Synthesis and evaluation of α-glucosidase and tyrosinase inhibitory activities of ester derivatives of usnic acid

Pham Duc Dung¹, Duong Thuc Huy¹, Nguyen Van Kieu²,³,*

INTRODUCTION

Isolated compounds from lichens exhibited a wide range of biological properties, such as antimicrobial, antiviral, anti-inflammatory, anticancer...¹ Usnic acid, a dibenzofuran derivative found only in lichens, is a remarkable substance. Usnic acid has a broad spectrum of bioactivity, especially against gram-positive bacteria such as Staphylococcus, Streptococcus, and antifungal². Furthermore, it also has antiviral, anti-inflammatory, antipyretic... activities². In vitro experiments showed that usnic acid could inhibit many human cancer cell lines growth³. However, toxicity with liver and low solubility in water of usnic acid has limited its application. Many researchs have done to overcome the restriction. Recent results showed that usnic acid derivatives bearing triazole, enamine, pyrazole and benzylidene groups had strong antiviral and anticancer activities. Thus, investigation of usnic acid derivatives synthesis was an attractive aspect due to the diversity of bioactivities of usnic acid derivatives. Methods: Usnic acid was isolated from lichen, six ester derivatives of usnic acid were synthesized from usnic acid with acetyl chloride and benzoyl chloride under stirring at room temperature. The products were evaluated α-glucosidase and tyrosinase inhibitory activities. Results: All the ester derivatives were created with good yields. All derivatives exhibited the same or higher activity compared with usnic acid. Ester of usnic acid bearing benzoyl group showed excellent α-glucosidase activity with IC₅₀ 26.7±0.57 and 68.8±0.15 µM. Conclusion: Among the ester derivatives, UE1 and UE6 were reported as new compounds. Interestingly, all products displayed the same or higher biological activity than the starting material, usnic acid when evaluated against α-glucosidase and tyrosinase.

Key words: Acetyl chloride, benzoyl chloride, ester derivatives, α-glucosidase, tyrosinase, usnic acid

Herein, we described a procedure of ester derivatives synthesis from usnic acid, these compounds were evaluated of α-glucosidase and tyrosinase inhibitory activities.

MATERIALS AND METHODS

Materials

(-)-Usnic acid isolated from lichen. Acetyl chloride, benzoyl chloride (Sigma-Aldrich). Silica gel 60 (HiMedia, India). Bruker Advance III (400 MHz for 1H NMR and 100 MHz for 13C NMR) spectrometer with TMS as internal standard recorded NMR spectra. The HR-ESI-MS were recorded on a HR-ESI-MS Bruker microTOF Q-II. Column chromatography was performed with silica gel 60.

General experimental procedure

A mixture of (+)-usnic acid (0.250 g, 0.727 mmol) in CHCl₃ (5.0 mL) was stirred at room temperature for 5 minutes. Acetyl chloride (0.341 g, 4.350 mmol) was added, followed by pyridine (3.5 mL, 43.502 mmol) and stirred at room temperature for 6 h. Then, the organic layer was extracted with water and saturated
with aqueous NaHCO₃, respectively, and dried over anhydrous Na₂SO₄. The mixture was filtered and evaporated using rotary vacuum evaporator. The products, UE1-4 were purified by subjecting to silica gel column. A mixture of (+)-usnic acid (0.250 g, 0.727 mmol) in CHCl₃ (5.0 mL) was stirred at room temperature for 5 minutes. Enzyol chloride (0.611 g, 4.350 mmol) was added, followed by pyridine (3.5 mL, 43.500 mmol) and stirred at room temperature for 6 h. The products, UE5 were purified by subjecting to silica gel column. A mixture of UE3 (0.280 g, 0.727 mmol) in CHCl₃ (5.0 mL) was stirred at room temperature for 5 minutes. Enzyol chloride (0.611 g, 4.350 mmol) was added, followed by pyridine (3.5 mL, 43.500 mmol) and stirred at room temperature for 6 h. The products, UE6 were purified by subjecting to silica gel column.

