A model independent method for quantitative estimation of SU(3) flavor symmetry breaking using Dalitz plot

Dibyakrupa Sahoo,1 Rahul Sinha,1 and N. G. Deshpande2

1The Institute of Mathematical Sciences, Taramani, Chennai 600113, India
2Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403, USA

(Dated: February 26, 2015)

The light hadron states are satisfactorily described in the quark model using SU(3) flavor symmetry. If the SU(3) flavor symmetry relating the light hadrons were exact, one would have an exchange symmetry between these hadrons arising out of the exchange of the up, down and strange quarks. This aspect of SU(3) symmetry is used extensively to relate many decay modes of heavy quarks. However, the nature of the effects of SU(3) breaking in such decays is not well understood and hence, a reliable estimate of SU(3) breaking effects is missing. In this work we propose a new method to quantitatively estimate the extent of flavor symmetry breaking and better understand the nature of such breaking using Dalitz plot. We study the three non-commuting SU(2) symmetries (subsumed in SU(3) flavor symmetry): isospin (or T-spin), U-spin and V-spin, using the Dalitz plots of some three-body meson decays. We look at the Dalitz plot distributions of decays in which pairs of the final three particles are related by two distinct SU(2) symmetries. We show that such decay modes have characteristic distributions that enable the measurement of violation of each of the three SU(2) symmetries via Dalitz plot asymmetries in a single decay mode. Experimental estimates of these easily measurable asymmetries would help in better understanding the weak decays of heavy mesons into both two and three light mesons.

PACS numbers: 11.30.Hv, 13.25.Ft, 13.25.Hw

I. INTRODUCTION

A satisfactory understanding of the light hadronic states using SU(3) flavor symmetry is one of the outstanding success stories of particle physics [1–5]. In its true essence the SU(3) flavor symmetry denotes the full exchange symmetry amongst the up (u), down (d) and strange (s) quarks. Another implication is that the mesons formed by combining the quarks u, d, s and the antiquarks ̅u, ̅d, ̅s belonging to the same representation of SU(3) would also be degenerate. One treats the three quarks on the same footing even though the quark masses differ by allowing for a breaking of the symmetry. The success of the Gell-Mann-Okubo mass formula in relating the hadron masses is that it takes the small SU(3) breaking into account but does not depend on the details of SU(3) breaking effects. Such SU(3) breaking effects cannot be calculated and must be estimated using experimental inputs. Traditionally, the mass differences between these mesons have been used as a measure of the extent of breaking of SU(3) flavor symmetry. The masses of these mesons, which are bound states of quark-antiquark pairs, depend on their binding energies. It is not possible to estimate these binding energies from QCD calculations since these resonances lie in the non-relativistic low energy regime. Moreover, the electro-magnetic interactions between the quark and the antiquark in the meson contribute towards its binding energy. Thus, by measuring the mass differences amongst the mesons one does not fully solicit the breaking of SU(3) flavor symmetry. Another usual way to explore the breaking SU(3) flavor symmetry is to look at specific loop diagrams where the down and strange quarks contribute. The loop effects affect the amplitude of the process under consideration and its physical manifestations are then studied for a quantitative estimation of the breaking of SU(3) flavor symmetry. Since up quark has different electric charge than down and strange, it can not be treated in the same way in these studies of loop contributions. Therefore, such a method also fails to probe the full exchange symmetry of these three light quarks. Hence, all estimates of SU(3) breaking are currently empirical.

Several studies exist in literature that have used broken SU(3) flavor symmetry (i) in various decay modes using the methods of amplitudes (usually isospin and U-spin amplitudes) and various quark diagrams [6–52], and (ii) in determining weak phases and CP violating phases [53–64]. These methods involve comparison of observables in distinct decay modes which are related by some underlying SU(2) symmetries, such as isospin, U-spin or V-spin. However, the full exchange symmetry amongst the three light quarks has not yet been fully exploited, in a single decay mode. Hadronic weak decays involve several unknown parameters which can be reduced by the use of SU(3) flavor symmetry. Since, SU(3) flavor symmetry is still extensively used to relate the few decay modes of heavy quarks, it is important to realize other ways to experimentally measure the breaking of SU(3) flavor symmetry and understand better the complete nature of SU(3) breaking. In this paper we propose a method to achieve precisely this by looking at asymmetries in the Dalitz plot under exchange of the mesons in the final state. These asymmetries can be measured in different regions of the Dalitz plot. In particular these asymmetries can be measured both along resonances and in the non-resonant regions. A quantitative estimate of the variation of these asymmetries obtained experimentally would provide valuable understanding of SU(3) breaking effects. It would also be interesting to find regions of the Dalitz plots where SU(3) is a good symmetry. The SU(3) flavor symmetry subsumes three important and non-commuting SU(2) symmetries: isospin (or T-spin), U-spin and V-spin. All the members of a SU(3) multiplet are related to one another by combined operations of the raising and
Considering the decay mode $B \rightarrow K\pi\pi$, then illustrate the method in full detail in subsection II B by also setting up the notation to be followed thenceforth. We shall explicitly explore this exchange it must be even under space exchange, whereas if it is anti-symmetric in $SU(2)$ exchange it must be odd under space exchange. This behavior must also be reflected in the Dalitz plot for the decay. We can construct a Dalitz plot out of the Mandelstam-like variables s, t and u. Let us denote the 4-momenta of particles P and M_i (where $i \in \{1, 2, 3\}$) by p and P_i and their masses by m and m_i. The variables s, t, u are defined in terms of the 4-momenta as follows:

$$s = (p - P_1)^2 = (p_2 + P_3)^2,$$
$$t = (p - P_2)^2 = (p_1 + P_3)^2,$$
$$u = (p - P_3)^2 = (p_1 + p_2)^2.$$

(1)

It is easy to observe that $(m_2 + m_3)^2 \leq s \leq (m - m_1)^2$, $(m_1 + m_2)^2 \leq t \leq (m - m_3)^2$, $(m_1 + m_3)^2 \leq u \leq (m - m_2)^2$, and $s + t + u = m^2 + m_1^2 + m_2^2 + m_3^2 = M^2$ (say). In order to give equal weighting to s, t and u we shall work with a ternary plot of which s, t, u form the three axes. This leads to an equilateral triangle as shown in Fig. 2. When the final particles

Diagram Description:*

The diagram illustrates the $SU(3)$ meson octet of light pseudo-scalar mesons. Here the horizontal axis shows the eigenvalues of isospin (T_3) and the vertical axis shows the eigenvalues of hypercharge ($Y = B + S$, with B being baryon number and S being the strangeness number). The dotted lines parallel to U-spin (or isospin) axis signify that in no two-body decays of B or D mesons can the two connected mesons appear together in the final state as that would violate conservation of electric charge (or strangeness by two units).

II. THE METHOD

A. General considerations

The method described in this paper relies on the simultaneous application of two of the $SU(2)$ symmetries subsumed in $SU(3)$ i.e. isospin (or 3-3 spin), U-spin or V-spin, to a three-body decay $P \rightarrow M_1 M_2 M_3$, where M_1, M_2 and M_3 are chosen such that M_1 and M_2 belong to the triplet of one of the $SU(2)$ subgroups and M_3 belongs to another. To be definite M_2 is always chosen to be the π^0 and the modes we consider are listed in Table I. Under the limit of exact $SU(2)$ all the mesons belonging to the triplet are identical bosons and must exhibit an overall Bose symmetry under exchange. This behavior must also be reflected in the Dalitz plot for the decay. We can construct a Dalitz plot out of the Mandelstam-like variables s, t and u. Let us denote the 4-momenta of particles P and M_i (where $i \in \{1, 2, 3\}$) by p and P_i and their masses by m and m_i. The variables s, t, u are defined in terms of the 4-momenta as follows:

$$s = (p - P_1)^2 = (p_2 + P_3)^2,$$
$$t = (p - P_2)^2 = (p_1 + P_3)^2,$$
$$u = (p - P_3)^2 = (p_1 + p_2)^2.$$

(1)

It is easy to observe that $(m_2 + m_3)^2 \leq s \leq (m - m_1)^2$, $(m_1 + m_2)^2 \leq t \leq (m - m_3)^2$, $(m_1 + m_3)^2 \leq u \leq (m - m_2)^2$, and $s + t + u = m^2 + m_1^2 + m_2^2 + m_3^2 = M^2$ (say). In order to give equal weighting to s, t and u we shall work with a ternary plot of which s, t, u form the three axes. This leads to an equilateral triangle as shown in Fig. 2. When the final particles...
are ultra-relativistic, the full interior of the equilateral triangle tends to get occupied. In any case the Dalitz plot under our consideration would always lie inside the equilateral triangle. The physically allowed region is schematically shown in Fig. 2 by the yellow colored region inside the equilateral triangle. The boundary of the Dalitz plot for a three-body decay process under consideration would not look symmetric under the exchanges $s \leftrightarrow t \leftrightarrow u$ due to the breaking of flavor $SU(3)$ symmetry on account of masses m_1, m_2 and m_3 being different. Any event inside the Dalitz plot, as illustrated in Fig. 2, can be specified by its radial distance (r) from the center of the equilateral triangle and the angle subtended by its position vector with any of the axes s, t, u. The angle subtended by the position vector with s-axis is denoted by θ, the one with u-axis is denoted by θ' and the one with t-axis is denoted by θ''. An event described by some values of s, t and u corresponds to some values of r and θ as calculable from the relations given below:

\begin{align*}
 s &= \frac{M^2}{2} \left(1 + r \cos \theta \right), \\
 t &= \frac{M^2}{3} \left(1 + r \cos \left(\frac{2\pi}{3} + \theta \right) \right), \\
 u &= \frac{M^2}{3} \left(1 + r \cos \left(\frac{2\pi}{3} - \theta \right) \right).
\end{align*}

One can easily change the basis from (r, θ) to either (r, θ') or (r, θ'') by noting the fact that $\theta = \theta' + \frac{2\pi}{3}$ and $\theta = \theta'' + \frac{2\pi}{3}$ (see Fig. 2).

