On the Structure of Sets with Few Three-Term Arithmetic Progressions

Ernie Croot

October 16, 2018

1 Introduction

Given a function $f : \mathbb{F}_p^n \rightarrow [0, 1]$, and a subset $W \subseteq \mathbb{F}_p^n$, we define

$$E(f|W) = |W|^{-1} \sum_{m \in W} f(m).$$

If no set W is given, then we just assume $W = \mathbb{F}_p^n$, and then we get

$$E(f) = E(f|\mathbb{F}_p^n) = p^{-n} \sum_{m \in \mathbb{F}_p^n} f(m).$$

Define

$$\Lambda_3(f) = p^{-2n} \sum_{m,d} f(m)f(m + d)f(m + 2d).$$

In the case where f is an indicator function for some set $S \subseteq \mathbb{F}_p^n$, we have that $\Lambda_3(f)$ is the normalized count of the number of three-term arithmetic progressions $m, m + d, m + 2d \in S$. Note that $\Lambda_3(f) \geq 0$, unless $E(f) = 0$, because of the contribution of trivial progressions where $d = 0$.

Of central importance to the subject of additive combinatorics is the problem of determining when a subset of the integers $\{1, \ldots, N\}$ contains a k-term arithmetic progression. This subject has a long history, and we will not mention it here; however, the specific problem in this area which motivated our paper, and which is due to B. Green [1], is as follows:

Problem. Given $0 < \alpha \leq 1$, suppose $S \subseteq \mathbb{F}_p$ satisfies $|S| \geq \alpha p$, and has the least number of three-term arithmetic progressions. What is $\Lambda_3(S)$?
It seems that the only hope of answering a question like this is to understand the structure of these sets S. In this paper we address the analogous problem in \mathbb{F}_p^n, where p and α are held fixed, while n tends to infinity. The results we prove are not of a type that would allow us to deduce $\Lambda_3(S)$, but they do reveal that these sets S are very highly structured. Such results can perhaps be deduced from the work of B. Green [2], which makes use of the Szemerédi regularity lemma, but our theorems below are proved using basic harmonic analysis.

Theorem 1 Let $0 < \alpha \leq 1$. Suppose that S is a subset of \mathbb{F}_p^n, such that $\Lambda_3(S)$ is minimal, subject to the constraint

$$|S| \geq \alpha p^n.$$

Then, there exists a subgroup (or subspace)

$$W \leq \mathbb{F}_p^n, \quad \text{dim}(W) = n - o(n),$$

such that S is approximately a union of $p^{o(n)}$ cosets of W; more precisely, there is a set A of size $p^{o(n)}$ such that

$$|S \Delta A + W| = o(p^n).$$

Our second theorem is a slightly more abstract version of this one, where instead of sets S, we have a function $f : \mathbb{F}_p^n \to [0, 1]$.

Theorem 2 Let $0 < \alpha \leq 1$. Suppose that

$$f : \mathbb{F}_p^n \to [0, 1]$$

such that $\Lambda_3(f)$ is minimal, subject to the constraint that

$$\mathbb{E}(f) \geq \alpha > 0.$$

Then, there exists a subgroup $W \subseteq \mathbb{F}_p^n$ of dimension $n - o(n)$, such that f is approximately an indicator function on cosets of W, in the following sense: There is a function

$$h : \mathbb{F}_p^n \to \{0, 1\},$$

which is constant on cosets of W (which means $h(a) = h(a + w)$ for all $w \in W$), such that

$$\mathbb{E}(|f(m) - h(m)|) = o(1).$$

1The notation $B \Delta C$ means the symmetric difference between B and C.

2
It would seem that Theorem 1 is a corollary of Theorem 2; however, with a little thought one sees this is not the case. Nonetheless, we will prove a third theorem, from which we will deduce both Theorem 1 and Theorem 2.

2 Proofs

2.1 Additional Notation

We will require a little more notation.

Given any three subsets $U, V, W \subseteq \mathbb{F}_p^n$, define

$$T_3(f|U, V, W) = \sum_{m \in U, d \in V, m+2d \in W} f(m) f(m+d) f(m+2d).$$

We note that this implies $T_3(1|U, U, U)$ is the number of three-term progressions belonging to a set U.

