Bis[benzyl 2-(heptan-4-ylidene)hydrazine-1-carboxylate]bis(thiocyanato)cobalt(II)

Palanivelu Nithya,a Subbiah Govindarajanb and Jim Simpsonb*

aDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India, and bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand. *Correspondence e-mail: jsimpson@alkali.otago.ac.nz

The title compound, [Co(NCS)2(C15H22N2O2)2] or C32H44CoN6O4S2, was prepared from cobalt(II) nitrate, benzyl carbazate and ammonium thiocyanate in the presence of 4-heptanone. The compound crystallizes with two centrosymmetric complexes in which the cobalt(II) atoms have a trans-CoO2N4 octahedral coordination geometry. In the crystal, N—H···S, C—H···S and C—H···π contacts stack the complex molecules along the b-axis direction.

Structure description

Our previous work involving Schiff-base complexes derived from benzyl carbazate and carbonyl compounds was limited to short-chain dialkyl ketones (Nithya et al., 2016, 2017). In order to investigate and compare the coordinating ability of benzyl carbazate Schiff bases derived from higher homologues, we have prepared the title cobalt complex from benzyl carbazate with 4-heptanone with thiocyanate as the charge-balancing anionic ligand. We report the molecular and crystal structure of the complex here. Neither the structure of the bidentate ligand used here, nor of its complexes, have been reported previously.

The title compound, Co(C15H22N2O2)2(NCS)2, crystallizes with two centrosymmetric, octahedral cobalt(II) complexes (1) and (2) in the monoclinic unit cell. These are differentiated in the numbering scheme by leading 1 and 2 characters, respectively (Fig. 1). The molecules overlay with an r.m.s. deviation of 0.602 Å (Fig. 2), with the greatest conformational differences in the vicinity of the n-propyl substituents on C12 and C22 (Macrae et al., 2008). The benzyl-2-(heptan-4-ylidene)hydrazine-1-carboxylate ligand is N,O-bidentate with two such ligands in the equatorial plane, binding through the imine N and carbonyl O atoms. The N bound thiocyanato ligands occupy trans-axial positions and are slightly kinked, with N—C—S and Co—N—C bond angles of 177.3 (6)

Received 30 May 2019
Accepted 5 June 2019

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; hydrazine-1-carboxylate ligand; cobalt complex; hydrogen bond.

CCDC reference: 1921271
Structural data: full structural data are available from iucrdata.iucr.org

IUCrData ISSN 2414-3146

data reports
and 169.8 (5)^\circ \text{, respectively, in (1) and 178.9 (6) and 165.6 (6)^\circ \text{, respectively, in (2). With the exception of the di-n-propyl substituents on the C12 and C22 carbon atoms, the non-hydrogen atoms of the bidentate ligands lie close to the equatorial planes of both complexes with r.m.s. deviations from the best-fit plane through N11, N12, O11, C11, O12, C13 \ldots C19 of 0.079 Å for (1) and 0.094 Å for the corresponding plane in (2). Pairs of intramolecular C—H—O hydrogen bonds form in both molecules, Table 1, Fig. 1. In the crystal, N—H—S and weaker C—H—S hydrogen bonds combine with a C—H— \pi contact between molecules (1) and (2), Table 1, to stack the complexes along the b-axis direction, Fig. 3.

Synthesis and crystallization

Cobalt(II) nitrate (0.146 g, 0.50 mmol) dissolved in 10 ml of doubly distilled water was added to a methanolic solution (10 ml) of benzyl carbazate (0.166 g, 1.00 mmol) and ammonium thiocyanate (0.076 g, 1.00 mmol). The solution was then layered with 4-heptanone (0.1 ml, 1 mmol) and the colour changed from pink to blue. The resulting mixture was retained for slow evaporation at room temperature, resulting in olive-green crystals, which were collected, washed with water and air-dried. Yield 81.5% (0.119 g) with respect to the metal.

Figure 1
The molecular structure of the title compound with ellipsoids drawn at the 50% probability level. Intramolecular hydrogen bonds are drawn as dashed lines. Labelled atom are related to unlabelled atoms by the symmetry operations \(-x, -y, -z\) for molecule (1) and \(-x + 1, -y, -z + 1\) for molecule (2).

Figure 2
An overlay of the two unique molecules of the title compound (r.m.s. deviation = 0.602 Å).
Table 1
Hydrogen-bond geometry (Å, °).

