Developmental oxidative stress leads to T-type Ca\(^{2+}\) channel hypofunction in thalamic reticular nucleus of mouse models pertinent to schizophrenia

Corinne El Khoueiry\(^1\), Jan-Harry Cabungcal\(^1\), Zita Rovó\(^1\), Margot Fournier\(^1\), Kim Q. Do\(^1\) and Pascal Steullet\(^1\)

© The Author(s) 2022

ARTICLE OPEN

Developmental oxidative stress leads to T-type Ca\(^{2+}\) channel hypofunction in thalamic reticular nucleus of mouse models pertinent to schizophrenia

Corinne El Khoueiry\(^1\), Jan-Harry Cabungcal\(^1\), Zita Rovó\(^1\), Margot Fournier\(^1\), Kim Q. Do\(^1\) and Pascal Steullet\(^1\)

© The Author(s) 2022

Molecular Psychiatry (2022) 27:2042–2051; https://doi.org/10.1038/s41380-021-01425-2

INTRODUCTION

The thalamic reticular nucleus (TRN) is composed of GABAergic neurons that receive synaptic inputs from cortex, thalamus, and subcortical regions and exert inhibition onto thalamic neurons projecting to the cortex or subcortical areas [1–5]. Therefore, it occupies a key position to modulate thalamo-cortical information flow [6]. The TRN is involved in regulation of sleep-arousal states [7, 8], sleep spindles [9] and sleep-mediated memory consolidation [10], sensory filtering and discrimination [11, 12], sensory gating [13], reversal learning requiring the switch from one sensory modality to another [14], modulation of fear extinction [15], flight behavior [16], and search strategies during spatial navigation [17].

Consequently, aberrant thalamo-cortical communication, sleep disturbances, altered sensory perception, deficits of cognitive and emotional processing in schizophrenia (SZ) patients could potentially result from a TRN dysfunction. The TRN of SZ patients displays abnormal perineuronal net (PNN) and reduced density of parvalbumin (PV)-immunoreactive neurons [18], which represent the larger neuronal population of the TRN and regulate sleep spindles [19] affected in SZ [20, 21]. Furthermore, individuals with early psychotic episodes [22] and SZ patients [23] have been reported with low GSH levels in thalamus and anterior cingulate cortex. Similarly, an animal model of redox dysregulation pertinent to SZ, Gclm-KO mouse, shows PNN and PV cell anomalies in TRN and brain GSH level deficit [24] due to the knockout of the modulatory subunit (GCLM) of the key GSH synthesizing enzyme [25]. TRN neurons of Gclm-KO mice are particularly prone to oxidative stress (OxS) [24] that also mediates decreased PV expression in TRN of NMDAR hypofunction and neurodevelopmental animal models relevant to SZ [26, 27]. Moreover, TRN neurons of Gclm-KO mice are less inclined to generate bursts of action potentials as compared to WT mice [24]. However, the underlying molecular mechanism causing altered TRN neuron excitability in Gclm-KO mice and its consequences on thalamo-cortical connectivity [28] remains unclear.

One remarkable feature of TRN neurons is their capacity to display either a tonic or phasic activity according to the activation/inactivation characteristics of low voltage-activated T-type Ca\(^{2+}\) (T-Ca\(^{2+}\)) channels [29]. Furthermore, the coordinated activation of T-Ca\(^{2+}\) channels and small-conductance Ca\(^{2+}\)-activated K\(^+\) (SK) channels causes repeated burst firing essential for sleep spindle generation during NREM sleep [30–32]. TRN neurons bear two subtypes of T-Ca\(^{2+}\) channels, namely CaV3.2 and CaV3.3. Genome-wide association studies have revealed strong link between the gene encoding CaV3.3, CACNA1I, and schizophrenia [33]. While CaV3.3 contribute largely to the burst firing properties and rhythmic bursting of TRN neurons, CaV3.2 boost excitability and

1Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Site de Cery, CH-1008 Prilly-Lausanne, Switzerland. ✉email: pascal.steullet@chuv.ch

Received: 31 August 2021 Revised: 3 December 2021 Accepted: 16 December 2021
Published online: 25 January 2022

