Large meta-analysis of genome-wide association studies identifies five loci for lean body mass

M. Carola Zillikens et al.##

Lean body mass, consisting mostly of skeletal muscle, is important for healthy aging. We performed a genome-wide association study for whole body (20 cohorts of European ancestry with \(n = 38,292 \)) and appendicular (arms and legs) lean body mass (\(n = 28,330 \)) measured using dual energy X-ray absorptiometry or bioelectrical impedance analysis, adjusted for sex, age, height, and fat mass. Twenty-one single-nucleotide polymorphisms were significantly associated with lean body mass either genome wide (\(p < 5 \times 10^{-8} \)) or suggestively genome wide (\(p < 2.3 \times 10^{-6} \)). Replication in 63,475 (47,227 of European ancestry) individuals from 33 cohorts for whole body lean body mass and in 45,090 (42,360 of European ancestry) subjects from 25 cohorts for appendicular lean body mass was successful for five single-nucleotide polymorphisms in/near \(HSD17B11, VCAN, ADAMTS13, IRS1, \) and \(FTO \) for total lean body mass and for three single-nucleotide polymorphisms in/near \(VCAN, ADAMTS13, \) and \(IRS1 \) for appendicular lean body mass. Our findings provide new insight into the genetics of lean body mass.

DOI: 10.1038/s41467-017-00031-7

Correspondence and requests for materials should be addressed to D.P.K. (email: kiel@hsl.harvard.edu)
##A full list of authors and their affiliations appears at the end of the paper.
ean body mass consists primarily of skeletal muscle, is an important contributor to physical strength, mobility, stamina, and balance \(^1\), \(^2\), \(^3\), and has been a very recent focus of an effort to define “sarcopenia” (loss of muscle tissue) for clinical care and drug development \(^4\). The determinants of adult skeletal muscle mass are estimated to be in excess of 18 billion dollars \(^9\).

In fact, the annual healthcare costs of sarcopenia in the United States are estimated to be in excess of 18 billion dollars \(^9\).\(^8\). In fact, sarcopenia is a highly heritable phenotype with heritability estimates of 0.52–0.60 \(^1\), \(^2\), \(^3\), \(^10\), \(^11\) While there have been previous studies related to the genetic background of BMI and fat mass, few studies have been performed. While there have been previous studies related to the genetic background of BMI and fat mass, few studies have searched for genes associated with lean mass \(^12\), \(^13\), \(^14\), \(^15\). To date, there have been previous studies related to the genetic background of BMI and fat mass, few studies have searched for genes associated with lean mass \(^12\), \(^13\), \(^14\), \(^15\). To date, no single-nucleotide polymorphisms (SNPs) have been found to be associated at a genome-wide significance level with lean mass \((\text{p-values <} 5 \times 10^{-8})\) \(^16\), \(^17\). A copy number variation located in the GREM1 gene was reported to be associated with lean body mass in a genome-wide association study (GWAS) of 1627 Chinese \(^20\). Guo et al. \(^19\) identified in 1627 Chinese and replicated in 2286 European ancestry individuals, a locus near CNTF and GLYAT genes at 11q12.1 in a bivariate GWAS for bone-size phenotypes and appendicular lean mass. Most recently in a study of Japanese women, the PRDM16 gene was suggested to be associated with lean mass \(^21\).

With the advent of relatively simple, inexpensive methods of measuring the fat and lean compartments of the body using dual energy X-ray absorptiometry (DXA) and bioelectrical impedance analysis (BIA), multiple cohort studies have accumulated phenotypic information on body composition that permits large-scale GWAS to be performed. While whole body lean mass incorporates all of the non-fat soft tissue including the internal organs, appendicular lean mass, estimated by DXA and BIA, may be a better reflection of skeletal muscle mass \(^22\), \(^23\), \(^24\). To identify genetic loci associated with whole body and appendicular lean mass, we performed a large-scale GWAS meta-analysis in over 100,000 participants from 53 studies yielding sufficient power to identify common variants with small to moderate effect sizes.

Results

GWAS meta-analyses for discovery and replication. Descriptions and characteristics of the study populations in the discovery stage and the replication stage are shown in Supplementary Tables 4 and 5 and Supplementary Note 2.8. The age of the participants ranged from 18 to 100 years. In the GWAS discovery set, comprising 38,292 participants for whole body lean mass and 28,330 participants for appendicular lean mass, a substantial excess of low p-values compared to the null distribution was observed after genomic control adjustment of the individual studies prior to meta-analysis: \(\lambda_{GC} = 1.076\) for whole body and appendicular lean mass, respectively (Supplementary Fig. 1).

Meta-analyses were conducted using the METAL package (www.sph.umich.edu/csg/abecasis/metal/). We used the inverse variance weighting and fixed-effect model approach. Supplementary Table 1 shows the genome-wide significant (GWS) and suggestive (sGWS) results in the discovery set. For whole body lean mass, we observed one GWS result in/near HSD17B11 and 12 sGWS results (in/near VCAN, ADAMTS3, IRS1, FTO (two SNPs), MOV10, HMCN1, RHOC, FRK, AKR1B1, CALCR, and KLF12). For appendicular lean mass, one result was GWS (intronic SNP in PKIB) and seven were sGWS (in/near VCAN, ADAMTS3, HSD17B11, IRS1, FRK, TXN, and CTNN3).

We selected 21 associations (13 for whole body lean mass and 8 for appendicular lean mass; a total of 16 discovery SNPs with 5 SNPs overlapping between the two phenotypes) (Supplementary Table 1) to conduct a replication study in a set of 33 cohorts comprising up to 48,125 participants of European descent for whole body lean mass and 43,258 participants for appendicular lean mass. Both in silico replication and de novo genotyping for replication was conducted. Table 1 shows the results for successfully replicated SNPs in participants of European ancestry.

