Branching Fraction and CP Asymmetry Measurements in Inclusive $B \to X_s \ell^+ \ell^-$ and $B \to X_s \gamma$ Decays from BABAR

G. Eigen
representing the BABAR collaboration

Department of Physics, University of Bergen, Allegaten 55, N-5007 Bergen, Norway

Abstract

We present an update on total and partial branching fractions and on CP asymmetries in the semi-inclusive decay $B \to X_s \ell^+ \ell^-$. Further, we summarize our results on branching fractions and CP asymmetries for semi-inclusive and fully-inclusive $B \to X_s \gamma$ decays. We present the first result on the CP asymmetry difference of charged and neutral $B \to X_s \gamma$ decays yielding the first constraint on the ratio of Wilson coefficients $Im(C_8^{eff}/C_7^{eff})$.

Keywords: 1. Introduction

The decays $B \to X_s \gamma$ and $B \to X_s \ell^+ \ell^-$ are flavor-changing neutral current (FCNC) processes that are forbidden in the Standard Model (SM) at tree level. However, they can proceed via penguin loops and box diagrams. Figure 1 shows the lowest-order diagrams for both processes. The effective Hamiltonian factorizes short-distance effects represented by perturbatively-calculable Wilson coefficients (C_i) from long-distance effects specified by four-quark operators (O_i):

$$H_{eff} = \frac{G_F}{4\pi} \sum V_{sb}^* V_{td} C_i(\mu) O_i.$$ (1)

Here, G_F is the Fermi constant, V_{sb} and V_{td} are CKM elements ($x = u, c, t$) and μ is the renormalization scale. The operators have to be calculated using non-perturbative methods, such as the heavy quark expansion [1, 2, 3, 4, 5, 6]. In $B \to X_s \gamma$, the dominant contribution arises from the magnetic dipole operator O_7 with a top quark in the loop. Thus, the branching fraction depends on the Wilson coefficient $C_7^{eff} = -0.304$ (NNLL) while the axial-vector part is specified by operator O_{10} with Wilson coefficient $C_{10}^{eff} = -4.103$ (NNLL). Again, the top quark in the loop yields the most dominant contribution. New physics adds penguin and box diagrams with new particles modifying the SM values of the Wilson coefficients $Im(C_8^{eff}/C_7^{eff})$. New physics adds penguin and box diagrams with new particles modifying the SM values of the Wilson coefficients $Im(C_8^{eff}/C_7^{eff})$.

Figure 1: Lowest-order diagrams for $B \to X_s \gamma$ (top) and $B \to X_s \ell^+ \ell^-$ (bottom).
cients. In addition, scalar and pseudoscalar couplings may contribute introducing new Wilson coefficients C_S and C_P. Figure 2 shows examples of new physics processes involving a charged Higgs, a chargino and neutralinos $\tilde{g}, \tilde{\chi}^0$. These rare decays probe new physics at a scale of a few TeV.

![Figure 2: New physics processes with a charged Higgs bosons (left), a chargino plus up-type squarks (middle) and neutralinos plus down-type squarks (right).](image)

2. Study of $B \to X_s \ell^+ \ell^-$

Using a semi-inclusive approach, we have updated the partial and total branching fraction measurements of $B \to X_s \ell^+ \ell^-$ modes with the full BABAR data sample of $471 \times 10^6 BB$ events. We also perform the first measurement of direct CP asymmetry. For measuring partial and total branching fractions, we reconstruct 20 exclusive final states listed in Table 1. After accounting for K^0_L modes, $K^0 \to \pi^0 \pi^0$ and π^0 Dalitz decays, they represent 70% of the inclusive rate for hadronic masses $m_{X_s} < 1.8$ GeV. Using JETSET fragmentation and theory predictions, we extrapolate for the missing modes and those with $m_{X_s} > 1.8$ GeV. We impose requirements on the beam-energy-substituted mass $m_{ES} = \sqrt{E^2_{CM} - p^2_B} > 5.225$ GeV and on the energy difference $-0.1 (0.05) < \Delta E = E^*_B - E_{CM}/2 < 0.05$ for $X_s \ e^+ e^-$ ($X_s \mu^+ \mu^-$) modes where E^*_B and p^*_B are B momentum and B energy in the center-of-mass (CM) frame and E_{CM} is the total CM energy. We use no tagging of B decay.