Given a subspace W of \mathbb{F}_p^n, and given a function $f : \mathbb{F}_p^n \to [0, 1]$, we define

$$f_W(m) = \frac{1}{|W|} (f * W)(m) = \frac{1}{|W|} \sum_{w \in W} f(m+w).$$

This function has a number of properties: First, we note that $f_W(m)$ is constant on cosets of W, in the sense that

for all $w \in W$, $f_W(m) = f_W(m+w)$.

Thus, it makes sense to write

$$f_W(m+W) = f_W(m).$$

We also have that

$$\mathbb{E}(f_W) = \mathbb{E}(f).$$

Finally, if V is the orthogonal complement of W (with respect to the standard basis), then

if $v \in V$, then $\hat{f}_W(v) = \hat{f}(a)$; and, if $v \notin V$, then $\hat{f}_W(v) = 0$.

We will also define the L^2 norm of a function $f : \mathbb{F}_p^n \to \mathbb{C}$ to be

$$||f||_2 = \left(p^{-n} \sum_m |f(m)|^2 \right)^{1/2}.$$
2.2 Theorem 3, and Proofs of Theorems 1 and 2

Theorems 1 and 2 are corollaries of the following theorem:

Theorem 3 Let \(\epsilon > 0 \), and suppose that \(f : \mathbb{F}_{p^n} \to [0,1] \) has the following property: For every subspace \(W \) of \(\mathbb{F}_{p^n} \) of codimension at most \(\Delta^{-2} \), where

\[
\Delta = (\epsilon^6/2^{13}p^2) \exp(-16\epsilon^{-1}c_p \log p),
\]

where \(c_p \) is a certain constant appearing in Theorem 4 below, suppose that

\[
\mathbb{E}(|f(m) - f_W(m)|) > \epsilon.
\]

Then, there exists a function

\[
g : \mathbb{F}_{p^n} \to [0,1]
\]

such that

\[
\mathbb{E}(g) = \mathbb{E}(f), \text{ and } \Lambda_3(g) < \Lambda_3(f) - \Delta.
\]

Comment. Using the Lemma 1 below we can deduce the stronger conclusion that there exists

\[
g : \mathbb{F}_{p^n} \to \{0,1\}
\]

(so, \(g \) is an indicator function) such that

\[
\mathbb{E}(g) \geq \mathbb{E}(f), \text{ and } \Lambda_3(g) < \Lambda_3(f) - \Delta + O(p^{-n/3}). \tag{3}
\]

Lemma 1 Suppose that \(j : \mathbb{F}_{p^n} \to [0,1] \). There exists an indicator function \(j_2 : \mathbb{F}_{p^n} \to \{0,1\} \), such that

\[
\mathbb{E}(j_2) \geq \mathbb{E}(j), \Lambda_3(j_2) = \Lambda_3(j) + O(p^{-n/3}),
\]

and such that for every subspace \(W \) of codimension at most \(n^{1/2} \) we have\(^2\) that for every \(m \in \mathbb{F}_{p^n} \),

\[
(j_2)_W(m) = j_W(m) + O(1/n).
\]

\(^2\)The codimension \(n^{1/2} \) condition can be improved; however, it is good enough for our purposes, and it is larger than \(\Delta^{-2} \), where \(\epsilon = 1/\log \log n \), as will appear in later applications.
In order to prove this lemma we will need to use a theorem of Hoeffding (see [3] or [4, Theorem 5.7])

Proposition 1 Suppose that $z_1, ..., z_r$ are independent real random variables with $|z_i| \leq 1$. Let $\mu = \mathbb{E}(z_1 + \cdots + z_r)$, and let $\Sigma = z_1 + \cdots + z_r$. Then,

$$P(|\Sigma - \mu| > rt) \leq 2 \exp(-rt^2/2).$$

Proof of the Lemma. The proof of this lemma is standard: Given j as in the theorem above, let j_0 be a random function from F_p^n to $\{0, 1\}$, where $j_0(m) = 1$ with probability $j(m)$, and equals 0 with probability $1 - j(m)$; moreover, $j_0(m)$ is independent of all the other $j_0(m')$. Then, one can easily show that with probability $1 - o(1)$,

$$p^{-n} \sum_m j_0(m) = \mathbb{E}(j) + O(p^{-n/3}), \quad \text{and} \quad \Lambda_3(j_0) = \Lambda_3(j) + O(p^{-n/3}). \quad (4)$$

