High-dispersion spectroscopic monitoring of the Be/X-ray binary A0535+26/V725 Tau – I. The long-term profile variability

Y. Moritani, D. Nogami, A. T. Okazaki, A. Imada, E. Kambe, S. Honda, O. Hashimoto, Y. Ishino, Y. Suzuki and J. Tanaka

1Department of Astronomy, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
2Kwasan Observatory, Kyoto University, Yamashina-ku, Kyoto 607-8471, Japan
3Faculty of Engineering, Hokkaido University, Tohoku-ku, Sapporo 062-8605, Japan
4Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, 3037-5 Honjo, Asakuchi, Okayama 719-0232, Japan
5Gunma Astronomical Observatory, Takayama-mura, Gunma 377-0702, Japan

Accepted 2010 February 1. Received 2010 February 1; in original form 2009 August 11

ABSTRACT

We report on optical high-dispersion spectroscopic monitoring observations of the Be/X-ray binary A0535+26/V725 Tau, carried out from 2005 November to 2009 March. The main aim of these monitoring observations is to study spectral variabilities in the Be disc, on both the short (a week or so) and long (more than hundreds of days) time-scales, by taking long-term frequent observations. Our four-year spectroscopic observations indicate that the V/R ratio, i.e. the relative intensity of the violet (V) peak with respect to the red (R) one, of the double-peaked Hα line profile varies with a period of 500 d. The Hβ line profile also varies in phase with the Hα profile. With these observations covering two full cycles of the V/R variability, we reconstruct the two-dimensional structure of the Be disc by applying the Doppler tomography method to the Hα and Hβ emission-line profiles, using a rigidly rotating frame with the V/R variability period. The resulting disc structure reveals non-axisymmetric features, which can be explained by a one-armed perturbation in the Be disc. It is the first time that an eccentric disc structure is directly detected by using a method other than the interferometric one.

Key words: binaries: spectroscopic – stars: emission-line, Be - stars: individual: A0535+26.

1 INTRODUCTION

Classical Be stars (Be stars for short) are non-supergiant B-type stars which show or have shown Balmer lines in emission. The striking feature of the Be stars is their high rotation speeds. They rotate at a speed close to critical so that the surface gravity mostly balances with their centrifugal force around the equator. The mass ejected from the photosphere forms a circumstellar envelope, called a Be disc, which is another striking feature of Be stars. The Be stars exhibit complicated line profiles containing an absorption component from the photosphere and an emission component from the disc. Other observed features of the Be stars are infrared (IR) excess due to f-f and f-b emission, and linear polarization due to electron scattering in the Be disc. The emission-line profiles, reflecting the state of the Be disc, show many kinds of variability on the time-scales from days to several decades, e.g. disappearance and reformation of the disc and line profile variability (LPV) including V/R variability, the variability in the ratio of the intensity of violet (V) and red (R) peaks of double-peaked emission-line profiles.

Recently, Porter & Rivinius (2003) reviewed the latest results of Be stars: mainly their properties, variabilities and probable mechanisms of the disc formation. The mechanism of Be disc formation is still under debate because it is difficult to model the complex mass ejection process, taking into account the various physics at work, e.g. the effect of rapid rotation, the radiative force and non-local thermodynamic equilibrium calculations. The common understanding is, however, that the key to Be disc formation is the high rotation speed of the Be stars [for further discussion, see Porter & Rivinius (2003) and references therein]. Some authors have suggested that the high rotation speed is linked to stellar evolution (McSwain & Gies 2005; Ekström et al. 2008).

Be/X-ray binaries are systems which consist of a Be star and a compact object (mostly a neutron star) and account for a large fraction of high-mass X-ray binaries (Coe et al. 2009). The system has two discs: a Be disc and an accretion disc around the neutron star, which is formed by material transferred from the Be disc. Hence, the Be/X-ray binaries exhibit accretion phenomena as well as Be phenomena.

