Discovery of the Arsenic Isotopes

A. SHORE, A. FRITSCH, M. HEIM, A. SCHUH, and M. THOENNESSEN *

National Superconducting Cyclotron Laboratory and
Department of Physics and Astronomy, Michigan State University,
East Lansing, MI 48824, USA

Twenty-nine arsenic isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

* Corresponding author.

Email address: thoennessen@nscl.msu.edu (M. Thoennessen).
1. INTRODUCTION

The second paper in the series of the discovery of isotopes [1], the discovery of the arsenic isotopes is discussed. In the growing amount of information gathered for more and more isotopes, the basic knowledge of where and how the isotopes were first produced tends to get lost. The purpose of this series is to document and summarize the discovery of the isotopes. Guidelines for assigning credit for discovery are (1) clear identification, either through decay-curves and relationships to other known isotopes, particle or γ-ray spectra, or unique mass and Z-identification, and (2) publication of the discovery in a refereed journal. The authors and year of the first publication, the laboratory where the isotopes were produced as well as the production and identification methods are discussed. When appropriate, references to conference proceedings, internal reports, and theses are included. When a discovery included a half-life measurement the measured value is compared to the currently adapted value taken from the NUBASE evaluation [2] which is based on the ENSDF database [3]. In cases where the reported half-life differed significantly from the adapted half-life (up to approximately a factor of two), we searched the subsequent literature for indications that the measurement was erroneous. If that was not the case we credited the authors with the discovery in spite of the inaccurate half-life.

2. DISCOVERY OF $^{64-92}$As

Presented in this article are the 29 discovered isotopes of arsenic, from $A = 64 - 92$. There is one stable, 11 proton-rich and 17 neutron-rich isotopes. The HFB-14 model predicts 110As and 117As to be the heaviest even and odd particle-bound isotope of arsenic, respectively [4]. For neutron-deficient isotopes, the proton dripline has been crossed. There is potentially one more unbound isotope (63As) that is estimated to live long enough to be observed [5]. Thus 23 isotopes or about 45% of all arsenic isotopes remain undiscovered.
FIG. A. Arsenic isotopes as a function of time they were discovered. The different production methods are indicated. The solid black squares on the right hand side of the plot are isotopes predicted to be bound by the HFB-14 model. On the proton-rich side the light blue square corresponds to an unbound isotope predicted to have a lifetime larger than $\sim 10^{-9}$ s.

Figure A depicts the year of discovery for each arsenic isotope as identified by the production method. The stable isotope 75As was discovered by mass spectroscopy (MS). The production methods to produce the radioactive isotopes were light-particle reactions (LP), photo-nuclear reactions (PN), neutron-induced fission (NF), fusion-evaporation (FE) and projectile fragmentation or projectile fission (PF). Heavy ions are all nuclei with an atomic mass larger than $A = 4$ [6]. Light particles also include neutrons produced by accelerators. In the following the discovery of each arsenic isotope is discussed in detail.
64\(^{\text{As}}\)

In the 1995 article *New Isotopes from \(^{78}\text{Kr}\) Fragmentation and the Ending Point of the Astrophysical Rapid-Proton-Capture Process* Blank *et al.* reported the discovery of \(^{64}\text{As}\) at the SISSI/LISE facility of the Grand Accélérateur National d’Ions Lourds in Caen, France, via the projectile fragmentation of a 73 MeV/nucleon \(^{78}\text{Kr}\) beam on a nickel target [7]. The new isotope was identified by its time of flight through the separator and the \(\Delta E-E\) in a silicon detector telescope. A lower limit for the half-life was established, “The observation of \(^{64}\text{As}\) in our experiment and the comparison of the counting rate to neighboring nuclei excludes half-lives much shorter than 1 \(\mu\)s.”

65\(^{\text{As}}\)

Mohar *et al.* first observed \(^{65}\text{As}\) via projectile fragmentation in 1991 at the National Superconducting Cyclotron Laboratory at Michigan State University: *Identification of New Nuclei near the Proton-Dripline for 31\(\leq Z\leq 38\)* [8]. A 65 A-MeV \(^{78}\text{Kr}\) beam produced by the K1200 cyclotron reacted with a \(^{58}\text{Ni}\) target. \(^{65}\text{As}\) was identified by measuring the separator rigidity, \(\Delta E\), \(E_{\text{total}}\), and the ion velocity. “The newly commissioned A1200 beam-analysis device was used to observe the astrophysically interesting isotope \(^{65}\text{As}\).”

