Supporting Information

Four-Winged Propeller-Shaped Indole-Modified and Indole Substituted Tetraphenylethlenes: Greenish-Blue Emitters with Aggregation-Induced Emission Features for Conventional Organic Light-Emitting Diodes

Ferruh Lafzi,† Yunus Taskesenligil,† Betül Canımkurbeıy,‡ Selin Pıravadılı,*,§ Haydar Kılıc,† Nurullah Saracoglu*,†

†Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, 25240, Türkiye

‡Sabuncuoglu Serefeddin Health Services Vocational School, Amasya University, Amasya, 05100, Türkiye

§Materials Technologies, Marmara Research Center (MAM), The Scientific and Technological Research Council of Turkey (TUBITAK), Gebze, Kocaeli, 41470, Türkiye
Table of Contents

1. Synthesis S3-S10
2. NMR Spectra of Compounds S11-S48
3. HRMS Spectra S49-S57
4. AIE Characteristics S58-S80
5. Theoretical Calculations S81-S99
6. Electrochemical Measurements S99-S100
7. OLED Application S100
1. Synthesis

General Information. 1H NMR and 13C NMR experiments were performed on either 400 MHz Varian and 400 MHz Bruker Avance II instruments using CDCl$_3$, DMSO-d$_6$, MeOD, and Acetone-d$_6$ as the solvent with tetramethylsilane (TMS) as an internal standard at room temperature, and the coupling constants J are given in hertz. The multiplicity is designated as s = singlet, bs = broad singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet. High-resolution mass spectrometry (HRMS) of all compounds was recorded on a QTOF (Quadrupole time-of-flight) spectrometry device. Column chromatography was performed using silica gel pore size 60 Å, 70-230 mesh (sigma).

General procedure for Suzuki coupling = GP1

To a stirred solution of bromo derivative (1 equiv.) and boronic acid or ester derivative (1.1 equiv.) in toluene (40 mL) and EtOH/H$_2$O (4:4 mL) was added Na$_2$CO$_3$ (10 equiv.) and then the system was purged with nitrogen several times. Then Pd(PPh$_3$)$_4$ (0.02 equiv.) was added and the reaction mixture was stirred at 85 °C for 24 h. After cooling to room temperature, the reaction mixture was mixed with water and extracted with dichloromethane (3 × 40 mL) and the organic layers were combined and dried over Na$_2$SO$_4$. After the solvent was removed under reduced pressure, the residue was purified by column chromatography (EtOAc/hexane) to give the desired compound.

General procedure for alkylation = GP2

To a solution of N-H or substituted indoles (1 equiv.) in DMSO (5 mL) sodium hydroxide (1.2 equiv.) was added and stirred for 20-30 minutes at room temperature. Then the flask was placed in an ice bath and alkyl halide (1.2 equiv.) was added slowly for 10 minutes. Removed the ice bath and stirred the reaction mixture for 5 h at room temperature. After completion, the reaction mixture was poured into ice water. Extracted the organic product with ethyl acetate (2 × 30 mL) and dried over anhydrous Na$_2$SO$_4$. Removed the solvent under vacuum and purified the product with column chromatography (EtOAc/hexane) to give the desired compound.

5-Benzyl-1H-indole (2). A reaction tube was charged with ether-imidazolium chloride (8 mg, 0.16 mmol), Pd$_2$(dba)$_3$ (3.8 mg, 0.04 mmol), and Cs$_2$CO$_3$ (540 mg, 1.6 mmol) under nitrogen atmosphere. Then, dioxane (2.0 mL) and H$_2$O (0.2 mL) were added and the mixture was stirred for 15 min at 80 °C. Benzyl chloride (105 mg, 0.8 mmol) and (1H-indol-5-yl)boronic acid (200 mg, 1.24 mmol) were added at room temperature. The reaction mixture was stirred at 90 °C for 15 h. After the reaction mixture was cooled to room temperature water and saturated Na$_2$CO$_3$ were added, and then the resulting mixture was extracted with CH$_2$Cl$_2$. The combined organic layers were dried over Na$_2$SO$_4$. Concentration and purification through silica gel column chromatography (hexane/CH$_2$Cl$_2$= 9:1) gave the 2 (160 mg, 93%) as a yellow oil. 1H NMR (400 MHz, CDCl$_3$): δ 7.99 (bs, 1H), 7.45 (s, 1H), 7.35 – 7.10 (m, 7H), 7.02 (dd, J = 8.3, 1.2 Hz, 1H), 6.47 (d, J = 1.9 Hz, 1H), 4.07 (s, CH$_2$, 2H). 13C NMR (100 MHz, CDCl$_3$): δ 142.4, 134.5, 132.6, 129.0, 128.4, 128.1, 125.8, 124.4, 123.5, 120.6, 111.0, 102.4, 42.1.

(1H-Indol-5-yl)(phenyl)methanone (4). An oven-dried pressure tube equipped with a stir bar was charged with 1-benzoylpiperidine-2,6-dione (200 mg, 0.92 mmol), potassium carbonate (318 mg, 2.3 mmol), boric acid (114 mg, 1.84 mmol), (1H-indol-5-yl)boronic acid (178 mg, 1.1 mmol), Pd(OAc)$_2$ (6.2 mg, 0.03 mmol), and PCyHBF$_4$ (41 mg, 0.11 mmol). Tetrahydrofuran (5 mL) was added the reaction mixture was placed in a preheated oil bath at 70 °C for 12h. The reaction mixture was cooled down to room temperature, diluted with CH$_2$Cl$_2$ (10 mL), filtered, and concentrated. The residue was purified by column chromatography (EtOAc/hexane = 1:9) to give compound 4 as a white solid (145 mg, 71%, mp 154.5–155.5 °C). 1H NMR (400 MHz, CDCl$_3$): δ 8.85 (bs,
1H, 8.14 (s, 1H), 7.91 – 7.73 (m, 3H), 7.64 – 7.53 (m, 1H), 7.54 – 7.38 (m, 3H), 7.29 – 7.24 (m, 1H), 6.63 (s, 1H).

13C NMR (100 MHz, CDCl3): δ 197.7, 139.0, 138.4, 131.7, 130.0, 129.6, 128.2, 127.2, 125.9, 125.4, 124.2, 111.2, 104.2.

(1H-Indol-5-yl)(4-methoxyphenyl)methanone (5). The same procedure described for the synthesis of 4 was used. Column chromatography gave the product 5 as a white-off solid (380 mg, 74% yield; mp 145.5–146.5 °C).

1H NMR (400 MHz, CDCl3): δ 8.89 (bs, 1H), 8.11 (s, 1H), 7.58 – 7.48 (m, 2H), 7.44 (d, J = 8.6 Hz, 1H), 7.23 (d, J = 3.1 Hz, 1H), 6.62 (d, J = 3.1 Hz, 1H), 4.25 (q, J = 7.3 Hz, 2H), 1.53 (t, J = 7.3 Hz, 3H). 13C NMR (100 MHz, CDCl3): δ 196.6, 162.7, 138.2, 132.5, 131.4, 130.2, 127.1, 125.8, 124.7, 124.0, 113.4, 111.1, 104.0, 55.5.

(1-Ethyl-1H-indol-5-yl)(phenyl)methanone (6). The same procedure described for the synthesis of 4 was used. Column chromatography gave the product 6 as a white-off solid (420 mg, 73% yield). 1H NMR (400 MHz, CDCl3): δ 8.14 (s, 1H), 7.88 – 7.78 (m, 3H), 7.62 – 7.57 (m, 1H), 7.54 – 7.48 (m, 2H), 7.44 (d, J = 8.6 Hz, 1H), 7.23 (d, J = 3.1 Hz, 1H), 6.62 (d, J = 3.1 Hz, 1H), 4.25 (q, J = 7.3 Hz, 2H), 1.53 (t, J = 7.3 Hz, 3H). 13C NMR (100 MHz, CDCl3): δ 197.2, 139.2, 138.1, 131.5, 129.9, 129.1, 128.7, 128.1, 127.8, 125.6, 123.7, 109.2, 103.1, 41.3, 15.5.

(1-Ethyl-1H-indol-5-yl)(4-methoxyphenyl)methanone (7). The same procedure described for the synthesis of 4 was used. Column chromatography gave the product 7 as white-off solid (355 mg, 73% yield; mp 82–83 °C). 1H NMR (400 MHz, CDCl3): δ 8.11 (s, 1H), 7.88 – 7.85 (m, AA’ part of AA’BB’ system, 2H), 7.78 (d, J = 8.6 Hz, A part of AB system, 1H), 7.43 (d, J = 8.6 Hz, B part of AB system, 1H), 7.23 (d, J = 3.1 Hz, 1H), 7.01 – 6.98 (m, BB’ part of AA’BB’ system, 2H), 6.61 (d, J = 3.1 Hz, 1H), 4.25 (q, J = 7.3 Hz, 2H), 3.92 (s, 3H), 1.53 (t, J = 7.3 Hz, 3H). 13C NMR (100 MHz, CDCl3): δ 196.1, 162.6, 138.1, 132.4, 131.6, 129.7, 128.5, 127.8, 125.0, 123.6, 113.3, 109.0, 102.9, 55.5, 41.2, 15.5.

5-(1,2,2-Triphenylvinyl)-1H-indole (9). A 100 mL two-necked round-bottom flask with a reflux condenser was charged with zinc dust (121 mg, 1.84 mmol) and 15 mL of dry THF. The flask was evacuated under vacuum and pumped in dry nitrogen three times. The mixture was cooled to -78 °C, and TiCl4 (101 µL, 0.9 mmol) was slowly added by a syringe. The mixture was slowly warmed to room temperature, stirred for 0.5 h, and then refluxed for 2 h. Pyridine (37 µL, 0.46 mmol) was added to the mixture and refluxed for an additional 10 min. A solution of benzophenone (109 mg, 0.6 mmol) and (1H-indol-5-yl)(phenyl)methanone (102 mg, 0.46 mmol) in THF (10 mL) was added dropwise and refluxed for 18 h. The reaction was warmed to room temperature and quenched with 10% aqueous K2CO3 solution and filtrated. The filtration was extracted with dichloromethane three times, and the organic layers were combined and washed with brine twice and dried over Na2SO4. The solvent was evaporated under reduced pressure, and the crude product was purified on a silica gel column chromatography (EtOAc/hexane = 1:9) to give compound 9 as a white solid (67 mg, 39%, mp 175.0–176.0 °C). 1H NMR (400 MHz, CDCl3): δ 7.88 (bs, 1H), 7.22 (s, 1H), 7.16 (s, 1H), 7.06 – 6.91 (m, 16H), 6.82 (dd, J = 8.4, 1.4 Hz, 1H), 6.27 (s, 1H). 13C NMR (100 MHz, CDCl3): δ 194.7 (2C), 144.4 (2C), 142.1, 139.8, 135.6, 134.6, 131.53, 131.50, 131.46, 127.6 (2C), 127.5, 126.2 (2C), 126.1, 126.0, 124.2, 123.8, 110.1, 102.9. HRMS (APCI-TOF) m/z: [M + H]+ calcd for C38H22N, 372.1752; found 372.1746.

Also, 5-(1,2,2-triphenylvinyl)-1H-indole (9) was obtained in 70% yield (540 mg) from Suzuki coupling reaction (GP1).