Table 1 Results for the successfully replicated SNPs in discovery, replication and combined sample

SNP ID	Chrom	Position	Closest gene	Allele ½	EAF	Discovery (n = 38,292)	Replication EU (n = 47,227)	Combined EU (n = 85,519)						
						Beta SE p-value	Beta SE p-value	Beta SE p-value						
Whole body lean mass														
rs2943656	2	226830162	IRS1	A/G	0.38	0.02	0.03	2.5 × 10^{-7}	0.13	0.02	8.0 × 10^{-6}	0.14	0.02	1.5 × 10^{-11}
rs9991501	4	88477507	HSD17B11	T/C	0.04	0.02	0.03	3.6 × 10^{-8}	0.26	0.03	1.9 × 10^{-3}	0.39	0.03	5.8 × 10^{-9}
rs2287926	5	8285164	IRC1	A/G	0.12	0.02	0.03	2.8 × 10^{-7}	0.15	0.02	8.5 × 10^{-4}	0.19	0.03	7.5 × 10^{-9}
rs4842924	15	8237861	ADAMTS3	T/C	0.52	0.02	0.03	4.4 × 10^{-7}	0.08	0.02	3.9 × 10^{-3}	0.12	0.02	1.4 × 10^{-6}
rs9936385	16	52376670	FTO	T/C	0.61	0.02	0.03	1.7 × 10^{-6}	0.11	0.02	1.6 × 10^{-4}	0.14	0.02	1.4 × 10^{-9}

SNP ID	Chrom	Position	Closest gene	Allele ½	EAF	Discovery (n = 28,330)	Replication EU (n = 42,360)	Combined EU (n = 70,690)						
						Beta SE p-value	Beta SE p-value	Beta SE p-value						
Appendicular lean mass														
rs2943656	2	226830162	IRS1	A/G	0.38	0.02	0.03	1.1 × 10^{-6}	0.06	0.02	2.2 × 10^{-5}	0.07	0.02	2.9 × 10^{-10}
rs2287926	5	8285164	VCAN	A/G	0.13	0.02	0.03	8.1 × 10^{-7}	0.08	0.02	3.5 × 10^{-4}	0.10	0.02	4.5 × 10^{-9}
rs4842924	15	8237861	ADAMTS3	T/C	0.52	0.02	0.03	1.2 × 10^{-6}	0.05	0.02	1.6 × 10^{-4}	0.06	0.01	5.0 × 10^{-8}

All results reflect analyses in participants of European ancestry
No significant heterogeneity was observed at \(\alpha = 0.00265\) (0.05/8)
Only mild heterogeneity was indicated in two associations for whole body lean mass when using an uncorrected threshold of \(\alpha = 0.05\), FTO/rs9936385 (\(p = 0.018\), \(p^2 = 34\%\)) and HSD17B11/rs9991501 (\(p = 0.04\), \(p^2 = 37\%\))
All results were adjusted for the following covariates: sex, age, height and fat mass (kg)
including the discovery phase, replication phase, and the combined results.

For whole body lean mass, joint analysis of the discovery and replication cohorts successfully replicated five SNPs in/near HSD17B11, VCAN, ADAMTSL3, IRS1, and FTO (p-values between 1.4 × 10⁻⁸ and 1.5 × 10⁻¹ⁱ and lower than discovery p-values). Three of these five SNPs (located in/near VCAN, ADAMTSL3, and IRS1) were also successfully replicated (p-values between 5 × 10⁻⁸ and 2.9 × 10⁻¹⁰) for appendicular lean mass. None of the eight replicated associations (five for whole body and three appendicular lean mass) had significant heterogeneity at α = 0.00625 (0.05/8, Bonferroni-corrected for eight tests). Only mild heterogeneity was indicated in two whole body lean mass SNPs when using an uncorrected threshold of α = 0.05: FTO (p = 0.018, I² = 34%) and HSD17B11 (p = 0.04, I² = 31%). For appendicular lean mass, p-values for heterogeneity were >0.05 for all three replicated SNPs.

Supplementary Table 1 shows the results for all participants including those of non-European descent as well. Results were similar showing low heterogeneity using “transethnic meta-analysis” (MANTRA) for inclusion of both cohorts of European ancestry and replication cohorts with Asians or African Americans. Heterogeneity probability values were below 0.5 for all replicated SNPs both for whole body and appendicular lean mass. Furthermore, in this combined analysis, except for the VCAN locus, log₁₀ Bayes’ factors were >6.0 and p-values were smaller than those found in European-only ancestry analysis.

Additional analyses stratified by sex failed to identify significant sex-specific associations or evidence of an interaction between SNPs and sex (Supplementary Table 2 and Supplementary Note 1). Similarly, we also found no evidence for heterogeneity between measurement techniques (BIA vs DXA; Supplementary Table 3 and Supplementary Note 2). Finally, we failed to replicate previously reported candidate genes for lean mass (Supplementary Note 2.4).

Association with other anthropometric phenotypes. We looked for associations between the lead SNPs in the five replicated loci and other reported anthropometric phenotypes from the GIANT Consortium (Supplementary Table 10)26–29. There were no significant associations (p < 0.05) between the SNP in HSD17B11 and any reported phenotypes. The allele associated with greater lean mass was associated with lower values of various anthropometric traits for the IRS1 (hip circumference (HC), waist circumference (WC)), VCAN (hip ratio, WC adjusted for BMI, waist to hip ratio adjusted for BMI), and the ADAMTSL3 locus (height, hip, and WC with the association becoming more significant for hip and waist adjusted for BMI). The replicated FTO SNP was very significantly associated with BMI (p = 2.7 × 10⁻¹⁴) and significantly associated with HC (p = 9.3 × 10⁻⁸) and WC (p = 1.3 × 10⁻⁹) in the same direction as the lean mass association (i.e., the higher lean mass allele was associated with higher values of anthropometric traits).

Annotation and enrichment analysis of regulatory elements. Among five replicated SNPs, rs9991501 (HSD17B11 locus) and rs2287926 (VCAN locus) are missense SNPs. rs2287926 was predicted as possibly damaging to the protein structure and/or function by PolyPhen-230. Since the remaining GWAS SNPs are non-coding, to estimate whether these SNPs are located in regulatory elements in specific human tissue/cell types, we performed a tissue-specific regulatory-element enrichment analysis using experimental epigenetic evidence including DNase hypersensitive sites, histone modifications, and transcription factor-binding sites in human cell lines and tissues from the ENCODE Project and the Epigenetic Roadmap Project. As shown in Table 2, 86 SNPs were in high LD (r² ≥ 0.8) with the GWAS lead SNP rs2943656 at the IRS1 locus. The SNPs in this locus that were in high LD were enriched in enhancers estimated by ChromHMM31 (permutation p-values <0.05; after multiple testing corrections), especially enriched in fat and brain tissues, but not in skeletal muscle, smooth muscle, blood and gastrointestinal tract tissues in the ENCODE and Roadmap projects. Although the IRS1 locus was not specifically enriched with skeletal muscle tissue enhancers, the lead SNP rs2943656 itself at the IRS1 locus was actually located within a histone mark-identified promoter in an adult skeletal muscle sample and a histone mark-identified enhancer in several muscle samples (such as muscle satellite cultured cells, fetal skeletal muscle, skeletal muscle myoblasts, and skeletal muscle myotubes (Supplementary Figs. 6 and 7)). Based on the position weight matrices (PWMs) score from Chip-seq and other sequencing resources, rs2943656 was found to possibly alter regulatory motifs, including Irf, Foxo, Sox, and Zfp105 in skeletal muscle myotubes (Supplementary Figs. 6 and 7).

