Nanotechnology in Drug Delivery
Biotechnology: Pharmaceutical Aspects

Volume I: *Pharmaceutical Profiling in Drug Discovery for Lead Selection*
R.T. Borchardt, E.H. Kerns, C.A. Lipinski, D.R. Thakker, B. Wang

Volume II: *Lypophilization of Biopharmaceuticals*
H.R. Constantino, M.J. Pikal

Volume III: *Methods for Structural Analysis of Protein Pharmaceuticals*
W. Jiskoot, D.J.A. Crommelin

Volume IV: *Optimizing the “Drug-Like” Properties of Leads in Drug Discovery*
R.T. Borchardt, E.H. Kerns, M.J. Hageman, D.R. Thakker, J.L. Stevens

Volume V: *Prodrugs: Challenges and Rewards, Parts 1 and 2*
V.J. Stella, R.T. Borchardt, M.J. Hageman, R. Oliyai, H. Maag, J.W. Tilley

Volume VI: *Solvent Systems and Their Selection in Pharmaceutics and Biopharmaceutics*
P. Augustijns, M.E. Brewster

Volume VII: *Drug Absorption Studies: In Situ, In Vitro and In Silico Models*
C. Ehrhardt, K.J. Kim

Volume VIII: *Immunogenicity of Biopharmaceuticals*
M. van de Weert, E.H. Møller

Volume IX: *Advances in Bioactivation Research*
A. Elfarra

Volume X: *Nanotechnology in Drug Delivery*
M.M. de Villiers, P. Aramwit, G.S. Kwon
Nanotechnology in Drug Delivery

Melgardt M. de Villiers
University of Wisconsin,
Madison, WI, USA

Pornanong Aramwit
Chulalongkorn University, Bangkok, Thailand

Glen S. Kwon
University of Wisconsin,
Madison, WI, USA

Springer
Editors
Melgardt M. de Villiers
University of Wisconsin
Madison, WI, USA
mmdevilliers@pharmacy.wisc.edu

Pornanong Aramwit
Chulalongkorn University
Bangkok, Thailand

Glen S. Kwon
University of Wisconsin
Madison, WI, USA
gskwon@pharmacy.wisc.edu

ISBN: 978-0-387-77667-5 e-ISBN: 978-0-387-77668-2
DOI: 10.1007/978-0-387-77667-5

Library of Congress Control Number: 2008935894

© 2009 American Association of Pharmaceutical Scientists
All rights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews
or scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known
or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.
While the advice and information in this book are believed to be true and accurate at the date
of going to press, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

springer.com
Nanotechnology, a multidisciplinary scientific undertaking, involves creation and utilization of materials, devices, or systems on the nanometer scale and is currently undergoing explosive development on many fronts. It is expected to spark innovation and play a critical role in various biomedical applications, especially in drug delivery, as is shown by the wealth of information presented in this book particular, advances in nanotechnology that enable drugs to preserve their efficacy while being delivered to precise therapeutic targets are creating a host of opportunities for drug developers. In addition, by combining nanotechnology-based target-specific drug therapy with methods for early diagnosis of pathologies, we are getting closer to creating the ultimate functional drug carrier.

This book is primarily designed to be a reference textbook on the application of nanotechnology in the development of drug delivery systems and to highlight some of the most exciting developments in this field. For this purpose, the reader is introduced to various aspects of the fundamentals of nanotechnology-based drug delivery systems and the application of these systems for the delivery of small molecules, proteins, peptides, oligonucleotides, and genes. How these systems overcome challenges offered by biological barriers to drug absorption and drug targeting is also highlighted. To best do this the text is divided into the following sections: Fundamentals of Nanotechnology in Drug Delivery; Biopharmaceutical, Physiological and Clinical Considerations for Nanotechnology in Drug Delivery; Nanotechnology for the Delivery of Small Molecules, Peptides, Proteins, and Nucleic Acids; and A Look to the Future of Nanotechnology in Drug Delivery.