5-(1-(4-Methoxyphenyl)-2,2-diphenylvinyl)-1H-indole (10). The same procedure described for the synthesis of 9 was used. Column chromatography gave the product 10 as white-off solid (25 mg, 31% yield; mp
1H NMR (400 MHz, CDCl₃): δ 7.98 (bs, 1H), 7.30 (s, 1H), 7.14 – 6.99 (m, 12H), 6.98 – 6.95 (m, AA’ part of AA‘BB’ system, 2H), 6.89 (dd, J = 8.5, 1.6 Hz, 1H), 6.66 – 6.56 (m, BB’ part of AA‘BB’ system, 2H), 6.36 (d, J = 2.1 Hz, 1H), 3.72 (s, CH₃, 3H). 13C NMR (100 MHz, CDCl₃): δ 157.9, 144.7, 144.6, 141.6, 138.9, 137.1, 135.8, 134.6, 132.7, 131.5, 131.48, 127.7, 127.5, 127.48, 126.3, 125.9, 125.8, 124.1, 123.9, 112.9, 110.0, 102.9, 55.1. HRMS (APCI-TOF) m/z: [M + H]⁺ calcd for C₂₈H₂₆NO, 402.1858; found 402.1843.

Also, 5-(1-(4-methoxyphenyl)-2,2-diphenylvinyl)-1H-indole (10) was obtained in 84% yield (690 mg) from Suzuki coupling reaction (GP1).

(2-Bromoethene-1,1,2-triyl)tribenzene (11). To a solution of ethene-1,1,2-triyltribenzene (1.0 g, 3.49 mmol) in chloroform (15 mL) was added a solution of bromine (0.49 g, 3.06 mmol) in chloroform (10 mL) slowly. After decolouration of the solution, the solvent was evaporated under reduced pressure, and the residue crystallized two times from ethanol to give 11 (0.8 mg, 62%, mp 116.0 °C) as a white solid. 1H NMR (400 MHz, CDCl₃): δ 7.32 – 7.27 (m, 4H), 7.27 – 7.18 (m, 3H), 7.12 – 7.04 (m, 3H), 7.00 – 6.96 (m, 3H), 6.94 – 6.79 (m, 2H). 13C NMR (100 MHz, CDCl₃): δ 143.8, 143.6, 141.12, 141.08, 130.4, 130.3, 129.5, 128.2, 128.0, 127.96, 127.9, 127.6, 127.0, 122.2.

(2-Bromo-2-(4-methoxyphenyl)ethene-1,1-diyl)dibenzene (12). The same procedure described for the synthesis of 11 was used. Recrystallization from ethanol gave the product as a light-brown solid (1.1 g, 90% yield; mp 124.5–125.5 °C). 1H NMR (400 MHz, CDCl₃): δ 7.41 – 7.15 (m, 8H), 7.15 – 7.04 (m, 2H), 7.01 – 6.90 (m, 2H), 6.70 (d, J = 8.8 Hz, 2H), 3.76 (s, 3H). 13C NMR (100 MHz, CDCl₃): δ 159.1, 144.1, 142.7, 141.4, 133.4, 131.8, 130.4, 129.6, 127.9, 127.5, 126.9, 122.5, 113.4, 55.2.

5-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole (13). To a solution of 5-bromo-1H-indole (1 g, 5.1 mmol) in dioxane were added Pd₂(dba)₃ (93 mg, 0.1 mmol), XPhos (2-dicyclopentylphosphino-2’,4’,6’-triisopropylbiphenyl) (97 mg, 0.2 mmol), KOAc (1.5 g, 15.3 mmol) and bis(pinacolato)diboron (1.42 g, 5.61 mmol). The reaction mixture was stirred on a pressure tube at 110 °C for 20 hours, then was cooled at room temperature, filtrate over Celite, and washed with ethyl acetate. To the reaction mixture was added water. The layers were separated and the aqueous phase was extracted with ethyl acetate (3 x 10). The combined organic phases were washed with brine, dried over sodium sulfate and the solvent evaporated under reduced pressure. The residue was purified by column chromatography (hexane/acetone = 0.3:9.7) to give the product as a white-off solid (1.0 g, 80% yield; mp 93.0–94.0 °C). 1H NMR (400 MHz, CDCl₃): δ 8.18 (bs, 1H), 7.64 (d, J = 8.1 Hz, 1H), 7.39 (d, J = 8.1 Hz, 1H), 7.26 (s, 1H), 7.21 – 7.18 (m, 1H), 6.58 – 6.55 (m, 1H), 1.37 (s, 12H). 13C NMR (100 MHz, CDCl₃): δ 137.9, 128.7, 128.1, 127.6, 124.2, 110.5, 103.1, 83.5, 24.9 (carbon adjacent to boron was not observed).

4-(4,4,5,5-1-Ethyl-5-(1,2,2-triphenylvinyl)-1H-indole (14). Compound 14 was obtained according to GP2. The product was obtained over column chromatography as a white-off solid (250 mg, 69% yield; mp 159.5–160.5 °C). 1H NMR (400 MHz, CDCl₃): δ 7.20 – 7.17 (m, 2H), 7.07 – 6.93 (m, 16H), 6.82 (dd, J = 8.6, 1.6 Hz, 1H), 6.22 (d, J = 3.0 Hz, 1H), 4.01 (q, J = 7.3 Hz, 2H), 1.36 (t, J = 7.3 Hz, 3H). 13C NMR (100 MHz, CDCl₃): δ 144.9, 144.5, 144.4, 142.1, 139.5, 134.9, 134.6, 131.6, 131.52, 131.50, 128.2, 127.61, 127.60, 127.5, 126.9, 126.1, 126.0, 125.6, 124.1, 108.3, 101.3, 40.9, 15.4. HRMS (APCI-TOF) m/z: [M + H]⁺ calcd for C₃₀H₂₆N, 400.2065; found 400.2067.

1-Ethyl-5-(1-(4-methoxyphenyl)-2,2-diphenylvinyl)-1H-indole (15). Compound 15 was obtained according to GP2. The product was obtained over column chromatography as a yellow solid (485 mg, 82% yield; mp 1151.3–
152.3 °C). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 7.31 – 7.27\) (m, 2H), \(7.19 – 7.03\) (m, 11H), \(7.01 – 6.97\) (m, AA’ part of AA’BB’ system, 2H), \(6.93\) (d, \(J = 8.4\) Hz, 1H), \(6.66 – 6.62\) (m, BB’ part of AA’BB’ system, 2H), \(6.32\) (s, 1H), \(4.11\) (q, \(J = 7.3\) Hz, 2H), \(3.76\) (s, 3H), \(1.46\) (t, \(J = 7.3\) Hz, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta 157.9, 144.8, 144.7, 141.7, 138.7, 137.3, 135.2, 134.6, 132.8, 131.53, 131.50, 128.1, 127.7, 127.6, 126.9, 125.9, 125.8, 125.7, 124.2, 112.9, 108.3, 101.3, 55.1, 40.9, 15.4. HRMS (APCI-TOF) \(m/z\): [M + H]\(^+\) calcd for C\(_{31}\)H\(_{28}\)NO, 430.2171; found 430.2158.

1-(2,2-Dibromoviny1)-4-nitrobenzene (17). To a solution of 4-nitrobenzaldehyde (1.0 g, 6.62 mmol) in dichloromethane (20 mL) was added CBr\(_4\) (3.29 g, 9.93 mmol) and cooled to 0 °C. Then a solution of PPh\(_3\) (5.21 g, 19.85 mmol) in dichloromethane (10 mL) was added dropwise to the reaction mixture and stirred for 2 h at room temperature. After completion, the reaction mixture was insoluble material was removed by filtration. The solvent evaporated under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc = 9:5:0.5) to give the product as a yellow solid (1.75 g, 86% yield; mp 104.0–105.0 °C). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 8.29 – 8.23\) (m, AA’ part of AA’BB’ system, 2H), \(7.76 – 7.69\) (m, BB’ part of AA’BB’ system, 2H), \(7.58\) (s, 1H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta 141.5, 134.9, 129.2, 123.7, 94.1\) (2C).

(2-(4-Nitrophenyl)ethene-1,1-diyl) dibenzene (18). Compound 18 was obtained according to GP1. Column chromatography gave the product as yellow solid (400 mg, 81% yield; mp 154.3–155.3 °C). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 8.00\) (d, \(J = 8.8\) Hz, 2H), \(7.41 – 7.34\) (m, 8H), \(7.23 – 7.12\) (m, 4H), \(7.02\) (s, 1H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta 147.0, 145.9, 144.3, 142.4, 139.3, 130.2, 130.0, 129.0, 128.5, 128.4, 128.3, 127.9, 125.8, 123.3.

(2-Bromo-2-(4-nitrophenyl)ethene-1,1-diyl) dibenzene (19). The same procedure described for the synthesis of 11 was used. Recrystallization from ethanol gave the product as a light yellow solid (228 mg, 90% yield; mp 178.0–179.5 °C). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 8.06\) (dd, \(J = 8.6, 1.5\) Hz, 2H), \(7.52 – 7.47\) (m, 2H), \(7.46 – 7.35\) (m, 5H), \(7.22 – 7.09\) (m, 3H), \(7.01 – 6.94\) (m, 2H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta 147.8, 146.8, 146.5, 142.8, 140.3, 131.3, 130.3, 129.4, 128.3\) (2C), \(128.1, 127.9, 123.3, 118.5. HRMS (ESI-TOF) \(m/z\): [M + H]\(^+\) calcd for C\(_{26}\)H\(_{15}\)BrNO\(_2\), 380.0281; found 380.0283.

1-Ethyl-5-(1-(4-nitrophenyl)-2,2-diphenylvinyl)-1H-indole (21). Compound 21 was obtained according to GP1. Column chromatography gave the product as yellow solid (300 mg, 85% yield; mp 169.0–170.0 °C). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 7.96\) (d, \(J = 8.5\) Hz, 2H), \(7.31 – 7.22\) (m, 3H), \(7.19 – 7.14\) (m, 2H), \(7.15 – 7.05\) (m, 10H), \(6.89\) (d, \(J = 8.5\) Hz, 1H), \(6.35\) (d, \(J = 3.0\) Hz, 1H), \(4.13\) (q, \(J = 7.2\) Hz, 2H), \(1.48\) (t, \(J = 7.2\) Hz, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta 152.3, 145.8, 143.4\) (2C), \(142.4, 140.1, 134.8, 133.7, 132.2, 131.4, 131.3, 128.4, 128.0, 127.7, 127.4, 127.0, 126.7, 125.2, 124.1, 122.9, 108.8, 101.4, 41.0, 15.4. HRMS (APCI-TOF) \(m/z\): [M + H]\(^+\) calcd for C\(_{30}\)H\(_{25}\)N\(_2\)O\(_2\), 445.1946; found 445.1954.

