The GC–MS analysis of the diethylether and ethylacetate fraction of the peel of *Solanum incanum* and the study of their antibacterial activity

Yesudass Dominic Ravichandran¹,² · Mequanint Molla Yetayih¹,³

Received: 22 March 2021 / Accepted: 8 November 2021 / Published online: 8 January 2022
© The Author(s), under exclusive licence to Institute of Korean Medicine, Kyung Hee University 2022

Abstract
The diethyl ether and ethyl acetate fractions of the peel of the fruit of *Solanum incanum* (*S. incanum*) were analyzed using gas chromatography-mass spectrometry (GC–MS). 105 compounds were identified in the diethyl ether fraction and 75 compounds were identified in ethyl acetate fraction. Among them, 5 compounds were analyzed by fragmentation pattern, discussed, and compared with NIST database. The antibacterial screening was also conducted for both diethyl ether and ethyl acetate fractions of the fruit peel of *S. incanum* using four pathogens, two Gram-positive bacteria *Staphylococcus aureus* (*S. aureus*) and *Streptococcus pyogenes* (*S. pyogenes*) and two Gram negative bacteria *Escherichia coli* (*E. coli*), *Klebsiella pneumoniae* (*K. pneumoniae*), at various concentrations (250, 500, 750 and 1000 μg/ml). The diethyl ether and ethyl acetate fractions of the peel of *S. incanum* exhibited activity against *E. coli* and *K. pneumoniae* at 1000 μg/ml concentration.

Keywords *S. incanum* · Peel · Phytochemical · GC–MS · And antibacterial activity

Introduction
Natural Products are of considerable significance to the health of human beings and animals. The medicinal importance of plants lies in the secondary metabolites, which produce a definite physiological action on the human or animal body. Investigation of the phytochemical constituents and relating them to pharmacological activities furnish a plethora of information. In this line, our group has also reported the phytochemicals and their uses (Tesfaye and Ravichandran 2018; Tamrat and Ravichandran 2018; Ravichandran and Sulochana 2016a, 2016b). Many of the endemic medicinal plants are traditionally used as spices and food plants (Sakha et al. 2018).

Solanum L. (*Solanaceae*) is a large and diverse genus of flowering plants. The species of *Solanum* are known for their medicinal importance (Sheeba 2010). *S. incanum* has various traditional applications in many Ethiopian communities. The species is endemic and well distributed in Ethiopia (Abebe et al. 2014). *S. incanum* is commonly seen around local neighborhoods, green-lands, and roadsides (Yrjonen 2004).

The fruit of *S. incanum* is the source of many medicinally important secondary metabolites (Asaolu 2003). Further, solanine and solasonine have already been isolated (Alghamdi 2013). The leaves of *S. incanum* L. were found to contain minerals such as K (Auta and Ali 2011) and Ca (Abdalla 2015).

In recent times, GC–MS analysis is progressively engaged in the analysis of medicinal plants (Asha et al 2017). The GC–MS analysis of the leaf extract (Sundar and Pillai 2015) and the fruits extract of *S. incanum* from India has been reported (Buvaneshwari et al. 2017). We have earlier reported the GC–MS analysis of the essential oil derived from the peel of the fruit from *S. incanum* (Yetayih and Ravichandran 2020) but there is no report on the GC–MS analysis of the diethyl ether and ethyl acetate fraction of the peel of the fruit of the *S. incanum*. Hence, we report the...
GC–MS analysis of the diethyl ether extract and the ethyl acetate fraction of the peel of the *S. incanum*.

Experimental

The survey, collection, and preparation of plant material

The Fruits of *S. incanum* (5 kg) were collected on May 22, 2018, identified by Dr. Tena Regasa (botanist), Department of Biology. The collected ripe fruits were cleaned and washed with water to remove all the impurities, and ripe fruits were cut with the sterilized blade and the internal content was removed. The peel of the fruit was cut into small pieces and dried till constant weight is achieved. The dried peel was powdered using a laboratory mill and sieved and stored in air-tight containers till it is used.

Preparation of the extract

A sample of 1.5 kg *S. incanum* peel powder was soaked in 7-L of 70% methanol solution (Hassim et al. 2014; Khalil et al. 2017). The solution was kept for 7 days with random shaking and the extract was filtered by cotton plugged filtration followed by Whatman No 1 filter paper. The same procedure was repeated twice and the extracts were combined and evaporated to dryness using Rota-evaporator at 60 °C. The obtained methanol extract was used for further portioned into different fractions based on polarity.

Liquid–liquid extraction

The methanol extract was partitioned into various solvents based on their polarity. The methanol extract was transferred to a separatory funnel and successively partitioned with various solvents including hexane, diethyl ether, and ethyl acetate. The extracts in each solvent were done successively till the added solvent is colorless. The different fractions obtained were dried over anhydrous sodium sulfate (Khalil et al. 2017). Each of the fractions was combined, and concentrated by a rota-evaporator. Among them, diethyl ether and ethyl acetate fractions were considered for further work.

