Fast-growing SMBHs in Fast-growing Galaxies, at High Redshifts: the Role of Major Mergers as Revealed by ALMA

Benny Trakhtenbrot 1,*, Paulina Lira 2, Hagai Netzer 3, Claudia Cicone 1,4, Roberto Maiolino 5,6 and Ohad Shemmer 7

1 Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich, Switzerland
2 Departamento de Astronomia, Universidad de Chile, Camino del Observatorio 1515, Santiago, Chile
3 School of Physics and Astronomy and the Wise Observatory, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
4 INAF-Osservatorio Astronomico di Brera, via Brera 28, I-20121, Milano, Italy
5 Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge CB3 0HE, UK
6 Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
7 Department of Physics, University of North Texas, Denton, TX 76203, USA

Correspondence*:
Benny Trakhtenbrot
benny.trakhtenbrot@phys.ethz.ch

ABSTRACT

We present a long-term, multi-wavelength project to understand the epoch of fastest growth of the most massive black holes by using a sample of 40 luminous quasars at $z \approx 4.8$. These quasars have rather uniform properties, with typical accretion rates and black hole masses of $L/L_{Edd} \approx 0.7$ and $M_{BH} \approx 10^9 M_{\odot}$. The sample consists of “FIR-bright” sources with a previous Herschel/SPIRE detection, suggesting SFR $> 1000 M_{\odot} \text{yr}^{-1}$, as well as of “FIR-faint” sources for which Herschel stacking analysis implies a typical SFR of $\sim 400 M_{\odot} \text{yr}^{-1}$. Six of the quasars have been observed by ALMA in [C II] $\lambda 157.74 \mu m$ line emission and adjacent rest-frame $150 \mu m$ continuum, to study the dusty cold ISM. ALMA detected companion, spectroscopically confirmed sub-mm galaxies (SMGs) for three sources – one FIR-bright and two FIR-faint. The companions are separated by $\sim 14 - 45$ kpc from the quasar hosts, and we interpret them as major galaxy interactions. Our ALMA data therefore clearly support the idea that major mergers may be important drivers for rapid, early SMBH growth. However, the fact that not all high-SFR quasar hosts are accompanied by interacting SMGs, and their ordered gas kinematics observed by ALMA, suggest that other processes may be fueling these systems. Our analysis thus demonstrates the diversity of host galaxy properties and gas accretion mechanisms associated with early and rapid SMBH growth.

Keywords: sub-millimeter galaxies, galaxy mergers, quasars: supermassive black holes, Quasars: host galaxies, high-redshift galaxies
1 INTRODUCTION

The highest-redshift quasars, observed at \(z \sim 5 - 7 \) suggest that supermassive black holes (SMBHs) with \(M_{\text{BH}} \simeq 10^9 M_\odot \) existed about 1 Gyr after the big bang, which challenges our understanding of BH formation and early growth, and how these processes relate to the galaxies that host the earliest SMBHs.

In order to account for the observed high BH masses of the earliest quasars, many models have promoted the possibility of high-mass BH seed formation, in dense stellar populations in proto-galaxies and/or through the direct collapse of gaseous halos (see, e.g., Natarajan, 2011; Volonteri, 2012, for reviews). Regardless of the seed mass, the subsequent BH growth must proceed at high accretion rates and high duty cycles. The former is indeed directly observed, as the accretion rate of high-\(z \) quasars approaches \(L/L_{\text{Edd}} \simeq 1 \) (e.g., Kurk et al., 2007; Willott et al., 2010; De Rosa et al., 2011; Trakhtenbrot et al., 2011). The latter requirement is found to be somewhat more challenging. One way to efficiently fuel SMBH accretion is through major mergers of gas rich galaxies (Sanders et al., 1988; Hopkins et al., 2006). Such mergers would be more common in dense large-scale environments. Moreover, several simulations have suggested that over-dense large-scale environments would expedite the growth of the most massive early BHs, as large amounts of inter galactic gas could stream onto the SMBHs host galaxies (Dekel et al., 2009; Di Matteo et al., 2012; Dubois et al., 2012; Costa et al., 2014).