Biological activities investigation

These inhibitory activities were evaluated according to ⁶. Enzymatic activity was calculated by measuring absorbance at 405 nm (ALLSHENG micro plate reader AMR-100). All samples were analyzed in triplicate at various concentrations to obtain the IC₅₀ value of each compound. The mean values and standard deviation were also identified.

Structure determination of products

The products were verified structures by ¹H and ¹³C NMR method using CDCl₃ as solvent and HR-ESI-MS method.

UE1: Light yellow powder, m = 0.0342 g, yield: 10 %; ¹H NMR (CDCl₃, 400 MHz) δH 6.38 (1H, s), 2.65 (3H, s), 2.40 (3H, s), 2.35 (3H, s), 2.23 (3H, s), 2.22 (3H, s), 2.19 (3H, s), 2.02 (3H, s). ¹³C NMR (CDCl₃, 100 MHz) δC 203.0, 202.9, 195.0, 169.1x2, 168.5, 151.2, 147.8, 145.7, 145.5, 144.5, 121.5, 120.3, 115.5, 113.7, 108.5, 47.0, 31.8, 29.5, 21.1, 20.7, 20.5, 9.7, 9.2.

UE2: Light yellow powder, m = 0.1055 g, yield: 34 %; ¹H NMR (CDCl₃, 400 MHz) δH 5.90 (1H, s), 2.60 (3H, s), 2.54 (3H, s), 2.46 (3H, s), 2.33 (3H, s), 1.98 (3H, s), 1.81 (3H, s). ¹³C NMR (CDCl₃, 100 MHz) δC 198.6, 195.0, 192.8, 190.9, 177.8, 168.9, 168.8, 153.7, 149.0, 148.5, 123.6, 118.9, 116.1, 106.2, 98.8, 59.5, 32.1, 31.1, 26.2, 21.4, 20.8, 10.4.

UE3: Light yellow powder, m = 0.0420 g, yield: 15 %; ¹H NMR (CDCl₃, 400 MHz) δH 13.22 (1H, s), 5.91 (1H, s), 2.74 (3H, s), 2.54 (3H, s), 2.45 (3H, s), 2.03 (3H, s), 1.78 (3H, s). ¹³C NMR (CDCl₃, 100 MHz) δC 201.9, 198.4, 193.3, 190.9, 178.1, 168.6, 163.3, 155.7, 151.5, 117.7, 111.1, 106.3, 105.4, 98.8, 59.4, 32.0, 31.2, 26.0, 21.4, 9.3.

UE4: Light yellow powder, m = 0.0505 g, yield: 18 %; ¹H NMR (CDCl₃, 400 MHz) δH 11.07 (1H, s), 5.97 (1H, s), 2.66 (3H, s), 2.57 (3H, s), 2.35 (3H, s), 2.06 (3H, s), 1.80 (3H, s). ¹³C NMR (CDCl₃, 100 MHz) δC 201.9, 197.8, 194.0, 191.8, 179.3, 169.2, 155.5, 154.2, 149.7, 117.4, 110.0, 109.9, 105.4, 98.5, 59.1, 32.4, 32.0, 28.0, 20.9, 8.9.

UE5: Light yellow powder, m = 0.3250 g, yield: 81 %; ¹H NMR (CDCl₃, 400 MHz) δH 13.32 (1H, s), 10.52 (1H, s), 8.01 (2H, d, J = 8.0 Hz), 7.88 (2H, d, J = 8.0 Hz), 7.66 (2H, t, J = 8.0 Hz), 7.57 (2H, t, J = 8.0 Hz), 7.46 (1H, t, J = 8.0 Hz), 7.32 (1H, t, J = 8.0 Hz), 6.03 (1H, s), 5.43 (1H, d, 1.2), 5.24 (1H, d, 1.2), 2.65 (3H, s), 2.12 (3H, s), 1.88 (3H, s). ¹³C NMR (CDCl₃, 100 MHz) δC 200.9, 200.5, 174.0, 165.1, 164.5, 164.0, 163.0, 157.5, 156.4, 143.5, 134.6, 133.6, 133.0, 130.7, 128.9, 128.5, 128.4, 127.9, 114.6, 109.8, 109.2, 104.0, 101.9, 96.6, 60.7, 31.3, 31.1, 7.7.

