Role of Nitric Oxide in Inflammation and Tissue Injury during Endotoxemia and Hemorrhagic Shock

Nishit S. Shah and Timothy R. Billiar
Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania

Since the discovery that nitric oxide (NO) accounts for the biologic activity of endothelial-derived relaxing factor, a torrent of research over the last decade has focused on its role, protective or detrimental, in myriad pathophysiologic conditions. Recently, increasing attention has focused on NO as a possible mediator of the severe hypotension and impaired vasoreactivity characteristic of circulatory failure. Given the ubiquitous and complex role of NO in biologic systems, inhibition of NO synthesis in experimental and clinical studies of shock has yielded mixed, sometimes contradictory, results. Although overproduction of NO in the vasculature may result in systemic vasodilation, NO synthesis has also clearly been shown to have a beneficial role in regulating organ perfusion and mediating cytotoxicity. In this review, the pathophysiologic importance of NO in septic shock and hemorrhagic shock is discussed, and novel therapeutic strategies for manipulation of NO formation are examined. — Environ Health Perspect 106(Suppl 5): 1139–1143 (1998). http://ehpnet1.niehs.nih.gov/docs/1998/Suppl5/1139-1143/shah/abstract.html

Key words: nitric oxide, inducible nitric oxide synthase, sepsis, hemorrhagic shock

Introduction

Since the first report that nitric oxide (NO) can account for the biologic activity of endothelial-derived relaxing factor, increasing evidence has accumulated over the last decade that NO plays an important role in various biologic systems (1,2). NO is formed from the amino acid L-arginine via the enzyme nitric oxide synthase (NOS). Three distinct isoforms of NOS are known to exist; two were originally described as constitutive and one inducible (3). The constitutive enzymes, neuronal NOS (nNOS or NOS1) and endothelial NOS (eNOS or NOS3) are primarily calcium–calmodulin dependent, although eNOS does exhibit calcium-independent activity under certain conditions. The inducible NOS (iNOS or NOS2) is fully active at physiologic calcium levels. When stimulated, nNOS and eNOS intermittedly produce small (picomolar) amounts of NO over short time intervals. Their main function is as cell-signaling mediators of physiologic processes such as neurotransmission, regulation of local blood flow, and blood pressure. In contrast, iNOS generates large (micromolar) quantities of NO over extended periods of time during host defense and immunologic reactions (3,4). Though typically absent in resting cells, iNOS induction has been shown to occur in response to immunologic stimuli such as cytokines and microbial products, and in response to hypoxia (5). This upregulation of iNOS has been demonstrated in myriad cells, exerting either a cytoprotective or cytotoxic effect (4). However, vascular smooth cells can also express iNOS, as can the endothelium, leading to overproduction of NO in the circulation (6). Intense recent research has focused on NO as a possible mediator of the characteristic hemodynamic features of circulatory failure (7,8). Indeed, several experimental and clinical studies have suggested NOS inhibition might have therapeutic potential in circulatory shock, and other studies have clearly demonstrated the beneficial nature of iNOS expression in modulating tissue perfusion and mediating cytotoxicity (9,10). In this review, we discuss the pathophysiologic importance of iNOS expression in circulatory shock and also examine novel therapeutic strategies for manipulation of NO formation.

Role of NO in Sepsis

The possible involvement of the L-arginine–NO pathway in both the vascular and cellular processes seen in sepsis has been supported by numerous in vitro and in vivo studies (4). iNOS appears to be expressed in a wide array of cell types during sepsis, including immune cells (such as macrophages, neutrophils, T lymphocytes), as well as cells outside the classical immune system (for example, hepatocytes, Kupffer cells, vascular smooth muscle cells, endothelial cells, and fibroblasts). Expression of iNOS is regulated, both positively and negatively, by a number of mediators present during infection and inflammation. The main stimuli for iNOS induction include lipopolysaccharide (LPS), interferon-γ, interleukin (IL)-1β, and tumor necrosis factor (TNF)-α; inhibitory cytokines, such as transforming growth factor-β, IL-4 and IL-10, as well as glucocorticoids, can prevent this induction. The expression of iNOS in response to these agents differs among cell types, but a maximal inducing effect is generally obtained by the combination of microbial products and cytokines acting synergistically (4). iNOS activity is also regulated by substrate and cofactor availability. Tetrahydrobiopterin (BH4), an essential cofactor for the enzyme, is coincided with iNOS in cytokine-stimulated vascular smooth muscle cells (11).

