A Caputo (discretization) fractional-order model of glucose-insulin interaction: numerical solution and comparisons with experimental data

Mansoor H. Alshehri, Faisal Z. Duraihem, Ahmad Alalyani, and Sayed Saber

Abstract
In this paper, we investigate a (discretization) Caputo fractional glucose-insulin model qualitatively with incommensurate orders that appear in Bergman’s minimal model. After intravenous tolerance testing, the model is used to characterize the blood insulin and glucose metabolism. We also prove that the presented model possesses existence, uniqueness, non-negative, and boundedness solutions. We also proceed a systematical studies on the stability of the (discretization) Caputo fractional. Comparisons between the results of the fractional-order, the integer order and the measured real data obtained from patients are presented. These comparisons is shown that the presented Caputo fractional order model is better representative of the system than its integer order form. Numerical solutions of the Caputo fractional model are obtained by using the method of Adams-Bashforth-Moulton type to handle the fractional derivatives. Also, numerical simulations of the discretization fractional derivative order model are used to support the analytical results.

1. Introduction
The relationship between glucose and insulin concentration, its regulatory hormone has been studied and modelled by several scientists (see [1–11]). Most of mathematical models proposed were deduced to study the dynamical behavior of the glucose-insulin interaction, including Intra Venous Glucose Tolerance Test (IVGTT). In 1961, Bolie [1] proposed the simple linear model:

\[
\begin{align*}
x(t) &= -k_1 x(t) - k_2 z(t) + p, \\
\dot{z}(t) &= -k_3 x(t) - k_4 z(t),
\end{align*}
\]

where \(x\) is the plasma glucose concentration (resp. insulin) at time \(t\), and \(p, k_1, k_2, k_3, k_4\) are parameters. After incorporating the insulin dynamics, Bergman et al. [5], has presented the “Minimal Model” in 1980, which characterize IVGTT experimental data well, and it was modified in 1986 [11], and takes the form of [6] (see also [2,9])

\[
\begin{align*}
x(t) &= -(q_1 + y(t)) x(t) + q_1 x_0, \quad x(0) = q_0, \\
y(t) &= -q_2 y(t) + q_3 (z(t) - z_0), \quad y(0) = 0, \\
\dot{z}(t) &= q_4 [x(t) - q_5]^+ t - q_6 (z(t) - z_0), \\
z(0) &= z_0,
\end{align*}
\]

with

\[
[x - q_5]^+ = \begin{cases} x - q_5 & \text{if } x > q_5, \\
0 & \text{if } x \leq q_5,
\end{cases}
\]

where \(x\) and \(z\) are defined above,

\[
y \ [1/min] \text{ is an auxiliary function which representing activity of insulin excitable tissue glucose uptake,}
\]

\[
x_0 \ [mg/dL], \ (resp. \ z_0 \ [mU/L]) \text{ represent the concentration of Basal blood glucose (resp. insulin),}
\]

\[
q_0 \ [mg/dL] \text{ represent the theoretical glycemia at time } t = 0, \text{ immediately after the instantaneous glucose bolus intake,}
\]

\[
q_1 \ [1/min] \text{ represent the rate of insulin-independent glucose clearance,}
\]

\[
q_2 \ [1/min] \text{ represent the rate of the active insulin clearance (upt. decrease),}
\]

\[
q_3 \ [L/(min2mU)] \text{ represent the increase in uptake ability which caused by insulin,}
\]

\[
q_4 \ [1/min] \text{ represent the rate of decay of blood insulin,}
\]

\[
q_5 \ [mg/dL] \text{ represent the target level of glucose,}
\]

\[
q_6 \ [mUdL/Lmgmin] \text{ represent the rate of the Pancreatic release, immediately after glucose bolus,}
\]

\[
q_7 \ [mg/dL][1/min] \text{ represent the concentration of Plasma insulin above basal insulinenemia at time 0, immediately after the glucose bolus intake.}
\]
In [6], De Gaetano and Arino has intended a model called the dynamical model which couples the two different parts of the “Minimal Model” into one part given by

\[\dot{x} = -(1 + p_2)y x + (p_1 + p_1) x_b - x, \]
\[\dot{z} = -p_2 y + (p_3 + p_3) (z - z_b), \]

with \(x = x_b \) for \(-c_5 \leq t < 0 \) where \(c_0, c_1, c_2, c_3, c_4, c_5, c_6, \) and \(c_7 \) are parameters.

In [7], Derouich et al. have been used a version of the minimal model in modified form to introduce parameters related to physical exercise:

\[\dot{x} = -(1 + p_2)y x + (p_1 + p_1) x_b - x, \]
\[\dot{z} = -p_2 y + (p_3 + p_3) (z - z_b), \]

In [8], Li et al. had reinvestigated the dynamical analysis of the “Minimal Model” in both modelling and physiological aspect to understanding blood glucose regulatory system:

\[\dot{x} = -b_1 x - b_2 x^2 + b_7, \quad x(0) = x_b + b_0, \]
\[\dot{z} = b_6 x - b_2 z, \quad z(0) = z_b + b_3, \]

with \(x_j = x_b \) for \(t \in [-b_3, 0) \) and \(b_1, b_2, b_4, b_4, b_7 \) are parameters.

