Visualizing the Knowledge Domain of Language Experience: A Bibliometric Analysis

Jiaxing Jiang and Lin Fan

Abstract
Research on language experience (LE) has covered numerous topics in psychology, linguistics, and other related disciplines. Such research is based on people’s experiences of the world, and substantial attention has been paid to this subject. In order to investigate the foundation and influential works of LE studies, we adopt CiteSpace software to analyze 30,045 published articles/reviews from the Web of Science by focusing on the co-citation analysis in terms of discipline, articles, and journals. The results present that (1) language systems in LE research interact mutually rather than separate from each other and (2) bilingualism is always a hot topic in the past few decades and will be popular in the next decades. These findings further indicate some issues to be resolved. One is about the relations between language systems and the other is the psychological interpretation in language experiences conflicts in practical language use.

Keywords
language experience, bilingualism, bibliometrics, CiteSpace

Introduction
The term language experience (LE) is broadly a popular research topic and broadly investigated in diverse disciplines. It refers to “the child’s own thoughts, ideas, and language as well as objects in the environment form the basis for his introduction to reading” (Batinich, 1970, p. 539). Hall (1985, p. 5) further pointed out that LE is more than an approach but “a perspective and a philosophy about language learning and about language teaching.” Batinich and Hall’s words indicate that researches of LE much concern with people’s experience of the world. From a biological perspective, a person’s experience is the primary precondition that determines how they perceive the world. From a cognitive perspective, an individual’s experience reflects their cognitive processes (Lakoff, 2010; Mandler, 1992), while a linguistic view holds that a person’s experience influences how they understand, use, learn, and teach language (Antovich & Graf Estes, 2018; Flege, 2005).

The research on experience can be traced back to Hume’s philosophical investigation of empiricism. Hume (2009) argued that ideas are constructed based on people’s impressions of the world, and such impressions are achieved via people’s sense experience (i.e., common sense or experience). This argument suggests that people’s experiences are crucial to advanced knowledge and ideologies. Specifically, a person acquires language knowledge through their language experiences, which occur because people participate in language activities. The participation in various language activities will include many processes such as mental, social, behavioral, or biological. LE studies therefore theoretically cover several disciplines such as psychology, linguistics, education, sociology, and neurology and address various related topics such as language learning, teaching, acquisition, usage, and neural signals in the brain. For instance, there are bilingualism studies that have explored language production (e.g., Gollan et al., 2007; Sadat et al., 2012; Zou et al., 2012), language processing (Macizo et al., 2010; Martin et al., 2010; Yudes et al., 2011), language acquisition (e.g., Canseco-Gonzalez et al., 2010; Kapa & Colombo, 2014; Vejnovic et al., 2010), neural signals and imaging (e.g., Fernandino & Iacoboni, 2010; Hanulová et al., 2011; Oberman & Ramachandran, 2007), and language pathology (e.g., Purdy & Hindenlang, 2005; Sebastian et al., 2012; van...
Mersbergen et al., 2001). These indicate that LE research includes both language studies (in the social sciences) and biological studies (in the natural sciences).

Further, numerous studies have explored the relationship between LE, language knowledge, and competence or between LE and language development and between LE and competence in regard to language cognition (e.g., Downer & Pianta, 2006; Kuhl et al., 2006; Lee & van Hasselt, 2005), language competence (e.g., Farver et al., 2006; Slevc et al., 2016; Wong et al., 2007), and language usage (e.g., Coderre & van Heuven, 2014; Fan et al., 2017; Kapa & Colombo, 2014). Additional research in both the social and natural sciences have explored LE, focusing on various themes such as language learning and teaching, childcare, language switching, lexical decisions, and deaf children.

Most reviews or research of LE used to focus on language learning (or acquisition) and teaching in terms of the psychological processes (e.g., Antoniou & Katsos, 2017; Hambly et al., 2013; Ramirez-Esparza et al., 2020) or neural mechanisms (e.g., DeLuca et al., 2020; Garcia-Pentón et al., 2016; Platsikas et al., 2020) while the relationship between disciplines in LE research is seldom touched by scholars. Questions like whether scholars from various disciplines investigate LE from the same perspective; whether the disciplinary research of LE is carried out around some hot topics; or whether there exit some conflicts between LEs in previous research are still uncovered in LE-related research. These questions require not only a generalization of ideas or concepts from articles of a particular topic of LE but also a bibliometric analysis to excavate the information flow in the investigation of LE based on co-citation, coupling, cluster analyses and the like. Answers to those questions will prove the interdisciplinary communication and help scholars have a sketch of the status quo of LE, especially for those who are not very familiar with LE but interested in it. On those accounts, this study carried out a bibliometric analysis of LE-related literature published from 2000 to 2019 via CiteSpace (5.6.R.3). In the process of performing the bibliometric analysis, this article aims to sort out the basis shared by various LE research in diverse disciplines, which helps to understand relations between those studies and some influential or primary LE research. The purpose of our research further elicits two research questions: (1) What is the basis of LE research shared by different disciplines in the first two decades of 21st century? and (2) What issues does the information flow of LE research indicate? The first question is to discover the generality and the second is to reveal the trend in LE research across disciplines.

To answer the two research questions, this study begins with a brief introduction to bibliometric analyses with the elaboration of the advantages of CiteSpace. The following three sections describe the results obtained from the analysis. In line with bibliometric analysis requirements, we collected published articles and reviews from the Web of Science (30,045 in total). The last section generalizes the findings and explains how they can be useful for researchers or scholars who are interested in LE.

Research Method

To understand how LE research has developed in the 21st century, this study collected articles/review from the following sources for the bibliometric analysis: the Advanced Search in the Web of Science (WOS) Core Collection of Thomson Reuters, Science Citation Index Expanded (SCIE), SSCI, A&HCI. All collected articles/reviews were written in English, and we retrieved the data using the following fields:

1. **Topic** = ("language experience*" OR "linguistic* experience*" OR "bilingual* experience*") OR "multilingual* experience*") OR "bilingual* effect" OR "multilingual* effect" OR "bilingual* advantage*" OR "multilingual* advantage*"). Thus, we retrieved articles/reviews that included these words in their titles, abstracts, or keywords.
2. **Time span** = 2000–2019
3. **Document type** = article or review
4. ("*" is a wildcard in WOS that represents any group of characters, including no character. For instance, experience* = experience, experiences, experiencing, and experienced. Besides, in this article, the review articles do not include book reviews.)

Based on the search items listed above, this study collected 30,045 research and review articles from 1,765 journals that were distributed across approximately 246 WOS categories (e.g., psychology, computer science, linguistics, clinical neurology, and education; the list of those categories is displayed in Appendix). In order to guarantee the recall ratio, this study used the “remove duplicates (WOS)” function in CiteSpace to filter out duplicated studies from the collected data. The study did not remove any other articles/reviews from the dataset.

