Bayesian Analysis of the Polarization of Distant Radio Sources: Limits on Cosmological Birefringence

Thomas J. Loredo, Eanna E. Flanagan, and Ira M. Wasserman
Department of Astronomy, Space Sciences Building, Cornell University, Ithaca, New York 14853
(22 June 1997)

A recent study of the rotation of the plane of polarization of light from 160 cosmological sources claims to find significant evidence for cosmological anisotropy. We point out methodological weaknesses of that study, and reanalyze the same data using Bayesian methods that overcome these problems. We find that the data always favor isotropic models for the distribution of observed polarizations over counterparts that have a cosmological anisotropy of the type advocated in the earlier study. Although anisotropic models are not completely ruled out, the data put strong lower limits on the length scale λ (in units of the Hubble length) associated with the anisotropy; the lower limits of 95% credible regions for λ lie between 0.43 and 0.62 in all anisotropic models we studied, values several times larger than the best-fit value of $\lambda \approx 0.1$ found in the earlier study. The length scale is not constrained from above. The vast majority of sources in the data are at distances closer than 0.4 Hubble lengths (corresponding to a redshift of $z \approx 0.8$); the results are thus consistent with there being no significant anisotropy on the length scale probed by these data.

These analyses leave open the issue of accounting for the effect Nodland andRalston claim to detect in the data set they analyzed. We argue here that the effect is not present and that methodological weaknesses corrupted their study (some similar points have been made in [4,5]), and we demonstrate this by reanalyzing the same data in the framework of Bayesian inference where the weaknesses we identify are automatically dealt with and overcome. Our analysis finds no evidence for cosmological birefringence, and convincingly demonstrate that, if present, it must have a magnitude at least 30 to 100 times smaller than that claimed by Nodland and Ralston [2,3].

The data in question consist of four quantities for each of 160 radio galaxies and was compiled by Carroll, Field, and Jackiw from previously published observations [6]. The quantities are: χ_i, the intensity-averaged polarization angle for the radio emission from galaxy i, with the effects of Faraday rotation removed; ψ_i, the position angle for the galaxy describing the orientation of its image on the sky; n_i, the direction to the galaxy; and z_i, the redshift of the galaxy. Nodland and Ralston posited that the polarization vector of light from a source at redshift z along direction n is rotated by an angle β given by

$$\beta(z, n) = \frac{1}{2\lambda} \rho(z) n \cdot s,$$

(1)

where $\rho(z)$ is the luminosity distance to a source at redshift z in a flat universe in units of the Hubble distance, λ is a length scale (also in units of the Hubble length) determining the magnitude of the effect, and s is a fiducial direction associated with the effect. They used a linear correlation statistic to search for correlations between two quantities derived from the data for each object: a signed rotation angle, β_i^{\pm}, measuring the rotation of polarization for galaxy i, and $\rho(z_i) n_i \cdot s$, the distance to the galaxy, projected along a candidate fiducial direction s. They determined the significances of correlations in 410 candidate s directions using two different procedures involving simulated data based on the null hypothesis of no correlation between χ_i and any other galaxy parameters. Our criticisms of their analysis fall into three categories.

First, their choice and use of statistics is ad hoc to a troubling degree. To be sure, there are no general criteria in frequentist statistics guiding the choice of statistic in realistically complicated problems, and in this sense the results of any study will be subjective. But the Nodland and Ralston choices of the linear correlation statistic R using the signed angles β_i^{\pm} creates apparent correlations when none exist (as they themselves acknowledged). Their calibration
using simulated data ideally should account for this, but one might hope better choices are available that do not create spurious effects by construction. In particular, since χ_i and ψ_i are axial variables (angles that take on values in $[0, \pi]$), the rotation from ψ_i to χ_i is known only modulo π and is thus ambiguous. Nodland and Ralston choose a priori to resolve the ambiguity in the manner that most favors birefringence. Also, their choice of the linear correlation statistic seems less than optimal considering that one of quantities correlated is an axial variable, and in some sense should be considered to “wrap” with a period of π. Finally, they use the correlation statistic both for hypothesis testing and for parameter estimation. There is an accessible literature on the statistics of directional data that provides more appropriate choices, particularly for parameter estimation, for which Nodland and Ralston use a specific model that is amenable to analysis with standard estimation techniques.

