THE M31 VELOCITY VECTOR. III. FUTURE MILKY WAY M31–M33 ORBITAL EVOLUTION, MERGING, AND FATE OF THE SUN

ROELAND P. VAN DER MAREL1, GURTINA BESLA2, T. J. COX3, SANGMO TONY SOHN4, AND JAY ANDERSON1

1 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
2 Department of Astronomy, Columbia University, New York, NY 10027, USA
3 Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101, USA

Received 2012 February 21; accepted 2012 April 20; published 2012 June 8

ABSTRACT

We study the future orbital evolution and merging of the Milky Way (MW)–M31–M33 system, using a combination of collisionless \(N\)-body simulations and semi-analytic orbit integrations. Monte Carlo simulations are used to explore the consequences of varying all relevant initial phase-space and mass parameters within their observational uncertainties. The observed M31 transverse velocity from Papers I and II and implies that the MW and M31 will merge with a first pericenter at a pericenter distance of \(r = 31.0^{+38.0}_{-19.8}\) kpc. In 41\% of Monte Carlo orbits, M31 makes a direct hit with the MW, defined here as a first pericenter distance less than 25 kpc. For the M31–M33 system, the first pericenter time and distance are \(t = 0.85^{+0.18}_{-0.13}\) Gyr and \(r = 80.8^{+42.2}_{-31.3}\) kpc. By the time M31 gets to its first pericenter with the MW, M33 is close to its second pericenter with M31. For the MW–M33 system, the first pericenter time and distance are \(t = 3.70^{+0.74}_{-0.46}\) Gyr and \(r = 176.0^{+39.0}_{-136.0}\) kpc. The most likely outcome is for the MW and M31 to merge first, with M33 settling onto an orbit around them that may decay toward a merger later. However, there is a 9\% probability that M33 makes a direct hit with the MW at its first pericenter, before M31 gets to or collides with the MW. Also, there is a 7\% probability that M33 gets ejected from the Local Group, temporarily or permanently. The radial mass profile of the MW–M31 merger remnant is significantly more extended than the original profiles of either the MW or M31, and suggests that the merger remnant will resemble an elliptical galaxy. The Sun will most likely \(\sim 85\%\) probability) end up at a larger radius from the center of the MW–M31 merger remnant than its current distance from the MW center, possibly further than 50 kpc \(\sim 10\%\) probability). There is a \(\sim 20\%\) probability that the Sun will at some time in the next 10 Gyr find itself moving through M33 (within 10 kpc), while dynamically still bound to the MW–M31 merger remnant. The arrival and possible collision of M31 (and possibly M33) with the MW is the next major cosmic event affecting the environment of our Sun and solar system that can be predicted with some certainty.

Key words: galaxies: individual (M31) – galaxies: kinematics and dynamics – Local Group – proper motions

Online-only material: animations, color figures

1. INTRODUCTION

Our Milky Way (MW) resides in a small group of galaxies called the Local Group (LG; e.g., van den Bergh 2000). The three most massive galaxies in the LG are all spirals: the MW, the Andromeda galaxy (M31), and the Triangulum galaxy (M33), with mass ratios of \(\sim 10:10:1\) (e.g., Guo et al. 2010; van der Marel et al. 2012, hereafter Paper II). Together, these galaxies dominate the LG mass. M33 lies at about the same distance as M31 (0.8 Mpc), and these two galaxies most likely form a bound pair (McConnachie et al. 2009, hereafter M09; Paper II), as do the MW and M31 (van der Marel & Guhathakurta 2008).

The orbits and interactions of the MW, M31, and M33 have been examined in several previous studies. For example, Dubinski et al. (1996, hereafter D96) and Cox & Loeb (2008, hereafter CL08) presented \(N\)-body simulations of the future MW–M33 interaction. Loeb et al. (2005) and M09 presented \(N\)-body simulations of the past M31–M33 interaction. Innanen & Valtonen (1977) used a Newtonian few-body approach to study the past orbits of all three galaxies. And Peebles et al. (2011) used a cosmological few-body approach (action modeling) to study the past orbits of all three galaxies.

What all previous work has had common is that the relative three-dimensional motion between M31 and either of the other two galaxies was treated as a free parameter. The line-of-sight velocities of M31 and M33 have long been well known, and the proper motion of M33 was recently measured through water masers (Brunthaler et al. 2005). However, a proper-motion measurement of M31 remained elusive. As a result, studies addressed and categorized possible past histories and future outcomes, but only for a limited subset of uncertain initial conditions.

The present paper is the third and final paper in a series. In Sohn et al. (2012, hereafter Paper I), we reported the very first proper-motion measurements of M31 stars in three different fields observed with the Hubble Space Telescope. In Paper II, we combined these measurements with other techniques, and with an updated understanding of the solar motion in the MW, to determine the three-dimensional velocity vector of the M31 center of mass (COM) in the Galactocentric rest frame. We also presented a combined analysis of the masses of the MW, M31, and M33, based on literature results combined with a new application of the LG timing argument.

With the results from Paper II, all relevant dynamical quantities for the MW–M31–M33 system are known. The galaxy distances are known to \(\sim 4\%\) (measured as a fraction of the \(\sim 1\) Mpc LG radius), and the positional uncertainties on the celestial sphere are negligible. The line-of-sight velocities are known to better than \(1\%\), and the transverse velocities are known...
to \(\sim 13\% \) (measured as a fraction of the \(\sim 200 \) km s\(^{-1} \) LG virial velocity). The galaxy masses are known to \(\sim 30\% \), and the radial mass profiles are reasonably well understood from cosmological simulations (e.g., Klypin et al. 2011). Hence, the calculation of the future dynamical evolution of the MW–M31–M33 system is now entirely deterministic.

The goal of the present paper is to determine the future dynamical evolution of the MW–M31–M33 system using \(N \)-body simulations, and to use semi-analytic orbit integrations to assess and quantify the variation in outcomes that is allowed by the observational uncertainties. This is the first study of this topic based on fully observationally constrained initial conditions. It is also the first study to include detailed models of M33 in calculations of the \(N \)-body evolution of the MW–M31 system. This allows us to study several unique features, including the possibility that M33 may collide with the MW before M31 does (see Section 4.3), the possibility that M33 may end up ejected from the LG (see Section 4.3; also Innanen & Valtokon 1977), and the possibility that M33 may accrete tidal debris from the MW–M31 interaction, potentially including the Sun (see Section 3.6 below).

The most important result from Paper II is that the velocity vector of M31 is statistically consistent with a radial (head-on collision) orbit toward the MW. The inferred Galactocentric tangential velocity of M31 is \(V_{\text{tan}} = 17.0 \) km s\(^{-1} \), with \(1\sigma \) confidence region \(V_{\text{tan}} \leq 34.3 \) km s\(^{-1} \). This significantly constrains the future dynamical evolution compared to what was known in the past. Cosmological arguments about tidal torques from the local universe had merely constrained the \(V_{\text{tan}} \) to be \(\lesssim 200 \) km s\(^{-1} \) (e.g., Gott & Thuan 1978; Raychaudhury & Lynden-Bell 1989; Peebles et al. 2001).

No previous study has used an M31 velocity vector that is fully consistent with the currently available observational constraints. CL08 focused on initial conditions that provide a current M31 tangential velocity of \(V_{\text{tan}} \approx 132 \) km s\(^{-1} \) (their Figure 6). Peebles et al. (2011) proposed a model in which M31 has \(V_{\text{tan},\text{M31}} = 100 \) km s\(^{-1} \). D96 constructed models with low tangential velocities, \(V_{\text{tan}} = 20 \) and 26 km s\(^{-1} \), which are consistent with our new observational constraints. However, they used a radial velocity of \(V_{\text{rad}} = -130 \) km s\(^{-1} \), similar to CL08’s \(V_{\text{tan}} \approx -135 \) km s\(^{-1} \). Both values yield a faster approach than the value \(V_{\text{rad,\text{M31}}} = -109.3 \pm 4.4 \) km s\(^{-1} \) that is implied by our latest understanding of the solar motion in the MW (see Section 4 of Paper II).

The MW and M31 mass distributions used in past work are also not fully consistent with the currently available observational constraints. D96 constructed two sets of models, one in which \(M_{\text{M31}} = 1.6 \times 10^{12} M_{\odot} \) and one in which \(M_{\text{M31}} = 5.2 \times 10^{12} M_{\odot} \); whereas, the true mass is likely between these extremes (see Paper II). Also, they adopted a ratio \(M_{\text{M31}}/M_{\text{MW}} = 2 \) in all their models, while the actual ratio is likely closer to unity. For example, the LSR circular velocity \(V_0 = 239 \pm 5 \) km s\(^{-1} \) (Section 4.1 of Paper II) is similar to the rotation velocity of H1 gas in M31 (e.g., Chemin et al. 2009; Corbelli et al. 2010). CL08 used galaxy masses of \(M_{\text{MW}} = 1.0 \times 10^{12} M_{\odot} \) and \(M_{\text{M31}} = 1.6 \times 10^{12} M_{\odot} \), but then also added an intra-group medium of \(2.6 \times 10^{12} M_{\odot} \) to consistency with the LG timing mass. However, recent insights (summarized in Paper II) suggest that the LG timing mass is an overestimate, consistent with cosmic scatter, so there is no need to force the models to match this mass exactly. The calculations we present here without an intra-group medium are likely to be more accurate.

We do not include in our study the effects of the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC), the next two most massive galaxies in the LG (van den Bergh 2000; Grebel et al. 2003). Their combined mass is similar to that of M33, making up \(\sim 10\% \) of the MW mass. The orbit of these galaxies is such that they are moving rapidly away from the MW and may not return for many Gyr (Besla et al. 2007; Shattow & Loeb 2009). Their motion is away from the direction toward M31, to which they have never been close (Kallivayalil et al. 2009). Their impact on the overall future dynamics of the MW–M31–M33 system is therefore likely to be small. The same is true for other LG dwarf galaxies, which have masses well below those of M33 and the combined LMC/SMC. This includes, e.g., M32, another well-known M31 satellite. Even though it is the next most luminous galaxy in the LG, its luminosity is only about one-tenth of the luminosity of M33.

The outline of this paper is as follows. Section 2 discusses the computational methodologies used for the \(N \)-body simulations and semi-analytic orbit integrations. Section 3 uses \(N \)-body simulations to calculate the future of the M31–MW–M33 system, using a canonical set of initial conditions that fall roughly midway in the observationally allowed parameter ranges. It discusses the structure of the galaxies as the simulation proceeds, and the possible fate of the Sun. Section 4 uses semi-analytic orbit integrations in a Monte Carlo sense to assess how the orbital evolution of the MW–M31–M33 system changes when the initial conditions are varied within their observationally allowed ranges. It discusses characteristic pericenter and merger times, the fate of M33 (including whether it collides with the MW before M31 does, or whether it is ejected from the LG), and constraints on the M33 orbit around M31. Section 5 summarizes the main conclusions. Appendix A discusses the choice of Coulomb logarithm in the dynamical friction formula used in the semi-analytic orbit integrations.

