Suprasellar epithelioid hemangioendothelioma: Case report and review of the literature

James Barger, Omar Tanweer, Benjamin Liechty, Matija Snuderl, Jafar J. Jafar

Departments of Neurosurgery and Pathology, New York University School of Medicine, New York, USA

E-mail: *James Barger - james.barger@nyumc.org; Omar Tanweer - omar.tanweer@nyumc.org; Benjamin Liechty - benjamin.liechty@nyumc.org; Matija Snuderl - matija.snuderl@nyumc.org; Jafar J. Jafar - jafar.jafar@nyumc.org

*Corresponding author

Received: 17 May 16 Accepted: 24 May 16 Published: 01 September 16

Abstract

Background: Epithelioid hemangioendothelioma (EHE) is a rare sarcoma of vascular origin, which is clinically and histologically intermediate between benign hemangioma and angiosarcoma. It is most commonly found in the liver, lung, and bone, however, 46 intracranial cases have been reported in the literature, of which this is the fifth reported suprasellar tumor.

Case Description: A 45-year-old woman developed progressive lethargy, somnolence, and memory decline over the course of 6 months. On computed tomography (CT), she was found to have a large hypothalamic mass and underwent subtotal resection via a bifrontal craniotomy.

Conclusions: While primary intracranial EHE is an uncommon presentation of a rare tumor, the suprasellar region does not seem to be an unusual location when it does occur. Prognosis is generally good, and may be better for primary intracranial disease than that for EHE originating elsewhere. Surgery is the first line of therapy, with variable benefit from adjuvant chemotherapy or radiation when total resection is not possible. Chemotherapeutic approaches in current use are directed at preventing endothelial proliferation.

Key Words: Epithelioid hemangioendothelioma, intracranial, suprasellar, review, vascular tumor

INTRODUCTION

Epithelioid hemangioendothelioma (EHE) is an uncommon neoplasm of vascular origin which may arise in a number of locations; most frequently the liver, lungs, and bones but also intracranially.[1] While less aggressive than angiosarcoma, it may metastasize and in some cases demonstrates quite rapid growth.[17] Management is centered on surgical resection with adjuvant chemotherapy, usually with antiangiogenic agents.[16] We herein present a case of EHE arising in the suprasellar region in a 45-year-old woman, summarize previously published cases of intracranial EHEs, and review the literature on the clinical course and management of EHE.

CASE DESCRIPTION

Over the course of six months, a 45-year-old Vietnamese woman with a history of type 2 diabetes mellitus and hyperlipidemia became progressively lethargic, somnolent,
and forgetful. Originally thought by her physicians to have an endocrine issue, she was diagnosed with an intracranial mass on computed tomography (CT) scan when her husband found it difficult to arouse her at home and brought her to a local emergency department. She was referred to our institution for neurosurgical evaluation, at which time she was sleeping 16 hours a day, and was noted to ask the same questions repeatedly, forgetting the answers each time. She had gained 25 pounds during the months prior to the presentation. She did not complain of headaches or visual changes, and had no symptoms of diabetes insipidus. Her last menstrual period had been 3–4 years prior to presentation. Neurological exam was unremarkable [Extraocular movements were intact, visual fields were full, and there was no nystagmus. Muscle strength was 5/5 throughout, reflexes were brisk and symmetric, and gait was normal-based. There was no dysmetria or pronator drift.]

Magnetic resonance imaging (MRI) with contrast was obtained, revealing a 3.6 × 3.7 × 3.2 cm lobulated, heterogeneous, fluid-attenuated inversion recovery hyperintense, and avidly enhancing hypothalamic mass extending into the anterior third ventricle [Figure 1]. The patient underwent subtotal resection via bifrontal craniotomy. Intraoperatively, the tumor was found to be rubbery and vascular, and it appeared continuous with portions of the hypothalamus and optic nerves. Postoperative course was notable for a triphasic water balance response and new-onset adrenal insufficiency treated with hydrocortisone. She also developed new psychiatric symptoms including paranoia and irritability beginning approximately 1 month postoperatively.

