FACTIBILIDAD DE UNA APLICACIÓN MÓVIL PARA EL MONITOREO DE CONTACTOS DE TUBERCULOSIS MULTIDROGORRESISTENTE EN PERÚ

Rhiannon Allen⁠¹,², Maria Calderón⁠²,³,⁴,⁵, David A J Moore⁠¹,³,⁴,⁶, Katherine M Gaskell⁠¹,²,³,⁴,⁶, Maricela Curisinche-Rojas⁠⁴,⁵,⁶,⁷, Sonia López⁠⁵,⁶,⁷

¹ London School of Hygiene and Tropical Medicine, Londres, Reino Unido.
² Departamento de Enfermedades Infecciosas, Royal Victoria Infirmary, Newcastle Upon Tyne, Reino Unido.
³ Dirección de Prevención y Control de la Tuberculosis, Ministerio de Salud, Lima, Perú.
⁴ Universidad Científica del Sur, Lima, Perú.
⁵ Universidad Peruana Cayetano Heredia, Lima, Perú.
⁶ Médico especialista en medicina interna; ⁷ maestra en Medicina Tropical e Internacional; ⁸ médica cirujana; ⁹ médico especialista en Enfermedades Infecciosas; ¹ maestro en Epidemiología; ¹ licenciada en Enfermería; ¹ magíster en Ciencias de la Salud Pública.

El presente estudio forma parte de la tesis: Rhiannon Allen. Feasibility of an ODK mobile application as a tool for MDR-TB contact monitoring in Peru [Tesis de maestría en Medicina Tropical e Internacional]. London School of Hygiene and Tropical Medicine, Reino Unido, 2018.

RESUMEN

El presente estudio tuvo como objetivo realizar una validación de un aplicativo móvil Open Data Kit (AM-ODK) en contactos expuestos a tuberculosis multidrogorresistente (TB-MDR) en Lima. Utilizando un cuestionario en una aplicación en un dispositivo móvil Android, se registraron 129 contactos intradomiciliarios de 29 casos índice de TB-MDR en tratamiento, en diez establecimientos de salud de Lima Sur en agosto de 2018. Se encontró un tiempo medio de registro por contacto de cuatro minutos. La frecuencia de síntomas de TB activa entre los contactos de TB-MDR fue 3,1%. Treinta y un encuestados completaron un cuestionario de aceptabilidad; todos manifestaron sentirse cómodos o muy cómodos con el registro de sus datos en AM-ODK, aunque 10% expresó inquietudes sobre la confidencialidad. Se concluye que el AM-ODK fue una herramienta viable y aceptable para registrar contactos intradomiciliarios expuestos a casos con TB-MDR. Estudios futuros deberían considerar el uso de plataformas móviles para el monitoreo de contactos de TB-MDR.

Palabras clave: Tuberculosis Resistente a Múltiples Medicamentos; Tuberculosis; Perú; Registro Electrónico; Aplicación Móvil (fuente DeCS BIREME)

FEASIBILITY OF AN MOBILE APPLICATION AS A TOOL FOR MULTIDRUG-RESISTANT TUBERCULOSIS CONTACT MONITORING IN PERU

ABSTRACT

This study aimed to validate an ODK digital mobile application (ODK-DMA) in contacts exposed to multidrug-resistant tuberculosis (MDR-TB) in Lima, Peru. Using a questionnaire in an application on a mobile device, we registered 129 household contacts of 29 index cases of MDR-TB under treatment in 10 health facilities in South Lima in August 2018. The mean time of registration per contact was found to be 4 minutes. The prevalence of active TB symptoms among MDR-TB contacts was 3.1%. An acceptability questionnaire was completed by 31 respondents; all reported feeling comfortable or very comfortable with recording their data in the ODK-DMA, although 10% expressed concerns about confidentiality. We concluded that the AM-ODK was a feasible and acceptable tool for registering household contacts exposed to cases with MDR-TB. Future studies should consider the use of mobile platforms for the monitoring of MDR-TB contacts.