2. COMPUTATIONAL METHODOLOGY

We are concerned in this paper with the future dynamical evolution of the system composed of the MW, M31, and M33. We use two complementary methods to study this evolution, namely \(N \)-body simulations and semi-analytic orbit integrations. The \(N \)-body simulations allow us to study the evolution of each galaxy in detail, but due to computational restrictions, only a small set of possible initial conditions can be explored. The semi-analytic orbit integrations allow us to study only the approximate motion of the COM of each galaxy. However, due to the speed of the semi-analytic method, it allows a full exploration of the parameter space of initial conditions. In the present section, we describe the respective methodologies used for these calculations.

2.1. \(N \)-body Calculations

We ran collisionless \(N \)-body simulations of the MW–M31–M33 system, including only stars and dark matter. The calculations were performed with the \(N \)-body smoothed particle hydrodynamics code, GADGET-3 (Springel 2005). Typical numbers of particles used for the simulations are listed in Table 1.

In each of the galaxies, the gas comprises only a small fraction of the total galaxy mass. We therefore chose not to include the gaseous components of the galaxies in the simulations. This allowed us to run higher-resolution simulations with larger numbers of particles. This choice means that the overall
Table 1: Galaxy Model Parameters

Quantity	Unit	Milky Way	M31	M33
(1)	(2)	(3)	(4)	(5)
Inclination	deg	...	77.5b	52.9d
P.A. line of nodes	deg	...	37.5b	4.0d
Approaching side		...	SWb	Nd
near side		...	NWc	we
R_d	kpc	3.0f	5.0f	1.3f
M_B	10^{10} M$_\odot$	1.0f	1.9f	0.0
R_b	kpc	0.6	1.0	...
N_{dark}		500,000	500,000	50,000
N_{St}		750,000	1,200,000	93,000
N_{St}		100,000	190,000	0

Notes. Model parameters used in the N-body simulations for the galaxies labeled at the top of Columns 3–5. Columns 1 and 2 list various quantities and their units. From top to bottom: inclination; line-of-nodes position angle; approaching side of the disk; near side of the disk; exponential disk scale length R_d; bulge mass M_B; $R^{1/4}$ bulge effective radius R_b; numbers of dark matter particles in the simulations, N_{dark}; numbers of stellar particles in the disk and bulge of the simulations, N_{St}, and N_{St}, Columns 3–5 list the quantities for the MW, M31, and M33, respectively. Where relevant, sources are indicated with superscripts as follows: (a) Chemin et al. 2009; (b) Corbelli et al. 2010; (c) Iye & Richter 1985; (d) Corbelli & Schneider 1997; (e) Corbelli & Walterbos 2007; (f) Klypin et al. 2002; (g) Regan & Vogel 1994. The numbers of particles pertain to the canonical model discussed in Section 3. The other simulations listed in Table 2 used the same mass per particle, yielding slightly different total particle counts.

In the simulations, we represent the dark halo of each galaxy by a Hernquist (1990) density profile, with total mass M_H and scale length a, with no adiabatic contraction. A Hernquist profile is similar to an NFW profile, but it drops off more steeply at large radii. This has the advantage that the total mass is finite (see discussion in Springel et al. 2005), which is not the case for an NFW profile. For a given M_{vir} and c_{vir}, we choose M_H and a so that the corresponding Hernquist and NFW profiles have the same asymptotic density for $r \rightarrow 0$, and the same enclosed mass within r_{200}. The relevant equations are presented in Appendix A of Paper II, to which we refer the reader to a discussion of the various density profiles, scale radii, and masses that are often encountered in the literature on dark halos. For example, if $c_{vir} = 10$, then $a/r_s = 2.01$, and $M_H/M_{vir} = 1.36$. The total mass of the Hernquist model is larger than M_{vir}, with the excess corresponding to the mass that is contained at radii outside r_{vir}.

For given M_{vir} and c_{vir}, the mass of the disk M_d of each galaxy was chosen to optimize the fit to the observed amplitude of the galaxy rotation curve. For the MW, we choose M_d to produce a circular velocity of $V_c \approx 239 \text{ km s}^{-1}$ at the solar radius (McMillan 2011), consistent with the value used in Paper II to correct the observed motions of M31 and M33 for the reflex motion of the Sun. For M31, we choose M_d to produce a maximum circular velocity of $V_c \approx 250 \text{ km s}^{-1}$ (Corbelli et al. 2010), and for M33, we choose M_d to produce a maximum circular velocity of $V_c \approx 120 \text{ km s}^{-1}$ (Corbelli & Salucci 2000).

The central black hole mass for each galaxy was taken to be $M_{BH} = 3.6 \times 10^8 M_{\odot}$, motivated by the average black hole demographics of galaxies. This does not yield a particularly accurate fit to the known BH masses for the three galaxies under study here ($M_{BH,MW} = (4.1 \pm 0.6) \times 10^8 M_{\odot}$, $M_{BH,M31} = 1.5^{+0.9}_{-0.3} \times 10^8 M_{\odot}$, and $M_{BH,M33} < 3 \times 10^8 M_{\odot}$; e.g., Gultekin et al. 2009 and references therein). However, this does not matter for the present application, since either way, the black holes have too little mass to influence the overall galaxy dynamics during the interactions. The black holes are included here primarily for numerical purposes, since they conveniently trace the COM of the mostly tightly bound particles of each galaxy. Initially, this is the same as the COM of the galaxy as a whole. However, this ceases to be true once the more loosely bound material becomes significantly disturbed. In the following, when we discuss the evolution of the COM position of a galaxy, we merely follow the mostly tightly bound particles of each galaxy. Initially, this is the same as the COM of the galaxy as a whole. However, this ceases to be true once the more loosely bound material becomes significantly disturbed. In the following, when we discuss the evolution of the COM position of a galaxy, we actually calculate a weighted average over the luminous particles near the black hole.

Our approach starts the N-body simulations at the present epoch, with initial positions and orientations reproducing the current conditions. This is similar to the approach of D96, except that their adopted M31 distance of $D = 700 \text{ kpc}$ is smaller than the currently favored value of $D = 770 \pm 40 \text{ kpc}$ (see Paper II). By contrast, CL08 started their MW-M31 simulations 5 Gyr ago. So their models were not tailored to exactly reproduce the observed location and spin orientation of M31 at the present time, and are correct only in a generic sense.

While our calculations were performed in the Galactocentric (X, Y, Z) frame, we sometimes use a rotated set of coordinates with the same origin (X', Y', Z'), as defined in Section 6.1 of Paper II, to display the results of the orbit calculations. We refer to this coordinate system as the “trigalaxy coordinate system.” The (X', Y') plane, which we will refer to as the “trigalaxy plane,” is defined as the plane that contains all three
of the galaxies, MW, M31, and M33, at the present epoch. The X'-axis points from the MW to M31. As discussed in Paper II, all three galaxies start out in the (X', Y') plane, with velocity vectors that are close to this plane. This implies that the orbital evolution of the entire MW–M31–M33 system happens close to the trigalaxy plane, with the “vertical” Z'-component playing only a secondary role. For this reason, we show many of the three-dimensional orbits calculated in subsequent sections only in their two-dimensional (X', Y') projection.

2.2. Semi-analytic Orbit Integrations

As mentioned, we also developed a semi-analytic method for calculating the future motions of the MW, M31, and M33 due to their mutual gravitational interaction. In this approximate method, each galaxy is represented by a fixed one-component gravitational potential, corresponding to a Hernquist density profile. For given M_{vir} and c_{vir}, the total mass M_H and scale length a are calculated as described before.

We write equations of motion that describe the position and velocity of the COM of each galaxy (i.e., equations for 18 total phase coordinates, 6 each for 3 galaxies). To calculate the gravitational attraction in the equations of motion correctly, one would need to integrate over all particles in the galaxies. To simplify matters, we assume that the acceleration felt by a galaxy is as though all of its mass were concentrated at its COM. Thus, the gravitational acceleration felt by galaxy j due to the Hernquist potential of galaxy i at distance r equals $-GM_i/r(r + a)^2$. The forces thus implemented are non-symmetric and non-conservative. We therefore apply a small constant-density softening of 2 kpc at the center of each galaxy to avoid unphysical divergences. This softening is not a particularly significant additional simplification, given that the disks and bulges which dominate the gravitational potential at these radii are not explicitly represented by our one-component models either.

To include dynamical friction, we use the well-known Chandrasekhar formula (Binney & Tremaine 1987). Here too, we assume that the drag felt by a galaxy is as though all of its mass were concentrated at its COM. The Chandrasekhar formula is formally valid only for an infinite homogeneous medium of density ρ and velocity distribution $f(v)$. For a galaxy undergoing friction from galaxy i, we substitute the local ρ and $f(v)$ in galaxy i, evaluated at the position of COM$_j$. As usual, we assume $f(v)$ to be a Gaussian of dispersion σ. The variation $\sigma(r)$ with radius in each galaxy was taken from Hernquist (1990).

The dynamical friction is proportional to the Coulomb logarithm $\log \Lambda = \log(b_{\text{max}}/b_{\text{min}})$, where b_{max} and b_{min} are the maximum and minimum impact parameter contributing to the friction. We choose an expression for the Coulomb logarithm that uses and expands the parameterization proposed and tested by Hashimoto et al. (2003). We calibrate this expression using a set of new N-body simulations. Appendix A discusses the parameterization, the choice of parameters based on the new calibration, and the accuracy of the resulting semi-analytic orbit integrations.

3. CANONICAL N-BODY MODEL

3.1. Initial Conditions

We first study a canonical model for the MW–M31–MW system with main characteristics summarized in Table 2. For this model we adopt galaxy masses $M_{\text{MW,vir}} = M_{\text{M31,vir}} = 1.5 \times 10^{12} M_\odot$ and $M_{\text{M33,vir}} = 0.15 \times 10^{12} M_\odot$. These values are close to the midpoints of the observationally constrained probability distributions derived in Paper II. For a given M_{vir}, we calculate c_{vir} from the cosmological simulation correlation presented by Klypin et al. (2011). The corresponding Hernquist scale lengths, derived as described in Section 2.1, are $a_{\text{MW}} = a_{\text{M31}} = 62.5$ kpc and $a_{\text{M33}} = 24.9$ kpc. The disk masses adopted to produce the desired maximum circular velocities are listed in Table 2. The resulting rotation curves are shown in Figure 1.

The MW is initially at rest at the origin of the Galactocentric rest frame. The adopted positions r_{M31} and r_{M33} of M31 and M33 in the canonical model, respectively, are the best estimates from Paper II (Sections 4.2 and 6.1), based on the known distances. The adopted velocity v_{M33} of M33 is the best estimate from Paper II, based on the known line-of-sight velocity and proper motion. The adopted velocity v_{M31} of M31 is not exactly the best estimate from Paper II, but it agrees with it to better than 7 km s$^{-1}$ in each coordinate direction (about 1/3 of the observational error bars). The M31 line-of-sight velocity in the canonical model is as observed, while the transverse motion is $v_{\text{tan,M31}} = 27.7$ km s$^{-1}$. For comparison, the best estimate from Paper II is $v_{\text{tan,M31}} = 17.0$ km s$^{-1}$, but all values $v_{\text{tan,M31}} \leq 34.3$ km s$^{-1}$ are consistent with the observational constraints at 68.3% confidence.\(^4\)

3.2. Angular Momentum

The total orbital angular momentum of the MW–M31 system is $L_{\text{orb}} = \sum m_i r_i \times v_i$, where the sum is over the COM properties of two galaxies. If one ignores for simplicity the roles of M33 and of dynamical friction, then this would be a conserved quantity. In the Galactocentric rest frame, the MW is initially at rest at the origin. Hence, L_{orb} is simply proportional to the cross product $r_{\text{M31}} \times v_{\text{M31}}$ of the initial M31 position and velocity vectors. We denote with L_{orb} the unit vector in the direction of L_{orb}.

