Biological peculiarities of cherry growth and fructification on seedling and clonal rootstocks

R G Nozdracheva and E V Nepushkina

Voronezh State agrarian university, 1, Mitchurina st., Voronezh, 394087, Russia
E-mail: r.nozdracheva@mail.ru

Abstract. Cherry is a stone fruit crop which is valued for early raping, yield capacity, fruit eating qualities. The drawback is growth of trees, absence of short rootstocks for cultivating in Central Chernozemic region. The Faculty of Agricultural Science conducts research on the selection of compatible cultivars and rootstocks with high winterhardness of the above-ground part and roots for their introduction into commercial orchards in the Voronezh region. Biometrical attributes of cultivar growth and development, crown parameters, weak-, medium, active plantings of the cherry on seedling and clonal rootstocks have been determined by the study. The effects of cultivar-rootstock combinations on the cherry yield have been determined. The content of sugar, organic acids, dry basis, and vitamin C have been determined. The cultivars for introduction and study have been suggested for intensive commercial orchards of the Voronezh region.

1. Introduction
Cherry is a stone fruit crop of rather early ripes, with high eating and nutritional qualities [1]. The fruit contain digestible sugars, acids, vitamins and other useful nutrients. Due to high sugar content and low acidity they are used fresh, for compotes and other products [2, 3].

Cherry plantations are characterized by intensive growth and large crowns [4]. Nowadays, cultivar-rootstock combinations with stem-tide trees are necessary for intensive orchards. These combinations should have early fructification, high efficiency of planting and high quality of fruit, that is why, this research is topical [5, 6].

By agronomic characteristics VSL-2 and LC-2 rootstocks are suitable for commercial planting. They decrease the cherry spreading by 30-50 %, increase productivity and commercial qualities of fruit [7].

The plantation development in the Voronezh region is restricted due to absence of stock planting material of the recognized variety. The cherry with seedling rootstocks takes the area of 40 ha in commercial orchards in the Voronezh region, their main part (36.3 ha) is taken by orchards of LLC “Rossoshanskaya fruit-berry station” in Rossoshanskiy region, 2.7 ha of cherry are in CJSC “Ostrogozhsk nursery garden” in Ostrogozhsk region [8].

For wider introduction of cherry into commercial gardens it is necessary to cultivate combinations which will give high yields [9, 10].

The Faculty of Agricultural Science at FSBEE HE “Voronezh State agrarian university” study cherry cultivars and their rootstocks suitable for forest steep in Central Chernozemic region [11].

The purpose is to study biological attributes of cultivar-rootstock cherry combinations by important economic traits and characteristics and determine the most suitable for introduction into the commercial orchards of monocultural farms in the Voronezh region. The objectives are to study the growth and
development of cherry cultivar with seedling and clonal rootstocks; determine the effects of a cultivar and rootstock on yield and fruit quality; estimate the biochemical composition of fruit by the most important attributes.

2. Materials and methods
Cherry plantations with different periods of ripening: Revma, Iput’, Bryansk (к) selected by FSBSI All-Russian SRI of lupine” (Bryansk); Adelina, Poesia selected by FSBSI “All-Russian SRI of fruit crop selection” (Orel) and All-Russian SRI of fruit plants selection and genetics” (Michurinsk), Rannyaya rozovaya (к) selected by LLC “Rossoshanskaya fruit-berry station”, Voronezhskaya krasnaya selected by FSBE HE Voronezh SAU with cherry seedling rootstock (к) and clonal rootstocks – VS-13, VSL-2, RVL-2, RVL-10 have been studied.

The orchard was planted in 2013 on the territory of Voronezh SAU. The landing pattern is 6×4m. The crown form is thinned layered.

These cultivar-rootstock combinations were estimated by common methods of fruit berry and nut crop estimation [12]. The cherry fruit were analyzed for chemical analysis in the laboratory of Mass analysis laboratory at Voronezh State University: the content of vitamin C and dry basis were determined by B. P. Pleshakov method (1976), the sugar content was measured by Kh. N Pochink method (1976), acidity by Ermakov A. I. (1979).

3. Results
For three years (2016-2019) the growth, development and yield of cherry had been observed. The data analysis of the cherry trees height with seedling rootstocks (к) showed that at the 8th year of their growth their height changed depending on the cultivar from 2.8 m (Rannaya rozovaya) (к) to 5.3 m with Bryanskaya rozovaya (Figure 1). Adelina (3.4 m) also had stemmed tide.

