Tipifarnib in Head and Neck Squamous Cell Carcinoma With HRAS Mutations

Alan L. Ho, MD, PhD1,2; Irene Brana, MD3; Robert Haddad, MD4; Jessica Bauman, MD5; Keith Bible, MD6; Sjoukje Oosting, MD7; Deborah J. Wong, MD, PhD8; Myung-Ju Ahn, MD, PhD8; Valentina Boni, MD, PhD9; Caroline Even, MD10; Jerome Fayette, MD12; Maria José Flor, MD12; Kevin Harrington, PhD14; Sung-Bae Kim, MD, PhD15; Lisa Licitra, MD15; Joanna Nixon, MD, PhD, MPH12; Nabil F. Saba, MD16; Stephan Hackenberg, MD17; Pol Specenier, MD, PhD18; Francis Worden, MD19; Binaifer Balsara, PhD20; Mollie Leoni, MD21; Bridget Martell, MA, MD22; Catherine Scholz, PharmD22; and Antonio Gualberto, MD, PhD22

PURPOSE Mutations in the HRAS (mHRAS) proto-oncogene occur in 4%-8% of patients with recurrent and/or metastatic (R/M) head and neck squamous cell carcinoma (HNSCC). Tipifarnib is a farnesyltransferase inhibitor that disrupts HRAS function. We evaluated the efficacy of tipifarnib in patients with R/M mHRAS HNSCC.

METHODS We enrolled 30 patients with R/M HNSCC in a single-arm, open-label phase II trial of tipifarnib for mHRAS malignancies; one additional patient was treated on an expanded access program. After an ad hoc analysis of the first 16 patients with HNSCC with mHRAS variant allele frequency (VAF) data, enrollment was limited to those with a mHRAS VAF of $\geq 20\%$ (high VAF). The primary end point was objective response rate. Secondary end points included assessing safety and tolerability. Patients received tipifarnib 600 or 900 mg orally twice daily on days 1-7 and 15-21 of 28-day cycles.

RESULTS Of the 22 patients with HNSCC with high VAF, 20 were eligible for response at the time of data cutoff. Objective response rate for evaluable patients with high-VAF HNSCC was 55% (95% CI, 31.5 to 76.9). Median progression-free survival on tipifarnib was 5.6 months (95% CI, 3.6 to 16.4) versus 3.6 months (95% CI, 1.3 to 5.2) on last prior therapy. Median overall survival was 15.4 months (95% CI, 7.0 to 29.7). The most frequent treatment-emergent adverse events among the 30 patients with HNSCC were anemia (37%) and lymphopenia (13%).

CONCLUSION Tipifarnib demonstrated encouraging efficacy in patients with R/M HNSCC with HRAS mutations for whom limited therapeutic options exist (NCT02383927).

INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) accounts for more than 500,000 new cancer cases each year worldwide, related primarily to tobacco and alcohol exposure or infection with human papilloma virus (HPV). Despite recent advances incorporating programmed death-1 targeting into standard therapy, prognosis remains poor for patients with recurrent and/or metastatic (R/M) HNSCC with an estimated median overall survival of 13-15 months. Since the approval of the anti-epidermal growth factor antibody cetuximab more than a decade ago, development of targeted therapies has been stymied by the limited number of druggable targets and the aggressiveness of drug-refractory disease.

Activating mutations in the Ras proto-oncogenes (K-, N-, H-) are initiating oncogenic events in human cancer, although the development of RAS-targeted therapies has historically been challenging. Farnesyltransferase inhibitors (FTIs) were first evaluated more than 20 years ago as a novel RAS-directed therapy. Mutant RAS must be localized to the plasma membrane to activate downstream signaling, which is dependent upon attachment of a hydrophobic isoprenyl group to its C-terminal tail (prenylation). The predominant form of RAS prenylation is farnesylated, catalyzed by the farnesyltransferase enzyme. It was hypothesized that inhibiting farnesyltransferase would delocalize RAS and inhibit downstream signaling, translating to tumor regressions in RAS-dependent malignancies. Unfortunately, phase II and III clinical trials failed to show significant FTI efficacy against tumor types predicted to be enriched for NRAS and KRAS mutations, ending the development of FTIs as a pan–RAS-targeted strategy.

The lack of efficacy in those FTI trials is likely explained by preclinical data demonstrating NRAS and KRAS are susceptible to alternative prenylation events (eg, geranylgeranylation) that maintain membrane localization and pathway activation despite farnesyltransferase inhibition.

Mutations in the HRAS (mHRAS), however,
These results demonstrate encouraging clinical activity with tipifarnib for patients with R/M mutant HRAS HNSCC, warranting further investigation in this patient population.

On the basis of these insights, we developed a clinical trial to revisit FTIs as a therapeutic strategy to target mHRAS in human malignancies. Tipifarnib is a first-in-class non-peptidomimetic quinolinone that binds and potently inhibits farnesyltransferase (IC50 of 0.86 nM for lamin B farnesylation). It’s prior clinical development consisted of > 70 clinical studies in solid and hematologic malignancies conducted without genetic selection. We developed a phase II trial (KO-TIP-001) to evaluate the objective response rate (ORR) of tipifarnib in patients with incurable mHRAS solid tumors. The interim discovery of a possible efficacy signal for tipifarnib in patients with HNSCC with high mHRAS variant allele frequency (high VAF) led to an amendment to further evaluate tipifarnib in this cohort. This article summarizes our initial experience with tipifarnib as a mHRAS-targeted approach in patients with high- mHRAS VAF HNSCC.

