Gâteaux and Fréchet derivatives of the operator of geometrically nonlinear bending problem of sandwich plate

I B Badriev, V Ju Bujanov, M V Makarov and N V Kalacheva

1 Kazan Federal University, 18 Kremlyovskaya Street, 420008, Kazan, Russia
2 Kazan National Research Technical University, 10 K.Marks Street, 420111, Kazan, Russia

E-mail: ildar.badriev1@mail.ru

Abstract. The geometrically nonlinear problem of bending of sandwich plates with a transversally soft core in a one-dimensional statement is considered. Mathematically, the problem is formulated as an integral identity generating an operator equation in the Sobolev space. The Gâteaux derivative of the operator is calculated and it is proved that it coincides with the Fréchet derivative.

1. Introduction
Layered structures, in particular, sandwich plates and shells (Fig. 1), are used in various fields of technology (aircraft manufacturing, shipbuilding, etc.). Three-layer structures have many qualities that conventional structures made of metal alone do not have. They have high specific stiffness and can withstand high specific loads. Layered plates and shells have good heat and sound insulation qualities, damping vibration-absorbing properties. [1–8].

Figure 1. Sandwich plate with transversely soft core. The cores: 1 – foam; 2 – corrugation; 3 – honeycomb.

This paper is devoted to finding the Gâteaux derivative [9] of an operator of a geometrically nonlinear bending problem for a sandwich plate with a transversally soft core, formulated as an operator equation in Sobolev space. It is established that the Gâteaux derivative of an operator is a continuous operator, whence it follows that the Gâteaux derivative coincides with the Fréchet derivative [9, 10]. Generalized statements of physically nonlinear and geometrically linear problems are considered in [11–14]. The nonlinear problems of the shells and the theory of soft net shells were studied in [15–25]. The numerical solution of geometrically nonlinear problems was carried out in [26–29].
2. Problem statement

We study the problems of determining the stress-strain state of infinitely wide sandwich plates with transversally soft core. The plate length is equal \(a \), the thickness of the aggregate is \(2t \), the thickness of the supporting layers is \(2t(k) \), \(k \) is the layer number. To describe the stress-strain state in the carrier layers, the Kirchhoff-Love model equations are used; in the core, the equations of the elasticity theory, simplified within the accepted model of the transversally soft layer and integrated over the thickness with satisfaction of the conjugation conditions of the layers by displacements [30–32]. We introduce the following notation: (hereinafter we assume that \(k = 1, 2 \)), \(H(k) = t + t(k) \), \(X^1(k) \), \(X^2(k) \) are the components of the surface load reduced to the middle surface of the \(k \)-th layer, \(w^{(k)} \) and \(u^{(k)} \) are the deflections and axial displacements of the points of the middle surface of the \(k \)-th layer, \(T^{11}(k) \), \(M^{11}(k) \) are the membrane forces and internal bending moments in the \(k \)-th layer, respectively. We assume that the edges of the plate are fixed, i.e., \(u^{(k)}(x) = 0, \ w^{(k)}(x) = 0 \), \(d w^{(k)}/dx = 0 \) at \(x = 0, \ x = a \). We consider the geometrically nonlinear case, i.e., \(T^{11}(k) = B(k) \left(du^{(k)}/dx + 0.5(d^2w^{(k)}/dx^2) \right) \), \(M^{11}(k) = D(k) d^2 u^{(k)}/dx^2 \), where \(B(k) = 2t(k) E^{(k)}(1 - v^{12}_1 v^{21}_1) \) is the tensile–compressive stiffness of the \(k \)-th layer, \(E^{(k)} \) and \(v^{12}_1, v^{21}_1 \) are the first kind of elastic modulus and the Poisson’s coefficients of the \(k \)-th layer material, \(D(k) = B(k) h^{2}_{(k)}/3 \) is the flexural stiffness of the \(k \)-th layer. Let \(U = (w^{(1)}, w^{(2)}, u^{(1)}, u^{(2)}) \) be the vector of displacements of points of the middle surfaces of the bearing layers, \(q^1 \) be the tangential stresses in the core. For \(q^1 \), we assume that the boundary conditions \(q^1(0) = q^1(a) = 0 \) are satisfied. Let \(G_{13}, E_3 \) be the transverse shear moduli and the compression of the core \(c_1 = 2t/G_{13}, \ c_2 = t^3/(3E_3), \ c_3 = E_3/(2t) \), \(M(k) \) be the surface moment of external forces, reduced to the middle surface of the \(k \)-th layer.

