LOCALIZED INDEX AND \mathcal{L}_2-LEFSCHETZ FIXED POINT FORMULA FOR ORBIFOLDS

BAI-LING WANG AND HANG WANG

ABSTRACT. We study a class of localized indices for the Dirac type operators on a complete Riemannian orbifold, where a discrete group acts properly, co-compactly and isometrically. These localized indices, generalizing the \mathcal{L}_2-index of Atiyah, are obtained by taking certain traces of the higher index for the Dirac type operators along conjugacy classes of the discrete group. Applying the local index technique, we also obtain an \mathcal{L}_2-version of the Lefschetz fixed point formula for orbifolds. These cohomological formulae for the localized indices give rise to a class of refined topological invariants for the quotient orbifold.

CONTENTS
1. Introduction 1
2. A Review of Orbifolds and Orbifold Index Theorem 6
2.1. Orbifolds and discrete group actions 6
2.2. Kawasaki’s index theorem for compact orbifolds 11
3. Invariant Elliptic Operators on Complete Orbifolds 15
3.1. Invariant elliptic pseudo-differential operators 15
3.2. Dirac operator and heat kernel asymptotics 18
3.3. Cut-off functions and (g)-trace class operators 22
3.4. Calculation of (g)-trace for the heat operator 30
4. Higher Index Theory for Orbifolds 33
4.1. Higher analytic index map 33
4.2. Higher index for a discrete group action on a non-compact orbifold 36
4.3. Orbifold index and the higher index 40
5. Localized Indices 42
5.1. Localized traces 42
5.2. Localized indices 45
6. Applications and Further Remarks 49
6.1. \mathcal{L}_2-Lefschetz fixed point formula 49
6.2. Selberg trace formula 50
6.3. An application in positive scalar curvature 53
References 54

1. INTRODUCTION

The Lefschetz fixed point formula calculates the supertrace of the action of a diffeomorphism on a closed Riemannian manifold with isolated fixed
points. This was generalized by Atiyah and Bott in [AB] to an elliptic complex with a geometric endomorphism defined by a diffeomorphism with isolated fixed points. When the diffeomorphism γ comes from a compact group H of orientation preserving isometries of a compact even dimensional manifold X, the fixed point formulae are special case of the equivariant index formulae for the equivariant index

$$\text{ind}_H(\gamma, \mathcal{D}) = \text{Tr}(\gamma|_{\ker \mathcal{D}^+}) - \text{Tr}(\gamma|_{\ker \mathcal{D}^-})$$

assoicated to an H-invariant Dirac operator \mathcal{D} on an equivariant Clifford module \mathcal{E}. The local index formula, also called the Lefschetz fixed point formula,

$$\text{ind}_H(\gamma, \mathcal{D}) = \int_{X^\gamma} \tilde{A}_\gamma(X) \text{ch}_\gamma(\mathcal{E}/S)$$

is obtained by an asymptotic expansion of the equivariant heat kernel to the operator $\gamma e^{-t\mathcal{D}^2}$. Here X^γ is the fixed point set of the γ-action, consisting of closed submanifolds of X, and $\tilde{A}_\gamma(X) \text{ch}_\gamma(\mathcal{E}/S)$ represents the local index density for the equivariant index. See [BGV, Chapter 6] and [PW] for a detailed account of these developments. When X is not compact, the equivariant index is not defined and there does not exist any Lefschetz fixed point formula. We remark that the Lefschetz fixed point formulae for compact orbifolds have been established in [Dui, FT, EEK].

To motivate our study, let us consider a compact even dimensional Riemannian manifold M with an isometric action of a finite group H. Let \mathcal{D} be an H-invariant Dirac operator on an equivariant Clifford module \mathcal{E}. Then \mathcal{D} defines a Dirac operator \mathcal{D}_X on the quotient orbifold $X = H\backslash M$. An orbifold locally looks like Euclidean space equipped with a finite group action, and is a basic geometric model used in many areas such as mathematical physics, algebraic geometry, representation theory and number theory. Index theory of Dirac type operators on orbifolds is an operator algebraic approach in detecting the topological, geometrical, arithmetic information concerning the orbifolds.

The Kawasaki orbifold index for \mathcal{D}_X in [K] for the finite quotient orbifold $X = H\backslash M$ can be obtained by applying the Lefschetz fixed point formula (the local equivariant index formula) for $\text{ind}_H(\gamma, \mathcal{D})$ to the following identity

$$\text{ind} \mathcal{D}_X = \frac{1}{|H|} \sum_{\gamma \in H} \text{ind}_H(\gamma, \mathcal{D}) = \sum_{(\gamma)} \frac{1}{|Z_H(\gamma)|} \text{ind}_H(\gamma, \mathcal{D}).$$

Here, the second summand is taken over representatives for the conjugacy classes in H. Applying the Lefschetz fixed point formula (1.2), this is exactly the Kawasaki orbifold index for the Dirac operator \mathcal{D}_X on the orbifold X. From the view point of topology, the formula (1.3) for \mathcal{D}_X follows from its analogue of calculating the equivariant K-theory of the compact proper H-manifold M using the extended quotient $\cup_{\gamma} Z_H(\gamma)\backslash M^\gamma$ indexed by the conjugacy classes of the finite group H (See [BC1, EE]):

$$K^*_H(M) \otimes \mathbb{C} \cong \oplus_{(\gamma)} K^*(Z_H(\gamma)\backslash M^\gamma) \otimes \mathbb{C}.$$
a complete even dimensional Riemannian orbifold \mathcal{X} where a discrete group G acts properly, co-compactly and isometrically. Let $\mathcal{D}^{\mathcal{E}}$ be a G-invariant Dirac type operator on \mathcal{X} acting on the L^2-sections of a Dirac bundle \mathcal{E} (cf. Definition 2.9) and let $\mathcal{D}^{G,\mathcal{E}}$ be the Dirac operator $\mathcal{D}^{\mathcal{E}}$ passed from \mathcal{X} to the compact quotient orbifold $G \backslash \mathcal{X}$. We study the index theory of $\mathcal{D}^{\mathcal{E}}$ as well as its relation to $\mathcal{D}^{G,\mathcal{E}}$, based on the following facts when \mathcal{X} is a manifold.

(1) The G-invariant elliptic operator $\mathcal{D}^{\mathcal{E}}$ defines a cycle in the K-homology group of $C_0(\mathcal{X})$ and is “Fredholm” with respect to the C^\ast-algebra $C^\ast(G)$ of the discrete group G. In other words, $\mathcal{D}^{\mathcal{E}}$ has a higher index in the K-theory of the maximal group C^\ast-algebra of G (See, for example [K1]):

$$\mu : K^0_0(C_0(\mathcal{X})) \longrightarrow K^0_0(C^*G) \quad [\mathcal{D}^\mathcal{E}] \mapsto \mu[\mathcal{D}^\mathcal{E}].$$

(2) The Dirac operator $\mathcal{D}^{G,\mathcal{E}}$ on the quotient orbifold $G \backslash \mathcal{X}$ has a Fredholm index according to the work of Kawasaki [K] and is related to the higher index $\mu[\mathcal{D}^\mathcal{E}]$ of $\mathcal{D}^{\mathcal{E}}$ by composing the homomorphism $\rho : C^*G \to \mathbb{C}$, given by the trivial representation of G, on the K-theory level (See [Bl]):

$$\text{ind } \mathcal{D}^{G,\mathcal{E}} = \rho(\mu[\mathcal{D}^\mathcal{E}]) \in \mathbb{Z}.$$

(3) The L^2-index is an important topological invariant for a proper co-compact G-manifold. It was initially defined by Atiyah in [At] for a manifold admitting a free co-compact action of a discrete group. The L^2-index for $\mathcal{D}^{\mathcal{E}}$ is a numerical index measuring the size of the space of L^2-solutions for $\mathcal{D}^{\mathcal{E}}$. In [W], we showed that the L^2-index of $\mathcal{D}^{\mathcal{E}}$ follows from taking the von Neumann trace of the higher index (1.5):

$$L^2\text{-ind } \mathcal{D}^{\mathcal{E}} = \tau_\ast(\mu[\mathcal{D}^\mathcal{E}]) \in \mathbb{R}$$

where $\tau_\ast : K_0(C^*G) \to \mathbb{R}$ is induced by the trace map

$$\tau : C^*G \longrightarrow \mathbb{C} \quad \sum_{g \in G} \alpha_g g \mapsto \alpha_e.$$

Moreover, by the L^2-index formula derived in [W], the L^2-index of $\mathcal{D}^{\mathcal{E}}$ is the top stratum of the Kawasaki index formula for $\mathcal{D}^{G,\mathcal{E}}$.

The paper is devoted to answering the following concrete questions for the index theory for $\mathcal{D}^{\mathcal{E}}$:

(1) How do we formulate the higher index and L^2-index in the setting when \mathcal{X} is a non-compact orbifold?

(2) How is the orbifold index $\text{ind } \mathcal{D}^{G,\mathcal{E}}$ related to the L^2-index for $\mathcal{D}^{\mathcal{E}}$?

(3) Is there any Lefschetz fixed point formula for a non-compact orbifold with a transformation preserving all the geometric data for the Dirac type operator?

The main results of the paper are then summarized as follows.

First of all, we have a positive answer to the first question, that is, the indices $\mu[\mathcal{D}^\mathcal{E}]$, $\text{ind } \mathcal{D}^{G,\mathcal{E}}$ and $L^2\text{-ind } \mathcal{D}^{\mathcal{E}}$ can be formulated when \mathcal{X} is a complete Riemannian orbifold admitting a proper, co-compact and isometric
action of a discrete group G. Namely, we construct in (4.7) a higher index map:

$$\mu : K^0_G(C^*_{\text{red}}(X)) \to K^0(G) \quad [\mathcal{D}^E] \mapsto \mu[\mathcal{D}^E],$$

where the Dirac operator \mathcal{D}^E on the G-orbifold X gives rise to an equivariant K-homology class of the reduced C^*-algebra $C^*_{\text{red}}(X)$, see Lemma 4.7. The orbifold index $\text{ind} \mathcal{D}^E_G\mathcal{L}$ of the quotient $G\backslash X$ is related to the higher index by the trivial representation of G, see Theorem 4.13.

Secondly, in searching for a relationship between the orbifold index $\text{ind} \mathcal{D}^E_G\mathcal{L}$ and the L^2-index $\text{ind} \mathcal{D}^E$, we find it is necessary to introduce the notion of localized indices for \mathcal{D}^E, which is a major novelty of our paper. See Definition 5.7. For each conjugacy class (g) of g in G, the localized (g)-index of \mathcal{D}^E, denoted by $\text{ind}_{(g)}(\mathcal{D}^E)$, is defined as the pairing between the Banach algebra version higher index $\mu_{S(G)}[\mathcal{D}^E]$ (cf. Definition 4.5) and a localized (g)-trace $\tau^{(g)}$, which is a cyclic cocycle of degree 0 given by the sum of the coefficients over elements in the conjugacy class (g) for an element in the group algebra CG (cf. Definition 5.2). It then follows from Theorem 5.12 that the higher index $\mu_{S(G)}[\mathcal{D}^E]$ is linked to the numerical indices $\text{ind} \mathcal{D}^E_G\mathcal{L}$ and L^2-ind \mathcal{D}^E by the localized indices as follows:

1. The localized indices factor through the Banach algebra version higher index by definition:

$$\text{ind}_{(g)}(\mathcal{D}^E) = \tau^{(g)}(\mu_{S(G)}[\mathcal{D}^E]);$$

In particular, the nonvanishing of the localized (g)-index implies the existence of L^2-solutions invariant under the action of $g \in G$.

2. The localized (e)-index generalizes the L^2-index and factors through the usual higher index $\mu[\mathcal{D}^E]$:

$$L^2\text{-ind} \mathcal{D}^E = \text{ind}_{(e)}(\mathcal{D}^E) = \tau^{(e)}(\mu[\mathcal{D}^E]);$$

3. The orbifold index for $\mathcal{D}^E_G\mathcal{L}$ on $G\backslash X$ is the sum of localized indices for \mathcal{D}^E over all conjugacy classes:

$$\text{ind} \mathcal{D}^E_G\mathcal{L} = \sum_{(g) \in G} \text{ind}_{(g)}(\mathcal{D}^E).$$

On the one hand, localized indices (1.7) give rise to a K-theoretic interpretation of each component of the orbifold index for $\mathcal{D}^E_G\mathcal{L}$ on the quotient orbifold $G\backslash X$. Hence, as an analogue of (1.4) in our more general setting, localized indices produce finer topological invariants on $G\backslash X$. On the other hand, comparing (1.8) with (1.3), localized index should be thought as a replacement of the equivariant index (1.1) for the Lefschetz fixed point formula in the compact situation. This motivated us to find a cohomological formula for $\text{ind}_{(g)}(\mathcal{D}^E)$, see Theorem 5.11.

Thirdly, combining the techniques of KK-theory and heat-kernel method, we explicitly compute the (g)-index as the orbifold integration of the local index density over $X_{(g)}$, which is an orbifold of type $Z^g \mathcal{L}$ (the fixed point sub-orbifold). The formulae are presented in Theorem 5.11 and they are regarded as an analogue of the “Lefschetz fixed point formulae” for the
isometries given by the action of the discrete group G on the complete Riemannian orbifold \mathfrak{X}. There are two nontrivial technical points in deriving the cohomological formulae for the localized indices. The first one is Theorem 3.4 which provides an asymptotic expansion of the heat kernel $K_t(x, y)$ of $\mathcal{D}^\mathfrak{X}$ and the uniform convergence of $\sum_{g \in G} K_t(x, gx)g$ over a relative compact subset of \mathfrak{X} which have nontrivial intersection with each orbit for the G-action. The second one is Lemma 5.6. The lemma relates two notions of traces in topological and analytic settings, namely, the continuous trace defined on a certain completion of the group algebra $\mathbb{C}G$ and some supertrace of the heat kernel. See Definition 5.2 and Definition 3.13 for the precise descriptions.

Finally, we provide some observations and possible applications for the localized indices and their local index formulae:

(1) When \mathfrak{X} is replaced by a manifold M, we derive the L^2-version of the Lefschetz fixed point formula for a complete Riemannian manifold M with a proper co-compact action of a discrete group G, by introducing an average function, called cut-off function, with respect to some group action on the fixed point sub-manifold (See Theorem 6.1). This result extends the L^2-index formulae in [At, W] from the top stratum of $G \setminus M$ to the lower strata.

(2) Let $\mathfrak{X} = G/K$ be a Riemannian symmetric manifold of noncompact type, where G is a real semi-simple Lie group and K is a maximal compact subgroup. Let Γ be a discrete co-compact subgroup of G. The cohomological formulae for the localized indices for $\mathcal{D}^\mathfrak{X}$ give rise to the orbital integrals in the Selberg trace formula. See Theorem 6.2. This means that our localized indices in this special case are related to the multiplicity of unitary representations of the Lie group G.

(3) The nonvanishing of the higher index for $\mathcal{D}^\mathfrak{X}$ is useful in solving topological and geometric problems for the orbifold \mathfrak{X}. Explicit formulae for the localized indices, which are derived from the higher index, provide a tool to tackle these problems for \mathfrak{X}. Theorem 6.3 provides an example of how the non-vanishing of the localized indices derive the non-existence of positive scalar curvature for complete spin orbifolds.

The paper is organized as follows: In Section 2 we review basic definitions concerning orbifolds and the Kawasaki orbifold index theorem. In Section 3 we give the definition of invariant elliptic operators on a proper co-compact G-orbifold and use heat kernel method to calculate the localized supertraces of the heat kernel $e^{-t(\mathcal{D}^\mathfrak{X})^2}$ of the Dirac operator $\mathcal{D}^\mathfrak{X}$. In Section 4 we formulate the higher index map for $\mathcal{D}^\mathfrak{X}$ and show that the Fredholm index for $\mathcal{D}^G\setminus\mathfrak{E}$ factors through this higher index map. In Section 5 we introduce the localized indices and present their various connections to the other indices. We also use the analytical results from Section 4 to derive the cohomological index formulae for the localized indices which correspond to the L^2-version of the Lefschetz fixed point formulae for a non-compact orbifold. In Section 6 we show several interpretations and remarks of the localized indices.
Acknowledgments This work is supported by the Australian Research Council’s Discovery Projects funding scheme (DP1092682). We would like to express our appreciation to Alan Carey, Xiaonan Ma, Mathai Varghese, Guoliang Yu and Weiping Zhang for numerous inspirational discussions. HW also likes to thank Mathematical Sciences Institute at Australian National University and Shanghai Center of Mathematical Sciences at Fudan for their hospitalities when part of work was carried out during her visits.

2. A Review of Orbifolds and Orbifold Index Theorem

In this section, we give a preliminary review of orbifolds in terms of orbifold atlas and orbifold groupoid, and Kawasaki’s orbifold index theorem. Some of basic references are [Th], [K] and [ALR]. Chapter 2 of [KL] contains a nice account for differential and Riemannian geometry of orbifold. Due to the subtle nature of orbifolds and the fact that there is not any universal agreement in describing orbifolds, we try to give a sufficiently self-contained review as best as we can.

2.1. Orbifolds and discrete group actions. Recall that an n-dimensional orbifold X is a paracompact Hausdorff space $|X|$ equipped with an equivalent class of orbifold atlases. Here we recall the definition of an orbifold atlas.

Definition 2.1. (Orbifold and local groups) Let $|X|$ be a paracompact Hausdorff space. An orbifold atlas on $|X|$ is a coherent system of orbifold charts $\mathcal{O} = \{(\tilde{U}_i, H_i, \pi_i)\}$ such that

1. $\{U_i\}$ is an open cover of $|X|$ which is closed under finite intersections.
2. For each U_i, there is an orbifold chart $(\tilde{U}_i, H_i, \pi_i)$ where \tilde{U}_i is a connected open neighborhood in some Euclidean space \mathbb{R}^n with a right action of a finite group H_i with the quotient map $\pi_i : \tilde{U}_i \rightarrow U_i$.
3. For any inclusion $\iota_{ij} : U_i \rightarrow U_j$, there is an embedding of orbifold charts $$(\phi_{ij}, \lambda_{ij}) : (\tilde{U}_i, H_i, \pi_i) \hookrightarrow (\tilde{U}_j, H_j, \pi_j),$$

which is given by an injective group homomorphism $\lambda_{ij} : H_i \rightarrow H_j$ and an embedding $\phi_{ij} : \tilde{U}_i \hookrightarrow \tilde{U}_j$ covering the inclusion ι_{ij} such that ϕ_{ij} is H_i-equivariant with respect to ϕ_{ij}, that is,

$$\phi_{ij}(x \cdot g) = \phi_{ij}(x) \cdot \lambda_{ij}(g),$$

for $x \in \tilde{U}_i$ and $g \in H_i$. When the action of H_i is not effective, the subgroup of H_i acting trivially on U_i is isomorphically mapped to the subgroup of H_j acting trivially on U_j.

Here the coherent condition for \mathcal{O} is described as follows: given $U_i \subset U_j \subset U_k$, there exists an element $g \in H_k$ such that

$$g \circ \phi_{ik} = \phi_{jk} \circ \phi_{ij}, \quad g\lambda_{ik}(h)g^{-1} = \lambda_{jk} \circ \lambda_{ij}(h)$$

for any $h \in H_i$. Two orbifold atlases are called equivalent if they are included in a third orbifold atlas (called a common refinement).

Given an orbifold X and a point $x \in |X|$, let (\tilde{U}, G, π) be an orbifold chart around x. Then the **local group** at x is defined to be the stabilizer of $\tilde{x} \in \pi^{-1}(x)$, which is uniquely defined up to conjugation.
As proved in Corollary 1.2.5 of [MP1], any orbifold atlas admits a refinement O such that each orbifold atlas (\tilde{U}, H, π, U) in O, both \tilde{U} and U are contractible. Such an orbifold atlas is called a good atlas. For convenience, we may choose each orbifold chart (\tilde{U}, H, π) in O such that \tilde{U} is an open ball centred at the origin in \mathbb{R}^n and H is a finite group of linear transformations.

An orbifold X is called compact (resp. connected) if $|X|$ is compact (resp. connected). An orbifold X is oriented if there exists an orbifold atlas $\{(\tilde{U}_i, H_i, \pi_i)\}$ such that, \tilde{U}_i is an open set of an oriented Euclidean space \mathbb{R}^n and the H_i-action preserves the orientation, moreover, all the embeddings $\{\phi_{ij}\}$ in (2.1) are orientation preserving.

A smooth map $f : X \to Z$ between two orbifolds is a continuous map $|f| : |X| \to |Z|$ with the following property: there exist orbifold atlases $O_X = \{(\tilde{U}_i, H_i, \pi_i)\}$ and $O_Z = \{\{(\tilde{V}_\alpha, G_\alpha, \pi_{\alpha})\}$ for $X \to Z$ respectively, such that:

1. For each $(\tilde{U}_i, H_i, \pi_i) \in O_X$, there is an orbifold chart $(\tilde{V}_{\alpha_i}, G_{\alpha_i}, \pi_{\alpha_i}) \in O_X$ with a local smooth map $f_i : (\tilde{U}_i, H_i) \to (\tilde{V}_{\alpha_i}, G_{\alpha_i})$ making the following diagram commute:

$$
\begin{array}{ccc}
\tilde{U}_i & \xrightarrow{f_i} & \tilde{V}_{\alpha_i} \\
\downarrow{\pi_i} & & \downarrow{\pi_{\alpha_i}} \\
U_i & \xrightarrow{|f_i|} & V_{\alpha_i},
\end{array}
$$

where f_i is G_{α_i}-equivariant.

2. For any embedding of orbifold charts $(\tilde{U}_i, H_i, \pi_i) \hookrightarrow (\tilde{U}_j, H_j, \pi_j)$ in O_X, there is an corresponding embedding of orbifold charts $(\tilde{V}_{\alpha_i}, G_{\alpha_i}, \pi_{\alpha_i}) \hookrightarrow (\tilde{V}_{\alpha_j}, G_{\alpha_j}, \pi_{\alpha_j})$ in O_Z such that the following diagram commutes:

$$
\begin{array}{ccc}
(\tilde{U}_i, H_i, \pi_i) & \xrightarrow{f_i} & (\tilde{V}_{\alpha_i}, G_{\alpha_i}, \pi_{\alpha_i}) \\
\downarrow & & \downarrow \\
(\tilde{U}_j, H_j, \pi_j) & \xrightarrow{f_j} & (\tilde{V}_{\alpha_j}, G_{\alpha_j}, \pi_{\alpha_j}).
\end{array}
$$

in the obvious equivariant sense.

3. The coherent condition (2.3) is preserved under f_i's.

A diffeomorphism $f : X \to Z$ is a smooth map with a smooth inverse. The set of all diffeomorphisms from X to itself is denoted by $\text{Diff}(X)$.

A Riemannian metric on an orbifold $X = (|X|, O)$ is a collection of Riemannian metrics on \tilde{U}_i's such that for each orbifold chart $(\tilde{U}_i, H_i, \pi_i)$ in O, H_i acts isometrically on \tilde{U}_i and all the embeddings $\{\phi_{ij}\}$ in (2.1) are isometric. We have already assumed that the orbifold atlas for X is a good atlas. Note that when X is an effective Riemannian n-dimensional orbifold, the orthonormal frame of X is a smooth manifold with a locally free $O(n)$-action whose quotient space can be equipped a natural orbifold structure isomorphic to X.

Remark 2.2. An orbifold is called \textbf{presentable} if it arises from a locally free action of a compact Lie group on a smooth manifold. It is obvious to see that any effective orbifold is presentable. Conjecturally, every orbifold is presentable (\textit{cf.} Conjecture 1.55 in [ALR]). An orbifold is called a \textbf{good orbifold} if it is a quotient of a smooth manifold by a proper action of a discrete group. Equivalently, an orbifold is good if its orbifold universal cover is smooth, see [Th] and [ALR] for detailed discussions.

In this paper, we are mainly interested in a noncompact oriented Riemannian orbifold X with a discrete group G-action which is proper, co-compactly and isometric. Given a discrete group G and an orbifold X, a smooth action of G on X is a group homomorphism $G \rightarrow \text{Diff}(X)$. An action of G on X is called proper if the map
\begin{equation}
G \times X \longrightarrow |X| \times |X| \quad (g, x) \mapsto (x, gx)
\end{equation}
is proper. It is easy to check that the quotient space $G \backslash |X|$ can be equipped with an orbifold structure as given by the following lemma.

\begin{lemma}
Let X be a noncompact Riemannian orbifold, and G is a discrete group acting properly, co-compactly and isometrically on X.

(1) Then $|X|$ is covered by finite number of G-slices of the form $G \times_{G_i} U_i$ for $i = 1, \cdots, N$, where G_i is a finite subgroup of G and U_i is the quotient space of some Euclidean ball \tilde{U}_i by a finite group H_i, where \tilde{U}_i admits a left G_i-action and right H_i-action.

(2) Let $|X| = \cup_{i=1}^N G \times_{G_i} U_i$ be covered by G-slices as in (1). Then X has the orbifold atlas generated by $\{G \times_{G_i} \tilde{U}_i, H_i\}_{i=1}^N$.

(3) The orbit space $G \backslash X$, being a compact orbifold as a result of the properness of the action, admits an orbifold atlas generated by $\{\tilde{U}_i, G \times_{H_i} H_i\}_{i=1}^N$.
\end{lemma}

\begin{proof}
As the action is proper, given an open set U_i of $|X|$, then the pre-image of the closure of $U_i \times U_i$ under the map (2.4) is compact. This implies that there is a finite subgroup G_i such that U_i is G_i-invariant. By choosing U_i small enough, we can assume that $\{g \in G | g(U_i) \cap U_i \neq \emptyset \} = G_i$.

