Developmental-stage-specific triacylglycerol biosynthesis, degradation and trafficking as lipid bodies in Plasmodium falciparum-infected erythrocytes

Nirianne Marie Q. Palacpac1, Yasushi Hiramine2, Fumika Mi-ichi1,3,4, Motomi Torii5, Kiyoshi Kita4, Ryuji Hiramatsu2, Toshihiro Horii3 and Toshihide Mitamura1,3,*

1PRESTO, Japan Science and Technology Corporation, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
2Sumitomo Chemical, 4-2-1 Takatsukasa, Takarazuka, Hyogo 665-0051, Japan
3Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
4Department of Biomedical Chemistry, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyou-ku, Tokyo 113-0033, Japan
5Department of Molecular Parasitology, Ehime University School of Medicine, Shigenobu-cho, Ehime 791-0295, Japan

*Author for correspondence (e-mail: mitamura@biken.osaka-u.ac.jp)

Accepted 13 November 2003
Journal of Cell Science 117, 1469-1480 Published by The Company of Biologists 2004
doi:10.1242/jcs.00988

Summary
Triacylglycerol (TAG) serves as a major energy storage molecule in eukaryotes. In Plasmodium, however, this established function of TAG appears unlikely, despite detecting previously considerable amount of TAG associated with intraerythrocytic parasites, because plasmodial cells have very little capacity to oxidize fatty acids. Thus, it is plausible that TAG and its biosynthesis in Plasmodium have other functions. As a first step in understanding the biological significance of TAG and its biosynthesis to the intraerythrocytic proliferation of Plasmodium falciparum, we performed detailed characterization of TAG metabolism and trafficking in parasitized erythrocyte. Metabolic labeling using radiolabeled-oleic and palmitic acids in association with serum albumin, which have been shown to be among the serum essential factors for intraerythrocytic proliferation of P. falciparum, revealed that accumulation of TAG was strikingly pronounced from trophozoite to schizont, whereas TAG degradation became active from schizont to segmented schizont; the consequent products, free fatty acids, were released into the medium during schizont rupture and/or merozoite release. These results were further supported by visualization of lipid bodies through immunofluorescence and electron microscopy. At the schizont stages, there is some evidence that the lipid bodies are partly localized in the parasitophorous vacuole. Interestingly, the discrete formation and/or trafficking of lipid bodies are inhibited by brefeldin A and trifluoperazine. Inhibition by trifluoperazine hints at least that a de novo TAG biosynthetic pathway via phosphatidic acid contributes to lipid body formation. Indeed, biochemical analysis reveals a higher activity of acyl-CoA:diacylglycerol acyltransferase, the principal enzyme in the sn-glycerol-3-phosphate pathway for TAG synthesis, at trophozoite and schizont stages. Together, these results establish that TAG metabolism and trafficking in P. falciparum-infected erythrocyte occurs in a stage-specific manner during the intraerythrocytic cycle and we propose that these unique and dynamic cellular events participate during schizont rupture and/or merozoite release.

Key words: Malaria, Nile Red, Neutral lipid, Acyl-CoA:diacylglycerol acyltransferase, Brefeldin A, Fatty acid

Introduction
Plasmodium falciparum is responsible for the most virulent form of malaria, a disease that exerts an enormous toll in terms of mortality and morbidity worldwide, particularly in Africa. In its life cycle, the parasite cell enters the intraerythrocytic stage, when the complexity of malaria pathogenesis appears. The dramatic increase in total lipid content of the infected erythrocyte is a significant feature associated with the intraerythrocytic Plasmodium parasites (Holz, 1977; Vial and Ancelin, 1998; Vial et al., 1982a; Vial et al., 1982b). Thus, the unique features in lipid metabolism and trafficking of P. falciparum have been attracting prompt attentions in lipid biology (Vial and Ancelin, 1998; Mitamura and Palacpac, 2003).

Triacylglycerol (TAG), which is usually found as concentrated cytoplasmic lipid droplets or oil bodies (Murphy and Vance, 1999), serves as highly reduced stores of oxidizable energy in most cells and is deemed essential for intracellular energy metabolism and homeostasis (Bell and Coleman, 1980). TAG and its biosynthesis have also been implicated in several important biological processes, including: in prokaryotes, yeasts and plants, as regulators of fatty acid (FA) composition of membrane lipids, as a FA source for biosynthesis of phospholipids (PLs), and as agents for remobilization of membrane lipids during senescence (Murphy, 1993; Dahlqvist et al., 2000; Alvarez and Steinhübel, 2002); in mammals, for milk production and thermogenesis (Murphy and Vance,
Mycobacterium of DGAT, the bifunctional wax ester synthase/DGAT, has designated as DGAT1 and DGAT2 (which exhibit no sequence 1980; Lehner and Kuksis, 1996). To date, two DGAT families, acyl-CoA:DAG acyltransferase (DGAT) (Bell and Coleman, Materials and Methods through metabolic labeling, immunofluorescence and electron detail characterization of TAG metabolism and trafficking intraerythrocytic growth. To test this theory, we performed grown in vivo and in vitro (Beach et al., 1977; Vial et al., 2002) have been reported, suggesting that TAG and its biosynthesis might also have possible roles in establishing parasite infection in a host and a possible role in pathogenesis of infectious diseases. The correlation between specific bacterial or parasitic infections and lipid body formation also suggests that they might be markers of pathological changes.

The sn-glycerol-3-phosphate pathway (also called the Kennedy pathway) has been suggested to be the major route for de novo TAG biosynthesis in all TAG-accumulating organisms (Lehner and Kuksis, 1996). This pathway involves the stepwise acylation of sn-glycerol-3-phosphate and/or dihydroxyacetone phosphate to phosphatidic acid. Phosphatidic acid is then hydrolysed to sn-1,2-diacylglycerol (DAG). These steps are shared with the glycerophospholipid (GPL) biosynthesis. The enzyme that catalyses the final and rate-limiting step, involving the transfer of the acyl group from acyl-CoA to the sn-3 position of sn-1, 2-DAG to form TAG, is acyl-CoA:DAG acyltransferase (DGAT) (Bell and Coleman, 1980; Lehner and Kuksis, 1996). To date, two DGAT families, designated as DGAT1 and DGAT2 (which exhibit no sequence homologies to each other), have been identified in animals, fungi and plants (Cases et al., 1998; Oelkers et al., 1998; Cases et al., 2001; Lardizabal et al., 2001). In addition, a new type of DGAT, the bifunctional wax ester synthase/DGAT, has been identified in some Gram-negative bacteria, several Mycobacterium and Arabidopsis thaliana (Kalscheuer and Steinbüchel, 2003). Recently, the contribution of DGAT to mammalian TAG metabolism and its involvement in diet-induced obesity have been demonstrated using DGAT1-deficient mice (Smith et al., 2000).