3. Generalized statement of the problem in the form of an operator equation

Let \(V = W_2^1(0, a) \) be the Sobolev spaces [33] with inner products

\[
(u, \eta)_k = \int_0^a d^k u / dx^k \cdot d^k \eta / dx^k \, dx, \quad k = 1, 2, \quad V = V_2 \times V_2 \times V_1 \times V_1.
\]

We denote the inner product in \(V \) by \((\cdot, \cdot)\). By analogy with (1), by solution of the problem we mean the element \((U, q^1)\) that is a solution the variational equation

\[
b((U, q^1), (Z, y)) = f(Z) \quad \forall (Z, y) \in W = V \times V_1,
\]

where the form \(b(\cdot, \cdot) \) and functional \(f \) given on \(W \times W \) and \(V \) are determined by the formulas

\[
b((U, q^1), (Z, y)) = \sum_{k=1}^a B(k) \left[\frac{d u^{(k)}}{dx} \right] \left[\frac{d \eta^{(k)}}{dx} \right] \cdot dx + \sum_{k=1}^a B(k) \left[\frac{d w^{(k)}}{dx} \right] \left[\frac{d z^{(k)}}{dx} \right] \cdot dx + \sum_{k=1}^a D(k) \left[\frac{d^2 w^{(k)}}{dx^2} \right] \left[\frac{d z^{(k)}}{dx} \right] \cdot dx + c_1 \int_0^a (w^{(2)} - w^{(1)}) (z^{(2)} - z^{(1)}) \, dx + \int_0^a \left[\frac{d z^{(k)}}{dx} \right] \left(\frac{d z^{(k)}}{dx} \right) \, dx + (\eta^{(2)} - \eta^{(1)}) \right] q^1 \, dx \right.
\]

(2)
+ \left\{ \int_0^a \left[\sum_{k=1}^{2} H_{(k)} \frac{d w_{(k)}}{d x} \right] + (u^{(2)} - u^{(1)}) + c_1 q_1 \right\} y + c_2 dq' l \, dx \right\} \, dy \, dx = 0 \\
\forall Z = (z^{(1)}, z^{(2)}, \eta^{(1)}, \eta^{(2)}) \in V, \quad \forall y \in V_1,
\end{align*}

\begin{align*}
f(Z) &= \int_0^a \left[\sum_{k=1}^{2} [X_{(k)} \eta^{(k)}] + M_{(k)} \frac{d z^{(k)}}{d x} \right] + X_{(k)} z^{(k)} \right\} \, dx \\
&\forall Z \in V. \quad (3)
\end{align*}

The form given by (2) is linear and continuous with respect to the second argument, which means it generates an operator $A: W \rightarrow W$ defined by the formula

\begin{align*}
b((U, q^1), (Z, y)) &= (A(U, q^1), (Z, y))_W \\
&\forall (Z, y) \in W,
\end{align*}

where $(\cdot, \cdot)_W$ is the inner product in W, and the functional f defined by (3) generates an element defined by the formula $(F, Z)_V = f(Z)$ for all $Z \in V$.

Therefore, problem (1) can be written as an operator equation

\begin{align*}
A(U, q^1) = (F, 0). \quad (5)
\end{align*}

4. **Gâteaux derivative of an operator of an equation**

Recall that if for the operator $A: Y \rightarrow Y$ there exists a limit

\begin{align*}
\lim_{t \rightarrow 0} \| t^{-1} (A(u + t\eta) - A(u)) - VA(u, \eta) \| = 0
\end{align*}

at the point $u \in Y$ for any $\eta \in Y$, then $VA(u, \eta)$ is called the Gâteaux variation at the point u from the operator $A(u)$ (see [9]). In the case when the Gâteaux variation $VA(u, \eta): Y \times Y \rightarrow Y$ is a linear operator with respect to η, then the Gâteaux variation is called the Gâteaux differential and is denoted by $DA(u, \eta) = A'(u)\eta$, and $A'(u)$ is called the Gâteaux derivative of the operator A at the point u.