D—H⋯A	D—H	H⋯A	D⋯A	D—H⋯A
N12—H12⋯S1i	0.85 (8)	2.47 (8)	3.298 (6)	166 (7)
C121—H12B⋯S1i	0.99	2.93	3.786 (7)	146
N22—H22⋯S2ii	0.96 (8)	2.55 (8)	3.480 (6)	164 (6)
C25—H25⋯Cg6	0.95	2.94	3.811 (7)	153
C124—H12I⋯O11iii	0.99	2.48	3.259 (9)	153
C221—H22A⋯O21iv	0.99	2.38	3.229 (8)	144
C13—H13B⋯Cg6	0.99	2.60	3.464 (7)	145

Symmetry codes: (i) x, y, z; (ii) −x, y + 1/2, −z + 1/2; (iii) −x + 1, −y, −z; (iv) x + 1/2, −y, z + 1.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Crystals of this compound were not of good quality and, despite several data collections on different samples with both Cu and Mo radiation, the residuals reported here were the best that could be obtained.

Acknowledgements

PN acknowledges the University Grants Commission (UGC–BSR), New Delhi, for the award of a BSR Senior Research Fellowship. We also thank the University of Otago for the purchase of the diffractometer and the Chemistry Department of the University of Otago for support of the work of JS.

References

Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Casarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.
Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Table 2
Experimental details.

Crystal data	Chemical formula	[Co(NCS)2(C15H22N2O2)2]
Crystal system, space group	Monoclinic, P21/c	
Temperature (K)	100	
a, b, c (Å)	23.194 (3), 9.825 (1), 16.475 (2)	
V (Å³)	3606.1 (8)	
Z	4	
Radiation type	Cu Kα	
μ (mm⁻¹)	5.16	
Crystal size (mm)	0.21 × 0.15 × 0.11	

Data collection

Diffractometer | Agilent SuperNova, Dual, Cu at zero, Atlas |
Absorption correction | Gaussian (CrysAlis PRO: Agilent, 2014) |
Tmin, Tmax | 0.839, 0.912 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 34985, 7198, 4299 |
Rint | 0.153 |
(Sin θ/λ)max | 0.625 |
Reflecton | 0.094, 0.263, 1.07 |
No. of reflections | 7198 |
No. of parameters | 419 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å⁻³) | 1.19, −0.62 |

Nithya, P. Helena, S., Simpson, J., Ilanchelian, M., Muthusankar, A. & Govindarajan, S. (2016). J. Photochem. Photobiol. B, 165, 220–231.
Nithya, P., Simpson, J., Helena, S., Rajamanikandan, R. & Govindarajan, S. (2017). J. Therm. Anal. Calorim. 129, 1001–1019.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
Spek, A. L. (2009). Acta Cryst. D65, 148–155.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
Bis[benzyl 2-(heptan-4-ylidene)hydrazine-1-carboxylate]bis(thiocyanato)cobalt(II)

Palanivelu Nithya, Subbiah Govindarajan and Jim Simpson

Crystal data

$[\text{Co(NCS)}_2(\text{C}_{15}\text{H}_{22}\text{N}_2\text{O}_2)_2]$

$M_r = 699.78$

Monoclinic, $P2_1/c$

$\alpha = 23.194 (3)$ Å

$b = 9.825 (1)$ Å

$c = 16.475 (2)$ Å

$\beta = 106.154 (13)^\circ$

$V = 3606.1 (8)$ Å3

$Z = 4$

Data collection

Agilent SuperNova, Dual, Cu at zero, Atlas diffractometer

Radiation source: sealed X-ray tube, SuperNova (Cu) X-ray Source

Detector resolution: 5.1725 pixels mm$^{-1}$

ω scans

Absorption correction: gaussian

(CrysAlis PRO; Agilent, 2014)

