A new understanding of the H. pylori eradication mechanism

CURRENT STATUS: POSTED

Shanshan Su sushanshan1002@126.com
Hopital Erasme Service de Gastroenterologie d'Hepato-Pancreatologie et d'Oncologie Digestive
Corresponding Author

Guo-qi Zheng
Cangzhou Central Hospital

Ying-ying Liu
Cangzhou Central Hospital

Yu-fei Liang
Cangzhou Central Hospital

Hui Song
Cangzhou Central Hospital

Wen-jie Yin
Cangzhou Central Hospital

Guo-zun Zhang
Cangzhou Central Hospital

DOI:
10.21203/rs.2.15795/v1

SUBJECT AREAS
Gastroenterology & Hepatology

KEYWORDS
Helicobacter pylori, proton pump inhibitor intervention, antibiotics, bismuth, probiotics, treatment mechanism, movement characteristics
Abstract

Background: Helicobacter pylori (H. pylori) cannot usually be detected in the gastric juice and it is thought that H. pylori may be implanted under the mucus layer for long term. The mechanisms of action of proton pump inhibitor (PPI), antibiotics, and bismuth for H. pylori eradication are not entirely clear. Our study aimed to determine the role of PPI on the movement of H. pylori across the mucus layer to the gastric lumen and the mechanism of PPI, antibiotics, and bismuth on H. pylori eradication.

Methods: Patients with H. pylori infection were intravenous injected with PPI (intervention group, n=31) or without PPI (control group, n=37). The presence of H. pylori in the gastric juice was evaluated by the rapid urease test (RUT), polymerase chain reaction (PCR), and culture methods.

Results: The H. pylori positive detection rates were all significantly higher among patients in the intervention group than among patients in the control group by the RUT (P < 0.0001), PCR (P < 0.0001), and culturing (P = 0.0386).

Conclusion: H. pylori can penetrate across the mucus layer to the gastric lumen following PPI intervention. The direct antimicrobial activity of PPI might because of diminished numbers of H. pylori due to probiotics in the gastric lumen. Antibiotics and bismuth might play a local sterilization role in the gastric lumen when H. pylori penetrate across the mucus layer.

Introduction

Helicobacter pylori (H. pylori) is one of the most common bacterial infections, potentially lasting for decades in an individual, and infection can lead to multiple diseases. The prevalence of H. pylori infection is higher than 50% in much of the world, and ranges from 41.35% to 72.3% in China, with an average of 56.22%. H. pylori is widely regarded as one
of the most common gastric pathogens causing chronic gastritis, functional dyspepsia, peptic ulcer, gastric adenocarcinoma, and lymphoma. It has also been found to be associated with multiple extra gastrointestinal diseases, such as cardiovascular diseases, hematological system diseases, diabetes, and immune diseases. In 1994, the International Agency for Research on Cancer consensus group listed \textit{H. pylori} as a class I human carcinogen. The eradication of \textit{H. pylori} is a major global public health issue. Currently, several diagnostic tests are available for determining the presence of \textit{H. pylori}, such as the rapid urease test (RUT), histology, polymerase chain reaction (PCR), culture, the urea breath test (UBT), and serology.

At present, the standard method for the eradication of \textit{H. pylori} is triple (proton pump inhibitor [PPI] + two kinds of antibiotics) or quadruple (PPI + two kinds of antibiotics + bismuth) therapy based on PPI recommended by the international guidelines from the Maastricht V consensus, the Toronto consensus, and other consensuses from many countries. However, using this traditional treatment, it has become increasingly difficult to eradicate \textit{H. pylori} because of the side effects and increasing antibiotic resistance. The search for alternative treatments, such as microecological agents, traditional Chinese medicine, second-line antibiotics (such as Rifabutin), and vaccines has become a particular focus. However, \textit{H. pylori} eradication remains a serious challenge. Until now, the mechanism of action of PPI, antibiotics, and bismuth for \textit{H. pylori} eradication has not been fully understood. A new understanding of the \textit{H. pylori} eradication mechanism is needed to tailor accurate and effective \textit{H. pylori} eradication therapy.

