Pathological Quantification of Carotid Artery Plaque Instability in Patients Undergoing Carotid Endarterectomy

Takao Konishi, MD; Naohiro Funayama, MD; Tadashi Yamamoto, MD, PhD; Tohru Morita, MD; Daisuke Hotta, MD, PhD; Ryota Nomura, MD; Yusuke Nakagaki, MD; Takeo Murahashi, MD; Kenji Kamiyama, MD; Tetsuyuki Yoshimoto, MD, PhD; Takeshi Aoki, MD; Hiroshi Nishihara, MD, PhD; Shinya Tanaka, MD, PhD

Background: Unstable atherosclerotic carotid plaques cause cerebral thromboemboli and ischemic events. However, this instability has not been pathologically quantified, so we sought to quantify it in patients undergoing carotid endarterectomy (CEA).

Methods and Results: Carotid plaques were collected during CEA from 67 symptomatic and 15 asymptomatic patients between May 2015 and August 2016. The specimens were stained with hematoxylin-eosin and elastica-Masson. Immunohistochemistry was performed using an endothelial-specific antibody to CD31, CD 34 and PDGFRβ. The histopathological characteristics of the plaques were studied. By multiple-variable logistic regression analysis, plaque instability correlated with the presence of plaque rupture [odds ratio (OR), 9.75; P=0.013], minimum fibrous cap thickness (OR per 10 μm 0.70; P=0.025), presence of microcalcifications in the fibrous cap (OR 7.82; P=0.022) and intraplaque microvessels (OR 1.91; P=0.043). Receiver-operating characteristics analyses showed that these factors combined into a single score diagnosed symptomatic carotid plaques in patients with carotid artery stenosis with a high level of accuracy (area under the curve 0.92; 95% confidence interval 0.85–0.99 vs. asymptomatic).

Conclusions: This analysis of carotid plaque instability strongly suggested that the diagnostic scoring of carotid plaque instability improves the understanding and treatment of carotid artery disease in patients undergoing CEA.

Key Words: Carotid artery disease; Carotid endarterectomy; Unstable plaque

Ischemic strokes and transient ischemic attacks (TIA) are usually caused by unstable carotid lesions, which result in thrombus formation and occlusion of the artery. The histological characteristics of unstable carotid plaques have been described in several studies. In studies of coronary arteries, unstable plaques have been identified as ruptured, inflammatory plaques with thin fibrous caps (TFC) that were often the cause of acute coronary syndromes rather than stable angina. In the cerebral circulation, however, most ischemic strokes are caused by distal embolization originating from atherosclerotic plaques, or by an acute, instead of chronic, occlusion of a carotid artery. The interest in the morphology and functional characteristics of carotid plaques, using various imaging techniques and biochemical markers, has been growing. The progression of carotid plaques accelerated by hemorrhages developing inside the plaque has been observed in several imaging studies, and has been associated with predictors of future ischemic cerebrovascular events (CVE). In previously asymptomatic patients presenting with 50–79% carotid artery stenoses, thin or ruptured fibrous caps, hemorrhages within a plaque, and large, lipid-rich and necrotic cores (NC) have been associated with the development of adverse CVE. However, there is no comprehensive pathological measure of carotid plaque instability that can be used to predict the risk of ischemic CVE. We performed this study in patients who underwent carotid endarterectomy (CEA) to describe in detail the pathology of carotid atherosclerosis and develop a diagnostic pathological scoring of unstable plaques.

Methods

Sample Population
We analyzed data from 74 men and 8 women aged >30 years who, between May 2015 and August 2016, consecutively...
underwent CEA in the departments of neurosurgery of Nakamura Memorial Hospital, Kashiwaba Neurosurgical Hospital and Hokkaido Neurosurgical Memorial Hospital in Japan. The indications for surgery were >70% asymptomatic or symptomatic carotid artery stenosis. Patients were considered symptomatic if they had experienced an ischemic stroke or a TIA. Atherosclerotic plaques associated with symptoms were referred to as symptomatic or unstable plaques. The mean age of the 67 symptomatic patients was 73.2±6.9 years and that of the 15 asymptomatic patients was 71.3±7.6 years (NS). Patients whose excised CEA specimens were severely damaged were excluded from this analysis. This study, approved by the ETHICS COMMITTEE of each participating medical institution, complied with the Declaration of Helsinki on ethical principles for medical research involving human subjects, and all patients gave written informed consent to participate.

Histological Examinations

CEA was performed using standard surgical techniques with minimal handling of the specimens. The plaques were removed en bloc, fixed in 10% buffered formalin, transected transversely in 5-mm specimens, and embedded in paraffin. After hematoxylin-eosin and elastica-Masson (which stains elastin black and collagen and proteoglycans green) staining, 3–4 sections per specimen were examined. The sections with ulcerated plaques or thrombi, the most stenotic segments, or both, were retained for further analysis. The sections were examined by 2 independent observers, 1 of whom was an experienced histopathologist unaware of the clinical status and identity of the patient. The sections were probed with anti-CD31, anti-CD34 and PDGF receptor β antibodies, which recognize endothelial cells, to confirm the presence of microvessels in the plaque. The factors we chose as potential predictors of unstable carotid plaque are listed in Appendix S1.

