The dual properties of two-color QCD with baryon, chiral and isospin densities

T G Khunjua 1, K G Klimenko 2 and R N Zhokhov 3

1 The University of Georgia, GE-0171 Tbilisi, Georgia
2 Logunov Institute for High Energy Physics, NRC “Kurchatov Institute”, 142281, Protvino, Moscow Region, Russia;
3 Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation (IZMIRAN), 108840 Troitsk, Moscow, Russia

E-mail: *zhokhovr@gmail.com

Abstract. The phase structure of dense quark matter in the two color case has been investigated with nonzero baryon μ_B, isospin μ_I and chiral isospin μ_{I5} chemical potentials. It has been demonstrated that due to the duality properties the phase diagram is extremely symmetric and the whole phase diagram in the case of two colors can be obtained just by dualities from the phase structure of three color case. This shows that the dualities are rather useful tool.

1. Introduction

It is considered that QCD is the theory of strong interaction and it should be used for the studies of strongly interacting matter. However, due to the value of the coupling constant the perturbative methods cannot be applied in the conditions of compact stars or heavy ion collisions. Nonperturbative method such as lattice simulations of QCD, which is widely used for hot QCD matter, is not applicable in the case of non-zero (large) baryon density because of a notorious sign problem. Thus, in this regards there arise the interest to QCD-like models, for example, to Nambu–Jona-Lasinio (NJL)-like models [1, 2].

In addition to the non-zero baryon density, in quark matter there can be other important various quantities, for example, isospin imbalance that is an obvious feature of neutron stars. Quite recently, chiral imbalance (difference between densities of left and right-handed quarks) was understood to be also interesting possible property of quark matter [3, 4, 5, 6], connected with the so-called chiral magnetic effect [7]. As a rule, it is accounted for by chiral chemical potential μ_5. There is another possibility of different chiral chemical potentials for u and d quarks, $\mu_{u5} \neq \mu_{d5}$, and chiral isospin chemical potential $\mu_{I5} = \mu_{u5} - \mu_{d5}$.

Recently, there appeared increasing attention to two-color QCD and QCD-like models [8, 9, 10, 11, 12, 13, 14, 15]. Although a two color and tree color cases are rather different, the investigations of SU(2) QCD can give us valuable insight into the properties of three color QCD at nonzero baryon density. As an additional motivation let us recall that in the QCD with two colors there is no sign problem and ab initio lattice simulations are possible. Also one can stress that QCD phase diagram in the case of two colors is rather rich and can be quite interesting in its own right.
2. Two color NJL model

In the chiral limit the two color QCD with two flavors of quarks possesses Pauli-Gursey symmetry, i.e. it is symmetric with respect to $SU(4)$ group [8, 9]. The Lagrangian of effective two-color four-fermion NJL model with baryon μ_B, isospin μ_I and chiral isospin μ_{IS} chemical potentials is

$$L = \bar{q} \left[i \partial - m_0 + M \gamma^0 \right] q + H \left[(\bar{q}q)^2 + (\bar{q}i\gamma^5 \vec{r}q)^2 + (\bar{q}i\gamma^5 \sigma_2 \tau_2 q)^2 \right], \quad (1)$$

where $q \equiv q_\alpha$ is a flavor ($i = u, d$) and color ($\alpha = 1, 2$) doublet and a four-component Dirac spinor as well. $\partial \equiv \gamma^\mu \partial_\mu$ and charge-conjugated spinors are $q^\ast = Cq^T$, $\bar{q}^\ast = q^T C$, where $C = i\gamma^2 \gamma^0$. Chemical potentials are included in the term $M = \frac{\mu_B}{2} + \frac{\mu_I}{2} \tau_3 + \frac{\mu_{IS}}{2} \gamma^5 \tau_3$.

The Lagrangian (1) is invariant with respect to $SU(2)_c$ and $U(1)_B$ groups as well as Pauli-Gursey flavor $SU(4)$ group (as in two-color QCD case).