4-(1-(1-Ethyl-1H-indol-5-yl)-2,2-diphenylvinyl)aniline (22). 1-Ethyl-5-(1-(4-nitrophenyl)-2,2-diphenylvinyl)-1H-indole (21) (200 mg, 0.4 mmol) was dissolved in MeOH (10 mL), and 10% Pd/C (15 mg) was added. The mixture was stirred in an H\(_2\) atmosphere for 12 h. The Pd/C was removed by filtration and the solvent was evaporated to obtain a pure compound 22 as a yellow solid (178 mg, 95%; mp 191.0–192.0 °C). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 7.34\) (s, 1H), \(7.19 – 7.03\) (m, 12H), \(6.95\) (dd, \(J = 8.6, 1.6\) Hz, 1H), \(6.91 – 6.86\) (m, AA’ part of AA’BB’ system, 2H), \(6.50 – 6.43\) (m, BB’ part of AA’BB’ system, 2H), \(6.33\) (d, \(J = 3.1\) Hz, 1H), \(4.11\) (q, \(J = 7.3\) Hz, 2H), \(3.68\) (bs, 2H), \(1.47\) (t, \(J = 7.3\) Hz, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta 145.1, 144.9, 144.0, 142.1, 138.1, 135.6, 135.3, 134.6, 132.7, 131.6, 131.5, 128.1, 127.6, 127.5, 126.8, 125.8, 125.7, 124.2, 114.5, 108.2, 101.3, 40.9, 15.4. HRMS (APCI-TOF) \(m/z\): [M + H]\(^+\) calcd for C\(_{30}\)H\(_{27}\)N\(_2\), 415.2169; found 415.2143.
1,2-Bis(4-(1-{1-ethyl-1H-indol-5-yl})-2,2-diphenylvinyl)phenyl)diazene (23). Solution of 4-(1-{1-Ethyl-1H-indol-5-yl})-2,2-diphenylvinylaniline (22) (510 mg, 0.12 mmol) in toluene (4 mL) was charged to a sealed tube and purged with nitrogen several times. Then t-BuOK (40.6 mg, 0.36 mmol), iodobenzene (26 µL, 0.24 mmol), Cul (0.7 mg, 0.03 mmol) and 1,10-Phenanthroline (0.7 mg, 0.03 mmol) were added to mixture and heated to 110 °C for 20h. After cooling to room temperature, the reaction solution was filtered to remove the precipitated base and washed with toluene. The solution was concentrated to obtain the crude product. Column chromatography (hexane/ EtOAc = 9.8:0.2) gave the product as red solid (70 mg, 70% yield; mp 260.0–261.0 °C). 1H NMR (400 MHz, CDCl3): δ 7.55 – 7.47 (m, AA′ part of AA′BB′ system, 4H), 7.21 (s, 2H), 7.13 – 7.06 (m, BB′ part of AA′BB′ system, 4H), 7.03 – 6.93 (m, 24H), 6.83 (dd, J = 8.6, 1.8 Hz, 2H), 6.22 (d, J = 3.1 Hz, 2H), 4.00 (q, J = 7.3 Hz, 4H), 1.35 (t, J = 7.3 Hz, 6H). 13C NMR (100 MHz, CDCl3): δ 150.9, 148.0, 144.2 (2C), 141.5, 140.7, 134.8, 134.5, 132.4, 131.6, 131.5, 128.3, 127.8, 127.7, 127.0, 126.4, 126.2, 125.6, 124.3, 122.0, 108.5, 101.4, 40.9, 15.4. HRMS (APCI-TOF) m/z: [M + H]+ calcd for C₆₀H₄₈N₄, 825.3952; found 825.3970.

(2,2-Dibromoethene-1,1-diyl)dibenzene (24). To a solution of benzophenone (0.0 g, 5.49 mmol) and CBr₄ (3.64 g, 10.98 mmol) in toluene (70 mL) was added Ph₃P (5.76 g, 21.95 mmol). The mixture was heated at 130 °C in an oil bath for 4 days. After cooling to room temperature, the solvent was removed by rotary evaporator and the residue was extracted with n-hexane. The hexane phases were combined and dried to give a residue, which was separated by column chromatography using n-hexane as the eluent to give the product. Recrystallization from ethanol gave the product as a white solid (1.6 g, 86% yield; mp 87.4–88.4 °C). 1H NMR (400 MHz, CDCl3): δ 7.31 – 7.19 (m, 10H). 13C NMR (100 MHz, CDCl3): δ 147.9, 141.4, 128.8, 128.4, 128.0, 90.3.

5-(1-Bromo-2,2-diphenylvinyl)-1H-indole (26). Under an argon atmosphere, (2,2-Dibromoethene-1,1-diyl)dibenzene (338 mg, 1.0 mmol), (1H-indol-5-yl)boronic acid (169 mg, 1.05 mmol), tri(2-furyl)-phosphine (34.8 mg, 0.15 mmol), and bis(dibenzylideneacetone)palladium (46 mg, 0.05 mmol) were placed in a 50 mL Schlenk tube. THF (5 mL), ether (2.1 mL), and a solution of cesium carbonate (652 mg, 2.0 mmol) in water (2 mL) were then added. The reaction mixture was stirred at reflux for 18 h. The product was extracted with ethyl acetate (3 x 30 mL). The combined organic layers were washed with brine (10 mL) and dried over anhydrous sodium sulfate. Evaporation followed by silica gel column chromatography (hexane/ethyl acetate = 9.5:0.5) afforded 1d as a white solid (185 mg, 46%; mp 198.7 °C).

4-(1-{1H-Indol-5-yl})-2,2-diphenylvinyl)-N,N-diphenylaniline (28). Compound 28 was obtained according to GP1. Column chromatography gave the product as a light brown solid (79 mg, 84% yield; mp 180.4–181.4 °C). 1H NMR (400 MHz, CDCl3): δ 7.83 (bs, 1H), 7.29 (s, 1H), 7.14 – 7.08 (m, 5H), 7.06 – 6.91 (m, 15H), 6.90 – 6.79 (m, 5H), 6.69 (d, J = 8.6 Hz, 2H), 6.31 – 6.28 (m, 1H). 13C NMR (100 MHz, CDCl3): δ 147.7 (2C), 145.8, 144.7, 144.4, 141.8, 139.4, 139.1, 135.4, 134.6, 132.4, 131.6, 131.5, 129.1, 127.6 (2C), 126.2, 126.1, 125.9, 124.2, 123.9, 123.0, 122.6, 110.1, 102.9. HRMS (ESI-TOF) m/z: [M + H]+ calcd for C₄₂H₂₇BrN, 539.2482; found 539.2480.

4-{1-{1-Ethyl-1H-indol-5-yl})-2,2-diphenylvinyl}-N,N-diphenylaniline (29). Compound 29 was obtained according to GP2. Column chromatography gave the product as yellow solid (60 mg, 95% yield; mp 82.3–83.3 °C). 1H NMR (400 MHz, CDCl3) δ 7.28 (d, J = 1.4 Hz, 1H), 7.17 – 7.11 (m, 5H), 7.08 – 6.94 (m, 15H), 6.91 – 6.80
The residue was purified by silica gel column chromatography. Column chromatography gave the product as a white-off solid (180 mg, 85% yield; mp 295.4–296.4 °C). 1H NMR (400 MHz, DMSO-d_6): δ 11.13 (s, 2H), 7.78 (s, 2H), 4.84 (d, $J = 7.2$ Hz, 4H), 7.43 (d, $J = 8.5$ Hz, 2H), 7.40 – 7.33 (m, 4H), 7.25 – 7.01 (m, 14H), 6.45 (s, 2H). 13C NMR (100 MHz, DMSO-d_6): δ 143.5, 141.1, 140.2, 140.1, 139.7, 135.5, 131.3, 130.5, 128.2, 127.9, 126.5, 125.8, 120.1, 117.9, 111.7, 101.5. HRMS (ESI-TOF) m/z: [M + H]$^+$ calcd for C$_{24}$H$_{26}$N$_4$, 448.2060; found 448.2065.

5,5’-(2,2-Diphenylethene-1,1-diyl)bis(1H-indole) (30). Compound 30 was obtained according to GP1. Column chromatography gave the product as a white-off solid (170 mg, 85% yield; mp 211.6–212.6 °C). 1H NMR (400 MHz, CDCl$_3$): δ 9.96 (s, 2H), 7.14 (s, 2H), 7.08 (s, 2H), 7.00 (d, $J = 8.4$ Hz, A part of AB system, 2H), 6.97 – 6.81 (m, 10H), 6.73 (d, $J = 8.4$ Hz, B part of AB system, 2H), 6.13 (s, 2H). 13C NMR (100 MHz, CDCl$_3$): δ 146.2, 144.9, 139.8, 139.6, 136.0, 132.2, 128.7, 128.4, 126.5, 126.3, 125.7, 124.2, 111.1, 102.7. HRMS (ESI-TOF) m/z: [M + H]$^+$ calcd for C$_{30}$H$_{23}$N$_2$, 567.2795; found 567.2775.

5-(4-(1,2,2-Triphenylvinyl)phenyl)-1H-indole (32). Compound 32 was obtained according to GP1. Column chromatography gave the product as a white-off solid (170 mg, 85% yield; mp 211.6–212.6 °C). 1H NMR (400 MHz, DMSO-d_6): δ 11.13 (s, 2H), 7.78 (s, 2H), 4.84 (d, $J = 7.2$ Hz, 4H), 7.43 (d, $J = 8.5$ Hz, 2H), 7.40 – 7.33 (m, 4H), 7.25 – 7.01 (m, 14H), 6.45 (s, 2H). 13C NMR (100 MHz, DMSO-d_6): δ 143.5, 141.1, 140.2, 140.1, 139.7, 135.5, 131.3, 130.5, 128.2, 127.9, 126.5, 125.8, 120.1, 117.9, 111.7, 101.5. HRMS (ESI-TOF) m/z: [M + H]$^+$ calcd for C$_{39}$H$_{26}$N, 567.2775.

General procedure for BIM-TPE = GP3

To a stirred solution of indole-modified (9) or indole-substituted (31) TPEs (2 equiv.) in CH$_2$Cl$_2$ (15 mL) aldehyde (1 equiv.) and a catalytic amount of Zn(CF$_3$COO)$_2$·xH$_2$O (0.01 equiv.) was added and the mixture was stirred at room temperature for 12 h. After completion of the reaction (monitored by TLC), the solvent was evaporated. The residue was purified by silica gel column chromatography (EtOAc/hexane) to give the desired compound.

3,3’-(Phenylmethylenylene)bis(5-(1,2,2-triphenylvinyl)-1H-indole) (36a). Compound 36a was obtained according to GP3. Column chromatography gave the product as yellow solid (52 mg, 93% yield; mp 163.4–163.4 °C). 1H NMR (400 MHz, CDCl$_3$): δ 7.50 (bs, 2H), 7.11 – 7.02 (m, 5H), 7.02 – 6.84 (m, 34H), 6.76 – 6.70 (m, 2H), 6.27 (d, $J = 1.8$ Hz, 2H), 5.20 (s, 1H). 13C NMR (100 MHz, CDCl$_3$): δ 144.5, 144.4, 144.3, 144.0, 142.2, 139.5, 135.3, 134.7, 131.44, 131.40, 131.36, 128.4, 128.0, 127.6, 127.5, 127.4, 126.6, 126.1, 125.9, 125.7, 125.6, 123.4, 123.2, 120.0, 110.1, 39.7. HRMS (ESI-TOF) m/z: [M + H]$^+$ calcd for C$_{65}$H$_{50}$N$_{5}$, 831.3734; found 831.3720.
3,3'-((4-Fluorophenyl)methylene)bis(5-(1,2,2-triphenyvinyl)-1H-indole) (36b). Compound 36b was obtained according to GP3. Column chromatography gave the product as yellow solid (51 mg, 89% yield; mp 148.9–149.9 ⁰C). ¹H NMR (400 MHz, Acetone-d₆): δ 9.86 (bs, NH, 2H), 7.15 (d, J = 8.4 Hz, 2H), 7.12 – 6.84 (m, 36H), 6.78 (dd, J = 8.4, 1.5 Hz, 2H), 6.65 (d, J = 2.0 Hz, 2H), 5.35 (s, 1H). ¹³C NMR (100 MHz, Acetone-d₆): δ 161.9 (d, J = 241.8 Hz), 145.5, 145.4, 145.3, 143.5, 141.8 (d, J = 2.4 Hz), 140.3, 136.8, 134.9, 132.1, 132.0, 131.9, 130.7 (d, J = 7.7 Hz), 128.4, 128.4, 128.3, 127.5, 127.0, 126.9, 126.8, 125.8, 124.7, 123.5, 119.9, 115.3 (d, J = 21.2 Hz), 111.4, 39.9. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₆₃H₄₆FN₂, 849.3640; found 849.3649.

