CD14 Modulates Inflammation-Driven Insulin Resistance

José Manuel Fernández-Real,1 Sofia Pérez del Pulgar,1,2,3 Elodie Luche,4,5 José Maria Moreno-Navarrete,1 Aurelie Waget,1,4 Matteo Serino,4,5 Eleonora Sorianello,3 Alex Sánchez-Pla,6,7 Francesc Carmona Pontaque,6 Joan Vendrell,2 Matilde R. Chacón,2 Wifredo Ricart,1 Remy Burcelin,4,5 and Antonio Zorzano3

OBJECTIVE—The study objective was to evaluate the possible role of the macrophage molecule CD14 in insulin resistance.

RESEARCH DESIGN AND METHODS—The effects of recombinant human soluble CD14 (rh-sCD14) on insulin sensitivity (clamp procedure) and adipose tissue gene expression were evaluated in wild-type (WT) mice, high-fat–fed mice, ob/ob mice, and CD14 knockout (KO) mice. We also studied WT mice grafted with bone marrow stem cells from WT donor mice and CD14 KO mice. Finally, CD14 was evaluated in human adipose tissue and during differentiation of human preadipocytes.

RESULTS—rh-sCD14 led to increased insulin action in WT mice, high-fat–fed mice, and ob/ob mice, but not in CD14 KO mice, in parallel to a marked change in the expression of 3,479 genes in adipose tissue. The changes in gene families related to lipid metabolism were most remarkable. WT mice grafted with bone marrow stem cells from WT donor mice became insulin resistant after a high-fat diet. Conversely, WT mice grafted with cells from CD14 KO mice resisted the occurrence of insulin resistance in parallel to decreased mesenteric adipose tissue inflammatory gene expression. Glucose intolerance did not worsen in CD14 KO mice grafted with bone marrow stem cells from high-fat–fed WT mice when compared with recipient KO mice grafted with cells from CD14 KO donor mice. CD14 gene expression was increased in whole adipose tissue and adipocytes from obese humans and further increased after tumor necrosis factor-α.

CONCLUSIONS—CD14 modulates adipose tissue inflammatory activity and insulin resistance. Diabetes 60:2179–2186, 2011

Insulin resistance and chronic, low-grade inflammation are important predisposing factors for the development of type 2 diabetes and atherosclerosis. Genes and environment unequivocally induce variations in the inflammatory response that contribute to different susceptibility for developing all these processes among healthy individuals (1–4).

Adipose tissue is the main source and target for several inflammatory pathways. In obesity, both the intrinsic cells (adipocytes) and the infiltrating immune cells exhibit proinflammatory properties. Of these infiltrating cells, macrophages are of particular importance given their capacity to secrete a variety of proinflammatory molecules leading to insulin resistance. In fact, the percentage of resident macrophages in adipose tissue is higher with increased fat mass, confirming that fat tissue growth is associated with a recruitment of blood monocytes (5–7).

One of the main functions of macrophages is to continuously sense the extracellular milieu. Toll-like receptors in these cells efficiently transduce the inflammatory signals, and this process is especially important in obesity. In particular, toll-like receptor 4 (TLR4) is a key receptor highly expressed in macrophages and adipose tissue, and involved in activation of the innate/inflammatory response. Knockout of TLR4 in hematopoietic cells (including macrophages) prevented hyperinsulinemia and hyperglycemia induced by obesity and a high-fat diet (HFD) and abrogated insulin resistance in adipose tissue in contrast with diverse effects found in systemic TLR4 deletion (8). However, TLR4 does not interact directly with the most potent inflammatory signals. Upstream to TLR4 is the multifunctional receptor CD14 (9–11).

CD14 is a 55-kDa protein that is expressed in two forms: glycosylphosphatidylinositol-anchored membrane protein (mCD14) and a soluble serum protein (sCD14) lacking the glycosylphosphatidylinositol anchor (9–12). Different tissues and cells express a different form of CD14, i.e., mCD14 is the expressed form mainly in myeloid cells and macrophages, whereas sCD14 is the expressed form in the other cells, including hepatocytes and adipocytes (13–16). Both circulating sCD14 and cellular CD14 receptor interact with the inflammatory signals; lipopolysaccharide (LPS) is one of the most potent stimuli known. An excess of circulating sCD14 is known to buffer these signals, avoiding their exposure with cell (macrophage)-anchored CD14 (9–12).

