BOK and NOXA Are Essential Mediators of p53-dependent Apoptosis*

Alexander G. Yakovlev*, Simone Di Giovanni, Geping Wang, Wenfan Liu, Bogdan Stoica, and Alan I. Faden

From the Department of Neuroscience, Georgetown University, Washington, D. C. 20007

Cellular stress leads to DNA damage and activation of the intrinsic apoptotic pathway in which translocation of mitochondrial cytochrome c to the cytosol plays a critical role. Previous studies have suggested alternative mechanisms responsible for this process. We examined initiation mechanisms of the intrinsic apoptotic pathway using human neuroblastoma and breast cancer cells. Results indicated that translocation of cytochrome c does not require prior activation of caspases but rather depends on activation of specific BCL-2 family members, depending upon the type of death signal. Thus, DNA damage-induced apoptosis requires new protein synthesis, accumulation of p53 tumor suppressor protein, and p53-dependent induction of BOK and NOXA genes, while a role for BAX in this pathway is not essential. In contrast, apoptosis induced by staurosporine does not require protein synthesis but is characterized by translocation of BAX. Based on these findings, we propose a model of the intrinsic apoptotic cascade induced by DNA damage where proapoptotic BOK substitutes for a function of BAX.

Apoptosis plays an important role in normal development as well as in diverse human disorders including cancer, autoimmunity, and neurodegeneration. It has often been characterized as an active process that depends on activation of “death” genes and new protein synthesis (1, 2); however, other reports support the idea of constitutively expressed apoptotic machinery (3). The difference in requirements of gene activation and protein synthesis for cell death has been clarified in part with the discovery of alternative apoptotic pathways (4–6). It has become clear that the extrinsic pathway regulated by extracellular death factors does not typically require gene activation, whereas the intrinsic or mitochondrial pathway may depend on it (7).

The intrinsic pathway of apoptosis is initiated by the release of mitochondrial cytochrome c (Cyto-c)† to the cytoplasm (5). In the presence of ATP or dATP, Cyto-c binds to APAF-1 leading to activation of the initiator caspase-9, which in turn activates executioner caspases (5). Previous studies have suggested that Cyto-c release can be induced by specific caspases (8, 9). Of particular interest are recent studies that suggest a role for caspase-2 (9, 10). However, other studies demonstrate that initiation of Cyto-c release occurs prior to caspase activation (11) where BCL-2 family proteins play a major role.

The BCL-2 family includes antiapoptotic proteins BCL-2, BCL-xL, BCL-w, A1, and MCL-1; proapoptotic BAX, BAK, and BOK; and BH3 only members (12). Initiation of Cyto-c release depends on oligomerization of multidomain BAK and BAX on mitochondrial membranes (13). Members of the prosurvival BCL-2 group inhibit cell death induced by a variety of cytotoxic stimuli. It appears that different members of this group can specifically protect different cell types (12). A role for individual BH3-only proteins in controlling apoptosis also appears to be cell type-specific (12). These proteins are believed to bind to and neutralize BCL-2-like family members (14). Induction of BH3-only genes can trigger activation of proapoptotic BAK and BAX (15).

An essential role in apoptosis induced by BH3-only proteins has been attributed to p53 tumor suppressor protein (7). p53 is activated in response to DNA damage. Recent reports demonstrate that DNA damage leads to rapid accumulation of this transcription factor, which can regulate transcription of proapoptotic BAK, BAX, NOXA, and PUMA genes (16–19). The extent of p53-dependent induction of these genes varies significantly in different cell types, and a role for individual proapoptotic members of BCL-2 family in DNA damage-induced p53-dependent apoptosis remains to be clarified. In this study, we examined a role for caspases and new protein synthesis in induction of the intrinsic pathway of apoptosis and identified an essential role for BOK and NOXA proteins in p53-dependent cell death induced by DNA damage.

EXPERIMENTAL PROCEDURES

Cell Culture—SH-SY5Y and MCF7 cells were obtained from the Cancer Cell Line Repository at Georgetown University Lombardi Cancer Center (Washington, D.C.). Cells were grown in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum, 100 units/ml penicillin, and 100 mg/ml streptomycin (Invitrogen) in a humidified atmosphere of 5% CO2 in air at 37 °C. The cultures were maintained in a logarithmic phase by passage every 2–3 days. Transfection experiments were performed using Invitrogen’s TransIT-100 reagent (Panvera). To obtain stably transfected cells, selection was performed during 2–3 weeks in the presence of 1 mg/ml G418 (Invitrogen). In control experiments, cells were transfected with an empty vector. To obtain stably transfected cells, selection was performed during 2–3 weeks in the presence of 1 mg/ml G418 (Invitrogen). In control experiments, cells were transfected with an empty vector.