The reason for putting the book together this way can be found in the purpose of any drug delivery system, which is to enhance or facilitate the action of any active moiety by using sound scientific and therapeutic principles. Most current methods of drug delivery are direct descendents of ancient practices that have changed little over the last few centuries. However, advances in the fields of drug discovery, biotechnology, and molecular biology have resulted in the discovery of large numbers of novel molecules with the potential to revolutionize the treatment of disease if severe delivery and targeting obstacles can be overcome. This means that using these new armaments in the war against disease must stimulate the development of new strategies for drug and vaccine administration. One such development is the explosion in nanotechnology research geared toward improving drug delivery and targeting.
As shown in this text, a variety of nanostructures are being investigated as functional drug carriers for treating a wide range of therapies, most notably cardiovascular defects, autoimmune diseases, and cancer. While the concept of nanoparticles in drug delivery is not new, the number of research programs and active drug development projects in this field has escalated as funding for nanotechnology has increased. The result is the emergence of a host of novel nanotechnologies tailored to meet the physicochemical and therapeutic requirements of drug developers. With all this potential for advanced drug delivery and targeted therapy, with reduced side effects, nanotechnology-based drug delivery systems hold the promise of significantly improving quality of life through “nanomedicine”.

We hope that this book will help to bring these technologies and the underlying fundamental science together in one text for the reader. One or more distinguished authors from each relevant field wrote each chapter, and ample use of figures and tables has been included to help demonstrate the most important aspects.

The successful completion of this text was made possible by the assistance of a large number of people to whom we are very grateful. We extend special thanks to the individual chapter contributors. We also want to thank the publisher and in particular Melanie Wilichinsky for her support.

Melgardt M. de Villiers
Pornanong Aramwit
Glen S. Kwon
Part I Fundamentals of Nanotechnology in Drug Delivery

1. Physicochemical Principles of Nanosized Drug Delivery Systems .. 3
 Daniel P. Otto and Melgardt M. de Villiers

2. Block Copolymer Synthesis for Nanoscale Drug and Gene Delivery ... 35
 Motoi Oishi and Yukio Nagasaki

3. Supercritical Fluid Technology for Nanotechnology in Drug Delivery .. 69
 Mohammed J. Meziani, Pankaj Pathak, and Ya-Ping Sun

4. Nanotubes, Nanorods, Nanofibers, and Fullerenes for Nanoscale Drug Delivery 105
 Jessica B. Melanko, Megan E. Pearce, and Aliasger K. Salem

5. Drug Loading into and In Vitro Release from Nanosized Drug Delivery Systems 129
 Anja Judefeind and Melgardt M. de Villiers

6. Nanotechnology-Based Biosensors in Drug Delivery 163
 Guigen Zhang

Part II Biopharmaceutical, Physiological, and Clinical Considerations for Nanotechnology in Drug Delivery

7. Nanomaterials and Biocompatibility: BioMEMS and Dendrimers .. 193
 Sean T. Zuckerman and Weiyuan John Kao

8. Nanomaterials and Biocompatibility: Carbon Nanotubes and Fullerenes .. 229
 Sean T. Zuckerman and Weiyuan John Kao

9. Factors Controlling Pharmacokinetics of Intravenously Injected Nanoparticulate Systems 267
 S. Moein Moghimi and Islam Hamad

10. Controlled Release and Nanotechnology 283
 Tania Betancourt, Amber Doiron, Kimberly A. Homan, and Lisa Brannon-Peppas
11. Nanotechnology for Intracellular Delivery and Targeting 313
 Vladimir P. Torchilin

Part III Nanotechnology for the Delivery of Small Molecules,
 Proteins and Nucleic Acids

12. Nano-sized Advanced Delivery Systems as Parenteral
 Formulation Strategies for Hydrophobic Anti-cancer Drugs . . 349
 Patrick Lim Soo, Michael Dunne, Jubo Liu, and Christine Allen

