Trends in Global Warming and Evolution of Matrix Protein 2 Family from Influenza A Virus

Shao-Min YAN1, Guang WU2∗
1(National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi 530007, P.R. China)
2(Computational Mutation Project, DreamSciTech Consulting, Shenzhen, Guangdong 518054, P.R. China)

Received 1 May 2009 / Revised 22 May 2009 / Accepted 25 May 2009

Abstract: The global warming is an important factor affecting the biological evolution, and the influenza is an important disease that threatens humans with possible epidemics or pandemics. In this study, we attempted to analyze the trends in global warming and evolution of matrix protein 2 family from influenza A virus, because this protein is a target of anti-flu drug, and its mutation would have significant effect on the resistance to anti-flu drugs. The evolution of matrix protein 2 of influenza A virus from 1959 to 2008 was defined using the unpredictable portion of amino-acid pair predictability. Then the trend in this evolution was compared with the trend in the global temperature, the temperature in north and south hemispheres, and the temperature in influenza A virus sampling site, and species carrying influenza A virus. The results showed the similar trends in global warming and in evolution of M2 proteins although we could not correlate them at this stage of study. The study suggested the potential impact of global warming on the evolution of proteins from influenza A virus.

Key words: evolution, global warming, influenza A virus, matrix protein 2.

1 Introduction

The global warming imposes the new danger not only on environments, but also on humans and various species (Thomas et al., 2004). In other words, we would say that the global warming would have effects on the evolution of various species, as a result we would also expect to see the composition of species, for example, proteins, under the influence of global warming although some proteins could be hidden deeply inside cells. Thus, it is important to compare the trends in global warming and protein evolution of interest family in order to see if there are similar trends in both.

It is well known that the evolution of protein family is a process of mutations, therefore we could represent this evolution if we could represent mutated proteins along the time course. We need to do so because the global warming is the change in temperature over time. However, a mutation in protein is an event of changing one letter to another because amino acids in protein are presented as 20 letters, which are neither scalar data nor victors, whereas the temperature is a scalar datum.

This means that we need to convert the letter-based proteins into scalar data in order to plot them along the time course to see their evolutionary trend. Actually there are quite a few methods, which can transfer a protein sequence into a series of numerical codes or numeric sequence for predicting its various attributes (Chou, 2001, 2005c; Xiao et al., 2005, 2006, 2007, 2008, 2009a,b; Xiao and Chou, 2007; Ding et al., 2007; Zhang et al., 2008). Since 1999, our group has developed three approaches to convert either a single amino acid or a protein into a scalar datum based on random principle (Wu and Yan, 2002, 2006a,b, 2008a). Using our approaches, we can effectively represent a protein family over time, which provides the basis for conducting the study on analyzing the trends in global warming and evolution of proteins of interest.

At this moment, we are particularly interest in the matrix protein 2 (M2) form influenza A virus, because the influenza is threatening the world with possible pandemics. Among various studies on influenza A virus (Gong et al., 2009; Wei et al., 2006; Wang et al., 2007, 2009; Du et al., 2007, 2009; Guo et al., 2008; Huang et al., 2008), much more progress has been made recently on M2 protein (Schnell and Chou, 2008; Pielak et al., 2009). The M2 protein of influenza A virus forms a proton channel in the virion and is essential for infection (Betakova, 2007; Pinto and Lamb, 2007). The M2 ion channel blockers approved to treat influenza virus infections (Beigel and Bray, 2008; Hayden, 2006; Kelly et al., 2003). A proof-of-concept study shows that the
endocytosis of virion into host cells can be a valid drug target because M2 protein is involved in the endocytosis process (Hsieh and Hsu, 2007). However, the use of M2 inhibitors is limited by high frequencies of their resistance among currently circulating strains (Basler, 2007; Hayden, 2009). Also, it is promising that a vaccine is based on the conserved ectodomain of M2 protein from influenza A virus (Schotsaert et al., 2009).

