A FAMILY OF MAPS WITH MANY SMALL FIBERS

HANNAH ALPERT AND LARRY GUTH

Abstract. The waist inequality states that for a continuous map from S^n to \mathbb{R}^q, not all fibers can have small $(n-q)$-dimensional volume. We construct maps for which most fibers have small $(n-q)$-dimensional volume and all fibers have bounded $(n-q)$-dimensional volume.

Let $n, q \in \mathbb{N}$ with $n > q \geq 1$, and let $f : S^n \to \mathbb{R}^q$ be a continuous map. Let $\hat{p} : \mathbb{R}^{n+1} \to \mathbb{R}^q$ be a surjective linear map, and let $p = \hat{p}|_{S^n}$. The waist inequality states that the largest fiber of f is at least as large as the largest fiber of p:

$$\sup_{y \in \mathbb{R}^q} \text{Vol}_{n-q} f^{-1}(y) \geq \sup_{y \in \mathbb{R}^q} \text{Vol}_{n-q} p^{-1}(y).$$

See [1], [3], [4], and [6] for proofs of the waist inequality, or [5] for a survey. In the case $q = 1$, the waist inequality is a consequence of the isoperimetric inequality on S^n. The isoperimetric inequality can also be used to prove that the portion of S^n covered by small fibers of f is not very big; that is, for all ε, we have

$$\text{Vol}_n \{ y : \text{Vol}_{n-q} f^{-1}(y) < \varepsilon \} \leq \text{Vol}_n \{ y : \text{Vol}_{n-q} p^{-1}(y) < \varepsilon \}.$$

The theorem presented in this paper describes how the same statement does not hold in the case $q > 1$. We have also included an appendix with a more precise statement of the waist inequality and the isoperimetric inequality.

Theorem 1. For every $n, q \in \mathbb{N}$ with $n > q \geq 1$, and for every $\varepsilon > 0$, there is a continuous map $f : S^n \to \mathbb{R}^q$ such that all but ε of the n-dimensional volume of S^n is covered by fibers that have $(n-q)$-dimensional volume at most ε. Moreover, we may require that every fiber of f has $(n-q)$-dimensional volume bounded by $C_{n,q}$, a constant not depending on ε.

In what follows, $I^n = [0,1]^n$ denotes the n-dimensional unit cube, and ∂I^n denotes its boundary. A tree refers to the topological space corresponding to a graph-theoretic tree: topologically, a tree is a finite 1-dimensional simplicial complex that is contractible.

The bulk of the construction comes from the following lemma, in which we construct a preliminary “tree map” $t_{n,r,\delta}$ from I^n to a tree. Later, to construct f we will change the domain from I^n to S^n by gluing several tree maps together, and we will change the range from the tree to \mathbb{R}^q by composing with a map from a thickened tree to \mathbb{R}^q. In the tree map $t_{n,r,\delta}$, the parameter r corresponds to the depth of the tree. As r increases, the typical fiber of the map becomes smaller. The parameter δ corresponds to the total volume of the larger fibers.

Lemma 1. For every $n, r \in \mathbb{N}$, there is a rooted tree $T_{n,r}$ such that for every $\delta > 0$ there is a continuous map $t_{n,r,\delta} : I^n \to T_{n,r}$ with the following properties:

2010 Mathematics Subject Classification. 53C23.
Figure 1. Every fiber of $t_{2,2,\delta}$ has length at most 6, and most fibers have length at most 1.

(1) Every fiber of $t_{n,r,\delta}$ is either a single point, the boundary of an n-dimensional cube of side length at most 1, or the $(n-1)$-skeleton of a $2 \times 2 \times \cdots \times 2$ array of n-dimensional cubes each of side length at most $\frac{1}{\delta}$.

(2) All but δ of the volume of I^n is covered by fibers of $t_{n,r,\delta}$ that are boundaries of n-dimensional cubes of side length at most 2^{-r}.

(3) $t_{n,r,\delta}(\partial I^n)$ is a single point, the root of $T_{n,r}$.

(4) Each vertex has at most 2^n daughter vertices.

