This data article presents the formulation of multilayer network for modelling the interconnections among the sustainable development goals (SDGs), targets and includes the correlation based linking of the sustainable development indicators with the available long-term datasets of The World Bank, 2018 [1]. The spatial distribution of the time series data allows creating country-specific sustainability assessments. In the related research article "Network Model-Based Analysis of the Goals, Targets and Indicators of Sustainable Development for Strategic Environmental Assessment" [2] the similarities of SDGs for ten regions have been modelled in order to improve the quality of strategic environmental assessments. The datasets of the multilayer networks are available on Mendeley [3].

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Data

The dataset presented in this paper defines multilayer networks formed based on time series of macroeconomic variables ("Worldbank all data.xlsx") linked to the indicators and targets of sustainable development goals (SDGs). The 530 links connecting the World Bank variables [1] with SDG indicators are listed in the “edge_indicator_variable.xlsx” excel file. The files representing the networks are generated for the analysis in MuxViz, which is a framework for the multilayer analysis and visualization. The first Matlab program VV_study_v1.m calculates the interconnections among the World Bank variables and creates the network files for the further assessments with the WB_preprocess_v1.m Matlab file. The indirect linking of the SDGs (goals to goals and targets to targets) and formulation of the network files is done in the third tool (preprocess_mat_v2.m). The following network files were generated by the own developed MuxViz exporter tool. formated for analysis in MuxViz:

- Countries_WB_Config.txt: The structure of the multilayer network that includes the relationships between the variables of a given country.
- SDG_VV_Config.txt: The interconnections of the World Bank variables.
- SDG_TIV_VIT_Config.txt: The interconnections of the SDG targets based on the World Bank Open Data.
- SDG_GTIV_VITG_Config.txt: The interconnections of the SDG goals based on the World Bank Open Data.
- SDG_TT_Config.txt: The interconnections of the SDG targets based on the study of International Council for Science.
- SDG_GT_TG_Config.txt: The interconnections of the SDG goals based on the study of International Council for Science.

The linking of the indicators has been done based on the correlation of the available data. The network files are generated from the correlation among the indicators. The top-down structure of the goals, targets and indicators are available in the literature [4,5].
The structure of the networked data is illustrated in Fig. 1 that shows how the time series of World Bank Open Data [1] are linked to the sixth sustainable development goal. Based on the correlation calculations and the “top-down” structure of the sustainable development goals, targets and indicators the indirect linking of the targets and goals were completed, as it can be seen on Fig. 2. Fig. 3 summarizes how the Matlab codes generate the networks. In this data article the following regions were selected for the analysis: the World (WLD), members of the Organisation for Economic Co-operation and Development (OECD) (OED), the Arab World (ARB), Central Europe and the Baltics (CEB), East Asia & Pacific (EAS), East Asia & Central Asia (ECS), the European Union (EEU), Latin America & the Caribbean (LCN), the Middle East & North Africa (MEA), and North America (NAC). The MATLAB code refers to the abbreviations in parentheses.

To illustrate national differences in sustainable development priorities, a multi-layered network of ten major regions of the world is shown on Fig. 4. The colors of the nodes represent the communities of the related indicators. Fig. 5 shows the relations among the sustainable development goals. The colors of the nodes represent the closeness centrality values. The A part of Fig. 5 is based on the study of the International Council for Science and the B part is based on the correlation among the linked data.

![Diagram of the linking of World Bank variables with the SDG "water goal".](image-url)
2. Experimental design, materials, and methods

2.1. Linking the World Bank indicators with the SDG indicators

The most important step of the data generation was the assignment of the 1504 variables of the World Bank open data [1] to the 169 SDG indicators. This linking was performed by the authors based on their expertise. The targets (169) of the sustainable development goals (17) and the indicators are linked based on the experts of the Inter-Agency and Expert Group on Sustainable Development Goal Indicators [4,5].

A part of the resulted network is illustrated in Fig. 1 that shows the linking of World Bank variables with the “Ensure availability and sustainable management of water and sanitation for all” development goal (SDG6). In Fig. 1 the blue colored circles show the SDG goals, targets and indicators. The shortened descriptions are inserted next to the circles. The grey colored circles are the World Bank Open Data variables. Linking variables and indicators has been achieved for all 17 goals. A variable has been linked to only one indicator, but an indicator can be described with multiple variables, so a total of 530 connections have been defined by the authors.

2.2. Exploring the internal linking the World Bank indicators

If we establish relationships among the variables of the World Bank (e.g.: based on the correlation), we indirectly link the sustainable development indicators, targets and goals.

Fig. 2 shows an example for indirectly connections of the SDGs. If the variable and SDG indicators have been connected the correlation among the variables also linking the targets and goals.

The interconnections of the SDG targets and goals help to identify the thematic areas of the sustainable strategic planning activities. In this data article a total of 908 correlation-based interconnections have been occurred.

The linking of the variables is based on the Pearson correlation coefficient values. (the variables were connected when the “r” exceeded 0.99 with p < 0.05 significance level. The availability of the variables varies regions by regions, so countries that have at least 20 years of data were taken into...
consideration. Considering the sign of correlations can help to explore synergies and compromises in the behaviour mapping of SDGs.

The correlation analysis and the generation of the input files of networks were performed with the published MATLAB/Octave program.

2.3. Multilayer network formulation of SDG indicators, targets and goals

The networks are also represented by their adjacency matrices. The linking of the World Bank dataset and SDG indicators are represented by the A_{IV} (indicator-variable; 241×530) adjacency matrix. The adjacency matrices of A_{GT} (goal-target; 17×169) and A_{TI} (target-indicator; 169×241) have
been formulated also at Step 1. The correlation based relationships between the World Bank variables generated at Step 2. are stored in the AVV (variable-variable; \(530 \times 530\)) matrix.

This representation is beneficial as it allows the modelling relationships among the targets and goals by multiplication of adjacency matrices. The following equations show the formulation of the target level interconnections \(A_{TT}\) (target-target; \(169 \times 169\)):

\[
A_{TT} = A^T_{TI} \cdot A^T_{IV} \cdot A_{VV} \cdot A_{IV} \cdot A_{IT}
\]

The interconnections of the SDG goals \(A_{GG}\) (goal-goal; \(17 \times 17\)) can be modelled with the projection of the \(A_{GT}\) (goal-target; \(17 \times 169\)) and \(A_{TT}\) (target-target; \(169 \times 169\)) adjacency matrices.

\[
A_{GG} = A^T_{GT} \cdot A_{TT} \cdot A_{GT}
\]
The data article also generated a network based on the study of International Council for Science (ICSU) [6]. According to the ICSU study 238 positive, 66 negative and 12 neutral interactions were identified among the SDG targets, which are able for indirectly modelling of the SDG goals. The projection of the goal-level network is similar like in case of World Bank, nevertheless the relationships among the targets \(\text{ATT}(\text{ICSU}) \) are already defined in the study.

2.4. Identification of key factors and thematic areas of SDGs

The key indicators of SDGs have been identified by centrality analysis of the networks and the clustering of the indicators has been done with community analysis in MuxViz environment. The networks of the SDGs have been attached to the dataset, therefore further investigations are possible.

The modelling steps are presented on Fig. 3. It should be pointed out, that the order of the steps shown in Fig. 3 are not interchangeable. Finally, a detailed analysis of the networks is done in MuxViz, where the country-level dissimilarities of the interconnections of SDGs can be examined, as well as communities and key indicators of SDGs can be identified.

A comparison of the inferred target-target networks and the network defined by experts from ICSU is depicted in Fig. 5. As can be seen the proposed data can provide a comprehensive view of how SDGs are interrelated, which interconnections are detailed in Ref. [2]. With the help of the proposed data and program not only this publication can be reproduced but further detailed analysis can be performed.

Acknowledgments

We acknowledge the financial support of Széchenyi 2020 under the GINOP-2.3.2-15-2016-00016.

Transparency document

Transparency document associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2019.104049.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.104049.

References

[1] The World Bank, Dataset of All Indicators, 2018. https://data.worldbank.org/indicator?tab=all. (Accessed 6 January 2019).

[2] V. Sebestyén, M. Bulla, A. Rédey, J. Abonyi, Network model-based analysis of the goals, targets and indicators of sustainable development for strategic environmental assessment, J. Environ. Manag. 238 (2019) 126–135. https://doi.org/10.1016/j.jenvman.2019.02.096.

[3] V. Sebestyén, J. Abonyi, Data driven multilayer complex networks of sustainable development goals, Mendeley data, 2019, https://doi.org/10.17632/yj3v4pnd68.1. Available online from:.

[4] United Nations, Transforming Our World: the 2030 Agenda for Sustainable Development, 2015. https://sustainabledevelopment. un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf. (Accessed 6 January 2019).

[5] United Nations Economic and Social Council, Report of the Inter-Agency and Expert Group on Sustainable Development Goal Indicators. E/CN.3/2016/2Rev.1. 2016, p. 62.

[6] International Council for Science, A Guide to SDG Interactions: from Science to Implementation, International Council for Science, Paris, 2017, p. 239. https://doi.org/10.24948/2017.01.