Assessment of Cell Viability—Cell viability was measured by retention and deesterification of calcein AM (20). In brief, culture media in 96-well plates were replaced with 5 μM calcein AM (Molecular Probes,
Caspase Activity Assay—Pellets of control or treated cells were homogenized in a Dounce homogenizer in 20 mM Hepes, pH 7.5, 10 mM KCl, 1.5 mM MgCl2, 1 mM EDTA, 1 mM EGTA, 1 mM diethiothreitol, 1 mM phenylmethylsulfonyl fluoride, 10 µg/ml leupeptin, 10 µg/ml aprotinin, 10 µg/ml pepstatin A, and 250 µM sucrose. Homogenates were centrifuged at 13,000 × g for 30 min at 4°C. Supernatants were transferred to new tubes and stored at −80°C until used. Protein concentration was estimated using the Bradford reagent (Bio-Rad) according to recommendations by the manufacturer. Twenty-microgram aliquots of the cytosolic extracts were incubated in the absence or presence of 1 mM dATP and 10 µg/ml Cyto-c at 37°C for 1 h in a final volume of 20 µl of caspase activation buffer (10 mM Hepes, pH 7.4, 5 mM EDTA, 2 mM MgCl2, 5 mM diethiothreitol, 1 mM ATP, 1 mM phenylmethylsulfonyl fluoride, 10 µg/ml leupeptin, 10 µg/ml aprotinin, 10 µg/ml pepstatin A, 10 mM phosphocreatinine, 150 µg/ml creatine kinase). At the end of the incubation, aliquots of reaction mixtures (20 µg of protein in 100 µl of caspase activity assay buffer consisting of 50 mM Hepes, pH 7.4, 100 mM NaCl, 10 mM dithiothreitol, 1 mM EDTA, and 1% digitonin) were mixed with equal volumes of 40 µl fluorescent tetrapeptide substrate (Ac-DEVD-AMC, Bachem) in the same buffer solution. Caspase activity was measured using a CytoFluor 4000 fluorometer (Applied Biosystems) as described below.

Caspase Activity Assay—Aliquots of cytosolic extracts (20 µg of protein in 100 µl of caspase assay buffer) were mixed with equal volumes of 40 µl Ac-DEVD-AMC in the same buffer. Free aminomethylcoumarin (AMC bond, was monitored continuously in each sample over 30 min in 96-well microtiter plates using a CytoFluor 4000 fluorometer at 360 nm excitation and 460 emission wavelengths. The emission from each well was monitored continuously in each sample over 30 min in 96-well microtiter plates using a CytoFluor 4000 fluorometer (PerSeptive Biosystems) to analyze a total protein content, cells were subjected to TAFE in 1% agarose in 1× TAFE buffer kept at 42°C. Plugs were then incubated for at least 3 h at room temperature. The coverslips were washed three times for 3 min each time with PBS followed by incubation by incubating with 4% paraformaldehyde in phosphate-buffered saline (PBS, pH 7.5) for 10 min at room temperature. The coverslips were washed three times for 3 min each time with PBS followed by incubation by incubating with 4% paraformaldehyde in phosphate-buffered saline (PBS, pH 7.5) for 10 min at room temperature. The coverslips were washed three times for 3 min each time with PBS followed by incubation by incubating with 4% paraformaldehyde in phosphate-buffered saline (PBS, pH 7.5) for 10 min at room temperature. The coverslips were washed three times for 3 min each time with PBS followed by incubation by incubating with 4% paraformaldehyde in phosphate-buffered saline (PBS, pH 7.5) for 10 min at room temperature. The coverslips were washed three times for 3 min each time with PBS followed by incubation by incubating with 4% paraformaldehyde in phosphate-buffered saline (PBS, pH 7.5) for 10 min at room temperature. The coverslips were washed three times for 3 min each time with PBS followed by incubation by incubating with 4% paraformaldehyde in phosphate-buffered saline (PBS, pH 7.5) for 10 min at room temperature. The coverslips were washed three times for 3 min each time with PBS followed by incubation by incubating with 4% paraformaldehyde in phosphate-buffered saline (PBS, pH 7.5) for 10 min at room temperature.
Induction of Cyto-c release does not require activity of caspase-2, -3, -8, and -9. A, pooled stably mock-transfected SH-SY5Y cells (pcDNA3.1) and stable clones expressing caspase-8 DN (C-8DN) or caspase-9 DN (C-9DN) were treated with 50 μM etoposide (ETOP) or 0.5 μM staurosporine (STS) for 6 h. Untreated controls (Culture) served as negative controls. Caspase-3-like (DEVDase) activity in cytosolic extracts from treated or control cells was assessed fluorometrically. Protease activity is expressed in arbitrary fluorescence units (AFU). B, the cultures were treated with etoposide for 24 h, and cell viability was analyzed by measurement of calcine AM fluorescence. Data are expressed as a percentage of the value for control cultures not exposed to etoposide ± S.D. (n = 4). *, p < 0.01 compared with viability of mock-transfected cells by analysis of variance and Dunnett’s test. C, and D, samples of cytosolic protein fractions from SH-SY5Y (SH) or MCF7 cells treated for 6 h with etoposide or staurosporine were separated by SDS-PAGE followed by staining with anti-Cyto-c, anti-caspase-2, and anti-β-actin antibodies. E, MCF7 cells stably transfected with pcDNA3 or the same vector encoding human caspase-3 (C-3) were treated as described above followed by immunoblotting of cytosolic protein fractions using anti-Cyto-c and anti-β-actin antibodies. F, MCF7 cells were treated with 30 ng/ml tumor necrosis factor α and 10 μg/ml CHX followed by immunoblotting using anti-active caspase-3 antibodies. Casp, caspase.

