Elizabethkingia miricola bacteraemia in a haemodialysis patient

Julia C. Howard1,*,†, Kevin Chen2‡, Trevor Anderson1 and Simon C. Dalton2

Abstract

We report a case of catheter-associated **Elizabethkingia miricola** bacteraemia in a haemodialysis patient. The patient was a 73-year-old home haemodialysis patient who presented with a history of recurrent falls and fevers. Blood cultures grew Gram-negative bacilli identified by MALDI-TOF MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 6903 MSP Library) and 16S rRNA gene sequencing as *E. miricola*. *E. miricola* is an emerging human pathogen and is multidrug-resistant, making the choice of antimicrobial therapy challenging. There are only a small number of case reports of human infection worldwide and this is the second reported case of catheter-related bacteraemia. It has also been found in the hospital environment in South Korea and is pathogenic in black-spotted frogs.

CASE PRESENTATION

A 73-year-old home haemodialysis patient presented to the Emergency Department at Christchurch Hospital with a history of recurrent falls and fevers during his home dialysis sessions over the last month. Blood tests showed a peripheral white cell count of 18.7×10⁹ (normal range 4–11×10⁹) and a C-reactive protein (CRP) of 183 mg l⁻¹ (normal range 0–5 mg l⁻¹). At initial presentation he was haemodynamically stable but in view of the clinical history he was admitted for observation. On day 1 of his admission he underwent haemodialysis in the dialysis unit and rapidly became clinically septic with tachycardia at 150 bpm, fever and rigors. His tunnelled line site did not look clinically infected. During the septic episode two sets of blood cultures were taken and he was started on ceftriaxone (1 g daily) and vancomycin (4 g loading dose followed by 2 g daily) empirically with a working diagnosis of line sepsis due to the timing of the septic episode. Ceftriaxone was started as he had a history of non-anaphylactoid penicillin allergy (mild rash). His CRP had risen to 222 mg l⁻¹. On the second day of his admission his blood cultures from the arterial and venous lumens of his tunnelled dialysis line both flagged positive with an unusual pleomorphic Gram-negative bacillus (Fig. 1). Ciprofloxacin (250 mg twice daily) was added in to his therapeutic regimen as there was concern from the Gram stain morphology that the organism could be *Pseudomonas aeruginosa* and his line was removed. By day 3 he had improved clinically, his inflammatory markers were starting to decrease (peripheral white cell count 15.3×10⁹ and CRP 151 mg l⁻¹) and he started to dialyse via his arterio-venous fistula, which had been created a few months earlier.

On the third day blood agar incubated in CO₂ at 35–37°C grew poorly growing oxidase-positive small translucent colonies. No other biochemical tests were performed and identification of the isolate was carried out using MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) MS on the Bruker microflex LT (Bruker Daltonics, Bremen, Germany). Pure cultures of the isolate were inoculated onto the MALDI target plate using a wooden applicator, then 1 µl formic acid was applied and allowed to dry, and 1 µl HCCA matrix was applied and analysed with the6903 database. This identified the isolate as being **Elizabethkingia miricola** (score 2.38) with lower scores for **Elizabethkingia anopheles** (1.78) and **Elizabethkingia meningoseptica** (1.8). Routine Gram-negative disc susceptibility testing was undertaken. The organism was susceptible to ciprofloxacin and piperacillin-tazobactam and...
line tip also grew Gram-negative bacilli, which were identified by MALDI-TOF MS as *E. miricola*. The patient’s antibiotic regimen was rationalized to oral ciprofloxacin 500 mg (the dose had been increased to 500 mg) twice daily for a 10-day course. He was discharged home on day 17 to complete a total course of 3 weeks of antibiotics and made a good recovery. At discharge his peripheral white cell count was 13.4×10^9 and his CRP was 125 mg l^{-1}. There were no other cases identified in the hospital and we did not carry out any environmental testing.

