Survival and growth of transplanted coral reef in lagoon ecosystem of Ihamahu, Central Maluku, Indonesia

L Siahainenia¹, S F Tuhumury¹, P A Uneputty¹,², N C Tuhumury¹*

¹Faculty of Fisheries and Marine Science, Pattimura University, Ambon Indonesia
²Maritime and Marine Science Center of Excellence, Pattimura University

E-mail: y_louhen@yahoo.com

Abstract. Lagoon ecosystem in Ihamahu has a high potential of biological resources which is utilized by the local community to catch fish in order to fulfill their daily needs. High level of utilization affects coral reef community in the lagoon. This study aims to analyze the survival and growth of life coral transplantation in the lagoon of Ihamahu village. Life corals were transplanted on an artificial substrate of block cement and placed into two lagoons namely Ayao lagoon (Acropora millepora, Porites nigrenscens, and P. cylindrical) and Besar lagoon (Acropora divaricata, A. cardus, Anaropora peurtogelerae, Montipora stelata, and Pavona cactus). The results showed that after three months, all transplanted coral reef in Ayao lagoon survived (100%) whilst only 57% of those in Besar lagoon survived. The results also showed that during the study period, P. nigrenscens grew faster (2.1 cm yr⁻¹) than two other species in Ayao lagoon whereas, in Besar lagoon, A. peurtogelerae showed faster growth (2.70 cm yr⁻¹) compare to the other four species.

1. Introduction

Ecology function of coral reef is life supporting for many marine biotas such as nursery ground, feeding ground, spawning ground, protection, and habitat [1, 2]. One of other function apart from mangrove and sea-grass ecosystem in global warming is carbon dioxide reduction [3, 4]. Coral reef also becomes an object for marine ecotourism [5].

Coastal and marine resources potency in coastal waters of Ihamahu Village has contributed economically towards the community of that village. This is due to some important ecosystems found in this area like mangrove, seagrass, coral reef and lagoon. Lagoon ecosystem in Ihamahu village belongs to a coastal lagoon, utilized by the community for their livelihood. Live percentage of coral reef distributes along Besar Lagoon is in poor and damage condition where the abiotic component percentage was 72.12% whilst live coral only 23.045 [6]. This is mainly due to environmental stressors come from a variety of human activity surrounding that area.

A study has shown that 36.90 ha of coral reef and lagoon ecosystem in Ihamahu Village are in damaged condition and that area has been plotted as a rehabilitation zone [7]. This is important since these ecosystems have produced many marine resources which are important to the local community. Based on that reason, this study was aimed to analyze growth rate and survival rate of coral transplanted alongside coastal lagoon ecosystem at Ihamahu waters.

2. Materials and Method

The research was conducted at two lagoons, namely Ayao and Besar Lagoon in the coastal waters of Ihamahu Villages, Central Maluku Regency (Figure 1) from March to June 2018. Data on growth rate and survival were obtained from coral transplanted according to [8, 9, 10, 11] were used to obtained
data of coral growth and examined the survival rate of transplanted coral species. A 30x20x10 cm³ concrete cement block was used as a media for transplantation.

![Figure 1. The map showing research station at coastal waters of Ihamahu Village](image)

Transplanted coral species was identified follows [12, 13, 14, 15]. The first and end (n-month) data of branch length of each transplant coral species were measured and transferred into data sheet. The growth of coral species were estimated by an equation as follow [16]:

\[
CG = \frac{(L_t - L_0)}{t}
\]

Where:

- \(CG\) = growth of coral
- \(L_t\) = mean length of coral branching at time \(t\) (end of observation)
- \(L_0\) = mean length of coral bracing at first observation

The survival rate of the transplanted coral species was calculated by an equation as follow [16]:

\[
\text{Survival Rate} = \frac{N_t}{N_0} \times 100\%
\]

Where:

- \(N_t\) = number of survive coral at time \(t\)
- \(N_0\) = total number of live coral transplanted at start

3. Results and Discussion

3.1. Growth of transplanted coral

This study shows that average coral length increment of transplanted coral at Ayao Lagoon varies between species (Table 1). Significant coral growth range was found at *Porites nigroenescens* and *Acropora millepora* compared to *P. cylindrica*. The average growth of *P. nigroenescens* and *A. millepora* was 0.18 and 0.15 cm month\(^{-1}\) or 2.1 and 1.80 cm yr\(^{-1}\) respectively, whilst for *P. cylindrica* was 1.20 cm yr\(^{-1}\).