3,3'-((4-Bromophenyl)methylene)bis(5-(1,2,2-triphenyvinyl)-1H-indole) (36c). Compound 36c was obtained according to GP3. Column chromatography gave the product as yellow solid (57 mg, 93% yield; mp 213.8–214.8 ⁰C). ¹H NMR (400 MHz, CDCl₃): δ 7.60 (bs, 2H), 7.18 (s, 2H), 7.14 (d, J = 8.4 Hz, 2H), 7.09 – 6.71 (m, 36H), 6.28 (s, 2H), 5.21 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 144.4, 144.2, 143.1, 142.1, 139.6, 135.3, 134.9, 131.4, 131.37, 131.35, 131.1, 130.1, 127.6, 127.5, 127.4, 126.4 126.13, 126.1, 125.84, 125.77, 123.4, 120.3, 119.6, 119.3, 110.2, 104.3, 39.2. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₆₃H₄₆BrN₂, 909.2839; found 909.2835.

3,3'-((4-Methoxyphenyl)methylene)bis(5-(1,2,2-triphenyvinyl)-1H-indole) (36d). Compound 36d was obtained according to GP3. Column chromatography gave the product as yellow solid (55 mg, 89% yield; mp 158.0–159.0 ⁰C). ¹H NMR (400 MHz, CDCl₃): δ 7.51 (s, 2H), 7.04 – 6.83 (m, 38H), 6.73 (d, J = 8.5 Hz, 2H), 6.60 (d, J = 8.5 Hz, 2H), 6.25 (d, J = 1.5 Hz, 2H), 5.16 (s, 1H), 3.71 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 157.6, 144.5, 144.3, 142.2, 139.5, 136.3, 135.3, 134.7, 131.5, 131.4, 129.3, 127.6, 127.5, 126.6, 126.1, 125.7, 125.6, 123.3, 123.2, 120.3, 113.4, 110.1, 55.2, 38.9 (1C signal overlaps). HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₆₃H₄₆O₂N₂, 861.3839; found 861.3824.

4-((Bis(5-(1,2,2-triphenyvinyl)-1H-indol-3-yl)methyl)phenyl)phenyl acetate (36e). Compound 36e was obtained according to GP3. Column chromatography gave the product as yellow solid (55 mg, 95% yield; mp 189.1–190.1 ⁰C). ¹H NMR (400 MHz, DMSO-d₆): δ 10.71 (d, J = 1.7 Hz, 2H), 7.16 – 6.82 (m, 38H), 6.77 – 6.54 (m, 4H), 5.14 (s, 1H), 2.26 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆): δ 169.1, 148.2, 144.0, 143.9, 143.7, 142.2, 142.0, 138.8, 135.0, 133.0, 130.7, 130.5, 128.5, 127.7, 127.6, 127.5, 126.2, 126.1, 125.9, 124.2, 123.6, 121.68, 121.65, 121.0, 118.1, 110.6, 38.2, 20.9. HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₆₅H₄₉N₂O₂, 889.3789; found 889.3780.

3,3'-((4-(Trifluoromethyl)phenyl)methylene)bis(5-(1,2,2-triphenyvinyl)-1H-indole) (36f). Compound 36f was obtained according to GP3. Column chromatography gave the product as yellow solid (51 mg, 92% yield; mp 207.2–208.2 ⁰C). ¹H NMR (400 MHz, DMSO-d₆): δ 10.76 (bs, 2H), 7.43 (d, J = 7.6 Hz, 2H), 7.16 – 6.82 (m, 36H), 6.71 (s, 2H), 6.67 (d, J = 8.4 Hz, 2H), 5.31 (s, 1H). ¹³C NMR (100 MHz, DMSO-d₆): δ 149.5, 144.0, 143.9, 143.7, 142.0, 138.9, 135.1, 133.2, 130.7, 130.6, 130.5, 128.3, 127.7, 127.6, 127.5, 126.1 (q, J = 31.9 Hz), 126.1, 126.1, 125.9, 124.8 – 124.6 (m), 124.5 (q, J = 273.3 Hz), 124.3, 123.8, 121.6, 119.3, 117.2, 110.7, 38.9 (3C signal overlaps). HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₆₅H₄₆F₂N₂, 899.3608; found 899.3617.

3,3'-((Phenylmethylene)bis(5-(4-(1,2,2-triphenyvinyl)phenyl)-1H-indole) (37a). Compound 37a was obtained according to GP3. Column chromatography gave the product as yellow solid (54 mg, 96% yield; mp 198.6–199.6 ⁰C). ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, J = 1.8 Hz, 2H), 7.53 (s, 2H), 7.40 – 7.17 (m, 14H), 7.15 – 6.96 (m, 34H), 5.89 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 144.0, 143.9, 143.9, 141.6, 140.8, 140.7, 140.2, 136.2, 132.3, 131.6, 131.5, 131.40, 131.36, 128.7, 128.3, 127.7, 127.63, 127.61, 127.60, 126.4, 126.3 (2C), 126.2, 124.3, 121.6, 120.1, 118.0, 111.2, 40.1 (2C signal overlaps). HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₇₅H₅₅N₂, 983.4360; found 983.4352.
3,3’-((4-Fluorophenyl)methylene)bis(5-{4-(1,2,2-triphenylvinyl)phenyl}-1H-indole) (37b). Compound 37b was obtained according to GP3. Column chromatography gave the product as yellow solid (49 mg, 93% yield; mp 175.9–176.9 °C). 1H NMR (400 MHz, CDCl3): δ 7.69 (bs, 2H), 7.42 (s, 2H), 7.28 (dd, J = 8.5, 1.6 Hz, 2H), 7.22 (d, J = 8.5 Hz, 2H), 7.21 – 7.12 (m, 8H), 7.07 – 6.90 (m, 32H), 6.85 (t, J = 8.7 Hz, 2H), 6.49 (d, J = 1.6 Hz, 2H), 5.78 (s, 1H). 13C NMR (100 MHz, CDCl3): δ 161.5 (d, J = 243.9 Hz), 144.0, 143.90, 143.87, 141.7, 140.8, 140.1, 139.6, 139.6, 136.2, 132.4, 131.7, 131.5, 131.4, 131.4, 130.1 (d, J = 7.7 Hz), 127.8, 127.7, 127.6, 127.4, 126.4, 126.3, 124.3, 121.8, 119.9, 117.9, 115.0 (d, J = 21.2 Hz), 111.3, 39.4. HRMS (ESI-TOF) m/z: [M + H]+ calcd for C75H54FN3; 1001.4266; found 1001.4261

3,3’-((4-Bromophenyl)methylene)bis(5-{4-(1,2,2-triphenylvinyl)phenyl}-1H-indole) (37c). Compound 37c was obtained according to GP3. Column chromatography gave the product as white-off solid (52 mg, 89% yield; mp 194.1–195.1 °C). 1H NMR (400 MHz, CDCl3): δ 7.75 (bs, 2H), 7.49 (s, 2H), 7.38 – 7.32 (m, 4H), 7.28 (d, J = 8.4 Hz, 4H), 7.24 (d, J = 8.4 Hz, 4H), 7.16 (d, J = 8.4 Hz, 2H), 7.12 – 6.97 (m, 32H), 6.54 (d, J = 1.3 Hz, 2H), 5.82 (s, 1H). 13C NMR (100 MHz, CDCl3): δ 144.0, 143.91, 143.90, 143.1, 141.7, 140.8, 140.8, 140.1, 136.2, 132.5, 131.7, 131.5, 131.4, 130.5, 127.8, 127.7, 127.7, 127.3, 126.4, 126.4, 124.3, 121.8, 120.0, 119.4, 117.8, 111.4, 39.6 (3C signal overlaps). HRMS (ESI-TOF) m/z: [M + H]+ calcd for C75H54BrN3; 1061.3465; found 1061.3466

3,3’-((4-Methoxyphenyl)methylene)bis(5-{4-(1,2,2-triphenylvinyl)phenyl}-1H-indole) (37d). Compound 37d was obtained according to GP3. Column chromatography gave the product as yellow solid (52 mg, 92% yield; mp 180.0–181.0 °C). 1H NMR (400 MHz, CDCl3): δ 7.47 (bs, 2H), 7.46 (s, 2H), 7.31 – 7.22 (m, 4H), 7.21 – 7.13 (m, 6H), 7.06 – 6.88 (m, 34H), 6.72 (d, J = 8.6 Hz, 2H), 6.54 (s, 2H), 5.78 (s, 1H), 3.68 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 158.0, 144.0, 143.91, 143.90, 141.6, 140.8, 140.7, 140.2, 136.3, 136.2, 132.2, 131.6, 131.6, 131.5, 131.39, 131.36, 129.6, 127.7, 127.6, 127.6, 127.5, 126.4, 126.3 (2C), 124.2, 121.6, 120.4, 118.1, 113.6, 111.2, 55.3, 39.2 (1C signal overlaps). HRMS (ESI-TOF) m/z: [M + H]+ calcd for C67H57N2O; 1013.4465; found 1013.4474

4-(Bis(5-{4-(1,2,2-triphenylvinyl)phenyl}-1H-indol-3-yl)methyl)phenyl acetate (37e). Compound 37e was obtained according to GP3. Column chromatography gave the product as yellow solid (52 mg, 95% yield; mp 201.3–202.3 °C). 1H NMR (400 MHz, CDCl3): δ 7.68 (bs, 2H), 7.43 (s, 2H), 7.27 (dd, J = 8.5, 1.4 Hz, 2H), 7.21 – 7.14 (m, 8H), 7.07 – 6.90 (m, 36H), 6.87 (d, J = 8.5 Hz, 2H), 5.78 (s, 1H), 2.18 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 169.7, 149.0, 144.0, 143.91, 143.90, 141.6, 141.5, 140.8, 140.7, 140.1, 136.2, 132.3, 131.7, 131.5, 131.41, 131.40, 129.6, 127.8, 127.7, 127.6, 127.4, 126.39, 126.37, 126.3, 124.5, 121.7, 121.2, 119.7, 117.9, 111.3, 39.4, 21.2 (1C signal overlaps). HRMS (ESI-TOF) m/z: [M + H]+ calcd for C76H57N2O2; 1041.4415; found 1041.4403

