Proteolytic degradation of DNA ligase I

Human DNA ligase I interacts with and is targeted for degradation by the DCAF7 specificity factor of the CUL4-DDB1 ubiquitin ligase complex

Zhimin Peng1, Zhonping Liao2,3, Yoshihiro Matsumoto1, Austin Yang2,3 and Alan E. Tomkinson1#

Departments of Internal Medicine and Molecular Genetics & Microbiology, and the University of New Mexico Cancer Center, University of New Mexico, Albuquerque, NM; Department of Anatomy and Neurobiology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, 21201

3Present addresses; ZL, Eli Lilly and Company, Indianapolis, Indiana, IN, 46285; AY, National Institute on Aging, Bethesda, MD

Running title: Proteolytic degradation of DNA ligase I

To whom correspondence should be addressed: Cancer Research Facility, 915 Camino de Salud, 1 University of New Mexico, Albuquerque, NM 87131. Tel No. 505-272-5404, email atomkinson@salud.unm.edu

Keywords: DNA ligase I, ubiquitylation, proteasome, DNA replication, cell cycle.

ABSTRACT

The synthesis, processing and joining of Okazaki fragments during DNA replication is complex, requiring the sequential action of a large number of proteins. Proliferating cell nuclear antigen, a DNA sliding clamp, interacts with and co-ordinates the activity of several DNA replication proteins, including the enzymes FEN-1 and DNA ligase I that complete the processing and joining of Okazaki fragments, respectively. While it is evident that maintaining the appropriate relative stoichiometry of FEN-1 and DNA ligase I, which compete for binding to proliferating cell nuclear antigen, is critical to prevent genomic instability, little is known about how the steady state levels of DNA replication proteins are regulated, in particular the proteolytic mechanisms involved in their turnover. Since DNA ligase I has been reported to be ubiquitylated, we used a proteomic approach to map ubiquitylation sites and screen for DNA ligase I-associated E3 ubiquitin ligases. We identified three ubiquitylated lysine residues and showed that DNA ligase I interacts with and is targeted for ubiquitylation by DCAF7, a specificity factor for the Cul4-DDB1 complex. Notably, knockdown of DCAF7 reduced the degradation of DNA ligase I in response to inhibition of proliferation and replacement of ubiquitylated lysine residues reduced the in vitro ubiquitylation of DNA ligase I by Cul4-DDB1 and DCAF7. In contrast, a different E3 ubiquitin ligase regulates FEN-1 turnover. Thus, although the expression of many of the genes encoding DNA replication proteins are co-ordinately regulated, our studies reveal that different mechanisms are involved in the turnover of these proteins.

A large number of single-strand interruptions are generated during DNA replication because of the discontinuous nature of lagging strand DNA synthesis. These unlinked Okazaki fragments are joined together by a DNA ligase to generate an intact strand. In humans, there are three genes that encode DNA ligases, LIG1, LIG3 and LIG4 (1-3). There is compelling cell biology, biochemical and molecular genetic evidence indicating that the DNA ligase encoded by the mammalian LIG1 gene, DNA ligase I (LigI), plays the predominant role in DNA replication. Expression of the LIG1 gene is increased when
Proteolytic degradation of DNA ligase I

Quiescent cells are induced to proliferate (4). In addition, LigI physically and functionally interacts with two key DNA replication protein complexes, proliferating cell nuclear antigen (PCNA) and replication factor C (RFC), and colocalizes with these factors in replication foci during S phase (5-8). Finally, the human ligI mutant human cell line 46BR.1G1 has a defect in joining Okazaki fragments that is complemented by expression of wild type LigI (6,9).

The 46BR.1G1 cell line was established from a patient with growth retardation, sunlight sensitivity, and severe immunodeficiency (10). This individual was a compound heterozygote with one allele (Glu566 to Lys) encoding an inactive polypeptide and the other (Arg771 to Trp) encoding a version of LigI with about 20-fold less activity than wild type LigI (9). Notably, knock-in mice expressing a mouse version of LigI equivalent to the Arg771 to Trp version of human LigI exhibited genome instability and cancer predisposition in addition to a defect in joining Okazaki fragments, (11). Thus, the LIG1 gene is a member of the caretaker class of tumor suppressor genes with LigI-deficiency resulting in an increased incidence of cancer.

Interestingly, elevated levels of LigI also cause genomic instability with overexpression of LigI causing trinucleotide repeat instability in human cells (12). Similar studies in Saccharomyces cerevisiae showed that overexpression of the yeast LigI homolog, Cdc9, not only resulted in increased instability of trinucleotide repeat sequences but also increased mitotic recombination with this effect being dependent on the interaction of Cdc9 with PCNA, not Cdc9 catalytic activity (13). Furthermore, we and others have shown that LigI is frequently overexpressed in tumor biopsies and cancer cell lines (14,15). Together, these observations suggest that overexpression of LigI may contribute to the genomic instability that drives tumor progression and the acquisition of resistance to chemotherapeutics.

The PCNA-interacting protein, flap endonuclease 1 (FEN-1) that processes the 5’ end of Okazaki fragments during the replication of the lagging strand is also overexpressed in a variety of cancers (16). Similar to LigI, both reduced FEN-1 activity and increased steady state levels of FEN-1 result in genomic instability in human cells (17,18). While these studies indicate that maintaining the appropriate relative levels of DNA replication proteins, in particular PCNA-interacting proteins involved in Okazaki fragment synthesis, processing and ligation, is critical for genomic stability, relatively little is known about the post-translational mechanisms that regulate the steady state levels of DNA replication proteins. Although proteomic studies have shown that LigI is ubiquitylated (19-21), neither the proteins responsible for LigI ubiquitylation nor the role(s) of ubiquitylation in regulating the cellular functions of LigI have been described. In this study, we show that the steady state levels of LigI are markedly reduced in response to inhibition of cell proliferation and that LigI is also degraded by the proteasome in a ubiquitin-dependent manner. Interestingly, LigI is targeted for degradation by a different E3 ubiquitin ligase activity than the one implicated in the ubiquitylation and degradation of FEN-1 (18). Specifically we have shown that, LigI is targeted for degradation by the Cul4-DDB1 complex with specificity conferred by the DDB1- and Cul4-associated factor (DCAF) DCAF7 that is also known as Han11 (22).

RESULTS

Periodic expression of LigI during the cell cycle.

Previously it was shown that the steady state levels of LigI mRNA were markedly reduced in non-proliferating cells compared with dividing cells and that the levels of LigI mRNA increased when cells were stimulated to proliferate (4). In accord with these observations, the steady state levels of LigI mRNA increased when confluent MCF10A cells derived from normal breast epithelium were plated at a lower density reaching a maximum after about 15 hours (Fig. 1a). Interestingly, the LigI mRNA levels declined and then peaked again at 27 hours as the cell population progressed through the first cell cycle and into the next one, indicating that the LigI gene is transcribed periodically during the cell cycle as well as in response to proliferation (Fig. 1a). The peak of LigI mRNA preceded the peak of S phase cells by about 6 hours (Fig. 1a). Changes in the steady state levels of LigI and FEN-1 proteins followed a similar pattern. The protein levels began to rise as
cells entered the first S phase and continued to rise until the next peak of S phase cells before declining (Fig. 1b). In contrast, the levels of proliferating cell nuclear antigen (PCNA), which plays a critical role in coordinating lagging strand DNA synthesis (23,24), remained relatively constant under these conditions (Fig. 1b). To determine the contribution of proteolytic degradation to the steady state levels of LigI, FEN-1 and PCNA, asynchronous MCF10A cells were treated with cycloheximide to inhibit protein synthesis. While the steady state levels of PCNA remained relatively constant under these conditions, LigI and FEN-1 had half-lives of about 9 hours and 12 hours, respectively (Fig. 2a and b).

