Global trends in research related to sleeve gastrectomy: A bibliometric and visualized study

Abdulkarim Barqawi, Faris AK Abushamma, Maha Akkawi, Samah W Al-Jabi, Moyad Jamal Shahwan, Ammar Abdulrahman Jairoun, Sa’ed H Zyoud

ORCID number: Abdulkarim Barqawi 0000-0002-0503-8046; Faris AK Abushamma 0000-0002-0530-5466; Maha Akkawi 0000-0002-2940-969X; Samah W Al-Jabi 0000-0002-4414-9427; Moyad Jamal Shahwan 0000-0001-8367-4841; Ammar Abdulrahman Jairoun 0000-0002-4471-0878; Sa’ed H Zyoud 0000-0002-7369-2058.

Author contributions: Zyoud SH had the main responsibility for the conceptualization, methodology, data collection, writing and editing the manuscript, performed all statistical analyses, and created all tables and figures; Barqawi A, Abushamma F and Akkawi M made substantial contributions to conceptualization, methodology, made contributions to the manuscript’s existing literature search, and revising the manuscript; Al-Jabi SW, Jairoun AA and Shahwan WM conceived the idea for the project, made substantial contributions to conceptualization, involved in interpretation of the data, and made revisions to the initial draft; all authors provided a critical review and approved the final manuscript before submission.

Conflict-of-interest statement: The authors have no financial disclosures or conflicts of interest.

Abstract

BACKGROUND

One of the most popular bariatric procedures is sleeve gastrectomy, and it has become significantly more common in recent years.

AIM

To evaluate the research activity in sleeve gastrectomy over the last two decades, and to visualize the hot spots and emerging trends in this type of bariatric surgery.
INTRODUCTION

Bariatric surgery has been trending since the twentieth century as hundreds of articles discussed different surgical approaches in the prospect of feasibility, complication rate, and long-term outcomes[1]. Bariatric surgery is a broad term that does entail different surgical approaches, including open and laparoscopic surgery. In 2018, 696191 surgical and endoluminal procedures were performed under the umbrella of bariatric surgery [2]. Most of the procedures were surgical approaches rather than endoluminal, such as using bibliometric methods.

METHODS

The Scopus database was used to search for publications related to sleeve gastrectomy. The retrieved publications were reviewed in terms of year of publication, type of study, country of origin, institutions, journals, and citation patterns by using descriptive analysis. Collaboration network and term co-occurrence analysis were visualized by using VOSviewer software.

RESULTS

The search strategy yielded a total of 6508 publications on sleeve gastrectomy from 2001 to 2020. As regards the document type, the majority were articles (n = 5230; 80.36%), followed by reviews (n = 544; 8.36%). The top three countries are the United States, with 1983 publications (30.47%), followed by France (600; 9.22%) and Italy (417; 6.71%). The most cited publication was published in 2012 by Schauer et al in the New England Journal of Medicine (n = 1433 citations). This publication found that weight loss was greater in the sleeve gastrectomy group than in the medical therapy group. Furthermore, this study demonstrated that 12 mo of medical therapy plus bariatric surgery greatly improved glycemic regulation in obese patients with uncontrolled type 2 diabetes compared with medical therapy alone. The focus of the current literature on sleeve gastrectomy was directed toward several themes such as morbidity and potential complications, the complexity of the procedure and different surgical approaches, and diabetes and body mass index in correlation to sleeve gastrectomy.

CONCLUSION

The number of sleeve gastrectomy publications has gradually grown over the last 20 years. This bibliometric analysis could help researchers better understand the knowledge base and research frontiers surrounding sleeve gastrectomy. In addition, future studies may focus on emerging research hotspots.

Key Words: Sleeve gastrectomy; Bibliometric; Scopus; VOSviewer; Bariatric surgery

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: One of the most popular bariatric procedures is sleeve gastrectomy, and it has become significantly more common in recent years. Therefore, this study intends to evaluate the research activity in sleeve gastrectomy over the last two decades and quantitatively estimate the hot spots and emerging trends in this type of bariatric surgery with bibliometric methods and enable researchers to identify new areas for potential development. The current literature on sleeve gastrectomy was directed toward several themes such as morbidity and potential complications, the complexity of the procedure and different surgical approaches, and diabetes mellitus and body mass index in correlation with sleeve gastrectomy.

Citation: Barqawi A, Abushamma FA, Akkawi M, Al-Jabi SW, Shahwan MJ, Jairoun AA, Zyoud SH. Global trends in research related to sleeve gastrectomy: A bibliometric and visualized study. World J Gastrointest Surg 2021; 13(11): 1509-1522
URL: https://www.wjgnet.com/1948-9366/full/v13/i11/1509.htm
DOI: https://dx.doi.org/10.4240/wjgs.v13.i11.1509
sleeve gastrectomy (SG), one anastomosis gastric bypass (OAGB), and Roux-en-Y gastric bypass (RYGB). Sleeve gastrectomy remains the most popular procedure worldwide, with thousands of articles and reviews debating its benefits, complications, and long-term outcomes[3-10]. The reasons behind sleeve gastrectomy being a trending topic over the last twenty years are that sleeve gastrectomy is technically less demanding, the learning curve is shorter than other surgical approaches, and it is purely physiological as no anastomosis or bypass is required. The previously mentioned facts support sleeve gastrectomy as it should be associated with less nutritional deficiency and low short-term complications[11-13].

The volume of scientific evidence related to sleeve gastrectomy is enormous, and the annually published article curve is steeply growing[14,15]. Still, it is poorly correlated and not connected to a simple algorithm or graph to explain the pattern and to display the topics that still demand more scientific input so researchers can work on them. Bibliometric analysis revealed that surgical activity and scientific publications in bariatric surgery is a rapidly developing research field[14-18]. However, a quantitative analysis of sleeve gastrectomy has not yet been conducted. Therefore, this study intends to evaluate the research activity in sleeve gastrectomy over the last two decades and quantitatively estimate the hot spots and emerging trends in this type of bariatric surgery with bibliometric methods and enable researchers to identify new areas for potential development.