Many studies from various research laboratories around the world have indicated that mathematical analysis, computational modeling, and introducing novel physical concept to solve important problems in biology and medicine, such as modeling important 3D protein structures for drug design (Chou, 2004a-d, 2005a) molecular docking (Huang et al., 2008, Du et al., 2009; Chou et al., 2003; Zhou et al., 2004; Zhou and Troy, 2003, 2005a,b; Zhang et al., 2006; Gao et al., 2007), molecular packing (Chou et al., 1984, 1988), pharmacophore modelling (Sirois et al., 2004; Chou et al., 2006), Mote Carlo simulated annealing approach (Chou, 1992; Wu, 1998a,b; Wu and Yan, 2001), diffusion-controlled reaction simulation (Chou and Jiang, 1974; Li and Chou, 1976; Chou and Zhou, 1982), graph/diagram approach (Chou et al., 1979; Chou and Forsen, 1980; Chou and Liu, 1981; Chou, 1981, 1989a, 1990; Zhou and Deng, 1984; Myers and Palmer, 1985; Kuzmic et al., 1992; Althaus et al., 1993, 1993a,b; Andraos, 2008), bio-macromolecular internal collective motion simulation (Chou and Chen, 1977; Chou, 1983a,b, 1984a-c, 1987, 1988, 1989b; Zhou, 1989), QSAR (Prado-Prado et al., 2008; Gonzalez-Diaz et al., 2006, 2008; Dea-Ayuela et al., 2008), protein subcellular location prediction (Chou and Shen, 2006, 2007b,c, 2008, Zhou and Doctor, 2002), identification of GPCR and their types (Xiao et al., 2009a; Chou and Elrod, 2002; Chou, 2005b), identification of proteases and their types (Chou and Shen, 2008a,b; Shen and Chou, 2009; Zhou and Cai, 2006), protein cleavage site prediction (Chou, 1993, 1996; Shen and Chou, 2008), and signal peptide prediction (Chou and Shen, 2007a; Shen and Chou, 2007) can timely provide very useful information and insights for both basic research and drug design and hence are widely welcome by science community. The present study is attempted to analyze the trends in global warming and evolution of matrix protein 2 family from influenza A virus in hope to provide useful insights on the potential impact of global warming on the evolution of proteins from influenza A virus.

2 Materials and Methods

2.1 Temperature data

The global, north and south hemispheric temperature anomalies from 1850 to 2007, whose anomaly is based on the period 1961-1990, were obtained from HadCRUT3v (Rayner et al., 2006; Climatic Research Unit, 2008). The local temperature from 1959 to 1998 based on 0.5 by 0.5° latitude and longitude grid-box basis cross globe was obtained from New et al. (2000).

2.2 M2 data

A total of 5926 full-length M2 sequences of influenza A virus sampled from 1959-2008 was obtained from the influenza virus resources (Influenza virus resources, 2009). After excluded identical sequences, 1084 M2 proteins were used in this study.

2.3 Converting M2 proteins into scalar data

For presenting M2 protein family along the time course, we need to convert each M2 protein into a scalar datum that must differ for different M2 proteins. Among our three random approaches (Wu and Yan, 2002, 2006a, b, 2008a), the simplest one is the amino-acid pair predictability, by which we view if the combination of two adjacent amino acids can be explained by the permutation. For a whole protein, we can determine the percentage of how many amino-acid pairs can be predicted according to the permutation. We have used this method in many studies (Wu and Yan, 2008a-d).

For an M2 protein, we counted the first and second amino acids as a pair, the second and third amino acids as another pair, until the next to terminal and the terminal amino acids as the last pair. Then, we determined whether an amino-acid pair could be explained by permutation, or predicted by random mechanism in other words. Finally we calculated the percentage of how many amino-acid pairs in an M2 protein were predictable and unpredictable.

For example, an M2 protein of swine H1N1 influenza A virus isolated from USA in 1976 (accession number ABQ45416) was composed of 97 amino acids. This M2 protein had 8 serines “S” and 10 leucines “L”. If the appearance of amino-acid pair SL could be explained by permutation, it would appear once in this M2 protein (8/97×10/96×96=0.82). Actually there was only one SL in this M2 protein, so the appearance of SL was predictable. By clear contrast, there were 4 alanines “A” in this M2 protein. According to the permutation of amino-acid pairs, AA would not appear (4/97×3/96×96=0.12) in this M2 protein. However, it appeared twice in reality and was unpredictable. In this way, we classified all of the amino-acid pairs in this M2 protein as predictable and unpredictable.

It is absolutely necessary that the predictable/unpredictable portion is subject to a tiny difference between two M2 proteins, thus different M2 proteins should have different values to be distinguishable. In the past, we have tested many proteins to verify this request and got the positive answer (for review, see Wu and Yan, 2002, 2006a,b, 2008a). For instance, the predictable and unpredictable portions were 25% and 75% for ABQ45416 M2 protein. For
another swine H1N1 influenza A viruses isolated from USA in 1976 (accession number ABQ45438), its M2 protein has only one amino acid at position 18 different from that of ABQ45416 M2 protein. However, its predictable and unpredictable portions were 24.72% and 75.28%.

