Strong coupling of spin qubits to a transmission line resonator

Pei-Qing Jin, 1 Michael Marthaler, 1 Alexander Shnirman, 2, 3 and Gerd Schön 1, 3

1 Institut für Theoretische Festkörperphysik, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
2 Institut für Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
3 DFG Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
(Dated: May 15, 2012)

We propose a mechanism for coupling spin qubits formed in double quantum dots to a superconducting transmission line resonator. Coupling the resonator to the gate controlling the interdot tunneling creates a spin qubit–resonator interaction with strength of tens of MHz. This mechanism allows operating the system at a symmetry point where decoherence due to charge noise is minimized. The transmission line can serve as shuttle, allowing for fast two-qubit operations including the generation of qubit-qubit entanglement and the implementation of a controlled-phase gate.

PACS numbers: 03.67.Lx, 73.21.La, 42.50.Pq

Introduction.—Mesoscopic electronic circuits can realize artificial quantum two-level systems with tunable parameters, which makes them promising devices for quantum information processing. Among them are spin qubits formed by electron spins in quantum dots 1. Coherent manipulations of such spin qubits have been demonstrated 2–4, however, generating a non-local qubit-qubit interaction remains a challenge. Circuit quantum electrodynamics (QED) setups 5, with superconducting qubits coupled via a transmission line, have been demonstrated to provide solutions for this task 6, 7. Stimulated by this success proposals for coupling spin qubits to a superconducting resonator were put forward 8–12, and experimental progress has been made towards coupling quantum dots to a superconducting resonator 13, 14. Magnetic coupling between a resonator and a spin ensemble was reported recently 16, 17, but coupling to a single spin with tiny magnetic moment remains difficult.

A strategy to increase the coupling strength is to involve charge degrees of freedom. For spin qubits defined by singlet and triplet states in double quantum dots, a strong coupling mechanism has been proposed based on transitions between singly and doubly occupied states 9. It requires the system to be operated away from the charge degeneracy point with a detuning of the dot levels. Unfortunately, the strong coupling achieved in this way is inevitably accompanied by fast dephasing, limiting the coherence time to the regime of nanoseconds 18, 19.

Here we propose a coupling mechanism that allows the system to be operated at the charge degeneracy point, thus minimizing the effect of charge fluctuations. The resonator couples to the gate controlling the interdot tunneling. Its electric field, induced by vacuum fluctuations or controlled excitation, modifies the exchange splitting between the singlet and triplet states. In combination with an inhomogeneous Overhauser field due to nuclear spins in the quantum dots, both transverse and longitudinal spin-resonator coupling (in the qubit’s eigenbasis) can be achieved, with strength controlled via a magnetic field or local electric gates. This enables various mechanisms for two-qubit operations, with efficiencies depending on the parameter regime. With additional driving on the oscillator, a blue-sideband transition is available as a strong first-order process. In this way, fast entanglement between distant spin qubits can be achieved.

Model.—We consider a gated double quantum dot in a 2-dimensional electron gas tuned to degeneracy as shown in Fig. 1. Following Ref. 20 we assume for definiteness that the confining potential is

\[V_c(x, y) = \frac{m_0^2}{2} \left[\frac{1}{4a_0^2} (x^2 - a_0^2)^2 + y^2 \right]. \]

Figure 1: (Color online) Quantum dot-resonator circuit. A spin qubit formed in a double quantum dot, each dot containing one electron, is placed at a maximum of the electric field inside a superconducting transmission line resonator. The resonator electric field couples to the interdot tunnel gate \(T \), which modifies the tunnel barrier height. The electrons in the dots experience a magnetic field given by an applied field \(B_{\text{ext}} \) and Overhauser fields \(B_{\text{NL/NR}} \) due to nuclear spins, which are different for the two dots. The transmission line provides the coupling to a second spin qubit indicated on the left.
The two dots, located at $r_\pm = (\pm a_0, 0)$, are separated by a parabolic tunnel barrier,

$$V_c(x, 0) \approx V_0 - \frac{m_0 \omega_0^2}{4} x^2,$$

with height $V_0 = m_0 \omega_0^2 a_0^2 / 8$ which can be controlled by the voltage applied on the tunnel gate T.

