Deep Learning Ensemble Model for the Prediction of Traffic Accidents Using Social Media Data

Dr. Sudipta Sahana1, Damodharan Palanippan2, Sunil Devidas Bobade3, Dr. Shaik Mohammad Rafi4, Kannadasan B5, Jayapandian N6

1Associate Professor, Dept. of CSE, University of Engineering & Management Kolkata, University Area, Plot No. III, B/S, New Town Rd, Action Area III, Newtown, Kolkata, West Bengal, ss.jsce@gmail.com
2DEPARTMENT OF COMPUTER ENGINEERING, MARWADI UNIVERSITY, RAJKOT, damomtpcse@gmail.com
3New Horizon Institute of Technology and Management, Thane, India, sunilbobade@nhitm.ac.in
4Professor in the department of computer science and engineering, Sri Mittapalli college of engineering, Guntur, Andhra Pradesh, mdrafi.527@gmail.com
5Assistant Professor, Civil Engineering, B.S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, Tamilnadu, India, kdasan9@gmail.com
6Associate Professor, Department of Computer Science and Engineering, School of Engineering and Technology, CHRIST (Deemed to be University), Bangalore, njayapandian@gmail.com

Corresponding Email: ss.jsce@gmail.com
DOI: 10.47750/pnr.2022.13.S09.055

Abstract

We develop an enhanced accident occurrence prediction model which depends on the heterogeneous ensemble learning to tackle the topic of a accident period prediction in the early stages of the tragedy using millions of the traffic accident information’s from the India. In order to start with, we concentrate on the early stages of development of accidents and choose few useful data from five categories: location, the traffic, climate, objects, and the time field. Further, we implement data cleansing, processing of outlier, and the missing value of processing to raise the quality of the data. Data mining methods can support in foreseeing the factors that are influential in concern to make severe damages. The research has significant factors that are closely connected through the severity of accidents on thruways are identified by Random Forest. Top elements influencing unintentional seriousness include temperature, distance, wind Chills, moisture, direction of wind and visibility. The main aim of this research work is to give a architecture to anticipate road crashes gathering data from the social media handles and the open access data, by implementing a ensembled Deep Learning Model. After which the result shows decent outcomes as a resort to the problem and fulfills the objective of prediction model based on algorithms and deep Learning models.

Keywords: traffic accidents, machine learning, ensemble learning, prediction model.

INTRODUCTION

Traffic security has been a serious worry starting from the beginning of the vehicle age, [1] just about a long time back. [2] It has been assessed that more than 400,000 people bite the dust and 10 to 16 million people are harmed consistently in street mishaps all through the globe. Records have likewise [3] represented that the ethics in street mishaps is extremely huge in the youthful grown-ups it comprise the significant piece of the human resource .[4] In request to defeat this issue there is requirement of different street wellbeing systems, strategies and counter measures. The review was directed on various reasons for death because of damages. The World Health Organization (WHO) records shows a horrendous tale that, a large portion of the passings among the ages 14 to 30 years are happen because of street car crashes and each year, nearly 1.26 million individuals lost lives because of street accidents. A review from WHO detailed a few normal reasons like lack of preparing establishments, unfortunate state of streets also unfortunate traffic the board is the underlying drivers. So, to defeat this issue a precise methodology and immovably based arrangement is expected in proficient and compelling methods. This framework experiences in boundaries and gives a deliberate and imagines view to survive and decipher the separate issue. Architects and specialists in the auto business had attempted to plan and assemble more secure vehicles, yet traffic mishaps are undeniable. [5] The problem of traffic congestion has gotten more worse due to the fast worldwide urbanization. The economy, society, and ecology can all suffer significantly from traffic gridlock. The major reasons of traffic jam is the traffic accidents which compromise security and slower speed of traffic, these accidents and the emission of the dangerous chemicals. Recurrent and non-recurrent traffic jams are the two main categories of traffic congestion. Where non-recurring traffic is not permanent
decrease in the normal ability brought on by the accidents, the work of maintenance or the construction operations, and the occasional incidents where the highest demand is more than usual, recurrent traffic takes place at the time the street is overloaded.