Before we analyze the specific decay modes, we would like to point out a few simple facts about the neutral pion, which plays a pivotal role in all our decays. The neutral pion is a pure isorotiplet state $|1, 0\rangle_I \equiv \frac{1}{\sqrt{2}} (d\bar{d} - u\bar{u})$:

$$|\pi^0\rangle = -|1, 0\rangle_I.$$ \hspace{1cm} (5)

But in case of U-spin it is a linear combination of the U-spin triplet state $|1, 0\rangle_U \equiv \frac{1}{\sqrt{2}} (s\bar{s} - d\bar{d})$ and the U-spin singlet but $SU(3)$ octet state $|0, 0\rangle_{U,S} \equiv \frac{1}{\sqrt{8}} (d\bar{d} + s\bar{s} - 2u\bar{u})$:

$$|\pi^0\rangle = \frac{1}{2} (|1, 0\rangle_U - \frac{\sqrt{3}}{2} |0, 0\rangle_{U,S}).$$ \hspace{1cm} (6)

Similarly in case of V-spin, π^0 is given by a linear combination of the V-spin triplet state $|1, 0\rangle_V \equiv \frac{1}{\sqrt{2}} (s\bar{s} - u\bar{u})$ and the V-spin singlet but $SU(3)$ octet state $|0, 0\rangle_{V,S} \equiv \frac{1}{\sqrt{8}} (u\bar{s} + s\bar{s} - 2d\bar{d})$:

$$|\pi^0\rangle = \frac{1}{2} (|1, 0\rangle_V + \frac{\sqrt{3}}{2} |0, 0\rangle_{V,S}).$$ \hspace{1cm} (7)

We have put subscripts I, U, V in the states to indicate that they are written in isospin, U-spin and V-spin bases respectively.

B. Decay Mode with final state $K^0\pi^0\pi^+$

We begin by considering as an example the decay mode $B^+ \rightarrow K^0\pi^0\pi^+$. We will see that the application of both isospin and U-spin results in unique tests of the validity of both these constituent symmetries of $SU(3)$. The π^0 and π^+ in the final state are identical under isospin and the final state must be totally symmetric under exchange. Under U-spin (see Fig. 1) the K^0 and π^0 can be considered as identical bosons and must similarly be totally symmetric under exchange. This ensures the following exchanges in the Dalitz plot:

- U-spin exchange $\equiv K^0 \leftrightarrow \pi^0 \Rightarrow s \leftrightarrow t$,
- isospin exchange $\equiv \pi^0 \leftrightarrow \pi^+ \Rightarrow t \leftrightarrow u$.

Under exact U-spin and isospin, the final state $K^0\pi^0\pi^+$ has, therefore, the following two possibilities:

1. $K^0\pi^0$ would exist in either symmetrical or anti-symmetrical state w.r.t. their exchange in space, and
2. $\pi^0\pi^+$ would exist in either symmetrical or anti-symmetrical state w.r.t. their exchange in space.
\[
\mathcal{A}_{SS}(s, t, u) \equiv \mathcal{A}_{SS}(s, t, u) \equiv \mathcal{A}_{SS}(u, s, t)
\]

Since, we have shown that \(\mathcal{A}_{SS}(s, t, u) = \mathcal{A}_{SS}(u, t, s)\), we have demonstrated that \(\mathcal{A}_{SS}(s, t, u)\) is also symmetric under \(s \leftrightarrow u\). Hence, we conclude that \(\mathcal{A}_{SS}(s, t, u)\) is a fully symmetric amplitude function. Let us now consider \(\mathcal{A}_{AA}(s, t, u)\) which is a function anti-symmetric under both \(s \leftrightarrow t\) and \(t \leftrightarrow u\) to show that it is also anti-symmetric under \(s \leftrightarrow u\):

\[
\mathcal{A}_{AA}(s, t, u) \equiv \mathcal{A}_{AA}(t, s, u) \equiv \mathcal{A}_{AA}(u, s, t)
\]

Since, \(\mathcal{A}_{AA}(s, t, u) = -\mathcal{A}_{AA}(u, t, s)\) we require that \(\mathcal{A}_{AA}(s, t, u)\) must also be anti-symmetric under \(s \leftrightarrow u\). Hence, we conclude that \(\mathcal{A}_{AA}(s, t, u)\) is a fully anti-symmetric amplitude function.

Following the same arguments as above it is easy to conclude that both \(\mathcal{A}_{SA}(s, t, u)\) and \(\mathcal{A}_{AS}(s, t, u)\) must be identically zero. The details are as follows. The function \(\mathcal{A}_{SA}(s, t, u)\) which is symmetric under \(s \leftrightarrow t\) and anti-symmetric under \(t \leftrightarrow u\) must satisfy

\[
\mathcal{A}_{SA}(s, t, u) \equiv \mathcal{A}_{SA}(t, s, u) \equiv \mathcal{A}_{SA}(u, s, t)
\]

Similarly, \(\mathcal{A}_{AS}(s, t, u)\) being a function anti-symmetric under \(s \leftrightarrow t\) and symmetric under \(t \leftrightarrow u\) satisfies

\[
\mathcal{A}_{AS}(s, t, u) \equiv \mathcal{A}_{AS}(t, s, u) \equiv \mathcal{A}_{AS}(u, s, t)
\]

We have shown that both \(\mathcal{A}_{SA}(s, t, u) = 0\) and \(\mathcal{A}_{AS}(s, t, u) = 0\), which implies that these amplitudes never contribute to the distribution of events on the Dalitz plot. Since, the function describing the distribution of events in the Dalitz plot is proportional to the amplitude mod-square, it also has only two parts, one which is fully symmetric under \(s \leftrightarrow t \leftrightarrow u\), and another which is fully anti-symmetric under \(s \leftrightarrow t \leftrightarrow u\).

We now examine the decay mode \(B^+ \to K^0\pi^0\pi^+\) in detail, by writing down the decay amplitude in terms of isospin and \(U\)-spin amplitudes, eventually obtaining the same conclusion as above about the distribution of events in the Dalitz plot under consideration. The \(\pi^0\pi^+\) combination can exist in isospin states \([2, +1]\) and \([1, +1]\) (see Table I). If isospin were an exact symmetry, the state \([\pi^0\pi^+]\) would remain unchanged under \(\pi^0 \leftrightarrow \pi^+\) exchange. This puts the \([2, +1]\) state in a space symmetric (even partial wave) state, and the \([1, +1]\) state in a space anti-symmetric (odd partial wave) state. The isospin decomposition of the final state \(K^0\pi^0\pi^+\) is given by

\[
|K^0\pi^0\pi^+\rangle = \frac{1}{\sqrt{5}} \left| \frac{5}{2}, +\frac{1}{2} \right| I + \frac{\sqrt{3}}{\sqrt{10}} \left| \frac{3}{2}, +\frac{1}{2} \right| I + \frac{1}{\sqrt{6}} \left| \frac{3}{2}, \frac{1}{2} \right| I - \frac{1}{\sqrt{3}} \left| \frac{1}{2}, \frac{1}{2} \right| I,
\]

(8)
where the superscripts \(e, o\) denote the even, odd nature of the state under the exchange \(\pi^0 \leftrightarrow \pi^+\). The sign change in the odd states above is due to the odd \(|1, +1\rangle\) isospin component of the \(|\pi^0, \pi^+\rangle\) state switching sign under \(\pi^0 \leftrightarrow \pi^+\) exchange, whereas the \(|2, +1\rangle\) is even under the same exchange. Since \(B^+\) has isospin state \(|\frac{1}{2}, +\frac{1}{2}\rangle\), and only \(\Delta I = 0, 1\) currents are allowed by the Hamiltonian in standard model, we would have no contributions from \(|\frac{3}{2}, +\frac{3}{2}\rangle\) state. The \(|\frac{3}{2}, +\frac{1}{2}\rangle\) state can arise from both \(|\frac{1}{2}, -\frac{1}{2}\rangle \otimes |2, +1\rangle\) and \(|\frac{1}{2}, -\frac{1}{2}\rangle \otimes |1, +1\rangle\), with the first contribution being symmetric and the latter being anti-symmetric. The state \(|\frac{3}{2}, +\frac{1}{2}\rangle\) on the other hand is purely anti-symmetric. Even though we shall work with the standard model Hamiltonian, our conclusions are general and are valid even when more general Hamiltonians exist.

