On the number of fixed points of the map γ

Niccolò Castronuovo
castronuovoniccolo@gmail.com

Abstract

We recursively define a sequence $\{F_{n,k}\}_{n,k}\in\mathbb{N}$ and we prove that such sequence contains only the symbols $\{0,1\}$. We investigate some number-theoretic properties of such sequence and of the way it can be generated. The number F_n can be interpreted as the number of fixed points of semilength n of the map γ introduced in [2]. Our results partially answer conjectures posed to the author by Cori [4].

1 Introduction

In this paper we consider an infinite $(0,1)$-matrix F defined in the following way. Let $F := [F_{n,k}]_{n\geq0,k\geq0}$ be the doubly-infinite matrix all of whose entries are equal to 0. Apply to F the following step:

Step 0 Set $F_{0,0} = 1$.

For all $i \geq 1$ apply to F the following step:

Step i For each pair (n,k) such that the entry $F_{n,k}$ changes its value in Step $i-1$, increase $F_{n+k,k}$ and $F_{3n+1−2k,2n+1−k}$ by 1.

F is the matrix obtained in this way.

We say that an entry $F_{n,k}$ of matrix F is created at Step i if $F_{n,k} > 0$ and, during the creation of matrix F it changes its value during Step i.

It is trivial to verify that $F_{0,k} > 0$ if and only if $k = 0$ and that $F_{n,k} = 0$ if $k > n$. Hence the matrix F is lower triangular and $\{F_{n,k}\}_{n\geq0,k\geq0}$ can be thought as a doubly-indexed sequence.

The matrix F is related to the map γ, a bijection defined over the set of Dyck words of semilength n. This map and its properties are introduced in [2] and further studied in [3] and [4]. This last paper, in particular, deals with the characterization of the fixed points of γ.

1
More precisely, $F_{n,k}$ is equal to the number of Dyck words of semilength n, with principal prefix of length k and fixed under the action of γ. The fact that there is at most one of such words (see [2]) implies that the matrix F is a $0 - 1$ matrix. We will reprove this result in Corollary [2.3]. The sum of entries in row n, $F_n := \sum_k F_{n,k}$, is the total number of Dyck words of semilength n fixed by γ (see [2] for the main definitions).

The reason for which we do not reintroduce the definition of the map γ is that the sequence $\{F_{n,k}\}_{n,k}$ can be defined implicitly as above (see [4]). Hence all the results of the paper can be stated in a number-theoretic form without appealing to the original definition of F_n.

The first few rows of the matrix are reported below (the elements above the main diagonal are all zeros and are not indicated).

\[
F =
\begin{bmatrix}
1 \\
0 & 1 \\
0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
\ldots
\end{bmatrix}
\]

The first values of the sequence $\{F_n\}_{n \geq 0}$ are

$$1, 1, 2, 2, 3, 3, 4, 2, 6, 5, 4, 4, 6, 5, 8, 6, 6, 6 \ldots$$

We study the matrix F and the sequence F_n, and investigate their properties.

Our results partially answer the following two conjectures posed to the author by Cori [4].
Conjecture 1.1. \(F_n \geq 3 \) for all \(n > 7 \).

Conjecture 1.2. \(\lim_{n \to \infty} F_n = \infty \).

In particular we answer in the affirmative Conjecture 1.1 and give some results toward the solution to Conjecture 1.2.

2 The matrix \(F \) and a free subsemigroup of \(SL(3, \mathbb{Z}) \).

Identify the entry \(F_{i,j} \) of the matrix \(F \) with the integer vector with coordinates \((i, j)\) in the \(\mathbb{Z} \times \mathbb{Z} \) lattice plane. It follows immediately from the definition of the matrix \(F \), that, if \(i, j > 1 \), \(F_{i,j} > 0 \) if and only if the vector \((i, j)\) can be reached iteratively applying to the vector \((1, 1)\) the following affine transformations (in arbitrary order)

\[
\hat{G} : \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix},
\]

and

\[
\hat{S} : \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix}.
\]

The group generated by the affine transformations \(\hat{G} \) and \(\hat{S} \) can be identified with the subgroup \(\langle S, G \rangle \) of \(SL(3, \mathbb{Z}) \) generated by matrices

\[
G = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad S = \begin{pmatrix} 3 & -2 & 1 \\ 2 & -1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.
\]

In this identification, the actions of \(\hat{S} \) and \(\hat{G} \) on the lattice point \((x, y) \in \mathbb{Z}^2\) correspond to the actions of \(S \) and \(G \), respectively, on the lattice point \((x, y, 1) \in \mathbb{Z}^3\). Hence we can consider directly the action of the group \(\langle S, G \rangle \) over the set \(\mathbb{Z}^2 \). If \(w \in \langle S, G \rangle \), we denote by \(w(x, y) \) the image of the vector \((x, y)\) under this action.