For strong on-site Coulomb energy, the relevant charge configuration at low temperature has one electron in each dot. An external magnetic field $B_{\text{ext}} = B \hat{z}$ splits off the two spin triplet states with $m_s = \pm 1$, which allows us to focus on the subspace spanned by the remaining triplet state $|T_0\rangle = |\pm\rangle \otimes (|\uparrow\rangle + |\downarrow\rangle) / \sqrt{2}$ and the singlet $|S\rangle = |\pm\rangle \otimes (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) / \sqrt{2}$. Here $|\uparrow\rangle$ denote the orbitals of the triplet and singlet states. In this two-state subspace, the double dot system is described by

$$H_d = \frac{J_0}{2} \tau_z + \frac{\Delta h}{2} \tau_x. \quad (3)$$

The exchange splitting is J_0, and Δh accounts for a Zeeman splitting difference between the two dots, e.g., due to inhomogeneous nuclear spin fields [21] or generated by a micromagnet attached to double quantum dots [22]. The Pauli matrices are defined as $\tau_z = |T_0\rangle \langle T_0| - |S\rangle \langle S|$ and $\tau_x = |T_0\rangle \langle S| + |S\rangle \langle T_0|$. Spin-orbit coupling is assumed to be weak and is not included here.

An estimate of the bare exchange splitting J_0 is provided by the Heitler-London model [20]. In this approach, the orbitals of the symmetric and antisymmetric two-electron states are constructed by single-electron ground states $|L/R\rangle$ localized in the left/right quantum dots, namely,

$$|\pm\rangle = \frac{|L_1 R_2\rangle \pm |L_2 R_1\rangle}{\sqrt{2} (1 \pm s^2)}.$$ \quad (4)

Here $s = \langle L| R\rangle$ denotes the overlap between the ground-states wavefunctions, and the subscripts are introduced to label the electrons. As shown in Fig. 1 in the presence of strong magnetic field, the bare exchange splitting undergoes a sign change due to the competition between kinetic energy and Coulomb repulsion [20, 23, 24].

We assume that a superconducting transmission line, modeled as harmonic oscillator with frequency ω_a, is coupled to the interdot tunnel gate T (indicated in Fig. 1). The resonator has a significant vacuum-fluctuations-induced voltage V_T between its central conductor and the ground plane, typically of order of μV. Adding this voltage to the interdot tunnel gate changes the tunnel barrier as illustrated in Fig. 1. As long as the potential remains symmetric (see below for a discussion of possible deviations) we can model the resonator-induced change of the tunnel barrier by

$$\Delta V_T = e V_T x^2 / a_0^2.$$ \quad (5)

The exchange splitting is modified accordingly, leading to the qubit-resonator interaction

$$H_c = J_T \tau_z (a^\dagger + a), \quad (6)$$

with the resonator-induced exchange splitting given by

$$J_T = \frac{1}{2} \sum_{i=1,2} \left[(T_0| \Delta V_T (x_i) | T_0) - \langle S| \Delta V_T (x_i) | S \rangle \right] = e V_T / \sinh \left[\frac{16 V_T (\omega_0^2 + 2 \omega_a^2)}{\hbar \omega_0^2 \sqrt{\omega_0^2 + \omega_a^2}} \right]. \quad (7)$$

Here a^\dagger denotes the creation operator for the resonator radiation field, $\omega_L = eB/2m$ is the Larmor frequency, and $a_B = \sqrt{\hbar / m \omega_0}$ an effective Bohr radius determined by the confinement. The resonator-induced exchange splitting J_T increases with the wavefunction overlap. The magnetic field compresses the electron orbitals, and hence J_T decreases, as shown in Fig. 2.

