HIGHER ORDER OBSTRUCTIONS TO THE DESINGULARIZATION OF EINSTEIN METRICS

Tristan Ozuch
Massachusetts Institute of Technology

Abstract. We find new obstructions to the desingularization of compact Einstein orbifolds by smooth Einstein metrics. These new obstructions, specific to the compact situation, raise the question of whether a compact Einstein 4-orbifold which is limit of Einstein metrics bubbling out Eguchi-Hanson metrics has to be Kähler. We then test these obstructions to discuss if it is possible to produce a Ricci-flat but not Kähler metric by the most promising desingularization configuration proposed by Page in 1981. We identify 84 obstructions which, once compared to the 57 degrees of freedom, indicate that almost all flat orbifold metrics on T^4/Z_2 should not be limit of Ricci-flat metrics with generic holonomy while bubbling out Eguchi-Hanson metrics. Perhaps surprisingly, in the most symmetric situation, we also identify a 14-dimensional family of desingularizations satisfying all of our 84 obstructions.

Contents

Introduction 2

A new obstruction to the desingularization in the compact case 2

Is $\partial oE(M)$ a boundary or a filling? 4

Ricci-flat metrics and reduced holonomy 5

Construction of hyperkähler metrics by gluing-perturbation 5

A Ricci-flat but not locally hyperkähler metric? 5

Brendle-Kapouleas configuration 6

Partial answer to Page’s question. 6

A configuration satisfying the first obstructions. 7

Acknowledgments 7

1. Main definitions 7

1.1. Einstein orbifolds and ALE spaces 7

1.2. Eguchi-Hanson metrics 9

1.3. Naïve desingularizations 12

2. New obstructions to the desingularization of Einstein orbifolds 14

2.1. Degeneration and obstructions 15

2.2. Approximate Einstein metrics and obstructions 22

2.3. A new obstruction to the desingularization of Einstein orbifolds 25

3. Ricci-flat modulo obstructions desingularizations of T^4/Z_2 27

3.1. The orbifold T^4/Z_2 and its deformations 27

3.2. Partial hyperkähler desingularizations and estimates 28

3.3. Total desingularizations modulo obstructions 31

3.4. Obstruction to the total desingularization 41

4. Explicit obstructions to the desingularization of T^4/Z_2 43

4.1. Equivalent obstructions 45

4.2. Some obstructed situations 46

4.3. A family of desingularizations satisfying the obstructions 47

Appendix A. Function spaces 49

A.1. Decoupling norms. 49
A.2. An application of the analysis on weighted spaces.

References

INTRODUCTION

An Einstein metric g satisfies, for some real number Λ, the equation

$$\text{Ric}(g) = \Lambda g.$$

In dimension 4, they are considered optimal due to the homogeneity of their Ricci curvature but also as critical points of the Einstein-Hilbert functional with fixed volume, $g \mapsto \int_M \text{R} \, d\text{vol}_g$, and more importantly as minimizers of the L^2-norm of the Riemann curvature tensor, $g \mapsto \int_M |\text{Rm}_g|^2 \, d\text{vol}_g$.

From dimension 4, even under natural assumptions of bounded diameter (compactness) and lower bound on the volume (non-collapsing) Einstein metrics can develop singularities. One major goal for 4-dimensional geometry is therefore to understand the compactification of the moduli space of Einstein metrics on a differentiable manifold M^4 defined as

$$\mathcal{E}(M^4) := \{ (M^4, g) \mid \exists \Lambda \in \mathbb{R}, \text{Ric}(g) = \Lambda g, \text{Vol}(M^4, g) = 1 \} / \mathcal{D}(M^4)$$ \hspace{1cm} (1)

where $\mathcal{D}(M^4)$ is the group of diffeomorphisms of M^4 acting on metrics by pull-back and to compactify it with a useful structure. The metric spaces which are limit of Einstein 4-manifolds with uniformly controlled diameter and volume as well as the associated singularity blow-ups have been understood for a long time in the Gromov-Hausdorff sense \cite{And89, BKN89}: they are respectively Einstein orbifolds and Ricci-flat ALE orbifolds. The metric completion of $(\mathcal{E}(M^4), d_{GH})$ is

$$\mathcal{E}(M^4) \cup \partial_o \mathcal{E}(M^4),$$ \hspace{1cm} (2)

where $\partial_o \mathcal{E}(M^4)$ is the set of orbifold d_{GH}-limits with bounded diameter (i.e. at finite d_{GH}-distance) of Einstein metrics on M^4.

In the present article, we find new types obstructions to the desingularization of Einstein orbifolds which are special to the compact context. They motivate and indicate positive answers the following questions:

- Assume that $(M_o^4, g_o) \in \partial_o \mathcal{E}(M^4)$ where M^4 has the topology of M^4_o desingularized by Eguchi-Hanson metrics. Is g_o Kähler-Einstein?
- Under the same assumptions, is $\partial_o \mathcal{E}(M^4)$ of codimension 2 in $\mathcal{E}(M^4)$?
- Can we desingularize a flat metric on T^4/\mathbb{Z}_2 by smooth Ricci-flat metrics with generic holonomy thanks to Eguchi-Hanson metrics?

A new obstruction to the desingularization in the compact case. Any smooth Einstein 4-manifold close to a compact Einstein orbifold in a mere Gromov-Hausdorff sense has recently been produced by a gluing-perturbation procedure \cite{Ozu19a, Ozu19b}. In the present paper, for simplicity, we will focus on an Einstein orbifold (M_o^4, g_o) with integrable Einstein deformations (like all known 4-dimensional examples) and consider only the simplest singularities modeled on $\mathbb{R}^4/\mathbb{Z}_2 \sim \mathbb{C}^2/\mathbb{Z}_2$, whose minimal resolution has the topology T^*S^2 of the Eguchi-Hanson metric \cite{EH78}.

Remark 0.1. This is conjectured to be the only possible topology for an Einstein desingularization of $\mathbb{R}^4/\mathbb{Z}_2$, see \cite{BKN89}.
Let us denote M the differentiable manifold obtained by minimal resolution (in some orientation) of the $\mathbb{R}^4/\mathbb{Z}_2 \cong \mathbb{C}^2/\mathbb{Z}_2$ singularities of M_α. Using [Ozu19a, Ozu19b], we know that if there exists a sequence of Einstein metrics on M converging to (M_α, g_α) in the Gromov-Hausdorff sense, then an obstruction already noticed in [Biq13] is satisfied at every singular point of M_α. More precisely, denoting respectively $\mathsf{R}^+_g(p)$ and $\mathsf{R}^-_g(p)$ the selfdual and anti-selfdual parts of the curvature at a singular point $p \in M_\alpha$ seen as an endomorphism on the space of 2-forms, we have either $\det \mathsf{R}^+_g(p) = 0$ or $\det \mathsf{R}^-_g(p) = 0$. This means that in some basis, we have either

$$\mathsf{R}^+_g(p) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & * & * \\ 0 & * & * \end{bmatrix} \quad \text{or} \quad \mathsf{R}^-_g(p) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & * & * \\ 0 & * & * \end{bmatrix}. \quad (3)$$

We will first show that an additional obstruction holds under weaker assumptions than those of [Biq13]. Another physically motivated assumption is that of the stability of the Einstein metric. This condition essentially means that the linearization of the Ricci curvature has nonnegative spectrum, see Definition 1.11.

Theorem 0.2. Let (M^4_α, g_α) be a compact Einstein orbifold with $\text{Ric}(g_\alpha) = \Lambda g_\alpha$ for $\Lambda \in \mathbb{R}$, with integrable Einstein deformations and with singularities $\mathbb{R}^4/\mathbb{Z}_2$. Assume that we have $(M^4_\alpha, g_\alpha) \in \mathsf{E}(M^4)_{\text{GH}}$ for $M = M_\alpha\# \Sigma^2 \# \ldots \# \Sigma^2$, where $\#$ denotes a gluing in the positive or negative orientation and along the cone $\mathbb{R}^4/\mathbb{Z}_2$. Assume additionally one of the following properties:

1. there exists a sequence $(g_\alpha)_n$ of stable Ricci-flat (Definition 1.11) metrics in $\mathsf{E}(M^4)$ converging to g_α in the Gromov-Hausdorff sense, or,

2. M_α has only one singularity and is rigid (i.e. does not admit infinitesimal Einstein deformations).

Then, for any singular point p of M_α, there exists a basis of the selfdual 2-forms or anti-selfdual 2-forms in which we have (depending on the orientation of the gluing):

$$\mathsf{R}^+_g(p) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \Lambda \end{bmatrix} \quad \text{or} \quad \mathsf{R}^-_g(p) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \Lambda \end{bmatrix}. \quad (4)$$

Notice that a curvature of the form (4) is typical of Kähler-Einstein metrics.

Theorem 0.2 is specific to the compact case and is in sharp contrast with Biquard’s desingularization [Biq13] in the asymptotically hyperbolic case. Indeed, the degeneration of the asymptotically hyperbolic AdS Taub-Bolt metrics converges to an orbifold which is rigid and has one singularity $\mathbb{R}^4/\mathbb{Z}_2$ but does not satisfy (4), see Example 2.1.

Remark 0.3. Since the convergence is allowed to be only in the Gromov-Hausdorff sense, the assumptions of Theorem 0.2 are weaker than in [Biq13] Corollary 9.3, where the obstruction (3) at the singular point was first observed. Moreover, the present proof would also yield an obstruction for other Kleinian singularities by [Biq16, Lemme 9] and [Biq16, Lemme 12].

Another goal here is to obtain a new obstruction result under some technical assumption of existence of a sequence of metrics in $\mathsf{E}(M^4)$ sufficiently transverse to the boundary $\partial E(M^4)$ of $\mathsf{E}(M^4)$. We will say that a sequence of Einstein metrics is a transverse desingularization of the orbifold (M_α, g_α) if the sequence is almost orthogonal to $\partial E(M)$, see Definition 1.29 and Figure 2. Almost all Einstein metrics obtained by gluing-perturbation are transverse, see [Top87a, Top87b, LS91, Don12, BK17]. Note that [Biq13, Biq16, Biq17] are notable exceptions. A weaker assumption than being transverse for an Einstein desingularization is being nondegenerate. We will say that a sequence of Einstein metrics is a
nondegenerate Einstein desingularization of \((M_o, g_o) \in \partial_o E(M)\) if the sequence approaches \((M_o, g_o)\) without being “too tangent” to \(\partial_o E(M)\), see Definition 1.29 and Figure 1. This notion is in the spirit of the assumption of genericity of [Spo14] and nondegeneracy of BR15.

Proposition 0.4. Let \((M_o^4, g_o)\) be a compact Einstein orbifold with \(\text{Ric}(g_o) = \Lambda g_o\) for \(\Lambda \in \mathbb{R}\), with integrable Einstein deformations and with singularities \(\mathbb{R}^4/\mathbb{Z}_2\). Assume that we have \((M_o^4, g_o) \in E(M^4)_{\text{GH}}\) for \(M = M_o \# T^*S^2 \# \ldots \# T^*S^2\), where \# denotes a gluing in the positive or negative orientation and along the cone \((\text{nondegenerate})\).

This conjecture means that we should not think of \(\partial_o E(M)\) as a boundary of \(E(M^4)\) but rather as a filling of missing pieces as it was pictured in [And02] in the case of \(M^4 = K^3\).

Remark 0.7. This is false in the asymptotically hyperbolic context where the desingularizations of [Biq13] applied to the AdS Taub-Bolt orbifold (Example 2.1) show that \(\partial_o E(M^4)\) is of codimension 1.
• if the kernel of $R_{g_o}(p_o)$ is of dimension 1, then there is no transverse desingularization which is Einstein up to a $o(t^2)$ error and there is exactly a one-dimensional set of desingularizations which are Einstein up to a $o(t)$ error,
• if the kernel of $R_{g_o}(p_o)$ is of dimension 2 or 3, then the transverse desingularizations which are Einstein up to a $o(t^2)$ error are of dimension 2 or 3 and in correspondence with the kernel of $R_{g_o}(p_o)$.

Finally, recall that Einstein metrics with a curvature tensor of the form (4) for $\Lambda = 0$ at all points are locally hyperkähler metrics. Since we have only identified the first two obstructions of an infinite list, we might wonder if the remaining obstructions impose this condition at all points. We ask the following question.

Question 0.8. Let (M^4_o, g_o) be a Ricci-flat orbifold, and assume that it can be desingularized in the Gromov-Hausdorff sense by Einstein metrics $(M^4, g_n)_{n \in \mathbb{N}}$ forming trees of Kähler Ricci-flat ALE metrics. Are the orbifold (M^4_o, g_o) and the smooth metrics (M^4, g_n) necessarily quotients of hyperkähler metrics?

A positive answer to the above question combined with the folklore conjecture that all Ricci-flat ALE orbifolds are Kähler indicates that it may not be possible to produce Ricci-flat metrics which are not Kähler by gluing constructions on Ricci-flat orbifolds. This pessimistic perspective is related to one of the main issue in Riemannian geometry which is to understand the structure of Ricci-flat metrics on compact manifolds.

Ricci-flat metrics and reduced holonomy. For a long time, it was believed that compact Ricci-flat metrics should be flat. The resolution of Calabi’s conjecture by Yau [Yau78] provided many counter-examples. These so-called Calabi-Yau metrics are the only currently known examples and they have reduced holonomy (that is different from the generic holonomy $SO(n)$ in dimension n). A lingering question since then is therefore the following one.

Question 0.9. Do all compact Ricci-flat manifolds have reduced holonomy?

A physically relevant additional property that one can ask from a Ricci-flat metric, is that of being stable, see [Ach19].

Question 0.10 ([Ach19]). Do all compact stable Ricci-flat manifolds have reduced holonomy?

Construction of hyperkähler metrics by gluing-perturbation. Compact non flat Ricci-flat metrics are not explicit at all, but a classical way to approach them and to obtain a more concrete picture is to produce them by gluing various explicit noncompact and singular blocks together into an approximate Ricci-flat metric and perturb it into an actual Ricci-flat metric.

Gibbons-Pope [GP79] and Page [Pag78] proposed a conjectural and physically motivated picture for some hyperkähler, hence Ricci-flat, metrics on some K3 surfaces. The idea was to desingularize the orbifold $\mathbb{T}^4/\mathbb{Z}_2$ which has 16 singularities of type $\mathbb{R}^4/\mathbb{Z}_2$ by gluing 16 Eguchi-Hanson metrics in the same orientation and to perturb the result to a hyperkähler metric. This was rigorously obtained for Eguchi-Hanson metrics glued at comparable scales by Topiwala [Top87a, Top87b] and Lebrun-Singer [LS94], see also [Don12]. The proof heavily relies on Kähler geometry arguments.

A Ricci-flat but not locally hyperkähler metric? In 1981, Page [Pag81] asks a new question.

Question 0.11. Is it possible to perturb a gluing of Eguchi-Hanson metrics in different orientations to the orbifold $\mathbb{T}^4/\mathbb{Z}_2$ into a Ricci-flat metric?
Remark 0.12. It is often conjectured, see for instance \[BKN89\], that the only Ricci-flat metric asymptotic to $\mathbb{R}^4/\mathbb{Z}_2$ is the Eguchi-Hanson metric. This would therefore describe any possible Einstein desingularization of T^4/\mathbb{Z}_2.

Having different orientations for the Eguchi-Hanson metrics prevents the use of Kähler geometry techniques. A positive answer to Question 0.11 would provide a Ricci-flat metric with generic holonomy and a negative answer to Question 0.9.

Brendle-Kapouleas configuration. In \[BK17\], Brendle and Kapouleas studied Question 0.11 in the most symmetric situation: the orbifold metric comes from the regular lattice \mathbb{Z}^4, the points where the gluing are done in the positive or negative orientation follow a so-called chessboard pattern, and the Eguchi-Hanson metrics in the same orientation are glued with the same $SO(4)$ or $O(4)/SO(4)$ parameter and the same size. In this 1-dimensional set of configurations, they exhibit one interaction between the bubbles glued in different orientation. They remarkably use this obstruction to construct an intriguing solution to the Ricci flow which exhibits a new behavior: it is an ancient Ricci-flow desingularizing the orbifold T^4/\mathbb{Z}_2.

Partial answer to Page’s question. In this article, we consider the general situation of the desingularization of a flat metric on T^4/\mathbb{Z}_2 obtained from a lattice $L(\mathbb{Z}^4)$ for $L \in GL(4,\mathbb{R})$ and desingularized by Eguchi-Hanson metrics glued in various directions, sizes and orientations. For each configuration of positively and negatively oriented Eguchi-Hanson metrics, this yields a 57-dimensional space of candidates to a Ricci-flat gluing-perturbation as in \[Ozu19b\] and therefore of potential positive answers to Question 0.11.

We however identify a great number of interactions between these metrics which induce obstructions interpreted as curvature conditions similar to those of (3) and (4).

Theorem 0.13 (Informal, Corollaries 4.3 and 4.10). We have the following numbers of constraints in this 57-dimensional space of desingularization configurations.

1. For general parameters, there are 57 necessary polynomial equations that the gluing parameters of the Eguchi-Hanson metrics should satisfy for an Einstein desingularization to exist. 48 of these equations are analogous to the obstruction (3).
2. For general parameters, there are 84 necessary polynomial equations that the gluing parameters should satisfy for a stable Ricci-flat desingularization to exist. 80 of these equations are analogous to the obstruction (4).
3. For parameters corresponding to a nondegenerate desingularization, there are 84 necessary polynomial equations that the gluing parameters of the Eguchi-Hanson metrics should satisfy for an Einstein desingularization to exist. 80 of these equations are analogous to the obstruction (4).

The coefficients of these (quadratic and quartic) polynomial equations depend on the flat metric on T^4/\mathbb{Z}_2 only.

This indicates that generic flat metrics on T^4/\mathbb{Z}_2, should not be Gromov-Hausdorff limit of Einstein metrics bubbling out Eguchi-Hanson metrics in different orientations.

Remark 0.14. In the configuration proposed by Brendle and Kapouleas \[BK17\], none of the 57 obstructions of the first point is satisfied.

A simpler consequence is that a lot of configurations of positively and negatively oriented Eguchi-Hanson metrics are impossible. We in particular obtain the following obstruction under a topological assumption.

Theorem 0.15 (Theorem 4.11). There does not exist a sequence of Einstein metrics d_{GH}-converging to the regular torus (obtained from the lattice \mathbb{Z}^4) by bubbling out exactly
one positively oriented Eguchi-Hanson metric and 15 negatively oriented Eguchi-Hanson metrics.

Remark 0.16. It is likely that this result holds without assuming that the lattice is the usual \(Z^4\), see Conjecture 4.14.

Remark 0.17. The desingularization by stable Ricci-flat metrics is much more restrictive. A direct extension of the proof of Theorem 0.15 states that the desingularization is impossible with less than 3 positively oriented Eguchi-Hanson metrics and the rest of negatively oriented, see Corollary 4.15.

A configuration satisfying the first obstructions. Seeing the above obstruction results, one would be tempted to try and prove that it is impossible to obtain a Ricci-flat but not hyperkähler metric by gluing-perturbation of Eguchi-Hanson metrics to a flat \(T^4/Z_2\).

One would maybe expect that the above obstructions should be enough to show that every configuration is obstructed. Perhaps surprisingly, we find a set of solutions to our equations. More precisely, there exists an explicit 14-dimensional set of configurations of gluing of Eguchi-Hanson metrics which satisfy the above equations. The orientations of the Eguchi-Hanson metrics follow the chessboard pattern of [BK17], but their directions and sizes are not constrained.

Acknowledgments. The author would like to thank his PhD advisor, Olivier Biquard for his help and interest in the early stages of this project.

1. Main definitions

Note 1.1. All along this article, when the name of a metric is in bold, then it is Einstein.

1.1. Einstein orbifolds and ALE spaces. For \(\Gamma\) a finite subgroup of \(SO(4)\) acting freely on \(S^3\), let us denote \((R^4/\Gamma, e)\) the flat orbifold obtained by the quotient of the Euclidean metric on \(R^4\) by the action of \(\Gamma\), and \(r_e := d_e(.,0)\).

Definition 1.2 (Orbifold (with isolated singularities)). We will say that a metric space \((M_o, g_o)\) is an orbifold of dimension \(n \geq 2\) if there exists \(\epsilon_0 > 0\) and a finite number of points \((p_k)_k\) of \(M_o\) called singular such that we have the following properties:

1. the space \(M_o\backslash (p_k)_k, g_o\) is a manifold of dimension \(n\),
2. for each singular point \(p_k\) of \(M_o\), there exists a neighborhood of \(p_k\), \(U_k \subset M_o\), a finite subgroup acting freely on \(S^{n-1}\), \(\Gamma_k \subset SO(n)\), and a diffeomorphism \(\Phi_k : B_e(0,\epsilon_0) \subset R^n/\Gamma_k \to U_k \subset M_o\) for which, the pull-back of \(\Phi_k^* g_o\) on the covering \(R^n\) is smooth. Here, diffeomorphism is understood in the orbifold sense, i.e. it is a diffeomorphism between the cover \(R^4\) and the associated cover of \(U_k\).

Remark 1.3. The analysis on an orbifold is exactly the same as the analysis on a manifold up to using finite local coverings at the singular points.

Definition 1.4 (The function \(r_o\) on an orbifold). We define \(r_o\), a smooth function on \(M_o\) satisfying \(r_o := (\Phi_k)_* r_e\) on each \(U_k\), and such that on \(M_o \backslash U_k\), we have \(\epsilon_0 \leq r_o < 1\) (the different choices will be equivalent for our applications).

We will denote, for \(0 < \epsilon \leq \epsilon_0\),

\[M_o(\epsilon) := \{r_o > \epsilon\} = M_o \backslash \left(\bigcup_k \Phi_k(B_e(0,\epsilon)) \right). \quad (5)\]

Let us now turn to ALE metrics.
Definition 1.5 (ALE orbifold (with isolated singularities)). An ALE orbifold of dimension $n \geq 4$, (N, g_0) is a metric space for which there exists $c_0 > 0$, singular points $(p_k)_k$ and a compact $K \subset N$ for which we have:

1. (N, g_0) is an orbifold of dimension n.
2. there exists a diffeomorphism $\Psi_\infty : (\mathbb{R}^n / \Gamma_\infty) \setminus B_0(e^{-1}) \to N \setminus K$ such that
 \[r_0^i |\nabla^i (\Psi_\infty g_0 - e) |_e \leq C r_0^{-n} \cdot \]

Definition 1.6 (The function r_b on an ALE orbifold). We define r_b a smooth function on N satisfying $r_b := (\Psi_k)_*r_e$ on each U_k, and $r_b := (\Psi_\infty)_*r_e$ on U_∞, and such that $0 \leq r_b \leq \epsilon_0^{-1}$ on the rest of N (the different choices are equivalent for our applications).

For $0 < \epsilon \leq \epsilon_0$, we will denote
\[N(\epsilon) := \{ \epsilon < r_b < \epsilon^{-1} \} = N \setminus \left(\bigcup_k \Psi_k(B_0(0, \epsilon)) \cup \Psi_\infty((\mathbb{R}^4 / \Gamma_\infty) \setminus B_0(0, \epsilon^{-1})) \right). \]

Definition 1.7 (Functionals $r_{a,S}$, and $r_{b,S}$). We define the functional $r_{a,S}$ (respectively $r_{b,S}$) exactly like in Definitions 1.4 (respectively 1.5) by only considering the sets U_k containing points of S_0 (respectively S).

A metric g close to g_0 (with some adapted decay at infinity in the noncompact case) is Einstein and is in Bianchi gauge with respect to g_0, that satisfies $B_{g_0} := (\delta_{g_0} + \frac{1}{2} dt_{g_0}) g = 0$, if and only if it satisfies
\[\Phi_{g_0}(g) := \text{Ric}(g) - \Lambda g + \delta^* B_{g_0} g = 0, \]
where Ric is the action of curvature on symmetric 2-tensors: for an orthonormal basis $(e_i)_i$, we define
\[\hat{R}(h)(X, Y) = \sum_i h(\text{Rm}(e_i, X) Y, e_i). \]

Definition 1.8 (Infinitesimal Einstein deformations). For a compact or ALE Einstein orbifold (M, g) with $\text{Ric}(g) = \Lambda g$, we define $O(g)$ as the kernel of P_k on $L^2(g)$.

Definition 1.9 (Einstein modulo obstructions deformations). According to $[OZ19b]$ (see also $[Koi83]$), there exists $c > 0$ such that for any $v \in O(g)$ with $\| v \|_{L^2(g)} < c$, there exists a unique metric \tilde{g}_0 satisfying
1. $\Phi_g(\tilde{g}_0) \in O(g)$,
2. $\tilde{g}_0 - (g + v) \perp g \ O(g)$,
3. $\| \tilde{g}_0 - g \|_{L^2(g)} \leq 2c$.

All along this article, in order to simplify the exposition and for lack of nonintegrable examples, we will only consider Einstein metrics with integrable Einstein deformations.

Definition 1.10 (Einstein metric with integrable deformations). An Einstein metric g only has integrable infinitesimal Einstein deformations if for any $v \in O(g)$, the metric $\tilde{g}_0 = g_v$ actually satisfies
1. $\Phi_g(\tilde{g}_0) = 0$,
2. $g_v - (g + v) \perp g \ O(g)$,
3. $\| \tilde{g}_0 - g \|_{L^2(g)} \leq 2c$.

An additional class of metrics we will be interested in is that of stable Ricci-flat metrics.
Definition 1.11 (Stable Ricci-flat metrics). We will say that \(g \) is a stable Ricci-flat metric if it is Ricci-flat and satisfies: for all smooth compactly supported symmetric 2-tensor \(h \):
\[
\langle P_g h, h \rangle_{L^2(g)} \geq 0.
\]

All of the known examples of compact Ricci-flat metrics are stable.

1.2. Eguchi-Hanson metrics. Let us describe the Eguchi-Hanson metric \([EH78]\). In this article, the Ricci-flat ALE metrics \((N,g_b)\) we will consider will almost always be homothetic transformations of the Eguchi-Hanson metric.

The Eguchi-Hanson metric, which we will denote \(\text{eh} \), is defined on \(T^*S^2 \). It is asymptotic to the flat cone \(R^4/Z_2 \). Denote \((x_1, x_2, x_3, x_4)\) coordinates in an orthonormal basis of \(R^4 \), and define \(r := \sqrt{x_1^2 + x_2^2 + x_3^2 + x_4^2} \), and a basis of invariant 1-forms on the sphere \(S^3 \), \((\alpha_1, \alpha_2, \alpha_3)\)

\[
\alpha_i := \frac{1}{r^2}(x_1 dx_2 - x_2 dx_1 + x_3 dx_4 - x_4 dx_3)
\]

and the other by cyclic permutation of the indices \(\{2, 3, 4\} \).

Outside of the zero section of \(T^*S^2 \) represented by \(r = 0 \), the metric \(\text{eh} \) has the following expression (with the identification \(T^*S^2 \setminus S^2 \approx (R^4/Z_2) \setminus \{0\} \)):
\[
\text{eh} := \sqrt{\frac{r^4}{1 + r^4}}(dr^2 + r^2\alpha_1^2) + \sqrt{1 + r^4}(\alpha_2^2 + \alpha_3^2).
\]

The metric extends to \(T^*S^2 \) by adding the zero section \(S^2 \) with metric \(\alpha_2^2 + \alpha_3^2 \) at \(r = 0 \). We will always denote \(S^2 \) that zero-section of \(T^*S^2 \).