Now we study some properties of the group \(\langle S, G \rangle \) and of matrices \(S \) and \(G \).

Notice that the group generated by \(S \) and \(G \) is not free. In fact we have

\[
(GS^{-1})^4 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.
\]

If we restrict our attention to the monoid generated by \(S \) and \(G \), it is free.
Theorem 2.1. The monoid H generated by S and G is free. The action of H on \mathbb{Z}^2 is free i.e. for all $(x, y) \in \mathbb{Z}^2$ if $w(x, y) = w'(x, y)$, with $w, w' \in H$, then $w = w'$.

For the proof it will be useful a version of the so called Ping-Pong lemma or Table-Tennis lemma for semigroups (see e.g. [5][p. 188]), that we report here.

Lemma 2.2. Let Γ be a group acting on a set X. Assume that there exist $\gamma_1, \gamma_2 \in \Gamma$ and $X_1, X_2 \subseteq X$ such that $X_1 \cap X_2 = \emptyset$, $\gamma_1(X_1 \cup X_2) \subseteq X_1$ and $\gamma_2(X_1 \cup X_2) \subseteq X_2$. Then the semigroup generated in Γ by γ_1 and γ_2 is free.

Now we proceed to the proof of Theorem 2.1.

Proof. For the first part, we apply the previous lemma with $\gamma_1 := G$, $\gamma_2 := S$ and $\Gamma := H$. As described above, H acts in the standard way on the set $X = \mathbb{Z}^2$, and, more generally, on \mathbb{R}^2. Notice that the only fixed point under the action of H on \mathbb{R}^2 is $(-0.5, 0)$, hence any line through this point is mapped onto another such line. Moreover, every point of the line $y = x + \frac{1}{2}$ is fixed by S and every point of the line $y = 0$ is fixed by G.

We consider the following disjoint subsets of X:

$$X_1 := \{(x, y) \in \mathbb{Z}^2 \mid x > -\frac{1}{2}, \ 0 < y < \frac{x}{2} + \frac{1}{4}\}$$

$$X_2 := \{(x, y) \mid x > -\frac{1}{2}, \ \frac{2x}{3} + \frac{1}{3} < y < x + \frac{1}{2}\}$$

Those subsets are depicted in the figure below.
It is trivial to verify that
\[G(X_1 \cup X_2) \subseteq X_1, \quad S(X_1 \cup X_2) \subseteq X_2. \]

Now we prove the second part of the theorem. We want to show that
\[\forall (x, y) \in \mathbb{Z}^2, \quad \text{if } w(x, y) = w'(x, y), \quad \text{with } w, w' \in H, \quad \text{then } w = w'. \]

We proceed by induction on the minimum of the lengths of \(w \) and \(w' \), thought as words in the letters \(S \) and \(G \),
\[m := \min\{|w|, |w'|\}. \]

If \(m = 0 \) then one of the two words is the identity. The equation \(w(x, y) = (x, y) \), with \(w \) different from the identity is clearly impossible since both \(S \) and \(G \) increase the abscissa of the point on which they act. Suppose the assertion true for all values of \(m \) up to \(N \). If \(m = N + 1 \) and the first letter of \(w \) and \(w' \) is the same, e.g. the letter \(G \), we have \(w = G\tilde{w}, \ w' = G\tilde{w}' \) and \(G\tilde{w}(x, y) = G\tilde{w}'(x, y) \). This implies \(\tilde{w}(x, y) = \tilde{w}'(x, y) \) and hence \(w = w' \) by the inductive hypothesis. If \(m > 0 \) and \(w = G\tilde{w} \) and \(w' = S\tilde{w}' \), then \(w(x, y) \in X_1 \) and \(w'(x, y) \in X_2 \). Since \(X_1 \cap X_2 = \emptyset \) it is impossible that \(w(x, y) = w'(x, y) \).

