Late-stage C–H thiolation via sulfonium salts using β-sulfinylesters as the versatile sulfur source

Yanhui Chen
Huaqiao University

Si Wen
Huaqiao University

Qingyu Tian
Huaqiao University

Yuqing Zhang
Huaqiao University

Guolin Cheng (glcheng@hqu.edu.cn)
Huaqiao University
https://orcid.org/0000-0003-1013-2456

Article

Keywords: organic sulfides, sulfer, C-H thiolation

DOI: https://doi.org/10.21203/rs.3.rs-656302/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Organic suldes form the core scaffold of a wide range of pharmaceuticals, natural products, and materials, and serve as key intermediates in synthesis. Prior methods to organic suldes require the use of transition metal (TM) catalysts, prefunctionalized or chelating group-containing substrates, and elevated reaction temperatures. A general TM-free C–H thiolation protocol using readily accessible sulfur source is highly desirable. Herein, we disclose a direct C(sp)−, C(sp2)−, and C(sp3)−H thiolation reaction using β-sulfinylesters as the versatile sulfur source. The key step of this protocol is chemoselective C–S bond cleavage of the sulfonium salts that is in situ formed from the corresponding (hetero)arenes, alkenes, alkynes, and 1,3-dicarboxyl compounds with β-sulfinylesters. The successful capture of acrylate byproduct supports a retro-Michael reaction mechanism. This method is expected to be used widely because of several advantageous aspects including TM-free, mild reaction conditions, and broad substrate scope including drug molecules.

Introduction

Organic suldes have been widely found as privileged structures in pharmaceuticals,1 natural products,2 and materials.3 They are also valuable precursors to sulfones- and sulfoxides-containing drugs that exhibit significant biological activities.4 The most convergent approaches to these compounds are the transition metal (TM)-catalyzed C–S cross-coupling reactions of aryl/vinyl (pseudo)halogen with thiols/disulfides5–8 and the TM-catalyzed directing-group assistant C–H bond thiolations of arenes.9,10 The requirement of prefunctionalized or chelating group-containing substrates, TM catalysts, and elevated reaction temperatures sharply limited their applications. Alternatively, the direct C–H thiolation of highly electron-rich aromatics using electrophilic thiolation reagents could proceed under TM-free conditions, which limited to deliver aryl suldes.11

Recently, sulfonium salts have emerged as powerful intermediates for the site-selective late-stage C–H functionalization of arenes,12 in which suldes, such as tetrahydrothiophene, thianthrene, and dibenzothiophene were formed quantitatively as byproducts (Scheme 1a).13–35 In addition, the selective cleavage of one of the three C–S bonds of aryl sulfonium salts via nucleophilic substitution were also realized to give aryl sulfides (Scheme 1b).36–44 While this strategy is promising, alkenyl, alkynyl, and alkyl sulfonium salts were not tolerated due to the fact that both of alkenyl and alkynyl sulfonium salts are good electrophilic Michael acceptors,45–49 and alkenyl C(sp2)−S, C(sp)−S, and C(sp3)−S bonds of sulfonium salts are more prone to be attacked by nucleophiles than aryl C(sp2)−S bond.36,50,51 Undoubtedly, the development of a general, practical, and TM-free C–H thiolation reaction for the construction of functionalized suldes, including aryl, alkenyl, alkynyl, and alkyl sulfides, is highly desirable. We envisioned that the chemoselective C–S bond cleavage of β-sulfonium esters may occur via retro-Michael reaction, giving otherwise inaccessible suldes. Herein, we reported the direct C–H thiolation reaction of (hetero)arenes, alkenes,52,53 alkynes,54–56 and 1,3-dicarboxyl compounds using β-sulfinylesters as easily accessible and versatile thiolation reagents (Scheme 1c). This one-pot two steps
process proceeds through site-selective C–H sulfonium salt formation followed by chemoselective C–S bond cleavage under TM-free conditions with broad functional group tolerance.