Injuries caused by Traffic and its cost to economy

The cost of loss caused by traffic accidents is nearly 1.5% per year out of the Gross National Product (GNP) over the underdeveloped nations nearly 2% in developing nations, and nearly 2.5% in the major developed economies [6]. Street accidents costs approx. US$519 billion that is massive economic costing. Whereas, a portion of the non-developed nations is US$69 billion and it is huge also this worth is massive that can be utilized to eradicate poverty of an undeveloped nation. Despite that, the street traffic tragedies impacts not just in social and monetarily there is few significance not provided to the issue when collated with different issues in which individuals lose their lives. A few nations are putting a great effort in their street traffic security. The inspiration behind this exploration study is to decrease the fatalities in road accidents. Street traffic paid a crucial job in the nation’s growth, however the cost paying by society is extremely high.

Prevention and predictability of road accidents

Road tragedies are predictable also could be predictable for outcomes of street traffics. Opportunity of street traffic mishaps is extremely lower for the greater part of the singular's excursions, as individuals commute ordinarily in single day, and a month and annually. In any case, the expansion of these possibilities is significant in nations like America, UK and Canada, and so forth. The thoughtfulness regarding street injuries in the period of 1970s to 1980s results in a massive decrease in street mishap injuries.[7] The reaction were animated by the activists and specialists. Social investigations represents with the political relations also the responsibility of the public authority to convey secure traffic the board plan, a fast and compelling plan of traffic with a low casualty rate could be sent.

Scientific proposal and reliability of data

Road traffic tragedies’ prevention is a hotly debated topic. Each researcher posses a different theory about what can be the key element that contributes to traffic accidents. The issue is highlighted by real data, social media, and journalistic reporting, which forces policymakers to create some regulations to address it. Policies that will be put into effect are supported by trustworthy and authentic data. First, information on serious accidents is required. Then, in order to direct the traffic safety policy, a thorough understanding of the factors causing the accidents is needed.

Required attempt not been implemented through the lacking also immature nations to gather the street traffic information this is the reason why there is a few non reported cases stands still. [8] The healthcare has the fluctuations to lay out a decent data gathering framework and provide the information with numerous crowds. Just solid and legitimate data can assist with decreasing traffic tragedies and furthermore serves to find the seriousness of the accidents and injury.

Objectives of the study:

1. To analysis reasons of the road accidents through features extraction from given data.
2. To study the serious impacts of the accident’s damages based on the data
3. To understand the life taking, severe, injurious caused by road accident
4. To implement the various algorithms and get the performance analysis
5. To derive the outcomes of the implemented algorithm.

Data set Description

Feature extraction of images
Vision-based Road accidents prediction model for the recording automatic detection and launching information of accident incidents at convergences. [9] The provided model in the first concentrates the vehicles derived from the picture of the CCTV camera, and the tracks of driving automobiles, and separates elements, for example, the variety pace of speed, the position, region, and bearing of the driving conveyances. The model then, at that point, goes with choices on the car crash in light of the removed elements. What's more, we recommended and planned the metadata library for the framework to work on the interoperability.

Processing of image

However, these given methodologies keep precise records of movement of the motor vehicle yet carry out inadequately in framework of the measures for mishap recognition. However the models don't execute fairly in that frame of mind for mishap recognition as they require explicit types of information and in this way can't be executed for an overall situation. The current methodologies are advanced for a solitary CCTV camera with boundary customization. Notwithstanding, the curiosity of the given structure incapacity to pair along with CCTV camera film.

Image upload to website

The situation that worries us the most is when someone records the scene and uploads it to social media before we can identify the participants and get in touch with the family.[10] However, we can learn more about how this event occurred by using these photos. We learn every detail about the collision. Therefore, the rod accident can be predicted. We submit this image to a domain and use Adaboost and a neural network to analyze it. When predicting accidents, the AdaBoost algorithm is more effective.

Research Methodology

In order to better believe the features of various things, which is behavior of driver, road situations, circumstances of the lighting, conditions of wheather, and so on, models are developed utilizing accident data records. This can aid users in computing the safety precautions necessary to prevent mishaps. By contrasting 2 situations oriented on out-of-the sample projections, it is possible to demonstrate how a statistical method based on directed graphs works. [11] The model is used to find statistically significant factors which could be utilized to execute a danger factor also minimize it by predicting the probabilities of accidents and injuries.

Here, road accident research is carried out by examining various data and posing pertinent questions. Questions like when is the riskiest time to drive, and how many accidents happen in village areas, cities, and the other places.

Trends of the cases of the accidents which occurs per year, are there more fatalities in accidents in places with high-speed limits, etc.... Microsoft Excel can be used to retrieve these data and provide the needed response. This research tries to draw attention to the information that matters the most in a traffic accident and enable forecasting. The following portion of the report contains the outcomes of this methodology.

