PREVAILÊNCIA DE DOR ARTICULAR E OSTEOPOROSI NA POPULAÇÃO OBESA BRASILEIRA

Daniel Moreira PACCA¹, Gustavo Constantino DE-CAMPOS¹, Alessandro Rozin ZORZI¹, Elinton Adami CHAIM², João Batista DE-MIRANDA¹

RESUMO - Racional: Alto índice de massa corpórea, assim como a manutenção desta condição por longo período de tempo, são importantes fatores de risco para o desenvolvimento de osteoartrite. Objetivo: Determinar a prevalência de dor articular e osteoartrite em pacientes aguardando cirurgia bariátrica. Métodos: Pacientes obesos mórbidos responderam à escala e questionário (VAS e WOMAC) de dor e função. Radiografias dos quadril e joelhos foram avaliadas. Os desfechos primários foram dor articular referida nos questionários e o diagnóstico de osteoartrite feito através dos critérios clinicoradiológicos do Colégio Americano de Reumatologia. Resultados: Cento e quarenta e um pacientes foram entrevistados (85,1% mulheres) com idade média de 40 anos. A média do índice de massa corpórea foi de 46. Coluna lombar e joelhos foram as regiões mais comumente referidas com dor (77,9% e 73,2% respectivamente). A prevalência de osteoartrite dos joelhos foi de 63,1% e dos quadris foi de 40,8%. Idade, média da escala visual de dor e resultados do questionário de WOMAC foram maiores nos indivíduos com osteoartrite. Conclusão: Há prevalência de 90,1% de sintomas dolorosos nos pacientes obesos mórbidos encaminhados para cirurgia bariátrica. A osteoartrite dos joelhos foi de 63,1% e de quadris de 40,8%.

ABSTRACT - Background: High body mass index, as well as maintaining this condition for a long period of time, are important risk factors for the development of osteoarthritis. Aim: To determine joint pain and osteoarthritis prevalence in patients referred to bariatric surgery. Methods: Morbidly obese patients referred to bariatric surgery responded to the visual analogue pain scale (VAS) and the WOMAC questionnaire. X-rays of the hips and knees were evaluated. The primary endpoints were self-reported joint pain and the diagnosis of osteoarthritis by clinical and radiological criteria of the American College of Rheumatology. Results: One hundred and forty-one patients were interviewed (85.1% women) with a mean age of 40 years. The mean body mass index was 46. The lumbar spine and knee joint were the most commonly reported as painful (77.9% and 73.2% respectively). Prevalence of knee osteoarthritis was 63.1% and hip osteoarthritis was 40.8%. Age, mean VAS and WOMAC scores were higher in the osteoarthritic individuals. Conclusion: There is prevalence of 90.1% of pain symptoms in morbidly obese patients referred to bariatric surgery. The prevalence of knee osteoarthritis was 63.1% and hip osteoarthritis was 40.8% in this sample.

INTRODUÇÃO

Osteoartrite (OA), a forma mais comum de doença articular, é doença multifatorial que causa danos na cartilagem articular e alterações inflamatórias na articulação. Trata-se de processo lento e gradual, altamente prevalente na população adulta, que causa dor, perda de função e de qualidade de vida, especialmente em indivíduos idosos e obesos. A presença de índice de massa corporal (IMC) aumentado, bem como a manutenção desta condição por longo período de tempo, são importantes fatores de risco para o desenvolvimento de OA.

A Organização Mundial da Saúde estima que 10% da população com mais de 60 anos tem sérios problemas médicos resultantes da OA. Lawrence et al. estimam prevalência de 27 milhões de pessoas em toda a população adulta dos Estados Unidos. Senna et al. relataram em 2004 prevalência de 4,14% na população brasileira. É esperado grande aumento no número de pacientes com OA no Brasil, uma vez que a população brasileira está envelhecendo e se tornando cada vez mais obesa. Existe relação direta entre a prevalência de OA, o aumento da idade e índice de massa corporal.