The unit vector in the direction of the MW spin angular momentum equals $I_{\text{sp, MW}} = (0, 0, -1)$ (the Sun rotates clockwise in the X, Y plane). The unit vector in the direction of the M31 spin angular momentum can be calculated from the position and viewing geometry of M31 (see Tables 1 and 2), and equals $I_{\text{sp, M31}} = (-0.412, -0.767, -0.492)$.

An encounter between two galaxies is prograde for a galaxy if its spin angular momentum is aligned with the orbital angular momentum, and it is retrograde if the two are anti-aligned. Prograde encounters produce more distortion and longer tidal tails than retrograde encounters (e.g., Toomre & Toomre 1972). The angle between the orbital and spin angular momentum for galaxy i equals $\beta_i = \arccos(L_{\text{orb}} \cdot I_{\text{sp, i}})$. An angle of $\beta = 90^\circ$ corresponds to a situation in which the orbital plane and the galaxy plane are perpendicular. Smaller angles correspond to prograde encounters, and larger angles to retrograde encounters. An angle of $\beta = 0^\circ$ corresponds to an in-plane prograde encounter, and an angle of $\beta = 180^\circ$ corresponds an in-plane retrograde encounter.\(^5\)

\(^4\) Originally, the canonical model pertained to our best estimate of the M31 transverse motion, but that estimate in Paper II changed by a small amount at a late stage of our project. Since the previously adopted value was still well within the error bars, and the N-body simulations had already been run and analyzed, we decided not to redefine and recalculate a new canonical model.

\(^5\) Note that these extreme values are not encountered in the present situation. They would require M31 to lie in the MW disk plane or vice versa, neither of which is the case.
Figure 1. Model rotation curves (black solid curves) of the galaxies MW, M31, and M33 (from left to right) at the start of the N-body simulations for the canonical model discussed in Section 3. The individual contributions from the dark halo (green dashed), disk (red dotted), and bulge (blue dash-dotted) are indicated. The disk mass was chosen so as to reproduce approximately the observed maximum circular velocity for each galaxy: $V_c \approx 239 \text{ km s}^{-1}$ at the solar radius for the MW (McMillan 2011), $V_c \approx 250 \text{ km s}^{-1}$ for M31 (Corbelli et al. 2010), and $V_c \approx 120 \text{ km s}^{-1}$ for M33 (Corbelli & Salucci 2000).

Table 2 lists the β angles for the canonical model. They are $\beta_{MW} = 32^\circ 6$ and $\beta_{M31} = 76^\circ 2$. Therefore, both galaxies undergo a prograde encounter in this model. However, the spin-orbit alignment is better for the MW. For M31, the spin axis is almost perpendicular to the MW–M31 orbital plane.

3.3. Orbital Evolution

The orbital evolution for the canonical model, following the COM of each galaxy, is shown in Figures 2–4. The top row of Figure 2 shows three orthogonal projections of the orbits...
in trigalaxy coordinates, centered on the COM of the three-body system. The bottom row shows a zoom-in in a frame that is comoving with the MW. Figure 3 shows the separations between M31–MW, M33–MW, and M33–M31, respectively, as a function of time. Figure 4 shows the relative velocities as a function of time.

M31 has its next pericenter with the MW at $t = 3.97$ Gyr from now, with a pericenter distance of $r = 35.0$ kpc. M31 then moves back out to an apocenter distance of $r = 171.9$ kpc at $t = 4.79$ Gyr, after which the orbit becomes almost directly radial toward the MW. The two galaxies merge at $t = 6.29$ Gyr.

M33 has its next pericenter with M31 at $t = 0.92$ Gyr, with a pericenter distance of $r = 79.6$ kpc. M33 then moves away from M31 to an apocenter distance of $r = 219.0$ kpc at $t = 2.66$ Gyr. M33 reaches a first pericenter7 with respect to the MW of $r = 97.3$ kpc at $t = 3.83$ Gyr. A second pericenter occurs much closer to the MW, $r = 23.0$ kpc at $t = 5.26$ Gyr. After that, M33 settles into an elliptical, precessing orbit around the M31–MW pair (Figure 2, top left panel), in a plane that is close to the M31–MW orbital plane (top middle and right panels). When the MW and M31 merge, M33 is at a distance of \sim100 kpc. The M33 orbit decays slowly due to dynamical friction, which should eventually lead to a merger with the M31–MW merger remnant. However, this will be many Gyr later, since M33 is still in a relatively wide orbit (mean distance \sim60 kpc) at the time $t = 10$ Gyr when the simulation was stopped.

The present-day relative velocity between M31 and the MW is $|v_{31}| = 110.6 \pm 7.8$ km s$^{-1}$ (Paper II). However, the relative velocity increases as M33 gets closer to the MW (see Figure 4). At the first pericenter passage, the relative velocity is as large as 586.0 km s$^{-1}$. This explains why M31 and the MW subsequently recede to an apocenter distance as large as 171.9 kpc. The relative velocity at subsequent pericenters remains similarly high. However, the high velocities are maintained for smaller periods of time during each subsequent pericenter, so that the apocenter separations decrease with time.8

6 For practical purposes in this paper, we consider two galaxies to have merged if their COM separation stays within 5 kpc for an entire Gyr. The merging time is then defined as the latest time at which their separation exceeded 5 kpc.

7 As M33 approaches the MW (see, e.g., Figure 3), we refer to a minimum in the galaxy separation as a "pericenter," even if originally M33 is not directly orbiting the MW.

8 The COM velocity evolution in Figure 4 depends on the exact way in which the COM is defined. It is calculated here based on the luminous particles near the central black hole. The velocity evolution of loosely bound particles at large radii diverges substantially from that of tightly bound particles near the galaxy center. This decoupling is in fact one of the primary mechanisms for removing orbital energy during the interaction (e.g., Barnes 1998).
3.4. Merger Process

Figure 5 shows six snapshots (labeled a–f) of the time evolution of the simulation, centered on the MW COM, and projected onto the Galactocentric (X, Y) plane (i.e., the MW disk plane). Each panel spans 200 × 200 kpc. At the start of the simulation (the present epoch, t = 0), M31 is at

\[r_{\text{M31}} = (-378.9, 612.7, -283.1) \text{kpc} \]

and M33 is at

\[r_{\text{M33}} = (-476.1, 491.1, -412.9) \text{kpc} \]

So initially, both galaxies are located outside the panels, off toward the top left. As the galaxies get closer to the MW, their orbits curve, making their approach directions before pericenter almost parallel to the positive Y-axis. The past orbital paths of the galaxies, as the simulation evolves, are indicated with dashed lines. A full movie of the simulation (figure5.mp4) is distributed electronically as part of this paper. The same projection and layout are used as in the panels of Figure 5.

Panel (a) shows the MW disk after \(t = 3.00 \text{ Gyr} \), while it is still in isolation, viewed pole-on. Particles that are color-coded red, and which are followed throughout the simulation, are the "candidate suns" discussed in Section 3.6 below. The initial MW disk is not dynamically stable, and it develops a bar and spiral features soon after the simulation starts. This is due to the properties of the initial conditions, and in particular, the somewhat high disk mass needed to produce the observed circular velocity (we use \(M_d = 7.5 \times 10^{10} M_\odot \), compared to, e.g., \(M_d = 5 \times 10^{10} M_\odot \) advocated by Klypin et al. 2002). The transient disk features decrease as the disk secularly evolves through angular momentum exchange and disk heating. We wished to minimize the impact of the initial disk instability, given our interest to study the future dynamical evolution of the candidate suns. We therefore evolved the MW in isolation for 1 Gyr before starting the actual simulation, and did the same for M31 and M33.9 Nonetheless, some secular evolution continues throughout the simulation. The snapshot at \(t = 3.00 \text{ Gyr} \) therefore corresponds to a slightly different equilibrium than the initial MW disk. It is in principle possible to obtain a more stable initial axisymmetric disk solution by changing the dark halo or bulge properties. However, the MW does in fact possess a bar (e.g., Binney et al. 1997), so it is not immediately obvious that this would produce a more realistic MW. We therefore decided not to explore alternative models with more stable disks.

Panel (b) shows the situation at the time \(t = 3.97 \text{ Gyr} \) of the first MW–M31 pericenter. The galaxies partially overlap at this time. The galaxy spins are such that the encounter is prograde for both galaxies. However, the relative velocity between the galaxies is large, so that the immediate damage they inflict on one another is limited. At this time, M33 has already moved to a position on the negative Y side of the MW, and is 0.14 Gyr past its MW pericenter. The past COM orbits of M31 and M33 are indicated with dotted curves.

Panel (c) shows the situation at the time \(t = 4.47 \text{ Gyr} \), when M31 is getting close to its first apocenter with MW. Due to the prograde nature of the encounter, stars are thrown out of both galaxies along extended tidal tails. The tails are roughly bisymmetric. The tails are more prominent for the MW, since its encounter is more prograde than for M31 (see D96 for a detailed study of the formation of tidal tails in the MW–M31 interaction, and how their development depends on model parameters). M33 has just passed its second pericenter with M31, the first one having happened when the galaxies were still far from the MW (at \(t = 0.92 \text{ Gyr} \)). Also, M33 has just passed its first apocenter with the MW, and is now starting to fall back onto it. Due to tidal perturbations from both M31 and the MW, M33 has developed the pronounced S-shaped structure that is characteristic of tidal stripping of a satellite (e.g., Odenkirchen et al. 2001).

Panel (d) shows the situation at the time \(t = 6.01 \text{ Gyr} \) when M31 has passed its second pericenter with the MW, and is now at its second apocenter. The galaxies are separated now by

9 Such evolution in isolation was not done for the N-body simulations discussed in Appendices B.1 and B.2 below. Those simulations therefore still show the initial disk instabilities.
Figure 5. Snapshots of the time evolution of the N-body simulation for the canonical model, centered on the MW COM, and projected onto the Galactocentric (X, Y) plane (i.e., the MW disk plane). Only luminous particles are shown. Dotted curves in blue (M31) and green (M33) indicate the past orbits of the galaxies. The time in Gyr since the current epoch is indicated in the top left of each panel. Particles color coded in red are candidate suns, identified as discussed in the text. Panels are as follows: (a, top left) start of the simulation; (b, top middle) first MW–M31 pericenter; (c, top right) just before the first MW–M31 apocenter; (d, bottom left) second MW–M31 apocenter; (e, bottom middle) ~ 0.1 Gyr after the merger; (f, bottom right) end of the simulation. (An animation of this figure is available in the online journal.)

only 40.0 kpc, and the process of merging has started. At this time, M33 is also approximately at its second apocenter with respect to the MW. However, its separation from the MW is still $r = 139.4$ kpc.

Panel (e) shows the situation at the time $t = 6.38$ Gyr, approximately 0.1 Gyr after the two galaxies have merged. The structure of the MW–M31 remnant is highly asymmetric and unrelaxed at this time. The MW and M31 stars in the remnant have not yet mixed. The MW stars are located on average at lower X than the M31 stars. M33 continues to orbit the MW–M31 remnant and is at $r = 90.6$ kpc from it.