Results

Reaction development. Initially, we employed methyl 3-(p-tolylsulfinyl)propanoate 1a, toluene 2a as the model substrates to optimize the conditions of the TM-free C–H thiolation reaction. After extensive screening of various reaction parameters, the optimal conditions were achieved to be 1a (1.3 equiv), 2a (0.3 mmol), Tf₂O (1.3 equiv), solvent (3 mL) under nitrogen atmosphere at room temperature for 1 h, then Et₃N (5 equiv) at room temperature for 1 h (Table 1 entry 1). A series of bases were screened, and no better yields were obtained than Et₃N (Table 1 entries 2–5). Switching the solvent to CH₃CN only provide the desired product in low yield (Table S1, entry 6). The yield was reduced to 30% when TFAA was used in lieu of Tf₂O (entry 7). A similar result was obtained using ethyl ester 1b as the thiolation reagent (entry 8). However, tert-butyl ester 1c only delivered the desired product in 23% yield (entry 9).

With the established optimal reaction conditions in hand, we first investigated the substrate scope of arenes (Table 2). A wide range of substituted benzenes could be converted to the corresponding diaryl sulfides in good yields (3a–s). Functional groups including cyclopropyl, halogens, allyloxy, and ester were well tolerated in this transformation. It is noteworthy that the reactivity of this thiolation reaction was not affected by steric hindrance of the arene substrates (3q and 3s). To our delight, heteroaromatics could also be applied to the reaction system without obstacle (3t–w). Among them, indole, pyrrole, and thiophene could give the corresponding products in the excellent yields. Although quinoline derivative was less reactive under standard conditions, increasing reaction temperature slightly improved product yield (3u). Notably, this strategy was successfully applied to the late-stage C–H thiolation of a variety of drug-like molecules (3aa–af). (S)-4-benzyl-2-oxazolidinone derivative, nimesulide, bifonazole, L-phenylalanine derivative, estrone derivative and D-salicin derivative all could be modified by this method.

We then examined the reaction of 1,2-dimethoxybenzene 2o with a range of β-sulfinylesters. Aryl sulfoxides bearing electron-donating groups or halogens had good reactivity (4a–f), whereas aryl sulfoxide with a nitro group only delivered the desired product in 26% yield (4g). In addition, pyridyl and thienyl sulfoxides were compatible, albeit the desired products were formed in low yields (4h and 4i). Remarkably, alkyl sulfoxides including benzyl sulfoxide were applicable to the reaction system, giving the desired products in good yields (4j–l).³⁶

Inspired by these exciting results, we discussed the application of this strategy in the synthesis of more challenging alkenyl, alkynyl, and alkyl sulfides (Table 4). Styrenes containing electron-donating and withdrawing groups all have good adaptability (6a–j). It is worth mentioning that high E-selectivities were obtained in all cases. Vinyl sulfide 6k and allyl sulfide 6k’ were formed in 93% combined yield using α-methylstyrene as substrate. 1,1-Diphenylethene and triphenylethene were smoothly converted to the desired alkenyl sulfides in 89% and 46% yields, respectively (6l and 6m). When tetraphenylethene was subjected to the reaction system, only aryl C–H thiolation product was observed (6n). It should be noted
that compounds (6l–n) were promising aggregation-induced emission luminogens. Additionally, a range of aryl and alkyl sulfoxides could also donate the corresponding alkenyl sulfides without obstacle (6o–y).

Next, we proceed to investigate the application of this strategy to C(sp)–H thiolation. Gratifyingly, the reaction was proved to be applicable to C(sp)–H thiolation of aryl alkynes (8a–h). Low reactivity of alkyl alkynes was observed, and only 17% yield was obtained (8i). In addition to thioarylation (8j–p), thioalkylation of C(sp)–H bond was also successful (8q and 8r).

Finally, we found that 1,3-dicarbonyl compounds could be thiolated with β-sulfenyl esters to give a variety of alkyl sulfides in 38-88% yields (10a–i).

We have carried out a gram-scale reaction of dimethyl 3,3'-sulfenyl dipropionate 1m and p-xylene 5m, giving the sulfide 11 in 74% yield (Fig. 2a). We then sought to investigate the possibility of performing iterative C–H thiolation, wherein the newly synthesized sulfoxide 12 may serve as the starting material for an additional C–H thiolation. Delightfully, sulfides 13 and 14 were formed in 72% and 73% yields from 4-bromostyrene 5i and D-salicin derivative 2af, respectively (Fig. 2b). Finally, the proposed methyl acrylate byproduct could be captured via Heck reaction to give 15 and 16 in 25% and 40% yields, respectively (Fig. 2c).