Gas Chromatography–Mass Spectrometry (GC–MS) analyses

Gas chromatography-mass spectrometry (GC–MS) is an important analytical technique to analyze the chemical composition of the plant extract. The GC–MS analysis was done using an Agilent 6890 GC with Agilent 5973 mass selective detector [MSD, operated in the EI mode (electron energy = 70 eV), scan range = 45–400 amu, and scan rate = 3.99 scans/sec], and an Agilent ChemStation data system by the method reported in the literature (Yetayih and Ravichandran 2020; Essien et al. 2016). The GC column was an HP-5 ms fused silica capillary with a (5% phenyl) polymethyl siloxane stationary phase, the film thickness of 0.25 μm, a length of 30 m, and an internal diameter of 0.25 mm. The carrier gas was helium with a column head pressure of 48.7 kPa and a flow rate of 1.0 ml/min. The inlet temperature was 200 °C and the interface temperature was 280 °C. The GC oven temperature program was used as follows: 40 °C initial temperature, hold for 10 min; increased at 3 °C/min to 200 °C; increased 2 °C/min to 220 °C. A 1% w/v solution of the sample was prepared and 1 μL was injected using a splitless injection technique. The compounds were identified based on their retention time (RT), and by the comparison of their fragmentation patterns with those of the reported values and NIST Library (G1036A, revision D.01.00)/Chem Station data system (G1701CA, version C.00.01.08) (Yetayih and Ravichandran 2020; Okhale et al. 2018).

Antibacterial activity

Four strains of pathogenic bacteria were used in this study including Gram-positive, *S. aureus* (ATCC 31,488), and *S. pyogenes* (ATCC 27,853), and Gram-negative bacteria, *E. coli* (ATCC 25,922), and *K. pneumonia* (ATCC 27,853). The disk diffusion method was employed for the evaluation of antibacterial activity (Dar et al. 2017). The bacterial strains were inoculated on Mueller Hinton broth, homogenized on a sterilized Petri dish to yield a uniform depth. The different fractions of the plant extracts were dissolved in 10% of dimethyl sulfoxide (DMSO). 250, 500, 750, and 1000 μg/ml (extract soaked by each disc) concentration of the fractions were tested for antibacterial activity respectively. The zone of inhibition was measured. The experiments were done in triplicate. DMSO (10%) and Gentamicin (10 μg/disc) were taken as negative and positive control respectively. Statistical analysis was performed using MS Excel. The graphs were also plotted with MS Excel. The structures are drawn with ChemDraw Ultra 8.0.

Results and discussion

The diethyl ether fraction

The GC–MS analysis of diethyl ether fraction was confirmed with the presence of 105 components (Table 1). The components were identified by representing 100% of the total sample composition.

The principal compounds identified in the diethyl ether fraction were 8-nonenenoic acid (19.59%),...
The GC–MS analysis of the diethylether and ethylacetate fraction of the peel of *Solanum incanum* …