AdaBoost Algorithms

Machine learning ensemble methods use the Boosting methodology referred as the AdaBoost algorithm, also referred as Adaptive Boosting. [12] The weightage are then again distributed with every incident through the more high weights provided which by mistake got identified, hence the name "adaptive boosting." For supervised learning, boosting used to lower bias and variation. It operates under the premise that students are developed in stages. Each student after the first is developed from a prior learner, with the exception of the first. Simply said, weak students are transformed into strong ones. Although there is a small difference in how it functions, the adaboost algorithm still operates on the same fundamentals as boosting.

Multiple usage of image processing

1 Image detection
2 frequently being used in fields of object detection, facial detection to know if there is a face present or not

3 detailed classification of prediction problems

Deep neural network

For statisticians, deep neural networks have a lot to offer, especially in terms of improving the precision of a machine learning model. A deep neural network (DNN), is the neural network that has a level of complication, often at least t2layers. In computer vision, deep neural networks (DNNs) have found exceptional success. However, their increased computational complexity significantly outweighs their enhanced performance, making it difficult for numerous resource-based equipment’s, like mobile phones and the Internet of Things (IoT) devices, to use them. [13] Therefore, in order to enable a wide range of edge AI applications, approaches and techniques that can eliminate the productivity bottleneck while keeping up with the high exactness of DNNs are profoundly pursued. Deep neural networks utilize progressed numerical displaying to dissect input in complex ways.[14] Artificial neural organization (ANN) Contrary to numerous other expectation strategies, ANN puts no limitations on the information factors (like how they ought to be dispersed). Besides, various examinations have exhibited that ANNs, which have the ability to find stowed away relationship inside the information without forcing any decent connections on the information, are better ready to recreate heteroskedasticity, or at least, information with huge instability and non-consistent change. While projecting monetary time series with high information instability, for example, stock costs, this is a profoundly supportive instrument.

Detection of Accident

here this section, introduce 3 different parameters (, and) to track their anomalies for the detection of accident in the situation when the vehicle overlaps the particular parameters . The conditions are:

1) The Acceleration of Anomaly, α

2) The Trajectory of Anomaly, β

3) Variation in the Angle of Anomaly, γ

We can decide the speed increase of the vehicles from their kept velocities in the dictionary when two vehicles are coming in overlap.

Here the research determine the cars' average acceleration for the 15 frames prior to the overlapping condition (C1) and their highest level of acceleration for the 15 frameworks following C1. By subtracting the maximum acceleration from the average acceleration under overlapping conditions, we can determine the change in accelerations for each individual vehicle (C1). Based
on this deviation from a predetermined set of requirements, Acceleration of Anomaly () is described as to identify collision. The metric represents the significant change in speed that occurs following a collision, making it possible to identify accidents from variations in it.

The directions then, at that point, act as the tangential vector regarding the hub since a vehicle turns somewhat as for a hub during a mishap. [15] We can evaluate the level of turn and, subsequently, the degree to which the vehicle has gone through a direction change, by checking out at the adjustment of points of a vehicle's direction.

Finally, to decide whether an accident has occurred, we integrate each independently set on anomaly through the aid of a the function. This function, (), computes a score between 0 and 1 while accounting for the weights assigned to every single different limits depends on their figures. A vehicular accident is defined as a score greater than 0.5; otherwise, the score is deleted. This is the fundamental idea of accident detection.

Results of the experiments

The model is judged using twitter footage of vehicle collisions from various geographic locations. The 30 (FPS) surveillance videos taken into consideration. It involves the frames involving tragedies, the video segments condensed to around 20 seconds. [16] The CCTV footage from road crossroads throughout the world is used for all the data samples our model tests. The dataset covers accidents that occurred in a range of environmental conditions, including bright light of sun, hours of daylight, snow fall, and nighttime. In Figure, a sample of the datat is shown.

Model Comparison

As shown in below Figure the predicted collision in between the 2 vehicles also use a circle to visually denote the collision area of the interest in that frames. We can see that a mask and the bounding boxes of each car completely enclose it. The vehicle's path along the direction is shown by the pink line jutting from it. In the case of an accident, the involved vehicles are encircled by a circle. In contrast with the dataset utilized in this review, the video-based mishap discovery techniques at present being used utilize fewer observation cameras. [17] Therefore, contrasted with the current writing displayed in Table I, more sensible information is considered and dissected in this work.

