Developing JSequitur to Study the Hierarchical Structure of Biological Sequences in a Grammatical Inference Framework of String Compression Algorithms

Bulgan Galbadrakh, Kyung-Eun Lee, Hyun-Seok Park*

Department of Computer Science, Ewha Womans University, Seoul 120-750, Korea

Grammatical inference methods are expected to find grammatical structures hidden in biological sequences. One hopes that studies of grammar serve as an appropriate tool for theory formation. Thus, we have developed JSequitur for automatically generating the grammatical structure of biological sequences in an inference framework of string compression algorithms. Our original motivation was to find any grammatical traits of several cancer genes that can be detected by string compression algorithms. Through this research, we could not find any meaningful unique traits of the cancer genes yet, but we could observe some interesting traits in regards to the relationship among gene length, similarity of sequences, the patterns of the generated grammar, and compression rate.

Keywords: context-free grammar, formal language theory, natural language processing, stochastic modeling

Availability: JSequitur is freely available for academic purposes. Please contact neo@ewha.ac.kr.

Introduction

In formal language theory a language is simply a set of strings of characters drawn from some alphabet, where the alphabet (terminal) is a set of symbols. When we consider biological sequences simply as a language in the context of formal language theory (treating DNA, RNA, or protein sequences just as strings of alphabets of four nucleotides or 20 amino acids), a grammatical inference method based on formal language theory can be applied [1-3].

Nevill-Manning and Witten [4] pioneered the attempt to produce the context-free grammar of biological sequences in an automatic way. This task can be formalized as the problem of finding the smallest context-free grammar by recursively replacing the repeats by a new symbol. The algorithm builds a hierarchy of phrases by forming a new rule out of existing pairs of symbols, including non-terminal symbols.

For example, if we consider the string “atattattatt,” the simplest way to represent the string by context-free grammar is the following:

<Grammar 0>
S → atattattatt

The most frequently occurring sequence in the string is “at,” which occurs four times. Thus, introducing a new nonterminal symbol, ‘A,’ and creating a new rule for this yields the following modified grammar:

<Grammar 1>
S → AAatAtAt
A → at,

where the grammar consists of a start symbol (i.e., S), two terminal symbols (i.e., a, t) represented by lowercase letters, two non-terminal symbols (i.e., S, A) represented by uppercase letters, and two production rules (i.e., S → AAatAtAt, A → at) with a left- and a right-hand side consisting of a sequence of these symbols.

Repeatedly replacing the frequently occurring patterns “At,” again to a new nonterminal symbol, B, gives the following modified grammar:

Received November 1, 2012; Revised November 14, 2012; Accepted November 16, 2012

*Corresponding author: Tel: +82-2-3277-2831, Fax: +82-2-3277-2306, E-mail: neo@ewha.ac.kr

Copyright © 2012 by the Korea Genome Organization

© It is identical to the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/).
<Grammar 2>
\[S \rightarrow ABBB \]
\[A \rightarrow \text{at} \]
\[B \rightarrow \text{At} \]

where the grammar consists of a start symbol (i.e., S), two terminal symbols (i.e., a, t), three non-terminal symbols (i.e., S, A, B), and three production rules (i.e., \(S \rightarrow ABBB \), \(A \rightarrow \text{at} \), \(B \rightarrow \text{At} \)).

By applying the three production rules by replacing an occurrence of the nonterminals on the left-hand side of the production rule with those that appear on the right-hand side, the string “atattattatt” can be derived from the non-terminal S by constantly applying a series of derivations:

\[
\begin{align*}
S & \rightarrow ABBB \\
& \rightarrow \text{atBBB} \\
& \rightarrow \text{atAtBB} \\
& \rightarrow \text{atattBB} \\
& \rightarrow \text{atattAtB} \\
& \rightarrow \text{atattattB} \\
& \rightarrow \text{atattattAt} \\
& \rightarrow \text{atattattatt}.
\end{align*}
\]

Based on this concept, grammar-based compression algorithms have shown some success for various applications [4-7]. Especially, grammar can capture distant repetitions occurring far apart, which was a limitation of sliding window approaches. However, grammar-based compression algorithms at this moment do not show the best performance for compression itself [6]. Thus, our motivation of this study is not to develop a new algorithm or find the most efficient way to compress biological sequences for storage purposes. Our sole purpose of developing a new tool is to investigate any grammatical traits of biological sequences, based on formal language theory.

