Ileal proteomic changes associated with IL-25-mediated resistance against intestinal trematode infections

CURRENT STATUS: Under Review

Parasites & Vectors • BMC

María Álvarez-Izquierdo, J. Guillermo Esteban, Carla Muñoz-Antoli, Rafael Toledo

María Álvarez-Izquierdo
Universitat de Valencia

J. Guillermo Esteban
Universitat de Valencia

Carla Muñoz-Antoli
Universitat de Valencia

Rafael Toledo
Universitat de Valencia

rafael.toledo@uv.es Corresponding Author
ORCiD: https://orcid.org/0000-0003-2651-9794

Subject Areas

Parasitology

Keywords
proteomics, intestine, interleukin-25, intestinal helminths, trematoda, Echinostoma caproni
Abstract

Background: Echinostoma caproni (Trematoda: Echinostomatidae) is an intestinal trematode, which has been extensively used to investigate the factors that determine the rejection of intestinal helminths. In this sense, several studies have shown that IL-25 is critical for the development of resistance against E. caproni in mice. In fact, treatment of mice with recombinant IL-25 generates resistance against primary E. caproni infection. However, the mechanisms by which IL-25 induces resistance remain unknown.

Methods: To study the mechanisms responsible for resistance elicited by IL-25, we analyze the ileal proteomic changes induced by IL-25 in mice and their potential role in resistance. To this purpose, we compare the protein expression profiles in the ileum of four experimental groups of mice: naïve controls; E. caproni -infected mice; rIL-25-treated mice; and rIL-25-treated mice exposed to E. caproni metacercariae.

Results: Quantitative comparison by 2D-DIGE showed significant changes in a total of 41 spots. Forty of those spots validated protein spots were identified by mass spectrometry corresponding to 24 proteins.

Conclusions: The analysis of our results indicates that resistance to infection is associated with the maintenance of the intestinal epithelial homeostasis and the regulation of proliferation and cell death. These results provide new insights into the proteins involved in the regulation of tissue homeostasis after intestinal infection and its transcendence in resistance.

Background

Intestinal helminth infections affect more than one billion people worldwide, mainly in developing regions of Asia, Africa and Latin America [1]. These infections cause high morbidity, with most common symptoms related to effects on nutrition inducing malabsorption syndrome, vitamin deficiencies, growth retardation or impaired cognitive function among other disorders. Moreover, other complications such as intestinal obstruction, chronic dysentery, rectal prolapse, anemia or debilitating disease may appear [2-3]. Apart from its interest in human health, helminth infections are a relevant cause of economic losses in livestock, both by decreased productivity, an also in relation to the indirect costs of anthelmintic treatments [4]. Intestinal helminth infections caused by trematodes constitute a major group affecting both humans and animals [5]. Intestinal trematodes are a large group of parasites and about seven million people are infected worldwide [6]. About 76 of species belonging to Echinostomatidae have been reported infecting humans. Human infection occurs as a consequence of eating raw or undercooked foods containing the infective metacercariae. High incidence of intestinal trematodiasis is strongly associated with populations living near freshwater bodies and the practice of eating raw or undercooked aquatic products [5]. One of the most relevant group of trematodes causing human infections, mainly in East and Southeast Asia, are the members of the family Echinostomatidae. Echinostomes are cosmopolitan parasites that infect a large number of different warm-blooded hosts. More than 20 species of echinostomes are known to cause human infections worldwide [5]. Moreover, echinostomes, and particularly Echinostoma caproni, have been widely used as experimental models to the analysis of helminth-vertebrate host relationships, especially in relation to the factors that determine the resistance to intestinal helminth infections. E. caproni is an intestinal trematode without tissue migration within the definitive host. The metacercariae excyst in the duodenum and the excysted worms migrate to the ileum and attach to the mucosa [7]. E. caproni has a wide range of definitive hosts, although its compatibility differs considerably between rodent species due to different worm survival and development in each host species [7]. In mice, the infection becomes chronic, while in hosts of low compatibility, (such as rats) the worms are rapidly rejected in a few weeks post-infection (wpi) [8-9].

In recent years, IL-25 is considered a crucial cytokine in resistance to intestinal helminths. IL-25 induces Th2 immunity and facilitates anti-inflammatory functions via the downregulation of Th17 and Th1 responses [10-12]. Expression of IL-25 induces resistance to gastrointestinal helminth infections due to the activation of Th2 responses that mediate effector mechanisms (including mast cell hyperplasia, smooth muscle hypercontractility, expression of RELM-b, and intestinal mastocytosis, among others) for parasite expulsion [13]. Intestinal tuft cells
are the main source of IL-25 and release IL-25 upon helminth establishment. Subsequently, group 2 of innate lymphoid cells (ILC2) produce large amounts of IL-13 activating dendritic cells in the lamina propria and enhancing their migration to mesenteric lymph nodes to polarize naïve CD4+ T cells into Th2. ILC2 and basophils can also perform antigen presentation to CD4+ T cells and induce Th2 polarization. Th2-polarized cells release an array of cytokines and expand themselves through positive feedback loops, amplifying the response and enhancing resistance to infection [13].

Previous studies of our group showed that IL-25 is crucial for the resistance to E. caproni and the susceptibility of mice relies on the inability of this host species to produce IL-25 in response to infection [14-15]. Susceptibility of mice to primary E. caproni infection was associated with low production of intestinal IL-25 expression, whilst deworming via administration of praziquantel (pzq) was accompanied by an increase in IL-25 production and, subsequently, the development of a Th2-type phenotype preventing the establishment of secondary infections [14-15]. Although these facts, little is known about the mechanism by which IL-25 generates resistance against intestinal helminths. In the present work, we analyze the changes in the production of proteins induced by IL-25 in the ileum of mice that may be implicated in the generation of resistance against intestinal helminths.

Materials And Methods

Animal and infection procedures

The present study was achieved using a total of 15 male ICR (CD1) mice weighing 30-35 g. The E. caproni strain and the infection procedures carried out has been previously described [9, 16]. Briefly, encysted metacercariae were removed from kidneys and pericardium of experimentally infected Biomphalaria glabrata snails and used for infection. Mice were randomly allocated into four groups (3 mice in each group). Animals belonging to one of the groups were infected by gastric gavage with 50 metacercariae of E. caproni. Mice of a second group were treated with rIL-25 (R&D Systems®) (concentration: 0.2 mg/ml each) in 150 ml of PBS during each of the four days prior to infection with 50 metacercariae of E. caproni as described above. Animal of another group were simply treated with penicillin under the conditions described above. This group was not exposed to metacercariae of E. caproni. Finally, the remainder 5 mice were used as control and they were not exposed to rIL-25 or E. caproni metacercariae. All mice were necropsied one week after the exposure to metacercariae of the first two groups of mice. The animals were maintained under standard conditions with food and water *ad libitum*.

