Current therapy option for necrotizing enterocolitis: Practicalities and challenge

Huihuan Wu1,2†, Kehang Guo1,2†, Zewei Zhuo1,3†, Ruijie Zeng1,4, Yujun Luo1, Qi Yang1, Jingwei Li1, Rui Jiang1,2, Zena Huang5, Weihong Sha1,2* and Hao Chen1,2*

1Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China, 2School of Medicine, South China University of Technology, Guangzhou, China, 3School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China, 4Shantou University Medical College, Shantou, China, 5Department of General Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China

Necrotizing enterocolitis (NEC) is one of the most prevalent neonatal gastrointestinal disorders. Despite ongoing breakthroughs in its treatment and prevention, the incidence and mortality associated with NEC remain high. New therapeutic approaches, such as breast milk composition administration, stem cell therapy, immunotherapy, and fecal microbiota transplantation (FMT) have recently evolved the prevention and the treatment of NEC. This study investigated the most recent advances in NEC therapeutic approaches and discussed their applicability to bring new insight to NEC treatment.

KEYWORDS
necrotizing enterocolitis, breast milk composition, stem cell, fecal microbiota transplantation, immunotherapy

Introduction

Necrotizing enterocolitis (NEC) is an inflammatory bowel disease that is particularly dangerous in premature or low-birth-weight babies (1). Despite tremendous advancements in NEC treatment and neonatal care over the past few decades, the current state of treatment remains unsatisfactory, and mortality and morbidity remain high (2). Short bowel syndrome and intestinal failure are possible outcomes of surgical resection of the necrotic part of the intestine. Patients who survive NEC have a higher risk of developing long-term complications, such as neurodevelopmental delay (3, 4).

Prevalence and development of NEC are extraordinarily complex. Low birth weight, prolonged parenteral feedings, and short gestation periods are all risk factors for preterm birth. Additionally, mother’s lifestyle (such as smoking and obesity), the prevalence of associated disorders (such as diabetes mellitus, preeclampsia, and chorioamnionitis), and prenatal medications (such as antibiotics and corticosteroids) are risk factors for NEC (Figure 1) (5-10). There are multiple factors involved in developing NEC,
including genetic susceptibility, immature intestinal host defense, abnormal microbiota colonization, hypoxia, ischemia, hyperresponsiveness of the intestinal mucosa (11, 12). Despite the study of NEC from various angles, the mechanisms that cause the disease are still largely unknown, which impedes its development into a specific treatment. Prevailing treatment strategies for NEC include antibiotics, surgery, and advanced life support, but their effect is limited. Therefore, a more effective approach to treating NEC is necessary.

In this review, breast milk composition, stem cells, immunotherapy, and fecal microbiota transplantation (FMT) were considered the most recent developments in NEC treatment (Figure 2). In addition, their applications to the NEC treatment were evaluated to illuminate the limitations and challenge of the NEC treatment.

Necrotizing enterocolitis treatment strategy

Therapy with breast milk composition

Multiple studies have demonstrated that Breast milk composition, including lactoferrin, oligosaccharides, breast milk-derived exosome and so on, is one of the most effective methods for preventing and treating NEC (13, 14). In this section, We focused mainly on lactoferrin, oligosaccharides and breast milk-derived exosome based on their potential applications in NEC prevention and treatment (Table 1).

Lactoferrin

Lactoferrin is the most abundant protein in colostrum (5–6.7 g/L) and is the most important protein found in breast milk (15). Lactoferrin has been demonstrated to inhibit the release of pro-inflammatory cytokines, such as IL-6 and TNF-α, thus reducing intestinal inflammation (14). In addition to maintaining the barrier function of the gut, lactoferrin influences intestinal epithelial cell proliferation and apoptosis (16). Lactoferrin’s effectiveness in preventing and treating NEC has been demonstrated in several preclinical studies and clinical trials (17, 18). Up to now, a phase III clinical trial (ClinicalTrials.gov Identifier: NCT03431558) is currently underway to determine the health effects of lactoferrin with gradient concentration in neonates with low birth weight at the Aga Khan University Hospital, Pakistan. However, based on a systematic review and meta-analysis of nine RCTs with 3515 samples, enteral lactoferrin supplementation did not reduce late-onset sepsis incidences in NEC, all-cause mortality, sepsis-related mortality, NEC stage II or III, and other adverse outcomes (19).

Oligosaccharides

The significance of Oligosaccharides in protecting against NEC has been a developing area of research since human breast milk is a recognized protective mechanism against the development of NEC. Animals fed a formula containing DSLNT displayed a decrease in NEC severity and lower mortality in preclinical experiments using a newborn rat model of NEC (20, 21). The same study also showed sialylated oligosaccharides, similar to HMOs, but structurally different, decreased NEC incidence and pathological damage scores in rats (22). A rat model of NEC showed that supplementation with sialylated oligosaccharides reduced NEC incidence and intestinal pathology with inhibiting toll like receptor 4/NLRP3 inflammasome pathway (22).