In order to study the phase structure one starts from an equivalent semi-bosonized Lagrangian \tilde{L} with auxiliary bosonic fields $\sigma(x), \pi, \Delta(x)$ and $\Delta^*(x)$

$$\tilde{L} = \bar{q} \left[i \partial - m_0 + M \gamma^0 - \sigma - i\gamma^5 \vec{r} \pi \right] q - \frac{\sigma^2 + \pi^2 + \Delta^2}{4H} - \frac{\Delta}{2} \left[\bar{q}i\gamma^5 \sigma_2 \tau_2 q \right] - \frac{\Delta^*}{2} \left[\bar{q}i\gamma^5 \sigma_2 \tau_2 q \right], \quad (2)$$

The equations of motion of auxiliary fields are

$$\sigma(x) = -2H(q\bar{q}), \quad \Delta(x) = -2H(\bar{q}i\gamma^5 \sigma_2 \tau_2 q) = -2H \left[\bar{q}q \gamma^T C \gamma^5 \sigma_2 \tau_2 q \right]. \quad (3)$$

Bosonic fields $\pi_3(x), \pi_{\pm}(x) = (\pi_1(x) \mp i\pi_2(x))/\sqrt{2}$ could be identified with the pion fields. If $\langle \sigma(x) \rangle \neq 0$ or $\langle \pi_0(x) \rangle \neq 0$, then one can see that chiral symmetry is broken down and we will call this phase chiral symmetry breaking (CSB) one. If $\langle \pi_{1,2}(x) \rangle \neq 0$, this phase is called charged pion condensation phase (PC) and as the isospin as well as the electromagnetic symmetries are spontaneously broken. If $\langle \Delta(x) \rangle \neq 0$, then the baryon symmetry gets broken down spontaneously and this phase will be called baryon superfluid phase (BSF).

Thermodynamic potential (TDP) can be defined from the effective action $S_{\text{eff}}(\sigma, \pi, \Delta, \Delta^*)$ in the mean-field approximation

$$S_{\text{eff}} |_{\sigma, \pi, \Delta, \Delta^* = \text{const}} = -\Omega(\sigma, \pi, \Delta, \Delta^*) \int d^4x.$$

The ground state expectation values of $\langle \sigma(x) \rangle \equiv \sigma, \langle \pi(x) \rangle \equiv \pi, \langle \Delta(x) \rangle \equiv \Delta, \langle \Delta^*(x) \rangle \equiv \Delta^*$, can be found as solutions of the following equations (the so-called gap equations)

$$\frac{\partial \Omega}{\partial \pi_a} = 0, \quad \frac{\partial \Omega}{\partial \sigma} = 0, \quad \frac{\partial \Omega}{\partial \Delta} = 0, \quad \frac{\partial \Omega}{\partial \Delta^*} = 0. \quad (4)$$

It is assumed that $\sigma, \pi, \Delta, \Delta^*$ do not depend on the space coordinates x.

The expressions for the TDP $\Omega(\sigma, \pi, \Delta, \Delta^*)$ can be obtained analytically. In general the TDP depends on all condensates, M, π, Δ and Δ^*. But if one uses the symmetries of the model this number could be reduced and, without loss of generality, the TDP can be considered as a function of M, π_1 and $|\Delta|$.

3. Duality properties

It can be shown with the use of any analytical calculation program that the expression for the TDP is invariant under the so-called dual transformation D_1,

$$D_1 : \quad \mu \leftrightarrow \nu, \quad \pi_1 \leftrightarrow |\Delta|.$$ \hspace{1cm} (5)

This dual property of the TDP was noticed for the first time in framework of two color NJL model in [9, 13] but for the case of $\nu_5 = 0$. In particular, it was shown that the PC and BSF phases are arranged on the (μ, ν)-phase diagram symmetrically.