This concludes the proof. \(\square \)

As recalled above, there is a bijection between \(H \) and the set \(\{(i, j) \mid i, j > 0, F_{i,j} \neq 0\} \). This bijection maps an element \(w \in H \) to the pair \(w(1, 1) \). Hence the previous theorem leads to the following corollary.

Corollary 2.3. *The matrix \(F \) is a 0-1 matrix.*

The following lemma will be useful in the sequel.

Lemma 2.4. *The matrices \(S \) and \(G \) satisfy the following identities for all \(i \)
\[
G^i = \begin{pmatrix} 1 & i & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},
\]
\[
S^i = \begin{pmatrix} 2i + 1 & -2i & i \\ 2i & -(2i - 1) & i \\ 0 & 0 & 1 \end{pmatrix},
\]
\[
S^iG = \begin{pmatrix} 2i + 1 & 1 & i \\ 2i & 1 & i \\ 0 & 0 & 1 \end{pmatrix}.
\]
\[(SG)^i = \begin{pmatrix} a(i) & b(i) & c(i) \\ d(i) & a(i - 1) & b(i) \\ 0 & 0 & 1 \end{pmatrix}\]

where

- \(a(n)\) satisfies \(a(n) = 4a(n - 1) - a(n - 2)\) with \(a(0) = 1\) and \(a(1) = 3\) (it is, up to a shift, sequence A001835 in [7]).

- \(b(n)\) satisfies \(b(n) = 4b(n - 1) - b(n - 2)\) with \(b(0) = 0\) and \(b(1) = 1\) (it is sequence A001353 in [7]).

- \(c(n)\) satisfies \(c(n) = 5c(n - 1) - 5b(n - 2) + c(n - 3)\) with \(c(1) = 1\) and \(c(k) = 0\) for \(k \leq 0\) (it is sequence A061278 in [7]).

- \(d(n)\) satisfies \(d(n) = 4d(n - 1) - d(n - 2)\) with \(d(0) = 0\) and \(d(1) = 2\) (it is sequence A052530 in [7]).

Proof. The assertions are easily provable by induction. \(\square\)

Now consider the subset of \(\mathbb{Z} \times \mathbb{Z}\) whose points have equal positive coordinates

\[A = \{(k, k) \mid k \in \mathbb{Z}, k \geq 0\}.\]

Clearly

\[A = \bigcup_{i \geq 0} \{S^i(1, 1)\} \cup \{(0, 0)\}.\]

Hence,

\[F_{k,k} = 1\]

if \(k \geq 0\). Moreover, by the previous lemma,

\[\bigcup_{i \geq 0} G^i(A) = \{(kd, d) \mid k, d \in \mathbb{N}, k > 0\}.\]

This implies the following proposition.

Proposition 2.5. If \(n \geq 1\) and \(k\) divides \(n\) then \(F_{n,k} = 1\).

The previous proposition implies that

\[F_n \geq \tau(n),\]

where \(\tau\) is the number-of-divisors function (see e.g. [11]). We will see below that the previous inequality can be substantially improved.
3 A modular recursion

Now we prove a lemma that show how the entries of the matrix F are related to each others through a modular recursion of the indices.

Lemma 3.1. Consider the matrix F. Then

$$F_{n,k} = F_{n-k,h},$$

(1)

where h is the remainder of $2n - 2k + 1$ in the division by k, i.e.

$$h \equiv k \mod 2n - 2k + 1$$

and $0 \leq h \leq 2n - 2k$. Equation (1) together with the initial condition $F_{0,0} = 1$ characterizes the matrix F.

Proof. As recalled above, if $F_{n,k} = 1$ then $1 \leq k \leq n$ or $k = n = 0$. The lemma is clearly true for the entries of the form $F_{n,n}$, $n \geq 0$, i.e. those obtained applying only the operation S to $(1,1)$. In fact, in this case, $F_{n,n} = 1$, $h = 0$, $n - k = 0$ and $F_{0,0} = 1$.

Now choose a pair (n, k) with $k < n$. We want to show that $(n, k) = S^iG(n-k,h)$, $i \geq 0$. By Lemma 2.4, $(n, k) = S^iG(x,y)$ if and only if $n = (2i+1)x + y + i$ and $k = 2ix + y + i$. Hence $n-k = x$, $2n - 2k + 1 = 2x + 1$ and $h = y$.

