Large deviations for locally monotone stochastic partial differential equations driven by Lévy noise *

Jie Xiong† and Jianliang Zhai‡

June 11, 2016

Abstract

In this paper, we establish a large deviation principle for a type of stochastic partial differential equations (SPDEs) with locally monotone coefficients driven by Lévy noise. The weak convergence method plays an important role.

Keywords: Large Deviations, Lévy Processes, Monotone coefficients.

2010 AMS Classification: Primary 60H15. Secondary 35R60, 37L55.

1 Introduction

We shall prove via the weak convergence approach [7, 10, 17] the Freidlin-Wentzell type large deviation principle (LDP) for a family of locally monotone stochastic partial differential equations (SPDEs) driven by Lévy processes, these SPDEs include stochastic reaction-diffusion equations, stochastic Burgers type equations, stochastic 2D Navier-Stokes equations and stochastic equations of non-Newtonian fluids.

Let V be a reflexive and separable Banach space, which is densely and continuously injected in a separable Hilbert space $(H, \langle \cdot, \cdot \rangle_H)$. Identifying H with its dual we get

$$V \subset H \cong H^* \subset V^*,$$

*This work was started when the second author visited the first author at the Department of Mathematics, University of Macau. JX’s research is supported by Macao Science and Technology Fund FDCT 076/2012/A3 and Multi-Year Research Grants of the University of Macau Nos. MYRG2014-00015-FST and MYRG2014-00034-FST. JZ’s research is supported by National Natural Science Foundation of China (NSFC) (No. 11431014, No. 11401557), and the Fundamental Research Funds for the Central Universities (No. WK 0010000048).

†Department of Mathematics, Faculty of Sci. & Tech., University of Macau, Macau. Email: jie.xiong@umac.mo

‡School of Mathematical Sciences, University of Science and Technology of China, Hefei, 230026, China Email: zhaijl@ustc.edu.cn
where the star ‘•’ denotes the dual spaces. Denote $\langle \cdot, \cdot \rangle_{V^*, V}$ the duality between V^* and V, then we have

$$\langle u, v \rangle_{V^*, V} = \langle u, v \rangle_H, \quad \forall \ u \in H, \ v \in V.$$

Fix $T > 0$ and let $(\Omega, F, (F_t)_{t \in [0, T]}, \mathbb{P})$ be a complete separable filtration probability space. Let \mathcal{P} be the predictable σ-field, that is the σ-field on $[0, T] \times \Omega$ generated by all left continuous and F_t-adapted real-valued processes. Further denote by $\mathcal{B}F$ the σ-field of the progressively measurable sets on $[0, T] \times \Omega$, i.e.

$$\mathcal{B}F = \{ O \subset [0, T] \times \Omega : \forall t \in [0, T], \ O \cap ([0, t] \times \Omega) \in \mathcal{B}([0, t]) \otimes \mathcal{F}_t \},$$

where $\mathcal{B}([0, t])$ denotes the Borel σ-field on $[0, t]$.

Now we consider the following type of SPDEs driven by Lévy processes:

$$dX^\epsilon_t = A(t, X^\epsilon_t)dt + \epsilon \int_X f(t, X^\epsilon_t, z)\tilde{N}^{\epsilon^{-1}}(dt, dz),$$

$$X^\epsilon_0 = x \in H,$$

where $A : [0, T] \times V \to V^*$ is a $\mathcal{B}([0, T]) \otimes \mathcal{B}(V)$-measurable function. X is a locally compact Polish space. $N^{\epsilon^{-1}}$ is a Poisson random measure on $[0, T] \times X$ with a σ-finite mean measure $\epsilon^{-1} \lambda_T \otimes \nu$, λ_T is the Lebesgue measure on $[0, T]$ and ν is a σ-finite measure on X.

$$\tilde{N}^{\epsilon^{-1}}([0, t] \times B) = N^{\epsilon^{-1}}([0, t] \times B) - \epsilon^{-1} t \nu(B), \quad \forall B \in \mathcal{B}(X) \text{ with } \nu(B) < \infty,$$

is the compensated Poisson random measure. $f : [0, T] \times V \times X \to H$ is a $\mathcal{B}([0, T]) \otimes \mathcal{B}(V) \otimes \mathcal{B}(X)$-measurable function.

The following assumptions are from [6], which guarantee that Eq. (1.1) admits a unique solution. Suppose that there exists constants $\alpha > 1$, $\beta \geq 0$, $\theta > 0$, $C > 0$, positive functions K and F and a function $\rho : V \to [0, +\infty)$ which is measurable and bounded on the balls, such that the following conditions hold for all $v, v_1, v_2 \in V$ and $t \in [0, T]$:

H1 (Hemicontinuity) The map $s \mapsto \langle A(t, v_1 + sv_2), v \rangle_{V^*, V}$ is continuous on \mathbb{R}.

H2 (Local monotonicity)

$$2\langle A(t, v_1) - A(t, v_2), v_1 - v_2 \rangle_{V^*, V} + \int_X \| f(t, v_1, z) - f(t, v_2, z) \|^2_H \nu(dz) \leq (K_t + \rho(v_2))\| v_1 - v_2 \|^2_H,$$

2
(H3) (Coercivity)
\[2\langle A(t,v),v\rangle_{V^\ast,V} + \theta\|v\|^6_V \leq F_t(1 + \|v\|^2_H).\]

(H4) (Growth)
\[\|A(t,v)\|_{V^\ast} \leq (F_t + C\|v\|_V)(1 + \|v\|^2_H).\]

Definition 1.1. An \(H\)-valued càdlàg \(\mathcal{F}_t\)-adapted process \(\{X_t^\epsilon\}_{t \in [0,T]}\) is called a solution of Eq. (1.1), if for its \(dt \times \mathbb{P}\)-equivalent class \(\hat{X}^\epsilon\) we have

1. \(\hat{X}^\epsilon \in L^\alpha([0,T]; V) \cap L^2([0,T]; H), \mathbb{P}\)-a.s.;

2. the following equality holds \(\mathbb{P}\)-a.s.:
\[X_t^\epsilon = x + \int_0^t A(s,\overline{X}_s^\epsilon)ds + \epsilon \int_0^t \int_{\mathcal{X}} f(s,\overline{X}_s^\epsilon,z)\tilde{N}^{\epsilon^{-1}}(ds,dz), \ t \in [0,T],\]

where \(\overline{X}^\epsilon\) is any \(V\)-valued progressively measurable \(dt \times \mathbb{P}\) version of \(\hat{X}^\epsilon\).

With a minor modification of [6, Theorem 1.2], we have the following existence and uniqueness theorem for the solution of Eq. (1.1).

Theorem 1.2. Suppose that conditions (H1)-(H4) hold for \(F, K \in L^1([0,T]; \mathbb{R}^+),\) and there exists a constant \(\gamma < \frac{\vartheta}{2^3}\) and \(G \in L^1([0,T]; \mathbb{R}^+)\) such that for all \(t \in [0,T]\) and \(v \in V\) we have

\[\int_{\mathcal{X}} \|f(t,v,z)\|^2_H \nu(dz) \leq F_t(1 + \|v\|^2_H) + \gamma\|v\|^6_V; \tag{1.2}\]

\[\int_{\mathcal{X}} \|f(t,v,z)\|^2 \nu(dz) \leq G_t(1 + \|v\|^2; \tag{1.3}\]

\[\rho(v) \leq C(1 + \|v\|_V^6)(1 + \|v\|^2_H). \tag{1.4}\]

Then

1. For any \(x \in L^{\beta+2}(\Omega, \mathcal{F}_0, \mathbb{P}; H), \tag{1.1}\) has a unique solution \(\{X_t^\epsilon\}_{t \in [0,T]}\).

2. If \(\gamma\) is small enough, then
\[\mathbb{E}\left(\sup_{t \in [0,T]} \|X_t^\epsilon\|_{H}^{\beta+2}\right) + \mathbb{E} \int_0^T \|X_t^\epsilon\|_{H}^\beta \|X_t^\epsilon\|_V^\alpha dt \leq C_\epsilon \left(\mathbb{E}\|x\|_{H}^{\beta+2} + \int_0^T G_t dt + \int_0^T F_t dt\right).\]
Our aim in the present paper is to establish a LDP for the solution of (1.1) as \(\epsilon \to 0 \) on \(D([0, T], H) \), the space of \(H \)-valued càdlàg functions on \([0, T] \).

In the past three decades, there are numerous literatures about the LDP for stochastic evolution equations (SEEs) and SPDEs driven by Gaussian processes (cf. [5, 8, 9, 11, 12, 13, 14, 16, 21, 22, 24, 26, 28, 33, 34], etc.). Many of these results were obtained by using the weak convergence approach for the case of Gaussian noise, introduced by [8, 9], see, for example, [5, 8, 9, 16, 21, 22, 24, 26, 34]. This approach has been proved to be very effective for various finite/infinite-dimensional stochastic dynamical systems. One of the main advantages of this approach is that one only needs to make some necessary moment estimates.

The situations for SEEs and SPDEs driven by Lévy noise are drastically different because of the appearance of the jumps. There are only a few results on this topic so far. The first paper on LDP for SEEs of jump type is Röckner and Zhang [25] where the additive noise is considered. The study of LDP for multiplicative Lévy noise has been carried out as well, e.g., [27] and [7] for SEEs where the LDP was established on a larger space (hence, with a weaker topology) than the actual state space of the solution, [31] for SEEs on the actual state space, [32] for the 2-D stochastic Navier-Stokes equations (SNSEs). Before [32], Xu and Zhang [30] dealt with the 2-D SNSEs driven by additive Lévy noise. We also refer to [1, 2, 4, 18] for related results.

To obtain our result, we will use the weak convergence approach introduced by [7, 10, 17] for the case of Poisson random measures. This approach is a powerful tool to prove the LDP for SEEs and SPDEs driven by Lévy noise, which has been applied for several dynamical systems. The weak convergence method was first used in [7] to obtain LDP for SPDEs on co-nuclear spaces driven by Lévy noises and in [31] for SPDEs on Hilbert spaces with regular coefficients. Paper [32] deals with the 2-D SNSEs driven by multiplicative Lévy noise. Bao and Yuan [4] established a LDP for a class of stochastic functional differential equations of neutral type driven by a finite-dimensional Wiener process and a stationary Poisson random measure.

Monotone method is a main tool to prove the existence and uniqueness of SPDEs, and it can tackle a large class of SPDEs, for more details, see [6, 23] and references therein. Working in the framework of [6], the purpose of this paper is to establish a LDP for a family of locally monotone SPDEs (1.1) driven by pure jumps. In addition to the difficulties caused by the jumps, much of our problem is to deal with the monotone operator \(\mathcal{A} \). Using the weak convergence approach, the main point is to prove the
tightness of some controlled SPDEs, see (4.4). This is highly nontrivial. We first divide the controlled SPDEs (4.4) into three parts, and establish the tightness of each part in suitable larger space, respectively, see Proposition 4.1. And then via the Skorohod representation theorem we are able to show the weak convergence actually takes place in the space $D([0,T], H)$. Finally, we mention that our framework can tackle the SPDEs with some polynomial growth, see Example 4.3 in [6].

This paper is organized as follows. In Section 2, we will recall the abstract criteria for LDP obtained in [7, 10]. In Section 3, we will show the main result of this paper. Section 4 and Section 5 is devoted to prove prior results on the controlled SPDEs (4.4), which play a key role in this paper. The entire Section 6 is to establish the LDP for (1.1).

2 Preliminaries

2.1 Poisson Random Measure

For convenience of the reader, we shall adopt the notation in [7] and [10]. Recall that X is a locally compact Polish space. Denote by $M_{FC}(X)$ the collection of all measures on $(X, B(X))$ such that $\nu(K) < \infty$ for any compact $K \in B(X)$. Denote by $C_c(X)$ the space of continuous functions with compact supports, endow $M_{FC}(X)$ with the weakest topology such that for every $f \in C_c(X)$, the function

$$\nu \to \langle f, \nu \rangle = \int_X f(u) d\nu(u),$$

is continuous for $\nu \in M_{FC}(X)$. This topology can be metrized such that $M_{FC}(X)$ is a Polish space (see e.g. [10]).

Fixing $T \in (0, \infty)$, we denote $X_T = [0,T] \times X$ and $\nu_T = \lambda_T \otimes \nu$ with λ_T being Lebesgue measure on $[0,T]$ and $\nu \in M_{FC}(X)$. Let n be a Poisson random measure on X_T with intensity measure ν_T, it is well-known [20] that n is an $M_{FC}(X_T)$ valued random variable such that

(i) for each $B \in B(X_T)$ with $\nu_T(B) < \infty$, $n(B)$ is Poisson distributed with mean $\nu_T(B)$;

(ii) for disjoint $B_1, \cdots, B_k \in B(X_T)$, $n(B_1), \cdots, n(B_k)$ are mutually independent random variables.

For notational simplicity, we write from now on

$$\mathcal{M} = M_{FC}(X_T),$$

(2.1)
and denote by \(\mathbb{P}\) the probability measure induced by \(\mathbf{n}\) on \((\mathbb{M},\mathcal{B}(\mathbb{M}))\). Under \(\mathbb{P}\), the canonical map, \(N : \mathbb{M} \to \mathbb{M}\), \(N(m) = m\), is a Poisson random measure with intensity measure \(\nu_T\). With applications to large deviations in mind, we also consider, for \(\theta > 0\), probability measures \(\mathbb{P}_\theta\) on \((\mathbb{M},\mathcal{B}(\mathbb{M}))\) under which \(N\) is a Poisson random measure with intensity \(\theta\nu_T\). The corresponding expectation operators will be denoted by \(\mathbb{E}\) and \(\mathbb{E}_\theta\), respectively.