Peak#	RT	Area	Area%	Name compounds	
1	4.142	6,464,154	1.27	2,3-Butanediol	
2	4.321	11,966,968	2.35	[R-(R*,R*)]-2,3-Butanediol	
3	14.198	254,929	0.05	2-Pentyl-Furan	
4	16.899	4,962,483	0.97	Benzyl alcohol	
5	17.747	92,527	0.02	1-ethyl-1-methyl-Cyclopentane	
6	18.042	167,251	0.03	2-Methylbutanoic anhydride	
7	18.326	350,838	0.07	Butan-2-one, 4-[pyrrolidin-2-one-5-yl]-	
8	19.074	212,311	0.04	7-Octen-2-ol, 2-methyl-6-methylene-	
9	20.017	107,019	0.02	Mequinol	
10	20.532	134,141	0.03	5-Methyl-1-heptanol	
11	20.830	533,001	0.10	3,7-dimethyl-1,6-Octadien-3-ol	
12	21.045	420,417	0.08	5-Nonen-2-one	
13	21.316	596,171	0.12	Phenylethyl Alcohol	
14	22.587	172,497	0.03	7-Bromo-1-heptanol, trimethylsilyl ether	
15	24.204	263,407	0.05	Acetic acid, phenylmethyl ester	
16	24.898	217,662	0.04	Benzeneacetic acid, methyl ester	
17	25.398	290,521	0.06	L-.alpha-Terpineol	
18	25.725	1,192,480	0.23	Decanal	
19	26.608	7,076,080	1.39	Catechol	
20	26.959	2,346,275	0.46	Benzoic acid	
21	27.269	8,743,987	1.72	2,3-dihydro-Benzofuran	
22	29.964	6,106,067	1.20	Benzeneacetic acid	
23	30.282	423,731	0.08	Indole	
24	30.541	363,009	0.07	Nonanoic acid	
25	31.298	1,647,954	0.32	2-Methoxy-4-vinylphenol	
26	31.508	158,721	0.03	Isomyrcenyl acetate	
27	31.871	1,000,593	0.20	2-Decen-1-ol	
28	32.308	289,326	0.06	2-t-Butyl-5-propyl-[1,3]dioxolan-4-one	
29	32.855	2,765,290	0.54	2,5-Dimethylcyclohexanol	
30	33.082	3,208,997	0.63	(S)-2,7-Octadien-4-ol, 2-methyl-6-methylene	
31	33.448	1,512,440	0.30	dihydro-5-pentyl-2(3H)-Furanone	
32	33.612	7,675,007	1.51	dihydro-5-pentyl-2(3H)-Furanone	
33	34.084	2,795,101	0.55	1-methoxy-2,2-dimethyl-3-(3,3-dimethyl-1-propynyl)- Cyclopropane	
34	34.202	5,229,121	1.03	3,7,11-trimethyl-1,6,10-Dodecatrien-3-ol	
35	34.390	9,749,572	1.91	trans-5,6-Epoxydecane	
36	34.994	2,369,512	0.47	2-Isopropylidene-5-methylhex-4-enal	
37	35.659	1,069,366	0.21	4-Ethylthiane	
38	36.075	270,006	0.05	2-Hydroxy-1,1,10-trimethyl-6,9-epidioxydecalin	
39	36.308	514,672	0.10	4-Dimethylsilyloxypentadecane	
40	36.742	2,637,720	0.52	15-(2,2-dimethylcyclopropyl)-2-methyl-4-methylenepentene	
41	37.383	14,571,016	2.86	o-Toluic acid, 6-ethyl-3-octyl ester	
42	37.809	2,594,865	0.51	2,6-dimethyl-7-Octene-2,6-diol	
43	38.242	1,334,860	0.26	2-Dodecen-1-yl(-)succinic anhydride	
44	38.654	2,164,695	0.42	5-Hepten-3-yn-2-ol, 6-methyl-5-(1-methylethyl)-	
45	39.288	2,497,131	0.49	dl-Mevalonic acid lactone	
46	39.505	9,958,474	1.95	Nonanoic acid, 9-hydroxy-, methyl ester	
47	39.700	2,451,540	0.48	5-(2-tetrahydrofurfuryl)-Heptan-2-ol	
48	39.805	11,623,593	2.28	Butylated Hydroxytoluene	
Peak#	RT	Area	Area%	Name compounds	
------	------	-------	-------	--	
51	40.108	930,279	0.18	5,6,7,7a-tetrahydro-4,4,7a-trimethyl-(R)-2(4H)-Benzo	furanone
52	40.603	3,614,576	0.71	Nerolidolobutyrate	
53	41.402	9,336,554	1.83	Nonanedioic acid, dimethyl ester	
54	42.356	11,945,857	2.34	Fumaric acid, ethyl 2-methylallyl ester	
55	43.721	76,729,146	15.06	8-Nonenoic acid	
56	43.975	6,284,027	1.23	Benzoic acid, 4-hydroxy-3-methoxy	
57	44.332	20,089,247	3.94	3,7,11-trimethyl-1,6,10-Dodecatrien-3-ol	
58	44.457	4,044,024	0.79	Nonanedioic acid, monomethyl ester	
59	44.615	9,336,554	1.83	Nonanedioic acid, dimethyl ester	
60	45.721	11,945,857	2.34	Fumaric acid, ethyl 2-methylallyl ester	
61	45.975	6,284,027	1.23	Benzoic acid, 4-hydroxy-3-methoxy	
62	46.356	4,044,024	0.79	Nonanedioic acid, monomethyl ester	
63	46.457	9,336,554	1.83	Nonanedioic acid, dimethyl ester	
64	46.615	6,284,027	1.23	Benzoic acid, 4-hydroxy-3-methoxy	
65	46.721	11,945,857	2.34	Fumaric acid, ethyl 2-methylallyl ester	
66	46.975	6,284,027	1.23	Benzoic acid, 4-hydroxy-3-methoxy	
67	47.125	4,044,024	0.79	Nonanedioic acid, monomethyl ester	
68	47.275	9,336,554	1.83	Nonanedioic acid, dimethyl ester	
69	47.425	6,284,027	1.23	Benzoic acid, 4-hydroxy-3-methoxy	
70	47.575	4,044,024	0.79	Nonanedioic acid, monomethyl ester	
71	47.725	9,336,554	1.83	Nonanedioic acid, dimethyl ester	
72	47.875	6,284,027	1.23	Benzoic acid, 4-hydroxy-3-methoxy	
73	48.025	4,044,024	0.79	Nonanedioic acid, monomethyl ester	
74	48.175	9,336,554	1.83	Nonanedioic acid, dimethyl ester	
75	48.325	6,284,027	1.23	Benzoic acid, 4-hydroxy-3-methoxy	
76	48.475	4,044,024	0.79	Nonanedioic acid, monomethyl ester	
77	48.625	9,336,554	1.83	Nonanedioic acid, dimethyl ester	
78	48.775	6,284,027	1.23	Benzoic acid, 4-hydroxy-3-methoxy	
79	48.925	4,044,024	0.79	Nonanedioic acid, monomethyl ester	
80	49.075	9,336,554	1.83	Nonanedioic acid, dimethyl ester	
81	49.225	6,284,027	1.23	Benzoic acid, 4-hydroxy-3-methoxy	
82	49.375	4,044,024	0.79	Nonanedioic acid, monomethyl ester	
83	49.525	9,336,554	1.83	Nonanedioic acid, dimethyl ester	
84	49.675	6,284,027	1.23	Benzoic acid, 4-hydroxy-3-methoxy	
85	49.825	4,044,024	0.79	Nonanedioic acid, monomethyl ester	
86	50.075	9,336,554	1.83	Nonanedioic acid, dimethyl ester	
87	50.225	6,284,027	1.23	Benzoic acid, 4-hydroxy-3-methoxy	
88	50.375	4,044,024	0.79	Nonanedioic acid, monomethyl ester	
89	50.525	9,336,554	1.83	Nonanedioic acid, dimethyl ester	
90	50.675	6,284,027	1.23	Benzoic acid, 4-hydroxy-3-methoxy	
91	50.825	4,044,024	0.79	Nonanedioic acid, monomethyl ester	
92	51.075	9,336,554	1.83	Nonanedioic acid, dimethyl ester	
93	51.225	6,284,027	1.23	Benzoic acid, 4-hydroxy-3-methoxy	
94	51.375	4,044,024	0.79	Nonanedioic acid, monomethyl ester	
95	51.525	9,336,554	1.83	Nonanedioic acid, dimethyl ester	
96	51.675	6,284,027	1.23	Benzoic acid, 4-hydroxy-3-methoxy	
97	51.825	4,044,024	0.79	Nonanedioic acid, monomethyl ester	
98	52.075	9,336,554	1.83	Nonanedioic acid, dimethyl ester	
99	52.225	6,284,027	1.23	Benzoic acid, 4-hydroxy-3-methoxy	
100	52.375	4,044,024	0.79	Nonanedioic acid, monomethyl ester	
The GC–MS analysis of the diethylether and ethylacetate fraction of the peel of *Solanum incanum*…

