Regulation of Uterine Spiral Artery Remodeling: a Review

Eugene D. Albrecht1,2 • Gerald J. Pepe3

Received: 11 February 2020 / Accepted: 6 May 2020 / Published online: 16 June 2020
© The Author(s) 2020

Abstract
Extravillous trophoblast remodeling of the uterine spiral arteries is essential for promoting blood flow to the placenta and fetal development, but little is known about the regulation of this process. A defect in spiral artery remodeling underpins adverse conditions of human pregnancy, notably early-onset preeclampsia and fetal growth restriction, which result in maternal and fetal morbidity and mortality. Many in vitro studies have been conducted to determine the ability of growth and other factors to stimulate trophoblast cells to migrate across a synthetic membrane. Clinical studies have investigated whether the maternal levels of various factors are altered during abnormal human pregnancy. Animal models have been established to assess the ability of various factors to recapitulate the pathophysiological symptoms of preeclampsia. This review analyzes the results of the in vitro, clinical, and animal studies and describes a nonhuman primate experimental paradigm of defective uterine artery remodeling to study the regulation of vessel remodeling.

Keywords Uterine artery remodeling • Preeclampsia • Animal models

Introduction
During early human pregnancy, extravillous trophoblast (EVT) migrates to, invades, and replaces the vascular smooth muscle cells (VSMC), endothelial cells, and elastic lamina within, thereby remodeling the uterine spiral arteries [1–4]. Consequently, these arteries change from high-resistance/low-capacity to low-resistance/high-capacity vessels, and thus, uterine artery blood flow increases with advancing gestation to enhance placental perfusion and promote fetal development. Defective uterine artery remodeling (UAR) underpins the etiology of certain pregnancy disorders that comprise the syndrome of placental ischemia [5, 6], notably early-onset preeclampsia, defined as premature delivery prior to week 34 of gestation and associated with a high rate of fetal growth restriction [7–13]. The term preeclampsia is used throughout this review to refer to early onset since in contrast to late-onset preeclampsia, i.e., delivery after 34 weeks, it is underpinned by defective UAR. Preeclampsia is associated with maternal systemic vascular endothelial inflammation-activation-dysfunction, hypertension, renal glomerular endotheliosis, and proteinuria, as well as maternal and neonatal morbidity/mortality [14–20]. It has been proposed that as a consequence of impaired UAR and placental perfusion, the placenta exhibits oxidative stress and the release of anti-angiogenic factors, cytokines, and/or syncytiotrophoblast extracellular vesicles which, along with predisposing maternal factors such as obesity and hypertension, elicit the pathophysiological manifestations of preeclampsia (reviewed in [16, 20]). Excessive trophoblast invasion and UAR are also deleterious because they result in impaired uterine artery vasomotor tone and hemorrhaging after delivery, a pregnancy complication known as placenta accreta [21, 22]. Despite the fundamental importance of UAR to successful pregnancy and fetal development, relatively little is known about the regulation of this process primarily because the majority of studies have focused on the pathophysiological consequences of adverse conditions of pregnancy and not on UAR. The present review describes the results of the in vitro and in vivo studies and a nonhuman primate model to study the regulation of UAR.
In Vitro Studies

Numerous in vitro studies have been conducted to investigate the ability of primary or immortalized trophoblasts cultured in two or three dimensions to pass across a synthetic permeable membrane coated with matrigel or decellularized extracellular matrix or to form endothelial-like tubes as indices of cell migration and invasion. Collectively, these studies have shown that several factors known to be produced by the placenta and/or decidua, including vascular endothelial growth factor-A (VEGF), placental growth factor (PIGF), insulin-like growth factor (IGF), epidermal growth factor (EGF), heparin-binding EGF (HB-EGF), activin, and human chorionic gonadotrophin (hCG), stimulated HTR-8/SV neo, trophoblast, or choriocarcinoma JEG-3 cell migration or endothelial-like tube formation [23–33]. Moreover, transcription and cell signaling molecules, including the Rac1 member of the Rho family of GTPases, the elastin-derived matrikine VGVAPG, the ephrin-B2 ligand of the Eph receptor, and Notch-2, also increased trophoblast migratory capacity in vitro [34–38]. However, in other in vitro studies, several of these factors did not alter EVT migration [39–41]. In contrast, transforming growth factor (TGFβ)-1, TGFβ-2, and TGFβ-3 and endocrine gland VEGF (EG-VEGF), as well as microRNA-93 and microRNA-135 which decrease CXCL12 gene expression, inhibited migration/invasive capacity of trophoblasts [42–47], while inhibition of TGFβ3 restored invasive capacity of trophoblasts obtained in late gestation from placentas of women with preeclampsia [48]. Additional in vitro studies using placental explants showed that elastin-derived peptides increased and endothelin-1 decreased trophoblast overgrowth [35, 49]. The underlying causes of the divergent effects of these factors on trophoblast migration are unclear, although use of different culture conditions, including oxygen and hypoxia-inducible factor levels and transformed versus primary trophoblasts, may be involved.