For further use, simply denote
\[
\mathbb{Y} = \mathbb{X} \times [0,\infty), \quad \mathbb{Y}_T = [0,T] \times \mathbb{Y}, \quad \bar{\mathbb{M}} = \mathcal{M}_{FC}(\mathbb{Y}_T). \tag{2.2}
\]

Let \(\bar{\mathbb{P}}\) be the unique probability measure on \((\bar{\mathbb{M}},\mathcal{B}(\bar{\mathbb{M}}))\) under which the canonical map, \(\bar{N} : \bar{\mathbb{M}} \to \bar{\mathbb{M}}, \bar{N}(\bar{m}) = \bar{m}\), is a Poisson random measure with intensity measure \(\bar{\nu}_T = \lambda_T \otimes \nu \otimes \lambda_\infty\), with \(\lambda_\infty\) being Lebesgue measure on \([0,\infty)\). The corresponding expectation operator will be denoted by \(\bar{\mathbb{E}}\). Let \(\mathcal{F}_t = \sigma\{\bar{N}((0,s] \times A) : 0 \leq s \leq t, A \in \mathcal{B}(\mathbb{Y})\}\), and let \(\bar{\mathcal{F}}_t\) denote the completion under \(\bar{\mathbb{P}}\). We denote by \(\mathcal{P}\) the predictable \(\sigma\)-field on \([0,T] \times \bar{\mathbb{M}}\) with the filtration \(\{\mathcal{F}_t : 0 \leq t \leq T\}\) on \((\bar{\mathbb{M}},\mathcal{B}(\bar{\mathbb{M}}))\). Let \(\bar{\mathcal{A}}\) be the class of all \((\mathcal{P} \otimes \mathcal{B}(\mathbb{X}))/\mathcal{B}([0,\infty))\)-measurable maps \(\varphi : \mathbb{X}_T \times \bar{\mathbb{M}} \to [0,\infty)\). For \(\varphi \in \bar{\mathcal{A}}\), we shall suppress the argument \(\bar{m}\) in \(\varphi(s,x,\bar{m})\) and simply write \(\varphi(s,x) = \varphi(s,x,\bar{m})\).

Define a counting process \(N^\varphi\) on \(\mathbb{X}_T\) by
\[
N^\varphi((0,t] \times U) = \int_{(0,t] \times U} \int_{(0,\infty)} 1_{[0,\varphi(s,x)]}(r)\bar{N}(dsdx), \quad t \in [0,T], U \in \mathcal{B}(\mathbb{X}). \tag{2.3}
\]
The above \(N^\varphi\) is called a controlled random measure, with \(\varphi\) selecting the intensity for the points at location \(x\) and time \(s\), in a possibly random but non-anticipating way. When \(\varphi(s,x,\bar{m}) = \theta \in (0,\infty)\), we write \(N^\varphi = N^\theta\). Note that \(N^\theta\) has the same distribution with respect to \(\bar{\mathbb{P}}\) as \(N\) has with respect to \(\mathbb{P}_\theta\).

Define \(l : [0,\infty) \to [0,\infty)\) by
\[
l(r) = r \log r - r + 1, \quad r \in [0,\infty).
\]
For any \(\varphi \in \bar{\mathcal{A}}\) the quantity
\[
L_T(\varphi) = \int_{\mathbb{X}_T} l(\varphi(t,x,\omega))\nu_T(dtdx) \tag{2.4}
\]
is well defined as a \([0,\infty]\)-valued random variable.
2.2 A general criterion for large deviation principle [10, Theorem 4.2]

We first state the large deviation principle we are concerned with. Let \(\{X^\varepsilon, \varepsilon > 0\} \equiv \{X^\varepsilon\} \) be a family of random variables defined on a probability space \((\Omega, \mathcal{F}, \mathbb{P})\) and taking values in a Polish space \(\mathcal{E}\). Denote the expectation with respect to \(\mathbb{P}\) by \(E\). The theory of large deviations is concerned with events \(A\) for which probability \(\mathbb{P}(X^\varepsilon \in A)\) converges to zero exponentially fast as \(\varepsilon \to 0\). The exponential decay rate of such probabilities is typically expressed in terms of a ‘rate function’ \(I\) defined as below.

Definition 2.1. (Rate function) A function \(I : \mathcal{E} \to [0, \infty]\) is called a rate function on \(\mathcal{E}\), if for each \(M < \infty\) the level set \(\{y \in \mathcal{E} : I(y) \leq M\}\) is a compact subset of \(\mathcal{E}\). For \(A \in \mathcal{B}(\mathcal{E})\), we define \(I(A) \equiv \inf_{y \in A} I(y)\).

Definition 2.2. (Large deviation principle) Let \(I\) be a rate function on \(\mathcal{E}\). The sequence \(\{X^\varepsilon\}\) is said to satisfy a large deviation principle (LDP) on \(\mathcal{E}\) with rate function \(I\) if the following two conditions hold.

a. **LDP upper bound.** For each closed subset \(F\) of \(\mathcal{E}\),
\[
\limsup_{\varepsilon \to 0} \varepsilon \log \mathbb{P}(X^\varepsilon \in F) \leq -I(F).
\]

b. **LDP lower bound.** For each open subset \(G\) of \(\mathcal{E}\),
\[
\liminf_{\varepsilon \to 0} \varepsilon \log \mathbb{P}(X^\varepsilon \in G) \geq -I(G).
\]

Next, we recall the general criterion for large deviation principles established in [10]. Let \(\{G^\varepsilon\}_{\varepsilon > 0}\) be a family of measurable maps from \(\mathcal{M}\) to \(\mathcal{U}\), where \(\mathcal{M}\) is introduced in (2.1) and \(\mathcal{U}\) is a Polish space. We present below a sufficient condition for LDP of the family \(Z^\varepsilon = G^\varepsilon(\varepsilon N^{\varepsilon^{-1}})\), as \(\varepsilon \to 0\).

Define
\[
S^N = \left\{ g : \mathbb{X}_T \to [0, \infty) : L_T(g) \leq N \right\},
\]
(2.5)
a function \(g \in S^N\) can be identified with a measure \(\nu^g_T \in \mathcal{M}\), defined by
\[
\nu^g_T(A) = \int_A g(s, x) \nu_T(dsdx), \quad A \in \mathcal{B}(\mathbb{X}_T).
\]

This identification induces a topology on \(S^N\) under which \(S^N\) is a compact space, see the Appendix of [7]. Throughout this paper we use this topology on \(S^N\). Denote \(S = \cup_{N=1}^\infty S^N\) and \(\mathcal{A}^N := \{\varphi \in \mathcal{A} \text{ and } \varphi(\omega) \in S^N, \mathbb{P}\text{-a.s.}\}\).
Condition 2.1. There exists a measurable map \(G^0 : M \rightarrow U \) such that the following hold.

a). For all \(N \in \mathbb{N} \), let \(g_n, g \in S^N \) be such that \(g_n \rightarrow g \) as \(n \rightarrow \infty \). Then

\[
G^0 \left(\nu^{g_n} \right) \rightarrow G^0 \left(\nu^g \right) \text{ in } U.
\]

b). For all \(N \in \mathbb{N} \), let \(\varphi', \varphi \in \bar{A}^N \) be such that \(\varphi' \) converges in distribution to \(\varphi \) as \(\epsilon \rightarrow 0 \). Then

\[
G^\epsilon \left(\epsilon N^{-1} \varphi' \right) \Rightarrow G^0 \left(\nu^g \right).
\]

In this paper, we use the symbol “\(\Rightarrow \)” to denote convergence in distribution.

For \(\phi \in U \), define \(S_\phi = \{ g \in S : \phi = G^0 \left(\nu^{g} \right) \} \). Let \(I : U \rightarrow [0, \infty] \) be defined by

\[
I(\phi) = \inf_{g \in S_\phi} L_T(g), \quad \phi \in U.
\] (2.6)

By convention, \(I(\phi) = \infty \) if \(S_\phi = \emptyset \). The following criterion for LDP was established in Theorem 4.2 of [10].

Theorem 2.3. For \(\epsilon > 0 \), let \(Z^\epsilon \) be defined by \(Z^\epsilon = G^\epsilon \left(\epsilon N^{-1} \varphi' \right) \), and suppose that Condition 2.1 holds. Then the family \(\{ Z^\epsilon \}_{\epsilon > 0} \) satisfies a large deviation principle with the rate function \(I \) defined by (2.6).

For applications, the following strengthened form of Theorem 2.3 is more useful and was established in Theorem 2.4 of [7]. Let \(\{ K_n \subset X, \ n = 1, 2, \ldots \} \) be an increasing sequence of compact sets such that \(\bigcup_{n=1}^\infty K_n = X \). For each \(n \), let

\[
\bar{A}_{b,n} = \left\{ \varphi \in \bar{A} : \text{for all } (t, \omega) \in [0, T] \times \bar{M}, \ n \geq \varphi(t, x, \omega) \geq 1/n \text{ if } x \in K_n \right. \\
\left. \text{and } \varphi(t, x, \omega) = 1 \text{ if } x \in K_n^c \right\},
\]

and let \(\bar{A}_b = \bigcup_{n=1}^\infty \bar{A}_{b,n} \). Define \(\tilde{A}^N = \bar{A}^N \cap \{ \phi : \phi \in \bar{A}_b \} \).

Theorem 2.4. [7] Suppose Condition 2.1 holds with \(\bar{A}^N \) therein replaced by \(\tilde{A}^N \). Then the conclusions of Theorem 2.3 continue to hold.

3 LDP for Eq. (1.1)

Assume that \(X_0 = x \in H \) is deterministic. Let \(X^\epsilon \) be the \(H \)-valued solution to Eq. (1.1) with initial value \(x \). In this section, we state the LDP on \(D([0, T], H) \) for \(\{ X^\epsilon \} \) under suitable assumptions.
There exist \(g \) and \(\epsilon > 0 \) such that for any \(\eta \in \mathcal{Y} \) with \(\mathcal{Y} := \frac{23(\alpha-1)(\alpha+n)}{\alpha} \vee \frac{4(\alpha-1)(\alpha+n)}{\alpha} \vee 4 \vee (\beta+2) \), and \(L_f \in L_2(\nu_T) \cap L_4(\nu_T) \cap L_{\beta+2}(\nu_T) \cap L_{\gamma}(\nu_T) \cap L_{\frac{4}{2}}(\nu_T) \cap \mathcal{H}_p \) such that

\[
\|f(t,v,z)\|_H \leq L_f(t,z)(1 + \|v\|_H), \quad \forall (t,v,z) \in [0,T] \times V \times \mathbb{X}.
\]

(H5) There exist \(\eta_0 > 0 \), \(p \geq \eta \) with \(\mathcal{Y} := \frac{23\alpha-1}{\alpha} \vee \frac{4\alpha-1}{\alpha} \vee 4 \vee (\beta+2) \), and \(L_f \in L_2(\nu_T) \cap L_4(\nu_T) \cap L_{\beta+2}(\nu_T) \cap L_{\gamma}(\nu_T) \cap L_{\frac{4}{2}}(\nu_T) \cap \mathcal{H}_p \) such that

\[
\|f(t,v,z)\|_H \leq L_f(t,z)(1 + \|v\|_H), \quad \forall (t,v,z) \in [0,T] \times V \times \mathbb{X}.
\]

(H6) There exists \(G_f \in L_2(\nu_T) \cap \mathcal{H}_2 \) such that

\[
\|f(t,v_1,z) - f(t,v_2,z)\|_H \leq G_f(t,z)\|v_1 - v_2\|_H, \quad \forall (t,z) \in [0,T] \times \mathbb{X}, \quad v_1, v_2 \in V.
\]

Remark 2. It is easy to check that

\[
L_2(\nu_T) \cap \left\{ h : [0,T] \times \mathbb{X} \rightarrow \mathbb{R}^+ : \|h\|_\infty < \infty \right\} \subset L_2(\nu_T) \cap L_4(\nu_T) \cap L_{\beta+2}(\nu_T) \cap L_{\gamma}(\nu_T) \cap L_{\frac{4}{2}}(\nu_T) \cap \mathcal{H}_p,
\]

where \(\|h\|_\infty = \sup_{(t,y) \in [0,T] \times \mathbb{X}} h(t,y) \).

It follows from Theorem 1.2 that, for every \(\epsilon > 0 \), there exists a measurable map \(\mathcal{G}^\epsilon : \mathbb{M} \rightarrow D([0,T];H) \) such that, for any Poisson random measure \(\mathbf{n}^\epsilon \) on \([0,T] \times \mathbb{X}\) with mean measure \(\epsilon^{-1} \lambda_T \otimes \nu \) given on some probability space, \(\mathcal{G}^\epsilon(\epsilon \mathbf{n}^\epsilon) \) is the unique solution \(X^\epsilon \) of (1.1) with \(\tilde{N}^\epsilon \) replaced by \(\tilde{N}^\epsilon \), here \(\tilde{N}^\epsilon \) is the compensated Poisson random measure of \(\mathbf{n}^\epsilon \).