The concept of fractional calculus has great importance in many branches and is also important for modelling real world problems [12–36]. In this paper, we concerned on the discrete version Caputo fractional order of the minimal model (1):

\[D^\nu_{t} x = -(q_1 + y) x + q_1 x_b, \quad x(0) = q_0, \]
\[D^\nu_{t} y = -q_2 y + q_3 (z - z_b), \quad y(0) = 0, \]
\[D^\nu_{t} z = q_4 (x - q_3)^+ - q_6 (z - z_b), \quad z(0) = z_b, \]

with

\[(x - q_3)^+ = \begin{cases} x - q_3 & \text{if } x > q_3, \\ 0 & \text{if } x \leq q_3. \end{cases} \]

This paper concerned on a analytical studies of a Caputo fractional-order glucose-insulin model (2) and its discretization. The fractional calculus has great importance for modelling real world problems and is also important in many branches. After intravenous tolerance testing, this model used to characterize the metabolism of blood insulin and glucose. We show that the model (2) possesses existence, uniqueness, non-negative, and boundedness solution. We also prove that the presented model possesses existence, uniqueness, non-negative, and boundedness solution. We also proceed a systematical studies on the stability of the (discretization) Caputo fractional. Comparisons between the results of the fractional-order, the integer order and the measured real data obtained from patients are presented. These comparisons is shown that the presented Caputo fractional order model is better representative of the system than its integer order form. Numerical solutions of the Caputo fractional model are obtained by using the method of Adams-Bashforth-Moulton type to handle the fractional derivatives. Also, numerical simulations of the discretization fractional derivative order model are used to support the analytical results.

2. Caputo fractional-order modelling of glucose-insulin

2.1. Notation and definitions

For \(v \in \mathbb{R} \), the fractional derivative \(D^\nu_{t} \), can represented by

\[D^\nu_{t} = \begin{cases} \frac{d^\nu}{dt^\nu} & \text{Re}(v) > 0, \\ 1 & \text{Re}(v) = 0, \\ \int_{a}^{t} (\sigma)^{-v} d\sigma & \text{Re}(v) < 0. \end{cases} \]

Define the Euler-Gamma function as

\[\Gamma(\alpha) = \int_{0}^{\infty} e^{-t} t^{\alpha-1} dt, \quad t > 0. \]

In [12], the Riemann-Liouville definition first introduced in 1847 and is given by

\[D^\nu_{t} f = \begin{cases} \frac{1}{\Gamma(n - \nu)} \frac{d^n}{dt^n} \int_{0}^{t} \frac{f(\sigma)}{(t - \sigma)^{\nu+1-n}} d\sigma, & n - 1 \leq \nu < n, \\ \frac{d^n}{dt^n} f(t) & \nu = n. \end{cases} \]

In [13], the Caputo definition first introduced in 1967, and is given by

\[D^\nu_{t} f = \begin{cases} \frac{1}{\Gamma(n - \nu)} \int_{0}^{t} \frac{f(\sigma)}{(t - \sigma)^{\nu+1-n}} d\sigma, & n - 1 \leq \nu < n, \\ \frac{d^n}{dt^n} f(t) & \nu = n, \end{cases} \]

Anton Karl Grunwald [37] and Aleksey Vasilievich Letnikov [38], introduced the Grünwald-Letnikov definition over the interval \([a, t]\)

\[D^\nu_{t} f = \lim_{\varrho \to 0} \frac{1}{\varrho^n} \sum_{n=0}^{\left\lfloor \frac{t-a}{\varrho} \right\rfloor} (-1)^n \binom{n}{\nu} f(t - n\varrho), \]

with \(n \in \mathbb{N}, \varrho \) is the step size, and a binomial

\[\binom{n}{\nu} = \frac{\Gamma(\nu + 1)}{\Gamma(n + 1)\Gamma(\nu + 1 - n)}. \]
Definition 2.1: If
\[\zeta(w) = w^n + a_1w^{n-1} + a_2w^{n-2} + \cdots + a_n = 0, \]
\[\eta(w) = w^m + b_1w^{m-1} + b_2w^{m-2} + \cdots + b_m = 0, \]
and if \(\Gamma(\zeta, \eta) \) is the determinant of the corresponding Sylvester matrix \((n + m) \otimes (n + m)\). Thus
\[S(\zeta) = (-1)^{n(n-1)/2} \frac{d\zeta}{dw} \]
is the discriminant of a polynomial \(\zeta \).

Definition 2.2: For \(\beta > 0 \), the function
\[E_{\beta}(z) = \sum_{\mu=0}^{\infty} \frac{z^\mu}{\Gamma(\beta \mu + 1)} \]
is called the Mittag-Leffler function of \(\beta \).

Lemma 2.1 ([23,39], Generalized mean value theorem): Suppose that \(f(x) \in C[a,b] \) and \(D_0^\alpha f(x) \in C[a,b] \), for \(0 < \alpha \leq 1 \), then we have
\[f(x) = f(a) + \frac{1}{\Gamma(\alpha)} (D_0^\alpha f)(\xi)(x-a)^\alpha \]
with \(a \leq \xi \leq x, \forall x \in (a, b] \).

Lemma 2.2 ([23,39]): Suppose that \(f(x) \in C[a,b] \) and \(D_0^\alpha f(x) \in C[a,b] \), for \(0 < \alpha \leq 1 \), then \(f(x) \) is nondecreasing for each \(t \in [a, b] \). If \(D_0^\alpha f(x) \leq 0 \forall t \in [a, b] \), then \(f(x) \) is nonincreasing for each \(t \in [a, b] \).