Implementation

We have developed a slightly modified version of Sequitur [4] called JSequitur for automatically creating hierarchical structures of sequences [8], as in Fig. 1. Our main contribution is to improve Sequitur to work better in a graphic user interface (GUI) environment, as our main interest was in studying the generated grammar, rather than enhancing the compression rate itself. JSequitur is implemented in Java and organized into six classes, as in Fig. 2: Sequitur, Symbol, Guard, Terminal, Nonterminal, and Rule.

Sequitur class is called first and connects with all of the other classes. Symbol class is the connecter class, which streams sequences of input to the system. Rule class accesses Terminal and NonTerminal classes in order to create rules. Guard class, which is based on digram uniqueness, is responsible for rule confirmation.

Thus, our string compression algorithm operates by...
No.	Gene	Length	Compressed length	No. of rules	Compression ratio
1	TERC	587	157	45	0.2675
2	MIF	1,099	265	79	0.2411
3	HSPI1	2,262	528	131	0.2334
4	TNFRSF6B	2,662	571	153	0.2145
5	S100A4	2,844	630	163	0.2215
6	CDKN2D	3,274	713	173	0.2178
7	GSTP1	3,977	847	200	0.2130
8	HRAS	4,301	869	206	0.2020
9	EMS1	4,741	978	235	0.2063
10	TCL1A	5,498	1,124	272	0.2007
11	TFF1	5,530	1,110	274	0.1988
12	CTCTA	5,553	1,104	279	0.1988
13	MUC1	5,729	1,034	268	0.1805
14	SNCG	6,148	1,221	271	0.1986
15	IL6	6,312	1,283	287	0.2033
16	CDKN1B	6,504	1,293	301	0.1998
17	MYC	6,976	1,409	300	0.2020
18	KLK3	7,604	1,487	329	0.1956
19	GSTM1	7,734	1,525	325	0.1972
20	CYP1A1	7,793	1,527	352	0.1959
21	KISS1	7,997	1,526	342	0.1908
22	ARHC	8,159	1,587	349	0.1945
23	PLA2	8,318	1,624	346	0.1952
24	MYCN1	8,381	1,655	350	0.1975
25	MYC1	8,570	1,688	359	0.1970
26	HSPCB	8,796	1,685	380	0.1916
27	CYP2A6	8,982	1,701	395	0.1894
28	BAX	9,021	1,667	383	0.1848
29	CYP17	9,103	1,735	393	0.1906
30	GSTT1	10,590	1,941	439	0.1833
31	ING1	10,841	2,069	438	0.1909
32	CYP1B1	11,152	2,128	443	0.1908
33	NAT2	12,959	2,406	484	0.1857
34	TFAP2C	12,976	2,458	510	0.1894
35	CYP2D7	13,312	2,437	507	0.1831
36	CDKN1A	14,144	2,645	524	0.1870
37	RASSF1	14,497	2,621	533	0.1808
38	CTSD	14,613	2,558	532	0.1751
39	BIRC5	14,872	2,536	571	0.1705
40	MMP11	14,908	2,695	555	0.1808
41	PCNA	15,170	2,726	572	0.1797
42	CYP2E	15,280	2,750	582	0.1800
43	RAC1	15,646	2,660	611	0.1700
44	BAG1	15,979	2,967	572	0.1857
45	CCNE1	16,009	2,902	589	0.1813
46	CCND1	17,380	3,132	597	0.1802
47	BCL1	17,380	3,132	597	0.1802
48	TAL1	17,525	3,154	629	0.1800
49	NAT1	18,081	3,236	634	0.1790
50	CEACAM8	19,094	3,348	662	0.1753
51	UBC	20,296	3,603	711	0.1775
52	VEGF	21,163	3,702	720	0.1749
53	MPL	21,659	3,807	723	0.1758
54	SLC2A3	22,189	3,853	748	0.1736
it then repeats the cycle by reading in a new symbol.

The following production rules, which have been created automatically, are an exemplary output of applying JSequitur to the partial sequence of the TERT gene (175 bp, "gcccccgggtgtccctgtcacgtgcagggtgagtgaggcgcggtccccgggtgtccctgtcacgtgcagggtgagtgaggcgcggtccccgggtgtccctgtcacgtgcagggtgagtgaggcgcggtccccgggtgtccctgtcacgtgcagggtgagtgaggcgcggtccccgggtgtccctgtcacgtgcagggtgagtgaggcgcggtcccc"):

R0 → g R1 R2 R3 R4 R5 R6 R7 R8 R5 R9 R1 R3 R4 R10
R11 g a R4 a R12 R13 R14 R7 R15 R8 R16 R10 R14 c
R1 → c c
R2 → R1 c
R3 → R11 R17 R2 R18
R4 → R17 g
R5 → R16 R13 R19
R6 → t R2
R7 → R19 R4
R8 → R18 R4
R9 → t R1
R10 → a a
R11 → R12 R17
R12 → g g
R13 → c g
R14 → R19 R15
R15 → R9 c
R16 → R10 R11 g a R4 a R12
R17 → g t
R18 → t R17 R10 c
R19 → R13 g

where the grammar consists of a start symbol (i.e., R0), four terminal symbols (i.e., a, t, g, c), 20 non-terminal symbols (i.e., R0-R19), and 20 production rules for each nonterminal. In summary, the partial sequence of 175 bp of the TERT gene could be compressed to 37 symbols with 20 rules.

