Test of CP invariance in vector-boson fusion production of the Higgs boson using the Optimal Observable method in the ditau decay channel with the ATLAS detector

ATLAS Collaboration*
CERN, 1211 Geneva 23, Switzerland

Received: 16 February 2016 / Accepted: 8 November 2016 / Published online: 29 November 2016
© CERN for the benefit of the ATLAS collaboration 2016. This article is published with open access at Springerlink.com

Abstract A test of CP invariance in Higgs boson production via vector-boson fusion using the method of the Optimal Observable is presented. The analysis exploits the decay mode of the Higgs boson into a pair of τ leptons and is based on 20.3 fb$^{-1}$ of proton–proton collision data at $\sqrt{s} = 8$ TeV collected by the ATLAS experiment at the LHC. Contributions from CP-violating interactions between the Higgs boson and electroweak gauge bosons are described in an effective field theory framework, in which the strength of CP violation is governed by a single parameter \tilde{d}. The mean values and distributions of CP-odd observables agree with the expectation in the Standard Model and show no sign of CP violation. The CP-mixing parameter \tilde{d} is constrained to the interval $(-0.11, 0.05)$ at 68% confidence level, consistent with the Standard Model expectation of $\tilde{d} = 0$.

Contents

1 Introduction ... 1
2 Effective Lagrangian framework 2
3 Test of CP invariance and Optimal Observable ... 3
4 The ATLAS detector 4
5 Simulated samples 4
6 Analysis .. 6
7 Fitting procedure 8
8 Results .. 9
9 Conclusions 10
References 11

1 Introduction

The discovery of a Higgs boson by the ATLAS and CMS experiments [1,2] at the LHC [3] offers a novel opportunity to search for new sources of CP violation in the interaction of

* e-mail: atlas.publications@cern.ch
to an integrated luminosity of 20.3 fb⁻¹ collected with the
ATLAS detector at √s = 8 TeV in 2012. A CP-odd Optimal Observable [17–19] is employed. The Optimal Observable combines the information from the multi-dimensional phase space in a single quantity calculated from leading-order matrix elements for VBF production. Hence it does not depend on the decay mode of the Higgs boson. A direct test of CP invariance is possible measuring the mean value of the CP-odd Optimal Observable. Moreover, as described in Sect. 2, an ansatz in the framework of an effective field theory is utilised, in which all CP-violating effects corresponding to operators with dimensions up to six in the couplings are derived by analysing the shape of spectra of the

L_i (\rightarrow 3\text{ jets tagging VBF production. The event selection, uncertainties follows the analysis used to establish 4 independent due to constraints imposed by U(1)_Y and SU(2)_L invariance. They can be expressed in terms of two dimensionless couplings d and d_B as:

$$\tilde{g}_{HAA} = \frac{g}{2m_W} (\tilde{d} \sin^2 \theta_W + \tilde{d}_B \cos^2 \theta_W)$$

$$\tilde{g}_{HAZ} = \frac{g}{2m_W} \sin 2\theta_W (\tilde{d} - \tilde{d}_B)$$

$$\tilde{g}_{HZZ} = \frac{g}{2m_W} (\tilde{d} \cos^2 \theta_W + \tilde{d}_B \sin^2 \theta_W)$$

$$\tilde{g}_{HW}\tilde{W}_B = \frac{g}{m_W} \tilde{d}.$$ (5)

Hence in general WW, ZZ, ZZZ and WW fusion contribute to VBF production. The relations between d and f_{\tilde{W}_W}, and d_B and f_B are given by:

$$\tilde{d} = -\frac{m_W^2}{\Lambda^2} f_{\tilde{W}_W} \quad \tilde{d}_B = -\frac{m_W^2}{\Lambda^2} \tan^2 \theta_W f_B.$$ (6)

As the different contributions from the various electroweak gauge-boson fusion processes cannot be distinguished experimentally with the current available dataset, the arbitrary choice \tilde{d} = \tilde{d}_B is adopted. This yields the following relation for the \tilde{g}_{HVV}:

$$\tilde{g}_{HAA} = \frac{1}{2} \tilde{g}_{HW}\tilde{W}_B = \frac{g}{2m_W} \tilde{d} \quad \text{and} \quad \tilde{g}_{HAZ} = 0.$$ (7)

\(\odot\) Springer
The parameter \tilde{d} is related to the parameter $\tilde{k}_W = \tilde{k}_W/\kappa_{SM} \tan\alpha$ used in the investigation of CP properties in the decay $H \rightarrow WW$ [15] via $\tilde{d} = -\tilde{k}_W$. The choice $\tilde{d} = \tilde{d}_B$ yields $\tilde{k}_W = \tilde{k}_Z$ as assumed in the combination of the $H \rightarrow WW$ and $H \rightarrow ZZ$ decay analyses [15].

The effective Lagrangian yields the following Lorentz structure for each vertex in the Higgs bosons coupling to two identical or charge-conjugated electroweak gauge bosons $HV(p_1)V(p_2)$ ($V = W^\pm, Z, \gamma$), with $p_{1,2}$ denoting the momenta of the gauge bosons:

$$T^{\mu\nu}(p_1, p_2) = \sum_{V=W^\pm, Z, \gamma} \frac{2m_V^2}{v} g^{\mu\nu} + \sum_{V=W^\pm, Z, \gamma} \frac{2g}{m_W} \tilde{d} \epsilon^{\mu\nu\rho\sigma} p_{1\rho} p_{2\sigma}. \quad (8)$$

The first terms ($\propto g^{\mu\nu}$) are CP-even and describe the SM coupling structure, while the second terms ($\propto \epsilon^{\mu\nu\rho\sigma} p_{1\rho} p_{2\sigma}$) are CP-odd and arise from the CP-odd dimension-six operators. The choice $\tilde{d} = \tilde{d}_B$ gives the same coefficients multiplying the CP-odd structure for HW^+W^-, HZZ and $H\gamma\gamma$ vertices and a vanishing coupling for the HZZ vertex.