Although NO is a simple molecule, its widespread production in sepsis, coupled with its effects on a variety of intracellular and extracellular target molecules, results in a complex array of biologic roles (10). The

This paper is based on a presentation at the Second International Meeting on Oxygen/Nitrogen Radicals and Cellular Injury held 7–10 September 1997 in Durham, North Carolina. Manuscript received at EHP 5 February 1998; accepted 3 April 1998.

This study was supported by grant GM-44100 from the National Institutes of Health.

Address correspondence to T. R. Billiar, Room A1010, Department of Surgery, 200 Lothrop Street, Presbyterian-University Hospital, Pittsburgh, PA 15213. Telephone: (412) 648-9862. Fax: (412) 648-1033. E-mail: billiar@pittsurp.nib.upmc.edu

Abbreviations used: BH4, tetrahydrobiopterin; cGMP, cyclic guanosine monophosphate; eNOS, endothelial nitric oxide synthase; HS, hemorrhagic shock; IL, interleukin; iNOS, inducible nitric oxide synthase; LNAME, nitro-L-arginine methyl ester; L-NIL, L-N-iminoethyl-L-lysine; L-NMMA, N-nitro-L-arginine; LPS, lipopolysaccharide; nNOS, neuronal nitric oxide synthase; "NO, nitric oxide; NOS, nitric oxide synthase; O2-, superoxide anion radical; OONO-, peroxynitrite; TNF, tumor necrosis factor.
interaction of 'NO with the metalloproteins in a number of key enzymes can modulate their activity. Many of the signaling actions of 'NO are mediated by soluble guanylate cyclase. By binding the iron on the heme component of soluble guanylate cyclase, NO is able to activate the enzyme leading to cyclic guanosine monophosphate (cGMP) formation. Increased cGMP levels account for several of the important cellular actions of 'NO, including smooth muscle relaxation, platelet aggregation and adherence, as well as neutrophil chemotaxis. However, through its disruption of iron–sulfur clusters in essential energy-generating enzymes involved in mitochondrial electron transport, glycolysis, and the Krebs cycle, 'NO can adversely affect cellular metabolism. Furthermore, high concentrations of 'NO, as produced by induced macrophages, can directly interfere with DNA in target cells, resulting in fragmentation. A combination of these effects is thought to account for the cytotoxic role of 'NO against microbial proliferation during infection (10,12).

Another critical reaction that 'NO undergoes during inflammation is with the superoxide anion radical (O$_2^-$), yielding peroxynitrite (OONO$^-$$^-$$^-$). OONO$^-$ is a potent oxidant that can decay under acidic conditions to produce a powerful hydroxyl-like free radical (13). This reaction between 'NO and O$_2^-$ can have a protective or damaging consequence, depending on the individual sites and rates of production of the free radicals, and the redox status of both the generating cells as well as the target cells. OONO$^-$ formation can initiate adverse effects such as lipid peroxidation of membranes, and modification of structural proteins through nitration of tyrosine residues (14). Indeed, increased levels of 3-nitrotyrosine have been detected in the lungs of patients with sepsis and animals with acute lung injury. However, OONO$^-$ can also S-nitrosylate glutathione and other thiol-containing substances to form S-nitrosothiols, which have marked cardioprotective and cytoprotective effects (15).

In vivo, substantial data, in both animals and patients, have shown enhanced 'NO formation in sepsis. In rats, LPS administration produced widespread iNOS expression in various tissues, including the vessel wall, with attenuation of vascular responsiveness. In a porcine model of sepsis, endotoxin-induced hypotension was reversed by the NOS inhibitor, nitro-L-arginine methyl ester (L-NAME) (16). In surgical patients with documented sepsis, high levels of nitrite and nitrate, the metabolic end products of 'NO, correlated with endotoxin levels and low systemic vascular resistance (17); furthermore, in patients with advanced cancer receiving immunotherapy, a marked elevation in serum nitrate levels was observed after IL-2 administration, which corresponded with toxic hemodynamic changes (18).