SPRINGER NATURE

Impairment of parvalbumin interneurons induced by oxidative stress (OxS) is a “hub” on which converge several genetic and environmental risk factors associated with schizophrenia. In patients, this could be a mechanism leading to anomalies of the thalamic reticular nucleus (TRN) whose major neuronal population expresses parvalbumin. The TRN shapes the information flow within thalamo-cortical circuits. The low-threshold voltage-gated T-type Ca\(^{2+}\) (T-Ca\(^{2+}\)) channels (CaV3.2, CaV3.3) contribute to the excitability and rhythmic bursting of TRN neurons which mediates cortical sleep spindles, known to be affected in schizophrenia. Here, we investigated the impact of OxS during postnatal development and adulthood on firing properties and T-Ca\(^{2+}\) channels of TRN neurons. In Gclm knock-out (KO) mice, which display GSH deficit and OxS in TRN, we found a reduction of T-Ca\(^{2+}\) current density in adulthood, but not at peripuberty. In KO adults, the decreased T-Ca\(^{2+}\) currents were accompanied with a decrease of CaV3.3 expression, and a shift towards more hyperpolarized membrane potentials for burst firing leading to less prominent bursting profile. In young KO mice, an early-life oxidative challenge precipitated the hypofunction of T-Ca\(^{2+}\) channels. This was prevented by a treatment with N-acetylcysteine. The concomitant presence of OxS and hypofunction of T-Ca\(^{2+}\) channels were also observed in TRN of a neurodevelopmental model relevant to psychosis (MAM mice). Collectively, these data indicate that OxS-mediated T-Ca\(^{2+}\) hypofunction in TRN begins early in life. This also points to T-Ca\(^{2+}\) channels as one target of antioxidant-based treatments aiming to mitigate abnormal thalamo-cortical communication and pathogenesis of schizophrenia.
intrathalamic transmission mediated through burst discharges [32]. Therefore, we hypothesized that OxS-mediated T-Ca²⁺ channel hypofunction is at the origin of the altered firing property of TRN neurons in Gclm-KO mice and constitutes one pathological mechanism relevant to SZ.

Using whole-cell patch clamp techniques, we found reduced T-Ca²⁺ currents in TRN neurons of young adult, but not perinatal Gclm-KO mice. Oxidative insult during early-life however precipitated this hypofunction in perinatal KO mice which was prevented by N-acetyl-cysteine. We also observed a similar association between OxS and decreased T-Ca²⁺ currents in TRN neurons of mice with an aberrant neurodevelopment induced by a prenatal injection of methylazoxymethanol acetate (MAM). These suggest that OxS-mediated T-Ca²⁺ channel hypofunction during early-life represents a common, convergent mechanism contributing to thalamo-cortical anomalies, sleep disturbances [28], and possibly risk for psychosis.

METHODS

Animal models

Unless indicated, the effect of developmental oxidative stress was assessed in males and females from different mouse models. Experiments were approved by the Local Veterinary Office.

Gclm-KO mice as described in [25]. See Supplemental information for details.

GBR-treated Gclm-KO mice and GBR = BSO-treated WT mice. From postnatal days (PND)10 to PND20, the dopamine reuptake inhibitor GBR-12909 (GBR, Bio Trend, Germany) was injected daily (5 mg/kg, i.p) in Gclm-KO mice and every other day in WT mice who received a daily injection (3.8 mmol/kg, s.c.) of the specific inhibitor of GSH synthesis, buthionine sulfoximine (BSO, Sigma-Aldrich, Switzerland).

MAM mice. Female C57BL/6JRj mice were injected intraperitoneally on gestational day 16 with either 25 mg/kg methylazoxymethanol acetate (MAM, MRIGlobal Chemical Carcinogen, USA) or 0.9% NaCl. The offspring of MAM- or NaCl-treated females were used for experiments.

N-Acetylcysteine (NAC) treatment. NAC (Fluimucil, Zambon, Switzerland) was given to GBR-treated Gclm-KO mice from PND2 to sacrifice (Supplemental information).

Electrophysiology experiments

We prepared brain slices from perinatal (PND20-30) and young adult (PND60-75) mice and performed patch-clamp whole-cell recordings of TRN neurons in both current clamp (CC) and voltage clamp (VC) modes as described in Supplemental information. We determined the basic membrane properties, the firing pattern (bursting versus tonic) at resting membrane potential, and the threshold for the initial membrane potential required to induce single or repetitive bursting upon depolarization using current-injected protocols described in Supplemental information. A burst was defined as a high-frequency phasic activity (interspike frequency > 100 Hz) followed by an afterhyperpolarization period. We isolated T-Ca²⁺ and SK currents using VC protocols described in [29] and Supplemental information.

Immunohistochemistry

We prepared brain sections and performed parvalbumin (PV)/Wisteria floribunda agglutinin (WFA)/8-hydroxy-2’-deoxyguanosine (8-oxo-dG) triple immunofluorescence on males as described in [18] and Supplemental information. Primary antibodies were mouse monoclonal anti-8-oxo-dG (AMS Biotechnology, Switzerland), rabbit polyclonal anti-PV (Swant, Switzerland), biotin-conjugated lectin WFA (Sigma-Aldrich, Switzerland), and streptavidin 405 conjugate (Millipore Corporation, USA).

We carried out CaV3.2/PV and CaV3.3/PV immunohistochemistry as indicated in Supplemental information using the following primary (rabbit anti-CaV3.2 (Santa Cruz Biotechnology, USA); rabbit anti-CaV3.3 (Alomone labs, Israel), sheep anti-PV (R&D systems)) and secondary [goat anti-rabbit AF488 and donkey anti-sheep AF594 (Abcam, UK)] antibodies. Confocal image acquisition, and quantification are described in Supplemental information.