3,7,11-trimethyl-1,6,10-dodecatrien-3-ol (3.94%), 2,3-butanediol (3.62%), acetoxycetic acid, tridec-2-ynyl ester (3.46%), o-toluic acid, 6-ethyl-3-octyl ester (2.86%), 3-butyllindolizidine (2.64%), \([R-(R^*,R^*)]-2,3\)-butanediol (2.35%), Fumaric acid, ethyl-2-methylallyl ester (2.34%), and butylated hydroxytoluene (2.28%) along with minor constituents.

Benzyl alcohol (MW108)

The empirical formula \(C_7H_{10}O\) was derived using the nitrogen rule and rule of thirteen. The absence of the \(M + 2\) peak indicated the absence of halogen, silicon, and sulfur. The base peak at 79 indicated the presence of phenyl groups. The other fragments benzyl cation(91), phenyl cation(77), cyclopentadienyl cation(65), and cyclobutadienyl cation(51) confirmed the presence of Benzyl alcohol (Fig. 1 and Scheme 1).

2, 3-dihydro-Benzofuran (MW120)

The empirical formula of \(C_8H_8O\) was derived using the nitrogen rule and rule of thirteen. The absence of the \(M + 2\) peak indicated the absence of halogen, silicon, and sulfur. The base peak at 120 indicated the presence of very stable benzyl ether. The presence of 2, 3-dihydro-Benzofuranyl cation(119), benzyl cation(91), cyclopentadienyl cation(65), and cyclobutadienyl cation(51) was confirmed with the presence of 2, 3-dihydro-Benzofuran (Fig. 2 and Scheme 2).

Butylated hydroxytoluene (MW 220)

According to the nitrogen rule and rule of thirteen, the derived empirical formula was \(C_{15}H_{24}O\). The absence of the \(M + 2\) peak indicated the absence of halogen, silicon, and sulfur. The base peak at 205 indicated the presence of butylated hydroxytoluene. The presence of 2-tert-butyl-1-methoxy-4-methylphenyl cation(177), 1-tert-butylbenzyl cation(145), 2-methylpropyl cation(57) confirmed the presence of Butylated Hydroxytoluene (Fig. 3 and Scheme 3).

Ethyl acetate fraction of *S. incanum* Peel

The GC–MS analysis of ethyl acetate fraction was confirmed with the presence of 75 components (Table 2). The

Table 1 (continued)

Peak#	RT	Area	Area%	Name compounds
101	66.946	2,105,734	0.41	Nerolidolisobutyrate
102	67.537	1,109,923	0.22	9-(3,3-Dimethyloxiran-2-yl)-2,7-dimethylnona-2,6-dien-1-ol
103	67.985	1,108,356	0.22	1-Heptatriacetanol
104	68.808	2,400,883	0.47	Hexanedioic acid, bis(2-ethylhexyl) ester
105	70.275	692,075	0.14	3,5-dimethyl- Cyclohexanol
		2,103,564	100.00	
components were identified by representing 100% of the total sample composition.