Lemma 2.3 ([23, Lemma 9]): Suppose that \(T \in CP[\mathbb{R}^+, \mathbb{R}] \) satisfies
\[D_t^\gamma T(t) + \gamma T(t) \leq \lambda, \quad T(t_0) = T_0, \quad t \geq t_0 \geq 0. \]
where \(\gamma, \lambda, \mu \in \mathbb{R} \). Then one has
\[0 \leq T(t) \leq T(t_0) E_{\beta}(\gamma(t-t_0)^\alpha) \]
\[+ [\lambda(t-t_0)^\alpha E_{\beta,\beta+1}(\gamma(t-t_0)^\alpha)], \quad t \geq t_0 \geq 0. \]

2.2. Existence, uniqueness, non-negativity and boundedness solutions

Existence of the solution of the system (2) and its uniqueness will be provided herein in the region \(F \times (0, T) \) with \(F = \{(x, y, z) \in \mathbb{R}^3 : \max(|x|, |y|, |z|) \leq \eta\} \). Following [21], one obtains

Theorem 2.1: For each initial condition \(X_0 = (x_0, y_0, z_0) \in F \), the solution \(X(t) \in F \), \(t \geq 0 \), of the model (2) is unique.

Proof: For \(X, \bar{X} \in F \), one can take a mapping \(\Gamma(X) = (\Gamma_1(X), \Gamma_2(X), \Gamma_3(X)) \) with
\[\Gamma_1(X) = -|q_1 + y|x + q_1x_0, \]
\[\Gamma_2(X) = -q_2x + q_3(z - z_0), \]
\[\Gamma_3(X) = q_4(x - q_5)t - q_6(z - z_0). \]
Thus, one obtains
\[\|\Gamma(X) - \Gamma(\bar{X})\| \]
\[= |\Gamma_1(X) - \Gamma_1(\bar{X})| + |\Gamma_2(X) - \Gamma_2(\bar{X})| + |\Gamma_3(X) - \Gamma_3(\bar{X})| \]
\[= |(q_1 + y)x + q_1x_0 - (q_1 + \bar{y})\bar{x} - q_1\bar{x}_0| \]
\[+ |q_2x - q_3(z - z_0) - q_2z - q_3(z - z_0)| \]
\[+ |q_4(x - q_5)t - q_6(z - z_0)| \]
\[\leq |(q_1 + \bar{y})\bar{x} - q_1\bar{x}_0| \]
\[+ |q_2z - q_3(z - z_0)| \]
\[\leq |(q_1 + q_4)t|x - \bar{x}| + (q_3 + q_6)|z - \bar{z}| \]
\[\leq \mu \|X - \bar{X}\|, \]
where
\[\mu = \max(\epsilon + q_4|t|, \epsilon + q_2, q_3 + q_6) \].

Thus, the Lipshitz condition is satisfied on \(\Gamma(X) \). Thus, the solutions of the model (2) exist and uniqueness.

Theorem 2.2: For the model (2), the solutions start in \(\mathbb{R}^3_+ \) and are semi-positive.

Proof: One has
\[D_t^\gamma x(t)|_{t=0} = q_1x_0 \geq 0, \]
\[D_t^\gamma y(t)|_{t=0} = q_3(z - z_0) \geq 0, \]
\[D_t^\gamma z(t)|_{t=0} = q_6Z_0 \geq 0. \]

Then, the solutions of the model (2) are semi-positive, by using Lemmas 2.1 and 2.2.

Theorem 2.3: For the model (2), the solutions start in \(\mathbb{R}^3_+ \) are uniformly bounded.

Proof: As in [21], one consider the function \(T(t) = x(t) + y(t) + z(t) \). Then
\[D_t^\gamma T(t) = D_t^\gamma x(t) + D_t^\gamma y(t) + D_t^\gamma z(t) \]
\[= (tq_4 - q_1)x(t) - q_2yz(t) \]
\[+ (q_3 - q_6)Z - y(t)x(t) - q_1x_0 \]
\[- q_2Z_0 - q_4st + q_6Z_0. \]
Thus, for all $\gamma > 0$,
\[
D^\gamma_t T(t) + \gamma T(t) = (\gamma + tq_4 - q_1)x(t) + (\gamma - q_2)y(t) + (\gamma + q_3 - q_6)z - \gamma(t)x(t) + q_1x_b - q_3z_b - q_4q_5t + q_6z_b.
\]
Thus, by choosing $\gamma < \min\{q_1 - q_4|t|, q_2, q_6 - q_3\}$, one obtains
\[
D^\gamma_t T(t) + \gamma T(t) \leq q_1x_b + q_6z_b.
\]
Following to Lemma 2.3, one obtains
\[
0 \leq T(t) \leq T(0)E_{\nu,\nu+1}(-\gamma t^\nu) + [(q_1x_b + q_6z_b)^nE_{\nu,\nu+1}(-\gamma t^\nu)],
\]
where E_{ν} is the function of Mittag-Leffler. Since $0 \leq E_{\nu,\nu+1}(-\gamma t^\nu) \leq 1$, one gets
\[
0 \leq T(t) \leq -q_1x_b + q_6z_b, \quad \text{for } t \to \infty.
\]
Thus, as starting in \mathbb{R}^3_+, the model (2) has uniformly bounded solution lies in the region Σ, with
\[
\Sigma = \left\{(x,y,z) \in \mathbb{R}^3_+: T(t) \leq \frac{q_1x_b + q_6z_b}{\lambda} + \varepsilon, \varepsilon > 0 \right\}.
\]

