Corrigendum

Corrigendum to: Influence of 25-hydroxy-cholecalciferol levels on SARS-CoV-2 infection and COVID-19 severity: A systematic review and meta-analysis [EClinicalMedicine 37 (2021) 100,967]

Andrea Crafaa, Rossella Cannarellaa, Rosita A. Condorellia, Laura M. Mongioìa, Federica Barbagalloa, Antonio Aversab, Sandro La Vigneraa, Aldo E. Calogeroa,⁎

a Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
b Department of Experimental and Clinical Medicine, University “Magna Graeca”, Catanzaro, Italy

We published a comprehensive systematic review and meta-analysis evaluating the current evidence on the impact of 25-hydroxycholecalciferol [25(OH)D] and its deficiency, on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and the severity and mortality of the coronavirus 19 disease (COVID-19).

Recently, we were informed that two studies included in our meta-analysis and published on pre-print platforms were withdrawn (original article references 39, 55). For this reason, in the attempt to understand whether the inclusion of these pre-prints could have affected the results of our meta-analysis, we decided to make an

![Flowchart of the studies included in the meta-analysis.](image-url)

DOI of original article: http://dx.doi.org/10.1016/j.eclinm.2021.100967.

⁎ Corresponding author.
E-mail address: scalogero@unict.it (A.E. Calogero).

https://doi.org/10.1016/j.eclinm.2021.101168

2589-5370/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
First Author	Year	Country	Study design	Sample size	Mean Age	Gender Male/Female	Ethnicity	Outcome evaluated	Time at 25(OH)D levels assessment			
Abdollahi	2020	Iran	Case-control study	402	SARS-CoV-2 +	48.0 ± 16.5	SARS-CoV-2 +	66/135	NR	Difference in mean 25 (OH)D levels between COVID-19 positive and controls	NR	
Abrishami	2020	Iran	Retrospective study	73	SARS-CoV-2 - / SARS-CoV-2 +	46.34 ± 13.5 / 55.2 ± 15.0	SARS-CoV-2 - / SARS-CoV-2 +	47/26	NR	Difference in 25(OH)D levels between dead and discharged	Generally performed within 3 days of hospital admission	
Arvinte	2020	USA	Pilot study	21	SARS-CoV-2 - / SARS-CoV-2 +	60.2 ± 17.4 / 60.2 ± 17.4	SARS-CoV-2 - / SARS-CoV-2 +	15/6	SARS-CoV-2 +	Caucasian: 4 Hispanic: 17	Admission to hospital	
Baktash	2020	UK	Prospective Cohort Study	105	SARS-CoV-2 - / SARS-CoV-2 +	81 (SD NR) / 83.4 ± 8.1	SARS-CoV-2 - / SARS-CoV-2 +	42/28	SARS-CoV-2 - / SARS-CoV-2 +	Caucasian: 30 South Asian: 18 East Asian: 2 Afro-Caribbean: 1	Admission to hospital	
Carpagnano	2020	Italy	Retrospective, observational single-center study	42	SARS-CoV-2 +	65.0 ± 13.0	SARS-CoV-2 +	30/12	SARS-CoV-2 -	Caucasian: 30 South Asian: 3 East Asian: 0 Afro-Caribbean: 3	Assessment of the risk for mortality by COVID-19 in patients with VDD	Performed within 12 h of admission to ICU
Cerda	2020	Italy	Single-center cohort study	129	SARS-CoV-2 - / SARS-CoV-2 +	73.6 ± 13.9 / 73.6 ± 13.9	SARS-CoV-2 - / SARS-CoV-2 +	70/59	SARS-CoV-2 +	/	Assessment of the risk for COVID-19 severity and related mortality in patients with VDD	Performed within 48 h of admission to hospital
Chodick	2020	Israel	Cross-sectional study	14,520	SARS-CoV-2 - / SARS-CoV-2 +	40.6 (19.1) / 37.0 (19.1)	SARS-CoV-2 - / SARS-CoV-2 +	788/529	SARS-CoV-2 -	/	Difference in mean 25 (OH)D levels between COVID-19 patients and controls	NR
D’Avolio	2020	Swiss	Retrospective Cohort Study	107	SARS-CoV-2 - / SARS-CoV-2 +	73.3 ± 12.5 / 73.3 ± 12.5	SARS-CoV-2 - / SARS-CoV-2 +	6002/1111 / 19/8	NR	Difference in mean 25 (OH)D levels between COVID-19 patients and controls	Generally performed within 3 days of molecular testing for diagnosis of SARS-CoV-2 infection	
First Author	Year	Country	Study design	Sample size	Mean Age	Gender Male/Female	Ethnicity	Outcome evaluated	Time at 25(OH)D levels assessment			
-------------	------	---------	--------------	-------------	----------	-------------------	-----------	------------------	----------------------------------			
De Smet	2020	Belgium	Retrospective observational study	186	67.0 ± 20.9	SARS-CoV-2 - / SARS-CoV-2 +	109/77	NR	Difference in 25(OH)D levels between mild and severe cases and between dead or discharged patients. Assessment of the risk for COVID-19 severe forms in patients with VDD	Admission to hospital		
Faul	2020	Ireland	Observational study	33	SARS-CoV-2 - / SARS-CoV-2 +		33/0	SARS-CoV-2 +	Caucasian: 33			
Hastie-Mackay	2020	UK	Retrospective cohort study	348,598	SARS-CoV-2 - / SARS-CoV-2 +		265/184	SARS-CoV-2 +		Pre-hospitalization (at least 10 years old dosages)		
Hernandez	2020	Spain	Case-control Study	394	SARS-CoV-2 - / SARS-CoV-2 +		123/74	SARS-CoV-2 +				
Im	2020	South Korea	Case-control study	200	SARS-CoV-2 - / SARS-CoV-2 +		123/74	SARS-CoV-2 +				
Jain	2020	India	Prospective observational study	154	SARS-CoV-2 - / SARS-CoV-2 +		95/69	SARS-CoV-2 +		Admission to hospital		
Karonova	2020	Russia	Observational cohort study	80	SARS-CoV-2 - / SARS-CoV-2 +		43/37	SARS-CoV-2 +				