In this manner, we converted 1084 letter-symbolized M2 proteins into 1084 scalar data (Amino-acid pair predictability, 2009). As each M2 protein had its sampling year, we thus had two scalar datasets, the temperature recorded each year and the unpredictable portion of M2 protein sampled each year. Hence we could plot both datasets along the time course to observe their trends.

3 Results and Discussion

Figure 1 showed the trends in both global warming and evolution of M2 proteins, where both trends revealed quite similar as indicated by their regressed lines. The unpredictable portion of M2 proteins increased over time, which was similar to that the global temperature increased along the time course.

Fig. 1 Global temperature anomaly (°C) and evolution of M2 proteins from influenza A viruses. The dotted lines and points were regressed lines and the mean of all M2 proteins at a given year (n=1084 from 1959 to 2008).

Moreover, the global temperature was generally divided into north and south hemisphere, so we could group M2 proteins accordingly to see if the trend still held on in such circumstance. As shown in Fig. 2, the similar trend was much clearer in north hemisphere than in south hemisphere, which could be explained by the fact that most of M2 proteins were sampled in north hemisphere.

Actually the data of M2 proteins in Fig. 1 and Fig. 2 were averaged in each year, for example, there was only a single sample in 1959, but 58 M2 proteins were sampled in 2007. Another way to analyze the trends is to apply the point-to-point method, that is, we coupled each M2 protein with temperature according to the sampling place and year. In other word, we took the temperature measured at each geographical latitude and longitude of place where an M2 protein was sampled at the same year to make the comparison.

For example, there was a chicken H5N1 virus (accession number ABI85108) sampled in 1959 at Scotland, whose latitude and longitude were 56.49 and -4.20 according to Get Lat Lon (Get Lat Lon, 2009). Its average yearly temperature was 7.5 °C in 1959 according to the 0.5° by 0.5° latitude and longitude grid-box basis cross globe obtained from New et al. (2000).

Figure 3 displayed 279 point-to-point relationships between temperature and unpredictable portion of M2 proteins from 1959 to 1998, and their regression indicated the similar trends. The results in Fig. 3 were in consistent with what we found in Figs. 1 and 2, that is, there were similar trends between global warming and evolution of M2 proteins.

Because influenza viruses are hosted in different species, we could advance our analysis by the point-to-point relationship between temperature and species, from which the M2 proteins were sampled. Figure 4 demonstrated the trends of evolution of M2 proteins with respect to temperature in three major host species. The results suggested that the trends were parallel in human, similar in swine, but different in avian.

In this study, we found the similar trends in global warming and evolution of M2 proteins from influenza A virus. This is very suggestive, because this founding indicates that the effect of global warming on many dif-
different levels on biological evolution, even the proteins hidden inside the cell could be subject to the global warming. This is understandable because all the biological functions are interconnected from macro level to micro level.

However, can we correlate both trends in this study statistically? At this stage, it would be difficult to determine such correlation because (i) to the best of our knowledge there is no statistical method available to determine the correlation between two lines including a discontinued one in this study; and (ii) many statistical books tell that the correlation does not mean the cause-consequence relationship, that is, even we would find the so-called correlation between two trends, we still need to determine if there is any direct or indirect cause-consequence relationship.

On the other hand, we cannot ignore these trends because we cannot create another earth without global warming but with active influenza virus for comparison over the same time scale. As the validation of global warming is done through the comparison along the time course, we would argue that the validation of M2 protein evolution should also be done along the time course, i.e. the comparison between any two different time points.

This study demonstrated the changes in the unpredictable portions of M2 proteins were different in different species. In human and swine, the trends of evolution of M2 proteins were similar to that of temperature, but not in avian (Fig. 4). This difference could be due to the fact that the place where avian was sampled would not be the place where the mutation occurred, because migratory birds are common reservoirs responsible for spreading avian influenza viruses (Krauss et al., 2004; Garamszegi and Møller, 2007; Weber and Stillanakis, 2007; Jahangir et al., 2008), on the other hand the human and swine were generally localized.

Although the trends in global warming and M2 evolution are similar in this study, they only indicate the direction for studies in future, because we would not expect to determine such an important issue within a few studies, and we still have much to discuss.

Acknowledgments This study is supported in part by Guangxi Science Foundation No. 07109001A, 0991080 and Guangxi Academy of Sciences, project 09YJ17SW07.