Pathology
Histologic examination demonstrated a predominantly epithelioid neoplasm with areas of spindled cytology with a dense inflammatory infiltrate [Figure 2a]. The tumor demonstrated several architectural patterns, including retiform [Figure 2b], chordoid [Figure 2c], and strands, often embedded in a myxoid matrix, giving an appearance reminiscent of chordoma at low power. At high power, many cells demonstrated intra cytoplasmic lumina [Figure 2d] with occasional erythrocytes. The tumor was sharply demarcated from the surrounding brain, with reactive changes, including gliosis and accumulation of Rosenthal fibers, suggesting slow growth [Figure 2e]. The tumor cells were strongly and diffusely positive for CD34 [Figure 2f], and more focally positive for CD31 [Figure 2g], FLI-1, and factor VIII, compatible with a tumor of endothelial origin; however, there was only scattered reactivity for Erg [Figure 2h]. An immunostain for SMA [Figure 2i] to rule out a fibroblastic process or leiomyosarcoma were negative, and an immunostain for ALK-1 performed to exclude inflammatory pseudotumor was negative. Immunostains for EMA [Figure 2j], progesterone receptor, and S-100 were negative, which are less compatible with diagnoses of chordoid meningioma, chondrosarcoma, and chordoma. Immunostains for OCT-4 and PLAP performed to exclude a germ cell tumor were negative. Immunostains for cytokeratins CAM 5.2 and AE1/3 were performed to exclude a neoplasm of epithelial origin, and demonstrated only focal immunoreactivity, and an immunostain for TTF-1 was performed to exclude a metastatic carcinoma from a lung or thyroid primary was negative. Immunostains for CD163, CD3, CD20, and CD68 [Figure 2k-m] highlighted a marked lymphohistiocytic infiltrate throughout the tumor, however, immunostains for CD15 and CD30 were negative, arguing against a lymphoproliferative disease such as Hodgkin lymphoma, and an immunostain for CD1a to exclude a histiocytic process such as Langerhan’s cell histiocytosis was negative. Immunostain for Ki-67 shows scattered positivity, demonstrating the moderate proliferative characteristics of this tumor [Figure 2n]. An immunostain for glial fibrillary acidic protein [Figure 2o] is negative in the tumor cells, but highlights the sharp demarcation of the tumor from the adjacent brain.

DISCUSSION
Epithelioid hemangioendothelioma (EHE) is a rare sarcoma of vascular origin which is clinically and histologically intermediate between benign hemangioma and angiosarcoma. It can present at any age but most commonly presents in the fourth and fifth decades. A slight overall predilection for females

Figure 1: (a) Sagittal T1 precontrast, (b) sagittal T1 postcontrast, (c) axial fluid-attenuated inversion recovery
has been reported, however, the majority of intracranial cases have occurred in males. The pathophysiology of tumor development is poorly understood, though the fusion of the WWTR1 gene, part of the hippo signaling pathway, to the CAMTA1 tumor suppressor gene via a t (1;3) (p36;q25) translocation seems to be present in most cases. EHE is most commonly located in the liver, lung, and bone, though 46 previous cases of intracranial EHEs have been reported in the literature. This is the fifth reported case of EHE occurring in the suprasellar region, suggesting that while rare, this is not an unusual location for the tumor to arise. The patient’s symptoms, however, were quite different from previous suprasellar EHEs, which presented with headache and visual loss; loss of libido and asthenia; headaches, ptosis, and diplopia; and headache, diplopia, and visual loss.

Radiologically, EHEs typically demonstrate uniform contrast enhancement on CT, which in at least one case led to misdiagnosis as a meningioma. On MRI, the lesion may be isointense, hyperintense, and/or heterogeneous on precontrast T1 and there is intense enhancement with contrast. The tumor may appear hyperintense and/or heterogeneous on T2. The differential diagnosis based on MRI may include choroid glioma or an ectopically located craniopharyngioma.

