The Second Hankel Determinant of Logarithmic Coefficients for Starlike and Convex Functions Involving Four-Leaf-Shaped Domain

Azzh Saad Alshehry, 1 Rasool Shah, 2 and Abdul Bariq 3

1Department of Mathematical Sciences, Faculty of Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
2Department of Mathematics, Abdul Wali Khan University Mardan, Pakistan
3Department of Mathematics, Laghman University, Mehtarlam, Laghman, Afghanistan

Correspondence should be addressed to Rasool Shah; rasoolshah1988@gmail.com and Abdul Bariq; abdulbariq.maths@lu.edu.af

Received 10 August 2022; Accepted 2 September 2022; Published 2 September 2022

Academic Editor: Sarfraz Nawaz Malik

Copyright © 2022 Azzh Saad Alshehry et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this particular research article, we take an analytic function \(Q_{4L} = 1 + 5/6z + 1/6z^5 \), which makes a four-leaf-shaped image domain. Using this specific function, two subclasses, \(S_{4L}^* \) and \(C_{4L} \), of starlike and convex functions will be defined. For these classes, our aim is to find some sharp bounds of inequalities that consist of logarithmic coefficients. Among the inequalities to be studied here are Zalcman inequalities, the Fekete-Szegö inequality, and the second-order Hankel determinant.

1. Introduction and Definitions

To properly comprehend the findings provided in the paper, certain important literature on geometric function theory must first be discussed. In this regard, the letters \(S \) and \(A \) stand for the normalized univalent (or schlicht) functions class and the normalized holomorphic (or analytic) functions class, respectively. These primary notions are defined in the disc \(U_d = \{ z \in \mathbb{C} : |z| < 1 \} \) by

\[\mathcal{A} = \left\{ F \in \mathcal{S}(U_d): F(z) = \sum_{l=1}^{\infty} b_l z^l \right\}, \quad (1) \]

where \(\mathcal{S}(U_d) \) expresses holomorphic functions class, and

\[\mathcal{S} = \{ F \in \mathcal{A}: F \text{ is Schlicht in } U_d \}. \quad (2) \]

This class \(\mathcal{S} \) evolved as the foundational component of cutting-edge research in this area. In his paper [1], Koebe established the presence of a “covering constant” \(\zeta \), demonstrating that if \(F \) is holomorphic and Schlicht in \(U_d \) with \(F'(0) = 1 \) and \(F(0) = 0 \), then \(F(U_d) = \{ w : |w| < \zeta \} \). Many mathematicians were intrigued by this beautiful result. Within a few years, the wonderful article by Bieberbach [2], which gave rise to the renowned coefficient hypothesis, was published.

The below expression provided the coefficients \(\lambda_n \) of logarithmic function \(J_F(z) \) for \(F \in \mathcal{S} \)

\[J_F(z) = \frac{1}{2} \log \left(\frac{F(z)}{z} \right) = \lambda_1 z + \lambda_2 z^2 + \lambda_3 z^3 + \cdots \forall z \in U_d. \quad (3) \]

The above coefficients have a considerable impact on the theory of Schlicht functions in many estimations. De Branges [3] achieved that \(n \geq 1 \) in 1985,

\[\sum_{l=1}^{n} l(n-l+1)|\lambda_n|^2 \leq \sum_{l=1}^{n} \frac{n-l+1}{l}, \quad (4) \]
and equality will be achieved if \(F \) has the form \(z/(1 - e^{\varphi}z)^2 \) for some \(\varphi \in \mathbb{R} \). It is obvious that this inequality provides the most general version of the well-known Bieberbach-Robertson-Milin conjectures concerning the Taylor coefficients of \(F \in \mathcal{S} \). We quote [4–6] for further information on the demonstration of de Branges’ conclusion. By taking into account, the logarithmic coefficients, in 2005, Kayumov [7] established Brennan’s conjecture for conformal mappings. The major contributions to study the bounds of logarithmic coefficients for various holomorphic univalent functions are due to Alimohammadi et al. [8], Obradović et al. [9], Ye [10], Deng [11], Girela [12], Roth [13], and Andreev and Duren [14].

For the prescribed functions \(Q_1, Q_2 \in \mathcal{S} \), the relation of subordination between \(Q_1 \) and \(Q_2 \) is as follows (mathematically as \(Q_1 < Q_2 \)), if an holomorphic function \(u \) comes in \(U_d \) with the limitation \(|u(z)| < 1 \) and \(u(0) = 0 \) in a manner that \(Q_j(z) = Q_j(u(z)) \) satisfy. Consequently, the following relation applies if \(Q_2 \in \mathcal{S} \) in \(U_d \):

\[
Q_1(z) < Q_2(z), \quad (z \in U_d)
\]

if and only if

\[
Q_1(0) = Q_2(0) \& Q_1(U_d) \subset Q_2(U_d).
\]

By applying the notion of subordination, Ma and Minda [15] proposed a consolidated version of the set \(\mathcal{S}^*(\psi) \) in 1992, and the following is a description of it:

\[
\mathcal{S}^*(\psi) = \left\{ g \in \mathcal{S} : \frac{zg'(z)}{g(z)} < \psi(z) \text{ for } z \in U_d \right\},
\]

with the Schlicht function \(\psi \) that satisfies

\[
\psi'(0) > 0 \& \Re \psi > 0.
\]

Various subclasses of the set \(\mathcal{S} \) have been examined in the past few years as particular choices for family \(\mathcal{S}^*(\psi) \). For instance,

(i) \(\mathcal{S}^*_c \equiv \mathcal{S}^*(\cos z) \) (see [16]) and \(\mathcal{S}^*_\text{cosh} \equiv \mathcal{S}^*(\cosh z) \) (see [17])

(ii) \(\mathcal{S}^*_\text{tanh} \equiv \mathcal{S}^*(1 + \tanh z) \) (see [18, 19])

(iii) \(\mathcal{S}^*_\varphi \equiv \mathcal{S}^*(\varphi^\varphi) \) (see [20, 21]) and \(\mathcal{S}^*_\rho \equiv \mathcal{S}^*(1 + \sinh^{-1} z) \) (see [22])

(iv) \(\mathcal{S}^*(\xi) \equiv \mathcal{S}^*(\psi(z)) \) with \(\psi(z) = (1 + z^1 - z)^\xi \) and \(0 < \xi \leq 1 \) (see [23])