This gives the asymptotic development at infinity
\[
\text{eh} = e - \frac{1}{2r^4}(dr^2 + r^2\alpha_1^2 - r^2\alpha_2^2 - r^2\alpha_3^2) + O(r^{-8}),
\]

where \(H^4 := -\frac{1}{2r^4}(dr^2 + r^2\alpha_1^2 - r^2\alpha_2^2 - r^2\alpha_3^2) \) is divergence-free and trace-free with respect to the Euclidean metric \(e = dr^2 + r^2(\alpha_1^2 + \alpha_2^2 + \alpha_3^2) \).

1.2.1. Curvature of Eguchi-Hanson metrics. On \(R^4 \), we define the 2-forms
\[
\theta_i^\pm := r dr \wedge \alpha_i \pm r^2 \alpha_2 \wedge \alpha_3,
\]
and similarly \(\theta_2^\pm \) and \(\theta_3^\pm \) by cyclic permutations, and we define the usual bases
\[
\omega_i^\pm := dx_1 \wedge dx_2 \pm dx_3 \wedge dx_4
\]
and similarly \(\omega_2^\pm \) and \(\omega_3^\pm \) by cyclic permutations. The \(\theta_i^+ \) and \(\omega_i^+ \) are selfdual and the \(\theta_i^- \) and \(\omega_i^- \) are anti-selfdual. Direct computations yield the following relation between them:
\[
\theta_i^-(x) = \sum_{j=1}^3 \frac{x^T(\omega_i^+ \circ \omega_j^-)x}{|x|^2} \omega_j^-,
\]
where \(\omega_i^+ \circ \omega_j^- \) is the symmetric traceless matrix given by the (commuting) product of the antisymmetric matrices associated to \(\omega_i^+ \) and \(\omega_j^- \), and where \(x^T \) is the transpose of \(x \).

Remark 1.12. The product \(\omega_i^+ \circ \omega_j^- = \omega_j^- \circ \omega_i^+ \) is a trace-free involution and therefore it is characterized by two planes of eigenvalues 1 and -1.

Remark 1.13. We will often use the identification of the traceless symmetric 2-tensors \(\text{Sym}_0^2(TM) \) and \(\Omega^+ \otimes \Omega^- \) where \((\omega^+, \omega^-) \in \Omega^+ \times \Omega^- \) is associated to \(\omega^+ \circ \omega^- = \omega^- \circ \omega^+ \).

For any \(\zeta = (\zeta_1, \zeta_2, \zeta_3) \in R^3 \), we denote
\[
\zeta^\pm := \zeta_1 \omega_1^\pm + \zeta_2 \omega_2^\pm + \zeta_3 \omega_3^\pm \in \Omega^\pm.
\]
Definition 1.14. We define for any \(x \in \mathbb{R}^4 \) the linear transformation \(\rho_x \) which to \(\zeta = (\zeta_1, \zeta_2, \zeta_3) \in \mathbb{R}^3 \) associates \(\rho_x(\zeta) \in \mathbb{R}^3 \) whose coordinate is
\[
\rho_x(\zeta)_j = \frac{x^T (\zeta^+ \circ \omega^-) x}{|x|^2}.
\]

Remark 1.15. Identifying \(\mathbb{R}^4 \) with the space of quaternions and \(\mathbb{R}^3 \) with the space of pure quaternions, for any \(x \in \mathbb{R}^4 \), the map \(\rho_x : \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) is exactly the rotation produced on the pure quaternionic part by conjugation by \(x \). More precisely, identifying \(\zeta \in \mathbb{R}^3 \) with the pure quaternion \((0, \zeta)\) in the usual basis, we have
\[
(0, \rho_x(\zeta)) = x \cdot (0, \zeta) \cdot x^{-1}.
\]

The metric \(\text{eh} \) is Ricci-flat, anti-selfdual and has the following anti-selfdual curvature:
\[
R^-(\text{eh}) = \frac{1}{r^6} \begin{bmatrix}
8 & 0 & 0 \\
0 & -4 & 0 \\
0 & 0 & -4
\end{bmatrix}
\]

in a basis asymptotic to the basis \((\theta_i^-)\), see [EH78]. We also remark that we have \(H^4 = -\frac{\omega^+ \circ \theta^-}{r^4} \), where \(H^4 \) is defined by \(\text{eh} = e + H^4 + O(r^{-8}) \) at infinity and where \(\omega^+ \circ \theta^- \) is the (commutating) composition of the antisymmetric matrices associated to \(\omega^+ \) and \(\theta^- \).

More generally, for any \(\zeta = (\zeta_1, \zeta_2, \zeta_3) \in \mathbb{R}^3 \setminus \{0\} \), consider \((\zeta^+_{(k)})_{k \in \{1, 2, 3\}} \) an orthogonal basis of \(\Omega^+ \) with constant length \(\sqrt{2} = |\omega^+_1| \) and \(\zeta^+_{(k)} = \zeta^+/|\zeta| = \sqrt{2} \zeta^+_{1}/|\zeta^+| \). We may replace the above 1-forms \(\alpha_k = \omega^+_k (dr) \) by the 1-forms \(\zeta^+_{(k)}(dr) \). By a change of variables \(u = \frac{r}{\sqrt{|\zeta|}} \), one checks that the metric
\[
\text{eh}_{\zeta^+} := \sqrt{\frac{r^4}{|\zeta|^2 + r^4}} \left(dr^2 + r^2 \zeta^+_{(1)} (dr)^2 \right) + \sqrt{|\zeta|^2 + r^4} \left(\zeta^+_{(2)} (dr)^2 + \zeta^+_{(3)} (dr)^2 \right)
\]
is homothetic to \(\text{eh} \) and more precisely satisfies the following properties.

Proposition 1.16. Let \(\zeta = (\zeta_1, \zeta_2, \zeta_3) \in \mathbb{R}^3 \setminus \{0\} \) and denote \(\zeta^+ := \zeta_1 \omega^+_1 + \zeta_2 \omega^+_2 + \zeta_3 \omega^+_3 \).

We have the following properties:

(1) at infinity, we have
\[
\text{eh}_{\zeta^+} = e - \frac{\rho(\zeta)^- \circ \zeta^+}{2r^4} + O(|\zeta|^4 r^{-8}),
\]

(2) \(\text{eh}_{\zeta^+} \) is isometric to \(|\zeta| \cdot \text{eh} \),

(3) \(\text{eh}_{(1,0,0)^+} = \text{eh} \), and

(4) on \(S^2 \), denoting \((\zeta^+_{(k)})_{k \in \{1, 2, 3\}} \) a basis of the selfdual 2-forms of constant length with \(\zeta^+_{(1)} = \zeta^+/|\zeta| \), the zero-section of \(T^*S^2 \), the metric is \(|\zeta^+| (\zeta^+_{(2)} (dr)^2 + \zeta^+_{(3)} (dr)^2) \).

\]

Remark 1.17. These metrics \(\text{eh}_{\zeta^+} \) for \(\zeta \in \mathbb{R}^3 \setminus \{0\} \) reach all of the metrics obtained by orientation-preserving rotations and rescaling of \(\text{eh} \) up to isometry.

We will need to understand their curvature in the last sections of this article. From the computations of [EH78] and Proposition 1.16, we have the following result.

For \(\zeta = (\zeta_1, \zeta_2, \zeta_3) \), denote \(H^4(\zeta^+) := -\frac{\rho(\zeta^- \circ \zeta^+)}{2r^4} \). Then, the linearization of the curvature at \(e \) in the direction \(H^4(\zeta^+) \) is Ricci-flat anti-selfdual and we have
\[
d_e R^-(H^4(\zeta^+)) = \frac{|\zeta|^2}{r^6} \begin{bmatrix}
8 & 0 & 0 \\
0 & -4 & 0 \\
0 & 0 & -4
\end{bmatrix}
\]
in any orthogonal basis with constant length of the anti-selfdual 2-forms of \(\mathbb{R}^4\) whose first vector is \(\rho(\zeta)\).

Identifying the space of endomorphisms of \(\Omega^-, \text{End}(\Omega^-)\) and \(\Omega^- \otimes \Omega^-\), this can be rewritten as

\[
d_\zeta R^-(H^4(\zeta^+)) = \frac{12\pi_{1\mu}(\rho(\zeta)^- \otimes \rho(\zeta)^-)}{r^6}
\]

where \(\pi_{1\mu} := h - \frac{4\mu}{3}I_3\) is a projection on trace-free matrices.

Remark 1.18. In the constant basis \((\omega^-_1, \omega^-_2, \omega^-_3)\), the coefficients of \(d_\zeta R^-(H^4(\zeta^+))\) (seen as a \(3 \times 3\) matrix) are harmonic by [8] as expected from [Biq16, Lemme 3].

1.2.2. **Infinitesimal variations.** The deformations of the Eguchi-Hanson metric are given by the variations of \(\pi\). For \(\zeta = (1, 0, 0)\), an orthogonal basis of the \(L^2(\text{eh})\)-kernel of \(P_{\text{eh}}\) denoted \(O(\text{eh})\) may be computed. Denote \((o_1, o_2, o_3)\) given by the infinitesimal variations of \(\pi\) respectively in the directions \((1, 0, 0)\), \((0, 1, 0)\) and \((0, 0, 1)\). They have the following developments in the coordinates of the above development [11],

\[
o_k = O^k_l + \mathcal{O}(r_{\text{eh}}^{-8})\quad \text{with} \quad O^k_l = -\frac{\theta^+_1}{r^4} \circ \theta^+_k.
\]

Remark 1.19. The symmetric 2-tensor \(O^k_l\) is equal to twice to the asymptotic term \(H^4\) of \(\text{eh}\), see [11].

The infinitesimal deformations \(o_1, o_2\) and \(o_3\) respectively induce the following infinitesimal changes of anti-selfdual curvature in the basis \((\theta^+_1, \theta^+_2, \theta^+_3)\):

\[
\begin{bmatrix}
\frac{1}{r^6} & 8 & 0 & 0 \\
0 & -4 & 0 & 0 \\
0 & 0 & -4
\end{bmatrix}, \quad \begin{bmatrix}
1 & 0 & 4 & 0 \\
4 & 0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}, \quad \text{and} \quad \begin{bmatrix}
1 & 0 & 0 & 4 \\
0 & 0 & 0 & 0 \\
0 & 0 & 4 & 0
\end{bmatrix}
\]

and therefore, denoting \(\langle \zeta^+_k \rangle_{k \in \{1, 2, 3\}}\) a basis of the selfdual 2-forms of constant length with \(\zeta^+_1 = \zeta^+/|\zeta|\), the development at infinity of the \(\phi \circ o_k\) is

\[
o_k(\zeta^+) = \phi \circ o_k = \frac{\zeta^+_k}{r^4_{\text{eh}}} \circ \rho(\zeta)^- + \mathcal{O}(|\zeta|^3 r_{\text{eh}}^{-8}).
\]

Remark 1.20. We check that \(o_k(\zeta^+) = \partial_{\zeta^+_k} \text{eh}_{\zeta^+}\), where we denoted \(\partial_{\zeta^+_k} \text{eh}_{\zeta^+}\) the differential of \(\zeta^+ \mapsto \text{eh}_{\zeta^+}\) at \(\zeta^+\) in the direction \(\zeta^+_k\).

1.2.3. **Negative orientation.** We will also consider negatively oriented Eguchi-Hanson metrics. For \(\zeta = (\zeta_1, \zeta_2, \zeta_3) \in \mathbb{R}^3 \setminus \{0\}\), we define

\[
\text{eh}_{\zeta^-} := \sqrt{\frac{r^4}{|\zeta|^2 + r^4} \left(dr^2 + r^2 \zeta^-_1 (dr)^2\right)} + \sqrt{|\zeta|^2 + r^4 \left(\zeta^-_2 (dr)^2 + \zeta^-_3 (dr)^2\right)}.
\]

HIGHER ORDER OBSTRUCTIONS TO THE DESINGULARIZATION OF EINSTEIN METRICS 11
It is isometric to $|\zeta| \cdot \text{e}h$ but has the opposite orientation. At infinity, we have the development
\[
\text{e}h|_\zeta = \text{e} - \frac{\zeta - \rho(\zeta)}{2r^4} + \mathcal{O}(|\zeta|^4r^{-8}).
\]

1.3. Naïve desingularizations. Let us now recall the definition of a naïve desingularization of an orbifold from [Ozu19a].

Gluing of ALE spaces to orbifold singularities. Let $0 < 2\epsilon < \epsilon_0$ be a fixed constant, $t > 0$, (M_o, g_o) an orbifold and $\Phi : B_\epsilon(0, \epsilon_0) \subset \mathbb{R}^4/\mathbb{Z}_2 \to U$ a local chart of Definition 1.10 around a singular point $p \in M_o$. Let also (N, g_b) be an ALE metric asymptotic to $\mathbb{R}^4/\mathbb{Z}_2$, and $\Psi : (\mathbb{R}^4/\mathbb{Z}_2) \setminus B_\epsilon(0, \epsilon_0^{-1}t^2) \to N/K$ a chart at infinity of Definition 1.5.

For $s > 0$, define $\phi_s : x \in \mathbb{R}^4/\Gamma \to sx \in \mathbb{R}^4/\Gamma$. For $t < t_\epsilon^1$, we define $M_o \# N$ as N glued to M_o thanks to the diffeomorphism
\[
\Phi \circ \phi_{t^1} \circ \Psi^{-1} : (A_e(\epsilon_0^{-1}t^-1/2)) \to (A_e(\epsilon_0^{-1}\sqrt{t}, \epsilon_0)).
\]
Consider $\chi : \mathbb{R}^+ \to \mathbb{R}^+$, a C^∞ cut-off function supported on $[0, 2]$ and equal to 1 on $[0, 1]$.

Definition 1.21 (Naïve gluing of an ALE space to an orbifold). We define a naïve gluing of (N, g_b) at scale $0 < t < \epsilon^4$ to (M_o, g_o) at the singular point p, which will be denote $(M_o \# N, g_0 \# p_t g_b)$ by putting $g_0 \# p_t g_b = g_o$ on $M \setminus U$, $g_0 \# p_t g_b = t g_b$ on K, and
\[
g_0 \# p_t g_b = \chi(t^{-1}r)\Psi^*_\infty g_b + (1 - \chi(t^{-1}r))\Phi^* g_b
\]
on $A_e(\epsilon_0^{-1}\sqrt{t}, 2\epsilon)$.

Definition 1.22 (Function r_D on a naïve desingularization). On a naïve (M, g^D), we define the function smooth function r_D in the following way:

1. $r_D = r_o$ on $M_o(\epsilon_0)$ defined in (5),
2. $r_D = \sqrt{t}\overline{r}_b$ on each $N_j(\epsilon_0^{-1})$ defined in (6) and
3. $r_D = r_e$ on $A_e(\epsilon_0^{-1}\sqrt{t}, \epsilon_0)$.

Let us fix a notation for the desingularization by Eguchi-Hanson metrics.

Definition 1.23 (Naïve desingularization by Eguchi-Hanson metrics). Let (M_o, g_o) be a compact Einstein orbifold with integrable Einstein deformations (Definition 1.10) and $\mathbb{R}^4/\mathbb{Z}_2$ singularities at points $j \in S$, and let $v \in \mathbf{O}(g_o)$ and $\zeta = (\zeta_j)_{j \in S}$ with $\zeta_j \in \mathbb{R}^3 \setminus \{0\}$ and $\epsilon_j \in \{+,-\}$. We define $g^D_{\zeta, v}$ the naïve gluing (as in Definition 1.21) of $\text{e}h_{\zeta_j} / |\zeta_j|$ to g_v at scale $|\zeta_j|$ using the ALE coordinates of (10) and (17).

Definition 1.24 (Approximate obstructions $\hat{\mathbf{O}}(g^D_{\zeta, v})$). We define $\hat{\mathbf{O}}(g^D_{\zeta, v})$ the linear space spanned by the infinitesimal variations of $(v, \zeta) \mapsto g^D_{\zeta, v}$.

Remark 1.25. The space $\hat{\mathbf{O}}(g^D_{\zeta, v})$ is very close to the approximate obstruction space of $\mathbf{O}(g^D_{\zeta, v})$ and even yields better estimates. The results of [Ozu19b] therefore hold when using $\hat{\mathbf{O}}(g^D_{\zeta, v})$ instead of the similar space $\mathbf{O}(g^D)$ of [Ozu19b].

We next define the notion of nondegenerate sequence of naïve desingularizations in the spirit of [BR15] (see also the notion of generic smoothings in [Spo14]). It intuitively means that the desingularization sequence reaches an element $\partial_0 E(M)$ without being too tangent to $\partial_0 E(M)$.

Definition 1.26 (Nondegenerate naïve desingularization). We will say that a sequence of naïve desingularizations (M, g^D_{n, ν_n}) of a compact Einstein orbifold (M_o, g_o) is nondegenerate if, denoting $t_{n, \text{max}} = \max t_{n,j}$ and $t_{n, \text{min}} = \min t_{n,j}$, we have
(1) \(\lim_{n \to +\infty} \frac{t_n,\text{min}}{t_n,\text{max}} > 0 \) and
(2) \(\frac{\|v_n\|_{L^2(g_0)}}{t_n,\text{min}} \to 0. \)

This technical definition essentially means that the gluing scales are comparable and the Einstein deformations of the orbifold are not too large. A stronger notion is that of transverse desingularization.

Definition 1.27 (Transverse naïve desingularization). We will say that a sequence of naïve desingularizations \((M, g^D_{t_n, v_n})\) of a compact Einstein orbifold \((M_o, g_o)\) is transverse if we have
(1) \(\lim_{n \to +\infty} \frac{t_n,\text{min}}{t_n,\text{max}} > 0 \) and
(2) \(\frac{\|v_n\|_{L^2(g_0)}}{t_n,\text{min}} \to 0. \)

Remark 1.28. Usual desingularizations are transverse and often even orthogonal, with \(v_n = 0\). The desingularization of \([Biq13]\) is a notable exception.

Let us finally recall that according to \([Ozu19a, Ozu19b]\), for any Einstein orbifold \((M_o, g_o)\), and any \(\delta > 0\), there exists \(\epsilon = \epsilon((M_o, g_o), \delta) > 0\) such that if an Einstein metric \((M, g)\) satisfies
\[
d_{GH}((M_o, g_o), (M, g)) < \epsilon,
\]
then, there exists a naïve desingularization \((M, g^D)\) of \((M_o, g_o)\) and a diffeomorphism \(\phi : M \to M\) with
\[
\|\phi^* g - g^D\|_{C^2, \alpha}(g^D) < \delta,
\]
where the weighted Hölder norms \(C^2, \alpha(g^D)\) are defined in Section A in the Appendix.

We finally define the notions of nondegenerate and transverse sequence of Einstein metrics desingularizing the orbifold \((M_o, g_o) \in \partial_o E(M)\).

Definition 1.29 (Nondegenerate and transverse Einstein desingularization). Let \((M^4, g_n)_{n \in \mathbb{N}}\) be a sequence of Einstein metrics \(d_{GH}\)-converging to a compact Einstein orbifold \((M_o, g_o) \in \partial_o E(M^4)\). By \([Ozu19a, Ozu19b]\), there exists a sequence of naïve desingularizations \((g^D_{t_n, v_n})_n\) such that up to acting on \(g_n\) by a diffeomorphism, we have
(1) \(\|g_n - g^D_{t_n, v_n}\|_{C^2, \alpha}(g^D_{t_n, v_n}) \leq \epsilon \) for some \(\epsilon = \epsilon(g_0) > 0\) determined in \([Ozu19b]\),
(2) \(g_n \) is in reduced divergence-free gauge (defined in \([Ozu19b]\)) with respect to \(g^D_{t_n, v_n}\)
(3) \(g_n - g^D_{t_n, v_n} \) is \(L^2(g^D_{t_n, v_n})\)-orthogonal to \(\tilde{O}(g^D_{t_n, v_n})\) of Definition 1.24

We will say that \(g_n\) is a nondegenerate (respectively transverse) Einstein desingularization of \((M_o, g_o)\) if the sequence \((g^D_{t_n, v_n})_n\) is nondegenerate (respectively transverse) in the sense of Definitions 1.26 and 1.27.
2. NEW OBSTRUCTIONS TO THE DESINGULARIZATION OF EINSTEIN ORBIFOLDS

We first deduce a new type of obstruction to the Gromov-Hausdorff desingularization of Einstein orbifolds which differs from the ones of [Biq13, Biq16, Ozu19b]. The goal of this section is to prove Theorem 0.2 and Proposition 0.4.

This obstruction is special to the compact case, or at least not present in the asymptotically hyperbolic (AH) context if one allows deformations of the conformal infinity (which are infinitely many new degrees of freedom which do not add obstructions).

Example 2.1. The AdS Taub-Bolt family of metrics constructed by Page-Pope [PPS7] are asymptotically hyperbolic (AH) Einstein metrics and converge to an AH selfdual Einstein orbifold while bubbling out an Eguchi-Hanson metric (see [Ozu20b, Chapter B] for a precise description of the degeneration). This orbifold has only one singularity \(\mathbb{R}^4 / \mathbb{Z}_2 \) at which we have \(\text{Ric}^0 = 0 \) because it is Einstein, and in the usual bases of \(\Omega^\pm \), we have

\[
R^- = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix},
\]

because it is selfdual, and finally

\[
R^+ = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -3/2 & 0 \\ 0 & 0 & -3/2 \end{bmatrix},
\]

only has a one-dimensional kernel.

The AdS Taub-Bolt orbifold is \(L^2 \)-rigid. If we consider the Einstein deformations induced by the conformal changes at infinity, then, there exists an infinite dimensional space of nondegenerate Einstein desingularizations, see [Biq13]. This shows that the compactness assumption in Proposition 0.4 is necessary.
2.1. **Degeneration and obstructions.** Let \((M_o, g_o)\) be a compact Einstein orbifold with integrable Einstein deformations (Definition 1.10) and with a \(\mathbb{R}^4/\mathbb{Z}_2\) singularity at \(p \in M_o\), and let \((N, \text{eh})\) be an Eguchi-Hanson metric. At \(p\), we can choose orbifold coordinates (Definition 1.2) in which the metric \(g_o\) is in Bianchi gauge with respect to the flat metric \(e\) (see [Ozu19b] for a proof in the more difficult case of neck regions), that is satisfies \(B_o g_o = 0\). Since the metric \(g_o\) is smooth in the above orbifold coordinates and because of the \(\mathbb{Z}_2\)-invariance, we have the following development,

\[
g_o = e + H_2 + H_4 + O(r^{-6}),
\]

where the \(H_i\) are homogeneous symmetric 2-tensors with \(|H_i|_e \sim r_e^i\) with \(B_e H_2 = 0\). At the infinity of \(N\), in the coordinates of (7), we have the following development,

\[
eh = e + H^4 + O(r^{-8}),
\]

where \(|H^4|_e \sim r_e^{-4}\) and with \(B_e H^4 = 0\).

For a metric \(g\), let us denote \(Q_g^{(2)}\) the bilinear terms given by the second derivative of \(h \mapsto \Phi_g(h) := \text{Ric}(h) + \delta^* g B g h\) at \(g\) (whose linearization is \(P_g\)). According to [Biq13] Section 3, Section 10 and Lemma 14.1], for any symmetric 2-tensors \(|H_2|_e \sim r_e^2\) with \(P_e H_2 = \Lambda e\), and \(|H_4|_e \sim r_e^4\) with \(P_e H_4 = \Lambda H_2 - Q_{eh}^{(2)}(H_2, H_2)\), there exist

1. a unique symmetric 2-tensor \(h_2\) and reals \((\lambda_k)_{k \in \{1,2,3\}}\) on \(N\) satisfying:

\[
\begin{align*}
P_{eh} h_2 &= \Lambda eh + \sum_k \lambda_k o_k, \\
h_2 &= H_2 + O(r^{-2}), \\
\int_{S^2} \langle h_2, o_k \rangle_{eh} dv_{eh|S^2} = 0 \text{ for all } k \in \{1,2,3\}.
\end{align*}
\]

2. a symmetric 2-tensor \(h_4\) and real numbers \((\mu_k)_{k \in \{1,2,3\}}\) on \(N\) satisfying:

\[
\begin{align*}
P_{eh} h_4 &= \Lambda h_4 - Q_{eh}^{(2)}(h_2, h_2) + \sum_k \mu_k o_k, \\
h_4 &= H_4 + O(r^4), \\
\int_{S^2} \langle h_4, o_k \rangle_{eh} dv_{eh|S^2} = 0 \text{ for all } k \in \{1,2,3\}.
\end{align*}
\]

for all \(\epsilon > 0\).

Remark 2.2. The above tensor \(h_4\) is not unique since there are 2-tensors which are \(O(1)\) at infinity in the kernel of \(P_{eh}\). There will be a best choice of \(h_4\) in our construction which will ensure that the asymptotics on the orbifold and the ALE match, see Remark 2.11.

2.1.1. **More precision on the first obstruction.** Let \(\zeta \in \mathbb{R}^3 \setminus \{0\}\), and denote \(o_k(\zeta^\pm)\) the basis of \(O(\text{eh} \zeta^\pm)\) of (16). Since the metric \(\text{eh} \zeta^\pm\) is homothetic to \(eh\), we also find solutions \(h_2\) and \(h_4\) to

1. a unique symmetric 2-tensor \(h_2(\zeta^\pm)\) on \(N\) satisfying the following equations

\[
\begin{align*}
P_{eh \zeta^\pm} h_2(\zeta^\pm) &= \Lambda eh \zeta^\pm + \sum_k \lambda_k (\zeta^\pm) o_k (\zeta^\pm), \\
h_2(\zeta^\pm) &= H_2 + O(r^{-2}), \\
\int_{S^2} \langle h_2(\zeta^\pm), o_k (\zeta^\pm) \rangle_{eh \zeta^\pm} dv_{eh \zeta^\pm|S^2} = 0 \text{ for all } k \in \{1,2,3\}.
\end{align*}
\]
where

\begin{equation}
\left\{ \begin{aligned}
\Phi_{\varepsilon^\pm}(\zeta^\pm) &= \Lambda H_2(\zeta^\pm) - \phi_{\varepsilon^\pm}(\Phi_{\varepsilon^\pm}(\zeta^\pm) - \varepsilon^\pm H_2(\zeta^\pm) + \sum_k \mu_k(\zeta^\pm) o_k(\zeta^\pm), \\
\Phi_{\varepsilon^\pm}(\zeta^\pm) &= \Lambda H_4 + \mathcal{O}(r^\epsilon), \\
\int_{S^2} \langle \Phi_{\varepsilon^\pm}(\zeta^\pm), o_k(\zeta^\pm) \rangle_{\Phi_{\varepsilon^\pm}} dv_{\Phi_{\varepsilon^\pm}} = 0 & \text{for all } k \in \{1, 2, 3\}.
\end{aligned} \right. \tag{23}
\end{equation}

We moreover have the following values for the $\lambda_k(\zeta^\pm)$: for some $c > 0$,

\begin{equation}
\lambda_k(\zeta^\pm) = c \left\langle \mathbb{R}^{\pm}(H_2) \zeta^\pm, \zeta^\pm_{(k)} \right\rangle,
\end{equation}

where $(\zeta^\pm_{(k)})_{k \in \{1, 2, 3\}}$ is an orthogonal basis with $|\zeta^\pm_{(k)}| = \sqrt{2}$ and $\zeta^\pm_{(1)} = \zeta^\pm/|\zeta|$.

We can be more precise about the first obstruction and the symmetric 2-tensor h_2.