The clinical course of EHE is usually somewhat indolent compared to other sarcomas; overall, 5-year survival is 73% (Lau 2011) vs 35% for angiosarcoma. Only five patients with intracranial EHE reported in the literature died from tumor complications, three of whom had multiorgan system disease. 20–30% of EHEs metastasize hematogenously to other organs. While EHEs elsewhere in the body present with multiple tumors in the same organ system, in up to 50% of cases (shown by a recent study to be monoclonal local metastases rather than synchronous primaries), primary intracranial EHE appears to be unifocal. The seven reported cases of multiple intracranial lesions were all associated with EHE of other organs and were likely metastases.
Table 1: Reported intracranial epithelioid hemangioendothelioma

Authors	Age/sex	Side/location	Excision/ bleeding	Adjuvant therapy	Follow-up	Other organ involvement	
Adult cases							
1	Pearl et al.[13]	36 M	R/fronto-parietal	Biopsy (1st op/term)	Radiation	Improvement; tumor decrease	
2	Pearl et al.[13]	73 M	Suprasellar	Subtotal	Radiation	Improvement; tumor stable	
3	Kepes et al.[19]	58 M	L/temporal	Resection	None	NA	Liver
4	Kepes et al.[19]	74 M	L/temporal	Resection	None	NA	
5	Hurley et al.[18]	23 F	Multiple	Total (x2)	None	Recurrence (6y); A (10y)	Heart
6	Nora et al.[24]	28 F	R/frontal	Total	None	Symptom free and tumor stable (30m)	
7	Nora et al.[24]	62 M	L/frontal	Total	None	Symptom and tumor free (1y)	
8	Puca et al.[15]	27 M	L/temporal	Total (x2; 1st op terminated)	Radiation and VE	Symptom and tumor free (18m)	
9	Phookan et al.[15]	36 F	R/cavernous sinus	Total	None	Disabled and tumor free (4m)	
10	Fryer et al.[13]	61 M	R/fronto-parietal	Total	Radiation	Recurrence (8w); D (6m)	Heart
11	Golash et al.[14]	33 M	L/fronetal	Total (x2; 1st op terminated)	None	Symptom and tumor free (2m)	
12	Rushing et al.[33]	38 F	Clivus	Biopsy	Radiation	NA	
13	Tancredi et al.[41]	20 F	Bilateral frontal	Total	Chemo	Alive (3y)	Skull
14	Palmieri et al.[20]	20 F	Bilateral parietal	Total	Chemo	Symptom free and tumor stable (30m)	Bone
15	Chan et al.[5]	20 M	L/frontal	Total	None	Symptom and tumor free (2y)	
16	Koh et al.[20]	26 F	L/sphenoid bone	Total (x2)	Failed VE	Improvement	
17	Watanabe et al.[45]	55 F	Petroclival	Subtotal	Radiation	Improvement and tumor stable (1y)	
18	Kubota et al.[21]	24 F	R/parieto-occipital	Total (x2; 1st op terminated)	Radiation and VE	Symptom and tumor free (9y)	
19	Baehrning et al.[4]	49 F	Suprasellar	Subtotal	None	Improvement and tumor stable (6m)	
20	Hamlat et al.[19]	53 M	Suprasellar	Biopsy (1st op/term)	Radiation and Chemo	Improvement and tumor stable (21m)	
21	Endo et al.[19]	69 M	Multiple	Subtotal	Chemo	Recurrence (1.5m); Death (3m)	
22	Fernandes et al.[12]	27 M	L/temporal	Subtotal	None	Recurrence (3m); Death (8m)	
23	Yeo et al.[44]	55 M	L/multiple	Total (frontal tumor)	NA	NA	
24	Parajon et al.[31]	58 M	R/sphenoid bone	Total	None	Symptom and tumor free (1y)	
25	Wong et al.[47]	50 M	L/multiple	Total	None	NA	
26	Zhang et al.[49]	57 F	L/temporal	Total	Radiation	Recurrence (2w); tumor decrease (2m)	
27	Sumrall et al.[34]	31 F	Multiple	Total (largest tumor)	Radiation and Chemo	Tumor stable (11y)	Scalp, liver, skull, lung
28	Zheng et al.[50]	25 M	R/temporo-parietal	Total	None	Symptom and tumor free (5m)	
29	Zheng et al.[50]	44 F	Petroclival	Subtotal	None	Symptom free and tumor stable (1.5y)	
30	Ma et al.[23]	58 F	Clival	Subtotal	Gamma knife radiotherapy	No recurrence or metastasis (6m)	
31	Ahmed et al.[11]	42 F	Sellar/suprasellar	NA	NA	NA	Lung free (14m)
32	Rocha Oliveira et al.[34]	37 F	L paracentral w/ concurrent lung involvement	Total	Sunitinib	Slight RLL paresis and tumor free (14m)	
33	Drazin et al.[19]	62 M	L Mastoid/posterior fossa	Total	Rad following recurrence	Recurrence; symptom improvement and tumor free after 2nd resection (8y)	