Statistics

See Supplemental information.

RESULTS

Altered bursting profile of TRN neurons in adult Gclm-KO mice

We first characterized the bursting profile of TRN neurons in young adult (PND60-75) mice using whole-cell current-clamp techniques. We found a lower proportion of neurons displaying bursting behavior at resting membrane potential (RMP) in KO (25.0%, 3/12) compared to WT mice (71.4%, 10/13; Fisher exact test, p = 0.02) (Fig. 1A), while neurons from both genotypes showed similar resting membrane properties (RMP: −59.5 ± 2.5 vs −63.4 ± 2.4 mV; series resistance: 364.4 ± 48.4 vs 329.4 ± 30.7 MΩ; membrane capacitance: 46.2 ± 3.8 vs 49.7 ± 4.1 pF in KO and WT, respectively). Concomitantly with the less prominent bursting profile of TRN neurons of KO mice at RMP, the T-Ca²⁺ current density at RMP was significantly weaker in KO mice (Fig. 1B). Since the burst firing behavior increases with more negative membrane potentials due to the inactivation properties of T-Ca²⁺ channels, we then determined the membrane potential at which TRN neurons switch from tonic to burst firing. We applied a series of incremental hyperpolarizing currents followed by a depolarizing step, and found that the switch from tonic to bursting occurred at a membrane potential of −69.3 ± 2.2 mV in KO as compared to −64.9 ± 1.9 mV in WT mice (Fig. 1C, D). The membrane potential required for repetitive bursting was significantly more negative in KO (−82.5 ± 4.3 mV) compared to WT mice (−69.2 ± 2.3 mV; p = 0.02. Fig. 1E, F). Collectively, this indicates that TRN neurons in adult KO mice displayed a bias for tonic firing at conditions close to RMP.

Decreased in T-Ca²⁺ and SK current densities in TRN neurons of adult Gclm-KO mice

Because of altered bursting profile and decreased T-Ca²⁺ current density at RMP in TRN neurons of young adult KO mice, we further investigated T-Ca²⁺ currents by measuring the amplitude of these currents when activated from different membrane potentials (−30 mV to −110 mV; Δ = −5 mV). We found an overall decrease in T-Ca²⁺ current density in KO as compared to WT mice (Fig. 1G). As repetitive bursting of TRN neurons requires a coordinated activity between T-Ca²⁺ and SK channels, we also examined isolated SK currents. Similar to T-Ca²⁺, the SK current density was overall significantly lower in TRN neurons of KO compared to WT mice (Fig. 1H). However, the correlation between SK and T-Ca²⁺ currents was unaltered in KO mice (Fig. 1I). Altogether, these suggest that a decrease in T-Ca²⁺ currents accounts for the altered bursting profile of TRN neurons in adult Gclm-KO mice.

Reduced expression of CaV3.3 channels in TRN of adult Gclm-KO mice

Given the decreased T-Ca²⁺ current density in TRN of adult Gclm-KO mice, we explored if this was linked to a reduced expression of T-Ca²⁺ channels, namely CaV3.2 and CaV3.3 [34]. We performed immunohistochemistry for CaV3.2 and CaV3.3 to quantify the expression of these two channels in the TRN (Fig. 1J–O). We found no genotype difference in number of CaV3.2-IR voxels, irrespective of the TRN sub-regions (Fig. 1K, L). By contrast, TRN of KO mice displayed significantly lower number of CaV3.3-IR voxels as compared to WT mice (Fig. 1N). The decreased CaV3.3 expression was most prominent in anterior and medial TRN sub-regions (Fig. 1O). These results suggest that reduced CaV3.3 expression contributes to the reduced T-Ca²⁺ current density in TRN neurons of adult Gclm-KO mice.
Normal T-Ca^{2+} and SK currents in peripubertal Gclm-KO mice