A obesidade é também condição que impõe pesado fardo à sociedade. Além de eventos cardiovasculares e muitas outras condições, a osteoartrite, é fortemente associada às condições metabólicas e inflamatórias alteradas. Além da evidente sobrecarga mecânica, as citocinas no tecido adiposo - adiponectina, leptina e resistina - também influenciam no início e piora da OA através da degradação direta da articulação ou
Estudo de prevalência (transversal) realizado em um serviço de cirurgia bariátrica entre julho e dezembro de 2015. Aprovado pelo Comitê de Ética em Pesquisa local.

Pacientes
Foram avaliados 141 pacientes consecutivos na avaliação pré-operatória de cirurgia bariátrica. Os critérios de inclusão foram obesos com IMC acima de 35 referenciados para cirurgia bariátrica; capacidade de ler, compreender e aceitar o termo de consentimento esclarecido.

Avaliação clínica
Os incluídos responderam à escala visual analógica de dor (EVA)1 e ao questionário Western Ontario and McMaster Universities (WOMAC)2. A presença de dor articular foi investigada. Os dados antropométricos também foram coletados, como idade, gênero, raça, altura e peso, e o IMC foi calculado dividindo o peso (kg) pelo quadrado da altura (metros).

Avaliação radiológica
Os pacientes foram submetidos à radiografias dos quadris (incidência anteroposterior) e joelhos (incidência anteroposterior com apoio monopodálico, vistas axiais e laterais das patelas). As radiografias foram classificadas de acordo com a classificação radiológica de Kellgren e Lawrence3 para osteoartrite. Os desfechos primários foram a presença de dor articular referida e o diagnóstico de osteoartrite de acordo com os critérios clínicos e radiológicos do American College of Rheumatology para o OA do joelho e o OA do quadril2.

Análise estatística
Foi realizada análise descritiva para todas as variáveis. Os dados foram apresentados como média e desvio-padrão (DP) para variáveis contínuas e como frequências absoluta e relativa para variáveis categóricas. Foram utilizados testes de Kolmogorov-Smirnov, histogramas e medidas de assimetria multivariada para determinar quais variáveis apresentavam distribuição normal. As comparações entre duas variáveis contínuas foram realizadas utilizando-se o teste t de Student para amostras independentes e com o teste u de Mann-Whitney quando os dados não preenham as condições para o uso de testes paramétricos. Realizou-se a regressão logística multivariada para determinar quais variáveis apresentavam relação clara entre a perda de peso através da cirurgia bariátrica e a melhora dos sintomas da OA4,6,7,8.

MÉTODOS

RESULTADOS

Estatísticas descritivas
Foram analisados 141 pacientes. As características demográficas da amostra são mostradas na Tabela 1.

TABELA 1 - Dados demográficos

Média±DP ou Frequência absoluta (relativa)
Idade
39,7±11,5
Altura (metros)
1,63±0,09
Peso (kilogramas)
123,8±28,5
IMC
46,6±8,9
Gênero
Masculino (21 [14,9%])
Feminino (120 [85,1%])
DP=davio-padrão; IMC=índice de massa corpórea

A dor musculoesquelética nesta amostra de pacientes obesos mórbidos foi muito alta. Apenas 14 pacientes (9,9%) não tiveram queixas. Os outros 127 (90,1%) relataram-na em uma ou mais articulações. O local mais comum foi a coluna lombar, seguida pelos joelhos. Destes 127 pacientes com dor, 99 (77,9%) tiveram dor lombar, 33 (25,9%) dorsal, 33 (25,9%) cervical, 93 (73,2%) em pelo menos um dos joelhos, 61 (48,1%) em pelo menos um dos quadris e 54 (42,5%) relataram dor em pelo menos uma das mãos. Apenas 15 pacientes (11,8%) relataram dor em uma única articulação. A EVA momentânea teve média de 39,9±34,6. A EVA dos últimos três dias foi de 52,4±34,1.

O WOMAC total médio foi de 36,3±21,2. A média da subescala WOMAC dor foi de 7,9±4,6. A média da subescala WOMAC rigidez foi de 2,8±2,4. A média da subescala WOMAC função foi de 25,6±15,5. O resultado do questionário WOMAC total e suas subescalas (dor, rigidez e função) são mostrados na Figura 1.