Definitions

Plaque rupture: an area of fibrous cap disruption, where the overlying thrombus is in continuity with the underlying NC. 17

Plaque erosion: luminal thrombosis without communication between thrombus and NC. 17

Thrombus: laminated platelets or fibrin, with or without interspersed red and white blood cells.

Calcified nodule: a plaque with luminal thrombi containing a calcific nodule protruding into the vessel lumen through a disrupted TFC. 18

Intraplaque hemorrhage: microscopically visible blood and thrombus inside the plaque.

Intraplaque microvessels: presence of neovascularization in a carotid plaque.

Foamy macrophage within cap is a foam cell in the superficial intima.

Immature fibrillization: plaque stained light-green by elastica-Masson staining.

Necrotic core: acellular lipid pool within the intima, near the media where smooth muscle cells are scarce and proteoglycans and lipid deposition are abundant. 17

Microcalcifications: calcifications 0.5–15 μm in diameter. 19,20

Fragmented or sheet calcification: aggregation of microcalcifications ≥15 μm in diameter. 19,20

Nodular calcifications: breaks in calcified plates with fragments of calcium separated by fibrin. 19,21

Semiquantification of Pathological Observations

Because one of the characteristics of an unstable plaque is the presence of ≥25 macrophages per high-power (0.3-mm diameter) field (HPF), 22 and because immunohistochemical staining has revealed that most of the inflammatory cells at the site of plaque rupture are macrophages, 23 we used ≥25 inflammatory cells/HPF as a threshold for plaque instability. Furthermore, because some studies have shown that (1) matrix metalloproteinase-12 (MMP-12) promotes atherosclerosis, 24,25 (2) the main source of MMP-12 is a foamy cap macrophage, 26,27 and (3) in patients undergoing CEA, the proportion of MMP-12 macrophages is approximately 10% of all macrophages, 28,29 we used ≥3 foamy or hemosiderin-laden macrophages/HPF as a threshold for plaque instability.

Cellular infiltration (i.e., ≥25 inflammatory cells/HPF) was scored semiquantitatively as absent (=0), limited to the fibrous cap or the shoulder of the cap (=1), or extending to the fibrous cap and the shoulder of the cap (=2) in >1 cross-sectional image of the lesion. Similarly, infiltration by ≥3 foamy or hemosiderin-laden macrophages/HPF was scored semiquantitatively as absent (=0), limited to the fibrous cap or the shoulder of the cap (=1), or abundant (=2) in the fibrous cap and the shoulder of the cap in ≥1 cross-sectional image of the lesion. The distribution of calcification was scored semiquantitatively as absent (0), 1–30% (1), 91–180% (2), or >180% (3) in ≥1 cross-sectional image of the lesion. Intraplaque hemorrhages were scored semiquantitatively as ≤1 (0), 2 (1), or ≥3 (2) cross-sections of the lesion.

Statistical Analysis

Continuous variables are reported as mean±standard deviation (SD) and categorical variables as counts and percentages. Between-group differences were analyzed using Pearson’s chi-square or Fisher’s exact test for categorical variables and Student’s t-test or Mann-Whitney U-test for continuous variables, as appropriate. The diagnostic value of the morphological characteristics of the plaque as predictors of symptomatic adverse cerebral events was examined by single-variable logistic regression analysis. Characteristics that emerged with P values (Wald statistics) <0.05 in the single-variable analysis were entered in the multiple variable regression analysis. Characteristics not defined for non-lipid plaques, such as TFC, were assigned a score of 0.

The score was derived from the multiple regression equation, to represent the probability of a correlation between a specific morphological characteristic of the plaque and a symptomatic lesion. The results are reported as P values, odds ratios (OR) and 95% confidence intervals (CI). Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), diagnostic accuracy and optimal cutoff values were calculated from receiver-operating characteristic curves. Values with the highest Youden-index (sensitivity+specificity−1) were identified as optimal cutoff values. A P-value <0.05 was considered to indicate statistical significance. The data were analyzed with the SPSS 22.0 statistical system software (IBM Corp., Armonk, NY, USA).

Results

Clinical and Pathological Characteristics of Symptomatic and Asymptomatic Patients Presenting With Unstable
Table 1. Clinical and Pathological Characteristics of Symptomatic and Asymptomatic Study Groups of Patients Undergoing Carotid Endarterectomy

