Asymptotic Properties of Discrete Minimal s, \log^t-Energy Constants and Configurations

Nichakan Loesatapornpipit* and Nattapong Bosuwan

April 27, 2021

Department of Mathematics, Faculty of Science, Mahidol University
Rama VI Road, Ratchathewi District, Bangkok 10400, Thailand
Correspondence e-mail: nattapong.bos@mahidol.ac.th
Centre of Excellence in Mathematics, CHE
Si Ayutthaya Road, Bangkok 10400, Thailand

Abstract

Combining the ideas of Riesz s-energy and log-energy, we introduce the so-called s, \log^t-energy. In this paper, we investigate the asymptotic behaviors for N, t fixed and s varying of minimal N-point s, \log^t-energy constants and configurations of an infinite compact metric space of diameter less than 1. In particular, we study certain continuity and differentiability properties of minimal N-point s, \log^t-energy constants in the variable s and we show that in the limits as $s \to \infty$ and as $s \to s_0 > 0$, minimal N-point s, \log^t-energy configurations tend to an N-point best-packing configuration and a minimal N-point s_0, \log^t-energy configuration, respectively. Furthermore, the optimality of N distinct equally spaced points on circles in \mathbb{R}^2 for some certain s, \log^t energy problems was proved.

Keywords

discrete minimal energy; best-packing; Riesz energy; logarithmic energy.

*Results of this article constitute part of Nichakan Loesatapornpipit’s senior project under the mentorship of Nattapong Bosuwan at Mahidol University.
1 Introduction

The general setting of discrete minimal energy problem is the following. Let (A, d) be an infinite compact metric space and $K: A \times A \to \mathbb{R} \cup \{\infty\}$ be a lower semicontinuous kernel. For a fixed set of N points $\omega_N \subset A$, we define the K-energy of ω_N as follows

$$E_K(\omega_N) := \sum_{x \neq y, x, y \in \omega_N} K(x, y).$$

The minimal N-point K-energy of the set A is defined by

$$E_K(A, N) := \min_{\omega_N \subset A, \#\omega_N = N} E_K(\omega_N),$$

where $\#\omega_N$ stands for the cardinality of the set ω_N. A minimal N-point K-energy configuration is a configuration ω^K_N of N points in A that minimizes such energy, namely

$$E_K(\omega^K_N) = \min_{\omega_N \subset A, \#\omega_N = N} E_K(\omega_N).$$

It is known that ω^K_N always exists and in general ω^K_N may not be unique.

Two important kernels in the theory on minimal energy are Riesz and logarithmic kernels. The (Riesz) s-kernel and log-kernel are defined by

$$K^s(x, y) := \frac{1}{d(x, y)^s}, \quad s \geq 0. \quad (1)$$

and

$$K_{\log}(x, y) := \log \frac{1}{d(x, y)},$$

for all $(x, y) \in A \times A$, respectively. It is not difficult to check that both kernels are lower semicontinuous on $A \times A$. The s-energy of ω_N and the minimal N-point s-energy of the set A are

$$E^s(\omega_N) := E_K^s(\omega_N) \quad \text{and} \quad E^s(A, N) := \min_{\omega_N \subset A, \#\omega_N = N} E^s(\omega_N)$$

and we denote by $\omega^s_N := \omega^K_N$ and call this configuration a minimal N-point s-energy configuration. Similarly, the log-energy of ω_N and the N-point log-energy of the set A are

$$E_{\log}(\omega_N) := E_K^\log(\omega_N) \quad \text{and} \quad E_{\log}(A, N) := \min_{\omega_N \subset A, \#\omega_N = N} E_{\log}(\omega_N).$$
and we denote by $\omega_N^{\log} := \omega_N^{K_{\log}}$ and call this configuration a \textit{minimal N-point log-energy configuration}.

Let us provide a short survey of these two energy problems.

The study of s-energy constants and configurations has a long history in physics, chemistry, and mathematics. Finding the arrangements of ω_N^s where the set A is the unit sphere S^2 in the Euclidean space \mathbb{R}^3 has been an active area since the beginning of the 19th century. The problem is known as the generalized Thomson problem (see [1] and [2, Chapter 2.4]). Candidates for ω_N^s for several numbers of N are available (see, e.g., [3]). However, the solutions (with rigorous proofs) are obtainable for handful values of N (see, e.g., [4, 5, 6, Author1(year)]). For a general compact set A in the Euclidean space \mathbb{R}^m, the study of the distribution of minimal N-point s-energy configurations of A as $N \to \infty$ can be founded in [Author2(year)] and [Author3(year)]. In [Author3(year)], it was shown that when s is any fixed number greater than the Hausdorff dimension of A, minimal N-point s-energy configurations of A are “good points” to represent the set A in the sense that they are asymptotically uniformly distributed over the set A (see the precise statement in [Author3(year), Theorems 2.1 and 2.2]).

The log-energy problem has been heavily studied when A is a subset of the Euclidean space \mathbb{R}^2 (or \mathbb{C}) because it has had a profound influence in approximation theory (see, e.g., [7, 8, 9, 10, 11]). For $A \subset \mathbb{C}$, the points in ω_N^{\log} are commonly known as Fekete points or Chebyshev points which can be used as interpolation points (see [12]). The log-energy problem received another special attention when Steven Smale posed Problem #7 in his book chapter under the title “Mathematical problems for the next century” [13]. The problem #7 asks for a construction of an algorithm which on input $N \geq 2$ outputs a configuration $\omega_N = \{x_1, \ldots, x_N\}$ of distinct points on S^2 embedded in \mathbb{R}^3 such that

$$E_{\log}(\omega_N) - E_{\log}(S^2, N) \leq c \log N$$

(where c is a constant independent of N and ω_N) and requires that its running time grows at most polynomially in N. This arose from complexity theory in his joint work with Shub in [14]. In order to answer this question, it is natural to understand the asymptotic expansion of $E_{\log}(S^2, N)$ in the variable N (see [15] for conjectures and the progress). The problem concerning the arrangements of ω_N^{\log} on the unit sphere S^2 in \mathbb{R}^3 is posed by Whyte [16] in 1952. The Whyte’s problem is also attractive and intractable. We refer to [17] for a glimpse of this problem.

In [2], Borodachov, Hardin, and Saff investigated asymptotic properties of minimal N-point s-energy constants and configurations for fixed N and varying s. Because this will be our main interest in this paper, we will state these results below.