Vehicle accident detection: The suggested framework had a 72% rate of detection and 0.52% false rate of rate. The effectiveness of the suggested technique is a result of taking into account the various elements that could cause a massive accidents.
Prediction of Ratios = The Detected number of accident / Number of accidents present in the dataset × 100

False Rate of Alarm = Patterns in which false alarm takes place/ Accumulated number of patterns × 100

In the study, we conducted two distinct experiments based on the accident severity class to assess the performance of the suggested approaches. [18] In our initial experiment, we have identified each’s effectiveness method for four kinds of accident severity (Fatal / Car accident (grievous, simple injury, etc.), ignorant Bayes and Ada-Boost both of them, resulting in the highest level of accuracy of the 4 methods, with an accuracy rate of 85%.

Precision and F1 score significantly rose here, demonstrating that AdaBoost’s performance is significantly better than it was in the prior trial.
Table 1: Prediction of severity results

%Zio. of Clau	Precision (%)	Accuracy (%)	F1 Score (%)	
Algorithms	Four Class	Two Class	Four Class	Two Class
Decision Tree	69	70	72	72
KNN	69	70	68	70
Naive Bayes	64	63	81	81
Ada-Boost	69	75	81	72

Conclusion

In this research, we suggest utilizing machine learning to analyses traffic accidents and anticipate how serious they will be. Road accident losses are intolerable for society as well as for a developing nation like ours. Therefore, using an effective system to organize and control traffic has become crucial if we are to reduce the amount of traffic accidents in our nation. [19] Traffic accidents may be avoided by taking basic precautions based on predictions or alerts from an advanced system. Furthermore, addressing the issue of how many people die in traffic accidents every day and how this rate is rising daily is a top priority for our nation right now. The utilization of AI is a useful and fantastic strategy for pursuing choices that are learned about how to deal with the ongoing situation, and the consequences of the investigation part can be prescribed to traffic experts for bringing down the mishap rate. Because of their shown and expanded precision in foreseeing the seriousness of car crashes, the proposed systems can be utilized to use AI in this present circumstance.

Furthermore, to expand its reasonability, we will endeavor to make a recommender framework using these strategies that can foresee car crashes and caution other street clients. Later on, we’ll endeavor to foster a versatile application involving this innovation to give the client a careful forecast and make it incredibly valuable and invaluable.
Future scope

Ensemble model offers a greater benefit in forecast exactness when contrasted with elastic network regression, decision tree, and a few different models, yet SVM and a few different models are trying to prepare on countless samples.[20] Ensemble advancing consequently looks like a harmony between accuracy, viability, and interpretability. From one viewpoint, the combination of numerous heterogeneous models would help with thinking about the exactness and solidness of the outcomes because of the singleness of a solitary model in the examination of impacting factors and the likely unsteadiness despite changes in example dissemination. At the same time, a thorough examination of the variables that influence the presentation of various models can support recognizing the essential irregularity that influences mishap term and expand the end. Then again, adding an excessive number of models would make the framework more complicated, consequently the exactness and variety of models should be thought about in contrast to the expense for productivity.

While federated learning allows several users to work together to train the machine learning models with not disclosing their real data, traditional techniques typically pool data from numerous sources. The field of transportation will produce a significant amount of heterogeneous data from various information sources, including sensors, cars, and people. Accordingly, under the assumption of keeping up with security, extra review is expected to more readily comprehend how to coordinate multi-party information through united learning and increment the accuracy of car crash length forecast.