\textit{H. pylori} can implant into the surface of the gastric mucosa and penetrate across the mucin layer. We therefore hypothesized that \textit{H. pylori} may also penetrate across the
mucin layer to the gastric lumen. In this study, we investigated the movement of *H. pylori* up and down the gastric mucus layer and analyzed in detail the mechanisms of current *H. pylori* eradication therapy.

Materials And Methods

Ethical considerations

The Ethics Committee of Central Hospital of Cangzhou City, Cangzhou, Hebei, China, approved this study, which was performed in accordance with the ethical guidelines of the Declaration of Helsinki, Good Laboratory Practices and Good Clinical Practices (2018-017-01). Written informed consent was obtained from each patient prior to study enrolment.

Patients and specimens

A total of 80 patients infected with *H. pylori* were recruited from Central Hospital of Cangzhou City from March 2018 to May 2018. *H. pylori* infection was diagnosed on the basis of the RUT results following gastric biopsy or a positive UBT result. Eligible patients were ≥18 years of age. Subjects meeting with the following criteria were excluded: co-morbidities with severe cardiovascular disease, liver disease or other infectious disease, had received PPI or been administered histamine-2 receptor blocker (H2RB), antibiotics or other treatments that may affect *H. pylori* detection in the previous week, or had a history of gastric surgery. Patients were divided into two groups randomly: (1) Control group: patients with no previous treatment for *H. pylori* eradication, (2) Intervention group: patients who received PPI intravenous infusion 1–2 h before undergoing gastrointestinal endoscopy examination. Patients in each group did not receive any other drugs. Esophagogastrroduodenoscopy was performed after an 8 h fast without any defrother, anesthetic or other orally-administered drugs. Patients lay on the left recumbent position of the examining table and were successfully anesthetized by intravenous injection of
propofol. Then 2–3 ml of fasting gastric juice not containing blood, bile or any other components were sampled from the fundus/corpus at endoscopy by means of a sterile cannula with an external connection to a 10 ml sterile syringe. The pH of the gastric juice was determined and a Giemsa stain was performed. The gastric fluid was dropped into a RUT reagent bottle (SanQiang Biological and Chemical Co. Ltd., Fujian, China) and was observed for at least 30 min at room temperature. After each examination, the endoscope was washed with 2% glutaraldehyde and disinfected with 70% ethanol followed by rinsing with sterile water. The sterile cannula was reformed from a sprinkler tube by cutting off its front end, which was then washed with sterile water, treated with an enzymatic hydrolysate, and doused in glutaraldehyde for at least 10 h, followed by rinsing with sterile water after each examination.

Bacterial cultivation

Culturing of the gastric fluid samples to detect *H. pylori* was performed using the *Helicobacter pylori* isolated, Verification and Antibiotics Susceptibility Testing Kit (Zhuhai Special Economic Zone Yimin Biological Engineering Products Factory, Zhuhai, China). The gastric fluid was inoculated onto Brucella broth supplemented with equine serum and antibiotics (vancomycin, bacillosporin, amphotericin B, and trimethoprim). Culture plates were incubated under microaerophilic conditions at 37°C and high humidity for 1–2 days. The change in color and turbidity of the culture liquid was observed, with a turbid, red culture liquid suggesting *H. pylori* growth (Fig. 1). Organisms were identified as *H. pylori* based on both positive catalase (Fig. 2) and urease tests (Fig. 3).

PCR analysis of *H. pylori* DNA from gastric juice

H. pylori DNA was isolated and analyzed by PCR using Diagnostic Kit of *Helicobacter pylori* DNA (PCR-Fluorescence Probing) (Daangene, Guangzhou, China) according to the
manufacturer’s recommendations. The reaction was performed using the ABI 7500 detection system (Applied Biosystems, Foster, CA, USA) with preliminary denaturation for 8 min at 50°C, 2 min at 93°C, followed by 10 amplification cycles of denaturation at 93°C for 45 s and annealing at 55°C for 1 min, followed by 30 amplification cycles of denaturation at 93°C for 30 s, annealing at 55°C for 45 s, and primer extension at 55°C for 45 s, with a fluorescence acquisition step at the end of the extension. The reference value for this kit was 27.02, which was determined by the ROC curve method. Samples were considered to be H. pylori positive when the amplification curve was of typical ‘S’ type and the Ct value was ≤ 27.02.