This study used CiteSpace to analyze the collected data based on Chen’s (2017) suggested analytical trajectory, namely, from a global/general analysis to a local/special one. CiteSpace is designed to synthesize and visualize the literature in the fashion of co-citation network where co-cited references are represented as nodes. Different types are groups into clusters based on the relativity and interconnectivity between references on a specific research topic (Chen, 2006). Each cluster, therefore, represented in the co-citation network depicts a specific research topic. The clusters (i.e., the different colored areas in Figures 3–5) are interpreted based on a series of parameters as following:

(1) **Modularity Q**: if Modularity Q > 3, then the separated social structures in the given field are clearly defined in terms of co-citation clusters (Chen, 2006; Chen et al., 2010);
(2) Silhouette: if Silhouette > 0.5, then the cluster effects are reasonable, and the level of homogeneity is relatively high, suggesting that each cluster is well matched to each other (Chen, 2006; Chen et al., 2010);

(3) Log-likelihood ratio (LLR): tests to recognize labels effectively within the cluster (Chen et al., 2010, 2012);

(4) Citation Burst (CB): a technique of identifying references attracting increased attention to the underlying research and to trace the development of study focus (Chen, 2017; Kleinberg, 2003);

Unlike other reviews of LE or other bibliometric analysis, we separated three epochs to conduct co-citation analyses. We separated the results into a 20-year depiction (2000–2019) and two 10-year depictions (2000–2009 and 2010–2019). The analysis was carried out around the most-cited references, which means even the articles in the second epoch cite some references published in the first epoch, those citations can hardly become the most cited ones in such a short period of time. Therefore, the data cutoffs will not be influence by whether the first epoch will impact the second epoch. The 20-year depiction aimed to paint an integral picture of the generality of LE research, while the two 10-year descriptions intended to illustrate the changes that occurred from one decade to another.

Results

We retrieved 30,045 publications (articles and reviews), and Figure 1 displayed the number of published article and review for every year. Generally, Figure 1 showed that the number of published LE works steadily increased from the year 2000 (less than 500) to the year 2019 (more than 3,000) especially after 2008.

Nevertheless, as depicted in Figure 2, the rate of growth differed by decade. Evidently, there was more growth during 2010 to 2019 than during 2000 to 2010. It indicated that the swift development of LE research. The phenomenon reflected, to some extent, that investigations of LE were highly extensive and complicated rather than in merely psychology or neural science, as argued by Arshavsky (2009, p. 336) with the statement that “it is hardly possible to understand the mechanisms of language production and comprehension within a concept that views cerebral neurons as simple elements whose function is limited to generating electrical potentials.” Therefore, LE research would inevitably attract scholars both from the inside and outside of neuroscience. The number of LE publications illustrated the popularity and significance of LE, and the following section will depict the development of LE from following aspects:

![Figure 1. Numbers of published articles (2000–2019).](image)

![Figure 2. Numbers of published articles in two decades.](image)

Category Analysis

According to the results of category analysis, we listed the top 10 categories (given automatically in the software in line with the labels in WOS) in each period in Table 1 and provided their rankings based on the number of publications. This table illustrated that LE research was largely published in the following four categories: psychology, linguistics, education, and neurology (or neuroscience). For the ranking of first three categories, the number of published LE studies remained stable across the entire 20-year period. It indicated the most primary research field of LE at the beginning of this century, namely, psychology, linguistics, and education.

Further, Table 1 highlighted that LE in computer science displayed a downturn in the second decade than in the first. It seemed that computer science research of LE did not attract much attentions as it did in the first decade. This phenomenon may be due to the swift development of computer and internet techniques at the beginning of this century in linguistics, especially in regard to computer-assisted learning or teaching (e.g., Loui, 2008; Sife & Lwoga, 2007; Thonus, 2004). Nevertheless, the ranking of computer science
research of LE in 2000 to 2019 still showed an important status of such category in LE investigation.

Co-citation Analysis: Cluster Interpretations

Based on the analysis results of the co-citation, we used CiteSpace to conduct a cluster analysis. Figure 3 presented the general clusters (made through LLR algorithm in CiteSpace) of the collected articles from 2000 to 2019 with a modularity value of 0.7207 and a mean silhouette value of 0.982 based on the algorithms of path finder, pruning sliced networks, and pruning the merged network in CiteSpace. It illustrated an aggregated distribution in which most colorful areas overlapped, indicating that these clusters share some basic concepts or information (as suggested by Chen, 2004, 2017). Moreover, there were several marginal colorful
clusters such as “healthcare” (#11) and “translanguaging space” (#14) that were separated from the aggregated ones. To provide more details about these clusters and to identify how the citations changed between the two decades, we visualized the co-citation results for the 2000 to 2009 and 2010 to 2019 decades in Figures 4 and 5, respectively. Figure 4 (modularity = 0.7223, mean silhouette = 0.7137) and 5 (modularity = 0.6315, mean silhouette = 0.6799) presented aggregated distributions of the clusters in Figure 3. In the method of introducing results of co-citation analysis through CiteSpace proposed by Chen and Song’s (2019), the two largest clusters in each epoch should be described to show the principal components in the co-citation analysis.

The largest cluster of Figure 4 in the 2000 to 2009 period contained 78 articles. This cluster was labeled as “teachers knowledge” by LLR and had a silhouette value of 0.923. The most active citer in this cluster was Hirsh-Pasek and Burchinal’s (2006) article entitled “Mother and caregiver sensitivity over time: Predicting language and academic outcomes with variable- and person-centered approaches.” The second largest cluster in Figure 4 contained 69 articles from 2000 to 2009 and was labeled as “lexical decision” by LLR. This cluster’s silhouette value was 0.778 and its most active citer was de Groot et al.’s (2000) article entitled “The processing of interlexical homographs in translation recognition and lexica decision: Support for non-selective access to bilingual memory.”

For the 2010 to 2019 periods, the cluster analysis produced 15 co-citation clusters. Of these, the two largest clusters were labeled as “bilingual advantage” (#0) and “executive function” (#1) by LLR (see Figure 5). The largest cluster, “bilingual advantage,” had a silhouette value of 0.687, contained 134 total articles, and its most active citer was Bialystok’s (2010) review entitled “Bilingualism,” describing the differences between bilingualism and monolingualism in terms of acquisition and usage and argued that these differences lead to changes in cognitive and linguistic processes. The second largest cluster, “executive function,” had a silhouette value of 0.764, contained 119 articles, and its most active citer was Degani and Tokowicz’s (2010) article entitled “Semantic ambiguity within and across languages: An integrative view,” focusing on cross-language ambiguity and highlighted the need for studies that test both within and cross-language ambiguity (for the same individuals) in regard to how frequency, semantic context, and language context interact.

Figure 4. Co-citation clusters (2000–2009).
Except for the most active citers in these two clusters, Figure 6 showed the development of the four clusters throughout their timelines. Larger circles on the timelines represented the references that scholars frequently cited. The first two timelines clearly illustrate that information and concepts published between 1995 and 2000 helped develop these clusters. Incorporating the two most active citers into the timelines (i.e., the two dotted lines in Figure 6) revealed that the most active citer in the first cluster (#0 teacher knowledge in Figure 4) appeared after the influential works were published (i.e., the large circles), while the most active citer in the second cluster (#1 lexical decision in Figure 5) appeared during the same time period wherein the influential works were published. This result suggested that the Hirsh-Pasek and Burchinal’s article depended much more on the existing research, while the Annette, de Groot, Delmaar, and Lupker’s article not only adopted existing knowledge but also provided a lot of information for the studies that were later published.

