Anti-TB evaluation of novel 2,3-dihydroquinazolin-4(1H)-ones and in silico studies of the active compounds

Apurba Dutta¹ · Priyanka Trivedi² · Dipshikha Gogoi³ · Pankaj Chetia³ · Vinita Chaturvedi² · Diganta Sarma ¹

Received: 17 March 2021 / Accepted: 28 April 2021 / Published online: 15 May 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
In vitro anti-tubercular activity of a series of 15 novel 2,3-dihydroquinazolin-4(1H)-one analogues were evaluated against Mycobacterium tuberculosis H₃₇Ra (ATCC 25177 strain). Among the series, seven compounds showed moderate to good anti-TB activity with minimum inhibitory concentration (MIC) values ranging from 25.0–12.5 μg/mL. Further, in silico experiments were carried out to identify the probable ligand-protein interaction. Molecular docking of the target compounds into the active site of enzymes 1DQY Antigen 85C from Mycobacterium Tuberculosis and 2NSD Enoyl Acyl Carrier Protein Reductase reveals notable information on the possible binding interactions.

Graphical Abstract

Supplementary information The online version contains supplementary material available at https://doi.org/10.1007/s00044-021-02733-6.

¹ Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India
² Biochemistry Division, Central Drug Research Institute, CSIR, Lucknow 226001, India
³ Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam 786004, India
Keywords Tuberculosis · Anti-tubercular activity · 2,3-Dihydroquinazolin-4(1H)-ones · Molecular docking

Introduction

Tuberculosis (TB) a communicable disease, spreads through air droplets containing M. tuberculosis bacilli. TB is treated with a combination of 1st line anti-TB agents, viz. Isoniazid, Rifampicin, Ethambutol and Pyrazinamide. The drug susceptible disease is cured after a 6 months long treatment under DOTs (Directly observed treatment) Program recommended by WHO. The present regimens of TB treatment under DOTs (Directly observed treatment) Pro- drug susceptible disease is cured after a 6 months long Isoniazid, Rifampicin, Ethambutol and Pyrazinamide. The is treated with a combination of 1st line anti-TB agents, viz.

Quinazoline is one of the vital N-containing heterocycles bearing a benzene ring and a pyrimidine ring in its structure with chemical formula C₈H₆N₂ [3]. Quinazoline and its analogues appear in more than 100 biologically significant naturally occurring alkaloids, most commonly in the form of quinazolin-4(3H)-one moiety [4]. Medicinal chemists synthesized a variety of quinazoline compounds with different biological activities by introducing various active groups to the quinazoline moiety using developed as well as new synthetic protocols. The potential applications of the quinazoline derivatives in the fields of biology, pesticides and medicine have also been explored. One of the important quinazoline derivatives, deoxyvasicinone (2,3-dihydroquinazolin-9(1H)-one) is an alkaloid isolated from the aerial parts of Justicia adhatoda Linn. (Sanskrit- Vasaka), an evergreen sub-herbaceous bush, used extensively as local medicine for cough, cold, bronchitis and asthma [5]. Deoxyvasicinone possesses wide spectrum of biological properties like anti-microbial, anti-inflammatory and antidepressant activities [6–9] as well as very important key intermediate for the synthesis of various natural products such as vasicinone [10], isaindigotone [11] and luotonin A [12]. Because of their diverse biological and pharmacological activities and extensive applications in pharmaceutical, research interest on the synthesis of quinazoline and its derivatives has never faded.

2,3-Dihydroquinazolin-4(1H)-one is one of the derivatives of quinazoline that possesses broad range of biological, medicinal and pharmacological activities such as anti-tumor, antibiotic, anti-tubercular, anti-defibrillatory, anti-pyretic, analgesic, anti-hypertonic, diuretic, anti-histamine, antidepressant, vasodilating agents and many more [13–22]. Since 2,3-dihydroquinazolin-4(1H)-one acquire different biological applications, in the present work, we made an attempt to synthesize some novel 2,3-dihydroquinazolin-4(1H)-ones with an aim to get probable novel anti-TB agent(s).