Let’s calculate the Gâteaux derivative of the operator A defined by (2), (4). We denote $U = (w^{(1)}, w^{(2)}, u^{(1)}, u^{(2)})$, $\hat{U} = (\hat{w}^{(1)}, \hat{w}^{(2)}, \hat{u}^{(1)}, \hat{u}^{(2)})$, $Z = (z^{(1)}, z^{(2)}, \eta^{(1)}, \eta^{(2)})$. Then

\begin{align*}
\lim_{t \rightarrow 0} t^{-1} (A(U + t\hat{U}, q^1 + t\hat{q}^1) - A(U, q^1), (Z, y))_W &= \int_0^a \left[\sum_{k=1}^{2} B_{(k)} \left(\frac{d u^{(k)}}{d x} + \frac{d w^{(k)}}{d x} \right) \right] \, d \eta^{(k)} \, dx + \\
+ \left[\sum_{k=1}^{2} B_{(k)} \left(\frac{d u^{(k)}}{d x} + \frac{d w^{(k)}}{d x} \right) \right] \frac{d \eta^{(k)}}{d x} \, dx + \left[\sum_{k=1}^{2} B_{(k)} \left(\frac{d w^{(k)}}{d x} + \frac{d \eta^{(k)}}{d x} \right) \right] \frac{d \eta^{(k)}}{d x} \, dx + \\
+ \left[\sum_{k=1}^{2} H_{(k)} \frac{d z^{(k)}}{d x} \right] + \left(\eta^{(2)} - \eta^{(1)} \right) \hat{q}^1 \, dx + \left[\sum_{k=1}^{2} H_{(k)} \frac{d \hat{w}^{(k)}}{d x} \right] + (\hat{u}^{(2)} - \hat{u}^{(1)}) \right\} \, dx + \\
&+ c_1 \hat{q}^1 \, dx + c_2 \frac{d \hat{q}^1}{d x} \, dx = (DA(U, q^1), (\hat{U}, \hat{q}^1), (Z, y))_W.
\end{align*}

Thus, for all $(U, q^1), (\hat{U}, \hat{q}^1), (Z, y)$ from W we have

\begin{align*}
\lim_{t \rightarrow 0} t^{-1} \left(A(U + t\hat{U}, q^1 + t\hat{q}^1) - A(U, q^1) - DA(U, q^1), (\hat{U}, \hat{q}^1), (Z, y) \right)_W = 0. \quad (7)
\end{align*}

By the corollary of the Han–Banach theorem (see [34], Theorem 2.7.4), we can choose a unit vector (Z, y) from W such that
(t^{-1}\left((A(U + t\hat{U}, q^1 + t\hat{q}^1) - A(U, q^1)) - DA((U, q^1), (\hat{U}, \hat{q}^1)), (Z, y)\right))_w =
= \left\| t^{-1}\left((A(U + t\hat{U}, q^1 + t\hat{q}^1) - A(U, q^1)) - DA((U, q^1), (\hat{U}, \hat{q}^1))\right)\right\|_w.

From here and from the relation (7) it follows that
\lim_{t \to 0} \left\| t^{-1}\left((A(U + t\hat{U}, q^1 + t\hat{q}^1) - A(U, q^1)) - DA((U, q^1), (\hat{U}, \hat{q}^1))\right)\right\|_w = 0.

It is easy to see that the operator \(DA((U, q^1), (\hat{U}, \hat{q}^1)) \) is linear in \((\hat{U}, \hat{q}^1) \), and therefore \(DA((U, q^1), (\hat{U}, \hat{q}^1)) = A'(U, q^1)(\hat{U}, \hat{q}^1) \), where \(A'(U, q^1) \) is the Gâteaux derivative of the operator the point \((U, q^1) \). Thus, the following theorem holds.

Theorem 2. Let an operator \(A \) be generated by relations (2), (4). Then it is differentiable everywhere according to Gâteaux, its Gâteaux derivative is defined by the relation (6).

5. Fréchet derivative of an operator of an equation

Recall [9, 10] that if at the point \(u \in Y \) for the operator \(A: Y \to Y \) the relation \(A(u + \eta) - A(u) = dA(u, \eta) + o(\eta) \) holds, where \(dA(u, \eta) \) is the linear operator of \(\eta \) and \(\lim_{\eta \to 0} o(\eta) / | \| \eta ||| = 0 \) then \(dA(u, \eta) \) is called the Fréchet differential of the operator \(A(u) : Y \to Y \) at the point. If \(dA(u, \eta) \) is a bounded operator of \(\eta \), then \(dA(u, \eta) = A'(u) \eta \), and \(A'(u) \) is called the Fréchet derivative of the operator \(A \) at the point \(u \). We prove that the following theorem is true.

Theorem 3. Let the operator \(A \) be generated by relations (2), (4). Then its Gâteaux derivative is a continuous operator.