Regardless of the exact mechanism driving the nearly continuous SMBH fueling, the low angular momentum gas is expected to trigger intense star formation (SF) throughout the host, and any interacting galaxy. Several observations of high-redshift quasars (including our own; see §2) have indeed identified intense SF, with growth rates exceeding \(\text{SFR} \sim 1000 M_\odot \text{yr}^{-1} \) (e.g., Mor et al., 2012; Netzer et al., 2014, 2016). Although these high SFRs are suggestive of merger activity, the low spatial resolution of the far-IR (FIR) data prohibited any detailed investigation of this possibility. Other dedicated searches for close companions have identified some examples of major mergers (Wagg et al., 2012), but most searches did not yield convincing evidence for merger activity (e.g., Wilott et al., 2005). Similarly, wide-field imaging campaigns aimed at determining whether high-\(z \) quasars are found in over-dense large-scale environments yielded ambiguous results (Willott et al., 2005; Kim et al., 2009; Husband et al., 2013; Banados et al., 2013; Simpson et al., 2014).

Here we describe a pilot study with ALMA that aims to identify major galaxy-galaxy interactions among a sample of six fast-growing SMBHs at \(z \approx 4.8 \). The full presentation of this study was recently published in The Astrophysical Journal (Trakhtenbrot et al., 2017, T17 hereafter), and here we only provide a brief summary of the sample, the ALMA observations, and our main results. The interested reader is encouraged to refer to T17 for any additional details. Throughout this work, we assume a cosmological model with \(\Omega_A = 0.7, \Omega_M = 0.3, \text{ and } H_0 = 70 \text{ km s}^{-1} \text{ Mpc}^{-1} \).

2 SAMPLE AND ALMA OBSERVATIONS

Our sample of six quasars is drawn from a larger sample of 40 sources at \(z \approx 4.8 \), for which reliable estimates of \(M_{\text{BH}}, L/L_{\text{Edd}}, \) and integrated host SFRs are available through our long-term, multi-wavelength observational effort, conducted using the VLT, Gemini, Spitzer, and Herschel facilities. The \(z \approx 4.8 \) quasars typically have \(M_{\text{BH}} \approx 10^9 M_\odot \) and \(L/L_{\text{Edd}} \approx 0.7 \), and the sample covers a rather limited range in these two quantities (see Trakhtenbrot et al., 2011, T11 hereafter). The host galaxies, on the other hand, exhibit a wide range in SFRs. While \(\sim 75\% \) of the systems have \(\text{SFR} \sim 400 M_\odot \text{yr}^{-1} \), as determined from Herschel stacking analysis (“FIR-faint” systems), the outstanding 25% are individually detected and have \(\text{SFR} \sim 1000 - 4000 M_\odot \text{yr}^{-1} \) (“FIR-bright” systems; see Netzer et al., 2014, 2016). The Herschel data
available prior to the ALMA campaign is therefore suggestive of a scenario where major mergers may be in play in at least a fraction of these systems. The six quasars selected for our pilot ALMA study are equally split between “FIR-bright” and “FIR-faint” subsets, in an attempt to address this possibility.

The ALMA band-7 observations were designed to detect and resolve, at kpc scales, the emission from the prominent [C II] $\lambda 157.74 \mu m$ line and the adjacent continuum. While the continuum emission probes the spatial distribution of cold dusty ISM in the quasar hosts, the [C II] emission line – which is an efficient ISM coolant – probes their kinematics and can be used to spectroscopically confirm the nature of any companion galaxies (e.g., Maiolino et al., 2009; Wagg et al., 2012; Wang et al., 2013; Neri et al., 2014). We used the extended C34-4 configuration of ALMA, providing a resolution of $\sim 0.3''$ at 330 GHz. This corresponds to about 2 kpc at $z \approx 4.8$. The ALMA field of view covers distances of $\sim 6''$, or almost 50 kpc, from the quasar locations. The chosen spectral setup provided four windows, each covering 1875 MHz (~ 1650 km s$^{-1}$), at a resolution of ~ 30 km s$^{-1}$. On-source integrations lasted between 11-54 minutes, with longer integrations for the “FIR-faint” sources. The resulting limiting flux densities were $F_\nu \sim (4.2 - 9.2) \times 10^{-2}$ mJy/beam (rms). At the redshifts of the quasars, and under reasonable assumptions regarding the possible shapes of their FIR SEDs, this corresponds to lower limits of roughly $4 - 11 M_\odot$ yr$^{-1}$ kpc$^{-2}$ (at the 3σ level).

