On Hasse’s Unit Index

Djordjo Milovic*

Department of Mathematics, University College London

January 22, 2020

Abstract

We study the distribution of Hasse’s unit index $Q(L)$ for the CM-fields $L = \mathbb{Q}(\sqrt{d}, \sqrt{-1})$ as d varies among positive squarefree integers. We prove that the number of $d \leq X$ such that $Q(L) = 2$ is proportional to $X/\sqrt{\log X}$.

2010 Mathematics Subject Classification. 11R27, 11R29, 11R45

1 Introduction

Let L be a CM biquadratic number field and let K be its quadratic subfield. Hasse [6] considered the unit index

$$Q(L) = [U_L : U_K T_L],$$

where U_K and U_L denote the unit groups of the rings of integers of K and L, respectively, and T_L denotes the torsion subgroup of U_L. In [7, Theorem 1], Lemmermeyer proved that if $|T_L| = 4$, then $Q(L) \in \{1, 2\}$ and

$$Q(L) = 2 \iff 2 \text{ ramifies in } K \text{ and the prime of } K \text{ lying above } 2 \text{ is principal.}$$

The biquadratic CM fields L satisfying $|T_L| = 4$ are in one-to-one correspondence with squarefree integers $d > 1$, with the correspondence given by

$$d \leftrightarrow \mathbb{Q}(\sqrt{d}, \sqrt{-1}).$$

The prime 2 ramifies in $K = \mathbb{Q}(\sqrt{d})$ if and only if $d \not\equiv 1 \mod 4$. In this case, the prime of K lying above 2 is principal only if there exist integers x and y such that

$$x^2 - dy^2 = \pm 2,$$

which can occur only if ± 2 is a square modulo every odd prime p dividing d. Hence, with $L = \mathbb{Q}(\sqrt{d}, \sqrt{-1})$, we have

$$Q(L) = 2 \implies d \in \mathcal{D}_2 \text{ or } d \in \mathcal{D}_{-2},$$

*Gower Street, London, WC1E 6BT, United Kingdom, djordjo.milovic@ucl.ac.uk; supported by
where

$$D_2 = \{d > 1 \text{ squarefree and } \not\equiv 1 \mod 4 : p \text{ prime dividing } d \Rightarrow p \not\equiv 3, 5 \mod 8\}$$

and

$$D_{-2} = \{d > 1 \text{ squarefree and } \not\equiv 1 \mod 4 : p \text{ prime dividing } d \Rightarrow p \not\equiv 5, 7 \mod 8\}.$$

These sets are analogous to the set of special discriminants appearing in the work of Fouvry and Klüners in the context of the negative Pell equation [3]. For a subset Ω of the natural numbers and a real number $X > 0$, we will write $\Omega(X)$ for the set of $n \in \Omega$ such that $n \leq X$. As $X \to \infty$, we have

$$|D_2(X)| \sim \frac{2C_2}{3} \frac{X}{\sqrt{\log X}}$$

and

$$|D_{-2}(X)| \sim \frac{2C_{-2}}{3} \frac{X}{\sqrt{\log X}},$$

where C_2 and C_{-2} are positive real numbers defined in (3.1). Setting

$$S = \{d > 1 \text{ squarefree : } Q(L) = 2\},$$

where as before $L = \mathbb{Q}(\sqrt{d}, \sqrt{-1})$, we immediately deduce that

$$|S(X)| \ll \frac{X}{\sqrt{\log X}}.$$

Our main goal is to give a relatively simple proof that $|S(X)| \gg \frac{X}{\sqrt{\log X}}$.

Theorem 1. As $X \to \infty$, we have

$$c_1 \frac{X}{\sqrt{\log X}} (1 - o(1)) \leq |S(X)| \leq c_2 \frac{X}{\sqrt{\log X}} (1 + o(1)),$$

where

$$c_1 = \frac{C_2}{6} \prod_{j=1}^{\infty} (1 - 2^{-j}) > 0$$

and

$$c_2 = \frac{2C_2 + 2C_{-2}}{3}.$$

Our proof relies on computing the distribution of the 4-rank of narrow class groups $\text{Cl}^+(8d)$ of the real quadratic fields $\mathbb{Q}(\sqrt{2d})$ for $2d \in D_2$. For $2d \in D_2$, the 4-rank of these groups turns out to be substantially larger on average than the 4-rank of narrow class groups of real quadratic fields; compare [2] (7), p. 458 to (5.1). As a result, unlike in the case of generic real quadratic fields, it is not possible to deduce a positive proportion of $2d \in D_2$ with 4-rank of $\text{Cl}^+(8d)$ equal to 0 by simply studying the first moment of the 4-rank. We thus compute the full distribution of the 4-rank of $\text{Cl}^+(8d)$ via the method of moments developed by Fouvry and Klüners [2]. The implementation of this method to the family of $2d \in D_2$ necessitates a new combinatorial argument.