The presence of uterine natural killer (uNK) cells and macrophages, which are sources of VEGF-A and VEGF-C, angiopoietins, interleukins, and matrix metalloproteinases (MMPs) [50], was associated with VSMC and endothelial cell disruption in decidual tissue obtained in early human pregnancy [51], while the addition of uNK cell-conditioned medium to cultures of human term chorionic plate arteries caused VSMC and extracellular matrix breakdown [52]. The addition of EVT-conditioned medium to cultures of vascular endothelial cells increased expression of the chemokines CCL14 and CXCL6, which induced chemotaxis of decidual NK cells and macrophages, and the authors proposed that there was crosstalk between EVT, endothelial cells, and decidual immune cells in spiral artery remodeling [53]. NK cells also enhanced migration of and tube formation by primary trophoblast cells from placental villous tips, an effect that was prevented in cultures containing NK cells pretreated with sphingosine FTY720 to suppress NK cell function and VEGF production [54]. Moreover, recent studies suggest that additional processes, including invasion of uterine veins and lymph vessels by endo-venous and endo-lymphatic trophoblast cells, respectively, may also be involved in uterine artery remodeling [55, 56]. Based on these studies, it has been proposed that the immune system plays a role in uterine vessel transformation, although it has been suggested that the role of the immune system is more established in mouse than in human pregnancy (reviewed in [57–59]).

Clearly, the in vitro studies are significant in showing that a multitude of factors have the capacity to alter migratory and invasive capacity of trophoblast cells. However, considering the highly complex interplay of different cell types, molecular events, and spatio-temporal cell interactions that occur in vivo during spiral artery transformation, it is unclear whether trophoblast migration and endothelial tube formation as assessed in vitro validly mirror the process of UAR as it occurs in vivo. Thus, in vivo animal studies are needed to ascertain the applicability and physiological role of the candidate factors shown in vitro either operating alone or in conjunction with each other in regulating UAR.

Clinical Studies

Human clinical studies have shown that placental expression and/or maternal serum levels of many growth factors, including VEGF, IGF-I, EGF, HB-EGF, TGFβ, soluble endoglin, and other peptides, as well as Notch-2, endothelial colony-forming cells, tyrosine kinase-like orphan receptor, and microRNA-93, are either elevated, decreased, or unaltered in mid to late gestation in women who develop preeclampsia [23, 26, 60–70]. Additional studies have shown that maternal serum levels of PIGF are decreased, and the levels of the sFlt-1 soluble truncated VEGF receptor that binds to and suppresses VEGF bioavailability and endoglin were increased, preceding or coinciding with onset of the complications, e.g., maternal vascular dysfunction, of preeclampsia [71–78]. Consequently, it has been suggested that an imbalance in the levels of antiangiogenic and angiogenic proteins and other factors may serve as biomarkers that are predictive for early detection of preeclampsia (reviewed in [19, 79, 80]).

Studies have also shown either an increase, no change, or a decrease in maternal serum estradiol levels at mid to late gestation in women exhibiting preeclampsia [81–87]. However, the role of estradiol in early human pregnancy with respect to UAR and onset of the pathophysiological conditions associated with preeclampsia has not been investigated.

Clinical studies have also shown that the number of immune cells, notably uNK cells, macrophages, and dendritic cells is either increased [88–94], decreased [95–97], or not altered [98–100] in decidua/placental bed obtained in late
gestation before (e.g., biopsies) or after parturition in patients with preeclampsia. Studies also indicate that women with preeclampsia primarily express the inhibitory and not the stimulatory KIR receptors for uNK cells and that women with a KIR AA genotype, i.e., predictive of expression of the inhibitory KIRs KIR2DL-1, KIR2DL-2, KIR2DL-3, and KIR2DL-5, are at increased risk for developing preeclampsia [101]. Macrophages are also differently activated in preeclampsia [102–106], which may reflect a decrease in M2 macrophages and a concomitant increase in M1 macrophages [92] in the placental bed of preeclamptic women. Such a change would be consistent with increased placental production of pro-inflammatory cytokines [107] and decreased formation of anti-inflammatory cytokines [108, 109] that occur in preeclampsia. Interestingly the levels of mRNAs for immune-associated genes, notably IL-6 and macrophages, as well as markers for expression of M2 macrophages [110] are greater in biopsies of decidua from women in early gestation who subsequently developed pregnancy-induced hypertension compared with those who remained normotensive.

The human studies have been important in correlating the levels of the various factors with the pathophysiological features of preeclampsia. However, it is difficult to test cause and effect and the alterations in the various factors at mid-late gestation in preeclampsia patients may result from and not underpin the pathophysiological conditions elicited by preeclampsia. Importantly, since UAR was not simultaneously examined in these clinical studies, the regulatory role of these factors on UAR has not been established in normal or adverse human pregnancy.

Animal Studies

As presented in recent reviews [16, 19, 20, 111], early-onset preeclampsia is considered a two-stage disorder, stage 1 reflecting reduced placental perfusion and dysfunction due to impaired UAR and stage 2 the maternal syndrome induced by inadequate placental perfusion and deportation into the maternal blood of placental factors and syncytial particles produced in response to placental hypoxia and oxidative stress (Fig. 1). Although the maternal disorder including organ system involvement can vary greatly in complexity and severity [16, 111], maternal systemic vascular dysfunction and hypertension are hallmark features of preeclampsia. These manifestations appear to result from vascular endothelial inflammation, oxidative stress and dysfunction, notably impaired ability to produce the vasodilators nitric oxide (NO) and prostacyclin I₂, increased production of vasoconstrictors such as endothelin, and hyper-sensitivity of VSMC to vasoconstrictors within the vascular bed (Fig. 2) [12, 14, 16–18, 20, 112–121].