Degradation of LigI by the proteasome in response to inhibition of cell proliferation and DNA damage. To confirm that growth inhibition results in a reduction in the level of LigI, we examined the effect of serum starvation and contact inhibition on the steady state levels of LigI mRNA and protein in MCF10A cells. As expected, the steady state levels of both LigI mRNA and protein were reduced after serum starvation for 24 hours (Fig. 3a) and contact inhibition for 24 hours (Fig. 3b). Under these conditions, the levels of FEN-1 and PCNA did not change (data not shown). In the non-dividing cells, the reduction of LigI protein levels (about 70-80%) was greater than the reduction of LigI mRNA (45-65%), suggesting that proteolytic degradation of LigI protein may be increased and/or translation of LigI mRNA decreased in non-dividing cells. Notably, levels of LigI protein but not mRNA were maintained in the growth-inhibited cells in the presence of the proteasome inhibitors, MG132 (Fig. 3a, lane 3) and epoxomicin (Fig. 3b, lane 3). As expected, there were higher levels of LigI ubiquitylation in LigI immunoprecipitates from extracts of serum-starved cells and these levels were further increased by the inclusion of the proteasome inhibitor epoxomicin during serum starvation (Fig. 4b, lanes 4 and 5).

Identification of LigI ubiquitylation sites and association with the Cull4-DDB1 E3 ligase. To map the sites of ubiquitylation, anti-FLAG immunoprecipitates from extracts of 293T cells that stably express FLAG-tagged human LigI were analyzed by mass spectrometry for peptides with the di-Gly modification that is characteristic of ubiquitylation peptides (19-21). The peptide coverage for LigI in these experiments was greater than 90%. Lysine 376 (K376, Fig. 5a) was definitively identified as a major site of ubiquitylation site by mass spectrometry and, Lysine 79 (K79, Fig. 5b), and Lysine 192 (K192, Fig. 5c) were identified as possible ubiquitylation sites.

To examine the role of these lysine residues, K79, K192 and K376 and another lysine residue, K226, identified as a LigI ubiquitylation site in other studies (19,20), we constructed FLAG-tagged versions of LigI in which one or more of the lysine residues was replaced with an arginine and then isolated stable derivatives of SV40-immortalized either with telomerase (HCA-Ltr, Fig. 4a, left panel) or SV40 T antigen (GM00847, Fig. 4a, right panel) also resulted in a reduction in the steady state levels of LigI that was prevented by a proteasome inhibitor. Since these results indicate that the proteasome plays an important role in determining the steady state levels of LigI, we asked whether LigI was ubiquitylated in GM00847 cells that were transiently transfected with a plasmid expressing HA-tagged ubiquitin. Only low levels of LigI ubiquitylation were detected in LigI immunoprecipitates from extracts of asynchronous cell populations even in the presence of a proteasome inhibitor (Fig. 4b, lanes 2 and 3). As expected, there were higher levels of LigI ubiquitylation in LigI immunoprecipitates from extracts of serum-starved cells and these levels were further increased by the inclusion of the proteasome inhibitor epoxomicin during serum starvation (Fig. 4b, lanes 4 and 5).
more resistant to serum-starvation induced degradation (~50% after 24 hours) compared with endogenous wild type LigI (~25% after 24 hours) indicating that ubiquitylation of these lysine residues contributes to LigI degradation by the proteasome (Fig. 5d). Since the levels of the mutant version of LigI are reduced in response to serum starvation, it is likely that additional lysine residues within LigI are also ubiquitylated.

FLAG immunoprecipitates were also examined by SILAC-based mass spectrometry for associated E3 ubiquitin ligases that may be involved in the ubiquitylation of LigI. Compared with parental 293T cells, higher levels of the Cul4 and DDB1 subunits of the core Cul4-DDB1 complex and DCAF7, a specificity factor for Cul4-DDB1 complex, were detected in FLAG-immunoprecipitates from derivatives of 293T cells expressing FLAG-LigI (Table 1), suggesting that LigI associates with the Cul4-DDB1 complex. The co-immunoprecipitation of DDB1 and DCAF7 with FLAG-tagged LigI was confirmed by immunoblotting (Fig. 6a). In reciprocal experiments, FLAG-tagged LigI and the DDB1 subunit of the Cul4-DDB1 complex were co-immunoprecipitated by a Cul4 antibody. Notably, the amount FLAG-tagged LigI co-immunoprecipitated with Cul4 increased in extracts from serum-starved cells (Fig. 6b, compare lanes 4 and 5) and, as expected, this was further increased by co-incubation with a proteasome inhibitor (Fig. 6b, lane 3). The increased association of LigI with the Cul4-DDB1 E3 ligase in serum-starved cells suggests that the capacity or rate of proteasome-mediated degradation may be limiting under these conditions.

DCAF7 interacts with and targets LigI for degradation

To determine whether DCAF7 is the specificity factor that targets LigI for ubiquitylation by the Cul4-DDB1 E3 ligase and subsequent degradation by the proteasome, we initially carried out pull down experiments with purified proteins. As shown in Figure 7a, DCAF7 bound specifically to nickel beads liganded by histagged LigI. Next we asked whether depletion of DCAF7 alters LigI for degradation in vivo. GM00847 cells were stably transfected with either a DCAF7-specific shRNA or a modified control shRNA construct that differs in two nucleotides from the DCAF7 shRNA. Knockdown of DCAF7 levels by about 70% reduced the degradation of LigI in response to serum starvation (Fig. 7b).

Finally, we asked whether the Cul4 complex immunoprecipitated from GM00847 cells could ubiquitylate LigI in vitro in the presence of human ubiquitin activating enzyme E1, a cocktail of ubiquitin conjugating E2 enzymes and biotinylated ubiquitin. Low levels of LigI ubiquitylation were detected in assays with the Cul4 immunoprecipitate that presumably contains low levels of DCAF7 (Fig. 7c, lane 5). The addition of recombinant DCAF7 enhanced LigI ubiquitylation but only in the presence of the Cul4 immunoprecipitate (Fig. 7c, compare lanes 2, 5 and 6). In accord with our results showing that the 4KR version (K79R K192R K226R K376R) of LigI was more resistant to degradation in vivo (Fig. 5d), ubiquitylation of this mutant version by immunoprecipitated Cul4, either in the absence or presence of DCAF7 was severely reduced (Fig. 7c, compares lanes 5 and 6 with lanes 7 and 8).