Furthermore, it can be shown that the TDP is also invariant with respect to the following dual transformations D_2 and D_3

$$D_2 : \quad \mu \leftrightarrow \nu_5, \quad M \leftrightarrow |\Delta|; \quad D_3 : \quad \nu \leftrightarrow \nu_5, \quad M \leftrightarrow \pi_1.$$ \hspace{1cm} (6)

There are rather cogent arguments for the absence of mixed phases (meaning and one can assume that the global minimum point (GMP) $(M, \pi_1, |\Delta|)$ of the TDP has only one nonzero coordinate) and it is based on dual properties discussed above. Concerning chiral symmetry breaking and charged pion condensation phenomena the phase diagram has the same structure in two color and three color cases in framework of NJL models. These phenomena in the three color case have been investigated in [16, 17, 18] and it has been displayed that there is no mixed phase. Hence, this holds also for two color NJL model. Then, in order to show that there is no such a region, where chiral and diquark condensates are non-zero simultaneously, the duality D_2 should be used. The absence of mixed phase with non-zero pion and diquark condensates can be shown applying either D_2 or the D_3. This leaves the possibility of a phase with all three non-zero condensates, but it seems quite unlikely. Without dualities showing the absence of mixed phases would be rather hard and can be done only numerically.

The possible phases in the system are the following: (i) the chiral symmetry breaking (CSB) phase: GMP has the form $(M \neq 0, \pi_1 = 0, |\Delta| = 0)$. (ii) charged pion condensation (PC) phase: GMP of the form $(M = 0, \pi_1 \neq 0, |\Delta| = 0)$. (iii) baryon superfluid (BSF) phase: GMP is $(M = 0, \pi_1 = 0, |\Delta| \neq 0)$. (iv) symmetrical phase: GMP has the form $(M = 0, \pi_1 = 0, |\Delta| = 0)$.

4. Phase diagrams with one or two chemical potentials

The phase diagram of the two color NJL model with only nonzero chemical potential μ (although with nonzero temperature T) has been investigated in [10]. It was shown that at non-zero μ (though not for too large) there is the BSF phase. If one applies D_1 to this phase diagram
one would get the phase structure with only nonzero ν and at $\nu > 0$ one would observe the charged PC phase. Now if one acts by D_2 upon the phase diagram with nonzero μ (original one) one would observe CSB phase at $\nu_5 > 0$. One can conclude that there is in a way one-to-one correspondence between different phenomena and various chemical potentials. Chiral symmetry breaking phenomenon is triggered by chiral isospin chemical potential ν_5, μ leads to appearance of BSF phase in the system and pion condensation is promoted by isospin density (chemical potential ν).

Now let us discuss the case of two chemical potentials. The (μ, ν)-phase diagram at $\nu_5 = 0$ has been already considered in [9, 13]. It is depicted in figure 1(a) and one can note that it is self-dual, i.e. BSF and PC phases are symmetric with respect to each other. This is due to the duality D_1 of TDP. If one employs the D_2 and act on this diagram, one obtain the (ν_5, ν)-phase diagram at $\mu = 0$ (it is presented in figure 1(b)). In a similar fashion, acting on the diagram of figure 1(a) with D_3, one can get the (μ, ν_5)-phase diagram at $\nu = 0$ (see figure 1(c)). Moreover, one can note CSB and BSF phases are located mirror symmetrically w.r.t the line $\nu_5 = \mu$.

5. Phase structure of the general case: $\mu \neq 0$, $\nu \neq 0$ and $\nu_5 \neq 0$

In this section let us consider the general (μ, ν, ν_5)-phase diagram of the model. One can use the assumption that there is no mixed phase and perform numerical calculations only for projections of the TDP on the axes of condensates (M, π).

However, there is another way that is much simpler, one can use the dual properties of the model. Let us first note that chiral symmetry breaking and pion condensation phenomena in the framework of NJL model are very similar for three and two color cases, what is different is diquark condensation. The (μ, ν, ν_5) phase diagram, where only chiral symmetry breaking and pion condensation phenomena were accounted for, have been investigated in the case of three colors in [16, 17, 18]. Therefore, one knows the behavior of corresponding phases (PC and CSB) in two color case. Then one can use duality transformations D_1, D_2 and D_3 to get the information about BSF phase and hence obtain the whole phase diagram. It is quite remarkable that the whole phase structure of two color NJL model can be obtained from some results of three color case. Dualities constrain the phase portrait and make it so highly symmetric that this becomes possible.