For stronger results on the Hasse unit index in the context of certain thin families of discriminants, see [8, Corollary 3, p. 2]. Finally, although our work concerns the same biquadratic fields as those appearing in the recent work [5], our results have been developed independently.
2 Algebraic preliminaries

2.1 Criteria for solvability over \(\mathbb{Z} \)

Given a fundamental discriminant \(D \), let \(\text{Cl}^+(D) \) denote the narrow class group of the quadratic number field \(\mathbb{Q}(\sqrt{D}) \). We will denote the group operation in \(\text{Cl}^+(D) \) by multiplication, as it is induced by multiplication of ideals. The Artin map gives a canonical isomorphism

\[
\text{Art} : \text{Cl}^+(D) \rightarrow \text{Gal}(H_D/\mathbb{Q}(\sqrt{D})),
\]

where \(H_D \) is the maximal abelian extension of \(\mathbb{Q}(\sqrt{D}) \) that is unramified at all finite primes. Between \(\mathbb{Q}(\sqrt{D}) \) and \(H_D \) lies the genus field of \(\mathbb{Q}(\sqrt{D}) \), which we denote by \(G_D \). It is the subfield of \(H_D \) fixed by the image of the squares in the narrow class group, i.e.,

\[
G_D = H_D^{\text{Art}([\text{Cl}^+(D)])^2},
\]

and it can also be characterized as the maximal abelian extension of \(\mathbb{Q} \) contained in \(H_D \).

Being able to compute the restriction of the image of the Artin map to \(G_D \) allows us to check if a given ideal class in \(\text{Cl}^+(D) \) is a square. Indeed, if we denote the class of an ideal \(\mathfrak{a} \) by \([\mathfrak{a}]\), then we have

\[
[a] \in \text{Cl}^+(D)^2 \iff \text{Art}(a)|_{G_D} = 1. \tag{2.1}
\]

Let \(p_1, \ldots, p_t \) denote the primes dividing \(D \), with \(p_2, \ldots, p_t \) odd. Then \(G_D \) can be generated as the mutiquadratic field

\[
G_D = \mathbb{Q}(\sqrt{D}, \sqrt{p_2^2, \ldots, \sqrt{p_t^2}}),
\]

where, for an odd prime \(p \), we write

\[
p^* = (-1)^{(p-1)/2}p = \left(\frac{-1}{p}\right)p.
\]

Here and henceforth, \((\cdot) \) denotes the Jacobi symbol. Note that

\[
\text{Gal}(G_D/\mathbb{Q}(\sqrt{D})) \cong \mathbb{F}_2^{t-1} \quad \text{and} \quad |G_D : \mathbb{Q}(\sqrt{D})| = 2^{t-1}. \tag{2.2}
\]

The 2-torsion subgroup of \(\text{Cl}^+(D) \) is generated by the classes of the prime ideals \(p_1, \ldots, p_t \) lying above \(p_1, \ldots, p_t \), respectively. For each \(\mathfrak{e} = (e_1, \ldots, e_t) \in \mathbb{F}_2^t \), we define the ideal \(\mathfrak{a}_e = p_1^{e_1} \cdots p_t^{e_t} \), and we write \(a_e \) for the absolute norm of \(\mathfrak{a}_e \). By (2.2), there exists a unique non-zero \(\mathfrak{e} \in \mathbb{F}_2^t \) such that the class of \(\mathfrak{a}_e \) is trivial. Supposing for simplicity that \(D \equiv 0 \pmod{4} \) and setting \(d = D/4 \), we see that the equation \(x^2 - dy^2 = a_e \) is solvable over \(\mathbb{Z} \) for exactly one non-zero \(e \in \mathbb{F}_2^t \). Since \(a_e \) varies over the positive squarefree divisors of \(D \) as \(e \) varies over \(\mathbb{F}_2^t \), we see that there exists exactly one squarefree integer \(a > 1 \) such that \(a \) divides \(D \) and such that \(x^2 - dy^2 = a \) is solvable over \(\mathbb{Z} \).