$T_{\text{min}} = 0.839, T_{\text{max}} = 0.912$

Refinement

Refinement on F^2

Least-squares matrix: full

$\sum w(F^2 - F)^2 / \sigma(F^2) = 0.094$

$\sum wR(F^2) = 0.263$

$S = 1.07$

7198 reflections

419 parameters

0 restraints

Hydrogen site location: mixed

H atoms treated by a mixture of independent and constrained refinement

$w = 1/[\sigma^2(F^2) + (0.0923P)^2 + 14.0183P]$

where $P = (\text{Fo}^2 + 2Fc^2)/3$

$\Delta \rho_{\text{max}} = 1.19$ e Å$^{-3}$

$\Delta \rho_{\text{min}} = -0.62$ e Å$^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. 1 reflection with $\text{Fo} >>> \text{Fc}$ was omitted from the final refinement cycles.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	Uiso*/Ueq
Co1	0.000000	0.000000	0.000000	0.0298
N11	0.0137 (2)	—1.1536 (6)	0.1013 (3)	0.0322
C12	—0.0084 (3)	—0.2731 (7)	0.1072 (4)	0.0323
C121	0.0110 (3)	—0.3609 (7)	0.1846 (4)	0.0341
H12A	—0.021053	—0.427640	0.184426	0.041*
H12B	0.016911	—0.303327	0.235640	0.041*
C122	0.0698 (3)	—0.4373 (8)	0.1883 (5)	0.0419
H12C	0.065812	—0.483492	0.133592	0.050*
H12D	0.103087	—0.370939	0.197190	0.050*
C123	0.0847 (4)	—0.5416 (9)	0.2586 (5)	0.052 (2)
H12E	0.083817	—0.498159	0.311823	0.078*
H12F	0.124762	—0.578869	0.264194	0.078*
H12G	0.055024	—0.615241	0.245368	0.078*
C124	—0.0538 (3)	—0.3287 (8)	0.0323 (4)	0.0364
H12H	—0.045942	—0.426947	0.027124	0.044*
H12I	—0.049392	—0.282823	—0.019149	0.044*
C125	—0.1180 (3)	—0.3104 (8)	0.0371 (5)	0.0441
H12J	—0.128347	—0.212379	0.032133	0.053*
H12K	—0.120808	—0.342201	0.092904	0.053*
C126	—0.1631 (3)	—0.3887 (8)	—0.0324 (5)	0.0448
H12L	—0.157943	—0.363491	—0.087509	0.067*
H12M	—0.203926	—0.366375	—0.030912	0.067*
H12N	—0.156212	—0.486701	—0.023340	0.067*
N12	0.0573 (3)	—0.1037 (6)	0.1712 (4)	0.0327
H12	0.070 (3)	—0.136 (8)	0.221 (5)	0.039*
O11	0.0806 (2)	0.0600 (5)	0.0883 (3)	0.0323
C11	0.0897 (3)	0.0026 (7)	0.1561 (4)	0.0298
O12	0.1327 (2)	0.0389 (5)	0.2253 (3)	0.0330
C13	0.1703 (3)	0.1503 (7)	0.2106 (4)	0.0333
H13A	0.145852	0.234005	0.196051	0.040*
H13B	0.186039	0.127334	0.162198	0.040*
C14	0.2213 (3)	0.1757 (7)	0.2867 (4)	0.0347
C15	0.2366 (3)	0.0952 (8)	0.3578 (5)	0.0392
H15	0.212777	0.017778	0.360963	0.047*
C16	0.2865 (3)	0.1251 (8)	0.4254 (5)	0.0438
H16	0.296721	0.068016	0.473807	0.053*
C17	0.3209 (3)	0.2383 (8)	0.4212 (5)	0.0408
H17	0.355073	0.258792	0.466877	0.049*
C18	0.3058 (3)	0.3213 (9)	0.3514 (5)	0.0468
H18	0.329365	0.399711	0.349200	0.056*
C19	0.2563 (3)	0.2911 (8)	0.2838 (5)	0.0402
H19	0.246196	0.348720	0.235564	0.048*
N13	—0.0433 (2)	0.1289 (6)	0.0627 (4)	0.0333
C110	—0.0677 (3)	0.2137 (7)	0.0880 (4)	0.0323
S1	—0.10507 (8)	0.33019 (19)	0.12477 (11)	0.0400