Lemma 2.3. Let h_2 be one of the above solution of (22) (where we omit the dependence in ζ^\pm for simpler equations). Then, we have

\begin{equation}
h_2 = H_2 + H_2^4 + \mathcal{O}(r^{-4+\epsilon}) \text{ for any } \epsilon > 0,
\end{equation}

where H_2^4 is a homogeneous solution to

\begin{equation}
P_e H_2^4 = -Q_e^{(2)}(H_4, H_2) + \Lambda H^4 + \sum_k \lambda_k O_k^4, \text{ with } |H_2^4|_e \sim r^{-2}.
\end{equation}

Moreover, when $\lambda_k = 0$, then $H_2^4 = 0$.

Proof. At infinity, in ALE coordinates we have $h_2 = H_2 + h'$ with $h' = \mathcal{O}(r^{-2+\epsilon})$ for all $\epsilon > 0$. Since $\text{e}h = e + H^4 + \mathcal{O}(r^{-8})$, we develop the equation (20) as:

\begin{equation}
P_e h_2 + P_e(h') + Q_e^{(2)}(H_4, H_2) + \mathcal{O}(r^{-8+\epsilon}) = \Lambda e + \Lambda H^4 + \sum_k \lambda_k O_k^4 + \mathcal{O}(r^{-8+\epsilon}),
\end{equation}

and using the assumption that $P_e H_2 = \Lambda e$, we find

\begin{equation}
P_e(h') + Q_e^{(2)}(H_4, H_2) = \Lambda H^4 + \sum_k \lambda_k O_k^4 + \mathcal{O}(r^{-8+\epsilon}).
\end{equation}

which is the stated equation. Now let us consider H^2 with $|H^2|_e \sim r^{-2}$ such that

\begin{equation}
P_e H^2 = -Q_e^{(2)}(H_4, H_2) + \Lambda H^4 + \sum_k \lambda_k O_k^4.
\end{equation}

It exists by Lemma A.5 in the appendix (one checks that there is no log term). Then, we see that $P_e(h' - H^2) = \mathcal{O}(r^{-6+\epsilon})$ while $h' = \mathcal{O}(r^{-2+\epsilon})$. By the theory of elliptic operators between weighted Hölder spaces (see for instance [PR78] or [LM85]), we therefore find that $h' - H^2 = \frac{K_0}{r^2 e} + \mathcal{O}(r^{-6+\epsilon})$ for a constant symmetric 2-tensor K_0, and consequently

\begin{equation}
h' = H^2 + \mathcal{O}(r^{-4+\epsilon}) = H^2 + \frac{K_0}{r^2 e} + \mathcal{O}(r^{-4+\epsilon})
\end{equation}

which proves the stated result.

Let us now prove that if the obstructions λ_k of (20) vanish, then $H_2^4 = 0$.
The idea is to use the uniqueness of h_2, and show that $L_{r\bar{\partial}} h_2$ satisfies the same equation. Indeed, we have:

\begin{equation}
0 = L_{r\bar{\partial}} (P_{eh} h_2 - \Lambda eh) = Q^{(2)}_{eh}(L_{r\bar{\partial}} eh, h_2) + P_{eh} L_{r\bar{\partial}} h_2 - \Lambda L_{r\bar{\partial}} eh,
\end{equation}

\begin{align*}
&= P_{eh} L_{r\bar{\partial}} h_2 - 4\Lambda eh \\
&+ Q^{(2)}_{eh}(L_{r\bar{\partial}} eh - 2eh, h_2) - \Lambda(L_{r\bar{\partial}} eh - 2eh)
\end{align*}

Remark 2.4. In the last line, we used the fact that $Q^{(2)}_{eh}(eh, h_2) + \Lambda eh = 0$, which comes from the (Bianchi-free version of) the identity $\Ric(\omega g) = \Ric(g)$ as 2-tensors for all $s > 0$. This implies $D_g \Ric(g) = 0$ for all g and differentiating again at g in the direction h gives:

$$D^2_g \Ric(h, g) + D_g \Ric(h) = 0.$$

We use this formula with $g = eh$, $h = h_2$ and use the assumption that $D_{eh} \Ric(h_2) = P_{eh} h_2 = \Lambda eh$ because the λ_k vanish.

In (27), we recognize $-2\Omega_1 = L_{r\bar{\partial}} eh - 2eh$. Let us show that the last term vanishes. Using [Biq16, Lemme 3], we find for $c \neq 0$,

$$Q^{(2)}_{eh}(o_1, h_2) - \Lambda o_1 = c \sum_j R^+_j(H_2) o_j$$

and by [Biq13], if $\lambda_1 = \lambda_2 = \lambda_3 = 0$, then, $R^+_1(H_2) = R^+_2(H_2) = R^+_3(H_2) = 0$, hence,

$$Q^{(2)}_{eh}(o_1, h_2) - \Lambda o_1 = 0.$$

There remains $P_{eh} L_{r\bar{\partial}} h_2 = 4\Lambda eh$ in (27). Since $L_{r\bar{\partial}} h_2 \sim L_{r\bar{\partial}} h_2 = 4H_2$ at infinity, we find the same first two equalities of (20) up to a constant 4. Since $4H_2$ is the unique solution up to $O(eh)$, we find that $L_{r\bar{\partial}} h_2 = 4h_2 + O(r^{-4})$.

The point is that now $L_{r\bar{\partial}} H_2^4 = 0$ hence $L_{r\bar{\partial}} h_2 = 4H_2 + O(r^{-4})$, and consequently $h_2 = H_2 + O(r^{-4})$.

Remark 2.5. Let us note that the vanishing of H_2^4 is independent on the coordinate system we consider for Eguchi-Hanson metric. It seems that the crucial property if these coordinates we use here is that the vector field $r\partial_r$ is harmonic. Since we will always take eh in the coordinates of (10), we will always have $H_2^4 = 0$ as long as the λ_k vanish.

\[\square\]

Later on, we will consider deformations of our orbifold as well and we will need to consider metrics which are not quite asymptotic to our target Euclidean metric, but a nearby one, i.e. $e + H_0$ for some constant 2-tensor H_0.

Similarly, let us consider coordinates in which we have $g_0 = e + H_0 + H_2 + O(r^2)$ for H_0 a traceless constant 2-tensor and let us denote $\psi : R^4/Z_2 \to R^4/Z_2$ a linear isomorphism for which $\psi^* e = e + H_0$, in order to extend H_2 to $\psi^* eh_{\psi}$.

Remark 2.6. Here, by $\psi^* eh_{\psi} \zeta^\pm$, we really mean the same diffeomorphism applied to $eh = e + \sum_{k>2} H_k(\theta) r^{-2k}$ in the polar coordinates $\theta \in R^3$ and $r \in [0, +\infty)$ as in Krotova Proposition 3.14], where $(R^4/Z_2, e) = (R^+ \times R^3, dr^2 + dr^2 g_{R^3})$. The metric has to be “closed-up” by a different S^2 at $\psi(0) = 0$.

Then the obstructions are:

$$\lambda_k(\zeta^\pm) = c \left(R^\pm(\psi, H_2) \zeta^\pm, \zeta^\pm(\zeta) \right).$$

(28)

We will moreover need to extend constant 2-tensors to our Eguchi-Hanson metrics.
Lemma 2.7. Let H_0 be a constant 2-tensor on $\mathbb{R}^4/\mathbb{Z}_2$, i.e. constant on \mathbb{R}^4. Then, there exists a unique 2-tensor h_0 on T^*S^2 satisfying:

$$
\begin{aligned}
P_{eh}h_0 &= 0, \\
0 &= h_0 = H_0 + H^4_0 + O(r^{-6+\epsilon}) \text{ for all } \epsilon > 0 \\
A_0 &\perp L^2(eh) \mathcal{O}(eh).
\end{aligned}
$$

(29)

Proof. Let $H_0 = \mathcal{L}_X e h$ be a constant symmetric 2-tensor with X_1 a linear vector field. Then, since $P_e H_0 = 0$, for χ a cut-off function supported in a neighborhood of infinity of eh, we have $P_{eh}(\chi H_0) = O(r^{-6})$, and an integration by parts against the o_k proves that $P_{eh}(\chi H_0) \perp \mathcal{O}(eh)$ and there is no obstruction to finding h'' with $P_{eh}(\chi H_0 + h'') = 0$ and $h'' = O(r^{-4+\epsilon})$ for all $\epsilon > 0$, see [Big13, Proposition 2.1]. This lets us find a solution h_0 to

$$
P_{eh}h_0 = 0, \text{ with } h_0 = H_0 + O(r^{-4}).
$$

(30)

with $B_{eh}h_0 = 0$, $\text{tr}_eh h_0 = 0$ by the maximum principle since $\text{tr}_eh P_{eh} = \frac{1}{2} \nabla^*_{eh} \nabla_{eh} \text{tr}_{eh}$ and $B_{eh} P_{eh} = B_{eh} \text{tr} h_0 = \frac{1}{2} \nabla^*_{eh} \nabla_{eh} B_{eh}$. We can make h_0 unique by additionally assuming:

$$
h_0 \perp \mathcal{O}(eh) \text{ and we find a development:}
$$

$$
h_0 = H_0 + H^4_0 + O(r^{-6+\epsilon}) \text{ with } |H^4_0|_e \sim r^{-4}.
$$

(31)

The L^2-product between h_0 and $o \in \mathcal{O}(eh)$ is a priori ill-defined because $o = O(r^{-4})$ and $h_0 = O(1)$, but since the coefficients of the leading terms restricted to spheres $\{r = \text{cst}\}$ belong to different eigenspaces of the Laplacian on $\mathbb{R}^{3,3}$, this is therefore well-defined.

Remark 2.8. We can prove that we have $h_0 = \mathcal{L}_{X_1} e h$ for some vector field X_1 satisfying $0 = B_{eh} \mathcal{L}_{X_1} e h = \nabla^*_{eh} \nabla_{eh} X_1$ and $X_1 = X_1 + O(r^{-3+\epsilon})$. We however do not have any application for this at the moment.

The link between the next asymptotic term H_4 of the Einstein modulo obstructions deformation $h_0 = H_2 + H^4_0 + \ldots$ of Lemma 2.3 and the development of $h_0 = H_0 + H^4_0 + \ldots$ is given by the following integration by parts:

$$
0 = \int N \langle P_{eh} h_2 - \Lambda e h - \sum_k \lambda_k o_k, h_0 \rangle_e d\nu_{eh}
$$

$$
= \int N \langle P_{eh} h_2, h_0 \rangle_e d\nu_{eh}
$$

$$
= \int N \langle h_2, P_{eh} h_0 \rangle_e d\nu_{eh} + \frac{1}{2} \lim_{r \to +\infty} \int_{\{r = e\}} \langle \nabla_0 (h_2), h_0 \rangle_e - \langle h_2, \nabla_0 h_0 \rangle_e d\nu_{\{r = e\}}
$$

$$
0 = -3 \int_{S^3/Z_2} \langle H_2, H^4_0 \rangle_e d\nu_{S^3/Z_2} - \int_{S^3/Z_2} \langle H^4_2, H_0 \rangle_e d\nu_{S^3/Z_2},
$$

(32)

where we used that by homogeneity, we have $\nabla_0 h_2 = \frac{2}{r_0} H_2$, $\nabla_0 H_0 = 0$, $\nabla_0 H^4_2 = -\frac{2}{r_0} H_2^4$ and $\nabla_0 H^4_2 = -\frac{4}{r_0} H^4_0$.

Finally, if $\lambda_0 = 0$, using the fact that $H^4_2 = 0$ from Lemma 2.3 we find:

$$
\int_{S^3/Z_2} \langle H_2, H^4_0 \rangle_e d\nu_{S^3/Z_2} = 0
$$

(33)

\[\square\]

2.1.2. A first obstruction on the orbifold. We have a similar result for the extension of tensors on the orbifold. Consider an infinitesimal Ricci-flat variation of eh_{\pm} in the direction $o_m = o_m(\zeta^{\pm}) \in \mathcal{O}(eh_{\pm})$ where $o_m(\zeta^{\pm})$ is the 2-tensor defined in [16] and Remark 1.20. In particular, o_m has a development $o_m = O^4 + \mathcal{O}(\zeta^3 r^{-8})$ with $|O^4|_e \sim |\zeta| r^{-4}$.

Lemma 2.9. We define \mathbf{e}_m^j for $m \in \{1, 2, 3\}$ some solutions to the following equation

\[
\begin{align*}
P_j \mathbf{e}_m^j &\in O(g_0), \\
\mathbf{e}_m^j &= O_m^4 + O(r^{-2+\epsilon}) \text{ for any } \epsilon > 0 \text{ at the singular point } j \\
\mathbf{e}_m^j &\perp O(g_0).
\end{align*}
\] (34)

They are determined up to the kernel of P_{g_0} in $O(r^{-2})$ at the singular points and this choice will not alter the result at this level of precision.

Proof. Let us consider a cut-off function χ on M_o supported in a small enough neighborhood of a singular point p. We have $P_{g_0}(\chi O_m^4) = O(r^{-4})$, hence there exists a 2 tensor $[O_m^4, 2] = O(r^{-2})$ so that

\[
P_{g_0}(\chi(O_m^4 + O_m^4, 2)) = O(r^{-2-\epsilon}).
\]

Finally, using the Fredholm properties of P_{g_o} proven in [OZ91], there exists $|h'| = O(r^{-\epsilon})$ for all $\epsilon > 0$ so that:

\[
P_{g_0}(\chi(O_m^4 + O_m^4, 2) + h') \in O(g_0).
\]

Now, we can uniquely choose it by imposing $(\chi(O_m^4 + O_m^4, 2) + h') \perp L^2(g_o) O(g_o)$, where the L^2 product is a priori ill-defined as in the proof of Lemma 2.7, but makes sense via the orthogonality of the different eigenspaces of the Laplacian on \mathbb{R}^3.

\[\square\]

Proposition 2.10. Let us denote $(v_1)_l$ an orthonormal basis of $O(g_o)$. Consider the development of the symmetric 2-tensor $H_2 = H_2 + H_2^2 + O(r^{-6+\epsilon})$ of (22) (again, we will omit the dependence in ζ).

For $\zeta \in \Omega^k$ and the symmetric 2-tensor $H^4 = H^4(\zeta^\perp)$ with $P_e H^4 = 0$ and $B_e H^4 = 0$, there exists $(\tilde{h}^4, (v_l)_l)$ with a symmetric 2-tensor \tilde{h}^4 and real numbers $(v_l)_l$ on M_o satisfying the following equations

\[
\begin{align*}
P_e \tilde{h}^4 &= \sum_l \nu_l v_l + \sum_k \lambda_k \mathbf{e}_k^4, \\
\tilde{h}^4 &= H^4 + H_2^4 + O(|\zeta|^2 r_o^{-\epsilon}) \text{ for any } \epsilon > 0 \text{ at the singular point } j \\
\tilde{h}^4 &\perp O(g_o).
\end{align*}
\] (35)

We moreover have the following value for the obstruction when $\lambda_k = 0$ for $k \in \{1, 2, 3\}$

\[
\nu_l = 3 \int_{S^1/Z_2} \langle H^4, V_{l, 2} \rangle e^{dV_{S^3/Z_2}}.
\] (36)

where we have $v_l = V_{l, 0} + V_{l, 2} + O(r^4_e)$ with $|V_{l, m}| e \sim r^m_e$.

Remark 2.11. The next term in the development of h^4 is H_4^4 with $|H_4^4| e = O(r^e_e + r^{-\epsilon})$ for any $\epsilon > 0$ (it will typically be logarithmic in r_e) for which we have

\[
\tilde{h}^4 = H^4 + H_2^4 + H_4^4 + O(|\zeta|^2 r_o^{-2-\epsilon}).
\]

It satisfies

\[
P_e H_2^4 + Q_e^{(2)}(H^4, H_4) + Q_e^{(2)}(H_2^4, H_2) + Q_e^{(3)}(H_2^4, H_2, H_2) = 0.
\] (37)

for $Q_e^{(m)}$ the m-linear terms of the development of $h \mapsto (\text{Ric} - \Lambda + \delta^e_{e, 1} B_e)(e + h)$ around $h = 0$. The equality [31] is exactly the equation satisfied by the next term in the development of h_2 defined in [21] or [23]. That was what made h_2 non unique: one could add any element of the kernel of $P_{e, h}$ asymptotic to a constant 2-tensor to it. We can make the unique (and still existing) by imposing that we have for the above H_4^4:

\[
h_4^4 = H_4 + H_2^4 + O(r^{-2+\epsilon}).
\]
Proof. Consider χ a cut-off function supported in the neighborhood of the singular point $j \in M_o$. From $P_o H^4 = 0$, $r^4_o [\nabla^k \chi (g_o - e)]_e = O(r^2_o)$ and using (35), we find

$$P_o (\chi (H^4 + H^4_2)) - \sum_k \lambda_k \mathbf{\sigma}^k \in r^{-2}_o \mathcal{O}^n (g_o)$$

for $0 < \beta < 1$ where the norms are defined in the Appendix A.

Moreover, by integration by parts and using $\mathbf{\sigma}^k \perp L^2 (g_o) \mathcal{O} (g_o)$, we find

$$\int_{M_o} \langle P_o (\chi (H^4 + H^4_2)), \nu^l \rangle_{g_o} d \nu g_o = \int_{M_o} \langle \chi (H^4 + H^4_2), P_o (\nu^l) \rangle_{g_o} d \nu g_o$$

$$+ \frac{1}{2} \lim_{r \to 0} \int_{\{r_o = r\}} \langle \nabla \partial_{r_o} (\chi H^4), \nu^l \rangle_{g_o} - \langle \chi H^4, \nabla \partial_{r_o} \nu^l \rangle_{g_o} d \nu_{\{r_o = r\}}$$

$$+ \frac{1}{2} \lim_{r \to 0} \int_{\{r_o = r\}} \langle \nabla \partial_{r_o} (\chi H^4_2), \nu^l \rangle_{g_o} - \langle \chi H^4_2, \nabla \partial_{r_o} \nu^l \rangle_{g_o} d \nu_{\{r_o = r\}}$$

$$= 3 \int_{S^3 / Z_2} \langle H^4, V_{i,2} \rangle e d \nu S^3 / Z_2 + \int_{S^3 / Z_2} \langle \mathbf{\sigma}^k, \partial \rangle_{g_o}$$

$$\text{Indeed, once restricted to } S^3 / Z_2, \text{ the coefficients of } H^4 \text{ and } V_{i,0} \text{ are eigenfunctions of the Laplace-Beltrami operator and associated to different eigenvalues, the product against the first asymptotic term } V_{i,0} \text{ vanishes. Note that this also justifies the orthogonality of } (35). \text{ For the second term } V_{i,2}, \text{ we use the homogeneity of } H^4 \text{ and } V_{i,2} \text{ which yield } \nabla \partial_{r_o} H^4 = -\frac{4}{r^4_o} H^4 \text{ and } \nabla \partial_{r_o} V_{i,2} = \frac{2}{r^2_o} V_{i,2} \text{ and the above value. Thanks to the Fredholm properties of } P_o \text{ proved in [Ozu19b], we have the stated result.}$$

When $\lambda_k = 0$ for $k \in \{1, 2, 3\}$, then, we can use Lemma 2.3, hence plug $H^4_2 = 0$ into (38) and find the expected value.

Similarly, if (M_o, g_o) has several \mathbb{R}^4 / Z_2 singularities, denote $\mathbf{\bar{h}}^4_j$ the symmetric 2-tensors (35) asymptotic to $H^4 (\zeta^\pm_j) + H^4_2 (\zeta^\pm_j)$ at the singular point j. The symmetric 2-tensor

$$\mathbf{\bar{h}}^4 := \sum_j \mathbf{\bar{h}}^4_j$$

satisfies

$$\begin{cases}
P_o \mathbf{\bar{h}}^4 = \sum_k \nu^l \nu^k + \sum_j k \lambda_k \mathbf{\sigma}^k, \\
\mathbf{\bar{h}}^4 = H^4 (\zeta^\pm_j) + H^4_2 (\zeta^\pm_j) + \mathcal{O}(r^{-\epsilon}_o) \text{ for any } \epsilon > 0 \text{ at each singular point } j
\end{cases} \quad (39)$$

2.1.3 First variation of the initial obstruction. By [Ozu19b] Proposition 5.17, around a singular point j, in coordinates where $g_o = e + H_{j,2} + \mathcal{O}(r^4_o)$, for $v \in \mathcal{O}(g_o)$ small enough and with $v = V_{j,0} + V_{j,2} + \mathcal{O}(r^4_o)$ in the same coordinates, we have

$$g_v = (e + \tilde{V}_{j,0}) + (H_{j,2} + \tilde{V}_{j,2}) + \mathcal{O}(r^4_o),$$

with $\tilde{V}_{j,0} = V_{j,0} + \mathcal{O}(\|v\|_{L^2 (g_v)})$ and $\tilde{V}_{j,2} = V_{j,2} + \mathcal{O}(\|v\|_{L^4 (g_v)}) r^4_o$. We also denote $\psi (\tilde{V}_{j,0}) : \mathbb{R}^4 / Z_2 \to \mathbb{R}^4 / Z_2$ the linear isomorphism for which $\psi (\tilde{V}_{j,0}) e = e + \tilde{V}_{j,0}$.

For $k \in \{1, 2, 3\}$ and a singular point j, and $\zeta = (\zeta_j)_{j,2}$ with $\zeta_j \in \mathbb{R}^3 \setminus \{0\}$, we will denote $\lambda^k_j (\zeta, v)$ the real numbers of (28) obtained for $H_0 = \tilde{V}_{j,0}$ and $H_2 = H_{j,2} + \tilde{V}_{j,2}$, that is for $c > 0$,

$$\lambda^k_j (\zeta, v) = c (R^2 (\psi (\tilde{V}_{j,0})), (H_{j,2} + \tilde{V}_{j,2})) \zeta^\pm_j , \zeta^\pm_{j,2}. \quad (40)$$
We find a link between the variations of the first obstruction λ_1 on the Eguchi-Hanson metric and the first obstructions ν_l on the orbifold.

Corollary 2.12. Consider (M_o, g_o) an integrable Einstein orbifold with only $\mathbb{R}^4/\mathbb{Z}_2$ singularities. Consider also a small enough $v \in O(g_o)$, the orthonormal basis $(v_i)_I$ of Proposition 2.10 and the Einstein deformation g_v of g_o of Definition 1.10. Assume that we have $\lambda_1^k(\zeta, 0) = 0$ for all k, j.

Then, for some constant $C \in \mathbb{R}^+$, we have the following control:

$$\sum_{j \text{ singular}} |\zeta_j|^2 \langle \zeta, v \rangle = C \sum_l \langle v, v_l \rangle \nu_l(\zeta, 0) + \mathcal{O}(\|v\|^2_2 |\zeta|^2),$$

(41)

where the ν_l are real numbers of \(39\), and where $|\zeta| = \max_j |\zeta_j|$.

Proof. Let (M_o, g_o) be like in the statement above and consider a small enough $v \in O(g_o)$ and g_v the Einstein deformation of g_o of Definitions 1.9 and 1.10 denote $\lambda_1^j(\zeta, v)$ the constant in (40) above. Our goal is to show that the first variation of $v \mapsto \sum_j |\zeta_j|^2 \langle \zeta, v \rangle$ around $(\zeta, 0)$ is proportional to $\sum_k (v, v_l) \nu_l(\zeta, 0)$.

From the expression (40) and the formula \([Biq13, Proposition 3.2]\), we see that the singular point j, the first variation of $v \mapsto \sum_j |\zeta_j|^2 \langle \zeta, v \rangle$ is

$$\sum_j |\zeta_j| \int_{S^3/\mathbb{Z}_2} \langle V_2, O_{j,1}^4 \rangle e^{dv_{S^3/\mathbb{Z}_2}},$$

up to a multiplicative constant. Using the equality $H^4(\zeta^\pm) = \frac{|\zeta_j|^2}{2} O_j^4\langle \zeta^\pm \rangle$ together with (39), we see that this equals $\sum_j (v, v_l) \nu_l$ up to a multiplicative constant and the estimate (41) follows. \(\square\)

2.1.4. Values for the second obstruction. Let H_2 be a quadratic symmetric 2-tensor with $P_e H_2 = \Lambda e$, and H_4 with $|H_4|_e \sim r_e^4$ and $P_e H_4 = \Lambda H_2 - Q^{(2)}(H_2, H_2)$, and recall the notation $R^+(H_2)$ as the common selfdual part of the curvature at $r_e = 0$ of Riemannian metrics with a development $e + H_2 + \mathcal{O}(r_e^5)$. As seen above, we have $\lambda_k := c(R^+(H_2)(\omega_1^+, \omega_k^+)$ for the λ_k of [29] and $c > 0$. In particular, if for all k, $\lambda_k = 0$, then we have

$$R^+(H_2) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & R_{22} & R_{23} \\ 0 & R_{32} & R_{33} \end{bmatrix},$$

and in this case, for a positive constant $C > 0$, by \([Biq16, Lemme 9]\) we have

$$\mu_1 = C \det \begin{bmatrix} R_{22} & R_{23} \\ R_{32} & R_{33} \end{bmatrix}$$

(42)

Remark 2.13. If $\text{Ric}(H_2) = 0$, then we have $\text{tr} R^+(H_2) = 0$ and therefore

$$\det \begin{bmatrix} R_{22} & R_{23} \\ R_{32} & R_{33} \end{bmatrix} \leq 0$$

with equality if and only if $R^+(H_2) = 0$.

In general, we might only know that the λ_k are small rather than exactly vanishing. We still have the following estimate.

Lemma 2.14. Let H_2 and H_4 be homogeneous symmetric 2-tensors as above. We have

$$\mu_1 = C \det \begin{bmatrix} R_{22} & R_{23} \\ R_{32} & R_{33} \end{bmatrix} + \mathcal{O}\left(\sum_k |\lambda_k| \cdot |r_e^{-2} H_2|_{g_e}\right).$$

(43)
22 \textsc{Higher Order Obstructions to the Desingularization of Einstein Metrics}

\textit{Proof.} According to [Biq16, Lemma 7], we have
\[
\mathbf{R}^+(H_2) = \begin{bmatrix}
 c^{-1}\lambda_1 & c^{-1}\lambda_2 & c^{-1}\lambda_3 \\
 c^{-1}\lambda_2 & R_{22} & R_{23} \\
 c^{-1}\lambda_3 & R_{32} & R_{33}
\end{bmatrix}.
\]

Exactly like in the proof of [Biq16, Lemma 8], we use the expression of \(Q^{(2)}_e\) given in [Biq16 Lemma 3] in order to express \(\mu_1\). The value of \(\mu_1\) is a quadratic form in the coefficients of \(\mathbf{R}^+(H_2)\). It is composed of products of a \(\lambda_k\) and a \(\lambda_j\), products of the \(\lambda_k\) with the remaining \(R_{ij}\), and its last part involving \(R_{22}, R_{23}, R_{32}\) and \(R_{33}\) is
\[
C \begin{bmatrix}
 R_{22} & R_{23} \\
 R_{32} & R_{33}
\end{bmatrix},
\]
as proven in [Biq16, Lemma 8]. Since all of the \(\lambda_k\) as well as the \(R_{ij}\) are linear in \(H_2\) and are therefore controlled by \(|r^{-2}_eH_2|_{g_0}\), we deduce the stated estimate. \(\Box\)

For another Eguchi-Hanson metric \(\mathbf{eh}_{\zeta^\pm}\), one has similar estimates with the matrix expression of \(\mathbf{R}^+(H_2)\) in the basis \((\zeta^\pm, |\zeta|, |\zeta| \cdot |\zeta| \cdot |\zeta^\pm|)\) on \(\mathbb{R} \cdot \zeta^\pm\) and its orthogonal. Note that in that case, we have \(\lambda_k \sim |\zeta|\) and \(\mu_1 \sim |\zeta|^2\).