DISCUSSION

While there is compelling evidence showing that alterations in the relative stoichiometry of proteins involved in DNA replication result in genomic instability (13, 18), the proteolytic mechanisms that regulate the steady state levels of DNA replication proteins are relatively unexplored. Since proteomic studies have shown that LigI is ubiquitylated (19-21), we examined the role of ubiquitin-dependent proteolysis in determining the steady state levels of LigI. In this study, we have shown that LigI is ubiquitylated by a member of the cullin-RING finger E3 ligase family, Cul4-DDB1 and then degraded by the proteasome. Cullin-RING finger E3 ligases, which are composed of one of 7 cullins plus an adaptor and substrate receptor, are the largest family of ubiquitin ligases in eukaryotes (26). The complexes formed by cullins, CUL4A and CUL4B, with DDB1 have been implicated in several different aspects of genome maintenance, including the repair of DNA damage caused by UV-light (27-29), replication licensing (30-32), DNA damage- and stress-activated signaling (33,34), replication-associated nucleosome
assembly (35) and Polδ subunit structure (36,37). Furthermore, mutations in CUL4B have been identified in humans with mental retardation, macrocephaly and peripheral neuropathy with cell lines from these patients exhibiting defects in the repair of camptothecin-induced DNA single-strand breaks (38).

The substrate specificity of Cul4-DDB1 complexes is determined by substrate receptor proteins that interact with DDB1 (39). Here we have demonstrated that the Cul4-DDB1 substrate receptor DCAF7 directly interacts with LigI and targets it for ubiquitylation by the Cul4-DDB1 E3 ligase complex in vitro. Previous studies have shown that DCAF7, also known as HAN11 and WDR68, interacts with and negatively regulates the signaling activity of several protein kinases, including DYRK1A, DYRK1B, HIPK2 and MEKK1 (22,40,41). In these instances, it is not known whether DCAF7 is acting as a scaffolding protein for the kinases or is targeting them for degradation. Notably, depletion of cellular DCAF7 increases the stability of LigI, confirming that DCAF7 plays a key role in determining the steady state levels of LigI.

When cells are induced to proliferate, expression of both the FEN-1 and LIG1 genes is increased (4,42). Furthermore, our studies revealed periodic changes in expression of the LIG1 gene in synchronized, proliferating human cells, indicating that transcription of the LIG1 gene is also cell cycle-regulated. Thus, the regulation of human LIG1 gene expression is more similar to that of the functionally homologous CDC9 gene of S. cerevisiae than the Sch. pombe CDC17 gene (43). Since the level of LigI protein correlates with the mRNA levels, it appears that, in cycling cells, changes in the steady state levels of LigI are primarily determined by transcription rates rather than by proteolysis. The similar changes in the steady state levels of LigI and FEN-1 proteins as cells enter and progress through S phase suggest that expression of the FEN-1 and LIG1 genes are co-ordinately regulated in a cell cycle-dependent manner.

Previously it has been demonstrated that FEN-1 is ubiquitylated by the UBE1/UBE2/PRP19 E3 ligase during the G2/M phase of the cell cycle and that this ubiquitylation is regulated by sequential post-translational modifications of FEN-1 (18). Our studies identifying the Cul4-DDB1 E3 ligase as the major enzyme directing the proteolytic degradation of LigI reveal that two distinct mechanisms are utilized to maintain the relative steady state levels of these PCNA-interacting enzymes that catalyze the last two steps of Okazaki fragment processing and joining. While it appears that degradation of LigI is enhanced in non-dividing cells, further studies are needed to determine whether the ubiquitylation of LigI by the Cul4-DDB1-DCAF7 complex varies during the cell cycle and in response to inhibition of proliferation and whether cell cycle-dependent phosphorylation of LigI regulates its ubiquitylation (44,45).

The efficient and accurate replication of DNA requires a high degree of co-ordination among a large number of proteins. This is particularly evident for lagging strand DNA synthesis where protein-protein interactions with PCNA co-ordinate the sequential actions of the enzymes that synthesize, process and join Okazaki fragments (46). This mechanism, which involves transient interactions with overlapping binding sites on the PCNA trimer, is prone to disruption by changes in the relative stoichiometry of the PCNA-interacting proteins (12,13,18). Although the expression of many of the genes encoding DNA replication proteins are co-ordinately regulated, our studies reveal that different mechanisms control the turnover of these proteins. While this increases the complexity of the network of pathways that regulate the relative stoichiometry of DNA replication proteins, it appears to be designed to integrate DNA replication with other aspects of the cell cycle since FEN-1 degradation is linked to the degradation of cyclin B (18). It is possible that alterations in the proteolytic mechanisms that target LigI and FEN-1 may underlie the frequently elevated steady state levels of these proteins observed in cancers. This may constitute an unexplored source of genomic instability in cancer.

EXPERIMENTAL PROCEDURES

Cell lines, and culture conditions. The human MCF10A cell line established from normal breast epithelium (ATCC) was cultured in DMEM/F12 supplemented with 5% horse serum, 20 ng/ml
epidermal growth factor, 0.5 µg/ml hydrocortisone, 100 ng/ml of cholera toxin, 10 µg/ml insulin and 10 µg/ml penicillin and streptomycin at 37°C. SV40- (GM00847, ATCC) and telomerase-immortalized (HCA-Ltrt, a gift from Dr. Murnane) human fibroblasts (47) and human embryonic kidney 293T cells (ATCC) were cultured at 37°C in Dulbecco modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum, 50 units/ml penicillin and 50 µg/ml streptomycin. To synchronize cell populations, cultures were grown until confluent. After 48 h, the confluent cells were, trypsinized and then plated at a lower density. The synchronization of the cell population and its distribution among the cell cycle stages was determined by flow cytometry in the University of New Mexico Comprehensive Cancer Center Flow Cytometry Shared Resource. To investigate the effects of serum starvation, the culture medium was removed from proliferating cells and replaced with medium lacking serum. Incubation was continued in the serum-free medium for 24 h unless specified. For experiments with doxorubicin hydrochloride (Sigma), cells were incubated in either the absence or presence of 0.1 µM doxorubicin for 48 h. Where indicated, a proteasome inhibitor, either epoxomicin (0.2 µM, Millipore) or MG132 (20 µM, Sigma), was added to the culture medium for the final 8 h of the incubation without serum or with doxorubicin.

Quantification of gene expression by real-time PCR. Total RNA was purified from synchronized MCF10A cells using an RNeasy kit (Qiagen) and reverse transcribed using the Taqman Reverse Transcription Reagent kit (Applied Biosystems, Foster City, CA, USA) according to the manufacturer’s instructions. Expression of the LIG1 gene was measured with a quantitative real time PCR assay as previously reported (48). Expression levels were calculated as a ratio of the LigI mRNA level relative to the mRNA level for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the same cDNA sample. Primer sequences used here are: LIGI-1F, 5’-GAA TTC TGA CGC CAA CAT GCA-3’, LIGI-1R, 5’- CCG TCT CTC TGC TGC TAT TGG A-3’; GAPDH F, 5’-TCT GGT AAA GTG GAT ATT GTT G-3’, GAPDH R, 5’-GAT GGT GAT GGG ATT TCC-3’.

Immunoblotting. Cell extracts were prepared as previously described and their protein concentration determined using the method of Bradford (49,50). Proteins in whole cell extracts (20 µg) were detected by immunoblotting after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) using the following primary antibodies: anti-Flag M2 (1:10000, Sigma); anti-FEN-1 (1:1000, Novus) and anti-GST (1:10000, Novus); anti-Cul4 and anti-DDB1 (1:1000, GeneTex); anti-PCNA (1:10000, Santa Cruz), anti-HA antibody (1:2000, Bethyl Laboratories, Inc.) ; anti-DCAF7 (1:1000, Abcam) and anti-actin (1:10000, Abcam). A rabbit polyclonal antibody generated against purified human LigI (1:5000) was used as described previously (6,7,51).