Intestinal epithelial cells isolation and protein extraction

Ileal sections from mice in each group were removed at necropsy and intestinal epithelial cells (IECs) were isolated. Briefly, the intestinal sections were opened longitudinally and rinsed by shaking in washing buffer: ice-cold Hank’s balance salt solution (HBSS) containing 2% of heat-inactivated fetal calf serum (FCS). Supernatant was then removed and fresh washing buffer was added to the ileal sections. This procedure was repeated 4 times, until the supernatant was clear. The tissue was cut into small, 1 cm-long, segments and incubated for 20 min at 37 °C in HBSS containing 10% FCS, 1 mM EDTA, 1 mM DTT, 100 U/ml penicillin and 100 µg/ml streptomycin (dissociation buffer). The supernatant was collected and maintained on ice and the incubation was repeated a second time with fresh dissociation buffer. Supernatants were combined and filtered through a 100 nm cell strainer before IECs were pelleted out by centrifuging at 200 g for 10 min at 4 °C and washed three times in PBS under the same centrifuge conditions to remove any residual medium.

Protein extraction was performed using M-PER Mammalian Protein Extraction Reagent (Thermo Scientific) according to the manufacturer’s instructions. Shortly, extraction reagent was added to the IECs pellet (20:1, v/v), mixed by vortex and incubated at room temperature (RT) for 20 min under continuous gentle agitation. The lysate was then clarified by centrifugation at 18,000 g for 15 min at 4 °C, transferred into a new tube and stored at -80 °C until use.

Preparation of biological replicates and protein labeling
To increase the biological significance avoiding erroneous conclusions related to individual variations, four biological replicates were prepared for each experimental group: infected with *E. caproni*, rIL-25-treated mice exposed to *E. caproni* metacercariae, rIL-25-treated mice and naïve animals.

Three of these replicates were obtained from different animals and the fourth was obtained by mixing the previous three by applying the same amount of protein from each sample (20 μg/sample) in order to study to increase the biological significance and avoid erroneous conclusions due to individual variations. Then, 200 μg of protein from each biological replicate were cleaned and precipitated with 2-D Clean-Up kit (GE Healthcare) to remove salts and other substances that interfere with labeling and electrophoresis. The samples were resuspended in DIGE tagged buffer (7M urea, 2 M thiourea, 4 % CHAPS, 20 mM Tris). The protein concentration after precipitation was determined by the RC DC (BioRad Protein Assay) method, using BSA as standard protein. The concentrations for labeling with fluorochromes should be between 1 and 20 μg / μl, being between 5-10 μg / μl the optimum concentrations for labeling according to the manufacturer’s instructions. With the precipitated samples, 100 μg pools needed for the experiment were made for each group, with equimolar amounts of each samples in each group and quantified again. The Dige experiment was designed to perform 8 gels containing the samples of the four groups to be compared. After checking that the pH of all samples was between 8 and 8.5, the CyDye DIGE Fluor (GE Healthcare®) fluorochromes were labeled according to the protocol recommended by the manufacturer. One microliter of dye (400 pmol) was added to each sample and maintained on ice for 30 min in the dark. The reaction was stopped by adding 1 μl of 10 mM lysine. To minimize any dye-specific labeling artefacts, two biological replicates of each experimental group were labeled with Cy3 and the other two were labeled with Cy5. The internal standard, prepared by mixing the same amount of protein of each sample included in the experiment, was always labeled with Cy2.

2D differential in gel electrophoresis (2D-DIGE)

To analyze the effect of IL-25 in the course of *E. caproni* infection, ileal protein extracts from naïve, infected, rIL-25-treated and rIL-25-treated and exposed to metacercariae mice were compared over 8 2D-DIGE to analyse changes in the intestinal production of proteins. The 8 pairs of Cy3- and Cy5-labeled biological replicates (50 μg of protein each) were combined with a 50 μg aliquot of the Cy2-labeled internal standard. The mixtures containing 150 μg of protein were then separated in the first dimension, i.e. isoelectric focusing, and the second dimension, i.e. molecular weight. The IPG strips (24 cm, nonlinear pH 3-11) were rehydrated overnight with rehydration buffer (8 M urea, 4% CHAPS, 1% ampholytes and 12 μl/ml of DeStreak™), and the labeled samples were then applied to the strips by anodic cup loading, after the addition of DTT and ampholytes up to a final concentration of 65 mM and 1%, respectively. The isoelectric focusing was carried out at 20 °C in the Ettan IPGphor 3 System (GE Healthcare) as follows: (i) 300 V for 4 h; (ii) gradient to 1,000 V for 6 h; (iii) gradient to 8,000 V for 3 h; and (iv) 8,000 V up to 32,000 Vh. Prior to the second dimension the strips were equilibrated in two steps, 15 min each, in equilibration buffer (50 mM Tris, 6 M urea, 30% glycerol and 2% SDS) containing either 2% DTT or 2.5% iodoacetamide, respectively. The separation of proteins in the second dimension was performed on an Ettan DALTsix system (GE Healthcare) using 12.5% polyacrylamide gels. Electrophoresis was run at 1 W/gel for 1h followed by 5 h, approximately, at 15 W/gel.

Imaging and 2D-DIGE analysis

Gels were scanned in a Typhoon™ 9400 Variable Mode Imager (GE Healthcare) at appropriate wavelengths for each fluorophore: Cy2 (488/520 nm), Cy3 (532/580 nm) and Cy5 (633/670 nm), and at 50 μm resolution. The irrelevant information was removed using ImageQuant Tools software and DeCyder v7.0 software was used for image analysis. The differential in gel analysis module was employed for automatic spot detection and abundance measurements in each individual gel, comparing the normalized volume ratio of each spot from a Cy3- or Cy5-labeled sample to the corresponding Cy2 signal from the internal standard. Data sets were collectively analyzed by means of the biological variation analysis module of the same software, allowing inter-gel matching and calculation of standardized average volume ratios (AVRs) for each protein spot over all the gels that comprised the study. Statistical analysis was evaluated for each alteration in AVR using one-away ANOVA, together with the corresponding post-hoc analysis (Bonferroni t-test), and the false discovery rate (FDR) test, which avoids the introduction of false positives when performing multiple comparisons. FDR test determines adjusted p-values for each test. and controls the number of false discoveries in those tests that
result in a discovery. Statistical significance was considered when $p<0.01$ and $q<0.05$ in the ANOVA and FDR analyses, respectively. Moreover, inter-gels matching of statistically different spots was manually confirmed.

Unsupervised principal components analyses (PCA) and hierarchical clustering analyses (HCA) (Euclidean) were performed using the DeCyder extended data analysis module, both on all protein spots present at least in 7 of the 8 gels of the experiment (85% presence) and the set of spots that were found to be significantly differentially expressed among the groups compared. These multivariate analyses clustered the individual biological replicates based on a collective comparison of expression patterns from the set of proteins chosen, with any a priori knowledge of the biological reasons for clustering [17].

Mass spectrometry and protein identification

Spots showing significant changes in protein abundance among groups were manually excised from the gel and washed twice with double-distilled water. Then, proteins were reduced in 100 mM ammonium bicarbonate containing 10 mM DTT for 30 min at 56 °C, alkylated with iodoacetamide 55mM in 100mM ammonium bicarbonate for 20 min at RT in the dark and, finally, digested in-gel with an excess of sequencing grade trypsin (Promega) overnight at 37 °C, as described before [18]. Protein digestion was stopped with 1% TFA and peptides were dried in a vacuum centrifuge and resuspended in 7 μl of 0.1% TFA, pH 2. One microliter of peptide mixture was spotted onto a MALDI target plate and allowed to air dry at RT before adding 1 μl of matrix, a 5 mg/ml solution of α-cyano-4-hydroxy-transcinnamic acid (CHCA, Sigma-Aldrich®) in 0.1% TFA and 70% ACN, and left to air dry again.