(v) \(\mathcal{S}^*_\varphi \equiv \mathcal{S}^*(\sqrt{1 + z}) \) (see [24]) and \(\mathcal{S}^*_\text{cosh} \equiv \mathcal{S}^*(1 + 4/3z + 2/3 z^{-2}) \) (see [25, 26])

For given \(q, n \in \mathbb{N} = \{1, 2, \cdots\} \), \(b_1 = 1 \), and \(F \in \mathcal{S} \) with the series representation (1), the Hankel determinant \(H_{qn}(F) \) is expressed by

\[
H_{qn}(F) = \begin{vmatrix}
 b_n & b_{n+1} & \cdots & b_{n+q-1} \\
 b_{n+1} & b_{n+2} & \cdots & b_{n+q} \\
 \vdots & \vdots & \ddots & \vdots \\
 b_{n+q-1} & b_{n+q} & \cdots & b_{n+2q-2}
\end{vmatrix},
\]

and it was established by Pommerenke and Pommerenke [27, 28]. For several subcollections of Schlicht functions, the determinant \(H_{qn}(F) \) has been examined. In specific, the sharp estimate of the functional \(|H_{2,2}(F)| = |b_1b_4 - b_2^2| \) for sets \(\mathcal{C}(\text{convex functions}) \), \(\mathcal{S}^* \) (starlike functions), and \(\mathcal{K} \) (bounded turning functions) were determined in [29, 30]. However, for the class of close-to-convex functions, the exact bounds of this determinant remain open [31]. The researchers were inspired by the works of Babalola [32], Bansal, et al. [33], Zaprawa [34], Kwon et al. [35], Kowalczyk et al. [36], and Lecko et al. [37].

It is easy to deduce from equation (2) that, for \(F \in \mathcal{S} \), the logarithmic coefficients are computed by

\[
\lambda_1 = \frac{1}{2} b_2,
\]

\[
\lambda_2 = \frac{1}{2} \left(b_3 - \frac{1}{2} b_2^2 \right),
\]

\[
\lambda_3 = \frac{1}{2} \left(b_4 - b_2 b_3 + \frac{1}{3} b_2^3 \right),
\]

\[
\lambda_4 = \frac{1}{2} \left(b_5 - b_2 b_3 + b_2 b_4 - \frac{1}{2} b_3^2 - \frac{1}{4} b_2^4 \right).
\]

Currently, Lecko and Kowalczyk and Kowalczyk and Lecko [38, 39] studied the following Hankel determinant \(H_{qn}(I_{\varphi}/2) \) of logarithmic coefficients

\[
H_{qn}(I_{\varphi}/2) = \begin{vmatrix}
 \lambda_n & \lambda_{n+1} & \cdots & \lambda_{n+q-1} \\
 \lambda_{n+1} & \lambda_{n+2} & \cdots & \lambda_{n+q} \\
 \vdots & \vdots & \ddots & \vdots \\
 \lambda_{n+q-1} & \lambda_{n+q} & \cdots & \lambda_{n+2q-2}
\end{vmatrix}.
\]

It has been noted that

\[
H_{2,1} \left(\frac{I_{\varphi}}{2} \right) = \lambda_1 \lambda_3 - \lambda_2^2,
\]

\[
H_{2,2} \left(\frac{I_{\varphi}}{2} \right) = \lambda_1 \lambda_4 - \lambda_3^2.
\]

By the virtue of the function \(Q_{4,\varphi} = 1 + 5/6z + 1/6z^5 \), we define the following classes:

\[
\mathcal{D}_{4,\varphi} = \left\{ F \in \mathcal{S} : \frac{z F'(z)}{F(z)} < Q_{4,\varphi}, \quad (z \in U_d) \right\},
\]
\[\mathcal{C}_{4\mathcal{L}} = \left\{ F \in \mathcal{S} : 1 + \frac{z F'(z)}{F(z)} < Q_{4\mathcal{L}}, \ (z \in \mathbb{U}_d) \right\}. \] (17)

Alternatively, \(F \in \mathcal{S}_{4\mathcal{L}}^* \) if and only if an analytic function \(q \) occurs that satisfies \(q(z) < Q_{4\mathcal{L}} \) in such that
\[F(z) = z \exp \left(\int_0^z \frac{q(t) - 1}{t} \, dt \right). \] (18)

By taking \(q(z) = Q_{4\mathcal{L}} \) in (18), we achieve the following function, which serves as an extremal in many of the class \(\mathcal{S}_{4\mathcal{L}}^* \) problems.
\[F_0(z) = z \exp \left(\int_0^z \left(\frac{5}{6} + \frac{1}{6} t^4 \right) \, dt \right) = z + \frac{5}{6} z^2 + \cdots. \] (19)

The following Alexander-type connection-related two classes were mentioned above. The above two families are interlinked by the following Alexander-type relation
\[F \in \mathcal{C}_{4\mathcal{L}} \Leftrightarrow z F' \in \mathcal{S}_{4\mathcal{L}}^*. \] (20)

From (19) and (20), we easily obtain the following extremal functions in various problems of the class \(\mathcal{C}_{4\mathcal{L}}^* \)
\[g_0(z) = z + \frac{5}{12} z^2 + \cdots. \] (21)

Clearly, \(g_0(z), g_0(z^2), g_0(z^3), \) and \(g_0(z^4) \) belong to the class \(\mathcal{C}_{4\mathcal{L}}^* \). That is,
\[g_1(z) = g_0(z) = z + \frac{5}{12} z^2 + \cdots, \]
\[g_2(z) = g_0(z^2) = z + \frac{5}{36} z^3 + \cdots, \]
\[g_3(z) = g_0(z^3) = z + \frac{5}{72} z^4 + \cdots, \] (22)
\[g_4(z) = g_0(z^4) = z + \frac{5}{120} z^5 + \cdots. \]

In the present paper, our core objective is to find the sharp coefficient type problems of logarithmic functions for the families \(\mathcal{S}_{4\mathcal{L}}^* \) and \(\mathcal{C}_{4\mathcal{L}}^* \). Among the inequalities to be studied here are Zalcman inequalities, the Fekete-Szegö inequality, and the second-order Hankel determinant \(H_{2,1}(J; \mathcal{L}/2) \).

