Gross feature recognition of Anatomical Images based on Atlas grid (GAIA): Incorporating the local discrepancy between an atlas and a target image to capture the features of anatomic brain MRI

Yuan-Yuan Qin a,b, Johnny T. Hsu a, Shoko Yoshida a, Andrea V. Faria a, Kumiko Oishi c, Paul G. Unschuld d, Graham W. Redgrave d, Sarah H. Ying b,f, Christopher A. Ross d, Peter C.M. van Zijl a,f, Argye E. Hillis e,g,h, Marilyn S. Albert e,i, Constantine G. Lyketsos e,i, Michael I. Miller c, Susumu Mori a,f, Kenichi Oishi a,k

a The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
b Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
c Paul G. Unschuld Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University, Baltimore, MD, USA
d Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
e F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
f Department of Physical Medicine and Rehabilitation, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
g Department of Cognitive Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
h The Johns Hopkins Alzheimer’s Disease Research Center, Baltimore, MD, USA
i Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
j The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 217D Traylor Building, 720 Rutland Avenue, Baltimore, MD 21205, USA. Tel.: +1 410 502 3553.

E-mail address: koishi@mri.jhu.edu (K. Oishi).

1. Introduction

Conventional structural MRI still plays a leading part in clinical diagnostic radiology, providing vast amounts of anatomical information. There are numerous clinical hallmarks and signs that can be depicted by structural MRI which are well established after more than 30 years of clinical application. Currently, clinical MR images are interpreted by radiologists and stored electronically in the picture archiving and communication system (PACS) with the radiology reports. A text-based image searching of PACS enables the retrieval of stored images with the clinical information and radiology report. This searching capability dramatically improved daily clinical practice by saving time and effort to collect images from a patient to evaluate disease progression and the efficacy of treatments, and to collect images from a specific clinical condition to investigate the common anatomical phenotype depicted by MRI. However, to further aid in clinical use, an image-based search, in which the patient’s image is submitted to PACS as a “keyword,”...
and past images with similar anatomical phenotypes are identified, and a statistical report about the diagnosis and prognosis is provided, would be far more informative. This type of image searching is called content-based image retrieval (CBIR), which is an anticipated technology in medical imaging (El-Kwae et al., 2000; Greenspan and Pinhas, 2007; Muller et al., 2005; Orphanoudakis et al., 1996; Rahman et al., 2007; Robinson et al., 1996; Sinha et al., 2001; Unay et al., 2010). Although the CBIR is a promising technology, to date, the application to PACS is limited (Muller et al., 2004; Sinha and Kangarloo, 2002), because of the difficulty of extracting features from the stored images, especially for brain MRI, which consists of numerous anatomical structures with highly varying intensity, volume, and shape among diseases and even among normal individuals. One of the solutions is to apply image quantification technologies, which has been the subject of extensive research in the last two decades (Ashburner and Friston, 1999; Chiang et al., 2008; Good et al., 2001; Mazziotta et al., 2001; Smith et al., 2006; Verma et al., 2005; Wright et al., 1995; Yushkevich et al., 2008; Zhang et al., 2006). These analyses have been mostly designed for traditional group-based studies, in which strict inclusion criteria and age-matched controls were essential, but often incompatible, with clinical practice where an individual image, not a group of diseases, is the target of the analysis. The concept of group analysis assumes consistent locations of abnormalities, which does not hold for clinical situations with heterogeneous patient populations and image quality. There are diseases with lesions that are not seen in the normal brain, such as stroke and brain tumors, and diseases with atrophy in a specific set of anatomical structures, such as Alzheimer’s disease. To localize the disease-related pathological changes seen in brain MRI, transformation-based image analysis methods are often employed. However, the lesions with abnormal intensity or the space-occupying lesions often cause significant misregistration of brain structures after image transformation. The brain with severe atrophy, such as that seen in Alzheimer’s disease, is also problematic in terms of the transformation accuracy. Here are methods to overcome such inaccuracy by using specific approaches, such as lesion-masking (Andersen et al., 2010; Ripolles et al., 2012) or a disease-specific template (Liao et al., 2012; Mandal et al., 2012; Wang et al., 2012) (e.g., http://www.loni.ucla.edu/Atlases/), but it is still difficult to quantify various types of diseases in the same methodological framework. In addition, most of these methods use image contrast to guide the transformation, and therefore, are sensitive to the variation in contrast not only due to the anatomical abnormalities, but also to the differences in scanner and image parameters.

In this study, we attempt to solve this widely known problem in transformation-based analysis by introducing an approach named the “Gross feature recognition of Anatomical Images based on Atlas grid (GAIA),” for image feature extraction (Fig. 1). In GAIA, images are co-registered to the atlas using linear transformation, followed by intensity measurement for the multiple areas in the atlas space. The overall shape and size are only roughly adjusted to that of the atlas, leaving residual misregistrations in most of the anatomical areas. The measured intensity of each area represents a combination of the local intensity alteration, caused by pathological (e.g., ischemia) or physiological (development and aging) intensity changes, as well as by atlas–image misregistration, which are recorded as unique anatomical features in a quantitative standardized matrix. Since the goal of CBIR is to retrieve images based on linear discriminant analysis (LDA) to a training dataset. The resultant feature vectors were subsequently applied to the test dataset collected from multiple scanners to test the accuracy of image categorization based on the GAIA.

2. Methods

2.1. Participants and image acquisitions

A de-identified database consisting of T1-weighted images scanned with a magnetization-prepared rapid gradient recalled echo (MPRAGE) sequence, collected through four independent clinical research studies (Faria et al., 2013; Jung et al., 2012; Oishi et al., 2011; Unschuld et al., 2012), was analyzed retrospectively. The Institutional Review Board approved each study, and written, informed consent was obtained. The demographic features, scan parameters, and abbreviations are summarized in Table 1.