FIGURA 1 - WOMAC total (A), dor (B), rigidez (C) e função (D)

Radiografias foram realizadas em 103 pacientes. Os outros 38 pacientes recusaram ou não compareceram ao exame agendado. As radiografias foram classificadas de acordo com a classificação de Kellgren-Lawrence (K & L) por três autores. Em caso de desacordo, a classificação dada pela maioria (dois observadores) foi considerada. Não houve total desacordo.

Nesses 103 pacientes, 80 (77,7%) tiveram uma ou mais
articular com dor articular e alterações radiológicas consistentes com OA (K & L=2). A prevalência de OA do joelho foi de 63,1% (n=65) e a OA do quadril foi de 40,8% (n=42).

Estatísticas analíticas

Não houve diferença entre a prevalência de OA e o gênero, considerando-se qualquer articulação (masculino=10 (58,8%), feminino=70 (81,4%), p=0,056), apenas OA do joelho (M=9; F=56; p=0,412) ou apenas OA do quadril (M=4; F=38; p=0,176). Quanto às variáveis contínuas, as comparações entre a média do grupo com OA (K & L=2) e sem OA (K & L=1) são mostradas na Tabela 2.

TABELA 4 - Comparação das variáveis contínuas entre indivíduos obesos com e sem AO

	Com OA (n=80)	Sem OA (n=23)	p
Idade	41.3 ± 12.1	35.3 ± 8.9	0.020*
Peso (kg)	121.5 ± 26.6	134.4 ± 38.2	0.193
Altura (m)	1.61 ± 0.20	1.66 ± 0.11	0.262
IMC	45.1 ± 9.3	48.1 ± 10.7	0.424
WOMAC total	41.1 ± 19.8	29.3 ± 22.9	0.017*
WOMAC dor	9.0 ± 4.3	5.7 ± 4.9	0.004*
WOMAC rigidez	3.2 ± 2.3	2.0 ± 2.2	0.026*
WOMAC função	28.9 ± 14.4	21.7 ± 16.4	0.046*
EVA momento	44.9 ± 33.6	33.7 ± 33.4	0.174
EVA 3-dias	61.2 ± 30.8	38.4 ± 34.8	0.011*

*p<0.05; OA=osteartrite; IMC=índice de massa corpórea; EVA=escala visual analógica; WOMAC=Western Ontario and McMaster Universities Questionnaire

A idade dos pacientes com OA foi maior, bem como o WOAMC e a EVA dos últimos três dias. As associações entre variáveis contínuas como fatores de risco potenciais para o desenvolvimento de OA testadas por regressão logística binária são apresentadas nas Tabelas 3 e 4.

TABELA 3 - Regressão logística binária para fatores de risco para OA de joelho ou quadril

	OR (IC); valor de p
Idade	1.054 (1,003-1,107)
Peso	1.009 (0,944-1,079)
Altura	0,187(0,000-2,628)
IMC	0,972 (0,805-1,73)
Gênero	0,302 (0,056-1,631)

*p<0.05; OA=osteartrite; OR=Odds Ratio; IC=intervalo de confiança; IMC índice de massa corpórea

TABELA 4 - Regressão logística binária para fatores de risco para OA de joelho ou quadril

	OR (IC); valor de p
OA de joelho	1,032(0,992-1,073)
OA de quadril	1,047(1,087-1,236)
Idade	1,023(0,986-1,061)
Peso	0,996(0,960-1,032)
Altura	0,091(0,001-5,480)
IMC	0,049(1,016-1,016)
Gênero	0,690(1,153-1,72)

*p<0.05; OA=osteartrite; OR=Odds Ratio; IC=intervalo de confiança; IMC= índice de massa corpórea