References

[1] Althaus, I.W., Chou, J.J., Gonzales, A.J., Diebel, M.R., Chou, K.C., Kezdy, F.J., Romero, D.L., Aristoff, P.A., Tarpley, W.G., Reusser, F. 1993a. Steady-state kinetic studies with the non-nucleoside HIV-1 reverse transcriptase inhibitor U-87201E. J Biol Chem 268, 6119–6124.

[2] Althaus, I.W., Chou, J.J., Gonzales, A.J., Diebel, M.R., Chou, K.C., Kezdy, F.J., Romero, D.L., Aristoff, P.A., Tarpley, W.G., Reusser, F. 1993b. Kinetic studies with the nonnucleoside HIV-1 reverse transcriptase inhibitor U-88204E. Biochemistry, 32, 6548–6554.

[3] Althaus, I.W., Gonzales, A.J., Chou, J.J., Diebel, M.R., Chou, K.C., Kezdy, F.J., Romero, D.L., Aristoff, P.A., Tarpley, W.G., Reusser, F. 1993. The quinoline U-78036 is a potent inhibitor of HIV-1 reverse transcriptase. J Biol Chem 268, 14875–14880.
Amino-acid pair predictability. 2009. http://www.dreamsctech.com/Service/rationale.htm.

Chou, K.C. 1992. Energy-optimized structure of an-...

Beigel, J., Bray, M. 2008. Current and future antiviral therapy of severe seasonal and avian influenza. Antiviral Res 78, 91–102.

Chou, K.C. 1981. Two new schematic rules for rate laws of enzyme-catalyzed reactions. J Theoret Biol 89, 581–592.

Chou, K.C. 1983a. Low-frequency vibrations of helical structures in protein molecules. Biochem J 209, 573–580.

Chou, K.C. 1983b. Identification of low-frequency modes in protein molecules. Biochem J 215, 465–469.

Chou, K.C. 1984a. The biological functions of low-frequency phonons: 3. Helical structures and microenvironment. Biophys J 45, 881–890.

Chou, K.C. 1984b. The biological functions of low-frequency phonons: 4. Resonance effects and allosteric transition. Biophys Chem 20, 61–71.

Chou, K.C. 1984c. Low-frequency vibration of DNA molecules. Biochem J 221, 27–31.

Chou, K.C. 1985. Low-frequency motions in protein molecules: beta-sheet and beta-barrel. Biophys J 48, 289–297.

Chou, K.C. 1987. The biological functions of low-frequency phonons: 6. A possible dynamic mechanism of allosteric transition in antibody molecules. Biopolymers 26, 285–295.

Chou, K.C. 1988. Review: Low-frequency collective motion in biomacromolecules and its biological functions. Biophys Chem 30, 3–48.

Chou, K.C. 1989a. Graphical rules in steady and non-steady enzyme kinetics. J Biol Chem 264, 12074–12079.

Chou, K.C. 1989b. Low-frequency resonance and cooperativity of hemoglobin. Trends Biochem Sci 14, 212.

Chou, K.C. 1990. Review: Applications of graph theory to enzyme kinetics and protein folding kinetics. Steady and non-steady state systems. Biophys Chem 35, 1–24.

Chou, K.C. 1992. Energy-optimized structure of antifreeze protein and its binding mechanism. J Mol Biol 223, 509–517.

Chou, K.C. 1993. A vectorized sequence-coupling model for predicting HIV protease cleavage sites in proteins. J Biol Chem 268, 16938–16948.

Chou, K.C. 1996. Review: Prediction of HIV protease cleavage sites in proteins. Anal Biochem 233, 1–14.

Chou, K.C. 2001. Prediction of protein cellular attributes using pseudo amino acid composition. PROTEINS: Struct, Funct, Genet (Erratum: ibid, 2001, 44, 60) 43, 246–255.

Chou, K.C. 2004a. Review: Structural bioinformatics and its impact to biomedical science. Curr Med Chem 11, 2105–2134.

Chou, K.C. 2004b. Modelling extracellular domains of GABA-A receptors: subtypes 1, 2, 3, and 5. Biochem Biophys Res Commun 316, 636–642.

Chou, K.C. 2004c. Molecular therapeutic target for type-2 diabetes. J Proteome Res 3, 1284–1288.

Chou, K.C. 2004d. Insights from modelling the 3D structure of the extracellular domain of alpha7 nicotinic acetylcholine receptor. Biochem Biophys Res Commun 319, 433–438.