66\(^{\text{As}}\)

Alburger discovered \(^{66}\text{As}\) at Brookhaven National Laboratory in 1978 via the fusion-evaporation reaction \(^{58}\text{Ni}(^{10}\text{B},2n)\) as reported in *Half-Lives of \(^{62}\text{Ga},^{66}\text{As},\text{and}^{70}\text{Br}\)* [9]. A 30 MeV beam from the MP Tandem Van de Graaff accelerator irradiated the target and \(\beta\)-rays were detected with a scintillator. “Seven runs were made on the \(^{66}\text{As}\) half-life at \(\beta\) biases from 3.5-4.5 MeV ... the half-life obtained for \(^{66}\text{As}\) was 95.78±0.39 ms.” This value is included in the average value of 95.77(23) ms currently accepted. The authors do not claim credit for the discovery by quoting a previously unpublished report which had measured the correct half-life (93(5) ms) [10].

67\(^{\text{As}}\)

In the 1980 article *\(\beta^+\) Decay of \(^{67}\text{As}\)* Murphy *et al.* reported the discovery of \(^{67}\text{As}\) at Argonne National Laboratory [11]. The isotope was produced via the fusion-evaporation reaction \(^{58}\text{Ni}(^{14}\text{N},\alpha n)\) where the \(^{14}\text{N}\) ions were accelerated by the FN tandem accelerator to energies of 39 and 41 MeV. “The half life, decay scheme, and mass excess of \(^{67}\text{As}\) have been determined from \(\beta\)-delayed \(\gamma\)-ray singles and \(\gamma\)-\(\gamma\) coincidence, and \(\beta\)-\(\gamma\) coincidence measurements.” The half-life was found to be 42.5(12) s which is the currently accepted and only available value for \(^{67}\text{As}\). It should be mentioned that Murphy *et al.* already reported the results of the experiment in a conference abstract in 1976 [12].

68\(^{\text{As}}\)

\(^{68}\text{As}\) was first observed by T. Paradellis *et al.* in 1971 as reported in *The Decay of \(^{68}\text{As}\)* [13]. A 92\% enriched \(^{70}\text{GeO}_2\) target was bombarded with 40 MeV protons accelerated by the McGill Synchrocyclotron. Characteristic \(\gamma\)-rays were detected following activation with the \(^{70}\text{Ge}(p,3n)^{68}\text{As}\) reaction. “The weighted average of several measurements of the half-life of the 1016.5 keV \(\gamma\)-ray was found to be 159±4 sec.” This half-life is close to the currently accepted value of 151.6(8) s. The authors do not
claim the discovery of 68As, instead referring to the 1955 paper by Butement and Prout [14]. However, the cautious statement “Between 40 and 60 MeV the initial half-life was ~ 10 minutes, suggesting the formation of a mixture of 69As with a shorter lived activity, of half-life ~ 7 minutes, possibly 68As produced by a (p,3n) reaction on 70Ge,” in combination with a significantly deviating half-life value does not warrant credit for the discovery of 68As by Butement and Prout.

69As

In *Radioactive 69As and 70As* Butement and Prout noted their 1955 observation of 69As at the Atomic Energy Research Establishment in Harwell, England, when samples of germanium dioxide were irradiated with protons [14]. Mass assignment was made by milking off and identifying the radioactive germanium daughter and the γ radiation was measured with a NaI(Tl) scintillator. “Between 20 and 35 MeV a new 15 minute activity appeared in appreciable yield (69As) , due to a (p,2n) reaction on 70Ge.” This half-life agrees with the accepted value of 15.2(2) m.

70As

In the 1950 paper *Spallation Products of Arsenic with 190 MeV Deuterons* Hopkins identified the isotope 70As [15]. A pure 75As target was bombarded with 190 MeV deuterons from the Berkeley 184-inch cyclotron and chemically separated and subjected to spectrographic analysis. “Table 1 contains two changes in isotope assignment differing from those previously reported. The 44-min. selenium and 52-min. arsenic daughter are placed at mass 70 since careful separations revealed no active germanium daughter.” In a previous paper the activity was incorrectly assigned to 71As [16]. The observed half-life agrees with the accepted value of 52.6(3) m.