Now let us discuss the phase structure itself. One can start with several (μ, ν) phase diagrams at various values of ν_5 that are not that large (see figure 1 (a), figure 2 (a) and figure 3 (a, b)). One can note that BSF phase is realized in the domain, where $\mu > \nu, \nu_5$, whereas if $\nu > \mu, \nu_5$ the charged PC phase is present. ν_5 is not very large and if for simplicity one puts it $\nu_5 \approx 0$, then qualitatively this behavior can be explained in a similar way as in [13] (where the case $\nu_5 = 0$
was considered). If $\nu > \mu$, u and \bar{d} quarks form Fermi seas and the condensation of Cooper pairs $u\bar{d}$ is possible, and one can see that it is PC phase. Whereas, if $\mu > \nu$, then u and d quarks form Fermi seas and in this case the formation of Cooper pairs $u\bar{d}$ and their condensation can happen and this leads to BSF phase.

Now if the values of ν_5 is rather large (figure 3 (c)) the BSF phase is realized mainly in the domain, where $\mu < \nu \approx \nu_5$, and the charged PC phase in the domain, where $\nu < \mu \approx \nu_5$). This is a different behavior in comparison with the one discussed above for rather small values of ν_5.

This difference can be qualitatively explained by the following arguments. The Fermi surfaces of the left and right-handed u and d quarks have the form

$$\mu_d = \mu + \nu + \nu_5, \quad \mu_d = \mu - \nu - \nu_5.$$

At $\mu < \nu \approx \nu_5$ for the quarks d_R the chemical potential μ_{d_R} is negative, hence the Fermi sea of charge conjugated \bar{d}_R quarks can be formed, so as the Fermi sea of right-handed u_R quarks, which μ_{u_R} is also greater than zero. The formation of particle-hole Cooper pair $\bar{u}_Rd^c_R$, which has quantum numbers of $\Delta^*(x)$, is possible and its condensation leads to appearance of BSF phase.

6. Summary
Let us now sum up the central results of our studies of dense quark matter with isospin and chiral isospin imbalances in the framework of the two-color NJL model.

- It has been shown in framework of NJL model that (μ, ν, ν_5) phase structure of quark matter in the two color case is highly symmetric. Behind this symmetry lies the dual properties (dualities) between CSB, charged PC and BSF phenomena. One of these dualities is similar to the one found in the case of three colors.

In the dualities the phase diagram in the three color case looks as if it is not complete and only one side of highly symmetric two color phase diagram. It has been found that the phase structure of (two color) dense quark matter is quite rich.

- Using the duality properties one can show that there is no mixed phase (phase with several non-zero condensates simultaneously). This conclusion drastically simplifies corresponding numerical calculations.

- The dualities are very powerful tool and can greatly simplify the studies of the phase structure. Employing only duality properties the whole phase diagram of two color NJL model can be obtained from the results of previous studies of NJL model in the three color case.
• The phenomena of chiral symmetry breaking, charged pion condensation and diquark condensation have been shown to be in a way connected with the corresponding chemical potentials, ν_5, μ_π and μ_B, respectively.

• It has been revealed that in dense (nonzero baryon density) quark matter the generation by chiral imbalance ν_5 of the charged PC phase is not impeded in any way by diquark condensation at least in two color case.

7. Acknowledgments
R.N.Z. is grateful for support of Russian Science Foundation under the grant 19-72-00077 and the Foundation for the Advancement of Theoretical Physics and Mathematics BASIS grant.