2.3. Stability analysis

For the model (2), we assume that
\[
D^\gamma_t x(t) = 0, \quad D^\gamma_t y(t) = 0, \quad D^\gamma_t z(t) = 0.
\]
Then, the model (2) has only one equilibrium point $E^* = (x_0, 0, z_0)$ and its Jacobian matrix $J(E^*)$ is given by
\[
J(E^*) = \begin{bmatrix}
-q_1 & -x_b & 0 \\
0 & -q_2 & q_3 \\
0 & 0 & -q_6
\end{bmatrix}.
\]
Also, its characteristic equation $\Pi_1(\lambda)$ is given by
\[
\Pi_1(\lambda) = (\lambda + q_1)(\lambda + q_2)(\lambda + q_6). = 0.
\]
Then
\[
\lambda_1 = -q_1, \lambda_2 = -q_2, \lambda_3 = -q_6.
\]
Thus, by using [32], E^* is asymptotically stable.

2.4. Numerical results

In this subsection, the numerical solutions for Caputo fractional order system (2) are simulated by using the method of Adams-Bashforth-Moulton existed in [40]. Values of the parameters, given in Table 1, are taken from [11], in which these values are obtained using a computer program, named "MINMOD". Consider the following:
\[
D^\gamma_t x = -(0.03082 + y)x + 0.03082 \times 92,
\]
\[
x(0) = 287,
\]
\[
D^\gamma_t y = -0.02093y + 1.062 \times 10^{-5}(z - 7.3),
\]
\[
y(0) = 0,
\]
\[
D^\gamma_t z = 0.3[x - 94]^+ t - 0.3349 \times 10^{-2}(z - 7.3),
\]
\[
z(0) = 403.4,
\]
with
\[
[x - 94]^+ = \begin{cases} x - 94 & \text{if } x > 94, \\
0 & \text{if } x \leq 94.
\end{cases}
\]
For these parameter, $E^* = (287, 0, 403.4)$ is asymptotically stable. The parameter of the model have been set to $\nu = 0.75$, $\nu = 0.95$, and $\nu = 1$. Behaviour of experimental data and integer order model for Glucose and Insulin concentration, respectively are shown in Figures 1 and 2. The blood glucose level is presented in Figure 1. As shown in this figure, the model can reduce the blood glucose concentration from the initial value of 287 (mg/dl) to the approximate value of 80 (mg/dl) which is our desired level. Also, the behaviour of $x(t)$ and $z(t)$ for $\nu = 0.75$, $\nu = 0.85$, $\nu = 0.95$, and $\nu = 1$, showing Glucose and Insulin dynamics are shown in Figure 3.

3. Discretized model and its dynamical behaviours

In this section, we use a discretization process to discretize the Caputo fractional model (2) with piecewise constant arguments, [19,20]. Let $\nu \in (0, 1)$ and consider the differential equation of fractional order
\[
D^\gamma_t w(t) = f(w(t)), \quad t > 0,
\]
\[
w(0) = w_0, \quad t \leq 0.
\]
Its corresponding equation with a piecewise constant argument is
\[
D^\gamma_t w(t) = f w \left(m \left[\frac{t}{m} \right] \right), \quad t > 0,
\]
\[
w(0) = w_0, \quad t \leq 0.
\]

Table 1. Parameters and their values.

Parameter	q_1	q_2	q_3	q_4	q_5	q_6	x_0	z_0
Value	0.03082	0.02093	1.062×10^{-5}	0.3	94	0.3349×10^{-2}	92	7.3
Let $t \in [0, m)$, then $\frac{t}{m} \in [0, 1)$. So we get $D^\nu_tw(t) = f(w_0), t \in [0, 1)$.

Thus

$$w_1(t) = w_0 + \frac{t^\nu}{\Gamma(\nu + 1)}f(w_0).$$

Let $t \in [m, 2m)$, then $\frac{t}{m} \in [1, 2)$. So we get $D^\nu_tw(t) = f(w_1(m)), t \in [m, 2m)$. Thus

$$w_2(t) = w_1(m) + \frac{(t - m)^\nu}{\Gamma(\nu + 1)}f(w_1(m)).$$

Let $t \in [2m, 3m)$, then $\frac{t}{m} \in [2, 3)$. So we get $D^\nu_tw(t) = f(w_2(2m)), t \in [2m, 3m)$. Thus

$$w_3(t) = w_2(2m) + \frac{(t - 2m)^\nu}{\Gamma(\nu + 1)}f(w_2(2m)).$$

Repeating the process, we get when $t \in [nm, (n + 1)m)$, then $\frac{t}{m} \in [n, n + 1)$ so we get

$$D^\nu_tw(t) = f(w_n(nm)), \quad t \in [nm, (n + 1)m).$$
Thus

\[w_{n+1}(t) = w_n(nm) + \frac{(t - nm)^{\mu}}{\Gamma(v + 1)} f(w_n(nm)). \]