Table 2. Tissue-specific regulatory-element enrichment analyses of the GWAS loci (GWAS SNPs and SNPs in LD with the GWAS SNPs)

SNP ID	In/near gene	SNP functional role	Coding variant function by PolyPhen2	Number of SNPs in LDa	p-valueb of tissue-specific regulatory-element enrichment analyses in five tissuesd
rs2943656	IRS1	Intergenic		86	0.14 0.38 1 × 10⁻⁷ 0.04 0.82 1
rs9991501	HSD17B11	Exonic missense	Benign (Arg283Gln)	1	NA 0.38 1 × 10⁻⁷ 0.04 NA NA
rs2287926	VCAN	Exonic missense	Possibly damaging (Gly428Asp)	5	1 × 10⁻⁷ 1 × 10⁻⁷ 1 × 10⁻⁷ 1 0.98
rs4842924	ADAMTSL3	Intrinsic		87	1 × 10⁻⁷ 1 × 10⁻⁷ 1 × 10⁻⁷ 1 0.23
rs9936385	FTO	Intrinsic		91	0.78 0.38 0.49 0.45 1 0.51

aSNPs in LD: number of SNPs in LD (r² ≥ 0.8 and MAF ≥ 1%, based on CEU samples in the 1000 Genome Project) with the lead GWAS SNP in each locus.
bMinimum p-value permutation test: this analysis included all SNPs in LD with the GWAS lead SNPs. Multiple testing correction was done by the minimum p-value permutation test. Permutation p-values <0.05 are considered as statistically significant.
cSNPs in LD: number of SNPs in LD (r² ≥ 0.8 and MAF ≥ 1%, based on CEU samples in the 1000 Genome Project) with the lead GWAS SNP in each locus.
dSee Supplementary Note 2.6 for description of human primary cells and tissues that were included in each tissue group.

*We did not perform enrichment analysis on rs9991501 because rs9991501 has no other SNPs in LD to obtain overlapping regulatory elements.
tissues (Supplementary Figs. 11 and 12). The promoter/enhancer
enrichment analysis in the ADAMTSL3 locus showed significant
enrichments in skeletal muscle, smooth muscle, fat and brain
tissues, but not in blood and gastrointestinal tract tissues. At the
FTO locus, a few SNPs in high LD with the GWAS lead SNP,
rs2287926, were located within a group of enhancers that are
not muscle tissue-specific (Supplementary Fig. 13); therefore, no
significant enrichment was found in any tissues listed in Table 2.

Expression quantitative trait loci. We queried existing cis-
expression quantitative trait loci (eQTLs) analyses on the five
replicated GWAS SNPs rs2943656, rs9991501, rs2287926,
rs4842924, and rs9936385 with transcripts within 2 Mb of the
SNP position in skeletal muscle tissue as well as in subcutaneous
adipose, omental adipose, liver tissue, lymphocytes, and primary
osteoblasts (obtained from bone biopsies). Rs9936385 was
associated with FTO expression in skeletal muscle tissues in the
FUSION samples \((p = 4.4 \times 10^{-11})\) (Supplementary Table 10).
However, in sequential conditional analysis, upon addition of the
lead FTO eQTL SNP \((rs11649091, \text{association } p\text{-value with FTO}
\text{gene expression } = 5.1 \times 10^{-15})\), rs9936385 was no longer sig-
nificantly associated \((p = 0.16)\), whereas rs11649091 remained
significantly associated with FTO gene expression \((p = 1.9 \times 10^{-5})\).
SNP rs11649091 could not be imputed using our HapMap
imputation references; thus, we did not have association results
between rs11649091 and lean mass in the present study. The
T allele of rs9936385, associated with reduced lean mass in the
present study, was significantly associated with lower FTO gene
expression levels in the GTEx project (Supplementary Table 9
and Supplementary Fig. 14). For rs9936385, we also examined
IRX3 and IRX5 expression in skeletal muscle tissues, as recent
reports have implicated GWAS SNPs associated with obesity in
intron 2 of the FTO gene as being associated with IRX3 and IRX5
gene expression in brain\(^{33}\) and adipose tissue\(^{34}\). SNP rs9936385
was not significantly associated with IRX3 and IRX5 gene
expression in skeletal muscle tissues. For missense SNP rs9991501
in the HSD17B11 locus, a significant association with HSD17B11
gene expression was found in skeletal muscle from the GTEx
project \((p = 1.4 \times 10^{-6})\). There were no significant GWAS SNPs in
strong LD with this one; thus conditional analyses were not
performed.

As shown in Supplementary Table 10, for GWAS lead SNP
rs2943656 in the IRS1 locus, significant eQTLs with the IRS1
gene expression in omental \((p = 4 \times 10^{-7})\) and subcutaneous fat tissue
\((p = 6.44 \times 10^{-6})\) were found.

Finally we found no evidence for differential expression of
our five replicated genes in young vs old muscle biopsies
(Supplementary Note 2.7 for methods and results).

Discussion

In this first large-scale GWA meta-analysis study for lean mass
that included most of the cohorts worldwide with lean mass
phenotypes, we identified and successfully replicated five GWS
loci (in/near HSD17B11, VCAN, ADAMTSL3, IRS1, and FTO
genes) for whole body lean mass and three of these (in/near
VCAN, IRS1, and ADAMTSL3 genes) for appendicular lean mass,
both important for sarcopenia diagnosis.

This study contributes to a better understanding of the biology
underlying inter-individual variation in muscle mass, since lean
body mass consists primarily of muscle mass (especially in the
extremities). Genetic determinants of lean body mass cannot be
studied specifically by using anthropometric measures such as
height, waist circumference, hip circumferences, or BMI, as
evidenced by our finding of associations between genetic loci
and lean mass that were not observed in results from the GIANT
consortium\(^{26–29}\). Four novel GWS loci for lean mass phenotypes
harboring ADAMTSL3, VCAN, HSD17B11, and IRS1 genes
have biologic effects supporting their role in skeletal muscle.
Although the functional involvement of the ADAMTSL3 gene
(a disintegrin-like and metalloproteinase domain with thrombos-
pondin type I motifs-like 3) remains unknown, it has been shown
to be consistently associated with adult height in large human
samples\(^{30}\), including individuals of African ancestry\(^{32}\). The gene
is expressed ubiquitously, including in skeletal muscle but the
lead GWAS SNP in this locus was not significantly associated
with expression of ADAMTSL3 in any of the tissues examined.
One might hypothesize that our observed association between
this gene and lean mass could be a reflection of an allometric
relationship between muscle mass/size and body size\(^{36}\). Since our
analyses were adjusted for height, it is plausible that variation in
ADAMTSL3 is associated with muscle mass directly. In fact, in
a recent study that identified classes of potentially regulatory
genomic elements that are enriched in GWAS loci, the height
phenotype was almost exclusively enriched in DNAse sites in
muscle\(^{37}\). In our study, we observed enrichment of regulatory
genomic elements in this locus in both skeletal muscle and
smooth muscle, which may not fully support a unique role of this
gene in only skeletal muscle tissue.