Clinical characteristics	Symptomatic (n=67)	Asymptomatic (n=15)	OR (95% CI)	P value
Age, years	73.2±6.9	71.3±7.6	1.88 (0.38–9.25)	0.667
Men	61 (91)	13 (87)	1.56 (0.28–8.64)	0.972
Diabetes mellitus	25 (37)	5 (33)	1.19 (0.37–3.88)	0.994
Hypertension	53 (79)	12 (80)	0.95 (0.23–3.82)	0.783
Dyslipidemia	57 (85)	11 (73)	2.07 (0.55–7.81)	0.476
Chronic kidney disease	17 (25)	8 (53)	0.30 (0.09–0.94)	0.069
Current smoker	22 (33)	5 (33)	0.98 (0.30–3.21)	0.790
History				
TIA or cerebral infarction	15 (22)	3 (20)	1.15 (0.29–4.63)	0.886
Coronary artery disease	9 (13)	3 (20)	0.62 (0.15–2.64)	0.805
Peripheral artery disease	4 (6)	2 (13)	0.41 (0.07–2.50)	0.659
Prior drug therapy				
Statin	9 (13)	5 (33)	0.31 (0.09–1.12)	0.141
Aspirin	6 (9)	4 (27)	0.27 (0.07–1.12)	0.145
Clopidogrel	3 (4)	2 (13)	0.30 (0.05–2.01)	0.485
Cilostazol	1 (1)	1 (7)	0.22 (0.01–3.60)	0.804
Days between onset of symptoms and operation	52±50	–	–	
Admission laboratory data				
Glycemia, mg/dL	136±51	128±55	2.06 (0.66–6.44)	0.343
Cholesterol, mg/dL	118±32	101±25	4.33 (1.34–14.0)	0.025
Low-density	52±17	54±17	0.18 (0.05–0.64)	0.015
High-density	2.4±0.8	2.0±0.8	4.99 (1.48–16.8)	0.017
LDL-C to HDL-C ratio	156±76	191±113	0.31 (0.09–1.12)	0.141
Pathological characteristics				
Plaque area, mm²	41.3±19.4	34.9±20.4	3.07 (0.97–9.71)	0.096
Cross-sectional area luminal narrowing, %	84.1±11.0	83.6±11.2	4.39 (0.54–36.1)	0.257
Plaque rupture	44 (66)	2 (13)	12.4 (2.58–59.9)	<0.001
Plaque erosion	9 (13)	4 (27)	0.43 (0.11–1.63)	0.380
Calcified nodule	4 (6)	0 (0)	0.759	
Luminal thrombi	57 (85)	6 (40)	8.55 (2.49–29.3)	<0.001
Thinnest fibrous cap, μm	50.4±19.2	78.3±33.6	0.10 (0.03–0.36)	<0.001
Calcification	62 (93)	14 (93)	0.89 (0.10–8.19)	0.659
Extent of calcification	1.5±0.9	1.7±0.9	0.57 (0.18–1.79)	0.499
<15μm microcalcification in the fibrous cap	53 (79)	7 (47)	4.33 (1.34–14.0)	0.025
Nodular calcification	26 (39)	2 (13)	4.12 (0.86–19.8)	0.114
Fragmented or sheet calcification	62 (93)	14 (93)	0.89 (0.10–8.19)	0.659
Maximum thickness of calcification, μm	679±552	799±746	0.35 (0.09–1.35)	0.201
Infraplaque hemorrhage	63 (94)	12 (80)	3.94 (1.04–19.5)	0.213
Infraplaque hemorrhage, sections	1.7±0.6	1.2±0.9	4.33 (1.34–14.0)	0.025
Infraplaque microvessels, /mm²	2.5±1.9	1.6±1.1	5.94 (1.24–28.4)	0.031
Inflammatory cells within cap	1.8±0.5	1.3±0.9	3.80 (1.11–13.0)	0.064
Foamy macrophages within cap	1.6±0.6	1.1±0.8	3.07 (0.97–9.71)	0.096
Hemosiderin-laden macrophages within cap	1.5±0.6	0.9±0.7	4.38 (1.13–16.9)	0.048
Immature fibrillization	66 (99)	13 (87)	10.2 (0.86–120)	0.148
Myxoid change in media	61 (91)	13 (87)	1.56 (0.28–8.64)	0.972
Necrotic core	63 (94)	13 (87)	2.42 (0.40–14.6)	0.659
>120° NC	58 (87)	9 (60)	4.30 (1.23–15.0)	0.042
Eccentric shape	58 (87)	13 (87)	0.99 (0.19–5.14)	0.683

Values are mean±SD or number (%) of observations. CI, confidence interval; OR, odds ratio; TIA, transient ischemic attack.
Plaques.
The 82 patients enrolled in the study comprised 67 symptomatic and 15 asymptomatic patients. Plaques were resected from all patients and examined histopathologically. The clinical characteristics of the 67 symptomatic and 15 asymptomatic patients and the pathological characteristics of the lesions analyzed in each group are compared in Table 1. By single-variable analysis, several pathological characteristics were significantly associated with symptomatic manifestations: plaque rupture, minimum TFC overlying a NC, microcalcifications in the fibrous cap, intraplaque hemorrhage, intraplaque microvessels, hemosiderin-laden macrophages within the cap and an extensive NC. Figure 1 illustrates the main characteristics of plaque instability. Table 2 shows the prevalence of plaque rupture, erosion and a calcified nodule among patients presenting with stroke, vs. TIA, vs. no symptoms. The prevalence of plaque rupture was highest (73%) in patients presenting with stroke, significantly higher than in patients presenting with TIA (33%) or no symptoms (13%). In contrast, the prevalence of a calcified nodule was significantly higher in patients presenting with a TIA (25%) than in patients presenting with stroke (2%) or no symptom (0%).

