A NOTE ON KNOT FLOER HOMOLOGY OF SATELLITE KNOTS WITH
(1, 1)-PATTERNS

WEIZHE SHEN

ABSTRACT. We prove that if P is a $(1, 1)$-pattern knot, the two inequalities $\dim \widehat{HF}(P(K)) \geq \dim \widehat{HF}(P(U))$ and $\dim \widehat{HF}(P(K)) \geq \dim \widehat{HF}(K)$ hold for the unknot $U \subset S^3$ and any companion knot $K \subset S^3$.

1. INTRODUCTION

Knot Floer homology, introduced independently by Ozsváth-Szabó [OS04b] and J. Rasmussen [Ras03], is a powerful invariant of knots in the three-sphere. For example, it captures several geometric properties of knots such as genus [OS04a] and fiberedness [Ghi08; Ni07]. The theory has several different variants; in this note, we assume the reader is familiar with the hat version, which takes the form of a bi-graded finitely generated vector space over the field $\mathbb{F} := \mathbb{Z}/2\mathbb{Z}$:

$$\widehat{HF}(K) = \bigoplus_{m,a \in \mathbb{Z}} \widehat{HF}_m(K,a),$$

where K is a knot in S^3, m is the Maslov (or homological) grading, and a is the Alexander grading.

To three-manifolds with parameterized boundary, Lipshitz-Ozsváth-Thurston [LOT18] associated bordered Heegaard Floer invariants. Moreover, their pairing theorems are well-adapted to the study of the result of gluing two manifolds with torus boundary. Recall that given a (pattern) knot P embedded in a standard solid torus $S^1 \times D^2 =: V$ and a (companion) knot K in S^3, the satellite knot $P(K)$ is obtained from P by gluing V to the complement $X_K := S^3 - \nu(K)$ (where $\nu(K)$ is a tubular neighborhood of K) in such a way that the meridian of V is identified with the meridian of K, and the longitude of V is identified with the Seifert longitude of K. Therefore, satellite knots can be studied using bordered Heegaard Floer homology. Some early work in this approach includes [Lev12; Pet13; Hom14]. This note concerns satellite knot with $(1,1)$-patterns; a knot $P \subset S^1 \times D^2$ is called a $(1,1)$-pattern if it admits a genus-one doubly-pointed bordered Heegaard diagram.

For three-manifolds with a single toroidal boundary component, Hanselman-Rasmussen-Watson [HRW17; HRW18] interpreted the relevant bordered Heegaard Floer invariants geometrically as decorated immersed curves in the once-punctured torus. Later, a formula for the behavior of these immersed curves under cabling was given in Hanselman-Watson [HW19]. More recently, Chen [Che19] studied the computation of knot Floer chain complexes of satellite knots with $(1,1)$-patterns by using immersed curves.

Does a non-zero degree map give a rank inequality on Heegaard Floer homology? More specifically, Hanselman-Rasmussen-Watson [HRW17, Question 12] asked, if there is a degree-one map $Y_1 \to Y_2$ between closed, connected, orientable three-manifolds, is it the case that $\dim \widehat{H}(Y_1) \geq \dim \widehat{H}(Y_2)$? For integer homology spheres, Karakurt-Lidman [KL15, Conjecture 9.4] proposed that if there is a non-zero degree map $Y_1 \to Y_2$ between them, then $\rank \widehat{HF}_{red}(Y_1) \geq \rank \widehat{HF}_{red}(Y_2)$.
rank $\text{HF}_{\text{red}}(Y_2)$ and rank $\widehat{HF}(Y_1) \geq \text{rank } \widehat{HF}(Y_2)$. Karakurt-Lidman [KL15, Theorem 1.9] also studied maps between Seifert homology spheres. It is natural to ask similar questions about knot complements in S^3 and rank inequalities on knot Floer homology. Given a degree-one map $\varphi : X_K \to X_U$ that preserves peripheral structure1, the induced map $\tilde{\varphi} : X_{P(K)} \to X_{P(U)}$ is well-defined and further induces an epimorphism $\tilde{\varphi}_* : \pi_1(X_{P(K)}) \to \pi_1(X_{P(U)})$ that also preserves peripheral structure. This is a special case of [JM16, Question 1.9], in which Juhasz-Marengon asked, for knots K_1 and K_2 in S^3 such that there is an epimorphism $\pi_1(X_{K_1}) \to \pi_1(X_{K_2})$ preserving peripheral structure, is it true that $\text{dim } \widehat{HFK}(K_1) \geq \text{dim } \widehat{HFK}(K_2)$? We state the version corresponding to the special case $\pi_1(X_{P(K)}) \to \pi_1(X_{P(U)})$ in the following conjecture.