According to a study, oligosaccharides protect intestinal epithelial cells from damage by inhibiting TLR4 expression and increasing crypt cell turnover (23). However, a model of NEC in preterm piglets receiving complex microbial blends did not show any difference in intestinal microbial diversity or protection against NEC (24).

Breast milk-derived products

Exosomes are known to include bioactive constituents such mRNA, miRNA, DNA, and proteins and to be produced by a variety of cell types (25). Breast milk-derived exosomes enhance the development of gut and exerts positive impacts on experimental NEC (Figure 3) (26–29). Breast milk-derived exosomes prevent intestinal stem cells from oxidative stress, which were regulated by the Wnt/-catenin signaling pathway (28). In addition, rat milk-derived exosomes increase intestinal stem cell activity, promote IEC viability, and boost proliferation (30). Porcine milk-derived exosomes were reported to protect the intestinal epithelium against LPS-induced injury by inhibiting excessive inflammation and preventing apoptosis through the action of exosome miRNAs (31). Exosomes isolated from bovine milk were administered to protect experimental NEC-induced bowel injury by enhancing goblet cell production and endoplasmic reticulum function (32). According to these studies, breast milk-derived exosomes may exert potential protective effects against NEC.

Challenge and limitation of breast milk composition therapy

Lactoferrin, oligosaccharides and exosomes in breast milk have protective effects on NEC. However, these are difficult to implement in the clinic. For instance, lactoferrin and oligosaccharides from breast milk have outstanding anti-inflammatory properties, and relevant clinical research is now
underway. Still, they are underutilized in clinical settings, making their promotion difficult. To establish the efficacy and long-term benefits of lactoferrin and oligosaccharides and the optimal dose and administration method, higher-quality, well-designed, larger, multicenter clinical trials are required. Furthermore, breast milk-derived exosomes research for the treatment of NEC is still in its early stages. For further verification and in-depth exploration of the mechanism of exosomes in the treatment of NEC, a large number of animal experiments are required.

Stem cells therapy

Stem cell therapy is increasingly being proposed as a novel therapeutic approach for a variety of diseases, such as spinal cord injury (SCI), stroke (33, 34). Preclinical research on the potential therapeutic role of stem cells in experimental NEC is growing. This section will cover the therapeutic effectiveness of stem cell and stem cell-derived products in the treatment of NEC and provide an overview of ongoing preclinical research (Table 2).

Bone marrow-derived mesenchymal stem cells (BM-MSCs)

In 2011, MSCs were administered intraperitoneally for the first time to treat NEC in rat models. The results illustrate that MSCs could represent a new treatment option for repairing and regenerating injured intestinal tissue in NEC due to their beneficial effects on reducing inflammation and improving tissue regeneration (35). The same study found that intraperitoneal administration of MSCs reduces injury and improves survival in experimental NEC (36). Researchers compared the therapeutic effects of intraperitoneal- and intravenous -administered MSC when treating experimental NEC. They found that intravenous -administered MSC had dramatically improved intestinal engraftment, intravenous administration may be a more effective delivery method than intraperitoneal administration (37). Even though both routes of administration may be used clinically, intravenous administration is a quick and easy way to inject MSC into the body.
FIGURE 2
Research progress in necrotizing enterocolitis treatment. Effective treatments for NEC include breast milk composition administration, stem cell therapy, fecal microbiota transplantation (FMT) and immunotherapy.

Amniotic fluid-derived mesenchymal stem cells (AF-MSCs)

Amniotic fluid-derived mesenchymal stem cells are cultured using amniotic fluid collected via amniocentesis or cesarean section (38, 39). AF-MSCs therapy has three obvious benefits: AF-MSCs are abundant, are simple to collect and with ease to culture in vitro with modest amounts of medium supplement, and develop quicker than BM-MSCs (40). Due to these advantages, AF-MSCs therapy appears to be the optimum stem cell therapy for treating NEC and has piqued the interest of researchers. Other studies also demonstrated that intraperitoneal injection of AF-MSCs decreased the incidence of NEC and enhanced the intestinal barrier function in rats (41, 42). Similarly, Li et al. (43) discovered that Wnt-β signaling increased cell proliferation while decreased inflammatory factor release, restoring intestinal epithelial regeneration after intraperitoneal injection of AF-MSCs.

Stem cells of other sources

Other sources of stem cells, such as embryonic stem cells (ESCs), umbilical cord-derived mesenchymal stem cells (UC-MSCs), enteral neural stem cells (E-NSCs), amniotic fluid-derived neural stem cells (AF-NSCs) and induced pluripotent stem cells (iPSCs) also have been shown to reduce the incidence of NEC (44, 45). Overall, these findings suggests that stem cell therapy represent a promising treatment for NEC.