Any strategy directed at blocking macrophage CD14 (e.g., with excess sCD14) will be capable of interrupting the inflammatory signal (LPS) before it is transduced. CD14 is in close interaction with TLR4, and LPS induces physical proximity between TLR4 and CD14 before nuclear translocation of nuclear factor-κB and triggering of the inflammatory cascade (12).

Mice harboring null mutations in CD14 showed decreased body fat and increased bone mineral content. These mutant mice live long lives. Unlike many strains of caged wild-type (WT) mice, they do not become obese (17) and resist most of the features of metabolic disease triggered by CD14 ligands (18). However, it is important to
elucidate whether bone marrow CD14 and adipocyte CD14 are equally responsible for these metabolic changes.

The grafting of mice with bone marrow stem cells has been used to evaluate the influence of these cells on whole-body insulin sensitivity (8). We grafted CD14 knockout (KO) mice with bone marrow stem cells from WT donor mice fed an HFD. We also grafted WT mice with cells from CD14 KO mice to test the reverse hypothesis. We then explored whether these findings can be extended to normal physiology. sCD14, apparently derived from both secretion and enzymatically cleaved glycosyl-phosphatidylinositol-anchored tissue CD14, is known to antagonize CD14 receptor signaling (11). Blocking cellular CD14 in macrophages and adipocytes by excess sCD14 should result in a decrease of the inflammatory pathways in adipose tissue and improvement of whole-body insulin action. Finally, we explored whether the observations can be extended to humans.

RESEARCH DESIGN AND METHODS

Animal studies

Effects of recombinant human soluble CD14 on insulin action. WT and CD14 KO mice in a C57Bl/6 J background were anesthetized with isoflurane–oxygen (1.5–2.5%) (Abbott Laboratories, Abbott Park, IL), and an intraperitoneal catheter was indwelled as previously described by Riant et al. (19). All mice were allowed to recover until they fully reached their presurgery body weight. Oral glucose tolerance test. Overnight fasted mice were given glucose (2 g/kg) orally. Whole blood was collected from the tail vein at 0, 15, 30, 60, 120, and 180 min. To assess whether insulin sensitivity could be controlled by sCD14, a 4-h intravenous infusion of the recombinant human soluble protein (rh-sCD14) was performed at a rate of 5 μg/kg/h.

Euglycemic hyperinsulinenic clamp and isotope measurements and calculations were performed as previously described (19). Briefly, 6-h fasted mice were infused with insulin at a rate of 4 mU/kg/min for 3 h, and D-([3H]glucose (Perkin Elmer Inc., Waltham, MA) was simultaneously infused at a rate of 30 μCi/kg/min. Euglycemia was maintained by periodically adjusting a variable infusion of a 16.5% (w/v) glucose solution. Plasma glucose concentrations and D-([3H]glucose specific activity were determined in 5 μL of blood sampled from the tip of the tail vein every 10 min during the last hour of the infusion.

Effects of rh-sCD14 on insulin resistance in mice fed HFD. Forty C57BL/6 J male mice (8 weeks old) were purchased from Harlan Ibérica (Barcelona, Spain). Thirty mice were fed a high-fat Western-type diet (Harlan Teklad No. 88137, Madison, WI) that contained 21% (wt/wt) fat (42% of calories), 49.2% (wt/wt) carbohydrate, and 19.8% (wt/wt) protein for 26–28 weeks (mice were 34–36 weeks old at the experimental procedure). Ten mice were fed a standard rodent chow diet. Mice were maintained on 12-h light/12-h dark cycles. Water and food were available ad libitum. Twenty mice received 1 μg/g/day of rh-sCD14, or vehicle, for 12 days. rh-sCD14 was administered in two subcutaneous injections (0.5 μg/g each one) every 12 h. This interval was calculated after observing that a single subcutaneous injection of rh-sCD14 resulted in serum concentration of this protein between 0.6 and 1.2 ng/mL. rh-sCD14 was easily observed that a single subcutaneous injection of rh-sCD14 resulted in serum concentration of this protein between 0.6 and 1.2 ng/mL. rh-sCD14 was easily