Conjecture 1.1. Given any pattern knot P in $S^1 \times D^2$ and any companion knot K in S^3, there is an inequality $\text{dim } \widehat{HFK}(P(K)) \geq \text{dim } \widehat{HFK}(P(U))$, where U denotes the unknot in S^3.

Another closely related conjecture is the following:

Conjecture 1.2. Given any pattern knot P in $S^1 \times D^2$ and any companion knot K in S^3, there is an inequality $\text{dim } \widehat{HFK}(P(K)) \geq \text{dim } \widehat{HFK}(K)$.

The purpose of this note is to prove Conjectures 1.1 and 1.2 when P is a $(1, 1)$-pattern, by using (geometrically interpreted) bordered Heegaard Floer invariants.

Theorem 1.3. For any $(1, 1)$-pattern knot $P \subset S^1 \times D^2$, the inequality

$$\text{dim } \widehat{HFK}(P(K)) \geq \text{dim } \widehat{HFK}(P(U))$$

holds for the unknot $U \subset S^3$ and any companion knot $K \subset S^3$.

Theorem 1.4. Given a $(1, 1)$-pattern knot $P \subset S^1 \times D^2$, the inequality

$$\text{dim } \widehat{HFK}(P(K)) \geq \text{dim } \widehat{HFK}(K)$$

holds for any companion knot $K \subset S^3$.

Two natural questions (which were originally pointed out by Tye Lidman) to ask are the following:

Question 1.5. Is it possible to characterize the conditions of equality and strict-inequality for the two inequalities (1) and (2), respectively?

Question 1.6. Does either of the above theorems have a refinement for Maslov gradings?

Although these two questions are not fully resolved here, we discuss them in detail in Section 4; in particular, we will also see that there is no refinement for Alexander gradings.

We conclude this section by briefly explaining two major parts in proving the above theorems. To begin with, the main result of [Che19] allows us to obtain the dimension of $\widehat{HFK}(P(K))$ by counting the minimum intersections of the curves $\beta(P)$ and $\alpha(K)$ in its corresponding pairing diagram (which is defined in Section 2):

Theorem 1.7 ([Che19], Theorem 1.2). Given a $(1, 1)$-pattern knot $P \subset S^1 \times D^2$ and a companion knot $K \subset S^3$, let $\widehat{HF}(X_K) \subset \partial X_K \setminus \{w\}$ be the immersed curves of the knot complement X_K, and let $(\beta, \mu, \lambda, w, z) \subset \partial(S^1 \times D^2)$ be a 5-tuple corresponding to a genus-one doubly-pointed bordered Heegaard diagram for P. Let $h : \partial X_K \to \partial(S^1 \times D^2)$ be an orientation preserving homeomorphism such that

1We refer the reader to [Boi+16, Proposition 1] for a proof of the existence of such a map.
(1) h identifies the meridian and Seifert longitude of K with μ and λ, respectively;
(2) $h(w') = w$;
(3) there is a regular neighborhood $U \subset \partial(S^1 \times D^2)$ of w such that $z \in U$, $U \cap (\lambda \cup \mu) = \emptyset$, and $U \cap h(\hat{HF}(X_K)) = \emptyset$.

