Sesquiterpenes from the soil-derived fungus

Trichoderma citrinoviride PSU-SPSF346

Wiriya Yaosanit¹, Vatcharin Rukachaisirikul¹*, Souwalak Phongpaichit², Sita Preedanon³ and Jariya Sakayaroj⁴

Abstract

Two new sesquiterpenes, trichocitrinovirenes A (1) and B (2), and five known compounds including four structurally related sesquiterpenes and one γ-lactone were isolated from the soil-derived fungus *Trichoderma citrinoviride* PSU-SPSF346. The structures were identified by analysis of their spectroscopic data. The relative configuration was assigned based on NOEDIFF data. The absolute configuration of compound 1 was established according to specific rotations and ECD data while that of compound 2 was proposed based on biosynthetic considerations. Compound 2 possesses a rare bicyclic sesquiterpene skeleton. The antimicrobial and cytotoxic activities of the isolated compounds were evaluated.

Introduction

The fungus *Trichoderma citrinoviride* produces structurally diverse secondary metabolites including diterpenes [1,2], alkaloids [3], sorbicillinoids [4,5], long chain alcohols [6], and cyclonerane sesquiterpenes [7]. Some of them display antibacterial [1,2,7], cytotoxic [3], anti-inflammatory [4], and antimicrobial [7] activities. Based on these data, the investigation of secondary metabolites from this fungus is still limited. In our ongoing search for antimicrobial secondary metabolites from soil-derived fungi, *T. citrinoviride* PSU-SPSF346 was isolated from a soil sample collected from the Sirindhorn Peat Swamp Forest, Narathiwat Province, Thailand. The crude mycelial extract of *T. citrinoviride* PSU-SPSF346 displayed antimicrobial activities against *Staphylococcus aureus*, methicillin-resistant *S. aureus*, and *Cryptococcus neoformans* ATCC90113 with
Chemical investigation of the broth and mycelial extracts of *T. citrinoviride* PSU-SPSF346 by various chromatography techniques led to the isolation of two new sesquiterpenes, trichocitrinoviren (1) and B (2), four known structurally related sesquiterpenes including gloicladic acid (3), hydroheptelic acid (4), and xylaric acids B (5) and D (6) [8], as well as one known γ-lactone, fusidilactone A (7) [9] (Figure 1). Their structures were elucidated on the basis of their spectroscopic data including IR, UV, NMR, and MS. The relative configuration was assigned based on biosynthetic considerations. The structures of the known compounds were further confirmed by comparison of their 1H and 13C NMR spectroscopic data, specific rotations, and ECD data with those previously reported.

