Relationship between intraoperative dopamine infusion and postoperative acute kidney injury in patients undergoing open abdominal aorta aneurysm repair

Seohee Lee, Dongnyeok Park, Jae-Woo Ju, Jinyoung Bae, Youn Joung Cho, Karam Nam and Yunseok Jeon*

Abstract

Background: Acute kidney injury (AKI) is one of the most common complications in patients undergoing open abdominal aortic aneurysm (AAA) repair. Dopamine has been frequently used in these patients to prevent AKI. We aimed to clarify the relationship between intraoperative dopamine infusion and postoperative AKI in patients undergoing open AAA repair.

Methods: We analyzed 294 patients who underwent open AAA repair at a single tertiary center from 2009 to 2018, retrospectively. The primary outcome was the incidence of postoperative AKI, determined by the Kidney Disease Improving Global Outcomes definition, after open AAA repair. Secondary outcomes included survival outcome, hospital and intensive care unit length of stay, and postoperative renal replacement therapy (RRT).

Results: Postoperative AKI occurred in 21.8% (64 out of 294 patients). The risk of postoperative AKI by intraoperative dopamine infusion was greater after adjusting for risk factors (odds ratio [OR] 2.56; 95% confidence interval [CI], 1.09–5.89; \(P = 0.028 \)) and after propensity score matching (OR 3.22; 95% CI 1.12–9.24; \(P = 0.030 \)). On the contrary, intraoperative norepinephrine use was not associated with postoperative AKI (use vs. no use; 19.3 vs. 22.4%; \(P = 0.615 \)). Patients who used dopamine showed higher requirement for postoperative RRT (6.8 vs. 1.2%; \(P = 0.045 \)) and longer hospital length of stay (18 vs. 16 days, \(P = 0.024 \)).

Conclusions: Intraoperative dopamine infusion was associated with more frequent postoperative AKI, postoperative RRT, and longer hospital length of stay in patients undergoing AAA repair, when compared to norepinephrine. Further prospective randomized clinical trial may be necessary for this topic.

Keywords: Abdominal aortic aneurysm repair, Acute kidney injury, Dopamine, Postoperative complication, Norepinephrine

Background

Acute kidney injury (AKI) is a serious postoperative complication in surgical patients, \([1, 2]\) leading to an increased length of stay, hospital costs, morbidity, and mortality \([3]\). Even a mild increase in serum creatinine (SCr) has been reported to be closely related to mortality \([4]\). AKI is one of the most common complications in patients undergoing abdominal aortic aneurysm (AAA) repair \([3, 5, 6]\). The incidence of AKI after AAA repair has been reported to be as high as 33% depending on the definition of AKI \([5–9]\) and previous studies have...
investigated risk factors for AKI development after AAA repair [5, 10–12]. Some previous reports have promoted the use of dopamine infusion to prevent postoperative AKI [13, 14]. Dopamine infusion has been proposed to enhance diuresis and reduce the need for dialysis in patients with postoperative acute renal failure [13]. It has also been reported that a perioperative low-dose dopamine infusion may be a reasonable strategy to reduce postoperative AKI in patients undergoing AAA repair, assuming its effect on increasing renal arterial flow [14]. However, the reno-protective effect of dopamine in various clinical settings is controversial [15, 16]. Furthermore, an intravenous dopamine infusion may worsen renal flow perfusion when used in patients with impaired kidneys [17].

The current study aimed to determine if intraoperative continuous dopamine infusion is associated with the incidence of AKI as defined by the Kidney Disease: Improving Global Outcomes (KDIGO) criteria [18] in patients undergoing open AAA repair. This study also evaluated the relationship between intraoperative dopamine infusion and postoperative outcomes, including survival outcome, after open AAA repair.

