Electromagnetic couplings of pentaquarks

E. Ortiz-Pacheco and R. Bijker
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, 04510 Ciudad de México, México
E-mail: bijker@nucleares.unam.mx

Abstract. In this contribution, we discuss the electromagnetic couplings of pentaquark states with hidden charm. This work is motivated by recent experiments at CERN by the LHCb Collaboration and current experiments at JLab to confirm the existence of hidden-charm pentaquarks in photoproduction experiments.

1. Introduction
The observation of hidden-charm pentaquark states by the LHCb Collaboration [1]-[5] has created an avalanche of theoretical studies on the nature of these states and on different plausible interpretations of the observed signals, e.g. kinematical effects [6, 7, 8], molecular states [9]-[15] and compact pentaquarks [16]-[23], meson-baryon states coupled to a five-quark compact core [24] and a baryo-quarkonium states [25]. The existence of narrow N^* and Λ^* resonances with hidden charm was predicted [26, 27] in a coupled-channel unitary approach five years before the LHCb data were published, as well as in Refs. [28]. More information on the experimental and theoretical aspects of pentaquark states, as well as a more complete list of references, can be found in the reviews [29]-[34].

In the present contribution we discuss the electromagnetic couplings of $uudc\bar{c}$ hidden-charm pentaquark states which are relevant for photoproduction experiments at JLab [35]-[40].

2. Pentaquark states
Pentaquark states depend both on the orbital degrees of freedom and the internal degrees of freedom of color, spin and flavor

$$\psi = \psi^0 \psi^C \phi^S \chi^A.$$ \hspace{1cm} (1)

The construction of the classification scheme of $uudc\bar{c}$ pentaquark states was carried out explicitly in Ref. [23, 41] using the following two conditions: (i) the pentaquark wave function should be a color singlet and (ii) the wave function of the four-quark subsystem should be antisymmetric. The permutation symmetry of four-quark states is characterized by the S_4 Young tableaux [4], [31], [22], [211] and [1111] or, equivalently, by the irreducible representations of the tetrahedral group T_d (which is isomorphic to S_4) as A_1, F_2, E, F_1 and A_2, respectively.

The first condition that the pentaquark wave function has to be a color-singlet, implies that the color wave function of the four-quark configuration has to be a $[211]$ triplet with F_1 symmetry under T_d. As a consequence, the second condition that the total q^4 wave function...
has to be antisymmetric (A_2), means that the orbital-spin-flavor part is a [31] triplet with F_2 symmetry
\[
\psi = \left[\psi_{F_1} \times \psi_{osf}^{Eff} \right]_{A_2}, \tag{2}
\]
where the subindices refer to the symmetry properties of the four-quark subsystem under permutation. Moreover, in this contribution we limit ourselves to ground-state pentaquark states, i.e. without orbital excitations, which are symmetric (A_1). Therefore, the spin-flavor part is a [31] state with F_2 symmetry
\[
\psi = \psi_{A_1} \left[\psi_{F_1} \times \psi_{osf}^{Eff} \right]_{A_2}. \tag{3}
\]

In Ref. [23] it was shown that there are in total seven $uudc\bar{c}$ ground-state pentaquark configurations with angular momentum and parity $J^P = 3/2^-$ (which is quoted in the literature as the most likely value of the angular momentum and parity of the P_c pentaquark [1]), three of which belong to a flavor decuplet and the remaining four to a flavor octet (see Fig. 1 and first column of Table 1).

3. Electromagnetic couplings
For experiments that aim to study pentaquarks through near threshold J/ψ photoproduction at JLab, the size of the electromagnetic couplings of the pentaquarks is important. Here we discuss the electromagnetic couplings for the ground state pentaquarks with spin and parity $J^P = 3/2^-$. Electromagnetic couplings are described by
\[
\mathcal{H}_{em} = e \int d^3 x \, \bar{q} \gamma^\mu q \, A_\mu(x), \tag{4}
\]
where J^μ is the electromagnetic current summed over all quark flavors
\[
J^\mu(x) = \sum_q e_q \, \bar{q}(x) \gamma^\mu q(x). \tag{5}
\]