Generally, the eccentricity of the Be/X-ray binary is not small ($\gtrsim 0.3$), which implies that the interaction between the two stars and the mass transfer from the Be disc to the neutron star depends...
on the orbital phase (Okazaki & Negueruela 2001). Most of the Be/X-ray binaries are thus transient X-ray sources. The X-ray outbursts from these systems are divided into two types according to the X-ray luminosity: normal outbursts (type I outbursts; \(\sim 10^{36} \text{--} 10^{37} \text{erg s}^{-1} \) at 1--20 keV) and giant outbursts (type II outbursts; \(10^{37} \text{erg s}^{-1} \) at 1--20 keV). The normal outbursts, which last several days, are known to occur around periastron passage of the neutron star. Okazaki & Negueruela (2001) applied the resonantly truncated Be disc model developed by Negueruela & Okazaki (2001) to several Be/X-ray binary systems. They concluded that the normal outbursts occur in systems with intermediate to high eccentricities where the mass transfer from the Be disc to the neutron star takes place at every periastron passage. On the other hand, the giant outbursts, lasting several tens of days with no orbital modulation, are not well understood.

A0535+26/V725 Tau, which was discovered by the Ariel V satellite during a giant outburst (Coe et al. 1975; Rosenberg et al. 1975), is one of the best studied Be/X-ray binaries. The system consists of an X-ray pulsar of 103-s spin period (Caballero et al. 2007) and an O9.7Ib star (Giangrande et al. 1980). The recurrence time of the normal outbursts and spin-down rate of the pulsar provide the orbital period of 111 d (Motch et al. 1991) and the eccentricity of 0.47 (Finger et al. 1994). Neither optical photometry nor spectroscopy, however, has yielded an orbital period consistent with X-ray data (e.g. Wang & Gies 1998; Larionov, Lyuty & Zaitseva 2001) because the optical data show very complex variabilities of line profiles due to the variability of the Be star.

Long-term variabilities in this system have been reported by many authors. Clark et al. (1998a,b, 1999) performed ultraviolet (UV), optical and IR spectroscopy and \(U, B, V \)-band photometry. Seven-year optical spectroscopy exhibited quasi-periodic variability with a period of \(<1\) yr, and 15-yr photometry showed variability in phase with the spectroscopic one. Haigh, Coe & Fahregerat (2004) reported cyclic behaviour due to resonant truncation of the Be disc by carrying out optical spectroscopy and \(I, J, K \)-band photometry for 14 yr. The dramatic Be disc growth between 1998 and 2000 was observed by Grundstrom et al. (2007), which also reported V/R variabilities.

However, no short-term variabilities (a few weeks or less) can be discussed from these observations since they have not been carried out densely enough. Besides, many optical spectroscopic observations reported previously had low or medium dispersion, and it is therefore difficult to discuss small-amplitude (\(<10 \text{ km s}^{-1} \)) variability in the disc.

In this two-paper series, we report on both the short- and long-term variabilities of the Be disc in A0535+26/V725 Tau system, based on optical high-dispersion spectroscopic monitoring observations from 2005 November to 2009 March. In this paper (Paper I), we focused on long-term (\(> 1 \) years) variabilities. Short-term (from days to weeks) variabilities will be discussed in Paper II (Moritani et al., in preparation).

In Section 2, we summarize our observations. The results are given in Section 3, and we discuss the long-term variability of A0535+26 in Section 4. We present our conclusions in Section 5.

2 OBSERVATION

2.1 Configuration

We carried out high-dispersion optical spectroscopic monitoring observations of A0535+26 from 2005 November to 2009 March, mainly at the Okayama Astrophysical Observatory (OAO) with a 188-cm telescope equipped with High Dispersion Echelle Spectrograph (HIDES). Observations were also performed at Gunma Astronomical Observatory (GAO) with a 1.5-m telescope equipped with Gunma Astronomical Observatory Echelle Spectrograph (GAOES). HIDES covers a 1200 Å (5500--6700 and 4400--5600 Å) wavelength range until 2007, and 3500 Å (4000--7500 Å) from 2008 thanks to adoption of mosaicked three EEE 42--80 CCDs (2048 × 4098 pix²).

The wavelength coverage of GAOES is 1900 Å (4800--6700 Å) and the detector is an EEV 44--82 CCD.