(continued on next page)
First Author	Year	Country	Study design	Sample size	Mean Age	Gender Male/Female	Ethnicity	Outcome evaluated	Time at 25(OH)D levels assessment		
Kerget	2020	Turkey	Case-control study	88	49±21.1	SARS-CoV-2 + 41/47	NR	Difference in 25(OH)D levels between mild and severe COVID-19 forms and between dead or discharged patients	Admission to hospital		
Luo	2020	China	Retrospective cross-sectional study	895	SARS-CoV-2 - 35.2 ± 6.9	54.3 ± 15.6	SARS-CoV-2 - 148/187	NR	Difference in 25(OH)D levels between COVID-19 patients and controls; Difference in 25(OH)D levels between mild and severe COVID-19 forms and between dead or discharged patients	Admission to hospital	
Mardani	2020	Iran	Case-control study	123	SARS-CoV-2 - 54.7 ± 8.2	43.3 ± 14.5	SARS-CoV-2 - 35/28	NR	Difference in mean 25(OH)D levels between COVID-19 patients and controls and between dead or discharged patients	Admission to hospital	
Merzon	2020	Israel	Population based study	7807	SARS-CoV-2 - 40.8 ± 15.8	35.6 ± 15.6	SARS-CoV-2 - 30/30	NR	Difference in mean 25(OH)D levels between COVID-19 patients and controls	Pre-hospitalization (not specified when)	
Panagiotou	2020	UK	Retrospective study	134	SARS-CoV-2 - 47.4 ± 21.0	NR	SARS-CoV-2 - 2849/4176	73/61	4	Difference in 25(OH)D levels between mild and severe COVID-19 forms and between dead or discharged patients	Admission to hospital
Pizzini	2020	Austria	Prospective Multicenter	109	SARS-CoV-2 - 58.0 ± 14.0	NR	SARS-CoV-2 - 65/44	NR	Difference in 25(OH)D levels between mild and severe COVID-19 forms	25(OH)D assays performed 8 weeks after disease onset	
Radujkovic	2020	Germany	Prospective Observational Study	185	SARS-CoV-2 - 50.7 ± 15.7	NR	SARS-CoV-2 - 95/90	NR	Difference in 25(OH)D levels between mild and severe COVID-19 forms	Admission to hospital	