13. Engineering of Amphiphilic Block Copolymers for Drug
 and Gene Delivery ... 385
 Xiao-Bing Xiong, Hasan Uludağ, and Afsaneh Lavasanifar

14. PAMAM Dendrimers as Nanoscale Oral Drug Delivery Systems 421
 Kelly M. Kitchens and Hamidreza Ghandehari

15. Nanoemulsions for Intravenous Drug Delivery 461
 Jonathan P. Fast and Sandro Mecozzi

16. Nanotechnology for Cancer Chemotherapy 491
 Alisar S. Zahr and Michael V. Pishko

17. Nanotechnology for Cancer Vaccine Delivery 519
 Samar Hamdy, Aws Alshamsan, and John Samuel

18. Stimuli-Sensitive Nanotechnology for Drug Delivery 545
 Andre G. Skirtach and Oliver Kreft

Part IV A Look to the Future of Nanotechnology in Drug Delivery

19. Nanotechnology in Drug Delivery: Past, Present,
 and Future ... 581
 Sungwon Kim, II Keun Kwon, Ick Chan Kwon, and Kinam Park

20. Nanotechnology in Drug Development and Life Cycle
 Management .. 597
 Shingai Majuru and Moses O. Oyewumi

21. Nanopharmaceuticals: Challenges and Regulatory
 Perspective .. 621
 Rakhi B. Shah and Mansoor A. Khan

Index ... 647
Contributors

Christine Allen
Department of Pharmaceutical Sciences, University of Toronto,
144 College St., Toronto, Ontario, Canada, M5S 3M2,
e-mail: cj.allen@utoronto.ca

Aws Alshamsan
Faculty of Pharmacy and Pharmaceutical Sciences, 3133 Dentistry/Pharmacy Centre, University of Alberta, Edmonton, Alberta, Canada,
T6G 2N8, e-mail: aalshmsan@pharmacy.ualberta.ca

Tania Betancourt
Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA,
e-mail: tania.betancourt@mail.utexas.edu

Lisa Brannon-Peppas
Appian Labs LLC, 11412 Bee Caves Road, Suite 300, Austin
TX 78738, USA, e-mail: lpeppas@etibio.com

Melgardt M. de Villiers
School of Pharmacy, University of Wisconsin-Madison, Madison,
WI 53705, USA,
e-mail: mmdevilliers@pharmacy.wisc.edu

Amber Doiron
Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA,
e-mail: adoiron@mail.utexas.edu

Michael Dunne
Department of Pharmaceutical Sciences, University of Toronto,
144 College St., Toronto, Ontario, Canada, M5S 3M2

Jonathan P. Fast
Department of Chemistry, University of Wisconsin-Madison, Madison,
WI, 53706, USA
Hamidreza Ghandehari
University of Utah, Department of Pharmaceutics and Pharmaceutical Chemistry and Bioengineering, Salt Lake City, Utah, 84108, USA, e-mail: hamid.ghandehari@pharm.utah.edu

Islam Hamad
The Molecular Targeting and Polymer Toxicology Group, School of Pharmacy, University of Brighton, Brighton BN2 4GJ, UK

Samar Hamdy
Faculty of Pharmacy and Pharmaceutical Sciences, 3133 Dentistry/Pharmacy Centre, University of Alberta, Edmonton, Alberta, Canada, T6G 2N8, e-mail: shamdy@pharmacy.ualberta.ca

Kimberly A. Homan
Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX USA, 78712, e-mail: kim@usdsg.com

Anja Judefeind
School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA

Weiyuan John Kao
Department of Biomedical Engineering, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA, e-mail: wjkao@pharmacy.wisc.edu

Mansoor A. Khan
Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993 USA, e-mail: Mansoor.khan@fda.hhs.gov

Sungwon Kim
Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA, e-mail: kim27@purdue.edu

