Harmonic aspects in an η-Ricci soliton

Adara M. Blaga

Abstract

We characterize the η-Ricci solitons (g, ξ, λ, μ) for the special cases when the 1-form η, which is the g-dual of ξ, is harmonic or Schrödinger-Ricci harmonic form. We also provide necessary and sufficient conditions for η to be a solution of the Schrödinger-Ricci equation and point out the relation between the three notions in our context. In particular, we apply these results to a perfect fluid spacetime and using Bochner-Weitzenböck techniques, we formulate more conclusions for the case of gradient solitons and deduce topological properties of the manifold and its universal covering.

1 Introduction

Self-similar solutions to the Ricci flow, the Ricci solitons [19] have been studied in the different geometrical contexts on complex, contact and paracontact manifolds. The more general notion of η-Ricci soliton was introduced by J. T. Cho and M. Kimura [11] on real hypersurfaces in a Kähler manifold and treated in complex space forms [10] and paracontact geometries [2], [3], [7], [8].

A particular case of solitons arise when they evolve by diffeomorphisms generated by a gradient vector field, namely when the potential vector field is the gradient of a smooth function. The gradient vector fields play a central rôle in the Morse-Smale theory [24] and some aspects of gradient η-Ricci solitons were discusses by the author in [1], [4], [5], [6].

2010 Mathematics Subject Classification. Primary 35C08, 53C25.
Key words and phrases. gradient Ricci solitons, Schrödinger-Ricci equation, harmonic form.
In Section 2, after we point out the basic properties of an η-Ricci (g, ξ, λ, μ), we provide necessary and sufficient conditions for the g-dual 1-form of the potential vector field ξ to be a solution of the Schrödinger-Ricci equation, a harmonic or a Schrödinger-Ricci harmonic form and characterize the 1-forms orthogonal to η. We end these considerations by discussing the case of a perfect fluid spacetime. In Section 3 we formulate the results for the special case of gradient solitons.

2 Geometrical aspects of η

Let (M, g) be an n-dimensional Riemannian manifold, $n > 2$, and denote by $b : TM \to T^*M$, $b(X) := i_X g$, $\sharp : T^*M \to TM$, $\sharp := b^{-1}$. Consider the set $T^0_{2,s}(M)$ of symmetric $(0, 2)$-tensor fields on M and for $Z \in T^0_{2,s}(M)$, denote by $Z^\sharp : TM \to TM$ and $Z^* : T^*M \to T^*M$ the maps defined by:

$$g(Z^\sharp(X), Y) := Z(X, Y), \quad Z^\sharp(\alpha)(X) := Z(\sharp(\alpha), X).$$

We also denote by Z^\sharp by the map $Z^\sharp : T^*M \times T^*M \to C^\infty(M)$:

$$Z^\sharp(\alpha, \beta) := Z(\sharp(\alpha), \sharp(\beta))$$

and can identify Z^\sharp with the map also denoted by $Z^\sharp : T^*M \times TM \to C^\infty(M)$:

$$Z^\sharp(\alpha, X) := Z(\sharp(\alpha), X).$$

Given a vector field X, its g-dual 1-form $X^b := b(X)$ is said to be a solution of the Schrödinger-Ricci equation if it satisfies:

(1) $$\text{div}(L_X g) = 0,$$

where $L_X g$ denotes the Lie derivative along the vector field X.

It is known that [13]:

(2) $$\text{div}(L_X g) = (\Delta + S^\sharp(X^b)) + d(\text{div}(X)),$$

where Δ denotes the Laplace-Hodge operator on forms w.r.t. the metric g and S the Ricci curvature tensor field. Denoting by Q the Ricci operator defined by $g(QX, Y) := S(X, Y)$, for any vector fields X and Y, by a direct computation we deduce that $S^\sharp(\gamma) = i_{Q^*\gamma} g$, for any 1-form γ.

Harmonic aspects in an η-Ricci soliton

We are interested to find the necessary and sufficient conditions for the g-dual 1-form η of the potential vector field ξ in an η-Ricci soliton to be a solution of the Schrödinger-Ricci equation, a harmonic or Schrödinger-Ricci harmonic form.

Consider the equation:

$$L_\xi g + 2S + 2\lambda g + 2\mu \eta \otimes \eta = 0$$

where g is a Riemannian metric, S its Ricci curvature tensor field, ξ a vector field, η a 1-form and λ and μ are real constants. The data (g, ξ, λ, μ) which satisfy the equation (3) is said to be an η-Ricci soliton on M \cite{11}; in particular, if $\mu = 0$, (g, ξ, λ) is a Ricci soliton \cite{19} and it is called shrinking, steady or expanding according as λ is negative, zero or positive, respectively \cite{14}. If the potential vector field ξ is of gradient type, $\xi = \text{grad}(f)$, for f a smooth function on M, then (g, ξ, λ, μ) is called gradient η-Ricci soliton.

