Semiarcs with a long secant in $\text{PG}(2, q)$

Bence Csajbók, Tamás Héger and György Kiss

Abstract

A t-semiarc is a pointset S_t with the property that the number of tangent lines to S_t at each of its points is t. We show that if a small t-semiarc S_t in $\text{PG}(2, q)$ has a large collinear subset K, then the tangents to S_t at the points of K can be blocked by t points not in K. We also show that small t-semiarcs are related to certain small blocking sets. Some characterization theorems for small semiarcs with large collinear subsets in $\text{PG}(2, q)$ are given.

AMS subject classification: 51E20, 51E21

Keywords: finite plane, semiarc, blocking set, Szőnyi–Weiner Lemma

1 Introduction

Ovals, k-arcs and semiovals of finite projective planes are not only interesting geometric structures, but they have applications to coding theory and cryptography, too [3]. For details about these objects we refer the reader to [19, 22].

SemiaRs are natural generalizations of arcs. Throughout the paper Π_q denotes an arbitrary projective plane of order q. A non-empty pointset $S_t \subset \Pi_q$ is called a t-semiarc if for every point $P \in S_t$ there exist exactly t lines $\ell_1, \ell_2, \ldots, \ell_t$ such that $S_t \cap \ell_i = \{P\}$ for $i = 1, 2, \ldots, t$. These lines are called the tangents to S_t at P. If a line ℓ meets S_t in k points, then ℓ is called a k-secant of S_t. We say that a k-secant is long, if $q - k$ is a small number (which will be given a precise meaning later). The classical examples of t-semiarcs are the k-arcs (with $t = q + 2 - k$), subplanes (with $t = q - m$, where m is the order of the subplane) and semiovals (that is semiarcs with $t = 1$).

Because of the huge diversity of semiarcs, the complete classification is hopeless. The aim of this paper is to investigate and characterize semiarcs having some additional properties. In Section 2 we consider a very special class, namely t-semiarcs of size $k + q - t$ having a k-secant. These pointsets are closely related to the widely studied structures defining few directions [1, 6, 30]. In Section 3 we prove that in $\text{PG}(2, q)$ if a small t-semiarc has a large collinear subset K, then the tangent lines at the points of K belong to t pencils, whose carriers are not in K. This result generalizes the main result in Kiss [21]. Small semiovals with large collinear subsets were studied in arbitrary projective planes as well, see Bartoli [2] and Dover [14]. The essential part of our proof is algebraic, it is based on an application of the Rédei polynomial and the Szőnyi–Weiner Lemma. In Section 4 we associate to each t-semiarc S_t a blocking set. If S_t is small and has a long secant, then the associated blocking set is small. Applying theorems about the structure of small blocking sets we prove some characterization theorems for semiarcs.

When $t \geq q - 2$, then it is easy to characterize t-semiarcs. If $t = q + 1$, q or $q - 1$, then S_t is single point, a subset of a line, or three non-collinear points, respectively; see [13] Proposition 2.1. Hence, if no other bound is specified, we usually will assume that $t \leq q - 2$. If $t = q - 2$, then it follows from [13] Proposition 2.1. If $t = q - 1$, then it follows from [13] Proposition 2.1.
Theorem 1.3 ([4, 9, 11])

If a complete quadrilateral, or a Fano subplane. Thus sometimes we may assume that $t \leq q - 3$, which we indicate individually.

Throughout the paper we use the following notation. We denote points at infinity of $\text{PG}(2, q)$, i.e. points on the line $\ell_\infty = [0 : 0 : 1]$, by (m) instead of the homogeneous coordinates $(1 : m : 0)$. We simply write Y_∞ and X_∞ instead of $(0 : 1 : 0)$ and $(1 : 0 : 0)$, respectively. The points of ℓ_∞ are also called directions. For affine points, i.e. points of $\text{PG}(2, q) \setminus \ell_\infty$, we use the Cartesian coordinates (a, b) instead of $(a : b : 1)$. If P and Q are distinct points in Π_q, then PQ denotes the unique line joining them. If A and B are two pointsets in Π_q, then $A \triangle B$ denotes their symmetric difference, that is $(A \setminus B) \cup (B \setminus A)$.

Blocking sets play an important role in our proofs. For the sake of completeness we collect the basic definitions and some results about these objects. A blocking set B in a projective or affine plane is a set of points which intersects every line. If B contains a line, then it is called trivial. A point P in a blocking set B is essential if $B \setminus \{P\}$ is not a blocking set, i.e. there is a tangent line to B at the point P. A blocking set is said to be minimal when no proper subset of it is a blocking set or, equivalently, each of its points is essential. If ℓ is a line containing at most q points of a blocking set B in Π_q, then $|B| \geq q + |\ell \cap B|$. In case of equality B is a blocking set of Rédei type and ℓ is a Rédei line of B. Note that we also consider a line to be a blocking set of Rédei type. A blocking set in Π_q is said to be small if its size is less than $3(q + 1)/2$.

Theorem 1.1 ([29, Remark 3.3 and Corollary 4.8]) Let B be a blocking set in $\text{PG}(2, q)$, $q = p^h$, p prime. If $|B| \leq 2q$, then B contains a unique minimal blocking set. If B is a minimal blocking set of size less than $3(q + 1)/2$, then each line intersects B in $1 \mod p$ points.

Note that a blocking set contains a unique minimal blocking set if and only if the set of its essential points is a blocking set.

Theorem 1.2 ([27, Corollary 5.1], [26], [29]) Let B be a minimal blocking set in $\text{PG}(2, q)$, $q = p^h$, p prime, of size $|B| < 3(q + 1)/2$. Then there exists a positive integer e, called the exponent of B, such that e divides h, and

$$q + 1 + p^e \left\lceil \frac{q/p^e + 1}{p^e + 1} \right\rceil \leq |B| \leq \frac{1 + (p^e + 1)(q + 1) - \sqrt{D}}{2},$$

where $D = (1 + (p^e + 1)(q + 1))^2 - 4(p^e + 1)(q^2 + q + 1)$.

If $p^e \neq 4$ and $|B|$ lies in the interval belonging to e, then each line intersects B in $1 \mod p^e$ points.

Theorem 1.3 ([4], [9], [11]) Let B be a minimal blocking set in $\text{PG}(2, q)$, $q = p^h$, p prime. Let $|B| = q + 1 + k$, and let $c_p = 2^{-1/3}$ for $p = 2, 3$ and $c_p = 1$ for $p > 3$. Then the following hold.

1. If $h = 1$ and $k \leq (q + 1)/2$, then B is a line, or $k = (q + 1)/2$ and each point of B has exactly $(q - 1)/2$ tangent lines.
2. If $h = 2d + 1$ and $k < c_p q^{2/3}$, then B is a line.
3. If $k \leq \sqrt{q}$, then B is a line or $k = \sqrt{q}$ and B is a Baer subplane (that is a subplane of order \sqrt{q}).

We remark that the third point of the above theorem holds in arbitrary finite projective planes.

2 Semiarc and the direction problem

If a t-semiarc S_t has a k-secant ℓ, then its size s is at least $k + q - t$, because for any point $P \in S_t \cap \ell$ there are $q + 1 - t$ non-tangent lines to S_t through P, one of which is ℓ, and each of the remaining $q - t$ non-tangent lines contains at least one point from $S_t \setminus \ell$. Thus we may always assume that $s = k + q - t + \varepsilon$, where $\varepsilon \geq 0$. In this section we investigate the case $\varepsilon = 0$. Notice that $t < q$ implies $k \leq q + 1 - t$.

2
Theorem 2.1 ([12, Theorem 4]) In $PG(2, q)$, a t-semiarc with a $(q + 1 - t)$-secant exists if and only if $t \geq (q - 1)/2$.

Proposition 2.2 ([13, Proposition 2.2]) Let Π_q be a projective plane of order q, and let $t \leq q - 2$. If a t-semiarc S_t in Π_q is contained in the union of two lines, ℓ and ℓ', then $\ell \cap \ell' \notin S_t$ and $|\ell \cap S_t| = |\ell' \cap S_t| = q - t$.

It is easy to give a combinatorial characterization of t-semiarc sizes $2(q - t)$ with a $(q - t)$-secant; for semiarcs it was also proved by Bartoli [2 Corollary 9].

Proposition 2.3 Let Π_q be a projective plane of order q, and let $t \leq q - 2$. If S_t is a t-semiarc of size $2(q - t)$ with a $(q - t)$-secant ℓ, then S_t consists of the symmetric difference of two lines with t further points removed from each line.

Proof. Let $R = S_t \setminus \ell$. If ℓ' is a line joining two points of R, then $\ell \cap \ell' \notin S_t$, otherwise there would be at least $t + 1$ tangents to S_t at $\ell \cap \ell'$. Now suppose to the contrary that there exist three non-collinear points in R. They determine three lines, each of which intersects ℓ in S_t, hence at these three points of R there are at most $t - 1$ tangents to S_t, a contradiction. Thus the points of R are collinear and $\ell \cap \ell' \notin S_t$. □

The following example shows the existence of t-semiarc sizes $k + q - t$ with k q-secants for odd values of t.

Example 2.4 Let C denote the set of non-squares in the field $GF(q)$, q odd. The pointset $\{(0 : 1 : s), (s : 0 : 1), (1 : s : 0) : -s \in C\}$ is a semiarc in $PG(2, q)$ of size $3(q - 1)/2$ with three $(q - 1)/2$-secants (see Blokhuis [5]). If we delete $r < (q - 1)/2 - 1$ points from each of the $(q - 1)/2$-secants, then the remaining pointset is a t-semiarc of size $k + q - t$ with k q-secants, where $k = (q - 1)/2 - r$ and $t = 2r + 1$.