The first theorem [2, Theorems 2.7.1 and Theorem 2.7.3] concerns the continuity
and differentiability of the function
\[f(s) := \mathcal{E}^s(A, N), \quad s \geq 0. \] (2)

In order to state such theorem, let us define a set
\[G^s_{\log}(A, N) := \left\{ \sum_{x \neq y, x, y \in \omega_N} K^s(x, y)K_{\log}(x, y) : \omega_N \subset A \text{ and } E^s(\omega_N) = \mathcal{E}^s(A, N) \right\}, \] (3)

for \(s \geq 0 \).

Theorem A. Let \((A, d)\) be an infinite compact metric space and let \(N \geq 2 \) be fixed. Then,

(a) the function \(f(s) \) defined in (2) is continuous on \([0, \infty)\).

(b) the function \(f(s) \) is right differentiable on \([0, \infty)\) and left differentiable on \((0, \infty)\) with
\[f'_+(s) := \lim_{r \to s^+} \frac{f(r) - f(s)}{r - s} = \inf G^s(A, N), \quad s \geq 0, \]
and
\[f'_-(s) := \lim_{r \to s^-} \frac{f(r) - f(s)}{r - s} = \sup G^s(A, N), \quad s > 0. \]

We will see in Theorems B and C below that there are certain relations between minimal \(s \)-energy problems, as \(s \to 0^+ \), and best-packing problem defined as follows.

The \(N \)-point best-packing distance of the set \(A \) is defined
\[\delta_N(A) := \max\{\delta(\omega_N) : \omega_N \subset A\}, \] (4)
where
\[\delta(\omega_N) := \min_{1 \leq i \neq j \leq N} d(x_i, x_j) \]
denotes the separation distance of an \(N \)-point configuration \(\omega_N = \{x_1, \ldots, x_N\} \), and \(N \)-point best-packing configurations are \(N \)-point configurations attaining the maximum in (4).

The following theorem [2, Corollary 2.7.5 and Proposition 3.1.2] explains the behavior of \(\mathcal{E}^s(A, N) \) as \(s \to 0^+ \) and \(s \to \infty \).

Theorem B. For \(N \geq 2 \) and an infinite compact metric space \((A, d)\),
\[\lim_{s \to 0^+} \frac{\mathcal{E}^s(A, N) - N(N - 1)}{s} = \mathcal{E}_{\log}(A, N) \]
\[
\lim_{s \to \infty} (\mathcal{E}^s(A, N))^{1/s} = \frac{1}{\delta_N(A)}.
\]

Before we state more results, let us define a cluster configuration. Let \(s_0 \in [0, \infty]\) We say that

- an \(N\)-point configuration \(\omega_N \subset A\) is a cluster configuration of \(\omega_N^s\) as \(s \to s_0^+\) if there is a sequence \(\{s_k\}_{k=1}^{\infty} \subset (s_0, \infty)\) such that \(\lim_{k \to \infty} s_k = s_0\) and \(\lim_{k \to \infty} \omega_N^{s_k} = \omega_N\) in the topology of \(A^N\) induced by the metric \(d\).

- an \(N\)-point configuration \(\omega_N \subset A\) is a cluster configuration of \(\omega_N^s\) as \(s \to s_0^-\) if there is a sequence \(\{s_k\}_{k=1}^{\infty} \subset [0, s_0)\) such that \(\lim_{k \to \infty} s_k = s_0\) and \(\lim_{k \to \infty} \omega_N^{s_k} = \omega_N\) in the topology of \(A^N\) induced by the metric \(d\).

- an \(N\)-point configuration \(\omega_N \subset A\) is a cluster configuration of \(\omega_N^s\) as \(s \to \infty\) if there is a sequence \(\{s_k\}_{k=1}^{\infty} \subset (0, \infty)\) such that \(\lim_{k \to \infty} s_k = \infty\) and \(\lim_{k \to \infty} \omega_N^{s_k} = \omega_N\) in the topology of \(A^N\) induced by the metric \(d\).

The properties of cluster configurations of minimal \(N\)-point \(s\)-energy configurations as \(s\) varies (see [2, Theorem 2.7.1 and Proposition 3.1.2]) are in

Theorem C. Let \((A, d)\) be an infinite compact metric space and, for \(s \geq 0\) and \(N \geq 2\), let \(\omega_N^s\) denote a minimal \(N\)-point \(s\)-energy configuration on \(A\). Then,

(a) for \(s_0 > 0\), any cluster configuration of \(\omega_N^s\) as \(s \to s_0\) is a minimal \(N\)-point \(s_0\)-energy configuration;

(b) any cluster configuration of \(\omega_N^s\) as \(s \to 0^+\) is a minimal \(N\)-point log-energy configuration;

(c) any cluster configuration of \(\omega_N^s\) as \(s \to \infty\) is a \(N\)-point best-packing configuration.

In this paper, we consider the following \(s, \log^t\)-kernel

\[
K^{s, t}_{\log}(x, y) = \frac{1}{d(x, y)^s} \left(\log \frac{1}{d(x, y)}\right)^t, \quad s \geq 0, \quad t \geq 0.
\]

with corresponding \(s, \log^t\)-energy of \(\omega_N\) and minimal \(N\)-point \(s, \log^t\)-energy of the set \(A\)

\[
E^{s, t}_{\log}(\omega_N) := E_{K^{s, t}_{\log}}(\omega_N) \quad \text{and} \quad \mathcal{E}^{s, t}_{\log}(A, N) := \min_{\omega_N \subset A} E^{s, t}_{\log}(\omega_N),
\]
respectively. We set
\[\omega_N^{s,\log t} := \omega_N^{K_s,\log t}, \]
and call it a \textit{minimal N-point s, log t-energy configuration}. Note that the kernel \(K_s^{\log t}(x, y) \) is lower semicontinuous on \(A \times A \) and this \(s, \log t \)-energy can be viewed as a generalization of both \(s \)-energy and log-energy. The kernel in (5) was first appeared in the study of the differentiability of the function \(f(s) \) in [2, Theorem 2.7.3]. To the authors’ knowledge, no study involving \(s, \log t \)-energy constants and configurations appears in the literature.

The main goal of this paper is to prove analogues of Theorems A, B, and C for \(s, \log t \)-energy constants and configurations. We would like to emphasize that we will limit our interest to the sets \(A \) with \(\text{diam}(A) < 1 \), where
\[\text{diam}(A) := \sup_{x,y \in A} d(x, y) \]
denotes the diameter of \(A \). For the cases where \(\text{diam}(A) \geq 1 \), the values of the kernel \(K_s^{\log t}(x, y) \) can be 0 or negative and the analysis becomes laborious. Furthermore, we investigate the arrangement of \(\omega_N^{s,\log t} \) on circles in \(\mathbb{R}^2 \) for certain values of \(s \) and \(t \).

