Study on improvement of recruitment maneuvers and extravascular lung water in oxygenation of high altitude acute respiratory distress syndrome

Lijun Lin,1 Siqing Ma,2 Yongli Yao,1 Junming Luo,3 Qingjun Shi,2 Qiang Chen2
1Department of Endocrinology; 2Department of Intensive Care Unit; 3Department of Pathology, Qinghai Provincial People’s Hospital, Xining, Qinghai, China

Abstract

To understand the improvement of recruitment maneuvers and extravascular lung water in oxygenation of high altitude acute respiratory distress syndrome (HARDS) patients were enrolled in the study from May 2012 to October 2013 from Qinghai Provincial People’s Hospital. All the patients received recruitment maneuvers and Pulse Contour Cardiac Output, hemodynamics monitoring including intrathoracic Blood Volume Index; Global End-diastolic Volume Index; Global ejection fraction; Pulmonary Vascular Permeability Index; Extravascular Lung Water Index; Pulse indicates cardiac Index; Stroke Volume Variation; Pulse pressure variation; Maximum pressure to increase speed; Systemic Venous Resistance Index, oxygenation and hemodynamics were determined before and after 72 hours of recruitment maneuvers. The results showed that after treatment with recruitment maneuvers and capacity limitation, PaO2/FiO2 was increased significantly compared with those before treatment [PaO2/FiO2 (mmHg): 124.70±43.37 vs 186.87±41.20, t=9.43, P<0.001], Intrathoracic Blood Volume Index (ITBVI), Global End-diastolic Volume Index (GVEDVI), Pulmonary Vascular Permeability Index (PVPI), Extravascular Lung Water Index (EVLWI), Stroke Volume Variation (SVV) were reduced significantly compared with those before treatment [ITBVI (ml/m²): 1031.00±275.88 vs 907.13±242.56, t=1.26, P=0.041; GVEDVI (ml/m²): 822.40±143.30 vs 722.83±169.65, t=1.75, P=0.016; PVPI (ml/kg):2.71±1.21 vs 1.98±0.65, t=2.86, P=0.001; EVLWI (ml/kg): 12.30±4.19 vs 8.12±2.94, t=8.27, P<0.001; SVV (%):17.30±5.65 vs 10.33±3.47, t=9.17, P<0.001]. Our results indicated that recruitment maneuvers and capacity limitation have been improved oxygenation in HARDS, extravascular lung water reduced, and lung capillary permeability also improved.

Introduction

Acute respiratory distress syndrome (ARDS) is a most common life-threatening severe disease, which is a complication of severe trauma, infection, shock, poisoning etc. and caused by a respiratory failure syndrome. The fatality rate is as high as 36% ~ 45%. Lung is a most common target organ. Pathological features are various reasons lead to the capillary endothelial cells and alveolar epithelial cell injury caused by diffuse pulmonary interstitial and alveolar edema. The clinical characterizations are respiratory distress and progressive hypoxemia. The typical histopathological changes are diffuse alveolar damage. Plateau area as unfavorable factors which increased the difficulty of ARDS in treatment and rescue due to the lack of oxygen. Plateau hypoxia itself involved in the pathogenesis of plateau ARDS, further aggravating the high altitude acute respiratory distress syndrome (HARDS) process as a primary/secondary cause. Increasing Lung water, high permeability and pulmonary edema are the pathophysiological features of HARDS. The degree of pulmonary edema was positively correlated with the prognosis of HARDS. When the pulmonary blood capillary permeability increasing, large amounts of fluid would be leaked into the alveolar space and lead to increased shunt and alveolar collapse which it leads serious air/blood flow ratio and stubborn hypoxemia, therefore, it would be great significance for gas exchange to effectively remove tissue fluid and maintain in alveolar cavity, to keep it the clearance of relatively dry.

In this study, we investigated 30 plateau ARDS patients by using Pulse Contour Cardiac Output (PiCCO) monitor to measure the recruitment maneuvers, the blood vessels outside the lung water guiding fluid management, and dynamic observation of the patient’s blood flow and blood oxygenation index. The purpose to understand the relationship between the recruitment maneuvers of liquid management and the clinical value of ARDS on the plateau.

Materials and Methods

The object of study: We chose HARDS patients admitted in Intensive Medicine of Qinghai Provincial people’s Hospital from May 2012 to October 2013. This research is the single-center, prospective study.

The inclusion criteria: i) the age 18 to 80 years old, gender not limited; ii) acute onset; iii) oxygenation index (PaO2 / FiO2) 150 MMHG or less; iv) a chest X-ray shows both lungs were patchy shadow; v) the pulmonary artery pressure, 18 MMHG or less, or no clinical evidence of left atrial pressure increased; vi) family members signed the agreement related to treatment.