3,3’-((4-(Trifluoromethyl)phenyl)methylene)bis(5-{4-(1,2,2-triphenylvinyl)phenyl}-1H-indole) (37f). Compound 37f was obtained according to GP3. Column chromatography gave the product as yellow solid (50 mg, 89% yield; mp 185.3–186.3 °C). 1H NMR (400 MHz, CDCl3): δ 7.85 (d, J = 1.8 Hz, 2H), 7.51 (d, J = 8.2 Hz, 2H), 7.49 (s, 2H), 7.43 (d, J = 8.2 Hz, 2H), 7.38 (dd, J = 8.5, 1.4 Hz, 2H), 7.33 (d, J = 8.5 Hz, 2H), 7.27 – 7.21 (m, 4H), 7.14 – 6.98 (m, 34H), 6.61 (d, J = 1.7 Hz, 2H), 5.95 (s, 1H). 13C NMR (100 MHz, CDCl3): δ 148.2, 148.0, 144.0, 143.9, 141.8, 140.9, 140.0, 136.2, 132.6, 131.7, 131.5, 131.43, 131.41, 129.1, 128.6 (q, J = 32.3 Hz), 127.8, 127.7, 127.69, 127.3, 126.5, 126.4, 126.38, 125.3 (q, J = 4.1 Hz), 124.5 (q, J = 272.2 Hz), 124.4, 121.9, 119.1, 117.8, 111.5, 40.0 (1C signal overlaps). HRMS (ESI-TOF) m/z: [M + H]+ calcd for C76H54F3N2; 1051.4234; found 1051.4212.
2. NMR Spectra of Compounds

Figure S1. 1H and 13C (APT) NMR of 2
Figure S2. 1H and 13C (APT) NMR of 4
Figure S3. 1H and 13C (APT) NMR of 5
Figure S4. 1H and 13C (APT) NMR of 6
Figure S5. 1H and 13C (APT) NMR of 7
Figure S6. 1H and 13C (APT) NMR of 9
Figure S7. 1H and 13C (APT) NMR of 10
Figure S8. 1H and 13C (APT) NMR of 11
Figure S9. 1H and 13C (APT) NMR of 12
Figure S10. 1H and 13C (APT) NMR of 13
Figure S11. 1H and 13C (APT) NMR of 14
Figure S12. 1H and 13C (APT) NMR of 15
Figure S13. 1H and 13C (APT) NMR of 17
Figure S14. \(^1\)H and \(^{13}\)C (APT) NMR of 18
Figure S15. 1H and 13C (APT) NMR of 19
Figure S16. 1H and 13C (APT) NMR of 21
Figure S17. 1H and 13C (APT) NMR of 22
Figure S18. 1H and 13C (APT) NMR of 23
Figure S19. 1H and 13C (APT) NMR of 24
Figure S20. 1H and 13C (APT) NMR of 26
Figure S21. 1H and 13C (APT) NMR of 28
Figure S22. 1H and 13C (APT) NMR of 29
Figure S23. 1H and 13C (APT) NMR of 30
Figure S24. 1H and 13C (APT) NMR of 32
Figure S25. 1H and 13C (APT) NMR of 33
Figure S26. 1H and 13C (APT) NMR of 34
Figure S27. 1H and 13C (APT) NMR of 36a
Figure S28. 1H and 13C (APT) NMR of 36b
Figure S29. 1H and 13C (APT) NMR of 36c
Figure S30. 1H and 13C (APT) NMR of 36d
Figure S31. 1H and 13C (APT) NMR of 36e
Figure S32. 1H and 13C NMR of 36f
Figure S33. 1H and 13C (APT) NMR of 37a
Figure S34. 1H and 13C (APT) NMR of 37b
Figure S35. 1H and 13C (APT) NMR of 37c
Figure S36. 1H and 13C (APT) NMR of 37d
Figure S37. 1H and 13C (APT) NMR of 37e
Figure S38. 1H and 13C NMR of 37f
3. HRMS Spectra

3.1. HRMS spectra of 9

3.2. HRMS spectra of 10

3.3. HRMS spectra of 14
3.4. HRMS spectra of 15

3.5. HRMS spectra of 19

3.6. HRMS spectra of 21
3.7. HRMS spectra of 22

3.8. HRMS spectra of 23

3.9. HRMS spectra of 26
3.10. HRMS spectra of 28

3.11. HRMS spectra of 29

3.12. HRMS spectra of 30
3.13. HRMS spectra of 32

3.14. HRMS spectra of 33

3.15. HRMS spectra of 34
3.16. HRMS spectra of 36a

3.17. HRMS spectra of 36b

3.18. HRMS spectra of 36c
3.19. HRMS spectra of 36d

3.20. HRMS spectra of 36e

3.21. HRMS spectra of 36f
3.22. HRMS spectra of 37a

3.23. HRMS spectra of 37b

3.24. HRMS spectra of 37c
3.25. HRMS spectra of 37d

3.26. HRMS spectra of 37e

3.27. HRMS spectra of 37f
4. AIE Characteristics

Figure S39. (a) Fluorescence spectra of 10 in THF and THF–water mixtures with different water fractions; (b) Plot of peak fluorescence intensities of 10 in THF–water with different water fractions (f_w). Luminogen concentration: 20 μM. Photograph of 10 in THF–water mixtures ($f_w = 0–98\%$) with different water fractions (20 μM) under 365 nm UV illumination. Photograph of 10 in water–THF mixed solution ($f_w = 0–98\%$) under a UV lamp. (c) DLS particle size-distribution profile of 10 in THF–water mixture (2: 98, v: v); (d-f) SEM image.
Figure S40. (a) Fluorescence spectra of 14 in THF and THF–water mixtures with different water fractions; (b) Plot of peak fluorescence intensities of 14 in THF–water with different water fractions (f_w). Luminogen concentration: 20 µM. Photograph of 14 in THF–water mixtures ($f_w = 0$–98%) with different water fractions (20 µM) under 365 nm UV illumination. Photograph of 14 in water–THF mixed solution ($f_w = 0$–98%) under a UV lamp. (c) DLS particle size-distribution profile of 14 in THF–water mixture (2: 98, v: v); (d-f) SEM image.
Figure S41. (a) Fluorescence spectra of 15 in THF and THF–water mixtures with different water fractions; (b) Plot of peak fluorescence intensities of 15 in THF–water with different water fractions \(f_w\). Luminogen concentration: 20 \(\mu\)M. Photograph of 15 in THF–water mixtures \(f_w = 0–98\%\) with different water fractions (20 \(\mu\)M) under 365 nm UV illumination. Photograph of 15 in water–THF mixed solution \(f_w = 0–98\%\) under a UV lamp. (c) DLS particle size-distribution profile of 15 in THF–water mixture (2: 98, v: v); (d-f) SEM image.
Figure S42. (a) Fluorescence spectra of 21 in THF and THF–water mixtures with different water fractions; (b) Plot of peak fluorescence intensities of 21 in THF–water with different water fractions (f_w). Luminogen concentration: 20 μM. Photograph of 21 in THF–water mixtures ($f_w = 0–98\%$) with different water fractions (20 μM) under 365 nm UV illumination. Photograph of 21 in water–THF mixed solution ($f_w = 0–98\%$) under a UV lamp. (c) DLS particle size–distribution profile of 21 in THF–water mixture (2: 98, v: v); (d-f) SEM image.
Figure S43. (a) Fluorescence spectra of 22 in THF and THF–water mixtures with different water fractions; (b) Plot of peak fluorescence intensities of 22 in THF–water with different water fractions (f_w). Luminogen concentration: 20 μM. Photograph of 22 in THF–water mixtures ($f_w = 0–98\%$) with different water fractions (20 μM) under 365 nm UV illumination. Photograph of 22 in water–THF mixed solution ($f_w = 0–98\%$) under a UV lamp. (c) DLS particle size-distribution profile of 22 in THF–water mixture (2: 98, v: v); (d-f) SEM image.
Figure S44. (a) Fluorescence spectra of 28 in THF and THF–water mixtures with different water fractions; (b) Plot of peak fluorescence intensities of 28 in THF–water with different water fractions (f_w). Luminogen concentration: 20 μM. Photograph of 28 in THF–water mixtures ($f_w = 0–98\%$) with different water fractions (20 μM) under 365 nm UV illumination. Photograph of 28 in water–THF mixed solution ($f_w = 0–98\%$) under a UV lamp. (c) DLS particle size-distribution profile of 28 in THF–water mixture (2: 98, v: v); (d-f) SEM image.
Figure S45. (a) Fluorescence spectra of 29 in THF and THF–water mixtures with different water fractions; (b) Plot of peak fluorescence intensities of 29 in THF–water with different water fractions (f_w). Luminogen concentration: 20 µM. Photograph of 29 in THF–water mixtures ($f_w = 0$–98%) with different water fractions (20 µM) under 365 nm UV illumination. Photograph of 29 in water–THF mixed solution ($f_w = 0$–98%) under a UV lamp. (c) DLS particle size-distribution profile of 29 in THF–water mixture (2: 98, v: v); (d-f) SEM image.
Figure S46. (a) Fluorescence spectra of 30 in THF and THF–water mixtures with different water fractions; (b) Plot of peak fluorescence intensities of 30 in THF–water with different water fractions (f_w). Luminogen concentration: 20 μM. Photograph of 30 in THF–water mixtures ($f_w = 0–98\%$) with different water fractions (20 μM) under 365 nm UV illumination. Photograph of 30 in water–THF mixed solution ($f_w = 0–98\%$) under a UV lamp. (c) DLS particle size-distribution profile of 30 in THF–water mixture (2: 98, v: v); (d-f) SEM image.
Figure S47. (a) Fluorescence spectra of 32 in THF and THF–water mixtures with different water fractions; (b) Plot of peak fluorescence intensities of 32 in THF–water with different water fractions (f_w). Luminogen concentration: 20 μM. Photograph of 32 in THF–water mixtures ($f_w = 0–98\%$) with different water fractions (20 μM) under 365 nm UV illumination. Photograph of 32 in water–THF mixed solution ($f_w = 0–98\%$) under a UV lamp. (c) DLS particle size-distribution profile of 32 in THF–water mixture (2: 98, v: v); (d-f) SEM image.
Figure S48. (a) Fluorescence spectra of 33 in DMSO and DMSO–water mixtures with different water fractions; (b) Plot of peak fluorescence intensities of 33 in DMSO–water with different water fractions (f_w). Luminogen concentration: 20 µM. Photograph of 33 in DMSO–water mixtures (f_w = 0–98%) with different water fractions (20 µM) under 365 nm UV illumination. Photograph of 33 in water–DMSO mixed solution (f_w = 0–98%) under a UV lamp. (c) DLS particle size-distribution profile of 33 in DMSO–water mixture (2: 98, v: v); (d-f) SEM image.
Figure S49. (a) Fluorescence spectra of 34 in DMSO and DMSO–water mixtures with different water fractions; (b) Plot of peak fluorescence intensities of 34 in DMSO–water with different water fractions (f_w). Luminogen concentration: 20 μM. Photograph of 34 in DMSO–water mixtures ($f_w = 0–98\%$) with different water fractions (20 μM) under 365 nm UV illumination. Photograph of 34 in water–DMSO mixed solution ($f_w = 0–98\%$) under a UV lamp. (c) DLS particle size-distribution profile of 34 in DMSO–water mixture (2: 98, v: v); (d-f) SEM image.
Figure S50. (a) Fluorescence spectra of 36a in THF and THF–water mixtures with different water fractions; (b) Plot of peak fluorescence intensities of 36a in THF–water with different water fractions (f_w). Luminogen concentration: 20 μM. Photograph of 36a in THF–water mixtures ($f_w = 0$–98%) with different water fractions (20 μM) under 365 nm UV illumination. Photograph of 36a in water–THF mixed solution ($f_w = 0$–98%) under a UV lamp. (c) DLS particle size-distribution profile of 36a in THF–water mixture (5: 95, v: v); (d-f) SEM image.
Figure S51. (a) Fluorescence spectra of 36b in THF and THF–water mixtures with different water fractions; (b) Plot of peak fluorescence intensities of 36b in THF–water with different water fractions (f_w). Luminogen concentration: 20 μM. Photograph of 36b in THF–water mixtures ($f_w = 0–98\%$) with different water fractions (20 μM) under 365 nm UV illumination. Photograph of 36b in water–THF mixed solution ($f_w = 0–98\%$) under a UV lamp. (c) DLS particle size-distribution profile of 36b in THF–water mixture (5: 95, v: v); (d-f) SEM image.
Figure S52. (a) Fluorescence spectra of 36c in THF and THF–water mixtures with different water fractions; (b) Plot of peak fluorescence intensities of 36c in THF–water with different water fractions (f_w). Luminogen concentration: 20 μM. Photograph of 36c in THF–water mixtures ($f_w = 0–98\%$) with different water fractions (20 μM) under 365 nm UV illumination. Photograph of 36c in water–THF mixed solution ($f_w = 0–98\%$) under a UV lamp. (c) DLS particle size-distribution profile of 36c in THF–water mixture (5: 95, v: v); (d-f) SEM image.
Figure S53. (a) Fluorescence spectra of 36d in THF and THF–water mixtures with different water fractions; (b) Plot of peak fluorescence intensities of 36d in THF–water with different water fractions (f_w). Luminogen concentration: 20 µM. Photograph of 36d in THF–water mixtures ($f_w = 0–98\%$) with different water fractions (20 µM) under 365 nm UV illumination. Photograph of 36d in water–THF mixed solution ($f_w = 0–98\%$) under a UV lamp. (c) DLS particle size–distribution profile of 36d in THF–water mixture (5: 95, v: v); (d-f) SEM image.
Figure S54. (a) Fluorescence spectra of \(36e\) in THF and THF–water mixtures with different water fractions; (b) Plot of peak fluorescence intensities of \(36e\) in THF–water with different water fractions \(f_w\). Luminogen concentration: 20 \(\mu\)M. Photograph of \(36e\) in THF–water mixtures \((f_w = 0–98\%)\) with different water fractions (20 \(\mu\)M) under 365 nm UV illumination. Photograph of TFTB in water–THF mixed solution \((f_w = 0–98\%)\) under a UV lamp. (c) DLS particle size-distribution profile of \(36e\) in THF–water mixture (2: 98, v: v); (d-f) SEM image.
Figure S55. (a) Fluorescence spectra of 36g in THF and THF–water mixtures with different water fractions; (b) Plot of peak fluorescence intensities of 36g in THF–water with different water fractions (f_w). Luminogen concentration: 20 µM. Photograph of 36g in THF–water mixtures ($f_w = 0–98\%$) with different water fractions (20 µM) under 365 nm UV illumination. Photograph of 36g in water–THF mixed solution ($f_w = 0–98\%$) under a UV lamp. (c) DLS particle size-distribution profile of 36g in THF–water mixture (2: 98, v: v); (d-f) SEM image.
Figure S56. (a) Fluorescence spectra of 37a in THF and THF–water mixtures with different water fractions; (b) Plot of peak fluorescence intensities of 37a in THF–water with different water fractions (f_w). Luminogen concentration: 20 μM. Photograph of 37a in THF–water mixtures ($f_w = 0–98\%$) with different water fractions (20 μM) under 365 nm UV illumination. Photograph of 37a in water–THF mixed solution ($f_w = 0–98\%$) under a UV lamp. (c) DLS particle size-distribution profile of 37a in THF–water mixture (5: 95, v: v); (d-f) SEM image.
Figure S57. (a) Fluorescence spectra of 37b in THF and THF–water mixtures with different water fractions; (b) Plot of peak fluorescence intensities of 37b in THF–water with different water fractions (f_w). Luminogen concentration: 20 μM. Photograph of 37b in THF–water mixtures ($f_w = 0–98\%$) with different water fractions (20 μM) under 365 nm UV illumination. Photograph of 37b in water–THF mixed solution ($f_w = 0–98\%$) under a UV lamp. (c) DLS particle size-distribution profile of 37b in THF–water mixture (5: 95, v: v); (d-f) SEM image.
Figure S58. (a) Fluorescence spectra of 37c in THF and THF–water mixtures with different water fractions; (b) Plot of peak fluorescence intensities of 37c in THF–water with different water fractions (f_w). Luminogen concentration: 20 μM. Photograph of 37c in THF–water mixtures ($f_w = 0–98\%$) with different water fractions (20 μM) under 365 nm UV illumination. Photograph of 37c in water–THF mixed solution ($f_w = 0–98\%$) under a UV lamp. (c) DLS particle size-distribution profile of 37c in THF–water mixture (10: 90, v: v); (d-f) SEM image.
Figure S59. (a) Fluorescence spectra of 37d in THF and THF–water mixtures with different water fractions; (b) Plot of peak fluorescence intensities of 37d in THF–water with different water fractions (f_w). Luminogen concentration: 20 µM. Photograph of 37d in THF–water mixtures ($f_w = 0–98\%$) with different water fractions (20 µM) under 365 nm UV illumination. Photograph of 37d in water–THF mixed solution ($f_w = 0–98\%$) under a UV lamp. (c) DLS particle size-distribution profile of 37d in THF–water mixture (5: 95, v: v); (d-f) SEM image.
Figure S60. (a) Fluorescence spectra of 37e in THF and THF–water mixtures with different water fractions; (b) Plot of peak fluorescence intensities of 37e in THF–water with different water fractions \(f_w \). Luminogen concentration: 20 μM. Photograph of 37e in THF–water mixtures \(f_w = 0–98\% \) with different water fractions (20 μM) under 365 nm UV illumination. Photograph of 37e in water–THF mixed solution \(f_w = 0–98\% \) under a UV lamp. (c) DLS particle size-distribution profile of 37e in THF–water mixture (5: 95, v: v); (d-f) SEM image.
Figure S61. (a) Fluorescence spectra of 37g in THF and THF–water mixtures with different water fractions; (b) Plot of peak fluorescence intensities of 37g in THF–water with different water fractions (f_w). Luminogen concentration: 20 µM. Photograph of 37g in THF–water mixtures (f_w = 0–98%) with different water fractions (20 µM) under 365 nm UV illumination. Photograph of 37g in water–THF mixed solution (f_w = 0–98%) under a UV lamp. (c) DLS particle size-distribution profile of 37g in THF–water mixture (2: 98, v: v); (d-f) SEM image.
5. Theoretical Calculations