2.2. \textit{Approximate Einstein metrics and obstructions.} Let \((M_0, g_0)\) be a compact Einstein orbifold with integrable Einstein deformations and only \(\mathbb{R}^4/\mathbb{Z}_2\) singularities. For \(v \in \mathbf{O}(g_0)\) small enough and \(\zeta = (\zeta^\pm)_j\) with \(\zeta_j \in \mathbb{R}^3 \setminus \{0\}\), we recall the notations:

1. \(g_0\) the Einstein deformation of \(g_0\) of Definition 1.10.
2. for a singular point \(j\), symmetric 2-tensors \(h_{j/2}(v, \zeta)\) and \(h_{j,4}(v, \zeta)\) of (22) and (23) by extending the asymptotic terms of \(g_0\) on \(\mathbf{eh}_{\zeta^\pm}\)
3. a symmetric 2-tensor \(\mathbf{h}^4(v, \zeta)\) of (39) extending the \(r^{-4}\) term of \(\mathbf{eh}_{\zeta^\pm}\) on \((M_0, g_0)\).
4. \(g^D\) or \(g_\zeta^D\) for the naïve desingularization and \(r_D\) the associated radial parameter, see Definitions 1.23 and 1.22.

\textbf{Definition 2.15} (Approximate Einstein modulo obstructions metric \(g^A_{\zeta,v}\)). We define an approximate Einstein modulo obstructions metric \(g^A_{\zeta,v}\) as the naïve gluing of the metrics \(\mathbf{eh}_{\zeta^\pm} + h_{j/2}(v, \zeta) + h_{j,4}(v, \zeta)\) at the singular points \(j\) of \((M_0, g_0)\) of (22).

There exists \(C = C(g_0) > 0\) such that we have
\[
\begin{align*}
 r^k_D |\nabla^k_{\mathbf{eh}_{\zeta^\pm}} h_{j/2}| &\leq C r^2_D, \\
 r^k_D |\nabla^k_{\mathbf{eh}_{\zeta^\pm}} h_{j,4}| &\leq C r^4_D, \quad \text{and} \\
 r^k_D |\nabla^k_{\mathbf{eh}_{\zeta^\pm}} \mathbf{h}^4| &\leq C |\zeta|^2 r^{-4}_D,
\end{align*}
\]
we have the following controls: on \(M_0(\epsilon)\) (defined in (5))
\[
r^k_D |\nabla^k(g^A_{\zeta,v} - g^D_{\zeta,v})|_{g^A_{\zeta,v}} \leq C |\zeta|^2,
\]
and on the connected component of \(M \setminus M_0(\epsilon)\) containing the singular point \(j \in S\):
\[
r^k_D |\nabla^k(g^A_{\zeta,v} - g^D_{\zeta,v})|_{g^A_{\zeta,v}} \leq C \left(\mathbb{1}_{\{r_D > |\zeta|^{1/4}\}} |\zeta|^2 r^{-4}_D + \mathbb{1}_{\{r_D < 2|\zeta|^{1/4}\}} r^2_D\right),
\]\(\text{(44)}\)
where \(\mathbb{1}_A\) is the indicator function for \(A\).

We now approximate the kernel of the linearization of the Einstein operator at \(g^A_{\zeta,v}\).
Definition 2.16 (Approximate obstructions $\hat{O}(g^A_{\zeta,v})$). We define $\hat{O}(g^A_{\zeta,v})$ the linear space spanned by the infinitesimal variations of $(v, \zeta) \mapsto g^A_{\zeta,v}$.

More precisely for the element $\mathbf{o}_k \in O(\mathbf{eh}_{\zeta_j}^{\pm})$ with $\mathbf{o}_k = \partial_{\zeta_j, (k)} \mathbf{eh}_{\zeta_j}^{\pm}$, we define

$$\bar{o}_k := \partial_{\zeta_j, (k)} g^A_{\zeta,v}$$

and, for $w \in O(g_{\zeta,v})$, we define \bar{w} as the associated infinitesimal deformation of $v \mapsto g^A_{\zeta,v}$.

Remark 2.17. As in Remark [L.25], the space $\hat{O}(g^A_{\zeta,v})$ is very close to the space $\hat{O}(g^D_{\zeta,v})$ of [Ozu19b] and even yields better estimate. The results of [Ozu19b] therefore hold when replacing $O(g^D_{\zeta,v})$ by $O(\hat{g}^A_{\zeta,v})$.

We have the following estimates which show that the space $\hat{O}(g^A_{\zeta,v})$ is an approximate L^2-cokernel of the linearization of the Einstein equation.

Lemma 2.18. For $\bar{o}_k \in \hat{O}(g^A_{\zeta,v})$ and $\bar{w} \in \hat{O}(g^A_{\zeta,v})$ as in Definition 2.16 above, we have for any symmetric 2-tensor h on M,

$$\langle \langle \mathcal{P}_{\hat{g}, \bar{o}_k} h, \bar{\omega} \rangle \rangle_{L^2(g^A_{\zeta,v})} \leq C|\zeta| \cdot \|h\|_{C^2, \alpha}(g^D_{\zeta,v}) \|\bar{o}_k\|_{L^2(\mathbf{eh}_{\zeta_j}^{\pm})} \quad \text{and}$$

$$\langle \langle \mathcal{P}_{\hat{g}, \bar{w}} h, \bar{\omega} \rangle \rangle_{L^2(g^A_{\zeta,v})} \leq C|\zeta| \cdot \|h\|_{C^2, \alpha}(g^D_{\zeta,v}) \|\bar{w}\|_{L^2(\mathbf{g}_{\zeta,v})}.$$ \hspace{1cm} (47)

Proof. By integration by parts and symmetry of $\mathcal{P}_{\hat{g}}$ on the closed manifold M, it is equivalent to control

$$\int_M \langle \langle h, \mathcal{P}_{\hat{g}, \bar{o}_k} \rangle \rangle_{g^A_{\zeta,v}} dv_{\hat{g}_{\zeta,v}} \quad \text{and} \quad \int_M \langle \langle h, \mathcal{P}_{\hat{g}, \bar{w}} \rangle \rangle_{g^A_{\zeta,v}} dv_{\hat{g}_{\zeta,v}}.$$ \hspace{1cm} (46)

On the region where $g^D_{\zeta,v} = \mathbf{eh}_{\zeta_j}^{\pm}$, we have $\mathcal{P}_{\hat{g}, \bar{o}_k} = 0$. There remains the region where $g^D_{\zeta,v} = \mathbf{g}_{\zeta,v}$ on which by differentiating [39] with respect to ζ_j^\pm, we find

$$\mathcal{P}_{\hat{g}, \bar{o}_k} = \sum_l \partial_{\zeta_j, (k)} \nu_l w_l + \sum_{i,m} \partial_{\zeta_j, (k)} (\lambda_i^m o_i^m),$$

where (w_l) denotes an orthonormal basis of $O(\mathbf{g}_{\zeta,v})$, and where the $\partial_{\zeta_j, (k)} \nu_l$ are the derivatives of the $\nu_l = \nu_l(v, \zeta)$ of [39] in the direction $\zeta_j, (k)$. Given the expressions [24], [16] and [39], that gives for some $C = C(\mathbf{g}_{\zeta,v}) > 0$,

$$\left\| \mathcal{P}_{\hat{g}, \bar{o}_k} \right\|_{L^2(\mathbf{eh}_{\zeta_j}^{\pm})} \leq C|\zeta| \cdot \|\bar{o}_k(\zeta_j^\pm)\|_{L^2(\mathbf{eh}_{\zeta_j}^{\pm})}.$$ \hspace{1cm} (47)

We find that

$$\int_{\{r_D > 2|\zeta_j^\pm|^{1/4}\}} \langle \langle h, \mathcal{P}_{\hat{g}, \bar{o}_k} \rangle \rangle_{g^A_{\zeta,v}} dv_{\hat{g}_{\zeta,v}} \leq C|\zeta| \cdot \|h\|_{C^0(g^D_{\zeta,v})} \|\bar{o}_k(\zeta_j^\pm)\|_{L^2(\mathbf{eh}_{\zeta_j}^{\pm})}.$$ \hspace{1cm} (46)

Finally, on the gluing region where $|\zeta_j^\pm|^{1/4} < r_D < 2|\zeta_j^\pm|^{1/4}$, we have for all $l \in \mathbb{N}$ and $C_l > 0$

$$r_D^l \langle \langle \mathcal{P}_{\hat{g}, \bar{o}_k} \rangle \rangle_{g^A_{\zeta,v}} \leq C_l |\zeta_j^\pm|^2 r_D^{4} + r_D^2$$

and

$$r_D^l \langle \langle \mathcal{P}_{\hat{g}, \bar{o}_k} \rangle \rangle_{g^A_{\zeta,v}} \leq C |\zeta_j^\pm|^4 r_D^8 + |\zeta_j^\pm|^2 r_D^2,$$

and we find that on the gluing region where $|\zeta_j^\pm|^{1/4} < r_D < 2|\zeta_j^\pm|^{1/4}$, we have

$$\left\| \mathcal{P}_{\hat{g}, \bar{o}_k} \right\|_{g^A_{\zeta,v}} \leq C \|\bar{o}_k\|_{L^2(\mathbf{eh}_{\zeta_j}^{\pm})}.$$
We therefore globally find the estimate (46).

For the second estimate, note first that on the region where \(g_{C,v}^D = g_v \), we have
\[
P_{g_{C,v}^D} w = 0,
\]
and by a similar argument to the above one, by differentiating (22) and (23), on each region where \(g_{C,v}^D = ch_{v^+} \), we have
\[
P_{g_{C,v}^D} \tilde{w} = \sum_k \partial_{\tilde{w}} (\lambda_k + \mu_k) \partial_k (\zeta_j^+),
\]
and we find that there exists \(C = C(g_v) > 0 \) such that \(\| \partial_{\tilde{w}} (\lambda_k + \mu_k) \| \leq C |\zeta| \). Together with a control on the gluing region like the above one, one obtains the estimate (47). □

Proposition 2.19. Assume that there exists an Einstein metric \(g_{C,v} \) satisfying:

1. \(\Phi_{g_{C,v}^D} (g_{C,v}) = 0 \),
2. \(g_{C,v} - g_{D,v}^A \perp \tilde{O}(g_{C,v}^D) \)
3. \(\| g_{C,v} - g_{D,v}^A \|_{C^{2,\alpha}(g_{C,v}^D)} < \epsilon \) for \(\epsilon > 0 \) small enough determined in [Ozu19b] depending only on \(g_v \).

Then, we actually have for all \(l \) for the obstructions of (35):
\[
\nu_l = O(|\zeta|^5),
\]
and for each \(j \) and all \(k \in \{1, 2, 3\} \) for the obstructions of (22) and (23):
\[
\lambda^j_k + \mu^j_k = O(|\zeta|^5).
\]

Proof. Let us denote \(\pi_{O(g_{C,v}^A)^\perp} \) the \(L^2(g_{C,v}^A) \)-orthogonal projection on \(O(g_{C,v}^D)^\perp \). Thanks to the obstruction result of [Ozu19b] Proposition 5.1, we only have to understand the value of \(\| \pi_{O(g_{C,v}^A)^\perp} \Phi_{g_{C,v}^D} (g_{C,v}^A) \|_{r^{-2} C^{0}(g_{C,v}^D)} \), in order to control both \(\| g_{C,v}^A - g_{C,v} \|_{C^{2,\alpha}(g_{C,v}^D)} \) and the obstructions, where the norms are defined in Definition A.3 in the Appendix.

The estimate on the different Eguchi-Hanson regions has been done in [Biq13] Section 14. There remains to understand the orbifold region. Using the definition of \(\tilde{h}^4 \), we control the first variation
\[
P_{g_{C,v}} \tilde{h}^4 = \sum_l \nu_l v_l + \sum_{j,k=1}^3 \lambda^j_k \tilde{D}^j_k,
\]
and on the region where \(g_{C,v}^A = g_v \), \(\tilde{h}^4 = O(|\zeta|^4 r^4_D) \), we have:
\[
\Phi_{g_{C,v}^D} (g_{C,v}^A) = \sum_l \nu_l v_l + \sum_{j,k=1}^3 \lambda^j_k \tilde{D}^j_k + O(|\zeta|^4 r^1_D),
\]
which is exactly analogous to the estimate [Biq13] (108). The gluing region is treated exactly as in [Biq13] Section 14 for instance, see also the above proof of Lemma 2.18. We conclude like in [Biq13] (109) that
\[
\| \pi_{O(g_{C,v}^A)^\perp} \Phi_{g_{C,v}^D} (g_{C,v}^A) \|_{r^{-2} C^{0}(g_{C,v}^D)} \leq C |\zeta|^3 r^{-\frac{4}{3}}.
\]
We conclude exactly like in order to prove [Biq13] (112) that we have the stated control (see also [Ozu20t] Proposition 5.1). □
2.3. A new obstruction to the desingularization of Einstein orbifolds. By [Ozu19a, Ozu19b], we know that Einstein metrics which are close to an Einstein orbifold \((M_o, g_o)\) result from a gluing-perturbation procedure. To prove that it cannot be desingularized, we just need to prove that an obstruction to this procedure does not vanish.

2.3.1. Approximate obstructions. Let us denote \(\zeta = t \cdot \phi\) with \(t = (t_j)_{j} = (|\zeta_j|)_j\) and \(\phi = (\phi_j)_j = (\zeta_j^\pm/|\zeta_j|)_j\). By Proposition 2.19 we find the following estimate for any singular point \(j\), any \(k \in \{1, 2, 3\}\):

\[
t_j \lambda_k^j(\phi_j, v) + t_j^2 \mu_k^j(\phi_j, v) = \mathcal{O}(t_{\text{max}}^7),
\]

and

\[
\nu_l(t \cdot \phi, v) = \mathcal{O}(t_{\text{max}}^7), \text{ for each } l,
\]

where the \(\lambda_k^j(\phi_j, v)\) and \(\mu_k^j(\phi_j, v)\) and \(\nu_l(t \cdot \phi, v)\) are the constants of Lemma 22, 23 and 39 for each \(\text{ch}_{\phi_j}^\pm\) associated to the development of \(g_\phi\) at the singular point \(j\).

Our goal is to prove that for all \(j\), both all of the \(\lambda_k^j\) and \(\mu_k^j\) have to vanish when \(t \to 0\). The main concern is to rule out the compensation of \(t_j^2 \mu_k^j\) by \(t_j \lambda_k^j\) just like in the desingularization case of [Biq13, Theorem 14.3].

Proof of Theorem 0.3 and Proposition 0.4. Let us consider \((M_o, g_o) \in \mathcal{E}(M)^{\text{GH}}\) for \(M\) having the topology of \(M_o\) desingularized by \(T^*S^2\) in an orientation at each of its singular point and assume that \(g_o\) only has integrable Einstein deformations (see Definition 1.13). Let us assume that there exists a sequence of Einstein metrics \((M, g_n)\), desingularizing \((M_o, g_o)\). We will discuss at the end of the proof in which situation we shall assume that this sequence is nondegenerate, transverse or stable.

Then, by [Ozu19a, Ozu19b], there exists a sequence of naive desingularizations \(g_n^{D, v_n}\) such that the metrics \((M, g_n)\) are Einstein perturbations of \(g_n^{D, v_n}\) with \(\zeta_n = (\zeta_{n,j})_j\). We will use the notations \(t_n = (t_{n,j})_j\), with \(t_{n,j} = |\zeta_{n,j}| > 0\) and \(\phi_n = (\phi_{n,j})_j, \phi_{n,j} = \zeta_{n,j}^\pm/|\zeta_{n,j}|\) satisfying \(\zeta_{n,j}^\pm = t_{n,j} \cdot \phi_{n,j}\), and we will denote \(t_n \cdot \phi_n = (t_{n,j} \phi_{n,j})_j\).

By compactness, up to taking a subsequence, we can assume that for any \(j\), \(\phi_{n,j} \to \phi_{\infty,j}\) on the sphere while \(t_n \to 0\) and \(v_n \to 0\) since by assumption the limit is \(g_o\).

Denote \(\lambda_k^j(\phi_{n,j}, v_n)\) and \(\mu_k^j(\phi_{n,j}, v_n)\) the real numbers of (21) and (21) for these configurations. According to (53), we have the following controls: for all \(j\) and \(k\),

\[
t_{n,j} \lambda_k^j(\phi_{n,j}, v_n) + t_{n,j}^2 \mu_k^j(\phi_{n,j}, v_n) = \mathcal{O}(t_{\text{max}}^7).
\]

The first obstruction of [Biq13, Ozu19b] means that at the limit, for any singular point \(j\), we have \(\lambda_k^j(\phi_{\infty,j}, 0) = 0\) for \(k \in \{1, 2, 3\}\), there exists a basis of the self-dual or anti-self-dual (depending on the orientation of the gluing) 2-forms starting with \(\phi_{\infty,j} = \lim_{j \to \infty} \zeta_{n,j}^\pm/|\zeta_{n,j}|\) in which we have

\[
R_{\phi_{\infty,j}}^\pm(j) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & a_2^j & 0 \\ 0 & 0 & a_3^j \end{bmatrix}.
\]

Our goal is to prove that for all \(j\) we have, \(\mu_3^j(\phi_{\infty,j}, 0) = 0\). By Lemma 2.14, this will then imply that either \(a_2^j = 0\) or \(a_3^j = 0\) in (54).

Assume towards a contradiction that both \(a_2^j \neq 0\) and \(a_3^j \neq 0\). Let us use the variations of the \(\phi \mapsto \lambda_k^j(\phi, 0)\) computed in [Biq13, Lemma 12.2] at \(\phi_{\infty,j}\), we first have the controls:

\[
\lambda_k^j(\phi_{n,j}, 0) = \mathcal{O}(|\phi_{n,j} - \phi_{\infty,j}|^2),
\]

for all \(j \in \{1, 2, 3\}\) and \(k = 1, 2, 3\). We will discuss at the end of the proof in which situation we shall assume that this sequence is nondegenerate, transverse or stable.
because the first variation of the smooth map \(\phi \mapsto \lambda_1^i(\phi, 0) \) vanishes at \(\phi_{\infty,j} \). Similarly since we assumed towards a contradiction that \(a_j^2 \neq 0 \) and \(a_j^3 \neq 0 \), there exists \(c > 0 \) depending on \((a_j^2, a_j^3)\), so that
\[
|\lambda_k^j(\phi_{n,j}, 0) - \lambda_k^j(\phi_{n,j}, 0)| \geq c|\phi_{n,j} - \phi_{\infty,j}|,
\]
(56) since the first order variations of \(\phi \mapsto (\lambda_k^j(\phi, 0), \lambda_k^j(\phi, 0)) \) is invertible at \(\phi_{\infty,j} \). For the variations induced by \(v_n \in O(g_n) \), for any \(k \in \{1, 2, 3\} \), from the expression (40), we have
\[
|\lambda_k^j(\phi_{n,j}, v_n) - \lambda_k^j(\phi_{n,j}, 0)| = O(\|v_n\|L^2(g_n)).
\]
For the \(\mu_k^j \), we have the control \(\mu_k^j(\phi_{n,j}, v_n) = \mu_k^j(\phi_{\infty,j}, 0) + O|\phi_{n,j} - \phi_{\infty,j}| + O(\|v_n\|L^2(g_n)). \)

Therefore for \(k = 2 \) or \(k = 3 \), (53) gives
\[
t_{n,j} \lambda_k^j(\phi_{n,j}, v_n) = -t_{n,j}^2 \lambda_k^j(\phi_{\infty,j}, v_n) + O(\|\phi_{n,j} - \phi_{\infty,j}\|) + O(\|v_n\|L^2(g_n)) + O(t_{n,j}^{2/5}L_{n,j}^{1/5}).
\]
(57)
At any singular point \(j \), we must therefore have
\[
|\lambda_k^j(\phi_{n,j}, v_n) - \lambda_k^j(\phi_{n,j}, 0)| = O(t_{n,j} + \frac{t_{n,j}^2}{L_{n,j}^{1/5}}),
\]
and by (56), this implies that \(|\phi_{n,j} - \phi_{\infty,j}| = O(\|v_n\|L^2(g_n)) = o(t_{n,j}^{1/2}L_{n,j}^{1/2}). \)

(1) In the transverse (Definition 1.27) situation, where we have \(t_{n,j} = o(t_{n,j}^{1/2}L_{n,j}^{1/2}) \). By rewriting (53) for \(k = 1 \), including the bound (55) with the new information that \(|\phi_{n,j} - \phi_{\infty,j}| = o(t_{n,j}) \) and using \(|\lambda_1^{j}(\phi_{\infty,j}, v_{n,j}) - \lambda_1(\phi_{\infty,j}, 0)| = O(\|v_n\|L^2(g_n)) = o(t_{n,j}) \), we consequently find
\[
o(t_{n,j}^2) + t_{n,j}^2 \mu_1^j(\phi_{\infty,j}, 0) + O|\phi_{n,j} - \phi_{\infty,j}| + O(\|v_n\|L^2(g_n)) = O(t_{n,j}^{2/5}),
\]
and therefore \(\mu_1^j(\phi_{\infty,j}, 0) = 0 \).

(2) As proven in [Biq17, Proof of Theorem 3], and thanks to the estimate (50), we know that the linearization of Ric in Bianchi gauge at \(g_n \) denoted \(P_{g_n} \), satisfies for some \(o_{n,j,k} \in L^2(g_n) \) (constructed from \(o_{n,j,k} \in O(\mathfrak{eh} g_n) \)) for \(k \in \{1, 2, 3\} \):
\[
\langle P_{g_n} o_{n,j,1}, o_{n,j,1} \rangle_{L^2(g_n)} = o(1) \cdot \|o_{n,j,1}\|_{L^2(g_n)},
\]
and
\[
\langle P_{g_n} o_{n,j,k}, o_{n,j,k} \rangle_{L^2(g_n)} = (a_j^k + o(1)) \cdot \|o_{n,j,k}\|_{L^2(g_n)},
\]
for \(k \in \{2, 3\} \). That means that the metric cannot be stable as in Definition 1.11 if \(a_j^2 = -a_j^3 \neq 0 \). Consequently, we necessarily have \(a_j^2 = a_j^3 = 0 \) for stable Ricci-flat desingularizations.

(3) If the orbifold satisfies \(O(g_n) = \{0\} \) and only has one \(\mathbb{R}^4 / \mathbb{Z}_2 \) singularity, then the transversality assumption is automatically satisfied and the result follows.

(4) In the Ricci-flat situation, then the nondegeneracy assumption is enough because we can use Remark 2.13. Indeed, first, the nondegeneracy assumption gives \(|\phi_{n,j} - \phi_{\infty,j}| = o(t_{n,j}^{1/2}) \), hence \(|\lambda_1(\phi_{n,j}, 0)| = o(t_{n,j}) \) by (55); second from (41), we moreover have a better control over the sum of the \(t_{n,j}^2 \lambda_1^j(\zeta, v) \), namely:
\[
\sum_j t_{n,j}^2 \lambda_1^j(\phi_{n,j}, v_n) - t_{n,j}^2 \lambda_1^j(\phi_{n,j}, 0) = O(t_{n,j}^{2/5} \|v_n\|_{L^2(g_n)}) + O(t_{n,j}^2 \|v_n\|^2_{L^2(g_n)}).
\]
(59) which together with (55) and (51) and using \(\|v_n\|^2_{L^2(g_n)} = o(t_{n,j}) \) yields the estimate
\[
\sum_j o(t_{n,j}^{3/2} + t_{n,j}^{2/5}t_{n,j}^{1/5}) \sum_j t_{n,j}^2 \mu_1^j(\phi_{\infty,j}, 0) + O|\phi_{n,j} - \phi_{\infty,j}| + O(\|v_n\|_{L^2(g_n)}) = O(t_{n,j}^{2/5}L_{n,j}^{1/5}).
\]
which with $t_{n,\text{max}} = O(t_{n,j})$ from the nondegeneracy assumption implies that

$$\sum_j \mu_j^1(\phi_{\infty,j}, 0) = 0$$

and since all of the $\mu_j^1(\phi_{\infty,j}, 0)$ are nonpositive by Remark 2.13 for any j, we have $\mu_j^1(\phi_{\infty,j}, 0) = 0$.

(5) Similarly for Einstein but non Ricci-flat orbifolds with only one singularity, we use (41) as in the previous point since there is only one term in the sum.

Remark 2.20. The estimate (52) also implies that: for any l, one has

$$\lim_{n \to +\infty} \nu_l\left(\frac{t_n}{t_{n,\text{max}}} \cdot \phi_n, \nu_n \right) = \lim_{n \to +\infty} \frac{\nu_l(t_n \cdot \phi_n, \nu_n)}{t_{n,\text{max}}^2} = 0$$

which has an interpretation in terms of curvature, at least when the infinitesimal Einstein deformations vanish at the singular points by (39) and (41).

We also believe that the nondegeneracy assumption is purely technical. Understanding higher order obstructions should yield the following conjectural statement which already holds under a stability assumption.

Conjecture 2.22. Let $(M_n, g_n)_n$ be a sequence of compact smooth Ricci-flat metrics converging in the Gromov-Hausdorff sense towards a Ricci-flat orbifold (M_0, g_0) while bubbling Eguchi-Hanson metrics. Then the curvature of g_0 at its singular points is either selfdual or anti-selfdual depending on the orientation of the Eguchi-Hanson metrics.

3. Ricci-flat modulo obstructions desingularizations of $\mathbb{T}^4/\mathbb{Z}_2$

Let us now work with the flat orbifold $\mathbb{T}^4/\mathbb{Z}_2$. We will study the question of whether or not it is possible to desingularize it by Ricci-flat metrics obtained by gluing Eguchi-Hanson metrics in different orientations at its singular points.

3.1. The orbifold $\mathbb{T}^4/\mathbb{Z}_2$ and its deformations. We define $\mathbb{T}^4/\mathbb{Z}_2$ as the quotient of $\mathbb{R}^4/(2L\mathbb{Z}^4)$ for some $L \in GL(4, \mathbb{R})$ by the action of $\{\text{Id}, -\text{Id}\}$. A metric on $\mathbb{T}^4/\mathbb{Z}_2$ can be seen as an $2L\mathbb{Z}^4$-invariant and \mathbb{Z}_2-invariant metric on \mathbb{R}^4. It is therefore determined by its values on any cube $L([a, a + 1]^4)$ for $a \in \mathbb{R}$. We will denote $(\mathbb{T}^4/\mathbb{Z}_2, g_L)$ the orbifold obtained with the matrix L.

All of the infinitesimal Ricci-flat deformations of a flat $\mathbb{T}^4/\mathbb{Z}_2$ are integrable. More precisely, all of the Ricci-flat deformations of $\mathbb{T}^4/\mathbb{Z}_2$ are flat and can be seen as either varying the above invertible matrix L, or as modifying the scalar product, that is by adding a constant symmetric 2-tensor of norm smaller than 1 to the metric g_L.

This orbifold has 16 singular points with $\mathbb{R}^4/\mathbb{Z}_2$ singularities. We will denote

$$S := \{L(\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4), \epsilon_i \in \{0, 1\}\} + 2\mathbb{Z}^4$$

its singular set on \mathbb{R}^4 before the taking the quotients by $2L\mathbb{Z}^4$ and $\{\text{Id}, -\text{Id}\}$.