It is well established that VEGF plays a pivotal role in promoting vascular endothelial cell integrity, stability, and function, including NO production [122–124]. Therefore, it has been hypothesized [19, 75, 117] that in preeclampsia the placental ischemia induced by defective UAR causes an increase in placental expression and maternal serum levels of sFlt-1, which decreases VEGF bioavailability and elicits maternal vascular dysfunction (Fig. 2). Accordingly, animal models have been developed to examine this hypothesis and ascertain the possibility of achieving a therapeutic approach to overcome or prevent the vascular dysfunction elicited by decreased bioavailability of VEGF. Thus, key manifestations of preeclampsia, i.e., maternal hypertension, fetal growth restriction, and/or maternal vascular endothelial dysfunction, were induced in mice or rats in which levels of sFlt1 and/or endoglin were elevated by systemic adenoviral delivery of these proteins [74, 125–131]. Systemic administration to mice of an antibody which neutralized both Flt-1 and sFlt-1 decreased uterine artery length as an index of arterial transformation in this species [132]. The clinical manifestations of preeclampsia elicited in several of these animal models were prevented by adenoviral delivery of VEGF₁₂₁ [133–138]. Symptoms of preeclampsia were also overcome in lentiviral sFlt1-treated mice by concomitant administration of the drug pravastatin [139] and in BPH/5 mice by injection of the drug celecoxib at the time of embryo implantation, which apparently acted by restoring the levels of Cox 2, VEGF, and related angiogenic factors [140]. Mice defective for PIGF, a member of the VEGF family, also exhibit preeclampsia-like symptoms, notably maternal endothelial dysfunction, as well as cognitive function of the offspring [141, 142]. Moreover, an experimental increase in sFlt-1 levels or decrease in VEGF and PlGF levels induced in rats and sheep by aortic or uterine artery ligation to elicit placental ischemia caused maternal hypertension, proteinurea, and vascular dysfunction, effects reversed by VEGF or PlGF administration [135, 138, 143–145]. Uterine spiral arteriole remodeling and MMP-2 and MMP-9 were decreased in the rat reduced uterine perfusion pressure model [146].

Inhibition of NO synthase [147], as well as administration of tumor necrosis factor-α [143] or interleukin [148], also induced preeclampsia-like symptoms in mice and rats. Interestingly, uterine artery diameter and length were reduced in endothelial NO synthase-null mice [149], whereas nanoparticle-mediated delivery of the NO donor SE175 to mice at mid-late gestation increased spiral artery diameter [150]. Roles for the Notch signaling pathway and the storkhead box 1 (STOX 1) transcription factor have also been suggested since Notch 2-null mice exhibited a decrease in spiral artery diameter and placental perfusion [151], while overexpression of STOX 1 in mice led to a preeclampsia phenotype of hypertension [152].
The role of immune cells in the process of vessel transformation has been proposed. Thus, studies in uNK cell-immunodeficient mice indicate that uNK cells, via the formation of interferon gamma, promote modification (i.e., luminal area) of spiral arteries [153–156]. Moreover, T lymphocyte regulatory cell (Tregs)-deficient mice show impaired uterine artery remodeling and flow [157, 158], suggesting that Tregs impair inflammatory responses that cause a defect in uterine vessel transformation [159].

Evidence for involvement of the renin-angiotensin (AT)-aldosterone system in preeclampsia has also emerged from rodent models. Thus, administration of antibodies to AT1 beginning at midgestation to mice or rats elicited hypertension, proteinuria, glomerular endotheliosis, and placental abnormalities [160, 161]. Moreover, AT1-deficient mice exhibited impaired placenta [162], and angiotensinogen transgenic mice exhibited deeper endovascular trophoblast invasion and spiral artery remodeling [163]. Upregulation of VSMC AT1 expression elicited hypertension, proteinuria, increased sFlt-1 expression, and decreased placental labyrinth growth in mice, effects prevented by administration of β-arrestin, a G protein that causes AT1 receptor desensitization [164].

The rodent models have been valuable in recapitulating the clinical symptoms of pregnancy disorders such as preeclampsia. However, in most instances, UAR was not examined, experimental interventions used to induce preeclampsia-like
symptoms were often applied after the time of placentation, and many of the clinical features of preeclampsia were also induced in nonpregnant rodents, and thus, these models were not specific for pregnancy. Moreover, there are significant differences in placental morphology and development, the process and impact of spiral artery remodeling, uterine and placental vascular anatomy, and the maternal-placenta-fetal endocrine inter-relationships between rodents and humans [58, 59, 165–171]. For example, in the mouse and rat, trophoblast invasion is temporally restricted to late gestation [58, 172] and the role of UAR on maternal vascular function may be equivocal. Thus, although NK-defective mice exhibit impaired UAR, maternal resting blood pressure remains normal throughout gestation and maternal proteinuria does not develop [155], while trophoblast arterial invasion is more extensive and uterine artery resistance lower in the rat BHP/5 model of preeclampsia [163]. Collectively, these differences between rodents and humans make translation of findings on UAR in the rodent to the human uncertain.