2. A Set of Lemmas

We must first create the class \(\mathcal{P} \) in the below set-builder form in order to declare the Lemmas that are employed in our primary findings.
\[\mathcal{P} = \left\{ q \in \mathcal{S}(\mathbb{U}_d) : q(0) = 1 \text{ and } \Re q > 0, \ (z \in \mathbb{U}_d) \right\}. \] (23)

That is, if \(q \in \mathcal{P} \), then \(q \) has the below series expansion
\[q(z) = \sum_{n=0}^{\infty} e_n z^n, \ (z \in \mathbb{U}_d). \] (24)

The following Lemma consists of the widely used \(e_z \) formula [40], the \(e_3 \) formula [41], and the \(e_4 \) formula illustrated in [42].

Lemma 1. Let \(q \in \mathcal{P} \) be given in the form (24), then for \(\rho, \delta \in \mathbb{U}_d = \mathbb{U}_d \cup \{1\} \).

Lemma 2. Let \(q \in \mathcal{P} \) be of the form (24), then for \(x, \delta, \rho \in \mathbb{U}_d = \mathbb{U}_d \cup \{1\} \)
\[2e_2 = e_1^2 - (e_1^2 - 4) x, \] (25)
\[4e_3 = e_1^2 - 2 (e_1^2 - 4) e_2 x + e_1 (e_1^2 - 4) x^2 - 2 (e_1^2 - 4) (1 - |x|^2) \rho, \] (26)
\[8e_4 = e_1^2 - (e_1^2 - 4) x [e_1^2 (x^2 - 3x + 3) + 4x] \]
\[+ 4 (e_1^2 - 4) (1 - |x|^2) [e(x - 1) \rho + \bar{x} \rho^2 - (1 - |\rho|^2) \delta]. \] (27)

Lemma 3. Let \(q \in \mathcal{P} \) and has the expansion (24). Then,
\[|e_{n+1} - \mu e_n| \leq 2 \max \left\{ 1, 2|\mu - 1|, \right\} \] (28)
\[|e_n| \leq 2 \text{ for } n \geq 1, \] (29)
\[|e_{n+1} - \mu e_n| \leq 2, \ 0 \leq \mu \leq 1. \] (30)

The inequalities (28)–(30) are taken from [40, 43] and [26, 44, 45], respectively.

Lemma 4 (see [40]). If \(q \in \mathcal{P} \) has the representation (24), then
\[\frac{1}{2} \left| J e^2_1 - K e_1 e_2 + L e_3 \right| \leq (|J| + |K - 2J| + |K - J + L|). \] (31)

Lemma 5 [46]. Let \(\gamma, \tau, \psi \) and \(\zeta \) satisfy that \(\tau, \zeta \in (0, 1) \) and
\[8(1 - \zeta) \zeta \left((\tau (\zeta + \tau) - \psi)^2 + (\tau \psi - 2 \gamma)^2 \right) \]
\[+ \tau (\psi - 2 \zeta \tau)^2 (1 - \tau) \leq 4 \tau^2 (1 - \zeta) (1 - \tau)^2. \] (32)

If \(q \in \mathcal{P} \) has the expansion (24), then
\[\left| \gamma e_1^4 + \zeta e_2^2 + 2 \tau e_1 e_3 - 3 \frac{\psi}{2} \gamma e_2 e_3 - e_4 \right| \leq 2. \] (33)

3. Coefficient Inequalities for the Class \(\mathcal{S}_{4\mathcal{L}}^* \)

We start by establishing out the class \(\mathcal{S}_{4\mathcal{L}}^* \)’s initial coefficient bounds.
Theorem 6. Let \(F \) be the series form (1) and if \(F \in \mathcal{S}_{4\beta}^* \), then

\[
\begin{align*}
|\lambda_1| &\leq \frac{5}{12}, \\
|\lambda_2| &\leq \frac{5}{24}, \\
|\lambda_3| &\leq \frac{5}{36}, \\
|\lambda_4| &\leq \frac{5}{48}.
\end{align*}
\]

(34)

These bounds are sharp.

Proof. Let \(F \in \mathcal{S}_{4\beta}^* \). Then, Schwarz function \(u \) may therefore be used to express (16) as

\[
\frac{zF'(z)}{F(z)} = 1 + \frac{5}{6}u(z) + \frac{1}{6}(u(z))^5 = a(z). \tag{35}
\]

From the use of Schwarz function \(u \) and if \(q \in \mathcal{P} \), we have

\[
q(z) = \frac{1 + (u(z))}{1 - (u(z))} = 1 + e_1z + e_2z^2 + \ldots, \tag{36}
\]

and by simple computation, we get

\[
\begin{align*}
u(z) &= \left(\frac{1}{2} e_1 + \left(\frac{1}{2} e_2 - \frac{1}{4} e_1 \right) \right)z^2 + \left(\frac{1}{8} e_1 + \left(\frac{1}{2} e_1 e_2 + \frac{1}{2} e_2 \right) \right)z^3 \\
&\quad + \left(\frac{1}{2} e_4 - \frac{1}{2} e_1 e_3 - \frac{1}{4} e_2^2 - \frac{1}{16} e_1^2 + \frac{3}{8} e_1^2 e_2 \right) z^4 + \ldots.
\end{align*}
\]

(37)

Using (1), we attain

\[
\frac{zF'(z)}{F(z)} = 1 + \left(b_1 z + \left(-b_2^2 + 2b_3 \right) z^2 + \left(-3b_2 b_3 + 3b_4 + b_5^2 \right) z^3 \\
+ \left(-2b_3^2 + 4b_5 - 4b_2 b_4 + 4b_2^2 b_3 - b_5^2 \right) z^4 + \ldots \right)
\]

(38)

By some calculation and using the series expansion of (37), we get

\[
\begin{align*}
a(z) &= 1 + \left(\frac{5}{12} e_1 \right) z + \left(\frac{5}{12} e_2 - \frac{5}{24} e_1 \right) z^2 \\
&\quad + \left(\frac{5}{48} e_1^2 - \frac{5}{12} e_1 e_2 + \frac{15}{24} e_2 \right) z^3 \\
&\quad + \left(\frac{5}{12} e_4 - \frac{5}{96} e_1 e_3 - \frac{5}{16} e_2 e_2 - \frac{5}{12} e_1 e_3 - \frac{5}{24} e_3 \right) z^4 + \ldots.
\end{align*}
\]