Results and discussion

Chemistry

Our aim was to synthesize a series of novel derivatives of 2,3-dihydroquinazolin-4(1H)-one and evaluation of their anti-TB potency. Using our method developed recently [23], we have synthesized ten derivatives of novel 2,3-dihydroquinazolin-4(1H)-one. Afterwards, the work was extended for the construction of some novel bis-2,3-dihydroquinazolin-4(1H)-ones analogues via Glaser coupling reaction using copper acetate in which 2a–2e were used as starting precursors [24]. All the five reactions gave the desired novel bis-2,3-dihydroquinazolin-4(1H)-ones in good to excellent yields which was reported in our recent work [23]. From ¹H and ¹³C NMR spectroscopic analysis, it was confirmed that all these novel bis-2,3-dihydroquinazolin-4(1H)-ones analogues were C₂-symmetric. Literature survey reveals that C₂-symmetric molecules have been employed in a number of catalytic reactions as ligands as they limit different types of side reactions. Therefore, these five C₂-symmetric analogues of 2,3-dihydroquinazolin-4(1H)-one are also expected to have extensive application in various organic transformations in coming days. All the synthesized 15 novel 2,3-dihydroquinazolin-4(1H)-one compounds are depicted in Scheme 1.

Biological evaluation

Proportion (agar dilution) assay [25] was used for anti-TB activity determination of the synthesized compounds in terms of Minimum Inhibitory Concentrations (MICs) against MTB H₃₇Ra (ATCC 25177). Different concentrations of the compounds ranging from 25.0 to 3.125 µg/mL were tested to determine the MICs. From this experiment one compound (2b) was found to display appreciable anti-TB activity with MIC 12.5 µg/mL. Other six compounds (2e, 2h, 2j, 3b, 3d and 3e) showed activity at the concentration of 25.0 µg/mL. The remaining 8 compounds did not show activity up to 25.0 µg/mL, the highest concentration tested. In the present work, Ethambutol, an anti-TB drug, was used as a positive control (Table 1).
Molecular docking study

In silico experiments were carried out to identify the ligand-protein interaction. In this work, LibDock was used to evaluate the binding affinities between the active compounds and the enzymes 2NSD Enoyl Acyl Carrier Protein Reductase and 1DQY Antigen 85C from *M. tuberculosis*. Among all the compounds tested against the Enoyl Acyl Carrier Protein Reductase, five compounds exhibited good docking scores (Table 2). Among the five compounds, compound 3b showed the lowest CDOCKER interaction energy score of -54.5525 kcal/mol. Apart from the binding energy, it has formed one conventional H-bond with the residue Phe41. Conventional H-bonds are the major contributors for the stability in binding of protein and compounds. Apart from H-bond, it also formed some other interaction such as C–H bond, pi-pi T-shaped and pi-alkyl. The 2D and 3D structures of the docked complex is depicted in Fig. 1.

Similarly an in silico experiment was executed for these seven compounds on 1DQY Antigen 85C from *M. tuberculosis* for exploring the anti-TB potency of the synthesized novel analogues. Only two compounds tested against the Antigen 85C showed good docking scores (Table 3). Compound 2b showed the lowest CDOCKER interaction energy score of -37.0648 kcal/mol. Apart from the binding energy it has formed 2 conventional H-bonds with the residues Asp38 and Arg41 which are lying within the active pocket of the protein. Apart from H-bonds, it also formed some other interaction such as C–H bond, pi-pi T-shaped and pi-alkyl. The 3D and 2D structures of the docked complex is shown in Fig. 2.

Conclusion

In summary, we designed and successfully executed synthesis of some novel derivatives of 2,3-dihydroquinazolin-4(1H)-one including five C$_2$ symmetric bis-2,3-dihydroquinazolin-4(1H)-ones. The newly synthesized compounds were evaluated for their potent in vitro anti-tubercular activity. Among the 15 novel compounds, seven were identified as potent anti-TB agents with MIC in the range of 25.0–12.5 µg/mL. The most potent compound, 2b inhibited the growth of *MTB*.
Compounds	Structure	ClogP^a	CMR^a	MIC (µg/mL)
2a	![Structure 2a](image1)	3.6068	7.9272	>25
2b	![Structure 2b](image2)	2.7968	8.0678	12.5
2c	![Structure 2c](image3)	2.7968	8.0678	>25
2d	![Structure 2d](image4)	2.7968	8.0678	>25
2e	![Structure 2e](image5)	4.3198	8.4186	25
2f	![Structure 2f](image6)	5.4208	10.5199	>25
2g	![Structure 2g](image7)	5.4208	10.5199	>25
2h	![Structure 2h](image8)	3.9338	11.0775	25
Compounds	Structure	ClogP^a	CMR^a	MIC (µg/mL)
-----------	-----------	-----------------	----------------	-------------
2i	![Structure](image)	3.2208	10.5861	>25
2j	![Structure](image)	3.2208	10.5861	25
3a	![Structure](image)	5.6196	15.829	>25
3b	![Structure](image)	3.9996	16.1042	25
3c	![Structure](image)	5.6196	15.829	>25
3d	![Structure](image)	5.6196	15.829	25
3e	![Structure](image)	7.0456	16.8116	25
Ethambutol	![Structure](image)	0.1188	5.859	2.0