Materials and Methods

KO-TIP-001 was an open-label phase II trial approved by the institutional review board or ethics committees at participating institutions. The study was performed in accordance with the Declaration of Helsinki and the International Council for Harmonisation Guidelines on Good Clinical Practice. The study was designed by the sponsor (Kura Oncology) in collaboration with the study investigators. The data analysis and the manuscript were reviewed and approved by the sponsor and the authors.

Patients

Patients with incurable solid tumors harboring missense HRAS mutations were initially enrolled in two cohorts: cohort 1 for thyroid cancer and cohort 2 for nonthyroid solid tumors. Each cohort was individually evaluated with a Simon’s 2-stage design allowing stage 2 expansion only if predefined efficacy thresholds were achieved in the first stage. This report focuses on patients with HNSCC enrolled to cohort 2 (Fig 1). After observing two HNSCC responses (of three patients) at the completion of stage 1, cohort 2 was amended to further enroll only patients with mHRAS HNSCC, and cohort 3 was added to evaluate patients with squamous cell carcinoma of other primary sites. Once the cohort 2 primary objective was met with five partial responses (PRs) in nine patients with HNSCC (needed ≥ 4 confirmed objective responses of 18 evaluable), the cohort was expanded to enroll up to 30 patients with mHRAS HNSCC (Fig 1). One additional patient was treated on an expanded access (EA) program using the KO-TIP-001 Protocol (online only). Mutant HRAS status for enrollment was documented by local, approved gene-sequencing platforms; all patients submitted tissue from the most recent tumor biopsy for central laboratory confirmation and VAF determination with the OncoDNA next-generation sequencing (NGS) platform. Specifically, DNAs were extracted from macrodissected tumor cells identified on paraffin-embedded slides, and the HRAS VAF was determined after aligning the reads to a reference genome. The calculated VAF represents the ratio between the number of reads associated with the mutation and the number of reads associated with the wild-type nucleotide, taking into consideration sample heterogeneity. In October 2018, an interim ad hoc analysis of the first 16 patients with HNSCC with available mHRAS VAF data led to a Protocol amendment to limit enrollment to patients with HNSCC with mHRAS VAF of ≥ 20% (Data Supplement, online only). An albumin of ≥ 3.5 g/dL was also required to ensure patients’ fitness for therapy except for those whose tumors had mHRAS VAFs of ≥ 35%, a cohort hypothesized to possess particular susceptibility to tipifarnib (Data
Supplement). The current analysis only includes those patients with HNSCC meeting these VAF and albumin criteria. A full list of inclusion and exclusion criteria is provided in the Data Supplement. Informed consent for trial participation was obtained from all enrolled patients.

Treatment

Several different dosing schedules for tipifarnib were previously investigated, including low-dose continuous schedules (eg, 300 mg twice daily [twice a day] for 21 days in a 28-day schedule) and high-dose intermittent schedules. Of the latter was selected for this study to maximize the potency of farnesyltransferase inhibition achieved. Tipifarnib was initially administered to patients with HNSCC at 900 mg orally twice a day on days 1-7 and 15-21 of 28-day cycles, on the basis of two administered to patients with HNSCC. The Protocol was amended to start the median dose of tipifarnib by cycle 2 day 1 for these patients 600 mg twice a day. The Protocol was amended to start tipifarnib at 600 mg twice a day to improve tolerability while helping patients maintain an effective dose for longer duration.

End Points and Assessments

The primary end point was investigator-assessed ORR. Secondary end points included safety and tolerability. Exploratory end points included progression-free survival (PFS), duration of response, OS, and feasibility of molecular analyses using NGS. Radiographic imaging was performed at baseline and approximately every 8 weeks for the first 6 months (cycles 2, 4, and 6) and then every 12 weeks (cycles 9, 12, 15, etc) until disease progression. Adverse events were monitored via clinical and laboratory assessments using the National Cancer Institute Common Terminology Criteria for Adverse Events version 4.03.

Statistical Analysis

Each cohort followed a Simon’s two-stage design in which at least two confirmed PRs were required from the first 11 evaluable patients to proceed to the second stage of seven additional patients. If ≥ 4 responses were observed in 18 patients, tipifarnib treatment would be considered promising. A 30% ORR of interest was assumed. This design had 80% power to detect a difference between 10% and 30% ORR with one-sided significance level of 0.087. Patients were considered evaluable if they had at least one dose of tipifarnib, a baseline tumor scan, and at least one on-treatment scan conducted 6 weeks or more from trial enrollment. Upon rejection of the null hypothesis, the cohort was expanded to allow enrollment of up to 30 patients with mHRAS high-VAF HNSCC with no additional statistical hypotheses tested in the expanded Protocol.