Trichocitrinovirene A (1) was isolated as a colorless gum and had the molecular formula C15H22O5 on the basis of the HRESIMS peak at *m/z* 305.1359 [M + Na]⁺. The IR spectrum exhibited absorption bands at 3336, 1684, and 1649 cm⁻¹ for hydroxy, conjugated carboxyl carbonyl, and double bond functional groups, respectively [10]. The 1H NMR spectrum (Table 1) displayed characteristic signals for two olefinic protons of two trisubstituted alkenes (δH 6.64, 2H, J = 10.5 Hz, and 5.31, s, each 1H), two methine protons (δH 3.06 and 1.35, each 1H), one set of equivalent oxymethylene protons (δH 3.92, s, 2H), three sets of nonequivalent methylene protons (δH 3.40 and 3.30, each 1H; δH 2.13 and 2.04, each 1H; δH 1.81 and 1.39, each 1H), and an isopropyl group (δH 1.71, m, 1H, and δH 0.95 and 0.82, each 2H, J = 6.9 Hz, 3H). The 13C NMR spectrum (Table 1) consisted of signals for two carboxyl carbonyl carbons (δC 175.1 and 171.1), two olefinic quaternary carbons (δC 141.1 and 128.1), two olefinic methine carbons (δC 149.7 and 123.5) and three methine carbons (δC 46.8, 40.7 and 29.8), one oxymethylene carbon (δC 67.0), three methylene carbons (δC 33.6, 26.7 and 22.4), and two methyl carbons (δC 21.7 and 17.3). These NMR spectroscopic data were similar to those of compound 3 except for the replacement of signals for the nonequivalent oxymethylene protons (δH 4.37 and 4.32, H-ab; δC 57.4, C-3) in compound 1 with signals for the nonequivalent methylene protons resonating at higher field (δH 3.40 and 3.30, each 1H, J = 16.8 Hz, 1H; δC 33.6, C-3), and an additional signal for a carboxyl carbonyl carbon (δC 175.1) in compound 1. The HMBC cross peaks of these nonequivalent methylene protons with C-1 (δC 171.1), C-2 (δC 128.1), C-4 (δC 175.1), and C-5 (δC 149.7) (Figure 2) together with the chemical shift of C-3 indicated that the 3-OH group in compound 3 was replaced by a carboxyl group in compound 1. The relative configuration was determined by the NOEDFF data (Figure 2). A signal enhancement of H-7, but not H-5, after irradiation of H-3, indicated an E-configuration of the trisubstituted α,β-unsaturated carboxylic acid. In addition, a *trans* relationship between H-6 and H-11 was established according to signal enhancement of H-12 (δH 1.71), H-7, and H-14 after irradiation of H-6. The absolute configuration at C-6 was assigned as R based on the experimental ECD spectrum of compound 1 which showed a

Figure 1: Structures of compounds 1–7 isolated from *Trichoderma citrinoviride* PSU-SPSF346.
Table 1: The NMR data of compounds 1 and 2 in CD$_3$OD.

No.	δ$_C$, C-type	δ$_H$, mult. (J [Hz])	δ$_C$, C-type	δ$_H$, mult. (J [Hz])
1	171.1, C	174.5, C	118.7, CH$_2$	a: 5.93, s
2	128.1, C	150.2, C		b: 5.52, s
3	33.6, CH$_2$	a: 3.40, d (16.8)	84.6, CH	4.72, s
		b: 3.30, d (16.8)	47.0, CH	2.81, brs
4	175.1, C	118.7, CH$_2$	51.4, CH	2.63, d (3.0)
5	149.7, CH	6.64, d (10.5)	83.4, C	
6	40.7, CH	118.7, CH$_2$	29.3, CH$_2$	a: 2.45, ddd (14.5, 9.5, 6.5)
7	123.5, CH	5.31, s		b: 1.37, m
8	141.1, C	118.7, CH$_2$		
9	26.7, CH$_2$	a: 2.13, m	22.5, CH$_2$	a: 1.84, m
		b: 2.04, m		b: 1.64, m
10	22.4, CH$_2$	a: 1.81, m	49.0, CH	1.35, m
		b: 1.39, m		
11	46.8, CH	1.35, m	30.6, CH	1.83, m
12	29.8, CH	1.71, m	23.0, CH$_3$	1.06, d (6.5)
13	17.3, CH$_3$	0.82, d (6.9)	22.5, CH$_3$	0.88, d (6.5)
14	21.7, CH$_3$	0.95, d (6.9)	179.6, C	
15	67.0, CH$_2$	3.92, s	69.2, CH$_2$	a: 3.69, d (10.5)
				b: 3.65, d (10.5)

Figure 2: 1H-1H COSY, key HMBC, and NOEDIFF data of compounds 1 and 2.

Table 1 displays characteristic signals for two geminal olefinic protons (δ$_H$ 5.93 and 5.52, each s, 1H), one oxymethylene proton (δ$_H$ 4.72, s, 1H), three methine protons (δ$_H$ 2.81,
brs, 1H, 2.63, d, J = 3.0 Hz, 1H and 1.35, m, 1H), one set of nonequivalent oxymethylene protons (δ_H 3.69 and 3.65, each d, J = 10.5 Hz, 1H), two sets of nonequivalent methylene protons (δ_H 2.45, ddd, J = 14.5, 9.5 and 6.5 Hz, 1H and 1.37, m, 1H; δ_H 1.84 and 1.64, each m, 1H), and an isopropyl group (δ_H 1.83, m, 1H, and δ_H 1.06 and 0.88, each d, J = 6.5 Hz, 3H).

