Abstract

We study the 2-dimensional vector packing problem, which is a generalization of the classical bin packing problem where each item has 2 distinct weights and each bin has 2 corresponding capacities. The goal is to group items into minimum number of bins, without violating the bin capacity constraints. We propose an $\Theta(n)$-time approximation algorithm that is inspired by the $O(n^2)$ algorithm proposed by Chang, Hwang, and Park.

Keywords:
Approximation algorithms, Vector packing

1. Introduction

In the classical bin packing problem, we are given a bin capacity, C, a set of items $A = \{a_1, a_2, \ldots, a_n\}$, and we try to find a minimum number of bins B_1, B_2, \ldots, B_m, such that $\bigcup_{i=1}^{m} B_i = A$ and $\sum_{a_j \in B_i} a_j \leq C$ for $i = 1, \ldots, m$.

*Supported by the DOE Office Science Applied Mathematics Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Email addresses: ekw@hpcrd.lbl.gov (Ekow Otoo), apinar@sandia.gov (Ali Pinar), rotem@hpcrd.lbl.gov (Doron Rotem)
The vector packing problem is a generalization of this problem to multiple dimensions. In the d-dimensional vector packing problem, each item has d distinct weights and each bin has d corresponding capacities. Let a^k_i denote the weight of the ith object in the kth dimension, and let C^k denote the bin capacity in the kth dimension. The goal is to group items into a minimum number of bins B_1, B_2, \ldots, B_m such that

$$\sum_{a_j \in B_i} a^k_j \leq C^k \text{ for } i = 1, \ldots, m \text{ and for } k = 1, \ldots, d.$$

This problem has been the subject of many research efforts. A survey of these efforts is provided by Lodi, Martello, and Vigo in [1].

In this paper, we study the 2-dimensional vector packing problem. Our motivation is allocating files to disks, hence the items are files and the two weights are the size and the load of the file. The load of a file refers to how much time a server is expected to spend with that file, and depends on access frequency, as well as file size. The constraints on the bins correspond to storage and service capacity of the disk. The sizes of the problem instances are extremely large, and excessive computational costs are prohibitive. Therefore we have to adopt efficient heuristics with small memory footprint and limited computational overheads.

We propose an in-place $\Theta(n)$ approximation algorithm that generates solutions that use no more than $\frac{1}{1 - \rho}$, where ρ is the ratio of the maximum item weight to the corresponding bin capacity, i.e, $\rho = \max_{i,k} \frac{a^k_i}{S^k}$. In [2], an interesting general solution to the d-dimensional vector packing problem using linear programming relaxation is presented with a bound of $ln \ d + 1$.

2
from optimal. In our case, the cost of implementing an LP based algorithm is not practical due to the scale of applications we are considering here. Our work is closely related to the work of Chang, Hwang and Park [3], and we improve the $O(n^2)$ complexity of their algorithm to $\Theta(n)$.

2. Notation

Given a set of n items, let s_i and l_i denote the two weights of the ith item. The problem we want to solve is:

Given a list of tuples $(s_1, l_1), (s_2, l_2), \ldots, (s_n, l_n)$, and bounds C_S and C_L, find a minimum number sets B_1, B_2, \ldots, B_k, so that each tuple is assigned to a set B_j, and

$$\sum_{(s_i, l_i) \in B_j} s_i \leq C_S \quad \text{and} \quad \sum_{(s_i, l_i) \in B_j} l_i \leq C_L \quad \text{for} \ j = 1, \ldots, k$$

For simplicity, we will normalize C_S and C_L so they are both equal to 1 and the s_i’s and l_i’s are normalized accordingly so that they are fractions of C_S and C_L, and are all within the range $[0,1]$.

We say an item is s-heavy if $s_i \geq l_i$ and l-heavy otherwise. We define ρ as the maximum value among all s_i and l_i values (i.e., $\rho = \max\{s_i, l_i : 1 \leq i \leq n\}$). A bin B_i is s-complete if its cumulative s-weight, S, satisfies $1 - \rho \leq S \leq 1$; l-complete, if its l-weight, L satisfies $1 - \rho \leq L \leq 1$; and complete if it is both s-complete and l-complete. We will prove that the number of bins used by the algorithm is within a factor of $\frac{1}{1 - \rho}$ of the optimum. Since for most applications $\rho \ll 0.5$, the algorithm of [3] is better
for our purposes than that of [4] which gives a 2-optimal solution, but runs in $O(n \log n)$ time.

