Development of a Simulation Framework for Spherical Proportional Counters

I. Katsioulas, P. Knights, J. Matthews, T. Neep, K. Nikolopoulos, R. Owen, R. Ward

School of Physics and Astronomy, University of Birmingham

25th June 2020
Introduction to Spherical Proportional Counters

The Spherical Proportional Counter (2008 JINST 3 P09007) is a novel gaseous detector with a range of applications:

- Direct low-mass dark matter detection (NEWS-G): Astropart. Phys. 97 (2018) 54
- Neutrinoless double beta-decay (R2D2): 2018 JINST 13 P01009
- Neutron, alpha and gamma ray spectroscopy: Nucl. Instrum. Meth. A 847 (2017) 10
- Low energy neutrino physics: Nucl. Instrum. Meth. A 530 (2004) 330
 Phys. Lett. B 634 (2006) 23
 Phys. Rev. D 79 (2009) 113001

Review of spherical proportional counters: J. Phys. Conf. Ser. 1029 (2018) 012006
Why Spherical Proportional Counters?

Advantages of spherical shape:
- Low capacitance independent of detector size
- High pressure operation
- Maximum volume-to-surface ratio

Additional benefits:
- Simple and robust design
- Flexibility of gas mixtures
- Determination of interaction properties from pulse-shape analysis
Single-Anode Sensor

Single anode at centre of detector, supported by grounded rod

➢ Radial electric field $\propto \frac{1}{r^2}$
➢ Single readout channel

Use a correction electrode to reduce distortion of the electric field by the wire and rod

➢ Sensor optimisation is a focus of development:

2018 JINST 13 P11006
Multi-Anode Sensor: ACHINOS

Operation of large and high pressure detectors are a challenge with the single-anode

➢ Electric field in drift and avalanche regions are linked

ACHINOS - Multiple anodes, placed at equal distances:

2017 JINST 12 P12031

➢ Gain influenced by individual anode sizes
➢ Large-radius electric field determined by collective field of all anodes

Drift and avalanche electric fields are decoupled

Also enables individual anode read-out

➢ Position information of interactions
Simulation Software

Simulations are crucial for detector development

➢ Began development of a purely Garfield++ simulation Summer 2018
➢ Soon after integrated this into a Geant4 application

Use several software toolkits:

➢ Geant4 for the simulation of primary ionisation
➢ Garfield++ for the simulation of electron-ion drift and signal calculation, interfacing:
 ● Heed to aid in simulating primary particle interactions
 ● ANSYS, a finite-element-method software, to model the electric field
 ● Magboltz to model electron transport parameters in gas mixtures

Approach was inspired by recent developments:

Nucl. Instrum. Meth. A 935 (2019) 121
Simulation Framework: Overview

Geant4 application which interfaces Garfield++ in two stages:

A: Primary ionisation, and electron transport and multiplication
 ➢ Implemented a custom model using Geant4 physics parameterisation

B: Signal formation
 ➢ end-of-event-action method enhanced with Garfield++ functionality

Pass information from A to B using Geant4 sensitive detectors
Simulation Framework: Primary Ionisation

Event Flow

Primary Ionisation

- Detector is initialised and initial particle is generated in Geant4
- Geant4 tracks particles and interactions
- Electrons with kinetic energy <2 keV are passed to Garfield++
- Heed calculates further ionisation
- Using the electron transport parameters, ionisation electrons are transported up to the avalanche region
- Electron multiplication is simulated
- Ions and electrons produced in avalanche drift in electric field, and induced electric current is calculated
- Signal is processed through electronics module to form pulse

Electron transport and multiplication

Signal Formation

Ions handled by SRIM - Recently Added

Example: 5.9 keV X-rays from decay of 55Fe

$\lambda_{\text{fit}} = 7.75 \pm 0.18 \text{ cm}$

$\lambda_{\text{XCOM}} = 7.83 \text{ cm}$
Simulation Framework: Electron Transport and Multiplication

Event Flow

- Detector is initialised and initial particle is generated in Geant4
- Geant4 tracks particles and interactions
- Electrons with kinetic energy <2 keV are passed to Garfield++
- Heed calculates further ionisation
- Using the electron transport parameters, ionisation electrons are transported up to the avalanche region
- Electron multiplication is simulated
- Ions and electrons produced in avalanche drift in electric field, and induced electric current is calculated
- Signal is processed through electronics module to form pulse

Drift of ionisation electrons:
- Garfield++ Monte Carlo drift line method
- ANSYS electric field maps
- Magboltz electron transport parameters

Electron multiplication:
- Garfield++ microscopic avalanche or our custom avalanche method
Following multiplication, electron-ion pairs are transported using the Garfield++ drift line RKF method.