REFERENCES

1. Al-Deek, H., and E. B. Emam. 2006. New methodology for estimating reliability in transportation networks with degraded link capacities. Journal of Intelligent Transportation Systems 10 (3):117–154.
2. Chawla, N. V., K. W. Bowyer, L. O. Hall, et al. 2002. SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16:321–57.
3. Chen, T. Q., and C. Guestrin. 2016. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, California, USA, 785–94.
4. Ke, G., Q. Meng, T. Finley, et al. 2017. LightGBM: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems 30:3146–54.
5. Khattak, A. J., J. Liu, B. Wali, et al. 2016. Modeling traffic incident duration using quantile regression. Transportation Research Record: Journal of the Transportation Research Board 2554 (1):139–48.
6. Li, R., P. C. Pereira, and M. E. Ben-Akiva. 2015. Competing risks mixture model for traffic incident duration prediction. Accident Analysis & Prevention 75:192–201.
7. Vijayalakshmi A, Vidyavathy Balraj (2017), “Optical, thermal, laser damage threshold, dielectric studies and z-scan technique of novel semiorganic NLO material: sodium boro succinate (NaBS),” U.P.B. Scientific Bulletin- Series B, vol. 79, issue 1, pp. 221-232.
8. Vijayalakshmi A, Vidyavathy Balraj, Determination of basic solid state parameters and characterization of optical, dielectric and fluorescence properties of Calcium Boro Lactate(CaBL), Journal of chemical society, Pakistan. Vol. 38 Issue 6, pp. 1092-1097.
9. Vijayalakshmi A, Vidyavathy Balraj, G. Vinitha, (2016),“Crystal structure, growth and nonlinear optical studies of Isonicotinamid p-nitrophenol: A new organic crystal for optical limiting applications”, Journal of crystal growth, 448 pp.88-88. doi: https://doi.org/10.1016/j.jcrysgro.2016.05.002
10. Vijayalakshmi A, Vidyavathy Balraj , Vinitha G. , (2016) “Structure and characterization of a new organic crystal for optical limiting applications, isonicotinamide bis-p-aminobenzoic acid”, Ukrainian J. Phys. Opt., Volume 17, Issue 3,pp. 98-104.
11. Vijayalakshmi A, Vidyavathy, B, Peramaiyan, G & Vinitha, G (2017), “Synthesis, growth, structural and optical studies of a new organic three dimensional framework: 4-(aminocarboxyl) pyridine 4 (aminocarboxyl) pyridinium hydrogen L-malate, Journal of Solid State Chemistry, vol. 246, pp. 237-244. doi: https://doi.org/10.1016/j.jssc.2016.11.025
12. Vijayalakshmi A, Vidyavathy Balraj , B. Gunasekaran, Abdul Razack Ibrahim, Synthesis, Structural, Optical, Thermal and LDT Characterization of Novel Semi-Organic Non-Linear Optical Material: Calcium Borolactate, Asian Journal of Chemistry; Vol. 28, No. 12 (2016).
13. Rathore, M. S., Poongodi, M., Saurabh, P., Lilhore, U. K., Bourouis, S., Alhakami, W., ... & Hamdi, M. (2022). A novel trust-based security and privacy model for Internet of Vehicles using encryption and steganography. Computers and Electrical Engineering, 102, 108205.
14. Gupta, S., Iyer, S., Agarwal, G., Manoharan, P., Algarni, A. D., Aldehim, G., & Raahemifar, K. (2022). Efficient Prioritization and Processor Selection Schemes for HEFT Algorithm: A Makespan Optimizer for Task Scheduling in Cloud Environment. Electronics, 11(16), 2557.
15. Bhayyan, A. K., Ahuja, S., Lilhore, U. K., Sharma, S. K., Manoharan, P., Algarni, A. D., ... & Raahemifar, K. (2022). A Hybrid Intrusion Detection Model Using EGA-PSO and Improved Random Forest Method. Sensors, 22(16), 5986.
16. Poongodi, M., Bourouis, S., Ahmed, A. N., Vijayaragavan, M., Venkatesan, K. G. S., Alhakami, W., ... & Hamdi, M. (2022). A Novel Secured Multi-Access Edge Computing based VANET with Neuro fuzzy systems based Blockchain Framework. Computer Communications.
17. Manoharan, P., Walia, R., Iwendi, C., Ahanger, T. A., Suganthi, S. T., Kamruzzaman, M. M., ... & Hamdi, M. (2022). SVM-based generative adversarial networks for federated learning and edge computing attack model and ouipoising. Expert Systems, c13072.
18. Ramesh, T. R., Lilhore, U. K., Poongodi, M., Simaiya, S., Kaur, A., & Hamdi, M. (2022). PREDICTIVE ANALYSIS OF HEART DISEASES WITH MACHINE LEARNING APPROACHES. Malaysian Journal of Computer Science, 132-148.
19. Poongodi, M., Malviya, M., Hamdi, M., Vijayakumar, V., Mohammed, M. A., Rauf, H. T., & Al-Dhan, K. A. (2022). 5G based Blockchain network for authentic and ethical keyword search engine. IET Commun., (15),445-448.
20. Poongodi, M., Malviya, M., Kumar, C., Hamdi, M., Vijayakumar, V., Nebhen, J., & Alyamani, H. (2022). New York City taxi trip duration prediction using MLP and XGBoost. International Journal of System Assurance Engineering and Management, 13(1), 16-27.
21. Poongodi, M., Hamdi, M., & Wang, H. (2022). Image and audio caps: automated captioning of background sounds and images using deep learning. Multimedia Systems, 1-9.
22. Poongodi, M., Hamdi, M., Gao, J., & Rauf, H. T. (2021, December). A Novel Security Mechanism of 6G for IMD using Authentication and Key Agreement Scheme. In 2021 IEEE Globecom Workshops (GC Wkshps) (pp. 1-6). IEEE.