The matrix element \mathcal{M} for VBF production is the sum of a CP-even contribution \mathcal{M}_{SM} from the SM and a CP-odd contribution $\mathcal{M}_{CP\text{-}odd}$ from the dimension-six operators considered:

$$\mathcal{M} = \mathcal{M}_{SM} + \tilde{d} \cdot \mathcal{M}_{CP\text{-}odd}. \quad (9)$$

The differential cross section or squared matrix element has three contributions:

$$|\mathcal{M}|^2 = |\mathcal{M}_{SM}|^2 + \tilde{d} \cdot 2\Re(\mathcal{M}_{SM}^* \mathcal{M}_{CP\text{-}odd}) + \tilde{d}^2 \cdot |\mathcal{M}_{CP\text{-}odd}|^2. \quad (10)$$

The first term $|\mathcal{M}_{SM}|^2$ and third term $\tilde{d}^2 \cdot |\mathcal{M}_{CP\text{-}odd}|^2$ are both CP-even and hence do not yield a source of CP violation. The second term $\tilde{d} \cdot 2\Re(\mathcal{M}_{SM}^* \mathcal{M}_{CP\text{-}odd})$, stemming from the interference of the two contributions to the matrix element, is CP-odd and is a possible new source of CP violation in the Higgs sector. The interference term integrated over a CP-symmetric part of phase space vanishes and therefore does not contribute to the total cross section and observed event yield after applying CP-symmetric selection criteria. The third term increases the total cross section by an amount quadratic in \tilde{d}, but this is not exploited in the analysis presented here.

3 Test of CP invariance and Optimal Observable

Tests of CP invariance can be performed in a completely model-independent way by measuring the mean value of a CP-odd observable $\langle \mathcal{O}_{CP} \rangle$. If CP invariance holds, the mean value has to vanish $\langle \mathcal{O}_{CP} \rangle = 0$. An observation of a non-vanishing mean value would be a clear sign of CP violation. A simple CP-odd observable for Higgs boson production in VBF, the “signed” difference in the azimuthal angle between the two tagging jets $\Delta \phi_{jj}$, was suggested in Ref. [22] and is formally defined as:

$$\epsilon_{\mu\nu\rho\sigma} b^T_\mu b^L_\nu b^L_\rho b^T_\sigma = 2p_{T\mu} p_{T\rho} \sin(\phi_+ - \phi_-) = 2p_{T\mu} p_{T\rho} \sin \Delta \phi_{jj}. \quad (11)$$

Here b^T_μ and b^L_μ denote the normalised four-momenta of the two proton beams, circulating clockwise and anticlockwise, and $p_{T\mu}^\pm (\phi_\pm)$ and $p_{T\rho}^\pm (\phi_-)$ denote the four-momenta (azimuthal angles) of the two tagging jets, where $p_\mu (p_-)$ points into the same detector hemisphere as $b^T_\mu (b^L_\mu)$. This ordering of the tagging jets by hemispheres removes the sign ambiguity in the standard definition of $\Delta \phi_{jj}$.

The final state consisting of the Higgs boson and the two tagging jets can be characterised by seven phase-space variables while assuming the mass of the Higgs boson, neglecting jet masses and exploiting momentum conservation in the plane transverse to the beam line. The concept of the Optimal Observable combines the information of the high-dimensional phase space in a single observable, which can be shown to have the highest sensitivity for small values of the parameter of interest and neglects contributions proportional to \tilde{d}^2 in the matrix element. The method was first suggested for the estimation of a single parameter using the mean value only [17] and via a maximum-likelihood fit to the full distribution [18] using the so-called Optimal Observable of first order. The extension to several parameters and also exploiting the matrix-element contributions quadratic in the parameters by adding an Optimal Observable of second order was introduced in Refs. [19,27,28]. The technique has been applied in various experimental analyses, e.g. Refs. [15,29–39].

The analysis presented here uses only the first-order Optimal Observable $\mathcal{O}O$ (called Optimal Observable below) for the measurement of \tilde{d} via a maximum-likelihood fit to the full distribution. It is defined as the ratio of the interference term in the matrix element to the SM contribution:

$$\mathcal{O}O = \frac{2\Re(\mathcal{M}_{SM}^* \mathcal{M}_{CP\text{-}odd})}{|\mathcal{M}_{SM}|^2}. \quad (12)$$

Figure 1 shows the distribution of the Optimal Observable, at parton level both for the SM case and for two non-zero \tilde{d} values, which introduce an asymmetry into the distribution and yield a non-vanishing mean value.

The values of the leading-order matrix elements needed for the calculation of the Optimal Observable are extracted from HAWK [41–43]. The evaluation requires the four-momenta of the Higgs boson and the two tagging jets. The momentum fraction $x_1 (x_2)$ of the initial-state parton from the proton moving in the positive (negative) z-direction can be derived by exploiting energy–momentum conservation from
the Higgs boson and tagging jet four-momenta as:

\[x_{1/2}^{\text{reco}} = \frac{m_{Hj}}{\sqrt{\Delta \eta}} e^{\pm y_{Hj}} \]

(13)

where \(m_{Hj} \) (\(y_{Hj} \)) is the invariant mass (rapidity) obtained from the vectorially summed four-momenta of the tagging jets and the Higgs boson. Since the flavour of the initial- and final-state partons cannot be determined experimentally, the sum over all possible flavour configurations \(ij \rightarrow klH \) weighted by the CT10 leading-order parton distribution functions (PDFs) \([44]\) is calculated separately for the matrix elements in the numerator and denominator:

\[
2 \text{Re}(\mathcal{M}_{\text{SM}}^{\text{CP-odd}}) = \sum_{i,j,k,l} f_i(x_1) f_j(x_2) \\
\times 2 \text{Re}((\mathcal{M}_{\text{SM}}^{ij \rightarrow klH})^{*} \mathcal{M}_{\text{CP-odd}}^{ij \rightarrow klH})
\]

(14)

\[
|\mathcal{M}_{\text{SM}}|^2 = \sum_{i,j,k,l} f_i(x_1) f_j(x_2) |\mathcal{M}_{\text{SM}}^{ij \rightarrow klH}|^2.
\]

(15)

4 The ATLAS detector

The ATLAS detector \([45]\) is a multi-purpose detector with a cylindrical geometry.\(^1\) It comprises an inner detector (ID) surrounded by a thin superconducting solenoid, a calorimeter system and an extensive muon spectrometer in a toroidal magnetic field. The ID tracking system consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker. It provides precise position and momentum measurements for charged particles and allows efficient identification of jets containing \(b \)-hadrons (\(b \)-jets) in the pseudorapidity range \(|\eta| < 2.5 \).