Although rodents have been extensively used to recapitulate the pathophysiological features of preeclampsia, relatively few studies have employed nonhuman primates in this area of perinatal biology. Placental morphology, the process of uterine spiral artery transformation, uterine and placental vascular anatomy, and maternal-placental-fetal endocrine inter-relationships are similar in human and baboon pregnancy [58, 165, 173]. Although remodeling of the spiral arteries in the baboon does not extend into the inner myometrium, as in human pregnancy, the qualitative nature of placentation and UAR are alike [58, 174]. In addition to these important considerations, humans and baboons exhibit similar anatomy, physiology, and ontogeny of the fetal-placental unit [165] and share > 96% DNA/genetic homology [175, 176], and thus, the baboon provides an excellent nonhuman primate model for the study of human placental and fetal development.

As in the rodent studies, uterine artery ligation has been employed as an experimental paradigm in pregnant baboons. Uteroplacental ischemia elicited by uterine artery ligation in the second half of baboon pregnancy resulted in hypertension, proteinuria, and renal endotheliosis, effects reversed by administration of sFlt-1 siRNA or PI GF [177–180]. Thus, the latter primate studies focused on recapitulating the symptoms of adverse human pregnancy but not on UAR.

In contrast to the latter approach, the authors have published a series of studies in which they have established an experimental paradigm of prematurely elevating estradiol levels in the first trimester of baboon pregnancy to study the regulation of UAR [181–183]. Slightly elevating maternal estradiol levels resulted in a 3-fold increase in placental expression and maternal serum levels of sFlt-1 and decrease in extravillous trophoblast expression of VEGF in early pregnancy (Fig. 3). The increase in sFlt-1/decrease in VEGF was associated with a 75% reduction in the level of UAR, quantified as the percent of uterine spiral arteries invaded and

Fig. 3 (a) sFlt-1 levels in uterine vein and (b) VEGF protein quantified by proximity ligation assay (signals/nuclear area × 10⁴) in the anchoring villi on day 60 in untreated and estradiol (E₂)-treated baboons. *P < 0.05

Fig. 4 Percent remodeling of uterine spiral arteries (i.e., number of vessels exhibiting trophoblast invasion divided by total number of vessels counted) on day 60 of gestation in baboons untreated, treated with estradiol (E₂), or treated with E₂ plus VEGF DNA. *Different (P < 0.01) from values in other two groups.

Reprod. Sci. (2020) 27:1932–1942
remodeled by extravillous trophoblasts, at the end of the first trimester (Fig. 4). Concomitant administration of estradiol and delivery of the VEGF gene selectively to the maternal aspect of the placenta, but not the fetus, by contrast-enhanced ultrasonography/microbubble technology restored VEGF protein levels and prevented the decrease in UAR (Fig. 4, [184]).

The decline in extravillous trophoblast VEGF expression in estradiol-treated baboons was associated with a decrease in expression of the α1β1 and α5β1 integrins [182] that promote trophoblast migration and remodeling and are increased by VEGF in vitro [185–187]. This suggests that these integrins may mediate the stimulatory effect of VEGF on UAR during early baboon pregnancy. Coinciding with the decrease in UAR, uterine artery blood flow was reduced by 30% and maternal blood pressure increased by 25% near term, suggesting an impairment of maternal systemic vascular function [183]. Although it has been suggested that the alteration in expression of pro- and anti-angiogenic growth factors is simply the result and not the cause of placental dysfunction in preeclampsia [20], the prevention of the decrease in UAR by VEGF delivery in early baboon pregnancy is consistent with VEGF having a pivotal role in promoting UAR.

Summary

UAR is vital to successful pregnancy; however, the regulation of this fundamentally important process has not been established. The in vitro studies are important in having identified a multitude of factors that have the ability to alter migratory and invasive capacity of trophoblast cells. However, it is unclear whether trophoblast migration and endothelial tube formation as assessed in vitro validly mirror the process of UAR as it occurs in vivo. The clinical studies have been significant in showing that maternal serum levels of certain factors are altered, particularly sFlt-1 which is increased and PI GF which is decreased, preceding or coinciding with onset of the complications, e.g., maternal vascular dysfunction, emanating from preeclampsia. However, it is difficult to test cause and effect in human pregnancy studies, and thus, the alteration in circulating levels of the various factors may be a consequence of and not underpin the pathophysiologic conditions elicited by adverse pregnancy. The rodent and a few primate studies have been valuable in recapitulating, and showing the ability of certain growth factors to mitigate, the clinical manifestations of pregnancy disorders such as preeclampsia, but have not focused on UAR. This review has described the results of in vitro, clinical, and rodent studies and also a novel experimental model of defective UAR in a nonhuman primate that allows study of the regulation of spiral artery transformation and the potential to develop therapeutic modalities to manage or prevent the maternal pathophysiological consequences of adverse pregnancy arising from defective UAR.