Versican (VCAN) plays a role in intercellular signaling and in
connecting cells with the extracellular matrix, which also is
important for the skeletal muscle. Interestingly, VCAN facilitates
chondrocyte differentiation and regulates joint morphogenesis\(^{38}\),
and therefore has a wider role in the musculoskeletal health.
The GWAS SNP in the HSD17B11 locus was significantly
associated with the HSD17B11 gene expression in skeletal muscle.
Hydroxysteroid (17-beta) dehydrogenase 11 (HSD17B11)
forgons in steroid biosynthesis, and most relevant to muscle
tissue, contributes to androgen catabolic processes. Although
much is known about how variants in this gene associate with
sex-hormone related human phenotypes, androgen metabolism is
certainly a driver of muscle tissue anabolism and catabolism.

As for the FTO locus, variants in the FTO gene, which is
known to regulate postnatal growth in mice\(^{39}\), have been found to
be associated with adiposity/obesity\(^{40}\) and related traits, such as
BMI\(^{41}\), metabolic syndrome/type 2 diabetes and even with
menarche\(^{42}\). Apart from its role in adiposity, in two recent can-
didate gene studies, SNPs in FTO were found to associate both
with DXA-derived fat and lean mass\(^{43}\), and in one, the associa-
tion for lean mass was only slightly attenuated after fat mass
adjustment\(^{44}\), similar to our results using fat mass-adjusted lean
mass. Also, FTO knockout mice have been shown to have not
only reduced fat mass, but also decrease in lean mass\(^{45}\). Recently,
obesity associated non-coding sequences in the FTO gene were
found to be functionally connected to the nearby gene, IRX3, by
directly interacting with the promoters of this gene\(^{33}\), suggesting
obesity SNPs located inside the FTO gene may regulate gene
expression other than FTO. Our GWAS lead SNP rs9936385 in
the FTO locus was in LD with the obesity GWAS SNP and
located in the same haplotype. A denser fine-mapping study using
sequencing of the FTO locus with a better resolution will be
helpful in narrowing down the FTO region to identify potential
causal variant(s). The actual function of the variants and the
underlying mechanisms of FTO’s involvement in skeletal muscle
biology still need to be further elucidated by in vitro and animal
experiments.

The other body composition-related gene that was successfully
replicated is the insulin receptor substrate 1 (IRS1), which belongs
to the insulin signaling pathway and participates in growth
hormone and adipocytokine signaling pathways. Besides being
overexpressed in adipocytes, IRS1 is also highly expressed in
skeletal muscle\(^{13}\). IRS1 polymorphisms have been associated
with fasting insulin-related traits16, adiposity13, and serum triglycerides/HDL cholesterol17. Our GWAS lead SNP rs2943656 was associated with IRS1 gene expression in skeletal muscle obtained from the GTEx project. Interestingly, another SNP, rs2943650, near IRS1 in high LD with our lead SNP ($R^2 = 0.854$) was previously found to be associated with percent body fat in the opposite direction from the association that we find with lean mass13. The body fat percentage decreasing allele in this study was associated with lower IRS1 expression in omental and subcutaneous fat13. Another study reported an association between a SNP in high LD (rs2943641) with IRS-1 protein expression and insulin-induced phosphatidylinositol 3-0H kinase activity in skeletal muscle13. Also rs2943656 was associated with obesity traits in the GIANT Consortium; the allele associated with greater lean mass was inversely associated with obesity traits. Further understanding of the potential functional effects of these variants in the IRS1 locus are needed to determine whether they have pleiotropic and opposite effects on fat and lean tissue. The same is true for variants in the FTO locus for which the allele that was associated with greater lean mass was previously reported to be associated with percent body fat13.

From the current eQTL data analysis, we have no definitive evidence that the non-coding GWAS SNPs (or variants in high LD) functionally influence gene expression of IRS1, HSD17B1, and FTO in skeletal muscle. Use of a larger reference panel for imputation in the GWAS sample, and analysis of larger tissue expression data sets coupled with conditional analysis will help reveal if underlying functional associations exist. It should be emphasized that with the current data we are not able to determine which SNPs may be functional and it is possible that the identified lean mass variants are not driving the associations with expression. Using ENCODE and Epigenetic Roadmap data, we found that the GWAS SNPs (or SNPs in LD with these SNPs) were significantly enriched in the predicted gene regulatory regions (in our case, enhancers) not only in skeletal muscle, but also in smooth muscle, fat and brain tissues. With the complexity of lean mass phenotypes, we cannot rule out the possibility that these genes are involved in regulating lean mass biology via tissues other than skeletal muscle.

Using results from the overall meta-analysis, the percent variance explained by the successfully replicated SNPs was 0.23\% and 0.16\% for whole body and appendicular lean mass, respectively. Estimates were slightly higher when we used individual level data from the Framingham Study cohorts (percent variance explained of 0.97\% and 0.55\% for whole body and appendicular lean mass, respectively). This relatively small percentage of explained variance is not dissimilar to other body composition measures such as bone mineral density of the femoral neck, for which 63 SNPs explained 5.8\% of the variance48. To estimate the proportion of variance for lean mass explained by all genotyped SNPs across the genome in Framingham Study participants, we applied a GREML model implemented in the GCTA package19 with the assumption that all 550K genotyped SNPs captured \geq80\% of the common sequence variance in the Framingham Study participants who are Caucasians of European ancestry. We estimated that the proportion of whole body lean mass and appendicular lean mass variance explained by all genotyped SNPs together was 43.3\% (SE: 2.7\%) and 44.2\% (SE: 2.6\%), respectively (after adjustment for age, age2, sex, height and fat mass), suggesting most of the heritability of lean mass was not detected in the current study due to the limitations of study design (only common variants in this study). This percent variance is similar to the 45\% of the variance explained for height using this method49. Because of the substantial sexual dimorphism in body composition with men having higher muscle mass compared with women44, we performed both sex-combined and sex-stratified analyses. We examined potential sex differences in the genetic associations. Lean mass is a highly heritable trait and the heritability is of similar magnitude in both genders54, 59. No formal interaction test between SNP and sex was significant for any of these SNPs. Thus, our findings do not support any substantial sex-specific genetic influence for any of the successfully replicated lean mass SNPs. We cannot rule out the possibility that the reported GWS SNPs are false-positive findings, although the chance of such false positives is extremely low due to the robustness of replication in our well-powered study. There are also other limitations to our study. Because lean mass is correlated with fat mass, we adjusted for fat mass to focus our search on genes contributing to lean mass independent of those regulating fat mass. A potential limitation with this strategy of adjusting for fat mass is that the power to identify genetic signals with a similar impact on lean and fat mass will be reduced. Nevertheless, the FTO signal was found to be significantly associated with lean mass after fat adjustment and the direction of this association was the same as the association with fat mass. Since androgens have a major impact on muscle mass, it is a limitation of the present study that the X chromosome, harboring the androgen receptor gene, was not included in the present meta-analysis. Another potential weakness of this study is our decision to meta-analyze body composition results using two different techniques (BIA and DXA). Nevertheless, the two methods are highly correlated ($r = 0.83$ for Framingham cohort participants), and by combining them power to detect GWS loci was greatly enhanced.