Fig. 1. Induction of Apoptotic Machinery

28369

Induction of Apoptosis by Etoposide and Staurosporine—Treatment of SH-SY5Y human neuroblastoma cells with etoposide or staurosporine caused a rapid increase in caspase-3-like activity and cell death (Fig. 1, A and B). To evaluate specific pathways of apoptosis induced by these drugs, we used SH-SY5Y cells stably transfected with the dominant negative (DN) forms of human procaspase-8 or procaspase-9. Cells transfected with the empty vector (pcDNA3.1) served as a transfection control. Previous studies have shown that expression of these DN procaspases specifically inhibits activation of their endogenous counterparts (23). Expression of the recombinant caspases in pooled clones was confirmed using the antibodies that recognized a FLAG epitope fused at the C termini of the DN mutants (data not shown). In accord with previous reports (24, 25), we found that overexpression of procaspase-9 DN inhibited DEVDase activation and cell death after treatment with etoposide or staurosporine. Overexpression of procaspase-8 DN mutant did not affect caspase activation or cell death induced by these drugs (Fig. 1, A and B).

Inhibition of caspase-8 or -9 by their DN forms did not inhibit the release of Cyto-c to the cytosol as shown by results of immunoblotting analysis (Fig. 1C). Western immunoblotting of protein extracts from etoposide-treated SH-SY5Y cells demonstrated specific activation of caspase-2 (Fig. 1D). In contrast, cleavage of procaspase-2 was almost completely inhibited in
SH-SY5Y cells overexpressing procaspase-9 DN and was not detected in MCF7 cells that do not express procaspase-3 (26) (Fig. 1D). Induction of apoptosis by staurosporine in this MCF7 cell line and MCF7 cells stably transfected with human procaspase-3 resulted in cytosolic accumulation of Cyto-c with no significant difference between the cell lines (Fig. 1E). In contrast, treatment with etoposide failed to induce the release of Cyto-c in nontransfected or transfected MCF7 cells (Fig. 1E). An ability of recombinant procaspase-3 to undergo activation in MCF7 cells was demonstrated after treatment with 30 ng/ml tumor necrosis factor α and 10 µg/ml CHX (Fig. 1F).

Requirement of Protein Synthesis for Etoposide-induced Apoptosis—A role for new protein synthesis in initiation of apoptosis was addressed by treating SH-SY5Y cells with staurosporine or etoposide in the absence or presence of 10 µg/ml CHX. The extent of cell death was measured by direct counting of cells with apoptotic nuclear morphology 24 h after treatment (Fig. 2A). Caspase activity was assessed using the fluorogenic substrate assay (Fig. 2B). Specific cleavage of procaspase-3 and procaspase-9 was examined by Western blot analysis (Fig. 2C). In the absence of CHX, treatment with each of the drugs resulted in activation of caspase-9 and -3 followed by manifestation of apoptotic morphology in ~95% of cells. Inhibition of protein synthesis by CHX did not affect the extent of apoptosis induced by staurosporine but markedly inhibited activation of caspase-9 and -3 as well as chromatin condensation in cells treated with etoposide (Fig. 2C).