To state our main result, we need to introduce the map \(\mathcal{G}^0 \). Recall \(S \) given in Section 2.2. For \(g \in S \), consider the following deterministic PDE (the skeleton equation):

\[
X_t^{0,g} = x + \int_0^t A(s, X_s^{0,g})ds + \int_0^t f(s, X_s^{0,g}, z)(g(s, z) - 1)\nu(dz)ds, \quad \text{in } V^*.
\]
By Proposition 5.1 below, this equation has a unique solution \(X^{0,g} \in C([0,T], H) \cap L^a([0,T], V) \). Define
\[
G^0(\nu_T^g) := X^{0,g}, \quad \forall g \in S.
\] (3.1)

Let \(I : U = D([0,T], H) \to [0,\infty] \) be defined as in (2.6). The following is the main result of this paper.

Theorem 3.1. Assume that (H1)-(H6) and (1.4) hold. Then the family \(\{X^\epsilon\}_{\epsilon>0} \) satisfies an LDP on \(D([0,T], H) \) with the rate function \(I \) under the topology of uniform convergence.

Proof. According to Theorem 2.4, we only need to verify Condition 2.1, which will be done in the last section. \(\square \)

4 Tightness of \(G^\epsilon(\epsilon N^\epsilon^{-1} \varphi_\epsilon) \)

In this section, we first state three lemmas whose proofs can be adopted from those in [7], [31] and [10]. Then, we establish two key estimates for the stochastic processes studied in this paper. Finally, we prove the tightness of this family of these stochastic processes.

Using similar arguments as those in proving [7, Lemma 3.4], we can establish the following lemma.

Lemma 4.1. For any \(h \in H_p \cap L_{p'}(\nu_T) \), \(p' \in (0,p] \), there exists a constant \(C_{h,p,p',N} \) such that
\[
C_{h,p,p',N} := \sup_{g \in S^N} \int_{X_T} h'(s,v)(g(s,v) + 1)\nu(dv)ds < \infty.
\] (4.1)

For any \(h \in H_2 \cap L_2(\nu_T) \), there exists a constant \(C_{h,N} \) such that
\[
C_{h,N} := \sup_{g \in S^N} \int_{X_T} h(s,v)|g(s,v) - 1|\nu(dv)ds < \infty.
\] (4.2)

Using the argument used for proving [7, Lemmas 3.4 and 3.11] and [31, (3.19)], we further get

Lemma 4.2. Let \(h : X_T \to \mathbb{R} \) be a measurable function such that
\[
\int_{X_T} |h(s,v)|^2\nu(dv)ds < \infty,
\]
and for all $\delta \in (0, \infty)$
\[
\int_E \exp(\delta |h(s, v)|) \nu(dv) ds < \infty,
\]
for all $E \in \mathcal{B}(X_T)$ satisfying $\nu_T(E) < \infty$.

a). Fix $N \in \mathbb{N}$, and let $g_n, g \in S^N$ be such that $g_n \to g$ as $n \to \infty$. Then
\[
\lim_{n \to \infty} \int_{X_T} h(s, v)(g_n(s, v) - 1) \nu(dv) ds = \int_{X_T} h(s, v)(g(s, v) - 1) \nu(dv) ds;
\]

b). Fix $N \in \mathbb{N}$. Given $\epsilon > 0$, there exists a compact set $K_\epsilon \subset X$, such that
\[
\sup_{g \in S^N} \int_{[0, T]} \int_{K_\epsilon} |h(s, v)||g(s, v) - 1| \nu(dv) ds \leq \epsilon.
\]

c). For every $\eta > 0$, there exists $\delta > 0$, we have such that for any $A \in \mathcal{B}([0, T])$ satisfying $\lambda_T(A) < \delta$
\[
\sup_{g \in S^N} \int_A \int_X h(s, v)|g(s, v) - 1| \nu(dv) ds \leq \eta. \tag{4.3}
\]

Fix $N \in \mathbb{N}$. For any $\varphi_\epsilon \in \tilde{A}^N$, consider the following controlled SPDEs
\[
d\tilde{X}_t^\epsilon = A(t, \tilde{X}_t^\epsilon) dt + \int_X f(t, \tilde{X}_t^\epsilon, z)(\varphi_\epsilon(t, z) - 1) \nu(dz) dt + \epsilon \int_X f(t, \tilde{X}_t^\epsilon - 1, z) \tilde{N}^{-1} \varphi_\epsilon (dz, dt), \tag{4.4}
\]
with initial condition $\tilde{X}_0^\epsilon = x$.

Recall \tilde{A}^N in Theorem 2.3. Let $\vartheta_\epsilon = \frac{1}{\varphi_\epsilon}$. The following lemma follows from Lemma 2.3 and Section 5.2 in [10]. Recall the notations in Section 2.1, we have

\textbf{Lemma 4.3.}
\[
\mathcal{E}_t^\epsilon(\vartheta_\epsilon) := \exp \left\{ \int_{[0, t] \times X \times [0, \epsilon^{-1} \varphi_\epsilon]} \log(\vartheta_\epsilon(s, x)) \tilde{N}(ds \, dx \, dr) + \int_{[0, t] \times X \times [0, \epsilon^{-1} \varphi_\epsilon]} (-\vartheta_\epsilon(s, x) + 1) \tilde{\nu}_T(d\, s \, d\, x \, d\, r) \right\}
\]

Consequently,
\[
\mathcal{Q}_t^\epsilon(G) = \int_G \mathcal{E}_t^\epsilon(\vartheta_\epsilon) \, d\bar{\mathbb{P}}, \quad \text{for} \quad G \in \mathcal{B}(\bar{M})
\]
defines a probability measure on \bar{M}.
By the fact that $\epsilon N^{r-1} \varphi_s$ under \mathbb{Q}_T^ϵ has the same law as that of ϵN^{r-1} under \bar{P}.
From Theorem 1.2 we see that there exists a unique solution \bar{X}^ϵ to the controlled SPDE (4.4) which satisfies (2) in Theorem 1.2.

By the definition of G^ϵ, we have

$$
\bar{X}^\epsilon = G^\epsilon \left(\epsilon N^{r-1} \varphi_s \right).
$$

(4.5)

The following estimates (Lemmas 4.4 and 4.5) will be useful.

Lemma 4.4. For $p = 2$, $2 + \beta$ or T in (H5), there exists $\epsilon_p, C_p > 0$ such that

$$
\sup_{\epsilon \in (0, \epsilon_p]} \mathbb{E} \left(\sup_{t \in [0, T)} \| \bar{X}_t^\epsilon \|_{H}^p \right) + \mathbb{E} \left(\int_0^T \| \bar{X}_t^\epsilon \|_{H}^{p-2} \| \bar{X}_t^\epsilon \|_Y^p \ dt \right) \leq C_p.
$$

Proof. By Itô's formula, we have

$$
\| \bar{X}_t^\epsilon \|_{H}^p = \| x \|_{H}^p + I_1(t) + I_2(t) + I_3(t) + I_4(t),
$$

(4.6)

where

$$
I_1(t) = \frac{p}{2} \int_0^t \| \bar{X}_s^\epsilon \|_{H}^{p-2} \left(2 \langle A(s, \bar{X}_s^\epsilon), \bar{X}_s^\epsilon \rangle_{V^*, V} \right) ds,
$$

$$
I_2(t) = \int_0^t \int_X p \| \bar{X}_{s-}^\epsilon \|_{H}^{p-2} \langle \epsilon f(s, \bar{X}_{s-}^\epsilon, z), \bar{X}_s^\epsilon \rangle_{H, H} \bar{X}^{\epsilon-1} \nu(ds, dz),
$$

$$
I_3(t) = \int_0^t \int_X \left[\| \bar{X}_{s-}^\epsilon + \epsilon f(s, \bar{X}_{s-}^\epsilon, z) \|_V^p - \| \bar{X}_s^\epsilon \|_H^p
- p \| \bar{X}_{s-}^\epsilon \|_{H}^{p-2} \langle \epsilon f(s, \bar{X}_{s-}^\epsilon, z), \bar{X}_s^\epsilon \rangle_{H, H} \right] N^{\epsilon-1} \nu(ds, dz),
$$

and

$$
I_4(t) = p \int_0^t \| \bar{X}_s^\epsilon \|_{H}^{p-2} \left(\int_X f(s, \bar{X}_s^\epsilon, z)(\varphi_{\epsilon}(s, z) - 1), \bar{X}_s^\epsilon \right)_{H, H} \nu(ds).
$$

Note that by (H3),

$$
I_1(t) \leq \frac{p}{2} \int_0^t \| \bar{X}_s^\epsilon \|_{H}^{p-2} \left(F_s + \| \bar{X}_s^\epsilon \|_{H}^2 - \theta \| \bar{X}_s^\epsilon \|_V^2 \right) ds
$$

$$
\leq -\frac{\theta p}{2} \int_0^t \| \bar{X}_s^\epsilon \|_{H}^{p-2} \| \bar{X}_s^\epsilon \|_V^2 ds + \frac{p}{2} \int_0^t \left(\| X_s^\epsilon \|_{H}^2 + 1 \right) F_s + \| \bar{X}_s^\epsilon \|_H^p \right) ds
$$

$$
\leq -\frac{\theta p}{2} \int_0^t \| \bar{X}_s^\epsilon \|_{H}^{p-2} \| \bar{X}_s^\epsilon \|_V^2 ds + \frac{p}{2} \int_0^t F_s ds + \int_0^t pF_s \| \bar{X}_s^\epsilon \|_H^p ds,
$$

(4.7)
and by (H5),

$$I_4(t) \leq p \int_0^t \left\| X_t^\varepsilon \right\|^p_H + \frac{\theta_p}{2} \int_0^t \left\| \dot{X}_s^\varepsilon \right\|^{p-2}_H \left\| \dot{X}_s^\varepsilon \right\|_H ds$$

By Gronwall's inequality, combining (4.6), (4.7), (4.8) and Lemma 4.1,

$$\left\| X_t^\varepsilon \right\|^p_H + \frac{\theta_p}{2} \int_0^t \left\| \dot{X}_s^\varepsilon \right\|^{p-2}_H \left\| \dot{X}_s^\varepsilon \right\|_H ds \leq \exp \left(p \int_0^t F_s ds + 2pC_{L_f,N} \right) \times \left(\left\| x \right\|^p_H + \frac{\theta_p}{2} \int_0^T F_s ds + \sup_{s \in [0,t]} |I_2(s)| + pC_{L_f,N} \right)$$

By Lemma 4.1, we have

$$E \left(\sup_{s \in [0,T]} |I_2(s)| \right)$$

$$\leq E \left(\int_0^T \int_X \left(e^{p/2} \int_X \left\| \dot{X}_s^\varepsilon \right\|_H \right)^{2p-4} \left(\left\| \dot{X}_s^\varepsilon \right\|_H \right)^2 N^{r-1} \nu \left(dz, ds \right) \right)$$

$$\leq E \left(\int_0^T \int_X \left(e^{p/2} \int_X \left\| \dot{X}_s^\varepsilon \right\|_H \right)^{2p-2} L^2_f(s, z) \left(\left\| X_{s-}^\varepsilon \right\|_H + 1 \right)^2 N^{r-1} \nu \left(dz, ds \right) \right)$$

$$\leq \left(\sup_{s \in [0,T]} \left\| X_s^\varepsilon \right\|^p_H \right) \cdot e^{p/2} \int_0^T \int_X \left\| \dot{X}_s^\varepsilon \right\|^{p-2}_H L^2_f(s, z) \left(\left\| X_{s-}^\varepsilon \right\|_H + 1 \right)^2 N^{r-1} \nu \left(dz, ds \right) \right)$$

$$\leq \frac{1}{4} \left(\sup_{s \in [0,T]} \left\| X_s^\varepsilon \right\|^p_H \right)$$

$$+ 16p^2 E \left[\left(\sup_{s \in [0,T]} \left\| X_s^\varepsilon \right\|^p_H + 1 \right) \int_0^T L^2_f(s, z) \varphi(s, z) \nu(dz, ds) \right]$$

$$\leq \left(\frac{1}{4} + 16p^2 C_{L_f,2,2,N} \right) E \left(\sup_{s \in [0,T]} \left\| X_s^\varepsilon \right\|^p_H \right) + 16p^2 C_{L_f,2,2,N}.$$ \hspace{1cm} (4.10)
On the other hand, by Lemma 4.4 again, we have

\[
\mathbb{E} \left(\int_0^T \int_X c_p \| \tilde{X}_s^\epsilon \|_H^p \epsilon f(s, \tilde{X}_s^\epsilon, z) \| f(s, \tilde{X}_s^\epsilon, z) \|_H^{p-2} \| \epsilon f(s, \tilde{X}_s^\epsilon, z) \|_H^2 N^{c_1} \nu(dz, ds) \right) \\
\leq \epsilon c_p \mathbb{E} \left(\int_0^T \int_X \| \tilde{X}_s^\epsilon \|_H^p \epsilon f(s, \tilde{X}_s^\epsilon, z) \| f(s, \tilde{X}_s^\epsilon, z) \|_H^{p-2} \| \epsilon f(s, \tilde{X}_s^\epsilon, z) \|_H^2 (\| \tilde{X}_s^\epsilon \|_H + 1)^2 \varphi_\epsilon(s, z) \nu(dz) ds \right) \\
\leq \epsilon c_p \mathbb{E} \left[\left(\sup_{s \in [0, T]} \| \tilde{X}_s^\epsilon \|_H + 1 \right) \int_0^T \int_X L_f^p(s, z) \varphi_\epsilon(s, z) \nu(dz) ds \right] \\
\leq \epsilon c_p C_{L_f, p, p, N} \mathbb{E} \left(\sup_{s \in [0, T]} \| \tilde{X}_s^\epsilon \|_H^p \right) + \epsilon c_p C_{L_f, 2, 2, N}, \tag{4.11}
\]

and

\[
\mathbb{E} \left(\int_0^T \int_X c_p \| \epsilon f(s, \tilde{X}_s^\epsilon, z) \|_H^{p-1} N^{c_1} \nu(dz, ds) \right) \\
= e^{-p} c_p \mathbb{E} \left(\int_0^T \int_X \| f(s, \tilde{X}_s^\epsilon, z) \|_H^p \varphi_\epsilon(s, z) \nu(dz) ds \right) \\
\leq e^{-p} c_p \mathbb{E} \left[\left(\sup_{s \in [0, T]} \| \tilde{X}_s^\epsilon \|_H + 1 \right) \int_0^T \int_X L_f^p(s, z) \varphi_\epsilon(s, z) \nu(dz) ds \right] \\
\leq e^{-p} c_p C_{L_f, p, p, N} \mathbb{E} \left(\sup_{s \in [0, T]} \| \tilde{X}_s^\epsilon \|_H^p \right) + e^{-p} c_p C_{L_f, p, p, N}. \tag{4.12}
\]