Determination of protein half-life. Half-life experiments employing cycloheximide, an inhibitor of protein synthesis, were performed as described previously (19). The levels of FEN-1, LigI and PCNA were detected by immunoblotting and quantitated using Image J software (NIH).

Detection of LigI ubiquitylation in vivo. GM00847 cells were transiently transfected with a plasmid encoding HA-tagged ubiquitin using Lipofectamine (Invitrogen) according to the manufacturer’s instructions. After 24 h, the culture medium was replaced with medium lacking serum and incubation continued for 24 h. Where indicated, a proteasome inhibitor, either epoxomicin (0.2 µM, Millipore) or MG132 (20 µM, Sigma) was added to the culture medium for the final 8 h of the 24 h incubation. Cells were lysed in IP lysis buffer (20 mM Tris-HCl pH 7.5, 100 mM NaCl, 1 mM EDTA, 1 mM DTT, 5% glycerol, 1% Triton X-100, containing a protease inhibitor cocktail (Roche) and phosphatase inhibitor cocktails 2 and 3 (Sigma) according to the manufacturers recommendations. Clarified lysates (20 mg) were incubated with anti-LigI antibody (1:500) for 1 h at 4°C prior to overnight the incubation with 20 µl protein A beads (GE Healthcare). After washing 5 times with IP lysis buffer, bound proteins were eluted from the beads with SDS-PAGE sample buffer and then separated by SDS-PAGE. Ubiquitylated proteins were
detected by immunoblotting with anti-HA antibody.

Identification of LigI ubiquitylation sites. To identify ubiquitylated lysine residues in LigI, we selected a derivative of the 293T cell line that stably expresses FLAG-tagged wild-type LigI at levels about 2-times higher than endogenous LigI. FLAG-tagged LigI was immunoprecipitated from clarified extracts (1 mg) of the 293T cell line (1 x 10^8 cells) using anti-FLAG M2 affinity beads (Sigma) as described above. Proteins retained on the beads were reduced, alkylated and then digested with trypsin. The resulting peptides were analyzed by nano HPLC-coupled LTQ Orbitrap mass spectrometer (Thermo Scientific) as described previously (52). Raw data were searched against the human database with SEQUEST algorithm built in Bioworks (v3.3.1 SPI, Thermo Scientific). A variable modification of lysine with mass shift of +114.04Da was set to identify the ubiquitylation sites. Other modifications included a fixed modification of carbamidomethyl cysteine and a variable modification of oxidized methionine.

Identification of LigI associated proteins by mass spectrometry. 293T cells that stably express FLAG-tagged LIG1 were metabolically labeled with 13C215N6-L-lysine and 13C415N6-L-arginine (53). Nuclear extracts were prepared from labeled 293T cells expressing FLAG-tagged hLigI and unlabeled parental 293T cells as described previously (54). Equal amounts of the labeled and unlabeled nuclear extracts were mixed and then incubated with anti-FLAG M2 affinity beads (Sigma) as described above. Proteins were eluted from the beads with 3XFLAG peptide (Sigma) and then digested with trypsin using Filter Aided Sample Preparation (FASP) procedure (55). The resulting peptides were desalted on a Sep-Pak C18 cartridge (Waters) and dried using a SpeedVac (Thermo Scientific). After further fractionation using stop and go extraction (STAGE) tips made in-house with strong anion exchange (SAX) disk and desalting with a STAGE tip containing three layers of C18 membrane disks (3M) (56,57), peptide solutions were dried and stored at -80°C prior to analysis by nano HPLC- coupled LTQ Orbitrap mass spectrometer (Thermo Scientific). A database search was carried out as described previously to identify the proteins from which the tryptic peptides were derived (52). The ratios of peptides from labeled and non-labeled cells to parental cells were calculated using IsoQuant software (58).

Generation of cell lines that stably expression tagged versions of LigI. A pVP-Flag5 plasmid encoding an N-terminal FLAG-tagged version of LigI (6,7,51) was mutated by site-directed mutagenesis using the QuikChange site-directed mutagenesis kit (Stratagene) according to the manufacturer’s instructions. The mutations altered the coding sequence such that lysine residues 79, 192, 226, and 376 were replaced with arginine residues either singly or all together. After verification of the nucleotide sequence by DNA sequencing, N-terminally FLAG-tagged wild-type LigI (WT) and FLAG-tagged mutant LigI cDNAs were subcloned into the mammalian expression vector pRC/RSV. After selection for G418-resistance, single colonies were isolated and evaluated for the level of tagged LigI expression relative to endogenous LigI using FLAG and LigI antibodies. Cell lines that stably express FLAG-tagged mutant versions of LigI at levels about 2-times higher than endogenous LigI were selected for analysis.

Immunoprecipitation. A total of 4 x 10^8 cells were harvested, and lysed in 1 ml of 10 mM Tris-HCl, pH 7.4, 100 mM NaCl, 2.5 mM MgCl2, and 0.5% Triton X-100 containing protease and phosphatase inhibitors. After centrifugation, the supernatant was incubated at 4°C overnight with a 100 µl 50% suspension of protein A/G-Sepharose (Amersham Biosciences) coupled with 2 µl of anti-FLAG M2 antibody. The beads were washed extensively with the buffer described above prior to the elution of bound proteins with SDS-sample buffer. After separation by SDS-PAGE, eluted proteins were identified by immunoblotting.

Proteins. Plasmids encoding either GST or GST-DCAF7 were transformed into E. coli BL21(DE3) cells. GST and GST-DCAF7 proteins were purified from cell extracts by glutathione–Sepharose 4B affinity column chromatography (GE Healthcare). Wild-type and mutant LigI
Proteolytic degradation of DNA ligase I

cDNAs were subcloned into the bacterial expression vector pET28a. After expression in *E. coli* BL21(DE3) cells, the N-terminally His-tagged versions of hLigI were purified by HisTrap and HiTrap Q (GE Healthcare Life Sciences) column chromatography. Purified proteins fractions were separated by SDS-PAGE prior to Coomassie blue staining.

Pull-down assay. Purified His-tagged LigI (1 µg) was incubated with either GST (2 µg) or GST-DCAF7 (2 µg) in 300 µl of buffer containing 50 mM NaH₂PO₄ (pH 7.4), 250 mM NaCl, and 10 mM imidazole for 1 hour on ice, followed by the addition of 15 µl of Ni-NTA agarose beads (Qiagen) with rotation for 1 hour at 4 °C. The beads were collected by centrifugation and then washed five times with 500 µl of 50 mM NaH₂PO₄ (pH 7.4), 250 mM NaCl and 30 mM imidazole. After resuspension in 2 x SDS-PAGE sample buffer, the beads were incubated at 100°C for 5 min. Eluted proteins were separated by SDS-PAGE prior to detection both by staining with Coomassie Blue and immunoblotting with GST and LigI antibodies.