Statistical analysis
Calculations were performed using SPSS version 16.0 (Chicago, IL, USA). Descriptive analysis was performed for demographic and clinical features. Results are presented as the mean ± SD for quantitative variables and the number (percentage) for qualitative variables. The Chi-square test was used to compare categorical data. The T-test was used to compare normally distributed continuous variables. P < 0.05 indicated a statistically significant difference.

Results
Patients’ characteristics
Table 1 presents the patients’ characteristics. The gastric fluid was collected from 68 patients infected with H. pylori after the gastric fluid mixed with blood or bile excluded.

The pH value of the gastric juice was significantly higher in the intervention group than in the control group (P < 0.0001).

Comparison of gastric fluid by the culture method
None of the gastric fluid cultures were positive for H. pylori in the control group (0%),
whereas four cultures positive for *H. pylori* were detected in the intervention group (12.9%). The positive frequency was higher in the intervention group than in the control group (*P* = 0.0386).

Comparison of gastric fluid by the RUT method

Among the 37 patients in the control group, the gastric fluid sample from one patient gave a positive RUT result (2.7%) compared with 14 positive cases among the 31 patients in the intervention group (45.2%). The positive frequency was higher in the intervention group than in the control group (*P* < 0.0001).

Comparison of gastric fluid by the PCR method

PCR of the gastric fluid revealed six positive samples among the control group (16.2%) compared with 20 positive samples among the intervention group (64.5%). The positive frequency was higher in the intervention group than in the control group (*P* < 0.0001) (Fig. 4).

Discussion

H. pylori is a Gram-negative microaerobic bacterium that is spiral in shape and has 2–6 polar flagella for mobility. This bacterium implants between the surface of the gastric mucosa and the mucin layer without evidence of intracellular parasitism.\(^\text{17}\) *H. pylori* can only survive at a periplasmic pH of 4.0–8.5 and can only grow at a periplasmic pH of 6.0–8.5. It is difficult to detect *H. pylori* in the gastric lumen because it is such an acidic environment.

The human stomach is divided into three anatomic regions: the cardia, the fundus/corpus, and the antrum. The antrum secretes alkaline mucus 4–5 cm around the antrum. Therefore, *H. pylori* is mainly distributed in the antrum.\(^\text{18}\) *H. pylori* distribute in two ways: (1) by colonizing the surface of the gastric pit and epithelial cells, and (2) by colonizing
above the tissue surface mucus layer. The latter is more common. An animal model revealed that *H. pylori* colonizes a zone 0–25 μm above the tissue surface mucus layer, to a total thickness of about 100 μm.19 While the gastric lumen has a pH of 1–2, a pH gradient exists across the mucus layer, reaching a pH of 6–7 at the surface of the mucosa.20 Using chemotaxis, *H. pylori* navigate this pH gradient to reach their niche environment near the host epithelium.21, 22

Research has revealed that the stomach supports a bacterial community comprising hundreds of phylotypes,23–25 while a pH of < 4 prevents bacterial overgrowth. It was reported that the microbial density in the stomach is $10^{1–10^3}$ CFU/g.26, 27 This high density of bacteria means that Giemsa staining is not an optimal method for studying *H. pylori* in the stomach. Therefore, in this study, we employed the RUT, PCR analysis, and culture methods to study *H. pylori* in gastric juice.

Until now, little is known about the movement characteristics of *H. pylori* all over the world. We use PPI intervene the patients infected with *H. pylori* and study the movement characteristics of *H. pylori*. In this study, the pH of gastric juice in control group patients was range from 1 to 3 with an average of 1.59, which was consistent with normal pH value of gastric juice. The pH of the gastric juice of patients in the intervention group was higher than that in the control group, but *H. pylori* was detected in both groups. Culture is the gold standard method for detecting the presence of viable *H. pylori*. In our study, the positive detection rate was significantly higher in the gastric juice of patients in the intervention group than of patients in the control group. The RUT and PCR analysis also indicated that positive detection rates were significantly higher among patients in the intervention group than among those in the control group. The results of culturing, the RUT, and PCR were consistent. Our findings indicated that PPI intervention may induce *H.
Helicobacter pylori to penetrate across the mucus layer from the surface of the gastric mucosa to the gastric lumen. However, one positive case was detected by the RUT of the gastric fluid from the control group and this sample had a pH value of 1, possibly indicating that the gastric fluid may be mixed with slight bile. In addition, six samples from the control group tested positive by PCR, which might indicate that there was too high a load of *H. pylori* for these bacteria to be detected in the gastric lumen.

