A Study of Automatic Measurement Method of RPG (Re-tensile Plastic zone’s Generated load)*

by MURAKAMI Koji**, MORISHITA Mizuki*** and GOTOH Koji****

Identification of the relationship between fatigue crack propagation rate \((\text{d}a/\text{d}N)\) and stress intensity factor range \((\Delta K)\) is inevitable to apply the fracture mechanics approach to assess the growth of fatigue crack growth. The relationship between \((\text{d}a/\text{d}N)\) and \((\Delta K)\) is widely applied to evaluate fatigue crack propagation behavior. To evaluate the fatigue crack growth history under variable loading history, it is necessary to replace \((\Delta K)\) to the effective stress intensity factor range, which can quantitatively consider fatigue crack opening and closing behavior.

\[\Delta K_{\text{eff}} \]

proposed by Elber is well known as the effective stress intensity factor range, but even if \(\Delta K_{\text{eff}}\) is applied to evaluate the fatigue crack propagation behavior, a threshold value \((\Delta K_{\text{th}})\) was occurred. On the other hand, it is known that fatigue cracks propagate even at \(\Delta K_{\text{eff}}\) below \(\Delta K_{\text{th}}\) under variable loading history. This implies that \(\Delta K_{\text{eff}}\) is an insufficient parameter to describe fatigue crack propagation behavior.

\[\Delta K_{\text{eff}} \]

which has a close relationship with the cyclic plastic behavior in the vicinity of the crack tip proposed by Toyosada and Niwa, can give the solution of the problem of \(\Delta K_{\text{th}}\) and even under complicated variable loading history including multiple frequency components.

To apply the fatigue crack propagation law with \(\Delta K_{\text{eff}}\) as a parameter, it is necessary to experimentally measure the RPG load and identify the propagation law constants \((\Delta K_{\text{eff}}=C(\Delta K_{\text{th}})^m)\) \(C\) and \(m\).

A conventional method for identifying RPG loads requires the superposition of the hysteresis loop near the crack tip and its reversal loop as measured by the unloading elastic compliance method. However, advanced skills in this method, such as understanding the characteristics of measurement errors associated with loops, is required.

In this study, we propose a method to automatically measure the RPG load equivalent to that of an expert, and compare the automatic measurement results by this method with the past conventional measurement results under multiple materials and loading conditions, and validate the automatic measuring method.

Key Words: Fatigue crack propagation rate \((\text{d}a/\text{d}N)\), Stress intensity factor range \((\Delta K)\), Re-tensile Plastic zone’s Generated load (RPG load), Effect stress intensity factor range based upon RPG load \((\Delta K_{\text{eff}})\), Turkey’s Biweight estimation

1. 緒 言

疲労亀裂伝播則は, Parisを基に応力拡大係数範囲 \(\Delta K\) と疲労亀裂伝播速度 \(\text{d}a/\text{d}N\) および疲労亀裂伝播速度 \(\text{d}a/\text{d}N\) の関係式 \(\text{d}a/\text{d}N=C(\Delta K)^m\) が提案されて以来, 同様の形式で Elberによる疲労亀裂開閉口挙動を考慮した有効応力拡大係数範囲 \(\Delta K_{\text{eff}}\) を提案する伝播則, 更に ToyosadaとNiwaは疲労亀裂開閉口挙動の影響も考慮しつつ, 疲労亀裂先端近傍における繰返し亀裂挙動を考慮した RPG 荷重 \((\text{Re-tensile Plastic zone’s Generated load})\) 基準の有効応力拡大係数範囲 \(\Delta K_{\text{RPG}}\) をパラメータとする伝播則を提案した. RPG 荷重基準の伝播則は, 特に変動荷重伝播則下における疲労亀裂成長履歴の推定に関しては優位性を有しており, 従来の伝播則では亀裂成長履歴の推定が困難であった複数周波数成分が重畳しつつ平均応力も変動する複雑な荷重履歴下においても, 同傳播則の適用により良好な疲労亀裂成長履歴の推定が可能である.

\[\Delta K_{\text{RPG}}\]

をパラメータとする伝播則 \((\text{d}a/\text{d}N=C(\Delta K_{\text{th}})^m))\) を適用するためには, 疲労亀裂伝播試験を実施して RPG 荷重を計測し, これらの疲労亀裂伝播試験を実施した疲労亀裂成長履歴のひずみの測定値から, 除荷性コンプライアンス法にて除荷性弾性線の傾きを荷重値と平行になるように弾性変形分をひずみ全体から引き去った引き算ひずみから, 荷重-引

