Gauge Deformations and Embedding Theorems for Special Geometries

Sebastian Stock
Department of Mathematics
University of Cologne

Abstract
We reduce the embedding problem for hypo $SU(2)$ and $SU(3)$-structures to the embedding problem for hypo G_2-structures into parallel Spin(7)-manifolds. The latter will be described in terms of gauge deformations. This description involves the intrinsic torsion of the initial G_2-structure and allows us to prove that the evolution equations, for all of the above embedding problems, do not admit non-trivial longtime solutions.

Acknowledgement
Part of this work was done during a stay at McMaster University in Hamilton, Ontario, Canada. I would like to thank especially Prof. McKenzie Wang for our meetings and many helpful discussions on the topic.

Introduction

In [13] N.Hitchin introduced a flow equation for cocalibrated G_2-structures on a manifold M, whose solutions yield parallel Spin(7)-structures on $I \times M$, for some interval $I \subset \mathbb{R}$. In this sense, a solution of the flow equation embeds the initial G_2-structure into a manifold with a parallel Spin(7)-structure and is therefore called a solution of the embedding problem for the initial structure. Similar equations are

1sstock@math.uni-koeln.de
known for embedding $SU(2)$-structures in dimension five and $SU(3)$-structures in dimension six into manifolds with a parallel $SU(3)$ and G_2-structure, respectively, cf. [6, 7, 8, 9, 10]. The natural candidates for solving the embedding problem are so-called hypo structures. In the Gray-Hervella classification these are the type of structures induced on hypersurfaces of spaces with a parallel structure. Hypo $SU(3)$-structures are also called half-flat structures, whereas hypo G_2-structures are often called cocalibrated structures. R. Bryant shows in [3] that in the real analytic category, the embedding problem for hypo $SU(3)$ and G_2-structures can be solved. Bryant also provided counterexamples in the smooth category. The embedding problem for $SU(2)$-structures in dimension five was solved by D. Conti and S. Salamon in [7], cf. also [6].

The purpose of this article is to describe a unifying approach to all of the above embedding problems. We reduce the $SU(2)$ and $SU(3)$ embedding problem to the G_2-case, which will be studied in terms of gauge deformations, i.e. automorphism of the tangent bundle. Since the structure tensor $\varphi \in \Omega^3(M)$ of a G_2-structure is stable, any smooth deformation φ_t can be described by a family of gauge deformations $A_t \in C^\infty(\text{Aut}(TM))$ via $\varphi_t = A_t \varphi$. It seems to be coincidence, that in the G_2-case, the intrinsic torsion T takes values in the G_2-module $\mathfrak{gl}(7)$ and therefore can be regarded again as an (infinitesimal) gauge deformation. In Proposition 3.1 we show that the intrinsic torsion flow for G_2-structures

$$\dot{A}_t = T_t \circ A_t$$

can be regarded as a generalization of Hitchin’s flow equation, and hence as a generalization of the $SU(2)$, $SU(3)$ and G_2-embedding problem. We describe the evolution of the metric and the intrinsic torsion under the intrinsic torsion flow, cf. Theorem 3.2 As a consequence of the Cheeger-Gromoll Splitting Theorem, we prove in Theorem 3.3 and Corollary 3.4 that there are no nontrivial longtime solutions for the embedding problem.

In chapter 2 we develop a conservation law for certain integral curves in Fréchet spaces, cf. Corollary 2.5. The basic idea stems from finite dimensional geometry: If a vector field X is tangent to some submanifold N, then any integral curve of X, which lies initially in N, stays in N for all times. This does not hold for arbitrary integral curves in Fréchet spaces, but the Cauchy-Kowalevski Theorem states - beyond the existence - that the integral curves in question can be developed in a (convergent) power series. This property allows us to prove that the intrinsic torsion flow preserves certain compatibility conditions, which implies that for any real analytic hypo $SU(2)$, $SU(3)$ and G_2-structure on a compact manifold, the embedding problem admits a unique real analytic solution. Moreover, the solution
can be described by a family of gauge deformations
\[A_t = \sum_{k=0}^{\infty} \frac{t^k}{k!} A_0^{(k)}, \]
where the series converges in the \(C^\infty \)-topology on \(C^\infty(\text{End}(TM)) \).

Our technique seems to be applicable to a wide class of evolution problems, where the initial structure is real analytic. For instance, instead of embedding a certain \(G \)-structure into a manifold with a parallel structure, one can ask for an embedding into a space with a nearly parallel structure, cf. [6]. The Cauchy-Kowalevski Theorem 2.12 ensures the existence of a solution for the corresponding evolution equations. This solution has to satisfy certain (non-linear) compatibility conditions. Since Corollary 2.5 can be generalized to integral curves in Fréchet manifolds, it suffices to show that the evolution equations define a vector field which is tangent to the compatibility conditions.

1. The Embedding Problem for Special Geometries

A \(G \)-structure on a manifold \(M \) is a reduction of the structure group of the frame bundle to a certain Lie subgroup \(G \subset GL(n) \). We are interested in the cases where \(M = M^n \) is a compact oriented manifold of dimension \(n \in \{5, 6, 7, 8\} \) and
\[G \in \{SU(2), SU(3), G_2, \text{Spin}(7)\}. \]
The above groups can be realized as the isotropy group of certain model forms \(\varphi_0 \in \Lambda^k \mathbb{R}^n \), under the natural action of \(GL^+(n) \). The corresponding forms \(\varphi \in C^\infty(\Lambda^k T^*M) \) on \(M \) are called the structure tensors of the \(G \)-structure. A positive basis of \(T_p M \), for which \(\varphi \sim \varphi_0 \), is called a Cayley frame for \(\varphi \) and we say that \(\varphi \) is of type \(\varphi_0 \). Since \(G \subset SO(n) \), the structure tensors induce a metric \(g = g(\varphi) \) on \(M \) and we denote by \(\nabla^g \) the Levi-Civita connection of the metric. The structure is called parallel if \(\nabla^g \varphi = 0 \) holds. In the above cases, \(\nabla^g \varphi = 0 \) can be translated into the apparently weaker conditions \(d\varphi = d*\varphi = 0 \).

Example 1.1. A Spin(7)-structure on \(M^8 \) can be described by a single 4-form \(\Psi \) of type
\[\Psi_0 = e^{3456} + e^{3478} + e^{5678} - e^{2358} + e^{2468} - e^{2457} - e^{2367} + e^{1357} - e^{1467} - e^{1458} - e^{1368} + e^{1234} + e^{1256} + e^{1278}, \]
where \(\text{Iso}_{GL(8)}(\Psi_0) = \text{Spin}(7) \) holds. A Spin(7)-structure is parallel if \(d\Psi = 0 \) holds, cf. [14].

Example 1.2. A \(G_2 \)-structure on \(M^7 \) can be described by a single 4-form \(\psi \) of type
\[
\psi_0 = e^{2345} + e^{2367} + e^{4567} - e^{1247} + e^{1357} - e^{1346} - e^{1256},
\]
where \(\text{Iso}_{GL(7)}(\psi_0) = G_2 \) holds. Given an orientation \([\varepsilon]\) for \(M^7 \), we can define a positive volume element \(\varepsilon := \varepsilon(\psi) \in \Lambda^7 T^* M^7 \) and a metric \(g = g(\psi) \), cf. [13]. Then the Hodge dual \(\varphi := *\psi \) is of model type
\[
\varphi_0 = e^{246} - e^{356} - e^{47} + e^{124} + e^{145} + e^{167}.
\]
A \(G_2 \)-structure is parallel if \(d\varphi = d\psi = 0 \) holds.

Example 1.3. A \(SU(3) \)-structure on \(M^6 \) can be described by a 4-form \(\sigma \) and a 3-form \(\rho \) of type
\[
\sigma_0 = e^{1234} + e^{1256} + e^{3456},
\rho_0 = e^{135} - e^{245} - e^{236} - e^{146},
\]
where \(\text{Iso}_{GL(6)}(\sigma_0, \rho_0) = SU(3) \) holds. Given an orientation for \(M^6 \), we can define positive volume elements \(\omega := \omega(\sigma, \rho) \in \Lambda^6 T^* M^6 \), cf. [13]. We consider \(\sigma \) as an element \(\sigma \in \text{Hom}(\Lambda^2 T^* M^6, \Lambda^2 T^* M^6) \) and define
\[
\omega := \frac{1}{2} \sigma(\omega^*) \in \Lambda^2 T^* M^6,
\]
where \(\omega^* \in \Lambda^2 T^* M^6 \) is defined by \(\sigma = \omega^* \otimes \varepsilon(\sigma) \in \Lambda^2 T^* M^6 \otimes \Lambda^6 T^* M^6 \). Then \(\omega \) is of type \(\omega_0 = e^{12} + e^{34} + e^{56} \) and
\[
2\alpha(X)\omega := \rho \wedge (X,\rho) \wedge \alpha,
\hat{\rho} := -I(\rho),\rho,\quad 2g(X, Y)\omega := (X,\rho) \wedge (Y,\rho) \wedge \omega,
\]
\((X,Y) \in TM^6, \alpha \in \Lambda^1 T^* M^6 \) define tensors of type \(\mu_0 = e_1 \wedge e_2 + \ldots + e_5 \wedge e_6 \), \(\hat{\mu}_0 = e^{136} - e^{240} + e^{235} + e^{145} \) and \(\gamma_0 = \sum_{i=1}^{6} e^i \otimes e^i \), respectively. A \(SU(3) \)-structure is parallel if \(d\omega = d\rho = d\hat{\rho} = 0 \) holds.