The importance of TAG metabolism and its involvement in lipid homeostasis in eukaryotes and some human diseases has been well recognized. However, the implications for infectious diseases are just being discerned. In Plasmodium parasites, which are etiological agents for malaria, the biological significance of TAG and its metabolism is, moreover, an intriguing issue because plasmodial parasites are believed to possess little or no capacity for the oxidative degradation of FAs (e.g. β-oxidation) (Holz, 1977), although increased TAG levels have been reported in the mature forms of parasites grown in vivo and in vitro (Beach et al., 1977; Vial et al., 1982a; Vial et al., 1982b). Thus, we infer that Plasmodium cells use TAG for other means than as an energy source during intraerythrocytic growth. To test this theory, we performed detail characterization of TAG metabolism and trafficking through metabolic labeling, immunofluorescence and electron microscopy (EM), and enzyme activity assay.

Materials and Methods

Materials

Palmitic acid, 1, 2-sn-dioleoylglycerol, cholesterol (Cho), cholesteryl palmitate, brefeldin A (BFA), 6-diamidino-2-phenyldindole (DAPI), intact bovine serum albumin (BSA) and FA-free BSA were purchased from Sigma-Aldrich (Japan); FA-free BSA was used as lipid-free BSA (LFBSA). Oleic acid, phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were from Avanti Polar Lipids (AL, USA). 1,2-DAG, 1,3-DAG and TAG were from Doosan Serdary Research Laboratories (Kyungki-do, Korea). [1-3C]-Oleic acid (50 mCi mmol–1) and [palmitoyl-1-14C]-palmitoyl-CoA (55 mCi mmol–1) were from NEN Life Science Products (MA, USA) and Amersham Biosciences (Japan), respectively. Silica gel 60 thin layer chromatography (TLC) and high-performance TLC (HPTLC) plates were obtained from Merck (Darmstadt, Germany). Nile Red and Bodipy 493/503 were from Molecular Probes (OR, USA). Sudan III and trifluoroperazine (TFP) from Wako Pure Chemicals (Japan). Stock solutions of IBSA, LFBSA and each lipid species used for parasite culture and metabolic labeling experiments were as described (Mitamura et al., 2000), Rabbit anti-serine repeat antigen (SERA) antiserum was prepared using the purified recombinant SE47Δ193-225 protein (Pang et al., 1999) and purified using a protein-A column.

Parasite culture

The P. falciparum parasite lines used are Honduras-1 (Mitamura et al., 2000), 3D7 and Dd2 (Hanada et al., 2002). Parasite cells were routinely maintained as described (Hanada et al., 2000; Mitamura et al., 2000). Tightly synchronized cultures within a 4-hour life span were prepared for all analyses (initial parasitemia, -0.5%; hematocrit, 3%) (Mitamura et al., 2000). The media used were: basal medium (Mitamura et al., 2000), standard medium (basal medium supplemented with 10% human serum) and serum-free medium (basal medium with 30 μM each of palmitic and oleic acids reconstituted in 60 μM LFBSA).

Parasite cultures were verified free from mycoplasma contamination using 1 ml culture for a nested polymerase chain reaction (PCR) with the primer sets provided in the Mycoplasma Detection Kit Version 2.0 (ATCC bioproduct; 90-1001K).

Metabolic labeling experiments

To measure the incorporation of radiolabeled FA into various lipid species, 5 ml tightly synchronized cultures of Honduras-1 were labeled in serum-free medium containing [14C]-oleic acid (specific activity 8.3 mCi mmol–1), with medium change every 12 hours. At various times, cultures were harvested thoroughly with 9 ml chilled basal medium. The precipitated erythrocytes were back-extracted for 5 minutes on ice with 9 ml solution A (basal medium supplemented with 60 μM LFBSA), followed by washing with 9 ml each of chilled solution A and basal medium. Pelleted cells were disrupted by mixing with 0.65 ml chilled deionized water using a vortex mixer. Finally, total lipids were extracted according to Bligh and Dyer (Bligh and Dyer, 1959), aliquoted and kept at 4°C until use.

For pulse-chase experiments, tightly synchronized cultures of Honduras-1 were incubated in serum-free medium, freshly changed every 12 hours. After 30 hours incubation, cultures were harvested thoroughly with an equal volume of solution A and the precipitated erythrocytes were washed once with solution A. The cells were then labeled for 4 hours in the labeling medium described above (specific activity of [14C]-oleic acid, 16.6 mCi mmol–1). After labeling, 5 ml cultures were harvested completely by washing with 9 ml chilled basal medium and the erythrocytes precipitated were back-extracted for 5 minutes on ice with 10 ml solution A, followed by washing twice in the same solution (10 ml). The labeled cells were chased for 20 hours in a basal medium supplemented with 60 μM IBSA without medium change. Every 4 hours after chasing, erythrocytes and culture supernatant were collected separately. All cells harvested from 5 ml culture were washed once with 9 ml chilled basal medium and then subjected to lipid extraction as described above, while the collected culture supernatant was directly used for lipid extraction.

Extracted lipid species were separated on silica gel 60 TLC plates using solvent systems of hexane/diethyl ether/acetic acid (70:30:1,
were washed twice with PBS, incubated in the dark for 5-10 minutes described (Greenspan et al., 1985; Gocze and Freeman, 1994). Cells
52 hours to monitor the changes in the staining pattern of Nile Red
Aliquots of tightly synchronized cultures of Dd2, 3D7 and Honduras-
Immunofluorescence microscopy
Measurement of neutral lipid content
Tightly synchronized cultures of Honduras-1 grown in standard medium were enriched to 92-98% mature forms by Percoll gradient. Pelleted cells were back-extracted twice in 10 ml solution A and washed twice in 10 ml basal medium before lipid extraction as described above. Extracted lipids were dissolved in 1 ml chloroform, 100 µl aliquot was used for quantification of phosphate and the rest was dried before resuspension in 20 µl chloroform for TLC analysis to quantify the neutral lipid species. Uninfected erythrocytes, treated similarly, were used for controls.
For phosphate quantification, the chloroform solution was dried, resuspended in 5 ml distilled water and 1 ml of potassium peroxodisulfate solution (0.04 g ml⁻¹), and autoclaved at 120°C for 30 minutes. To the supernatant (2.5 ml), 200 µl of developing solution (5:1 solution, v/v, of 1.44 mM bis-[(+)-tartrato]diantimonate[III] dipotassium trihydrate in 19.42 mM hexammonium heptamolybdate tetrahydrate; 0.409 M ascorbic acid) was added and allowed to stand for 15 minutes at 30°C. After reading the absorbance at 880 nm, the phosphate amount for every sample was determined using the potassium dihydrogenphosphate standard curve (phosphate amount, 0-5 µg; linear regression coefficient, ≥0.9991). The PL content was calculated based on one phosphate molecule for each PL species.
For quantification of neutral lipids, one-half or one-tenth of the chloroform solution prepared for TLC analysis was developed in silica gel 60 HPTLC plates using diethylether/petroleum ether/acetonic acid (30:170;2, v/v/v). The plates were sprayed with 50% sulfate solution in methanol (v/v), baked for 15 minutes at 180°C and scanned with Multi Reader 1200U (NEC, Japan). The position of each lipid species was determined using the standard curves for each neutral lipid species drawn with sequential series and propylene oxide before embedding in the epoxy resin Glycidether 100 (Boehringer Ingelheim Bioproducts, Germany). Sections were sequentially stained with 2% uranyl acetate in 50% methanol and Reynolds’ lead citrate before viewing in a JEM-1230 transmission electron microscope (JEOL, Japan). At least 100 sections were observed in various stages analysed.
Effect of brefeldin A and trifluoperazine treatment
For BFA treatment, BFA (5 µg ml⁻¹) or ethanol (0.1%) was added to cultures of 4-hour-old rings up to 26 hours or 30 minutes. After BFA incubation at the indicated times, parasite cells were either smeared onto glass slides, stained with Nile Red or Bodipy 493/503, or washed and re-cultured in standard medium for another 6-8 hours to ensure the viability of cells after treatment.
For TFP treatment, TFP (100 µM or 500 µM) or ethanol (0.1%) was added to tightly synchronized cultures at 30 hours (mature trophozoite stage). 3 hours after incubation, parasite cells were processed as above.