MATERIALS AND METHODS

Sources of the Data
We downloaded and extracted the publications from the Scopus database. All data were acquired on January 9, 2021. Despite the fact that there are many databases available for worldwide research evaluation, the current study selected the Scopus database because it included rich information such as country distribution and citation analysis. It has been widely used in the field of bibliometric studies[19-22].

Search strategy
The published papers were searched in the recent twenty years (from 2001 to 2020). We used the keyword “Sleeve gastrectomy” or “Gastric Sleeve” in the title and/or abstracts because we are concerned with sleeve gastrectomy per se rather than related terminology. The search strategy was as follows: (TITLE-ABS (“Sleeve gastrectomy”) OR TITLE-ABS (“Gastric Sleeve”)) AND PUBYEAR > 2000 AND PUBYEAR < 2021.

Bibliometric Analysis
In this analysis, descriptive statistics are primarily used. Scopus's intrinsic role categorized and analyzed research trends and publication features, such as the distribution of countries, organizations, journals, and citation pattern areas. Besides, the top 20 most cited articles were also listed.

Statistical analysis
The Visualization of Similarity viewer (VOSviewer 1.6.16) software[23] was used to create collaboration network maps regarding the cooccurrences of all terms in the title and abstract to determine the hotspots related to sleeve gastrectomy research. The visualization of international collaboration to identify the most prominent countries visualizing their relationships was also accomplished using VOSviewer. The data are compared over three 20-year time spans to see how the term used has evolved over time.

RESULTS

Volume and types of publications
The search strategy yielded a total of 6,508 publications on sleeve gastrectomy from 2001 to 2020. As regards the document type, the majority were articles (n = 5230; 80.36%), followed by reviews (n = 544; 8.36%), letters (n = 250; 3.84%), editorials (n = 172; 2.64%). Other document types such as notes, conferences, papers, or errata amounted to 312 (4.79%) publications. The growth track over the last 20 years (Figure 1) has seen two stages: the first (2001-2010), which had a very slow development period, and the second (2011-2020), which had a very fast development
period. The average publication output increased from 46.2 publications per year in the initial period to 604.6 publications per year in the development period. Furthermore, the number of publication outputs during the development period increased from 205 publications in 2011 to 1,176 publications in 2020.

Top prolific countries

The contributions from each country were counted. The top ten most profitable countries for sleeve gastrectomy are listed in Table 1, along with the total number of publications for each region. Researchers from the United States of America reported about 1983 publications (30.5%) of the science material relating to sleeve gastrectomy over the last 20 years, resulting in the highest pool of evidence about sleeve gastrectomy. France (n = 600, 9.2%) and Italy (n = 417, 6.4%) are the next two countries. Figure 2 illustrates a network mapping of international research collaboration between countries with a minimum research output of 10 documents on sleeve gastrectomy. The United States and France are the countries with the most active research and collaboration.

Top prolific institutions

Table 2 shows each institution’s contribution to the top ten most profitable institutions for sleeve gastrectomy research. The United States and France share six out of the ten most productive institutions for sleeve gastrectomy. The top institution is Cleveland Clinic Foundation with a total of 130 publications (2%). The second and third institutions were France-based as both Inserm institution and AP-HP Assistance Publique - Hopitaux de Paris shared 125 (3.4%) published articles.

Top prolific journals

Concerning the individual journals, Obesity Surgery published the largest number of sleeve gastrectomy publications (n = 1744, 27%). This is followed by Surgery for Obesity and Related Diseases (n = 1040, 16%). Both journals share the major output of research and articles related to sleeve gastrectomy. Surgical endoscopy is the third on the list with 304 (4.7%) published articles. Table 3 lists the top ten most productive journals for sleeve gastrectomy research.

Top-cited publications

The top 20 most cited papers on sleeve gastrectomy are summarized in Table 4. The top 20 most cited articles had citations ranging from 556 to 1435[1,24-42]. The top-cited article is bariatric surgery vs intensive medical therapy in obese patients with diabetes,
Barqawi A et al. Research trends in sleeve gastrectomy

Table 1 Top 10 most productive countries in sleeve gastrectomy research

Ranking	Country	Number of publications	%
1st	United States	1983	30.47
2nd	France	600	9.22
3rd	Italy	417	6.41
4th	Spain	356	5.47
5th	United Kingdom	316	4.86
6th	China	297	4.56
7th	Germany	281	4.32
8th	Turkey	272	4.18
9th	Canada	243	3.73
10th	Israel	190	2.92

Table 2 Top 10 most productive institutions in sleeve gastrectomy research

Ranking	Institute	Country	Number of publications	%
1st	Cleveland Clinic Foundation	United States	130	2.00
2nd	Inserm	France	118	1.81
3rd	AP-HP Assistance Publique - Hopitaux de Paris	France	107	1.64
4th	Università degli Studi di Roma La Sapienza	Italy	93	1.43
5th	Tel Aviv University	Israel	84	1.29
6th	University of Michigan, Ann Arbor	United States	82	1.26
7th	Harvard Medical School	United States	81	1.24
8th	Università degli Studi di Napoli Federico II	Italy	70	1.08
9th	Centre Hospitalier Universitaire de Nice, Hôpital l’Archet	France	68	1.04
10th	Hôpital du Sacré-Cœur-de-Montréal	Canada	65	1.00

Published in 2012 in the *New England Journal of Medicine* with 1435 citations. The second top-cited article is Bariatric surgery vs intensive medical therapy for diabetes - 3-Year outcomes, which was published in 2014 in the *New England Journal of Medicine* with 983 citations. The third and fourth top-cited publications were published in *Obesity Surgery* in 2013 and 2015 with 1751 total citations per both documents, retrospectively. A Cochrane review was published in 2014 with total 806 citations discussing surgery for weight loss in adults, which was written by Colquitt JL.