Panel (f) shows the situation at the time $t = 10.00$ Gyr, which is when the simulation was stopped. The MW–M31 remnant has had several Gyr to relax dynamically, and its structure has become fairly smooth and symmetric, resembling an elliptical galaxy. The original MW and M31 stars have mixed throughout the remnant. M33 still orbits the remnant on an elliptical, precessing, and slowly decaying orbit. It is at a distance of $r = 75.0$ kpc from it. Tidally stripped stars from M33 contribute to the halo of the MW–M31 remnant. However, M33 is still easily recognizable as a separate galaxy, and this has in fact remained the case throughout the entire simulation.

3.5. Remnant Structure

The three panels of Figure 6 show the distribution of luminous particles at the end of the simulation for the three different galaxies. The MW and M31 particles have become mixed around a common COM. However, the remnant is not yet fully relaxed, since particles originating from the two different galaxies still have a somewhat different spatial distribution. This is evident both from a difference in ellipticity near the center, and from a difference in the structure of shells and tails at large radii.

The distribution of M33 stars at the end of the simulation is markedly different from that of the MW and M31 stars. M33 still largely maintains its own identity in a bound core. However, 23.5% of its luminous particles have been tidally stripped and are now located outside the M33 Roche radius (17.6 kpc at the end of the simulation). These stripped particles occupy wrapped streams that populate the halo of the MW–M31 merger remnant. These streams do not lie along the location of the orbit, primarily due to a combination of two effects. First, particles continue to be affected by M33’s gravity even after they have been stripped (Choi et al. 2007). And second, stripped stars have a velocity component out of the orbital plane since the M33 disk is not aligned with that plane.

Comparison of Figure 5(f) to Figure 5(a) shows that the MW–M31 merger remnant is significantly more radially extended than its progenitor galaxies. Figure 7 shows the projected surface-density profile of luminous MW and M31 particles in the remnant at the end of the simulation ($t = 10$ Gyr). The profile roughly follows an $R^{1/4}$ profile at radii of $R \gtrsim 1$ kpc.
characteristic of elliptical galaxies. This is consistent with the large literature supporting the assertion that roughly equal-mass mergers of spiral galaxies form remnants that can be classified as elliptical galaxies (e.g., Barnes 1998). However, what fraction of ellipticals form this way remains an open question (e.g., Naab & Burkert 2003; Naab et al. 2006; CL08). These characteristics can all be compared to what is observed for samples of ellipticals. Nonetheless, even without such a study, it seems clear that the CL08 conclusion that the MW–M31 merger remnant should resemble an elliptical galaxy still holds.

3.6. The Fate of the Sun

As in CL08, it is of interest to address what the future fate of the Sun might be as the MW–M31–M33 system evolves. We do this by identifying “candidate suns” in the simulation, and by following their fate as time progresses. We identify the candidate suns from their phase-space properties at time $t = 3$ Gyr in the simulation, well before M31 and M33 arrive near the MW. Candidate suns are not identified at the start of the simulation in order to minimize the impact of transient initial features in the MW disk.

We probably do not understand the secular evolution of the MW well enough to predict how the phase-space coordinates of the real Sun will change over the next 3 Gyr, so we neglect any such evolution. Also, we cannot predict at what azimuth in the (X, Y) plane the Sun will be 3 Gyr from now. The Sun is at $R_\odot \approx 8.29$ kpc from the Galactic Center, and the circular velocity at this radius is $V_c \approx 239$ km s$^{-1}$ (see discussion in Paper II). Hence, 3 Gyr from now the Sun will have made ~ 14 orbital revolutions. A $\pm 3.6\%$ uncertainty in the circular velocity, which is fairly realistic, therefore produces a $\pm \pi$ uncertainty in azimuth. Based on these considerations, we identify as candidate suns those particles in the simulated MW at $t = 3$ Gyr that (1) are within $0.10R_\odot$ of the Sun; (2) have an in-plane velocity $(V_x^2 + V_y^2)^{1/2}$ that agrees with V_c at $R = R_\odot$ to within $0.10V_c$; and (3) have an out-of-plane velocity that satisfies $|V_Z| < 30$ km s$^{-1}$. A total of 8786 luminous particles meet these criteria, i.e., 1.0% of the total. Our criterion for identification of candidate suns is more strict than that of CL08, who selected particles at the solar radius irrespective of velocity.

The candidate suns are shown in red in the simulation snapshots of Figure 5, and also in the movies distributed with

![Figure 6](image6.png)

Figure 6. Distribution of luminous particles at the end of the N-body simulation ($t = 10$ Gyr) for the canonical model with, from left to right, particles originating in the MW, M31, and M33, respectively. The color scale indicates the surface mass density. The COM of each galaxy is at the highest-density position in its particle distribution. For M33, we also indicate the past orbit (dotted blue curve), the tidal radius (black circle), and the COM of the MW–M31 remnant (black cross). The MW and M33 have formed a merged remnant. However, the remnant is not yet fully relaxed, since particles originating from the two different galaxies still have a somewhat different spatial distribution. M33 maintains its own identity, but has lost 23.5% of its stars into tidal streams. These streams do not lie along the location of the orbit.

![Figure 7](image7.png)

Figure 7. Projected surface-density profile (red) of luminous MW and M31 particles in the merger remnant at the end of the N-body simulation ($t = 10$ Gyr) for the canonical model, as a function of $R^{1/4}$ (where $R = (X^2 + Y^2)^{1/2}$). The profile is roughly a straight line for $R \geq 1$ kpc, indicating it is well represented by a de Vaucouleurs $R^{1/4}$ law. The profile of candidate suns (green) is shown as well. It is less centrally concentrated than the profile of all particles. Hence, a candidate sun resides on average at a larger radius in the remnant than an average particle (as is true in the initial MW model as well).
sun orbits the MW–M31 merger remnant, so its radial distance from the center is time-dependent. This is true in particular for candidate suns that move out to large distances, since those tend to be on relatively radial orbits. So even if a candidate sun resides far from the center of the merger remnant for most of the time, it may find itself plunging rapidly through the central region at regular intervals. The distributions of orbital pericenters, apocenters, semimajor axis lengths, or time-averaged distances could in principle be calculated for the solar candidates, and those would differ from the distribution in Figure 8.

Some of the candidate suns migrate out far enough to overlap with the range of radii where M33 orbits the MW (or the MW–M31 merger remnant) after $t \approx 5\,\text{Gyr}$ (see Figure 3). It is therefore theoretically possible that candidate suns could be accreted by M33. However, M33 moves rapidly around the MW (see Figure 4), and its orbit is very different from that of typical stars in the MW, even those ejected into tidal tails. Therefore, most candidate suns that pass close to M33 will undergo flyby encounters, and will not be accreted by M33 (i.e., become bound). In the canonical model, none of the 8786 candidate suns became bound to M33. This sets an upper limit of $\sim 10^{-4}$ to the probability of the Sun ever becoming bound to M33.

While the probability of candidate suns becoming bound to M33 is small, the probability is larger that a candidate sun might find itself temporarily inside M33. For each candidate sun in the simulation, we studied whether it ever came within 10 kpc of the M33 COM (despite M33 always being more than 23 kpc from the MW COM throughout the simulation; see Figure 3). A total of 1762 candidate suns met this criterion over the 10 Gyr of the simulation. Therefore, the probability is 20.1% that the Sun will at some time in this future period find itself moving through M33, although dynamically still being associated with the MW–M31 remnant.\footnote{The probability is smaller (13.9%) when calculated over all MW particles, and not just candidate suns.}

4. SEMI-ANALYTIC ORBIT CALCULATIONS

4.1. Initial Conditions

The initial conditions used for the canonical orbital scenario in Section 3 form only one of many possibilities that are consistent with the observational uncertainties on the galaxy masses and phase-space coordinates derived in Paper II. We therefore used a Monte Carlo scheme to create $N = 1000$ initial conditions that explore the full parameter space of possibilities. Table 3 lists the observational and theoretical constraints on the galaxy masses, halo concentrations, and initial phase-space coordinates that were used to generate the initial conditions.

We studied the orbital evolution for each set of initial conditions, and determined the probability p with which certain orbital features occur (e.g., a direct hit between galaxies). If a feature occurs in N_f orbits, then $p = N_f/N$ with random uncertainty $\Delta p \approx \sqrt{N_f}/N$. For $N = 1000$, $p = 10\%$ yields $\Delta p = 1\%$, and $p = 1\%$ yields $\Delta p = 0.3\%$. For larger N, parameter space would be explored more fully and the random uncertainties Δp would be smaller. However, systematic uncertainties due to the simplifying assumptions that underly the semi-analytic calculations would stay the same. Since these likely dominate the random uncertainties, we decided that $N = 1000$ was sufficient.

The initial masses M_{vir} for the galaxies were drawn as in Section 5 of Paper II. This combines observational constraints on
The masses of the individual galaxies, with the timing-argument constraints on the total mass of the MW and M31 (including cosmic scatter, following Li & White 2008). At given M_{vir}, we calculate c_{vir} from the cosmological simulation correlation presented by Klypin et al. (2011). We add a random scatter of 0.1 dex in $\log_{10} c_{\text{vir}}$ consistent with the simulations of Neto et al. (2007).

The initial phase-space coordinates of M31 and M33 were drawn as in Sections 4.2 and 6.1 of Paper II, respectively, based on the observed positions, distances, line-of-sight velocities, and transverse velocities. Thus employed, this scheme propagates all observational distance and velocity uncertainties and their correlations, including those for the Sun.\footnote{Uncertainties in the R.A. and decl. of M31 and M33 are negligible and were ignored.}

For each set of initial conditions, we calculated the binding energies of the MW–M31 and M33–M31 systems, respectively. The MW–M31 system was found to be bound in all cases. This is as expected, since an unbound chance encounter of two galaxies like the MW and M31 would be quite unlikely given the local density of spiral galaxies (van den Bergh 1971). The M33–M31 system was found to be bound in 95.3% of cases. There is observational evidence from both H i (Braun & Thilker 2004) and star count maps (M09) for tidal features indicative of past interactions between these two galaxies. M09 have argued that M33 and M31 must be bound for the observed tidal features to have formed. This is the approach that we will take here. So as in Section 6.3 of Paper II we remove from consideration the small subset of initial conditions in which M33 and M31 are not bound.

Figure 9 shows the distributions of β_{MW} and β_{M31} for the initial conditions, being the angles between the galaxies’ initial spin and orbital angular momenta as defined in Section 3.2. Both distributions are quite broad. For the MW, 72.2% of the orbits are prograde, and 27.8% are retrograde. For M31, 59.0% of the orbits are prograde, and 41.0% are retrograde. So for both galaxies, a prograde encounter is the most likely outcome, but not by a large factor. For M31, 41.4% of orbits have $|\beta_{\text{M31}}| < 30^\circ$, so that nearly orthogonal encounters are quite probable. For the MW, this fraction is only 28.0%. Based on these considerations, the initial MW–M31 encounter will generally perturb the MW more strongly than M31, as was the case in the canonical model (see Section 3.4).