Combining (4.9)–(4.12), we obtain that there exists \(\epsilon_p > 0 \) such that

\[
\sup_{\epsilon \in (0, \epsilon_p]} \left[\mathbb{E} \left(\sup_{s \in [0, T]} \| \tilde{X}_s^\epsilon \|_H^p \right) + \frac{\theta}{2} \mathbb{E} \left(\int_0^T \| \tilde{X}_s^\epsilon \|_H^{p-2} \| \tilde{X}_s^\epsilon \|_V^2 dz \right) \right] \leq C_{N, p, T, \| x \|_{H_0} f_0, F_0, L_f}.
\]

The proof is complete. \(\Box \)

Lemma 4.5. For \(p = \frac{T}{2} \), there exist \(C_p \) such that

\[
\sup_{\epsilon \in (0, \epsilon_{2p})} \mathbb{E} \left(\int_0^T \| \tilde{X}_s^\epsilon \|_V^p dz \right)^p \leq C_p.
\]

Here \(\epsilon_{2p} \) comes from Lemma 4.4.

Proof. Consider \(p = 2 \) in (4.4), we have

\[
\theta \int_0^t \| \tilde{X}_s^\epsilon \|_V^2 ds \leq C_{N, T, f_0, F_0, L_f} \left\{ \| x \|_H^2 + \int_0^T F_s ds + \sup_{s \in [0, t]} | I_2(s) | + 2C_{L_f, N} + J(t) \right\}, \tag{4.13}
\]

where

\[
J(t) = \int_0^t \int_X c_2 \left(\| \epsilon f(s, \tilde{X}_s^\epsilon, z) \|_H^2 \right) N^{c_1} \nu(dz, ds).
\]

14
In the following calculations, we take \(p = \frac{N}{2} \). Note that

\[
\mathbb{E}(|J(t)|^p) \leq c_p \mathbb{E}
\left(\int_0^T \int_X \left(\| \epsilon f(s, \tilde{X}_s^\epsilon, z) \|_H^2 \tilde{N}^{\epsilon-1} \varphi_\epsilon(dz, ds) \right)^p \right)
\]
\[
+ c_p \mathbb{E}
\left(\int_0^T \int_X \left(\epsilon \| f(s, \tilde{X}_s^\epsilon, z) \|_H^2 \varphi_\epsilon(s, z) \nu(dz)ds \right|^p \right).
\]

By Kunita's first inequality (refer to Theorem 4.4.23 in [3]), we can continue with

\[
\mathbb{E}(|J(t)|^p) \leq c_p \epsilon^{2p-1} \mathbb{E}
\left(\int_0^T \int_X \| f(s, \tilde{X}_s^\epsilon, z) \|_H^{2p} \varphi_\epsilon(s, z) \nu(dz)ds \right)
\]
\[
+ c_p \epsilon^{3p/2} \mathbb{E}
\left(\int_0^T \int_X \| f(s, \tilde{X}_s^\epsilon, z) \|_H^2 \varphi_\epsilon(s, z) \nu(dz)ds \right)^{p/2}
\]
\[
+ c_p \epsilon^p \mathbb{E}
\left(\int_0^T \int_X \| f(s, \tilde{X}_s^\epsilon, z) \|_H^2 \varphi_\epsilon(s, z) \nu(dz)ds \right)^p.
\]

Thus, by Lemma 4.1, we have

\[
\mathbb{E}(|J(t)|^p) \leq c_p \epsilon^{2p-1} \mathbb{E}
\left(\int_0^T \int_X \| f(s, \tilde{X}_s^\epsilon, z) \|_H^{2p} \varphi_\epsilon(s, z) \nu(dz)ds \right)
\]
\[
+ \epsilon^{3p/2} \left(\sup_{\varphi \in \mathcal{S}^N} \int_0^T \int_X L_f^4(s, z) \varphi(s, z) \nu(dz)ds \right)^{p/2}
\]
\[
+ \epsilon^p \left(\sup_{\varphi \in \mathcal{S}^N} \int_0^T \int_X L_f^2(s, z) \varphi(s, z) \nu(dz)ds \right)^p.
\]

Thus, by Lemma 4.1, we have

\[
\mathbb{E}(|J(t)|^p) \leq c_p \epsilon^{2p-1} \mathbb{E}
\left(\int_0^T \int_X \| f(s, \tilde{X}_s^\epsilon, z) \|_H^{2p} \varphi_\epsilon(s, z) \nu(dz)ds \right)
\]
\[
+ \epsilon^{3p/2} \left(\sup_{\varphi \in \mathcal{S}^N} \int_0^T \int_X L_f^4(s, z) \varphi(s, z) \nu(dz)ds \right)^{p/2}
\]
\[
+ \epsilon^p \left(\sup_{\varphi \in \mathcal{S}^N} \int_0^T \int_X L_f^2(s, z) \varphi(s, z) \nu(dz)ds \right)^p.
\]

Thus, by Lemma 4.1, we have

\[
\mathbb{E}(|J(t)|^p) \leq c_p \epsilon^{2p-1} \mathbb{E}
\left(\int_0^T \int_X \| f(s, \tilde{X}_s^\epsilon, z) \|_H^{2p} \varphi_\epsilon(s, z) \nu(dz)ds \right)
\]
\[
+ \epsilon^{3p/2} \left(\sup_{\varphi \in \mathcal{S}^N} \int_0^T \int_X L_f^4(s, z) \varphi(s, z) \nu(dz)ds \right)^{p/2}
\]
\[
+ \epsilon^p \left(\sup_{\varphi \in \mathcal{S}^N} \int_0^T \int_X L_f^2(s, z) \varphi(s, z) \nu(dz)ds \right)^p.
\]

Thus, by Lemma 4.1, we have

\[
\mathbb{E}(|J(t)|^p) \leq c_p \epsilon^{2p-1} \mathbb{E}
\left(\int_0^T \int_X \| f(s, \tilde{X}_s^\epsilon, z) \|_H^{2p} \varphi_\epsilon(s, z) \nu(dz)ds \right)
\]
\[
+ \epsilon^{3p/2} \left(\sup_{\varphi \in \mathcal{S}^N} \int_0^T \int_X L_f^4(s, z) \varphi(s, z) \nu(dz)ds \right)^{p/2}
\]
\[
+ \epsilon^p \left(\sup_{\varphi \in \mathcal{S}^N} \int_0^T \int_X L_f^2(s, z) \varphi(s, z) \nu(dz)ds \right)^p.
\]

Thus, by Lemma 4.1, we have

\[
\mathbb{E}(|J(t)|^p) \leq c_p \epsilon^{2p-1} \mathbb{E}
\left(\int_0^T \int_X \| f(s, \tilde{X}_s^\epsilon, z) \|_H^{2p} \varphi_\epsilon(s, z) \nu(dz)ds \right)
\]
\[
+ \epsilon^{3p/2} \left(\sup_{\varphi \in \mathcal{S}^N} \int_0^T \int_X L_f^4(s, z) \varphi(s, z) \nu(dz)ds \right)^{p/2}
\]
\[
+ \epsilon^p \left(\sup_{\varphi \in \mathcal{S}^N} \int_0^T \int_X L_f^2(s, z) \varphi(s, z) \nu(dz)ds \right)^p.
\]
By Kunita’s first inequality again,
\[
\begin{align*}
\mathbb{E} \left(\sup_{s \in [0,T]} |I_2(s)|^p \right) & \leq c_p e^{p-1} \mathbb{E} \left(\int_0^T \int_X \left| (f(s, \tilde{X}^\epsilon_s, z), \tilde{X}^\epsilon_s)_{H,H} \right|^p \varphi(\epsilon, s, z) \nu(dz) ds \right) \\
& + c_p e^{p/2} \mathbb{E} \left(\int_0^T \int_X \left| (f(s, \tilde{X}^\epsilon_s, z), \tilde{X}^\epsilon_s)_{H,H} \right|^2 \varphi(\epsilon, s, z) \nu(dz) ds \right)^{p/2} \\
& \leq c_p e^{p-1} \mathbb{E} \left(\int_0^T \int_X \|\tilde{X}^\epsilon_s\|_H^p L_f^p(s, z) \left(1 + \|\tilde{X}^\epsilon_s\|_H \right)^p \varphi(\epsilon, s, z) \nu(dz) ds \right) \\
& + c_p e^{p/2} \mathbb{E} \left(\int_0^T \int_X \|\tilde{X}^\epsilon_s\|_H^2 L_f^2(s, z) \left(1 + \|\tilde{X}^\epsilon_s\|_H \right)^2 \varphi(\epsilon, s, z) \nu(dz) ds \right)^{p/2} \\
& \leq c_p e^{p-1} \mathbb{E} \left(1 + \sup_{s \in [0,T]} \|\tilde{X}^\epsilon_s\|_H \right)^{2p} \sup_{\varphi \in S^N} \int_0^T \int_X L_f^p(s, z) \varphi(\epsilon, s, z) \nu(dz) ds \\
& + c_p e^{p/2} \mathbb{E} \left(1 + \sup_{s \in [0,T]} \|\tilde{X}^\epsilon_s\|_H \right)^{2p} \left(\sup_{\varphi \in S^N} \int_0^T \int_X L_f^2(s, z) \varphi(\epsilon, s, z) \nu(dz) ds \right)^{p/2} \\
& \leq c_p \mathbb{E} \left(1 + \sup_{s \in [0,T]} \|\tilde{X}^\epsilon_s\|_H \right)^{2p} \left(e^{p-1} C_{L_f,p,p,N} + e^{p/2} \left(C_{L_f,2,2,N} \right)^{p/2} \right). \tag{4.15}
\end{align*}
\]

Lemma 4.3 and (4.13)–(4.15) imply this lemma.

Finally, we prove the tightness of \{\tilde{X}^\epsilon\}.

Proposition 4.1. For some \(\epsilon_0 > 0\), \(\{\tilde{X}^\epsilon\}_{\epsilon \in (0, \epsilon_0]}\) is tight in \([0,T], V^*\) with the Skorohod topology. Moreover, set
\[
M^\epsilon_t = \int_0^t \int_X \epsilon f(s, \tilde{X}^\epsilon_{s-}, z) \tilde{N}^{\epsilon-1} \varphi(z, dz, ds),
\]
\[
Z^\epsilon_t = \int_0^t \int_X f(s, \tilde{X}^\epsilon_s, z) (\varphi(\epsilon, s, z) - 1) \nu(dz) ds,
\]
\[
Y^\epsilon_t = \int_0^t A(s, \tilde{X}^\epsilon_s) ds,
\]
then
\[(a) \lim_{\epsilon \to 0} \mathbb{E} \left(\sup_{t \in [0,T]} \left\| M^\epsilon_t \right\|_H^2 \right) = 0,
\]
\[(b) \{Z^\epsilon_t\}_{0 \leq t \leq T} \text{ is tight in } \mathcal{C}([0,T], V^*),\]

16
(c) \((Y_t^\epsilon)_{0 \leq t \leq T}\) is tight in \(C([0, T], V^*)\).

