Evaluation of Groundwater Quality at Oragadam – A GIS Approach

M. R. Sudarshan1*, A. Jayapradha1, Lavanya2 and D. Joshua Amarnath1

1Department of Chemical Engineering, Sathyabama University, Chennai – 600119, Tamil Nadu, India; sudarmr1978@gmail.com, jaya.anandhi@gmail.com, joshusathyabamauniversity@gmail.com
2Department of Civil Engineering, Jerusalem College of Engineering, Chennai – 600100, Tamil Nadu, India; lavsdev@gmail.com

Abstract

Background/Objectives: In recent years, an increasing threat to groundwater quality due to human activities has become of great importance. This study aims to investigate the effect of industrial discharge of waste water on groundwater quality using GIS. Methods/Statistical Analysis: Oragadam Industrial area which is part of Sriperumbudur Taluk in Tamil Nadu has been chosen as study area owing to presence of about 35 industries. 25 physico-chemical parameters governing the water quality are determined from 50 samples collected in the study area. These have been mapped and spatial analysis has been carried out using GIS. Findings: Groundwater quality maps have been prepared using GIS. Effectiveness of GIS in evaluating the groundwater quality of the study area is determined. Turbidity of all 50 samples was within BIS standards. TDS of 43 samples (86%), electrical conductivity of 46 samples, alkalinity of 41 samples (82%), hardness of 41 samples (82%), chloride levels of 26 samples, iron content of 3 samples, fluoride levels of 3 samples, pH of two samples exceeded the BIS Standards. Pollution concentration maps were prepared for all 25 parameters in all 50 sampling stations. Applications/Improvements: Spatial distribution of water quality parameters has been represented through groundwater quality maps in and around industrial area of Oragadam, Sriperumbudur Taluk. This study has shown increased salinity levels of groundwater. This study will serve as an aid to Government authorities in groundwater quality monitoring.

Keywords: Concentration Maps, GIS, Groundwater Quality, Industries, Physico-Chemical Parameters, Spatial

1. Introduction

The quality of groundwater depends on a large number of individual hydrological, physical, chemical and biological factors. An important industrial place in Sriperumbudur has seen rapid industrialization attracting huge investments due to its proximity of upcoming Chennai Airport. In Tamil Nadu, Kancheepuram district lakes receive partially treated and untreated sewage effluent, sewage polluted surface run-off and untreated effluent from nearby residence and industrial areas.

1Reported that groundwater of the study area is bacteriologically not safe and requires treatment. 2Emphasized the necessity of the riparian bed as a common property resource to be used for better community health instead of short-term benefit. Assessment of groundwater quality status was done by using the Water Quality Index method by1. 4Carried out studies on water quality index of groundwater of Aland taluka, Gulbarga (India). 5Carried out the analysis of groundwater quality parameters. 6Undertook the study of groundwater quality in Aurangabad. 7Undertook the study to assess the drinking water quality in Manachanallur taulk, Trichy. Reported that drinking water at almost all the locations of Erode district were found to be highly contaminated, except few locations where it was found to be moderately contaminated for both the monsoons. 9Took up the physic-chemical and biological quality study of Anekal Taluk to evaluate its
suitability for potable purposes. 10Evaluated hydro-chemical characteristics of groundwater in Krishnagiri district, Tamil Nadu based on different indices for drinking, irrigation and industrial uses. 11Studied concentration of heavy metals in Libya. Reddy V. H.12 concluded that sixty percent of the samples were found to heavy fair quality groundwater and surface water in different locations of Tirupati, Chittoor District. An assessment of the groundwater quality was carried out in and around Dindigul town, Tamil Nadu, India13. 14Established that groundwater is highly contaminated and account for health hazards for human use. 15Studied seasonal variation on physico-chemical parameters and trace metals of groundwater in and around Ambattur Industrial area, Chennai were determined. S. Chitradevi16 stated that the major factor affecting the chemical budget of water is due to anthropogenic activities in addition to rock-water interaction. 17Evaluated from Wilcox plot and Piper trilinear diagram that the samples in some areas of Hyderabad are alkaline. 18Assessed the groundwater of Gwalior region was assessed for its irrigational suitability. 19Evaluated the groundwater quality in and around the Kancheepuram town of Tamil Nadu with reference to drinking and irrigation purposes with an objective to study the effect of dyeing units. There is no literature on the effect of automobile industrial effluents on groundwater quality pertaining to Oragadam Industrial area, Sriperumbudur taluk.