UE6: Light yellow powder, m = 0.2529 g, yield: 71 %; ¹H NMR (CDCl₃, 600 MHz) δH 8.18 (2H, d, 8.0 Hz), 7.66 (1H, t, 8.0), 7.53 (2H, t, 8.0), 5.92 (1H, s), 2.60 (3H, s), 2.56 (3H, s), 2.48 (3H, s), 2.04 (3H, s), 1.85 (3H, s). ¹³C NMR (CDCl₃, 150 MHz) δC 202.5, 198.7, 195.0, 190.9, 177.9, 168.9, 164.6, 153.5, 148.9, 148.5, 134.2, 130.6, 128.9, 128.7, 119.1, 111.7, 114.5, 114.0, 98.9, 59.6, 32.0, 29.8, 26.2, 21.5, 10.6. HR-ESI-MS m/z [M+Na]⁺ calcd. for C₂₇H₂₂O₄Na: 513.1162; found 513.1122.

RESULTS

Figure 1 showed esterification of usnic acid with acetyl chloride and benzoyl chloride. Six ester derivatives (UE1-6) were synthesized from usnic acid. Table 1 showed the results in the synthesis of six ester derivatives of usnic acid. Yields of the reactions using acetyl chloride or benzoyl chloride were good (> 70%). Proposed mechanism of UE3 synthesis from usnic acid was shown in Scheme 1.

Table 2 and Table 3 summarized data of nuclear magnetic resonance spectra of these ester products. These signals demonstrated that six ester derivatives had been synthesized successfully. α-glucosidase and tyrosinase inhibitory activities of UE1-6 were listed in Table 4. All derivatives exhibited the same or higher activity comparing with starting material (usnic acid).

DISCUSSION

Ester derivatives synthesis from usnic acid

There are three hydroxy groups in usnic acid structure at C-3, C-8 and C-10 could be esterified. In the
Table 2: 1H NMR data of ester derivatives