Progression of caspase-9-dependent apoptosis is mediated by the release of Cyto-c from mitochondria to cell cytosol. Therefore, we examined whether pretreatment with CHX inhibited this process, and levels of cytosolic Cyto-c were analyzed in SH-SY5Y cells treated with etoposide or staurosporine in the absence or presence of CHX. Cyto-c content in cell cytosol was examined by immunoblotting. Results showed that both drugs induced the release of Cyto-c within 5 h. CHX blocked this effect of etoposide but did not inhibit Cyto-c release induced by staurosporine (Fig. 2C).

Inhibition of protein synthesis could potentially weaken proapoptotic effects of etoposide by decreasing expression levels of topoisoerase 2, thus leading to inhibition of DNA damage. Alternatively it could decrease apoptotic potential by reducing expression levels of essential proapoptotic proteins. To test these possibilities, we examined effects of CHX on the extent of DNA damage and expression levels of cytochrome c, APAF-1, procaspase-9, and procaspase-3. DNA damage was assessed using transverse alternating field electrophoresis. This method detected an appearance of 1000-kb DNA fragments as early as 1 h in etoposide-treated but not in control cells. Inhibition of protein synthesis did not affect the extent of DNA degradation at least during the first 6 h of treatment (Fig. 3A). Results of Western analysis showed that protein levels of none of the examined components of the apoptosome changed significantly in the presence of CHX (Fig. 3B). Furthermore cytosolic extracts isolated from control or CHX-treated SH-SY5Y cells were incubated in the presence of Cyto-c and dATP to evaluate an overall apoptosome potential. In these experiments caspase-3-like activity was measured using the fluorogenic substrate assay. Results demonstrated that inhibition of protein synthesis during 6 h had no effect on apoptosome-mediated caspase-3 activation (Fig. 3C).

Requirement of p53 Induction for Etoposide-induced Apoptosis—DNA damage leads to stabilization and activation of p53 tumor suppressor protein and results in Cyto-c release (7); however, the actual connection between p53 activation and initiation of apoptosis remains to be clarified.

Western blot analysis revealed that treatment of SH-SY5Y cells with etoposide resulted in a marked increase in p53 protein level. Treatment with staurosporine had a much weaker effect. Accumulation of p53 was blocked in the presence of CHX (Fig. 4A).

To assess a potential link between induction of p53, Cyto-c release, and consequent caspase activation, we inhibited endogenous p53 by overexpression of its DN mutant (R175H) (27, 28) in SH-SY5Y cells. R175H-mediated inhibition of p53 blocked the release of Cyto-c induced by etoposide; however, it did not inhibit this process after treatment with staurosporine (Fig. 4A). Overexpression of this p53 DN mutant also inhibited etoposide-induced activation of caspase-3 but did not affect activation of this caspase in cells treated with staurosporine (Fig. 4B). Furthermore inactivation of p53 significantly in-
A p53-dependent induction of apoptosis caused by etoposide was further confirmed using semiquantitative RT-PCR and real-time RT-PCR approaches. Because etoposide-induced apoptosis in SH-SYSY cells depends on p53 function and this process is altered in MCF7 cells, gene expression analysis was performed in etoposide-treated SH-SYSY cells, SH-SYSY cells stably transfected with the p53 DN mutant, and MCF7 cells. This experimental design was expected to allow identification of candidate genes that potentially mediate p53-dependent apoptosis in SH-SYSY cells.

Results of semiquantitative RT-PCR revealed marked p53-dependent induction of BOK and NOXA mRNA expression in SH-SYSY but not in MCF7 cells (Fig. 5A). BAX mRNA levels appeared to be only slightly increased in SH-SYSY and MCF7 cell lines but not in SH-SYSY expressing the p53 DN mutant. Expression of BAK, BID, and BIM mRNA was not affected by treatment or inhibition of p53 function. BIK and Harakiri (HRK) mRNA were not detected under our experimental conditions. Expression of the PUMA gene was low in all tested cell lines and was somewhat induced by etoposide only in SH-SYSY cells expressing active p53.