DGAT activity assay
Cell lysate as an enzyme source was prepared from uninfected and P. falciparum-infected erythrocyte ghosts, as well as parasite cells isolated from parasitized erythrocyte by saponin treatment as described (Hanada et al., 2000) except that cells were disrupted by one-time freeze-thawing instead of sonication. When indicated, isolated parasite cells prepared by saponin treatment were disrupted through N₂ cavitation method with a 4639 cell disruption bomb from
Parr Instrument (IL, USA) (Takashima et al., 2001) and stored at –80°C until use. The DGAT activity assay was performed as described (Coleman and Bell, 1976) with slight modifications. The reaction mixture was formulated in a total volume of 150 μl containing the indicated amount of lysate, 0.5 mM 1,2-sn-dioleoylglycerol, 30 μM \(^{14}\text{C}\)-palmitoyl-coenzyme-A (specific activity 5 mCi mmol\(^{-1}\) or 13.75 mCi mmol\(^{-1}\)), 0.25 M sucrose, 1 mM EDTA, 1.8 μM LFBSA, 0-100 mM MgCl\(_2\) and 100 mM Tris-HCl (pH 7.5). The enzyme reaction was started with the addition of the lysate and the assay mixture incubated for 10 minutes at ambient temperature before the reaction was terminated by adding 0.3 ml of heptane-isopropanol-H\(_2\)O solution (80:20:2, v/v/v). The lipid fraction was recovered from heptane phase after addition of 0.2 ml heptane and 0.1 ml water, dried using a vacuum concentrator, and dissolved into chloroform-methanol (1:2, v/v). The lipid species obtained were separated on silica gel 60 TLC plates using solvent systems of hexane/diethylether/acetic acid (75:25:1, v/v/v). The total amount of TAG produced was calculated by the radioactivity of the TAG spot and the final specific activity of \(^{14}\text{C}\)-palmitoyl-CoA used in each reaction. The radioactivity of each TAG spot was quantified by BAS2500 image analyzer (Fuji Photo Film, Japan), using the intensity of the authentic \(^{14}\text{C}\)-palmitoyl-CoA run in the same TLC plate as standard. A linearity of signal intensities from the different radioactivity of authentic controls was verified from 11 pCi to 11 nCi. Protein concentrations were determined by Bradford method using the Protein Assay Kit (Nippon BioRad Laboratories, Japan).

**Results**

**Incorporation of radiolabeled fatty acid into TAGs**

We have recently demonstrated that specific pairs of saturated and unsaturated FAs, the best combination of which is palmitic and oleic acids, are among the serum essential factors for the intraerythrocytic growth of *P. falciparum*, ensuring the complete cell cycle progression in vitro (Mitamura et al., 2000). The fate of these essential FAs in the intraerythrocytic parasite was investigated and its incorporation into TAG was assessed. The radiolabeled oleic acid was metabolized into various polar and neutral lipids (Fig. 1A). The incorporation into PC was preponderant (Fig. 1A) and exponential with the maturation of the parasite (Fig. 1B), corresponding to the metabolites demanded in membrane biogenesis accompanying parasite maturation (Vial et al., 1982a; Vial and Ancelin, 1998). Although the incorporation of \(^{14}\text{C}\)-oleic acid into TAG was ten times less efficient than that into PC, the level of TAG accumulation is significant and comparable to PE (Fig. 1B).

Incorporation of \(^{14}\text{C}\)-oleic acid into TAG is more stage dependent than those into PC and PE. The accumulation of TAG increased sharply from 26 hours to 38 hours, corresponding to mature trophozoite to schizont stages, after a slow lag period in the early developmental stages from 10 hours to 26 hours.

**Fig. 1.** Stage-specific incorporation of \(^{14}\text{C}\)-labeled oleic acid into TAG in *P. falciparum*-infected erythrocytes. Tightly synchronized cultures of Honduras-1 were labeled and total lipids associated with infected erythrocyte were analysed. (A) TLC of the extracted total lipid species for neutral (left) and polar (right) lipids. The positions corresponding to the authentic cold lipid species are indicated: CE, cholesteryl ester; DAG, diacylglycerol; FFA, free fatty acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; TAG, triacylglycerol. (B) Kinetics of the accumulation of various lipid species incorporated with radiolabeled oleic acid in *P. falciparum*-infected erythrocytes during intraerythrocytic development. At different time points, the distribution of lipid-associated radioactivity in TAG (filled circles), PC (open circles) and PE (open triangles) are shown. Values are the total radioactivity of each lipid from 5 ml of 3% hematocrit culture. At the top is shown the dominant parasite morphology at various sampling times. One of four independent experiments displaying similar profile is shown.
26 hours (ring to young trophozoite), whereas a steady increase in PC and PE were observed (Fig. 1B). TAG accumulation also differs from that of glycosylphosphatidylinositol (GPIs), which has been shown to occur almost exclusively from early to late trophozoites, with little to none from trophozoite to schizont (Naik et al., 2000). The difference between apparent kinetics of TAG accumulation and those of PC, PE and GPIs suggests that TAG metabolism might have important implications in the later stages of the intraerythrocytic development of parasite cells.

Incorporation levels into TAG by schizont (at 38 hours) was about 150-fold higher than in ring, about three times lower and higher than PC and PE, respectively (Fig. 1B). The increase in TAG synthesis at mature stages was also observed previously using in vitro \textit{P. falciparum} cultures and \textsuperscript{3H}-palmitate, although the exact stage of the parasite was not precisely defined (Vial et al., 1982a). Aside from TAG, 1,2-DAG and 1,3-DAG were also recovered throughout development (Fig. 1A), indicating that parasite cells have a pool of DAG, a key metabolite for both TAG and GPL biosyntheses.