In this study, physico-chemical parameters of 50 samples have been evaluated in industrial area of Oragadam and Sriperumbudur. Pollution concentration maps have been prepared for 25 physico-chemical parameters using GIS.

2. Study Area

Figure 1 shows the study area. Sriperumbudur is a sub district (tehesil or taluk) in the Kancheepuram district, in the state of Tamil Nadu. The total population in Sriperumbudur sub district is 510,836 as per the survey of census during 2011 by Indian Government. Of this about 220,796 people are living in the urban (towns and cities) area and about 220,796 are living in villages (rural areas). There are 125,938 House Holds in this sub district. There are 258,881 males (51%).

Sriperumbudur belongs to the Sriperumbudur formation, which is characterized by arenaceous and argillaceous rock units composed of splintery green shale, clays, and sandstones with iron stone intercalation. The rock units conformably overlie either the Precambrian basement or Precambrian boulder beds and green shales. The beds contain marine intercalations. Monsoon season is brief and gets a little rainfall. During the summer temperatures range from a minimum of 32°C and can rise up to a maximum of 40°C. Sriperumbudur gets rainfall during October and November from the North East Monsoon.

In this study part of Sripreumbudur Taluk which lies between 79°54’0” and 80°0’0” E Longitude and between 12°48’0” and 13°0’0” N Latitude is chosen as study area. It comprises of about 35 industries around Oragadam and Sriperumbudur.

3. Material and Methods

Water samples were collected in 2 L polythene container from 50 different localities (Table 1) in and around Oragadam and Sriperumbudur area for 25 physico-chemical characteristics.

The standard methods and procedures20 were used for quantitative estimation of water quality parameters. Polythene containers were rinsed two times with water to be sampled. Sample was collected in the container without any air gap. It was covered with 10 cm x 10 cm polythene sheet and lid was covered again with 10 cm x 10 cm polythene sheets. It was tied with rubber band and
was tested within 24 hours of sampling. Sampling locations are shown in Figure 2. Physico-chemical parameters were compared with acceptable limits as per BIS 10500:2012. Groundwater quality standards as per BIS 10500:2012 are shown in Table 1.

4. Results and Discussions

Table 2 shows 25 physico-chemical parameters for 50 samples with their locations. All the 50 samples were clear in appearance, colorless and odorless. Turbidity of all 50 samples was within BIS standards. TDS of 43 samples (86%) were above BIS standards. Minimum value of TDS was 38 mg/l and maximum value was 1996 mg/l. Mean value of 1138.28 mg/l exceeded the standard value. Electrical conductivity of 46 samples exceeded standards. Minimum value of EC was 54 micro mho/cm and maximum value was 2984 micro/mho/cm with a mean value of 746 micro mho/cm. pH of two samples was above the range of 6.5-8.5. Minimum value of pH was 6.09 and maximum being 8.4. Mean pH was 7.31. Alkalinity of 41 samples (82%) exceeded the standards. Minimum value of alkalinity was 14 mg/L and maximum value was 564 mg/l. Mean value of alkalinity was 289.16 mg/l. Hardness of 41 samples (82%) were above standards. Minimum value of hardness was 18 mg/l and maximum value was 667 mg/l. Mean value of hardness was 353.92 mg/l. Calcium of 37 (74%) samples were above standards. Minimum value of calcium was 5 mg/l and 194 mg/l with a mean of 101.66 mg/l.

Iron content of 3 samples exceeded the prescribed limits with minimum of 0.06 mg/l and maximum of 0.34 mg/l with a mean of 0.24 mg/l. None of the samples contained manganese. Chloride levels of 26 samples were above the prescribed standards of BIS. Minimum chloride level was 7 mg/l and maximum level was 680 mg/l with a mean value of 244.22 mg/l. Fluoride levels of 3 samples exceeded the standards. Minimum value of fluoride was 0.11 mg/l and maximum value was 1.1 mg/l with a mean value of 0.72 mg/l. Maximum and minimum values are shown in Table 3.

Pollution concentration maps were prepared for all 25 parameters in all 50 sampling stations as shown in Figure 3.