In addition, the two clusters in Figure 6 further manifested that they both had an influential position in the evolution processes from 2002 to 2019. Nonetheless, the timelines of the two clusters showed a prominent discrepancy in regard to the density of the citing lines. The first cluster (#0 bilingual advantage) contained highly dense citing lines, indicating that many more bilingual advantage studies were published from 2004 to 2016 in comparison to the second cluster (#1 executive function). In addition, the first cluster’s time span was longer than the second one.

Description of Figure 6 provided us with more details about LE studies in general. First, the analyses of the four timelines revealed that the last two citing lines were denser than the first two. This was consistent with the number of articles that had been published since 2000. The number of articles (see Figure 1) illustrated that the numbers of published articles in 2010 to 2019 increased from a fairly higher position than those in 2000 to 2009, which lead to the citing and cited articles increase positively in the same fashion. Second, the topic addressed by the four most active citers (i.e., the four example articles) matched the most common topic covered in LE studies between 2000 and 2019 (i.e., bilingualism), and all four articles were influential in the two clusters’ evolution processes. Third, in the co-citation cluster analysis, three of the most active citers were review articles, which was in line with the features of review articles. Finally,
the visualizations were similar in regard to the two decades individually and aggregated.

Co-citation Analysis: The Most Cited Articles

Given the fact that co-citation is “frequency with which two documents are cited together” (Small, 1973, p. 265), it means “this measure in many cases reflects the existence of direct citation links and corresponds to significant intellectual connections within the field” and “co-citation could be used to establish a cluster or ‘core’ of earlier literature for a particular specialty” (Small, 1973, p. 268). In order to further probe into the intellectual connections of the collected articles, we analyzed the most cited references on the basis of cluster analysis results. Figure 7 visually displays the timelines of the clusters (from the co-citation analysis) based on the cited articles. This figure shows the top 20 clusters (i.e., the most cited) of the total 397 clusters. It illustrates the clusters of the collected articles from 2000 to 2019 through the timeline. This figure highlighted that the basis of research at the beginning could be traced back to 1990s, especially in the topic areas of deaf children, bilingualism, phonological awareness, and health care.

Figure 7 also illustrates that there had been a transition from clusters 1, 2, 3, and 6 to clusters 0, 4, 5, 7, 8, 9, and 10. This supported the category analysis results, which manifested that the major trends in LE research had been in the fields of psychology, linguistic, and education. In order to detail the transition between clusters in Figure 7, Table 2 displayed the 10 most cited articles for each decade.

Theoretically, the most cited articles were based on specific research, and researchers in the same field should rely on some crucial articles. This meant that the underlying basis for LE research may differ between the two periods, which provided additional support that there was a transition in research hotspots from one field to another (or from one discipline to another). Therefore, this figure illustrates the flow of knowledge from one cluster to another.

Except for the flow of knowledge between clusters, the citation counts of each article also reflected a variation trend of LE research from the first to the second decade. The salient growth of the citation counts of articles published in 2010 to 2019 is apparently stimulated by the growth of the published articles in the second decade (see Figure 2). Notably, the growth of the published articles lead to another phenomenon that the difference values between the first and the last citation bursts in the two decades showed a great distance. In 2000 to 2009, the difference value between the first and the last citation counts was 12 while in 2010 to 2019 the value increased to 99. However, the difference values of citation counts can merely justify the growth of interests of scholars at the beginning of this century, rather than the academic status or influence of each article in Table 2. Thus, the information presented in Table 2 did not necessarily indicate that the 2010 to 2019 cited articles were more important than those published during 2000 to 2009.
Although each group of cited articles likely experienced a transition from one research hotspot to another, the articles had an obviously similar primary focus. Based on the titles of the 20 articles in Table 2, the most common LE research subject is bilingualism (or second language). For instance, the most cited article between 2000 and 2009 was Flege et al.’s (1999) “Age Constraints on Second-Language Acquisition,” which “evaluates the critical period hypothesis for second language acquisition and discover the evidence to support that age constrains the learning of L2 phonology to a greater extent than that of L2 morphosyntax” (Flege et al., 1999, p. 98). It contributed to a better understanding of the underlying effects of age constraints in regard to second language acquisition.

In Table 2, five highly-ranked articles were related to bilingualism published between 2000 and 2009 likewise. First, the third-most cited article was Dijkstra and van Heuven’s (2002) study that discussed the limitations of the Bilingual Interactive Activation (BIA) model and proposed a BIA’ model. Second, the fifth-most cited article was Bialystok et al.’s (2004) research wherein the authors investigated the relationships between the bilingual advantage, aging, and cognitive control to identify that bilingualism helps people offset age-related losses in particular executive processes. Third, Jared and Kroll’s (2001) study was ranked seventh; this study explored the phonological representations of bilinguals in both target and non-target languages in a word-naming process, and the authors presented evidence that confirmed the existence of this phenomenon. Fourth, Iverson et al.’s (2003, p. 47) research was ranked eighth, and they questioned “how early language experience can impede the acquisition of non-native phonemes during adulthood” and supported their answer with sufficient evidence. Fifth, Green (1998), which was the 10th-ranked study, investigated the means through which bilinguals control their two language systems, and the author constructed an inhibitory control model to illustrate this control. In addition to these studies that relied on statistical methods, Kim et al. (1997) was ranked fourth and explored bilinguals via functional magnetic resonance imaging (fMRI) to examine the spatial relationship between native and second languages within the human cortex.
Seven of the 10 articles listed in Table 2 for the years 2010 to 2019 are concerned with bilingualism. Similar to those published in 2000 to 2009, these later articles adopted the same research paradigm to investigate bilinguals. Specifically, the authors of these later studies also conducted several tests and relied on statistical methods for their analyses. The most cited articles from 2010 to 2019 focused on three primary aspects of bilingualism—its advantages, effects, and cognitive processes.

The first, fourth, and ninth ranked articles in Table 2 examined the advantages of bilingualism. The most-cited article belongs to Paap and Greenberg (2013), and these authors compared bilinguals and monolinguals along 15 indicators of executive processing (EP). They concluded that their research findings did not support the hypothesis that bilingualism improved EP. This finding highlighted that there were contradictory findings in the literature on the advantages of bilingualism. Hilchey and Klein’s (2011) article (rank 4) discussed the advantages of bilingualism regarding non-linguistic interference tasks, and the authors suggested that bilinguals had increasingly widespread cognitive advantages. Costa et al.’s (2009) study (rank 9) focused on the advantages of bilingualism regarding conflict processing, and they provided evidence from two experiments to justify that bilingualism likely influences the monitoring processes involved in executive control.

Green and Abutalebi’s (2013) study on bilingual cognitive processes (rank 5) explored speech comprehension and production, which are governed by the control process, and they hypothesized that a single, dual, or dense code-switching context will lead to adaptive changes in neural regions and circuits. Similarly, Costa et al. (2008) (rank 6) explored speech production and focused on how bilingualism can be useful in conflict resolution. These scholars compared bilinguals and monolinguals in terms of their performances with attentional network tasks, and they concluded that bilinguals were better at resolving conflicting information. This finding revealed that bilingualism was beneficial throughout an individual’s entire lifetime.