The rate of degradation of \textsuperscript{14}C-labeled neutral lipid associated with infected erythrocytes during the later stages in the intraerythrocytic cycle (from mature trophozoite, schizont, segmented schizont, schizont rupture, merozoite release and merozoite invasion into new uninfected erythrocyte) was determined by pulse-chase experiment. 4 hours after transfer to the chasing medium, almost 50% of cell-associated TAG was already degraded and, from 8 hours, as much as 75% (Fig. 2B). The loss of the labeled FA by the parasite is not caused by TAG excretion to the medium as we can detect only trace amount of TAG released (Fig. 2A,B). However, a significant amount of the label recovered from the medium was associated with FFA, indicating that the accumulated cellular TAG was degraded into FFA and the consequent product was released. The radioactivity associated with FFA in the medium increased linearly from 0 hours to 8 hours during the chase corresponding to the period from schizont to schizont rupture (Fig. 2B). From 12 hours to 20 hours, when merozoites start to invade new erythrocytes, enter the second cycle and develop into new rings, radioactivity associated in the FFA released to the medium reached a plateau in parallel to the observed decrease of radioactivity associated in cellular TAG (Fig. 2B). The good inverse correlation between cellular TAG degradation and release of FFA into the medium implies the existence of lipase and also probably phospholipase activities associated with the intraerythrocytic \textit{P. falciparum}. To support this implication, the presence of various phospholipases in \textit{Plasmodium} has been suggested (Vial and Ancelin, 1998) and a candidate gene for TAG lipase, the amino acid sequence of which showed significant homology to yeast TAG lipase (Athenstaedt et al., 1999), could be found in the \textit{Plasmodium} database, PlasmoDB (http://plasmodb.org).

Composition and distribution of neutral lipid species in infected erythrocytes
To determine the extent to which the observed TAG metabolism affects the total lipid content in \textit{P. falciparum}-infected erythrocytes, its release into the culture medium during the later stages of intraerythrocytic cycle. Pulse-chase experiment using tightly synchronized cultures of Honduras-1 was performed. (A) TLC of extracted neutral lipids associated with cells and released into medium. The positions corresponding to the authentic cold lipid species are indicated: CE, cholesteryl ester; DAG, diacylglycerol; FFA, free fatty acid; TAG, triacylglycerol. (B) Kinetics of TAG degradation and the release of FFA into the culture medium. At different times, the distributions of lipid-associated radioactivity in cells (filled symbols) and medium (open symbols) are shown. Values are the total radioactivity of each lipid either from the cell or from the medium of 5 ml 3% hematocrit culture. Symbols: FFA, triangle; TAG, circle. On top is shown the dominant parasite morphology at different sampling times. A representative result is shown from two independent experiments displaying similar profiles.

Fig. 2. Degradation of the neutral lipid pool associated with \textit{P. falciparum}-infected erythrocytes and its release into the culture medium during the later stages of intraerythrocytic cycle. Pulse-chase experiment using tightly synchronized cultures of Honduras-1 was performed. (A) TLC of extracted neutral lipids associated with cells and released into medium. The positions corresponding to the authentic cold lipid species are indicated: CE, cholesteryl ester; DAG, diacylglycerol; FFA, free fatty acid; TAG, triacylglycerol. (B) Kinetics of TAG degradation and the release of FFA into the culture medium. At different times, the distributions of lipid-associated radioactivity in cells (filled symbols) and medium (open symbols) are shown. Values are the total radioactivity of each lipid either from the cell or from the medium of 5 ml 3% hematocrit culture. Symbols: FFA, triangle; TAG, circle. On top is shown the dominant parasite morphology at different sampling times. A representative result is shown from two independent experiments displaying similar profiles.
We measured the amounts of neutral and polar lipids in both mature trophozoite and schizont-rich cultures grown in standard medium. As shown in Table 1, the lipid content of mature stage parasitized erythrocyte agrees with that reported previously (Holz, 1977; Hsiao et al., 1991; Vial and Ancelin, 1998). PLs accumulated during parasite maturation accounts for 65-70% of the total lipids associated with infected erythrocyte. By contrast, with uninfected erythrocytes, the major lipids Cho and PLs account for about 50% each, with the other neutral lipids CE, TAG, DAG and FFA being barely detectable. In mature-stage parasitized erythrocytes, TAG contributed significantly to neutral lipid content. Collectively, the pattern of metabolites observed resulting from [14C]-oleic acid labeling reflects the lipid distribution in infected erythrocytes grown in standard medium, although DAG and FFA could not be significantly detected under our assay conditions. The substantial increase of TAG content in segmented schizont-infected erythrocytes grown in standard medium (akin to physiological condition) compared with other neutral lipids further suggests that TAG metabolism is functional and might play some roles at the later stages of the intraerythrocytic development.

Table 1. Lipid content of *P. falciparum*-infected erythrocytes

| Lipid species       | Lipid content (μmol/10⁹ cells) |
|---------------------|---------------------------------|
|                     | Uninfected erythrocytes (incubated for 30 hours) | Mature trophozoite/early schizont (30 hours) | Uninfected erythrocytes (incubated for 34 hours) | Segmented schizont (34 hours) |
| Phospholipids       | 0.4                             | 2.2                                   | 0.4                          | 1.9                                  |
| Neutral lipids      |                                 |                                       |                             |                                       |
| Cholesterol         | 0.60                            | 1.08                                  | 0.40                        | 0.55                                 |
| Cholesterol ester   | <0.003                          | <0.008                                | <0.003                      | <0.031                               |
| Triacylglycerol     | <0.003                          | 0.045                                 | <0.002                      | 0.113                                |
| Diacylglycerol      | <0.003                          | <0.008                                | <0.003                      | <0.032                               |
| Free fatty acids    | <0.007                          | <0.018                                | <0.007                      | <0.071                               |

Cellular lipid content of *P. falciparum*-infected erythrocytes was determined. For control, 1x10⁹ uninfected erythrocytes was used. The parasitemia for 30 and 34 hour samples is 92% and 98%, respectively, with stage distribution of 45.9% mature trophozoite, 54.1% early schizonts (30 hours) and of 1.2% mid-schizonts (>4 nuclei), 98.8% segmenters (34 hours).
make certain steps in lipid metabolism become limiting, resulting into the accumulation of intermediate metabolites. The accumulation of FFA also supports this assumption.