The typical wavelength resolution \(R \) and the signal-to-noise ratio \((S/N) \) of our OAO/HIDES data around \(H \beta \) are \(R \sim 60000 \) and \(S/N \sim 120 \), respectively. For \(H \beta \), \(R \sim 60000 \) and \(S/N \sim 100 \). On the other hand, our \(H \gamma \) data obtained with GAO/GAOES have \(R \sim 30000 \) and \(S/N \sim 120 \), and the \(H \beta \) data have \(R \sim 30000 \) and \(S/N \lesssim 100 \). The exposure time for the \(H \alpha \) data with OAO/HIDES ranged from 3600 to 5400 s, and that of \(H \beta \) data was from 3600 to 7200 s. With GAO/GAOES the exposure time was 3600--9600 s. We combined 1200- or 1800-s-exposure data into daily averaged spectra.

The obtained data are reduced in the standard way using IRAF 1 echelle package – subtraction of bias, flat-fielding, calibration of the wavelength using Th–Ar lines, normalization of the continuum, and correction to the heliocentric orbit.

2.2 Observation periods

Our observation log is listed in Table 1. The observation period in column 1 is described below. From columns 5 to 8 are listed the orbital phases corresponding to three different ephemerides by different authors and the X-ray light curve. The time of phase 0 (HJD₀) is given by the following equation:

\[
\text{HJD}_0 = \text{HJD}_\text{origin} + P_{\text{orb}} E,
\]

where \(\text{HJD}_\text{origin} \) is the origin, \(P_{\text{orb}} \) is the orbital period and \(E \) is an integer indicating the cycle number. HJD₀ corresponds to a periastron passage in the case of ephemeris, while it corresponds to the time when the X-ray flux starts to rise in the case of X-ray light curve (see below). We used three different ephemerides reported by different authors because of difficulty in determining the time of periastron passage. The HJD₀ and \(P_{\text{orb}} \) of each ephemeris are summarized in Table 2.

The outburst phase listed in column 8 is obtained by using RXTE/ASM 2 one-day-averaged data from JD 245 0133 (1996 February 2) to JD 245 4881 (2009 February 19) as follows. First, we determine the orbital period by the Fourier analysis of the X-ray light curve. To remove uncertainty due to giant outbursts, the data between \(-1.5 \text{ and } 4.0 \text{ ASM Unit counts s}^{-1} \) (1 Crab is approximately 75 ASM Unit counts s\(^{-1}\) at 2--10 keV) were used for our period analysis. The power spectrum is shown in Fig. 1. The arrow in the power spectrum indicates the most plausible peak: 0.009 ± 0.0005 (d\(^{-1}\)), corresponding to \(P_{\text{orb}} = 110.2 ± 0.6 \text{ d} \). Other peaks are overtones or harmonics with 1 yr. Then, the beginning time of an X-ray normal outburst, HJD 245 3398.4, is taken as \(\text{HJD}_{\text{origin}} \). The obtained period and the origin are listed in Table 2 together with those in the three different ephemerides.

Fig. 2 shows the X-ray light curve folded with these \(P_{\text{orb}} \) and \(\text{HJD}_{\text{origin}} \) by the \(n \times m \) bin

1 IRAF (Imaging Reduction and Analysis Facility) is a software system for the reduction and analysis of astronomical data, supported by NOAO (web site http://iraf.noao.edu/).

2 See web site http://xte.mit.edu/asmlc/ASM.html.
method used in Coe et al. (2006). The light curve shows that normal outbursts reach the maximum flux at $\phi_X = 0.05$--0.08.

Our monitoring term is divided into nine periods (as shown in column 1 of Table 1). We carried out the monitoring observations, mainly for detecting the variability of the Be disc around periastron passage, when the Balmer line is expected to change due to the tidal interaction between the Be disc and the neutron star, but also for examining long-term variabilities such as V/R variations. Observations in periods I (in 2005 November), III (in 2007 November) and VIII (in 2009 January), around periastron passage with respect to the ϕ_X , ϕ_1 and $\phi_2 (\phi_3)$, respectively, are performed densely, aiming for studying short-term variability. Observations in other periods are carried out in order to monitor A0535+26 between normal outbursts as well as to aim at long-term variability.
Table 2. The orbital period, P_{orb}, and the origin of the phase, HJD$_{\text{origin}}$, in each ephemeris and those derived from the X-ray light curve. See text for detail.