In conclusion, in this first large-scale meta-analysis of GWAS, five GWS variants in or near the HSD17B11, VCAN, ADAMTSL3, IRS1, and FTO genes were found to be robustly associated with lean body mass. Three of these loci were found to be significantly enriched in enhancers and promoters in muscle cells, suggesting that our signals have a potential functional role in muscle. Our findings shed light on pathophysiological mechanisms underlying lean mass variation and potential complex interrelations between the genetic architecture of muscle mass, fat mass, body height and metabolic disease.

Methods

Study summary. We focused on two phenotypes: (1) whole body lean mass; (2) appendicular lean mass. For these two phenotypes, we performed a genome-wide meta-analysis of the discovery cohorts (Stage I), then meta-analyzed the genotyped SNPs in replication cohorts (Stage II), followed by a combined analysis with discovery and replication cohorts (Supplementary Fig. 1). The total sample size for the combined analysis was just over 100,000 from 53 studies. Our primary results are based on the \approx65,000 individuals of European descent in 47 studies, as was pre-specified. Because whole body and appendicular lean mass are correlated with fat mass and height, analyses were adjusted for these potential confounders in addition to sex, age, age2, and other study-specific covariates to focus our search on genes contributing to lean mass independent of those of body height and fat mass.

Study population. The Stage I Discovery sample comprised 38,292 individuals of European ancestry drawn from 20 cohorts with a variety of epidemiological designs and participant characteristics (Supplementary Tables 4-6 and Supplementary Note 2.8). Whole body lean mass was measured using DXA (10 cohorts, $n = 21,074$) and BIA (10 cohorts, $n = 17,218$). Of the 20 cohorts, 15 consisted of male and female subjects, while 2 had male and 3 had female subjects only. In total, the cohorts included 22,705 women and 15,587 men. Appendicular lean mass was estimated in 28,330 subjects from a subset of 15 cohorts (9 using DXA and 6 using BIA). Subjects from 33 additional studies were used for replication with a total sample size of 63,475 individuals. Of these 63,475, the majority was of European ancestry ($n = 47,227$ in 27 cohorts), and the remaining 16,248 were of African American, South Asian, or Korean ancestry (Supplementary Table 4). All these 33 cohorts had data for whole body lean mass. Among them, 16 studies had DXA measurements ($n = 23,718$) and 17 studies had BIA measurements ($n = 39,577$). Twenty-five cohorts had data for appendicular lean mass in a total of 45,990 individuals (16 cohorts with DXA ($n = 23,718$) and 9 with BIA ($n = 21,372$)). Of these, 42,360 individuals (23 cohorts) were of European ancestry and the remaining 2730 of African American and Korean descent. Our a priori aim was to perform replication
in cohorts with European subjects only and to explore if adding non-European cohorts would increase power or show evidence of heterogeneity due to ethnicity. The Stage II Replication included cohorts with existing GWAS data that were not available at the time of the initial discovery efforts (Supplementary Table 7). De-novo replication genotyping was done using: KBioScience Allele-Specific Polymorphism (KASP) SNP genotyping system (in OPRA, PEAK25, AGES, CAIFOS, DOPS cohorts), TaqMan (METSIM), Illumina OmniExpress + Illumina Metabochip (PIVUS and ULSAM), or Sequenom’s iPLEX (WH) (Supplementary Table 8). Samples and SNPs that did not meet the quality control criteria defined by each individual study were excluded. Minimum genotyping success was defined as: SNP call rate > 90% and Hardy–Weinberg equilibrium p > 1 × 10−4.

Meta-analysis of replication and discovery studies. In the replication stage, we meta-analyzed results from: (1) individuals of European descent only (Rep-EUR); and (2) all replication cohorts with multiple ethnicities (Rep-All). Likewise we meta-analyzed results from discovery cohorts and European-descent-only replication cohorts (“Combined EUR”) from discovery cohorts and all replication cohorts (“Combined All”). To investigate and account for potential heterogeneities due to allelic effects between studies, we also performed “trans-ethnic meta-analysis” using MANTRA25 in the replication sample that included all ethnic groups (“Rep-All”) and in the combined analysis of the discovery and all ethnic groups in the replication sample (“Combined All”).

A successful replication was considered if: (1) the association p-value in the cumulative-meta-analysis (Combined EUR) was genome-wide significant (p < 5 × 10−8) and less than the discovery meta-analysis p-value; or (2) the association p-value in the meta-analysis of replication-cohorts only (Rep-EUR) was less than p = 0.0024 (a Bonferroni-adjusted threshold at p = 0.05/21 since there were a total of 21 tests performed for whole body and appendicular lean mass in each Stage II replication). Using the MTA tool48 we obtained the estimated I² to quantify heterogeneity and p-values to assess statistical significance for a total of eight associations that were replicated in the cumulative-meta-analysis (combined EUR, five SNPs for whole body and three for appendicular lean mass).

To estimate the phenotypic variance explained by the genotyped SNPs in the Framingham Heart Study (FHS), we used a restricted maximum likelihood model implemented in the GCTA (Genome-wide Complex Trait Analysis) tool package27, 58 and adjusted for the same set of covariates included in our GWAS.

Finally, we examined associations between all imputed SNPs in/near five genes (THRH, GLYAT, GREM1, CNTF, and PRDM16 including 60 kbp up and downstream of the gene) and lean mass, as these genes have been implicated to have associations with lean mass in previous association studies18–20.