Therapeutic Implications

Induction of iNOS within the vascular wall, both in smooth muscle cells and the endothelium, has been implicated in the characteristic circulatory changes seen in sepsis. The resulting increase in 'NO production can have profound effects on hemodynamic stability by inducing vasorelaxation, which leads to a decrease in systemic vascular resistance and hypertension. This has led to numerous experimental and clinical studies investigating the inhibition of 'NO synthesis to restore arterial blood pressure in sepsis (19). However, given the complex physiologic effects of 'NO, including the potentially beneficial nature of iNOS expression on tissue perfusion, cytoprotection, and immunoregulation, the results of these studies have been mixed.

The majority of these investigations have achieved 'NO inhibition using l-arginine analogs. Numerous l-arginine analogs, which act by competitively inhibiting NOS, have been used to unravel the functions of 'NO as well as potential therapeutic agents. The majority of these analogs act in a nonspecific manner, that is, inhibition of both constitutive and inducible isozymes, with different inhibitors varying in potency with regard to different isozymes (19). Despite improvements in systemic blood pressure with NOS inhibitors, the majority of clinical reports published have shown adverse effects on cardiac output and impaired oxygen delivery (19,20). Experimental studies using NOS inhibitors have also revealed ambivalent findings. Although several reports in animal models of sepsis have demonstrated an improvement in blood pressure, blocking NOS activity decreases renal blood flow, increases capillary leak and intestinal damage, and exacerbates pulmonary hypertension (21,22).

The liver has long been recognized as having an important role in the hemodynamic, metabolic, and inflammatory responses to sepsis. Systemic blockade of 'NO synthesis worsens hepatic injury in endotoxemia (23). We have previously demonstrated that this damaging effect of NOS inhibition was, in part, mediated by oxygen radicals and platelet deposition, suggesting a cytoprotective role of 'NO in preventing microvascular thrombosis and as a free radical scavenger (24). In addition, 'NO has a protective role in hepatic microcirculatory dysfunction during sepsis through its effect on leukocyte adherence to sinusoidal walls (25). Furthermore, 'NO may also protect against circulatory vasocostricators during inflammation, as enhanced 'NO synthesis counteracted phenylephrine-induced increases in intrahepatic resistance in endotoxin-treated rats (26). Finally, we have recently demonstrated that different types of NOS inhibitors resulted in detectable apoptosis in the liver following LPS injection (27). This increase in apoptosis was present even with l-N-iminoethyllysine (L-NIL), a rather specific inhibitor of iNOS, revealing another important protective role of 'NO as an antiprototic agent in sepsis.

These seemingly divergent results with NOS inhibitors suggest that although overproduction of 'NO in the vasculature contributes to the vasodilation seen in septic shock, iNOS expression during inflammation also represents a beneficial, adaptive response in some organ systems. Moreover, different tissues can react distinctly to the effects of 'NO cytotoxicity. In this setting, global nonselective inhibition of NOS, including the potentially undesirable consequences of eNOS inhibition, would be harmful. If confirmed, this would suggest that use of isoform-specific inhibitors of NOS within the vascular bed would be more appropriate. Moreover, thorough pharmacokinetic studies of these agents are warranted to ensure their safe and effective use. A recent study reported that S-methyl-isothiourea, a relatively selective inhibitor of iNOS activity, decreased pulmonary leak and improved survival in endotoxia (28). However, because of the tissue-protective and antiapoptotic effects of 'NO, even selective iNOS inhibitors may be detrimental in certain tissues during sepsis. In the future, combining the salutary effects of site-specific local donors that exploit the cytoprotective actions of 'NO with specific agents that combat the deleterious hypotensive and tissue-damaging effects of 'NO overproduction may be needed to treat septic shock (10). In this regard, inhaled 'NO gas has shown promise as a selective pulmonary vasodilator in patients.
with pulmonary hypertension associated with sepsis (29). Any 'NO gas reaching the bloodstream is quickly inactivated by binding to hemoglobin, thereby limiting adverse dilatatory effects in the systemic circulation. Furthermore, we have recently reported the efficacy of a liver-selective 'NO produg in blocking TNF-α-induced apoptosis and toxicity in the liver with little effect on systemic blood pressure (30). This produg is selectively metabolized to biologically active 'NO in hepatocytes only, resulting in elevation of hepatic cGMP levels.