Table 1. Groundwater quality standards as per BIS 10500:2012

Parameter	Standard Value (mg/L)	Parameter	Standard Value (mg/L)	Parameter	Standard Value (mg/L)															
Appearance	Clear	Na	-	Alkalinity	200															
Colour	Colour Less	K	-	Hardness	200															
Odour	None	Fe	0.3	Ca	75															
Turbidity	1	Mn	0.1	Mg	30															
TDS	500	NH3	0.5	Cl	250															
EC	1500	NO2	-	F	1															
Ph	6.5-8.5	NO3	45	SO4	200															
Alkalinity	200	Cl	250																	
Sl No	Sample	T	TDS	EC	pH	Alkalinity	Hardness	Ca	Mg	Na	K	Fe	NH₃	NO₂	NO₃	Cl	F	SO₄	PO₄	O₂
-------	--------	---	-----	----	-----	------------	----------	-----	-----	-----	----	------	-----	-----	-----	-----	-----	-----	-----	-----
Units		NTU	mg/l		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
1	P1	0.5	812	1160	6.90	260	288	86	17	114	8	0.26	0.18	0.01	12	164	0.69	32	0.02	1
2	P2	0.5	498	711	7.32	248	210	63	12	54	4	0.28	0.07	0.02	6	50	0.71	18	0.01	0.9
3	V1	0.8	862	1231	6.53	164	280	86	15	144	9	0.25	0.06	0.01	14	242	0.68	44	0.01	0.9
4	V2	0.2	38	54	6.40	14	18	5	1	4	0	0.06	0.04	0.02	0	7	0.11	1	0.01	0.5
5	M1	0.5	325	464	6.64	84	96	31	4	56	4	0.26	0.12	0.01	6	82	0.34	8	0.01	0.9
6	M2	0.5	711	1016	6.74	160	172	53	10	141	9	0.23	0.18	0.01	16	182	0.61	30	0.01	0.9
7	V1	0.8	38	54	6.40	14	18	5	1	4	0	0.06	0.04	0.02	0	7	0.11	1	0.01	0.5
8	V2	0.2	38	54	6.40	14	18	5	1	4	0	0.06	0.04	0.02	0	7	0.11	1	0.01	0.5
9	M1	0.5	325	464	6.64	84	96	31	4	56	4	0.26	0.12	0.01	6	82	0.34	8	0.01	0.9
10	M2	0.5	711	1016	6.74	160	172	53	10	141	9	0.23	0.18	0.01	16	182	0.61	30	0.01	0.9
11	V1	0.8	38	54	6.40	14	18	5	1	4	0	0.06	0.04	0.02	0	7	0.11	1	0.01	0.5
12	V2	0.2	38	54	6.40	14	18	5	1	4	0	0.06	0.04	0.02	0	7	0.11	1	0.01	0.5
13	M1	0.5	325	464	6.64	84	96	31	4	56	4	0.26	0.12	0.01	6	82	0.34	8	0.01	0.9
14	M2	0.5	711	1016	6.74	160	172	53	10	141	9	0.23	0.18	0.01	16	182	0.61	30	0.01	0.9
15	V1	0.8	38	54	6.40	14	18	5	1	4	0	0.06	0.04	0.02	0	7	0.11	1	0.01	0.5
16	V2	0.2	38	54	6.40	14	18	5	1	4	0	0.06	0.04	0.02	0	7	0.11	1	0.01	0.5
17	M1	0.5	325	464	6.64	84	96	31	4	56	4	0.26	0.12	0.01	6	82	0.34	8	0.01	0.9
18	M2	0.5	711	1016	6.74	160	172	53	10	141	9	0.23	0.18	0.01	16	182	0.61	30	0.01	0.9
19	V1	0.8	38	54	6.40	14	18	5	1	4	0	0.06	0.04	0.02	0	7	0.11	1	0.01	0.5
20	V2	0.2	38	54	6.40	14	18	5	1	4	0	0.06	0.04	0.02	0	7	0.11	1	0.01	0.5