The electromagnetic coupling of Eq. (4) describes both the emission (and absorption) of the photon off a quark, as is used in studies of photocouplings of baryons [42], and the annihilation process of a quark-antiquark pair [43]. For the process of interest, $P_c \rightarrow N + \gamma$, the relevant term is the annihilation of a pair of $c\bar{c}$ quarks, Fig. 2. In the present calculation we use the nonrelativistic form of the interaction. The radiative decay widths can be calculated as [44]
\[
\Gamma(P_c \rightarrow N + \gamma) = \frac{\rho}{(2\pi)^2} \frac{2}{2J + 1} \sum_{\nu > 0} |A_{\nu}(k)|^2, \tag{6}
\]
Figure 2. Electromagnetic decay of pentaquark P_c into a baryon B and a photon, $P_c \rightarrow B + \gamma$.

where ρ is the phase space factor, and A_ν denotes the helicity amplitude

$$A_\nu(k) = \langle N, 1/2^+, \nu - 1; \gamma | H_{\text{em}}^\nu | P_c, 3/2^-, \nu \rangle = \sqrt{\frac{4\pi\alpha}{k_0}} \beta_\nu F(k).$$ (7)

Here α is the fine-structure constant, k_0 and $k = |\vec{k}|$ represent the energy and the momentum of the photon. The coefficient β_ν is the contribution from the color-spin-flavor part for the annihilation of a $c\bar{c}$ color-singlet pair with spin $S = S_z = 1$. It is straightforward to show that for the cases considered, i.e. ground-state pentaquarks with $J^P = 3/2^-$, the helicity amplitudes are related by

$$\beta_{1/2} = \beta_{3/2} / \sqrt{3}.$$ (8)

Finally, $F(k)$ is a form factor denoting the contribution from the orbital part of the pentaquark wave function. Its specific form depends on the type of quark model used: harmonic oscillator, hypercentral, or other. Here we concentrate on the color-spin-flavor part which is common to all quark models. In Table 1 we show the results for the contribution from the color-spin-flavor part to the helicity amplitudes for different configurations of $uudc\bar{c}$ pentaquarks.

State	Name	$\beta_{1/2}$	$\beta_{3/2}$
$[\phi_{A1} \times \chi_{F2}]_{F2}$	$P_c \Delta$	0	0
$[\phi_{F2} \times \chi_{A1}]_{F2}$	$P_c \Delta$	0	0
$[\phi_{F2} \times \chi_{F2}]_{F2}$	$P_c \Delta$	0	0
$[\phi_{F2} \times \chi_{A1}]_{F2}$	P_c^N	$\frac{1}{6\sqrt{2}} e_c$	$\frac{1}{2\sqrt{6}} e_c$
$[\phi_{E} \times \chi_{F2}]_{F2}$	P_c^N	$-\frac{1}{3} e_c$	$-\frac{1}{2\sqrt{3}} e_c$
$[\phi_{F1} \times \chi_{F2}]_{F2}$	P_c^N	$-\frac{1}{2\sqrt{6}} e_c$	$-\frac{1}{2\sqrt{2}} e_c$

Table 1. Contribution from the color-spin-flavor part to the helicity amplitudes for the electromagnetic decays of $uudc\bar{c}$ decuplet (top) and octet (bottom) pentaquark states into $N+\gamma$. Here e_c is the electric charge of the charm quark $e_c = 2/3$.

The couplings to the octet configuration with ϕ_{A_1} and the three decuplet configurations vanish because of symmetry reasons. The strongest coupling is to the octet pentaquark configuration with ϕ_{F_1}, followed by ϕ_E and ϕ_{F_2}.

4. Summary and conclusions

In conclusion, in this contribution we discussed the electromagnetic couplings of ground-state $uudc\bar{c}$ pentaquark states with angular momentum and parity $J^P = 3/2^-$. At present we did not include orbital excitations. Of the seven possible configurations only three octet configurations have a nonvanishing photocoupling. Since the photon momentum is large, we expect that these couplings are strongly suppressed by the form factor, $F(k)$, which represents the contribution from the orbital part of the pentaquark wave function.

If the signal observed by the LHCb Collaboration indeed corresponds to hidden-charm pentaquarks, there should be an entire multiplet of pentaquark states, for example a pentaquark octet consisting of P_c^N, P_c^Σ, P_c^Λ and P_c^Ξ states.

Acknowledgments

This work was supported in part by grant IN109017 from DGAPA-UNAM, Mexico and grants 251817 and 340629 from CONACyT, Mexico.