There also exist examples if t is even. To give their construction, we need some notation. A (k, n)-arc is a set of k points such that each line contains at most n of these points. A set T of $q + t$ points in Π_q for which each line meets T in 0, 2 or t points ($t \neq 0, 2$) is either an oval (for $t = 1$), or a $(q + t, t)$-arc of type $(0, 2, t)$. Korchmáros and Mazzocca [23, Proposition 2.1] proved that $(q + t, t)$-arcs of type $(0, 2, t)$ exist in Π_q only if q is even and $t | q$. They also provided infinite families of examples in $PG(2, q)$ whenever the field $GF(q/t)$ is a subfield of $GF(q)$. It is easy to see that through each point of T there passes exactly one t-secant. In [17] new constructions were given by Gács and Weiner, and they proved that in $PG(2, q)$ the $q/t + 1$ t-secants of T pass through one point, called the t-nucleus of T (for $t = 1$ and arbitrary projective plane of even order, see [19, Lemma 8.6]). Recently Vandendriessche [32] found a new infinite family with $t = q/4$.

Example 2.5 Let T be a $(q + t, \tau)$-arc of type $(0, 2, \tau)$ in $PG(2, q)$. Delete $r < \tau - 1$ points from each of the τ-secants of T. The remaining $k + q - t$ points form a t-semiarc with $q/\tau + 1$ k-secants, where $k = q - t$ and $t = q/\tau$.

Since $(q + q/2, q/2)$-arcs of type $(0, 2, q/2)$ exist, this construction gives t-semiarc sizes in $PG(2, q)$, q even, for each $t \leq q - 4$, t even. The following example is based on the combinatorial properties of subplanes.

Example 2.6 Let Π, τ be a Baer subplane in the projective plane Π_q, $q \geq 9$, and let ℓ be an extended line of Π, \sqrt{q}. Let P be a set of $t \leq q - \sqrt{q} - 2$ points in $\Pi, \sqrt{q} \setminus \ell$ such that no line intersects P in exactly $\sqrt{q} - 1$ points. For example a $(t, q\sqrt{q} - 2)$-arc is a good choice for ℓ. Let T be a set of t points in $\ell \setminus \Pi, \sqrt{q}$. Then the pointset $S_t := (\Pi, \sqrt{q} \Delta \ell) \setminus (T \cup \Pi)$ is a t-semiarc of size $k + q - t$ with a k-secant, where $k = q - \sqrt{q} - t$.

Proof. Recall that a Baer subplane is a blocking set. Let $P \in S_t$. If $P \in \ell$, then a line through P is tangent to S_t if and only if it intersects Π, \sqrt{q} in a point of ℓ. If $P \in \Pi, \sqrt{q}$, then a line of Π, \sqrt{q} through P intersects S_t in at least $\sqrt{q} - (\sqrt{q} - 2) = 2$ points, and any other line through P is tangent to S_t if and only if it intersects ℓ in T. Thus there are exactly t tangents to S_t at P. □
The so-called direction problem is closely related to \(t \)-semiarcs of size \(k+q-t \) having a \(k \)-secant. We briefly collect the basic definitions and some results about this problem. Consider \(\text{PG}(2, q) = \text{AG}(2, q) \cup \ell_{\infty} \).

Let \(\mathcal{U} \) be a set of points of \(\text{AG}(2, q) \). A point \(P \) of \(\ell_{\infty} \) is called a direction determined by \(\mathcal{U} \) if there is a line through \(P \) that contains at least two points of \(\mathcal{U} \). The set of directions determined by \(\mathcal{U} \) is denoted by \(D_{\mathcal{U}} \). If \(|\mathcal{U}| = q \) and \(Y_{\infty} \notin D_{\mathcal{U}} \), then \(\mathcal{U} \) can be considered as a graph of a function, and \(\mathcal{U} \cup D_{\mathcal{U}} \) is a blocking set of Rédei type. Our next construction is based on the following result of Blokhuis et al. [6] and Ball [1].

Theorem 2.7 (Blokhuis [6], Ball [1]) Let \(\mathcal{U} \subset \text{AG}(2, q) \), \(q = p^h \), \(p \) prime, be a pointset of size \(q \). Let \(z = p^e \) be maximal having the property that if \(P \in D_{\mathcal{U}} \) and \(\ell \) is a line through \(P \), then \(\ell \) intersects \(\mathcal{U} \) in \(0 \) (mod \(z \)) points. Then one of the following holds:

1. \(z = 1 \) and \((q + 3)/2 \leq |D_{\mathcal{U}}| \leq q + 1 \),
2. \(\text{GF}(z) \) is a subfield of \(\text{GF}(q) \) and \(q/z + 1 \leq |D_{\mathcal{U}}| \leq (q - 1)/(z - 1) \),
3. \(z = q \) and \(|D_{\mathcal{U}}| = 1 \).

Let \(\mathcal{B} \) be a small blocking set of Rédei type in \(\text{PG}(2, q) \), \(q = p^h \), \(p \) prime, and let \(\ell \) be one of its Rédei lines. Since \(|\mathcal{B}| < 3(q + 1)/2 \), we have \(|\ell \cap \mathcal{B}| < (q + 3)/2 \). Hence the previous theorem implies that there exists an integer \(e \) such that \(e \) divides \(h \), \(1 < p^e \leq q \) holds and each affine line intersects \(\mathcal{B} \) in \(1 \) (mod \(p^e \)) points. Starting from \(\mathcal{B} \), we give a generalization of Example 2.1 which is also a semiarc for similar reasons.

Example 2.8 Let \(\mathcal{B} \) be a small blocking set of Rédei type in \(\text{PG}(2, q) \) and let \(\ell \) be one of its Rédei lines. Denote by \(z = p^e \) the maximal number such that each line intersects \(\mathcal{B} \) in \(1 \) (mod \(z \)) points and suppose \(z \geq 3 \). Let \(\mathcal{P} \) be a set of \(t \leq q - |\mathcal{B} \cap \ell| - 1 \) points in \(\mathcal{B} \setminus \ell \) such that for each line \(\ell' \) intersecting \(\mathcal{B} \) in more than one point we have \(|\ell' \cap \mathcal{P}| \neq |\ell' \cap \mathcal{B}| - 2 \). For example a \((t, z-2)\)-arc is a good choice for \(\mathcal{P} \). Also let \(\mathcal{T} \) be a set of \(t \) points in \(P \setminus \mathcal{B} \). Then the pointset \(\mathcal{S}_k := (\mathcal{B} \Delta \ell) \setminus (\mathcal{T} \cup \mathcal{P}) \) is a \(t \)-semiarc of size \(k + q - t \) with a \(k \)-secant, where \(k = 2q + 1 - |\mathcal{B}| - t \).

Note that if \(\mathcal{B} \) is a line, then Example 2.8 gives the example seen in Proposition 2.3. To characterize the examples above, we need results about the number of directions determined by a set of \(q \) affine points, and results about the extendability of a set of almost \(q \) affine points to a set of \(q \) points such that the two pointsets determine the same directions. The first theorem about the extendability was proved by Blokhuis [5]; see also Szőnyi [30].

Theorem 2.9 ([5, Proposition 2], [30, Remark 7]) Let \(\mathcal{U} \subset \text{AG}(2, q) \), \(q \geq 3 \), be a pointset of size \(q - 1 \). Then there exists a unique point \(P \) such that the pointset \(\mathcal{U} \cup \{P\} \) determines the same directions as \(\mathcal{U} \).

Slightly extending a result of Szőnyi [30, Theorem 4], Sziklai proved the following.

Theorem 2.10 ([28, Theorem 3.1]) Let \(\mathcal{U} \subset \text{AG}(2, q) \) be a pointset of size \(q - n \), where \(n \leq \alpha \sqrt{q} \) for some \(1/2 \leq \alpha < 1 \). If \(|D_{\mathcal{U}}| < (q + 1)(1 - \alpha) \), then \(\mathcal{U} \) can be extended to a set \(\mathcal{U}' \) of size \(q \) such that \(\mathcal{U}' \) determines the same directions as \(\mathcal{U} \).

The three cases of the next theorem were proved by Lovász and Schrijver [25], by Gács [15], and by Gács, Lovász and Szőnyi [16], respectively.

Theorem 2.11 ([25, 15, 16]) Let \(\mathcal{U} \) be the set of \(q \) affine points in \(\text{AG}(2, q) \), \(q = p^h \), \(p \) prime.

1. If \(h = 1 \) and \(|D_{\mathcal{U}}| = \frac{(p + 3)}{2} \), then \(\mathcal{U} \) is affinely equivalent to the graph of the function \(x \mapsto x^{\frac{p+1}{2}} \).
2. If \(h = 1 \) and \(|D_{\mathcal{U}}| > \frac{(p + 3)}{2} \), then \(|D_{\mathcal{U}}| \geq \left\lceil \frac{2(p - 1)}{3} \right\rceil + 1 \).
3. If \(h = 2 \) and \(|D_4| \geq (p^2 + 3)/2 \), then either \(|D_4| = (p^2 + 3)/2 \) and \(U \) is affinely equivalent to the graph of the function \(x \mapsto x^{p^2+1} \), or \(|D_4| \geq (p^2 + p)/2 + 1 \).