The reason that both prograde and retrograde encounters are possible is that the M31 velocity is directed almost radially toward the MW. Hence, the orbital angular momentum is small, and its direction is poorly determined. Specifically, one may consider the M31 transverse velocity space (v_W, v_X), in which one value $(v_W, v_X)_{\text{rad}}$ corresponds to the velocity vector for a radial orbit (see Figure 3 of Paper II). Most of the
velocities inside the observational error ellipse lie on one side of \((v_W, v_N)\), and those yield a prograde encounter for the MW. However, some of the velocities lie on the other side of \((v_W, v_N)\), and those yield a retrograde encounter for the MW.

4.2. Distributions of Orbital Characteristics

For each of set of Monte Carlo generated initial conditions, we calculated the future orbital evolution of the MW–M31–M33 system with the semi-analytic orbit-integration method of Section 2.2. All orbits were integrated for a sufficiently long time to be able to quantify and classify the future evolution. For all orbits, we determined the same characteristic quantities (pericenters, apocenters, merging times, etc.) as discussed in Section 3.3.

For all initial conditions, M33 is moving toward M31 at the present time, albeit with a significant tangential component (see, e.g., the top left panel of Figure 2; Section 6.1 of Paper II). M31 is moving toward the MW and is pulling M33 with it. Each pair of galaxies is therefore heading for a pericenter passage. Figure 10(a) shows histograms of the times of these pericenter passages, and Figure 10(b) shows histograms of the corresponding pericenter distances. Figure 10(c) shows a histogram of the times at which the MW and M31 merge.

For the MW–M31 system, the first-pericenter time and distance are \(t = 3.87^{+0.42}_{-0.32}\) Gyr and \(r = 31.0^{+38.0}_{-19.8}\) kpc. Here and henceforth, values quoted for a quantity refer to the median and surrounding 68.3% confidence regions in the Monte Carlo distribution. In 41.0% of orbits, the MW–M31 first-pericenter distance is less than 25 kpc. Taking into account the sizes of the galaxy disks, we consider this arbitrary cutoff to denote a "direct hit." This high fraction is no surprise, since the data constrain the relative orbit to be close to radial. An example N-body simulation of such a direct hit is discussed in Appendix B.3. Its initial conditions are listed in Table 2 in the column labeled "direct hit." A full movie (figure16c.mp4) is distributed electronically as part of this paper, with the same projection and layout as the panels of Figure 5.

Appendix A shows that MW–M31 merger times computed from the semi-analytic orbit integrations are generally in good agreement with those obtained from N-body simulations. In the semi-analytic Monte Carlo set, the MW and M31 merge in all of the calculated orbits, with a merger time of \(t = 5.86^{+1.61}_{-0.72}\) Gyr. In most of the Monte Carlo orbits, the generic properties of the evolution of the MW and M31 COM are not very different from those in the canonical orbit discussed in Section 3. The longest merging time found was \(t = 31.83\) Gyr, but this is well out in the tail of the distribution. In general, longer merging times tend to be obtained for orbits with lower \(M_{\text{tot}}\) and/or larger \(V_{\text{tan}}\).

As M31 moves toward the MW, M33 orbits around it. For the M31–M33 system, the first-pericenter time and distance are \(t = 0.85^{+0.18}_{-0.13}\) Gyr and \(r = 80.8^{+42.2}_{-31.3}\) kpc. Pericenter will therefore generally happen within the next Gyr. The observed

Figure 9. Histograms of the angle \(\beta\) between spin and orbital angular momentum for the MW (blue) and M31 (red), calculated from the Monte Carlo generated initial conditions. The MW is more likely to undergo a prograde encounter, whereas M31 is more likely to undergo a nearly orthogonal encounter. Arrows (color coded in the same way as the histograms) indicate the values for the canonical model of Section 3. (A color version of this figure is available in the online journal.)

Figure 10. Histograms extracted from a Monte Carlo set of orbits that sample the uncertainties in all relevant initial conditions, calculated with the semi-analytic orbit-integration method. (a) Next pericenter time \(t_p\) for the MW–M31 pair (red), the MW–M33 pair (black), and the M31–M33 pair (green). (b) Corresponding pericenter distances \(r_p\). (c) Merger time \(t_m\). All histograms are normalized to unity. Arrows (color coded in the same way as the histograms) indicate the values for the canonical model of Section 3. These are in all cases close to the mode or median of the distribution. (A color version of this figure is available in the online journal.)

12 We use the same definition of "direct hit" throughout this paper, independent of which pair of galaxies has a close passage. The disk exponential scale lengths of all three galaxies are well below 25 kpc (see Table 1). Hence, a direct hit does not necessarily mean that the densest central parts of the galaxies are colliding. However, all three galaxies have disks that extend to many exponential scale lengths. For example, the stars in the M31 disk can be traced to beyond 20 kpc (Courteau et al. 2011) and the H I gas to some 40 kpc (Corbelli et al. 2010). In M33, the smallest of the three galaxies, the stars in the disk can be traced to at least 4 kpc (Kent 1987) and the H I gas to some 15 kpc (Corbelli & Schneider 1997).
velocities imply that the M31–M33 system has a certain amount of angular momentum, so this rules out a direct hit between these galaxies at the next pericenter. Technically, a fraction of 1.8% of orbits meet the definition of “direct hit” given above, but these orbits generally have pericenter distances of \(r > 15 \text{kpc} \). Moreover, orbits with such small pericenters are ruled out by the argument that on such orbits M33 could not have remained as symmetric as it is to the present epoch (see Section 4.5). By the time M31 gets to the MW, M33 is generally near its second pericenter with M31 (see Figure 3).

For the MW–M33 system, the first-pericenter time and distance are \(t = 3.70^{+0.74}_{-0.46} \) Gyr and \(r = 176.0^{+239.0}_{-136.0} \) kpc. The large radial range indicates that M33 does not generally get close to the MW at its next pericenter. Because of this, M33 on average tends to reach its pericenter with the MW a little sooner than M31. However, the distribution of the MW–M33 pericenter distance is extremely broad and reaches all the way down to zero. Therefore, in some fraction of orbits M33 will make a direct hit with the MW, as discussed in more detail below. This generally happens before M31 reaches its pericenter with the MW.

We show in Appendix A that our semi-analytic orbit-integration method cannot reliably predict the time at which M33 will merge with either the MW, M31, or their merged remnant. This is due to the approximate nature of our prescription for the dynamical friction experienced by M33, which ceases to be valid over timescales of \(\gtrsim 5 \) Gyr into the future. Nonetheless, it is possible to draw some general conclusions based on our \(N \)-body simulations. The merger time for M33 will be longer if it settles onto a wider orbit around the MW–M31 pair. The size of the orbit onto which M33 settles correlates with the first-pericenter distance between the MW and M33 (compare Figures 3 and 11 to be discussed below). Figure 10(b) shows that this distance is smaller for the canonical model studied in Section 3 than for 68.1% of Monte Carlo simulated orbits. Nonetheless, for the canonical model, the M33 merger time was found to be long, since even at the end of the 10 Gyr simulation, no merger had occurred. This was true also in a simulation in which M33 settled onto a more radial orbit around the MW–M31 merger remnant (see Appendix B.1). This implies that for most orbits, the M33 merger time will generally be considerably longer than 10 Gyr. In contrast, Figure 10(c) shows that the MW and M31 have almost always merged by then. Therefore, we conclude that the MW and M31 will generally merge first, with M33 settling onto an orbit around them that may decay toward a merger later. This result is primarily due to the mass ratios involved, and not the orbital geometry or angular momentum; dynamical friction is more efficient at slowing equal-mass systems than unequal-mass systems.

4.3. Orbit Classification

The values for the canonical orbit discussed in Section 3 are close to the modes of all distributions in Figure 10. Nonetheless, it is clear from the breadth of the distribution of the MW–M33 pericenter distances that no single orbit can be a reasonable template for the full variety of possible outcomes. Nevertheless, we have found that the orbits in the Monte Carlo simulations can be broadly classified into the three categories discussed below, depending on how the distance between M33 and the MW evolves. Table 3 lists average properties for these categories. Figure 11 shows example orbits.

M33-hit orbits. In 9.3% of the orbits, M33 “hits” the MW before M31 does. More specifically, these are orbits in which the distance between M33 and the MW at their first pericenter is less than 25 kpc (which as above, we take as the definition of a direct hit), while M31 has its own pericenter with the MW either at a later time or a larger distance. In somewhat less than half of these orbits (4.0% of the total), M31 subsequently also makes a direct hit with the MW at its first pericenter. Orbits in which M33 makes a direct hit with the MW tend to occur when \(M_{\text{MW}} \) and \(M_{\text{M31}} \) have larger-than-average values, and the M31–M33

![Figure 11. Examples of four types of MW–M31–M33 orbital evolution, one in each row. The left panel in each row shows the trigalaxy Cartesian (\(X', Y' \)) projection centered on the system COM, as in the top row of Figure 2. Positions are shown only for the first 10 Gyr. The right panel shows the galaxy separations as a function of time, as in Figure 3. The initial conditions of the named orbits are listed in Tables 2 and 3. The name of each orbit is listed in parentheses in the right panel, below the name of orbit category to which it belongs. Top row: the “first-M33” orbit, which is an example of the class of M33-hit orbits defined in Section 4.3. M33 has a close passage with the MW at the time indicated by the arrow, before M31 encounters the MW. Second row: the “canonical” orbit of Section 3, which is an example of a generic orbit. M31 and the MW merge, and M33 settles onto an orbit around them that does not take it outside the LG. Third row: the “retrograde” orbit, which is also an example of a generic orbit. However, in this case M33 settles onto a much wider, almost circular orbit around the MW–M31 merger remnant. The encounter between the MW and M31 in this orbit is retrograde for both galaxies. Bottom row: the “wide-M33” orbit, which is an example of the class of M33-out orbits. M33 settles on an orbit that takes it (at least temporarily) outside the LG. The orbital evolution for the top three orbits was calculated through \(N \)-body simulations, and for the bottom orbit it was calculated with the semi-analytic orbit-integration method.

![Diagram showing four types of MW–M31–M33 orbital evolution, one in each row.](image-url)
relative velocity $V(M31, M33)$ is smaller than average13 (see Table 3). This produces an M31–M33 pair that is more tightly bound.

Generic M33 orbits. In 83.5\% of orbits, M33 does not make a direct hit with the MW on its first pericenter, but it also does not move so far from the MW as to ever leave the LG. The canonical orbit of Section 3 is one example of a generic orbit. To assess whether M33 moves outside the LG, we calculated for each Monte Carlo orbit at every time step the distance of M33 from the barycenter of the MW–M31 pair. If this distance exceeds 0.94 Mpc, the current value of the LG turn-around radius (e.g., Karachentsev et al. 2002), then M33 was deemed to be outside (the current bounds of) the LG (this does not take into account any future growth of the LG and expansion of its turn-around radius). Such an orbit was then considered not to be a generic orbit.

M33-ejection orbits. In 7.2\% of orbits, M33 leaves the LG, at least temporarily. In this case, M33 can either fall back and merge with the M31–MW merger remnant much later, or it can become entirely unbound from the M31–MW system. The fact that M33 can leave the LG despite being initially bound to M31 (which merges with the MW) is primarily due to the dynamical friction from the MW on M33. This causes M31, which is M33’s initial center of attraction, to be dramatically slowed down, while M33 itself keeps moving at the same velocity. Orbits in this category tend to occur when M_{M31} and M_{M33} have smaller-than-average values, and the M31–M33 relative velocity $V(M31, M33)$ is larger than average (see Table 3). This produces an M31–M33 pair that is less tightly bound.