The coupling mechanism proposed here can be realized in experiments by fabricating a finger-shaped electric gate extending from the resonator to the interdot tunnel gate. A similar setup was used in the experiments of Ref. [14] to couple charge states of a double quantum dot to the resonator. In realistic situations, the finger-shaped gate may be asymmetric with respect to the left and right dots, adding a small asymmetric contribution to ΔV_T. In addition, the resonator voltage V_T could also couple to other gates controlling the confinement. However, these effects are weak compared to the confining energy $\hbar \omega_0$ of order of meV and do not change the charge configuration (one electron per dot). Furthermore, modifications that are odd in x have vanishing matrix elements, $\langle S/T_0| x_1^n + x_2^n | S/T_0 \rangle = 0$ for $n\text{ odd}$. I.e., our coupling scheme is insensitive to small odd variations, while an additional even variation modifies our results only quantitatively.
Coupling strength.—In the eigenbasis \{\ket{E}, \ket{G}\} of the qubit Hamiltonian \[3\], both transverse and longitudinal coupling between the double dot and resonator arise,

\[
H_{qr} = \frac{\hbar \omega_q}{2} \sigma_z + \hbar \omega_r a^\dagger a + \hbar (g_x \sigma_x + g_z \sigma_z)(a^\dagger + a),
\]

with coupling strengths \(g_x = -J_\perp \sin \theta / \hbar\) and \(g_z = J_\perp \cos \theta / \hbar\) depending on the mixing angle \(\theta = \text{arctan}(\Delta h / J_0)\). Here, the Pauli matrices \(\sigma_i\) are defined in the qubit eigenbasis, e.g., \(\sigma_z = \ket{E}\bra{E} - \ket{G}\bra{G}\), and the qubit splitting is \(\omega_q = \sqrt{J_r^2 + \Delta^2} / \hbar\).

The transverse coupling allows energy exchange between qubit and resonator. It is maximized when the bare exchange splitting vanishes \((\theta = \pi / 2)\), in which case the eigenstates of the qubit are simply those with spin configurations \(\ket{\downarrow\downarrow}\) and \(\ket{\downarrow\uparrow}\). The strength of the transverse coupling can reach several tens of MHz, given that the electrostatic potential induced by the resonator is of order of \(\mu\text{eV}\). If the spin qubit reaches the expected long decoherence time, \(T_2 \approx 10 \mu\text{s}\), and the superconducting transmission line resonator a decay rate \(\kappa / 2\pi \approx 100\text{ kHz}\), the system reaches the strong coupling regime. The actual coupling can be even stronger since the Heitler-London approach underestimates the exchange splitting. To stay within the validity regime of the Heitler-London approach \[24\], we presented here results for a relatively strong confining potential \(\hbar \omega_0 = 4.5\text{ meV}\) and lower bound of interdot distance \(a_0 \gtrsim 0.9 a_B\). For weaker confining potential the coupling strength will be higher.

An important property of the proposed dot-resonator system is the existence of a longitudinal coupling. Many superconducting qubits have almost no longitudinal coupling, or the coupling vanishes at the degeneracy point where dephasing effects are minimized. In the dot-resonator system, charge fluctuation induced dephasing is minimized by involving only states with the same charge configuration (one electron in each dot). This, however, does not switch off the longitudinal coupling. Actually, a strong longitudinal coupling of hundreds of MHz is possible when the bare exchange splitting \(\Delta h \gg \hbar \kappa / 2\pi a_0\). The effective Hamiltonian \[3\] is rewritten as

\[
H_{zz} = \sum_{i=1,2} \frac{\hbar \omega_q}{2} \sigma_z^{(i)} + \hbar \omega_r a^\dagger a
+ \sum_{i=1,2} \hbar \left(g_x^{(i)} \sigma_x^{(i)} + g_z^{(i)} \sigma_z^{(i)}\right)(a^\dagger + a).
\]

Given the strong coupling between spin qubits and the transmission line it is possible to perform controlled two-qubit gates. As examples we will discuss in the following: (i) the generation of qubit-qubit entanglement via blue-sideband transitions, (ii) the implementation of a controlled-phase (CPhase) gate based on a direct longitudinal qubit-qubit interaction, and (iii) a SWAP gate via exchange of virtual photons in the resonator.