Chou, K.C. 2005a. Coupling interaction between thromboxane A2 receptor and alpha-13 subunit of guanine nucleotide-binding protein. J Proteome Res 4, 1681–1686.

Chou, K.C. 2005b. Prediction of G-protein-coupled receptor classes. J Proteome Res 4, 1413–1418.

Chou, K.C. 2005c. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 21, 10–19.

Chou, K.C., Chen, N.Y. 1977. The biological functions of low-frequency phonons. Sci Sin 20, 447–457.

Chou, K.C., Elrod, D.W. 2002. Bioinformatical analysis of G-protein-coupled receptors. J Proteome Res 1, 429–433.

Chou, K.C., Forsen, S. 1980. Graphical rules for enzyme-catalyzed rate laws. Biochem J 187, 829–835.

Chou, K.C., Jiang, S.P. 1974. Studies on the rate of diffusion-controlled reactions of enzymes. Sci Sin 17, 664–680.

Chou, K.C., Jiang, S.P., Liu, W.M., Fee, C.H. 1979. Graph theory of enzyme kinetics: 1. Steady-state reaction system. Sci Sin 22, 341–358.

Chou, K.C., Kezdy, F.J., Reuss, F. 1994. Review: Steady-state inhibition kinetics of processive nucleic acid polymerases and nucleases. Anal Biochem 221, 217–230.

Chou, K.C., Liu, W.M. 1981. Graphical rules for non-steady state enzyme kinetics. J Theoret Biol 91, 637–654.

Chou, K.C., Maggiora, G.M., Nemethy, G., Scheraga, H.A. 1988. Energetics of the structure of the four-alpha-helix bundle in proteins. Proceed Natl Acad Sci USA 85, 4295–4299.

Chou, K.C., Nemethy, G., Scheraga, H.A. 1984. Energetic approach to packing of a-helices: 2. General treatment of nonequivalent and nonregular helices. J Am Chem Soc 106, 3161–3170.
[41] Chou, K.C., Shen, H.B. 2006. Hum-PLoc: A novel ensemble classifier for predicting human protein subcellular localization. Biochem Biophys Res Commun 347, 150–157.

[42] Chou, K.C., Shen, H.B. 2007a. Signal-CF: a subsite-coupled and window-fusing approach for predicting signal peptides. Biochem Biophys Res Commun 357, 633–640.

[43] Chou, K.C., Shen, H.B. 2007b. Review: Recent progresses in protein subcellular location prediction. Anal Biochem 370, 1–16.

[44] Chou, K.C., Shen, H.B. 2007c. Euk-mPLoc: a fusion classifier for large-scale eukaryotic protein subcellular location prediction by incorporating multiple sites. J Proteome Res 6, 1728–1734.

[45] Chou, K.C., Shen, H.B. 2008a. Cell-PLoc: A package of web-servers for predicting subcellular localization of proteins in various organisms. Nature Prot 3, 153–162.

[46] Chou, K.C., Shen, H.B. 2008b. ProtIdent: A web server for identifying proteases and their types by fusing functional domain and sequential evolution information. Biochem Biophys Res Commun 376, 321–325.

[47] Chou, K.C., Wei, D.Q., Du, Q.S., Sirois, S., Zhong, W.Z. 2006. Review: Progress in computational approach to drug development against SARS. Curr Med Chem 13, 3263–3270.

[48] Chou, K.C., Wei, D.Q., Zhong, W.Z. 2003. Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS. (Erratum: ibid., 2003, Vol.310, 675). Biochem Biophys Res Commun 376, 148–151.

[49] Chou, K.C., Zhou, G.P. 1982. Role of the protein outside active site on the diffusion-controlled reaction of enzyme. J Am Chem Soc 104, 1409–1413.

[50] Climatic Research Unit. 2009. http://www.cru.uea.ac.uk/cru/data/temperature/

[51] Dea-Ayuela, M.A., Perez-Castillo, Y., Meneses-Marcel, A., Ubeira, F.M., Bolas-Fernandez, F., Chou, K.C., Gonzalez-Diaz, H. 2008. HP-Lattice QSAR for dynein proteins: Experimental proteomics (2D-electrophoresis, mass spectrometry) and theoretical study of a Leishmania infantum sequence. Bioorg Med Chem 16, 7770–7776.

[52] Ding, Y.S., Zhang, T.L., Chou, K.C. 2007. Prediction of protein structure classes with pseudo amino acid composition and fuzzy support vector machine network. Protein Pept Lett 14, 811–815.