Contd...
Despite the generally slow disease progression, some EHEs are quite aggressive and efforts have been made to determine prognosis based on tumor characteristics; an analysis of 49 patients with EHEs arising in soft tissue found 5-year disease-specific survival to be 59% among patients with tumor size >3 cm and >3 mitotic figures/50 HPFs and 100% for other patients.[8] While this study was not undertaken in intracranial EHEs, it suggests our patient may have a relatively unfavorable prognosis given the size of her tumor and could benefit from some form of adjuvant therapy.

Treatment

The cornerstone of EHE treatment is surgical resection of the tumor. Recurrence is rare after total resection; a recurrence rate of 13% has been published.[9] Total resection of the tumor was not possible in our patient; a recurrence rate of 13% has been published.[9] Despite the generally slow disease progression, some EHEs are quite aggressive and efforts have been made to determine prognosis based on tumor characteristics; an analysis of 49 patients with EHEs arising in soft tissue found 5-year disease-specific survival to be 59% among patients with tumor size >3 cm and >3 mitotic figures/50 HPFs and 100% for other patients.[8] While this study was not undertaken in intracranial EHEs, it suggests our patient may have a relatively unfavorable prognosis given the size of her tumor and could benefit from some form of adjuvant therapy.

Adjuvant Treatment

Four patients were treated with adjuvant therapy. Three were treated with chemotherapy only, one with a combination of chemotherapy and radiation. No survivor has experienced local recurrence after adjuvant therapy. The lack of clear data regarding the optimal adjuvant treatment for EHEs makes adjuvant therapy a topic for future research.

Radiation Therapy

Given the high risk of local recurrence, radiation therapy is a common approach. However, the optimal dosing and fractionation schedules are not well established.

Chemotherapy

Chemotherapy has been used in a variety of regimens, including single-agent thalidomide, thalidomide plus lenalidomide, and combinations with other agents such as lenalidomide and dexamethasone.

Other Considerations

In addition to surgery, radiation therapy, and chemotherapy, other treatments such as antiangiogenic agents, targeted therapies, and immunotherapy may be considered based on the specific characteristics of the tumor.

Table 1: Contd...

Authors	Age/sex	Side/location	Excision/bleeding	Adjuvant therapy	Follow-up	Other organ involvement
Present case	45 F	Suprasellar	Subtotal	NA	NA	NA
1	Lena et al.[24]	2w M	R/temporo-occipital	Total	NA	Death (1d)
2	Taratuto et al.[25]	4y M	R/parietal	Subtotal	None	Tumor stable (6y)
3	Chow et al.[26]	4m M	R/fronto-parietal	Subtotal (x4)	None	Recurrence (x2); disabled (28m)
4	Chen et al.[27]	7y F	R/gasserian ganglion	Total	None	Tumor free (5y)
5	Chen et al.[28]	3m M	Cervico-medullary	Subtotal	Chemo	Tumor decrease (4y)
6	Tamman et al.[29]	4y M	L/cerebellopontine angle	Subtotal	Radiation	Tumor stable (2m)
7	Hodaie et al.[30]	4m M	L/temporal	Total	None	Symptom and tumor free (1y)
8	Venizelos et al.[31]	11m M	R/parieto-temporo-occipital	Total (x2)	None	Recurrence (6m); tumor free (30m after operation #2)
9	Mohan et al.[32]	15y F	R/fronto-temporo-parietal	Total	Radiation	Recurrence (3w); Death (4w)
10	Aniba et al.[33]	3y F	L/orbital-nasal-cavernous sinus	Subtotal	None	Recurrence (2m); Death (2m4d)