Besides, Bialystok et al.’s (2008) study (rank 10) supplemented previous bilingualism research (e.g., Costa, 2005; Gollan et al., 2007) and compared bilingual and monolingual younger (20 years) and older (68 years) adults in terms of cognitive control and lexical access. Bialystok et al. (2012) conducted similar study (rank 7) with fMRIs to show that bilingualism’s effects were muted in adulthood and among the elderly.

The information in Table 2 regarding the most-cited articles clearly exemplified the status of bilingual research in LE studies from 2000 till present. Irrespective of the diversity among the most cited articles, their research fields and paradigms were fairly similar. This indicated that these studies...
relied more on statistical approaches (rather than brain imaging techniques), which corresponded to the top three categories (i.e., psychology, linguistics, and education).

Most-cited Journals

In addition to the principal co-citation analysis, we also included information on journals, and authors with the purpose of showing more details on LE’s influential aspects. We conducted an analysis to identify which journals had been cited most often in regard to LE studies since 2000 (see Table 3). It was possible to observe changes in the most-cited journals when we extracted the most-cited ones for both decades.

The top 15 most-cited journals in 2000 to 2009 were largely medical research ones (e.g., *JAMA: Journal of the American Medical Association*, *Lancet*, and *The New England Journal of Medicine*), which showed that LE research had adopted much information or information from medical or biological investigations. On the other hand, the top 15 most-cited journals in 2010 to 2019 contained some research related to psychology, as indicated by journal title names such as *Trends in Cognitive Science*, *Bilingualism: Language and Cognition*, and *Frontiers in Psychology*. It hinted that some influential studies of bilingualism in psychology had occurred rather than only in medical or biological fields. Furthermore, the articles listed in Table 2 for this time period also supported that psychological research was popular during this time and these results can also be used to support the disciplinary and co-citation analysis findings.

Most-cited Authors

In order to identify the influential scholars in LE research during 2000 to 2019, we generated the top 25 most-cited authors who had the strongest citation bursts (Figure 8) based on a cluster analysis. According to Chen and Morris (2003), citation bursts provide evidence that a publication is associated with a surge in citations. In other words, Figure 8 illustrated the influence of each most-cited LE author. The results indicated that the most influential author based on 2000 to 2019 cited works was Sigmund Freud (Freud’s theories have led to many changes in psychological and neurological research). Other scholars such as Catherine E. Snow, Keith E. Stanovich, Gray L. Wells, Steven Pinker, etc. had all significantly contributed to LE studies. These scholars established the basic underlying research for LE studies in the first decade of the century (as shown by the red lines in Figure 8).

The information in Figure 8 revealed that the majority of the most cited authors were psychologists, which explained the category analysis results that the largest number of LE studies was psychological ones. Another point was that most of these influential scholars’ citation bursts were before 2010, which suggested that there may be a potential information flow in LE studies from psychology to another between the two decades. Based on Figure 7, this information will likely flow from behavioral research (e.g., memory, cognition, neurology) to language-oriented research (e.g., bilingual advantages, language selection, language learning, and language teaching).

Discussion

Because CiteSpace is a bibliometric analysis rather than a meta-analysis, the results of co-citation analysis can only reveal the general or potential tendency in LE research. Other conclusions like “how do these studies connect with each other” or “what are the links of LE studies” cannot be achieved merely via a co-citation analysis but require a deeper analysis of every influential reference. Therefore, the details interpretation of those influential articles will not be

Rank	2000–2009	2010–2019
1	Science	Cognition
2	Child Development	Psychological Science
3	Cognition	Science
4	*JAMA: Journal of the American Medical Association*	Plos One
5	Nature	*PNAS*
6	Psychological Review	Child Development
7	Developmental Psychology	Journal of Memory and Language
8	Psychological Bulletin	Psychological Bulletin
9	Journal of Memory and Language	Trends in Cognitive Sciences
10	Psychological Science	Brain and Language
11	Brain and Language	Bilingualism: Language and Cognition
12	*Lancet*	Developmental Psychology
13	*The New England Journal of Medicine*	Psychological Review
14	Journal of Speech, Language, and Hearing Research	Frontiers in Psychology
15	*PNAS*	Neuropsychologia
This research started by totaling the number of LE publications and then focusing on co-citations, which is CiteSpace’s core function. Co-citation analyses concentrate on the most-cited aspects of the collected publications (i.e., articles, authors, and journals). The results of each analysis conducted in this study are complementary mutually.

In general, the results of category and co-citation analysis reveal that there has been a gradual increase in LE studies since 2000 (Figure 1) and especially since 2010 (Figure 2). Scholars focus more on LE research between the year 2010 and the year 2019 than between the year 2000 and the year 2010. These results also suggest that LE research has likely expanded to multiple disciplines, as evidenced by the co-citation analysis.

The gradual increasing tendency in the publications of each category of LE show diverse perspectives of the basis of doing LE. In the co-citation clusters, for instance, Figure 3 shows that LE has adopted information or knowledge from a linguistic perspective (e.g., #20: degraded sentence, #17: expressive vocabulary, or #12: verbal work), psychological perspective (e.g., #7: cognitive reserve and #5: in-noise perception), neuroscientific perspective (e.g., #3: fmri study), clinical perspective (e.g., #1: deaf children and #18: hearing loss), or nursing perspective (e.g., #19: early child care and #11: health care). Nonetheless, most of the colored clusters in Figure 3 clearly overlap and highly are aggregated with each other. The visualization of these clusters reflects the cohesiveness between LE research from different perspectives. It reveals that studies of LE may be carried out in various fields but the they share similar academic achievements by previous scholars, which further manifests that the systems of LE are not separate from one another but highly integrated.

The second generality revealed by the results based on the co-citation analysis is that bilingualism is a fairly popular topic from 2000 to 2019 and probably still hot in the next few decades due to the information flow between different categories and clusters in Figures 4 to 7. Such a tendency reflects the significance of bilingualism as stated by Ramírez-Esparza et al. (2020, p. 126) that “bilingualism has a positive impact

Figure 8. Top 25 cited authors with the strongest citation.