An outline of this paper is as follows. The main results in this paper are stated in Section 2. We keep all auxiliary lemmas in Section 3. The proofs of the main results are in Section 4.

\section{Main Results}

Asymptotic behavior of minimal \(N \)-point \(s, \log t \)-energy constants and configurations as \(s \to \infty \) can be explained in the following theorem.

\textbf{Theorem 2.1.} Let \(N \geq 2 \) and \(t \geq 0 \) be fixed. Assume that \((A, d)\) is an infinite compact metric space with \(\text{diam}(A) < 1 \). Then,
\[\lim_{s \to \infty} \left(\mathcal{E}_N^{s}(A, N) \right)^{1/s} = \frac{1}{\delta_N(A)}. \]

Furthermore, every cluster configuration of \(\omega_N^{s,\log t} \) as \(s \to \infty \) is an \(N \)-point best-packing configuration on \(A \).

For a fixed \(t \geq 0 \), we define
\[g(s) := \mathcal{E}_N^{s}(A, N), \quad s \geq 0. \]
The continuity of \(g(s) \) is stated below.
Theorem 2.2. Let $N \geq 2$ and $t \geq 0$ be fixed. Assume that (A,d) is an infinite compact metric space with $\text{diam}(A) < 1$. Then, the function $g(s)$ is continuous on $[0, \infty)$.

Analysis of cluster configurations of ω_N^{s, \log^t} as $s \to s_0 > 0$ is in the following theorem.

Theorem 2.3. Let $N \geq 2$ and $t \geq 0$ be fixed. Assume that (A,d) is an infinite compact metric space with $\text{diam}(A) < 1$. Denote by ω_N^{s, \log^t} a minimal N-point s, \log^t-energy configuration on A. Then, for any $s_0 > 0$, any cluster configuration of ω_N^{s, \log^t}, as $s \to s_0$, is a minimal N-point s_0, \log^t-energy configuration on A.

For $s \geq 0$ and $t \geq 0$, we set
\[G_{\log^t+1}(A, N) := \{ E_{\log^t+1}(\omega_N) : \omega_N \subset A \text{ and } E_{\log^t}(\omega_N) = E_{\log^t+1}(A, N) \}. \]

The differentiability properties of $g(s)$ are in Theorems 2.4 and 2.5.

Theorem 2.4. Let $N \geq 2$ and $t \geq 0$ be fixed. Assume that (A,d) is an infinite compact metric space with $\text{diam}(A) < 1$. Then, the function $g(s)$ is right differentiable on $[0, \infty)$ and left differentiable on $(0, \infty)$ with
\[g'_+(s) := \lim_{r \to s^+} \frac{g(r) - g(s)}{r - s} = \inf G_{\log^t+1}(A, N), \quad s \geq 0, \] \[g'_-(s) := \lim_{r \to s^-} \frac{g(r) - g(s)}{r - s} = \sup G_{\log^t+1}(A, N), \quad s > 0. \]

Theorem 2.5. Let $N \geq 2$ and $t \geq 0$ be fixed. Assume that (A,d) is an infinite compact metric space with $\text{diam}(A) < 1$. Then,

(a) the function $g(s)$ is differentiable at $s = s_0 > 0$ if and only if
\[\inf G_{\log^t}(A, N) = \sup G_{\log^t}(A, N); \]

(b) if ω_N^* is a cluster point of ω_N^{s, \log^t} as $s \to s_0^+ \geq 0$, then
\[E_{\log^t+1}(\omega_N^*) = \inf G_{\log^t+1}(A, N) = g'_+(s_0); \]

(c) if ω_N^{**} is a cluster point of ω_N^{s, \log^t} as $s \to s_0^- > 0$, then
\[E_{\log^t+1}(\omega_N^{**}) = \sup G_{\log^t+1}(A, N) = g'_-(s_0); \]
(d) For $s_0 > 0$, if there exists a configuration ω^*_N that is both cluster configurations of $\omega^*_{N,s} \log t$ as $s \to s^+_0$ and $s \to s^-_0$, then the function $g(s)$ is differentiable at $s = s_0$ with

$$E^s_{\log t+1}(\omega^*_N) = g'(s_0).$$

Let d_u be the 2-dimensional Euclidean metric of \mathbb{R}^2. For $\alpha > 0$, we denote by

$$S^1_\alpha := \{x \in \mathbb{R}^2 : d_u(0, x) = \alpha\}$$

the circle centered at 0 of radius α. We let $L(x, y)$ be the geodesic distance between the points x and y on S^1_α; that is, the length of the shorter arc of S^1_α connecting the points x and y.

The optimality of N distinct equally spaced points on S^1_α with the Euclidean metric d_u or the geodesic distance L for the certain $s, \log t$-energy problems is stated in Propositions 2.1-2.3.

Proposition 2.1. Let $N \geq 2$, $s \geq 0$, $t \geq 1$, and $0 < \alpha < 1/2$. Then, ω_N is a minimal N-point $s, \log t$-energy configuration on S^1_α with the geodesic distance L if and only if ω_N is a configuration of N distinct equally spaced points on S^1_α.

Proposition 2.2. Let $N \geq 2$, $0 < \alpha < (e\pi)^{-1}$, and s, t satisfy $s > 0$, $t \geq 0$ or $s = 0$, $t > 0$. Then, ω_N is a minimal N-point $s, \log t$-energy configuration on S^1_α with the geodesic distance L if and only if ω_N is a configuration of N distinct equally spaced points on S^1_α.

Proposition 2.3. Let $N \geq 2$, $s \geq 0$, $t \geq 1$, and $0 < \alpha < 1/2$. Then, ω_N is a minimal N-point $s, \log t$-energy configuration on S^1_α with the Euclidean metric d_u if and only if ω_N is a configuration of N distinct equally spaced points on S^1_α.

Note that the conditions $0 < \alpha < 1/2$ in Proposition 2.1 and $0 < \alpha < 1/2$ in Proposition 2.3 are needed to make sure that diam(S^1_α) < 1 corresponding to the Euclidean metric d_u and the geodesic distance L, respectively.