RESULTS

Patient Demographics, Tumor Characteristics, and Tipifarnib Treatment

From September 11, 2015 through April 10, 2020, a total of 31 patients with mHRAS HNSCC from 18 centers in the

FIG 1. Study overview. HNSCC, head and neck squamous cell carcinoma; PD, progressive disease; PR, partial response; SCC, squamous cell carcinoma; SD, stable disease; VAF, variant allele frequency.
United States, Europe, and Korea received at least one dose of tipifarnib (30 on the KO-TIP-001 trial and one on an EA program following the KO-TIP-001 Protocol, Fig 1). An ad hoc analysis of the first 16 treated patients with HNSCC performed in October 2018 revealed that efficacy with tipifarnib may be enriched in those with a high VAF—initially defined as ≥ 20% (with five PRs observed among 11 high-VAF patients v 0 of 5 in the low-VAF patients; Data Supplement). The KO-TIP-001 protocol was modified to limit enrollment to patients with HNSCC with a mHRAS VAF of ≥ 20%. An albumin level of ≥ 3.5 g/dL was required for those with a VAF ≥ 20% but < 35% as a marker of overall patient health to best identify those most likely to sustain therapy. The albumin criterion was not applied to those whose tumors had a VAF ≥ 35%, a cohort hypothesized to have a high likelihood of tipifarnib benefit based on the ad hoc analysis (Data Supplement). As of April 10, 2020 (data cutoff), 22 of 31 patients with HNSCC treated with tipifarnib met these high VAF and albumin criteria (high-VAF cohort) and are the focus of this analysis. A breakdown of these 22 patients and the other nine patients not included is depicted in Figure 1.

At initial diagnosis, 46% (10 of 22) had oral cavity primary tumors. HPV status was documented by study teams in 13 patients; four (31%) were noted to be HPV-positive (Table 1). Patients had received a median of two prior lines of systemic therapy (range 0–6; one patient received prior radiotherapy only), with all but two having received first-line platinum-based therapy for their locally advanced or metastatic disease: 50% had received cetuximab, 64% had received prior immunotherapy, and 23% both. The median number of treatment cycles initiated was 6.5 (range 1–36). As of data cutoff, tipifarnib treatment continued for three patients.

Efficacy

Twenty of the 22 high-VAF treated patients were efficacy evaluable (Table 1); one withdrew consent and another discontinued for symptomatic deterioration prior to efficacy evaluation and were unevaluable. Eleven of the 20 evaluable patients met RECIST v1.1 criteria for confirmed PR (Fig 2A) for an ORR of 55% (11 of 20; 95% CI, 31.5 to 76.9; Table 2). ORR for the intent-to-treat population (n = 22) was 50% (11 of 22; 95% CI, 30.7 to 69.3). Among only trial participants (excluding the EA patient), the ORR was 52.6% (10 of 19; 95% CI, 28.9 to 76.5). Of the 20 evaluable high-VAF patients, 7 of 12 (ORR, 58.3%) patients with a VAF > 35% (range, 37%-90%) had a response compared with 4 of 8 (ORR, 50%) with VAF < 35% (range, 23%-33%). Three of the 12 patients with VAF > 35% had an albumin of < 3.5 g/dL with one (33.3%) achieving response. These responses were achieved rapidly as 8 of 11 met PR criteria at the first tumor assessment (≤ 8 weeks). Five of the six evaluable patients initiated at 600 mg twice a day experienced PRs. Seven of the 11 patients who experienced PRs discontinued treatment because of progressive disease. Of the nine patients who did not experience a response, all had a best response of stable disease (SD), with six achieving minor tumor regression (Fig 2A). Three of the nine patients with SD were on treatment for approximately 7 months. Seven patients with PR remained on therapy for 6 months or longer (Fig 2B). One of the SD patient’s target lesions met criteria for a PR, but the overall response was downgraded to SD because of later confirmation of a new, initially equivocal, lesion. Response and duration of therapy for all 31 patients with HNSCC treated with tipifarnib are shown in the Data Supplement.

Median PFS was statistically significantly improved to 5.6 months (95% CI, 3.6 to 16.4) on tipifarnib compared with 3.6 months (95% CI, 1.3 to 5.2) on last prior therapy (P = .0012 using the Wei-Lin [Cox regression–based robust estimator] (Fig 2C; Table 2). Of the 11 patients with immunotherapy (single agent or in combination) as the last prior line, seven had PR and four had SD on tipifarnib. In those with last prior line other than immunotherapy (n = 8), there were three PRs and four SDs (Data Supplement). As expected, PFS on tipifarnib treatment was higher in patients

TABLE 1. Demographics of Patients with High-VAF HNSCC

Characteristic	No. (%)
Patients evaluable	20 (90.1)
Age (years), median (min, max)	63 (20, 89)
Male	15 (68.2)
Site of primary tumor	
Oral cavity	10 (45.5)
Pharynx	4 (18.2)
Larynx	3 (13.6)
Other	5 (22.7)
Number of prior anticancer regimens	
Median (min, max)	2 (0, 6)
Type of prior anticancer therapy	
Platinum	20 (90.9)
Immunotherapy	14 (63.6)
Cetuximab	11 (50.0)
HPV status available, n (%)	13 (61.9)
Positive	4 of 13 (30.7)
Negative	9 of 13 (69.2)

Abbreviations: HNSCC, head and neck squamous cell carcinoma; HPV, human papilloma virus; VAF, variant allele frequency.