^aCLog P and CMR were calculated using Chemdraw Ultra 12.0 software by Cambridge Soft
at the concentration of 12.5 µg/mL. Further, molecular docking of the target compounds into the active site of enzymes 1DQY Antigen 85C from Mycobacterium Tuberculosis and 2NSD Enoyl Acyl Carrier Protein Reductase reveals notable information on the possible binding interactions. These findings suggest that the newly designed compounds may be considered as potential agents for anti-TB drug discovery.

Experimental

General method for synthesis of 2,3-dihydroquinazolin-4(1H)-ones (2a–2j) [23]

Isatoic anhydride (1 mmol), amines (1.2 mmol), carbonyls (1.2 mmol) and [([SiO2-(acac)]3FeIII)Cl3 (20 mg, 32.24 ppm Fe) in water (2 mL) were stirred in a flask equipped with a condenser at 80 °C. On completion (monitored by TLC under UV light), the resulting mixture was cooled to room temperature and then the mixture was extracted with ethyl acetate (3 × 10 mL) and washed with H2O (3 × 10 mL). The combined extract was dried over anhydrous Na2SO4. The solvent of filtrate was removed with the aid of a rotary evaporator. The product was purified by column chromatography on silica gel using petroleum ether/ethyl acetate (3:1 v/v) as eluent to obtain the pure novel compounds. The products were then characterized by FT-IR, ESI-MS, 1H NMR and 13C NMR analyses.

General procedure for the synthesis of compounds (3a–3e) [23]

A mixture of 2a–2e (1 mmol), piperidine (1 mmol) and Cu(OAc)2·H2O (10 mol%) in CH3Cl2 (2 mL) was stirred in an open air at room temperature for 10 hours. On completion (monitored by TLC under UV light), the resulting mixture was extracted with ethyl acetate (3 × 10 mL) and washed with H2O (3 × 10 mL). The combined extract was dried over anhydrous Na2SO4. The solvent of filtrate was removed with the aid of a rotary evaporator. The crude product was purified via column chromatography on silica gel using petroleum ether/ethyl acetate (3:1 v/v) as eluent to obtain the pure novel compounds. The compounds were then characterized by FT-IR, ESI-MS, 1H NMR and 13C NMR analyses.

Comp.	Docking score of 2NSD with five compounds and potential amino acids of the protein interacting with ligands along with the interaction	Experimental method for synthesis of 2,3-dihydroquinazolin-4(1H)-ones (2a–2j) [23]
	Interacting amino acid	Bazooka Solid; 98% yield; Mp: 136–138 °C; IR (KBr) cm⁻¹: 3302, 2927, 2365, 2346, 1634, 1506, 1427, 1304, 1226, 1105, 1069, 839, 804, 775, 747, 697, 614, 563, 490, 437, 379, 341, 301, 249, 230, 174, 154, 133, 117, 100, 85, 73, 61, 54, 48, 42, 38, 33, 29, 25, 20, 17, 14, 11, 8, 6, 4, 2, 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001 cm⁻¹.
1H NMR (400 MHz, DMSO-d6) δ 7.67 (dd, $J = 7.7, 1.4$ Hz, 1H), 7.42 (dd, $J = 13.0, 8.2$ Hz, 3H), 7.23 (ddd, $J = 19.2, 8.9, 7.0$ Hz, 2H), 6.73–6.66 (m, 2H), 5.98 (s, 1H), 3.64 (s, 2H), 3.16 (t, $J = 2.4$ Hz, 1H); 13C NMR (100 MHz, DMSO-d6) δ 163.39, 162.02, 146.38, 136.16, 133.72, 128.71, 128.63, 127.60, 117.37, 115.44, 115.23, 114.34, 113.92, 78.93, 74.45, 69.63, 33.06; MS (ESI) calcd for C17H13FN2O $[M + H]^+$ 281.1090; found 281.1100.