For each U_i, let $(\tilde{U}_i, H_i, \pi_i)$ be an orbifold chart over U_i, then taking a smaller U_i, by the definition of a diffeomorphism of X, we know that G_i-action on U_i can be lifted to an action on \tilde{U}_i which is H_i-equivariant. This means that G_i-action and H_i-action commute. We can choose \tilde{U}_i to be a Euclidean ball with a linear action of H_i. As G acts co-compactly on X, there are finitely many G-slices of the form $G \times_{G_i} U_i$.

This completes the proof of the Claim (1). Claims (2) and (3) are obvious.
\end{proof}

It becomes a majority view that the language of groupoids provides a convenient and economical way to describe orbifolds. In this paper, the groupoid viewpoint is also essential to get a correct C^*-algebra associated
to an orbifold in order to define a correct version of K-homology for orbifolds.
We briefly recall the definition of an orbifold groupoid which is just a proper étale groupoid constructed from its orbifold atlas.

Definition 2.4. (Proper étale groupoids) A Lie groupoid $\mathcal{G} = (\mathcal{G}_1 \rightrightarrows \mathcal{G}_0)$ consists of two smooth manifolds \mathcal{G}_1 and \mathcal{G}_0, together with five smooth maps (s, t, m, u, i) satisfying the following properties.

1. The source map and the target map $s, t : \mathcal{G}_1 \to \mathcal{G}_0$ are submersions.
2. The composition map $m : \mathcal{G}_1^2 := \{ (g_1, g_2) \in \mathcal{G}_1 \times \mathcal{G}_1 : t(g_1) = s(g_2) \} \to \mathcal{G}_1$

written as $m(g_1, g_2) = g_1 \cdot g_2$ for composable elements g_1 and g_2, satisfies the obvious associative property.
3. The unit map $u : \mathcal{G}_0 \to \mathcal{G}_1$ is a two-sided unit for the composition.
4. The inverse map $i : \mathcal{G}_1 \to \mathcal{G}_1$, $i(g) = g^{-1}$, is a two-sided inverse for the composition m.

A Lie groupoid $\mathcal{G} = (\mathcal{G}_1 \rightrightarrows \mathcal{G}_0)$ is **proper** if $(s, t) : \mathcal{G}_1 \to \mathcal{G}_0 \times \mathcal{G}_0$ is proper, and called **étale** if s and t are local diffeomorphisms.

In the category of proper étale groupoids, a very important notion of morphism is the so-called generalized morphisms developed by Hilsum and Skandalis (for the category of general Lie groupoids in [HS]). Let $\mathcal{G}_1 \rightrightarrows \mathcal{G}_0$ and $\mathcal{H}_1 \rightrightarrows \mathcal{H}_0$ be two proper étale Lie groupoids. A **generalized morphism** between \mathcal{G} and \mathcal{H}, denoted by $f : \mathcal{G} \to \mathcal{H}$, is a right principal \mathcal{H}-bundle P_f over \mathcal{G}_0 which is also a left \mathcal{G}-bundle over \mathcal{H}_0 such that the left \mathcal{G}-action and the right \mathcal{H}-action commute, formally denoted by

\[(2.5)\]

$\mathcal{G}_1 \quad P_f \quad \mathcal{H}_1$

$\mathcal{G}_0 \quad \mathcal{H}_0$

See [CaW] for more details. Note that a generalized morphism f between \mathcal{G} and \mathcal{H} is invertible if P_f in (2.5) is also a principal \mathcal{G}-bundle over \mathcal{H}_0. Then \mathcal{G} and \mathcal{H} are called Morita equivalent.

Remark 2.5. Given a proper étale Lie groupoid \mathcal{G}, there is a canonical orbifold structure on its orbit space $|\mathcal{G}|$ ([ALR Prop. 1.44]). Two Morita equivalent proper étale Lie groupoids define two diffeomorphic orbifolds ([ALR Theorem 1.45]). Conversely, given an orbifold \mathfrak{X} with an orbifold atlas $\mathcal{O} = \{(\tilde{U}_i, H_i, \pi_i)\}$, there is a canonical proper étale Lie groupoid $\mathcal{G}_{\mathfrak{X}}$, locally given by the action groupoid $\tilde{U}_i \times H_i \rightrightarrows \tilde{U}_i$, see [MP2] and [LU]. Two equivalent orbifold atlases define two Morita equivalent proper étale Lie groupoids. A proper étale Lie groupoid arising from an orbifold atlas will be called an **orbifold groupoid** for simplicity in this paper. Our notion of orbifold groupoids is slightly different from that in literature where any proper étale Lie groupoid is called an orbifold groupoid. One can check that a smooth map between two orbifolds corresponds to a generalized morphism between the associated orbifold groupoids.
Using the language of orbifold groupoids, it is simpler to describe de Rham cohomology and orbifold K-theory for a compact orbifold \mathcal{X}. Let $\mathcal{G} = \mathcal{G}_\mathcal{X}$ be the associated orbifold groupoid. Then the de Rham cohomology of \mathcal{X}, denoted by $H^*_\text{orb}(\mathcal{X}, \mathbb{R})$, is just the cohomology of the \mathcal{G}-invariant de Rham complex $(\Omega^*(\mathcal{X}), d)$, where
\[
\Omega^*(\mathcal{X}) = \{ \omega \in \Omega^*(\mathcal{G}_0)| s^*\omega = t^*\omega \}.
\]

The Satake-de Rham theorem says that there is a natural isomorphism
\[
H^*_\text{orb}(\mathcal{X}, \mathbb{R}) \cong H^*(|\mathcal{X}|, \mathbb{R}).
\]

Hence, the orbifold de Rham cohomology of \mathcal{X} does not provide any orbifold information about \mathcal{X}. In terms of orbifold atlas $\mathcal{O} = \{(\tilde{U}_i, H_i, \pi_i)\}$ of \mathcal{X}, a differential form $\omega \in \Omega^*(\mathcal{X})$ can be written as a family of local equivariant differential forms on \tilde{U}_i's which respect the equivariant condition (2.2) and the coherent condition (2.3). Let ω be a compactly supported n-form on \mathcal{X}, we define
\[
\int_{\mathcal{X}}^\text{orb} \omega = \sum_i \frac{1}{|H_i|} \int_{\tilde{U}_i} \rho_i \omega,
\]
where ρ_i is a smooth partition of unity subordinate to $\{\tilde{U}_i\}$ in an obvious sense. Then this is a well-defined integration map for an n-dimensional orbifold \mathcal{X}.

An orbifold vector bundle \mathcal{E} over an orbifold $\mathcal{X} = (|\mathcal{X}|, \mathcal{O})$ is a coherent family of equivariant vector bundles
\[
\{(\tilde{E}_i \rightarrow \tilde{U}_i, H_i)\}
\]
such that for any embedding of orbifold charts $\phi_{ij} : (\tilde{U}_i, H_i) \hookrightarrow (\tilde{U}_j, H_j)$, there is a H_i-equivariant bundle map $\tilde{\phi}_{ij} : \tilde{E}_i \rightarrow \tilde{E}_j$ covering $\phi_{ij} : \tilde{U}_i \rightarrow \tilde{U}_j$.

The coherent condition for $\tilde{\phi}_{ij}$ is given by (2.3) with ϕ_{ij}'s replaced by $\tilde{\phi}_{ij}$'s. Then the total space $E = \bigcup(\tilde{E}_i/H_i)$ of an orbifold vector bundle $\mathcal{E} \rightarrow \mathcal{X}$ has a canonical orbifold structure given by $\{(\tilde{E}_i, H_i)\}$. We remark that orbifold vector bundles in this paper are those called proper orbifold vector bundles in $[\mathcal{K}]$ and $[\mathcal{ALK}]$. An orbifold vector bundle is called real (resp. complex) if each E_i is real (resp. complex). For example, for an orbifold \mathcal{X}, the local tangent and cotangent bundles form real orbifold vector bundles over \mathcal{X}, denoted by $T\mathcal{X}$ and $T^*\mathcal{X}$ respectively.

A smooth section of an orbifold vector bundle is a family of invariant smooth sections of \tilde{E}_i's which behave well under the equivariant condition (2.2) and the coherent condition (2.3). The space of smooth sections of \mathcal{E} will be denoted by $\Gamma(\mathcal{X}, \mathcal{E})$. A connection ∇ on a complex orbifold vector bundle $\mathcal{E} \rightarrow \mathcal{X}$ is a family of invariant connections $\{\nabla_i\}$ on $\{((\tilde{E}_i \rightarrow \tilde{U}_i, H_i))\}$ which are compatible with the bundle maps $\{\tilde{\phi}_{ij}\}$. A connection ∇ on \mathcal{E} defines a covariant derivative, which is a differential operator
\[
\nabla : \Gamma(\mathcal{X}, \mathcal{E}) \rightarrow \Gamma(\mathcal{X}, T^*\mathcal{X} \otimes \mathcal{E})
\]
satisfying Leibniz’s rule in the usual sense.

Recall that a vector bundle over a Lie groupoid $\mathcal{G} = (\mathcal{G}_1 \rightrightarrows \mathcal{G}_0)$ is a \mathcal{G}-vector bundle E over \mathcal{G}_0, that is, a vector bundle E with a fiberwise linear
action of G_1 covering the canonical action of G_1 on G_0. The corresponding principal bundle can be described in terms of a Hilsum-Skandalis morphism

$$\mathcal{G} \to GL(k)$$

where k is the rank of E, and the general linear group $GL(k)$, over \mathbb{R} or \mathbb{C}, is treated as a Lie groupoid $GL(k) \Rightarrow \{e\}$. See [CaW] for details.

One can check that an orbifold vector bundle over X defines a canonical vector bundle over the orbifold groupoid G. The orbifold K-theory of X, denoted by $K_{orb}^0(X)$, is defined to be the Grothendieck ring of stable isomorphism classes of complex orbifold vector bundles over X. Let $K^0(G)$ be the Grothendieck ring of stable isomorphism classes of complex vector bundles over G. Then we have an obvious isomorphism

$$K_{orb}^0(X) \cong K^0(G).$$

Here, G is the canonical orbifold groupoid associated to X, so there is no ambiguity in the above isomorphism caused by another Morita equivalent proper étale Lie groupoid.

Given an orbifold groupoid $G = (G_1 \rightrightarrows G_0)$ for an orbifold X, there are two canonical convolution C^*-algebras: the reduced and maximal C^*-algebras, denoted by $C^*_{red}(X)$ and $C^*_{max}(X)$. For readers’ benefit, we recall the definition from Chapter 2.5 in [Co2] and [Ren].

Definition 2.6. (Reduced and maximal C^*-algebras) The reduced C^*-algebra $C^*_{red}(X)$ is the completion of the convolution algebra $C^\infty_c(G_1)$ of smooth compactly supported functions on G_1 for the norm

$$\|f\| = \sup_{x \in G_0} \|\pi_x(f)\|$$

for $f \in C^\infty_c(G_1)$. Here π_x is the involution representation of $C^\infty_c(G_1)$ in the Hilbert space $L^2(s^{-1}(x))$. The maximal C^*-algebra $C^*_{max}(X)$ is the completion of the convolution algebra $C^\infty_c(G_1)$ for the norm

$$\|f\|_{max} = \sup_{\pi} \{\|\pi(f)\|\}$$

where the supremum is taken over all possible Hilbert space representation of $C^\infty_c(G_1)$.

Remark 2.7. For an effective or a presentable orbifold, it is straightforward to see that there is an isomorphism

$$K_{orb}^*(X) \cong K^*(C^*_{red}(X)),$$

where $K^*(C^*_{red}(X))$ is the K-theory of the reduced C^*-algebra $C^*_{red}(X)$. For a non-effective orbifold, this becomes a very subtle issue. Nevertheless, the above isomorphism still holds for general orbifolds as established in [TTW].

2.2. Kawasaki’s index theorem for compact orbifolds. The Atiyah-Singer type index theorem for elliptic operators over a compact orbifold was established by Kawasaki in [K]. When the underlying compact orbifold is good, higher index was studied in [F1] and [Bu], and twisted L^2-index with trivial Dixmier-Douady invariant was developed in [MM]. In this subsection, we will review the original Kawasaki’s orbifold index theorem using modern language of twisted sectors and delocalized characteristic classes.
Let $\mathfrak{X} = (|\mathfrak{X}|, \mathcal{O})$ be an orbifold. Then the set of pairs
\[
\{(x, (g)_{H_x}) | x \in |\mathfrak{X}|, g \in H_x\},
\]
where $(g)_{H_x}$ is the conjugacy class of g in the local group H_x, has a natural
orbifold structure given by
\[
\{(\tilde{U}^g, Z(g), \tilde{\pi}) | g \in H_x\}.
\]
Here for each orbifold chart $(\tilde{U}, H, \pi) \in \mathcal{O}$ around x, $Z(g)$ is the centralizer
of g in H_x and \tilde{U}^g is the fixed-point set of g in \tilde{U}. This orbifold, denoted by
$I\mathfrak{X}$, is called the **inertia orbifold** of \mathfrak{X}. The inertia orbifold $I\mathfrak{X}$ consists of a
disjoint union of sub-orbifolds of \mathfrak{X}. There is a canonical orbifold immersion
\[
ev : I\mathfrak{X} \longrightarrow \mathfrak{X}
\]
given by the obvious inclusions $\{(\tilde{U}^g, Z(g), \tilde{\pi}) \rightarrow (\tilde{U}, H, \pi)\}$.

To describe the obvious inclusions $\{(\tilde{U}^g, Z(g), \tilde{\pi}) \rightarrow (\tilde{U}, H, \pi)\}$.

To describe the connected components of $I\mathfrak{X}$, we need to introduce an
equivalence relation on the set of conjugacy classes in local groups as in
[ALR]. For each $x \in \mathfrak{X}$, let $(\tilde{U}_x, H_x, \pi_x, U_x)$ be a local orbifold chart at x. If
$y \in U_x$, then up to conjugation, there is an injective homomorphism of local
groups $H_y \rightarrow H_x$. Under this injective map, the conjugacy class $(g)_{H_y}$ in
H_x is well-defined for $g \in H_y$. We define the equivalence to be generated by the
relation $(g)_{H_y} \sim (g)_{H_x}$. Let \mathcal{T}_x be the set of equivalence classes. Then
the inertia orbifold is given by
\[
I\mathfrak{X} = \bigsqcup_{(g) \in \mathcal{T}_x} \mathfrak{X}_{(g)},
\]
where $\mathfrak{X}_{(g)} = \{(x, (g')_{H_x}) | g' \in H_x, (g')_{H_x} \sim (g)\}$. Note that $\mathfrak{X}_{(e)} = \mathfrak{X}$ is
called the non-twisted sector and $\mathfrak{X}_{(g)}$ for $g \neq e$ is called a **twisted sector** of
\mathfrak{X}.

Given a complex orbifold vector bundle E over \mathfrak{X}, the pull-back bundle
$\ev^* E$ over $I\mathfrak{X}$ has a canonical automorphism Φ. With respect to a Hermitian
metric on E, there is an eigen-bundle decomposition of $\ev^* E$
\[
\ev^* E = \bigoplus_{\theta \in \mathbb{Q} \cap [0, 1)} E_\theta
\]
where E_θ is a complex orbifold vector bundle over $I\mathfrak{X}$, on which Φ acts by
multiplying $e^{2\pi \sqrt{-1} \theta}$. Define the **delocalized Chern character** of E by
\[
\ch_{\text{deloc}}(E) = \sum_{\theta} e^{2\pi \sqrt{-1} \theta} \ch(E_\theta) \in H^*_{\text{orb}}(I\mathfrak{X}, \mathbb{C}),
\]
where $\ch(E_\theta) \in H^\text{ev}(I\mathfrak{X}, \mathbb{C})$ is the ordinary Chern character of E_θ. The odd
delocalized Chern character
\[
\ch_{\text{deloc}} : K^1_{\text{orb}}(\mathfrak{X}) \longrightarrow H^{\text{odd}}(I\mathfrak{X}, \mathbb{C})
\]
can be defined in the usual way. The following proposition is established in
[HW].

Proposition 2.8. [HW, Proposition 2.7] For any compact orbifold \mathfrak{X}, the
delocalized Chern character gives a ring isomorphism
\[
\ch_{\text{deloc}} : K^*_{\text{orb}}(\mathfrak{X}) \otimes \mathbb{Z} \mathbb{C} \longrightarrow H^*(I\mathfrak{X}, \mathbb{C})
\]
over \mathbb{C}.

Let \mathcal{X} be a compact Riemannian orbifold with an orbifold atlas $O = \{\tilde{U}_i, H_i, \pi\}$. Then the bundles of Clifford algebras over \tilde{U}_i's, \{Cliff$(T\tilde{U}_i) \rightarrow \tilde{U}_i, H_i$\}, whose fiber at $x \in \tilde{U}_i$ is the real Clifford algebra Cliff$(T_x\tilde{U}_i)$, define an orbifold Clifford bundle, denoted by Cliff$(T\mathcal{X})$. As in the manifold case (cf. Chapter 3.3 in [BGV]), there is a connection on Cliff$(T\mathcal{X})$, induced from the Levi-Civita connection $\nabla^{T\mathcal{X}}$, which is compatible with the Clifford multiplication on $\Gamma(\mathcal{X}, \text{Cliff}(T\mathcal{X}))$.

Definition 2.9. Let \mathcal{X} be a compact Riemannian even-dimensional orbifold with an orbifold atlas $O = \{\tilde{U}_i, H_i, \pi\}$.

1. A Dirac bundle over \mathcal{X} is a $\mathbb{Z}/2\mathbb{Z}$-graded Hermitian orbifold vector bundle \mathcal{E} with a graded self-adjoint smooth action of Cliff(\mathcal{X}) in the sense that for each orbifold chart (\tilde{U}_i, H_i, π), the action of $v \in \text{Cliff}(T_x\tilde{U}_i)$ is of degree one and skew-adjoint.

2. A connection $\nabla^{\mathcal{E}}$ on a Dirac bundle is called a Clifford connection if for any $v \in \Gamma(\mathcal{X}, \text{Cliff}(T\mathcal{X}))$ and $\xi \in \Gamma(\mathcal{X}, T\mathcal{X})$,

$$[\nabla^{\mathcal{E}}_{\xi}c(v)] = c(\nabla^{\xi}v).$$

Here c is denote the Clifford action Cliff$(T\mathcal{X}) \otimes \mathcal{E} \rightarrow \mathcal{E}$.

Remark 2.10.

1. By means of a smooth partition of unity on \mathcal{X}, any Dirac bundle over \mathcal{X} admits a Clifford connection. The space of all Clifford connections is an affine space modelled on $\Gamma(\mathcal{X}, T^*\mathcal{X} \otimes \text{End}_{\text{Cliff}(T\mathcal{X})}(\mathcal{E}))$. Here $\text{End}_{\text{Cliff}(T\mathcal{X})}(\mathcal{E})$ is the bundle of degree 0 endomorphisms which commute with the Clifford action.

2. For an even dimensional compact Riemannian orbifold \mathcal{X}, \mathcal{X} is Spinc if and only if there exists an orbifold complex vector bundle S, called a complex spinor bundle, such that the complexified version of Cliff$(T\mathcal{X})$, denoted by Cliff$_C(T\mathcal{X})$, is isomorphic to $\text{End}_{\text{C}}(S)$. A choice of such an S is called a Spinc structure on \mathcal{X}. Then any Dirac bundle \mathcal{E} can be written as $S \otimes W$ for an orbifold complex vector bundle W over \mathcal{X}.

3. The Grothendieck group of Dirac bundles over \mathcal{X} forms an abelian group, denoted by $K^0(\mathcal{X}, \text{Cliff}_C(T\mathcal{X}))$. The relative delocalized Chern character

$$\text{ch}_{\text{deloc}}^S : K^0_{\text{orb}}(\mathcal{X}, \text{Cliff}_C(T\mathcal{X})) \rightarrow H^{ev}(I\mathcal{X}, \mathbb{R})$$

can be defined by the same construction as in Section 4.1 of [BGV]. When \mathcal{X} is equipped with a Spinc structure S, then

$$K^0_{\text{orb}}(\mathcal{X}, \text{Cliff}_C(T\mathcal{X})) \cong K^0_{\text{orb}}(\mathcal{X}),$$

and any Dirac bundle \mathcal{E} written as $S \otimes W$, we have

$$\text{ch}_{\text{deloc}}^S(S \otimes W) = \text{ch}_{\text{deloc}}(W).$$

Given a Dirac bundle \mathcal{E} with a Clifford connection $\nabla^{\mathcal{E}}$ over a compact Riemannian even-dimensional orbifold \mathcal{X}, the Dirac operator on \mathcal{E} is defined to be the following composition

$$\Psi^\mathcal{E} : \Gamma(\mathcal{X}, \mathcal{E}) \xrightarrow{\nabla^{\mathcal{E}}} \Gamma(\mathcal{X}, T^*\mathcal{X} \otimes \mathcal{E}) \cong \Gamma(\mathcal{X}, T\mathcal{X} \otimes \mathcal{E}) \xrightarrow{c} \Gamma(\mathcal{X}, \mathcal{E}).$$
When \mathfrak{X} is a spinc orbifold with its spinor bundle \mathcal{S}, then $\mathcal{E} = \mathcal{S} \otimes \mathcal{W}$ for a complex orbifold vector bundle \mathcal{W}, and $\mathfrak{D}^\mathcal{E}$ will be written as $\mathfrak{D}^\mathcal{W}$. With respect to the $\mathbb{Z}/2\mathbb{Z}$-grading on $\mathcal{E} = \mathcal{E}_+ \oplus \mathcal{E}_-$,

$$\mathfrak{D}^\mathcal{E} = \begin{bmatrix} 0 & \mathfrak{D}_+^\mathcal{E} \\ \mathfrak{D}_-^\mathcal{E} & 0 \end{bmatrix}$$

where $\mathfrak{D}_-^\mathcal{E}$ is the formal adjoint of $\mathfrak{D}_+^\mathcal{E}$. Let $L^2(\mathfrak{X}, \mathcal{E})$ and $L^2_1(\mathfrak{X}, \mathcal{E})$ be the completions of $\Gamma(\mathfrak{X}, \mathcal{E})$ with respect to L^2-norm and L^2_1-norm respectively. Then

$$\mathfrak{D}^\mathcal{E} : L^2_1(\mathfrak{X}, \mathcal{E}) \to L^2(\mathfrak{X}, \mathcal{E})$$

is a Fredholm operator by showing that the unbounded operator

$$\mathfrak{D}^\mathcal{E} : L^2(\mathfrak{X}, \mathcal{E}) \to L^2_1(\mathfrak{X}, \mathcal{E})$$

has compact resolvent. One could also establish the finite dimensionality of $\ker \mathfrak{D}^\mathcal{E}$ by showing that the heat operator $e^{-t(\mathfrak{D}^\mathcal{E})^2}$ is a trace-class operator for any compact Riemannian orbifold \mathfrak{X}. This latter claim follows from the fact that $e^{-t(\mathfrak{D}^\mathcal{E})^2}$ has a smooth kernel. In next section we will prove the smooth heat kernel for any complete Riemannian orbifold, so we omit the details here.

The Fredholm index of $\mathfrak{D}^\mathcal{E}$ is given by

$$\text{ind } \mathfrak{D}^\mathcal{E} = \dim_{\mathbb{C}} \ker \mathfrak{D}_+^\mathcal{E} - \dim_{\mathbb{C}} \ker \mathfrak{D}_-^\mathcal{E}.$$

To rephrase the orbifold index theorem in [K] (cf. [Bu]), we introduce the notations for the delocalized A-hat class and the delocalized Todd class of \mathfrak{X} as follows. For simplicity, we assume that each twisted sector $\mathfrak{X}(g)$ is connected, otherwise, these characteristic classes are defined on each connected component. Considering the orbifold immersion

$$\text{ev} : I\mathfrak{X} \to \mathfrak{X},$$

we can decompose the pull-back of the orbifold tangent bundle along each twisted sector $\mathfrak{X}(g)$ (using the Riemannian metric)

$$T\mathfrak{X}|_{\mathfrak{X}(g)} \cong T\mathfrak{X}(g) \oplus N(g)$$

such that the pull-back of the Riemannian curvature of $T\mathfrak{X}$ is decomposed as

$$\text{ev}^* R^{T\mathfrak{X}} = R^{T\mathfrak{X}(g)} \oplus R^N(g)$$

where $R^{T\mathfrak{X}(g)}$ is the Riemannian curvature of $\mathfrak{X}(g)$ and $R^N(g)$ is the curvature of the induced connection on $N(g)$. Then the delocalized A-hat class of \mathfrak{X} is a cohomology class on $I\mathfrak{X}$. When restricted to each twisted sector $\mathfrak{X}(g)$, it is defined by

$$\hat{\mathcal{A}}_{\text{deloc}}(\mathfrak{X}) = \frac{\hat{\mathcal{A}}(\mathfrak{X}(g))}{\left| \det \left(1 - \Phi(g) e^{R^{T\mathfrak{X}(g)}/2\pi i} \right) \right|^{1/2}}.$$

Here $\hat{\mathcal{A}}(\mathfrak{X}(g))$ is the A-hat form of $\mathfrak{X}(g)$ defined by

$$\left[\det \left(\frac{R^{T\mathfrak{X}(g)}/4\pi i}{\sinh(R^{T\mathfrak{X}(g)}/4\pi i)} \right) \right]^{1/2}$$

and $\Phi(g)$ is the automorphism of $N(g)$ defined by the inertia orbifold structure. If $I\mathfrak{X}$ is a spinc orbifold, the delocalized Todd class of \mathfrak{X} is a cohomology
class on \mathcal{X}. When restricted to each twisted sector $\mathcal{X}_{(g)}$, it is defined by the closed differential form

$$
Td_{\text{deloc}}(\mathcal{X}) = \frac{Td(\mathcal{X}_{(g)})}{\det \left(1 - \Phi^{-1} R X_{(g)}/2\pi i \right)},
$$

where $Td(\mathcal{X}_{(g)}) = \det \left(i R X_{(g)}/2\pi \right) / \det \left(1 - e^{-i R X_{(g)}/2\pi} \right)$ is the usual Todd form of the spinc orbifold $\mathcal{X}_{(g)}$.