For the characterization of semiarcs in Example 2.3, we also need the following lemma.

Lemma 2.12 Let \(z \) and \(t \) be two positive integers such that \(z \geq 3 \) and \(t \leq \sqrt{q(z-1)/z} \). Also let \(U \subset AG(2,q) \) be a set of \(q-t \) affine points and let \(E \subset F \) be two sets of directions satisfying the following properties:

1. There are at least \(t \) tangents to \(U \) with direction in \(F \) through each point of \(U \);
2. there exists a suitable set of \(t \) affine points, \(P \), such that \(U \cap P = \emptyset \) and each tangent to \(U \) with direction not in \(E \) intersects \(U \cup P \) in \(0 \) (mod \(z \)) points.

Then \(|E| \geq t \).

Proof. If \(\ell \) is a tangent to \(U \) that intersects \(F \setminus E \), then \(|P \cap \ell| \equiv -1 \) (mod \(z \)). The maximum number of such tangent lines is \(\frac{t(z-1)}{(z-1)(z-2)} \). Hence at least \((q-t)t - \frac{t(t-1)}{(z-1)(z-2)} \) tangents to \(U \) have direction in \(E \). This implies

\[
|E|q \geq (q-t)t - \frac{t(t-1)}{(z-1)(z-2)}, \quad \text{thus} \quad (|E|-t)q \geq -t^2 - \frac{t(t-1)}{(z-1)(z-2)}.
\]

If \(|E|-t \) is a negative integer, then this inequality gives \(q < t^2 \frac{(z-1)(z-2)+1}{(z-1)(z-2)} \leq t^2 z/(z-1) \), contradicting the assumption \(t \leq \sqrt{q(z-1)/z} \).

Theorem 2.13 Let \(S_t \) be a \(t \)-semiarc in \(PG(2,q) \), \(q = p^k \), \(p \) prime, of size \(k + q - t \) and let \(\ell \) be a \(k \)-secant of \(S_t \). Then the conditions

- \(t = 1, \ q > 4 \) and \(k > (q-1)/2 \), or
- \(2 \leq t \leq \alpha \sqrt{q} \) and \(k > \alpha (q+1) \) for some \(1/2 \leq \alpha \leq \sqrt{(p-1)/p} \) if \(p \) is an odd prime, and \(1/2 \leq \alpha \leq 3/2 \) if \(p = 2 \)

imply that \(S_t \) is a semiarc described in Example 2.3.

Proof. Take \(\ell \) as the line at infinity and let \(U = S_t \setminus \ell \subset AG(2,q) \). The directions in \(S_t \setminus \ell \) are not determined by \(U \), hence \(|D_\ell| < (q+1)(1-\alpha) \) holds for \(t \geq 2 \). We can apply Theorem 2.9 when \(t = 1 \); if \(t \geq 2 \), then the conditions of Theorem 2.10 hold since \(|U| = q-t \) and \(t \leq \alpha \sqrt{q} \). Let \(\mathcal{P} = \{ P_1, P_2, \ldots, P_t \} \) be a set of \(t \) points such that \(\mathcal{U} \cup \mathcal{P} \) determines the same directions as \(U \).

First consider the case \(t \geq 2 \). We have \(|D_\ell| < (q+1)/2 \), thus applying Theorem 2.4, we get that there exists an integer \(z = p^k \geq 3 \) such that each affine line with direction in \(D_\ell \) intersects \(\mathcal{U} \cup \mathcal{P} \) in \(0 \) (mod \(z \)) points. We can apply Lemma 2.12 with \(F = \ell \setminus S_t \) and \(E = \ell \setminus (S_t \cup D_\ell) \) to obtain \(|E| \geq t \). On the other hand, the lines joining any point of \(E \) with any point of \(U \) are tangent to \(S_t \), thus \(|E| \leq t \). The same observation implies that each of the tangents to \(S_t \) at the points of \(U \) meets \(E \). Let \(\mathcal{B} = \mathcal{U} \cup \mathcal{P} \cup D_\ell \), which is a small blocking set of Rédei type. Let \(\ell' \neq \ell \) be a line intersecting \(\mathcal{B} \) in more than one point and let \(M = \ell' \cap \ell \). Then \(M \subset D_\ell \subset \mathcal{B} \) and \(M \notin E \). If \(|\ell' \cap \mathcal{P}| = |\ell' \cap \mathcal{B}| - 2 \), then \(\ell' \) would be a tangent to \(S_t \) at the unique point of \(\ell' \cap U \), but this is a contradiction since \(M \notin E \). We obtained Example 2.8.

If \(t = 1 \), then in the same way we get that there exists an integer \(z = p^k \geq 2 \) such that each affine line with direction in \(D_\ell \) intersects \(\mathcal{U} \cup \{ P_1 \} \) in \(0 \) (mod \(z \)) points. If \(z \geq 3 \), then we can finish the proof as above, otherwise Theorem 2.7 implies \(|D_\ell| \geq q/2 + 1 \). Compared to \(|D_\ell| < (q+3)/2 \), we get \(|D_\ell| = q/2 + 1 \) and hence \(k = q/2 \). This means that each of the \(q-1 \) tangent lines at the points of \(U \) passes through \(P_1 \). If \(q > 4 \), then \(q-1 > q/2 + 1 \), thus at least one of these tangents would intersect \(\ell \) in \(S_t \), that is a contradiction.

Next, as a corollary of Theorem 2.11, we get the characterization of the semiival \((t = 1) \) cases of Examples 2.9 and 2.10 in planes of prime or prime square order.
Corollary 2.14 Let S_1 be a semi-oval of size $k + q - 1$ in $\text{PG}(2, q)$, $3 \leq q = p^h$, p prime, $h \leq 2$, and let ℓ be a k-secant of S_1. Then we have the following.

1. If $h = 1$ and $k > (p + 4)/3$, then there are two possibilities:
 - $k = q - 1$ and S_1 is the semi-oval characterized in Proposition 2.3.
 - S_1 is the semi-oval described in Example 2.4.

2. If $h = 2$ and $k > (p^2 - p)/2$, then there are four possibilities:
 - $k = q - 1$ and S_1 is the semi-oval characterized in Proposition 2.3.
 - S_1 is the semi-oval described in Example 2.4.
 - S_1 is the semi-oval described in Example 2.6.
 - $p = 2$ and S_1 is an oval in $\text{PG}(2, 4)$.

Proof. Consider ℓ as the line at infinity and let $U = S_1 \setminus \ell$. The points of $\ell \cap S_1$ are not determined directions, hence we have $k + |DU| \leq q + 1$. As the pointset U has size $q - 1$, it follows from Theorem 2.9 that there exists a point P such that $U \cup \{P\}$ determines the same directions as U.

First consider the case $h = 1$. If $k > (p + 4)/3$, then $|DU| < [2(p - 1)/3] + 1$ and thus Theorems 2.7 and 2.11 imply that $|DU| = 1$ and U is contained in a line, or $|DU| = (p + 3)/2$ and $U \cup \{P\}$ is affinely equivalent to the graph of the function $x \mapsto \frac{x + 1}{x + 2}$. In the first case it is easy to see that S_1 is the semi-oval characterized in Proposition 2.3. In the latter case the graph of $x \mapsto \frac{x + 1}{x + 2}$ is contained in two lines, namely $[1 : 1 : 0]$ and $[1 : -1 : 0]$, and these lines are $(q - 1)/2$-secants. Hence S_1 is contained in the union of three lines and it has two $(q - 1)/2$-secants. These semi-ovals were characterized by Kiss and Ruff [23, Theorem 3.3]; they proved that the only possibility is the semi-oval described in Example 2.4.

Now suppose that $h = 2$. If $k > (p^2 - p)/2$, then $|DU| < (p^2 + p)/2 + 1$, thus $|DU| \in \{1, (p^2 + 3)/2\}$ or $1 < |DU| < (p^2 + 3)/2$. If $|DU| = 1$ or $|DU| = (p^2 + 3)/2$, then we can argue as before. In the remaining case it follows from Theorems 2.7 and 1.3 (or already from [29, Theorem 5.7]), that $|DU| = p + 1$ and $U \cup \{P\} \cup DU$ is a Baer subplane. If $p > 2$, then S_1 has exactly $p^2 - p - k$ tangents at the points of U, hence $k = p^2 - p - 1$ and S_1 is the semi-oval described in Example 2.6. Finally, if $p = 2$, then $k \geq 2$ and $|DU| = p + 1 = 3$, thus $k = 2$ and S is an oval in $\text{PG}(2, 4)$.

3 Proof of the main lemma

First we collect the most important properties of the Rédei polynomial. Consider a subset $U = \{(a_i, b_i) : i = 1, 2, \ldots, |U|\}$ of the affine plane $\text{AG}(2, q)$. The Rédei polynomial of U is

$$H(X, Y) = \prod_{i=1}^{|U|}(X + a_iY - b_i) = \sum_{j=0}^{|U|} h_j(Y)X^{|U| - j} \in \text{GF}(q)[X, Y],$$

where $h_j(Y)$ is a polynomial of degree at most j in Y and $h_0(Y) \equiv 1$. Let $H_m(X)$ be the one-variable polynomial $H(X, m)$ for any fixed value m. Then $H_m(X) \in \text{GF}(q)[X]$ is a fully reducible polynomial, which reflects some geometric properties of U.