The 13C NMR spectrum (Table 1) consisted of signals for two carboxyl carbonyl carbons (δ_C 179.6 and 174.5), two quaternary carbons (one olefinic carbon, δ_C 150.2, and one oxycarbon, δ_C 83.4), one oxymethine carbon (δ_C 84.6), four methine carbons (δ_C 51.4, 49.0, 47.0 and 30.6), one oxymethylene carbon (δ_C 69.2), three methylene carbons (δ_C 118.7, 29.3 and 22.5), and two methyl carbons (δ_C 23.0 and 22.5). The 1H-1H COSY correlations (Figure 2) of H_6 (δ_H 2.63)/H_5 (δ_H 2.81), H_5/H_10 (δ_H 1.35), and H_{ab}-9 (δ_H 1.84 and 1.64)/H_{ab}-8 (δ_H 2.45 and 1.37) and H_10, and the HMBC correlations (Figure 2) from H_3-12 (δ_H 1.06) and H_3-13 (δ_H 0.88) of the isopropyl group to C_10 (δ_C 49.0) and H_{ab}-15 (δ_H 3.69 and 3.65) to C_6 (δ_C 51.4), C_7 (δ_C 83.4), and C_8 (δ_C 29.3) as well as the chemical shifts of C_4 and C_7 established an ether bond between C_4 and C_7 and a C–C bond between C_4 and C_5 to form a bicyclic skeleton. The relative configuration was determined by the NOEDIFF data (Figure 2).

The signal enhancement of H_5 and H_10 upon irradiation of H_4 indicated their close proximity and the orientation of the isopropyl group at an α-position. Irradiation of H_6 enhanced the signal intensities of H_{ab}-3, H_5, and H_{ab}-15, indicating that the carboxyl moiety was α-oriented. Biosynthetically, compound 2 might be derived from compound 4 or compound 5 by oxa-Michael reaction of 7-OH to the α,β-unsaturated carboxylic acid moiety to form a tetrahydrofuran unit followed by ring opening of the lactone moiety and demethylation, respectively (Figure 4). Subsequent dehydration would afford compound 2 with an α,β-unsaturated carboxylic acid moiety. Alternatively, the ring opening of compound 4 and demethylation of compound 5 would occur prior to the oxa-Michael reaction. Accordingly, the absolute configurations at C-5, C-6, C-7, and C-10 of compound 2 were proposed to be 5S, 6S, 7S, and 10R identical to those of the co-metabolites 4 and 5. The absolute configuration at C-4 was thus assigned to be R. Therefore, compound 2 is a rare bicyclic sesquiterpene.

![Figure 4: Proposed biosynthetic pathway for compound 2.](image-url)
The fungus PSU-SPSF346 was isolated from a soil sample collected from the Sirindhorn Peat Swamp Forest, Narathiwat Province, Thailand. This fungus was deposited as BCC88125 at BIOTEC Culture Collection (BCC), National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand. The fungus SPSF346 was identified based on its morphological and molecular characteristics. The molecular analysis of the internal transcribed spacers (ITS) (GenBank accession number MH997885) and partial large subunit (LSU) (GenBank accession number MH997897) ribosomal RNA gene revealed that the fungus PSU-SPSF346 had close relationships with several strains of *Trichoderma citrinoviride* with 99% nucleotide identity for both DNA regions. Therefore, this fungus can be identified as *Trichoderma citrinoviride*.