Keywords: Multidrug-Resistant Tuberculosis; Tuberculosis; Peru; E-Registry; Mobile Application (source MeSH NLM)

INTRODUCCIÓN

El aumento de la tuberculosis multidrogorresistente (TB-MDR) y la tuberculosis extensamente drogorresistente (TB-XDR) amenazan los avances en el control de la tuberculosis. Según la Organización Panamericana de la Salud, el Perú tiene la mayor incidencia estimada de TB-MDR en las Américas (31%), para el 2017 estimó un total 3500 nuevos casos de MDR/RR-TB y 83 ca-
los confirmados de TB-XDR (1), concentrados en su mayoría en Lima Metropolitana (3).

Muchos países tienen dificultades para administrar la atención de contactos expuestos a TB-MDR de manera sistemática. La Organización Mundial de la Salud (OMS) recomienda el desarrollo de tecnologías con métodos seguros para registro y seguimiento de casos (3-4). Con este objetivo, en 2015 se inició la implementación del Sistema de Información Gerencial de Tuberculosis (SIGTB) en Perú, un registro electrónico nacional de pacientes y sus contactos (5).

El aplicativo móvil Open Data Kit (AM-ODK) es un programa seguro, gratuito de código abierto para recopilar, administrar y utilizar datos (6). Fue validado en distintos entornos con recursos limitados y demostró ser rentable para la vigilancia y monitoreo de hogares de los pacientes con TB-MDR (7-8). Si bien en el Perú, no se ha probado el AM-ODK en campo como instrumento de recolección de datos para pacientes con TB-MDR, se han utilizado diversas tecnologías móviles para ayudar al diagnóstico y consulta de pacientes con tuberculosis en el país (9). Considerando la magnitud de la TB-MDR y la implementación en curso del SIGTB, un sistema electrónico podría facilitar el registro y seguimiento individual de contactos; facilitar la gestión ante nuevas directrices de tratamiento preventivo y contribuir a la vigilancia de la TB-MDR entre los contactos.

El presente estudio tuvo como objetivo realizar una validación del AM-ODK en contactos expuestos a TB-MDR en Lima.

EL ESTUDIO

Estudio de factibilidad realizado en Lima Sur. Los participantes eran contactos intradomiciliarios expuestos a casos índice (CI) de TB-MDR entre 2017 y 2018. Se incluyó a personas que conviven con un CI confirmado de TB-MDR al momento del diagnóstico e inicio del tratamiento. Basados en el informe de casos de TB-MDR, se identificaron y seleccionaron los CI, quienes identificaron a los respectivos contactos intradomiciliarios. Se excluyeron contactos que no vivían en el domicilio al momento del diagnóstico de TB-MDR.

El investigador se reunió con el CI y sus contactos en su casa o en el centro de salud. Se realizó el cuestionario programado utilizando AM-ODK (instalada en una tableta). Seguidamente, previa firma del consentimiento informado, se solicitó a los contactos adultos, completar un cuestionario de aceptabilidad (en papel). No se recopilaron datos identificables, los datos fueron almacenados mediante cifrado en un servidor seguro. Los CI se vincularon a contactos domésticos mediante un código anónimo.

Se desarrolló una encuesta que incluyó el promedio de síntomas clínicos y microbiológicos del CI y la relación entre CI y contactos. Se calculó la frecuencia de síntomas en contactos con TB-MDR y se realizó un análisis descriptivo mediante el programa estadístico Stata versión 15.0 (StataCorp, College Station, Texas, EE. UU.).

Respecto a la aceptabilidad, se consideró la experiencia en el proceso de recopilación de datos por parte de los entrevistados, la percepción sobre el entrevistador que entra en su casa utilizando el AM-ODK y la seguridad de los datos. Se realizó análisis cualitativo de respuestas abiertas. Hubo reporte de problemas técnicos y experiencias negativas documentadas por el investigador.