*Patients with HRAS VAF ≥ 20% and serum albumin ≥ 3.5 g/dL or HRAS VAF ≥ 35% enrolled in stages 1, 2, or the HNSCC extension cohort. Additionally, one patient is included who was treated off-protocol through the expanded access program.

*Tumor measurements were not available from two patients (not efficacy evaluable). One patient withdrew consent, and another discontinued treatment prior to first tumor response assessment.
FIG 2. Efficacy outcomes. Red, PR; blue, SD; green, not evaluable for efficacy; diamond, patient initiated treatment at 600 mg twice a day; cross, patient withdrew consent; arrow in bar, start of response; arrow, active treatment. Numbers at the end of the bars represent VAF for each patient. (A) Maximal change in tumor size. (B) Duration of response to treatment. (C) Kaplan-Meier analysis of PFS. Tick marks indicate censored data. PD, progressive disease; PFS, progression-free survival; PR, partial response; SD, stable disease; VAF, variant allele frequency.
who experienced a PR (9.5 months; 95% CI, 5.5 to NA; n = 11) than in those who had SD (4.0 months; 95% CI, 1.9 to NA; n = 9). The median OS was 15.4 months (95% CI, 7.0 to 29.7).

Safety

Safety was evaluated in all 30 treated patients with HNSCC (EA patient excluded). Among the most frequently observed treatment emergent adverse events (TEAEs) of any grade in ≥ 10% of patients regardless of VAF or albumin cutoff were hematologic-related events (anemia, neutropenia, leukopenia, and lymphopenia) and GI disturbances (nausea; Table 3). Three patients experienced TEAEs leading to tipifarnib discontinuation: laryngeal obstruction (n = 2) and respiratory failure (n = 1). All three events were not related to tipifarnib and possibly related to disease. There were no tipifarnib-related deaths. Adverse events were managed with dose interruption and/or supportive care, including the use of transfusions and growth factors for hematologic events. As of data cutoff, no high-VAF patients have discontinued tipifarnib treatment because of an adverse event. Disease progression was the most common reason for tipifarnib discontinuation.

DISCUSSION

Previous studies reported that approximately 4%-8% of HNSCC tumors are HRAS mutant,21-28 defining a unique HNSCC disease subset that is also characterized by a low frequency of copy number alterations and decreased frequency of TP53 mutations.29 This report describes encouraging antitumor activity with tipifarnib in a heavily pretreated cohort of patients with high-mHRAS VAF (≥ 20%), refractory and/or metastatic HNSCC with an unprecedented ORR of 55% (52.6% in on-trial only patients) as compared with the approximately 15% historical response rate of other standard therapies developed in the platinum-refractory setting, including cetuximab, nivolumab, and pembrolizumab.30 Responses to tipifarnib were rapid and potentially durable, including seven patients with a response longer than 6 months. Importantly, these patients did not experience objective responses with the last prior therapy. The median OS of 15.4 months with tipifarnib is also longer than historically reported for treatments used in a similar setting (5.1-8.4 months).31,32

Another striking observation was the clinical benefit rate for the high-mHRAS VAF efficacy evaluable patients was 100% (11 of 20 with PR and 9 of 20 with SD), providing additional evidence for the role of mHRAS as an oncogenic driver in these tumors and the ability of FTIs to therapeutically target it. To our knowledge, this is the first study hypothesizing an association between the efficacy of a molecularly targeted therapy and the VAF of the hypothesized biologic target. Although the sample size was small, the strategy of limiting enrollment to those with disease where mHRAS is most likely a clonal, oncogenic driver ensured the most rigorous evaluation of FTI effectiveness in this biologic context. VAF as a predictive biomarker for tipifarnib efficacy, however, will require further evaluation.

The efficacy of targeting HRAS mutations may also be influenced by cellular lineage as tipifarnib activity observed in mHRAS salivary cancers23 (8% ORR) and urothelial carcinomas34 (29% ORR) differs from the HNSCC signal. Distinct genomic contexts, biochemical consequences of inhibiting HRAS signaling, and contribution of other farnesylated targets may be factors modifying tipifarnib outcomes among different tumor types.

Although mHRAS remains a rare HNSCC genomic subset, clinical resistance to cetuximab in patients with advanced HRAS wild-type HNSCC may be associated with the emergence of HRAS mutations,35 consistent with the role RAS activation plays in mediating cetuximab resistance in colorectal cancer.36 This suggests that the frequency of HRAS mutations observed with genomic profiling may be dependent upon the clinical setting in which it is performed and that tipifarnib could be a novel approach to prevent or treat cetuximab drug resistance in HNSCC. With emerging tumor-agnostic indications for molecularly targeted and immunotherapeutic approaches that require NGS analysis, we anticipate that genomic characterization of HNSCC tumors will continue to expand and provide greater insight into clinical settings that enrich for mHRAS.