To suppress $e^+ e^- \to q \bar{q}$ ($q = u, d, s, c$) events and BB combinatorial background, we define boosted decision trees (BDT) for each q^2 bin in $e^+ e^-$ and $\mu^+ \mu^-$ separately (see Table 2). From these BDTs, we determine a likelihood ratio (L_R) to separate signal from $q \bar{q}$ and BB backgrounds. We veto J/ψ and $\psi(2S)$ mass regions and use them as control samples. Figures 3 and 4 show the m_{ES} and L_R distributions for $e^+ e^-$ modes in bin q_5 and for $\mu^+ \mu^-$ modes in bin q_1, respectively.

We measure $d \Sigma(B \to X_s \ell^+ \ell^-)/dq^2$ in six bins of $q^2 = m_{ES}^2$ and four bins of m_{X_s} defined in Table 2. We extract the signal in each bin from a two-dimensional fit to m_{ES} and L_R. Figure 5 shows the differential branching fraction as a function of q^2 (top) and m_{X_s} (bottom) [15].

Table 1: Exclusive modes used in the semi-inclusive $B \to X_s \ell^+ \ell^-$ analysis.

Mode	Mode
$B^+ \to K^0 \mu^+ \mu^-$	$B^+ \to K^- e^+ e^-$
$B^+ \to K^0 e^+ e^-$	$B^- \to K^+ \mu^+ \mu^-$
$B^0 \to K^0 (K^0 \pi^0)_{\mu^+ \mu^-}$	$B^0 \to K^+ (K^+ \pi^0)_{\mu^+ \mu^-}$
$B^0 \to K^0 (K^0 \pi^0)_{e^+ e^-}$	$B^0 \to K^- (K^- \pi^0)_{e^+ e^-}$
$B^0 \to K^0 (K^0 \pi^0)_{e^+ e^-}$	$B^0 \to K^- (K^- \pi^0)_{e^+ e^-}$
$B^0 \to K^0 (K^0 \pi^0)_{e^+ e^-}$	$B^0 \to K^- (K^- \pi^0)_{e^+ e^-}$

Table 2: Definition of the q^2 bins.

q^2 bin	q^2 range [GeV2/c4]	$m_{\ell\ell}$ range [GeV]	m_{X_s} bin
0	$1.0 < q^2 < 6.0$	$1.00 < m_{\ell\ell} < 2.45$	1
1	$0.1 < q^2 < 2.0$	$0.32 < m_{\ell\ell} < 1.41$	2
2	$2.0 < q^2 < 4.3$	$1.41 < m_{\ell\ell} < 2.07$	3
3	$4.3 < q^2 < 8.1$	$2.07 < m_{\ell\ell} < 2.6$	4
4	$10.1 < q^2 < 12.9$	$3.18 < m_{\ell\ell} < 3.59$	5
5	$14.2 < q^2 < (m_{B} - m_{X_s})^2$	$3.77 < m_{\ell\ell} < (m_{B} - m_{X_s})^2$	6

![Figure 3: Distributions of m_{ES} (left) and likelihood ratio (right) for $B \to X_s \ell^+ \ell^-$ in q^2 bin q_5 showing data (points with error bars), the total fit (thick solid blue curves), signal component (red peaking curves), signal cross feed (cyan/grey curves), BB background (magenta/dark grey smooth curve), $e^+ e^- \to q \bar{q}$ background (green/grey curves) and charmonium background (yellow/light grey curves).](image)
Table 1 summarizes the differential branching fractions in the low and high q^2 regions in comparison to the SM predictions [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27]. In both regions of q^2, the differential branching fraction is in good agreement with the SM prediction. These results supersede the previous BABAR measurements [28] and are in good agreement with the Belle results [29].

The direct CP asymmetry is defined by:

$$A_{CP} = \frac{B(\bar{B} \to \bar{X}_s \ell^+ \ell^-) - B(B \to X_s \ell^+ \ell^-)}{B(\bar{B} \to \bar{X}_s \ell^+ \ell^-) + B(B \to X_s \ell^+ \ell^-)}$$

We use 14 self-tagging modes consisting of all B^+ modes and the B^0 modes with decays to a K^+ listed in Table 1 to measure $A_{CP}(B \to X_s \ell^+ \ell^-)$ in five q^2 bins. Note that we have combined bins q_1 and q_2 due to low statistics. Figure 6 shows the CP asymmetry as a function of q^2. The SM prediction of the CP asymmetry in the entire q^2 region is close to zero [30] [31] [32] [8]. In new physics models, however, A_{CP} may be significantly enhanced [11] [33]. In the full range of q^2 we measure $A_{CP} = 0.04 \pm 0.11 \pm 0.01$ [16], which is in good agreement with the SM prediction. The CP asymmetries in the five q^2 bins are also consistent with zero.