M: Male, F: Female, w: Weeks, m: Month, d: Days, L: Left, R: Right, op: Operative
treatments have been reported to be effective against EHE, including capcitabine + bevacizumab, pazopanib, and sunitinib. In a recent review of 36 patients with EHE treated with antiangiogenic therapy (thalidomide, lenalidomide, sorafenib, or bevacizumab alone or in combination), 6 experienced a partial response, 14 stable disease, and 16 progressive disease. Vascular embolization therapy has also been used.

Radiotherapy seems to have similar rates of success; out of seven patients in the literature with intracranial EHE who received adjuvant radiotherapy, one had tumor shrinkage, three had a stable tumor, and three experienced recurrent tumor growth and symptoms. Vascular embolization has mostly been used in a neoadjuvant manner to reduce tumor size preoperatively.

CONCLUSION

While primary intracranial EHE is an uncommon presentation of a rare tumor, the suprasellar region does not seem to be an unusual location when it does occur. Prognosis is generally good, and may be better for primary intracranial disease than for EHE originating elsewhere. Surgery is the first line of therapy, with variable benefit from adjuvant chemotherapy or radiation when total resection is not possible.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES

1. Ahmed S, Epari S, Shah M, Rao KS. Epithelioid hemangioendothelioma of sphenoid bone: A case report of an unusual case. Neuronal India 2012;6:344-6.
2. Aniba K, Laghmari M, Lamjejati M, Ghanane H, Ait Benali S. A tragic paediatric case history of intraorbital and intracranial epithelioid hemangioendothelioma. Case Rep Neurrol Med 2012;2012:396097.
3. Antonescu C. Malignant vascular tumors--An update. Mod Pathol 2014;27(Suppl 1):S30-8.
4. Baehring JM, Dickey PS, Bannikhl SI. Epithelioid hemangioendothelioma of the suprasellar area: A case report and review of the literature. Arch Pathol Lab Med 2004;128:1289-93.
5. Chan YL, Ng HK, Poon WS, Cheung HS. Epithelioid haemangioendothelioma of the brain: A case report. Neuroradiology 2001;43:849-50.
6. Chen TC, Gonzalez-Gomez I, Gilles FH, McComb JG. Pediatric intracranial hemangioendotheliomas: Case report. Neurorsurgery 1997;40:410-4.
7. Chow LT, Chow WH, Fong DT. Epithelioid hemangioendothelioma of the brain. Am J Surg Pathol 1992;16:619-25.
8. Deyrup AT, Tighiouart M, Montag AG, Weiss SW. Epithelioid hemangioendothelioma of soft tissue: A proposal for risk stratification based on 49 cases. Am J Surg Pathol 2008;32:924-7.
9. Drazin D, Gandhi R, Slodkowska E, Boulos AS. Epithelioid hemangioendothelioma of the mastoid: Resection for recurrence and adjuvant radiation with 8-year followup. Case Rep Surg 2013;2013:469201.
10. Endo T, Su CC, Numagami Y, Shirane R. Malignant intracranial epithelioid hemangioendothelioma presumably originating from the lung: Case report. J Neurooncol 2004;67:337-43.
11. Errani C, Sung YS, Zhang L, Healey JH, Antonescu CR. Monoclony of multifocal epithelioid hemangioendothelioma of the liver by analysis of WWTR1-CAMTA1 breakpoints. Cancer Genet 2012;205:17-3.
12. Fernandes AL, Ratib B, Mafa M, Magalhaes C. Aggressive intracranial and extra-cranial epithelioid hemangioendothelioma: A case report and review of the literature. Neuropathol 2006;26:201-5.
13. Fryer JA, Biggs MT, Katz IA, Brazier DH, Shakespeare TP. Intracranial epithelioid hemangioendothelioma arising at site of previously excised atypical meningioma. Pathology 1998;30:95-9.
14. Golash A, Strang FA, Reid H. Intracranial haemangioendothelioma mimicking a meningioma. Br J Neurosurg 1999;13:594-7.
15. Hamlat A, Casalfo-Quilliano C, Saikali S, Lesimple T, Brassier G. Epithelioid hemangioendothelioma of the infundibulo-hypothalamic region: Case report and literature review. J Clin Neurosci 2004;11:361-6.