Stem cell-derived products

Exosome may reduce the incidence and severity of experimental NEC as effectively as the stem cells from which they derive (Figure 3) (36). According to the study, they showed that the effect on intestinal injury repair was similar with that of BM-MSCs, AF-MSCs, AF-NSCs, and E-NSCs therapy in rat model of NEC (36). Exosomes produced by AF-MSCs largely activated the Wnt/catenin signaling pathway to increase enterocyte proliferation, reduce inflammatory response, and promote normal intestinal epithelium regeneration (43). Researchers reveal that intraperitoneal -administered BM-MSCs-derived exosomes can independently maintain the integrity of the intestinal barrier from experimental NEC (46). Further, the results of the first comprehensive review and meta-analysis of preclinical models examining the role of stem cells- derived exosomes in experimental NEC demonstrated that exosomes derived from stem cells improved survival and reduced the incidence and severity of cases were diagnosed NEC in rat model (47). The results of these studies suggest exosomes are an effective approach in prevention of NEC development.
TABLE 1 Applications of breast milk components in NEC.

Molecules in breast milk	Species	Outcomes	Year	References
Lactoferrin	Preterm infants	Reduces IL-6 and TNF-α expression, and upregulates Lgr5+ stem cell expression and epithelial proliferation.	2020	(14)
Lactoferrin	Low birth weight neonate	Decrease in IL-10 levels.	2020	(17)
Lactoferrin	Pig	Moderate doses (0.1–1 g/L) enhance cell proliferation and downregulate apoptosis and inflammation. High doses (10 g/L) trigger inflammation.	2016	(16)
Lactoferrin	Very low birth weight neonates	Reduces the incidence and death of > stage 2 NEC.	2014	(18)
Lactoferrin	Preterm Infant	Reduces the incidence of NEC.	2020	(19)
Oligosaccharides	Mouse	HMOs, accelerate the turnover of crypt cells to protect intestinal epithelial cells from injury.	2019	(23)
DSLNT	Preterm infant	reduces NEC risk.	2018	(21)
Sialylated oligosaccharides	Rat	SHMOs reduce intestinal inflammation by inhibiting TLR4/NLRP3 pathway.	2021	(22)
Oligosaccharide	Pig	HMOs, reduce bowel inflammation.	2017	(24)
HM-EX	Cell	Protected IEC-6 from an oxidative stress injury	2018	(26)
HM-EX	Rat	Protected villous integrity, restored enterocyte proliferation, and improved intestinal epithelial cells	2019	(27)
HM-EX	/	Protected IECs from oxidative stress injury	2020	(28)
BOVM-EX	Mouse	Improved goblet cell activity, prevented the development of NEC	2019	(32)
RAM-EX	Cell	Promoted IEC viability, enhanced proliferation, and stimulated intestinal stem cell activity	2017	(30)
PM-Ex	Mouse	Decreased intestinal epithelial apoptosis by inhibiting TLR4/NF-κB signaling.	2019	(31)

Challenge and limitation of stem cell therapy

Despite these positive outcomes in animal models, there is currently no ongoing stem cell therapy clinical trial for human NEC. Although an instance of supraventricular tachycardia led to a case of NEC. UC-MSCs were administered intravenously to show enhanced intestinal blood supply in subsequent jejunostomies, without any signs of small bowel syndrome (48). A single instance, though, is insufficient to show that stem cell therapy is available in clinics, and there may be other unidentified aspects that merit research as well. Besides, stem cell therapy is limited in the clinical treatment of NEC due to ethical concerns, immunological rejection and a significant risk of tumorigenesis (49–51). Stem cell therapy is a hard task to convert for preclinical and clinical application since it must also address issues including an augmented immune response, cancer, gene mutation, and ethical concerns. It is crucial to find an efficient therapeutic method that does not directly use stem cells in these conditions. Exosome may reduce the incidence and severity of experimental NEC as effectively as the stem cells from which they derive. The use of stem cell-derived exosomes, may be the best way to overcome some of the limitations of stem cell therapy (36).

Exosome therapy is easier to be administered than stem cell therapy because there is no chance of teratoma formation or ethical concerns. However, researchers continue to face considerable challenges in expanding the use of exosome treatment in clinics. Limitations and Challenge might be from three aspects: (1) long-term exosome extraction, low purity, and partial disintegration of obtained exosome (52–56); (2) poor targeting capability and probable “dilution effect” that could reduce treatment efficacy (57); and (3) absence of research on the precise mechanism of action of exosomes in NEC treatment. Numerous attempts have been made to overcome these limitations, such as enhancing the extraction process for exosomes and extending targeting capability by modification. Chen et al. (58) proposed an anion exchange method for efficiently extracting and detecting exosomes. Furthermore, aptamer-mediated surface modification may boost the specificity of exosomes’ ability to reach injured tissues and organs, displaying enhanced targeting capability (59–62). Exosomes’ unique properties and biological impacts must be comprehended and studied, as well as the underlying mechanism in NEC treatment and their scale-up utilizing existing technology. With sustained research, it is envisaged that exosome therapy will become one of the most promising therapies for NEC.
Therapy with fecal microbiota transplantation