Position	Usnic acid (δ_H, Hz)	UE1 (δ_H, Hz)	UE2 (δ_H, Hz)	UE3 (δ_H, Hz)	UE4 (δ_H, Hz)	UE5 (δ_H, Hz)	UE6 (δ_H, Hz)
1	-	-	-	-	-	-	-
2	-	-	-	-	-	-	-
3	-	-	-	-	-	-	-
4	5.97 s	6.38 s	5.90 s	5.91 s	5.97 s	6.03 s	5.92 s
5	-	-	-	-	-	-	-
6	-	-	-	-	-	-	-
7	-	-	-	-	-	-	-
8	-	-	-	-	-	-	-
9	-	-	-	-	-	-	-
10	-	-	-	-	-	-	-
11	-	-	-	-	-	-	-
12	-	-	-	-	-	-	-
13	1.76 s	2.02 s	1.81 s	1.78 s	1.80 s	1.88 s	1.85 s
14	-	-	-	-	-	-	-
15	2.66 s	2.40 s	2.54 s	2.54 s	2.57 s	5.43 d (1.2)	2.56 s
16	2.11 s	2.35 s	2.46 s	2.45 s	2.35 s	2.12 s	2.48 s
17	-	-	-	-	-	-	-
18	2.68 s	2.65 s	2.60 s	2.74 s	2.66 s	2.65 s	2.60 s
3-OH	-	-	-	-	-	-	-
8-OH	13.29 s	-	-	13.22 s	-	13.32 s	-
10-OH	11.01 s	-	-	11.07 s	10.52 s	-	-
2'	2.23 s	2.33 s	2.03 s	2.06 s	-	-	-
2''	2.22 s	1.98 s	-	-	2.04 s	-	-
2'''	2.19 s	-	-	-	-	-	-
3',7'	8.01 d (8.0)	8.18 d (8.0)	-	-	-	-	-
3',7''	7.88 d (8.0)	-	-	-	-	-	-
4'-6'	7.66 t (8.0)	7.66 t (8.0)	-	-	-	-	-
4'-6''	7.53 t (8.0)	-	-	-	-	-	-
5'	7.46 t (8.0)	7.53 t (8.0)	-	-	-	-	-
5''	7.32 t (8.0)	-	-	-	-	-	-
Position	Usnic acid δ_C	UE1 δ_C	UE2 δ_C	UE3 δ_C	UE4 δ_C	UE5 δ_C	UE6 δ_C
----------	----------------------	----------------	----------------	----------------	----------------	----------------	----------------
1	198.1	195.0	192.8	193.3	194.0	200.5	195.0
2	105.3	120.3	118.9	111.1	110.0	109.2	116.7
3	191.7	151.2	190.9	190.9	191.8	165.1	190.9
4	98.3	108.5	98.8	98.8	98.5	96.6	98.9
5	179.4	147.8	177.8	178.1	179.3	174.0	177.9
6	155.2	145.5	149.0	155.7	154.2	156.4	148.5
7	101.6	113.7	106.2	105.4	105.4	101.9	114.0
8	163.9	145.7	153.7	163.3	155.5	157.5	153.5
9	109.4	121.5	123.6	117.7	117.4	114.6	119.1
10	157.5	144.5	148.5	151.5	149.7	143.5	148.9
11	103.9	115.5	116.1	106.3	109.9	104.0	114.5
12	59.1	47.0	59.5	59.4	59.1	60.7	59.6
13	7.5	9.2	10.4	9.3	8.9	7.7	10.6
14	200.3	203.0	198.6	201.9	201.9	163.0	202.5
15	27.8	29.5	31.1	31.2	32.0	109.8	29.8
16	32.2	9.7	26.2	21.4	28.0	31.1	26.2
17	201.7	202.9	195.0	198.4	197.8	200.9	198.7
18	31.2	31.8	32.1	32.0	32.4	31.3	32.0
1'	169.1	168.9	168.6	169.2	164.5	164.0	168.9
1"	169.1	168.8	-	-	-	-	-
1‴	168.5	-	-	-	-	-	-
2'	21.1	21.4	26.0	20.9	127.9	128.7	
2"	20.7	20.8	-	-	128.4	21.5	
2‴	20.5	-	-	-	-	-	-
3'	130.7	130.6	-	-	-	-	-
3"	130.1	-	-	-	-	-	-
4'	128.9	-	-	-	-	-	-
4"	128.9	-	-	-	-	-	-
5'	134.6	134.2	-	-	-	-	-
5"	133.6	-	-	-	-	-	-
6'	128.9	128.9	-	-	-	-	-
6"	128.5	-	-	-	-	-	-
7'	130.7	130.6	-	-	-	-	-
7"	130.1	-	-	-	-	-	-
Figure 1: Esterification of usnic acid

Table 4: α-Glucosidase and tyrosinase inhibitory activities of usnic acid derivatives

Entry	Compound	α-Glucosidase IC₅₀ (µM)	Tyrosinase IC₅₀ (µM)
1	UE1	>200	NA
2	UE2	>200	>200
3	UE3	>200	NA
4	UE4	>200	>200
5	UE5	26.7 ± 0.57	>200
6	UE6	68.8 ± 0.15	NA
7	Usnic acid	>200	NA
8	Acarbose	93.6 ± 0.49	
9	Kojic acid	36.1 ± 1.07	
reaction, we use large amounts of acetyl chloride in order to react at three hydroxy groups completely. However, the reaction produced four ester derivatives (UE1-4) depending on the number and position of hydroxy groups that participated in the reaction when acetyl chloride was used as a reactant. Besides, only one product (UE5) was created when benzoyl chloride was used. Moreover, the ester product (UE6) was also generated when UE3 product reacted with benzoyl chloride in the same conditions (Figure 1). The synthesis results were listed in Table 1 below showed that yields of the reactions using acetyl chloride or benzoyl chloride were good (> 70%).