Example 1.4. A \(SU(2) \)-structure on \(M^5 \) can be described by a 2-form \(\omega_1 \) and two 3-forms \(\rho_2 \) and \(\rho_3 \) of type
\[
\omega_1 = e^{23} + e^{45},
\rho_2 = e^{124} - e^{135},
\rho_3 = e^{125} + e^{134},
\]
where \(\text{Iso}_{GL(5)}(\omega_1, \rho_2, \rho_3) = SU(2) \) holds, cf. Lemma [4.1]. Given an orientation for \(M^5 \), we can define a positive volume element \(\varepsilon := \varepsilon(\omega_1, \rho_2, \rho_3) \in \Lambda^5 T^* M^5 \), see
Lemma 4.2. Then
\[2\alpha(X)\varepsilon := (X \cdot \rho_2) \wedge \rho_2,\]
\[\omega_2(X,Y)\varepsilon := -(X \cdot \omega_1) \wedge (Y \cdot \omega_1) \wedge \rho_2,\]
\[\omega_3(X,Y)\varepsilon := -(X \cdot \omega_2) \wedge (Y \cdot \omega_1) \wedge \rho_3,\]
\[g(X,Y)\varepsilon := \alpha(X)\alpha(Y)\varepsilon + \alpha \wedge \omega_1 \wedge (X \cdot \omega_2) \wedge (Y \cdot \omega_3),\]
\[(X,Y \in TM^6)\text{ define tensors of type } \alpha_0 = e_1, \omega_2 = e^{24} - e^{35}, \omega_3 = e^{25} + e^{34} \text{ and } g_0 = \sum_{i=1}^5 e^i \otimes e^i, \text{ respectively.}\]

In the previous examples, the model tensors in dimension \(n + 1\) can be constructed from the model tensors in dimension \(n\). This is due to the fact that the inclusions
\[SU(2) \subset SU(3) \subset G_2 \subset \text{Spin}(7)\]
can be realized as isotropy groups of certain unit vectors. In the following we will consider families of structures on \(M\) which depend on a parameter \(t \in I \subset \mathbb{R}\) and evolve under certain evolution equations. These equations actually guarantee that the induced structure on \(I \times M\) is parallel. For instance, consider a family of \(G_2\)-structures \(\psi_t\) on \(M^7, t \in I\). Then
\[\Psi := \psi_t + dt \wedge \varphi_t\]
defines a \(\text{Spin}(7)\)-structure on \(M^8 := I \times M^7\) and
\[d^8\Psi = d^7\psi_t + dt \wedge \dot{\psi}_t - dt \wedge d^7\varphi_t = d^7\psi_t + dt \wedge (\dot{\psi}_t - d^7\varphi_t),\]
where \(d^7, d^8\) denotes the exterior differential on \(M^7, M^8\), respectively. Hence the \(\text{Spin}(7)\)-structure is parallel if and only if \(d^7\dot{\psi}_t = 0\) and \(\dot{\psi}_t = d\varphi_t\). The second equation can be regarded as an evolution equation for the initial structure \(\varphi := \varphi_{t=0}\), whereas \(G_2\)-structures with \(d\psi_t = 0\) are called hypo structures. Note that the evolution equation preserves the hypo condition \(d\psi = 0\). In the following Proposition we list the lifting maps for the \(SU(2), SU(3)\) and \(G_2\)-case, the hypo condition for the initial structure and the evolution equations to obtain parallel structures on \(I \times M^n\).

Proposition 1.5. Let \(M^n\) be a manifold of dimension \(n \in \{5, 6, 7\}\), equipped with a family of
\[G_n := \begin{cases} SU(2) & , n = 5 \\ SU(3) & , n = 6 \\ G_2 & , n = 7 \\ (\text{Spin}(7) & , n = 8) \end{cases}\]
structures. Then the lift in the following table defines a \(G_{n+1}\)-structure on \(M^{n+1} := I \times M^n\):
\[
\begin{array}{|c|c|c|c|}
\hline
n & \text{Lift} & \text{Hypo Condition} & \text{Evolution} \\
\hline
5 & \omega := \omega_1 + dt \wedge \alpha & 0 = d\omega_1 & \dot{\omega}_1 = d\alpha \\
& \sigma := \frac{1}{2} \omega_1^2 + dt \wedge \alpha \wedge \omega_1 & 0 = d\rho_2 & \dot{\rho}_2 = d\omega_3 \\
& \rho := -\rho_3 + dt \wedge \omega_2 & 0 = d\rho_3 & \dot{\rho}_3 = -d\omega_2 \\
& \hat{\rho} := \rho_2 + dt \wedge \omega_3 & & \\
\hline
6 & \varphi := \rho + dt \wedge \omega & 0 = d\rho & \dot{\rho} = d\omega \\
& \psi := \sigma - dt \wedge \hat{\rho} & 0 = d\sigma & \dot{\sigma} = -d\hat{\rho} \\
\hline
7 & \Psi := \psi + dt \wedge \varphi & 0 = d\psi & \dot{\psi} = d\varphi \\
\hline
\end{array}
\]

(1) The structure on \(M^{n+1}\) is parallel if and only if the initial structure is hypo and evolves according to the evolution equations from the table.

(2) The metric of the \(G_{n+1}\)-structure on \(I \times M^n\) is given by \(g = dt^2 + g_t\), where \(g_t\) is the family of metrics induced by the \(G_n\)-structures on \(M^n\).

Proof: Choosing a Cayley frame \((E_1(t), ..., E_n(t))\) for the family of \(G_n\)-structures, we obtain a Cayley frame for the lift by

\[
\left(\frac{d}{dt}, E_1(t), ..., E_n(t)\right).
\]

This proves that the lift actually defines a \(G_{n+1}\)-structure and that the metric is given by the formula in (2). The proof of (1) is similar to the \(G_2\)-case.

\[\square\]

Definition 1.6. Let \(M^n\) be a manifold of dimension \(n \in \{5, 6, 7\}\), equipped with a hypo \(G_n\)-structure. A family of \(G_n\)-structures which solves the evolution equations from Proposition 1.5 and equals the initial structure at \(t = 0\) is called a solution of the embedding problem for the initial \(G_n\)-structure.

The lift from Proposition 1.5 does not preserve the hypo condition. This motivates

Definition 1.7. Let \(M^n\) be a manifold of dimension \(n \in \{5, 6\}\), equipped with a \(G_n\)-structure. We call

\[
\begin{array}{|c|c|c|}
\hline
n = 5 & n = 6 \\
\hline
\omega := \omega_3 + d\theta \wedge \alpha & \varphi := -\hat{\rho} + d\theta \wedge \omega \\
\sigma := \frac{1}{2} \omega_3^2 + d\theta \wedge \rho_3 & \psi := \sigma - d\theta \wedge \rho \\
\rho := \rho_2 - d\theta \wedge \omega_1 & \hat{\rho} := -\alpha \wedge \omega_1 - d\theta \wedge \omega_2 \\
\hline
\end{array}
\]

the hypo lift of the \(G_n\)-structure to \(S^1 \times M^n\). Conversely, given a \(G_{n+1}\)-structure on a manifold \(M^{n+1}\), we obtain a \(G_n\)-structure on any oriented hypersurface \(i : M^n \hookrightarrow M^{n+1}\) by
\[n = 5 \quad \begin{array}{c|c}
\omega_1 := -i^*(\frac{\partial}{\partial \rho} \rho) \\
\rho_2 := i^* \rho \\
\rho_3 := i^*(\frac{\partial}{\partial \sigma} \sigma)
\end{array} \quad n = 6 \quad \begin{array}{c|c}
\rho := -i^*(\frac{\partial}{\partial \psi} \psi) \\
\sigma := i^* \psi
\end{array} \]

where \(\frac{\partial}{\partial \theta} \) is a global vector field along \(i : M^n \hookrightarrow M^{n+1} \), which is orthonormal to \(M^n \). We call the \(G_n \)-structure the structure induced by the \(G_{n+1} \)-structure and \(\frac{\partial}{\partial \theta} \).

Note that we just applied the lifts from Proposition 1.5 to the structures

\[(\alpha, \omega_3, -\omega_1, -\omega_2) = A(\alpha, \omega_1, \omega_2, \omega_3), \]

respectively,

\[(\omega, -\tilde{\rho}, \rho) = I(\omega, \rho, \tilde{\rho}), \]

where \(A \in GL^+(5) \) is defined by

\[A(e_1, \ldots, e_5) := (e_1, e_3, e_4, e_2, e_5). \]

Lemma 1.8. The hypo lift maps hypo structures to hypo structures.

Proof: In the \(SU(2) \)-case, we obtain \(d\rho = 0 \) if \(d\omega_1 = d\rho_2 = 0 \). The compatibility condition \(\omega_2^3 = \omega_1^2 \) and \(dp_3 = 0 \) imply \(d\sigma = 0 \). For a hypo \(SU(3) \)-structure we obtain immediately \(d\psi = d\sigma + d\theta \wedge d\rho = 0 \).

\[\square \]

We will now study the compatibility of the hypo lift with the evolution equations from Proposition 1.5.

Lemma 1.9. (1) Suppose \(\psi \) is a family of \(G_2 \)-structures on \(M^7 = S^1 \times M^6 \) which is the hypo lift of some family of \(SU(3) \)-structure \((\rho, \sigma) \) on \(M^6 \). Then

\[\dot{\psi} = d\varphi \quad \Leftrightarrow \quad \begin{cases}
\dot{\rho} = d\omega \\
\dot{\sigma} = -d\tilde{\rho}
\end{cases} \]

(2) Suppose \((\rho, \sigma) \) is a family of \(SU(3) \)-structures on \(M^6 = S^1 \times M^5 \) which is the hypo lift of some family of \(SU(2) \)-structure \((\omega_1, \rho_2, \rho_3) \) on \(M^5 \). Then

\[\begin{cases}
\dot{\rho} = d\omega \\
\dot{\sigma} = -d\tilde{\rho}
\end{cases} \quad \Leftrightarrow \quad \begin{cases}
\dot{\omega}_1 = d\alpha \\
\dot{\rho}_2 = d\omega_3 \\
\dot{\rho}_3 = -d\omega_2 \\
(\frac{1}{2} \dot{\omega}_3^2) = d(\alpha \wedge \omega_1)
\end{cases} \]
Proof: By assumption we have \(\psi = \sigma - d\theta \wedge \rho \) and \(\varphi = -\hat{\rho} + d\theta \wedge \omega \). Hence

\[
\dot{\psi} = \dot{\sigma} - d\theta \wedge \dot{\rho} \quad \text{and} \quad d\varphi = -d\hat{\rho} - d\theta \wedge d\omega
\]

and part (1) follows. Similarly for part (2),

\[
\omega = \omega_3 + d\theta \wedge \alpha, \quad \sigma = \frac{1}{2}\omega_3^2 + d\theta \wedge \rho_3,
\]

\[
\rho = \rho_2 - d\theta \wedge \omega_1, \quad \hat{\rho} = -\alpha \wedge \omega_1 - d\theta \wedge \omega_2
\]

gives

\[
\dot{\rho} = \dot{\rho}_2 - d\theta \wedge \dot{\omega}_1,
\]

\[
d\omega = d\omega_3 - d\theta \wedge d\alpha,
\]

and

\[
\dot{\sigma} = \left(\frac{1}{2}\omega_3^2 \right) + d\theta \wedge \dot{\rho}_3,
\]

\[
-\dot{d}\hat{\rho} = d(\alpha \wedge \omega_1) - d\theta \wedge d\omega_2.
\]

\[\square\]

Lemma 1.10. Let \(\psi \) be a \(G_2 \)-structure on \(M^7 \) with metric \(g \).

(1) If \(M^7 = S^1 \times M^6 \), then \(\psi \) is the hypo lift of some \(SU(3) \)-structure on \(M^6 \) if and only if

\[
L_{\frac{\partial}{\partial \theta}} \psi = 0, \quad g(\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \theta}) = 1.
\]

(2) If \(M^7 = S^1_1 \times S^1_1 \times M^5 \), then \(\psi \) is the hypo lift of some \(SU(2) \)-structure on \(M^5 \) if and only if

\[
L_{\frac{\partial}{\partial \theta^i}} \psi = 0, \quad g(\frac{\partial}{\partial \theta^i}, \frac{\partial}{\partial \theta^j}) = \delta_{ij},
\]

for \(i, j = 1, 2 \).