Phase	Type	P_{orb}	HJD$_{\text{origin}}$	References
ϕ_1	Ephemeris 1	111.38 ± 0.11	$244 6734.3 \pm 2.6$	Motch et al. (1991)
ϕ_2	Ephemeris 2	110.3 ± 0.3	$244 9059.2 \pm 0.6$	Finger et al. (1994)
ϕ_3	Ephemeris 3	110.0 ± 0.5	$245 0094 \pm 1$	Coe et al. (2006)
ϕ_X	Outburst	110.2 ± 0.6	$245 3398.4 \pm 1.0$	This paper

Figure 1. Power spectrum of the RXTE/ASM data. The arrow in the spectrum indicates the most plausible value, which corresponds to 110.24 d. The highest peak corresponds to 366.45 d, introduced by yearly sun angle constraints in RXTE observations of A0535+26.

Figure 2. X-ray light curve folded by assuming $P_{\text{orb}} = 110.24$ d and HJD$_{\text{origin}} = 245 3398.43$, using the $n \times m$ bin method in Coe et al. (2006). The maximal duration of the normal outbursts is $\phi_X = 0.05$–0.08.

Recently, Levine & Remillard (2008) reported that A0535+26 brightened in X-rays on 2008 September 12 (JD 245 4721) at 21 mCrab at 2–10 keV, and that the flux then rose up to approximately 48 mCrab (3.6 ASM Unit counts s$^{-1}$). Observations in period VI, from October 1 to November 4, was carried out thanks to the target of opportunity (TOO) observation program at OAO, in order to examine the variability of the Be disc at $\phi_X = 0.2$–0.5 after the normal outburst.

Based on the ephemeris given by Coe et al. (2006), the observations of periods VII and VIII were scheduled; the periastron passage was predicted to be around 2008 December 31 since the last outburst occurred on September 12 after periastron. The activity reports of the RXTE/ASM team declared that normal outburst occurred in the week of 2009 January 2–9, the X-ray photon count started to rise on JD 245 4832. Our observations were performed from 2008 December 25 thorough 2009 January 12, which is divided into two periods; pre-outburst (period VII, until December 28) and around outburst (period VIII, from December 29). An additional observation was made at GAO on 2009 March 12 (in the period IX).

3 RESULTS

Figs 3 and 4 show representative spectra of Hα and Hβ obtained during the monitoring observations; all spectra will be shown in Paper II. For reasons of clarity, the spectra are shown on the same Y scale and with linear offsets from each other. For 3.5 yr, both Hα and Hβ line profiles have been in emission, which indicates that the Be disc of A0535+26 did not disappear. The profiles, however, have changed. In period I, the Hα line profile was double peaked with the violet component stronger than the red component ($V > R$, the top profile in Fig. 3). One year later (second spectrum from the top), in 2006 December, the profile kept $V > R$, but the V/R ratio has decreased from >1.7 to 1.22. Here, the V/R ratio was determined by smoothing the spectra and measuring the peak of the intensities normalized by the continuum. It turned to $V < R$ (third spectrum from the top) in period III (in 2007 November). In period IV, the Hα line changed from a red-enhanced single-peaked profile to a single-peaked profile with a nearly flat top in less than six weeks (fourth and fifth spectra from the top), followed by the double-peaked profile with $V > R$ after two months (in 2008 March, beneath the two).
From 2008 October to 2009 March, from period VI to IX, the Hα line profile remained double peaked, gradually changing from $V > R$ to $V < R$ in more than half a year (sixth spectrum from the bottom). Besides, in period VIII, the profile showed an obvious variability within less than two weeks. This short-term variability, which we think is due to the tidal interaction between the Be disc and the neutron star, will be discussed in detail in Paper II.

As shown in Fig. 4, the Hβ line profile was always double peaked as far as our observations were carried out, but the V/R ratio exhibited variabilities. In period III, the red component was stronger than the violet, i.e. $V < R$. In periods IV and V (from 2007 December to 2008 March), the V/R ratio of Hβ line changed from $V < R$ to $V > R$ within a couple of months. Then, the V/R ratio gradually turned again to $V > R$ during the following year. The variability of the V/R ratio is almost in phase with that of the Hα line profile (see Table 3 and Fig. 5).