Proof. (a) By Lemma 4.1, we have

\[
E\left(\sup_{t \in [0, T]} \left\| M_t^\epsilon \right\|_{H}^2 \right) \\
\leq C \epsilon E\left(\int_0^T \int_x \| f(s, \tilde{X}_s^\epsilon, z) \|_H^2 \varphi(s, z) \nu(dz) ds \right) \\
\leq C \epsilon E\left(\int_0^T \int_x L_f^2(s, z) \left(1 + \| \tilde{X}_s^\epsilon \|_H \right)^2 \varphi(s, z) \nu(dz) ds \right) \\
\leq C \epsilon \left(1 + \sup_{s \in [0, T]} \| \tilde{X}_s^\epsilon \|_H \right)^2 \left(\sup_{\varphi \in S} \int_0^T \int_x L_f^2(s, z) \varphi(s, z) \nu(dz) ds \right) \\
\to 0, \quad \text{as } \epsilon \to 0. \quad (4.16)
\]

(b). It is sufficient to prove that for any \(\delta > 0\), there exists a compact subset \(K_\delta \subset C([0, T], V^*)\) such that

\[
\mathbb{P}(Z^\epsilon \in K_\delta) > 1 - \delta.
\]

Denote

\[
D_{M,N} = \{ (r_t, g_t) : r_t \in D([0, T], H) \cap L^\alpha([0, T], V), \sup_{t \in [0, T]} \| r_t \|_H \leq M; \ g_t \in S^N \},
\]

\[
\mathcal{R}(D_{M,N}) = \{ y = \int_0^T \int_X f(s, r_s, z)(g(s, z) - 1) \nu(dz) ds, \ (r, g) \in D_{M,N} \}. \]

For any \(y \in \mathcal{R}(D_{M,N})\), we have

\[
\| y_t - y_s \|_H \leq \int_s^t \int_X \| f(l, r(l), z) \|_H |g(l, z) - 1| \nu(dz) dl \\
\leq \sup_{l \in [s,t]} \left(1 + \| r(l) \|_H \right) \int_s^t \int_X L_f(l, z) |g(l, z) - 1| \nu(dz) dl \\
\leq (M + 1) \sup_{\varphi \in S} \int_s^t \int_X L_f(l, z) |\varphi(l, z) - 1| \nu(dz) dl. \quad (4.17)
\]

Applying Lemma 4.1 c) in Lemma 4.2 and (4.17), we obtain the following:

(1) for any \(\eta > 0\), there exists \(\varpi > 0\) (independent on \(y\)) such that for any \(s, t \in [0, T]\) and \(|t - s| \leq \varpi\)

\[
\| y_t - y_s \|_H \leq \eta, \quad \forall y \in \mathcal{R}(D_{M,N}),
\]

17
Since \(V \hookrightarrow H \) is compact, we also have \(H \hookrightarrow V^* \) compactly. By Ascoli-Arzelà’s theorem, the complement of \(\mathcal{R}(D_{M,N}) \) in \(C([0,T],V^*) \), denoted by \(\overline{\mathcal{R}}(D_{M,N}) \), is a compact subset in \(C([0,T],V^*) \).

On the other hand,

\[
\mathbb{P}(Z^t \in \overline{\mathcal{R}}(D_{M,N})) \geq \mathbb{P}(\sup_{t \in [0,T]} \| \tilde{X}^t_i \|_H \leq M)
= 1 - \mathbb{P}(\sup_{t \in [0,T]} \| \tilde{X}^t_i \|_H > M)
\geq 1 - \mathbb{E}(\sup_{t \in [0,T]} \| \tilde{X}^t_i \|_H^2)/M^2
\geq 1 - C_2/M^2,
\]

we have applied Lemma 4.4 in the last inequality and this establishes that \(\{ Z^t \} \) is tight in \(C([0,T],V^*) \).

(c). By Lemmas 4.4 and 4.5, recall \(\eta_0 \) in (H5), let \(p = \alpha + \eta_0 \), we have

\[
\mathbb{E}\| Y^t - Y^s \|_{V^*}^p \
\leq \mathbb{E}\left| \int_s^t \| A(l, \tilde{X}^t_i) \|_{V^*}^\alpha dl \right|^p
\leq |t - s|^{p/\alpha} \mathbb{E}\left(\int_s^t \| A(l, \tilde{X}^t_i) \|_{V^*}^{\alpha} dl \right)^{(\alpha - 1)p/\alpha}
\leq |t - s|^{p/\alpha} \mathbb{E}\left(\int_s^t (F_l + C \| \tilde{X}^t_i \|_{H}^\beta)^{\alpha} dl \right)^{(\alpha - 1)p/\alpha}
\leq |t - s|^{p/\alpha} \left[\mathbb{E}\left(\sup_{t \in [0,T]} (1 + \| \tilde{X}^t_i \|_H^\beta)^{\frac{2(\alpha - 1)p}{\alpha}} \right) \right.
\left. + \mathbb{E}\left(\int_s^t (F_l + C \| \tilde{X}^t_i \|_V^\alpha)^{\frac{2(\alpha - 1)p}{\alpha}} dl \right) \right]
\leq C_{\alpha,p,F}|t - s|^{p/\alpha}.
\]

Hence, a direct application of Kolmogorov’s criterion, for every \(\omega \in (0, \frac{1}{\alpha} - \frac{1}{p}) \), there exists constant \(C_\omega \) independent on \(\epsilon \) such that

\[
\mathbb{E}\left(\sup_{t \neq s \in [0,T]} \| Y^t - Y^s \|_{V^*}^p / |t - s|^{p\omega} \right) \leq C_\omega.
\tag{4.18}
\]

On the other hand, by (4.4), we have

\[
\tilde{X}^t_i = x + Y^t_i + Z^t_i + M^t_i.
\]
Then
\[
\begin{align*}
\mathbb{E}\left(\sup_{t \in [0,T]} \| Y_\epsilon^t \|_H^2 \right) \\
\leq C \left[\| x \|_H^2 + \mathbb{E}\left(\sup_{t \in [0,T]} \| \tilde{X}_\epsilon^t \|_H^2 \right) + \mathbb{E}\left(\sup_{t \in [0,T]} \| Z_\epsilon^t \|_H^2 \right) + \mathbb{E}\left(\sup_{t \in [0,T]} \| M_\epsilon^t \|_H^2 \right) \right].
\end{align*}
\] (4.19)

Notice that
\[
\begin{align*}
\mathbb{E}\left(\sup_{t \in [0,T]} \| Z_\epsilon^t \|_H^2 \right) \\
\leq \mathbb{E}\left(\int_0^T \int_X \| f(s, \tilde{X}_\epsilon^s, z) \|_H | \varphi_\epsilon(s, z) - 1 \| \nu(dz) ds \right)^2 \\
\leq C \mathbb{E}\left(1 + \sup_{t \epsilon [0,T]} \| \tilde{X}_\epsilon^t \|_H \right)^2 \left(\sup_{\varphi \in \mathcal{S}} \int_0^T \int_X L_f(s, z) | \varphi(s, z) - 1 \| \nu(dz) ds \right)^2 \\
\leq CC^2_{L_f, N, \beta} \mathbb{E}\left(1 + \sup_{t \in [0,T]} \| \tilde{X}_\epsilon^t \|_H \right)^2
\end{align*}
\] (4.20)

By Lemma 4.1, (4.19), (4.20) and (4.16), we have
\[
\mathbb{E}\left(\sup_{t \in [0,T]} \| Y_\epsilon^t \|_H^2 \right) \leq C < \infty,
\] (4.21)

where \(C \) is independent of \(\epsilon \).

For \(\varpi \in (0, 1) \) and \(R > 0 \), set
\[
K_{R, \varpi} := \{ j \in C([0, T], V^*) : \sup_{t \in [0,T]} \| j_t \|_H + \sup_{s \neq t \in [0,T]} \frac{\| j_t - j_s \|_{V^*}}{|t - s|^{\varpi}} \leq R \}.
\]

Since \(V \hookrightarrow H \) is compact, we also have \(H \hookrightarrow V^* \) compactly. By Ascoli-Arzelà’s theorem, \(K_{R, \varpi} \) is a compact subset of \(C([0, T], V^*) \). By (4.18), (4.21) and Chebyshev’s inequality, for some \(\varpi \in (0, 1) \) and any \(R > 0 \), we have
\[
\mathbb{P}\left(Y_\epsilon \notin K_{R, \varpi} \right) \geq \frac{C_{T, \varpi}}{R}.
\]

This implies the tightness of \(\{ Y_\epsilon \} \) in \(C([0, T], V^*) \).

The tightness of \(\{ \tilde{X}_\epsilon \} \) in \(D([0, T], V^*) \) then follows from (4.4) and the conclusions proved above.

\(\Box \)

5 Convergency of the processes

With the tightness result obtained in the last section, we now characterize the limit points and derive limiting results for the processes.
Throughout this section, we assume that for almost all \(\omega \), as \(\epsilon \to 0 \), \(\varphi(\cdot, \cdot)(\omega) \) converges to \(\varphi(\cdot, \cdot)(\omega) \) in \(S^N \) weakly, and \(X^\epsilon(\omega) \) converges to \(X(\omega) \) in \(D([0, T], V^*) \) strongly with supremum norm.

Set
\[
\mathcal{K} = L^\alpha([0, T] \times \Omega \to V; dt \times \bar{P}),
\]
\[
\mathcal{K}^* = L^{\frac{\alpha}{\alpha-1}}([0, T] \times \Omega \to V^*; dt \times \bar{P}).
\]

Lemma 5.1. There exists a subsequence \((\epsilon_k)\), \(\bar{X} \in \mathcal{K} \cap L^\infty([0, T], L^{\beta+2}(\Omega, H)) \) and \(Y \in \mathcal{K}^* \) such that

(i) \(X_{\epsilon_k} \to \bar{X} \) in \(\mathcal{K} \) weakly and in \(L^\infty([0, T], L^{\beta+2}(\Omega, H)) \) in weak-star topology,

(ii) \(A(\cdot, X_{\epsilon_k}) \to Y \) in \(\mathcal{K}^* \) weakly,

(iii) \[
\lim_{\epsilon \to 0} \mathbb{E}\left(\sup_{t \in [0, T]} \|X^\epsilon_t - X_t\|_{V^*} \right) = 0,
\]

and for \(m = \frac{\alpha}{\alpha+1} \),

\[
\lim_{\epsilon \to 0} \mathbb{E}\left(\int_0^T \|X^\epsilon_t - X_t\|_{H}^{2m} dt \right) = 0.
\]

Proof. (i) following from Lemma 4.4. For (ii), by Lemma 4.4 again,

\[
\|A(\cdot, X^\epsilon(\cdot))\|_{\mathcal{K}^*}^{\frac{\alpha}{\alpha-1}} = \mathbb{E}\left(\int_0^T \|A(t, X^\epsilon_t)\|_{V^*}^{\frac{\alpha}{\alpha-1}} dt \right)
\leq \mathbb{E}\left(\int_0^T (F_t + C\|X^\epsilon_t\|_H)(1 + \|X^\epsilon_t\|_H^\beta)dt \right)
\leq C < \infty. \tag{5.1}
\]

Lemma 4.4 implies

\[
\mathbb{E}\left(\sup_{t \in [0, T]} \|X^\epsilon_t\|_H^2 \right) \leq C_{2, N, x} \tag{5.2}
\]

and

\[
\mathbb{E}\left(\int_0^T \|X^\epsilon_t\|_H^\beta dt \right) \leq C. \tag{5.3}
\]

Hence, by the strong convergence of \(X^\epsilon(\omega) \) to \(X(\omega) \) in \(D([0, T], V^*) \) with sup norm, Fatou’s lemma, (5.2) and (5.3), we have

\[
\mathbb{E}\left(\sup_{t \in [0, T]} \|X^\epsilon_t\|_H^2 \right) \leq \liminf_{\epsilon \to 0} \mathbb{E}\left(\sup_{t \in [0, T]} \|X^\epsilon_t\|_H^2 \right) \leq C_{2, N, x}, \tag{5.4}
\]
\[\mathbb{E} \left(\int_0^T \|X_t\|_V^\alpha dt \right) \leq \liminf_{\epsilon \to 0} \mathbb{E} \left(\int_0^T \|X_t^\epsilon\|_V^\alpha dt \right) \leq C. \]

(5.5)

and

\[\lim_{\epsilon \to 0} \mathbb{E} \left(\sup_{t \in [0,T]} \|X_t^\epsilon - X_t\|_{V^*} \right) = 0. \]

(5.6)

(5.6) can be seen as following. Set

\[\Omega^\epsilon_\delta = \{ \omega : \sup_{t \in [0,T]} \|X_t^\epsilon - X_t\|_{V^*} \geq \delta \}. \]

The strong convergence of \(X^\epsilon(\omega) \) to \(X(\omega) \) in \(D([0,T], V^*) \) with sup norm implies

\[\lim_{\epsilon \to 0} \mathbb{P}(\Omega^\epsilon_\delta) = 0, \quad \forall \delta > 0. \]

(5.7)

Applying (5.7), (5.2) and (5.4) to (5.6), we have

\[\lim_{\epsilon \to 0} \mathbb{E} \left(\sup_{t \in [0,T]} \|X_t^\epsilon - X_t\|_{V^*}, \cdot 1_{\Omega^\epsilon_\delta} \right) \leq \delta + \lim_{\epsilon \to 0} \mathbb{E} \left(\sup_{t \in [0,T]} \|X_t^\epsilon - X_t\|_{V^*}^2 \right)^{1/2} \cdot \left(\mathbb{P}(\Omega^\epsilon_\delta) \right)^{1/2} \leq \delta. \]

The arbitrary of \(\delta \) implies (5.6).

