Reciprocal Association of Plasma IGF-1 and Interleukin-6 Levels With Cardiometabolic Risk Factors in Nondiabetic Subjects

ELENA SUCCURRO, MD
FRANCESCO ANDREOZZI, MD
ANGELA SCIACQUA, MD

MARTA LETIZIA HRibal, PHD
FRANCESCO PERTICONE, MD
GIORGIO SESTI, MD

OBJECTIVE — To examine the relationship between plasma IGF-1 and interleukin-6 (IL-6) levels in Caucasian nondiabetic subjects and evaluate the association of IGF-1 and IL-6 with the cardiometabolic risk factors characterizing metabolic syndrome (MetS).

RESEARCH DESIGN AND METHODS — The study group consisted of 186 Caucasian nondiabetic subjects who underwent an oral glucose tolerance test and an euglycemic-hyperinsulinemic clamp. A logistic regression analysis, adjusted for age and sex, was used to determine the association between tertiles of IGF-1 and IL-6 and the MetS and its components.

RESULTS — After adjusting for age and sex, both IGF-1 and IL-6 were correlated with insulin resistance and individual components of MetS, but in opposite directions. In the logistic regression model adjusted for age and sex, higher IL-6 and lower IGF-1 levels confer increased risk of having MetS and its two underlying pathophysiological abnormalities, i.e., visceral obesity and insulin resistance.

CONCLUSIONS — The present results raise the possibility that lowered protection against inflammation, i.e., lower IGF-1 levels, may have a role in the development of MetS and its features, resulting in an imbalance between proinflammatory and anti-inflammatory proteins.

Diabetes Care 31:1886–1888, 2008

Metabolic syndrome (MetS) is a condition characterized by a clustering of interrelated cardiometabolic risk factors and is associated with increased risk for both type 2 diabetes and atherosclerotic cardiovascular disease (1,2). Visceral obesity and insulin resistance are considered central to the pathophysiology of MetS. Growing evidence suggests a link between a low-grade inflammatory state and MetS (1,2). With increased visceral adiposity, proinflammatory cytokine production is enhanced, causing insulin resistance. MetS is associated with abnormalities in the growth hormone/IGF-1 axis, resulting in low plasma IGF-1 levels (3). IGF-1 has anti-inflammatory effects and decreases expression of proinflammatory cytokines such as interleukin-6 (IL-6) (4). There is also evidence in animal models that IL-6 decreases circulating IGF-1 levels (5), suggesting that an unpaired balance between proinflammatory and anti-inflammatory cytokines may have a role in the development of MetS. The aim of this study was to examine the relationship between plasma IGF-1 and IL-6 levels in a cohort of nondiabetic subjects and to evaluate the association of IGF-1 and IL-6 with the cardiometabolic risk factors characterizing MetS.
waist circumference (4.67, [1.8–11.9]) compared with the highest tertile (>221 ng/ml). After adjusting for age, sex, and lipid levels, IGF-1 in the lowest tertile was associated with increased risk of insulin resistance, i.e., the highest HOMA tertile (3.08, [1.2–7.6]) or lowest WBGD tertile (3.31, [1.01–10.9]). Conversely, in a logistic regression model adjusted for age and sex, IL-6 in the highest tertile (>4.64 pg/ml) was associated with an increased risk of having MetS (3.21 [1.8–11.9]) compared with the lowest tertile (<1.3 pg/ml). After adjusting for age, sex, and lipid levels, IL-6 in the highest tertile was associated with increased risk of insulin resistance, i.e., the highest HOMA tertile (2.14, [1.01–5.31]) or lowest WBGD tertile (4.64, [1.5–14.1]). To estimate the independent contribution of variables to WBGD, we carried out a multivariate regression analysis in a model including age, sex, BMI, waist circumference, triglycerides, HDL cholesterol, IL-6, IGF-1, and fasting and 2-h postchallenge glucose levels. The four variables that remained significantly associated with WBGD were age (P = 0.01), waist circumference (P = 0.01), 2-h postchallenge glucose (P = 0.001), and IL-6 (P = 0.04), accounting for 61.2% of its variation.

CONCLUSIONS — In this study, we report an inverse relationship between plasma IGF-1 and IL-6 levels consistent with clinical (7) and experimental data showing that IGF-1 acts as an anti-inflammatory molecule inhibiting IL-6 expression (4) and that IL-6 decreases IGF-1 levels by increasing its clearance (5). Both IGF-1 and IL-6 are associated with MetS and its individual components, but in opposite directions. Higher IL-6 and lower IGF-1 levels confer increased risk of having MetS and its two underlying pathophysiological abnormalities, i.e., visceral obesity and insulin resistance. Interestingly, multivariate regression analysis showed that IL-6 but not IGF-1 levels were independently associated with WBGD. These results raise the possibility that proinflammatory molecules may have a more important role than anti-inflammatory proteins in the development of insulin resistance and MetS. This study has some limitations: first, its cross-sectional nature makes it impossible to draw any conclusions on causality. Furthermore, while increasing evidence supports the concept that a low-grade proinflammatory state associated with increased visceral adiposity may induce insulin resistance and hence MetS (1), it has been recently demonstrated (8) that acute IL-6 exposure directly increases glucose metabolism in intact human skel-