Methods
This was a retrospective observational study, and the study protocol was approved by the Institutional Review Board (IRB) of Seoul National University Hospital (approval no. 1908–091-1055) on 23 August 2019. We performed this retrospective study in compliance with the Declaration of Helsinki and the guidelines for Good Clinical Practice. Written informed consent was waived by the IRB due to the retrospective nature of the study. The data were retrieved from electronic medical records, i.e., form the Seoul National University Hospital Patients Research Environment (SUPREME) system. Postoperative survival data were obtained from the administrative database of death certificates of the National Population Registry of the Korean National Statistical Office. Follow-up was censored on December 31, 2019.

Study population
All adult patients (≥18 years) who underwent open AAA repair at a single tertiary center (Seoul National University Hospital, Seoul, South Korea) from January 1, 2009, to December 31, 2018, were included in the study. Patients who underwent AAA repair were selected using the hospital procedural code for “abdominal aortic aneurysm repair” and patients who underwent any combined surgery or intraoperative cardiac arrest were excluded. No patient received multiple abdominal aorta surgeries. Patients with a history of chronic kidney disease, end-stage renal disease, renal replacement therapy (RRT), or kidney transplantation were excluded. Other related renal diseases that may affect the postoperative outcome, including congenital single kidney, renal artery stenosis, and atrophied kidney, were also excluded. All patients had baseline SCr and postoperative SCr measurements within 7 days after surgery (median of five measurements). The baseline SCr level was defined as the most recent value measured within 1 month before surgery.

Data collection
Demographic data, medical history, medication history, preoperative laboratory data, surgical variables, intraoperative variables, and postoperative outcomes were retrospectively collected from electronic medical records (Tables 1 and 2). The anesthetic records of all eligible patients were reviewed to collect intraoperative data, including the use of intraoperative dopamine and

Table 1 Baseline patient characteristics
Dopamine infusion
p-value
No (n = 250)
Yes (n = 44)
Demographic data
Age (years)
Female
Body mass index (kg/m²)
< 18.5 kg/m²
18.5–24.9 kg/m²
25.0–29.9 kg/m²
≥ 30.0 kg/m²
Past medical history
Hypertension
Diabetes mellitus
Dyslipidemia
Cerebrovascular disease
Angina pectoris
Myocardial infarction
Atrial fibrillation
Chronic obstructive lung disease
Medication history
Aspirin
Clopidogrel
ACEI/ARB
ß blocker
Calcium channel blocker
Diuretics
Statin
Oral hypoglycemic agents

Data are presented as mean (SD) or number (%)
ACEI Angiotensin converting enzyme inhibitor, ARB Angiotensin II receptor blocker
norepinephrine infusion. The dopamine or norepinephrine infusion was initiated according to each physician’s decisions when the hypotensive events occurred during an operation in AAA repair.

Study outcomes
The primary outcome was the incidence of postoperative AKI during the first 7 days after open AAA repair surgery. The occurrence of AKI was determined by the KDIGO definition [18]. The urine output criterion was not used due to inaccurate or missing data. Secondary outcomes were postoperative RRT, intensive care unit (ICU) length of stay, hospital length of stay, and postoperative survival outcome.

Statistical analysis
Continuous variables are expressed as the mean (standard deviation) or median (interquartile range) and were compared using a one-way analysis of variance or the Kruskal-Wallis test. Categorical variables are presented as counts (%) and compared using the χ^2 test. All statistical analyses were carried out using R software (ver. 3.6.1; R Development Core Team, Vienna, Austria). A p-value <0.05 was considered significant.

The primary outcome was analyzed using logistic regression analysis. First, univariable logistic regression analyses were performed with the patient demographics, medical history, medication history, preoperative laboratory data, surgical variables, and intraoperative variables listed in Table 1. Body mass index was categorized according to the World Health Organization’s classification system [19]. Administration of an intraoperative red blood cell transfusion or hydroxyethyl starch was analyzed as a binary variable.

Following univariable analyses, variables with a p-value <0.2 or clinically significant variables were included in multivariable logistic regression analyses without a stepwise variable selection method, resulting in two adjusted models. In model 1, we adjusted for preoperative factors such as demographics, medical history, medication history, and preoperative data. In model 2, we further adjusted for all variables used in model 1 as well as intraoperative variables, including surgical and anesthetic factors.