Sleeve gastrectomy research themes, frequent topics, and trends

The visualization of the most frequently found terms in the title and abstracts of the collected documents (a minimum of 50 times) resulted in three major colored clusters (red, green, and blue), which reflect the three research topics as the highest research priority topics (**Figure 3**). Cluster number 1 (red color) included terms related to morbidity and potential complications topics such as conversion, leak, and fistula; Cluster number 2 (blue color) included terms related to the complexity of the procedure and different surgical approach topics such laparoscopy; and Cluster number 3 (green color) included terms related to diabetes and BMI in correlation to sleeve gastrectomy. **Figure 4** shows an overlay visualization in which the VOSviewer was used to add colors to the terms according to the year of publication. Blue terms emerged first, followed by yellow terms later. Most sleeve gastrectomy research centered on terms relating to morbidity and surgical complications before 2016, namely, in the early stages of research in this field. The current trends presented the terms associated with surgical techniques and the correlation of sleeve gastrectomy to diabetes mellitus and body mass index.
Barqawi A et al. Research trends in sleeve gastrectomy

Table 3 Top 10 most productive journals in sleeve gastrectomy research

Ranking	Journal	Number of publications	%	IFa
1st	Obesity Surgery	1744	26.80	3.412
2nd	Surgery for Obesity and Related Diseases	1040	15.98	3.812
3rd	Surgical Endoscopy	304	4.67	3.149
4th	Bariatric Surgical Practice and Patient Care	85	1.31	0.391
5th	Journal of Laparoendoscopic and Advanced Surgical Techniques	75	1.15	1.310
6th	Surgical Laparoscopy Endoscopy and Percutaneous Techniques	61	0.94	1.382
7th	International Journal of Surgery	57	0.88	3.352
8th	Annals of Surgery	56	0.86	10.130
9th	Journal of Gastrointestinal Surgery	54	0.83	2.573
10th	International Journal of Surgery Case Reports	53	0.81	NA

*Impact factors based on Journal Citation Reports 2019 from Clarivate Analytics. IF: Impact factors; NA: Not available.

DISCUSSION

This bibliometric analysis presents a comprehensive overview of the growth of the scientific literature regarding sleeve gastrectomy research in the recent twenty years. Sleeve gastrectomy is one of the most common bariatric procedures and one of the most researched[14,15,17,18,43-46]. The global patterns of published papers in sleeve gastrectomy research showed statistically continued growth over time. While the number of publications increased gradually, the year-over-year percentage of publications increased noticeably in the last two years. Thus, sleeve gastrectomy-related research has recently shown considerable growth, which can be recognized by researchers’ contributions globally. To evaluate the research contributions at the global level, total research publication output in the field of sleeve gastrectomy has been applied as an indicator for scientific research production. In accordance with the observed increase of research regarding morbidity and surgical complications in general[47-53], our results demonstrated a continued increase of sleeve gastrectomy literature since 2001. This progress was particularly prominent since 2010, which coincided with the shift in focusing on developing tools for surgical techniques[54-57] and the correlation of sleeve gastrectomy with diabetes mellitus and body mass index[58-67].

In the current study, the United States has the highest publication rate in research production with sleeve gastrectomy, which matches what has also been found in other therapeutic approaches to obesity treatment[14,15,18,43-46]. France was ranked as the second in the number of publications in the field of sleeve gastrectomy, followed by Italy. This can be attributed to the development of countries’ scientific systems and the number of researchers[68] or due to the high prevalence of overweight and obesity in these countries[69,70].

According to Angrisani et al[1] the United States had the largest number of bariatric procedures and the United States is the leading country globally. In addition, according to a review of bariatric practice in the United States, laparoscopic sleeve gastrectomy has become the most commonly performed bariatric procedure[71]. According to data from Europe, France currently has the highest rate of bariatric surgery[72]. Despite the comparatively low prevalence rates of 3.1% and 1.2% for grade II and III obesity, respectively, in France in comparison to other European countries, this may be clarified by a favorable policy contextual and unrestricted access to bariatric surgery in France[73]. France's current distinction in comparison to other European countries is the current and increasing preference for laparoscopic sleeve gastrectomy over other procedures[73].

The current findings are in accord with a previous bibliometric study indicating that the United States were the most productive country in research related to the microbiome related to irritable bowel syndrome[74]. These findings seem to be in agreement with other bibliometric research that found the United States and France were the leading scientific countries on Chagas cardiomyopathy[75]. On the other hand, as revealed by previous bibliometric studies[76-80], the United States took the
first international collaborative articles position. The importance of international collaboration was not only focusing on advancing knowledge and strengthening research capacity[81]; it also might increase citation rates and improve research quality [82,83].

The most cited publication was published in 2012 by Schauer et al[42] in the New England Journal of Medicine (n = 1435 citations). This publication found that weight loss was greater in the sleeve gastrectomy group than in the medical therapy group. Furthermore, this study demonstrated that 12 mo of medical therapy plus bariatric surgery greatly improved glycemic regulation in obese patients with uncontrolled type 2 diabetes compared with medical therapy alone[42]. The second most cited
publication \((n = 983\) citations) was published in 2014 in the *New England Journal of Medicine* by Schauer et al.\(^{[41]}\), it presented the outcomes 3 years obese patients with uncontrolled type 2 diabetes were randomly assigned to undergo either intensive medical therapy alone or intensive medical therapy plus sleeve gastrectomy or Roux-en-Y gastric bypass. This study proved that 3 years of medical therapy plus bariatric surgery greatly improved glycemic regulation in obese patients with uncontrolled type 2 diabetes compared to medical therapy alone\(^{[41]}\). Finally, the third paper \((n = 902\) citations), published in 2013 in *Obesity Surgery* by Buchwald and Oien\(^{[25]}\), found that the most commonly performed bariatric procedures were Roux-en-Y gastric bypass and sleeve gastrectomy.