Table 3 Docking score of 1DQY with two compounds and potential amino acids of the protein interacting with ligands along with the interaction

Comp.	CDOCKER energy (Kcal/mol)	CDOCKER interaction energy (Kcal/mol)	Interacting amino acid	Interaction
2b (POSE2)	−30.7248	−37.0648	Asp38, Trp262, Arg41, Asp216, Leu40	Conventional H-bond, C–H bond, pi-pi T shaped, pi-alkyl
2e (POSE2)	−16.9365	−31.0986	Lys165, Met147, Ala191, Gly14, Ser20, Ile21, Ala198	Conventional H-bond, C–H bond, pi-alkyl

2-(4-Hydroxyphenyl)-3-(prop-2-yn-1-yl)-2,3-dihydroquinazolin-4(1H)-one (2b)

Brown solid; 95% yield; Mp: 58–60 °C; IR (KBr) cm$^{-1}$: 3358, 3253, 2926, 2854, 1634, 1611, 1500, 1456, 1428, 1405, 1266, 1232, 1167, 986, 840, 686, 593, 554, 526; 1H NMR (400 MHz, DMSO-d6) δ 7.66 (d, $J = 7.9$ Hz, 1H), 7.22 (dd, $J = 13.2, 7.9$ Hz, 4H), 6.83–6.57 (m, 3H), 5.84 (s, 1H), 4.64 (d, $J = 17.3$ Hz, 2H), 3.11 (s, 1H); 13C NMR
(100 MHz, DMSO-d6) δ 162.91, 158.38, 147.32, 134.16, 130.30, 128.58, 128.14, 117.69, 115.71, 114.78, 114.34, 79.59, 74.63, 70.78, 33.10; MS (ESI) calcd for C17H15N2O2 [M + H]+ 315.0700; found 315.0745.

2-(3-Fluorophenyl)-3-(prop-2-yn-1-yl)-2,3-dihydroquinazolin-4(1H)-one (2e)

Pale yellow solid; 92% yield; Mp: 72–74 °C; IR (KBr) cm⁻¹: 3432, 2956, 2923, 2854, 2331, 1637, 1146, 1077, 1020, 985, 916, 799; ¹H NMR (400 MHz, DMSO-d6) δ 8.59 (s, 1H), 7.66 (dd, J = 7.7, 1.5 Hz, 1H), 7.47–7.21 (m, 3H), 6.70–6.41 (m, 3H), 5.78 (s, 1H), 3.97 (s, 2H), 3.05 (s, 1H); ¹³C NMR (100 MHz, DMSO-d6) δ 163.70, 161.83, 150.25, 134.07, 132.46, 128.54, 127.82, 126.73, 115.08, 114.21, 113.89, 113.17, 82.12, 78.83, 72.92, 32.74; MS (ESI) calcd for C17H15ClF6N2O2 [M + H]+ 431.0632; found 431.0645.

2-(3-Fluorophenyl)-3-(4-methylthiophenyl)-2,3-dihydroquinazolin-4(1H)-one (2f)

Light brown solid; 62% yield; Mp: 174–176 °C; IR (KBr) cm⁻¹: 3422, 3296, 2923, 2852, 1642, 1614, 1587, 1487, 1448, 1387, 1292, 1241, 1122, 1020, 928, 871, 828, 773, 753, 689, 669, 543, 518; ¹H NMR (500 MHz, DMSO-d6) δ 7.74–7.68 (m, 2H), 7.30–7.20 (m, 8H), 6.79–6.74 (m, 2H), 6.32 (s, 1H), 2.45 (s, 3H); ¹³C NMR (125 MHz, DMSO-d6) δ 162.49, 161.42, 146.77, 143.97, 137.86, 136.18, 134.25, 130.86, 128.34, 127.09, 126.46, 123.02, 123.00, 118.13, 115.69, 115.57, 115.52, 115.20, 113.95, 72.25, 15.14; MS (ESI) calcd for C21H17FN2O2S [M + H]+ 397.1022; found 397.1045.