Cited Authors	Year Begin	Year End	Strength Begin	Strength End
FREUD S	2000	2009	39.9196	
SNOW CE	2000	2008	34.3491	
STANOVIČ KE	2000	2008	30.2834	
WELLS G	2000	2010	27.1179	
PINKER S	2000	2010	25.4456	
WHITEHURST GJ	2000	2010	24.4513	
GOODGLASS H	2000	2010	24.3794	
SEIDENBERG MS	2000	2009	22.5257	
BROWN R	2000	2007	16.5551	
AMERICANPSYCHIATRICASSOCIATION	2000	2007	16.4865	
STERN D N	2000	2005	15.1193	
FONAGY P	2000	2006	14.6905	
CHEN HC	2000	2007	14.5533	
WERKER JF	2000	2004	11.8945	
WARE JE	2000	2004	11.6544	
BEST C	2000	2011	8.2524	
BLOOM L	2000	2004	7.0088	
BRETHERTON I	2000	2004	7.0589	
BOOCCH G	2000	2002	6.6532	
MELZACK R	2000	2004	6.4171	
KIRSNER K	2000	2005	6.2985	
BAYLEY N	2000	2001	6.1778	
FLEGE J E	2000	2004	5.5397	
LAW J	2000	2001	4.733	
POLKA L	2000	2003	4.5176	
on a wide range of cognitive and social aspects. Bilingualism is associated with having an open view of the world, as well as heightened social flexibility and empathy.” From neuroscientific perspective, “a growing body of research shows that the brain adapts functionally and structurally to specific bilingual experience” (DeLuca et al., 2020, p. 1) and “the field (i.e., bilingualism research) now needs to come together to relate the range of neurocognitive adaptations and experience-based factors which give rise to them” (DeLuca et al., 2020, p. 11). The social science scholars have claimed the significant status of bilingualism and the neuroscience scholars has stated the necessity of the combination between bilingualism research and neurocognitive methods. These comments on bilingualism present the vista of a long-term bilingualism research.

In the bilingualism research, co-citation also presents some high-profile topics. In the analysis of most-cited articles of Table 2, second language acquisition, special people (aging or disability), and mental mechanism are the three welcome research areas in bilingualism and a group of studies (in the cluster analysis) and journals (in the most-cited journals) have something to do with psychology more or less, which have implied the status of psychology in LE research. Although Table 3 highlights that there was a transition between the two decades and that medical LE research was more popular in 2000 to 2009, the trend in favor of medical research did not continue to 2010 to 2019, as psychological studies were more influential in the latter period. In fact, Figure 8 displays that the most cited authors in English literature are psychologists rather than doctors, linguists, or educational researchers, which indicates the strength of psychological LE research.

The two generalities of LE research display the connection between language systems in different disciplines and the significance of psychological investigations of bilingualism. Nevertheless, they indicate some controversial issues requiring further discussions. The interdisciplinary research of LE justifies that language systems are not separate from each other but highly aggregated. This result indicates that systems responsible for language are not separate from other cognitive systems; instead, they interact mutually. It overturns a dominant view on modularity from 80s to 90s (Fodor, 1983) influenced by computer science (Fodor, 1983; Zucker, 1981) and sheds light on the decreasing tendency of such domain in the two decades. From the end of last century, some scholars in computer science turn to the topics of language learning, syntactic/semantic analysis, word orders, written/aural interpretation in bilingualism and monolingualism (Grey, 2020) through the interaction between different language systems rather than regard them as isolated modulars. Consequently, the bibliometric analysis of LE research seems to support the interactive relations between language systems in bilingualism or monolingualism at present.

Another issue of LE research is also derived from bilingualism. The co-citation analysis has illustrated that a group of the influential literature in LE concerned the advantage, cognitive mechanism/model, and acquisition of bilingualism. These works have displayed the cooperation between different LEs or language systems. Nonetheless, it is necessarily to figure out that if two languages are active and competing, then how does a bilingual correctly choose the intended language in the moment. Such an issue is practically related to the application of bilingualism (or even monolingualism) and requires the investigation into the conflicts between languages or factors influencing the use of different languages. There are indeed a group of scholars carrying out research to probe into the factors influencing the language use of bilinguals in terms of pronunciation (Ohara, 2001), writing competence (Choi, 2015), and general proficiency (Moyer, 2004). These studies, however, are carried out from a perspective of language identify, cultural identity, or ethnic identity. Despite the fact that identify will impact the psychological state of people in social communication, the psychological process is still obscure in bilingualism research. Under the guidance of the co-citation analysis, the answer to this question may still lies in psychology, the basis of bilingualism and may require the assistance from neuroscience or biological science.

The general development tendency of LE in terms of its overturing point and hot topics further indicate some potential directions for LE researchers in the future. Nonetheless, those findings need further investigations to provide details and elaborate more on how to interpret and understand the tendency and issues. Those further investigations will be beneficial for proposing refined conclusions based on a specific topic of LE in the matter of theories or paradigms, which cannot be achieved via bibliometric analysis.

Conclusion
This article collected 30,045 academic articles and reviews from WOS, and it used CiteSpace to analyze the data to reveal that the knowledge trend of LE studies from 2000 to 2019 based on co-citation analysis. We focused on the most-cited articles, journals, and authors and visualized them in different forms. The analysis presented a tendency in LE research in respect of the interaction between language systems and bilingualism research. The tendency indicated some issues in relations between language systems and conflicts between different types of LEs. These findings provided a general depiction of LE research from several aspects and drew a macro-level picture of LE for the discussion of its future development. However, due to the limitations of bibliometric analysis, reviews of specific theoretical concepts, methods, and paradigms cannot be achieved in this paper. Therefore, those who are interested in LE need to have more particular knowledge of a specific sub-domain of LE prior to their investigations.
Appendix. Results of Categories of LE.	Appendix 1. (continued)
1. ACOUSTICS	64. ECONOMICS
2. AGRICULTURAL ECONOMICS & POLICY	65. EDUCATION & EDUCATIONAL RESEARCH
3. AGRICULTURAL ENGINEERING	66. EDUCATION, SCIENTIFIC DISCIPLINES
4. AGRICULTURE	67. EDUCATION, SPECIAL
5. AGRICULTURE, DAIRY & ANIMAL SCIENCE	68. ELECTROCHEMISTRY
6. AGRICULTURE, MULTIDISCIPLINARY	69. EMERGENCY MEDICINE
7. AGRONOMY	70. ENDOCRINOLOGY & METABOLISM
8. ALLERGY	71. ENERGY & FUELS
9. ANATOMY & MORPHOLOGY	72. ENGINEERING
10. ANDROLOGY	73. ENGINEERING, AEROSPACE
11. ANESTHESIOLOGY	74. ENGINEERING, BIOMEDICAL
12. ANTHROPOLOGY	75. ENGINEERING, CHEMICAL
13. ARCHAEOLOGY	76. ENGINEERING, CIVIL
14. ARCHITECTURE	77. ENGINEERING, ELECTRICAL & ELECTRONIC
15. AREA STUDIES	78. ENGINEERING, ENVIRONMENTAL
16. ART	79. ENGINEERING, GEOLOGICAL
17. ARTS & HUMANITIES—OTHER TOPICS	80. ENGINEERING, INDUSTRIAL
18. ASIAN STUDIES	81. ENGINEERING, MANUFACTURING
19. ASTRONOMY & ASTROPHYSIAN	82. ENGINEERING, MARINE
20. AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY	83. ENGINEERING, MECHANICAL
21. AUTOMATION & CONTROL SYSTEMS	84. ENGINEERING, MULTIDISCIPLINARY
22. BEHAVIORAL SCIENCES	85. ENGINEERING, OCEAN
23. BIOCHEMICAL RESEARCH METHODS	86. ENGINEERING, PETROLEUM
24. BIOCHEMISTRY & MOLECULAR BIOLOGY	87. ENTOLOGY
25. BIODIVERSITY & CONSERVATION	88. ENVIRONMENTAL SCIENCES
26. BIODIVERSITY CONSERVATION	89. ENVIRONMENTAL SCIENCES & ECOLOGY
27. BIOLOGY	90. ENVIRONMENTAL STUDIES
28. BIOMEDICAL SOCIAL SCIENCES	
29. BIOPHYSICS	
30. BIOTECHNOLOGY & APPLIED MICROBIOLOGY	
31. BUSINESS	
32. BUSINESS & ECONOMICS	
33. BUSINESS, FINANCE	
34. CARDIAC & CARDIOVASCULAR SYSTEMS	
35. CARDIOVASCULAR SYSTEM & CARDIOLOGY	
36. CELL & TISSUE ENGINEERING	
37. CELL BIOLOGY	
38. CHEMISTRY	
39. CHEMISTRY, ANALYTICAL	
40. CHEMISTRY, APPLIED	
41. CHEMISTRY, MEDICINAL	
42. CHEMISTRY, MULTIDISCIPLINARY	
43. CHEMISTRY, PHYSICAL	
44. CLINICAL NEUROLOGY	
45. COMMUNICATION	
46. COMPUTER SCIENCE	
47. COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE	
48. COMPUTER SCIENCE, CYBERNETICS	
49. COMPUTER SCIENCE, HARDWARE & ARCHITECTURE	
50. COMPUTER SCIENCE, INFORMATION SYSTEMS	
51. COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS	
52. COMPUTER SCIENCE, SOFTWARE ENGINEERING	
53. COMPUTER SCIENCE, THEORY & METHODS	
54. CONSTRUCTION & BUILDING TECHNOLOGY	
55. CRIMINOLOGY & PENOLOGY	
56. CRITICAL CARE MEDICINE	
57. CULTURAL STUDIES	
58. DEMOGRAPHY	
59. DENTISTRY, ORAL SURGERY & MEDICINE	
60. DERMATOLOGY	
61. DEVELOPMENT STUDIES	
62. DEVELOPMENTAL BIOLOGY	
63. ECOLOGY	