Furthermore, we claim that with probability $1 - o(1)$ we will have that for any subspace W of codimension at most $n^{1/2}$,

$$(j_0)_W(m) = j_W(m) + O(1/n). \quad (5)$$

This can be seen as follows: For a fixed W we need an upper bound on the probability that

$$|(j_0)_W(m) - j_W(m)| > 1/n.$$

This is the same as showing

$$|\Sigma| > |W|/n,$$

where

$$\Sigma = \sum_{w \in W} z_w(m), \quad \text{where} \quad z_w(m) = j_0(m + w) - j(m + w).$$

Note that all the z_w are independent and satisfy $|z_w| \leq 1$ and $\mathbb{E}(z_w) = 0$. So, from Proposition 1 we deduce that

$$P(|\Sigma| > |W|/n) \leq 2 \exp(-|W|/2n^2).$$

Now, since the number of such subspaces W is at most the number of sequences of $n^{1/2}$ possible basis vectors, which is $O(p^{n^{3/2}})$, we deduce that
the probability that there exists a subspace W of codimension at most $n^{1/2}$ satisfying

$$\left| (j_0)_W(m) - j_W(m) \right| > 1/n$$

is $O(p^{3/2} \exp(-|W|/2n^2)) = o(1)$. Thus, (5) holds for all such W with probability $1 - o(1)$ (in fact, the explicit constant in the $O(1)$ can be taken to be 1 once n is sufficiently large).

We deduce now that there is an instantiation of j_0, call it j_1, such that both (4) and (5) hold. Then, by reassigning at most $O(p^{2n/3})$ places m where $j_1(m) = 0$ to the value 1, or from the value 0 to the value 1, we arrive at a function j_2 having the claimed properties of the lemma.

Proof of Theorem 1. To prove Theorem 1 we begin by letting f be the indicator function for the set S, and we let

$$\epsilon = \frac{1}{\log \log n}.$$

Now suppose that

$$\mathbb{E}(|f(m) - f_W(m)|) \leq \epsilon,$$ \hspace{1cm} (6)

for some subspace W of codimension at most Δ^{-2}. Let $h(m)$ be $f_W(m)$ rounded to the nearest integer. Clearly, $h(m)$ is constant on cosets of W, and from the fact that

$$|h(m) - f_W(m)| \leq |f(m) - f_W(m)|,$$

we deduce that

$$\mathbb{E}(|f(m) - h(m)|) \leq \mathbb{E}(|h(m) - f_W(m)|) + \mathbb{E}(|f(m) - f_W(m)|) \leq 2\mathbb{E}(|f(m) - f_W(m)|) \leq 2\epsilon.$$

But since h is constant on cosets of W, and only assumes the values 0 or 1, we deduce that h is the indicator function for some set of the form $A + W$. Thus, we deduce

$$|S \Delta A + W| \leq 2\epsilon p^n,$$
where \(W \) has dimension \(n - o(n) \). This then proves Theorem 1 under the assumption (6).

Next, suppose that
\[
E(|f(m) - f_W(m)|) > \epsilon.
\]
(7)
for every subspace \(W \) of codimension at most \(\Delta^{-2} \). Then, from the comment following Theorem 3 there exists an indicator function \(g \) satisfying (3). If we let \(S' \) be the set for which \(g \) is an indicator function, then one sees that \(S' \) has fewer three-term arithmetic progressions than does \(S \), while \(E(S') \geq E(S) \). This is a contradiction, and thus the theorem is proved.