Theorem 2.11. Let \mathcal{X} be a compact Riemannian even-dimensional orbifold. Let $\mathcal{D}^\mathcal{E}$ be a Dirac operator on a Dirac bundle \mathcal{E} over \mathcal{X}. Then index of $\mathcal{D}^\mathcal{E}$ is given by

$$
\text{ind } \mathcal{D}^\mathcal{E} = \int_{\mathcal{X}} \hat{A}_{\text{deloc}}(\mathcal{X}) \text{ch}_{\text{deloc}}(\mathcal{E}).
$$

In particular, if \mathcal{X} is a spinc orbifold and \mathcal{W} is an orbifold Hermitian vector bundle with a Hermitian connection. Then the index of the spinc Dirac operator $\mathcal{D}^\mathcal{W}$ is given by the formula

$$
\text{ind } \mathcal{D}^\mathcal{W} = \int_{\mathcal{X}} Td_{\text{deloc}}(\mathcal{X}) \text{ch}_{\text{deloc}}(\mathcal{W}).
$$

Remark 2.12. One can adapt the proof of Theorem 4.1 in [BGV] to compact orbifolds to establish the local index version of Theorem 2.11. It amounts to study the heat kernel asymptotics for $e^{-t(\mathcal{D}^\mathcal{E})^2}$ on the compact orbifold. We will apply the same heat kernel approach to establish a more refined index formula for a discrete group action on a complete Riemannian orbifold, so we will not reproduce a proof here.

3. Invariant Elliptic Operators on Complete Orbifolds

In this section, after a review of invariant elliptic pseudo-differential operators in Section 3.1, we prepare some analytical tools to study index of Dirac type operators on a complete even dimensional Riemannian orbifold \mathcal{X}, where a discrete group G acts properly, co-compactly and isometrically. When the orbifold is compact, the index of the Dirac operator $\mathcal{D}^\mathcal{E}$ is known to be calculated by the supertrace of the corresponding heat operator. However, when \mathcal{X} is not compact, the convergence of the heat kernel asymptotic expansion as $t \to 0^+$ has to be modified accordingly. This is worked out in Section 3.2. Also, the operator trace of $e^{-t(\mathcal{D}^\mathcal{E})^2}$ does not make sense. In Section 3.3, we introduce (g)-trace class operators and in Section 3.4, we compute the (g)-trace for the heat operator. On the one hand, these traces are related to the orbifold index of $\mathcal{D}^{\mathcal{E},G}$ on the quotient. On the other hand, as we shall see in Section 5, they are topological invariants for \mathcal{X} coming from the higher index for $\mathcal{D}^\mathcal{E}$.

3.1. Invariant elliptic pseudo-differential operators

Let \mathcal{X} be a complete n-dimensional oriented Riemannian orbifold and let \mathcal{E} be a Hermitian orbifold vector bundle with a Hermitian connection ∇. Denote by
\(\Gamma_c(\mathfrak{X}, \mathcal{E}) \subset \Gamma(\mathfrak{X}, \mathcal{E}) \) the subspaces of smooth sections of \(\mathcal{E} \) with compact support. A differential operator
\[
D : \Gamma_c(\mathfrak{X}, \mathcal{E}) \rightarrow \Gamma(\mathfrak{X}, \mathcal{E})
\]
of order \(m \) is a linear map such that for any orbifold chart \((\tilde{U}_i, H_i, \pi_i, U_i)\), the operator \(D\) is locally represented by
\[
\hat{D}_i : \Gamma(\tilde{U}_i, \tilde{\mathcal{E}}|_{\tilde{U}_i})^{H_i} \rightarrow \Gamma(\tilde{U}_i, \tilde{\mathcal{E}}|_{\tilde{U}_i})^{H_i},
\]
an \(H_i \)-invariant differential operator of order \(m \). The completion of \(\Gamma_c(\mathfrak{X}, \mathcal{E}) \) in the Sobolev \(k \)-norm
\[
(3.1) \quad \| \psi \|_k^2 = \sum_{i=0}^{k} \int_{\mathfrak{X}} |\nabla^i \psi|^2 d\text{vol}_\mathfrak{X}
\]
is the Sobolev space denoted by \(L^2_k(\mathfrak{X}, \mathcal{E}) \). Here \(d\text{vol}_\mathfrak{X} \) is the Riemannian volume element (the unique \(n \)-form of unit length) on \(\mathfrak{X} \) defined by the metric. Then a differential operator
\[
D : \Gamma_c(\mathfrak{X}, \mathcal{E}) \rightarrow \Gamma(\mathfrak{X}, \mathcal{E})
\]
of order \(m \) extends to a bounded linear map \(D : L^2_k(\mathfrak{X}, \mathcal{E}) \rightarrow L^2_{k-m}(\mathfrak{X}, \mathcal{E}) \) for all \(k \geq m \). A linear map \(A : \Gamma_c(\mathfrak{X}, \mathcal{E}) \rightarrow \Gamma(\mathfrak{X}, \mathcal{E}) \) is called a smoothing operator if \(A \) extends to a bounded linear map \(A : L^2_k(\mathfrak{X}, \mathcal{E}) \rightarrow L^2_{k+m}(\mathfrak{X}, \mathcal{E}) \) for all \(k \) and \(m \geq 0 \). The Sobolev embedding theorem implies that, for a smoothing operator \(A \), we have
\[
A(L^2_k(\mathfrak{X}, \mathcal{E})) \subset \Gamma(\mathfrak{X}, \mathcal{E})
\]
for all \(k \).

Definition 3.1 (Pseudo-differential operators on an orbifold). A linear map
\[
D : \Gamma_c(\mathfrak{X}, \mathcal{E}) \rightarrow \Gamma(\mathfrak{X}, \mathcal{E})
\]
is a pseudo-differential operator of order \(m \) if modulo smoothing operators, for any orbifold chart \(\{(\tilde{U}_i, H_i, \pi_i, U_i)\} \), the operator \(D \) is represented by
\[
\hat{D}_i : \Gamma_c(\tilde{U}_i, \tilde{\mathcal{E}}|_{\tilde{U}_i}) \rightarrow \Gamma(\tilde{U}_i, \tilde{\mathcal{E}}|_{\tilde{U}_i})
\]
which is an \(H_i \)-invariant pseudo-differential operator of order \(m \). A pseudo-differential operator \(D \) is elliptic if \(\hat{D}_i \) is elliptic for each orbifold chart \((\tilde{U}_i, H_i) \). Denote by \(\Psi^m_{orb}(\mathfrak{X}, \mathcal{E}) \) the linear space of all pseudo-differential operators of order \(m \) on \((\mathfrak{X}, \mathcal{E}) \).

Due to the local nature of pseudo-differential operators, an operator \(D \in \Psi^m_{orb}(\mathfrak{X}, \mathcal{E}) \) has a well-defined principal symbol of order \(m \) which is an element in
\[
\text{Sym}^m_{orb}(\mathfrak{X}, \mathcal{E})/\text{Sym}^{m-1}_{orb}(\mathfrak{X}, \mathcal{E})
\]
where \(\text{Sym}^m_{orb}(\mathfrak{X}, \mathcal{E}) \) is the space of all sections of order \(m \) of the orbifold vector bundle \(\text{End}(p^*\mathcal{E}) \) over \(T^*\mathfrak{X} \), here \(p : T^*\mathfrak{X} \rightarrow \mathfrak{X} \) is the obvious projection. Associated to a pseudo-differential operator \(D \) of order \(m \), the Schwartz kernel
\[
k \in \mathcal{D}'(\mathfrak{X} \times \mathfrak{X} \boxtimes \mathcal{E}^*)
\]
as a distributional-valued section, is smooth off the diagonal. Here
\[\mathcal{E} \otimes \mathcal{E}^* = \pi_1^* \mathcal{E} \otimes \pi_2^* \mathcal{E}^* \]
with the projections \(\mathcal{X} \times \mathcal{X} \to \mathcal{X} \) to the first factor and the second factor respectively. As explained in [Ma], in terms of local orbifold chart \((\tilde{U}_i, H_i, \pi_i, U_i)\), there is a distributional-valued section
\[\tilde{k}_D(\tilde{x}, \tilde{y}) \in \Gamma(\tilde{U}_i \times \tilde{U}_i, \tilde{\mathcal{E}}_i \otimes \tilde{\mathcal{E}}_i^*), \]
which is the kernel for the representing operator \(\tilde{D}_i \) in (3.2), such that
\[k_D(x, y) = \sum_{h \in H_i} h \tilde{k}_D(\tilde{x} \cdot h^{-1}, \tilde{y}) \]
where \(\tilde{x} \in \pi_i^{-1}(x) \) and \(\tilde{y} \in \pi_i^{-1}(y) \). Here we assume that \(H_i \) acts on \(\tilde{U}_i \) from the right.

A smoothing pseudo-differential operator has a smooth kernel, that is a smooth section \(k(x, y) \) of the bundle \(\mathcal{E} \otimes \mathcal{E}^* = \pi_1^*(\mathcal{E}) \otimes \pi_2^*(\mathcal{E}^*) \) over \(\mathcal{X} \times \mathcal{X} \) such that
\[A\psi(x) = \int_{\mathcal{X}} k(x, y)\psi(y) d\text{vol}_X(y). \]

When \(\mathcal{X} \) is equipped with a proper, co-compact and isometric action of a discrete group \(G \), we can define \(G \)-invariant pseudo-differential operators on \(\mathcal{E} \) in the usual sense. Let \(\mathcal{E} \) be an orbifold Hermitian vector bundle with a \(G \)-invariant Hermitian connection \(\nabla \). Consider a collection of orbifold charts of \(\mathcal{X} \)
\[\{(G \times_G, \tilde{U}_i, H_i, G \times_G, U_i)\} \]
as provided by Lemma 2.3. Here \(\{(G \times_G, \tilde{U}_i, H_i, G \times_G, U_i)\} \) is a collection of orbifold charts indexed by the coset space \(G/G_i \). We further assume that \(U_i \) is an open covering of a relatively compact open set \(C \) in \(|\mathcal{X}| \) such that \(\mathcal{X} = G \cdot C \). A \(G \)-invariant pseudo-differential operator
\[D_X : \Gamma_c(\mathcal{X}, \mathcal{E}) \to \Gamma(\mathcal{X}, \mathcal{E}) \]
is represented by a \(G \)-invariant pseudo-differential operator on the orbifold \(G \times_G, U_i \). Note that the orbifold structure on the quotient space \(G \setminus |\mathcal{X}| \) is defined by the collection of finitely many orbifold charts
\[\{(\tilde{U}_i, G_i \times H_i, U_i)\}. \]
Then a \(G \)-invariant pseudo-differential operator \(D_X \) of order \(m \) on \(\mathcal{X} \) defines a pseudo-differential operator of order \(m \) on the compact orbifold \(G \setminus \mathcal{X} \).

Remark 3.2. Let \(k(x, y) \in \mathcal{E}_x \otimes \mathcal{E}_y^* \) be the distributional kernel of a \(G \)-invariant pseudo-differential operator \(D_X \). Then we have
\[gk(g^{-1}x, y) = k(x, gy)g \quad \forall x, y \in \mathcal{X}, \forall g \in G. \]
Here, \(g \) stands for the action of \(g \in G \) on the smooth sections in \(\Gamma(\mathcal{X}, \mathcal{E}) \).

We shall refer the pseudo-differential operators being studied are properly supported. Recall that a properly supported operator is an operator where the distributional kernel \(k(x, y) \) satisfies the following property: for all compact set \(C \subset \mathcal{X} \), the following set is compact in \(\mathcal{X} \times \mathcal{X} \):
\[\{(x, y) \in \mathcal{X} \times \mathcal{X} | k(x, y) \neq 0, x \text{ or } y \in C\}. \]
If S is a G-invariant properly supported operator with Schwartz kernel K_S, then by Remark 3.2 and the co-compactness of the action, (3.3) implies the existence of $R > 0$ such that

$$K_S(x, y) = 0 \quad \forall d(x, y) > R.$$

In view of Definition 3.1, any pseudo-differential operator is properly supported up to a smoothing operator.

The following proposition is a key property for elliptic operators. When X is compact, it implies that elliptic operator has the Fredholm index. In general, this proposition leads to an elliptic operator model for K-homology and higher index. As a pseudo-differential operator on an orbifold is locally defined on the orbifold charts, the proof are similar to the manifold case ([W. Proposition 2.7]), there we assumed D_X is properly supported and has order 0. It is then sufficient to prove the proposition. In fact, any pseudo-differential operator of positive order can be normalized to an order 0 operator and is properly supported up to a difference of a smoothing operator.

Proposition 3.3. Let $(D_X)^+ : L^2_k(X, E_+) \to L^2_{k-m}(X, E_-)$, where $k > m$, be a G-invariant elliptic operator with non-negative order m, then there exists a G-invariant parametrix $Q_X : L^2_{k-m}(X, E_-) \to L^2_k(X, E_+)$ of $(D_X)^+$ so that $1 - Q_X(D_X)^+ = S_0$ and $1 - (D_X)^+Q_X = S_1$ are smoothing operators.

3.2. Dirac operator and heat kernel asymptotics. In this paper, we focus on Dirac operators, which are first order elliptic differential operators. Let X be a complete even-dimensional Riemannian orbifold. Let ∇^{TX} be the Levi-Civita connection on TX. Given a Dirac bundle $E = E_+ \oplus E_-$ with a Clifford connection ∇^E. The Dirac operator

$$(3.6) \quad D^E = \begin{bmatrix} 0 & D^E_+ \\ D^E_- & 0 \end{bmatrix} : L^2(X, E) \to L^2(X, E),$$

with domain $\Gamma_c(X, E)$ is an essentially self-adjoint elliptic differential operator. Moreover, we have the Lichnerowicz formula for $(D^E)^2$ as follows.

$$(3.7) \quad (D^E)^2 = \Delta^E + c(F^E/S^E) + \frac{1}{4} r_X$$

where Δ^E is the Laplace operator on E, $c(F^E/S^E)$ is the Clifford action of the twisted curvature of the Clifford connection ∇^E and r_X is the scalar curvature of X. We remark that the proof of the essentially self-adjointness of D^E and the Lichnerowicz formula for $(D^E)^2$ follow from the proof in the case of smooth manifolds without essential change. Then the heat operator

$$e^{-t(D^E)^2} : L^2(X, E) \to L^2(X, E)$$

is a one-parameter semi-group of operators consisting of positive, self-ajoint operators of norm ≤ 1, satisfying the following properties, for $\psi \in L^2(X, E)$, $t \geq 0$,

$$(1) \quad \left(\frac{d}{dt} + (D^E)^2 \right) e^{-t(D^E)^2} \psi = 0.$$

$$(2) \quad \lim_{t \to 0} e^{-t(D^E)^2} \psi = \psi \text{ in } L^2(X, E).$$
Moreover, \(e^{-t(\mathcal{D}_E)^2} \) is a smoothing operator. By the Schwartz kernel theorem, there is a kernel

\[
K_t(x, y) \in \Gamma(\mathfrak{X} \times \mathfrak{X}, \mathcal{E} \boxtimes \mathcal{E}^*),
\]
called the heat kernel of \(\mathcal{D}_E \) with respect to \(d\text{vol}_x \). For \(\psi \in L^2(\mathfrak{X}, \mathcal{E}) \),

\[
(e^{-t(\mathcal{D}_E)^2} \psi)(x) = \int_{\mathfrak{X}}^{\text{orb}} K_t(x, y)(\psi(y))d\text{vol}_x(y).
\]

When \(\mathfrak{X} \) is compact, that is, \(|\mathfrak{X}| \) is compact, then we have the following asymptotic expansion: for each Riemannian orbifold chart \((\tilde{U}_i, H_i, U_i)\), using the notations in \((3.3)\), there exists a smooth section \(u_j \) of \(\mathcal{E} \boxtimes \mathcal{E}^* \) over \(\tilde{U}_i \times \tilde{U}_i \) such that for every \(l > n = \dim \mathfrak{X} \) and \(x, y \in U_i \), as \(t \to 0^+ \),

\[
(3.8) K_t(x, y) = (4\pi t)^{-n/2}d\text{vol}_{H_i} \sum_{h \in H_i} e^{-\frac{d(x, y)^2}{4t}} \sum_{j=0}^{l} t^j hu_j(x \cdot h^{-1}, y) + O(t^{l-n/2}).
\]

Here \(d(x, y) \) is the distance function on \(\tilde{U}_i \) defined by the Riemannian metric on \(\tilde{U}_i \). Moreover, the off-diagonal estimate is given by

\[
K_t(x, y) = O(e^{-a^2/4t})
\]
as \(t \to 0 \), for \((x, y) \in |\mathfrak{X}| \times |\mathfrak{X}| \) with \(d(x, y) > a > 0 \). Here \(d(x, y) \) is the distance function defined by the Riemannian metric on \(\mathfrak{X} \). See [Ma] and Chapter 5.4 in [MaMa] for relevant discussions. The local index technique as [BGV] and [MaMa] gives rise to a local index formula for the Kawasaki orbifold index theorem (Theorem 2.11). In addition, it worth to mention that the Geiner-Hadamard approach to the heat kernel asymptotic in [Po1]. [PW] gives rise to a concise proof for the heat kernel asymptotic in this setting and leads to an elementary calculation deriving Theorem 2.11.

When \(\mathfrak{X} \) is a complete even-dimensional Riemannian orbifold equipped with a proper, co-compact and isometric action of a discrete group \(G \). Let \(\nabla^{TX} \) be the \(G \)-invariant Levi-Civita connection on \(TX \). Then the scalar curvature \(r_{\mathfrak{X}} \) is a \(G \)-invariant function on \(\mathfrak{X} \). Given a \(G \)-equivariant Dirac bundle \(\mathcal{E} = \mathcal{E}_+ \oplus \mathcal{E}_- \) with a \(G \)-invariant Clifford connection \(\nabla^\mathcal{E} \), then the Dirac operator

\[
\mathcal{D}^\mathcal{E} : L^2(\mathfrak{X}, \mathcal{E}) \longrightarrow L^2(\mathfrak{X}, \mathcal{E})
\]
is a \(G \)-invariant elliptic differential operator. The corresponding Dirac operator on \(G\backslash \mathfrak{X} \) is denoted by

\[
\mathcal{D}^{G\backslash \mathcal{E}} : L^2(G\backslash \mathfrak{X}, G\backslash \mathcal{E}) \longrightarrow L^2(G\backslash \mathfrak{X}, G\backslash \mathcal{E}).
\]

Theorem 3.4. Let \(\mathfrak{X} \) be a complete even-dimensional Riemannian orbifold with a proper, co-compact and isometric action of a discrete group \(G \). Let \(K_t(x, y) \) be the heat kernel of a \(G \)-invariant elliptic differential operator \(\mathcal{D}^\mathcal{E} \), that is, the Schwartz kernel of the semigroup \(e^{-t(\mathcal{D}^\mathcal{E})^2} \). Then \(K_t(x, y) \) is a \(G \)-invariant smooth kernel with an asymptotic expansion, as \(t \to 0^+ \),

\[
(3.9) K_t(x, y) \sim (4\pi t)^{-n/2}e^{-\frac{d(x, y)^2}{4t}} \sum_{j=0}^{\infty} t^j u_j(x, y)
\]
on a sufficiently small neighbourhood of the diagonal in \(\mathfrak{X} \times \mathfrak{X} \). Here \(u_j(x, y) \) is a smooth section of \(\mathcal{E} \boxtimes \mathcal{E}^* \) in the sense of \((3.3)\). Moreover, choose a
relative compact sub-orbifold C in \mathfrak{X} with $\mathfrak{X} = G \cdot C$. Let $\pi : C \to G\backslash \mathfrak{X}$ be the natural map defined by the quotient map $\mathfrak{X} \to G\backslash \mathfrak{X}$. Then the series
\[\sum_{g \in G} gK_t(g^{-1} \cdot x, y) = \sum_{g \in G} K_t(x, g \cdot y)g \in \mathcal{E}_x \otimes \mathcal{E}_y^* \]
converges uniformly on $[t_1, t_2] \times C \times C$ to the kernel $K_t(\bar{x}, \bar{y})$ of $e^{-t(D^G) \mathcal{E}}$ for $\bar{x} = \pi(x)$ and $\bar{y} = \pi(y)$. Here g acts on a section $\psi \in L^2(\mathfrak{X}, \mathcal{E})$ by $(g \cdot \psi)(y) = g\psi(g^{-1} \cdot y)$.

Proof. In the case of smooth manifolds, this theorem is due to Donnelly [Do]. For convenience, we use the same notation $(D^\mathcal{E})^2$ to denote its unique self-adjoint extension. By Lichnerowicz formula, $(D^\mathcal{E})^2$ is a generalized Laplacian operator
\[\Delta^\mathcal{E} + c(F^\mathcal{E}/S) + \frac{1}{4}r^\mathfrak{X} \]
with $c(F^\mathcal{E}/S) + \frac{1}{4}r^\mathfrak{X}$ is bounded from below due to the isometric co-compact action of G on \mathfrak{X}. Then by Theorem D.1.2 in [MaMa] and the standard functional calculus,
\[e^{-t(D^\mathcal{E})^2} : L^2(\mathfrak{X}, \mathcal{E}) \to L^2(\mathfrak{X}, \mathcal{E}), \]
is a smoothing operator and the heat kernel $K_t(x, y)$ is a smooth section of $\mathcal{E} \otimes \mathcal{E}^*$ in $x, y \in \mathfrak{X}$ and $t \in (0, \infty)$.

The asymptotic expansion follows from the uniqueness of the fundamental solution to the heat equation on $(0, \infty) \times \mathfrak{X} \times \mathfrak{X}$,
\[\left(\frac{\partial}{\partial t} + (D^\mathcal{E})^2 \right) K_t(x, y) = 0 \]
where $(D^\mathcal{E})^2$ acts in the second variable, with the following initial boundary condition at $t = 0$: if ψ is a smooth section of \mathcal{E}, then
\[\lim_{t \to 0} \int_{\mathfrak{X}} K_t(x, y)\psi(y) d\text{vol}_\mathfrak{X}(y) = \psi(x) \]
in the L^2-norm or the uniform norm on any compact set in \mathfrak{X}. It is done by building approximate heat kernel in normal orbifold coordinate charts as the asymptotic expansion in question holds on a sufficiently small neighbourhood of the diagonal in $\mathfrak{X} \times \mathfrak{X}$. Then the asymptotic expansion (3.9) follows from the construction in [BGV] Chapter 2 and [CGT] carried over to the case of orbifolds. Moreover, for any $T > 0$ and $0 < t \leq T$, we have the following fiberwise norm estimate
\[\| (\frac{\partial}{\partial t})^j(\nabla_x^\mathcal{E})^l(\nabla_y^\mathcal{E})^k K_t(x, y) \| \leq c_t t^{-n/2-j/2-k/2} e^{-\frac{d(x,y)^2}{4t}}. \]

To check that the series $\sum_{g \in G} K_t(x, g \cdot y) \circ (1, g^{-1})$ converges uniformly on $[t_1, t_2] \times C \times C$, we need to estimate the number
\[n(i) = \# \{ g \in G \mid (i - 1)r \leq d(x, g \cdot y) < ir \} \]
for $i \in \mathbb{N}, x, y \in C$ with $r > \text{diam}(C)$. As the G-action is proper, let
\[m = \# \{ g \in G \mid (g \cdot C) \cap C \neq \emptyset \}. \]
Suppose that $B(x, r)$ contains p_r G-translates of y, that is,
\[p(r) = \#\{g|d(x, g \cdot y) < r\}. \]
Then $B(x, 2r)$ contains $p(r)$ G-translates of C as $r > \text{diam}(C)$. Any point of \mathfrak{X} is contained in at most m translates of C, so we have
\[p(r) \cdot \text{vol}(C) \leq m \cdot \text{vol}(B(x, 2r)). \]
Note that G acts on \mathfrak{X} isometrically and co-compactly, so the sectional curvatures of \mathfrak{X} is bounded from below. By comparing with a space of constant curvature (cf. [Bo, Proposition 20] and [BiCr, p.256 Corollary 4]), we have
\[\text{vol}(B(x, r)) \leq c_3 e^{c_4 r}. \]
This implies that $n(i) < p(ir) < \frac{mc_3 c_4 e^{c_4 r}}{\text{vol}(C)}$ for any $i \in \mathbb{N}$. Then by partitioning G into subsets
\[G(i) = \{ g \in G|(i - 1)r \leq d(x, g \cdot y) < ir\}, \]
for $i \in \mathbb{N}$, we have the following operator norm estimate
\[
\sum_{g \in G} \|K_t(x, g \cdot y) g\| \\
\leq c_1 t^{-n/2} \sum_{g \in G} e^{-\frac{d^2(x, g \cdot y)}{4t}} \\
= c_1 t^{-n/2} \sum_{i=1}^{\infty} \sum_{g \in G(i)} e^{-\frac{(i-1)^2 r^2}{4t}} \\
\leq c_1 t^{-n/2} \sum_{i=1}^{\infty} n_i e^{-\frac{(i-1)^2 r^2}{4t}} \\
\leq \frac{mc_1 c_3}{\text{vol}(C)} t^{-n/2} \sum_{i=1}^{\infty} e^{2c_4 ir} e^{-\frac{(i-1)^2 r^2}{4t}} \\
= \frac{mc_1 c_3}{\text{vol}(C)} t^{-n/2} \sum_{i=1}^{\infty} e^{-\frac{(i-1)^2 r^2 + 2c_4 ir}{4t}},
\]
which converges uniformly on $[t_1, t_2] \times C \times C$. By the similar argument, we have uniform convergence for all the derivatives of the series. One can check that
\[\mathcal{R}_t(\bar{x}, \bar{y}) = \sum_{g \in G} K_t(x, g \cdot y) g \]
is a fundamental solution to the heat equation for $(D^G_{\mathfrak{X}})^2$ on $G \backslash \mathfrak{X}$. By the uniqueness of the heat kernel, we know that the series
\[\sum_{g \in G} K_t(x, g \cdot y) g \]
converges uniformly on $[t_1, t_2] \times C \times C$ to the heat kernel of $D^G_{\mathfrak{X}}$. q.e.d.