Now suppose that \(D = da \) or \(D = 4da \), where \(d \) and \(a \) are coprime positive squarefree integers, and consider the equation

\[
x^2 - day^2 = a. \tag{2.3}
\]

Let \(\mathfrak{a} \) be the unique ideal of the form \(\mathfrak{a}_e \) as above of absolute norm \(a \). Then (2.3) is solvable over \(\mathbb{Z} \) if and only if the class of \(\mathfrak{a} \) is trivial in \(\text{Cl}^+(D) \). Suppose that the class of \(\mathfrak{a} \) is a square in \(\text{Cl}^+(D) \). Since \([\mathfrak{a}]\) is a 2-torsion element in \(\text{Cl}^+(D) \), this indicates the existence of
an element of order 4 in \(\text{Cl}^+(D) \), unless of course \([a]\) is trivial. Therefore, if \([a] \in \text{Cl}^+(D)^2\) and \(\text{Cl}^+(D) \) has no elements of order 4, then \([a]\) must be trivial and hence the equation (2.3) must be solvable over \(\mathbb{Z} \).

Similarly, consider the equation

\[
x^2 - day^2 = -a,
\]

solvable over \(\mathbb{Z} \) if and only if \(x^2 - day^2 = d \) is solvable over \(\mathbb{Z} \). Let \(\mathfrak{a} \) be the unique ideal of the form \(a_{e} \) as above of absolute norm \(d \). Similarly as above, if \([\mathfrak{a}] \in \text{Cl}^+(D)^2\) and \(\text{Cl}^+(D) \) has no elements of order 4, then \([\mathfrak{a}]\) must be trivial and hence the equation (2.4) must be solvable over \(\mathbb{Z} \).

With \(a = 2 \), these observations lead us to the following propositions for the solvability of (1.1).

Proposition 2.1. Let \(d \) be a positive odd squarefree integer. Suppose that

- the narrow class group of \(\mathbb{Q}(\sqrt{2d}) \) has no elements of order 4, and
- \(\left(\frac{d}{p} \right) = 1 \) for all primes \(p \) dividing \(d \).

Then the equation

\[
x^2 - 2dy^2 = 2
\]

has a solution in integers \(x \) and \(y \).

Proof. Suppose that \(d = p_1 \cdots p_r \). Let \(p_i \) (resp. \(t \)) denote the ideal of \(\mathbb{Z}[\sqrt{2d}] \) lying above \(p_i \) (resp. 2). Let \(D = 8d \) be the discriminant of \(\mathbb{Q}(\sqrt{2d}) \). By the first assumption and the observation above, it suffices to show that in each case we have \([t] \in \text{Cl}^+(D)^2\). By (2.1), \([t] \in \text{Cl}^+(D)^2\) if and only if \(\text{Art}(t)|_{G_D} = 1 \).

We have

\[
G_D = \mathbb{Q}(\sqrt{2\varepsilon}, \sqrt{p_1}, \sqrt{p_2}, \ldots, \sqrt{p_r}),
\]

where

\[
\varepsilon = (-1)^{(d-1)/2} \in \{\pm 1\}.
\]

The prime \(t \) splits in \(\mathbb{Q}(\sqrt{2\varepsilon}, \sqrt{2d}) \) if and only if \(d\varepsilon \equiv \pm 1 \bmod 8 \), i.e., if and only if \(d \equiv \pm 1 \bmod 8 \). Moreover, \(t \) splits in \(\mathbb{Q}(\sqrt{2d}, \sqrt{p_i}) \) if and only if \(p_i \equiv \pm 1 \bmod 8 \), i.e., if and only if \(p_i \equiv \pm 1 \bmod 8 \). Thus \(\text{Art}(t)|_{G_D} \) can be viewed as the element

\[
\left(\left(\frac{2}{d} \right), \left(\frac{2}{p_1} \right), \ldots, \left(\frac{2}{p_r} \right) \right)
\]

of

\[
\Gamma = \text{Gal}(G_D/\mathbb{Q}(\sqrt{D})) \cong \{(a_1, \ldots, a_{r+1}) \in \{\pm 1\}^{r+1} : a_1 \cdots a_{r+1} = 1\}.
\]