We performed a propensity score matching analysis to match patients who did and did not receive an intraoperative dopamine infusion using demographic data, past medical history, medication history, preoperative data. Oral hypoglycemic agent was also excluded because of multi-collinearity. In the matching procedure, the nearest neighbor-matching method with 1:3 pairing was used without the caliper because of the reduced number of data. After matching, the incidence of postoperative AKI was compared between the study groups using the χ^2 test. Seven unbalanced contributors were present with a standardized mean difference >0.1 after matching, and these variables were used as covariates in the generalized estimating equation (GEE) after propensity score matching. When analyzing matched data by GEE, exchangeable working covariance matrix was used as covariance matrix

Table 2 Preoperative data and intraoperative profile

Preoperative laboratory data	Dopamine infusion	p-value	
Serum creatinine (mg/dl)	1.01 (0.3)	1.10 (0.3)	0.052
Hematocrit (%)	39.02 (5.1)	38.07 (6.0)	0.271
Maximal diameter (mm)	59.47 (15.20)	67.64 (17.55)	0.001

Data are presented as mean (SD), median [IQR], or number (%).

MAP Mean arterial blood pressure, RBC Red blood cell
within matched pairs. In addition, norepinephrine infusion was analyzed in the same way as the analysis for the dopamine infusion. Both the dopamine group and norepinephrine group included patients who used both drugs (11 of 294). The χ² test with Bonferroni correction was performed to determine the incidence of AKI according to the dose of dopamine infusion: renal-dose dopamine infusion (≤ 3 mcg/kg/min) group, more than renal-dose dopamine infusion (> 3 mcg/kg/min) group and no infusion group. The patients missing the dose of dopamine infusion were not included in the analysis of the incidence of AKI according to the dose of dopamine infusion (n = 6). The χ² test was performed to determine the incidence of AKI according to the infused drugs: norepinephrine-only infusion group, dopamine-only infusion group, no infusion group, and both drug infusion group. Time-survival estimation curves were generated using Kaplan-Meier analysis. Differences in survival according to intraoperative dopamine infusion were compared using the log-rank test.

Results

Among the 381 patients who underwent open AAA repair surgery during the study period, 294 patients were included and analyzed (Supplementary Fig. 1 in Additional file 1). The baseline patient characteristics were presented in Table 1 and preoperative data and intraoperative profile were presented in Table 2. Of the 294 patients, postoperative AKI developed in 64 patients (21.8%) after open AAA surgery. Postoperative AKI occurred in 17 out of 44 patients who received an intraoperative dopamine infusion and in 47 out of 250 patients who did not receive an intraoperative dopamine infusion, respectively (38.6 vs. 18.8%, p = 0.003, Supplementary Fig. 2 in Additional file 1). In addition, the incidences of AKI were higher in all range groups of dopamine dose than no dopamine group (Supplementary Fig. 3 in Additional file 1). Moreover, the incidence of AKI in patients who received renal-dose dopamine infusion (≤ 3 mcg/kg/min) was higher than patients who did not receive dopamine infusion (50% vs. 18.8%, p < 0.001) or patients who received more than renal-dose dopamine infusion (≤ 3 mcg/kg/min vs. >3 mcg/kg/min; 50% vs. 28.6%, p = 0.0081).

The results of the logistic regression analysis are summarized in Supplementary Table 1. Dopamine infusion was associated with an increased risk of postoperative AKI in the unadjusted model, adjusted model 1, and adjusted model 2 (unadjusted model, odds ratio [OR] 2.72, 95% confidence interval [CI], 1.35–5.37, p = 0.004; adjusted model 1, OR 3.26, 95% CI 1.47–7.23, p = 0.003; adjusted model 2, OR 2.34, 95% CI 1.00–5.45, p = 0.049; Fig. 1, Supplementary Table 1 in Additional file 1).