Discussion

In summary, we have developed a general and practical C–H thiolation of (hetero)arenes, alkenes, alkynes, and 1,3-dicarbonyl compounds using β-sulfenyl esters as sulfur source that requires no preactivation of the substrates. This TM-free protocol proceeds via site-selective C–H sulfonium salt formation followed by retro-Michael reaction to give a vast number of organic sulfides with broad functional group tolerance. The synthetic importance of this method was demonstrated by late-stage C–H functionalization of drug molecules, and iterative C–H thiolation. We believed that this method should have broad applications in the future.

Methods

Preparation of 3a. A dried 15 ml Schlenk tube was charged with methyl 3-(p-tolylsulfenyl)propanoate 1a (88.3 mg, 0.39 mmol, 1.3 equiv), toluene 2a (27.6 mg, 0.3 mmol, 1.0 equiv), and DCM (3 mL). Tf₂O anhydride (110.0 mg, 0.39 mmol, 1.3 equiv) was added at room temperature under nitrogen atmosphere. The reaction mixture was stirred for 1 h. Upon completion, Et₃N (0.2 mL, 5.0 equiv) was added and the reaction mixture was stirred at room temperature for 1 h. The mixture was concentrated under vacuum, and purified by preparative thin layer chromatography (PTLC) with hexane to give the corresponding product 3a (59.2 mg, 92%).

Declarations
Data availability

All relevant data are available in Supplementary Information and from the authors.

Acknowledgements

This work was supported by the NSF of China (22071068).

Author contributions

Y.C. developed the C−H thiolation reaction. S.W., Q.T., and Y.Z. explored the substrate scope. G.C. conceived and supervised the project. G.C. wrote the manuscript.

Competing interests

The authors declare no competing interests.

References

1. Ilardi, E. A., Vitaku, E. & Njardarson, J. T. Data-Mining for Sulfur and Fluorine: An Evaluation of Pharmaceuticals To Reveal Opportunities for Drug Design and Discovery. J. Med. Chem. 57, 2832-2842 (2014).
2. Dunbar, K. L., Scharf, D. H., Litomska, A. & Hertweck, C. Enzymatic Carbon–Sulfur Bond Formation in Natural Product Biosynthesis. Chem. Rev. 117, 5521-5577 (2017).
3. Boyd, D. A. Sulfur and Its Role In Modern Materials Science. Angew. Chem. Int. Ed. 55, 15486-15502 (2016).
4. Scott, K. A. & Njardarson, J. T. Analysis of US FDA-Approved Drugs Containing Sulfur Atoms. Top. Curr. Chem. 376, 5, (2018).
5. Sandfort, F., Knecht, T., Pinkert, T., Daniliuc, C. G. & Glorius, F. Site-Selective Thiolation of (Multi)halogenated Heteroarenes. J. Am. Chem. Soc. 142, 6913-6919 (2020).
6. Fang, Y., Rogge, T., Ackermann, L., Wang, S.-Y. & Ji, S.-J. Nickel-catalyzed reductive thiolation and selenylation of unactivated alkyl bromides. Nat. Commun. 9, 2240 (2018).
7. Zhang, Y., Xu, X. & Zhu, S. Nickel-catalysed selective migratory hydrothiolation of alkenes and alkynes with thiols. Nat. Commun. 10, 1752 (2019).
8. Li, R., Zhou, Y., Yoon, K.-Y., Dong, Z. & Dong, G. Sulfenamide-enabled ortho thiolation of aryl iodides via palladium/norbomene cooperative catalysis. Nat. Commun. 10, 3555 (2019).
9. Kang, Y.-S. et al. Ligand-Promoted RhIII-Catalyzed Thiolation of Benzamides with a Broad Disulfide Scope. Angew. Chem. Int. Ed. 58, 9099-9103 (2019).
10. Kajiwara, R., Takamatsu, K., Hirano, K. & Miura, M. Copper-Mediated Regioselective C–H Sulfenylation and Selenation of Phenols with Phenanthroline Bidentate Auxiliary. Org. Lett. 22, 5915-5919 (2020).
11. Liu Yunyun, Xiong Jin, Wei Li. Recent Advances in the C(sp\(^2\))-S Bond Formation Reactions by Transition Metal-Free C(sp\(^2\))-H Functionalization. *Chin. J. Org. Chem.* **37**, 1667-1680 (2017).

