INTRODUCTION

DNA methylation plays an essential role in the normal development and in the maintenance of genomic stability (1−3). However, alterations in methylation patterns frequently occur in tumor cells, and hypermethylation in the promoter regions of tumor suppressor genes are commonly associated with epigenetically mediated gene silencing in human cancer (4, 5).

The p16INK4a tumor suppressor gene encodes for a cyclin-dependent kinase inhibitor that is important for cell cycle progression, and the promoter hypermethylation of this gene is a frequent occurrence in human solid tumors (6).

In lung cancer, the p16INK4a gene hypermethylation has been detected in 17% (7) to 84% (8) of cases in different studies. This is most likely due to the various technical procedures used (9). Various methods of DNA methylation detection have been used, and these generally rely on a methylation-dependent modification of the original genomic DNA before any amplification step.

The aims of the present study were to evaluate the methylation status of the promoter region of p16INK4a in lung cancer tissue, and to analyze the relationships between methylation status and various clinicopathological parameters using a real-time quantitative polymerase chain reaction (PCR) protocol, which is a modified method of the previous developed PCR technique (10).

MATERIALS AND METHODS

Study population

The study subjects were recruited from patients admitted to the Department of Thoracic and Cardiovascular Surgery at Dong-A University Hospital in Busan, Korea from March 2006 to January 2007. Tumor specimens were collected from a series of 81 non-small cell lung cancers (NSCLCs). The study design was approved by the Committee on Human Research of Dong-A University Hospital. The study subjects gave informed consent prior to participation in the study.

DNA extraction

Immediately after surgical resection, tumor specimens and adjacent normal specimens were collected by a pathologist and stored at -80°C. DNA samples (10-20 mg) were obtained from tumor and non-tumorous tissue samples using Wizard genomic DNA purification kits (Promega, Madison, U.S.A.), according to the manufacturer’s instructions.

p16INK4a hypermethylation analysis

Real-Time PCR (ABI PRISM 7000 Sequence Detection System, Applied Biosystems, Foster City, U.S.A.) was used to quantify genomic target sequences using SYBR Green 2X
PCR Master Mix (Applied Biosystems) for detection. The p16INK4a gene methylation status was determined by real-time methylation specific PCR followed by restriction enzyme digestion.

One microgram of genomic DNA was incubated for 7 days at 37°C with MspI and HpaII (New England BioLab, Beverly, MA, U.S.A.). When the external C in the sequence CGGG of p16INK4a is methylated, MspI and HpaII cannot cleave p16INK4a. However, unlike HpaII, MspI can cleave this sequence when the internal C residue is methylated.

Each PCR reaction mixture contained genomic DNA, 5 pM of primers, and SYBR green 2X PCR master mix (Applied Biosystems) in a final volume of 20 μL. The primer sequences and target sites are shown in the Fig. 1 and Table 1. The standard amplification protocol consisted of an initial denaturation step for 10 min at 95°C, followed by 35 amplification cycles at 94°C for 15 sec, each annealing temperature (67, 68 and 69°C) for 30 sec and 72°C for 30 sec (Fig. 2 and Table 1). A standard curve was established with a 10-fold dilution series of DNA ranging from 1 \times 10^{-2} to 1 \times 10^{0} ng. The DNA sample used for the standard curve was wi-38.

The positions of the CCGG sequences and target sites are shown in the Fig. 1 and Table 1. Sequences and annealing temperature for PCR reactions for promoter regions of the p16INK4a gene are between 0 and 1. In a totally non-methylated state, the CT ratio of the p16INK4a gene is 1; thus, a lower CT ratio reflects methylation and was calculated as follows: CT ratio=(CT of target gene without treatment-CT of a target gene treated with HpaII)/(CT of target gene without treatment-CT of a target gene treated with MspI). The values of the CT ratio are between 0 and 1. In a totally non-methylated state, the CT ratio of the p16INK4a gene is 1; thus, a lower CT ratio reflects methylation. The methylation status in each sample was expressed as a threshold cycle (CT) ratio. The CT is the fractional cycle number at which the fluorescence signal reaches an arbitrary but defined threshold value within the early exponential phase of the reaction. CT values are proportional to the logarithm of the initial copy numbers of the target and are used to determine the initial copy numbers of samples. The CT ratio reflects methylation and was calculated as follows: CT ratio=(CT of target gene without treatment-CT of a target gene treated with HpaII)/(CT of target gene without treatment-CT of a target gene treated with MspI).