The exclusion criteria: i) with chronic heart disease of plateau, congenital heart disease, high blood pressure, chronic emphysema, chronic cor pulmonale, patients with chronic pulmonary hypertension, age greater than 80 adult patients; ii) the cardiac pulmonary edema, large tracts of atelectasis, spontaneous pneumothorax, upper airway obstruction, acute pulmonary embolism; ii) died within 24 hours after
admission patients.

This study has been approved by the Qinghai Provincial People’s Hospital Ethics Committee, and selected patients signed informed consent in this study.

The high altitudes HAPE complicated with ARDS diagnosis standard: the ARDS usually occurs in HAPE 24 ~ 48 h after acute onset; the chest X-ray showed wella- bility shadow on both sides; without increased left atrial pressure, pulmonary wedge pressure 18 mmHg or less (1 mmHg increased left atrial pressure, pulmonary edema shadow on both sides; without cyanosis usually occurs in HAPE 24 ~ 48 h after treatment).

Methods

The monitoring methods: Using Seldinger indwelling central venous catheter (Arrow company, USA) and PICCO catheter (Pulsion company, Germany), the blood vessels outside the lung water (EVLW) has been measured. The PICCO technology is the joint application of pulse contour analysis and thermodilution. On the one hand, the pulse contour analysis continuous cardiac output (CCO), the determination of each stroke volume (SV) and so on need hot dilution method of analysis continuous cardiac output (CCO), NEC: When oxygen concentration was 15 ~ 20 cm H 2O, lasts 1 ~ 2 min, and then adjust to the regular ventilation mode.

The PiCCO technology is the joint application of pulse contour analysis and thermodilution. This research adopts the pressure control (PCV) implementation of recruitment maneuvers.

Using PCV implementation of the recruited maneuver: start based ventilation 2 h after the recruitment maneuver treatment, every time the recruitment maneuvers fully calm; Recruitment maneuvers before dispatch FiO2 to 1.0, lasts for 5 min, adjust breathing machine to pressure mode (PCV), improve the level of suction pressure and PEEP at the same time, the general high voltage 40 ~ 45 cm H 2O PEEP 15 ~ 20 cm H 2O, lasts 1 ~ 2 min, and then adjust to the regular ventilation mode.

The evaluation of recruitment maneuvers: When oxygen concentration was 100%, PaO 2 higher than 350 ~ 400 MMHG or lung oxygenation index change < 5% after repeated recruitment maneuvers would believe to achieve full of alveoli recruitment maneuvers, and take a line the artery blood gas analysis and calculation of PaO 2 / FiO 2. If the recruitment maneuvers is invalid at first time, we can through the chest taps, postural drainage, airway in attracting, sputum suction fiberoptic bronchoscope, raising the treatment to improve oxygenation and pulmonary compliance.

Repeat recruitment maneuvers once per 12 hours, continuous 3 days. When the recruited maneuver treatment, Blood oxygen concentration was 60%, SpO 2 > 96%, the lung was almost completely open within 3 days, and stop recruitment maneuvers. If patients undergoing recruitment maneuvers occur windage evidence (mainly refer to the X-ray), systolic blood pressure < 90 MMHG or down 30 MMHG, compared with the original basis of blood pressure and SpO 2 down more than 5%, compared with recruitment maneuvers before and below 0.85, the adjustment of recruitment maneuvers, strict observation.

PEEP after recruitment maneuvers: Initially set PEEP to 20 cm H 2O, then FiO2 to reduce to a minimum, maintain SpO 2 90% ~ 95%, reduce 2 cm H 2O PEEP every 20 ~ 30 minutes, until the patient SpO 2 fell, the oxygenation of PEEP level before falling is the best PEEP.

Restrictive liquid management: Maintain 3 ml/kg < EVLW < 7 ml/kg, if EVLW ≥ 7 ml/kg, restricting liquid and improve colloid osmotic pressure, diuresis, CRRT treatment, etc.

Statistical methods

To count all information to (±s), using the SPSS 17.1 software for data analysis, comparison between the two groups using paired sample t test, multiple sets of sample comparison between using single factor analysis of variance, P<0.05 was statistically significant.

Results

The oxygenation index and PICCO monitor results of 30 cases of H-ARDS patients before and after the recruitment maneuvers (Table 1).