3 Auxiliary Lemmas

Lemma 3.1. Let $\beta \geq 0$ and $h : (0, 1) \to (0, \infty)$ be a function defined by

$$h(x) := x \left(\log \frac{1}{x}\right)^{-\beta} \quad \text{for all } x \in (0, 1).$$

Then, $h(x)$ is strictly increasing on $(0, 1)$.
Proof of Lemma 3.1. Because
\[h'(x) = \beta \left(\log \frac{1}{x} \right)^{-(\beta+1)} + \left(\log \frac{1}{x} \right)^{-\beta} \]
and \((\log(1/x))^{-\beta} > 0\) for all \(x \in (0, 1)\) and \(\beta \geq 0\), \(h'(x) > 0\) for all \(x \in (0, 1)\). Therefore, \(h(x)\) is strictly increasing on \((0, 1)\).

Lemma 3.2. Let \((s, t) \in [0, \infty) \times [0, \infty) \setminus \{(0,0)\}\) and \(p : (0,1) \to (0,\infty)\) be a function defined by
\[p(x) := \frac{1}{x^s} \left(\log \frac{1}{x} \right)^t \quad \text{for all } x \in (0,1). \]
Then, \(p(x)\) is strictly decreasing on \((0,1)\).

Proof of Lemma 3.2. Using Lemma 3.1, we set \(\beta = t/s\) and
\[p(x) = \left(\frac{1}{h(x)} \right)^s = \frac{1}{x^s} \left(\log \frac{1}{x} \right)^t \]
is strictly decreasing on \((0,1)\). \(\square\)

Lemma 3.3. Let \((A, d)\) be an infinite compact metric space with \(\text{diam}(A) < 1\) and \(s, t \geq 0\). Then, for all \(N\)-point configurations \(\omega_N \subset A\),
\[E_{\log^s}^r(\omega_N) \geq \frac{N(N-1)}{(\text{diam}(A))^s} \left(\log \frac{1}{\text{diam}(A)} \right)^t. \]

Proof of Lemma 3.3. The proof relies on the fact that \(p(x)\) in Lemma 3.2 is strictly decreasing on \((0,1)\). \(\square\)

Lemma 3.4. Let \((A, d)\) be an infinite compact metric space with \(\text{diam}(A) < 1\) and \(\omega_N = \{x_1, \ldots, x_N\}\) be any configuration of \(N\) distinct points of \(A\). Then, for any \(s > r \geq 0\) and \(t \geq 0\),
\[E_{\log^s}^{r+1}(\omega_N) \leq \frac{E_{\log^s}^r(\omega_N) - E_{\log^r}^r(\omega_N)}{s-r} \leq E_{\log^{s+1}}^r(\omega_N). \]

Proof of Lemma 3.4. Let \(x_i, x_j \in \omega_N\) where \(1 \leq i \neq j \leq N\), let \(s > r \geq 0\), and let \(t \geq 0\). Then,
\[\frac{1}{d(x_i, x_j)^r} \log \frac{1}{d(x_i, x_j)} \leq \frac{1}{d(x_i, x_j)^s} - \frac{1}{d(x_i, x_j)^r} \leq \frac{1}{d(x_i, x_j)^s} \log \frac{1}{d(x_i, x_j)}. \]
Since \((\log \frac{1}{d(x_i, x_j)})^t > 0,\)

\[\frac{1}{d(x_i, x_j)^s} \left(\log \frac{1}{d(x_i, x_j)} \right)^{t+1} \leq \frac{1}{d(x_i, x_j)^{s-r}} \left(\log \frac{1}{d(x_i, x_j)} \right)^t - \frac{1}{d(x_i, x_j)^r} \left(\log \frac{1}{d(x_i, x_j)} \right)^t \]

\[\leq \frac{1}{d(x_i, x_j)^{s-r}} \left(\log \frac{1}{d(x_i, x_j)} \right)^{t+1}. \]

It follows that

\[E_{s \log^{t+1}}^r(\omega_N) \leq \frac{E_s^r(\omega_N) - E_{s \log^t}(\omega_N)}{s-r} \leq E_{s \log^t(\omega_N)}. \]
Then,
\[
\frac{1}{\delta_N(A)} \left(\log \frac{1}{c} \right)^{t/s} \leq \frac{1}{\delta(\omega^s_{\log^t})} \left(\log \frac{1}{c} \right)^{t/s} \leq \frac{1}{\delta(\omega^s_{\log^t})} \left(\log \frac{1}{\delta(\omega^s_{\log^t})} \right)^{t/s}
\]
\[
\leq \left(E^s_{\log^t}(\omega^s_{\log^t}) \right)^{1/s} = \left(E^s_{\log^t}(A, N) \right)^{1/s} \leq \left(E^s_{\log^t}(\omega^\infty_N) \right)^{1/s} \leq \frac{1}{\delta_N(A)} \left(E^s_{\log^t}(\omega^\infty_N) \right)^{1/s}.
\]
(8)

Since
\[
\lim_{s \to \infty} \frac{1}{\delta_N(A)} \left(\log \frac{1}{c} \right)^{t/s} = \frac{1}{\delta_N(A)}
\]
and
\[
\lim_{s \to \infty} \frac{1}{\delta_N(A)} \left(E^s_{\log^t}(\omega^\infty_N) \right)^{1/s} = \frac{1}{\delta_N(A)}
\]

it follows that
\[
\lim_{s \to \infty} \left(E^s_{\log^t}(A, N) \right)^{1/s} = \frac{1}{\delta_N(A)}.
\]

Let \(\omega^*_N \) be a cluster configuration of \(\omega^s_{\log^t} \) as \(s \to \infty \). This implies that there is a sequence \(\{ s_k \}_{k=1}^\infty \subset \mathbb{R} \) such that \(s_k \to \infty \) and \(\omega^s_{\log^t} \to \omega^*_N \) as \(k \to \infty \). Arguing as in (8), we have
\[
\frac{1}{\delta(\omega^s_{\log^t})} \left(\log \frac{1}{c} \right)^{t/s_k} \leq \left(E^s_{\log^t}(\omega^s_{\log^t}) \right)^{1/s_k} = \left(E^s_{\log^t}(A, N) \right)^{1/s_k} \leq \left(E^s_{\log^t}(\omega^\infty_N) \right)^{1/s_k}
\]
\[
\leq \frac{1}{\delta(\omega^\infty_N)} \left(E^s_{\log^t}(\omega^\infty_N) \right)^{1/s_k}.
\]

Taking \(k \to \infty \), we obtain
\[
\delta_N(A) = \delta(\omega^\infty_N) \leq \delta(\omega^*_N).
\]

This means that \(\omega^*_N \) is also an \(N \)-point best-packing configuration on \(A \).

\[\square\]