Lemma 3.1 (Folklore) Let $H(X, Y)$ be the Rédei polynomial of the pointset U, and let $m \in \text{GF}(q)$. Then $X = k$ is a root of $H_m(X)$ with multiplicity r if and only if the line with equation $Y = mX + k$ meets U in exactly r points.

We need another result about polynomials. For $r \in \mathbb{R}$, let $r^+ = \max\{0, r\}$.
Theorem 3.2 (Szőnyi–Weiner Lemma, [31, Corollary 2.4], [18, Appendix, Result 6]) Let f and g be two-variable polynomials in $GF(q)[X,Y]$. Let $d = \deg f$ and suppose that the coefficient of X^d in f is non-zero. For $y \in GF(q)$, let $h_y = \deg\gcd(f(X,y),g(X,y))$, where \gcd denotes the greatest common divisor of the two polynomials in $GF(q)[X]$. Then for any $y_0 \in GF(q)$,

$$
\sum_{y \in GF(q)} (h_y - h_{y_0})^+ \leq (\deg f(X,Y) - h_{y_0})(\deg g(X,Y) - h_{y_0}).
$$

A partial cover of $PG(2,q)$ with $h > 0$ holes is a set of lines in $PG(2,q)$ such that the union of these lines cover all but h points. We will also use the dual of the following result due to Blokhuis, Brouwer and Szőnyi [8].

Theorem 3.3 ([8, Proposition 1.5]) A partial cover of $PG(2,q)$ with $h > 0$ holes, not all on one line if $h > 2$, has size at least $2q - 1 - h/2$.

Lemma 3.4 Let S be a set of points in $PG(2,q)$, let ℓ be a k-secant of S with $2 \leq k \leq q$ and let $1 \leq t \leq q - 3$ be an integer. Suppose that through each point of $\ell \cap S$ there pass exactly t tangent lines to S. Denote by s the size of S and let $s = k + q - t + \varepsilon$. Let $A(n)$ be the set of those points in $\ell \setminus S$ through which there pass at most n skew lines to S. Then the following hold.

- If $t = 1$ and
 1. $\varepsilon < \frac{2}{t} - 1$, then the k tangent lines at the points of $S \cap \ell$ and the skew lines through the points of $A(2)$ belong to a pencil (hence $A(2) \setminus A(1)$ is empty),
 2. if $\varepsilon < \frac{2k}{t} - 2$, then the k tangent lines at the points of $S \cap \ell$ either belong to two pencils or they form a dual k-arc. If $k < q$, then the skew lines through the points of $A(2)$ belong to the same pencils or dual k-arc.
- If $t \geq 2$ and $k > q - \frac{t}{2} + 1$, then
 3. if $\varepsilon < \frac{k}{t+1} - \frac{1}{2}$, then the kt tangent lines at the points of $S \cap \ell$ and the skew lines through the points of $A(t+1)$ belong to t pencils whose carriers are not on ℓ (hence $A(t+1) \setminus A(t)$ is empty),
 4. if $\varepsilon < \frac{k}{t+1} - 1$ and $t \leq \sqrt{q}$, then the skew lines at the points of $S \cap \ell$ belong to $t+1$ pencils whose carriers are not on ℓ. If $k < q$, then the skew lines through the points of $A(t+1)$ belong to the same pencils.

Proof. First we introduce some notation. Let \mathcal{H} be any subset of points of the line ℓ. We define the line-set $L_{\mathcal{H}}$ as $L_{\mathcal{H}} = \{r \in PG(2,q) : r \cap \ell \subseteq (S \cap \ell) \cup A(t+1) \setminus \mathcal{H}, r \cap (S \setminus \ell) = \emptyset\}$, that is the set of tangent lines to S at the points of $S \cap \ell$ together with the set of skew lines to S through the points of $A(t+1)$, except those lines that intersect ℓ in a point of \mathcal{H}. For each point $P \in PG(2,q) \setminus \ell$ we define the \mathcal{H}-index of P, in notation $\ind_{\mathcal{H}}(P)$, as the number of lines of $L_{\mathcal{H}}$ that pass through P. Also, let $k_{\mathcal{H}} = |(\ell \cap S) \setminus \mathcal{H}|$, $a_{\mathcal{H}} = |A(t+1) \setminus \mathcal{H}|$, and let $\delta_{\mathcal{H}}$ be the number of skew lines through the points of $A(t+1) \setminus \mathcal{H}$. If $\mathcal{H} = \emptyset$, we omit the prefix and the subscript \emptyset, e.g. we write \mathcal{L} and $\ind(\emptyset)$ instead of L_{\emptyset} and $\ind_{\emptyset}(P)$. If $\mathcal{H} = \{Q\}$ for some $Q \in \ell$, we write \mathcal{L} as prefix or subscript instead of $\{Q\}$. If $P = (m)$, we write e.g. $\ind_{\emptyset}(m)$ instead of $\ind((m))$. Note that if $Q \in \ell \setminus (S \cup A(t+1))$, then $\ind_{Q}(P) = \ind_{\emptyset}(P)$ for all $P \in PG(2,q) \setminus \ell$.

If $P \in S \setminus \ell$, then the \mathcal{H}-index of P is 0 for any $\mathcal{H} \subseteq \ell$. Let $P \in PG(2,q) \setminus (\ell \cup S)$ be an arbitrary point and $Q \in \ell$. Then we use the system of reference so that $P \in Y_\infty \setminus \{Y_\infty\}$, $Q = Y_\infty$ and the points of $(S \cap \ell) \cup A(t+1) \setminus \{Q\}$ are affine points on the line $[1:0:0]$. Then $P = (y_0)$ for some $y_0 \in GF(q)$. Let $\{(0,c_1),\ldots,(0,c_{k+aq})\}$ be the set of points of $(S \cap \ell) \cup A(t+1) \setminus \{Q\}$, let $D = (\ell_\infty \setminus \{Y_\infty\}) \cap S$, $|D| = d$ and let $U = S \setminus (\ell \cup \ell_\infty) = \{(a_1,b_1),\ldots,(a_{q-d-k},b_{q-d-k})\}$. Consider the Rédei polynomials of $(S \cap \ell) \cup A(t+1) \setminus \{Q\}$ and U. We denote them by $f(X,Y) = \prod_{j=1}^{k_2+aq}(X - c_j)$ and $g(X,Y) = \prod_{j=1}^{q-d-k}(Ya_j + X - b_j)$, respectively. Let $\overline{D} = \ell_\infty \setminus (D \cup \{Y_\infty\})$. Then for any point $(y) \in \overline{D}$,

$$h_y := \deg\gcd(f(X,y),g(X,y)) = k_Q + a_Q - \ind_{Q}(y).$$

7
Applying the Szőnyi–Weiner Lemma for the polynomials \(f(X,Y) \) and \(g(X,Y) \) we get
\[
\sum_{(y) \in \mathcal{P}} (\text{ind}_Q(y_0) - \text{ind}_Q(y)) \leq \sum_{(y) \in \mathcal{G}(q)} (\text{ind}_Q(y_0) - \text{ind}_Q(y))^+ \leq \text{ind}_Q(y_0)(s - d - k - kQ - aQ + \text{ind}_Q(y_0)).
\]

After rearranging it we obtain
\[
0 \leq \text{ind}_Q(y_0)^2 - \text{ind}_Q(y_0)(q + k + kQ + aQ - s) + \sum_{(y) \in \mathcal{P}} \text{ind}_Q(y). \tag{1}
\]

Because \(\sum_{(y) \in \mathcal{P}} \text{ind}_Q(y) = kQ + \delta_Q \), hence
\[
0 \leq \text{ind}_Q(y_0)^2 - \text{ind}_Q(y_0)(q + k + aQ + t - \varepsilon) + kQt + \delta_Q. \tag{2}
\]

First we prove parts 1, 3 and 4 simultaneously. If we choose \(Q \) so that \(Q \in \ell \setminus \mathcal{S} \), then \(kQ = k \). Thus the condition \(\varepsilon < \frac{k}{(k + 1)} - 1 \) and the obvious fact \(\delta_Q \leq (t + 1)aQ \) imply that (2) gives a contradiction for \(t + 1 \leq \text{ind}_Q(y_0) \leq k + aQ - \varepsilon - 1 \). We say that a point \(P \) has large \(Q \)-index if \(\text{ind}_Q(P) \geq k + aQ - \varepsilon \) holds.

We are going to prove that each line of \(\mathcal{L}_Q \) contains a point with large \(Q \)-index. First let \(\ell' \in \mathcal{L}_Q \) be a tangent to \(\mathcal{S} \) at a point \(T \in \ell \cap \mathcal{S} \). Suppose that each point of \(\ell' \) has index at most \(t \). Then
\[
\sum_{P \in \ell' \setminus T} \text{ind}_Q(P) \leq tq. \tag{3}
\]

On the other hand, the sum on the left-hand side is at least \((k - 1)t + q\), contradicting our assumption on \(k \). Similarly, if \(\ell'' \) is a skew line to \(\mathcal{S} \) passing through a point \(T \in A(t + 1) \setminus \{Q\} \), then the right-hand side of (3) remains the same and the left-hand side is at least \(kt + q \), that is a contradiction, too. Hence there are at least \(t \) points with large \(Q \)-index.