71As

Sagane discovered 71As in 1939 at the University of California at Berkeley as reported in *Radioactive Isotopes of Cu, Zn, Ga and Ge* [17]. The Radiation Laboratory cyclotron provided the deuterons that bombarded a germanium target and 71As was produced in the reaction 70Ge(d,n). Activities were measured with a Lauritsen-type quartz fiber electroscope. “The 50-hr. period found in deuteron bombardments is expected to be caused by an arsenic isotope, probably 71As, because it emits positrons.” The half life was determined to be 50(3) hours which is somewhat lower than the accepted value of 65.28(15) h.

72As

In 1947 Mitchell et al. reported in *Radiations from 72As* the discovery of 72As at Indiana University when gallium was bombarded with alpha particles from the cyclotron at an energy of 23 MeV followed by chemical separation [18]. “A preliminary investigation of the radiations from 72As has been made with the help of the coincidence counting apparatus available in this laboratory ... It is shown to be a positron emitter of approximately 26 hours half-life.” This half-life is consistent with the accepted value of 26.0(1) h.
As

McCown *et al.* were the first to correctly identify 73As in *Radioactive Arsenic Isotopes* at the Ohio State University in 1948 [19]. GeO$_2$ enriched in isotope 70 and regular GeO$_2$ were bombarded simultaneously with alpha-particles. The decay activity was measured with a Wulf Electrometer attached to a freon-filled ionization chamber. “Since stable 70Ge was approximately four times as abundant in the enriched 70Ge sample as in the ordinary Ge, it follows that this 76-day activity is produced from the stable 70Ge isotope. Hence, the assignment of this activity, produced by the (α, p) reaction on 70Ge, is made to 73As.” 73As decays by K-electron capture with a half life of 76(3) d which is consistent with the accepted value of 80.30(6) d. It should be mentioned that in 1939 Sagane had incorrectly attributed an 88(2) m half-life to 73As [17].

As

Sagane *et al.* of the Radiation Laboratory of the University of California at Berkeley were first to observe 74As as reported in the 1938 article *Radioactive As Isotopes* [20]. Samples of germanium were activated with a 5.5 MeV deuteron beam at the Berkeley cyclotron with the reaction 73Ge(d,n). In an additional experiment samples of arsenic were bombarded with fast neutrons from the Li + d reaction at the Tokyo cyclotron. “…we are certain that the process should be written as follows: Ge$^{73} + D^2 \rightarrow$ As$^{74} + n^1$ [and] As$^{75} + n^1 \rightarrow$ As$^{74} + 2n^1.”$ The half-life was found to be 17 days which is consistent with the accepted value of 17.77(2) d.

As

In 1920 Aston identified 75As at the Cavendish Laboratory in Cambridge in *Mass Spectra and Isotopes* by analyzing the spectrum of the gaseous hydride AsH$_3$ using a mass spectrograph [21]. Aston states that the element appears to have no (other) isotopes and in the summary table he assigns it a mass of 75.

As

In 1934 Amaldi *et al.* discovered 76As when irradiating targets with neutrons from beryllium powder mixed with emanation (radon) at the Istituo Fisico della R. Università in Rome, Italy, which he announced in *Radioactivity Produced by Neutron Bombardment-V* [22]. “A chemical separation of the active substance in presence of gallium and germanium enables us to exclude the possibility that it is gallium and makes it very unlikely that it is germanium. The most probable hypothesis is that the activity is due to 76As.” β-ray activity was measured with a Geiger-Müller counter. In a separate paper a half-life of “about 2 days” [23] was determined. The accepted half-life is 1.0778(20) d.

As

The discovery of 77As was published in 1951 by Steinberg and Engelkemeir from Argonne National Laboratory in *Short-Lived Germanium and Arsenic Fission Activities* [24] as part of the Manhattan Project Technical Series. Samples of uranyl nitrate were irradiated in the thimble of the Heavy-water Pile and the subsequent period of activity was found to be 40 hours. “Two germanium and two arsenic
activities have been found in fission, with the following chain relations: $12h \text{Ge}^{77} \rightarrow 40h \text{As}^{77} \rightarrow \text{stable Se}^{77}$. The accepted half-life of ^{77}As is 38.83(5) h. The discovery had been reported in the 1946 Plutonium Project Record [25] and the result tabulated in reference [26] but we only recognize the first unclassified publication of 1951 as the equivalent to a refereed paper. Thus, the credit of discovery should go to Arnold and Sugarman also from Argonne National Laboratory who published their observation of ^{77}As [27] in 1947. However, because Arnold and Sugarman were aware of and had access to the Plutonium Project work we credit the discovery to Steinberg and Engelkemeir. It should also be mentioned that in 1939 Sagane [17] incorrectly identified ^{77}As as pointed out by Elliott and Deutsch [28].

