Sparse signal recovery by ℓ_q minimization under restricted isometry property

Chao-Bing Song, Shu-Tao Xia

Abstract—In the context of compressed sensing, the nonconvex ℓ_q minimization with $0 < q < 1$ has been studied in recent years. In this paper, by generalizing the sharp bound for ℓ_1 minimization of Cai and Zhang, we show that the condition $\delta_{(s+1)k} < \frac{1}{\sqrt{s+1}}$ in terms of restricted isometry constant (RIC) can guarantee the exact recovery of k-sparse signals in noiseless case and the stable recovery of approximately k-sparse signals in noisy case by ℓ_q minimization. This result is more general than the sharp bound for ℓ_1 minimization when the order of RIC is greater than $2k$ and illustrates the fact that a better approximation to ℓ_0 minimization is provided by ℓ_q minimization than that provided by ℓ_1 minimization.

Index Terms—Compressed sensing, ℓ_q minimization, restricted isometry property, sparse signal recovery.

I. INTRODUCTION

As a new paradigm for signal sampling, compressed sensing (CS) [1], [2], [3] has attracted a lot of attention in recent years. Consider a k-sparse signal $x = (x_1, x_2, \ldots, x_p) \in \mathbb{R}^p$ which has at most k nonzero entries. Let $A \in \mathbb{R}^{n \times p}$ be a measurement matrix with $n \ll p$ and $y = Ax$ be a measurement vector. CS deals with recovering the original signal x from the measurement vector y by finding the sparsest solution to the underdetermined linear system $y = Ax$, i.e., solving the following ℓ_0 minimization problem:

$$\min \|x\|_0 \quad \text{s.t.} \quad Ax = y,$$

where $\|x\|_0 := \{i : x_i \neq 0\}$ denotes the ℓ_0-norm of x. Unfortunately, as a typical combinatorial optimization problem, this optimal recovery algorithm is NP-hard [2]. One popular strategy is to relax the ℓ_0 minimization problem to an ℓ_1 minimization problem:

$$\min \|x\|_1 \quad \text{s.t.} \quad Ax = y.$$

Due to the convex essence of ℓ_1 minimization, we can solve it in polynomial time [2].

In order to describe the equivalence condition between reconstruction algorithms with polynomial time and ℓ_0 minimization, restricted isometry property (RIP) is introduced in Candès and Tao [2], which has been one of the most popular properties of measurement matrix in CS. We can rewrite the definition of RIP as follows.

This research is supported in part by the Major State Basic Research Development Program of China (973 Program, 2012CB315803), the National Natural Science Foundation of China (61371078), and the Research Fund for the Doctoral Program of Higher Education of China (20130002110051).

All the authors are with the Graduate School at ShenZhen, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China (e-mail: scb12@mails.tsinghua.edu.cn, xiaist@sz.tsinghua.edu.cn).

Definition 1: The measurement matrix $A \in \mathbb{R}^{n \times p}$ is said to satisfy the k-order RIP if for any k-sparse signal $x \in \mathbb{R}^p$,

$$(1 - \delta)\|x\|_2^2 \leq \|Ax\|_2^2 \leq (1 + \delta)\|x\|_2^2,$$

where $0 \leq \delta \leq 1$. The infimum of δ, denoted by δ_k, is called the k-order restricted isometry constant (RIC) of A. When k is not an integer, we define δ_k as $\delta_{\lceil k \rceil}$, where $\lceil \cdot \rceil$ denotes the ceiling function.

There are a lot of papers to discuss the equivalence condition between ℓ_1 minimization and ℓ_q minimization in terms of RIC, such as $\delta_k + \delta_{2k} + \delta_{4k} < 1$ in Candès and Tao [2], $\delta_{2k} < \sqrt{2} - 1$ in Candès [4], $\delta_{2k} < 0.4652$ in Foucart [5], $\delta_k < 1/3$ in Cai and Zhang [6], and $\delta_{3k} < \sqrt{t-1} (t > 4/3)$ in Cai and Zhang [7]. In these conditions, $\delta_k + \delta_{2k} + \delta_{4k} < 1$ is the first RIC condition, while $\delta_k < 1/3$ and $\delta_{3k} < \sqrt{t-1} (t > 4/3)$ are sharp bounds in the sense that we can find counterexample that ℓ_1 minimization can’t find x exactly if these conditions don’t hold [5, 7].