Suppose that there are more than \(t \) points with large \(Q \)-index and let \(R_1, R_2, \ldots, R_{t+1} \) be \(t + 1 \) of them. Then
\[
(t + 1)(k + aQ - \varepsilon) \leq \sum_{j=1}^{t+1} \text{ind}_Q(R_j) \leq \binom{t + 1}{2} + tk + (t + 1)aQ.
\]

This is a contradiction if \(\varepsilon < \frac{k}{(k + 1)} - \frac{t}{7} \), which holds in parts 1 and 3. Regarding part 4, if there would be more than \(t + 1 \) points with large \(Q \)-index, then \(\varepsilon < \frac{k}{(k + 1)} - \frac{t + 1}{7} \) yields a contradiction. The condition on \(k \) and \(t \leq \sqrt{t} \) imply \(\frac{k}{(k + 1)} - 1 \leq \frac{t + 1}{7} - \frac{t}{7} \).

If \(k + |A(t + 1)| < q + 1 \), then let \(Q \) be any point of \(\ell \setminus (\mathcal{S} \cup A(t + 1)) \). Thus the lines of \(\mathcal{L}_Q = \mathcal{L} \) are contained in \(t \) pencils (or \(t + 1 \) in part 4) whose carriers have large \(Q \)-index. In this case parts 1, 3 and 4 are proved. So from now on we assume \(k + |A(t + 1)| = q + 1 \). Then we set \(Q \in A(t + 1) \). To finish the proof of parts 1, 3 and 4, we have to show that the lines of \(\mathcal{L} \setminus \mathcal{L}_Q \) also belong to these pencils. Recall that in case of part 4, we assume \(k < q \).

If \(k = q \), then let \(Q \) be the unique point contained in \(A(t + 1) \). The \(kt \) tangents at the points of \(\ell \cap \mathcal{S} \) are contained in \(t \) pencils having carriers with large \(Q \)-index. Denote the set of these carriers by \(\mathcal{P} = \{G_1, G_2, \ldots, G_t\} \). If \(t = 1 \), then through \(G_1 \) there pass \(q \) tangent lines, hence the points of \(\mathcal{S} \setminus \ell \) are contained in the line \(G_1Q \). Thus through \(Q \) there pass only two non-skew lines, \(\ell \) and \(G_1Q \).

The condition \(q - 3 \geq t + 1 = 2 \varepsilon \geq 2 + 2 \), hence \(Q \notin A(2) \), a contradiction. If \(t > 1 \), then \(\mathcal{P} \) is contained in a line through \(Q \) and \(\mathcal{S} \setminus \ell \) is a \((q - t)\)-sectant of \(\mathcal{S} \). Again \(q - 3 \geq t \) implies that through \(Q \) there pass more than \(t + 1 \) skew lines, hence \(Q \notin A(t + 1) \), a contradiction.

If \(k < q \), then let \(Q_1 \) and \(Q_2 \) be two distinct points of \(A(t + 1) \). As seen before, the lines of \(\mathcal{L}_Q \), are blocked by the points with large \(Q_i \)-index for \(i = 1, 2 \), hence, by \(\mathcal{L}_{Q_1} \cup \mathcal{L}_{Q_2} = \mathcal{L} \), it is enough to show that the set of points with large \(Q_1 \)-index is the same as the set of points with large \(Q_2 \)-index. If a point has large \(Q_1 \)-index, then its \(Q_2 \)-index is at least \(k + aQ_1 - \varepsilon = q - \varepsilon \), while the other points have \(Q_2 \)-index at most \(t \) for \(i = 1, 2 \). The inequality \(|\text{ind}_{Q_1}(P) - \text{ind}_{Q_2}(P)| \leq 1 \) obviously holds, thus it is enough to show that \(q - \varepsilon - t > 1 \), which follows from the assumptions \(\varepsilon < \frac{k}{(k + 1)} - 1 \) and \(t \leq q - 3 \).
Finally, we prove part 2. At this part sometimes we will choose \(Q \) from \(\ell \cap S \), so from now on on \(kQ \) is not necessarily equal to \(k \). Let \(P \) be the point of \(PG(2, q) \setminus (\ell \cup S) \) whose index is to be estimated. If \(k + |A(2)| < q + 1 \), then let \(Q \) be any point of \(\ell \setminus (S \cup A(2)) \) and let \(H = \emptyset \). If \(k + |A(2)| = q + 1 \) and \(k = q \), then let \(Q \) be the unique point contained in \(A(2) \) and let \(H = \{Q\} \), otherwise let \(Q \) be any point of \(\ell \) such that \(PQ \) intersects \(S \setminus \ell \) and let \(H = \emptyset \). Note that since \(S \setminus \ell \) is not empty, \(Q \) can be chosen in this way and \(ind_H(P) \) does not depend on the choice of \(Q \). In all cases we investigate the line-set \(L_H \), and we have \(ind_Q(P) = ind_H(P) \). If

\[
\frac{2kQ}{3} - 2 + \frac{aq}{3} > \varepsilon
\]

holds, then \(2 \) gives a contradiction for \(3 \leq \text{ind}_H(P) \leq kQ + aQ - 2 - \varepsilon \). In all cases the left-hand side of \(1 \) is at least \(2k/3 - 2 \), hence the corresponding lines either form a dual arc or there is a point \(G \) with \(H \)-index at least \(kQ + aQ - 1 - \varepsilon \).

In the latter case let \(B = (\ell \setminus (S \cup A(2))) \cup (S \setminus \ell) \cup G \) and denote by \(h \) the number of lines of \(PG(2, q) \) not blocked by \(B \). It is easy to see that, apart from \(\ell \), \(B \) blocks all but at most \((k + 2|A(2)|) - (kQ + aQ - 1 - \varepsilon)\) lines of \(PG(2, q) \). If \(k + |A(2)| < q + 1 \), then \(B \) blocks \(\ell \) and \(kQ + aQ = k + |A(2)| \), hence \(h \leq |A(2)| + 1 + \varepsilon \). If \(k + |A(2)| = q + 1 \), then \(B \) does not block \(\ell \) and \(kQ + aQ = q \), thus \(h \leq |A(2)| + 3 + \varepsilon \).

Suppose to the contrary that these \(h \) lines do not pass through one point. Then from Theorem 5.3 we have \(|B| \geq 2q - h/2 \) or, equivalently,

\[
q + 1 - (k + |A(2)|) + (q - 1 + \varepsilon) + 1 \geq 2q - h/2.
\]

Rearranging it we obtain \(\varepsilon \geq k + |A(2)| - 2 - h/2 \). If \(k + |A(2)| < q + 1 \), then this would imply \(\varepsilon \geq 2k/3 - 5/3 + |A(2)|/3 \). If \(k + |A(2)| = q + 1 \), then \(\varepsilon \geq q + k)/3 - 2 \) would follow. Both cases yield a contradiction because of our assumption on \(\varepsilon \). Hence the corresponding lines can be blocked by \(G \) and one more point.

\[\square\]

Corollary 3.5 Let \(S_1 \) be a semioval in \(PG(2, q) \) and let \(\ell \) be a \(k \)-secant of \(S_1 \). If \(|S_1| < q + \frac{3k}{2} - 2 \), then the \(k \) tangent lines at the points of \(S_1 \setminus \ell \) belong to a pencil. If \(|S_1| < q + \frac{3k}{2} - 3 \), then the \(k \) tangent lines at the points of \(S_1 \setminus \ell \) either belong to two pencils or they form a dual \(k \)-arc.

If \(k = q - 1 \), then we get a stronger result than the previous characterization of Kiss [21, Corollary 3.1].

Corollary 3.6 Let \(S_1 \) be a semioval in \(PG(2, q) \). If \(S_1 \) has a \((q - 1)\)-secant \(\ell \) and \(|S_1| < \frac{kQ}{2} - \frac{q}{2} \) holds, then \(S_1 \) is contained in a vertexless triangle and it has two \((q - 1)\)-secants.

Proof. Let \(\ell \setminus S_1 = \{A, B\} \). It follows from Corollary 3.5 that the tangents at the points of \(S_1 \setminus \ell \) are contained in a pencil with carrier \(C \). Thus \(S_1 \) is contained in the sides of the triangle \(ABC \). Suppose to the contrary that each of \(AC \) and \(BC \) intersects \(S_1 \) in less than \(q - 1 \) points. Then there exist \(P, Q \) such that \(P \in AC \setminus (S_1 \cup \{A, C\}) \) and \(Q \in BC \setminus (S_1 \cup \{B, C\}) \). The point \(E := PQ \cap AB \) is in \(S_1 \) and \(PQ \) is a tangent to \(E \). This is a contradiction since \(C \notin PQ \).

\[\square\]

Since \(t < q \) implies \(k \leq q + 1 - t \), the assumption \(q - \frac{2}{t} + 1 < k \) in Lemma 3.3 can hold only if \(t < \sqrt{q} \).

Corollary 3.7 Let \(S_1 \) be a \(t \)-semiarc in \(PG(2, q) \), \(q \geq 7 \), with \(1 < t < \sqrt{q} \). Suppose that \(S_1 \) has a \(k \)-secant \(\ell \) and \(q - \frac{2}{t} + 1 < k \) holds. If \(|S_1| < (q - t + k) + \frac{kQ}{t} - 1 \), then the \(kt \) tangent lines at the points of \(S_1 \setminus \ell \) belong to \(t + 1 \) pencils. If \(|S_1| < (q - t + k) + \frac{kQ}{t} - \frac{q}{2} \), then the \(kt \) tangent lines at the points of \(S_1 \setminus \ell \) belong to \(t \) pencils.