Second, their choice of null hypothesis is inappropriate. Others have independently made this criticism. Their Monte Carlo simulations created data with χ_i and ψ_i chosen independently and randomly over $[0, \pi)$. However, this is not the only possible null hypothesis without birefringence, nor is it a particularly interesting or realistic one. One could detect birefringence only if χ_i and ψ_i were correlated in the absence of birefringence; one must presume that ψ_i determines a preferred direction for χ_i, with cosmological birefringence causing a rotation away from this. It is only because a high degree of correlation is both observed and expected between χ_i and ψ_i that various investigators have used this data to search for evidence of birefringence. By their choice of null hypothesis Nodland and Ralston essentially set up a “straw man” whose near-certain demise need not imply the existence of birefringence.

The most appropriate null hypothesis is thus one that correlates χ_i and ψ_i with each other (but not with direction or redshift). The existing literature offers a number of possibilities. For example, several studies of the polarization of light from radio galaxies explicitly point out that there appear to be two populations of sources, a population with the polarization nearly perpendicular to the galaxy orientation, and a population with the polarization not very correlated with galaxy orientation, though with a possible weak preference for parallel orientation. These facts, suggesting a reasonable and simple non-birefringent null hypothesis, were clearly summarized by Carroll et al. in their presentation of the catalog analyzed by Nodland and Ralston. Unfortunately, the manner in which Nodland and Ralston resolve the modulo π ambiguity in the polarization rotation maps the data only to the first and third quadrants in the $(\beta_s^i, \rho(z_i)n_i \cdot s)$ plane, forcing their linear correlation statistic to consider only lines through the origin, i.e., to presume that the polarization vector should be aligned with the galaxy major axis in the absence of birefringence (β_s^i is presumed to vanish at low redshift, an observation also made in χ_i). Since the data are known to prefer perpendicular alignment, a large correlation must result, due not to a real correlation of rotation angle with redshift, but rather to a poor choice of statistic and null hypothesis. Even a real correlation between rotation angle and redshift need not imply birefringence. As Carroll et al. noted, the perpendicularly aligned population consists of the more luminous galaxies, and is thus visible to higher redshifts than the broader, possibly parallel-aligned population. Thus the typical alignment angle could vary with redshift simply due to the selection effect that luminous galaxies are visible to larger redshifts, so that perpendicularly aligned sources appear preferentially at large redshift.

Any claim of evidence for birefringence must take such reasonable “null” isotropic models into account. If there is a significant correlation, assessment of such a hypothesis could require explicit inclusion of the galaxy luminosities in the analysis.

Finally, our third criticism of the Nodland-Ralston analysis is that in their main Monte Carlo procedure they incorrectly assessed the significance with which they rejected the null hypothesis. They find the significances associated with each of 410 candidate s directions, and report the smallest value as their main result (a probability for falsely rejecting the null—the Type I error probability—of $\lesssim 10^{-3}$). This value fails to account for the fact that 410 directions were searched because the value of s is uncertain a priori. Although the results of the analyses for all 410 directions are unlikely to be independent, the actual Type I error probability is certainly many times larger than the value they report. The second procedure they perform more appropriately accounts for the size of the parameter space they searched by performing a similar search for each simulated data set. It is in fact the only reasonable procedure of the two they use. However, they apply it only to subsets of the data at low and high redshift, finding a less significant departure from the null hypothesis for the high redshift subset and no significant departure from the null for the low redshift subset, yet concluding these results corroborate their earlier analysis (presumably because the data sets are smaller so only smaller departures are expected). The significance found by application of their second procedure to the entire data set would be by far the most interesting quantity they could calculate with their approach, but it remains curiously absent from their analysis.

Many of these problems could be overcome with a careful frequentist analysis of these data; some are addressed in the recent analysis of Carroll and Field disputing the Nodland and Ralston results. Here we instead pursue a Bayesian approach to the problem. It has the virtue of circumventing many of the problems cited above in a largely “automatic” fashion. We thus intend our study not only to address the scientific question of the existence of evidence for birefringence, but also to offer a new tool for the study of polarization angle data that we believe to be superior to existing tools in many respects.