*受付日 2020年11月24日 受理日 2021年5月12日
** 九州大学工学部技術系 Technical Division, School of Engineering, Kyushu University
*** 国立研究開発法人 海上技術安全研究所 産業システム 系情報システム研究グループ (研究当時, 九州大学 大学院工学府博士後期課程) National Maritime Research Institute, Industrial System Engineering, Cyber System Research Group
**** 正 員 九州大学工学部工学研究科海洋システム工学部門 Member, Department of Marine Systems Engineering, Faculty of Engineering, Kyushu University

RPG 荷重のみ決定できるが, 微分法では微分値が観測されるものの, 微分法では微分値再帰的に微分値に基づく伝播則 \(\Delta K_{\text{th}}\) がある. 反転法は, RPG 荷重に加えて, 疲労亀裂開閉口荷重 (Elberによる Open 荷重) と, 西谷と陳による Close 荷重も同時に決定可能であるが, 微分法では RPG 荷重のみ決定する。
可能である。また、これらのデータ処理の特徴として、反転法では、一定荷重サイクル毎に得られたヒステリシス曲線を手動で重ね合わせ処理する必要があるため、その作業に多くの労力を有すると同時に、作業者の熟練度に処理結果が左右される。一方、微分法では二階微分を行うために、実験データのS/N比に多大な影響を受けるという難点がある。

本研究では、データの処理結果が人的要員による影響を受けることなく、かつ作業労力を軽減することで、RPG荷重基準の伝播則の適用を拡大することを目的に、実験データのS/N比の影響が比較的少ない反転法を用いてRPG荷重の同定作業を自動化する方法を提案する。

2. RPG荷重の計測方法

2.1 データ取得環境

試験片は疲労亀裂先端にCCT試験片のように亀裂進展に伴い誘起される回転曲げの影響がないCCT試験片を用いた。試験片寸法は試験機の載荷能力50kNを考慮して、Fig.1に示すような全幅50mm、板厚4mmとし、スタートノッチは試験片幅中央から直径0.2mm、幅10mmのワイヤー放電加工を施している。ただし、幅中心部にはワイヤーを通すために直径3mmの穴を設けている。ヒステリシス曲線の計測にはFig.1に示すように、試験片表面の疲労亀裂伝播経路上的左右に貼付した2mmおよび6mmの接触型抵抗線ひずみゲージと、試験機に取り付いているロードセルを、Fig.2に示す試験中のデータ取得を自動化した高精度コンプライアンス計測システムを用いて、一サイクル200点ほどのデータを数千サイクル毎に取得している。なお、ひずみ計測に関しては、疲労亀裂先端に最も近い表面左側それぞれの伝播経路にある同位置のゲージの平均ひずみ値を取得しているため、何れかのゲージが破断した場合、疲労亀裂先端から次に近い同位置のゲージを用いた計測となる。そのため、ゲージと疲労亀裂先端との距離はゲージが切り替わるごとに10mm〜0.1mm程度の範囲で変化するため、ひずみ振幅は10^4〜10^3のオーダで変化することを考慮し、ひずみ値は10^-3から10^-2のオーダで計測している。今後は試験後に得られたヒステリシス曲線に基づき、反転法による自動化を検討した。

繰返し一定荷重振幅試験により取得した荷重-ひずみによるヒステリシスを除荷弾性コンプライアンス法で処理することで、荷重-引き算ひずみからなるヒステリシス曲線を得る。その後、この曲線と符号反転ヒステリシス曲線を同時に描画して、両曲線に共通するコンプライアンス変化部分を重ね合わせることで、RPG荷重が決定される。Fig.3に反転法によりRPG荷重及びOpen荷重を決定する手法を模式的に示した。

2.2 重ね合わせのアルゴリズム

Fig.4にRPG荷重計測の自動処理フローを示す。自動計測処理システムは、将来、データ処理の経験を機械学習できるアルゴリズムを活用することで、複数の材料や試験片形状に依存しない定量的なデータ処理を実現することを念頭に、Fig.4にRPG荷重計測の自動処理フローを示す。
に、Python ディストリビューションの Anaconda を使用して構築した。

反転法を手動で行うと、正転、反転ヒステリシス曲線の重ね合わせが作業者により異なり、計測結果にパラツキが生じことがある。これはヒステリシス曲線に含まれる誤差（ノイズ）や、評価素材ごとに疲労亀裂開閉口挙動に固有の特徴があるためにヒステリシス曲線の形状が異なるなどの問題があることに加え、データ処理の熟練具合にも影響を受ける。そこで、自動計測の開発にあたっては、データ処理の熟練度に直結するチューニングパラメータの使用を最小限に抑えつつ、使用するアルゴリズムは Python に提供されている関数で実現することに注力し、Python の関数を用いることで、2 曲線の重ね合わせ作業が容易に自動化され、かつ 2 曲線の一致度も作業者に依存しない数値として得ることができる。