Remark 3.8 Theorem 2 follows from Lemma 3.4 with \(t = 1 \) and \(\varepsilon = 0 \). To see this, let \(S = U \cup (\ell_\infty \setminus D_\infty) \). Then through each point of \(\ell_\infty \cap S \), there passes a unique tangent to \(S \). According to Lemma 3.4, these tangent lines are contained in a pencil, whose carrier can be added to \(U \).
Example 3.9 It follows from Theorem 3.3 that a cover of the complement of a conic in PG(2, q), q odd, by external lines, contains at least 3(q−1)/2 lines, see [8, Proposition 1.6]. Blokhuis et al. also remark that this bound can be reached for q = 3, 5, 7, 11 and there is no other example of this size for q < 25, q odd. Now, let ℓ be a tangent to a conic C at the point P ∈ C and let U be a set of 3(q−1)/2 interior points of the conic such that these points block each non-tangent line. From the dual of the above result we know that such set of interior points exists at least when q = 3, 5, 7, 11. Let S = U ∪ ℓ \ {P}. Then the tangents to S at the points of ℓ ∩ S obviously do not pass through one point and this shows that part 1 of Lemma 3.3 is sharp if k = q and q = 5, 7, 11.

Example 3.10 ([23 Theorem 3.2]) In PG(2, 8) there exists a semioval S1 of size 15, contained in a triangle without two of its vertices. The side opposite to the one vertex contained in S1 is a 6-secant and the other two sides are 5-secants. The tangents at the points of the 6-secant do not pass through one point. Hence Corollary 3.2 is sharp at least for q = 8.

In the following we give some examples for small t-semiarcs with long secants in the cases t = 1, 2, 3 such that the tangents at the points of a long secant do not belong to t pencils. These assertions can easily be proved using Menelaus’ Theorem. Denote by GF(q)⁺ and GF(q)× the additive and multiplicative groups of the field GF(q), q = p^k, p prime, respectively, and by A ⊕ B the direct sum of the groups A and B.

Example 3.11 ([23 p. 104]) Consider GF(q), q square, as the quadratic extension of GF(√q) by i. Then the pointset S₁ = {1 : 0 : 0} ∪ {1 : 0 : 1} ∪ {0 : 0 : 1} \ {Y_∞ : (0 : 1 : 1), (1 : 1 : 1), (1 : s + i : 0) : s ∈ GF(√q)} is a semioval in PG(2, q) with three (q - √q)-secants.

Example 3.12 Let GF(q)⁺ = A ⊕ B, where A and B are proper subgroups of GF(q)⁺ and let X = A ∪ B. The pointset S₂ = {(0 : s : 1), (1 : s : 1), (1 : s : 0) : s ∈ GF(q) \ X}, is a 2-semiarc in PG(2, q) with three (q + 1 - |A| - |B|)-secants. Note that 2√q ≤ |A| + |B| ≤ q/p + p.

Similarly, let GF(q)× = A ⊕ B and X = A ∪ B, where A and B are proper subgroups of GF(q)×. The pointset S₃ = {(0 : s : 1), (s : 0 : 1), (1 : s : 0) : s ∈ GF(q) \ (X ∪ {0})}, is a 3-semiarc in PG(2, q) with three (q - |A| - |B|)-secants. Note that 2√q ≤ |A| + |B| ≤ (q + 3)/2.

4 Semiarc and blocking sets

First we associate a blocking set to each semiarc.

Lemma 4.1 Let Π_q be a projective plane of order q, let k ≤ q and 1 ≤ t ≤ q - 3 be integers. Let S be a set of k + q - t + ε points in Π_q such that the line ℓ is a k-semiarc of S. Let A(n) be the set of those points in ℓ ∩ S through which there pass at most n skew lines to S. Suppose that through each of the k points of ℓ ∩ S there pass exactly t tangent lines to S, and also suppose that these kt tangent lines and the skew lines through the points of A(n) belong to n pencils. Let P be the set of carriers of these pencils and assume that P ∩ ℓ = ∅. Define the pointset B_n(S, ℓ) in the following way:

\[B_n(S, ℓ) := (ℓ \ A(n) ∪ S) \cup (S \ \ell) ∪ P. \]

Then B_n(S, ℓ) has size 2q + 1 + ε - n - t - k - |A(n)|. If ℓ ∩ B_n(S, ℓ) = ∅ (that is ℓ ⊆ A(n) ∪ S), then B_n(S, ℓ) is an affine blocking set in the affine plane Π_q \ ℓ; otherwise B_n(S, ℓ) is a blocking set in Π_q. In the latter case the points of ℓ ∩ B_n(S, ℓ) are essential points.

Proof. Let ℓ′ ≠ ℓ be any line in Π_q and let E be the point ℓ ∩ ℓ′. If ℓ′ meets (ℓ \ (A(n) ∪ S)) ∪ (S \ ℓ), then ℓ′ is blocked by B_n(S, ℓ). Otherwise ℓ′ is a tangent to S at a point of ℓ ∩ S or ℓ′ is a skew line to S that intersects A(n). In both cases ℓ′ is blocked by P, hence it is also blocked by B_n(S, ℓ).

If ℓ ⊆ A(n) ∪ S, then B_n(S, ℓ) is an affine blocking set in the affine plane Π_q \ ℓ. Otherwise ℓ is blocked by ℓ \ (A(n) ∪ S) and hence B_n(S, ℓ) is a blocking set in Π_q. In the latter case through each point of
Hence if we consider $PG(2, q)$ with $k = \max(4, \frac{n}{2} - 1)$, then S is an affine blocking set if and only if $\ell \in B_n(S, \ell)$. Now we are ready to prove our main characterization theorems for small semiarcs with a long secant. We distinguish two cases, as the results on blocking sets in $PG(2, q)$ were given in [12]. Here we cite just a particular case.

Theorem 4.6 Let S_t be a t-semiarc in $PG(2, p)$, p prime, and let ℓ be a k-secant of S_t.

Example 4.2 If S_1 is the semioval described in Example 2.7 and ℓ is one of the $(q-1)/2$-secants of S_1, then S_1 and ℓ satisfy the conditions of Lemma 4.1 with $n = 1$ and the obtained blocking set $B_1(S_1, \ell)$ is a minimal blocking set called the projective triangle (see e.g. [19, Lemma 13.6]).

Lemma 4.3 Let S_t be a t-semiarc in $PG(2, q)$, $q = p^h$, p prime, with $t \leq \sqrt{2q/3}$. Let ℓ be a k-secant of S_t, and suppose that S_t and ℓ satisfy the conditions of Lemma 4.1 with $n = t$. If $p = 2$ and $\varepsilon < k - \frac{1}{3}(q-1)$, or p is odd and $\varepsilon < k - \frac{1}{2}(q-1)$, then $|A(t)| \geq t$.

Proof. In both cases we have $|B_t(S_t, \ell)| = 2q + \varepsilon - k - |A(t)| < 3(q+1)/2$, hence $B_t(S_t, \ell)$ is a small blocking set. Let B be the unique (cf. Theorem 1.2) minimal blocking set contained in S_t and let ℓ be the exponent of B (cf. Theorem 1.2). Note that if $\varepsilon < k - \frac{1}{3}(q-1)$, then $p^\varepsilon \geq 8$ follows from Theorem 1.2. Also $p^\varepsilon \geq 3$ holds when p is odd.

The points of $\ell \cap B_t(S_t, \ell)$ are essential points of $B_t(S_t, \ell)$ hence $\ell \cap B_t(S_t, \ell) = \ell \cap B$. The size of $B \cap (S_t \setminus \ell)$ is at least $q - t$; let U be $q - t$ points from this pointset. Consider ℓ as the line at infinity and apply Lemma 2.12 with $E = A(t)$, $F = \ell \setminus S_t$, $z = p^\varepsilon$ and with P defined as in Lemma 4.1. Note that $t \leq \sqrt{2q/3} \leq \sqrt{q(z-1)/z}$. Through each point of U there pass t tangents to S_t. These lines are also tangents to U and they have direction in F. If ℓ' is one of these tangents, then $B \cap \ell' \equiv 1 \pmod z$ thus if ℓ' has direction in $F \setminus E$, then $(P \cup U) \cap \ell' \equiv 0 \pmod z$. Hence the two required properties of Lemma 2.12 hold, thus $|A(t)| \geq t$.

Semiars with two long secants were investigated by Csajbók. He proved the following.

Lemma 4.4 ([12, Theorem 13]) Let Π_q be a projective plane of order q, $1 < t < q$ an integer and S_t be a t-semiarc in Π_q. Suppose that there exist two lines ℓ_1 and ℓ_2 such that $|\ell_1 \setminus (S_t \cup \ell_2)| = n$ and $|\ell_2 \setminus (S_t \cup \ell_1)| = m$. If $\ell_1 \cap \ell_2 \notin S_t$, then $n = m = t$ or $q \leq \min \{n, m\} + 2nm/(t-1)$.

The complete characterization of t-semiars in $PG(2, q)$ with two $(q - t)$-secants whose common point is not in the semiarc was also given in [12]. Here we cite just a particular case.

Theorem 4.5 ([12, Theorem 22]) Let S_t be a t-semiarc in $PG(2, q)$, $q = p^h$, p prime, with two $(q - t)$-secants such that the point of intersection of these secants is not contained in S_t, and let $t \leq q - 2$. Then the following hold.

1. If $\gcd(q, t) = 1$, then S_t is contained in a vertexless triangle.
2. If $\gcd(q, t) = 1$ and $\gcd(q - 1, t - 1) = 1$, then S_t consists of the symmetric difference of two lines with t further points removed from each line.
3. If $\gcd(q - 1, t) = 1$, then S_t is contained either in a vertexless triangle, or in the union of three concurrent lines with their common point removed.