Generation of cell lines that stably express DCAF7 shRNA. GM00847 fibroblast cells were transfected with plasmids encoding DCAF7 shRNA or a scrambled shRNA (22) using the Lipofectamine transfection reagent (Invitrogen) according to the manufacturer’s directions. After selection for resistance to puromycin, single colonies were isolated. The steady state levels of DCAF7 and hLigI proteins in these clones were determined by immunoblotting with antibodies against hLigI and DCAF7.

In vitro ubiquitylation assay hLigI ubiquitylation in vitro was performed using the ubiquitylation kit (Enzo Life Science) according to the manufacturer’s directions. Briefly, purified His-tagged versions of wild type and mutant versions of LigI (1 µM) were incubated as indicated with E1 and E2 enzymes, biotinylated ubiquitin, 0.75 µl ubiquitin aldehyde, ATP, Cul4 complex immunoprecipitated from GM00847 cells, and purified DCAF7 (1 µM) in a final 15 µl volume at 30°C for 1 hour. Ubiquitylated LigI protein was detected by immunoblotting using the Pierce Far-Western Blot Kit for Biotinylated Protein (Thermofisher) according to the manufacturer’s directions.

Statistical analysis. Data represent the average ± SD at least from three independent experiments. Statistical comparisons were performed with Student’s two-tailed paired t test and analysis of variance (ANOVA). Values of *p* < 0.01 were considered statistically significant.

Acknowledgements: This work was supported by the University of New Mexico Comprehensive Cancer Center (P30 CA118100) and National Institute of Health Grant R01 GM57479 (to A.E.T.). We are grateful to Dr. John Murnane for the HCA-Ltrl cell line, Dr. Michael Lienhard Schmitz for the DCAF7 plasmids and Dr. Annahita Sallmyr for assistane with figure preparation.

Footnotes: The abbreviations used are Cul4, cullin4; DDB1, DNA damage-specific DNA binding protein 1; IP, immunoprecipitation; LigI, human DNA ligase I; PCNA, proliferating cell nuclear antigen; RFC, replication factor C; FEN-1, Flap endonuclease 1; RPA, replication protein A; DCAF7, DDB1- and CUL4-associated factor 7.

Conflicts of Interest: The authors declare that they no conflicts of interests with the contents of this article.

Author contributions: AET and AY conceived and coordinated the study and wrote the paper. ZP performed and analyzed the cell biology and biochemical studies. ZL carried out and analyzed the mass spectrometry experiments. YM purified proteins, provided technical expertise and contributed to the preparation of the figures. All authors analyzed the results and approved the final version of the manuscript.
REFERENCES

1. Barnes, D. E., Johnston, L. H., Kodama, K., Tomkinson, A. E., Lasko, D. D., and Lindahl, T. (1990) Human DNA ligase I cDNA: cloning and functional expression in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America 87, 6679-6683

2. Chen, J., Tomkinson, A. E., Ramos, W., Mackey, Z. B., Danehower, S., Walter, C. A., Schultz, R. A., Besterman, J. M., and Husain, I. (1995) Mammalian DNA ligase III: molecular cloning, chromosomal localization, and expression in spermatocytes undergoing meiotic recombination. Molecular and cellular biology 15, 5412-5422

3. Wei, Y. F., Robins, P., Carter, K., Caldecott, K. W., Papin, D. J. C., Yu, G.-L., Wang, R.-P., Shell, B. K., Nash, R. A., Schar, P., Barnes, D. E., Haseltine, W. A., and Lindahl, T. (1995) Molecular cloning and expression of human cDNAs encoding a novel DNA ligase IV and DNA ligase III, an enzyme active in DNA repair and genetic recombination. Mol. Cell. Biol. 15, 3206-3216

4. Petrini, J. H., Huwiler, K. G., and Weaver, D. T. (1991) A wild-type DNA ligase I gene is expressed in Bloom's syndrome cells. Proceedings of the National Academy of Sciences of the United States of America 88, 7615-7619

5. Levin, D. S., Bai, W., Yao, N., O'Donnell, M., and Tomkinson, A. E. (1997) An interaction between DNA ligase I and proliferating cell nuclear antigen: implications for Okazaki fragment synthesis and joining. Proceedings of the National Academy of Sciences of the United States of America 94, 12863-12868

6. Levin, D. S., McKenna, A. E., Motycka, T. A., Matsumoto, Y., and Tomkinson, A. E. (2000) Interaction between PCNA and DNA ligase I is critical for joining of Okazaki fragments and long-patch base-excision repair. Current biology : CB 10, 919-922

7. Levin, D. S., Vijayakumar, S., Liu, X., Bermudez, V. P., Hurwitz, J., and Tomkinson, A. E. (2004) A conserved interaction between the replicative clamp loader and DNA ligase in eukaryotes: implications for Okazaki fragment joining. The Journal of biological chemistry 279, 55196-55201

8. Montecucco, A., Rossi, R., Levin, D. S., Gary, R., Park, M. S., Motycka, T. A., Ciarrocchi, G., Villa, A., Biamonti, G., and Tomkinson, A. E. (1998) DNA ligase I is recruited to sites of DNA replication by an interaction with proliferating cell nuclear antigen: identification of a common targeting mechanism for the assembly of replication factories. The EMBO journal 17, 3786-3795

9. Barnes, D. E., Tomkinson, A. E., Lehmann, A. R., Webster, A. D., and Lindahl, T. (1992) Mutations in the DNA ligase I gene of an individual with immunodeficiencies and cellular hypersensitivity to DNA-damaging agents. Cell 69, 495-503

10. Webster, A. D., Barnes, D. E., Arlett, C. F., Lehmann, A. R., and Lindahl, T. (1992) Growth retardation and immunodeficiency in a patient with mutations in the DNA ligase I gene. Lancet 339, 1508-1509

11. Harrison, C., Ketchen, A. M., Redhead, N. J., O'Sullivan, M. J., and Melton, D. W. (2002) Replication failure, genome instability, and increased cancer susceptibility in mice with a point mutation in the DNA ligase I gene. Cancer research 62, 4065-4074

12. Lopez Castel, A., Tomkinson, A. E., and Pearson, C. E. (2009) CTG/CAG repeat instability is modulated by the levels of human DNA ligase I and its interaction with proliferating cell nuclear antigen: a distinction between replication and slipped-DNA repair. The Journal of biological chemistry 284, 26631-26645

13. Subramanian, J., Vijayakumar, S., Tomkinson, A. E., and Arnheim, N. (2005) Genetic instability induced by overexpression of DNA ligase I in budding yeast. Genetics 171, 427-441

14. Chen, X., Zhong, S., Zhu, X., Dziegielewksa, B., Ellenberger, T., Wilson, G. M., MacKerrell, J., A.D., and Tomkinson, A. E. (2008) Rational Design of Human DNA ligase Inhibitors that Target Cellular DNA Replication and Repair. Cancer Res. 68, 3169-3177
Proteolytic degradation of DNA ligase I

15. Sun, D., Urrabaz, R., Nguyen, M., Marty, J., Stringer, S., Cruz, E., Medina-Gundrum, L., and Weitman, S. (2001) Elevated expression of DNA ligase I in human cancers. Clin Cancer Res 7, 4143-4148

16. Singh, P., Yang, M., Dai, H., Yu, D., Huang, Q., Tan, W., Kernstine, K. H., Lin, D., and Shen, B. (2008) Overexpression and hypomethylation of flap endonuclease 1 gene in breast and other cancers. Molecular cancer research: MCR 6, 1710-1717