3. The Algorithm

In this section we present Algorithm 1 which decreases the $O(n^2)$ runtime of the algorithm in [3] to $\Theta(n)$. Let S and L denote the sum of s and l-weights of the items in the current bin. As mentioned earlier, the notion of bin completeness is central to the algorithm and refers to the fact that a current bin is sufficiently utilized and can be closed and a new bin started with a guarantee that the overall bound from optimality will not be violated. In this algorithm, each bin starts with the addition of the first unassigned item. At each iteration, the algorithm adds an s-heavy or an l-heavy item depending on whether $L > S$ or $S \geq L$, respectively. This continues until the bin is s-complete (or l-complete) or the size bound is violated. In [3] it is shown that once the size bound is violated, the bin can be reduced to be s-complete (or l-complete), by removing a special item from the bin. A key contribution in this paper is how to locate that special item in $\Theta(1)$ time, granting an $\Theta(n)$ time for the algorithm, as opposed to the $O(n^2)$ runtime of [3]. Exactly one of the functions Pack Remaining_S or Pack Remaining_L is called after exiting the while loop when it is known that the remaining unassigned items are homogeneous such that they are either all s-heavy or all l-heavy. These functions perform a simple one dimensional bin packing. In Pack Remaining_S, the bins are packed based on the s values and each bin is packed until it is s-complete before starting a new bin. Similarly, in Pack Remaining_L, packing is based on l values and a new bin is started when the current bin is l-complete.

Another key contribution is the design of data structures that avoid any auxiliary storage. Our algorithm is an in-place algorithm, which is important for massive data sets, and vital for data base reorganization. The algorithm uses two pointers sp and lp that point to the first unassigned item for which
Algorithm 1: Algorithm Pack_Disks

Given an array $F = \langle (s_1, l_1), \ldots, (s_N, l_N) \rangle$, find D_0, D_1, \ldots, D_q such that D_{i-1} to D_i constitute the i-th bin on the permuted F array

1. $i \leftarrow 1; \quad S \leftarrow s_1; \quad L \leftarrow l_1; \quad D_0 \leftarrow 1; \quad D_1 \leftarrow 2;$
2. $sp \leftarrow \text{find_next_s}(1); \quad lp \leftarrow \text{find_next_l}(1);$
3. while $lp \leq N$ and $sp \leq N$ do
4.
 if $S > L$ then
5. $\text{last}_s \leftarrow 1;$ else $\text{last}_l \leftarrow 1;$
6. $sp \leftarrow \text{find_next_s}(1); \quad lp \leftarrow \text{find_next_l}(1);$
7. while $lp \leq N$ and $sp \leq N$ do
8. if $S \geq L$ then
9. $L \leftarrow L + l_{lp}; \quad S \leftarrow S + s_{lp};$
10. if $S > 1$ then
11. $\text{swap}(lp, \text{last}_s); \quad L \leftarrow L - l_{\text{last}_s}; \quad S \leftarrow S - s_{\text{last}_s};$
12. else
13. if $sp < lp$ then
14. $\text{swap}(lp, D_i); \quad sp \leftarrow sp + 1;$
15. $\text{last}_l \leftarrow D_i; \quad D_i \leftarrow D_i + 1;$
16. $lp \leftarrow \text{find_next_l}(lp);$
17. else
18. $L \leftarrow L + l_{sp}; \quad S \leftarrow S + l_{sp};$
19. if $L > 1$ then
20. $\text{swap}(sp, \text{last}_l); \quad L \leftarrow L - l_{\text{last}_l}; \quad S \leftarrow S - l_{\text{last}_l};$
21. else
22. if $lp < sp$ then
23. $\text{swap}(sp, D_i); \quad lp \leftarrow lp + 1;$
24. $\text{last}_s \leftarrow D_i; \quad D_i \leftarrow D_i + 1;;$
25. $sp \leftarrow \text{find_next_s}(sp);$
26. if $S \geq 1 - \rho$ and $L \geq 1 - \rho$ and $D_i \leq N$ then
27. $L \leftarrow l_{D_i}; \quad S \leftarrow s_{D_i}; \quad i \leftarrow i + 1; \quad D_i \leftarrow D_{i-1} + 1;$
28. if $S \geq L$ then
29. $\text{last}_s \leftarrow D_i; \quad sp \leftarrow \text{find_next_s}(sp);$
30. else
31. $\text{last}_l \leftarrow D_i; \quad lp \leftarrow \text{find_next_l}(lp);$
32. if $(sp \leq N)$ then Pack_Remaining_S;
33. if $(lp \leq N)$ then Pack_Remaining_L;
$s_i \geq l_i$ and $l_i > s_i$, respectively. The function $\text{find_next_s}(j)$ returns the smallest index $i > j$ of an unassigned item such that $s_i \geq l_i$ and symmetrically, $\text{find_next_l}(j)$ returns the smallest $i > j$ such that $l_i > s_i$. The cumulative sum of s_i and l_i values for the current bin are stored in S and L. The index of the last s-heavy item added to the current bin is stored in last_s, and the last l-heavy item is stored in last_l.