DISCUSSÃO

Este estudo encontrou alta prevalência de dor articular, especialmente na coluna lombar e joelhos, bem como de OA nos quadrís e joelhos em população de pacientes com obesidade mórbida aguardando cirurgia bariátrica. Este é o primeiro relato brasileiro de prevalência de dor e de OA na população com obesidade mórbida. O envolvimento e a obesidade são os dois principais fatores de risco para o seu desenvolvimento. Há, portanto, forte tendência de grande aumento de OA em nosso país, uma vez que segundo relatos governamentais a população brasileira está ficando mais velha e mais obesa. O número de indivíduos com mais de 60 anos aumentou de 7,2 milhões em 1980 para 19,2 milhões em 2010 e provavelmente chegará a 64 milhões em 2050. As décadas recentes também testemunharam aumento significativo do sobrepeso da população (IMC entre 25 e 30) e obesidade (IMC acima de 30) e, pela primeira vez, o número de indivíduos com sobrepeso ou obesidade superou 50% da população brasileira.

Atualmente, sabe-se que a OA do joelho está fortemente associada à alterações metabólicas e inflamatórias elevados encontrados na obesidade. As citocinas associadas ao tecido adiposo, incluindo adiponectina, resistina e leptina, podem influenciar a OA através da degradação articular direta, aumentando os processos inflamatórios locais. Embora nem todas as pessoas obesas desenvolvam OA do joelho, ela parece estar fortemente associada à coexistência de distúrbios do metabolismo lipídico e glicêmico. Além disso, a maior carga presente em articulações obesas pode ser detectada por mecanorreceptores na superfície decondrôcitos, desencadeando cascadas de sinalização intracelular de citocinas, fatores de crescimento e metaloproteases.

Este estudo encontrou relação direta entre idade, obesidade e osteoartrose. A presente análise não encontrou correlação entre gênero e OA, talvez devido ao baixo número de homens nesta amostra. A grande maioria era de mulheres. Existe evidência crescente de que o estrogênio desempenha papel importante na manutenção da homeostase dos tecidos articulares. O aumento dramático de OA em mulheres após a menopausa - que está associada à presença de receptores de estrogênio em tecidos articulares, sugere ligação entre a OA e a perda da função ovariana. Embora a grande atenção esteja focada no efeito do estrogênico sobre a cartilagem articular, sua deficiência também afeta outros tecidos articulares envolvidos na OA, como o osso subcondral, a sinovia, o músculo, o ligamento e a cápsula.

Uma vez que a OA é doença crônica, a medicação da prevalência torna-se muito mais importante do que a incidência e pode indicar o risco de exposição para indivíduos susceptíveis. Estes estudos são frequentemente usados para planejar a saúde pública e como etapa inicial (linha de base) para avaliar programações de controle de morbidade. Além da prevalência simples da doença, obteve-se também o perfil algorítmico dos indivíduos estudados através da aplicação do questionário de escala visual analógica de dor (EVA) e WOMAC. Também observou-se maior dor e perda de função nos indivíduos com OA, com que o dobro da perda de função expressa por pontuação maior nos questionários. É importante notar que mesmo indivíduos sem diagnóstico de OA apresentaram altos valores no questionário WOMAC, o que aponta a limitação funcional imposta pela presença de obesidade. Vários estudos demonstraram melhora dos sintomas e qualidade de vida em pacientes obesos osteoartriticos tratados com cirurgia bariátrica.

A principal limitação deste estudo é que a amostra é composta por indivíduos encaminhados para tratamento cirúrgico da obesidade no sistema público. Pode haver algum grau de viés de seleção, já que a dor articular pode agir como motivador para fazer o indivíduo procurar tratamento cirúrgico. Assim, a prevalência de dor articular e OA poderia ser menor para este tratamento e as mudanças nos sintomas causados pela osteoartrose.
CONCLUSÃO

Há prevalência de 90,1% de sintomas de dor em pacientes obesos mórbidos aguardando tratamento com cirurgia bariátrica. A prevalência de OA do joelho foi de 63,1% e a OA de quadril de 40,8%.

