 10(41-44): 2065-2073.
15. Kostyukov K.I., Zaitseva I.V., Bondarenko G.V., Svechinskaya T.A., and Nechayeva S.V. Workforce Planning as An Element of Control System. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2016 November – December; 7(6): 2315 - 2319.

16. Zaitseva I., Popova M. Technique to study the employment potential of the region: economic-mathematical aspect. World Applied Sciences Journal. 2013; 22 (1): 22-25.

17. Zaitseva I.V., Popova M.V., Ermakova A.N., Bogdanova S.V., and Rezenkov D.N. Determination Prospects Of Development Labor Potential In Agriculture Stavropol Territory Based On Assessment His Condition. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2016; 7(3): 2592-2595.

18. Zaitseva I.V., Ermakova A.N., Shlaev D.V., Shevchenko E.A., and Lugovskoy S.I. Workforce planning redistribution of the region's results. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2017; 8(1): 1862-1866.

19. Zaitseva I.V., Kruilina E.N., Ermakova A.N., Shevchenko E.A., and Vorokhobina Y.V. Application of Factor Analysis to Study the Labour Capacity of Stavropol Krai. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2016; 7(4): 2183-2186. Kruilina E.N., Tarasenko N.V., Miroshnitchenko N.V., Zaitseva I.V., and Dedyukhina I.F. Environmental Management in Agriculture: Problems and Solutions. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2016; 7(3): 1908-1912.

20. V.N. Kolokoltsov, O.A. Malafeyev, Dynamic competitive systems of multi-agent interaction and their asymptotic behavior (Part I), Vestnik grazhdanskich inzhenerov, 2010, № 4. p. 144-153.

21. O.A. Malafeyev, V.V. Sosnina, Management model process of cooperative trehagentnogo vzaimodestviya, Problemy mechaniki I upravleniya: Nelineinyye dinamicheskie systemy. 2007. № 39. p. 131-144.

22. O.A. Malafeyev, A.F.Zubova, Matematicheskoe I komputernoe modelirovanie socialno-economiceskikh system na urovne mnogoagentnogo vzaimodeistviya (Vvedenie v problem ravnovesiya, ustoichivosti I nadezhnosti), Saint-Peresburg, 2006, 1006 p.

23. K.V. Grigorieva, O.A. Malafeyev, Dinamicheskii process cooperativnogo vzaimodeistviya v mnogokriterialnoi(mnogoagentnoi) zadache pochtaliona, Vestnik grazhdanskikh inzhenerov, 2011. № 1. C. 150-156.