Proof. For all \((U, q^1), (\hat{U}, \hat{q}^1), (Y, r)\) and any unit vector \((Z, y)\) from \(W \), using the Sobolev embedding theorem and the generalized Hölder inequality, we obtain
\[
| (A'(U, q^1)(\hat{U}, \hat{q}^1) - A'(Y, r)(\hat{U}, \hat{q}^1), (Z, y))_w | \leq C^R \| U - Y \|_V \| \hat{U} \|_V.
\] (8)

By the corollary of the Han–Banach theorem ([34, Theorem 2.7.4]), we can choose a unit vector \((Z, y)\) from \(W \) such that
\[
(A'(U, q^1)(\hat{U}, \hat{q}^1) - A'(Y, r)(\hat{U}, \hat{q}^1), (Z, y))_w = \| A'(U, q^1)(\hat{U}, \hat{q}^1) - A'(Y, r)(\hat{U}, \hat{q}^1), (Z, y) \|_w .
\]
\[
\| A'(U, q^1)(\hat{U}, \hat{q}^1) - A'(Y, r)(\hat{U}, \hat{q}^1), (Z, y) \|_w \leq C^R \| U - Y \|_V \| \hat{U} \|_V.
\]

From here and from the relation (8) it follows that
\[
\| A'(U, q^1)(\hat{U}, \hat{q}^1) - A'(Y, r)(\hat{U}, \hat{q}^1), (Z, y) \|_w \leq C^R \| U - Y \|_V \| \hat{U} \|_V.
\]

Thus, \(A'(U, q^1) \) is a continuous operator. The theorem is proved.

6. Conclusion

It is proved that the operator of a geometrically nonlinear problem of bending of a three-layer plate with a transversely soft filler is differentiable according to Gâteaux and its Gâteaux derivative is calculated. It is established that the Gâteaux derivative coincides with the Fréchet derivative. In the future, this property will be used in the study of buckling of the plate and finding the critical load at which a buckling occurs. Approximate methods for solving this problem will be developed based on the approaches developed in [35–46].

Acknowledgments

This work was supported by the Russian Science Foundation (project 16-11-10299).
References

[1] Vasiliev V V and Morozov E V 2013 Advanced Mechanics of Composite Materials and Structural Elements (Elsevier)

[2] Badriev I B and Paimushin V N 2018 Mathematical modeling of a dynamic thin plate deformation in acoustoelasticity problems IOP Conference Series: Earth and Environmental Science 107(1) 012095 DOI: 10.1088/1755-1315/107/1/012095

[3] Paimushin V N, Kholmogorov S A and Badriev I B 2017 Theoretical and experimental investigations of the formation mechanisms of residual deformations of fibrous layered structure composites MATEC Web of Conferences 129 02042 DOI: 10.1051/matecconf/201712902042

[4] Badriev I B and Paimushin V N 2017 Refined models of contact interaction of a thin plate with positioned on both sides deformable foundations Lobachevskii Journal of Mathematics 38 (5) 779-93 DOI: 10.11134/S1995080217050055

[5] Badriev I B, Makarov M V and Paimushin V N 2015 On the interaction of composite plate having a vibration-absorbing covering with incident acoustic wave Russian Mathematics 59(3) 66-71 DOI: 10.3103/S1066369X1503007X

[6] Badriev I B, Makarov M V and Paimushin V N 2018 Geometrically Nonlinear Problem of Longitudinal and Transverse Bending of a Sandwich Plate with Transversally Soft Core Lobachevskii Journal of Mathematics 39(3) 448-57 DOI: 10.1134/S1995080218030046

[7] Badriev I B, Makarov M V and Paimushin V N 2016 Longitudinal and transverse bending by a cylindrical shape of the sandwich plate stiffened in the end sections by rigid bodies IOP Conference Series-Materials Science and Engineering 158 (1) 012011 DOI: 10.1088/1757-899X/158/1/012011

[8] Badriev I B, Makarov M V and Paimushin V N 2017 Contact statement of mechanical problems of reinforced on a contour sandwich plates with transversally-soft core Russian Mathematics 61 (1) 69-75 DOI: 10.3103/S1066369X1701008X

[9] Vaĭnberg M M 1974 Variational method and method of monotone operators in the theory of nonlinear equations (Wiley)

[10] Lindenstrauss J, Preiss D and Tišer J 2012 Fréchet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces (New Jersey, Princeton University Press).

