Tim-3 Negatively Regulates Cytotoxicity in Exhausted CD8\(^+\) T Cells in HIV Infection

Ali Sakhdari\(^1\)*, Shariq Mujib\(^2\), Bahareh Vali\(^2\), Feng Yun Yue\(^1\), Sonya MacParland\(^2\), Kiera Clayton\(^1\), Richard Bradley Jones\(^1\), Jun Liu\(^1\), Erika Yue Lee\(^1\), Erika Benko\(^3\), Colin Kovacs\(^3\), Jennifer Gommerman\(^1\), Rupert Kaul\(^1,2,3\), Mario A. Ostrowski\(^1,2,3,4\)

1 Department of Immunology, University of Toronto, Toronto, Ontario, Canada, 2 Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada, 3 Maple Leaf Medical Clinic, Toronto, Canada, 4 Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Canada

Abstract

Cytotoxic CD8\(^+\) T cells (CTLs) contain virus infections through the release of granules containing both perforin and granzymes. T cell ‘exhaustion’ is a hallmark of chronic persistent viral infections including HIV. The inhibitory regulatory molecule, T cell Immunoglobulin and Mucin domain containing 3 (Tim-3) is induced on HIV-specific T cells in chronic progressive infection. These Tim-3 expressing T cells are dysfunctional in terms of their capacities to proliferate or to produce cytokotines. In this study, we evaluated the effect of Tim-3 expression on the cytotoxic capabilities of CD8\(^+\) T cells in the context of HIV infection. We investigated the cytotoxic capacity of Tim-3 expressing T cells by examining 1) the ability of Tim-3\(^-\) CD8\(^+\) T cells to make perforin and 2) the direct ability of Tim-3\(^-\) CD8\(^+\) T cells to kill autologous HIV infected CD4\(^+\) target cells. Surprisingly, Tim-3\(^-\) CD8\(^+\) T cells maintain higher levels of perforin, which was mainly in a granule-associated (stored) conformation, as well as express high levels of T-bet. However, these cells were also defective in their ability to degranulate. Blocking the Tim-3 signalling pathway enhanced the cytotoxic capabilities of HIV specific CD8\(^+\) T cells from chronic progressors by increasing; a) their degranulation capacity, b) their ability to release perforin, c) their ability to target activated granzyme B to HIV antigen expressing CD4\(^+\) T cells and d) their ability to suppress HIV infection of CD4\(^+\) T cells. In this latter effect, blocking the Tim-3 pathway enhances the cytotoxicity of CD8\(^+\) T cells from chronic progressors to the level very close to that of T cells from viral controllers. Thus, the Tim-3 receptor, in addition to acting as a terminator for cytokine producing and proliferative functions of CTLs, can also down-regulate the CD8\(^+\) T cell cytotoxic function through inhibition of degranulation and perforin and granzyme secretion.

Introduction

The inability of T cell-mediated immune responses to control persistent viral infections, like human immunodefiency virus-1 (HIV), has been correlated with the impairment in the ability of virus-specific T cells to produce cytokotines, to proliferate and to survive [1,2]. This dysfunction, referred to as ‘T cell exhaustion’ in the setting of HIV infection, allows for continuing viral replication in most of the infected individuals and the inexorable progression to AIDS [1,3,4,5,6,7,8,9,10,11,12,13]. T cell exhaustion was first described in the lymphocytic choriomeningitis virus (LCMV)-infected mice, in which certain LCMV strains induced virus-specific effector CD8\(^+\) T cells that failed to produce effector cytokotines upon antigen stimulation [14]. We previously identified a novel population of ‘exhausted’ T cells in HIV infected individuals, which are marked by increased surface expression of the glycoprotein Tim-3. These cells, in contrast to programmed cell death -1 (PD-1) expressing cells, are relatively more deficient in effector cytokine production [15]. Tim-3 expression was shown to be upregulated on HIV specific CD8\(^+\) T cells [15]. More notably, blocking the Tim-3 signaling pathway \textit{in vitro} restored proliferation and enhanced cytokine production in HIV-specific T cells [15]. It has recently been shown that Tim-3 expression is dependent on the CD4\(^+\) Th1 and CD8\(^+\) Tc1 transcription factor T-bet [16]. This transcription factor is also required for proper perforin production and function in cytotoxic lymphocytes [16,17,18,19].

Cytotoxic CD8\(^+\) T lymphocytes (CTLs) kill their virally infected or transformed target cells predominantly through the release of lytic substances, mainly perforin and granzymes, which are secreted via exocytosis of pre-formed granules [20,21,22,23]. There is little question regarding the crucial importance of perforin in the control of infectious pathogens. Indeed, mutation or dysregulation of perforin in humans results in compromised cellular immunity and enhanced susceptibility to viral infections [24]. Granule-mediated killing by CD8\(^+\) T cells occurs within minutes of target cell recognition [25,26,27]. Recently, another mechanism for perforin replenishment has been identified which is the rapid upregulation and targeted release of newly-produced perforin, which traffics to the immunological synapse via a route that largely bypasses cytoplasmic granules [28]. This \textit{de novo} synthesis of perforin by CD8\(^+\) T cells can be easily detected by flow...
cytometry in conjunction with standard intracellular cytokine-staining (ICS) [29].

While many cell surface markers, activation profiles, and functional parameters of both ex vivo HIV-specific CD8+ and CD4+ T cells have been shown to correlate with control of viremia [8,30,31,32,33] few, if any, can potentially mediate direct control of HIV replication through the lysis of infected cells [34]. Our lab has shown that Tim-3 expressing CD8+ T cells are dysfunctional in terms of polyfunctionality, proliferative ability, cytokine release and inhibitory receptor expression [15]. Here we examined the ex vivo cytokotoxicity of Tim-3 expressing CD8+ T cells by examining their perforin content, ability to degranulate [35,36] and also through direct measurement of cytotoxicity [37].