Hence \([t] \in \text{Cl}^+(D)^2\) if and only if

\[
\left(\frac{2}{p_i} \right) = 1 \quad \text{for all } i.
\]
Proposition 2.2. Let \(d \) be a positive odd squarefree integer. Suppose that

- the narrow class group of \(\mathbb{Q}(\sqrt{2d}) \) has no elements of order 4, and
- \(\left(\frac{-2}{p} \right) = 1 \) for all odd primes \(p \) dividing \(d \).

Then the equation

\[
x^2 - 2dy^2 = -2
\]

has a solution in integers \(x \) and \(y \).

Proof. Let \(p_i, p_1, t, D, r, \varepsilon, \text{ and } \Gamma \) be as in the proof of Proposition 2.1. Let \(\mathfrak{d} = p_1 \cdots p_r \). By the first assumption and the observation above, it suffices to show that in each case we have \(\mathfrak{b} \in \text{Cl}^+(D)^2 \). By [2,1], \(\mathfrak{b} \in \text{Cl}^+(D)^2 \) if and only if

\[
\text{Art}(\mathfrak{d})|_{G_D} = \text{Art}(p_1)|_{G_D} \cdots \text{Art}(p_r)|_{G_D} = 1.
\]

The Artin symbol \(\text{Art}(p_i)|_{G_D} \) viewed as an element of \(\Gamma \) is equal to

\[
\left(\frac{2\varepsilon}{p_i} \right), \left(\frac{p_i^*}{p_i} \right), \ldots, \left(\frac{2d/p_i^*}{p_i} \right), \left(\frac{p_i^{r+1}}{p_i} \right), \ldots, \left(\frac{p_r^*}{p_i} \right).
\]

Then, by multiplicativity of the Artin symbol, we have

\[
\text{Art}(\mathfrak{d})|_{G_D} = \left(\frac{2\varepsilon}{d} \right), \left(\frac{p_1^*}{d/p_1} \right), \ldots, \left(\frac{2d/p_r^*}{p_r} \right) \in \Gamma.
\]

Hence \(\mathfrak{b} \in \text{Cl}^+(D)^2 \) if and only if

\[
\left(\frac{2\varepsilon}{d} \right) = 1
\]

and

\[
1 = \left(\frac{p_i^*}{d/p_i} \right) \left(\frac{2d/p_i^*}{p_i} \right) = \left(\frac{d/p_i}{p_i} \right) \left(\frac{2d/p_i^*}{p_i} \right) = \left(\frac{2}{p_i} \right) \left(\frac{-1}{p_i} \right) = \left(\frac{-2}{p_i} \right) \quad \text{for all } i,
\]

where the second equality follows from the law of quadratic reciprocity. Of course, as the product of the \(r + 1 \) entries of \(\text{Art}(\mathfrak{d})|_{G_D} \in \Gamma \) is equal to 1, the condition (2.5) implies that \(\left(\frac{2\varepsilon}{d} \right) = 1 \). \(\square \)

2.2 Formula for the 4-rank

Let \(D \) be a fundamental discriminant. In [2], Fouvry and Klüners give the following formula for the 4-rank of \(\text{Cl}^+(D) \), i.e., for the quantity

\[
| \text{Cl}^+(D)^2 / \text{Cl}^+(D)^4 | =: 2^{4k_D} \text{Cl}^+(D).
\]

We are interested in the fields \(\mathbb{Q}(\sqrt{2d}) \). Writing \(D = 8d \) with \(d \) odd and squarefree, Fouvry and Klüners [2, (111), p. 503] prove that

\[
2^{4k_D} \text{Cl}^+(8d) = \frac{1}{2} \cdot 2^{\omega(d)} \sum_{d=D_0D_1D_2D_3} \left(\frac{2}{D_3} \right) \left(\frac{D_2}{D_0} \right) \left(\frac{D_1}{D_3} \right) \left(\frac{D_0}{D_3} \right) \left[\left(\frac{-1}{D_0} \right) + \left(\frac{-1}{D_3} \right) \right].
\]