Proof of Theorem 2
Let \(j(m) = f(m) \), and then let
\[
\ell(m) = j_2(m) : \mathbb{F}_p^n \to \{0, 1\},
\]
where \(j_2(m) \) is as given in Lemma 1. Note that this implies that
\[
E(\ell) \geq E(f), \quad \Lambda_3(\ell) = \Lambda_3(f) + O(p^{-n/3}),
\]
and that for any subspace \(W \) of codimension at most \(n^{1/2} \),
\[
\ell_W(m) = f_W(m) + O(1/n).
\]
(8)

Next let
\[
\epsilon = \frac{1}{\log \log n},
\]
and suppose that there exists a subspace \(W \) of codimension at most \(\Delta^{-2} \) such that
\[
E(|\ell(m) - \ell_W(m)|) \leq \epsilon.
\]
(9)
Then, if we let \(h(m) \) equal \(f_W(m) \) rounded to the nearest integer, we will have from (8) that
\[
E(|h(m) - f_W(m)|) \leq E(|\ell(m) - f_W(m)|)
\]
\[
\leq E(|\ell(m) - \ell_W(m)|) + O(1/n)
\]
\[
\leq \epsilon + O(1/n).
\]
(10)
Let V be the orthogonal complement of W. From (10) we know that at most
$$(\epsilon^{1/2} + O(\epsilon^{-1/2}/n))|V|$$
values $v \in V$ satisfy
$$|h(v) - f_W(v)| \geq \epsilon^{1/2}.$$

Let $V' \subseteq V$ be those $v \in V$ satisfying the reverse inequality
$$|h(v) - f_W(v)| < \epsilon^{1/2}.$$

Suppose $v \in V'$ and $h(v) = 0$. Then, $f_W(v) < \epsilon^{1/2}$, and we have
$$\sum_{m \in v + W}|f(m) - h(m)| = |W|f_W(v) < |W|\epsilon^{1/2}. \quad (11)$$
On the other hand, if $v \in V'$ and $h(v) = 1$, then $f_W(v) > 1 - \epsilon^{1/2}$, and so
$$\sum_{m \in v + W}|f(m) - h(m)| = |W|(1 - f_W(v)) < |W|\epsilon^{1/2}. \quad (12)$$

Combining (11) with (12) we deduce that
$$\mathbb{E}(|f(m) - h(m)|) \leq \epsilon^{1/2} + (|V| - |V'|)|V|^{-1} \leq 2\epsilon^{1/2} + O(\epsilon^{-1/2}/n). \quad (13)$$

Our theorem is now proved in this case (assuming there exists a subspace W satisfying (9)).

To complete the proof, we will assume that there are no subspaces of codimension at most Δ^{-2} satisfying (9). Since ℓ then satisfies the hypotheses of Theorem 3, we deduce from Theorem 3 that there exists a function $g : \mathbb{F}_p^n \to [0, 1]$ such that
$$\mathbb{E}(g) = \mathbb{E}(\ell) \geq \mathbb{E}(f) \geq \alpha,$$
and
$$\Lambda_3(g) < \Lambda_3(\ell) - \Delta = \Lambda_3(f) - \Delta + O(p^{-n/3}).$$
This then contradicts the fact that $\Lambda_3(f)$ was minimal, given $\mathbb{E}(f) \geq \alpha$. Our theorem is now proved.

\[\blacksquare\]
3 Proof of Theorem 3

Let Δ be as in the statement of Theorem 3.

As is well-known,

$$\Lambda_3(f) = p^{-3n} \sum_{a \in \mathbb{F}_{p^n}} \hat{f}(a)^2 \hat{f}(-2a).$$

If we let A denote the set of all $a \in \mathbb{F}_{p^n}$ where

$$|\hat{f}(a)| > \Delta p^n,$$

then we clearly have

$$\Lambda_3(f) = p^{-3n} \sum_{a \in A} \hat{f}(a)^2 \hat{f}(-2a) + E,$$

where

$$|E| \leq \Delta p^{-n} ||\hat{f}||_2^2 \leq \Delta. \quad (15)$$

A simple application of Parseval’s identity also shows that $|A|$ is small: We have

$$|A| \Delta^2 p^{2n} \leq p^n ||\hat{f}||_2^2 \leq p^{2n},$$

which implies

$$|A| \leq \Delta^{-2}. \quad (16)$$

Let V be the additive subgroup of \mathbb{F}_{p^n} generated by the elements of A, and let W be the orthogonal complement of V; that is,

$$W = \{ w \in \mathbb{F}_{p^n} : \text{for every } v \in V, \ w \cdot v = 0 \}. \quad (14)$$