In the propensity score-matched samples (44 patients who received the dopamine infusion vs. 132 patients who did not receive the dopamine infusion), the overall incidence of postoperative AKI was 44 out of 176 (25%). The dopamine infusion was an independent risk

![Fig. 1](https://example.com/fig1.png)

Fig. 1 Forest plot showing the risk of AKI of norepinephrine and dopamine infusion in patients undergoing abdominal aortic aneurysm repair before propensity score matching. The squares mark the odds ratio of norepinephrine infusion in each model and the circles mark the odds ratio of dopamine infusion in each model. Horizontal lines show the 95% confidence intervals. *p < 0.01 *Adjusted model 1: adjusted for demographic data, medical history, medication history, and preoperative data. **Adjusted model 2: adjusted for all variables used in adjusted model 1 as well as the operative data listed in Table 1.
factor for postoperative AKI in all multivariable analyses in the matched samples (adjusted model 1, OR 2.89, 95% CI 1.27–6.52, \(p = 0.011 \); adjusted model 2, OR 2.67, 95% CI 1.25–5.70, \(p = 0.030 \); Supplementary Table 1 in Additional file 1).

In contrast, when the same analyses were done according to the use of norepinephrine, the intraoperative norepinephrine infusion group showed a tendency for a decrease in postoperative AKI (Fig. 1). In addition, the norepinephrine infusion was not associated with postoperative AKI after propensity score matching (adjusted model 1, OR 0.45, 95% CI 0.20–1.03, \(p = 0.058 \); adjusted model 2, OR 0.64, 95% CI 0.31–1.32, \(p = 0.225 \); Supplementary Table 2 in Additional file 1) without statistical significance. Furthermore, the patients who received an intraoperative norepinephrine infusion had a lower incidence of postoperative AKI (use vs. no use; 19.3 vs. 22.4%; \(p = 0.615 \), Supplementary Fig. 2 in Additional file 1).

When the patients were divided into four groups (norepinephrine infusion group, dopamine infusion group, no drug infusion group, and both drug infusion group), the incidence of AKI was highest in both drug infusion group (45.4%) followed by the dopamine infusion group (36.4%) and the no drug infusion group (20.1%). The norepinephrine infusion group (13.0%) had the lowest incidence of postoperative AKI (13.0%) (Fig. 2).

The Kaplan-Meier survival curve showed a tendency for lower survival in both of the dopamine and the norepinephrine infusion group without statistical significance (Fig. 3).

The other secondary outcomes are summarized in Table 3. Patients who received the dopamine infusion underwent postoperative RRT five times more frequently than patients who did not receive the dopamine infusion (6.8 vs. 1.2%; \(p = 0.045 \)). The ICU length of stay was comparable between the two groups (1 vs. 1 day; \(p = 0.996 \)). Hospital length of stay was significantly longer in patients who received an intraoperative dopamine infusion (18 vs. 16 days, \(p = 0.024 \)).

Discussion

In this retrospective study, intraoperative dopamine infusion was associated with more than three times the incidence of postoperative AKI, more than five times postoperative RRT, and a longer hospital length of stay.
in patients undergoing open AAA surgery. Intraoperative norepinephrine infusion was not associated with postoperative AKI, but rather tended to decrease the incidence of postoperative AKI.

Surgery is a leading cause of AKI in hospitalized patients, accounting for up to 40% of in-hospital AKI cases [20]. Numerous studies have demonstrated that postoperative AKI in patients undergoing noncardiac surgery is associated with high in-hospital mortality, long-term mortality, and an increase in cardiovascular complications [21]. Even in patients undergoing cardiac surgery, postoperative AKI is a well-known complication that results in higher adverse postoperative outcomes, including a high 90-day mortality rate and

![Kaplan-Meier survival curves](image)

Table 3 Postoperative outcome according to intraoperative dopamine infusion

Dopamine infusion	Postoperative RRT	ICU length of stay	Hospital length of stay
No (n = 250)	3 (1.2%)	1 [0–2]	16 [13–22]
Yes (n = 44)	3 (6.8%)	1 [0–6]	18 [15–24]

Value	0.045
Value	0.996
Value	0.024

Data are presented as median [IQR], or number (%)

ICU Intensive care unit, *RRT* Renal replacement therapy
increased hospital costs. The mechanisms of postoperative renal dysfunction are multifactorial and are associated with renal ischemia, circulatory failure, and nephrotoxic agents as well as an inflammatory stress response to surgery [22, 23].