Figure 4: Distributions of m_{Xs} (left) and likelihood ratio (right) for $B \to X_s \mu^+ \mu^-$ in q^2 bin q_4 showing data (points with error bars), the total fit (thick solid blue curves), signal component (red peaking curves), signal cross feed (cyan/grey curves), $B \bar{B}$ background (magenta/dark grey smooth curve), $e^+e^- \to q \bar{q}$ background (green/grey curves) and charmonium background (yellow/light grey curves).

Figure 5: Differential branching fraction of $B \to X_s e^+ e^-$ (blue points), $B \to X_s \mu^+ \mu^-$ (black squares), and $B \to X_s \ell^+ \ell^-$ (red triangles) versus q^2 (top) and versus m_{Xs} (bottom) in comparison to the SM prediction (histogram). The grey-shaded bands show the J/ψ and $\psi(2S)$ vetoed regions.

Figure 6: The CP asymmetry as a function of q^2. The grey-shaded bands show the J/ψ and $\psi(2S)$ vetoed regions.
3. Study of $B \to X_{\gamma} \gamma$

In the SM, the $B \to X_{\gamma} \gamma$ branching fraction is calculated in next-to-next leading order (4 loops) yielding

$$\mathcal{B}(B \to X_{\gamma} \gamma) = (3.15 \pm 0.23) \times 10^{-4}$$ \hspace{1cm} (3)$$

for photon energies $E_\gamma > 1.6$ GeV \([34, 34]\).

To extract the $B \to X_{\gamma} \gamma$ signal experimentally from $e^+e^- \to B\bar{B}$ and $e^+e^- \to q\bar{q}$ backgrounds, we use two very different strategies. The first strategy consists of a semi-inclusive approach in which we sum over 38 exclusive $B \to X_{\gamma} \gamma$ final states with $1K^\pm(1K^0)$ or $3K^\pm$, $\leq 4\pi(\leq 2\pi)$, and $\leq 1\eta$. We use no tagging of the other B meson. We need to model the missing modes. Due to large backgrounds, we select events with a minimum photon energy of $E_\gamma > 1.9$ GeV and then extrapolate the branching fraction to photon energies $E_\gamma > 1.6$ GeV. With this approach, we measure the branching fraction, CP asymmetry and the difference in CP asymmetries between charged and neutral B decays using $471 \times 10^6 B\bar{B}$ events \([36]\).

The second strategy is a fully inclusive approach. To suppress backgrounds from $B\bar{B}$ and $q\bar{q}$ decays, we impose stringent constraints on isolated photons to remove clusters that may have originated from $\nu\tau$ and η decays. We use a semileptonic tag of the other B meson and require a minimum photon energy of $E_\gamma > 1.8$ GeV but impose no requirements on the hadronic mass system. Using $383 \times 10^6 B\bar{B}$ events, we measure the $B \to X_{\gamma} \gamma$ branching fraction measurement and the CP asymmetry for $B \to X_{\gamma} \gamma$ \([37, 38]\).

Table 4 summarizes our $B \to X_{\gamma} \gamma$ branching fraction measurements of the semi-inclusive and fully inclusive methods \([36, 37, 38]\). Figure 7 shows the BABAR results extrapolated to a minimum photon energy of 1.6 GeV in comparison to results from Belle \([40, 41, 42]\), CLEO \([43]\) and the SM prediction \([34, 35]\). Our results are in good agreement with those of the other experiments as well as the SM prediction.

For the semi-inclusive method, the direct CP asymmetry is defined by:

$$\mathcal{A}_{CP}(X_{\gamma}) = \frac{\mathcal{B}(\bar{B} \to \bar{X}_{\gamma} \gamma) - \mathcal{B}(B \to X_{\gamma} \gamma)}{\mathcal{B}(\bar{B} \to \bar{X}_{\gamma} \gamma) + \mathcal{B}(B \to X_{\gamma} \gamma)}$$ \hspace{1cm} (4)$$