From (14), (15), and (2) we deduce that

$$\Lambda_3(f_W) \leq \Lambda_3(f) + \Delta. \quad (16)$$

Since W is an additive subgroup of \mathbb{F}_{p^n}, we will use the standard representation for the cosets of W, given by

$$v + W, \text{ where } v \in V.$$
Lemma 2 Suppose that $h : \mathbb{F}_p^n \to [0, 1]$. Then,

$$T_3(h) = \sum_{v_1, v_2, v_3 \in V} T_3(h|v_1 + W, v_2 + W, v_3 + W).$$

Proof. The lemma will follow if we can just show that $v_1 + w_1, v_2 + w_2, v_3 + w_3,$
$v_1, v_2, v_3 \in V$ and $w_1, w_2, w_3 \in W$, are in arithmetic progression implies
v_1, v_2, v_3 are in arithmetic progression: If

$$(v_1 + w_1) + (v_3 + w_3) = 2(v_2 + w_2),$$

then

$$v_1 + v_3 - 2v_2 = -w_1 - w_3 + 2w_2.$$

Now, as $V \cap W = \{0\}$, we deduce that

$$v_1 + v_3 - 2v_2 = 0,$$

whence v_1, v_2, v_3 are in arithmetic progression. ■

Now let

$$V' := \{v \in V : f_W(v + W) \in [\epsilon/4, 1 - \epsilon/4]\}; \quad (17)$$

that is, these cosets are all the places where f_W is not “too close” to being an indicator function.

3.1 Construction of the Function g

To construct the function g with the properties claimed by our Theorem, we start with the following lemma:

Lemma 3 Suppose $h_1 : \mathbb{F}_p^n \to [0, 1]$, let $\beta = E(h_1)$, and let $h_2(n) = 1 - h_1(n)$. Then,

$$\Lambda_3(h_1) + \Lambda_3(h_2) = 1 - 3\beta + 3\beta^2.$$

Proof. We first realize that for $a \neq 0$, $\hat{h}_1(a) = -\hat{h}_2(a)$. Thus,

$$\Lambda_3(h_1) + \Lambda_3(h_2) = p^{-3n}\sum_a (\hat{h}_1(a)^2\hat{h}_1(-2a) + \hat{h}_2(a)^2\hat{h}_2(-2a))$$

$$= p^{-3n}(\hat{h}_1(0)^3 + \hat{h}_2(0)^3)$$

$$= \beta^3 + (1 - \beta)^3.$$. ■
Now, let ℓ be the unique integer satisfying
\[4/\epsilon \leq p^\ell < 4p/\epsilon,\]
and let S be any subspace of W of codimension ℓ. Let T be the complement of S relative to W (not orthogonal complement, as we have used earlier), and set
\[\beta = \frac{|T|}{|W|} = \frac{|W| - |S|}{|W|} = 1 - p^{-\ell} \geq 1 - \epsilon/4,\]
which is the density of T relative to W. Then, from the above lemma, we deduce that
\[T_3(S) + T_3(T) = (1 - 3\beta + 3\beta^2)|W|^2,\]
$T_3(S)$ clearly equals $(1 - \beta)^2|W|^2$, because given any pair of elements $m, m + d \in S$, since S is a subspace we also must have $m + 2d \in S$; and, note that there are $(1 - \beta)^2|W|^2$ ordered pairs $m, m + d$ in S. Thus, we deduce
\[T_3(T) = (2\beta^2 - \beta)|W|^2.\]