Note that $F_{n,k} = 1$ with $k < n$ if and only if $(n,k) = w(1,1)$ where $w \in H$ is a non-empty word with at least one letter equal to G. Let $w = S^{h_1}S^{h_2-1}G \ldots S^{h_l}G S^{h_0}$, where $h_j \geq 0$ for all $0 \leq j \leq l$. Set

$$(x,y) := S^{h_{l-1}}G \ldots S^{h_1}G S^{h_0}(1,1).$$

Then $(n,k) = S^iG(x,y)$. Thus $F_{n,k} = F_{x,y}$. ☐

4 The number-of-divisors function and the matrix F

Theorem 4.1. For every $n \geq 1$ and for every x such that

- $0 \leq x \leq n - 1$ and
- there exists a divisor h of x with $2x + 1 \mid 2n - 2h + 1$,

it holds $F_{n,n-x} = 1$. 7
Proof. If \(x = 0 \) the proposition is trivial. Let \(x \geq 1 \) be an integer. Then, by Lemma 3.1\footnote{\textit{Lemma 3.1}} we have \(F_{n,n-x} = F_{x,h} \) where \(h \equiv n - x \mod 2x + 1 \). Now, by Proposition 2.5\footnote{\textit{Proposition 2.5}} we have that \(F_{x,h} = 1 \) if \(h \mid x \). Moreover \(h \equiv n - x \mod 2x + 1 \) if and only if \(2x + 1 \mid n - x - h \). Since \(2x + 1 \) is odd this last condition is equivalent to \(2x + 1 \mid 2n - 2x - 2h \) and this in turn is equivalent to \(2x + 1 \mid 2n - 2h + 1 \). Hence, if \(h \mid x \) and \(2x + 1 \mid 2n - 2h + 1 \), we have \(F_{n,n-x} = 1 \). \(\square \)

We denote by \(a_n \) the number of entries \(F_{n,n-x} \) of row \(n \) of the matrix \(F \) such that \(0 \leq x \leq n - 1 \) and there exists a divisor \(h \) of \(x \) with \(2x + 1 \mid 2n - 2h + 1 \). Clearly

\[
a_n \leq F_n,
\]

for every \(n \).

Theorem 4.2. We have

\[
a_n \geq \max\{\tau(n), \tau(2n - 1), \tau_o(n + 1)\},
\]

more precisely

\[
a_n \geq \tau(n) + \tau(2n - 1) + \tau_o(n + 1) - 3 - \delta_{n \equiv 0 \mod 2} - \delta_{n \equiv 1 \mod 3}
\]

for every \(n \geq 1 \), where \(\tau \) is the number-of-divisors function and \(\tau_o \) is the number-of-odd-divisors function.

Proof. Let \(n - x \) be a divisor of \(n \). Then \(n = (n - x)j \), where \(j \) is an integer. Then \(2x + 1 = 2n - 2\frac{n}{j} + 1 \). Since \(\frac{n}{j} = n - x \) is a divisor of \(n \), it divides also \(x \), hence \(F_{n,n-x} \) is one of those entries counted by \(a_n \). Hence \(a_n \geq \tau(n) \). Notice that, in this case, \(x = 0 \) or \(n - x \leq \frac{n}{2} \).

From the previous theorem, taking \(h = 1 \), it follows, in particular, that \(F_{n,n-x} = 1 \) if \(2x + 1 \) is a divisor of \(2n - 1 \). Hence \(a_n \geq \tau(2n - 1) \) and \(x = n - 1 \) or \(2x + 1 \leq \frac{2n-1}{2} \). In the last case, \(x \leq \frac{n-1}{2} \) and \(n - x \geq \frac{n+1}{2} \). As a consequence \(a_n \geq \tau(n) + \tau(2n - 1) - 2 \), where the 2 in the right-hand side takes into account the fact that \(F_{n,n} \) and \(F_{n,1} \) have been counted two times.

Similarly, taking \(h = x \) in the previous theorem, it follows that \(F_{n,n-x} = 1 \) when \(x \) is such that \(2x + 1 \mid 2n - 2x + 1 \). This is equivalent to \(2x + 1 \mid 2n + 2 \) which, since \(2x + 1 \) is odd, is in turn equivalent to \(2x + 1 \mid n + 1 \). Hence \(F_{n,n-x} = 1 \) if \(2x + 1 \) is an odd divisor of \(n + 1 \) and \(a_n \geq \tau_o(n + 1) \). Here \(x = \frac{n}{2} \) or \(2x + 1 \leq \frac{n+1}{2} \). In the last case \(x \leq \frac{n+1}{2} \) and \(n - x \geq \frac{3n+1}{4} \).

