Subcellular compartmentation of sugar signaling: links among carbon cellular status, route of sucrolysis, sink-source allocation, and metabolic partitioning

Axel Tiessen* and Daniel Padilla-Chacon
Departamento de Ingeniería Genética, CINVESTAV Unidad Irapuato, Irapuato, México

INTRODUCTION

Through this review, we show how one should consider both extensive gene duplication and extensive cellular compartmentation of plant metabolism to fully understand sugar signaling. Establishment of sugar gradients across different subcellular compartments, cells, and organs is a current issue of plant physiology; therefore, we address the multiplicity of sucrolytic pathways in sink and source tissues.

SUBCELLULAR COMPARTMENTATION

Eukaryotic organisms differ from prokaryotic organisms in that their metabolic activity occurs in different parts of the cell (Lunn, 2007). Every cellular compartment depends, to some extent, on other subcompartments for the supply and/or delivery of precursors and/or intermediates (Stitt, 1997). Since primary pathways occur in different organelles, one should assume a priori that sugar perception and signal transduction is also compartmentalized (Lunn, 2007). However, most research on plant metabolomics and sugar signaling has ignored such a premise. In Arabidopsis, bulk tissue (from either rosette plants or germinating seedlings) is typically harvested and homogenized to determine metabolite levels as a bulk megacompartment, thereby both ignoring diversity of cell types and further mixing subcellular organelles (Osuna et al., 2007; Sulprizio et al., 2009). Therefore, some mutants of key enzymes of sucrose metabolism have sometimes been reported to have no "obvious" phenotype (Bieniawska et al., 2007). To advance sugar signaling research, one should use a diverse array of experimental approaches for determining developmental gradients and subcellular levels of many biomolecules (Geigenberger et al., 2011; Kueger et al., 2012).

SPATIAL DISTRIBUTION OF PROTEINS AND RNA

Plant gene expression patterns and protein location have been traditionally analyzed with β-glucuronidase, luciferase, and green fluorescent protein (Hijikata et al., 2006; Lalonde et al., 2008). Many constructs can be transiently expressed with new methods (Li et al., 2009), but experimental elucidation of protein location must be done in carefully sectioned tissues with laser-capture micro-dissection (Chang et al., 2012). Localization of mRNA is additionally analyzed with in situ hybridization (Borisjuk et al., 2005; Fallahi et al., 2008). In the post-genomic era, bioinformatic prediction of protein targeting is more extensively used and could eventually replace some experimental approaches (Comes-Andujo et al., 2011).

Recent findings suggest that both subcellular compartmentation and route of sucrolysis are important for plant development, growth, and yield. Signalizing effects equal on the tissue, cell type, and stage of development. Downstream effects also depend on the amount and localization of hexoses and disaccharides. All enzymes of sucrose metabolism (e.g., invertase, hexokinase, fructokinase, sucrose synthase, and sucrose 6-phosphate synthase) are not produced from single genes, but from paralog families in plant genomes. Each paralog has unique expression across plant organs and developmental stages. Multiple isoforms can be targeted to different cellular compartments (e.g., plastids, mitochondria, nuclei, and cytosol). Many of the key enzymes are regulated by post-transcriptional modifications and associate in multimeric protein complexes. Some isoforms have regulatory functions, either in addition to or in replacement of their catalytic activity. This explains why some isozymes are not redundant, but also complicates elucidation of their specific involvement in sugar signaling. The subcellular compartmentation of sucrose metabolism forces refinement of some of the paradigms of sugar signaling during physiological processes. For example, the catalytic and signaling functions of diverse paralogs need to be more carefully analyzed in the context of post-genomic biology. It is important to note that it is the differential localization of both the sugars themselves as well as the sugar-metabolizing enzymes that ultimately led to sugar signaling. We conclude that a combination of subcellular complexity and gene duplication/subfunctionalization gave rise to sugar signaling as a regulatory mechanism in plant cells.