Samples were analyzed in a 5800 MALDI TOF/TOF (AB Sciex) in positive reflectron mode using 3000 laser shots per position. Previously, the plate and the acquisition methods were calibrated with 0.5 μl of CM5 calibration mixture (AB Sciex), in 13 positions. For the MS/MS analysis, 5 of the most intense precursors were selected for each position, according to the following threshold criteria: a minimum signal-to-noise of 10, a minimum cluster area of 500, a maximum precursor gap of 200 ppm and a maximum fraction gap of 4. MS/MS data were acquired using the default 1 kV MS/MS method. Several spots could not be identified by MALDI TOF/TOF, however, LC-MS/MS was performed. Five microliters of each sample were loaded onto a trap column: NanoLC Column, 3 μ C18-CL, 350 μm × 0.5 mm (Eksigen) and desalted with 0.1% TFA at 3 μl/min for 5min. The peptides were then loaded onto an analytical column: LC Column, 3 μ C18-CL, 75 μm× 12 cm (Nikkyo), equilibrated with 5% ACN, 0.1% formic acid (FA). Elution was carried out with gradient of 5 to 45% B in A for 15 min (A: 0.1% FA; B: ACN, 0.1% FA) at a constant flow rate of 300 nl/min. Peptides were analyzed in a mass spectrometer nanoESI qQTOF (5600 TripleTOF, AB Sciex). The tripleTOF was operated in information-dependent acquisition mode, in which a 0.25-s TOF MS scan from m/z 350–1250 was performed, followed by 0.05-s product ion scans from m/z 100–1500 on the 50 most intense 2–5 charged ions.

Database search

Database search was carried out by ProteinPilot v5.0, search engine (ABSciex). ProteinPilot default parameters were employed to generate a peak list directly from 5600 TripleToF wiff files and Paragon algorithm of ProteinPilot v5.0 was used to search in Uniprot database (versión 01-2017) with the following parameters: trypsin specificity, cys-alkylation, taxonomy restricted to mice, and the search effort set to through. Identifications were considered positive when there were at least two different matching peptides (≥95% confidence) and ProteinPilot unused score was >1.3, which means that proteins are identified with confidence ≥95%. Functional annotation was performed using Uniprot database (https://www.uniprot.org)

Results

Experimental infection with metacercariae of E. caproni and worm recovery

All the rIL-25-treated mice exposed to metacercariae were negative to infection at necropsy. In contrast, all the non-treated mice exposed to metacercariae became positive to infection and the percentage of worms recovered ranged from 40 to 100 (69.36±16.29).
The 2D-DIGE proteomic analysis was implemented on whole ileal cell extracts in a total of 12 replicates, corresponding to 4 experimental groups (3 replicates each) referred as: control, rIL-25-treated mice, rIL-25-treated mice exposed to metacercariae and infected mice. 2D-images were analyzed using the DeCyder software and both multivariate and univariate analysis were applied to identify: (i) the similarity in intestinal protein production profiles among experimental groups; and (ii) particular differences in protein abundance between each group with respect to the others (Fig. S1-3).

The inter-gel spot matching revealed 172 well defined spots with 85% of presence, found in at least 7 of the 8 gels that covered the experiment. The average abundance of each spot among the 24 images of our study was calculated and significant differences were considered when p < 0.01, both in one-way ANOVA and in the post-hoc analysis. Results of the 2D-DIGE analysis are showed in Fig. 1.

Multivariate statistics: principal component and cluster analysis

PCA and CAs between groups were performed on the 172 spots with 85% of presence in the experiment and the 41 validated spots displaying significant differences among groups, with p < 0.01 in one-way ANOVA. In the three cases, both PCA and CAs were compared two by two: one including biological replicates from control and rIL25-treated mice, other including biological replicates from rIL25-treated mice and rIL25-treated mice exposed to metacercariae and, finally, a third including biological replicates infected and rIL25-treated mice exposed to metacercariae. In the PCA, appear the data cluster according the experimental condition where we can observe highlighted, spots with greater presence in one group with respect to the other. Likewise, CAs grouped the spots according to how similar their expression profile were between compared experimental groups. Hence, following the results of the multivariate statistical analyses, the 4 experimental groups were reduced to three comparative interest groups: 1) Infected animals vs rIL-25-treated animals; 2) rIL-25-treated mice exposed to metacercariae vs rIL-25-treated animals; and 3) naïve controls vs rIL-25-treated mice (Figs. 2-4).

One-way ANOVA and post-hoc analysis

A total of 59 differentially expressed spots (34.3%) were found displaying q< 0.05 in the FDR test. To guarantee the accurate comparison of spots among gels, the correspondence of these 59 spots were manually validated through all the gels, and 41 were unequivocally confirmed (Figs. 1 and S1).

Differentially identified spots were up- or downregulated (5 and 24, respectively) in the ileum of rIL-25-treated mice with respect rIL-25-treated animals and infected mice (4 and 1, respectively). Moreover, we found 7 spots differentially identified between naïve controls and rIL-25-treated mice from which 2 of them were up-regulated and the remainder 5 spots became downregulated. Further details of the computational comparison of differential spots are shown in Table S1 for non-similar groups (i.e. naïve controls vs. rIL-25-treated animals exposed to metacercariae and rIL-25-treated mice vs. infected animals).

Identification of differentially produced proteins

We accurately identified by MS and database search a total of 40 validated spots (5 upregulated and 24 downregulated in rIL-25-treated animals exposed to metacercariae vs rIL-25-treated mice; 4 upregulated and 1 downregulated in rIL-25-treated animals exposed to metacercariae vs infected mice; 2 upregulated and 5 downregulated in rIL-25-treated mice vs naïve animals) (Fig. 1). They correspond to a total of 24 different proteins, since 6 of these proteins were identified in more than one protein spot. These redundancies appear to be related to different post-translational modifications, different isoforms (differentiated on the basis of molecular weight or isoelectric point) or to protein modifications during the preparation of the samples. Identified proteins are classified in Tables 1-3 according to their function, indicating for each spot the up or downregulation in relation to inoculation of rIL25 in presence and/or absence of E. caproni infection in mice. Differentially expressed proteins were classified in: metabolic enzymes, structural proteins, antioxidant and detoxifying enzymes, calcium-binding proteins and cell regulation proteins.
Discussion

Recent studies of our group have shown IL-25 is crucial in resistance against *E. caproni* secondary infections. Susceptibility to primary infections was associated with low levels of intestinal IL-25 expression, whilst deworming by treatment with pzq induced a sudden increase in IL-25 expression preventing the establishment of secondary infections [14-15]. However, the role of IL-25 in resistance to infection is not well defined. Herein, we analyze the proteomic changes induced by IL-25 that may contribute to resistance to infection.