The obtained equivalent width (EW) and V/R ratio of all the Hα and Hβ line profiles are listed in Table 3. The typical error in the value of EW is ± 0.05 Å, and that of V/R ratio is ± 0.03. In period IV, the V/R ratio of Hα line profiles could not be obtained because the line profiles did not have double peak. In the long term, both EW(Hα) and EW(Hβ) gradually increased in amplitude during the last 3.5 yr, which indicates that the Be disc of A0535+26 has become more and more active.

4 DISCUSSION

The observed Hα and Hβ emission-line profiles showed variabilities on time-scales from weeks to years. In what follows, we focus only on long-term variabilities (\gtrsim year). Below, we adopt the orbital ephemeris ϕ_X based on the X-ray light curve.

4.1 The V/R variation

As mentioned in the previous section, the relative strength of the violet component of Hα compared to the red component was greater than 1 in 2005 November and in 2006 December. Fig. 2 of Grundstrom et al. (2007), however, shows that V/R < 1 in 2006 October (square marks in Fig. 5). These results suggest that the V/R ratio turned from >1 to <1 and then back to >1 again in 2006 (around JD 2454020). The V/R ratio also turned from <1 to >1 in 2008 February between periods IV and V (around JD 2454500). It then became <1 again between periods VIII and IX (around JD 2454850). This implies a (quasi-)periodic variation of the V/R ratio, which may be induced by a one-armed oscillation (Okazaki 1991; Papaloizou, Savonije & Henrichs 1992).

We examine the long-term variation of the V/R ratio and EW of Hα line from 1979 to 2009 and that of Hβ from 1975 to 2009, using the data from this paper, with those available from previous studies (Hutchings et al. 1978; Aab 1985; Clark et al. 1998a; Haigh et al. 2004; Coe et al. 2006; Grundstrom et al. 2007). The V/R ratio of the Hα seems to have been varying in the range between 0.7 and 2, while that of Hβ between 0.5 and 1.9. The V/R ratios of both lines are almost in phase, although these lines were seldom observed simultaneously in the previous studies. We apply the Fourier analysis for the determination of the period of the V/R variation. Here, we restrict our analysis to the data of Hα line profiles obtained between HJD 245 3500 and 245 5000, by Grundstrom et al. (2007) and this paper, because the data are dense enough to derive a reliable period. Observations before the 2005 giant outburst, which include dense observations from HJD 245 1000 to 245 2000 (Clark et al. 1998a; Coe et al. 2006; Grundstrom et al. 2007), are excluded from the analysis since it is quite possible that the Be disc might have reformed after the outburst.

The period of the V/R variation is determined to be 500 ± 15 d (Fig. 6) at the 90% confidence level via χ^2 test, which is significantly longer than that reported in Clark et al. (1998a) (~1 yr). The V/R ratios of the Hα spectra from HJD ~245 3500 to 245 5000 folded on period of 500 d are plotted in Fig. 7, where the origin of the V/R variation phase $\phi_{V/R}$ is taken at the epoch when the V/R ratio turns from >1 to <1. We note that a cyclic behaviour of the V/R ratio is clearly seen with this period. The duration when $V > R$ is longer than that for $V < R$. The simple sine curve with this period is also drawn in Fig. 7 as well as in Fig. 5. Reig et al. (2005) studied the period of V/R variations for several Be/X-ray binaries (in their table 3). For A0535+26/V725 Tau, the V/R period was suggested to be 1–1.5 yr (Clark et al. 1998a; Haigh et al. 2004), which is consistent with ours. We need further observations for a more accurate period, especially between $\phi_{V/R} = 0.4$ and $\phi_{V/R} = 0.7$ (see Fig. 7).