H. pylori is a fastidious microorganism that requires complex growth media. The *H. pylori* living environment is small in the mucus layer and a key feature of this bacterium is its microaerophilicity, with optimal growth at O\(_2\) levels of 2% to 5\(^%\).\(^{28}\) *H. pylori* is unable to survival under normal atmospheric conditions or under absolute anaerobic conditions. *H. pylori* requires complex growth media rich in nutrients. However, the mucus layer has low permeability to most molecules such as protons, O\(_2\), and nutrient macromolecules. If the condition of juice in gastric lumen met the qualification mentioned above, *H. pylori* may penetrate across the mucus layer to the gastric lumen.

In recent years, the application of probiotics in the eradication of *H. pylori* has become an area of increasing research interest. Probiotics are capable of influencing bacterial growth by secreting antibacterial substances, and their metabolites may diminish the number of *H. pylori*.\(^{29}\) Lactic acid might have an additional effect on *H. pylori* by inhibiting urease and lowering the pH\(^{30}\) (Fig. 5). The Maastricht V consensus\(^{8}\) reported that several probiotics had been administered combined with antibiotic therapies to treat *H. pylori* infection and probiotics could significantly increase the treatment efficacy of triple therapy.\(^{31}\)

It is reported that PPI alone also exerts direct antimicrobial activity against *H. pylori* with a 6%-7.7% eradication rate,\(^{32,33}\) which was confirmed by Meining and colleagues.\(^{34}\) Iwahi
and coworkers35 practiced a more in-depth study of PPI, and surprisingly found that lansoprazole could inhibit the growth of \textit{H. pylori} \textit{in vitro}, similar to the antibacterial effects of antibiotics. A series of subsequent studies found that omeprazole, pantoprazole, and rabeprazole have different degrees of inhibitory effects on \textit{H. pylori} \textit{in vitro}, but the degree of bacteriostasis of PPIs \textit{in vitro} differs greatly, with rabeprazole showing the strongest bacteriostatic effect. However, these differing effects of PPIs have not been reported in clinic. According to our research results, we propose that PPI intervention may reduce the pH gradient, disturbing the pH chemotaxis of \textit{H. pylori} and leading to the penetration of the mucus layer. Under this mode of movement, \textit{H. pylori} might be diminished by the presence of probiotics above the mucus layer. Otherwise, when the pH value in the gastric lumen decreases below 4, \textit{H. pylori} would return to the host epithelium, again being exposed to the deleterious effects of probiotics. In addition, the high pH of the gastric juice in the lumen can accelerate the growth of probiotics to assist with the eradication of \textit{H. pylori}.