Resistance to *E. caproni* infection has been associated with the preservation of the intestinal homeostasis despite the possible damage induced by the parasite. In resistant hosts, *E. caproni* infection elicits a rapid renewal of the intestinal epithelium allows to maintaining the homeostasis and impairing the proper worm establishment. In contrast, in susceptible hosts, such as mice, the establishment of chronic infections is related to the disruption of the intestinal homeostasis causing tissue hyperplasia [19-21]. Although mice are susceptible hosts, treatment with rIL-25 prior to infection induces complete resistance to the infection [15]. Our results support that IL-25 may contribute to resistance by the enhancement of intestinal homeostasis via activation of the canonical wingless-related integrator site (Wnt)/β-Catenin signaling pathway. Treatment of naïve mice with rIL-25 only elicited changes in the production of a total of 5 proteins, including the structural protein junction plakoglobin or g-catenin. This protein is a member of the catenin family, paralog to b-catenin, and is a component of desmosomes. It is involved in the mechanisms of cell adhesion and is essential to maintain and regulate intestinal epithelial homeostasis [22-24]. Plakoglobin participates in the canonical pathway of Wnt/β-Catenin. Elevated levels of plakoglobin promote the stabilization and nuclear localization of b-catenin enhancing the activation of Wnt/β-Catenin signaling and activation of this pathway is essential for the maintenance of the intestinal homeostasis [25,26]. Wnt signaling activation is dependent on the nuclear translocation of β-catenin. The intracellular accumulation of non-phosphorylated β-catenin induces its translocation to the nucleus and the consequent activation of the T-cell factor/lymphocyte enhancer factor transcription factor families to regulate gene transcription [27]. Plakoglobin participates in the canonical pathway of Wnt/β-Catenin signaling since this protein inhibits the glycogen synthase kinase (GSK3β)-mediated nuclear localization of β-catenin. GSK-3β is a relevant member since it regulates the Wnt/β-catenin target gene expression by controlling the level of cytoplasmic β-catenin and its nuclear traslocation [28]. Elevated levels of plakoglobin facilitate the stabilization and nuclear localization of b-catenin [25] and may enhance intestinal homeostasis despite the damage caused by the infection. Oudhoff and co-workers [29] reported that Wnt/β-Catenin signaling is an important component of resistance to the intestinal nematode *Trichuris muris* in mice. These authors showed that Wnt expression programs are induced upon infection with *T. muris* eggs and wild type mice were able to expel the infection. In contrast, mice deficient in SETD7 (a member of the Suppressor of variegation 3-9-Enhancer of zeste-Trithorax domain-containing family of lysine methyltransferases) were not able to reject the infection. SETD7 controls IEC turn over by the modulation of the developmental signaling pathway Wnt/β-Catenin. Lack of SETD7 resulted in downregulation of Wnt/β-catenin, deficient and susceptibility to infection [29]. The fact exposure of rIL-25-treated mice to *E. caproni* metacercariae induced a significant downregulation of three isoforms of plakoglobin with respect to rIL-25-treated mice supports that plakoglobin plays a major role in *E. caproni* infections and its potential role in resistance to infection.

Strikingly, two other proteins involved in cell differentiation and tissue homeostasis also became altered by the treatment with rIL-25. Proliferation-associated 2G4 (PA2G4) and receptor of activated protein C kinase 1 (RACK1) were found to be downregulated in rIL-25-treated mice with respect to naïve mice. PA2G4, also known as EBP1, is a RNA-binding protein implicated in growth regulation. This protein participates in pre-ribosomal ribonucleoprotein complexes and is involved in ribosome assembly and the regulation of intermediate and late steps of rRNA processing. EBP1 interacts with the cytoplasmic domain of the ErbB3 receptor contributing to the transduction of growth regulatory signals. This protein also acts as a transcriptional corepressor of androgen receptor-regulated genes and other cell cycle regulatory genes via its interactions with histone deacetylases. Furthermore, EBP1 is involved in growth inhibition [30-31]. The EBP1-binding in promoters regulated by E2F can result in an improved ability of EBP1 to suppress genes transcription regulated by the cell cycle and prevent cell growth [30, 32]. Furthermore, the expression of EBP1 generates the negative expression of the androgen receptor (AR) and a number of its target genes, thereby inhibiting AR-regulated cell growth [30-33]. RACK1 is a
member of the tryptophan-aspartate repeat (WD-repeat) family of proteins. This protein shows significant homology to the β subunit of G-proteins (Gβ). RACK1 facilitates protein binding by adopting a seven-bladed β-propeller structure. Moreover, this protein plays a relevant role in shuttling proteins around the cell, fixing proteins at certain locations and, thus, enhancing stabilization of protein activity. RACK1 cooperates with the ribosomal machinery, with several cell surface receptors and with proteins in the nucleus. As a consequence, RACK1 constitutes a major mediator of various pathways, enhancing numerous phases of cellular function. RACK1 is a scaffolding protein that takes part in the maintenance of intestinal homeostasis protecting the integrity of the epithelial barrier by suppressing the regeneration and proliferation of crypt cells, promotes differentiation and apoptosis and is generated against stress responses [34-36]. Downregulation of both EBP1 and RACK1 may contribute to prevent the hyperplasia in the intestinal tissue that is associated to susceptibility to E. caproni infections.

Another striking feature that may be related with alterations in the intestinal epithelium and resistance to infections is in the upregulation of annexins 2 and 4 min rIL-25-treated mice exposed to E. caproni metacercariae. Annexin is a common name for a family of structurally related proteins that mostly found in eukaryotic organisms both in extra and intracellular environment and bind phospholipids and carbohydrates in the presence of Ca^{2+} [37-38]. Annexins play a role in the control of cell death and also alters several properties of the membrane such as permeability or anchoring of cytoskeletal elements [39-40]. These proteins also are related to epithelial cell migration that is a critical event in gastrointestinal mucosal wound healing [41]. Furthermore, annexins can act as modulators of inflammation [42]. In the small intestine, the production of annexins appears to be restricted to M cells, playing a role in endocytic transport and membrane scaffolding [43]. Annexins are ligands for phosphatidylserine, which is exposed during cell death. Annexins block phosphatidylserine-dependent phagocytosis of dying cells, enhancing its internalization and delivering phosphatidylserine back to the inner leaflet of the cell membrane [44]. Annexins are involved in the repair mechanisms both at tissue and intracellular levels [40]. Upregulation of annexins has been reported in association with resistance to E. caproni secondary infections in mice [38]. This was related to the decreased rate of cell death that occurs even though the induction of mitochondrial dysfunction, cellular senescence and elevated oxidative stress [38].

Specifically, annexin 4 appears to play a specific role in membrane repair. Plasma membrane repair mechanisms include internalization via endocitosis, or exocytosis as observed from mechanical wounding or exposure to plasma membrane pore-forming agents [45-48]. Therefore, overexpression of annexin 4 due to the exposure to metacercariae of rIL-25-treated mice may contribute to the defense of this parasite infection contributing to the restoration of the intestinal tissue and by its activity as an anti-inflammatory factor. Annexin 2 is a protein that is part of the lipid rafts in the intestinal brush border and is associated with actin filaments mediating in membrane-membrane and membrane-cytoskeletal interactions influencing actin cytoskeletal remodeling through targeting signaling molecules to membrane domains. As a consequence, it plays a crucial role in membrane trafficking and stabilization of membrane-associated protein complexes with the actin cytoskeleton and has been involved in the migration of several types of cells such as epithelial cells and cell matrix interaction [41, 49]. Moreover, annexin 2 induces clustering of specific plasma membrane phospholipids and is involved in lipid domain formation [41]. The lack of annexin 2 would influence RhoA-mediated F-actin reorganization and, consequently, affecting motility of annexin 2 deficient cells [41]. In this sense, our results suggest that the up-regulation of both annexins (annexin 2 and 4) could help maintain the epithelial barrier structure during helminth infections.