The isospin \(I = \frac{1}{2}\) initial state decays to a final state that can be decomposed into either \(I = \frac{1}{2}\) or \(I = \frac{3}{2}\) states via a Hamiltonian that allows \(\Delta I = 0\) or \(\Delta I = 1\) transitions. The transition with \(\Delta I = 1\) results in two amplitudes with \(I = \frac{1}{2}\) or \(I = \frac{3}{2}\) represented as \(T_{-\frac{1}{2}}\) and \(T_{+\frac{1}{2}}\) respectively, whereas \(\Delta I = 0\) transition results only in a single amplitude with final state \(I = \frac{1}{2}\) labeled as \(T_{1\frac{1}{2}}\). The isospin amplitudes \(T_{-\frac{1}{2}}, T_{+\frac{1}{2}}\) and \(T_{1\frac{1}{2}}\) are themselves defined [16] in terms of the Hamiltonian to be:

\[
\begin{align*}
T_{-\frac{1}{2}} &= \sqrt{\frac{2}{3}} \left(\frac{1}{2}, \frac{1}{2} \right) \mathcal{H}_{\Delta I = 1} \left| \frac{1}{2}, \frac{1}{2} \right>, \\
T_{+\frac{1}{2}} &= \pm \sqrt{\frac{2}{3}} \left(\frac{1}{2}, -\frac{1}{2} \right) \mathcal{H}_{\Delta I = 1} \left| \frac{1}{2}, \frac{1}{2} \right>, \\
T_{1\frac{1}{2}} &= \pm \sqrt{\frac{2}{3}} \left(\frac{1}{2}, \frac{1}{2} \right) \mathcal{H}_{\Delta I = 0} \left| \frac{1}{2}, \frac{1}{2} \right>.
\end{align*}
\]

The amplitude for the decay \(B^+ \rightarrow K^0\pi^0\pi^+\) can then be written in terms of the isospin amplitudes as:

\[
A(B^+ \rightarrow K^0\pi^0\pi^+) = \frac{3}{\sqrt{10}} T_{1\frac{1}{2}} X - \frac{1}{\sqrt{2}} \left(T_{-\frac{1}{2}} + T_{+\frac{1}{2}}^* + T_{1\frac{1}{2}}^* \right) Y \sin \theta,
\]

where \(X\) and \(Y \sin \theta\) are introduced to take care of the spatial and kinematic contributions as is seen from the discussion above (see Eqns. (3) and (4)). In general, \(X\) and \(Y\) can be arbitrary functions of \(r\) and \(\cos \theta\). The functions \(X\) and \(Y\) are in general model dependent, however, they are same for modes related by isospin symmetry. We retain the subscripts ‘\(e\)’ and ‘\(o\)’ merely to track the even or odd isospin state of the two pion in the three-body final state.

On the other hand, if \(U\)-spin were an exact symmetry the state \(K^0\pi^0\) must remain unchanged under \(K^0\leftrightarrow \pi^0\) exchange. Under \(U\)-spin the \(K^0\pi^0\) state can exist in \(|2, +1\rangle_U\) and \(|1, +1\rangle_U\) (see Table I), out of which \(|1, +1\rangle_U\) has a contribution from the \(|0, 0\rangle_U\) admixture in \(\pi^0\) which is denoted by \(|1', +1\rangle_U\). Both \(|2, +1\rangle_U\) and \(|1, +1\rangle_U\) coming from the \(|0, 0\rangle_U\) contribution of \(\pi^0\) exist in space symmetric (even partial wave) states, and that part of \(|1, +1\rangle_U\) arising out of \(|1, 0\rangle_U\) part of \(\pi^0\) exists in space anti-symmetric (odd partial wave) state. The \(U\)-spin decomposition of the final state \(|K^0\pi^0\pi^+\rangle\) is given by

\[
|K^0\pi^0\pi^+\rangle = -\frac{1}{\sqrt{3}} \left(\frac{3}{2}, \frac{1}{2} \right) U \left(\frac{1}{2}, \frac{1}{2} \right) U^* - \frac{1}{\sqrt{2}} \left(\frac{3}{2}, \frac{1}{2} \right) U \left(\frac{1}{2}, \frac{1}{2} \right) U^* + \frac{1}{\sqrt{2}} \left(\frac{3}{2}, \frac{3}{2} \right) U \left(\frac{1}{2}, \frac{1}{2} \right) U^* + \frac{1}{\sqrt{2}} \left(\frac{3}{2}, \frac{3}{2} \right) U \left(\frac{1}{2}, \frac{1}{2} \right) U^*.
\]

where the superscripts \(e, o\) denote that the state is even, odd under the exchange \(K^0\leftrightarrow \pi^0\). The origin of sign change in the odd terms above is easy to understand from the \(U\)-spin decomposition of the \(|K^0\pi^0\rangle\) state:

\[
|K^0\pi^0\rangle = \frac{1}{\sqrt{2}} \left(|2, +1\rangle_U + |1, +1\rangle_U \right) - \frac{\sqrt{3}}{2} |1', +1\rangle_U,
\]

which transforms as follows under the \(K^0\leftrightarrow \pi^0\) exchange

\[
|\pi^0 K^0\rangle = \frac{1}{\sqrt{2}} \left(|2, +1\rangle_U - |1, +1\rangle_U \right) - \frac{\sqrt{3}}{2} |1', +1\rangle_U.
\]

We recollect that \(|1, +1\rangle_U\) is an odd state under \(K^0\leftrightarrow \pi^0\) exchange, whereas \(|2, +1\rangle_U\) and \(|1', +1\rangle_U\) are even states under the same exchange. It is easy to see that \(|\frac{3}{2}, +\frac{1}{2}\rangle_U\) and \(|\frac{3}{2}, +\frac{1}{2}\rangle_U\) states do not contribute since the parent particle \(B^+\) is a \(U\)-spin singlet, and only the \(\Delta U = \frac{1}{2}\) current contributes to the decay. This unique feature follows from the fact that the electroweak penguin does not violate \(U\)-spin as \(d\) and \(s\) quarks carry the same electric charge (see [34]). Hence, only the \(|\frac{1}{2}, \frac{1}{2}\rangle_U\) and \(|\frac{1}{2}, \frac{1}{2}\rangle_U\) can contribute to the decay amplitude and they correspond to anti-symmetric and symmetric contributions under \(K^0\leftrightarrow \pi^0\) respectively. The \(U\)-spin amplitudes

\[
\begin{align*}
U_{\frac{1}{2}} &= \pm \sqrt{\frac{2}{3}} \left(\frac{1}{2}, \frac{1}{2} \right) \mathcal{H}_{\Delta U = \frac{1}{2}} \left| 0, 0 \right>, \\
U'_{\frac{1}{2}} &= \sqrt{\frac{1}{3}} \left(\frac{1}{2}, \frac{1}{2} \right) \mathcal{H}_{\Delta U = \frac{1}{2}} \left| 0, 0 \right>.
\end{align*}
\]

Hence, the amplitude for the decay \(B^+ \rightarrow K^0\pi^0\pi^+\) can then be written in terms of the \(U\)-spin amplitudes as

\[
A(B^+ \rightarrow K^0\pi^0\pi^+) = \frac{3}{\sqrt{10}} U'_{\frac{1}{2}} X' + U_{\frac{1}{2}} Y' \sin \theta,
\]

where \(X'\) and \(Y'\) are functions that are, in general, arbitrary functions of \(r\) and \(\cos \theta\), and are introduced to take care of spatial and kinematic contributions to the decay amplitude. The subscripts ‘\(e\)’ and ‘\(o\)’ are again retained to merely track the even or odd \(U\)-spin state of \(K^0\) and \(\pi^0\) in the three-body final state. As argued earlier the amplitude for the decay has two parts, one fully symmetric under the exchanges \(s \leftrightarrow t \leftrightarrow u\) (i.e. \(\mathcal{A}_{SS}(s, t, u)\)) and another fully anti-symmetric under the same exchanges (i.e. \(\mathcal{A}_{SA}(s, t, u)\)). Comparing Eqns. (10) and (13) we obtain:

\[
\mathcal{A}_{SS} = \frac{3}{\sqrt{10}} T_{1\frac{1}{2}} X = \frac{3}{\sqrt{10}} U_{\frac{1}{2}} X',
\]

(14)
\[A_{AA} = -\frac{1}{\sqrt{2}} (T_{\uparrow \downarrow}^0 + T_{\downarrow \uparrow}^0 + T_{\uparrow \downarrow}^0) Y \sin \theta \]
\[= U_{\uparrow \downarrow}^0 \ Y' \sin \theta'. \quad (15) \]

The exchange \(s \leftrightarrow t \leftrightarrow u \) being equivalent to \(\theta \leftrightarrow \theta' \leftrightarrow \theta'' \), implies that the fully anti-symmetric amplitude \(A_{AA}(s,t,u) \) must be proportional to \(\sin 3\theta \) because \(\sin \theta = \sin \theta' = \sin \theta'' = 0 \) as \(\theta = \theta' + \frac{2\pi}{3} = \theta'' + \frac{4\pi}{3} \). From elementary trigonometry we know that \(\sin 3\theta = \sin (4\cos^2 \theta - 1) \). This implies that the factor \((4\cos^2 \theta - 1) \) is an even function of \(\cos \theta \) and is a part of both \(Y \) and \(Y' \) in Eq. (15), i.e. \(Y = y (4\cos^2 \theta - 1) \) and \(Y' = y' (4\cos^2 \theta' - 1) \) for some \(y \) and \(y' \) such that

\[A_{AA} = -\frac{1}{\sqrt{2}} (T_{\uparrow \downarrow}^0 + T_{\downarrow \uparrow}^0 + T_{\uparrow \downarrow}^0) y \sin 3\theta \]
\[= U_{\uparrow \downarrow}^0 \ y' \sin 3\theta'. \quad (16) \]

The Dalitz plot can be divided into six sextants by means of the \(s, t \) and \(u \) axes which go along the medians of an equilateral triangle as shown in Figs. 2 and 3. Since the Dalitz plot distribution function is proportional to the amplitude modulus, it would also have a part which is fully symmetric under \(s \leftrightarrow t \leftrightarrow u \) (denoted by \(A_{SS}(s,t,u) \)) and another part which is fully anti-symmetric under the same exchanges (denoted by \(A_{AA}(s,t,u) \)):

\[f_{SS}(s,t,u) \propto |A_{SS}(s,t,u)|^2 + |A_{AA}(s,t,u)|^2, \quad (17) \]
\[f_{AA}(s,t,u) \propto 2 \text{Re}(A_{SS}(s,t,u) \cdot A_{AA}^*(s,t,u)). \quad (18) \]