Let $\alpha = h(\hat{HF}(X_K))$. Then there is a chain homotopy equivalence
$$\hat{CFK}(\alpha, \beta, w, z) \cong \hat{CFK}(S^3, P(K)).$$
Moreover, if α is connected, this chain homotopy equivalence preserves the Maslov grading and Alexander filtration.

Another essential part of the proof—applying a sequence of moves to curves without increasing intersection number—is inspired by the proof of [HRW17, Theorem 52]. Moreover, Theorem 1.4 is close to [HRW17, Theorem 11], which is a special case of [HRW17, Theorem 52].

Acknowledgements

I would like to thank my advisor Jennifer Hom for suggesting this problem, and I cannot thank her enough for her continued support, guidance, and patience. I am also grateful to Wenzhao Chen and Tye Lidman for constructive comments on an earlier draft and to Steven Sivek for informative email correspondence.

2. Preliminaries

In this section, we primarily recapitulate some conventions and results in [Che19; Gei09] and then set up several notations, in preparation for proving Theorems 1.3 and 1.4 in Section 3.

We begin with a more thorough discussion about Theorem 1.7. The 5-tuple in Theorem 1.7 is obtained from a genus-one doubly-pointed bordered Heegaard diagrams, $(\Sigma, \{\alpha^1, \alpha^2\}, \beta, w, z)$, of P. This is done by viewing β, w, and z as embedded in $\partial(S^1 \times D^2)$ and identifying the pair of arcs $\{\alpha^1, \alpha^2\}$ with the longitude-meridian pair of $\partial(S^1 \times D^2)$. See Figure 1 for an example of the Mazur pattern.

![Figure 1](image1.png)

Figure 1. The data contained in a genus-one doubly-pointed bordered Heegaard diagram (on the left) of the Mazur pattern can be equivalently understood as a 5-tuple (on the right). This convention comes from [Che19, Sections 1 and 5].

In practice, Theorem 1.7 shows that, after identifying the torus $\partial(S^1 \times D^2)$ with the quotient space $[0,1] \times [0,1]/\sim$ in the standard way and dividing the unit square evenly into four quadrants, we can fit $\alpha = \hat{HF}(X_K)$ into the first quadrant (i.e., $[1/2, 1] \times [1/2, 1]$), fit (β, w, z) into the third quadrant (i.e., $[0, 1/2] \times [0, 1/2]$), and extend them both horizontally and vertically to obtain a diagram that yields a chain complex isomorphic to $\hat{CFK}(P(K))$. We call such a diagram a *pairing diagram* for $P(K)$, and we denote by $\alpha(P)$ and $\beta(P)$ the curves obtained from α and β by extension, respectively. Figure 2 displays four examples, in which M denotes the Mazur pattern, and $T_{p,q}$ denotes the (p,q)-torus knot.
Figure 2. Examples of paring diagrams. The curves $\beta(P)$ and $\alpha(K)$ are drawn in blue and red, respectively.

The proof of Theorem 1.3 needs some caution, as we will be moving α-curves, which are immersed in general. The following lemma, which is widely known as the Whitney–Graustein theorem, allows us to get rid of self-intersections of immersed curves (after certain modifications, which will be explained in Section 3).

Lemma 2.1 ([Whi37], Theorem 1; see also [Gei09], Theorem 1). Regular homotopy classes of regular closed curves $\bar{\gamma} : S^1 \to \mathbb{R}^2$ are in one-to-one correspondence with the integers, the correspondence being given by $[\bar{\gamma}] \mapsto \text{rot}(\bar{\gamma})$, where $\text{rot}(\bar{\gamma})$ is the degree of the map $S^1 \to \mathbb{R}^2 \setminus \{0\}$, $s \mapsto \bar{\gamma}'(s)$.