Quantitatively, the proteins involved in metabolic processes were the most altered in any of the groups studied. A total of twenty of the identified spots (corresponding to 15 different proteins) are metabolic enzymes and most of them were significantly downregulated in mice exposed to metacercariae in presence of rIL-25 with respect to rIL-25-treated mice. Alterations in several proteins implicated in the Krebs cycle (fumarate hydratase and malate dehydrogenase) and in the pentose phosphate pathway (transaldolase and 6-phosphogluconate dehydrogenase). We also observed a reduced expression of glycolytic enzymes including several isoforms of enolase 1B, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase PKM, phosphoglycerate kinase 1 and triosephosphate isomerase. This may indicate a mitochondrial dysfunction and a reduction in aerobic metabolism after the exposure to E. caproni metacercariae. A similar situation has been described in the ileum
of *E. caproni* mice at 2 wppi [21]. The decrease of aerobic metabolism was concomitant with a rise in the anaerobic use of glucose, through the overexpression of lactate dehydrogenase. However, Cortés and co-workers [38] detected a marked downregulation of the production of lactate dehydrogenase were in the ileum of resistant secondarily infected mice, suggesting that both aerobic and anaerobic metabolism become impaired as the infection progresses. In contrast, in our study, lactate dehydrogenase was upregulated in the ileum of rIL-25-treated mice exposed to the infection with respect to mice conventionally infected. This might indicate that infection requires an increase in the anaerobic use of glucose to supports the high energy demand caused by parasitic infection both presence/absence of rIL-25 to cover the metabolic demand generated by mitochondrial dysfunction. The consequences of changes in the energy metabolism over the course of the infection is difficult to determine according to our current knowledge. However, it could be of importance to gain a better understanding of the mechanisms activated in the intestine as a consequence of helminth infections.

Several antioxidant and detoxifying enzymes such as peroxiredoxins 1 and 4, glutathione S-transferase and dihydrotetradine reductase were also found to be altered. Treatment with rIL-25 induced a marked downregulation of peroxiredoxin 4. This enzyme is a ubiquitously expressed member of the peroxiredoxin family, localized in the endoplasmic reticulum and extracellular space [52]. Peroxiredoxin 4 has a role in the reduction of oxidative stress by diminishing hydrogen peroxide to water in a thiol-dependent catalytic cycle and also has been related to the regulation of nuclear factor kappa B (NF-κB), a key pro-inflammatory transcription factor [53-55]. This supports that the processes related to oxidative stress and cell death are altered in the presence of infection by *E. caproni* independently of the presence and IL-25. IL-25 does not appear to take part in the regulation of the processes related to oxidative stress and apoptosis necessary to maintain intestinal homeostasis. Strikingly, exposure of rIL-25-treated mice to metacercariae caused a downregulation of peroxiredoxin 1 instead peroxiredoxin 4. Peroxiredoxin 1 plays a key role against reactive oxygen species and antioxidants and in in inflammatory responses [56]. The production of this enzyme is upregulated in active ulcerative colitis specimens, and it increases along with the inflammation level in ulcerative colitis regenerative mucosal crypt epithelial cells [57-58]. Downregulation of peroxiredoxin 1 was observed as a consequence of the curation of an *E. caproni* infection [38]. The reduced production of this enzyme after infection in presence of rIL-25 may promote crypt-cell proliferation and also induce oxidative stress and ROS-mediated programmed cell death to counteract homeostatic alterations induced by the infection [21, 59-60].

Infection of rIL-25-treated mice also induced reduction in the production of palmitoyl-protein thioesterase (PPT). Protein thioestersases, or depalmitoylases, participate the depalmitoylation of altered proteins, thus completing a cycle of this reversible post-translational modification [61-63]. Palmitoylation act as a post-translational “switch” on several proteins providing a dynamic control on protein localization or function. Indeed, palmitoylation plays critical roles in protein trafficking and strongly influences the stability of proteins [64-69]. PPT1 is a lysosomal substrate that enter in the lysosome via autophagy leading to signaling of several processes related with anabolic and catabolic metabolism in the cell [63, 70]. PTT downregulation is implicated in the disruption of the lysosome-endosomal pathway and in other processes, such as endocytosis, vesicular trafficking, synaptic function, lipid metabolism, neural specification, and axon connectivity. Moreover, it appears to be implicated in susceptibility of cell to apoptotic death, defects in the mitochondrial enzyme activities and adaptive energy metabolism [71]. For this reason, downregulation of PPT after exposure to *E. caproni* metacercariae presence of rIL-25 mice may be due to its role in processes regulation involved in cell death and energy metabolism in order to maintain intestinal homeostasis. This is supported by the concomitant downregulation of creatine kinase B-type (CKB). This enzyme plays a critical role in energy transduction in tissues with increases in energy demands. The creatine kinase energy system is regulated by hypoxic signaling and can improve creatine metabolism during oxygen deficiency to enhance tissue healing and homeostasis [72]. Impaired Cr/PCr shuttling may contribute to dysregulated mitochondrial energetics and an increased permeability characteristic of inflamed tissue and, consequently, susceptibility to *E. caproni* infection [9, 21, 73].

Conclusions

Our results indicate that IL-25 and the *E. caproni* infection in presence of IL-25 induce proteomic changes in the ileum of mice that may contribute to resistance to infection. The main groups of proteins that become altered
were those involved in the preservation and healing of the epithelial architecture enhancing the maintenance of the epithelium. Considering altogether our results, the maintenance of the intestinal homeostasis seems to be essential for resistance to infection. Our study provides new insights into the proteins implicated in the regulation of tissue homeostasis in the presence of rIL-25, a cytokine that is considered as a target factor for the development of resistance to intestinal helminths.

Declarations

Acknowledgments

The proteomic analysis was performed in the proteomics facility of SCSIE University of Valencia. This proteomics laboratory is a member of Proteored, PRB3 and is supported by grant PT17/0019, of the PE I+D+i 2013-2016, funded by ISCIII and ERDF”

Author contributions

MAI and RT carried out the experiments designed the experiments and wrote the manuscript. CMA and JGE analyzed the data and revised the manuscript. RT was the principal investigator for the project and was responsible for project design, statistical analysis, and article writing.

Funding

This work was supported by Ministerio de Economía y Competitividad (Madrid, Spain) (grant number: BFU2016-75639-P) and from Ministerio de Sanidad y Consumo (Madrid, Spain) (No. RD12/0018/0013, Red de Investigación Cooperativa en Enfermedades Tropicales – RICET, IV National Program of I+D+I 2008-2011, ISCIII – Subdirección General de Redes y Centros de Investigación Cooperativa and FEDER).

Availability of data and materials

Not applicable.