Annotation and enrichment analysis of regulatory elements. For coding variants, we predicted their function by PolyPhen-2. For all variants, we annotated potential regulatory functional domains of our replicated GWAS SNPs and loci based on experimental epigenetic evidence including DNase hypersensitive sites, histone modifications, and transcription factor-binding sites in human cell lines and tissues from the ENCODE Project and the Epigenetic Roadmap Project. We first selected SNPs in high LD (r2 > 0.8) with GWAS lead SNPs based on the approach of Trynka et al.59 We then identified two categories of SNPs in GWAS loci (GWAS SNPs and SNPs in LD with the GWAS SNPs) across 127 healthy human tissues/normal cell lines available in the ENCODE Project and the Epigenetic Roadmap Project from the haploReg web browser60 using CHRNA761. To evaluate whether the variants identified with regulatory elements in skeletal muscle tissue, we performed a hypergeometric test. Specifically we tested whether estimated tissue-specific promoters and enhancers in a GWAS locus were enriched in eight relevant skeletal muscle tissues/cell lines vs enrichment in non-skeletal muscle tissues (119 tissues/cell lines). The permutation with minimum p-value approach was performed to correct for multiple testing. Permutation p-values < 0.05 were considered statistically significant. In addition, we also performed enrichment analyses in smooth muscle tissues/cells, fat tissue, brain, blood cells and gastrointestinal tract tissues. The eight skeletal muscle relevant tissues/cells were excluded when conducting enrichment analyses for other tissue types. The detailed information for tissue types and chromatin state specification is described in the Supplementary Materials.
References

1. Janssen, I. Influence of sarcopenia on the development of physical disability: the Cardiovascular Health Study. J. Am. Geriatr. Soc. 54, 56–62 (2006).
2. Janssen, I., Heymsfield, S. B. & Ross, R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J. Am. Geriatr. Soc. 50, 889–896 (2002).
3. Visser, M. et al. Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79: the health, aging, and body composition study. J. Am. Geriatr. Soc. 50, 897–904 (2002).
4. Studenski, S. A. et al. The FNHI sarcopenia project: rationale, study description, conference recommendations, and final estimates. J. Gerontol. A Biol. Sci. Med. Sci. 69, 547–558 (2014).
5. Houston, D. K. et al. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the Health, Aging, and Body Composition (Health ABC) Study. Am. J. Clin. Nutr. 87, 150–155 (2008).
6. Lillioja, S. & Bogardus, C. Obesity and insulin resistance: lessons learned from the Pima Indians. Diabetes Metab. Rev. 4, 517–540 (1988).
7. Devaney, J. M. et al. Differences in fat and muscle mass associated with a functional human polymorphism in a post-transcriptional BMP2 gene regulatory element. J. Cell Biochem. 107, 1073–1082 (2009).
8. Janssen, I., Baumgartner, R. N., Ross, R., Rosenberg, I. H. & Roubenoff, R. The healthcare costs of sarcopenia in the United States. J. Am. Geriatr. Soc. 52, 80–85 (2004).
9. Arden, N. K. & Spector, T. D. Genetic in
10. Hsu, F. C.
11. Kilpelainen, T. O.
12. Randall, J. C.
13. Chagnon, Y. C.
14. Monda, K. L.
15. Janssen, I., Baumgartner, R. N., Ross, R., Rosenberg, I. H. & Roubenoff, R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J. Am. Geriatr. Soc. 54, 56–62 (2006).
22. Lee, R. C., Wang, Z. M. & Heymsfield, S. B. Skeletal muscle mass and aging regional and whole-body measurement methods. Can. J. Appl. Physiol. 26, 102–122 (2001).
23. Heymsfield, S. B., Gallagher, D., Visser, M., Nunez, C. & Wang, Z. M. Measurement of skeletal muscle: laboratory and epidemiological methods. J. Gerontol. A Biol. Sci. Med. Sci. 50, 23–29 (1995).
24. Zillikens, M. C. et al. Sex-specific genetic effects influence variation in body composition. Diabetes 51, 2233–2241 (2008).
25. Morris, A. P. Transethnic meta-analysis of genomewide association studies. Genet. Epidemiol. 35, 809–822 (2011).
26. Langlois, H. et al. Hundreds of variants clustered in genomewide loci and biological pathways affect human height. Nature 467, 832–838 (2010).
27. Lindgren, C. M. et al. Genomewide association scan meta-analysis identifies three loci influencing adiposity and fat distribution. PLoS Genet. 5, e1000508 (2009).
28. Winkler, T. W. et al. The influence of age and sex on genetic associations with adult body size and shape: a large-scale genomewide interaction study. PLoS Genet. 11, e1005378 (2015).
29. Wood, A. R. et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet. 46, 1173–1184 (2014).
30. Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).
31. Ernst, J. & Kellis, M. ChromHMM: automating chromatin-state discovery and characterization. Nat. Methods 9, 215–216 (2012).
32. Touzet, H. & Varre, J. S. Efficient and accurate P-value computation for position weight matrices. Algorithms Mol. Biol. 2, 15 (2007).
33. Smemo, S. et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 507, 371–375 (2014).
34. Claussnitzer, M. et al. FTO obesity variant circuitry and adipocyte browning in humans. N. Engl. J. Med. 373, 895–907 (2015).
35. N’Diaye, A. et al. Identification, replication, and fine-mapping of loci associated with adult height in individuals of African ancestry. PLoS Genet. 7, e1002298 (2011).
36. Handsfield, G. G., Meyer, C. H., Hart, J. M., Abel, M. F. & Blemker, S. S. Relationships of 35 lower limb muscles to height and body mass quantified using MRI. J. Biomech. 47, 631–638 (2014).
37. Pickrell, J. K. Joint analysis of functional genomic data and genomewide association studies of 18 human traits. Am. J. Hum. Genet. 94, 559–573 (2014).
38. Choochoep, K. et al. Versican facilitates chondrocyte differentiation and regulates joint morphogenesis. J. Biol. Chem. 285, 21114–21125 (2010).
39. Guo, X. et al. The fat mass and obesity associated gene FTO functions in the brain to regulate postnatal growth in mice. PLoS ONE 5, e1000529 (2010).
40. Hinney, A. et al. Genome wide association (GWA) study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. PLoS ONE 2, e1361 (2007).
41. Yang, J. et al. FTO genotype is associated with phenotypic variability of body mass index. Nature 490, 267–272 (2012).
42. Elks, C. E. et al. Thirty new loci for age at menarche identified by a meta-analysis of genomewide association studies. Nat. Genet. 42, 1077–1085 (2010).
43. Livshits, G., Malkin, I., Moayyeri, A., Spector, T. D. & Hammond, C. J. Association of FTO gene variants with body composition in UK twins. Ann. Hum. Genet. 76, 333–341 (2012).
44. Sonestedt, E. et al. Association between fat intake, physical activity and mortality depending on genetic variation in FTO. Int. J. Obes. 35, 1041–1049 (2011).
45. Fischer, J. et al. Inactivation of the Fto gene protects from obesity. Nature 458, 494–498 (2009).
46. Manning, A. K. et al. A genomewide approach accounting for body mass index identifies genetic variants influencing fasting glycaemic traits and insulin resistance. Nat. Genet. 44, 659–662 (2012).
47. Sharma, R. et al. The type 2 diabetes and insulin-resistance locus near IRS1 is a determinant of HDL cholesterol and triglycerides levels among diabetic subjects. Atherosclerosis 216, 157–160 (2011).
48. Estrada, K. et al. Genomewide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat. Genet. 44, 491–501 (2012).
49. Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 565–569 (2010).
50. Schousboe, K. et al. Twin study of genetic and environmental influences on adult body size, shape, and composition. Int. J. Obes. Relat. Metab. Disord. 28, 39–48 (2004).
51. Chen, Z. et al. Dual-energy X-ray absorptiometry is a valid tool for assessing skeletal muscle mass in older women. J. Nutr. 137, 2775–2780 (2007).
52. Kyle, U. G., Genton, L., Hans, D. & Pichard, C. Validation of a bioelectrical impedance analysis equation to predict appendicular skeletal muscle mass (ASMM). Clin. Nutr. 22, 537–543 (2003).
53. Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genomewide association studies. PLoS Genet. 5, e1000529 (2009).
54. Li, Y. & Abecasis, G. R. Mach 1.0: rapid haplotype reconstruction and missing genotype inference. Am. J. Hum. Genet. 79, 2290 (2006).
Acknowledgements