Remark 3.1. Since this orbifold is flat, it clearly satisfies our obstruction (0.2).
3.2. Partial hyperkähler desingularizations and estimates. In the rest of the article, we consider \((M_\pm, g_{L,\pm})\) a naïve desingularization of \((\mathbb{T}^4/\mathbb{Z}_2, g_L)\) for \(L \in GL(4, \mathbb{R})\) by positively oriented Eguchi-Hanson metrics \((\text{eh}_\pm)_{i \in S_\pm}\) for \(\zeta_i \in \mathbb{R}^3\setminus\{0\}\) at a subset \(S_+\) of the 16 singular points of \(\mathbb{T}^4/\mathbb{Z}_2\) and by negatively oriented \((\text{eh}_-)_{j \in S_-}\) for \(\zeta_j \in \mathbb{R}^3\setminus\{0\}\) at a subset \(S_-\) of the singular points. We denote \(\zeta = ((\zeta_i^+)_{i \in S_+}, (\zeta_j^-)_{j \in S_-})\). We will first be interested in its partial hyperkähler desingularizations obtained by perturbation of the metric only desingularized by Eguchi-Hanson metrics in the same orientation.

3.2.1. Hyperkähler partial desingularizations of \(\mathbb{T}^4/\mathbb{Z}_2\) and approximations. Let us define \((M_\pm, D_{L,\pm}) := (M_{S_\pm}, g_{D,L,\pm})\) the partial desingularizations where the only points which are desingularized are \(S_\pm\) by the above
Eguchi-Hanson metrics \((\text{eh}_{i \pm})_{i \in S_\pm}\). They can be perturbed to hyperkähler orbifolds.

Lemma 3.2. Let \(g_{D,L}^\pm := g_{D,L,\pm}^\pm\) be a naïve desingularization of \(\mathbb{T}^4/\mathbb{Z}_2\) thanks to Eguchi-Hanson metrics \((\text{eh}_\pm)\) glued in the same orientation at some or all singular points.

Then, the Einstein modulo obstructions perturbation of \(g_{D,L}^\pm\), denoted \(g_{\pm} := g_{L,\pm}\) and defined in [Ozu19b] is hyperkähler.

Sketch of proof. It is well-known (or can be proven from [Don12]) that the moduli space of the Ricci-flat and even hyperkähler (orbifold) metrics on \(M_\pm\) is of maximal dimension \(3|S_\pm| + 9\) which is the same as the space of Ricci-flat modulo obstructions metrics of [Ozu19b]. Using a connectedness argument similar to that of [Ozu20t, Proposition 5.70] for the moduli space of Kronheimer’s gravitational instantons, we conclude that any Einstein modulo obstruction perturbation of a metric \(g_{D,L}^\pm\) is actually Ricci-flat (and even hyperkähler).

To obtain more information about these hyperkähler metrics \(g_{\pm}\), it suffices to construct metrics which are approximately Ricci-flat by [Ozu19b].

Remark 3.3. We will in particular need to have a good approximation of the Riemannian curvature tensor of \(g_{\pm}\) at the remaining singular points. We will see that we have \(|R_{g_{\pm}}| \sim |\zeta^\pm|^2\), and the previous control \((50)\) in \(O(|\zeta^\pm|^2)\) is not sufficient for our purpose.

3.2.2. Approximation of the partial hyperkähler desingularizations. We want to find good approximations to be able to control the curvature of our hyperkähler partial desingularizations. Consider the following construction.

On the orbifold \((\mathbb{T}^4/\mathbb{Z}_2, g_L)\), for any harmonic homogeneous symmetric 2-tensor on \(\mathbb{R}^4/\mathbb{Z}_2\) with \(|H^4|_e \sim r_e^{-4}\) and a singular point \(i \in S\), we can solve the equation

\[
\begin{align*}
\rho L \mathring{R}^4 = 0, & \quad B_L \mathring{R}^4 = 0, \\
\mathring{R}^4 = H^4 + O(r^{-\epsilon}) & \text{for any } \epsilon > 0 \text{ at the singular point } i,
\end{align*}
\]

somewhat explicitly (notice that there is no obstruction contrarily to \((35)\)). Indeed, as in [BK17], one would expect the periodization of the sum of the symmetric 2-tensors \(H^4\) to be a solution. At \(x \in \mathbb{R}^4\), this would look like

\[
\sum_{a \in \mathbb{Z}^4} H^4(L(2a) + x - i).
\]

However except in the most symmetric cases, like the one treated in [BK17], this periodization diverges (it is a sum of terms in \(r^{-4}\) over a \(\mathbb{Z}^4\) grid). One way around it is simply
to subtract to each term of the sum the mean value of it over a period, namely, we define

$$\mathcal{T}^4(x) = \sum_{a \in \mathbb{Z}^4} \left(H^4(L(2a) + x - i) - H^4(L, i, 2a) \right),$$

(62)

where $H^4_{av}(L, i, 2a)$ is the average of $H^4(x)$ on the set $i + L(2a + [-1, 1]^4)$. This sum converges because we have $\nabla^i H^4 = O(r^{-4-i})$ which is summable on $\mathbb{Z}^4 \setminus \{0\}$ for $i > 0$. In particular, the curvature is summable. Note moreover that, by construction, \mathcal{T}^4 of (62) is indeed orthogonal to the infinitesimal deformations of g_L which are constant symmetric 2-tensor and that $B_{g_L} \mathcal{T}^4 = 0$ as well as $tr_{g_L} \mathcal{T}^4 = 0$.

Remark 3.4. The point is that the symmetric 2-tensors we have subtracted are constant and therefore, the curvature induced are the same as those of the sum (61).

Let, $H^4(\zeta^\pm_i)$ for $i \in S_\pm$ be the r^{-4}-asymptotic terms of the metric $\text{eh}_{\zeta^\pm_i}$, see (11).

Consider the unique symmetric 2-tensor $\mathcal{T}^4_i(\zeta^\pm_i)$ as in (62) which is asymptotic to $H^4(\zeta^\pm_i)$ at i and bounded everywhere else while satisfying $\mathcal{T}^4_i(\zeta^\pm_i) \perp_{g_L} O(g_L)$.

Consider now a singular point $i \in S_\pm$ and denote $|\zeta^\pm_i| = \max_{i' \in S_\pm} |\zeta^\pm_i|$. We have the following expansion of the sum $\sum_{i' \neq i} \mathcal{T}^4_i(\zeta^\pm_i) = H_0(i) + H_2(i) + O(i(d(i, i'))) at i$ with $|H_0(i)| = O(|\zeta^\pm_i|^2)$ a constant symmetric 2-tensor, and $|H_2(i)| = O(|\zeta^\pm_i|^2)r_\epsilon^2$. For some linear isomorphism ϕ_i with, $||\phi_i - \text{Id}|| = O(|\zeta^\pm_i|^2)$, we have $\text{e} + H_0(i) = \phi_i' \text{e}$. In the coordinates of $[7]$, the metric $\phi_i' \text{eh}_{\zeta^\pm_i}$ (see Remark 2.6) for the meaning of this action of the diffeomorphism) is asymptotic to $\text{e} + H_0(i)$.

Consider now $h_2(i)$ a solution to $P_{\phi_i' \text{eh}_{\zeta^\pm_i}} h_2(i) \in O(\phi_i' \text{eh}_{\zeta^\pm_i})$, with $h_2(i) = H_2(i) + +O(r^{-2+\epsilon})$ for all $\epsilon > 0$ from (20).

Since the perturbation g_{\pm} is Ricci-flat, we actually have

$$P_{\phi_i' \text{eh}_{\zeta^\pm_i}} h_2(i) = 0.$$

(63)

Note that $h_2(i)$ it is determined up to $O(\phi_i' \text{eh}_{\zeta^\pm_i})$. We choose the solution which is orthogonal to $O(\phi_i' \text{eh}_{\zeta^\pm_i})$ for the L^2-product induced by $\phi_i' \text{eh}_{\zeta^\pm_i}$ on S^2 as in (20).

Definition 3.5. (Approximate hyperkähler metric g^A_{\pm}). We define the approximate hyperkähler metric g^A_{\pm} in a way similar to Definition 1.21: we glue the different $\phi_i' \text{eh}_{\zeta^\pm_i} + h_2(i)$ for $i \in S_\pm$ to the metric $g_L + \sum_{i \in S_\pm} \mathcal{T}^4_i(\zeta^\pm_i)$ at the points $i \in S_\pm$ with cut-off at distance at $|\zeta^\pm_i|^2$, that is with the following metric on the gluing region:

$$\chi(|\zeta^\pm_i|^{-2} r_\epsilon)(\phi_i' \text{eh}_{\zeta^\pm_i} + h_2(i)) + (1 - \chi(|\zeta^\pm_i|^{-2} r_\epsilon)) (g_L + \sum_{i \in S_\pm} \mathcal{T}^4_i(\zeta^\pm_i)).$$

3.2.3. Control of the partial hyperkähler desingularizations. We now justify the qualifier “approximate” for the metric g^A_{\pm}.

Proposition 3.6. We have the following control on the metric: for all $k \in \mathbb{N}$, there exists $C = C(k, L) > 0$, such that

$$\|g^A_{\pm} - g_{\pm}\|_{C^k_{\text{ref}}(g^A_{\pm})} \leq C|\zeta^\pm|^2 + \frac{\delta}{4} - \frac{\delta}{2}.$$

(64)

In particular, at each remaining singular point p, we have

$$\left| R_{g^A_{\pm}} - R_{g_{\pm}} \right|_{g^A_{\pm}} \leq C|\zeta^\pm|^2 - \frac{3}{2} - \frac{\delta}{2}.$$

(65)

Remark 3.7. We a priori had $R_{g_{\pm}} = O(|\zeta^\pm|^2)$ so this is indeed a good approximation of $R_{g_{\pm}}$ as $\zeta^\pm \to 0$. The controls of (50) in $|\zeta^\pm|^{-\frac{3}{2}}$ are not precise enough here.
Proof. Thanks to [Ozu20t, Proof of Theorem 4.51], it is enough to control the values of \(\Phi_{g^2}(g^2) \) in \(r^2 D C_{\beta}^{\alpha}(g^2) \) in order to obtain (64), where for two metrics \(g \) and \(g' \), we define
\[\Phi_{g}(g') := \text{Ric}(g') + \delta_{g} B_{g} g' \]
as in the first section. Estimates similar to [Biq13, Lemma 14.2] and [BK17, Proposition 3.4], yield the following controls. For all \(k \in \mathbb{N} \), there exists \(C_k > 0 \) for which for a given singular point \(i_0 \), in the neighborhood of \(i_0 \)

1. In the region where \(r_D > 2 |\zeta'_0|^\frac{2}{3} \), we have \(g^A_\pm = g_L + h_1 \) and \(g^D_\pm = g_L \) and therefore, since the linear terms vanish, that is \(d(g_L) g_L \bar{h}_1 = 0 \), the error is at least quadratic.

Since \(\frac{\ln k}{\ln D} |\nabla^k g_\pm| |g_\pm| \leq C |\zeta|^2 r_D^{-4} \), we have
\[r^k D |\nabla^k \Phi_{g^2}(g^2)| |g^2| \leq C |\zeta|^2 r_D^{-6} \]

2. In the region where \(r_D < |\zeta'_0|^\frac{2}{3} \), we have \(g^A_\pm = \text{eh}_{\zeta'_0} + h_2 \) and \(g^D_\pm = \text{eh}_{\zeta'_0} \).

Like above, by [63], we also only have to control the non-linear terms, and since \(r^k D |\nabla^k h_2| |g^2| \leq C |\zeta|^2 r_D^{-2} \), we find
\[r^k D |\nabla^k \Phi_{g^2}(g^2)| |g^2| = |\zeta|^2 r_D^{-4} \]

3. In the region where \(|\zeta'_0|^\frac{2}{3} < r_D < 2 |\zeta'_0|^\frac{2}{3} \), \(g^A_\pm \) and \(g^D_\pm \) are respectively an interpolation between \(g_L + h_1 \) and \(\text{eh}_{\zeta'_0} + h_2 \) and an interpolation between \(g_L \) and \(\text{eh}_{\zeta'_0} \) thanks to a cut-off function. Now we have
\[r^k D |\nabla^k ((g_L + h_1) - (\text{eh}_{\zeta'_0} + h_2))| |g^2| \leq C |\zeta|^2 r_D^{-4} + |\zeta|^4 r_D^{-8} \]

and since \(|\zeta|^2 |\zeta'|^6 < r_D < 2 |\zeta|^2 |\zeta'|^6 \), by controlling the cut-off function, we find
\[r^{2k} D |\nabla^k \Phi_{g^2}(g^2)| |g^2| \leq C |\zeta|^2 r_D^{-\frac{3}{2}} \]

Finally, since the control is straightforward away from the singular points, we obtain
\[\| \Phi_{g^2}(g^2) \|_{r_D^{-2} C_{\beta}^{\alpha}(g^2)} \leq C |\zeta|^2 r_D^{-\frac{3}{2}} \]

which gives the estimate [64], see the argument of [Ozu20t, Theorem 4.51]. □

3.2.4. Approximation of the infinitesimal deformations. Let us approximate the kernel of \(P_{g^2} \), \(O(g^2) \) thanks to the following symmetric 2-tensors.

Definition 3.8. We define \(\widetilde{O}(g^2) \) the linear space spanned by the infinitesimal variations of \((L, \zeta^\pm) \mapsto g^A_\pm = g^A_{L, \zeta^\pm} \).

Let us start by recalling a general lemma for operators between Banach spaces which will be useful to approximate the elements of the kernel of our operator on the hyperkähler partial desingularizations.

Lemma 3.9 ([Ozu19b]). Let \(P, P' : X \to Y \) be two operators between two Banach spaces \(X \) and \(Y \) for which there exists \(C > 0 \) \(\frac{1}{100C} > \epsilon > 0 \) and a finite-dimensional linear subspace \(K' \) of \(X \) such that we have

1. For any \(x \in X \), \(\| (P - P') x \|_{Y} \leq \epsilon \| x \|_{X} \)
2. For any \(x \in S' \), \(\| x \|_{X} \leq C \| P' x \|_{Y} \)
3. For any \(x \in K' \), \(\| P' x \|_{Y} \leq \epsilon \| x \|_{X} \)
4. \(\text{dim}(\ker P) = \text{dim}(K') \)
Then, for any element \(k' \) of \(K' \), there exists an element \(k \) of \(\ker P \) such that
\[
\| k - k' \|_X \leq \frac{2C\varepsilon}{1 - C\varepsilon} \| k' \|_X.
\]

\(\square \)

Proposition 3.10. Let \(O(g^\pm) \) be the kernel of \(P_{g^\pm} \). Then, for any \(o^\pm \in O(g^\pm) \), there exist \(o^A_\pm \in O(g^A_\pm) \) such that we have
\[
\| o^\pm - o^A_\pm \|_{C^2,\alpha(g^D_\pm)} \leq C|\varsigma^\pm|^{2 + \frac{2}{3} - \frac{\alpha}{6}}.
\]

Proof. Let us apply Lemma 3.9 with \(P = P_{g^\pm}, \ P' = P_{g^A_\pm}, \ K' = \tilde{O}(g^D_\pm) \) and \(S' = \tilde{O}(g^A_\pm) \).

We have the following controls: there exists \(C > 0 \) independent of \(|\varsigma^\pm| \) small enough

1. for any \(h \in C^2,\alpha(g^D_\pm) \), by Proposition 3.6, we have
\[
\| (P_{g^\pm} - P_{g^A_\pm})h \|_{\partial^2 C^0_\alpha(g^D_\pm)} \leq C|\varsigma^\pm|^{2 + \frac{2}{3} - \frac{\alpha}{6}} \| h \|_{C^2,\alpha(g^D_\pm)}.
\]
2. for any \(h \in C^2,\alpha(g^D_\pm) \cap \tilde{O}(g^A_\pm) \), by [Ozn19b], we have
\[
\| h \|_{C^2,\alpha(g^D_\pm)} \leq C\| P_{g^A_\pm}h \|_{\partial^2 C^0_\alpha(g^D_\pm)}.
\]
3. by an estimation very similar to that of Proposition 3.6, which we therefore omit, for any \(o^A_\pm \in \tilde{O}(g^A_\pm) \),
\[
\| P_{g^A_\pm} o^A_\pm \|_{\partial^2 C^0_\alpha(g^D_\pm)} \leq C|\varsigma^\pm|^{2 + \frac{2}{3} - \frac{\alpha}{6}} \| o^A_\pm \|_{C^2,\alpha(g^D_\pm)}.
\]
4. and, \(\dim O(g^\pm) = \dim \tilde{O}(g^A_\pm) \) since every gluing configuration can be perturbed to a Ricci-flat manifold by Lemma 3.2.

We can therefore apply Lemma 3.9 and obtain the stated estimate. \(\square \)

Using the control of \(o^\pm \) of Proposition 2.19, we moreover have the following estimate of the infinitesimal variation of \(R_g \) in the direction of \(o^\pm \): for \(C > 0 \), we have
\[
\left| \partial R_{g^\pm} - \partial o^\pm R_{g^A_\pm} \right|_{g^\pm_\pm} \leq C|\varsigma^\pm|^{2 + \frac{2}{3} - \frac{\alpha}{6}} \| o^\pm \|_{L^2(g^\pm)} \tag{66}
\]
where we denoted \(\partial R_{g^\pm} \) the differential of \(g^\pm \mapsto R_{g^\pm} \) at \(g^\pm_\pm \) in the direction \(o^\pm_\pm \).

3.3 Total desingularizations modulo obstructions

Let us start by using a notation which will be convenient for this section.

Definition 3.11. For a section \(s \) on \((\mathbb{R}^4/\mathbb{Z}_2) \setminus \{0\} \), we will write \(s \propto r^k_e \) if \(s \in r^k_e C^1(\mathbb{R}^4/\mathbb{Z}_2) \) for all \(l \in \mathbb{N} \) and \(\epsilon > 0 \).

For \(k \in \mathbb{Z} \) and \(f : (\mathbb{R}^3)^{16} \mapsto \mathbb{R}^+ \), we will write \(s \propto f(\zeta) r^k_e \) if as the parameters \(\zeta \to 0 \), we have \(s = (f(\zeta) + o(f(\zeta)))s' \) for \(s' \propto r^k_e \).

Remark 3.12. For any \(t \geq 0 \), we have \(r^t e \log^t (r^t_e) \propto r^k_e \).

Let us now consider the total desingularization of the partial hyperkähler desingularizations \(g_\pm \) by gluing the Eguchi-Hanson metrics \(eh_{i,j} \) at the remaining singular points \(j \in S_\pm \). Here, the hyperkähler orbifold \((M_\pm, g_\pm) \) will play the role of \((M_0, g_0) \) in Section 2. From the obstruction result of Theorem 0.2, we can already say that in order to desingularize the orbifold \((M_\pm, g_\pm) \) by a nondegenerate sequence of Einstein manifolds in the Gromov-Hausdorff sense, it is necessary that the condition \(R_{g_\pm} = 0 \) is satisfied at every remaining singular point. This was done thanks to an approximate development at order 4, see Definition 2.15.
In this section, we are interested in the more challenging situation of a sequence of desingularization of a sequence of metrics $g_{\pm,n}$, and this requires an approximation at an even higher order.

3.3.1. An approximate Einstein modulo obstructions metric. Let $L \in GL(4, \mathbb{R})$ and $\zeta = \left((\zeta^\pm_i)_{i \in S_\pm}, (\zeta^\pm_j)_{j \in S_{\mp}}\right) \in (\mathbb{R}^3)_{|S_\pm|} \times (\mathbb{R}^3)_{|S_{\mp}|} \sim (\mathbb{R}^3)^{16}$.

Definition 3.13 (Total desingularizations, $g^D_{L,\zeta}$). We define $g^D_{L,\zeta}$ the naïve gluing at all $j \in S_\mp$ of the metrics $e h_{\zeta^\mp_j}$ to the metric g_{\pm}. Recall the notation $|\zeta^\pm| = \max_{i \in S_\pm} |\zeta_i|$.

As in Section 2, the goal of the present section is to construct better approximate Einstein modulo obstructions metric in order to identify the obstructions.

Proposition 3.14. Let $L_0 \in GL(4, \mathbb{R})$. Then there exists $C > 0$ and a neighborhood U of $(L_0, 0) \in GL(4, \mathbb{R}) \times (\mathbb{R}^3)^{16}$ such that there exists a smooth family of metrics $(g^A_{L,\zeta})_{(L,\zeta) \in U}$ for which if we denote $\tilde{O}(g^A_{L,\zeta})$ the space of the infinitesimal deformations of $(L,\zeta) \mapsto g^A_{L,\zeta}$, we have

\[
\begin{align*}
(1) \quad &\| g^A_{L,\zeta} - g^D_{L,\zeta} \|_{C^2_a(g^D_{L,\zeta})} \to 0 \quad \text{as} \quad \zeta \to 0, \\
(2) \quad &g^A_{L,\zeta} - g^D_{L,\zeta} \to O(g^A_{L,\zeta}), \quad \text{and} \quad g^D_{L,\zeta} = O(g^A_{L,\zeta}) \quad \text{explicitly in the proof.}
\end{align*}
\]

Let us consider the development of the metric g_{\pm} at the singular point $j \in S_\mp$,

\[
g_{\pm} = e + \sum_{m \in \mathbb{N}^r} H_{j,2m}, \quad \text{with} \quad H_{j,2m} \propto |\zeta^\pm|^2 r^2 e^{2m}
\]

by Proposition 3.6 and similarly, for each j, at infinity we have

\[
e h_{\zeta^\mp_j} = e + \sum_{m \in \mathbb{N}^r} H^{4m}(\zeta^\mp_j), \quad \text{with} \quad H^{4m}(\zeta^\mp_j) \propto |\zeta^\mp|^2 r^2 e^{-4m}.
\]

3.3.2. Extension of the first asymptotic terms. As in Section 2 we define 2-tensors satisfying the following equations for $(o_{j,k})_k$ a basis of $O(e h_{\zeta^\mp_j})$ and $\lambda^j_k \in \mathbb{R}$ as in [22]:

\[
\begin{cases}
P_{e h, \zeta^\mp_j} h_{j,2} = \sum_k \lambda^j_k o_{j,k} \\
h_{j,2} = H_{j,2} + O(|\zeta^\pm|^2 \cdot |\zeta^\mp|^2 r^2 e^{-2+}),
\end{cases}
\]

for $H_{j,2}$ as in (67) and we have a converging development in a neighborhood of infinity.

\[
h_{j,2} = H_{j,2} + H^{4}_{j,2} + \sum_{m \geq 2} H^{4m}_{j,2}, \quad \text{with} \quad H^{4m}_{j,2} \propto |\zeta^\pm|^2 |\zeta^\mp|^2 r^2 e^{2-4m}.
\]

We then define the extension of the obstructions $\bar{o}^4_{j,m}$ for $m \in \{1, 2, 3\}$ as the unique solutions to the following equation as in [34]:

\[
\begin{cases}
P_{g_{\pm}} \bar{o}^4_{j,m} \in O(g_{\circ}), \\
\bar{o}^4_{j,m} = O_{j,m} + O(r^2 e^{-2}) \quad \text{for any} \quad \epsilon > 0 \quad \text{at the singular point} \quad j \\
o^4_{j,m} \perp O(g_{\circ})
\end{cases}
\]

for $O_{j,m} \propto |\zeta^\mp|^2 r^2 e^{-2}$ and $O^4_{j,m,2} \propto |\zeta^\pm|^2 |\zeta^\mp|^2 r^2 e^{-2}$ the asymptotic term of the infinitesimal variation of h_{\circ} of (70) as $e h_{\zeta^\mp_j}$ is perturbed in the direction $o_{j,m}$ like in Section 2.
For the first approximation term on M_\pm,
\[
\begin{aligned}
P_{g_\pm} \hat{h}^4 &= \sum_k \lambda_k^\pm o^4_{j,k} + \sum_l \nu_l v_l, \\
\hat{h}^4 &= H^4(\zeta^+) + H^4_{\hat{J},2} + O(|\zeta^+|^2 \cdot |\zeta^-|^2 r^{-\epsilon}_e) \text{ for any } \epsilon > 0 \text{ at the singular point } j, \\
\bar{h}^4 &= \perp O(g_\pm)
\end{aligned}
\]

for $H^4(\zeta^+)$ as in (68) with $H^4_{\hat{J},2}$ determined in (70) and we have a converging development
\[
\bar{h}^4 = H^4(\zeta^+) + H^4_{\hat{J},2} + \sum_{m \geq 2} H^4_{\hat{J},2m}
\]

in a neighborhood of each singular point j, with $H^4_{\hat{J},2m} \sim |\zeta^+|^2 |\zeta^-|^2 r^{-2m-4}_e$.

Let us come back to the development (67) of g_\pm at a singular point $j \in S_\mp$ and the term $H_{j,4}$. We know that $H_{j,4} \propto |\zeta^+|^4 r^4_e$ and satisfies
\[
P_e H_{j,4} + Q^{(2)}_e (H_{j,2}, H_{j,2}) = 0.
\]

Since $H_{j,2} \propto |\zeta^+|^2 r^2_e$, one would therefore expect by homogeneity to have $H_{j,4} \propto |\zeta^+|^4 r^4_e$ instead of the above $H_{j,4} \propto |\zeta^+|^2 r^2_e$. The reason is that $H_{j,4}$ might have a harmonic part in $|\zeta^+|^2 r^4_e$ while its part compensating the quadratic terms in $H_{j,2} \propto \zeta^+|^2 r^2_e$. By Lemma A.5 in the Appendix, there exists $\hat{H}_{j,4}$ such that $\hat{H}_{j,4} \propto |\zeta^+|^4 r^4_e$ such that $H_{j,4} - \hat{H}_{j,4} \propto |\zeta^+|^4 r^4_e$ and satisfying $P_e H_{j,4} = 0$. The crucial thing to note is that the extension of the harmonic part $\hat{H}_{j,4}$ on eh_{ζ^+} does not induce any obstruction by [Biq16] (25), proof of Lemma 9]. This will ensure that we can indeed “see” the second obstruction $\mu_{j,1} = 0$ for all j. More precisely, there exists $\bar{h}_{j,4}$ for which we have:
\[
\begin{aligned}
P_{\text{eh}_{\zeta^+}} \hat{h}_{j,4} &= 0 \\
\hat{h}_{j,4} &= \hat{H}_{j,4} + O(|\zeta^+|^2 \cdot |\zeta^-|^2 r^{-\epsilon}_e), \text{ for any } \epsilon > 0 \\
\int_{S^2} \langle \bar{h}_{j,4}, o_{j,k} \rangle_{\text{eh}_{\zeta^+}} d\nu_{\text{eh}_{\zeta^+}} &= 0 \text{ for all } k \in \{1, 2, 3\}
\end{aligned}
\]

We can therefore define the following 2-tensors on each $(T^*S^2, \text{eh}_{\zeta^+})$:
\[
\begin{aligned}
P_{\text{eh}_{\zeta^+}} \hat{h}_{j,4} + Q^{(2)}_e (\text{eh}_{\zeta^+}) (\hat{h}_{j,2}, \hat{h}_{j,2}) &= \sum_k \mu_k^j o_{j,k} \\
\hat{h}_{j,4} &= H_{j,4} + H^4_{\hat{J},2} + O(|\zeta^+|^2 \cdot |\zeta^-|^2 r^{-2-\epsilon}_e) \text{ for any } \epsilon > 0, \\
\int_{S^2} \langle \hat{h}_{j,4}, o_{j,k} \rangle_{\text{eh}_{\zeta^+}} d\nu_{\text{eh}_{\zeta^+}} &= 0 \text{ for all } k \in \{1, 2, 3\}
\end{aligned}
\]

where $H^4_{\hat{J},2}$ is defined in (73) and satisfies
\[
P_e H^4_{\hat{J},2} + Q^{(2)}_e (H_{j,2}, H^4_{\hat{J},2}) + Q^{(2)}_e (H_{j,2}, H^4_{\hat{J},2}) + Q^{(3)}_e (H_{j,2}, H_{j,2}, H^4_{\hat{J},2}) = 0
\]

which ensures that (75) has a unique solution as in Section 2. The coefficients μ_k^j are the same as in (23), and one has
\[
\left\| \sum_k \mu_k^j o_{j,k} \right\|_{L^2(\text{eh}_{\zeta^+})} = O(|\zeta^+|^4 |\zeta^-|^2).
\]

Remark that the factor $|\zeta^+|^4$ comes from the previous discussion about extending a harmonic tensor \hat{H}_4 and the difference between $H^4 - \hat{H}_4 \propto |\zeta^+|^4 r^4_e$.