The SM prediction yields $-0.6% < \mathcal{A}_{CP}(B \to X_{\gamma} \gamma) < 2.8%$ \([45, 46]\). Using 16 self-tagging exclusive modes and $471 \times 10^6 B\bar{B}$ events, we measure $\mathcal{A}_{CP}(B \to X_{\gamma} \gamma) = (1.7 \pm 1.9_{stat} \pm 1.0_{syst})%$ \([47]\). This supersedes the old BABAR measurement \([48]\). We further measures the CP asymmetry difference between charged and neutral B decays:

$$\Delta \mathcal{A}_{CP} = \mathcal{A}_{CP}(B^+ \to X_{\gamma}^+ \gamma) - \mathcal{A}_{CP}(B^0 \to X_{\gamma}^0 \gamma)$$ \hspace{1cm} (5)$$

which depends on the Wilson coefficients C_7^{eff} and C_{eff}^{eff}:

$$\Delta \mathcal{A}_{CP} = 4\pi^2 \xi_s \frac{\Lambda_{\gamma8}}{m_6} Im \frac{C_{eff}^{C_7}}{C_{eff}^{C_7}} \approx 0.12 - \frac{\Lambda_{\gamma8}}{100 \text{MeV}} Im \frac{C_{eff}^{C_7}}{C_{eff}^{C_7}}$$ \hspace{1cm} (6)$$

where the scale parameter $\Lambda_{\gamma8}$ is constrained by 17 MeV $< \Lambda_{\gamma8} < 190$ MeV. In the SM, C_7^{eff} and C_{eff}^{eff} are real so that $\Delta \mathcal{A}_{CP}$ vanishes. However in new physics models, these Wilson coefficients may have imaginary parts yielding a non-vanishing $\Delta \mathcal{A}_{CP}$.

From a simultaneous fit to charged and neutral B decays, we measure $\Delta \mathcal{A}_{CP}(B \to X_{\gamma} \gamma) = (5.0 \pm 3.9_{stat} \pm 1.5_{syst})%$ from which we set an upper and lower limit at 90% CL on $Im(C_{eff}^{C_7}/C_{eff}^{C_7})$ \([47]\):

$$-1.64 < Im \frac{C_{eff}^{C_7}/C_{eff}^{C_7}}{C_{eff}^{C_7}} < 6.52 \text{ at 90% CL.}$$ \hspace{1cm} (7)$$

This is the first $\Delta \mathcal{A}_{CP}$ measurements and the first constraint on $Im(C_{eff}^{C_7}/C_{eff}^{C_7})$. Figure 8 (top) shows the $\Delta \chi^2$ of
the fit as a function of \(\text{Im}(C_{7}^{\text{eff}}/C_{7}^{\text{eff}}) \). The shape of \(\Delta \chi^2 \) as a function of \(\text{Im}(C_{8}^{\text{eff}}/C_{7}^{\text{eff}}) \) is not parabolic indicating that the likelihood has a non-Gaussian shape. The reason is that \(\Delta \chi^2 \) is determined from all possible values of \(\hat{\Lambda}_{78} \). In the region \(\sim 0.2 < \text{Im}(C_{8}^{\text{eff}}/C_{7}^{\text{eff}}) < 2.6 \) a change in \(\text{Im}(C_{8}^{\text{eff}}/C_{7}^{\text{eff}}) \) \(\Delta \chi^2 \) can be compensated by a change in \(\hat{\Lambda}_{78} \) leaving \(\Delta \chi^2 \) unchanged. For positive values larger (smaller) than 2.6 (0.2), \(\Delta \chi^2 \) increases slowly (rapidly), since \(\hat{\Lambda}_{78} \) remains nearly constant at the minimum value (increases rapidly). For negative \(\text{Im}(C_{8}^{\text{eff}}/C_{7}^{\text{eff}}) \) values, \(\hat{\Lambda}_{78} \) starts to decrease again, which leads to a change in the \(\Delta \chi^2 \) shape. Figure 8 (bottom) shows \(\hat{\Lambda}_{78} \) as a function of \(\text{Im}(C_{8}^{\text{eff}}/C_{7}^{\text{eff}}) \).

In the fully-inclusive analysis, the \(B \to X_{d} \) decay cannot be separated from the \(B \to X_{s} \) decay and we measure:

\[
\mathcal{A}_{CP}(X_{s,d}Y) = \frac{\mathcal{B}(\bar{B} \to \bar{X}_{s,d}Y) - \mathcal{B}(B \to X_{s,d}Y)}{\mathcal{B}(B \to \bar{X}_{s,d}Y) + \mathcal{B}(B \to X_{s,d}Y)}. \tag{8}
\]

In the SM, \(\mathcal{A}_{CP}(B \to X_{s,d}Y) \) is zero \cite{49}. From the charge of the \(B \) and \(\bar{B} \), we determine the \(CP \) asymmetry. Using \(383 \times 10^{6} \) \(BB \) events, we measure \(\mathcal{A}_{CP}(B \to X_{s,d}Y) = (5.7 \pm 6.0 \pm 1.8)\% \), which is consistent with the SM prediction \cite{49}. Figure 9 shows a summary of all \(CP \) asymmetry measurements in comparison to the SM predictions.