Here the sum is over 4-tuples of positive integers \((D_0, D_1, D_2, D_3) \) such that \(D_0D_1D_2D_3 = d \). Now suppose that \(2d \in \mathcal{D}_2 \), so that every prime \(p \) dividing \(d \) satisfies \(\left(\frac{2}{p} \right) = 1 \). Then the factor
such that d^2 ensues. The ensuing formula allows us to rewrite (2.6) for $2d \in \mathcal{D}_2$ as

$$2^r k_4 \mathcal{C}_1^+(8d) = \frac{1}{2^{\omega(d)}} \sum_{d = D_0 D_1 D_2 D_3} \left(-1 \right) \left(\frac{D_2}{D_0} \right) \left(\frac{D_1}{D_3} \right) \left(\frac{D_0}{D_3} \right),$$

(2.7)

where now the sum is over 4-tuples of positive integers (D_0, D_1, D_2, D_3) such that $D_0 D_1 D_2 D_3 = d \in \mathcal{D}_2$.

Relabelling the indices in (2.7) as in [2] by converting them into their binary expansions, so that D_0 becomes D_{00}, D_1 becomes D_{01}, etc., we obtain

$$2^r k_4 \mathcal{C}_1^+(8d) = \frac{1}{2^{\omega(d)}} \sum_{d = D_{00} D_{01} D_{10} D_{11}} \left(\prod_{u \in \mathbb{F}_2^2} \left(-1 \right) \left(\frac{D_u}{D_1} \right) \right) \left(\prod_{(u, v) \in \mathbb{F}_2^2} \left(\frac{D_u}{D_v} \right) \Phi_1(u, v) \right),$$

(2.8)

where λ_1 is the \mathbb{F}_2-valued function defined by

$$\lambda_1(u) = u_1 u_2, \quad u = (u_1, u_2).$$

(2.9)

We will compute the average of kth moments of $2^r k_4 \mathcal{C}_1^+(8d)$ as $2d$ varies among elements of \mathcal{D}_2 such that $d \equiv 3 \mod 4$. We remark that when $2d \in \mathcal{D}_2$ and $d \equiv 1 \mod 4$, then $r k_4 \mathcal{C}_1^+(8d) \geq 1$, and so Proposition 2.1 cannot be applied for such d.

Raising both sides of (2.8) to the kth power and decomposing the summation variables into products of their mutual greatest common denominators, as in [2] (22), p. 471], we obtain the following analogue of [2, Lemma 28, p. 493]:

$$S(X, k; 3, 4) := \sum_{2d \in \mathcal{D}_2(X)} 2^r k_4 \mathcal{C}_1^+(8d) = \sum_{(D_u)} \left(2^{-k \omega(D_u)} \right) \left(\prod_{u \in \mathbb{F}_2^2} \left(-1 \right) \left(\frac{D_u}{D_1} \right) \right) \left(\prod_{u, v \in \mathbb{F}_2^2} \left(\frac{D_u}{D_v} \right) \Phi_k(u, v) \right),$$

(2.10)

where the sum is over 4^k-tuples (D_u) of integers $D_u \in \mathcal{D}_2$ indexed by elements u of \mathbb{F}_2^{2k} and satisfying

$$\prod_{u \in \mathbb{F}_2^{2k}} D_u \leq X/2, \quad \prod_{u \in \mathbb{F}_2^{2k}} D_u \equiv 3 \mod 4;$$

where the function $\lambda_k : \mathbb{F}_2^{2k} \rightarrow \mathbb{F}_2$ is defined by

$$\lambda_k(u) = \sum_{j=0}^{k-1} u_{2j+1} u_{2j+2};$$

(2.11)

and where the function $\Phi_k : \mathbb{F}_2^{2k} \times \mathbb{F}_2^{2k} \rightarrow \mathbb{F}_2$ is defined by

$$\Phi_k(u_1, \ldots, u_{2k}, v_1, \ldots, v_{2k}) = \Phi_1(u_1, u_2, v_1, v_2) + \cdots + \Phi_1(u_{2k-1}, u_{2k}, v_{2k-1}, v_{2k})$$

(2.12)

$$= (u_1 + v_1)(u_1 + v_2) + \cdots + (u_{2k-1} + v_{2k-1})(u_{2k-1} + v_{2k}).$$

