Mucinous Tubular and Spindle Cell Carcinoma
A Review of Histopathology and Clinical and Prognostic Implications

Shridhi Nathany, MBBS; Vidya Monappa, MBBS, MD

Mucinous tubular and spindle cell carcinoma (MTSCC) of the kidney is a rare epithelial neoplasm of low malignant potential with characteristic histologic features. The earliest cases were reported by Ordonez and Mackay and MacLennan et al as “RCC [renal cell carcinoma] with unusual differentiation, originating in loop of Henle” and “low grade collecting duct carcinoma,” respectively. As a distinct entity, MTSCC was first reported in a series of 4 cases of low-grade renal tumors with myxoid appearance and distal nephron differentiation by Parwani et al. Mucinous tubular and spindle cell carcinoma was first included in the 2004 edition of the World Health Organization classification of RCCs, and in the recent update has gained importance owing to prognostic and therapeutic differences. Since then, fewer than 100 cases have been reported in the literature, with varied clinicopathologic characteristics and molecular features. As the name suggests, MTSCC is morphologically composed of 3 elements: spindle cells, tubules, and extracellular myxoid or mucinous stroma. The clinical course and prognosis are not well understood. In this short review, we highlight the clinical, pathologic, immunohistochemical, and molecular aspects of the tumor, along with the differential diagnoses, clinical behavior, and prognosis.

CLINICAL CHARACTERISTICS

According to the World Health Organization 2016 “blue book,” this tumor accounts for less than 1% of all renal tumors. It is a tumor primarily of adulthood, with a mean age of 58 years (range, 13–81 years). Mucinous tubular and spindle cell carcinoma shows a female preponderance, with a mean age of 50 years. Thereafter, many reports and series revealed a similar age and sex incidence with respect to this lesion.

The majority of the tumors are incidentally detected on abdominal imaging for other unrelated reasons. However, some may present with hematuria, flank pain, and a palpable abdominal mass. Hes et al reported an association with renal calculi, and Nouh et al reported its occurrence in patients with end-stage renal disease on dialysis for more than 10 years.

The tumor is generally found in the renal cortex, and very rarely may arise in the renal medulla also. On imaging, MTSCC displays an appearance that is different from that of clear cell RCC but similar to that of papillary RCC. On computed tomography imaging, it typically presents as a well-demarcated, exophytic, spherical or ovoid renal mass and shows an expansile growth pattern. Tumors less than 5 cm usually demonstrate a homogenous pattern of enhancement, whereas those larger than 5 cm are heterogeneous.

GROSS PATHOLOGY

In a recent review of uncommon RCCs, Srigley and Delahunt described the clinicopathologic features of MTSCC and reported that these tumors are macroscopically well circumscribed and solid masses with a homogenous tan, gray-pink, or pale yellow cut surface. Tumor size ranges from less than 1 cm to more than 18 cm in diameter, with most tumors being 2 to 4 cm. Areas of hemorrhage and necrosis are unusual. (Figures 3 through 5).

HISTOLOGY

Histologically, the tumor is described by a mixture of tubular and spindle cell components, separated by variable amounts of mucinous stroma. (Figures 3 through 5). The tubules are round, ovoid, or elongated and anastomosing...
with a collapsed central lumen. They are often tightly packed and arranged in parallel and sometimes merge into cordlike structures or even form a solid growth pattern. The tubules may show focally clear cells, oncocytic change, or vacuolations in the cytoplasm. Mucinous tubular and spindle cell carcinoma is a low-grade malignancy, with round nuclei, evenly dispersed chromatin, and occasional nucleoli corresponding7,8 to World Health Organization/International Society of Urological Pathology grade 2; however, rare lesions with high-grade atypical nuclei and sarcomatoid change have been described.4,7 Transitions between the elongated tubules and the spindle cells are commonly seen, and in some tumors, the spindle cell areas can be the principal component, resembling a mesenchymal neoplasm such as leiomyoma or myofibroblastoma.16 The stroma shows extracellular mucin, which may be basophilic or occasionally eosinophilic, with a bubbly appearance. The study by Fine et al15 in 2006 expanded the histologic spectrum of MTSCC into 2 variants: classic and mucin poor. This categorization was based on a percentage of extracellular mucin and the relative percentage of tubules and spindle cells in the tumor after adequate sampling. They found that 10 of the 17 cases were classic MTSCC and the remaining 7 were the mucin-poor variants with little or no extracellular mucin in the stroma. Other microscopic findings reported in the literature include aggregates of foamy histiocytes, papillations7 (epithelial tufts that project into the tubular lumina and lack a fibrovascular core), microscopic tumor necrosis, cuffed lymphoplasmacytic infiltrate surrounding tumor cell nests, psammomatomous calcifications, and heterotopic bone formation. These findings were described by Fine et al,15 who reported a higher occurrence of these findings in the mucin-poor tumors. Mitoses are usually rare in these tumors, as they are usually low-grade malignancies with a favorable outcome; some tumors with sarcomatoid change show increased and atypical mitoses, marked cytologic atypia, and tumor necrosis.17