17. Zheng, L., Dai, H., Zhou, M., Li, M., Singh, P., Qiu, J., Tsark, W., Huang, Q., Kernstine, K., Zhang, X., Lin, D., and Shen, B. (2007) Fen1 mutations result in autoimmunity, chronic inflammation and cancers. Nature medicine 13, 812-819

18. Guo, Z., Kanjanapangka, J., Liu, N., Liu, S., Liu, C., Wu, Z., Wang, Y., Loh, T., Kowolik, C., Jamsen, J., Zhou, M., Truong, K., Chen, Y., Zheng, L., and Shen, B. (2012) Sequential posttranslational modifications program FEN1 degradation during cell-cycle progression. Molecular cell 47, 444-456

19. Kim, W., Bennett, E. J., Huttlin, E. L., Guo, A., Li, J., Possemato, A., Sowa, M. E., Rad, R., Rush, J., Comb, M. J., Harper, J. W., and Gygi, S. P. (2011) Systematic and quantitative assessment of the ubiquitin-modified proteome. Molecular cell 44, 325-340

20. Wagner, S. A., Beli, P., Weinert, B. T., Nielsen, M. L., Cox, J., Mann, M., and Choudhary, C. (2011) A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics 10, M111 013284

21. Tan, F., Lu, L., Cai, Y., Wang, J., Xie, Y., Wang, L., Gong, Y., Xu, B. E., Wu, J., Luo, Y., Qiang, B., Yuan, J., Sun, X., and Peng, X. (2008) Proteomic analysis of ubiquitinated proteins in normal hepatocyte cell line Chang liver cells. Proteomics 8, 2885-2896

22. Ritterhoff, S., Farah, C. M., Grabitzki, J., Lochnit, G., Skurat, A. V., and Schmitz, M. L. (2010) The WD40-repeat protein Han11 functions as a scaffold protein to control HIPK2 and MEKK1 kinase functions. The EMBO journal 29, 3750-3761

23. Waga, S., and Stillman, B. (1998) The DNA replication fork in eukaryotic cells. Annual review of biochemistry 67, 721-751

24. Waga, S., and Stillman, B. (1994) Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication in vitro. Nature 369, 207-212

25. Gajewski, E., Gaur, S., Akman, S. A., Matsumoto, L., van Balgooy, J. N., and Doroshow, J. H. (2007) Oxidative DNA base damage in MCF-10A breast epithelial cells at clinically achievable concentrations of doxorubicin. Biochemical pharmacology 73, 1947-1956

26. Petrofski, M. D., and Deshaies, R. J. (2005) Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 6, 9-20

27. Groisman, R., Kuraoka, I., Chevallier, O., Gaye, N., Magnaldo, T., Tanaka, K., Kisselev, A. F., Harel-Bellan, A., and Nakatani, Y. (2006) CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome. Genes & development 20, 1429-1434

28. Groisman, R., Polanowska, J., Kuraoka, I., Sawada, J., Saijo, M., Drapkin, R., Kisselev, A. F., Tanaka, K., and Nakatani, Y. (2003) The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113, 357-367

29. Sugasawa, K., Okuda, Y., Saijo, M., Nishi, R., Matsuda, N., Chu, G., Mori, T., Iwai, S., Tanaka, K., Tanaka, K., and Hanaoka, F. (2005) UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell 121, 387-400

30. Jin, J., Arias, E. E., Chen, J., Harper, J. W., and Walter, J. C. (2006) A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Molecular cell 23, 709-721

31. Kim, Y., Starosta, N. G., and Kipreos, E. T. (2008) The CRL4Cdt2 ubiquitin ligase targets the degradation of p21Cip1 to control replication licensing. Genes & development 22, 2507-2519
Proteolytic degradation of DNA ligase I

32. Abbas, T., Sivaprasad, U., Terai, K., Amador, V., Pagano, M., and Dutta, A. (2008) PCNA-dependent regulation of p21 ubiquitylation and degradation via the CRL4Cdt2 ubiquitin ligase complex. *Genes & development* **22**, 2496-2506

33. Leung-Pineda, V., Huh, J., and Piwnica-Worms, H. (2009) DDB1 targets Chk1 to the Cul4 E3 ligase complex in normal cycling cells and in cells experiencing replication stress. *Cancer research* **69**, 2630-2637

34. Katiyar, S., Liu, E., Knutzen, C. A., Lang, E. S., Lombardo, C. R., Sankar, S., Toth, J. L., Petroski, M. D., Ronai, Z., and Chiang, G. G. (2009) REDD1, an inhibitor of mTOR signalling, is regulated by the CUL4A-DDB1 ubiquitin ligase. *EMBO reports* **10**, 866-872

35. Han, J., Zhang, H., Zhang, H., Wang, Z., Zhou, H., and Zhang, Z. (2013) A Cul4 E3 ubiquitin ligase regulates histone hand-off during nucleosome assembly. *Cell* **155**, 817-829

36. Terai, K., Shibata, E., Abbas, T., and Dutta, A. (2013) Degradation of p12 subunit by CRL4Cdt2 E3 ligase inhibits fork progression after DNA damage. *The Journal of biological chemistry* **288**, 30509-30514

37. Zhang, S., Zhao, H., Darzynkiewicz, Z., Zhou, P., Zhang, Z., Lee, E. Y., and Lee, M. Y. (2013) A novel function of CRL4(Cdt2): regulation of the subunit structure of DNA polymerase delta in response to DNA damage and during the S phase. *The Journal of biological chemistry* **288**, 29550-29561

38. Kerzendorfer, C., Whibley, A., Carpenter, G., Outwin, E., Chiang, S. C., Turner, G., Schwartz, C., El-Khamisy, S., Raymond, F. L., and O'Driscoll, M. (2010) Mutations in Cullin 4B result in a human syndrome associated with increased camptothecin-induced topoisomerase I-dependent DNA breaks. *Human molecular genetics* **19**, 1324-1334

39. Lee, J., and Zhou, P. (2007) DCAF5s, the missing link of the CUL4-DDB1 ubiquitin ligase. *Molecular cell* **26**, 775-780

40. Bouwmeester, T., Bauch, A., Ruffner, H., Angrand, P. O., Bergamini, G., Croughton, K., Cruciat, C., Eberhard, D., Gagneur, J., Ghidelli, S., Hopf, C., Huhse, B., Mangan, R., Michon, A. M., Schirle, M., Schlegl, J., Schwab, M., Stein, M. A., Bauer, A., Casari, G., Drewes, G., Gavin, A. C., Jackson, D. B., Joberty, G., Neubauer, G., Rick, J., Kuster, B., and Superti-Furga, G. (2004) A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. *Nature cell biology* **6**, 97-105

41. Skurat, A. V., and Dietrich, A. D. (2004) Phosphorylation of Ser640 in muscle glycogen synthase by DYRK family protein kinases. *The Journal of biological chemistry* **279**, 2490-2498

42. Kim, I. S., Lee, M. Y., Lee, I. H., Shin, S. L., and Lee, S. Y. (2000) Gene expression of flap endonuclease-1 during cell proliferation and differentiation. *Biochimica et biophysica acta* **1496**, 333-340