2.1.1. AD, mild cognitive impairment (MCI), and the cognitively normal (NC) control group

Twenty-five probable-AD patients who met the NINCDS/ADRSA criteria (McKhann et al., 1984), with a clinical dementia rating (CDR) of 1; 25 aMCI patients who met the criteria for amnestic MCI (Petersen, 2004) with a CDR = 0.5; and 25 NC participants with a CDR = 0, were included. There were no differences among these groups with regard to age, race, education, and the occurrence of vascular conditions (Mielke et al., 2009). After three years of follow-up, six MCI patients had converted to AD and were defined as MCI converters (MCI_c); three NC participants had converted to AD and were defined as NC converters (NC_c). The diagnosis and neuropsychiatric evaluations (CDR, the Alzheimer’s Disease Assessment Scale — cognitive portion (ADAS-cog), the mini mental state examination (MMSE), and the geriatric depression scale (GDS)) were performed at the time of the MRI scan.

MPRAGE sequences were acquired using a 3 T scanner (Gyrosan NT, Philips Medical Systems) located in the Kennedy Krieger Institute. The scan parameters were: repetition time (TR) 6.9 ms; echo time (TE) 3.2 ms; inversion time (TI) 846.3 ms; matrix 256 × 256 × 170; and field of view (FOV) 240 mm × 240 mm × 204 mm, zero-filled to 256 × 256 × 204 mm (protocol-1).

2.1.2. HD and the control group

Sixty-four participants positive for CAG expansion in Huntingtonin and twenty-seven control subjects negative for CAG expansion were included. Among those positive for CAG expansion, thirteen participants were early symptomatic (HD_es) and 51 participants were asymptomatic, including 22 who were close to onset (HD_curo; less than 10 years to the estimated onset of the motor symptom) and 19 who were far from onset (HD_fluro; more than or equal to 10 years to the estimated onset of the motor symptom), based on the CAG-repeat length of the mutated Huntingtin allele and age (Langbehn et al., 2004). Disease burden score (DBS) was calculated as [(CAG-repeat length − 35.5) × age] (Penney et al., 1997). The Montreal Cognitive Assessment (MoCA) was performed to screen for mild cognitive dysfunction on the day of scanning. None of the participants had a history of diagnosed mood, obsessive compulsive, or psychotic disorder or substance abuse.

MPRAGE sequences were acquired using a 3 T scanner (Intera, Philips Medical Systems) located in the Kennedy Krieger Institute. Two different protocols were used, including protocol-2: TR 8.4 ms; TE 3.8 ms; TI 826 ms; matrix 256 × 256 × 150; FOV230 mm × 230 mm × 135 mm, zero-filled to 256 mm × 256 mm × 135 mm; and Flip angle = 8°;
Twenty-four patients with genetically diagnosed SCA6 and eight controls were enrolled. The duration of disease was defined as the first self-reported symptom of ataxia. The scale for the Assessment and Rating of Ataxia (SARA) was performed for the evaluation of ataxic symptoms.

MPRAGE sequences were acquired using a 3 T scanner (Intera, Philips Medical Systems) located in the Kennedy Krieger Institute. The scan parameters were: TR 10.33 ms; TE 6.0 ms; TI 964.8 ms; matrix 256 × 256 × 140; and FOV 212 mm × 212 mm × 151 mm, zero-filled to 256 mm × 256 mm × 151 mm (protocol-4).

2.1.4. PPA group

Fifty seven participants with PPA, diagnosed on the basis of having a predominant and progressive deterioration in language in the absence of major change in personality, behavior, or cognition other than praxis for at least two years (Mesulam, 1982), and a control group without neurological symptoms, were included. PPA patients were classified as one of the variants of PPA according to recent guidelines (Gorno-Tempini et al., 2011), including non-fluent variant (PPA_NFv), semantic variant (PPA_Sv), and logopenic variant (PPA_Lv). Participants with only anomia and dysgraphia, and who did not meet the criteria for any of these variants, were categorized as unclassified PPA (PPA_U). All participants completed the Western Aphasia Battery (WAB) (Shewan and Kertesz, 1980) within one month before the MRI scans.

MPRAGE sequences were acquired using two 3 T scanners. The one located in the Kennedy Krieger Institute (Achieva, Philips Medical Systems) was used for protocol-5: TR 8.4 ms; TE 3.9 ms; TI 849.4 ms; matrix 256 × 256 × 140; and FOV 212 mm × 212 mm × 140 mm, zero-filled to 256 mm × 256 mm × 154 mm. The other located in the Johns Hopkins Hospital (Achieva, Philips Medical Systems) was used for protocol-6: TR 6.6 ms; TE 3.1 ms; TI 821 ms; matrix 256 × 256 × 120; and FOV 230 mm × 230 mm × 120 mm, zero-filled to 256 mm × 256 mm × 120 mm.

The MRIs from AD, HD_es, SCA6, PPA_Sv, PPA_NFv, PPA_Lv, PPA_U, and the control groups of each study were pseudo-randomly assigned to either training or test datasets. MRIs from NC_c, MCI, MCL_c, HD_ceto, and HD_ffo were assigned as a test dataset.

2.2. Image processing

All images were re-sliced to 1 mm isotropic resolution (181 × 217 × 181 matrix), bias corrected, and skull-stripped to generate the “prepared” images by using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). The intensity histogram peaks of the cerebrospinal fluid (CSF), the gray matter (GM), and the white matter (WM) of the “prepared” images were adjusted to match those of the JHU-MNI atlas (http://cmrm.med.jhmi.edu/) using a nonlinear histogram matching routine implemented in DiffeoMap (www.mristudio.org). After intensity correction, 12-parameter affine transformation of AIR (Woods et al., 1998), implemented in DiffeoMap, was applied to the prepared images to co-register each participant’s image to the atlas. The parcellation map of the JHU-MNI atlas was overlaid on the co-registered images to measure the mean intensity of the 177 areas. The measured intensity was converted to the rank order using the standard competition ranking. Namely, a structure with the highest intensity was ranked #1 and the lowest intensity was ranked #177. This conversion was performed to ameliorate the differences in intensity profile among different scan protocols, which might remain even after the bias and intensity corrections.