Another approach to reducing 'NO bioavailability may be the use of 'NO scavengers. By impeding the reaction between 'NO and reactive oxygen species, 'NO scavengers may reduce the tissue-damaging consequences of free radical formation without overinhibition of eNOS or iNOS. There has been considerable interest recently in the use of cell-free hemoglobin in septic shock. The pressor response seen with cell-free hemoglobin has been attributed to 'NO scavenging by the heme (31).

Role of 'NO in Hemorrhagic Shock

Physiologic studies of hemorrhagic shock (HS) have shown that in the face of severe, prolonged hypovolemia, the neuroendocrine responses characteristic of compensated shock begin to fail and a compensated state develops (32). This compensatory phase is characterized by peripheral vasodilatation, capillary leak, and hyperactivity to pressor agents (33). Recent studies have focused on 'NO as a possible mediator of decomposition, with increases in iNOS activity being reported in several organs after prolonged hemorrhagic shock (34). In addition, inhibition of 'NO formation after hemorrhage not only increased arterial pressure but also improved renal blood flow, glomerular filtration rate, and short-term survival (35,36). This has led to speculation that 'NO production has a harmful effect during HS and that NOS inhibitors may provide therapeutic benefit. However, there is conflicting evidence suggesting 'NO synthesis has a protective function. Nonspecific 'NO blockade increased shock-induced hepatic injury, an effect that was reversible with l-arginine (37). A recently published study reports that the presence of an NOS inhibitor, L-NAME, during resuscitation from hemorrhage prevented the restoration of hepatic arterial blood flow, suggesting a role for 'NO-mediated vasodilatation in preventing hepatic ischemia during HS (38). In addition, the administration of 'NO donors has been beneficial in models of traumatic shock, hemorrhagic shock, and mesenteric ischemia-reperfusion injury (39). These latter studies suggest diminished 'NO production occurs with hemorrhage. These findings are consistent with those in trauma patients, where nitrite and nitrate levels were reduced for prolonged periods after injury (17,40). This impairment of 'NO production in victims of hemorrhagic hypotension may be due to impairment of eNOS, and indeed, several investigators have demonstrated decreased vasodilatory activity in vascular rings taken from hemorrhaged animals in response to agonists that stimulate endothelial 'NO production (41). Furthermore, we recently showed that vascular decomposition is not due to excessive 'NO production by the induced enzyme (42). Rats subjected to HS were observed as they progressed from compensated shock to decompensated shock and ultimately irreversibility. No iNOS expression could be detected until the very late irreversible phase of HS. The hemodynamic instability associated with decomposition occurred well before NOS induction, indicating other factors or vasoactive mediators must be involved in decomposition (42).

The role of iNOS activity in HS remains unclear, but recent studies suggest that iNOS upregulation plays an important role in the inflammatory response that occurs in sustained HS followed by resuscitation. Using either the selective inhibitor L-NIL or iNOS knockout mice, we found that iNOS inhibition or deficiency not only prevented the upregulation of the inflammatory cytokines IL-6 and granulocyte colony-stimulating factor following resuscitation from HS but also produced a marked reduction in lung and liver injury (43). Furthermore, the activation of the proinflammatory transcriptional factors nuclear factor kappa B and signal transducer and activator of transcription 3 was also reduced, suggesting iNOS upregulation has a key role in proinflammatory signaling and the subsequent activation of inflammatory cascades. Though the basis of such a 'NO-signaling pathway needs further clarification, several recent studies have implicated a possible redox-sensitive mechanism. 'NO activates the critical signaling enzyme p21ras through S-nitrosylation. This activation is enhanced by depletion of glutathione, the major antioxidant present in cells (44). In HS, tissues are subject to redox stress by hypoxia and oxygen radical formation, suggesting this 'NO-p21ras interaction may be an important cell-signaling mechanism in HS and resuscitation.

Therapeutic Implications

Just as in sepsis, these apparently discrepant findings would suggest that indiscriminate use of nonselective NOS inhibitors as an adjuvant therapy in the treatment of HS is harmful. Although NOS inhibition has improved hemodynamics in several models of HS (35,36), various examples of organ dysfunction have also been seen with their use (37,38). It may be that better understanding and characterization of the pharmacokinetics and selectivity of NOS inhibitors is needed prior to their use in HS. As an example, a recent study showed that although N-monomethyl-l-arginine (L-NMMA), a nonselective inhibitor of NOS, resulted in improved blood pressure in rats subjected to hemorrhagic insult, high-dose L-NMMA caused a marked reduction in cardiac output and stroke volume, with increased damage in various organs—deleterious effects that were avoided with low-dose L-NMMA administration (45). Furthermore, in rats subjected to HS, L-NIL-based resuscitation reduced liver damage compared to nonselective NOS inhibitors (46).