Induction of BAX, BOK, NOXA, and PUMA mRNA was further quantified by real-time PCR analysis (Fig. 5B). A 6-fold increase in BOK mRNA content was observed in SH-SYSY cells after 2.5 h of etoposide treatment and reached an ~10-fold induction level after 5 h. NOXA mRNA levels began to increase after 2.5 h of treatment and reached ~4.5-fold of the control level after 5 h. Increases in BAX and PUMA mRNA were significantly lower (~0.6 and ~1.5-fold after 5 h, respectively). BOK, NOXA, and PUMA genes were not induced in SH-SYSY cells transfected with the p53 DN mutant and in MCF7 cells. In contrast, BAX expression was induced to a similar low extent (~0.7-fold) in both wild type SH-SYSY and MCF7 but not in R175H-transfected SH-SYSY cultures.

Western analysis revealed increased protein expression of BOK and NOXA in SH-SYSY after treatment with etoposide. Timing of induction of these proteins preceded Cyto-c release (Fig. 6A). Expression of PUMA protein was not detected using two different antibodies (data not shown). Total cellular contents of BAX, BAK, and BCL-xL proteins were not changed after the treatment (Fig. 6, A and B).

Expression of BOK and NOXA but Not BAX Is Essential for Apoptosis Induced by DNA Damage—We examined intracellular localization of BAX, BOK, and NOXA proteins in control and etoposide-treated SH-SYSY cells using confocal microscopy and found that BAX was evenly distributed in the cytosol and cell nuclei. The expression level of this protein and its localization did not change significantly in cells treated with etoposide for 5 h (Fig. 7A). In contrast, the confocal imaging clearly demonstrated increased expression of BOK and NOXA proteins as well as their association with mitochondria in cells treated with etoposide. These data confirm previous reports on mitochondrial localization of NOXA and the BOK ortholog (29, 30) and suggest that BAX does not translocate to mitochondria in this cell line.

Hence cellular localization of BAX was further examined using Western immunoblotting. Treatment of SH-SYSY and MCF7 cells with staurosporine resulted in the depletion of cytosolic BAX indicative of its translocation to mitochondria. This was accompanied by the release of Cyto-c to the cytosol. However, treatment with etoposide, which caused a significant increase in p53 protein content and Cyto-c release in SH-SYSY, did not change the amount of BAX in the cytosol (Fig. 7B).

Results of expression profiling of proapoptotic BCL-2 family members suggested a role for BOK and NOXA gene induction in the initiation of p53-dependent apoptosis caused by etoposide-induced DNA damage. We tested the ability of BOK, NOXA, and BAX to induce Cyto-c release by transfecting the corresponding genes into MCF7 cells, which normally do not demonstrate induction of these genes and Cyto-c release after treatment with etoposide. Western blot analysis of cytosolic extracts isolated 24 h after transfection showed that expression of each gene induced the release of Cyto-c (Fig. 7C).

A contribution of BAX, BOK, and NOXA in etoposide-induced apoptosis was further assessed using RNA interference. To estimate the potency of gene silencing, MCF7 cells were transfected with recombinant plasmids encoding BAX, BOK, or NOXA in the absence or presence of corresponding pSiLencer vectors followed by analysis of protein expression. Results demonstrated that the siRNAs were able to substantially knock down expression of these target genes (Fig. 7D). Plasmids encoding BAX, BOK, or NOXA siRNA were then transiently transfected into SH-SYSY cells in combination with the green fluorescent protein expression vector. Forty-eight hours after transfection cells were treated with etoposide, and cell viability was measured 24 h later by direct counting of green viable cells under a UV microscope. Results showed that siRNA-mediated repression of BOK and...
NOXA but not BAX expression significantly increased viability of the etoposide-treated cells (Fig. 7).

DISCUSSION

Recent studies have presented conflicting conclusion regarding initiation mechanisms for the intrinsic apoptotic pathway. To further address this issue, we used SH-SY5Y cells stably transduced with DN forms of human procaspase-8 or -9 and confirmed that both etoposide and staurosporine caused caspase-9-dependent cell death. However, the mechanisms by which these drugs induce apoptosis differ markedly both with regard to the requirement for new protein synthesis and upstream regulatory pathways. Thus, treatment with CHX blocked etoposide-induced apoptosis in SH-SY5Y cells by preventing the release of Cyto-c and consequent activation of caspase-9 and -3. In contrast, CHX had no effect on apoptosis induced by staurosporine.