Ethics statements

This study was approved by the Ethical Committee of Animal Welfare and Experimentation of the University of Valencia (Ref#A18348501775). Protocols adhered to Spanish (Real Decreto 53/2013) and European (2010/63/UE) regulations.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Gazzinelli-Guimaraes PH, Nutman TB. Helminth parasites and immune regulation. F1000Res. 2018; 7:1685. doi: 10.12688/f1000research.15596.1
2. Nokes C, Bundy DA. Does helminth infection affect mental processing and educational achievement? Parasitol Today 1994; 10:14-8.
3. Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, Diemert D, et al. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet. 2006; 367:1521-32.
4. Hotez PJ, Alvarado M, Basáñez MG, Bolliger I, Bourne R, Boussinesq M, et al. The global burden of disease
acute myeloid leukemia and promotes the stabilization and nuclear localization of β-catenin. Leukemia.

Morgan RG, Pearn L, Liddiard K, Pumford SL, Burnett AK, Tonks A, et al. γ-Catenin is overexpressed in acute myeloid leukemia and promotes the stabilization and nuclear localization of β-catenin. Leukemia.

Fevr T, Robine S, Louvard D, Huelsken J. Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol Cell Biol. 2007; 27:7551-9
26. Qian J, Huang X, Zhang Y, Ye X, Qian W. γ-Catenin Overexpression in AML Patients May Promote Tumor Cell Survival via Activation of the Wnt/β-Catenin Axis. Onco Targets Ther. 2020; 13:1265-1276. doi: 10.2147/OTT.S23087

27. Ackers I, Malgor R. Interrelationship of canonical and non-canonical Wnt signalling pathways in chronic metabolic diseases. Diab Vasc Dis Res. 2018; 15:3-13. doi: 10.1177/1479164117738442

28. Jacobs KM, Bhave SR, Ferraro DJ, Jaboin JJ, Hallahan DE, Thotala D. GSK-3β: A Bifunctional Role in Cell Death Pathways. Int J Cell Biol. 2012; 2012:930710. doi: 10.1155/2012/930710

29. Oudhoff MJ, Antignano F, Chenery AL, Burrows K, Redpath SA, Braam MJ, Perona-Wright G, et al. Intestinal Epithelial Cell-Intrinsic Deletion of Setd7 Identifies Role for Developmental Pathways in Immunity to Helminth Infection. PLoS Pathog. 2016; 12:e1005876. doi: 10.1371/journal.ppat.1005876

30. Zhang Y, Hamburger AW. Heregulin regulates the ability of the ErbB3-binding protein Ebp1 to bind E2F promoter elements and repress E2F-mediated transcription. J Biol Chem. 2004; 279:26126-33

31. Karlsson T, Altankhuyag A, Dobrovolska O, Turcu DC, Lewis AE. A polybasic motif in ErbB3-binding protein 1 (EBP1) has key functions in nucleolar localization and polyphosphoinositide interaction. Biochim J. 2016; 473:2033-47. doi: 10.1042/BCJ20160274

32. Lyne JC, Melhem MF, Finley GG, Wen D, Liu N, Deng DH, et al. Tissue expression of neu differentiation factor/hergulin and its receptor complex in prostate cancer and its biologic effects on prostate cancer cells in vitro. Cancer J Sci Am. 1997; 3:21-30.

33. Mamidipudi V, Cartwright CA. A novel pro-apoptotic function of RACK1: suppression of Src activity in the intrinsic and Akt pathways. Oncogene. 2009; 28: 4421-33. doi: 10.1038/onc.2009.293

34. Adams DR, Ron D, Kiely PA. RACK1, a multifaceted scaffolding protein: Structure and function. Cell Commun Signal. 2011; 9: 22. doi: 10.1186/1478-811X-9-22.

35. Duff D, Long A. Roles for RACK1 in cancer cell migration and invasion. Cell Signal 2017 35: 250-5. doi: 10.1016/j.cellsig.2017.03.005

36. Monastyrskaya K, Babychuk EB, Draeger A. The annexins: spatial and temporal coordination of signaling events during cellular stress. Cell Mol Life Sci. 2009; 66:2623-42. doi: 10.1007/s00018-009-0027-1

37. Cortés A, Sotillo J, Muñoz-Antolí C, Martín-Grau C, Esteban JG, Toledo R. Resistance against Echinostoma caproni (Trematoda) secondary infections in mice is not dependent on the ileal protein production. J Proteomics. 2016; 140:37-7. doi: 10.1016/j.jprot.2016.03.034

38. Gerke V, Creutz CE, Moss SE. Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol. 2005; 6:449-61

39. Gerke V, Moss SE. Annexins: from structure to function. Physiol Rev. 2002; 82:331-71.

40. Babbin BA, Parkos CA, Mandell KJ, Winfree LM, Laur O, Ivanov AI, et al. Annexin 2 regulates intestinal epithelial cell spreading and wound closure through Rho-related signaling. Am J Pathol. 2007; 170:951-66. doi: 10.2353/ajpath.2007.060647

41. Wallner BP, Mattaliano RJ, Hession C, Cate RL, Tizard R, SinclairLK, et al. Cloning and expression of human lipocortin, a phospholipase A2 inhibitor with potential anti-inflammatory activity. Nature. 1986; 320:77-81.

42. Verbrugghe P, Waelput W, Dieriks B, Waeytens A, Vandesompele J, Cuvelier CA. Murine M cells express annexin V specifically. J Pathol. 2006; 209:240-9.

43. Kenis H, van Genderen H, Deckers NM, Lux PA, Hofstra L, Narula J, et al. Annexin A5 inhibits engulfment through internalization of PS-expressing cell membrane patches. Exp Cell Res. 2006; 312:719-26.

44. Steinhardt, R. A., Bi, G. & Alderton, J. M. Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science. 1994; 263:390–3.

45. Idone V, Tam C, Goss JW, Toomre D, Pypaert M, Andrews NW. Repair of injured plasma membrane by rapid Ca2+-dependent endocytosis. J Cell Biol. 2008; 180:905-14. doi: 10.1083/jcb.200708010

46. Corrotte M, Almeida PE, Tam C, Castro-Gomes T, Fernandes MC, Millis BA, et al. Caveolae internalization repairs wounded cells and muscle fibers. Elife. 2013; 2:e00926. doi: 10.7554/eLife.00926

47. Boye TL, Maeda K, Pezeshkian W, Sønder SL, Haeger SC, Gerke V, et al. Annexin A4 and A6 induce membrane curvature and constriction during cell membrane repair. Nat Commun. 2017; 8:1623. doi: 10.1038/s41467-017-01743-6.

48. Merrifield CJ, Rescher U, Almers W, Proust J, Gerke V, Sechi AS, et al. Annexin 2 has an essential role in
actin-based macropinocytic rocketing. Curr Biol. 2001; 11:1136-41.

50. Grill D, Matos ALL, de Vries WC, Kudrik S, Heflik M, Dörner W, et al. Bridging of membrane surfaces by annexin A2. Sci Rep. 2018; 8:14662. doi: 10.1038/s41598-018-33044-3

51. Desrosiers RR, Gauthier F, Lanthier J, Béliveau J, Kudruk S, Heflik M, Dörner W, et al. Bridging of membrane surfaces by annexin A2. Sci Rep. 2018; 8:14662. doi: 10.1038/s41598-018-33044-3

52. Desrosiers RR, Gauthier F, Lanthier J, Béliveau R. Modulation of Rho and cytoskeletal protein attachment to membranes by a prenylcysteine analog. J Biol Chem. 2000; 275:14949-57.