![Figure 8: The \(\Delta \chi^2 \) function versus \(\text{Im}(C_{8}^{\text{eff}}/C_{7}^{\text{eff}}) \) (top) and the dependence of \(\hat{\Lambda}_{78} \) on \(\text{Im}(C_{8}^{\text{eff}}/C_{7}^{\text{eff}}) \) (bottom). The blue dark-shaded (orange light-shaded) regions show the 68\% (90\%) CL intervals.](image)

![Figure 9: Summary of \(\mathcal{A}_{CP} \) measurements for \(B \to X_{s,d}Y \) from semi-inclusive analyses (BABAR \cite{27}, Belle \cite{50}) and for \(B \to X_{s,d}Y \) from fully inclusive analyses (BABAR \cite{37, 38, 39}, CLEO \cite{51}, Belle \cite{52} and the HFAG average \cite{44}) in comparison to the SM prediction for \(B \to X_{s,d}Y \) \cite{45, 50, 49}.](image)

4. Conclusion

We performed the first \(\mathcal{A}_{CP} \) measurement in five \(q^{2} \) bins in semi-inclusive \(B \to X_{s,d}e\ell \gamma \) decays and updated the differential branching fraction. The \(B \to X_{s,d}e\ell \gamma \) partial branching fractions and \(CP \) asymmetries are in good agreement with the SM predictions. Our \(\mathcal{A}_{CP} \) measurement in the semi-inclusive \(B \to X_{s,d}Y \) decay is the most precise \(CP \) asymmetry measurement. The \(\Delta \mathcal{A}_{CP}(B \to X_{s,d}Y) \) result yields first constraint on \(\text{Im}(C_{8}^{\text{eff}}/C_{7}^{\text{eff}}) \). The \(B \to X_{s,d} \) branching fractions and \(CP \) asymmetries are both in good agreement with the SM predictions. New progress on these inclusive decays will come from Belle II. For the \(B \to X_{s,d}Y \) and \(B \to X_{s,d}e\ell \gamma \) semi-inclusive decays, we expect precision measurements. For the inclusive \(B \to X_{s,d}Y \) and \(B \to X_{s,d}e\ell \gamma \) decays, we expect new possibilities by tagging the other \(B \) meson via full \(B \) reconstruction.
5. Acknowledgments

This work was supported by the Norwegian Research Council. I would like to thank members of the BABAR collaboration for giving me the opportunity to present these results. In particular, I would like to thank Doug Roberts, Liang Sun and David Hitlin for their fruitful suggestions.