Proof. We construct the tree and tree map recursively in r. For $r = 0$, the tree $T_{n,0}$ is a single edge which we may identify with the interval $[0, \frac{1}{2}]$, with 0 being the root. For any δ, we set $t_{n,0,\delta}(x) = \text{dist}(x, \partial I^n)$ for all $x \in I^n$.

Now let $r > 0$. To construct $T_{n,r}$, we take the disjoint union of one copy of $[0,1]$ and 2^n copies of $T_{n,r-1}$, and identify the root of every copy of $T_{n,r-1}$ with $1 \in [0,1]$. The root of $T_{n,r}$ is $0 \in [0,1]$. We define $t_{n,r,\delta}$ piecewise as follows. For some small choice of $\delta_1 > 0$, we define $t_{n,r,\delta}$ on the closed δ_1-neighborhood of ∂I^n to $[0,1] \subset T_{n,r}$ by

$$t_{n,r,\delta}(x) = \frac{1}{\delta_1} \text{dist}(x, \partial I^n).$$
Then, translating the coordinate hyperplanes to pass through the center of \(I^n \) we divide the remainder of the cube into a \(2 \times 2 \times \cdots \times 2 \) array of cubes \(Q_1, \ldots, Q_{2^n} \) each of side length slightly less than \(\frac{1}{2} \). For each \(j = 1, \ldots, 2^n \), let \(\lambda_j : Q_j \to I^n \) be the map that scales \(Q_j \) up to unit size, and let \(i_j : T_{n,r-1} \to T_{n,r} \) be the inclusion of the \(j \)th copy of \(T_{n,r-1} \) into \(T_{n,r} \). Then for some small choice of \(\delta_2 > 0 \), we put
\[
t_{n,r,\delta}(Q_j) = i_j \circ t_{n,r-1,\delta_2} \circ \lambda_j.
\]

Properties 1, 3, and 4 are easily satisfied by the construction. To ensure property 2, we need to choose \(\delta_1 \) and \(\delta_2 \). The volume of \(I^n \) that is covered by large fibers—fibers not equal to the boundary of a cube of side length at most \(2^{-r} \)—is at most \(\delta_1 \cdot 2n + 2^n \cdot \delta_2 \cdot 2^{-n} \), because the area of \(\partial I^n \) is \(2n \) and because the portion of each \(Q_j \) that is covered by large fibers has volume at most \(\delta_2 \cdot \text{Vol}(Q_j) < \delta_2 \cdot 2^{-n} \). Thus we may choose \(\delta_1 = \frac{1}{2n} \) and \(\delta_2 = \frac{1}{2} \).

Proof of Theorem 1. We may replace \(S^n \) by \(\partial I^{n+1} \) by composing with the (bi-Lipschitz) homeomorphism \(\psi : S^n \to \partial I^{n+1} \) given by lining up the centers of \(S^n \) and \(\partial I^{n+1} \) in \(\mathbb{R}^{n+1} \) and projecting radially. We start by constructing a tree \(T \) and a tree map \(t : \partial I^{n+1} \to T \). For some large choice of \(r \), let \(T \) be the tree obtained by identifying the roots of \(2(n+1) \) copies of \(T_{n,r} \), one for each \(n \)-dimensional face of \(\partial I^{n+1} \). For some small choice of \(\delta \), define \(t \) on each \(n \)-dimensional face of \(\partial I^{n+1} \) to be the composition of \(t_{n,r,\delta} \) with the inclusion of the corresponding \(T_{n,r} \) into \(T \).