El estudio contó con la aprobación de los Comités de Ética en Investigación de la London School of Hygiene & Tropical Medicine (Referencia 15687) y de la Universidad Peruana Cayetano Heredia (Referencia 102632). Además, se obtuvo la autorización del Ministerio de Salud y la Dirección de Redes Integradas de Salud Lima Sur.

HALLAZGOS

Un total de 129 contactos intradomiciliarios, de 29 CI con TB-MDR, identificados en diez centros de salud de Lima Sur se registraron en el AM-ODK. El promedio de contactos por CI fue 4,5 (desviación estándar [DE]: 2,3; rango: 1-11), 57% eran mujeres, la edad promedio fue 27 años (DE: 19,5; rango: 1-86) y 50 (38,8%) eran niños. Solo un CI rechazó participar en el estudio.

El tiempo promedio por registro de contacto fue cuatro minutos (DE: 3), llegando a un máximo de 16 minutos en el primer contacto. En los contactos posteriores tardó un mínimo como mínimo.

MENSAJES CLAVE

Motivación para realizar el estudio: Un sistema electrónico podría facilitar el registro y seguimiento individual de contactos; facilitar la gestión ante nuevas directrices de tratamiento preventivo y contribuir a la vigilancia de la TB-MDR entre los contactos.

Principales hallazgos: Se encontró un tiempo medio de registro por contacto de cuatro minutos y todos los encuestados manifestaron sentirse cómodos o muy cómodos con el registro de sus datos en aplicativo móvil Open Data Kit (AM-ODK). Un 10% expresó inquietudes sobre la confidencialidad.

Implicancias: AM-ODK es una herramienta factible y aceptable para registrar contactos domésticos expuestos a CI con TB-MDR en Lima.
Características de los casos índice

La mayoría de los CI (48,3%) tenía entre 16 y 25 años y tres CI fueron VIH positivos. Iniciaron tratamiento de TB-MDR entre el 1 de marzo de 2017 y el 4 de julio de 2018. Se informó que la duración de los síntomas antes del inicio del tratamiento con TB-MDR fue variable siendo el síntoma más reportado la tos (72,4%). Las características de los casos índice pueden verse en la Tabla 1.

Características	n	%
Edad (promedio, DE)	30,5	16,4
Sexo	20	69,0
Síntomas		
Menos de 2 semanas (n = 7)		
Tos	3	42,9
Sin tos	4	57,1
Más de 2 semanas (n = 22)		
Tos	18	81,8
Sin tos	4	18,2
Método de diagnóstico		
Microscopía (n = 29)		
Positivo	20	69,0
Negativo	9	31,0
Indocumentados	0	0,0
Cultivo (n = 29)		
Positivo	17	58,6
Negativo	12	41,4
Indocumentados	0	0,0
Genotipo (n = 29)		
Positivo	25	86,2
Negativo	0	0,0
Indocumentados	4	13,8
MODS (n = 29)		
Positivo	2	6,9
Negativo	0	0,0
Indocumentados	27	93,1
Patrón de resistencia (n = 28)		
R y H solamente	17	58,6
R y H más E y/o Z	4	13,8
R y H (+/- E, +/- Z) más Lfx	0	0,0
R y H (+/- E, +/- Z) más aminoglucósido	7	24,1
R y H (+/- E, +/- Z) más Lfx y	1	3,5
aminoglucósido (TB-XDR)		

Tabla 1. Características de los casos índice

Características de los contactos domésticos

La mayoría de los contactos (98,4%) vivían en la misma casa que el CI, con un 18,7% compartiendo un dormitorio. Las principales características son presentadas en la Tabla 2.