Table 1. Primer sequences and annealing temperature for PCR reactions for promoter regions of the p16INK4a gene

Site	Primer sequences (5′→3′)	Annealing temperature (°C)
p16INK4a-1	Forward: 5′-ACGCCTTTGCTGGCAAGCGG-3′	68
	Reverse: 5′-CTTCGCCAGCTGCGTGGCG-3′	69
p16INK4a-2	Forward: 5′-CTGGCAAGCGGCTCGCCCAG-3′	67
	Reverse: 5′-GACCGCAAGCGGCTCGCCCAG-3′	67
p16INK4a-3	Forward: 5′-GAGGGCGGTGAGGGGCTGG-3′	67
	Reverse: 5′-CTGGCAAGCGGCTCGCCCAG-3′	67
p16INK4a-4	Forward: 5′-GAGGGCGGTGAGGGGCTGG-3′	67
	Reverse: 5′-CTGGCAAGCGGCTCGCCCAG-3′	67

PCR, polymerase chain reaction.

Raw data were analyzed using the ABI 7000 System Software. The methylation status in each sample was expressed as a threshold cycle (CT) ratio. The CT is the fractional cycle number at which the fluorescence signal reaches an arbitrary but defined threshold value within the early exponential phase of the reaction. CT values are proportional to the logarithm of the initial copy numbers of the target and are used to determine the initial copy numbers of samples. The CT ratio reflects methylation and was calculated as follows: CT ratio=(CT of target gene without treatment-CT of a target gene treated with HpaII)/(CT of target gene without treatment-CT of a target gene treated with MspI).

Fig. 1. Methylation analysis of the p16INK4a promoter sequence (Genebank accession number X94154). The positions of the CCGG sites are underlined. Each primer is shown in bold characters.

Fig. 2. Results of p16INK4a gene promoter methylation of normal (A) and tumor (B) lung tissues by real-time PCR. 2, 3, 5: Normal lung tissues (A); 2*, 3*, 5*: tumor lung tissues (B); 1, 4, 6: positive control (wi-38); 7: negative control (water); a: no-cut DNA amplification; b: HpaII-cut DNA amplification; c: MspI-cut DNA amplification. Delta Rn: the magnitude of the fluorescence signal generated during the PCR at each time point.

```
# Fig. 1.

| Cycle number | Delta Rn |
|--------------|----------|
| 1 2 3 4 5 6 7 9 | 1 2 3 4 5 6 7 8 |
| 1 2 3 4 5 6 7 9 | 1 2 3 4 5 6 7 8 |
| 1 2 3 4 5 6 7 9 | 1 2 3 4 5 6 7 8 |
| 1 2 3 4 5 6 7 9 | 1 2 3 4 5 6 7 8 |
| 1 2 3 4 5 6 7 9 | 1 2 3 4 5 6 7 8 |
| 1 2 3 4 5 6 7 9 | 1 2 3 4 5 6 7 8 |
| 1 2 3 4 5 6 7 9 | 1 2 3 4 5 6 7 8 |
```

```
# Fig. 2.

| Cycle number | Delta Rn |
|--------------|----------|
| 1 2 3 4 5 6 7 9 | 1 2 3 4 5 6 7 8 |
| 1 2 3 4 5 6 7 9 | 1 2 3 4 5 6 7 8 |
| 1 2 3 4 5 6 7 9 | 1 2 3 4 5 6 7 8 |
| 1 2 3 4 5 6 7 9 | 1 2 3 4 5 6 7 8 |
| 1 2 3 4 5 6 7 9 | 1 2 3 4 5 6 7 8 |
| 1 2 3 4 5 6 7 9 | 1 2 3 4 5 6 7 8 |
| 1 2 3 4 5 6 7 9 | 1 2 3 4 5 6 7 8 |
```
RESULTS

\textbf{p16}INK4a Methylation in primary NSCLC

In order to examine the methylation status of the \textit{p16}INK4a promoter region, samples of tumor and normal adjacent tissues from 81 primary lung cancer patients were analyzed. Aberrant methylation of \textit{p16}INK4a was detected in samples derived from squamous cell carcinoma (SCC), adenocarcinoma (ADC), large cell carcinoma (LCC), and bronchoalveolar carcinoma (BAC), but not from small cell lung cancer (SCLC).