We will need to extend higher order terms of the orbifold and ALE in order to produce a better approximation of the Einstein modulo obstructions perturbation of \tilde{g}_{E}^{D}. We have to obtain good enough controls to “see” an obstruction of the same order as in (76).

3.3.3. Extension of the higher order terms. We then also extend the obstructions of the orbifold g_{\pm} to the Eguchi-Hanson metrics to ensure a good approximation. Consider the development of $v_{j} \in O(g_{\pm})$ at the singular point j: $v_{j} = V_{j,l,0} + V_{j,l,2} + V_{j,l,4} + V_{j,l,6} + O(||v_{j}||_{L^{2}} \cdot |\zeta^{\pm}|^{2}r_{e}^{8})$, we define the extensions $v_{j,l,0} = V_{j,l,0} + O(|\zeta^{\pm}|^{2}r_{e}^{-4+\epsilon})$, $v_{j,l,2} = V_{j,l,2} + O(|\zeta^{\pm}|^{2}r_{e}^{6+\epsilon})$ and $v_{j,l,4} = V_{j,l,4} + O(|\zeta^{\pm}|^{2}|\zeta^{\mp}|^{2}r_{e}^{4})$ for all $\epsilon > 0$ satisfying:

$$P_{e}v_{j,l,0} = 0,$$

where there are no obstructions by Lemma 2.7.

$$P_{e}v_{j,l,2} + Q_{e}^{(2)}(h_{2}, v_{j,l,0}) \in O(eh_{j}^{\pm})$$

and

$$P_{e}v_{j,l,4} + Q_{e}^{(2)}(h_{j,2}, v_{j,l,0}) + Q_{e}^{(2)}(h_{j,4}, v_{j,l,0}) + Q_{e}^{(2)}(h_{j,4}, v_{j,l,0}) \in O(eh_{j}^{\pm}),$$

and we will take the solutions which are orthogonal to $O(eh_{j}^{\pm})$ for the L^{2}-product on S^{2} induced by eh_{j}^{\pm}.

Like in the decomposition for $H_{j,4}$, from the 2-tensor $H_{j,6}$ of (67) there exists $\hat{H}_{j,6} \propto |\zeta^{\pm}|^{2}r_{e}^{6}$ for which we have $\hat{H}_{j,6} - H_{j,6} \propto |\zeta^{\pm}|^{4}r_{e}^{6}$, and

$$P_{e}\hat{H}_{j,6} = 0,$$

Indeed, considering the quadratic 2-tensor $H_{j,6}$ satisfying

$$P_{e}H_{j,6} + Q_{e}^{(2)}(H_{j,2}, H_{j,4}) + Q_{e}^{(3)}(H_{j,2}, H_{j,2}, H_{j,2}) = 0,$$

as $|\zeta^{\pm}| \to 0$, one finds a 2-tensor $\hat{H}_{j,6}$ satisfying (77) and $H_{j,6} - \hat{H}_{j,6} \propto |\zeta^{\pm}|^{4}r_{e}^{6}$, since $H_{j,2} \propto |\zeta^{\pm}|^{2}r_{e}^{6}$ and $H_{j,4} \propto |\zeta^{\pm}|^{2}r_{e}^{4}$ by Lemma A.5 in the Appendix.

Lemma 3.15. There exists a unique 2-tensor $\hat{h}_{j,6}$ satisfying the following identity:

$$\begin{cases}
P_{eh_{j}^{\pm}}\hat{h}_{j,6} - \sum_{l}v_{l}v_{j,l,0} = 0 \\
\hat{h}_{j,6} = H_{j,6} + \hat{H}_{j,6} + O(|\zeta^{\pm}|^{2}r_{e}^{-4+\epsilon}) \text{ for any } \epsilon > 0 \\
\int_{S^{2}}(\hat{h}_{j,6}, \alpha_{j,k})_{eh_{j}^{\pm}}dvh_{j}^{\pm} = 0 \text{ for all } k \in \{1, 2, 3\},
\end{cases}$$

where $\hat{H}_{j,6} \propto |\zeta^{\pm}|^{2}r_{e}^{2}$ satisfies $P_{e}\hat{H}_{j,6} = -Q_{e}^{(2)}(\hat{H}_{j,6}, H^{4}(\zeta^{\mp})) + \sum_{l}v_{l}V_{j,l,0}$ while the restriction of the coefficients of $\hat{H}_{j,6}$ in a basis of the covering \mathbb{R}^{4}, once restricted to S^{3} are $L^{2}(S^{3})$-orthogonal to the eigenfunctions associated to the second eigenvalue of the Laplacian on S^{3}.

Remark 3.16. Note that $\hat{H}_{j,6}^{4}$ is different from $H_{j,6}^{4}$ defined in (73). They are both $\propto |\zeta^{\pm}|^{4}r_{e}^{2}$, and so is their difference.

Proof. Let $\hat{H}_{j,6}$ be as in (77). The term $\hat{H}_{j,6}^{4}$ in the development (73) satisfies for all $\epsilon > 0$:

$$P_{e}H_{j,6}^{4} + Q_{e}^{(2)}(\hat{H}_{j,6}^{4}, H^{4}(\zeta^{\mp})) - \sum_{l}v_{l}V_{j,l,0} = O(|\zeta^{\pm}|^{4}|\zeta^{\mp}|^{2}r_{e}^{2}),$$

(79)
since we have $H_{j,6} - \hat{H}_{j,6} \propto |\zeta|^4 r_6^2$, $H_{j,2} \propto |\zeta|^2 r_6^2$ and $H_{j,4} \propto |\zeta|^2 r_6^2$. Thanks to Lemma A.5 we therefore find $\hat{H}_{j,6}$ with $\hat{H}_{j,6}^4 \propto |\zeta|^2 |\zeta|^2 r_6^2$ satisfying

$$P_\eta \hat{H}_{j,6} + Q_\eta^{(2)}(\hat{H}_{j,6}, H^4(\zeta^\mp)) - \sum l \nu_l V_{j,l,0} = 0. \quad (80)$$

The 2-tensor $\hat{H}_{j,6}^4$ is defined by [80] up to the harmonic quadratic 2-tensors on $\mathbb{R}^4/\mathbb{Z}_2$, and we choose the unique solution such that the restriction of the coefficients of $\hat{H}_{j,6}^4$ in a basis of the covering \mathbb{R}^4, once restricted to \mathbb{S}^3 are $L^2(\mathbb{S}^3)$-orthogonal to the eigenfunctions associated to the second eigenvalue of the Laplacian on \mathbb{S}^3.

Without loss of generality by rescaling and by acting on $H_{j,6}$, $\hat{H}_{j,6}$ and $V_{j,0}$ by an element of $O(4)\backslash SO(4)$, we will study the existence of $\hat{H}_{j,6}$ and the vanishing of the associated obstructions on \mathbf{e}_h, that is, as if we had $\zeta^\pm = (1, 0, 0)^+$.

Remark 3.17. This may change the orientation and in particular makes the curvature of $\hat{H}_{j,6}$ become selfdual. This will let us use the more convenient usual Eguchi-Hanson metric in our computations.

For a smooth cut-off function χ supported at the infinity of \mathbf{e}_h we have $P_\eta \chi(\hat{H}_{j,6} + \hat{H}_{j,6}^4) - \sum l \nu_l V_{j,l,0} = O(\zeta^2 r_6^{-4})$. By [Biq13] Proposition 2.1, one can find a smooth 2-tensor h' decaying at infinity such that

$$P_\eta \chi(\hat{H}_{j,6} + \hat{H}_{j,6}^4) + h' - \sum l \nu_l V_{j,l,0} \in O(\mathbf{e}_h),$$

$$\|P_\eta \chi(\hat{H}_{j,6} + \hat{H}_{j,6}^4) + h' - \sum l \nu_l V_{j,l,0}\|_{\mathbf{e}_h} \lesssim C|\zeta|^2$$

for some $C > 0$ depending on the metric \mathbf{e}_h only.

There now remains to prove that the obstruction actually vanishes. For this, again by [Biq13] Proposition 2.1, we need to prove that for all $k \in \{1, 2, 3\}$

$$\int_{\mathbb{R}^4} \langle P_\eta \chi(\hat{H}_{j,6} + \hat{H}_{j,6}^4) + h' - \sum l \nu_l V_{j,l,0}, \omega_k \rangle_{\mathbf{e}_h} dv_{\mathbf{e}_h} = 0.$$

Let us use the formalism of [Biq16] in order to show this. Let us denote Ω the closed anti-selfdual 2-form generating of the L^2-cohomology of \mathbf{e}_h as in [Biq13] (5)]. We will need its asymptotics at infinity:

$$\Omega = \frac{\theta_1}{r^4} - \frac{\theta_\bar{1}}{r^4} + \frac{\bar{\omega}^+}{r^3} + O(r^{-12})$$

$$= d\left(d^C \left(\frac{1}{r^2} + \frac{\alpha_1}{4r^6} + O(r^{-11})\right)\right), \quad (81)$$

where d^C is the operator defined as $d^C = \frac{1}{2\pi i}(\partial - \bar{\partial})$ in complex geometry.

As in the first Section, we use the identification of traceless 2-tensors and (commuting) compositions of a selfdual and an anti-selfdual 2-form, see Remark 1.13. We will use this on both the flat metric \mathbf{e} for which a basis of $\Omega^+(\mathbf{e})$ is $(\omega_k^+)_{k \in \{1, 2, 3\}}$ and for the Eguchi-Hanson metric, we will use the basis $(\hat{\omega}_k^+)_{k \in \{1, 2, 3\}}$ of $\Omega^+(\mathbf{e}_h)$ satisfying $\hat{\omega}_k^+ = \omega_k^+ + O(r^{-4})$ at infinity. We can therefore rewrite

- $\hat{H}_{j,6} = \sum_{k} \hat{\phi}_{j,6}^k \circ \hat{\omega}_k^+$ for $\hat{\phi}_{j,6}^k \in \Omega^-(\mathbf{e}_h)$, as well as $\hat{H}_{j,6} = \sum_{k} \phi_{j,6}^k \circ \omega_k^+$ for $\phi_{j,6}^k \in \Omega^-(\mathbf{e})$,
- $\hat{H}_{j,6}^4 = \sum_{k} \hat{\phi}_{j,6}^4 \circ \hat{\omega}_k^+$ for $\hat{\phi}_{j,6}^4 \in \Omega^-(\mathbf{e}_h)$, as well as $\hat{H}_{j,6}^4 = \sum_{k} \phi_{j,6}^4 \circ \omega_k^+$ for $\phi_{j,6}^4 \in \Omega^-(\mathbf{e})$,
This lets us rewrite several of the above identities:

- the equality (77) becomes:

 \[
 (d_{-} d^*)_{\epsilon} \phi^{k}_{j,6} = 0, \quad \text{or equivalently} \quad (dd^*)_{\epsilon} \phi^{k}_{j,6} \in \Omega^{+}(\epsilon)
 \]
 (82)

- the equality (80) becomes:

 \[
 (d_{-} d^*)_{\epsilon} (\phi^{k}_{j,6} + \phi^{4,k}_{j,6}) - \hat{\mathcal{V}}_{0}^{k} = \mathcal{O}(r_{\epsilon}^{-4})
 \]
 (83)

- a direct extension of [Biq16, Lemme 3] to the computation of the bilinear terms of the selfdual part of the Riemannian curvature. Let \(\phi := \sum \phi_{k} \circ \omega_{k}^{+} \) and \(\psi := \sum \psi_{k} \circ \omega_{k}^{+} \) be infinitesimal Ricci-flat deformations of \(\epsilon \) which satisfy \(B_{\epsilon}(\phi) = \beta_{\epsilon}(\psi) = 0 \). Assume additionally that \(\text{tr}_{\epsilon} \phi = 0 \) and \(d \ast d \phi_{k} = 0 \), then the second variation of the selfdual part of the curvature at \(\epsilon \) in the directions \(\phi \) and \(\psi \), is:

 \[
 R_{\epsilon}^{+, (2)}(\phi, \psi) = -\frac{1}{2} [a_{\epsilon}(\phi), a_{\epsilon}(\psi)]_{+},
 \]

 where \(a_{\epsilon}(\phi) \) and \(a_{\epsilon}(\psi) \) are respectively the first variations of the connection on the bundle of selfdual 2-forms at \(\epsilon \) in the directions \(\phi \) and \(\psi \). In the particular case of \(\phi = H^{4} \) and \(\psi = \hat{H}_{j,6} \), since \(a_{\epsilon}(H^{4}) = - d(\hat{r}_{\epsilon}^4) = 0 \), we find

 \[
 R_{\epsilon}^{+, (2)}(\hat{H}_{j,6}, H^{4}) = 0.
 \]
 (84)

- the equalities (80) and (84) imply that in a neighborhood of infinity we have

 \[
 dd_{\epsilon} \phi^{k}_{j,6} + \phi^{4,k}_{j,6}) - \hat{\mathcal{V}}_{0}^{k} = (d_{+} d^*)_{\epsilon} \phi^{k}_{j,6} + (d_{+} d^*)_{\epsilon} \phi^{4,k}_{j,6} + \mathcal{O}(r_{\epsilon}^{-4})
 \]

 \[
 = -d_{\epsilon} R^{+}(\hat{H}_{j,6}) - d_{\epsilon} R^{+}(\hat{H}_{j,6}) + \mathcal{O}(r_{\epsilon}^{-4}).
 \]
 (85)

Following the integration by parts of the proof of [Biq16, Lemma 7], since \(\Omega \in \Omega^{-}(\epsilon) \), by (81) and by (83), we have

\[
\frac{1}{\|\phi_{k}\|_{L^2}} \int_{T^{+}S^{2}} \langle P_{\epsilon}(\chi(\hat{H}_{j,6} + \hat{H}_{j,6}^4)), - \int_{T^{+}S^{2}} \Omega \wedge (dd^*_{\epsilon} (\phi^{k}_{j,6} + \phi^{4,k}_{j,6}) - \hat{\mathcal{V}}_{0}^{k}) \rangle
\]

\[
= - \frac{1}{\|\Omega\|_{L^2}} \int_{T^{+}S^{2}} d^C (\frac{1}{r_{\epsilon}^4}) + \frac{\alpha_{1}}{4 r_{\epsilon}^6} + \mathcal{O}(r_{\epsilon}^{-11}) \wedge ((d_{+} d^*)_{\epsilon} \phi^{k}_{j,6} + (d_{+} d^*)_{\epsilon} \phi^{4,k}_{j,6})
\]

\[
= + \frac{1}{\|\Omega\|_{L^2}} \lim_{r \to +\infty} \int_{\{r_{\epsilon} = r\}} d^C (\frac{1}{r_{\epsilon}^4}) + \frac{\alpha_{1}}{4 r_{\epsilon}^6} + \mathcal{O}(r_{\epsilon}^{-11}) \wedge \mathcal{O}(\Omega_{\epsilon}^+)(\hat{H}_{j,6})(\omega_{k}^+)
\]

\[
+ \frac{1}{\|\Omega\|_{L^2}} \lim_{r \to +\infty} \int_{\{r_{\epsilon} = r\}} \frac{\alpha_{1}}{4 r_{\epsilon}^6} \wedge \mathcal{O}(\Omega_{\epsilon}^+)(\hat{H}_{j,6})(\omega_{k}^+)
\]

\[
+ \frac{1}{\|\Omega\|_{L^2}} \lim_{r \to +\infty} \int_{\{r_{\epsilon} = r\}} d^C (\frac{1}{r_{\epsilon}^4}) + \mathcal{O}(r_{\epsilon}^{-11}) \wedge \mathcal{O}(\Omega_{\epsilon}^+)(\hat{H}_{j,6})(\omega_{k}^+).
\]
 (86)

Now, the coefficients of \(d_{\epsilon} R^{+}(\hat{H}_{j,6})(\omega_{k}^+) \) are harmonic functions in \(r_{\epsilon}^4 \) and their restrictions to a sphere \(\{r_{\epsilon} = r\} = r \cdot S^{3}/\mathbb{Z}_{2} \) are eigenfunctions of the Laplacian associated...
to the second eigenvalue on S^3/Z_2 (fourth eigenvalue on S^3). They are therefore $L^2(S^3/Z_2)$-orthogonal to the coefficients of the restriction of $dC^2\left(\frac{1}{r^2}\right)$ or α_\pm to S^3/Z_2.

Similarly, by the two formulas of [Biq13, Proposition 2.1] and [Biq10, Lemme 7], we know that $\int_{\{r_e=r\}} dC^2\left(\frac{1}{r^2}\right) \wedge \omega^+ + \frac{1}{4} \pi^+ = 0$ is proportional to $\int_{S^3/Z_2} (H_4^1, O_4^1) dv_{S^3/Z_2}$, where O_4^1 is explicited in (14) and once restricted to a sphere $\{r_e=r\}$, O_4^1 has eigenfunctions of the Laplacian on S^3/Z_2 associated to the first eigenvalue as coefficients. By construction, H_4^1 is orthogonal to this eigenspace. The obstructions therefore vanish.

We then extend the next term of the development of o_m, for $m \in \{1, 2, 3\}$ to the orbifold. Recall that $o_{j,m} = O_{j,m}^1 + O_{j,m}^2 + O(|\xi^2 r_e^{-12})$, with $O_{j,m}^1 \propto |\xi^2 r_e^{-1} r_e^{2-\epsilon}$ and $O_{j,m}^2 \propto |\xi^2 r_e^{-8}$.

We can therefore find by the general method of [Biq13, Section 10] $\mathbf{s}_{j,m}$ satisfying

\[
\begin{align*}
\mathbf{P}_{k} \mathbf{s}_{j,m}^8 + \mathbf{O}_{k}(\mathbf{s}_{j,m}^4, \mathbf{s}_{j,m}^4, \mathbf{h}^4) - \sum_{k} \lambda_k^j \mathbf{s}_{j,m}^8 & \in \mathbf{O}(g_\pm) \\
\mathbf{h}^8 & = H^8(\xi^2) + H_{j,4}^8 + \mathbf{H}_{j,6}^8 + \mathbf{H}_{j,8}^8 + O(|\xi^2| \xi^2 r_e^{-2-\epsilon}), \forall \epsilon > 0 at \, \mathbf{h}_j^8 \in \mathbf{O}(g_\pm) \tag{87}
\end{align*}
\]

We then need to come back to the orbifold in order to find:

\[
\begin{align*}
\mathbf{P}_{k} \mathbf{h}^8 + \mathbf{Q}_{k}(\mathbf{h}^4, \mathbf{h}^4, \mathbf{h}^4) - \sum_{k} \lambda_k^j \mathbf{h}^8 & \in \mathbf{O}(g_\pm) \\
\mathbf{h}^8 & = \mathbf{H}^8(\xi^2) + \mathbf{H}_{j,4}^8 + \mathbf{H}_{j,6}^8 + \mathbf{H}_{j,8}^8 + \sum_{m \geq 5} \mathbf{H}_{j,2m}^8 \\
\mathbf{h}^8 & \propto |\xi^2|^2 \xi^4 r_e^{-2m-8} in \, a \, neighborhood of \, j.
\end{align*}
\]

We moreover have the control

\[
\|\mathbf{P}_{k} \mathbf{h}^8 + \mathbf{Q}_{k}(\mathbf{h}^4, \mathbf{h}^4, \mathbf{h}^4) - \sum_{k} \lambda_k^j \mathbf{h}^8\|_{L^2(g_\pm)} = O(|\xi^2| \xi^4)
\]

which will be sufficient on the orbifold.

As for $\mathbf{H}_{j,6}$ defined in (77) from $H_{j,6}$, one finds $\mathbf{H}_{j,8}$ from $H_{j,8}$ of (67). More precisely, we have $H_{j,8} - \mathbf{H}_{j,8} \propto \xi^2| r_e^8$ where $H_{j,8} \propto |\xi^2|^2 \xi^4 r_e^{-8}$ satisfies $P_e \mathbf{H}_{j,8} = \sum l \nu_l V_{l,2}$.

As in Lemma 3.15 we prove that one can extend $\mathbf{H}_{j,8}$ on ξ^2 without obstruction.

Lemma 3.18. There exists a unique 2-tensor $\tilde{h}_{j,8}$ satisfying the following identity:

\[
\begin{align*}
P_{e j, \xi^2} \tilde{h}_{j,8} - \sum l \nu_l V_{l,2} & = 0 \\
\int_{S^2} \langle \tilde{h}_{j,8}, o_{j,k} \rangle d v_{\xi^2} & = 0 \, for \, all \, k \in \{1, 2, 3\},
\end{align*}
\]

where $H_{j,8} \propto |\xi^2|^2 \xi^4 r_e^4$ satisfies $P_e H_{j,8} = -Q_{e}^2 (H_{j,8}, H^4(\xi^2)) + \sum l \nu_l V_{l,2}$, and where $H_{j,8} \propto |\xi^2|^2 \xi^4 r_e^4$ satisfies

\[
\begin{align*}
P_{e} \tilde{h}_{j,8}^2 & = -Q_{e}^2 (H_{j,8}, H^4(\xi^2)) - Q_{e}^2 (H_{j,8}, H^4(\xi^2)) + \sum l \nu_l V_{l,2},
\end{align*}
\]

for $V_{l,2}$ defined by $V_{l,2} = V_{l,2} + V_{l,2} + o(|\xi^2|^2 \xi^4 r_e^6)$.
Proof. The proof of the existence of $\hat{h}_{j,8}$ satisfying

$$
\begin{aligned}
\{ P_{eh}\gamma_j^{\hat{h}_{j,8}} - \sum_l \nu_l \nabla_{j,l,2} \in O(eh) \\
\hat{h}_{j,8} = \hat{H}_{j,8} + \hat{H}_{j,8}^4 + \hat{H}_{j,8}^8 + O(\{\zeta^{\pm,2} \cdot |\zeta_j^{\pm,6} r_e^{-6+\epsilon}\}) \text{ for any } \epsilon > 0 \quad (91)
\end{aligned}
$$

is very similar to that of $\hat{h}_{j,6}$ of Lemma 3.15 once $\hat{H}_{j,8}^4$ and $\hat{H}_{j,8}^8$ are identified like $\hat{H}_{j,6}^4$ is in Lemma 3.15. We will therefore omit the proof.

Let us focus on showing that the obstructions vanish. Again, after rescaling and acting by a rotation in $O(4) \setminus SO(4)$, we will work on the usual metric eh. Mimicking the computation of (89), and dropping the terms not contributing to the boundary term, we find

$$
\langle P_{eh} (\chi(\hat{H}_{j,8} + \hat{H}_{j,8}^4 + \hat{H}_{j,8}^8)) - \sum_l \nu_l \nabla_{j,l,2}, o_k \rangle \quad (92)
$$

because of the homogeneity of each term:

- $d^C\left(\frac{1}{r_e^2}\right) \propto r_e^{-3}$,
- $\frac{\alpha_1}{4r_e^6} \propto r_e^{-7}$,
- $d_e R^+(\hat{H}_{j,8})(\omega_k^+)$ $\propto |\zeta^{\pm,2} r_e^6$,
- $d_e R^+(\hat{H}_{j,8}^4)(\omega_k^+)$ $\propto |\zeta^{\pm,2} |\zeta_j^{\pm,2} r_e^2$.

We see that the obstruction either vanishes or is infinite. However $\langle P_{eh} (\chi(\hat{H}_{j,8} + \hat{H}_{j,8}^4 + \hat{H}_{j,8}^8)) - \sum_l \nu_l \nabla_{j,l,2}, o_k \rangle$ is finite because both $P_{eh} (\chi(\hat{H}_{j,8} + \hat{H}_{j,8}^4 + \hat{H}_{j,8}^8)) - \sum_l \nu_l \nabla_{j,l,2}$ and o_k are in $L^2(eh)$. The obstruction therefore necessarily vanishes.

Similarly, there exists $\hat{h}_{j,10}$ satisfying: for $\hat{H}_{j,10}$ the harmonic part of $H_{j,10}$ from (67) and $\hat{H}_{j,10}^4$ and $\hat{H}_{j,10}^8$ associated from the development of ∇^4 of (72) and ∇^8 of (88):

$$
\begin{aligned}
\{ P_{eh}\gamma_j^{\hat{h}_{j,10}} - \sum_l \nu_l \nabla_{j,l,4} \in O(eh_{\gamma_j^{\hat{h}_{j,10}}}) \\
\hat{h}_{j,10} = \hat{H}_{j,10} + \hat{H}_{j,10}^4 + \hat{H}_{j,10}^8 + O(\{\zeta^{\pm,2} \cdot |\zeta_j^{\pm,6} r_e^{-6+\epsilon}\}) \text{ for any } \epsilon > 0 \quad (93)
\end{aligned}
$$

$$
\int_{S^2} \langle \hat{h}_{j,10}, o_{j,k} \rangle_{eh_{\gamma_j^{\hat{h}_{j,10}}}} d\nu_{eh_{\gamma_j^{\hat{h}_{j,10}}}} = 0 \text{ for all } k \in \{1, 2, 3\},
$$
with \(\| P_{\varepsilon} h_{j,10} \|_{L^2(\varepsilon)} = O(\| \zeta^\pm | \zeta^\mp |^5) \). \hspace{1cm} (94)

Remark 3.19. The obstruction may not vanish here, but it is small enough for our present purpose: it is better than \(\mu_1 \sim |\zeta^\pm|^4 |\zeta^\mp|^2 \) when \(\zeta^\pm \sim \zeta^\mp \) as for transverse or nondegenerate desingularizations.

Let us define

\[
\mathbf{e} h_{j}^{[10]} := \mathbf{e} h_{j,2} + \mathbf{e} h_{j,4} + \sum_{m=3}^{5} \dot{h}_{j,2m}
\]

which is a metric for \(r_\varepsilon \ll 1 \), and

\[
\mathbf{g}_{\pm}^{[8]} := \mathbf{g}_{\pm} + \mathbf{h} + \mathbf{h}^8
\]

which is a metric for \(|\zeta_j|^{\frac{1}{2}} \ll r_\varepsilon \). On the region where \(|\zeta_j|^{\frac{1}{2}} \ll r_\varepsilon \ll 1 \), we have

\[
r_\varepsilon^k |\nabla^k (\mathbf{e} h_{j}^{[10]} - \mathbf{g}_{\pm}^{[8]})| \leq C \left(|\zeta^\pm|^2 r_\varepsilon^{12} + |\zeta^\mp|^6 r_\varepsilon^{-12} + |\zeta^\pm|^2 |\zeta^\mp|^2 r_\varepsilon^2 \right),
\]

which is minimized at \(r_\varepsilon = \sqrt{\frac{1}{2}} \cdot |\zeta_j^\pm|^{\frac{1}{4}} \), in a neighborhood of the singular point \(j \).