All calculations were carried out using density functional theory (DFT) at the B3LYP (Becke 3-parameter-Lee Yang-Parr) with the basis set of 6-311G (d,p).

Cartesian coordinates and total energy of optimized structure

![Figure S62. Optimized geometry by semi-empirical calculation using PM6 of compound 9](image)

Table S1. Atom coordinates and total energy of the optimized geometry of compound 9

Total Energy: -1134.366945 hartrees zero imaginary frequency

Atom	X	Y	Z
C1	0.6777816	5.0240045	-1.0658893
C2	-0.2405919	4.3429463	-1.8715496
C3	-0.5758337	3.0169453	-1.5884935
C4	0.0181148	2.3622129	-0.4981403
C5	0.9386573	3.0466287	0.3106366
C6	1.2638177	4.3749187	0.0252412
C7	-0.3457479	0.9559749	-0.1941492
C8	0.5511372	0.0529959	-0.2321677
C9	-1.7740074	0.7658964	0.1552049
C10	1.9700396	0.1593065	-0.6146205
C11	0.2136778	-1.4564997	0.1041937
C12	2.9935133	-0.2240759	0.2670708
C13	4.3303101	-0.0403291	-0.0930542
C14	4.6545163	0.5191890	-1.3332870
Table S2. Atomic charges of compound 9 calculated by B3LYP/6-31G (d,p) method

Atom Label	Natural charge	Mulliken charge	Electrostatic charge
C1	-0.240	-0.126	-0.180
C2	-0.230	-0.136	-0.037
C3	-0.219	-0.158	-0.357
C4	-0.056	+0.078	+0.442
C5	-0.216	-0.149	-0.256
C6	-0.227	-0.135	-0.099
C7	-0.020	-0.074	-0.381
C8	-0.006	-0.037	-0.176
C9	-0.057	+0.084	+0.453
C10	-0.059	+0.074	+0.465
---	---	---	---
C11	-0.083	+0.075	+0.239
C12	-0.215	-0.158	-0.352
C13	-0.231	-0.137	-0.050
C14	-0.239	-0.126	-0.187
C15	-0.229	-0.136	-0.081
C16	-0.214	-0.152	-0.305
C17	-0.221	-0.186	-0.240
C18	-0.262	-0.166	-0.268
C19	+0.159	+0.305	+0.161
C20	-0.095	+0.116	+0.224
C21	-0.192	-0.235	-0.385
C22	-0.220	-0.160	-0.368
C23	-0.231	-0.137	-0.032
C24	-0.240	-0.126	-0.186
C25	-0.228	-0.135	-0.090
C26	-0.213	-0.149	-0.264
C28	-0.036	+0.043	-0.095
C29	-0.304	-0.219	-0.369
H30	+0.235	+0.125	+0.125
H31	+0.235	+0.127	+0.111
H32	+0.240	+0.133	+0.149
H33	+0.243	+0.134	+0.135
H34	+0.236	+0.127	+0.121
H35	+0.242	+0.136	+0.149
H36	+0.235	+0.126	+0.114
H37	+0.234	+0.125	+0.128
H38	+0.235	+0.127	+0.119
H39	+0.243	+0.136	+0.150
H40	+0.243	+0.133	+0.132
Figure S63. Optimized geometry by semi-empirical calculation using PM6 of compound 32

Table S3. Atom coordinates and total energy of the optimized geometry of compound 32