Calculate induced signal with Garfield++ sensor objects
- Shockley-Ramo theorem

Calculate readout pulse in custom electronics module
- Applies transfer function to induced current via a fast Fourier transform

Example: simple charge sensitive amplifier with 140μs time constant
Simulation Framework: Custom Electron Multiplication

Microscopic tracking models multiplication down to individual electron-atom collisions

➢ Most precise method, but costly to compute

Electron multiplication follows a Polya distribution:

\[
P\left(\frac{G}{\bar{G}}\right) = \left(1 + \theta\right)\frac{G}{\bar{G}}\right)^\theta \exp\left[-\left(1 + \theta\right)\frac{G}{\bar{G}}\right]
\]

Parameterise gain in custom method:

➢ Numerically integrate effective townsend co-efficient to get \(\bar{G}\)

\[
\bar{G} = \exp\left[\int_{\vec{r}} \left(\alpha(\vec{r}) - \eta(\vec{r})\right) d\vec{r}\right]
\]

➢ Estimate \(\theta\) using microscopic avalanche - approximately independent with position of avalanche

![Graph](https://example.com/graph.png)

- Cathode: 15 cm radius
- Anode: 1 mm radius; 1430 V
- Ar:CH\(_4\) (98%:2%); 300 mbar

- Microscopic avalanche
- Polya fit

\[\bar{G} = 326 \pm 1\]
\[\theta = 0.256 \pm 0.006\]
Physics of simulation demonstrated by comparing gas mixtures:

- Gain in He:Ne:CH$_4$ larger than that in Ne:CH$_4$, determined by Townsend and attachment coefficients

- Gain fluctuations shown by variation in pulse amplitude

- Differences in electron drift velocity determine start time of pulses
Use simulation to measure effect of anode support structure on detector response:

- Detect 5.9 keV line of 55Fe and a 2.9 keV argon escape peak
- Response is homogenous with θ for ideal electric field
- Response depends on θ for single anode configuration
Simulation can be used for particle identification:

- Cosmic muons may mask interaction of 55Fe X-rays
- Ionisation profiles are different - pulse-shape analysis informs selections to suppress backgrounds
Developing ACHINOS simulation to have multiple read-outs

➢ Separate anodes into two hemispheres
 ● 5 Anodes near the rod; 6 anodes far from rod

➢ Calculate two separate signals
 ● One signal per hemisphere

➢ Calculate weighting fields with ANSYS

R. Ward (University of Birmingham)
Simulation of Spherical Proportional Counters
25th June 2020
Application: ACHINOS Simulation

➢ Majority of pulse for events in hemisphere away from rod is formed on far anodes
 - Negative pulse on near anodes

➢ See opposite effect for events in hemisphere near bar

➢ Electrons produced from the side drift to far hemisphere

➢ Use asymmetry to discern which hemisphere the interaction occurred

Pulse asymmetry:
\[A = \frac{F - N}{F + N} \]

➢ F = amplitude of pulse on far anodes
➢ N = amplitude of pulse on near anodes
Ionisation electrons produced in events at edge of detector drift longer than electrons near the centre:

- Using ACHINOS in single read-out mode, simulate 2.82 keV electrons from the decay of 37Ar

- Events at large radii have increased rise-times (time for a pulse to go 10% to 90% of its amplitude)

- Use rise-time relationship to reconstruct interaction radius

- Majority of background for rare events searches originate at detector surface
Application: Fast Neutron Spectroscopy

Neutron spectroscopy with Spherical Proportional Counter

- Use Nitrogen as gas
- \(^{14}\text{N} + n \rightarrow ^{14}\text{C} + p + 625\text{ keV}\)
- \(^{14}\text{N} + n \rightarrow ^{11}\text{B} + \alpha - 159\text{ keV}\)

Simulation Parameters:
- Ø vessel 30 cm
- Nitrogen at 300 mbar
- Anode Ø 2 mm

Neutron Beam

4 MeV
Application: R2D2 Collaboration

R2D2 (Rare Decays with Radial Detectors) collaboration (website):

➢ R&D for $0\nu\beta\beta$ experiment with ^{136}Xe

➢ Validate detector using 5.3 MeV α-decays of ^{210}Po
Conclusions

Developed a flexible and predictive framework for simulating spherical proportional counters
➢ Combines the strengths of Geant4 and Garfield++ toolkits
➢ Accelerates detector R&D, experimental design, and physics analysis
➢ Details in the recent publication: 2020 *JINST* **15** C06013

Next steps:
➢ Study in more detail the space charge effects
 ● Preliminary studies already performed
➢ Apply simulation method to micropattern gaseous detectors
➢ Improve user interface to facilitate its wider use by the community

Thank you for the invitation to speak today - we look forward to giving updates in the future!