Instead of ℓ_1 minimization, from the fact that $\lim_{q \to 0} \|x\|^q_0 = \|x\|_0$, solving an $\ell_q(0 < q < 1)$ minimization problem

$$\min \|x\|^q_0 \quad \text{s.t.} \quad Ax = y,$$

may provide a better approximation to ℓ_0 minimization. The advantages of ℓ_q minimization can be found in [8]. Although finding a global minimizer of (4) is NP-hard, a lot of algorithms with polynomial time have been proposed to find a local minimizer of (4), such as the algorithms in [8], [9], [10].

In practical applications, there often exist noises in measurements and the original signal x may be not exact sparse. In noisy case, we can relax the constraint in (4) as follows,

$$\min \|x\|^q_0 \quad \text{s.t.} \quad y - Ax \in B,$$

where B denotes some noise structure. In this setting, we need to recover x with bounded errors, i.e., recover x stably.

Several RIC bounds of ℓ_q minimization are given in the literature, such as $\delta_{2k} < 0.4531$ in Foucart and Lai [11], $\delta_{2k} < 0.4931$ in Hsia and Sheu [12]. Other similar results can be found in Saab, Chartrand and Yilmaz [13], Lai and Liu [14], Zhou Kong, Luo and Xin [15]. In this paper, we mainly focus on the RIC condition of ℓ_q minimization. We show that if $\delta_{(s+1)k} < \frac{1}{\sqrt{s+1}} (s > 0)$, ℓ_q minimization can recover k-sparse signal exactly in noiseless case and recover approximately k-sparse signal stably in noisy case. From this condition, we show that as a relaxation way closer to ℓ_0 minimization, ℓ_q minimization can guarantee sparse signal recovery in a more general condition in terms of RIC.
The remainder of the paper is organized as follows. In Section II we introduce related notations and lemmas. In Section III we give our main results in both noiseless and noisy settings. In Section IV unified proofs are given to the main results in Section III. Finally, conclusion is given in Section V.

II. PRELIMINARIES

Let e_i's in \mathbb{R}^p be different unit vectors with one entry of 1 or -1 in position $i \in \{1, 2, \ldots, p\}$ and other entries of zeros, which Cai and Zhang call indicator vectors. Let $v = \sum_{i=1}^{p} v_i e_i$ be an arbitrary vector in \mathbb{R}^p, where $\forall i \in \{1, 2, \ldots, p\}, v_i \geq 0$. Let $\text{supp}(v)$ denote the support of v or the set of indices of nonzero entries in v. Let $v_{\text{max}}(k)$ be the vector v with all but the largest k entries in absolute values set to zeros and $v_{-\text{max}}(k) = v - v_{\text{max}}(k)$. For $0 < q < \infty$, let l_q-norm of a vector $v \in \mathbb{R}^p$ as $\|v\|_q = (\sum_{i=1}^{p} |v_i|^q)^{1/q}$. In addition, let $\|v\|_\infty = \sup_i |v_i|$ and $\|v\|_0 = |\text{supp}(v)|$ be the number of nonzero entries in v. Let $\delta^q = \sum_{i=1}^{p} v_i^q e_i$ be "the q power of the vector v". In addition, let $\sigma(A)$ denote the spectral norm of A.

Then we introduce direct consequences of the Hölder inequality as follows.

Lemma 1: If $\forall v \in \mathbb{R}^p$ and $0 < q < 1$,
$$\|v\|_q \leq p^{\frac{1}{q} - \frac{1}{2}} \|v\|_2.$$ Moreover, if v is k-sparse, then
$$\|v\|_q \leq k^{\frac{1}{q} - \frac{1}{2}} \|v\|_2.$$ The following lemma introduced in Cai and Zhang is crucial to get the proposal results on $\delta_{(s^q+1)k}$.