A dysbiosis of the gut microbiome is a risk factor of NEC (63). FMT, a strategy in which healthy feces are transferred to patients with dysbiosis to balance their intestinal flora, has been used to treat clostridium difficile infected diseases (64). Experimental models of NEC have shown positive results when dysbiosis is corrected with FMT. A recent study by Liu et al. concluded that FMT has a unique effect on treating NEC by decreasing inflammation in the intestines, decreasing intestinal permeability, and strengthening the intestinal barrier (65). Brunse et al. examined gut colonization patterns and host reactions to FMT according to different administration routes (66). Rectal administration is the most preferable method of administering FMT, since oral FMT administration increases lethal sepsis incidence and overall mortality by exposing the proximal gut to potentially pathogenic organisms (66). However, according to another study, intragastric administration of FMT appears safe in postsurgical newborn piglets with SBS, with no sepsis and no mortality (67). Hence, there is a need to further explore the security of administration of FMT by different routes.

Challenge and limitation of fecal microbiota transplantation

Even though FMT has shown promising properties in preventing NEC, FMT is associated with safety concerns because no screening method will be able to exclude transfer of an infectious agent from the donor. Yan et al. suggest that the guts of recipients had higher levels of pathogenic signatures from *Escherichia coli* and *Salmonella enterica*, which may
TABLE 2 Applications of stem cells and stem cells-derived products in NEC.

Stem cells and stem cells-derived products	Administration	Species	Outcome	Year	References
BM-MSC	Intraperitoneal injection	Rat	Showed weight gains, improve clinical sickness scores, reduced histopathological damage	2011	(35)
BM-MSC	Intraperitoneal injection	Mouse	HB-EGF promoted BM-MSC proliferation, and migration and decreased BM-MSC apoptosis. HB-EGF and BM-MSC act synergistically to reduce injury and improve survival in NEC	2012	(37)
BM-MSC	Intraperitoneal injection	Rat	Reduced the incidence and severity of NEC, and preserved intestinal barrier function in NEC.	2019	(42)
AF-MSC	Intraperitoneal injection	Rat	Reduced the incidence, and severity, and preserved intestinal barrier function in NEC.	2019	(42)
AF-MSC	Intraperitoneal injection	Mouse	HB-EGF and BM-MSC act synergistically to reduce injury and improve survival in NEC.	2017	(41)
AF-MSC	Intravenous injection	Rat	Reduced the incidence, and severity, and preserved intestinal barrier function in NEC.	2019	(42)
AF-MSC	Intraperitoneal injection	Mice	Reduced the incidence and severity of NEC. AF-MSC, BM-MSC, AF-NSC, and E-NSC all reduce the incidence of NEC, which is not largely different.	2019	(45)
UC-MSC	Intraperitoneal injection	Rat	Reduced the incidence and severity of NEC.	2019	(42)
UC-MSC	Intravenous injection	Infant	Reduced the incidence and severity of NEC.	2019	(42)
AF-NSC	Intraperitoneal injection	Rat	Reduced the incidence, and severity, and preserved intestinal barrier function in NEC.	2019	(42)
AF-NSC	Intraperitoneal injection	Mouse	Reduced the incidence and severity of NEC.	2017	(41)
E-NSC	Intraperitoneal injection	Rat	Reduced the incidence and severity of NEC.	2017	(41)
BM-MSC-Ex	Intraperitoneal injection	Rat	Decreases the incidence and severity of NEC.	2018, 2016	(36, 46)
AF-NSC-EX	Intraperitoneal injection	Mice	Reduced intestinal injury, restored epithelial regeneration, increased ISC and epithelial proliferation by Wnt signaling.	2018, 2020	(36, 43)
E-NSC-EX	Intraperitoneal injection	Rat	Decreases the incidence and severity of NEC.	2018	(36)

TABLE 3 Targeting TLR4 by drugs in NEC.

Name	Species	Outcome	Year	References
Pregnane X receptor	Mouse	Anti-inflammation via TLR4	2018	(72)
The secondary bile acid lithocholic acid (LCA)	Mouse	LCA activated PXR, anti-inflammation via TLR4.	2018	(72)
High mobility group box-1 inhibitor glycyrrhizin (GL)	Rat	Anti-inflammation via TLR4/NF-κB/NLRP3.	2010	(78)
Interleukin-1 (IL-1) receptor-associated kinase (IRAK) inhibitors	Rat	Anti-inflammation via TLR4.	2018	(73)

be a risk factor (68). Oral FMT administration increases lethal sepsis incidence and overall mortality by exposing the proximal gut to potentially pathogenic organisms (66). To improve the safety of FMT, Fecal filtrate transplantation (FFT) and FMT sterilization by ultraviolet radiation are techniques that remove the bacterial component from donor feces by sterile filtration (69, 70). Most studies found that fecal donors are mainly 10-day-old healthy piglets (66, 68, 69). However, there are no standard procedures for selecting donors in NEC animal models. To sum up, there are few published studies on FMT’s effects on NEC, and a greater number are still experimental. Therefore, it is essential to conduct a comprehensive screening procedure in order to determine the characteristics of FMT donors, screen conditions, the preferred route of administration and improve the quality of FMT in the future.