El 46% de los contactos menores de 16 años y el 53% de los menores de 5 años accedieron a pruebas de identifica-

Características	n	%
Edad del contacto (promedio, DE)	27	19,5
Sexo	55	43
Parentesco con caso índice		
Hermanos	34	26,4
Padres	31	24,1
Hijos	23	17,8
Parejas	8	6,2
Otros parentescos	33	25,5
Evidencia de vacuna BCG		
Sí	109	84,5
No	14	10,9
No sabe	6	4,6
Tipo de vivienda		
Ladrillo	121	93,8
Madera	8	6,2
Piedra	0	0
Número de ventanas		
1-2	14	10,9
3-4	60	46,5
5-6	35	27,1
>6	20	15,5
Mala ventilación		
Sí	45	34,9
No	62	48,1
No sé	22	17,1
Factores de riesgo relevantes		
Ninguno	98	76
VIH positivo	1	0,8
<5 años	14	10,9
65 años o más	4	3,1
Diabetes Mellitus	5	3,9
Enfermedad pulmonar	1	0,8
Fumador	4	3,1
Exfumador	3	2,3

Tabla 2. Características de la vivienda y factores de riesgo clínico de los contactos (n=129)

a Bacilos alcohol acidorresistentes observados.

b Determinado mediante la prueba Genotype MTBDRplus (Hain Line Probe Assay)

c MODS del inglés Microscopic Observation Drug Susceptibility

R: rifampicina; H: isoniazida; E: etambutol; Z: pirazinamida; Lfx: levofloxacina; DE: desviación estándar; TB-XDR: tuberculosis extensamente drogorresistente.
cción de infección de tuberculosis latente (LTBI) por prueba de tuberculina. Quince (11,6%) contactos no tenían evaluación, dos tercios enviaron al menos una muestra de esputo después del diagnóstico del CI. Un tercio de los contactos notificaron pruebas previas de VIH, solo uno dio positivo.

Al momento de la recopilación de datos, el 8,5% (11/129) de los contactos tuvo síntomas de tuberculosis. De los once, ocho tuvieron tos aislada; dos tuvieron tos con hemoptisis o fiebre; y uno perdió peso. La frecuencia de síntomas activos de tuberculosis (persistentes después de dos semanas) entre los contactos registrados fue 3,1%.

Cuestionario de aceptabilidad
Un total de 31 adultos seleccionados por conveniencia completaron el cuestionario de aceptabilidad, 22 (71%) eran mujeres. La edad promedio fue de 38,4 años (DE: 12,8, rango: 19-57).

En cada hogar, el promedio de adultos fue 4 (DE: 1,6, rango: 1-6) y de niños fue 2,2 (DE: 1,4, rango: 0-6). Respecto al tiempo de demora en el registro de todos los contactos, 54,8% de encuestados reportaron <15 minutos y 29% de 15 a 30 minutos. Un 6,5% reportó entre 45 y 60 minutos.

El 58,1% de los cuestionarios se completaron en los centros de salud y el 41,9% durante las visitas domiciliarias. De estos últimos, todos los encuestados estuvieron de acuerdo con recibir al entrevistador en casa. Ninguna de las personas identificadas en el centro de salud estuvo en desacuerdo con recibir una visita domiciliaria. Los 31 encuestados informaron haber comprendido las preguntas y sentirse cómodos o muy cómodos con el investigador mientras usaba la aplicación para registrar sus datos; el 90% creía en la confidencialidad de sus datos y reconoció que las respuestas serían beneficiosas para sí mismas y su familia. Tres (10%) de los encuestados manifestaron preocupación sobre la privacidad y seguridad de los datos (Tablas 3 y 4).