(i) The blue-sideband transition, which excites the qubit \(i\) and the resonator simultaneously, is induced by resonant interaction of the form

\[
H_{\text{BST}}^{(i)} = \hbar \Omega_{\text{BST}}^{(i)} \left[a^\dagger a^{(i)} + a^{(i)} a\right].
\]

If the system is initialized in the ground state \(\ket{G^{(i)}} \otimes \ket{0}\), turning on the interaction \(H_{\text{BST}}^{(i)}\), a direct longitudinal qubit-qubit interaction \(\ket{G^{(i)}} \otimes \ket{0} \otimes \ket{G^{(i)}} \otimes \ket{G^{(i)}} - \ket{G^{(i)}} \otimes \ket{0} \otimes \ket{G^{(i)}} \otimes \ket{G^{(i)}}\) is created, thus generating an entangled qubit-qubit state \(|G^{(i)}\rangle \otimes |0\rangle\). With this procedure to entangle each qubit with the resonator separately allows the generation of qubit-qubit entanglement \[26\] \[27\]. This scheme has the advantage that the generation of entanglement is fast when the resonator is strongly driven, and no tuning of the qubit frequencies is required.

For the dot-resonator system, the blue-sideband transition is achieved by driving the resonator with amplitude \(\epsilon_d\) and with frequency \(\omega_d = \omega_q + \omega_r\). With a driving field amplitude \(\epsilon_d \ll \omega_q / \omega_r\), which is realistic for a typical circuit QED setup, the Rabi frequency reduces to \[28\]

\[
\Omega_{\text{BST}} = \frac{2 \epsilon_d g_x g_z}{\omega_q \omega_r}.
\]

With a driving field amplitude of the order of hundred MHz, the magnitude of the Rabi frequency \(\Omega_{\text{BST}}\) can reach several tens of MHz. This strong Rabi frequency relies on the existence of the longitudinal coupling in the dot-resonator system. Without longitudinal coupling, the blue side-band transition is only accessible in a second-order process, since such a system is invariant under a parity transformation with the operator \(P = \exp(-i \pi a^\dagger a)\). For blue-sideband transitions is of odd parity \[28\]. The longitudinal coupling breaks the symmetry of the system, allowing the blue-sideband transition in first order.

(ii) When the Zeeman splitting difference \(\Delta h^{(i)}\) is negligible compared to the bare exchange splitting \(J_0^{(i)}\), a direct longitudinal qubit-qubit interaction arises. After the unitary transformation with \(U = \exp\left[(a^\dagger - a) \sum_{i=1,2} g_z^{(i)} \sigma_z^{(i)} / \omega_r\right]\), the effective Hamiltonian \(H_{xx} = U H_{2q} U^\dagger\) is given by

\[
H_{xx} = \sum_{i=1,2} \frac{\hbar \omega_q}{2} \sigma_z^{(i)} - 2 J_0^{(i)} J_1^{(i)} / \hbar \omega_r \sigma_z^{(i)} \sigma_z^{(2)} + \hbar \omega_r a^\dagger a.
\]

In the considered parameter regime, \(J_0^{(i)} \gg \Delta h^{(i)}\), the resonator-induced exchange splitting \(J_1^{(i)}\) can reach hundreds of MHz, which leads to a strong longitudinal qubit-qubit coupling of tens of MHz. It allows realizing efficiently a CPhase gate.

(iii) A strong transverse qubit-resonator coupling allows for a fast two-qubit operation in the dispersive regime \[23\]. In this regime, two qubits are far-detuned
tuning qubit frequencies is always accompanied with changing the qubit-resonator coupling, since both depend on the interdot tunnel barrier. By increasing, e.g., the tunnel barrier height of one double dot one increases the frequency detuning between the qubits and at the same time reduces the qubit-resonator coupling. As a result the qubit-qubit interaction in the dot-resonator system can be switched off highly efficiently.

We summarize the scenario of the two-qubit interactions in Fig. 3. The parameter space is spanned by the bare exchange splitting \(J_0 \) and the Zeeman splitting difference \(\Delta \hbar \). They are the key elements for the spin qubit and can be measured in experiments 2. For simplicity we assume the resonator-induced part of the exchange splitting to be constant, \(J_f = 0.3 \mu eV \), since in the considered parameter region it varies by less than 0.01 \(\mu eV \). The colored areas indicate the regions where, for realistic parameters, the corresponding qubit-qubit interaction is stronger than 10 MHz. For strong bare exchange splitting, a longitudinal qubit-qubit coupling of several tens of MHz can be reached, allowing for an efficient CPhase gate. When the Zeeman splitting dominates the transverse qubit-qubit interaction is strong, which allows for the implementation of an \(\sqrt{\text{SWAP}} \) gate. With comparable bare exchange splitting and Zeeman splitting difference, strong blue-sideband transitions are favorable to produce fast qubit-qubit entanglement.