Lemma 1. If $S \geq L$ and $S + s_{lp} > 1$, then $S - L \leq s_{\text{last_s}} - l_{\text{last_s}}$, where last_s is the index of the last s-heavy item added to the bin.

Proof. Condition $S \geq L$ implies that at least one s-heavy item was added to the current bin, thus last_s has been initialized. Let S' and L' be the sum of s- and l-weights of the items added before last_s, and let \bar{S} and \bar{L} be the sum of s- and l-weights of the items added after last_s. We know $L' \geq S'$, since the algorithm chose to add an s-heavy item, and $\bar{L} \geq \bar{S}$, since we have been adding l-heavy items after last_s. This gives us

\[
(S' + \bar{S}) - (L' + \bar{L}) \leq 0
\]

\[
(S' + \bar{S} + s_{\text{last_s}}) - (L' + \bar{L} + l_{\text{last_s}}) \leq s_{\text{last_s}} - l_{\text{last_s}}
\]

\[
S - L \leq s_{\text{last_s}} - l_{\text{last_l}}
\]

Lemma 2. If $S \geq L$ and $S + s_{lp} > 1$, then the current bin will be complete after removing last_s and adding lp.

Proof. This result is already proven in [3].

Lemma 3. If $L \geq S$ and $L + l_{sp} > 1$, then $L - S \leq l_{\text{last_l}} - s_{\text{last_l}}$, and the current bin will be complete after removing last_l and adding sp.

Proof. The proof is based on arguments in proofs of Lemma 1 and Lemma 2.

The previous two lemmas form the algorithmic basis of our algorithm, in the following lemma we focus on the correctness of our data structures.
Lemma 4. After each iteration of the while loop, \(lp \) and \(sp \) point to, respectively, an \(l \)-heavy and \(s \)-heavy item with the smallest index \(\geq D_i \). The pointers \text{last} _l and \text{last} _s point to the last \(s \)- and \(l \)-heavy item in the current bin, respectively.

Proof. We will only discuss the case \(S \geq L \), since the other case is symmetric. Note that \(\min\{sp, lp\} = D_i \). That is, either \(sp \) or \(lp \) points to the first unassigned item. The execution of the algorithm depends on whether \(S + s_{lp} > 1 \) and whether \(sp < lp \). If \(S + s_{lp} > 1 \), we want to add \(lp \) and remove \text{last} _s from the current bin. In this case if \(lp < sp \) (thus \(lp = D_i \)), the algorithm moves \text{last} _s to the position \(D_i \), which subsequently is assigned as the first item of the next bin within the same iteration on line 23. Therefore, \(sp \) still points to the \(l \)-heavy item with the smallest index not currently assigned, and \(lp \) moves to the right item by a call to find_next_l. If \(lp > sp \), then the \text{last} _s item is moved in place of \(lp \), which is ahead of \(sp \). So once \(lp \) moves ahead by a find_next call it will find the \(l \)-heavy item with the smallest index not currently assigned.