Proof: If \(\psi \) is the hypo lift of some \(SU(2) \) or \(SU(3) \)-structure, we get \(L_{\frac{\partial}{\partial \theta^i}} \psi = 0 \) and the orthogonality condition on the \(S^1 \)-directions. Conversely, define forms \(\sigma \) and \(\rho \) on \(M^7 \) by

\[
\psi = \frac{\partial}{\partial \theta^i} (d\theta \wedge \psi) + d\theta \wedge \left(\frac{\partial}{\partial \theta^i} \psi \right).
\]

Since \(\frac{\partial}{\partial \theta^i} \) is orthonormal to \(M^6 \) and \(G_2 \) acts transitively on \(S^6 \), we can find a Cayley frame for which \(\sigma \) and \(\rho \) are of model type. Hence \((\sigma, \rho) \) defines a \(SU(3) \)-structure on each hypersurface \(\{ e^{i\theta} \} \times M^6 \). Since

\[
0 = L_{\frac{\partial}{\partial \theta^i}} \sigma - d\theta \wedge L_{\frac{\partial}{\partial \theta^i}} \rho
\]

implies \(L_{\frac{\partial}{\partial \theta^i}} \sigma = L_{\frac{\partial}{\partial \theta^i}} \rho = 0 \), we see that \(\sigma \) and \(\rho \) are actually constant along the flow of \(\frac{\partial}{\partial \theta^i} \). Part (2) of the Lemma follows similarly, using that \(G_2 \) acts transitively on
pairs of orthonormal vectors.

2. Integral Curves in Fréchet Spaces and the Cauchy-Kowalevski Theorem

Hamilton [12] gives an introduction to Fréchet manifolds which goes far beyond of what we require for our purposes. Although Proposition [2.4] and Corollary [2.5] can be generalized to Fréchet manifolds, we focus on Fréchet spaces to keep the technical effort at a minimum.

A locally convex topological vector space F is a vector space with a collection of seminorms $\{\|\cdot\|_n\}_{n \in \mathbb{N}}$, i.e. functions $\{\|\cdot\|_n\}_n : F \to \mathbb{R}$ which satisfy

$$\|f\| \geq 0, \quad \|f + g\| \leq \|f\| + \|g\| \quad \text{and} \quad \|\lambda f\| = |\lambda|\|f\|,$$

for all $f, g \in F$ and scalars λ. Such a family defines a unique topology which is metrizable if and only if \mathbb{N} is countable. In this case the topology is characterized by the property

$$\lim_{k \to \infty} f_k = f \in F \iff \lim_{k \to \infty} \|f_k - f\|_n = 0 \text{ for all } n \in \mathbb{N}.$$

The topology is Hausdorff if and only if $\|f\|_n = 0$ for all $n \in \mathbb{N}$, implies that $f = 0$. The space is sequentially complete if every Cauchy sequence converges, where f_k is a Cauchy sequence if it is a Cauchy sequence for every seminorm $\|\cdot\|_n$.

Definition 2.1. A Fréchet space is a locally convex topological vector space, which is in addition metrizable, Hausdorff and complete.

Example 2.2. Suppose $F \to M$ is a vector bundle over a compact manifold M. Then the vector space

$$\mathcal{F} := C^\infty(F)$$

of smooth sections of F is a Fréchet space, where the collection of seminorms

$$\|f\|_n := \sum_{j=0}^n \sup_{p \in M} |(\nabla^{(j)} f)(p)|$$

can be defined after choosing Riemannian metrics and connections on TM and F, cf. [12] Example 1.1.5. The induced topology is the C^∞ topology on \mathcal{F}. Given an open subset $U \subset F$, we consider the subset of all sections in \mathcal{F}, whose
image lies in \(U \),

\[\mathcal{U} := \{ f \in F \mid f(M) \subset U \}. \]

For \(f \in \mathcal{U} \) we can find \(\varepsilon > 0 \) such that

\[f \in B^0_\varepsilon(f) := \{ \tilde{f} \in F \mid \| \tilde{f} - f \|_0 < \varepsilon \} \subset \mathcal{U}. \]

Since \(B^0_\varepsilon(f) \subset F \) is open, \(\mathcal{U} \) is an open subset of the Fréchet space \(F \).

Smooth maps between Fréchet spaces can be defined as follows: Let \(U \subset F \) be an open subset of a Fréchet space \(F \) and \(P : U \to \mathcal{E} \) a continuous and nonlinear map into another Fréchet space \(\mathcal{E} \). We say that \(P \) is \(C^1 \) on \(U \) if for every \(f \in U \) and every \(v \in F \) the limit

\[DP(f)v := \lim_{t \to 0} \frac{1}{t}(P(f + tv) - P(f)) \]

exists and the map \(DP : U \times F \to \mathcal{E} \) is continuous. Consequently, we say that \(P \) is \(C^k \) on \(U \) if \(P \) is \(C^{k-1} \) and the limit

\[D^{(k)}P(f)v \{ v_1, \ldots, v_k \} := \lim_{t \to 0} \frac{1}{t} \left(D^{(k-1)}P(f+tv)v \{ v_1, \ldots, v_{k-1} \} - D^{(k-1)}P(f)v \{ v_1, \ldots, v_{k-1} \} \right) \]

exists for all \(f \in U \) and \(v_1, \ldots, v_k \in F \), and the map \(D^{(k)}P : U \times F \times \ldots \times F \to \mathcal{E} \) is continuous. We call \(P \) a smooth map on \(U \) if \(P \) is \(C^k \) for all \(k \in \mathbb{N} \). We summarize Corollary 3.3.5 and Theorem 3.6.2 from [12] in the following:

Theorem 2.3. (1) If \(P : U \subset F \to \mathcal{E} \) is \(C^1 \) and \(c(t) \in U \subset F \) is a parametrized \(C^1 \) curve, then \(P \circ c(t) \) is a parametrized \(C^1 \) curve and

\[\frac{\partial}{\partial t}(P \circ c(t)) = DP(c(t)) \dot{c}(t). \]

(2) If \(P : U \subset F \to \mathcal{E} \) is \(C^k \), then for every \(f \in U \)

\[D^{(k)}P(f)v \{ v_1, \ldots, v_k \} \]

is completely symmetric and linear separately in \(v_1, \ldots, v_k \in F \).

In the following we will consider curves \(c(t) \in F \) in a Fréchet space \(F \), which are integral curves of a vector field that is tangent to some subspace \(\mathcal{E} \subset F \). In finite dimension we would expect that any such integral curve with \(c(0) \in \mathcal{E} \) actually stays in the subspace for all times. This conclusion fails for Fréchet spaces, as was pointed out to us by Christian Bär: Consider \(F := C^\infty[1,2] \) and \(\mathcal{E} := \{ 0 \} \subset \mathcal{M} \).

Then

\[c_t(x) := \begin{cases} (4\pi t)^{-\frac{1}{2}} \exp(-\frac{x^2}{4t}), & \text{for } t > 0 \\ 0, & \text{for } t \leq 0 \end{cases} \]

10
solves $\dot{c}_t = \Delta c_t = \partial^2 c_t / \partial x^2$ and hence defines an integral curve of the vector field $X(c) := \Delta c$. Although X is tangent to \mathcal{E}, i.e. $X(0) = 0$, and $c_0 = 0 \in \mathcal{E}$, the curve doesn’t stay in \mathcal{E}, since $c_t \neq 0$, for $t > 0$. Note also that $t \mapsto c_t(x)$ is not real analytic in $t = 0$.

Proposition 2.4. Suppose $\mathcal{E} \subset \mathcal{F}$ is a closed subspace of the Fréchet space \mathcal{F} and that $X : U \subset \mathcal{F} \to \mathcal{F}$ is a smooth map defined on some open subset $U \subset \mathcal{F}$. Let $f \in \mathcal{F}$ and assume that $X|_{U \cap \mathcal{E}_f} : U \cap \mathcal{E}_f \to \mathcal{E}_f$, where $\mathcal{E}_f := \{f\} + \mathcal{E}$. If a smooth curve $c : (-\varepsilon, \varepsilon) \to \mathcal{F}$ satisfies $c(0) \in U \cap \mathcal{E}_f$ and $X \circ c(t) = \dot{c}(t)$, where $\dot{c} : (-\varepsilon, \varepsilon) \to \mathcal{F}$ is the derivative of $c(t)$ by t, then for all $k \geq 1$

$$c^{(k)}(0) \in \mathcal{E},$$

where $c^{(k)} : (-\varepsilon, \varepsilon) \to \mathcal{F}$ is the k^{th} derivative of $c(t)$ by t.

Proof: First we prove by induction on k that the k^{th} differential $D^{(k)}X$ of $X : \mathcal{F} \to \mathcal{F}$ satisfies

$$D^{(k)}X_{|U \cap \mathcal{E}_f} : U \cap \mathcal{E}_f \times \mathcal{E} \times \ldots \times \mathcal{E} \to \mathcal{E}.$$

For $k = 0$ this is just the assumption $X|_{U \cap \mathcal{E}_f} : U \cap \mathcal{E}_f \to \mathcal{E}_f$. For $v_0 \in U \cap \mathcal{E}_f$ and $v_1, \ldots, v_k \in \mathcal{E}$ we have by definition $D^{(k+1)}X(v_0)\{v_1, \ldots, v_k+1\}$

$$= \lim_{s \to 0} \frac{1}{s} (D^{(k)}X(v_0 + sv_{k+1})\{v_1, \ldots, v_k\} - D^{(k)}X(v_0)\{v_1, \ldots, v_k\}),$$

and since \mathcal{E} is closed, we conclude that (1) holds for $k + 1$. Next we show that for $k \geq 0$ and any choice of smooth curves $t \mapsto v_0(t) \in U$ and $t \mapsto v_1(t), \ldots, v_k(t) \in \mathcal{F}$

$$\frac{\partial}{\partial t} D^{(k)}X(v_0(t))\{v_1(t), \ldots, v_k(t)\} = D^{(k+1)}X(v_0(t))\{v_1(t), \ldots, v_k(t), \dot{v}_0(t)\}$$

$$+ \sum_{j=1}^{k} D^{(k)}X(v_0(t))\{v_1(t), \ldots, \dot{v}_j(t), \ldots, v_k(t)\}$$

(2)
holds. Applying Theorem 2.3 (1) to the map $D^{(k)}X : U \times F \times \ldots \times F \to F$, we get

$$\frac{\partial}{\partial t}D^{(k)}X(v_0(t), \ldots, v_k(t))$$

$$= D(D^{(k)}X)(v_0(t), \ldots, v_k(t))\{\dot{v}_0(t), \ldots, \dot{v}_k(t)\}$$

$$= \lim_{s \to 0} \frac{1}{s} \left(D^{(k)}X(v_0(t) + s\dot{v}_0(t))\{v_1(t) + s\dot{v}_1(t), \ldots, v_k(t) + s\dot{v}_k(t)\} - D^{(k)}X(v_0(t))\{v_1(t), \ldots, v_k(t)\} \right)$$

and (2) follows, since $D^{(k)}X$ is linear in the arguments in $\{\ldots\}$, cf. Theorem 2.3 (2). We will now show by induction on k that $c^{(k)}(0) \in E$ holds. For $k = 1$ we have $\dot{c}(0) = X \circ c(0) \in E$ by assumption. Since $c(t) = X \circ c(t) = D^{(0)}X(c(t))$ and $c(t) \in U$ for sufficiently small t, we can apply (2) to see that $c^{(k+1)}(t)$, again for sufficiently small t, can be expressed as a linear combination of

$$D^{(j)}X(c(t))\{v_1(t), \ldots, v_j(t)\},$$

where $j \in \{1, \ldots, k+1\}$ and $v_1(t), \ldots, v_j(t) \in \{c^{(l)}(t) | 1 \leq l \leq k\}$. Since $c(0) \in U \cap E$, we get from $c^{(1)}(0), \ldots, c^{(k)}(0) \in E$ and (1)

$$D^{(j)}X(c(0))\{v_1(0), \ldots, v_j(0)\} \in E$$

and hence $c^{(k+1)}(0) \in E$.