The ID is immersed in a 2 T axial magnetic field and is surrounded by high-granularity lead/liquid-argon sampling electromagnetic calorimeters which cover the pseudorapidity range \(|\eta| < 3.2 \). A steel/scintillator tile calorimeter provides hadronic energy measurements in the central pseudorapidity range \((|\eta| < 1.7) \). In the forward regions \((1.5 < |\eta| < 4.9)\), the system is complemented by two end-cap calorimeters using liquid argon as active material and copper or tungsten as absorbers. The muon spectrometer surrounds the calorimeters and consists of three large superconducting eight-coil toroids, a system of tracking chambers, and detectors for triggering. The deflection of muons is measured in the region \(|\eta| < 2.7 \) by three layers of precision drift tubes, and cathode strip chambers in the innermost layer for \(|\eta| > 2.0 \). The trigger chambers consist of resistive plate chambers in the barrel \((|\eta| < 1.05)\) and thin-gap chambers in the end-cap regions \((1.05 < |\eta| < 2.4)\).

A three-level trigger system \([46]\) is used to select events. A hardware-based Level-1 trigger uses a subset of detector information to reduce the event rate to 75 kHz or less. The rate of accepted events is then reduced to about 400 Hz by two software-based trigger levels, named Level-2 and the Event Filter.

5 Simulated samples

Background and signal events are simulated using various Monte Carlo (MC) event generators, as summarised in Table 1. The generators used for the simulation of the hard-scattering process and the model used for the simulation of the parton shower, hadronisation and underlying-event activity are listed. In addition, the cross-section values to which the simulation is normalised and the perturbative order in QCD of the respective calculations are provided.

All the background samples used in this analysis are the same as those employed in Ref. \([20]\), except the ones used to simulate events with the Higgs boson produced via gluon fusion and decaying into the \(\tau \tau \) final state. The Higgs-plus-one-jet process is simulated at NLO accuracy in QCD with POWHEG-Box \([47–49,73]\), with the MINLO feature \([74]\) applied to include Higgs-plus-zero-jet events at NLO accuracy. This sample is referred to as HJ MINLO. The POWHEG-Box event generator is interfaced to PYTHIA8 \([51]\), and the CT10 \([44]\) parameterisation of the PDFs is used. Higgs boson events produced via gluon fusion and decay-
The NLO EW corrections for VBF production depend on the with an approximate NNLO QCD correction applied [53].

Calculated with full NLO QCD and EW corrections [41,42,52].

Pythia8 faced with Powheg with SM couplings, are also simulated with

VBF, H \rightarrow \tau \tau,

Higgs boson events produced via VBF, leading-order (NLO) electroweak (EW) corrections are also included [86,87].

All Higgs boson events are generated assuming

\[\sigma \times B \text{ [pb]} \]

\[\sqrt{s} = 8 \text{ TeV} \]

Signal	MC generator	\(\sigma \times B \text{ [pb]} \)
VBF, \(H \rightarrow \tau \tau \)	POWHEG-BOX [47–50] PYTHIA8 [51]	0.100 (N)NLO
VBF, \(H \rightarrow WW \)	same as for \(H \rightarrow \tau \tau \) signal	0.34 (N)NLO
Background	MC generator	\(\sigma \times B \text{ [pb]} \)
		\(\sqrt{s} = 8 \text{ TeV} \)
\(W(\rightarrow \ell \nu, (\ell = e, \mu, \tau) \)	ALPGEN [55] + PYTHIA8	36,800 NNLO
\(Z/\gamma^*(\rightarrow \ell \ell) \), \(60 \text{ GeV} < m_{\ell \ell} < 2 \text{ TeV} \)	ALPGEN + PYTHIA8	3910 NNLO
\(Z/\gamma^*(\rightarrow \ell \ell) \), \(10 \text{ GeV} < m_{\ell \ell} < 60 \text{ GeV} \)	ALPGEN + HERWIG [58]	13,000 NNLO
VBF, \(Z/\gamma^*(\rightarrow \ell \ell) \)	SHERPA [59]	1.1 LO
\(t\bar{t} \)	POWHEG-BOX + PYTHIA8	253\text{I} NNLO + NNLL
Single top : \(Wt \)	POWHEG-BOX + PYTHIA8	22\text{I} NNLO
Single top : s-channel	POWHEG-BOX + PYTHIA8	5.6\text{I} NNLO
Single top : t-channel	Acenter [68] + PYTHIA6 [69]	87.8\text{I} NNLO
\(q\bar{q} \rightarrow WW \)	ALPGEN + HERWIG	54\text{I} NLO
\(gg \rightarrow WW \)	gg2WW [72] + HERWIG	1.4\text{I} NLO
\(WZ, ZZ \)	HERWIG	30\text{I} NLO
ggF, \(H \rightarrow \tau \tau \)	HJ MSE [73,74] + PYTHIA8	1.22 NNLO + NNLL
ggF, \(H \rightarrow WW \)	POWHEG-BOX [81] + PYTHIA8	4.16 NNLO + NNLL

All Higgs boson events are generated assuming \(m_H = 125 \text{ GeV} \). The cross sections times branching fractions (\(\sigma \times B \)) used for the normalisation of some processes (many of these are subsequently normalised to data) are included in the last column together with the perturbative order of the QCD calculation. For the signal processes the \(H \rightarrow \tau \tau \) and \(H \rightarrow WW \) SM branching ratios are included, and for the \(W \) and \(Z/\gamma^* \) background processes the branching ratios for leptonic decays (\(\ell = e, \mu, \tau \)) of the bosons are included. For all other background processes, inclusive cross sections are quoted (marked with a †).