Proof of Proposition 3.14. We define an approximate desingularization \(g_{L,\zeta}^A \) as the gluing of \(\mathbf{e} h_{j}^{[10]} \) to \(\mathbf{g}_{\pm}^{[8]} \) at the singular point \(j \) and with a gluing scale at \(|\zeta_j^\pm|^\frac{1}{4} \cdot |\zeta_j^\mp|^\frac{1}{4} < r_\varepsilon < 2|\zeta_j^\pm|^\frac{1}{4} \cdot |\zeta_j^\mp|^\frac{1}{4} \). As in Definition 2.16, we will denote \(\tilde{O}(g_{L,\zeta}^A) \) the space of the infinitesimal deformations of \((L, \zeta^\pm, \zeta_j^\mp) \mapsto g_{L,\zeta}^A \).

Remark 3.20. The space \(\tilde{O}(g_{L,\zeta}^A) \) is different from the space \(\tilde{O}(g^D) \) of \([\text{Ozu19b}]\) but yields better estimates. The results of \([\text{Ozu19b}]\) with \(\tilde{O}(g^D) \) therefore hold with \(\tilde{O}(g_{L,\zeta}^A) \).

Denote \(\mathbf{o}_{L,\zeta}^A \) as the element of \(\tilde{O}(g_{L,\zeta}^A) \) associated to the same variations of \(L \) and the \(\zeta_j^\pm \) as \(\sum \nu \mathbf{v}_l (L, \zeta) \in \mathbf{g}(\mathbf{g}_{\pm}) \) defined in (72), and to the variations of each \(\zeta_j^\mp \) associated to \(\sum \kappa (\lambda_j^\mp (L, \zeta) + \mu_j^\mp (L, \zeta)) \mathbf{o}_{j,k} \). From the construction of the \(\mathbf{e} h_{j}^{[10]} \) and \(\mathbf{g}_{\pm}^{[8]} \) we find:

1. on the region where \(g_{L,\zeta}^A = \mathbf{e} h_{j,2} + \mathbf{e} h_{j,4} + \sum_{m=3}^{5} \dot{h}_{j,2m} \), we have:

\[
(\text{Ric} - \Lambda)(g_{L,\zeta}^A) = \sum_k (\lambda_j^k + \mu^j_k + O(|\zeta^\pm|^2 |\zeta^\mp|^5)) \mathbf{o}_{j,k} + \sum_l (\nu_l + O(|\zeta^\pm|^2 |\zeta^\mp|^4)) \mathbf{v}_{j,l} + O(|\zeta^\pm|^2 |\zeta^\mp|^4 r_\varepsilon),
\]

2. on the region where \(g_{L,\zeta}^A = \mathbf{g}_{\pm} + \mathbf{h} + \mathbf{h}^8 \), we have:

\[
(\text{Ric} - \Lambda)(g_{L,\zeta}^A) = \sum_k (\lambda^k_j + \mu^j_k + O(|\zeta^\pm|^2 |\zeta^\mp|^5)) (\overline{\mathbf{o}}_{j,k}^4 + \overline{\mathbf{o}}_{j,k}^8) + \sum_l (\nu_l + O(|\zeta^\pm|^2 |\zeta^\mp|^4)) \mathbf{v}_l + O(|\zeta^\pm|^6 r_\varepsilon).}
(3) on the gluing region at \(j \), we find:
\[
\begin{aligned}
& (\text{Ric} - \Lambda)(g_{L,\zeta}^A) = \sum_k (\lambda_k^A + \mu_k^A + \mathcal{O}(|\zeta^\pm|^2|\zeta^\mp|^0)) o_{j,k} \\
& + \sum_l (\nu_l + \mathcal{O}(|\zeta^\pm|^2|\zeta^\mp|^4)) v_l \\
& + \mathcal{O}(|\zeta^\pm|^2 r_4^e + |\zeta^\mp|^2 r_6^e + |\zeta^\mp|^2 r_14^e).
\end{aligned}
\]

Let us finally mention the controls on the elements of \(\hat{O}(g_{L,\zeta}^A) \) which let us conclude. Recall that for \(\zeta_{j,(k)} \in \Omega^\pm \), we have \(o_{j,k} = \partial_{\zeta_{j,(k)}} \hat{e}_{\zeta_{j}} \), and consider \(v_l \) one of the elements of the orthonormal basis of \(O(g_o) \). On the region where \(g_{L,\zeta}^A = \hat{e}_{\zeta_{j}}^{[10]} \), where \(r_D < |\zeta^\pm|^{-\frac{1}{2}} \cdot |\zeta^\mp|^\frac{1}{4} \): \(r_D^2 |\partial_{\zeta_{j,(k)}} g_{L,\zeta}^A - o_{j,k}|_{g_{L,\zeta}} < C|\zeta^\pm|^2|\zeta^\mp|^2 r_4^2 \), on the region where \(g_{L,\zeta}^A = g_{[8]}^\pm \), where \(r_D > 2|\zeta^\pm|^{-\frac{1}{2}} \cdot |\zeta^\mp|^\frac{1}{4} \)

We have similar controls between \(\partial_{\zeta_l} g_{L,\zeta}^A \) and \(v_l \) where \(g_{L,\zeta}^A = g_{[8]}^\pm \) and between \(\partial_{\zeta_l} g_{L,\zeta}^A \) and \(v_{l \cap 0} + v_{l \cap 2} + v_{l \cap 4} \) where \(g_{L,\zeta}^A = \hat{e}_{\zeta_{j}}^{[10]} \).

As a consequence, using the fact that on the gluing region where \(|\zeta^\pm|^{-\frac{1}{2}} \cdot |\zeta^\mp|^\frac{1}{4} \leq r_D \leq |\zeta^\pm|^{-\frac{1}{2}} \cdot |\zeta^\mp|^\frac{1}{4} \), the difference between the metrics is controlled by \(\mathcal{O}^5 \) we globally find

\[
\left\| \Phi_{g_{L,\zeta}^A}(g_{L,\zeta}) - o_{L,\zeta}^A \right\|_{r_D^2 C_2^\beta} \leq C|\zeta^\pm|^{1+\frac{d}{2}}|\zeta^\mp|^3 - \frac{d}{2},
\]

which proves the statement of Proposition 3.14.

3.3.4. Controls on the approximate Einstein modulo obstructions metric. By [Ozu19b], we can always solve the Einstein equation modulo obstructions.

Definition 3.21 (Total Einstein modulo obstructions desingularization \(\hat{g}_{L,\zeta} \)). For \(L \in GL(4, \mathbb{R}) \), and \(\zeta \) small enough depending on \(L \) (as determined in [Ozu19b]), we define \(\hat{g}_{L,\zeta} \) as the unique metric satisfying for some \(\epsilon = \epsilon(L) > 0 \) independent on \(\zeta \) determined in [Ozu19b]:

- \(\left\| \hat{g}_{L,\zeta} - g_{L,\zeta}^A \right\|_{C_2^\beta(g_{L,\zeta}^A)} < \epsilon, \)
- \(\Phi_{g_{L,\zeta}^A}(\hat{g}_{L,\zeta}) \in O(g_{L,\zeta}^A), \)
- \(\hat{g}_{L,\zeta} - g_{L,\zeta}^A \) is \(L^2(g_{L,\zeta}^A) \)-orthogonal to \(\hat{O}(g_{L,\zeta}^A) \).

First, we have a good control on the projection on \(\hat{O}(g_{L,\zeta}^A) \). The proof is analogous to the proof of Lemma 2.18 above so we omit it, compare also with [Biq13] Lemma 13.2.

Lemma 3.22. Let \(h \) be a symmetric 2-tensor on \(M \), and let \(o^A \in \hat{O}(g_{L,\zeta}^A) \), then we have the following estimate, there exists \(C > 0 \) such that

\[
\left\| P_{g_{L,\zeta}^A} h, o^A \right\|_{L^2(g_{L,\zeta}^A)} \leq C|\zeta^\pm|^2|\zeta^\mp|^{1-\frac{d}{2}} \| h \|_{C_2^\beta} \| o^A \|_{L^2}.
\]

Replacing the control [Ozu20] (4.46), Lemma 4.46 by the above Lemma 3.22 in the proof of [Ozu20] Proposition 5.1, we get the following statement as a direct consequence.
Lemma 3.23. There exists $\epsilon > 0$ and $C > 0$ such that we have
\[\| \hat{g}_{L,\zeta} - g_L^A \|_{C^{1,\alpha}_{\mathbb{R}^2}(g_L^A)} \leq C \| \Phi_{L,\zeta}(g_L^A) - o^A_{L,\zeta} \|_{L^2(\mathbb{R}^2, g_L^A)} \]
and moreover if the metric $(M, \hat{g}_{L,\zeta})$ is an Einstein metric, then, we have
\[\| o^A_{L,\zeta} \|_{L^2(g_L^A)} \leq C(\| \Phi_{L,\zeta}(g_L^A) - o^A_{L,\zeta} \|_{L^2(\mathbb{R}^2, g_L^A)} + |\zeta|^{|1 - \frac{3}{2}|} |\zeta|^2) \times \| \Phi_{L,\zeta}(g_L^A) - o^A_{L,\zeta} \|_{L^2(\mathbb{R}^2, g_L^A)} \]
\[\] .

Together with the control of Proposition 3.14, Lemma 3.23 implies both a control of the metric and the obstructions.

Remark 3.24. For small ζ, we can essentially treat the obstructions coming from variations of different ζ^\pm_j, ζ^\mp_j or L as orthogonal to each other. Indeed, for the different infinitesimal variations, we have the following controls showing where each of the infinitesimal deformation has most of its mass:
\[|\partial^\pm_{L,\zeta} g^A_{L,\zeta} |_{L^2(g_L^A)} \leq C (\zeta^\mp_j)^{-4} \]
\[|\partial^\pm_{L,\zeta} g^A_{L,\zeta} |_{L^2(g_L^A)} \leq C (\zeta^\pm_j)^{-4} \]
\[|\partial^\pm_{L,\zeta} g^A_{L,\zeta} |_{L^2(g_L^A)} \leq C (\zeta^\mp_j)^{-4} \]

Estimating the L^2-product of two of the above infinitesimal, we see that as $|\zeta| \to 0$, they arbitrarily close to being orthogonal.

Corollary 3.25. We have the following controls:
\[\| \hat{g}_{L,\zeta} - g_L^A \|_{C^{1,\alpha}_{\mathbb{R}^2}(g_L^A)} \leq C |\zeta^{|1 + \frac{\beta}{2}}| |\zeta|^{|3 - \frac{\beta}{2}}| \]
\[\| o^A_{L,\zeta} \|_{L^2(g_L^A)} \leq C |\zeta^{|3 + \frac{\beta}{2}}| |\zeta|^{|4 - \frac{3\beta}{2}}| \]

with $|\zeta^{|2}| |\zeta|^5$ from (94), and for all l,
\[\nu_1(L, \zeta) = \mathcal{O}(\zeta^{|2}| |\zeta|^5 + |\zeta^{|3 + \frac{\beta}{2}}| |\zeta|^{|4 - \frac{3\beta}{2}}|) \]

where the additional error in $|\zeta^{|2}| |\zeta|^4$ comes from (89).

Remark 3.26. Recall that a priori, we only had $\lambda^j_k(L, \zeta) = \mathcal{O}(\zeta^{|2}| |\zeta|^5)$, $\eta^j_k(L, \zeta) = \mathcal{O}(\zeta^{|4}| |\zeta|^2)$ and $\nu_1 = \mathcal{O}(\zeta^{|2}| |\zeta|^2)$.

3.4. Obstruction to the total desingularization. We will now prove that there are obstructions to the Gromov-Hausdorff desingularization of T^4/Z_2 by Einstein metrics.

Proposition 3.27. Assume that there exists a sequence of Einstein modulo obstructions metrics $(\hat{g}_{L_n,\zeta_n} = g_{L_n,\zeta_n})_{n \in \mathbb{N}}$ which are actually Einstein with $\zeta_n \to 0$ and $L_n \to L_\infty$ where $\det(L_\infty) > 0$. Up to taking a subsequence, we consider the following limits:
\[\zeta^\pm_{l_1, l_2} \to \zeta^\pm_{\infty, l_1} \text{ and } \zeta^\mp_{l_1, l_2} \to \phi^\pm_{\infty, l_1}, \]

as well as the limit
\[R_{L_\infty, \zeta^\pm_{l_1, l_2}} := \lim_{n \to \infty} \frac{1}{|\zeta|^2} R_{\zeta^\pm_{l_1, l_2}} = \lim_{n \to \infty} \frac{1}{|\zeta|^2} R_{\zeta^\pm_{l_1, l_2}}. \]

Then,
We conclude exactly as in the proof of Theorem 0.2 by using (106) as a replacement for the variations of the curvature (66).

part of development (70). In the limit, we are left with the obstruction coming from the nonconstant obstruction, this tells us that the obstruction induced by the constant part (the limit at the singular point) of \((\mathbf{g}_\pm, \varsigma) \) scales like \(|\varsigma_\infty\pm|^2\). Thanks to the expression (36) of the obstruction, this tells us that the obstruction induced by the constant part (the limit at the singular point) scales like \(|\varsigma_\infty\pm|^2|\varsigma_\infty\pm|^2\) because we have \(H_2^\infty \propto |\varsigma_\infty\pm|^2|\varsigma_\infty\pm|^2 r_{\epsilon_+}^{-2} \) in the development (70). In the limit, we are left with the obstruction coming from the nonconstant part of \(\partial_{(0,z^\pm)} \mathbf{g}_\pm \) whose interpretation in (41) yields the obstruction (102) using the control of the variations of the curvature (66).

We conclude exactly as in the proof of Theorem 0.2 by using (106) as a replacement for

(1) one always has

\[
R_{L_\infty, \varsigma^\pm_\infty}(j)(\phi^\pm_\infty) = 0,
\]

for all the deformations \((0, z^\pm)\) of \((L_\infty, \varsigma^\pm_\infty)\), we have

\[
\sum_{j \in S_\pm} \left(\partial_{(0,z^\pm)} R_{L_\infty, \varsigma^\pm_\infty}(j)(\varsigma^\pm_\infty), \varsigma^\pm_\infty \right) = 0,
\]

and for all the deformations \((K, 0)\) of \((L_\infty, \varsigma^\pm_\infty)\), and \((\nu_l)(L_\infty, \varsigma_\infty)\) the obstructions of (72), we have

\[
\sum_l \left(\partial_{(K,0)} g^\pm, \nu_l \right)_{L_\infty, \varsigma^\pm_\infty} \nu_l(L_\infty, \varsigma_\infty) = 0.
\]

(2) If we assume that the sequence \((g_{L_\infty, \varsigma_\infty}) \in N\) is a nondegenerate sequence of Einstein desingularizations (see Definition 3.29), then, one moreover has:

\[
R_{L_\infty, \varsigma^\pm_\infty}(j) = 0 \text{ at every } j \in S_\pm.
\]

Remark 3.28. The assumption \(\det(L_\infty) > 0 \) for \(L_\infty \in GL(4, \mathbb{R}) \) ensures that there is no collapsing and a bounded diameter in our degeneration and therefore that we stay in the context of [And89], [BKN89], [Ozu19a], [Ozu19b].

Remark 3.29. When (101) is satisfied, from (41), we have the following rewriting of the obstruction

\[
\sum_{j \in S_\pm} \left(\partial_{(K,0)} R_{L_\infty, \varsigma^\pm_\infty}(j)(\varsigma^\pm_\infty), \varsigma^\pm_\infty \right) = 0.
\]

Proof of Proposition 3.27. Let us assume that there exists a sequence of Einstein modulo obstructions \((\hat{g}_{L_n, \varsigma_n} = g_{L_n, \varsigma_n}) \in N\) which are Einstein with \(\varsigma_n \to 0 \) and \(L_n \to L_\infty = Id \). By compactness, up to taking a subsequence, for all \(j \in S_\pm \) and all \(i \in S_\pm \), we have \(\varsigma^\pm_\infty, j \to \varsigma^\pm_\infty, i \) and \(\varsigma^\pm_\infty, i \) as \(n \to +\infty \). By (98) and (99), for any \(0 < \beta < 1 \) (chosen small enough), we have

\[
\lambda^j_k(L_n, \varsigma_n) + \mu^j_k(L_n, \varsigma_n) = O(|\varsigma^\pm_\infty|^2 |\varsigma^\pm_\infty|^{-\beta} |\varsigma^\pm_\infty|^3 |\varsigma^\pm_\infty|^{3 - \beta} |\varsigma^\pm_\infty|^{4 - 3\beta}),
\]

and for all \(l \),

\[
\nu(l, \varsigma_n) = O(|\varsigma^\pm_\infty|^2 |\varsigma^\pm_\infty|^{-\beta} |\varsigma^\pm_\infty|^{3 + |\varsigma^\pm_\infty|^2} |\varsigma^\pm_\infty|^{4 - 3\beta} |\varsigma^\pm_\infty|^{4 - 3\beta}).
\]

We directly see from (106) that

\[
\lim_{n \to +\infty} \frac{\lambda^j_k(L_n, \varsigma_n)}{|\varsigma^\pm_\infty|^2 |\varsigma^\pm_\infty|^2} = 0
\]

because \(\mu^j_k(L_n, \varsigma_n) = O(|\varsigma^\pm_\infty|^2 |\varsigma^\pm_\infty|^2 \beta) \) which proves (101) by the value the obstruction (24) and the control of the curvature of Proposition 3.6.

Similarly, from (107) we find

\[
\lim_{n \to +\infty} \frac{\nu(l, \varsigma_n)}{|\varsigma^\pm_\infty|^2 |\varsigma^\pm_\infty|^2} = 0
\]

which proves (103). In order to prove (102), we note that the constant part (the limit at the singular point) of \(\partial_{(0,z^\pm)} \mathbf{g}_\pm \) scales like \(|\varsigma^\pm_\infty|^2\). Thanks to the expression (36) of the obstruction, this tells us that the obstruction induced by the constant part (the limit at the singular point) scales like \(|\varsigma^\pm_\infty|^2|\varsigma^\pm_\infty|^2|\varsigma^\pm_\infty|^2 r_{\epsilon_+}^{-2} \) in the development (70). In the limit, we are left with the obstruction coming from the nonconstant part of \(\partial_{(0,z^\pm)} \mathbf{g}_\pm \) whose interpretation in (41) yields the obstruction (102) using the control of the variations of the curvature (66).
More precisely, if we assume towards a contradiction that the obstruction \(\rho_2 \) is not satisfied, that is \(\lim_{n \to \infty} n \omega_1^{\gamma}(\nu_n, \omega_n) = 0 \) is not satisfied, then since we have \(|R_{g_\pm}| \sim |\zeta|^2 \), the estimates \([55]\) and \([56]\) become

\[
\lambda_1^j(L_\infty, \phi_{n,j}) = O(|\zeta_n^\pm|^2|\phi_{n,j} - \phi_{\infty,j}|^2), \quad \text{and}
\]

\[
|\lambda_2^j(L_\infty, \phi_{n,j})| \geq c|\zeta_n^\pm|^2|\phi_{n,j} - \phi_{\infty,j}|, \quad \text{for some } c > 0.
\]

As in the proof of Theorem 0.2 we find a contradiction using \([106]\) for \(k = 2, 3 \) and then \(k = 1 \). Similarly, as in the proof of Theorem 0.2 one can use the eigenvalue estimate of \([\text{Biq}17]\) to deal with the stable situation thanks to the estimate of Corollary 3.25.

Remark 3.30. Allowing some Eguchi-Hanson metrics to be glued at negligible scale might not preserve the obstruction \(R^{\pm} = 0 \) at the associated point and might reduce the number of obstructions by 2 per such point. Indeed, \(R^{\pm} \) is in the 5-dimensional space of traceless symmetric 2-tensors and the first obstructions \(\lambda_k = 0 \), give 3 independent equations. But we will see that the scale being negligible means that we lose the 3 degrees of freedom. These situations should therefore be more obstructed even without the obstruction \(R^{\pm} = 0 \).

4. **Explicit obstructions to the desingularization of \(T^4/Z_2 \)**

Let us now make the obstructions of Proposition 3.27 more explicit as the vanishing of \(\zeta^\pm \), whose coefficients depend on the flat metric \(g_L \) alone.

Recall from \([13]\) that the curvature of the Eguchi-Hanson metric \(e_h \) and by their first asymptotic term \(\frac{\zeta^\pm \rho(\zeta)}{r} \) has the form \(12\pi_0 \frac{\rho(\zeta)^+ \otimes \rho(\zeta)^-}{r^6} \) where \(\rho(\zeta)^- \) is defined in Definition 1.13.

Note 4.1. During all of this section, we will often identify \(\mathbb{R}^3 \) and \(\Omega^+ \) or \(\Omega^- \) thanks to the bases \((\omega_i^\pm)_{i \in \{1,2,3\}} \). This will make it more convenient to find identities relating different obstructions in Lemma 4.6 for instance. That is why we are defining the selfdual or anti-selfdual curvature-like quantities \(b_\pm \) and \(B^4_\pm \) on \(\mathbb{R}^3 \). We will also use the identification \(\mathbb{R}^3 \otimes \mathbb{R}^3 \approx \Omega^+ \otimes \Omega^- \approx (\Omega^+)^* \otimes \Omega^- \approx \text{End}(\Omega^\pm) \).

For \(x \in \mathbb{R}^4 \) and \(\zeta, \zeta' \in \mathbb{R}^3 \setminus \{0\} \), we define \(b_\pm(\zeta, \zeta') := 12 \frac{\rho(\zeta^+) \otimes \rho(\zeta^-)}{|x|^6} \), where \(\rho_x \) for \(x \in \mathbb{R}^4 \) is the rotation explicit in \([8]\). Note that \(\rho_{-x} = (\rho_x)^t = (\rho_x)^{-1} = \rho_x \). For any \(z, z' \in \mathbb{R}^3 \), we have

\[
\langle b_\pm(\zeta, \zeta') z, z' \rangle := 12 \frac{\langle \rho_x(\zeta), z \rangle \langle \rho_x(\zeta'), z' \rangle}{|x|^6}.
\]

We also define the following bilinear form with values in \(\mathbb{R}^3 \otimes \mathbb{R}^3 \):

\[
B^4_\pm(\zeta, \zeta') := \pi_{tr} \sum_{a \in \mathbb{Z}_4} b_\pm(x - 2a)(\zeta, \zeta')
\]

(109)

for \(x \in \mathbb{R}^4 \) and \(L \) a \(4 \times 4 \) matrix, where \(\pi_{tr} \) is the projection on the traceless part.

Lemma 4.2. Let \((M_\pm, g^4_{\pm}) \) be one of the partial desingularizations of \(T^4/Z_2 \) of Definition 3.5. Then, for any \(j_0 \in S_- \) and any \(\zeta \in \mathbb{R}^3 \) and the associated \(\zeta^- \in \Omega^- \) (thanks to the basis \((\omega_i^\pm)_{i \in \{1,2,3\}} \)), we have

\[
R_{g^4_+}(j_0) \zeta^- = \sum_{i \in S_+} (B^4_{j_0 - i}(\zeta, \zeta) \zeta)^-
\]

(110)

where again \(B^4_{j_0 - i}(\zeta, \zeta) \zeta \in \mathbb{R}^3 \) and \((B^4_{j_0 - i}(\zeta, \zeta) \zeta)^- \in \Omega^- \).
Proof. Away from the glued Eguchi-Hanson metrics, $g^4_+ \geq g_L + \sum_{i \in S_+} n_{\zeta^i_+}$ where the $n_{\zeta^i_+}$ are explicated in (62). By Remark 4.4 and the formula (13), the induced curvature is therefore given by (110). □

We have the following properties for $B^L_x(\zeta, \zeta')$ for any $x \in \mathbb{R}^4$ and $\zeta, \zeta' \in \mathbb{R}^3$

1. $B^L_x(\zeta, \zeta') = B^L_x(\zeta', \zeta)$,
2. $B^L_x(\zeta, \zeta') = B^L_{-x}(\zeta, \zeta')$,
3. $B^L_{x+\|a\|}(\zeta, \zeta') = B^L_x(\zeta, \zeta')$ for $a \in \mathbb{Z}^4$.

Corollary 4.3. The obstruction (101) rewrites for all $j_0 \in S_-$,

$$\sum_{i \in S_+} \langle B^L_{j_0-i}(\zeta_i, \zeta_i) \xi_j, \xi_j \rangle = 0. \quad (111)$$

and from (102) for $j_0 \in S_-$ and an infinitesimal deformation of ζ_{j_0} in the direction z_{j_0}:

$$\sum_{i \in S_+} \langle B^L_{j_0-i}(z_{j_0}, \zeta_i) \xi_i, \xi_i \rangle = 0. \quad (112)$$

For the conjectural value of the obstructions (105), against a deformation K of the matrix L, denoting $\partial_K B^L_{j-i}$ the linearization of $L \mapsto B^L_{j-i}$ for $i \in S_+$ and $j \in S_-$ at L and in the direction K, we have

$$\sum_{i \in S_+} \sum_{j \in S_-} \langle \partial_K B^L_{j-i}(\zeta_i, \zeta_j) \xi_j, \xi_j \rangle = 0. \quad (113)$$

Finally, the obstruction (104) rewrites for any $j_0 \in S_-$:

$$\sum_{i \in S_+} B^L_{j_0-i}(\zeta_i, \zeta_i) = 0 \quad (114)$$

The analogous obstructions hold for the other orientation.

Remark 4.4. The obstruction identified in [BK17] corresponds to the nonvanishing of the one obstruction

$$\sum_{i \in S_+} \sum_{j \in S_-} \langle B^L_{j-i}(\zeta_i, \zeta_i) \xi_j, \xi_j \rangle = 0$$

(which is clearly implied by (111)), in the particular situation where

- $L = \text{Id}$,
- the sets S_{\pm} follow a chessboard pattern (see [BK17] or Section 4.3),
- for all $i \in S_+$, $j \in S_-$, $\zeta_i = (1, 0, 0)$ and $\zeta_j = (1, 0, 0)$.

Remark 4.5. If the Eguchi-Hanson metrics are glued at comparable scales, then:

- the obstructions (111) correspond to $3|S_+|$ equations for $3|S_-| + 9$ parameters given by the $|S_-|$ vectors ζ_j and the matrix L,
- the obstructions (114) correspond to $5|S_+|$ equations since R is symmetric trace-free for $3|S_-| + 9$ parameters given by the $|S_-|$ vectors ζ_j and the matrix L,
- the obstructions (113) are 9 equations, for the different deformations of the torus, for $3|S_+| + 3|S_-| + 9 = 57$ parameters,
- the obstructions (112) are $3|S_-|$ equations for $3|S_+| + 9$ parameters.

Since we have analogous obstructions in the other orientation, we see that we a priori have many more obstructions to satisfy than parameters. We will reduce the number of these equations in the next section.
4.1. Equivalent obstructions. Let us show that many of the above equations are actually equivalent. Let us therefore just assume that we have the obstructions \([114]\) at every singular point in both orientations and prove that some of the other obstructions are already satisfied.

4.1.1. Against the deformation of the Eguchi-Hanson metrics.

Lemma 4.6. We have the following equality for all \(i \in S_+, j \in S_-, \zeta \in (\mathbb{R}^3)^{|S_+|} \times (\mathbb{R}^3)^{|S_-|}\) and \(z \in \mathbb{R}^3\),

\[
\langle B_{j+i}^L(\zeta, z)\zeta_j, \zeta_i \rangle = \langle B_{j+i}^L(\zeta, z)\zeta_i, \zeta_j \rangle,
\]

and therefore the above obstruction \([114]\) at all singular points in the opposite orientation implies that the obstructions \([112]\) vanish.