We also have that if $b_1 + W, b_2 + W, b_3 + W$ are cosets that are in arithmetic progression, in the sense that there is a triple $m, m + d, m + 2d$, belonging to $b_1 + W, b_2 + W, b_3 + W$, respectively, then
\[T_3(1b_1 + T, b_2 + T, b_3 + T) = (2\beta^2 - \beta)|W|^2.\]

We now define the function $g : \mathbb{F}_p^n \to [0, 1]$ as follows: Given $v \in V, w \in W$, we have
\[g(v + w) = \begin{cases} f_W(v), & \text{if } v \notin V'; \\ \beta^{-1}T(w)f_W(v), & \text{if } v \in V'. \end{cases}\]

It is easy to see that
\[\mathbb{E}(g) = \mathbb{E}(f_W) = \mathbb{E}(f);\]

We also observe, from Lemma 2, that
\[T_3(g) = \sum_{v_1, v_2, v_3 \in V} T_3(g|v_1 + W, v_2 + W, v_3 + W).\]
This sum has eight types of terms, according to whether each of v_1, v_2, v_3 lie in V' or not.

First, consider the case where all of

$$v_1, v_2, v_3 \in V'. \quad (18)$$

In this case we have

$$T_3(g|v_1 + W, v_2 + W, v_3 + W) = \beta^{-3} f_W(v_1) f_W(v_2) f_W(v_3) T_3(T)$$

$$= f_W(v_1) f_W(v_2) f_W(v_3) |W|^2 (2\beta^{-1} - \beta^{-2})$$

$$\leq f_W(v_1) f_W(v_2) f_W(v_3) |W|^2 (1 - p^{-2\ell})$$

$$< f_W(v_1) f_W(v_2) f_W(v_3) |W|^2 (1 - \epsilon^2/16p^2).$$

This last inequality follows from the fact that

$$p^\ell < 4p/\epsilon.$$

Now, as

$$T_3(f_W|v_1 + W, v_2 + W, v_3 + W) = f_W(v_1) f_W(v_2) f_W(v_3) |W|^2,$$

we deduce that if (18) holds, then

$$T_3(g|v_1 + W, v_2 + W, v_3 + W) \leq T_3(f_W|v_1 + W, v_2 + W, v_3 + W)(1 - \epsilon^2/16p^2).$$

On the other hand, if any of v_1, v_2, v_3 fail to lie in V', then we will get that

$$T_3(g|v_1 + W, v_2 + W, v_3 + W) = T_3(f_W|v_1 + W, v_2 + W, v_3 + W).$$

To see this, consider all the cases where v_1 fails to lie in V'. In this case, we clearly have

$$T_3(g|v_1 + W, v_2 + W, v_3 + W) = \sum_{m_1 \in_{v_1 + W}, m_2 \in_{v_3 + W}} f_W(v_1) g(m_1) g(m_2)$$

$$= f_W(v_1) |W|^2 f_W(v_2) f_W(v_3)$$

$$= T_3(f_W|v_1 + W, v_2 + W, v_3 + W).$$

The cases where v_2 or v_3 fail to lie in V' are identical to this one.

Putting together the above observations we deduce that

$$T_3(g) \leq T_3(f_W) - (\epsilon^2/16p^2) \sum_{v_1, v_2, v_3 \in V'} T_3(f_W|v_1 + W, v_2 + W, v_3 + W)$$

$$\leq T_3(f_W) - (\epsilon^2/1024p^2)|W|^2 T_3(V'). \quad (19)$$

This last inequality follows from the fact that $f_W(v) \geq \epsilon/4$ for $v \in V'$.
3.2 A Lower Bound for $|V'|$

In order to give a lower bound for $T_3(V')$, we will first need a lower bound for $|V'|$.