Calcification rate which is related to coral growth varies between species. Branching coral species grow faster (2 cm yr\(^{-1}\)) than massive coral species which grow of < 1 cm yr\(^{-1}\) [1]. Study on the growth rate of the same species at Seribu Islands, Jakarta [17] shows the growth rate between 2.8 and 4.1 cm yr\(^{-1}\) for *Acropora* spp. and 2.3 to 2.5 cm yr\(^{-1}\) for *Porites* sp., whilst at Putri Menjangan, Bali, the
The growth rate of *A. formosa* was 2.41 cm yr\(^{-1}\) and *P. divaricata* was 1.36 yr\(^{-1}\) [18]. The study shows that coral growth varies between species and between sites. Many factors affecting the growth of coral such as sea surface temperature, salinity, sea level, ocean current, nutrient availability, sedimentation/turbidity and predation [19,20].

Table 1. Range of coral growth increment at Ayao Lagoon

Coral species	Initial size (cm)	March	April	May	June	Growth rate yr\(^{-1}\) (cm)
Porites cylindrica	15.0	15.2	15.3	15.4	1.2	
Porites nigrenscens	15.0	15.3	15.5	15.7	2.1	
Acropora millepora	15.0	15.3	15.4	15.6	1.8	

There were 5 species of coral used in transplantation study at Besar Lagoon namely *A. divaricata, Anaropora peurtogelerae, A. cardus, Montipora cardus, and Pavona cactus*. Table 2 shows growth increment of those 5 species during the study period. The highest growth rate was found at *A. divaricata* (2.70 cm yr\(^{-1}\)), whilst the lowest growth rate was found at *A. cardus* (1.20 cm yr\(^{-1}\)). This result also shows a variation in growth rate between the coral species and between sites (Ayao and Besar Lagoon). Variation in growth between species and sites was also shown by [17] at Harapan Island and Karya Island of Seribu Islands archipelago, Jakarta and in the coastal area of Putri Menjangan, Bali [18]. The study on *P. lutea*, a massive coral growth rate at Bontang of East Kalimantan shows no differences in growth at different size [19].

Table 2. Range of coral growth increment at Besar lagoon

Coral species	Initial size (cm)	March	April	May	June	Growth rate yr\(^{-1}\) (cm)
Acropora divaricata	15.0	15.2	15.4	15.5	1.50	
Anaropora peurtogelerae	15.0	15.4	15.7	15.9	2.70	
Acropora cardus	14.0	14.1	14.3	14.4	1.20	
Montipora stelata	15.0	15.3	15.5	15.7	2.10	
Pavona cactus	10.0	10.2	10.4	10.7	2.10	

3.2. Survival Rate

Transplantation of coral with concrete cement block quite seldom has low survival since the transplanted corals tend to more prone to environmental and anthropogenic stressors [22]. The survival of coral transplanted at Ayao Lagoon was considered very high since the survival rate was 100%. On the other hand, the survival rate of 5 Acropora species transplanted at 3 m depth of seawater at Kanawe Regency of Southern Sulawesi was 80% [23]. Another study in Coral Harbour of New Providence, Bahama showing a 91% survival rate of transplanted species of *P. astreoides, Orbicella* spp, and *Diploria labyrinthiformis* [24]. Accordingly, the survival rate of 3 species of coral transplanted at Ayao Lagoon was considered very high.

The survival rate of 5 coral species transplanted at Besar Lagoon was only 57% and was considered fair success compared to transplantation at Ayao Lagoon. Lows survival rate in Besar Lagoon could be due to fishing activity in this area which believed to be high.

The high survival rate of transplanted coral at Ayao Lagoon is supported by good water quality in this area. The sea water temperature in this area was 27\(^\circ\)C and was considered the best temperature for coral growth which is between 22-30\(^\circ\)C [22, 24]. Another factor which affects the survival rate of coral is salinity. The salinity in this study site was between 30.92-33.88‰, which in the range of best
salinity for coral growth i.e. between 30.00-35.00‰ [22, 24]. The collection of coral seed which is close to the transplantation site will lower the stress to the coral and can adapt to the new environment was also affecting the survival rate [25].

4. Conclusion
The growth rate of transplanted Porites nigrenscens was higher at Ayao Lagoon, whilst transplanted of Anaropora peurtogelerae was higher at Besar Lagoon. The survival rate of the transplanted coral reef was 100% at Ayao Lagoon whilst at Besar Lagoon was only amounted to 57%.