Visualization of lipid bodies in *P. falciparum*-infected erythrocyte

In eukaryotes, stored neutral lipids accumulate as cellular lipid droplets that can be stained by the lipid body markers, Nile Red (Greenspan et al., 1985), Bodipy 493/503 (Goeze and Freeman, 1994) and Sudan III (Fukumoto and Fujimoto, 2002). As shown in Fig. 3I-II, Nile Red and Bodipy 493/503 stained small discrete bodies highly variable in size and number in *P. falciparum*-infected erythrocyte as parasite cells undergo various stages of their intraerythrocytic development. No characteristic staining pattern was observed in uninfected erythrocytes (data not shown), indicating the specific staining of lipid bodies in parasitized erythrocytes. The relative abundance and localization of lipid bodies are stage dependent. At the ring stage, fluorescence was barely detectable (Fig. 3I-II,A) but the number of cytoplasmic fluorescent droplets increased from late trophozoite with maximum abundance at schizont stage (Fig. 3I-II,C-E). When visualized together with DAPI, most fluorescent signals are close to the nucleus at the early stages of the intraerythrocytic cycle (i.e. ring to trophozoite stage) (Fig. 3I-II,A,B) but, as development proceeds, the staining patterns from both fluorescent probes became discrete. Not all lipid bodies completely overlapped with parasite nuclei as stained with DAPI and, in some instances, Nile Red and Bodipy 493/503 staining appeared to be dispersed within the parasitized erythrocyte (Fig. 3I-II,C-E), suggesting that lipid bodies are exported at the later stages.

In segmented schizont, lipid bodies appears to be a ‘bunch of grapes’ pattern of fluorescence surrounding each nuclei, apart from some distinct, brightly homogenous fluorescence signals adjacent to them (Fig. 3I-II,E). Free merozoites observed just upon the rapture of segmented schizonts still showed the delineating pattern of fluorescence (Fig. 3L,F), whereas no merozoite released completely from the erythrocyte showed any strong fluorescence signals around cells (Fig. 3L,G), suggesting that the surrounding lipid bodies in the merozoites are degraded upon merozoite release from parasitized erythrocyte. Using 3D7 and Honduras-1, essentially the same staining pattern to that with Dd2 was observed (data not shown), indicating the phenomena on lipid body formation and their trafficking within parasitized erythrocyte are general in *P. falciparum*.

The prominent staining of lipid bodies by Nile Red and Bodipy 493/503 opens the possibility that such structures can be observed by EM. Representative images in Fig. 4 show a distinct oval translucent structure in both mature trophozoite (A) and early schizont (B). At schizont stage, consistent with Nile Red and Bodipy 493/503 staining (Fig. 3I-II,C,D), two distinct structures were observed, although no more than four structures could be seen in sections so far examined. These distinct structures are similar not only to the one demonstrated in *Toxoplasma* (Charron and Sibley, 2002) but also to the cytoplasmic lipid droplets and/or lipid bodies purified from mammalian, yeast and fungal cells (Clausen et al., 1974; Dylewski et al., 1984; Kamisaka et al., 1999; Fujimoto et al., 2001). However, no such structures could be found in the parasitophorous vacuole (PV) from schizont and segmented schizont sections.

To substantiate, if indeed, that some lipid bodies are exported to the PV, co-localization study with a known PV-associated protein, SERA (Pang et al., 1999) was undertaken. Owing to the broad emission profile of Nile Red and Bodipy 493/503, we used Sudan III to stain lipid bodies. As shown in Fig. 5A, Sudan III gave the characteristic lipid body staining pattern as observed in Fig. 3, and the regions stained by Sudan III in schizont and segmented schizont appear to lie within the area defined by SERA, suggesting the localization of lipid bodies in the PV. Confocal microscopy, however, indicate only a partial overlap between the subcellular location of lipid bodies and SERA as examined at various slices. Although regions of partial overlap (yellow areas) are prominent in the first and central slice in schizont (Fig. 5Ba), a region of partial overlap can be observed only in the central slice in segmented schizont (Fig. 5Bb). This implies that lipid bodies show differential localization/subcompartmentation from SERA within the PV as well.

**Effect of BFA and trifluoperazine on the formation and trafficking of lipid bodies**

To gain mechanistic insights into the export of lipid bodies to the cytosol of *P. falciparum*-infected erythrocytes, we tested the effect of BFA, which has been shown to inhibit the transport and sorting of intracellular molecules through the parasites’ endoplasmic reticulum (ER) (Elmdendorf and Haldar, 1993; Benting et al., 1994; Wiser et al., 1997; Adisa et al., 2001; Hayashi et al., 2001; Wickham et al., 2001). Tightly synchronized ring stage cultures treated with 5 µg ml⁻¹ BFA for 26 hours or 30 hours were compared with control cultures treated with the carrier solvent, ethanol. In control samples at 26 hours and 30 hours, when the parasites...
develop into mature trophozoites, several cytoplasmic lipid droplets were localized randomly within the parasitized erythrocytes (Fig. 6Ab,Bb), as observed in Fig. 3I-II,C. Conversely, in BFA-treated samples, the number of lipid bodies was significantly reduced (Fig. 6Aa,Ba). The effect of BFA on lipid body formation and/or their trafficking in \textit{P. falciparum}-infected erythrocytes is reversible: the treated parasites were viable and were able to continue development and lipid droplet accumulation after removal of BFA (Fig. 3C), as observed in other general secretion pathways. Although it was noted that development of the parasites was somewhat retarded by BFA treatment (approximately 4 hours delayed compared with the ethanol control, based on similar parasites as judged from DAPI and Giemsa staining), the

**Fig. 5.** Co-localization of lipid bodies with the PV marker protein SERA. (A) Fluorescent microscopic analysis of schizont-stage \textit{P. falciparum}-infected erythrocyte stained with Sudan III and anti-SERA Ab. From left to right, panels represent bright-field overlaid with DAPI, Sudan III, SERA and overlay of Sudan III and SERA. Yellow areas denote regions of overlap. Single-stained cells (top two rows) exhibit virtually no fluorescence with the opposing filter. (B) Confocal microscopic analysis of lipid bodies and SERA co-localization in schizont (a) and segmented schizont (b). Three sections are collected through the center of the parasite by confocal microscopy. The planes on the first and third row of each set are 0.55 μm apart from the plane shown in the central row. The images, left to right, are: bright field overlaid with DAPI (blue), Sudan III (red channel), SERA protein (green channel) and merge images of red and green channels. Scale bar, 2 μm.

**Fig. 6.** Inhibition in the trafficking of Nile Red fluorescent lipid bodies with BFA. Tightly synchronized cultures of 3D7 were treated with 5 μg ml\(^{-1}\) BFA or 0.1% ethanol (solvent control) for 0-26 hours (A) or 0-30 hours (B), or re-incubated for another 8 hours after BFA treatment (C). BFA inhibition of lipid body trafficking was visualized in live parasites (a) in comparison with the corresponding control culture (b). From left to right, panels represent bright-field images, DAPI signals (blue), Nile Red staining patterns (green) and merged images of DAPI and Nile Red. White areas denote regions of co-localization. Scale bar, 2 μm.
TAG metabolism and trafficking in *Plasmodium*

The effect on lipid body formation and their trafficking was still significant. The effect of BFA was also observed using Bodipy 493/503 (data not shown).