RESULTS

Effects of bone marrow grafting on HFD-induced insulin resistance and adipose tissue inflammation. After irradiation, the time required for the mice to become frankly diabetic increased from 1 to 3 months in response
to a high-fat carbohydrate-free diet (Supplementary Fig. 1A).
Furthermore, the extent of glucose intolerance obtained is
lower compared with nonirradiated and nongrafted WT
mice (Supplementary Fig. 1B–D). Figure 1B–C compares
oral glucose tolerance tests performed at 1 and 3 months
in HFD-fed mice grafted and not grafted with bone marrow
stem cells. Body weight gain and fat mass in response
to an HFD was unchanged in irradiated grafted mice with
either WT or CD14−/− bone marrow (data not shown).
This effect was most likely attributed to the destruction of
precursor cells from the adipose tissue during irradiation,
which hampers the development of the tissue. Circulating
levels of sCD14 in the different models used are shown in
Supplementary Fig. 2A.
We hypothesized that CD14 expression in bone marrow
stem cells was responsible for HFD-induced insulin re-
sistance. To this end, WT mice were grafted with bone
marrow stem cells from CD14 KO mice and then clamped
at hyperinsulinemia. The data showed that, as expected,
WT mice grafted with bone marrow stem cells from WT
donor mice became insulin resistant and glucose in-
tolerant when fed an HFD when compared with mice fed
normal chow (Fig. 1A and B, Supplementary Fig. 2B). Fasting glycemia values were 5.6 ± 0.2 mmol/L in the WT
mice grafted with bone marrow stem cells from WT donor
mice and 7.2 ± 0.4 mmol/L in the WT mice grafted with
bone marrow stem cells from CD14−/− mice. Free fatty
acids and fasting triglycerides are shown in Supplementary
Fig. 2C.
Conversely, WT mice grafted with cells from CD14 KO
mice resisted the occurrence of glucose intolerance and
insulin resistance when fed an HFD.
These observations were associated with decreased
mesenteric adipose tissue mRNA expression of genes cod-
ing for common cytokines (Fig. 2). It is noteworthy that
these differences primarily affected the mesenteric rather
than the subcutaneous adipose depot.
Both macrophages and adipocytes could be responsible
for these effects because glucose intolerance did not
worsen in CD14 KO mice grafted with bone marrow stem
cells from WT mice fed an HFD, when compared with re-
cipient KO mice grafted with cells from CD14 KO donor
mice also fed an HFD (Fig. 1C).
Effects of sCD14 on insulin action. We then explored
whether these observations can be extended to normal
physiology. If cellular CD14 in macrophages and adipo-
cytes plays a role in inflammation-induced systemic insulin
resistance, a strategy known to block cellular CD14 should

![Fig. 1. Glucose tolerance time course in WT mice. A and B: Glucose tolerance test (top) and the corresponding area under the curve (µmol/L/min, middle) and glucose infusion rates (bottom) in WT mice grafted with cells from CD14 KO mice (CD14−/−) and fed normal chow or HFD. Data are from 6–8 mice per group. *P < 0.05 and **P < 0.01 for WT mice grafted with cells from CD14 KO mice vs. WT mice grafted with cells from WT donor using Student t test. Glucose infusion rate calculations were made during the last 60 min of the 180-min clamp in steady-state condition. C: Glucose tolerance test in CD14 KO mice (CD14−/−) grafted with cells from CD14 KO or WT mice and fed normal chow or HFD (n = 6–8 mice per group). AUC, area under the curve; BM, bone marrow; GIR, glucose infusion rate; NC, normal chow; OGTT, oral glucose tolerance test.](diabetes.diabetesjournals.org)
result in improved inflammatory activity in adipose tissue and increased insulin action. It is known that an excess of sCD14 buffers the inflammatory signals, avoiding their exposure with cell-anchored CD14. To analyze this hypothesis, we clamped mice at a low physiologic insulin infusion rate ensuring a total inhibition of hepatic glucose production and submaximal peripheral insulin known to stimulate glucose utilization. After a 4-h infusion with rh-sCD14, insulin sensitivity was increased in WT mice (Fig. 3A) to a level similar to what was observed in CD14 KO mice not infused with the recombinant protein (18). The insulin-sensitizing action of sCD14 was totally absent in CD14 KO infused with the recombinant protein (18). The insulin-sensitizing action of rh-sCD14 in mice fed HFD.