[53] Du, Q.S., Huang, R.B., Wang, C.H., Li, X.M., Chou, K.C. 2009. Energetic analysis of the two controversial drug binding sites of the M2 proton channel in influenza A virus. J Theoret Biol doi:10.1016/j.jtbi.2009.1003.1003.

[54] Du, Q.S., Wang, S.Q., Chou, K.C. 2007. Analogue inhibitors by modifying oseltamivir based on the crystal neuraminidase structure for treating drug-resistant H5N1 virus. Biochem Biophys Res Commun 362, 525–531.

[55] Gao, W.N., Wei, D.Q., Li, Y., Gao, H., Xu, W.R., Li, A.X., Chou, K.C. 2007. Argarite and its derivatives are potential inhibitors against HIV proteases. Med Chem 3, 221–226.

[56] Garamszegi, L.Z., Møller, A.P. 2007. Prevalence of avian influenza and host ecology. Proc Biol Sci 274, 2003–2012.

[57] Get Lat Lon. 2009. http://www.getlatlon.com/.

[58] Gonzalez-Diaz, H., Gonzalez-Diaz, Y., Santana, L., Ubeira, F.M., Uriarte, E. 2008. Proteomics, networks, and connectivity indices. Proteomics 8, 750–778.

[59] Gong, K., Li, L., Wang, J.F., Cheng, F., Wei, D.Q., Chou, K.C. 2009. Binding mechanism of H5N1 influenza virus neuraminidase with ligands and its implication for drug design. Med Chem, 5, 242–249.

[60] Gonzalez-Diaz, H., Sanchez-Gonzalez, A., Gonzalez-Diaz, Y. 2006. 3D-QSAR study for DNA cleavage proteins with a potential anti-tumor ATCUN-like motif. J Inorg Biochem 100, 1290–1297.

[61] Guo, X.L., Li, L., Wei, D.Q., Zhu, Y.S., Chou, K.C. 2008. Cleavage mechanism of the H5N1 hemagglutinin by trypsin and furin. Amino Acids 35, 375–382.

[62] Hayden, F. 2009. Developing new antiviral agents for influenza treatment: what does the future hold? Clin Infect Dis 48 Suppl 1, S3–S13.

[63] Hayden, F.G. 2006. Antivirals for influenza: historical perspectives and lessons learned. Antiviral Res 71, 372–378.

[64] Hsieh, K.H., Hsu, J.T. 2007. Strategies of development of antiviral agents directed against influenza virus replication. Curr Pharm Des 13, 3531–3542.

[65] Huang, R.B., Du, Q.S., Wang, C.H., Chou, K.C. 2008. An in-depth analysis of the biological functional studies based on the NMR M2 channel structure of influenza A virus. Biochem Biophys Res Commun 377, 1243–1247.

[66] Influenza virus resources. 2009. http://www.ncbi.nlm.nih.gov/genomes/FLU/Database/multiple.cgi

[67] Jahangir, A., Watanabe, Y., Chinen, O., Yamazaki, S., Sakai, K., Okamura, M., Nakamura, M., Takehara, K. 2008. Surveillance of avian influenza viruses in Northern pintails (Anas acuta) in Tohoku District, Japan. Avian Dis 52, 49–53.

[68] Kelly, M.L., Cook, J.A., Brown-Augsburger, P., Heinz, B.A., Smith, M.C., Pinto, L.H. 2003. Demonstrating the intrinsic ion channel activity of virally encoded proteins. FEBS Lett 552, 61–67.

[69] Krauss, S., Walker, D., Pryor, S.P., Niles, L., Chengbong, L., Hinshaw, V.S., Webster, R.G. 2004. Influenza A viruses of migrating wild aquatic birds in North America. Vector Borne Zoonotic Dis 4, 177–189.

[70] Kuznic, P., Ng, K.Y., Heath, T.D. 1992. Mixtures of tight-binding enzyme inhibitors. Kinetic analysis by a recursive rate equation. Anal Biochem 200, 68–73.
[71] Li, T.T., Chou, K.C. 1976. The quantitative relations between diffusion-controlled reaction rate and characteristic parameters in enzyme-substrate reaction system: 1. Neutral substrate. Sci Sin 19, 117–136.

[72] Myers, D., Palmer, G. 1985. Microcomputer tools for steady-state enzyme kinetics. Bioinformatics 1, 105–110.

[73] New, M., Hulme, M., Jones, P. 2000. Representing twentieth-century space-time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. J Clim 13, 2217–2238.