Among these, the frequencies for hypermethylation of \textit{p16}INK4a were 27.2\% in tumor tissue and 11.1\% in adjacent normal specimens. Hypermethylation of \textit{p16}INK4a was more frequently identified in tumor tissues than in normal tissues with a statistical significance ($p=0.009$). No significant association was found between the overall aberrant methylation in tumors and the corresponding normal specimens ($r=0.137$, $p=0.219$). In 22 cases with \textit{p16}INK4a hypermethylation in tumor tissues, only 4 (18.1\%) cases were found to have a hypermethylated normal tissue specimen (Fig. 4).

\textbf{Clinicopathologic and smoking parameters of tumors with a methylated \textit{p16}INK4a gene}

The methylation status of the \textit{p16}INK4a gene was compared with the clinicopathologic features of each NSCLC tumor (Table 2). SCC and ADC, which are major histological types of NSCLC, accounted for 91.4\% (74/81) of the 81 cases examined in this work. In the SCC cases, hypermethylation was more frequently detected than in ADC cases both in tumor and in normal adjacent tissues, but the difference was not significant. Importantly, the incidence of \textit{p16}INK4a methylation in tumor specimens was significantly higher in heavy smokers (>40 pack-years; $p=0.045$) and was more likely to be observed in those who had smoked (18/61, 29.5\%) than
Hypermethylation of \(p16^{INK4a} \) in Lung Cancer Patients

Table 2. Promoter methylation of the \(p16^{INK4a} \) gene and clinicopathological characteristics in primary non-small cell lung cancer

Characteristics	n	Tumor Methylation (%)	p	Normal (adjacent) Methylation (%)	p
		Methylated (%)		Unmethylated (%)	
Frequency	81	22 (27.2)	0.009	9 (11.1)	0.009
Gender					
Male	63	19 (30.2)	0.259	7 (11.1)	1.00
Female	18	3 (16.7)		2 (11.1)	
Age (yrs)					
<50	7	2 (22.2)	0.935	0 (0.0)	0.506
50-60	22	6 (28.6)	3 (14.3)	18 (85.7)	
>60	52	14 (26.9)	6 (11.7)	45 (88.3)	
Histology					
SCC	40	14 (35.0)	0.092	6 (15.0)	0.434
ADC	34	5 (14.7)	3 (8.8)	31 (91.2)	
Other*	7	3		4	
Stage					
1	39	9 (23.1)	0.638	6 (15.4)	0.520
2	10	4 (40.0)	0.049	1 (5.0)	0.439
3	30	8 (26.7)	3 (10.0)	27 (90.0)	
4	2	1 (50.0)	0.003	43.9 ± 22.9	0.069
Smoking status					
Never	20	4 (20.0)	0.045	1 (5.0)	0.449
Ever	61	18 (29.5)	8 (13.1)	53 (86.9)	
Smoker (pack-years)		38.4 ± 22.0	34.9 ± 22.9	27.8 ± 22.1	
Tobacco consumption					
0	20	4 (20.0)	0.045	1 (5.0)	0.449
<20	12	0 (0.0)	0 (0.0)	8 (100.0)	
20-40	32	7 (25.0)	4 (14.3)	24 (85.7)	
>40	17	11 (44.0)	4 (16.0)	21 (84.0)	

*, Other histological types including one SCLC (small-cell lung cancer), three LCLC (large-cell lung cancers), two BAC (bronchoalveolar carcinomas) and one pleomorphic cancer. SCC, squamous cell carcinoma; ADC, adenocarcinoma.

in those who had never smoked (4 of 20, 20%), albeit without a statistical significance. Other clinical characteristics, including age, sex, and tumor stage were not correlated with \(p16^{INK4a} \) methylation.

DISCUSSION

Several studies have described the importance of DNA methylation in human cancers and have tried to identify genes that are important for the carcinogenesis process. In particular, methylation of the \(p16^{INK4a} \) tumor suppressor gene has been studied in various malignancies including lung cancer (11-15).