4.4. Orbit Examples

Figure 11 shows the MW–M31–M33 orbital evolution for four specific sets of initial conditions to illustrate the categories of orbits defined in the previous section. For ease of reference, we use the following names for the four models: “first-M33,” “canonical,” “retrograde,” and “wide-M33.” The canonical model is the same as discussed in Section 3. The orbital evolution for the first three models was calculated through N-body simulations. The orbital evolution for the wide-M33 model was calculated with the semi-analytic orbit-integration method.14 Initial conditions for the four orbits are listed in Tables 2 and 3, respectively. We restrict the discussion here to the orbital evolution of the galaxy’s COM. Some selected aspects of the full N-body evolution of the first-M33 and retrograde models are presented in Appendices B.1 and B.2. Full movies of the simulations (figure13a.mp4 and figure14.mp4, respectively) are distributed electronically as part of this paper, with the same projection and layout as the panels of Figure 5.

The top row in Figure 11 shows the first-M33 model, which provides an example of an M33-hit orbit. The M33 orbit is strongly curved around M31, sending M33 on a path directed toward the MW. M33 comes within 21.1 kpc of the MW during its first pericenter at $t = 2.91$ Gyr. M31 is then still 130.2 kpc away, and does not reach its pericenter of $r = 29.9$ kpc until $t = 3.16$ Gyr. M33 settles onto a highly eccentric orbit after the MW and M31 have merged. It then repeatedly plunges radially back and forth through the center of the MW–M31 remnant, with slowly decaying apocenters. This particular model does not have an especially close direct hit of M33 with the MW at their first pericenter. A fraction 0.5\% of the orbits in the Monte Carlo simulations actually pass within 5 kpc, and a fraction 1.9\% within 10 kpc. However, the first-M33 model does illustrate the general features of the M31-hit orbit category. For the particular initial conditions of this orbit, M31 is located at the short end of its observationally allowed distance range. However, the column of Table 3 that shows the averages for all M33-hit orbits indicates that this is not a general requirement to end up with a direct MW–M33 hit.

The second and third rows of Figure 11 show examples of generic orbits in which M33 does not make a direct hit with the MW at its first pericenter, and in which M33 does not leave the LG. The second row shows the canonical model already discussed in Section 3. In contrast to the first-M33 model in the top panel, M33 now misses the MW on the negative Y' side at the first pericenter passage. The third row shows the retrograde model in which M33 settles onto a much wider, almost circular orbit around the MW–M31 merger remnant. The orbital radius is 350–400 kpc and the period is in excess of 10 Gyr (M33 has not even completed one orbital revolution by the end of the simulation). The name of this model derives from the fact that the MW–M31 encounter in this case is retrograde for both galaxies. However, orbits like this can also arise with prograde MW–M31 encounters.

The bottom row of Figure 11 shows an example M33-out orbit. In this wide-M33 model, M33 settles onto an orbit that takes it outside the LG at $t = 10.94$ Gyr, when the LG barycenter distance reaches 0.94 Mpc. It returns back into the LG 8.61 Gyr later. The maximum distance reached in the meantime is 1.02 Mpc at $t = 15.27$ Gyr. This apocenter distance is not particularly extreme. In 3.4\% of the Monte Carlo simulated orbits, M33 actually reaches further than 1.5 Mpc from the LG barycenter, and in 1.0% further than 3.0 Mpc.

Figure 11 shows that the different possible categories of orbits can be viewed as a logical sequence. In the (X', Y') trinary projection of the COM frame (left panels), from top to bottom, the initial part of the M33 orbit is characterized by decreasing curvature toward the COM of the entire system. It is this difference in curvature that is partly responsible for the different possible merging outcomes. An important physical quantity that correlates with this is the current M31–M33 binding energy, which on average decreases along the sequence.

4.5. M33–M31 Orbit

M09 constructed N-body models for the M33–M31 interaction to reproduce features seen in their M33 star count data. They focused on the past orbit, and the MW was not included. The M31 proper motion was treated as a free parameter, which was optimized to best reproduce the generic features of the M33 data. M09 did not discuss the quantitative constraints on the M31 proper motion thus obtained, but they did discuss the properties of the resulting M33–M31 orbit. Their approach differs from our study in several ways: we use the measured M31 proper motion, and then focus on the future orbit, including the MW as well. Nonetheless, it is of interest to examine whether the type of M33–M31 orbits derived from our analysis are consistent with those derived by M09 to match the M33 morphology. M09 found that orbits with previous pericenter distances $r_p \lesssim 40$ kpc produced too much distortion of M33 to be consistent with its overall regular appearance (see also Loeb15)
et al. 2005). Our study infers only the next pericenter distance, which exceeds the previous pericenter distance because of the dynamical friction decay of the orbit. We find from our orbit calculations (see, e.g., Appendix A, Figure 12(b)) that the pericenter decay over one period is typically \(\sim 30\% \). The M09 constraint therefore corresponds to \(r_p \lesssim 28 \) kpc at the next pericenter distance. In our semi-analytic Monte Carlo calculations, only 2.9\% of orbits have such small pericenters (see the histogram in Figure 10). Therefore, the observed proper motion of M31 from Paper I is consistent with the overall regular appearance of M33.

M09 detected a warp in the outer stellar distribution of M33, consistent with the H1 morphology. To reproduce this warp in their simulations, they focused on orbits in which the previous pericenter distance was not too much larger than 40 kpc. They presented results for one particular orbit that provided a reasonable match to the generic features of their data. This orbit has a previous pericenter distance of 53 kpc. With the decay rate given above, this yields a next pericenter distance of \(r_p \sim 37 \) kpc. In Section 4.2, we derived from our Monte Carlo generated orbits that the M31–M33 distance at their next pericenter is \(r = 80.8^{+31.3}_{-31.2} \) kpc. Therefore, the M09 orbit is \(\sim 1.4\sigma \) below the mean of the observationally implied distribution. This is well within the range of what is plausible, and provides another successful consistency check on the observed M31 proper motion.

The next M31–M33 pericenter distance for the canonical model of Section 3 is \(r_p = 79.7 \) kpc. This is larger for the orbit highlighted by M09. The same is true for the other orbits discussed in Tables 2 and 3 (see the values of \(r_p \) listed in the last lines the tables). However, this is not necessarily a problem, because M09 did not establish an upper limit to the pericenter distance. They restricted their study to orbits with previous pericenters \(\lesssim 50 \) kpc, and only studied the evolution in the last \(\sim 3.4 \) Gyr. Larger pericenter distances may well excite acceptable warps, especially if the orbital evolution is calculated from further back in time, including multiple pericenter passages.

We have chosen not to restrict the orbits studied here based on the properties of the M33–M31 orbit, although we do require the pair to be bound. However, it would have been trivial to further restrict the initial conditions to those that produce a specific range of pericenter distances. For example, if we require that the previous pericenter must have been in the range 40–100 kpc, then this implies \(r = 28–70 \) kpc for the next pericenter distance. A fraction of 35.3\% of the semi-analytic Monte Carlo generated orbits fall in this range. Of these orbits, 12.5\% can be classified as M33-hit orbits, 85.7\% as generic orbits, and 1.8\% as M33-out orbits. So all of the different types of orbits of Section 4.3 are still present. However, the fraction of M33-out orbits has decreased, since those orbits have preferentially low M31–M33 binding energies and large pericenters (see Table 3).

5. DISCUSSION AND CONCLUSIONS

We have studied the future dynamical evolution of the MW–M31–M33 system, using a combination of collisionless \(N \)-body simulations and semi-analytic orbit integrations. The initial conditions of this evolution are well constrained, now that we have determined the M31 transverse motion in Papers I and II. The results yield new insights into the future evolution and merging of the MW–M31 pair. Moreover, this has been the first MW–M31 study to include detailed models of M33 based on its known transverse motion from water-maser studies. The calculations are based on the latest observational and theoretical insights into the masses and mass distributions of the galaxies. Monte Carlo simulations were used to explore the consequences of varying all relevant initial phase-space and mass parameters within their observational uncertainties.

We found in Paper II that the velocity vector of M31 is statistically consistent with a radial (head-on collision) orbit toward the MW. This implies that the MW–M33 system is bound, and that the galaxies will merge. The first pericenter occurs at \(t = 3.87^{+0.42}_{-0.32} \) Gyr from now, at a pericenter distance of \(r = 31.0^{+38.0}_{-19.9} \) kpc. For the MW, the encounter has a 72.2\% probability of being prograde. For M31, the encounter has a 41.4\% probability of being within 30\% from orthogonal (in terms of spin-orbital angular momentum alignment). In 41.0\% of Monte Carlo orbits, M31 makes a direct hit with the MW, defined here as a first-pericenter distance less than 25 kpc. The galaxies merge after \(t = 5.86^{+1.50}_{-0.75} \) Gyr.

As M31 moves toward the MW, M33 orbits around it. For the M31–M33 system, the first-pericenter time and distance are \(t = 0.85^{+0.18}_{-0.11} \) Gyr and \(r = 80.8^{+31.3}_{-31.2} \) kpc. The next pericenter will not be a direct hit, due to the non-zero orbital angular momentum. The M31–M33 orbit implied by the observed transverse velocities is broadly consistent with that postulated by M09 to reproduce tidal deformations in the M31–M33 system. By the time M31 gets to its first pericenter with the MW, M33 is close to its second pericenter with M31.

For the MW–M33 system, the first-pericenter time and distance are \(t = 3.70^{+0.74}_{-0.46} \) Gyr and \(r = 176.0^{+329.0}_{-136.0} \) kpc. The large range of possible pericenter distances indicates that M33 can have several different types of orbits with respect to the merging MW–M33 system.

In 9.3\% of the Monte Carlo orbits, M33 makes a direct hit with the MW at its first pericenter, before M31 reaches pericenter or collides with the MW. Orbits in this category tend to occur when \(M_{M31} \) and \(M_{M33} \) have larger-than-average values, and the M31–M33 relative velocity \(V(M31, M33) \) is smaller than average, producing an M31–M33 pair that is more tightly bound. In a smaller fraction of orbits (4.0\%), M31 subsequently also makes a direct hit with the MW at its first pericenter.

In 7.2\% of the Monte Carlo orbits, M33 gets ejected from the LG, at least temporarily. This is primarily because dynamical friction from the MW causes M31, which is M33’s initial center of attraction, to be dramatically slowed down while M33 itself keeps moving at the same velocity. In these orbits, M33 can either fall back and merge with the M31–MW merger remnant much later, or it can become entirely unbound from the M31–MW system. Orbits in this category tend to occur when \(M_{M31} \) and \(M_{M33} \) have smaller-than-average values, and the M31–M33 relative velocity \(V(M31, M33) \) is larger than average, producing an M31–M33 pair that is less tightly bound.

In the remaining 83.5\% of Monte Carlo orbits, M33 does not make a direct hit with the MW on its first pericenter, and M33 does not move so far from the MW as to ever leave the LG. In these “generic” orbits, the MW and M31 will generally merge first, with M33 settling onto an orbit around them (with a range of possible sizes and ellipticities) that may decay toward a merger later.