The major limitation of this study is related to the database used to collect publications related to sleeve gastrectomy. However, the Scopus database does not represent...
all scientific journals. However, it is the largest database of peer-reviewed scientific journals[84]. Another limitation is that certain articles’ titles and abstracts did not include the term "sleeve gastrectomy" or related expressions, so not all articles regarding sleeve gastrectomy might be considered. Furthermore, the majority of publications were published and indexed in 2020, but since new journal issues are still being released and indexed, therefore, the amount of scientific research productivity this year could be higher.

CONCLUSION
The number of sleeve gastrectomy publications has gradually grown over the last 20 years. The current study's findings were biased in favor of high-income countries. In this domain, the United States and France had a significant impact. The current literature on sleeve gastrectomy was directed toward several themes such as morbidity and potential complications, the complexity of the procedure and different surgical approaches, and diabetes mellitus and body mass index in correlation with sleeve gastrectomy. This bibliometric analysis could help researchers better understand the knowledge base and research frontiers surrounding sleeve gastrectomy. In addition, future studies may focus on emerging research hotspots.

ARTICLE HIGHLIGHTS
Research background
Sleeve gastrectomy has grown in popularity among laparoscopic surgeons who do bariatric surgery and has shown to be an effective way of obtaining significant weight loss in a short period of time.

Research motivation
The amount of scientific evidence relating to sleeve gastrectomy is massive, and the annually published article curve is sharply increasing. It is still weakly correlated and unconnected to a simple algorithm or graph to describe the pattern and highlight the issues that require more scientific input so that researchers may work on them.

Research objectives
The goal of this study is to use bibliometric approaches to assess the research activity in sleeve gastrectomy over the last two decades and to visualize the hot areas and developing trends in this type of bariatric surgery.
Research methods
On January 9, 2021, we performed a literature search utilizing the Scopus database to gather papers from 2001 to 2020 for this retrospective research. Bibliometric characteristics such as publication output, countries, institutions, journals, citation frequency, and research hotspots were evaluated by using Excel 2013 and VOSviewer.

Research results
Over the previous 20 years, the number of publications on sleeve gastrectomy has progressively increased. The outcomes of the current study were skewed in favor of high-income nations. The United States and France have a big effect in this sector.

Research conclusions
The present literature on sleeve gastrectomy focused on numerous issues, including morbidity and possible complications, the procedure's complexity and various surgical methods, and diabetes mellitus and body mass index in connection to sleeve gastrectomy.

Research perspectives
This bibliometric study may aid researchers in better understanding the current state of knowledge and research horizons in the field of sleeve gastrectomy.

REFERENCES

1. Angrisani L, Santonico A, Iovino P, Formisano G, Buchwald H, Scopinaro N. Bariatric Surgery Worldwide 2013. Obes Surg 2015; 25: 1822-1832 [PMID: 25835983 DOI: 10.1007/s11695-015-1657-z]

2. Angrisani L, Santonico A, Iovino P, Ramos A, Shikora S, Kow L. Bariatric Surgery Survey 2018: Similarities and Disparities Among the 5 IFSO Chapters. Obes Surg 2021; 31: 1937-1948 [PMID: 33432482 DOI: 10.1007/s11695-020-05207-7]

3. Thereaux J, Lesufleurt C, Zernichow S, Basdevant A, Msika S, Nocca D, Millat B, Fagot-Campagna A. Long-term adverse events after sleeve gastrectomy or gastric bypass: a 7-year nationwide, observational, population-based, cohort study. Lancet Diabetes Endocrinol 2019; 7: 786-795 [PMID: 31383618 DOI: 10.1016/S2213-8587(19)30191-3]

4. Hofs D, Fatima F, Borgeraas H, Birkeland KL, Gulseth HL, Hertel JK, Johnson LK, Lindberg M, Nordstrand N, Cwcaro Småstuen M, Stefanovski D, Svanekvi M, Grett Valderhaug T, Sandbu R, Helmesah J. Gastric bypass vs sleeve gastrectomy in patients with type 2 diabetes (Oseberg): a single-centre, triple-blind, randomised controlled trial. Lancet Diabetes Endocrinol 2019; 7: 912-924 [DOI: 10.1016/S2213-8587(19)30344-4]

5. Steenackers N, Vanuytsel T, Augustijn S, Tack J, Mertens A, Lanno M, Van der Schueren B, Matthys C. Adaptations in gastrointestinal physiology after sleeve gastrectomy and Roux-en-Y gastric bypass. Lancet Gastroenterol Hepatol 2021; 6: 225-237 [PMID: 3358176] DOI: 10.1016/S2468-1253(20)30302-2]

6. Madsbad S, Dirksen C, Holst JJ. Mechanisms of changes in glucose metabolism and bodyweight after bariatric surgery. Lancet Diabetes Endocrinol 2014; 2: 152-164 [PMID: 24622719 DOI: 10.1016/S2213-8587(13)70218-3]

7. Guetta O, Vakhрушев A, Dukhno O, Ovnat A, Sebag G. New results on the safety of laparoscopic sleeve gastrectomy bariatric procedure for type 2 diabetes patients. World J Diabetes 2019; 10: 78-86 [PMID: 30788045 DOI: 10.4239/wjd.v10.i2.78]

8. Wang JW, Chen CY. Current status of endoscopic sleeve gastroplasty: An opinion review. World J Gastroenterol 2020; 26: 1107-1112 [PMID: 32231416 DOI: 10.3748/wjg.v26.i11.1107]

9. Benajis D, M-as-Lorenzo A, Goday A, Ramon JM, Chllar JI, Pedro-Boor J, Flores-Le Roux JA. Laparoscopic sleeve gastrectomy: More than a restrictive bariatric surgery procedure? World J Gastroenterol 2015; 21: 11804-11814 [PMID: 26557004 DOI: 10.3748/wjg.v21.i41.11804]