(continued)
Appendix I. (continued)

127.	INSTRUMENTS & INSTRUMENTATION
128.	INTEGRATIVE & COMPLEMENTARY MEDICINE
129.	INTERNATIONAL RELATIONS
130.	LANGUAGE & LINGUISTICS
131.	LAW
132.	LEGAL MEDICINE
133.	LIFE SCIENCES & BIOMEDICINE—OTHER TOPICS
134.	LINGUISTICS
135.	LITERATURE
136.	LITERATURE, ROMANCE
137.	LOGIC
138.	MANAGEMENT
139.	MARINE & FRESHWATER BIOLOGY
140.	MATERIALS SCIENCE
141.	MATERIALS SCIENCE, MULTIDISCIPLINARY
142.	MATERIALS SCIENCE, PAPER & WOOD
143.	MATERIALS SCIENCE, TEXTILES
144.	MATHEMATICAL & COMPUTATIONAL BIOLOGY
145.	MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
146.	MECHANICS
147.	MEDICAL ETHICS
148.	MEDICAL INFORMATICS
149.	MEDICAL LABORATORY TECHNOLOGY
150.	MEDICINE, GENERAL & INTERNAL
151.	MEDICINE, LEGAL
152.	MEDICINE, RESEARCH & EXPERIMENTAL
153.	MEDIEVAL & RENAISSANCE STUDIES
154.	METEOROLOGY & ATMOSPHERIC SCIENCES
155.	MICROBIOLOGY
156.	MINING & MINERAL PROCESSING
157.	MULTIDISCIPLINARY SCIENCES
158.	MUSIC
159.	NANOSCIENCE & NANOTECHNOLOGY
160.	NEUROIMAGING
161.	NEUROSCIENCES
162.	NEUROSCIENCES & NEUROLOGY
163.	NUCLEAR SCIENCE & TECHNOLOGY
164.	NURSING
165.	NUTRITION & DIETETICS
166.	OBSTETRICS & GYNECOLOGY
167.	OCEANOGRAPHY
168.	ONCOLOGY
169.	OPERATIONS RESEARCH & MANAGEMENT SCIENCE
170.	OPHTHALMOLOGY
171.	OPTICS
172.	ORNITHOLOGY
173.	ORTHOPEDICS
174.	OTORHINOLARYNGOLOGY
175.	PARASITOLOGY
176.	PATHOLOGY
177.	PEDIATRICS
178.	PERIPHERAL VASCULAR DISEASE
179.	PHARMACOLOGY & PHARMACY
180.	PHILOSOPHY
181.	PHYSICAL GEOGRAPHY
182.	PHYSICS
183.	PHYSICS, APPLIED
184.	PHYSICS, FLUIDS & PLASMAS
185.	PHYSICS, MATHEMATICAL
186.	PHYSICS, MULTIDISCIPLINARY
187.	PHYSICS, NUCLEAR
188.	PHYSIOLOGY
189.	PLANT SCIENCES
190.	POLITICAL SCIENCE
191.	PRIMARY HEALTH CARE
192.	PSYCHIATRY
193.	PSYCHOLOGY
194.	PSYCHOLOGY, APPLIED
195.	PSYCHOLOGY, BIOLOGICAL
196.	PSYCHOLOGY, CLINICAL
197.	PSYCHOLOGY, DEVELOPMENTAL
198.	PSYCHOLOGY, EDUCATIONAL
199.	PSYCHOLOGY, EXPERIMENTAL
200.	PSYCHOLOGY, MATHEMATICAL
201.	PSYCHOLOGY, MULTIDISCIPLINARY
202.	PSYCHOLOGY, PSYCHOANALYSIS
203.	PSYCHOLOGY, SOCIAL
204.	PUBLIC ADMINISTRATION
205.	PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
206.	QUANTUM SCIENCE & TECHNOLOGY
207.	RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
208.	REGIONAL & URBAN PLANNING
209.	REHABILITATION
210.	RELIGION
211.	REMOTE SENSING
212.	REPRODUCTIVE BIOLOGY
213.	RESEARCH & EXPERIMENTAL MEDICINE
214.	RESPIRATORY SYSTEM
215.	RHEUMATOLOGY
216.	ROBOTICS
217.	SCIENCE & TECHNOLOGY—OTHER TOPICS
218.	SOCIAL ISSUES
219.	SOCIAL SCIENCES—OTHER TOPICS
220.	SOCIAL SCIENCES, BIOMEDICAL
221.	SOCIAL SCIENCES, INTERDISCIPLINARY
222.	SOCIAL SCIENCES, MATHEMATICAL METHODS
223.	SOCIAL WORK
224.	SOCIOLOGY
225.	SPECTROSCOPY
226.	SPORT SCIENCES
227.	STATISTICS & PROBABILITY
228.	SUBSTANCE ABUSE
229.	SURGERY
230.	TELECOMMUNICATIONS
231.	THEATER
232.	THERMODYNAMICS
233.	TOXICOLOGY
234.	TRANSPLANTATION
235.	TRANSPORTATION
236.	TRANSPORTATION SCIENCE & TECHNOLOGY
237.	TROPICAL MEDICINE
238.	URBAN STUDIES
239.	UROLOGY & NEPHROLOGY
240.	VETERINARY SCIENCES
241.	VIROLOGY
242.	WATER RESOURCES
243.	WOMEN'S STUDIES
244.	WOMEN'S STUDIES
245.	ZOOLOGY
246.	ZOOLOGY

(continued)
Acknowledgments
The authors would like to thank the anonymous reviewers for their invaluable comments and suggestions on all versions of this paper.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the China Postdoctoral Science Foundation (2021M700497) and First-class Disciplines Project of Beijing Foreign Studies University (2020SYLZDXM040).