AAA repair is one of the most high-risk noncardiac surgeries for postoperative AKI. Up to 33% of patients undergoing AAA repair develop postoperative AKI [5–9]. The development of AKI is known to affect postoperative morbidity, mortality, and length of stay in patients undergoing AAA surgery [12, 24, 25]. Patients requiring RRT after AAA surgery have a high mortality rate [26, 27]. Additionally, postoperative AKI not requiring RRT also increases the risk of postoperative mortality in patients undergoing open AAA repair [28].

Therefore, it is important to identify the risk factors that affect the development of AKI after AAA surgery and correct the adjustable factors. However, research is insufficient on whether any intraoperative intravenous infusion drug can affect postoperative renal outcomes after AAA repair.

Dopamine is an endogenous catecholamine that influences different catecholamine receptors depending on the dose [29, 30]. Low-dose dopamine has been used in intensive care patients for its renoprotective effects [31]. Low-dose dopamine is associated with increased renal blood flow and diuresis by renal vasodilation, which may explain the mechanism of the effect of dopamine on preventing AKI [15, 31, 32]. In addition, low-dose dopamine is presumed to protect the kidneys by minimizing endogenous norepinephrine-induced vasoconstriction mediated by the stimulation of dopamine-1 receptors [33, 34].

However, several clinical studies have reported controversial results on the renoprotective effects of dopamine [15–17, 35, 36]. A prospective, randomized controlled trial demonstrated that a low dose of dopamine infusion does not prevent the development of AKI, nor does it improve outcomes in patients undergoing cardiac surgery [16]. Another randomized controlled trial of 52 patients undergoing elective coronary artery bypass grafting surgery showed that a dopamine infusion beginning at the induction of anesthesia and continued for 24 h was not associated with improved renal function [37]. Furthermore, Lauschke et al. [17] suggested that low-dose dopamine could worsen renal perfusion in patients with AKI.

Several studies have attempted to explain the mechanism of the dopamine effects on the development of AKI. Dopamine is presumed to have a diuretic effect on the proximal tubules, increasing the reabsorption of chloride at the ascending limb of the loop of Henle, which may increase medullary oxygen consumption and exacerbate medullary ischemia [38]. Schenarts et al. [39] proposed that dopamine appears to damage renal oxygen kinetics and defects in feedback systems that protect the kidney from ischemia leading to the development of AKI [39]. In addition, previous research has shown that dopamine potentially causes or worsens hypovolemia and prerenal acute renal failure through its natriuretic effects and may induce hypokalemia and hypophosphatemia in critically ill patients [17]. These reports provide evidence that supports the rationale for reconsidering the routine use of low-dose dopamine in critically ill patients.

There has been insufficient studies which evaluated the effect of intraoperative dopamine use on the postoperative AKI in patients undergoing AAA. A randomized controlled trial with a small number of patients (n = 37) undergoing elective major abdominal vascular surgery suggested that a low-dose dopamine infusion during the postoperative period failed to show protective reno-protective effect [35]. In a retrospective study on 162 AAA repair patients, an intraoperative dopamine infusion has been associated with postoperative complications. Although those postoperative complications included renal complications, the separate analysis data on AKI was not provided [40].

Although the association was not significant, the norepinephrine infusion appeared to be associated with a decreased incidence of AKI, suggesting that norepinephrine successfully maintained renal perfusion without damaging the kidneys. The previous study has proven that norepinephrine increased cardiac index and improved systemic oxygen delivery dose-dependently via the beta 1 effect [41]. In addition, norepinephrine induces an increase in renal perfusion pressure by increasing renal vascular resistance via vasoconstriction mediated by the alpha-1 effect and pressure-dependent renal autoregulation [42]. Therefore, norepinephrine may be an alternative to dopamine. It would be valuable to validate this finding in a prospective study with a large number of patients.