Effects of rh-sCD14 in mice fed HFD. To further test the effects of rh-sCD14 on insulin sensitivity, we also tested this recombinant protein in C57BL/6 J mice previously fed a Western-type diet containing 21% fat for up to 28 weeks (high fat–fed mice). Fasting blood glucose levels were similar in rh-sCD14–treated versus vehicle-treated mice (Fig. 3B). However, glucose tolerance significantly improved after treatment with rh-sCD14. The area under the curve of blood glucose after IPGTT was 38% lower in rh-sCD14–treated mice compared with vehicle (\(P = 0.002 \), by two-way ANOVA, Fig. 3C).

Body weight and daily food intake were not significantly different after rh-sCD14 or vehicle treatment in high-fat–fed mice for 12 days. Likewise, rh-sCD14 treatment did not change the weight of epididymal adipose tissue or soleus muscle.

Effects of rh-sCD14 on adipose tissue gene expression in mice fed HFD. We found 3,479 genes whose expression in adipose tissue was significantly different in rh-sCD14–treated mice versus vehicle. Of all these genes, only those with a \(P \) value < 0.01 and a fold change of at least 1.5 were considered differentially expressed, giving a total of 82 genes. Supplementary Table 1 shows the list of genes that were most changed (fold change of at least 1.75) with respect to all genes (3,479) analyzed. Some gene families—such as the APOA, APOB, and APOC genes—which functions are clearly related to lipid metabolism appeared repeatedly in the full list of 82 genes. The microarray analysis of the expression of key genes involved in lipid metabolism and inflammation was confirmed by quantitative PCR (Supplementary Fig. 3). Supplementary Figs. 4 and 5 show the two top significant networks derived by the Ingenuity software. Of note, the two top selected networks dealt with inflammatory pathways and metabolism. No gene was considered to be differentially expressed in muscle of CD14-treated versus untreated mice.

Effects of rh-sCD14 in ob/ob mice. Fasting blood glucose decreased significantly after rh-sCD14 treatment (242 ± 30 vs. 153 ± 14 mg/dL, for vehicle- and rh-sCD14–treated mice, respectively; \(P = 0.02 \)) (Fig. 3E). In addition, glucose tolerance during an IPGTT improved significantly after treatment with rh-sCD14 (\(P = 0.02 \), by two-way ANOVA, Fig. 3F) in parallel with a decrease in the area under the curve for serum insulin (\(P = 0.0001 \)) and glucose/insulin ratio (Fig. 3F). Body weight and daily food intake did not differ significantly after treatment with rh-sCD14 or vehicle for 12 days (Fig. 3D and data not shown). Likewise, rh-sCD14 treatment did not change the weight of epididymal adipose tissue or soleus muscle (data not shown).
Studies in humans. CD14 mRNA expression was evaluated in human subcutaneous adipose tissue in two independent studies. In the first study, the expression of CD14 was increased in 19 obese subjects (10 men and 9 women, BMI 30.7 ± 5 kg/m²) compared with 13 lean subjects (8 men and 5 women, BMI 22.9 ± 1.4 kg/m²) (0.054 ± 0.029 vs. 0.032 ± 0.015 relative units, P = 0.02). CD14 mRNA expression was linearly associated with BMI (r = 0.40, P = 0.02). In the replication study, we evaluated 40 subjects: 4 lean (BMI 22.3 ± 1.7 kg/m², 1 man), 12 overweight (BMI 26.9 ± 1.8 kg/m², 3 men), and 24 obese (BMI 45.9 ± 4.1 kg/m², 4 men). The three groups of
subjects were similar in age (43.5 ± 13.7 vs. 47.8 ± 12.2 vs. 45.3 ± 12.4 years, \(P = 0.8 \)) and sex. CD14 mRNA expression increased with obesity status (Fig. 4A). Systemic inflammation contributed to this association to some extent, given the linear association between CD14 mRNA expression and peripheral white blood cell count \((r = 0.37, P = 0.02)\).