Notice that if \(2x + 1 \) divides \(n + 1 \) and \(2n - 1 \) it divides also \(2(n + 1) - (2n - 1) = 3 \) hence \(x = 0 \) or \(x = 1 \). If \(x = 1 \), \(2x + 1 = 3 \) divides \(n + 1 \) if and only if it divides also \(2n - 1 \).
Hence
\[a_n \geq \tau(n) + \tau(2n - 1) + \tau_0(n + 1) - 3 - \delta_{n\equiv 0} \mod 2 - \delta_{n\equiv -1} \mod 3 \]
where, in the right hand side, the 3 takes into account the fact that \(F_{n,n} \) has been counted three times and \(F_{n,1} \) has been counted two times, the \(\delta_{n\equiv 0} \mod 2 \) takes into account the fact that \(F_{n,5} \) has been counted two times if \(n \) is even and \(\delta_{n\equiv -1} \mod 3 \) takes into account the fact that \(F_{n,n-1} \) has been counted two times if \(n + 1 \) is divisible by 3.

Since a number has 1 as its only odd divisor if and only if it is a power of 2, the previous theorem shows that Conjecture 1.1 is proved for every \(n > 7 \) except those primes \(p \) of the form \(p = 2^q - 1 \) such that \(2p - 1 \) is also prime. Notice that the fact that \(F_n \geq 3 \) for every \(n \neq 2^q - 1 \) follows also from Remark 1 in [1].

A prime \(p \) of the form \(2^q - 1 \) is said to be a Mersenne prime (see e.g. [1]). The Mersenne primes \(p \) such that \(2p - 1 \) is also prime appears in [2] in sequence A167917. It is well known that, if a prime \(p \) has the form \(2^q - 1 \), then also \(q \) is prime.

Theorem 4.3. The number \(a_n \) is one plus the number of solutions of the Diophantine equation
\[n = 2xyz + yz + x + y, \quad \text{with } y, z \geq 1 \text{ and } x \geq 0. \quad (2) \]
Moreover,
\[a_n = 1 + \sum_{0 \leq j < n} D_{2j+1}(n - j), \]
where \(D_m(n) \) is the number of divisors \(d > 1 \) of \(n \) congruent to 1 \(\mod m \).

Proof. Let \(n \) be fixed. The number of elements of the form \(F_{n,n-x} \) with \(x \neq 0 \), such that there exists an \(h \) with \(h|x \) and \(2x + 1|2n - 2h + 1 \) is equal to the number of solutions \(h, k, j \geq 1 \) to the equation
\[2n - 2h + 1 = j(2hk + 1) \quad (3) \]
i.e.
\[2n = 2jhk + 2h + j - 1. \]
In this equation \(j \) must be odd and hence \(j = 2\hat{j} + 1 \). So we get the equation
\[n = 2\hat{j}hk + hk + h + \hat{j}, \quad \text{with } h, k \geq 1 \text{ and } \hat{j} \geq 0. \quad (4) \]
Hence \(a_n \) is equal to the number of solutions to this equation increased by one since we have to take into account the case with \(x = 0 \).
Consider now Equation 4. It is equivalent to
\[n - \hat{j} = h((2\hat{j} + 1)k + 1). \]
Hence, if \(n \) and \(\hat{j} \geq 0 \) are fixed, there is a correspondence between the solutions \(h, k \geq 1 \) to the last equation and the number of divisors \(d = (2\hat{j} + 1)k + 1 > 1 \) of \(n - \hat{j} \) congruent to one \(\mod 2\hat{j} + 1 \).

Now we prove Conjecture 1.1.

Theorem 4.4. \(F_n \geq 3 \) for all \(n > 7 \).

Proof. As recalled above, the assertion follows from the previous results for every \(n > 7 \) except those primes \(p \) of the form \(p = 2^q - 1 \), \(q \) a prime, such that \(2p - 1 \) is also prime.