The novelty of the GAIA is the use of parcellation maps to measure the degree of misregistration and structural intensity mismatch, which have been regarded as errors to be excluded in traditional transformation-based image analysis. Although the overall shape and size are roughly adjusted to that of the atlas after affine transformation, there are residual misregistrations in most anatomical areas (Fig. 1). For example, if a given image has an enlargement in the lateral ventricle, the area defined as the caudate in the atlas is occupied by the enlarged ventricle, which results in lower intensity in this area because of the contamination of the cerebrospinal fluid (parcel 4 of Fig. 1), and hence, this results in a relative lowering of the rank order in this parcel (rightmost column of Fig. 1). If the image contains lesions with altered intensity, such as the periventricular cap, this also lowers the intensity of the corresponding area (parcel 3 of Fig. 1), which also results in a relative lowering of the rank order in this parcel. Our hypothesis is that the rank order, which represents a combination of the atlas-image

Fig. 1. GAIA procedure. All images are co-registered to the atlas space using affine transformation. The atlas segmentation map (colored contour) is overlaid on the co-registered image. The mean intensity of each of 177 parcels is calculated and ranked by the order of mean intensity. Namely, the area with highest intensity is ranked #1 and the area with lowest intensity is ranked #177. Note that the intensity includes information about both misregistration and intensity mismatch between the atlas and the target image. For example, parcels with cerebrospinal fluid contamination (e.g., parcel 4) and with low intensity change, such as the periventricular cap (yellow arrows, parcel 3), were ranked lower than those of the atlas.
Table 1
Demographic features and scan parameters.

AD group	Training dataset	Test dataset
	AD (n = 12) NC (n = 10)	AD (n = 9) NC (n = 6)
I. Age (years)	76.4 ± 5.1 72.8 ± 8.5	77.7 ± 8.7 74.6 ± 8.1
Sex (M:F)	10:2 4:6	2:1 7.2
Education (years)	15.8 ± 4.2 15.1 ± 2.2	14.7 ± 2.3 15.3 ± 3.0
II. MMSE	22.2 ± 2.8 29.2 ± 1.5	27.7 ± 1.5 21.2 ± 3.3
ADAS-cog	18.4 ± 4.3 11.0 ± 2.1	8.7 ± 2.1 20.7 ± 8.1
CDR-rating	1.2 ± 0.5 0	0.2 ± 0.3 1.0 ± 0.4
CDR-sum	6.9 ± 2.9 0	0.2 ± 0.3 5.4 ± 2.1
GDS	1.5 ± 1.9 1.0 ± 1.2	0.3 ± 0.6 2.8 ± 2.1
III. Scan parameters	Protocol-1: 3.0 T Philips Intera MR scanner-MPRAGE-1.2; TR/TE (ms): 6.9/3.2; matrix: 256 × 256 × 170; FOV: 256 mm × 256 mm × 204 mm, zero-filled to 256 mm × 256 mm × 204 mm; voxel size (mm³): 1 × 1 × 1.2	

HD group	Training dataset	Test dataset
	HD (n = 9) NC (n = 14)	HD (n = 22) NC (n = 29)
I. Age (years)	50.8 ± 8.9 37.4 ± 9.8	51.0 ± 6.2 37.5 ± 9.7
Sex (M:F)	4.5 9.5	2.2 12:10
Education (years)	17.4 ± 21.0 (n = 9)	14.5 ± 2.7 (n = 10)
CAG-repeat	42.3 ± 1.7 (n = 4) 0	44.0 ± 3.5 42.0 ± 1.9
II. MoCA	26.6 ± 1.2 (n = 4) 0	26.0 ± 2.3 (n = 7) 26.0 ± 1.7 (n = 13)
III. Scan parameters	Protocol-2: 3.0 T Philips Intera MR scanner-MPRAGE-0.9; TR/TE (ms): 8.4/3.8; matrix: 256 × 256 × 150; FOV: 256 mm × 256 mm × 135 mm; flip angle: 8°; voxel size (mm³): 0.9 × 0.9 × 0.9	

SCA6 group	Training dataset	Test dataset
	SCA6 (n = 12) NC (n = 4)	SCA6 (n = 12) NC (n = 4)
I. Age (years)	64.3 ± 6.1 55.3 ± 5.9	60.0 ± 6.0 58.3 ± 3.3
Sex (M:F)	2:10 1:3	2:10 2:2
II. SARA	110 ± 123	82.8 ± 8.3
III. Scan parameters	Protocol-4: 3.0 T Philips Intera MR scanner-MPRAGE-1.1; TR/TE (ms): 10.3/6; matrix: 256 × 256 × 150; FOV: 212 mm × 212 mm × 151 mm, zero-filled to 256 mm × 256 mm × 151 mm; voxel size (mm³): 0.8 × 0.8 × 1.1	

PPA group	Training dataset	Test dataset
	PPA_Sv (n = 9) PPA_NFv (n = 5) PPA_Lv (n = 11) PPA_U (n = 4) NC (n = 12)	PPA_Sv (n = 9) PPA_NFv (n = 4) PPA_Lv (n = 11) PPA_U (n = 4) NC (n = 12)
I. Age (years)	65.1 ± 6.6 69.2 ± 11.0 67.3 ± 6.4 68.8 ± 7.8 61.7 ± 8.3	64.8 ± 6.3 70.8 ± 9.6 68.0 ± 5.9 64.8 ± 6.8
Sex (M:F)	5.4 1.4 4.7 1.3 6.6	6.3 1.3 3.8 1.3 6.6
II. WAB_AQ	861 ± 70.2 841 ± 10.2 846 ± 13.3 97.3 ± 0.9	825 ± 124 93.2 ± 5.6 86.0 ± 10.6 96.7 ± 1.6
III. Scan parameters	Protocol-5: 3.0 T Philips Achieva MR scanner-MPRAGE-1.1; TR/TE (ms): 8.4/3.9; matrix: 256 × 256 × 140; FOV: 212 mm × 212 mm × 154 mm, zero-filled to 256 mm × 256 mm × 154 mm; voxel size (mm³): 0.8 × 0.8 × 1.1	
	Protocol-6: 3.0 T Philips Achieva MR scanner-MPRAGE-1.0; TR/TE (ms): 10.6; matrix: 256 × 256 × 120; FOV: 230 mm × 230 mm × 120 mm, zero-filled to 256 mm × 256 mm × 120 mm; voxel size (mm³): 0.9 × 0.9 × 1.1	