Trifluoperazine (TFP), an amphiphilic cationic drug that modulates FA incorporation into TAG in fungal cells (Kamisaka et al., 1990) was added to tightly synchronized late-trophozoite stage cultures for 3 hours. Addition of TFP at 100 μM or 500 μM caused a concomitant decrease in Nile Red fluorescent lipid bodies (Fig. 7Aa,b) compared with the control (Fig. 7Ac). This effect was reversible, as evidenced by the resumption in intraerythrocytic development and lipid body accumulation when the cells were washed and recultured in standard medium (Fig. 7B). Thus, it appears that a de novo TAG biosynthetic pathway via phosphatidic acid contributes to lipid body formation in *Plasmodium*.

Table 2. DGAT activity associated with intraerythrocytic *P. falciparum* parasites

| Enzyme source                                      | DGAT activity (pmol/min/mg) |
|----------------------------------------------------|-----------------------------|
| Uninfected erythrocyte ghost                       | 0.5±0.1                     |
| Infected erythrocyte ghost                         | 11.4±0.3                    |
| Isolated parasite cells (ring-rich)                | 17.4±2.1                    |
| Isolated parasite cells (trophozoite/schizont-rich)| 48.2±2.9                    |

DGAT activity of various lysate at 20 mM Mg²⁺ was determined. Infected and uninfected erythrocyte ghost lysate (50 μg each) were prepared by freeze-thawing, whereas isolated parasite lysate (6 μg each) was prepared by N₂ cavitation. Parasitemia of the samples used for isolated parasite lysate: ring-rich (ring, 6.62%; trophozoite, 0.00%; schizont, 0.01%), and trophozoite/schizont-rich (ring, 0.51%; trophozoite, 0.38%; schizont, 1.74%). Results are average values±s.d. of triplicate.

Fig. 7. Effect of TFP on the formation of Nile Red fluorescent lipid bodies. (A) Tightly synchronized cultures of Dd2 were treated with 100 μM (a) or 500 μM (b) TFP, or 0.1% ethanol (c) for 3 hours. (B) Parasite cultures treated with 100 μM (a) or 500 μM (b) TFP, or 0.1% ethanol (c) were re-cultured for another 6 hours. Panels in each set are, from left to right, bright field overlaid with DAPI (blue), Nile Red staining patterns (green) and merged images of DAPI and Nile Red. White areas denote regions of co-localization. Scale bar, 2 μm.

Discussion

Despite detecting previously considerable amount of TAG...
associated with intraerythrocytic parasites (Holz, 1977; Vial and Ancelin, 1998; Vial et al., 1982a; Vial et al., 1982b), there has been little interest in the study of neutral lipids, particularly TAG, probably because the observed TAG might be a product reminiscent of unnecessary metabolic pathways, considering the notion that Plasmodium parasites have little or no capacity for FA oxidation (Holz, 1977). The previous idea that lipid bodies serve solely as an inert lipid depot might have also contributed to this disparagement. However, the present study establishes that TAG metabolism and trafficking as a lipid body in P. falciparum-infected erythrocytes is indeed functioning in a stage-specific manner during the intraerythrocytic cycle given the following lines of evidence. First, intraerythrocytic parasites have the capacity to synthesize TAG actively from mature trophozoite to schizont using the serum-derived essential FAs. Second, TAG formed in parasitized erythrocytes is degraded into FFAs at the later stages, particularly from schizont to schizont rupture and merozoite release. Moreover, the FFAs formed are released into the medium during schizont rupture and/or merozoite release. Third, the intensities and numbers of lipid bodies visualized with Nile Red and Bodipy 493/503 in P. falciparum-infected erythrocyte increase during the course of intraerythrocytic development, reaching a maximum at the segmented schizont stage; also, at the trophozoite and schizont stages, a distinct oval translucent structure similar to those observed as lipid bodies in other living organisms could be visualized in parasite cytoplasm through EM. Furthermore, double labeling studies with the PV marker protein SERA showed that, at the schizont stage, lipid bodies appear to localize in the PV as well as the cytoplasm of parasitized erythrocyte aside from the parasite cytoplasm, suggesting that lipid bodies are secreted. Interestingly, this formation and/or secretion was reversibly impaired with BFA treatment. Fourth, P. falciparum-infected erythrocytes showed significant DGAT activity at the trophozoite and schizont stages, strongly suggesting that the major biosynthetic pathway for TAG in eukaryotes is active in Plasmodium. Taken together, we infer that the unique, dynamic cellular events regarding TAG metabolism and trafficking might participate in schizont rupture and/or merozoite release. Given that an apparently high amount of FFAs (which is likely to be attached to these membranes because of their localization within a limited area like the lipid body) has potential to cause membrane lysis, it is tempting to speculate that the concordance between the disappearance of fluorescence signal surrounding merozoite cells and release of FFAs into the medium during schizont rupture and/or merozoite release might be implicated in the disintegration of the PV membrane and/or the parasitized erythrocyte membrane. The molecular mechanism of how TAG metabolism and trafficking contributes to these particular steps, however, remains to be elucidated.

Another possible role of lipid bodies in Plasmodium is, as suggested in another apicomplexan parasite, Toxoplasma (Charron and Sibley, 2002), to serve as a place to concentrate diverted host cell lipids for the biogenesis of parasite membranes and possibly as a place for lipid metabolism to occur during intraerythrocytic proliferation of parasite cells. This, however, seems less probable because the apparently high amount of lipid body present in parasite cells disappeared during merozoite release. That TAG supplies fatty acyl chains for the synthesis of GPLs as well as GPI also seems unlikely, because much more radioactivity is incorporated into these lipids than into TAG and the observed accumulation of TAG is clearly delayed compared with that observed in these lipids (Vial et al., 1982b; Naik et al., 2002) (this study). The possibility that TAG in plasmoidal cells serves as a reservoir for FAs, substrates for oxidative catabolism to generate high amount of ATP, is likewise improbable because,
when assayed in our laboratory, the capacity for β-oxidation of FA in *P. falciparum*, normalized with the activity of rat succinate dehydrogenase as a control, was at least 300-fold less (data not shown).

Microscopic observations of lipid bodies during the course of intraerythrocytic development of *P. falciparum* showed that a tiny fluorescent dot (~1 μm) at early ring stage appears to increase in size (~2 μm) and number as development proceeded to later stages. These observations suggest that a tiny lipid body in the ring serves as a nucleus to mature into a bigger lipid body. Nile Red and Bodipy 493/503 fluorescence patterns that are close to the parasite nucleus as visualized by DAPI staining might also imply a close association with the ER (Murphy and Vance, 1999). Similarly, the effect of BFA treatment on lipid body formation and/or secretion into the PV and the cytoplasm of parasitized erythrocyte suggest that lipid body formation occurs at the ER and is subsequently traffic through the Golgi to its final destination. This might imply the involvement of a classical secretion pathway for lipid body trafficking, although it is also likely that lipid bodies are associated with the cytoplasmic surface of the ER and develop as the parasite cell undergoes intraerythrocytic development. The involvement of the ER to lipid body formation and trafficking is consistent with the observations that ER membranes surround lipid bodies in *Mortierella ramanniana* (Kamisaka et al., 1999), that the ER and lipid bodies found in other eukaryotes are in close contact (Murphy and Vance, 1999) and that trafficking occurs in *Toxoplasma* lipid bodies using C4-BODIPY-C9 (Charron and Sibley, 2002). Studies using BFA to demonstrate transport and/or movement of lipid bodies in other TAG accumulating cells is, however, noticeably absent from literature.