53. Tavender TJ, Springate JJ, Bulleid NJ. Recycling of peroxiredoxin IV provides a novel pathway for disulphide formation in the endoplasmic reticulum. EMBO J. 2010; 29:4185-97. doi: 10.1038/emboj.2010.273

54. Wood ZA, Poole LB, Karplus PA. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science. 2003; 300:650-3

55. Yu S, Mu Y, Ao J, Chen X. Peroxiredoxin IV regulates pro-inflammatory responses in large yellow croaker (Pseudosciaena crocea) and protects against bacterial challenge. J Proteome Res. 2010; 9:1424-36. doi:10.1021/pr900961x

56. Yanagisawa R, Warabi E, Inoue K, Yanagawa T, Koike E, Ichinose T, et al. Peroxiredoxin I null mice exhibits reduced acute lung inflammation following ozone exposure. J Biochem. 2012; 152:595-601. doi: 10.1093/jb/mvs113

57. Mizushima, N. Autophagy: process and function. Genes Dev. 2007 21:2861–2873.

58. Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011; 147:728-41. doi: 10.1016/j.cell.2011.10.026

59. Koster KP, Yoshii A. Depalmitoylation by Palmitoyl-Protein Thioesterase 1 in Neuronal Health and Degeneration. Front Synaptic Neurosci. 2019; 11:25. doi: 10.3389/fnsyn.2019.00025

60. Dunphy J, Linder M. Signalling functions of protein palmitoylation. Biochim Biophys Acta. 1998; 1436, 245–261. doi: 10.1016/s0005-2760(98)00130-1

61. Linder ME, Deschenes RJ 2007. Palmitoylation: policing protein stability and traffic. Mol Cell Biol. 2007; 8:74–84. doi: 10.1038/nrm2084.

62. Fukata, Y, Fukata M. Protein palmitoylation in neuronal development and synaptic plasticity. Nat Rev Neurosci. 2010; 11:161–75. doi: 10.1038/nrm2788

63. Salaun C, Greaves J, Chamberlain L. The intracellular dynamic of protein palmitoylation. J Cell Biol. 2010; 191:1229–38. doi: 10.1083/jcb.201008160

64. Chamberlain LH, Lemonidis K, Sanchez-Perez M, Werno MW, Gorleku OA, Greaves J. Palmitoylation and the trafficking of peripheral membrane proteins. Biochem Soc Trans. 2013; 41:62-6. doi: 10.1042/BST20120243

65. Montersino A, Thomas GM. Slippery signaling: Palmitoylation-dependent control of neuronal kinase localization and activity. Mol Membr Biol. 2015; 32:179-88. doi: 10.1080/09687688.2016.1182652

66. Perera RM, Zoncu R. The lysosome as a regulatory hub. Annu Rev Cell De Biol. 2016; 32:223-53. doi: 10.1146/annurev-cellbio-111315- 125125

67. Kang, R, Wan J., Arstikaitis P, Takahashi H, Huang K., Bailey AO, et al. 2008. Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation. Nature. 2008; 456:904-9. doi: 10.1038/nature07605

68. Glykys J, Sims KB 2017. The neuronal ceroid lipofuscinosis disorders. In ed Swaiman KF, Ferreiro DM, Finkel RS, Pearl PL, Ashwal S, Schor NF, Gropman AM, Shevell MZ, editors. Swaiman’s Pediatric Neurology (6th edition). Amsterdam: Elsevier; 2017., p. 390–404. doi: org/10.1016/B978-0-323-37101-8.00048-5
72. Mooseker, MS. Organization, chemistry, and assembly of the cytoskeletal apparatus of the intestinal brush border. Annu Rev Cell Biol. 1985; 1:209–41.

73. Toledo R, Monteagudo C, Espert A, Fried B, Esteban JG, Marcilla A. *Echinostoma caproni*: intestinal pathology in the golden hamster, a highly compatible host, and the Wistar rat, a less compatible host. Exp Parasitol. 2006; 112:164-71.

Tables

Spot	Protein	Species	Expression	MW (kDa) Expected/observed	Isoelectric point Expected/observed	Cellular role	Location	Score	Coverage (%)	Peptides	
	Metabolic enzymes										
133	Enolase 1B	*Mus musculus*	-1.4	47/116	6.37/6.37	Glycolysis	Cyt	45.44	66.59	8	
						Plasminogen activation Ornithine metabolism	PM Mit				
146	Enolase 1B	*Mus musculus*	+ 1.9	47/112	6.37/7.17	Glycolysis	Cyt	38.54	45.16	112	
						Plasminogen activation Ornithine metabolism	PM Mit				
148	Enolase 1B	*Mus musculus*	+ 2.0	47/111	6.37/6.67	Glycolysis	Cyt	108.86	87.33	176	
						Plasminogen activation Ornithine metabolism	PM Mit				
273	Glyceraldehyde-3-phosphate dehydrogenase	*Mus musculus*	+ 2.4	35/93	8.44/8.44	Glycolysis	Cyt	32.38	62.76	29	
291	Lactate dehydrogenase	*Mus musculus*	+ 1.5	36/88.8	7.61/9.26	Pyruvate fermentation to lactate	Cyt	16.31	45.48	29	