(2.13)
3 Analytic preliminaries

We first state the asymptotic formulas for the size of \(D_{\pm 2}(X) \). Recall that we defined the sets

\[
D_{\pm 2} = \{ d > 1 \text{ squarefree and } \not\equiv 1 \mod 4 : \left(\frac{\pm 2}{p} \right) = 1 \text{ for all odd primes } p|d \}.
\]

Define the sets

\[
P_{\pm 2} = \{ p \text{ prime number} : \text{if } p \text{ is odd, then } \left(\frac{\pm 2}{p} \right) = 1 \}.
\]

and define the positive constants

\[
C_{\pm 2} = \frac{1}{\sqrt{\pi}} \lim_{s \to 1} \left(\sqrt{s-1} \prod_{p \in P_{\pm 2}} \left(1 + \frac{1}{p^s} \right) \right).
\]

Then, similarly as in [9], one can use results from [10] to deduce that

\[
D_{\pm 2}(X) = 2C_{\pm 2} 3^\frac{1}{2} X \sqrt{\log X} + O \left(\frac{X}{(\log X)^{\frac{1}{2}}} \right),
\]

where the implied constant is absolute. Again as in [9], we can refine these formulas by restricting to congruence classes. The particular asymptotic formula that we need is

\[
A(X; 3, 4) := |\{2d \in D_2 : d \leq X/2, d \equiv 3 \mod 4\}| \sim \frac{C_2}{6} X \sqrt{\log X}.
\]

The treatment of \(S(X; 2; 3, 4) \), which is by now standard due to the work of Fouvry and Klüners [2, 3, 4] and Park [9], proceeds in several steps, culminating in the following formula analogous to [2, Proposition 5, p. 483]:

\[
S(X, k; 3, 4) = A(X; 3, 4) \cdot 2^{1-2k} \sum_{\mathcal{U}} \gamma^+(\mathcal{U}, 1) + O_e \left(X(\log X)^{-\frac{1}{2} - \frac{1}{2k} + \epsilon} \right)
\]

where the sum is over all maximal unlinked subsets \(\mathcal{U} \) of \(\mathbb{F}_2^k \) and where \(\gamma^+(\mathcal{U}) \) is defined as in [2] (81), p. 493], i.e.,

\[
\gamma^+(\mathcal{U}, 1) = \sum_{(h_u)_{u \in \mathcal{U}}} \left(\prod_{u \in \mathcal{U}} (-1)^{h_u} \frac{h_u - 1}{2} \right) \left(\prod_{u, v} (-1)^{\Phi_k(u,v) \cdot \frac{h_u - 1}{2} \cdot \frac{h_v - 1}{2}} \right),
\]

where the sum is over \((h_u)_{u \in \mathcal{U}} \in \{\pm 1 \mod 4\}^{2k} \) satisfying \(\prod_{u \in \mathcal{U}} h_u \equiv 3 \mod 4 \) and where the last product is over unordered pairs \(\{u, v\} \subset \mathcal{U} \). We recall that two indices \(u \) and \(v \) in \(\mathbb{F}_2^k \) are said to be unlinked if \(\Phi(u, v) = \Phi(v, u) \).

We will now say a few words about the derivation of the formula (3.3). First, the sum \(S(X, k; 3, 4) \) is estimated by (i) bounding the contribution of terms where the number of prime factors of \(D_u \) is too large, as in [2] Section 5.3], (ii) partitioning the tuples \(\{D_u\} \) into “diadic” boxes of reasonable size, as in [2] Section 5.4, p. 474-475], (iii) bounding the contribution from boxes featuring “double oscillation” of characters, as in [2] Section 5.4, p. 476], and
(iv) bounding the contribution from boxes featuring linked variables of vastly different sizes, as in [2, Section 5.4, p. 476-478]. Once this is accomplished, we arrive at an analogue of [2, Proposition 3, p. 479], at which point we partition the sum according to the congruence classes of D_u modulo 4. We then use quadratic reciprocity to pull out the factor $\sum U \gamma^+(U, 1)$. Via a variant of the prime number theorem, as in [2, Lemma 19, p. 480] or [9, Lemma 6.3, p. 21], we then remove the congruence conditions on the D_u modulo 4, which recovers $A(X; 3, 4)$ but comes with the cost of a factor of 2^{k-1} (as $\prod U D_u \equiv 3 \mod 4$, fixing $2^k - 1$ of the variables D_u modulo 4 determines the remaining variable modulo 4).