Immunotherapy

TLR4-targeting agents

Toll-like receptors (TLRs) are pattern recognition receptors (PRR) of the innate immune system, and each TLR may identify particular pathogen-associated molecular patterns (PAMP). It is generally established that TLRs have a role in NEC pathogenesis,
particularly TLR4 which identifies lipopolysaccharides in Gram-negative bacteria. TLR4 was reported to be highly activated in both neonatal rats and human infants in the event of NEC (71). Researchers have shown that TLR4-deficient mice don’t display significant inflammatory responses (72, 73). Studies have demonstrated the importance of TLR4 signal activation in the development of NEC, as it can provoke excessive intestinal inflammation and increase the apoptosis and necrosis of enterocytes (74–77). TLR4-targeted agents have the potential to be useful in the treatment of NEC (Table 3).

Pregnane X receptor (PXR) can function as an external biosensor and signal intermediate in producing various host-bacterial metabolites. It has been proven with an ability to inhibit TLR4 signal expression. According to an animal study, mice with PXR knockout exhibited more severe disease symptoms following experimental NEC induction (72). Lithocholic acid (LCA), a liver-distributed PXR agonist, could activate intestinal PXR, reducing NEC-related intestinal inflammation (72). The high mobility group box 1 (HMGB1) is essentially required for the incidence and progression of NEC. In animal investigations, it was revealed that when NEC developed, HMGB1 expression increased, and inflammatory cell migration was facilitated (78). Yu et al. (78) examined the effect of glycyrrhizin (GL), and HMGB1 inhibitor, in NEC and reported that it might inhibit TLR4 and the downstream NF-κB/NLRP3 signaling pathway, resulting in decreased intestinal inflammation. Hou et al. (73) revealed that an interleukin-1 receptor-associated kinase (IRAK) inhibitor lowered inflammatory factor production by downregulating TLR4 receptor expression, thereby reducing the severity of NEC-induced intestinal inflammation. The possibility that TLR4-targeted drugs particular to the pathophysiology of NEC suggest that they may represent an innovative treatment strategy.

Conclusion

This review outlines lactoferrin, oligosaccharides, exosomes in breast milk, stem cells and stem cells derived-exosomes, TLR4-targeted agents, and FMT, have demonstrated promising therapeutic effects and clinical application potential for the NEC therapy. Further elucidation of mechanisms, advancements in preparation, bioengineering, and application, as well as strict clinical trials, will support the use of Lactoferrin, oligosaccharides, exosomes in breast milk, stem cells and stem cells derived-exosomes, TLR4-targeted agents, and FMT, as new therapeutics for pediatriic diseases.

Author contributions

HW, KG, and ZZ: drafting and revising manuscript. RZ, YL, QY, JL, RJ, and ZH: participating in revising the manuscript. WS and HC: reviewing the manuscript for important intellectual content. All authors read and approved the final manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (82171698, 82170561, 81741067, 81300279, and 82003555), the National Science Fund for Distinguished Young Scholars of Guangdong Province (2021B1515020003), the Climbing Program of Introduced Talents and High-level Hospital Construction Project of Guangdong Provincial People’s Hospital (DFJH201803, KJ012019099, KY012021183, and KJ012021143), the Guangdong Provincial Natural Science Foundation (2018A030310016), and the Guangzhou Science and Technology Program (202102080037).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
Bovine lactoferrin regulates cell survival, apoptosis and inflammation in intestinal epithelial cells and preterm pig intestine. Rev Paul Pediatr. (2012) 30:90–5.

Wong D, Abdell-Latif M, Kent A, Network N. Antenatal steroid exposure and outcomes of very premature infants: a regional cohort study. Arch Dis Child Fetal Neonatal Ed. (2014) 99:51–20.

Downard CD, Grant SN, Maki AC, Krupski MC, Matheson PJ, Bendon RW, et al. Maternal cigarette smoking and the development of necrotizing enterocolitis. Pediatrics. (2012) 130:78–82.

Garcia-Munoz Rodrigo F, Galan Henriquez G, Figueras Aloy J, Garcia-Alia Perez A. Outcomes of very-low-birth-weight infants exposed to maternal chronic oromucolitis: a multicentre study. Neonatology. (2014) 106:229–34. doi: 10.1159/000363127

Grandi C, Tapia JL, Cardoso VC. Impact of maternal diabetes mellitus on mortality and morbidity of very low birth weight infants: a multicenter Latin America study. J Pediatr (Rio J). (2015) 91:234–41. doi: 10.1016/j.jped.2014.08.007

Cetinkaya M, Orzak H, Koksal N. Maternal preeclampsia is associated with increased risk of necrotizing enterocolitis in preterm infants. Early Hum Dev. (2012) 88:895–8.