The last thing we need to recall is how to obtain α-curves from immersed curves in a (punctured) infinite cylinder, and vice versa. Given immersed curves in $(\mathbb{R}/(\frac{1}{2} + \mathbb{Z})) \times \mathbb{R}$, we place a grid system consisting of two vertical columns of unit squares, with the middle vertices identified with the punctured points of the cylinder. Then we follow the curve and replicate its segment in a square every time we meet an edge of a grid square. In this way we build its corresponding α-curves. Likewise, if we start with a torus with α-curves, we can trace the curves and recover its immersed curves in an infinite cylinder, as illustrated in Figure 3.

3. Proof of Theorems

Proof of Theorem 1.3. Given a $(1, 1)$-pattern $P \subset S^1 \times D^2$ and a companion knot $K \subset S^3$, let $(T^2, \alpha(K), \beta(P), w, z)$ be a pairing diagram for $P(K)$, where $T^2 \cong S^1 \times S^1$. Lift the diagram to \mathbb{R}^2 by the covering map $\pi := p \times p : \mathbb{R}^2 \to T^2$, where $p : \mathbb{R} \to S^1$ is given by $x \mapsto (\cos(2\pi x), \sin(2\pi x))$. Let β_0 be a lift of $\pi^{-1}(\beta(P))$. By the construction of $\beta(P)$, the lift β_0 is connected. (See Figure 4 for an example of the Mazur pattern, where the lifts of extended α-curves are omitted.) Let α_0 be a lift of $\alpha(K)$. Notice that α_0 may not be connected, for the immersed curves α may consist of multiple components. (See Figure 5 for an example of the right-handed trefoil, where the lifts of extended β-curves are omitted.)

2By [Gei09], the integer $\text{rot}(\bar{\gamma})$ is called the rotation number of $\bar{\gamma}$, and it is a signed count of the number of complete turns of the velocity vector $\bar{\gamma}'$ as we traverse $\bar{\gamma}$ in a pre-fixed orientation.
Figure 3. The immersed curve for $-T_{2,3}$ in an infinite cylinder (left) and the α-curves for $-T_{2,3}$ in a torus (right), where the circled numbers can be used to follow the construction.

Figure 4. A choice of β_0 (highlighted in cyan) that corresponds to the Mazur pattern. (With a slight abuse of notation, we use the same symbols for the lifts of the two basepoints, respectively.)

By [HW19, page 3], any immersed multi-curve in an infinite cylinder has a unique component wrapping around the cylinder. Then the construction in the end of Section 2 implies that there is at least one horizontal line segment in the second quadrant of $(T^2, \alpha(K), \beta(P), w, z)$. Thus, the lift α_0 contains horizontal line segments.

Ignore any closed component that α_0 may contain. Then α_0 becomes a connected piece going to the left- and right- infinity on \mathbb{R}^2. (Note that we may lose some data by doing so; nevertheless, we shall see by the end of the proof that inequality (1) still holds.) Without loss of generality, give α_0 an overall rightward orientation. Then there exist rightward oriented horizontal line segments in α_0; indeed, otherwise, α_0 would not extend to the right-infinity. Denote by μ_1 the
first such segment that intersects β_0. Without loss of generality, suppose that $\mu_1 \subset [0, \frac{1}{2}] \times [\frac{1}{2}, 1]$. Consider the set $\mathcal{M} := \pi^{-1}(\pi(\mu_1)) \cap ([1, \infty) \times [0, 1])$, which consists of all lifts of $\pi(\mu_1)$ that lie in $[1, \infty) \times [0, 1]$. For each element in \mathcal{M}, denote it by μ_j if it lies in $[j-1, j] \times [0, 1]$. Let $k := \max\{ j \mid \mu_j \cap \beta_0 \neq \emptyset \}$, and let α_0^* denote the connected portion of α_0 between μ_1 and μ_{k+1}, with μ_1 included and μ_{k+1} excluded. (See Figure 6 for an illustration, where the segments μ_j’s are highlighted in green.)
Notice that α_0 is periodic, exhibiting horizontal translational symmetry, so α_0^\ast is periodic as well. Moreover, α_0^\ast consists of k periods, with the j-th period of α_0^\ast starting from μ_j and terminates at the left endpoint of μ_{j+1}, $j = 1, 2, \cdots, k$, if we traverse α_0^\ast from left to right.