Taking \(m = \frac{\alpha}{\alpha+1} \), we get

\[\mathbb{E} \int_0^T \|X_t^\epsilon - X_t\|_{H^m}^{2m} dt = \mathbb{E} \int_0^T \langle X_t^\epsilon - X_t, X_t^\epsilon - X_t \rangle_{V^*, V}^m dt \leq \mathbb{E} \int_0^T \|X_t^\epsilon - X_t\|_{V^*}^m \|X_t^\epsilon - X_t\|_V^m dt \leq \left(\mathbb{E} \int_0^T \|X_t^\epsilon - X_t\|_{V^*}^m dt \right)^{\frac{\alpha-m}{\alpha}} \left(\mathbb{E} \int_0^T \|X_t^\epsilon\|_V^\alpha dt \right)^{\frac{m}{\alpha}}. \]

Combining (5.3), (5.5) and (5.6), we have

\[\lim_{\epsilon \to 0} \mathbb{E} \int_0^T \|X_t^\epsilon - X_t\|_{H^m}^{2m} dt = 0. \]

(5.8)

\[\square \]
Lemma 5.2. For any \(h \in H \), we have

\[
\lim_{\epsilon_k \to 0} \left(\int_0^t \int_X f(s, X_s^{\epsilon_k}, z) (\varphi_{\epsilon_k}(s, z) - 1) \nu(ds) ds, h \right)_{H, H}
\]

\[
= \left(\int_0^t \int_X f(s, X_s, z) (\varphi(s, z) - 1) \nu(ds) ds, h \right)_{H, H}.
\]

(5.9)

Proof. Denote \(\zeta(s, z) = \langle f(s, X_s, z), h \rangle_{H, H} \). Since \(\sup_{s \in [0, T]} \|X_s\|_H < \infty \), \(\bar{P} \)-a.s., and \(L_f \in \mathcal{H}_2 \), it follows from Remark 1 and Lemma 4.2 that

\[
\lim_{\epsilon_k \to 0} \left(\int_0^t \int_X f(s, X_s, z) (\varphi(s, z) - 1) \nu(ds) ds, h \right)_{H, H}
\]

\[
= \left(\int_0^t \int_X f(s, X_s, z) (\varphi(s, z) - 1) \nu(ds) ds, h \right)_{H, H}.
\]

(5.10)

For any \(\delta > 0 \), denote \(A_{\delta, \epsilon} := \left\{ s \in [0, T] : \|X_s^\epsilon - X_s\|_H > \delta \right\} \). By (5.8)

\[
\lim_{\epsilon \to 0} \mathbb{E} \left(\lambda_T(A_{\delta, \epsilon}) \right) \leq \frac{1}{\delta^{2m}} \lim_{\epsilon \to 0} \mathbb{E} \int_0^T \|X_t^\epsilon - X_t\|_{H}^{2m} dt = 0.
\]

Therefore, there exists a subsequence \(\epsilon_k \) (for simplicity, we still denote it by the same notation \(\epsilon_k \)) such that

\[
\lim_{\epsilon_k \to 0} \lambda_T(A_{\delta, \epsilon_k}) = 0, \quad \bar{P} \text{-a.s.}
\]

(5.11)

Applying Lemma 4.1, we have

\[
\int_0^T \int_X \|f(s, X_s^{\epsilon_k}, z) - f(s, X_s, z)\|_H |\varphi_{\epsilon_k}(s, z) - 1| \nu(ds) ds
\]

\[
\leq \int_0^T \int_X G_f(s, z) \|X_s^{\epsilon_k} - X_s\|_H |\varphi_{\epsilon_k}(s, z) - 1| \nu(ds) ds
\]

\[
\leq \delta \int_{A_{\delta, \epsilon_k}} \int_X G_f(s, z) |\varphi_{\epsilon_k}(s, z) - 1| \nu(ds) ds
\]

\[
+ \sup_{s \in [0, T]} \|X_s^{\epsilon_k} - X_s\|_H \int_X \int_X G_f(s, z) |\varphi_{\epsilon_k}(s, z) - 1| \nu(ds) ds
\]

\[
\leq \delta \sup_{\varphi \in S_N} \int_0^T \int_X G_f(s, z) |\varphi(s, z) - 1| \nu(ds) ds
\]

\[
+ \sup_{s \in [0, T]} \|X_s^{\epsilon_k} - X_s\|_H \sup_{\varphi \in S_N} \int_X \int_X G_f(s, z) |\varphi(s, z) - 1| \nu(ds) ds
\]

\[
\leq \delta C_{G_f, N} + \sup_{s \in [0, T]} \|X_s^{\epsilon_k} - X_s\|_H \sup_{\varphi \in S_N} \int_X \int_X G_f(s, z) |\varphi(s, z) - 1| \nu(ds) ds.
\]

(5.12)
Notice that
\[
\mathbb{E}\left(\sup_{s \in [0,T]} \|X_{s}^{\epsilon_{k}} - X_s\|_H \sup_{\varphi \in S_N} \int_{A_{s,k}} \int_{X} G_f(s, z) |\varphi(s, z) - 1| \nu(dz) ds \right)
\leq \left(\mathbb{E}\left(\sup_{s \in [0,T]} \|X_{s}^{\epsilon_{k}} - X_s\|_H^2 \right) \right)^{\frac{1}{2}} \left(\mathbb{E}\left(\sup_{\varphi \in S_N} \int_{A_{s,k}} \int_{X} G_f(s, z) |\varphi(s, z) - 1| \nu(dz) ds \right)^2 \right)^{\frac{1}{2}}.
\]

By the dominated convergence theorem, Lemma 4.2 c) and Lemma 4.1, we have
\[
\lim_{\epsilon_{k} \to 0} \mathbb{E}\left(\sup_{\varphi \in S_N} \int_{A_{s,k}} \int_{X} G_f(s, z) |\varphi(s, z) - 1| \nu(dz) ds \right)^2 = 0. \tag{5.14}
\]

Hence, (5.2), (5.4), (5.12)-(5.14) imply
\[
\lim_{\epsilon_{k} \to 0} \int_{0}^{T} \int_{X} \|f(s, X_{s}^{\epsilon_{k}}, z) - f(s, X_s, z)\|_H |\varphi_{\epsilon_{k}}(s, z) - 1| \nu(dz) ds = 0. \tag{5.15}
\]

So, there exists a subsequence \(\epsilon_{k}\) (for simplicity, we still denote it by the same notation \(\epsilon_{k}\)) such that
\[
\lim_{\epsilon_{k} \to 0} \int_{0}^{T} \int_{X} \|f(s, X_{s}^{\epsilon_{k}}, z) - f(s, X_s, z)\|_H |\varphi_{\epsilon_{k}}(s, z) - 1| \nu(dz) ds = 0, \quad \bar{P}\text{-a.s..}
\]

Combining this with (5.10), we arrive at (5.9).

Define
\[
\tilde{X}_t := x + \int_{0}^{t} Y_s ds + \int_{0}^{t} \int_{X} f(s, X_s, z)(\varphi(s, z) - 1) \nu(dz) ds. \tag{5.16}
\]

By taking weak limit of (4.4), it is not difficulty to see that
\[
\tilde{X}_t(\omega) = \tilde{X}_t(\omega) = X_t(\omega), \quad \text{for } dt \times \bar{P}\text{-almost all } (t, \omega).
\]

Set
\[
\mathcal{N} := \left\{ \phi : \phi \text{ is a } V\text{-valued } \bar{F}_t\text{-adapted process such that } \mathbb{E}\left(\int_{0}^{T} \rho(\phi_s) ds \right) < \infty \right\}.
\]

Fix \(\phi \in \mathcal{K} \cap \mathcal{N} \cap L^\infty([0,T], L^{\beta+2}(\Omega, H))\) and \(\psi \in L^\infty([0,T], \mathbb{R})\). Denote
\[
G(X, \varphi, Y) := \mathbb{E}\left[\int_{0}^{T} \psi_t \int_{0}^{t} e^{-\int_{0}^{s}(K_l; \rho(\phi_i)) dl} \times 2 \left(\int_{X} f(s, X_s, z)(\varphi(s, z) - 1) \nu(dz), Y_s \right)_{H,H} ds dt \right].
\]

The following limiting result will be needed later.

23
Lemma 5.3.
\[\lim_{\epsilon_k \to 0} G(X^{\epsilon_k}, \varphi_{\epsilon_k}, X^{\epsilon_k}) = G(X, \varphi, X). \]

(5.17)

Proof. For any fixed \((t, \omega) \in [0, T] \times \Omega\). Set
\[\zeta(s, z) = \psi_t e^{-\int_0^s (K_l + \rho(\varphi)) \, dz} \langle f(s, X_s, z), X_s \rangle_{H, H}. \]

By Lemma 4.2 and \(\sup_{s \in [0, T]} \|X_s\|_H < \infty \) \(\bar{P}\)-a.s., we have \(\forall (t, \omega) \in [0, T] \times \Omega \),
\[\lim_{\epsilon_k \to 0} \psi_t \int_0^t e^{-\int_0^s (K_l + \rho(\varphi)) \, dz} \langle f(s, X_s, z), X_s \rangle_{H, H} \, ds \]
\[= \psi_t \int_0^t e^{-\int_0^s (K_l + \rho(\varphi)) \, dz} \langle f(s, X_s, z), (\varphi(s, z) - 1) \nu(dz), X_s \rangle_{H, H} \, ds. \]

On the other hand, by Lemma 4.1
\[\sup_{\varphi \in S^N} \left| \psi_t \left(\int_0^t e^{-\int_0^s (K_l + \rho(\varphi)) \, dz} \langle f(s, X_s, z), (\varphi(s, z) - 1) \nu(dz), X_s \rangle_{H, H} \right) \right| \]
\[\leq C \psi \sup_{\varphi \in S^N} \int_0^T \int_X \|f(s, X_s, z)\|_H \|X_s\|_H \|\varphi(s, z) - 1\| \nu(dz) ds \]
\[\leq C \psi (1 + \sup_{s \in [0, T]} \|X_s\|_H)^2 \sup_{\varphi \in S^N} \int_0^T \int_X L_f(s, z) \|\varphi(s, z) - 1\| \nu(dz) ds \]
\[\leq C \psi, L_f, N (1 + \sup_{s \in [0, T]} \|X_s\|_H)^2. \]

By the dominated convergence theorem, we have
\[\lim_{\epsilon_k \to 0} G(X, \varphi_{\epsilon_k}, X) = G(X, \varphi, X). \]

(5.18)

Let \(\delta > 0 \). Recall
\[A_{\delta, \epsilon_k} := \left\{ s \in [0, T] : \|X^{\epsilon_k}_s - X_s\|_H > \delta \right\}, \]
and (5.11) that is there exists a subsequence \(\epsilon_k \) such that
\[\lim_{\epsilon_k \to 0} \chi_T(A_{\delta, \epsilon_k}) = 0, \ \bar{P}\)-a.s..
Then we have
\[
\left| G(X^{\epsilon_k}, \varphi_{\epsilon_k}, X^{\epsilon_k}) - G(X^{\epsilon_k}, \varphi_{\epsilon_k}, X) \right|
\]
\[
\leq C E \left(\int_0^T \int_X \|f(s, X_s^{\epsilon_k}, z)\|_H |\varphi_{\epsilon_k}(s, z) - 1||X_s^{\epsilon_k} - X_s||_H \nu(dz) ds \right)
\]
\[
\leq C E \left(\int_0^T \int_X L_f(s, z)(1 + ||X_s^{\epsilon_k}||_H)|\varphi_{\epsilon_k}(s, z) - 1||X_s^{\epsilon_k} - X_s||_H \nu(dz) ds \right)
\]
\[
\leq C \delta C \left(\sup_{s \in [0, T]} (1 + ||X_s^{\epsilon_k}||_H) \right) \sup_{\varphi \in S^N} \int_0^T \int_X L_f(s, z)|\varphi(s, z) - 1| \nu(dz) ds
\]
\[
+ C E \left[\sup_{s \in [0, T]} \left((1 + ||X_s^{\epsilon_k}||_H)(||X_s^{\epsilon_k} - X_s||_H) \right) \right.
\]
\[
\left. \times \sup_{s \in [0, T]} \int_X L_f(s, z)|\varphi(s, z) - 1| \nu(dz) ds \right]
\]
\[
\leq \delta C_{L_f, N} + C \left(E \left(1 + \sup_{s \in [0, T]} ||X_s^{\epsilon_k}||_H \right) \right)^{1/4} \left(E \left(1 + \sup_{s \in [0, T]} ||X_s^{\epsilon_k} - X_s||_H \right) \right)^{1/4}
\]
\[
\cdot \left(E \left(\sup_{\varphi \in S^N} \int_X L_f(s, z)|\varphi(s, z) - 1| \nu(dz) ds \right)^2 \right)^{1/2}. \hspace{1cm} (5.19)
\]

Similar as (5.14) and (5.15), we have
\[
\lim_{\epsilon_k \to 0} \left| G(X^{\epsilon_k}, \varphi_{\epsilon_k}, X^{\epsilon_k}) - G(X^{\epsilon_k}, \varphi_{\epsilon_k}, X) \right| = 0. \hspace{1cm} (5.20)
\]

On the other hand,
\[
\left| G(X^{\epsilon_k}, \varphi_{\epsilon_k}, X) - G(X, \varphi_{\epsilon_k}, X) \right|
\]
\[
\leq C E \left(\int_0^T \int_X \|f(s, X_s^{\epsilon_k}, z) - f(s, X_s, z)\|_H |\varphi_{\epsilon_k}(s, z) - 1||X_s||_H \nu(dz) ds \right)
\]
\[
\leq C E \left(\int_0^T \int_X G_f(s, z)||X_s^{\epsilon_k} - X_s||_H |\varphi_{\epsilon_k}(s, z) - 1||X_s||_H \nu(dz) ds \right).
\]

Using the similar arguments as proving (5.20), we have
\[
\lim_{\epsilon_k \to 0} \left| G(X^{\epsilon_k}, \varphi_{\epsilon_k}, X) - G(X, \varphi_{\epsilon_k}, X) \right| = 0. \hspace{1cm} (5.21)
\]

Combining (5.20), (5.21), and (5.18), we have (5.17). \qed
Lemma 5.4.

\[Y_t(\omega) = \mathcal{A}(t, X_t(\omega)) \text{ for } dt \times \bar{\mathbb{P}}\text{-almost all } (t, \omega). \]