3 RESULTS

The host galaxies of all six quasars are robustly detected, and (marginally) resolved, in both continuum and [C II] emission. As an example, we show in Fig. 1 the continuum and [C II] emission maps of one of the “FIR-faint” sources in our sample, SDSS J092303.53+024739.5 ($z_{QSO} = 4.6589$; J0923 hereafter).

In what follows, we highlight our main findings from the analysis of these data. We demonstrate these findings using different diagrams for the aforementioned source J0923. We note that many of the choices we made through the analysis of the ALMA data were motivated by recent sub-mm studies of $z \gtrsim 5$ quasars (Wang et al., 2013; Willott et al., 2015; Venemans et al., 2016). The reader is referred to T17 for a detailed discussion of our analysis and assumptions.

3.1 Quasar hosts

We measure a wide range in (spatially-integrated) 345 GHz continuum flux densities, between $F_\nu \sim 1.6 - 18.5$ mJy. This wide range in continuum levels is reminiscent of that of the FIR luminosities and SFRs measured from the Herschel/SPIRE data (which covered rest-frame wavelengths of ~ 45-90 μm). Indeed, we find that the new ALMA continuum measurements are generally in very good agreement with the Herschel measurements, under reasonable assumptions regarding the shape of the FIR SED, namely a gray-body with dust temperature $T_d = 47$ K and $\beta = 1.6$. Some sources require somewhat warmer dust temperatures (up to $T_d \sim 60$ K). Moreover, most sources are consistent with the FIR SED templates of Chary and Elbaz (2001). Importantly, we note that the ALMA continuum measurements for the FIR-faint sources, are consistent with the extrapolation of the stacking measurements of the Herschel data, thus reassuring that our interpretation of the Herschel results was robust. Figure 2 demonstrates these findings for J0923.

By combining the new ALMA continuum measurements and the assumed FIR SEDs, we estimate (spatially integrated) total FIR luminosities of $L(8-1000 \mu m) \sim (1.9 - 35.5) \times 10^{12} L_\odot$. These luminosities translate to host SFRs in the range SFR $\sim 190 - 3500 M_\odot$ yr$^{-1}$. This is, again, consistent with our
Herschel-based findings, but now robustly resolving the hosts, which is crucial in several cases (see §3.2 below).

The spatially resolved [C II] line emission maps allow us to study the kinematics of the hosts, and estimate their dynamical masses. Most sources (at least four out of six) show [C II] velocity gradients that are consistent with rotation, as shown in the left panel of Fig. 3 for J0923. We therefore assume a simple model of an inclined rotating disk for the [C II]-emitting ISM in the hosts. Following common practices with similar data, we can then deduce dynamical host masses, by combining the size of the [C II]-emitting region ($D_{\text{[C II]}}$) with the typical velocity of the gas ($\text{FWHM} \ [\text{C II}]$), corrected for the inclination of the disk (i):

$$M_{\text{dyn}} = 9.8 \times 10^8 \left(\frac{D_{\text{[C II]}}}{\text{kpc}} \right) \left[\frac{\text{FWHM} \ [\text{C II}]}{100 \ \text{km s}^{-1}} \right]^2 \sin^{-2} (i) \ M_\odot.$$ \hspace{1cm} (1)

The inclination of each system is estimated from the spatial shape (morphology) of the [C II] emitting region, available from our resolved ALMA data (i.e., the major-to-minor axis ratio).

The resulting dynamical masses cover a rather limited range, $M_{\text{dyn}} \approx (3.7 - 7.4) \times 10^{10} \ M_\odot$. By assuming that the dynamical masses are dominated by the stellar components, and considering the wide range in SFRs, this means that the lower-SFR (FIR-faint) hosts are consistent with the so-called “main sequence” of SF galaxies (e.g., Speagle et al., 2014; Steinhardt et al., 2014, and references therein), while the high-SFR (FIR-bright) hosts would lie above it. Moreover, given the narrow range in M_{BH} and L/L_{Edd} of the quasars themselves, it appears that these host properties are not directly linked to the SMBH properties.

3.2 Companion galaxies

Our most intriguing finding is related to the detection of several gas rich companions, which are likely interacting with the quasar hosts.