As we mentioned in Section 2, the curve α_0^\ast may contain self-intersections; we claim that all of them can be resolved by regular homotopies (which are allowed to cross any lift of basepoints). Indeed, we can complete α_0^\ast into an immersed closed curve by attaching the top endpoint of a left semi-circle of radius R to the left endpoint of μ_1, attaching the top endpoint of a right semi-circle of radius R to the left endpoint of μ_{k+1}, and then connect the two bottom endpoints of these two semi-circles by a line segment, where R is sufficiently large so that the newly-added three segments do not intersect α_0^\ast. By the 180° symmetry of immersed curves for knot complements (up to regular homotopy), the turning number induced from each self-intersection will be canceled by that of its symmetric counterpart, so overall, the rotation number of the closed curve we just created is ± 1, depending on the orientation of it. By Lemma 2.1, this rotation number is preserved under regular homotopies, so this closed curve is in the class of circles. Therefore, we can resolve all possible self-intersections of α_0^\ast.

For each $j \in \{1, 2, \cdots, k\}$, consider (the closure of) the complement of μ_j in the j-th period of α_0^\ast. Allowing passing lifts of basepoints, regularly homotope this complement with its two endpoints fixed until the curve is within $[j - \frac{1}{2}, j] \times [\frac{1}{2}, 1]$. By the claim above, we may assume all self-intersections have been resolved, so we can further regularly homotope α_0^\ast until it becomes a horizontal line segment in $[0, k] \times [\frac{1}{2}, 1]$. We call the resulting curve α_0^\ast.

Since $\alpha(U)$ is a horizontal line segment, the a_0-curve that corresponds to the unknot U, denoted by $\alpha_0(U)$, is a horizontal line in $\mathbb{R} \times [\frac{1}{2}, 1]$. Moreover, $\alpha_0(U)$ first intersects β_0 in the square $[0, 1] \times [0, 1]$ and lastly in $[k - 1, k] \times [0, 1]$, by the definitions of μ_1 and k. Therefore, to get the dimension of $HF^{\ast}(P(U))$, it suffices to consider β_0 and the portion of $\alpha_0(U)$ lying in $[0, k] \times [\frac{1}{2}, 1]$. We denote this portion by $\alpha_0'(U)$, which is exactly the α_0^\ast-curve that corresponds to U, and moreover, it can be identified with α_0^\ast.

Consider the set $\alpha_0^\ast \cap \beta_0$ of intersection points. For each pair $x, y \in \alpha_0^\ast \cap \beta_0$ that form the two vertices of a trivial bigon (i.e., a bigon that has no basepoint inside) between α_0^\ast and β_0, we denote the bigon by $B_{x,y}$ and take a sufficiently small open neighborhood $U_{x,y} \supset B_{x,y}$ such that (1) no basepoint is inside, and (2) after we regularly homotope β_0 inside $U_{x,y}$ to eliminate the trivial bigon, no new intersection point is generated. Condition (2) can be achieved since we are considering finitely many segments in \mathbb{R}^2. If multiple bigons are nested, then we start with the innermost one, and in this order, condition (2) can still be achieved. By the definition of $U_{x,y}$, each move of β_0 does not cross basepoints. Therefore, after all such trivial bigons are eliminated, we obtain a minimal intersection diagram between α_0^\ast and β_0, and the final intersection number equals $\dim HF^{\ast}(P(U))$.