^{78}As

Snell discovered ^{78}As in 1937 at the Radiation Laboratory at the University of California in Berkeley which he announced in *The Radioactive Isotopes of Bromine: Isomeric Forms of Bromine 80* [29]. “The reaction $^{81}\text{Br}(n,\alpha)^{78}\text{As}$ resulted from an activation of a large sample of ammonium bromide with (Be+D) neutrons. After a chemical separation, the arsenic fraction showed activity having a decay period of 65 ± 3 minutes. This activity is new, and it has been attributed to arsenic 78, presumably made by a parallel reaction from the other bromine isotope.” The accepted half-life value is 90.7(2) m.

^{79}As

^{79}As was first observed by Butement in 1950 at the Atomic Energy Research Establishment in Harwell, England, as reported in *New Radioactive Isotopes Produced by Nuclear Photo-Disintegration* [30]. ^{79}As was produced through irradiation of potassium selenate by 23 MeV x-rays from the synchrotron in the photonuclear reaction $^{80}\text{Se}^{(\gamma,p)}^{80}\text{As}$. “The activity showed a half-life of 9 minutes and a weak residual activity with an apparent half-life of about 31 hours. The latter may be attributed to a mixture of 26.8-hour ^{76}As and 40-hour ^{77}As. The yields of the 9-minute and 31-hour activities were approximately equal. The 9-minute arsenic is therefore probably ^{79}As, decaying by beta-particle emission into ^{79}Se whose half-life is either very short or very long.” The measured half-life agrees with the accepted value of 9.01(15) m.

^{80}As

Ythier and Herrman discovered ^{80}As in 1954 at the Max-Planck-Institut für Chemie in Mainz, Germany, which was described in *Über Schwere Isotope des Arsens* [31]. ^{80}As was produced by bombarding selenium with fast neutrons. The isotope was produced in the reaction $^{80}\text{Se}^{(n,p)}^{80}\text{As}$. “Eine neue und sehr intensive Aktivität von T≈36 sec scheint dem Arsen zuzugehören und könnte eventuell das gesuchte ^{80}As sein.” (A new and very intense activity with T~36 s seems to be due to arsenic and could be the searched for ^{80}As.) The accepted half-life is 15.2(2) s.

^{81}As

Morinaga *et al.* discovered ^{81}As in 1960 at Tohoku University in Sendai, Japan, which was reported in *Three New Isotopes, $^{63}\text{Co}, ^{75}\text{As}, ^{81}\text{As}* [32]. Selenium was bombarded with 25 MeV bremsstrahlung in the betatron and produced via the reaction $^{82}\text{Se}^{(\gamma,p)}$. “Besides all previously known activities a
very short-lived component with approximately 30 sec was observed...Fig. 6 shows the half-life of this short half-lived activity measured by the plastic scintillator discriminated at 2.3-MeV. From this measurement the half-life was determined to be 32 ± 2 sec.” Chemical separations were performed to confirm the activity was due to arsenic. The half-life is consistent with the accepted value of $33.3(8)$ s. It should be mentioned that in the same month (February 1960) C. Ythier confirmed the results [33]. C. Ythier had submitted his paper about three months later and was aware of the Morinaga manuscript.

82As

In 1968 at the Institute of Nuclear Sciences in Wellington, New Zealand, Mathew et al. discovered 82As which was reported in New Isotope 82As [34]. The new isotope was produced in the reaction 82Se(n,p)82As where the neutrons were produced by bombarding a tritium target with 0.8 MeV deuterons. “Two new γ-activities of energies 655 ± 0.5 keV and 817 ± 0.5 keV and half-life 15 ± 2 s have been produced by irradiation of natural selenium and enriched 82Se, with 16.4 MeV neutrons. These activities are assigned to the β^- decay of 82As formed in the reaction 82Se(n,p)82As.” A coaxial Ge(Li) detector was used to measure the γ-ray spectrum. The measured half-life is close to the accepted value of $19.1(5)$ s.