We robustly detect companion galaxies for three of the six quasar hosts, in both continuum and [C II] emission. These companions are separated by \sim14-45 kpc and $|\Delta v| < 450 \ \text{km s}^{-1}$ from the quasar hosts, thus being truly physically related to the quasars systems. An additional continuum source that lacks [C II] emission is detected \sim25 kpc away from one of the FIR-bright systems, which also has a more distant spectroscopically-confirmed companion. Fig. 4 demonstrates the spectral proximity of the companion of J0923 to the quasar host.

Following the same procedures as those used for the quasar hosts, we find that the companion galaxies have continuum fluxes that translate to SFRs of $\sim 100 - 200 \ M_\odot \ \text{yr}^{-1}$, and dynamical masses of $M_{\text{dyn}} \approx (2.1 - 10.7) \times 10^{10} \ M_\odot$. Compared to the respective quasar host masses, the companions have mass ratios $|q| \lesssim 2 : 1$, suggestive of major galaxy interactions. Moreover, the companion galaxies are consistent with being on the main sequence of SF galaxies.

4 DISCUSSION AND CONCLUSION

The most intriguing finding of our ALMA study is the identification of spectroscopically-confirmed companion galaxies for three out of the six quasar hosts in our sample. Considering the small field of view (FoV) of our ALMA data (\sim13.5' or \sim100 kpc in diameter), the number of sub-mm bright galaxies we find is much higher than what is found in “blind” surveys. For example, surveys of rest-frame UV selected SF galaxies predict roughly 0.01 galaxies with SFR $\approx 100 \ M_\odot \ \text{yr}^{-1}$ in a single ALMA FoV (e.g., Bouwens...
et al., 2015; Stark, 2016). Even more complete surveys of [C II]-emitting galaxies at \(z \gtrsim 5 \) predict of about 0.05 galaxies per each of our ALMA pointings (e.g., Aravena et al., 2016). We therefore conclude that fast-growing \(z \sim 5 \) SMBHs reside in over-dense environments in the early universe, and that their fast accumulation of mass may be related to enhanced major-merger activity. Further support for this scenario was recently presented in a large ALMA study of \(z \sim 6 \) quasars, using identical methods to those we used in our study (Decarli et al., 2017).

The naive expectation from the previously available Herschel data would be that the high-SFR (FIR-bright) systems would be associated with major mergers, while the lower-SFR (FIR-faint) systems would show no signs of interaction. Our ALMA data show a very different picture. Two of the three companions are found near FIR-faint systems, and only one is associated with a FIR-bright system. Conversely, two of the three FIR-bright systems in our sample are not associated with companion, interacting galaxies. Although in principle these quasar hosts may be in an advanced merger stage (which would remain unresolved in our data), the signatures of rotationally-dominated gas structures would not support this scenario. This is exemplified in the system J1341, which has \(\text{SFR} \approx 3000 \ M_\odot \, \text{yr}^{-1} \), and shows signatures of rotation-dominated gas and no companion galaxies (see Fig. 3, right). The two lower-SFR systems with companion galaxies are expected to experience a later increase in SFR. This means that the low SFRs we deduced for the “FIR-faint” sample cannot be simply due to the onset of “AGN feedback” in the final stages of an episode of SMBH and host growth. However, a larger sample is needed to clarify which of all these processes dominates the growth of the general \(z \sim 5 \) SMBH population.

The companion galaxies detected with ALMA were not seen in our Spitzer data. Given their SFRs and (dynamical) masses, and what is known about the population of rest-frame UV selected SF galaxies at \(z \approx 4.8 \) (e.g., Steinhardt et al., 2014; Stark, 2016), we conclude that this is due to significant dust obscuration. This may explain the fact that many previous studies were unable to identify companions and/or over-dense environments for \(z \gtrsim 5 \) quasars. High resolution, spectroscopic sub-mm observations are therefore crucial for the study of mergers and environments among the highest-redshift quasars.

We are currently leading an ALMA cycle-4 program that would provide similar data for a dozen additional \(z \approx 4.8 \) quasars from the T11 sample, bringing the total number of such quasars with resolved host ISM kinematics, and close companion mapping, to 18. Analysis of the ALMA data for the 12 additional sources is ongoing. Moreover, we were recently awarded HST/WFC3/IR time to map the stellar component in the host galaxies, and in the close companions of the six quasars described here. The HST data will also probe the larger-scale environments of the quasars, out to \(\sim 400 \) kpc, allowing us to detect any additional (unobscured) companions that may be present in this field.