10. Langer FB, Reza Hoda MA, Bohdjialian A, Felberbauer FX, Zacherl J, Wenzl E, Schindler K, Lugur A, Ludvik B, Prager G. Sleeve gastrectomy and gastric banding: effects on plasma ghrelin levels. Obes Surg 2005; 15: 1024-1029 [PMID: 16105401 DOI: 10.1159/000514847]

11. Lupoli R, lembo E, Saldalamacchia G, Avola CK, Angrisani L, Capudol BA, Bariatric surgery and long-term nutritional issues. World J Diabetes 2017; 8: 464-474 [PMID: 29204255 DOI: 10.4239/wjd.v8.i11.464]

12. Janil O, Gonzalez-Heredia R, Quadri P, Hassan C, Masur M, Berger R, Bernstein K, Sanchez-Johnsen L. Micronutrient Deficiencies in Laparoscopic Sleeve Gastrectomy. Nutrients 2020; 12 [PMID: 32971950 DOI: 10.3390/nu12092985]

13. Krziczek EC, Brix JM, Stëkli A, Parzer V, Ludvik B. Prevalence of Micronutrient Deficiency after Bariatric Surgery. Obes Facts 2021; 14: 197-204 [PMID: 33794530 DOI: 10.1159/000514847]

14. Ozyoz Z, Demir E. Which Bariatric Procedure Is the Most Popular in the World? Obes Surg 2018; 28:
and economic evaluation.

Effectiveness and cost-effectiveness of bariatric (weight loss) surgery for obesity: a systematic review

Picot J

10.1097/SLA.0b013e3181ae32e3

Randomized trial.

Laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: a prospective

Peterli R

Spring)

Practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric

Kushner R, Adams TD, Shikora S, Dixon JB, Brethauer S; American Association of Clinical

Mechanick JI

18376181

Gastrectomy has morbidity and effectiveness positioned between the band and the bypass.

Karamanakos SN

254

Laparoscopic sleeve gastrectomy as an initial weight-loss procedure for high-risk patients with morbid obesity.

Cottam D

10.1097/MD.0000000000014132

and Google Scholar--2013 update: cosponsored by American Association of Clinical Endocrinologists, Obesity Society; American Society for Metabolic and Bariatric Surgery. Clinical

Kulkarni AV

10.1096/fj.07-9492LSF

and Google Scholar: strengths and weaknesses.

Bakkalbasi N, Bauer K, Glover J, Wang L. Three options for citation tracking: Google Scholar, Scopus and Web of Science. Biomed Digit Libr 2006; 3: 7 [PMID: 16805916 DOI: 10.1186/1742-5581-3-7]

Falagas ME, Pitsouni EI, Malietzis GA, Pappas G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses. FASEB J 2008; 22: 338-342 [PMID: 17884971 DOI: 10.1098/rsfs.2007.0092] [LSF]

Kulkarni AV, Aziz B, Shams I, Busse JW. Comparisons of citations in Web of Science, Scopus, and Google Scholar for articles published in general medical journals. JAMA 2009; 302: 1092-1096 [PMID: 19738094 DOI: 10.1001/jama.2009.1307]

van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010; 84: 523-538 [PMID: 20585380 DOI: 10.1007/s11192-009-0146-3]

Buchwald H, Oien DM. Metabolic/bariatric surgery Worldwide 2008. Obes Surg 2009; 19: 1605-1611 [PMID: 19885707 DOI: 10.1097/SLA.0b013e3181e90b31]

Buchwald H, Oien DM. Metabolic/bariatric surgery Worldwide 2011. Obes Surg 2013; 23: 427-436 [PMID: 23338049 DOI: 10.1007/s11695-012-0864-0]

Chang SH, Stoll CR, Song J, Varela JE, Eagon CJ, Colditz GA. The effectiveness and risks of bariatric surgery: an updated systematic review and meta-analysis, 2003-2012. JAMA Surg 2014; 149: 275-287 [PMID: 24352617 DOI: 10.1001/jamasurg.2013.3654]

Colquitt JL, Pickett K, Loveman E, Frampton GK. Surgery for weight loss in adults. Cochrane Database Syst Rev 2014; CD003641 [DOI: 10.1002/14651858.cd003641.pub4]

Colquitt JL, Picot J, Loveman E, Clegg AJ. Surgery for obesity. Cochrane Database Syst Rev 2009; CD003641 [DOI: 10.1002/14651858.cd003641.pub3]

Cottam D, Qureshi FG, Mattar SG, Sharma S, Hololver S, Bonanomi G, Ramanathan R, Schauer P. Laparoscopic sleeve gastrectomy as an initial weight-loss procedure for high-risk patients with morbid obesity. Surg Endosc 2006; 20: 859-863 [PMID: 16739870 DOI: 10.1007/s00464-005-0134-5]

Himpens J, Dapri G, Cadrière GB. A prospective randomized study between laparoscopic gastric banding and laparoscopic isolated sleeve gastrectomy: results after 1 and 3 years. Obes Surg 2006; 16: 1450-1456 [PMID: 17132410 DOI: 10.1381/096989206778869933]

Himpens J, Dobbleleur J, Peeters G. Long-term results of laparoscopic sleeve gastrectomy for obesity. Ann Surg 2010; 252: 319-324 [PMID: 20622654 DOI: 10.1097/SLA.0b013e3181e0b31]

Hutter MM, Schirmer BD, Jones DB, Ko CY, Cohen ME, Merkow RP, Nguyen NT. First report from the American College of Surgeons Bariatric Surgery Center Network: laparoscopic sleeve gastrectomy has morbidity and effectiveness positioned between the band and the bypass. Ann Surg 2011; 254: 410-20; discussion 420 [PMID: 21865942 DOI: 10.1097/SLA.0b013e31822c9dad]

Karamanakos SN, Vagenas K, Kalfarentzos A, Alexandrides TK. Weight loss, appetite suppression, and changes in fasting and postprandial ghrelin and peptide-YY levels after Roux-en-Y gastric bypass and sleeve gastrectomy: a prospective, double blind study. Ann Surg 2008; 247: 401-407 [PMID: 18376181 DOI: 10.1097/SLA.0b013e3181566012]