The fibers of \(t \) have dimension \(n-1 \). In order to cut the fibers down to dimension \(n-q \), we next construct a projection map \(p : \partial I^{n+1} \to \mathbb{R}^{q-1} \) such that the fibers of \(p \) intersect the fibers of \(t \) transversely. The fibers of \(p \) have codimension \(2 \) in \(\mathbb{R}^{n+1} \) and are aligned with the standard coordinates, so we achieve transversality by using other linear coordinates to construct \(p \). We choose \(q-1 \) linearly independent vectors \(v_1, \ldots, v_{q-1} \in \mathbb{R}^{n+1} \) such that for every two standard basis vectors \(e_i, e_j \in \mathbb{R}^{n+1} \) the spaces \(\text{span}\{e_i, e_j\}^\perp \) and \(\text{span}\{v_1, \ldots, v_{q-1}\}^\perp \) intersect transversely; equivalently, the set \(e_i, e_j, v_1, \ldots, v_{q-1} \) is linearly independent. For \(k = 1, \ldots, q-1 \), define the \(k \)-th component of \(p \) to be the dot product of the input with \(v_k \). Then the fibers of \(t \times p : \partial I^{n+1} \times T \to \mathbb{R}^{q-1} \) are codimension \(q-1 \) transverse linear cross-sections of the \((n-1)\)-dimensional fibers of \(t \), and have \((n-q)\)-dimensional volume bounded by some constant depending on \(n \) and \(q \).

There exists \(M \) large enough that \(p(\partial I^{n+1}) \) is contained in the \((q-1)\)-dimensional ball \(B(M) \) of radius \(M \). We define a map \(\phi : T \times B(M) \to \mathbb{R}^q \) such that the number of points in each fiber of \(\phi \) is at most the maximum degree of \(T \), which is \(2^n + 1 \). Then we define \(f = \phi \circ (t \times p) \). The fibers of \(f \), like the fibers of \(t \times p \), have \((n-q)\)-dimensional volume bounded by a constant \(C_{n,q} \).

The map \(\phi \) is constructed as follows. Let \(\phi|_{T \times \{0\}} \) be an embedding of \(T \) into \(\mathbb{R}^q \) in which the edges map to straight line segments and each daughter vertex has \(x_1 \)-coordinate greater than that of its parent. Let \(d \) be the minimum distance between disjoint edges of \(\phi(T \times \{0\}) \). Then for every \(p \in T \) and \(x \in B(M) \), we set
\[
\phi(p, x) = \phi(p, 0) + \frac{d}{4} \left(0, \frac{x}{M} \right),
\]
where \((0, \frac{x}{M}) \) denotes the point in \(\mathbb{R}^q \) constructed by adding onto \(\frac{x}{M} \in \mathbb{R}^{q-1} \) a first coordinate of 0. If \(\phi(p, x) = \phi(p', x') \), then \(\phi(p, 0) \) and \(\phi(p', 0) \) are at most \(\frac{d}{2} \) apart, so \(p \) and \(p' \) lie on two incident edges of \(T \); also, \(\phi(p, 0) \) and \(\phi(p', 0) \) have the same
x_1-coordinate, so these two edges are between two daughters and a common parent, rather than a daughter, a parent, and a grandparent.

To finish the proof, we show that δ and r may be chosen such that all but ε of the n-dimensional volume of ∂I^{n+1} is covered by fibers with $(n-q)$-dimensional volume at most ε. The maximum number of daughter vertices of any vertex of T is 2^n, and most of ∂I^{n+1} is covered by fibers of f that are unions of at most 2^n codimension $q-1$ transverse linear cross-sections of boundaries of n-dimensional cubes of side length at most 2^{-1}. We choose r large enough that every codimension $q-1$ transverse linear cross-section of $2^{-r}\partial I^n$ has $(n-q)$-dimensional volume at most $\frac{\varepsilon}{2(n+1)}$. The volume of the portion of ∂I^{n+1} covered by larger fibers is at most $2(n+1)\cdot\delta$, so we choose $\delta < \frac{\varepsilon}{2(n+1)}$. \hfill \Box

Appendix: The waist inequality and the isoperimetric inequality

In order to be precise about the waist inequality, we need a notion of $(n-q)$-dimensional volume of arbitrary closed subsets in S^n. Gromov’s version of the waist inequality is stated in terms of the Lebesgue measures Vol_n of the ε-neighborhoods $f^{-1}(y)_\varepsilon$ of the fibers $f^{-1}(y)$ of a continuous map f.