The ethyl acetate fraction revealed 75 constituents (Table 2), the major constituents were \([R-(R^*,R^*)]-2,3\)-butanediol (51.02%), 2,3-butanediol (22.65%) followed by 5,5,8a-trimethyl-3,5,6,7,8,8a-hexahydro-2\(H\)-chromene (3.17%) and trans-linalool oxide (furanoid) (1.64%) along with major constituents, and minor constituents were also reported.

According to the nitrogen rule and rule of thirteen, the derived empirical formula can be \(C_{12}H_{20}O\). The base peak at 124 indicated the presence of 5, 6-dihydro-2-methyl-2\(H\)-pyryl-2-ethyl radical cation. The presence of 1,1-dimethylcyclohexyl-2, 3-dimethylcynation(135), 3-methylene-penta-1,4-dienyl cation(79), 4-methylpent-1-enyl cation (69), 5, 5, 8a-trimethyl-3, 5, 6, 7, 8,8a-hexahydro-2\(H\)-chromene(MW 180)

\[\text{Scheme 1 Mass fragmentation of Benzyl alcohol}\]

\[\text{Scheme 2 Mass fragmentation of 2, 3-dihydro-Benzofuran}\]

\[\text{Fig. 2 Mass spectrum and fragmentation of 2, 3-dihydro-Benzofuran}\]
The GC–MS analysis of the diethylether and ethylacetate fraction of the peel of Solanum incanum…

Fig. 3 Mass spectrum and fragmentation of Butylated Hydroxytoluene

Scheme 3 Mass fragmentation of Butylated Hydroxytoluene

2-methylprop-1-enyl cation (55) confirmed the presence of 5, 5, 8a-trimethyl-3, 5, 6, 7, 8,8a-hexahydro-2H-chromene (Fig. 4 and Scheme 4).

1-docosene(MW 125)

The empirical formula of 1-docosene was derived as C_{22}H_{44} to using the nitrogen rule and rule of thirteen. The base peak at m/z 57 indicated the presence of straight alkane. Further, the presence of butenyl cation(55), pentenyl cation(69), hexenyl cation(83), heptenyl cation(98), octenyl cation(111) and nonenyl cation(125) confirmed the presence of 1-docosene (Fig. 5 and Scheme 5, Table 3).

Antibacterial assay

The diethyl ether and ethyl acetate fractions of the peel of S. incanum exhibited antibacterial activity against E. coli, K. pneumonia, S. pyogenes, and S. aureus. The results were shown in Table 4. The results indicated that the antibacterial activity was specific in action against the growth of bacterial species.

The antibacterial activity of diethyl ether fraction and ethyl acetate fraction was analyzed by in vitro disk diffusion method using paper discs (Indhumathi and Mohandass 2014; Elisha et al. 2017). Figures 6 7 and 8 summarize the results. The diethyl ether fraction exhibited higher activity against E. coli at 1000 μg/ml whereas the ethyl acetate fraction showed higher activity against K. pneumonia at 1000 μg/ml. Further, the extracts were found to show greater activity against E. coli, K. pneumonia.

Conclusion

In the present study 105 and 75 chemical constituents have been identified from diethyl ether and ethyl acetate extracts, respectively by GC–MS analysis. The GC–MS analysis of these extracts revealed various constituents; 2, 3-butanediol (76.76%), [R-(R*,R*)]-2,3-butanediol (51.02%), 2,3-butanediol (51.02%), 2,3-butanediol (22.65%) diethyl Phthalate (8.32%), 5,5,8a-trimethyl-3,5,6,7,8,8a-hexahydro-2H-chromene (3.17%), benzyl benzoate (3.02%), 2, 6-dimethyl-6-nitro-2-hepten-4-one (2.56%), 1, 2-dimethoxy-4-(1-propenyl)-benzene (1.88%), and trans-linalool oxide (furanoid) (1.64%) and were considered as major compounds on the basis of percentage peak area. The mass spectral pattern of 5 compounds was analyzed and confirmed with NIST database. The antibacterial activity of the extracts may be a result of the major compounds.
Table 2 Constituents of ethyl acetate fraction of the peel of *S. incanum*