2-(Fluorophenyl)-3-(4-(methylthio)phenyl)-2,3-dihydroquinazolin-4(1H)-one (2g)

Light brown solid; 85% yield; Mp: 158–160 °C; IR (KBr) cm⁻¹: 3473, 3375, 2923, 2852, 1670, 1620, 1588, 1568, 1518, 1489, 1453, 1420, 1301, 1247, 1160, 1113, 1050, 910, 860, 782, 749, 718, 657, 530; ¹H NMR (400 MHz, DMSO-d6) δ 7.84–7.62 (m, 3H), 7.20 (t, J = 7.4 Hz, 3H), 6.71 (d, J = 8.3 Hz, 2H), 6.48 (t, J = 7.4 Hz, 3H), 5.68 (s, 1H), 3.49 (s, 3H); ¹³C NMR (100 MHz, DMSO-d6) δ 169.97, 166.54, 151.89, 145.52, 134.81, 134.20, 131.61, 127.07, 126.12, 124.98, 123.42, 116.75, 115.06, 110.03, 77.87, 48.11; MS (ESI) calcd for C21H16ClF2N2O3S [M + H]+ 431.0632; found 431.0645.
2-(2-Fluorophenyl)-3-(4-(methylsulfonyl)phenyl)-2,3-dihydroquinazolin-4(1H)-one (2j)

Pale yellow solid; 56% yield; Mp: 112–114 °C; IR (KBr) cm\(^{-1}\): 3474, 3375, 2922, 2854, 1674, 1615, 1588, 1564, 1487, 1421, 1248, 1160, 1116, 1053, 920, 859, 750, 708, 658, 530; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 7.92–7.76 (m, 2H), 7.64 (dd, \(J = 19.1, 7.1\) Hz, 1H), 7.24 (dt, \(J = 15.1, 7.8\) Hz, 3H), 6.71 (d, \(J = 8.3\) Hz, 3H), 6.48 (t, \(J = 7.5\) Hz, 3H), 5.83 (s, 1H), 3.55 (s, 3H); \(^{13}\)C NMR (100 MHz, DMSO-\(d_6\)) δ 148.7, 146.1, 136.3, 134.3, 132.6, 129.6, 128.4, 124.9, 113.91, 76.98, 70.64, 66.13, 29.30; MS (ESI) calcd for C\(_{34}\)H\(_{24}\)F\(_2\)N\(_4\)O\(_2\) [M+H\(^+\)]\(^{15}\)N 559.1951; found 559.1945.

3,3'-((Hexa-2,4-diyne-1,6-diyl)bis(2-(2-chloro-6-fluorophenyl)-2,3-dihydroquinazolin-4(1H)-one) (3e)

Brown solid; 50% yield; Mp: 66–68 °C; IR (KBr) cm\(^{-1}\): 3421, 2959, 2923, 2853, 2332, 1636, 1541, 1467, 1381, 1162, 1077, 985, 918, 803, 749; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) δ 8.65 (s, 2H), 7.45 (d, \(J = 7.7\) Hz, 2H), 7.13 (t, \(J = 7.6\) Hz, 6H), 6.69 (d, \(J = 8.2\) Hz, 2H), 6.47 (dd, \(J = 18.6, 11.1\) Hz, 4H), 5.84 (s, 2H), 4.09 (s, 4H); \(^{13}\)C NMR (100 MHz, DMSO-\(d_6\)) δ 169.16, 169.08, 150.31, 132.57, 128.55, 127.79, 116.94, 115.10, 113.92, 76.97, 66.17, 60.22, 29.32; MS (ESI) calcd for C\(_{34}\)H\(_{22}\)Cl\(_2\)F\(_2\)N\(_4\)O\(_2\) [M+H\(^+\)]\(^{15}\)N 627.1166; found 627.1172.

Evaluation of in vitro anti-tubercular activity of compounds

Initially all the synthesized compounds were screened against *M. tuberculosis* H\(_{37}\)Ra (ATCC 25177 strain) at the single concentration of 25 μg/mL. The active compounds from the above screening were further tested to determine MIC using Agar Proportion assay. To make stocks (5 mg/mL), the compounds were dissolved in DMSO. Serial two fold dilutions were also made in DMSO from the stocks. From the above screening were further tested to determine MIC using Agar Proportion assay. To make stocks (5 mg/mL), the compounds were dissolved in DMSO. Serial two fold dilutions were also made in DMSO from the stocks.
suspension (~10^5 bacilli) was inoculated into each tube for 4 weeks at the temperature of 37 °C. The lowest concentration of a compound up to which there was no visible growth of bacilli was its Minimal Inhibitory Concentration (MIC). Ethambutol was used as reference drug.