Ethics Statement
This article is a bibliometric analysis of literature which does not contain any animal and human studies.

ORCID iD
Lin Fan https://orcid.org/0000-0001-7095-289X

References
Antoniou, K., & Katsos, N. (2017). The effect of childhood multilingualism and bicultalism on implicature understanding. Applied Psycholinguistics, 38(4), 787–833.
Antovich, D. M., & Graf Estes, K. (2018). Learning across languages: Bilingual experience supports dual language statistical word segmentation. Developmental Science, 21(2), 1–11.
Arshavsky, Y. I. (2009). Two functions of early language experience. Brain Research Reviews, 60, 327–340.
Batinich, M. E. (1970). Language-experience activities. The Reading Teacher, 23(6), 539–546.
Bialystok, E. (2010). Bilingualism. Wiley Interdisciplinary Reviews Cognitive Science, 1, 559–572.
Bialystok, E., Craik, F., & Luk, G. (2008). Cognitive control and lexical access in younger and older bilinguals. Journal of Experimental Psychology Learning Memory and Cognition, 34(4), 859–873.
Bialystok, E., Craik, F. I., Klein, R., & Viswanathan, M. (2004). Bilingualism, aging, and cognitive control: Evidence from the Simon task. Psychology and Aging, 19(2), 290–303.
Bialystok, E., Craik, F. I., & Luk, G. (2012). Bilingualism: Consequences for mind and brain. Trends in Cognitive Sciences, 16(4), 240–250.
Canseco-Gonzalez, E., Brehm, L., Brick, C. A., Brown-Schmidt, S., Fischer, K., & Wagner, K. (2010). Carpet or Cárcel: The effect of age of acquisition and language mode on bilingual lexical access. Language and Cognitive Processes, 25(5), 669–705.
Chen, C. (2004). Searching for intellectual turning points: Progressive knowledge domain visualization. Proceedings of the National Academy of Sciences of the United States of America, 101, 5303–5310.
Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), 359–377.
Chen, C. (2017). Science mapping: A systematic review of the literature. Journal of Data and Information Science, 2(2), 1–40.
Chen, C., Hu, Z., Liu, S., & Tseng, H. (2012). Emerging trends in regenerative medicine: A scientometric analysis in CiteSpace. Expert Opinion on Biological Therapy, 12, 593–608.
Chen, C., Ibekwe-SanJuan, F., & Hou, J. (2010). The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis. Journal of the American Society for Information Science and Technology, 61(7), 1386–1409.
Chen, C. M., & Morris, S. (2003, October 19–21). Visualizing evolving networks: minimum spanning trees versus pathfinder networks. IEEE Symposium on Information Visualization (IEEE Cat. No. 03TH8714), Seattle, WA, USA (pp. 67–74).
Chen, C., & Song, M. (2019). Visualizing a field of research: A methodology of systematic scientometric reviews. PLoS One, 14(10), e0223994.
Choi, J. K. (2015). Identity and language: Korean speaking Korean, Korean-American speaking Korean and English? Language and Intercultural Communication, 15(2), 240–266.
Codrée, E. L., & van Heuven, W. J. (2014). The effect of script similarity on executive control in bilinguals. Frontiers in Psychology, 5, 1070.
Costa, A. (2005). Lexical access in bilingual production. In J. F. Kroll & A. M. B. D. Groot (Eds.), Handbook of bilingualism: Psycholinguistic approaches (pp. 308–325). Oxford University Press.
Costa, A., Hernández, M., Costa-Faidella, J., & Sebastián-Gallés, N. (2009). On the bilingual advantage in conflict processing: Now you see it, now you don’t. Cognition, 113(2), 135–149.
Costa, A., Hernández, M., & Sebastián-Gallés, N. (2008). Bilingualism aids conflict resolution: Evidence from the ant task. Cognition, 106(1), 59–86.
Degani, T., & Tokowicz, N. (2010). Semantic ambiguity within and across languages: An integrative review. Quarterly Journal of Experimental Psychology, 63(7), 1266–1303.
de Groot, A. M. B., Delmaar, P., & Lupker, S. J. (2000). The processing of interlexical homographs in translation recognition and lexical decision: Support for non-selective access to bilingual memory. Quarterly Journal of Experimental Psychology, 53(2), 397–428.
DeLuca, V., Segae K., Mazaheri, A., & Krott, A. (2020). Understanding bilingual brain function and structure changes? Ubet! A unified bilingual experience trajectory model. Journal of Neurolinguistics, 56, 1–14.
Dijkstra, T., & van Heuven, W. J. B. (2002). The architecture of the bilingual word recognition system: From identification to decision. Bilingualism Language and Cognition, 5(3), 175–197.
Downer, J. T., & Pianta, R. C. (2006). Academic and cognitive functioning in first grade: Associations with earlier home and child care predictors and with concurrent home and classroom experiences. School Psychology Review, 35(1), 11–30.
Fan, C. S., Zhu, X., Dosch, H. G., von Stutterheim, C., & Rupp, A. (2017). Language related differences of the sustained response evoked by natural speech sounds. PLoS One, 12(7), e0180441.
Farver, J. A. M., Xu, Y., Eppe, S., & Lonigan, C. J. (2006). Home environments and young latino children’s school readiness. Early Childhood Research Quarterly, 21(2), 196–212.

Fernandino, L., & Jacoboni, M. (2010). Are cortical motor maps based on body parts or coordinated actions? Implications for embodied semantics. Brain and Language, 112(1), 44–53.

Feige, J. E. (2005). Origins and development of the speech learning. Model lecture of 1st ASA workshop on L2 speech learning. Fraser University.

Feige, J. E., Yeni-Komshian, G. H., & Liu, S. (1999). Age constraints on second-language acquisition. Journal of Memory and Language, 41(1), 78–104.

Fodor, J. A. (1983). Modularity of mind. MIT Press.

Green, D. W., & Abutalebi, J. (2013). Language control in bilinguals. Language and Cognitive Processes, 28(1–2), 1–24.

Gollan, T. H., Fennema-Notestine, C., Montoya, R. I., & Jernigan, T. L. (2007). The bilingual effect on Boston naming test performance. Journal of the International Neuropsychological Society, 13, 197–208.

García-Pentón, L., Fernández García, Y., Costello, B., Duñabeitia, J. A., & Carreiras, M. (2016). The neuroanatomy of bilingualism: How to turn a hazy view into the full picture. Language Cognition and Neuroscience, 31, 303–327.

Gollan, T. H., Fennema-Notestine, C., Montoya, R. I., & Jernigan, T. L. (2007). The bilingual effect on Boston naming test performance. Journal of the International Neuropsychological Society, 13, 197–208.