AUTHOR CONTRIBUTIONS

B.T. led the interpretation of the ALMA data, the preparation of the paper describing our results (T17), and presented the results as a contributed talk in the “Quasars at All Cosmic Epochs” meeting. P.L. was the PI of the ALMA proposal and led the data analysis. All authors participated in different aspects of the analysis, interpretation, and preparation of this study for publication.

FUNDING

H.N. acknowledges support by the Israel Science Foundation grant 284/13. C.C. gratefully acknowledges support from the Swiss National Science Foundation Professorship grant PP00P2_138979/1. C.C. also acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under
the Marie Skłodowska-Curie grant agreement No 664931. R.M. acknowledges support by the Science and Technology Facilities Council (STFC) and the ERC Advanced Grant 695671 “QUENCH”.

ACKNOWLEDGMENTS

We are grateful for the organizers of the “Quasars at All CosmicEpochs” meeting for the opportunity to present our results in a stimulating and friendly environment. We thank K. Schawinski, L. Mayer, R. Teyssier, P. Capelo, M. Dotti and D. Fiacconi for useful discussions during the preparation of the paper describing our results (T17). The work described here made use of the ALMA data set ADS/JAO.ALMA#2013.1.01153.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ.

REFERENCES

Aravena, M., Decarli, R., Walter, F., Bouwens, R. J., Oesch, P. A., Carilli, C. L., et al. (2016). ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Search for [CII] line and dust emission in 6<z<8 galaxies. Astrophys. J. 833, 71. doi:10.3847/1538-4357/833/1/71

Banados, E., Venemans, B., Walter, F., Kurk, J., Overzier, R., and Ouchi, M. (2013). The galaxy environment of a QSO at z ∼ 5.7. Astrophys. J. 773, 178. doi:10.1088/0004-637X/773/2/178

Bouwens, R. J., Illingworth, G. D., Oesch, P. a., Trenti, M., Labbé, I., Bradley, L., et al. (2015). UV Luminosity Functions at Redshifts at z ∼ 4 to z ∼ 10: 10,000 Galaxies from HST Legacy Fields. Astrophys. J. 803, 34. doi:10.1088/0004-637X/803/1/34

Chary, R.-R. and Elbaz, D. (2001). Interpreting the Cosmic Infrared Background: Constraints on the Evolution of the Dust-enshrouded Star Formation Rate. Astrophys. J. 556, 562–581. doi:10.1086/321609

Costa, T., Sijacki, D., Trenti, M., and Haehnelt, M. G. (2014). The environment of bright QSOs at z 6: star-forming galaxies and X-ray emission. Monthly Not. R. Astron. Soc. 439, 2146–2174. doi:10.1093/mnras/stu101

De Rosa, G., Decarli, R., Walter, F., Fan, X., Jiang, L., Kurk, J. D., et al. (2011). Evidence for Non-Evolving Fe II/Mg II Ratios in Rapidly Accreting z ∼ 6 QSOs. Astrophys. J. 739, 56. doi:10.1088/0004-637X/739/2/56

Decarli, R., Walter, F., Venemans, B. P., Bañados, E., Bertoldi, F., Carilli, C., et al. (2017). Rapidly star-forming galaxies adjacent to quasars at redshifts exceeding 6. Nature 545, 457. doi:10.1038/nature22358

Dekel, A., Birnboim, Y., Engel, G., Freundlich, J., Goerdt, T., Mirmoukhi, M., et al. (2009). Cold streams in early massive hot haloes as the main mode of galaxy formation. Nature 457, 451–4. doi:10.1038/nature07648

Di Matteo, T., Khandai, N., DeGraf, C., Feng, Y., Croft, R., Lopez, J., et al. (2012). Cold Flows and the First Quasars. Astrophys. J. 745, L29. doi:10.1088/2041-8205/745/2/L29

Dubois, Y., Pichon, C., Haehnelt, M., Kimm, T., Slyz, A., Devriendt, J., et al. (2012). Feeding compact bulges and supermassive black holes with low angular momentum cosmic gas at high redshift. Monthly Not. R. Astron. Soc. 423, 3616–3630. doi:10.1111/j.1365-2966.2012.21160.x