The following corollary can be regarded as a conservation law for certain integral curves in Fréchet spaces.

Corollary 2.5. If the curve $c : (-\varepsilon, \varepsilon) \to F$ from Proposition 2.4 satisfies for all $t \in (-\varepsilon, \varepsilon)$

$$c(t) = \sum_{k=0}^{\infty} \frac{t^k}{k!} c^{(k)}(0) \in F,$$

where the series converges w.r.t. the Fréchet topology in F, then

$$c(t) - c(0) \in E,$$

for all $t \in (-\varepsilon, \varepsilon)$.

Proof: From Proposition 2.4 we get $c^{(k)}(0) \in E$ for all $k \geq 1$ and hence

$$c(t) - c(0) = \sum_{k=1}^{\infty} \frac{t^k}{k!} c^{(k)}(0) \in E,$$

since $E \subset F$ is closed and the series converges in F. □
A formal power series in \(X = (X_1, \ldots, X_n) \) with coefficients in \(\mathbb{R} \) is an expression of the form

\[
S(X) = \sum_{p \in \mathbb{N}^n} a_p X^p,
\]
where \(a_p \in \mathbb{R} \) and \(X^p := X_1^{p_1} \cdots X_n^{p_n} \), for \(p = (p_1, \ldots, p_n) \in \mathbb{N}^n \). Given a formal power series \(S(X) \), we define

\[
\Gamma := \{ r = (r_1, \ldots, r_n) \mid r_i \geq 0 \text{ and } \sum_{p \in \mathbb{N}^n} |a_p| r^p < \infty \}
\]
and denote by \(\Delta \) the interior of \(\Gamma \), called the domain of convergence of the series.

Hence the series

\[
S(x) = \sum_{p \in \mathbb{N}^n} a_p x^p
\]
is for every \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n \) with \(|x| = (|x_1|, \ldots, |x_n|) \in \Gamma \) absolute convergent.

We recall the following result:

Proposition 2.6. Suppose \(S(X) \) is a formal power series with domain of convergence \(\Delta \). For \(\bar{x} = (\bar{x}_1, \ldots, \bar{x}_n) \in \mathbb{R}^n \) with \(|\bar{x}| \in \Delta \) and \(r_1, \ldots, r_n \) with \(0 < r_i < |\bar{x}_i| \), define

\[
K := \{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid |x_i| \leq r_i \}.
\]

(1) For any subset \(P \subseteq \mathbb{N}^n \), the series

\[
S_P(x) := \sum_{p \in P} a_p x^p
\]
converges absolutely for all \(x \in K \). In particular, the series \(S(x) := \sum_{p \in \mathbb{N}^n} a_p x^p \) converges absolutely for \(x \in K \).

(2) Suppose that \(P_N \subseteq \mathbb{N}^n \) is a family of subsets, \(N \in \mathbb{N} \), such that \(\lim_{N \to \infty} P_N = \mathbb{N}^n \). Then

\[
S_N(x) := \sum_{p \in P_N} a_p x^p
\]
converges uniformly on \(K \) to the function \(S : K \to \mathbb{R}, x \mapsto S(x) \).

Proof: Since \(|\bar{x}| \in \Delta \) we can find \(C > 0 \) such that

\[
|a_p \bar{x}^p| \leq C, \quad \text{for all } p \in \mathbb{N}^n.
\]

Hence for \(x \in K \)

\[
|a_p x^p| = |a_p \bar{x}_1^{p_1} \cdots \bar{x}_n^{p_n} |x_1^{p_1} \cdots x_n^{p_n}| \leq C \left(\frac{r_1}{|x_1|} \right)^{p_1} \cdots \left(\frac{r_n}{|x_n|} \right)^{p_n}.
\]
Since $r_i/|\bar{x}_i| < 1$, we can apply the method of majorants to see that $S_P(x)$ converges absolutely for $x \in K$. To prove uniform convergence consider

$$\sup_{x \in K} |S(x) - S_N(x)| = \sup_{x \in K} \left| \sum_{p \in \mathbb{N}^n \setminus P_N} a_p x^P \right| \leq C \sum_{p \in \mathbb{N}^n \setminus P_N} \left(\frac{r_1}{|\bar{x}_1|} \right)^{p_1} \cdots \left(\frac{r_n}{|\bar{x}_n|} \right)^{p_n}$$

Given $\varepsilon > 0$, we can choose M large, so that $\sum_{i=1}^{\infty} \sum_{p_i=M+1}^{\infty} \left(\frac{r_i}{|\bar{x}_i|} \right)^{p_i} \leq \frac{\varepsilon}{nCC_i}$, for $i = 1, \ldots, n$, where

$$C_i := \sum_{\hat{p} \in \mathbb{N}^{n-1}} \left(\frac{r_1}{|\bar{x}_1|} \right)^{p_1} \cdots \left(\frac{r_i}{|\bar{x}_i|} \right)^{p_i} \cdots \left(\frac{r_n}{|\bar{x}_n|} \right)^{p_n} < \infty \quad \text{(geometric series)}.$$

The notation $\hat{.}$ means that the corresponding factor is omitted. Since $\lim_{N \to \infty} P_N = \mathbb{N}^n$, we can find $N = N(M)$, such that $\{0, \ldots, M\}^n \subset P_N$. Hence

$$\sup_{x \in K} |S(x) - S_N(x)| \leq C \sum_{p \in \mathbb{N}^n \setminus \{0, \ldots, M\}^n} \left(\frac{r_1}{|\bar{x}_1|} \right)^{p_1} \cdots \left(\frac{r_n}{|\bar{x}_n|} \right)^{p_n} \leq \varepsilon.$$

\[\square \]

Definition 2.7. Let $U \subset \mathbb{R}^n$ open and $x_0 \in U$.

1. A function $f : U \to \mathbb{R}$ is called real analytic in $x_0 \in U$ if there exists a formal power series S with

$$f(x) = S(x - x_0),$$

for all x in a neighborhood of x_0.

2. A function $f : U \to \mathbb{R}$ is called real analytic in U if f is real analytic for every $x_0 \in U$.

3. A function $F = (f_1, \ldots, f_m) : U \to \mathbb{R}^m$ is called real analytic in U if each component $f_i : U \to \mathbb{R}$ is real analytic in U.

Note that the coefficients of S can be computed in terms of partial derivatives, which shows that S is uniquely determined by the condition $f(x) = S(x - x_0)$. Moreover we have the following basic properties, cf. [5] p.123:

Lemma 2.8.

1. If $f : U \to \mathbb{R}$ is real analytic in $x_0 \in U$, then it is differentiable in a neighborhood of x_0 and the derivatives are again real analytic functions...
in $x_0 \in U$.

(2) If f and g are real analytic in x_0, then the product fg is real analytic in x_0.

(3) If $f : U \to \mathbb{R}$ is real analytic, then $1/f$ is real analytic in all points $x \in U$, where $f(x) \neq 0$.

(4) Compositions of real analytic functions are again real analytic.

A manifold M is called real analytic if it admits an atlas with real analytic transition functions. Similarly to the smooth category one can define real analytic vector bundles over M.

In the following we will develop a global version of the Cauchy-Kowalevski Theorem, cf. [4], III. Theorem 2.1:

Theorem 2.9. Let t be a coordinate on \mathbb{R}, $x = (x_i)$ be coordinates on \mathbb{R}^n, $y = (y_j)$ be coordinates on \mathbb{R}^s and let $z = (z_j^i)$ be coordinates on \mathbb{R}^{ns}. Let $D \subset \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^s \times \mathbb{R}^{ns}$ open, and let $G : D \to \mathbb{R}^s$ be a real-analytic mapping. Let $D_0 \subset \mathbb{R}^n$ be open and $f : D_0 \to \mathbb{R}^s$ be a real-analytic mapping with Jacobian $Df(x) \in \mathbb{R}^{ns}$, i.e. $z_j^i(Df(x)) = \partial f_j^i(x)/\partial x_i$, so that $\{(t_0, x, f(x), Df(x)) \mid x \in D_0\} \subset D$ for some $t_0 \in \mathbb{R}$.

Then there exists an open neighborhood $D_1 \subset \mathbb{R} \times D_0$ of $\{t_0\} \times D_0$ and a real-analytic mapping $F : D_1 \to \mathbb{R}^s$ which satisfies

$$\begin{align*}
\frac{\partial F}{\partial t}(t,x) &= G(t,x,F(t,x),\frac{\partial F}{\partial x}(t,x)) \\
F(t_0,x) &= f(x) \quad \text{for all } x \in D_0.
\end{align*}$$

F is unique in the sense that any other real-analytic solution of the above initial value problem agrees with F in some neighborhood of $\{t_0\} \times D_0$.

Remark 2.10. Since the solution $F = (f_1, \ldots, f_s) : D_1 \to \mathbb{R}^s$ from Theorem 2.9 is real analytic, we can develop each component in a convergent power series around $(t_0, x_0) = (0, 0) \in D_1$, i.e.

$$f_i(t,x) = \sum_{k=0}^{\infty} \left(\sum_{p \in \mathbb{N}^n} a_{ikp} x^p \right) t^k = \sum_{k=0}^{\infty} \left(\frac{1}{k!} f_i^{(k)}(0,x) \right) t^k.$$

Applying Proposition 2.6 (2) with $P_N := \{0, \ldots, N\} \times \mathbb{N}^n$ shows that

$$f_i^N(t,x) = \sum_{k=0}^{N} \left(\sum_{p \in \mathbb{N}^n} a_{ikp} x^p \right) t^k = \sum_{k=0}^{N} \frac{1}{k!} f_i^{(k)}(0,x).$$
converges locally uniformly to the function $f_i(t, x)$, for $N \to \infty$. The partial derivatives of a formal power series $S(X)$ are defined by,

$$\frac{\partial S}{\partial X_i} := \sum_{p \in \mathbb{N}^n} p_i a_p X_1^{p_1} \cdots X_i^{p_i-1} \cdots X_n^{p_n}.$$

The formal power series $\frac{\partial S}{\partial X_i}$ has the same domain of convergence Δ as the formal power series S. Moreover, the function $\frac{\partial S}{\partial X_i} : \Delta \to \mathbb{R}$ is the partial derivative of the function $S : \Delta \to \mathbb{R}$ w.r.t. x_i, cf. Satz 3.2 in [5]. Hence we can apply again Proposition 2.6 (2) to see that all partial derivatives of the function $f_i^N(t, x)$ converge locally uniformly to the corresponding partial derivative of $f_i(t, x)$. In summary, the functions

$$F_N(t, x) := \sum_{k=0}^N \frac{t^k}{k!} F^{(k)}(0, x)$$

converge, as $N \to \infty$, locally in C^∞-topology to the solution $F(t, x)$ from Theorem 2.9.