8. References
[1] Nambu Y and Jona-Lasinio G 1961 Phys. Rev. 122 345
[2] Klevansky S P 1992 Rev. Mod. Phys. 64 649; Ebert D, Reinhardt H and Volkov M K 1994 Prog. Part. Nucl. Phys. 33 1; Inagaki T, Muta T and Odintsov S D 1997 Prog. Theor. Phys. Suppl. 127 93; Buballa M 2005 Phys. Rep. 407 205; Garibii A A, Jafarov R G and Rochev V E 2019 Symmetry 11 668
[3] Ruggieri M, Peng G X and Chernodub M 2016 EPJ Web Conf. 129 00037; Ruggieri M and Peng G X 2016 Phys. Rev. D 93 094021; Gatto R and Ruggieri M 2012 Phys. Rev. D 85 054013; Yu L, Liu H and Huang M 2014 Phys. Rev. D 90 074009; 2016 Phys. Rev. D 94 014026
[4] Ruggieri M and Peng G X 2016 J. Phys. G 43 125101; Andrianov A A, Andrianov V A and Escriu D 2020 Particles 3 15; Escriu D, Nicola A G and Vioque-Rodrguez A 2020 JHEP 06 062; Cao G and Zhuang P 2015 Phys. Rev. D 92 105030
[5] Braguta V V and Kotov A Y 2016 Phys. Rev. D 93 105025; Braguta V V, Ilgenfritz E M, Kotov A Y, Petersson B and Skinderev S A 2016 Phys. Rev. D 93 035009; Braguta V V, Kotov, Katsnelson M I and Trunin A M 2019 Phys. Rev. B 100 085117
[6] Khunjua T G, Klimenko K G and Zhokhov R N 2019 Symmetry 11 778 (Preprint hep-ph/2005.05488); 2020 Particles 3 62 (Preprint hep-ph/1912.09102); 2020 JHEP 06 148 (Preprint hep-ph/2005.04649);
[7] Fukushima K, Kharzeev D E and Warringa H J 2008 Phys. Rev. D 78 074033
[8] Kogut J B, Stephanov M A and Toublan D 1999 Phys. Lett. B 464 183; Kogut J B, Stephanov M A, Toublan D, Verbaarschot J J M and Zhitnitsky A 2000 Nucl. Phys. B 582 477
[9] Splittorff K, Son D T and Stephanov M A 2001 Phys. Rev. D 64 016003; Loewe M and Villavicencio C 2003 Phys. Rev. D 67 074034
[10] Ratti C and Weise W 2004 Phys. Rev. D 70 054013
[11] Duarte D C, Allen P G, Farias R L S, Manso P H A, Ramos R O and Scoicola N N 2016 Phys. Rev. D 93 025017; Andersen J O and Cruz A A 2013 Phys. Rev. D 88 025016
[12] Brauner T, Fukushima K and Hidaka Y 2009 Phys. Rev. D 80 074055 (Erratum: 2010 Phys. Rev. D 81 119904)
[13] Andersen J O and Brauner T 2010 Phys. Rev. D 81 096004
[14] Imai S, Toki H and Weise W 2013 Nucl. Phys. A 913 71; Chao J 2020 Chin. Phys. C 44 1
[15] Bornyakov V G, Braguta V V, Nikolaev A A and Rogalyov R N (Preprint hep-lat/2003.00232; Preprint hep-lat/2007.07640); Braguta V V, Goy V A, Ilgenfritz E M, Kotov A Y, Molochkov A V, Muller-Preussker M and Petersson B 2015 JHEP 1506 094
[16] Khunjua T G, Klimenko K G and Zhokhov R N 2019 Eur. Phys. J. C 79 151; 2019 JHEP 1906, 006; 2019 J. Phys. Conf. Ser. 1390 012015
[17] Khunjua T G, Klimenko K G and Zhokhov R N 2018 Phys. Rev. D 97 054036; 2018 EPJ Web Conf. 191 05015; 2018 Phys. Rev. D 97 054036; Khunjua T G, Klimenko K G and Zhokhov-Larionov R N 2018 EPJ Web Conf. 191 05016
[18] Khunjua T G, Klimenko K G and Zhokhov R N 2018 EPJ Web Conf. 191 05015; 2018 Phys. Rev. D 98 054030; 2019 Phys. Rev. D 100 034009; 2019 Moscow Univ. Phys. Bull. 74 473; Khunjua T G, Klimenko K G, Zhokhov R N and Zhukovsky V C 2017 Phys. Rev. D 95 105010