Vascular quenching of 'NO using scavengers may again provide an alternative to NOS inhibition as a means to achieve the goal of reducing 'NO levels. Use of 'NO scavengers after HS and resuscitation may serve to supplement a possibly depleted antioxidant defense system and limit the harmful effects of free radicals such as OONO− and hydroxyl radicals. Removal of 'NO by this method is complicated by the extreme rapidity of the reaction between 'NO and O2− (47). We have seen promising preliminary results with use of an iron-based 'NO scavenger. In rats subjected to HS, 'NO scavenger-based resuscitation improved liver injury and short-term survival compared to standard volume resuscitation (46).

Conclusion

In this review the emerging importance of 'NO and iNOS expression in the pathophysiology of circulatory shock has been examined. Although overproduction of 'NO may play a role in the hemodynamic
changes seen in both septic shock and hemorrhagic shock, iNOS upregulation clearly also has a beneficial protective role in several organ systems. In conditions where excess NO production results in maladaptive damaging consequences with disruption of homeostasis, the therapeutic strategy should be to remove this surplus NO without adversely affecting the cytoprotective actions of NO. Clearly, interfering with the physiologic and microcirculatory role of eNOS through nonselective, global inhibition of NOS is undesirable in shock (Table 1). Though considerable progress has been made over the last decade, further improving our understanding of the pathophysiology involved in these processes and learning more about the complex and diverse actions of NO will help in developing more coherent, efficacious therapeutic interventions.

Table 1. Effects of nitric oxide in endotoxemia and hemorrhagic shock and proposed therapeutic strategies for manipulation of nitric oxide production.

	Endotoxemia	Hemorrhagic shock
Effects of NO by eNOS	Beneficial—maintains perfusion; cytoprotective	Beneficial—maintains perfusion; cytoprotective
iNOS	Beneficial and toxic—depending on site of production and microenvironment	Beneficial and toxic—can induce tissue damage and promote inflammation with sustained shock
Therapeutic strategy	Avoid	Avoid
Inhibition of eNOS	Possibly desirable—to reduce cytotoxicity and combat hypotension	Possibly desirable—to limit exaggerated inflammatory response and development of multiple organ dysfunction syndrome
NO scavengers	Probably desirable—quench extracellular NO without inhibition of eNOS or iNOS; supplement antioxidant defenses	Probably desirable—quench extracellular NO without inhibition of eNOS or iNOS; supplement antioxidant defenses
NO donors	Possibly desirable—site-specific donors without adverse systemic side effects; limited availability	Possibly desirable—site-specific donors without adverse systemic side effects; limited availability