Let us denote the function describing distribution of events in any sextant, say the \(i \)-th one, of the Dalitz plot by \(f_i(r,\theta) \), where the coordinates \((r,\theta)\) lie in the sextant \(i \) and we could have as well used the other equivalent choices \(\theta' \) or \(\theta'' \) instead of \(\theta \), the choice of which is subject to the underlying symmetry being considered (see Fig. 3). Henceforth we shall drop \((r,\theta)\) from the distribution functions, except when necessary, as we implicitly assume the \(r \) and \(\theta \) dependence in them. The distribution function must have only two parts as said above, the fully symmetric and the fully anti-symmetric parts. Let us assume that in sextant \(I \) the Dalitz plot distribution is given by the function

\[f_I = f_{SS}(s,t,u) + f_{AA}(s,t,u). \quad (19) \]

It is then trivial to see that the Dalitz plot distributions in the even numbered sextants should be identical to one another, and the odd numbered sextants would also be identically populated, because

\[f_I = f_{III} = f_V = f_{SS}(s,t,u) + f_{AA}(s,t,u), \quad (20) \]
\[f_{II} = f_{IV} = f_{VI} = f_{SS}(s,t,u) - f_{AA}(s,t,u). \quad (21) \]

This is the signature of exact SU(3) flavor symmetry in the Dalitz plots under our consideration. Any deviation from this conclusion would constitute an observable evidence for violation of the SU(3) flavor symmetry.

Until now the exchange properties of \(K^0 \leftrightarrow \pi^0 \) under \(U \)-spin and \(\pi^0 \leftrightarrow \pi^+ \) under isospin have been used to obtain the even and odd amplitudes contributing to \(B^+ \to K^0\pi^0\pi^+ \). Since \(K^0 \) and \(\pi^+ \) belong to different multiplets of \(V \)-spin, in order to consider the symmetry properties under \(K^0 \leftrightarrow \pi^+ \) one needs to define the \(G \)-parity analogue of \(V \)-spin, denoted by \(G_V \) and defined in the Appendix A. Since charge conjugation is a good symmetry in strong interaction, \(G_V \) is as good as \(V \)-spin itself. The state \(|K^0\pi^+\rangle \) is composed of states which are even and odd under \(G_V \)-parity:

\[|K^0\pi^+\rangle = \frac{1}{2} (|K^0\pi^+\rangle_e + |K^0\pi^+\rangle_o), \]

where

\[|K^0\pi^+\rangle_e = |K^0\pi^+\rangle - |\pi^+ K^0\rangle, \]
\[|K^0\pi^+\rangle_o = |K^0\pi^+\rangle + |\pi^+ K^0\rangle, \]

and

\[G_V |K^0\pi^+\rangle_e = + |K^0\pi^+\rangle_e, \]
\[G_V |K^0\pi^+\rangle_o = - |K^0\pi^+\rangle_o. \]

We have already proven that the amplitudes for the decay \(B^+ \to K^0\pi^0\pi^+ \) has two parts one even and the other odd under the exchange of any two particles in the final state. Hence, \(A_{SS} \) is odd under \(G_V \) and \(A_{AA} \) is even under \(G_V \). Since the two \(G_V \)-parity amplitudes do not interfere the two amplitudes \(A_{SS} \) and \(A_{AA} \) do not interfere in the Dalitz plot distribution resulting in \(f_{AA} \) being zero (Eq. (18)). Therefore if \(G_V \) is a good symmetry of nature it is interesting to conclude that the Dalitz plot is completely symmetric under \(s \leftrightarrow t \leftrightarrow u \). This implies that

\[f_I = f_{III} = f_{IV} = f_V = f_{VI} \equiv f_{SS}(s,t,u). \quad (22) \]
This expression holds only if isospin, U-spin and V-spin are all exact symmetries. However, if G_U is broken, the Dalitz plot distribution will still follow Eqs. (20) and (21) when isospin and U-spin are exact symmetries. In the case when G_U is exact, the exchange properties of the distribution functions f_I to $f_{V/IV}$ imply that if, (a) U-spin is an exact symmetry, then $f_{II} = f_{III}$, $f_I = f_{IV}$ and $f_V = f_{V/IV}$ irrespective of the validity of isospin symmetry, (b) isospin is an exact symmetry, then $f_{II} = f_{V/IV}$, $f_I = f_{IV}$ and $f_{III} = f_{V/IV}$ irrespective of the validity of U-spin symmetry. However, when both G_U and either isospin or U-spin is broken, then the Eqs. (20) and (21) are no longer valid. In such a case, we have the following possibilities:

- Test for isospin symmetry: By isospin symmetry, the sextants I, II, III get mapped to the sextants $VI, IV, V/IV$ respectively. We note that when isospin is not broken, then

$$f_I + f_{V/IV} = f_{II} + f_{III} = f_V + f_{IV} = 2f_{SS}(s,t,u),$$
(23)

$$f_I - f_{V/IV} = f_{II} - f_{III} = f_V - f_{IV} = 2f_{AA}(s,t,u).$$
(24)

However, when isospin is broken, the values of f_{SS} and f_{AA} extracted from sextants I and VI need not be the same with those extracted from either II and V or III and IV. For further clarification of this statement, we introduce two quantities $\Sigma^I_J(r,\theta)$ and $\Delta^I_J(r,\theta)$ defined as

$$\Sigma^I_J(r,\theta) = f_I + f_J,$$
(25)

$$\Delta^I_J(r,\theta) = f_I - f_J,$$
(26)

where i and j are two sextants and $i \neq j$. For conciseness of expressions, we shall also drop the explicit (r,θ) dependence of Σ^I_J and Δ^I_J. In terms of these quantities, the signature of isospin breaking can be succinctly summarized by the inequalities

$$\Sigma^I_J \neq \Sigma^{III}_{JI} \neq \Sigma^V_{IV},$$
(27)

$$\Delta^I_J \neq \Delta^{III}_{JI} \neq \Delta^V_{IV}. $$
(28)

An asymmetry can now be constructed to measure the isospin breaking as follows:

$$A_{\text{isospin}} = \frac{\Sigma^I_{IV} - \Sigma^{III}_{VI}}{\Sigma^I_{IV} + \Sigma^{III}_{VI}} + \frac{\Sigma^{III}_{IV} - \Sigma^V_{IV}}{\Sigma^{III}_{IV} + \Sigma^V_{IV}} + \frac{\Sigma^V_{IV} - \Sigma^I_{IV}}{\Sigma^V_{IV} + \Sigma^I_{IV}} + \frac{\Delta^I_{IV} - \Delta^{III}_{VI}}{\Delta^I_{IV} + \Delta^{III}_{VI}} + \frac{\Delta^{III}_{IV} - \Delta^V_{IV}}{\Delta^{III}_{IV} + \Delta^V_{IV}} + \frac{\Delta^V_{IV} - \Delta^I_{IV}}{\Delta^V_{IV} + \Delta^I_{IV}}.$$
(29)

- Test for U-spin symmetry: By U-spin symmetry, the sextants VI, I, II get mapped to the sextants V, IV, III respectively. We note that when U-spin is not broken, then

$$\Sigma_{IV} = \Sigma^{III}_{II} = \Sigma^V_{V} = 2f_{SS}(s,t,u),$$
(30)

$$\Delta_{IV} = \Delta^{III}_{II} = \Delta^V_{V} = 2f_{AA}(s,t,u).$$
(31)

Here it is profitable to consider the Σ‘s and Δ‘s being functions of (r,θ) as we are considering $s\leftrightarrow t$ exchange which is equivalent to $\theta \leftrightarrow -\theta$. When U-spin is broken

$$\Sigma^I_{IV} = \Sigma^I_{III} \neq \Sigma^V_{IV},$$
(32)

$$\Delta^I_{IV} = \Delta^I_{III} \neq \Delta^V_{IV}. $$
(33)

The asymmetry for U-spin breaking is, therefore, given by

$$A_{\text{U-spin}} = \frac{\Sigma^I_{IV} - \Sigma^{III}_{VI}}{\Sigma^I_{IV} + \Sigma^{III}_{VI}} + \frac{\Sigma^{III}_{IV} - \Sigma^V_{IV}}{\Sigma^{III}_{IV} + \Sigma^V_{IV}} + \frac{\Sigma^V_{IV} - \Sigma^I_{IV}}{\Sigma^V_{IV} + \Sigma^I_{IV}} + \frac{\Delta^I_{IV} - \Delta^{III}_{VI}}{\Delta^I_{IV} + \Delta^{III}_{VI}} + \frac{\Delta^{III}_{IV} - \Delta^V_{IV}}{\Delta^{III}_{IV} + \Delta^V_{IV}} + \frac{\Delta^V_{IV} - \Delta^I_{IV}}{\Delta^V_{IV} + \Delta^I_{IV}}.$$
(34)

- Test for V-spin symmetry: As said before, G_V-parity is as badly broken as the V-spin because charge conjugation is a good symmetry. When V-spin symmetry is broken, then G_V is also broken, and the distribution of events in the Dalitz plot sextants would follow Eqs. (20) and (21). In addition to that, when V-spin is broken, K^0 and π^+ need not be even under exchange. This leads to

$$\Sigma^V_{IV} = \Sigma^{III}_{VI} \neq \Sigma^V_{IV},$$
(35)

$$\Delta^V_{IV} \neq \Delta^{III}_{VI} \neq \Delta^V_{IV}.$$
(36)