By multiple-variable logistic regression analysis, the presence of plaque rupture, minimum TFC, the presence of microcalcifications in the fibrous cap and intraplaque microvessels were independent correlates of symptomatic plaques (Table 3).

Diagnostic Performance of Predictors of Plaque Instability
We used receiver-operating characteristic statistics to examine the diagnostic performance of these indices of plaque instability (Figure 2, Table 4). Among all correlates of symptomatic cerebral ischemic event, minimum TFC had the highest diagnostic performance (area under the curve [AUC] 0.78, optimal cutoff value 70.2 μm, sensitivity 90%, specificity 60%, PPV 91%, NPV 56%, diagnostic accuracy 84%). However, combining the 4 independent correlates into a single score, using the equation derived from the multiple-variable logistic regression model (Logit(Score)=0.179+2.277* (insert 1 if plaque rupture present; otherwise 0)−0.355* (insert minimum TFC in mul-

Table 2. Rates of Plaque Rupture, Erosion and a Calcified Nodule Among the Subgroups of Patients Undergoing Carotid Endarterectomy

No. of plaques (%)	Major ipsilateral stroke (n=55)	TIA (n=12)	Asymptomatic (n=15)	Stroke vs. TIA P value	TIA vs. asymptomatic P value	
Plaque rupture	40 (73)	4 (33)	2 (13)	0.023	<0.001	
Plaque erosion	7 (13)	2 (17)	4 (27)	0.917	0.360	0.535
Calcified nodule	1 (2)	3 (25)	0	0.002	0.599	0.040

Values are mean±SD or numbers (%) of observations. TIA, transient ischemic attack.
Pathological Quantification of Carotid Instability

These 4 independent correlates in the diagnosis of pathologically unstable plaques in patients with carotid artery stenoses was very high. To the best of our knowledge, this study is the first to compare the pathological indices of unstable plaque by multiple-variable analysis, and then quantify the instability of carotid artery plaques in patients undergoing CEA.

Comparison With Previous Studies

Our pathological observations are concordant with those reported previously. In this study, the proportion of symptomatic carotid plaques associated with plaque rupture was higher than that of asymptomatic plaques, and the prevalence of plaque rupture in patients presenting with stroke was higher than that of patients with presenting with a TIA or of asymptomatic patients. Previous studies found that symptomatic carotid artery disease is more

Discussion

The main observations made in this study were (1) that although several pathological characteristics were associated with symptomatic plaques, plaque rupture, minimum TFC, microcalcifications in the fibrous cap and intraplaque microvessels were independent correlates, and (2) when combined into a single score, the performance of

Table 3. Pathological Lesion Characteristics Independently Associated With Symptomatic Ischemic Cerebrovascular Events

Variable	OR (95% CI)	P value
Presence of plaque rupture	9.75 (1.62–58.6)	0.013
Minimum thin fibrous cap (10μm)	0.70 (0.51–0.96)	0.025
Presence of microcalcification in the fibrous cap	7.82 (1.35–45.4)	0.022
Intraplaque microvessels (/mm²)	1.91 (1.02–3.57)	0.043

CI, confidence interval; OR, odds ratio.

Figure 2. Pathological characteristics that identify symptomatic plaques individually as well as when combined in a score. Receiver-operating characteristic curves for (A) minimum fibrous cap thickness, (B) intraplaque microvessels to identify symptomatic plaque individually and (C) combined into a score. The score, which includes the presence of plaque rupture and microcalcifications in the fibrous cap, was calculated as described in the text.

Table 4. Outcome of Receiver-Operator Characteristics Analysis of Pathological Variables of Unstable Plaque

Variable	AUC (95% CI)	Cutoff	Sensitivity	Specificity	Predictive value Positive	Predictive value Negative	Diagnostic accuracy
Plaque rupture	Present		65.7	86.7	95.7	36.1	69.5
Minimum thin fibrous cap (10μm)	0.78 (0.62–0.94)	70.2μm	89.6	60.0	90.9	56.3	84.1
Fibrous cap microcalcifications	Present		79.1	53.3	88.3	36.4	74.4
Intraplaque microvessels (2.20/mm²)	Present		47.8	86.7	94.1	27.1	54.9
Score	0.92 (0.85–0.99)	0.814	89.6	86.7	96.8	65.0	89.0

AUC, area under the curve; CI, confidence interval.

tiples of 10μm)+2.057* (insert 1 if microcalcification in the fibrous cap present; otherwise 0)+0.646* (insert intraplaque microvessels/mm²), increased the diagnostic performance to an AUC of 0.92 (95% CI 0.85–0.99; optimal cutoff value 0.814; sensitivity 90%; specificity 87%; PPV 97%; NPV 65%; diagnostic accuracy 89%). The application of this score to grade the instability of 2 separate lesions is illustrated in Figure 3.
Measuring Plaque Vulnerability

The individual and combined power of these plaque characteristics to measure plaque instability is incompletely understood. In this study, we combined these previously described individual characteristics of plaque instability into a single score. From our comprehensive pathological study and multiple-variable analysis, we identified the factors correlating with plaque instability. Among all the pathological indices, plaque rupture, minimum TFC, presence of microcalcifications and intraplaque microvessels were the only independent correlates of symptomatic plaque in this sample of patients with carotid artery stenosis.