REFERENCES AND NOTES

1. Palmer RM, Ferrige AG, Moncada S. Nitric oxide accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526 (1987).
2. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelial-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84:9265–9269 (1987).
3. Moncada S, Higgs A, Furchgott R. International Union of Pharmacology nomenclature in nitric oxide research. Pharmacol Rev 49:137–142 (1997).
4. Nussler AK, Billiar TR. Inflammation, immunoregeneration and inducible nitric oxide synthase. J Leukoc Biol 54:171–178 (1993).
5. Guillen K, Krusman MA. The hypoxic response: huffing and puffing. Cell 89:9–12 (1997).
6. Busse R, Mulsch A. Induction of nitric oxide synthase by cytokines in vascular smooth muscle cells. FEBS Lett 275:87–90 (1990).
7. Palmer RM. The discovery of nitric oxide in the vessel wall: a unifying concept in the pathogenesis of sepsis. Arch Surg 128:396–401 (1993).
8. Payen D, Bernard C, Beloucif S. Nitric oxide in sepsis. Clin Chest Med 17:333–350 (1996).
9. Rubanyi G, Ho E, Cantor E. Cytoprotective function of nitric oxide: inactivation of superoxide radicals produced by human leukocytes. Biochem Biophys Res Comm 180:1392–1397 (1991).
10. Billiar TR. Nitric oxide: a novel biology of clinical relevance. Ann Surg 221:339–349 (1995).
11. Gross SS, Levi R. Tetrahydrobiopterin synthesis, an absolute requirement for cytokine-induced nitric oxide generation by vascular smooth muscle cells. J Biol Chem 267:722–5 (1992).
12. Moncada S. The l-arginine-nitric oxide pathway. Acta Physiol Scand 145:201–227 (1992).
13. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624 (1990).
14. Haddad IY, Pataki G, Hu P, Galliani C, Beckman JS, Matalon S. Quantitation of nitrotyrosine levels in lung sections of patients and animals with acute lung injury. J Clin Invest 94:2407–2413 (1994).
15. Lefer DJ, Scalia R, Campbell B, Nossuli TO, Hayward R, Salamon N, Grayson J, Lefer AM. Peroxynitrite inhibits leukocyte-endothelial cell interactions and protects against ischemia-reperfusion injury in rats. J Clin Invest 99:684–691 (1997).
16. Thiemermann C. The role of l-arginine-nitric oxide pathway in circulatory shock. Adv Pharmacol 28:45–79 (1994).
17. Ochoa JB, Udékwu AO, Billiar TR, Curran RD, Cerra FB, Simmons RL, Peitzman AB. Nitrogen oxide levels in patients after trauma and during sepsis. Ann Surg 214:621–626 (1991).
18. Ochoa JB, Curti B, Peitzman AB, Simmons RL, Billiar TR, Hoffman R, Rault R, Longo DL, Urb J, Ochoa AC. Increased circulating nitrogen oxides after human tumor immunotherapy. J Natl Cancer Inst 84:864–867 (1992).
19. Wolfe TA, Dasta JF. Use of nitric oxide synthase inhibitors as a novel treatment for septic shock. Ann Pharmacother 29:36–46 (1995).
20. Petros A, Lamb G, Leone A, Moncada S, Bennett D, Vallance P. Effects of a nitric oxide synthase inhibitor in humans with septic shock. Cardiovasc Res 28:34–39 (1994).
21. Spain DA, Wilson MA, Garrison RN. Nitric oxide synthase inhibition exacerbates sepsis-induced renal hypoperfusion. Surgery 116:322–331 (1994).
22. Hutcheson IR, Brendan J, Whittle BR, Boughton-Smith NK. Role of nitric oxide in maintaining vascular integrity in endotoxin-induced acute intestinal damage in the rat. Br J Pharmacol 101:815–820 (1990).
23. Harbrecht BG, Billiar TR, Stadler J, Demetriss AJ, Ochoa JB, Curran RD, Simmons RL. Nitric oxide serves to reduce hepatic damage during acute murine endotoxemia. Crit Care Med 20:1568–1574 (1992).
24. Harbrecht BG, Billiar TR, Stadler J, Demetriss AJ, Ochoa JB, Curran RD, Simmons RL. Inhibition of nitric oxide synthesis during endotoxemia promotes intrahepatic thrombosis and an oxygen-radical mediated hepatic injury. J Leukoc Biol 52:390–394 (1992).
25. Nishida J, McCusky RS, McDonnell D, Fox ES. Protective role of nitric oxide in hepatic microcirculatory dysfunction during endotoxemia. Am J Physiol 267:G1135–G1141 (1994).
26. Pastor CM, Billiar TR. Nitric oxide causes hyperreactivity to phenylephrine in isolated perfused livers from endotoxin-treated rats. Am J Physiol 268:G177–G182 (1995).
27. Ou J, Carlos TM, Watkins SC, Saavedra JE, Keefer JK, Kim YM, Harbrecht BG, Billiar TR. Differential effects of non-selective nitric oxide synthase (NOS) and selective inducible NOS inhibition on hepatic necrosis, apoptosis, ICAM-1 expression, and PMN accumulation during endotoxemia. NO: Biol Chem 1:404-416 (1990).

28. Szabo C, Southan G, Thiemermann C. Beneficial effects of increased survival in rodent models of sepsis with S-methylisothiourea, a novel, potent and selective inhibitor of inducible nitric oxide synthase. Proc Natl Acad Sci USA 91:472-476 (1994).

