Quantum Analogue of the Neumann Function of Integer Order

H. Ahmedov1 and I. H. Duru2,1

1. Feza Gürsey Institute, P.O. Box 6, 81220, Çengelköy, Istanbul, Turkey 1.
2. Trakya University, Mathematics Department, P.O. Box 126, Edirne, Turkey.

Abstract: q-Neumann function of integer order $N_n(x; q)$ is obtained and some of its properties are given. q-psi function which is used in deriving $N_n(x; q)$ is also introduced and some of its properties are presented.

March 1999

1. Introduction

The Hahn-Exton q-Bessel functions $J_\nu(x; q)$ which are closely connected to the quantum group of the plane motions are well studied \[1, 2, 3, 4\]. Note that for $\nu = n$ is integer the functions $J_n(x; q)$ and $J_{-n}(x; q)$ are not independent of each other. To our knowledge the quantum analogues of the Bessel functions of integer order which are independent of $J_n(x; q)$ have not been addressed.

The main purpose of this note is to introduce the second independent solution $N_n(x; q)$ of the q-Bessel difference equation. This function possess the same recurrence relations as the Hahn-Exton q-Bessel function and in $q \rightarrow 1^-$ becomes Neumann function of the order n. We call it the q-Neumann function of order n. This solution is non regular at $x = 0$. It is well known that non-regular solutions are important, since the Green functions are given

1E–mail : hagi@gursey.gov.tr and duru@gursey.gov.tr
in terms of them. For example the q-Legendre function of the second kind shows up as the Green function on the quantum sphere [3]. The recently obtained Green function on the quantum plane is in fact the superposition of the Hahn-Exton q-Bessel and q-Neumann functions of the order 0 [6].

Since the classical Neumann function of integer order $N_n(x)$ is obtained by taking the derivatives of the Bessel functions $J_\nu(x)$ and $J_{-\nu}(x)$ with respect to the order ν, it involves the psi functions. Therefore to derive the q-Neumann function of integer order we first have to have q-psi function in hand.

The Section 2 is devoted to the introduction of the q-psi function and some of its properties which are employed to derive the q-Neumann function of integer order.

In Section 3 we obtained the q-Neumann function of integer order and presented some relations involving it.

2. q-Psi Function

We define the q-psi function as

$$\psi_q(\nu) = \frac{d}{d\nu} \log \Gamma_q(\nu),$$

(1)

where the q-gamma function $\Gamma_q(\nu)$ is defined by $(0 < q < 1)$

$$\Gamma_q(\nu) = (1 - q)^{1-\nu} \prod_{l=1}^{\infty} \frac{1 - q^l}{1 - q^{\nu+l}}.$$

(2)

Many properties of the gamma function were derived by Askey [4]. It is obvious from (2) that $\Gamma_q(\nu)$ has poles at $\nu = 0, 1, 2, \ldots$. The residue at $\nu = -n$ is

$$\lim_{\nu \to -n} (\nu + n)\Gamma_q(\nu) = (-1)^n \frac{(q - 1)q^{-n(n+1)/2}}{\log q \Gamma_q(n + 1)}.$$

(3)

The explicit form of $\psi_q(\nu)$ is

$$\psi_q(\nu) = -\log(1 - q) + \log q \sum_{l=0}^{\infty} \frac{q^{\nu+l}}{1 - q^{\nu+l}}.$$

(4)
The recurrence relations and asymptotic conditions satisfied by this function are

\[\psi_q(\nu + n) = \psi_q(\nu) - \log q \sum_{l=0}^{n-1} \frac{q^{\nu + l}}{1 - q^{\nu + l}}, \quad (5) \]

\[\psi_q(\nu - n) = \psi_q(\nu) + \log q \sum_{l=0}^{n} \frac{q^{\nu - l}}{1 - q^{\nu - l}}, \quad (6) \]

and

\[\lim_{\nu \to \infty} \psi_q(\nu) = - \log(1 - q); \quad \lim_{\nu \to -\infty} \psi_q(\nu) = \infty. \quad (7) \]