Taking the trace of the equation (3) we obtain:

$$\text{div}(\xi) + \text{scal} + \lambda n + \mu |\xi|^2 = 0.$$

From a direct computation we get:

$$\text{div}(\eta \otimes \eta) = \text{div}(\xi) \eta + \nabla_\xi \eta.$$

Now taking the divergence of (3) and using (2) we obtain:

$$\text{div}(L_\xi g) + d(\text{scal}) + 2\mu [\text{div}(\xi) \eta + \nabla_\xi \eta] = 0.$$

Schrödinger-Ricci solutions

We say that a 1-form γ is a solution of the Schrödinger-Ricci equation if

$$\Delta + S_\xi(\gamma) + d(\text{div}(\gamma^2)) = 0.$$

Theorem 2.1. Let (g, ξ, λ, μ) be an η-Ricci soliton on the n-dimensional manifold M with η the g-dual of ξ. Then η is a solution of the Schrödinger-Ricci equation if and only if

$$d(\text{scal}) = 2\mu [(\text{scal} + \lambda n + \mu |\xi|^2) \eta - \nabla_\xi \eta].$$

Moreover, in this case, scal is constant if and only if $\mu = 0$ (which yields a Ricci soliton) or $(\text{scal} + \lambda n + \mu |\xi|^2) \eta = \nabla_\xi \eta.$
Proof. From (3), (4), (5) and
\[2\text{div}(S) = d(\text{scal}) \]
it follows that \(\eta \) is a solution of the Schrödinger-Ricci equation if and only if (7) holds.

Remark 2.2. Under the hypotheses of Theorem 2.1 if the potential vector field is of constant length \(k \), then from (7) we deduce that the scalar curvature is constant if either the soliton is a Ricci soliton or, \((\text{scal} + \lambda n + \mu k^2)\eta = \nabla_{\xi} \eta \) which implies \(\text{scal} = -\lambda n - \mu k^2 \).

Corollary 2.3. Let \((g, \xi, \lambda, \mu)\) be an \(\eta \)-Ricci soliton on the \(n \)-dimensional manifold \(M \) with \(\eta \) the \(g \)-dual of \(\xi \) and assume that \(\eta \) is a nontrivial solution of the Schrödinger-Ricci equation. If \(\text{scal} \) is constant and \(\mu \neq 0 \), then \(\frac{1}{2|x|^2} \xi(|x|^2) - \mu |x|^2 = \text{scal} + \lambda n \) (constant).

Proof. Under the hypotheses conditions, from (7) we obtain:
\[(\text{scal} + \lambda n + \mu |\xi|^2)\eta = \nabla_{\xi} \eta,\]
applying \(\xi \) and taking into account that \((\nabla_{\xi} \eta)\xi = \frac{1}{2} \xi(|\xi|^2) \),
we deduce that \((\text{scal} + \lambda n + \mu |\xi|^2)|\xi|^2 = \frac{1}{2} \xi(|\xi|^2)\).

For the case of Ricci solitons, from Theorem 2.1 we have:

Corollary 2.4. If \((g, \xi, \lambda)\) is a Ricci soliton on the \(n \)-dimensional manifold \(M \) and \(\eta \) is the \(g \)-dual of \(\xi \), then \(\eta \) is a solution of the Schrödinger-Ricci equation if and only if the scalar curvature of the manifold is constant.

Schrödinger-Ricci harmonic forms

We say that a 1-form \(\gamma \) is \emph{Schrödinger-Ricci harmonic} if
\[(\Delta + S_2)(\gamma) = 0.\]

From (6), (4) and (5) we deduce:

Theorem 2.5. Let \((g, \xi, \lambda, \mu)\) be an \(\eta \)-Ricci soliton on the \(n \)-dimensional manifold \(M \) with \(\eta \) the \(g \)-dual of \(\xi \). Then \(\eta \) is Schrödinger-Ricci harmonic form if and only if \(\mu = 0 \) (which yields a Ricci soliton) or
\[(\text{scal} + \lambda n + \mu |\xi|^2)\eta = \nabla_{\xi} \eta - \frac{1}{2} d(|\xi|^2).\]
Harmonic aspects in an η-Ricci soliton

Remark 2.6. Under the hypotheses of Theorem 2.5 if $\mu \neq 0$, then from (8) we deduce that the scalar curvature is constant if and only if the potential vector field is of constant length.

Harmonic forms

We know that on a Riemannian manifold (M, g), a 1-form γ is harmonic (i.e. $\Delta(\gamma) = 0$) if and only if it is closed and divergence free.

Remark that on an η-Ricci soliton, a harmonic 1-form γ is Schrödinger-Ricci harmonic if and only if

$$\gamma \circ \nabla \xi + \lambda \gamma + \mu \gamma(\xi) \eta = 0$$

which implies (using the fact that $(\nabla_X \gamma)^\sharp = \nabla_X \gamma^\sharp$, for any vector field X and any 1-form γ):

$$\gamma^\sharp \in \ker[\nabla_{\xi} \eta + (\lambda + \mu |\xi|^2) \eta].$$

From (2) and (5) we deduce:

Theorem 2.7. Let (g, ξ, λ, μ) be an η-Ricci soliton on the n-dimensional manifold M with η the g-dual of ξ. Then η is harmonic form if and only if

$$(9) \quad iQ \xi g = \mu \{2[(\text{scal} + \lambda n + \mu |\xi|^2) \eta - \nabla_{\xi} \eta] + d(|\xi|^2)\}.$$

For the case of Ricci solitons, from Theorem 2.7 we have:

Corollary 2.8. If (g, ξ, λ) is a Ricci soliton on the n-dimensional manifold M and η is the g-dual of ξ, then η is harmonic form if and only if $\xi \in \ker Q$.

From (1), (8) and (9) we deduce:

Corollary 2.9. Let (g, ξ, λ, μ) be an η-Ricci soliton on the n-dimensional manifold M with η the g-dual of ξ. If η is harmonic form, then i) $\xi \in \ker Q$ and ii) the scalar curvature is constant if and only if the potential vector field ξ is of constant length.

The relation between the cases when η is a solution of the Schrödinger-Ricci equation, harmonic or the Schrödinger-Ricci harmonic form is stated in the following result:
Lemma 2.10. Let \((g, \xi, \lambda, \mu)\) be an \(\eta\)-Ricci soliton on the \(n\)-dimensional manifold \(M\) with \(\eta\) the \(g\)-dual of \(\xi\).

i) If \(\eta\) is a solution of the Schrödinger-Ricci equation, then \(\eta\) is:
 a) Schrödinger-Ricci harmonic form if and only if \(\text{scal} + \mu |\xi|^2\) is constant;
 b) harmonic form if and only if \(i_Q\xi = \text{d}(\text{scal} + \mu |\xi|^2)\); also \(\eta\) harmonic implies \(\xi \in \ker Q\).

ii) If \(\eta\) is Schrödinger-Ricci harmonic form, then \(\eta\) is:
 a) a solution of the Schrödinger-Ricci equation if and only if \(\text{scal} + \mu |\xi|^2\) is constant;
 b) harmonic form if and only if \(\xi \in \ker Q\).

iii) If \(\eta\) is harmonic form, then \(\eta\) is:
 a) a solution of the Schrödinger-Ricci equation if and only if \(\xi \in \ker Q\);
 b) Schrödinger-Ricci harmonic form if and only if \(\xi \in \ker Q\).

We can synthetise:

i) if \(\text{scal} + \mu |\xi|^2\) is constant, then \(\eta\) is Schrödinger-Ricci harmonic if and only if it is a solution of the Schrödinger-Ricci equation;

ii) if \(\xi \in \ker Q\), then \(\eta\) is Schrödinger-Ricci harmonic if and only if it is harmonic.

1-forms orthogonal to \(\eta\)

We say that two 1-forms \(\gamma_1\) and \(\gamma_2\) are orthogonal if \(g(\gamma_1^\sharp, \gamma_2^\sharp) = 0\) (i.e. \(\langle \gamma_1, \gamma_2 \rangle = 0\), where \(\langle \gamma_1, \gamma_2 \rangle := \sum_{i=1}^{n} \gamma_1(E_i)\gamma_2(E_i)\), for \(\{E_i\}_{1 \leq i \leq n}\) a local orthonormal frame field).

Remark that \(\gamma_1\) and \(\gamma_2\) are orthogonal if and only if

\[
\gamma_1^\sharp \in \ker \gamma_2 \quad \text{or} \quad \gamma_2^\sharp \in \ker \gamma_1.
\]

Theorem 2.11. Let \((g, \xi, \lambda, \mu)\) be an \(\eta\)-Ricci soliton on the \(n\)-dimensional manifold \(M\) with \(\eta\) the \(g\)-dual of \(\xi\) and \(\mu \neq 0\). If \(\gamma\) is 1-form, then \(\gamma\) is orthogonal to \(\eta\) if and only if

\[
(10) \quad \nabla_{\gamma^\sharp}\xi + Q\gamma^\sharp + \lambda \gamma^\sharp \in \ker \gamma.
\]

Proof. Observe that computing the soliton equation in \((\gamma^\sharp, \gamma^\sharp)\) and using the orthogonality condition we obtain:

\[
(11) \quad g(\nabla_{\gamma^\sharp}\xi, \gamma^\sharp) + g(Q\gamma^\sharp, \gamma^\sharp) + \lambda |\gamma^\sharp|^2 = 0
\]

which is equivalent to the condition (10).
Harmonic aspects in an η-Ricci soliton

Example

We end these considerations by discussing the case of a perfect fluid spacetime (M, g, ξ) \cite{6}. If we denote by p the isotropic pressure, σ the energy-density, λ the cosmological constant, k the gravitational constant, S the Ricci curvature tensor field and scal the scalar curvature of g, then \cite{6}:

\begin{equation}
S = -(\lambda - \frac{\text{scal}}{2} - kp)g + k(\sigma + p)\eta \otimes \eta,
\end{equation}

and the scalar curvature of M is:

\begin{equation}
\text{scal} = 4\lambda + k(\sigma - 3p).
\end{equation}

From Theorem 2.1 we deduce that if (g, ξ, a, b) is an η-Ricci soliton on (M, g, ξ), then η is a solution of the Schrödinger-Ricci equation if and only if

\[kd(\sigma - 3p) = 2b\{[4(a + \lambda) - b + k(\sigma - 3p)]\eta - \nabla_\xi \eta\}. \]

Moreover, the fluid is a radiation fluid (i.e. $\sigma = 3p$) if and only if $b = 0$ (which yields the Ricci soliton) or $[4(a + \lambda) - b]\eta = \nabla_\xi \eta$ which implies $b = 4(a + \lambda)$.

From Theorem 2.5 we deduce that if (g, ξ, a, b) is an η-Ricci soliton on (M, g, ξ), then η is Schrödinger-Ricci harmonic form if and only if

\[b\{[4(a + \lambda) - b + k(\sigma - 3p)]\eta = \nabla_\xi \eta \]

which implies $b = 4(a + \lambda) + k(\sigma - 3p)$.

From Theorem 2.7 we deduce that if (g, ξ, a, b) is an η-Ricci soliton on (M, g, ξ), then η is harmonic form if and only if

\[\{4b[4(a + \lambda) - b + k(\sigma - 3p)] - 2\lambda + k(\sigma + 3p)\} \eta = 4b\nabla_\xi \eta. \]

For the case of Ricci soliton (g, ξ, a) in a radiation fluid we obtain the constant pressure $p = \frac{\lambda}{3k}$.

3 Applications to gradient solitons

Let $f \in C^\infty(M)$, $\xi := \text{grad}(f)$, $\eta := \xi^\flat$ and λ and μ real constants. Then $\eta = df$ and

\begin{equation}
\nabla_X \xi, Y = g(\nabla_X \xi, Y),
\end{equation}

\[g(\nabla_X \xi, Y) = g(\nabla_Y \xi, X), \]
for any $X, Y \in \mathfrak{X}(M)$. Also [3]:

\begin{align}
(15) \quad \text{trace}(\eta \otimes \eta) &= |\xi|^2, \\
(16) \quad \text{div}(\eta \otimes \eta) &= \text{div}(\xi)\eta + \frac{1}{2}d(|\xi|^2)
\end{align}

and

\begin{equation}
(17) \quad \nabla_\xi \eta = \frac{1}{2}d(|\xi|^2).
\end{equation}

For the gradient η-Ricci solitons we have:

Proposition 3.1. If $(g, \xi := \text{grad}(f), \lambda, \mu)$ is a gradient η-Ricci soliton on the n-dimensional manifold M and $\eta = df$ is the g-dual of ξ, then η is a solution of the Schrödinger-Ricci equation if and only if

\begin{equation}
(18) \quad d(\text{scal}) = 2\mu[(\text{scal} + \lambda n + \mu|\xi|^2)df - \frac{1}{2}d(|\xi|^2)].
\end{equation}

Moreover, in this case, scal is constant if and only if $\mu = 0$ (which yields a gradient Ricci soliton) or $(\text{scal} + \lambda n + \mu|\xi|^2)df = \frac{1}{2}d(|\xi|^2)$.

Remark 3.2. Under the hypotheses of Proposition 3.1 if the potential vector field is of constant length k, then (18) becomes:

\begin{equation}
(19) \quad d(\text{scal}) = 2\mu(\text{scal} + \lambda n + \mu k^2)df,
\end{equation}

so the scalar curvature is constant if either the soliton is a gradient Ricci soliton or $\text{scal} = -\lambda n - \mu k^2$.

Remark 3.3. i) Taking into account that for a gradient vector field ξ [5]:

\begin{equation}
(20) \quad \text{div}(L_\xi g) = 2d(\text{div}(\xi)) + 2iQ_\xi g,
\end{equation}

the condition for the g-dual $\eta = df$ of the potential vector field $\xi := \text{grad}(f)$ of a gradient η-Ricci soliton (g, ξ, λ, μ) to be a solution of the Schrödinger-Ricci equation is:

\begin{equation}
(21) \quad d(\text{scal} + \mu|\xi|^2) = iQ_\xi g.
\end{equation}

In this case, $\text{scal} + \mu|\xi|^2$ is constant if and only if $\xi \in \ker Q$ and from the η-Ricci soliton equation we obtain $\nabla_\xi \xi = - (\lambda + \mu|\xi|^2)\xi$. Applying η we get $\lambda + \mu|\xi|^2 = -\frac{1}{2|\xi|^2}\xi(|\xi|^2)$.
therefore, if the length of ξ is constant (also, the scalar curvature will be constant), then $|\xi|^2 = -\frac{\lambda}{\mu}$, hence ξ is a geodesic vector field.

ii) If ξ is an eigenvector of Q (i.e. $Q\xi = a\xi$, with a a smooth function), then η is a solution of the Schrödinger-Ricci equation if and only if $scal + \mu|\xi|^2 - af$ is constant. In particular, if $\xi \in \ker Q$, then η is a solution of the Schrödinger-Ricci equation if and only if η is harmonic form.

iii) If η is Schrödinger-Ricci harmonic form, then $d(scal + \mu|\xi|^2) = 2iQ\xi g$. In this case, $scal + \mu|\xi|^2$ is constant if and only if $\xi \in \ker Q$ and using the same arguments as in i) we deduce that ξ is a geodesic vector field.

Also, an exact 1-form df is harmonic if and only if the function f is harmonic. In the case of a gradient η-Ricci soliton, for η harmonic form, denoting by $\Delta f := \Delta - \nabla_{\text{grad}(f)}$ the f-Laplace-Hodge operator, the result stated in Theorem 3.2 from [5] becomes:

Theorem 3.4. Let $(g, \xi := \text{grad}(f), \lambda, \mu)$ be a gradient η-Ricci soliton on the n-dimensional manifold M with $\eta = df$ the g-dual of ξ. If η is harmonic form, then:

$$\frac{1}{2} \Delta f(|\xi|^2) = |\text{Hess}(f)|^2 + \lambda|\xi|^2 + \mu|\xi|^4.$$

Using Corollary 2.9 we get:

Corollary 3.5. Under the hypotheses of Theorem 3.4, if M is of constant scalar curvature, then at least one of λ and μ is non positive.

As a consequence for the case of gradient Ricci soliton, we have:

Proposition 3.6. Let $(g, \xi := \text{grad}(f), \lambda)$ be a gradient Ricci soliton on the n-dimensional manifold M of constant scalar curvature, with $\eta = df$ the g-dual of ξ. If η is harmonic form, then the soliton is shrinking.

Proof. From Theorem 2.9 and Theorem 3.4 we obtain $|\text{Hess}(f)|^2 + \lambda|\xi|^2 = 0$, hence $\lambda < 0$.

Remark 3.7. i) Assume that $\mu \neq 0$. If $\lambda \geq -\mu|\xi|^2$, then $\Delta f(|\xi|^2) \geq 0$ and from the maximum principle follows that $|\xi|^2$ is constant in a neighborhood of any local maximum. If $|\xi|$ achieve its maximum, then M is quasi-Einstein. Indeed, since $\text{Hess}(f) = 0$, from the soliton equation we have $S = -\lambda g - \mu df \otimes df$. Moreover, in this case, $|\xi|^2(\lambda + \mu|\xi|^2) = 0$, which implies either $\xi = 0$ or $|\xi|^2 = -\frac{\lambda}{\mu} \geq 0$. Since $scal + \lambda n + \mu|\xi|^2 = 0$ we get $scal = \lambda(1 - n)$.

ii) For $\mu = 0$, we get the Ricci soliton case [22].
Harmonic aspects in an η-Ricci soliton

Computing the gradient soliton equation in $(\gamma^\sharp, X), \ X \in \mathfrak{X}(M)$, we obtain:

$$g(\nabla_{\gamma^\sharp} \xi, X) + g(Q\gamma^\sharp, X) + \lambda g(\gamma^\sharp, X) + \mu \eta(\gamma^\sharp) \eta(X) = 0$$

and taking $X := \xi$ we get:

$$\frac{1}{2} \gamma^\sharp(|\xi|^2) + \gamma(Q\xi) + (\lambda + \mu |\xi|^2) \eta(\gamma^\sharp) = 0.$$

Therefore:

Proposition 3.8. Let (g, ξ, λ, μ) be an η-Ricci soliton on the n-dimensional manifold M with η the g-dual of ξ and $\mu \neq 0$. If γ is 1-form, then γ is orthogonal to η if and only if

$$(23) \quad \nabla_{\gamma^\sharp} \xi + Q\gamma^\sharp + \lambda \gamma^\sharp = 0,$$

hence:

$$(24) \quad \frac{1}{2} \gamma^\sharp(|\xi|^2) = -\gamma(Q\xi).$$

Some results concerning the harmonic 1-forms on gradient η-Ricci solitons are further presented.

For two $(0,2)$-tensor fields T_1 and T_2, denote by $\langle T_1, T_2 \rangle := \sum_{1 \leq i,j \leq n} T_1(E_i, E_j) T_2(E_i, E_j)$, for $\{E_i\}_{1 \leq i \leq n}$ a local orthonormal frame field.

Theorem 3.9. Let M be a compact and oriented n-dimensional manifold M, $(g, \xi := \text{grad}(f), \lambda, \mu)$ a gradient η-Ricci soliton with $\eta = df$ the g-dual of ξ and γ a 1-form.

1. If γ is orthogonal to η and $\mu \neq 0$, then $\gamma^\sharp \in \ker(\nabla_\xi \eta + \eta \circ Q)$.

2. If γ is harmonic, then either we have a Ricci soliton or $\nabla_\xi \gamma^\sharp \in \ker \eta$.

3. If γ is exact with $\gamma = du$, then:

$$(25) \quad \int_M \langle S, \text{div}(du) \rangle = -\int_M \langle \text{Hess}(f), \text{Hess}(u) \rangle - \mu(\eta(\nabla_{\text{grad}(f)} \text{grad}(u))).$$

Moreover, if γ is harmonic, the relation (22) becomes:

$$(26) \quad \int_M \langle \text{Hess}(f), \text{Hess}(u) \rangle = -\mu(\eta(\nabla_{\text{grad}(f)} \text{grad}(u))).$$
Proof. From (24) and using (14) we get:

\[0 = g(\nabla_\gamma \xi, \xi) + g(Q\xi, \gamma^z) = \xi(\eta(\gamma^z)) - \eta(\nabla_\xi \gamma^z) + g(\xi, Q\gamma^z) = (\nabla_\xi \eta)\gamma^z + \eta(Q\gamma^z) \]

and hence 1.

Let \(\{E_i\}_{1 \leq i \leq n} \) be a local orthonormal frame field with \(\nabla E_i E_j = 0 \) in a point. For any symmetric \((0,2)\)-tensor field \(Z \) and any 1-form \(\gamma \):

\[\langle Z, L_\gamma g \rangle = \sum_{1 \leq i,j \leq n} Z(E_i, E_j)(L_\gamma g)(E_i, E_j) = 2 \sum_{1 \leq i,j \leq n} Z(E_i, E_j)g(\nabla E_i \gamma^z, E_j) = 2 \sum_{1 \leq i,j \leq n} Z(E_i, E_j)E_i(\gamma(E_j)) = 2\langle Z, \text{div}(\gamma) \rangle. \]

Also:

\[\langle g, L_\gamma g \rangle = \sum_{i=1}^n (L_\gamma g)(E_i, E_i) = 2 \sum_{i=1}^n g(\nabla E_i \gamma^z, E_i) = 2\text{div}(\gamma^z) \]

and

\[\langle df \otimes df, L_\gamma g \rangle = \sum_{1 \leq i,j \leq n} df(E_i)df(E_j)(L_\gamma g)(E_i, E_j) = 2 \sum_{1 \leq i,j \leq n} df(E_i)df(E_j)g(\nabla E_i \gamma^z, E_j) = 2g(\nabla \text{grad}(f)\gamma^z, \text{grad}(f)) = 2g(\nabla \text{grad}(f)\gamma^z, (df)^z). \]

Computing \(\langle S, \text{div}(\gamma) \rangle \) by replacing \(S \) from the \(\eta \)-Ricci soliton equation, we obtain:

\[\langle S, \text{div}(\gamma) \rangle = -\frac{1}{2}\langle \text{Hess}(f), L_\gamma g \rangle - \lambda \text{div}(\gamma^z) - \mu g((\nabla \text{grad}(f)\gamma^z, (df)^z). \]

For 2. we use \(\text{div}(\gamma) = 0 = \text{div}(\gamma^z) \) and for 3. we use the fact that \(\gamma^z = \text{grad}(u) \), hence \(L_\gamma g = 2\text{Hess}(u) \) and apply the divergence theorem.

Since

\[\eta(\nabla_\xi \xi) = \frac{1}{2}\xi(|\xi|^2) \]

and for \(\eta \) harmonic:

\[\int_M |\text{Hess}(f)|^2 = -\mu \int_M df(\nabla_\xi \xi), \]

we get:

Corollary 3.10. Under the hypotheses of Theorem 3.9, if \(\eta \) is harmonic form, then either we have a Ricci soliton or the potential vector field \(\xi \) is of constant length. In the second case, \(\eta \) is a solution of the Schrödinger-Ricci equation and \(M \) is quasi-Einstein manifold.
We know that a Bochner-type formula for an arbitrary vector field ξ states:

$$\frac{1}{2}\Delta(|\xi|^2) = |\nabla\xi|^2 + S(\xi, \xi) + \xi(div(\xi))$$

and taking into account that the g-dual 1-form η of ξ satisfies

$$|\xi| = |\eta|, \quad |\nabla\xi| = |\nabla\eta|, \quad S(\xi, \xi) = S^\sharp(\eta, \eta), \quad \xi(div(\xi)) = \langle \Delta(\eta), \eta \rangle,$$

we have the corresponding relation for η:

\begin{equation}
\frac{1}{2}\Delta(|\eta|^2) = |\nabla\eta|^2 + S^\sharp(\eta, \eta) + \langle \Delta(\eta), \eta \rangle.
\end{equation}

Let γ be a 1-form and writing the previous relation for $\eta + \gamma$ we obtain:

$$\frac{1}{2}\Delta(\langle \eta, \gamma \rangle) = \langle \nabla\eta, \nabla\gamma \rangle + S^\sharp(\eta, \gamma) + \frac{1}{2}(\langle \Delta(\eta), \gamma \rangle + \langle \Delta(\gamma), \eta \rangle).$$

Theorem 3.11. Let M be an n-dimensional manifold M, $(g, \xi := \text{grad}(f), \lambda, \mu)$ a gradient η-Ricci soliton with $\eta = df$ the g-dual of ξ and γ a 1-form. Then:

\begin{equation}
\frac{1}{2}\Delta(\langle df, \gamma \rangle) = \langle \text{Hess}(f), \nabla\gamma \rangle - \mu\Delta(f)\langle df, \gamma \rangle + \frac{1}{2}\langle df, \Delta(f) \rangle.
\end{equation}

Proof. From (4), (16), (20) and $2\text{div}(S) = d(\text{scal})$, we get:

$$S^\sharp(\eta, \gamma) = S(\xi, \eta^\sharp) = -\frac{1}{2}d(\Delta(f))(\gamma^\sharp) - \mu\Delta(f)\langle df, \gamma^\sharp \rangle = -\frac{1}{2}\langle \Delta(df), \gamma \rangle - \mu\Delta(f)\langle df, \gamma \rangle,$$

hence (28). \qed

Proposition 3.12. Let M be an n-dimensional manifold M, $(g, \xi := \text{grad}(f), \lambda, \mu)$ a gradient η-Ricci soliton with $\eta = df$ the g-dual of ξ and γ a 1-form.

1. If γ is orthogonal to η, then $\langle \text{Hess}(f), \nabla\gamma \rangle = -\frac{1}{2}\langle df, \Delta(\gamma) \rangle$.

2. If γ is harmonic, then $\frac{1}{2}\Delta(\langle df, \gamma \rangle) = \langle \text{Hess}(f), \nabla\gamma \rangle - \mu\Delta(f)\langle df, \gamma \rangle$. In this case, $\langle df, \gamma \rangle$ is harmonic if and only if $\mu\Delta(f)\langle df, \gamma \rangle = \langle \text{Hess}(f), \nabla\gamma \rangle$.

Moreover, if γ is orthogonal to η, then $\nabla\gamma$ is orthogonal to $\nabla\eta$.

L^2_f harmonic 1-forms

Endow the Riemannian manifold (M, g) with the weighted volume form $e^{-f}dV$ and define L^2_f forms those forms γ satisfying $\int_M |\gamma|^2 e^{-f}dV < \infty$.

The most natural operator of Laplacian type associated to the weighted manifold $(M, g, e^{-f}dV)$ is the f-Laplace-Hodge operator

$$\Delta_f := \Delta - \nabla_{\text{grad}(f)}$$

which is self-adjoint with respect to this measure.

We say that a 1-form γ is f-harmonic if

$$\Delta_f(\gamma) = 0.$$

Remark that γ is f-harmonic if and only if

$$\Delta(\gamma_0) = i_{\nabla^*_{\gamma_0} \xi} g.$$

From (4) and (17) we deduce:

Proposition 3.13. Let $(g, \xi := \text{grad}(f), \lambda, \mu)$ be a gradient η-Ricci soliton on the n-dimensional manifold M with $\eta = df$ the g-dual of ξ. Then η is f-harmonic form if and only if $\text{scal} + (\mu + \frac{1}{2})|\xi|^2$ is constant.

In terms of Δ_f, the relation (27) can be written [21]:

(29) \[\frac{1}{2} \Delta_f(|\gamma|^2) = |\nabla \gamma|^2 + S^g_f(\gamma, \gamma) + \langle \Delta_f(\gamma), \gamma \rangle, \]

where $S_f := \text{Hess}(f) + S$ is the Bakry-Émery Ricci tensor.

Using a Reilly-type formula involving the f-Laplacian, an interesting result was obtained in [17], namely, if the manifold M is the boundary of a compact and connected Riemannian manifold and has non negative m-dimensional Bakry-Émery Ricci curvature and non negative f-mean curvature, then either M is connected or it has only two connected components, in the later case, being totally geodesic.

Another interesting topological property will be stated in the next theorem:

Theorem 3.14. Let $(\mathbb{M}^n, g, e^{-f}dV)$ be a complete, non compact smooth metric measure space and $(g, \xi := \text{grad}(f), \lambda, \mu)$ a gradient η-Ricci soliton with $\eta = df$ the g-dual of ξ. If there exists a non trivial L^2_f harmonic 1-form γ_0 such that $\lambda |\gamma_0|^2 + \mu (\gamma_0(\xi))^2 \leq 0$, then M has finite volume and its universal covering splits isometrically into $\mathbb{R} \times \mathbb{N}^{n-1}$.
Proof. The condition \(\lambda |\gamma_0|^2 + \mu (\gamma_0 (\xi))^2 \leq 0 \) is equivalent to \(S_f^2 (\gamma_0, \gamma_0) \geq 0 \). From \(\gamma \) and Lemma 3.2 from [25]:
\[
|\gamma_0| \Delta_f (|\gamma_0|) \geq 0.
\]

Following the same steps as in [25], we obtain the conclusion.

Remark 3.15. i) Under the hypothesis of Theorem 3.14 in particular, we deduce that \(\gamma_0 \) is \(\nabla \)-parallel and of constant length. Also, \(\lambda \leq 0 \) since in [23] was shown that \(\lambda > 0 \) implies \(M \) compact.

ii) In the Ricci soliton case, the hypothesis of Theorem 3.14 requires that the space of \(L_f^2 \) harmonic 1-forms to be nonempty and the Ricci soliton to be shrinking in order to get the same conclusion.

References

[1] A.M. Blaga, Almost \(\eta \)-Ricci solitons in \((LCS)_n\)-manifolds, arXiv:1963640v3.2017.

[2] A.M. Blaga, \(\eta \)-Ricci solitons on Lorentzian para-Sasakian manifolds, Filomat 30, no. 2 (2016), 489–496.

[3] A.M. Blaga, \(\eta \)-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl. 20, no. 1 (2015), 1–13.

[4] A.M. Blaga, On gradient \(\eta \)-Einstein solitons, Kragujevak J. Math. 42, no. 2 (2018), 229–237.

[5] A.M. Blaga, On warped product gradient \(\eta \)-Ricci solitons, Filomat 31, no. 18 (2017), 5791–5801.

[6] A.M. Blaga, Solitons and geometrical structures in a perfect fluid spacetime, arXiv:1705.04094v3.2017.

[7] A.M. Blaga, M.C. Crasmareanu, Torse-forming \(\eta \)-Ricci solitons in almost paracontact \(\eta \)-Einstein geometry, Filomat 31, no. 2 (2017), 499–504.

[8] A.M. Blaga, Selcen Yaykle Perkta¸s, Bilal Eftal Acet, Feyza Esra Erdo˘gan, Ricci solitons in \((\varepsilon)\)-almost paracontact metric manifolds, accepted in Glasnik Math. J.
Harmonic aspects in an \(\eta \)-Ricci soliton

[9] G. Catino, A note on four-dimensional (anti-)self-dual quasi-Einstein manifolds, Differential Geom. Appl. **30** (2012), 660–664.

[10] C. Călin, M. Crasmareanu, Eta-Ricci solitons on Hopf hypersurfaces in complex space forms, Rev. Roumaine Math. Pures Appl. **57**, no. 1 (2012), 55–63.

[11] J.T. Cho, M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J. **61**, no. 2 (2009), 205–212.

[12] M.C. Chaki, R.K. Maity, On quasi Einstein manifolds, Publ. Math. Debrecen **57** (2000), 297–306.

[13] B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo, L. Ni: The Ricci Flow: Techniques and Applications: Part I: Geometric Aspects **135**, 2007.

[14] B. Chow, P. Lu, L. Ni, Hamilton’s Ricci Flow, Graduate Studies in Mathematics **77**, AMS, Providence, RI, USA, 2006.

[15] U.C. De, G.C. Ghosh, On quasi-Einstein and special quasi-Einstein manifolds, Proc. of the Int. Conf. of Mathematics and its Applications, Kuwait University, April 5-7, 2004, 178–191.

[16] U.C. De, G.C. Ghosh, On quasi-Einstein manifolds, Period. Math. Hungar. **48**, no. 12 (2004), 223–231.

[17] H. Deng, Compact manifolds with positive \(m \)-Bakry-Émery Ricci tensor, Differential Geom. Appl. **32** (2014), 88–96.

[18] R. Deszcz, M. Hotlos, Z. Senturk, On curvature properties of quasi-Einstein hypersurfaces in semi-Euclidean spaces, Soochow J. Math. **27** (2001), 375–389.

[19] R.S. Hamilton, The Ricci flow on surfaces, Math. and general relativity (Santa Cruz, CA, 1986), Contemp. Math. **71** (1988), AMS, 237–262.

[20] R.S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. **17**, no. 2 (1982), 255–306.

[21] J. Lot, Some geometric properties of the Bakry-Émery Ricci tensor, Comment. Math. Helv. **78**, no. 4 (2003), 865–883.
[22] P. Petersen, W. Wylie, Rigidity of gradient Ricci solitons, Pacific J. Math. 241, no. 2 (2009), 329–345.

[23] Z. Qian, Estimates for weighted volumes and applications, Quart. J. Math. Oxford Ser. (2) 48(190) (1997), 235–242.

[24] S. Smale, On gradient dynamical systems, Ann. of Math. 2(74) (1961), 199–206.

[25] M. Vieira, Harmonic forms on manifolds with non-negative Bakry-Émery Ricci curvature, arXiv:1309.7648v1.2013.

Department of Mathematics
West University of Timișoara
Bld. V. Pârvan nr. 4, 300223, Timișoara, România
adarablaga@yahoo.com