Proof. For \(\phi \in \mathcal{K} \cap \mathcal{N} \cap L^\infty([0, T], L^{3+2}(\Omega, H)) \), applying the Itô’s formula,

\[
e^{-\int_0^t (K_s + \rho(\phi))ds} \|X_s^{\epsilon_k}\|_H^2 - \|x\|_H^2
= \int_0^t e^{-\int_0^t (K_s + \rho(\phi))ds} \left[- (K_s + \rho(\phi_s)) \|X_s^{\epsilon_k}\|_H^2 + 2 \langle \mathcal{A}(s, X_s^{\epsilon_k}), X_s^{\epsilon_k} \rangle_{V^*V}
+ 2 \left(\int_X f(s, X_s^{\epsilon_k}, z)(\varphi_{\epsilon_k}(s, z) - 1)\nu(dz), X_s^{\epsilon_k}\right)_{H,H}\right] ds
+ \int_0^t e^{-\int_0^t (K_s + \rho(\phi))ds} \int_X \left[2\epsilon_k (f(s, X_s^{\epsilon_k}, z), X_s^{\epsilon_k})_{H,H}\right] \tilde{N}^{-1}\varphi_{\epsilon_k} (ds, dz)
+ \int_0^t e^{-\int_0^t (K_s + \rho(\phi))ds} \left[\epsilon_k^2 \|f(s, X_s^{\epsilon_k}, z)\|_H^2 \right] N^{-1}\varphi_{\epsilon_k} (ds, dz). \]

Notice that

\[M_{\epsilon_k}(t) := \int_0^t e^{-\int_0^t (K_s + \rho(\phi))ds} \int_X \left[2\epsilon_k (f(s, X_s^{\epsilon_k}, z), X_s^{\epsilon_k})_{H,H}\right] \tilde{N}^{-1}\varphi_{\epsilon_k} (ds, dz) \]
is a square integrable martingale, we have

\[
\mathbb{E} \left(e^{-\int_0^t (K_s + \rho(\phi))ds} \|X_t^{\epsilon_k}\|_H^2 \right) - \|x\|_H^2
= -\mathbb{E} \left(\int_0^t e^{-\int_0^t (K_s + \rho(\phi))ds} \left(K_s + \rho(\phi_s) \right) \left(\|X_s^{\epsilon_k} - \phi_s\|_H^2 + 2 \langle \mathcal{A}(s, X_s^{\epsilon_k}), X_s^{\epsilon_k} - \phi_s \rangle_{V^*V}
+ 2 \langle \mathcal{A}(s, \phi_s), X_s^{\epsilon_k} - \phi_s \rangle_{V^*V} + 2 \langle \mathcal{A}(s, X_s^{\epsilon_k}), \phi_s \rangle_{V^*V} \right) ds \right)
+ \mathbb{E} \left(\epsilon_k \int_0^t e^{-\int_0^t (K_s + \rho(\phi))ds} \int_X \left[f(s, X_s^{\epsilon_k}, z)\right] \|X_s^{\epsilon_k}\|_H^2 \varphi_{\epsilon_k}(s, z)\nu(dz) ds \right)
\leq -\mathbb{E} \left(\int_0^t e^{-\int_0^t (K_s + \rho(\phi))ds} \left(K_s + \rho(\phi_s) \right) \left(2 \langle X_s^{\epsilon_k}, \phi_s \rangle_{H,H} - \|\phi_s\|_H^2 \right) ds \right)
+ \mathbb{E} \left(\int_0^t e^{-\int_0^t (K_s + \rho(\phi))ds} \left(2 \langle \mathcal{A}(s, \phi_s), X_s^{\epsilon_k} - \phi_s \rangle_{V^*V} + 2 \langle \mathcal{A}(s, X_s^{\epsilon_k}), \phi_s \rangle_{V^*V} \right) ds \right)
+ \mathbb{E} \left(\epsilon_k \int_0^t e^{-\int_0^t (K_s + \rho(\phi))ds} \int_X \left[f(s, X_s^{\epsilon_k}, z)\right] \|X_s^{\epsilon_k}\|_H^2 \varphi_{\epsilon_k}(s, z)\nu(dz) ds \right).
\]

(5.22)
By (i) of Lemma 5.1, we get
\[\mathbb{E} \left[\int_0^T \psi_t \left(e^{-\int_0^t (K_s + \rho(\phi_s)) ds} \| X_t \|^2_H - \| x \|^2_H \right) dt \right] \leq \lim_{\epsilon_k \to 0} \mathbb{E} \left[\int_0^T \psi_t \left(e^{-\int_0^t (K_s + \rho(\phi_s)) ds} \| X_t^{\epsilon_k} \|^2_H - \| x \|^2_H \right) dt \right]. \quad (5.23)

By Lemma 4.1,
\[\mathbb{E} \left(\epsilon_k \int_0^t e^{-\int_0^s (K_i + \rho(\phi_i)) ds} \int_X \| f(s, X_s^{\epsilon_k}, z) \|^2_H \varphi_{\epsilon_k}(s, z) \nu(dz) ds \right) \leq \epsilon_k C_{L_f, 2, 2, N}. \quad (5.24)

Combining from (5.22) to (5.24), and Lemma 5.3, we infer
\[\mathbb{E} \left[\int_0^T \psi_t \left(e^{-\int_0^t (K_s + \rho(\phi_s)) ds} \| X_t \|^2_H - \| x \|^2_H \right) dt \right] \leq - \mathbb{E} \left[\int_0^T \psi_t \int_0^t e^{-\int_0^s (K_i + \rho(\phi_i)) ds} (K_s + \rho(\phi_s)) \left(2\langle X_s, \phi_s \rangle_{H, H} - \| \phi_s \|^2_H \right) ds dt \right]
\quad + \mathbb{E} \left[\int_0^T \psi_t \int_0^t e^{-\int_0^s (K_i + \rho(\phi_i)) ds} \left(2 \langle A(s, \phi_s), X_s - \phi_s \rangle_{V^*, V} + 2 \langle Y_s, \phi_s \rangle_{V^*, V} \right) ds dt \right]
\quad + \mathbb{E} \left[\int_0^T \psi_t \int_0^t e^{-\int_0^s (K_i + \rho(\phi_i)) ds} \left(2 \int_X f(s, X_s, z) (\varphi(s, z) - 1) \nu(dz), \langle X_s \rangle_{H, H} \right) ds dt \right].

On the other hand, by (5.16), we have
\[\mathbb{E} \left(e^{-\int_0^t (K_s + \rho(\phi_s)) ds} \| X_t \|^2_H - \| x \|^2_H \right) \leq - \mathbb{E} \left(\int_0^t e^{-\int_0^s (K_i + \rho(\phi_i)) ds} (K_s + \rho(\phi_s)) \| X_s \|^2_H ds \right)
\quad + \mathbb{E} \left(\int_0^t e^{-\int_0^s (K_i + \rho(\phi_i)) ds} 2 \langle Y_s, X_s \rangle_{V^*, V} ds \right)
\quad + \mathbb{E} \left(\int_0^t e^{-\int_0^s (K_i + \rho(\phi_i)) ds} \left(2 \int_X f(s, X_s, z) (\varphi(s, z) - 1) \nu(dz), \langle X_s \rangle_{H, H} \right) ds \right). \quad (5.26)

By (5.25) and (5.26), we have
\[\mathbb{E} \left[\int_0^T \psi_t \int_0^t e^{-\int_0^s (K_i + \rho(\phi_i)) ds} \left(- (K_s + \rho(\phi_s)) \| X_s - \phi_s \|^2_H
\quad + 2 \langle A(s, \phi_s) - Y_s, X_s - \phi_s \rangle_{V^*, V} \right) ds dt \right] \leq 0.

27
Put \(\phi = X - \eta \tilde{\phi} v \) for \(\tilde{\phi} \in L^\infty([0, T] \times \Omega; dt \times \bar{\mathbb{P}}; \mathbb{R}) \) and \(v \in V \), divide both sides by \(\eta \) and let \(\eta \to 0 \), then we have

\[
E \left[\int_0^T \psi_t \int_0^t e^{-\int_0^r (K_t + \rho(\phi_t)) dr} \left(2\tilde{\phi}_s \langle \mathcal{A}(s, \phi_s) - Y_s, v \rangle_{V^*, V} \right) ds dt \right] \leq 0.
\]

Hence \(Y = \mathcal{A}(\cdot, X) \).

Proposition 5.1. \(X(\omega) \) solves the following equation:

\[
X_t(\omega) = x + \int_0^t \mathcal{A}(s, X_s(\omega)) ds + \int_0^t \int_X f(s, X_s(\omega), z) (\varphi(s, z)(\omega) - 1) \nu(dz) ds, \tag{5.27}
\]

which has an unique solution in \(C([0, T], H) \cap L^\alpha([0, T], V) \).

Proof. The equation (5.27) follows from Lemmas 5.1-5.4. The proof of the uniqueness is standard, and it is omitted.

Lemma 5.5. There exists a subsequence \(\overline{w}_k \), such that

\[
\lim_{\overline{w}_k \to 0} \sup_{t \in [0, T]} \| X^\overline{w}_k_t - X_t \|^2_H = 0, \quad \bar{\mathbb{P}}\text{-a.s.} \tag{5.28}
\]

Proof. Set \(L^*_t = X^*_{t^k} - X_t \). Then

\[
e^{-\int_0^t (K_s + \rho(X_s)) ds} \| L^*_t \|^2_H = \int_0^t e^{-\int_0^r (K_t + \rho(X_t)) dr} \left(- (K_t + \rho(X_t)) \| L^*_s \|^2_H + 2\langle \mathcal{A}(s, X^*_{t^k}) - \mathcal{A}(s, X_s), L^*_s \rangle_{V^*, V} \right) ds
\]

\[
+ 2 \int_0^t e^{-\int_0^r (K_t + \rho(X_t)) dr} \left(\int_X f(s, X^*_{t^k}, z) (\varphi_{t^k}(s, z) - 1) \nu(dz) - \int_X f(s, X_s, z) (\varphi(s, z) - 1) \nu(dz), L^*_{s^k} \right)_{H, H} ds
\]

\[
+ 2\epsilon_k \int_0^t e^{-\int_0^r (K_t + \rho(X_t)) dr} \left(\int_X f(s, X^*_{t^k}, z), L^*_{s^k} \right)_{H, H} \bar{N}^{t^k - 1} \varphi_{t^k} (dz, ds) + \epsilon_k \int_0^t \left\| f(s, X^*_{t^k}, z) \right\|_H^2 \bar{N}^{t^k - 1} \varphi_{t^k} (dz, ds)
\]

\[
= I_1(t) + I_2(t) + I_3(t) + I_4(t). \tag{5.29}
\]

(H2) implies

\[
I_1(t) \leq 0. \tag{5.30}
\]

28
By (5.19) and (5.20), we have
\[E\left(\sup_{t \in [0,T]} \left| \int_0^t e^{-\int_0^s (K_r + \rho(X_r))dr} \left(\int_X f(s, X_{s}^{\epsilon_k}, z)(\varphi_{\epsilon_k}(s, z) - 1)\nu(dz), L_{s}^{\epsilon_k} \right)_{H, H}ds \right| \right) \]
\[\leq E\left(\int_0^T \int_X \|f(s, X_{s}^{\epsilon_k}, z)\|_H \|\varphi_{\epsilon_k}(s, z) - 1\|_{H} L_{s}^{\epsilon_k} \nu(dz)ds \right) \]
\[\leq E\left(\int_0^T \int_X X_{s}^{\epsilon_k} \|f(s, X_{s}^{\epsilon_k}, z)\|_H L_{s}^{\epsilon_k} \nu(dz)ds \right) \to 0, \text{ as } \epsilon_k \to 0. \] (5.31)

Then it is not difficult to obtain
\[\lim_{\epsilon_k \to 0} E\left(\sup_{t \in [0,T]} |I_2(t)| \right) = 0. \] (5.32)

For \(I_3 \),
\[E\left(\sup_{t \in [0,T]} |I_3(t)| \right) \]
\[\leq E\left(\int_0^T \int_X 4\epsilon_k^2 \|L_{s}^{\epsilon_k}\|_H^2 \|f(s, X_{s}^{\epsilon_k}, z)\|_H^2 N_{s}^{\epsilon_k} \nu(s, d\sigma ds) \right)^{1/2} \]
\[\leq 2E\left(\epsilon_k \sup_{s \in [0,T]} \|L_{s}^{\epsilon_k}\|_H \left(\int_0^T \int_X \epsilon_k \|f(s, X_{s}^{\epsilon_k}, z)\|_H^2 N_{s}^{\epsilon_k} \nu(s, d\sigma ds) \right)^{1/2} \right) \]
\[\leq 2\epsilon_k^{1/2} \left(\int_0^T \int_X \|f(s, X_{s}^{\epsilon_k}, z)\|_H^2 \nu(s, d\sigma ds) \right)^{1/2} \]
\[\times \left(E\left(1 + \sup_{s \in [0,T]} \|X_{s}^{\epsilon_k}\|_H^2 \right) \sup_{\varphi \in S^N} \int_0^T \int_X L_f^2(s, z) \varphi(s, z) \nu(dz)ds \right)^{1/2} \]
\[\to 0, \text{ as } \epsilon_k \to 0. \] (5.33)