The flagella of \textit{H. pylori} often carry a distinctive bulb at the end. The flagella confer motility and allow rapid movement in viscous solutions such as the mucus layer overlying the gastric epithelial cells.36 Motile bacteria sense chemical gradients by means of chemoreceptor proteins, such as BabA, with a pH-sensor mechanism,37 and relay the information to the flagellar motor 38 to direct movement toward an environment with optimal concentrations of both electron acceptors and proton/electron donors. Another study reported that among \textit{H. pylori} exposed to neutral pH, only about 7\% of the culture were motile and traveled at an average speed of 10.5 μm per s. By contrast, among cells that were shifted to an acidic pH, 66\% were motile with a significantly faster average speed of 24.3 μm per s.39 It seems likely that \textit{H. pylori} uses the pH-sensing mechanism for
orientation along the transmucous pH gradient. \textit{H. pylori} can penetrate across the mucus layer to the gastric lumen when the pH gradient is reduced by PPI intervention. Until now, the mechanism by which antibiotics eradicate \textit{H. pylori} has been controversial. It was thought that the drug was delivered directly following oral administration, or indirectly following intestinal absorption, and transferred from the blood into the stomach across the gastric mucosa. Traditionally it has been thought that drugs need to penetrate across the mucus layer from the gastric lumen to the epithelial surface, or vice versa, to reach the target bacteria, but delivery is limited by the permeability of the mucus layer. In its physiological state, the gastric mucosa has low permeability to most molecules, from protons to macromolecules.40, 41 Unlike previous reports, our findings indicated that antibiotics play a local function in the gastric lumen when \textit{H. pylori} penetrates across the mucus layer to the gastric lumen because of the use of PPI (Fig. 5). The “battlefield” that we originally considered that antibiotics eradicated \textit{H. pylori} changed from the submucous layer to the gastric lumen. Therefore, current concept of \textit{H. pylori} should been changed. Bismuth-based quadruple therapy has been used as first-line therapy and has shown excellent effects in \textit{H. pylori} eradication even for antibiotic resistance strains.42–46 However, the mechanism of action of bismuth drugs is not fully understood.46 Bismuth agents can form a bismuth complex with glycoproteins, which form a diffuse barrier to acids. It has been shown that bismuth also has bactericidal activity. When \textit{H. pylori} penetrates across the mucus layer to the gastric lumen under PPI intervention or returns to the host epithelium, bismuth may damage, or even eradicate, \textit{H. pylori}.

Conclusions

Our study indicated that \textit{H. pylori} can penetrate the mucus layer and enter the gastric lumen where it acquires O\textsubscript{2} and nutrients under PPI intervention. The mechanism of direct
antimicrobial activity of PPI may be that PPI disturbs the pH chemotaxis of \textit{H. pylori}, leading to penetration across the mucus layer, where it is diminished by probiotics above the mucus layer and eliminated by gastric emptying. Antibiotics and bismuth may play a local sterilization role in the gastric lumen when \textit{H. pylori} penetrates across the mucus layer. Through the movement characteristic of \textit{H. pylori}, we provide reliable data for the optimal application time of probiotics, antibiotics and bismuth as well as a theoretical basis for improving the eradication of \textit{H. pylori}.

\textbf{Abbreviations}

\textit{H. pylori}: \textit{Helicobacter pylori}; PPI: proton pump inhibitor; RUT: rapid urease test; PCR: polymerase chain reaction; UBT: urea breath test

\textbf{Declarations}

\textbf{Acknowledgments}

We are grateful to all subjects who generously provided samples for this study. A special thanks to Prof. Fu-kun Li for his precious help in the experiments performance, to Zhi-hua Xu for her help in the anesthesia of patients, and to Qing-tian Li for her help for the sterilization of the endoscope and sterile cannula.

\textbf{Authors’ contributions}

ZGQ designed the study and the study protocol, and modified the paper. SSS and LYY performed the experiments and analyzed the data. SS wrote the paper. LYF and SH performed gastrointestinal endoscopy examination. YWJ and ZGZ collected the cases.

\textbf{Funding}

This work was supported by Cangzhou Health Research Fund under Grant. The funding body supported the data collection used in this study. The funding body has no role in the design of the study and analysis and interpretation of data and in writing the manuscript.
Availability of data and material

The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

Ethics approval and consent to participate

The Ethics Committee of Central Hospital of Cangzhou City, Cangzhou, Hebei, China, approved this study, which was performed in accordance with the ethical guidelines of the Declaration of Helsinki, Good Laboratory Practices and Good Clinical Practices (2018–017–01). Written informed consent was obtained from each patient prior to study enrolment.

Consent for publication

Not Applicable.

Competing interests

The authors declare no competing interest.

Reference

1. Xie CLu NH. Review clinical management of Helicobacter pylori infection in China [J]. Helicobacter 2015;20(1):1–10.

2. Warren JR, Marshall B. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet 1983; 1: 1273–75.

3. Brown LM. Helicobacter pylori: epidemiology and routes of transmission. Epidemiol Rev 2000; 22: 283–97.

4. Parsonnet J, Friedman GD, Vandersteen DP, et al. Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med 1991; 325:1127–31.