The ‘bunch of grapes’ pattern of fluorescence surrounding each nucleus as it appeared in segmented schizont is intriguing, because this observation implies continuous fusion and a constant trafficking of lipid bodies to the PV, quite oppose to general observations that lipid bodies appear as distinct spherical droplets in the cytoplasm. A possible change in the physical structure and relative lipid composition of the lipid body, whether it appears as oval/round or coalescence forms, would have contributed to our inability to obtain the characteristic lipid body structure in the PV at the EM sections of schizont and segmented schizont. The unique fluorescence pattern might, however, reflect the assumed possible role of lipid bodies related to the membrane lysis described above. Spheroidal lipidic vacuoles, which appear at the periphery of the parasites at early schizonts and disappear at the onset of merozoite formation, have been observed in *Plasmodium knowlesi* schizonts by EM (Bannister and Mitchell, 1986). No further characterization, however, was made, and thus the identity of the structure observed in *P. knowlesi* and the Nile-Red-stained lipid body shown in this study remains unclear.

The results of our drug inhibition and enzyme activity assays also provide evidence for the existence of the sn-glycerol-3-phosphate pathway for de novo TAG biosynthesis. Although TFP can affect GPL synthesis and cause nonspecific cell damage (Kamisaka et al., 1990; Pillai et al., 2002), we speculate that, in our assay system, TFP affected lipid body formation more specifically because, upon removal of the drug and incubation in standard medium, parasite cells were able to resume normal development and lipid body formation. The high activity of DGAT, the principal enzyme in the sn-glycerol-3-phosphate pathway for TAG synthesis, was observed in a stage-specific manner during the intraerythrocytic development. DGAT activity associated with the intraerythrocytic parasites showed low Mg2+ dependency, the profile of which is similar to the mammalian DGAT2 enzyme (Cases et al., 2001); however, at higher Mg2+ concentrations, a significant activity could also be observed. This profile for Mg2+ dependency suggests the presence of a plasmodial DGAT1-like enzyme and as well as a DGAT2-like enzyme, although it is also possible that the plasmodial DGAT exhibits a peculiar Mg2+ dependency profile. A BLAST search in the *P. falciparum* genome revealed that there is only one candidate gene with significant homology to DGAT1, but no candidate gene for DGAT2. We therefore considered that this candidate gene might encode a plasmodial DGAT enzyme and are currently trying to express this gene in heterologous living organisms sufficient enough to characterize the enzymatic properties of the recombinant protein.

Finally, the findings demonstrated in this study could underscore unique features of *Plasmodium* parasites that might substantiate a novel biological significance of TAG, its metabolism, and trafficking in plasmodial parasites. The identification and investigation of the genes for TAG metabolism, as well as lipid body formation and trafficking would greatly facilitate studies on this interesting issue.

We thank D. Sato for helping in confocal microscopic study, K. Tai for assisting in parasite culture, E. S. Palacpac for figure preparation, Y. Kamisaka for discussion and K. Hanada for advice about metabolic labeling.

References
Adisa, A., Albano, F. R., Reeder, J., Foley, M. and Tilley, L. (2001). Evidence for a role in a *Plasmodium falciparum* homologue of Sec31p in the export of proteins to the surface of malaria parasite-infected erythrocytes. *J. Cell Sci.* 114, 3377-3386.
Alvarez, H. M. and Steinbüchel, A. (2002). Triacylglycerols in prokaryotic microorganisms. *Appl. Microbiol. Biotechnol.* 60, 367-376.
Athenstaedt, K., Zweydtick, D., Jandrositz, A., Kohleinwe, S. D. and Daum, G. (1999). Identification and characterization of major lipid particle proteins of the yeast *Saccharomyces cerevisiae*. *J. Bacteriol.* 181, 6441-6448.
Bannister, L. H. and Mitchell, G. H. (1986). Lipidic vacuoles in *Plasmodium knowlesi* erythrocytic schizonts. *J. Protozool.* 33, 271-275.
Beach, D. H., Sherman, J. W. and Holz, G. G., Jr (1977). Lipids of *Plasmodium lophurae*, and of erythrocytes and plasmas of normal and *P. lophurae*-infected pekin ducklings. *J. Parasitol.* 63, 62-75.
Bell, R. M. and Coleman, R. A. (1980). Enzymes of glycerolipid synthesis in eukaryotes. *Annu. Rev. Biochem.* 49, 459-487.
Benting, J., Mattei, D., and Lingebach, K. (1994). Brefeldin A inhibits transport of the glycoporphin-binding protein from *Plasmodium falciparum* into the host erythrocyte. *Biochem. J.* 300, 821-826.
Bligh, E. G. and Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. *Can. J. Biochem. Physiol.* 37, 911-917.
Cases, S., Smith, S. J., Zheng, Y.-W., Myers, H. M., Lear, S. R., Sande, E., Novak, S., Collins, C., Welch, C. B., Lusis, A. J. et al. (1998). Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. *Proc. Natl. Acad. Sci. USA* 95, 13018-13023.
Cases, S., Stone, S. J., Zhou, P., Yen, E., Tow, B., Lardizabal, K. D., Voelker, T. and Farese, R. V., Jr (2001). Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members. *J. Biol. Chem.* 276, 38870-38876.
Charron, A. J. and Sibley, L. D. (2002). Host cells: mobilizable lipid resources for the intracellular parasite *Toxoplasma gondii*. *J. Cell Sci.* 115, 3049-3059.
Claussen, M. K., Christiansen, K., Jensen, P. K. and Behnek, O. (1974). Isolation of lipid particles from baker’s yeast. *FEBS Lett.* 43, 176-179.
Greenspan, P., Mayer, E. P. and Fowler, S. D. (1993). Identification and localization of ERD2 in the malaria parasite Plasmodium falciparum: separation from sites of sphingomyelin synthesis and implications for organization of the Golgi. EMBO J. 12, 4763-4773.

Fukumoto, S. and Fujimoto, T. (2002) Deformation of lipid droplets in fixed samples. Histochem. Cell Biol. 118, 423-428.

Fujimoto, T., Kogo, H., Ishiguro, K., Tauchi, K. and Nomura, R. (2001). Cavelin-2 is targeted to lipid droplets, a new ‘membrane domain’ in the cell. J. Cell Biol. 152, 1079-1085.

Garton, N. J., Christensen, H., Minnikin, D. E., Adegbola, R. A. and Barer, M. R. (2002). Intracellular lipid inclusions of Mycobacteria in vitro and in sputum. Microbiology 148, 2951-2958.

Goce, P. M. and Freeman, D. A. (1994). Factors underlying the variability of lipid droplet fluorescence in MA-10 Leydig tumor cells. Cytometry 17, 151-158.