Neu J, Walker WA. Necrotizing enterocolitis. N Engl J Med. (2011) 364:255–64.

Denning TL, Bhatia AM, Kane AF, Patel RM, Denning PW. Pathogenesis of NEC: role of the innate and adaptive immune response. Semin Perinatol. (2017) 41:15–28.

Wang C, Zhang M, Guo H, Yan J, Chen I, Teng W, et al. Human milk oligosaccharides activate epithelial growth factor receptor and protect against hypoxia-induced injuries in the mouse intestinal epithelium and Caco2 cells. J Nutr. (2020) 150:756–62. doi: 10.1093/jn/nxz297

Liu J, Zhu H, Li B, Robinson SC, Lee G, O’Connell JS, et al. Lactoferrin reduces necrotizing enterocolitis severity by upregulating intestinal epithelial proliferation. Eur J Pediatr Surg. (2020) 30:90–5.

Queiroz VA, Assis AM, Júnior Hda R. Protective effect of human lactoferrin in the gastrointestinal tract. Rev Paul Pediatr. (2013) 31:90–5.

Nguyen DN, Jiang P, Stensballe A, Bendixen E, Sangild PT, Chatterton DE. The human milk oligosaccharide disialyllacto-N-tetraose prevents necrotising enterocolitis prevention. Mol Nutr Food Res. (2019) e1801247. doi: 10.1002/mnfr.201801247

Hock A, Miyake H, Li B, Lee C, Erminni L, Koeke Y, et al. Breast milk-derived exosomes promote intestinal epithelial cell growth. J Pediatr Surg. (2017) 52:755–9.

Xie MY, Hou LI, Sun JN, Zeng B, Xi QY, Luo JY, et al. Porcine milk exosome MiRNAs attenuate LPS-induced apoptosis through inhibiting TLR4/NF-kB pathway and p53 pathways in intestinal epithelial cells. J Agric Food Chem. (2019) 67:9477–91. doi: 10.1021/acs.jafc.9b02925

Li R, Hock A, Wu RY, Minch A, Botts SR, Lee C, et al. Human milk-derived exosomes enhance goblet cell activity and prevent the development of experimental necrotizing enterocolitis. PLoS One. (2019) 14:e0211431. doi: 10.1371/journal.pone.0211431

Shao A, Tu S, Lu J, Zhang J. Crostabtalk between stem cell and spinal cord injury: pathophysiology and treatment strategies. Stem Cell Res Ther. (2019) 10:238. doi: 10.1186/s13287-019-1357-z

Bottai D, Cigognini D, Nicora E, Moro M, Grimoldi MG, Adami R, et al. Mesenchymal stem cell therapy in necrotizing enterocolitis a rat study. Pediatr Res. (2011) 70:489–94.

McCulloh CJ, Olson JK, Wang Y, Zhou Y, Tengberg NH, Deshpande S, et al. Treatment of experimental necrotizing enterocolitis with stem cell-derived exosomes. J Pediatr Surg. (2018) 53:1125–20.

Yang J, Watkins D, Chen C, Bhushan B, Zhou Y, Besner GE. Heparin-binding epidrmal growth factor-like growth factor and mesenchymal stem cells act synergistically to prevent experimental necrotizing enterocolitis. J Am Coll Surg. (2012) 215:534–45. doi: 10.1016/j.jacsurg.2012.05.037

Murphy SV, Atala A. Amniotic fluid and placental membranes: unexpected sources of highly multipotent cells. Semin Reprod Med. (2013) 31:62–8. doi: 10.1055/s-0033-1331799

Bottai D, Cigognini D, Nicora E, Moro M, Grimoldi MG, Adami R, et al. Third trimester amniotic fluid cells with the capacity to develop neural phenotypes and with heterogeneity among sub-populations. Restor Neural Neurosci. (2012) 30:55–68. doi: 10.3233/RNN-2011-0620

McCulloh CJ, Olson JK, Zhou Y, Wang Y, Tengberg NH, Deshpande S, et al. Treatment of experimental necrotizing enterocolitis with stem cell-derived exosomes. J Pediatr Surg. (2018) 53:1125–20.

Yang J, Watkins D, Chen C, Bhushan B, Zhou Y, Besner GE. Heparin-binding epidrmal growth factor-like growth factor and mesenchymal stem cells act synergistically to prevent experimental necrotizing enterocolitis. J Am Coll Surg. (2012) 215:534–45. doi: 10.1016/j.jacsurg.2012.05.037

Murphy SV, Atala A. Amniotic fluid and placental membranes: unexpected sources of highly multipotent cells. Semin Reprod Med. (2013) 31:62–8. doi: 10.1055/s-0033-1331799

Bottai D, Cigognini D, Nicora E, Moro M, Grimoldi MG, Adami R, et al. Third trimester amniotic fluid cells with the capacity to develop neural phenotypes and with heterogeneity among sub-populations. Restor Neural Neurosci. (2012) 30:55–68. doi: 10.3233/RNN-2011-0620