(39)

Now, by comparing (38) and (39), we get

\[
b_1 = \frac{5}{12} e_1, \tag{40}
\]

\[
b_2 = \frac{5}{24} e_2, \tag{41}
\]

\[
b_3 = \frac{5}{36} e_3 + \frac{35}{10368} e_1 e_4 - \frac{5}{96} e_5 e_2, \tag{42}
\]

\[
b_4 = \frac{5}{48} e_4 - \frac{455}{497664} e_1^2 e_2 + \frac{115}{6912} e_1^2 e_2 - \frac{35}{1152} e_1^2 - \frac{5}{108} e_1 e_3. \tag{43}
\]

Utilizing (40) and (10), (11), (12), and (13), we have

\[
\begin{align*}
\lambda_1 &= \frac{5}{24} e_1, \tag{44}
\lambda_2 &= \frac{5}{48} e_2 - \frac{5}{96} e_1, \tag{45}
\lambda_3 &= \frac{5}{288} e_1^3 - \frac{5}{72} e_1 e_2 + \frac{5}{72} e_3, \tag{46}
\lambda_4 &= \frac{5}{96} e_4 - \frac{5}{768} e_1 e_2^2 - \frac{5}{96} e_1 e_3 - \frac{5}{192} e_2. \tag{47}
\end{align*}
\]

Also, from (45), application (30), and triangle inequality, we get

\[
|\lambda_1| \leq \frac{5}{12}. \tag{48}
\]

(48)

By rearranging (46), we have

\[
|\lambda_3| = \frac{5}{288} \left| e_1^3 - 4e_1 e_2 + 4e_3 \right|. \tag{50}
\]

(50)

By Lemma 4 and triangle inequality, we obtain

\[
|\lambda_3| \leq \frac{5}{36}. \tag{51}
\]

(51)

By rearranging (47), we have

\[
\lambda_4 = -\frac{5}{96} \left(\left(\frac{1}{2} \right) e_2^2 + \left(\frac{1}{8} \right) e_1^2 - \left(\frac{3}{4} \right) e_2 e_1^2 + e_1 e_3 - e_4 \right). \tag{52}
\]

(52)

Comparing the equation of (52) right side with

\[
|\gamma e_1^4 + c e_2^2 + 2 r e_1 e_3 - \frac{3}{2} \psi e_2^2 - e_4|, \tag{53}
\]

(53)

we get \(\gamma = 1/8 \), \(\psi = 1/2 \), and

\[
8(1 - c)\left[(r(\zeta + \rho) - \psi)^2 + (\tau \psi - 2\gamma)^2 \right] + \tau(\psi - 2\zeta r)(1 - r) \leq 4r^2(1 - \zeta)(1 - \tau)^2. \tag{54}
\]

(54)
Thus, Lemma 5’s requirements are all met. Hence,

\[|\lambda_4| \leq \frac{5}{96} \left(2 \right) = \frac{5}{48}. \quad (55) \]

These are sharp outcomes. Equality is determined by using (10)–(13) and

\[
F_1(z) = z \exp \left(\int_{0}^{\infty} \left(\frac{5}{6} + 1 t^4 \right) dt \right) = z + \frac{5}{6} z^2 + \cdots, \\
F_2(z) = z \exp \left(\int_{0}^{\infty} \left(\frac{5}{6} t + 1 t^5 \right) dt \right) = z + \frac{5}{12} z^3 + \cdots, \\
F_3(z) = z \exp \left(\int_{0}^{\infty} \left(\frac{5}{6} t^2 + 1 t^{14} \right) dt \right) = z + \frac{5}{18} z^4 + \cdots, \\
F_4(z) = z \exp \left(\int_{0}^{\infty} \left(\frac{5}{6} t^4 + 1 t^{19} \right) dt \right) = z + \frac{5}{24} z^5 + \cdots. \quad (56)
\]

Theorem 7. If \(F \in \mathcal{S}_{4,F}^* \), then

\[|\lambda_2 - \mu \lambda_2| \leq \max \left\{ \frac{5}{24}, \frac{5}{48}, \frac{5}{3} \right\}. \quad (57) \]

The above stated inequality is best possible.

Proof. By utilizing (44) and (45), we have

\[|\lambda_2 - \mu \lambda_2| = \frac{5}{48} \left(e_2^2 - \frac{1}{2} / 6 + 5 \mu \right). \quad (58) \]

Implementation of (28) and triangle inequality, we get

\[|\lambda_2 - \mu \lambda_2| \leq \max \left\{ \frac{5}{24}, \frac{5}{48}, \frac{5}{3} \right\}. \quad (59) \]

Equality is determined by using (10), (11), and

\[F_2(z) = z \exp \left(\int_{0}^{\infty} \left(\frac{5}{6} t + 1 t^5 \right) dt \right) = z + \frac{5}{12} z^3 + \cdots. \quad (60) \]

Corollary 8. If \(F \in \mathcal{S}_{4,F}^* \), then

\[|\lambda_2 - \lambda_2^2| \leq \frac{5}{24}. \quad (61) \]

This inequality is sharp and can be obtained by using (10), (11), and

\[F_2(z) = z \exp \left(\int_{0}^{\infty} \left(\frac{5}{6} t + 1 t^5 \right) dt \right) = z + \frac{5}{12} z^3 + \cdots. \quad (62) \]

Theorem 9. Let \(F \) be the expansion (1) and if \(F \in \mathcal{S}_{4,F}^* \), then

\[|\lambda_1, \lambda_2 - \lambda_3| \leq \frac{5}{36}. \quad (63) \]

The above stated result is the best possible.