Oktariani & Okazaki (2009) studied one-armed oscillations of Be disc in circular binaries, taking into account a three-dimensional (3D) effect, which, Ogilvie (2008) found, provides an important contribution to the confinement of the oscillations to the inner part of the Be disc. They calculated that the period of the fundamental mode of the one-armed oscillation in a BOV-type Be star ranges from 1.4 to 2.3 yr, which depends on the binary separation D. Given that the mass M_1 and radius R_1 of the Be star V725 Tau are, respectively, 14 M_\odot and 15 R_\odot (Giarratana et al. 1980), and that the mass M_2 is typical as a neutron star (~1 M_\odot), D/R_1 is approximately 17 in A0535+26, where D is estimated by Kepler’s third law,

$$D^3 = \frac{G(M_1 + M_2)}{4\pi^2} a_{\text{orb}}^3,$$

If we neglect that the luminosity class of the Be star in A0535+26 is different from that in their calculations, we see from fig. 3 of Oktariani & Okazaki (2009) that the period of the one-armed oscillation in this system is ~2 yr, which roughly agrees with our result. However, the period of a one-armed oscillation is, in general,
sensitive to small changes in stellar and disc parameters, and estimated uncertainty of the oscillation period is approximately a factor of 2. More sophisticated calculations, therefore, are needed for further comparison with the observation.

The variation of EW(Hα) and EW(Hβ) is given in Fig. 8. The Hα line has been in emission for most of the last 30 yr; only in 1994, it was in absorption (Grundstrom et al. 2007). The growth of the Be disc is correlated with EW. The larger values of |EW|
correspond to denser and/or larger Be discs. Regarding the last 10 yr, a giant outburst occurred in 2005 (JD = 245 3507; Tueller et al. 2005), around which the emission from the Be disc decreased. Afterwards, the Be disc has kept growing.

4.2 The structure of the Be disc

In order to investigate the 2D structure of the Be disc in A0535+26, we carried out the Doppler tomography method using Hα and Hβ spectra. The Doppler tomography method translates LPV into a distribution map of the emission component. That is, LPV along the periodic phase (usually the orbital phase) can be projected on a 2D velocity plane \((v_x, v_y)\) corresponding to the Doppler shift of the line profile. This method is often used for circular binaries in order to obtain the 2D structure of an accretion disc (see Marsh 2005).

The Doppler tomography method has been used by several authors for the orbital solution in binary systems. Bagnuolo et al. (1994) applied the Doppler tomography to a Be star (29 CMa in a binary system) for the first time. They used the tomography in order to produce separate UV spectra of the two stars and to obtain their spectral classifications, mass ratio and so forth. Recently, Peters et al. (2008) applied the Doppler tomography method for reconstruction of UV spectra of the secondary FW CMa because many authors had suggested that its variability in optical and UV spectra was due to the binary interaction although its binarity had been unknown. They also found that Hα and He I λ6678 variations with its orbital period imply a hot region in the outer area of the Be disc of the primary, facing the secondary. However, there has never been a direct application of the tomography to the variability of the Be disc.

We have used public software for the Doppler tomography method developed by Henk Spruit.3 The V/R variation phase \(\Phi_{V/R}\) (determined by the 500-d period) is adopted instead of the usually assumed orbital phase because it is not the binary motion but a one-armed density wave that rotates rigidly. Our data for the Doppler tomography consist of 47 Hα spectra (HJD 245 3699.060–245 4902.965) and 37 Hβ spectra (HJD 245 4412.184–245 4902.965). The coverage of the V/R variation is more than 2 cycles for the Hα lines, while \(\lesssim 1\) cycle for the Hβ lines. The systemic velocity of \(-30\) km s\(^{-1}\) (Hutchings 1984) is taken into account. However, the radial velocity of the Be star was not subtracted from the result because it is very difficult to obtain it from each spectrum. Therefore, each line profile contains an uncertainty in wavelength. The absolute value of reported radial velocity ranges from several to several tens of km s\(^{-1}\) (Hutchings et al. 1978; Grundstrom et al. 2007), so that each line profile contains an uncertainty of \(\sim 0.1–1\) Å in wavelength. This does not affect the resulting map much (see below).