Several limitations of this study should be discussed. First, the data of total amount of dopamine infused and the duration might not be accurate and were partially missing. This was due to manual recording of the dopamine doses, which is often insufficient and missing to precisely calculate the total dose of the dopamine infusion. However, when comparisons of the incidence of AKI after AAA depending on dopamine doses were performed using available data, the study showed similar result. Second, the total number of subjects analyzed was small and the number of representatives in each group was also small before and after matching. Nevertheless, statistical significance was found. Therefore, we may need a large-scale randomized prospective study to validate our results. In addition, as we excluded patients with prior diagnosis of chronic kidney disease, current
results cannot be applied to those patients. Third, the urine output criterion was not used for the AKI diagnosis. This is a retrospective study and in our hospital, urine output records has been recorded manually and often missing, resulting in inaccurate values to be analyzed. However, serum creatinine can be a sensitive marker for AKI as small changes in creatinine levels have shown to be associated with comorbidities and mortality after surgery [43]. Fourth, other crucial factors such as clamping time are missing. In addition to the shortcomings inherent to retrospective studies, missing value, which result from absence of records could not be included. However, the duration of surgery we used in this study correlates with the clamping time and therefore may represent the clamping time. Fifth, we analyzed all eligible AAA surgery that took place in recent 9 years in our institution, though there might have been considerable changes in surgical technique and/or anesthetic management. We adjusted the ‘surgery year’ to consider potential effects of surgical technique and/or anesthetic management. We though there might have been considerable changes in surgical technique and/or anesthetic management. We adjusted the ‘surgery year’ to consider potential effect of development of surgical technique and/or anesthetic management on the outcome. Sixth, the survival analysis was not adjusted for other factors that may have affected the survival outcome. Therefore, the tendency in the survival differences need to be interpreted with caution. Seventh, it seems the dopamine group received more total colloid volume and pack RBC units, which are known to cause AKI and may act as a confounding factor. However, we performed multivariate analysis adjusting for variables that may affect AKI including the total amount of colloid volume and transfusion. Therefore, we believe that our study highlighted the effects of dopamine on AKI after AAA. Lastly, due to the retrospective nature of this study, there could be hidden or unmeasurable confounding factors such as physician’s preference in which drug is chosen for infusion. Further prospective trials would be needed to confirm the results of current study.

Conclusions
In conclusion, intraoperative dopamine use greatly increased postoperative AKI and was associated with higher postoperative RRT and a longer hospital length of stay in patients undergoing AAA repair. However, intraoperative norepinephrine infusion did not increase the incidence of AKI. The use of intraoperative dopamine should be avoided during open AAA repair. We may be careful to use dopamine during open AAA repair.

Acknowledgements
None

Authors’ contributions
SL, KN and YJ originated the idea, and designed study. SL, DP, JJ, JB, and YJJ collected data. SL analyzed the data. SL, JB and KN were responsible for writing the manuscript. SL, DP, JJ, YJJ and YJ supported the editing of the manuscript and added important comments to the manuscript. YJ supervised the study. All authors had access to the data, read, and approved the final manuscript.

Funding
None declared.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations
Ethics approval and consent to participate
This study was approved by the Institutional Review Board of Seoul National University Hospital (IRB no. 1908–091–1055) and the need for written informed consent was waived.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 17 October 2021 Accepted: 9 March 2022
Published online: 26 March 2022