The reweighting procedure proves to be a good approximation to a full next-to-Leading description of the BSM process.
In the case of the $H \rightarrow WW$ sample, if CP violation exists in the HVV coupling, it would affect both the VBF production and the HWW decay vertex. It was verified that the shape of the Optimal Observable distribution is independent of any possible CP violation in the $H \rightarrow WW$ decay vertex and that it is identical for $H \rightarrow WW$ and $H \rightarrow \tau \tau$ decays. Hence the same reweighting is applied for VBF-produced events with $H \rightarrow WW$ and $H \rightarrow \tau \tau$ decays.

For all samples, a full simulation of the ATLAS detector response [90] using the GEANT4 program [91] was performed. In addition, multiple simultaneous minimum-bias interactions are simulated using the AU2 [92] parameter tuning of PYTHIA8. They are overlaid on the simulated signal and background events according to the luminosity profile of the recorded data. The contributions from these pile-up interactions are simulated both within the same bunch crossing as the hard-scattering process and in neighbouring bunch crossings. Finally, the resulting simulated events are processed through the same reconstruction programs as the data.

6 Analysis

After data quality requirements, the integrated luminosity of the $\sqrt{s} =$ 8 TeV dataset used is 20.3 fb$^{-1}$. The triggers, event selection, estimation of background contributions and systematic uncertainties closely follow the analysis in Ref. [20]. In the following a short description of the analysis strategy is given; more details are given in that reference.

Depending on the reconstructed decay modes of the two τ leptons (leptonic or hadronic), events are separated into the dileptonic ($\tau_{lep}\tau_{lep}$) and semileptonic ($\tau_{lep}\tau_{had}$) channels. Following a channel-specific preselection, a VBF region is selected by requiring at least two jets with $p_T^j > 40$ GeV (50 GeV) and $p_T^{\ell\ell} > 30$ GeV and a pseudorapidity separation $\Delta\eta(j_1, j_2) > 2.2$ (3.0) in the $\tau_{lep}\tau_{lep}$ ($\tau_{lep}\tau_{had}$) channel. Events with b-tagged jets are removed to suppress top-quark backgrounds.

Inside the VBF region, boosted decision trees (BDT)\(^2\) are utilised for separating Higgs boson events produced via VBF from the background (including other Higgs boson production modes). The final signal region in each channel is defined by the events with a BDT score value above a threshold of 0.68 for $\tau_{lep}\tau_{lep}$ and 0.3 for $\tau_{lep}\tau_{had}$. The efficiency of this selection, with respect to the full VBF region, is 49% (51%) for the signal and 3.6% (2.1%) for the sum of background processes for the $\tau_{lep}\tau_{lep}$ ($\tau_{lep}\tau_{had}$) channel. A non-negligible number of events from VBF-produced $H \rightarrow WW$ events survive the $\tau_{lep}\tau_{lep}$ selection; they amount to 17% of the overall VBF signal in the signal region. Their contribution is entirely negligible in the $\tau_{lep}\tau_{had}$ selection. Inside each signal region, the Optimal Observable is then used as the variable with which to probe for CP violation. The BDT score does not affect the mean of the Optimal Observable, as can be seen in Fig. 2.

The modelling of the Optimal Observable distribution for various background processes is validated in dedicated control regions. The top-quark control regions are defined by the same cuts as the corresponding signal region, but inverting the veto on b-tagged jets and not applying the selection on the BDT score in the $\tau_{lep}\tau_{had}$ channel (a requirement of the transverse mass\(^3\) $m_T > 40$ GeV is also applied). In the $\tau_{lep}\tau_{lep}$ channel a $Z \rightarrow \ell\ell$ control region is obtained by requiring two same-flavour opposite-charge leptons, the invariant mass of the two leptons to be $80 < m_{\ell\ell} < 100$ GeV, and no BDT score

\(^2\) The same BDTs trained in the context of the analysis in Ref. [20] are used here, unchanged.

\(^3\) The transverse mass is defined as $m_T = \sqrt{2p_T^{\ell}\cdot E_{T}^{miss}\cdot(1 - \cos \Delta\phi)}$, where $\Delta\phi$ is the azimuthal separation between the directions of the lepton and the missing transverse momentum.
Fig. 3 Distributions of the Optimal Observable for the $\tau_{lep}\tau_{lep}$ channel in the a top-quark control region (CR), b $Z \rightarrow \ell\ell$ CR, and c low-BDT_score CR. The CR definitions are given in the text. These figures use background predictions before the global fit defined in Sect. 7. The “Other” backgrounds include diboson and $Z \rightarrow \ell\ell$. Only statistical uncertainties are shown.
Fig. 4 Distributions of the Optimal Observable for the τ_{lep}^{had} channel in the (a) top-quark control region (CR) and (b) low-BDT$_{score}$ CR. The CR definitions are given in the text. These figures use background predictions before the global fit defined in Sect. 7. The “Other” backgrounds include diboson and $Z \rightarrow \ell \ell$. Only statistical uncertainties are shown.

7 Fitting procedure

The best estimate of \hat{d} is obtained using a maximum-likelihood fit performed on the Optimal Observable distribution in the signal region for each decay channel simultaneously, with information from different control regions included to constrain background normalisations and nuisance parameters. The normalisation of the VBF $H \rightarrow \tau \tau$ and $H \rightarrow WW$ signal sample is left free in the fit, i.e. this analysis only exploits the shape of the Optimal Observable and does not depend on any possibly model-dependent information about the cross section of CP-mixing scenarios. The relative proportion of the two Higgs boson decay modes is assumed to be as in the SM. All other Higgs boson production modes are treated as background in this study and normalised to their SM expectation, accounting for the corresponding theoretical uncertainties.