Fermentation, extraction, and isolation

The crude broth ethyl acetate (BE, 16.5 g) and the mycelial ethyl acetate (CE, 2.6 g) extracts were obtained as a dark brown gum and yellow-brown gum, respectively, using the same procedure as previously described [15]. The broth extract was separated by CC over Sephadex LH-20 using a mixture of MeOH/CH$_2$Cl$_2$ 1:1 to afford five fractions (A1−A5). Fraction A4 (7.0 g) was purified by CC over Sephadex LH-20 using a mixture of MeOH/CH$_2$Cl$_2$ 1:3 to obtain seven subfractions (A4A−A4G). Subfraction A4F (3.0 g) was purified using the same procedure as fraction A4 to afford eight subfractions (A4F1−A4F8). Subfraction A4F6 (770.3 mg) was separated by CC over silica gel using a mixture of EtOAc/CH$_2$Cl$_2$/MeOH 18:1:1 to give 12 subfractions (A4F6A−A4F6L). Subfraction A4F6H contained compound 3 (91.3 mg). Subfraction A4F6J (532.4 mg) afforded compound 4 (178.3 mg) after purification by CC over reversed-phase C$_{18}$ silica gel using a mixture of MeOH/H$_2$O 1:1. Subfraction A4F6K (30.1 mg) was purified using the same procedure as subfraction A4F6J followed by CC over Sephadex LH-20 using a mixture of MeOH/CH$_2$Cl$_2$ 3:1 to afford compound 1 (4.1 mg). Subfraction A4G (80.0 mg) was subjected to CC over reversed-phase C$_{18}$ silica gel using a mixture of MeOH/H$_2$O 3:2 to yield six subfractions (A4G1−A4G6). Subfraction A4G2 (18.2 mg) was separated by CC over silica gel using a mixture of CH$_3$Cl$_2$/hexane/MeOH 17:2:1 followed by CC over Sephadex LH-20 using MeOH to obtain compound 2 (2.6 mg). The mycelial EtOAc extract (2.6 g) was fractionated by CC over Sephadex LH-20 using a mixture of MeOH/CH$_2$Cl$_2$ 1:1 to give five fractions (B1−B5). Fraction B3 (892.5 mg) was purified by CC over silica gel using a mixture of MeOH/CH$_2$Cl$_2$ 3:97 to give ten subfractions (B3A−B3J). Subfraction B3E (81.5 mg) was separated by CC over silica gel using a mixture of acetone/hexane 1:4 to afford five subfractions (B3E1−B3E5). Subfraction B3E2 (5.1 mg) was purified using the same procedure as fraction A4 to afford compound 7 (2.8 mg). Subfraction B3J (454.1 mg) was separated using the same procedure as subfraction A4F6J to provide seven subfractions (B3J1−B3J7).

Conclusion

The investigation of the crude extracts of the soil-derived fungus *T. citrinoviride* PSU-SPSF346 resulted in the isolation of seven compounds including two new (1 and 2) and four known sesquiterpenes (3−6), and one known γ-lactone (7). Sesquiterpenes of this type were previously isolated from the fungus PSU-SPSF346. Unfortunately, none of the tested compounds displayed antimicrobial and cytotoxic activities. In addition, compound 2 is a rare bicyclic sesquiterpene. Unfortunately, none of the tested compounds I and 3−6 displayed antimicrobial and cytotoxic activities.
Subfraction B3J3 (6.0 mg) was then washed with acetone to afford compound 5 (3.7 mg).

Trichocitrinovirene A (1): Colorless gum; $[\alpha]_D^{26} +46.1$ (c 0.67, MeOH); UV (MeOH) λ_{max}, nm (log e): 210 (3.32); ECD (MeOH, c 0.0008) λ_{max}, nm (Δε): 227 (+4.3); IR (neat) ν_{max}: 3366, 1684, 1649 cm$^{-1}$; H and 13C NMR (CD$_3$OD) see Table 1; HRMS–ESI (m/z): [M + Na]$^+$ calcd for C$_{15}$H$_2$O$_2$Na, 305.1356; found, 305.1359.