We begin by noting that if v belongs to V, but not V', then either $f_W(v) < \epsilon/4$ or $f_W(v) > 1 - \epsilon/4$. Suppose the former holds. Then, we have

$$\sum_{m \in v + W} |f(m) - f_W(m)| \leq |W|f_W(v) + \sum_{m \in v + W} f(m) = 2|W|f_W(v) < \epsilon|W|/2. \quad (20)$$

On the other hand, if $f_W(v) > 1 - \epsilon/4$, then we have

$$\sum_{m \in v + W} |f(m) - f_W(m)| \leq \sum_{m \in v + V} (1 - f(m)) + \sum_{m \in v + W} (1 - f_W(m)) = 2|W| - 2|W|f_W(v) < \epsilon|W|/2. \quad (21)$$

Putting together (20) and (21) we deduce that

$$\sum_{v \in V \setminus V'} \sum_{m \in v + W} |f(m) - f_W(m)| < \epsilon|W|(|V| - |V'|)/2.$$

We also have the trivial upper bound

$$\sum_{v \in V'} \sum_{m \in v + W} |f(m) - f_W(m)| \leq |W||V'|.$$

Thus,

$$|V|^{-1}(|V'| + \epsilon(|V| - |V'|)/2) > E(|f(m) - f_W(m)|) > \epsilon.$$

(The second inequality is one of the hypotheses of the Theorem.) It follows that

$$|V'| > \frac{\epsilon|V|}{2(1 - \epsilon/2)} > \epsilon|V|/2. \quad (22)$$

3.3 Some Results of Meshulam and Varnavides

Using our lower bound for $|V'|$, we will need the following result of Meshulam [5] to obtain a lower bound for $T_3(V')$:

Theorem 4 Suppose that $S \subseteq \mathbb{F}_p^n$ satisfies $|S| \geq c_p p^n/n$, where $c_p > 0$ is a certain constant depending only on p. Then, S contains a non-trivial three-term arithmetic progression.
If we combine this with an idea of Varnavides [3], we get the following theorem.

Theorem 5 Suppose that $S \subseteq \mathbb{F}_{p^n}$ satisfies $|S| = \alpha p^n$. Then,

$$\Lambda_3(S) \geq (\alpha/2) \exp(-8\alpha^{-1}c_p \log p).$$

Proof of the Theorem. From Meshulam’s theorem we know that if $U \subseteq \mathbb{F}_{p^m}$ satisfies $E(U) \geq \alpha/2$, and $m = \lceil 2c_p/\alpha \rceil$, then U contains a three-term arithmetic progression.

Let \mathcal{V} denote the sets of all additive subgroups of \mathbb{F}_{p^n} of size p^m. For our proof we will need to establish some facts about \mathcal{V}: First, observe that any sequence of m linearly independent vectors in \mathbb{F}_{p^n} determines a subgroup in \mathcal{V}; however, each subgroup has many corresponding sequences of m vectors, though each subgroup has the same number of sequences. Now, it is easy to see that the number of sequences of m linearly independent vectors in \mathbb{F}_{p^n} is

$$(p^n - 1)(p^n - p) \cdots (p^n - p^{m-1}) = \epsilon_1 p^{mn}, \text{ where } 1/2 < \epsilon_1 < 1;$$

and, given a subgroup in \mathcal{V} (which can also be thought of as an \mathbb{F}_p vector subspace of dimension m), there are

$$(p^m - 1)(p^m - p) \cdots (p^m - p^{m-1}) = \epsilon_2 p^{m^2}, \text{ where } 1/2 < \epsilon_2 \leq \epsilon_1 < 1,$$

sequences of m linearly independent vectors in \mathbb{F}_{p^n} that span this subgroup. So,

$$|\mathcal{V}| = \epsilon_3 p^{m(n-m)}, \text{ where } 1 \leq \epsilon_3 < 2.$$

Next, suppose that $a \in \mathbb{F}_{p^n}$. We will need to know how many subgroups in \mathcal{V} contain a: Any such subgroup (subspace) can be written as $\text{span}(a) + Z$, where $\dim(Z) = m-1$, and $Z \subseteq \text{span}(a)^\perp$. Thus, Z is any $m-1$ dimensional subspace of an $n-1$ dimensional space; and so, from our bounds on $|\mathcal{V}|$, we deduce that there are $\epsilon_4 p^{(m-1)(n-m)}$, $1/2 < \epsilon_4 < 1$, possibilities for Z, which implies that there are

$$\epsilon_4 p^{(m-1)(n-m)} = \epsilon_5 |\mathcal{V}| p^{m-n}, \text{ where } 1/2 < \epsilon_5 \leq 1,$$

subspaces of \mathbb{F}_{p^n} of dimension m that contain a.