Greenspan, P., Mayer, E. P. and Fowler, S. D. (1985). Nile red: a selective fluorescent stain for intracellular lipid droplets. J. Cell Biol. 100, 965-974.

Hanada, K., Mitamura, T., Fukasawa, M., Magistrado, P. A., Horii, T. and Nishijima, M. (2000). Neutral sphingomyelinase activity dependent on Mg2+ and anionic phospholipids in the intracellular malaria parasite Plasmodium falciparum. Biochem. J. 346, 671-677.

Hanada, K., Palacpac, N. M. Q., Magistrado, P. A., Kurokawa, K., Rai, G., Sakata, D., Hara, T., Horii, T., Nishijima, M. and Mitamura, T. (2002). Plasmodium falciparum phospholipase C hydrolyzing sphingomyelin and lysocholine phospholipids is a possible target for malaria chemotherapy. J. Exp. Med. 195, 23-34.

Hayashi, M., Taniguchi, S., Ishizuka, Y., Kim, H. S., Wataya, Y., Yamamoto, A. and Moriyama, Y. (2001). A homologue of N-ethylmaleimide-sensitive factor in the malaria parasite Plasmodium falciparum is exported and localized in vesicular structures in the cytoplasm of infected erythrocytes in the brefeldin A-sensitive pathway. J. Biol. Chem. 276, 15249-15255.

Holz, G. G., Jr (1977). Lipids and the malaria parasite. Bull. WHO 55, 237-248.

Hsiao, I. L., Howard, R. I., Aikawa, M. and Taraschi, T. F. (1991). Modulation of host cell membrane lipid composition by the intraerythrocytic human malaria parasite Plasmodium falciparum. Biochem. J. 274, 121-132.

Kalscheuer, R. and Steinbüchel, A. (2003). A novel bifunctional wax ester synthase/acylCoA: diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. J. Biol. Chem. 278, 8075-8082.

Kamisaka, Y., Yokochi, T., Nakahara, T. and Suzuki, O. (1990). Modulation of fatty acid incorporation and desaturation by trifluoperazine in fungi. Lipids 25, 787-792.

Kamisaka, Y., Noda, N., Sakai, T. and Kawasaki, K. (1999). Lipid bodies and lipid body formation in an oleaginous fungus, Mortierella ramanniana var. angalispora. Biochim. Biophys. Acta 1438, 185-198.

Lardizabal, K. D., Mai, J. T., Wagner, N. W., Wyrick, A., Mai, J. T. and Hawkins, D. J. (2001). DGAT2 is a new diacylglycerol acyltransferase gene family. Purification, cloning and expression in insect cells of two polypeptides from Mortierella ramanniana with diacylglycerol acyltransferase activity. J. Biol. Chem. 276, 38862-38869.

Lauer, S., VanWye, J., Harrison, T., Meman, S., Samuel, B. U., Hiller, N. L., Mohandas, N. and Haldar, K. (2000). Vascular uptake of host components, and a role for cholesterol and sphingomyelin in malarial infection. EMBO J. 19, 3556-3564.

Lehner, R. and Kukos, A. (1996). Biosynthesis of triacylglycerols. Prog. Lipid Res. 35, 169-201.

Maguire, P. A. and Sherman, I. W. (1990). Phospholipid composition, cholesterol content and cholesterol exchange in Plasmodium falciparum-infected red cells. Mol. Biochem. Parasitol. 38, 105-112.

Mitamura, T. and Palacpac, N. M. Q. (2003). Lipid metabolism in Plasmodium falciparum infected erythrocytes: possible new targets for malaria chemotherapy. Microbes Infect. 5, 545-552.

Mitamura, T., Hanada, K., Ko-Mitamura, E. P., Nishijima, M. and Horii, T. (2000). Serum factors governing intraerythrocytic development and cell cycle progression of Plasmodium falciparum. Parasitol. Int. 49, 219-229.

Murphy, D. J. (1993). Structure, function and biogenesis of storage lipid bodies and oleosins in plants. Prog. Lipid Res. 32, 247-280.

Murphy, D. J. and Vance, J. (1999). Mechanisms of lipid-body formation. Trends Biochem. Sci. 24, 109-115.

Naderali, E. K., Brown, M. J., Pickavance, L. C., Wilding, J. P. H., Doyle, P. J. and Williams, G. (2001). Dietary obesity in the rat induces endothelial dysfunction without causing insulin resistance: a possible role for triglycericys. Clin. Sci. 101, 499-506.

Naik, R. S., Davidson, E. A. and Gowda, D. C. (2000). Developmental stage-specific biosynthesis of glycosylphosphatidylinositol anchors in intraerythrocytic Plasmodium falciparum and its inhibition in a novel manner by mannosamine. J. Biol. Chem. 275, 24506-24511.

Oelkers, P., Behari, A., Cromley, D., Billheimer, J. T. and Sterley, S. L. (1998). Characterization of two human genes encoding acyl coenzyme A: cholesterol acyltransferase-related enzymes. J. Biol. Chem. 273, 26765-26771.

Pang, X.-L., Mitamura, T. and Horii, T. (1999). Antibodies reactive with the N-terminal domain of Plasmodium falciparum serine repeat antigen inhibit cell proliferation by agglutinating merozoites and schizonts. Infect. Immun. 67, 1821-1827.

Pillai, M. G., Ahmad, A., Yokochi, T., Nakahara, T. and Kamisaka, Y. (2002). Biosynthesis of triacylglycerol molecular species in an oleaginous fungus, Mortierella ramanniana var. angalispora. J. Biochem. 132, 121-126.

Smith, S. J., Cases, S., Jensen, D. R., Chen, H. C., Sande, E., Tow, B., Sanan, D. A., Raber, J., Eckel, R. H. and Fareese, R. V., Jr (2000). Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking DGAT. Nat. Genet. 25, 87-90.

Takashima, E., Takamiya, S., Takeo, S., Mi-ichi, F., Amino, H. and Kita, K. (2001). Isolation of mitochondria from Plasmodium falciparum showing dithiophosphate dependent respiration. Parasitol. Int. 50, 273-278.

Vial, H. J. and Ancelin M. L. (1998). Malarial lipids. In Malaria: Parasite Biology, Pathogenesis, and Protection (ed. I. W. Sherman), pp. 159-175. Washington, DC: ASM Press.

Vial, H. J., Thuet, M. J. and Philippot J. R. (1982a). Phospholipid biosynthesis in synchronous Plasmodium falciparum cultures. J. Protozool. 29, 258-263.

Vial, H. J., Thuet, M. J. and Philippot J. R. (1982b). Phospholipid biosynthesis in synchronous Plasmodium falciparum cultures. J. Protozool. 29, 258-263.

Wiser, M. F., Lanners, H. N., Bafford, R. A. and Favaloro, J. M. (1997). A novel alternate secretory pathway for the export of Plasmodium proteins into the host erythrocyte. Proc. Natl. Acad. Sci. USA 94, 9108-9113.