4 Combinatorics of the coefficient of the main term

In this section, we analyze the coefficients of the main terms in the asymptotic formulas for the kth moments of the 4-rank.

As in [2] (87), for $\nu \in \mathbb{F}_2$, we let

$$\gamma^+(U, \nu) = \sum_{S \subseteq U, s \equiv \nu \mod 2} (-1)^{e^+(S)},$$

where

$$e^+(S) = \sum_{u \in S} \lambda_k(u) + \sum_{u, v} \Phi(u, v),$$

where the last sum is over unordered pairs $\{u, v\} \subseteq U$. This generalizes the quantity $\gamma^+(U, 1)$, which we aim to compute. The argument in [2, Section 6] culminates in the formula [2, (105), p. 499]

$$\sum U \gamma^+(U, 0) = 2^{k-1} (N(k+1, 2) - N(k, 2)).$$

Here, as in [2], $N(m, 2)$ denotes the total number of \mathbb{F}_2-vector subspaces of \mathbb{F}_2^m. We will now adapt this argument to show that

$$\sum U \gamma^+(U, 1) = 2^{k-1} N(k, 2). \quad (4.1)$$

The same argument as that for [2] (101), p. 498] yields the formula

$$\sum U \gamma^+(U, 1) = 2^{-k} \sum_{U_0 \text{ good}} \sum_{c \in \mathbb{F}_2^{2k}} \sum_{s \text{ odd}} (-1)^{\lambda_k(s)}.$$

Consider the group homomorphism

$$\mu : \mathcal{P}(c + U_0) \to U_0 \oplus (c + U_0) \quad (4.2)$$

given by

$$\mu(S) = \sigma.$$

We check that μ is surjective. First, note that $\mu(\emptyset) = 0$. If $\sigma \in U_0 \setminus \{0\}$, then $\mu(c, c + \sigma) = \sigma$. Finally, if $c + \sigma \in c + U_0$, then $\mu(c + \sigma) = c + \sigma$. Hence, counting the cardinalities of the
domain and the codomain of μ, we find that each fiber of μ has cardinality $2^k/2^{k+1} = 2^{k-1}$. Also note that the image of $P_1(\mathbf{c} + U_0)$ under μ is exactly $\mathbf{c} + U_0$. This implies that
\[
\sum_{\mathcal{U}} \gamma^+(\mathcal{U}, 1) = 2^{2k-k-1} \sum_{\mathcal{U}_0 \text{ good}} \sum_{c \in \mathbb{F}_2^k} \sum_{\sigma \in \mathbb{F}_2} (-1)^{\lambda_k(\sigma)}.
\]
Since U_0 is a k-dimensional vector subspace of \mathbb{F}_2^k, for each coset \mathcal{U} of U_0 in \mathbb{F}_2^k, there are exactly 2^k vectors $c \in \mathbb{F}_2^k$ such that $\mathcal{U} = \mathbf{c} + U_0$. Hence
\[
\sum_{\mathcal{U}} \gamma^+(\mathcal{U}, 1) = 2^{2k-k-1} \sum_{\mathcal{U}_0 \text{ good}} \sum_{\mathcal{U} \text{ coset of } U_0} \sum_{\sigma \in \mathbb{F}_2^k} (-1)^{\lambda_k(\sigma)}
= 2^{2k-k-1} \sum_{\mathcal{U}_0 \text{ good}} \sum_{\sigma \in \mathbb{F}_2^k} (-1)^{\lambda_k(\sigma)}
= 2^{2k-k-1} N(k, 2) \sum_{\sigma \in \mathbb{F}_2^k} (-1)^{\lambda_k(\sigma)}.
\]
It remains to compute $\sum_{\sigma \in \mathbb{F}_2^k} (-1)^{\lambda_k(\sigma)}$. Recall that $\lambda_k(\sigma) = \sum_{j=0}^{k} \sigma_{2j+1} \sigma_{2j+2}$. Let
\[
m(\sigma) = \#\{j \in \{0, \ldots, k-1\} : \sigma_{2j+1} = \sigma_{2j+2} = 1\},
\]
so that $\lambda_k(\sigma) \equiv m(\sigma) \mod 2$. For each $m \in \{0, \ldots, k\}$, the number of $\sigma \in \mathbb{F}_2^k$ such that $m(\sigma) = m$ is equal to
\[
\binom{k}{m} \cdot 3^{k-m},
\]
since for each of the $k-m$ choices of j for which $(\sigma_{2j+1}, \sigma_{2j+2}) \neq (1, 1)$, the pair $(\sigma_{2j+1}, \sigma_{2j+2})$ can take one of three possible values, namely $(0, 0)$, $(0, 1)$, and $(1, 0)$. Thus
\[
\sum_{\sigma \in \mathbb{F}_2^k} (-1)^{\lambda_k(\sigma)} = \sum_{m=0}^{k} \binom{k}{m} \cdot 3^{k-m} \cdot (-1)^m = (3 - 1)^k = 2^k,
\]
by the binomial theorem. In conclusion, we find that
\[
\sum_{\mathcal{U}} \gamma^+(\mathcal{U}, 1) = 2^{2k-k-1} N(k, 2) \cdot 2^k = 2^{2k-1} N(k, 2),
\]
as was claimed in (4.1).