Green, D. W. (1998). Mental control of the bilingual lexico-semantic system. Bilingualism Language and Cognition, 1, 67–81.

Green, D. W., & Abutalebi, J. (2013). Language control in bilinguals: The adaptive control hypothesis. Journal of Cognitive Psychology, 25(5), 515–530.

Grey, S. (2020). What can artificial languages reveal about morphosyntactic processing in bilinguals? Bilingualism Language and Cognition, 23, 81–86.

Hall, M. A. (1985). Focus on language experience learning and teaching. Reading, 19(1), 5–12.

Hambly, H., Wren, Y., McLeod, S., & Roulstone, S. (2013). The influence of bilingualism on speech production: A systematic review. International Journal of Language & Communication Disorders, 48, 1–24.

Hanulová, J., Davidson, D. J., & Indefrey, P. (2011). Where does the delay in L2 picture naming come from? Psycholinguistic and neurocognitive evidence on second language word production. Language and Cognitive Processes, 26(7), 902–934.

Hilchey, M. D., & Klein, R. M. (2011). Are there bilingual advantages on nonlinguistic interference tasks? Implications for the plasticity of executive control processes. Psychonomic Bulletin & Review, 18(4), 625–658.

Hirsh-Pasek, K., & Burchinal, M. (2006). Mother and caregiver sensitivity over time: Predicting language and academic outcomes with variable- and person-centered approaches. Merrill-Palmer Quarterly, 52(3), 449–485.

Hume, D. (2009). A treatise of human nature: Being an attempt to introduce the experimental method of reasoning into moral subjects. The Floating Press.

Iverson, P., Kuhl, P. K., Akahane-Yamada, R., Diesch, E., Tohkura, Y., Kettermann, A., & Siebert, C. (2003). A perceptual interference account of acquisition difficulties for non-native phonemes. Cognition, 87(1), B47–B57.

Jared, D., & Kroll, J. F. (2001). Do bilinguals activate phonological representations in one or both of their languages when naming words? Journal of Memory and Language, 44(1), 2–31.

Kapa, L. L., & Colombo, J. (2014). Executive function predicts artificial language learning. Journal of Memory and Language, 76, 237–252.

Kim, K. H., Relkin, N. R., Lee, K. M., & Hirsch, J. (1997). Distinct cortical areas associated with native and second languages. Nature, 388, 171–174.

Kleinberg, J. (2003). Bursty and hierarchical structure in streams. Data Mining and Knowledge Discovery, 7(4), 373–397.

Kuhl, P. K., Stevens, E., Hayashi, A., Deguchi, T., Kiritani, S., & Iverson, P. (2006). Infants show a facilitation effect for native language phonetic perception between 6 and 12 months. Developmental Science, 9(2), F13–F21.

Lakoff, G. (2012). Explaining embodied cognition results. Topics in Cognitive Science, 4(4), 773–785.

Lee, K. Y. S., & van Hasselt, C. A. (2005). Spoken word recognition in children with cochlear implants: A five-year study on speakers of a tonal language. Ear and Hearing, 26, 30S–37S.

Loui, R. P. (2008). In praise of scripting: Real programming pragmatism. Computer, 41(7), 22–26.

Macizo, P., Herrera, A., Paolieri, D., & Román, P. (2010). Is there cross-language modulation when bilinguals process number words? Applied Psycholinguistics, 31(4), 651–669.

Mandler, J. M. (1992). How to build a baby: II. Conceptual primitives. Psychological Review, 99, 587–604.

Martin, M. C., Macizo, P., & Bajo, T. (2010). Time course of inhibitory processes in bilingual language processing. British Journal of Psychology, 101(Pt 4), 679–693.

Moyer, A. (2004). Age, accent, and experience in second language acquisition: An integrated approach to critical period inquiry. Multilingual Matters.

Oberman, L. M., & Ramachandran, V. S. (2007). The simulating social mind: The role of the mirror neuron system and simulation in the social and communicative deficits of autism spectrum disorders. Psychological Bulletin, 133(2), 310–327.

Ohara, Y. (2001). Finding one’s voice in Japanese: A study of the pitch levels of non-native speakers. In A. Pavlenko, A. Blackledge, I. Piller, & M. Tutech-Dwyer (Eds.), Multilingualism, second language learning and gender (pp. 231–254). Walter de Gruyter.

Paap, K. R., & Greenberg, Z. I. (2013). There is no coherent evidence for a bilingual advantage in executive processing. Cognitive Psychology, 66, 232–258.

Platisikas, C., DeLuca, V., & Voits, T. (2020). The many shades of bilingualism: Language experiences modulate adaptations in brain structure. Language Learning, 70(S2), 133–149.

Purdy, M., & Hindenlang, J. (2005). Educating and training caregivers of persons with aphasia. Aphasiology, 19(3–5), 377–388.

Ramírez-Esparza, N., García-Sierra, A., & Jiang, S. (2020). The current standing of bilingualism in Today’s globalized world: A socio-ecological perspective. Current Opinion in Psychology, 32, 124–128.

Sadat, J., Martin, C. D., Alario, F. X., & Costa, A. (2012). Characterizing the bilingual disadvantage in noun phrase production. Journal of Psycholinguistic Research, 41(3), 159–179.

Sebastian, R., Kiran, S., & Sandberg, C. (2012). Semantic processing in Spanish–English bilinguals with aphasia. Journal of Neurolinguistics, 25(4), 240–262.

Sife, A. S., & Lwoga, E. T. (2007). New technologies for teaching and learning: Challenges for higher learning institutions in developing countries. International Journal of Education and Development Using Information and Communication Technology, 3(2), 57–67.
Slevc, L. R., Davey, N. S., Buschkuehl, M., & Jaeggi, S. M. (2016). Tuning the mind: Exploring the connections between musical ability and executive functions. *Cognition, 152*, 199–211.

Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. *Journal of the American Society for Information Science, 24*(4), 265–269.

Thonus, T. (2004). What are the differences? *Journal of Second Language Writing, 13*(3), 227–242.

van Mersbergen, M., Ostrem, J., & Titze, I. R. (2001). Preparation of the speech-language pathologist specializing in voice: An educational survey. *Journal of Voice, 15*(2), 237–250.

Vejnovic, D., Milin, P., & Zdravkovic, S. (2010). Effects of proficiency and age of language acquisition on working memory performance in bilinguals. *Psihologija, 43*(3), 219–232.

Wong, P. C., Skoe, E., Russo, N. M., Dees, T., & Kraus, N. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. *Nature Neuroscience, 10*(4), 420–422.

Yudes, C., Macizo, P., & Bajo, T. (2011). The influence of expertise in simultaneous interpreting on non-verbal executive processes. *Frontiers in Psychology, 2*, 309–9.

Zou, L., Abutalebi, J., Zinszer, B., Yan, X., Shu, H., Peng, D., & Ding, G. (2012). Second language experience modulates functional brain network for the native language production in bimodal bilinguals. *NeuroImage, 62*(3), 1367–1375.

Zucker, S. W. (1981, August 24–28). *Computer vision and human perception: An essay on the discovery of constraints* [Conference session]. International Joint Conference on Artificial Intelligence DBLP, Vancouver, BC, Canada (pp. 1102–1116).