Observe the following: 1) the sequence of moves described above eliminate all trivial bigons generated by α_0^\ast and β_0 and does not increase the number of intersections with β_0, 2) the number of intersections between α_0^\ast and β_0 is at most the number of intersections between the original α_0 and β_0, and 3) the minimum intersection number (obtained by eliminating trivial bigons via regular homotopies without passing basepoints) between the original α_0 and β_0 gives $\dim HF^{\ast}(P(K))$. These observations together with the result in the above paragraph imply that $\dim HF^{\ast}(P(K)) \geq \dim HF^{\ast}(P(U))$. \hfill \Box

Remark 3.1. In the proof above, we applied regular homotopies in the covering space \mathbb{R}^2 of T^2. Recall that the covering map π is defined as $p \times p$, where $p : \mathbb{R} \to S^1$ is given by
\(x \mapsto (\cos(2\pi x), \sin(2\pi x)) \). Composing those regular homotopies with \(\pi \), we shall get regular homotopies in the base space \(T^2 \).

Proof of Theorem 1.4. Here we continue with the curves \(\alpha_0 \) and \(\beta_0 \) that were set up in the first paragraph of the proof of Theorem 1.3.

Recall that the 5-tuple \((\beta, \mu, \lambda, w, z) \subset \partial(S^1 \times D^2)\) is constructed from a genus-one doubly-pointed bordered Heegaard diagram, say \((\Sigma, \{\alpha_1^a, \alpha_2^a\}, \beta, w, z)\), for \((S^1 \times D^2, P)\). Forgetting the \(z \)-basepoint, we obtain a genus-one bordered Heegaard diagram for the solid torus \(S^1 \times D^2 \) with the standard parametrization of \(\partial(S^1 \times D^2) \). Therefore, up to isotopy (not passing the \(w \)-basepoint), the diagram \((\Sigma, \{\alpha_1^a, \alpha_2^a\}, \beta, w)\) is the one in Figure 7.

![Figure 7. The genus-one bordered Heegaard diagram of \(S^1 \times D^2 \), up to isotopy.](image)

It then follows from the construction of the \(\beta_0 \)-curve that, if we forget the basepoint \(z \), we can isotope \(\beta_0 \) without passing any lift of the basepoint \(w \) until it becomes a vertical straight line; we denote the line by \(\beta'_0 \). See Figure 8 for an illustration.

![Figure 8. The \(\alpha_0 \)-, \(\beta_0 \)-, and \(\beta'_0 \)-curves for \(M(T_{2,3}) \).](image)

Since \(\beta(U) \) is a vertical line segment, the \(\beta_0 \) curve that corresponds to the unknot pattern, denoted by \(\beta_0(U) \), is a vertical line, which can be identified with \(\beta'_0 \). Since the number of intersections between \(\beta_0(U) \) and \(\alpha_0 \) gives \(\dim \widehat{HFK}(U(K)) \), the number of intersections between \(\beta'_0 \) and \(\alpha_0 \) equals \(\dim \widehat{HFK}(K) \).

Now we compare the pair of curves \((\alpha_0, \beta'_0)\) with the original \((\alpha_0, \beta_0)\). Observe the following: 1) the isotopies described above eliminate all trivial bigons generated by \(\beta_0 \) and \(\alpha_0 \) and does not
increase the number of intersections with \(\alpha_0 \), and 2) the minimum intersection number (obtained by eliminating trivial bigons via isotopies without passing basepoints) between \(\beta_0 \) and \(\alpha_0 \) gives \(\dim \widehat{HFK}(P(K)) \). These observations together with the result in the above paragraph imply that \(\dim \widehat{HFK}(P(K)) \geq \dim \widehat{HFK}(K) \).

\[\square \]

4. Further Remarks

In this section we make several remarks, which were suggested by Jennifer Hom and Tye Lidman, further discussing the two inequalities we have proved.