Theorem 2 (Waist inequality, [4]). Let $f: S^n \to \mathbb{R}^q$ be a continuous map. Then there exists a point $y \in \mathbb{R}^q$ such that for all $\varepsilon > 0$, we have

$$\text{Vol}_n(f^{-1}(y)_\varepsilon) \geq \text{Vol}_n(S^n_{\varepsilon} - q),$$

where $S^n_{\varepsilon} - q \subset S^n$ denotes an equatorial $(n-q)$-sphere.

The paper [6] gives a detailed exposition of the proof of the waist inequality and fills in some small gaps in the original argument. For convenience we introduce a notation for comparing the ε-neighborhoods of two sets: given $E, F \subseteq S^n$, we say that E is **larger in neighborhood** than F, denoted $E \geq_{nbd} F$, if for all $\varepsilon > 0$ we have

$$\text{Vol}_n(E_\varepsilon) \geq \text{Vol}_n(F_\varepsilon).$$

Then the waist inequality states that for some $y \in \mathbb{R}^q$ we have $f^{-1}(y) \geq_{nbd} S^n_{\varepsilon} - q$.

In the case $q = 1$, we would like to say that the waist inequality is a consequence of the isoperimetric inequality. The classical isoperimetric inequality applies only to regions with smooth boundary, so we need the following version, which is stated and proved in [4] and attributed to [7]:

Theorem 3 (Isoperimetric inequality). Let $A \subseteq S^n$ be a closed set and $B \subseteq S^n$ be a closed ball with $\text{Vol}_n(B) = \text{Vol}_n(A)$. Then we have

$$A \geq_{nbd} B.$$

In the introduction we claimed that in the case $q = 1$, the isoperimetric inequality could be used to prove, in addition to the waist inequality, another statement about the volume of S^n covered by small fibers. Here we formulate the statement more precisely and prove it. The proof implies the waist inequality for $q = 1$.

Theorem 4. Let $f: S^n \to \mathbb{R}$ be a continuous map, and $p: S^n \to \mathbb{R}$ be the restriction to S^n of a surjective linear map $\tilde{p}: \mathbb{R}^{n+1} \to \mathbb{R}$. Then for all $y \in p(S^n)$, we have

$$\text{Vol}_n\{x \in S^n : f^{-1}(f(x)) \geq_{nbd} p^{-1}(y)\} \geq \text{Vol}_n\{x \in S^n : \tilde{p}^{-1}(p(x)) \geq_{nbd} \tilde{p}^{-1}(y)\}.$$
Lemma 2. Let \(X, Y \subset S^n \) be closed sets with \(X \cup Y = S^n \). Let \(B^X, B^Y \subset S^n \) be closed balls such that their two centers are antipodal in \(S^n \) and \(\text{Vol}_n(B^X) = \text{Vol}_n(X) \) and \(\text{Vol}_n(B^Y) = \text{Vol}_n(Y) \). Then we have
\[
X \cap Y \supseteq \text{nbd} B^X \cap B^Y.
\]

Proof. First we claim that \((X \cap Y)_\varepsilon \) is the disjoint union of \(X_\varepsilon \setminus X \), \(Y_\varepsilon \setminus Y \), and \(X \cap Y \). It is clear that \((X \cap Y)_\varepsilon \) is the disjoint union of its intersections with \(S^n \setminus X \), \(S^n \setminus Y \), and \(X \cap Y \). Thus it suffices to show that
\[
(X \cap Y)_\varepsilon \cap (S^n \setminus X) = X_\varepsilon \setminus X.
\]
Because \((X \cap Y)_\varepsilon \subseteq X_\varepsilon \), we immediately have
\[
(X \cap Y)_\varepsilon \cap (S^n \setminus X) \subseteq X_\varepsilon \setminus X.
\]
For the reverse inclusion, let \(y \in X_\varepsilon \setminus X \), and let \(\gamma : [0, 1] \to S^n \) be a curve of length at most \(\varepsilon \) with \(\gamma(0) = y \) and \(\gamma(1) = x \in X \). Let \(t \in [0, 1] \) be the greatest value with \(\gamma(t) \in Y \). Then \(\gamma(t) \in X \cap Y \), so \(y \in (X \cap Y)_\varepsilon \).