As \(t \to (n + 1)m \), one obtains the corresponding equation of the model (2) with a piecewise constant argument is given as:

\[x_{n+1} = x_n + \frac{m^\nu}{\Gamma(v + 1)} \left([- (q_1 + y_n) x_n + q_1 x_0], \right. \]

\[y_{n+1} = y_n + \frac{m^\nu}{\Gamma(v + 1)} \left[- q_2 y_n + q_3 (z_n - z_b)\right], \]

\[z_{n+1} = z_n + \frac{m^\nu}{\Gamma(v + 1)} \left[q_4 (x_n - q_{3}) (n(m + 1)) \right. \]

\[- q_6 (z_n - z_b)]. \]

3.1. Stability analysis

Here, the dynamical behaviours and stability analysis of the Caputo fractional discretized Glucose-insulin model (4) is investigated here at the equilibrium point \(E^* = (x_0, 0, z_0) \). First, we compute the Jacobian matrix \(J(E^*) \) of (4) as follows

\[J(E^*) = \begin{bmatrix} 1 - hq_1 & -hx_b & 0 \\ 0 & 1 - q_2 h & hq_3 \\ mh(n + 1)q_4 & 0 & 1 - q_6 h \end{bmatrix} \]

with \(h = \frac{m^\nu}{\Gamma(v + 1)} \) and its characteristic equation is given by

\[\Pi_2(\lambda) = \lambda^3 + b_1 \lambda^2 + b_2 \lambda + b_3 = 0, \]

where

\[b_1 = -3 + [q_1 + q_2 + q_6] h, \]

\[b_2 = 3 - 2[q_1 + q_2 + q_6] h + [q_1 q_6 + q_2 q_6 + q_1 q_2] h^2, \]

\[b_3 = -1 + [q_1 + q_2 + q_6] h - [q_1 q_2 + q_1 q_6 + q_2 q_6] h^2 \]

\[+ [q_1 q_2 q_6 - m q_4 q_6 (n + 1) x_b] h^3. \]

Its discriminant is given by

\[S_2(\Pi_2) = - 18 q_1 q_2 q_3 + (q_1 q_2)^2 - 4 q_3 q_1^2 - 4 q_2^2 - 27 q_3^2. \]

From the Jury's criterion [41], \(E^* = (x_0, 0, z_0) \) is locally asymptotically stable if

\[1 + q_1 + q_2 + q_3 > 0, \]

\[1 - q_1 + q_2 - q_3 > 0, \]

\[1 - q_2 + q_1 q_3 - q_3^2 > 0, \]

\[1 + q_2 - q_1 q_3 - q_3^2 > 0. \]

(6)

From the Jury test, \(E^* \) is asymptotically stable if \(S_2(1) > 0, S_2(-1) < 0, \) and \(b_3 < 0, |a_3| > a_1, d_3 > |d_2|, \)

where \(a_3 = 1 - b_2, a_2 = b_1 - b_3 b_2, a_1 = b_2 - b_3 b_1, d_3 = a_3^2 - d_2^2, \) and \(d_2 = a_3 a_2 - a_1 a_2. \)

Proposition 3.1 ([30]):

(i) If \(E_2(\Pi_2) > 0, q_1 > 0, q_3 > 0, q_1 q_2 > q_3 \) and if \(E_2(\Pi_2) > 0, \) then \(E^* \) is asymptotically stable.

(ii) If \(E_2(\Pi_2) < 0, q_1 > 0, q_2 > 0, q_3 > 0, 0.5 < v < 2/3, \) then the equilibrium point \(E^* \) is asymptotically stable.

(iii) If \(E_2(\Pi_2) < 0, q_1 = 0, k_2 > 0, q_1 q_2 = q_3, v \in (0.5, 1) \) then the equilibrium point \(E^* \) is asymptotically stable.

(iv) If \(E_2(\Pi_2) < 0, q_1 < 0, q_2 < 0, v > 2/3, \) then the equilibrium point \(E^* \) is unstable.

Next, we study the numerical results of system (4).

3.2. Numerical simulations

Taking the parameter values as shown in Table 1 and consider the following discretized fractional order:

\[x_{n+1} = x_n + \frac{m^\nu}{\Gamma(v + 1)} \left[-(0.03082 + y)x \right. \]

\[+ 0.03082 \times 92], \quad x(0) = 287, \]

\[y_{n+1} = y_n + \frac{m^\nu}{\Gamma(v + 1)} \left[-0.02093y + 1.062 \right. \]

\[\times 10^{-5}(z - 7.3)], \quad y(0) = 0, \]

\[z_{n+1} = z_n + \frac{m^\nu}{\Gamma(v + 1)} \left[0.3[x - 94]^+ t \right. \]

\[- 0.3349 \times 10^{-2}(z - 7.3)], \quad z(0) = 403.4, \]

with

\[[x - 94]^+ = \begin{cases} x - 94 & \text{if } x > 94, \\ 0 & \text{if } x \leq 94. \end{cases} \]

By calculation, the corresponding eigenvalue is \(D = -5.8328e-05 \). Then, system (4) has a free equilibrium point \(E^* = (287, 0, 403.4). \) By (6) and Proposition 3.1, the solution of (4) converges to \(E^* \) (see Figures 4–7). Consequently, the insulin and the activity of insulin excitable tissue glucose uptake are increased and the glucose decreased. For these parameter the corresponding eigenvalues are \(D = -5.8328e-05. \) Furthermore, glucose, insulin excitable tissue glucose uptake, and insulin concentration versus time for different cases of \(v. \) Then, (6) and Proposition 3.1 are satisfied and then \(E^* \) is asymptotically stable. Behaviour of \(x(t), y(t), \) and \(z(t), \) for different values of \(v, \) showing glucose, activity of insulin excitable tissue glucose uptake and insulin dynamics are shown in Figures 4–6. Also, the behaviour of Glucose, Insulin excitable tissue glucose uptake and Insulin concentration versus time for different cases \(v = 1, v = 0.95 \) and \(v = 0.90 \) are shown in Figures 7–9.