43. White, J. H., Barker, D. G., Nurse, P., and Johnston, L. H. (1986) Periodic transcription as a means of regulating gene expression during the cell cycle: contrasting modes of expression of DNA ligase genes in budding and fission yeast. *The EMBO journal* **5**, 1705-1709

44. Ferrari, G., Rossi, R., Arosio, D., Vindigni, A., Biamonti, G., and Montecucco, A. (2003) Cell cycle-dependent phosphorylation of human DNA ligase I at the cyclin-dependent kinase sites. *The Journal of biological chemistry* **278**, 37761-37767

45. Rossi, R., Villa, A., Negri, C., Scovassi, I., Ciarrocchi, G., Biamonti, G., and Montecucco, A. (1999) The replication factor targeting sequence/PCNA-binding site is required in G(1) to control the phosphorylation status of DNA ligase I. *The EMBO journal* **18**, 5745-5754

46. Howes, T. R., and Tomkinson, A. E. (2012) DNA ligase I, the replicative DNA ligase. *Subcell Biochem* **62**, 327-341

47. Pirzio, L. M., Freulet-Marriere, M. A., Bai, Y., Fouladi, B., Murnane, J. P., Sabatier, L., and Desmaze, C. (2004) Human fibroblasts expressing hTERT show remarkable karyotype stability even after exposure to ionizing radiation. *Cytogenet Genome Res* **104**, 87-94
Proteolytic degradation of DNA ligase I

48. Liang, L., Deng, L., Nguyen, S. C., Zhao, X., Maulion, C. D., Shao, C., and Tischfield, J. A. (2008) Human DNA ligases I and III, but not ligase IV, are required for microhomology-mediated end joining of DNA double-strand breaks. *Nucleic acids research* 36, 3297-3310

49. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Analytical biochemistry* 72, 248-254

50. Goetz, J. D., Motycka, T. A., Han, M., Jasim, M., and Tomkinson, A. E. (2005) Reduced repair of DNA double-strand breaks by homologous recombination in a DNA ligase I-deficient human cell line. *DNA repair* 4, 649-654

51. Vijayakumar, S., Dziegielewska, B., Levin, D. S., Song, W., Yin, J., Yang, A., Matsumoto, Y., Bermudez, V. P., Hurwitz, J., and Tomkinson, A. E. (2009) Phosphorylation of human DNA ligase I regulates its interaction with replication factor C and its participation in DNA replication and DNA repair. *Molecular and cellular biology* 29, 2042-2052

52. Liao, Z., Thomas, S. N., Wan, Y., Lin, H. H., Ann, D. K., and Yang, A. J. (2013) An Internal Standard-Assisted Synthesis and Degradation Proteomic Approach Reveals the Potential Linkage between VPS4B Depletion and Activation of Fatty Acid beta-Oxidation in Breast Cancer Cells. *International journal of proteomics* 2013, 291415

53. Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A., and Mann, M. (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. *Molecular & cellular proteomics : MCP* 1, 376-386

54. Boisvert, F. M., Lam, Y. W., Lamont, D., and Lamond, A. I. (2010) A quantitative proteomics analysis of subcellular proteome localization and changes induced by DNA damage. *Molecular & cellular proteomics : MCP* 9, 457-470

55. Wisniewski, J. R., Zougman, A., Nagaraj, N., and Mann, M. (2009) Universal sample preparation method for proteome analysis. *Nature methods* 6, 359-362

56. Rappsilber, J., Ishihama, Y., and Mann, M. (2003) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. *Analytical chemistry* 75, 663-670

57. Wisniewski, J. R., Zougman, A., and Mann, M. (2009) Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. *Journal of proteome research* 8, 5674-5678

58. Liao, Z., Wan, Y., Thomas, S. N., and Yang, A. J. (2012) IsoQuant: A Software Tool for Stable Isotope Labeling by Amino Acids in Cell Culture-Based Mass Spectrometry Quantitation. *Analytical chemistry* 84, 4535-4543

FIGURE LEGENDS

Figure 1. Expression of the LIG1 gene and LigI, FEN-1 and PCNA proteins during the cell cycle

Confluent MCF10A cells were trypsinized, plated at a lower density and then incubated for the indicated times prior to harvesting. **a.** The percentage of the cell population in S phase was measured by flow cytometry and the steady state levels of LigI mRNA were measured by quantitative RT-PCR as described in Experimental Procedures. LigI mRNA levels are expressed as a percentage of the LigI mRNA level in asynchronously proliferating cells. The data shown graphically represent the average ± SD of three independent experiments. **b.** Upper panel, LigI, FEN-1, PCNA and β-actin proteins were detected in total cell lysates (20 µg) from the synchronized cell populations by immunoblotting as indicated. Lower panel, the film was digitized and then quantitated by band densitometry using Image J software (NIH). The results shown graphically for LigI, FEN-1 and PCNA are expressed as ratio of β-actin levels.
Proteolytic degradation of DNA ligase I

Figure 2. Half-lives of LigI and FEN-1. a. Asynchronous MCF10A cells were treated with 100 μg/ml cycloheximide for the indicated times prior to lysis. LigI, FEN-1, PCNA and β-actin proteins were detected in total cell lysates (20 μg) by immunoblotting. b. The relative levels of LigI, FEN-1 and PCNA were determined using Image J software (NIH) and expressed as percentage of the signal in untreated cells. The data shown graphically represent the average ± SD of three independent experiments.

Figure 3. Degradation of LigI in human breast epithelial cells following inhibition of cell proliferation and DNA damage. a. Asynchronously proliferating MCF10A cells were either untreated (lane 1), serum-starved for 24 hours (lanes 4 and 5) or incubated with doxorubicin (0.1μM) for 48 hours (lanes 2 and 3) in the absence or presence of the proteasome inhibitor MG132 (20 μM) for the last 8 hours as indicated. b. Asynchronous, proliferating MCF10A cells (lane 1); confluent MCF10A cells incubated in the absence (lane 2) or presence (lane 3) of epoxomicin (0.2 μM) for 8 hours. The steady state levels of LigI mRNA were measured by quantitative RT-PCR as described in Experimental Procedures. LigI and β-actin were detected by immunoblotting.

Figure 4. Ubiquitylation and degradation of LigI in growth-arrested immortalized human fibroblasts. a. Asynchronous, proliferating immortalized fibroblasts were either untreated (lanes 1 and 4), serum starved for 24 hours (lanes 2 and 5) or serum starved for 24 hours in the presence of epoxomicin (0.2 μM 8 hours, lanes 3 and 6). Left panel, telomerase-immortalized fibroblasts, HCA-Ltrt; right panel, SV40-immortalized fibroblasts, GM00847. LigI and β-actin were detected by immunoblotting. b. LigI immunoprecipitates from GM00847 cells expressing HA-tagged ubiquitin were probed for ubiquitylated LigI by immunoblotting. Lane 1, untreated GM00847 cells. GM00847 cells transiently transfected with a plasmid expressing HA-tagged ubiquitin were; lane 2, untreated; lane 3, incubated with 0.2 μM epoxomicin for 8 hours; lane 4, serum starved for 8 hours; lane 5, serum starved and incubated with 0.2 μM epoxomicin for 8 hours. LigI in the cell lysates was detected by immunoblotting (Lower panel). LigI with covalently linked HA-tagged ubiquitin was detected in the LigI immunoprecipitates by immunoblotting with anti-HA antibody (upper panel).