Materials and Methods

Ethics Statement

Informed consent was obtained in accordance with the guidelines for conduction of clinical research at the University of Toronto and Maple Leaf Clinic institutional ethics boards. Written Informed Consent was provided for this study, which was reviewed by research ethics board of the University of Toronto, Canada and of St. Michael’s Hospital, Toronto, Canada.

Patient Groups

Our cohort consists of two different patient groups including: 1) Chronic progressive HIV infection (CP) (HIV infection >1 year, with active viral replication, i.e., detectable viremia >10,000 bDNA copies/ml for at least one year (25 patients) and 2) Viral controllers (VC) defined as asymptomatic, untreated HIV infection for at least 2 years with no consistent decline in peripheral blood CD4 count, and low or undetectable levels of plasma viremia (less than 500 copies/ml bDNA assay) (n = 7, mean VL = 125 copies/ml, mean CD4 count = 973/ mm 3). We also studied three HCV mono-infected individuals and three CMV sero-positive, HIV-negative, HCV-negative individuals.

Flow Cytometry

Peripheral Blood Mononuclear Cells (PBMC) were incubated with cognate antigen at 2 µg/ml/peptide for 6 h in the presence of Brefeldin A and Monensin and 1 µg/ml of anti-CD49d and anti-CD28 Ab for co-stimulation (BD Biosciences, San Jose, CA, USA) and stained for CD107a FITC or APC (BD). Cells were then washed, permeabilized, and stained with respective antibodies: IFN-γ–PE or Alexa 647, PD-1–FITC or APC, Tim-3–PE or APC, Perforin (clone B-D48)-PerCP (from Abcam, Cambridge, MA), Perforin (clone 8G9)-FITC (from Abcam), CD3-APC-Cy7 or APC or FITC, CD45RA-PE-Cy7, CD8-PE or FITC or Alexa 700 or PE-TR, CD4-PerCP or APC or PercP-cy7, anti-HIV Gag p24-PE (Kc57 RDI) and respective isotype controls. Antibody to T-bet was blocking 2E2 anti-Tim-3 Ab (10 µg/ml) or isotype IgG1 (10 µg/ml) or media alone were then added to labeled target cells in different ratios (3:1,1:1,1:3), for 1 h. At the beginning of the co-incubation the effector/target cells were washed and a Granzyme B substrate was added to the wells. The cytotoxicity of the cells was compared by measuring the number of killed target cells (positive for cleaved Granzyme B substrate) at each ratio and in different conditions. The GranzymeB killing assay was conducted per manufacturer’s protocols (OncoImmunin) except where otherwise noted.

HIV Infection of Target Cells

Virus production: CD4+ T cells from an HIV negative donor were activated with anti-CD3/28 and 50 U/mL IL-2 in R-10 media for 48 h. The primary HIV isolate 91US-1 (obtained from NIH AIDS Research and Reference Reagent Program) was then added at an m.o.i of 0.2 at a cell concentration of 4–10 x10⁶/mL. The infection mixture was incubated for 4 days at 37°C. The infection was monitored with intracellular HIV p24 staining daily to detect the peak of infection (ranges from 40–90% p24 cells) at which point cells were pelleted down at 300 xg for 10 min and supernatant was collected. The virus was then sucrose purified prior to magnetofection. Briefly, a 500 µL aliquot of virus was layered on top of 100 µL of 20% Sucrose solution +5 mM EDTA in PBS. Tubes were centrifuged at 35000 xg for 45 min. We then discarded all but 20 µL of the supernatant, which contained the virus pellet.
Figure 1. Total and antigen specific Tim-3$^+$ CD8$^+$ T cells have higher frequencies of perforin expression. Ex vivo PBMC from untreated chronically HIV infected subjects were stained for perforin (clone B-D48) and Tim-3. In a), shown are FMO staining for Tim-3, and B-D48 perforin antibodies of a representative sample, in b), representative gating strategy for Tim-3, and B-D48 perforin and a representative experiment showing the percentage of perforin and Tim-3 expressions on total CD8$^+$ CD3$^+$ T cells. Summary of data for 22 individuals showing perforin content of Tim-3$^+$
and Tim-3⁺ CD8⁺ T cells as a % in c) and MFI in d). In e) a representative experiment where ex vivo CD8⁺ T cells were stained with a pool of HIV specific tetramers (see Methods) and perforin expression on gated Tim-3⁺ and Tim-3⁻ T cells are shown, with a summary shown in f) for 5 chronically infected individuals. Each symbol represents a single individual. Red histogram represents FMO. In g) Ex vivo PBMC from 7 chronic progressors were stained for HIV-specific tetramers and examined for Tim-3 and T-bet expression. The individual in e) was not examined in g) (p value based on two tailed paired t test).

doi:10.1371/journal.pone.0040146.g001

Virus infection of target cells: We added OZ BioSciences ViroMag beads to bind HIV virus particles made above. Virus was then added to gently pelleted target CD4⁺ T cells on a plate of target cells (200x for 2 min, just to bring the cells to the bottom of the plate). The plate was then kept on a magnet in a 37°C incubator for 3 hours. The plate was removed from the magnet and infection was monitored on a daily basis by HIV Gag p24 intracellular staining. The infection efficacy ranged between 25 to 60%. We also used sucrose-purified culture media alone (e.g. R-10+50U/ml IL-2) as the negative control infection condition.

Infected CD4⁺ T Cell Suppression Assay

In assays using CD4⁺ T target cells infected with US1/GS 004 (91US1), target cells were co-incubated with CD8⁺ T cells from the same sample (in the presence of 2E2 Ab or isotype) in different effector: target (E: T) ratios (10:1,1:1,4:1,16:1) for 3 days. Cells were then treated with Cytotox/Cytoperm (BD Biosciences, San Jose, CA, USA) prior to staining for confirmation of infection and measurement of elimination of gag p24-expressing cells. The truly infected target cell numbers were measured on the basis of the total percentages of p24⁺ cells in CD4⁺ T cells without CD8⁺ T cells at day 3. The number of remaining HIV infected target cells (p24⁺) was measured and compared between two different groups.