Hopkins, P. F., Hernquist, L., Cox, T. J., Di Matteo, T., Robertson, B. E., and Springel, V. (2006). A Unified, Merger-driven Model of the Origin of Starbursts, Quasars, the Cosmic X-Ray Background, Supermassive Black Holes, and Galaxy Spheroids. Astrophys. J. Suppl. Series 163, 1–49. doi:10.1086/499298
Husband, K., Bremer, M. N., Stanway, E. R., Davies, L. J. M., Lehnert, M. D., and Douglas, L. S. (2013). Are z<5 QSOs found in the most massive high redshift over-densities? *Monthly Not. R. Astron. Soc.* 432, 2869–2877. doi:10.1093/mnras/stt642

Kim, S., Stiavelli, M., Trenti, M., Pavlovsky, C. M., Djorgovski, S. G., Scarlata, C., et al. (2009). The Environments of High-Redshift Quasi-Stellar Objects. *Astrophys. J.* 695, 809–817. doi:10.1088/0004-637X/695/2/809

Kurk, J. D., Walter, F., Fan, X., Jiang, L., Riechers, D. a., Rix, H., et al. (2007). Black Hole Masses and Enrichment of z~6 SDSS Quasars. *Astrophys. J.* 669, 32–44. doi:10.1086/521596

Maiolino, R., Caselli, P., Nagao, T., Walmsley, M., De Breuck, C., and Meneghetti, M. (2009). Strong [CII] emission at high redshift. *Astron. Astrophys.* 500, L1–L4. doi:10.1051/0004-6361/200912265

Mor, R., Netzer, H., Trakhtenbrot, B., Shemmer, O., and Lira, P. (2012). Extreme Star Formation In The Host Galaxies Of The Fastest Growing Supermassive Black Holes At z = 4.8. *Astrophys. J.* 749, L25. doi:10.1088/2041-8205/749/2/L25

Natarajan, P. (2011). The formation and evolution of massive black hole seeds in the early Universe. *Bull. Astron. Soc. India* 39, 145

Neri, R., Downes, D., Cox, P., and Walter, F. (2014). High-resolution C+ imaging of HDF850.1 reveals a merging galaxy at z = 5.185. *Astron. Astrophys.* 562, A35. doi:10.1051/0004-6361/201322528

Netzer, H., Lani, C., Nordon, R., Trakhtenbrot, B., Lira, P., and Shemmer, O. (2016). Star Formation Black Hole Growth And Dusty Tori in the Most Luminous AGNs At z = 2–3.5. *Astrophys. J.* 819, 123. doi:10.3847/0004-637X/819/2/123

Netzer, H., Mor, R., Trakhtenbrot, B., Shemmer, O., and Lira, P. (2014). Star Formation and Black Hole Growth at Z ~ 4.8. *Astrophys. J.* 791, 34. doi:10.1088/0004-637X/791/1/34

Sanders, D. B., Soifer, B. T., Elias, J. H., Madore, B. F., Matthews, K., Neugebauer, G., et al. (1988). Ultraluminous infrared galaxies and the origin of quasars. *Astrophys. J.* 325, 74. doi:10.1086/165983

Simpson, C., Mortlock, D. J., Warren, S., Cantalupo, S., Hewett, P. C., McLure, R. J., et al. (2014). No excess of bright galaxies around the redshift 7.1 quasar ULAS J1120+0641. *Monthly Not. R. Astron. Soc.* 442, 3454–3461. doi:10.1093/mnras/stu1116

Speagle, J. S., Steinhardt, C. L., Capak, P. L., and Silverman, J. D. (2014). A Highly Consistent Framework For The Evolution Of The Star-Forming “Main Sequence” From z ~ 0 – 6. *Astrophys. J. Suppl. Series* 214, 15. doi:10.1088/0067-0049/214/2/15

Stark, D. P. (2016). Galaxies in the First Billion Years After the Big Bang. *Annu. Rev. Astron. Astrophys.* 54, 761–803. doi:10.1146/annurev-astro-081915-023417

Steinhardt, C. L., Speagle, J. S., Capak, P. L., Silverman, J. D., Carollo, C. M., Dunlop, J. S., et al. (2014). Star Formation at 4 < z < 6 from the Spitzer Large Area Survey with Hyper-Suprime-Cam (SPLASH). *Astrophys. J.* 791, L25. doi:10.1088/2041-8205/791/2/L25