Lemma 2 (Sparse Representation of a Polytope): For a positive number α and a positive integer t, define the polytope $T(\alpha, t) \subset \mathbb{R}^p$ by
$$T(\alpha, t) = \{v \in \mathbb{R}^p : \|v\|_\infty \leq \alpha, \|v\|_1 \leq t \alpha\}.$$ For any $v \in \mathbb{R}^p$, define the set of sparse vectors $U(\alpha, t, v) \subset \mathbb{R}^p$ by
$$U(\alpha, t, v) = \{u \in \mathbb{R}^p : \text{supp}(u) \subseteq \text{supp}(v), \|u\|_1 \leq t, \|u\|_1 = \|v\|_1, \|u\|_\infty \leq \alpha\}.$$ Then $v \in T(\alpha, t)$ if and only if v is in the convex hull of $U(\alpha, t, v)$. In particular, any $v \in T(\alpha, t)$ can be expressed as
$$v = \sum_{i=1}^{N} \lambda_i u_i, \quad 0 \leq \lambda_i \leq 1, \quad \lambda_1 = 1, \quad \lambda_i \in U(\alpha, t, v).$$

III. MAIN RESULTS

In noiseless case, we have the following result.

Theorem 1: Assume that $x \in \mathbb{R}^p$ is k-sparse signal and $y = Ax + z$ with $y, z \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times p}$, $\|z\|_2 \leq \epsilon$, and $B = \{z : \|z\|_2 \leq \eta\}$ with $\eta \geq \epsilon + \sigma(A)\|x_\text{ref}\|_2$ in (5).

Then if the $(s^q + 1)$-k-order RIC of the measurement matrix A satisfies
$$\delta_{(s^q+1)k} < \frac{1}{\sqrt{s^q-2} + 1},$$
the minimizer \hat{x} of (4) will recover x exactly.

In noisy case, two types of bounded noisy setting
- $\mathcal{B} = \{z : \|z\|_2 \leq \eta\}$,
- $\mathcal{B} = \{z : \|A^T z\|_2 \leq \eta\}$,
are of particular interest. The first bounded noise setting was introduced in [10]. The second one was motivated by Dantzig Selector in [17]. The corresponding results in the two noisy cases are given in Theorems 2 and 3 respectively.

Theorem 2: Assume that $x \in \mathbb{R}^p$ is approximately k-sparse signal, $y = Ax + z$ with $y, z \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times p}$, $\|z\|_2 \leq \epsilon$, and $B = \{z : \|z\|_2 \leq \eta\}$ with $\eta \geq \epsilon + \sigma(A)\|x_\text{ref}\|_2$ in (5).

Then if the $(s^q + 1)$-k-order RIC of the measurement matrix A satisfies
$$\delta_{(s^q+1)k} < \frac{1}{\sqrt{s^q-2} + 1},$$
the minimizer \hat{x} of (5) will recover x stably as follows:
$$\|\hat{x} - x\|_2 \leq \frac{\sqrt{2(1 + \delta_{(s^q+1)k})}}{1 - \sqrt{s^q-2} + 1} \|\delta_{(s^q+1)k}\|_2,$$
$$\|\hat{x} - x\|_2 \leq \frac{\sqrt{2(1 + \delta_{(s^q+1)k})\|A\|_2\|x_\text{ref}\|_2}}{1 - \sqrt{s^q-2} + 1} \|\delta_{(s^q+1)k}\|_2.$$ Then if the $(s^q + 1)$-k-order RIC of the measurement matrix A satisfies
$$\delta_{(s^q+1)k} < \frac{1}{\sqrt{s^q-2} + 1},$$
the minimizer \hat{x} of (5) will recover x stably as follows:
$$\|\hat{x} - x\|_2 \leq \frac{\sqrt{2(s^q + 1)}\|A\|_2\|x_\text{ref}\|_2}{1 - \sqrt{s^q-2} + 1} \|\delta_{(s^q+1)k}\|_2,$$
$$\|\hat{x} - x\|_2 \leq \frac{\sqrt{2(s^q + 1)}\|A\|_2\|x_\text{ref}\|_2}{1 - \sqrt{s^q-2} + 1} \|\delta_{(s^q+1)k}\|_2.$$ The proposed RIC condition is a natural generalization of the sharp result $\delta_{tk} < \frac{1}{\sqrt{(t-1)^{-\frac{q}{q}+1}}} (t > 4/3)$ in Cai and Zhang [7]. Rewrite $\delta_{tk} < \frac{1}{\sqrt{(t-1)^{-\frac{q}{q}+1}}} \leq \frac{1}{\sqrt{(t-1)^{-\frac{q}{q}+1}}}$ if $0 < q < 1$ and $t > 2$. Therefore, in terms of RIC with order more than $2k$, the condition of the measurement matrix A is relaxed if we use $\ell_q(0 < q < 1)$ minimization instead of ℓ_2 minimization. In addition, in Theorems 2 and 3 we use a relatively stricter condition $\eta \geq \epsilon + \sigma(A)\|x_\text{ref}\|_2$ and $\eta \geq \epsilon + \sigma(A)\|x_\text{ref}\|_2$ respectively than $\eta \geq \epsilon$ used in Cai and Zhang [7]. In our proofs, in order to get an analytic upper bound of $\|\hat{x} - x\|_2$, the stricter condition may be necessary. Finally, although the proposed bound is better than the existing results, further research is still needed to verify whether it is sharp or not.

IV. PROOFS

In this section, firstly, our proofs are stated in general case. Then three cases including a noiseless case and two noise cases are discussed separately.
Proof: Assume that x is approximately k-sparse signal. Let T denote the support of the largest k entries of x and \overline{T} denote the complement of T. Let $x_T(x_{\overline{T}})$ denote the vector that sets all entries of x but the entry in $T(\overline{T})$ to zero. Let $e^i = Ax_T + e^i$, and we have $y = Ax_T + e^i$. Assume that $y - Ax_T \in B$ and x is the minimizer of (5). Let $x = x_T + h$, and we have

$$
\|x_T\|_q^2 - \|h_T\|_q^2 + \|h_{\overline{T}}\|_q^2 \leq \|x_T + h\|_q^2 \leq \|x_T\|_q^2.
$$

Immediately,

$$
\|h_{-\max(k)}\|_2^2 \leq \|h_T\|_q^2 \leq \|h_T\|_q^2 \leq \|h_{\max(k)}\|_q^2.
$$

(11)

Note that from the definitions in Section III and the beginning of the proof, $x_T(x_{\overline{T}})$ is equivalent to $x_{\max(k)}(x_{-\max(k)})$, introducing the symbol $T(\overline{T})$ is just for distinguishing $h_T(h_{\overline{T}})$ from $h_{\max(k)}(h_{-\max(k)})$.

Then, assume that ks^q is an integer. Let $h = \sum_{i=1}^{p} h_i e_i$, where e_i’s are indicator vectors. Without loss of generality, assume that $h_1 \geq h_2 \geq \cdots \geq h_p \geq 0$. Set $\alpha^q = \|h_{\max(k)}\|_1/k$. We divide $h_{-\max(k)}$ into two parts with disjoint supports, $h_{-\max(k)} = h_1 + h_2$, where

$$
h_1 = h_1 \{ i \in h_{-\max(k)}(i) > \alpha^q/s \}, \quad h_2 = h_1 \{ i \in h_{-\max(k)}(i) \leq \alpha^q/s \}.
$$

Then $h_{-\max(k)} = h_1 + h_2$. $\|h_1\|_1 \leq \|h_{\max(k)}\|_1 \leq k\alpha^q$; besides, all non-zero entries of h_1 that have magnitude larger than α/s, so h_1 is ks^q-sparse. Let $\|h_1\|_1 = m$, then

$$
\|h_1\|_1 = \|h_{\max(k)}\|_1 - \|h_2\|_1 \leq k\alpha^q - \frac{m\alpha^q}{s}\n\n= (k\alpha^q - m) \cdot \left(\frac{\alpha}{s}\right)^q,
$$

(12)

$$
\|h_2\|_\infty \leq \frac{\alpha}{s}\n.
$$

We now apply Lemma 2 Then h_2^q can be expressed as a convex combination of sparse vectors: $h_2^q = \sum_{i=1}^{N} \lambda_i u_i^q$, where u_i is $(ks^q - m)$-sparse. Now we suppose $\mu \geq 0$, $c \geq 0$ are to be determined. Denote $\beta^q_i = h_{\max(k)}^q + h_1^q + \mu u_i^q$, then

$$
\sum_{j=1}^{N} \lambda_j \beta^q_j = \sum_{j=1}^{N} \lambda_j \beta^q_j - c\beta^q_i
$$

$$
= h_{\max(k)}^q + h_1^q + \mu h_2^2 - c\beta^q_i
$$

$$
= (1 - \mu - c)(h_{\max(k)}^q + h_1^q) - c\mu u_i^q + \mu h_2^q. \quad (13)
$$

and $\beta^q_i, \sum_{j=1}^{N} \lambda_j u_i^q = c\beta^q_i - \mu h_2^q$ are all $(s^q + 1)k$-sparse vectors.

Define $\Lambda := \text{diag}(h_1^{-q}, h_1^{-q}, \ldots, h_p^{-q})$, $B := \Lambda A$. Then $Bh^q = \Lambda Ah^q = Ah = 0$.

We can check the following identity in ℓ_2 norm,

$$
\sum_{i=1}^{N} \lambda_i \|B(\sum_{j=1}^{N} \lambda_j \beta^q_j - c\beta^q_i)\|_2^2
$$

$$
+ (1 - 2c) \sum_{1 \leq i < j \leq N} \lambda_i \lambda_j \|B(\beta^q_i - \beta^q_j)\|_2^2
$$

$$
= \sum_{i=1}^{N} \lambda_i (1 - c^2) \|B\beta^q_i\|_2^2.
$$

Since $Bh^q = 0$ and (13), we have

$$
\begin{align*}
B(\sum_{j=1}^{N} \lambda_j \beta^q_j - c\beta^q_i) &= B((1 - \mu - c)(h_{\max(k)}^q + h_1^q) - c\mu u_i^q + \mu h_2^q) \\
&= A((1 - \mu - c)(h_{\max(k)}^q + h_1^q) - c\mu u_i^q + \mu h_2^q) \\
&= A((1 - \mu - c)(h_{\max(k)} + h_1) - c\mu u_i^q + \mu h_2^q). \\
B\beta^q_i &= A(h_{\max(k)}^q + h_1^q + \mu u_i^q) \\
&= A(h_{\max(k)} + h_1 + \mu u_i^q).
\end{align*}
$$

Assume that

$$
\langle A(h_{\max(k)} + h_1), Ah \rangle \leq \rho \|h_{\max(k)} + h_1\|_2 \quad (15)
$$

with some $\rho \geq 0$. Set $c = \frac{1}{2\sqrt{\rho}}, \mu = \frac{-1 + \sqrt{\rho - 1}}{s^q - 1}$. For notational convenience, we write δ for $\delta(s^q + 1)k$. Let the left-hand side of (13) minus the right-hand side, we get

$$
0 = \sum_{i=1}^{N} \lambda_i \|B(\sum_{j=1}^{N} \lambda_j \beta^q_j - c\beta^q_i)\|_2^2
$$

$$
- \sum_{i=1}^{N} \lambda_i (1 - c^2) \|B\beta^q_i\|_2^2
$$

$$
= \sum_{i=1}^{N} \lambda_i \|A((1 - \mu - c)(h_{\max(k)} + h_1) - c\mu u_i^q + \mu h_2^q)\|_2^2
$$

$$
= \sum_{i=1}^{N} \lambda_i (1 - c^2) \|A(h_{\max(k)} + h_1 + \mu u_i^q)\|_2^2
$$

$$
= \sum_{i=1}^{N} \lambda_i (1 - c^2) \|A(h_{\max(k)} + h_1)\|_2^2
$$

$$
+ 2 \langle A((1 - \mu - c)(h_{\max(k)} + h_1) - c\mu u_i^q + \mu Ah), \mu Ah \rangle
$$

$$
+ \|\mu Ah\|_2^2 - \sum_{i=1}^{N} \lambda_i (1 - c^2)
$$

$$
\langle (A(h_{\max(k)} + h_1 + \mu u_i^q), \mu Ah) \|\mu Ah\|_2^2
$$

$$
\leq \sum_{i=1}^{N} \lambda_i ((1 + \delta)(1 - \mu - c^2) \|h_{\max(k)} + h_1\|_2^2
$$

$$
+ c^2 \mu^2 \|A u_i^q\|_2^2 + \|\mu Ah\|_2^2
$$

$$
+ 2 \langle A((1 - \mu - c)(h_{\max(k)} + h_1) - c\mu u_i^q + \mu Ah), \mu Ah \rangle
$$

$$
- \sum_{i=1}^{N} \lambda_i (1 - c^2) \|A(h_{\max(k)} + h_1\|_2^2 + \mu^2 \|A u_i^q\|_2^2)
$$

$$
= \sum_{i=1}^{N} \lambda_i [1 + \delta] \|h_{\max(k)} + h_1\|_2^2 + \frac{1}{4} \mu^2 \|A u_i^q\|_2^2
$$

$$
+ (\delta(s^q + 1)k \|h_{\max(k)} + h_1\|_2^2 + \mu^2 \|A u_i^q\|_2^2)
$$

$$
\leq \frac{1}{2} \mu + \frac{(1/2)^{s^q - 1} + 1)^2 \mu^2 \delta - \mu + \mu^2}{s^q - 1}.
$$

$$
\|h_{\max(k)} + h_1\|_2^2 + \mu(1 - \mu) \|h_{\max(k)} + h_1\|_2^2
$$

$$
= \sqrt{s^q - 1 + (1 - \mu^2)^2 \delta - \mu + \mu^2} \|h_{\max(k)} + h_1\|_2^2
$$
Consider \(|\|h_{\text{max}}(k) + h_1\|_2|\) as the independent variable in the inequality (16) \(|\|h_{\text{max}}(k) + h_1\|_2| \geq 0\). If we want the solution about \(|\|h_{\text{max}}(k) + h_1\|_2|\) be upper bounded, the coefficient of the second-order term should be less than zero. Therefore, we have
\[
\delta < \frac{1}{\sqrt{s^q-2} + 1},
\]
and
\[
|h_{\text{max}}(k) + h_1|_2 \leq \frac{\rho}{1 - \sqrt{s^q-2} + 1 \delta}.
\]
In (16), we used the fact that
\[
\|Au_s^q\|_2^2 \leq \sum_{j=k+m+1}^{(s^q+1)k} (|h_j|^{1-q} \|u_q^q\|_\infty)^2 \\
\leq (ks^q - m)(\frac{\alpha}{s})^{1-q} (\frac{\alpha}{s})^q (\frac{\alpha}{s})^2 \\
\leq ks^q - 2\alpha^2 \\
= ks^q - 2 \left(\frac{\|h_q^q(\text{max}(k))\|_{1/q}}{k^{1/q}} \right)^2 \\
= ks^q - 2 \left(\frac{\|h_{\text{max}}(k)\|_q}{k^{1/q}} \right)^2 \\
\leq ks^q - 2 \left(\frac{k^{1/q-1/2} \|h_{\text{max}}(k)\|_2}{k^{1/q}} \right)^2 \\
\leq s^q - 2 \|h_{\text{max}}(k) + h_1\|_2^2,
\]
where (19) is from (12) and (20) is from Lemma 1.

If \((s^q + 1)k\) is not an integer, note \((s^q)^q = [s^q k]/k\), then \(s^q > s, k(s^q)^q\) is an integer; from the above derivations, we know that
\[
\delta = \delta_{(s^q+1)k} = \delta_{(s^q)^q+1} < \frac{1}{\sqrt{(s^q)^q-2} + 1},
\]
holds. While
\[
\frac{1}{\sqrt{s^q-2} + 1} < \frac{1}{\sqrt{(s^q)^q-2} + 1},
\]
so if \((s^q + 1)k\) is not an integer, the condition \(\delta_{(s^q+1)k} < \frac{1}{\sqrt{s^q-2} + 1}\) is still enough to guarantee that the solution about \(|\|h_{\text{max}}(k) + h_1\|_2|\) of the inequality (16) \(|\|h_{\text{max}}(k) + h_1\|_2| \geq 0\) is upper-bounded. From (6) Lemma 5.4 and (11), we have \(|\|h_{-\text{max}}(k)\|_2| \leq \|h_{\text{max}}(k)\|_2|\). So
\[
\|\hat{x} - x_{\text{max}}(k)\|_2 = \|h\|_2 = \sqrt{\|h_{\text{max}}(k)\|_2^2 + \|h_{-\text{max}}(k)\|_2^2} \\
\leq \sqrt{2\|h_{\text{max}}(k)\|_2} \\
\leq \sqrt{2\|h_{\text{max}}(k) + h_1\|_2}.
\]
Then
\[
\|\hat{x} - x\|_2 \leq \|\hat{x} - x_{\text{max}}(k)\|_2 + \|x_{-\text{max}}(k)\|_2 \\
\leq \sqrt{2\|h_{\text{max}}(k) + h_1\|_2} + \|x_{-\text{max}}(k)\|_2 \\
\leq \frac{\sqrt{2}\rho}{1 - \sqrt{s^q-2} + 1 \delta} + \|x_{-\text{max}}(k)\|_2.
\]

Next, we discuss the noiseless case and the two noisy cases respectively.

1. The noiseless case: If \(x\) is \(k\)-sparse, then \(A\hat{x} = A\hat{x} \rightarrow Ax = 0\). Therefore in (15), let \(\rho = 0\), then in (21), we have \(|\|\hat{x} - x\|_2| = 0\), i.e., \(x\) recovers \(x\) exactly. This completes the proof of Theorem 1.

2. The noisy case \(B = \{z : \|z\|_2 \leq \eta\}\): If \(x\) is approximately \(k\)-sparse, \(|\|y - Ax\|_2| \leq \epsilon\), and the spectral norm of \(A\) is \(\sigma(A)\), then
\[
\langle A(h_{\text{max}}(k) + h_1), Ah\rangle \\
\leq \|A(h_{\text{max}}(k) + h_1)\|_2 \|Ah\|_2 \\
\leq \sqrt{1 + \delta}(\|h_{\text{max}}(k) + h_1\|_2 \|y - A\hat{x}\|_2 \\
+ \|y - Ax\|_2 + \|Ax_{-\text{max}}(k)\|_2) \\
\leq \sqrt{1 + \delta}(\eta + \epsilon + \sigma(A) \|x_{-\text{max}}(k)\|_2) \cdot \|h_{\text{max}}(k) + h_1\|_2.
\]
In this case, the assumption \(|\|y - Ax_T\|_2| \leq \) \(\epsilon\) holds if \(\eta \geq \epsilon + \sigma(A) \|x_{-\text{max}}(k)\|_2\). Therefore, in (15), let \(\rho = \sqrt{1 + \delta}(\epsilon + \eta + \sigma(A) \|x_{-\text{max}}(k)\|_2)\), then we have (21). This proves Theorem 2.

3. The noisy case \(B = \{z : \|A_T^Tz\|_\infty \leq \eta\}\): If \(x\) is approximately \(k\)-sparse, \(|\|A_T^T(y - Ax)\|_\infty| \leq \epsilon\), the spectral norm of \(A\) is \(\sigma(A)\), then
\[
\langle A(h_{\text{max}}(k) + h_1), Ah\rangle \\
= \|h_{\text{max}}(k) + h_1, A^T Ah\|_\infty \\
\leq \|h_{\text{max}}(k) + h_1\|_1 \cdot \|A^T Ah\|_\infty \\
= \|h_{\text{max}}(k) + h_1\|_1 \cdot \|A^T (\hat{x} - x_{\text{max}}(k))\|_\infty \\
\leq \sqrt{(s^q + 1)k} \|h_{\text{max}}(k) + h_1\|_2 \cdot ((\|A_T^T(y - Ax)\|_\infty) \\
+ \|A_T^T (y - Ax)\|_\infty + \|A^T Ax_{-\text{max}}(k)\|_\infty) \\
\leq \sqrt{(s^q + 1)k} \|h_{\text{max}}(k) + h_1\|_2 \cdot (\eta + \epsilon + \sigma^2(A) \|x_{-\text{max}}(k)\|_2).
\]
In this case, the assumption \(|\|y - Ax_T\|_2| \leq \) \(\epsilon\) holds if \(\eta \geq \epsilon + \sigma^2(A) \|x_{-\text{max}}(k)\|_2\). Therefore, in (15), let \(\rho = \sqrt{1 + \delta}(\epsilon + \eta + \sigma^2(A) \|x_{-\text{max}}(k)\|_2)\), then we have (21). This finishes the proof of Theorem 3.

V. Conclusion

We improved the RIC bound of \(\ell_q\) minimization by generalizing the result in Cai and Zhang [7]. Under the more general RIC bound, \(\ell_q\) minimization can recover sparse signals exactly and approximately sparse signals stably. Although it is a step forward for the RIC study of \(\ell_q\) minimization, whether the proposed bound is sharp or not needs further research.

References

[1] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289–1306, 2006.
[2] E. J. Candés and T. Tao, “Decoding by linear programming,” IEEE Transactions on Information Theory, vol. 51, no. 12, pp. 4203–4215, 2005.
[3] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 489–509, 2006.

[4] E. J. Candès, “The restricted isometry property and its implications for compressed sensing,” Comptes Rendus Mathematique, vol. 346, no. 9, pp. 589–592, 2008.

[5] S. Foucart, “A note on guaranteed sparse recovery via ℓ_1-minimization,” Applied and Computational Harmonic Analysis, vol. 29, no. 1, pp. 97–103, 2010.

[6] T. T. Cai and A. Zhang, “Sharp RIP bound for sparse signal and low-rank matrix recovery,” Applied and Computational Harmonic Analysis, vol. 35, pp. 74–93, 2013.

[7] ———, “Sparse representation of a polytope and recovery of sparse signals and low-rank matrices,” arXiv preprint arXiv:1306.1154, 2013.

[8] M.-J. Lai and J. Wang, “An unconstrained ℓ_q minimization with $0 < q \leq 1$ for sparse solution of underdetermined linear systems,” SIAM Journal on Optimization, vol. 21, no. 1, pp. 82–101, 2011.

[9] I. Daubechies, R. DeVore, M. Fornasier, and C. S. Güntürk, “Iteratively reweighted least squares minimization for sparse recovery,” Communications on Pure and Applied Mathematics, vol. 63, no. 1, pp. 1–38, 2010.

[10] R. Chartrand and W. Yin, “Iteratively reweighted algorithms for compressive sensing,” in Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on. IEEE, 2008, pp. 3869–3872.

[11] S. Foucart and M.-J. Lai, “Sparsest solutions of underdetermined linear systems via ℓ_q-minimization for $0 < q \leq 1$,” Applied and Computational Harmonic Analysis, vol. 26, no. 3, pp. 395–407, 2009.

[12] Y. Hsia and R.-L. Sheu, “On RIC bounds of compressed sensing matrices for approximating sparse solutions using l_q quasi norms.” [Online]. Available: http://www.optimization-online.org/DB_FILE/2012/09/3610.pdf.

[13] R. Saab, R. Chartrand, and O. Yilmaz, “Stable sparse approximations via nonconvex optimization,” in Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on. IEEE, 2008, pp. 3885–3888.

[14] M.-J. Lai and L. Y. Liu, “A new estimate of restricted isometry constants for sparse solutions,” Applied and Computational Harmonic Analysis, vol. 30, pp. 402–406, 2011.

[15] S. Zhou, L. Kong, Z. Luo, and N. Xiu, “New RIC bounds via ℓ_q-minimization with $0 < q \leq 1$ in compressed sensing,” arXiv preprint arXiv:1308.0455, 2013.

[16] D. L. Donoho, M. Elad, and V. N. Temlyakov, “Stable recovery of sparse overcomplete representations in the presence of noise,” Information Theory, IEEE Transactions on, vol. 52, no. 1, pp. 6–18, 2006.

[17] E. Candès and T. Tao, “The dantzig selector: Statistical estimation when p is much larger than n,” The Annals of Statistics, pp. 2313–2351, 2007.