Fig. 9 shows results of the Doppler tomography. The results for the Hα line are displayed in the left-hand column, and those for the Hβ line in the right-hand column. Top panel displays the obtained disc structures with the intensity in arbitrary unit in the velocity plane. At \(\Phi_{V/R} = 0\), the observer is in the +x direction, and rotates clockwise. Obtained spectrum at that time is a projection of Doppler map along the \(v_x\) axis. Note that the plus/minus sign of \(v_x\) and \(v_y\) is defined in the \(xy\) plane, and that if a structure, therefore, has a velocity in the \(-v_x\) direction, the observer obtains the spectrum with the redshift. The reconstructed spectra derived from the obtained disc structure and its deviations from the observed ones are shown in the middle and the bottom panels, respectively. The derived Doppler map shows a non-axisymmetric structure of the Be disc; a brighter region is in \(v_x > 0\), while a fainter region in \(v_x < 0\). This feature is seen more clearly in the map of Hβ than in Hα. These maps suggest the presence of a global one-armed density

\[\text{See web site http://www.mpa-garching.mpg.de/~henk/}. \]
wave. Thus, our result provides a direct evidence of the one-armed oscillation in the Be disc. Interferometric observations have already obtained such density enhancements in the bright Be stars [Vakili et al. (1998) for ζ Tau and Berio et al. (1999) for γ Cas, both with GI2T; see also recent VLTI observations of ζ Tau (Stefl et al. 2009) and its theoretical modelling (Carciofi et al. 2009)]. However, this is the first time that a method other than the interferometry directly probed the 2D distribution of the Be disc emissivity.

There is 10–20 per cent difference between observed spectra and reconstructed ones. We should note here that (1) the radial velocity variations are not corrected in this analysis, as mentioned above, (2) the data are not sufficient especially in Φ_V/R = 0.4–0.7 and (3) the non-axisymmetric structure due to the one-armed oscillation is possibly deformed even within one cycle. These may affect the resulting Doppler map to some extent. The first two points should be fixed by future observations, and more theoretical work should be done on the last point.

In the case of isolated Be stars or binary Be stars with well-determined orbital elements, the structure revolving with the period of V/R variation is seen more clearly than the current analysis. Hence, we can investigate whether the Doppler map contains a perturbation component. Subtracting the axisymmetric component from the Doppler map, we can obtain the perturbation component of the Be disc. Then, we can extend the investigation into the question that (1) the perturbation pattern is eccentric or spiral and (2) one-armed oscillation is confined to inner part of the Be disc. If the oscillation is confined to the inner part of the disc, the Doppler map in the velocity plane shows an axisymmetric structure only in the

Figure 8. Long-term variations of EW of the Hα (upper panel) and Hβ (lower panel) lines: Hutchings et al. (1978) (diamonds), Aab (1985) (filled circles), Motch et al. (1991) (filled triangles), Clark et al. (1998a) (crosses), Haigh et al. (2004) (pluses), Coe et al. (2006) (open circles), Grundstrom et al. (2007) (squares) and this paper (open triangles).
inner part, and the outer area of the map is non-axisymmetric. These studies will be taken care of in a future work.

As described above, the Doppler tomography method is very useful for examining the structure of the Be disc, although the information on time variability cannot be obtained unlike in interferometric observations. The current study showed that, for Be stars with the periodic V/R variability, the 2D disc structure can be obtained by applying the Doppler tomography method to high-dispersion spectra with 2-m class telescopes.

5 CONCLUSIONS

We have carried out high-dispersion spectroscopic monitoring observations of the Be/X-ray binary A0535+26/V725 Tau from 2005 November to 2009 March. Regarding the long-term variability, our results are summarized as follows.

(i) The orbital period is determined to be 110.2 d by the Fourier analysis of RXTE/ASM data.

(ii) The EW(Hα) and EW(Hβ) indicate that the Be disc in A0535+26 has kept growing after the last giant outburst in 2005.

(iii) From our observations, together with those by Grundstrom et al. (2007), the period of the V/R variations is determined to be approximately 500 d, which is consistent with Reig et al. (2005).

(iv) The Doppler tomography method applied to the Hα and Hβ line profiles has revealed a non-axisymmetric disc structure precessing with the V/R period, which can be originated from the global one-armed oscillation.

Further observation is needed to improve these results. In particular, the observations of metallic absorption lines between 4000 and 5000 Å is very important in order to obtain the ephemeris and then the radial velocity of the Be star.

ACKNOWLEDGMENTS

We are very grateful to Ryuko Hirata for his extensive advice and to Bun’ei Sato for kindly observing A0535+26. We are also grateful to the reviewer for many constructive comments. This paper is based on observations taken at the Okayama Astrophysical Observatory and Gunma Astronomical Observatory. This work was also supported by Research Fellowships for the Promotion of Science for Young Scientists (YM), the Grants-in-Aid for the Global COE...
Programme ‘The Next Generation of Physics, Spun from Universality and Emergence’ from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and by Grants-in-Aid from MEXT (No. 21740148; SH).