As we previously observed OxS and reduced PV expression in TRN of PND20 Gclm-KO [18], we examined T-Ca^{2+} currents in peripubertal (PND20-30) mice. The membrane potentials required to switch from tonic to single burst (Fig. 2A), or to repetitive bursting (Fig. 2B) were not statistically different between KO and WT mice. Moreover, T-Ca^{2+} current density at RMP (Fig. 2C) and at other membrane potentials (Fig. 2D) did not differ between genotypes. Likewise, SK current density was overall not different in KO and WT mice, and the correlation between T-Ca^{2+} and SK
Fig. 1 Hypofunction of T-Ca²⁺ channels and decreased CaV3.3 expression in TRN neurons of adult Gclm-KO mice, resulting in alteration of their bursting profile. A Smaller proportion of TRN neurons generating burst firing at resting membrane potential (RMP) in KO as compared to WT mice (WT: n = 13; KO: n = 12; Fisher exact test, p = 0.02). B Weaker density of T-Ca²⁺ currents activated at RMP in TRN neurons of KO (n = 11) as compared to WT (n = 10) mice (p = 0.034, one-tailed t-test). C Representative recording of single bursting in a TRN neuron. D Threshold for the initial membrane potential required to induce single bursting upon depolarization. E Representative recording of repetitive bursting in a TRN neuron. F Threshold for the initial membrane potential required to induce repetitive bursting upon depolarization. Note that KO (n = 6) TRN neurons require a more hyperpolarized membrane potential, particularly for exhibiting repetitive bursts, as compared to WT mice (n = 8). G, H Top: Representative recordings of T-Ca²⁺ and SK currents induced by a short constant depolarization step (from −110 to −40 mV), with their amplitudes increasing with greater hyperpolarizing initial membrane potential (going from −30 mV to −110 mV). Bottom: Density of T-Ca²⁺ (G) and SK currents (H) activated from each of the initial membrane potentials. Compared to WT mice, TRN neurons in KO display overall smaller T-Ca²⁺ (F = 31.92, DF = 1 DF = 289; p < 0.0001; WT: n = 9; KO: n = 10) and SK current densities (F = 36.34, DF = 1 DF = 289; p < 0.0001; WT: n = 5; KO: n = 5). J Correlation between T-Ca²⁺ and SK currents (Spearman test, r = −0.99 for WT; r = −1 for KO; p < 0.0001 for both). J Micrographs showing immunofluorescent labeling for parvalbumin (PV, red) and CaV3.2 (green) in the TRN of adult WT KO mice. N No significant difference of CaV3.2 labeled profiles (number of CaV3.2-IR voxels) in TRN of WT and KO mice (n = 5 for both genotypes). L Regional CaV3.2 quantification within the anterior, medial, and posterior sections of the TRN. M Micrographs showing immunofluorescent labeling for PV (red) and CaV3.3 (green) in the TRN of adult WT KO mice. N Reduced CaV3.3 labeled profiles (number of CaV3.3-IR voxels in TRN of KO as compared to WT mice (n = 4 for both genotypes). O Reduced expression of CaV3.3 mostly in the anterior and medial sections of the TRN in KO as compared to WT mice. Unpaired t-tests or two-way ANOVAs with Bonferroni post-tests; *p < 0.05 **p < 0.01 ***p < 0.001. Data are presented as means ± s.e.m.
current density at RMP tended to be weaker in MAM mice (Fig. 4G). Remarkably, we found a significant overall decrease of T-Ca2+ current density in MAM mice, especially at most hyperpolarized membrane potentials (≤ −70 mV) (Fig. 4H). SK current density was concomitantly reduced, particularly for membrane potentials ≤ −85 mV (Fig. 4I). The correlation between T-Ca2+ and SK currents was however maintained in MAM as compared to control mice (Fig. 4J). The finding that OxS is accompanied with a decrease of T-Ca2+ currents in TRN neurons of MAM mice, similarly to GBR-treated Gclm-KO mice, further supports that OxS causes hypofunction of T-Ca2+ channels.

DISCUSSION

We have found a novel mechanistic link between OxS and hypofunction of T-Ca2+ channels in TRN of two mouse models pertinent to SZ: Gclm-KO and MAM mice. In Gclm-KO mice who display OxS in the TRN throughout their postnatal life [24], we observed a progressive decrease of T-Ca2+ currents in TRN neurons at early adulthood together with a reduction of CaV3.3 expression. However, an oxidative challenge mimicking an environmental insult during early-life causes a decrease of T-Ca2+ currents in TRN neurons of peripubertal Gclm-KO mice, which is prevented by NAC. Likewise, TRN neurons of peripubertal MAM mice show similar concomitant presence of OxS and reduced T-Ca2+ currents. Together, these suggest that OxS-mediated T-Ca2+ channel hypofunction in TRN neurons could represent a common and convergent mechanism contributing to early thalamo-cortical anomalies relevant to the pathogenesis of SZ.

TRN neurons display high neuronal activity (up to ~40 action potentials/s) in freely-behaving mice [28]. This requires a strong energy metabolism coupled with efficient antioxidant and...
neuroprotective mechanisms. As for prefrontal fast-spiking PV interneurons [37], a perturbation of this homeostatic coupling, which could arise from various genetic and environmental aetiologies, causes OxS and subsequently structural and functional alterations of the TRN. TRN neurons are indeed prone and vulnerable to OxS in both Gclm-KO and MAM mice, but also in PV-KO mice [44], and upon NMDAR blockade [26]. This vulnerability occurs already at young age, affecting TRN PV-IR neurons. In Gclm-KO mice, decrease of PV-expressing TRN neurons precedes PV deficit in other brain regions [45]. Likewise in the MAM model, decreased PV expression in TRN is already observed at peripuberty, but only emerges at early adulthood in prefrontal cortex [46].