Using a SYBR Green methylation-specific PCR method, \(p16^{INK4a} \) methylation was detected in 27.2% of lung tumor tissues. Harden et al. (7) detected methylation of the \(p16^{INK4a} \) gene in 17% of lung cancer patients, and Liu et al. (8) observed \(p16^{INK4a} \) gene methylation in 84% of lung cancer patients. This difference may be attributed to the different methodologies used for measuring the methylation status. Moreover, racial differences might also explain the low rate of \(p16^{INK4a} \) hypermethylation observed in lung cancer in Koreans.

The first generation of methylation detection assays involved the digestion of genomic DNA with a methylation-sensitive restriction enzyme followed by Southern blot analysis (16). These methods are relatively straightforward, but are associated with problems such as the limited availability of informative restriction sites, false positive results (due to incomplete digestion), and a requirement for large amounts of high-molecular-weight DNA. These issues have restricted the use of these methods (17). The Second-generation technique resulted from the finding that the treatment of genomic DNA with sodium bisulfite followed by an alkaline treatment converts unmethylated cytosine to uracil, while leaving methylated cytosine residues intact (18). Moreover, methylation detection assays require gel electrophoresis and many of them employ restriction enzyme digestion, radiolabeled dNTPs or hybridization probes. These labor-intensive steps have limited the usefulness of these methods.

The strongest feature of the real-time PCR/SYBR Green detection method is the continuous optical monitoring of the progress of a fluorescent PCR reaction. Fluorescence intensity increases proportionally to the amount of PCR products. Therefore, the modified method allows conclusions to be drawn concerning the methylation status relative to a control reaction.
The results of this study demonstrate that the methylation of the p16\(^{INK4a}\) gene is associated with tobacco smoking. The association between promoter methylation and smoking has been reported in other studies for various tumor suppressor genes in NSCLC, including p16\(^{INK4a}/CDKN2A\) and RASSF1A (19-21). Tobacco smoke contains many carcinogens, including polyaromatic hydrocarbons, chromium, cadmium, plutonium, and nickel (22). In addition, tobacco smoke is a mucosal irritant and thus induces inflammation, which results in the generation of oxygen-free radicals. Furthermore, smoking increases the activity of DNA methyltransferase (23), which drives the de novo hypermethylation of susceptible loci (24).

Clinicopathological characteristics, including age, sex, tumor stage, and histologic type were not found to be correlated with p16\(^{INK4a}\) methylation. A previous investigation (25) demonstrated that p16\(^{INK4a}\) hypermethylation is a common and early event during lung carcinogenesis in general. However, the small number of subjects involved in the present study was not enough to draw a definite conclusion regarding the interaction between the gene and other related factors, the testing of gene and related factor interactions, which warrants further investigation in a larger study.

Notably, in 22 cases in which p16\(^{INK4a}\) hypermethylation was observed in tumor tissues, only 4 (18.1%) cases were found to have a hypermethylation status in normal tissues. These results suggest that tumor tissues show more p16\(^{INK4a}\) hypermethylation than corresponding normal adjacent tissues.

In conclusion, this study shows that smoking can influence the methylation level of the promoter region of p16\(^{INK4a}\), and that this occurs in tumor tissues more frequently than in normal tissues. Other clinicopathological characteristics, including age, sex, tumor stage, and histologic type, were not found to be correlated with p16\(^{INK4a}\) methylation.

ACKNOWLEDGMENT

This work was supported by the Korean Science and Engineering Foundation of the MRCCMT at Dong-A University.