29. Rossaint R, Falke KJ, Lopez F, Slarma K, Pison U, Zapol WM. Inhaled nitric oxide for the adult respiratory distress syndrome. N Engl J Med 328:399-405 (1993).

30. Saavedra JE, Billiar TR, Williams DL, Kim Y-M, Watkins SC, Keefer JK. Targeting nitric oxide (NO) delivery in vivo. Design of a liver-selective NO donor prodrug that blocks tumor necrosis factor-α-induced apoptosis and toxicity in the liver. J Med Chem 40:1947-1954 (1997).

31. Jia L, Bonaventura C, Bonaventura J, Stamler JS. S-Nitrosohemoglobin: a dynamic activity of blood involved in vascular control. Nature 380:221-226 (1996).

32. Bond FR, Green HD. Peripheral circulation. In: Handbook of Shock and Trauma. Vol I: Basic Science (Altura BM, Lefer AM, Schumner W, eds). New York:Raven Press, 1983:29-49.

33. Peitzman AB, Billiar TR, Harbrecht BG, Kelly E, Slamma AO, Simmons RL. Hemorrhagic shock. Curr Prob Surg 32:925-1012 (1995).

34. Thiemermann C, Szabo C, Mitchell JA, Vane JR. Vascular hyporeactivity to vasoconstrictor agents and hemodynamic compensation in hemorrhagic shock is mediated by nitric oxide. Proc Natl Acad Sci USA 90:267-271 (1993).

35. Klabunde RE, Slayton KJ, Rigter RC. α-N-Methyl-L-arginine restores arterial pressure in hemorrhaged rats. Circ Shock 40:47-52 (1993).

36. Lieberthal W, McGarry AE, Shiels, J, Valeri CR. Nitric oxide inhibition in rats improves blood pressure and renal function during hypovolemic shock. Am J Physiol 261:F868-872 (1991).

37. Harbrecht BG, Wu B, Watkins SC, Marshall HP, Peitzman AB, Billiar TR. Inhibition of nitric oxide synthase during hemorrhagic shock increases hepatic injury. Shock 4:332-337 (1995).

38. Pannen BH, Bauer M, Noldge-Schonburg GFE, Zhang JX, Robotham JL, Clemens MG, Geiger KK. Regulation of hepatic blood flow during resuscitation from hemorrhagic shock: role of nitric oxide and endothelins. Am J Physiol 272:H2736-2745 (1997).

39. Lefer AM, Lefer DJ. Pharmacology of the endothelium in ischemia-reperfusion and circulatory shock. Annu Rev Pharmacol Toxicol 33:71-90 (1993).

40. Jacob TD, Ochoa JB, Udekwu AO, Wilkinson J, Murray T, Billiar TR, Simmons RL, Marion DW, Peitzman AB. Nitric oxide production is inhibited in trauma patients. J Trauma 35:590-597 (1993).

41. Wang P, Ba ZF, Chaudry IH. Endothelial cell dysfunction occurs very early following trauma-hemorrhage and persists despite fluid resuscitation. Am J Physiol 265:H973-H979 (1993).

42. Kelly E, Shah NS, Morgan NN, Watkins SC, Peitzman AB, Billiar TR. Physiological and molecular characterization of the role of nitric oxide in hemorrhagic shock: evidence that type II nitric oxide synthase does not regulate vascular compensation. Shock 7:157-163 (1997).

43. Hierholzer C, Harbrecht B, Menezes JM, Kane J, MacMicking J, Nathan CF, Peitzman AB, Billiar TR, Tweardy DJ. Essential role of induced nitric oxide in the initiation of the inflammatory response after hemorrhagic shock. J Exp Med 187:917-928 (1998).

44. Lander HM, Hajjar DP, Hempstead BL, Mirza UA, Chait BT, Campbell S, Quilliam LA. A molecular redox switch on p21WAF1. J Biol Chem 272:4323-4326 (1997).

45. Yao Y-M, Bährami S, Leichfried G, Redl H, Schlag G. Significance of nitric oxide in hemorrhage-induced hemodynamic alterations, organ injury and mortality in rats. Am J Physiol 270:H1616-H1623 (1996).

46. J Menezes. Unpublished data.

47. Huie RE, Padmaja S. The reaction of NO with superoxide. Free Radic Res Commun 18:479-482 (1993).