Proof of Theorem 2.2. First of all, we show that \(g(s) \) is continuous on \((0, \infty)\). Let \(s > 0 \) and let \(\omega^s_{\log^t} \) be a minimal \(N \)-point \(s, \log^t \)-energy configuration on \(A \). Using Lemma 3.4 we obtain for any \(\omega^s_{\log^t} \),
\[
\liminf_{r \to s^-} \frac{g(r) - g(s)}{r - s} \geq \liminf_{r \to s^-} \frac{E^r_{\log^t}(\omega^s_{\log^t}) - E^s_{\log^t}(\omega^s_{\log^t})}{r - s}
\]
\[
\geq \lim_{r \to s^-} E_{\log^{t+1}}^{r, \log^t}(\omega_N^{s, \log^t}) = E_{\log^{t+1}}^{s, \log^t}(\omega_N^{s, \log^t}) \geq \sup_{r \to s^-} G_{\log^{t+1}}^{s}(A, N) > 0, \tag{9}
\]

and

\[
\limsup_{r \to s^-} \frac{g(r) - g(s)}{r - s} \leq \limsup_{r \to s^-} \frac{E_{\log^{t}}^{r, \log^t}(\omega_N^{r, \log^t}) - E_{\log^{t}}^{s, \log^t}(\omega_N^{r, \log^t})}{r - s} \leq \limsup_{r \to s^-} E_{\log^{t+1}}^{s, \log^t}(\omega_N^{r, \log^t}), \tag{10}
\]

where the second inequality in (9) follows from the arbitrariness of \(\omega_N^{s, \log^t} \) and the last inequality in (9) follows from Lemma 3.3.

Let \(\omega_N \) be a fixed configuration of \(N \) distinct points of \(A \). Note that \(0 < \delta(\omega_N) < 1 \). For all \(r \in (s/2, s) \), we have

\[
\left(\frac{1}{\delta(\omega_N^{r, \log^t})} \right)^{s/2} \left(\log \frac{1}{\delta(\omega_N^{r, \log^t})} \right)^t \leq \left(\frac{1}{\delta(\omega_N^{r, \log^t})} \right)^r \left(\log \frac{1}{\delta(\omega_N^{r, \log^t})} \right)^t \leq E_{\log^{t}}^{r, \log^t}(\omega_N^{r, \log^t}) \leq E_{\log^{t}}^{r}(\omega_N^{r, \log^t}) \leq \left(\frac{1}{\delta(\omega_N)} \right)^r \left(\log \frac{1}{\delta(\omega_N)} \right)^t N(N - 1) \leq \left(\frac{1}{\delta(\omega_N)} \right)^s \left(\log \frac{1}{\delta(\omega_N)} \right)^t N(N - 1).
\]

That is,

\[
(\delta(\omega_N^{r, \log^t}))^{s/2} \left(\log \frac{1}{\delta(\omega_N^{r, \log^t})} \right)^{-t} \geq (\delta(\omega_N))^s \left(\log \frac{1}{\delta(\omega_N)} \right)^{-t} (N(N - 1))^{-1}.
\]

This implies that for all \(r \in (s/2, s) \),

\[
\delta(\omega_N^{r, \log^t}) \left(\log \frac{1}{\delta(\omega_N^{r, \log^t})} \right)^{-2t/s} \geq (\delta(\omega_N))^2 \left(\log \frac{1}{\delta(\omega_N)} \right)^{-2t/s} (N(N - 1))^{-2/s} =: c_1 > 0.
\]

Since by Lemma 3.1,

\[
h(x) := x \left(\log \frac{1}{x} \right)^{-\beta}, \quad \beta > 0,
\]

is a strictly increasing function on \((0, 1)\), there exists a constant \(c_2 > 0 \) such that for all \(r \in (s/2, s) \),

\[
\delta(\omega_N^{r, \log^t}) \geq c_2 > 0.
\]
Therefore, \(E_{\log^{t+1}}^{s} (\omega_N^{\log^t}) \) are bounded above where \(r \in (s/2, s) \). From this and (10),

\[
\limsup_{r \to s^-} \frac{g(r) - g(s)}{r - s} \leq \limsup_{r \to s^-} E_{\log^{t+1}}^{s} (\omega_N^{r, \log^t}) < \infty. \tag{11}
\]

Let \(s \geq 0 \). Using Lemma 3.3, we also obtain for any \(\omega_N^{s, \log^t} \),

\[
\limsup_{r \to s^+} \frac{g(r) - g(s)}{r - s} \leq \limsup_{r \to s^+} \frac{E_{\log^{t+1}}^{r} (\omega_N^{s, \log^t}) - E_{\log^{t+1}}^{s} (\omega_N^{s, \log^t})}{r - s} \leq \lim_{r \to s^+} E_{\log^{t+1}}^{s} (\omega_N^{s, \log^t}) = E_{\log^{t+1}}^{s} (\omega_N^{s, \log^t}) \leq \inf G_{\log^{t+1}}^{s} (A, N) < \infty, \tag{12}
\]

and

\[
\liminf_{r \to s^+} \frac{g(r) - g(s)}{r - s} \geq \liminf_{r \to s^+} \frac{E_{\log^{t+1}}^{r} (\omega_N^{s, \log^t}) - E_{\log^{t+1}}^{s} (\omega_N^{s, \log^t})}{r - s} \geq \liminf_{r \to s^+} E_{\log^{t+1}}^{s} (\omega_N^{r, \log^t}) > 0, \tag{13}
\]

where the second inequality in (12) follows from rom the arbitrariness of \(\omega_N^{s, \log^t} \) and the last inequality in (13) follows from Lemma 3.3.

The inequalities (9), (11), (12), and (13) imply that for all \(s > 0 \),

\[
0 < \liminf_{r \to s^-} \frac{g(r) - g(s)}{r - s} \leq \limsup_{r \to s^-} \frac{g(r) - g(s)}{r - s} < \infty \tag{14}
\]

and for all \(s \geq 0 \)

\[
0 < \liminf_{r \to s^+} \frac{g(r) - g(s)}{r - s} \leq \limsup_{r \to s^+} \frac{g(r) - g(s)}{r - s} < \infty. \tag{15}
\]

The inequalities in (14) and (15) further imply that \(g(s) \) is continuous for all \(s > 0 \) and is right continuous at \(s = 0 \).

\[\square \]

Proof of Theorem 2.3 Let \(s_0 > 0 \). In order to show Theorem 2.3 it suffices to show that any cluster configuration of \(\omega_N^{s, \log^t} \) as \(s \to s_0^+ \) or as \(s \to s_0^- \) is a minimal \(N \)-point \(s_0, \log^t \)-energy configuration on \(A \).