Thus, applying the isoperimetric inequality and additivity of measure, we have
\[
\text{Vol}_n((X \cap Y)_\varepsilon) = \text{Vol}_n(X_\varepsilon) - \text{Vol}_n(X) + \text{Vol}_n(Y_\varepsilon) - \text{Vol}_n(Y) + \text{Vol}_n(X \cap Y) \geq \text{Vol}_n(B^X_\varepsilon) - \text{Vol}_n(B^X) + \text{Vol}_n(B^Y_\varepsilon) - \text{Vol}_n(B^Y) + \text{Vol}_n(B^X \cap B^Y) = \text{Vol}_n((B^X \cap B^Y)_\varepsilon).
\]

\(\square \)

Proof of Theorem 4. Without loss of generality we assume \(p(S^n) = [0, 1] \) and \(y \leq \frac{1}{2} \). Then on the right-hand side of the desired inequality we have
\[
\{ x \in S^n : p^{-1}(p(x)) \supseteq \text{nbd} p^{-1}(y) \} = p^{-1}[y, 1 - y].
\]
Define \(\alpha, \beta \in \mathbb{R} \) as
\[
\alpha = \sup \{ t \in \mathbb{R} : \text{Vol}_n f^{-1}(-\infty, t) \leq \text{Vol}_n p^{-1}[0, y] \},
\]
\[
\beta = \inf \{ t \in \mathbb{R} : \text{Vol}_n f^{-1}(t, \infty) \leq \text{Vol}_n p^{-1}[y, 1] \}.
\]
For each \(t \in [\alpha, \beta] \), apply the lemma with \(X = f^{-1}(-\infty, t) \) and \(Y = f^{-1}[t, \infty) \) to get \(f^{-1}(t) \supseteq \text{nbd} p^{-1}[y_1, y_2] \) for some \(y_1, y_2 \in [y, 1 - y] \). In particular, we have
\[
f^{-1}(t) \supseteq \text{nbd} p^{-1}(y_1) \supseteq \text{nbd} p^{-1}(y).
\]
Thus, we have
\[
f^{-1}[\alpha, \beta] \subseteq \{ x \in S^n : f^{-1}(f(x)) \supseteq \text{nbd} p^{-1}(y) \}.
\]
Because \(\text{Vol}_n f^{-1}(-\infty, \alpha) \leq \text{Vol}_n p^{-1}[0, y] \) and \(\text{Vol}_n f^{-1}(\beta, \infty) \leq \text{Vol}_n p^{-1}[y, 1] \) we have
\[
\text{Vol}_n f^{-1}[\alpha, \beta] \geq \text{Vol}_n p^{-1}[y, 1 - y].
\]
\(\square \)
References

[1] F.J. Almgren, The theory of varifolds — a variational calculus in the large for the k-dimensional area integrated, Mimeographed notes, 1965.

[2] T. Figiel, J. Lindenstrauss, and V. D. Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977), no. 1-2, 53–94. MR 0445274 (56 #3618)

[3] M. Gromov, Filling Riemannian manifolds, J. Differential Geom. 18 (1983), no. 1, 1–147. MR 697984 (85h:53029)

[4] ______, Isoperimetry of waists and concentration of maps, Geom. Funct. Anal. 13 (2003), no. 1, 178–215. MR 1978494 (2004m:53073)

[5] L. Guth, The waist inequality in Gromov’s work, The Abel Prize 2008–2012 (H. Holden and R. Piene, eds.), Springer, 2014, pp. 181–195.

[6] Y. Memarian, On Gromov’s waist of the sphere theorem, J. Topol. Anal. 3 (2011), no. 1, 7–36. MR 2784762 (2012g:53066)

[7] E. Schmidt, Die Brunn-Minkowskische Ungleichung und ihr Spiegelbild sowie die isoperimetrische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geometrie. I, Math. Nachr. 1 (1948), 81–157. MR 0028600 (10,471d)