Pregunta/Respuesta	n (%)
¿Estaba cómodo con el ingreso del personal de salud a su casa?	
Sí	133 (41,9)
No	0 (0)
Inseguro	0 (0)
N/A	18 (58,1)
¿Usted entendió las preguntas que hizo el personal de salud?	
Sí	30 (100)
Frecuentemente	0 (0)
A veces	0 (0)
No	0 (0)
¿Cómo se sintió acerca del personal de salud que usó la aplicación móvil para registrar sus datos?	
Muy cómodo	17 (56,7)
Cómodo	13 (43,3)
Incómodo	0 (0)
Muy incómodo	0 (0)
¿Le preocupa algo sobre el trabajador de la salud que usa la aplicación móvil?	
Sí	3 (10)
No	27 (90)
¿Confía en que su información se mantendrá confidencial?	
Sí	27 (90)
No	0 (0)
No sabe	3 (10)
¿Piensa que sus respuestas a las preguntas del personal de salud lo ayudarán a usted y a su familia a mantenerse saludable?	
Sí	27 (90)
No	3 (10)
No sabe	0 (0)

N/A: no aplica.
DISCUSIÓN

Este estudio piloto mostró que el registro de contactos de casos TB-MDR es posible mediante el AM-ODK. Se analizaron 129 contactos, de 250 previstos, debido a las restricciones de tiempo para el trabajo de campo, sin embargo, son suficientes para evaluar la factibilidad. Se estimó que cada hogar tardaría un promedio de 18 minutos en registrar todos los contactos de un solo CI. Esto es consistente con el cuestionario de aceptabilidad donde el 84% de los encuestados estimó un tiempo menor de 30 minutos. Estudios de factibilidad en Botswana y Mongolia informan cifras similares por registro individual de menor de 30 minutos. Estudios de factibilidad en Botswana y Mongolia han demostrado que estos aumentan la integridad y la confiabilidad de sus datos (17, 18). Los contactos de los CI con TB-MDR es posible mediante el AM-ODK. Un instrumento que facilite el registro y el seguimiento del CI y de sus contactos puede facilitar la gestión de la atención de estos últimos. El monitoreo y vigilancia epidemiológica nacional sería un uso potencial dados los datos recopilados en centros de salud locales; sin embargo, no constituye una herramienta específica, además de contar con especificaciones técnicas, por lo que su implementación sería viable al contar con una base de contactos establecida.

Los estudios previos sobre sistemas electrónicos de vigilancia han demostrado que estos aumentan la integridad y la precisión de los datos; ahorrando tiempo y aumentan el acceso; mejoran la confidencialidad y la seguridad; facilitan vínculos a otros programas de salud (VIH, por ejemplo); y permiten análisis más complejos sobre el tema (19). Actualmente esta aplicación se usa en investigaciones de todo el mundo; sin embargo, no se ha integrado oficialmente a ningún sistema de monitoreo de TB-MDR hasta el momento. Otro aspecto que merece ser tomado en cuenta es la integración de estos sistemas con las historias clínicas electrónicas u otras aplicaciones utilizadas con estos mismos propósitos.

El método de reclutamiento de contactos con TB-MDR estuvo abierto a posibles sesgos. Los contactos de los CI con mejor adherencia al tratamiento tenían una mayor proba-

Tabla 4. Respuestas de texto libre

Tipos de respuestas recibidas
Respuestas positivas
«Sí, creo que es muy interesante y rápido cómo se lleva a cabo la entrevista. Creo que es una buena opción para aplicar en los centros de salud, ya que es conveniente responder solo y evitar el papeleo.»
«Es una ayuda para la sociedad.»
«Me alegra que estén preocupados por esta enfermedad que afecta cada vez más a casi todo el Perú.»
«Todo bien, me gustó la charla.»
Respuestas negativas
«Mi única duda es que esto sea confidencial.»
«Deseo que se preocupe por la alimentación del paciente [con tuberculosis] y que verifique que se alimentó en el momento adecuado, como lo hacen con los medicamentos.»
Otras respuestas
«Podría hacer encuestas virtuales por correo electrónico para conectarse con diferentes personas y averiguar si hay alguien con síntomas de tuberculosis, ganaría tiempo con esto ya que los médicos irían directamente a las casas con sospecha de tuberculosis.»