A binned likelihood function $L(\mathbf{x}; \mu, \theta)$ is employed, which is a function of the data \mathbf{x}, the free-floating signal strength μ, defined as the ratio of the measured cross section times branching ratio to the Standard Model prediction, and further nuisance parameters θ. It relies on an underlying model of signal plus background, and it is defined as the product of Poisson probability terms for each bin in the distribution of the Optimal Observable. A set of signal templates corresponding to different values of the CP-mixing parameter \hat{d} is created by reweighting the SM VBF $H \rightarrow \tau \tau$ and $H \rightarrow WW$ signal samples, as described in Sect. 5. The likelihood function is then evaluated for each \hat{d} hypothesis using the corresponding signal template, while keeping the same background model. The calculation profiles the nuisance parameters to the best-fit values $\hat{\theta}$, including information about systematic uncertainties and normalisation factors, both of which affect the expected numbers of signal and background events.

After constructing the negative log-likelihood (NLL) curve by calculating the NLL value for each \hat{d} hypothesis, the approximate central confidence interval at 68% confidence level (CL) is determined from the best estimator \hat{d}, at which the NLL curve has its minimum value, by reading off the points at which $\Delta\text{NLL}=\text{NLL}−\text{NLL}_{\text{min}} = 0.5$. The expected sensitivity is determined using an Asimov dataset, i.e. a pseudo-data distribution equal to the signal-plus-background expectation for given values of \hat{d} and the parameters of the fit, in particular the signal strength μ, and not including statistical fluctuations [93].

In both channels, a region of low BDT$_{score}$ is obtained as described in the preceding section. The distribution of the BDT$_{score}$ itself is fitted in this region, which has a much larger number of background events than the signal region, allowing the nuisance parameters to be constrained by the data. This region provides the main constraint on the $Z \rightarrow \tau \tau$ normalisation, which is free to float in the fit. The event yields from the top-quark (in $\tau_{lep}\tau_{lep}$ and $\tau_{lep}\tau_{had}$) and $Z \rightarrow \ell \ell$ (in $\tau_{lep}\tau_{lep}$ only) control regions defined in the previous section are also included in the fit, to constrain the respective background normalisations, which are also left free in the fit.

The distributions of the Optimal Observable in each channel are shown in Fig. 5, with the nuisance parameters, background and signal normalisation adjusted by the global fit performed for the $\hat{d} = 0$ hypothesis. Table 2 provides the fitted yields of signal and background events, split into the various contributions, in each channel. The number of events observed in data is also provided.
The observed distribution of ΔNLL as a function of the \tilde{d} values defining the underlying signal hypothesis, for $\tau_{lep}\tau_{lep}$ (green), $\tau_{lep}\tau_{had}$ (red) and their combination (black). The best-fit values of all nuisance parameters from the combined fit at each \tilde{d} point were used in all cases. An Asimov dataset with SM backgrounds plus pure CP-even VBF signal ($\tilde{d} = 0$), scaled to the best-fit signal-strength value, was used to calculate the expected values, shown in blue. The markers indicate the points where an evaluation was made – the lines are only meant to guide the eye.

For $\tau_{lep}\tau_{lep}$ and $\tau_{lep}\tau_{had}$ curves use the best-fit values of all nuisance parameters from the combined fit at each \tilde{d} point. The expected curve is calculated assuming no CP-odd coupling, with the $H \to \tau\tau$ signal scaled to the signal-strength value ($\mu = 1.55^{+0.87}_{-0.76}$) determined from the fit for $\tilde{d} = 0$. In the absence of CP violation the curve is expected to have a minimum at $\tilde{d} = 0$. Since the first-order Optimal Observable used in the present analysis is only sensitive to small variations in the considered variable, for large \tilde{d} values there is no further

\section{8 Results}

The mean value of the Optimal Observable for the signal is expected to be zero for a CP-even case, while there may be deviations in case of CP-violating effects. A mean value of zero is also expected for the background, as has been demonstrated. Hence, the mean value in data should also be consistent with zero if there are no CP-violating effects within the precision of this measurement. The observed values for the mean value in data inside the signal regions are 0.3 ± 0.5 for $\tau_{lep}\tau_{lep}$ and -0.3 ± 0.4 for $\tau_{lep}\tau_{had}$, fully consistent with zero within statistical uncertainties and thus showing no hint of CP violation.

As described in the previous section, the observed limit on CP-odd couplings is estimated using a global maximum-likelihood fit to the Optimal Observable distributions in data. The observed distribution of ΔNLL as a function of the CP-mixing parameter \tilde{d} for the individual channels separately, and for their combination, is shown in Fig. 6. The $\tau_{lep}\tau_{lep}$ and $\tau_{lep}\tau_{had}$ curves use the best-fit values of all nuisance parameters from the combined fit at each \tilde{d} point. The expected curve is calculated assuming no CP-odd coupling, with the $H \to \tau\tau$ signal scaled to the signal-strength value ($\mu = 1.55^{+0.87}_{-0.76}$) determined from the fit for $\tilde{d} = 0$. In the absence of CP violation the curve is expected to have a minimum at $\tilde{d} = 0$. Since the first-order Optimal Observable used in the present analysis is only sensitive to small variations in the considered variable, for large \tilde{d} values there is no further