Peak#	R.Time	Area	Area%	Name of compounds
1	4.533	27,132,087	51.02	[R-(R*,R*)]-2,3-Butanediol
2	4.686	12,044,321	22.65	2,3-Butanediol
3	5.560	283,025	0.53	4-hydroxy-4-methyl-2-Pentanone
4	8.642	71,867	0.14	4-hydroxy-Butanoic acid
5	10.308	484,574	0.91	2,3-dimethoxy-1,4-Dioxane
6	10.790	704,676	1.33	12-Crown-4
7	16.641	31,559	0.06	3-(2-Methoxyethoxymethoxy)-2-methylpentan-1-ol
8	16.879	94,782	0.18	1-(bicyclo[3.2.1]oct-2-en-4-yl)-4-phenyl-1,2,4-Triazolidine-3,5-dione
9	20.218	53,521	0.10	Thymine
10	22.620	370,827	0.70	Formic acid, 1-methylpropyl ester
11	22.909	535,671	1.01	1-Butaneboronic acid
12	23.267	22,508	0.04	3-Methyl-2-butoenoic acid, cyclobutyl ester
13	23.454	114,612	0.22	1-phenyl-2-Propen-1-one
14	23.775	29,808	0.06	Dehydromevalonic lactone
15	25.650	44,968	0.08	Di-n-hexyl-diselenide
16	25.873	118,206	0.22	2,3-dihydro-Thiophene
17	26.767	51,548	0.10	2,3-dihydro-Thiophene
18	27.183	85,660	0.16	2,3-dihydro- Benzofuran
19	28.577	64,558	0.12	2-isocyanato-2-methyl- Propane
20	30.261	38,520	0.07	Indole
21	30.483	80,397	0.15	2-Oxopentanedioic acid
22	31.257	50,200	0.09	2-Methoxy-4-vinylphenol
23	32.352	39,405	0.07	Methyl anthranilate
24	32.608	27,865	0.05	3-ethyl-3-methyl-Pentane
25	33.471	126,691	0.24	(2-methylpropyl)- Oxirane
26	33.947	69,361	0.13	Methyl 2-oxo-1-pyrrolidine acetate
27	34.857	872,593	1.64	Trans-Linalool oxide (furanoid)
28	37.121	68,054	0.13	1-(bromomethyl)-3-nitro-Benzene
29	38.353	47,612	0.09	1,3-Dioxane, 2,4-dimethyl-
30	38.832	29,411	0.06	5-(pentyloxy)-(E)- 2-Pentiene
31	39.218	228,778	0.43	Methyleugenol
32	39.862	115,752	0.22	Pentanoic acid, 5-hydroxy-, 2,4-di-t-butylphenyl esters
33	40.027	38,043	0.07	2-Phenoxyethyl isobutyrate
34	40.200	97,274	0.18	Cyclobutanecarboxylic acid, 2-methoxyethyl ester
35	40.664	122,641	0.23	Cyclobutanecarboxylic acid, 2-methoxyethyl ester
36	41.346	52,283	0.10	4-pentyl-Phenol
37	41.583	13,536	0.03	4-Fluorobenzoic acid, tridec-2-ynyl ester
38	41.770	47,806	0.09	4'-Ethoxy-2'-hydroxyoctadecanophenone
39	41.922	61,347	0.12	3-Hexen-1-ol benzoate
40	42.039	43,992	0.08	2-bromo-Hexane
41	42.500	38,691	0.07	3,3-Diethoxy-1-propyne
42	42.944	440,841	0.83	Didodecyl phthalate
43	44.073	238,753	0.45	2-methyl-Bicyclo[3.3.1]nanonan-2-ol
44	44.162	353,788	0.67	9-(3,3-Dimethylxiran-2-yl)-2,7-dimethylnona-2,6-dien-1-ol
45	44.401	550,694	1.04	9-(3,3-Dimethylxiran-2-yl)-2,7-dimethylnona-2,6-dien-1-ol
46	45.169	276,838	0.52	Cyclopentaneacetie acid, 3-oxo-2-pentyl-, methyl ester
47	45.417	51,473	0.10	1-O-acetyl-4-O-p-toluenesulfonyl-2-Deoxythreitol
48	45.628	62,642	0.12	2,6-dimethyl-1,7-Octadiene-3,6-diol
49	48.339	65,432	0.12	2-ethyl-2,4,5-trimethyl-1,3-Dioxolane
50	48.810	437,395	0.82	Benzyl Benzoate
The GC–MS analysis of the diethylether and ethylacetate fraction of the peel of Solanum incanum…

Table 2 (continued)

Peak#	R.Time	Area	Area%	Name of compounds
51	49.465	663,822	1.25	Endo-1,5,6,7-Tetramethylbicyclo[3.2.0]hept-6-en-3-ol
52	49.879	1,685,648	3.17	5,5,8a-Trimethyl-3,5,6,7,8a-hexahydro-2H-chromene
53	50.154	576,294	1.08	1-Nonadecene
54	50.283	143,226	0.27	(-)-Nortrachelogenin
55	50.965	77,154	0.15	3,7,11-trimethyl-, (Z,E)- 1,3,6,10-Dodecatriene
56	51.468	182,249	0.34	2-methyl-4-(2,6,6-trimethyl-1-cyclohexen-1-yl)- 2-Butenal
57	51.597	205,823	0.39	3-Cyclopropylpropionic acid, 2-isopropoxyphenyl ester
58	52.148	138,020	0.26	1-(p-Toluidino)-1-deoxy-.beta.-d-idopyranose
59	52.267	75,943	0.14	Monobenzone
60	52.526	63,889	0.12	Phthalic acid, cyclobutyl tridecyl ester
61	53.127	26,495	0.05	5-ethyl-2,4-dimethyl-4-Hepten-3-one
62	53.585	420,244	0.79	2-propyl-2-Heptenal
63	54.575	122,605	0.23	Tridecanoic acid, methyl ester
64	55.206	93,530	0.18	1-bromo-2-methyl- Butane
65	55.544	92,156	0.17	Phthalic acid, cyclobutyl heptyl ester
66	56.685	468,296	0.88	1-Nonadecene
67	56.933	37,156	0.07	Tert-Butyl cyclopropylmethyl sulfoxide
68	57.660	51,367	0.10	2,6-dimethyl-1,5-Heptadiene
69	58.037	57,807	0.11	2-Oxa-3-methylbicyclo(3.3.0)octane
70	59.880	129,863	0.24	8,11,14-Docosatrienoic acid, methyl ester
71	60.229	145,782	0.27	Phytol
72	62.663	269,407	0.51	1-Docosene
73	63.415	145,519	0.27	Phytol, acetate
74	64.971	97,166	0.18	(E)- 5-Eicosene
75	68.602	80,146	0.15	11-Tricosene
		53,176,493	100.00	