Data enter a Bayesian analysis through the likelihood function—the probability for the data given some hypothesis...
or model, M, which in general may have some unknown parameters \mathcal{P}. We presume that, once a model is specified, the joint probability for the data for all sources is simply the product of individual probabilities for a single source’s data, $p(\chi_i, \psi_i, n_i, z_i \mid \mathcal{P}, M)$. We can factor this probability as follows:

$$p(\chi_i, \psi_i, n_i, z_i \mid \mathcal{P}, M) = p(\chi_i \mid \psi_i, n_i, z_i, \mathcal{P}, M)p(\psi_i, n_i, z_i \mid \mathcal{P}, M).$$

If we were interested in comparing hypotheses that explicitly modeled the distribution of source positions in space, or that sought to detect anisotropy in the distribution of source directions or orientations, the last factor would be important. Instead, we here focus only on isotropy evident in polarization angle rotation, as did Nodland and Ralston. Accordingly, we can ignore the last factor.

Our task thus becomes one of specifying models that allow us to calculate the individual source likelihood functions, $\mathcal{L}_i(\mathcal{P}) = p(\chi_i \mid \psi_i, n_i, z_i, \mathcal{P}, M)$. The full likelihood is just the product of all $\mathcal{L}_i(\mathcal{P})$ functions; $\mathcal{L}(\mathcal{P}) = \prod_i \mathcal{L}_i(\mathcal{P})$. Note that we must specify a probability for the actual datum, χ_i (given ψ_i, n_i, z_i), and not for a derived quantity such as the signed rotation β_i^\pm introduced by Nodland and Ralston in an ad hoc attempt to resolve modulo π ambiguities. As will become apparent, our approach lets the data determine which possible resolution of the ambiguity is most probable for each object and each choice of hypothesis.

We now must specify choices for \mathcal{L}_i. One choice is to take $p(\chi_i \mid \psi_i, n_i, z_i, \mathcal{P}, M)$ to be a flat distribution, so that $\mathcal{L}_i = 1/\pi$; this is the null hypothesis considered by Nodland and Ralston. We consider this uncorrelated hypothesis ourselves, but we must specify more; no Bayesian calculation can assess a “null” hypothesis without specific consideration of one or more alternatives. This may appear to be a serious drawback of the Bayesian approach, since consideration of one or more alternatives. This may appear to be a serious drawback of the Bayesian approach, since

Subjectivity enters the frequentist test in the choice of a test statistic. Statisticians have long appreciated that the frequentist test statistic f is introduced by Nodland and Ralston in an ad hoc attempt to resolve modulo π ambiguities.

Subjectivity enters the frequentist test in the choice of a test statistic. Statisticians have long appreciated that the frequentist test statistic f is introduced by Nodland and Ralston in an ad hoc attempt to resolve modulo π ambiguities.

Jeffreys [10] showed that Bayesian inference with conditional distributions that are Gaussian and correlated along straight lines leads to use of the linear correlation statistic. Since we seek to mimic in a Bayesian setting the analysis of Nodland and Ralston attempted in a frequentist setting, their use of the correlation statistic might suggest that we introduce straight-line models and Gaussian errors. However, we are not free to introduce a priori the signed rotation, β_i^\pm, they used in their correlation analysis; any model we choose must specify a probability for the actually observed “raw” data. Also, since χ_i is an axial quantity, we cannot use a Gaussian distribution for it, but must instead use an axial distribution that recognizes that χ_i is restricted to the interval $[0, \pi]$. Since no correct Bayesian analysis of these data can lead precisely to their choice of statistics, we instead seek to mimic the spirit of their analysis, introducing linear models where appropriate and using distributions that generalize the Gaussian to angular variables.

Our models presume that $\chi_i = (\psi_i + \theta_i) \mod \pi$, where θ_i is the actual angle of rotation of the polarization vector from the object direction ψ_i, including a possible birefringent term. The probability distribution for θ_i is a circular (not axial) distribution (i.e., its domain is $[0, 2\pi]$) that can depend on n_i and z_i. From this assumption it is straightforward to derive the axial probability distribution for the observable χ_i from any hypothesized distribution $f(\theta_i)$ for the rotation angle θ_i:

$$\mathcal{L}_i(\mathcal{P}) = f(\Delta_i) + f(\Delta_i + \pi),$$

where

$$\Delta_i = \begin{cases} \chi_i - \psi_i, & \text{if } \chi_i \geq \psi_i; \\ \pi - (\psi_i - \chi_i), & \text{otherwise.} \end{cases}$$

The quantity Δ_i is similar to β_i^\pm of Nodland and Ralston. But it was derived from an explicit model for the polarization rotation rather than specified ad hoc, and the likelihood factor for each galaxy explicitly accounts for the two possible resolutions of the modulo π ambiguity associated with χ_i.