We acknowledge the essential role of the Cohorts for Heart and Aging Research in Genetic Epidemiology (CHARGE) Consortium in development and support of this manuscript. CHARGE members include the Netherlands’ Rotterdam Study (RS), Framingham Heart Study (FHS), Cardiovascular Health Study (CHS), the NHLBI’s Atherosclerosis Risk in Communities (ARIC) Study, and Iceland’s Age, Gene/ Environment Susceptibility (AGES) Reykjavik Study. Age, Gene/Environment Susceptibility Reykjavik Study (AGES-Reykjavik) has been funded by NIH contract N01-AG-12100, the NIA Intramural Research Program, Hjartavernd (the Icelandic Heart Authority). The researchers are indebted to the participants for their willingness to contribute.

The study is approved by the Ethics Committee of The Johns Hopkins University, contract number HS28907290896C. Indiana: We thank the individuals who participated in this study, as well as the study coordinators, without whom this work would not have been possible. This work was supported by National Institutes of Health grants R01 AG14157 and R01 RR-0750. Genotyping services were provided by CIPID. CIPID is fully funded through a federal contract from the National Institutes of Health to The Johns Hopkins University, contract number HS28907290896C.

Innovating the Future of Medicine. The study was funded by deCODE Genetics, ehf. We thank all the participants of this study, the staff of deCODE Genetics core facilities and recruitment center and the Newman Critical Care unit at the University Hospital for their important contributions to this work. The EPIC Study: The EPIC obesity study is funded by Cancer Research United Kingdom and the Medical Research Council. I.B. acknowledges support from EU FP6 funding (contract no. LSHM-CT-2005-503041) and by the Wellcome Trust (WT098051). Erasmus Rucphen Family (ERF): The study was supported by grants from The Netherlands Organisation for Scientific Research (NWO), Centre for Medical Systems Biology (CMB), and the European Community’s Seventh Framework Programme (FP7/2007-2013), ENGAGE Consortium, grant agreement HEALTH-F4-2007-210413. We are grateful to all general practitioners for their contributions, to Petra Veara for her help in genealogy, Jeanette Verger for the supervision of the laboratory work and Peter Snijders for his help in data collection. Finland: The Fenland Study is funded by the Wellcome Trust and the Medical Research Council, as well as the support for Science Funding programme and CamStrad. We are grateful to all the volunteers for their time and help, and to the General Practitioners and practice staff for help with recruitment. We thank the Fenland Study co-ordination team and the Field Epidemiology team of the MRC Epidemiology Unit for recruitment and clinical testing. Tuomas O. Kupilainen was supported by the Danish Council for Independent Research (DFF-701244-00412 and program grant DFF-701462-00401). Iceland: The Rotterdam Study: The study is funded by the Finnish Cultural Foundation, the Icelandic Council, and the Althingi (the Icelandic Parliament). The study is approved by the Ethics Committee of The Johns Hopkins University, contract number HS28907290896C. Indiana: We thank the individuals who participated in this study, as well as the study coordinators, without whom this work would not have been possible. This work was supported by National Institutes of Health grants R01 AG14157 and R01 RR-0750. Genotyping services were provided by CIPID. CIPID is fully funded through a federal contract from the National Institutes of Health to The Johns Hopkins University, contract number HS28907290896C.

The study was funded by deCODE Genetics, ehf. We thank all the participants of this study, the staff of deCODE Genetics core facilities and recruitment center and the Newman Critical Care unit at the University Hospital for their important contributions to this work. The EPIC Study: The EPIC obesity study is funded by Cancer Research United Kingdom and the Medical Research Council. I.B. acknowledges support from EU FP6 funding (contract no. LSHM-CT-2005-503041) and by the Wellcome Trust (WT098051). Erasmus Rucphen Family (ERF): The study was supported by grants from The Netherlands Organisation for Scientific Research (NWO), Centre for Medical Systems Biology (CMB), and the European Community’s Seventh Framework Programme (FP7/2007-2013), ENGAGE Consortium, grant agreement HEALTH-F4-2007-210413. We are grateful to all general practitioners for their contributions, to Petra Veara for her help in genealogy, Jeanette Verger for the supervision of the laboratory work and Peter Snijders for his help in data collection. Finland: The Fenland Study is funded by the Wellcome Trust and the Medical Research Council, as well as the support for Science Funding programme and CamStrad. We are grateful to all the volunteers for their time and help, and to the General Practitioners and practice staff for help with recruitment. We thank the Fenland Study co-ordination team and the Field Epidemiology team of the MRC Epidemiology Unit for recruitment and clinical testing. Tuomas O. Kupilainen was supported by the Danish Council for Independent Research (DFF-701244-00412 and program grant DFF-701462-00401). Iceland: The Rotterdam Study: The study is funded by the Finnish Cultural Foundation, the Icelandic Council, and the Althingi (the Icelandic Parliament). The study is approved by the Ethics Committee of The Johns Hopkins University, contract number HS28907290896C. Indiana: We thank the individuals who participated in this study, as well as the study coordinators, without whom this work would not have been possible. This work was supported by National Institutes of Health grants R01 AG14157 and R01 RR-0750. Genotyping services were provided by CIPID. CIPID is fully funded through a federal contract from the National Institutes of Health to The Johns Hopkins University, contract number HS28907290896C.
Author contributions