References

1. Hamilton WJ, Boyd JD. Development of the human placenta in the first three months of gestation. J Anat. 1960;94:297–328.
2. Ramsey EM, Houston ML, Harris JW. Interactions of the trophoblast and maternal tissues in three closely related primate species. Am J Obstet Gynecol. 1976;124:647–52.
3. Pijnenborg R, Dixon G, Robertson WB, Brosens I. Trophoblastic invasion of human decidua from 8 to 18 weeks of pregnancy. Placenta. 1980;1:3–19.
4. Enders AC, King BF. Early stages of trophoblastic invasion of the maternal vascular system during implantation in the macaque and baboon. Am J Anat. 1991;192:329–46.
5. Ananth CV. Ischemic placental disease: a unifying concept for preeclampsia, intrauterine growth restriction, and placental abruption. Semin Perinatol. 2014;38:131–2.
6. Heazell AE, Worton SA, Higgins LE, Ingram E, Johnstone ED, Jones RL, et al. IFPA Gábor Than Award Lecture: recognition of placental failure is key to saving babies’ lives. Placenta. 2015;36: S20–8.
7. Brosens I. A study of the spiral arteries of the decidua basalis in normotensive and hypertensive pregnancies. J Obstet Gynaecol Br Commonw. 1964;71:222–30.
8. Khong TY, De Wolf F, Robertson WB, Brosens I. Inadequate maternal vascular response to placental in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants. Br J Obstet Gynaecol. 1986;93:1049–59.
9. Pijnenborg R, Vercruysse L, Hanssens M. The uterine spiral arteries in human pregnancy: facts and controversies. Placenta. 2006;27:939–58.
10. Lyall F, Robson SC, Bulmer JN. Spiral artery remodeling and trophoblast invasion in preeclampsia and fetal growth restriction: relationship to clinical outcome. Hypertension. 2013;62:1046–54.
11. Brosens I, Puttemans P, Benagiano G. Placental bed research: I. The placental bed: from spiral arteries remodeling to the great obstetrical syndromes. Am J Obstet Gynecol. 2019;221(5):437–56.

Acknowledgments The authors thank Irene Baranyk, B.A., and Sandra Huband for the computer-assisted preparation of this manuscript.

Funding Information This work was supported by National Institutes of Health R01 HD 93070 and R01 HD 93946.

Compliance with Ethical Standards

Conflict of Interest The authors declare that they have no conflicts of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
12. Myatt L, Roberts JM. Preeclampsia: syndrome or disease? Curr Hypertens Rep. 2015;17(11):83.
13. Burton GJ, Jauniaux E. Pathophysiology of placental-derived fetal growth restriction. Am J Obstet Gynecol. 2018;218:S745–61.
14. Roberts JM, Taylor RN, Goldfiin A. Clinical and biochemical evidence of endothelial cell dysfunction in the pregnancy syndrome preeclampsia. Am J Hypertens. 1991;4:700–8.
15. Gilbert JS, Ryan MJ, LaMarca BB, Sedeek M, Murphy SR, Granger JP. Pathophysiology of hypertension during preeclampsia: linking placental ischemia with endothelial dysfunction. Am J Physiol Heart Circ Physiol. 2008;294:H541–50.
16. Roberts JM, Bell MJ. If we know so much about preeclampsia, why haven’t we cured the disease? J Reprod Immunol. 2013;99:1–9.
17. Palei AC, Spradley FT, Warrington JP, George EM, Granger JP. Pathophysiology of hypertension in pre-eclampsia: a lesson in integrative physiology. Acta Physiol. 2013;208:224–33.
18. Granger JP, Spradley FT, Bakrania BA. The endothelin system: a critical player in the pathophysiology of preeclampsia. Curr Hypertens Rep. 2018;20:32.
19. Rana S, Lemoine E, Granger J, Karumanchi SA. Preeclampsia. Circ Res. 2019;124:1094–112.
20. Staff AC. The two-stage placental model of preeclampsia: an update. J Reprod Immunol. 2019;134:1–10.
21. Tambirojir P, Crum CP, Parish MM. Pathophysiology of placenta ceta: the role of decidua and extravillous trophoblast. Placenta. 2008;29:639–45.
22. Hannon T, Innes BA, Lash GE, Bulmer JN, Robson SC. Effects of local decidua on trophoblast invasion and spiral artery remodeling in focal placenta ceta – an immunohistochemical study. Placenta. 2012;33:998–1004.
23. Zhou Y, McMaster M, Woo K, Janatpour M, Perry J, Karpanen T, et al. Vascular endothelial growth factor ligands and receptors that regulate human cytotrophoblast survival are dysregulated in severe preeclampsia and hemolysis, elevated liver enzymes, and low platelets syndrome. Am J Pathol. 2002;160:1405–23.
24. Lala PK, Chakraborty C. Factors regulating trophoblast migration and invasiveness: possible derangements contributing to pre-eclampsia and fetal injury. Placenta. 2003;24:575–87.
25. Apte BV, Greenfield C, Natuson-Yaron S, Goldman-Wysh D, Hamani Y, Khatayk V, et al. Vascular endothelial growth factor, epidermal growth factor and fibroblast growth factor-4 and -10 stimulate trophoblast plasminogen activator system and metalloprotease-9. Mol Hum Reprod. 2004;10:229–35.
26. Leach RE, Kilburn B, Wang J, Liu Z, Romero R, Arman DR. Heparin-binding EGF-like growth factor regulates human extravillous cytotrophoblast development during conversion to the invasive phenotype. Dev Biol. 2004;266:223–37.
27. Lyall F. Priming and remodelling of human placental bed spiral arteries during pregnancy - a review. Placenta. 2005;26:S31–6.
28. Rao CV, Lei ZM. The past, present and future of nongonadal LH/ hCG actions in reproductive biology and medicine. Mol Cell Endocrinol. 2007;269:2–8.
29. Harris LK. Review: Trophoblast-vascular cell interactions in early pregnancy: how to remodel a vessel. Placenta. 2010;31:S93–8.
30. Knöfler M, Polllheimer J. IFPA Award in Placentology lecture: molecular regulation of human trophoblast invasion. Placenta. 2012;33:S55–62.
31. Lala N, Girish GV, Cloutier-Bosworth A, Lala PK. Mechanisms in decorin regulation of vascular endothelial growth factor-induced human trophoblast migration and acquisition of endothelial phenotype. Biol Reprod. 2012;87(59):1–14.
32. Li Y, Zhu H, Klausen C, Peng B, Leug PC. Vascular endothelial growth factor-A (VEGF-A) mediates activin A-induced human trophoblast endothelial-like tube formation. Endocrinology. 2015;156:4257–68.
212. Sladek SM, Magnes RR, Conrad KP. Nitric oxide and pregnancy. Am J Phys. 1997;272:R441–63.