To complete specification of a model, we must specify a distribution for the rotation angle θ_i. To follow the spirit of the Nodland and Ralston analysis, we construct candidate distributions using a well known circular generalization of the Gaussian distribution, the Von Mises distribution [8]. The Von Mises distribution for an angle θ concentrated at angle θ_0 with concentration parameter κ is
where the normalization constant requires evaluation of a modified Bessel function, $I_0(\kappa)$. When $\kappa \gg 1$ this distribution becomes approximately Gaussian, with a mean of θ_0 and a variance of $1/\kappa$.

For our simplest nontrivial model, expressing a possible relationship between χ_i and ψ_i in the absence of birefringence, we take $f(\theta_i)$ to be a Von Mises distribution with unknown mean θ_m and concentration κ; both parameters will be estimated using the data. We denote this model M_1. Using equation (3), this corresponds to an object likelihood function $L_i(\theta_m, \kappa) = g(\Delta_i; \theta_m, \kappa)$, where

$$g(\theta; \theta_0, \kappa) = \frac{\cosh [\kappa \cos(\phi - \phi_0)]}{2\pi I_0(\kappa)}.$$

Contours of the resulting joint posterior distribution for θ_m and κ appear in Fig. 1; Table 1 lists the most probable parameter values. Here and throughout this paper, posteriors are found by multiplying the likelihood by prior distributions that are flat with respect to the plotted axes, and normalized over the range plotted. In this case, the prior is flat over θ_m and flat over the logarithm of κ (the standard scale-invariant prior for an a priori unknown nonzero scale parameter).

As is clear from the figure, the data strongly favor polarization angles that are oriented perpendicular to the galaxy’s major axis, as one might have anticipated from visual inspection of the data [4]. The distribution of angles is moderately concentrated, with the mode at $\kappa = 2.0$ (corresponding to an angular half-width $\approx 40^\circ$). Note that distributions that preferentially align χ_i with ψ_i, as was implicitly presumed in the Nodland and Ralston analysis, are strongly ruled out. It is also evident from this figure that the null hypothesis of no relationship between χ_i and ψ_i (corresponding to $\kappa = 0$) is strongly ruled out. In the Bayesian framework we can quantify this by calculating the posterior odds in favor of the Von Mises model M_1 over the null hypothesis (i.e., the ratio of their posterior probabilities). The posterior odds is the product of a subjective prior odds factor, and a data-dependent term called the Bayes factor. The Bayes factor is the ratio of the global likelihoods for the competing models, where the global likelihood for a model with free parameters is found by averaging the likelihood for its parameters (weighted by the prior distributions for the parameters). This is in contrast to frequentist hypothesis testing methods which instead extremize over parameter space (e.g., maximum likelihood or minimum χ^2). The averaging required by the Bayesian approach implements an automatic “Ockham’s razor” that penalizes models for the size of their parameter space. As a result, even though a complicated model may fit the data better than a simpler model in the sense of having a larger maximum likelihood, it can be less probable than the simpler model if the likelihood is not increased enough to account for the larger size of the parameter space of the more complicated model. It is thus customary in Bayesian literature to report Bayes factors for model comparison, essentially presuming the prior odds to be unity (since model complexity is already incorporated into the Bayes factor). If one judges certain models to be significantly less probable than others a priori (on grounds other than their complexity), one can multiply the reported Bayes factor to account for this.

For the null hypothesis, $L_i = 1/\pi$, and there are no free parameters; we denote this model as M_0. The likelihood for this model is thus simply $1/\pi^N$, where for the full dataset $N = 160$. For the Von Mises model, M_1, one must average the numerically calculated likelihood over θ_m and κ. The resulting Bayes factor is 1.9×10^4 in favor of M_1 over M_0, conclusively favoring a correlation between χ_i and ψ_i over the null hypothesis of no correlation.