Trichocitrinovirene B (2): Colorless gum; $[\alpha]_D^{26} +44.6$ (c 0.67, MeOH); UV (MeOH) λ_{max}, nm (log e): 210 (3.67); IR (neat) ν_{max}: 3366, 1683, 1645 cm$^{-1}$; H and 13C NMR (CD$_3$OD) see Table 1; HRMS–ESI (m/z): [M + Na]$^+$ calcd for C$_{15}$H$_2$O$_2$Na, 321.1309; found, 321.1320.

Antimicrobial assay
Antimicrobial activity was evaluated according to the Clinical and Laboratory Standards Institute [16]. Vancomycin was used as a positive control for *S. aureus* and methicillin-resistant *S. aureus* and exhibited MIC values of 0.25 and 1.0 μg/mL, respectively. Amphothericin B was used as a positive control for *C. neoformans* ATCC90113 and displayed a MIC value of 0.25 μg/mL.

Cytotoxicity assay
The activity assay against African green monkey kidney fibroblast (Vero) cells was performed in triplicate employing the method described by Hunt and co-workers [17]. Ellipticine, the standard drug, displayed an IC$_{50}$ value of 4.06 μM. The activities against KB and MCF-7 cell lines were evaluated using the resazurin microplate assay [18]. Doxorubicin was used as a standard drug for KB and MCF-7 cell lines and displayed IC$_{50}$ values of 1.21 and 15.84 μM, respectively.

Supporting Information
Supporting Information File 1 HRESIMS profiles for compounds 1 and 2 and copies of NMR spectra for compounds 1–7.
https://www.beilstein-journals.org/bjoc/content/supplementary/1860-5397-18-50-S1.pdf

Acknowledgements
V. Rukachaisirikul thanks the NSTDA Chair Professor grant (the Fourth Grant) of the Crown Property Bureau and the National Science and Technology Development Agency. W. Yaosanit acknowledges the Faculty of Science, Prince of Songkla University for the research assistantship (contract no. 1-2562-02-004), and the Center of Excellence for Innovation in Chemistry (PERCH-CIC), the Graduate School and Division of Physical Science, Faculty of Science, Prince of Songkla University for partial support. Finally, National Center for Genetic Engineering and Biotechnology (BIOTEC) is acknowledged for evaluation of cytotoxic activity.

Funding
This work was supported by the NSTDA Chair Professor grant (the Fourth Grant) of the Crown Property Bureau.