Each time point index before and after treatment of the following characteristics: i) PaO 2/FiO 2 significantly improved within 12 hours after treatment, There was significant difference compared with before treatment (139.47±57.66 < 124.70±43.37, P<0.01), in the subsequent treatment, PaO 2 / FiO 2 are improved obviously, respectively: 24 hours (158.23±36.85 < 124.70±43.37, P<0.01), 48 hours (168.23±33.43 < 124.70±43.37, P<0.01), at 72 h (186.87±41.20 < 124.70±43.37, P<0.01), and there is signifi-

| Table 1. Schedule recruitment maneuvers Pulse Contour Cardiac Output indexes and oxygenation index before and after contrast (plus or minus, n=30). |
|---|---|
| **Index** | 0h (PaO 2/FiO 2 (mmHg)) | 12h (139.47±57.66**) | 24h (158.23±36.85**) | 48h (186.87±41.20**) | 72h (168.23±33.43**) | F Value | P Value |
| PaO 2/FiO 2 (mmHg) | 124.70±43.37 | 139.47±57.66** | 158.23±36.85** | 186.87±41.20** | 9.43 | <0.001 |
| Extravascular Lung Water Index (ml/kg) | 12.30±4.19 | 10.69±2.30* | 11.41±2.83 | 10.06±2.37** | 8.12±2.94** | 8.27 | <0.001 |
| Global End-diastolic Volume Index (ml/m²) | 822.40±143.30 | 760.76±162.49 | 761.70±153.66 | 736.13±210.19 | 907.13±242.56* | 1.26 | 0.041 |
| Intrathoracic Blood Volume Index (ml/m²) | 1031.00±275.88 | 974.13±224.98 | 979.20±199.75 | 932.13±210.19 | 907.13±242.56* | 1.26 | 0.041 |
| MAP (mmHg) | 94.27±13.38 | 94.33±15.90 | 96.37±13.92 | 98.27±14.07 | 96.33±14.08 | 0.61 | 0.26 |
| CI (l/min/m²) | 3.98±1.11 | 4.24±1.21 | 4.19±1.11 | 4.08±0.88 | 4.33±0.96 | 0.46 | 0.223 |
| Pulmonary Vascular Permeability Index (ml/kg) | 2.71±1.21 | 2.31±0.73 | 2.34±0.68 | 2.20±0.76 | 1.98±0.65** | 2.86 | 0.001 |
| Stroke Volume Variation (%) | 17.30±5.85 | 15.10±5.74 | 14.17±5.05* | 11.90±4.34** | 10.33±3.47** | 9.17 | <0.001 |

Note: *compared with before treatment (P<0.05), **compared with before treatment (P<0.01).

[Chest Disease Reports 2018; 6:7028]
The PVPI decreased significantly after 72 hours treatment; ii) The PVPI decreased significantly compared with before treatment (1.98±0.65 vs 2.71±1.21, P<0.01); iii) The EVLWI reduced gradually after 12 hours treatment, in the after 12 hours, compared with before treatment was 10.69±2.30 vs 12.30±4.19, P<0.05, 48 hours after treatment compared with before treatment was 10.06±2.37 vs 12.30±4.19, P<0.01, 72 hours after treatment compared with before treatment was 8.12±2.94 vs 12.30±4.19, P<0.01, there were significant differences; iv) The GEDVI gradually decreased during the treatment, there is an obvious difference at 48 hours and 72 hours, respectively, at 48 hours group were 736.33±163.01 vs 822.40±143.30, P<0.05, at 72 hours group were 722.83±169.65 vs 822.40±143.30, P<0.05; v) The ITBVI gradually reduced, in 72 hours appear significantly decreased, compared with before treatment was statistically difference (907.13±242.56 vs 1031.00±275.88, P<0.05); vi) The SVV gradually reduced during the treatment, in 24 hours, 48 hours, 72 hours, there is an obvious difference compared with before treatment, respectively were 14.17±5.05 vs 17.30±5.65, P<0.05, 11.90±4.34 vs 17.30±5.65, P<0.01, 10.33±3.47 vs 17.30±5.65, P<0.01; vii) The CI has increased trend during the treatment, significantly increased in 72 hours, but no statistical difference compared with before treatment.

Discussion and Conclusions

This study confirmed that the Pao2/FiO2 obviously increased during the treatment, the possible mechanism is: i) the foundation of ARDS pathophysiological change was alveolar collapse, recruitment maneuvers is within an acceptable airway peak pressure, intermittent give higher pressure, to encourage collapse of alveolercruitment maneuvers, improve oxygenation, correct hypoxemia;10 ii) Recruitment maneuvers can reduce pulmonary capillary pressure, reduce pulmonary interstitial fluid content, promote the absorption of interstitial fluid, thereby reducing blood vessels outside the lung water content, reduce the oxygen diffusion distance, helps improve ARDS lung compliance, correct hypoxemia, improve lung tissue oxygenation state through the capacity management.11