Now we are ready to prove our main characterization theorems for small semiars with a long secant. We distinguish two cases, as the results on blocking sets in $PG(2, q)$ are stronger if q is a prime.

Theorem 4.6 Let S_t be a t-semiarc in $PG(2, p)$, p prime, and let ℓ be a k-secant of S_t.

11
1. If $t = 1$, $p \geq 5$ and $k \geq \frac{p-1}{2}$, then
 - S_1 is contained in a vertexless triangle and has two $(p-1)$-secants, or
 - S_1 is projectively equivalent to Example 2.4, or
 - $|S_1| \geq \min\left\{\frac{3k}{t} + p - 2, 2k + \frac{p+1}{2}\right\}$.

2. If $t = 2$, $p \geq 7$ and $k \geq \frac{p+3}{2}$, then
 - S_2 consists of the symmetric difference of two lines with two further points removed from each line, or
 - $|S_2| \geq \min\left\{\frac{4k}{t} + p - 3, 2k + \frac{p+1}{2}\right\}$.

3. If $3 \leq t < \sqrt{p}$, $p \geq 23$ and $k > p - \frac{t}{2} + 1$, then
 - S_t is contained in a vertexless triangle and has two $(p-t)$-secants, or
 - $|S_t| \geq k \frac{t+2}{t} + p - t - 1$.

Proof of part 1. Assume that $|S_1| < \min\left\{\frac{3k}{t} + p - 2, 2k + \frac{p+1}{2}\right\}$. If $|S_1| = k + p - 1 + \varepsilon$, then we have
 - $\varepsilon < \min\left\{\frac{k}{t} - 1, k - \frac{p-3}{2}\right\}$, hence Lemma 3.3 implies that the tangents at the points of $\ell \cap S_1$ and the skew lines through the points of $A(1)$ are contained in a pencil with carrier P. Construct the small blocking set $B_1(S_1, \ell)$ as in Lemma 1.1 with $n = 1$. The size of $B_1(S_1, \ell)$ is $2p + 1 + \varepsilon - k - |A(1)| < 3(p+1)/2 + 1$, thus Theorem 1.3 implies that $B_1(S_1, \ell)$ either contains a line, or it is a minimal blocking set of size $3(p+1)/2$, each of its points has exactly $(p-1)/2$ tangents, and $\varepsilon = k - \frac{p-1}{2}$.

In the first case, let ℓ_1 be the line contained in $B_1(S_1, \ell)$. Since no p points of S_1 can be collinear by Theorem 2.1, we have that ℓ_1 is a $(p-1)$-secant of S_1. The assertion now follows from Corollary 3.6. In the latter case, since the point $P \in B_1(S_1, \ell)$ has at least k tangents, we have $k = (p-1)/2$ and hence $\varepsilon = 0$. It follows from Corollary 2.14 that S_1 is projectively equivalent to the projective triangle.

Proof of part 2. Assume that $|S_2| < \min\left\{\frac{4k}{t} + p - 3, 2k + \frac{p+1}{2}\right\}$. If $|S_2| = k + p - 2 + \varepsilon$, then we have $\varepsilon < \min\left\{\frac{k}{t} - 1, k - \frac{p-3}{2}\right\}$, hence Lemma 3.4 implies that the tangents at the points of $\ell \cap S_2$ and the skew lines through the points of $A(2)$ are contained in two pencils with carriers P_1 and P_2. Construct the blocking set $B_2(S_2, \ell)$ as in Lemma 1.1. Theorem 1.3 implies that $B_2(S_2, \ell)$ either contains a line or it is a minimal blocking set of size $3(p+1)/2$ and each of its points has exactly $(p-1)/2$ tangents.

Suppose that $B_2(S_2, \ell)$ contains a line ℓ_1. Since S_2 cannot have more than $p-2$ collinear points, we have that ℓ_1 is a $(p-2)$-secant of S_2. Similarly we can construct $B_2(S_2, \ell_1)$ and get that there is a line $\ell_2 \neq \ell_1$ and $\ell_2 \cap \ell_1 \notin S_2$, which is also a $(p-2)$-secant, or $B_2(S_2, \ell_1)$ is a minimal blocking set of size $3(p+1)/2$.

In the first case Theorem 1.3 implies that S_2 consists of the symmetric difference of two lines with two further points removed from each line. If this is not the case, then $B_2(S_2, \ell)$ or $B_2(S_2, \ell_1)$ is a minimal blocking set of size $3(p+1)/2$. We may suppose that $B_2(S_2, \ell)$ is such a blocking set, hence both P_1 and P_2 have exactly $(p-1)/2$ tangent lines. But this is a contradiction since these two points together have at least $2k$ tangents, which is greater than p.

Proof of part 3. Assume that $|S_t| < k \frac{t+2}{t} + p - t - 1$. Then $|S_t| = k + p - t + \varepsilon$, where $\varepsilon < \frac{1}{t+1} - 1 < k - \frac{p-1}{2}$, hence Lemma 3.3 implies that the tangents at the points of $\ell \cap S_t$ are contained in $t+1$ pencils. Construct the small blocking set $B_{t+1}(S_t, \ell)$ as in Lemma 1.1. Theorem 1.3 implies that $B_{t+1}(S_t, \ell)$ contains a line ℓ_1. Note that $\ell_1 \cap \ell \notin S_t$. Since S_t cannot have more than $p-t$ collinear points we have that ℓ_1 is a $(p-t)$-secant or a $(p-t-1)$-secant of S_t.

If ℓ were a $(p-t)$-secant or a $(p-t-1)$-secant, then Lemma 1.3 would imply that both ℓ and ℓ_1 are $(p-t)$-secants. Otherwise $\ell \cap S_t < |\ell| \cap S_t$ and hence the conditions hold also with ℓ_1 instead of ℓ. Constructing $B_{t+1}(S_t, \ell_1)$ we get that there is a line $\ell_2 \neq \ell_1$ such that $\ell_2 \cap \ell_1 \notin S_t$ and ℓ_2 is either a $(p-t)$-secant or a $(p-t-1)$-secant. Again Lemma 1.3 implies that both ℓ_1 and ℓ_2 are $(p-t)$-secants. Since $\gcd(t, p) = 1$, Theorem 1.3 implies that S_t is contained in a vertexless triangle.

If the projective plane Π_q contains a Baer subplane, then there exist t-semiarcs of size $(q - \sqrt{q} - t) + (q - t)$ with a $(q - \sqrt{q} - t)$-secant, see Example 2.6. The first part of the following theorem states that if a line
\(\ell \) intersects a \(t \)-semiarc \(S_t \) in \(\text{PG}(2,q) \), \(q \) square, in at least \(k \geq q - \sqrt{q} - t \) points, \(t \) is not too large and the size of \(S_t \) is close to \(k + q - t \), then either \(S_t \) is the semiarc described in Example 2.6 or \(S_t \) has two \((q-t)\)-secants.

Theorem 4.7 Let \(S_t \) be a \(t \)-semiarc in \(\text{PG}(2,q) \), \(q = p^h \), \(h > 1 \) if \(p \) is an odd prime and \(h \geq 6 \) if \(p = 2 \). Suppose that \(S_t \) has a \(k \)-secant \(\ell \) with

\[
k \geq \begin{cases}
q - \sqrt{q} - t & \text{if } h \text{ is even}, \\
q - c_p q^{2/3} - t & \text{if } h \text{ is odd},
\end{cases}
\]

where \(c_p = 2^{-1/3} \) for \(p = 2, 3 \) and \(c_p = 1 \) for \(p > 3 \) (cf. Theorem 1.3). Then the following hold.

1. In case of \(h = 2d \) and \(t < \left(\frac{3}{2} - 1 \right) k/(t+1) - t/2 \) for \(t \geq 2 \),
 - if \(|S_t| < 2k + \sqrt{q} \), then \(S_t \) has two \((q-t)\)-secants whose point of intersection is not in \(S_t \);
 - if \(|S_t| = 2k + \sqrt{q} \) and \(q > 9 \), then either \(S_t \) has two \((q-t)\)-secants whose point of intersection is not in \(S_t \), or \(S_t \) is as in Example 2.6.

2. If \(h = 2d + 1 \), \(t < q + c_p q^{2/3} \) and \(t < q^{1/3} - 3/2 \) (or \(t < (2q)^{1/3} - 2 \) when \(p = 2, 3 \)), then \(S_t \) has two \((q-t)\)-secants whose point of intersection is not in \(S_t \).

Proof. To apply Lemma 3.1, we need \(k > q - \frac{t}{2} + 1 \); furthermore, \(\varepsilon < k/2 - 1 \) for \(t = 1 \) and \(\varepsilon < k/(t+1) - t/2 \) for \(t \geq 2 \). Let us consider the condition on \(k \); that on \(\varepsilon \) we treat later. If \(q \) is a square, then \(k \geq q - \sqrt{q} - t > q - \frac{t}{2} + 1 \) holds if \(t < \Phi(\sqrt{q} - 1) \), where \(\Phi = \sqrt[2]{q} - 1 \approx 0.618034 \). Note that if \(t < \Phi(\sqrt{q} - 1) \), then Theorem 2.1 implies that \(S_t \) cannot have more than \(q - t \) collinear points. If \(q \) is not a square, then \(t < q^{1/3} - 3/2 \) (or \(t < (2q)^{1/3} - 2 \) when \(p = 2, 3 \)) and \(k \geq q - c_p q^{2/3} - t \) imply \(k > q - \frac{t}{2} + 1 \).