IUCrData (2019). 4, x190812
Atom	x	y	z	Uiso
Co2	0.50000	0.00000	0.50000	0.0305
N21	0.4960 (2)	0.1867 (6)	0.4197 (3)	0.0317 (12)
C22	0.5324 (3)	0.2874 (7)	0.4219 (5)	0.0362 (16)
C221	0.5867 (3)	0.2997 (7)	0.4961 (5)	0.0353 (15)
H22A	0.579237	0.2414 (8)	0.4786 (5)	0.0474 (19)
H22B	0.593417	0.2414 (8)	0.4786 (5)	0.0474 (19)
C222	0.6438 (3)	0.142286	0.468111	0.057*
H22D	0.649752	0.284469	0.427178	0.057*
C223	0.6985 (4)	0.2666 (11)	0.5525 (6)	0.065 (3)
H22E	0.703882	0.364756	0.562330	0.097*
H22F	0.734119	0.228732	0.539771	0.097*
H22G	0.692954	0.222654	0.603170	0.097*
C224	0.5242 (3)	0.3964 (7)	0.3546 (5)	0.0363 (15)
H22H	0.504172	0.356725	0.298601	0.044*
H22I	0.563979	0.431013	0.353031	0.044*
C225	0.4860 (3)	0.5153 (7)	0.3730 (5)	0.0381 (16)
H22J	0.445356	0.481693	0.370723	0.046*
H22K	0.504616	0.550544	0.430677	0.046*
C226	0.4811 (4)	0.6303 (7)	0.3089 (5)	0.0420 (17)
H22L	0.512139	0.664875	0.311985	0.063*
H22M	0.456602	0.704064	0.321719	0.063*
H22N	0.462394	0.595675	0.251870	0.063*
N22	0.4473 (3)	0.1744 (6)	0.3494 (4)	0.0353 (13)
H22	0.435 (3)	0.238 (8)	0.304 (5)	0.042*
O21	0.4248 (2)	−0.0321 (5)	0.3958 (3)	0.0343 (11)
C21	0.4151 (3)	0.0578 (7)	0.3420 (4)	0.0327 (14)
O22	0.3730 (2)	0.0517 (5)	0.2689 (3)	0.0371 (11)
C23	0.3364 (2)	−0.0692 (7)	0.2566 (5)	0.0393 (16)
H23A	0.317866	−0.079440	0.303634	0.047*
H23B	0.361459	−0.150441	0.255731	0.047*
C24	0.2882 (3)	−0.0577 (7)	0.1742 (4)	0.0351 (15)
C25	0.2887 (3)	0.0403 (7)	0.1141 (4)	0.0339 (15)
H25	0.320617	0.104275	0.124184	0.041*
C26	0.2432 (3)	0.0459 (7)	0.0395 (4)	0.0363 (15)
H26	0.243128	0.115637	−0.000417	0.044*
C27	0.1972 (3)	−0.0505 (8)	0.0226 (5)	0.0415 (17)
H27	0.166382	−0.048600	−0.029316	0.050*
C28	0.1970 (3)	−0.1493 (8)	0.0828 (5)	0.0430 (17)
H28	0.165563	−0.214556	0.072367	0.052*
C29	0.2422 (3)	−0.1534 (8)	0.1576 (5)	0.0410 (17)
H29	0.241882	−0.222004	0.198078	0.049*
N23	0.5525 (3)	−0.0819 (6)	0.4321 (4)	0.0357 (13)
C210	0.5825 (3)	−0.1012 (7)	0.3862 (4)	0.0320 (14)
S2	0.62538 (8)	−0.1277 (2)	0.32411 (12)	0.0406 (4)
Atomic displacement parameters (Å²)