Let \(\omega_N^{*} \) be a cluster configuration of \(\omega_N^{s, \log^t} \), as \(s \to s_0^+ \). Then, there is a sequence \(\{s_k\}_{k=1}^{\infty} \subset (s_0, \infty) \) such that \(s_k \to s_0 \) and \(\omega_N^{s_k, \log^t} \to \omega_N^{*} \) as \(k \to \infty \). Let \(\alpha = \text{diam}(A) \). For any configuration of \(N \) distinct points \(\omega_N \) on \(A \), notice that \(\alpha^s E_{\log^t}^{s} (\omega_N) \) is an increasing function of \(s \). Applying the continuity of \(g(s) := E_{\log^t}^{s} (A, N) \) at \(s_0 \), we have

\[
\alpha^{s_0} E_{\log^t}^{s_0} (\omega_N^*) = \lim_{k \to \infty} \alpha^{s_0} E_{\log^t}^{s_0} (\omega_N^{s_k, \log^t}) \leq \lim_{k \to \infty} \alpha^{s_k} E_{\log^t}^{s_k} (\omega_N^{s_k, \log^t})
\]
Then, using Lemma 3.1, there is a constant $c > 0$.

Proof of Theorem 2.4. Firstly, we show (6). Let $s \geq 0$ be fixed and $\{r_k\}_{k=1}^{\infty} \subset (s, \infty)$ be a sequence such that $r_k \to s$ as $k \to \infty$ and

$$\lim_{k \to \infty} E^{s}_{\log^i}(\omega_{r_k, log^i}) = \lim_{r \to s^+} E^{s}_{\log^i}(\omega_{r, log^i}).$$

(16)
Since A^N is compact, there exists a subsequence $\{s_\ell\}_{\ell=1}^\infty \subset \{r_k\}_{k=1}^\infty$ such that
\[\lim_{\ell \to \infty} \omega_{s_\ell}^{r_k, \log^t} = \omega_N^* \] (17)
and ω_N^* is a minimal N-point s, \log^t-energy configuration by Theorem 2.3. By
\[\lim_{k \to \infty} E_{s \log^t+1}^s(\omega_{r_k}^{r_k, \log^t}) = \lim_{\ell \to \infty} E_{\log^t+1}^s(\omega_{s_\ell}^{s_\ell, \log^t}), \]
(12), (13), (16), and (17), we get
\[\liminf_{r \to s^+} \frac{g(r) - g(s)}{r - s} \geq \liminf_{r \to s^+} E_{s \log^t+1}^s(\omega_{r}^{r, \log^t}) = \lim_{\ell \to \infty} E_{\log^t+1}^s(\omega_{s_\ell}^{s_\ell, \log^t}) \]
(18).

Then,
\[g'_+(s) = \inf G_{\log^t+1}(A, N). \] (19)

It is easy to check that from Lemma 3.3, the constant $\inf G_{\log^t+1}(A, N)$ in (19) is
finite. This verifies (6).

Next, we prove (7). Let $s > 0$ be fixed and $\{r_k\}_{k=1}^\infty \subset [0, s)$ be a sequence such
that $r_k \to s$ as $k \to \infty$ and
\[\lim_{k \to \infty} E_{s \log^t+1}^s(\omega_{r_k}^{r_k, \log^t}) = \limsup_{r \to s^-} E_{s \log^t+1}^s(\omega_{r}^{r, \log^t}). \] (20)

Because A^N is compact, there exists a subsequence $\{s_\ell\}_{\ell=1}^\infty \subset \{r_k\}_{k=1}^\infty$ such that
\[\lim_{\ell \to \infty} \omega_{s_\ell}^{r_k, \log^t} = \omega_{s_\ell}^* \]
and $\omega_{s_\ell}^*$ is a minimal N-point s, \log^t-energy configuration by Theorem 2.3. Then, we get
\[\lim_{k \to \infty} E_{s \log^t+1}^s(\omega_{r_k}^{r_k, \log^t}) = \lim_{\ell \to \infty} E_{\log^t+1}^s(\omega_{s_\ell}^{s_\ell, \log^t}). \] (21)

Using (9), (10), (20), and (21), we obtain
\[\liminf_{r \to s^-} \frac{g(r) - g(s)}{r - s} \geq \sup G_{s \log^t+1}(A, N) \geq E_{s \log^t+1}^s(\omega_{s_\ell}^{s_\ell, \log^t}) \]
\[= \lim_{\ell \to \infty} E_{s \log^t+1}^s(\omega_{s_\ell}^{s_\ell, \log^t}) = \limsup_{r \to s^-} E_{s \log^t+1}^s(\omega_{r}^{r, \log^t}) \geq \limsup_{r \to s^-} \frac{g(r) - g(s)}{r - s}. \]
Then,

\[g'(s) = \sup \mathcal{G}^{s}_{t+1}(A, N). \tag{22} \]

Next, we want to show that \(\sup \mathcal{G}^{s}_{t+1}(A, N) \) is finite. Let \(\omega_N \) be a fixed configuration of \(N \) distinct points on \(A \) and let \(\omega^{s, \log^t}_N \) be any minimal \(N \)-point configurations. Then,

\[
(\delta(\omega^{s, \log^t}_N))^{-s} \left(\log \frac{1}{\delta(\omega^{s, \log^t}_N)} \right)^t \leq E^{s}_{\log^t}(\omega^{s, \log^t}_N) \\
\leq E^{s}_{\log^t}(\omega_N) \leq (\delta(\omega_N))^{-s} \left(\log \frac{1}{\delta(\omega_N)} \right)^t N(N-1).
\]

That is,

\[
\delta(\omega^{s, \log^t}_N) \left(\log \frac{1}{\delta(\omega^{s, \log^t}_N)} \right)^{-t/s} \geq \delta(\omega_N) \left(\log \frac{1}{\delta(\omega_N)} \right)^{-t/s} (N(N-1))^{-1/s} =: c_1 > 0.
\]

It follows from Lemma 3.1 that there is a constant \(c_2 > 0 \) such that for any \(\omega^{s, \log^t}_N \),

\[
\delta(\omega^{s, \log^t}_N) \geq c_2 > 0.
\]

Since by Lemma 3.2

\[
p(x) := \frac{1}{x^s} \left(\log \frac{1}{x} \right)^{t+1},
\]

is a strictly decreasing function on \((0, 1)\), the set \(\mathcal{G}^{s}_{t+1}(A, N) \) is bounded above. This implies that \(\sup \mathcal{G}^{s}_{t+1}(A, N) \) in (22) is finite. Hence, (7) is proved. \(\square \)