The release of Cyto-c from mitochondria is a critical event in activation of caspase-9, and a number of studies have suggested that the release of Cyto-c depends upon activation of caspases, such as caspase-2 or caspase-8 (8–10, 31, 32). Consistent with other reports (7, 11, 33), we found that Cyto-c release is mediated by proapoptotic BCL-2 family members and does not require caspase activity. Thus, using overexpression of procaspase-8 and -9 DN forms, we showed that the release of Cyto-c induced by etoposide and staurosporine did not depend on activation of caspase-8 or -9. A role for caspase-3 activation was examined in MCF7 cells that normally do not express this caspase (26). Treatment of cells with staurosporine resulted in the release of Cyto-c regardless of caspase-3 expression. Surprisingly etoposide failed to induce Cyto-c release or activation of procaspase-9 in MCF7 cells suggesting an alteration in upstream mechanisms. Furthermore etoposide-induced activation of caspase-2 in SH-SY5Y cells was blocked by overexpression of a procaspase-9 DN mutant, and it was undetectable in etoposide-treated MCF7 cells. These data support a previous study showing that activation of procaspase-2 occurs downstream from activation of procaspase-9 and -3 (34) and, therefore, downstream from the release of Cyto-c.

An inhibitory effect of CHX on etoposide-induced cell death has been demonstrated previously; however, precise mechanisms were not delineated (25, 35–37). Etoposide inhibits topoisomerase, leading to DNA damage and consequent induction of p53 (25). In turn, p53-dependent caspase activation requires the release of Cyto-c from mitochondria (7, 11). Therefore, we hypothesized that inhibition of DNA damage-induced apoptosis, by blocking new protein synthesis, might occur at the level of p53. Using treatment with CHX and overexpression of the p53 DN mutant, we found that induction of protein synthesis-dependent apoptosis was mediated by p53.

Suggested mechanisms of p53-dependent initiation of the intrinsic apoptotic cascade include transcriptional activation of proapoptotic genes of the BCL-2 family such as BAX, NOXA, and PUMA (7, 11, 17–19). For example, induction of cytosolic mRNA expression of proapoptotic BCL-2 family members. A, cell cultures were treated with etoposide for the indicated times. Total cellular RNA was subjected to RT and PCR with gene-specific primers or glyceraldehyde-3-phosphate dehydrogenase (GAPDH) primers. PCR products were analyzed by agarose gel electrophoresis and staining with ethidium bromide. B, results of real time multiplex RT-PCR of selected mRNA demonstrate minor changes in BAX and PUMA expression but marked induction of BOK and NOXA genes. Data present mean values of three independent experiments. SH, SH-SY5Y.

Fig. 6. BAX, BOK, and NOXA protein expression profiling. A, SH-SY5Y cells were treated with etoposide for the indicated times. Total protein extracts were probed with the antibodies against BAX, BOK, NOXA, and β-actin. The release of Cyto-c was evaluated in cytosolic fractions and shown for comparison with BOK and NOXA expression. B, expression levels of BAX, BCL-xL, and β-actin proteins were analyzed in total protein fractions from control and etoposide-treated SH-SY5Y cells.
BAX protein expression may contribute to its activation and translocation to mitochondria (7). Once translocated, BAX triggers loss of the mitochondrial membrane potential and the release of Cyto-c (38–41). Induction of BH3-only BCL-2 family members, such as NOXA and PUMA, may contribute to the release of BAX from complexes with the antiapoptotic factors BCL-xL or BCL-2. In this study, however, we did not observe significant p53-dependent induction of BAX after etoposide administration or its translocation to mitochondria. In contrast, p53-independent depletion of cytosolic BAX was clearly detected after treatment with staurosporine. Moreover inhibition of BAX expression in SH-SY5Y cells by RNA interference did not affect cell death induced by etoposide. Taken together, these observations suggest that induction of BAX expression and its translocation to mitochondria is dispensable in apoptosis induced in SH-SY5Y cells by etoposide.

Results of mRNA and protein expression analyses of pro-apoptotic BCL-2 family members demonstrated that treatment of SH-SY5Y cells with etoposide resulted in marked p53-dependent induction of BOK and NOXA genes. Induction of BOK and NOXA proteins preceded or coincided with Cyto-c release. Taken together, these observations suggest that induction of BAX expression and its translocation to mitochondria is dispensable in apoptosis induced in SH-SY5Y cells by etoposide.