\(\psi_q(\nu) \) has poles at \(\nu = 0, 1, 2, \ldots \) with the residue

\[\lim_{\nu \to -n} (\nu + n) \psi_q(\nu) = \log q \lim_{\nu \to -n} (\nu + n) \sum_{l=0}^{\infty} \frac{q^{\nu + l}}{1 - q^{\nu + l}} \]

\[= \log q \lim_{\nu \to -n} \frac{(\nu + n)}{1 - q^{\nu + n}} = -1 \quad (8) \]

Equations (5) and (8) imply that

\[\lim_{\nu \to \infty} \frac{\psi_q(\nu)}{\Gamma_q(\nu)} = (-1)^n q^{-n(n+1)/2} \frac{\log q}{1 - q} \Gamma_q(n + 1). \quad (9) \]

Before closing this section we like to present the \(q \to 1^- \) limit of \(\psi_q(\nu) \).

We first rewrite it as

\[\psi_q(\nu) = \lim_{n \to \infty} \sum_{l=1}^{n} \left(\log \frac{1 - q^{l+1}}{1 - q^l} + \frac{q^{\nu + l - 1} \log q}{1 - q^{\nu + l - 1}} \right). \quad (10) \]

Taking the \(q \to 1^- \) limit in the finite sum in the above formula we have

\[\lim_{q \to 1^-} \psi_q(\nu) = \lim_{n \to \infty} \left(\log(n + 1) - \sum_{l=1}^{n} \frac{1}{\nu + l - 1} \right) \]

\[= \lim_{n \to \infty} \left(\log(n + 1) - \sum_{l=1}^{n+1} \frac{1}{l} + \sum_{l=1}^{n} \left(\frac{1}{l} - \frac{1}{\nu + l - 1} \right) + \frac{1}{n + 1} \right) \]

\[= -C + \sum_{l=0}^{\infty} \left(\frac{1}{l + 1} - \frac{1}{\nu + l} \right) = \psi(\nu), \quad (11) \]
where
\[C = \lim_{n \to \infty} \left(\sum_{l=1}^{n} \frac{1}{l} - \log n \right) = -\psi(1) \] (12)
is the Euler number \[8\]. It is then natural to define the q-Euler number
\[C_q \equiv -\psi_q(1) \] (13)

3. q-Neumann Function of Integer Order

The Hahn-Exton q-Bessel function of order \(\nu \) is defined as
\[J_{\nu}(x; q) = \sum_{k=0}^{\infty} \frac{(-1)^k q^{k(k+1)/2}}{\Gamma_q(k+1)\Gamma_q(k+\nu+1)} x^{2k+\nu} \] (14)
satisfies the q-difference equation
\[J_{\nu}(q^{1/2}x; q) + J_{\nu}(q^{-1/2}x; q) + q^{-\nu/2}((1-q)^2x^2 - q^\nu - 1)J_{\nu}(x; q) = 0. \] (15)

For non-integer \(\nu \) let us define the function
\[N_{\nu}(x; q) = \frac{\cos(\pi\nu)J_{\nu}(x; q) - q^{-\nu/2}J_{-\nu}(q^{-\nu/2}x; q)}{\sin(\pi\nu)} \] (16)
which is the second independent solution of the q-difference equation (15). It satisfies the same recurrence relations as the Hahn-Exton q-Bessel functions. For example we have
\[q^{(\nu+1)/2}N_{\nu+1}(q^{1/2}x; q) - N_{\nu+1}(x; q) = (q - 1)xN_{\nu}(x; q), \] (17)
\[q^{\nu/2}N_{\nu}(q^{-1/2}x; q) - N_{\nu}(x; q) = (q - 1)xN_{\nu+1}(x; q), \] (18)

Note that for integer \(\nu = n \) one has the property
\[J_{-n}(x; q) = (-1)^n q^{n/2}J_n(q^{n/2}x; q). \] (19)

Therefore to derive the form of (16) for integer order we use the L’Hospital rule
\[\pi N_n(x; q) = \frac{d}{d\nu} J_{\nu}(x; q) \bigg|_{\nu=n} - (-1)^n \frac{d}{d\nu} \left(q^{-\nu/2}J_{-\nu}(q^{-\nu/2}x; q) \right) \bigg|_{\nu=n}. \] (20)
Making use of (9) and (19) for $n \in \mathbb{Z}_+$ we get

$$\pi N_n(x; q) = 2 J_n(x; q) \log(q^{1/4} x) + \frac{\log q}{1 - q} \sum_{k=0}^{n-1} \frac{\Gamma_q(n-k)}{\Gamma_q(k+1)} x^{2k-n}$$

$$- \sum_{k=0}^{\infty} \frac{(-1)^k q^{k(k+1)/2}}{\Gamma_q(k+1)\Gamma_q(k+n+1)} \left(\psi_q(k+n+1) + \psi_q(k+1) + k \log q \right).$$