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Co	0.0294 (7)	0.0330 (9)	0.0297 (8)	-0.0011 (7)	0.0125 (6)	0.0001 (7)
N1	0.035 (3)	0.035 (3)	0.031 (3)	-0.001 (2)	0.015 (2)	-0.001 (2)
C1	0.034 (3)	0.036 (4)	0.032 (3)	-0.002 (3)	0.018 (3)	-0.002 (3)
C11	0.040 (4)	0.027 (4)	0.039 (4)	-0.006 (3)	0.018 (3)	-0.002 (3)
C12	0.043 (4)	0.048 (5)	0.038 (4)	0.009 (3)	0.016 (3)	-0.001 (3)
C13	0.064 (5)	0.050 (5)	0.046 (5)	0.021 (4)	0.021 (4)	0.000 (4)
C14	0.037 (4)	0.037 (4)	0.039 (4)	-0.001 (3)	0.0125 (6)	0.0001 (7)
C15	0.037 (4)	0.045 (5)	0.052 (5)	0.003 (3)	0.015 (3)	0.007 (4)
C16	0.043 (4)	0.048 (5)	0.043 (4)	-0.009 (4)	0.012 (3)	0.009 (4)
C17	0.034 (3)	0.035 (3)	0.028 (3)	-0.004 (2)	0.008 (2)	0.006 (2)
C18	0.035 (2)	0.034 (3)	0.030 (2)	-0.003 (2)	0.0119 (19)	-0.001 (2)
C19	0.031 (3)	0.035 (4)	0.026 (3)	0.002 (3)	0.013 (3)	0.000 (3)
C20	0.032 (2)	0.036 (3)	0.032 (2)	-0.0044 (19)	0.0096 (19)	0.002 (2)
C21	0.032 (3)	0.035 (4)	0.035 (4)	-0.007 (3)	0.013 (3)	0.001 (3)
C22	0.032 (3)	0.039 (4)	0.038 (4)	-0.001 (3)	0.017 (3)	-0.006 (3)
C23	0.039 (4)	0.043 (4)	0.038 (4)	-0.005 (3)	0.014 (3)	-0.007 (3)
N2	0.034 (3)	0.032 (3)	0.036 (3)	0.000 (2)	0.013 (2)	0.000 (2)
C24	0.035 (3)	0.028 (4)	0.031 (3)	-0.005 (3)	0.005 (3)	0.001 (3)
S1	0.0469 (10)	0.0344 (10)	0.0380 (9)	0.0061 (8)	0.0108 (8)	-0.0038 (7)
Co2	0.0319 (8)	0.0302 (8)	0.0331 (8)	-0.0011 (7)	0.0152 (6)	0.0002 (7)
N21	0.038 (3)	0.028 (3)	0.033 (3)	-0.001 (2)	0.017 (2)	0.000 (2)
C22	0.041 (4)	0.030 (4)	0.042 (4)	0.000 (3)	0.020 (3)	-0.003 (3)
C23	0.031 (3)	0.027 (4)	0.052 (4)	-0.005 (3)	0.019 (3)	0.006 (3)
C24	0.042 (4)	0.040 (5)	0.063 (5)	-0.001 (3)	0.021 (4)	0.003 (4)
C25	0.044 (5)	0.073 (7)	0.076 (7)	-0.012 (5)	0.016 (4)	0.023 (5)
C26	0.041 (4)	0.031 (4)	0.044 (4)	-0.002 (3)	0.021 (3)	-0.001 (3)
C27	0.050 (4)	0.030 (4)	0.041 (4)	0.003 (3)	0.023 (3)	0.004 (3)
C28	0.060 (5)	0.024 (4)	0.047 (4)	-0.005 (3)	0.024 (4)	-0.002 (3)
N22	0.041 (3)	0.031 (3)	0.036 (3)	0.000 (3)	0.015 (3)	0.006 (3)
O21	0.038 (3)	0.034 (3)	0.033 (3)	-0.001 (2)	0.014 (2)	0.005 (2)
C29	0.037 (3)	0.032 (3)	0.039 (3)	0.000 (2)	0.013 (3)	-0.001 (2)
C210	0.033 (3)	0.031 (4)	0.035 (4)	0.000 (3)	0.013 (3)	-0.009 (3)
Geometric parameters (Å, º)