For testing purposes, 104 cancerous genes from 6 cancer types (bladder, breast, endometrial, leukemia, lung, and melanoma) were initially chosen, and JSequitur was applied. Table 1 shows the result of applying one of the string compression algorithms of JSequitur to these genes.

The rule column in Table 1 shows the number of generated rules from the context-free grammar, while the ratio column shows the ratios of the compressed sequences vs. the original sequences.

Fig. 3 is a sorted diagram in the order of the length of the original sequence. In this specific case, it shows that the length of the original sequence influences the compression rate of the target sequence, even though there are many other factors that influence compression rate. For example, compression rate can also be influenced by the algorithm itself, depending on whether we replace the longest pattern first or the most frequently occurring pattern first.

We also compared some mouse genes to find any homologous traits in regards to compression rate and hierarchical structure of the grammar. For example, we compared human MUC1 (Homo sapiens, 5,279 bp) with mouse MUC1 (Mus musculus, 5,614 bp), and the compression rates for these two sequences were 0.180 and 0.195, respectively. For the ARHA genes, the compression rate for human ARHA (68,833 bp) was 0.140, whereas that for mouse ARHA (41,255 bp) was 0.157. Thus, the distance on the evolutionary tree can be measured by compression algorithms, to a certain extent.

Conclusion and Future Direction

We have developed a GUI-based JSequitur, based on string compression algorithms, to examine grammatical traits of biological sequences. On top of compression capacity, a string compression algorithm is appealing for studying biological sequences, because it can give insights into the
structure of these sequences. Precisely constructed models for linguistic structure can play a vital role in the process of discovery itself.

We also applied JSequitur to analyze 104 cancer genes for testing purposes only. Even though there are some interesting results in regards to the relationship among gene length, similarity of sequences, the patterns of the generated grammar, and compression rate, our test samples were too small to conclude anything. Thus, our result should be regarded as preliminary for future research. We should consider various factors other than grammatical structures and compression rates.

As our main purpose of developing the tool was to examine any grammatical traits of biological sequences, the graphical user interface was important for a semiautomatic screening process. However, we still need to implement various features to compare gene structures to summarize statistics in regards to grammatical structures and to combine evolutionary trees. Hopefully, these features will be implemented in the next version of JSequitur. We also hope to enhance the algorithm more elaborately to handle reversal, translocation, and shuffling.

References

1. Sakakibara Y. Grammatical inference in bioinformatics. IEEE Trans Pattern Anal Mach Intell 2005;27:1051-1062.
2. Coste F. Modelling biological sequences by grammatical inference. In: ICGI 2010 Tutorial Day. Valencia: International Conference on Grammatical Inference, 2010. Accessed 2012 Nov 1. Available from: http://www.irisa.fr/symbiose/people/fcoste/pub/biblio_tutoICGI2010_coste.pdf.
3. Park HS, Galbadrakh B, Kim YM. Recent progresses in the linguistic modeling of biological sequences based on formal language theory. Genomics Inform 2011;9:5-11.
4. Nevill-Manning CG, Witten IH. Compression and explanation using hierarchical grammars. Comput J 1997;40:103-116.
5. Lanctot JK, Li M, Yang E. Estimating DNA sequence entropy. In: Proceedings of the 11th ACM-SIAM Symposium on Discrete Algorithms, 2000 Jan 9-11, San Francisco, CA. Philadelphia: Society for Industrial and Applied Mathematics, 2000. pp. 409-418.
6. Cherniavsky N, Ladner R. Grammar-based compression of DNA sequences. UW CSE Technical Report (TR2007-05-02). In: DIMACS Working Group on the Burrows-Wheeler Transform, 2004 Aug 19-20, Piscataway, NJ.
7. Carrascosa R, Coste F, Gallé M, Infante-Lopez G. Searching for smallest grammars on large sequences and application to DNA. J Discrete Algorithms 2012;11:62-72.
8. Galbadrakh B. Identifying hierarchical structure in biological sequences based on context-free grammars. M.S. Thesis. Seoul: Ewha Womans University, 2011.