Proof. From (44)–(46), we easily attain

\[|\lambda_1, \lambda_2 - \lambda_3| = \frac{65}{2304} - e_2^2 + 24 e_2 e_3 - 32 e_4. \quad (64) \]

By using Lemma 4 and triangle inequality, we obtain

\[|\lambda_1, \lambda_2 - \lambda_3| \leq \frac{65}{2304} / \frac{64}{13} = \frac{5}{36}. \quad (65) \]

Equality is determined by using (10), (11), (12), and

\[F_3(z) = z \exp \left(\int_{0}^{\infty} \left(\frac{5}{6} t^2 + 1 t^{14} \right) dt \right) = z + \frac{5}{18} z^4 + \cdots. \quad (66) \]

Theorem 10. Let \(F \) be the expansion (1) and if \(F \in \mathcal{S}_{4,F}^* \), then

\[|\lambda_2 - \lambda_2^2| \leq \frac{5}{48}. \quad (67) \]

The last stated inequality is the finest.

Proof. From the use (45) and (47), we get

\[|\lambda_2 - \lambda_2^2| = \frac{5}{96} \left(\frac{17}{24} \right) e_2^2 - \left(\frac{23}{48} \right) e_2 e_3 + \left(\frac{17}{96} \right) e_4. \quad (68) \]

Comparing the right side of (68) with

\[|\gamma e_1^2 + c e_2^2 + 2 r e_1 e_3 - 3 \gamma / 2 \gamma e_2 e_3 - e_4|, \quad (69) \]

we get \(\gamma = 17/96, \ c = 17/24, \ r = 1/2, \ \gamma = 23/36, \) and

\[
8(1 - c) ![(r (c + r) - \psi)^2 + (r \psi - 2 \gamma)^2] + r (r - 2 c r)^2 (1 - r) = 0.0051909 \quad (70) \]

\[4 r^2 c (1 - c) (1 - r)^2 = 0.051649. \]

Thus, Lemma 5’s requirements are all met. Hence,

\[|\lambda_1, \lambda_2| \leq \frac{5}{96} (2) = \frac{5}{48}. \quad (71) \]

Equality is determined by using (11), (13), and

\[F_4(z) = z \exp \left(\int_{0}^{\infty} \left(\frac{5}{6} t^4 + 1 t^{19} \right) dt \right) = z + \frac{5}{24} z^5 + \cdots. \quad (72) \]
Theorem 11. Let \(F \in \mathcal{S}_x^a \) be the representation (1). Then,
\[
|H_{2,1}(J_F/2)| \leq \frac{25}{576}.
\]
(73)

This result is sharp.

Proof. We can write the \(H_{2,1}(J_F/2) \) as
\[
H_{2,1}(J_F/2) = |\lambda_1 \lambda_3 - \lambda_2^2|.
\]
(74)

From (44)–(46), we have
\[
|\lambda_1 \lambda_3 - \lambda_2^2| = \frac{25}{27648} |e_1^4 - 4e_1^2e_2 + 16e_1 e_3 - 12e_2^2|.
\]
(75)

Using (25) and (26) to express \(e_2 \) and \(e_3 \) in terms of \(e_1 \) and also \(e_1 = e \), with \(0 \leq e \leq 2 \), we obtain
\[
|\lambda_1 \lambda_3 - \lambda_2^2| = \frac{25}{27648} \left| -4e^2 + 8e(1 - |x|) (4 - e^2) \right|
\]
(76)

By changing \(|\delta| \leq 1 \) and \(|x| = e \), where \(c \leq 1 \) and utilizing triangle inequality and pickings \(e \in [0, 2] \), so
\[
|\lambda_1 \lambda_3 - \lambda_2^2| \leq \frac{25}{27648} \left(4e^2c^2 (4 - e^2) + 8e(1 - e^2) (4 - e^2) + 3c^2 (4 - e^2)^2 \right) = \Xi(e, c).
\]
(77)

Differentiate with respect to \(c \), we have
\[
\frac{\partial \Xi(e, c)}{\partial c} = \frac{25}{27648} (-2e^4 + 16ec^3 - 16e^3 - 64ec + 96c).
\]
(78)

It is easy exercise to show that \(\Xi'(e, c) \geq 0 \) on \([0, 1]\), so that \(\Xi(e, c) \leq \Xi(e, 1) \). Putting \(c = 1 \), we get
\[
|\lambda_1 \lambda_3 - \lambda_2^2| \leq \frac{25}{27648} \left(4e^2 (4 - e^2) + 3(4 - e^2)^2 \right) = \Theta(e).
\]
(79)

As \(\Theta(e) \leq 0 \), so \(\Theta(e) \) is a decreasing function, so that it gives a maximum value at \(e = 0 \)
\[
|H_{2,1}(J_F/2)| \leq \frac{25}{27648} = \frac{25}{576}.
\]
(80)

Equality is determined by using (10), (11), (12), and (13) we have
\[
F_a(z) = z \exp \left(\int_0^z \left(\frac{5}{6} t + \frac{1}{6} t^3 \right) dt \right) = z + \frac{5}{12} z^3 + \cdots.
\]
(81)

\hfill \Box

4. Coefficient Inequalities for the Class \(\mathcal{C}_4 \)

For the function of class \(\mathcal{C}_4 \), we start this portion by determining the absolute values of the first four initial logarithmic coefficients.

Theorem 12. Let \(F \) be given by (1) and if \(F \in \mathcal{C}_4 \), then
\[
|\lambda_1| \leq \frac{5}{24},
\]
(82)

\[
|\lambda_2| \leq \frac{5}{72},
\]
(83)

\[
|\lambda_3| \leq \frac{5}{144},
\]
(84)

\[
|\lambda_4| \leq \frac{1}{48}.
\]
(85)

These bounds are sharp.

Proof. Let \(F \in \mathcal{C}_4 \). Then, (17) can be written in the form of Schwarz function as
\[
1 + \frac{z F''(z)}{F'(z)} = 1 + \frac{5}{6} u(z) + \frac{1}{6} (u(z))^2 = \psi(z).
\]
(86)

Using (1), we obtain
\[
1 + \frac{z F''(z)}{F'(z)} = 1 + 2b_2 z + (6b_2 - 4b_2^2) z^2 + (8b_2^3 - 18b_2 b_3 + 12b_4) z^3 + (20b_4 - 16b_2 b_3 - 32b_2 b_4 - 18b_2^2) z^4 + \cdots.
\]
(87)