213. Hood JD, Meininger CJ, Ziche M, Granger HJ. VEGF upregulates eNOS message, protein, and NO production in human endothelial cells. Am J Phys. 1998;274:H1054–8.

214. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669–76.

215. Venkatesha S, Toporsian M, Lam C, Hanai J, Mammo T, Kim YM, et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med. 2006;12(6):642–9 Epub 2006 Jun 4.

216. Lu F, Longo M, Tamayo E, Maner W, Al-Hendy A, Anderson GD, et al. The effect of over-expression of Flt-1 on blood pressure and the occurrence of other manifestations of preeclampsia in unrestrained conscious pregnant mice. Am J Obstet Gynecol. 2007;196:396.e1–7.

217. Tang JR, Karumanchi SA, Seedorf G, Markham N, Abman SH. Excess soluble vascular endothelial growth factor receptor-1 in amniotic fluid impairs lung growth in rats: linking preeclampsia with bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2012;302:L36–46.

218. LaMarca BD, Gilbert JS, Granger JP. Recent progress toward the understanding of the pathophysiology of hypertension during preeclampsia. Hypertension. 2008;51:982–8.

219. Suzuki H, Ohkuchi A, Matsubara S, Takei Y, Murakami M, Shibusuya M, et al. Effect of recombinant placental growth factor 2 on hypertension induced by full-length mouse soluble fms-like tyrosine kinase 1 adenoviral vector in pregnant mice. Hypertension. 2009;54:11291135.

220. Bridges JP, Gilbert JS, Colson D, Gilbert SA, Dukes MP, Ryan MJ, et al. Oxidative stress contributes to soluble fms-like tyrosine kinase-1 induced vascular dysfunction in pregnant rats. Am J Hypertens. 2009;22:564–8 Epub 2009 Mar 5.

221. Szalai G, Romero R, Chaiworapongsa T, Xu Y, Wang B, Ahn H, et al. Full-length human placental sFlt-1 e15a isoform induces distinct maternal phenotypes of preeclampsia in mice. PLoS One. 2013;10(4):e0119547.

222. Khanivin E, Mandal M, Colton I, Karumanchi SA, Osoil G. Hemodynamic, vascular, and reproductive impact of FMS-like tyrosine kinase 1 (FLT1) blockade on the uteroplacental circulation during normal mouse pregnancy. Biol Reprod. 2012;86:57–18.

223. Li Z, Zhang Y, Ying Ma J, Kapoun AM, Shao Q, Kerr I, et al. Recombinant vascular endothelial growth factor 121 attenuates hypertension and improves kidney damage in a rat model of preeclampsia. Hypertension. 2007;50:686–92.

224. Bergmann A, Ahmad S, Cudmore M, Gruber AD, Wittschen P, Lindenmaier W, et al. Reduction of circulating soluble Flt-1 alleviates preeclampsia-like symptoms in a mouse model. J Cell Mol Med. 2010;14:1857–67.

225. Gilbert JS, Verzywelijk J, Colson D, Arany M, Karumanchi SA, Granger JP. Recombinant vascular endothelial growth factor 121 infusion lowers blood pressure and improves renal function in rats with placental ischemia-induced hypertension. Hypertension. 2010;55:380–385.

226. Woods AK, Hoffmann DS, Weydert CJ, Butler SD, Zhou Y, Sharma RV, et al. Adenoviral delivery of VEGF121 early in pregnancy prevents spontaneous development of preeclampsia in BPH/5 mice. Hypertension. 2011;57:94–102.

227. Mateas J, Bytyqiene E, Lu F, Tamayo EH, Betancourt A, Hanksin GD, et al. Endothelial growth factor therapy improves preeclampsia-like manifestations in a murine model induced by overexpression of sVEGFR-1. Am J Physiol Heart Circ Physiol. 2011;301:H1781–7.

228. Carr DJ, Wallace JM, Aitken RP, Milne JS, Martin JF, Zachary IC, et al. Peri- and postnatal effects of prenatal adenoviral VEGF gene therapy in growth-restricted sheep. Biol Reprod. 2016;94:1421–12.

229. Kumasawa K, Ikawa M, Kidoya H, Hasuwa H, Saito-Fujita T, Morioya Y, et al. Pravastatin induces placental growth factor (PGF) and ameliorates preeclampsia in a mouse model. Proc Natl Acad Sci U S A. 2011;108:1451–5.