Fig. 4 Mass spectrum and fragmentation of 5, 5, 8a-trimethyl-3, 5, 6, 7, 8a-hexahydro-2H-chromene
Scheme 4 Mass fragmentation of 5, 5, 8a-trimethyl-3, 5, 6, 7, 8,8a-hexahydro-2H-chromene

![Scheme 4](image)

Fig. 5 Mass spectrum and fragmentation of 1-docosene

![Mass spectrum and fragmentation of 1-docosene](image)

Scheme 5 Mass fragmentation of 1-docosene

![Scheme 5](image)
The GC–MS analysis of the diethylether and ethylacetate fraction of the peel of *Solanum incanum*...

Table 3 The major active principles identified from *S. incanum*(peel)

Fraction	Major Compound	Structure	Mol. formula	Mol. wt	Reported biological activities
Diethyl ether	8-Nonenoic acid	C_9H_{16}O_2	156.225	Streptomyces & antimicrobial	
	3, 7, 11-trimethyl-1, 6, 10-Dodecatrien-3-ol	C_{11}H_{20}O	222.3663	Antibacterial and Anti-inflammatory	
	Acetoxyacetic acid, tridec-2-yynyl ester	C_{15}H_{24}O_4	296.4018	No activity report	
	o-Toluic acid, 6-ethyl-3-octyl ester	C_{16}H_{26}O_2	276	No activity report	
	3-Butylindolizidine	C_{12}H_{22}N	181.323	Anti-inflammatory and antioxidant	
	Fumaric acid, ethyl 2-methylallyl ester	C_{10}H_{14}O_4	198.218	Antibacterial	
	Butylated Hydroxytoluene	C_{15}H_{24}O	220.356	Insecticidal, insect antifeedant, anti-tumor, anti-inflammatory, antioxidant, antibacterial, and fungicidal properties	
Ethyl acetate	[R-(R*, R*)]-2, 3-Butanediol	C_{4}H_{10}O_2	90.121	Pesticides	
	5, 5, 8a-Trimethyl-3, 5, 6, 7, 8,8a-hexahydro-2H-chromene	C_{12}H_{20}O	180.291	Antimicrobial and treatment of respiratory tract disorders	
	Trans-Linalool oxide (furanoid)	C_{10}H_{18}O_2	170.2487	Antimicrobial	

Source Dr. Duke’s phytochemical and ethnobotanical databases

Table 4 Antibacterial activities of *S. incanum* peel at different concentration

Fractions (µg/ml)	*E. coli* (mm)	*K. pneumonia* (mm)	*S. aureus* (mm)	*S. pyogenes* (mm)
DDE: 250	–	–	–	–
500	–	–	–	–
750	11.5 ± 0.5	10.5 ± 0.5	9.5 ± 0.4	9.3 ± 0.58
1000	21.5 ± 0.5	18.3 ± 0.14	17.3 ± 0.14	16.3 ± 0.14
Gentamicin: 10	18.5 ± 0.5	18.7 ± 0.3	17.5 ± 0.4	14.5 ± 0.5
EAE: 250	–	–	–	–
500	7.5 ± 0.5	7.3 ± 0.14	6.3 ± 0.14	–
750	7.6 ± 0.6	12.7 ± 0.3	7.3 ± 0.58	6.7 ± 0.3
1000	16.3 ± 0.58	20.7 ± 0.3	15.7 ± 0.3	13.5 ± 0.5
Gentamicin: 10	17.3 ± 0.14	20.5 ± 0.4	16.5 ± 0.5	13.3 ± 0.14

10% DMSO had not an effect on the bacterial growth
Fig. 6 Zones of inhibition in millimeter at 1000 µg/ml of each fraction of *S. incanum* peel

Fig. 7 Zones of inhibition in millimeter at 750 µg/ml of each fraction of *S. incanum* Peel

Fig. 8 Zones of inhibition in millimeter at 500 µg/ml of EAC of *S. incanum* peel
Acknowledgements The authors thank the management of Wollega University and the Ministry of Science and Higher Education, Ethiopia for providing the required facilities to carry out this research work.