Proof of Theorem 2.5. (a): This is a direct consequence of Theorem 2.4. (b): Let \(s_0 \geq 0 \) and \(\omega^{s_0}_N \) be a cluster configuration of \(\{\omega^{s, \log^t}_N\} \) as \(s \to s_0^+ \). Then, there exists a sequence \(\{s_k\}_{k=1}^{\infty} \subset (s_0, \infty) \) such that \(\lim_{k \to \infty} s_k = s_0 \) and \(\lim_{k \to \infty} \omega^{s_k, \log^t}_N = \omega^*_N \). Then, \(\omega^*_N \) is a minimal \(N \)-point \(s_0, \log^t \)-energy configuration by Theorem 2.3. Using (6) and the similar argument used to show (13), we have

\[
E^{s_0}_{\log^t+1}(\omega^*_N) = \lim_{k \to \infty} E^{s_0}_{\log^t+1}(\omega^{s_k, \log^t}_N) \leq \lim_{k \to \infty} \frac{g(s_k) - g(s_0)}{s_k - s_0} = g'_+(s_0) = \inf \mathcal{G}^{s_0}_{\log^t+1}(A, N).
\]

Since \(\inf \mathcal{G}^{s_0}_{\log^t+1}(A, N) \leq E^{s_0}_{\log^t+1}(\omega^*_N) \),

\[
E^{s_0}_{\log^t+1}(\omega^*_N) = \inf \mathcal{G}^{s_0}_{\log^t+1}(A, N) = g'_+(s_0).
\]
(c): Let $s_0 > 0$ and $\omega_N^{*\ast}$ be a cluster configuration of $\{\omega_N^{s,\log^t}\}$ as $s \to s_0^-$. Then, there exists a sequence $\{s_k\}_{k=1}^{\infty} \subset [0, s_0)$ such that $\lim_{k \to \infty} s_k = s_0$ and $\lim_{k \to \infty} \omega_N^{s_k,\log^t} = \omega_N^{*\ast}$. Then, $\omega_N^{*\ast}$ is a minimal N-point s_0, \log^t-energy configuration by Theorem 2.3. Using (7) and the similar argument used to show (11), we have

$$E_{\log^t+1}^{s_0}(\omega_N^{*\ast}) = \lim_{k \to \infty} E_{\log^t+1}^{s_0}(\omega_N^{s_k,\log^t}) \geq \lim_{k \to \infty} \frac{g(s_k) - g(s_0)}{s_k - s_0} = g'_-(s_0) = \sup G_{\log^t+1}^{s_0}(A, N).$$

Since $E_{\log^t+1}^{s_0}(\omega_N^{*\ast}) \leq \sup G_{\log^t+1}^{s_0}(A, N)$,

$$E_{\log^t+1}^{s_0}(\omega_N^{*\ast}) = \sup G_{\log^t+1}^{s_0}(A, N) = g'_-(s_0).$$

(d): This is a direct consequence of (b) and (c).

Proof of Proposition 2.1. Let $N \geq 2$, $s \geq 0$, $t \geq 1$, and $0 < \alpha < \pi^{-1}$. We prove this proposition using Lemma 3.5. The function $k : (0, 1) :\to \mathbb{R}$ in the lemma is

$$k(x) = \frac{1}{x^s} \left(\log \frac{1}{x} \right)^t.$$

By Lemma 3.2 $k(x)$ is strictly decreasing on $(0, 1)$. Since for all $x \in (0, 1)$,

$$k''(x) = \frac{1}{x^{s+2}} \left(\log \frac{1}{x} \right)^{-2+t} \left[(-1 + t)t + (t + 2st) \log \frac{1}{x} + s(1 + s) \log^2 \frac{1}{x} \right] > 0, \quad (23)$$

$k(x)$ is strictly convex on $(0, 1)$. Hence, because the function $k(x)$ satisfies all required properties in Lemma 3.5, all minimal N-point K-energy configurations on S^1_α are configurations of N distinct equally spaced points on S^1_α with respect to the arc length and vice versa.

Proof of Proposition 2.2. Let $N \geq 2$, $0 < \alpha < (e\pi)^{-1}$, and s, t satisfy $s > 0, t \geq 0$ or $s = 0, t > 0$. We can use the same lines of reasoning as in the proof of Proposition 2.1 except the function k is considered on $(0, 1/e)$ and for all $x \in (0, 1/e)$,

$$k''(x) = \frac{1}{x^{s+2}} \left(\log \frac{1}{x} \right)^{-2+t} \left[(-1 + t)t + (t + 2st) \log \frac{1}{x} + s(1 + s) \log^2 \frac{1}{x} \right] \geq \frac{1}{x^{s+2}} \left(\log \frac{1}{x} \right)^{-2+t} \left[t^2 + 2st \log \frac{1}{x} + s(1 + s) \log^2 \frac{1}{x} + \left(\log \frac{1}{x} - 1 \right) t \right] > 0.$$

Hence, because the function $k(x)$ satisfies all required properties in Lemma 3.5, Proposition 2.2 is proved.
Proof of Proposition 2.3. Let $N \geq 2$, $s \geq 0$, $t \geq 1$, and $0 < \alpha < 1/2$. Again, we want to use Lemma 3.5. The function $k : (0, \pi\alpha] \rightarrow \mathbb{R}$ in the lemma is

$$k(x) = \left(\frac{1}{2\alpha \sin(x/2\alpha)}\right)^s \left(\log\frac{1}{2\alpha \sin(x/2\alpha)}\right)^t.$$

Since $2\alpha \sin(x/2\alpha)$ is strictly increasing on $(0, \pi\alpha]$ and $(1/x^s)(\log(1/x))^t$ is strictly decreasing on $(0, 1)$, $k(x)$ is strictly decreasing on $(0, \pi\alpha]$. Next, we want to show that $k(x)$ is strictly convex on $(0, \pi\alpha]$, i.e.

$$k''(x) > 0 \text{ for all } x \in (0, \pi\alpha). \quad (24)$$

To show (24), it suffices to show that $q''(x) > 0$ for all $x \in (0, \pi/2)$, where

$$q(x) := \left(\frac{1}{2\alpha \sin x}\right)^s \left(\log\frac{1}{2\alpha \sin x}\right)^t.$$