The 1H NMR spectrum of UE1 showed an olefin proton at δ_H 6.38, and seven methyl groups at δ_H 2.65, 2.40, 2.35, 2.23, 2.22, 2.19 and 2.02. The 13C NMR spectrum of UE1 displayed twenty-three carbon signals, including three ketone carbons at δ_C 203.0, 202.9 and 195.0, three carboxyl carbons at δ_C 169.1x2 and 168.5, ten olefin carbons in the range of δ_C 155.0-100.0, one tertiary carbon at δ_C 47.0 and seven methyl carbons at δ_C 31.8, 29.5, 21.1, 20.7, 20.5, 9.7 and 9.2. The lack of 8- and 10-OH signal in usnic acid along with the appearance of seven methyl groups (usnic acid has only four methyl groups) indicated the esterification reaction occurred on 3-, 8-, and 10-OH of usnic acid. Thus, UE1 is established as 3,8,10-triacetoxyusnic acid.

The 1H NMR spectrum of UE2 showed an olefin proton at δ_H 5.90, and six methyl groups at δ_H 2.60, 2.54, 2.46, 2.33, 1.98 and 1.81. The lack of both of 10-OH and 8-OH in usnic acid along with the appearance of both two acetoxycarbonyl groups (δ_H 2.33 and 1.98; δ_C 168.9 and 168.8) indicated the esterification reaction occurred on both of 10-OH and 8-OH of usnic acid. Thus, the structure of UE2, 8,10-O-diacetylusnic acid10, is elucidated as shown in Figure 1.

The 1H NMR spectrum of UE3 showed a singlet of hydroxy chelated signal at δ_H 13.22, an olefin proton at δ_H 16.9, and five methyl groups at δ_H 2.74, 2.54, 2.45, 2.03, and 1.78. Similar to UE2, the lack of 10-OH in usnic acid10 along with the appearance of only one acetoxycarbonyl group (δ_H 2.03, δ_C 168.6 and 26.0) indicated the esterification reaction occurred on 10-OH of usnic acid. Thus, the structure of UE3, 10-O-acetylusnic acid11, is elucidated as shown in Figure 1.

The examination of the 1H and 13C NMR spectra of UE4 revealed the similar spectra to those of UE3, except for the lack of 8-OH and the occurrence of...
Biological activities of usnic acid derivatives

Six usnic acid derivatives including via esterification (UE1-6) were further tested with \(\alpha \)-glucosidase and tyrosinase inhibitory activities. From the results, all derivatives exhibited the same or higher activity comparing with starting material (usnic acid: \(\geq 200 \mu M \) and no activity (NA) for \(\alpha \)-glucosidase and tyrosinase, respectively). Especially, UE5 and UE6 showed excellent \(\alpha \)-glucosidase activity with IC\(_{50}\) 26.7±0.57, and 68.8±0.15 \(\mu M \), respectively. These compounds not only displayed higher activity than that of usnic acid, but also with that of a positive control, acarbose (IC\(_{50}\): 93.6±0.49 \(\mu M \)) as shown in Table 4. In this case, UE5 displayed the strongest activity (IC\(_{50}\): 26.7±0.57 \(\mu M \)).

CONCLUSION

From usnic acid, six derivatives were synthesized via esterification reactions (UE1-6). Their chemical structures were elucidated by NMR and HRES-IMS as well as comparison with those from literature. Among them, UE1 and UE6 were reported as new compounds. Interestingly, all products displayed the same or higher biological activity than the starting material, usnic acid when evaluated against \(\alpha \)-glucosidase and tyrosinase. In the \(\alpha \)-glucosidase assay, UE5 and UE6 showed excellent activity (IC\(_{50}\) 26.7±0.57, and 68.8±0.15 \(\mu M \), respectively). On the other hand, all tested compounds revealed weak or no inhibitory activity in the tyrosinase assay.