DISCUSSION

E. miricola is a multidrug-resistant emerging human Gram-negative pathogen [5]. It was formerly known as *Chryseobacterium miricola* and was first isolated in 2003 from condensation water on the space station Mir [6]. It is a non-fermenter and is oxidase- and indole-positive [7]. It has been reported as causing infection in a stem-cell transplant recipient with lymphoma who had bacteraemia and ventilator-associated pneumonia in 2008 in the USA [8], community-onset urinary tract infection (UTI) in a patient with pre-existing hydronephrosis and vesicoureteric reflux in India [9], nosocomial pneumonia in a postoperative spinal patient [5] and UTI in a co-morbid child in Switzerland [10], knee septic arthritis in a patient with recurrent erysipelas in Denmark [4], catheter-related bacteraemia in a diabetic patient with cardiomyopathy in Hong Kong [11], bacteraemia in a patient with alcoholic pancreatitis in Italy [12], and pulmonary abscesses in a septic patient in France [13]. There is also a case report of the organism acting as an opportunistic pathogen causing oral superinfection in a patient with common variable immunodeficiency in Poland [14], and the first reported case of pulmonary exacerbation in a cystic fibrosis (CF) patient was recently reported from the UK [15]. In addition, it has been isolated from environmental specimens taken from ward washbasins in a hospital in South Korea [16].

Until recently there have been three recognized species of *Elizabethkingia* (*E. meningoseptica, E. miricola* and *E. anoph- eles*); however a study in the UK which analysed 44 *Eli- zabethkingia* species isolates from clinical specimens (sputa, bronchoalveolar lavage, cough swabs and tracheal aspirates) in CF patients using *rpoB* gene sequencing has shown that an *E. miricola* cluster exists and includes *E. miricola* as well as the proposed novel species *E. occulta* sp. nov., *E. ursingii* sp. nov. and *E. brunniana* sp. nov. [17]. These species were also proposed by the Centers for Disease Control in a taxonomic review of the genus *Elizabethkingia* in 2018 [18]. There is also evidence of its pathogenic potential in animals as it has also been reported to cause epidemic meningitis-like disease in black-spotted frogs farmed for human consumption in China in 2016 [19]. Like *E. meningoseptica*, which is more commonly found as a cause of nosocomial infection in patients who have received prior courses of antibiotic therapy, it is multidrug-resistant [5], making the choice of optimal therapy difficult. Some strains may contain one or more metallo-β-lactamase.
genes [5, 10], as is likely in our case given the susceptibility results. Treatment that has been successful in the medical literature includes tigecycline and levofloxacin combination therapy [8], piperacillin-tazobactam and ciprofloxacin [13], piperacillin-tazobactam [4, 9], imipenem/cilastin and ciprofloxacin followed by piperacillin-tazobactam and ciprofloxacin [12], levofloxacin [11, 14], and ciprofloxacin [4, 15]. In our case ciprofloxacin was the only clinically available option as levofloxacin is not available in New Zealand, the organism was resistant to trimethoprim/sulfamethoxazole and the patient had a penicillin allergy (rash). Options for therapy may include fluoroquinolones, trimethoprim/sulfamethoxazole and piperacillin-tazobactam depending on the organism's susceptibility profile and patient medication contraindications.

In conclusion, we describe a catheter-associated bacteraemia caused by the emerging pathogen *E. miricola* in a haemodialysis patient, and which was successfully treated with ciprofloxacin combined with dialysis line removal.