We now introduce cosmological birefringence into the Von Mises model by setting $L_i(\theta_m, \kappa) = g(\Delta_i; \theta_m + \beta_i, \kappa)$, where the expected angle of rotation for object i is shifted by $\beta_i = \beta(z_i, \mathbf{n}_i)$ (c.f., eqn. (4)), as posited by Nodland and Ralston. This adds three parameters to the model, the dimensionless length scale λ, and the unknown fiducial direction s (specified by right ascension α and declination δ). We denote this model as M'_1. We use flat priors for α and $\sin(\delta)$ and a flat prior for $\log(\lambda)$ with $0.01 < \lambda < 10$ (corresponding to distance scales appropriate for detecting a cosmological effect; i.e., at least a reasonable fraction of a Hubble length, up to the length scale of the observable universe). The solid curve in Fig. 2 shows the resulting marginal posterior distribution for λ. This marginal distribution $p(\lambda \mid D, M'_1)$ is found by numerically integrating the full joint posterior distribution $p(\lambda, \alpha, \delta, \theta_m, \kappa \mid D, M'_1)$ over the remaining four parameters $\alpha, \delta, \theta_m, \kappa$, and thus accounts for parameter uncertainties and correlations between all parameters [1]. For $\lambda > 1$, the marginal posterior is very nearly flat, i.e., it resembles the prior. In other words, in this region the data have taught us nothing—they are uninformative about birefringence on these length scales, as one might have guessed a priori since there are few galaxies in the data set with $z > 1$. But in the $\lambda < 1$ region, the data are very informative. The 95.4% (“2σ”) highest posterior density credible region (CR) begins at $\lambda = 0.43$ and extends to the upper limit of the prior range. Birefringent models with $\lambda \lesssim 0.4$ are thus conclusively ruled out. The best-fit model of Nodland and Ralston had $\lambda \approx 0.1$.

The Bayes factor comparing this model to its simpler isotropic counterpart is 0.46. Though slightly favoring the isotropic model, this Bayes factor indicates that the data do not conclusively discriminate between birefringent
and isotropic Von Mises models. However, the allowable birefringent models are those about which the data are uninformative (those with $\lambda \gtrsim 1$). The models with small λ favored by Nodland and Ralston are conclusively rejected.

Finally, we note that the best-fit values of the parameters for the underlying polarization angle distribution are little changed from their best-fit values in the isotropic model (see Table 1). Thus the preference for perpendicular alignment is not a consequence of ignoring possible birefringence. The best-fit fiducial direction is at $\alpha = 149^\circ$ and $\delta = 11^\circ$, very different from the Nodland and Ralston best-fit direction of $\alpha = 315^\circ$ and $\delta = -10^\circ$. However, the posterior varies only weakly with s, so the fiducial direction is highly uncertain and can lie almost anywhere on the sky. This is consistent with there being negligible evidence for birefringence in these data.

We also considered models that are more complicated than those implicit in the Nodland and Ralston analysis. These models were motivated by the possibility that there are two populations of sources, one with polarization preferentially perpendicular to the source orientation (as was inferred in the model analyzed above), and another with polarization only weakly aligned, with a possible preference for parallel alignment. Accordingly, we considered models that superposed parallel and perpendicular populations by taking

$$L_i(\theta_m, \kappa) = fg(\Delta_i; 0, \kappa_{||}) + (1 - f)g(\Delta_i; \pi/2, \kappa_\perp),$$

(7)

where f is the fraction of sources in the parallel population, and $\kappa_{||}$ and κ_\perp are the widths of the parallel and perpendicular populations. We studied this model and two simpler cases of it: a model combining the parallel population with a population with a flat Δ_i distribution (i.e., fixing $\kappa_{\perp} = 0$), and a model combining the perpendicular population with a flat Δ_i distribution (i.e., fixing $\kappa_{\parallel} = 0$). Of these three classes of models, only the latter was favored by the data over the single population model discussed above (regardless of whether birefringence was added or not).

We here discuss results only for this model, which we denote M_2.