References
[1] Supriharyono 2000 Management of Coral Reef Ecosystem (Jakarta: Djambatan) p 118 (in Indonesia)
[2] Supriharyono 2007 Konversasi Ekosistem Sumberdaya Hayati di Wilayah Pesisir Dan Laut Tropis. (Yogyakarta: Pustaka Belajar) p 428.
[3] Tregarot E, Failler P and Jean-Philippe M 2017 Evaluation of Coastal and Marine Ecosystem Services of Mayotte: Indirect Use Values of Coastal Reefs and Associated Ecosystems. *International Journal of Biodiversity Science, Ecosystem Services & Management* 13(3), 19-34. DOI: 10.1080/21513732.2017.1407361.
[4] Zarate-Barrera T G, Maldonado J H 2015 Valuing Blue Carbon: Carbon Sequestration Benefits Provided by the Marine Protected Areas in Colombia. *PLoS ONE* 10(5): e0126627. doi:10.1371/journal.pone.0126627
[5] Mehvar S, Filatova T, Dastgheib A, de Ruyter van Steveninck E and Ranasinghe R 2018 Quantifying Economic Value of Coastal Ecosystem Services: A Review. *Journal of Marine Science and Engineering* 6(5) 1-18 p. doi:10.3390/jmse6010005.
[6] Siahainenia L, Tuhumury S F, Uneputty Pr A and Tuhumury N C 2018 Potensi Sumberdaya Terumbu Karang Pada Ekosistem Laguna Negeri Ihamahu, Maluku Tengah. Prosiding Seminar Nasional Inovasi IPTEK Perikanan dan Kelautan. ISSN 2621-5942
[7] Sahetapy D 2017 Rancang Bangun dan Tata Kelola Teluk Tuhaha Sebagai Kawasan Konservasi. *Disertasi.* Program Studi Ilmu Kelautan, Pascasarjana Universitas Pattimura, Ambon
[8] Nezon E, Sadarun B, Wardono S, Afandy Y A and Nuriedi L 2006 *Coral Transplantation Manual.* (Jakarta: Directorate of Marine, Coastal and Small Islands, Department of Maritime and Fisheries Affair) (in Indonesia)
[9] Edwards A J and Gomez E D 2007 Reef Restoration Concepts and Guidelines: making sensible management choices in the face of uncertainty, The Coral Reef Targeted Research and Capacity Building for Management Program (Jakarta:Translated and published by Terangi Foundation) www.terangi.or.id p 38 (in Indonesia)
[10] Alamendah 2010. Coral reef transplantation, meaning, objectives and technical p14 (in Indonesia) http://alamendah.org/2010/12/06/transplantasi-terumbu-karang-pengertian-tujuan-teknik/.
[11] Nugraha FRS 2015. Coral reef transplantation p 4 (in Indonesia) http://www.puslat.kkp.go.id/puslatweb/artikel.php?mod=view&id=ARID000035.
[12] Randall R H and Myers R F 1983 *Guide to the Coastal Resources of Guam. The Coral.* (Guam: University of Guam Press) Vol. II. p 128
[13] Veron J E N 1986 *Coral of Australia and the Indo-Pacific.* (Honolulu : University of Hawaii Press) p 644
[14] Veron J E N 2000 Coral ID (An electronic Scleractinian Corals of the World)
[15] Suharsono 2008. *Species of Coral in Indonesia.* (Jakarta: LIPI Press) p 344 (in Indonesia)
[16] Ricker W E 1975. *Computation and Interpretation of Biological Statistic of Fish Populations.* (Ottawa: John Willey and Sons) p 444
[17] Adi N D, Damar A, Adrianto L, Soedharma D, Subhane B, Kusumastanto T and Rikardi N
2016 Growth of some of Transplanted Coral Genus and Fish Community Developed at Two Different Transplantation Sites in Kepulauan Seribu, DKI Jakarta, Indonesia. *Int. J. of Sci.: Bas, and Appl. Res.* 29(3) 36-52

[18] Yusuf B M 2017 Monitoring on growth rate of transplanted coral of different coral colony at coastal waters of Putri Menjangan, Buleleng, Bali. M.Sc. Thesis. Brawijaya University. [In Indonesia]. Universitas Brawijaya (In Indonesia)

[19] Supriharyono 2004 Growth rates of the massive coral *Porites lutea* EDWARD and HAIME on the coast of Bontang, East Kalimantan. *J. of Coast. Dev.* 7(3). 143-155

[20] Kleypas J A, McManus J and Menez L A B 1999 Environmental Limits to Coral Reef Development: Where Do We Draw the Line? *Amer. Zool.* 39. 146-159

[21] Meissner K J, Lippmann A and Gupta S 2011 Large-scale stress factors affecting coral reefs: open ocean sea surface temperature and surface seawater aragonite saturation over the next 400 years. *Coral Reefs*. DOI 10.1007/s00338-011-0866-8

[22] Westmacott S, Teleki K, Wells S and West J M 2000 *Management of bleached and severely damaged coral reefs.* (IUCN, Gland, Switzerland and Cambridge, UK). vi + p 37.

[23] Harianto, Musrin and Asri 2014 Coral reefs rehabilitation due to bombs activities with transplantation method using *Acropora* coral species. Community Service Article, Fisheries and Marine Science Faculty, Halu Oleo University 6 (in Indonesia)

[24] Hofstede R, Finney C, Miller A, van Koningsveld M and Smolders T 2016 Monitoring and evaluation of coral transplantation to mitigate the impact of dredging works. Proc., of the 13th Int., Coral Reef Symp., Honolulu: 330-341

[25] Edwards A J 2010 *Reef rehabilitation manual* (St Lucia, Australia: Coral Reef Targeted Research & Capacity Building for Management Program) ii + p 166.