Tipifarnib was well-tolerated overall in patients with HNSCC with a TEAE profile consistent with the previously reported safety profile of tipifarnib. The mechanistic basis of tipifarnib toxicity is not well-understood but may be related to the recent discovery of tipifarnib as an inhibitor of the CXCL12/CXCR4 pathway.37 CXCL12 is a cytokine that is essential for the maturation of neutrophils, production of platelets, and homing of lymphocytes, among other functions.38,39 Further research on the effects of tipifarnib on the CXCL12 pathway and the genetic variability of this chemokine among patients could contribute to a better understanding of predicting tipifarnib toxicity and how it might be combined with current or future immunotherapeutic approaches.

Outcome	Median (months), % (95% CI), n = 20a
Objective response rate	55.0 (31.5 to 76.9)
PFS	5.6 (3.6 to 16.4)
PFS - on last prior cancer therapy	3.6 (1.3 to 5.2)
Overall survival	15.4 (7.0 to 29.7)

Abbreviation: PFS, progression-free survival.

*aIncludes one patient who was treated off-protocol through the expanded access program.
Adverse Event	No. (%)
Blood and lymphatic system disorders	15 (50)
Anemia	11 (37)
Neutropenia	3 (10)
Lymphopenia	4 (13)
Leukopenia	3 (10)
Metabolism and nutrition disorders	9 (30)
Hypercalcemia	3 (10)
Hypokalemia	3 (10)
Hypophosphatemia	3 (10)
Respiratory, thoracic, and mediastinal disorders	9 (30)
Pneumonia	3 (10)
Gastrointestinal disorders	6 (20)
Nausea	3 (10)

Abbreviation: HNSCC, head and neck squamous cell carcinoma.

*Includes patients with HNSCC in stages 1, 2, or the HNSCC extension cohort of the KO-TIP-001 phase II trial. One patient was treated off-protocol through the expanded access program and therefore not included in the safety population.

The initial FTI development effort made more than 20 years ago and the strategies used in this study illustrate the complexities of developing targeted therapies beyond simply matching the right drug to the appropriate molecular target. For tipifarnib, the meaningful efficacy signal in patients with treatment-refractory mHRAS HNSCC was discovered only after (1) revisiting the FTI class with a trial design focused on testing the unique vulnerability of mHRAS disease, (2) the recognition that confirmation of the HNSCC signal would be most efficiently accomplished by enriching for higher VAF in enrollment, and (3) changing the tipifarnib dose to improve tolerability. What still remain to be understood are the lineage-specific effects of tipifarnib among different mHRAS cancers, validating that high mHRAS VAF is requisite for tipifarnib benefit, the molecular mechanisms of acquired resistance, and how rational combinations may expand the utility of FTI inhibition to other settings (eg, any VAF setting, non-HNSCC tumors, and HRAS amplified or overexpressed). The main caveats of this report include the nonrandomized, open-label design and the small sample size for the analysis. Nonetheless, the efficacy signal observed is impressive for a targeted therapy in a biomarker-selected HNSCC patient cohort and supports continued investigation of tipifarnib. To this end, a pivotal study (AIM-HN and SEQ-HN Study, NCT03719690) evaluating the efficacy and safety of tipifarnib in mHRAS HNSCC (AIM-HN) and the impact of HRAS mutations on HNSCC therapies (SEQ-HN) is currently ongoing. For AIM-HN, patients with mHRAS-HNSCC regardless of VAF will be enrolled to further evaluate tipifarnib efficacy and better define the role of VAF as a predictive biomarker of benefit.
REFERENCES