23. Ramesh, T. R., Vijayaragavan, M., Poongodi, M., Hamdi, M., Wang, H., & Bourouis, S. (2022). Peer-to-peer trust management in intelligent transportation system: An Aumann’s agreement theorem based approach. ICT Express.

24. Hamdi, M., Bourouis, S., Rastislav, K., & Mohmed, F. (2022). Evaluation of Neuro Image for the Diagnosis of Alzheimer’s Disease Using Deep Learning Neural Network. Frontiers in Public Health, 35.

25. Poongodi, M., Hamdi, M., Malviya, M., Sharma, A., Dhiman, G., & Vimal, S. (2022). Diagnosis and combating COVID-19 using wearable Oura smart ring with deep learning methods. Personal and ubiquitous computing, 26(1), 25-35.

26. Sahoo, S. K., Mudigiriyappa, N., Algharni, A. A., Manoharan, P., Hamdi, M., & Raahemifar, K. (2022). Intelligent Trust-Based Utility and Reusability Model: Enhanced Security Using Unmanned Aerial Vehicles on Sensor Nodes. Applied Sciences, 12(3), 1317.

27. Muniyappan, A., Sundarappan, B., Manoharan, P., Hamdi, M., Raahemifar, K., Bourouis, S., & Varadarajan, V. (2022). Stability and numerical solutions of second wave mathematical modeling on covid-19 and omicron outbreak strategy of pandemic: Analytical and error analysis of approximate series solutions by using hpm. Mathematics, 10(3), 343.

28. Rawal, B. S., Manogaran, G., & Poongodi, M. (2022). Implementing and Leveraging Blockchain Programming.

29. Bourouis, S., Band, S. S., Mosavi, A., Agrawal, S., & Hamdi, M. (2022). Meta-Heuristic Algorithm-Tuned Neural Network for Breast Cancer Diagnosis Using Ultrasound Images. Frontiers in Oncology, 12, 834028.

30. Lillhore, U. K., Poongodi, M., Kaur, A., Simaiya, S., Algarni, A. D., Elmananah, H., & Hamdi, M. (2022). Hybrid Model for Detection of Cervical Cancer Using Causal Analysis and Machine Learning Techniques. Computational and Mathematical Methods in Medicine, 2022.

31. Lillhore, U. K., Khalaf, O. I., Simaiya, S., Tavera Romero, C. A., Abdulshahib, G. M., & Kumar, D. (2022). A depth-controlled and energy-efficient routing protocol for underwireless sensor networks. International Journal of Distributed Sensor Networks, 18(9), 155032922117118.

32. Sekar, S., Solayappan, A., Srimathi, J., Raja, S., Durga, S., Manoharan, P., ... & Tunze, G. B. (2022). Autonomous Transaction Model for E-Commerce Management Using Blockchain Technology. International Journal of Information Technology and Web Engineering (IJITWE), 17(1), 1-14.

33. Singh, D. K. S., Nithya, N., Rahunathan, L., Sanghavi, P., Vagheela, R. S., Manoharan, P., ... & Tunze, G. B. (2022). Social Network Analysis for Precise Prediction of Online Suggestion for Twitter by Associating Multiple Networks Using ML. International Journal of Information Technology and Web Engineering (IJITWE), 17(1), 1-11.

34. Balasubramanian, K., Vidhya, S., Jayapandian, N., Ramya, K., Poongodi, M., Hamdi, M., & Tunze, G. B. (2022). Social Network User Profiling With Multilayer Semantic Network using Ego Network. International Journal of Information Technology and Web Engineering (IJITWE), 17(1), 1-14.

35. Dhiman, P., Kukreja, V., Manoharan, P., Kaur, A., Kamruzzaman, M. M., Dhaou, I. B., & Iwendi, C. (2022). A Novel Deep Learning Model for Detection of Severity Level of the Disease in Citrus Fruits. Electronics, 11(3), 495.

36. Dhnaraj, R. K., Ramakrishnan, V., Poongodi, M., Krishnasamy, L., Hamdi, M., Kotecha, K., & Vijayakumar, V. (2021). Random Forest Bagging and X-Means Clustered Antipattern Detection from SQL Query Log for Accessing Secure Mobile Data. Wireless Communications and Mobile Computing, 2021.