230. Rejinders D, Liu CC, Xu X, Zhao AM, Olson KN, Butler SD, et al. Celecoxib restores angiogenic factor expression at the maternal-fetal interface in the BPH/5 mouse model of preeclampsia. Physiol Genomics. 2018;50(5):385–92.

231. Aasa KL, Zavan B, Luna RL, Wong PG, Ventura NM, Tse MY, et al. Placental growth factor influences maternal cardiovascular adaptation to pregnancy in mice. Biol Reprod. 2015;92:44.

232. Kay VR, Rittse MT, Figueirô-Filho EA, Croy BA. Preeclampsia may influence offsporing neuroanatomy and cognitive function: a role for placental growth factor. Biol Reprod. 2019;101:721–83.

233. LaMarca BB, Bennett WA, Alexander BT, Cockrell K, Granger JP. Hypertension produced by reductions in uterine perfusion in the pregnant rat: role of tumor necrosis factorα. Hypertension. 2005;46:1022–5.

234. Gilbert JS, Babcock SA, Granger JP. Hypertension produced by reduced uterine perfusion in pregnant rats is associated with increased soluble fms-like tyrosine kinase-1 expression. Hypertension. 2007;50:1142–7 Epub 2007 Oct 8.

235. Walsh SK, English FA, Johns EJ, Kenny LC. Plasma-mediated vascular dysfunction in the reduced uterine perfusion pressure model of preeclampsia: a microvascular characterization. Hypertension. 2008;54:345–51.

236. Lin, C, He H, Cui N, Ren Z, Zhu M, Khalil RA. Decreased uterine vascularization and uterine arterial expansive remodeling with reduced matrix metalloproteinase-2 and -9 in hypertension pregnancy. Am J Physiol Heart Circ Physiol. 2019;318(1):H165–H180.

237. Mohrão M, Sítø T, Tóth T, Hertelendi F. Prolonged blockade of nitric oxide synthesis in gravid rats produces sustained hypertension, proteinuria, thrombocytopenia, and intrauterine growth retardation. Am J Obstet Gynecol. 1994;170:1458–66.

238. Winship AL, Koga K, Menkhort E, van Sinderen M, Rainczuk K, Nagai M, et al. Interleukin–11 alters placentaion and causes preeclampsia features in mice. Proc Natl Acad Sci U S A. 2015;112:15928–33.

239. Kulandavelu S, Whiteley KJ, Qu D, Mu J, Bainbridge SA, Adamson SL. Endothelial nitric oxide synthase deficiency reduces uterine blood flow, spiral artery elongation, and placental oxygenation in pregnant mice. Hypertension. 2012;60:231–8.

240. Curreton N, Kortokova I, Baker B, Greenwood S, Wareing M, Kotamraju VR, et al. Selective targeting of a novel vasodilator to the uterine vasculature to treat impaired uteroplacental perfusion in pregnancy. Theronastics. 2017;7(15):3715–31 eCollection 2017.

241. Hunkapiller NM, Gasperowicz M, Kapidzic M, Plaks V, Maltepe E, Kitaewski J, et al. A role for Notch signaling in trophoblast endovascular invasion and in the pathogenesis of pre-eclampsia. Development. 2011;138:2987–98.

242. Doridot L, Passet B, Mélats C, Rigourd V, Barboux S, Ducat A, et al. Preeclampsia-like symptoms induced in mice by fetoplacental expression of STOX1 are reversed by aspirin treatment. Hypertension. 2013;61:662–8.

243. Greenwood JD, Minhas K, di Santo JP, Makita M, Kiso Y, Croy BA. Ultrastructural studies of implantation sites from mice deficient in uterine natural killer cells. Placenta. 2000;21:693–702.

244. Ashkar AA, Di Santo JP, Croy BA. Interferon gamma contributes to initiation of uterine vascular modification, decidual integrity, and uterine natural killer cell maturation during normal murine pregnancy. J Exp Med. 2000;192:259–70.

245. Croy BA, He H, Esadeg S, Wei Q, McCartney D, Zhang J, et al. Uterine natural killer cells: insights into their cellular and
molecular biology from mouse modelling. Reproduction. 2003;126:149–60.

156. Monk JM, Leonard S, McBey BA, Croy BA. Induction of murine spiral artery modification by recombinant human interferon-gamma. Placenta. 2005;26:385–8.

157. Nadkarni S, Smith J, Sferruzzi-Perri AN, Ledwozyw A, Kishore M, Haas R, et al. Neutrophils induce proangiogenic T cells with a regulatory phenotype in pregnancy. Proc Natl Acad Sci U S A. 2016;113:E8415–24.

158. Care AS, Bourque SL, Morton JS, Hjartarson EP, Robertson SA, Davidge ST. Reduction in regulatory T cells in early pregnancy causes uterine dysfunction in mice. Hypertension. 2018;72:177–87.

159. Robertson SA, Care AS, Moldenhauer LM. Regulatory T cells in embryo implantation and the immune response to pregnancy. J Clin Invest. 2018;128:4225–35.

160. Zhou CC, Zhang Y, Irani RA, Zhang H, Mi T, Popek EJ, et al. Angiotensin receptor agonistic autoantibodies induce preeclampsia in pregnant mice. Nat Med. 2008;14:855–62 Epub 2008 Jul 27.