ABBREVIATIONS

\(\text{H NMR: Proton nuclear magnetic resonance; C NMR: Carbon-13 nuclear magnetic resonance; s: singlet; d: doublet; t: triplet.} \)

CONFLICTS OF INTEREST

The authors declare that they have no competing financial interest.

AUTHOR CONTRIBUTION

All authors contributed in conducting experiments, acquisition of data, interpretation of data, searching the bibliography and gave final approval of the manuscript to be submitted.

ACKNOWLEDGEMENT

The authors are indebted to Dr. Warinthorn Chavasiri and Mrs. Ashaima Paramita Devi (Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Thailand) for performing the enzyme inhibitory against \(\alpha \)-glucosidase and tyrosinase.

REFERENCES

1. Boustie J, Tomashi S, Grube M. Bioactive lichen metabolites: alpine habitats as an untapped source. Phytochemistry Review. 2011;10:287–307. Available from: https://doi.org/10.1007/s11101-010-9201-1.
2. Muller K. Pharmaceutically relevant metabolites from lichens. Applied Microbiology and Biotechnology. 2001;56:9–16. PMID: 11499952. Available from: https://doi.org/10.1007/s002530100684.
3. Podterob AP. Chemical composition of lichens and their medical applications. Journal of Pharmaceutical Chemistry. 2008;42:582–588. Available from: https://doi.org/10.1007/s11094-009-0183-5.
4. Takai M, Uehara Y, Beisler JA. Usnic acid derivatives as potential antineoplastic agents. Journal of medicinal chemistry. J Med Chem. 1979;22:1380–1384. PMID: 160461. Available from: https://doi.org/10.1021/jm00197a019.
5. Bazin MA, Lamer ACL, Delcros JG, Rouaud I, Uriac P, Boustie J, et al. Synthesis and cytotoxic activities of usnic acid derivatives. Bioorganic & Medicinal Chemistry. 2008;16:6860–6866. PMID: 18558490. Available from: https://doi.org/10.1016/j.bmc.2008.05.069.

6. Sokolov DN, Zarubaev VV, Shtro AA, Polovinka MP, Luzina OA, Komarova NI, et al. Anti-viral activity of (-)- and (+)-usnic acids and their derivatives against influenza virus A (H1N1) 2009. Bioorganic Med Chem Lett. 2012;22:7060–7064. PMID: 23099095. Available from: https://doi.org/10.1016/j.bmcl.2012.09.084.

7. Shtro AA, Zarubaev VV, Luzina OA, Sokolov DN, Kiselev OI, Salakhutdinov NF. Novel derivatives of usnic acid effectively inhibiting reproduction of influenza A virus. Bioorganic & Medicinal Chemistry. 2014;22:6826–6836. PMID: 25464881. Available from: https://doi.org/10.1016/j.bmc.2014.10.033.

8. Vanga NR, Kota A, Sistla R, Uppuluri M. Synthesis and anti-inflammatory activity of novel triazole hybrids of (+)-usnic acid, the major dibenzofuran metabolite of the lichen Usnea longissima. Mol Divers. 2017;21:273–282. PMID: 28130662. Available from: https://doi.org/10.1007/s11030-016-9716-5.

9. Ramadhan R, Phuwapraisirisan P. New arylalkanones from Horsfieldia macrobotrys, effective antidiabetic agents concomitantly inhibiting α-glucosidase and free radicals. Bioorganic & medicinal chemistry letters. 2015;25(20):4529–4533. PMID: 26343830. Available from: https://doi.org/10.1016/j.bmcl.2015.08.069.

10. Nguyen KV, Nguyen KPP, Sangvichien E, Wonganan P, Chavasiri W. Chemical constituents of the lichen Usnea baileyi (Stirt.) Zahlbr. Tetrahedron Letters. 2018;59:1348–1351. Available from: https://doi.org/10.1016/j.tetlet.2018.02.007.

11. Erba E, Pocar D, Rossi LM. New esters of R-(+)-usnic acid. IL Farmaco. 1998;53:718–720. Available from: https://doi.org/10.1016/S0014-827X(98)00113-X.