CDocker algorithm in Discovery studio

The Dock Ligands (CDOCKER) protocol is an implementation of the CDOCKER algorithm. It allows running a refinement docking of any number of ligands with a single protein receptor. CDOCKER is a grid based molecular docking method that employs CHARMM. The receptor is held rigid while the ligands are allowed to flex during the refinement. For predocked ligands, prior knowledge of binding site is not required. It is possible, however, to specify the ligand placement in the active site using a binding site sphere. Random ligand conformations are generated from the initial ligand structure through high temperature molecular dynamics, followed by random rotations. The random conformations are refined by grid based (GRID 1) simulated annealing and a final grid based or full force field minimization. CDOCKER uses a detailed atomic force field that is comprised of accuracy of automated MD docking with a soft-core potential over Monte Carlo (MC) Simulations and Genetic Algorithm (GA) in searching a large conformation space.

Force-field and grid

The grid origin is situated at the center of the active sites of the protein. A + 1 point charge probe is used to map electrostatic interactions to the grid. The grid’s vdW interactions are generated in one of two ways. The energies and forces are generated for the soft-core potentials in the heating-cooling stages and with normal non bond potentials in the final minimization step. The soft-core is generally approximated by the below function:

\[E_{ij} = E_{\text{max}} - a \cdot r_{ij}^{6} \left| E_{ij} \right| > \frac{E_{\text{max}}}{2} \]

where \(E_{ij} \) is the energy of regular non bond (vdW or electrostatic) potential. The coefficients \(a \) and \(b \) were extracted from two equations that express equality of regular and soft potential and forces at the switching distance.

Acknowledgements

DS is thankful to Department of Biotechnology, Ministry of Science and Technology, New Delhi, India for a research grant (BT/PR24684/NPR/95/810/2017). AD thanks DBT, New Delhi for Research Fellowship. The financial assistance of UGC-SAP programme to the Department of Chemistry, Dibrugarh University is also gratefully acknowledged.

Compliance with ethical standards

Conflict of interest The authors declare no competing interests.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