As K_t is G-invariant and C has nonempty intersection with each orbit, the proof of Theorem 3.4 gives rise to an estimate on the heat kernel $K_t(x, y)$, which is important for later calculations.
Corollary 3.5. There exists $L > 0$ such that, for all $x \in \mathcal{X}$, we have
\begin{equation}
\sum_{g \in G} \|K_t(x, g \cdot x)g\|_{\mathcal{E}_x} \leq L.
\end{equation}

3.3. Cut-off functions and (g)-trace class operators. We aim to define some meaningful traces for the heat kernel operator $e^{-t(D_{\mathcal{E}})^2}$. We shall first introduce a class of operators on \mathcal{X} “approximating” the heat kernel operator.

Definition 3.6. Let \mathcal{S} be the algebra of bounded operators on $L^2(\mathcal{X}, \mathcal{E})$ having the following properties:

1. The Schwartz kernel $K_{\mathcal{S}}$ of $S \in \mathcal{S}$ is smooth and G-invariant, in particular,

\[K_{\mathcal{S}}(gx, gy) = g[K_{\mathcal{S}}(x, y)]g^{-1} \quad \forall x, y \in \mathcal{X}, \forall g \in G. \]

2. The kernel $K_{\mathcal{S}}$ for $S \in \mathcal{S}$ is properly supported, in the sense of (3.5).

Because of condition (1) in Definition 3.6, the usual trace of $S \in \mathcal{S}$ might be infinite. To eliminate the repeated summations caused by the G-invariance, we make use of the following “weight” function over \mathcal{X}.

Using Lemma 2.3 on the local structure of the G-orbifold \mathcal{X}, let $\mathcal{G} = (G_1 \rightrightarrows G_0)$ be the corresponding proper étale groupoid which locally looks like (cf. Remark 2.5)

\[(G \times_{\mathcal{G}_i} \mathcal{U}_i) \times H_i \rightrightarrows G \times_{\mathcal{G}_i} \mathcal{U}_i\]

and naturally admits a G-action on the left. Recall a smooth function f on \mathcal{X} corresponds to a smooth G-invariant function on G_0, that is, $s^*f = t^*f$. A smooth function f on \mathcal{X} defines a unique continuous function of $|\mathcal{X}|$ which will also be denoted by f. A function on \mathcal{X} is called compactly supported if its support in $|\mathcal{X}|$ is compact.

Definition 3.7 (Cut-off function). A nonnegative function $c \in C^\infty_c(\mathcal{X}) = C^\infty_c(\mathcal{G})$ is called a cut-off function of \mathcal{X} associated to the G action if the values over the orbits of G-action add up to be 1, i.e.,
\begin{equation}
\sum_{g \in G} c(g^{-1}x) = 1, \quad \forall x \in |\mathcal{X}|.
\end{equation}

Notice that the action of the cut-off function $c \in C^\infty_c(\mathcal{X})$ on $f \in \Gamma(\mathcal{X}, \mathcal{E})$ is given by point-wise multiplication.
\begin{equation}
[c \cdot f](x) = c(x)f(x).
\end{equation}

Remark 3.8. A cut-off function always exists for a proper co-compact G-action on \mathcal{X}. In fact, let $h \in C^\infty_c(\mathcal{X})$ be a nonnegative function whose support has nonempty intersection with each G-orbit, then
\[c(x) = \frac{h(x)}{\sum_{g \in G} h(g^{-1}x)} \]

is a cut-off function.
We shall construct one particular cut-off function \(c \) on \(\mathcal{X} \), where we suppose
\[
|\mathcal{X}| = \bigcup_{i=1}^{N} G \times_{G_i} U_i,
\]
and each \(U_i \) has an orbifold chart \((\tilde{U}_i, H_i, \pi_i, U_i)\).

Let \(\{\tilde{\phi}_i\} \) be a partition of unity of \(G \times_{G_i} U_i \) subordinate to the open cover
\[
\{ V_i = G_i \backslash U_i = G_i \backslash \tilde{U}_i / H_i \}_{i=1}^{N}
\]
such that the lift of \(\tilde{\phi}_i \) to \(\tilde{U}_i \) is a smooth \(G_i \times H_i \)-invariant function, denoted by \(\phi_i \).

We use \([x] \) to denote the equivalence class of an element \(x \). For example, if \(g \in G \) and \(u \in U_i \), then \([g, u] \in G \times_{G_i} U_i \) and \([u] \in G_i \backslash U_i \subset |G \\backslash \mathcal{X}| \). Let \(\varphi_i \) be a function on \(G \times_{G_i} U_i \subset \mathcal{X} \) given by
\[
\varphi_i([g, u]) = \begin{cases}
\tilde{\phi}_i([u]) & g \in G_i \\
0 & g \notin G_i.
\end{cases}
\]

As \(\tilde{\phi}_i \) is \(G_i \)-invariant, \(\varphi_i \) is well-defined. Also, \(\varphi_i \) extends to a smooth \(G_i \)-invariant function on \(\mathcal{X} \) when setting \(\varphi_i(x) = 0 \) for \(x \notin G \times_{G_i} U_i \).

Define a smooth nonnegative function on \(\mathcal{X} \) by
\[
(3.13) \quad c(x) := \sum_{i=1}^{N} \frac{1}{|G_i|} \varphi_i(x).
\]

It is compactly supported because each summand is compactly supported.

Lemma 3.9. The non-negative function \(c \in C_c^\infty(\mathcal{X}) \) given by (3.13) is a cut-off function of \(\mathcal{X} \).

Proof. Fix \(x \in \mathcal{X} \). For each \(j \in J := \{i \in G \times_{G_i} U_i \} \) where \([h, u] \) exists \(h \in G \) and \(u_j \in U_j \) so that \(x = [h_j, u_j] \). Note also that if \(j \notin J \), \(\varphi_j(x) = 0 \). Hence, by (3.13)
\[
\sum_{g \in G} c(g^{-1}x) = \sum_{g \in G} \sum_{i=1}^{N} \frac{1}{|G_i|} \varphi_i(x) c(g^{-1}[h, u]) = \sum_{g \in G} \sum_{j \in J} \frac{1}{|G_j|} \varphi_j(g^{-1}h_j, u_j).
\]

As \(\varphi_j \) vanishes unless \(g^{-1}h_j = k \in G_j \), then by the \(G_j \)-invariance of \(\varphi_j \), we obtain
\[
\sum_{g \in G} c(g^{-1}x) = \sum_{k \in G_j} \sum_{j \in J} \frac{1}{|G_j|} \varphi_j([k, u_j]) = \sum_{j \in J} \tilde{\phi}_j([u_j])
\]

Let \(\pi : \mathcal{X} \rightarrow G \backslash \mathcal{X} \) be the quotient map, then by definition \(\pi(x) = [u_j] \) for all \(j \in J \) and \(\tilde{\phi}_j(\pi(x)) = 0 \) if \(j \notin J \). As \(\{\tilde{\phi}_j\} \) is a partition of unity on \(G \backslash \mathcal{X} \) we have
\[
\sum_{j \in J} \tilde{\phi}_j([u_j]) = \sum_{j=1}^{N} \tilde{\phi}_j(\pi(x)) = 1.
\]

The lemma is then proved. \(\text{q.e.d.} \)
The cut-off function is designed to deal with G-invariant sections and G-invariant operators. Denote by $\Gamma(\mathfrak{X}, \mathcal{E})^G$ the subset of G-invariant sections in $\Gamma(\mathfrak{X}, \mathcal{E})$. We shall present some properties of the cut-off function to be used later.

Lemma 3.10. Let $c \in C^\infty_c(G_0)$ be the cut-off function given by (3.13). Then

1. For a smooth function f on $G\setminus \mathfrak{X}$ and its lift, the G-invariant function $\tilde{f} \in C^\infty(\mathfrak{X})$, we have

 $$\int_{\mathfrak{X}} c(x) \tilde{f}(x) d\text{vol}_X(x) = \int_{G \setminus \mathfrak{X}} f(x) d\text{vol}_{G \setminus \mathfrak{X}}(x).$$

2. If a continuous function h on $\mathfrak{X} \times \mathfrak{X}$ satisfies that

 $$(3.14) \quad h(gx, gy) = h(x, y), \quad \forall g \in G, \forall x, y \in \mathfrak{X}$$

 and that $c(x)h(x, y), c(y)h(x, y)$ are integrable on $\mathfrak{X} \times \mathfrak{X}$, we have

 $$\int_{\mathfrak{X} \times \mathfrak{X}} c(x)h(x, y)d\text{vol}_X(x)d\text{vol}_X(y) = \int_{\mathfrak{X} \times \mathfrak{X}} c(y)h(x, y)d\text{vol}_X(x)d\text{vol}_X(y).$$

Proof. Let $\{\tilde{\phi}_i\}$ be a partition of unity of $G\setminus \mathfrak{X}$ subordinate to the open cover

$$\{V_i = G_i \setminus U_i = G_i \setminus \tilde{U}_i/H_i\}_{i=1}^N$$

such that the lift of $\tilde{\phi}_i$ to \tilde{U}_i is a smooth $G_i \times H_i$-invariant function, denoted by $\tilde{\phi}_i$. Let $\phi_i \in C^\infty(\mathfrak{X})$ be the G-invariant partition of unity of the cover $\{G \times_G U_i\}_{i=1}^N$ given by $\phi_i[g, u] = \tilde{\phi}_i[u]$ for $g \in G$ and $u \in U_i$ locally.

1. Using the cut-off function as in (3.13), we have

 $$\int_{\mathfrak{X}} c(x)\tilde{f}(x) d\text{vol}_X(x)$$

 $$= \int_{\mathfrak{X}} \sum_{i=1}^N \frac{1}{|G_i|} \varphi_i(x)\tilde{f}(x) d\text{vol}_X(x)$$

 $$= \sum_{i=1}^N \int_{U_i} \frac{1}{|G_i|} \varphi_i(x)\tilde{f}(x) d\text{vol}_X(x)$$

 $$= \sum_{i=1}^N \frac{1}{|H_i \times G_i|} \int_{\tilde{U}_i} \tilde{\phi}_i(x)\tilde{f}(x) dx$$

 $$= \int_{G \setminus \mathfrak{X}} f(x) d\text{vol}_{G \setminus \mathfrak{X}}(x).$$
By (3.14), we have \(h \in S(\Xi) \). Here the last equality follows from (3.16).

Similarly, we have
\[
\int_{X \times X} c(x) h(x, y) d\nu_x d\nu_y = \sum_{G_i \in G} \frac{1}{|G_i|} \int_{U_i} \phi_i(x) h(x, y) dx dy.
\]

(3.15)

Here the last equality follows from
\[
\int_{G^2} \phi_j(y) h(x, y) d\nu_y = \sum_k \frac{1}{|G_j|} \int_{U_j} \dot{\phi}_j(y) h(x, k \cdot y) dy.
\]

Similarly, we have
\[
\int_{X \times X} c(y) h(x, y) d\nu_x d\nu_y = \sum_{G_i \in G} \frac{1}{|G_i|} \int_{U_i} \dot{\phi}_i(x) \tilde{\phi}_j(y) h(k \cdot x, y) dx dy.
\]

(3.16)

By (3.14), we have \(h(x, k \cdot y) = h(k^{-1} \cdot x, y) \) for \(k \in G \). Thus, the \(k \)-term in (3.15) is the \(k^{-1} \)-term in (3.16). Then the integrals (3.15) and (3.16) coincide. The lemma is then proved.

Remark 3.11. Condition (2) in Definition 3.6 is to reduce the complexity in calculating the new traces. However, \(e^{-t(\partial^F)^2} \) does not have proper support. In view of Theorem 3.4 when \(t > 0 \) is small, the heat kernel decays exponentially off the diagonal. Therefore, we shall use the following lemma to replace the heat kernel by an operator in the class \(S \) having the same value on the diagonal.

Lemma 3.12. For any \(G \)-invariant smoothing operator \(S \), the operator
\[
S_0 := \sum_{g \in G} g \cdot (e^{\frac{1}{2}S}e^{\frac{1}{2}})
\]

belongs to \(S \) (cf. Definition 3.6) and has the same Schwartz kernel as that of \(S \) along the diagonal.

Proof. Let \(K_S \) and \(K_{S_0} \) be the heat kernels for the operators \(S \) and \(S_0 \) respectively. Then by definition (3.17) we have
\[
K_{S_0}(x, y) = \sum_{g \in G} c(g^{-1}x)^{\frac{1}{2}} K_S(x, y) c(g^{-1}y)^{\frac{1}{2}}
\]

(3.18)
and conclude that S_0 is a properly supported smoothing operator. Moreover, if $x = y$, then
\[K_{S_0}(x, x) = \sum_{g \in G} c(g^{-1}x)K_S(x, x) = K_S(x, x). \]

The lemma is then proved. q.e.d.

In the following, we shall define a family of traces, indexed by the conjugacy classes of elements in G, for the set of operators slightly larger than the set S defined in Definition 3.6. These traces are closely related to the localized indices in Section 5. The expression of these traces follows from an explicit computation in Lemma 5.6.

For any $g \in G$, denote by $(g)_G \subset G$ (or (g) when there is no ambiguity) the conjugacy class of $g \in G$. Also, whenever traces of an operator involved in this paper, if the space is $\mathbb{Z}/2\mathbb{Z}$-graded, we shall mean a graded traces or a supertrace:
\[\text{Tr}_s \left(\begin{array}{cc} A & B \\ C & D \end{array} \right) := \text{Tr}(A) - \text{Tr}(B). \]

Definition 3.13 ((g)-trace class operator). A bounded properly supported G-invariant operator $S : L^2(\mathcal{X}, \mathcal{E}) \to L^2(\mathcal{X}, \mathcal{E})$ is of (g)-trace class if the positive operator
\[\sum_{h \in (g)} h^{-1}\phi|S|\psi \]
is of trace class for all positive functions $\phi, \psi \in C_c^\infty(G_0)$. Here $|S| = (SS^*)^{\frac{1}{2}}$. Here h^{-1} stands for the unitary operator on $L^2(\mathcal{X}, \mathcal{E})$ given by
\[(h^{-1} \cdot u)(x) := h^{-1}u(hx) \]
for $u \in L^2(\mathcal{X}, \mathcal{E})$. If S is a (g)-trace class operator, the (g)-trace is defined by the formula
\[\text{tr}_s^{(g)}(S) := \sum_{h \in (g)} \text{tr}_s[h^{-1}cS], \tag{3.19} \]
where c is a cut-off function on \mathcal{X}.

Remark 3.14. In case of G-manifold, where g is the group identity, the (e)-trace is the same notion as the G-trace of bounded G-invariant operators on $L^2(\mathcal{X}, \mathcal{E})$ introduced in [W].

Denote by K the subset of G having the following properties:
\[\{kgk^{-1} | k \in K\} = (g); \tag{3.20} \]
if $k_1 \neq k_2$, for all $k_j \in K$, then $k_1gk_1^{-1} \neq k_2gk_2^{-1}$.

We shall sometime to use $\{kgk^{-1}\}_{k \in K}$ to denote the conjugacy class (g) of $g \in G$. In view of the following lemma, we shall identify K with the quotient $G/Z_G(g)$ where $Z_G(g) = \{h \in G | hg = gh\}$ is the centralizer of g in G. Note that, if finite, K has the same cardinality as that of (g).

Lemma 3.15. Let K be a subset of G having the property (3.20). Then
\[K \cdot Z_G(g) = G. \]
Proof. If $k_1, k_2 \in K$ and $h_1, h_2 \in Z_G(g)$ satisfy $k_1h_1 = k_2h_2$, then

$$k_1h_1gk_2^{-1}h_1^{-1} = k_2h_2gk_2^{-1}$$

and it is the same as $k_1gk_2^{-1} = k_2gk_2^{-1}$. By definition of K, we have $k_1 = k_2$, hence $h_1 = h_2$. Then the map

$$(3.21) \quad m : K \times Z_G(g) \rightarrow G \quad (k, h) \mapsto kh$$

is injective. For each $l \in G$, then by definition there is an $k \in K$ so that $lgl^{-1} = kgk^{-1}$. Thus, $k^{-1}l \in Z_G(g)$ and (3.21) is surjective. The lemma is then proved.

q.e.d.

Proposition 3.16. Let S be a (g)-trace class operator having smoothing Schwartz kernel and let c be a cut-off function on \mathfrak{X}. Then

$$(3.22) \quad \text{tr}_{s}^{(g)} S = \sum_{h \in (g)} \int_{\mathfrak{X}}^{\text{orb}} c(x) \text{Tr}_{s}[h^{-1}K_{S}(hx, x)]d\text{vol}_{\mathfrak{X}}(x).$$

Here, Tr_{s} is the matrix supertrace of $\text{End}(\mathcal{E}_{x}, \mathcal{E}_{x})$. Alternatively,

$$(3.23) \quad \text{tr}_{s}^{(g)} S = \sum_{k \in G/Z_{G}(g)} \int_{\mathfrak{X}}^{\text{orb}} c(kx) \text{Tr}_{s}[g^{-1}K_{S}(gx, x)]d\text{vol}_{\mathfrak{X}}(x),$$

where $G/Z_{G}(g)$ is identified as a subset K of G having property (3.20). In particular, operators from S given by Definition 3.6 are of (g)-trace classes.

Proof. As $(h^{-1} \cdot u)(x) = h^{-1}u(hx)$ for $u \in L^{2}(\mathfrak{X}, \mathcal{E})$, we have

$$[h^{-1}cS]u(x) = c(hx)h^{-1}Su(hx) = \int_{\mathfrak{X}}^{\text{orb}} c(hx)h^{-1}[K_{S}(hx, y)]u(y)d\text{vol}_{\mathfrak{X}}(y).$$

Then by the change of variable $x \rightarrow h^{-1}x$ and the invariance of the measure $d\text{vol}_{\mathfrak{X}}(h^{-1}x) = d\text{vol}_{\mathfrak{X}}(x)$, we obtain

$$\text{tr}_{s}[h^{-1}cS] = \int_{\mathfrak{X}}^{\text{orb}} c(x) \text{Tr}_{s}[h^{-1}K_{S}(hx, x)]d\text{vol}_{\mathfrak{X}}(x)$$

If $h = kgk^{-1}$, then as S is G-invariant, by (3.4) we have $h^{-1}[K_{S}(hx', x')] = g^{-1}[K_{S}(gx, x)]$ where $x' = kx$. Therefore,

$$\text{tr}_{s}^{(g)} S = \sum_{h \in (g)} \text{tr}_{s}[h^{-1}cS]$$

$$= \sum_{h \in (g)} \int_{\mathfrak{X}}^{\text{orb}} c(x) \text{Tr}_{s}[h^{-1}K_{S}(hx, x)]d\text{vol}_{\mathfrak{X}}(x)$$

$$= \sum_{k \in G/Z_{G}(g)} \int_{\mathfrak{X}}^{\text{orb}} c(kx) \text{Tr}_{s}[g^{-1}K_{S}(gx, x)]d\text{vol}_{\mathfrak{X}}(x).$$

If $S \in S$, then as the action of G on \mathfrak{X} is proper, there are finitely many nonvanishing terms in the sum in (3.22). Hence operators from S are of (g)-trace classes. The proposition is proved. q.e.d.
Remark 3.17. The trace \(\text{tr}_{s}^{(g)} \) given by Definition 3.13 does not depend on the choice of cut-off function \(c \). In fact, set

\[
m(x) := \sum_{h \in \langle g \rangle} \text{Tr}_{s}[h^{-1} K_{S}(hx, x)]
\]

and observe that for any \(k \in G \), we have

\[
m(kx) = \sum_{h \in \langle g \rangle} \text{Tr}_{s}[h^{-1} K_{S}(hkx, kx)] = \sum_{h \in \langle g \rangle} \text{Tr}_{s}[(k^{-1} hk)^{-1} K_{S}(k^{-1} hxk, x)] = m(x).
\]

Then by Lemma 3.10 (1) the integral over the orbifold \(X \) does not depend on choice of a cut-off function \(c \).

The \((g)\)-trace defined in (3.19) has the tracial property as is shown in the following proposition. As we shall see later in the proof of Proposition 5.9, this trace is the composition of a matrix trace and the localized \((g)\)-trace given by Definition 5.2.

Proposition 3.18. Let \(S, T \) be \(G \)-invariant operators and let \(ST \) and \(TS \) be of \((g)\)-trace class, then

\[
\text{tr}_{s}^{(g)}(ST) = \text{tr}_{s}^{(g)}(TS).
\]

Proof. By Proposition 3.16, we have

\[
\text{tr}_{s}^{(g)}(ST) = \sum_{h \in \langle g \rangle} \int_{X \times X}^{\text{orb}} c(x) \text{Tr}_{s}[h^{-1}(K_{S}(hx, y)K_{T}(y, x))] d\text{vol}_{X}(x)d\text{vol}_{X}(y).
\]

For the similar reason we arrive at the \((g)\)-trace for \(TS \):

\[
\text{tr}_{s}^{(g)}(TS) = \sum_{h \in \langle g \rangle} \int_{X \times X}^{\text{orb}} c(y) \text{Tr}_{s}[h^{-1}(K_{T}(hy, x)K_{S}(x, y))] dxdy
\]

where the latter equality comes from the change of variables \(y \mapsto h^{-1}y \). Set

\[
m(x, y) = \sum_{h \in \langle g \rangle} \text{Tr}_{s}[h^{-1}(K_{S}(hx, y)K_{T}(y, x))].
\]

Then the \(G \)-invariance property of \(S \) and \(T \) implies that \(m \) satisfies (3.14):

\[
m(kx, ky) = \sum_{h \in \langle g \rangle} \text{Tr}_{s}[h^{-1} K_{S}(hkx, ky)K_{T}(ky, kx)] = \sum_{h \in \langle g \rangle} \text{Tr}_{s}[(k^{-1} hk)^{-1} K_{S}(k^{-1} hkx, y)K_{T}(y, x)] = m(x, y), \quad \forall k \in G.
\]

Notice that

\[
\text{Tr}_{s}[h^{-1}(K_{S}(hx, y)K_{T}(y, x))] = \text{Tr}_{s}[K_{T}(y, x)h^{-1} K_{S}(hx, y)] = \text{Tr}_{s}[h^{-1} K_{T}(y, x)K_{S}(x, h^{-1}y)].
\]
Then we have
\[
\text{tr}_{s}^{(g)}(ST) = \int_{X \times X}^{\text{orb}} c(x) m(x, y) dxdy
= \int_{X \times X}^{\text{orb}} c(y) m(x, y) dxdy = \text{tr}_{s}^{(g)}(TS),
\]
by Lemma 3.10 (2). q.e.d.

Finally we look at the G-invariant heat operator $S_{t} := e^{-t(\mathcal{D}^{c})^{2}}$ for $t > 0$ where \mathcal{D}^{c} is the G-invariant Dirac operator on X given by (3.6). Denote by $K_{t}(x, y)$ the Schwartz kernel of $e^{-t\mathcal{D}^{2}}$, which can be “approximated” by elements of \mathcal{S}, i.e., the norm of $K_{t}(x, y)$ decays rapidly when $d(x, y) \to \infty$ for a fixed positive number t (cf. Theorem 3.4).

Following from Theorem 3.4, when $g \in G$ does not have a fixed point on X, we have
\[
\lim_{t \to 0^{+}} g^{-1}K_{t}(gx, x) = 0.
\]
If $g \in G$ has a fixed point $(h, x) \in X$ where $h \in G$ and $x \in U_{i}$, then
\[
g(h, x) = (gh, x) = (h^{-1}gh, x)
\]
implies that $h^{-1}gh \in G_{i}$ and fixes $x \in U_{i}$. Then the following lemma implies that we may assume $g \in G_{i}$ and g fixes the point (e, x).

Lemma 3.19. If $g \in G$ has a fixed point on X, then there exists an $i \in \{1, \ldots, N\}$, so that $(g) \cap G_{i}$ is not empty.