Now, by comparing (84) and (39), we get
\[
b_2 = \frac{5}{24} e_1,
\]
(88)

\[
b_3 = \frac{5}{72} e_2 - \frac{5}{864} e_1^3,
\]
(89)

\[
b_4 = \frac{5}{144} e_3 + \frac{35}{4176} e_1^2 e_2 + \frac{5}{784} e_1 e_2^2.
\]
(90)

\[
b_5 = \frac{1}{48} e_4 - \frac{91}{4976} e_1^4 + \frac{23}{6912} e_1^2 e_2^2 - \frac{7}{1152} e_2^4 - \frac{1}{108} e_1 e_3.
\]
(91)

Utilizing (85) and (10), (11), (12), and (13) we have
\[
\lambda_1 = \frac{5}{24} e_1,
\]
(92)

\[
\lambda_2 = \frac{5}{48} e_2 - \frac{5}{96} e_1^3
\]
(93)

\[
\lambda_3 = \frac{5}{288} e_3 - \frac{5}{72} e_1 e_2 + \frac{5}{72} e_3
\]
(94)

\[
\lambda_4 = \frac{5}{96} e_4 - \frac{5}{768} e_1^4 + \frac{5}{128} e_1^2 e_2^2 - \frac{5}{96} e_1 e_3 - \frac{5}{192} e_2^2.
\]
(95)
From (86), using triangle inequality and (29), we get
\[
|\lambda_1| \leq \frac{5}{24}.
\]
(90)

Also, from (87), application (30), and triangle inequality, we get
\[
|\lambda_2| \leq \frac{5}{72}.
\]
(91)

By rearranging (88), we have
\[
|\lambda_3| = \frac{6}{288} \left| \frac{7}{48} e_1^3 - \frac{19}{24} e_1 e_2 + e_3 \right|.
\]
(92)

By Lemma 4 and triangle inequality, we obtain
\[
|\lambda_3| \leq \frac{5}{144}.
\]
(93)

By rearranging (89), we have
\[
\lambda_4 = -\frac{1}{96} \left(\frac{11}{27} e_1^2 + \frac{13109}{248832} e_1^4 - \frac{2353}{5184} e_2 e_1^2 + \frac{19}{24} e_1 e_3 - e_4 \right).
\]
(94)

Comparing the right side of (94) with
\[
\left| \gamma e_1^4 + c e_2^2 + 2 \tau e_1 e_3 - \frac{3}{2} \psi e_1^2 e_2 - e_4 \right|,
\]
we get $\gamma = 13109/248832$, $c = 11/27$, $\tau = 19/48$, and $\psi = 2353/7776$. Thus, all the conditions of Lemma 5 are satisfied. Hence, we have
\[
|\lambda_4| \leq \frac{1}{96} \left(\frac{2}{3} \right) = \frac{1}{48}.
\]
(96)

These are sharp outcomes. Equality is determined by using (10), (11), (12), and (13) along with (22).

Theorem 13. Let $F \in \mathcal{C}_{4,\mathbb{R}}$ be the series form (1). Then,
\[
|\lambda_2 - \mu \lambda_1^2| \leq \max \left\{ \frac{5}{72}, \frac{5}{72} \right\}, \quad \text{for } \mu \in \mathbb{C}.
\]
(97)

This inequality is sharp.

Proof. By utilizing (86) and (87), we have
\[
|\lambda_2 - \mu \lambda_1^2| = \frac{5}{144} \left| e_2 - \frac{1}{2} \left(\frac{19 + 15\mu}{24} \right) \right|.
\]
(98)

Implementation of (28) and triangle inequality, we get
\[
|\lambda_2 - \mu \lambda_1^2| \leq \max \left\{ \frac{5}{72}, \frac{5}{72} \right\} \left(\frac{7 + 15\mu}{12} \right).
\]
(99)

Equality is determined by using (10), (11), and (22).

For $\lambda = 1$, we get the below corollary.

Corollary 14. Let $F \in \mathcal{C}_{4,\mathbb{R}}$, and it has the form (1). Then,
\[
|\lambda_2 - \lambda_1^2| \leq \frac{5}{72}.
\]
(100)

This inequality is sharp and can be obtained by using (10), (11), and (22).

Theorem 15. Let F be the form (1) and if $F \in \mathcal{C}_{4,\mathbb{R}}$, then
\[
|\lambda_1 \lambda_2 - \lambda_3| \leq \frac{5}{144}.
\]
(101)

This result is sharp.

Proof. By using (86)–(88), we obtain
\[
|\lambda_1 \lambda_2 - \lambda_3| = \frac{5}{288} \left| - \frac{263}{1152} e_1 e_2 - e_5 \right|.
\]
(102)

By using Lemma 4 and triangle inequality, we obtain
\[
|\lambda_1 \lambda_2 - \lambda_3| \leq \frac{5}{288} \left(\frac{2}{3} \right) = \frac{5}{144}.
\]
(103)

Equality is determined by using (10), (11), (12), and (22).

Theorem 16. Let F be the form (1) and $F \in \mathcal{C}_{4,\mathbb{R}}$. Then,
\[
|\lambda_2 - \lambda_1^2| \leq \frac{1}{48}.
\]
(104)

This result is sharp.

Proof. By using (87) and (89), we obtain
\[
|\lambda_2 - \lambda_1^2| = -\frac{1}{96} \left(\frac{11}{27} e_1^2 + \frac{13109}{248832} e_1^2 - \frac{2353}{5184} e_2 e_1^2 + \frac{19}{24} e_1 e_3 - e_4 \right).
\]
(105)

Comparing the right side of (68) with
\[
\left| \gamma e_1^4 + c e_2^2 + 2 \tau e_1 e_3 - \frac{3}{2} \psi e_1^2 e_2 - e_4 \right|,
\]
we get $\gamma = 35243/497664$, $c = 113/216$, $\tau = 19/24$, $\psi = 707/1944$, and
we have

\[8(1 - c)\zeta[(\tau(\zeta + \tau) - \psi)^2 + (\tau \psi - 2\gamma)^2]
+ \tau(\psi - 2\zeta \tau)^2(1 - \tau) = 0.00062010, \quad (107)\]

Thus, all the conditions of Lemma 5 are satisfied. Hence, we have

\[|\lambda_1 - \lambda_2| \leq \frac{1}{96}(2) = \frac{1}{48}. \quad (108)\]

Equality is determined by using (11), (13), and (22).