Mechanick JI, Youdim A, Jones DB, Garvey WT, Hurley DL, McMahon MM, Heinberg LJ, Kushner R, Adams TD, Shikora S, Dixon JB, Brethauer S; American Association of Clinical Endocrinologists; Obesity Society; American Society for Metabolic and Bariatric Surgery. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient--2013 update: cosponsored by American Association of Clinical Endocrinologists, The Obesity Society, and American Society for Metabolic and Bariatric Surgery. Obesity (Silver Spring) 2013; 21 Suppl 1: S1-27 [PMID: 23529239 DOI: 10.1002/oby.20461]
Barqawi A et al. Research trends in sleeve gastrectomy

10.3310/bta13410

37 Regan JP, Inabnet WB, Gagner M, Pomp A. Early experience with two-stage laparoscopic Roux-en-Y gastric bypass as an alternative in the super-super obese patient. Obes Surg 2003; 13: 861-864 [PMID: 14738671 DOI: 10.1007/s00464-003-0092-9]

38 Rosenthal RJ. International Sleeve Gastrectomy Expert Panel, Diaz AA, Arvidsson D, Baker RS, Basso N, Bellanger D, Boza C, El Mourad H, France M, Gagner M, Galvao-Neto M, Higa KD, Him punches J, Hutchinson CM, Jacobs M, Jorgensen JO, Jossart G, Lakdawala M, Nguyen NT, Nocca D, Prager G, Pomp A, Ramos AC, Rosenthal RJ, Shah S, Vix M, Wittgrove A, Zündel N. International Sleeve Gastrectomy Expert Panel Consensus Statement: best practice guidelines based on experience of >12,000 cases. Surg Obes Relat Dis 2012; 8: 8-19 [PMID: 22248433 DOI: 10.1016/j.soard.2011.10.019]

39 Ryan KK, Tremaroli V, Clemmensen C, Kovatcheva-Datchary P, Myronoyich V, Kans R, Wilson-Pérez HE, Sandoval DA, Kohli R, Bäckhed F, Sleyey RJ. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature 2014; 509: 183-188 [PMID: 24670636 DOI: 10.1038/nature13155]

40 Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Aminian A, Brethauer SA, Navaneethan SD, Singh RP, Pohtier CE, Nissen SE, Kashyap SR; STAMPEDE Investigators. Bariatric Surgery versus Intensive Medical Therapy for Diabetes - 5-Year Outcomes. N Engl J Med 2017; 376: 641-651 [PMID: 28199805 DOI: 10.1056/NEJMoa1600869]

41 Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Brethauer SA, Navaneethan SD, Aminian A, Pohtier CE, Kim EJ, Nissen SE, Kashyap SR; STAMPEDE Investigators. Bariatric surgery versus intensive medical therapy for diabetes--3-year outcomes. N Engl J Med 2014; 370: 2002-2013 [PMID: 24679060 DOI: 10.1056/NEJMoa1401329]

42 Schauer PR, Kashyap SR, Wolski K, Brethauer SA, Kirwan JP, Pohtier CE, Thomas S, Abbood B, Nissen SE, Bhatt DL. Bariatric surgery vs intensive medical therapy in obese patients with diabetes. N Engl J Med 2012; 366: 1567-1576 [DOI: 10.1056/nejmoa1200225]

43 Choi HS, Chun HJ. Recent Trends in Endoscopic Bariatric Therapies. Clin Endosc 2017; 50: 11-16 [PMID: 28147471 DOI: 10.5946/cc.2017.007]

44 Dabi Y, Darriques L, Katsahian S, Azoulay D, Antoño M, Lazzati A. Publication Trends in Bariatric Surgery: a Bibliometric Study. Obes Surg 2016; 26: 2691-2699 [PMID: 27052317 DOI: 10.1007/s11695-016-2160-x]

45 Ozsoy Z, Demir E. The Evolution of Bariatric Surgery Publications and Global Productivity: A Bibliometric Analysis. Obes Surg 2018; 28: 1117-1129 [PMID: 29086169 DOI: 10.1007/s11695-017-2982-1]

46 Toro-Huamanchumo CJ, Morón-Maríños C, Salazar-alarcon JL, Barros-Sevillano S, Huamanchumo-Suyo ME, Salinas-Sedo G. Latin American Research on Bariatric Surgery: a Bibliometric Study. Obes Surg 2021; 31: 1869-1876 [PMID: 33078335 DOI: 10.1007/s11695-020-05058-2]

47 Sarkhosh K, Birch DW, Sharma A, Karmali S. Complications associated with laparoscopic sleeve gastrectomy for morbid obesity: a surgeon's guide. Can J Surg 2013; 56: 347-352 [PMID: 24065720 DOI: 10.1503/cjs.033511]

48 Lalor PF, Tucker ON, Szomstein S, Rosenthal RJ. Complications after laparoscopic sleeve gastrectomy. Surg Obes Relat Dis 2008; 4: 33-38 [PMID: 17981515 DOI: 10.1016/j.soard.2007.08.015]

49 Frezza EE, Reddy S, Gee LL, Wachtel MS. Complications after sleeve gastrectomy for morbid obesity. Obes Surg 2009; 19: 684-687 [PMID: 18923879 DOI: 10.1007/s11695-008-9677-6]

50 Triantafyllidis G, Lazoura O, Sioka E, Tzovaras G, Antoniou A, Vassiou K, Zacharoulis D. Anatomy and complications following laparoscopic sleeve gastrectomy: radiological evaluation and imaging pitfalls. Obes Surg 2011; 21: 473-478 [PMID: 20652760 DOI: 10.1007/s11695-010-0236-6]

51 Mitternair R, Sucher R, Perathoner A. Results and complications after laparoscopic sleeve gastrectomy. Surg Today 2014; 44: 1307-1312 [PMID: 24022580 DOI: 10.1007/s00595-013-0688-0]