$^{83-84}$As

In Identification of new arsenic isotopes in fission: 83As and 84As del Marmol reported the discovery of $^{83-84}$As at the Centre d’Etude de l’Energie Nucléaire in Belgium in 1968 [35]. Thermal neutrons from a BR2 reactor irradiated a solution of 235U, 76As tracer, As$^{+5}$, Sb$^{+5}$ and SeO$_3$ dissolved in sulfuric acid. “A least-squares analysis, weighted for initial bromine activities, gives half-lives of 14.1 ± 1.1 sec for 83As and of 5.8 ± 0.5 sec for 84As.” The value for 83As is included in the average for the accepted half-life of $13.4(3)$ s and the value for 84As is close to the accepted half-life of $4.02(3)$ s.

85As

In 1967 at Mol, Belgium, del Marmol and de Mevergnies were the first to identify 85As which they reported in Investigation of delayed neutron precursors of As, Sb and Ge [36]. 85As was produced in thermal neutron fission of 235U and identified via chemical separation where a neutron activity of 2.14 s was observed. “Regarding mass assignments for this 2.15-sec activity, prospective d.n.p. [delayed neutron precursors] are expected among isotopes within masses 85 and 87; ... However, owing to the absence of any 56-sec neutron activity from the 87Br grand-daughter, 87As could be ruled out as being responsible for the 2.15-sec activity,...”. The half-life agrees with the presently accepted value of $2.021(10)$ s.

86As

In 1973 Kratz et al. were the first to observe and separate 86As at the Institut für Anorganische und Kernchemie der Universität Mainz in Germany which they reported in Delayed-Neutrons from Arsenic Isotopes 84As, 85As, and 86As [37]. 86As was produced via the thermal-neutron fission of 235U and subsequent isolation by volatilization of arsenic hydride. “A new isotope, 0.9 ± 0.2 sec 86As, was detected by delayed neutron counting and by following the decay of its most prominent γ-ray. The mass
assignment was verified by milking of 54 sec 86Br.” The measured half-life agrees with the accepted value of 0.945(8) s.

87As

In 1970 Kratz and Herrmann in *Half-Lives, Fission Yields and Neutron Emission Probabilities of 87Se and 88Se, and Evidence for 87As* reported the observation of 87As at the Institut für Anorganische und Kernchemie der Universität Mainz in Germany, via thermal-neutron fission of 235U in the Mainz Triga reactor [38]. Neutron activities were measured with 3He counting tubes and γ-ray spectroscopy was measured with a Ge(Li) diode. “Evidence for the existence of 87As was found from a slight growth of the 87Se activity, corresponding to a half-life of 0.6±0.3 sec and a fractional cumulative yield of 4±2 per cent for 87As.” The measured half-life is consistent with the accepted value of 0.61(12) s.

88−89As

In 1994 Bernas *et al.* announced the discovery of 88−89As in *Projectile Fission at Relativistic Velocities: A Novel and Powerful Source of Neutron-Rich Isotopes Well-Suited for In-Flight Isotopic Separation* at GSI in Darmstadt, Germany [39]. A 750 A-MeV 238U beam accelerated by the heavy ion synchrotron SIS impinged on a lead target. “Reaction products were analyzed with the fragment separator FRS which was operated in the achromatic mode. Energy loss of the separation fragments, which is characteristic for their nuclear charge Z, was measured in a four-stage MUSIC ionization chamber at the exit of the FRS” which allowed particles to be “unambiguously identified by their energy-loss and time-of-flight.” 51 counts of 88As and 8 counts of 89As were observed.

90−92As

Bernas *et al.* reported the observation of 90−92As in *Discovery and Cross-Section Measurement of 58 New Fission Products in Projectile-Fission of 750-A-MeV 238U* at GSI in Darmstadt, Germany, in 1997 [40]. The experimental and analysis procedures were the same as in the 1994 experiment with the only difference being that a beryllium target was used instead of a lead target. “The projectile fission of uranium at relativistic energy impinging on a Be target was investigated with the fragment separator, FRS, in order to produce and identify new isotopes and to measure their production yields.” 228 counts of 90As, 37 counts of 91As and four counts of 92As were observed.