Model M_2 has two parameters, f and κ_\perp. Fig. 3 shows contours of the joint posterior for these parameters. Table 1 lists the most probable values. There is a clear mode corresponding to roughly half of the sources coming from a flat population and the remainder coming from a perpendicular population that is moderately concentrated with $\kappa_\perp \approx 4$ (corresponding to a half-width of $\approx 30^\circ$). But the posterior has a tail extending to low f with $f = 0$ lying within the 95.4% CR, suggesting that the data do not decisively prefer this model to a single population model. The Bayes factor comparing this model to the single population model discussed above is 54, indicating significant but not conclusive evidence for the addition of a flat population.

Next we considered a birefringent version of this model, M'_2, by taking

$$L_i(\theta_m, \kappa) = \frac{f}{\pi} + (1 - f)g(\Delta_i + \beta_i; \pi/2, \kappa_\perp).$$

(8)

This model has five parameters: f, κ_\perp, λ, and $s = \{\alpha, \delta\}$. The Bayes factor comparing this model to its counterpart without birefringence is ≈ 0.44, again indicating that though the data prefer models without birefringence, they do not conclusively rule it out. However, as with single component models, small values of λ are ruled out, as is apparent from the marginal distribution shown as the dashed curve in Fig. 2 (the lower limit of the 95.4% CR is at $\lambda = 0.52$). Again, values of the order of that found by Nodland and Ralston are excluded with high probability.

Following Nodland and Ralston, we repeated the analysis using only the subset of 71 sources with $z \geq 0.3$, the redshift where they claim the birefringence effect “turns on.” Table 2 lists the resulting parameter estimates and Bayes factors. None of the conclusions found in our analysis of all 160 sources was changed. Bayes factors again indicate that isotropic models are preferred to their birefringent counterparts, though not decisively so. The credible regions for λ again decisively rule out the Nodland and Ralston value; the lower limit of the 95.4% CR is at $\lambda \approx 0.47$ for the single component model M'_1, and at $\lambda \approx 0.62$ for model M'_2 combining a perpendicular population with a flat population. Note that the estimated fraction in the flat population is significantly smaller than was the case in the analysis of all 160 galaxies. This may support the observation of Carroll, Field, and Jackiw that the sources with polarization perpendicular to the galaxy orientation tend to have higher luminosities (and thus dominate the sample at high redshifts).

We emphasize that these results have been obtained using the same data analyzed by Nodland and Ralston, with the same explicit model for birefringence, and with models for the underlying relationship between χ_i and ψ_i as close as possible to what was implicitly presumed in their analysis. Our findings reveal the data in question to be completely consistent with more recently analyzed data that constrain any cosmological birefringence to be much smaller in magnitude than that claimed by Nodland and Ralston. The primary difference between the Nodland-Ralston study and ours is methodological. Our methodology improves on the frequentist one adopted by Nodland and Ralston in all three categories mentioned above. Our choice of statistics is dictated by our choice of models via the rules of probability theory and rigorously accounts for the axial nature of the observed quantities, and in particular for modulo π ambiguities. We considered a variety of hypotheses with and without birefringence, and thus have not fallen prey
to claiming detection of birefringence by rejecting an unnecessarily simple “straw man” null hypothesis. And finally, the Bayesian methodology fully and automatically accounts for the sizes of the parameter spaces of our models and for all correlations between inferred parameters, both in the averaging process underlying calculation of Bayes factors for comparing models, and in the integrations required in calculating marginal distributions for subsets of parameters of particular interest (e.g., λ). Quite apart from the issue of the existence of birefringence, we believe these qualities strongly recommend Bayesian methods for the analysis of polarization angle data. They can be straightforwardly generalized to address questions beyond those dealt with in this brief paper. For example, uncertainties in the measured quantities can be straightforwardly accounted for by marginalizing. Also, more sophisticated models can be studied by including data on the polarization strengths and luminosities of sources in order to determine whether alignment is correlated with these quantities, and whether population parameters change with redshift in a manner that can be attributed to source evolution, or in a manner that instead demands the existence of cosmological anisotropy.

We thank Sean Carroll for providing a machine-readable catalog of the polarization data published in [6], and Borge Nodland for information about typographical errors in the catalog. This work was supported in part by NASA grants NAG 5-3427 and NAG 5-3097 and by NSF grants AST 91-19475, AST 93-15375, and PHY-9408378.