Table 1—Anthropometric and biochemical characteristics of study subjects

Study subjects	Age- and sex-adjusted correlations between plasma IGF-1 levels and cardiometabolic variables	Age- and sex-adjusted correlations between plasma IL-6 levels and cardiometabolic variables
Sex (M/F)	80/106	80/106
Age (years)	41 ± 14	41 ± 14
BMI (kg/m²)	30.1 ± 8.4	30.1 ± 8.4
Waist circumferene (cm)	97 ± 16	97 ± 16
SBP (mmHg)	127 ± 19	127 ± 19
DBP (mmHg)	80 ± 11	80 ± 11
Total Cholesterol (mg/dl)	198 ± 41	198 ± 41
HDL Cholesterol (mg/dl)	54 ± 14	54 ± 14
Triglyceride (mg/dl)	121 ± 69	121 ± 69
Fasting Glucose (mg/dl)	90 ± 14	90 ± 14
2-h glucose (mg/dl)	117 ± 39	117 ± 39
Fasting Insulin (µU/ml)	12 ± 7	12 ± 7
IGF-1 (ng/ml)	191 ± 90	191 ± 90
IL-6 (pg/ml)	2.5 ± 2.2	2.5 ± 2.2
HOMA	7.6 ± 3.7	7.6 ± 3.7
AHA-NHLB-defined metabolic syndrome (yes/no)	60/126 (32.3)	60/126 (32.3)
High waist circumference (≥102 cm for men and ≥88 cm for women) (yes/no)	91/95 (48.9)	91/95 (48.9)
High fasting glucose (≥100 mg/dl) (yes/no)	47/139 (25.3)	47/139 (25.3)
High triglyceride (≥150 mg/dl) (yes/no)	50/136 (26.8)	50/136 (26.8)
Low HDL (<40 mg/dl in men or <50 mg/dl in women) (yes/no)	54/132 (29.0)	54/132 (29.0)
High blood pressure (SBP ≥130 mmHg or DBP ≥85 mmHg) (yes/no)	101/85 (54.6)	101/85 (54.6)

Data are means ± SD and n (%). Fasting plasma insulin, triglycerides, and IL-6 levels were log transformed for statistical analysis, but values in the table represent a back transformation to the original scale. DBP, diastolic blood pressure; SBP, systolic blood pressure. *Adjusted for sex.
etal muscle; our data do not allow exclusion of the possibility that increased IL-6 levels in our population may represent an attempt to counteract insulin resistance by increasing glucose transport. However, it has also been observed (9) that reduced IGF-1 levels are protective and associated with prolonged lifespan in centenarians, and we cannot exclude that in the study population decreased IGF-1 levels represent a reactive rather than a causative state. This study should thus be considered hypothesis generating and requires further prospective investigations.

References
1. Festa A, D’Agostino R, Howard G, Mykkanen L, Tracey RP, Haffner SM: Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation 101:42–47, 2000
2. Kaushal K, Heald AH, Siddals KW, Sandhu MS, Dunger DB, Gibson JM, Wareham NJ: The impact of abnormalities in IGF and inflammatory systems on the metabolic syndrome. Diabetes Care 27:2682–2688, 2004
3. Sesti G, Sciacqua A, Cardellini M, Marini MA, Maio R, Vatrano M, Succurro E, Lauro R, Federici M, Perticone F: Plasma concentration of IGF-1 is independently associated with insulin sensitivity in subjects with different degrees of glucose tolerance. Diabetes Care 28:120–125, 2005
4. Sukhanov S, Higashi Y, Shai SY, Vaughn C, Mohler J, Li Y, Song YH, Titterington J, Delafontaine P: IGF-1 reduces inflammatory responses, suppresses oxidative stress, and decreases atherosclerosis progression in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 27:2684–2690, 2007
5. DeBenedetti F, Alonzi T, Moretta A, Lazzaro D, Costa P, Poli V, Martini A, Ciliberto G, Fattori E: Interleukin 6 causes growth impairment in transgenic mice through a decrease in insulin-like growth factor I. A model for stunted growth in children with chronic inflammation. J Clin Invest 99:643–650, 1997
6. Andreozzi F, Laratta E, Cardellini M, Marini MA, Lauro R, Hribal ML, Perticone F, Sesti G: Plasma interleukin-6 levels are independently associated with insulin secretion in a cohort of Italian-caucasian non-diabetic subjects. Diabetes 55:2021–2024, 2006
7. Rajpathak SN, McGinn P, Strickler HD, Rohan TE, Pollak M, Cappola AR, Kuller L, Xue XN, Newman AB, Strotmeyer ES, Psaty BM, Kaplan RC: Insulin-like growth factor-(IGF)-axis, inflammation, and glucose intolerance among older adults. Growth Horm IGF Res 18:166–173, 2007
8. Glund S, Deshmukh A, Long YC, Moller T, Koistinen HA, Caidahl K, Zierath JR, Krook A: Interleukin-6 directly increases glucose metabolism in resting human skeletal muscle. Diabetes 56:1630–1637, 2007
9. Suh Y, Atzmon G, Cho MO, Hwang D, Liu B, Leahy DJ, Barzilai N, Cohen P: Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci USA 105:3438–3442, 2008