REFERENCES

Aab O. E., 1985, SvA, 29, 195
Bagnuolo W. G. Jr, Gies D. R., Hahula M. E., Wiemker R., Wiggs M. S., 1994, ApJ, 423, 446
Berio P. et al., 1999, A&A, 345, 203
Bjorkman J. E., Cassinelli J. P., 1993, ApJ, 409, 429
Caballero I. et al., 2007, A&A, 465, L21
Cassinelli J. P., Brown L. C., Maheswaran M., Miller N. A., Telfer D. C., 2002, ApJ, 578, 951
Carciofi A. C. et al., 2009, A&A, 504, 915
Clark J. S. et al., 1998a, MNRAS, 294, 165
Clark J. S., Steele I. A., Coe M. J., Roche P., 1998b, MNRAS, 297, 657
Clark J. S. et al., 1999, MNRAS, 302, 167
Coe M. J., Carpenter G. F., Engel A. R., Quenby J. J., 1975, Nat, 256, 630
Coe M. J., Reig P., McBride V. A., Galache J. L., Fabregat J., 2006, MNRAS, 368, 447
Coe M. J. et al., 2009, in van Loon J. T., Oliveira J. M., eds, IAU Symp. 256, The Magellanic Stars, Gas and Galaxies. Cambridge Univ. Press, Cambridge, p. 267
Ekström S., Meynet G., Maeder A., Barblan F., 2008, A&A, 478, 467
Finger M. H., Cominsky L. R., Wilson R. B., Harmon B. A., Fishman G. J., 1994, in Holt S., Day S. C., eds, AIP Conf. Ser. Vol. 308, The Evolution of X-ray Binaries. Am. Inst. Phys., New York, p. 459
Giagrande A., Giovannelli F., Bartolini C., Guarnieri A., Piccioni A., 1980, A&AS, 40, 289
Grundstrom E. D. et al., 2007, ApJ, 660, 1398
Haigh N. J., Coe M. J., Fabregat J., 2004, MNRAS, 350, 1457
Hutchings J. B., 1984, PASP, 96, 312
Hutchings J. B., Bernard J. E., Crampoton D., Cowley A. P., 1978, ApJ, 223, 530
Larionov V., Lyuty V. M., Zaitseva G. V., 2001, A&A, 378, 837
Levine A. M., Remillard R. A., 2008, Astron. Telegram, 1725
Marsh T. R., 2005, Ap&SS, 296, 403
McSwain M. V., Gies D. R., 2005, ApJS, 161, 118
Mutch C., Stella L., Janot-Pacheco E., Mouchet M., 1991, A&A, 369, 490
Negueruela I., Okazaki A. T., 2001, A&A, 369, 108
Ogilvie I. G., 2008, MNRAS, 388, 1372
Okazaki A. T., 1991, PASJ, 43, 75
Okazaki A. T., 2001, PASJ, 53, 119
Okazaki A. T., Negueruela I., 2001, A&A, 377, 161
Oktariani F., Okazaki A. T., 2009, PASJ, 61, 57
Papaloizou J. C., Savonije G. J., Henrichs H. F., 1992, A&A, 265, L45
Peters G. J., Gies D. R., Grundstrom E. D., McSwain M. V., 2008, ApJ, 686, 1280
Porter J. M., Rivinius T., 2003, PASP, 115, 1153
Reig P., Negueruela I., Fabregat J., Chato R., Coe M. J., 2005, A&A, 440, 1079
Rosenberg F. D., Eyles C. J., Skinner G. K., Willmore A. P., 1975, Nat, 256, 628
Štefl S. et al., 2009, ApJ, 504, 929
Tueller J., Ajello M., Barthelmy S., Krimm H., Makwardt C., Skinner G., 2005, Astron. Telegram, 504
Vakili F. et al., 1998, A&A, 335, 261
Wang Z. X., Gies D. R., 1998, PASP, 110, 1310

This paper has been typeset from a TEX/LATEX file prepared by the author.