ANCILLARY TESTING

Immunohistochemistry

The neoplastic cells of both tubules and spindle cells are positive for paired box, transcription factor 2 (PAX2) and PAX8,18 low-molecular-weight cytokeratin (CK)—that is, CK8/18, CK19 and CK7 (Figure 6)19—epithelial membrane antigen, α-methylacyl coenzyme A racemase (AMACR), and E-cadherin; 34bE12 and other high-molecular-weight keratins and vimentin show variable expression. CD10, CD15, and RCC marker, which is usually positive in the clear cell variant of RCC, are often negative; however, rare cases with positive expression have been reported.20 Other markers like carbonic anhydrase IX (CAIX), *Ulex europaeus* agglutinin 1, p63, CK20, GATA3, and smooth muscle actin are negative.18 Some cases reported recently showed neuroendocrine differentiation in the tumor cells staining positive for chromogranin A, synaptophysin, and neuron-specific enolase.21 Increased Ki67 labeling index and high nuclear p53 accumulation were observed in high-grade tumors.22
Molecular Genetics and Histogenesis

Mucinous tubular and spindle cell carcinoma was originally described as a tumor arising from cells of the loop of Henle or the collecting duct epithelium. But its origin was later described as a tumor arising from cells of the juxtaglomerular cell tumor. PRCC, papillary RCC, renal cell carcinoma; SMA, smooth muscle actin.

Entities	Morphology	Distinguishing Morphologic Features	IHC	Molecular Features
PRCC	Predominantly solid or tubular growth pattern with elongated tubules in type 1 papillary RCC	Predominantly tubulopapillary pattern	CD10 positive in PRCC, negative in MTSCC	Gain of 7, 17, and Y
Sarcomatoid RCC	MTSC with a dominant spindle cell component	Spindle cells are neoplastic and bizarre and in sheets	Not useful	Not specific
Mesenchymal tumors like leiomyoma, AML, IMT, and JCT	Bland spindle cells in fascicles and whorls	Leiomyoma: no tubules, no mucinous stroma	Leiomysma: SMA⁺	IMT: t(2;5)
Metanephric adenoma	Closely packed narrow tubules	Basophilic cytoplasm, psammoma bodies, absent myxoid stroma	WT1, CD57⁺	V600E BRAF

Abbreviations: ALK, anaplastic lymphoma kinase; AML, angiomyolipoma; HMB45, HMB-45; IHC, immunohistochemistry; IMT, inflammatory myofibroblastic tumor; JCT, juxtaglomerular cell tumor; PRCC, papillary RCC; RCC, renal cell carcinoma; SMA, smooth muscle actin.

^a Data derived from Zhao et al,7 Ferlicot et al,19 Peckova et al,23 Wang et al,29 and Kuroda et al.30

DIFFERENTIAL DIAGNOSES

In its classic form, MTSCC does not pose a diagnostic problem owing to its distinct morphology. The Table depicts the differential diagnoses based on component variation with distinguishing features and similarities.

THERAPY AND PROGNOSIS

Mucinous tubular and spindle cell carcinoma with classic morphology has excellent prognosis subsequent to complete and adequate excision. These tumors are usually low grade and hence are responsive to partial or radical nephrectomy. Some cases reported in the literature have shown recurrence, regional lymph node metastases, and distant metastases. These occur in lesions with high nuclear grade, sarcomatoid transformation, and other atypical histomorphologic features. However, few cases of low-grade tumors with classic morphology have shown metastases in lymph nodes and liver. Hence, a close follow-up is warranted even after complete excision, despite the innocent clinical course of the tumor.

Low-grade, classic-morphology tumors are amenable to resection and do not require systemic chemoradiation. With regard to metastatic tumors, there are no consensus guidelines published to date that warrant systemic treatment.