Definition 2.11. Suppose M is a real analytic manifold and $\pi : V \to M$ is a rank s real analytic vector bundle. We call a map

$$X : C^\infty(V) \to C^\infty(V)$$

a real analytic first order differential operator if every point of M has a neighborhood $U \subset M$, which is the domain of a real analytic chart $u : U \to \mathbb{R}^n$, and there exists a real analytic trivialization $(\pi, v) : V|_U \cong U \times \mathbb{R}^s$, together with a real analytic function

$$G : D \subset \mathbb{R}^n \times \mathbb{R}^s \times \mathbb{R}^{ns} \to \mathbb{R}^s,$$

such that for every local section $c : U \subset M \to V$

$$v(X \circ c) = G(u, v \circ c, \frac{\partial c_i}{\partial u_j})$$

holds, where c_i is the i^{th} component of $v \circ c : U \to \mathbb{R}^s$.

We can now prove the following global version of the Cauchy-Kowalevski Theorem,

Theorem 2.12. Suppose $\pi : V \to M$ is a real analytic rank s vector bundle over a compact real analytic manifold M. Let $X : C^\infty(V) \to C^\infty(V)$ be a real analytic first order differential operator and let $c_0 \in C^\infty(V)$ be a real analytic section. Then the initial value problem

$$\begin{cases}
\dot{c}(t) = X \circ c(t) \\
c(0) = c_0
\end{cases}$$

converges locally uniformly to the function $f_i(t, x)$ for $N \to \infty$. The partial derivatives of a formal power series $S(X)$ are defined by,

$$\frac{\partial S}{\partial X_i} := \sum_{p \in \mathbb{N}^n} p_i a_p X_1^{p_1} \cdots X_i^{p_i-1} \cdots X_n^{p_n}.$$

The formal power series $\frac{\partial S}{\partial X_i}$ has the same domain of convergence Δ as the formal power series S. Moreover, the function $\frac{\partial S}{\partial X_i} : \Delta \to \mathbb{R}$ is the partial derivative of the function $S : \Delta \to \mathbb{R}$ w.r.t. x_i, cf. Satz 3.2 in [5]. Hence we can apply again Proposition 2.6 (2) to see that all partial derivatives of the function $f_i^N(t, x)$ converge locally uniformly to the corresponding partial derivative of $f_i(t, x)$. In summary, the functions

$$F_N(t, x) := \sum_{k=0}^N \frac{t^k}{k!} F^{(k)}(0, x)$$

converge, as $N \to \infty$, locally in C^∞-topology to the solution $F(t, x)$ from Theorem 2.9.

Definition 2.11. Suppose M is a real analytic manifold and $\pi : V \to M$ is a rank s real analytic vector bundle. We call a map

$$X : C^\infty(V) \to C^\infty(V)$$

a real analytic first order differential operator if every point of M has a neighborhood $U \subset M$, which is the domain of a real analytic chart $u : U \to \mathbb{R}^n$, and there exists a real analytic trivialization $(\pi, v) : V|_U \cong U \times \mathbb{R}^s$, together with a real analytic function

$$G : D \subset \mathbb{R}^n \times \mathbb{R}^s \times \mathbb{R}^{ns} \to \mathbb{R}^s,$$

such that for every local section $c : U \subset M \to V$

$$v(X \circ c) = G(u, v \circ c, \frac{\partial c_i}{\partial u_j})$$

holds, where c_i is the i^{th} component of $v \circ c : U \to \mathbb{R}^s$.

We can now prove the following global version of the Cauchy-Kowalevski Theorem,
has a unique real analytic solution $c : (-\varepsilon, \varepsilon) \to C^\infty(V)$, i.e. $c : (-\varepsilon, \varepsilon) \times M \to V$ is real analytic. Moreover, the solution $c(t)$ satisfies

$$c(t) = \sum_{k=0}^{\infty} \left(\frac{t^k}{k!} \right) c_k,$$

where the series converges in the C^∞ topology on $C^\infty(V)$.

Proof: We will first show that we can find local sections $c_t : U \subset M \to V$, which solve the initial value problem locally. Secondly, we prove that the compactness of M ensures the existence of a global solution. Eventually we will use the uniqueness part of the Cauchy-Kowalevski Theorem to prove the uniqueness statement of the Theorem.

By Definition 2.11 we can find a real analytic chart $u : U \subset M \to \mathbb{R}^n$ and a trivialization $(\pi, v) : V|_U \cong U \times \mathbb{R}^s$, such that for each local section $c : U \subset M \to V$

(1) $v(X \circ c) = G(u, v \circ c, \frac{\partial c_i}{\partial u_j})$

holds, where $G : D \subset \mathbb{R}^n \times \mathbb{R}^s \times \mathbb{R}^{ns} \to \mathbb{R}^s$ is real analytic. The map

$$f : D_0 := u(U) \subset \mathbb{R}^n \to \mathbb{R}^s \text{ with } f(x) := v \circ c_0 \circ u^{-1}(x)$$

is real analytic and hence we can find by the Cauchy-Kowalevski Theorem a real analytic solution $F : (-\varepsilon, \varepsilon) \times \tilde{D}_0 \to \mathbb{R}^s$ of

$$\begin{cases}
\frac{\partial F}{\partial t}(t, x) = G(x, F(t, x), \frac{\partial F}{\partial x}(t, x)) \\
F(t_0, x) = f(x) \text{ for all } x \in D_0,
\end{cases}$$

where $\tilde{D}_0 \subset D_0$ is open. Let $\tilde{U} := u^{-1}(\tilde{D}_0) \subset U$ and define for $t \in (-\varepsilon, \varepsilon)$

(2) $c(t) : \tilde{U} \subset M \to V$ by $c(t, p) := v_p^{-1} \circ F(t, u(p))$.

where $v_p : V_p \cong \mathbb{R}^s$ is the isomorphism induced by the local trivialization (π, v). By definition, the map $c : (-\varepsilon, \varepsilon) \times \tilde{U} \subset M \to V$ is real analytic and satisfies

(3) $c(0, p) = v_p^{-1} \circ F(0, u(p)) = v_p^{-1} \circ f(u(p)) = c_0(p)$.

Now we have for $i = 1, \ldots, s$ and $j = 1, \ldots, n$

$$\frac{\partial (v_i \circ c_j)}{\partial u_j}(p) = \frac{\partial}{\partial u_j}(v_i \circ c_j) = (u_*^{-1} \frac{\partial}{\partial x_j} \bigg|_{u(p)}) \cdot (v_i \circ c_j)$$

$$= \frac{\partial}{\partial x_j} \bigg|_{u(p)} \cdot (v_i \circ c_j \circ u^{-1}) = \left. \frac{\partial}{\partial x_j} F_i(t, \cdot) \right|_{u(p)}.$$

(4) $\frac{\partial F_i}{\partial x_j}(t, u(p))$.

17
Remark 2.10

Suppose now we apply the above construction to obtain two local sections

$$T_0 \text{ to prove uniqueness, suppose that we have two real analytic solutions } c_1, c_2 \text{ and since } M \text{ is compact, the series converges in } C^\infty \text{ topology.}

From (4) we get

$$c(t, p) = \sum_{k=0}^\infty \frac{t^k}{k!} c^{(k)}(0, p),$$

i.e. c_i is the desired local solution of the initial value problem. Moreover, we get by Remark 2.10

$$c(t, p) = v_p^{-1} \circ F(t, u(p)) = v_p^{-1}(\lim_{N \to \infty} \sum_{k=0}^N \frac{t^k}{k!} F^{(k)}(0, u(p)))$$

$$= \lim_{N \to \infty} \sum_{k=0}^N \frac{t^k}{k!} F^{(k)}(0, u(p)) = \lim_{N \to \infty} \sum_{k=0}^N \frac{t^k}{k!} c^{(k)}(0, p),$$

i.e.

$$c_1 = \sum_{k=0}^\infty \frac{t^k}{k!} c^{(k)}(0),$$

where the series converges locally in C^∞ topology.

Suppose now we apply the above construction to obtain two local sections

$$c_1(t) : U_1 \subset M \to V \text{ and } c_2(t) : U_2 \subset M \to V,$$

where $t \in (-\epsilon, \epsilon)$, $\epsilon := \min\{\epsilon_1, \epsilon_2\}$ and $U_1 \cap U_2 \neq \emptyset$. Since c_1 and c_2 both solve the initial value problem

$$\begin{cases}
\dot{c}_i(t) = X \circ c_i(t) \\
c_i(0) = c_0,
\end{cases}$$

$i = 1, 2$, we see that $c_1(0) = c_2(0)$ and $\dot{c}_1(0) = \dot{c}_2(0)$ on $U_1 \cap U_2$. Differentiating the equation $\dot{c}_i(t) = X \circ c_i(t)$, shows that $c_i^{(k+1)}(t)$ can be expressed as a linear combination of

$$D^{(j)}(d) X(c_i(t))\{v_1(t), \ldots, v_j(t)\},$$

where $j \in \{1, \ldots, k+1\}$ and $v_1(t), \ldots, v_j(t) \in \{c_i^{(l)}(t) | 1 \leq l \leq k\}$, cf. the proof of Proposition 2.4. Now we obtain by induction $c_1^{(k)}(0) = c_2^{(k)}(0)$ on $U_1 \cap U_2$, for all $k \in \mathbb{N}$. Hence (5) implies $c_1(t) = c_2(t)$ on $U_1 \cap U_2$. If M is compact, we can cover M by finitely many domains U_1, \ldots, U_N of local sections $c_i(t) : U_i \subset M \to V$, which yield a global section $c(t) : M \to V$, where $t \in (-\epsilon, \epsilon)$ and $\epsilon := \min\{\epsilon_1, \ldots, \epsilon_N\}$. From (4) we get

$$c(t) = \sum_{k=0}^\infty \frac{t^k}{k!} c^{(k)}(0),$$

and since M is compact, the series converges in C^∞ topology.