Proposition 3.20. Let S_{t} be the heat operator $e^{-t(\mathcal{D}^{c})^{2}}$ and K_{t} be its Schwartz kernel. Then it is of (g)-trace class and the limit of (g)-trace is given by the finite sum
\[
\text{tr}_{s}^{(g)}(S_{t}) = \sum_{h \in (g) \cap \bigcup_{i=1}^{N} G_{i}} \lim_{t \to 0^{+}} \int_{X}^{\text{orb}} c(x) \text{Tr}_{s}[h^{-1}K_{t}(hx, x)] d\text{vol}_{X}(x).
\]

Proof. Following from Definition 3.13, let us estimate the sum $\sum_{h \in (g)} |\text{Tr}_{s}[h^{-1}\phi_S t \psi]|$ where $\phi, \psi \in C_{c}^{\infty}(X)$ as follows:
\[
\sum_{h \in (g)} |\text{Tr}_{s}[h^{-1}\phi_S t \psi]| \leq \sum_{h \in (g)} \int_{X}^{\text{orb}} \phi(hx)\psi(x) \dim(\mathcal{E})\|h^{-1}K_{t}(hx, x)\|_{\mathcal{E}, s} d\text{vol}_{X}(x)
\]
\[
\leq \dim(\mathcal{E}) \||\phi||_{L^{\infty}} \int_{X}^{\text{orb}} \psi(x) \sum_{h \in G} \|h^{-1}K_{t}(hx, x)\|_{\mathcal{E}, s} d\text{vol}_{X}(x)
\]
\[
\leq L \dim(\mathcal{E}) ||\phi||_{L^{\infty}} \||\psi||_{L^{1}} < \infty.
\]
Here, in the last inequality, we have used the uniform upper estimate in Corollary 3.5. Therefore, the heat operator $S_{t} = e^{-t(\mathcal{D}^{c})^{2}}$ on X is of (g)-trace class for all $g \in G$ and $t > 0$.
Let \(a(t) = \text{tr}_s^{(g)} S_t \), then
\[
\frac{da(t)}{dt} = - \text{tr}_s^{(g)} ((\mathcal{P}e)^2 e^{-t(\mathcal{P}e)^2}) = - \frac{1}{2} \text{tr}_s^{(g)} (|[\mathcal{P}e, e^{-t(\mathcal{P}e)^2}]|)
\]
which vanishes by Proposition \(3.18\). So the function \(a(t) = \text{tr}_s^{(g)} S_t \) is constant in \(t \). Then, by Proposition \(3.16\) we have
\[
(3.29) \quad \text{tr}_s^{(g)} S_t = \lim_{t \to 0^+} \sum_{h \in (g) \cap G_i} \int_{\text{orb}} c(x) \text{Tr}_s[h^{-1} K_i(hx, x)] d\text{vol}_X(x).
\]
Using the same argument as \((3.28)\), the sum in \((3.29)\) is absolutely convergent. Hence, when we take the limit of the sum, the limit commutes with the infinite sum as well as the integral \(\int_{\text{orb}} \). Further, the limit commutes with the integral. As \(t \to 0^+ \) then from \((3.26)\) the summand in \((3.27)\) tends to 0 if \(h \) does not fix any point in \(X \). The nonzero ones are the ones where \(hx = x \) for some \(x \in X \). By Lemma \(3.19\) we see it happens only when \(h \in (g) \cap G_i \) for some \(i \). Thus, there are only finitely many summand and
\[
\text{tr}_s^{(g)} S_t = \sum_{h \in (g) \cap \bigcup_{i=1}^N G_i} \lim_{t \to 0^+} \int_{\text{orb}} c(x) \text{Tr}_s[h^{-1} K_i(hx, x)] d\text{vol}_X(x).
\]
The proposition is then proved. q.e.d.

Corollary 3.21. Let \(S_{0,t} := \sum_{g \in G} g \cdot (e^{1/2} S_t e^{1/2}) \) where \(S_t = e^{-t(\mathcal{P}e)^2} \). Then
\[
\text{tr}_s^{(g)}(S_t) = \lim_{t \to 0^+} \text{tr}_s^{(g)}(S_{0,t}).
\]

Proof. From Proposition \(3.16\) and Lemma \(3.12\) we see that \(S_{0,t} \) is of \((g)\)-trace class for all \(g \in G \). As the sum \(\sum_{h \in (g)} K_{S_{0,t}}(hx, x) \) has finitely many non-vanishing terms, we have
\[
(3.30) \quad \lim_{t \to 0^+} \text{tr}_s^{(g)} S_{0,t} = \sum_{h \in (g)} \int_{\text{orb}} c(x) \text{Tr}_s[h^{-1} K_{S_{0,t}}(hx, x)] d\text{vol}_X(x).
\]
Observe that \(S_{0,t} \) and \(S_t \) have the same diagonal value as \(S_t = e^{-t(\mathcal{P}e)^2} \) by Lemma \(3.12\). In view of Proposition \(3.20\) we have the same formula for \(\text{tr}_s^{(g)} S_t \) as \((3.30)\). Hence, the corollary is then proved. q.e.d.

3.4. \textbf{Calculation of \((g)\)-trace for the heat operator}. We shall derive the formula for the \((g)\)-trace of the heat operator \(e^{-t(\mathcal{P}e)^2} \) in terms of the local data on the quotient orbifold \(G \setminus \mathfrak{X} \).

To calculate the \((g)\)-trace of the heat operator \(S_t = e^{-t(\mathcal{P}e)^2} \), we need to describe the twisted sectors for the quotient orbifold \(G \setminus \mathfrak{X} \). Let \(T_\mathfrak{X} \) be the set for the twisted sectors of \(\mathfrak{X} \) consisting of equivalence classes of conjugacy classes in the local isotropy groups of \(\mathfrak{X} \). Then the set for the twisted sectors of \(G \setminus \mathfrak{X} \) consists of pairs
\[(\{(g), (h)\})\]
where \((g)\) is the conjugacy class of \(g\) in \(G\) such that \(g\) has non-empty fixed points, and \((h)\in \mathcal{T}_X\). We now describe the twisted sector \((G\setminus \mathcal{X})_{(g),(h)}\). Let
\[
\{(G\times G_i, \tilde{U}_i, G\times G_i, \tilde{U}_i)\}
\]
be orbifold charts as in Lemma 2.25 such that \(G\times G_i, U_i\) consists of a disjoint union of \(G\)-translate of \(U_i\). Suppose that \(g\in G\) has non-empty fixed points in \(U_i\), then
\[
\text{for a conjugacy class of } g_i \text{ in } G_i, \text{Let } (h) \in \mathcal{T}_X \text{ have a representative } (h_i), \text{ a conjugacy class in } H_i. \text{Then}
\]
\[
\{(\tilde{U}_i^{g_i,h_i}, Z_{G_i}(g_i) \times Z_{H_i}(h_i))\}
\]
are orbifold charts for the twisted sector \((G\setminus \mathcal{X})_{(g),(h)}\).

Definition 3.22. The \((g)\)-twisted sector of \(G\setminus \mathcal{X}\) is defined to be
\[
(G\setminus \mathcal{X})_{(g)} = \bigcup_{(h)\in \mathcal{T}_X} (G\setminus \mathcal{X})_{(g),(h)}
\]
as a sub-orbifold of the inertia orbifold \(I(G\setminus \mathcal{X})\). Let
\[
\hat{A}_{(g)}(\mathcal{X}) \text{ and } \text{ch}^S_{(g)}(G\setminus \mathcal{E})
\]
be the restrictions of \(\hat{A}_{\text{deloc}}(G\setminus \mathcal{X})\) and \(\text{ch}^S_{\text{deloc}}(G\setminus \mathcal{E})\) to the \((g)\)-twisted sector \((G\setminus \mathcal{X})_{(g)}\).

Theorem 3.23. For all \(g\in G\), the heat operator \(S_t = e^{-t(\mathcal{P}\mathcal{E})^2}\) is a \((g)\)-trace class operator, and the \((g)\)-trace is given by
\[
\text{tr}^S_{(g)} S_t = \lim_{t\to 0^+} \sum_{h\in (g)} \int_{(G\setminus \mathcal{X})_{(g)}} \text{orb} \ c(x) \text{ Tr}_s [h^{-1} K_t (h x, x)] d\text{vol}_X(x)
\]
\[
= \int_{(G\setminus \mathcal{X})_{(g)}} \hat{A}_{(g)}(\mathcal{X}) \text{ ch}^S_{(g)}(G\setminus \mathcal{E}).
\]

Proof. If \(g\in G\) does not fix any point in \(\mathcal{X}\), then by (3.26), we have \(\text{tr}^S_{(g)} S_t = 0\). On the other hand, \((G\setminus \mathcal{X})_{(g)}\) is an empty set. So the integral on the right hand side also vanishes.

If \(g\in G\) has a fixed point in \(\mathcal{X}\), then by Lemma 3.19 we may assume \(g\in G_i\) for some \(i\). Let \(c\) be the cut-off function of \(\mathcal{X}\) given by (3.14) (See also Lemma 3.9). Let \(K_t\) (resp. \(\tilde{K}_t\)) be the heat kernel of \(\mathcal{P}\mathcal{E}\) (resp. \(\mathcal{P}^{G\setminus \mathcal{X}}\)) and let \(\tilde{K}_t\) be the lift of \(K_t\) to \(\tilde{U}_i \times \tilde{U}_i\). Then we have
\[
\text{tr}^S_{(g)} S_t = \sum_{k\in (g)} \int_{\mathcal{X}} \text{orb} \ c(x) \text{ Tr}_s [k^{-1} K_t (k x, x)] d\text{vol}_X(x)
\]
\[
= \sum_{k\in (g)} \sum_{i=1}^N \int_{G_i \times G_i U_i} \frac{1}{|G_i|} \phi_i(x) \text{ Tr}_s [k^{-1} K_t (k x, x)] d\text{vol}_X(x).
\]
By Corollary 3.3, the sum is absolute convergent. Hence, when we take the limit of the sum, the limit commutes with the infinite sum. Then, notice
that by (3.26), as \(t \to 0^+ \), \(\int_{G_i \times G_i \cup_i} \varphi(x) \text{Tr}_s[k^{-1}K_k(kx, x)] \to 0 \) unless there exists a point \(x = [m, u] \in G_i \times G_i \) fixed by \(k \in G_i \), that is,

\[
[m, u] = k[m, u] = [m(m^{-1}km), u],
\]

which means that \(k' := m^{-1}km \in G_i \). In this situation, we have

\[
k^{-1}K_k(kx, x) = K_k([m, u], [m, m^{-1}kmu])k = K_k([u], k'[u])k'.
\]

To simplify the notation, let us still use \(k \) for \(k' \). Hence, as we take the limit of each summand of (3.35), it vanishes excepted for the terms \(k \in (g)G_i \). Thus, \(\lim_{t \to 0^+} \text{tr}_s^{(g)} S_t \) is equal to

\[
\sum_{i=1}^{N} \frac{1}{|G_i| |H_i|} \lim_{t \to 0^+} \int_{U_i} \tilde{\phi}_i(u) \sum_{k \in (g)G_i} \sum_{h \in T_{X \cap H_i}} \text{Tr}_s[k \tilde{K}_i(u, khl)] du.
\]

As \(\tilde{K}_i \) is \(G_i \) and \(H_i \) invariant, \(\tilde{K}_i \) remains constant on the conjugacy classes in \(G_i \) and in \(H_i \). Also, by Lemma 3.15 we have \(\frac{|(g)G_i|}{|G_i|} = \frac{1}{|Z_{G_i}(g)|} \) and \(\frac{|(h)H_i|}{|H_i|} = \frac{1}{|Z_{H_i}(h)|} \). Therefore, we conclude that

\[
\lim_{t \to 0^+} \text{tr}_s^{(g)} S_t = \sum_{i=1}^{N} \frac{1}{|Z_{G_i}(g)| |Z_{H_i}(h)|} \lim_{t \to 0^+} \int_{U_i} \tilde{\phi}_i(u) \sum_{k \in (g)G_i} \frac{1}{|Z_{H_i}(h)|} \text{Tr}_s[k \tilde{K}_i(u, guh)kh] du.
\]

Applying the standard local index techniques as in [BGVM, Bis, LYZ, Ma, PW], we get

\[
\sum_{(h) \in T_{X \cap H_i}} \left[\frac{1}{|Z_{G_i}(g)| |Z_{H_i}(h)|} \lim_{t \to 0^+} \int_{U_i} \tilde{\phi}_i(u) \text{Tr}_s[k \tilde{K}_i(u, guh)gh] du \right]
\]

\[
= \sum_{(h) \in T_{X \cap H_i}} \left[\frac{1}{|Z_{G_i}(g)| |Z_{H_i}(h)|} \int_{G_i} \tilde{\phi}_i(u) \hat{A}_{deloc}(X) \text{ch}^S_{deloc}(G \setminus \mathcal{E}) \right]
\]

\[
= \int_{(G \setminus \mathcal{E})_{(g)}} \tilde{\phi}_i A_{(g)}(X) \text{ch}^S_{(g)}(G \setminus \mathcal{E}),
\]

for \(g \in G_i \). Therefore,

\[
\text{tr}_s^{(g)} S_t = \lim_{t \to 0^+} \text{tr}_s^{(g)} S_t = \sum_{i=1}^{N} \int_{(G \setminus \mathcal{E})_{(g)}} \tilde{\phi}_i A_{(g)}(X) \text{ch}^S_{(g)}(G \setminus \mathcal{E}) = \int_{(G \setminus \mathcal{E})_{(g)}} \hat{A}_{(g)}(X) \text{ch}^S_{(g)}(G \setminus \mathcal{E}).
\]

This completes the proof of the theorem. q.e.d.

Remark 3.24. Combining with the Kawasaki’ s orbifold index theorem, Theorem 3.23 implies that

\[
\sum_{(g)} \text{tr}_s^{(g)} S_t = \sum_{(g)} \int_{(G \setminus \mathcal{E})_{(g)}} \hat{A}_{(g)}(X) \text{ch}^S_{(g)}(G \setminus \mathcal{E}) = \int_{I(G \setminus \mathcal{E})} \hat{A}_{deloc}(G \setminus \mathcal{E}) \text{ch}^S_{deloc}(G \setminus \mathcal{E}) = \text{ind}(\mathcal{D}_{G \setminus \mathcal{E}}).
\]
In Sections 4.1 and 5 we shall give a K-theoretic interpretation of $\text{tr}_s^\mu(g) e^{-(\mathcal{D}^\mathcal{E})^2}$, which is called the localized index of $\mathcal{D}^\mathcal{E}$ at the conjugacy class (g) of g in G.

4. Higher Index Theory for Orbifolds

In this section, we propose a higher index of a G-invariant Dirac operator

$$\mathcal{D}^\mathcal{E} : L^2(X, \mathcal{E}) \to L^2(X, \mathcal{E})$$

on a complete Riemannian even dimensional orbifold with a proper, cocompact and isometric action of a discrete group G. This higher index generalizes the notion of higher index for smooth noncompact manifolds with a proper and free cocompact action of a discrete group G as in [K1] and [K2]. This higher index for smooth noncompact manifolds plays an important role in the study of the Novikov conjecture and the Baum-Connes conjecture. See [BC2], [BCH] and [Yu].

When X is a proper co-compact Riemannian G-manifold with a G-equivariant Clifford module \mathcal{E}, the Dirac operator $\mathcal{D}^\mathcal{E}$ gives rise to a K-homology class

$$[(L^2(X, \mathcal{E}), F) = \mathcal{D}^\mathcal{E}_X ([(\mathcal{D}^\mathcal{E})^2 + 1]^{-\frac{1}{2}}) \in K^0_G(C_0(X)).]$$

The higher index of $\mathcal{D}^\mathcal{E}_X$ is defined to be the image of the homology class (4.1) under the higher index map (See [K1])

$$\mu : K^0_G(C_0(X)) \to K_0(C^*(G)).$$

We refer to [K2, B3] for the definition and basic properties of KK-group and its relation to K-theory and K-homology. In Section 4.1 we shall construct the higher index map for a complete Riemannian orbifold X with a proper, cocompact and isometric action of a discrete group G. Then we calculate the higher index of $\mathcal{D}^\mathcal{E}$ as a KK-cycle in Section 4.2. After that we shall show that the higher index of $\mathcal{D}^\mathcal{E}$ is related to the orbifold index of $\mathcal{D}^{G, \mathcal{E}}$ via the trivial representation of G (cf. Theorem 4.13).

4.1. Higher analytic index map. We formulate the higher index in the context of proper co-compact G-orbifold following the philosophy of [K1]. In view of Lemma 2.3 on the local structure of the G-orbifold X, choose the corresponding proper étale groupoid $G = (G_1 \rightrightarrows G_0)$, i.e. $|X| \cong G_0/G_1$, which locally looks like (cf. Remark 2.3)

$$(G \times_{G_1} \dot{U}_i) \times H_i \rightrightarrows G \times_{G_1} \dot{U}_i$$

and naturally admits a G-action on the left. As G acts properly and cocompactly on X, G acts properly and cocompactly on G. Let $C^*_\text{red}(X)$ be the reduced C^*-algebra given by Definition 2.6. As the reduced C^*-norm is preserved under the left action of G on $C^*_\text{red}(G_1)$

$$(h \cdot f)(g) = f(h^{-1} \cdot g) \quad \forall h \in G, \forall f \in C^*_\text{red}(G_1),$$

the G-action extends to $C^*_\text{red}(X)$. The convolution algebra $C_c(G, C^*_\text{red}(X))$ is represented as a set of bounded operators on $L^2(G, C^*_\text{red}(X))$ given by the integration of the left regular representation of G on $L^2(G, C^*_\text{red}(X))$

$$C_c(G, C^*_\text{red}(X)) \to \mathcal{B}(L^2(G, C^*_\text{red}(X))).$$
Denote by $C^*_\text{red}(\mathfrak{X}) \rtimes G$ the closure of $C_\ast(G, C^*_\text{red}(\mathfrak{X}))$ under the operator norm of $\mathcal{B}(L^2(G, C^*_\text{red}(\mathfrak{X})))$. Denote by $C^*_\text{red}(\mathfrak{X}) \rtimes G$ the closure of the maximal operator norm of all the covariant representations of the convolution algebra $C_c(G, C^*_\text{red}(\mathfrak{X}))$.

A first ingredient is a projection in $C^*_\text{red}(\mathfrak{X}) \rtimes G$ constructed from a cut-off function c. Let \mathcal{P} be the closure of $C^\infty_c(\mathcal{G}_1)$ under the norm of $C^*_\text{red}(\mathfrak{X}) \rtimes G$. Then \mathcal{P} is a Hilbert $C^*_\text{red}(\mathfrak{X}) \rtimes G$-module. Let $c \in C^\infty_c(\mathfrak{G})$ be a cut-off function of \mathfrak{X} associated to the G action (cf. Definition 3.7) and $s : \mathcal{G}_1 \to \mathcal{G}_0$ be the source map. Then the pullback function

$$s^*c(\gamma) := c(s(\gamma)), \quad \forall \gamma \in \mathcal{G}_1$$

gives rise to a “cut-off” function in $C^\infty_c(\mathcal{G}_1)$, which satisfies

$$\sum_{g \in G} s^*c(g^{-1}\gamma) = \sum_{g \in G} c(s(g^{-1}\gamma)) = \sum_{g \in G} c(g \cdot s(\gamma)) = 1.$$

Define a projection $p \in C_c(G, C^\infty_c(\mathcal{G}_1)) \subset C^*_\text{red}(\mathfrak{X}) \rtimes G$ by

$$p(g)(x) = [s^*c(g^{-1}x)s^*c(x)]^{\frac{1}{2}}, \quad \forall g \in G, \forall x \in \mathcal{G}_1.$$

The Hilbert module \mathcal{P} is related to p. In fact, the image of the convoluting operation of p on $C^*_\text{red}(\mathfrak{X}) \rtimes G$ is \mathcal{P}, i.e.,

$$p \cdot [C^*_\text{red}(\mathfrak{X}) \rtimes G] = \mathcal{P}.$$

They represent the same element in the following identifications.

$$KK(C, C^*_\text{red}(\mathfrak{X}) \rtimes G) \cong K_0(C^*_\text{red}(\mathfrak{X}) \rtimes G) \cong K_0(C^*_\text{red}(G\backslash \mathfrak{X})).$$

The second ingredient is the analytic K-homology of $C^*_\text{red}(\mathfrak{X})$. Let H be a $\mathbb{Z}/2\mathbb{Z}$-graded Hilbert space equipped with a unitary representation π of the group G and with a $*$-homomorphism $\phi : C^*_\text{red}(\mathfrak{X}) \to \mathcal{B}(H)$, where the two representations respect the $\mathbb{Z}/2\mathbb{Z}$-grading and are compatible with the action of G on $C^*_\text{red}(\mathfrak{X})$:

$$\phi(g \cdot a) = \pi(g)\phi(a)\pi(g)^{-1} \quad \forall g \in G, \forall a \in C^*_\text{red}(\mathfrak{X}).$$

Let $F = \begin{pmatrix} 0 & F_- \\ F_+ & 0 \end{pmatrix}$, where $F^*_+ = F_-$ be a bounded operator on H such that

$$\phi(a)(F^2 - 1), [\phi(a), F], [\pi(g), F] \in \mathcal{K}(H) \quad \forall a \in C^*_\text{red}(\mathfrak{X}), \forall g \in G.$$

Here $\mathcal{K}(H)$ is the set of compact operators on H and $[\cdot, \cdot]$ is the graded commutator. Then the triple (H, π, F) gives rise to a K-homology element in $K^0_G(C^*_\text{red}(\mathfrak{X}))$. This K-homology cycle is the abstract model for G-invariant elliptic pseudo-differential operators of order 0 on \mathfrak{X}. Denote by $[F]$ the equivalence class $[(H, \pi, F)] \in K^0_G(C^*_\text{red}(\mathfrak{X}))$.

Definition 4.1 (Analytic index [K3]). The analytic K-theoretic index map is the homomorphism μ

$$\mu : K^0_G(C^*_\text{red}(\mathfrak{X})) \longrightarrow K_0(C^*(G))$$
from a K-homology element $[F] \in KK(C^*_\text{red}(\mathcal{X}))$ to the KK-product of the following elements

$$[\mathcal{P}] \in KK(C^*_\text{red}(\mathcal{X}) \rtimes G)$$

and

$$j^G([F]) \in KK(C^*_\text{red}(\mathcal{X}) \rtimes G, C^*(G)).$$

Here, j^G given by

$$(4.8) \quad j^G : KK(C^*_\text{red}(\mathcal{X}), \mathbb{C}) \to KK(C^*_\text{red}(\mathcal{X}) \rtimes G, C^*(G))$$

the descent homomorphism (cf. \text{K2} 3.11).

In order to accommodate the localized indices to be introduced in the next section, we introduce some variations of the analytic index map taking values in K-theory of some completions of $\mathbb{C}G$ in some other norms.

First of all, recall that the left regular representation of $L^1(G)$ on $L^2(G)$ extends to a natural surjective $*$-homomorphism $r : C^*(G) \to C^*_r(G)$, which gives rise to a K-theory homomorphism

$$r_* : K_0(C^*(G)) \to K_0(C^*_r(G)).$$

Composing r_* with (4.7) gives rise to the reduced version of the analytic index map.

Definition 4.2 (Analytic index (reduced version)). The reduced analytic K-theoretic index map is the homomorphism $\mu_{\text{red}} := r_* \circ \mu$

$$(4.9) \quad \mu_{\text{red}} : K^0(C^*_\text{red}(\mathcal{X})) \to K_0(C^*_r(G))$$

from a K-homology element $[F] \in K^0(C^*_\text{red}(\mathcal{X}))$ to the KK-product of $r_*[\mathcal{P}] \in KK(C^*_\text{red}(\mathcal{X}) \rtimes G, C^*_r(G))$ with

$$j^G([F]) := r_* \circ j^G([F]) \in KK(C^*_\text{red}(\mathcal{X}) \rtimes G, C^*_r(G)).$$

Remark 4.3. Observe that the K-theory element $r_*[\mathcal{P}] = [r \circ \mathcal{P}]$ is represented by $\mathcal{P}_{\text{red}} := r(\mathcal{P})$, which is the $C^*_\text{red}(\mathcal{X}) \rtimes_r G$-module given by $r(\mathcal{P}) = p[C^*_\text{red}(\mathcal{X}) \rtimes_r G]$ in view of (4.4).

Moreover, assume that $S(G)$ is a Banach algebra containing $\mathbb{C}G$ as a dense subalgebra. Then there is a condition for $S(G)$ due to Lafforgue \text{[La]}, which gives rise to the Banach algebra version of the analytic index map.

Definition 4.4 (Unconditional completion \text{[La]}). Let $S(G)$ be a Banach algebra equipped with a norm $\| \cdot \|_{S(G)}$ and containing $\mathbb{C}G$ as a dense subalgebra. Then $S(G)$ is called an unconditional completion of $\mathbb{C}G$ if for any $f_1, f_2 \in \mathbb{C}G$ satisfying $|f_1(g)| \leq |f_2(g)|, \forall g \in G$, we have $\|f_1\|_{S(G)} \leq \|f_2\|_{S(G)}$.