Total Energy: -1365.423022 hartrees | zero imaginary frequency

Atom	X	Y	Z		
H41	+0.235	+0.123	+0.164		
H42	+0.245	+0.137	+0.191		
H43	+0.241	+0.134	+0.152		
H44	+0.235	+0.126	+0.110		
H45	+0.234	+0.125	+0.126		
H46	+0.235	+0.127	+0.118		
H47	+0.243	+0.136	+0.147		
H48	+0.430	+0.328	+0.343		
H49	+0.232	+0.151	+0.168		
H50	+0.243	+0.131	+0.188		
N27	-0.572	-0.687	-0.365		
1	C	C1	0.8814618	6.4703347	-1.5904399
----	----	------	-----------	-----------	-------------
2	C	C2	0.5157586	6.1826560	-0.2714090
3	C	C3	0.2239661	4.8701473	0.1064726
4	C	C4	0.3046678	3.8340826	-0.8380097
5	C	C5	0.6710689	4.1243504	-2.1615342
6	C	C6	0.9575126	5.4402691	-2.5331987
7	C	C7	-0.0188495	2.4437710	-0.4347585
8	C	C8	-1.3833211	2.2733120	0.1213379
9	C	C9	0.8537592	1.4217018	-0.5633688
10	C	C10	0.5203782	0.0265522	-0.1878677
11	C	C11	2.2281437	1.5969836	-1.0931775
12	C	C12	-1.5663460	1.7547025	1.4128978
13	C	C13	-2.8556975	1.6150417	1.9323095
14	C	C14	-3.9661587	1.9888736	1.1690459
15	C	C15	-3.7854424	2.5057498	-0.1180556
16	C	C16	-2.4992570	2.6519090	-0.6424500
17	C	C17	1.2930092	-0.6410361	0.7759142
18	C	C18	0.9924554	-1.9573711	1.1261890
19	C	C19	-0.0812723	-2.6245964	0.5144041
20	C	C20	-0.8502195	-1.9571965	-0.4524641
21	C	C21	-0.5516105	-0.6397909	-0.8017832
22	C	C22	2.6354760	0.8724632	-2.2250754
23	C	C23	3.9321054	1.0247709	-2.7212869
24	C	C24	4.8297613	1.8911915	-2.0896938
25	C	C25	4.4268433	2.6105729	-0.9579453
26	C	C26	3.1298553	2.4669683	-0.4605912
27	C	C27	-0.4026109	-0.0419891	0.8875632
28	C	C28	0.6141410	-5.0129721	0.7754174
29	C	C29	0.3774419	-6.3334998	1.1066166
30	C	C30	-0.9134971	-6.6640250	1.5650697
31	C	C31	-1.9520506	-5.6781959	1.6857026
32	C	C32	-1.6767281	-4.3444441	1.3373338
33	C	C33	-1.4520031	-7.8962916	1.9727069
34	C	C34	-2.7900571	-7.6902887	2.3413568
35	C	C35	-3.1239947	-6.3564200	2.1763057
36	H	H36	1.1066353	7.4938444	-1.8823393
37	H	H37	0.4558533	6.9837975	0.4631832
38	H	H38	-0.0703699	4.6471864	1.1311035
39	H	H39	0.7403575	3.3207176	-2.8935565
40	H	H40	1.2435689	5.6622968	-3.5599273
41	H	H41	-0.7023389	1.4527409	2.0035782
42	H	H42	-2.9945931	1.2110044	2.9338128
43	H	H43	-4.9691032	1.8777063	1.5755966
44	H	H44	-4.6493151	2.7967935	-0.7132124
45	H	H45	-2.3580501	3.0622205	-1.6415032
46	H	H46	2.1296877	-0.1274709	1.2486729
47	H	H47	1.5877227	-2.4686860	1.8814923
48	H	H48	-1.6808265	-2.4723143	-0.9336497
49	H	H49	-1.1554948	-0.1225028	-1.5468713
50	H	H50	1.9390524	0.1900856	-2.7107095
51	H	H51	4.2447443	0.4646115	-3.6008426
52	H	H52	5.8396651	2.0068597	-2.4768059
53	H	H53	5.1238765	3.2870751	-0.4680950
54	H	H54	2.8128139	3.0351442	0.4129985
55	H	H55	1.5963965	-4.7110967	0.4112710
56	H	H56	1.1497774	-7.0901360	1.0181726
57	H	H57	-2.4537700	-3.5878733	1.4284187
58	H	H58	-0.9650576	-8.7690343	1.9973929
59	H	H59	-3.4122027	-8.5033551	2.6888915
60	H	H60	-4.0688642	-5.8911790	2.3711939

Table S4. Atomic charges of compound 32 calculated by B3LYP/6-31G (d,p) method
Atom Label	Natural charge	Mulliken charge	Electrostatic charge
C1	-0.239	-0.126	-0.181
C2	-0.230	-0.136	-0.039
C3	-0.217	-0.159	-0.357
C4	-0.059	+0.078	+0.450
C5	-0.214	-0.150	-0.267
C6	-0.228	-0.136	-0.094
C7	-0.014	-0.054	-0.333
C8	-0.059	+0.080	+0.477
C9	-0.010	-0.060	-0.266
C10	-0.066	+0.085	+0.339
C11	-0.059	+0.080	+0.418
C12	-0.213	-0.151	-0.289
C13	-0.229	-0.137	-0.086
C14	-0.239	-0.126	-0.187
C15	-0.231	-0.137	-0.033
C16	-0.217	-0.158	-0.373
C17	-0.211	-0.167	-0.308
C18	-0.219	-0.172	-0.151
C19	-0.047	+0.069	+0.122
C20	-0.215	-0.171	-0.243
C21	-0.208	-0.159	-0.187
C22	-0.217	-0.159	-0.345
C23	-0.230	-0.136	-0.042
C24	-0.239	-0.126	-0.181
C25	-0.228	-0.136	-0.095
C26	-0.214	-0.151	-0.264
C27	-0.071	+0.060	+0.110
----	----	----	----
C28	-0.227	-0.188	-0.185
C29	-0.260	-0.164	-0.290
C30	+0.157	+0.304	+0.191
C31	-0.094	+0.120	+0.259
C32	-0.204	-0.246	-0.393
C34	-0.034	+0.045	-0.058
C35	-0.307	-0.221	-0.418
C36			
C37			
C38			
C39			
C40			
C41			
C42			
C43			
C44			
C45			
C46			
C47			
C48			
C49			
C50			
C51			
C52			
C53			
C54			
C55			
C56			
C57			
Figure S64. Optimized geometry by semi-empirical calculation using PM6 of compound 33

Table S5. Atom coordinates and total energy of the optimized geometry of compound 33

Total Energy -1728.04409 hartrees zero imaginary frequency

Atom	X	Y	Z
C1	-1.3073512	3.4849104	0.2300982
C2	-1.5960414	2.0723415	0.5783037
C3	-2.8791515	1.8726350	1.2947749
C4	-0.7626883	1.0565680	0.2681826
C5	-1.0388566	-0.3529492	0.636763
C6	0.5063039	1.2542624	-0.4728420
C7	-1.1928935	-0.7230376	1.9816060
C8	-1.4375006	-2.0549500	2.3183705
C9	-1.5316721	-3.0327340	1.3153416
C10	-1.3755909	-2.6612957	-0.0301719
C11	-1.1287370	-1.3305549	-0.3673311
C12	1.7204522	0.8399182	0.0976385
C13	2.9170726	1.0116259	-0.5986221
C14	2.9147024	1.5933900	-1.8767914
C15	1.6991581	2.0028391	-2.4482406
C16	0.5026977	1.8357851	-1.7504379
C17	4.1832273	1.7718867	-2.6166322
C18	-1.7940656	-4.4439367	1.6730001
C19	-0.8772986	-5.4451580	1.2366273
C20	-1.0647680	-6.7808401	1.5370547
C21	-2.2050135	-7.1199173	2.2926184
Table S6. Atomic charges of compound 33 calculated by B3LYP/6-31G (d,p) method

Atom Label	Natural charge	Mulliken charge	Electrostatic charge
C1	-0.058	+0.080	+0.506
C2	-0.016	-0.061	-0.368
---	---	---	---
C3	-0.058	+0.081	+0.450
C4	-0.008	-0.058	-0.240
C5	-0.065	+0.087	+0.387
C6	-0.066	+0.088	+0.359
C7	-0.208	-0.160	-0.230
C8	-0.215	-0.170	-0.219
C9	-0.048	+0.068	+0.112
C10	-0.219	-0.172	-0.135
C11	-0.210	-0.168	-0.339
C12	-0.210	-0.169	-0.298
C13	-0.218	-0.172	-0.168
C14	-0.048	+0.069	+0.119
C15	-0.217	-0.172	-0.201
C16	-0.207	-0.160	-0.236
C17	-0.071	+0.060	+0.096
C18	-0.071	+0.060	+0.088
C19	-0.227	-0.188	-0.178
C20	-0.260	-0.164	-0.283
C21	+0.157	+0.305	+0.186
C22	-0.094	+0.119	+0.240
C23	-0.204	-0.245	-0.367
C24	-0.204	-0.245	-0.385
C25	-0.094	+0.120	+0.253
C26	+0.157	+0.305	+0.199
C27	-0.261	-0.164	-0.299
C28	-0.227	-0.189	-0.176
C30	-0.034	+0.044	-0.065
C31	-0.307	-0.221	-0.405
C32	-0.307	-0.221	-0.403
---	---	---	---
C33	-0.034	+0.045	-0.074
C35	-0.217	-0.158	-0.364
C36	-0.230	-0.136	-0.034
C37	-0.239	-0.126	-0.185
C38	-0.228	-0.136	-0.093
C39	-0.214	-0.150	-0.269
C40	-0.218	-0.158	-0.391
C41	-0.230	-0.136	-0.027
C42	-0.239	-0.126	-0.184
C43	-0.228	-0.136	-0.097
C44	-0.214	-0.150	-0.285
H45	+0.243	+0.135	+0.144
H46	+0.241	+0.132	+0.145
H47	+0.240	+0.131	+0.127
H48	+0.241	+0.134	+0.151
H49	+0.241	+0.134	+0.140
H50	+0.240	+0.131	+0.137
H51	+0.240	+0.131	+0.137
H52	+0.243	+0.135	+0.144
H53	+0.241	+0.130	+0.129
H54	+0.235	+0.123	+0.161
H55	+0.241	+0.132	+0.177
H56	+0.241	+0.131	+0.176
H57	+0.235	+0.123	+0.164
H58	+0.241	+0.131	+0.133
H59	+0.430	+0.328	+0.352
H60	+0.233	+0.151	+0.163
H61	+0.242	+0.130	+0.197
H62	+0.242	+0.130	+0.196
---	---	---	---
H63	+0.233	+0.151	+0.166
H64	+0.430	+0.328	+0.355
H65	+0.241	+0.134	+0.148
H66	+0.235	+0.127	+0.111
H67	+0.235	+0.126	+0.126
H68	+0.236	+0.128	+0.119
H69	+0.244	+0.137	+0.147
H70	+0.241	+0.135	+0.153
H71	+0.235	+0.127	+0.111
H72	+0.234	+0.125	+0.126
H73	+0.236	+0.128	+0.122
H74	+0.244	+0.137	+0.145
N29	-0.572	-0.686	-0.396
N34	-0.572	-0.687	-0.404

Figure S65. Optimized geometry by semi-empirical calculation using PM6 of compound 34
Table S7. Atom coordinates and total energy of the optimized geometry of compound 34

Total Energy -2453.286868 hartrees; zero imaginary frequency

Cartesian Coordinates (Angstroms)