3. SUMMARY

The discoveries of the isotopes of arsenic have been catalogued and the methods of their production discussed. Only two isotopes had been previously wrongly identified (73As and 77As). The decay of 70As was undoubtedly observed, but incorrectly attributed to 71As, two years before the discovery publication we have accepted. The discovery of 66As was not acknowledged by the authors because of the presence of an unpublished report. 77As demonstrates the difficulty in assigning the discovery of isotopes during the Manhattan Project. As a general guideline we consider the unclassified publication of the Plutonium Project Records in 1951 as the relevant publication [41]. However, in the case of 77As
Arnold and Sugarman published their result in 1947 [27] being aware of and having access to the data of their colleagues within the Plutonium Project. Thus, we attribute the discovery of 77As to Steinberg and Engelkemeir [24].

Acknowledgments

This work was supported by the National Science Foundation under grants No. PHY06-06007 (NSCL) and PHY07-54541 (REU). MH was supported by NSF grant PHY05-55445.

REFERENCES

1. G.Q. Ginepro, J. Snyder, and M. Thoennessen, At. Data Nucl. Data Tables, in print (2009)
2. G. Audi, O. Bersillon, J. Blachot, and A.H. Wapstra, Nucl. Phys. A 729, 3 (2003)
3. ENSDF, Evaluated Nuclear Structure Data File, maintained by the National Nuclear Data Center at Brookhaven National Laboratory, published in Nuclear Data Sheets (Academic Press, Elsevier Science).
4. S. Goriely, M. Samyn, and J.M. Pearson, Phys. Rev. C 75, 064312 (2007)
5. M. Thoennessen, Rep. Prog. Phys. 67, 1187 (2004)
6. H.A. Grunder and F.B. Selph, Annu. Rev. Nucl. Sci., 27, 353 (1977)
7. B. Blank, et al., Phys. Rev. Lett. 74, 4611 (1995)
8. M.F. Mohar, D. Bazin, W. Benenson, D.J. Morrissey, N.A. Orr, B.M. Sherrill, D. Swan, J.A. Winger, A.C. Mueller, and D. Guillemaud-Mueller, Phys. Rev. Lett. 66, 1571 (1991)
9. D.E. Alburger, Phys. Rev. C 18, 1875 (1978)
10. K.P. Jackson, R.E. Azuma, I. Berka, T. Faestermann, J.C. Hardy, and H. Schmeing, AECL-5315, p. 15 (1976)
11. M.J. Murphy, C.N. Davids, and E.B. Norman, Phys. Rev. C 22, 2204 (1980)
12. M.J. Murphy, C.N. Davids, E.B. Norman, R.C. Pardo, and L.A. Parks, Bull. Amer. Phys. Soc. Ser II 21, 968 (1976)
13. T. Paradellis, A. Houdayer, and S.K. Mark, Nucl. Phys. A 174, 617 (1971)
14. F.D.S. Butement and E.G. Prout, Phil. Mag. 46, 357 (1955)
15. H.H. Hopkins Jr., Phys. Rev. 77, 717 (1950)
16. H.H. Hopkins Jr. and B.B. Cunningham, Phys. Rev. 73, 1406 (1948)
17. R. Sagane, Phys. Rev. 55, 31 (1939)
18. A.C.G. Mitchell, E.T. Jurney, and M. Ramsey, Phys. Rev. 71, 825 (1947)
19. D.A. McCown, L.L. Woodward, and M.L. Pool, Phys. Rev. 74, 1315 (1948)
20. R. Sagane, S. Kojima, and M. Ikawa, Phys. Rev. 54, 149 (1938)
21. F.W. Aston, Phil. Mag. 40, 632 (1920)
22. E. Amaldi, O. D’Agostino, E. Fermi, F. Rasetti, and E. Segrè, Ric. Scientifica 5, 21 (1934)
23. E. Amaldi, O. D’Agostino, E. Fermi, F. Rasetti, and E. Segrè, Ric. Scientifica 5, 330 (1934)
24. E.P Steinberg and D.W. Engelkemeir, Radiochemical Studies: The Fission Products, Paper 54, p. 566, National Nuclear Energy Series IV, 9, (McGraw-Hill, New York 1951)
25. Plutonium Project Record, Vol. 9B (1946)
26. The Plutonium Project, J. Am. Chem. Soc. 68, 2411 (1946); Rev. Mod. Phys. 18, 513 (1946)
27. J.R. Arnold and N. Sugarman, J. Chem. Phys. 15, 703 (1947)
28. L.G. Elliott and M. Deutsch, Phys. Rev. 63, 457 (1943)
29. A.H. Snell, Phys. Rev. 52, 1007 (1937)
30. F.D.S. Butement, Proc. Roy. Soc.(London) 64A, 395 (1951)
31. C. Ythier and G. Herrmann, Z. Elektrochem. 58, 630 (1954)
32. H. Morinaga, T. Kuroyanagi, H. Mitsui, and K. Shoda, J. Phys. Soc. Japan 15, 213 (1960)
33. C. Ythier, Compt. Rend. 250, 1630 (1960)
34. P.J. Mathew and G.J. McCallum, Phys. Lett. 28B, 106 (1968)
35. P. del Marmol, J. Inorg. Nucl. Chem 30, 2873 (1968)
36. P. del Marmol and M. Nève de Mévergnies, J. Inorg. Nucl. Chem 29, 273 (1967)
37. J.V. Kratz, H. Franz, and G. Herrmann, J. Inorg. Nucl. Chem 35, 1407 (1973)
38. J.V. Kratz and G. Herrmann, J. Inorg. Nucl. Chem 32, 3713 (1970)
39. M. Bernas et al., Phys. Lett. B 321, 19 (1994)
40. M. Bernas et al., Phys. Lett. B 415, 111 (1997)
41. C.D. Coryell and N. Sugarman, (editors) Radiochemical Studies: The Fission Products, National Nuclear Energy Series IV, 9, (McGraw-Hill, New York 1951)
EXPLANATION OF TABLE