[1] B. Nodland and J. P. Ralston, Phys. Rev. Lett. 78, 3043 (1997); astro-ph/9704196
[2] J. P. Leahy, astro-ph/9704285
[3] J. F. C. Wardle, R. A. Perley and M. H. Cohen, astro-ph/9705142
[4] D. J. Eisenstein and E. F. Bunn, astro-ph/9704247
[5] S. M. Carroll and G. B. Field, astro-ph/9704263
[6] S. M. Carroll, G. B. Field and R. Jackiw, Phys. Rev. D 41, 1231 (1990). We have included corrections for typographical errors noted in ref. 1.
[7] More precisely, Nodland and Ralston took $\beta^+_n = \chi_i - \psi_i + n\pi$ where n is an integer such that $0 \leq \beta^+_n \leq \pi$ and $-\pi \leq \beta^-_n \leq 0$; for each galaxy they chose between β^+_n and β^-_n according to the sign of $n_i \cdot \mathbf{s}$ for the candidate s under consideration.
[8] K. V. Mardia, Statistics of Directional Data (Academic Press, 1972); N. I. Fisher, T. Lewis, and B. J. J. Embleton, Statistical Analysis of Spherical Data (Cambridge University Press, 1987).
[9] A brief introduction to Bayesian terminology and notation as used here appears in § 2 of P. C. Gregory and T. J. Loredo, Astrophys. J. 398, 146 (1992). See also D. S. Sivia, Data Analysis: A Bayesian Tutorial (Clarendon Press, 1996).
[10] H. Jeffreys, Theory of Probability (Oxford: Oxford Univ. Press).
[11] We calculated this integral and other similar integrals over more than two dimensions using the adaptive quadrature algorithm given by A. C. Genz and A. A. Malik, J. Comp. Appl. Math. 6, 295 (1980).
FIG. 1. Joint posterior distribution for θ_m and $\log_{10}(\kappa)$ in the single component model M_1, with no birefringence. Contours indicate the boundaries of 68.3% (dotted), 95.4% (dashed), and 99.73% (solid) credible regions. Cross indicates the mode.

FIG. 2. Logarithm of marginal posterior distributions for the birefringence lengthscale λ (in units of the Hubble distance), with arbitrary normalization. Dots mark the lower limits of 95.4% credible regions. The solid curve is for the single component birefringent model M'_1; the dashed curve is for the two component birefringent model M'_2.

FIG. 3. Joint posterior distribution for f and $\log_{10}(\kappa_{\perp})$ in the two component model M_2, with no birefringence. Contours indicate the boundaries of 68.3% (dotted), 95.4% (dashed), and 99.73% (solid) credible regions. Cross indicates the mode.
TABLE I. Most probable parameter values and Bayes factors; all data (160 galaxies)

Quantity	Isotropic	Birefringent
θ_m (°)	94.6	91.3
$\log_{10} \kappa$	0.29	0.31
B^a	1.9×10^4	8.5×10^3
$\log_{10} \lambda$	–	-0.15
α (°)	–	149
$\sin \delta$	–	0.19

M_1, M'_1: Single Von Mises

| M_2, M'_2: Perpendicular Von Mises + Constant |
f	0.56	0.55
$\log_{10} \kappa_\perp$	0.81	0.84
B^a	1.0×10^6	4.5×10^5

$\log_{10} \lambda$	–	-0.13
α (°)	–	146
$\sin \delta$	–	0.23

*Bayes factors compare the models to model M_0 positing a flat polarization angle distribution, uncorrelated with position angle.

TABLE II. Most probable parameter values and Bayes factors; data selected with $z \geq 0.3$ (71 galaxies)

Quantity	Isotropic	Birefringent
θ_m (°)	93.7	85.8
$\log_{10} \kappa$	0.56	0.601
B^a	2.4×10^7	1.3×10^7
$\log_{10} \lambda$	–	-0.25
α (°)	–	155
$\sin \delta$	–	0.64

M_2, M'_2: Perpendicular Von Mises + Constant

f	0.17	0.051
$\log_{10} \kappa_\perp$	0.71	0.63
B^a	2.2×10^8	9.6×10^7
$\log_{10} \lambda$	–	-0.12
α (°)	–	155
$\sin \delta$	–	0.38

*Bayes factors compare the models to model M_0 positing a flat polarization angle distribution, uncorrelated with position angle.