For \(I_4 \),
\[E\left(\sup_{t \in [0,T]} |I_4(t)| \right) \]
\[\leq \epsilon_k E\left(\int_0^T \int_X \|f(s, X_{s}^{\epsilon_k}, z)\|_H \varphi_{\epsilon_k}(s, z) \nu(dz)ds \right) \]
\[\leq \epsilon_k \left(1 + \sup_{s \in [0,T]} \|X_{s}^{\epsilon_k}\|_H^2 \right) \sup_{\varphi \in S^N} \int_0^T \int_X L_f^2(s, z) \varphi(s, z) \nu(dz)ds \]
\[\to 0, \text{ as } \epsilon_k \to 0. \] (5.34)

Combining (5.29) - (5.34), we have
\[\lim_{\epsilon_k \to 0} E\left(\sup_{t \in [0,T]} \left(e^{-\int_0^t (K_r + \rho(X_r))dr} \|L_{t}^{\epsilon_k}\|_H^2 \right) \right) = 0. \]
Then
\[
\lim_{\epsilon_k \to 0} \mathbb{E}\left(e^{-\int_0^T (K_s + \rho(X_s))ds} \left(\sup_{t \in [0,T]} \| L^\epsilon_t \|_H^2 \right) \right) = 0.
\]
This implies that there exists a subsequence \(\omega_k \) such that \(X^{\omega_k} \) converges to \(X \) \(\bar{P} \)-a.s..

\[\square\]

6 Verification of Condition 2.1

Recall (4.3) and (3.1), we have

Theorem 6.1. Fixed \(N \in \mathbb{N} \), and let \(\varphi_\epsilon, \varphi \in \mathcal{H}^N \) be such that \(\varphi_\epsilon \) converges in distribution to \(\varphi \) as \(\epsilon \to 0 \). Then

\[\mathcal{G}^\epsilon(\epsilon N^{-1}\varphi_\epsilon) \Rightarrow \mathcal{G}^0(\nu_{\varphi}) \]

Proof. Recall \(\bar{M} \) in Section 2 and notations in Proposition 4.1. Denote

\[\Pi = \left(S^N, D([0,T], V^\epsilon), C([0,T], V^\epsilon), C([0,T], V^\epsilon), \bar{M} \right) \]

Proposition 4.1 implies that the laws of \(\{ (\varphi_\epsilon, M_\epsilon^\epsilon, Z_\epsilon^\epsilon, Y_\epsilon^\epsilon, N_\epsilon^\epsilon), \epsilon > 0 \} \) is tight in \(\Pi \). Let

\((\varphi, 0, Z, Y, N) \) be any limit point of the tight family. By the Skorohod’s embedding theorem, there exist a stochastic basis \((\Omega^1, \mathcal{F}^1, \mathbb{P}^1) \) and, on this basis, \(\Pi \)-valued random variables \(\left(\varphi_\epsilon, M_\epsilon^\epsilon, Z_\epsilon^\epsilon, Y_\epsilon^\epsilon, N_\epsilon^\epsilon \right), \left(\varphi_\epsilon, 0, Z_\epsilon, Y_\epsilon, N_0 \right) \), such that \(\left(\varphi_\epsilon, M_\epsilon^\epsilon, Z_\epsilon^\epsilon, Y_\epsilon^\epsilon, N_\epsilon^\epsilon \right) \) (respectively \(\left(\varphi_\epsilon, 0, Z_\epsilon, Y_\epsilon, N_0 \right) \)) has the same law as \((\varphi_\epsilon, M_\epsilon^\epsilon, Z_\epsilon^\epsilon, Y_\epsilon^\epsilon, N_\epsilon^\epsilon) \) (respectively \((\varphi, 0, Z, Y, N) \)), and

\[(\varphi_\epsilon, M_\epsilon^\epsilon, Z_\epsilon^\epsilon, Y_\epsilon^\epsilon, N_\epsilon^\epsilon) \longrightarrow (\varphi, 0, Z, Y, N_0) \] in \(\Pi, \mathbb{P}^1 \)-a.s.

Set \(\bar{X}_\epsilon^\epsilon = x + \bar{M}_\epsilon^\epsilon + \bar{Z}_\epsilon^\epsilon + \bar{Y}_\epsilon^\epsilon \) and \(\bar{X} = x + \bar{Z} + \bar{Y} \). From the equation satisfied by \(\left\{ (\varphi_\epsilon, M_\epsilon^\epsilon, Z_\epsilon^\epsilon, Y_\epsilon^\epsilon, N_\epsilon^\epsilon), \epsilon > 0 \right\} \), we have that \(\bar{X}_\epsilon^\epsilon \) satisfies the following SPDE

\[d\bar{X}_t^\epsilon = \mathcal{A}(t, \bar{X}_t^\epsilon)dt + \int_X f(t, \bar{X}_t^\epsilon, z)(\varphi_\epsilon(t, z) - 1)\nu(dz)dt \]
\[+ \epsilon \int_X f(t, \bar{X}_t^\epsilon, z)(\bar{X}_t^\epsilon)^{\epsilon-1}N_t^\epsilon(dz, dt), \]

here \(N_t^\epsilon \) is defined as (2.3), that is

\[N_t^\epsilon((0, t] \times U) = \int_{(0,t] \times U} \int_{(0,\infty)} 1_{[0,w(s,x)]}(r)N_t^\epsilon(dsdxdr), \ t \in [0,T], U \in \mathcal{B}(X), \]

30
and \tilde{N}_ϵ^e is the compensated Poisson random measure with respect to \tilde{N}_ϵ^e.

Using the fact that if $f_n \in D([0,T], \mathbb{R})$ and $\lim_{n \to \infty} f_n = 0$ with the Skorokhod topology of $D([0,T], \mathbb{R})$, then $\lim_{n \to \infty} \sup_{t \in [0,T]} |f_n(t)| = 0$. We have

$$\lim_{\epsilon \to 0} \sup_{t \in [0,T]} \|\tilde{M}^\epsilon(t)\|_{V^*} = 0, \quad \mathbb{P}^1\text{-a.s.}$$

Notice that

$$\lim_{\epsilon \to 0} \sup_{t \in [0,T]} \|\tilde{Z}^\epsilon(t) - \tilde{Z}(t)\|_{V^*} = 0, \quad \mathbb{P}^1\text{-a.s.}$$

and

$$\lim_{\epsilon \to 0} \sup_{t \in [0,T]} \|\tilde{Y}^\epsilon(t) - \tilde{Y}(t)\|_{V^*} = 0, \quad \mathbb{P}^1\text{-a.s.},$$

we have

$$\lim_{\epsilon \to 0} \sup_{t \in [0,T]} \|\tilde{X}^\epsilon(t) - \tilde{X}(t)\|_{V^*} = 0, \quad \mathbb{P}^1\text{-a.s.}.$$

Finally, following the proof of Proposition 5.1 and Lemma 5.5, we can obtain \tilde{X} is the unique solution of (5.27) with φ replaced by φ^ϵ, and there exists a subsequence ω_k that

$$\lim_{\omega_k \to 0} \sup_{t \in [0,T]} \|\tilde{X}^\omega_k(t) - \tilde{X}(t)\|_H = 0, \quad \mathbb{P}^1\text{-a.s.}$$

which implies this theorem.

\square

We have finished to verify the second part of Condition 2.1. To obtain the first part of Condition 2.1 we just need to replace $\epsilon \int_{\tilde{X}} f(t, \tilde{X}_t^\epsilon, z) d\tilde{N}_\epsilon^{-1} \varphi^\epsilon (dz, dt)$ by 0 in (1.4) and replacing φ^ϵ by deterministic elements g_n in in the proof of Lemma 4.4–Lemma 5.1, then we can similarly prove the following result.

Theorem 6.2. Recall \mathcal{G}^0 in (3.1). For all $N \in \mathbb{N}$, let $g_n \to g$ as $n \to \infty$. Then

$$\lim_{n \to \infty} \sup_{t \in [0,T]} \|\mathcal{G}^0(\nu^{\omega_n}_T) - \mathcal{G}^0(\nu^0_T)(t)\|_H = 0.$$

References

[1] A. de Acosta, *A general non-convex large deviation result with applications to stochastic equations*, Probability Theory and Related Fields, (2000), 483-521.
[2] A. de Acosta, *Large deviations for vector valued Lévy processes*, Stochastic Processes and Their Applications, 51 (1994), 75-115.

[3] D. Applebaum, *Lévy Processes and Stochastic Calculus*, 2004, Cambridge Studies in Advanced Mathematics (No. 93), Cambridge University Press.

[4] J. Bao, C. Yuan *Large deviations for neutral functional SDEs with jumps*, Stochastics, 87 (2015), 48C70.

[5] H. Bessaih and A. Millet, *Large deviation principle and inviscid shell models*, Electronic Journal of Probability 14(2009)2551-2579.

[6] Z. Brzeźniak, W. Liu, J. Zhu, *Strong solutions for SPDE with locally monotone coefficients driven by Lévy noise*, Nonlinear Analysis: Real World Applications, 17(2014), 283-310.

[7] A. Budhiraja, J. Chen and P.Dupuis, *Large deviations for stochastic partial differential equations driven by a Poisson random measure*, Stochastic Processes and their Applications, 123(2013), 523-560.

[8] A. Budhiraja and P. Dupuis, *A variational representation for positive functionals of an infinite dimensional Brownian motion*, Probab. Math. Statist. 20(1)(2000)39-61.

[9] A. Budhiraja, P.Dupuis and V. Maroulas, *Large deviations for infinite dimensional stochastic dynamical systems continuous time processes*, Annals of Probability 36(4)(2008)1390-1420.

[10] A. Budhiraja, P.Dupuis and V. Maroulas, *Variational representations for continuous time processes*, Annales de l’Institut Henri Poincaré(B) Probabilités Statistiques. 47(3) (2011), 725-747.

[11] C. Cardon-Weber, *Large deviations for a Burgers’-type SPDE*, Stochastic processes and their applications, 84 (1999), 53-70.

[12] S. Cerrai and M. Röckner, *Large deviations for stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term*, Ann. Probab. 32 (2004), 1100-1139.
[13] F. Chenal and A. Millet, *Uniform large deviations for parabolic SPDEs and applications*, Stochastic Process. Appl. 72(1997), 161-186.

[14] P. Chow, *Large deviation problem for some parabolic Itô equations*, Communications on Pure and Applied Mathematics, XLV (1992), 97-120.

[15] A. Dembo and O. Zeitouni, *Large Deviations Techniques and Applications*, (2000), Springer-Verlag, New York.

[16] J. Duan and A. Millet, *Large deviations for the Boussinesq equations under random influences*, Stochastic Processes and Their Applications 119:6(2009) 2052-2081.

[17] P. Dupuis, R. Ellis, *A Weak Convergence Approach to the Theory of Large Deviations*, Wiley, New-York, (1997).

[18] J. Feng, T. Kurtz *Large Deviations for Stochastic Processes*, Math. Surveys Monogr. vol. 131, American Mathematical Society, Providence, RI, 2006.

[19] M. Fukushima, Y. Oshima and M.Takeda, *Dirichlet Forms and Symmetric Markov Processes*, De Gruyter, New York, (1994).

[20] N. Ikeda and S. Watanabe, *Stochastic Differential Equations and Diffusion Processes*, North-Holland Publishing Co., Amsterdam, (1981).

[21] U. Manna, S.S. Sritharan and P. Sundar, *Large deviations for the stochastic shell model of turbulence*, Nonlinear Differential Equations and Applications 16:4 (2009) 493-521.

[22] W. Liu, *Large deviations for stochastic evolution equations with small multiplicative noise*, App. Math. Opt. 61:1(2010)27-56.

[23] W. Liu, M. Röckner, *SPDE in Hilbert space with locally monotone coefficients*, J. Funct. Anal. 259 (2010), 2902C2922.

[24] J. Ren, X. Zhang, *Freidlin-Wentzell’s large deviations for stochastic evolution equations*, J. Funct. Anal. 254 (2008), 3148-3172.

[25] M. Röckner and T, Zhang, *Stochastic evolution equations of jump type: existence, uniqueness and large deviation principles*, Potential Anal. 26 (2007), 255-279.
[26] M. Röckner, T. Zhang and X.Zhang, *Large deviations for stochastic tamed 3D Navier-Stokes equations*, App. Math. Opt. 61:2(2010) 267-285.

[27] A. Swiech and J. Zabczyk, *Large deviations for stochastic PDE with Lévy noise*, J. Funct. Anal. 260 (2011), 674-723.

[28] R.B. Sowers, *Large deviations for a reaction-diffusion equation with non-Gaussian perturbations*, Ann. Probab. 20 (1992), 504-537.

[29] R. Temam, *Navier-Stokes Equations Theory and Numerical Analysis*, North-Holland Pub. Company, Second revised edition,(1979).

[30] T. Xu, T. Zhang *Large Deviation principles for 2-D stochastic Navier-Stokes equations driven by Lévy processes*, J. Funct. Anal. 257(2009)1519-1545.

[31] X. Yang, J. Zhai and T. Zhang, *Large deviations for SPDEs of jump type*, Stochastics and Dynamics, Vol. 15, No. 4 (2015), 1550026 (30 pages).

[32] J. Zhai and T. Zhang, *Large deviations for 2-D stochastic Navier-Stokes equations driven by multiplicative Lévy noises*, Bernoulli, 21(2015), 2351-2392.

[33] T. Zhang, *On small time asymptotics of diffusions on Hilbert spaces*, Ann. Probab. 28 (2002), 537-557.

[34] X. Zhang, *Stochastic Volterra equations in Banach spaces and stochastic partial differential equations*, Journal of Functional Analysis 258:4(2010)1361-1425.