It is tempting to speculate that TRN neurons would reduce their excitability and bursting activity under OxS conditions via a negative regulation of T-Ca\(^{2+}\) channels, but at the expense of a reduced inhibitory control and modulation of thalamo-cortical circuits. In young adult Gclm-KO as compared to WT mice, TRN neurons show weaker T-Ca\(^{2+}\) currents resulting in lower probability to generate bursts of action potentials at RMP and subsequently SK currents are more activated from depolarized membrane potentials [≤−65 mV] in TRN neurons of KO GBR-NAC as compared to both WT and KO GBR mice (shift in steady-state inactivation of T-Ca\(^{2+}\) channels). This effect of GSH is more pronounced in KO GBR (M) than in WT mice (L), suggesting more oxidized extracellular redox-sensitive sites of Cav3.2 channels in KO GBR as compared to WT mice. Horizontal dotted lines on (L) and (M) indicate maximal average current density for WT mice. Representative recordings of maximal T-Ca\(^{2+}\) currents before and after 5 min GSH application in aCSF are given in (K). aCSF: artificial cerebrospinal fluid. Two-way ANOVAs with Bonferroni post-tests; *p < 0.05 **p ≤ 0.01 ***p < 0.001. Data are presented as means ± s.e.m.
In peripubertal Gclm-KO mice however, both T-Ca\(^{2+}\) and SK currents are unaffected despite the presence of OxS and reduced PV expression [24]. At this young age, the OxS levels may be insufficient to impact T-Ca\(^{2+}\) channels and/or compensatory mechanisms resulting from the constitutive GSH deficit [24] may still efficiently stem OxS-mediated hypofunction of these channels. Maintaining robust activity of T-Ca\(^{2+}\) channels in TRN neurons of young individuals may be crucial for proper maturation of thalamo-cortical circuits. However, an early-life oxidative challenge by the dopamine reuptake inhibitor GBR precipitates hypofunction of T-Ca\(^{2+}\) channels in TRN neurons of peripubertal Gclm-KO mice, but also WT mice with a transient GSH deficit imposed by a treatment with the GSH synthesis inhibitor, BSO. Nevertheless, as opposed to adult mice, the membrane threshold required for burst firing was not significantly different between the various groups of young mice. This may be due to the higher T-Ca\(^{2+}\) current density in TRN neurons of young as compared to adult mice. Thus, these currents may be sufficiently powerful to elicit burst firing from membrane potentials close to RMP, even in mice displaying significantly weaker T-Ca\(^{2+}\) currents as compared to young WT mice. In NAC \(+\) GBR-treated KO mice, the membrane threshold required for burst firing was also not significantly different from NAC-untreated mice despite the enhanced T-Ca\(^{2+}\) currents activated from a membrane potential more positive than RMP. The reasons are unclear but could involve different regulatory circuits.

The causal role of OxS in the mechanism underlying T-Ca\(^{2+}\) channel hypofunction emanates from the facts that the antioxidant NAC normalizes the maximal amplitude of T-Ca\(^{2+}\), abolishes OxS, boosts PV immunoreactivity, and strengthens PNN de-aggregation and/or compensatory mechanisms due to the normalization of PNN [27]. This study highlighted the role of TRN to stabilize the firing pattern within the infralimbic cortex-TRN-reuniens nucleus circuit [48] which modulates VTA dopamine neuron activity. Thus, these data support that NAC corrects for abnormal TRN activity and excitability, also likely via an action on T-Ca\(^{2+}\) channels in MAM rodent models.
compared to control mice may reflect a lower expression of CaV3.3 channels, as observed in TRN of young adult Gclm-KO mice. However, we cannot rule out other mechanisms, including negative redox modulation of CaV3.2 activity. Redox agents regulate the function of CaV3.2, but not CaV3.3, by acting on the extracellular loops of domain I via metal-catalyzed oxidation requiring a histidine and redox modulation of cysteines. This modifies the kinetics of activation/inactivation of the channels [49, 50]. Thus, oxidizing and reducing molecules respectively decrease and enhance CaV3.2-dependent currents in TRN neurons [51]. We found that extracellular GSH superfusion causes rapid and significant enhancement of T-Ca2+ currents at depolarized membrane potentials (−70 mV) in GBR-treated KO, but not WT mice. This points that CaV3.2 extracellular redox sites are more oxidized in TRN neurons of GBR-treated KO as compared to WT mice. NAC treatment causes a shift of the steady-state inactivation of T-Ca2+ currents in GBR-treated KO mice, similarly to the effect of an extracellular GSH superfusion. This indicates that NAC protects the redox-sensitive sites from oxidation, keeping them in a highly reduced state even during the slicing procedure and throughout the ex-vivo experiments. At relatively depolarized membrane potentials, T-Ca2+ current amplitudes are larger in NAC + GBR-treated KO mice as compared to GBR-treated KO but also WT mice. This parallels the boosting of PNN by NAC, even in WT mice. Thus, the NAC-induced protection of the redox-sensitive sites from oxidation may arise from the NAC-induced robust strengthening of the PNN, which constitutes a protective shield against OxS [52]. Interestingly, enzymatic removal of the PNN in anterior TRN disrupts its inhibitory action on the nucleus reuniens, consequently resulting in increased number of active VTA dopaminergic neurons [27].