If \(S + s_{lp} > 1 \), we need to add \(lp \) to the current bin. If \(lp < sp \) (thus \(D_i = lp \)), then incrementing \(D_i \), and then using find_next_l will be sufficient. If \(sp < lp \) (thus \(D_i = sp \)), then we need to put \(lp \) to replace \(sp \). In this case incrementing, \(sp \) by 1 guarantees that it will be pointing to an \(s \)-heavy object is also the smallest unassigned index.

It is easy to follow that updates on \text{last} _l and \text{last} _s are done correctly.

Lemma 5. Algorithm \[] makes 2 scans and uses \(n + q \) data moves, where \(n \) is the number of items to be packed and \(q \) is the number of bins used.

Proof. The algorithm uses two pointers \(lp \) and \(sp \) that read the values of the data items and they only move forward. At each step of the algorithm, we either swap an item to position \(D_i \) or \text{last} _l (\text{last} _s). \(D_i \) can move up to \(n \)
(the number of items), and each swap with \(\text{last}_J \) (\(\text{last}_S \)) means a bin being complete by Lemma 2 and Lemma 3.

Theorem 1. Algorithm 1 runs in \(O(n) \)-time to generate a solution with no more than \(\frac{C^*}{1-\rho} + 1 \) bins, where \(C^* \) is value of an optimal solution.

Proof.

Clearly \(C^* \geq \max\{ \sum_{(s_i,l_i) \in F} s_i, \sum_{(s_i,l_i) \in F} l_i \} \). On the other hand, by Lemmas 2 and 3 the algorithm packs all subsets \(D_i \) (except possibly for the last one) such that exactly one of the following 3 cases occurs:

1. all subsets \(D_i \)’s are complete
2. all subsets \(D_i \)’s are \(s \)-complete, one or more are not \(l \)-complete
3. all subsets \(D_i \)’s are \(l \)-complete, one or more are not \(s \)-complete

Under case 1), the theorem follows directly. Under case 2),

\[
C^{PD} \leq 1 + \frac{1}{1-\rho} \sum_{(s_i,l_i) \in F} s_i \leq 1 + \frac{1}{1-\rho} C^*.
\]

An analogous argument also works under case 3) thus proving our bound. The linear runtime of the algorithm is an implication of Lemma 5.

4. Conclusions

We studied the 2-dimensional vector packing problem. We described an in-place, \(\Theta(n) \)-time approximation algorithm that finds solutions within \(\frac{1}{1-\rho} \) of an optimal, where \(\rho \) is maximum normalized item weight. Our algorithm also limits the number of item moves to at most \(n + k \), where \(n \) is the number of items and \(k \) is the number of bins used. A simple generalization of our linear time algorithm to 3-dimensional vector packing can be shown with a bound of \(\frac{2}{1-\rho} \) from optimal. This is done by first running the 2-dimensional solution on the first two dimensions of each item (ignoring the
third dimension) and then applying a one dimensional bin packing algorithm on the contents of each bin based only on the third dimension. It remains an open problem whether better bounds are possible with linear time algorithms where item weights satisfy size constraints.

References

[1] A. Lodi, S. Martello, D. Vigo, Recent advances on two-dimensional bin packing problems, Discrete Applied Mathematics 123 (1-3) (2002) 379 – 396.

[2] N. Bansal, A. Caprara, M. Sviridenko, A new approximation method for set covering problems, with applications to multidimensional bin packing, SIAM J. Comput. 39 (4) (2009) 1256–1278.

[3] S. Y. Chang, H.-C. Hwang, S. Park, A two-dimensional vector packing model for the efficient use of coil cassettes, Computers and Operations Research 32 (2005) 2051–2058.

[4] H. Kellerer, V. Kotov, An approximation algorithm with absolute worst-case performance ratio 2 for two-dimensional vector packing, Operations Research Letters 31 (2003) 35–41.