Let \(p \) be a number with these properties such that \(F_p = 2 \). Since \(F_n \geq a_n \) for every \(n \) and since \(a_n \geq 2 \) by Theorem 1.2 we have \(a_p = 2 \). Moreover
\[a_p \geq 1 + D_1(p) + D_3(p - 1). \]
Clearly \(D_1(p) = 1 \). Hence \(D_3(p - 1) = 0 \). We want to show that it is impossible. The integer \(p - 1 \) has no divisors \(d > 1 \) such that \(d \equiv 1 \mod 3 \) if and only if \(p - 1 = 3^np_1^n \) where \(p_1 \) is a prime with \(p_1 \equiv -1 \mod 3 \), \(i = 0 \) or \(i = 1 \) and \(r \geq 0 \). In fact, if between the prime factors of \(p - 1 \) there were more than one congruent to \(-1 \mod 3 \) or at least one congruent to \(1 \mod 3 \), then \(p - 1 \) would have at least one divisor congruent to \(1 \mod 3 \).

Since \(p = 2^q - 1 \), we have
\[2(2^{q-1} - 1) = 3^np_1^n \]
which implies \(p_1 = 2, i = 1 \) and \(2^{q-1} - 3^r = 1 \). The only solutions to the previous equation in positive integers \(q \) and \(r \) are \(q = 3 \) and \(r = 1 \). In fact, in 2002, Mihăilescu proved that the only solution to the Diophantine equation \(x^a - y^b = 1 \), with \(x, y, a, b > 1 \) is \(x = 3, y = 2, a = 2, b = 3 \), thus solving the celebrated Catalan’s conjecture (see 10, the solution of the particular case of this conjecture with \(x = 2 \) and \(y = 3 \) is attributed to Gersonides).

If \(q = 3 \) and \(r = 1 \), we get \(p = 7 \), whereas we are considering a number \(p > 7 \). This concludes the proof.

\(\square \)
5 Other properties of the matrix F

In this section we investigate further properties of matrix F.

Theorem 5.1. Matrix F has periodic diagonals. In particular, the a-th subdiagonal has period $2a + 1$.

Matrix F has periodic columns. In particular, column a has period a.

Proof. To prove the first part of the theorem, fix $a \in \mathbb{N}$ and consider the elements $F_{n,n-a}$, $n > a$, of the matrix F. These elements constitute the a-th subdiagonal. By Lemma 3.1 we have $F_{n,n-a} = 1$ if and only if $F_{a,h}$ where $h \equiv n-a \mod 2a+1$. Since a is fixed, this proves that the a-th subdiagonal is periodic with period $2a + 1$.

To prove the second part, fix $a \in \mathbb{N}$ and consider the elements $F_{n,a}$, $n \geq a$. These elements constitutes the a-th column of F. By Lemma 3.1 $F_{n,a} = 1$ if and only if $F_{n-a,h}$ where $h \equiv a \mod 2n - 2a + 1$. If n is sufficiently large, this implies $h = a$ and hence the a-th column has period a.

Theorem 5.2. For each quadruple $(k, d, i, j) \in \mathbb{N}^4$, $k > 0$, we have

$$F_{kd+id+j(i+1)(2(k-1)d+1), d+j(2(k-1)d+1)} = 1.$$

Proof. Consider the set $A := \{(kd, d) | k, d \in \mathbb{N}, k > 0\}$. We have $F_{x,y} = 1$ for all $(x, y) \in A$ by Proposition 2.5. By Lemma 3.1 we have

$$\bigcup_{i,j \geq 0} G^i S^j (A) =$$

$$\{kd+id+j(i+1)(2(k-1)d+1), d+j(2(k-1)d+1)) | k, d, j, l \in \mathbb{N}, k > 0\}.$$

This concludes the proof.

The previous theorem implies the following Corollary.

Corollary 5.3. For each $t \in \mathbb{N}$, $F_{3t+2,2t+2} = 1$ and $F_{5t+4,2t+2} = 1$.

Proof. For the first part, substitute $i = 0, d = 1, j = 1$ and $k - 1 = t$ in the previous theorem. For the second part, by Lemma 3.1 we get $F_{5j+4,2j+2} = 1$ if and only if $F_{3j+2,h} = 1$ where $h \equiv 2j + 2 \mod 6j + 4$ i.e. $h = 2j + 2$. Since $F_{3j+2,2j+2} = 1$ by the first part, we get the assertion.
6 Conjectures about the matrix F

In this section we formulate others conjectures about F and explain their relation with Conjecture 1.1. To this aim we need to introduce the notion of track vector.