Among all the pathological factors we examined, minimum TFC was the most accurate to quantify plaque instability. Furthermore, when combined into a score, these risk factors were highly accurate to quantify plaque instability and identify unstable plaques in patients with carotid artery stenoses. Although plaque rupture has been described as one of the major features of unstable plaque in histological studies,1,4,30 plaque rupture is not the only characteristic of an unstable atherosclerotic lesion. A representative example of unstable plaque without plaque rupture is shown in Figure S1.

Insignificant Variables by Multiple-Variable Analysis

Intraplaque hemorrhages, hemosiderin-laden macrophages and extensive NC, although related to unstable plaques by single-variable analysis, were no longer statistically significant by multiple-variable analysis. Although plaques removed ≤60 days after the most recent event are more unstable after a stroke than after a TIA, the instability persists after a TIA, and plaques removed >180 days after a recent event are less unstable after a stroke than after a TIA.40 Because >80% of symptomatic patients presented with major ipsilateral stroke in this study, and the average timing of CEA was 52±50 days after the onset of symptoms, intraplaque hemorrhages, inflammatory cells and...
extensive NC might no longer be significant factors because of the long interval between the onset of symptoms and CEA. In contrast, because the statistical significance between plaque instability and intraplaque microvessels is not related to the time since onset of stroke, it might remain an independent predictor of unstable plaque by multiple-variable analysis. Furthermore, intraplaque hemorrhages have been correlated with plaque rupture in symptomatic carotid artery stenosis. It is noteworthy that plaque rupture and intraplaque hemorrhages were correlated in this study \((r=0.362; \, r^2=0.131; \, P<0.001)\). Therefore, it might be a confounding factor in the multiple-variable analysis.

Higher Prevalence of Calcified Nodules in Cases of TIA Than of Stroke

Calcified nodules might be associated with more stable atherosclerotic lesions than plaque rupture in symptomatic patients. Several matrix metalloproteinases produced by activated macrophages digest fibrillar collagen, thus reducing the plaque’s mechanical stability. Our comparisons of plaques with rupture and with calcified nodules showed significantly less severe infiltration of inflammatory cells \((1.9\pm0.4 \, \text{vs.} \, 1.3\pm0.9, \, P=0.015)\) and foamy macrophages \((1.7\pm0.5 \, \text{vs.} \, 1.0\pm0.6, \, P=0.037)\) in those with a calcified nodule \((\text{Table S1})\). Therefore, calcified nodules might be more frequently observed in patients with TIA, compared with those with stroke. As for coronary artery disease, Jia et al showed in an optical coherence tomography (OCT) analysis that the prevalence of a calcified nodule was higher in patients with non-ST-segment elevation myocardial infarction than in those with ST-segment elevation myocardial infarction \((15\% \, \text{vs.} \, 0\%, \, P=0.004)\).

Clinical Perspectives

First, applying the indices of plaque instability derived in this study using techniques such as 3-dimensional or contrast-enhanced ultrasonography, magnetic resonance imaging (MRI), positron-emission tomography (PET), which can be used to measure these indices, may supplement conventional plaque imaging and improve our prediction of adverse CVE. High-resolution MRI is the best means of imaging carotid plaques and can effectively visualize plaque rupture, intraplaque hemorrhages and TFC: 7-tesla MRI might enable further detailed visualization of the structure of carotid plaques. Contrast-enhanced ultrasound allows quantification of intraplaque neovascularization as a feature of instability of carotid plaque, and has been closely correlated with histopathological observations. The 1-mm resolution of OCT is capable of revealing microcalcifications as the accumulation of small, punctate high-density signals within the fibrous cap. These microcalcifications in the atherosclerotic plaque can also be identified with sodium fluoride PET or sodium fluoride PET/CT. However, further technological developments are needed, including of spatial resolution, to detect unstable plaques more precisely. Second, we can verify the consistency between a preoperative diagnosis made with these imaging techniques and the plaque instability quantified by our novel pathological score. In our study, the plaque instability diagnosed by preoperative examinations including ultrasonography, MRI and CT was consistent with the pathological analysis of plaque instability in 72 of 82 patients \((88\%)\). Third, the plaque instability score might be a predictor of CVE. During the 6-month follow-up of, CVE occurred in 2 of 55 patients presenting with major ipsilateral stroke. The mean instability score was 97.8±2.3\% in patients with CVE compared with 90.2±17.1\% in those without CVE \((P=0.329, \text{Table S2})\). Fourth, carotid artery plaques with certain morphological features might be better targets for carotid artery stenting (CAS). Previous studies have shown that some morphological plaque features are associated with cerebrovascular complications pertaining to CAS. Tsutsumi et al showed that severe calcification of the carotid artery might be a cause of incomplete stent expansion despite aggressive dilatation. Bicknell and Cheshire reported that lipid-rich plaque was an independent predictor of distal embolization during the procedure. Furthermore, Kologidj et al described extensive inflammation as an important risk factor of restenosis after CAS. In our study, age and the thickness of calcification were positively correlated \((\text{Figure S2})\). Infiltration of inflammatory cells, as well as foamy and hemosiderin-laden macrophages, was less observed in patients with NC <120\% than in those with NC ≥120\% \((\text{Table S3})\). These observations suggest that non-elderly patients without severe calcification or extensive NC in plaque would be likely to preferentially benefit from CAS. Fifth, several studies have shown that the mechanisms of carotid plaque instability are similar to those of plaque found in the coronary circulation. Although, unlike the myocardial circulation, the carotid vascular bed is exposed to a high blood flow. Therefore, this study should provide useful information, including the identification of unstable plaques, about patients presenting with coronary artery disease.