CD14 mRNA expression decreased significantly during in vitro differentiation of human preadipocytes into adipocytes when CypA was used as an internal control \((P < 0.005, \text{Fig. 4B})\). CD14 protein concentrations, which were concordant with CD14 mRNA levels, were significantly increased in both isolated preadipocytes and adipocytes from obese subjects when compared with lean subjects (Fig. 4C). Further supporting the role of inflammation on increased CD14 gene expression, TNF-\(\alpha\) (100 ng/mL) administration during 48 h led to significantly increased CD14 gene expression in human adipocytes \((P = 0.003)\) (Fig. 4D).

Finally, we evaluated circulating sCD14 concentrations. Women showed significantly higher circulating sCD14 concentrations than men in parallel to their physiologically increased percent fat mass \((4.81 ± 1.8 \text{ vs. } 4.13 ± 1.76 \mu g/\text{mL})\). Circulating sCD14 was significantly associated with both absolute fat mass \((r = 0.19, P = 0.02)\) and percent fat mass \((r = 0.20, P = 0.01)\), and this relationship was stronger in women \((r = 0.31 \text{ and } r = 0.32, \text{for absolute and percent fat mass, } P = 0.023 \text{ and } P = 0.018, \text{respectively})\).

DISCUSSION

The inflammatory signals leading to metabolic derangement are known to be sensed by TLR4, among others \((8,20,21)\). However, TLR4 does not interact directly. Upstream to TLR4 is the multifunctional receptor CD14. Both circulating sCD14 and cellular CD14 receptors interact with the inflammatory signals in close relationship with TLR4. Any strategy directed at blocking cellular CD14 will be capable of interrupting the inflammatory signal before it is transduced.

Mice harboring a null mutation in the \(CD14\) gene showed decreased mesenteric fat, among other phenotypic characteristics of type 2 diabetes \((17)\). However, genetic deletion provides little information about the relative contribution of the different cells expressing CD14 leading to this phenotype. According to current findings, both bone marrow–derived macrophages and tissue macrophages expressing CD14 seem important targets in systemic inflammation and insulin action.

FIG. 4. CD14 gene expression in obese subjects and during adipogenesis. A: The 95% CI for the mean of CD14 mRNA expression according to obesity status. **B:** Study of CD14 mRNA expression during in vitro differentiation of human adipocytes. **\(\ast\)** \(P < 0.005\) in comparison with day 0. **C:** Study of CD14 mRNA in isolated preadipocytes and adipocytes from lean and obese subjects. \(\ast P < 0.05\) in comparison with preadipocyte. **\(\ast\)** \(P < 0.005\) in comparison with preadipocyte. \(\ast\)** \(P < 0.05\) in comparison with lean cells. **\(\ast\)** **\(\ast\)** \(P < 0.005\) in comparison with lean cells. **D:** TNF-\(\alpha\) (100 ng/mL) administration during 48 h significantly increased CD14 gene expression in human adipocytes \((P = 0.003)\). SC, subcutaneous.
As expected, WT mice grafted with bone marrow stem cells from WT donor mice became insulin resistant and glucose intolerant when fed an HFD when compared with mice fed normal chow. In confirmation that bone marrow–derived macrophages were responsible for these effects, WT mice grafted with cells from CD14 KO mice resisted the occurrence of glucose intolerance, insulin resistance, and adipose tissue inflammation when fed an HFD. The reduced cytokine mRNA concentration in mesenteric adipose depot but not the subcutaneous fat depot suggests that the former was targeted by CD14 activation. This difference was probably related to the well-known dissimilar biochemical and metabolic properties of the visceral fat versus the subcutaneous fat (22). This dataset fits with what has been described using TLR4 KO mice (8,20,21).