161. Parrish MR, Murphy SP, Rutland S, Wallace K, Wenzel K, Wallukat G, et al. The effect of immune factors, tumor necrosis factor-alpha, and agonistic autoantibodies to the angiotensin II type I receptor on soluble fms-like tyrosine-1 and soluble endoglin production in response to hypertension during pregnancy. Am J Hypertens. 2010;23:911–6 Epub 2010 Apr 29.

162. Walther T, Jank A, Heringer-Walther S, Horn LC, Stepan H. Angiotensin II type 1 receptor has impact on murine placentation. Placenta. 2008;29:905–9.

163. Geusens N, Hering L, Verlooren S, Luyten C, Drijkoningen K, Taube M, et al. Changes in endovascular trophoblast invasion and spiral artery remodelling at term in a transgenic preeclampatic rat model. Placenta. 2010;31:320–6.

164. Quitterer U, Fu X, Pohl A, Bayoumy KM, Langer A, Abdalla S. Beta-arrestin 1 prevents preeclampsia by downregulation of mechanosensitive AT1-B2 receptor heteromers. Cell. 2019;176:318–333.e19.

165. Albrecht ED, Pepe GJ. Endocrinology of pregnancy. In: Brans New York: John Wiley and Sons; 1988. p. 13–78.

166. Malassine A, Frendo JL, Evan-Briol D. A comparison of placental development and endocrine functions between the human and mouse model. Hum Reprod Update. 2003;9:531–9.

167. Osoğlu G, Mandala M. Maternal uterine vascular remodeling during pregnancy. Physiology (Bethesda). 2009;24:58–71.

168. McCarthy FP, Kindom JC, Kenny LC, Walsh SK. Animal models of preeclampsia; uses and limitations. Placenta. 2011;32:413–9.

169. Georgiades P, Ferguson-Smith AC, Burton GJ. Comparative developmental anatomy of the murine and human definitive placenta. Placenta. 2002;23:3–19.

170. Silva JF, Serakides R. Intrauterine trophoblast migration: a comparative view of humans and rodents. Cell Adhes Migr. 2016;10:88–110.

171. Marshall SA, Haman NJ, Jelicin M, Nguyen TPH, Girling JE, Parry LJ. Animal models of preeclampsia: translational failings and why. Am J Physiol Regul Integr Comp Physiol. 2018;314:R499–508.

172. Adamson SL, Lu Y, Whiteley KJ, Hornyard D, Hemberger M, Pfarrer C, et al. Interactions between trophoblast cells and the maternal and fetal circulation in the mouse placenta. Dev Biol. 2002;250(2):358–73.

173. Schlabritz-Loutsevitch NE, Hubbard GB, Jenkins SL, Martin HC, Snider CS, Frost PA, et al. Ontogeny of hematological cell and biochemical profiles in maternal and fetal baboons (Papio species). J Med Primatol. 2005;34:193–200.

174. Enders AC, Blankenship TN, Fazleabas AT, Jones CJ. Structure of anchoring villi and the trophoblastic shell in the human, baboon and macaque placenta. Placenta. 2001;22:284–303.

175. Vandeberg JL, Williams-Blangero S. Advantages and limitations of nonhuman primates as animal models in genetic research on complex diseases. J Med Primatol. 1997;26:113–9.

176. Cox LA, Mahaney MC, Vandeberg JL, Rogers J. A second-generation genetic linkage map of the baboon (Papio hamadryas) genome. Genomics. 2006;88:274–81.

177. Cavanagh D, Rao PS, Tsai CC, O’Connor TC. Experimental toxemia in the pregnant primate. Am J Obstet Gynecol. 1977;128:75–85.

178. Makris A, Thornton C, Thompson J, Thomson S, Martin R, Ogle R, et al. Uteroplacental ischemia results in proteomic hypertensive hypertension and elevated sFLT-1. Kidney Int. 2007;71:977–84.

179. Makris A, Yeung KR, Lim SM, Sunderland N, Hefferman S, Thompson JF, et al. Placental growth factor reduces blood pressure in a uteroplacental ischemia model of preeclampsia in non-human primates. Hypertension. 2016;67:1263–72.

180. Taranov AA, Lo A, Hassler MR, Makris A, Ashar-Patel A, Alterman JF, et al. RNAi modulation of placental sFLT1 for the treatment of preeclampsia. Nat Biotechnol. 2018;36:1164–1173.

181. Bonagura TW, Pepe GJ, Enders AC, Albrecht ED. Suppression of extravillous trophoblast vascular endothelial growth factor expression and uterine spiral artery invasion by estrogen during early baboon pregnancy. Endocrinology. 2008;149:5078–87.

182. Bonagura TW, Babischkin JS, Aberdeen GW, Pepe GJ, Albrecht ED. Prematurely elevating estradiol in early baboon pregnancy suppresses uterine artery remodeling and expression of extravillous placental vascular endothelial growth factor and α1β1 and α5β1 integrins. Endocrinology. 2012;153:2897–906.

183. Aberdeen GW, Bonagura TW, Harman CR, Pepe GJ, Albrecht ED. Suppression of trophoblast uterine spiral artery remodeling by estrogen during baboon pregnancy: impact on uterine and fetal blood flow dynamics. Am J Physiol Heart Circ Physiol. 2012;302:H1936–44.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.