Notes: AD = Alzheimer’s disease, NC = normal control, MCI = mild cognitive impairment, MCI_c = MCI converters, NC_c = NC converters, HD = Huntington’s disease, HD_es = HD early symptomatic, HD_cto = HD close to onset, HD_fbo = HD far from onset, SCA6 = spinocerebellar ataxia type 6, PPA = primary progressive aphasia, PPA_NFv = non-fluent variant of PPA, PPA_Sv = semantic variant of PPA, PPA_Lv = logopenic variant of PPA, PPA_U = unclassified PPA.

segmentation and intensity disagreements, could be used to capture the anatomical features specific to the target image.

2.3. Normalization of the ranking

Training dataset: The rank \((R_{\text{train}_{ij}}) \) of image \(i \), area \(j \) was further converted to a z-score: \(Z_{\text{train}_{ij}} = (R_{\text{train}_{ij}} - \mu_{\text{train}_{ij}}) / \sigma_{\text{train}_{ij}} \), where \(\mu_{\text{train}_{ij}} \) represents the mean rank and \(\sigma_{\text{train}_{ij}} \) represents the standard deviation of the area \(j \) of normal control images assigned to the training dataset. This resulted in a 102 (number of training data) × 177 (number of areas) matrix with \(Z_{\text{train}_{ij}} \), in which each element. A portion of this matrix including only normal control images \((40 \times 177 \text{ matrix}) \) was also created to investigate the effects of age and gender.

Test dataset: The rank \((R_{\text{test}_{kj}}) \) of image \(k \), area \(j \) was further converted to a z-score: \(Z_{\text{test}_{kj}} = (R_{\text{test}_{kj}} - \mu_{\text{test}_{kj}}) / \sigma_{\text{test}_{kj}} \). This resulted in a 170 (number of test data) × 177 matrix with \(Z_{\text{test}_{kj}} \) in each element.

2.4. Extraction of age- and gender-related features using a control subset of the training dataset

PCA was applied to the 40 × 177 matrix of \(Z_{\text{train}_{kj}} \) to investigate correlations between extracted principal components (PCs) and age or gender. If significant correlations were identified, the PCA-derived eigenvectors were applied to the 102 × 177 matrix of \(Z_{\text{train}_{ij}} \), and the 170 × 177 matrix of \(Z_{\text{test}_{kj}} \) from which the PCs with significant correlations were removed. This resulted in \(Z_{\text{train}_{ij}} \) and \(Z_{\text{test}_{kj}} \) in which \(i \) ranges from 1 to 102, which is the number of PCs without significant effects of age and gender. Spearman’s rank correlation coefficient was applied for the evaluation, in which a corrected \(p < 0.05 \) (false discovery rate) was considered a significant correlation.
2.5. Extraction of disease-specific features using a training dataset

PCA was applied to the 102 × 177 matrix of Ztrain to extract PCs that could explain >95% of the total variance. Subsequently, LDA was applied to the PCs to extract typical appearances for specific disease categories. The eight statuses (NC, AD, HD_es, SCA6, PPA_Sv, PPA_NFv, PPA_Lv, and PPA_U) were used to label the training dataset. If significant effects of age or gender existed, LDA was also applied to the 102 × m matrix of Ztrain to extract feature vectors that represented disease-specific anatomical features extracted from the training dataset.

2.6. Evaluation of GAIA using the test dataset

The eight feature vectors derived from the training dataset were applied to the test dataset (the 170 × 177 matrix of Ztest) and the 170 × m matrix of Ztest to calculate the discriminant scores of 13 statuses (NC, NC_c, AD, MCI, MCI_c, HD_es, HD_cto, HD_ffo, SCA6, PPA_Sv, PPA_NFv, PPA_Lv, and PPA_U) for each participant. A one-way analysis of variance was used to test the differences in the 13 statuses, and to test the differences in NC scores from five different scan protocols (protocols 1–5 in Table 1). The group differences in the discriminant scores were assessed using independent-sample t tests, in which p < 0.05 was considered significant. Receiver operating characteristic (ROC) curve analysis was performed to assess the classification of each disease group using discriminant scores. The correlations of discriminant scores with clinical scores were analyzed by using the Spearman’s rank correlation tests, in which p < 0.05 was considered significant. Statistical analyses were performed on SPSS 18/20 (IBM Corp., NY, USA).

3. Results

3.1. Effects of age, gender, and scan parameters

Thirty-nine PCs were extracted from the 40 × 177 matrix of Ztrain to calculate the discriminant scores of 13 statuses (NC, NC_c, AD, MCI, MCI_c, HD_es, HD_cto, HD_ffo, SCA6, PPA_Sv, PPA_NFv, PPA_Lv, and PPA_U) for each participant. A one-way analysis of variance was used to test the differences in the 13 statuses, and to test the differences in NC scores from five different scan protocols (protocols 1–5 in Table 1). The group differences in the discriminant scores were assessed using independent-sample t tests, in which p < 0.05 was considered significant. Receiver operating characteristic (ROC) curve analysis was performed to assess the classification of each disease group using discriminant scores. The correlations of discriminant scores with clinical scores were analyzed by using the Spearman’s rank correlation tests, in which p < 0.05 was considered significant. Statistical analyses were performed on SPSS 18/20 (IBM Corp., NY, USA).

3.2. Extraction of disease-specific features

From the Ztrain derived from the training dataset, PCA extracted 54 PCs that could explain >95% of the total variance. LDA was applied to the 54 PCs to extract eight feature vectors that could calculate discriminant scores for seven disease statuses and for normal status (Fig. 3A). PCA and subsequent LDA were also applied to the Ztrain to extract feature vectors without the effects of age and gender (Fig. 3B).

3.3. Evaluation of GAIA using the test dataset

Discriminant scores of eight clinical statuses were calculated based on the trained feature vectors. Note that a higher discriminant score represents a closer match to the typical disease-related feature.

The NC group had a significantly higher NC score than the patient groups (p = 1.7 × 10^-4) (Fig. 4A). The difference still remained after removing the effects of age and gender were removed (p = 1.9 × 10^-2) (Fig. 4A). The area under the ROC curve (AUC) indicated that the ability of the NC score to correctly discriminate between the NC group and the non-NC group was significant for both with and without effects of age and gender (Table 2, I). Although NC individuals were cognitively and neurologically normal, those with low NC scores had atrophy in the brain (Fig. 5A).

The AD scores of the AD and MCI groups were significantly higher than those of the non-AD non-MCI group (p = 1.6 × 10^-9 and 4.0 × 10^-2). The AD scores of the MCI_c group tended to be higher than those of the other groups, but did not reach statistical significance (p = 1.4 × 10^-11). After removing the effects of age and gender, the AD scores were still significantly higher in the AD group (p = 1.1 × 10^-7), but not in the MCI and MCI_c groups (p = 2.0 × 10^-4 and 1.8 × 10^-1). The AUC indicated that the ability of the AD score to correctly discriminate between the AD or MCI group and the non-AD non-MCI group was significant. In the AD group, the significance still remained after removing the effects of age and gender, but not in the MCI group (Table 2-II). Medial temporal atrophy, which is typically seen in AD patients, was not apparent on AD images with a low AD score (Fig. 5B). There were significant correlations between the AD score and MMSE, the ADAS, the CDR-rating, and the CDR-sum of box scores, but not between the AD score and GDS. After removing the effects of age and gender, the AD score still correlated with the MMSE, the ADAS, the CDR-rating, and the CDR-sum of box scores (Table 3, I).

The HD scores of the HD groups (HD_es, HD_cto, and HD_ffo) were significantly higher than those of the non-HD group (p = 0.9 × 10^-2, 2.3 × 10^-4, and 2.2 × 10^-4). After removing the effects of age and gender, HD scores were still higher in the HD_cto and HD_ffo groups (p = 0.003 and 0.002), but the tendency toward higher HD scores for the HD_es group did not reach statistical significance (p = 0.96). The AUC indicated that the ability of the HD score to correctly discriminate between the HD group (HD_es, HD_cto, and HD_ffo) and the non-HD group was significant. This significance remained after removing the effects of age and gender, except in HD_es, which was slightly below...
Fig. 3. Color-coded feature vectors of eight clinical statuses. The feature vectors are color-coded on the 177 areas of the atlas space. The red represents positively weighted areas and the blue represents negatively weighted areas. Weights are relative, and have no applicable units. The images are in radiological convention (R represents the right side).

The SCA6 group (p = 1.2 × 10^{-8}) had a significantly lower SCA6 score than those of the non-SCA6 group and the group with low PPA scores (Fig. 5E–G). The WAB repetition scores correlated with the PPA_NFv scores only after removing the effects of age and gender (Table 3, IV–VII), but a significant correlation was not identified between the WAB AQ score and any of the PPA scores.

4. Discussion

GAIA employs mismatches between a target image and the reference atlas to extract anatomical features. The most striking aging effect was found in the periventricular area, probably due to ventricular enlargement, as previously reported (Juva et al., 1993; Wang et al., 2013). The effect of gender is also in agreement with the results of past studies (Chen et al., 2007; Coffey et al., 1998; Thambisetty et al., 2010).

Rank order was used to quantify the intensity profile. For T1-weighted images, the intensity of the cerebrospinal fluid is always lower than that of gray and white matter, and the white matter intensity is always higher than that of gray matter. The comparison of NC scores among different protocols indicated the robustness of the GAIA-based approach against protocol variability.

The feature vectors extracted from the training dataset agreed with known pathological hallmarks. The medial temporal lobe and the parietal lobe were negatively weighted in AD, the basal ganglia were positively weighted in HD, the cerebellum was negatively weighted in SCA6, the left temporal area was negatively weighted in PPA_Sv, the left frontal operculum and the insular were negatively weighted in PPA_NFv, and the left parieto-temporal area was negatively weighted in PPA_Lv, regardless of the effects of age and gender. Note that with GAIA, the rank of the areas with cortical atrophy decreases because of the inclusion of the dark cerebrospinal fluid signal, and the lenticular nuclei with atrophy were ranked higher because of the inclusion of the surrounding bright white matter signal.

Several features were observed in GAIA-based image scoring. First, the discriminant scores indicated “How close the target image was to the typical anatomical feature of the disease.” As indicated in Fig. 5,
Fig. 4. Bar charts of eight discriminant scores (A: NC score, B: AD score, C: HD score, D: SCA6 score, E: PPA_Sv score, F: PPA_NFv score, G: PPA_Lv score, and H: PPA_U score) from thirteen statuses (from left to right a: NC, b: NC_c, c: AD, d: MCI, e: MCI_c, f: HD_es, g: HD_cto, h: HD_ffo, i: SCA6, j: PPA_Sv, k: PPA_NFv, l: PPA_Lv, and m: PPA_U), with effects of age and gender (upper chart) and without effects of age and gender (lower chart). Asterisks (*) represent a status that should be discriminated by the discriminant score.

Table 2

Results of ROC analyses.

Status	With effect of age and gender	Without effect of age and gender													
	Cut-off	Sensitivity	Specificity	AUC	95%CI	p	Cut-off	Sensitivity	Specificity	AUC	95%CI	p			
I. NC score	NC	−2.5	76.9	58	71.4 ± 4.9	61.8–80.9	.000	NC	−2.2	74.4	48.9	61.2 ± 5.0	51.5–71.0	.034	
II. AD score	NC_c	−3.3	100	45.5	64.7 ± 8.7	47.6–81.7	.038	AD	−9.5	100	48.5	59.5 ± 6.5	46.7–72.3	.074	
III. HD score	HD_es	−12.6	100	77.1	88.3 ± 4.1	80.2–96.3	.039	HD_cto	−15.7	100	86.5	69.3 ± 6.4	56.7–81.9	.004	
IV. SCA6 score	SCA6	−8.5	100	91.1	97.4 ± 1.2	94.9–99.8	.000	V. PPA_Sv score	PPA_Sv	−13.7	88.9	94.0 ± 3.9	0.0–100.0	.000	
VI. PPA_NFv score	PPA_NFv	−10.3	100	89.8	97.3 ± 2.3	0.0–100.0	.002	VIII. PPA_U score	PPA_U	−10.6	50	92.2	66.0 ± 16.6	33.3–98.6	.028

* The asymptotic significance is less than 0.05.

b The asymptotic significance is less than 0.01.
the discriminant scores were not suitable to detect diseases in their early stage with only subtle anatomical alterations, or with atypical anatomical features. Second, AD, SCA6, PPA_Sv, and PPA_NFv were well discriminated from each other, which was expected from previous publications (Dolek et al., 2012; Laakso et al., 1998; Marigliano et al., in press). Congruent with the past studies that used morphometry (Xu et al., 2000), the AD score had limited power to separate MCI and MCI_c groups from non-AD, non-MCI groups. The AD, SCA6, and PPA_NFv scores correlated with functional scales, similar to the correlations between hippocampal volume and cognitive scales (Arlt et al., 2013; Troyer et al., 2012), between cerebellar volume and ataxia scales (Eichler et al., 2011; Jacobi et al., 2012; Jung et al., 2012), and between regional volumes and WAB subsets (Amici et al., 2007). This indicated that GAIA-based feature recognition is comparable to that based on morphometry. Third, the disease separation was generally better when the effects of age and gender were accounted for, probably because the age of the AD, MCI, MCI_c, and PPA groups was higher than that of the SCA6 and HD groups. Last, the performance of the discriminant scores was not satisfactory for the disease categories that included various histopathological diagnoses, or those with an atypical phenotype. MCI includes early AD and MCI without AD pathology (Albert, 2011). The histopathological diagnosis of PPA_Lv is usually AD (Kirshner, 2012; Rabinovici et al., 2008), which might partially explain the relatively high PPA_Lv score in AD and MCI_c, but the clinical phenotype is different from that of common AD. PPA_U is, by definition, a mixture of unclassified cases of PPA, which lacks common anatomical features.

While the GAIA was intended to be used as a tool for anatomical feature recognition, the natural extension is an automated image-based diagnosis. For such a diagnostic application, the GAIA needs to give discriminant scores with sufficiently high sensitivity and specificity for the diagnosis of individual patients. The ROC analysis demonstrated substantially high sensitivity and specificity for AD, HD_es, SCA6, PPA_Sv and PPA_NFv, suggesting the potential for a diagnostic application. However, given the fact that there are patients with less typical or atypical anatomical features (Fig. 5), GAIA alone might be insufficient for the clinical evaluation. One possibility for a future clinical application is a probabilistic evaluation of a single patient based on anatomical feature similarity. Namely, GAIA could be used to sort stored clinical cases with anatomical features similar to a target image, to calculate the probability of a given clinical condition, such as diagnosis, prognosis, or responsiveness to treatment. Anatomical features extracted by GAIA could also be combined with other clinical information, such as age, gender, symptoms, medical history, risk factors, results of physical examinations, and other neurological evaluations, to simulate physicians’ decision-making. Since the effectiveness of combining image and non-image information to form a classification of AD and MCI has been demonstrated (Zhang et al., 2011), the GAIA might be a promising tool to extend the application of multimodal classification to a cohort that consists of multiple diseases and conditions. The exploration of the applicability of GAIA to clinical diagnosis support will be an important future direction.

In this study, GAIA was based on linear transformation, which does not require computationally extensive non-linear transformation. It is
accurately categorize test images with typical disease-related anatomical features.

possible to combine GAIA with non-linear transformation. As the nonlinearity of the transformation increases, the accuracy of atlas-based structural definition also increases. However, the transformation results become highly sensitive to intensity abnormalities, potentially leading to unpredictable outcomes. The combination of GAIA and nonlinear transformation and the effect of the degree of nonlinearity are, thus, important directions for future research. The GAIA found characteristically anatomical features for each disease category, which has been previously reported by morphometric studies. Please note that conventional morphometry studies are based on manual delineation of pre-selected structures, or voxel-based analyses, which lead to voxel-based patterns specific to each disease on a study-specific (customized) template, while GAIA applies a single generic atlas and simple linear transformation for all disease models, making it an ideal tool for CBIR.

This study has limitations. In this proof-of-concept study, only neurodegenerative diseases with well-known neuroanatomical features were included. To test the applicability of GAIA as a tool for CBIR, rigorous evaluation must be performed on much larger datasets, as well as on diseases with no or subtle neuroanatomical features (e.g., psychiatric diseases), diseases with substantial alterations in image intensity (e.g., stroke), diseases with space-occupying lesions (e.g., tumor), and patients with multiple diseases. Care should be taken to interpret the discriminant scores, since the scores are purely based on imaging features and do not necessarily reflect the histopathological or etiological background. Further investigations about the applicability of this method to other image modalities or to multimodal image recognition will be essential.

In summary, a method to convert T1-weighted brain MRIs to feature vectors, based on local atlas–image segmentation disagreement, can accurately categorize test images with typical disease-related anatomical features.

Conflict of interest

Dr. van Zijl is a paid lecturer for Philips Medical Systems and is the inventor of technology that is licensed to Philips. This arrangement has been approved by the Johns Hopkins University in accordance with its conflict of interest policies.

Acknowledgments

The authors thank Ms. Mary McAllister for the help with manuscript editing, and Ms. Terri Brawner and Mr. Hugh Wall for the technological support. This publication was made possible by grants from the National Institutes of Health (R01DC013171, R21AG033774, R01HD065955, K24DA61427, U54NS56883, P50EB01270, 48000195, R01AG20012, K23YE15802, R21NS059830, M01RR000052, R01NS056307, RC1NS088879 and PS0AG005146), the National Center for Research Resources grant G2–RR003601, the State Scholarship Fund (File No. 2011 1616055), and the Yousem Family Research Fund. Its contents are solely the responsibility of the authors and do not necessarily represent the official view of any of these institutes. The images acquired on Alzheimer’s patients and age-matched controls were supported by a methods development grant from Glaxo-Smith-Kline.

References

Albert, M.S., 2011. Changes in cognition. Neurobiol. Aging 32 (Suppl. 1), 558–563.
Amici, S., Ogar, J., Brambati, S.M., Miller, B.L., Neuner, J., Dronkers, N.L., Gorno-Tempini, M.L., 2007. Performance in specific language tasks correlates with regional volume changes in progressive aphasia. Cogn. Behav. Neurol. 20, 203–211.
Andersen, S.M., Rapcsak, S.Z., Beeson, P.M., 1999. Nonlinear spatial normalization using basis functions. Hum. Brain Mapp. 7, 254–266.
Chen, X., Sachdev, P.S., Wen, W., Anstey, K.J., 2007. Sex differences in regional gray matter in healthy individuals aged 44–48 years: a voxel-based morphometric study. Neuroimage 36, 691–699.
Chiang, M.L., Leow, A.D., Klunder, A.D., Dutton, R.A., Barysheva, M., Rose, S.E., McMahon, K.L., de Zubicaray, G.I., Toga, A.W., Thompson, P.M., 2008. Fluid registration of diffusion tensor images using information theory. IEEE Trans. Med. Imaging 27, 442–456.
Coffey, C.E., Lucke, J.F., Saxton, J.A., Ratcliff, G., Unitas, L.J., Billig, B., Bryan, R.N., 1998. Sex differences in brain aging: a quantitative magnetic resonance imaging study. Arch. Neurol. 55, 169–179.
Dickerson, B.C., Balkour, A., Salat, D.H., Feczko, E., Pacheco, J., Greve, D.N., Grodfest, I., Wright, C.I., Blacker, D., Rosas, H.D., Sperling, R.A., Atri, A., Crowdon, J.H., Hyman, B.T., Trojanowski, J.C., Fischl, B., Buckner, R.L., 2009. The cortical signature of Alzheimer’s disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymmetrical amyloid-positive individuals. Cereb. Cortex 19, 507–510.
Dolek, N., Sayilsoy, S., Ozhabalik, D., Adapinar, B., 2012. Comparison of hippocampal volume measured using magnetic resonance imaging in Alzheimer’s disease, vascular dementia, mild cognitive impairment and pseudodementia. J. Int. Med. Res. 40, 717–725.
Du, A.T., Schuff, N., Kramer, J.H., Rosen, H.J., Gorno-Tempini, M.L., Rankin, K., Miller, B.L., Weiner, M.W., 2007. Different regional patterns of cortical thinning in Alzheimer’s disease and frontotemporal dementia. Brain 130, 1159–1166.
Eichler, L., Bellenberg, B., Hahn, H.K., Koster, O., Schols, L., Lukas, C., 2011. Quantitative assessment of brain stem and cerebellar atrophy in spinocerebellar ataxia types 3 and 6: impact on clinical status. AJNR Am. J. Neuroradiol. 32, 890–897.
El-Kwae, E.A., Xu, H., Kubara, M.R., 2000. Content-based retrieval in picture archiving and communication systems. J. Digit. Imaging 13, 70–81.
Faria, A.V., Crinion, J., Tsapkini, K., Newhart, M., Davis, C., Cooley, S., Mori, H., 2011. Qualitative categorization of primary progressive aphasia and its variants. Neurology 76, 1006–1014.
Groenewegen, H., Pihlas, A.T., 2007. Medical image categorization and retrieval for PACS using the GMM-KL framework. IEEE Trans. Inf. Technol. Biomed. 11, 190–202.
Jacobi, H., Hauser, T.K., Giunti, P., Globas, C., Bauer, P., Schmitz-Hubsch, T., Balîlo, L., Fillia, M., Mariotti, C., Rakowicz, P., Szymanski, S., Infante, J., van de
Warrenburg, B.P., Durr, A., Timmann, D., Boesch, S., Fancellu, R., Rola, R., Depondt, C., Schols, L., Zdienicka, E., Kang, J.S., Ratyka, S., Kremer, B., Stephenson, D.A., Melegh, B., Pandolfo, M., Tezenas du Montcel, S., Borkert, J., Schulz, J.B., Klockgether, T., 2012. Spinocerebellar ataxia types 1, 2, and 6: the clinical spectrum of ataxia and spinocerebellar ataxia and cerebellar findings. Cerebellum 11, 155–166.

Jang, B.C., Choi, S.I., Du, A.X., Cuzzocreo, J.L., Geng, Z.Z., Ying, H.S., Perlman, S.L., Toga, A.W., Prince, J.L., Ying, S.H. 2012. Principal component analysis of cerebellar shape on MRI separates SCA types 2 and 6 into two archetypal modes of degeneration. Cerebellum 11, 887–895.

Juva, K., Sulkava, R., Erkinjuntti, T., Valvanne, J., Tulvis, R., 1993. Prevalence of dementia in the city of Helsinki. Acta Neurol. Scand. 87, 106–110.

Kirshner, H.S., 2012. Primary progressive aphasia and Alzheimer’s disease: brief history, recent evidence. Curr. Neurol. Neurosci. Rep. 12, 709–714.

Laakso, M.P., Soininen, H., Partanen, K., Hallikainen, M., Hanninen, T., Helkala, E.L., Vainio, P., Riekkinen Sr., P.J., 1998. MRI of the hippocampus in Alzheimer’s disease: sensitivity, specificity, and analysis of the incorrectly classified subjects. Neurobiol. Aging. 19, 23–31.

Langbehn, D.R., Brinkman, R.K., Falsch, D., Paulsen, J.S., Hayden, M.R., International Huntington’s Disease Collaborative Group, 2004. A new model for prediction of the age of onset and penetrance for Huntington’s disease based on CAG length. Clin. Genet. 65, 267–277.

Levij, J.P., Pruessner, J.C., Zijdenbos, A., Hampel, H., Teipel, S.J., Evans, A.C., 2005. Focal decline of cortical thickness in Alzheimer’s disease identified by computational neuro-anatomy. Cereb. Cortex 15, 995–1001.

Liao, S., Jia, H., Wu, G., Shen, D., 2012. A novel framework for longitudinal atlas construction with groupwise registration of subject image sequences. NeuroImage 59, 1275–1289.

Mandal, P.K., Mahajan, R., Dinov, I.D., 2012. Structural brain atlases: design, rationale, and applications in normal and pathological cohorts. J. Alzheimers Dis. 31 (Suppl 3), S169–S188.

Marigilano, V., Guadil, S., Servello, A., Marigliano, B., Volpe, L.D., Fioretti, A., Pagliarella, M., Valenti, M., Maseda, F., Di Biasi, C., Ettorre, E., Fusetti, M., 2013. Olfactory deficit and hippocampal volume loss for early diagnosis of Alzheimer disease: a pilot study. Alzheimer Dis. Assoc. Disord. (in press).

Mazzotti, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., Woods, R., Paas, T., Simpson, G., Pike, B., Holmes, C., Collins, L., Thompson, P., MacDonald, D., Iacoboni, M., Schormann, T., Amunts, K., Palomer-Gallagher, N., Seyer, P., Parsons, L., Narr, K., Kahan, N., Le Grosvalier, G., Boomsma, D., Cannon, T., Kawashima, R., Mazoyer, B., 2001. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 1293–1322.

McKean, L., Drachman, D., Folstein, M., Katzman, R., Price, D., Stadlan, E.M., 1984. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34, 939–944.

Mesulam, M.M., 1982. Slowly progressive aphasia without generalized dementia. Ann. Neurol. 11, 592–598.

Mesulam, M.M., Wieneke, C., Thompson, C., Rogalski, E., Weintraub, S., 2001. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 1289–1309.

Unay, D., Ekin, J., Jasimichi, R.S., 2010. Local structure-based region-of-interest retrieval in brain MR images. IEEE Trans. Inf. Technol. Biomed. 14, 535–547.

Unschuld, P.G., Joel, S.E., Pekar, J.J., Reading, S.A., Oishi, K., McEntee, J., Shanahan, M., Bakker, A., Margolis, R.L., Bassett, S.S., Rosenblatt, A., Mori, S., van Zijl, P.C., Ross, C.A., Redgrave, G.W., 2012. Depressive symptoms in prodromal Huntington’s Disease correlate with Stroop-interference related functional connectivity in the ventromedial prefrontal cortex. Psychiatry Res. 203, 166–174.

van den Bogaard, S., Dumax, E., van der Gronde, J., van Buchem, M., Roos, R., 2012. MRI biomarkers in Huntington’s disease. Front. Biosci. (Elite Ed.) 4, 1910–1925.

Verma, R., Mori, S., Shen, D., Varoyiskis, P., Zhang, J., Davatzikos, C., 2005. Spatiotemporal maturation patterns of murine brain quantified by diffusion tensor MRI and deformation-based morphometry. Proc. Natl. Acad. Sci. U.S.A. 102, 6983–6988.

Wang, H., Ren, Y., Bai, L., Zhang, W., Tian, J., 2012. Morphometry based on effective and accurate correspondences of localized patterns (MEACOPL). PLoS One 7, e35745.

Wang, H.L., Yu, R., Wu, Y.T., Lee, W.Y., Lin, M.F., Chen, C.Y., Shen, E.Y., 2013. The changes of cerebral morphology related to aging in Taiwanese population. PLoS One 8, e55241.

Woods, R.P., Graffelman, S.T., Holmes, C.J., Cherry, S.R., Mazzotti, J.C., 1998. Automated image registration: General methods and intrasubject, intramodality validation. J. Comput. Assist. Tomogr. 22, 139–152.

Wright, I.C., McGuire, P.K., Poline, J.B., Travere, J.M., Murray, R.M., Frith, C.D., Frackowiak, R.S., Friston, K.J., 1995. A voxel-based method for the statistical analysis of gray and white matter density applied to schizophrenia. NeuroImage 2, 244–252.

Xu, Y., Jack Jr., C.R., O’Brien, P.C., Kolonik, E., Smith, G.E., Jink, R.L., Roeve, B.F., Tangalo, R.G., Petersen, R.C., 2000. Usefulness of MRI measures of entorhinal cortex versus hippocampus in AD. Neurology 54, 170–176.

Yushkevich, P.A., Zhang, H., Sinton, T.J., Gee, J.C., 2008. Structure-specific statistical mapping of white matter tracts. NeuroImage 41, 448–461.

Zhang, H., Yushkevich, P.A., Alexander, D.C., Gee, J.C., 2006. Deformable registration of diffusion tensor MR images with explicit orientation optimization. Med. Image Anal. 10, 764–785.

Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D., 2011. Multimodal classification of Alzheimer’s disease and mild cognitive impairment. NeuroImage 55, 856–867.