However, CD14 expression in adipocytes could also be responsible for these effects because glucose intolerance did not worsen in CD14 KO mice grafted with bone marrow stem cells from WT mice fed an HFD, when compared with recipient KO mice grafted with cells from CD14 KO donor mice also fed an HFD (Fig. 3A).

Given the difficulty of producing effective “diet-induced obesity” after bone marrow transplantation, tissue-specific CD14 KOS will be needed to more fully characterize the importance of the different tissue sources of CD14 in the obese state.

For all these reasons, we explored whether these findings could be extended to normal physiology. One way to decrease CD14 signaling is to deliver rh-sCD14 that competes with endogenous CD14 receptor in the membrane of macrophages and other myeloid cells. Blocking cellular CD14 in macrophages and adipocytes by excess sCD14 resulted in a decrease of the inflammatory pathways (interleukin [IL]-1α and IL-1β) among them, Supplementary Fig. 3C) specifically in adipose tissue (and not in muscle) and improved insulin action. This was found not only at the individual gene but also at multiple levels, as suggested by the microarray results in adipose tissue, confirmed by quantitative PCR (Supplementary Fig. 3). Expression profiles of genes listed in Supplementary Table 1 were analyzed using the Ingenuity Pathway Analysis methodology to compose a set of interactive networks, taking into consideration canonical pathways and the relevant biological interactions.

A number of canonical pathways were revealed to play an important role, especially those related with glycolysis and gluconeogenesis and IL-4 signaling. Next, two significant biological networks were identified by the Ingenuity Pathway Analysis. Further analysis of the highest scored network (score 24, 14 focus genes) identified inflammatory response (P<0.028), genetic disorder (P<0.048), and inflammatory disease (P<0.0375) as the most significant biological functions linked to these networks (Supplementary Figs. 3–5).

Treatment with rh-sCD14 was associated with improved glucose tolerance in three animal models. In WT mice, rh-sCD14 led to increased insulin action. This improvement consistently was not observed in CD14 KO mice. In obese high-fat mice, rh-sCD14 also led to improvement of glucose tolerance. In ob/ob mice, a model with established diabetes and prominent insulin resistance, treatment with rh-sCD14 resulted in lowering of plasma glucose and insulin concentrations. It is therefore conceivable that treatment with sCD14 in individuals with decreased serum sCD14 concentrations may increase their levels above a certain threshold of functional deficiency.

LPS, an abundant component of the outer membrane of gram-negative bacteria, is one of the most potent inflammatory stimuli in animal host cells. Whereas LPS recognition benefits the host by sensing the presence of bacteria and mobilizing defense mechanisms, an exaggerated response to LPS may contribute to the harmful sequelae of severe inflammation (23). The buffering of LPS is crucial not only during acute inflammatory and infectious processes. In normal humans, triglyceride-rich lipoproteins contain detectable levels of endogenous LPS that are presumably scavenged in vivo (24). LPS is extraordinarily ubiquitous in nature, being present in food and water and in normal indoor environments as a constituent of house dust (25). In the mice studied, plasma LPS concentration ranged between 6 and 15 EU/mL with a mean of 7.5 EU/mL. Of note, an HFD led to increased circulating LPS concentrations even in humans (26). Endogenous LPS is also continually produced within the gut by the death of gram-negative bacteria and absorbed into intestinal capillaries. Therefore, low-grade portal venous LPS is the status quo in humans (27). LPS is increasingly recognized as a strong stimulatory factor involved in the release of several cytokines that are key inducers of insulin resistance and other metabolic disturbances. A two- to threefold increased plasma concentration of LPS has been demonstrated to constitute a sufficient molecular mechanism for triggering insulin resistance, obesity, and type 2 diabetes (18,28).

This process was named “metabolic endotoxemia,” in which day-to-day circulating endotoxin (LPS) for 1 month affects inflammation, but not enough to produce acute endotoxemia (18,28).