Co1—N13	2.064	Co2—N23	2.036			
Co1—N13i	2.064	Co2—N23ii	2.036			
Co1—O11	2.109	Co2—O21	2.103			
Co1—O11i	2.109	Co2—O21ii	2.103			
N11—C12	1.295	N21—C22	1.293			
N11—N12	1.393	N21—N22	1.380			
C12—C124	1.486	C22—C221	1.496			
C12—C121	1.501	C22—C224	1.515			
C121—C122	1.544	C221—C222	1.542			
C121—H12A	0.9900	C221—H22A	0.9900			
C121—H12B	0.9900	C221—H22B	0.9900			
N12—C11	1.350	N22—C21	1.354			
N12—H12	0.85	N22—H22	0.96			
O11—C11	1.216	O21—C21	1.227			
C11—O12	1.338	C21—O22	1.325			
O12—C13	1.462	O22—C23	1.442			
C13—C14	1.487	C23—C24	1.503			
C13—H13A	0.9900	C23—H23A	0.9900			
C13—H13B	0.9900	C23—H23B	0.9900			
C14—C15	1.375	C24—C25	1.383			
C14—C19	1.403	C24—C29	1.392			
C15—C16	1.395	C25—C26	1.380			
C15—H15	0.9500	C25—H25	0.9500			
C16—C17	1.381	C26—C27	1.396			
C16—H16	0.9500	C26—H26	0.9500			
C17—C18	1.375	C27—C28	1.388			
C17—H17	0.9500	C27—H27	0.9500			
Bond	Distance (Å)	Bond	Distance (Å)	Bond	Distance (Å)	
---------------	--------------	---------------	--------------	---------------	--------------	
C18—C19	1.391 (11)	C28—C29	1.378 (11)	C18—H18	0.9500	
C18—H18	0.9500	C28—H28	0.9500	C19—H19	0.9500	
N13—C110	1.148 (9)	N23—C210	1.176 (8)	C110—S1	1.649 (7)	
N13—C10—N11	91.7 (2)	N23—Co2—N21i	86.1 (2)	N13—Co1—N11	88.4 (2)	
N13—Co1—O11	86.8 (2)	N23—Co2—O21	91.2 (2)	N13—Co1—O11	93.2 (2)	
N13—Co1—O11i	86.8 (2)	N23—Co2—O21i	91.2 (2)	O11—Co1—O11i	180.0	
N13—Co1—O11ii	86.8 (2)	N23—Co2—O21ii	88.8 (2)	O11—Co1—O11	180.0 (3)	
N13—Co1—N11	91.7 (2)	N23—Co2—N21i	86.1 (2)	N13—Co1—N11	91.7 (2)	
N13—Co1—N11i	91.7 (2)	N23—Co2—N21ii	104.29 (19)	N13—Co1—N11i	88.4 (2)	
N13—Co1—N11ii	91.7 (2)	N23—Co2—N21i	93.9 (2)	N13—Co1—N11ii	75.87 (19)	
N13—Co1—N11iii	91.7 (2)	N23—Co2—N21ii	93.9 (2)	N13—Co1—N11iii	91.7 (2)	
N13—Co1—N11iv	91.7 (2)	N23—Co2—N21iv	108.2 (4)	N11—Co1—N11iv	75.87 (19)	
N13—Co1—N11v	91.7 (2)	N23—Co2—N21i	104.29 (19)	N11—Co1—N11v	75.87 (19)	
C12—N11—N12	117.9 (6)	C22—N21—N22	117.7 (6)	C12—N11—N12i	180.0	
C12—N11—Co1	134.5 (5)	C22—N21—Co2	133.5 (5)	C12—N11—Co1	107.7 (4)	
N12—N11—Co1	107.7 (4)	N22—N21—Co2	108.2 (4)	N11—C12—C124	118.3 (6)	
N11—C12—C124	118.3 (6)	N21—C22—C221	118.6 (6)	N11—C12—C124	123.6 (6)	
C12—C12—H12A	111.3 (5)	C22—C21—C222	116.5 (6)	C12—C12—H12A	111.1 (7)	
C12—C12—H12A	111.3 (5)	C22—C21—C222	116.5 (6)	C12—C12—H12A	111.1 (7)	
C12—C12—H12B	111.3 (5)	C22—C21—C222	116.5 (6)	C12—C12—H12B	111.3 (5)	
C12—C12—H12B	111.3 (5)	C22—C21—C222	116.5 (6)	C12—C12—H12B	111.3 (5)	
H12A—C12—H12B	111.3 (5)	C22—C21—C222	116.5 (6)	H12A—C12—H12B	111.3 (5)	
C12—C12—H12A	111.3 (5)	C22—C21—C222	116.5 (6)	C12—C12—H12A	111.3 (5)	
C12—C12—H12B	111.3 (5)	C22—C21—C222	116.5 (6)	C12—C12—H12B	111.3 (5)	
H12C—C12—H12D	111.3 (5)	C22—C21—C222	116.5 (6)	H12C—C12—H12D	111.3 (5)	