Table 1
Proteins identified by 2D-DIGE/mass spectrometry as differentially expressed between intestinal epithelial cells of infected mice versus rIL-25-treated animals and exposed to metacercariae of *Echinostoma caproni*. MW: molecular weight; Cyt: cytoplasmic; PM: plasma membrane.
Spot	Protein	Species	Expression	MW (kDa)	Isoelectric point	Cellular role	Location	Score	Coverage (%)	Peptides
	Metabollic enzymes									
63	Pyruvate Kinase PKM	*Mus musculus*	-1.9	58/132	7.17/8.2	Glycolysis	Cyt Nuc	51.34	52.54	30
69	Pyruvate Kinase PKM	*Mus musculus*	-1.7	58/132	7.17/8.4	Glycolysis	Cyt Nuc	46.03	42.94	26
101	Glutamate dehydrogenase 1	*Mus musculus*	-1.6	61/126	8.05/8.0	Glutamine anaplerosis	Mit	70.19	62.54	26
123	6-Phosphogluconate dehydrogenase	*Mus musculus*	-1.7	53/122	6.81/7.6	Pentose phosphate pathway	Cyt	14	18.84	65
144	Enolase 1B	*Mus musculus*	-1.8	47/118	6.37/8.4	Glycolysis	Cyt PM Mit	89.91	79.95	30
154	Fumarate hydratase	*Mus musculus*	-1.6	54/118	9.12/9.1	Krebs cycle	Mit	39.41	35.5	25
156	Enolase 1B	*Mus musculus*	-1.8	47/118	6.37/6.3	Glycolysis	Cyt PM Mit	46.26	51.15	35
166	Creatine kinase B-type	*Mus musculus*	-2.0	43/116	5.34/5.3	Cretine kinase activity	Cyt	12.4	29.92	7
184	Phosphoglycerate kinase 1	*Mus musculus*	-2.0	43/116	5.34/5.3	Glycolysis	Cyt	46.01	63.55	39
214	Glyceraldehyde-3-phosphate dehydrogenase	*Mus musculus*	-1.9	36/108	8.44/9.4	Glycolysis	Cyt	15.03	42.94	8
226	Aspartate amino transferase	*Mus musculus*	-2.2	47/108	9.13/9.9	Aminoacid metabolism	Mit	48.42	50	39
250	Transaldolase	*Mus musculus*	-1.8	42/102	6.57/7.0	Pentose phosphate pathway	Cyt	20.35	35.34	16
257	Malate dehydrogenase	*Mus musculus*	-1.8	37/96	6.16/6.1	Krebs Cycle	Cyt	28.05	41.62	19
262	Glyceraldehyde-3-phosphate	*Mus musculus*	+1.8	36/100	8.44/8.4	Glycolysis	Cyt	13.22	39.64	11
Enzyme Name	Species	Fold Change	p-value	Function	Location	Mitochondrial p-value	Cytoplasmic p-value			
-----------------------------------	---------------	-------------	-----------	---	----------	-----------------------	---------------------			
Ornithine carbamoyltransferase	*Mus musculus*	-2.0	39/100	Ornithine metabolism	Mit	35.79	45.87			
Palmitoyl-protein thioesterase	*Mus musculus*	-2.6	35/94	Palmitoyl metabolism	Cyt	10.04	21.5			
Malate dehydrogenase	*Mus musculus*	-1.8	37/94	Krebs Cycle Malate shuttle	Cyt	61.69	74.55			
Malate dehydrogenase	*Mus musculus*	+2.2	37/90	Krebs Cycle Malate shuttle	Cyt	17.01	36.53			
Malate dehydrogenase	*Mus musculus*	+1.7	37/90	Krebs Cycle Malate shuttle	Cyt	42.04	53.59			
Triosephosphate isomerase	*Mus musculus*	-1.8	32/60	Glycolysis Gluconeogenesis	Cyt	3.9	16.03			
Structural proteins										
Junction plakoglobin	*Mus musculus*	-2.3	82/104	Cell adhesion	Cyt	39.85	46.98			
Junction plakoglobin	*Mus musculus*	-1.5	82/102	Cell adhesion	Cyt	29.38	29.4			
Junction plakoglobin	*Mus musculus*	-1.6	82/86	Cell adhesion	Cyt	12.5	17.85			
Antioxidant-detoxifying enzymes										
Dihydropyridine reductase	*Mus musculus*	-2.5	22/74	Oxireductase activity	Mit	11.8	31.92			
Glutathione S-transferase P1	*Mus musculus*	-1.6	24/60	Glutathione conjugation and detoxification	Cyt	18.06	57.14			
Glutathione S-transferase P1	*Mus musculus*	-1.7	24/59	Glutathione conjugation and detoxification	Cyt Mit Nuc	31.38	78.1			
Peroxiredoxin-1	*Mus musculus*	-2.0	22/57	Redox regulation	Cyt	10.18	33.67			

17
Table 3
Proteins identified by 2D-DIGE/mass spectrometry as differentially expressed between intestinal epithelial cells of rIL-25-treated mice versus rIL-25-treated animals and exposed to metacerariae of *Echinostoma caproni*. MW: molecular weight; Cyt: cytoplasmatic; PM: plasma membrane; Mit: mitochondrial; Nuc: nucleus.

Spot	Protein	Species	Expres.	MW (kDa)	Isoelectric point	Cellula r role	Locatio n	Score	Covera ge (%)	Peptide s
271	Annexin A2	*Mus musculu s*	+1.6	39/101	7.55/8.84	Membrane transport	PM	39.75	71.98	18
324	Annexin A4	*Mus musculu s*	+2.5	36/86	5.43/5.02	Membrane transport	PM ext.	23.72	41.69	15

Calcium-binding proteins

Spot	Protein	Species	Expres.	MW (kDa)	Isoelectric point	Cellula r role	Locatio n	Score	Covera ge (%)	Peptide s
144	Enolase 1B	*Mus musculu s*	+1.2	47/110	6.37/6.37	Glycolysis Plasminogen activation Ornithine metabolism	Cyt PM Mit	89.91	75.81	112
147	Enolase 1B	*Mus musculu s*	-1.5	47/110	6.37/6.75	Glycolysis Plasminogen activation Ornithine metabolism	Cyt PM Mit	37.45	48.62	21
533	Triosephosphate isomerase	*Mus musculu s*	-1.9	32/60	5.56/6.28	Glycolysis Gluconeogenesis	Cyt	25	45.48	16

Structural proteins

Spot	Protein	Species	Expres.	MW (kDa)	Isoelectric point	Cellula r role	Locatio n	Score	Covera ge (%)	Peptide s
527	Junction plakoglobin	*Mus musculu s*	+1.7	82/27	5.75/8.70	Cell adhesion	Cyt	3.33	3.44	4
Table 3										
------------------	-----------	-----------	-----------------	-------------------						
Antioxidant-detoxifying enzymes	**Mus musculus**	-1.9	31/60	6.67/5.90	Redox regulation Cyt 10.61 42.34 8					
Cell regulation proteins	**Mus musculus**	-1.8	50/108	6.41/6.83	Apoptotic process Cell differentiation Cyt Nuc 29.09 41.62 16					
Proliferation-associated 2G4	**Mus musculus**	-1.8	35/83	7.6	Apoptotic process Biological rhythms Translation regulation PM Nuc 13.62 27.76 7					

Proteins identified by 2D-DIGE/mass spectrometry as differentially expressed between intestinal epithelial cells of naïve control mice versus rIL-25-treated animals. MW: molecular weight; Cyt: cytoplasmatic; PM: plasma membrane; Mit: mitochondrion; Nuc: nucleus.
Naïve controls

1 2 Pool

Infected

1 2 Pool

HZZE treated exposed to metacercaria

1 2 Pool

Protein extraction, labelling & 2D-DIGE

172 spots 85% of presence

ANOVA-1 (p<0.01) + FDR

59 spots

Manual validation

41 spots
Figure 1

Schematic overview of results obtained by 2D-DIGE in the comparison of protein production profiles of intestinal epithelial cells isolated from naïve controls, rIL25-treated mice, infected animals and rIL25-treated mice exposed to metacercariae of Echinostoma caproni.
Figure 2

Multivariate statistical analysis applied to the set of 41 manually validated differential spots (85% of presence; p < 0.01; q < 0.05) in the 2D-DIGE experiment comparing naïve controls and rIL-25-treated mice: (A) plot from the principal components analysis between compared groups separated in two areas according to their overexpression in one group respect the other; (B) dendrogram from the hierarchical clustering analysis (Euclidean).
Figure 3

Multivariate statistical analysis applied to the set of 41 manually validated differential spots (85% of presence; p < 0.01; q < 0.05) in the 2D-DIGE experiment comparing infected vs rIL-25-treated mice exposed to Echinostoma caproni metacercariae: (A) plot from the principal components analysis between compared groups separated in two areas according to their overexpression in one group respect the other; (B) dendrogram from the hierarchical clustering analysis (Euclidean).
Figure 4

Multivariate statistical analysis applied to the set of 41 manually validated differential spots (85% of presence; p < 0.01; q < 0.05) in the 2D-DIGE experiment comparing rIL-25-treated exposed to Echinostoma caproni metacercariae vs rIL-25-treated mice: (A) plot from the principal components analysis between compared groups separated in two areas according to their overexpression in one group respect the other; (B) dendrogram from the hierarchical clustering analysis (Euclidean).

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- FIGURES3.tif
- FIGURES1.tif
- FIGURES2.tif
- Graphicalabstract.tif