References

[1] Aaij R et al. (LHCb Collaboration) 2015 Phys. Rev. Lett. 115 072001
[2] Aaij R et al. (LHCb Collaboration) 2016 Phys. Rev. Lett. 117 082002
[3] Aaij R et al. (LHCb Collaboration) 2016 Phys. Rev. Lett. 117 082003
[4] Aaij R et al. (LHCb Collaboration) 2017 Phys. Rev. Lett. 118 022003
[5] Aaij R et al. (LHCb Collaboration) 2019 Phys. Rev. Lett. in press [arXiv:1904.03947]
[6] Guo F K, Meissner U G, Wang W and Yang Z 2015 Phys. Rev. D 92 071502
[7] Liu X H, Wang Q and Zhao Q 2016 Phys. Lett. B 757 231
[8] Mikhasenko M 2015 arXiv:1507.06552
[9] Karliner M and Rosner J L 2015 Phys. Rev. Lett. 115 122001
[10] Chen R, Liu X, Li X Q and Zhu S L 2015 Phys. Rev. Lett. 115 132002
[11] Chen H X, Chen W, Liu X, Steele T G and Zhu S L 2015 Phys. Rev. Lett. 115 172001
[12] Roca L, Nieves J and Oset E 2015 Phys. Rev. D 92 094003
[13] He J 2016 Phys. Lett. B 753 547
[14] Eides M I, Petrov V Yu, Polyakov M V 2016 Phys. Rev. D 93 054039
[15] Yamaguchi Y and Santopinto E 2017 Phys. Rev. D 96 014018
[16] Maiani L, Polosa A D and Riquer V 2015 Phys. Lett. B 749 289
[17] Lebed R F 2015 Phys. Lett. B 749 454
[18] Wang G J, Chen R, Ma L, Liu X and Zhu S L 2016 Phys. Rev. D 94 094018
[19] Yang G, Ping J and Wang F 2017 Phys. Rev. D 95 014010
[20] Deng C, Ping J, Huang H and Wang F 2017 Phys. Rev. D 95 014031
[21] Takeuchi S and Takizawa M 2017 Phys. Lett. B 764 254
[22] Santopinto E and Giachino A 2017 Phys. Rev. D 96 014014
[23] Ortiz-Pacheco E, Bijker R and Fernández-Ramírez C 2019 J. Phys. G: Nucl. Part. Phys. 46 065104 [arXiv:1808.10512]
[24] Yamaguchi Y, Giachino A, Hosaka A, Santopinto E, Takeuchi S and Takizawa M 2017 Phys. Rev. D 96 114031
[25] Ferretti J, Santopinto E, Naeem Anwar M and Bedolla M A 2019 Phys. Lett. B 789 562
[26] Wu J J, Molina R, Oset E and Zou B S 2010 Phys. Rev. Lett. 105 232001
[27] Wu J J, Molina R, Oset E and Zou B S 2011 Phys. Rev. C 84 015202
[28] Yang Z C, Sun Z F, He J, Liu X and Zhu S L 2012 Chin. Phys. C 36 6
[29] Chen H X, Chen W, Liu X and Zhu S L 2016 Phys. Rep. 639 1
[30] Esposito A, Pilloni A and Polosa A 2016 Phys. Rep. 668 1
[31] Ali A, Lange J S and Stone S 2018 Prog. Part. Nucl. Phys. 97 123
[32] Olsen S L, Skwarnicki T and Zieminska D 2018 Rev. Mod. Phys. 90 015003
[33] Karliner M, Rosner J L and Skwarnicki T 2018 Ann. Rev. Nucl. Part. Sci. 68 17
[34] Guo F-K, Hanhart C, Meiner U-G, Wang Q, Zhao Q and Zou B-S 2018 Rev. Mod. Phys. 90 015004
[35] Kubarovsky V and Voloshin M B 2015 Phys. Rev. D 92 031502(R)
[36] Wang Q, Liu X H and Zhao Q 2015 Phys. Rev. D 92 034022
[37] Karliner M and Rosner J L 2016 Phys. Lett. B 752 329
[38] Hiller Blin A N, Fernández-Ramírez C, Jackura A, Mathieu V, Mokeev V I, Pilloni A and Szczepaniak A P 2016 Phys. Rev. D 94 034002
[39] Fernández-Ramírez C, Hiller Blin A N and Pilloni A 2017 arXiv:1703.06928
[40] Meziani Z E et al. 2016 arXiv:1609.00676
[41] Bijker R 2017 J Phys Conf Ser 876 012004
[42] Copley L A, Karl G and Obryk E 1969 Nucl Phys B 13 303
[43] Le Yaouanc A, Oliver L, Pene O and Raynal J 1988 Hadron Transitions in the Quark Model Gordon and Breach
[44] Bijker R, Iachello F and Leviatan A 2000 Ann. Phys. (N.Y.) 284 89 (2000)