McCulloh CJ, Olson JK, Zhou Y, Wang Y, Tengberg NH, Deshpande S, et al. Treatment of experimental necrotizing enterocolitis with stem cell-derived exosomes. J Pediatr Surg. (2017) 52:999–1005. doi: 10.1016/j.jpedsurg.2017.03.028

McCulloh CJ, Olson JK, Wang Y, Lu J, Wang Y, Besner GE. Stem cells and necrotizing enterocolitis: a direct comparison of the efficacy of multiple types of stem cells. J Pediatr Surg. (2017) 52:999–1005. doi: 10.1016/j.jpedsurg.2017.03.028

McCulloh CJ, Olson JK, Wang Y, Tengberg NH, Deshpande S, et al. Treatment of experimental necrotizing enterocolitis with stem cell-derived exosomes. J Pediatr Surg. (2018) 53:1125–20.

Yang J, Watkins D, Chen C, Bhushan B, Zhou Y, Besner GE. Heparin-binding epidrmal growth factor-like growth factor and mesenchymal stem cells act synergistically to prevent experimental necrotizing enterocolitis. J Am Coll Surg. (2012) 215:534–45. doi: 10.1016/j.jacsurg.2012.05.037

Murphy SV, Atala A. Amniotic fluid and placental membranes: unexpected sources of highly multipotent cells. Semin Reprod Med. (2013) 31:62–8. doi: 10.1055/s-0033-1331799

Bottai D, Cigognini D, Nicora E, Moro M, Grimoldi MG, Adami R, et al. Third trimester amniotic fluid cells with the capacity to develop neural phenotypes and with heterogeneity among sub-populations. Restor Neural Neurosci. (2012) 30:55–68. doi: 10.3233/RNN-2011-0620

McCulloh CJ, Olson JK, Zhou Y, Wang Y, Tengberg NH, Deshpande S, et al. Treatment of experimental necrotizing enterocolitis with stem cell-derived exosomes. J Pediatr Surg. (2017) 52:999–1005. doi: 10.1016/j.jpedsurg.2017.03.028

McCulloh CJ, Olson JK, Wang Y, Tengberg NH, Deshpande S, et al. Treatment of experimental necrotizing enterocolitis with stem cell-derived exosomes. J Pediatr Surg. (2017) 52:999–1005. doi: 10.1016/j.jpedsurg.2017.03.028

McCulloh CJ, Olson JK, Wang Y, Tengberg NH, Deshpande S, et al. Treatment of experimental necrotizing enterocolitis with stem cell-derived exosomes. J Pediatr Surg. (2017) 52:999–1005. doi: 10.1016/j.jpedsurg.2017.03.028

McCulloh CJ, Olson JK, Wang Y, Tengberg NH, Deshpande S, et al. Treatment of experimental necrotizing enterocolitis with stem cell-derived exosomes. J Pediatr Surg. (2017) 52:999–1005. doi: 10.1016/j.jpedsurg.2017.03.028

McCulloh CJ, Olson JK, Wang Y, Tengberg NH, Deshpande S, et al. Treatment of experimental necrotizing enterocolitis with stem cell-derived exosomes. J Pediatr Surg. (2017) 52:999–1005. doi: 10.1016/j.jpedsurg.2017.03.028
bone regeneration. Functionalized exosomes from bone marrow stromal cells target bone to promote regenerative repair. *Anal Chem.* (2018) 90:14207–15. doi: 10.1021/acs.analchem.8b03031

60. Luo ZW, Li FX, Liu YW, Rao SS, Yin H, Huang J, et al. Aptamer-functionalized exosomes from bone marrow stromal cells target bone to promote bone regeneration. *Nanoscale.* (2019) 11:20884–92. doi: 10.1039/c9nr02791b

61. Tran PH, Xiang D, Nguyen TN, Tran TT, Chen Q, Yin W, et al. Apatrimer-guided extracellular vesicle theranostics in oncology. *Theranostics.* (2020) 10:3849–66. doi: 10.7150/thno.39706

62. Brehin C, Dubois D, Dicky O, Breising S, Oswald E, Serino M. Evolution of gut microbiome and metabolome in suspected necrotizing enterocolitis: a case-control study. *J Clin Med.* (2020) 9:2278. doi: 10.3390/jcm9072278

63. Kelly CR, Khoruts A, Slade S, Sadowsky MJ, Abd M, Alani M, et al. Effect of fecal microbiota transplantation on recurrence in multiply recurrent clostridium difficile infection: a randomized trial. *Ann Intern Med.* (2016) 165:509–16. doi: 10.7326/M16–0271

64. Liu J, Miyake H, Zhu H, Li B, Alganabi M, Lee C. Fecal microbiota transplantation by enema reduces intestinal inflammation in experimental necrotizing enterocolitis. *J Pediatr Surg.* (2020) 55:1094–8. doi: 10.1016/j.jpedsurg.2020.02.035