52 Iannelli A, Treacy P, Sebastianelli L, Schiavo L, Martini F. Perioperative complications of sleeve gastrectomy: Review of the literature. J Minim Access Surg 2019; 15: 1-7 [PMID: 29737316 DOI: 10.4103/jmas.JMAS_271_17]

53 Monkhouse SJ, Morgan JD, Norton SA. Complications of bariatric surgery: presentation and emergency management—a review. Ann R Coll Surg Engl 2009, 91: 280-286 [PMID: 19344551 DOI: 10.1308/003588409X392072]

54 Braghetto I, Korn O, Valladares H, Gutiérrez L, Csendes A, Debandi A, Castillo J, Rodríguez A, Burgos AM, Brunet L. Laparoscopic sleeve gastrectomy: surgical technique, indications and clinical results. Obes Surg 2007; 17: 1442-1450 [PMID: 18219770 DOI: 10.1007/s11695-008-9421-2]

55 Felsenreich DM, Bichler C, Langer FB, Gachabayov M, Prager G. Sleeve Gastrectomy: Surgical Technique, Outcomes, and Complications. Surg Technol Int 2020; 36: 63-69 [PMID: 32359172]

56 Hayes K, Eid G. Laparoscopic Sleeve Gastrectomy: Surgical Technique and Preoperative Care. Surg Clin North Am 2016; 96: 763-771 [PMID: 27473800 DOI: 10.1016/j.suc.2016.03.015]

57 Varban OA, Thumma JR, Finks JF, Carlin AM, Kemmeter PR, Ghaferi AA, Dimick JB. Assessing variation in technique for sleeve gastrectomy based on outcomes of surgeons ranked by safety and efficacy: a video-based study. Surg Endosc 2019; 33: 895-903 [PMID: 30112611 DOI: 10.1007/s00464-019-6382-y]

58 Ichikawa H, Imoto H, Tanaka N, Musha H, Sawada S, Naitoh T, Kamei T, Unno M. Efficacy of
Czernichow S. Utilization, and Funding of Bariatric Surgery in Europe. DOI: 10.1080/09674845.2020.1798578

Borisenko O. Worldwide trends in body-mass index, underweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement analysis for the Global Burden of Disease Study 2013. DOI: 10.1007/s11695-015-1764-x

Vollset SE, Vos T, Wang C, Wang X, Weiderpass E, Werdecker A, Wright JL, Yang YC, Yatsuya H, Toyoshima H, van de Vijver S, Vasankari TJ, Veerman JL, Velasquez-Melendez G, Vlassov VV, Singh JA, Skirbekk V, Stapelberg NJ, Sturua L, Sykes BL, Tobias M, Tran BX, Trasande L, Prabhakaran D, Roy N, Sampson U, Seo H, Sepanlou SG, Shibuya K, Shiri R, Shiue I, Singh GM, A, Nand D, Narayan KM, Nelson EL, Neuhouser ML, Nisar MI, Ohkubo T, Oti SO, Pedroza A, Yoon J, Yoon SJ, Zhao Y, Zhou M, Zhu S, Lopez AD, Murray CJ, Gakidou E. Global, regional, and National prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014; 384: 766-781 DOI: 10.1016/S0140-6736(14)60460-8

Nudotor RD. Comparative Effectiveness of Roux-en Y Gastric Bypass Versus Vertical Sleeve Gastroplasty for Remission of Type 2 Diabetes Mellitus. J Surg Res 2021; 261: 407-416 DOI: 10.1016/j.jss.2020.12.024

Castellana M, Procino F, Biacchi E, Zupo R, Lampignano L, Castellana F, Sardone R, Palermo A, Cesareo R, Trimobili P, Giannelli G. Roux-en-Y Gastric Bypass vs Sleeve Gastroplasty for Remission of Type 2 Diabetes. J Clin Endocrinol Metab 2021; 106: 922-933 DOI: 10.1210/clinem/dga737

Rafey MF, Fang CEH, Ioana I, Griffith H, Hynes M, O'Brien T, McAnena O, O'Shea P, Collins C, Davenport C, Finucane FM. The leptin to adiponectin ratio (LAR) is reduced by sleeve gastroplasty in adults with severe obesity: a prospective cohort study. Sci Rep 2020; 10: 16270 DOI: 10.1038/s41598-020-73520-3

Salman AA, Salman MA, Marie MA, Rabiee A, Helmy MY, Tourky MS, Qassem MG, Shaaban HE, Sarhan MD. Factors associated with resolution of type-2 diabetes mellitus after sleeve gastroplasty in obese adults. Sci Rep 2021; 11: 6002 DOI: 10.1038/s41598-021-85450-9

Vennapusa A, Bhargav Panchangam R, Kesara C, Vysnavi Vanta GR, Madivada MS. Metabolic efficacy following laparoscopic sleeve gastroplasty with loop duodenal switch surgery for type 2 diabetes in Indian patients with severe obesity. Diabetes Metab Syndr 2021; 15: 581-587 DOI: 10.1016/j.dsx.2021.02.036

Vrakopoulou GZ, Theodoropoulos C, Kalles V, Zografos G, Almpanopoulos K. Type 2 diabetes mellitus status in obese patients following sleeve gastroplasty or one anastomosis gastric bypass. Sci Rep 2021; 11: 4421 DOI: 10.1038/s41598-021-83807-8

Yan Y, Wang F, Chen H, Zhao X, Dui D, Hui Y, Ma N, Yang C, Zheng Z, Zhang T, Xu N, Wang G. Efficacy of laparoscopic gastric bypass vs laparoscopic sleeve gastroplasty in treating obesity combined with type-2 diabetes. Br J Biomed Sci 2021; 78: 35-40 DOI: 10.1080/09674845.2020.1798578

Koch TR, Shope TR. Laparoscopic Vertical Sleeve Gastroplasty as a Treatment Option for Adults with Diabetes Mellitus. Adv Exp Med Biol 2021; 1307: 299-320 DOI: 10.1007/5554_2020_487