Study Limitations

The sample size of this retrospective, observational study, conducted at 3 medical centers, was small. Our results need to be confirmed by a study including a larger number of patients. Second, in our population, the median time between the last adverse clinical event and CEA was 52±50 days, whereas the current professional practice guidelines recommend that patients presenting with symptomatic carotid stenosis undergo CEA within 14 days of the last event. Therefore, in further histopathological analyses, factors such as infiltration by inflammatory cells could turn out to be strong predictors of unstable plaques in patients undergoing CEA. Third, instead of being functional, this study was mainly a quantitative, morphological analysis of excised specimens of carotid plaques, which did not include measurements of enzymatic concentrations derived from foamy macrophages, such as that of matrix metalloproteinase. Fourth, although observations that are not derived from atherosclerotic plaques (e.g., wall shear stress) have also been found to predict plaque instability, this study was limited to pathological indices to quantify plaque instability.

Conclusions

This pathological analysis of carotid artery plaques suggested that our diagnostic scoring may facilitate understanding of plaque instability. Pathological quantification by this scoring simplified the assessment of carotid artery plaques, instead of requiring the wide variety of pathological characteristics reflecting plaque instability.

Acknowledgments

We thank Ms. Naomi Kobayashi for her assistance in the data collec-
tion, Dr. Souichirou Seno for his useful information about neurosurgery and Ms. Tomoko Takenami and Mr. Masana Uruzhid to for their contributions in the immunohistological staining.

Acknowledgment of Grant Support
None.

Disclosures
The authors have no potential conflict of interest to disclose.