Now, we list some numerical results for the discretized fractional order (7) of IVGTT glucose-insulin interaction.
Figure 4. Behaviour of $x(t)$ for different values of ν, showing Glucose dynamics.

Figure 5. Behaviour of $y(t)$ for different values of ν, showing activity of insulin excitable tissue glucose uptake dynamics.

Figure 6. Behaviour of $z(t)$ for different values of ν, showing Insulin dynamics.

Figure 7. Glucose, Insulin excitable tissue glucose uptake and Insulin concentration versus time for different cases of $\nu = 0.9$.

Figure 8. Glucose, Insulin excitable tissue glucose uptake and Insulin concentration versus time for different cases of $\nu = 1$.

Figure 9. Glucose, Insulin excitable tissue glucose uptake and Insulin concentration versus time for different cases of $\nu = 0.95$.

Case 1. $\nu = 1$

$$(x(t), y(t), z(t)) = ((286.946, 0.0000378592, 403.388), (286.892, 0.0000757102, 403.914), (286.837, 0.000113604, 404.978), (286.783, 0.000151593, 406.578), (286.729, 0.000189727, 408.716), (286.674, 0.000228059, 411.391), (286.62, 0.000266639, 414.601), (286.565, 0.000305519, 418.348), (286.51, 0.000344749, 422.631), (286.455, 0.000384382, 427.449), (286.4, 0.000424467, 432.802), (286.29, 0.000506203, 445.112), (286.235, 0.000547952, 452.068), (286.18, 0.000590359, 459.558), (286.124, 0.000633475, 467.582), (286.069, 0.000677349, 476.138), (286.013, 0.000722033, 485.208), (285.958, 0.000767578, 494.85), (285.902, 0.000814033, 505.004), (285.846, 0.00086145, 515.691), (285.79, 0.00090988, 526.908), (285.734, 0.000959373, 538.657), (285.678, 0.00100998, 550.937)),$$
Case 2. $v = 0.95$

$\mathbf{x}(t), y(t), z(t)$

$$= \{(286.91, 0.000063049, 403.38), (286.82, 0.000126075, 404.256), (286.729, 0.000189221, 406.026), (286.638, 0.000252628, 408.691), (286.547, 0.00031644, 412.248), (286.456, 0.000380799, 416.698), (286.365, 0.000445845, 422.039), (286.273, 0.000511721, 428.27), (286.181, 0.000578568, 435.391), (286.089, 0.000645628, 443.4), (286.996, 0.000715741, 452.298), (286.904, 0.000786349, 462.082), (286.811, 0.000858491, 472.752), (286.718, 0.00093231, 484.307), (286.624, 0.00100794, 496.746), (286.53, 0.00108554, 510.606), (286.436, 0.00116522, 524.273), (286.342, 0.00124715, 539.359), (286.247, 0.00133145, 555.326), (286.152, 0.00141826, 572.172), (286.057, 0.00150773, 589.897), (286.961, 0.00159999, 608.499), (286.865, 0.00169518, 627.979), (286.769, 0.00179342, 648.334), (286.672, 0.00189492, 669.564), (286.57, 0.00199974, 691.667), (286.478, 0.00210805, 714.644), (286.38, 0.00225999, 744.833), (286.286, 0.00235887, 783.687), (286.181, 0.00266068, 861.34), (286.229, 0.00256551, 886.669), (286.152, 0.00267344, 912.671), (286.074, 0.00278456, 939.347), (286.996, 0.00289894, 966.696), (286.918, 0.00301667, 997.171), (286.839, 0.00313783, 1023.41), (286.76, 0.0032625, 1052.77), (286.68, 0.00339077, 1082.81), (286.601, 0.00352271, 1113.51), (286.52, 0.00365841, 1144.89), (286.359, 0.00394142, 1209.64), (286.277, 0.00408888, 1243.01), (286.195, 0.00424043, 1277.06))\}$$
0.00221998, 738.493), (284.282, 0.00233567, 763.212), (284.183, 0.00245526, 788.802),
(284.084, 0.00257888, 815.261), (283.984,
0.00270668, 842.587), (283.884, 0.00283879,
870.781), (283.783, 0.00297534, 899.84), (283.682,
0.00311648, 929.765), (283.58, 0.00326233,
960.553), (283.478, 0.00341304, 992.204),
(283.375, 0.00356874, 1024.72), (283.271,
0.00372957, 1058.09), (283.167, 0.00389566,
1092.32), (283.062, 0.00406715, 1127.42),
(282.957, 0.00424417, 1163.36), (282.85,
0.00442685, 1200.17), (282.743, 0.00461534,
1237.83), (282.636, 0.00480976, 1276.34),
(282.527, 0.00501025, 1315.71), (282.418,
0.00521694, 1355.93), (282.197, 0.00564947,
1438.92), (282.085, 0.00587558, 1481.68),
(281.973, 0.00610842, 1525.3)

