NOTES

Improved Thin-Layer Technique for Detection of Arginine Dihydrolase Among the Pseudomonas Species

W. ZOLG AND J. C. G. OTTOW
Fachbereich Biologie, Mikrobiologische Technische Hochschule, Darmstadt, Federal Republic of Germany

Received for publication 16 July 1973

The detection of arginine dihydrolase among Pseudomonas spp. by thin-layer chromatography is described. The method is based on the procedure of Williams and co-workers (1971) but was improved in sensitivity by selection of a better solvent system.

The arginine dihydrolase system is one of the key enzyme systems in the differentiation of aerobic Pseudomonas spp. from other nonfermentative gram-negative bacilli (3, 10) as well as within its own species (7-10). This hydrolytic system catalyzes the following anaerobic reaction with a gain in energy:

\[
\begin{align*}
\text{arginine desmidase} & \quad \rightarrow \quad \text{citrulline} + \text{NH}_3 \\
\text{citorraine ureidase} & \quad + \text{water} + \text{Pi} + \text{ADP} \quad \rightarrow \quad \text{ornithine} + \text{CO}_2 \\
& \quad + \text{NH}_3 + \text{adenosine triphosphate}
\end{align*}
\]

The ability to produce these two hydrolytic enzymes is detected in routine tests according to the anaerobic agar-tube method of Thornley (11) by measuring the disappearance of arginine in phosphate buffer (10) or by thin-layer chromatography (TLC) of its end product (12).

In an attempt to classify four Pseudomonas strains isolated from soil, we improved the TLC method of Williams and co-workers (12) both by a better solvent system and in sensitivity.

The organisms used in these studies were four unidentified Pseudomonas strains and eight physiologically related Pseudomonas cultures (see Table 2).

A loopful of each culture (24 h, 28 C) grown on triple sugar-iron agar was inoculated into Thornley test medium (11) as well as into a tube of arginine-hydrochloride (0.01 M, pH 6.4) as reported by Williams et al. (12). The arginine broth was sterilized by filtration, incubated at 30 C for 3 h (water bath) and centrifuged (15 min at 6,000 rpm). Two μl of each supernatant was applied to a number of TLC plates (precoated cellulose sheets, 0.1 mm by 20 by 20 cm, Merck AG, Darmstadt, Germany). Each chromatogram also received 2 μl of an aqueous reference mixture consisting of arginine, citrulline, ornithine, agmatine, and putrescine (0.01 M of each, pH 6.4). The following solvent systems were compared: (i) 1-butanol: acetic acid: water (4:1:5, organic phase) (13); (ii) 1-butanol: aceton: acetic acid: water (35:35:10:20) (12); (iii) tert-butanol: ethylmethylketone: acetone: methanol: ammonia d = 0, 88: water (40:20:20:1:5:14) (5); (iv) 1-butanol: acetone: diethylamine: water (10:10:2.5:1) (1); (v) phenol: water: ammonia d = 0, 91 (100:20:0.3) (3); and (vi) phenol: acetic acid: water (6:1:6) (4).

Developed, air-dried chromatograms were sprayed with either ninhydrin solution (1% in isopropanol) or cadmium acetate-isatine reagent (6) and heated (90 C) for 1 or 10 min, respectively. With ninhydrin, all of the compounds mentioned above gave purple spots, whereas the cadmium acetate-isatine reagent colored arginine and citrulline red, ornithine purple, and agmatine as well as putrescine blue. The average Rf values for arginine, citrulline, ornithine, agmatine, and putrescine obtained with the six different solvent systems are compared in Table 1. From this scheme it is evident that the arginine dihydrolase products (citrulline, ornithine) as well as the arginine decarboxylase metabolites (agmatine, putrescine) are best separated by n-butanol: acetone: diethylamine: water (10:10:2.5). This system remained stable throughout the chromatographic...
TABLE 1. Comparison of R, values of arginine, citrulline, ornithine, putrescine, and agmatine obtained by TLC on cellulose sheets in different systems

Enzyme	System
	1-Butanol: acetone: water (4:1:5) (ref. 13)
	1-Butanol: acetone: acetate acid: water (35:35:10:20) (ref. 12)
	tert-Butanol: butanone: acetone: methanol: ammonia (0,88:30:20:1:5:14) (ref. 5)
	1-Butanol: acetone: diethylamine: water (10:10:2:5) (ref. 1)
	Phenol: water: ammonia (0, 91): (100:20:0,3) (ref. 2)
	Phenol: acetic acid: water (6:1:6) (ref. 4)
Arginine	0,10
Citrulline	0,13
Ornithine	0,07
Putrescine	0,08
Agmatine	0,13

Fractionation. An example of the results obtained is illustrated by Fig. 1. It shows the clear-cut differentiation between negative Pseudomonas cultures and those producing citrulline, ornithine, and putrescine. Second best in the separation of the amino acids and amines in question was the system phenol: water: ammonia (2). The solvent system used by Williams et al. (12) was less successful for the intended purpose in study.