[74] Pielak, R.M., Jason R. Schnell, J.R., Chou, J.J. 2009. Mechanism of drug inhibition and drug resistance of influenza A M2 channel. Proceed Natl Acad Sci, USA 106, 7379–7384.

[75] Pinto, L.H., Lamb, R.A. 2007. Controlling influenza virus replication by inhibiting its proton channel. Mol Biosyst 3, 18–23.

[76] Prado-Prado, F.J., Gonzalez-Diaz, H., de la Vega, O.M., Ubeira, F.M., Chou, K.C. 2008. Unified QSAR approach to antimicrobials. Part 3: First multi-tasking QSAR model for Input-Coded prediction, structural back-projection, and complex networks clustering of antiprotozoal compounds. Bioorg Med Chem 16, 5871–5880.

[77] Rayner, N.A., Brohan, P., Parker, D.E., Folland, C.K., Kent, E.F., Comiso, J.C., Collins, W.J., Harris, I., Hulme, M., Jones, P.D., Parker, D.E., Tett, S.F.B. 2006. Improved analyses of changes and uncertainties in marine temperature measured in situ since the mid nineteenth century: The HadSST2 dataset. J Clim 19, 446—469.

[78] Schnell, J.R., Chou, J.J. 2008. Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451, 591–595.

[79] Schotsaert, M., De Filette, M., Fiers, W., Saelens, X. 2009. Universal ectodomain-based influenza A vaccines: preclinical and clinical developments. Exp Rev Vaccines 8, 499–508.

[80] Shen, H.B., Chou, K.C. 2007. Signal-3L: a 3-layer approach for predicting signal peptide. Biochem Biophys Res Commun 363, 297–303.

[81] Shen, H.B., Chou, K.C. 2008. HIVclease: a web-server for predicting HIV protease cleavage sites in proteins. Anal Biochem 375, 388–390.

[82] Shen, H.B., Chou, K.C. 2009. Identification of proteases and their types. Anal Biochem 385, 153–160.

[83] Sirois, S., Wei, D.Q., Du, Q.S., Chou, K.C. 2004. Virtual Screening for SARS-CoV Protease Based on KZ7088 Pharmacophore Points. J Chem Inf Comput Sci 44, 1111–1122.

[84] Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., Erasmus, B.F., De Siqueira, M.F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., Van Jaarsveld, A.S., Midgley, G.F., Miles, L., Ortega-Huerta, M.A., Peterson, A.T., Phillips, O.L., Williams, S.E. 2004. Extinction risk from climate change. Nature 427, 145–148.

[85] Wang, J.F., Yan, J.Y., Wei, D.Q., Chou, K.C. 2009. Binding of CYP2C9 with diverse drugs and its implications for metabolic mechanism. Med Chem, 5, 263–270.

[86] Wang, S.Q., Du, Q.S., Chou, K.C. 2007. Study of drug resistance of chicken influenza A virus (H5N1) from homology-modeled 3D structures of neuraminidases. Biochem Biophys Res Commun 354, 634–640.

[87] Weber, T.P., Stilianakis, N.I. 2007. Ecologic immunology of avian influenza (H5N1) in migratory birds. Emerg Infect Dis 13, 1139–1143

[88] Wei, D.Q., Du, Q.S., Sun, H., Chou, K.C. 2006. Insights from modeling the 3D structure of H5N1 influenza virus neuraminidase and its binding interactions with ligands. Biochem Biophys Res Commun 344, 1048–1055.

[89] Wu, G. 1998a. Application of the queuing theory with Monte Carlo simulation to inhalation toxicology. Arch Toxicol 72, 330-335.

[90] Wu, G. 1998b. Application of queuing theory with Monte Carlo simulation to the study of the intake and adverse effects of ethanol. Alcohol Alcohol 33, 519–527.

[91] Wu, G., Yan, S. 2001. Estimation of the rate of arrivals of ions at a single-channel. J Biochem Mol Biol Biophys 5, 505–511.

[92] Wu, G., Yan, S. 2002. Randomness in the primary structure of protein: methods and implications. Mol Biol Today 3, 55–69.

[93] Wu, G., Yan, S. 2006a. Fate of influenza A virus proteins. Protein Pept Lett 13, 399–406.

[94] Wu, G., Yan, S. 2006b. Mutation trend of hemagglutinin of influenza a virus: A review from computational mutation viewpoint. Acta Pharmacol Sin 27, 513–526.