65. Brunse A, Martin L, Rasmussen TS, Christensen L, Skovsted C, Larsen M, Wiese M, et al. Effect of fecal microbiota transplantation route of administration on gut colonization and host response in preterm pigs. *ISME J.* (2019) 13:720–33. doi: 10.1038/s41396-018-0301-z

66. Hinchliffe T, Pauline ML, Wizard PR, Jovell J, Nation PN, Wales PW, et al. The effect of fecal microbial transplant on intestinal microbial composition in short-bowel neonatal piglets. *NPJ Parenter Enter Nutr.* (2020) doi: 10.1038/s41522-020-00310-z

67. Hu Y, Vestergaard G, Deng L, Kot WP, Thymann T, Brunse A, et al. Donor-dependent fecal microbiota transplantation efficacy against necrotizing enterocolitis in preterm pigs. *NPJ Biofilms Microbiomes.* (2022) 8:48. doi: 10.1038/s41522-022-00310-2

68. Zhou Y, Li Y, Zhou B, Chen K, Lyv Z, Huang D, et al. Inflammation-driven SIRPα-TLR4 signaling pathway in rats. *NPJ Sci Rep.* (2017) 11:1360–70. doi: 10.1038/s41598-017-02081-0

69. Hou Y, Lu X, Zhang Y. IRAK Inhibitor protects the intestinal tract of neonatal piglets with necrotizing enterocolitis. *J Exp Pharmacol.* (2017) 9:2278. doi: 10.3390/jcm9072278

70. Prado C, Abatti MR, Michels M, Corneo E, Cucker L, Borges H, et al. Comparative effects of fresh and sterile fecal microbiota transplantation in an experimental animal model of necrotizing enterocolitis. *J Pediatr Surg.* (2022) doi: 10.1016/j.jpedsurg.2021.12.013

71. Liu T, Zong H, Chen X, Li S, Liu Z, Cui X, et al. Toll-like receptor 4-mediated necrosis in the development of necrotizing enterocolitis. *Pediatr Res.* (2021) 9:71–82. doi: 10.1039/c9nr02791b

72. Huang K, Mukherjee S, DesMarais J, Albanez JM, Raffi E, Draghi L, et al. Targeting the PYK2-TLR4 signaling pathway to reduce intestinal inflammation in an experimental model of necrotizing enterocolitis. *Pediatr Res.* (2018) 83:1031–40. doi: 10.1097/pr.2018.14

73. Hou Y, Lu X, Zhang Y. IRAK Inhibitor protects the intestinal tract of neonatal piglets with necrotizing enterocolitis by inhibiting the toll-like receptor (TLR) inflammatory signaling pathway in rats. *Med Sci Monit.* (2018) 24:3366–73. doi: 10.12659/MSM.910327

74. Jia H, Souhi CP, Yamaguchi Y, Lu P, Ladd MR, Werts A, et al. Toll-like receptor 4 mediated lymphocyte imbalance induces nec-induced lung injury. *Shock.* (2019) 52:215–23. doi: 10.1097/shk.0000000000001255

75. Dai M, Yuan L, Tan X, Huang D, Wang X, Zheng Z, et al. The LPS-inducible lncRNA Mirt2 is a negative regulator of inflammation. *Nat Commun.* (2017) 8:2049. doi: 10.1038/ncomms14617–014207–15. doi: 10.1021/acs.analchem.8b03031

76. Feuerhann G, Chandravati R, Parmar PA, Keane TJ, Maynard SA, Bertazzo S, et al. Engineering extracellular vesicles with the tools of enzyme prodrug therapy. *Adv Mater.* (2017) 30:e1706616. doi: 10.1002/adma.201706616

77. Chen J, Xu Y, Lu Y, Xing W. Isolation and visible detection of tumor-derived exosomes from plasma. *Anal Chem.* (2018) 90:14207–15. doi: 10.1021/acs.analchem.8b03381

78. Liu C, Zhao J, Tian F, Chang J, Zhang W, Sun J. LambdA DNA- and aptamer-mediated sorting and analysis of extracellular vesicles. *J Am Chem Soc.* (2019) 141:3817–21. doi: 10.1021/jacs.8b10007

79. Luo ZW, Li FX, Liu YW, Rao SS, Yin H, Huang J, et al. Apatramer-functionalized exosomes from bone marrow stromal cells target bone to promote bone regeneration. *Nanoscale.* (2019) 11:20884–92. doi: 10.1039/c9nr02791b

80. Tran PH, Xiang D, Nguyen TN, Tran TT, Chen Q, Yin W, et al. Apatamer-guided extracellular vesicle theranostics in oncology. *Theranostics.* (2020) 10:3849–66. doi: 10.7150/thno.39706

81. Dai S, Souhi C, Gettin S, Richardson W, Branca M, Neal MD, et al. Extracellular high mobility group box 1 (HMGB1) inhibits enterocyte migration via activation of toll-like receptor-4 and increased cell-matrix adhesiveness. *J Biol Chem.* (2010) 285:4995–5002. doi: 10.1074/jbc.M109.07454