Ramos JM, Gonzalez-Alcada G, Bolaños-Pizarro M. Bibliometric analysis of leishmaniasis research in Medline (1945-2010). Parasit Vectors 2013; 6: 55 DOI: 10.1186/1756-3305-6-55

Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, Mullany EC, Biryukov S, Boschi-Pinto C, Guo F, Heagerty C, Hippisley-Cox J, Hvozda D, Johnson J, lady B, Lauer G, Legear E, Liu X, Liu L, Liu J, Liu B, Liu S, Liu W, Liu D, Liu X, Liu S, Logroscino G, Mahal A, Makary M, Murray C, noble A, O’Mara S, Ollie S, Ostroff J, Paczkowski M, Perchonok J, Phillips J, Powell C, Qiao W, Qu Y, Rajaratnam J, Rana S, Ravindran V, Reboussin D, Rivera J, Rendall C, Richardson J, Roberts I, Robins M, Rojsiri K, Sabin C, Salama J, Salam A, Sanchez F, Sangrajram M, Sampson U, Satterthwaite E, Scheuerle A, Schuurman R, Schwartz J, Scott C, Shen C, Shook S, Silverman D, Singh G, Slesser M, Slootweg F, Solomon S, Spitalnik S, Stein C, Stjernkvist B, Strom C, Sturniolo F, Thavorn A, Tohle B, Tolosa P, Torloni M, Truttmann H, Urban D, Van Oort F, Velasquez-Melendez G, Vlassov VV, Vollset SE, Ves N, Wang C, Wang X, Weiderpass E, Werdecker A, Wright JL, Yang YC, Yatsuya H, Yoon J, Yoon SJ, Zhao Y, Zhou M, Zhu S, Lopez AD, Murray CJ, Gakidou E. Global, regional, and National prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014; 384: 766-781 DOI: 10.1016/S0140-6736(14)60460-8

NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017; 390: 2627-2642 DOI: 26072171

Spaniolas K, Kasten KR, Brickley J, Sippey ME, Mozer A, Chapman WH, Porjes WJ. The Changing Bariatric Surgery Landscape in the United States. Obes Surg 2015; 25: 1544-1546 DOI: 10.1007/s11695-015-1764-x

Borisenko O. Colpan Z, Dilemans B, Funch-Jensen P, Hedenbro J, Ahmed AR. Clinical Indications, Utilization, and Funding of Bariatric Surgery in Europe. Obes Surg 2015; 25: 1408-1416 DOI: 25258567

Czernichow S, Paita M, Nocca D, Msika S, Basdevant A, Millat B, Faget-Campana A. Current
challenges in providing bariatric surgery in France: A nationwide study. *Medicine (Baltimore)* 2016; 95: e534 [PMID: 27930509 DOI: 10.1097/MD.0000000000005314]

74 Zyoud SH, Smale S, Waring WS, Sweileh W, Al-Jabi SW. Global research trends in the microbiome related to irritable bowel syndrome: A bibliometric and visualized study. *World J Gastroenterol* 2021; 27: 1341-1353 [PMID: 33833487 DOI: 10.3748/wjg.v27.i13.1341]

75 Al-Jabi SW. Current global research landscape on COVID-19 and depressive disorders: Bibliometric and visualization analysis. *World J Psychiatry* 2021; 11: 253-264 [PMID: 34168972 DOI: 10.5498/wjp.v11.i6.253]

76 González-Alcaide G, Salinas A, Ramos JM. Scientometrics analysis of research activity and collaboration patterns in Chagas cardiomyopathy. *PLoS Negl Trop Dis* 2018; 12: e0006602 [PMID: 29912873 DOI: 10.1371/journal.pntd.0006602]

77 Liu F, Lin A, Wang H, Peng Y, Hong S. Global research trends of geographical information system from 1961 to 2010: a bibliometric analysis. *Scientometrics* 2016; 106: 751-768 [DOI: 10.1007/s11192-015-1789-x]

78 Cheng T, Zhang G. Worldwide research productivity in the field of rheumatology from 1996 to 2010: a bibliometric analysis. *Rheumatology (Oxford)* 2013; 52: 1630-1634 [PMID: 23502075 DOI: 10.1093/rheumatology/ket008]

79 Zyoud SH, Al-Jabi SW. Mapping the situation of research on coronavirus disease-19 (COVID-19): a preliminary bibliometric analysis during the early stage of the outbreak. *BMC Infect Dis* 2020; 20: 561 [PMID: 32738881 DOI: 10.1186/s12879-020-05293-z]

80 Zyoud SH. The Arab region's contribution to global COVID-19 research: Bibliometric and visualization analysis. *Global Health* 2021; 17: 31 [PMID: 33766073 DOI: 10.1186/s12992-021-00690-8]

81 Sweileh WM. Bibliometric analysis of peer-reviewed literature on antimicrobial stewardship from 1990 to 2019. *Global Health* 2021; 17: 1 [PMID: 33397377 DOI: 10.1186/s12992-020-00651-7]

82 Søreide K, Alderson D, Bergenfelz A, Beynon J, Connor S, Deckelbaum DL, Dejong CH, Earnshaw JJ, Kyamanywa P, Perez RO, Sakai Y, Winter DC; International Research Collaboration in Surgery (IRIS) ad-hoc working group. Strategies to improve clinical research in surgery through international collaboration. *Lancet* 2013; 382: 1140-1151 [PMID: 24075054 DOI: 10.1016/S0140-6736(13)61455-5]

83 Stek PE, van Geenhuizen MS. The influence of international research interaction on national innovation performance: A bibliometric approach. *Technol Forecast Soc* 2015; Article in Press [DOI: 10.1016/j.techfore.2015.09.017]

84 Elsevier. Scopus Quick Reference Guide 2019. [cited 9 April 2021]. Available from: https://support.content.elsevier.com/RightNow%20Next%20Gen/Scopus/Files/Scopus_User_Guide.pdf