12. Börgel, J. & Ritter, T. Late-Stage Functionalization. *Chem* **6**, 1877-1887 (2020).

13. Kaiser, D., Klose, I., Oost, R., Neuhaus, J. & Maulide, N. Bond-Forming and -Breaking Reactions at Sulfur(IV): Sulfoxides, Sulfonium Salts, Sulfur Ylides, and Sulfinate Salts. *Chem. Rev.* **119**, 8701-8780 (2019).

14. Fan, R. *et al.* A leap forward in sulfonium salt and sulfur ylide chemistry. *Chin. Chem. Lett.* **32**, 299-312 (2021).

15. Aukland, M. H., Šiaučiulis, M., West, A., Perry, G. J. P. & Procter, D. J. Metal-free photoredox-catalysed formal C−H/C−H coupling of arenes enabled by interrupted Pummerer activation. *Nat. Catal.* **3**, 163-169 (2020).

16. Berger, F. *et al.* Site-selective and versatile aromatic C−H functionalization by thianthrenation. *Nature* **567**, 223-228 (2019).

17. Ye, F. *et al.* Aryl Sulfonium Salts for Site-Selective Late-Stage Trifluoromethylation. *Angew. Chem. Int. Ed.* **58**, 14615-14619 (2019).

18. Li, J. *et al.* Photoredox catalysis with aryl sulfonium salts enables site-selective late-stage fluorination. *Nat. Chem.* **12**, 56-62 (2020).

19. Engl, P. S. *et al.* C−N Cross-Couplings for Site-Selective Late-Stage Diversification via Aryl Sulfonium Salts. *J. Am. Chem. Soc.* **141**, 13346-13351 (2019).

20. Sang, R. *et al.* Site-Selective C−H Oxygenation via Aryl Sulfonium Salts. *Angew. Chem. Int. Ed.* **58**, 16161-16166 (2019).

21. Lansbergen, B., Granatino, P. & Ritter, T. Site-Selective C−H alkylation of Complex Arenes by a Two-Step Aryl Thianthrenation-Reductive Alkylation Sequence. *J. Am. Chem. Soc.* **143**, 7909-7914 (2021).

22. Alvarez, E. M., Plutschack, M. B., Berger, F. & Ritter, T. Site-Selective C−H Functionalization–Sulfination Sequence to Access Aryl Sulfonamides. *Org. Lett.* **22**, 4593-4596 (2020).

23. Aukland, M. H. *et al.* An Interrupted Pummerer/Nickel-Catalysed Cross-Coupling Sequence. *Angew. Chem. Int. Ed.* **57**, 9785-9789 (2018).

24. Tian, Z.-Y., Lin, Z.-H. & Zhang, C.-P. Pd/Cu-Catalyzed C−H/C−H Cross Coupling of (Hetero)Arenes with Azoles through Arylsulfonium Intermediates. *Org. Lett.* **23**, 4400-4405 (2021).

25. Cowper, P., Jin, Y., Turton, M. D., Kociok-Köhn, G. & Lewis, S. E. Azulenesulfonium Salts: Accessible, Stable, and Versatile Reagents for Cross-Coupling. *Angew. Chem. Int. Ed.* **55**, 2564-2568 (2016).

26. Selmani, A., Gevondian, A. G. & Schoenebeck, F. Germylation of Arenes via Pd(I) Dimer Enabled Sulfonium Salt Functionalization. *Org. Lett.* **22**, 4802-4805 (2020).

27. Wu, J. *et al.* Para-selective borylation of monosubstituted benzenes using a transient mediator. *Sci. China Chem.* **63**, 336-340 (2020).