Tetramer Staining

The following tetramer pools to HIV (HLA-A*0201-SLYNT-VATL[Gag], HLA-B*0801-FLKEKGGL[Nef], HLA-B*0702-TPGPVYRL[Nef], HLA-B*0801-GEIYKRWII[Gag], HLA-A*0201-ILKEPVHGV[Pol]), or to CMV (HLA-B*0801-ELRRKKMMYM, HLA-A*0201-NLVPMVATV, HLA-B*0702-TPRVTGGGAM, all from pp65) (Beckman Coulter, Fullerton, CA) were used for staining. 5x10⁵ to 1x10⁶ PBMC were stained with the pool of tetramers in 1 ml of 2% FBS in PBS with 2 mM EDTA for 20 minutes at 4°C, followed by staining for CD3 (BD Biosciences, Sandiego, CA), CD8 (BD), Tim-3 (MAb, R&D Systems, Minneapolis, MN), and perforin (B-D48-Abcam, Cambridge, MA) or T bet (BD, Sandiego, CA). At least 200,000 events were obtained using either an LSR II flow cytometer, or a FACSCalibur instrument (BD Biosciences, Sandiego, CA). Further analysis was performed using Flowjo version 7.6 (Tree Star Inc.).

Statistical Analysis

To determine whether two groups were statistically different for a given variable, we used the Wilcoxon rank sum test (two-tailed) or the paired Student t test in Graphpad Prism version 3.00 (GraphPad software, La Jolla, CA).

Results

Tim-3⁺ CD8⁺ T cells express more perforin than their Tim-3⁻ counterpart in HIV infection

We previously showed that Tim-3 expression increases on CD8⁺ T cells in the context of HIV infection [15]. Tim-3 expressing CD8⁺ T cells have lower cytokine (IFN-γ or TNF-α) production or proliferative abilities compared to Tim-3 negative cells (data not shown) [15]. However, none of these functions represent the true cytolytic activities of CD8⁺ T cells [23,28]. We initially examined the perforin content of ex vivo CD8⁺ T cells by flow cytometry from 22 treatment-naive chronically HIV infected subjects (median CD4 count = 455/µl, median HIV viral load = 52,325 copies/ml) and compared the percentage of perforin expression in Tim-3 positive or negative CD8⁺ T cells (Fig. 1). Two perforin specific monoclonal antibodies have characterized perforin in human CD8⁺ T cells [28,29]. The G9 clone is limited to detecting the form of perforin found in the acidic milieu of the granules or associated with serglycin, thus predominantly detecting perforin stored in granules. The B-D48 clone, on the other hand, is able to recognize both the late granule associated form of perforin as well as its newly synthesized non-granule associated form. Thus, the B-D48 clone detects multiple conformations of perforin. Using the B-D48 clone, we found that Tim-3 expressing CD8⁺ T cells express significantly more perforin than that of Tim-3 negative CD8⁺ T cells (Fig 1, e) (p<0.0005). A representative experiment is shown in Fig. 1b and summary of all individuals in Fig. 1c and d) frequency of perforin expressing cells on total CD8⁺ T cells is 35.08±15.06% for Tim-3⁺ vs. 22.70±13.47% for Tim-3⁻, mean ± SD, p<0.0001).

The Frequency of Perforin-expressing Tim-3⁺ HIV Specific T Cells is Higher than those of their Tim-3⁻ Counterpart

Perforin expression (B-D48 clone) of antigen-specific CD8⁺ T cells was examined with HIV tetramer staining. For tetramer staining, we examined PBMC from 5 HLA-A02, HLA-B07 or HLA-B08 positive untreated chronically HIV infected individuals. We monitored antigen-specific CD8⁺ T cells by employing a pool of 5 MHC class I matched tetramers (see Methods) to determine the level of perforin on ex vivo CD8⁺ T cells. As shown in Figure 1e, Tim-3 expressing HIV specific CD8⁺ T cells have higher frequencies of perforin positive cells than the Tim-3 negative tetramer staining population (Fig. 1f, mean ± 44.20±14.62% vs. 30.20±10.38%, for Tim-3⁻ and Tim-3⁻ cells respectively p=0.022).

Tim-3 Expressing HIV Specific CD8⁺ T cells Express High Amounts of T-bet

The transcription factor, T-bet, is required for perforin synthesis [16,17,18,19]. We thus examined the levels of T-bet expression on HIV specific CD8⁺ T cells in association with Tim-3. We observed that HIV specific T cells generally tended to express high levels of T-bet, however, gating on Tim-3 expressing HIV specific cells showed uniformly high expression of T-bet (Fig. 1g). As is shown in Fig 1g, T-bet expression is significantly higher in Tim-3⁻ CD8⁺ T cells than Tim-3⁻ populations as is expected [16].

Tim-3⁺ CD8⁺ T Cells Express More Granule-associated Perforin than their Tim-3⁻ Counterpart in HIV Infection