Keywords: sugar signaling, cell organelles, signal transduction, sucrose synthase, sucrose/hexose ratio, hexokinase, AGPase
SPATIAL DISTRIBUTION OF METABOLITES

The location of either mRNA or proteins reveals biosynthetic potential, but it is not necessarily where the metabolite finally accumulates (Lee et al., 2012). Metabolic networks represent a completely different level of realization of genomic information that is not always correlated with proteins and nucleic acids (Saito and Matsuda, 2010; Kueger et al., 2012)

Microscopy is the standard method for determining the location of biomolecules in plant organs because molecular gradients produce different colors and intensities in specific cells. Microscopy generates qualitative information, but unfortunately it has not yet been adapted for quantitative measurement of metabolites and enzymes.

Non-aqueous fractionation (NAF) is a powerful technique for separating subcellular compartments under conditions in which biological activities are completely arrested (Farrell et al., 2001; Geigenberger et al., 2011). This method allows to calculate in vivo mass-action ratios of all reactions of sucrose metabolism (Tiessen et al., 2002). Metabolomic NAF analysis in barley seeds (Tiessen et al., 2012), Arabidopsis leaves (Fettke et al., 2005a; Geigenberger et al., 2011), potato leaves (Fettke et al., 2005b), and potato tubers (Farrell et al., 2006, 2008, 2001), shows marked differences in compartmentation. The classical assumptions about metabolite subcellular distribution are not always true in all species and in all organs. The subcellular ADP/Glc level in barley mutants, for example, provides important clues about metabolic regulation in cereal endosperms (Tiessen et al., 2012).

Improved methods for single-cell transcriptomics, proteomics, and metabolomics are needed for a holistic understanding of sugar signaling (Dai and Chen, 2012). Fluorescence techniques reveal dynamics and localizations of molecular interactions within cells (LaLonde et al., 2005); mechanical- and affinity-based technologies are used to isolate and analyze individual cell types in plants (Wang and Raan, 2012); and system-level analyses of specific cell types in plants may soon become standard (Kueger et al., 2012).

METABOLISM AND REGULATION: EXAMPLES OF A DUAL ROLE

Neither compartments nor functions should be mixed. For some proteins, there is a risk of confusing metabolic activity with signal perception. Few metabolic enzymes “moonlight” as transcriptional regulators. The best-known example in plants is hexokinase (HXK; Harrington and Bus, 2003). In addition to catalyzing the first step of glycolysis, HXK is also a glucose sensor (Moore et al., 2003; Rolland et al., 2006) and in plants it transduces downstream signals, both transcriptionally (Barna-González et al., 2007) and post-transcriptionally (Tiessen et al., 2003). Plant HXKs are encoded by a family of 5–10 genes (Caerleyssen and Rivoal, 2007) which can be active in several compartments (Balsubramanian et al., 2007; Damari-Weisler et al., 2007; Figure 1). AtHXK1 is predominantly associated with the mitochondria but can also occur in the nucleus (Cho et al., 2009), where it associates with transcriptional complexes (Cho et al., 2006) to regulate gene expression (Balsubramanian et al., 2007). This remarkable bi-functional activity enables crosstalk between compartments and metabolic pathways.

Some HXKs have similar catalytic activity, but they are not interchangeable for the regulatory function (Rolland et al., 2006). Other isoforms might have lost their original biochemical function during endosymbiotic evolution. In Arabidopsis, three of six HXK paralogs lack catalytic activity (Cho et al., 2006; Karve et al., 2008). These hexokinase-like (HKL) proteins have been experimentally detected in the mitochondria (Hazelwood et al., 2007) and can cause an unusual root hair phenotype (Karve et al., 2010).