References

[1] K. G. Wilson, Phys. Rev. 179, 1499 (1969).
[2] K. G. Wilson and J. B. Kogut, Phys. Rept. 12, 75 (1974).
[3] N. Isgur, D. Scora, B. Grinstein and M. B. Wise, Phys. Rev. D 39, 790 (1989).
[4] N. Isgur and M. B. Wise, Phys. Lett. B 232, 113 (1989).
[5] H. Georgi, Phys. Lett. B 240, 447 (1990).
[6] B. Grinstein and D. Pirjol, Phys. Rev. D 70, 114005 (2004) [hep-ph/0404250].
[7] G. Buchalla, A. J. Buras and M. E. Lautenbacher, Rev. Mod. Phys. 70, 1125 (1998) [hep-ph/9812350].
[8] W. Altmannshofer, P. Ball, A. Bharucha, A. J. Buras, D. M. Straub and M. Wick, JHEP 0901, 019 (2009) [arXiv:0811.1214 [hep-ph]].
[9] A. Ali, E. Lunghi, C. Greub and G. Hiller, Phys. Rev. D 66, 034002 (2002) [hep-ph/0112300].
[10] C. Bobeth, P. Gambino, M. Gorbahn and U. Haisch, JHEP 0404, 017 (2004) [hep-ph/0311087].
[11] S. Bobeth, P. Gambino, M. Gorbahn and U. Haisch, JHEP 0404, 071 (2004) [hep-ph/0312090].
[12] A. Ghinculov, T. Hurth, G. Isidori and Y. P. Yao, Nucl. Phys. B 685, 351 (2004) [hep-ph/0312128].
[13] C. Greub, V. Pilipp and C. Schüpbach, JHEP 0812, 045 (2008) [arXiv:0804.3877 [hep-ph]].
[14] T. Huber, T. Hurth and E. Lunghi, Nucl. Phys. B 702, 40 (2008) [arXiv:0712.2009 [hep-ph]].
[15] T. Huber, E. Lunghi, M. Misiak and D. Wyler, Nucl. Phys. B 740, 105 (2006) [hep-ph/0512066].
[16] M. Beneke, G. Buchalla, M. Neubert and C. T. Sachrajda, Eur. Phys. J. C 61, 439 (2009) [arXiv:0902.4446 [hep-ph]].
[17] B. Aubert et al. [BaBar Collaboration], Phys. Rev. D 93, 081102 (2004) [hep-ex/0404006].
[18] M. Iwasaki et al. [Belle Collaboration], Phys. Rev. D 79, 021106 (2009) [hep-ex/0803040].
[19] D. S. Du and M. Z. Yang, Phys. Rev. D 54, 882 (1996) [hep-ph/9510267].
[20] A. Ali and G. Hiller, Eur. Phys. J. C 8, 619 (1999) [hep-ph/9812267].
[21] C. Bobeth, G. Hiller and G. Piranishvili, JHEP 0807, 106 (2008) [arXiv:0805.2925 [hep-ph]].
[22] A. K. Alok, A. Dhoge and S. Ray, Phys. Rev. D 79, 034017 (2009) [arXiv:0811.1186 [hep-ph]].
[23] M. Misiak, H. M. Asatiani, K. Bieri, M. Czakon, A. Czarnecki, T. Ewerth, A. Ferroglia and P. Gamberg et al., Phys. Lett. B 664, 206 (2007) [hep-ph/0609241].
[24] M. Misiak and M. Steinhauser, Nucl. Phys. B 764, 62 (2007) [hep-ph/0609241].
[25] J. P. Lees et al. [BaBar Collaboration], Phys. Rev. D 86, 052012 (2012) [arXiv:1207.2520 [hep-ex]].
[26] J. P. Lees et al. [BaBar Collaboration], Phys. Rev. Lett. 109, 191801 (2012) [arXiv:1207.2500 [hep-ex]].
[27] J. P. Lees et al. [BaBar Collaboration], Phys. Rev. D 86, 112008 (2012) [arXiv:1207.5772 [hep-ex]].
[28] B. Aubert et al. [BaBar Collaboration], Phys. Rev. D 77, 051103 (2008) [arXiv:0711.4889 [hep-ex]].
[29] K. Abe et al. [Belle Collaboration], Phys. Lett. B 511, 151 (2001) [hep-ex/0102042].
[30] A. Limosani et al. [Belle Collaboration], Phys. Rev. Lett. 103, 241801 (2009) [arXiv:0907.1384 [hep-ex]].
[31] T. Saito et al. [Belle Collaboration], Talk at Moriond Electroweak 2014.
[32] S. Chen et al. [CLEO Collaboration], Phys. Rev. Lett. 87, 251807 (2001) [hep-ex/0108032].
[33] D. Asner et al. [Heavy Flavor Averaging Group Collaboration], arXiv:1010.1589 [hep-ex].
[34] A. L. Kagan and M. Neubert, Phys. Rev. D 58, 094012 (1998) [hep-ph/9803368].
[35] M. Benzke, S. J. Lee, M. Neubert and G. Paz, Phys. Rev. Lett. 106, 141801 (2011) [arXiv:1012.3167 [hep-ph]].
[36] J. P. Lees et al. [BaBar Collaboration], arXiv:1406.0534 [hep-ex].
[37] B. Aubert et al. [BaBar Collaboration], Phys. Rev. Lett. 101, 171804 (2008) [arXiv:0805.4796 [hep-ex]].
[38] T. Hurth, E. Lunghi and W. Porod, Nucl. Phys. B 704, 56 (2005) [hep-ph/0412250].
[39] S. Ishida et al. [Belle Collaboration], Phys. Rev. Lett. 93, 031803 (2004) [hep-ex/0308038].
[40] T. E. Coan et al. [CLEO Collaboration], Phys. Rev. Lett. 86, 5661 (2001) [hep-ex/0010075].
[41] L. Pesanet et al. [Belle Collaboration], talk at DIS14, arXiv:1406.6356 [hep-ex].