REFERENCES

1. Monk M. Epigenetic programming of differential gene expression in development and evolution. Dev Genet 1995; 17: 188-97.
2. Turker MS, Bestor TH. Formation of methylation patterns in the mammalian genome. Mutat Res 1997; 386: 119-30.
3. Paulsen M, Ferguson-Smith AC. DNA methylation in genomic imprinting, development and disease. J Pathol 2001; 195: 97-110.
4. Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 1998; 72: 141-96.
5. Gray SG, Eriksson T, Ekstrom TJ. Methylation, gene expression and the chromatin connection in cancer (review). Int J Mol Med 1999; 4: 333-50.
6. Esteller M, Corn PG, Baylin SB, Herman JG. A gene hypermethylation profile of human cancer. Cancer Res 2001; 61: 3225-9.
7. Harden SV, Tokumaru Y, Westra WH, Goodman S, Ahrendt SA, Yang SC, Sidransky D. Gene promoter hypermethylation in tumors and lymph nodes of stage I lung cancer patients. Clin Cancer Res 2003; 9: 1370-5.
8. Liu Y, An Q, Li L, Zhang D, Huang J, Feng X, Cheng S, Gao Y. Hypermethylation of p16\(^{INK4a}\) in Chinese lung cancer patients: biological and clinical implications. Carcinogenesis 2003; 24: 1897-901.
9. Ulivi P, Zoli W, Calistri D, Fabbri F, Tesi A, Rosetti M, Mengozzi M, Amadori D, p16\(^{INK4A}\) and CDH13 hypermethylation in tumor and serum of non-small cell lung cancer patients. J Cell Physiol 2006; 206: 611-5.
10. Chu DC, Chuang CK, Fu JB, Huang HS, Tseng CP, Sun CF. The use of real-time quantitative polymerase chain reaction to detect hypermethylation of the CpG islands in the promoter region flanking the GSTP1 gene to diagnose prostate carcinoma. J Urol 2002; 167: 1854-8.
11. Leon SA, Shapiro B, Sklarof DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 1997; 57: 646-50.
12. Nakayama H, Hibi K, Takase T, Yamazaki T, Kasai Y, Ito K, Akiyama S, Nakao A. Molecular detection of p16 promoter methylation in the serum of recurrent colorectal cancer patients. Int J Cancer 2003; 105: 491-3.
13. Reed AL, Califano J, Cairns P, Westra WH, Jones RM, Koch W, Ahrendt S, Eby Y, Sewell D, Nawroz H, Bartek J, Sidransky D. High frequency of p16 (CDKNA2/MTS1/INK4A) inactivation in head and neck squamous cell carcinoma. Cancer Res 1994; 54: 3630-3.
14. Stroun M, Anker P, Maurice P, Lynes A, Lederrey C, Beljanski M. Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology 1989; 46: 318-22.
15. Wong TS, Man MW, Lam AK, Wei WI, Kwong YL, Yuen AP. The study of p16 and p15 gene methylation in head and neck squamous cell carcinoma and their quantitative evaluation in plasma by real-time PCR. Eur J Cancer 2003; 39: 1881-7.
16. Singer-Sam J, LeBon JM, Tanguay RL, Riggs AD. A quantitative HpaII-PCR assay to measure methylation of DNA from a small number of cells. Nucleic Acids Res 1990; 18: 687.
17. Eads CA, Danenberg KD, Kawakami K, Saltz LB, Blake C, Shabata D, Danenberg PV, Laird PW. MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res 2000; 28: 32.
18. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA 1992; 89: 1827-31.
19. Kim DH, Nelson HH, Wicencke JK, Zheng S, Christiansi DC, Wain JC, Mark EJ, Kelsey KT. p16\(^{INK4a}\) and histology-specific methylation of CpG islands by exposure to tobacco smoke in non-small cell lung cancer. Cancer Res 2001; 61: 3419-24.
20. Jarmalaite S, Kannio A, Anttila S, Lauttak J, Husgafvel-Pursiainen K. Aberrant p16 promoter methylation in smokers and former smok-
ers with nonsmall cell lung cancer. Int J Cancer 2003; 106: 913-8.
21. Kim DH, Kim JS, Ji YI, Shim YM, Kim H, Han J, Park J. Hypermethylation of RASSF1A promoter is associated with the age at starting smoking and a poor prognosis in primary non-small cell lung cancer. Cancer Res 2003; 63: 3743-6.
22. Rom WN, Hay JG, Lee TC, Jiang Y, Tchou-Wong KM. Molecular and genetic aspects of lung cancer. Am J Respir Crit Care Med 2000; 161: 1355-67.
23. Belinsky SA, Nikula KJ, Baylin SB Issa JP. Increased cytosine DNA-methyltransferase activity is target-cell-specific and an early event in lung cancer. Proc Natl Acad Sci USA 1996; 93: 4045-50.
24. Vertino PM, Yen RW, Gao J, Baylin SB. De novo methylation of CpG island sequences in human fibroblasts overexpressing DNA (cytosine-5-)-methyltransferase. Mol Cell Biol 1996; 16: 4555-65.
25. An Q, Liu Y, Gao Y, Huang J, Fong X, Li L, Zhang D, Cheng S. Detection of p16 hypermethylation in circulating plasma DNA of non-small cell lung cancer patients. Cancer Lett 2002; 188: 109-14.