\begin{table}[h]
\centering
\begin{tabular}{|l|c|c|}
\hline
Process & $\tau_{lep}\tau_{lep}$ & $\tau_{lep}\tau_{had}$ \\
\hline
Data & 54 & 68 \\
VBF $H \to \tau\tau/WW$ & 9.8 ± 2.1 & 16.7 ± 4.1 \\
$Z \to \tau\tau$ & 19.6 ± 1.0 & 19.1 ± 2.2 \\
Fake lepton/\tau & 2.3 ± 0.3 & 24.1 ± 1.5 \\
$t\bar{t} +$single-top & 3.8 ± 1.0 & 4.8 ± 0.7 \\
Others & 11.5 ± 1.7 & 5.3 ± 1.6 \\
$ggH/VH, H \to \tau\tau/WW$ & 1.6 ± 0.2 & 2.5 ± 0.7 \\
\hline
Sum of backgrounds & 38.9 ± 2.3 & 55.8 ± 3.3 \\
\hline
\end{tabular}
\caption{Event yields in the signal region, after the global fit performed for the $\tilde{d} = 0$ hypothesis. The errors include systematic uncertainties.}
\end{table}
discrimination power and thus the ΔNLL curve is expected to flatten out. The observed curve follows this behaviour and is consistent with no CP violation. The regions $\bar{d} < -0.11$ and $\bar{d} > 0.05$ are excluded at 68% CL. The expected confidence intervals are $[-0.08, 0.08]$ ([−0.18, 0.18]) for an assumed signal strength of $\mu = 1.55$ (1.0). The constraints on the CP-mixing parameter \bar{d} based on VBF production can be directly compared to those obtained by studying the Higgs boson decays into vector bosons, as the same relation between the HWW and HZZ couplings as in Refs. [14, 15] is assumed. The 68% CL interval presented in this work is a factor 10 better than the one obtained in Ref. [15].

As a comparison, the same procedure for extracting the CP-mixing parameter \bar{d} was applied using the $\Delta\phi_{jj}^{\text{sign}}$ observable, previously proposed for this measurement and defined in Eq. 11, rather than the Optimal Observable. The expected ΔNLL curves for a SM Higgs boson signal from the combination of both channels for the two CP-odd observables are shown in Fig. 7, allowing a direct comparison, and clearly indicate the better sensitivity of the Optimal Observable. The observed ΔNLL curve derived from the $\Delta\phi_{jj}^{\text{sign}}$ distribution is also consistent with $\bar{d} = 0$, as shown in Fig. 8, along with the expectation for a signal with $\bar{d} = 0$ scaled to the best-fit signal-strength value ($\mu = 2.02^{+0.87}_{-0.77}$).

9 Conclusions

A test of CP invariance in the Higgs boson coupling to vector bosons has been performed using the vector-boson fusion production mode and the $H \rightarrow \tau \tau$ decay. The dataset corresponds to 20.3 fb$^{-1}$ of $\sqrt{s} = 8$ TeV proton–proton collisions recorded by the ATLAS detector at the LHC. Event selection, background estimation and evaluation of systematic uncertainties are all very similar to the ATLAS analysis that provided evidence of the $H \rightarrow \tau \tau$ decay. An Optimal Observable is constructed and utilised, and is shown to provide a substantially better sensitivity than the variable traditionally proposed for this kind of study, $\Delta\phi_{jj}^{\text{sign}}$. No sign of CP violation is observed. Using only the dileptonic and semileptonic $H \rightarrow \tau \tau$ channels, and under the assumption $\bar{d} = \bar{d}_B$, values of \bar{d} less than -0.11 and greater than 0.05 are excluded at 68% CL.

This 68% CL interval is a factor of 10 better than the one previously obtained by the ATLAS experiment from Higgs boson decays into vector bosons. In contrast, the present analysis has no sensitivity to constrain a 95% CL interval with the dataset currently available – however larger data samples in the future and consideration of additional Higgs boson decay channels should make this approach highly competitive.

Acknowledgements We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong
Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRS, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNI and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/RF, South Africa; MINECO, Spain; SRC and Walsen-berg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Réunion Auvergne and Fondation Partager le Savoir, France; DFG and AVH Foundation, Germany; Her-akleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSF; BGF, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP3.