(continued on next page)
First Author	Year	Country	Study design	Sample size	Mean Age	Gender Male/Female	Ethnicity	Outcome evaluated	Time at 25(OH)D levels assessment
Raisi-Estabragh	2020	UK	Prospective cohort study	4510	68.1 ± 9.2	SARS-CoV-2 + 696/630	White: 1.141 Black: 76 Asian: 60 Chinese: 6 Mixed: 9 Other: 34	Difference in mean 25(OH)D levels between COVID-19 patients and controls	Pre-hospitalization (at least 10 years old dosages)
						SARS-CoV-2 - 68.91 ± 8.72	White: 2927 Black: 91 Asian: 78 Chinese: 3 Mixed: 24 Other: 61		
Szeto	2020	USA	Retrospective cohort study	93	NR	SARS-CoV-2 + 44/49	Black: 27	Assessment of the risk for COVID-19 severity and related mortality in patients with VDD	Prehospitalization (25(OH)D levels measured within the previous year and on average 136 days prior to hospital admission)
Vassiliou	2020	Greek	Prospective observational cohort study	30	/	SARS-CoV-2 + 65.0 ± 11.0	Black: 24	Difference in 25(OH)D levels between dead and discharged COVID-19 patients and assessment of the risk for COVID-19 mortality in patients with VDD	Admission to ICU
Ye	2020	[38] China	Case-control study	142	/	SARS-CoV-2 + 41.7 ± 15.9	Black: 24	Difference in mean 25(OH)D levels between COVID-19 patients and controls, and between patients with severe or non-severe forms of COVID-19. Assessment of the risk for severe COVID-19 forms in patients with VDD	Admission to hospital

Abbreviation: 25(OH)D, 25-hydroxy-cholecalciferol; VDD, vitamin D deficiency; COVID-19, coronavirus disease 19; NR, Not Reported; SARS-CoV-2 +, patients positive for severe acute respiratory syndrome coronavirus 2 infection; SARS-CoV-2 -, patients negative for severe acute respiratory syndrome coronavirus 2 infection; SD, standard deviation; NE, Not evaluated; ICU, Intensive Care Unit; RICU, Respiratory Intermediate Care Unit.
A. Crafa et al. / EClinicalMedicine 41 (2021) 101168

After exclusion of the two pre-prints mentioned above, high inter-
VDD (original articleFig. 5) did not change after the exclusion of pre-
prints but also a third one originally included in the analysis (45).

additional analysis after excluding not only the two withdrawn pre-
prints but also a third one originally included in the analysis (45).

Because of the exclusion of the 3 pre-prints (original article refer-
ences 39, 45, 55), the flowchart of the included studies was modified
(Fig. 1). Table 1, showing the characteristics of the included studies,
and Table 2, concerning the quality analysis of the studies, were also
updated after exclusion of the 3 pre-prints (original article references
39, 45, 55).

Table 2
Quality assessment tool for observational cohort and cross-sectional studies.

Author	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Abrishami et al. (2020) [49]	+	*	*	*	NR	*	*	*	*	NA	NA	NA	NA	NA
Arvinte et al. (2020) [50]	+	*	*	*	NR	*	*	*	*	NA	NA	NA	NA	NA
Bakhash et al. (2020) [28]	+	*	*	*	NR	*	*	*	*	NA	NA	NA	NA	NA
Carpena et al. (2020) [54]	+	*	*	*	NR	*	*	*	*	NA	NA	NA	NA	NA
Cereda et al. (2020)	+	*	*	*	*	*	*	*	*	NA	NA	NA	NA	NA
Chodick et al. (2020) [29]	+	*	*	*	*	*	*	*	*	NA	NA	NA	NA	NA
D’Avolio et al. (2020) [30]	+	*	*	*	*	*	*	*	*	NA	NA	NA	NA	NA
De Smet et al. (2020) [60]	+	*	*	*	*	*	*	*	*	NA	NA	NA	NA	NA
Faul et al. (2020) [41]	+	*	*	*	*	*	*	*	*	NA	NA	NA	NA	NA
Hastie-Mackay et al. (2020) [31]	+	*	*	*	NR	NR	NR	NR	NA	NA	NA	NA	NA	NA
Jain et al. (2020)	+	*	*	*	NR	*	*	*	*	NA	NA	NA	NA	NA
Karanou et al. (2020) [43]	not assessable because in Russian language													
Luo et al. (2020)	+	*	*	*	*	*	*	*	*	NA	NA	NA	NA	NA
Merzon et al. (2020) [36]	+	*	*	*	NR	*	*	*	*	NA	NA	NA	NA	NA
Panagiotou et al. (2020) [46]	+	*	*	*	NR	*	*	*	*	NA	NA	NA	NA	NA
Pizzini et al. (2020) [47]	+	*	*	*	*	*	*	*	*	NA	NA	NA	NA	NA
Radujkovic et al. (2020) [48]	+	*	*	*	*	*	*	*	*	NA	NA	NA	NA	NA
Raisi-Estabragh et al. (2020) [37]	+	*	*	*	*	*	*	*	*	NA	NA	NA	NA	NA
Szeto et al. (2020) [53]	+	*	*	*	NR	*	*	*	*	NA	NA	NA	NA	NA
Vassiliou et al. (2020) [51]	+	*	*	*	*	*	*	*	*	NA	NA	NA	NA	NA