ORCID® iDs
Vatcharin Rukachaisirikul - https://orcid.org/0000-0003-1517-1526

References
1. Liang, X.-R.; Miao, F.-P.; Song, Y.-P.; Guo, Z.-Y.; Ji, N.-Y. Nat. Prod. Res. 2016, 30, 1605–1610. doi:10.1080/14786419.2015.1126264
2. Liang, X.-R.; Miao, F.-P.; Song, Y.-P.; Liu, X.-H.; Ji, N.-Y. Bioorg. Med. Chem. Lett. 2016, 26, 5029–5031. doi:10.1016/j.bmcl.2016.08.093
3. Hu, X.; Gong, M.-W.; Zhang, W.-W.; Zheng, Q.-H.; Liu, Q.-Y.; Chen, L.; Zhang, Q.-Q. Heterocycles 2014, 89, 189–196. doi:10.3987/com-13-12874
4. Marra, R.; Nicoletti, R.; Pagano, E.; DellaGreca, M.; Salvatore, M. M.; Borrelli, F.; Lombardi, N.; Vinale, F.; Woo, S. L.; Andolfi, A. Nat. Prod. Res. 2019, 33, 3389–3397. doi:10.1080/14786419.2018.1479702
5. Evidente, A.; Andolfi, A.; Cimmino, A.; Ganassi, S.; Altomare, C.; Favilla, M.; De Cristofaro, A.; Vitagliano, S.; Agnese Sabatini, M. J. Chem. Ecol. 2009, 35, 533–541. doi:10.1007/s10886-009-9632-6
6. Ganassi, S.; Grazioso, P.; De Cristofaro, A.; Fiorentini, F.; Sabatini, M. A.; Evidente, A.; Altomare, C. Front. Microbiol. 2016, 7, 297. doi:10.3389/fmicb.2016.00297
7. Liu, X.-H.; Hou, X.-L.; Song, Y.-P.; Wang, B.-G.; Ji, N.-Y. J. Agric. Food Chem. 2019, 67, 10646–10652. doi:10.1021/acs.jfrc.9b04053
8. Yan, S.; Li, S.; Wu, W.; Zhao, F.; Bao, L.; Ding, R.; Gao, H.; Wen, H.-A.; Song, F.; Liu, H.-W. Chem. Biodiversity 2011, 8, 1689–1700. doi:10.1002/cbb.201100026
9. Krohn, K.; Biele, C.; Drogies, K.-H.; Steingrüber, K.; Aust, H. J.; Draeger, S.; Schulz, B. Eur. J. Org. Chem. 2002, 2331–2336. doi:10.1002/1099-0690(200207)2002:14+2331::aid-ejoc2331+3.0.co;2-p
10. Rukachaisirikul, V.; Chinthap, S.; Phongpaichit, S.; Saikhwam, N.; Sakayaroj, J.; Preedanon, S. Phytochem. Lett. 2016, 30, 124–129. doi:10.1016/j.phytol.2019.01.023
11. Hu, Z.; Tao, Y.; Tao, X.; Su, Q.; Cai, J.; Qin, C.; Ding, W.; Li, C. J. Agric. Food Chem. 2019, 67, 10646–10652. doi:10.1021/acs.jafc.9b04053
12. Jiao, W.-H.; Salim, A. A.; Khalil, Z. G.; Dewapriya, P.; Lin, H.-W.; Butler, M. S.; Capon, R. J. Nat. Prod. 2019, 82, 3165–3175. doi:10.1021/acs.jnatprod.9b00760
13. Wei, H.; Xu, Y.-M.; Espinosa-Artilles, P.; Liu, M. X.; Luo, J.-G.; U'Ren, J. M.; Arnold, A. E.; Gunatilaka, A. A. L. Phytochemistry 2015, 118, 102–108. doi:10.1016/j.phytochem.2015.08.010
14. Liu, H.; Pu, Y.-H.; Ren, J.-W.; Li, E.-W.; Guo, L.-X.; Yin, W.-B. Org. Biomol. Chem. 2020, 18, 5344–5348. doi:10.1039/d0ob01202e
15. Phainuphong, P.; Rukachaisirikul, V.; Saithong, S.; Phongpaichit, S.; Bowornwinyapan, K.; Muanprasat, C.; Srimaroeng, C.; Duangjai, A.; Sakayaroj, J. *J. Nat. Prod.* 2016, 79, 1500–1507. doi:10.1021/acs.jnatprod.5b00961

16. Phongpaichit, S.; Rungjindamai, N.; Rukachaisirikul, V.; Sakayaroj, J. *FEMS Immunol. Med. Microbiol.* 2006, 48, 367–372. doi:10.1111/j.1574-695x.2006.00155.x

17. Hunt, L.; Jordan, M.; De Jesus, M.; Wurm, F. M. *Biotechnol. Bioeng.* 1999, 65, 201–205. doi:10.1002/(sici)1097-0290(19991020)65:2<201::aid-bit10>3.0.co;2-h

18. O’Brien, J.; Wilson, I.; Orton, T.; Pognan, F. *Eur. J. Biochem.* 2000, 267, 5421–5426. doi:10.1046/j.1432-1327.2000.01606.x

License and Terms

This is an open access article licensed under the terms of the Beilstein-Institut Open Access License Agreement (https://www.beilstein-journals.org/bjoc/terms), which is identical to the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0). The reuse of material under this license requires that the author(s), source and license are credited. Third-party material in this article could be subject to other licenses (typically indicated in the credit line), and in this case, users are required to obtain permission from the license holder to reuse the material.

The definitive version of this article is the electronic one which can be found at: https://doi.org/10.3762/bjoc.18.50