Table 2. Physico-chemical parameters for 50 water samples
29	Se1	0.6	1089	1328	7.12	309	398	94	9	128	6	0.3	0.12	0.02	24	309	0.98	63	0.01	0.8
30	Pa1	0.5	969	1124	8.04	296	374	80	12	139	13	0.25	0.24	0.19	20	314	1.1	89	0.01	0.8
31	E1	0.5	1400	1812	7.1	371	454	136	28	161	10	0.22	0.39	0.14	27	374	0.84	80	0.01	1
32	E2	0.4	1374	1819	6.74	310	471	139	28	150	11	0.29	0.07	0.34	24	360	0.89	48	0.01	1
33	Pan1	0.6	947	1249	7.04	296	334	110	28	112	6	0.3	0.04	0.01	16	284	0.94	80	0.01	0.8
34	Pan2	0.2	714	1130	7.21	312	209	101	9	109	4	0.25	0.04	0.04	13	312	0.81	46	0.01	0.9
35	Pk1	0.9	674	1011	8.01	376	214	98	6	91	3	0.26	0.09	0.02	12	304	0.78	44	0.01	0.8
36	Va2	0.3	1977	2984	6.80	309	667	57	17	98	7	0.19	0.11	0.32	22	387	0.86	81	0.01	0.9
37	V3	0.7	1476	1670	7.20	311	87	6	56	4	0.3	0.32	0.14	8	263	0.53	17	0.05	1	
38	V4	0.9	1563	1936	6.90	356	430	119	13	72	9	0.12	0.29	0.09	6	324	0.65	78	0.03	0.8
39	sp4	0.8	1769	2184	7.60	312	378	94	19	90	6	0.23	0.15	0.28	12	291	0.73	65	0.01	0.9
40	sp5	0.5	1780	1368	8.20	219	621	131	8	112	5	0.28	0.27	0.17	25	142	0.85	39	0.04	0.6
41	sp3	0.6	1898	2890	7.42	498	639	108	29	217	4	0.29	0.21	0.34	37	378	0.74	67	0.02	1
42	Po3	0.8	1996	2740	8.20	286	467	187	19	18	6	0.34	0.28	0.26	7	284	0.94	5	0.04	0.8
43	Po4	0.6	1300	1416	7.09	564	387	99	9	64	3	0.2	0.1	0.16	28	308	0.8	89	0.02	0.7
44	Th1	0.8	1871	2084	7.94	409	208	194	26	56	8	0.23	0.18	0.04	32	167	0.74	35	0.03	0.6
45	Va1	0.4	1814	968	8.40	399	656	143	10	116	2	0.3	0.12	0.09	5	247	0.6	26	0.01	0.9
46	T1	0.5	1674	2624	7.10	262	532	78	21	189	2	0.19	0.11	0.24	30	209	0.84	87	0.01	0.6
47	Po1	0.7	1856	1927	7.00	385	324	86	10	36	5	0.22	0.16	0.32	17	321	0.64	76	0.03	0.7
48	Po2	0.8	1873	589	6.09	421	307	182	16	83	3	0.1	0.24	0.06	8	189	0.7	13	0.04	0.5
49	sp1	0.4	1630	2165	7.60	213	511	128	22	126	7	0.13	0.13	0.08	22	299	0.54	83	0.01	0.9
50	sp2	0.9	1893	1968	8.10	319	384	113	7	16	4	0.31	0.19	0.19	15	367	0.6	16	0.02	0.6
5. Conclusion and Future Work

Among groundwater quality parameters TDS, Alkalinity, Hardness and Calcium values are significant and higher percentage of samples exceed standards in these parameters. This indicates that salinity is the major problem in this study area with reference to physic-chemical parameters. Since this is rapidly growing industrial area, the risk of heavy metal contamination will only increase in near future. Also given the fact that high rise residential communities are coming up at a rapid rate in the vicinity of Oragadam evaluation of groundwater quality becomes

Table 3. Maximum and minimum value of each parameters

Parameters	N	Minimum	Maximum	Mean	Std. Deviation
T	50	.00	1.00	.4200	.49857
TDS	50	38.00	1996.00	1138.2800	568.60564
EC	50	54.00	2984.00	1445.9800	746.98902
Ph	50	6.09	8.40	7.3184	.56612
Alkalinity	50	14.00	564.00	289.1600	106.12014
Hardness	50	18.00	667.00	353.9200	168.81578
Ca	50	5.00	194.00	101.6600	47.44776
Mg	50	1.00	31.00	15.5400	8.35979
Na	50	4.00	344.00	107.5000	69.56989
K	50	.00	18.00	6.8800	4.04384
Fe	50	.06	.34	.2462	.05473
Mn	50	.00	.00	.0000	.00000
NH₃	50	.04	.48	.1664	.10737
NO₂	50	.01	.54	.1356	.15852
NO₃	50	.00	37.00	15.6600	9.18875
Cl	50	7.00	680.00	244.2200	143.56230
F	50	.11	1.10	.7204	.20088
SO₄	50	1.00	94.00	47.1000	29.68997
PO₄	50	.01	.05	.0156	.01053
O₂₂	50	.00	9.00	1.1200	1.15423

Valid N (list wise) 50

Figure 3. Pollution concentration maps of select parameters.
It is recommended that Government bodies monitor the groundwater quality of the study area and issue instructions to industries to maintain stringent disposal standards.