CONCLUSIONS

Mucinous tubular and spindle cell carcinoma is a low-grade malignant renal tumor with characteristic histologic, immunohistochemical, and molecular features, and hence is considered a distinct entity. Most reported cases have been diagnosed as low-grade malignancies and have had a favorable outcome after surgical removal. However, a small subset of cases has been reported with an aggressive clinical phenotype and poor outcome. A close follow-up of these
patients is therefore essential to look for recurrence and/or metastasis.

We thank Tanvi Shetty, MD, assistant professor, Melaka Manipal Medical College, Manipal, and Shubham Varshney, MBBS, junior resident, KMC, Manipal, for the help rendered in collecting case details and images.

References

1. Ordonez NG, Mackay B. Renal cell carcinoma with unusual differentiation. Ultrastruct Pathol. 1996;20(1):27–30.

2. Maclennan GT, Farrow GM, Bostwick DG. Low-grade collecting duct carcinoma of the kidney: report of 13 cases of low-grade mucinous tubulocystic renal carcinoma of possible duct origin. Urology. 1997;50(5):679–684.

3. Pathani AV, Husain AN, Epstein JJ, Beckwith JB, Argani P. Low-grade myxoid renal epithelial neoplasms with distal nephron differentiation. Hum Pathol. 2001;32(5):506–512. doi:10.1053/hupa.2001.24320

4. Lopez-Beltran A, ScarPELLi M, Montironi R, Kikali Z. 2004 WHO classification of the renal tumors of the adults. Eur Urol. 2006;49(5):798–805.

5. Moch H, Cubilla AL, Humphrey PA, Reuter VE, Ulbright TM. The 2016 WHO Classification of tumours of the urinary system and male genital organs—part A: renal, penile, and testicular tumours. Eur Urol. 2016;70(1):93–105. doi:10.1016/j.eururo.2016.02.029.

6. Sadimin ET, Chen YB, Wang L, Argani P, Epstein JJ. Chromosomal abnormalities of high-grade mucinous tubular and spindle cell carcinoma of the kidney. Histopathology. 2017;71(5):719–724. doi:10.1111/his.13298

7. Zhao M, He X-L, Teng X-D. Mucinous tubular and spindle cell renal cell carcinoma: a review of clinicopathologic aspects. Diag Pathol. 2015;10(1):168.

8. Wu X, Chen Y, Sha J, et al. Renal mucinous tubular and spindle cell carcinoma: a report of 8 cases and review of the literature. Diag Pathol. 2013;8:206. doi:10.1186/1746-1596-8-206

9. Sun N, Fu Y, Wang Y, Tian T, An W, Yuan T. Mucinous tubular and spindle cell carcinoma of the kidney: a case report and review of the literature. Oncol Lett. 2014;7(3):811–814. doi:10.3892/ol.2014.1783

10. Hes O, Hora OM, Perez-Montiel DM, et al. Spindle and cúboidal renal cell carcinoma, a tumor having a frequent association with nephrothiasis: report of 11 cases including a case with hybrid conventional renal cell carcinoma/spindle and cúboidal renal cell carcinoma components. Histopathology. 2002;41(6):549–555. doi:10.1046/j.1365-2559.2002.01513.x

11. Noob MA, Kuroda N, Yamashita M, et al. Renal cell carcinoma in patients with end-stage renal disease: the relationship between histological type and duration of dialysis. BJU Int. 2010;105(5):620–627. doi:10.1111/j.1440-1617.2009.08817.x

12. Kenney PA, Vikram R, Prasad R, et al. Mucinous tubular and spindle cell carcinoma (MTSCC) of the kidney: a detailed study of radiological, pathohistological and clinical outcomes. BJU Int. 2015;116(1):85–92. doi:10.1111/bju.12992

13. Zhang Q, Wang W, Zhang S, et al. Mucinous tubular and spindle cell carcinoma of the kidney: the contrast-enhanced ultrasonography and CT features of six cases and review of the literature. Int Urol Nephrol. 2014;46(12):2311–2317. 10.1007/s11255-014-0814-y

14. Srigley JR, Delahant B. Uncommon and recently described renal carcinomas. Mod Pathol. 2009;22(S2):S2–S23. doi:10.1038/modpathol.2009.70

15. Fine SW, Argani P, DeMarizzo AM, et al. Expanding the histologic spectrum of mucinous tubular and spindle cell carcinoma of the kidney. Am J Surg Pathol. 2006;30(12):1554–1560. doi:10.1097/01.pas.0000213271.15221.e3

16. Fleming S. Distal nephron neoplasms. Semin Diagn Pathol. 2015;32(2):114–123. doi:10.1053/j.semdp.2015.02.004

17. Lee S, Park J, Zaidi SN. Mucinous tubular and spindle cell carcinoma of the kidney with sarcomatoid transformation. Saudi J Kidney Dis Transplant. 2013;24(3):557–560.