References
1. Carr S, Farb A, Pearce WH, Virmani R, Yao JS. Atherosclerotic plaque rupture in symptomatic carotid artery stenosis. J Vasc Surg 1996; 23: 755–765; discussion 765–766.
2. Carr SC, Farb A, Peute WH, Virmani R, Yao JS. Activated inflammatory cells are associated with plaque rupture in carotid artery stenosis. Surgery 1997; 122: 757–763; discussion 763–764.
3. Jeziorska M, Woolley DE. Local neovascularization and cellular composition within vulnerable regions of atherosclerotic plaques of human carotid arteries. J Pathol 1999; 188: 189–196.
4. Howard DP, van Lamberen GW, Rothwell PM, Redgrave JN, Moll FL, de Vries JP, et al. Symptomatic carotid atherosclerosis disease: Correlations between plaque composition and ipsilateral stroke risk. Stroke 2015; 46: 182–189.
5. Virmani R, Burke A, Farb A. Coronal risk factors and plaque morphology in men with coronary disease who died suddenly. Eur Heart J 1998; 19: 678–680.
6. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005; 352: 1685–1695.
7. Golledge J, Greenhalgh RM, Dawood AH. The symptomatic carotid plaque. Stroke 2000; 31: 774–781.
8. Chai JT, Biasioli L, Li L, Alkhail M, Galassi F, Darby C, et al. Quantification of lipid-rich core in carotid atherosclerosis using magnetic resonance T2 mapping: Relation to clinical presentation. JACC Cardiovascular Imaging 2017; 10: 747–756.
9. Hetterich H, Webber N, Willner M, Herzen J, Birnbacher L, Hopp A, et al. AHA classification of coronary and carotid atherosclerotic plaques by grating-based phase-contrast computed tomography. Eur Radiol 2016; 26: 3223–3233.
10. Gaemperli O, Shallhub J, Owen DR, Lamare F, Johansson S, Fouladi N, et al. Imaging intraplaque inflammation in carotid atherosclerosis with 11C-PK11195 positron emission tomography/computed tomography. Eur Heart J 2012; 33: 1902–1910.
11. Saito K, Nagatsuka K, Ishibashi-Ueda H, Watanabe A, Kannki H, Ihara K. Contrast-enhanced ultrasound for the evaluation of neovascularization in atherosclerotic carotid artery plaques. Stroke 2014; 45: 3073–3075.
12. Liu L, Gardecki JA, Nadkarni SK, Toussaint JD, Yagi Y, Bouma BE, et al. Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography. Nat Med 2011; 17: 1010–1014.
13. Wallis de Vries BM, Hillebrands JL, van Dam GM, Tio RA, de Jong JS, Slart RH, et al. Images in cardiovascular medicine: Multispectral near-infrared fluorescence molecular imaging of matrix metalloproteinases in a human carotid plaque using a metal-degrading metalloproteinase-sensitive activatable fluorescent probe. Circulation 2009; 119: e534–e536.
14. Altai N, Kandiyl N, Hosseini A, Mehta R, MacSweeney S, Auer DP. Risk factors associated with cerebrovascular recurrence in symptomatic carotid disease: A comparative study of carotid plaque morphology, microemboli assessment and the European carotid surgery trial risk model. J Am Heart Assoc 2014; 3: e001073.
15. Hosseini AA, Kandiyl N, MacSweeney ST, Altai N, Auer DP. Carotid plaque hemorrhage on magnetic resonance imaging strongly predicts recurrent ischemia and stroke. Ann Neurol 2013; 73: 774–784.
16. Takaya N, Yuan C, Chu B, Saam T, Underhill H, Cai J, et al. Association between carotid plaque characteristics and subsequent ischemic cerebrovascular events: A prospective assessment with MRI – initial results. Stroke 2006; 37: 818–823.
17. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000; 20: 1262–1273.
18. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol 2006; 47: C13–C18.
19. Otsuka F, Sakakura K, Yahagi K, Joner M, Virmani R. Has our understanding of calcification in human coronary atherosclerosis improved? Arterioscler Thromb Vasc Biol 2014; 34: 724–736.
20. Otsuka F, Yasuda S, Noguchi T, Ishibashi-Ueda H. Pathology of coronary atherosclerosis and thrombosis. Cardiovasc Diagn Ther 2016; 6: 396–408.
21. Kolodgie FD, Nakazawa G, Sangiorgi G, Ladich E, Burke AP, Virmani R. Pathology of atherosclerosis and stenting. Neuroimaging Clin North Am 2007; 17: 285–301, vii.
22. Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 1997; 336: 1576–1583.
23. Kolodgie FD, Narula J, Burke AP, Haider N, Farb A, Hui-Liang Y, et al. Localization of apoptotic macrophages at the site of plaque rupture in sudden coronary death. Am J Pathol 2000; 157: 1259–1268.
24. Liang Y, Liu E, Yu Y, Kitajima S, Koike T, Jin Y, et al. Macrophage metalloelastase accelerates the progression of atherosclerosis in transgenic rabbits. Circulation 2006; 113: 1993–2001.
25. Yamada S, Wang KY, Tanimoto A, Fan J, Shimaji S, Kitajima S, et al. Matrix metalloproteinase 12 accelerates the initiation of atherosclerosis and stimulates the progression of fatty streaks to fibrous plaques in transgenic rabbits. Am J Pathol 2008; 172: 1419–1429.
26. Scholtes VP, Johnson JL, Jenkins N, Sala-Newby GB, de Vries JP, de Borst GJ, et al. Carotid atherosclerotic plaque matrix metalloproteinase-12 polymorphism predicts adverse outcome after endarterectomy. J Am Heart Assoc 2012; 1: e001040.
27. Matsumoto S, Kobayashi T, Katoh M, Saito I, Ikeda Y, Kobori M, et al. Expression and localization of matrix metalloproteinase-2 in the aorta of cholesterol-fed rabbits: Relationship to lesion development. Am J Pathol 1998; 153: 109–119.
28. Kangavari S, Matezsky S, Shah PK, Yano J, Chyu K, Fishbein MC, et al. Smoking increases inflammation and metalloproteinase expression in human carotid atherosclerotic plaques. J Cardiovasc Pharmacol Ther 2004; 9: 291–298.
29. Spagnoli LG, Mauriello A, Sangiorgi G, Fratoni S, Bonanno E, Schwartz RS, et al. Extracranial thrombolytically active carotid plaque as a risk factor for ischemic stroke. JAMA 2004; 292: 1845–1852.
30. Redgrave JN, Lovett JK, Gallagher PJ, Rothwell PM. Histological assessment of 526 symptomatic carotid plaques in relation to the nature and timing of ischemic symptoms: The Oxford plaque study. Circulation 2006; 113: 2320–2328.
31. Redgrave JN, Lovett JK, Rothwell PM. Histological features of symptomatic carotid plaques in relation to age and smoking: The Oxford plaque study. Stroke 2010; 41: 2288–2294.
32. de Rotte AA, Truijman MT, van Dijk AC, Liem MI, Schreuder FH, van der Kolk AG, et al. Plaque components in symptomatic moderately stenosed carotid arteries related to cerebral infarcts: The Plaque At Risk study. Stroke 2015; 46: 568–571.
33. Bentzon JF, Otsuka F, Vazquez F, Rolf E. Mechanisms of plaque formation and rupture. Circ Res 2014; 114: 1852–1866.
34. Kedhi E, Kennedy MW, Maehara A, Lansky AJ, McAndrew TC, Marso SP, et al. Impact of TCFAs on unanticipated ischemic events in medically treated diabetes mellitus: Insights from the prospect study. JACC Cardiovascular Imaging 2017; 10: 451–458.
35. Childs BG, Baker DJ, Wijshake T, Conover CA, Campisi J, van Deursen JM. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 2016; 354: 472–477.
36. Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruh WS, Wallack hemorrhage and progression of coronary atheroma. N Engl J Med 2003; 349: 2316–2325.
37. McCarthy MJ, Loftus IM, Thompson MM, Jones L, London NJ, Bell PK, et al. Angiogenesis and the atherosclerotic carotid plaque: An association between symptomatology and plaque morphology. J Vasc Surg 1999; 30: 261–268.
38. Willems S, Vink A, Bot I, Quax PH, de Borst GJ, de Vries JP, et al. Mast cells in human carotid atherosclerotic plaques are associated with intraplaque microvessel density and the occurrence of future cardiovascular events. Eur Heart J 2013; 34: 3099–3106.
39. Imoto K, Hiro T, Fuji T, Murasige A, Fukumoto Y, Hashimoto G, et al. Longitudinal structural determinants of atherosclerotic plaque vulnerability: A computational analysis of stress distribution using vessel models and three-dimensional intravascular ultrasound imaging. J Am Coll Cardiol 2005; 46: 1507–1515.
to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci USA 2006; 103: 14678–14683.