The existence of HXK-based sugar signaling was initially questioned because it was isoform-specific and further because the glucose phenotype was only observed at specific stages of germination (Halford et al., 1999). Later it was found that two signaling pathways involving both SnRK1 and HXK regulate key enzymes of sucrose-starch metabolism (Tiessen et al., 2003; McKibbin et al., 2005). T6P may act as a secondary messenger of carbon status between the cytosol and the chloroplasts (Lunn et al., 2006). Supplying T6P to isolated chloroplasts promotes redox activation of AGPase (Kolbe et al., 2005), although the molecular mechanism is not fully understood. The direct effects of T6P on signaling/target proteins still need to be characterized in detail. T6P may act allosterically through either SnRK1 or NADP-dihorodox reductase C, which regulates AGPase (Michalka et al., 2009). T6P may act as a secondary messenger of carbon status between the cytosol and the chloroplasts (Kolbe et al., 2005).

METABOLIC ROUTES FOR SUGAR SIGNALING

Overexpression of yeast inverting (INV) and bacterial glucokinase in the cytosol was intended as a strategy to increase sucrose import and sink strength in potato tubers (Tirrell et al., 1998). Contrary to expectation, a futile cycle of sucrose degradation and resynthesis is created, leading to decreased starch content in the transgenic lines (Tirrell et al., 1999).
Heterologous expression of sucrose phosphorylase (SuPho) was used to bypass SUS (sucrose synthase)/fructokinase (FK) and INV/HXK routes (Fernie et al., 2002). It decreases cytosolic sucrose levels (Tiessen et al., 2002). Reduction of starch in the SuPho transformants occurred from an ∼40% decrease in AGPase activity and the redox activation state (Tiessen, 2002). Ectopic overexpression of either INV or SuPho affects the internal oxygen levels in growing tubers and is correlated with decreased starch content (Bologa et al., 2003). The INV/HXK pathway is, therefore, more energy demanding, and the SUS/FK pathway allows to maintain a higher cellular energy state under low-oxygen conditions (Bologa et al., 2003).

The different routes of sucrose degradation are not interchangeable because the subcellular levels of hexoses and sucrose produce different signals that activate different metabolic pathways (Figure 1). A low sucrose/hexose ratio promotes respiration over starch synthesis (Geiger et al., 1998). Expressing INV in either the apoplast or the cytosol leads to very different results (Farré et al., 2008; Ferreira and Sonnewald, 2012). Inhibition of SUS decreases specifically starch accumulation but not protein or lipid synthesis (Zrenner et al., 1995; Angeles-Núñez and Tiessen, 2010).

MULTIPLE SUCROLYTIC ROUTES
Sucrolytic INV activity is critical for metabolism in plants (Ferreira and Sonnewald, 2012), and it might also have a direct role in signaling (Roitsch, 1999; Farré et al., 2008). Arabidopsis has six cell wall INV, two vacuolar INV, and 11 neutral/alkaline INV genes (Sher- son et al., 2003). The functional roles of different INV isozymes are still not understood because subcellular location affects the different hexose pools that may be independently sensed (Li et al., 2005; Xiang et al., 2011; Figure 1). Neutral/alkaline INVs have ascribed functions for energy metabolism and oxidative stress in the mitochondria (Xiang et al., 2011; Martin et al., 2012), for photosynthesis in plastids (Murayama and Handa, 2007), and for overall cell development (Welham et al., 2009). Cytosolic, neutral INVs interact with phosphatidylinositol monophosphate 5-kinase and regulates root cell elongation (Lou et al., 2007). Cell wall INV's
have been associated with carbon partitioning (Rostoch et al., 2003) and regulation of cellulose genes in cotton (Yang et al., 2008). Vacuolar INVs are needed in cell expansion, via osmotic-dependent and -independent pathways (Wang et al., 2010). The differential expression patterns of cwINV and vINV have also provided insight into early seed development (Wang and Roan, 2012).