6. References

1. Loganathan D, Kamatchiammal S, Ramanibai R, Jayakar Santhosh D, Saroja V, Indumathi S. Status of groundwater at Chennai City, India. Indian Journal of Science and Technology. 2011 May; 4(5):566–72.
2. Pranavam TSD, Rao TV, Punithavathi L, Karunanithi S, Bhaskaran A. Groundwater pollution in the Palar Riverbed near Vellore, Tamil Nadu, India. Indian Journal of Science and Technology. 2011 Jan; 4(1):19–21.
3. Singh G, Kamal RK. Assessment of groundwater quality in the Mining Areas of Goa, India. Indian Journal of Science and Technology. 2015 Mar; 8(6):588–95.
4. Kushtagi S, Srinivas P. Studies on water quality index of groundwater of Aland taluka Gulbarga (India). International Journal of Applied Biology and Pharmaceutical Technology. 2011 Oct-Dec; 2(4):252–6.
5. Dohare D, Deshpande S, Kotiya A. Analysis of groundwater quality parameters: A review. Research Journal of Engineering Sciences. 2014; 3(5):26–31.
6. Hassan AS, Ghorade IB, Patil SS. Physico-chemical assessment of groundwater quality of Waluj Industrial Area, Aurangabad, (Maharashtra). Paripex. Indian Journal of Research. 2013; 2(4):1–3.
7. Ramesh M, Dharmaraj E, Raj BJR. Physico-chemical characteristics of groundwater of Manachanallur Block, Trichy, Tamil Nadu, India. Advances Applied Science Research. 2012 Jun; 3(3):1709–13.
8. Kavitha R, Elangovan K. Groundwater quality characteristics at Erode district, Tamil Nadu, India. International Journal of Environmental Sciences. 2010; 1(2):145–50.
9. Prakash KL, Somashekar RK. Groundwater quality - Assessment on Anekal Taluk, Bangalore Urban district, India. Journal of Environmental Biology. 2006 Oct; 27(4):633–7.
10. Manikandan S, Chidambaram S, Prasanna MV, Thivya C, Karmegam U. Hydrochemical characteristics and groundwater quality assessment in Krishnagiri District, Tamil Nadu, India. International Journal of Earth Sciences and Engineering. 2011; 4(4):623–32.
11. Alhibshi E, Albriky K, Bushita A. Concentration of heavy metals in underground water wells in Gharian district, Libya. International Conference on Agricultural. Ecological and Medical Sciences; Bali, Indonesia. 2014 Feb 6-7. p. 35–9.
12. Reddy VH, Prasad PMN, Ramana Reddy AV, Rami Reddy YV. Determination of heavy metals in surface and groundwater in and around Tirupati, Chittoor (Dt), Andhra Pradesh, India. Der Pharma Chemica. 2012; 4(6):2442–8.
13. Hanipha MM, Hussain AZ. Study of groundwater quality at Dindigul Town. Tamil Nadu, India. International Research Journal of Environment Sciences. 2013 Jan; 2(1):68–73.
14. Saravanakumar K, Kumar RR. Analysis of water quality parameters of groundwater near Ambattur Industrial Area, Tamil Nadu, India. Indian Journal of Science and Technology. 2011 May; 4(5):660–2.
15. Ravichandran K, Jayaparaksh M. Seasonal variation on physico-chemical parameters and trace metals in groundwater of an Industrial Area of North Chennai, India. Indian Journal of Science and Technology. 2011 Jun; 4(6):646–9.
16. Chitradevi S, Sridhar SGD. Hydrochemical characterization of groundwater in the proximity of River Noyyal, Tiruppur, South India. Indian Journal of Science and Technology. 2011 Dec; 4(12):1732–6.
17. Udayalaxmi G, Himabindu D, Ramadass G. Geochemical evaluation of groundwater quality in selected areas of Hyderabad, A.P., India. Indian Journal of Science and Technology. 2010 May; 3(5):546–53.
18. Singh V, Singh UC. Assessment of groundwater quality of parts of Gwalior (India) for agricultural purposes. Indian Journal of Science and Technology. 2008 Sep; 1(4):1–5.
19. Balakrishnan M, Antony SAS, Gunasekaran R, Natarajan K. Impact of dyeing industrial effluents on the groundwater quality in Kancheepuram (India). Indian Journal of Science and Technology. 2008 Dec; 1(7):1–8.
20. APHA, Standard methods for examination of water and waste water. 20th edition. Washington: USA. 1998.