We begin with an easy observation. A major property of knot Floer homology is that it categorifies the Alexander polynomial \(\Delta_K(t) \) of knots \(K \subset S^3 \) [OS04b]:

\[\Delta_K(t) = \sum_{a \in \mathbb{Z}} \left[\sum_{m \in \mathbb{Z}} (-1)^m \dim \widehat{HFK}_m(K, a) \right] t^a. \]

Also, there is a symmetry [OS04b, Proposition 3.10]:

\[\widehat{HFK}_m(K, a) \cong \widehat{HFK}_{m-2a}(K, -a). \]

Since one of the characterizing conditions for Alexander polynomials is that \(\Delta_K(1) = 1 \), it follows that the parity of \(\dim \widehat{HFK}(K) \) is odd.

Remark 4.1. Ozsváth-Szabó [OS04a] proved that if \(\dim \widehat{HFK}(K) = 1 \) then \(K \) is the unknot; Hedden-Watson [HW18, Corollary 8] showed that if \(\dim \widehat{HFK}(K) = 3 \) then \(K \) is a (left- or right-handed) trefoil (see also [Ghi08, Corollary 1.5]). From these two knot-detecting results, the example depicted in Figure 9 (which shows that there exists a \((1,1)\)-satellite \(K \) with \(\dim \widehat{HFK}(K) = 5 \)), and the above parity result we deduce that, if \(\dim \widehat{HFK}(K) < 5 \) then \(K \) is not a \((1,1)\)-satellite.

Next, we discuss some special cases when we have a strict inequality:

Remark 4.2. In the proof of Theorem 1.3, we mentioned that any immersed multi-curve in an infinite cylinder has a unique component wrapping around the cylinder. When the set of immersed curves corresponds to a knot complement, this component is an invariant of the knot, and furthermore, an invariant of the concordance class of the knot [HW19, Proposition 2]. It follows that all slice knots have a trivial such component as the unknot does; in terms of the notations we used in the proof above, with all closed components removed, \(\alpha_0 \) is a straight horizontal line. Moreover, for non-trivial slice knots, there are some additional closed components. Therefore, for non-trivial slice companion knot \(K \), inequality (2) in Theorem 1.4 is strict:

\[\dim \widehat{HFK}(P(K)) > \dim \widehat{HFK}(K). \]

In addition to that case, Petkova [Pet13, Lemma 7] showed that the complex \(CFK^{-}(K) \) for Floer homologically thin knots \(K \) splits into exactly one staircase summand and possibly multiple square summands. Geometrically, a square summand is represented by a closed component in \(\alpha_0 \), so for Floer homologically thin knots \(K \) containing a square summand in \(CFK^{-}(K) \), the above strict inequality holds as well.

Our last remark is related to gradings:
Remark 4.3. In the proof of Theorem 1.4, we managed to isotope the curve β_0 in a desired way, passing only the z-lifts. Then by Theorem 1.7, if α is connected, and if we only consider Maslov gradings, what we have proved is also true. That is, if α is connected, the inequality

$$\sum_{a \in \mathbb{Z}} \dim \widehat{HF}K_m(P(K), a) \geq \sum_{a \in \mathbb{Z}} \dim \widehat{HF}K_m(K, a)$$

holds for any Maslov grading $m \in \mathbb{Z}$.

On the other hand, the regular homotopies in the proof of Theorem 1.3 cannot achieve that property in general; for example, Figure 6 shows that we cannot tighten the curve α_0 corresponding to $T_{2,3}$ to a horizontal line without passing any w-lift.

If we just consider Alexander gradings, we will not arrive at rank inequalities that work for all $(1,1)$-satellite. Indeed, considering the example depicted in Figure 9 (see also [JM16, Example 1.8]), we can make the following observations:

a	$\sum_{m \in \mathbb{Z}} \dim \widehat{HF}K_m(T_{2,3}, a)$	$\sum_{m \in \mathbb{Z}} \dim \widehat{HF}K_m((T_{2,3})^2, a)$	Observations
-2	0	1	0 < 1
-1	1	0	1 > 0
0	1	1	1 = 1

The last column in the above table shows that Theorems 1.3 and 1.4 do not have refinements for Alexander gradings.