Figure 5. Identification of ubiquitylated lysine residues in LigI; effect of replacing ubiquitylated lysine residues with arginine in LigI steady state levels in serum-starved cells. Anti-FLAG immunoprecipitates from nuclear extracts of labeled 293T cells expressing FLAG-tagged LigI mixed with nuclear extracts of unlabeled parental 293T cells were digested with trypsin and tryptic peptides identified by mass spectrometry as described in Materials and Methods. MS/MS spectra of peptides bearing ubiquitylation of K376 (a), K79 (b) and K192 (c) in LigI. K#, ubiquitylation site. R', 13C6,15N4-arginine. Red peaks correspond to b ions (masses of fragments generated from the peptide N-terminus) and blue peaks correspond to y ions (masses of fragments generated from the peptide C-terminus). d. Asynchronously proliferating GM00087 cells expressing the FLAG-tagged K79R K192R K226R K376R version of LigI were serum starved for the indicated times. FLAG-tagged and endogenous versions of LigI were detected by immunoblotting with the LigI antibody.

Figure 6. Association of LigI with the Cul4-DDB1-DCAF7 complex. a. Lane 1, 293T cell lysate, 5 μg (10% input). Lane 2, protein A/G beads only and Lane 3, protein A/G beads plus LigI. 293T cell lysate incubated with; lane 4, protein A/G beads; lane 5, LigI antibody followed by protein A/G beads; lane 6, LigI antibody plus 10 μg/ml ethidium bromide followed by protein A/G beads. DDB1 and DCAF7 proteins detected by immunoblotting. b. Input lysates (5 μg, 10% of input) and Cul4 immunoprecipitates from GM00847 cells that were; lanes 1 and 4, untreated; lanes 2 and 5, serum starved for 8 hours; lanes 3 and 6, serum starved for 8 hours in the presence of 0.2 μM epoxomicin for 8 hours. Cul4, DDB1 and LigI proteins were detected by immunoblotting.
Proteolytic degradation of DNA ligase I

Figure 7. DCAF7 interacts with and targets LigI for ubiquitylation and degradation.

a. Pull down assay with nickel beads. Purified GST (lanes 1 and 5); GST and his-tagged LigI (lanes 2 and 6); GST-DCAF7 (lanes 3 and 7) and GST-DCAF7 and his-tagged LigI (lanes 4 and 8) were incubated with nickel beads. The input lanes (1-4) contain 0.2 µg of the GST and 0.2 µg his-tagged LigI as indicated (10% of total input). Proteins retained on the beads were eluted with SDS-PAGE sample buffer and then separated by SDS-PAGE. Proteins were detected by immunoblotting with antibodies against GST, DCAF7 and LigI.

b. GM00847 cells that were stably transfected with either a control shRNA (lanes 1 and 2) or a DCAF7 shRNA (lanes 3 and 4) were serum-starved or not as indicated. LigI, DCAF7 and β-actin were detected in whole cell lysates (20 µg) by immunoblotting.

c. Purified wild type LigI (lanes 1, 2, 5 and 6, 1 µM) and the K79R K192R K226R K376R version (lanes 7 and 8, 1 µM) were incubated with biotinylated ubiquitin provided by ENZO Ubiquitinylation kit, a Cul4 immunoprecipitate from GM00847 cells, a purified E1 enzyme and cocktail of E2 enzymes and purified DCAF7 (1 µM) as indicated. Ubiquitylated proteins were detected by immunoblotting with Pierce Far-Western Blot Kit for Biotinylated Proteins. The ubiquitylated band indicated by the asterisk is generated by the E1 and E2 enzymes in the absence of LigI.

Table 1. Identification of CUL family proteins, DDB1 and DCAF7 interacting with LigI

Uniprot Accession	Gene Name	Protein Name	HEK293-FLAG-hLIG1/HEK293
Q13616	CUL1	Cullin-1	Ratio; SD; CV; # of peptides
Q13617	CUL2	Cullin-2	1.97; 0.12; 5.9; 7
Q13618	CUL3	Cullin-3	2.15; 0.52; 24.2; 2
Q13619	CUL4A	Cullin-4A	2.57; 0.18; 6.8; 3
Q13620	CUL4B	Cullin-4B	2.72; 0.28; 10.3; 6
Q93034	CUL5	Cullin-5	2.3; 0.14; 6.2; 5
Q86VP6	CAND1	Cullin-associated NEDD8-dissociated protein 1	2.84; 0.14; 6.2; 5
Q16531	DBB1	DNA damage-binding protein 1	2.73; 0.39; 14.3; 23
P61962	DCAF7	DDB1- and CUL4-associated factor 7	1.44; 0.03; 1.8; 4

Legend: The ratio (Ratio) of selected LigI-associated proteins in HEK293-FLAG-LIG cells versus parental HEK293 cells was derived from the ratios of their individual identified peptides (# of peptides). The standard deviation (SD) and coefficient of variation (CV) for these peptide ratios is shown.
Proteolytic degradation of DNA ligase I

Fig 1a

Fig 1b

Release time (h) 6 9 12 15 18 21 24 36 48 56

Lig 1
FEN-1
PCNA
β-Actin

Relative ratio

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0 10 20 30 40 50 60

Time after release (h)
Proteolytic degradation of DNA ligase I

Fig 2a

Time after CHX addition (h)	0	2	4	6	9	12
LigI						
FEN-1						
PCNA						
β-Actin						

Fig 2b

Relative protein level [%]

Time after CHX addition (h)

LigI, FEN-1, PCNA
Proteolytic degradation of DNA ligase I
Proteolytic degradation of DNA ligase I

Fig 6a

	E18r	Lig1 Ab	Lig1	Beads	Lysoate	
	-	-	-	-	-	+

IB: anti-DDB1

IB: anti-DCAF7

1 2 3 4 5 6

Fig 6b

	Input	IP with anti-Cul4
Etoposide	-	-
Starvation	-	-

	1	2	3	4	5	6
Lig1	-	+	-	+	+	-
DDB1	-	-	-	+	+	+
Cul4	-	-	-	+	+	+

1 2 3 4 5 6
Proteolytic degradation of DNA ligase I

Fig 7a

Lig	Input	Pulldown
	- + - +	- + - +
GST-DCAF7	- - + +	- - + +
GST	+ + - -	+ + - -
IB: anti-DCAF7		
IB: anti-GST		
IB: anti-Lig		

Fig 7b

DCAF7 shRNA	Lig	Starvation
- - + +	- + - +	- + - +
Lig	DCAF7	β-Actin

Fig 7c

Lig	WT	WT	ΔKR
	-	-	-
E1+E2	+	-	+
DCAF7	+	+	-
Cul4/DD81 complex	-	+	+
Ub-Lig			

Downloaded from http://www.jbc.org/ by guest on March 24, 2020
Human DNA Ligase I Interacts with and is Targeted for Degradation by the DCAF7 Specificity Factor of the CUL4-DDB1 Ubiquitin Ligase Complex
Zhimin Peng, Zhonping Liao, Yoshihiro Matsumoto, Austin Yang and Alan E. Tomkinson

J. Biol. Chem. published online August 29, 2016

Access the most updated version of this article at doi: 10.1074/jbc.M116.746198

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts