Supplementary material – gene and protein sequences

Figure. S1 Sequences of genes optimized for expression in *Escherichia coli* and the corresponding nitrilases from *Trametes versicolor* (A), *Armillaria gallica* (B) and *Stereum hirsutum* (C) with restriction sites underlined.
Supplementary data - Nitrilase sequences in *Agaricomycotina*

Table S1. List of nitrilase sequences in the species of *Agaricomycotina* according to GenBank and their classification into clades

Species	GenBank accession no.	Length (amino acids)	Clade	Closest characterized homologue Identity (%) / (Cover, %)		
Agaricus bisporus v bisporus						
Apiotrichum porosum	XP_006462086.1	339				
	XP_028472322.1	352				
	XP_028475380.1	366				
Armillaria gallica	PBL01211.1 (NitAg)	356	2	NitTv1 74 (96)		
	PBL01250.1	314	1	NitTv1 74 (96)		
Armillaria ostoyae						
	PBK95426.1	336	2	NitAg 70 (93)		
	PBK82882.1	355	2	NitAg 83 (96)		
	SJL05523.1	356	2	NitAg 97 (100)		
	PBK74191.1	355	2	NitAg 84 (96)		
	SJL05484.1	314		NitTv1 74 (97)		
	PBK77460.1	314		NitTv1 73 (97)		
Auricularia subglabra	EJD42068.1 (NitAd)*	331	3	NitTv1 69 (96)		
	EJD55093.1	318	1	NitTv1 69 (96)		
	EJD51184.1	365	CynH	NitSh 85 (97)		
	EJD51215.1	346	CynH	NitSh 85 (100)		
	EJD54336.1	365	CynH	NitSh 75 (94)		
Bondarzewia mesenterica	THH19653.1			NitAg 56 (97)		
Botryobasidium botryosum						
Calocera viscosa	KDO8029.1	328	1	NitTv1 71 (92)		
Cenangiophora puteana	KZO96291.1	310	1	NitTv1 55 (98)		
Cryptococcus amylolentus						
Cryptococcus neoformans						
	XP_018995183.1	342				
	OXB39643.1	366				
	OWZ73108.1	309				
Species	Accession	Start	End	NitTV1	NitAg	NitSh
--	---------------	-------	-----	--------	-------	-------
Cutaneotrichosporon oleaginosum	XP_012046763.1	309				
Cutaneotrichosporon oleaginosum	XP_018275718.1	333				
Cylindrobasidium torrendii	KIY65145.1	311	1			NitTv1 67 (95)
Dacryopinax primogenitus	EJT97776.1	340	1	NitTv1 36 (91)		
Dacryopinax primogenitus	THV07691.1	316	1	NitTv1 74 (97)		
Dendrothele bispora	THV07653.1	367	2	NitAg 81 (94)		
Dentipellis fragilis	THU83280.1	340				
Dichomitus squalens	XP_007360414.1	319	1	NitTv1 87 (100)		
Dichomitus squalens	KZW02628.1	313	1	NitTv1 70 (98)		
Exidia glandulosa	KZV92691.1	366	CynH	NitTv1 82 (100)		
Fibularhizoctonia sp.	KZP15294.1	371				
Fistulina hepatica	KIY50558.1	331	1	NitTv1 68 (96)		
Fomitopsis mediterranea	XP_007265585.1	318	1	NitTv1 72 (97)		
Ganoderma sinense	PIL31680.1	333	1	NitTv1 83 (98)		
Gelatoporia subvermispora	EMD41986.1	317	1	NitTv1 77 (97)		
Grifola frondosa	OBZ78624.1	295	1	NitTv1 76 (97)		
Gymnoporus luxurians	KJK70890.1	316	1	NitTv1 75 (96)		
Heliocybe alpestrae	TFK54302.1	322				
Hiricium alpestrae	TFY81337.1	2		NitAg 70 (96)		
Hiricium alpestrae	TFY75083.1	2		NitAg 63 (91)		
Heterobasidion irregular	XP_009540410.1	315	1	NitTv1 74 (97)		
Hydnoderus pinastri	XP_009553498.1	353	2	NitAg 72 (96)		
Hyphsizygus marmoreus	KIJI68545.1	316	1	NitTv1 74 (96)		
Jappia argillacea	KDQ63493.1	342	1	NitTv1 73 (98)		
Kockovskella imperatae	XP_021872624.1	332				
Kwoniella bestiolae	XP_019049889.1	346				
Kwoniella dejecticola	XP_018266860.1	344				
Kwoniella heveamensis	OCF37843.1	342				
Genus	Accession	Query Length	Nitrogenase Activity			
------------------------	--------------------	--------------	----------------------			
Kwoniella magroviensis	OCF30510.1	358	NitAg 80 (97)			
	OCF41321.1	308				
	OCF35479.1	326				
	XP_018999060.1	360				
	XP_018999159.1	351				
	OCF54328.1	376				
	OCF58370.1	360				
	XP_019000820.1	350				
	OCF62338.1	327				
	XP_019009856.1	345				
Kwoniella pini						
Lentinula edodes	GAW06039.1	360	2			
			NitTv1 80 (97)			
Lentinus tigrinus	RPD64846.1	320	1			
	ESK97990.1	315	1			
	ESK97956.1	358	2			
			NitAg 81 (97)			
Moniliophthora rorera						
Mycena chlorophos	GAT44080.1	351	2			
			NitAg 72 (98)			
Naematelia encephala	GAT47984.1	331				
	GAT55790.1	320				
Neolentinus lepideus	ORY27096.1	336				
	ORY35932.1	358				
Obba rivulosa	OCH94772.1	317	1			
Paxillus involutus	KIJ21834.1	315	1			
Peniophora sp.	KZV75469.1	308	1			
Phanerochaete carnosa						
	XP_007390669.1	318	1			
	XP_007401608.1	306	1			
Phellinidium pouzarii	THH09479.1	339	1			
Phlebiopsis gigantea	KIP12511.1	317	1			
Pleurotus ostreatus	KDQ30886.1	322	1			
	KDQ32741.1	304	2			
	KDQ30928.1	305	2			
			NitAg 76 (85)			
Species	Accession	Length	Ident	Validation		
--------------------------------------	-----------	--------	-------	------------		
Plicaturopsis crispa	KII93875.1	312	1	NitTv1 78 (97)		
	KII92786.1	359	2	NitAg 68 (98)		
Pluteus cervinus	TFK64162.1	334				
Polyporus arcularius	TFK62976.1	321	1	NitTv1 84 (99)		
Polyporus brumalis	RDX50451.1	321	1	NitTv1 84 (99)		
Punctularia strigoszonata	XP_007379045.1	314	1	NitTv1 68 (95)		
Rhizoctonia solani	CUA68841.1	320	1	NitTv1 65 (98)		
Saitozyma podzolica	RSH94106.1	387				
Sanghuangporus baumii	OCB88554.1	319	1	NitTv1 71 (95)		
Sarzhyngoporus youkii	XP_003037202.1	317	1	NitTv1 71 (96)		
Schizophyllum commune	XP_00037202.1	317	1	NitTv1 71 (96)		
Schizopora paradoxa	KLO14490.1	325	1	NitTv1 62 (97)		
Serpula lacrymans	EGO05225.1	311	1	NitTv1 71 (97)		
Sistotremastrum niveocremeum	KZS96174.1	311	1	NitTv1 70 (98)		
Sistotremastrum suecicum	KZT44489.1	311	1	NitTv1 70 (98)		
Sphaerotholus stellatus	KIJ45626.1	317	1	NitTv1 68 (97)		
Stereum ochraceum	TCD67848.1	313				
Stereum hirsutum	XP_007307917.1 (NitSh)	371	CynH	–		
Stereum hirsutum	XP_007307917.1	371	CynH	–		
Suillus luteus	KIK46442.1	316	1	NitTv1 71 (98)		
Termitomyces sp.	KNZ75542.1	314	1	NitTv1 69 (98)		
Species	Accession	Length	Identity	Name		
------------------------------	----------------	--------	----------	---------------		
Trametes cinnaburina	CDO73495.1	289	1	NitTv1 83 (81)		
Trametes coccinea	OSC99476.1	338	1	NitTv1 91 (98)		
Trametes pubescens	OJT10100.1	339	1	NitTv1 88 (100)		
Trametes versicolor	XP_008032838.1	320	1	–		
Trichosporon asahii	EKD01791.1	386				
Xanthophyllomyces dendrorhous	CDZ98326.1	319				
	CED82572.1	329				

a synonym: *Armillaria solidipes*

b NitAd from *Auricularia delicata*, re-classified *Auricularia subglabra*

c synonym: *Sanghuangporus baumii*

The enzymes overproduced in *E. coli* are marked in bold. NitAg, NitSh and NitTv1 were produced in this study, NitAd in the previous study (ref. [16] in the main manuscript). Proteins with ≥99% amino acid sequence identity, which occur in the same species, were discarded.

Sequences in blue do not belong to clade 1 or 2 or CynHs.
Supplementary data–Molecular modeling

Table S2. Normalized formation of HB during stable period of molecular docking (5–10 ns) in NitTv1 and NitAg nitrilase–fumaronitrile (FN) complexes.

Complex	Interacting residues	K133-FN	K133-E46	K133-E140	C178-E46	V203-E46	V203-C178
NitTv1-FN	Formation of HB	0.92	0.965	0.915	0	0.78	0.9
NitAg-FN	Formation of HB	0.765	0.95	0.815	0.265	0	0.025
NitSh-FN	Formation of HB	0.71	0.91	0.77	0	0	0
Figure. S2. Surface representation of the active sites of nitrilases with docked ligands. (A) NitAg with fumaronitrile (FN). The orientation of 3-phenylpropionitrile (3-PPN) and β-cyano alanine (β-CA) is made from structure alignment with NitTv1 complexed with corresponding ligands. (B) NitTv1 with FN, 3-PPN and β-CA. (C) Alignment of NitTv1 (blue), NitAg (red), NitSh (magenta) and 3wuy (green). W197 and F200 in NitAg are shown by red sticks, and the surface area occupied by them is marked in a red semitransparent colour. Part of the enzymes is hidden for clarity. (D) NitSh with FN, β-CA and 2-cyanopyridine, the orientation of which corresponds to complexes with NitSh. 3-PPN orientation corresponds to its position in NitTv1 complex.
Supplementary data–Product characterization

Products of fumaronitrile transformations by nitrilase NitTv1

To obtain samples for LC-MS, transformation of fumaronitrile (FN) was carried out using *Escherichia coli* whole cells carrying nitrilase (NLase) NitTv1 (dry cell weight 0.3 g/L) and 25 mM substrate in 50 mM Tris/HCl buffer, pH 8.0, with 150 mM NaCl (total volume 0.5 mL). The reaction proceeded at 30 °C and shaking (850 rpm) for 10 min. The reaction was terminated by adding 0.05 mL 2M HCl and the cells were removed by centrifugation. The supernatant was diluted with mobile phase (1:50) and analyzed by LC-MS (see Fig. S3 for the chromatogram and figure legend for m/z (ESI) data).

![HPLC chromatogram](chart.png)

Figure S3. HPLC of the products obtained from fumaronitrile (1a) using nitrilase NitTv1. Separations conditions: ACE 5 C8 (250 × 4 mm) column, mobile phase 10% acetonitrile in water, isocratic, flow rate 0.4 mL/min, 34 °C. m/z (ESI): 1b: [M-H]- calculated for C₄H₇NO₂ 96.0, found 96; [M+NO₃]- calculated
for C₇H₅N₂O₅ 159.1, found 159; 1c: [M+HCOO]- calculated for C₅H₅N₂O₃ 141.1, found 141; 1d: [M+Cl]- calculated for C₄H₅ClNO₃ 150.0, found 150. The minor product with RT = 5.313 is fumaric acid: [M+HCOO]- calculated for C₅H₇O₆ 161.1, found 161.

To obtain products for NMR (Figs S4 and S5), the conditions of the transformation of FN were modified (dry cell weight 0.6 g/L, reaction time 60 min, total volume 50 mL). After removing the cells by centrifugation, the supernatant was extracted with ethylacetate at pH 8 (pH of the reaction mixture) and then at pH 2 (adjusted with 2M HCl). The organic fractions from each extraction were pooled, dried with Na₂SO₄ and filtered, and the solvent was removed at reduced pressure.

The product extracted at pH 8 contained 1c as the major product (isolated yield 50%; 61 mg).

Figure S4. The detail of ¹H NMR spectrum of the product extracted at pH 8 (399.87 MHz, DMSO, 30 °C) with major compound 1c
NMR data: 1c - 1H NMR (399.87 MHz, DMSO, 30 °C): 6.479 (1H, d, $J = 16.3$ Hz, CH), 6.969 (1H, d, $J = 16.3$ Hz, CH), 7.608 (1H, br s, NH$_2$-u), 7.883 (1H, br s, NH$_2$-u); 13C NMR (100.55 MHz, DMSO, 30 °C): 108.65 (CH), 117.07 (CN), 144.05 (CH), 163.20 (CO).

The product extracted at pH 2.5 (isolated yield 17%; 20 mg) contained 1b as the major product (62% of total product). Compounds 1c, 1d, fumaric acid and its diamide were minor products with ca. 10%, 16%, 2% and 10% of the total product.

Figure S5. The detail of 1H NMR spectrum of the product extracted at pH 2.5 (399.87 MHz, DMSO, 30 °C) with major compound 1b

NMR data: 1b - 1H NMR (399.87 MHz, DMSO, 30 °C): 6.590 (1H, d, $J = 16.4$ Hz, CH), 6.904 (1H, d, $J = 16.4$ Hz, CH), OH not detected; 13C NMR (100.55 MHz, DMSO, 30 °C): 111.66 (CH), 116.62 (CN), 142.77 (CH), 164.81 (CO); 1d - 1H NMR (399.87 MHz, DMSO, 30 °C): 6.504 (1H, d, $J = 15.6$ Hz, CH), 6.880 (1H, d, $J = 15.6$ Hz, CH), NH$_2$ not extracted; 13C NMR (100.55 MHz, DMSO, 30 °C): 129.95 (CH), 137.20 (CH), 164.81 (CO), 166.46 (CO).
Products of fumaronitrile transformations by nitrilase NitAg

To obtain samples for LC-MS from the reaction using whole cells carrying NLase NitAg, transformation of FN was carried out analogously as described for NitTv1 above but with modifications (dry cell weight 4.5 g/L, reaction time 120 min, total volume 0.5 ml). The supernatant was diluted with mobile phase (1:50) and analyzed by LC-MS (see Fig. S6 for the chromatogram and figure legend for m/z (ESI) data).

Figure S6. HPLC of the products obtained from fumaronitrile (1a, RT = 2.756) using nitrilase NitAg. Separation conditions: Chromolith RP 18e (100 × 3 mm) column, mobile phase 10% acetonitrile in water, isocratic, flow rate 0.4 mL/min, 34 °C. m/z (ESI): 1b: [M-H]⁻ calculated for C₄H₂NO₂ 96.0, found 96; 1c: [M+Cl]⁻ calculated for C₄H₃N₂OCl 131.1, found 131. See Fig. S3 for the product structures.

Products of fumaronitrile transformations by nitrilase NitSh

Transformation of FN by NitSh was carried out analogously as described for NitTv1 above but with modifications (dry cell weight 3 g/L, reaction time 60 min and total
volume 50 mL). The products were isolated in the same way as in the previous experiment. The product extracted at pH 8 (27 mg) contained a mixture of the residual substrate 1a and product 1c at a ratio of ca. 2 : 3. The product extracted at pH 2.5 contained compound 1b as the major product (isolated yield 69%; 41 mg). The products were analyzed by NMR (Figs S7 and S8).

Figure S7. The detail of 1H NMR spectrum of the product extracted at pH 8 (399.87 MHz, DMSO, 30 °C)

Figure S8. The detail of 1H NMR spectrum of the product extracted at pH 2.5 (399.87 MHz, DMSO, 30 °C)
Product of 3-phenylpropionitrile transformation by nitrilase NitTv1

The transformation of 3-phenylpropionitrile (PPN) by NitTv1 was carried out analogously as described for FN above but with modifications (dry cell weight 3 g/L, reaction time 120 min, total volume 0.5 mL). The sample for LC-MS was prepared as described for FN above (see Fig. S9 for the chromatogram and figure legend for m/z (ESI) data).

Figure S9. HPLC of the products obtained from 3-phenylpropionitrile (RT = 9.262 min) using nitrilase NitAg. Separation conditions: Chromolith RP 18e (100 × 3 mm) column, mobile phase 10% acetonitrile in water, isocratic, flow rate 0.4 mL/min, 34 °C.

m/z (ESI): 3-phenylpropionic acid (RT = 5.979 min): [M-H+CH₃OH] calculated. for C₁₀H₁₃O₃ 181.2, found 181.

Products of β-cyanoalanine transformation by nitrilase NitTv1

The transformation of β-cyanoalanine (β-CA) by NLase NitTv1 was carried out analogously as described for FN but with modifications (dry cell weight 0.6 g/L,
reaction time 60 min, total volume 50 mL). The supernatant was lyophilized and analyzed by NMR (Figs S10 and S11).

Figure S10. The detail of 1H NMR spectrum of the product extracted at pH 8 (700.13 MHz, D$_2$O, 30 °C). Approximate ratio Asp: Asn = 71: 29. This sample also contained a significant amount of the residual substrate.
Figure S11. The detail of 1H NMR spectrum of the product extracted at pH 2.5 (700.13 MHz, D$_2$O, 30 °C). Approximate ratio Asp: Asn = 73:27.

NMR data: Aspartic acid - 1H NMR (700.13 MHz, D$_2$O, 30 °C): 2.705 (1H, dd, $J = 17.5, 8.7$ Hz, H-β_u), 2.832 (1H, dd, $J = 17.5, 3.8$ Hz, H-β_d), 3.923 (1H, dd, $J = 8.7, 3.8$ Hz, H-α); 13C NMR (176.05 MHz, D$_2$O, 30 °C): 36.76 (C-β), 52.46 (C-α), 174.43 (CO), 177.79 (CO); Asparagine - 1H NMR (700.13 MHz, D$_2$O, 30 °C): 2.891 (1H, dd, $J = 17.0, 7.6$ Hz, H-β_u), 2.980 (1H, dd, $J = 17.0, 4.3$ Hz, H-β_d), 4.034 (1H, dd, $J = 7.6, 4.3$ Hz, H-α); 13C NMR (176.05 MHz, D$_2$O, 30 °C): 34.72 (C-β), 51.52 (C-α), 173.49 (CO), 174.66 (CO)

Products of 2-cyanopyridine transformation by nitrilase NitSh

The transformation of 2-cyanopyridine (2CP) by NitSh was carried out analogously as described for FN above but with modifications (dry cell weight 0.3 g/L, reaction time 10 min, total volume 0.5 ml). The samples for LC-MS were prepared as described for FN above (see Fig. S12 for the chromatogram and figure legend for m/z (ESI) data).
Figure S12 HPLC of the products of biotransformation of 2-cyanopyridine by nitrilase NitSh. Separation conditions: Chromolith RP 18e (100 × 3 mm) column, mobile phase 10% acetonitrile in water, isocratic, flow rate 0.4 mL/min, 34 °C. m/z (ESI): picolinic acid (RT= 1.791): [M-H]$^-$ calculated for C$_6$H$_4$NO$_2$ 122.1, found 122; [M-H+H$_2$O]$^-$ calculated for C$_6$H$_6$NO$_3$ 140.0, found 140; picolinamide (RT= 3.252): [M+Na+CH$_3$CN]$^+$ calculated for C$_8$H$_9$N$_3$NaO 186.1, found 186; 2-cyanopyridine, RT= 4.529.

Products of 4-cyanopyridine transformation by nitrilase NitTv1

The transformation of 4-cyanopyridine (4CP) by NitTv1 was carried out analogously as described for FN above but with modifications (dry cell weight 3 g/L, reaction time 120 min). The samples for LC-MS were prepared as described for FN above (see Fig. S13 for the chromatogram and figure legend for m/z (ESI) data).

Figure S13 HPLC of the products of biotransformation of 4-cyanopyridine by nitrilase NitTv1. Separation conditions: Chromolith RP 18e (100 × 3 mm) column, mobile phase 10% acetonitrile in water, isocratic, flow rate 0.4 mL/min, 34 °C. m/z
Products of benzonitrile transformation by nitrilase NitSh

The transformation of benzonitrile (BN) by NitSh was carried out as described for FN above but with modifications (dry cell weight 0.3 g/L, reaction time of 5 min, total volume 0.5 ml). The product (benzoic acid) was determined by HPLC as described in Materials and methods and its UV spectrum was compared with that of the authentic standards (absorption maximum at 228.7). No significant amount of benzamide (absorption maximum at 225.2 nm) was found in the reaction mixture.