![Figure 9](image-url)
Figure 9. Knot Floer homologies of $T_{2,3}$ and $(T_{2,3})^2$, plotted on the (a,m)-axis, respectively.

REFERENCES

[Boi+16] Michel Boileau et al. “One-domination of knots”. In: Illinois Journal of Mathematics 60.1 (2016), pp. 117–139.

[Che19] Wenzhao Chen. Knot Floer homology of satellite knots with (1,1)-patterns. 2019. arXiv: 1912.07914 [math.GT].

[Gei09] Hansjörg Geiges. “A contact geometric proof of the Whitney-Graustein theorem”. In: L’Enseignement Mathématique 55.1 (2009), pp. 93–102.

[Ghi08] Paolo Ghiggini. “Knot Floer homology detects genus-one fibred knots”. In: American journal of mathematics 130.5 (2008), pp. 1151–1169.
REFERENCES

[Hom14] Jennifer Hom. “Bordered Heegaard Floer homology and the tau-invariant of cable knots”. In: Journal of Topology 7.2 (2014), pp. 287–326.

[HRW17] Jonathan Hanselman, Jacob Rasmussen, and Liam Watson. Bordered Floer homology for manifolds with torus boundary via immersed curves. 2017. arXiv: 1604.03466 [math.GT].

[HRW18] Jonathan Hanselman, Jacob Rasmussen, and Liam Watson. Heegaard Floer homology for manifolds with torus boundary: properties and examples. 2018. arXiv: 1810.10355 [math.GT].

[HW18] Matthew Hedden and Liam Watson. “On the geography and botany of knot Floer homology”. In: Selecta Mathematica 24.2 (2018), pp. 997–1037.

[HW19] Jonathan Hanselman and Liam Watson. Cabling in terms of immersed curves. 2019. arXiv: 1908.04397 [math.GT].

[JM16] András Juhász and Marco Marengon. “Concordance maps in knot Floer homology”. In: Geometry & Topology 20.6 (2016), pp. 3623–3673.

[KL15] Çağrı Karakurt and Tye Lidman. “Rank inequalities for the Heegaard Floer homology of Seifert homology spheres”. In: Transactions of the American Mathematical Society 367.10 (2015), pp. 7291–7322.

[Lev12] Adam Simon Levine. “Knot doubling operators and bordered Heegaard Floer homology”. In: Journal of Topology 5.3 (2012), pp. 651–712.

[LOT18] Robert Lipshitz, Peter Ozsváth, and Dylan Thurston. Bordered Heegaard Floer homology. Vol. 254. 1216. American Mathematical Society, 2018.

[Ni07] Yi Ni. “Knot Floer homology detects fibred knots”. In: Inventiones mathematicae 170.3 (2007), pp. 577–608.

[OS04a] Peter Ozsváth and Zoltán Szabó. “Holomorphic disks and genus bounds”. In: Geometry & Topology 8.1 (2004), pp. 311–334.

[OS04b] Peter Ozsváth and Zoltán Szabó. “Holomorphic disks and knot invariants”. In: Advances in Mathematics 186.1 (2004), pp. 58–116.

[Pet13] Ina Petkova. “Cables of thin knots and bordered Heegaard Floer homology”. In: Quantum Topology 4.4 (2013), pp. 377–409.

[Ras03] Jacob Andrew Rasmussen. Floer homology and knot complements. Harvard University, 2003.

[Whi37] Hassler Whitney. “On regular closed curves in the plane”. In: Compositio Mathematica 4 (1937), pp. 276–284.

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332

Email address: wshen41@gatech.edu