In order to further define the conformation of perforin that is expressed on Tim-3 positive CD8⁺ T cells, we also employed the anti-perforin antibody clone (G9) that putatively detects the granule-associated preformed or stored form of perforin [29]. We profiled the perforin content of bulk ex vivo CD8⁺ T cells from nine treatment naive HIV-infected progressors, using the two different anti-perforin antibodies; 8G9 which detects the presence of stored...
Figure 2. Perforin content of Tim-3+ CD8+ T cells as determined by two antibody clones. In (a), a representative experiment showing Tim-3 expression on ex vivo CD8+ T cells from a treatment naïve chronically HIV infected subject showing perforin expression by two antibodies detecting different conformations of perforin on Tim-3+ or Tim-3- CD8+ T cells. The δG9 clone has been proposed to predominantly detect stored (granule associated) perforin and clone BD48 detects stored perforin plus majority of other perforin conformations [23,29]. In (b) a representative figure showing the relationship between two different conformations of perforin and Tim-3 expressions after gating out the naïve and terminally differentiated CD8+ T cells by gating in all CD45RA- memory subsets. In (c), summary of data for all 9 chronically HIV infected individuals stratifying.
or granule-associated perforin and B-D48, which detects granule-associated plus newly formed perforin within cells [29]. A representative experiment from one individual is shown in Fig. 2a, with summary data of all individuals in Fig. 2c. We found that Tim-3 expressing CD8+ T cells contained significantly greater amounts of perforin as measured by G9 and B-D48. (For G9, mean expression 30% ± 3 s.e. versus 22% ± 4, for Tim 3+ and Tim-3−, respectively and for B-D48, mean expression 40% ± 2 versus 28% ± 3, for Tim 3+ and Tim-3−, respectively). We also examined the correlation between Tim-3 and perforin expression in memory subsets of CD8+ T cells by examining CD45RA- memory T cells [39] which will gate out the naïve CD8+ T cell populations (for G9, mean expression 47% ± 5 s.e. versus 30% ± 4, for Tim 3+ and Tim-3−, respectively and for B-D48, mean expression 61% ± 2 versus 43% ± 3, for Tim 3+ and Tim-3−, respectively). Since G9 expression is higher in Tim-3 expressing cells, the latter express more granule-associated (or stored) perforin. Since the differences in B-D48 expression between Tim-3 negative and positive cells was similar to that detected by G9, we assume that the majority of excess perforin expression found in Tim-3 expressing cells is likely due to stored or granule associated perforin. These observations suggest that the higher frequency of perforin expression in Tim-3 expressing cells is due primarily to granule-associated perforin. We then speculated that this higher perforin

Figure 3. Tim-3+ CD8+ T cells cannot degranulate as effectively as Tim-3− CD8+ T cells. Ex vivo PBMC from HIV chronically infected subjects were stimulated for 6 hours with a pool of HIV Gag peptides or SEB or DMSO and stained for CD107a and Tim-3. In a), a representative experiment showing higher CD107a expression in Tim-3 negative component of CD8+ T cells after stimulation with either pool of HIV antigens or SEB. In b), summary of all data for 10 chronically HIV infected individuals showing higher ability for degranulation in Tim-3 negative subpopulation of CD8+ T cells after stimulation with Gag peptides. In c) summary of all data for 8 chronically HIV infected individuals showing higher ability for degranulation in Tim-3 negative subpopulation of CD8+ T cells after stimulation with SEB (p value based on wilcoxon signed rank test).

doi:10.1371/journal.pone.0040146.g003
and assessed for Tim-3 expression, as shown in Figure 3a. Tim-3 positive CD8+ T cells were shown not to release their granules as effectively as their Tim-3 negative counterparts after peptide stimulation (Fig. 3b) as demonstrated by reduced CD107a expression during peptide stimulation. These findings suggest that this lower degranulation ability may be responsible for the higher accumulation of perforin inside the cells. In order to check if this incapacity for degranulation is HIV specific or a general defect in Tim-3+ T cells, we also stimulated ex vivo PBMCs from chronically HIV infected individuals with SEB, which is a general non-specific mitogen. We found lower CD107a expression and hence degranulation on Tim-3+ subsets after SEB stimulation (Figure 3a and c). It is possible that HIV antigen specific cells were enriched in the Tim-3 negative fraction, which could induce greater degranulation after peptide stimulation, however, when PBMCs were stained for HIV specific tetramers containing epitopes that were also included in the peptide pool, we found the frequency of antigen specific cells tended to be more enriched in the Tim-3 positive population and as Tim-3 expression is stable or even increases to some extent after six hours of stimulation, it indicates an even distribution of HIV specific cells after stimulation (Figure S1).

Blocking Tim-3 Pathway Enhances the Release of Perforin

To test the effect of Tim-3 pathway blocking on the release of perforin, we employed a perforin release ELISA experiment. We sorted ex vivo CD8+ T cells from 5 untreated chronically HIV infected individuals and stimulated them with a HIV Gag peptide pool for 6 hours in the presence of either 10 µg/ml Tim-3 antagonistic 2E2 antibody or an isotype control antibody. Perforin released in the supernatant at 6 hours was measured by ELISA. As is shown in Figure 4a, we found that Tim-3 blocking enhances the release of perforin in supernatants from HIV-specific CD8+ T cells (Fig. 4a, Mean ± SD concentration of perforin (pg/ml) 191.6±43.11 vs. 163.2±36.93 for Gag peptide stimulation in the presence of anti-Tim-3 antibody or control respectively-P = 0.007). Interestingly, blocking Tim-3 also enhanced spontaneous perforin release from ex vivo samples (Fig 4 a, b medium). We also examined the release of perforin after Tim-3 pathway blocking in CD8+ T cells from four chronically HIV infected, untreated, viral controllers (VC), and found variable responses, with enhancement in 2/4 (Fig. 4b). We also examined ex vivo CD8+ T cells directed against other viruses. For example, CD8+ T cells from two HCV mono-infected and three CMV infected HIV negative individuals were stimulated with HCV NS3 or CMV pp65 peptides, respectively, and perforin release was examined in the presence of Tim-3 blockade or Isotype. Again, we observed variable levels of enhancement of perforin release in these individuals (data not shown) indicating that Tim-3 blockade will not always enhance perforin release of virus specific cells.