TABLE I. Discovery of Arsenic Isotopes

Isotope	Arsenic isotope
First Author	First author of refereed publication
Journal	Journal of publication
Ref.	Reference
Method	Production method used in the discovery:
	FE: fusion evaporation
	LP: light-particle reactions (including neutrons)
	MS: mass spectroscopy
	NF: neutron-induced fission
	PN: photo-nuclear reactions
	PF: projectile fragmentation or projectile fission
Laboratory	Laboratory where the experiment was performed
Country	Country of laboratory
Year	Year of discovery
TABLE I. Discovery of Arsenic isotopes	

See page 12 for Explanation of Tables	

This space intentionally left blank
Isotope	First Author	Journal	Ref.	Method	Laboratory	Country	Year
As	B. Blank	Phys. Rev. Lett.	Bla95	PF	GANIL	France	1995
As	M.F. Mohar	Phys. Rev. Lett.	Moh91	PF	Michigan State	USA	1991
As	D.E. Alburger	Phys. Rev. C	Alb78	PF	Brookhaven	USA	1978
As	M.J. Murphy	Phys. Rev. C	Mur80	PF	Argonne	USA	1980
As	T. Paradellis	Nucl. Phys. A	Par71	LP	McGill	Canada	1971
As	F.D.S. Butement	Phil. Mag.	But55	LP	Harwell	UK	1955
As	H.H. Hopkins Jr.	Phys. Rev.	Hop50	LP	Berkeley	USA	1950
As	R. Sagane	Phys. Rev.	Sag39	LP	Berkeley	USA	1939
As	A.C.G. Mitchell	Phys. Rev.	Mit47	LP	Indiana	USA	1939
As	D.A. McCown	Phys. Rev.	McC48	LP	Ohio State	USA	1948
As	R. Sagane	Phys. Rev.	Sag38	LP	Berkeley	USA	1938
As	F.W. Aston	Phil. Mag.	Ast20	MS	Cavendish	UK	1920
As	E. Amaldi	Ric. Scientifica	Ama34	NF	Rome	Italy	1934
As	E.P. Steinberg	Nat. Nucl. Ener. Ser.	Ste51	NF	Argonne	USA	1951
As	A.H. Snell	Phys. Rev.	Sne37	LP	Berkeley	USA	1937
As	F.D.S. Butement	Proc. Roy. Soc.	But50	PN	Harwell	UK	1950
As	C. Ythier	Z. Elektrochem	Yth54	LP	Mainz	Germany	1954
As	H. Morinaga	J. Phys. Soc. Japan	Mor60	PN	Tohoku	Japan	1960
As	P.J. Mathew	Phys. Lett. B	Mat68	LP	Wellington	New Zealand	1968
As	P. del Marmol	J. Inorg. Nucl. Chem.	Mar68	NF	Mol	Belgium	1968
As	P. del Marmol	J. Inorg. Nucl. Chem.	Mar68	NF	Mol	Belgium	1968
As	P. del Marmol	J. Inorg. Nucl. Chem.	Mar67	NF	Mol	Belgium	1967
As	J.V. Kratz	J. Inorg. Nucl. Chem.	Kra73	NF	Mainz	Germany	1973
As	J.V. Kratz	J. Inorg. Nucl. Chem.	Kra70	NF	Mainz	Germany	1970
As	M. Bernas	Phys. Lett. B	Ber94	PF	Darmstadt	Germany	1994
As	M. Bernas	Phys. Lett. B	Ber94	PF	Darmstadt	Germany	1994
As	M. Bernas	Phys. Lett. B	Ber97	PF	Darmstadt	Germany	1997
As	M. Bernas	Phys. Lett. B	Ber97	PF	Darmstadt	Germany	1997
REFERENCES FOR TABLE