反転法による自動処理では、ヒステリシス曲線を最小二乗法等により関数近似し、それを反転させて元の曲線（正転曲線）と自動で重ね合わせることで、正転、反転ヒステリシス曲線における除荷弾性コンプライアンス変化が一致する領域を探し、この結果から RPG 荷重や Open 荷重を決定する。

しかし、測定されたヒステリシス曲線には誤差（ノイズ）が多く含まれる場合もあるため、後述する正転と反転のヒステリシス曲線の重ね合わせに支障をきたす場合がある。そこで、ヒステリシス曲線の関数近似に際して最もなる最小二乗法ではなく、ロバスト推定手法の一種である Biweight 推定法を適用することで近似的改善を試みた。Biweight 推定法は誤差が大きい場合には重みを小さくして例外値の影響を小さくする手法であり、この操作のために式 (1) に示す重み関数を考慮する。ここでは、Biweight 推定法に基づいた重みを付与したデータに最小二乗法を適用し、ヒステリシス曲線を構成するデータの連続した 6 点を一つのデータ群として取り扱い、そこから 1 点ずつ順次ずらしたデータ群に対して Fig. 5 に示すような処理を行った。具体的な処理方法は以下の通りである。

(i) Fig. 5 a) に例示するように、データ群を最小二乗法で近似し、式 (1) 中の \(d_i \) を決定する。ここで、一つのデータ群の中で最も大きな \(d_i \) を \(d_{i_{max}} \) とし、式 (1) 中の \(W_x \) としている。

(ii) 式 (1) により算出した重みを考慮し、各データ群の近
似直線の傾きと切片が収束するまで繰返し計算する。このとき，W_aは一つ前の収束計算で決定した$d_{(j-1)\max}$として更新する。

(iii) 収束後，Fig.5 b)に示すように，データ群中の3番目の並びのデータを近似直線上に垂直距離移動させる。

(iv) 荷重基準にiを整理し直す。

最小二乗法に用いるデータ群を構成するデータ数の決定は，3~11点を単位とすると収束結果と処理前のヒステリシス曲線を比較し，RPG荷重およびOpen荷重と想定される近傍の近似結果より判断している。今回は10Hzの繰返し試験に，100Hzのローパスフィルターを用いた。1サイクルあたり200点の取得データを一例としてデータ群の最適単位を決定しているが，(iii)の処理のまでは，荷重の極性が変える付近で荷重値とデータの並びが入れ替わる場合がある。そこで，(iv)の処理を行っているが，後述のデータ処理に影響がないことを確認している。

\[w_a(d_j) = \left\{ \begin{array}{ll} 0 & (d_j < -W_a, W_a < d_j) \\ \frac{1-(d_j/W_a)^2}{2} & (-W_a \leq d_j \leq W_a) \end{array} \right. \] (1)

\[w_b(d_{l,m}) = \left\{ \begin{array}{ll} 0 & (d_{l,m} < -W_b, W_b < d_{l,m}) \\ \frac{1-(d_{l,m}/W_b)^2}{2} & (-W_b \leq d_{l,m} \leq W_b) \end{array} \right. \] (2)

正転及び反転ヒステリシス曲線のコンプライアンス変化が一致する領域の探索には，Anacondaに標準装備されている科学技術計算ライブラリScipyのoptimize.least_squares関数を用いた。

Fig.6は実際の疲労亀裂伝播試験により測定されたヒステリシス曲線のうち，Fig.3で示すRPG荷重，Open荷重付近の拡大図であるが，これを用いて探索プロセスを説明する。Fig.6 a)に探索状況の一例を示すが，正転ヒステリシス曲線の負荷側と反転ヒステリシス曲線の除荷弹性荷重付近のデータを式(2)に示すBiweight推定法で重み付けた値とし，前述の関数にて非線形最小二乗適化を行う。もしここで最適な一致状態とならない場合は，曲線それぞれを式(2)のW_b以下となるデータ範囲に引き算ひずみの範囲を減らしながら，正転ヒステリシス曲線に対する反転側の相対移動量が収束するまでフィッティング処理を繰返す。

その後，Fig.6 a)に示すように一致探索完了後の2曲線の最小引き算ひずみ値の座標が揃うように反転ヒステリシスを移動させ，このときに生じる交点の上限値と下限値の間のデータのみを再度，前述のBiweight推定法にて2曲線を重ね合わせることで，Fig.6 b)に示すように，精度良く一致領域を特定することが可能である。