Denote by ϕ the map that associates the pair of integers (n, k) the pair $(n - k, h)$ where $h \equiv k \mod 2n - 2k + 1$ and $0 \leq h \leq 2n - 2k$. It follows from the proof of Lemma 3.1 that $\phi(n, k) = (n - k, h)$ if and only if there exists an $i \in \mathbb{N}$ such that $\text{S}^i G(n - k, h) = (n, k)$. As a consequence, $(n, k) = \text{S}^i G S^{i-1} G \ldots S^1 G(m, m)$, where $i_1, \ldots, i_l, m \in \mathbb{N}$, if and only if $\phi^i(n, k) = (m, m)$.

The number of operations of the form $\text{S}^i G$ needed to get a given element is related to the breadth of an element. Here we recall the definition of breadth and of track vector. Following [4], the track vector of an element (n, k) is defined as the vector $(i_0 + 1, \ldots, i_l + 1)$ where

$$(n, k) = \text{S}^i G S^{i-1} G \ldots S^1 G (1, 1).$$

In this case, the breadth of (n, k) is equal to l. Since $\text{S}^0(1, 1) = (i_0, i_0)$, the breadth of (n, k) is equal to the number of times it is necessary to apply the map ϕ to (n, k) to get an entry of the form (m, m).

Theorem 6.1. The elements of F appearing in Theorem 4.1 with $x \neq 0$, i.e. the elements $F_{n, n-x}$, $x \neq 0$, such that there exists an h with $h|x$ and $2x + 1|2n - 2x + 1$ are precisely the elements in row n with track vector of the form $(a, (1)^p, b)$, with $a, b, p \geq 1$.

Moreover, if n is fixed, the number of elements $F_{n, n-x}$, $x \neq 0$, such that there exists an h with $h|x$ and $2x + 1|2n - 2x + 1$ is equal to the number of elements in row n with track vector $((1)^p, a, (1)^q)$, where $p, q \geq 0, a \geq 2$.

Proof. By the previous observations and by the proof of Theorem 4.1 we have that the elements $F_{n, n-x}$, $x \neq 0$, such that there exists an h with $h|x$ and $2x + 1|2n - 2x + 1$ are precisely the elements of the form

$$\text{S}^b G^{p+1} S^{a-1} (1, 1)$$

with $a, b, p \geq 1$ i.e. those with track vector $(a, (1)^p, b)$.

As in the previous Sections, we denote by a_n the number of elements in row n of the form described in the proposition. It follows from Theorem 4.3 that $a_n - 1$ is equal to the number of solutions to Equation 2. By the first part of Lemma 8 in [4], the number of elements of the form (n, r) with track vector $((1)^p, a, (1)^q)$ is equal to

$$ap(2q + 2) + a(q + 1) - p(2q + 1) = 2ap(q + 1) + a(q + 1) - 2p(q + 1) + p.$$
If \(n \) is fixed and we substitute \(q + 1 = ˆq \) the number of such elements is equal to the number of solutions of the equation

\[
n = 2apq + a ˆq - 2pq + p = 2pq(a - 1) + (a - 1)q + ˆq + p.
\]

Set \(ˆa = a - 1 \). We get the equation \(n = 2pq ˆa + ˆa ˆq + ˆq + p \), where \(ˆa, ˆq \geq 1 \), and \(p \geq 0 \). This equation coincides with Equation 2.

Corollary 6.2. The number of elements in row \(n \) with track vector of the form \((a, (1)^p, b)\), with \(a, b, p \geq 1 \) is equal to the number of elements in row \(n \) with track vector of the form \(((1)^p, a, (1)^q)\), where \(p, q \geq 0, a \geq 2 \). Moreover this common value is \(a_n - 1 \).

We conjecture that the sequence \(a_n \) tends to infinity.

Conjecture 6.3.

\[
a_n \to \infty,
\]

more precisely \(a_n \geq \lfloor \log(n) \rfloor - 1 \).

The inequality of the conjecture originates from numerical evidences. Notice that it is not true that \(a_n \geq \lfloor \log(n) \rfloor \). In fact \(a_{18007} = 8 \) but \(\lfloor \log(18007) \rfloor = 9 \).

Notice that the previous conjecture implies Conjecture 1.1 and Theorem 4.4.