5. Atherton JC. The pathogenesis of Helicobacter pylori-induced gastro-duodenal
6. Cave DR. How is Helicobacter pylori transmitted? Gastroenterology 1997; 113(6 suppl): S9–14.

7. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Schistosomes, liver flukes and Helicobacter pylori. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, 7-14 June 1994. IARC Monogr Eval Carcinog Risks Hum 1994; 61: 1-241.

8. Malfertheiner P, Megraud F, O'Morain CA, Gisbert JP, Kuipers EJ6, Axon AT, Bazzoli F, Gasbarrini A, Atherton J, Graham DY, Hunt R, Moayyedi P, Rokkas T, Rugge M, Selgrad M, Suerbaum S, Sugano K, El-Omar EM; European Helicobacter and Microbiota Study Group and Consensus panel. Management of Helicobacter pylori infection-the Maastricht V/Florence Consensus Report. Gut. 2017; 66(1):6–30.

9. Fallone CA, Chiba N, van Zanten SV, Fischbach L, Gisbert JP, Hunt RH, Jones NL, Render C, Leontiadis GI, Moayyedi P, Marshall JK. The Toronto Consensus for the Treatment of Helicobacter pylori Infection in Adults. Gastroenterology. 2016; 151(1):51–69.

10. Fock KM, Katelaris P, Sugano K, Ang TL, Hunt R, Talley NJ, Lam SK, Xiao SD, Tan HJ, Wu CY, Jung HC, Hoang BH, Kachintorn U, Goh KL, Chiba T, Rani AA. Second Asia-Pacific Consensus Guidelines for Helicobacter pylori infection. J Gastroenterol Hepatol 2009; 24: 1587–1600 [PMID: 19788600 DOI: 10.1111/j.1440-1746.2009.05982.x]

11. World Gastroenterology Organisation. World Gastroenterology Organisation Global Guideline: Helicobacter pylori in developing countries. J Clin Gastroenterol 2011; 45: 383–388 [PMID: 21415768 DOI: 10.1097/MCG.0b013e31820fb8f6]

12. Malfertheiner P, Megraud F, O’Morain CA, Atherton J, Axon AT, Bazzoli F, Gensini GF, Gisbert JP, Graham DY, Rokkas T, El-Omar EM, Kuipers EJ. Management of
Helicobacter pylori infection—the Maastricht IV/ Florence Consensus Report. Gut 2012; 61: 646–664 [PMID: 22491499 DOI: 10.1136/gutjnl-2012-302084].

13. Chey WD, Wong BC. American College of Gastroenterology guideline on the management of Helicobacter pylori infection. Am J Gastroenterol 2007; 102: 1808–1825 [PMID: 17608775 DOI: 10.1111/j.1572-0241.2007.01393.x]

14. Kuo YT, Liou JM, El-Omar EM, Wu JY, Leow AHR, Goh KL, Das R, Lu H, Lin JT, Tu YK, Yamaoka Y, Wu MS; Asian Pacific Alliance on Helicobacter and Microbiota. Primary antibiotic resistance in Helicobacter pylori in the Asia-Pacific region: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2017; 2(10): 707-715.

15. Duck WM, Sobel J, Pruckler JM, Song Q, Swerdlow D, Friedman C, Sulka A, Swaminathan B, Taylor T, Hoekstra M, Griffin P, Smoot D, Peek R, Metz DC, Bloom PB, Goldschmidt S, Parsonnet J, Triadafilopoulos G, Perez-Perez GI, Vakil N, Ernst P, Czinn S, Dunne D, Gold BD. Antimicrobial resistance incidence and risk factors among Helicobacter pylori-infected persons, United States. Emerg Infect Dis. 2004 10(6): 1088-94.

16. Zeng M, Mao XH, Li JX, Tong WD, Wang B, Zhang YJ, Guo G, Zhao ZJ, Li L, Wu DL, Lu DS, Tan ZM, Liang HY, Wu C, Li DH, Luo P, Zeng H, Zhang WJ, Zhang JY, Guo BT, Zhu FC, Zou QM. Efficacy, safety, and immunogenicity of an oral recombinant Helicobacter pylori vaccine in children in China: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2015;386 (10002): 1457-64.