SUCROSE 6-PHOSPHATE SYNTHASE

Sucrose 6-phosphates (S6Ps) are encoded by a multigene family whose tissue- and developmental-stage-specific expression patterns appear to have functional significance (Salerno and Curatti, 2003). The activities of both SPS and sucrose 6-phosphate phosphatase (SPP) are required for sucrose metabolism (Lanuza, 2002; Salerno and Curatti, 2003), but have not yet been directly implicated in sugar signaling. Nevertheless, the similarity between S6P and T6P suggests a sugar signaling role for either sucrose or trehalose metabolism (Figure 1).

POST-GENOMIC RESEARCH

Genome-scale metabolic modeling is well-established for microbes (which typically have only one enzyme per reaction in the cytosol), but is not yet established in plants, which posses many different isoforms and subcellular compartments (Caspi et al., 2008). Various databases contain lists of reactions and putative metabolic pathways that are based on automatic gene annotations via BLAST (Youens-Clark et al., 2011; Kanehisa et al., 2012). The pathways in MetaCyc are manually curated (Caspi et al., 2012); however, metabolic models neither incorporate paralog nor subcellular information (Fernie and Stitt, 2012). Another difficulty for plants occurs with an assignment of catalytic function that is only based on overall sequence similarity: Multiple isozymes of HK, SUS, or INV might share the similar folding that is needed for binding of metabolites and may be involved in signaling functions, but not catalysis (Kreve et al., 2008).

CONCLUSION

Sugar signaling research has advanced rapidly in recent years. Learning more will require acknowledging the importance of subcellular compartmentation and routinely implementing all available methods (Kooger et al., 2012). A key feature in signaling is that sucrose, for example, does not freely cross cell membranes. Thus it was the combination of subcellular organization plus the recruitment of potential signaling molecules that are differentially membrane permeable (plus gene duplication/specialization) that drove the occurrence of signaling.

Since carbon metabolism occurs simultaneously in different organelles, different sensors may be required under specific conditions or circumstances. Specific isoforms of sucrolytic enzymes are therefore not redundant but complementary for signaling. We propose that different sucrolytic enzymes are important for channeling carbon into different metabolic routes, and we further postulate that sugar signals are specific for each paralog/pathway.
Farris, E., Tech, S., Thelwell, R., Fernie, A., and Willmitzer, L. (2006). Subcellular proteolipid metabolism in developing tubers of potato (Solanum tuberosum). Plant Mol. Biol. 62, 165–179.

Farris, E. M., Fernie, A. R., and Willmitzer, L. (2008). Analysis of subcellular metabolite levels of potato tubers (Solanum tuberosum) displaying alterations in cellular or extracellular sucrose metabolism. Metabolomics 4, 161–170.

Farris, E. M., Tiessen, N., Beeman, W., Geigenberger, P., Stallmann, R. N., and Willmitzer, L. (2001). Analysis of the compartmentation of glycolysis intermediates, nucleotides, sugars, organic acids, amino acids, and sugar alcohols in potato tubers using a non-aqueous fractionation method. Plant Physiol. 127, 685–700.

Fernie, A. R., and Stitt, M. (2012). On the dissection of metabolomics with proteomics and transcriptomics coping with increasing complexity in logic, chemistry, and network interactions: scientific correspondences. Plant Physiol. 158, 1139–1145.

Fernie, A. R., Tiessen, N., Beeman, W., Geigenberger, P., and Stitt, M. (2002). Altitudinal metabolic fluxes result from shifts in metabolic levels in sucrose-phosphorylating expressing potato tubers. Plant Physiol. 129, 1219–1232.

Fernie, S. J., and Sonnewald, U. (2012). The role of sucrose degradation in potato tubers determines the fate of assimilate utilisation. Front. Plant Sci. 3, 682–693.

Fettle, J., Eickermann, N., Tiessen, N., Geigenberger, P., and Stitt, M. (2004). Identification, subcellular localisation and biochemical characterisation of an Arabidopsis hexalinoglycan lyase 1 (AHGL1) involved in the biosynthesis of arabinogalactan-proteins in the apoplast. Plant J. 37, 568–585.