In the examples presented above we used parameters appropriate for the experiments performed with GaAs samples. Another promising material for quantum dots is Si, for which, due to the weak hyperfine interaction, spin qubits have been shown to have a much longer dephasing time \(T_\parallel \sim 360 \) ns [5]. The coupling mechanism proposed here also applies to Si quantum dots (provided the valley degeneracy is lifted by a splitting of several meV [22]), except for quantitative changes due to the larger effective mass and smaller dielectric constant.

We acknowledge helpful discussions with I. Kamleitner, J.H. Cole, A. Romito, and J. Weiss, and the support from the Baden-Württemberg Stiftung via the ‘Kompetenznetz Funktionelle Nanostrukturen’ and the DFG via the Priority Program ‘Semiconductor Spintronics’.

[1] D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
[2] J. R. Petta et al., Science 309, 2180 (2005).
[3] F. H. L. Koppens et al., Nature 442, 766 (2006).
[4] K. C. Nowack et al., Science 318, 1430 (2007).
[5] A. Wallraff et al., Nature 431, 162 (2004).
[6] R. Schoelkopf and S. Girvin, Nature 451, 664 (2008).
[7] J. Majer et al., Nature 449, 443 (2007).
[8] L. Childress, A. S. Sørensen, and M. D. Lukin, Phys. Rev. A 69, 042302 (2004).
[9] G. Burkard and A. Imamoglu, Phys. Rev. B 74, 041307 (2006).
[10] M. Trif, V. N. Golovach, and D. Loss, Phys. Rev. B 77, 045434 (2008).
[11] A. Cottet and T. Kontos, Phys. Rev. Lett. 105, 160502 (2010).
[12] P.-Q. Jin et al., Phys. Rev. B 84, 035322 (2011).
[13] T. Frey et al., Appl. Phys. Lett. 98, 262105 (2011).
[14] T. Frey et al., Phys. Rev. Lett. 108, 046807 (2012).
[15] M. R. Delbecq et al., Phys. Rev. Lett. 107, 256804 (2011).
[16] D. I. Schuster et al., Phys. Rev. Lett. 105, 140501 (2010).
[17] P. Bushev et al., Phys. Rev. B 84, 060501(R) (2011).
[18] K. D. Petersson et al., Phys. Rev. Lett. 105, 246804 (2010).
[19] See Supplemental Material for decoherence time.
[20] G. Burkard, D. Loss, and D. P. DiVincenzo, Phys. Rev.
[21] R. Hanson and D. D. Awschalom, Nature \textbf{453}, 1043 (2008).

[22] M. Pioro-Ladri`ere \textit{et al.}, Nature Phys. \textbf{4}, 776 (2008).

[23] X.-D. Hu and S. Das Sarma, Phys. Rev. A \textbf{61}, 062301 (2000).

[24] M. J. Calderón, B. Koiller, and S. Das Sarma, Phys. Rev. B \textbf{74}, 045310 (2006).

[25] A. Blais \textit{et al.}, Phys. Rev. A \textbf{69}, 062320 (2004).

[26] J. I. Cirac and P. Zoller, Phys. Rev. Lett. \textbf{74}, 4091 (1995); A. M. Childs and I. L. Chuang, Phys. Rev. A \textbf{63}, 012306 (2000).

[27] A. Wallraff \textit{et al.}, Phys. Rev. Lett. \textbf{99}, 050501 (2007); P. J. Leek \textit{et al.}, Phys. Rev. B \textbf{79}, 180511(R) (2009).

[28] A. Blais \textit{et al.}, Phys. Rev. A \textbf{75}, 032329 (2007).

[29] A. Shnirman, G. Schöøn, and Z. Hermon, Phys. Rev. Lett. \textbf{79}, 2371 (1997).

[30] A. Imamoğlu \textit{et al.}, Phys. Rev. Lett. \textbf{83}, 4204 (1999).

[31] B. M. Maune \textit{et al.}, Nature \textbf{481}, 344 (2012).

[32] S. Goswami \textit{et al.}, Nature Phys. \textbf{3}, 41 (2007).