Funding Funding is not available for this article.

Code availability Chemdraw was used for drawing the Chemical structures.

Declarations

Ethical statement This article does not contain any studies involving animals performed by any of the authors. This article does not contain any studies involving human participants performed by any of the authors.

Conflict of interest Yesudass Dominic Ravichandran has no conflict of interest. Mequanint Yetayih has no conflict of interest.

References

Abebe H, Gebre T, Haile A (2014) Phytochemical investigation of the roots of Solanum incanum, Hadiaya Zone, Ethiopia. J Med Plants Stud 2(2):83–93

Alghamdi SSK(2013) Topical depilatory and method of removing hair. Patent No. 8,551,187

Asaolu MF (2003) Chemical composition and phytochemical screening of the seeds of Garcinia kola. Pak J Sci Ind Res 46(3):145–147

Auta R, Ali I (2011) Nutritional and chemical value of Solanum incanum (L) (bitter garden egg). Int J Tropical Med Pub Health 1(1):96–107

Abdalla IMF (2015) Leaves value of Solanum incanum (L) at Khartoum, North Sudan. Int J Eng Sci Innov Technol 4(1):25–28

Asaolu MF, Olayinka AO, Adesanya OA (2014) Phytochemical composition and anti-bacterial activity of the leaf extracts of Solanum incanum var. minus. J Toxicol 2014:1–6. https://doi.org/10.1155/2014/311368

Ashokkumar B, Suresh Babu K (2014) Phytochemical screening and antioxidant activity of Solanum incanum L. fruit extract for its antimicrobial activity. Int J Phytomed. 2014. 1440. 1444

Essien EE, Walker MT, Newby MJ, Oguneawde AI, Setzer NW, Ekunday O (2016) The floral essential oil composition and biological activity of Solanum Macranthum Dunal. Am J Essent Oil Nat Prod 4(1):36–39

Hassim N, Markom M, Anuar N, Baharum SN (2014) Solvent selection in extraction of oil and bioactive compounds from Polygonum minus. J Appl Sci 14:1440–1444. https://doi.org/10.3923/jas.2014.1440.1444

Indhumathi T, Mohandass S (2014) Efficacy of ethanolic extract of Solanum incanum fruit extract for its antimicrobial activity. Int J Curr Microbiol Appl Sci 3(6):939–949

Khalil AA, Rahman U, Khan RM, Sahar A, Mehmood T, Khana M (2017) Essential oil eugenol: sources, extraction techniques and nutraceutical perspectives. RSC Adv 7(52):32669–32681. https://doi.org/10.1039/C7RA04803C

Okhale SE, Ugbabe GE, Oladosu PO, Ibahram JA, Eghevrebva HO, Kunle OF, Elisha EP, Chibuike AJ, Etta UO (2018) Chemical constituents and antimicrobial activity of the leaf essential oil of IXora coccinea L (Rubiaceae) collected from North Central Nigeria. Int J Bioassays 7(4):5630–5637

Ravichandran YD, Sulochana N (2006a) 1H and 13C assignment of Parsilinone from Passiflora edulis. Asian J Chem 18(4):3092–3096

Ravichandran YD, Sulochana N (2006b) Isolation and characterization of 8-methyluteolin 5-O-6¢¢-(2-methyl propanoyl) glucoside and patuletin 3-O-glucuronide from Tithonia taggefillia. Asian J Chem 18(4):3173–3175

Sheeba E (2010) Antibacterial activity of Solanum surattense burm. F. KUISET 61(1):1–4. https://doi.org/10.3126/kuset.v61i1.3278

Sundar S, Pillai YJK (2015) Phytochemical screening and gas chromatograph-mass spectrometer profiling in the leaves of Solanum incanum. Asian J Pharm Clin Res 8(3):179–188

Sakha H, Hora R, Shrestha S, Acharya S, Dhakal D, Thapaliya S, Sundar S, Pillai YJK (2015) Phytochemical screening and gas chromatograph-mass spectrometer profiling in the leaves of Solanum incanum. Asian J Pharm Clin Res 8(3):179–188

Tesfaye T, Ravichandran YD (2018) Traditional uses, pharmacological action and phytochemical action of Carrissa carandas Linn. Nat Prod Chem Res 6:334. https://doi.org/10.4172/2329-6836.1000334

Tamrat T, Ravichandran YD (2018) A review on anticancer activity of some plant-derived compounds and their mode of action. Nat Prod Chem Res 6:330. https://doi.org/10.4172/2329-6836.1000330

Yetayih MM, Ravichandran YD (2020) Extraction and GC-MS analysis of the essential oil from the peel of Solanum incanum and its antibacterial activity studies. Asian J Chem 32(8):2001–2006. https://doi.org/10.14233/ajchem.2020.22770

Yrjönen T (2004) Extraction and planar chromatographic separation techniques in the analysis of natural products, University of Helsinki, Helsinki, Finland, Doctoral dissertation

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.