The asymmetry for V-spin breaking is, therefore, given by

$$A_{\text{V-spin}} = \frac{\Sigma^V_{IV} - \Sigma^{III}_{VI}}{\Sigma^V_{IV} + \Sigma^{III}_{VI}} + \frac{\Sigma^{III}_{IV} - \Sigma^V_{IV}}{\Sigma^{III}_{IV} + \Sigma^V_{IV}} + \frac{\Sigma^V_{IV} - \Sigma^V_{IV}}{\Sigma^V_{IV} + \Sigma^V_{IV}} + \frac{\Delta^V_{IV} - \Delta^{III}_{VI}}{\Delta^V_{IV} + \Delta^{III}_{VI}} + \frac{\Delta^{III}_{IV} - \Delta^V_{IV}}{\Delta^{III}_{IV} + \Delta^V_{IV}} + \frac{\Delta^V_{IV} - \Delta^V_{IV}}{\Delta^V_{IV} + \Delta^V_{IV}}.$$
(37)

Hence, the extent of the breaking of isospin, U-spin and V-spin can easily be measured from the Dalitz plot distribution. The asymmetries measuring isospin, U-spin and V-spin are functions of r and $3\theta \equiv \theta' \equiv 30^\circ$ (see the discussions leading to Eq. (16)). These asymmetries are, thus, valid in the full Dalitz plot, including the resonant contributions and can be measured in different regions of the Dalitz plot. In particular, these asymmetries can be measured both along resonances and in the non-resonant regions. A quantitative estimate of the variation of these asymmetries obtained experimentally would provide valuable understanding of $SU(3)$ breaking effects. It would also be interesting to find regions of the Dalitz plots where $SU(3)$ is a good symmetry. The procedure discussed above can also be applied to other decay modes with the same final state. In particular one can study the Dalitz plot distribution for the decay $D_s^+ \rightarrow K^0\pi^0\pi^-$ in a similar manner. The amplitudes for this mode are tabulated in Table II.

C. Decay Mode with final state $K^+\pi^0\pi^-$

Let us now consider the decay $B_d^0\rightarrow B_s^0 \rightarrow K^+\pi^0\pi^-$ in which isospin symmetry allows the exchange of π^0 and π^-, and V-spin symmetry allows exchange of K^+ and π^0. This leads to the following exchanges in the Dalitz plot:

$$V\text{-spin } \equiv K^+ \leftrightarrow \pi^0 \rightarrow s \leftrightarrow t.$$
TABLE II. Comparison of decays of B^+ and D^{*+} to the final state $K^0\pi^0\pi^+$.

Transition	Final State	Amplitude	Symmetry	
$\Delta I = 1$	$	\frac{1}{2}, +\frac{1}{2}\rangle$	$\frac{3\sqrt{3}}{\sqrt{6}}T^e_{0,\frac{1}{2}}X + \frac{1}{\sqrt{3}}T^e_{\frac{1}{2}, \frac{1}{2}}Y\sin\theta$	Mixed
$\Delta I = 1$	$	\frac{1}{2}, +\frac{1}{2}\rangle$	$-\frac{1}{\sqrt{3}}T^o_{0,\frac{1}{2}}Y\sin\theta$	Odd
$\Delta I = 0$	$	\frac{1}{2}, -\frac{1}{2}\rangle$	$-\frac{1}{\sqrt{3}}T^o_{0,\frac{1}{2}}Y\sin\theta$	Odd

TABLE III. Comparison of decays of B_d^0 and \bar{B}_d^0 to the final state $K^+\pi^0\pi^-$.

Transition	Final State	Amplitude	Symmetry	
$\Delta I = 1$	$	\frac{1}{2}, -\frac{1}{2}\rangle$	$\frac{3\sqrt{3}}{\sqrt{6}}T^e_{0,\frac{1}{2}}X + \frac{1}{\sqrt{3}}T^e_{\frac{1}{2}, \frac{1}{2}}Y\sin\theta$	Mixed
$\Delta I = 1$	$	\frac{1}{2}, -\frac{1}{2}\rangle$	$-\frac{1}{\sqrt{3}}T^o_{0,\frac{1}{2}}Y\sin\theta$	Odd
$\Delta I = 0$	$	\frac{1}{2}, -\frac{1}{2}\rangle$	$-\frac{1}{\sqrt{3}}T^o_{0,\frac{1}{2}}Y\sin\theta$	Odd

Transition	Final State	Amplitude	Symmetry	
$\Delta I = 1$	$	\frac{1}{2}, +\frac{1}{2}\rangle$	$\frac{3\sqrt{3}}{\sqrt{6}}T^e_{0,\frac{1}{2}}X + \frac{1}{\sqrt{3}}T^e_{\frac{1}{2}, \frac{1}{2}}Y\sin\theta$	Mixed
$\Delta I = 1$	$	\frac{1}{2}, +\frac{1}{2}\rangle$	$-\frac{1}{\sqrt{3}}T^o_{0,\frac{1}{2}}Y\sin\theta$	Odd
$\Delta I = 0$	$	\frac{1}{2}, +\frac{1}{2}\rangle$	$-\frac{1}{\sqrt{3}}T^o_{0,\frac{1}{2}}Y\sin\theta$	Odd
Isospin \(\equiv \pi^0 \leftrightarrow \pi^- \Rightarrow t \leftrightarrow u \).

Under exact isospin and V-spin, the final state \(K^+\pi^0\pi^- \) has, the following two possibilities:

1. \(K^+\pi^0 \) would exist in either symmetrical or anti-symmetrical state w.r.t. their exchange in space, and
2. \(\pi^0\pi^- \) would exist in either symmetrical or anti-symmetrical state w.r.t. their exchange in space.

Following the steps as enunciated in subsection II B, the amplitude for the decay can be shown to have two components, one which is fully symmetric under exchange of any pair of final particles, and the other fully anti-symmetric under the same exchange.

The final state can be expanded in terms of isospin and V-spin states as follows:

- **Isospin**

 \[
 |K^+\pi^0\pi^-\rangle = \frac{1}{\sqrt{5}} \left(\frac{5}{2} \cdot \frac{1}{2} \right)_L^e + \frac{\sqrt{2}}{10} \left(\frac{3}{2} \cdot -\frac{1}{2} \right)_L^e \,
 + \frac{1}{\sqrt{6}} \left(\frac{3}{2} \cdot -\frac{1}{2} \right)_L^o + \frac{1}{\sqrt{3}} \left(\frac{1}{2} \cdot -\frac{1}{2} \right)_L^o,
 \]

 where the superscripts \(e, o \) denote even, odd behavior of the state under the exchange \(\pi^0 \leftrightarrow \pi^- \).

- **V-spin**

 \[
 |K^+\pi^0\pi^-\rangle = \frac{1}{2\sqrt{5}} \left(\frac{5}{2} \cdot \frac{1}{2} \right)_V^e + \frac{\sqrt{2}}{10} \left(\frac{3}{2} \cdot -\frac{1}{2} \right)_V^e \,
 + \frac{1}{\sqrt{6}} \left(\frac{3}{2} \cdot -\frac{1}{2} \right)_V^o + \frac{1}{\sqrt{3}} \left(\frac{1}{2} \cdot -\frac{1}{2} \right)_V^o, \]

 where the superscripts \(e, o \) denote even, odd behavior of the state under the exchange \(K^+ \leftrightarrow \pi^0 \).

The sign changes as can be noticed in the above states arise from exchange of particles in the two particle states given below (as also noted in Table I):

- **Isospin**

 \[
 |\pi^0\pi^-\rangle = \frac{1}{\sqrt{2}} \left(|2, -1\rangle_I^e + |1, -1\rangle_I^o \right),
 \]

 \[
 |\pi^-\pi^0\rangle = \frac{1}{\sqrt{2}} \left(|2, -1\rangle_I^o - |1, -1\rangle_I^e \right).
 \]

- **V-spin**

 \[
 |K^+\pi^0\rangle = -\frac{1}{2\sqrt{2}} \left(|2, +1\rangle_V^e + |1, +1\rangle_V^o \right) + \frac{\sqrt{3}}{2} |1', +1\rangle_V^o,
 \]

 \[
 |\pi^0 K^+\rangle = -\frac{1}{2\sqrt{2}} \left(|2, +1\rangle_V^e - |1, +1\rangle_V^o \right) + \frac{\sqrt{3}}{2} |1', +1\rangle_V^e.
 \]

It would be clear from the expressions above that if isospin were an exact symmetry, the \(|2, -1\rangle_I \) and \(|1, -1\rangle_I \) states of \(\pi^0\pi^- \) would exist in even and odd partial wave states respectively, as was the case in subsection II B also. On the other hand, if V-spin were an exact symmetry the state \(|K^+\pi^0\rangle \) must remain unchanged under \(K^+ \leftrightarrow \pi^0 \) exchange. Under V-spin the \(|K^+\pi^0\rangle \) state can exist in \(|2, +1\rangle_V \) and \(|1, +1\rangle_V \), out of which \(|1, +1\rangle_V \) has a contribution from the \(|0, 0\rangle \) admixture in \(\pi^0 \), denoted above by \(|1', +1\rangle_V \). Both state \(|2, +1\rangle_V \) and the state \(|1', +1\rangle_V \) exist in space symmetric (even partial wave) states, and that part of \(|1, +1\rangle_V \) arising out of \(|0, 0\rangle \) part of \(\pi^0 \) exists in space anti-symmetric (odd partial wave) state.