Let B be a G-Banach-algebra with norm $\| \cdot \|_B$. Denote by $S(G, B)$ the completion of $C_c(G, B)$ with respect to the norm

$$\| \sum_{g \in G} a_g g \| := \| \sum_{g \in G} a_g \|_{S(G)} \| B \|_S(G), \quad \sum_{g \in G} a_g g \in C_c(G, B).$$

If $S(G)$ is an unconditional completion, then by \text{[La]} the descent map formulated using Banach KK-theory is well-defined

$$(4.10) \quad j^G_{S(G)} : KK(C^*_\text{red}(\mathcal{X}), \mathbb{C}) \to KK^\text{ban}(S(G), C^*_\text{red}(\mathcal{X}), S(G)).$$

In (4.10) we used the KK-group $KK^\text{ban}(A, B)$ associated to two G-Banach algebras A and B. The group is defined by generalized Kasparov cycles.
of the form \((E, \phi, F)\) modulo suitable equivalence relations \([4.10]\). Here, \(E\) is a \(\mathbb{Z}/2\mathbb{Z}\)-graded Banach \(B\)-module and \(F \in \mathcal{B}(E)\) is an odd selfadjoint operator. In addition, \(G\) represents in \(\mathcal{B}(E)\) as a grading preserving unitary representation and \(\phi : A \to \mathcal{B}(E)\) is a grading preserving homomorphism.

Denote by \(\mathcal{K}(E)\) the compact operator over \(E\), then the triple \((E, \phi, F)\) is a generalized Kasparov cycle if

\[
[\phi(a), F], \phi(a)(F^2 - 1), [\pi(g), F] \in \mathcal{K}(E) \quad \forall a \in A, \forall g \in G.
\]

Analogously, the Banach algebra version of analytic index map can be defined as follows.

Definition 4.5 (Analytic index (Banach algebra version) \([4.10]\)). Let \(\mathcal{S}(G)\) be an unconditional completion of \(\mathbb{C}G\). The Banach algebra version of the analytic \(K\)-theoretic index map is the homomorphism \(\mu_{\mathcal{S}(G)}\)

\[(4.11) \quad \mu_{\mathcal{S}(G)} : K^0_G(C^*_\text{red}(\mathfrak{X})) \to K_0(\mathcal{S}(G)) \]

from a \(K\)-homology element \([F] \in K^0_G(C^*_\text{red}(\mathfrak{X}))\) to the \(KK\)-product of the element

\[\mathcal{P}_{\mathcal{S}(G)} \in KK^{\text{ban}}(\mathbb{C}, \mathcal{S}(G), C^*_\text{red}(\mathfrak{X})),\]

represented by the Banach \(\mathcal{S}(G, C^*_\text{red}(\mathfrak{X})))\)-module \(\mathcal{P}_{\mathcal{S}(G)} := p[\mathcal{S}(G, C^*_\text{red}(\mathfrak{X}))],\)

with the element

\[j^G_{\mathcal{S}(G)}([F]) \in KK^{\text{ban}}(\mathcal{S}(G, C^*_\text{red}(\mathfrak{X})), \mathcal{S}(G))\]

given by \([4.10]\).

Remark 4.6. The Banach algebra \(L^1(G) \subset C^*_\text{red}(G)\) is an unconditional completion of \(\mathbb{C}G\). In general, if we have an inclusion \(\iota^{S,C^*_\text{red}} : \mathcal{S}(G) \to C^*_\text{red}(G)\) for \(\mathcal{S}(G)\), then the (reduced) higher index and the Banach algebra version higher index are related as follows

\[r_*\mu[F] = \mu_{\text{red}}[F] = \iota^{S,C^*_\text{red}}_* \mu_{\mathcal{S}(G)}[F], \quad \forall [F] \in K^0_G(C^*_\text{red}(\mathfrak{X})).\]

4.2. Higher index for a discrete group action on a non-compact orbifold

Given the abstract setting of the higher index maps in Section 4.1, we shall describe the \(K\)-homological cycles in \(K^0_G(C^*_\text{red}(\mathfrak{X})))\) of the Dirac operator \(\mathcal{D}^E\) and its analytic index in \(K_0(C^*_\text{red}(G))\) and in \(K_0(\mathcal{S}(G))\) in terms of (generalized) Kasparov cycles.

Let \(G\) be a discrete group acting properly, co-compactly and isometrically on a complete Riemannian orbifold \(\mathfrak{X}\). Let \(\mathcal{E}\) be a Hermitian orbifold vector bundle over \(\mathfrak{X}\). The Hilbert space \(L^2(\mathfrak{X}, \mathcal{E})\) is the completion of the compactly supported smooth sections \(\Gamma_c(\mathfrak{X}, \mathcal{E})\) with respect to the following inner product

\[(4.12) \quad \langle f, g \rangle_{L^2} = \int_X \langle f(x), g(x) \rangle_{\mathcal{E}_x} d\text{vol}_x(x) \quad \forall f, g \in \Gamma_c(\mathfrak{X}, \mathcal{E}).\]

It is a \(G\)-algebra with the action given by

\[g \cdot f(x) := gf(g^{-1}x), \quad \forall g \in G, \forall f \in L^2(\mathfrak{X}, \mathcal{E}).\]
A natural representation \(\phi : C^*_{red}(\mathfrak{X}) \to \mathcal{B}(L^2(\mathfrak{X}, \mathcal{E})) \) is given by the following natural action: \(\forall m \in C^\infty_c(\mathcal{G}_1), \forall x \in \mathcal{G}_0 \) and \(\forall f \in L^2(\mathfrak{X}, \mathcal{E}) \),

\[
(4.13) \quad [m \cdot f](x) = \sum_{g \in s^{-1}(x)} m(g)(g \cdot f)(x) = \sum_{g \in s^{-1}(x)} m(g)[f(g^{-1}x)] \in \tilde{\mathcal{E}}_x.
\]

As we have discussed in Section \([3]\) a properly supported \(\mathcal{G} \)-invariant pseudo-differential operator \(D_\mathfrak{X} \) on \(\Gamma_c(\mathfrak{X}, \mathcal{E}) \to \Gamma_c(\mathfrak{X}, \mathcal{E}) \) of order \(m \) extends to a bounded linear operator between Sobolev spaces

\[
D_\mathfrak{X} : L^2_k(\mathfrak{X}, \mathcal{E}) \to L^2_{k-m}(\mathfrak{X}, \mathcal{E})
\]

for all \(k \geq m \). By the compact embedding theorem, for any \(f \in C_c(\mathcal{G}_1) \) and for any pseudodifferential operator \(D_\mathfrak{X} \) of negative order, the operator \(\phi(f)D_\mathfrak{X} \) is compact.

Lemma 4.7. Let \(\mathcal{D}_\mathcal{E} \) be a Dirac operator on \(\mathfrak{X} \). Then the Hilbert space \(L^2(\mathfrak{X}, \mathcal{E}) \), the representation \([4.13]\) and the operator \(F = \frac{\mathcal{D}_\mathcal{E}}{\sqrt{1 + (\mathcal{D}_\mathcal{E})^2}} \) form a cycle in the \(K \)-homology group

\[
[\mathcal{D}_\mathcal{E}] := [(L^2(\mathfrak{X}, \mathcal{E}), \phi, F)] \in K_0^0(C^*_{red}(\mathfrak{X})).
\]

Proof. Note that \(\mathcal{D}_\mathcal{E} = \left(\begin{array}{cc} 0 & \mathcal{D}_\mathcal{E} \\ \mathcal{D}_\mathcal{E} & 0 \end{array} \right) \) is a \(\mathcal{G} \)-invariant Dirac operator on \(L^2(\mathfrak{X}, \mathcal{E}) \). Then \(F = \frac{\mathcal{D}_\mathcal{E}}{\sqrt{1 + (\mathcal{D}_\mathcal{E})^2}} \) is an order 0 pseudo-differential operator on \(L^2(\mathfrak{X}, \mathcal{E}) \). \(F \) can be extended to a bounded operator on \(L^2(\mathfrak{X}, \mathcal{E}) \). Observe that \(1 - F^2 = (1 + (\mathcal{D}_\mathcal{E})^2)^{-1} \) is a pseudo-differential operator of order \(-2\). Thus,

\[
\phi(f)(1 - F^2) \in \mathcal{K}(L^2(\mathfrak{X}, \mathcal{E})) \quad \forall f \in C_0(\mathfrak{X}) = C_0(\mathcal{G}).
\]

Note that by the \(\mathcal{G} \)-invariance of \(F \), we have \([F, \pi(g)] = 0, \forall g \in \mathcal{G} \). It is straightforward to check \([F, \phi(f)] \in \mathcal{K}(L^2(\mathfrak{X}, \mathcal{E})), \forall f \in C_c(\mathcal{G}_1) \). For the conditions in \([11,16]\), we only need to check for \(f \in C_c(\mathcal{G}_1) \) the dense subalgebra of \(C^*_{red}(\mathfrak{X}) \), which can be done as in \([13]\) for the manifold cases. \(\text{q.e.d.} \)

Definition 4.8. The **higher index**, denoted by \(\text{Ind} \mathcal{D}_\mathcal{E} \), is defined to be

\[
\text{Ind} \mathcal{D}_\mathcal{E} = \mu([\mathcal{D}_\mathcal{E}]) \in K_0(C^*(\mathcal{G})),
\]

the image in \(K_0(C^*(\mathcal{G})) \) of \(\mathcal{D}_\mathcal{E} \) under the analytic index map \([4.7]\).

We now calculate the higher index of \(\mathcal{D}_\mathcal{E} \), as a \(KK \)-cycle in \(K_0(C^*(\mathcal{G})) \cong KK(\mathbb{C}, C^*(\mathcal{G})) \), following from the work of Kasparov \([3]\).

Recall that in \([4.12]\) the algebra \(\Gamma_c(\mathfrak{X}, \mathcal{E}) \) is equipped with a pre-Hilbert space inner product. However, this inner product is not sufficient for us to derive an analogous Fredholm property for \(\mathcal{D}_\mathcal{E} \). Instead, we equip \(\Gamma_c(\mathfrak{X}, \mathcal{E}) \) a \(\mathbb{C}\mathcal{G} \)-valued inner product given by

\[
(f \cdot b)(x) := \sum_{g \in \mathcal{G}} g(f(g^{-1}x))b(g^{-1})
\]

\[
(4.14)
\]

\[
\langle f_1, f_2 \rangle_{\mathbb{C}\mathcal{G}}(g) := \int_{\mathfrak{X}} \langle f_1(x), g(f_2(g^{-1}x)) \rangle_{\mathcal{E}_x} \text{d} \text{vol}_{\mathfrak{X}}(x)
\]

\[
(f_1, f_2)_{\mathbb{C}\mathcal{G}} := \int_{\mathfrak{X}} \langle f_1(x), f_2(x) \rangle_{\mathcal{E}_x} \text{d} \text{vol}_{\mathfrak{X}}(x)
\]
for all \(f, f_1, f_2 \in \Gamma_c(\mathfrak{X}, \mathcal{E}), g \in G \), and \(b \in CG, x \in \mathcal{G}_0 \). It is routine to check that \((4.14)\) gives rise to a pre-Hilbert \(CG \)-module. For example, by \((4.14)\) we have
\[
\langle f_1, f_2b \rangle_{CG} = \langle f_1, f_2 \rangle_{CG}b, \quad \forall f_1, f_2 \in \Gamma_c(\mathfrak{X}, \mathcal{E}), b \in CG.
\]
Denote by \(\mathcal{A} \) the completion of \(\Gamma_c(\mathfrak{X}, \mathcal{E}) \) in the Hilbert \(C^*\)(G)-norm given by the inner product \((4.14)\). Let \(c \in C^\infty_c(G) \) be a cut-off function of \(\mathfrak{X} \) with respect to the \(G \)-action, where the pullback \(s^*c \in C^\infty_c(\mathcal{G}_1) \) acts on \(g \cdot e \in L^2(\mathfrak{X}, \mathcal{E}) \) in the sense of \((4.13)\). Then there is an inclusion \(\iota : \Gamma_c(\mathfrak{X}, \mathcal{E}) \hookrightarrow C^\infty_c(G, L^2(\mathfrak{X}, \mathcal{E})) \) given by
\[
(4.15) \quad \iota(e)(g) = c^\frac{1}{2} \cdot [g \cdot e] \quad \forall e \in \Gamma_c(\mathfrak{X}, \mathcal{E}), \forall g \in G.
\]
Denote by \(L^2(\mathfrak{X}, \mathcal{E}) \rtimes G \) the maximal crossed product as the completion of \(C^\infty_c(G, L^2(\mathfrak{X}, \mathcal{E})) \) under the norm \(\| \sum_{g \in G} \| a_g \| L^2 \|_{\text{max}} \) for \(f = \sum_{g \in G} a_g g \in C^\infty_c(G, L^2(\mathfrak{X}, \mathcal{E})) \), where \(\| \cdot \|_{\text{max}} \) is the norm of \(C^*(G) \). It is a Hilbert \(C^*(G) \)-module.

Proposition 4.9 \((\text{K3})\). The inclusion map \(\iota \) given by \((4.15)\) extends to a injective homomorphism between Hilbert \(C^*(G) \)-modules
\[
\iota : \mathcal{A} \hookrightarrow L^2(\mathfrak{X}, \mathcal{E}) \rtimes G.
\]
Moreover, \(\mathcal{A} \) is a direct summand of \(L^2(\mathfrak{X}, \mathcal{E}) \rtimes G \) as a Hilbert \(C^*(G) \)-submodule.

Proof. Notice that \(C^\infty_c(G, L^2(\mathfrak{X}, \mathcal{E})) \) carries a natural \(CG \)-module structure given by convolution. It is easy to check that the inclusion \(\iota \) is compatible with the pre-Hilbert \(CG \)-module structures. By taking the completion, \(\mathcal{A} \) is regarded as a Hilbert \(C^*(G) \)-submodule for \(L^2(\mathfrak{X}, \mathcal{E}) \rtimes G \). To show the second claim, note that \(\iota \) admits an adjoint \(q := \iota^* \) with respect to the \(CG \)-valued inner product on \(C^\infty_c(G, L^2(\mathfrak{X}, \mathcal{E})) \) given by
\[
(4.16) \quad q : C^\infty_c(G, L^2(\mathfrak{X}, \mathcal{E})) \to \Gamma_c(\mathfrak{X}, \mathcal{E}) \quad f \mapsto \sum_{g \in G} c(g^{-1} \cdot \frac{1}{2} \cdot [g \cdot f(g^{-1})]).
\]
As a consequence \(q \circ \iota \) is identity on \(\Gamma_c(\mathfrak{X}, \mathcal{E}) \) and \(\iota \circ q \) is the projection from \(C^\infty_c(G, L^2(\mathfrak{X}, \mathcal{E})) \) to \(\Gamma_c(\mathfrak{X}, \mathcal{E}) \). The projection \(\iota \circ q \) extends to \(L^2(\mathfrak{X}, \mathcal{E}) \rtimes G \) and has \(\mathcal{A} \) as its image. The proposition is then proved. \(\text{q.e.d.} \)

Remark 4.10. The projection map \(\iota \circ q \) applied to \(L^2(\mathfrak{X}, \mathcal{E}) \rtimes G \) agrees with the left convolution of the projection \(p \) (defined in \((1.3)\)) with \(L^2(\mathfrak{X}, \mathcal{E}) \rtimes G \). In other words, we have
\[
(4.17) \quad p[L^2(\mathfrak{X}, \mathcal{E}) \rtimes G] = \mathcal{A}.
\]

Proposition 4.11 \((\text{K3})\). Let \(D^E \) be a Dirac operator on \(\mathfrak{X} \) and let \([\mathcal{D}^E]\) be the K-homology element in Lemma \((1.7)\) Then the KK-cycle of the higher index \(\text{Ind} D^E \in K_0(\text{C}^*(G)) \) is given by
\[
(4.18) \quad [(\mathcal{A}, 1_\mathcal{E}, p\tilde{F}p)] = [(q(L^2(\mathfrak{X}, \mathcal{E}) \rtimes G), 1_\mathcal{E}, q \circ \tilde{F} \circ i)] \in KK(\mathcal{C}, \text{C}^*(G)).
\]
Here, \(\tilde{F} \) is the lift of the operator \(F = D^E \big(1 + (D^E)^2 \big)^{-\frac{1}{2}} \) to \(L^2(\mathfrak{X}, \mathcal{E}) \rtimes G \) given by
\[
(4.19) \quad \tilde{F}(h)g = F(h(g)), \quad \forall h \in C^\infty_c(G, L^2(\mathfrak{X}, \mathcal{E})), \forall g \in G.
\]
Proposition 4.12. Let $D^\mathcal{E}$ be a Dirac operator on \mathfrak{X} and let $[D^\mathcal{E}]$ be the K-homology element in Lemma 4.18. Then the K-cycle of the higher index $\mu_{\mathcal{S}(G)}[D^\mathcal{E}] \in K_0(\mathcal{S}(G))$ is given by the following KK-cycle:

$$(4.22) \quad \mu_{\mathcal{S}(G)}[D^\mathcal{E}] = \mu_{\mathcal{S}(G)}[L^2(\mathfrak{X}, \mathcal{E})].$$

Here, \tilde{F} is the lift of the operator F to $L^2(\mathfrak{X}, \mathcal{E}) \rtimes G$ given by (4.19). Then the image of $[F]$ under the descent map j^G is given by

$$j^G([L^2(\mathfrak{X}, \mathcal{E}), \phi, F]) = [L^2(\mathfrak{X}, \mathcal{E}) \rtimes G, \tilde{\phi}, \tilde{F}].$$

Thus, we have

$$\text{Ind } \mathcal{I}^\mathcal{E} = \int_\mathcal{P} \otimes C^*_r(\mathfrak{X}) \rtimes G \left[L^2(\mathfrak{X}, \mathcal{E}) \rtimes G, \phi, \tilde{F} \right] = \int_\mathcal{P} \otimes C^*_r(\mathfrak{X}) \rtimes G \left[L^2(\mathfrak{X}, \mathcal{E}) \rtimes G, 1_\mathbb{C}, \mathcal{P} \mathcal{F} \mathcal{P} \right].$$

The statement is proved by noting that \mathcal{A} is the product of the Hilbert $C^*_r(\mathfrak{X}) \rtimes G$-module \mathcal{P} and the Hilbert $C^*(G)$-module $L^2(\mathfrak{X}, \mathcal{E}) \rtimes G$. In fact, by Remark 4.10 we have

$$\mathcal{P} \otimes C^*_r(\mathfrak{X}) \rtimes G \left[L^2(\mathfrak{X}, \mathcal{E}) \rtimes G \right] = \mathcal{P} \cdot \left[C^*_r(\mathfrak{X}) \rtimes G \right] \otimes C^*_r(\mathfrak{X}) \rtimes G \left[L^2(\mathfrak{X}, \mathcal{E}) \rtimes G \right] = \mathcal{A}.$$
4.3. Orbifold index and the higher index. We relate the higher index of D^E to the Kawasaki index of $D^{G,E}$ on $G \backslash \mathfrak{X}$. This is essentially a result of Theorem 3.4 and Theorem 5.12. Here we present an alternative proof which uses only KK-theory.

Theorem 4.13. The Kawasaki’s index for closed orbifold $G \backslash \mathfrak{X}$ is equal to the trivial representation of G induced on the higher index of D^E:

$$\text{ind } D^{G,E} = \rho_*(\mu[D^E])$$

(4.23)

where $\rho_* : K_0(C^*(G)) \to \mathbb{Z}$ is induced by

$$\rho : C^*(G) \to \mathbb{C} : \sum \alpha_g g \mapsto \sum \alpha_g$$

(4.24)

and μ is the higher index map (4.7).

Proof. Let $F = \sqrt{D^E}$ and $F_{G \backslash \mathfrak{X}} = \sqrt{D^{G,E}}$. Then the action of $F_{G \backslash \mathfrak{X}}$ on $\Gamma(G \backslash \mathfrak{X}, G \backslash \mathcal{E})$ can be identified to that of F on the G-equivariant sections $\Gamma(\mathfrak{X}, \mathcal{E})^G$. The functorial map ρ_* applied to the higher index $\mu[D^E]$ is essentially the KK-product of $\mu[F]$ by $[(\mathbb{C}, \rho, 0)]$ over $C^*(G)$ in the following map (See [B3])

$$KK(\mathbb{C}, C^*(G)) \times KK(C^*(G), \mathbb{C}) \to KK(\mathbb{C}, \mathbb{C}) \cong \mathbb{Z}.$$

Then the right hand side of (4.23) is

$$\rho_*(\mu[F]) = [(A, 1_{\mathbb{C}}, q \circ \tilde{F} \circ \iota)] \otimes C^*(G) [(\mathbb{C}, \rho, 0)]$$

(4.25)

$$= [(A \otimes C^*(G) \mathbb{C}, 1_{\mathbb{C}}, (q \circ \tilde{F} \circ \iota) \otimes 1)]$$

where $A = q(L^2(\mathfrak{X}, \mathcal{E}) \times G)$ and by (4.15), (4.16) and (4.19) we have

$$q \circ \tilde{F} \circ \iota = \sum_{g \in G} g(e^{\frac{i}{2}F_c \frac{f}{2}}).$$

(4.26)

In the following we shall identify $L^2(G \backslash \mathfrak{X}, G \backslash \mathcal{E})$ and $A \otimes C^*(G) \mathbb{C}$. For a fixed cut-off function c, we have the map

$$j : \Gamma(G \backslash \mathfrak{X}, G \backslash \mathcal{E}) \to \Gamma_c(\mathfrak{X}, \mathcal{E}) \otimes_{CG} \mathbb{C} \quad f \mapsto c \cdot \tilde{f} \otimes 1.$$

Here, $\Gamma_c(\mathfrak{X}, \mathcal{E})$ is a pre-Hilbert CG-module and \tilde{f} is the image of f under the natural map $\Gamma(G \backslash \mathfrak{X}, G \backslash \mathcal{E}) \cong \Gamma(\mathfrak{X}, \mathcal{E})^G$. We show that $j(f)$ does not depend on the choice of c. In fact, for another cut-off function d and any $h \otimes 1 \in \Gamma_c(\mathfrak{X}, \mathcal{E}) \otimes_{CG} \mathbb{C}$, as \tilde{f} is G-invariant, we have

$$\langle (d - c) \tilde{f} \otimes 1, h \otimes 1 \rangle = \sum_{g \in G} \langle ((d - c) \tilde{f})(gx), h(x) \rangle = 0.$$

Hence the nondegeneracy of the inner product implies that $d \tilde{f} \otimes 1 = c \tilde{f} \otimes 1$.

We claim that j preserves the inner products. In fact, the claim follows from

$$\langle f, h \rangle = \int_{G \backslash \mathfrak{X}} \langle f(x), h(x) \rangle_{(G \backslash \mathcal{E})_x} d\text{vol}_{G \backslash \mathfrak{X}}(x)$$

$$= \int_{\mathfrak{X}} c(x) \langle f(x), h(x) \rangle_{\mathcal{E}_x} d\text{vol}_X(x)$$

and
\begin{equation}
\langle j(f), j(h) \rangle = \sum_{g \in G} \int_{\orb X} (c(x) \tilde{f}(x), c(g^{-1} x) \tilde{h}(gx)) \xi_x d \text{vol}_X(x)
\end{equation}

for all \(f, h \in C(G \backslash \mathfrak{X}, G \backslash \mathcal{E}) \). Hence, the map \(j \) extends to an isomorphism of two Hilbert spaces \(j : L^2(G \backslash \mathfrak{X}, G \backslash \mathcal{E}) \to A \otimes_{CG} \mathbb{C} \).

It is straight forward to check that the inverse of \(j \) is given by \(j^{-1} : A \otimes_{C^*} G \mathbb{C} \to L^2(G \backslash \mathfrak{X}, G \backslash \mathcal{E}) \quad h \otimes 1 \mapsto \sum_{g \in G} h(g^{-1} \cdot) \).

Then together with (4.25) and (4.26) we have \(\rho_* (\mu[F]) = \left[(L^2(G \backslash \mathfrak{X}, G \backslash \mathcal{E}), 1_{C}, F_{G \backslash \mathfrak{X}}) \right] = \left[(L^2(G \backslash \mathfrak{X}, G \backslash \mathcal{E}), F_0) \right] \), where

\[F_0 = j^{-1} \circ \left(\sum_{g \in G} g(c^{\frac{1}{2}} F c^{\frac{1}{2}}) \otimes 1 \right) \circ j = \sum_{l, g \in G} c(g^{-1} l^{-1} x)^{\frac{1}{2}} F (g^{-1} l^{-1} x)^{\frac{1}{2}} c(l^{-1} x). \]

Finally, observe that the left hand side of (4.23) is

\[\text{ind } \mathcal{D}^{G \backslash \mathfrak{X}} = \left[(L^2(G \backslash \mathfrak{X}, G \backslash \mathcal{E}), 1_{C}, F_{G \backslash \mathfrak{X}}) \right]. \]

One need only to show that \(F_0 \) and \(F \) coincide up to compact operators on \(\Gamma(\mathfrak{X}, \mathcal{E})^G \) (denoted \(F_0 \equiv F \)), i.e., they have the same Fredholm index. As we have \(\sum_{g \in G} g(c^{\frac{1}{2}} F c^{\frac{1}{2}}) \equiv \sum_{g \in G} g(c F) = F \). Then

\[F_0 = \sum_{l \in G} l \left(\sum_{g \in G} g(c^{\frac{1}{2}} F c^{\frac{1}{2}}) c \right) \equiv \sum_{l \in G} l(F c) = F = F_{G \backslash \mathfrak{X}}. \]

The theorem is proved.

q.e.d.