以上の手法により，従来，手作業で行う必要があった正転及び反転ヒステリシス曲線の重ね合わせを，自動で行うことが可能となった。

Fig.6 Schematic illustration of the base and inversion hysteresis loops matching procedure.
2.3 RPG荷重の決定方法

反転法において、正転及び反転ヒステリシス曲線の重なりにずれが生じ始める点として定義されるRPG荷重について、式(3)に示す条件より両曲線の離反点を判定する。RPG荷重の決定に際し、ヒステリシス曲線に重畳するノイズの影響により、局所的に正転と反転ヒステリシス曲線の離反点を判定する。RPG荷重の決定に際し、ヒステリシス曲線に重畳するノイズの影響により、局所的に正転と反転ヒステリシス曲線が判定条件を満たす範囲内に接近した場合、真の値に対して大きな誤差を含む可能性が生じる。そこで、反転ヒステリシス曲線の除荷弾性範囲相当内における正転ヒステリシスの荷重範囲のひずみ値に式(3)の条件を考慮することにより、RPG荷重判定の誤差を抑制することを試みた。

Fig.7 a)はRPG荷重判定に関する一例であるが、ある条件の厳密値に達す最大荷重をRPGとしている。なお、式(3)中の\(D_U\)は除荷弾性範囲における最大の引き算ひずみ幅であり、ノイズの大きさを表す指標である。ここで、式(3)の厳密値に達す荷重内をOpen荷重として採用することとした。

\[
T_{RPG}, T_{Open} = \left\{ 1 - \left(\frac{D_f - D_{r(i)}}{D_U} \right)^2 \right\}^2 \tag{3}
\]

\(T_{RPG}, T_{Open}\)：RPG荷重、Open荷重判定のための閾値。

\(D_{r(i)}\)：反転ヒステリシスのi番目のコンプライアンス値。

\(D_f\)：\(D_{r(i)}\)と同じ荷重レベルでの正転ヒステリシスのコンプライアンス値。

\(D_U\)：除荷弾性範囲の最大引き算ひずみ幅。

Fig.7 b)はRPG荷重判定に及ぼす閾値\(T\)の条件を確認した一例である。著者らによる反転法を用いたRPG荷重の手動計測の経験では、データに含まれるノイズ影響に対してはヒステリシス曲線全体を視認しつつ考慮して重なり判定を行っていたが、本研究で提案する自動処理では、ヒステリシス曲線毎に異なるノイズ影響の閾値\(T\)をTable 1のように、後述する過去の実験結果と比較して得られた値を設定することで、これまでの手動計測と同程度の判定結果が得られた。ここで、閾値\(T\)は1に近いほどノイズを含む両曲線の離反距離に敏感で、数値が低いと寛容であることを意味しているが、RPG荷重判定の際、反転ヒステリシスと正転の位置関係により、許容範囲が変わる結果となっている。

閾値\(T\)を提案することで、Biweight推定法を適用しても十分に除去できなかったノイズ影響をできる限り排除したRPG荷重の決定が可能であることを確認した。なお、本提案法は、反転法による亀裂開口荷重（Open荷重）の自動計測にも同様な適用が期待できる。

3. 自動計測手法の妥当性の検証

3.1 RPG荷重と亀裂長さの関係

本研究で提案する自動計測手法の妥当性を検証するため、Table 2に示すような過去に複数の材料及び複数の応力比条件で実施された疲労亀裂伝播試験における反転法（手動操作）により測定されたRPG荷重とOpen荷重に関して、再度、反転法自動処理により両荷重値を算定し、既報の手動操作による値の比較を行った結果をFig.8, 9に示す。

Fig.9は供試材料の代表的な応力比のみ掲載しているが、RPG荷重は応力比の依存性がないため、他の応力比の掲載は省略している。今回確認した範囲では、材料や負荷応力
表2 試験片の機械的性質および配置

	SUS304L	18G2A	SUS316LN	A5083-O
試験片の種類				
幅 (2w) [mm]	50	100	50	50
厚さ (t) [mm]	4			
初期欠陥幅 (2a) [mm]	10	16	10	10
頻度 [Hz]			10	

Fig. 8 比較試験の結果を自動計測法と手動計測法による方法 (材質: SUS304L).

Fig. 9 比較試験の結果を自動計測法と手動計測法による方法 (多種金属材料).