[11] Badriev I B, Garipova G Z, Makarov M V, Paimushin V N and Khabibullin R F 2015 Solving physically nonlinear equilibrium problems for sandwich plates with a transversally soft core Lobachevskii Journal of Mathematics 36 (4) 474-81 DOI: 10.1134/S1995080215040216

[12] Badriev I B, Makarov M V and Paimushin V N 2017 Numerical investigation of a physically nonlinear problem of the longitudinal bending of the sandwich plate with a transversal-soft core PNRPU Mechanics Bulletin (1) 39-51 DOI: 10.15593/perm.mech/2017.1.03

[13] Badriev I B, Makarov M V and Paimushin V N 2015 Solvability of physically and geometrically nonlinear problem of the theory of sandwich plates with transversally-soft core Russian Mathematics 59(10) 57-60 DOI: 10.3103/S1066369X15100072

[14] Badriev I B, Banderov V V and Makarov M V 2017 Mathematical Simulation of the Problem of the Pre-Critical Sandwich Plate Bending in Geometrically Nonlinear One Dimensional Formulation IOP Conference Series: Materials Science and Engineering 208 (1) 012002 DOI: 10.1088/1757-899X/208/1/012002.

[15] Badriev I B and Shagidullin R R 1995 A study of the convergence of a recursive process for solving a stationary problem of the theory of soft shells Journal of Mathematical Sciences 73(5) 519-25 DOI: 10.1007/BF02367668

[16] Badriev and Shagidullin R R 1992 Study of monomeric equations of static state of soft envelope and algorithm of their solution Izvestiya vysshikh uchebnnykh zavedenii. Matematika (1) 8-16
[17] Badriev I B, Zadvornov O A and Saddek A M 2001 Convergence Analysis of Iterative Methods for Some Variational Inequalities with Pseudomonotone Operators *Differential Equations* 37(7) 934-42 DOI: 10.1023/A:1011901503460.

[18] Badriev I B, Banderov V V and Zadvornov O A 2013 On the solving of equilibrium problem for the soft network shell with a load concentrated at the point *PNRPU Mechanics Bulletin* (3) 17-35

[19] Badriev I B and Banderov V V 2014 Iterative methods for solving variational inequalities of the theory of soft shells *Lobachevskii Journal of Mathematics* 35(4) 371-83 DOI: 10.1134/S1995082214040015

[20] Solov'ev S I 2016 Eigenvibrations of a beam with elastically attached load *Lobachevskii Journal of Mathematics* 37 597-609 DOI: 10.1134/S1995082216050115

[21] Solov'ev S I 2017 Eigenvibrations of a bar with elastically attached load *Differential Equations* 53 (3) 409-23 DOI: 10.1134/S0374064117030116

[22] Abdrahkmanova A I, Garifullin I R, Davydov R L, Sultanov L U and Fakhruddinov L R 2015 Investigation of Strain of Solids for Incompressible Materials *Applied Mathematical Sciences* 9 (118) 5907-14 DOI: 10.12988/ams.2015.157507

[23] Davydov R L, Sultanov L U and Kharzhavina V S 2015 Elastoplastic model of deformation of three-dimensional bodies in terms of large strains *Global Journal of Pure and Applied Mathematics* 11 (6) 5099-108

[24] Berezhnoi D V, Balafendieva I S, Sachenkov A A and Sekaeva L R 2016 Modelling of deformation of underground tunnel lining, interacting with water-saturated soil *IOP Conference Series: Materials Science and Engineering* 158 (1) 012018. DOI: 10.1088/1757-899X/158/1/012018

[25] Berezhnoi D V and Sagdatullin M K 2015 Calculation of interaction of deformable designs taking into account friction in the contact zone by finite element method *Contemporary Engineering Sciences* 8 (21-24) 1091-8 DOI: 10.12988/ces.2015.58237

[26] Badriev I B, Garipova G Z, Paimushin V N and Makarov M V 2015 Numerical solution of the issue about geometrically nonlinear behavior of sandwich plate with transversal soft filler *Research Journal of Applied Sciences* 10(8) 428-35 DOI: 10.3923/rjasci.2015.428.435

[27] Badriev I B, Makarov M V and Paimushin V N 2017 Longitudinal and Transverse Bending on the Cylindrical Shape of a Sandwich Plate Reinforced with Absolutely Rigid Bodies in the Front Sections *Uchenye zapiski Kazanskogo universiteta-Seriya fiziko-matematicheskie nauki* 159 (2) 174-90 (in Russian)