Our study confirms that the AECC standard for diagnosis of ARDS, EVLWI can predict the occurrence of ALI ahead of 2 days clinical symptoms.12 Some scholars proposed to PVPI join the ARDS diagnosis standard, in order to early diagnosis and guide treatment.13 Our study, using EVLW \(\geq 7 \) ml/kg as a guidance for or restricting liquid and improve colloid osmotic pressure, dieresis to assess the degree of lung edema, liquid management. CRRT methods such as reducing blood vessels lung water, EVLW had a significant difference within 24 hours and had an obviously significant difference in 48 hours compared before and after treatments;14 PVPI gradually reduced as there is significant difference in the 72 hours compared before and after treatments. These results indicated that in maintaining the circulation stability, guarantee under the premise of organ perfusion, restrictive fluid management strategy is beneficial in patients with ARDS.15

References

1. Bernard GR, Artigas A, Brigham KL, et al. The american-european consensuses conference on ARDS, definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 1994;149:818-24.
2. Crimi E, Slutsky AS. Inflammation and the acute respiratory distress syndrome. Best Pract Res Clin Anaesth 2004;8:477-92.
3. Ma SQ, Wu TY, Zhang XF. Acute severe high altitude disease and multiple organ dysfunction syndrome. Beijing: People’s Medical Publishing House 2014;6:24.
4. Wu TY. High altitude pulmonary edema and adult respiratory distress syndrome. J High Alt Med 2001;11:63-6.
5. Ma SQ, Yang ZP, Peng JJ, et al. Monitoring and treatment of plateau pulmonary edema secondary to acute respiratory distress syndrome. Chin J Emerg Med 2005;14:600-1.
6. Phillips CR, Chesnutt MS, Smith SM. Extravascular lung water in sepsis-associated acute respiratory distress syndrome: indexing with predicted body weight improves correlation with severity of illness and survival. Crit Care Med 2008;36:69-73.
7. Ma LJ, Li WP, Jin FG. The research progress of the pathogenesis of acute lung injury/acute respiratory distress syndrome. Chinese J Lung Dis 2013;6:65-9.
8. Ma SQ, Wu TY, Cheng Q, et al. Acute respiratory syndrome secondary to high-altitude pulmonary edema: a diagnostic study. J Med Lab Diagnos 2012;3:18-23.
9. Berry AM, Davidson PM, Masters J, et al. Effects of three approaches to standardized oral hygiene to reduce bacterial colonization and ventilator associated pneumonia in mechanically ventilated patients: a randomized control trial. Int J Nurs Stud 2011;48:684-8.
10. Meade MO, Cook DJ, Cuyatt GH, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized
controued trial. JAMA 2008;299:637-45.
11. Constantin JM, Cayot-Constantin S, Roszyk L, et al. Respinse to recruitment maneuver influences net alveolar fluid clearance in actue respiratory distress syndrome. Anesthesiology 2007;106:944-51.
12. LeTourneau JL, Pinney J, Phillips CR. Extra vascular lung water predicts Progression to acute lung injury in patients with increased risk. Crit Care Med 2012;40:847.
13. Chew MS, Ihrman L, During J, et al. Extra vascular lung water index improves the diagnostic accuracy of lung injury in patients with shock. Crit Care Med 2012;16:R1.
14. Van der Heijden M, Groeneveld ABJ. Extravascular lung water to blood volum ratios as measures of pulmonary capillary permeability in nonseptic critically ill patients. J Crit Care 2010;25:16-22.
15. Monnet X, Anguel N, Osman D, et al. Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI/ARDS. Intensive Care Med 2007;33:448-53.
16. Intensive medical of Chinese medical association. Diagnosis and treatment guidelines of acute lung injury/acute respiratory distress syndrome 2006. Chinese J Internal Med 2007;46:430-5.
17. Katzenelson R, Perel A, Berkenstadt H, et al. Accuracy of transpulmonary thermodilution versus gravimetric measurement of extravascular lung water. Crit Care Med 2004;32:1550-4.
18. Sakka SG, Ruhl CC, Pfeiffer UJ, et al. Assesment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med 2000;26:180-7.
19. Paul E, Marie MD. Dynamic changes in arterial waveform derived variables and fluid responsive in mechanically ventilated patients: a systematic review of the literature. Crit Care Med 2009;37:3642-7.
20. Fougeres E, Teboul JL, Richard C, et al. Hemodynamic impact of a positive end-expiratory pressure setting in acute respiratory distress syndrome: importance of the volume status. Crit Care Med 2010;38:802-7.
21. Taccone P, Pesenti A, Latini R, et al. Prone positioning in patients with moderate and severe acute respiratory distress syndrome: a randomized controlled trial. JAMA 2009;302:1977-84.
22. Fessler HE, Derdak S, Ferguson ND, et al. A protocol for high-frequency oscillatory ventilation in adults: results from a roundtable discussion. Crit Care Med 2007; 35: 1649-54.
23. Rainieri M. Acute respiratory distress syndrome (ARDS): The “Berlin Definition”. 24th Annual Congress ICC, Berlin; 2001.
24. Peek GJ, Mugford M, Tiruvoipati R, et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet 2009;374:1351-63.