Monitoreo de contactos de tuberculosis

Monitoreo de contactos de tuberculosis

REV PERU MED EXP SALUD PUBLICA. 2021;38(2):272-77.

https://doi.org/10.17843/rpmesp.2021.382.6236
bilidad de selección y esto puede haber afectado la representatividad de las opiniones de aceptabilidad. El sesgo de reporte puede haber afectado las respuestas sobre factores de riesgo de contacto, exámenes o tratamiento previos de tuberculosis, particularmente cuando una persona respondió por todos los contactos en el hogar. El cuestionario de aceptabilidad fue autoinformado y abierto a sesgo de respuesta. La comprensión de las preguntas y la capacidad de lectura pueden haber afectado las respuestas. Los cuestionarios reflejaban las opiniones de los CI y de los contactos, y pueden no ser generalizables para todos los contactos con TB-MDR.

En conclusión, el AM-ODK es una herramienta factible y aceptable para registrar contactos domésticos expuestos a los CI con TB-MDR en Lima. Estudios futuros deberían considerar el uso de aplicaciones móviles para el monitoreo de contactos de TB-MDR.

Contribuciones de autoría: RA es la autora principal; recopiló y analizó datos, y redactó el manuscrito. DAIM y KMF fueron los supervisores de RA durante todo el proyecto. MC tradujo el artículo original de inglés a español y contribuyó al contenido del manuscrito final. SL apoyó con el proceso de recolección de datos. MCR apoyó en los procesos para la aprobación ética, coordinaciones para la recopilación de datos y acceso a los participantes y en la redacción del artículo. Todos los autores revisaron y aprobaron la versión final del manuscrito. Además, todos los autores asumen la responsabilidad frente a todos los aspectos del manuscrito.

Financiamiento: Autofinanciado.

Conflicto de interés: Los autores declaran no tener conflictos de interés.

Referencias bibliográficas

1. Pan American Health Organization. Tuberculosis in the Americas 2018 [Internet]. Washington DC: PAHO; 2018 [citado el 30 de noviembre de 2021]. Disponible en: http://iris.paho.org/per/index.php?option=com_content&view=article&id=5077:pan-amer-ican-health-organization-tuberculosis-in-the-americas-2018&Itemid=900.

2. Alarcón V, Alarcón E, Figueroa C, Mendoza-Ticona A. Tuberculosis en el Perú: situación epidemiológica, avances y desafíos para su control. Rev Peru Med Exp Salud Publica. 2017;34:299-310. doi: 10.17843/rpmesp.2017.342.2384.

3. Becerra MC, Appleton SC, Franke MF, Chalo K, Arteaga F, Bayona J, et al. Tuberculosis burden in households of patients with multidrug-resistant and extensively drug-resistant tuberculosis: a retrospective cohort study. Lancet. 2011;377(9760):147-52. doi:10.1016/s0140-6736(10)61972-1.

4. World Health Organization. Guidelines on the management of latent tuberculosis infection [Internet]. WHO; 2015 [citado el 30 de noviembre de 2021]. Disponible en: http://apps.who.int/iris/bitstream/handle/10665/136471/9789241548908_eng.pdf?sequence=1.

5. Pan American Health Organization. OPS/OMS and KOICA apoyan de manera integral la implementación del Sistema de Información del Programa Nacional de Tuberculosis [Internet]. PAHO; 2015 [citado el 30 de noviembre de 2021]. Disponible en: https://www.paho.org/per/index.php?option=com_content&view=article&id=3054:ops-oms-y-koi-ca-apoyan-de-maneira-integral-la-implementacion-del-sistema-de-informacion-del-programa-nacional-de-tuberculosis&fieledm=900.

6. ODK. Open Data Kit: Mission and Values [Internet]. GitHub; 2018 [citado el 30 de noviembre de 2021]. Disponible en: https://github.com/open datakit/governance/blob/master/MISSION-AND-VALUES.md.