Atom	X	Y	Z	
1 C	-0.0147141	1.8426653	-0.4240910	
2 C	-0.3599736	0.4790826	0.0197733	
3 C	-1.6225481	0.3929331	0.7768836	
4 C	0.4101999	-0.5905077	-0.2453572	
5 C	0.0663977	-1.9561468	0.1925972	
6 C	1.6724243	-0.4980444	-1.0029479	
7 C	0.6308348	-2.4808482	1.3558773	
8 C	0.3222005	-3.7747886	1.7564355	
9 C	-0.5474492	-4.5596594	0.9947094	
10 C	-1.1080964	-4.0318869	-0.1713839	
11 C	-0.8048590	-2.7360463	-0.5694275	
12 C	2.8847926	-0.3512500	-0.3275173	
13 C	4.0747251	-0.2827037	-1.0410385	
14 C	4.0655934	-0.3659076	-2.4359177	
15 C	2.8498162	-0.5160381	-3.1083559	
16 C	1.6588580	-0.5805233	-2.3960606	
17 C	5.3255573	-0.2934673	-3.1886774	
18 C	-0.8716755	-5.9288117	1.4186767	
19 C	-0.7969401	-6.9772703	0.4726684	
20 C	-1.0928750	-8.2814292	0.8128746	
21 C	-1.4727644	-8.5318337	2.1374510	
22 C	-1.5466836	-7.4911578	3.0999742	
23 C	-1.2450116	-6.1767745	2.7321955	
24 C	6.2455163	0.7058589	-2.9039338	
25 C	7.4340771	0.7435737	-3.6386579	
26 C	7.6726152	-0.2216507	-4.6518291	
27 C	6.7448908	-1.2314347	-4.9371550	
28 C	5.5802236	-1.2514548	-4.1974644	
29 N	-1.9007421	-9.7247033	2.7692353	
30 C	-2.1126475	-9.4337665	4.1421186	
Atom	Symbol	X	Y	Z
------	--------	---	---	---
31 C	C	-1.9517755	-8.0846330	4.3493471
32 C	C	8.5775218	1.6197707	-3.5972494
33 C	C	9.4704400	1.1922030	-4.5507984
34 N	N	8.9039326	0.1071353	-5.2687209
35 C	C	-1.6393966	0.6833300	2.1416463
36 C	C	-2.8326530	0.6243876	2.8505234
37 C	C	-4.0217787	0.2810110	2.2017455
38 C	C	-4.0095015	-0.0066068	0.8343937
39 C	C	-2.8075299	0.0474992	0.1255735
40 C	C	-0.4686730	2.3096972	-1.6583700
41 C	C	-0.1637697	3.6016464	-2.0678714
42 C	C	0.6005876	4.4377180	-1.2497022
43 C	C	1.0527067	3.9665563	-0.0144219
44 C	C	0.7438456	2.6765479	0.3984707
45 C	C	-5.2833566	0.2225978	2.9530380
46 C	C	0.9241439	5.8031922	-1.6859179
47 C	C	2.2628805	6.2514680	-1.6044771
48 C	C	2.6264867	7.5204722	-2.0063314
49 C	C	1.6142610	8.3577896	-2.4920875
50 C	C	0.2645457	7.9253985	-2.5711758
51 C	C	-0.0788085	6.6310323	-2.1704069
52 C	C	-5.3355972	-0.4457989	4.1683595
53 C	C	-6.5513829	-0.4774302	4.8573875
54 C	C	-7.6954454	0.1576049	4.3071424
55 C	C	-7.6420695	0.8327935	3.0811451
56 C	C	-6.4307308	0.8554198	2.4206837
57 C	C	-6.9428120	-1.0602496	6.1160607
58 C	C	-8.2743296	-0.7819817	6.3130109
59 N	N	-8.7828513	-0.1009300	5.1764570
60 N	N	1.6725873	9.6652969	-3.0325398
61 C	C	0.3442590	10.0728568	-3.3209018
62 C	C	-0.5112450	9.0209692	-3.0953854
63 H	H	1.3209184	-1.8699022	1.9485518
64 H	H	0.7633721	-4.1848189	2.6719802
65 H	H	-1.7932795	-4.6423479	-0.7705245
66 H H66 -1.2524872 -2.3186378 -1.4783850
67 H H67 2.8937836 -0.2929216 0.7667696
68 H H68 5.0259796 -0.1643105 -0.5097963
69 H H69 2.8372187 -0.5785008 -4.2024939
70 H H70 0.7055955 -0.6931477 -2.9242031
71 H H71 -0.4930063 -6.7390148 -0.5533966
72 H H72 -1.0310448 -9.0894985 0.0779053
73 H H73 -1.3068390 -5.3681263 3.4682195
74 H H74 6.0523860 1.4518519 -2.1257040
75 H H75 6.9383585 -1.9763643 -5.7147180
76 H H76 4.8291380 -2.0271565 -4.3876805
77 H H77 -1.6351568 -10.6203157 2.4477862
78 H H78 -2.4069045 -10.2036184 4.8556723
79 H H79 -2.0996861 -7.5415263 5.2790803
80 H H80 8.6915969 2.4654216 -2.9239974
81 H H81 10.446898 1.6047403 -4.8052468
82 H H82 9.4511184 -0.5587887 -5.7515017
83 H H83 -0.7091203 0.9625820 2.6489194
84 H H84 -2.8443281 0.8505572 3.9228367
85 H H85 -4.9299011 -0.2799312 0.3211779
86 H H86 -2.7897705 -0.1854766 -0.9450986
87 H H87 -1.0647593 1.6528907 -2.3015708
88 H H88 -0.5210068 3.9685712 -3.0368152
89 H H89 1.6507310 4.6195503 0.6312662
90 H H90 1.0920815 2.3099615 1.3706192
91 H H91 3.0241900 5.5653770 -1.2151052
92 H H92 3.6645583 7.8607196 -1.9469601
93 H H93 -1.1164474 6.2873357 -2.2386058
94 H H94 -4.4516156 -0.9415352 4.5835227
95 H H95 -8.5261660 1.3254736 2.6657446
96 H H96 -6.3458240 1.3773275 1.4602701
97 H H97 -6.2847150 -1.6192058 6.7763889
98 H H98 -8.9117184 -1.0559729 7.1539036
99 H H99 -9.5824186 0.4780611 5.2137669
100 H H100 2.3894249 10.3043595 -2.8009514
Table S8. Atomic charges of compound 34 calculated by the B3LYP/6-31G (d,p) method

Atom Label	Natural charge	Mulliken charge	Electrostatic charge																															
C1	-0.064	+0.086	+0.356																															
C2	-0.012	-0.065	-0.275																															
C3	-0.064	+0.090	+0.319																															
C4	-0.013	-0.054	-0.244																															
C5	-0.065	+0.086	+0.348																															
C6	-0.064	+0.089	+0.323																															
C7	-0.207	-0.159	-0.193																															
C8	-0.216	-0.170	-0.238																															
C9	-0.048	+0.067	+0.116																															
C10	-0.219	-0.171	-0.157																															
C11	-0.210	-0.168	-0.306																															
C12	-0.210	-0.168	-0.267																															
C13	-0.218	-0.172	-0.191																															
C14	-0.049	+0.067	+0.134																															
C15	-0.218	-0.173	-0.221																															
C16	-0.206	-0.160	-0.211																															
C17	-0.069	+0.059	+0.112																															
C18	-0.071	+0.057	+0.120																															
C19	-0.227	-0.187	-0.197																															
C20	-0.261	-0.164	-0.288																															
C21	+0.156	+0.304	+0.195																															
C22	-0.094	+0.119	+0.247																															
C23	-0.204	-0.245	-0.389																															
C24	-0.204	-0.244	-0.389																															
	C25	C26	C27	C28	C29	C30	C31	C32	C33	C34	C35	C36	C37	C38	C39	C40	C41	C42	C43	C44	C45	C46	C47	C48	C49	C50	C51	C52	C53	C54	C55			
---	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	
-----	-------	-------	-------																															
C56	-0.226	-0.186	-0.201																															
C57	-0.307	-0.222	-0.413																															
C58	-0.035	+0.044	-0.060																															
C61	-0.035	+0.044	-0.065																															
C62	-0.307	-0.221	-0.411																															
H63	+0.243	+0.135	+0.137																															
H64	+0.240	+0.131	+0.146																															
H65	+0.239	+0.130	+0.130																															
H66	+0.241	+0.133	+0.145																															
H67	+0.241	+0.134	+0.135																															
H68	+0.240	+0.131	+0.139																															
H69	+0.240	+0.131	+0.139																															
H70	+0.244	+0.136	+0.143																															
H71	+0.241	+0.130	+0.134																															
H72	+0.235	+0.122	+0.163																															
H73	+0.242	+0.135	+0.184																															
H74	+0.240	+0.130	+0.178																															
H75	+0.235	+0.122	+0.161																															
H76	+0.241	+0.129	+0.136																															
H77	+0.430	+0.327	+0.351																															
H78	+0.232	+0.150	+0.162																															
H79	+0.243	+0.131	+0.198																															
H80	+0.242	+0.130	+0.195																															
H81	+0.232	+0.150	+0.163																															
H82	+0.430	+0.327	+0.351																															
H83	+0.241	+0.134	+0.140																															
H84	+0.240	+0.131	+0.140																															
H85	+0.240	+0.131	+0.139																															
H86	+0.243	+0.135	+0.143																															
6. Electrochemical Measurements

The cyclic voltammetry (CV) technique was realized by CH Instruments 617D electrochemical workstation for electrochemical characterization. All CV measurements were performed under an argon (Ar) atmosphere and the electrochemical cell included an Ag wire as a reference electrode (RE), Pt wire as a counter electrode, and glassy carbon as a working electrode (WE) in a supporting electrolyte solution containing 0.1 M TBAPF₆ in acetonitrile. Molecules were drop-casted on the glassy carbon working carbon-working electrode before the potential was scanned in the monomer-free electrolyte solution.

Thermogravimetric analyses were realized by utilizing a Perkin Elmer Thermogravimetric Analyzer Pyris 1 TGA under a nitrogen (N₂) atmosphere at a heating rate of 10 °C/min. Thermal transitions were done via differential scanning calorimetry by using a Perkin Elmer, Jade DSC under a nitrogen atmosphere at a heating rate of 10 °C/min.

H87	+0.240	+0.132	+0.143
H88	+0.240	+0.130	+0.137
H89	+0.240	+0.130	+0.138
H90	+0.243	+0.134	+0.137
H91	+0.242	+0.134	+0.139
H92	+0.235	+0.123	+0.163
H93	+0.241	+0.131	+0.178
H94	+0.240	+0.130	+0.179
H95	+0.235	+0.122	+0.159
H96	+0.241	+0.129	+0.134
H97	+0.242	+0.130	+0.197
H98	+0.232	+0.150	+0.160
H99	+0.430	+0.327	+0.349
H100	+0.430	+0.327	+0.354
H101	+0.232	+0.150	+0.163
H102	+0.242	+0.130	+0.198
N29	-0.573	-0.687	-0.402
N34	-0.572	-0.686	-0.395
N59	-0.572	-0.687	-0.388
N60	-0.572	-0.686	-0.406
The dielectric properties of ITO/TPE 33/Al devices were analyzed using HP 4194A Impedance Analyzer within the frequency range of 100 Hz–15 MHz at room temperature.

7. OLED Application

Device Fabrication and Characterization. The patterned ITO-coated glass substrates (120 nm, 5-10Ω/sq.) were supplied from Kintec Company. PEDOT: PSS was obtained from Heraeus Clevios GmbH. 0.45 µm PTFE and PVDF membrane filter (Millipore) was used to filter solution form molecules and PEDOT: PSS, respectively. For the fabrication of OLEDs, patterned ITO-coated glass substrates were cleaned ultrasonically in acetone, deionized water, and alcohol, in turn. Then, ozone treatments were applied for cleaning the substrates. PEDOT: PSS (~70 nm) as the hole injection layer (HIL) was spin-coated onto the pre-cleaned ITO-coated glass at 3000 rpm for 40 s and then baked at 120°C for 20 min. The TPEs 9, 32, 33, and 34 were prepared by dissolving in 1,2-dichlorobenzene (20 mg/mL) and growing on top of the HIL by spin casting at 1000 rpm for 40 s then baked at 50°C for 10 min in the glove box. TPBi (~40 nm) as the electron transport layer (ETL) was grown in a thermal vacuum chamber before Lithiumfloride (LiF) as an EIL (~0.5 nm) and cathode layer of aluminum (~110 nm) was deposited by vacuum evaporation (5x10^-6 mbar) method. The devices with ITO/PEDOT: PSS/TPE 9-32-33-34 (~ 40 nm)/TPBi/LiF/Al structure were fabricated. For the characterization of OLEDs, the Hamamatsu PMA-12 C10027 Photonic Multichannel analyzer and a digital multimeter (2427-C 3A Keithley) were used in a dark sample chamber after UV epoxy encapsulation of the devices. A stylus profiler (KLA Tencor P-6) was utilized to measure the thickness of organic layers.

Photophysical Measurements: The optical transmission spectra were measured and recorded using an FS5 spectrofluorometer (Edinburg Inst).