Kelly M. Kitchens
Alba Therapeutics Corporation, Discovery and Preclinical Development, Baltimore, MD, USA, MD 21201

Oliver Kreft
Max-Planck-Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam-Golm, Germany

Ick Chan Kwon
Biomedical Research Center, Korea Institute of Science and Technology, Seoul 136-791, Korea, e-mail: ikwon@kist.re.kr

II Keun Kwon
School of Dentistry, Kyung Hee University, Seoul 130-701, Korea, e-mail: kwoni@khu.ac.kr
Afsaneh Lavasanifar
Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta,
Edmonton, AB, Canada T6G 2NB,
e-mail: alavasanifar@pharmacy.ualberta.ca

Jubo Liu
Department of Pharmaceutical Sciences, University of Toronto,
144 College St., Toronto, Ontario, Canada, M5S 3M2

Shingai Majuru
Department of Pharmaceutics Research and Development, Emisphere Technologies, Inc., 765 Old Saw Mill River Road, Tarrytown,
NY, 10591, USA, e-mail: smajuru@emisphere.com

Sandro Mecozzi
Department of Chemistry and School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA, e-mail: smecozzi@wisc.edu

Jessica B. Melanko
Department of Chemical and Biochemical Engineering, Division of Pharmaceutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA

Mohammed J. Meziani
Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, SC 29634-0973, USA,
e-mail: mmezian@clemson.edu

S. Moein Moghimi
Department of Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark, e-mail: s.m.moghimi@brighton.ac.uk

Yukio Nagasaki
Tsukuba Research Center for Interdisciplinary Materials Science (TIMS) and Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8573, Japan,
e-mail: nagasaki@nagalabo.jp

Motoi Oishi
Tsukuba Research Center for Interdisciplinary Materials Science (TIMS) and Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8573, Japan.

Daniel P. Otto
School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
Moses O. Oyewumi
Department of Pharmaceutics Research and Development, Emisphere Technologies, Inc., 765 Old Saw Mill River Road, Tarrytown, NY 10591, USA

Kinam Park
Department of Industrial and Physical Pharmacy, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA e-mail: kpark@purdue.edu

Pankaj Pathak
Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, SC 29634-0973, USA, e-mail: ppalthak@clemson.edu

Megan E. Pearce
Department of Biomedical Engineering, Division of Pharmaceutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA

Michael V. Pishko
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA. Department of Chemistry, University Park, PA 16802, USA, e-mail: mpishko@engr.psu.edu

Aliasger K. Salem
Division of Pharmaceutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA, e-mail: aliasger-salem@uiowa.edu

John Samuel
Faculty of Pharmacy and Pharmaceutical Sciences, 3133 Dentistry/Pharmacy Centre, University of Alberta, Edmonton, Alberta, Canada, T6G 2N8, e-mail: jsamuel@pharmacy.ualberta.ca

Rakhi B. Shah
Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993 USA, e-mail: rakhi.shah@fda.hhs.gov

Andre G. Skirtach
Max-Planck-Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam-Golm, Germany, e-mail: skirtach@mpikg.mpg.de

Patrick Lim Soo
Department of Pharmaceutical Sciences, University of Toronto, 144 College St., Toronto, Ontario, Canada, M5S 3M2

Ya-Ping Sun
Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, SC 29634-0973, USA
Vladimir P. Torchilin
Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA, e-mail: v.torchilin@neu.edu

Hasan Uludağ
Faculty of Pharmacy and Pharmaceutical Sciences, Department of Chemical & Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2G6, e-mail: huludag@ualberta.ca

Xiao-Bing Xiong
Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2N8, e-mail: xxiong@pharmacy.ualberta.ca

Alisar S. Zahr
Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802

Guigen Zhang
Faculty of Engineering, The University of Georgia, Anthens, GA 30602, USA

Sean T. Zuckerman
Department of Biomedical Engineering, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA