Investigation of bimodal aluminium matrix syntactic foams filled with ceramic hollow spheres

Leveles Borbála,1,2,a Kemény Alexandra,1,2,b Orbulov Imre Norbert 1,2,c

1 Budapesti Műszaki és Gazdaságtudományi Egyetem, Gépészmérnöki Kar, Anyagtudomány és Technológia Tanszék, Budapest, Magyarország
2 MTA-BME Lendület Kompozit Fémhabok Kutatócsoport, Budapest, Magyarország
a borbala.leveles@edu.bme.hu, b alexa@eik.bme.hu, c orbulov@eik.bme.hu

Abstract
In this study bimodal A413 matrix syntactic foams filled with ceramic hollow spheres (CHSs) were produced and examined by computer tomography (CT) and quasi-static mechanical testing to determine the mixing properties of the hollow spheres and the strength of the metal foam. Two hollow spheres of different nominal diameters (d1 = 2.4 mm and d2 = 7.0 mm) were used in equal volume ratio. The produced metal foams have a density of 1.61±0.03 g/cm3, with smaller inclusions and some defective hollow spheres in the structure. The foams have an average compressive strength of 120 MPa and a specific mechanical energy absorbing capacity of 43.5 J/cm3. As a result of the upsetting tests, the matrix material is separated from the CHSs, breaking the connection between them.

Keywords: bimodal metal foams, mechanical testing, ceramic hollow spheres.

Összefoglalás
Kutatásunk során A413-mátrixú, kerámia gömbhéjjal töltött, bimodális fémhabok gyártását és makroszérkezeti, valamint kvázi-statikus mechanikai vizsgálatát végeztük el a gömbhéjak keveredésének és a fémhab szilárdságának meghatározása érdekében. A gyártás során két különböző névleges átmérőjű gömbhéjat alkalmaztunk (d1 = 2.4 mm és d2 = 7.0 mm) azonos térfogatarányban. Az így előállított fémhabok sűrűsége 1,61±0,03 g/cm3, szerkezetében előfordulnak kisebb a zárványok és néhány hibás gömbhéj is. A minák átlagos törőszilárdsága 120 MPa, fajlagos energiaelnyelő képessége pedig 43,5 J/cm3. A zömítés hatására a mátrixanyag elváló a gömbhéjakból, közöttük a kapcsolat több helyen megszűnik.

Kulcsszavak: bimodális fémhabok, mechanikai anyagvizsgálat, kerámia gömbhéjak.

1. Bevezetés
A cellás anyagok rendkívül nagy fajlagos szilárd-sággal és energiaelnyelő képességgel rendelkeznek kis sűrűségük mellé társuló különleges szerkezetüknek köszönhetően. Éppen ezért napjainkban mesterséges módon is törekszünk az ilyen anyagok létrehozására különböző teherviselő és ütközőelemekben. Fémhabok gyártásával ez a cél megvalósíthatóvá válik [1].
Fémhabokat jellemzően valamilyen könnyűfém alapanyagból készítenek. Elterjedt ezek közül az Al és Mg mátrixanyag, de Fe, Zn és más fémek is sikeresen alkalmazhatók [2–5]. A cellákat a sűrűségcsökkentés céljából valamilyen gáz tölti ki, amelyek hatására a kialakuló fémhabok struktúrájuk
alapján csoportosíthatók nyílt- vagy zártcellás habokra. A szilárdság és a tervezhetőség javítása érdekében gyakran úgynevezett szintaktikus fémhabokat (angolul metal matrix syntactic foams, MMSFs) állítanak elő, amelyek jellemzője, hogy a cellákat valamilyen egyenletes eloszlású és azonos méretű üreges vagy habosított második fázis egyenletes eloszlásban hozza létre. A legelterjedtebb ilyen töltőanyagok a kerámia gömbhéjak, ezek mellett vas gömbhéjakat és alacsony költségű habosított anyagokat is használnak fémhabok előállítására [6–9].

A szintaktikus fémhabok gömb alakú töltőanyagának térkitöltési tényező (angolul random close packing, RCP) ~64%. Ennek a tényezőnek a növelésével tovább csökkenhető a szerkezet sűrűsége. Ezt eltérő méretű töltőanyagok véletlenszerű elrendeződéssel értük el. Amennyiben két töltőanyagtípus egyetlen tulajdonságnak, mégpedig a méretén kívül mindenben megegyezik, azt bimodálisnak nevezük. A szintaktikus fémhabok bimodalitását az átmérőbeli eltéréssel definiáljuk [10].

Tao és munkatársai bimodális kerámia mikrogömbhéjakkal (75–125 µm és 250–500 µm) töltött, Al6082-mátrixú szintaktikus habokat vizsgáltak. Az általuk gyártott bimodális fémhabok teljes porozitása 10%-kal nagyobb volt, mint a szintaktikus fémhaboké, kezdeti alakváltozásuk pedig 8%-kal volt nagyobb [11].

Orbulov és kutatócsoportja bimodális (150 µm és 1425 µm) Globocer-gömbhéjakat töltött, AlSi12-mátrixú szintaktikus habok nyomótulajdonságait vizsgálták. Kimutatták, hogy a bimodális fémhabok nagy sűrűsége és hőszilárdsága megbízhatóan megbecsülhető a csak kisebb és csak nagyobb gömbhéjak tartalmazó fémhabok tulajdonságaióból keverék szabály alkalmazásával [12].

2. Eszközök és módszerek

Kutatásunkban A413-öntészeti alumínium mátrixanyagot alkalmaztunk, amelynek kémiai összetétele szabvány alapján: 11,0–13,0 t% Si; max. 1,3 t% Fe; 1,0 t% Cu; max. 0,5 t% Ni; 0,35 t% Mn; max. 0,15 t% Sn; 0,1 t% Mg és a maradék Al.

Töltőanyagként nagy tisztaságú Al₂O₃-gömbhéjakat alkalmaztunk, amelyek névleges átmérői d₁ = 2,4 mm és d₂ = 7,0 mm. A gömbhéjakat tulajdonságait részletesen egy korábbi kutatás során definiáltuk [13].

A bimodális fémhabokat kisnyomásos infiltrálással állítottuk elő. A technológiai változókat az 1. táblázat tartalmazza. A paraméterek a gömbhéjak előhevítési hőmérséklete (T elő) és ideje (t elő), az infiltrálási nyomás (pₗₚₙf) és idő (tₚₙf), valamint a mátrix olvadék-hőmérséklete (Tₚₘₐₜₙᵅₓ). Az alumínium hevítéséért IND IF-10 indukciós kemencében végeztük. Az infiltráláshoz argongázt alkalmaztunk, amelyet egy szigetelt pipán keresztül vezettünk az olvadékhoz.

Jelen kutatásunk során egyenlő térfogatú kis és nagy gömbhéjakból gyártottunk bimodális fémhabokat. Az elméleti térkitöltés matematikai modell alapján 72,8 % [10]. Ez két diszkrét átmérőértékre és pontosan gömb alakú elemekre vonatkozik, tehát a számított érték hibával terhelt. A töltőanyag méretbeli eloszlását mutatja az 1. ábra, a két gömbhéj azonos térfogatarányban eloszlásos (1:1).

A mérések során meghatározottuk a minták sűrűségét, valamint CT-felvételeket készítettünk YXLON Y.CT Modular berendezéssel. A mechanikai tulajdonságok meghatározásához zömitövészgálatokat végeztük 5 mm/perc keresztfejsebességgel egy Instron 5989 univerzális elektromechanikus anyagvizsgáló berendezésen 600 kN-os erőmérőcellával. Az eredményeket az ISO 13314:2011 szabvány alapján értékeltek ki [14].

3. Eredmények

A gyártott bimodális fémhabok sűrűsége tömegmérsék és geometriai mérések alapján 1,61 ± 0,03 g/cm³ értékre adódtak. Az A413 mátrix-
anyag sűrűségéhez képest (2,66 g/cm³) ez jelentős csökkenést mutat, azonban fontos megjegyezni, hogy az elméleti térkitöltéssel számolva 1,4 g/cm³ sűrűségértéket kapunk, amelytől valamelyest eltér a valós mért érték. Ennek az oka könnyen belátható, hiszen már a gömbhéjak átmérői sem két diszkrét értéket vesznek fel, körkörösségük pedig átlagban 6–8%-os hibával terhelt [13].

A számítógépes tomográfiás felvételek betekintést adnak az anyag belsejébe, a benne előforduló hibákról és anyaghiányosságokra is vizuális visszajelzést adnak (2. ábra). Látható, hogy néhány gömbhéjba alumínium szívárgott be, amely növeli a teljes szerkezet sűrűségét. Továbbá megfigyelhető, hogy az olvadék zsugorodásából adódóan néhány zár-vány is megjelenik a mátrixanyagon belül, ezt nem kivánt porozitánsnak nevezzük. Az eloszlás szám-szerűsítéséhez további mérésekre van szükség.

A zoomítóvizsgálatok során felvett adatokból készített nyomógörbét mutatja a 3. ábra. A diagramon megjelenik a mérési eredmények szórásá sávja, illetve a mérési eredmények számtani átlaga szaggatott vonallal. Látható, hogy a kompozitokra jellemző plató jelentősen eltér az Al1050 mátrixanyaggal kapott jellegzetes görbétől mivel nem monoton [7].

A szabvány alapján kiértékelt mérőszámokat tartalmazza a 2. táblázat. A maximális feszültséget (törôszilárdság) és a hozzá tartozó alakváltozást, valamint munkát „ε” indexszel jelöltük. A többi feltüntetett érték szabványos jelölésű [14]. zoomítóvizsgálatok során a fémhabok szétestek, a mátrixanyag és a gömbhéjak kapcsolata a tönkremenetel során megszűnt. Ezt a jelenséget mutatja be a 4. ábra.

2. táblázat. A zoomítóvizsgálatok eredményei

Mérőszám	Érték	Szórás
σ (MPa)	120	29
ε (%)	5,39	0,80
Wc (J/cm³)	3,23	1,33
σpl (MPa)	77	18
εple (%)	54,31	0,86
W (J/cm³)	43,50	16,82
We (%)	64,22	0,96

2. ábra. CT-s felvétel egy 2D-s szelete

3. ábra. A mérési eredmények szórásá sávja, jelölve a számtani átlagot

4. ábra. A vizsgált fémhabok tönkremenetele zoomítás során
– a zömítővizsgálatok eredményei jelentős szórást mutatnak. Ennek oka a fémbabok egyediségében keresendő a véletlenszerű sűrű illeszkedés miatt. Pontosabb eredményekhez további mérésekre van szükség;
– a fémbabok zömítés során szétesnek, a mátrix anyag kapcsolata a gömbhéjakkal megszűnik.

Köszönetnyilvánítás
A publikáció az Innovációs és Technológiai Minisztérium NTP-SZKOLL-19-006 ködzsámú Nemzeti Tehetség Program pályázatának támogatásával valósult meg. A kutatás publikálásában anyagi segítséget nyújtott a Gépészmérnökképzésért Alapítvány.

Szakirodalmi hivatkozások
[1] Gupta N., Rohatgi P. K.: 4.15 Metal Matrix Syntactic Foams. In: Comprehensive Composite Materials II. Elsevier, Oxford, 2018. 364–385. doi.org/10.1016/B978-0-12-803581-8.09971-9
[2] Orbulov I.N., Szlancsik A.: On the Mechanical Properties of Aluminum Matrix Syntactic Foams. Advanced Engineering Materials, 20/5. (2018) 1–12. doi.org/10.1002/adem.201700980
[3] Anbuchezhian G., Muthuramalingam T., Mohan B.: Effect of Process Parameters on Mechanical Properties of Hollow Glass Microsphere Reinforced Magnesium Alloy Syntactic Foams Under Vacuum Die Casting. Archives of Civil and Mechanical Engineering, 18/4. (2018) 1645–1650. doi.org/10.1016/j.acme.2018.07.008
[4] Park H., Hong K., Kang J. S., Um T., Knaepk M., Minárík P., Sung Y. E., Mátthis K., Yamamoto A., Kim H. K., Choe H.: Acoustic Emission Analysis of the Compressive Deformation of Iron Foams and their Biocompatibility Study. Materials Science and Engineering: C, 97. (2019) 367–376. doi.org/10.1016/j.msec.2018.12.035
[5] Linul E., Leli D., Movahedi N., Codrean C., Fiedler T.: Compressive Properties of Zinc Syntactic Foams at Elevated Temperatures. Composites Part B: Engineering, 167. (2019) 122–134. doi.org/10.1016/j.compositesb.2018.12.019
[6] Orbulov I. N.: Metal Matrix Syntactic Foams Produced by Pressure Infiltration – The effect of Infiltration Parameters. Materials Science and Engineering: A, 583. (2013) 11–19. doi.org/10.1016/j.msea.2013.06.066
[7] Szlancsik A., Katona B., Májlinger K., Orbulov I. N.: Compressive Behavior and Microstructural Characteristics of Iron Hollow Sphere Filled Aluminum Matrix Syntactic Foams. Materials 8/11. (2015) 7926–7937. doi.org/10.3390/ma8115432
[8] Szlancsik A., Katona B., Kemény A., Károly D.: On the Filler Materials of Metal Matrix Syntactic foams. Materials 12/12. (2019) 2023. doi.org/10.3390/ma1222023
[9] Taherishargh M., Katona B., Fiedler T., Orbulov I. N.: Fatigue Properties of Expanded Perlite/Aluminum Syntactic Foams. Journal of Composite Materials, 51/6. (2017) 773–781. doi.org/10.1177/0021998316654305
[10] Brouwers H. J. H.: Random Packing Fraction of Bimodal Spheres: An Analytical Expression. Physical Review E, 87. (2013) 1–8. doi.org/10.1103/PhysRevE.87.032202
[11] Tao X. F., Zhang L. P., Zhao Y. Y.: Al Matrix Syntactic Foam Fabricated with Bimodal Ceramic Microspheres. Materials & Design, 30/7. (2009) 2732–2736. doi.org/10.1016/j.matdes.2008.11.005
[12] Orbulov I. N., Kemény A., Filep Á., Gácsi Z.: Compressive Characteristics of Bimodal Aluminium Matrix Syntactic Foams. Composites Part A: Applied Science and Manufacturing, 124. (2019) 105479. doi.org/10.1016/j.compositesa.2019.105479
[13] Kemény A., Károly D.: Mechanical and Microstructural Features of Ceramic Hollow Spheres. Acta Materialia Transylvanica 2/1. (2019) 27–31. doi.org/10.33924/amt-2019-01-05
[14] ISO 13314:2011 Mechanical testing of metals – Ductility testing – Compression test for porous and cellular materials.