C12—C12—H12C	111.3 (5)	C22—C21—C222	116.5 (6)	C12—C12—H12C	111.3 (5)	
C12—C12—H12D	111.3 (5)	C22—C21—C222	116.5 (6)	C12—C12—H12D	111.3 (5)	
H12E—C12—H12F	111.3 (5)	C22—C21—C222	116.5 (6)	H12E—C12—H12F	111.3 (5)	
C12—C12—H12C	111.3 (5)	C22—C21—C222	116.5 (6)	C12—C12—H12C	111.3 (5)	
C12—C12—H12D	111.3 (5)	C22—C21—C222	116.5 (6)	C12—C12—H12D	111.3 (5)	
H12F—C12—H12G	111.3 (5)	C22—C21—C222	116.5 (6)	H12F—C12—H12G	111.3 (5)	
C12—C12—H12C	111.3 (5)	C22—C21—C222	116.5 (6)	C12—C12—H12C	111.3 (5)	
C12—C12—H12D	111.3 (5)	C22—C21—C222	116.5 (6)	C12—C12—H12D	111.3 (5)	
C12—C12—H12C	111.3 (5)	C22—C21—C222	116.5 (6)	C12—C12—H12C	111.3 (5)	
C12—C12—H12D	111.3 (5)	C22—C21—C222	116.5 (6)	C12—C12—H12D	111.3 (5)	
C12—C12—H12C	111.3 (5)	C22—C21—C222	116.5 (6)	C12—C12—H12C	111.3 (5)	
C12—C12—H12D	111.3 (5)	C22—C21—C222	116.5 (6)	C12—C12—H12D	111.3 (5)	
C12—C12—H12C	111.3 (5)	C22—C21—C222	116.5 (6)	C12—C12—H12C	111.3 (5)	
C12—C12—H12D	111.3 (5)	C22—C21—C222	116.5 (6)	C12—C12—H12D	111.3 (5)	
Bond	Angle (°)	Bond	Angle (°)			
----------------------	-----------	----------------------	-----------			
C12—C124—H12I	109.0	C22—C224—H22I	109.5			
C125—C124—H12I	109.0	C225—C224—H22I	109.5			
H12H—C124—H12I	107.8	H22H—C224—H22I	108.1			
C124—C125—C126	112.1 (6)	C226—C225—C224	111.0 (6)			
C124—C125—H12J	109.2	C226—C225—H22J	109.4			
C126—C125—H12J	109.2	C224—C225—H22J	109.4			
C124—C125—H12K	109.2	C226—C225—H22K	109.4			
C126—C125—H12K	109.2	C224—C225—H22K	109.4			
H12J—C125—H12K	107.9	H22J—C225—H22K	108.0			
C125—C126—H12L	109.5	C225—C226—H22L	109.5			
C125—C126—H12M	109.5	C225—C226—H22M	109.5			
H12L—C126—H12M	109.5	H22L—C226—H22M	109.5			
C125—C126—H12N	109.5	C225—C226—H22N	109.5			
H12L—C126—H12N	109.5	H22L—C226—H22N	109.5			
H12M—C126—H12N	109.5	H22M—C226—H22N	109.5			
C11—N12—N11	115.7 (5)	C11—N12—H12	114 (5)			
C11—N12—H12	114 (5)	N11—N12—H12	114 (5)			
N11—N12—H12	130 (5)	C1—O11—Co1	113.4 (4)			
C11—O11—Co1	113.4 (4)	O11—C11—O12	123.8 (6)			
O11—C11—O12	123.8 (6)	O11—C11—N12	124.4 (6)			
O11—C11—N12	124.4 (6)	O11—C11—N12	124.4 (6)			
O12—C11—N12	111.7 (5)	O12—C11—N12	111.6 (6)			
C11—O12—C13	113.3 (5)	C1—O12—C13	110.9 (5)			
O12—C13—C14	110.9 (5)	O12—C13—C14	110.9 (5)			
O12—C13—C14	110.9 (5)	O12—C13—C14	110.9 (5)			
C13—C14—H13A	119.5	C13—C14—H13B	119.5			
C14—C13—H13A	119.5	C14—C13—H13B	119.5			
C14—C13—H13B	119.5	C14—C13—H13B	119.5			
H13A—C13—H13B	108.0	H13A—C13—H13B	108.3			
C15—C14—C19	118.7 (7)	C15—C14—C19	118.7 (7)			
C15—C14—C13	125.3 (6)	C15—C14—C13	125.3 (6)			
C19—C14—C13	116.0 (6)	C19—C14—C13	116.0 (6)			
C14—C15—C16	121.2 (7)	C14—C15—C16	121.2 (7)			
C14—C15—H15	119.4	C14—C15—H15	119.4			
C16—C15—C15	119.5 (7)	C16—C15—C15	119.5 (7)			
C17—C16—C15	120.2	C17—C16—C15	120.2			