Remark 4.14. It is important to emphasis \(G \) being discrete to ensure

\[\Gamma(\mathfrak{X}, \mathcal{E})^G \cong \Gamma(G \backslash \mathfrak{X}, G \backslash \mathcal{E}) \]

and so that \(\mathcal{D}^{G \backslash \mathfrak{X}} \) is a restriction of \(\mathcal{D}^\mathfrak{X} \) to the invariant sections. We used this identification in the proof of Theorem 4.13. If \(G \) is a locally compact group acting on \(\mathfrak{X} \) properly, co-compactly and isometrically, then an elliptic operator \(\mathcal{D}^{G \backslash \mathfrak{X}} \) on \(G \backslash \mathfrak{X} \) lifts to a transversally elliptic operator on \(\mathfrak{X} \), which is elliptic when \(G \) is discrete. When a group \(G \) is continuous, the restriction \(\mathcal{D}^{G \backslash \mathfrak{X}} \) loses informations on the longitudinal part of a \(G \)-invariant operator \(\mathcal{D}^\mathfrak{X} \) on \(\mathfrak{X} \). However, a result similar to Theorem 4.13 when a locally compact group acts on a manifold properly and co-compactly, can be found in [MZ].
5. Localized Indices

In this section, we introduce the localized trace associated to each conjugacy class \((g) \) of \(g \in G \) and define the corresponding localized index. We show that localized indices is a well-defined topological invariant for the \(G \)-invariant Dirac operator \(D^G \). In particular, the localized index at the group identity is just the \(L^2 \)-index, obtained from taking the canonical von Neumann trace on the group von Neumann algebra \(N_G \) of the higher index. We also show that the localized index can be computed from the heat kernel of the Dirac operator.

5.1. Localized traces. Denote by \((g) \) the conjugacy class of \(g \) in \(G \). Define a map \(\tau(g) : C^G \rightarrow \mathbb{C} \) given by

\[
\sum_{h \in G} \alpha_h h = \sum_{h \in (g)} \alpha_h.
\]

Lemma 5.1. The linear map \(\tau(g) \) in (5.1) is a trace for \(C^G \), that is, \(\tau(g)(ab) = \tau(g)(ba) \) for any \(a, b \in C^G \).

Proof. Let \(a = \sum_{g \in G} a_g g \) and \(b = \sum_{g \in G} b_g g \), where all but finite coefficients are 0, i.e. \(a, b \in C^G \). Let \(c_g, d_g \) be the coefficients of the products:

\[
ab = \sum_{g \in G} c_g g \quad \text{and} \quad ba = \sum_{g \in G} d_g g.
\]

Thus \(c_k = \sum_{h \in G} a_{kh^{-1}} b_h \) and \(d_k = \sum_{h \in G} b_{kh^{-1}} a_h \). Let \(K \) be defined in (3.20). Then

\[
\tau(g) \left(\sum_{h \in G} \alpha_h h \right) = \sum_{k \in K} \alpha_{kg^{-1}}.
\]

By Definition 5.1 and Lemma 3.15, we have

\[
\tau(g)(ba) = \sum_{k \in K, h \in G} a_h b_{kg^{-1}h^{-1}} \quad \text{and}
\]

\[
\tau(g)(ab) = \sum_{k \in K, h \in G} a_{kg^{-1}h^{-1}} b_h = \sum_{k \in K} \left(\sum_{h \in G} a_{kg^{-1}h^{-1}} b_{h^{-1}} \right) \]

\[
= \sum_{k \in K} \left(\sum_{h \in G} a_h b_{h^{-1}kg^{-1}} \right) = \sum_{k \in K} \left(\sum_{h \in G} a_{h^{-1}kg^{-1}} b_h \right) \]

\[
= \sum_{h \in G} \left(\sum_{k \in K, h \in K} a_h b_{kg^{-1}h^{-1}} \right).
\]

It is easy to verify that \(hK \) also satisfies (3.20) for each \(h \in G \). Then \(\tau(g)(ab) = \tau(g)(ba) \). The lemma is proved. q.e.d.

Definition 5.2 (Localized \((g)\)-trace). Let \(S(G) \) be a Banach algebra being an unconditional completion of \(C^G \) satisfying

\[
L^1(G) \subset S(G) \subset C^*_r(G).
\]

A localized \((g)\)-trace on \(S(G) \) is a continuous trace map

\[
\tau(g) : S(G) \rightarrow \mathbb{C},
\]
which extends the map \((\tilde{S}, \tilde{L})\).

Remark 5.3. The localized \((g)\)-trace map always exists. We can choose \(S(G)\) to be \(L^1(G)\). Note that \(L^1(G)\) is an unconditional completion of \(CG\). The continuity of \(\tau^g : L^1(G) \to \mathbb{C}\) can be proved as follows. For any \(\varepsilon > 0\), choose \(\delta = \varepsilon\), for all \(\|a\|_{L^1} < \delta\) where \(a = \sum_{g \in G} a_g g\), then we have

\[
|\tau^g(a)| := \left| \sum_{h \in (g)} a_h \right| \leq \sum_{h \in G} |a_h| = \|a\|_{L^1} < \varepsilon.
\]

Remark 5.4. Let \(e\) be the group identity of \(G\). The localized \((e)\)-trace is “global” in the sense that it is given by the canonical continuous trace on \(C^*_\tau(G)\):

\[
\tau^e : C^*_\tau(G) \longrightarrow \mathbb{C}, \quad \sum_{h \in G} a_h h \mapsto a_e.
\]

In fact, \(\tau^e\) can be further extended to a continuous normalized trace on the group von Neumann algebra \(NG\), the weak closure of \(C^*_\tau(G)\). Note that we have the \(*\)-homomorphisms

\[C^*(G) \to C^*_\tau(G) \hookrightarrow NG,\]

which induce the following homomorphisms on the level of \(K\)-theory

\[
K_* (C^*(G)) \longrightarrow K_* (C^*_\tau(G)) \longrightarrow K_* (NG).
\]

Recall that a trace \(\tau\) on a \(C^*\)-algebra \(A\) is **normalized** if it is a state, i.e.,

\[\tau(a^*a) \geq 0, \quad \forall a \in A \quad \text{and} \quad \tau(e) = 1.\]

The trace \(\tau^e\) is normalized. For a general conjugacy class \((g)\) consisting of infinite elements, then \(\tau^g\) is not normalized, hence it may not be a continuous trace on \(NG\).

Remark 5.5. If \(G\) is abelian or if \((g)\) is a finite set, then \(\tau^g\), for \(g \neq e\), can be extended to a continuous trace \(C^*_\tau(G) \to \mathbb{C}\). In general, however, a trace map \(C^*_\tau(G) \to \mathbb{C}\) can fail to be continuous. Thus, \(S(G)\) is not necessarily equal to \(C^*_\tau(G)\).

The localized \((g)\)-trace \(\tau^g\) in Definition 5.2 and the \((g)\)-trace \(\text{tr}^g\) introduced in Section 3 are closely related. Let \(S : \Gamma_c(\mathcal{X}, \mathcal{E}) \to \Gamma_c(\mathcal{X}, \mathcal{E})\) be a \(G\)-invariant operator that extends to a bounded operator on \(L^2(\mathcal{X}, \mathcal{E})\). Denote by \(\tilde{S} : C_c(G, L^2(\mathcal{X}, \mathcal{E})) \to C_c(G, L^2(\mathcal{X}, \mathcal{E}))\) the lift of \(S\) given by

\[(\tilde{S}u)(g) = S(u(g)), \quad \forall u \in C_c(G, L^2(\mathcal{X}, \mathcal{E})), \forall g \in G.\]

Let \(S(G)\) be an unconditional completion of \(CG\) such that the localized \((g)\)-trace on \(S(G)\) is continuous. Then the following properly supported operator

\[
S_A := q \tilde{S} = \sum_{g \in G} g \cdot (e^{\frac{1}{2}} S e^{\frac{1}{2}})
\]

can be extended to a bounded operator on the \(S(G)\)-module \(A_{S(G)}\) (cf. (4.21)).
Lemma 5.6. Let \(S : L^2(\mathfrak{X}, \mathcal{E}) \to L^2(\mathfrak{X}, \mathcal{E}) \) be a bounded selfadjoint \(G \)-invariant smoothing operator. Let \(S_A : \mathcal{A}_{S(G)} \to \mathcal{A}_{S(G)} \) be the operator given by (5.7). Then,

1. \(S_A \) on \(L^2(\mathfrak{X}, \mathcal{E}) \) is of \((g)\)-trace class in the sense of Definition 3.13 for all \(g \in G \).
2. \(\text{Tr}_s S_A \in \mathcal{S}(G) \) (cf. Definition 5.2) and its localized \((g)\)-trace coincide with the \((g)\)-trace of \(S_A \), i.e.,

\[
(5.7) \quad \text{tr}_s^{(g)}(S_A) = \tau^{(g)}(\text{Tr}_s S_A) \in \mathbb{R}.
\]

Proof. (1) As the cut-off function \(c \) is compactly supported, the operator \(c^2 S c^2 \) is compactly supported. Then \(S_A \) given by \(\sum_{g \in G} g \cdot (c^2 S c^2) \) as in (5.6) is properly supported and is of \((g)\)-trace class (cf. Lemma 3.12 and Proposition 3.16).

(2) Recall from Section 4.2, \(\Gamma_c(\mathfrak{X}, \mathcal{E}) \) has both the pre-Hilbert space structure (4.12) and the \(C^* \)-module structure (4.14). There is an injection \(\iota \) from \(\Gamma_c(\mathfrak{X}, \mathcal{E}) \) to \(C_c(G, L^2(\mathfrak{X}, \mathcal{E})) \) given by (4.13), and it preserve the \(C^* \)-inner product. Now, \(\mathcal{A}_{S(G)} \) is the closure of \(\iota(\Gamma_c(\mathfrak{X}, \mathcal{E})) \) under the \(C^* \)-valued inner product (4.14).

Let \(\{u_i\}_{i \in \mathbb{N}} \in \Gamma_c(\mathfrak{X}, \mathcal{E}) \) so that \(\{\iota(u_i)\}_{i \in \mathbb{N}} \) forms an orthonormal basis for the \(S(G) \)-module \(\mathcal{A}_{S(G)} \). Without loss of generality, let us ignore the \(\mathbb{Z}/2\mathcal{Z} \)-grading on \(\mathcal{E} \) and work on trace instead of supertrace. Then

\[
(\text{Tr}_s S_A)(k) = \sum_i \langle S_A u_i, u_i \rangle_{CG} \quad \forall k \in G.
\]

As \(S_A \) is properly supported, \(u_i \) is compactly supported and the action of \(G \) on \(\mathfrak{X} \) is proper, \(\text{Tr}_s S_A(k) \) vanishes for all but finite \(k \in G \). Therefore, \(\text{Tr}_s S_A \in \mathcal{C}^*_G \subset \mathcal{S}(G) \).

To see (5.7), we calculate the localized \((g)\)-trace of \(\text{Tr}_s S_A \) as follows.

\[
\tau^{(g)}((\text{Tr}_s S_A)(\cdot)) = \sum_{k \in (g)} \sum_i \langle S_A u_i, u_i \rangle_{CG}(k).
\]

By definition of the \(C^* \)-inner product (4.14), we have

\[
\langle u_i, u_j \rangle_{L^2} = \langle u_i, u_j \rangle_{CG}(v) = \delta_{ij} \quad \forall i, j \in \mathbb{N};
\]

\[
\langle h \cdot u_i, g \cdot u_j \rangle_{L^2} = \langle u_i, u_j \rangle_{CG}(h^{-1}g) = 0 \quad \forall g \neq h, \forall i, j \in \mathbb{N}.
\]

Then

\[
(5.8) \quad \{g \cdot u_i\}_{g \in G, i \in \mathbb{N}} \in \Gamma_c(\mathfrak{X}, \mathcal{E})
\]

forms an orthonormal subset of \(L^2(\mathfrak{X}, \mathcal{E}) \).

We claim that (5.8) forms a basis for \(L^2(\mathfrak{X}, \mathcal{E}) \). If not, let \(v \in L^2(\mathfrak{X}, \mathcal{E}) \) is a vector perpendicular to all elements in (5.8). Then

\[
\langle v, u_i \rangle_{CG}(g) = \langle v, g \cdot u_i \rangle_{L^2} = 0 \quad \forall g \in G, \forall i \in \mathbb{N}.
\]

This implies that \(\iota(v) \) is perpendicular to the basis \(\{\iota(u_j)\}_{j \in \mathbb{N}} \) in \(\mathcal{A}_{S(G)} \). So \(\iota(v) = 0 \). As \(\iota \) is injective we conclude that \(v = 0 \). Thus, elements of the set (5.8) form an orthonormal basis for \(L^2(\mathfrak{X}, \mathcal{E}) \).

To compute the trace of \(S_A \), we consider

\[
(5.9) \quad \langle S_A u_i, u_i \rangle_{CG}(k) = \int_{\mathfrak{X}} \langle S_A u_i(x), k \cdot u_i(x) \rangle_{\mathcal{E}_x} d\text{vol}_\mathfrak{X}(x)
\]
obtained by (4.14). Note that S_A is G-invariant by (5.6). In particular, we may replace S_A on the right hand side of (5.9) by

$$S_A = \sum_{h \in G} h \cdot (c_{S_A}) = \sum_{h \in G} h(c_{S_A})h^{-1}. $$

Therefore for all $k \in G$, we have

$$\langle S_A u_i, u_i \rangle_{CG(k)} = \sum_{h \in G} \int_{\text{orb}(X)} \langle h(c_{S_A})h^{-1}u_i(x), ku_i(x) \rangle_{E} d \text{vol}_X(x).$$

As we sum all $k \in (g)$ we obtain

$$\sum_{k \in (g)} \langle S_A u_i, u_i \rangle_{CG(k)} = \sum_{k \in (g)} \sum_{h \in G} \int_{\text{orb}(X)} \langle (c_{S_A})h^{-1}u_i(x), kh^{-1}u_i(x) \rangle_{E} d \text{vol}_X(x).$$

Observe that $\{i(u_i)\}_{i \in \mathbb{N}}$ forms an orthonormal basis for $A_{S(G)}$ and the set $\{g \cdot u_i\}_{g \in G, i \in \mathbb{N}}$ forms an orthonormal basis for $L^2(X, \mathcal{E})$. Then by summing the equality for all $i \in \mathbb{N}$, we conclude that

$$\sum_{k \in (g)} (\text{Tr} S_A)(k) = \sum_{k \in (g)} \text{Tr}(k^{-1}c_{S_A}).$$

By Definition 3.13 and Definition 5.2 this is equivalent to say that

$$\tau^{(g)}(\text{Tr} S_A(\cdot)) = \text{tr}^{(g)}(S_A).$$

The lemma is proved. q.e.d.

5.2. Localized indices. The localized trace in the sense of Definition 5.2 induces a group homomorphism on the level of K-theory:

$$(5.10) \quad \tau^{(g)}_*: K_0(S(G)) \longrightarrow \mathbb{R},$$

as follows. Let P be a projection in $M_n(S(G))$, the algebra of $n \times n$ matrices with entries in $S(G)$. Define

$$\tau^{(g)}_*(P) = \text{Tr}(\tau^{(g)}(P)).$$

Any element of $K_0(S(G))$ is represented by $[P_1] - [P_2]$ where P_1 and P_2 are projections in the matrix algebra with entries in $S(G)$. Then the map (5.10) is well-defined because $\tau^{(g)}$ is a continuous trace map. The map (5.10) is real-valued as any projection can be written as the difference of two positive operators on which $\tau^{(g)}_*$ takes real values.
Let $\mu_{S(G)}[D^E] \in K_0(S(G))$ be the Banach algebra version higher index of D^E given by (4.11). Recall that in Theorem 4.13 we applied the homomorphism ρ in (4.24) to get the orbifold index on $G \backslash X$. Also, combining (5.4) with (5.5) we have the L^2-index $\tau^{(g)}_* [D^E]$ of the Dirac operator D^E.

Note that ρ is a trace and $\rho = \sum_{(g)} \tau^{(g)}$ when adding up $\tau^{(g)}$ over all conjugacy classes of G. This means that the higher index of D^E can be localized to each conjugacy class.

Definition 5.7 (Localized index). The number

$$\text{ind}_{(g)} D^E : = \tau^{(g)}_* (\mu_{S(G)}[D^E])$$

is called the **localized (g)-index** of D^E. In general we call them localized indices.

Remark 5.8. When the conjugacy class (g) of $g \in G$ has finite elements, $\tau^{(g)}$ extends to a continuous trace on $C^*(G)$. Thus, $\text{ind}_{(g)} D^X = \tau^{(g)}_* \mu[D^X]$. In particular, L^2-index factor through the higher index in the K-theory for the reduced group C^*-algebra. Another case worth mentioning is that when G has the RD property, we have an isomorphism of K-theory $K_0(S(G)) \cong K_0(C^*_r(G))$. Then all localized (g)-indices are images of an element in $K_0(C^*_r(G))$. In general, not all localized (g)-indices follows from the higher index in K-theory of the group C^*-algebra. Fortunately, this does not affect the results of our paper.

Let Q be a parametrix of D^E_{\pm} in the sense of Proposition 3.3 then there exist G-invariant smoothing operators S_0 and S_1 where

$$(5.11) \quad 1 - Q D^E_{\pm} = S_0 \quad \text{and} \quad 1 - D^E_{\pm} Q = S_1.$$

The following proposition provides an explicit calculation of the localized (g)-index in terms of $\text{tr}^{(g)}$ (cf. Definition 3.13). Note that by Lemma 3.12 $\sum_{g \in G} g(c^g S^2_{\pm} c^g)$ is a G-invariant properly supported smoothing operator for $j = 0, 1$, then it of (g)-trace class, i.e., $\text{tr}^{(g)} \left(\sum_{g \in G} g(c^g S^2_{\pm} c^g) \right) < \infty$.

Proposition 5.9. The localized (g)-index of D^E is calculated by

$$\text{ind}_{(g)} D^E = \tau^{(g)}_* (\nu[D^E]) = \text{tr}^{(g)} \left(\sum_{g \in G} g(c^g S^2_{\pm} c^g) \right) \cdot \text{tr}^{(g)} \left(\sum_{g \in G} g(c^g S^2_{\pm} c^g) \right).$$

Here, $\tau^{(g)}$ is the localized (g)-trace given by Definition 5.2, which induces a K-theory homomorphism $\tau^{(g)}_* : K_0(S(G)) \to \mathbb{R}$, and $\text{tr}^{(g)}$ is the (g)-trace given by Definition 3.13.

Proof. Let \tilde{F} be the lift of $F = D^E (1 + (D^E)^2)^{-\frac{1}{2}}$ from $\Gamma_+ (X, \mathcal{E})$ to $S(G, L^2(X, \mathcal{E}))$ defined by (4.19). Recall from (4.22) that the Banach algebra version higher index for D^E is given by

$$\mu_{S(G)}[\tilde{F}] = \mu_{S(G)}[\mathcal{A}_{S(G)}, q \circ \tilde{F} \circ \ell].$$

where $\mathcal{A}_{S(G)} = q(S(G, L^2(X, \mathcal{E})))$ is the Banach $S(G)$-module as in (4.21).

Denote $\mathcal{B}(\mathcal{A}_{S(G)})$ by the set of bounded operators on $\mathcal{A}_{S(G)}$, Let $K(\mathcal{A}_{S(G)})$ be the closed ideal of compact operators over $\mathcal{A}_{S(G)}$. The algebra $K(\mathcal{A}_{S(G)})$
is the closure in the norm for $\mathcal{B}(A_{S(G)})$ of the set of integral operators with G-invariant continuous kernel and with proper support. Let $S(A_{S(G)}) \subset K(A_{S(G)})$ be an ideal of local Banach algebra in $\mathcal{B}(A_{S(G)})$ where

1. $S(A_{S(G)})$ is closed under holomorphic functional calculus.
2. $S(A_{S(G)})$ contains the algebra of G-invariant properly supported operators with smooth kernel, on which the localized trace, in the sense of Lemma 5.6, is well-defined.

In view of [Co1] Section 2, the algebra $S(A_{S(G)})$ exists and the densely defined localized traces, viewed as degree 0 cyclic cocycles, can be extended to this algebra.

By the Fredholm picture of $KK^{ban}(\mathbb{C}, S(G))$, the operator $q \bar{F}_\ell$ is invertible in $\mathcal{B}(A_{S(G)})$ up to a compact operator. In fact, as $\iota \circ q = \text{id}$ and $q \circ \tau = p_*$ is the identity map on $A_{S(G)}$, from (5.11) we obtain

$$1 - (q \bar{Q}_X \iota) \tau = q \bar{S}_0 \iota \text{ and } 1 - (q \bar{P}^\xi \iota)(q \bar{Q}_X \iota) = q \bar{S}_1 \iota \text{ on } A_{S(G)}.$$

Observe that $q \bar{S}_j \iota \in S(A_{S(G)})$. Thus, $P := q \bar{P}^\xi \iota$ and $Q := q \bar{Q}_X \iota$ represent elements of $K_1(\mathcal{B}(A_{S(G)})/S(A_{S(G)}))$. In the meanwhile denote by

$$T_j = (q \bar{S}_j \iota)^2 = q \bar{S}_j^2 \iota.$$

Moreover, the set of compact operators $\mathcal{K}(A_{S(G)})$ over the Banach $S(G)$-module $A_{S(G)}$ is Morita equivalent to $S(G)$. Thus, we have

$$K_0(S(A_{S(G)})) \rightarrow K_0(\mathcal{K}(A_{S(G)})) \cong K_0(S(G)).$$

Therefore, the standard identification between $KK^{ban}(\mathbb{C}, S(G))$ and $K_0(S(G))$ are given by the boundary map

$$KK^{ban}(\mathbb{C}, S(G)) \rightarrow K_1(\mathcal{B}(A_{S(G)})/S(A_{S(G)})) \rightarrow K_0(S(A_{S(G)})) \rightarrow K_0(S(G))$$

$$[(A, 1_C, P)] \mapsto [P] \mapsto \begin{bmatrix} T_0^2 & 0 \\ 0 & T_0 \end{bmatrix} - \begin{bmatrix} T_0(1 + T_0)Q \\ T_0(1 - T_0^2)Q \end{bmatrix} \in M_2(S(A_{S(G)}))^+.\]

Here, $S(A_{S(G)})^+$ is the unitalization of $S(A_{S(G)})$. By convention, the trace of this identity element in $S(A_{S(G)})^+ \setminus S(A_{S(G)})$ is always assumed to be 0 (See [Co1]). Thus, we have

$$\tau^g(\mu\bar{P}^\xi) = \tau^g((T_0^2)) - \tau^g((T_0^2)).$$

To find the trace on the right hand side, we shall regard $q \bar{S}_j \iota$ as a matrix with coefficient in $S(G)$. For $j = 1, 2$, similar to the calculation of (4.20), we have

$$T_j^2 = q \bar{S}_j^2 \iota = \sum_{g \in G} g \left(c_j^2 S_j^g c_j^2 \right).$$

Therefore, by (5.10), which defines τ^g, and Lemma 5.6, we obtain

$$\tau^g((T_j^2)) = \text{tr}^g(T_j^2) \in \mathbb{R}.$$

The proposition is then proved. q.e.d.
An immediate corollary to Proposition 5.9 is that the localized \((g)\)-trace may be computed by the supertrace of the heat kernel of \(\mathcal{D}^E\). In fact, for each \(t > 0\), choose a parametrix \(Q_X\) so that \(S_0 = e^{-t\mathcal{D}_+^E\mathcal{D}_-^E/2}\) and \(S_1 = e^{-t\mathcal{D}_-^E\mathcal{D}_+^E/2}\) in (5.11).

Corollary 5.10. \(\text{ind}_{(g)}(\mathcal{D}^E) = \text{tr}_{s_t} \left(e^{-t(\mathcal{D}^E)^2} \right)\).

We are now ready to state the main theorem of this section. We combine the heat kernel asymptotics in Theorem 3.23 with Corollary 5.10 to calculate the localized index in the following theorem.

Theorem 5.11. Let \(X\) be a complete Riemannian orbifold where a discrete group \(G\) acts properly, co-compactly and isometrically. Let \(\mathcal{D}^E\) be the \(G\)-invariant Dirac operator on \(X\). The localized \((g)\)-index is calculated by

\[
\text{ind}_{(g)}(\mathcal{D}^E) = \int_{(G\backslash X)_{(g)}} \hat{A}_{(g)}(X) \text{ch}^S_{(g)}(G \backslash E),
\]

where \(\hat{A}_{(g)}(X)\) and \(\text{ch}^S_{(g)}\) are the delocalized characteristic classes of \(G \backslash X\) restricted to the \((g)\)-twisted sector \((G\backslash X)_{(g)}\) given by (5.33).

This localized indices for \(\mathcal{D}^E\) gives rise to refined topological invariants for the Dirac operator on the orbifold \(G \backslash X\). In fact, in view of Theorem 5.11 and Theorem 3.23 the following theorem is immediate. We provide in addition a \(K\)-theory proof.

Theorem 5.12. The orbifold index on \(G \backslash X\) is the sum of localized \((g)\)-indices over all conjugacy classes of \(G\), i.e.

\[
\text{ind} \mathcal{D}^{G\backslash E} = \sum_{(g)} \text{ind}_{(g)}(\mathcal{D}^E).
\]

Proof. Note that \(\text{ind} \mathcal{D}^{G\backslash E} = \rho_*([\mathcal{D}^E])\) and \(\text{ind}_{(g)}(\mathcal{D}^E) = \tau^{(g)}_*([\mathcal{D}^E])\). Denote by \(P_0\) and \(P_1\) two \(\mathcal{S}(G)\)-valued projection matrices \((P_0^2 = P_i = P_i^*)\) where \(i = 0, 1\) such that \([\mathcal{D}^E] = [P_0] - [P_1] \in K_0(\mathcal{S}(G))\). As the localized indices for Dirac operators are finite, \(|\tau^{(g)}_*([P_i])| < \infty\). We need only to show that

\[
\rho_*([P]) = \sum_{(g)} \tau^{(g)}_{s_{t}}([P]), \quad P = P_i, \quad i = 0 \text{ or } 1.
\]

Denote by \(\rho(P)\) (resp., \(\tau^{(g)}(P)\)) the \(\mathbb{C}\)-valued matrix whose \((i, j)\)th-entry is \(\rho\) (resp., \(\tau^{(g)}\)) applied to the \((i, j)\)th-entry of \(P\). Then, the left hand side of (5.13) is equal to the rank of \(\rho(P)\), and the right hand side of (5.13) is the sum of the trace of \(\tau^{(g)}(P)\) over all conjugacy classes of \(G\), which is also the trace of \(\rho(P)\) observing that \(\rho(P) = \sum_{(g)} \tau^{(g)}(P)\). Hence, it is sufficient to show that the rank of \(\rho(P)\) equals its trace.