28. Liang, L. *et al.* Photoinduced Copper-Catalyzed Site-Selective C(sp\(^2\))−C(sp) Cross-Coupling via Aryl Sulfonium Salts. *Org. Lett.* **22**, 6842-6846 (2020).
29. Kafuta, K., Korzun, A., Böhm, M., Golz, C. & Alcarazo, M. Synthesis, Structure, and Reactivity of 5-(Aryl)dibenzothiophenium Triflates. *Angew. Chem. Int. Ed.* **59**, 1950-1955 (2020).

30. Nie, X.-X., Huang, Y.-H. & Wang, P. Thianthrenation-Enabled α-Arylation of Carbonyl Compounds with Arenes. *Org. Lett.* **22**, 7716-7720 (2020).

31. Wu, Y., Huang, Y.-H., Chen, X.-Y. & Wang, P. Site-Selective Silylation of Arenes Mediated by Thianthrene S-Oxide. *Org. Lett.* **22**, 6657-6661 (2020).

32. Berger, F. *et al.* Cine-Substitutions at Five-Membered Hetarenes Enabled by Sulfonium Salts. *Org. Lett.* **22**, 5671-5674 (2020).

33. Zhang, Y.-L., Yang, L., Wu, J., Zhu, C. & Wang, P. Vinyl Sulfonium Salts as the Radical Acceptor for Metal-Free Decarboxylative Alkenylation. *Org. Lett.* **22**, 7768-7772 (2020).

34. Chen, J., Li, J., Plutschack, M. B., Berger, F. & Ritter, T. Regio- and Stereoselective Thianthrenation of Olefins To Access Versatile Alkenyl Electrophiles. *Angew. Chem. Int. Ed.* **59**, 5616-5620 (2020).

35. Alvarez, E. M., Karl, T., Berger, F., Torkowski, L. & Ritter, T. Late-Stage Heteroarylation of Hetero(aryl)sulfonium Salts Activated by α-Amino Alkyl Radicals. *Angew. Chem. Int. Ed.* **60**, 13609-13613 (2021).

36. Todorović, U., Klose, I. & Maulide, N. Straightforward Access to Thiocyanates via Dealkylative Cyanation of Sulfoxides. *Org. Lett.* **23**, 2510-2513 (2021).

37. Qian, D.-Q., Liu, B., Shine, H. J., Guzman-Jimenez, I. Y. & Whitmire, K. H. Ring-opening reactions of 5-(aryl)thianthrenium bromides with aryl thiolates. *J. Phys. Org. Chem.* **15**, 139-147 (2002).

38. Qian, D.-Q., Shine, H. J., Thurston, J. H. & Whitmire, K. H. Nucleophilic reactions of 5-(aryl)thianthrenium bromides with sodium aryl oxides. *J. Phys. Org. Chem.* **16**, 142-147 (2003).

39. Chen, Q. *et al.* [4 + 2]-Annulation of Prop-2-ynylsulfonium Salts and Isatoic Anhydrides: Access to 3-Methylthio-4-quinolones. *Org. Lett.* **22**, 6096-6100 (2020).

40. Ye, Y., Zhu, J. & Huang, Y. Diverse C–P Cross-Couplings of Arylsulfonium Salts with Diarylphosphines via Selective C–S Bond Cleavage. *Org. Lett.* **23**, 2386-2391 (2021).

41. Kozhushkov, S. I. & Alcarazo, M. Synthetic Applications of Sulfonium Salts. *Eur. J. Inorg. Chem.* **2020**, 2486-2500 (2020).

42. Huang, X., Goddard, R. & Maulide, N. A Direct Ylide Transfer to Carbonyl Derivatives and Heteroaromatic Compounds. *Angew. Chem. Int. Ed.* **49**, 8979-8983 (2010).

43. Wang, D. *et al.* Trifluoromethyl Sulfoxides: Reagents for Metal-Free C–H Trifluoromethylthiolation. *Angew. Chem. Int. Ed.* **59**, 15918-15922 (2020).