Moreover, by the paper [4], it follows that the set of elements in row \(n \) with track vector \(((1)^p, a, (1)^q)\), where \(p, q \geq 0, a \geq 2 \) corresponds bijectively with a subset of the elementary partitions, which in turn are a subset of the set of partitions with \(n \) subpartitions. Hence, if \(s_n \) is the number of partitions with \(n \) subpartitions, the previous conjecture implies also that \(s_n \to \infty \). Notice that sequence \(\{s_n\}_{n \in \mathbb{N}} \) is sequence A116473 in [7], where it is reported that it is conjectures that \(s_n \to \infty \). Thus Conjecture 6.3 would imply also this conjecture present in [7].

Another conjecture suggested by strong numerical evidences is the following.

Conjecture 6.4. Let \(c_n \) be the number of elements in row \(n \) with breadth 3. Then \(c_n \to \infty \).

We conclude this Section with a conjecture about the possible positions of elements created at Step \(i \) inside the matrix \(F \).

Conjecture 6.5. Consider the elements of matrix \(F \) that are created at Step \(i \). Let \(r_i \) be the maximal index of a row of matrix \(F \) containing such an element. Then \(\{r_{2j+1}\}_{j \in \mathbb{N}} \) is sequence A061278 in [2] and \(\{r_{2j}\}_{j \in \mathbb{N}} \) is sequence A001571 in [7]. Moreover, if \(i \) is even, row \(r_i \) of \(F \) contains two
elements created at Step i. On the other hand, if i is odd, row r_i contains one element created at Step i.

Example 6.6. Let $i = 6$. The maximal row containing an element created at Step 6 is row 35. Notice that 35 is the third element (avoiding the first zero) of sequence A001571 in [7]. Moreover, row 35 of F contains two elements created at Step 6, precisely $F_{35,15}$ and $F_{35,26}$.

7 Upper bound for F_n

We conclude the paper improving the best known upper bound for F_n.

Corollary 5 in [2] states that $F_n \leq \min\{n, \phi(2n+1)\}$ where ϕ is the Euler totient function, see e.g. [1]. In fact $F_n \leq n$ since the matrix F is lower triangular. Moreover, it is shown in [2], that if $F_{n,k} = 1$ then $\gcd(k, 2n+1) = 1$ (this can also be shown easily using the recursive definition of F used in this paper). Hence $F_n \leq \phi(2n + 1)$.

It is possible to slightly improve this bound in the following way. Consider the same notation of the proof of Theorem 2.1. Since $G(1,1) = (2,1) \in X_1$, $S(1,1) = (2,2) \in X_2$, $G(X_1 \cup X_2) \subseteq X_1$ and $S(X_1 \cup X_2) \subseteq X_2$ we have that every element (n, k), $n > 1$, such that $F_{n,k} = 1$ is contained in $X_1 \cup X_2$. In particular, $k < \frac{n}{2} + \frac{1}{4}$ or $k > \frac{2n}{3} + \frac{1}{3}$. Hence

$$F_n \leq n - \left(\frac{2n}{3} + \frac{1}{3} - \left(\frac{n}{2} + \frac{1}{4}\right) - 1\right) = \frac{5n}{6} - \frac{13}{12}.$$

Thus we get

$$F_n \leq \min\left\{\frac{5n}{6} - \frac{13}{12}, \phi(2n+1)\right\}.$$

References

[1] T.M. Apostol. *Introduction to Analytic Number Theory*. Undergraduate Texts in Mathematics. Springer New York, 1998.

[2] M. Barnabei, F. Bonetti, N. Castronuovo, and R. Cori. Some permutations on Dyck words. *Theoretical Computer Science*, 635:51–63, 2016.

[3] N. Castronuovo, R. Cori, and S. Labbé. A permutation on words in a two letter alphabet. In *Combinatorics on Words - 11th International Conference, WORDS 2017, Montreal, QC, Canada, September 11-15, 2017, Proceedings*, Lecture Notes in Computer Science, pages 240–251. Springer, 2017.
[4] R. Cori, A. Frosini, G. Palma, E. Pergola, and S. Rinaldi. On doubly symmetric dyck words. *Theoretical Computer Science*, 896:79–97, 2021.

[5] P. de la Harpe. *Topics in Geometric Group Theory*. Chicago Lectures in Mathematics. University of Chicago Press, 2000.

[6] R. Schoof. *Catalan’s Conjecture*. Universitext. Springer London, 2010.

[7] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. https://oeis.org/.