We have explored the orbital evolution of several models through \(N \)-body simulations. We have discussed in detail the orbital evolution and galaxy distortions in a canonical model that produces an orbit of the generic kind. The initial conditions
for this model, as well as the resulting orbital quantities (e.g., pericenter times, distances, and merger times), all fall roughly midway in all observationally allowed ranges. The results of this simulation therefore provide an “average” assessment of what will happen to the MW, M31, and the Sun in the future.

The radial mass profile of the MW–M31 merger remnant is significantly more extended than the original profiles of either the MW or M31. The profile roughly follows an $R^{1/4}$ profile at radii of $R \geq 1$ kpc, characteristic of elliptical galaxies. This is consistent with the vast theoretical literature on major mergers of spiral galaxies (such as the MW and M31) which has found that the remnants of such mergers resemble elliptical galaxies in many of their properties.

We have analyzed what may happen to the Sun during the evolution of the MW–M31–M33 system by identifying candidate suns in the canonical N-body model. The Sun could end up near the center of the merger remnant, but more likely (85.4% probability) will end up at larger radius than the current distance from the MW center. There is a 20.1% probability that the Sun will at some time in the next 10 Gyr find itself moving within 10 kpc of M33, but still be dynamically bound to the MW–M31 merger remnant. The probability that the Sun will become bound to M33 is much less. While theoretically possible, there were no candidate suns in this particular simulation that suffered this fate.

The calculations show that the environment of the Sun and the solar system will be affected by the future MW–M31–M33 orbital evolution. This includes the Sun’s distance from the center of its host galaxy, its orbit, and velocity in the host galaxy, and the local density of surrounding stars. These changes in environment do not necessarily imply that the evolution of the Sun and the solar system themselves would be affected. However, a change in evolution is certainly possible. For example, the structure of the outer solar system can be altered by nearby passages of other stars (e.g., Kenyon & Bromley 2004). Such passages are generally infrequent, owing to the collisionless nature of galaxies, and this remains true during galaxy interactions. Nonetheless, the exact likelihood and severity of such passages is directly determined by the properties of the Sun’s local environment (Jimenez-Torres et al. 2011), and this will evolve drastically during the interaction with M31. If a very close passage were to affect the Earth orbit, then it could even affect life (by relocating the Earth in the solar system relative to the location of the habitable zone several Gyr from now).

We have included M33 in our study of the MW–M31 evolution, since it is the third most massive galaxy of the LG and therefore the satellite that is most relevant dynamically. It also has a known proper motion, so that its future orbit can be calculated. We have not assessed the future orbital evolution of the many other satellites of the MW, M31, and the LG. However, it is not impossible that some of the dynamical features discussed here could apply to other satellites as well. It would therefore be worthwhile to extend the research presented here with future calculations and simulations that include more of the LG’s satellites. Among other things, this would enable quantitative study of whether satellites other than M33 may provide a first direct hit on the MW, whether satellites other than M33 may leave the LG as a result of the MW–M31 interaction, and whether the Sun may find itself moving in the future through other satellites than just M33.

The M31 proper-motion measurements discussed in Paper I have allowed us to obtain new insights into the past, present, and future of the LG. Paper II focused on the past and the present. It addressed issues such as the past orbit of the MW–M31 system under the assumption of the timing argument, and the present-day space velocities and masses of the galaxies. These have direct relevance for understanding observational questions related to LG kinematics, cosmology, and stellar archeology. By contrast, Paper III has focused on the future evolution of the MW–M31–M33 system. This has less direct relevance for today’s observers of the LG, since the evolution we calculate has not yet happened. However, the calculations do have relevance for other observational questions, e.g., related to the origin of massive elliptical galaxies. The future evolution we calculate here may correspond to a specific example of how some of these galaxies and their satellite systems have evolved to their present state.

The authors are grateful to Mark Fardal, Rachael Beaton, Tom Brown, and Raja Guhathakurta for contributing to the other papers in this series, and to the anonymous referee for useful comments and suggestions. Support for the Hubble Space Telescope proposal GO-11684 was provided by NASA through a grant from STScI, which is operated by AURA, Inc., under NASA contract NAS 5-26555. The simulations in this paper were run on the Odyssey cluster supported by the FAS Science Division Research Computing Group at Harvard University.

APPENDIX A

COULOMB LOGARITHM

Our semi-analytic orbit-integration methodology uses the Chandrasekhar formula (Binney & Tremaine 1987) to describe the dynamical friction induced by a primary galaxy onto a secondary galaxy. We parameterize the Coulomb logarithm in this formula as

$$\log \Lambda = \max[L, \log (r/a_c)^\alpha]. \quad (A1)$$

Here, r is the distance of the secondary from the primary, a_c is the Hernquist profile scale length of the secondary, and $C > 0$, $L \geq 0$, and $\alpha \geq 0$ are constants. This parameterization is based on the study of Hashimoto et al. (2003). They found that the Coulomb logarithm must correlate with r to obtain a good approximation to the N-body orbit of a satellite galaxy spiraling into a more massive primary galaxy. This contrasted with many previous studies, which often used a constant value of $\log \Lambda$ to calculate the rate of orbital decay. The use of a floor L for $\log \Lambda$ is necessary to prevent the dynamical friction deceleration from becoming an unphysical acceleration for small separations $r < C a_c$.

The Hashimoto et al. (2003) N-body simulations included only a single component for each galaxy (the dark halo). The satellite was modeled as a fixed potential, and both galaxies
were assumed to have a constant-density core. For this case, and adopting $L = 0$ and $\alpha = 1$, they found a good fit for $C = 1.4$. We adopt a more general parameterization here for several reasons. First, with $L = 0$, there is no dynamical friction experienced inside $r = Ca_s$. This leads to very slow decay of the satellite once it gets close to the center of the primary, consistent with what was seen in simulations of Hashimoto et al. However, this is probably not physical. In real galaxies, the gravity near the center of the dark halo is dominated by baryons. The baryons have a higher central density and smaller scale radius than the dark halo, and therefore provide added dynamical friction when $r < Ca_s$. Moreover, the dynamical response of the satellite adds to the orbital decay as well. So it is reasonable to consider $L \geq 0$.

Also, we allow C and α to differ from the values advocated by Hashimoto et al. Their values were derived for a satellite model with an arbitrary constant-density core. It is unlikely that the same values would apply to our cosmologically motivated models, which have a central dark matter density cusp. The exact choice of L affects the late-stage evolution of the merger, whereas the early orbital decay (when the separations are still large) depends only on C and α.

In our orbital calculations, we encounter dynamical friction in two different regimes: dynamical friction between galaxies of roughly equal mass (MW and M31) and dynamical friction between galaxies of rather unequal mass (friction on M33 exerted by either the MW or M31, in both cases corresponding to an $\sim 1:10$ mass ratio); the dynamical friction of M33 on either MW or M31 is assumed to be zero. Although we always use the same expression (Equation (A1)) for the Coulomb logarithm, it is not obvious that the same values of the constants C, L, and α should be used for both cases. We therefore use different Coulomb logarithm constants (C_e, L_e, α_e) and (C_u, L_u, α_u) for the (roughly) equal-mass and unequal-mass case, respectively.

To “calibrate” the Coulomb logarithm constants, we used three N-body simulations calculated as described in Section 2.1. The first simulation is the canonical N-body model described in Section 3. The second simulation, which we will refer to as “calib-1,” has M31 interacting with the MW in isolation, without M33. Our semi-analytic predictions for this case depend only on (C_e, L_e, α_e). The third simulation, which we will refer to as “calib-2,” has M33 interacting with M31 in isolation, without the MW. Our semi-analytic predictions for this case depend only on (C_u, L_u, α_u). The galaxies in the calibration simulations had lower masses and higher concentrations than in the canonical model, as listed in Table 2.

Figure 12 shows the orbital decays $r(t)$ in the N-body simulations (solid curves). We ran many semi-analytic orbit integrations, varying the Coulomb logarithm constants manually, to obtain a satisfactory fit to these orbital decays. The fit was judged by its ability to reproduce the sequence of pericenter and apocenter distances and times, for the simulations with different galaxy masses and concentrations. We found that this provided sufficient constraints to identify a unique set of best-fit parameters. The parameters thus identified were $\alpha_e \approx 0.15$, $C_e \approx 0.17$, and $L_e \approx 0.02$ for the roughly equal-mass case; and $\alpha_u \approx 1.0$, $C_u \approx 1.22$, and $L_u \approx 0$ for the unequal-mass case. The corresponding orbits obtained from the semi-analytic calculations are shown as dotted curves in Figure 12.

The overall agreement between the semi-analytic calculations and the N-body results for the MW–M31 separation in Figure 12 (red curves) is good. The orbital timescales and separations at pericenters, apocenters, and merging are adequately reproduced. The value $\alpha_u \approx 0.15$ for this roughly equal-mass case is not far from zero. This indicates that the Coulomb logarithm has only a mild dependence on radius in this situation.

The value $\alpha_u = 1.0$ inferred for the unequal-mass case implies a linear dependence of the impact-parameter ratio $b_{\text{max}}/b_{\text{min}}$ on radius. Interestingly, this is the same as what was assumed by Hashimoto et al. (2003) to describe their unequal-mass simulations. Also, our best-fit $C_u = 1.22$ is very similar to the value of 1.4 that they adopted. Nonetheless, we find that the overall agreement between the semi-analytic orbit integrations
and the N-body models in Figure 12 (green and black curves) is not as good as for the roughly equal-mass MW–M31 case. It is also not as good as found by Hashimoto et al. (2003) for their unequal-mass simulations. We attribute this to the added complexities of our simulation compared to those of Hashimoto et al., namely multiple galaxy components, cusped halos, and a “live” secondary. With these complexities, we find that the long-term satellite decay is not perfectly fit by the simple formula equation (A1). In particular, the semi-analytically predicted decay is too fast at large times. The parameter L_u does not help to fix this, since increasing it above $L_u \approx 0$ only speeds the late-stage decay further.

The fact that the orbital decay of M33 is not perfectly reproduced by the semi-analytical model does not come as a surprise. The decay in merging and interacting systems is driven to significant extent by global responses (e.g., Barnes 1998). These are not well described by Chandrasekhar’s local dynamical friction formula. Figure 12 shows that our semi-analytic model is not adequate to predict the exact time it will take before M33 will merge with the MW–M31 remnant. To answer this question one would require a suite of N-body simulations that follow the satellite merger process to completion, as in, e.g., Boylan-Kolchin et al. (2008). Nonetheless, our semi-analytic approach does reproduce the M33 orbital decay reasonably well for the near-term, $t \lesssim 5$ Gyr. This is more than sufficient for the purposes of Section 4, which deals with the near-term distributions of orbital timescales and properties, and not the long-term details of individual orbits.

The quantitative results for M33’s pericenters further illustrate the adequacy of the semi-analytic calculations for our purposes. For the first pericenter with M31, the semi-analytic calculations for the canonical model yield a pericenter distance of 80.3 kpc at $t = 0.93$ Gyr, whereas the actual value from the N-body simulations is 79.6 kpc at $t = 0.92$ Gyr. For the first pericenter with the MW, the semi-analytic calculations for the canonical model yield a pericenter distance of 74.4 kpc at $t = 3.86$ Gyr, whereas the actual value from the N-body simulations is 97.3 kpc at $t = 3.83$ Gyr. While the implied error in the M33–MW pericenter distance is 23.1 kpc, this is much smaller than the range of pericenter distances that is obtained by varying the initial conditions of the orbit calculations.