C15—C16—H16	120.2	C15—C16—H16	120.2			
C18—C17—C16	120.2 (7)	C18—C17—C16	120.2 (7)			
C18—C17—H17	119.9	C18—C17—H17	119.9			
C16—C17—H17	119.9	C16—C17—H17	119.9			
C17—C18—C19	120.3 (8)	C17—C18—C19	120.3 (8)			
C17—C18—H18	119.9	C17—C18—H18	119.9			
C19—C18—H18	119.9	C19—C18—H18	119.9			
C18—C19—C14	120.1 (7)	C18—C19—C14	120.1 (7)			
C18—C19—H19	120.0	C18—C19—H19	120.0			
C14—C19—H19	120.0	C14—C19—H19	120.0			
C110—N13—Co1	169.8 (5)	C110—N13—Co1	169.8 (5)			
N13—C110—S1	177.3 (6)	N23—C210—S2	178.9 (6)			
N12—N11—C12—C124	−178.5 (5)	N22—N21—C22—C221	−177.7 (6)			
Co1—N11—C12—C124	−0.2 (9)	Co2—N21—C22—C221	−8.0 (9)			
N12—N11—C12—C121	−0.8 (9)	N22—N21—C22—C224	2.6 (10)			
Co1—N11—C12—C121	177.6 (4)	Co2—N21—C22—C224	172.3 (5)			
N11—C12—C121—C122	−81.0 (8)	N21—C22—C221—C222	97.9 (7)			
C124—C12—C121—C122	96.8 (7)	C224—C22—C221—C222	−82.4 (8)			
C12—C121—C122—C123	−171.4 (6)	C22—C221—C222—C223	175.2 (7)			
N11—C12—C124—C125	−98.8 (7)	N21—C22—C224—C225	88.3 (8)			
C121—C12—C124—C125	83.3 (8)	C221—C22—C224—C225	−91.4 (7)			
C12—C124—C125—C126	−170.3 (6)	C22—C224—C225—C226	176.1 (6)			
C12—N11—N12—C11	163.7 (6)	C22—N21—N22—C21	170.0 (6)			
Co1—N11—N12—C11	−15.0 (6)	Co2—N21—N22—C21	−2.1 (6)			
Co1—O11—C11—O12	−169.3 (5)	Co2—O21—C21—O22	174.5 (5)			
Co1—O11—C11—N12	9.6 (8)	Co2—O21—C21—N22	−3.8 (8)			
N11—N12—C11—O11	4.6 (10)	N21—N22—C21—O21	4.1 (10)			
N11—N12—C11—O12	−176.3 (5)	N21—N22—C21—O22	−174.3 (5)			
O11—C11—O12—C13	−3.3 (9)	O21—C21—C22—C23	2.1 (10)			
N12—C11—O12—C13	177.7 (5)	N22—C21—C22—C23	−179.5 (6)			
C11—O12—C13—C14	−173.5 (5)	C21—O22—C23—C24	176.2 (6)			
O12—C13—C14—C15	8.2 (9)	O22—C23—C24—C25	12.5 (9)			
O12—C13—C14—C19	−172.4 (6)	O22—C23—C24—C29	−169.4 (6)			
C19—C14—C15—C16	−1.3 (10)	C29—C24—C25—C26	1.9 (10)			
C13—C14—C15—C16	178.1 (7)	C29—C24—C25—C26	−180.0 (7)			
C14—C15—C16—C17	0.6 (11)	C24—C25—C26—C27	−2.3 (10)			
C15—C16—C17—C18	0.4 (11)	C24—C25—C26—C27	1.8 (11)			
C16—C17—C18—C19	−0.8 (11)	C26—C27—C28—C29	−1.0 (11)			
C17—C18—C19—C14	0.2 (11)	C27—C28—C29—C24	0.7 (12)			
C15—C14—C19—C18	0.9 (10)	C25—C24—C29—C28	−1.1 (11)			
C13—C14—C19—C18	−178.5 (7)	C23—C24—C29—C28	−179.3 (7)			

Symmetry codes: (i) −x, −y, −z; (ii) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

Cg6 is the centroid of the C24–C29 phenyl ring.

D—H···A	D—H	H···A	D···A	D—H···A
N12—H12···S1iii	0.85 (8)	2.47 (8)	3.298 (6)	166 (7)
C121—H12B···S1iii	0.99	2.93	3.786 (7)	146
N22—H22···S2wii	0.96 (8)	2.55 (8)	3.480 (6)	164 (6)
C25—H25···S2wii	0.95	2.94	3.811 (7)	153
C124—H12F···O11i	0.99	2.48	3.259 (9)	135
C221—H22A···O21ii	0.99	2.38	3.229 (8)	144
C13—H13B···Cg6	0.99	2.60	3.464 (7)	145

Symmetry codes: (i) −x, −y, −z; (ii) −x+1, −y, −z+1; (iii) −x, y−1/2, −z+1/2; (iv) −x+1, y+1/2, −z+1/2.