1. Sklan A, Collingridge D: Treating head and neck cancer: For better or for worse? Lancet Oncol 18:570-571, 2017
2. Burtness B, Harrington KJ, Greil R, et al: Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): A randomised, open-label, phase 3 study. Lancet 394:1915-1928, 2019
3. Cohen EEW, Licitra LF, Burtness B, et al: Biomarkers predict enhanced clinical outcomes with afatinib versus methotrexate in patients with second-line recurrent and/or metastatic head and neck cancer. Ann Oncol 28:2526-2532, 2017
4. Galot R, Le Tourneau C, Guigay J, et al: Personalized biomarker-based treatment strategy for patients with squamous cell carcinoma of the head and neck: EORTC position and approach. Ann Oncol 29:2313-2327, 2018;
5. Cox AD, Der CJ: Ras history: The saga continues. Small GTPases 1:2-27, 2010
6. Karp JE, Kaufmann SH, Adjei AA, et al: Current status of clinical trials of farnesyltransferase inhibitors. Curr Opin Oncol 13:470-476, 2001
7. Untch BR, Dos Anjos VC, Garcia-Rendueles MER, et al: Tipifarnib Inhibits HRAS-Driven dedifferentiated thyroid cancers. Cancer Res 78:4642-4657, 2018
8. Gilardi M, Wang Z, Proietto M, et al: Tipifarnib as a precision therapy for HRAS-mutant head and neck squamous cell cancers. Mol Cancer Ther 19:1784-1796, 2020
9. Mountzios G, Rampias T, Psyrri A: The mutational spectrum of squamous-cell carcinoma of the head and neck: Targetable genetic events and clinical impact. Ann Oncol 25:1889-1900, 2014
10. Stranks N, Egloff AM, Tward AD, et al: The mutational landscape of head and neck squamous cell carcinoma. Science 333:1157-1160, 2011
11. Cancer Genome Atlas Network: Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 517:576-582, 2015
12. Pickering CR, Zhang J, Yoo SY, et al: Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers. Cancer Discov 3:770-781, 2013
13. Leemans CR, Snijders PJF, Brakenhoff RH: The molecular landscape of head and neck cancer. Nat Rev Cancer 18:269-282, 2018
14. End DW, Smets G, Todd AV, et al: Characterization of the antitumor effects of the selective farnesyl protein transferase inhibitor R115777 in vivo and in vitro. Cancer Res 61:131-137, 2001
15. Appels NMGM: Development of farnesyl transferase inhibitors: A review. Oncologist 10:565-578, 2005
16. Zujevski J, Horak ID, Bol CJ, et al: Phase I and pharmacokinetic study of farnesyl protein transferase inhibitor R115777 in advanced cancer. J Clin Oncol 18:927-941, 2000
17. Kirschbaum MH, Synold T, Stein AS, et al: A phase 1 trial dose-escalation study of tipifarnib on a week-on, week-off schedule in relapsed, refractory or high-risk myeloid leukemia. Leukemia 25:1543-1547, 2011
18. Lara PN, Law LY, Wright JJ, et al: Intermittent dosing of the farnesyl transferase inhibitor tipifarnib (R115777) in advanced malignant solid tumors: A phase I California cancer consortium trial. Anticancer Drugs 16:317-321, 2005
19. Hannan JL, Radwany SM, Albanese T: In-hospital mortality in patients older than 60 years with very low albumin levels. J Pain Symptom Manage 43:631-637, 2012
20. Lin DY, Wei LJ: The robust inference for the Cox proportional hazards model. J Am Stat Assoc 84:1074, 1989
21. Agrawal N, Frederick MJ, Pickering CR, et al: Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Cancer Discov 3:1154-1157, 2013
22. Braig F, Vogtlaender M, Schieferdecker A, et al: Liquid biopsy monitoring uncovers acquired RAS-mediated resistance to cetuximab in a substantial proportion of patients with head and neck squamous cell carcinoma. Oncotarget 7:42988-42995, 2016
23. Canning M, Guo G, Yu M, et al: Heterogeneity of the head and neck squamous cell carcinoma immune landscape and its impact on immunotherapy. Front Cell Dev Biol 5:172, 2019
24. Cramer JD, Burtness B, Le QT, et al: The changing therapeutic landscape of head and neck cancer. Nat Rev Clin Oncol 16:669-683, 2019
25. Lyu H, Li M, Jiang Z, et al: Correlate the TP53 mutation and the HRAS mutation with immune signatures in head and neck squamous cell cancer. Comput Struct Biotechnol J 17:1020-1030, 2019
26. Hammerman PS, Voet D, Lawrence MS, et al: Comprehensive genomic characterization of squamous cell lung cancers. Nature 489:519-525, 2012
27. Anderson JA, Irish JC, Nang BY: Prevalence of RAS oncogene mutation in head and neck carcinomas. J Otolaryngol 21:321-326, 1992
28. Anderson JA, Irish JC, Mclachlin CM, et al: H-ras oncogene mutation and human papillomavirus infection in oral carcinomas. Arch Otolaryngol Neck Surg 120:755-760, 1994
29. Lawrence MS, Sougnez C, Lichtenstein L, et al: Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 517:576-582, 2015
30. Cohen EEW, Bell RB, Bitulco CB, et al: The society for immunotherapy of cancer consensus statement on immunotherapy for the treatment of squamous cell carcinoma of the head and neck (HNSCC). J Immunother Cancer 7:184, 2019
31. Rampias T, Giagini A, Siolos S, et al: RAS/PI3K crosstalk and cetuximab resistance in head and neck squamous cell carcinoma. Clin Cancer Res 20:2933-2946, 2014
32. Cohen EEW, Soulieres D, Le Tourneau C, et al: Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): A randomised, open-label, phase 3 study. Lancet 393:156-167, 2019
33. Hanna GJ, Guenette JP, Chau NG, et al: Tipifarnib in recurrent, metastatic HRAS-mutant salivary gland cancer. Cancer 126:3972-3981, 2020
34. Ho AL, Hanna GJ, Scholz CR, et al: Preliminary activity of tipifarnib in tumors of the head & neck, salivary gland, and urothelial tract with HRAS mutations. J Clin Oncol 38, 2016 (suppl; abstr 6504)
35. Braig F, Voigtlaender M, Schieferdecker A, et al: Liquid biopsy monitoring uncovers acquired RAS-mediated resistance to cetuximab in a substantial proportion of patients with head and neck squamous cell carcinoma. Oncotarget 7:42988-42995, 2016
36. Van Emburgh BO, Arena S, Siravegna G, et al: Acquired RAS or EGFR mutations and duration of response to EGFR blockade in colorectal cancer. Nat Commun 7:1-9, 2016
37. Gualberto A, Scholz C, Mishra V, et al: Abstract CT191: Mechanism of action of the farnesyltransferase inhibitor, tipifarnib, and its clinical applications. Cancer Res 79:CT191-CT191, 2019 (13 suppl)
38. Strydom N, Rankin SM: Regulation of circulating neutrophil numbers under homeostasis and in disease. J Innate Immun 5:304-314, 2013
39. Niswander LM, Fegan KH, Kingsley PD, et al: SDF-1 dynamically mediates megakaryocyte niche occupancy and thrombopoiesis at steady state and following radiation injury. Blood 124:277-286, 2014