![Figure 1. The parameters of cherry tree height and cherry tree body on the seedling rootstock (к) in 2018.](image)

The most important index of tree development is the tree diameter where water and nutrients reach the tops [13].

The diameter of the tree body showed that Rannyaya rozovaya (к) (7.5 cm) and Adelina (8.0 cm) had the stemmed growth and cultivars Poesiya (10.5 cm) and Bryanskaya rozovaya (10.6 cm) had high attributes.
The analysis of height and diameter parameters of the tree body in cherries on the clonal rootstock VSL-2 (figure 2) has been done.

![Figure 2. The parameters of cherry tree height and cherry tree body on the seedling rootstock VSL-2 in 2018.](image)

Cherry plantings on the rootstock VSL–2 decrease the height of the trees comparing with the trees on the seedling rootstocks from 0.5 m in Adelina, to 1.8 m in Malysh, but the tree body diameter in Malysh cultivar on the studied rootstocks is the same.

The cherry trees Rannyaya rozovaya (k) on the root stock VSL–2 have the greatest tree body diameter. Comparing with the seedling rootstock this parameter was higher by 4.2 cm, that evidences the cultivar selectiveness to the rootstocks, which is manifested in growth and the development of the over ground part. Clonal rootstocks also reduced the tree height in cultivars Adelina and Poesiya.

Table 1 shows that cherry seedlings (k) in cultivar Rannyaya rozovaya (k) shoot formation, their average and overall length is less than in the same cultivar on the clonal rootstock VSL-2.

Cultivar	Rootstock	shot number, units.	Average length, cm	overall shoot length, m
		existing sidelong	existing sidelong	
Rannyaya rozovaya (k),	cherry	14 54	38 24	18.3
	VSL-2	17 68	36 26	23.8
Poesiya	cherry	24 79	31 25	27.2
	VSL-2	16 53	41 29	21.9
Voronezhskaya krasnaya	cherry	23 68	46 43	39.8
	VSL-2	20 83	43 33	36.0

In cultivars Poesiya and Voronezhskaya krasnaya these parameters are higher on seedling rootstocks than on clonal ones that proves the influence of cultivar-rootstock combinations of cherry.

The overall shoot length on trees of Rannyaya rozovaya cultivar – of the early ripening is lower than in Voronezhskaya krasnaya – of later ripening. It depends on the duration of shoot growth until phonological phase “fructification” and tillering.
Data analysis of cherry trees growth activity on seedling and clonal rootstocks showed that cultivar-rootstocks combinations manifest selective ability. It should be taken into account when planting them in the orchard [14,15].

Data analysis of cherry yielding showed that this parameter depends on the cultivar. The highest yield was in Iput’ (29.8 c/ha), Rannyaya rozovaya (k) (24.5 c/ha), Revna (21.6 c/ha) and Adelina (21.0 c/ha), and low – in Malysh cultivar (9.7 c/ha). It depends on delicate shooting and their growth activity (figure 3).

Figure 3. Yield in cherry cultivars in 2018, c/ha.

It has been determined that the yield in cherry cultivars depends on rootstock spreading. Thus, Voronezhskaya krasnaya when cultivated on seedling rootstocks (κ) has yield to 20 c/ha, on clonal rootstocks VC-13 and VCL-2 – 17.5 c/ha, rootstock RVL-10 – to 14.6 c/ha, and RVL-2 – 13.7 c/ha (fig.4).

Fruit size is a characteristic feature of every cultivar [16].

Table 2 shows quality attributes of these cherry fruit. Fruit color is different from yellow (Malysh) to dark red (Iput’).

Cherry plantings prove themselves good in edaphoclimatic conditions of the Voronezhskaya region, have high flowering, but fructification depends on weather conditions during “flowering” phase. Accessing the average fruit mass the fruit has been chosen from a tree of every cultivar.