As \(\rho\) is a homomorphism, the image \(\rho(P)\) of the projection \(P\) is still a projection, i.e., \(\rho(P)^2 = \rho(P) = \rho(P)^*\). The \(\mathbb{C}\)-valued projection \(\rho(P)\) is then unitary equivalent to a diagonal matrix \(Q\) whose entries are either 1 or 0. Note that the trace and rank are invariant under unitary equivalence. Thus, the rank of \(\rho(P)\) is the same as its trace. This completes the proof of the theorem.

q.e.d.
Remark 5.13. Theorem 5.11 gives rise to a local index formula for Dirac operators. Then the localized index can be defined for any G-invariant elliptic operator D on X by adapting the argument of [W] to the case of orbifold. In fact, D gives rise to an element in $K^0_0(C^*_{red}(X))$ by Lemma 4.7. Then using a similar construction as in [ABP, Section 7] and in [W], we can find a G-invariant Dirac type operator ∂, representing the same K-homology class as D. Hence ∂ and D have the same higher index and localized indices. Thus, localized index formulae are well-defined for $[D] \in K^0_0(C^*_{red}(X))$ and is calculated by local index formula (5.12) for the Dirac operator ∂.

6. Applications and Further Remarks

6.1. L^2-Lefschetz fixed point formula. To illustrate that Theorem 5.11 is indeed an L^2-Lefschetz fixed point formula for non-compact orbifolds. We restrict ourselves to the case of a complete Riemannian manifold M with a proper, co-compact and isometric action of a discrete group G. In this situation, the twisted sector of the orbifold $X = G \backslash M$ is simply indexed by the conjugacy classes of the group G. Then over M associated to each conjugacy class $(g) \subset G$ we have the localized (g)-index for the G-invariant Dirac operator \mathcal{D}. By Theorem 5.11 we know that

(1) When g is the group identity, the localized index of \mathcal{D}, also known as the L^2-index, gives rise to the top stratum of the Kawasaki index formula for the Dirac operator $\mathcal{D}G \backslash M$.

(2) When $g \in G$ is not the group identity, the localized indices of \mathcal{D} characterize the lower strata of the orbifold index formula of $\mathcal{D}G \backslash M$.

Therefore, we have related the higher index of \mathcal{D} to the orbifold index restricted to each twisted sector $X_{(g)}$ by the localized (g)-trace (cf. Definition 5.2).

Denote by M^g the fixed point submanifold of M by $g \in G$. Then the component for the inertia orbifold $I(G \backslash M)$ has the following structure indexed by the conjugacy class $(g) \subset G$

(6.1) $(G \backslash M)_{(g)} = G \backslash \cup_{h \in (g)} M^h = Z_G(g) \backslash M^g$.

In the following, we shall derive from Theorem 5.11 a formula of $\text{ind}^{(g)} \mathcal{D}$ as integration over fixed point submanifolds by introducing a suitable cut-off function. For example, when $g = e$, the localized (e)-index of \mathcal{D} is the L^2-index of \mathcal{D} and is equal to the top stratum of the formula for $\text{ind} \mathcal{D}G \backslash M$

(6.2) $L^2 - \text{ind} (\mathcal{D}) = \int_{G \backslash M} \hat{A}(G \backslash M) \text{ch}^S(G \backslash \mathcal{E}) = \int_M c(x) \hat{A}(M) \text{ch}^S(\mathcal{E}).$

where c is a cut-off function on M with respect to the G action. We shall show in this subsection a localized index formula for all $g \in G$ in the fashion of (6.2).

Note that $Z_G(g)$ acts on M^g isometrically. Given a cut-off function c on M with respect to the G action. We construct a function $c^{(g)}$ on M^g as
It extends to a representation of $L^1(G)$ on $L^2(G)$ as follows:

$$R(f) = \int_G f(g)R(g)dg \quad \forall f \in L^1(G).$$

As Γ acts on the left of G, R is reduced to

$$R : L^1(G) \rightarrow \text{End}(L^2(\Gamma \backslash G)).$$
Let \(f \in C^\infty(G) \cap L^1(G) \) be a test function, where \(R(f) \) is a trace class operator on \(L^2(\Gamma \setminus G) \). The Selberg trace formula is an equality relating two ways in calculating \(\text{Tr} R(f) \), where \(\text{Tr} \) is the operator trace on \(L^2(\Gamma \setminus G) \). On one hand, \(\text{Tr} R(f) \) has the spectral decomposition indexed by all irreducible unitary representations of \(G \) (denoted by \(\text{Irr}(G) \)):

\[
\text{Tr} R(f) = \sum_{\pi \in \text{Irr}(G)} m(\pi) \text{Tr}(\pi(f)),
\]

where \(m(\pi) \) is the multiplicity of \(\pi \) in \(R \). The equality \((6.6)\) is called the \textbf{spectral side} of the Selberg trace formula. On the other hand, the Schwartz kernel \(K(x,y) \) of \(R(f) \), which has the expression

\[
K(x,y) = \sum_{\gamma \in \Gamma} f(x^{-1}\gamma y),
\]

can be used to calculate \(\text{Tr} R(f) \) as follows:

\[
\text{Tr} R(f) = \int_{\Gamma \setminus G} K(x,x)dx = \sum_{(\gamma) \in \Gamma} \text{vol}(Z_G(\gamma)/Z_\Gamma(\gamma)) \int_{Z_G(\gamma) \setminus G} f(x^{-1}\gamma x)dx,
\]

where the sum is over representatives of all conjugacy classes of \(G \). This equality \((6.7)\) is called the \textbf{geometric side} of the Selberg trace formula. We denote the \((\gamma)\)-summand in \((6.8)\) by \(\mathcal{O}_\gamma \) and call it \textbf{orbital integral}:

\[
\mathcal{O}_\gamma := \text{vol}(Z_G(\gamma)/Z_\Gamma(\gamma)) \int_{Z_G(\gamma) \setminus G} f(x^{-1}\gamma x)dx.
\]

The orbital integral is easier to calculate and is an important tool in finding the multiplicity of a representation.

To relate Selberg trace formula to the localized index, we shall further recall the similar setting appeared in [CM, BM]. Let \(H \) be a maximal compact subgroup of \(G \) with volume 1. Let \(M = G/H \) be the Riemannian symmetric manifold of noncompact type. Then the discrete cocompact subgroup \(\Gamma \) of \(G \) acts properly and cocompactly on \(M \). Let \(\mathcal{E} \) be a \(\mathbb{Z}/2\mathbb{Z} \)-graded homogeneous vector bundle over \(M \), i.e., there exists a \(\mathbb{Z}/2\mathbb{Z} \)-graded \(H \)-representation \(E \) where \(H \) respects the grading of \(E \), so that \(\mathcal{E} = G \times_H E \). Denote by \(\mathcal{D}^\mathcal{E} : L^2(M,\mathcal{E}) \to L^2(M,\mathcal{E}) \) the \(G \)-invariant Dirac operator. We then have the identification

\[
L^2(M,\mathcal{E}) \cong (L^2(G) \otimes E)^H.
\]

Therefore, the corresponding Dirac operator \(\mathcal{D}^{\Gamma \setminus \mathcal{E}} \) on the quotient orbifold \(\Gamma \setminus M \) is regarded as an operator on \((L^2(\Gamma \setminus G) \otimes E)^H \). Let us denote by \(K_t \) (resp., \(\tilde{K}_t \)) the heat kernel for \(\mathcal{D}^\mathcal{E} \) (resp., \(\mathcal{D}^{\Gamma \setminus \mathcal{E}} \)). For the same reason of the homogeneity,

\[
K_t \in (C^\infty(G \times G) \otimes \text{End}(E))^H \times H, \quad \tilde{K}_t \in (C^\infty(\Gamma \setminus G \times \Gamma \setminus G) \otimes \text{End}(E))^H \times H.
\]

As \(D^\mathcal{E} \) is \(G \)-invariant, \(K_t \) gives rise to a well-defined function \(k_t \in (C^\infty(G) \otimes \text{End}(E))^H \times H \) given by

\[
k_t(x^{-1}y) = K_t(x,y), \quad \forall x, y \in G.
\]

We shall still consider the right regular representation of a test function, but we replace the representation space \(L^2(\Gamma \setminus G) \) by the \(\mathbb{Z}/2\mathbb{Z} \)-graded space
(\mathcal{L}^2(\Gamma \backslash G) \otimes E)^H \) and the operator trace by the supertrace. Note that by (6.7) and Theorem 3.4, we observe that the Schwartz kernel of \(R(k_t) \) is exactly \(K_t(x, y) \), the heat kernel for \(\mathcal{D}^\Gamma \). Applying Theorem 3.4 to (6.7), we see that the supertrace \(\text{Tr}_s R(k_t) \) is finite. Therefore, even though \(k_t \) is not compactly supported on \(G \), we can choose \(k_t \) as a test function. Comparing the localized index formula and the Selberg trace formula in this situation, we obtain the following theorem, which states that the orbital integrals for \(\text{Tr} R(k_t) \) have a one-to-one correspondence with the localized indices for \(\mathcal{D}^\Gamma \).

Theorem 6.2. Let \(k_t \) be the test function (6.9) determined by the heat operator for the Dirac operator \(\mathcal{D}^\Gamma \) on the Riemannian symmetric manifold \(M = G/H \) of noncompact type. Let \(R(k_t) \) be the right regular representation of \(L^1(G) \) on \((\mathcal{L}^2(\Gamma \backslash G) \otimes E)^H \) in the sense of (6.7). Then the geometric side of the Selberg trace formula of \(\text{Tr}_s R(k_t) \), which was expressed as a sum of orbital integrals \(O_\gamma \) in (6.8) over all conjugacy classes of \(\Gamma \), corresponds exactly to the sum of localized indices for \(\mathcal{D}^\Gamma \). Moreover,

\[
\text{Tr}_s(R(k_t)) = \sum_{(\gamma) \in \Gamma} O_\gamma = \text{ind} \mathcal{D}^\Gamma, \quad O_\gamma = \text{ind}(\gamma) \mathcal{D}^\Gamma.
\]

Proof. By the geometric side (6.8) of the Selberg trace formula and the definition of the localized indices (cf. Theorem 5.11), we shall only need to show that the orbital integral

\[
O_\gamma = \text{vol}(Z_G(\gamma) / Z_T(\gamma)) \int_{Z_G(\gamma) \backslash G} \text{Tr}_s[k_t(x^{-1}\gamma x)\gamma] dx
\]

where \(\text{Tr}_s \) is the supertrace of \(\text{End} E \), coincides with

\[
\text{tr}_s^{(\gamma)} e^{-t(\mathcal{D}^\Gamma)^2} := \sum_{h \in (\gamma)} \int_G c(x) \text{Tr}_s[K_t(x, hx)h] dx,
\]

where \(c \) is a cut-off function on \(G \) with respect to the \(\Gamma \)-action.

Let us rewrite \(\text{tr}_s^{(\gamma)} e^{-t(\mathcal{D}^\Gamma)^2} \) by

\[
\text{tr}_s^{(\gamma)} e^{-t(\mathcal{D}^\Gamma)^2} = \sum_{k \in K} \int_G c(x) \text{Tr}_s[k_t(x^{-1}k^{-1}\gamma k^{-1}k^{-1}\gamma k)] dx
\]

\[
= \int_G c^{(\gamma)}(x) \text{Tr}_s[k_t(x^{-1}\gamma x)\gamma] dx,
\]

where \(K \) is the set generating the conjugacy class \((\gamma) \) defined in (5.20) and

\[
c^{(\gamma)}(x) := \sum_{k \in K} c(kx).
\]

Identify the space of the right cosets \(Z_G(\gamma) \backslash G \) of \(Z_G(\gamma) \) in \(G \) as a subset of \(G \) consisting of representatives of the right cosets. Then any \(x \in G \) can be decomposed uniquely into \(x = ba \) where \(b \in Z_G(\gamma) \) and \(a \in Z_G(\gamma) \backslash G \). Notice that \(k_t(a^{-1}b^{-1}\gamma ba) = k_t(a^{-1}\gamma a)\gamma \) for all \(b \in Z_G(\gamma) \). Thus, (6.11) is equal to

\[
\text{tr}_s^{(\gamma)} e^{-t(\mathcal{D}^\Gamma)^2} = \int_{Z_G(\gamma) \backslash G} \text{Tr}_s[k_t(a^{-1}\gamma a)\gamma] \left[\int_{Z_G(\gamma)} c^{(\gamma)}(ba) db \right] da.
\]
Lemma 3.15 implies that $K \cdot Z_\Gamma(\gamma) = \Gamma$. Then for any $l \in G$, we have

$$\sum_{b \in \tilde{Z}_\Gamma(\gamma)} c^{(\gamma)}(bla) = \sum_{k \in K, b \in Z_\Gamma(\gamma)} c(kbla) = \sum_{b \in \Gamma} c(hla) = 1.$$

The term $\int_{Z_G(\gamma)} c^{(\gamma)}(ba) db$ in (6.12) can be calculated similarly as the argument we used to derive (6.12):

$$\int_{Z_G(\gamma)} c^{(\gamma)}(ba) db = \int_{Z_G(\gamma)/Z_\Gamma(\gamma)} \left[\sum_{l \in \tilde{Z}_\Gamma(\gamma)} c^{(\gamma)}(hla) dl \right] dh = \text{vol}(Z_G(\gamma)/Z_\Gamma(\gamma)).$$

Together with (6.12) and (6.10) we see that $\text{tr}_{\Lambda}^{(\gamma)} e^{-t(\mathcal{D}^\Sigma)^2} = O_\gamma$. The theorem is then proved by comparing (6.8) and Theorem 5.12. q.e.d.

6.3. An application in positive scalar curvature. Localized indices produce finer topological invariants for the G-orbifold \mathcal{X} and the quotient $G\backslash\mathcal{X}$. They also reveal some geometric information of the orbifold. We shall for example present a result of positive scalar curvature. As we know, the higher index of an elliptic operator is the obstruction of the invertibility of the operator. However, the higher index is difficult to compute. Therefore, as a weaker condition but easier to compute, the nonvanishing of the localized indices gives rise to an obstruction of invertibility of the operator. We then formulate the nonvanishing result as follows.

Let \mathcal{Y} be a spin compact orbifold obtained from the quotient of a complete orbifold \mathcal{X} by a discrete G group acting properly, co-compactly and isometrically. Let \mathcal{S} be the spinor bundle over \mathcal{X}. Denote by \mathcal{D}^Σ (resp. $\mathcal{D}^{G\backslash\mathcal{S}}$) the Dirac operator on \mathcal{X} (resp. \mathcal{Y}).

Theorem 6.3. If any of the localized indices of the G-invariant Dirac operator \mathcal{D}^Σ on \mathcal{X} is nonzero, then the quotient orbifold \mathcal{Y} cannot have positive scalar curvature.

Proof. If the quotient orbifold $\mathcal{Y} = G\backslash\mathcal{X}$ has a metric leading to a positive scalar curvature, then as G acts by isometry, the covering orbifold \mathcal{X} also has a positive scalar curvature, denoted by $r_{\mathcal{X}}$. Then by the Lichnerowicz formula (3.7), we have

$$(\mathcal{D}^\Sigma)^2 = \Delta^\Sigma + \frac{1}{4} r_{\mathcal{X}},$$

which is a strictly positive operator. Hence \mathcal{D}^Σ is invertible. Therefore the higher index $\mu_{\mathcal{S}(G)}[\mathcal{D}^\Sigma]$ vanishes. As the localized indices factor through the Banach algebra version of the higher index map, all the localized indices are 0, which contradicts with assumption. The theorem is then proved. q.e.d.

Remark 6.4. If the orbifold index of the Dirac operator $\mathcal{D}^{G\backslash\mathcal{S}}$ on the quotient is 0, it does not prove the nonexistence of positive scalar curvature of \mathcal{Y}. But if the localized indices, which sum up to be 0 by Theorem 5.12, are not all 0, then Theorem 6.3 shows that \mathcal{Y} cannot admit a positive scalar curvature.

On the other hand, while the localized indices (for $g \neq e$) would vanish for spaces with positive scalar curvature, we expect the localized indices to be useful in the study of non-positive curved space, for example, Riemannian symmetric manifolds of noncompact type, and their co-compact orbifold quotient.
References

[ALR] A. Adem, J. Leida and Y. Ruan, Orbifolds and stringy topology, Cambridge Tracts in Mathematics 171, Cambridge University Press, 2007.

[Ar] J. Arthur, An introduction to the trace formula, Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc., 4, 1–263, Amer. Math. Soc., Providence, RI, (2005).

[At] M. F. Atiyah, Elliptic operators, discrete groups and von Neumann algebras, Astérisque 32-33, 43–72 (1976).

[AB] M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes II, Applications. Ann. of Math. 88, 451–491(1968).

[ABP] M. Atiyah, R. Bott and V. K. Patodi, On the heat equation and the index theorem, Invent. Math. 19, 279–330 (1973).

[BM] D. Barbasch and H. Moscovici, L^2-index and the Selberg trace formula. Journal of functional analysis 53, 151–201 (1983).

[BC1] P. Baum and A. Connes, Chern character for discrete groups. A fête of topology. Academic Press, Boston, MA, 163–232 (1988).

[BC2] P. Baum and A. Connes, K-theory for discrete groups. In Operator Algebras and Applications, Cambridge University Press, Cambridge, 1–20 (1989).

[BCH] P. Baum, A. Connes and N. Higson, Classifying space for proper actions and K-theory of group C∗-algebras. Contemp. Math. Vol. 167, 240–291 (1994).

[BGV] N. Berline, E. Getzler and M. Vergne, Heat kernels and Dirac operators, Spinger.

[Bis] J.-M. Bismut, Equivariant immersions and Quillen metrics, J. Diff. Geom. 41, 53–159 (1995).

[BiCr] R. Bishop and R. Crittenden, Geometry of manifolds, Academic Press, N.Y., 1971.

[Bl] B. Blackadar, K-theory for operator algebras, Mathematical Sciences Research Institute Publications Vol 5, 2nd edition, Cambridge University Press, 1998.

[Bo] J. Borzellino, Orbifold of maximum diameter, Indiana Univ. Math. J. 42, 37–53 (1993).

[Bu] U. Bunke, Orbifold index and equivariant K-homology. Math. Ann. 339 175–194 (2007).

[CGT] J. Cheeger, M. Gromov and M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom. 17, 15–53 (1982).

[Co1] A. Connes, Cyclic cohomology and the transverse fundamental class of a foliation, Geometric methods in operator algebras (Kyoto, 1983), Pitman Res. Notes Math. Ser., 123, 52–144 (1986)

[Co2] A. Connes, Noncommutative geometry. Academic Press Inc., San Diego, CA, 1994.

[CM] A. Connes and H. Moscovici, L^2-index theorem for homogeneous spaces of Lie groups. Ann. Math. Vol. 115, No. 2, 291–330 (1982).

[CaW] P. Carrillo and B. Wang, Twisted longitudinal index theorem for foliations and wrong way functoriality. Adv. in Math., Vol. 226, No. 6, 4933–4986, (2011).

[Do] H. Donnelly, Asymptotic expansions for the compact quotients of properly discontinuous group actions, Illinois J. Math. 23, 485–496 (1979).

[Dui] J. J. Duistermaat, The heat kernel Lefschetz fixed point formula for the spin^C Dirac operator, Progress in nonlinear differential equations and their applications, v. 18, 1996.

[EE] S. Echterhoff and H. Emerson, Structure and K-theory of crossed products by proper actions, Expo. Math., 29 No. 3, 300–344 (2011).

[EEK] S. Echterhoff, H. Emerson and H.J. Kim, A Lefschetz fixed-point formula for certain orbifold C*-algebras. J. Noncommut. Geom. 4, no. 1, 125–155 (2010).

[Em] H. Emerson, Lefschetz numbers for C^*-algebras. Canad. Math. Bull. 54, no. 1, 82–99 (2011).

[F1] C. Farsi, K-theoretical index theorems for good orbifolds. Proceedings of the American Mathematical Society, Vol. 115, No. 3 769–773 (1992).
[F2] C. Farsi, K-theoretic index theorems for orbifolds. Quart. J. Math. Oxford (2), 43, 183–200 (1992).

[FT] G. Felder and X. Tang, Equivariant Lefschetz number of differential operators, Math. Z. 266, no.2, 451-470 (2010).

[HS] M. Hilsum and G. Skandalis, Morphismes K-orientés d’espaces de feuilles et fonctorialité en théorie de Kasparov (d’après une conjecture d’A. Connes), Ann. Sci. École Norm. Sup. (4), 20, no. 3, 325–390 (1987).

[HW] J. Hu and B. Wang, Delocalized Chern character for stringy orbifold K-theory. Trans. of AMS., (2012).

[K] T. Kawasaki, The index of elliptic operators over V-manifold. Nagoya Math. J. Vol. 84, 135–157 (1981).

[K1] G. Kasparov, The index of invariant elliptic operators, K-theory, and Lie group representations. English translation: Soviet Mathematics-Doklady. 27, 105–109, (1983).

[K2] G. Kasparov, Equivariant KK-theory and the Novikov conjecture. Inventiones Mathematicae, 91 (1), 147–201, (1988).

[K3] G. Kasparov, K-theoretic index theorems for elliptic K-theoretic index theorems for elliptic and transversally elliptic operators. Preprint, 2012.

[KL] B. Kleiner and J. Lott, Geometrization of three-dimensional orbifolds via Ricci flow, arXiv:1101.3733v2.

[LYZ] J. D. Lafferty, Y. L. Yu and W. P. Zhang, A direct geometric proof of the Lefschetz fixed point formulas. Trans. Amer. Math. Soc. 320, 571-583 (1992).

[La] V. Lafforgue, KK-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes, Thèse de Doctorat de l’université Paris 11 (mars 1999).

[LM] B. Lawson and M-L. Michelsohn, Spin geometry. Princeton Mathematical Series, 38. Princeton University Press, 1989.

[LU] E. Lupercio and B. Uribe, Gerbes over orbifolds and twisted K-theory, Comm. Math. Phys. 245, no. 3, 449–489 (2004).

[Ma] X. Ma, Orbifolds and analytic torsions. Trans. Amer. Math. Soc. 357, no. 6, 2205–2233 (2005).

[MaMa] X. Ma and G. Marinescu, Holomorphic Morse inequalities and Bergman kernels, Progress in Mathematics 254, Birkhäuser Boston, Inc., Boston, MA, 2007, 422 pp.

[MM] M. Marcocoli and V. Mathai, Twisted index theory on good orbifolds. I. Noncommutative Bloch theory. Commun. Contemp. Math. 1, no. 4, 553–587 (1999).

[MZ] V. Mathai and W. Zhang, Geometric quantization for proper actions (with an appendix by Ulrich Bunke). Adv. Math. 225, 3, 1224–1247 (2010).

[MP1] I. Moerdijk and D. A. Pronk, Orbifolds, sheaves and groupoids, K-Theory 12, 3–21 (1997).

[MP2] I. Moerdijk and D. A. Pronk, Simplicial cohomology of orbifolds, Indag. Math. (N.S.) 10, no. 2, 269–293 (1999).

[Po1] R. Ponge, A new short proof of the local index formula and some of its applications, Comm. Math. Phys. 241, 215–234 (2003).

[PW] R. Ponge and H. Wang, Noncommutative geometry and conformal geometry. II. The local equivariant index theorem. E-print, arXiv, June 2013.

[Ren] J. Renault, A groupoid approach to C^*-algebras, Lecture Notes in Mathematics. Vol. 793, Springer, Berlin, 1980.

[S] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math Soc. 20, 47–87 (1956).

[TTW] X. Tang, H. Tseng and B. Wang, Orbifold K-theory for ineffective orbifolds, in preparation.

[Th] W. Thurston, The Geometry and Topology of 3-Manifolds, Princeton Mathematical Series, 35. Princeton University Press, 1997.

[W] H. Wang, L^2-index formula for properly cocompact group actions. To appear in “Journal of Noncommutative Geometry” arXiv:1106.4542.

[Yu] G. Yu, Higher index theory of elliptic operators and geometry of groups, Proceed. of the ICM, Madrid, Spain, 2006, 1623–1639.
DEPARTMENT OF MATHEMATICS, AUSTRALIAN NATIONAL UNIVERSITY, CANBERRA ACT 0200, AUSTRALIA
E-mail address: bai-ling.wang@anu.edu.au

MATHEMATICAL SCIENCES CENTER, TSINGHUA UNIVERSITY, BEIJING 100084, CHINA

(CURRENT) SCHOOL OF MATHEMATICAL SCIENCES, UNIVERSITY OF ADELAIDE, ADELAIDE SA 5005 AUSTRALIA
E-mail address: hang.wang01@adelaide.edu.au, hwang@math.tsinghua.edu.cn