Tipifarnib in HRAS-Mutant HNSCC
AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Ho et al

TIPIFARNIB IN HEAD AND NECK SQUAMOUS CELL CARCINOMA WITH H-RAS MUTATIONS

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/jco/authors/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Alan L. Ho
Consulting or Advisory Role: Bristol-Myers Squibb, Eisai, Gensemy, Merck, Novartis, Sun Pharma, Regeneron, TRM Oncology, Ayala Pharmaceuticals, AstraZeneca, Sanofi, CureVac, Prelude Therapeutics, Kura Oncology, McGivney Global Advisors, Rgena, Elexis, Genentech/Roche, Affyimmune

Speakers’ Bureau: Medscape, Omniprex America, Novartis

Research Funding: Lilly, Genentech/Roche, AstraZeneca, Bayer, Kura Oncology, Kolltan Pharmaceuticals, Eisai, Bristol-Myers Squibb, Astellas Pharma, Novartis, Merck, Pfizer, Ayala Pharmaceuticals, Allos Therapeutics, Daiichi Sankyo, Elevar Therapeutics

Travel, Accommodations, Expenses: Janssen Oncology, Merck, Kura Oncology, Ignya, Ayala Pharmaceuticals, Kus Pharma

Irene Brana
Consulting or Advisory Role: Merck Sharp and Dohme, Rakuten Medical, Sanofi, Achilles Therapeutics, eTHERna Immunotherapies, Cancer Expert Now

Speakers’ Bureau: Bristol-Myers Squibb, Merck Serono, Roche

Research Funding: AstraZeneca, Bristol-Myers Squibb, Celgene, Gilenik, GlioxsSmithKline, Janssen Oncology, Kura Oncology, Merck Sharp and Dohme, Novartis, Orion Pharma GmbH, Pfizer, Roche, Shattuck Labs, Nanobiotix, Seattle Genetics

Travel, Accommodations, Expenses: AstraZeneca Spain, Merck Serono

Robert Haddad
Employment: Dana-Farber Cancer Institute

Leadership: NOCN

Consulting or Advisory Role: Celgene, Merck, Eisai, Bristol-Myers Squibb, AstraZeneca, Pfizer, Luxo, Genentech, Immunomeric Therapeutics, GlioxsSmithKline, Gileid Sciences, Vaccinex, EMD Serono, BionTech AG, Achilles Therapeutics

Research Funding: Boehringer Ingelheim, Merck, Bristol-Myers Squibb, Celgene, AstraZeneca, Ventrx, Genentech, Pfizer, Kura Oncology

Patents, Royalties, Other Intellectual Property: UpToDate

Other Relationship: Nanobiotix, ISA Pharmaceuticals

Jessica Bauman
Consulting or Advisory Role: Pfizer, Bayer, AstraZeneca, Kura Oncology

Research Funding: Bristol-Myers Squibb

Travel, Accommodations, Expenses: Trident Pharmaceuticals

Spukje Oosting
Research Funding: Cellidx

Deborah J. Wong
Consulting or Advisory Role: Bristol-Myers Squibb, Genentech/Roche, Sanofi/Aventis, Blueprint Medicines

Research Funding: BioMed Valley Discoveries, Merck Serono, Merck Sharp and Dohme, ARMO BioSciences, AstraZeneca/MedImmune, Kura Oncology, Regeneron, Genentech/Roche, Bristol-Myers Squibb, FSTAR, Pfizer, Astellas Pharma, Genzyme Lifesciences, Lilly, Elyar Therapeutics

Myung-Ju Ahn
Honoria: AstraZeneca, Lilly, MSD, TAKEDA

Consulting or Advisory Role: AstraZeneca, Boehringer Ingelheim, Lilly, MSD, TAKEDA, Alpha pharmaceutical

Caroline Even
Consulting or Advisory Role: Inmate Pharma, Bristol-Myers Squibb, MSD Oncology, Merck Serono

Jerome Jett
Honoria: AstraZeneca, Bristol-Myers Squibb, Merck Sharp and Dohme, Merck Serono, Inmate Pharma, Roche

Consulting or Advisory Role: AstraZeneca, Bristol-Myers Squibb, Merck Sharp and Dohme, Merck Serono, Inmate Pharma, Roche

Research Funding: Bristol-Myers Squibb

Travel, Accommodations, Expenses: Bristol-Myers Squibb, AstraZeneca, Merck Sharp and Dohme

Kevin Harrington
Honoria: Merck Sharp and Dohme, Amgen, Merck Serono, AstraZeneca/MedImmune, Boehringer Ingelheim, Bristol-Myers Squibb, Pfizer, Replimune, OncoMed, Biopharma, Mersana