REFERÊNCIAS

1. Abu-Abide S, Wishnitzer N, Szold A, Liebergall M, Manor O. The influence of surgically-induced weight loss on the knee joint. Obes Surg. 2005;15(10): 1437-42.
2. Altman R, Asch E, Bloch D et al. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum. 1986; 29(8):1039-49.
3. Carlsson AM. Assessment of chronic pain. I. Aspects of the reliability and validity of the visual analogue scale. Pain. 1983;16(1):87-101.
4. de Lange-Brokaar BJ, Ioan-Facsinay A, van Osch GJ et al. Synovial inflammation, immune cells and their cytokines in osteoarthritis: a review. Osteoarthritis Cartilage. 2012;20(12):1484-99.
5. de Rezende MU, de Campos GC, Pailo AF. Current concepts in osteoarthritis. Acta Ortop Bras. 2013;21(2):120-2.
6. Fernandes MI. Tradução e validação do questionário de qualidade de vida específico para osteoartrose WOMAC (Western Ontario McMaster Universities) para a língua portuguesa. São Paulo: Universidade Federal de São Paulo; 2003.
7. Gill RS, Al-Adra DP, Shi X et al. The benefits of bariatric surgery in obese patients with hip and knee osteoarthritis: a systematic review. Obes Rev. 2011; 12(12):1083-9.
8. Groen VA, van de Graaf VA, Scholtes VA et al. Effects of bariatric surgery for knee complaints in (morbidly) obese adult patients: a systematic review. Obes Rev. 2015;16(2): 161-70.
9. Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthritis. Ann Rheum Dis. 1957; 16(4):494-502.
10. Lawrence RC, Felson DT, Helmick CG et al. National Arthritis Data Workgroup. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 2008;58(1):26-35.
11. Martel-Pelletier J, Boileau C, Pelletier JP, Roughley PJ. Cartilage in normal and osteoarthritis conditions. Best Pract Res Clin Rheumatol. 2008;22(2):351-84.
12. Mündermann A, Dyrbj CO, Andriacchi TP. Secondary gait changes in patients with medial compartment knee osteoarthritis: increased load at the ankle, knee and hip during walking. Arthritis Rheum. 2005;52(9):2835-44.
13. Roman-Blas JA, Castañeda S, Largo R, Herrero-Beaumont G. Osteoarthritis associated with estrogen deficiency. Arthritis Res Ther. 2009;11(5):241.
14. Rosales Ade L, Brito NL, Frucchi R et al. Obesity, osteoarthritis and clinical treatment. Acta Ortop Bras. 2014;22(3):136-9.
15. Scott SK, Rabito FA, Price PD et al. Comorbidity among the morbidly obese: a comparative study of 2002 U.S. hospital patient discharges. Surg Obes Relat Dis. 2006;2(2):105-11.
16. Senna ER, De Barros AL, Silva EO et al. Prevalence of rheumatic diseases in Brazil: a study using the COPCORD approach. J Rheumatol. 2004;31(3):594-7.
17. Sowers MR, Kowal P, Han STOP et al. The evolving role of obesity in knee osteoarthritis. Curr Opin Rheumatol. 2010; 22(5):533-7.
18. Sowers MR, Karvonen-Gutierrez CA. The evolving role of obesity in knee osteoarthritis. Curr Opin Rheumatol. 2010; 22(5):533-7.
19. Srikanth VK, Fryer JL, Zhai G et al. A meta-analysis of sex differences prevalence, incidence and severity of osteoarthritis. Osteoarthritis Cartilage. 2005;13(9):769-81.
20. Stevens M, Paans N, Wagenmakers R et al. The influence of overweight/obesity on patient perceived physical functioning and health-related quality of life after primary total hip arthroplasty. Obes Surg. 2012;22(4):523-9.
21. Woolf AD, Pfleger B. Burden of major musculoskeletal conditions. Bull World Health Organ. 2003;81(9):646-56.
22. Zini C, Steven-Filho E, Tabushi FI, Ribas FM, Opolinski AC, Erbano BO. Knee arthroscopic visibility alterations in obese and non-obese patients. Arq Bras Cir Dig. 2016; 29 (Suppl 1):75-79.