Writing group: (Amish) L.M.-Y.A.; (FHS) S.D., Y.-H.H., D.K.; (GOOD) C.O.; (HABC) T.B.H.; (Rotterdam Study II) J.S.L.K.; (Rush Memory and Aging Project) A.S.B.; (SHIP 2/SHIP-TREND) R.B.; (Twins UK) I.R.; (ULSAM) H.M., K.M.; A.M.; (VIS) I.R. Genotyping: (AGES) G.E., V.G., T.L.; (Amish) B.D.M., E.A.S.; (Berlin Aging Study II) J.S.L.K.; (B-PROOF) A.W.E., K.M.A.S.; (CAIFOS) J.R.L., R.L.P.; (CHS) N.L.G., J.I.R.; (CoLaus) M.B., T.J., D.W.; (ERF) N.A., L.B., B.A.O., C.M.V.D.; (Fenland) T.O.K., R.J.F.L.; (FH) W.-C.C., S.D., Y.-H.H., D.K.; (FUSION) M.R.E., S.C.J.P., L.J.S.; (GOOD) C.O.; (HABC) S.R.C.; (Helsinki Birth Cohort) J.G.E.; (Indiana) M.P.; (Johnston County Osteoarthritis Study) I.D., E.S.T.; (KOGES) N.H.C., J.-Y.L.; (Lolipop) J.G., J.S.K.; (MrOS Sweden) D.M.; (MrOS US) P.C., D.S.E., J.S.; (Old and Young Muscle Bx) T.G., A.H., S.M.; (OPRA) K.A., F.E.M.; (ORCADES) H.C., S.H., F.R.; (PEAK 25) K.A., F.E.M.G.; (PIVUS) L.L., K.M.; (RISC) W.X.; (Rotterdam Study II) M.C.V.; (SHIP 2/SHIP-TREND) R.B.; (Twins UK) I.R.; (ULSAM) K.M.; (VIS) I.R. Manpower and Administration: (AGES) E.G., V.G., T.L.; (Amish) B.D.M., E.A.S.; (Berlin Aging Study II) J.S.L.K.; (B-PROOF) A.W.E., K.M.A.S.; (CAIFOS) J.R.L., R.L.P.; (CHS) N.L.G., J.I.R.; (CoLaus) M.B., T.J., D.W.; (ERF) N.A., L.B., B.A.O., C.M.V.D.; (Fenland) T.O.K., R.J.F.L.; (FH) W.-C.C., S.D., Y.-H.H., D.K.; (FUSION) M.R.E., S.C.J.P., L.J.S.; (GOOD) C.O.; (HABC) T.B.H.; (Rotterdam Study II) J.S.L.K.; (Rush Memory and Aging Project) A.S.B.; (SHIP 2/SHIP-TREND) R.B.; (Twins UK) I.R.; (ULSAM) H.M., K.M.; A.M.; (VIS) I.R. Genotype preparation: (AGES) A.V.S.; (Amish) J.R.O.C.; (Berlin Aging Study II) L.B.; (CAIFOS) J.R.L., R.L.P.; (CHS) N.L.G., J.I.R.; (deCODE) G.S., U.S., U.T.; (DOPS) B.L.H.; (EPIC) R.N.L., J.H.Z.; (FHS) N.A., L.B., B.A.O., C.M.V.D.; (Fenland) J.L.; (FUSION) M.R.E.; (HABC) S.K., (Helsinki Birth Cohort) K.R., (Johnston County Osteoarthritis Project) I.D., E.S.T.; (KOGES) N.H.C., J.-Y.L.; (Lolipop) J.G., J.S.K.; (MrOS Sweden) D.M.; (MrOS US) E.S.O.; (OPRA) K.A., F.E.M.; (PEAK 25) K.A., F.E.M.G.; (PIVUS) K.M.; (Rotterdam Study II) J.S.L.K.; (Rush Memory and Aging Project) A.S.B.; (SHIP 2/SHIP-TREND) R.B.; (Twins UK) L.; (ULSAM) H.M., K.M., A.M.; (VIS) I.R. Identification of the study population:

Article

Institute for Anthropological Research in Zagreb and Croatian Institute for Public Health, including but not limited to The University of Split and Zagreb Medical Schools, the Ministry of Science, Education and Sports research grants to I.R. (108-1080315-0302). Funded by grants from the Medical Research Council (UK) and Republic of Croatia Ministry of Science, Education and Sports research grants to I.R. (108-1080315-0002). We acknowledge the staff of several institutions in Croatia that supported the field work, including but not limited to The University of Split and Zagreb Medical Schools, the Institute for Anthropological Research in Zagreb and Croatian Institute for Public Health. The SNP genotyping for the CROATIA V cohort was performed in the core genotyping laboratory of the Wellcome Trust Clinical Research Facility at the Western General Hospital, Edinburgh, Scotland. Women’s Health Initiative (WHI): The WHI program is funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, US Department of Health and Human Services through contracts N01WH22110, 24152, 32100, 32108-9, 32111-13, 32115, 32118-32, 32121-26, 42152-9, and 44221. We thank the WHI investigators and staff for their dedication, and the study participants for making the program possible. A listing of WHI investigators can be found at https://www.nih.gov/researchers/Documents%20Write%20a%20Paper/WHI%20Investigator%20Short%20List.pdf. This research was supported in part by US National Institutes of Health grants 1-ZIA-HG000024 (to F.S.C.), U01DK062370 (to M.B.), R00DK099240 (to S.C.J.P.), the American Heart Association Pathway to Science (to J.E.), and grant 1-14-SN (to S.C.J.P.), and Academy of Finland grants 271961 and 272741 (to M.L.) and 258735 (to H.A.K.). We thank all the subjects for participation and the study personnel for excellent technical assistance. The Pima Indian Study: This study was supported by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases, NIH, USA. Studies of a Targeted Risk Reduction Intervention with Defined Exercise Strategies in Older Minority Women (STEPHIB3) in the United States, funded by grants from the National Heart, Lung, and Blood Institute of the National Institutes of Health, HL57435 (WEK). Gene expression in old and young muscle biopsies: S.M. and T.G. were supported in part by NIH U24AG051521.
Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://reprintsandpermissions/reprintsandpermissions/.

Change History: A correction to this article has been published and is linked from the HTML version of this article.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2017