Based on the presence of various BH domains, the BCL-2 family has been divided into the antiapoptotic BCL-2, the proapoptotic BAX, and the BH3-only subfamilies (46). BOK belongs to a subfamily of BAX-related proteins. Like BAX and BAK, it contains conserved BH domains 1, 2, and 3 and the C-terminal transmembrane sequence (47). However, unlike BAX or BAK, it interacts only with MCL-1, BHRF1, and BFL-1 but not other antiapoptotic or proapoptotic family members (47). In this study, we demonstrated that overexpression of human BOK triggers the release of Cyto-c in SH-SY5Y and MCF7 cells.

NOXA is a BH3-only member of the BCL-2 family. Previous studies have suggested that the proapoptotic function of NOXA is independent of BAX translocation and induction of NOXA expression does not change cellular distribution of BAX (18). Moreover NOXA does not bind BAX, but it selectively interacts...
with antiapoptotic BCL-xL, BCL-2, and MCL-1 (18). Thus, the antiapoptotic MCL-1 protein may represent a “binding link” between BOK and NOXA. MCL-1 can form heterodimers with other members of the BCL-2 family including BAX and BAK (47). BOK, NOXA, and MCL-1 have common localization in mitochondria (18, 29, 48), suggesting possible interaction during induction of p53-dependent apoptosis in SH-SY5Y cells. Thus, induction of BOK and NOXA may cooperate in the release of BAK from a complex with MCL-1, leading to the release of Cyto-c. Alternatively BOK itself may contribute to formation of mitochondrial pores and Cyto-c release, whereas NOXA may potentiate this function of BOK by neutralizing its antiapoptotic counterpart, MCL-1. This hypothesis is supported by recent findings showing specific downregulation of MCL-1 expression in apoptosis induced by UV irradiation (49). Further studies will be required to clarify which mechanism is operative during induction of p53-dependent apoptosis in SH-SY5Y cells.

Acknowledgments—We thank Dr. Vishva M. Dixit for dominant negative procaspase-8 and procaspase-9, Dr. Emad S. Alnemri for procaspase-9, Dr. Bert Vogelstein for wild type and R175H mutant p53, Dr. Aaron Huesch for BOK, and Dr. Richard J. Youle for BAX expression constructs.