[95] Wu, G., Yan, S. 2008a. Lecture notes on computational mutation. Nova Science Publishers, New York.

[96] Wu, G., Yan, S. 2008b. Prediction of mutations engineered by randomness in H5N1 neuraminidases from influenza a virus. Amino Acids 34, 81–90.

[97] Wu, G., Yan, S. 2008c. Prediction of mutations initiated by internal power in H3N2 hemagglutinins of influenza a virus from North America. Int J Pept Res Ther 14, 41–51.

[98] Wu, G., Yan, S. 2008d. Prediction of mutations engineered by randomness in H5N1 hemagglutinins of influenza a virus. Amino Acid 35, 365–373.

[99] Xiao, X., Chou, K.C. 2007. Using grey Virtual Screening for SARS-CoV Protease Based on ZK7088 Pharmacophore Points. J Chem Inf Comput Sci 44, 1111–1122.

[100] Xiao, X., Lin, W.Z., Chou, K.C. 2008. Using grey dynamic modeling and pseudo amino acid composition to predict protein structural classes. J Comput Chem 29, 2018–2024.

[101] Xiao, X., Shao, S., Ding, Y., Huang, Z., Huang, Y., Chou, K.C. 2005. Using complexity measure factor to predict protein subcellular location. Amino Acids 28, 57–61.
[102] Xiao, X., Shao, S.H., Huang, Z.D., Chou, K.C. 2006. Using pseudo amino acid composition to predict protein structural classes: approached with complexity measure factor. J Comput Chem 27, 478–482.

[103] Xiao, X., Wang, P., Chou, K.C. 2008. Predicting protein structural classes with pseudo amino acid composition: an approach using geometric moments of cellular automaton image. J Theoret Biol 254, 691–696.

[104] Xiao, X., Wang, P., Chou, K.C. 2009a. GPCR-CA: A cellular automaton image approach for predicting G-protein-coupled receptor functional classes. J Comput Chem 30, 1414–1423.

[105] Xiao, X., Wang, P., Chou, K.C. 2009b. Predicting protein quaternary structural attribute by hybridizing functional domain composition and pseudo amino acid composition. J Appl Crystallogr 42, 169–173.

[106] Zhang, R., Wei, D.Q., Du, Q.S., Chou, K.C. 2006. Molecular modeling studies of peptide drug candidates against SARS. Med Chem 2, 309–314.

[107] Zhang, T.L., Ding, Y.S., Chou, K.C. 2008. Prediction protein structural classes with pseudo amino acid composition: approximate entropy and hydrophobicity pattern. J Theoret Biol 250, 186–193.

[108] Zhou, G.P. 1989. Biological functions of soliton and extra electron motion in DNA structure. Phys Scrip 40, 698–701.

[109] Zhou, G.P., Cai, Y.D. 2006. Predicting protease types by hybridizing gene ontology and pseudo amino acid composition. PROTEINS: Struct, Funct, Bioinformat 63, 681–684.

[110] Zhou, G.P., Deng, M.H. 1984. An extension of Chou’s graphical rules for deriving enzyme kinetic equations to system involving parallel reaction pathways. Biochem J 222, 169–176.

[111] Zhou, G.P., Doctor, K. 2002. Subcellular location prediction of apoptosis proteins. PROTEINS: Struct, Funct, Genet 50, 44–48.

[112] Zhou, G.P., Surks, H.K., Schnell, J.R., Chou, J.J., Michael E. Mendelsohn, M.E., Rigby, A.C. 2004. The Three-Dimensional Structure of the cGMP-Dependent Protein Kinase I-α Leucine Zipper Domain and Its Interaction with the Myosin Binding Subunit, Blood 104, 963a.

[113] Zhou, G.P., Troy, F.A. 2003. Characterization by NMR and molecular modeling of the binding of polyisoprenols (PI) and polyisoprenyl recognition sequence (PIRS) peptides: three-dimensional structure of the complexes reveals sites of specific interactions. Glycobiology 13, 51–71.

[114] Zhou, G.P., Troy, F.A. 2005a. Invited Review: NMR studies on how the binding complex of polyisoprenol recognition sequence peptides and polyisoprenols can modulate membrane structure, Curr Protein Pept, 6, 399–411.

[115] Zhou, G.P., Troy, F. A. 2005b. NMR study of the preferred membrane orientation of polyisoprenols (dolichol) and the impact of their complex with polyisoprenyl recognition sequence peptides on membrane structure, Glycobiology 15, 347–359.