24. O.A. Malafeyev, Upravlyaemue conflictnye sistemy, Saint-Petersburg, 2000, 280 p.

25. Malafeev O.A., Kolokoltsov V.N. Understanding game theory, New Jersey, 2010, 286 p.

26. O.A. Malafeyev, O.S. Zenovich, V.K. Sevek, Mnogoagentnoe vzaimodeistvie v dinamicheskoi zadache upravleniya stroitelnymi proektami, Economiceskoe vozrozhdenie Rossii, 2012, №1, p. 124-131
27. I.V. Drozdova, O.A. Malafeyev, L.G. Parshina, Effectivnost’ variantov reconstrukcii gorodskoi zhiloi zastroiki, Economicheskoe vozrozhdenie Rossii, 2008. № 3. p. 63-67.
28. O.A. Malafeyev, O.V. Pachar, Dinamicheskaya nestacionarnaya zadacha investirovaniya proektov v usloviyakh konkurencii, Problemy mehnikiki I upravleniya: Nelineinyye dinamicheskie sistemy. 2009. № 41. p. 103-108.
29. D.A. Gordeev, O.A. Malafeyev, N.D. Titova, Probabilistic and deterministic model of the influence factors on the activities of the organization to innovate, Economicheskoe vozrozhdenie Rossii. 2011. № 1. p. 73-82.
30. K.V. Grigorieva, A.S. Ivanov, O.A. Malafeyev, Staticeskaya coalicionnaya model investirovaniya innovacionnykh proektov, Economicheskoe vozrozhdenie Rossii, 2011. № 4. p. 90-98.
31. O.A. Malafeyev, K.S. Chernych, Matematicheskoe modelirovanie razvitiya companii, Economicheskoe vozrozhdenie Rossii, 2004. № 1. p. 60-66.
32. D.A. Gordeev, O.A. Malafeyev, N.D. Titova, Stochasticeskaya model prinyatiya resheniya o vyvode na rynok innovacionnogo product, Vestnik grazhdanskikh inzhenerov, 2011. № 2. p. 161-166.
33. V.N. Kolokolstov, O.A. Malafeyev, Matematicheskoe modelirovanie system concurencii I cooperatsii (teoriya igr dlya vsekh), uchebnoe posobie / V. N. Kolokolstov, O. A. Malafeyev, Saint-Petersburg, 2012, p.624.
34. K.N. Gricai, O.A. Malafeyev, Zadacha concurentnogo upravleniya v modeli mnogoagentnogo vzaimodeistiya aukcionnogo tipa, Problemy mehnikiki I upravleniya: Nelineinyye dinamicheskie sistemy. 2007. № 39. p. 36-45.
35. I.V. Akulenkova, G.D. Drozdov, O.A. Malafeyev, Problemy rekonstrukcii zhilichno-communalnogo chozyaistva megapolisa, monografiya/ I.V. Akulenkova, G.D. Drozdov, O.A. Malafeyev; Ministerstvo obrazovaniya i nauki Rossiskoi Federatsii, Federalnoe agentstvo po obrazovaniyu, Sankt-Peterburgskii gosudarstvennyu universitet servisa I economici, Sankt-Peterburg, 2007, p.187.
36. A.P. Parfenov, O.A. Malafeyev, Ravnovesnoe I compromissnoe upravlenie v setevych modelyach mnogoagentnogo vzaimodeistiya, Problemy mehnikiki I upravleniya: Nelineinyye dinamicheskie sistemy, 2007. № 39. p. 154-167.
37. Malafeev O.A., Troeva M.S. A weak solution of Hamilton-Jacobi equation for a differential two-person zero-sum game, V sbornike: Preprints of the Eight International Symposium on Differential Games and Applications 1998. p. 366-369.
38. I.V. Drozdova, O.A. Malafeyev, G.D. Drozdov, Modelirovanie processov rekonstrukcii zhilichno-communalnogo chozyaistva megapolisa v usloviyakh concurrentnoi sredy, monografiya/ Phederalnoe agentstvo po obrazovaniyu, Sankt-Peterburgskii gosudarstvennyu arhitekturno-stroitelnui universitet, Sankt-Peterburg, 2008, p.147.