To prove uniqueness, suppose that we have two real analytic solutions $c_1, c_2 : (-\epsilon, \epsilon) \times M \to V$ of the initial value problem. By (1) we have for $k = 1, 2$ and
Now \(F_k(t, x) := v \circ c_k(t) \circ u^{-1}(x) \) satisfies

\[
\frac{\partial F_k}{\partial t}(t, x) = v \circ \dot{c}_k(t) \circ u^{-1}(x) = v \circ X \circ c_k(t) \circ u^{-1}(x)
\]

and by (4)

\[
\frac{\partial c_k(t)}{\partial u_j} \circ u^{-1}(x) = \frac{\partial(v \circ c_k(t))}{\partial u_j}(u^{-1}(x)) = \frac{\partial F_k}{\partial x_j}(t, x),
\]

for \(i = 1, \ldots, s \) and \(j = 1, \ldots, n \). Hence we showed

\[
\frac{\partial F_k}{\partial t}(t, x) = G(x, F_k(t, x), \frac{\partial F_k}{\partial x_j}(t, x)).
\]

Since \(F_1 \) and \(F_2 \) are both real analytic and satisfy

\[
F_1(0, x) = v \circ c_1(0) \circ u^{-1}(x) = v \circ c_0 \circ u^{-1}(x) = v \circ c_2(0) \circ u^{-1}(x) = F_2(0, x),
\]

the uniqueness part of the Cauchy-Kowalevski Theorem yields \(F_1(t, x) = F_2(t, x) \), i.e. \(c_1(t) = c_2(t) \).

\[\square\]

3. The Model Case \(G_2 \subset \text{Spin}(7) \)

Lemma [10] and [11] motivate the conjecture that the embedding problem for hypo \(SU(2) \) and \(SU(3) \)-structures might be reduced to the embedding problem for \(G_2 \)-structures. The reduction to the \(G_2 \)-case has the advantage that no compatibility conditions are involved. To solve the embedding problem for hypo structures we consequently focus on studying the evolution equation

\[
\dot{\psi}_t = d\varphi_t
\]

on a compact seven dimensional manifold \(M \). We will describe the solution \(\psi_t \) by a family of gauge deformations, i.e.

\[
\psi_t = A_t \psi,
\]

where \(A_t \in C^\infty(\text{Aut}(TM)) \). Since the orbit of the model tensor \(\psi \in \Lambda^4\mathbb{R}^7^* \) is open, it follows that any smooth deformation \(\psi_t \) of the initial structure \(\psi \) can be described in such a way. The evolution equation \(\dot{\psi}_t = d\varphi_t \) can be translated into an equation for the family of gauge deformations. This description involves the intrinsic torsion of the \(G_2 \)-structure \(\psi_t \). The intrinsic torsion \(T \in \text{End}(TM) \) of a \(G_2 \)-structure \(\varphi \) is
defined by
\[\nabla^g_X \varphi = -T_X \varphi, \]
where we used that
\[\nabla^g \varphi \in T^* M \otimes \Lambda^3 T^* M \]
and
\[\Lambda^3 T^* M := \{ \alpha \in \Lambda^3 T^* M \mid \alpha = X \cdot \varphi, X \in TM \}, \]
cf. for instance [3]. From \(\psi = \ast \varphi \) it follows that \(d \psi = 2 \text{pr}_{\Lambda^2} (T) \wedge \varphi \) holds. So hypo \(G_2 \)-structures are characterized by \(T \in S^2 (TM) \) w.r.t. the metric \(g \).

Proposition 3.1. Suppose \(\psi_t = A_t \psi \) is a family of \(G_2 \)-structures on \(M^7 \), described by a family of gauge deformations \(A_t \in C^\infty (\text{Aut} (TM^7)) \). If \(T_t \) is the intrinsic torsion of \(\psi_t \), then
\[\dot{\psi}_t = d\varphi_t \iff D_{\psi_t} (A_t \circ A_t^{-1}) = D_{\psi_t} (T_t), \]
where
\[D_{\psi_t} : \text{End} (TM) \to \Lambda^2 T^* M \]
is defined by \(A \mapsto \frac{d}{ds} \bigg|_{s=0} \exp (sA) \psi_t \).

Proof: Since clearly \(\dot{\psi}_t = D_{\psi_t} (A_t A_t^{-1}) \), it suffices to observe that
\[D_{\psi_t} (T_t) (X_1, ..., X_4) = - \sum_{i=1}^4 \psi_t (X_1, ..., T_t X_j, ..., X_4) \]
\[= \sum_{i=1}^4 (-1)^i \psi_t (T_t X_j, X_1, ..., \hat{X}_j, ..., X_4) \]
\[= \sum_{i=1}^4 (-1)^{i+1} (\nabla^g_{X_j} \varphi_t) (X_1, ..., \hat{X}_j, ..., X_4) \]
\[= d\varphi_t (X_1, ..., X_4) \]
holds. \(\Box \)

We can now compute the evolution of the metric and the torsion endomorphism.

Theorem 3.2. Let \(\psi_t \) be a family of hypo \(G_2 \)-structures on \(M^7 \), which evolves under the flow \(\dot{\psi}_t = d\varphi_t \). Then the evolution of the underlying metric \(g_t \) and the torsion endomorphism \(T_t \) are given by
\[\dot{g}_t (X, Y) = 2 g_t (T_t X, Y), \]
\[\dot{T}_t X = \text{Ric}_t X - \text{tr}(T_t) T_t X, \]
where \(\text{Ric}_t = \text{Ric}(g_t) \) is the Ricci tensor of the metric \(g_t \).
Proof: Writing $\psi_t = A_t \psi$, Proposition 3.1 yields $D_{\psi_t}(A_t \circ A_t^{-1}) = D_{\psi_t}(T_t)$. Since the evolution $\dot{\psi}_t = d\varphi_t$ preserves the hypo condition $d\psi_t = 0$, or equivalently $T_t \in S^2_{w.r.t.} g_t$, we get
\[\text{pr}_{S^2}(A_t \circ A_t^{-1}) = T_t, \]
since $\ker(D_{\psi_t}) = g_2$. Then we compute for $g_t = A_t g$
\[\dot{g}_t(X,Y) = 2g_t(\text{pr}_{S^2}(A_t \circ A_t^{-1})X,Y) = 2g_t(T_tX,Y). \]
The metric $g = dt^2 + g_t$ on $I \times M^7$ has holonomy contained in Spin(7) and hence is Ricci flat. The Gauss equations and the Codazzi-Mainardi equations yield
\[\dot{g}_t(X,Y) = 2g_t(W_t X,Y), \]
\[g_t(W_t X,Y) = \text{ric}_t(X,Y) - \text{tr}(W_t)g_t(W_t X,Y), \]
where $W_t X := \nabla^g_{\Phi_t X} \frac{d}{dt}$ is the Weingarten map and Φ_t is the flow of the vector field $\frac{d}{dt}$, cf. for instance [1]. So $W_t = T_t$ and the Theorem follows.

We will now apply the Cheeger-Gromoll Splitting Theorem to prove that the flow $\dot{\psi} = d\varphi$ does not admit nontrivial longtime solutions.

Theorem 3.3. Suppose ψ is a hypo G_2-structures on a compact manifold M^7. Then the flow $\dot{\psi}_t = d\varphi_t$ is defined for all times $t \in \mathbb{R}$ if and only if the initial structure is already parallel.

Proof: The metric on the product $M^8 := \mathbb{R} \times M^7$ has holonomy contained in Spin(7) and hence is Ricci flat. Since $g = dt^2 + g_t$, the first factor actually defines a line. Now we can apply the Cheeger-Gromoll Splitting Theorem and see that M^8 splits as a Riemannian product. Note that the line, i.e. the first factor of M^8, is actually the one dimensional factor that splits off in the decomposition as a Riemannian product, cf. Lemma 6.86 in [2]. Hence $g_t = g_0$ is constant and Theorem 3.2 yields $T_t = 0$.

In Lemma 4.9 (1) we showed that a longtime solution of the $SU(3)$ embedding problem would yield a longtime solution for the G_2 embedding problem. Combining part (1) and (2) of Lemma 4.9 shows that a longtime solution of the $SU(2)$ embedding problem would also yield a longtime solution for the G_2 embedding problem if in addition the equation $(\frac{1}{2}\omega_1^2) = d(\alpha \wedge \omega_1)$ is satisfied. If the initial $SU(2)$-structure is hypo, we have $d\omega_1 = 0$, for all times t. So
\[(\frac{1}{2}\omega_1^2) = (\frac{1}{2}\omega_1^2) = \omega_1 \wedge \omega_1 = \omega_1 \wedge d\alpha = d(\alpha \wedge \omega_1) \]
and we obtain the following $SU(2)$ and $SU(3)$-analogue of Theorem 3.3.

Corollary 3.4. There are no nontrivial longtime solutions for the hypo $SU(2)$ and $SU(3)$ embedding problem on compact manifolds.

\[
\square
\]

In view of Proposition 5.1 the following theorem yields solutions of the G_2 embedding problem.

Theorem 3.5. Let ψ be a real analytic hypo G_2-structure on the compact manifold M^7. Then the intrinsic torsion flow

\[
\begin{aligned}
\dot{A}_t &= T_t \circ A_t \\
A_0 &= \text{id}
\end{aligned}
\]

has a unique real analytic solution $A : (-\varepsilon, \varepsilon) \times M \to \text{End}(TM)$. Moreover, the solution A_t is of the form

\[
A_t = \sum_{k=0}^{\infty} \frac{t^k}{k!} A^{(k)}_0,
\]

where the series converges in the C^∞-topology on $C^\infty(\text{End}(TM))$.

Proof: To apply Theorem 2.12 we have to show that the map

\[
X : C^\infty(\text{Aut}(TM)) \to C^\infty(\text{End}(TM)) \quad \text{with} \quad X \circ A := T(A\varphi) \circ A
\]

is a real analytic first order differential operator in the sense of Definition 2.11. For this choose local coordinates $u : U \subset M \to \mathbb{R}^7$, for which φ is real-analytic. These coordinates induce a local trivialization (π, v) of the bundle $\pi : \text{End}(TM) \to M$ via

\[
v(A) := \{a_{kl}\}_{k,l=1,7}, \quad \text{where} \quad A = \sum_{k,l=1}^{7} a_{kl} du_k \otimes \frac{\partial}{\partial u_l} \in \text{End}(TM).
\]

For a fixed local section $A = \sum a_{kl} du_k \otimes \frac{\partial}{\partial u_l} : U \to \text{Aut}(TM)$ write

\[
X \circ A = T(A\varphi) \circ A = \sum_{a,b=1}^{7} f_{ab} du_a \otimes \frac{\partial}{\partial u_b}.
\]

Now it suffices to find an expression

\[
f_{ab} = G_{ab}(u, a_{kl}, \frac{\partial a_{kl}}{\partial u_l})
\]

for the coefficients $f_{ab} : U \to \mathbb{R}$, where $G_{ab} : D \subset \mathbb{R}^7 \times \mathbb{R}^{49} \times \mathbb{R}^{343} \to \mathbb{R}$ is real analytic. The formula

\[
\nabla^A \varphi A\varphi = -T(A\varphi) \circ (A\varphi)
\]

shows that the intrinsic torsion is a first order invariant of the G_2-structure and hence we can find an expression of the form (1) that is actually polynomial in a_{kl}.
and $\frac{\partial a_{ij}}{\partial u^j}$, and real analytic in u, since the initial structure is real analytic.

\[\square\]

Lemma 3.6. Suppose ψ is a G_2-structure on M and $F \in \text{Diff}(M)$. Then the intrinsic torsion satisfies

$$T(F^*\psi) = F^* T(\psi) = F_*^{-1} T(\psi) F_*.$$

Proof: By Koszul’s formula we have $F_*(\nabla_{F_*^* X} Y) = \nabla^{F_*} X F_*^* Y$ and hence

$$(\nabla^{F_*} F_*^* \varphi) = F^* (\nabla^{F_*} \varphi).$$

Since $\nabla^g \varphi = -T \cdot \psi$, we get

$$T(F^* \psi) X \cdot F^* \varphi = -\nabla^{F_*} F_*^* \varphi = -F^* (\nabla^{F_*} \varphi)$$

$$= F^* (T(\psi) F_* X \cdot \psi) = F_*^{-1} T(\psi) F_* X \cdot F^* \psi$$

and the Lemma follows from the non-degeneracy of $F^* \psi$.

\[\square\]

Lemma 3.7. Suppose ψ is a G_2-structure on $M^7 = S^1 \times \ldots \times S^1 \times M^{7-k}$, which is the hypo lift of some $SU(4-k)$-structure on M^{7-k}. Then the Ricci tensor Ric of the metric $g = g(\psi)$ satisfies for each S^1-direction $\frac{\partial}{\partial \theta}$

$$L_{\frac{\partial}{\partial \theta}} \text{Ric} = \text{Ric} \frac{\partial}{\partial \theta} = d\theta \circ \text{Ric} = 0.$$

The intrinsic torsion T satisfies

$$L_{\frac{\partial}{\partial \theta}} T = T \frac{\partial}{\partial \theta} = 0$$

and $d\theta \circ T = 0$ if the structure is hypo.