Now, given an arithmetic progression $a, a + d, a + 2d$, we note that the progression lies in a coset $b + A$ of an additive subgroup A if and only if
$a \in b + A$ and $d \in A$. Thus, if we define $T'_3(X)$ to be the number of non-trivial three-term arithmetic progressions belonging to a set X, then the sum of the number of non-trivial arithmetic progressions lying in $(b + A) \cap S$, over all $A \in \mathcal{V}$, and $b \in A^\perp$ equals

\[
\sum_{A \in \mathcal{V}} \sum_{b \in A^\perp} T'_3((b + A) \cap S) = \sum_{a,a+d,a+2d \in S} \sum_{d \in A} \sum_{b \in A^\perp} 1 \leq |\mathcal{V}| \alpha p^n T'_3(S).
\]

We now give a lower bound on this first double sum over A and b: We begin with

\[
|\mathcal{V}| \sum_{A \in \mathcal{V}} \sum_{b \in A^\perp} |(b + A) \cap S| = |\mathcal{V}||S|,
\]

which can be seen by noting that each $s \in S$ lies in exactly one coset $b + A$ of each subgroup $A \in \mathcal{V}$. Now consider all the cosets $b + A$, $A \in \mathcal{V}$, such that

\[
|(b + A) \cap S| \geq \alpha |A|/2.
\]

We claim that there are more than $|\mathcal{V}| p^{n-\alpha}/2$ such cosets. To see this, suppose there are fewer than this many cosets. Then, the left-most quantity in (24) is at most

\[
(|\mathcal{V}| p^{n-\alpha}/2)p^m + (|\mathcal{V}| p^{n-m})(\alpha |A|/2) < |\mathcal{V}| \alpha p^n = |\mathcal{V}||S|,
\]

which would contradict (24).

Thus, there are indeed more than $|\mathcal{V}| p^{n-m} \alpha/2$ cosets satisfying (25). For each such coset $b + A$, since

\[
|A| = p^m = p^{\lceil 2cp/\alpha \rceil},
\]

we deduce that $T'_3((b + A) \cap S) \geq 1$; and so,

\[
\sum_{A \in \mathcal{V}} \sum_{b \in A^\perp} T'_3((b + A) \cap S) \geq |\mathcal{V}| p^{n-m} \alpha/2.
\]

Combining this with (23) we deduce that

\[
T'_3(S) \geq p^{2n-2m} \alpha/2 \geq p^{2n}(\alpha/2) \exp(-8 \alpha^{-1} c_p \log p).
\]

This clearly implies the theorem.
3.4 Resumption of the Proof

From Theorem 5 and (22) we deduce that

\[T_3(V') \geq (\epsilon/4) \exp(-16\epsilon^{-1}c_p \log p)|V|^{2}. \]

Combining this with (19), we deduce that

\[T_3(g) \leq T_3(f_W) - 2\Delta p^{2n}. \]

This, along with (16) implies

\[\Lambda_3(g) \leq \Lambda_3(f_W) - 2\Delta \leq \Lambda_3(f) - \Delta, \]

which proves the theorem.

References

[1] Some Problems in Additive Combinatorics, AIM ARCC Workshop, compiled by E. Croot and S. Lev.

[2] B. Green, A Szemerédi-type Regularity Lemma in Abelian Groups, GAFA 15 (2005), 340-376.

[3] W. Hoeffding, Probability Inequalities for Sums of Independent Random Variables, J. Amer. Statist. Assoc. 58 (1963), 13-30.

[4] C. McDiarmid, On the Method of Bounded Differences, London Math. Soc. Lecture Note Ser. 14, Cambridge Univ. Press, Cambridge, 1989.

[5] R. Meshulam, On subsets of finite abelian groups with no 3-term arithmetic progressions, J. Comb. Theory Ser. A. 71 (1995), 168-172.

[6] P. Varnavides, On Certain Sets of Positive Density, J. London Math. Soc. 34 (1959), 358-360.