Theorem 17. Let \(F \) be given the form (1) and \(F \in \mathcal{C}_{1,2} \). Then,

\[|H_{2,1}(f)\| \leq \frac{25}{576}, \quad (109)\]

This result is sharp.

Proof. We can write the \(H_{2,1}(F_{f}/2) \) as;

\[H_{2,1}(f) = |\lambda_1\lambda_3 - \lambda_2^2|. \quad (110)\]

\[|\lambda_1\lambda_3 - \lambda_2^2| \leq \frac{1}{47775744} \{21600e^2(4 - e^2) + 43200e(1 - e^2)(4 - e^2) + 14400e^2(4 - e^2)^2 + 3000e^2(4 - e^2) + 625e^4 \} = \Omega(e, c). \quad (111)\]

Differentiate with respect to \(c \), we have

\[\frac{\partial \Omega(e, c)}{\partial c} = \frac{1}{47775744} (-600(e - 2)(e + 2) + (24ce^2 - 144ce + 5e^2 + 192c)). \quad (114)\]

It is a simple exercise to show that \(\Omega'(e, c) \geq 0 \) on \([0, 1] \), so that \(\Omega(e, c) \leq \Omega(e, 1) \). Putting \(e = 1 \) gives

\[|\lambda_1\lambda_3 - \lambda_2^2| \leq \frac{1}{47775744} \{24600e^2(4 - e^2) + 625e^4
+ 14400(4 - e^2)^2 \} = \Theta(e). \quad (115)\]

As \(\Theta'(e) \leq 0 \), so \(\Theta(e) \) is a decreasing function, so that it gives a maximum value at \(e = 0 \)

\[|H_{2,1}(f)\| \leq \frac{1}{47775744} (230400) = \frac{25}{5184}. \quad (116)\]

Equality is determined by using (10), (11), (12), and (22).

From (86)–(88), we have

\[|\lambda_1\lambda_3 - \lambda_2^2| = \frac{1}{47775744} \left|3575e^4 - 22800e^2c_3 + 86400c_1e_3 - 57600c_2^2 \right|. \quad (111)\]

Using (25) and (26) to express \(e_1 \) and \(e_3 \) in terms of \(e_1 \) and also \(e_1 = e \), with \(0 \leq e \leq 2 \), we obtain

\[|\lambda_1\lambda_3 - \lambda_2^2| = \frac{1}{47775744} \{-21600e^2x^2(4 - e^2)
+ 43200(e - 1)(4 - e^2)\delta
- 14400x^2(4 - e^2)^2 + 3000e^2x(4 - e^2)
- 625e^4 \}. \quad (112)\]

By replacing \(|\delta| \leq 1 \) and \(|x| = c \), where \(c \leq 1 \) and using triangle inequality and taking \(e \in [0, 2] \), so

\[|\lambda_1\lambda_3 - \lambda_2^2| \leq \frac{1}{47775744} \{21600e^2c^2(4 - e^2) + 43200e(1 - c^2)(4 - e^2) + 14400c^2(4 - e^2)^2 + 3000c^2e(4 - e^2) + 625e^4 \} = \Omega(e, c). \quad (113)\]

Data Availability

The numerical data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this article.

Acknowledgments

This research was supported by the Princess Nourah Bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R183), Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.

References

[1] P. Koeppe, “Über die Uniformisierung der algebraischen Kurven II,” *Mathematische Annalen*, vol. 69, no. 1, pp. 1–81, 1910.