Table 2. Cherry quality attributes, 2019

Cultivar	fruit color	flowering parameter	fruit mass, g	flesh mass, g	stone mass, g
Rannyaya rozovaya (k)	creamy-yellow	5	3.3	2.6	0.7
Revna	dark-red	5	3.6	3.0	0.6
Iput’	dark-red	5	4.4	3.8	0.6
Bryanskaya rozovaya	pink	4	3.4	3.0	0.4
Adelina	dark-red	5	4.5	4.0	0.5
Voronezhskaya krasnaya	dark-red	5	3.6	3.0	0.6
Malysh	yellow	3	5.0	4.3	0.7
Poesiya	yellow-red	4	8.2	7.3	0.9

It has been determined that the average cherry fruit mass can change depending on the cultivar from 3.3 g in Rannyaya rozovaya (k) to 8.2 g in Poesiya. Flesh mass varied from 2.6 g in Rannyaya rozovaya (κ) to 7.2 g in Poesiya, and stone mass from 0.4 to 1.0 g correspondingly.
The large-fruited cherries are: Poesiya, Malys, Adelina, Iput’, medium-fruited cherries are Revna, Voronezhskaya krasnaya, and small-fruited cherries are Bryanskaya rozovaya and Rannyaya rozovaya (k).

The modern nutrition theory is based on the conception of balanced chemical nutrients necessary for exchange reactions in the organism [17, 18]. That is why commercial and biochemical estimation of cherry fruit is necessary [19]. The characteristic feature of cherry fruit is their sweet taste caused by high sugar content [20].

Total sugar in cherry fruit was from 9.1% in Rannyaya rozovaya (k) to 19.7% in Poesiya and Malys. Depending on the cultivar the amount of organic acids in cherry fruit changed from 2.7% in Voronezhskaya krasnaya, Bryanskaya rozovaya, Rannyaya rozovaya (k) to 8.8% in Malys (figure 4).

![Figure 4. Total sugar and organic acid content in cherry fruit.](image)

Sugar-acid content changed according to the cultivar from 2.2 in Malys to 5.8 in Voronezhskaya krasnaya. According to sugar relative to acid the cultivars do not exceed 12.5 relative units, which characterizes their taste as sweet-sour. According to the data received per two years approximately the cherries flesh contains dry basis from 12.7% in Malys to 23.7% in Rannyaya rozovaya (k).

As cherry is the first fruit in the season it is desirable for them to contain a lot of micronutrients (figure 5).

Special usefulness of cherry is in ASA content which takes part in restorative and oxidizing processes in a human body and is a powerful antioxidant in preventing different diseases [21].

The study has shown that ASA content in cherry can vary from 0.8 mg % (Malys) to 3.4 mg % (Iput’).

Besides important nutrients cherry contains dietary minerals, one of which is phosphorus [22]. The highest content of phosphorus is in Malys (4.9 mg/100 g), the least in Rannyaya rozovaya (k) (1.5 mg/100 g).
In the Voronezhskaya region harvesting cherry starts with Iput’ and Revna (the first decade of June), finishes with Poesiya and Adelina (the third decade of June). The period of fresh cherry consumption is 20 days.

Even ripening of cherry fruit was in Malysh, Voronezhskaya krasnaya and Poesiya, long term of ripening had Adelina, Revna, and Iput’.

4. Conclusion

- Cultivar-rootstock combination of cherry in Central chernozemic region of RF have good combinability, tolerance to the growing conditions can provide annual yield, start the period of fresh fruit consumption.
- Relative to rootstock cherry cultivars are selective, for some seedling rootstock (κ) reduces tree growth, for others increases. It is manifested by the intensity of shoots formation and growth as well as their total length. On seedling rootstocks – seedlings of Rannyaya rozovaya (κ) the shoots are of weak growth, and Voronezhskaya krasnaya – are of good growth, other cultivars are in intermediate position.
- Iput’, Rannyaya rozovaya, Revna, Adelina have high fructification, low fructification is in Malysh; Voronezhskaya krasnaya has greater yield on seedling rootstocks, whereas has no yield on the clonal rootstock VSL-2.
- Large fruited cultivars are: Poesiya, Malysh, Adelina, Iput’, medium-sized are: Revna, Voronezhskaya krasnaya, small-fruited are: Bryanskaya rozovaya and Rannyaya rozovaya (κ).
- There is high content of organic acid and sugars in Poesiya and Malysh, dry basis in Rannyaya rozovaya (κ), ASA in Iput’, Revna, high phosphorus content is in Malysh and Revna.