1. Sotgiu G, Centis R, D’Ambrosio L, Migliori GB. Tuberculosis treatment and drug regimens. Cold Spring Harb Perspect Med. 2015;5:a017822–a017822.
2. Singh P, Mishra AK, Malonia SK, Chauhan DS, Sharma VD, Venkatesan K, Katoch VM. The paradox of pyrazinamide: an update on the molecular mechanisms of pyrazinamide resistance in Mycobacteria. J Commun Dis. 2006;38:288–98.
3. Srivastava S, Srivastava S. Biological activity of quinazoline: A review. Int J Pharm Sci. 2015;6:1206–13.
4. Mhaske SB, Argade NP. The chemistry of recently isolated naturally occurring quinazoline alkaloids. Tetrahedron. 2006;62:9787–826.
5. Mehta DR, Naravane JS, Desai RM. Vasicinone. A bronchodilator principle from Adhatoda Vasica Nees (N. O. Acanthaceae.). J. Org. Chem.1963;28:445–8.
6. Amin AH, Mehta DR. A bronchodilator alkaloid (vasicinone) from Adhatoda vasica Nees. Nature. 1959;183:1317–1317.
7. Joshi BS, Newton MG, Lee DW, Barber AD, Pelletier SW. Reversal of absolute stereochemistry of the pyrrolo[2,1-b]quinazoline alkaloids vasicine, vasicinone, vasicinol and vasicinolone. Tetrahedron Asymmetry. 1996;7:25–8.
8. Atal, C. K. Chemistry and pharmacology of vasicine: a new oxytocic and abortifacient. Delhi: Raj Bandu Industrial Co; 1980.
9. Gosal S, Chauhan PSRB, Mehta R. Alkaloids of Sida cordifolia. Phytochemistry. 1975;14:830–2.
10. Al-Shamma A, Drake S, Flynn DL, Mitscher LA, Rao YH, Rao GSR, Simpson A, Swayze JK, Veygoulo T, Wu SS. Antimicrobial agents from higher plants. Antimicrobial agents from Peganum harmala seeds. J Nat Prod. 1981;44:745–7.
11. Kamal A, Ramana KV, Rao MV. Chemoenzymatic synthesis of pyrrolo[2,1-b]quinazolinones: lipase-catalyzed resolution of vasicinone. J Org Chem. 2001;66:997–1001.
12. Molina P, Tarraga A, Gonzalez-Tejero A. A convenient divergent approach to the alkaloids isaindigotone and luotonin A. Synthesis. 2000;11:1523–5.
13. Zhang H, Liu H, Luo X, Wang Y, Liu Y, Jin H, Liu Z, Yang W, Yu P, Zhang L, Zhang L. Design, synthesis and biological activities of 2,3-dihydroquinazolin-4(1H)-one derivatives as TRPM2 inhibitors. Eur J Med Chem. 2018;152:235-52.
14. Nagaradinne N, Hindustan A, Nayakanti D. Synthesis, characterisation and docking studies of N-methyl-2, 3-Dihydro quinazolin-4-ones linked 1,3-thiazole hybrids as potent antitubercular agents. Indian J Pharm Sci. 2020;82:984.
15. Marvania B, Lee PC, Chaniyara R, Dong H, Suman S, Kakadiya R, Su TL. Design, synthesis and antitumor evaluation of phenyl N-mustard-quinazoline conjugates. Bioorg Med Chem. 2011;19:1987–98.
16. El-Azab AS, ElTahir KE. Design and synthesis of novel 7-aminoquinazoline derivatives: antitumor and anticonvulsant activities. Bioorg Med Chem Lett. 2012;22:1879–85.
17. Maurya HK, Verma R, Alam S, Pandey S, Pathak V, Sharma S, Gupta A. Studies on substituted benzo[h]quinazolines, benzo[g] indazoles, pyrazoles, 2,6-dimethylpyridines as anti-tubercular agents. Bioorg Med Chem Lett. 2013;23:5844–9.
18. Dukat M, Alix K, Worsham J, Khatri S, Schulte MK. 2-Amino-6-chloro-3,4-dihydroquinazoline: a novel 5-HT3 receptor antagonist with antidepressant character. Bioorg Med Chem Lett. 2013;23:5945–8.

19. Akester JN, Njaria P, Nchinda A, Le Manach C, Myrick A, Singh V, Lawrence N, Njoroge M, Taylor D, Moosa A, Smith AJ. Synthesis, structure–activity relationship, and mechanistic studies of aminoquinazolinones displaying antimycobacterial activity. ACS Infect Dis. 2020;6:1951–64.

20. Jafari E, Khajouei MR, Hassanzadeh F, Hakimelahi GH, Khodarahmi GA. Quinazolinone and quinazoline derivatives: recent structures with potent antimicrobial and cytotoxic activities. Res Pharm Sci. 2016;11:1–14.

21. Couturier C, Lai C, Pellet A, Upton A, Kaneko T, Perron C, Cogo E, Menegotto J, Bauer A, Scheiper B, Lagrange S, Bacque E. Identification and optimization of a new series of anti-tubercular quinazolinones. Bioorg Med Chem Lett. 2016;26:5290–9.

22. Maddali NK, Viswanath IK, Murthy YLN, Bera R, Takhi M, Rao NS, Gadla V. Design, synthesis and molecular docking studies of quinazolin-4-ones linked to 1,2,3-triazol hybrids as Mycobacterium tuberculosis H37Rv inhibitors besides antimicrobial activity. Med Chem Res. 2019;28:559–70.

23. Dutta A, Trivedi P, Kulashetra A, Kumar A, Chaturvedi V, Sarma D. Sustainable parts-per-million level catalysis with FeIII: one-pot cascade synthesis of 2,3-dihydroquinazolin-4(1H)-ones in water. Appl Organomet Chem. 2021;35:e6116.

24. Balaraman K, Kesavan V. Efficient copper(II) acetate catalyzed homo- and heterocoupling of terminal alkynes at ambient conditions. Synthesis. 2010;20:3461–6.

25. McClachy JK. Susceptibility testing of mycobacteria. Lab Med. 1978;9:47–52.