39. O.A. Malafeyev, D.S. Boitsov, N.D. Redinskikh, Compromiss I ravnoesnie v modelyach mnogoagentnogo upravleniya v corruptsionnoi seti sociuma, Molodoi uchenuy. 2014. № 10 (69). p. 14-17.
40. O.A. Malafeyev, K.N. Gritsai, Concurrentnoe upravlenie v modelyach aukcionov, Problemy mecheniki I upravleniya: Nelineinye dinamicheskie sistemy. 2004. № 36. p. 74-82.
41. T.A. Ershova, O.A. Malafeyev, Conflictynye upravleniya v modeli vhozhdeniya v rynok, Problemy mecheniki I upravleniya: Nelineinye dinamicheskie sistemy. 2004. № 36. p. 19-27.
42. K.V. Grigorieva, O.A. Malafeyev, Metody resheniya dinamicheskoi mnogokriterialnoi zadachi pochtaliona, Vestnik grazhdankich inzhenerov, 2011. № 4. p. 156-161.
43. O.A. Malafeyev, M.S. Troeva, Ustoichivost i nekotorye chislennye metody v konfliktno-upravlyaemych sistemah, Jakutsk, 1999, p.102.
44. V.S. Shkrabak, O.A. Malafeyev, A.V. Skrobach, V.F. Skrobach, Matematicheskie modelirovanie processov agropromyshlennom proizvodstve, Saint-Petersburg, 2000, p.336.
45. O.A. Malafeyev, O suchestvovanii obochennogo znacheniya dinamicheskoi igry, Vestnik Sankt-Peterburgskogo universiteta. Seria 1. Matematika. Mekhanika. Astromoniya. 1972. № 4. p. 41-46.
46. O.A. Malafeyev, A.I. Muraviev, Matematicheskie modeli conflictnych situacii i ih razreshenie. Saint-Petersburg, 2000, Tom 1. Obchaya teoriya I vspomogatelnye svedeniya, p.283.
47. O.A. Malafeyev, G.D. Drozdov, Modelirovanie processov c sisteme upravleniya gorodskim stroitelsvom, Sankt-Peterburg, 2001, Tom 1, p.401.
48. O.A. Malafeyev, O.A. Koroleva, Model corruptsii pri zakluchenii kontraktov, V sbornike : Processy upravleniya I ustoichivost. Trudy XXXIX mezhdunarodnoi nauchnoi konferentsii aspirantov I studentov. Pod redakciei N.V. Smirnova, G.Sh. Tamasyana. 2008. p. 446-449.
49. O.A. Malafeyev, A.I. Muraviev, Modelirovanie conflictnych situacii v socialno-economicheiskih systemach. Sankt-Peterburg, 1998. p.317.
50. G.D. Drozdov, O.A. Malafeyev, Modelirovanie mnogoagentnogo vzaimodeistviya processov strachovaniya. Monography / G.D. Drozdov, O.A. Malafeyev: Ministerstvo obrazovaniya I nauki Rossiskoi Federatsii, Sankt-Peterburgskii gos. un-t servisa I economici, Sankt-Peterburg, 2010.
51. A.F. Zubova, O.A. Malafeyev, Ustoichivost po Lyapunovu i kolebatelnost v economicheiskih modelyach. Saint-Petersburg, 2001, p.101.
52. V.M. Bure, O.A. Malafeyev, Soglasovannaya strategiya v povtoryauchichsya konechnykh igrah N lits. Vestnik Sankt-Peterburgskogo universiteta. Seriya 1. Matematika. Mekhanika. Astronomiya. 1995. № 1. p. 120-122.
53. O.A. Malafeyev, O suchestvovanii znacheniya igry presledovaniya, Sibirskii zhurnal issledovaniya operatsii. 1970. № 5. p. 25-36.
54. Malafeyev O.A., Redinskikh N.D., Alferov G.V. Electric circuits analogies in economics modeling: corruption networks, In proceeding: 2nd International Conference on Emission Electronics (ICEE) Selected papers. Proceedings Edited by: N. V. Egorov, D. A. Ovysannikov, E. I. Veremey. 2014. p. 28-32.
55. O.A. Malafeyev, Conflictno-upravlyaemye process so mnogimi uchastnikami, avtoreferat dissertacii na soiskanie uchenoi stepeni doktora fiziko-matematicheskikh nauk/Leningrad, 1987