The reduced excitability and burst firing of TRN neurons, resulting from OxS-mediated decrease of T-Ca2+ currents, could affect thalamo-cortical activity in-vivo and affect circadian rhythm regulation. Corroborating our ex-vivo findings, reduced neuronal activity and burst density of TRN neurons is also observed during NREM sleep in freely-behaving Gclm-KO mice who show fragmented sleep with a prominent impact on NREM sleep, altered thalamo-cortical network dynamics, and a lack of homeostatic upregulation of spindle rate and delta oscillations during recovery from sleep deprivation [28]. Likewise, MAM rats display fragmented sleep, reduced length of NREM bouts with a small decrease in spindle density [53].

To summarize, OxS-mediated T-Ca2+ channel hypofunction in TRN, via reduced CaV3.3 expression and oxidation of redox-sensitive sites on CaV3.2, could represent a convergent mechanism contributing to early thalamo-cortical anomalies [54, 55] and SZ pathogenesis. Sleep disturbance constitutes one hallmark of prodromal features preceding a first psychotic episode [56, 57]. Likewise, sleep spindle deficits are reported in non-psychotic first-degree relatives and during early course of the disorder [58–60]. Together with genetic associations of CACNA11 (encoding CaV3.3) and to a lesser extent CACNA1H (encoding CaV3.2) with SZ [33, 61–63], this suggests that T-Ca2+ channel dysfunction in TRN could represent an early pathological feature of this psychiatric disorder. The reversal effect of NAC paves the way for novel early intervention strategies.

REFERENCES
1. Crabtree JW. Functional diversity of thalamic reticular subnetworks. Front Syst Neurosci. 2018;12:41.
2. Pinault D. The thalamic reticular nucleus: structure, function and concept. Brain Res Brain Res Rev. 2004;46:1–31.
3. Clemente-Perez A, Makinson SR, Higashikubo B, Brovareny S, Cho FS, Uray A, et al. Distinct thalamic reticular cell types differentially modulate normal and pathological cortical rhythms. Cell Rep. 2017;19:2130–42.
4. Li Y, Lopez-Huerta VG, Adiconis X, Levandowski K, Choi S, Simmons SK, et al. Distinct subnetworks of the thalamic reticular nucleus. Nature. 2020;583:819–24.
5. Pratt JA, Morris BJ. The thalamic reticular nucleus: a functional hub for thalamocortical dysfunction in schizophrenia and a target for drug discovery. J Psychopharmacol. 2015;29:127–37.
6. Sherman SM, Guillery RW. Functional connections of cortical areas. A new view from the talamus. MIT Press: Cambridge, MA, USA, 2013.
7. Herrera CG, Cadavelio MC, Jego S, Ponomarenko A, Karotkova T, Adamantidis A. Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness. Nat Neurosci. 2016;19:290–8.
8. Lewis LD, Voelts J, Flores FJ, Schmitt LL, Wilson MA, Halassa MM, et al. Thalamic reticular nucleus induces fast and local modulation of arousa state. Elife. 2015;4:e06760.
9. Fernandez LMI, Lüthi A. Sleep spindles: mechanisms and functions. Physiol Rev. 2016;96:1005–88.
10. Ferrarelli F, Tononi G. Reduced sleep spindle activity point to a TRN-MD thalamo-cortical anomaly. J Neurosci. 2010;30:2547–52.
11. Dong P, Wang H, Shen X, Jiang P, Zhu XT, Li Y, et al. A novel cortico-thalamic model relevant to schizophrenia. Mol Psychiatry. 2018;23:2057–65.
12. Wimmer RD, Schmitt LL, Davidson TJ, Nakajima M, Deisseroth K, Halassa MM. Thalamic control of sensory selection in divided attention. Nature. 2015;526:705–9.
13. Nakajima M, Schmitt LL, Halassa MM. Prefrontal cortex regulates sensory filtering through a basal ganglia-thalamus pathway. Neuroreport. 2019;103:445–58. e410.
14. You QL, Luo ZC, Luo ZY, Kong Y, Li ZL, Yang JM, et al. Involvement of the thalamic reticular nucleus in prepulse inhibition of acoustic startle. Transl Psychiatry. 2021;11:241.
15. Ahrens S, Jaramillo S, Yu K, Ghosh S, Hwang GR, Paik R, et al. ErbB4 regulation of a thalamic reticular nucleus circuit for sensory selection. Nat Neurosci. 2015;18:104–11.
16. Lee JH, Latchoumane CV, Park J, Kim J, Jeong J, Lee KH, et al. The rostroventral part of the thalamic reticular nucleus modulates fear extinction. Nat Commun. 2019;10:4637.
17. Vantommé G, Rovó Z, Cardis R, Béard E, Katsioudi G, Guadagni A, et al. A thalamic reticular circuit for head direction cell tuning and spatial navigation. Cell Rep. 2020;31:107747.
18. Steullet P, Cabungcal JH, Bukhari SA, Ardelt MI, Pantazopoulos H, Hamati F, et al. The thalamic reticular nucleus in schizophrenia and bipolar disorder: role of parvalbumin-expressing neuron networks and oxidative stress. Mol Psychiatry. 2018;23:2057–65.
19. Thanhkhan S, Katsuki F, McKenna JT, Yang C, Shukla C, Deisseroth K, et al. Thalamic reticular nucleus parvalbumin neurons regulate sleep spindles and electrophysiological aspects of schizophrenia in mice. Sci Rep. 2019;9:3607.
20. Ferrarelli F, Tononi G. Reduced sleep spindle activity point to a TRN-MD thalamic model system for a severely compromised oxidative stress. Biol Psychiatry. 2012;71:154–61.
21. Kang AM, Pradhan S, Coughlin JM, Trivedi A, Delaware T, Crawford JL, et al. Assessing brain metabolism with 7-T Proton magnetic resonance spectroscopy in patients with first-episode psychosis. JAMA Psychiatry. 2019;76:314–23.
22. Do KQ, Czekus C, Steullet P, Cabungcal JH, Bukhari SA, Ardelt MI, Pantazopoulos H, Hamati F, et al. The thalamic reticular nucleus in schizophrenia and bipolar disorder: role of parvalbumin-expressing neuron networks and oxidative stress. Mol Psychiatry. 2019;24:2057–65.
23. Steullet P, Cabungcal JH, Kukuk A, Krafšnik S, Chen Y, Dalton TP, et al. Redox dysregulation affects the ventral but not dorsal hippocampus: impairment of parvalbumin neurons, gamma oscillations, and related behaviors. J Neurosci. 2010;30:2547–58.
24. Yang Y, Dieter MZ, Chen Y, Shertz HG, Nebert DW, Dalton TP. Initial characterization of the glutamate-cysteine ligase modifier subunits Gclm/–/– knockout mouse. Novel model system for a severely compromised oxidative stress response. J Biol Chem. 2002;277:49446–52.
25. Behrens MM, All SS, Dao DN, Lucero J, Shekhtman G, Quick KL, et al. Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH oxidase. Science. 2007;318:1645–7.
26. Zhu X, Cabungcal JH, Cuonod M, Uliana DL, Do KQ, Grace AA. Thalamic reticular nucleus impairments and abnormal prefrontal control of dopamine system in a developmental model of schizophrenia: prevention by N-acetylcysteine. Mol Psychiatry. 2021. https://doi.org/10.1038/s41380-021-01198-8.
27. Czekus C, Steullet P, Rusterholz T, Bizzozzo S, Bandarabadi M, Do KQ, et al. Deficient thalamo-cortical network dynamics and sleep homeostatic processes in a redox dysregulation model relevant to schizophrenia. bioRxiv. 2021. https://doi.org/10.1101/2021.07.20.453026.
28. Huguenard JR, Prince DA. A novel N-type current underlies prolonged Ca2+-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus. J Neurosci. 1992;12:8304–17.
30. Wells MF, Wimmer RD, Schmitt LJ, Feng G, Halassa MM. Thalamic reticular impairment underlies attention deficit in PchtlV−/− mice. Nature. 2016;532:58–63.

31. Wimmer RD, Astori S, Bond CT, Rovo Z, Chatton JY, Adelman JP, et al. Sustaining sleep spindles through enhanced SK2-channel activity consolidates sleep and elevates arousal threshold. J Neurosci. 2012;32:19317–28.

32. Pellegrini C, Lecci S, Luthi A, Astori S. Suppression of sleep spindle rhythmo-genesis in mice with deletion of CaV3.2 and CaV3.3 T-type Ca2+ channels. Sleep. 2016;39:875–85.

33. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014; 511: 421–7.

34. Talley EM, Cribs LL, Lee JT, Daud A, Perez-Reyes E, Bayliss DA. Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci. 1999;19:1885–911.

35. Hirrlinger J, Schulz JB, Dringen R. Effects of dopamine on the glutathione metabolism of cultured astroglial cells: implications for Parkinson’s disease. J Neurochem. 2002;82:458–67.

36. Vaessen T, Hemaus D, Myin-Germeys I, van Amelsvoort T. The dopaminergic response to acute stress in health and psychopathology: a systematic review. Neurosci Biobehav Rev. 2015;56:241–51.

37. Steullet P, Cabungcal JH, Coyte J, Didrikson M, Gill K, Grace AA, et al. Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia. Mol Psychiatry. 2017;22:936–43.

38. Fearon IM, Randell AD, Perez-Reyes E, Peers C. Modulation of recombinant T-type Ca2+ channels by hypoxia and glutathione. Pflug Arch. 2000;441:181–8.

39. Rae CD, Williams SR. Glutathione in the human brain: review of its roles and measurement by magnetic resonance spectroscopy. Anal Biochem. 2017;529:127–43.

40. Moore H, Jentsch JD, Ghajmia M, Geyer MA, Grace AA. A neurobehavioral systems analysis of adult rats exposed to methylazoxymethanol acetate on E17: implications for the neuropathology of schizophrenia. Biol Psychiatry. 2006;60:253–64.

41. Modinos G, Allen P, Grace AA, McGuire P. Translating the MAM model of psychosis to humans. Trends Neurosci. 2015;38:129–38.

42. Chalkiadaki K, Velli A, Kyriazis E, Stavroulaki V, Vouvoutsis V, Chatzki E, et al. Development of the MAM model of schizophrenia in mice: sex similarities and differences of hippocampal and prefrontal cortical function. Neuropharmacology. 2019;144:193–207.

43. Takahashi K, Nakagawasawa D, Sakuma W, Nemoto W, Odaira T, Lin JR, et al. Pre-natal treatment with methylazoxymethanol acetate as a neurodevelopmental disruption model of schizophrenia in mice. Neuropharmacology. 2019;150:1–14.

44. Janickova L, Schwaller B. Parvalbumin-deficiency accelerates the age-dependent ROS production in Pvalb neurons in vivo: link to neurodevelopmental disorders. Front Cell Neurosci. 2020;14:571216.

45. Cabungcal JH, Steullet P, Kraftsk R, Cuenod M, Do KQ. A developmental redox dysregulation leads to spatio-temporal deficit of parvalbumin neuron circuitry in a schizophrenia mouse model. Schizophr Res. 2019;213:96–106.

46. Mackowiak M, Latusz J, Glowacka U, Bator E, Bilecki W. Adolescent social isolation affects parvalbumin expression in the medial prefrontal cortex in the MAM-E17 model of schizophrenia. Metab Brain Dis. 2019;34:341–52.

47. das Neves Duarte JM, Kulak A, Gholam-Razaee MM, Cuenod M, Gruetter R, Do KQ. N-acetylcysteine normalizes neurochemical changes in the glutathione-deficient schizophrenia mouse model during development. Biol Psychiatry. 2012;71:267–213–24.

48. Zimmerman EC, Grace AA. Prefrontal cortex modulates firing pattern in the nucleus reunions of the midline thalamus via distinct corticothalamocortical pathways. Eur J Neurosci. 2018;48:3255–72.

49. Huang D, Shi S, Liang C, Zhang X, Du X, An H, et al. Sleep spindles in antipsychotic-naive early course schizophrenia and in non-psychotic first-degree relatives. Front Hum Neurosci. 2014;8:762.

50. Schilling C, Schlif M, Spitzack S, Rausch F, Eisenacher S, Englisch S, et al. Fast sleep spindle reduction in schizophrenia and healthy first-degree relatives: association with impaired cognitive function and potential intermediate phenotype. Eur Arch Psychiatry Clin Neurosci. 2017;267:213–24.

51. Zhang Y, Quiñones GM, Ferrari F. Sleep spindle and slow wave abnormalities in schizophrenia and other psychotic disorders: recent findings and future directions. Schizophr Res. 2020;221:29–36.

52. Andrade A, Hope J, Allen A, Yorgan V, Lipscombe D, Pan JQ. A rare schizophrenia risk variant of CACNA11 disrupts CaV3.3 channel activity. Sci Rep. 2016;6:34233.

53. Ghoshal A, Uyyan DS, Yang L, McNally JM, Lopez-Huerta VG, Arias-Garcia MA, et al. Effects of a patient-derived de novo coding alteration of CACNA11 in mice connect a schizophrenia risk gene with sleep spindle deficits. Transl Psychiatry. 2020;10:29.

54. Sundararajan T, Manzardo AM, Butler MG. Functional analysis of schizophrenia genes using GeneAnalytics program and integrated databases. Gene. 2018;641:25–34.

ACKNOWLEDGEMENTS We thank Adeline Cottier and Morgane Baumgartner for technical support, Fulvio Magara and his team from the Centre d’Etudes du Comportement (CEC-CNPI/CHUV), Jean-Yves Chatton and his team at the Cellular Imaging Facility/CIF/University of Lausanne, Anita Lüthi (University of Lausanne) for graciously lending us some equipment at the early stage of the study, Michel Cuénod and Carolina Gutiérrez Herrera (University Bern) for their comments on the manuscript. This work was supported by the National Center of Competence in Research (NCCR) SYNAPS—“The Synaptic Bases of Mental Diseases” from the Swiss National Science Foundation (no 51AU0_127539), the Damm-Merckle Foundation and Alamyra Foundation, and an interdisciplinary fund of the Faculty of Biology and Medicine of the Lausanne University.

AUTHOR CONTRIBUTIONS C. El Khoueiry et al.

FUNDING Open access funding provided by University of Lausanne.

COMPETING INTERESTS The authors declare no competing interests.

ADDITIONAL INFORMATION Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41380-021-01425-2.

Correspondence and requests for materials should be addressed to Pascal Steullet.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