17. Kang JK, Kim E, Kim KH, Oh SH. Association of Helicobacter pylori with gastritis and peptic ulcer diseases. Yonsei Med J. 1991; 32(2): 157–68.

18. Schubert ML, Peura DA. Control of gastric acid secretion in health and disease. Gastroenterology 2008; 134:1842-60;
19. Schreiber S, Konradt M, Groll C, Scheid P, Hanauer G, Werling HO, Josenhans C & Suerbaum S (2004) The spatial orientation of Helicobacter pylori in the gastric mucus. Proc Natl Acad Sci USA 101: 5024-5029.

20. Bhaskar KR, Garik P, Turner BS, Bradley JD, Bansil R, Stanley HE, LaMont JT. Viscous fingering of HCl through gastric mucin. Nature 1992; 360:458-61;

21. Williams SM, Chen YT, Andermann TM, Carter JE, McGee DJ, Ottemann KM. Helicobacter pylori chemotaxis modulates inflammation and bacterium-gastric epithelium interactions in infected mice. Infect Immun 2007; 75:3747-57;

22. Croxen MA, Sisson G, Melano R, Hoffman PS. The Helicobacter pylori chemotaxis receptor TlpB (HP0103) is required for pH taxis and for colonization of the gastric mucosa. J Bacteriol 2006; 188:2656-65;

23. Li XX, Wong GL, To KF, Wong VW, Lai LH, Chow DK, Lau JY, Sung JJ, Ding C. Bacterial microbiota profiling in gastritis without Helicobacter pylori infection or non-steroidal anti-inflammatory drug use. PLoS One 2009; 4:e7985;

24. Bik EM, Eckburg PB, Gill SR, Nelson KE, Purdom EA, Francois F, Perez-Perez G, Blaser MJ, Relman DA. Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci U S A 2006; 103:732-7;

25. Andersson AF, Lindberg M, Jakobsson H, Backhed F, Nyrén P, Engstrand L. Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS One 2008;

26. Korecka A, Arulampalam V. The gut microbiome: scourge, sentinel or spectator? J Oral Microbiol 2012; 4.

27. O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep 2006; 7:688-93; PMID:16819463;

28. Kusters JG, van Vliet AH, Kuipers EJ. Pathogenesis of Helicobacter pylori infection.
Clin Microbiol Rev. 2006; 19(3): 449–90.

29. Midolo PD, Lambert JR, Hull R, Luo F, Grayson ML. In vitro inhibition of Helicobacter pylori NCTC 11637 by organic acids and lactic acid bacteria. J Appl Bacteriol 1995; 79: 475–479

30. Lesbros-Pantoflickova D, Corthésy-Theulaz I, Blum AL. Helicobacter pylori and probiotics. J Nutr 2007; 137: 812S–818S.

31. Canducci F, Armuzzi A, Cremonini F, Cammarota G, Bartolozzi F, Pola P, Gasbarrini G, Gasbarrini A. A lyophilized and inactivated culture of Lactobacillus acidophilus increases Helicobacter pylori eradication rates. Aliment Pharmacol Ther 2000; 14: 1625–1629.

32. Lamouliatte H. Adjuvant therapy for Helicobacter pylori eradication: role of lansoprazole in clinical studies[J]. J Clin Gastroenterol, 1995, 20(Suppl 1):S28–31

33. Goh KL, Parasakthi N, Peh SC, et al. Prolonged treatment with omeprazole does not improve the eradication rate of Helicobacter pylori infection-a short report [corrected]. Singapore Med J. 1995, 36(6):619–620

34. Meining A, Wick M, Miehlke S, et al. The presence of immunoglobulins in the gastric juice of patients infected with Helicobacter pylori is related to a reduced secretion of acid [J]. Helicobacter 2002; 7(1):67–70

35. Iwahi T, Satoh H, Nakao M, et al. Lansoprazole, a novel benzimidazole proton pump inhibitor, and its related compounds have selective activity against Helicobacter pylori[J]. Antimicrob Agents Chemother, 1991, 35(3):490-496