16. Hodaie M, Becker L, Teshima I, Rutka JT. Total resection of an intracerebral hemangioendothelioma in an infant. Case report and review of the literature. Pediatr Neurosurg 2001;34:104-12.
17. Huntington JT, Jones C, Lesbina DA, Chen JL, Pollock RE. Angiosarcoma: A rare malignancy with protein clinical presentations. J Surg Oncol 2015;111:941-50.
18. Hurley TR, Whisler WW, Clasen RA, Smith MC, Bleck TP, Doolas A, Dampier MF. Recurrent intracranial epithelioid hemangioendothelioma associated with multicentric disease of liver and heart: Case report. Neurosurgery 1994;35:148-51.
19. Kepes JJ, Rubinstein LJ, Maw G, Burdick. Epithelioid hemangiomas (hemangioendotheliomas) of the central nervous system and its coverings, a report of three cases. J Neuropathol Exp Neurrol 1986;45:319.
20. Koh YC, Yoo H. Epithelioid haemangioendothelioma of the sphenoid bone. A case report. J Clin Neurosci 2008;15(Suppl 1):S30-8.
21. Kubota T, Sato K, Takeuchi H, Handa Y. Successful removal after radiotherapy and vascular embolization in a huge tentorial epithelioid hemangioendothelioma: A case report. J Neuroloncol 2004;68:177-18.
22. Lakiss Z, Kim S, Delabrousse E, Jary M, Nguyen T, Marion G, et al. Metronomic cyclophosphamide: An alternative treatment for hepatic epithelioid hemangioendothelioma. J Hepatol 2013;58:1254-7.
23. Lau A, Malangone S, Green M, Badari A, Clarke K, Elzqua E. Combination capcitabine and bevacizumab in the treatment of metastatic hepatic epithelioid hemangioendothelioma. Ther Adv Med Oncol 2015;7:229-36.
24. Lena JF, Hirano A, Inoue A. Vasiformative tumor of the brain-immunohistology and ultrastructure. Clin Neuropathol 1984;3:155-9.
25. Ma SR, Li KC, Xu YQ, Wang YM, Ma WL, Li Q. Primary epithelioid hemangioendothelioma in the clival region: A case report and literature review. Neuropathology 2011;31:519-22.
26. Medina M, Polo R, Reyes P, Vaca M, Alonso A, Cobeta I. Imaging case of the month. Multifocal epithelioid hemangioendothelioma with massive lateral skull base involvement. Otal Neurotol 2015;36:667-9.
27. Mohan SM, Syms NP, Pande A, Chakravarthy VM, Ramamurthi R. Intracranial epithelioid hemangioendothelioma. Childs Nerv Syst 2008;24:863-Bau.
28. Nora FE, Scheithauer BW. Primary epithelioid hemangioendothelioma of the brain. Am J Surg Pathol 1996;20:707-14.
29. Pacheco JM, Goodman JC, Mandel J. Intracranial epithelioid hemangioendothelioma causing subacute loss of vision. Neurology 2015;85:735-6.
30. Palmieri G, Montella L, Martignetti A, Bianco AR. Interferon alpha-2b at low doses as long-term antiangiogenic treatment of a metastatic intracranial epithelioid hemangioendothelioma. Case report. Oncol Rep 2000;7:145-9.
31. Parajon A, Vaquer J. Meningeal intracranial epithelioid hemangioendothelioma: Case report and literature review. J Neuroloncol 2008;88:169-73.
32. Pearl GS, Takei Y, Tindall GT, O’Brien MS, Payne NS, Hoffman JC. Benign hemangioendothelioma involving the central nervous system: “Strawberry nevus” of the neuraxis. Neurosurgery 1980;7:249-56.
33. Phookan D, Davis AT, Holmes M, Alonso A, Cobeta I. Imaging case of the month. Multifocal epithelioid hemangioendothelioma with massive lateral skull base involvement. Otal Neurotol 2015;36:667-9.
34. Dampier MF. Recurrent intracranial epithelioid hemangioendothelioma causing subacute loss of vision. Neurology 2015;85:735-6.
35. Palmieri G, Montella L, Martignetti A, Bianco AR. Interferon alpha-2b at low doses as long-term antiangiogenic treatment of a metastatic intracranial epithelioid hemangioendothelioma. Case report. Oncol Rep 2000;7:145-9.
36. Parajon A, Vaquer J. Meningeal intracranial epithelioid hemangioendothelioma: Case report and literature review. J Neuroloncol 2008;88:169-73.
epithelioid hemangioendothelioma with thoracic simultaneous involvement: Advanced MRI features. Arq Neuropsiquiatr 2012;70:637-8.