Proof: If ψ is the hypo lift of some structure on M^{7-k}, then $g = d\theta^2 + \ldots + d\theta_k + g_{7-k}$, for some metric g_{7-k} on M^{7-k}. Hence the Ricci tensor satisfies $\text{Ric} \frac{\partial}{\partial \theta} = 0$,

$$d\theta \circ \text{Ric} = g(\frac{\partial}{\partial \theta}, \text{Ric}) = g(\text{Ric} \frac{\partial}{\partial \theta},.) = 0$$

and

$$L_{\frac{\partial}{\partial \theta}} \text{Ric} = \frac{\partial}{\partial s} \bigg|_{s=0} \Phi_* \text{Ric}(g) = \frac{\partial}{\partial s} \bigg|_{s=0} \text{Ric}(\Phi_* g) = \frac{\partial}{\partial s} \bigg|_{s=0} \text{Ric}(g) = 0.$$

Since $0 = \nabla^g \varphi = -T \frac{\partial}{\partial \theta} \cdot \psi$, we get $T \frac{\partial}{\partial \theta} = 0$ and similarly $0 = (L_{\frac{\partial}{\partial \theta}} T) \cdot \psi$ implies $L_{\frac{\partial}{\partial \theta}} T = 0$. If the structure is hypo, i.e. T is symmetric, we get in addition

$$d\theta \circ T = g(\frac{\partial}{\partial \theta}, T) = g(T \frac{\partial}{\partial \theta},.) = 0.$$

\[\square\]
Lemma 3.8. Suppose ψ is a G_2-structure on $M^7 = S^1 \times \ldots \times S^1 \times M^{7-k}$, which is the hypo lift of some $SU(4-k)$-structure on M^{7-k}. If $A \in C^\infty(\text{Aut}(TM))$ satisfies
\[A \frac{\partial}{\partial \theta_i} = \frac{\partial}{\partial \theta_i}, \quad d\theta_i \circ A = d\theta_i \quad \text{and} \quad L_{\frac{\partial}{\partial \theta_i}} A = 0, \]
then $A\psi$ is still the hypo lift of some $SU(4-k)$-structure.

PROOF: By Lemma 1.10 we have $L_{\frac{\partial}{\partial \theta_i}}(A\psi) = 0$ and
\[(Ag)\left(\frac{\partial}{\partial \theta_i}, X\right) = g\left(\frac{\partial}{\partial \theta_i}, A^{-1}X\right) = d\theta_i(A^{-1}X) = d\theta_i(X) = g\left(\frac{\partial}{\partial \theta_i}, X\right). \]
Now the Lemma follows from Lemma 1.10.

We can now state the main result of this section,

Theorem 3.9. Suppose ψ is a real analytic hypo G_2-structure on $M = S^1 \times \ldots \times S^1 \times M^{7-k}$, which is the hypo lift of some $SU(4-k)$-structure on M^{7-k}. Then the solution A_t of the intrinsic torsion flow from Theorem 3.5 satisfies
\[A_t \frac{\partial}{\partial \theta_i} = \frac{\partial}{\partial \theta_i}, \quad d\theta_i \circ A_t = d\theta_i \quad \text{and} \quad L_{\frac{\partial}{\partial \theta_i}} A_t = 0. \]
In particular, $A_t\psi$ is the hypo lift of some family of $SU(4-k)$-structures on M^{7-k}.

PROOF: We apply Corollary 2.5 with the following dictionary,

(1) $\mathcal{F} := C^\infty(\text{End}(TM)) \times C^\infty(\text{End}(TM))$

(2) $\mathcal{U} := C^\infty(\text{Aut}(TM)) \times C^\infty(\text{End}(TM))$

(3) $\mathcal{E} := \{(B, T) \in \mathcal{F} \mid 0 = L_{\frac{\partial}{\partial \theta_i}} B = L_{\frac{\partial}{\partial \theta_i}} T \quad \text{and} \quad 0 = B \frac{\partial}{\partial \theta_i} = T \frac{\partial}{\partial \theta_i} = d\theta_i(B) = d\theta_i(T)\}$

(4) $X : \mathcal{U} \to \mathcal{F}$ is defined w.r.t. the initial metric g, $X|_{(A, T)} := (T \circ A, \text{Ric}(Ag) - \text{tr}(T)T)$.

(5) $c(t) := (A_t, T_t)$.
Note that $\mathcal{U} \subset \mathcal{F}$ is open by Example 2.2 and that X is smooth and $\mathcal{E} \subset \mathcal{F}$ is closed, since differential operators are smooth by Example 3.6.6. By Proposition 3.1 and the definition of A_t, the curve $c(t)$ is an integral curve of the vector field X. From Lemma 3.7 we get $c(0) = (\text{id}, T_0) \in \mathcal{E}$, where $f := (\text{id}, 0) \in \mathcal{F}$. Now it suffices to show that X is tangent to $\mathcal{U} \cap \mathcal{E}$, i.e.
\[X|_{\mathcal{U} \cap \mathcal{E}} : \mathcal{U} \cap \mathcal{E} \to \mathcal{E}. \]
For \((A = id + B, T) \in \mathcal{U} \cap \mathcal{E}_f\) we have
\[
A \frac{\partial}{\partial \theta_i} = \frac{\partial}{\partial \theta_i}, \quad d\theta_i \circ A = d\theta_i \quad \text{and} \quad L_{\frac{\partial}{\partial \theta_i}} A = 0.
\]
By Lemma 3.8 we see that \(A\psi\) is still the hypo lift of some \(SU(4-k)\)-structure and Lemma 3.7 yields
\[
L_{\frac{\partial}{\partial \theta_i}} \text{Ric}(Ag) = \text{Ric}(Ag) \frac{\partial}{\partial \theta_i} = d\theta_i \circ \text{Ric}(Ag) = 0.
\]
Now we can easily verify that \(X(A, T) \in \mathcal{E}\),
\[
\begin{align*}
&\bullet \quad L_{\frac{\partial}{\partial \theta_i}} (T \circ A) = 0 \quad \text{and} \quad L_{\frac{\partial}{\partial \theta_i}} (\text{Ric}(Ag) - \text{tr}(T)T) = 0, \\
&\bullet \quad T \circ A \frac{\partial}{\partial \theta_i} = 0 \quad \text{and} \quad (\text{Ric}(Ag) - \text{tr}(T)T) \frac{\partial}{\partial \theta_i} = 0, \\
&\bullet \quad d\theta_i (T \circ A) = 0 \quad \text{and} \quad d\theta_i (\text{Ric}(Ag) - \text{tr}(T)T) = 0
\end{align*}
\]
and the Theorem follows.

\[\square\]

Remark 3.10. The property \(L_{\frac{\partial}{\partial \theta_i}} A_t = 0\) from Theorem 3.5 is a consequence of the diffeomorphism invariance of the evolution equation \(A_t = T_t \circ A_t\). In fact, Lemma 3.6 shows that \(B_t := \Phi_s^* A_t\) also solves \(A_t = T_t \circ A_t\), where \(\Phi_s\) is the flow of \(\frac{\partial}{\partial \theta}\).

Since \(\Phi_s\) is real analytic, the uniqueness part of Theorem 3.5 yields \(A_t = \Phi_s^* A_t\), i.e. \(L_{\frac{\partial}{\partial \theta}} A_t = 0\).

We can now solve the embedding problem for real analytic hypo \(SU(4-k)\)-structures on \(M^{7-k}\) by reducing it to the embedding problem for real analytic hypo \(G_2\)-structures on \(M = S^1 \times ... \times S^1 \times M^{7-k}\). Namely, the hypo lift of the initial \(SU(4-k)\)-structure yields a real analytic hypo \(G_2\)-structures on \(M\). Theorem 3.5 yields a solution \(A_t\) of the intrinsic torsion flow. By Theorem 3.9 the family of \(G_2\)-structures \(\psi_t = A_t\psi\) is still the hypo lift of some family of \(SU(4-k)\)-structures.

Now Lemma 1.9 proves that the family of \(SU(4-k)\)-structures is a solution of the embedding problem.

Corollary 3.11. For any real analytic hypo \(SU(2), SU(3)\) and \(G_2\)-structure on a compact manifold, the embedding problem admits a unique real analytic solution. Moreover, the solution can be described by a family of gauge deformations
\[
A_t = \sum_{k=0}^{\infty} \frac{t^k}{k!} A^{(k)}_t,
\]
where the series converges in the \(C^\infty\)-topology on \(C^\infty(\text{End}(TM))\).
Appendix: \(SU(2) \)-Structures in Dimension Five

Usually a \(SU(2) \)-structure on a five dimensional manifold is described by a quadruplet of forms \((\alpha, \omega_1, \omega_2, \omega_3)\), cf. for instance [7]. There is an alternative to the usual definition, which is justified by the last equation in the next Lemma.

Lemma 4.1.

\[
\begin{align*}
\text{Iso}_{GL(5)}(\alpha_0) &= \left\{ \begin{pmatrix} 1 & 0 \\ x & A \end{pmatrix} \mid A \in GL(4) \text{ and } x \in \mathbb{R}^4 \right\}, \\
\text{Iso}_{GL(5)}(\alpha_1) &= \left\{ \begin{pmatrix} \lambda & y^T \\ 0 & A \end{pmatrix} \mid A \in Sp(4, \mathbb{R}), y \in \mathbb{R}^4 \text{ and } \lambda \neq 0 \right\}, \\
\text{Iso}_{GL(5)}(\alpha_0, \omega_1, \omega_2, \omega_3) &= \begin{pmatrix} 1 & 0 \\ 0 & SU(2) \end{pmatrix}, \\
\text{Iso}_{GL(5)}(\omega_1, \rho_2, \rho_3) &= \begin{pmatrix} 1 & 0 \\ 0 & SU(2) \end{pmatrix}.
\end{align*}
\]

Proof: Write \(B \in GL(5) \) as

\[
B = \begin{pmatrix} \lambda & y^T \\ x & A \end{pmatrix},
\]

where \(\lambda \in \mathbb{R}, x, y \in \mathbb{R}^4 \) and \(A \in gl(4) \). Then \(\alpha(Be_1) = \lambda \) and \(\alpha(Be_j) = y^T e_j \), for \(j \in \{2, \ldots, 5\} \). Hence the stabilizer of the 1-form \(\alpha_0 := e^1 \in \Lambda^1 \mathbb{R}^{5*} \) has the above form.