Trakhtenbrot, B., Lira, P., Netzer, H., Cicone, C., Maiolino, R., and Shemmer, O. (2017) [T17]. ALMA Observations Show Major Mergers Among the Host Galaxies of Fast-growing, High-redshift, Supermassive Black Holes. *Astrophys. J.* 836, 8. doi:10.3847/1538-4357/836/1/8

Trakhtenbrot, B., Netzer, H., Lira, P., and Shemmer, O. (2011). Black Hole Mass and Growth Rate at z ≃ 4.8: a Short Episode of Fast Growth Followed by Short Duty Cycle Activity. *Astrophys. J.* 730, 7. doi:10.1088/0004-637X/730/1/7

Venemans, B. P., Walter, F., Zschaechner, L., Decarli, R., Rosa, G. D., Findlay, J. R., et al. (2016). Bright [C II] and Dust Emission in Three z > 6.6 Quasar Host Galaxies Observed By ALMA. *Astrophys. J.* 816, 37. doi:10.3847/0004-637X/816/1/37
Volonteri, M. (2012). The Formation and Evolution of Massive Black Holes. *Science* 337, 544–547. doi:10.1126/science.1220843

Wagg, J., Wiklind, T., Carilli, C. L., Espada, D., Peck, A., Riechers, D. a., et al. (2012). [C II] Line Emission in Massive Star-forming Galaxies at z = 4.7. *Astrophys. J.* 752, L30. doi:10.1088/2041-8205/752/2/L30

Wang, R., Wagg, J., Carilli, C. L., Walter, F., Lentati, L., Fan, X., et al. (2013). Star Formation and Gas Kinematics of Quasar Host Galaxies at z’6: New insights from ALMA. *Astrophys. J.* 773, 24. doi:10.1088/0004-637X/773/1/44

Willott, C. J., Albert, L., Arzoumanian, D., Bergeron, J., Crampton, D., Delorme, P., et al. (2010). Eddington-limited Accretion and the Black Hole Mass Function at Redshift 6. *The Astronomical Journal* 140, 546–560. doi:10.1088/0004-6256/140/2/546

Willott, C. J., Bergeron, J., and Omont, A. (2015). Star Formation Rate and Dynamical Mass of 10^8 Solar Mass Black Hole Host Galaxies at Redshift 6. *Astrophys. J.* 801, 123. doi:10.1088/0004-637X/801/2/123

Willott, C. J., Percival, W. J., McLure, R. J., Crampton, D., Hutchings, J. B., Jarvis, M. J., et al. (2005). Imaging of SDSS z > 6 Quasar Fields: Gravitational Lensing, Companion Galaxies, and the Host Dark Matter Halos. *Astrophys. J.* 626, 657–665. doi:10.1086/430168
Figure 1. Maps of the dust continuum (left) and $\text{[C II]} \lambda 157.74 \mu m$ line (right) emission for one of the quasars in our sample, SDSS J092303.53+024739.5 at $z_{QSO} = 4.6589$. Both the quasar host (marked as “QSO”) and a sub-mm companion galaxy (“SMG”) are robustly detected and marginally resolved (see the synthetized ALMA beam at the bottom right of each panel). The companion galaxy is separated by 36.5 kpc and 246 km s$^{-1}$ from the quasar host.

Figure 2. The FIR SED of J0923. The new ALMA continuum measurement (red) is broadly consistent with the previous Herschel data (based on stacking analysis; black squares). Blue squares show the Herschel data after correcting for the fraction of the flux that comes from the companion galaxy. The solid black line traces a gray-body SED with $T_d = 47$ K and $\beta = 1.6$, while the dotted lines trace different temperatures. The dashed lines illustrate several relevant templates from Chary and Elbaz (2001).
Figure 3. Velocity maps of the [C II] $\lambda 157.74 \mu m$ emission line for J0923 (left) and J1341 (right), with the velocities indicated by color and the [C II] flux contours overlaid (note that the contour levels differ between the two sources). The kinematics of the cold gas in the host galaxies appears to be dominated by rotation.

Figure 4. Spatially-integrated spectra of the [C II] emission line in the quasar host (left) and the interacting companion (right) of J0923. The relative velocities (top x-axis) are calculated relative to the rest-frame UV Mg II $\lambda 2798$ broad emission line of the quasar. These data confirm the physical association of the companion source to the quasar host.