The distribution of arginine dihydrolase among the Pseudomonas cultures tested is given in Table 2. The following conclusions are drawn from it. First, except with the P. testosteroni strain, a complete correlation between the results obtained with Thornley’s method and the TLC method is found. Second, both ornithine (the arginine dihydrolase end product) and citrulline (the intermediate stage) are detected on the chromatograms spotted with P. aeruginosa, P. fluorescents, and P. mendocina. On the other hand, the intermediate citrulline was never found with P. testosteroni ATCC 11996, although ornithine was detected with all of the six solvent systems used. Third, all cultures that produced ornithine from arginine simultaneously showed spots corresponding to putrescine (see also Fig. 1). Putrescine, however, can be produced from ornithine only by decarboxylation, under the experimental conditions that were described:

![Thin-layer one-dimensional chromatogram of precoated cellulose sheets run in n-butanol: acetone: diethylamine: water (10:10:2:5) and sprayed with 1% ninhydrin (in iso-propanol). Abbreviations: ar, arginine; ci, citrulline; or, ornithine; pu, putrescine; co, control by uninoculated medium; 15, 16, 17, and 19, isolated Pseudomonas spp.; 1, P. stutzeri ATCC 17588; 2, P. stanieri ATCC 17591; 3, P. mendocina ATCC 25411; 4, P. testosteroni ATCC 11996; 5, P. fluorescents CCM 2115.](image-url)

Table 2. Comparison of Thornley and TLC methods for Pseudomonas arginine dihydrolase determinations

Organism	Thornley method	TLC on cellulose sheets*	
	Citrulline	Ornithine	Putrescine
Pseudomonas spp.	-	-	-
15, 16, 17, 19	-	-	-
P. stutzeri ATCC 17588	-	-	-
P. mendocina ATCC 25411	+	+	+
P. testosteroni ATCC 11996	-	-	+
P. fluorescents CCM 2115	+	+	+
P. aeruginosa CCM 1960	+	+	-
P. saccharophila CCM 1980	-	-	-

* Run for 90 min in the system n-butanol: acetone: diethylamine: water (10:10:2:5) and sprayed with either 1% ninhydrin (in iso-propanol) or cadmium acetate-isatine reagent.
ornithine → putrescine + CO₂
(EC 4.1.1.17)

Apparently, under the experimental conditions given, arginine dihydrolase is subsequently followed by ornithine decarboxylase activity.

The procedure followed by us is more sensitive than the one recommended by Williams and co-workers (12), since the latter neither detected the intermediate citrulline nor was putrescine observed on their chromatograms.

One puzzling aspect of this study is that the intermediate citrulline could never be found with P. testosteroni, although the experiment was repeated several times using both prolonged (5 h) and reduced (1.5 h) incubation periods. However, if it is assumed that P. testosteroni produces an arginase (arginine amidohydrolase EC 3.5.3.1) which hydrolyzes arginine into ornithine and urea directly rather than via citrulline, the absence of the intermediate citrulline may be explained in an acceptable manner.

This research was supported by a fellowship sponsored by Cusanuswerk Bischöfliche Studienförderung. Bonn-Bad-Godesberg, Germany.

LITERATURE CITED
1. Arx, E., and R. Neher. 1963. Eine multidimensionale Technik zur chromatographischen Identifizierung von Aminosäuren. J. Chromatogr. 12:329-341.
2. Block, J. R., E. L. Durrum, and G. Zweig. 1968. A manual of paper chromatography and paper electrophoresis.
3. Gilardi, G. L. 1969. Characterization of the oxidase-negative, gram-negative coccobacilli (the Chromobacter-Acinetobacter group). Antonie van Leeuwenhoek J. Microbiol. Serol. 32:421-429.
4. Goldschmidt, M. C., and B. M. Lockart. 1971. Rapid methods for determining decarboxylase activity: arginine decarboxylase. Appl. Microbiol. 22:350-357.
5. Haworth, C., and J. G. Heathcote. 1966. An improved technique for the analysis of amino acids and related compounds on thin layers of cellulose. J. Chromatogr. 41:380-385.
6. Heathcote, J. G., R. J. Washington, C. Haworth, and S. Bell. 1970. An improved technique for the analysis of amino acids and related compounds on thin layers of cellulose. J. Chromatogr. 51:267-276.
7. Lelliott, R. A., E. Billing, and A. C. Hayward. 1966. A determinative scheme for the fluorescent plant pathogenic pseudomonads. J. Appl. Bacteriol. 29:470-489.
8. Palleroni, N. J., and M. Doudoroff. 1972. Some properties and taxonomic subdivisions of the genus Pseudomonas. Annu. Rev. Phytopathol. 10:73-100.
9. Palleroni, N. J., M. Doudoroff, R. Y. Stanier, R. E., Solánes, and M. Mandel. 1970. Taxonomy of the aerobic pseudomonads: the properties of the Pseudomonas stutzeri group. J. Gen. Microbiol. 66:215-231.
10. Stanier, R. Y., J. N. Palleroni, and M. Doudoroff. 1966. The aerobic pseudomonads: a taxonomic study. J. Gen. Microbiol. 43:159-271.
11. Thornley, M. J. 1960. The differentiation of Pseudomonas from other gram-negative bacteria on the basis of arginine metabolism. J. Appl. Bacteriol. 23:37-52.
12. Williams, G. A., D. J. Blazevic, and G. M. Ederer. 1971. Detection of arginine dihydrolase in nonfermentative gram-negative bacteria by use of thin-layer chromatography. Appl. Microbiol. 22:1135-1137.
13. Wollenweber, P. 1962. Dünnssichicht-chromatographische Trennung von Aminosäuren an Celluloseschichten. J. Chromatogr. 9:369-371.