Blocking the Tim-3 Pathway Enhances the Ability of CD8+ T Cells to Suppress HIV Infection of Autologous CD4+ T Cells

In order to examine the cytotoxic activity of Tim-3 expressing CD8+ T cells, we first used a suppression assay that utilizes autologous HIV-infected CD4+ T cells. We tested the overall ability of CD8+ T cells to kill HIV infected autologous CD4+ T cells with or without Tim-3 pathway blocking. We negatively sorted CD4+ T cells from chronically HIV infected subjects and infected the cells with a primary HIV virus (US1/GS 004/1US-1)-CCR5 HIV-NIH AIDS Research and Reference Reagent.
Figure 5. Tim-3 pathway blocking increases the antigen specific CD8+ T cells cytotoxicity and HIV suppression in chronic HIV infection. The effect of HIV Gag-specific CD8+ T cells after blocking the Tim-3 pathway with a Tim-3 blocking antibody (clone 2E2) on eliminating HIV-infected CD4+ T cells was tested in a virus suppression assay. Autologous CD4+ T cells (targets) are infected with a primary HIV virus isolate. Autologous CD8+ T cells (effectors) are added in 1:1 ratio at the time of infection with 2E2 antagonistic anti-Tim-3 antibody or isotype at 10 μg/ml. The co-culture is incubated at 37°C for three days. The final readout is the percentage of HIV (p24+) positive target cells on day three examined by intracellular flow cytometry. In a) are autologous CD4+ T cells in the absence of autologous CD8+ T cells taken from an HIV infected individual after exogenous infection by HIV in the presence of Tim-3 antibody or isotype. Tim-3 blockade had no effect on total and infected CD4+ numbers. In b)
shown are CD4+ T cells from an HIV uninfected normal volunteer infected with exogenous HIV and co-cultured with autologous CD8+ T cells (1:1 ratio). Again we could not appreciate any difference in survival of CD4+ T cells. Tim-3 blockade had no effect on CD8+ mediated suppression of HIV infection. In c), is a representative experiment showing the percentage of infected p24+ CD4+ T cells in the two different conditions in a chronic HIV infected individual and in d) is a representative experiment showing the percentage of infected p24+ CD4+ T cells in the two different conditions in a viral controller. Shown in e), are summary data for 4 chronically HIV infected individuals and in f) are summary data for 3 viral controllers. Each solid circle represents the average of three independent experiments from each individual showing the percentage of p24+ ratio. Again we could not appreciate any difference in survival of CD4+ based on two tailed paired t test.

doi:10.1371/journal.pone.0040146.g005

Blocking the Tim-3 Pathway Enhances the Ability of HIV-specific CD8+ T Cells to Degranulate

To further confirm our hypothesis which Tim-3 pathway blocking leads to higher perforin release and consequently higher cytotoxicity, we investigated the effects of Tim-3 pathway blocking on degranulation ability of CD8+ T cells. Ex vivo PBMC from untreated chronically HIV infected individuals were subject to 6 h stimulation with pool of HIV Gag peptides (2 μg/ml/peptide). We then examined the CD107a expression of total CD8+ T cells in the presence of sTim-3 (2 μg/ml final concentration) used to block binding of Tim-3 on T cells to its ligands or a medium control. As is shown in Fig. 7a and 7b, Tim-3 pathway blocking enhances the ability of CD8+ T cells to degranulate as is evident by higher CD107a expression upon peptide stimulation. This finding again confirms this idea that Tim-3 pathway blocking, mainly through enhancement of degranulation and release of perforin and granzymes, leads to higher cytotoxicity in antigen-specific CD8+ T cells.

Discussion

In this work, for the first time we showed that Tim-3 expression dampens the direct cytotoxicity of CD8+ T cells. As it has been previously shown in mice and human studies, Tim-3 positive T cells are dysfunctional in terms of cytokine production or proliferation [15,40,41,42,43,44,45]. They are also more susceptible to apoptosis [46]. It is now widely accepted that direct cytotoxicity of T cells is most important in controlling HIV infection [1,12,23]. One of the main molecules that has an indispensable role in eradication of viral infections is perforin. Perforin is stored inside the secretory granules of cytotoxic lymphocytes such as CD8+ T cells and NK cells [12,22,23,47,48,49,50,51,52,53,54,55,56,57]. Having the same crucial role in HIV infection [48,58,59,60], our primary objective in this study was to examine the perforin content and hence cytotoxicity of CD8+ T cells based on their Tim-3 phenotypic characteristics. We found that Tim-3 positive CD8+ T cells have higher amounts of perforin stored as granules, that is in contrast to the lower perforin content of PD-1 expressing cells as has previously been shown by others [61] and also in our lab (data not shown). We also found higher perforin content in Tim-3+ antigen specific cells. These cells were also high expressors of T-bet consistent with the role of T-bet in promoting perforin production. These features regarding Tim-3 were not only restricted to HIV specific T cells as we also have found similar findings in CMV specific cells (data not shown), however, CMV specific T cells exhibit much lower Tim-3 expression than HIV-specific CD8+ T cells [15]. Although it was initially surprising to us that a population of T cells, which are considered exhausted and dysfunctional, have higher immediate abilities to kill their target cells, based on the staining patterns of the two perforin antibodies used, we propose that the increased perforin levels associated with Tim-3 was predominantly granule-associated. This finding, together with the fact that Tim-3 positive cells are dysfunctional in their abilities to release their secretory granules (as is measured by CD107a expression), further consolidates the

Program) since the levels of endogenous virus infection of autologous CD4+ target cells is <1%. We usually reached an average of 30–40% of infected CD4+ target cells in our control samples (without CD8+ T cells) at day three. At the same time, we sorted CD8+ T cells from the same individual and co-cultured them with anti-Tim-3 antibody (Clone 2E2) or an isotype control antibody (IgG1) for one day. We then combined the CD4+ and CD8+ T cells at different ratios for 3 days to suppress the infection. We observed significantly higher levels of cytotoxicity after Tim-3 pathway blocking, evidenced by reduced number of infected CD4+ T cells remaining in the co-culture following Tim-3 blockade (Fig 5c–e, M ± SD = 7.0% ± 4.0% vs. 18.8% ± 6.6% for 2E2 mAb and control Ab respectively P = 0.045). It is possible that Tim-3 blockade may have improved the survival of CD8+ T cells, which could explain their enhanced cytotoxicity; however, we did not observe significant differences of CD8+ T cell numbers in isotype versus Tim-3 antibody conditions at the end of each experiment (Figure S2). We also observed a similar effect at other effector (CD8); target (CD4) ratios that we used (1:16, 1:4) (data not shown). As expected [34], CD8+ T cells from untreated viral controllers [plasma viral load<50 copies/ml] potent suppressed virus compared to chronic progressors (Fig. 5d and f), as well, their CD8+ T cells do not express high levels of Tim-3 (not shown), and as such these CD8+ T cells are transfected with a HIV gag plasmid and control Ab respectively P = 0.004). To further examine the CD107a expression of total CD8+ T cells in the absence of autologous CD8+ T cells (Fig 5f). In addition, Tim-3 blockade had no effect on infected CD4+ T cells in the absence of autologous CD8+ T cells (Fig 5a). We also observed that CD8+ T cells from HIV un-infected individuals do not suppress autologous in vitro infected CD4+ T cells even in the presence of Tim-3 blocking antibodies, further indicating the indispensable role of TCR engagement by antigen in infection suppression (Fig. 5b).