36. O’Toole, P. W., M. C. Lane, and S. Porwollik. 2000. Helicobacter pylori motility. Microbes Infect. 2:1207-1214.

37. Bugaytsova JA, Björnham O, Chernov YA, Gideonsson P, Henriksson S, Mendez M, Sjöström R, Mahdavi J, Shevtsova A, Ilver D, Moonens K, Quintana-Hayashi MP,
Moskalenko R, Aisenbrey C, Bylund G, Schmidt A, Åberg A, Brännström K, Königer V, Vikström S, Rakhimova L, Hofer A, Ögren J, Liu H, Goldman MD, Whitmire JM, Ådén J, Younson J, Kelly CG, Gilman RH, Chowdhury A, Mukhopadhyay AK, Nair GB, Papadakos KS, Martinez-Gonzalez B, Sgouras DN, Engstrand L, Unemo M, Danielsson D, Suerbaum S, Oscarson S, Morozova-Roche LA, Olofsson A, Gröbner G, Holgersson J, Esberg A, Strömberg N, Landström M, Eldridge AM, Chromy BA, Hansen LM, Solnick JV, Lindén SK, Haas R, Dubois A, Merrell DS, Schedin S, Remaut H, Arnqvist A, Berg DE, Borén T. Helicobacter pylori Adapts to Chronic Infection and Gastric Disease via pH-Responsive BabA-Mediated Adherence. Cell Host Microbe. 2017; 21(3): 376–389.

38. Bren, A. & Eisenbach, M. (2000) J. Bacteriol. 182, 6865–6873.

39. D. Scott Merrell, Maria L. Goodrich, Glen Otto, Lucy S. Tompkins, and Stanley Falkow. pH-Regulated Gene Expression of the Gastric Pathogen Helicobacter pylori. INFECTION AND IMMUNITY, 2003, p. 3529–3539

40. Forstner JF, Forstner GG. Gastrointestinal mucus. In: Johnson LR, ed. Physiology of the Gastrointestinal Tract, 3rd edn. New York: Raven Press, 1994: 1255–83.

41. Hossenboccus A, Fitzpatrick P, Colin-Jones DG. Potential differences across the normal and the abnormal gastric mucosa in man. Gut 1976; 17:993–7.

42. Fock KM, Graham DY, Malfertheiner P. Helicobacter pylori research: historical insights and future directions. Nat Rev Gastroenterol Hepatol. 2013; 10(8):495–500.

43. Malfertheiner P. Infection: Bismuth improves PPI-based triple therapy for H. pylori eradication. Nat Rev Gastroenterol Hepatol. 2010; 7(10):538–9.

44. Gisbert JP. Helicobacter pylori eradication: A new, single-capsule bismuth-containing quadruple therapy. Nat Rev Gastroenterol Hepatol. 2011; 8(6):307–9.

45. Dore MP, Lu H, Graham DY. Role of bismuth in improving Helicobacter pylori eradication with triple therapy. Gut. 2016; 65(5):870–8.
Table 1

Table 1 Characteristics of the patients

Parameter	Control group (n=37)	Intervention group (n=31)	P-value
Gender (M/F)	20/27	19/12	0.548
Age, mean±SD	53.2±11.7	55.8±12.8	0.256
pH value of gastric juice, mean±SD	1.59±0.76	6.70±1.42	<0.001

Figures

(A)
(B)

Figure 1

Culture liquid turbidity and red suggesting H. pylori growth. (A) Negative result.
(B) Positive result.
Figure 2

H. pylori can generate catalase which decompose H2O2 and released bubbles in micropore labeled ‘CAT’. Bubbles can be seen in CAT micropore was identified as H. pylori positive. (A) Negative result. (B) Positive result.

Figure 3

H. pylori can generate urease which decompose the urea, released ammonia in micropore labeled ‘Ur+’, and the ammonia can turned the phenol red from yellow to red colour. The Ur+ micropore turned from yellow to red colour was identified as H. pylori positive. (A) Negative result. (B) Positive result.
Comparison of gastric fluid PCR for *H. pylori* with and without PPI. The positive frequency was higher in PPI intervention group than that in Control group (P < 0.001).

The movement characteristics of *H. pylori* under PPI intervention and the mechanisms of action of PPI, antibiotics and probiotics.