For \(B \in \text{Iso}_{GL(5)}(\omega_1) \) and \(i, j \in \{2, \ldots, 5\} \) we get \(\omega_1(e_i, e_j) = \omega_1(Be_i, Be_j) = \omega_1(\lambda e_i, e_j) = \omega_1(Ae_i, e_j) \), i.e. \(A \in Sp(4, \mathbb{R}) \). This yields

\[
0 = \omega_1(Be_1, Be_j) = \omega_1(\lambda e_1 + x, (y^T e_j)e_1 + Ae_j) = \omega_1(x, Ae_j) = \omega_1(A^{-1}x, e_j)
\]

and the non-degeneracy of \(\omega_1 \), as a form on \(\mathbb{R}^4 \), implies \(x = 0 \) and proves the second equation of the lemma.

Now the third equation follows, since \(\omega_2 = \text{Re}(\Phi_0) \) and \(\omega_3 = \text{Im}(\Phi_0) \), where \(\Phi_0 = (e^2 + ie^3) \land (e^4 + ie^5) \), and \(SU(2) = \text{Sp}(4, \mathbb{R}) \cap SL(2, \mathbb{C}) \).

To obtain the last equation, we compute for \(B = \begin{pmatrix} \lambda & y^T \\ 0 & A \end{pmatrix} \in \text{Iso}_{GL(5)}(\omega_1) \cap \text{Iso}_{GL(5)}(\alpha_0 \wedge \omega_2) \) and \(i, j \in \{2, \ldots, 5\} \)

\[
\begin{align*}
\omega_2(e_i, e_j) &= (\alpha_0 \wedge \omega_2)(e_i, e_i, e_j) = (\alpha_0 \wedge \omega_2)(Be_i, Be_i, Be_j) \\
&= (\alpha_0 \wedge \omega_2)(\lambda e_1, (y^T e_i)e_1 + Ae_i, (y^T e_j)e_1 + Ae_j) \\
&= (\alpha_0 \wedge \omega_2)(\lambda e_1, Ae_i, Ae_j) \\
&= \lambda \omega_2(Ae_i, Ae_j).
\end{align*}
\]
Since the volume element $\varepsilon_0 = e^{2345}$ on \mathbb{R}^4 satisfies
$$\varepsilon_0 = \frac{1}{2}\omega_1^2 = \frac{1}{2}\omega_2^2 = \frac{1}{2}\omega_3^2,$$
we obtain from $A \in \text{Sp}(4, \mathbb{R}) = \text{Iso}_{\text{GL}(4)}(\omega_1)$
$$\det(A)\varepsilon_0 = A^{-1}\varepsilon_0 = A^{-1}\frac{1}{2}\omega_1^2 = \varepsilon_0,$$
i.e. $\det(A) = 1$. Now $A^{-1}\omega_2 = \lambda^{-1}\omega_2$ yields
$$\varepsilon_0 = A^{-1}\frac{1}{2}\omega_1^2 = \lambda^{-2}\varepsilon_0$$
and since $B \in \text{GL}^+(5)$, we get $\lambda = 1$. Similarly we get $A\omega_3 = \omega_3$, which yields $A \in \text{SU}(2)$. Now
$$\alpha_0 \wedge \omega_2 = B^{-1}(\alpha_0 \wedge \omega_2) = B^{-1}\alpha_0 \wedge B^{-1}\omega_2$$
$$= B^{-1}\alpha_0 \wedge A^{-1}\omega_2, \quad \text{since } \epsilon_1\omega_2 = 0$$
$$= (\alpha_0(Be_1)e^1 + \sum_{j=2}^{5} \alpha_0(Be_j)e^j) \wedge \omega_2$$
$$= (\alpha_0 + \sum_{j=2}^{5} y_j e^j) \wedge \omega_2$$
yields $\sum_{j=2}^{5} y_j e^j \wedge \omega_2 = 0$, i.e. $y = 0$.

Since the $\text{GL}^+(5)$ stabilizer of the triple $(\omega_1, \rho_2, \rho_3)$ is equal to $\{1\} \times \text{SU}(2)$, we expect that, after fixing an orientation for \mathbb{R}^5, we can reconstruct the forms α_0, ω_2 and ω_3 solely from the triple $(\omega_1, \rho_2, \rho_3)$. The first step is to reconstruct the volume element ε_0. Then the forms α_0, ω_2 and ω_3, as well as the metric g_0, can be obtained from the formulas in Example 1.4.

Lemma 4.2. After choosing an orientation for $V := \mathbb{R}^5$, there is a homomorphism
$$\varepsilon : \Lambda^2V^* \oplus \Lambda^3V^* \oplus \Lambda^3V^* \to \Lambda^5V^* \oplus i\Lambda^5V^*$$
of $\text{GL}^+(5)$-modules, such that for the model tensors and the canonical orientation $[\varepsilon_0]$ of \mathbb{R}^5
$$\varepsilon(\omega_1, \rho_2, \rho_3) = \varepsilon_0 \in \Lambda^5V^* \subset \Lambda^5V^* \oplus i\Lambda^5V^*.$$

Proof: Given an orientation $[\varepsilon_+]$ for V, represented by an element $\varepsilon_+ \in \Lambda^5V^*$, we can define a $\text{GL}^+(5)$-equivariant map
$$\sqrt{-} : \Lambda^5V^* \otimes \Lambda^5V^* \otimes \Lambda^5V^* \otimes \Lambda^5V^* \to \Lambda^5V^* \oplus i\Lambda^5V^*.$$
Now consider the $\text{GL}(5)$-equivariant map
$$K : \Lambda^2V^* \oplus \Lambda^3V^* \oplus \Lambda^3V^* \to (V^* \otimes V) \otimes (V^* \otimes V) \otimes \Lambda^5V^* \otimes \Lambda^5V^*$$
defined by

\[K(\omega_1, \rho_2, \rho_3)(x, a, y, b) := (\rho_2 \wedge a \wedge b) \otimes (\rho_3 \wedge (x, \omega_1) \wedge (y, \omega_1)), \]

where \(x, y \in V\) and \(a, b \in V^*\). For the model tensors \(\omega_1, \rho_2, \rho_3\) let \(K_0 := K(\omega_1, \rho_2, \rho_3)\). Then we compute

\[K_0(x, a, y, b) = (a_5 b_3 - a_3 b_5 + a_2 b_4 - a_4 b_2)(-x_3 y_4 + x_4 y_3 - x_2 y_5 + x_5 y_2) \otimes \varepsilon^2_0. \]

Taking the trace of the first factor \(V^* \otimes V\), we obtain a map

\[L = \text{tr}(K) : \Lambda^2 V^* \oplus \Lambda^3 V^* \oplus \Lambda^3 V^* \rightarrow (V^* \otimes V) \otimes \Lambda^5 V^* \oplus \Lambda^5 V^* \]

and for the model tensors we obtain

\[L_0(y, b) := \text{tr}(K_0)(y, b) = (-b_4 y_5 + b_5 y_4 - b_2 y_3 + b_3 y_2) \otimes \varepsilon^2_0. \]

Identifying \(V^* \otimes V = \text{Hom}(V, V)\), we define

\[L^2 : \Lambda^2 V^* \oplus \Lambda^3 V^* \oplus \Lambda^3 V^* \rightarrow (V^* \otimes V) \otimes (\Lambda^5 V^*)^4 \]

and so

\[L_0^2 = \begin{pmatrix} 0 & 0 \\ 0 & -\text{id}_{R^4} \end{pmatrix} \otimes \varepsilon^4_0. \]

Taking again the trace, we obtain a map

\[\text{tr}(L^2) : \Lambda^2 V^* \oplus \Lambda^3 V^* \oplus \Lambda^3 V^* \rightarrow (\Lambda^5 V^*)^4 \]

with \(\text{tr}(L_0^2) = -4 \varepsilon^4_0\). Hence

\[\varepsilon := \sqrt{-\frac{1}{4} \text{tr}(L^2) : \Lambda^2 V^* \oplus \Lambda^3 V^* \oplus \Lambda^3 V^* \rightarrow \Lambda^5 V^* \oplus i\Lambda^5 V^*} \]

is the desired equivariant map.

\[\square \]
References

[1] C.Bär, P.Gauduchon, A.Moroianu: Generalized cylinders in semi Riemannian and spin geometry, Mathematische Zeitschrift 249 545 (2005).
[2] A.L. Besse: Einstein Manifolds, Springer Verlag, Berlin-Heidelberg-New York, 1987.
[3] R.Bryant: Nonembedding and Nonextension Results in Special Holonomy, In Proceedings of the August 2006 Madrid conference in honor of Nigel Hitchin’s 60th Birthday. Oxford University Press.
[4] R.Bryant et al.: Exterior Differential Systems, Mathematical Sciences Research Institute Publications, Springer -Verlag, 1991.
[5] H.Cartan: Elementare Theorie der analytischen Funktionen einer oder mehrerer komplexen Veränderlichen, 1966, Bibliographisches Institut AG, Mannheim.
[6] D.Conti: Embedding into Manifolds with Torsion, arXiv:0812.4186 2009.
[7] D.Conti, S.Salamon: Generalized Killing Spinors in Dimension 5, Trans. Amer. Math. Soc., 359(11):5319-5343, 2007.
[8] V.Cortés, T.Leistner, L.Schäfer, F.Schulte-Hengesbach: Half-flat Structures and Special Holonomy, arXiv:0907.1222 2009.
[9] M. Fernandez, S.Ivanov, V.Munoz, L.Ugarte: Nearly hypo structures and compact nearly Kähler 6-manifolds with conical singularities, to appear in the Journal of the London. Math. Soc., arXiv:math/0602160.
[10] M. Fernandez, A. Tomassini, L. Ugarte, R. Villacampa: Balanced Hermitian Metrics from SU(2)-Structures, Journal of Mathematical Physics, Volume 50, Issue 3, 2009.
[11] T. Friedrich, S. Ivanov: Parallel Spinors and Connections with Skew-Symmetric Torsion in String Theory, AsianJ.Math.6:303-336, 2002.
[12] R.S. Hamilton: The Inverse Function Theorem of Nash and Moser, Bull. Amer. Math. Soc. 7, 1982, pages 65-222.
[13] N. Hitchin: Stable forms and special metrics, Global Differential Geometry: The Mathematical Legacy of Alfred Gray, volume 288 of Contemp. Math., pages 70-89. American Math. Soc., 2001.
[14] S. Salamon: Riemannian Geometry and Holonomy Groups, Pitman Research Notes in Mathematics 201, Longman, 1989.