(21)

Using the recurrence relation (5) and the definition (13) we arrive at

$$\pi N_n(x; q) = 2 J_n(x; q)(\log(q^{1/4} x) + C_q) + \frac{\log q}{1 - q} \sum_{k=0}^{n-1} \frac{\Gamma_q(n-k)}{\Gamma_q(k+1)} x^{2k-n}$$

$$+ \log q \sum_{k=1}^{\infty} \frac{(-1)^k q^{k(k+1)/2}}{\Gamma_q(k+1)\Gamma_q(k+n+1)} \left(\sum_{l=1}^{k+n} \frac{q^l}{1 - q^l} + \sum_{l=1}^{k} \frac{1}{1 - q^l} \right)$$

$$+ \log q \frac{x^n}{\Gamma_q(n+1)} \sum_{k=1}^{n} \frac{q^k}{1 - q}.$$

(22)

For $n = 0$ we follow the similar steps and obtain

$$\pi N_0(x; q) = 2 J_0(x; q)(\log(q^{1/4} x) + C_q)$$

$$+ \log q \sum_{k=1}^{\infty} \frac{(-1)^k q^{k(k+1)/2}}{\Gamma_q(k+1)\Gamma_q(k+1)} \sum_{l=1}^{k} \frac{1 + q^l}{1 - q^l}. $$

(23)

It is obvious that (22) and (23) become the usual Neumann functions in $q \to 1^-$ limit. From the construction it is clear that the q-Neumann functions of integer order satisfy the difference equation (13) and possess all recurrence relations satisfied by the Harh-Exton q-Bessel functions of integer order. We also have

$$N_{-n}(x; q) = (-1)^n q^{n/2} N_n(q^{n/2} x; q).$$

(24)

Before closing the section we note that several relations involving the q-Neumann functions can be obtained from those of the Hahn-Exton q-Bessel functions. For example using the product formula

$$\sum_{s=\infty}^{\infty} q^s J_x(q^{s/2}; q) J_{x-\nu}(q^{s/2}; q) J_\nu(rq^{(y+\nu+z)/2}; q) =$$

$$= J_0(rq^{(x+y)/2}; q) J_\nu(rq^{(\nu+y)/2}; q)$$

(25)
which is valid for \(r, x, y, \nu \in \mathbb{C}; \text{Re}(x) > -1, |r|^2 q^{1+\text{Re}(x)+\text{Re}(y)} < 1 \) and \(r \neq 0 \) we obtain the product formula for \(x = -y = \nu/2 \)

\[
\sum_{s=-\infty}^{\infty} q^s J_{\nu/2}(q^{s/2}; q) J_{-\nu/2}(q^{s/2}; q) N_\nu(r q^{\nu/4+z/2}; q) = J_0(r; q) N_\nu(r q^{\nu/4}; q).
\]

(26)

References

[1] Koelink, H. T., Duke Math. J., 76, 483 (1994).

[2] Vaksman, L. L., Korogodski, L. I., Soviet Math. Dokl., 39, 173 (1989).

[3] Woronowicz, S. L., Lett. Math. Phys., 23, 251 (1991); Commun. Math. Phys., 144, 417 (1992); Commun. Math. Phys., 136, 399 (1991).

[4] Koornwinder, T. H. and Swarttouw, R. F., Trans. Amer. Math. Soc., 333, 445 (1992).

[5] Ahmedov, H. and Duru, I. H., J. Phys. A: Math. Gen, 31, 5741 (1998).

[6] Ahmedov, H. and Duru, I. H.; Green function on the quantum plane, math.QA/9812108 (1998).

[7] Askey, R., Applicable Analysis 8, 125, (1978)

[8] Gradshtein, I. S. and Ryzhik, I. M.; Tables of Integrals, Series and Products. Academic Press, New York (1980).

[9] Koelink, H. T. and Swarttouw, R. F., J. Approx. Theory 81, 260 (1995).