The host has numerous mechanisms that downregulate responses to LPS and remove it from the circulation and tissues. sCD14 can both potentiate and downregulate responses to LPS. sCD14 was originally described as an LPS inhibitor, and other studies have described inhibitory effects of high concentrations of sCD14 under various conditions (23). Other works have shown that in plasma, sCD14 decreases monocyte responses to LPS by transferring cell-bound LPS to plasma lipoproteins (23). Moderate to high concentrations of sCD14 that are found in human blood may help to prevent LPS-induced systemic inflammation, whereas lower concentrations of sCD14 may promote inflammation (23).

It remains to be determined which cells are directly sensitive to metabolic endotoxemia-induced inflammation in human obesity. At first glance, the increased CD14 mRNA and protein levels in adipocytes of obese subjects make these cells more sensitive to the effects of metabolic endotoxemia. A proinflammatory environment was possibly behind this observation because TNF-α administration led to increased CD14 mRNA in adipocytes. In fact, CD14 mRNA decreased with preadipocyte conversion into adipocytes in parallel to the downregulation of inflammatory genes during adipocyte differentiation (Fig. 4B).

The scenario seems more complex. We also found that circulating sCD14 was proportional to fat mass. This association may be envisioned as an attempt to buffer metabolic endotoxemia with increased fat mass. However, increased metabolic endotoxemia possibly results in increased turnover of sCD14 because weight loss results in both decreased LPS (J.M.M.-N. and J.M.F.-R. unpublished results) and increased sCD14 levels (29).

Finally, our results are consistent with studies reporting lower levels of proinflammatory cytokines and apparent
protection from atherosclerosis in subjects with gene TLR4 mutations (30).

In summary, systemic CD14 expression might play a role in obesity and inflammation-induced insulin resistance. The administration of sCD14 could be a therapeutic strategy to ameliorate these phenotypes.

ACKNOWLEDGMENTS

This work was partially supported by research grants from the Instituto de Salud Carlos III (CIBERObn and CIBERDEM), by a grant from the Société Française du Diabetes (SFD) and GlaxoSmithKline, by a grant from the Société Francophone du Diabétologie (R.B.), and by Grant MTM2008-00642 (A.S.-P.). This work was partially supported by FLORINASH (7th FP). No other potential conflicts of interest relevant to this article were reported.

All authors of this article directly participated in the execution and analysis of the study. J.M.F.-R. carried out the conception, design, and coordination of the study; performed the statistical analysis; and wrote the manuscript. S.P.P. carried out the animal studies, analyzed the biochemical variables, and performed the statistical analysis. E.L. carried out the animal studies, analyzed the biochemical variables, performed the statistical analysis, and was responsible for the experiment with LPS. J.M.M.-N. and A.W. carried out the animal studies, analyzed the biochemical variables, and performed the statistical analysis. M.S. carried out the animal studies, analyzed the biochemical variables, performed the statistical analysis, and performed the HFD-based obese and diabetic mouse models. E.S. carried out the microarray analysis. J.V. participated in the conception and coordination of the study. M.R.C. carried out the animal studies, analyzed the biochemical variables, and performed the statistical analysis. W.R., R.B., and A.Z. participated in the conception and coordination of the study.

The authors thank P. Cani, INSERM, and M. Iglesias, INSERM, for technical expertise and Roser Rodriguez, CIBERobn, for administrative help.