Blocking the Tim-3 Pathway Enhances the Direct Cytotoxicity of CD8+ T Cells

Finally, we examined CD8+ T cells cytotoxicity on a per-cell basis by using a newly developed protocol of granzyme B associated cell cytotoxicity assay [38]. We studied ex vivo samples from 11 untreated HIV-infected progressors. In this assay, autologous target CD4+ T cells are transfected with a HIV gag mRNA which on average had a transfection efficiency of 20–30% (assessed by staining for a HIV gag p24 antigen by flow cytometry, not shown). Negatively sorted CD4+ T cells that were transfected with HIV gag mRNA and labeled with TFI-4 dye, were co-cultured with autologous CD8+ T cells in the presence of blocking Tim-3 Ab or isotype for an hour. The level of cleaved granzyme B substrate inside target CD4+ T cells was then assessed by flow cytometry (See methods and materials). Representative data from one individual along with negative controls for the dyes that were used, are shown in Figure 6a. Summary data of 11 individuals using 1:1 ratio of CD4:CD8 are shown in Figure 6b and summary data for 5 individuals with other ratios are shown in Figure 6c. These experiments demonstrate that blocking Tim-3 enhances the ability of HIV-specific CD8+ T cells to deliver granzyme B to target CD4+ T cells.
Figure 6. Blocking the Tim-3 signalling pathway enhances the per cell cytotoxicity of CD8+ T cells. CD4+ T cells from chronically HIV infected individuals were transfected with HIV gag mRNA. These target cells were labeled with TFL-4 after transfection and then co-incubated with autologous CD8+ T cells. Granzyme B substrate is added to cell culture. Cytotoxicity of target cells is determined by the presence of activated GrnB substrate found within the target cells. Experiments are performed either in presence of 10 μg/ml 2E2 Tim-3 blocking or isotype control antibodies. In
idea that Tim-3 receptor binding to its ligand(s), prevents the
cells from releasing their perforin and therefore perforin builds
up in their granules resulting in higher stored perforin in these
cells. The higher perforin release that we observed in our
perforin ELISA experiments after blocking Tim-3 pathway
signalling further supports this hypothesis.

We also measured the direct cytotoxicity of CD8\(^+\) T cells in the
context of HIV infection. We clearly showed that with blocking
the Tim-3 pathway we can get higher eradication of infected target
cells by autologous CD8\(^+\) T cells showing an enhanced overall
cytotoxicity by blocking Tim-3 receptors. We also showed
significant differences in killing activity with Tim-3 blockade using
a granzyme release assay further narrowing down this increased
overall killing activity to the ability of CD8\(^+\) T cells to release
perforin and granzyme. Although, the differences in direct
cytotoxicity as determined by perforin release (Fig. 4), granzyme
release (Fig. 6), and CD107a surface expression (Fig. 7) appeared
to be rather modest with Tim-3 blockade, we predict that small
incremental differences in killing activity over one hour would
likely be magnified after multiple rounds of killing target cells over
24–48 hours, as manifested by the more substantial reduction in
HIV-infected target cells with Tim-3 blockade in three day
cultures (Fig. 5).

Thus, our findings further support that the Tim-3 receptor is an
inhibitory molecule that tends to dampen the general activation of
antigen-specific T cells after an immune reaction peaks and leads
to clearance of the infection or tolerance of the antigen
[43,44,62,64,65,66]. CD8\(^+\) T cells play a crucial role especially

Figure 7. Tim-3 pathway blocking increases the ability of CD8\(^+\) T cells to degranulate upon further in vitro re-stimulation. *Ex vivo*
PBMC from HIV infected subjects were stimulated for 6 hours with a pool of HIV Gag peptides in the presence of sTim-3 (final concentration of 2 \(\mu\)g/ml) or just medium alone, and CD107a expression was measured. In a), a representative experiment showing CD107a expression with or without sTim-3 added to the cell culture from the same individual, In b), are summary of data for all 11 subjects (\(p\) value based on two tailed paired t test).
doi:10.1371/journal.pone.0040146.g007
early on the course of HIV infection [60,67,68,69,70,71,72,73] and the main mechanism that these cells exert their cytotoxic function is through production and release of killing molecules (perforin, granzymes, granulysin). As rapid expression of perforin is considered as a novel correlate of control of HIV replication [25] this novel finding that blocking Tim-3 pathway leads to an increase in perforin release and direct cytotoxicity in particular further indicates that the Tim-3 pathway might be a potential therapeutic target for the rescue of dysfunctional CD8+ T cells resulting in the better suppression of HIV infection.