3.2 疲労亀裂伝播特性

Fig.8に示す自動計測により求めたRPG荷重より、式(4)で示すΔK_{RPG}基準による疲労亀裂伝播則の材料定数C, mを求める結果の一例をFig.10に示す。

\[
\frac{da}{dn} = C(\Delta K_{RPG})^m
\]
同図より、自動計測によるRPG荷重に基づき決定した材料定数C, mは、過去に手動計測しRPG荷重に基づき決定した結果と近い値を示していると判断できる。そこで、自動計測による材料定数と過去に実施した手動計測による材料定数を用いて、疲労亀裂伝播成長シミュレーションを行い、亀裂成長曲線を求めた結果をFig.11に示す。当然の結果ではあるが、疲労亀裂成長履歴の推定結果もほぼ同程度のものが得られた。以上の結果より、自動計測により得られたRPG荷重はこれまでの手動処理による測定結果と同等のものが得られたと判断できる。

4. 結 言

RPG荷重基準に基づく疲労亀裂伝播則は、特に変動荷重履歴下における優位性を有しているため、大型溶接構造物の疲労亀裂伝播履歴推定に一層活用することが期待される。一方、供試材料に対してこの伝播則における材料定数を同定するには、同種材料により疲労亀裂伝播試験を実施し、亀裂伝播に応じたRPG荷重の変化履歴の測定が必要不可欠である。加えて、RPG荷重の同定にはかなりの熟練を要するという問題点が残されていた。

そこで本研究では、測定作業に対する熟練が無くともRPG荷重を自動的に同定する手法を提案し、複数の鋼材を対象に先行研究で実施された熟練者による測定結果と比較することで、提案手法の妥当性を示した。

参考文献

1) Paris, P.C. and Erdogan, F.: A Critical Analysis of Crack Propagation Laws, Journal of Basic Engineering, Transactions of the ASME, Series D, Vol.85, (1963), 528-534.
2) Elber, W.: The Significance of Fatigue Crack Closure, ASTM STP-486, (1971), 230-242.
3) Toyosada, M. and Niwa, T.: The significance of RPG load for fatigue crack propagation and the development of a compliance measuring system, International Journal of Fracture, Vol.67, (1994), Issue 3, 217-230.
4) For example, Matsuda, K. and Gotoh, K.: Numerical simulation of fatigue crack propagation under superposed stress histories containing different frequency components with several mean stress condition, Marine structures Vol.41, (2015), 77-95.
5) Kikukawa, M. Jono, M., Tanaka, K. and Takatani, M.: Measurement of Fatigue Crack Propagation and Crack Closure at Low Stress Intensity Level by Unloading Elastic Compliance Method, Journal of the Society of Materials Science Japan, Vol.25, (1994), Issue 3, 217-230.
6) Machida, S., Yoshinari, H. and Makino, H.: Detailed Observation of Change in Strain near Fatigue Crack Tip, Journal of the Society of Materials Science Japan, Vol.46, (1997), Issue 496, 138-142. (in Japanese)
7) Nishitani, H., and Chen, Dai-heng: A Consideration on the Unloading Elastic Compliance Method, Transactions of the Japan Society of Mechanical Engineers Series A, Vol.51, No.465, 1985, 1436-1441. (in Japanese)
8) Murakami, K. and Gotoh, K.: A Study of Measurement accuracy of RPG Load of the Fatigue crack propagation test, 溶接構造シンポジウム2017講演論文集, (2017), 253-256. (in Japanese)
9) https://www.anaconda.com/distribution/ (accessed on 27, September, 2019)
10) Beaton, A.E. Tukey, J.W.: The fitting of power series, meaning polynomials, illustrated on band-spectroscopic data, Technimetrics, Vol.16, 1974, 147-185.
11) https://www.scipy.org/ (accessed on 27, September, 2019)
12) Uchimura, H., Takuno, M., Murakami, K. and Gotoh, K.: Fatigue strength of austenitic stainless steels applied to chemical tankers, Journal of the Japan Society of Naval Architects and Ocean Engineers, Vol.16, (2012), 89-97. (in Japanese)
13) Toyosada, M., Niwa, T. and Murakami, K.: A Study on Determination for RPG load, Transactions of the West-Japan Society of Naval Architects, No.103, 2002, 167-172. (in Japanese)
14) Gotoh, K., Murakami, K., and Noda, Y.: Fatigue crack growth behaviour of A5083 series aluminum alloys and their welded joints, Journal of Marine Science and Technology, Vol.16, (2011), 343-353.
15) Toyosada, M., Gotoh, K. and Niwa, T.: Fatigue Crack propagation for a through thickness crack: a crack propagation law considering cyclic plasticity near the crack tip, International Journal of Fatigue, Vol.26, Issue 9, (2004), 983-992.