4. Comparison results

In this section, Adams-Bashforth-Moulton method was employed as a reasonable basis for studying the solution of a fractional-order model of glucose-insulin system (2). We have tuned for the order of fractional derivative which ensures better fit. We compared the fractional-order model to the experimental data obtained based upon the experimental data used in [11], given in Table 2, during primary glucose-insulin interaction. Furthermore, based upon this experimental data, we demonstrate that, fractional order Bergman’s minimal model is better representative of the system of glucose and insulin in blood as compared to its integer order version. As in Figure 1, the numerical results of the fractional-order model are closer to the real measured data of the patients more than the results of the integer-order. For \(\nu = 0.95 \), this fractional order model gives better fit on the experimental data. It is worthy to note that the provision of changing fractions in different ways as well as changing parameters is still there, and by availing this provision, it is possible to get a very close fit. In comparison with its integer order version, the proposed model is superior. The reason is that the increase in the glucose level is less that of the integer order version. The Plasma insulin concentration in (mU/L) is illustrated in Figure 2. As shown in this figure, the proposed model outperforms the integer order version. The initial increase of Plasma insulin concentration for the proposed model is much less than that its integer order version. Simulation results verify the satisfactory performance of the proposed model in comparison with

Variable	Integer order model	Fractional order model \(\nu = 0.95 \)
Average value		
Glucose concentration	8.9	6.3
Insulin concentration	5.86	3.1
rms Value	12.3	8.4
Insulin concentration	7.45	4.95

5. Conclusions

The Caputo fractional-order glucose-insulin model (2) and its discretization system (4) are investigated. We showed that the fractional system (2) possesses existence, uniqueness, non-negative, boundedness solution. We also deduced a detailed analysis on the stability of the model (2) and its discretization system (4). Comparisons between the results of the Caputo fractional-order (2), the model of integer one and the measured real data obtained from patients are presented. These comparisons is concluded that the presented fractional order model is better representative of the system than its integer order one. Numerical solutions of the model (2) are obtained by using the method of Adams-Bashforth-Moulton type to handle the fractional derivatives. We also obtained the solution of the discretization
model (4) and a numerical solution of the system which shows that effect of time on the concentrations \(x(t), y(t)\) and \(z(t)\).

Acknowledgment

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group no. RG-1441-439.

Availability of data and materials

The experimental data in this work taken from the reference [11].

Authors’ contributions

All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group no. RG-1441-439.

ORCID

Mansoor H. Alshehri http://orcid.org/0000-0002-7673-3783
Faisal Z. Duraihem http://orcid.org/0000-0003-1637-7366
Sayed Saber http://orcid.org/0000-0002-5790-3222