37. Rushing EJ, White JA, D’Alise MD, Chason DP, White CL 3rd, Bigio EH. Primary epithelioid hemangioendothelioma of the clivus. Clin Neuropathol 1998;17:110-4.

38. Semenisty V, Naroditsky I, Keidar Z, Bar-Sela G. Pazopanib for metastatic pulmonary epithelioid hemangioendothelioma: A suitable treatment option: Case report and review of anti-angiogenic treatment options. BMC Cancer 2015;15:402.

39. Sumrall A, Fredericks R, Berthold A, Shumaker G. Lenalidomide stops progression of multifocal epithelioid hemangioendothelioma including intracranial disease. J Neurooncol 2010;97:275-7.

40. Tammam AG, Lewis PD, Crockard HA. Cerebellopontine angle epithelioid haemangioendothelioma in a 4-year-old boy. Childs Nerv Syst 1997;13:648-50.

41. Tancredi A, Puca A, Carbone A. Multifocal cerebral hemangioendothelioma. Case report and review of the literature. Acta Neurochir 2000;142:1157-61.

42. Taratuto AL, Zurbrigg G, Sevlever G, Saccoliti M. Epithelioid hemangioendothelioma of the central nervous system. Immunohistochemical and ultrastructural observations of a pediatric case. Pediatr Neurosci 1998;14:11-4.

43. Tsuchiya T, Oya S, Mori H, Matsui T. Multiple hemorrhagic intraparenchymal tumors presenting with fatal intracranial hypertension: A rare manifestation of systemic epithelioid hemangioendothelioma. Surg Neurol Int 2015;6:156.

44. Venizelos ID, Paradinas FJ. Primary paediatric intracranial epithelioid haemangioendothelioma. Histopathology 2002;41:172-4.

45. Watanabe T, Saito N, Shimaguchi H, Fujimaki H, Kamiya M, Nakazato Y, Sasaki T. Primary epithelioid hemangioendothelioma originating in the lower petroclival region: Case report. Surg Neurol 2003;59:429-33.

46. Weiss SW, Enzinger FM. Epithelioid hemangioendothelioma: A vascular tumor often mistaken for a carcinoma. Cancer 1982;50:970-81.

47. Wong DS, Chiu TW, Wong GK, Zhu XL, Kwok MW, Ho CM, et al. Epithelioid haemangioendothelioma of the anterior skull base: What is the optimal treatment? Hong Kong Med J 2009;15:308-10.

48. Yeo SK, Kim JH, Kim CJ, Lee JK. Intracranial epithelioid hemangioendothelioma. J Korean Neurosurg Soc 2007;42:129-31.

49. Zhang J, Wang Y, Geng D. Intracranial epithelioid hemangioendothelioma: An unusual CTA finding in one case. Br J Neurosurg 2010;24:294-5.

50. Zheng J, Liu L, Wang J, Wang S, Cao Y, Zhao J. Primary intracranial epithelioid hemangioendothelioma: A low-proliferation tumor exhibiting clinically malignant behavior. J Neurooncol 2012;110:119-27.