[2] L. Bieberbach, “Über einige Extremalprobleme im Gebiete der konformen abbildung,” *Mathematische Annalen*, vol. 77, no. 2, pp. 153–172, 1916.
[3] L. De Branges, “A proof of the Bieberbach conjecture,” Acta Mathematica, vol. 154, no. 1-2, pp. 153–152, 1985.
[4] F. G. Avkhadiev and K. J. Wirths, Schwarz-Pick Type Inequalities, Springer Science & Business Media, 2009.
[5] C. H. FitzGerald and C. Pommerenke, "The de Branges theorem on univalent functions," Transactions of the American Mathematical Society, vol. 290, no. 2, pp. 683–690, 1985.
[6] C. H. FitzGerald and C. Pommerenke, "A theorem of de Branges on univalent functions," Serdica, vol. 13, no. 1, pp. 21–25, 1987.
[7] I. P. Kayumov, "On Brennan’s conjecture for a special class of functions," Mathematical Notes, vol. 78, no. 3–4, pp. 498–502, 2005.
[8] D. Alimohammadi, E. Analouei Adegani, T. Bulboaca, and N. E. Cho, "Logarithmic coefficient bounds and coefficient conjectures for classes associated with convex functions," Journal of Function Spaces, vol. 2021, Article ID 6690027, 7 pages, 2021.
[9] M. Obradović, S. Ponnusamy, and K. J. Wirths, "Logarithmic coefficients and a coefficient conjecture for univalent functions," Monatshefte für Mathematik, vol. 185, no. 3, pp. 489–501, 2018.
[10] Z. Ye, "The logarithmic coefficients of close-to-convex functions," Bulletin of the Institute of Mathematics, Academia Sinica, vol. 3, no. 3, pp. 445–452, 2008.
[11] Q. Deng, "On the logarithmic coefficients of Bazilevic functions," Applied Mathematics and Computation, vol. 217, no. 12, pp. 5889–5894, 2011.
[12] D. Girela, "Logarithmic coefficients of univalent functions," Annales-Academiae Scientiarum Fennicae Series A1 Mathematica, vol. 25, no. 2, pp. 337–350, 2000.
[13] O. Roth, "A sharp inequality for the logarithmic coefficients of univalent functions," Proceedings of the American Mathematical Society, vol. 135, no. 7, pp. 2051–2054, 2007.
[14] V. V. Andreev and P. L. Duren, "Inequalities for logarithmic coefficients of univalent functions and their derivatives," Indiana University Mathematics Journal, vol. 37, no. 4, pp. 721–733, 1988.
[15] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis, pp. 157–169, Tianjin, China, 1992.
[16] K. Bano and M. Raza, "Starlike functions associated with cosine function," Bulletin of Iranian Mathematical Society, vol. 47, no. 11, p. 20, 2021.
[17] A. Alotaibi, M. Arif, M. A. Alghamdi, and S. Hussain, "Starlike-ness associated with cosine hyperbolic function," Mathematics, vol. 8, no. 7, 2020.
[18] K. Ullah, S. Zainab, M. Arif, M. Darus, and M. Shuaybi, "Radius problems for starlike functions associated with the tan hyperbolic function," Journal of Function Spaces, vol. 2021, Article ID 9967640, 15 pages, 2021.
[19] K. Ullah, H. M. Srivastava, A. Rafiq, M. Arif, and S. Arjika, "A study of sharp coefficient bounds for a new subfamily of starlike functions," Journal of Inequalities and Applications, vol. 2021, no. 1, 2021.
[20] R. Mendiatta, S. Nagpal, and V. Ravichandran, "On a subclass of strongly starlike functions associated with exponential function," Bulletin of the Malaysian Mathematical Sciences Society, vol. 38, no. 1, pp. 365–386, 2015.
[21] L. Shi, H. M. Srivastava, M. Arif, S. Hussain, and H. Khan, "An investigation of the third Hankel determinant problem for certain subclasses of univalent functions involving the exponential function," Symmetry, vol. 11, no. 5, p. 598, 2019.
[22] S. S. Kumar and K. Arora, "Starlike functions associated with a petal shaped domain," 2020, https://arxiv.org/abs/2010.10072.
[23] D. A. Brannan and W. E. Kirwan, "On some classes of bounded univalent functions," Journal of the London Mathematical Society, vol. 2, no. 1, pp. 431–443, 1969.
[24] J. Sokół and J. Stankiewicz, "Radius of convexity of some subclasses of strongly starlike functions," Zeszyty Naukowe Politechniki Rzeszowskiej Matematyka, vol. 19, pp. 101–105, 1996.
[25] K. Sharma, N. K. Jain, and V. Ravichandran, "Starlike functions associated with a cardioid," Afrika Matematika, vol. 27, no. 5–6, pp. 923–939, 2016.
[26] L. Shi, I. Ali, M. Arif, N. E. Cho, S. Hussain, and H. Khan, "A study of third Hankel determinant problem for certain subclasses of analytic functions involving cardioid domain," Mathematics, vol. 7, no. 5, p. 418, 2019.
[27] C. Pommerenke, "On the coefficients and Hankel determinants of univalent functions," Journal of the London Mathematical Society, vol. 1, no. 1, pp. 111–122, 1966.
[28] C. Pommerenke, "On the Hankel determinants of univalent functions," Mathematika, vol. 14, no. 1, pp. 108–112, 1967.
[29] A. Janteng, S. A. Halim, and M. Darus, "Coefficient inequality for a function whose derivative has a positive real part," Journal of Inequalities in Pure and Applied Mathematics, vol. 7, no. 2, pp. 1–5, 2006.
[30] A. Janteng, S. A. Halim, and M. Darus, "Hankel determinant for starlike and convex functions," International Journal of Mathematical Analysis, vol. 1, no. 13, pp. 619–625, 2007.
[31] D. Raducanu and P. Zaprawa, "Second Hankel determinant for close-to-convex functions," Comptes Rendus Mathematique, vol. 355, no. 10, pp. 1063–1071, 2017.
[32] K. O. Babalola, "On H_{3,1}(F) Hankel determinant for some classes of univalent functions," Inequality Theory and Applications, vol. 6, pp. 1–7, 2010.
[33] D. Bansal, S. Maharana, and J. K. Prajapat, "Third order Hankel Determinant for certain univalent functions," Journal of Korean Mathematical Society, vol. 52, no. 6, pp. 1139–1148, 2015.
[34] P. Zaprawa, "Third Hankel determinants for subclasses of univalent functions," Mediterranean Journal of Mathematics, vol. 141, no. 19, p. 10, 2017.
[35] O. S. Kwon, A. Lecko, and Y. J. Sim, "The bound of the Hankel determinant of the third kind for starlike functions," Bulletin of the Malaysian Mathematical Sciences Society, vol. 42, no. 2, pp. 767–780, 2019.
[36] B. Kowalczyk, A. Lecko, and Y. J. Sim, "The sharp bound FOR the Hankel determinant of the third kind for convex functions," Bulletin of the Australian Mathematical Society, vol. 97, no. 3, pp. 435–445, 2018.
[37] A. Lecko, Y. J. Sim, and B. Smiarcowska, "The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2," Complex Analysis and Operator Theory, vol. 13, no. 5, pp. 2231–2238, 2019.
[38] B. Kowalczyk and A. Lecko, "Second Hankel determinant of logarithmic coefficients of convex and starlike functions," Bulletin of the Australian Mathematical Society, vol. 105, no. 3, pp. 458–467, 2022.
order alpha,” *Bulletin of the Malaysian Mathematical Sciences Society*, vol. 45, pp. 727–740, 2022.

[40] C. Pommerenke, *Univalent Function*, Göttingen, Germany, Vanderhoeck & Ruprecht, 1975.

[41] R. J. Libera and E. J. Złotkiewicz, “Early coefficients of the inverse of a regular convex function,” *Proceedings of the American Mathematical Society*, vol. 85, no. 2, pp. 225–230, 1982.

[42] O. S. Kwon, A. Lecko, and Y. J. Sim, “On the fourth coefficient of functions in the Carathéodory class,” *Computational Methods and Function Theory*, vol. 18, no. 2, pp. 307–314, 2018.

[43] F. Keough and E. Merkes, “A coefficient inequality for certain classes of analytic functions,” *Proceedings of the American Mathematical Society*, vol. 20, no. 1, pp. 8–12, 1969.

[44] M. Arif, M. Raza, H. Tang, S. Hussain, and H. Khan, “Hankel determinant of order three for familiar subsets of analytic functions related with sine function,” *Open Mathematics*, vol. 17, no. 1, pp. 1615–1630, 2019.

[45] M. Arif, S. Umar, M. Raza, T. Bulboaca, M. U. Farooq, and H. Khan, “On fourth Hankel determinant for functions associated with Bernoulli’s lemniscate,” *Hacettepe Journal of Mathematics and Statistics*, vol. 49, no. 5, pp. 1–11, 2020.

[46] V. Ravichandran and S. Verma, “Borne pour le cinquième coefficient des fonctions étoilées,” *Comptes Rendus Mathématique*, vol. 353, no. 6, pp. 505–510, 2015.