If we consider the initial state to be \(B_d^0 \), which is isospin \(|\frac{1}{2}, \frac{1}{2}\rangle \) state and V-spin singlet \(|0, 0\rangle \) state, the standard model Hamiltonian allows only \(\Delta I = 0, 1 \) and \(\Delta V = \frac{1}{2}, \frac{3}{2} \) transitions. Therefore, in addition to the isospin amplitudes of Eq. 9, we can define the following V-spin amplitudes:

\[
V_{\frac{1}{2}, \frac{1}{2}} = \left(\frac{3}{2} \cdot \frac{1}{2} \right) \mathcal{H}_{\Delta V = \frac{1}{2}} \left| 0, 0 \right>,
\]

\[
V_{\frac{1}{2}, \frac{1}{2}}' = \left(\frac{3}{2} \cdot \frac{1}{2} \right) \mathcal{H}_{\Delta V = \frac{1}{2}} \left| 0, 0 \right>,
\]

\[
V_{\frac{1}{2}, \frac{1}{2}} = \pm \sqrt{\frac{1}{3}} \left(\frac{1}{2}, -\frac{1}{2} \right) \mathcal{H}_{\Delta V = \frac{1}{2}} \left| 0, 0 \right>,
\]

\[
V_{\frac{1}{2}, \frac{1}{2}}' = \sqrt{\frac{1}{3}} \left(\frac{1}{2}, -\frac{1}{2} \right) \mathcal{H}_{\Delta V = \frac{1}{2}} \left| 0, 0 \right>.
\]

The amplitude for the process \(B_d^0 \to K^+\pi^0\pi^- \) can, therefore, be written as

\[
A(B_d^0 \to K^+\pi^0\pi^-) = -\frac{3}{\sqrt{10}} T_{\frac{1}{2}, \frac{1}{2}} X + \frac{1}{\sqrt{2}} \left(-T_{\frac{1}{2}, \frac{1}{2}} + T_{\frac{1}{2}, \frac{1}{2}}' \right) Y \sin\theta,
\]

\[
A(B_d^0 \to K^+\pi^0\pi^-) = \sqrt{\frac{3}{2}} \left(\frac{1}{\sqrt{20}} V_{\frac{1}{2}, \frac{1}{2}} - \frac{1}{\sqrt{6}} V_{\frac{1}{2}, \frac{1}{2}}' - V_{\frac{1}{2}, \frac{1}{2}}'' \right) X'' + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{3}} V_{\frac{1}{2}, \frac{1}{2}}' + V_{\frac{1}{2}, \frac{1}{2}}'' \right) Y'' \sin\theta',
\]

where \(X'' \) and \(Y'' \) are functions that are, in general, arbitrary functions of \(r \) and \(\cos\theta' \), and are introduced to take care of spatial and kinematic contributions to the decay amplitude. As argued before, the part of the amplitude even under isospin must also be even under V-spin and the part odd under isospin must again be odd under V-spin:

\[
\mathcal{A}_{\Delta S} = \frac{3}{\sqrt{10}} T_{\frac{1}{2}, \frac{1}{2}} X
\]

\[
\mathcal{A}_{\Delta A} = \frac{1}{\sqrt{2}} \left(-T_{\frac{1}{2}, \frac{1}{2}} + T_{\frac{1}{2}, \frac{1}{2}}' \right) Y \sin\theta
\]

\[
\mathcal{A}_{\Delta S} = \frac{3}{\sqrt{3}} \left(\frac{1}{\sqrt{20}} V_{\frac{1}{2}, \frac{1}{2}} - \frac{1}{\sqrt{6}} V_{\frac{1}{2}, \frac{1}{2}}' - V_{\frac{1}{2}, \frac{1}{2}}'' \right) X'' + \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{3}} V_{\frac{1}{2}, \frac{1}{2}}' + V_{\frac{1}{2}, \frac{1}{2}}'' \right) Y'' \sin\theta'.
\]

\[
\mathcal{A}_{\Delta A} = \frac{1}{\sqrt{2}} \left(-T_{\frac{1}{2}, \frac{1}{2}} + T_{\frac{1}{2}, \frac{1}{2}}' \right) Y \sin\theta
\]
We can conclude that the Dalitz plot distribution in the even numbered sextants would be identical to one another, and those of odd numbered sextants would also be similar. Any deviation from this would constitute a signature of simultaneous violations of isospin and V-spin.

Since \(K^+ \) and \(\pi^- \) belong to different multiplets of \(U \)-spin, in order to consider the symmetry properties under \(K^+ \leftrightarrow \pi^- \) one needs to define the \(G \)-parity analogue of \(U \)-spin, denoted by \(G_U \) and defined in the Appendix A. Since charge conjugation is a good symmetry in strong interaction, \(G_U \) is as good as \(U \)-spin itself. The state \(| K^+ \pi^- \rangle \) is composed of states which are even and odd under \(G_U \)-parity:

\[
| K^+ \pi^- \rangle = \frac{1}{2} \left(| K^+ \pi^- \rangle_e + | K^+ \pi^- \rangle_o \right),
\]

where

\[
| K^+ \pi^- \rangle_e = | K^+ \pi^- \rangle - | \pi^- K^+ \rangle,
\]

\[
| K^+ \pi^- \rangle_o = | K^+ \pi^- \rangle + | \pi^- K^+ \rangle,
\]

and

\[
G_U \left[| K^+ \pi^- \rangle_e \right] = \left[| K^+ \pi^- \rangle_e \right],
\]

\[
G_U \left[| K^+ \pi^- \rangle_o \right] = - \left[| K^+ \pi^- \rangle_o \right].
\]

We have already proven that the amplitudes for the decay \(B_d^0 \rightarrow K^+ \pi^- \bar{\pi}^0 \) has two parts one even and the other odd under the exchange of any two particles in the final state. Hence, \(\mathcal{A}_{VS} \) is odd under \(G_U \) and \(\mathcal{A}_{AA} \) is even under \(G_U \). Since the two \(G_U \)-parity amplitudes do not interfere the two amplitudes \(\mathcal{A}_{VS} \) and \(\mathcal{A}_{AA} \) do not interfere in the Dalitz plot distribution resulting in \(f_{AA} \) being zero (Eq. (18)). Therefore if \(G_U \) is a good symmetry of nature it is interesting to conclude that the Dalitz plot is completely symmetric under \(s \leftrightarrow t \leftrightarrow u \). The Dalitz plot asymmetries which would be a measure of the extent of breaking of the \(SU(3) \) flavor symmetry are, therefore, given by

\[
A_{\text{Isospin}} = \frac{\Sigma^I - \Sigma^III}{\Sigma^I + \Sigma^III} + \frac{\Sigma^I - \Sigma^V}{\Sigma^I + \Sigma^V} + \frac{\Sigma^I - \Sigma^I}{\Sigma^I + \Sigma^I} + \frac{\Sigma^I - \Sigma^I}{\Sigma^I + \Sigma^I} + \frac{\Sigma^I - \Sigma^I}{\Sigma^I + \Sigma^I} + \frac{\Sigma^I - \Sigma^I}{\Sigma^I + \Sigma^I},
\]

where the \(\Sigma \)'s and \(\Delta \)'s are defined in Eqs. (25) and (26) respectively. It must again be noted that these asymmetries are in general functions of \(r \) and \(\theta \) (or \(\theta' \) or \(\theta'' \)), and are defined throughout the Dalitz plot region, including resonant regions.

It would again be interesting to look for patterns in the variations of these asymmetries inside the Dalitz plot. Observation of these asymmetries would quantify the extent of breaking of \(SU(3) \) flavor symmetry in the concerned decay mode. One can also look for such asymmetries in the Dalitz plot for \(B_d^0 \rightarrow K^+ \pi^0 \pi^- \). The amplitudes for this process are given in Table III.

D. Decay Mode with final state \(K^+ \pi^0 \bar{K}^0 \)

For study of simultaneous violations of both \(U \)-spin and \(V \)-spin, we look at decays such as \(B^+ \rightarrow K^+ \pi^0 \bar{K}^0 \) and their conjugate modes. In this state, \(K^+ \) and \(\pi^0 \) are exchangeable under \(V \)-spin and \(\pi^0 \), \(\bar{K}^0 \) are exchangeable under \(U \)-spin. Under \(V \)-spin, the \(K^+ \pi^0 \) state can exist in \([2, +1]_V \) and \([1, +1]_V \), out of which the state \([1, +1]_V \) has a contribution from the \([0, 0]_{UB} \) admixture in \(\pi^0 \). Thus assuming \(V \)-spin to be an exact symmetry would put the state \([2, +1]_V \) and that part of \([1, +1]_V \) state coming from \([0, 0]_{UB} \) contribution of \(\pi^0 \) in space symmetric (even partial wave) state. The remaining part of \([1, +1]_V \) state would be in space anti-symmetric (odd partial wave) state. Similarly, the \(\pi^0 \bar{K}^0 \) state would exist in \([2, -1]_U \) and \([1, -1]_U \), out of which the state \([1, -1]_U \) has a contribution from \([0, 0]_{US} \) admixture in \(\pi^0 \). Thus, if \(U \)-spin were assumed to be an exact symmetry, the states \([2, -1]_U \) and the \([1, -1]_U \) state coming from \([0, 0]_{US} \) part of \(\pi^0 \) would exist in space symmetric (even partial wave) states, and the other part of \([1, -1]_U \) would exist in space anti-symmetric (odd partial wave) state.

Therefore, under exact \(U \)-spin and \(V \)-spin, the final state \(K^+ \pi^0 \bar{K}^0 \) has, the following two possibilities:

1. \(K^+ \pi^0 \) would exist in either symmetrical or anti-symmetrical state w.r.t. their exchange in space, and
2. \(\pi^0 \bar{K}^0 \) would exist in either symmetrical or anti-symmetrical state w.r.t. their exchange in space.