Figure 12(b) shows that this can yield pericenter distances ranging from zero to hundreds of kpc. Hence, uncertainties in the MW–M31–M33 initial conditions (galaxy masses, positions, and velocities) dominate over uncertainties introduced by our dynamical friction prescription.15

For the calib-1 simulation, we also show for illustration in Figure 12(b) the prediction for a Kepler orbit (dashed curve). In this case, the MW and M31 were modeled as point masses of the same total mass as in the N-body simulation, and without dynamical friction. This corresponds to the assumptions on which the LG timing argument is built (see Paper II). Also, van der Marel & Guhathakurta (2008, their Figure 3) used Kepler orbits to constrain the observationally allowed distribution of MW–M31 pericenter distances. Figure 12(b) shows that with these assumptions, obviously, the orbit does not decay after its first pericenter. Moreover, the Kepler orbit has an earlier pericenter by 0.26 Gyr. This is because the slowing from dynamical friction is ignored, and because the gravitational attraction is overestimated when all the mass is assumed to reside at the COM. So while the semi-analytic predictions obtained in the present paper may not be perfect, they are certainly a lot more sophisticated than other simple approaches that have been explored in the context of LG dynamics.

APPENDIX B

NON-CANONICAL N-BODY MODELS

The initial conditions for the “first-M33,” “retrograde,” and “direct-hit” models are listed in Table 2. The N-body evolution of the models was calculated as described in Section 2.1. Movies of this evolution are distributed electronically as part of this paper (figure13a.mp4, figure14.mp4, and figure16c.mp4, respectively). The same Galactocentric Cartesian (X, Y) projection centered on the MW COM and the same layout are used as in Section 3.5

15 As an aside, the Coulomb logarithm is not the only uncertainty in the amount of dynamical friction. For example, the dynamical friction at large separations depends on the uncertain dark-halo power-law density fall-off at large radii. Moreover, this is not well resolved in the N-body simulations due to the limited number of dark-halo particles at large radii. However, any dynamical friction at large separations is small because of the low densities involved. So here too, uncertainties in the MW–M31–M33 initial conditions have a much bigger influence on the exact orbital evolution.
as in the panels of Figure 5. Candidate suns are shown starting at \(t = 3.0 \) Gyr. The trigalaxy Cartesian \((X', Y')\) projection of the orbits centered on the MW–M31–M33 system COM, as well as the galaxy separations as a function of time, is shown in Figure 11 for the first-M33 and retrograde simulations, and in Figure 16 for the direct-hit simulation.

B.1. The First-M33 Model

The first-M33 model differs from the canonical model of Section 3 in that M33 passes the MW much more closely on its first pericenter, \(r = 21.1 \) kpc versus 97.3 kpc. This causes the subsequent orbit of M33 around the MW–M31 merger remnant to be more radial. For the first-M33 model the apocenter:pericenter ratio is 13:1 at the end of the simulation \((t = 10 \) Gyr\), whereas it is 2:1 for the canonical model (see Figure 11). The close passage at first pericenter in the first-M33 model, and the more radial subsequent orbit, does not lead to a significantly faster merger of M33 with the MW–M31 remnant than in the canonical model. In the first-M33 model, the apocenter distance of the M33 COM at the end of the simulation is still 63.8 kpc. This is slightly, but not significantly, smaller than the 76.8 kpc for the canonical model.

Figure 13 shows the distribution of luminous particles at the end of the first-M33 simulation. Panel (a) shows the distribution of all luminous particles, color coded similarly as in Figure 5(f). Panel (b) shows only the luminous particles from M33, color coded by local surface density. The latter can be compared to Figure 6(c) for the canonical model. In both figures, M33 still largely maintains its own identity in a bound core. However, in the first-M33 model, M33 has shed more particles into tidal streams and shells that now populate the halo of the MW–M31 merger remnant. A fraction of 64.0% of the luminous particles are located further than 17.6 kpc from the M33 COM, compared to 23.5% for the canonical model. So while the orbit of the most tightly bound M33 particles is not decaying faster in the first-M33 model compared to the canonical model, M33 is in fact dissolving faster. This could be due to the more radial orbit, but the fact that the galaxy masses in the first-M33 model are higher than in the canonical model (see Table 2) may play a role too.

As in the canonical model, no candidate suns became bound to M33 during the first-M33 simulation. However, 100% of the candidate suns came within 10 kpc from M33 at some time during the 10 Gyr of the simulation. This is five times higher than in the canonical model. However, this is a mere consequence of the radial plunging orbit of M33 through the MW–M31 merger remnant. It therefore does not indicate anything of particular interest. For the canonical model, it was more interesting to find candidate suns within 10 kpc from M33, since M33 itself never came within 23 kpc from the center of the MW–M31 merger remnant.

B.2. The Retrograde Model

M33 stays far from the MW in the retrograde model. Therefore, M33 does not significantly affect the evolution of the MW–M31 system. However, this evolution is different than in the canonical model, because the orbit is now such that both the MW and M31 undergo a retrograde encounter \((\beta_{MW} = 158.5^\circ\) and \(\beta_{M31} = 127.6^\circ\)). For M31, the encounter is still relatively close to orthogonal, as in the canonical model. However, for the MW, the encounter is now close to maximally retrograde, instead of maximally prograde (see Figure 9). This impacts the structural evolution of the MW, and in particular, leads to shorter tidal tails.

Figure 14 shows a snapshot of the simulation at \(t = 4.45 \) Gyr, centered on the MW COM, and projected onto the
Galactocentric (X, Y) plane (i.e., the MW disk plane). This is 0.5 Gyr after the first MW–M31 pericenter and is close to their first apocenter. This figure can be directly compared to Figure 5(c) for the canonical model. Any MW tidal tails are less pronounced than in the canonical model. This is likely due to the retrograde nature of the encounter (Dubinski et al. 1996), but the fact that the galaxy masses in the retrograde model are higher than in the canonical model (see Table 2) may play a role too.

The small MW tidal tails in the retrograde model affect the distribution of MW particles in the final MW–M31 merger remnant, in the sense that fewer particles migrate out to very large radii. Figure 15 shows the radial distribution of candidate suns with respect to the center of the MW–M31 remnant, at the end of the N-body simulation (t = 10 Gyr). This can be compared to Figure 8 for the canonical model. At the end of the simulation, 18.4% of the candidate suns reside at r < R⊙ and 81.6% at r > R⊙. A fraction of 3.3% reside at r > 50 kpc and a fraction 0.1% at r > 100 kpc. The fraction of candidate suns that moves as far out as 50–100 kpc from the MW–M31 merger remnant is three times less than in the canonical model.

As in the canonical model, no candidate suns became bound to M33 during the retrograde simulation. Moreover, no candidate suns came within 10 kpc from M33 at some time during the 10 Gyr of the simulation. This is not surprising, given that M33 does not get within 300 kpc from the MW during the retrograde simulation (see Figure 11). However, it is interesting in that it indicates the large range of possible outcomes that is consistent with the M31 and M33 proper-motion data. By contrast, in the first-M33 model, all candidate suns came within 10 kpc of M33 at some time during the 10 Gyr of the simulation. Figure 10 shows that the canonical model falls roughly midway in all relevant MW–M31–M33 orbital parameters. Its predictions with respect to the fate of the Sun are therefore likely to be close to what one would get upon averaging over all observationally allowed orbits. It would be computationally prohibitive to calculate such an average, since it would require a very large suite of detailed N-body simulations. Nonetheless, it seems reasonable to treat the predictions from the canonical model with respect to the fate of the Sun as typical for the overall probabilities one might expect.

B.3. The Direct-Hit Model

The initial conditions for the direct-hit N-body model were chosen identical to those for the canonical model, with only one difference: the initial velocity of the M31 COM was adjusted, within the observational error bars, to produce a more direct hit of M31 on the MW. The adopted initial velocity (see Table 2) corresponds to $V_{\text{tan}} = 12.2 \text{ km s}^{-1}$. This yields an MW–M31 pericenter separation of only 3.2 kpc at $t = 3.86$ Gyr, which is 10 times closer than in the canonical model. Comparison of Figures 16(a) and (b) to the second row of Figure 11 shows that the orbital evolution is otherwise very similar to that for the canonical model, although M33 settles onto a somewhat wider orbit around the MW in the direct-hit model. Figure 16(c) shows a snapshot of the simulation at $t = 4.50$ Gyr. This is close to the first apocenter, after the galaxies have already passed through each other. This can be compared to Figure 5(c) for the canonical model, which has similar layout. A full movie of the direct-hit simulation is distributed electronically as figure16c.mp4.

REFERENCES

Barnes, J. E. 1998, in Saas-Fee Advanced Course 26, Galaxies: Interactions and Induced Star Formation, ed. R. C. Kennicutt, F. Schweizer, Jr., J. E. Barnes, D. Friedli, L. Martinet, & D. Pfenniger (Berlin: Springer), 275
Besla, G., Kallivayalil, N., Hernquist, L., et al. 2007, ApJ, 668, 949
Binney, J., Gerhard, O., & Spergel, D. 1997, MNRAS, 288, 365
Binney, J., & Tremaine, S. 1987, Galactic Dynamics (Princeton, NJ: Princeton Univ. Press)
Boylan-Kolchin, M., Ma, C.-P., & Quataert, E. 2008, MNRAS, 383, 93
Braun, R., & Thilker, D. 2004, A&A, 417, 421
Brunthaler, A., Reid, M. J., Falcke, H., Greenhill, L. J., & Henkel, C. 2005, Science, 307, 1440
Chemin, L., Carignan, C., & Foster, T. 2009, ApJ, 705, 1395
Choi, J.-H., Weinberg, M. D., & Katz, N. 2007, MNRAS, 381, 987
Corbelli, E. 2003, MNRAS, 342, 199
Corbelli, E., Lorenzoni, S., Walterbos, R., Braun, R., & Thilker, D. 2010, A&A, 511, 89
Corbelli, E., & Salucci, P. 2000, MNRAS, 311, 441
Corbelli, E., & Schneider, S. E. 1997, ApJ, 479, 244
Corbelli, E., & Walterbos, R. A. M. 2007, ApJ, 669, 315
Courteau, S. W., Lawrence, M., McDonald, M., et al. 2011, ApJ, 739, 20
Cox, T. J., & Loeb, A. 2008, MNRAS, 386, 461 (CL08)
Dubinski, J., Mihos, J. C., & Hernquist, L. 1996, ApJ, 462, 576 (D96)
Gott, J. R., & Thuan, T. X. 1978, ApJ, 223, 426
Grebel, E. K., Gallagher, J. S., III, & Harbeck, D. 2003, AJ, 125, 1926
Gultekin, K., Richstone, D. O., Gebhardt, K., et al. 2009, ApJ, 698, 198
Guo, Qi, White, S. D. M., Li, C., & Boylan-Kolchin, M. 2010, MNRAS, 404, 1111
Hashimoto, Y., Funato, Y., & Makino, J. 2003, ApJ, 582, 196
Hernquist, L. 1990, ApJ, 356, 359
Innanen, K. A., & Valtonen, M. J. 1977, ApJ, 214, 692

16 The smallest MW–M31 pericenter is not obtained for $V_{\text{tan}} = 0 \text{ km s}^{-1}$,
because of the perturbing influence of M33 on M31’s orbit.