Alb78 D.E. Alburger, Phys. Rev. C 18, 1875 (1978)
Ama34 E. Amaldi, O. D’Agostino, E. Fermi, F. Rasetti, and E. Segrè, Ric. Scientifica 5, 21 (1934)
Ast20 F.W. Aston, Phil. Mag. 40, 632 (1920)
Ber94 M. Bernas et al., Phys. Lett. B 321, 19 (1994)
Ber97 M. Bernas et al., Phys. Lett. B 415, 111 (1997)
Bla95 B. Blank, et al., Phys. Rev. Lett. 74, 4611 (1995)
But50 F.D.S. Butement, Proc. Roy. Soc.(London) 64A, 395 (1951)
But55 F.D.S. Butement and E.G. Prout, Phil. Mag. 46, 357 (1955)
Hop50 H.H. Hopkins Jr., Phys. Rev. 77, 717 (1950)
Kra70 J.V. Kratz and G. Herrmann, J. Inorg. Nucl. Chem 32, 3713 (1970)
Kra73 J.V. Kratz, H. Franz, and G. Herrmann, J. Inorg. Nucl. Chem 35, 1407 (1973)
Mar67 P. del Marmol and M. Nève de Mévergnies, J. Inorg. Nucl. Chem 29, 273 (1967)
Mar68 P. del Marmol, J. Inorg. Nucl. Chem 30, 2873 (1968)
Mat68 P.J. Mathew and G.J. McCallum, Phys. Lett. 28B, 106 (1968)
McC48 D.A. McCown, L.L. Woodward, and M.L. Pool, Phys. Rev. 74, 1315 (1948)
Mit47 A.C.G. Mitchell, E.T. Jurney, and M. Ramsey, Phys. Rev. 71, 825 (1947)
Moh91 M.F. Mohar, D. Bazin, W. Benenson, D.J. Morrissey, N.A. Orr, B.M. Sherrill, D. Swan, J.A. Winger, A.C. Mueller, and D. Guillemaud-Mueller, Phys. Rev. Lett. 66, 1571 (1991)
Mor60 H. Morinaga, T. Kuroyanagi, H. Mitsui, and K. Shoda, J. Phys. Soc. Japan 15, 213 (1960)
Mur80 M.J. Murphy, C.N. Davids, and E.B. Norman, Phys. Rev. C 22, 2204 (1980)
Par71 T. Paradellis, A. Houdayer, and S.K. Mark, Nucl. Phys. A 174, 617 (1971)
Sag38 R. Sagane, S. Kojima, and M. Ikawa, Phys. Rev. 54, 149 (1938)
Sag39 R. Sagane, Phys. Rev. 55, 31 (1939)
Sne37 A.H. Snell, Phys. Rev. 52, 1007 (1937)
Ste51 E.P Steinberg and D.W. Engelkemeir, Radiochemical Studies: The Fission Products, Paper 54, p. 566, National Nuclear Energy Series IV, 9, (McGraw-Hill, New York 1951)
Yth54 C. Ythier and G. Herrmann, Z. Elektrochem. 58, 1630 (1954)