44. Xu, P. *et al.* Site-Selective Late-Stage Aromatic ^18^F Fluorination via Aryl Sulfonium Salts. *Angew. Chem. Int. Ed.* **59**, 1956-1960 (2020).

45. Zhou, M., Tan, X., Hu, Y., Shen, H. C. & Qian, X. Highly Chemo- and Regioselective Vinylation of N-Heteroarenes with Vinylsulfonium Salts. *J. Org. Chem.* **83**, 8627-8635 (2018).

46. Matlock, J. V. *et al.* Synthesis of 6- and 7-Membered N-Heterocycles Using α-Phenylvinylsulfonium Salts. *Org. Lett.* **17**, 5044-5047 (2015).
47. Yar, M., McGarrigle, E. M. & Aggarwal, V. K. An Annulation Reaction for the Synthesis of Morpholines, Thiomorpholines, and Piperazines from β-Heteroatom Amino Compounds and Vinyl Sulfonium Salts. *Angew. Chem. Int. Ed.* **47**, 3784-3786 (2008).

48. An, J. *et al.* Efficient and general synthesis of oxazino[4,3-a]indoles by cascade addition-cyclization reactions of (1H-indol-2-yl)methanols and vinyl sulfonium salts. *Chem. Commun.* **47**, 1869-1871 (2011).

49. Unthank, M. G., Hussain, N. & Aggarwal, V. K. The Use of Vinyl Sulfonium Salts in the Stereocontrolled Asymmetric Synthesis of Epoxide- and Aziridine-Fused Heterocycles: Application to the Synthesis of (−)-Balanol. *Angew. Chem. Int. Ed.* **45**, 7066-7069 (2006).

50. Waldecker, B., Kraft, F., Golz, C. & Alcarazo, M. 5-(Alkynyl)dibenzothiophenium Triflates: Sulfur-Based Reagents for Electrophilic Alkynylation. *Angew. Chem. Int. Ed.* **57**, 12538-12542 (2018).

51. Roy, A., Maity, A., Giri, R. & Bisai, A. Efficient Alkynylation of 2-Oxindoles with Alkynyl Dibenzothiophenium Triflates: Total Synthesis of (±)-Deoxyeseroline. *Asian J. Org. Chem.* **9**, 226-232 (2020).

52. Castoldi, L., Di Tommaso, E. M., Reitti, M., Gräfen, B. & Olofsson, B. Electrophilic Vinylation of Thiols under Mild and Transition Metal-Free Conditions. *Angew. Chem. Int. Ed.* **59**, 15512-15516 (2020).

53. Wang, B.-W. *et al.* 1,1-Diphenylvinylsulfide as a Functional AIEgen Derived from the Aggregation-Caused-Quenching Molecule 1,1-Diphenylethene through Simple Thioetherification. *Angew. Chem. Int. Ed.* **59**, 2338-2343 (2020).

54. Frei, R. *et al.* Fast and Highly Chemoselective Alkynylation of Thiols with Hypervalent Iodine Reagents Enabled through a Low Energy Barrier Concerted Mechanism. *J. Am. Chem. Soc.* **136**, 16563-16573 (2014).

55. Godin, É., Santandrea, J., Caron, A. & Collins, S. K. General Cu-Catalyzed Csp–S Coupling. *Org. Lett.* **22**, 5905-5909 (2020).

56. Kanemoto, K., Yoshida, S. & Hosoya, T. Synthesis of Alkynyl Sulfides by Copper-Catalyzed Thiolation of Terminal Alkynes Using Thiosulfonates. *Org. Lett.* **21**, 3172-3177 (2019).

Tables

Due to technical limitations the Tables are available as a download in the supplementary files.

Figures
Figure 1

Chemoselective C–S bond cleavage of the sulfonium salts. (a) TM-catalyzed C–S bond cleavage. (b) C–S Bond cleavage by nucleophiles. (c) C–S bond cleavage via retro-Michael reaction.

Figure 2

Gram-scale, iterative C–H thiolation, methyl acrylate capture reactions. a Gram-scale reaction. b Iterative C–H thiolation reaction. c Methyl acrylate capture reaction.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Tables.pdf
- SupplementaryInformation.docx