[28] Badriev I B, Makarov M V and Paimushin V N 2016 Geometrically Nonlinear Problem of Longitudinal and Transverse Bending of a Sandwich Plate with Transversally Soft Core *Uchenye zapiski Kazanskogo universiteta-Seriya fiziko-matematicheskie nauki* 158 (4) 453-68

[29] Badriev I B, Makarov M V and Paimushin V N 2016 Numerical investigation of physically nonlinear problem of sandwich plate bending *Procedia Engineering* 150 1050-5 DOI: 10.1016/j.proeng.2016.07.213

[30] Paimushin V N and Shalashilin V I 2004 Noncontradictory variant of solid mechanics in square approximation *Doklady Akademii Nauk* 396 (4) 492-5

[31] Paimushin V N and Bobrov S N 2000 Refined geometric nonlinear theory of sandwich shells with a transversely soft core of medium thickness for investigation of mixed buckling forms *Mechanics of composite materials* (1) 59-66

[32] Paimushin V N 1987 Nonlinear theory of the central bending of three-layer shells with defects in the form of sections of bonding failure *Soviet Applied Mechanics* 23 (11) 1038-43 DOI: 10.1007/BF00887186

[33] Adams R A 1975 *Sobolev Spaces* (New York, San Francisco, London, Academic Press)

[34] Hille E and Phillips R 1957 *Functional Analysis and Semi-groups. Colloquium*
Publications 31 (Providence, American Mathematical Society)

[35] Solov'ev S I 1985 Fast methods for solving mesh schemes of the finite element method of second order accuracy for the Poisson equation in a rectangle Izvestiya vysshikh uchebnykh zavedeni. Matematika (10) 71-4

[36] Dautov R Z, Lyashko A D and Solov'ev S I 1991 Convergence of the Bubnov-Galerkin method with perturbations for symmetric spectral problems with parameter entering nonlinearly Differential Equations 27 (7) 799-806

[37] Badriev I B 1989 Application of duality methods to the analysis of stationary seepage problems with a discontinuous seepage law Journal of Soviet Mathematics 45 (4) 1310-14 DOI: 10.1007/BF01097084

[38] Badriev I B and Fanyuk B Y 2012 Iterative methods for solving seepage problems in multilayer beds in the presence of a point source Lobachevskii Journal of Mathematics 33 (4) 386-99 DOI: 10.1134/S1995080212040026

[39] Badriyev I B, Zadvornov O A, Ismagilov L N and Skvortsov E V 2009 Solution of plane seepage problems for a multivalued seepage law when there is a point source Journal of Applied Mathematics and Mechanics 73 (4) 434-42 DOI: 10.1016/j.jappmathmech.2009.08.007

[40] Chebakova V J, Gerasimov A V and Kirpichnikov A P 2016 On the solving of one type of problems of mathematical physics IOP Conference Series: Materials Science and Engineering 158 (1) 012023 DOI: 10.1088/1757-899X/158/1/012023

[41] Badriev I B, Banderov V V, Gnedenkova V L, Kalacheva N V, Koroblev A I and Tagirov R R 2015 On the finite dimensional approximations of some mixed variational inequalities Applied Mathematical Science 9 (113-6) 5697-705 DOI: 10.12988/ams.2015.57480

[42] Badriev I B, Banderov V V, Lavrentyeva E E and Pankratova O V 2016 On the Finite Element Approximations of Mixed Variational Inequalities of Filtration Theory IOP Conference Series: Materials Science and Engineering 158 (1) 012012 DOI: 10.1088/1757-899X/158/1/012012

[43] Badriev I B 1983 Difference-schemes for linear-problems of the filtration theory with discontinuous law Izvestiya Vysshikh Uchebnykh Zavedeni Matematika 5 3-12

[44] Solov'ev S I 2016 Approximation of operator eigenvalue problems in a Hilbert space IOP Conference Series-Materials Science and Engineering 158 (1) 012087 DOI: 10.1088/1757-899X/158/1/012087

[45] Dautov R Z, Lapin A V and Lyashko A D 1980 Some mesh schemes for quasi-linear elliptic equations USSR Computational Mathematics and Mathematical Physics 20 (2) 62-78 DOI: 10.1016/0041-5553(80)90024-5

[46] Badriev I B and Karchevskii M M 1989 Convergence of the iterative Uzawa method for the solution of the stationary problem of seepage theory with a limit gradient Journal of Soviet Mathematics 45 (4) 1302-9 DOI: 10.1007/BF01097083