Consulting or Advisory Role: Merck Sharp and Dohme, Merck Serono, AstraZeneca/MedImmune, Boehringer Ingelheim, Bristol-Myers Squibb, Pfizer, Replimune

Speakers’ Bureau: Merck Sharp and Dohme, Merck Serono, Bristol-Myers Squibb

Research Funding: AstraZeneca, Merck Sharp and Dohme, Boehringer Ingelheim, Replimune

Sung-Bae Kim
Honoria: DAEHWA Pharmaceutical, ISU Abxix

Consulting or Advisory Role: Lilly, AstraZeneca, DAEHWA Pharmaceutical, ISU Abxix

Research Funding: Novartis, Dongkook Pharma, Genzyme

Lisa Licitra
Consulting or Advisory Role: Eisai, Boehringer Ingelheim, AstraZeneca, SOBI, Novartis, Bayer, MSD, Merck Serono, Roche, Bristol-Myers Squibb, Incyte, Doxapharma, GlioxsSmithKline, Nanobiotix, Debiopharm Group, Amgen, Ipsen

Research Funding: AstraZeneca, Novartis, Roche, MSD, Eisai, Merck Serono, Bristol-Myers Squibb, Boehringer Ingelheim, Celgene, Elexisix, IRX Therapeutics, Medpace, Pfizer, Debiopharm Group, Roche

Travel, Accommodations, Expenses: Merck Serono, Bayer, Bristol-Myers Squibb, MSD, Eisai, AstraZeneca

Nabil F. Saba
Honoria: Merck, Lilly, Pfizer, Bristol-Myers Squibb, CUE Biopharma, GlioxsSmithKline, Aduro Biotech, Kura Oncology, Genentech/Roche

Consulting or Advisory Role: Pfizer, Bristol-Myers Squibb, Merck, Lilly, Blueprint, Biotech

Research Funding: Bristol-Myers Squibb, Elixxis

Travel, Accommodations, Expenses: Bristol-Myers Squibb, Merck, Pfizer, Lilly, GlioxsSmithKline, Genentech/Roche, Blueprint

Francis Worden
Honoria: Merck Sharp & Dohme, Eisai, Bristol-Myers Squibb, Bayer, Regeneron

Consulting or Advisory Role: Merck, Luxo, Bristol-Myers Squibb, Eisai, Bayer, CUE Biopharma, Rakuten Medical, Regeneron

Research Funding: Pfizer, Merck, Eisai, Bristol-Myers Squibb, Luxo, Onagricens, Lilly

Travel, Accommodations, Expenses: Merck Sharp & Dohme, Bayer

Binaifer Balsara
Employment: Kura Oncology

Stock and Other Ownership Interests: Kura Oncology

Mollie Leoni
Employment: Kura Oncology, Kyowa Kirin International

Stock and Other Ownership Interests: Kura Oncology

Catherine Scholz
Employment: Kura Oncology, H3 Biomedicine

Stock and Other Ownership Interests: Kura Oncology

Patents, Royalties, Other Intellectual Property: Methods of Treating Cancer Patients With Farnesyltransferase inhibitors (FTI treatment of H-Ras mutant cancers), co-Inventor (014168-0011-999), Methods of Treating Cancer Patients With Farnesyltransferase Inhibitors (FTI treatment of Casitas B cell lymphoma (CBL) mutant cancers), co-Inventor (014168-0021-999), Methods of Treating Cancer Patients With Farnesyltransferase Inhibitors (FTI treatment of CXC12-expressing cancer), co-Inventor (014168-0021-999), Methods of Treating Cancer Patients With Farnesyltransferase Inhibitors (FTI treatment of CXC12-expressing cancer), co-Inventor (014168-0021-999), The treatment of Casitas B cell lymphoma (CBL) mutant cancers, co-Inventor (014168-0024-228), Therapies For Squamous Cell Carcinomas (FTI treatment of SCC with high frequencies of H-Ras mutant allele frequency), co-Inventor (014168-0051-888)

Travel, Accommodations, Expenses: Kura Oncology

No other potential conflicts of interest were reported.
APPENDIX 1

Belgium Laurence Faugeras, Jean-Pascal Machiels, Pol Specenier
France Caroline Even, Jérôme Fayette, Antoine Italiano, Esma Saada-Bouzid
Germany Stephan Hackenberg
Greece Amanda Psyrri
Italy Lisa Licitra
Korea Myung-Ju Ahn, Sung-Bae Kim

Netherlands Sjoukje Oosting
Spain Marta Guix Armau, Virginia Arrazubi Arrula, Valentina Boni, Miguel Pastor Borgonon, Beatriz Castelo, Enriqueta Felip, Juan J. Grau, Maria Pilar Lopez-Criado, Maria José Flor Oncala, Lara Iglesias, Jose M. Trigo Perez
United Kingdom Martin Forster, Kevin Harrington, Ioanna Nixon
United States of America Jessica Bauman, Keith C. Bible, Maria E. Cabanillas, Nicole Chau, Robert Haddad, Alan Ho, David Hong, Hyunseok Kang, Ranee Mehra, Mohammad Razaq, Nabil F Saba, Deborah Wong, Francis Worden