REFERENCES

1. Oppenheim, R. W., Prevette, D., Tytell, M., and Homma, S. (1990) Dev. Biol. 138, 104–113
2. Schwartz, L. M., Kosz, L., and Kay, B. K. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 6554–6558
3. Jacobson, M. D., Weil, M., and Raff, M. C. (1997) Cell 95, 2821–2830
4. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S., and Wang, X. (1997) Cell 90, 405–413
5. Schroder, M., and Green, D. R. (2001) Biochem. Soc. Trans. 29, 684–688
6. Bossy-Wetzel, E., and Green, D. R. (1999) J. Biol. Chem. 274, 17484–17490
7. Schroder, M., Bossy-Wetzel, E., Goldstein, J. C., Fitzgerald, P., and Green, D. R. (2000) J. Biol. Chem. 275, 7337–7342
8. Cory, S., and Adams, J. M. (2002) Nat. Rev. Cancer 2, 647–656
9. Wei, M. C., Zong, W. X., Cheng, E. H., Lindsten, T., Panoutsakopoulou, V., Ross, A. J., Roth, K. A., MacGregor, G. R., Thompson, C. B., and Korsmeyer, S. J. (2001) Science 292, 727–730
10. Puthalakath, H., and Strasser, A. (2002) Cell Death Differ. 9, 505–512
11. Huang, D. C., and Strasser, A. (2000) Cell 103, 839–842
12. Pearson, A. S., Spitz, F. R., Swisser, S. G., Kataoka, M., Sarkis, M. G., Meyn, R. E., McDonnell, T. J., Cristino, R. J., and Roth, A. J. (2000) Clin. Cancer Res. 6, 887–890
13. Igata, E., Inoue, T., Ohtani-Fujita, N., Sowa, Y., Tsujimoto, Y., and Sakai, T. (1999) Gene (Amst.) 238, 407–415
14. Oda, E., Ohki, R., Murasawa, H., Nemoto, J., Shibue, T., Yamashita, T., Tokino, T., Taniguchi, T., and Tanaka, N. (2000) Science 288, 1053–1058
15. Yu, J., Zhang, L., Hwang, P. M., Kinzler, K. W., and Vogelstein, B. (2001) Mol. Cell 7, 673–682
16. Eladadah, B. A., Yakovlev, A. G., and Faden, A. I. (1997) J. Neurosci. 17, 6105–6113
17. Yakovlev, A. G., Knoblach, S. M., Fan, L., Fox, G. B., Goodnight, R., and Faden, A. I. (1997) J. Neurosci. 17, 7415–7424
18. Lowo, A., Avila, H. A., Bloom, P. H., Gleeson, M., and Kusser, W. A. (2003) Anal. Biochem. 315, 95–105
19. Pan, G., O'Rourke, K., and Dixit, V. M. (1998) J. Biol. Chem. 273, 5841–5845
20. Li, K., Li, Y., Shelton, J. M., Richardson, J. A., Spencer, E., Chen, Z. J., Wang, X., and Williams, R. S. (2000) Cell 101, 389–399
21. Karpinich, N. O., Tafani, M., Rothman, R. J., Russo, M. A., and Farber, J. L. (2002) J. Biol. Chem. 277, 16547–16552
22. Janicke, R. U., Sprengart, M. L., Wati, M. R., and Porter, A. G. (1998) J. Biol. Chem. 273, 9357–9360
23. Baker, S. J., Markowitz, E., Fearon, E. R., Willson, J. K., and Vogelstein, B. (1999) Science 249, 919–925
24. Kern, S. E., Pietenpol, J. A., Thagalingam, S., Seymour, A., Kinzler, K. W., and Vogelstein, B. (1992) Science 256, 827–830
25. Zang, H., Huang, Q., Ke, N., Matsuyama, S., Hammock, B., Godzik, A., and Reed, J. C. (2000) J. Biol. Chem. 275, 27303–27306
26. See, Y. W., Shin, J. N., Ko, K. H., Cha, J. H., Lee, Y. B., Ryu, C. W., Kim, Y. M., Seol, D. W., Kim, D. W., Yun, X. M., and Kim, T. H. (2003) J. Biol. Chem. 278, 48292–48299
27. Gao, C. F., Ren, S., Zhang, L., Nakajima, T., Ichinose, S., Har, T., Koike, K., and Tsujioka, N. (2001) Exp. Cell Res. 265, 145–151
28. Ross, A. J., Roth, K. A., MacGregor, G. R., Thompson, C. B., and Korsmeyer, S. J. (1999) Cell 101, 187–197
29. Nakajima, M., Kashiwagi, O., Obita, J., Furukawa, S., Hayashi, K., Kawashima, T., and Hayash, Y. (1994) Neurosci. Lett. 176, 161–164
30. Chen, Z., and Vogelstein, B. (1992) Science 257, 105–108
31. Eker, E., Antsonsson, B., Osun-Sand, A., Montessuit, S., Richter, C., Sadoul, R., Mazzei, G., Nichols, A., and Martinou, J. C. (1998) J. Cell Biol. 143, 217–224
32. Piaule, M., Chaudhuri, B., Clow, A., Camougoudr, N., and Manon, S. (1999) Eur. J. Biochem. 260, 684–691
33. Gross, A., Jockel, J., Wei, M. C., and Korsmeyer, S. J. (1998) EMBO J. 17, 3878–3885
34. Cai, Z., Capoulade, C., Moyret-Lalle, C., Amor-Gueret, M., Feunteun, J., Larsen, A. K., Pallaret, B. B., and Chouaib, S. (1997) Oncogene 15, 2817–2826
35. Villunger, A., Michalak, E. M., Coutlas, L., Mullauer, F., Bock, G., Ausserlechner, M. J., Adams, J. M., and Strasser, A. (2003) Science 302, 1636–1638
36. Ma, Y., Cristino, R., Moorer, R. L., Jr., and Cres, W. D. (2002) Arch. Biochem. Biophys. 399, 212–224
37. Kovalik, T. P., DeGregori, J., Leone, G., Jakob, L., and Nevins, J. R. (1998) Cell Growth Diff. 9, 113–118
38. Adams, J. M., and Cory, S. (1998) Science 281, 1322–1326
39. Hsu, S. Y., Kaipia, A., McGee, E., Lomeli, M., and Hsueh, A. J. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 12401–12406
40. Yang, T., Koopas, K. M., and Craig, R. W. (1995) J. Cell Biol. 128, 1173–1184
41. Nijahwan, D., Fang, M., Traer, E., Zhong, Q., Gao, W. D., Du, F., and Wang, X. (2003) Cancer Res. 63, 1475–1484
42. Chomczynski, P., and Sacchi, N. (1987) Anal. Biochem. 162, 156–159