Fettle, J., Poole, S., Eickermann, N., Tiessen, N., Fuhrer, M., Geigenberger, P., et al. (2005). Analysis of cytosolic hexalinoglycan lyases from leaves of transgenic potato (Solanum tuberosum L.) plants that over-express the Phlo 2 phylogenous isoforms. Plant Cell Physiol. 46, 2067–2074.

Futai, S., Hayatai, T., and Minomizu, K. (2010). Sucrose synthase is an integral component of the cellulose synthase machinery. Plant Cell Physiol. 51, 1434–1447.

Futai, S., Hayatai, T., and Minomizu, K. (2011). Sucrose synthase is an integral component of the cellulose synthase machinery. Plant Cell Physiol. 51, 1434–1447.

Futai, S., Hayatai, T., and Minomizu, K. (2011). Sucrose synthase is an integral component of the cellulose synthase machinery. Plant Cell Physiol. 51, 1434–1447.
Lunn, J. E., Fox, R., Hendriks, J. H. M., Gilborn, Y., Mccammon, R., Osuna, D., et al. (2006). Sugar-induced increases in trehalose-6-phosphate are correlated with redox activation of ADP glucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. Biochem. J. 397, 139–148.

Muria, M., Lechner, L., Zabeta, E., and Salerno, G. (2012). A mitochondrial alkaline neutral invertase isoform (A/N-InCV) functions in developmental energy-demanding processes in Arabidopsis. Planta doi: 10.1007/s00425-012-1794-8 [Epub ahead of print].

Mckibbin, R. S., Mattescu, N., Paul, M. J., Powers, S. J., Burrall, M. M., Grauer, S., et al. (2004). Production of high-starch, low-glucose potatoes through over-expression of the metabolic regulator frkm1. Planta Biotechnol. J. 3, 409–418.

Mehabkhah, J., Zauber, H., Buchanan, B. R., Caprio, F. J., and Gajenge, P. (2005). NTC links budding in thiaminol to light and sucrose in regulating starch synthase in chloroplasts and amyloplasts. Proc. Natl. Acad. Sci. U.S.A. 102, 9988–9993.

Moure, B., Zhou, L., Balland, E., He, Q., Cheng, W. H., Liu, Y. X., et al. (2003). Role of the Arabidopsis glucose sensor ESI1 in nutrient, light, and carbon signalling. Science 300, 352–356.

Murasawa, S., and Handa, H. (2007). Genes for alkaloid-neutral invertase in rice: alkaloid-neutral invertases are located in the plant mitochondria and also in plastids. Planta 225, 1193–1201.

Näätänen, J. G., Kronenberg, I., Widlame, S., Liepmann, L., and Roach, C. (2008). Study of Arabidopsis in seeds reveal a strong association with plants. Plant Cell Physiol. 49, 1621–1626.

Ozawa, D., Usakdi, B., Mercader, B., Gilson, Y., Huang, O. E., Holman, L., et al. (2007). Temporal responses of transcripts, enzyme activities, and metabolites after adding sucrose to carbon-deprived Arabidopsis seedlings. Plant Cell 19, 463–471.

Owens, C., Dorn, J., Rosenblatt, A. G., Wall, S. L., and Johnston, M. (1994). Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proc. Natl. Acad. Sci. U.S.A. 91, 12428–12432.

Padilla-Chacon, D., Cordoba, J., Olvera, T., Sanchez, S., Coello, P., Leon, P., et al. (2010). Heterologous expression of yeast Hsf1 in Arabidopsis thaliana alters sugar uptake, carbon metabolism and gene expression leading to glucose tolerance of germinating seedlings. Plant & Cell Physiol. 52, 651–662.