References
1. Hobson CE, Yavas S, Segal MS, Schold JD, Tribble CG, Layon AJ, et al. Acute kidney injury is associated with increased long-term mortality after cardiothoracic surgery. Circulation. 2009;119(18):2444–53.
2. Demirjian S, Schold JD, Navia J, Mastracci TM, Faganin EP, Yared JP, et al. Predictive models for acute kidney injury following cardiac surgery. Am J Kidney Dis. 2012;59(3):382–9.
3. Hobson C, Ozrazgat-Baslanti T, Kuxhausen A, Thottakkara P, Efren PA, Moore FA, et al. Cost and mortality associated with postoperative acute kidney injury. Ann Surg. 2015;261(6):1207–14.
4. Rihal CS, Teeter SC, Grill DE, Berger PB, Ting HH, Best PJ, et al. Incidence and prognostic importance of acute renal failure after percutaneous coronary intervention. Circulation. 2002;105(19):2259–64.
5. Tallgren M, Niemi T, Poyhia R, Raininko E, Railo M, Salmenpera M, et al. Acute renal injury and dysfunction following elective abdominal aortic surgery. Eur J Vasc Endovasc Surg. 2007;33(5):550–5.
6. Bang JY, Lee JB, Yoon Y, Seo HS, Song JG, Hwang GS. Acute kidney injury after infrarenal abdominal aortic aneurysm surgery: a comparison of AKIN and RIFLE criteria for risk prediction. Br J Anaesth. 2014;113(6):993–1000.
7. Brinkman R, HayGlass KT, Mutch WA, Funk DJ. Acute kidney injury in patients undergoing open abdominal aortic aneurysm repair: a pilot observational trial. J Cardiothorac Vasc Anesth. 2015;29(5):1212–9.
8. Dariane C, Coscas R, Boultrippe C, Javerlat I, Vilaire E, Goeau-Brisonnieres O, et al. Acute kidney injury after open repair of intact abdominal aortic aneurysms. Ann Vasc Surg. 2017;39:294–300.

Abbreviations
AKI: Acute kidney injury; AAA: Abdominal aortic aneurysm; RRT: Renal replacement therapy; OR: Odd ratio; CI: Confidence interval; Scr: Serum creatinine; KDIGO: Kidney Disease: Improving Global Outcomes; IRB: Institutional Review Board; ICU: intensive care unit; GEE: generalised estimating equation; ACEI: angiotensin converting enzyme inhibitor; ARB: angiotensin II receptor blocker; RBC: red blood cell.
9. Johnston KW. Multicenter prospective study of nonruptured abdominal aortic aneurysm. Part II. Variables predicting morbidity and mortality. J Vasc Surg. 1989;9(3):437–47.

10. Park BD, Azefor NW, Huang CC, Ricotta JJ. Elective endovascular aneurysm repair in the elderly: trends and outcomes from the Nationwide inpatient sample. Ann Vasc Surg. 2014;28(4):798–807.

11. Wald R, Waiker SS, Liangos O, Pereira B, Chertov GM, Jaber BL. Acute renal failure after endovascular vs open repair of abdominal aortic aneurysm. J Vasc Surg. 2006;43(3):460–6 discussion 466.

12. Kopolovic I, Simmonds K, Duggan S, Ewanchuk M, Stolly DE, Bagshaw SM. Risk factors and outcomes associated with acute kidney injury following ruptured abdominal aortic aneurysm. BMC Nephrol. 2013;14:99.

13. Sirivella S, Gielchinsky J, Parsonnet V. Mannitol, furosemide, and dopamine infusion in postoperative renal failure complicating cardiac surgery. Ann Thorac Surg. 2000;69(2):501–6.

14. Haga M, Hoshina K, Shigematsu K, Watanabe T. A perioperative strategy for abdominal aortic aneurysm in patients with chronic renal insufficiency. Surg Today. 2016;46(9):1062–7.

15. Denton MD, Chertov GM, Brady HR. ’renal-dose’ dopamine for the treatment of acute renal failure: scientific rationale, experimental studies and clinical trials. Kidney Int. 1996;50(1):14–14.

16. Lassnigg A, Donner E, Grubhofer G, Presterl E, Druml W, Hiesmayr M. Lack of renoprotective effects of dopamine and furosemide during cardiac surgery. J Am Soc Nephrol. 2000;11(1):93–94.

17. Lauschke A, Teichgraber UK, Frei U, Eckardt NU. Low-dose dopamine worsens renal perfusion in patients with acute renal failure. Kidney Int. 2006;69(9):1669–74.

18. Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120(4):c79–84.

19. Weir CB, Jan A. BMI Classification Percentile And Cut Off Points. In: Statistical Pearls. edn. Treasure Island (FL); 2021.