References

1. ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B. 716, 1–29 (2012). arXiv:1207.7214 [hep-ex]
2. CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B. 716, 30–61 (2012). arXiv:1207.7235 [hep-ex]
3. L. Evans, P. Bryant, L.H.C. Machine, JINST 3, S08001 (2008)
4. A.D. Sakharov, Violation of CP Invariance, c Asymmetry, and Baryon Asymmetry of the Universe, Pisma Zh. Eksp. Teor. Fiz. 5, 32–35 (1967). [Usp. Fiz. Nauk161,61(1991)]
5. A. D. Sakharov, Baryonic asymmetry of the universe. Sov. Phys. JETP 49, 594–599 (1979). [Zh. Eksp. Teor. Fiz.76,1172(1979)]
6. A.D. Sakharov, Baryon asymmetry of the universe, Sov. Phys. Usp. 34, 417–421 (1991)
7. N. Cabibbo, Unitary symmetry and leptonic decays. Phys. Rev. Lett. 10, 531–533 (1963)
8. M. Kobayashi, T. Maskawa, CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652–657 (1973)
9. P.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, (2015). arXiv:1502.01589 [astro-ph.CO]
10. P. Huet, E. Sather, Electroweak baryogenesis and standard model CP violation. Phys. Rev. D. 51, 379–394 (1995). arXiv:hep-ph/9404302 [hep-ph]
11. M.B. Gavela et al., Standard model CP violation and baryon asymmetry. Mod. Phys. Lett. A. 9, 795–810 (1994). arXiv:hep-ph/9312215 [hep-ph]
12. CMS Collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV. Eur. Phys. J. C. 75, 212 (2015). arXiv:1412.8662 [hep-ex]
13. ATLAS Collaboration, Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at √s = 7 and 8 TeV in the ATLAS experiment. Eur. Phys. J. C. 76, 6 (2016). arXiv:1507.04548 [hep-ex]
14. CMS Collaboration, Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV. Phys. Rev. D. 92, 012004 (2015). arXiv:1411.3441 [hep-ex]
15. ATLAS Collaboration, Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector. Eur. Phys. J. C. 75, 476 (2015). arXiv:1506.05669 [hep-ex]
16. ATLAS Collaboration, Constraints on non-Standard Model Higgs boson interactions in an effective Lagrangian using differential cross sections measured in the H → γγ decay channel at √s = 8 TeV with the ATLAS detector. Phys. Lett. B. 753, 69–85 (2016). arXiv:1508.02507 [hep-ex]
17. D. Atwood, A. Soni, Analysis for magnetic moment and electric dipole moment, form-factors of the top quark via e^+e^- → tÌ̅ over two. Phys. Rev. D 45, 2405–2413 (1992)
18. M. Davier et al., The optimal method for the measurement of tau polarization. Phys. Lett. B. 306, 411–417 (1993)
19. M. Diehl, O. Nachtmann, Optimal observables for the measurement of three gauge boson couplings in e^+e^- → W^+W^-+Z. Z. Phys. C 62, 397–412 (1994)
20. ATLAS Collaboration, Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector. JHEP 04, 117 (2015). arXiv:1501.04943 [hep-ex]
21. B. Buchmuller, D. Wyler, Effective Lagrangian Analysis of new interactions and flavor conservation. Nucl. Phys. B. 268, 621–653 (1986)
22. V. Hankele et al., Anomalous Higgs boson couplings in vector boson fusion at the CERN LHC. Phys. Rev. D. 74, 095001 (2006). arXiv:hep-ph/0609075 [hep-ph]
23. OPAL Collaboration, G. Abbiendi et al., Measurement of W boson polarizations and CP violating triangle gauge couplings from W^+W^- production at LEP. Eur. Phys. J. C. 19, 229–240 (2001). arXiv:hep-ex/0009021 [hep-ex]
24. ALEPH Collaboration, S. Schael et al., Improved measurement of the triple gauge-boson couplings gamma WW and ZZW in e^+e^- collisions. Phys. Lett. B. 614, 7–26 (2005)
25. DELPHI Collaboration, J. Abdallah et al., Study of W boson polarisations and Triple Gauge boson Couplings in the reaction e^+e^- → W^+W^- at LEP 2. Eur. Phys. J. C. 54, 345–364 (2008). arXiv:0801.1235 [hep-ex]
26. L3 Collaboration, P. Achatz et al., Search for anomalous couplings in the Higgs sector at LEP. Phys. Lett. B. 589, 89–102 (2004). arXiv:hep-ex/0403037 [hep-ex]
27. M. Diehl, O. Nachtmann, Anomalous three gauge couplings in e^+e^- → tÌ̅ over two and ‘optimal’ strategies for their measurement. Eur. Phys. J. C I. 177–190 (1998). arXiv:hep-ph/9702208 [hep-ph]
28. M. Diehl, O. Nachtmann, F. Nagel, Triple gauge couplings in polarized e^+e^- → tÌ̅ over two and their measurement using optimal observables. Eur. Phys. J. C 27, 375–397 (2003). arXiv:hep-ph/0209229 [hep-ph]
29. ALEPH Collaboration, D. Buskulic et al., Measurement of the tau polarization at the Z resonance. Z. Phys. C 59, 369–386 (1993)
30. DELPHI Collaboration, P. Abreu et al., Measurements of the tau polarization in Z0 decays. Z. Phys. C 67, 183–202 (1995)
31. L3 Collaboration, M. Acciarri et al., Measurement of tau polarization at the Z resonance. Z. Phys. C 45, 1–21 (2001). arXiv:hep-ex/00103045 [hep-ex]
91. GEANT4 Collaboration, S. Agostinelli et al., Geant4—a simulation toolkit. Nucl. Instrum. Methods A. 506, 250 (2003)
92. Summary of ATLAS Pythia 8 tunes, ATL-PHYS-PUB-2012-003 (2012). http://cds.cern.ch/record/1474107. Accessed 22 Aug 2012
93. G. Cowan et al., Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J. C 71, 1554 (2011). [Erratum: Eur. Phys. J. C 73 (2013) 2501]. arXiv:1007.1727 [physics.data-an]

ATLAS Collaboration

G. Aad 87, B. Abbott114, O. Abdinov11, J. Abdallah159, B. Abelos118, R. Aben108, M. Abolins92, R. Aben108, M. Abolins92, O. S. AbouZeid138, N. L. Abraham150, H. Abramowicz154, H. Abreu153, R. Abreu117, Y. Abulaiti147a,147b, B. S. Acharya163a,163b, L. Adamczyk39a, D. L. Adams26, J. Adelman109, S. Adomeit101, T. Adye132, A. A. Affolder76, T. Agatone-Jovic19, J. Agricola55, J. A. Aguilar-Saavedra127a,127f, S. P. Ahlen21, F. Ahmadov67,b, G. Aielli134a,134b, H. Akerstedt147a,147b, T. P. A. Åkesson83, A. V. Alkino97, G. L. Alberghi21a,21b, J. Alberi168, S. Albrand15, M. J. Alconada Verzini23, M. Aleksa31, I. N. Aleksandrov67, C. Alexa27b, G. Alexander154, T. Alexopoulos10
94. Summary of ATLAS Pythia 8 tunes, ATL-PHYS-PUB-2012-003 (2012). http://cds.cern.ch/record/1474107. Accessed 22 Aug 2012
95. G. Cowan et al., Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J. C 71, 1554 (2011). [Erratum: Eur. Phys. J. C 73 (2013) 2501]. arXiv:1007.1727 [physics.data-an]