Supporting Information

Figure S1 HIV tetramer specific CD8+ T cells is evenly distributed between Tim-3+ and Tim-3− T cells. Ex vivo PBMC from HIV chronically infected subjects were stained with a HIV Gag SL9 tetramer and then further stained for Tim-3. In a), a representative experiment showing percentage of SL9 specific T cells in Tim-3+ and Tim-3− subpopulations of Total CD8+ T cells. In b), summary of all data for 5 chronically HIV infected individuals showing higher Tim-3 expression on SL9 specific CD8+ T cells compared to Total CD8+ T cells. In c) summary of all data for 6 chronically HIV infected individuals when stained for a pool of HIV tetravers (pool of 5 different HIV tetravers) showing almost even distribution of HIV specific T cells between these two populations. ns = non significant. (TIF)

Figure S2 Better cytotoxicity achieved after Tim-3 pathway blocking is not due to better survival of CD8+ T cells. Mean number of CD8+ T cells/experiment at the end of three-day culture in the presence or absence of Tim-3 pathway blocking is counted. Shown are summary data from 4 experiments performed in triplicate. Bar = standard error. The ratio of CD4+/CD8+ T cells also remained relatively constant in each individual in two conditions (data not shown) (2E2: Tim-3 pathway blocking antibody-Iso: Isotype control antibody). (TIF)

Author Contributions

Conceived and designed the experiments: AS SM JG RK MAO. Performed the experiments: AS SM RBJ KC FYY EYL. Analyzed the data: AS MAO. Contributed reagents/materials/analysis tools: BV FYF SM KC RBJ JL EB CK. Wrote the paper: AS MAO.

References

1. Appay V, Nixon DF, Donahoe SM, Gillespie GM, Dong T, et al. (2000) HIV-specific CD8+ T cells produce antiviral cytokines but are impaired in cytolytic function. J Exp Med 192: 63–75.

2. Heinleink M, Schneider-Schlaudt J, Walker BD, Jassoy C (1995) Inhibition of cytotoxicity and cytokine release of CD8+ HIV-specific cytotoxic T lymphocytes by pentoxifylline. J Acquir Immune Defic Syndr Hum Retrovir 10: 417–424.

3. Shacklett BL, Cox CA, Quiqley MF, Kreis C, Stollman NH, et al. (2004) Abundant expression of granzyme A, but not perforin, in granules of CD8+ T-cells in GALT: Implications for immune control of HIV-1 infection. J Immunol 173: 641–648.

4. Trimble LA, Lieberman J (1998) Circulating CD8+ T lymphocytes in human immunodeficiency virus-infected individuals have impaired function and downmodulate CD95 zeta, the signaling chain of the T-cell receptor complex. Blood 91: 585–594.

5. Anderson J, Behbahani H, Lieberman J, Connick E, Landay A, et al. (1999) Perforin is not co-expressed with granzyme A within cytotoxic granules in CD8+ T lymphocytes present in lymphoid tissue during chronic HIV infection. AIDS 13: 1293–1303.

6. Brenchley JM, Karandikar NJ, Betts MR, Ambrozak DR, Hill BJ, et al. (2003) Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD69+ T cells. Blood 101: 2711–2720.

7. Zhang D, Shankar P, Xu Z, Harnisch B, Chen G, et al. (2003) Most antiviral cell death during chronic viral infection do not express high levels of perforin and are not directly cytotoxic. Blood 101: 226–235.

8. Day CL, Kaufmann DE, Kiriepiela P, Brown JA, Moody ES, et al. (2006) PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443: 350–354.

9. Petrosas C, Casaza JP, Brenchley JM, Price DA, Gostick E, et al. (2006) PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection. J Exp Med 203: 2201–2209.

10. Picher CJ, Quinter C, Peterson DM, Connors M, Koug RA, et al. (1999) HIV-1-specific CD8+ T cells are detectable in most individuals with active HIV-1 infection, but decline with prolonged viral suppression. Nat Med 5: 518–525.

11. Trautmann L, Janbazian L, Chomont N, Said EA, Gimmig S, et al. (2006) Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD69+ T cells. Blood 101: 2711–2720.

12. Hersperger AR, Martin JN, Shin LY, Sheri PM, Kowacs CM, et al. (2011) Increased HIV-specific CD8+ T-cell cytotoxic potential in HIV elite controllers is associated with T-bet expression. Blood 117: 3799–3808.

13. Makedonas G, Hutnick N, Haney D, Aarnik AC, Gardner J, et al. (2010) Perforin and IL-2 upregulation define qualitative differences among highly functional virus-specific human CD8+ T cells. PLoS pathogens 6: e1000798.

14. Tuyate C, Fang Y, Black GP, V. AP Jr., Erlechenber A, et al. (2005) Differential transcription of Eomes and T-bet during maturation of mouse uterine natural killer cells. Journal of leukocyte biology 78: 1347–1355.

15. Shiver JW, Henkart PA (1991) A noncytotoxic mast cell tumor line exhibits potent IgE-dependent cytotoxicity after transfection with the cytolsin/perforin gene. Cell 67: 1173–1181.

16. Shiver JW, Su L, Henkart PA (1992) Cytotoxicity with target DNA breakdown by rat basophilic leukemia cells expressing both cytolsin and granzyme A. Cell 71: 315–322.

17. Hersperger AR, Pereyra F, Nason M, Demers K, Sherf P, et al. (2010) Perforin expression directly ex vivo by HIV-specific CD8 T-cells is a correlate of HIV elite control. PLoS Pathog 6: e1000917.

18. Molagen Lee S, Vihanwera J, Sumegi J, Zhang K, Kogova K, et al. (2004) Characterisation of diverse PRF1 mutations leading to decreased natural killer cell activity in North American families with haemophagocytic lymphohistiocytosis. J Med Genet 41: 137–144.

19. Migueles SA, Laborico AR, Shupert WL, Sabbagha MS, Rabin R, et al. (2002) HIV-specific CD8+ T-cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nat Immunol 3: 1061–1068.

20. Mung Y, Harhin H, O’Keele JP, Gajewski TF (2006) Induction of cytotoxic granules in human memory CD8+ T cell subsets requires cell cycle progression. J Immunol 177: 1981–1987.

21. Sandberg JK, Fast NM, Nixon DF (2001) Functional heterogeneity of cytokines and cytotoxic effector molecules in human CD8+ T lymphocytes. J Immunol 167: 101–107.