20. Gameiro J, Fonseca JA, Neves M, Jorge S, Lopes JA. Acute kidney injury in major abdominal surgery: incidence, risk factors, pathogenesis and outcomes. Ann Intensive Care. 2018;8(1):22.

21. Biterker M, Dayan A, Tekkesin A, Can MM, Tayci I, Ilhan E, et al. Incidence, risk factors, and outcomes of perioperative acute kidney injury in noncardiac and nonvascular surgery. Am J Surg. 2014;207(1):53–9.

22. Aronson S, Blumenthal R. Perioperative renal dysfunction and cardiovascular anesthesia: concerns and controversies. J Cardiothorac Vasc Anesth. 1998;12(5):567–86.

23. Lieberthal W, Nigam SK. Acute renal failure. II. Experimental models of acute renal failure: imperfect but indispensable. Am J Physiol Ren Physiol. 2000;278(1):F1–F12.

24. Ellenberger C, Schweizer A, Diaper J, Kalango A, Murith N, Katchatourian G, et al. Incidence, risk factors and prognosis of changes in serum creatinine early after aortic surgical abdomen. Intensive Care Med. 2006;32(11):1808–16.

25. Martin MC, Giles KA, Pomposelli FB, Harndan AD, Wynn MC, Schermerhorn ML. National outcomes after open repair of abdominal aortic aneurysms with visceral or renal bypass. Ann Vasc Surg. 2010;24(1):106–12.

26. Olsen PS, Schoeder T, Perko M, Roder OC, Agerovsk K, Sorensen S, et al. Renal failure after operation for abdominal aortic aneurysm. Ann Vasc Surg. 1990;4(6):580–3.

27. Kim SD, Hwang JK, Park SC, Kim J, Moon IS, Park JS, et al. Predictors of postoperative mortality of ruptured abdominal aortic aneurysm: a retrospective clinical study. Yonsei Med J. 2012;53(4):772–80.

28. Macedo E, Castro L, Yu L, Abdulkader RR, Vieira JM Jr. Impact of mild acute kidney injury (AKI) on outcome after open repair of aortic aneurysms. Ren Fail. 2008;30(3):287–96.

29. Goldberg LI. Dopamine receptors and hypertension. Physiologic and pharmacologic implications. Am J Med. 1984;77(4A):37–44.

30. Marinosci GZ, De Robertis E, De Benedictis G, Piazza O. Dopamine use in intensive care: are we ready to turn it down? Transl Med UnisSa. 2012;4:90–4.

31. McDonald RH Jr, Goldberg LI, McNay JL, Tuttle EP Jr. Effect of dopamine in man: augmentation of sodium excretion, glomerular filtration rate, and renal plasma flow. J Clin Invest. 1964;43:1116–24.

32. Hellenberg NK, Adams DF, Mendell P, Abrams HJ, Merrill JP. Renal vascular responses to dopamine: haemodynamic and angiographic observations in normal man. Clin Sci Mol Med. 1975;45(6):733–42.

33. Jose PA, Eisner GM, Felder RA. Renal dopamine receptors in health and hypertension. Pharmacol Ther. 1998;80(2):149–82.

34. Olsen NV. Effects of dopamine on renal haemodynamics tubular function and sodium excretion in normal humans. Dan Med Bull. 1998;45(3):282–97.

35. Baldwin L, Henderson A, Hickman P. Effect of postoperative low-dose dopamine on renal function after elective major vascular surgery. Ann Intern Med. 1994;120(9):744–7.

36. Svygent TH, Roberts LC, Valek TR, Bajaj J, Brown MR, Gunning TC, et al. Effect of intraoperative low-dose dopamine on renal function in liver transplant recipients. Anesthesiology. 1991;75(4):571–6.

37. Myles PS, Buckland MR, Schenk NJ, Cannon GB, Langley M, Davis BB, et al. Effect of ’renal-dose’ dopamine on renal function following cardiac surgery. Anaesth Intensive Care. 1993;21(1):56–61.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.