1. Was the research question or objective in this paper clearly stated?
2. Was the study population clearly specified and defined?
3. Was the participation rate of eligible persons at least 50%?
4. Were all the subjects selected or recruited from the same or similar populations (including the same time period)? Were inclusion and exclusion criteria for being in the study pre-specified and applied uniformly to all participants?
5. Was a sample size justification, power description, or variance and effect estimates provided?
6. For the analyses in this paper, were the exposure(s) of interest measured prior to the outcome(s) being measured?
7. Was the timeframe sufficient so that one could reasonably expect to see an association between exposure and outcome if it existed?
8. For exposures that can vary in amount or level, did the study examine different levels of the exposure as related to the outcome (e.g., categories of exposure, or exposure measured as continuous variable)?
9. Were the exposure measures (independent variables) clearly defined, valid, reliable, and implemented consistently across all study participants?
10. Was the exposure(s) assessed more than once over time?
11. Were the outcome measures (independent variables) clearly defined, valid, reliable, and implemented consistently across all study participants?
12. Were the outcome assessors blinded to the exposure status of participants?
13. Was loss to follow-up after baseline 20% or less?
14. Were key potential confounding variables measured and adjusted statistically for their impact on the relationship between exposure(s) and outcome(s)?

Also, the analysis of the risk of severe COVID-19 in patients with VDD (original article Fig. 5) did not change after the exclusion of pre-
print reference 39. This outcome was assessed on data extracted from
10 studies. The study by Cereda and colleagues (original article reference 52) was considered twice since it evaluated both the percentage of patients with severe pneumonia and patients admitted to the intensive care units as an outcome of severity. The study by Jain and colleagues (original article reference 42) was also considered twice since they assessed the risk of infection severity both in patients with 25(OH)D<20 ng/ml and then in patients with levels below 10 ng/ml. The new statistical analysis confirmed that patients with VDD had a higher risk of a severe disease course than patients without deficiency [OR 3.78 (1.77, 8.06); p = 0.0006], regardless of the cut-off values considered to establish the efficiency (Fig. 5A). The Funnel plot showed that the heterogeneity found (Chi² P < 0.00001, I²=85%) was attributable to the studies Jain and colleagues’ (original article reference 42) and Hernandez and coworkers’ (original article reference 32) (Fig. 5B).

Once the data from these studies were excluded, heterogeneity was no longer observed (Chi² P = 0.53, I²=0%) and the risk of developing a severe course of the disease in VDD patients remained significant [OR 2.47 (1.80, 3.37); p < 0.00001].

Finally, the analysis of the risk of mortality in patients with VDD (original article supplementary Fig. 2) also remained unchanged after the exclusion of the pre-print reference 55. Indeed, the analysis of the remaining 8 studies confirmed the absence of a significant increase in mortality risk in patients with VDD compared to patients with adequate 25(OH)D levels [OR 1.74 (0.84, 3.59); p = 0.14] regardless of the cut-off values considered for deficiency (Supplementary Fig. 2A). Heterogeneity between studies was found (Chi² P < 0.03, I²=55%), and its origin was due to the study by Jain and colleagues (42) (Supplementary Fig. 2B). When this was excluded from the
Fig. 3. **Panel A.** Forest plot of studies that assessed 25(OH)D levels as a continuous variable in patients with severe course of COVID-19 than those with mild course. **Panel B.** Funnel plot showing the source of heterogeneity of studies that evaluated 25(OH)D levels as a continuous variable in patients with severe course of COVID-19 than those with mild course. Serum 25(OH)D levels are expressed in ng/ml.
analysis, the Funnel Plot showed homogeneity among the remaining studies (Chi2 P = 0.15, I2=36%), and the increased risk of COVID-19 mortality in the presence of VDD was confirmed to be non-significant [OR 1.30 (0.83, 2.03); p = 0.25].