Again, following the steps as enunciated in subsection I B we can conclude that the Dalitz plot distribution in the even numbered sextants would be identical to one another, and those of odd numbered sextants would also be similar, as given in Eqs. (20) and (21). Any deviation from this would constitute a signature of simultaneous violations of \(U \)-spin and \(V \)-spin. We can once again reaffirm the same logic as given in sections II B and II C, by invoking the \(G \)-parity operator (see Appendix A) to connect \(K^+ \) and \(\bar{K}^0 \) belonging to two different isospin doublets. This would lead to a fully symmetric Dalitz plot which would be broken when \(G \) is broken. The amplitudes for the two decay modes under consideration are given in Table IV. The Dalitz plot asymmetries which can be useful in this case are given by

\[
A_{\text{Isospin}} = \frac{\Sigma^I - \Sigma^I}{\Sigma^I + \Sigma^I} + \frac{\Sigma^I - \Sigma^I}{\Sigma^I + \Sigma^I},
\]

where the \(\Sigma \)'s and \(\Delta \)'s are defined in Eqs. (25) and (26) respectively.
Transition	Final State	Symmetry	Amplitude	Transition	Final State	Symmetry	Amplitude		
$\Delta U = \frac{1}{2}$	$	\frac{1}{2}, -\frac{i}{2}\rangle$	odd	$\frac{1}{\sqrt{2}} U^{\nu}_{\frac{1}{2}1} Y^* \sin \theta'$	$\Delta V = 1$	$	\frac{1}{2}, +\frac{i}{2}\rangle$	mixed	$-\frac{1}{\sqrt{2}} V^{\nu}_{\frac{1}{2}1} Y^* \sin \theta''$
$\Delta U = \frac{1}{2}$	$	\frac{1}{2}, -\frac{i}{2}\rangle$	even	$\sqrt{3} U^{\nu}_{\frac{1}{2}1} X'$	$\Delta V = 1$	$	\frac{1}{2}, +\frac{i}{2}\rangle$	even	$\frac{\sqrt{3}}{2} V^{\nu}_{\frac{1}{2}1} X''$
$\Delta U = \frac{1}{2}$	$	\frac{1}{2}, -\frac{i}{2}\rangle$	mixed	$\frac{1}{\sqrt{6}} U^{\nu}_{\frac{1}{2}1} X' - \frac{1}{\sqrt{6}} U^{\nu}_{\frac{1}{2}1} Y^* \sin \theta'$	$\Delta V = 1$	$	\frac{1}{2}, +\frac{i}{2}\rangle$	odd	$-\frac{1}{\sqrt{6}} V^{\nu}_{\frac{1}{2}1} Y^* \sin \theta''$
$\Delta U = \frac{1}{2}$	$	\frac{1}{2}, -\frac{i}{2}\rangle$	even	$\sqrt{\frac{2}{3}} U^{\nu}_{\frac{1}{2}1} X'$	$\Delta V = 0$	$	\frac{1}{2}, +\frac{i}{2}\rangle$	odd	$\frac{\sqrt{2}}{2} V^{\nu}_{\frac{1}{2}1} X''$
$\Delta V = 0$	$	\frac{1}{2}, +\frac{i}{2}\rangle$	even	$\frac{\sqrt{2}}{2} V^{\nu}_{\frac{1}{2}1} X''$					

Transition	Final State	Symmetry	Amplitude	Transition	Final State	Symmetry	Amplitude		
$\Delta U = 1$	$	\frac{1}{2}, -\frac{i}{2}\rangle$	mixed	$-\frac{3}{\sqrt{6}} U^{\nu}_{\frac{1}{2}1} X' - \frac{1}{\sqrt{6}} U^{\nu}_{\frac{1}{2}1} Y^* \sin \theta'$	$\Delta V = \frac{3}{2}$	$	\frac{1}{2}, +\frac{i}{2}\rangle$	mixed	$-\frac{\sqrt{3}}{2} V^{\nu}_{\frac{1}{2}1} X'' - \frac{1}{\sqrt{6}} V^{\nu}_{\frac{1}{2}1} Y^* \sin \theta''$
$\Delta U = 1$	$	\frac{1}{2}, -\frac{i}{2}\rangle$	even	$\frac{\sqrt{3}}{2} U^{\nu}_{\frac{1}{2}1} X'$	$\Delta V = \frac{3}{2}$	$	\frac{1}{2}, +\frac{i}{2}\rangle$	even	$\frac{\sqrt{3}}{2} V^{\nu}_{\frac{1}{2}1} X''$
$\Delta U = 1$	$	\frac{1}{2}, -\frac{i}{2}\rangle$	odd	$-\frac{1}{\sqrt{6}} U^{\nu}_{\frac{1}{2}1} Y^* \sin \theta'$	$\Delta V = \frac{1}{2}$	$	\frac{1}{2}, +\frac{i}{2}\rangle$	odd	$-\frac{1}{\sqrt{6}} V^{\nu}_{\frac{1}{2}1} Y^* \sin \theta''$
$\Delta U = 1$	$	\frac{1}{2}, -\frac{i}{2}\rangle$	even	$-\frac{\sqrt{3}}{2} U^{\nu}_{\frac{1}{2}1} X'$	$\Delta V = \frac{1}{2}$	$	\frac{1}{2}, +\frac{i}{2}\rangle$	even	$\frac{\sqrt{3}}{2} V^{\nu}_{\frac{1}{2}1} X''$
$\Delta U = 0$	$	\frac{1}{2}, -\frac{i}{2}\rangle$	odd	$\frac{1}{\sqrt{6}} V^{\nu}_{\frac{1}{2}1} X''$					
$\Delta U = 0$	$	\frac{1}{2}, -\frac{i}{2}\rangle$	even	$\frac{\sqrt{2}}{2} V^{\nu}_{\frac{1}{2}1} X''$					

Table IV. Comparison of amplitudes for the decays of B^* and D^* to the final state $K^+ \pi^0 \bar{K}^0$.

\[A_{\text{U-spin}} = \frac{\Sigma_{\text{I}} - \Sigma_{\text{III}}}{\Sigma_{\text{IV}} + \Sigma_{\text{III}}} + \frac{\Sigma_{\text{III}} - \Sigma_{\text{IV}}}{\Sigma_{\text{I}} + \Sigma_{\text{IV}}} + \frac{\Sigma_{\text{V}} - \Sigma_{\text{IV}}}{\Sigma_{\text{V}} + \Sigma_{\text{IV}}} \]
\[+ \frac{\Delta I_{\text{I}} - \Delta III_{\text{IV}}}{\Delta I_{\text{IV}} + \Delta III_{\text{IV}}} + \frac{\Delta III_{\text{IV}} - \Delta IV_{\text{IV}}}{\Delta III_{\text{IV}} + \Delta IV_{\text{IV}}} + \frac{\Delta IV_{\text{IV}} - \Delta I_{\text{IV}}}{\Delta IV_{\text{IV}} + \Delta I_{\text{IV}}} \] \hspace{1cm} (55)

\[A_{\text{V-spin}} = \frac{\Sigma_{\text{I}} - \Sigma_{\text{IV}}}{\Sigma_{\text{IV}} + \Sigma_{\text{III}}} + \frac{\Sigma_{\text{III}} - \Sigma_{\text{IV}}}{\Sigma_{\text{I}} + \Sigma_{\text{IV}}} + \frac{\Sigma_{\text{V}} - \Sigma_{\text{IV}}}{\Sigma_{\text{V}} + \Sigma_{\text{IV}}} \]
\[+ \frac{\Delta I_{\text{I}} - \Delta III_{\text{IV}}}{\Delta I_{\text{IV}} + \Delta III_{\text{IV}}} + \frac{\Delta III_{\text{IV}} - \Delta IV_{\text{IV}}}{\Delta III_{\text{IV}} + \Delta IV_{\text{IV}}} + \frac{\Delta IV_{\text{IV}} - \Delta I_{\text{IV}}}{\Delta IV_{\text{IV}} + \Delta I_{\text{IV}}} \] \hspace{1cm} (56)

Once again the asymmetries being, in general, functions of r and θ (or θ' or θ'') it would be quite interesting to look for their variation across the Dalitz plot. These would be the visible signatures of the breaking of $SU(3)$ flavor symmetry.

E. Decay Mode with final state $\pi^+ \pi^0 \bar{K}^0$

Finally, we consider a mode where each pair of particles in the final states can be directly related by one of the three $SU(2)$ symmetries, namely isospin, U-spin and V-spin. Here we do not need G_I, G_V or G_U to relate the final states. We consider as an example decays with final state $\pi^+ \pi^0 \bar{K}^0$ such as $D^* \rightarrow \pi^+ \pi^0 \bar{K}^0$ and the conjugate mode. In the final state considered here, isospin exchange implies $\pi^0 \leftrightarrow \pi^+$, U-spin exchange implies $\pi^0 \leftrightarrow K^0$ and V-spin exchange implies $\pi^0 \leftrightarrow \bar{K}^0$. The $SU(2)$ decompositions of all the pairs of particles under their respective $SU(2)$ symmetries have already been considered in subsections II B, II C, II D. Once again, the steps elaborated in subsection II B are applicable to this case also. The amplitudes for this decay mode can be easily read off from Table V. However, in this mode the even and odd contributions to the decay amplitude can interfere as they are not eigenstates of G_V, resulting in even and odd numbered sextants to have distinctly different density of events as depicted in Eqs. (20) and (21). Note that the Dalitz plot distributions for the even (odd) numbered sextants of the Dalitz plot would still be identical if isospin and U-spin are exact symmetries. The breakdown of isospin, U-spin and V-spin could be quantitatively measured using the following asymmetries:

\[A_{\text{Iospin}} = \frac{\Sigma_{\text{I}} - \Sigma_{\text{IV}}}{\Sigma_{\text{IV}} + \Sigma_{\text{III}}} + \frac{\Sigma_{\text{III}} - \Sigma_{\text{IV}}}{\Sigma_{\text{I}} + \Sigma_{\text{IV}}} + \frac{\Sigma_{\text{V}} - \Sigma_{\text{IV}}}{\Sigma_{\text{V}} + \Sigma_{\text{IV}}} \]
\[+ \frac{\Delta I_{\text{I}} - \Delta III_{\text{IV}}}{\Delta I_{\text{IV}} + \Delta III_{\text{IV}}} + \frac{\Delta III_{\text{IV}} - \Delta IV_{\text{IV}}}{\Delta III_{\text{IV}} + \Delta IV_{\text{IV}}} + \frac{\Delta IV_{\text{IV}} - \Delta I_{\text{IV}}}{\Delta IV_{\text{IV}} + \Delta I_{\text{IV}}} \] \hspace{1cm} (57)
$\mathcal{A}_{U,\text{spin}} = \begin{bmatrix} \Sigma^I_{IV} - \Sigma^I_{III} & | & | & | \ \\ \Sigma^I_{IV} + \Sigma^I_{III} & | & | & | \ \\ \Sigma^I_{IV} + \Sigma^I_{III} & | & | & | \ \\ \Sigma^I_{IV} + \Sigma^I_{III} & | & | & | \end{bmatrix}$ = $\begin{bmatrix} \Sigma^I_{IV} - \Sigma^I_{III} & | & | & | \ \\ \Sigma^I_{IV} + \Sigma^I_{III} & | & | & | \ \\ \Sigma^I_{IV} + \Sigma^I_{III} & | & | & | \ \\ \Sigma^I_{IV} + \Sigma^I_{III} & | & | & | \end{bmatrix}$$, \quad \mathcal{A}_{V,\text{spin}} = \begin{bmatrix} \Sigma^I_{IV} - \Sigma^I_{III} & | & | & | \ \\ \Sigma^I_{IV} + \Sigma^I_{III} & | & | & | \ \\ \Sigma^I_{IV} + \Sigma^I_{III} & | & | & | \ \\ \Sigma^I_{IV} + \Sigma^I_{III} & | & | & | \end{bmatrix}$\begin{bmatrix} \Sigma^I_{IV} - \Sigma^I_{III} & | & | & | \ \\ \Sigma^I_{IV} + \Sigma^I_{III} & | & | & | \ \\ \Sigma^I_{IV} + \Sigma^I_{III} & | & | & | \ \\ \Sigma^I_{IV} + \Sigma^I_{III} & | & | & | \end{bmatrix}$

Once again these asymmetries being, in general, functions of r and θ (or θ' or θ'') it would be very interesting to look for their variation across the Dalitz plot. These would constitute the visible signatures of the breaking of $SU(3)$ flavor symmetry.

III. CONCLUSION

In this paper we have elucidated a new model independent method to look for the breaking of the $SU(3)$ flavor symmetry in many three-body decay modes, namely $B^+ \rightarrow K^0\pi^+\pi^-$, $B^0 \rightarrow K^0\pi^+\pi^-$, $B^+ \rightarrow K^+\pi^0K^0$ and $D^+ \rightarrow \pi^+\pi^0K^0$. The novelty in choosing these decay modes is that pairs of the final state do belong to at least two different $SU(2)$ triplets, and hence under the assumption of exact $SU(3)$ flavor symmetry, the amplitude for the process has two parts: one fully symmetric and another fully anti-symmetric under the exchanges $s \leftrightarrow t \leftrightarrow u$. This gives rise to a characteristic pattern in the Dalitz plot distribution: the alternate sextants must have identical distribution of events. Any deviation from this behavior would constitute an evidence for the breaking of $SU(3)$ flavor symmetry, which indeed is broken in nature. We have provided model specific Dalitz plot asymmetries which can be used to quantify the extent of $SU(3)$ symmetry breaking in each of the decay modes under our consideration. These asymmetries are defined in the full region of the Dalitz plot and can be measured both along resonances and in the non-resonant regions. A quantitative estimate of the variation of these asymmetries obtained experimentally would provide a valuable understanding of $SU(3)$ breaking effects. It would also be interesting to find regions of the Dalitz plots where

$SU(3)$ is a good symmetry. A better understanding and measured estimate of $SU(3)$ breaking would help in reliably estimating hadronic uncertainties and hence result in effectively using it to measure weak phases and search for new physics effects beyond the standard model.

ACKNOWLEDGMENTS

N. G. D. thanks The Institute of Mathematical Sciences, Chennai, for hospitality, where part of the work was done.

Appendix A: G-parity and final states

The G-parity operator G_I (or G_U or G_V) is defined as a rotation through π radian (180°) around the second axis of isospin (or U-spin or V-spin) space, followed by charge conjugation (C): $G_I = Ce^{i\pi I_2} = Ce^{i\pi I_2/2}$, where I_2 is the second generator of $SU(2)$ isospin (or U-spin or V-spin) group, and τ_2 is the second Pauli matrix. G-parity as defined here transforms the various $SU(2)$ multiplets as follows:

$G_{U} \begin{pmatrix} \pi^+ \\ \pi^0 \\ \pi^- \end{pmatrix} = \begin{pmatrix} \pi^- \\ \pi^0 \\ \pi^+ \end{pmatrix}$, $G_{U} \begin{pmatrix} K^+ \\ K^0 \end{pmatrix} = \begin{pmatrix} K^0 \\ -K^+ \end{pmatrix}$, $G_{U} \begin{pmatrix} K^- \\ K^0 \end{pmatrix} = \begin{pmatrix} K^0 \\ -K^- \end{pmatrix}$

$G_{V} \begin{pmatrix} K^0 \\ \pi^+ \end{pmatrix} = \begin{pmatrix} K^+ \\ \pi^0 \end{pmatrix}$, $G_{V} \begin{pmatrix} K^- \\ \pi^0 \end{pmatrix} = \begin{pmatrix} K^0 \\ -\pi^- \end{pmatrix}$

$G_{V} \begin{pmatrix} \bar{K}^0 \\ \pi^- \end{pmatrix} = \begin{pmatrix} \bar{K}^+ \\ \pi^0 \end{pmatrix}$, $G_{V} \begin{pmatrix} \bar{K}^- \\ \pi^0 \end{pmatrix} = \begin{pmatrix} \bar{K}^0 \\ -\pi^- \end{pmatrix}$

References

[1] M. Gell-Mann, California Institute of Technology Synchrotron Laboratory Report No. CTSI–20, 1961 (unpublished).
[2] M. Gell-Mann, Phys. Rev. D 25, 1061 (1962).
[3] Y. Ne’eman, Nucl. Phys. B 26, 222 (1961).
[4] S. Okubo, Prog. Theor. Phys. 27, 949 (1962).
[5] S. Okubo and C. Ryan, Nuovo Cim. 34, 776 (1964).
[6] R. L. Kingsley, S. B. Treiman, F. Wilczek and A. Zee, Phys. Rev. D 11, 1919 (1975).
[7] M. B. Voloshin, V. I. Zakharov and L. B. Okun, JETP Lett. 21, 183 (1975) [Pisma Zh. Eksp. Teor. Fiz. 21, 403 (1975)].
[8] L. L. Wang and F. Wilczek, Phys. Rev. Lett. 43, 816 (1979).
[9] C. Quigg, Z. Phys. C 4, 55 (1980).
[10] D. Zeppenfeld, Z. Phys. C 8, 77 (1981).
[11] L. L. Chau and H. Y. Cheng, Phys. Rev. Lett. 56, 1655 (1986).
[12] L. L. Chau and H. Y. Cheng, Phys. Rev. D 36, 137 (1987).
[13] M. J. Savage and M. B. Wise, Phys. Rev. D 39, 3346 (1989) [Erratum-ibid. D 40, 3127 (1989)].
[14] L. L. Chau, H. Y. Cheng, W. K. Sze, H. Yao and B. Tseng, Phys. Rev. D 43, 2176 (1991) [Erratum-ibid. D 58, 019902 (1998)].
[15] M. J. Savage, Phys. Lett. B 257, 414 (1991).
[16] H. J. Lipkin, Y. Nir, H. R. Quinn and A. Snyder, Phys. Rev. D 44, 1454 (1991).
[17] L. L. Chau and H. Y. Cheng, Phys. Lett. B 280, 281 (1992).
[18] W. Kwong and S. P. Rosen, Phys. Lett. B 298, 413 (1993).
[19] I. Hinckliffe and T. A. Kaeding, Phys. Rev. D 54, 914 (1996) [hep-ph/9502275].
Amplitude	\[\Delta I = 1 \mid \frac{1}{2}, \pm \frac{1}{2}\]	\[\Delta U = 1 \mid \frac{1}{2}, \pm \frac{1}{2}\]					
Isospin (initial state \[\mid \frac{1}{2}, \pm \frac{1}{2}\])	U-spin (initial state \[\pm \frac{1}{2}\])						
transition	final state	symmetry	Amplitude	transition	final state	symmetry	Amplitude
\[\frac{\sqrt{3}}{\sin \theta} T_{1/2}^+ X + \frac{\sqrt{2}}{\sin \theta} Y \sin \theta	\]	\[\frac{\sqrt{U^{\ast}_{1/2}}}{U^{\ast}_{1/2}} Y \sin \theta	\]		
\[\frac{Y}{\sqrt{3}}	\]	\[\frac{3}{2} U^{\ast}_{1/2} Y	\]		

TABLE V. Amplitudes for the decay \(D^+ \rightarrow \pi^+ \pi^0 R^0\). The \(V\)-spin amplitudes can be written in a similar manner. For brevity we have not written them explicitly.