REFERENCES

1. Pickup JC, Crook MA. Is type II diabetes mellitus a disease of the innate immune system? Diabetologia 1998;41:1241–1248
2. Fernández-Real JM, Ricart W. Insulin resistance and chronic cardiovascular inflammatory syndrome. Endocr Rev 2003;24:278–301
3. Fernández-Real JM, Broch M, Richart C, Vendrell J, López-Bermejo A, Ricart W. CD14 monocyte receptor, involved in the inflammatory cascade, and insulin sensitivity. J Clin Endocrinol Metab 2003;88:1780–1784
4. Fernández-Real JM, Ricart JC. Innate immunity, insulin resistance and type 2 diabetes. Trends Endocrinol Metab 2008;19:10–16
5. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003;112:1796–1808
6. Xu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003;112:1821–1830
7. Tsou CL, Peters W, Si Y, et al. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest 2007;117:902–909
8. Saberi M, Woods NB, de Luca C, et al. Hematopoietic cell-specific deletion of toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat-fed mice. Cell Metab 2009;10:419–429
9. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein, Science 1990;249:1431–1433
10. Pugin J, Heumann ID, Tomasa A, et al. CD14 is a pattern recognition receptor. Immunity 1994;1:509–516
11. Ulevitch RJ, Tobias PS. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol 1995;13:437–457
12. Jiang Q, Akashi S, Miyake K, Petty HR. Lipopolysaccharide induces physical proximity between CD14 and toll-like receptor 4 (TLR4) prior to nuclear translocation of NF-kappa B. J Immunol 2000;165:3541–3544
13. Pan Z, Zhou L, Hetherington CJ, Zhang DE. Hepatocytes contribute to soluble CD14 production, and CD14 expression is differently regulated in hepatocytes and monocytes. J Biol Chem 2000;275:36430–36435
14. Fears C, Kravchenko VV, Ulevitch RJ, Loskutoff DJ. Murine CD14 gene expression in vivo: extramyeloid synthesis and regulation by lipopolysaccharide. J Exp Med 1995;181:857–866
15. Sewter CP, Dingby JE, Blows F, Prins J, O’Rahilly S. Regulation of tumour necrosis factor-alpha release from human adipose tissue in vitro. J Endocrinol 1999;163:33–38
16. Daniel JA, Elssasser TH, Morrison CD, et al. Leptin, tumor necrosis factor-alpha (TNF), and CD14 in ovine adipose tissue and changes in circulating TNF in lean and fat sheep. J Anim Sci 2003;81:2590–2599
17. Johnson GB, Riggs BL, Platt JL. A genetic basis for the “Adonis” phenotype of low adiposity and strong bones. FASEB J 2004;18:1282–1284
18. Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007;56:1761–1772
19. Riant E, Waget A, Cogo H, Arnal JF, Burcellin R, Goursy P. Estrogens protect against high-fat-diet-induced insulin resistance and glucose intolerance in mice. Endocrinology 2009;150:2109–2117
20. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 2006;116:3015–3025
21. Poggi M, Bastelica D, Gual P, et al. C3H/HeJ mice carrying a toll-like receptor 4 mutation are protected against the development of insulin resistance in white adipose tissue in response to a high-fat diet. Diabetologia 2007;50:1267–1276
22. Pérez-Pérez R, Ortega-Delgado FJ, García-Santos E, et al. Differential proteomics of omental and subcutaneous adipose tissue reflects their unlike biochemical and metabolic properties. J Proteome Res 2009;8:1662–1693
23. Thompson PA, Tobias PS, Vartyakossil S, Kirkland TN, Kitchens RL. Lipopolysaccharide (LPS)-binding protein inhibits responses to cell-bound LPS. J Biol Chem 2003;278:28367–28371
24. Harris HW, Grunfeld C, Feingold KR, Rapp JH. Human very low density lipoprotein resistance in chimpanzees: Evidence for a genetic factor. J Biol Chem 1999;274:1223–1227
25. Michel OJ, Kips J, Duchateau J, et al. Severity of asthma is related to endotoxin in house dust. Am J Respir Crit Care Med 1996;154:1641–1646
26. Amar J, Burcellin R, Ruidavets JB, et al. Energy intake is associated with endotoxin and bacteria in portal blood. Gastroenterology 1977;72:1268–1270
27. Jacob AJ, Goldberg PK, Bloom N, Degenshein GA, Kozuin PJ. Endotoxin and bacteria in portal blood. Gastroenterology 1977;72:1268–1270
28. Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control obesity and diabetes. Nature 2007;444:1047–1052
29. Manco M, Fernandez-Real JM, Vecchio FM, et al. The decrease of serum levels of human neutrophil alpha-defensins parallels with the surgery-induced amelioration of NASI in obesity. Obes Surg 2010;20:1682–1689
30. Kiechl S, Lorenz E, Reindl M, et al. Toll-like receptor 4 polymorphisms and atherogenesis. N Engl J Med 2002;347:185–192