7. Ha YP, Tesfahun MA, Littman-Quinn R, Antiw C, Green RS, Mapila TO, et al. Evaluation of a Mobile Health Approach to Tuberculosis Contact Tracing in Botswana. J Health Commun. 2016;21(10):1115-21. doi: 10.1080/10810730.2016.1222035.

8. Steiner A, Hella J, Grüninger S, Mhulu G, Mhimbira F, Cercamondi CI, et al. Managing research and surveillance projects in real-time with a novel open-source eManagement tool designed for under-resourced countries. J Am Med Inform Assoc. 2016;23(5):916-23. doi:10.1093/jamia/ocv185.

9. Ruiz EF, Proaño Á, Ponce OJ, Curioso WH, Tecnologías móviles para la salud pública en el Perú: lecciones aprendidas. Rev Peru Med Exp Salud Publica. 2015;32:264-72.

10. Naker K, Gaskell KM, Dorjravdan M, Dambaa N, Roberts CH, Moore DAJ. An e-registry for household contacts exposed to multidrug resistant TB in Mongolia. BMC Med Inform Decis Mak. 2020;20(1):188. doi: 10.1186/s12911-020-01204-z.

11. Kaufman ZA, Hershow R, DeCelles J, Bhauti K, Dringus S, Delany-Moore W, et al. P3.321 Acceptability of Data Collection on Mobile Phones Using ODK Software For Self-Administered Sexual Behaviour Questionnaires. Sexually Transmitted Infections. 2013;89(Suppl 1):A249. doi: 10.1136/sextrans-2013-051184.0774.

12. Curioso WH, Kurth AE. Access, use and perceptions regarding Internet, cell phones and PDAs as a means for health promotion for people living with HIV in Peru. BMC Med Inform Decis Mak. 2007;7(1):24. doi:10.1186/1472-6947-7-24.

13. Curioso WH, Quisiberg DA, Cabello R, Gozzer E, Garcia PJ, Holmes KK, et al. “It’s time for your life”: How should we remind patients to take medicines using short text messages?: AMIA Annu Symp Proc. 2009:2009:129-33.

14. Katwaruwe M, Bainomugisha E, Mugahl KA. Data Classification for Secure Mobile Health Data Collection Systems. Development Enginee ring. 2020;5:100054. doi: 10.1016/j.deveng.2020.100054.

15. ODK Scan Field Test: Tuberculosis Register in Pakistan [Internet]. Pakis tán: VillageReach; 2016 [citado el 30 de noviembre de 2021]. Disponible en: https://www.villagereach.org/wp-content/uploads/2016/08/ODK-Scan-Field-Test-Tuberculosis-Register-Pakistan-2016.pdf.

16. Chapman AL, Darton TC, Foster RA. Managing and monitoring tuberculosis using web-based tools in combination with traditional approaches. Clin Epidemiol. 2013;5:465-73. doi: 10.2147/CLEP.S37072.

17. Seddon JA, Garcia-Prats AF, Purchase SE, Osman M, Demers AM, Hod dington G, et al. Levofloxacin versus placebo for the prevention of tuberculosis disease in child contacts of multidrug-resistant tuberculosis: study protocol for a phase III cluster randomised controlled trial (TB-CHAMP). Trials. 2018;19(1):693. doi: 10.1186/s13063-018-3070-0.

18. Fox GJ, Nguyen CB, Nguyen TA, Tran PT, Marais BJ, Graham SM, et al. Managing research and surveillance projects in real-time with a novel open-source eManagement tool designed for under-resourced countries. J Am Med Inform Assoc. 2016;23(5):916-23. doi:10.1093/jamia/ocv185.

19. Nadol P, Stinson KW, Coggin W, Naicker M, Wells CD, Miller B, et al. Levofloxacin versus placebo for the treatment of latent tuberculosis among contacts of patients with multidrug-resistant tuberculosis (the VQUIN MDR trial): a protocol for a randomised controlled trial. BMJ Open. 2020;10(1):e033945. doi: 10.1136/bmjopen-2019-033945.