References
1. Wilbrink B, van der Heijden IM, Schouts LM, van Embden JD, Hazes JM et al. Detection of bacterial DNA in joint samples from patients with undifferentiated arthritides and reactive arthritides, using polymerase chain reaction with universal 16S ribosomal RNA primers. *Arthritis Rheum* 1998;41:535–543.
2. Flandrois J-P, Perrière G, Gouy M. IaBIBiQBF: a set of databases and a webtool for automatic phylogenetic analysis of prokaryotic sequences. *BMC Bioinformatics* 2015;16:251.
3. Lin J-N, Lai C-H, Yang C-H, Huang Y-H, Lin H-H. Complete genome sequence of *Elizabethkingia miricola* strain EM798-26 isolated from the blood of a cancer patient. *Genome Announc* 2018;6 pii:e01408–01417.
4. Eriksen HB, Gumpert H, Faurholt CH, Westh H. Determination of *Elizabethkingia* Diversity by MALDI-TOF Mass Spectrometry and Whole-Genome Sequencing. *Emerg Microb Dis* 2017;23:320–323.
5. Opota O, Diene SM, Bertelli C, Prod’hom G, Eckert P et al. Genome of the carbapenemase-producing clinical isolate *Elizabethkingia miricola* EM_ChUV and comparative genomics with *Elizabethkingia meningoseptica* and *Elizabethkingia anopliensis*: evidence for intrinsic multidrug resistance trait of emerging pathogens. *Int J Antimicrob Agents* 2017;49:93–97.
6. Li Y, Kawamura Y, Fujiwara N, Naka T, Liu H et al. *Chryseobacterium miricola* sp. nov., a novel species isolated from condensation water of space Station mR. *Syst Appl Microbiol* 2003;26:523–528.
7. Jorgensen JH, Pfaller MA, Carroll KC, Funke G, Landy ML et al. *Manual of Clinical Microbiology*, 11th ed. *American Society of Microbiology*, 2015.
8. Green O’Neil, Murray P, Gea-Banacloche JC. Sepsis caused by *Elizabethkingia miricola* successfully treated with tigecycline and levofloxacin. *Diagn Microbiol Infect Dis* 2008;62:430–432.
9. Gupta P, Zaman K, Mohan B, Taneya N. *Elizabethkingia miricola*: A rare non-fermenter causing urinary tract infection. *World J Clin Cases* 2017;5:187–190.
10. Colapietro M, Endimiani A, Sabatini A, Marcoccia F, Celenza G et al. BlaB-15, a new BlaB metallo-β-lactamase variant found in an *Elizabethkingia miricola* clinical isolate. *Diagn Microbiol Infect Dis* 2016;85:195–197.
11. Lau SKP, Chow W-N, Foo C-H, Curreem SOT, Lo GC-S et al. *Elizabethkingia* anopliensis bacteremia is associated with clinically significant infections and high mortality. *Sci Rep* 2016;6:26045.
12. Rossati A, Kroumovova V, Bargiacchi O, Brustia D, Luigi Garavelli P. *Elizabethkingia miricola* bacteremia in a young woman with acute alcoholic pancreatitis. *La Presse Médicale* 2015;44:1071–1072.
13. Gonzalez C, Coolen-Allou N, Allyn J, Estève J-B, Belmonte O et al. [Severe sepsis and pulmonary abscess with bacteremia due to *Elizabethkingia miricola*]. *Med Mal Infect* 2016;46:49–51.
14. Zdziarski P, Paściak M, Rogala K, Korzeniowska-Kowal A, Gamian A. *Elizabethkingia miricola* as an opportunistic oral pathogen associated with superinfectious complications in humoral immunodeficiency: a case report. *BMC Infect Dis* 2017;17:763.
15. Frost F, Nazareth D. Case Report: First report of *Elizabethkingia miricola* infection in a patient with cystic fibrosis. *F1000Res* 2018;7:440.
16. Choi MH, Kim M, Jeong SJ, Choi JY, Lee I-Y et al. Risk factors for *Elizabethkingia* Acquisition and clinical characteristics of patients, South Korea. *Emerg Infect Dis* 2019;25:42–51.
17. Kenna DTD, Fuller A, Martin K, Perry C, Pike R et al. ropB gene sequencing highlights the prevalence of an *E. miricola* cluster over other *Elizabethkingia* species among UK cystic fibrosis patients. *Diagn Microbiol Infect Dis* 2018;90:109–114.
18. Nicholson AC, Gulvik CA, Whitney AM, Humrighouse BW, Graziano J et al. Revisiting the taxonomy of the genus *Elizabethkingia* using whole-genome sequencing, optical mapping, and MALDI-TOF, along with proposal of three novel *Elizabethkingia* species: *Elizabethkingia bruniana* sp. nov., *Elizabethkingia urssingii* sp. nov., and *Elizabethkingia occulta* sp. nov. *Antonie Van Leeuwenhoek* 2018;111:55–72.
19. Hu R, Yuan J, Meng Y, Wang Z, Gu Z. Pathogenic *Elizabethkingia miricola* infection in cultured black-spotted frogs, China, 2016. *Emerg Infect Dis* 2017;23:2055–2059.

Five reasons to publish your next article with a Microbiology Society journal
1. The Microbiology Society is a not-for-profit organization.
2. We offer fast and rigorous peer review – average time to first decision is 4–6 weeks.
3. Our journals have a global readership with subscriptions held in research institutions around the world.
4. 80% of our authors rate our submission process as ‘excellent’ or ‘very good’.
5. Your article will be published on an interactive journal platform with advanced metrics.

Find out more and submit your article at microbiologyresearch.org.