56. Malafeyev O.A., Neverova E.G., Nemnyugin S.A., Alferov G.V. Multi-criteria model of laser radiation control, In proceedings: 2nd International Conference on Emission Electronics (ICEE) Selected papers. Proceedings Edited by: N. V. Egorov, D. A. Ovsyannikov, E. I. Veremey. 2014. p. 33-37.

57. V.N. Kolokoltsov, O.A. Malafeyev, Dynamicheskie concurrentnye sistemy mnogoagentnogo vzaimodeistviya I ih asimptoticheskoe povedenie (Chast II), Vestnik grazhdanskikh ingenerov, 2011. № 1. p. 134-145.

58. O.A. Malafeyev, Ustoichivost reshenii zadach mnogokriterialnoi optimizatsii I conflictno upravlyaemye dinamicheskie processy. Санкт-Петербург, 1990.

59. O.A. Malafeyev, N.D. Redinskikh, G.V. Alferov, T.E. Smirnova, Corruptsiya v modelyach aukciona pervoi ceny. V sbornike: Upravlenie v morskich I aerokosmicheskikh sistemah(UMAS-2014) 7-ya Rossiskaya Multiconferenciya po problemam upravleniya: Materialy conferentsii. GNC RF OAO “Concern” CNII “Electropribor”. 2014. p. 141-146.

60. Malafeyev O.A., Nemnyugin S.A., Alferov G.V. Charged particles beam focusing with uncontrollable changing parameters, In proceedings: 2nd International Conference on Emission Electronics (ICEE) Selected papers. Proceedings Edited by: N. V. Egorov, D. A. Ovsyannikov, E. I. Veremey. 2014. p. 25-27.

61. O.A. Malafeyev, N.D. Redinskikh, T.E. Smirnova, Setevaya model investirovaniya proektov s corruptsiei, Processu upravleniya I ustoichovost, 2015. T. 2. № 1. p. 659-664.

62. Yu.A. Pichugin, O.A. Malafeyev, Ob ozenke riska bankrotstva firmy, V knige: Dinamicheskie systemy: ustoichivost, upravlenie, optimizatstiya, Tezisy dokladov, 2013. p. 204-206.

63. Alferov G.V., Malafeyev O.A., Maltseva A.S. Game-Theoretic model of inspection by anti-corruption group, In proceeding: AIP Conference Proceedings 2015. p. 450009.

64. O.A. Malafeyev, N.D. Redinskikh, A.L. Gerchiu, Optimizationnaya model razmenehnya corruptsionerov v seti, V knige: Stritelstvo I ekspluataciya energoeefektivnych zdani (teoriya I praktika s uchetom corruptionnogo factora)(Passivehouse) Kolchedantsev L.M., Legalov I.N., Bad’in G.M., Malafeyev O.A., Aleksandrob E.E., Gerchiu A.L., Vasilev U.G., Kollektivnaya monographiya. Borovichi, 2015. p. 128-140.

65. O.A. Malafeyev, N.D. Redinskikh, T.E. Smirnova, Model investirovaniya proekta s vozmozhnoi corruptsiei, V knige: Stritelstvo I ekspluataciya energoeefektivnych zdani (teoriya I praktika s uchetom corruptionnogo factora)(Passivehouse) Kolchedantsev L.M., Legalov I.N., Bad’in G.M., Malafeyev O.A., Aleksandrob E.E., Gerchiu A.L., Vasilev U.G., Kollektivnaya monographiya. Borovichi, 2015. p. 140-146.
66. O.A. Malafeyev, K.S. Chernych, Matematicheskoe modelirovanie razvitiya companii, Economicheskoe vozrozhdenie Rossii, 2005. № 2. p. 23.

67. O.A. Malafeyev, A.I. Muraviev, Matematicheskie modeli conflictnykh situacii i ih razreshenie, Saint-Petersburg, 2001. Vol. 2, Matematicheskie osnovy modelirovaniya processov konkurencii i conflictov v socialno-ekonomicheskikh systemach, 2001, p. 294.

68. I.F. Kefeli, O.A. Malafeyev, Matematicheskie nachala globalnoi geopolitiki, Saint-Petersburg, 2013, p. 204.

69. O.A. Malafeyev, N.D. Redinskikh, A.P. Parfenov, T.E. Smirnova, Corruptsiya v modelyakh aukciona pervoi ceny. V sbornike :Instituty i mechanism innovatsionnogo razvitiya: mirovoi opyt i rossiskaya praktika. Sbornik nauchnykh statei 4-I Mezhdunarodnoi nauchno-practicheskoi konferencii. Otv. redactor: Gorochov A.A. 2014, p. 250-253.