Next we define \(b(q) \) as follows.

\[
b(q) := \begin{cases}
\sqrt{q} & \text{if } h \text{ is even}, \\
c_p q^{2/3} & \text{if } h \text{ is odd}.
\end{cases}
\]

For \(|S_t| < 2k + b(q) \), we prove the \(h \) even and \(h \) odd cases of the theorem simultaneously. Let us verify the condition of Lemma 3.4 on \(\varepsilon \). If \(|S_t| = k + q - t + \varepsilon \), then \(|S_t| < 2k + b(q) \) implies \(\varepsilon < k - q + b(q) + t \). If \(t = 1 \), then the upper bounds on \(t \) imply \(q \geq 9 \) for \(h = 2d \), and \(q \geq 27 \) for \(h = 2d + 1 \). From these lower bounds on \(q \) and from \(k \leq q - 1 \) it follows that \(k/2 \leq (q-1)/2 \leq q - b(q) - 2 \), thus \(\varepsilon < k - q + b(q) + 1 \leq t - 1 \), so the conditions of Lemma 3.4 hold if \(t = 1 \).

Now suppose that \(t \geq 2 \). As \(\varepsilon \leq k - q + b(q) + t \leq k - t - 1 \), it is enough to prove \(k - q + b(q) + t < \frac{k - t}{t} - \frac{t}{2} \).

After rearranging we get that this is equivalent to

\[
k < (q - t) + \left(\frac{q - b(q)}{t} - \frac{t}{2} - b(q) - \frac{3}{2} \right).
\]

thus it is enough to see (as \(k \leq q - t \) holds automatically) that

\[
\frac{q - b(q)}{t} - \frac{t}{2} - b(q) - \frac{3}{2} > 0.
\]

As a function of \(t \) the left hand side decreases monotonically. It is positive when \(t \) is maximal (under the respective assumptions), hence the conditions of Lemma 3.4 are satisfied.

Construct the blocking set \(B_t(S_t, \ell) \) as in Lemma 3.1. The conditions in Lemma 3.4 hold, hence the size of \(A(t) \) is at least \(t \). The size of \(B_t(S_t, \ell) \) is \(2q + 1 + \varepsilon - k - |A(t)| < q + b(q) + 1 \), thus Theorem 1.3 implies that \(B_t(S_t, \ell) \) contains a \(\ell \)-secant. Since \(S_t \) cannot have more than \(q - t \) collinear points, we get that \(\ell \)-secant of \(S_t \) contains a \(\{\ell \cap S_t\} \leq |\ell \cap S_t| \) and hence the conditions in Lemmas 3.4 and 3.5 hold also with \(\ell \) instead of \(\ell \). Constructing \(B_t(S_t, \ell_1) \) we get that there exists another \((q-t)\)-secant of \(S_t \), having no common point with \(\ell \cap S_t \).

Now consider the case \(h = 2d \), \(|S_t| = 2k + \sqrt{q} \) and suppose that \(S_t \) does not have two \((q-t)\)-secants. We can repeat the above arguing and get that \(B_t(S_t, \ell) \) or \(B_t(S_t, \ell_1) \) is a Baer subplane because of Theorem 3.5.
Among the lines of the Baer subplane \(B_1(S_t, \ell)\) is a Baer subplane and hence \(\varepsilon < k/2 - 1\) in case of \(t = 1\), we use \(q > 9\). We may suppose that \(B_1(S_t, \ell)\) is a Baer subplane and hence \(\varepsilon = k - q +\sqrt{q} + t\) and \(|A(t)| = t\). The size of \(\ell \cap B_1(S_t, \ell)\) is either 1 or \(\sqrt{q} + 1\). In the latter case \(k = q - \sqrt{q} - t\) and we get Example 2.20. In the first case \(k = q - t\). We show that this cannot occur. Denote by \(R\) the common point of \(\ell\) and \(B_1(S_t, \ell)\) and let \(P\) be any point of \(B_1(S_t, \ell) \setminus (\ell \cup S_t)\). Among the lines of the Baer subplane \(B_1(S_t, \ell)\) there are \(\sqrt{q} + 1\) lines incident with \(P\), of one of them is \(PR\), which meets \(S_t\) in at least \(\sqrt{q} - t > 1\) points. Each of the other \(\sqrt{q}\) lines of the subplane intersects \(S_t\) in at least \(\sqrt{q} + 1 - t > 1\) points, thus these lines cannot be tangents to \(S_t\). But the pencil of lines through \(P\) contains \(k = q - t\) tangents to \(S_t\), one at each point of \(\ell \cap S_t\), too. Thus the total number of lines through \(P\) is at least \(1 + \sqrt{q} + q - t > q + 1\), this is a contradiction. \(\square\)

References

[1] S. Ball: The number of directions determined by a function over a finite field, J. Combin. Theory Ser. A 104 (2003), 341-350.
[2] D. Bartoli: On the structure of semiovals of small size, to appear in J. Combin. Des., DOI: 10.1002/jcd.21383.
[3] L. M. Batten: Determining sets, Australas. J. Combin. 22 (2000), 167-176.
[4] A. Blokhuis: On the size of a blocking set in \(PG(2, p)\), Combinatorica 14 (1994), 111-114.
[5] A. Blokhuis: Characterization of seminuclear sets in a finite projective plane, J. Geom. 40 (1991), 15-19.
[6] A. Blokhuis, S. Ball, A. E. Brouwer, L. Storme and T. Szönyi: On the number of slopes of the graph of a function defined on a finite field, J. Combin. Theory Ser. A 86 (1999), 187-196.
[7] A. Blokhuis, A. E. Brouwer and T. Szönyi: Covering all points except one, J. Algebraic Combin. 32 (2010) 59-66.
[8] A. Blokhuis, L. Storme and T. Szönyi: Lacunary polynomials, multiple blocking sets and Baer subplanes, J. London Math. Soc. 60 (1999), 321-332.
[9] A. E. Brouwer and A. Schrijver: The blocking number of an affine space, J. Combin. Theory Ser. A 24 (1978), 251-253.
[10] A. A. Bruen: Semiaxes and blocking sets, Bull. Amer. Math. Soc. 76 (1970), 342-344.
[11] B. Csajbók: Semiarcs with long secants, Electron. J. Combin. 21 (2014), #P1.60, 14 pages.
[12] B. Csajbók and Gy. Kiss: Notes on semiarcs, Mediterr. J. Math. 9 (2012), 677-692.
[13] J. M. Dover: Semiovals with large collinear subsets, J. Geom. 69 (2000), 58-67.
[14] A. Gács: On a generalization of Rédei’s theorem, Combinatorica 23 (2003), 585-598.
[15] A. Gács, L. Lovász and T. Szönyi: Directions in \(AG(2, p^2)\), Innov. Incidence Geom. 6/7 (2009), 189-201.
[16] A. Gács and Zs. Weiner: On \((q + t, t)\)-arcs of type \((0, 2, t)\), Des. Codes Cryptogr. 29 (2003), 131-139.
[17] T. Héger: Some graph theoretic aspects of finite geometries, PhD Thesis, Eötvös Loránd University (2013).
[18] J. W. P. Hirschfeld: Projective Geometries over Finite Fields, 2nd ed., Clarendon Press, Oxford, 1998.
[19] R. E. Jamison: Covering finite fields with cosets of subspaces, J. Combin. Theory Ser. A 22 (1977), 253-266.
[20] Gy. Kiss: Small semiovals in \(PG(2, q)\), J. Geom. 88 (2008), 110-115.
[21] Gy. Kiss: A survey on semiovals, Contrib. Discrete Math. 3 (2008), 81-95.
[22] Gy. Kiss and J. Ruff: Notes on small semiovals, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 47 (2004), 97-105.
[23] G. Korchmáros and F. Mazzocca: On \((q + t, t)\)-arcs of type \((0, 2, t)\) in a Desarguesian plane of order \(q\), Math. Proc. Cambridge Philos. Soc. 108 (1990), 445-459.
[24] L. Lovász and A. Schrijver: Remarks on a theorem of Rédei, Studia Scient. Math. Hungar. 16 (1981), 449-454.
[25] O. Polverino: Small minimal blocking sets and complete \(k\)-arcs in \(PG(2, q^3)\), Discrete Math. 208/209 (1999), 469-476.
[26] P. Sziklai: On small blocking sets and their linearity, J. Combin. Theory Ser. A 115 (2008), 1167-1182.
[27] P. Sziklai: Subsets of \(GF(q^2)\) with \(d\)-th power differences, Discrete Math. 208/209 (1999), 547-555.
[28] T. Szönyi: Blocking Sets in Desarguesian Affine and Projective Planes, Finite Fields Appl. 3 (1997), 187-202.
[29] T. Szönyi: On the number of directions determined by a set of points in an affine Galois plane, J. Combin. Theory Ser. A 74 (1996), 141-146.
[30] T. Szönyi and Zs. Weiner: Proof of a conjecture of Metsch, J. Combin. Theory Ser. A 118 (2011), 2066-2070.
[31] P. Vandendriessche: Codes of Desarguesian projective planes of even order, projective triads and \((q + t, t)\)-arcs of type \((0, 2, t)\), Finite Fields Appl. 17 (2011), 521-531.

Bence Csajbók
Department of Mathematics, Informatics and Economics
University of Basilicata
Campus Macchia Romana, via dell’Ateneo Lucano

18