5 Conclusion of the proof of Theorem

Substituting (4.1) into (3.3), we obtain the asymptotic
\[
S(X, k; 3, 4) \sim N(k, 2) \cdot A(X; 3, 4).
\]
Note that the average of the kth moment for $2d \in D_2$ with $d \equiv 3 \mod 4$ is the same as the average of the kth moment for general negative discriminants; see [2 Equations (4), (6), (8)].
Putting the formula (5.1) for the kth moments through the machinery in [1] or [3, Section 2, p. 2046-2049], we deduce that for each integer $r \geq 0$, we have

$$|\{2d \in D_2 : d \leq X/2, d \equiv 3 \mod 4, \text{rk}_4 \text{Cl}^+(8d) = r\}| \sim 2^{-r^2} \eta_\infty(2) \eta_r(2)^{-2} A(X; 3, 4), \ (5.2)$$

where

$$\eta_k(2) = \prod_{j=1}^{k} (1 - 2^{-j}) \text{ for } k = r, \infty.$$

This is the same distribution as that for the 4-rank of class groups of imaginary quadratic fields. Using (5.2) with $r = 0$ in conjunction with Proposition 2.1, we conclude that

$$|S(X)| \gg \eta_\infty(2) A(X; 3, 4) \gg \eta_\infty(2) C_2^2 \frac{X}{\sqrt{\log X}},$$

as was to be shown.

Acknowledgements

The author is supported by ERC grant agreement No. 670239.

References

[1] É. Fouvry and J. Klüners. Cohen-Lenstra heuristics of quadratic number fields. In *Algorithmic number theory*, volume 4076 of *Lecture Notes in Comput. Sci.*, pages 40–55. Springer, Berlin, 2006.

[2] É. Fouvry and J. Klüners. On the 4-rank of class groups of quadratic number fields. *Invent. Math.*, 167(3):455–513, 2007.

[3] É. Fouvry and J. Klüners. On the negative Pell equation. *Ann. of Math. (2)*, 172(3):2035–2104, 2010.

[4] É. Fouvry and J. Klüners. The parity of the period of the continued fraction of \sqrt{d}. *Proc. Lond. Math. Soc. (3)*, 101(2):337–391, 2010.

[5] É. Fouvry and P. Koymans. On Dirichlet biquadratic fields. *arXiv e-prints*, page arXiv:2001.05350, Jan 2020.

[6] H. Hasse. *Über die Klassenzahl abelscher Zahlkörper*. Springer-Verlag, Berlin, first edition, 1985. With an introduction to the reprint edition by Jacques Martinet.

[7] F. Lemmermeyer. Ideal class groups of cyclotomic number fields. I. *Acta Arith.*, 72(4):347–359, 1995.

[8] D. Z. Milovic. On the equations $x^2 - 2py^2 = -1, \pm 2$. *arXiv e-prints*, page arXiv:1812.02650, Dec 2018.

[9] J. Park. On the parity of ideal classes over a fixed prime. *Amer. J. Math.*, 142(1):1–27, 2020.
[10] G. Tenenbaum. *Introduction to analytic and probabilistic number theory*, volume 163 of *Graduate Studies in Mathematics*. American Mathematical Society, Providence, RI, third edition, 2015. Translated from the 2008 French edition by Patrick D. F. Ion.