37. Maurya, S., Josep, S., Asokan, A., Algeethani, A. A., Hamdi, M., & Rauf, H. T. (2021). Federated transfer learning for authentication and privacy preservation using novel supportive twin delayed DDPG (S-T3D) algorithm for IIOt Sensors. 21(3), 7793.

38. Poongodi, M., Nguyen, T. N., Hamdi, M., & Cengiz, K. (2021). Global cryptocurrency trend prediction using social media. Information Processing & Management, 58(6), 102708.

39. Poongodi, M., Sharma, A., Hamdi, M., Maode, M., & Chilamkurti, N. (2021). Smart healthcare in smart cities: wireless patient monitoring system using IoT. The Journal of Supercomputing, 77(11), 12230-12255.

40. Rawal, B. S., Manogaran, G., & Hamdi, M. (2021). Multi-Tier Stack of Block Chain with Proxy Re-Encryption Method Scheme on the Internet of Things Platform. ACM Transactions on Internet Technology (TOIT), 22(2), 1-20.

41. Poongodi, M., Nguyen, T. N., Hamdi, M., & Cengiz, K. (2021). A measurement approach using smart IoT based architecture for detecting the COVID-19. Neural Processing Letters, 1-15.

42. Poongodi, M., Malviya, M., Hamdi, M., Rauf, H. T., Kadry, S., & Thinnukool, O. (2021). The recent technologies to curb the second-wave of COVID-19 pandemic. Ieee Access, 9, 97906-97928.

43. Rawal, B. S., Manogaran, G., Singh, R., Poongodi, M., ... & Hamdi, M. (2021, June). Network augmentation by dynamically splitting the switching function into SDN. In 2021 IEEE International Conference on Communications Workshops (ICC Workshops) (pp. 1-6). IEEE.

44. Poongodi, M., Hamdi, M., Gao, J., & Rauf, H. T. (2021, December). A Novel Security Mechanism of 6G for IMD using Authentication and Key Agreement Scheme. In 2021 IEEE Globecom Workshops (GC Wkshps) (pp. 1-6). IEEE.

45. Poongodi, M., Hamdi, M., Vijayakumar, V., Rawal, B. S., & Maode, M. (2020, September). An effective electronic waste management solution based on blockchain smart contract in 5G communities. In 2020 IEEE 3rd 5G World Forum (5GWF) (pp. 1-6). IEEE.

46. Poongodi, M., Sharma, A., Vijayakumar, V., Bhardwaj, V., Sharma, A. P., Iqbal, R., & Kumar, R. (2020). Prediction of the price of Ethereum blockchain cryptocurrency in an industrial finance system. Computers & Electrical Engineering, 81, 106527.

47. Poongodi, M., Hamdi, M., Varadarajan, V., Rawal, B. S., & Maode, M. (2020, July). Building an authentic and ethical keyword search by applying decentralised (Blockchain) verification. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) (pp. 746-753). IEEE.

48. Poongodi, M., Vijayakumar, V., & Chilamkurti, N. (2020). Bitcoin price prediction using ARIMA model. International Journal of Internet Technology and Secured Transactions, 10(4), 396-406.

49. Poongodi, M., Vijayakumar, V., Al-Turjman, F., Hamdi, M., & Ma, M. (2019). Intrusion prevention system for DDoS attack on VANET with reCAPTCHA controller using information based metrics. International Journal of Information Technology, 15(2), 178-195.

50. Poongodi, M., Sharma, A., Ma, M., & Singh, P. K. (2019). DDoS detection mechanism using trust-based evaluation system in VANET. IEEE Access, 7, 183532-183544.

51. Poongodi, M., Vijayakumar, V., Ramanathan, L., Gao, X. Z., Bhardwaj, V., & Agarwal, T. (2019). Chat-bot-based natural language interface for blogs and information networks. International Journal of Web Based Communities, 15(2), 178-195.

52. Poongodi, M., Vijayakumar, V., Rawal, B., Bhardwaj, V., Agarwal, T., Jain, A., & Sriram, V. P. (2019). Recommendation model based on trust relations & user credibility. Journal of Intelligent & Fuzzy Systems, 36(5), 4057-4064.

53. Jeyachandran, A., & Poongodi, M. (2018). Securing Cloud information with the use of Bastion Algorithm to enhance Confiden-tiality and Protection. Int. J. Pure Appl. Math, 118, 222-245.

54. Poongodi, M., Al-Shaikhli, I. F., & Vijayakumar, V. (2017). The probabilistic approach of energy utility and reusability model with enhanced security from the compromised nodes through wireless energy transfer in WSN. Int. J. Pure Appl. Math, 116(22), 233-250.