18. Reuter VE, Argani P, Zhou M, Delahant B. Best practices recommendations in the application of immunohistochemistry in the kidney tumors: report from the International Society of Urologic Pathology. Am J Surg Pathol. 2014;38(8):e35–e49.

19. Ferlicot S, Allory Y, Compérat E, et al. Mucinous tubular and spindle cell carcinoma: a report of 15 cases and review of the literature. Virchows Arch. 2005;447(6):978–983. doi:10.1007/s00428-005-0036-x

20. Shen SS, Ro JY, Tamboli P, et al. Mucinous tubular and spindle cell carcinoma of the kidney is probably a variant of papillary renal cell carcinoma with spindle cell features. Ann Diagn Pathol. 2007;11(1):13–21. doi:10.1016/j.anndiagpath.2006.09.005

21. Kuroda N, Nakamura S, Miyazaki Y, et al. Low-grade tubular-mucinous renal neoplasm with neurenodiocrine differentiation: a histological, immunohistochemical and ultrastructural study. Pathol Int. 2004;54(3):201–207.

22. Uchida S, Suzuki K, Uno M, et al. Mucin-poor and aggressive mucinous tubular and spindle cell carcinoma of the kidney: two case reports. Mol Clin Oncol. 2017;7(5):777–782. doi:10.19929/mco.2017.1400

23. Pockova K, Martinek P, Sperna M, et al. Mucinous spindle and tubular renal cell carcinoma: analysis of chromosomal aberration pattern of low-grade, high-grade, and an overlapping morphologic variant with papillary renal. Ann Diagn Pathol. 2015;19(4):226–231. doi:10.1016/j.anndiagpath.2015.04.004

24. Alexsev BA, Burke AP, Drachenberg CB, Richards SM, Zou YS. Mucinous tubular and spindle cell carcinoma of the kidney with prominent papillary component, a non-classic morphologic variant: a histologic, immunohistochemical, electron microscopic and fluorescence in situ hybridization study. Pathol Res Pract. 2014;210(7):454–458. doi:10.1016/j.prp.2014.03.002

25. Mehra R, Vats P, Cieslik M, et al. Bi-allelic alteration and dysregulation of the Hippo pathway in mucinous tubular and spindle cell carcinoma of the kidney. Cancer Discov. 2016;6(12):1258–1266. doi:10.1158/2159-8290.CD-16-0267

26. Banyai D, Vastaj F, Yusenko M, Bugert P, Kovacs G. Embryonal origin of MTSCC of the kidney may explain its morphological heterogeneity: diagnostic impact of genetic analysis. Anticancer Res. 2017;37(3):1183–1190. doi:10.21873/anticanres.11432

27. Thway K, Du Paire J, Larkin JMG, Fisher C, Livini N. Metastatic renal mucinous tubular and spindle cell carcinoma: atypical behavior of a rare, morphologically bland tumor. Ann Diagn Pathol. 2012;16(5):407–410. doi:10.1016/j.anndiagpath.2011.04.001

28. Ursani NA, Robertson AR, Schieman SM, Bainbridge T, Srigley JR. Mucinous tubular and spindle cell carcinoma of the kidney without sarcomatoid change showing metastases to liver and retroperitoneal lymph node. Hum Pathol. 2011;42(3):444–448. doi:10.1016/j.humpath.2010.07.018

29. Wang X, He J, Lu C, Zhang D, Jiang J. Renal mucinous tubular and spindle cell carcinoma: report of four cases and literature review. Int J Clin Exp Pathol. 2015;8(3):3122–3126

30. Kuroda N, Pol M, Hiroi M, Shuin T, Enzah H. Review of mucinous tubular and spindle cell carcinoma of the kidney with a focus on clinical and pathological aspects. Histol Histopathol. 2005;20(1):221–224.