In conclusion, the results of this new analysis showed no difference compared to the original one. Therefore, the inclusion of pre-prints did not affect the results of our meta-analysis. After the exclusion of pre-prints, we may still hypothesize a role for low 25(OH)D levels in the risk of SARS-CoV-2 infection and the development of more severe forms of COVID-19.

Supplementary materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.eclinm.2021.101168.
References

[27] Abdollahi A, Kamali-Sarvestani H, Rafat Z, et al. The association between the level of serum 25(OH) vitamin D, obesity, and underlying diseases with the risk of developing COVID-19 infection: A case-control study of hospitalized patients in Tehran, Iran. J Med Virol 2021;93(4):2359–64.

[28] Baktash V, Hosack T, Patel N, et al. Vitamin D status and outcomes for hospitalised older patients with COVID-19. Postgrad Med J 2020 postgradmedj-2020-138712.

[29] Chodick G, Nutman A, Yiekutiel N, Shalev V. Angiotensin-converting enzyme inhibitors and angiotensin-receptor blockers are not associated with increased risk of SARS-CoV-2 infection. J Travel Med 2020;27(5):tiaa069.

[30] D’Avolio A, Avataneo V, Manca A, et al. 25-Hydroxyvitamin D Concentrations Are Lower in Patients with Positive PCR for SARS-CoV-2. Nutrients 2020;12(5):1359.

[31] Hastie CE, Mackay DF, Ho F, et al. Vitamin D status and outcomes for hospitalised older patients with COVID-19. Postgrad Med J 2020 postgradmedj-2020-138712.

[32] Im JH, Je YS, Baek J, Chung MH, Kwon HY, Lee JS. Nutritional status of patients with COVID-19. Int J Infect Dis 2020;100:390–3.

[33] Mardani R, Alamdary A, Mousavi Nasab SD, Gholami R, Ahmadi N, Gholami A. Association of vitamin D with the modulation of the disease severity in COVID-19. Virus Res 2020;289:198148.

[34] Merzon E, Tworowski D, Gorohowski A, et al. Low plasma 25(OH) vitamin D level is associated with increased risk of COVID-19 infection: an Israeli population-based study. FEBS J 2020;287(17):3693–702.

[35] Pizzini A, Aichner M, Sahanic S, et al. Impact of Vitamin D Deficiency on COVID-19: A Prospective Analysis from the CovILD Registry. Nutrients 2020;12(9):2775.

[36] Radujkovic A, Hippchen T, Tiwari-Heckler S, Dreher S, Boxberger M, Merle U. Vitamin D Deficiency and Outcome of COVID-19 Patients. Nutrients 2020;12(9):2757.

[37] Szeto B, Zucker JE, LaSota ED, et al. Vitamin D Status and COVID-19 Clinical Outcomes in Hospitalized Patients. Endocr Res 2020;1–8.

[38] Vassiliou AG, Jahaj E, Pratikaki M, Orfanos SE, Dimopoulou I, Kotanidou A. Low 25-Hydroxyvitamin D Levels on Admission to the Intensive Care Unit May Predispose COVID-19 Pneumonia Patients to a Higher 28-Day Mortality Risk: A Pilot Study on a Greek ICU Cohort. Nutrients 2020;12(12):3773.

[39] Szeto B, Zucker JE, LaSota ED, et al. Vitamin D Status and COVID-19 Clinical Outcomes in Hospitalized Patients. Endocr Res 2020;1–8.

[40] Carpagnano GE, Di Lecce V, Quaranta VN, et al. Vitamin D deficiencies a predictor of poor prognosis in patients with acute respiratory failure due to COVID-19. J Endocrinol Invest 2020;1–7.