41. Kelly-Arnold A, Maldonado N, Laudier D, Aikawa E, Cardoso L, Weinbaum S. Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proc Natl Acad Sci USA 2013; 110: 10741–10746.

42. Newby AC, George SJ, Ismail Y, Johnson JL, Sala-Newby GB, Thomas AC. Vulnerable atherosclerotic plaque metalloproteinases and foam cell phenotypes. Thromb Haemost 2009; 101: 1006–1011.

43. Jia H, Abtahan F, Aguirre AD, Lee S, Chia S, Lowe H, et al. In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J Am Coll Cardiol 2013; 62: 1748–1758.

44. Kumar A, Yang EY, Brunner G, Murray TO, Virani SS, Garami Z, et al. Plaque volume of carotid endarterectomy specimens measured by 3D ultrasound technology. JACC Cardiovasc Imaging 2016; 9: 1118–1119.

45. Gupta A, Baradaran H, Mtui EE, Kamel H, Pandya A, Giambrone A, et al. Detection of symptomatic carotid plaque using source data from MR and CT angiography: A correlative study. Cerebrovasc Dis 2015; 39: 151 –161.

46. Schwaness M, Bos D, van den Bouwhuijsen Q, Portegies ML, Ikram MA, Hofman A, et al. Carotid atherosclerotic plaque characteristics on magnetic resonance imaging relate with history of stroke and coronary heart disease. Stroke 2016; 47: 1542–1547.

47. Hyafil F, Schindler A, Sepp D, Obenhuber T, Bayer-Karpinska A, Boeckh-Behrens T, et al. High-risk plaque features can be detected in non-stenotic carotid plaques of patients with ischemic stroke classified as cryptogenic using combined (18)F-FDG PET/MR imaging. Eur J Nucl Med Mol Imaging 2016; 43: 270–279.

48. Erturk MA, Raajmakers AJ, Adriany G, Ugurbil K, Metzger GJ. A 16-channel combined loop-dipole transceiver array for 7 Tesla body MRI. Magn Reson Med 2017; 77: 884–894.

49. Hoogi A, Adam D, Hoffman A, Kerner H, Reisner S, Gaitini D. Carotid plaque vulnerability: Quantification of neovascularization on contrast-enhanced ultrasound with histopathologic correlation. Am J Roentgenol 2011; 196: 431–436.

50. Irlke A, Vesey AT, Lewis DY, Skepper JN, Bird JL, Dweck MR, et al. Identifying active vascular microcalcification by (18)F-sodium fluoride positron emission tomography. Nat Commun 2015; 6: 7495.

51. Tsutsui M, Aikawa H, Onizuka M, Iko M, Kodama T, Nii K, et al. Carotid artery stenting for calcified lesions. Am J Neuroradiol 2008; 29: 1590–1593.

52. Bicknell CD, Cheshire NJ. The relationship between carotid atherosclerotic plaque morphology and the embolic risk during endovascular therapy. Eur J Vasc Endovasc Surg 2003; 26: 17–21.

53. Samady H, Eshtehardi P, McDaniel MC, Suo J, Dhawan SS, Maynard C, et al. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation 2011; 124: 779–788.

Supplementary File 1

Appendix S1. Potential Characteristics of Unstable Plaque

Figure S1. Representative example of unstable plaque without plaque rupture.

Figure S2. Positive correlation between age and maximum thickness of calcification (r=0.378, r^2 =0.143, P<0.001) in patients undergoing carotid endarterectomy.

Table S1. Comparison of plaque rupture and calcified nodule groups of patients undergoing carotid endarterectomy

Table S2. Comparison of CVE and no CVE groups of patients undergoing carotid endarterectomy

Table S3. Comparisons of NC ≤120° and NC >120° groups of patients undergoing carotid endarterectomy

Please find supplementary file(s): http://dx.doi.org/10.1253/circj.CJ-17-0204