22. Makedonas G, Banerjee PP, Pandey R, Hersperger AR, Sanbonb KB, et al. (2009) Rapid up-regulation and granule-independent transport of perforin to the immunological synapse define a novel mechanism of antigen-specific CD8+ T cell cytotoxic activity. J Immunol 182: 5560–5569.

23. Hersperger AR, Makedonas G, Betts MR (2008) Flow cytometric detection of perforin upregulation in human CD8+ T cells. Cytometry A 75: 1050–1057.

24. Betts MR, Nason MC, West SM, De Rosa SC, Migueles SA, et al. (2006) HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood 107: 4781–4789.

25. Day CL, Kiriepiela P, Leslie AJ, van der Stok M, Nair K, et al. (2007) Proliferative capacity of epitope-specific CD8+ T-cell responses is inversely related to viral load in chronic HIV-1 infection. J Exp Med 205: 2763–2779.

26. Anderson AC, Lord GM, Dardallov V, Lee DH, Sabatou-Peyton CA, et al. (2010) T-bet, a Th1 transcription factor regulates the expression of Tim-3. Eur J Immunol 40: 859–866.
34. Saenz-Cirion A, Lacabartez C, Lambotte O, Vermasse P, Urrutia A, et al. (2007) HIV controllers exhibit potent CD8 T cell capacity to suppress HIV infection ex vivo and peculiar cytotoxic T lymphocyte activation phenotype. Proceedings of the National Academy of Sciences of the United States of America 104: 6776–6781.

35. Betts MR, Brenchley JM, Price DA, De Rosa SC, Douek DC, et al. (2003) Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degradation. J Immunol Methods 281: 65–78.

36. Kane KP, Mescher MF (1993) Activation of CD8-dependent cytotoxic T lymphocyte adhesion and degranulation by peptide class I antigen complexes. J Immunol 150: 4788–4797.

37. Woltz P, Betts MR, Koup RA, Oserious A (2004) Immediate cytotoxicity but not degranulation distinguishes effector and memory subsets of CD8+ T cells. J Exp Med 195: 925–956.

38. Migueles SA, Osborne CM, Royce C, Compton AA, Joshi RP, et al. (2008) Lytic granule loading of CD8+ T cells is required for HIV-infected cell elimination associated with immune control. Immunity 29: 1009–1021.

39. Giorgi JV, Hausner MA, Hultin LE (1999) Detailed immunophenotype of CD8+ T cell subsets during acute and chronic HIV infection. J Immunol 162: 6326–6334.

40. Golden-Mason L, Palmer BE, Kassam N, Townshend-Bulson L, Livingston S, et al. (2009) Negative immune regulator Tim-3 is overexpressed on T cells in chronic hepatitis C virus infection and its blockade rescues dysfunctional CD4+ T cells. J Virol 83: 9122–9130.

41. Jin HT, Anderson AC, Tan WG, West EE, Ha SJ, et al. (2010) Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc Natl Acad Sci U S A 107: 14733–14738.

42. Ju Y, Hsu N, Zhang XN, Zhao D, Liu Y, et al. (2009) Blockade of Tim-3 pathway ameliorates interferon-gamma production from hepatic CD8+ T cells in a mouse model of hepatitis B virus infection. Cell Mol Immunol 6: 35–43.

43. Kuchroo VK, Meyers JH, Umetsu DT, DeKruyff RH (2006) TIM family of immune response genes: discovery and mechanisms of action. Annu Rev Immunol 24: 265–300.

44. Sabatos CA, Chakravarti S, Cha E, Schubart A, Sanchez-Fueyo A, et al. (2003) Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc Natl Acad Sci U S A 100: 13125–13130.

45. Sehrawat S, Reddy PB, Rajasagi N, Suryawanshi A, Hirashima M, et al. (2010) Negative immune regulator Tim-3 is overexpressed on T cells in chronic hepatitis C virus infection and its blockade rescues dysfunctional CD4+ T cells. J Virol 83: 9122–9130.

46. Smyth MJ, Thia KY, Street SE, MacGregor MA, Cohn ZA (1988) Perforin-dependent and -independent pathways of cytotoxicity mediated by lymphocytes. Immunol Rev 103: 161–202.

47. Catalfamo M, Henkart PA (2003) Perforin and the granule exocytosis cytotoxicity pathway. Curr Opin Immunol 15: 522–527.

48. Chun TW, Justement JS, Moir S, Hallahan CW, Edler LA, et al. (2001) Suppression of HIV replication in the resting CD4+ T cell reservoir by autologous CD8+ T cells: implications for the development of therapeutic strategies. Proc Natl Acad Sci U S A 98: 253–258.

49. Zhang JY, Zhang Z, Wang X, Fu JL, Yao J, et al. (2007) PD-1 up-regulation is correlated with HIV-specific memory CD8+ T-cell exhaustion in typical progressors but not in long-term nonprogressors. Blood 109: 4671–4678.

50. Anderson AC, Anderson DE, Bregoli L, Hastings WD, Kassan N, et al. (2007) Promotion of tissue inflammation by the immune receptor Tim-3 expresses on innate immune cells. Science 318: 1141–1143.

51. Mackewicz C, Levy JA (1992) CD8+ T cell suppression of HIV replication. J Immunol 149: 4409–4414.

52. Lowin B, Peitsch MC, Tschopp J (1995) Perforin and granzymes: crucial effector molecules in cytolytic T lymphocyte and natural killer cell-mediated cytotoxicity. Curr Top Microbiol Immunol 198: 1–24.

53. Radoja S, Saio M, Schaer D, Koneru M, Vukmanovic S, et al. (2001) CD8+ tumor-infiltrating T cells are deficient in perforin-mediated cytolytic activity due to defective microtubule-organizing center mobilization and lytic granule exocytosis. J Immunol 167: 5042–5051.

54. Lowin B, Patel MC, Koup RA, Oxenius A (2004) Immediate cytotoxicity but not degranulation distinguishes effector and memory subsets of CD8+ T cells. J Exp Med 195: 925–956.