Remark 4.7. This shows that the first obstructions coming from the deformations of the Eguchi-Hanson metrics are seen whether we first desingularize the positive ones or the negative ones.

Proof. Given the expression of \(B_{j-i}^L\) of \([109]\), we will study for \(a \in \mathbb{Z}^4\) a term of the above expressions. Because of the symmetries of \(B\), we can simply study \(\langle \pi \tr b_x(\zeta, z)\zeta_j, \zeta_i \rangle\). We will first consider \(z\) proportional to \(\zeta_i\) to obtain

\[
\langle \pi \tr b_x(\zeta, \zeta_i)\zeta_j, \zeta_i \rangle = \langle (12\rho_x(\zeta) \otimes \rho_x(\zeta) - 4|\zeta|^2 I_3)\zeta_j, \zeta_i \rangle = 12\langle \rho_x(\zeta), \zeta_j \rangle^2 - 4|\zeta|^2|\zeta_j|^2
\]

where we used the fact that \(\rho_{-x} = (\rho_x)^T = (\rho_x)^{-1} = \rho_x\). For \(z \perp \zeta_i\),

\[
\langle \pi \tr b_x(\zeta, \zeta_i)\zeta_j, \zeta_i \rangle = \langle (12\rho_x(\zeta) \otimes \rho_x(z))\zeta_j, \zeta_i \rangle = 12\langle \rho_x(\zeta), \zeta_j \rangle \langle \rho_x(z), \zeta_i \rangle
\]

This proves the statement. \(\square\)

4.1.2. Against the flat deformations of the torus. The last deformations to consider are the flat deformations of the torus which are equivalent to variations of the matrix \(L\) used in the definition of \(B_{j-i}^L\). For the conjectural form of the obstruction \([105]\), we compute the following expression. We omit the proof as the obstruction itself is only conjectural.

Lemma 4.8. Let us consider an infinitesimal variation of the flat torus seen as an infinitesimal variation of the matrix \(L\) in the direction \(KL^{-1}\), and assume that the obstruction \([114]\) is satisfied in both orientations.

Then, the conjectural obstruction \([105]\) for a variation \(KL^{-1}\) of \(L\) is equivalent to

\[
\sum_{i \in S_+} \sum_{j \in S_-} \sum_{a \in \mathbb{Z}^4} \frac{\langle L(i - j - 2a), K(i - j - 2a) \rangle}{|L(i - j - 2a)|^2} \langle \pi \tr b_{L(i-j-2a)}(\zeta_i, \zeta_i)\zeta_j, \zeta_j \rangle = 0
\]

Remark 4.9. The deformations of the matrix \(\text{Id}\) other than those in the space spanned by the \(\pi \tr (e_k \otimes e_k)\) for \((e_k)_{k \in \{1, 2, 3, 4\}}\) the usual basis of \(\mathbb{R}^4\), are equivalent to rotations of the torus and therefore to the rotation of the Eguchi-Hanson metrics and have already been considered above.

Corollary 4.10. The obstructions of Corollary 4.3 reduce to 84 polynomial equations in the \(\zeta_i\) and \(\zeta_j\) with coefficients depending on \(L\) only.
4.2. Some obstructed situations. We therefore see from Remark 4.3 that even though some obstructions are equivalent, there are many remaining ones that outnumber the degrees of freedom we have. Indeed, we have only ruled out the last type of obstructions corresponding to (112).

Let us now give an example of configuration of desingularization which cannot yield Ricci-flat (or even Einstein) metrics thanks to the obstructions identified in Corollary 4.3.

Theorem 4.11. There does not exist a sequence Einstein metrics \((M, g_n)_{n \in \mathbb{N}}\) converging in the Gromov-Hausdorff sense to \((\mathbb{T}^4/\mathbb{Z}_2, g_{L_\infty})\) with \(L_\infty = \text{Id}\) by bubbling out exactly 1 positively oriented Eguchi-Hanson metric and 15 negatively oriented one.

Remark 4.12. This is an obstruction to any Gromov-Hausdorff desingularization under a topological assumption.

Proof. Let \((M, g_n)_{n \in \mathbb{N}}\) be a sequence of Einstein metrics converging to \((\mathbb{T}^4/\mathbb{Z}_2, g_{L_\infty})\) with \(L_\infty = \text{Id}\) in the Gromov-Hausdorff sense while bubbling out Eguchi-Hanson metrics and let us assume without loss of generality that \(S_+ = \{0\}\) and \(S_-\) is the complement of \(\{0\}\) among the singular points of \(\mathbb{T}^4/\mathbb{Z}_2\). Then, according to [Ozu19b], up to taking a subsequence, for all \(n\), there exist \(L_n, \zeta_n, 0\) and \(\zeta_n, j\) for \(j \in S_-\), such that the metrics \(g_n\) are isometric to Einstein modulo obstructions perturbations of \(g_{L_n, \zeta_n}^D\).

Let us show that the limit rescaled curvature \(R_{L_\infty, \zeta_\infty}^- (j)\) defined in Proposition 3.27 is invertible at a singular point \(j \in S_-\). This will lead to a contradiction by the obstruction [101].

By Lemma 4.2 we have an expression of \(R_{L_\infty, \zeta_\infty}^- (j)\): it is a nonvanishing multiple of

\[
\sum_{a \in \mathbb{Z}^4} \pi_{tr} \frac{\theta_1 ((1, 0, 0, 0) + 2a) \otimes \theta_1 ((1, 0, 0, 0) + 2a)}{|(1, 0, 0, 0) + 2a|^6}. \tag{124}
\]

The value of the summand at \(a = 0\) and \(a = (-1, 0, 0, 0)\) is

\[
\pi_{tr} (\omega_1^- \otimes \omega_1^-) = \frac{1}{3} (2\omega_1^- \otimes \omega_1^- - \omega_2^- \otimes \omega_2^- - \omega_3^- \otimes \omega_3^-), \tag{125}
\]

which is invertible on \(\Omega^-\). For the sum of the norms of the remaining terms, that is,

\[
\sum_{a \in \mathbb{Z}^4 \setminus \{0, (-1, 0, 0, 0)\}} \left| \pi_{tr} \frac{\theta_1 ((1, 0, 0, 0) + 2a) \otimes \theta_1 ((1, 0, 0, 0) + 2a)}{|(1, 0, 0, 0) + 2a|^6} \right|,
\]

we numerically have the control

\[
\sum_{a \in \mathbb{Z}^4 \setminus \{0, (-1, 0, 0, 0)\}} \frac{1}{|(1, 0, 0, 0) + 2a|^6} \approx 0.19 < \frac{2}{3}.
\]

This is not enough to make the sum (124) non-invertible given the expression (125). The result follows by [111]. \qed

Remark 4.13. The above proof works for many other limits than \(L_\infty = \text{Id}\) and it is likely that it is true for any \(L_\infty\), but it requires some control of the compactness of the lattice generated by \(L_\infty\). Theorem 4.11 particular holds even with the most compact lattices like the \(D_4\) lattice. By compactness, we loosely mean how close the points of the lattice are to each other.

Conjecture 4.14. The statement of Theorem 4.11 holds even without the assumption \(L_\infty = \text{Id}\), but only assuming that \(\det(L_\infty) > 0\).
For stable or nondegenerate Ricci-flat deformations, one does not simply have \(R_{L_{\infty}, \zeta_{\pm}^j}^{-} \) invertible, but \(R_{L_{\infty}, \zeta_{\pm}^j}^{-} = 0 \). Since it is a sum of terms of the form (124) based at each singular point, it is direct to see that \(R_{L_{\infty}, \zeta_{\pm}^j}^{-} = 0 \) requires at least 3 Eguchi-Hanson metrics in this orientation.

Corollary 4.15. There does not exist a sequence of stable Ricci-flat metrics \((M, g_n)_{n \in \mathbb{N}} \) converging in the Gromov-Hausdorff sense to \((\mathbb{T}^4/\mathbb{Z}_2, g_{L_{\infty}})\) with \(L_{\infty} = \text{Id} \) by bubbling out at most 3 positively oriented Eguchi-Hanson metric and the rest of negatively oriented ones.

4.3. A family of desingularizations satisfying the obstructions.

Let us now specialize our discussion to the regular torus with \(L = \text{Id} \) and with the so-called chessboard pattern considered in [BK17]. We study the 48-dimensional space of gluings to the (fixed) regular torus and test it against the pattern considered in [BK17].

Perhaps surprisingly, in this most symmetric situation, we will find a family of solutions to all of our 84 equations. This family of solutions is 14-dimensional.

Remark 4.16. It will be clear from our proof and computations in this section that in the configuration considered in [BK17], many of these 84 equations are not satisfied.

The chessboard configuration already considered in [BK17] is defined as:

\[
S_- = \{(a_1, a_2, a_3, a_4) \in \mathbb{Z}^4, a_1 + a_2 + a_3 + a_4 \in 2\mathbb{Z}\}/\mathbb{Z}_2 \quad \text{and} \\
S_+ = \{(a_1, a_2, a_3, a_4) \in \mathbb{Z}^4, a_1 + a_2 + a_3 + a_4 \in 1 + 2\mathbb{Z}\}/\mathbb{Z}_2.
\]

Remark 4.17. In this chessboard configuration, let \(i \in S_{\pm} \). Then, we have the following configuration of other singular points:

- at distance 0 is \(i \in S_{\pm} \)
- at distance 1, there are 4 points in \(S_{\mp} \)
- at distance \(\sqrt{2} \), there are 6 points in \(S_{\pm} \),
- at distance \(\sqrt{3} \), there are 4 points in \(S_{\mp} \), and
- at distance 2, there is a point in \(S_{\mp} \).

We will denote \(i^c \) the opposite of \(i \) which is the point at maximal distance 2 from \(i \).

Here we will work under the assumption that for all \(i \),

\[
\zeta_i = \zeta_{i^c}.
\]

We will denote \(e_1 = (1, 0, 0, 0) \in S_+ \) and similarly \(e_i \in S_+ \) for \(i \in \{1, 2, 3, 4\} \) the other vectors of the canonical basis of \(\mathbb{R}^4 \). Let us introduce the following notations for the coordinates of our gluing parameters \(\zeta_{e_i} \):

\[
\zeta_{e_i} =: (x_i, y_i, z_i),
\]

for \(i \in \{1, 2, 3, 4\} \). Let us denote \(x = (x_1, x_2, x_3, x_4), \ y = (y_1, y_2, y_3, y_4) \) and \(z = (z_1, z_2, z_3, z_4) \) the three vectors in \(\mathbb{R}^4 \) we obtain.

Proposition 4.18. Using the above notations, let us assume that the family \((x, y, z)\) of vectors of \(\mathbb{R}^4 \) forms an orthogonal family of \(\mathbb{R}^4 \) with constant length. Then, the obstructions \((105) \) and the obstructions \((104) \) at every \(j \in S_- \) are satisfied.

Sketch of proof (some computer-based arguments involved). Let us consider a desingularization configuration as above.
Let us study the curvature at the singular point \(0 \in S_{-} \) induced by the other Eguchi-Hanson metrics glued at the points of \(S_{+} \). From (110), we know that this exactly equals

\[
\sum_{i=1}^{4} B_{e_{i}}^{\text{Id}}((x_{i}, y_{i}, z_{i}), (x_{i}, y_{i}, z_{i})) + B_{e_{i}}^{\text{Id}}((x_{i}, y_{i}, z_{i}), (x_{i}, y_{i}, z_{i})).
\] (126)

Numerically, we obtain the following form for \(B_{e_{i}}^{\text{Id}}((x_{i}, y_{i}, z_{i}), (x_{i}, y_{i}, z_{i}))+B_{e_{i}}^{\text{Id}}((x_{i}, y_{i}, z_{i}), (x_{i}, y_{i}, z_{i})) \):

\[
\begin{bmatrix}
 a \cdot (2x_{i}^{2} - y_{i}^{2} - z_{i}^{2}) & b \cdot x_{i} y_{i} & b \cdot x_{i} z_{i} \\
 b \cdot x_{i} y_{i} & a \cdot (-x_{i}^{2} + 2y_{i}^{2} - z_{i}^{2}) & b \cdot y_{i} z_{i} \\
 b \cdot x_{i} z_{i} & b \cdot y_{i} z_{i} & a \cdot (-x_{i}^{2} - y_{i}^{2} + 2z_{i}^{2})
\end{bmatrix},
\]

for some real numbers \(a \approx 0.69 \) and \(b \approx 2.0 \), and similar formulas for the other \(i \) by symmetries. Therefore, the equation

\[
\sum_{i=1}^{4} B_{e_{i}}^{\text{Id}}((x_{i}, y_{i}, z_{i}), (x_{i}, y_{i}, z_{i})) + B_{e_{i}}^{\text{Id}}((x_{i}, y_{i}, z_{i}), (x_{i}, y_{i}, z_{i})) = 0.
\] (127)

coming from the obstruction (114) reduces to having both

\[
\sum_{i=1}^{4} x_{i}^{2} = \sum_{i=1}^{4} y_{i}^{2} = \sum_{i=1}^{4} z_{i}^{2}, \text{ and}
\]

\[
\sum_{i=1}^{4} x_{i} y_{i} = \sum_{i=1}^{4} x_{i} z_{i} = \sum_{i=1}^{4} y_{i} z_{i} = 0.
\]

This means that we are looking for an orthogonal family of 3 vectors \(x = (x_{i})_{i} \), \(y = (y_{i})_{i} \) and \(z = (z_{i})_{i} \) with same length in \(\mathbb{R}^{4} \). This is given by an element of \(\mathbb{R}^{+} \times \mathbb{R} P^{3} \times O(3) \). More precisely, the element of \(\mathbb{R} \) is equal to \(\sum_{i=1}^{4} x_{i}^{2} = \sum_{i=1}^{4} y_{i}^{2} = \sum_{i=1}^{4} z_{i}^{2} \), the element of \(\mathbb{R} P^{3} \) is a line orthogonal to \((x, y, z) \) in \(\mathbb{R}^{4} \) and \(O(3) \) is the orthonormal basis \((x/|x|, y/|y|, z/|z|) \) in the orthogonal of the element of \(\mathbb{R} P^{3} \). This set is 7-dimensional.

Similarly, we can study the variations of the curvature when \(L = \text{Id} \) in the directions \(e_{i} \otimes e_{i} \) for \(i \in \{1, 2, 3, 4\} \). We again find numerically that the conjectural obstructions (105) are of the form:

\[
\begin{bmatrix}
 c \cdot (2x_{i}^{2} - y_{i}^{2} - z_{i}^{2}) & d \cdot x_{i} y_{i} & e \cdot x_{i} z_{i} \\
 d \cdot x_{i} y_{i} & c \cdot (-x_{i}^{2} + 2y_{i}^{2} - z_{i}^{2}) & f \cdot y_{i} z_{i} \\
 e \cdot x_{i} z_{i} & f \cdot y_{i} z_{i} & c \cdot (-x_{i}^{2} - y_{i}^{2} + 2z_{i}^{2})
\end{bmatrix},
\]

for some nonvanishing real numbers \(c, d, e, f \) which depend on the direction in which the deformation is done. Therefore, they also vanish under the conditions \(\sum_{i=1}^{4} x_{i}^{2} = \sum_{i=1}^{4} y_{i}^{2} = \sum_{i=1}^{4} z_{i}^{2} \) and \(\sum_{i=1}^{4} x_{i} y_{i} = \sum_{i=1}^{4} x_{i} z_{i} = \sum_{i=1}^{4} y_{i} z_{i} = 0 \).

Moreover, because we have similar equations and degrees of freedom in the other orientation, we obtain a 14-dimensional family of candidates satisfying all of the obstructions of Corollary 4.3. □

Example 4.19. Some examples of solutions to the above equations are

\[
\zeta_{1} = (1, 1, 1), \quad \zeta_{2} = (1, -1, -1), \quad \zeta_{3} = (-1, 1, -1) \quad \text{and} \quad \zeta_{4} = (-1, -1, 1) \quad \text{and}
\]

\[
\zeta_{1} = (1, 0, 0), \quad \zeta_{2} = \left(0, 1/\sqrt{2}, 0\right), \quad \zeta_{3} = \left(0, 0, 1/\sqrt{2}\right) \quad \text{and} \quad \zeta_{4} = (1, 0, 0).
\] (128) (129)
APPENDIX A. Function Spaces

For a tensor s, a point x, $\alpha > 0$ and a Riemannian manifold (M, g). The Hölder seminorm is defined as

$$[s]_{C^{\alpha}(g)}(x) := \sup_{y \in T_xM, |y| < \text{inf}_y(x)} \frac{|s(x) - s(y)|}{|y|^\alpha}.$$

For orbifolds, we consider a norm bounded for tensors decaying at the singular points.

Definition A.1 (Weighted Hölder norms on an orbifold). Let $\beta \in \mathbb{R}$, $k \in \mathbb{N}$, $0 < \alpha < 1$ and (M_o, g_o) an orbifold. Then, for any tensor s on M_o, we define

$$\|s\|_{C^{k,\alpha}_{\beta}(g_o)} := \sup_{M_o} r_o^{-\beta} \left(\sum_{i=0}^k r_o^i |\nabla^i g_o s|_{g_o} + r_o^{k+\alpha} |\nabla^k g_o s|_{C^\alpha(g_o)} \right).$$

For ALE manifolds, we will consider a norm bounded for tensors decaying at infinity.

Definition A.2 (Weighted Hölder norms on an ALE orbifold). Let $\beta \in \mathbb{R}$, $k \in \mathbb{N}$, $0 < \alpha < 1$ and (N, g_b) be an ALE manifold. Then, for all tensor s on N, we define

$$\|s\|_{C^{k,\alpha}_{\beta}(g_b)} := \sup_{N} r_b^{-\beta} \left(\sum_{i=0}^k r_b^i |\nabla^i g_b s|_{g_b} + r_b^{k+\alpha} |\nabla^k g_b s|_{C^\alpha(g_b)} \right).$$

On M, using a partition of unity $1 = \chi_{M^l} + \sum_j \chi_{N_j}$ with χ_{M^l} equals to 1 where $g_l^D = g_o$ and χ_{N_j} equals to 1 where $g_l^D = t_j g_b$ (see [Ozmn19a]), we can define a global norm.

Definition A.3 (Weighted Hölder norm on a naïve desingularization). Let $\beta \in \mathbb{R}$, $k \in \mathbb{N}$ and $0 < \alpha < 1$. We define for $s \in TM^l H \otimes T^* M^l H$ a tensor $(l_+, l_-) \in \mathbb{N}^2$, with $l := l_+ - l_-$ the associated conformal weight,

$$\|s\|_{C^{k,\alpha}_{\beta}(g^D)} := \|\chi_{M^l} s\|_{C^{k,\alpha}_{\beta}(g_o)} + \sum_j T_j^\frac{l}{2} \|\chi_{N_j} s\|_{C^{k,\alpha}_{\beta}(g_b)}.$$

A.1. Decoupling norms. We actually need a last family of norms to get good analytic properties for our operators, see [Ozmn19a]. With the notations of Definition A.2 denote for each singular point k, $A_k(t, \epsilon_0) := (\Phi_k)_* A_e(\epsilon_0^{-1} \sqrt{k}, \epsilon_0)$ and $B_k(\epsilon_0) := (\Phi_k)_* B_e(0, \epsilon_0)$, as well as cut-off functions $\chi_{A_k(t, \epsilon_0)}$ and $\chi_{B_k(\epsilon_0)}$ respectively supported in $A_k(t, \epsilon)$ and $B_k(\epsilon_0)$, and equal to 1 on $A_k(t, 2\epsilon_0)$ and $B_k(\epsilon_0/2)$.

Definition A.4 ($C^{k,\alpha}_{\beta, s}$-norm on 2-tensors). Let h be a 2-tensor on (M, g^D), (M_o, g_o) or (N, g_b). We define its $C^{k,\alpha}_{\beta, s}$-norm by

$$\|h\|_{C^{k,\alpha}_{\beta, s}} := \inf_{h_s, h_k} \|h_s\|_{C^{k,\alpha}_{\beta}} + \sum_k |H_k|_{g_s},$$

where the infimum is taken on the $(h_s, (H_k)_s)$ satisfying $h = h_s + \sum_k \chi_{A_k(t, \epsilon_0)} H_k$ for (M, g^D) or $h = h_s + \sum_k \chi_{B_k(\epsilon_0)} H_k$ for (N, g_b), where each H_k is some constant and trace-free symmetric 2-tensors on \mathbb{R}^d/Γ_k.

A.2. An application of the analysis on weighted spaces. Consider for $n \in \mathbb{N}$, for $\gamma \in \mathbb{N}\{3 - n, \ldots, -1\}$ and $0 < \beta < 1$ the Fredholm operator

$$P_e : r_e^\gamma C^{\alpha}_{\beta}([\mathbb{R}^n \setminus \{0\}]) \to r_e^{-2} C^{\alpha}_{\beta}([\mathbb{R}^n \setminus \{0\}]),$$

where the norms $C^{\alpha}_{\beta}([\mathbb{R}^n \setminus \{0\}])$ on symmetric 2-tensors denote the norm on $\mathbb{R}^n \setminus \{0\}$ seen as orbifold at 0 like in Definition A.1 and ALE at infinity like in definition A.2.
operator is Fredholm and its kernel is composed of homogeneous harmonic 2-tensors in \(r_\gamma \). Its \(L^2 \)-cokernel is the kernel of

\[P_e : r_\gamma^{n+2-\gamma} C^2_\alpha (\mathbb{R}^n \setminus \{0\}) \rightarrow r_\gamma^{n-\gamma} C^\alpha (\mathbb{R}^n \setminus \{0\}) , \]

which is reduced to \(\{0\} \). As a direct consequence of the open mapping theorem, we have the following result.

Lemma A.5. Let \(n \in \mathbb{N} \), for \(\gamma \in \mathbb{N} \setminus \{3-n, \ldots, -1\} \) and \(0 < \beta < 1 \). Then, there exists \(C > 0 \) such that for any symmetric 2-tensor \(v \in r_\gamma^{n-2} C^\alpha (\mathbb{R}^n \setminus \{0\}) \), there exists a 2-tensor \(h \) satisfying

\[P_e h = v, \]

with

\[\| h \|_{r_\gamma^{n-2} C^\alpha (\mathbb{R}^n \setminus \{0\})} \leq C \| v \|_{r_\gamma^{n-2} C^\alpha (\mathbb{R}^n \setminus \{0\})} . \]

\[\square \]

References

[Ach19] B. Acharya, _Supersymmetry, Ricci Flat Manifolds and the String Landscape_, preprint arXiv:1906.06886 [hep-th]

[And89] M.T. Anderson, _Ricci Curvature Bounds and Einstein Metrics on Compact Manifolds_. J. Amer. Math. Soc. 2 (1989), no. 3, 455–490.

[And92] M. T. Anderson, _The \(L^2 \) structure of moduli spaces of Einstein metrics on 4-manifolds_, Geometric and Functional Analysis, March 1992, Volume 2, Issue 1, pp 29–89

[And10] M.T. Anderson, _A survey of Einstein metrics on 4-manifolds_. Handbook of geometric analysis, No. 3, 1–39, Adv. Lect. Math. (ALM), 14, Int. Press, Somerville, MA, 2010.

[BKN99] S. Bando ; A. Kasue ; H. Nakajima, _On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth_. Invent. Math. 97 (1989), no. 2, 313–349.

[Biq13] O. Biquard, _Désingularisation de métriques d’Einstein. I_. Invent. Math. 192 (2013), no. 1, 197–252.

[Biq16] O. Biquard, _Désingularisation de métriques d’Einstein. II_. Invent. Math. 204(2), (2016), 473–504.

[Biq17] O. Biquard, _Non dégénérescence et singularités des métriques d’Einstein asymptotiquement hyperboliques en dimension 4_. Math. Ann. 372 (2018), no. 1-2, 531–553.

[BR15] O. Biquard ; Y. Rollin, _Smoothing singular constant scalar curvature Kähler surfaces and minimal Lagrangians_. Adv. Math. 285 (2015), 980–1024.

[BK17] S. Brendle and N. Kapouleas, _Gluing Eguchi-Hanson metrics and a question of Page_, Comm. Pure Appl. Math 70, p. 1366-1401 (2017)

[CT06] J. Cheeger ; G. Tian, _Curvature and injectivity radius estimates for Einstein 4-manifolds_, J. Amer. Math. Soc. 19 (2006), 487-525.

[GP79] G.W. Gibbons ; C.N. Pope, _The positive action conjecture and asymptotically euclidean metrics in quantum gravity_. Comm. Math. Phys. 66, 267–290 (1979).

[Don12] S.K. Donaldson, _Calabi-Yau metrics on Kummer surfaces as a model gluing problem_, Advances in geometric analysis, 109–118, Adv. Lect. Math. 21, International Press, Somerville, MA (2012)

[EH78] T. Eguchi ; A. Hanson, _Asymptotically flat self-dual solutions to Euclidean gravity_, Physics Letters B74, 249–251 (1978)

[Fin11] J. Fine, _A gauge theoretic approach to the anti-self-dual Einstein equations_, arXiv:1111.5005 2011.

[Kro89a] P.B. Kronheimer, _The construction of ALE spaces as hyper-Kähler quotients_. J. Differential Geom. Volume 29, Number 3 (1989), 665-683.

[Koi83] N. Koiso, _Einstein Metrics and Complex Structures_. Invent. Math. 73 (1983), no. 1, 71–106.

[LS94] C. LeBrun ; M. Singer, _A Kummer-type construction of self-dual 4-manifolds_, Math. Ann. 300, 165–180 (1994)

[LM85] R.B. Lockhardt ; R.C. McOwen, _Elliptic operators on noncompact manifolds_. Ann. Sci. Normale Sup. Pisa IV-12 (1985), 409–446.

[Ozu19a] T. Ozuch, _Noncollapsed degeneration of Einstein 4-manifolds I_. preprint, arXiv:1909.12957 [math.DG] .

[Ozu19b] T. Ozuch, _Noncollapsed degeneration of Einstein 4-manifolds II_. preprint, arXiv:1909.12960 [math.DG].
[Ozu20t] T. Ozuch, Complétion de l’espace de modules des métriques d’Einstein en dimension 4, PhD thesis.

[PR78] F. Pacard ; T. Rivière, Linear and Nonlinear Aspects of Vortices, Progress in Nonlinear Differential Equations and their Applications, 39. Birkhäuser, Boston, MA, 2000.

[Pag78] D.N. Page, A physical picture of the K3 gravitational instanton, Physics Letters B80, 55–57 (1978)

[Pag81] D.N. Page, A periodic but nonstationary gravitational instanton, Physics Letters B100, 313–315 (1981)

[PP87] D. N. Page ; C. Pope Inhomogeneous Einstein metrics on complex line bundles, Classical Quantum Gravity 4 (1987), p. 213–225.

[Spo14] C. Spotti, Deformations of Nodal Kähler–Einstein Del Pezzo Surfaces with Finite Automorphism Groups, J. London Math. Soc. 89 (2014)

[Top87a] P. Topiwala, A new proof of the existence of Kähler-Einstein metrics on K3 I. Invent. Math. 89, 425–448 (1987)

[Top87b] P. Topiwala, A new proof of the existence of Kähler-Einstein metrics on K3, II. Invent. Math. 89, 449–454 (1987)

[Yau78] S.T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I. Comm. Pure Appl. Math., 31, 339-441 (1978)

MIT, DEPT. OF MATH., 77 MASSACHUSETTS AVENUE, CAMBRIDGE, MA 02139-4307.

E-mail address, ozuch@mit.edu