References

[1] Bolie VW. Coefficients of normal blood glucose regulation. J Appl Physiol. 1961;16:783–788.
[2] Gatewood LC, Ackerman E, Rosevear JW, et al. Tests of a mathematical model of the blood-glucose regulatory system. Comput Biomed Res. 1968;2:1–14.
[3] Refaie MR, Sayed-Ahmed NA, Bakr AM, et al. Aging is an inevitable risk factor for insulin resistance. J Taibah Univ Sci. 2006;1(1):30–41.
[4] Adefegha SA, Oboh G. Antioxidant and inhibitory properties of Clerodendrum volubile leaf extracts on key enzymes relevant to non-insulin dependent diabetes mellitus and hypertension. J Taibah Univ Sci. 2016;1(1):521–533.
[5] Bergman RN, Ider YZ, Bowden CR, et al. Quantitative estimation of insulin sensitivity. Am J Physiol. 1979;236:E667–E677.
[6] De Gaetano A, Arino O. Mathematical modelling of the intravenous glucose tolerance test. J Math Biol. 2000;40:136–168.
[7] Derouich M, Boutayeb A. The effect of physical exercise on the dynamics of glucose and insulin. J Biomech. 2002;35:911–917.
[8] Y Kuang JLI, Li B. Analysis of IVGTT glucose-insulin interaction models with time delay. Discrete Contin Dyn Syst Ser B. 2001;1:103–124.
[9] Caumo A, Cobelli C, Omenetto M. Over estimation of minimal model glucose effectiveness in presence of insulin response is due to under modeling. Am J Physiol. 1999;278:481–488.
[10] Toffolo G, Bergman RN, Finegood DT, et al. Quantitative estimation of beta cell sensitivity to glucose in the intact organism. Diabetes. 1980;29:979–990.
[11] Pacini G, Bergman RN. MINMOD: a computer program to calculate insulin sensitivity and pancreatic responsivity from the frequently sampled intravenous tolerance test. Comput Methods Programs Biomed. 1986;23:113–122.
[12] Podlubny I. Fractional differential equations. New York (NY): Academic Press; 1999.
[13] Caputo M. Linear models of dissipation whose Q is almost frequency independent II. Geophys J R Astron Soc. 1967;13:529–539.
[14] Atangana A, Albaraoeye E. Solving a system of fractional partial differential equations arising in the model of HIV infection of CD4+ cells and attractor one-dimensional Keller-Segel equations. Adv Differ Equ. 2013;2013: Article ID: 94.
[15] Chaurasia VBL, Dubey RS, Belgacem FBM. Fractional radial diffusion equation analytical solution via Hankel and Sumudu transforms. Math Eng Sci Aerosp. 2012;3:1–10.
[16] Dubey RS, Goswami P, Belgacem FBM. Generalized time-fractional telegraph equation analytical solution by Sumudu and Fourier transforms. J Fract Calc Appl. 2014;5:52–58.
[17] Dokuyucu MA, Celik E, Bulut H, et al. Cancer treatment model with the Caputo-Fabrizio fractional derivative. Eur Phys J Plus. 2018;133(3):1–6.
[18] Dokuyucu MA, Dutta H. A fractional order model for Ebola virus with the new Caputo fractional derivative without singular kernel. Chaos Solitons Fract. 2020;134(1):109717.
[19] El-Sayed AMA, El-Mesiry A, El-Saka H. On the fractional-order logistic equation. Appl Math Lett. 2007;20:817–823.
[20] Agarwal RP, El-Sayed AMA, Salman SM. Fractional-order Chua’s system: discretization, bifurcation and chaos. Adv Differ Equ. 2013;2013: Article ID: 320. Available from: https://doi.org/10.1186/1687-1847-2013-320.
[21] Li H, Zhang L, Hu C, et al. Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge. J Appl Math Comput. 2016;54:435–449.
[22] Choi SK, Kang B, Koo N. Stability for Caputo fractional differential systems. Abstr Appl Anal. 2014;2014: Article ID: 631419.
[23] Boukhouima A, Hattaf K, Yousfi N. Dynamics of a fractional order HIV infection model with specific functional response and cure rate. Int J Differ Equ. 2017;2017: Article ID: 631419.
[24] Ullah R, Ellahi R, Sait SM, et al. On the fractional-order model of HIV-1 infection of CD4+ T-cells under the influence of antiviral drug treatment. J Taibah Univ Sci. 2020;14(1):50–59. Available from: https://doi.org/10.1080/16583655.2019.1700676.
[25] Fang Y, Wang X. Asymptotical stability analysis of conformable fractional systems. J Taibah Univ Sci. 2020;14(1):44–49. Available from: https://doi.org/10.1080/16583655.2019.1701390.
[26] Ullah MZ, Alzahrani AK, Baleanu D. An efficient numerical technique for a new fractional tuberculosis model
with nonsingular derivative operator. J Taibah Univ Sci. 2019;13(1):1147–1157. Available from: https://doi.org/10.1080/16583655.2019.1688543.

[27] Al-Sadi W, Zhenyou H, Alkhazzan A. Existence and stability of a positive solution for nonlinear hybrid fractional differential equations with singularity. J Taibah Univ Sci. 2019;13(1):951–960. Available from: https://doi.org/10.1080/16583655.2019.1663783.

[28] Ghomanjani F. A new approach for solving fractional differential-algebraic equations. J Taibah Univ Sci. 2017;11:1158–1164. Available from: http://dx.doi.org/10.1016/j.jtusci.2017.03.006.

[29] Moghaddam P, Mostaghim ZS. A numerical method based on finite difference for solving fractional delay differential equations. J Taibah Univ Sci. 2013;7:120–127. Available from: http://dx.doi.org/10.1016/j.jtusci.2013.07.002.

[30] Ahmeda E, Elgazzar AS. On fractional order differential equations model for nonlocal epidemics. Physica A. 2007;379:607–614.

[31] Chen Y, Petras I, Xue D. Fractional order control-a tutorial. In: 2009 American Control Conference. IEEE; 2009. 1397–1411.

[32] Rocco A, West BJ. Fractional calculus and the evolution of fractal phenomena. Physica A. 1999;265:535–546.

[33] Alkahtani BS, Algahtani OJ, Dubey RS, et al. The solution of modified fractional bergman’s minimal blood glucose-insulin model. Entropy. 2017;19(5):114. DOI:10.3390/e19050114

[34] Khan MW, Abid M, Khan AQ. Fractional order Bergman’s minimal model-a better representation of blood glucose-insulin system. In: International Conference on Applied and Engineering Mathematics (ICAEM); 2019.

[35] Khan MW, Abid M, Khan AQ, et al. Controller design for a fractional-order nonlinear glucose-insulin system using feedback linearization. Trans Inst Measur Control. 2020;42(13). DOI:10.1177/0142331220911584

[36] Khan MW, Abid M, Khan AQ, et al. Sliding mode control for a fractional-order non-linear glucose-insulin system. IET Syst Biol. 2020;14(5):223–229.

[37] Grunwald AK. “Uber” begrente “Derivationen und deren Anwendung”. Z Math Und Phys. 1867;12:441–480.

[38] Letnikov AV. Theory of differentiation with an arbitrary indicator. Mat Sb. 1868;3:1–68.

[39] Odibat ZM, Shawagfeh NT. Generalized Taylor’s formula. Appl Math Comput. 2007;186(1):286–293.

[40] Diethelm K, Freed AD. The FracPECE subroutine for the numerical solution of differential equations of fractional order. Forschung und wissenschaftliches Rechnen. Vol. 1999. p. 57–71.

[41] Edelstein-Keshet L. Mathematical models in biology. Boston: McGraw-Hill; 1988.