55. Poongodi, M., & Bose, S. (2015). Stochastic model: reCAPTCHA controller based co-variance matrix analysis on frequency distribution using trust evaluation and re-eval by Aumann agreement theorem against DDoS attack in MANET. Cluster Computing, 18(4), 1549-1559.

56. Poongodi, M., & Bose, S. (2015). A novel intrusion detection system based on trust evaluation to defend against DDoS attack in MANET. Arabian Journal of Pharmaceutical Sciences, 28(5), 1942-1950.
91. Frederick, Suresh and Herbert, J. X. (2021). Posthumanist Ambiguous Identities in Kurt Vonnegut’s Mother Night. English Forum (ISSN 2279-0446) Vol.8 & 9. 144-155.
92. Miyolaa SRK, Shiny and Frederick, Suresh. (2022). An Overview of Arthurian Literature. BODHI: International Journal of Research in Humanities, Arts and Science. (E-ISSN: 2456-5571) Vol: 6 Issue 2. 07-09.
93. Frederick, Suresh and Olives G, Silvia. (2022). A Postcolonial Reading of David Malouf’s Jacko’s Reach. Third Concept (ISSN 0970-7247) Vol. 36 No. 423, 31-32.
94. Moses J, Edwin and Frederick, Suresh. (2021). Violation of Land Ethic in Henry Lawson’s “The Loaded Dog”. Sambodhi (ISSN: 2249-6661) Vol 44 No.-01 J. 37-38.
95. Joe, F. Frazer Frank and Frederick, Suresh. (2020). Song as a Means of Enhancing Vocabulary: A Strategy in English as a Second Language Acquisition Among Fifth Standard Students. Our Heritage (ISSN - 0474-9030), Volume 68 Issue 30. 12394 – 12400.
96. Joe, F. Frazer Frank and Frederick, Suresh. (2020). A Strategy to Develop Vocabulary in English through Songs for Second Language Acquisition. INFOKARA RESEARCH (ISSN:1021-9056). Volume 9 Issue 3. 321 – 329.
97. Syed Omar and Ch. Mallikarjuna (2016), “Analysis of the Macroscopic Relations for No-Lane Based Heterogeneous Traffic Stream”, International Conference: Sustainable Development of Civil Urban and Transportation Engineering (CUTE'2016), Ho Chi Minh City, Vietnam, April 11 – 14.
98. Syed Omar and Ch. Mallikarjuna (2016), “Analysis of the Macroscopic Relations for No-Lane Based Heterogeneous Traffic Stream”, Procedia Engineering, Vol.142, Pages 244–251.
99. Syed Omar B., Pranab, K., and Mallikarjuna, C (2018), “Determination of the PCEs for multilane divided rural highways under heterogeneous traffic conditions”. TRB Paper No. 18-02596, Transportation Research Board (TRB), 97th Annual meeting. Washington, DC. USA, January, 2018.
100. Syed Omar B., Pranab K., and Mallikarjuna, C., (2018), “Passenger Car Equivalents for the Heterogeneous Traffic on Divided Rural Highways based on Simulation Model”. Transportation in Developing Economies (TIDE), Vol 4 (14).
101. Dr. Syed Omar Ballari.,(2019), “Estimation of Passenger Car Equivalents for Heterogeneous Traffic Stream”, International Journal of Innovative Technology and Exploring Engineering (IJITEE), April 2019, Vol.8 (6), Pages 1026-1031.
102. Syed Omar B., Pranab K., and Mallikarjuna, C., (2019), “Passenger Car Equivalent Estimation for Rural Highways: Methodological Review, 15th World Conference on Transport Research.
103. Dr. Syed Omar Ballari.,(2019), “Area Occupancy characteristics in Traffic flow on Urban Highway: A case Study” Journal of Advanced Research in Dynamical and Control Systems (JARDCS), November 2019, Vol.11 (10), Pages 18-26.
104. Dr. Syed Omar Ballari.,(2020), “Passenger-car equivalent estimation methods of trucks in traffic stream”, International Journal of Recent Technology and Engineering (IJRTE). January 2020, Vol.8 (5), Pages 710-716.
105. Syed Omar Ballari (2022), “An Empirical Approach for Evaluation and Improvement of Roundabouts in Hyderabad”, Yantu Gongcheng Xuebao/Chinese Journal of Geotechnical Engineering, February 2022, Vol 44 (02), pp. 6–13.