References

[1] Uçgun K 2019 Effects of Nitrogen and Potassium Fertilization on Nutrient Content and Quality Attributes of Sweet Cherry Fruits. Notulae Botanicae Horti Agrobotanici Cluj-napoca. 47(1) 114-118
[2] Kolesnikova AF 2003 Cherry, black cherry Kharkov: Folio; M.: LLC “ACT Publishing House”
[3] Robinson T L, Hoying S A and Dominguez L 2017 Interaction of training system and rootstock on yield, fruit size, fruit quality and crop value of three sweet cherry cultivars. Acta Horticultura 1161 231-238
[4] Kiprijanovski M, Arsov T, Gjamovski Vand Saraginovski N 2018 Comparative investigations of Oblachinska sour cherry on own root and grafted on mahaleb Bulgarian Journal of Agricultural Science 24(6) 1065-1070
[5] Bujdoso G, Magyar L and Hrotko K 2019 Long term evaluation of growth and cropping of sweet cherry (Prunus avium L.) varieties on different rootstocks under Hungarian soil and climatic conditions. Scientia Horticulturae 256
[6] Balducci F, Capriotti L and Mazzoni L 2019 The rootstock effects on vigor, production and fruit quality in sweet cherry (Prunus avium L.) Journal of Berry Research 9(2) 249-165
[7] Eremin G V 2000 Stone fruit crop. Growing on clonal rootstock and own roots (Rostov-on-Don “Phoenix”)
[8] Nozdracheva R G and Nepushkina E V 2018 Cultivar rootstock combinations of cherry for commercial planting CCR Selection and cultivation of orchard crops 5(1) 86-89
[9] Morandi B, Manfrini L and Lugli S 2019 Sweet cherry water relations and fruit production efficiency are affected by rootstock vigor Journal of Plant Physiology 237 43-50
[10] Lugli S, Correale R and Grandi M 2017 Promising new yellow cherry selections Acta Horticulturae 1161 27-29
[11] Nozdracheva R G and Nepushkina E V 2019 Comparative estimation of cultivar-rootstock components of cherry by yield Priority trends in science-technological development of agro-industrial complex in Russia. Proceedings of science-practical conference 22 November 2018 year 1 50-55
[12] Sedov E N 1999 Program and methods of cultivar studying of fruit, berry and nut crop (Orel Publishing House of All-Russian SRI of crop selection)
[13] Tian T, Guang Q and Bin D 2019 The effects of rain shelter coverings on the vegetative growth and fruit characteristics of Chinese cherry (Prunus pseudocerasus Lindl.) Scientia Horticulturae 254 228-235
[14] Sarisu H C, Karamursel O F and Ozturk FP 2019 Introducing Different Cherry Cultivars to Inner and Crossover Areas Tarim Bilimleri Dergisi -Journal of Agricultural Sciences 25(1) 11-20
[15] Bondarenko P 2019 Physiological basics of sweet cherry productivity depending on rootstocks, interstems and plant density Open Agriculture 4(1) 267-274
[16] Gainza F, Opazo I and Munoz C 2015 Graft incompatibility in plants: Metabolic changes during formation and establishment of the rootstock/scion union with emphasis on Prunus species Chilean Journal of Agricultural Research 75 28-34
[17] Ewa D, Monika B and Barbara K 2019 Morphological and physiological features of sweet cherry floral organ affecting the potential fruit crop in relation to the rootstock Scientia Horticulturae 251 127-135
[18] Grandi M and Lugli S 2017 Effects of rootstock and training system on fruit quality of new sweet cherry cultivars Acta Horticulturae 1161 133-135
[19] Ivanova T G 2003 Chemico-technological estimation of new and perspective cultivar and cherry hybrids Fruit growing and wine growing 2 18-19
[20] Szpadzik E, Krupa T and Niemiec W 2019 Yielding and Fruit Quality of Selected Sweet Cherry (Prunus avium) Cultivars in the Conditions of Central Poland Acta Scientiarum Polonorum-Hortorum Cultus. 18(3) 117-126
[21] Geza B, Lajos M and Karoly H 2019 Long term Evaluation of Growth and Cropping of Sweet Cherry (Prunus avium L.) Varieties on Different Rootstocks under Hungarian Soil and Climatic Conditions Scientia Horticulturae 256 244-251
[22] Blanco V, Zoffoli J P and Ayala M 2019 High Tunnel Cultivation of Sweet Cherry (Prunus avium L.): Physiological and Production Variables Scientia Horticulturae 251 108-117