ATLAS Collaboration

G. Aad 87, B. Abbott114, O. Abdinov11, J. Abdallah159, B. Abelos118, R. Aben108, M. Abolins92, R. Aben108, M. Abolins92, O. S. AbouZeid138, N. L. Abraham150, H. Abramowicz154, H. Abreu153, R. Abreu117, Y. Abulaiti147a,147b, B. S. Acharya163a,163b, L. Adamczyk39a, D. L. Adams26, J. Adelman109, S. Adomeit101, T. Adye132, A. A. Affolder76, T. Agatone-Jovic19, J. Agricola55, J. A. Aguilar-Saavedra127a,127f, S. P. Ahlen21, F. Ahmadov67,b, G. Aielli134a,134b, H. Akerstedt147a,147b, T. P. A. Åkesson83, A. V. Alkino97, G. L. Alberghi21a,21b, J. Alberi168, S. Albrand15, M. J. Alconada Verzini23, M. Aleksa31, I. N. Aleksandrov67, C. Alexa27b, G. Alexander154, T. Alexopoulos10
94. Summary of ATLAS Pythia 8 tunes, ATL-PHYS-PUB-2012-003 (2012). http://cds.cern.ch/record/1474107. Accessed 22 Aug 2012
95. G. Cowan et al., Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J. C 71, 1554 (2011). [Erratum: Eur. Phys. J. C 73 (2013) 2501]. arXiv:1007.1727 [physics.data-an]
Department of Physics, The University of Texas at Arlington, Arlington, TX, USA

Physics Department, University of Athens, Athens, Greece

Physics Department, National Technical University of Athens, Zografou, Greece

Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan

Institut de Fisica d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain

Institute of Physics, University of Belgrade, Belgrade, Serbia

Department for Physics and Technology, University of Bergen, Bergen, Norway

Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, USA

Department of Physics, Humboldt University, Berlin, Germany

Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland

School of Physics and Astronomy, University of Birmingham, Birmingham, UK

(a)Department of Physics, Bogazici University, Istanbul, Turkey; (b)Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey; (c)Faculty of Engineering and Natural Sciences, Istanbul Bilgi University, Istanbul, Turkey; (d)Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey

Centro de Investigaciones, Universidad Antonio Narino, Bogotá, Colombia

(a)INFN Sezione di Bologna, Bologna, Italy; (b)Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy

Physikalisches Institut, University of Bonn, Bonn, Germany

Department of Physics, Boston University, Boston, MA, USA

Department of Physics, Brandeis University, Waltham, MA, USA

(a)Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil; (b)Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil; (c)Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil; (d)Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil

Physics Department, Brookhaven National Laboratory, Upton, NY, USA

(a)Transilvania University of Brasov, Brasov, Romania; (b)National Institute of Physics and Nuclear Engineering, Bucharest, Romania; (c)Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj Napoca, Romania; (d)University Politehnica Bucharest, Bucharest, Romania; (e)West University in Timisoara, Timisoara, Romania

Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina

Cavendish Laboratory, University of Cambridge, Cambridge, UK

Department of Physics, Carleton University, Ottawa, ON, Canada

CERN, Geneva, Switzerland

Enrico Fermi Institute, University of Chicago, Chicago, IL, USA

(a)Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile; (b)Departamento de Física, Universidad Técnica Federico Santa María, Valparaiso, Chile

(a)Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; (b)Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui, China; (c)Department of Physics, Nanjing University, Nanjing, Jiangsu, China; (d)School of Physics, Shandong University, Jinan, Shandong, China; (e)Shanghai Key Laboratory for Particle Physics and Cosmology, Department of Physics and Astronomy, Shanghai Jiao Tong University (also affiliated with PKU-CHEP), Shanghai, China; (f)Physics Department, Tsinghua University, Beijing 100084, China

Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France

Nevis Laboratory, Columbia University, Irvington, NY, USA

Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark

(a)INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Frascati, Italy; (b)Dipartimento di Fisica, Università della Calabria, Rende, Italy

(a)Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland; (b)Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland

Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland

Physics Department, Southern Methodist University, Dallas, TX, USA

Physics Department, University of Texas at Dallas, Richardson, TX, USA

DESY, Hamburg and Zeuthen, Germany
Institution	Location
Institut für Experimentelle Physik IV, Technische Universität Dortmund	Dortmund, Germany
Institut für Kern- und Teilchenphysik, Technische Universität Dresden	Dresden, Germany
Department of Physics, Duke University, Durham, NC, USA	
SUPA-School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK	
INFN Laboratori Nazionali di Frascati, Frascati, Italy	
Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg	
Section de Physique, Université de Genève, Geneva, Switzerland	
INFN Sezione di Genova, Genoa, Italy; Dipartimento di Fisica, Università di Genova, Genoa, Italy	
E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia; High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia	
II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany	
SUPA-School of Physics and Astronomy, University of Glasgow, Glasgow, UK	
II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany	
Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France	
Department of Physics, Hampton University, Hampton VA, USA	
Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, USA	
(a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany	
Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan	
Department of Physics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong; Department of Physics, The University of Hong Kong, Hong Kong, China; Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China	
Department of Physics, Indiana University, Bloomington, IN, USA	
Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria	
University of Iowa, Iowa City, IA, USA	
Department of Physics and Astronomy, Iowa State University, Ames, IA, USA	
Department of Physics and Astronomy, University of California Irvine, Irvine, CA, USA	
Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia	
KEK, High Energy Accelerator Research Organization, Tsukuba, Japan	
Graduate School of Science, Kobe University, Kobe, Japan	
Faculty of Science, Kyoto University, Kyoto, Japan	
Kyoto University of Education, Kyoto, Japan	
Department of Physics, Kyushu University, Fukuoka, Japan	
Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina	
Physics Department, Lancaster University, Lancaster, UK	
INFN Sezione di Lecce, Lecce, Italy; Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy	
Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK	
Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia	
School of Physics and Astronomy, Queen Mary University of London, London, UK	
Department of Physics, Royal Holloway University of London, Surrey, UK	
Department of Physics and Astronomy, University College London, London, UK	
Louisiana Tech University, Ruston, LA, USA	
Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France	
Fysiska institutionen, Lunds universitet, Lund, Sweden	
Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain	
Institut für Physik, Universität Mainz, Mainz, Germany	
School of Physics and Astronomy, University of Manchester, Manchester, UK	
CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France	
Department of Physics, University of Massachusetts, Amherst, MA, USA	
Department of Physics, McGill University, Montreal, QC, Canada	
School of Physics, University of Melbourne, Melbourne, VIC, Australia	