Reith, T. (1999). Source–sink regulation by sugar and stress. Curr. Opin. Plant Biol. 2, 196–200.

Rotstein, T., Rahbiba, M. E., Hofmann, M., Prusol, R., and Saha, A. K. (2005). Extracellular invertase: key metabolic enzymes and IP protein. Plant Physiol. 145, 315–324.

Roland, F., Bena-Agrenouli, E., and Shem, T. (2008). Sugar sensing and signaling in plants conserved and novel mechanisms. Annu. Rev. Plant Physiol. 59, 675–709.

Sato, K., and Matuda, F. (2010). Metabolomics for functional genomics, systems biology, and biotechnology. Annu. Rev. Plant Biol. 61, 465–489.

Salamini, G. L., and Curtari, L. (2003). Origins of sucrose metabolism in higher plants: when, how and why? Trends Plant Sci. 5, 65–70.

Sambuk, M. A., Nagawara, N., Nagawara, N., Melkonian, S., Sakai, H., and Jackson, D. (2006). A trehalose metabolic enzyme controls influenceless architecture in marine Nematocysts. Nature 441, 221–225.

Shen, S. M., Allison, H. L., Forbes, J. B., Whelan, J., Wu, L., and Smith, S. M. (2010). Roles of cell-wall invertases and monoosaccharide transporters in the growth and development of Arabidopsis. J. Exp. Bot. 61, 523–531.

Smit, M. P. (2007). Intracellular fluxes of carbon between the chloroplast and cytoplasma in Plant Metabolism. Ultrastructure, cell division, carbon partitioning. J. Exp. Bot. 58, 591–599.

Sulpice, R., Pyl, E. T., Ishihara, H., Ishikawa, T., and Iwakami, H. (2009). Starch synthase for sink strength using the seven-membrane-spanning protein activator G-protein-coupled signalling in Arabidopsis. Nat. Cell. Biol. 14, 1079–1086.

Wang, L., Li, X. R., Lian, H., Ni, D. A., Wu, X. C., Shen, Y. K., et al. (2010). Evidence that high activity of vacuolar invertase is required for cotton fiber and Arabidopsis root development. J. Exp. Bot. 61, 777–787.

Xiong, L., Le Roy, K., Bokouhi-Moghaddam, M. R., Vanhaecke, M., Lemaux, W., Rolland, F., et al. (2011). Exploring the neutral invertase-sucrose stress defense connection in Arabidopsis thaliana. J. Exp. Bot. 62, 3849–3862.

Yang, S., Wu, L., Zou, L., Li, S., Min, L., and Zhang, X. (2008). Expression profile analysis of genes involved in cell wall modification during potato plant culture in cotton by suppression subtractive hybridization and macroarray. J. Exp. Bot. 59, 3661–3674.

Yeom-Clark, K., Buckley, E., Cameo, T., Chou, C., Dulka, G., Devarenne, P., et al. (2011). Gramene database in 2010: update and extensions. Nucleic Acids Res. 39, D1085–D1094.

Zhang, Y., Anderson, S., Zhang, Y., and Qazi, L. (2011). The structure of sucrose synthase I from Arabidopsis thaliana and its functional implications. J. Biol. Chem. 286, 36036–36048.

Zimmer, R., Salanoubat, M., Willmitzer, L., and Sommerville, U. (1995). Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). Plant J. 7, 97–107.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 27 November 2012, paper pending published: 9 December 2012, accepted: 20 December 2012; published online: 18 January 2013.

Citation: Tiessen A and Padilla-Chacon D. (2013). Subcellular localization of sucrose signal in Arabidopsis. Front. Plant Sci. 4, 10.3389/fpls.2012.00306.

This article was submitted to Frontiers in Plant Physiology, a specialty of Frontiers in Plant Science.

Copyright © 2013 Tiessen and Padilla-Chacon. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original authors and source are credited and subject is subject to any copyright notices concerning any third party graphics etc.