Because for all $x \in (0, \pi/2)$,

$$q''(x) = s(cot^2 x)(2\alpha \sin x)^{-s} \left(\log\frac{1}{2\alpha \sin x}\right)^{t-1} + (t - 1)(cot^2 x)(2\alpha \sin x)^{-s} \left(\log\frac{1}{2\alpha \sin x}\right)^{t-2} \left(s \log\frac{1}{2\alpha \sin x} + t\right) + (csc^2 x + s cot^2 x)(2\alpha \sin x)^{-s} \left(\log\frac{1}{2\alpha \sin x}\right)^{t-1} \left(s \log\frac{1}{2\alpha \sin x} + t\right) > 0,$$

$k(x)$ is strictly convex on $(0, \pi\alpha]$. Hence, the function $k(x)$ satisfies all required properties in Lemma 3.5. This completes the proof. \qed

5 Discussion and Conclusions

We introduce minimal N-point s, \log^t-energy constants and configurations of an infinite compact metric space (A, d). Such constants and configurations are generated using the kernel

$$K_{log^t}^s(x, y) = \frac{1}{d(x, y)^s} \left(\log\frac{1}{d(x, y)}\right)^t, \quad s \geq 0, \quad t \geq 0.$$

In this paper, we study the asymptotic properties of minimal N-point s, \log^t-energy constants and configurations of A with $\text{diam}(A) < 1$, and $N \geq 2$ and $t \geq 0$ are fixed. We show that the s, \log^t-energy

$$g(s) := \mathcal{E}_{log^t}^s(A, N)$$

18
is continuous and right differentiable on $[0, \infty)$ and is left differentiable on $(0, \infty)$ in Theorems 2.2 and 2.4. The further analysis on the differentiability of $g(s)$ can be found in Theorem 2.5. In Theorem 2.1, we show that

$$
\lim_{s \to \infty} \left(\frac{E_s^{\log t}(A,N)}{s} \right)^{1/s} = \frac{1}{\delta_N(A)}.
$$

and every cluster configuration of $\omega_{s}^{s, \log t}$ as $s \to \infty$ is an N-point best-packing configuration on A. Furthermore, we show in Theorem 2.3 that for any $s_0 > 0$, any cluster configuration of $\omega_{s}^{s, \log t}$, as $s \to s_0$, is a minimal N-point $s_0, \log t$-energy configuration on A. When $\text{diam}(A) < 1$, our theorems generalize Theorems A, B, and C. The natural question would be “Do Theorems 2.1-2.5 hold true for $\text{diam}(A) \geq 1$?”

Investigation on arrangements of $\omega_{s}^{s, \log t}$ on circles in \mathbb{R}^2 is in Propositions 2.1-2.3. In these propositions, we show that for certain values of s and t, all minimal N-point $\log t$-energy configurations on S^1_α with $\text{diam}(S^1_\alpha) < 1$ (corresponding to the Euclidean and geodesic distances) are the configurations of N distinct equally spaced points. We would like to report that the Lemma 3.5 does not allow us to say something when $\text{diam}(S^1_\alpha) \geq 1$. It would be very interesting to develop a new tool to attack the case when $\text{diam}(S^1_\alpha) \geq 1$.

References

[1] Thomson, J.J. On the Structure of the Atom: an Investigation of the Stability and Periods of Oscillation of a number of Corpuscles arranged at equal intervals around the Circumference of a Circle; with Application of the results to the Theory of Atomic Structure. *Philos. Mag.* 1904, 7, 237-265.

[2] Borodachov, S.V.; Hardin, D.P.; Saff, E.B. *Discrete energy on rectifiable sets*. Springer Monographs in Mathematics, Springer, New York, USA, 2019.

[3] Wales, D.J.; Ulker, S. Structure and dynamics of spherical crystals characterized for the Thomson problem. *Phys. Lett. B* 2006, 74, 212101.

[4] Föppl, L. Stabile Anordnungen von Elektronen im Atom. *J. Reine Angew. Math.* 1912, 141, 251-301.

[5] Yudin, V.A. The minimum of potential energy of a system of point charges. *Diskretnaya Matematika* 1992, 4, 115-121 (in Russian).; Yudin, V. A. The minimum of potential energy of a system of point charges. *Discrete Math. Appl.* 1993, 3, 75-81.
[6] Andreev, N.N. An extremal property of the icosahedron. *East J. Approximation* 1996, 2, 459-462.

[Author1(year)] Schwartz, R.E. Five Point Energy Minimization: A Synopsis. *Constr. Approx.* 2020, 51, 537-564.

[Author2(year)] Landkof, N.S. *Foundations of Modern Potential Theory*, Springer, Berlin, Germany, 1972.

[Author3(year)] Hardin, D.P.; Saff, E.B. Minimal Riesz energy point configurations for rectifiable d-dimensional manifolds. *Adv. Math.* 2005, 193, 174-204.

[7] Mhaskar, H.N.; Saff E.B. Where does the sup norm of a weighted polynomial live? *Constr. Approx.* 1985, 1, 71-91.

[8] Gonchar, A.A.; Rakhmanov, E.A. Equilibrium distributions and the degree of rational approximation of analytic functions. *Math. USSR Sb.* 1989, 62, 305-348.

[9] Lubinsky, D.S.; Mhaskar, H.N.; Saff, E.B. Freud’s conjecture for exponential weights. *Bull. Amer. Math. Soc.* 1986, 15, 217-221.

[10] Totik, V. Weighted polynomial approximation for convex external fields. *Constr. Approx.* 2000, 16, 261-281.

[11] Saff, E.B.; Totik, V. *Logarithmic Potentials with External Fields*. Springer, New York, USA, 1997.

[12] Trefethen, L.N. *Approximation theory and approximation practice*. Society for Industrial and Applied Mathematics, Philadelphia, USA, 2013.

[13] Smale, S. *Mathematical problems for the next century*, Mathematics: Frontiers and Perspectives, American Mathematical Society, Providence, USA, 2000.

[14] Shub, M.; Smale, S. Complexity of Bezout’s theorem. III. Condition number and packing. *J. Complex.* 1993, 9, 4-14.

[15] Brauchart, J.S.; Hardin, D.P.; Edward, B.S. The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere. *Contemp. Math* 2012, 578, 31-61.

[16] Whyte, L.L. Unique arrangements of points on a sphere. *Amer. Math. Monthly* 1952, 59, 606-611.

[17] Dragnev, P.D.; Legg, D.A.; Townsend, D.W. Discrete logarithmic energy on the sphere. *Pac. J. Appl. Math.* 2002, 207, 345-358.