Review Article

A Review of Ochratoxin A Occurrence, Condition for the Formation and Analytical Methods

Salasib Atumo*

Department of Chemistry, College of Natural and Computational Science, Bonga University, Bonga, Ethiopia

Abstract

Ochratoxin A (OTA) is a mycotoxin produced by several fungal species including Aspergillus ochraceus, A. carbonarius, A. niger and Penicillium verrucosum. Various studies report that Ochratoxin A can lead to several health problems for both animal and human health through the consumption of Ochratoxin A contaminated plant and animal origin foods. For instance, Ochratoxin A has been shown to be nephrotoxic, teratogenic, immunotoxic, and carcinogenic in human health. Therefore, the main aim of this review is to focus on the occurrence, analytical methods, and the condition for the formation of Ochratoxin A. Numerous studies report that Ochratoxin A was present in several processed and unprocessed food stuffs, species, and different alcoholic beverages. Primarily, cereals and cereal products have a high vulnerability to Ochratoxin A due to the presence of high moisture contents. On the other hand, several environmental conditions are important for the formation of Ochratoxin A in different food stuffs. For example, the most important abiotic factors that influence the growth and Ochratoxin A production by spoilage fungi include water availability, temperature, and gas composition. Finally, several analytical methods are used for detection of Ochratoxin A from different plant and animal origin foods such as thin layer chromatography, enzyme-linked immunosorbent assay, and high-performance liquid chromatography. However, based on the sensitivity, resolution, and efficiency, currently, high-performance liquid chromatography techniques are more popular and advanced analytical techniques for different mycotoxins, particularly Ochratoxin A and Aflatoxins detection.

Introduction

Mycotoxins are secondary metabolites produced by a wide variety of filamentous fungi, including species from the genera Aspergillus, Fusarium, Penicillium, A. niger, and A. carbonarius. Ochratoxins are produced by various Penicillium and Aspergillus strains [2]. Based on their structure and chemical compounds, Ochratoxin can be categorized into three. Among them, Ochratoxin A (OTA) is the most commonly occurring metabolite and the most hazardous, since it is a nephrotoxic and carcinogenic agent [2]. Additionally, exposure of the human being for a long period of time with Ochratoxin A-contaminated diets leads to several health problems such as kidney, liver cancer and weakening of the immunity system [3], and has been classified by the International Agency for Research on Cancer (IARC) as a possible carcinogen to humans [4]. Likewise, Ochratoxin A can lead to serious health problems to animals during the consumption of contaminated agricultural products by these mycotoxin types. For example, hepatotoxic, carcinogenic, genotoxic, immunotoxic, teratogenic, and neurotoxic health impacts on animals [5]. Furthermore, Ochratoxin A is a toxic metabolite of Aspergillus fungi that can contaminate various foods and feed products.

One of the recent research findings indicates that the presence of Ochratoxin A in wheat bread and maize bread is (12.9 and 70) μg/kg respectively [6]. The result showed that the concentration level of maize breads has high Ochratoxin A contents and maize and maize contain food stuffs is...
Material and methods

A systematic analysis and review of research literature related to Ochratoxin A occurrence, the condition for the formation and detection mechanisms of Ochratoxin A from different plant and animal origin food. To compile this review article the reviewer used a web based systematic research literature search was employed. The occurrence, contamination, environmental and climatic condition for the formation and analytical technique were gathered by different search approach, including search published different journal related with present title by using international scientific data bases such as PubMed, Google search, Google scholar and the like. For instance, literature search was performed using the following key terms: Ochratoxin A, the effects of Ochratoxin A for both animal and human health and analysis of Ochratoxin A from different food contained sample. Finally, the idea that gathered from each journal article was paraphrased and some report was expressed in the form table and figure.

Ochratoxin A

Ochratoxin are a group of mycotoxins produced as secondary metabolites by several fungi of the aspergillus and penicillium families. Early studies investigation data indicate that Ochratoxin A (OTA) was first identified and characterized from fungal cultures in South Africa chemist in 1965 and have three derivatives such as Ochratoxin A, Ochratoxin B and Ochratoxin C [8]. These three types of Ochratoxins are closely related molecular structure. However, which differ in that Ochratoxin B (OTB) is a non-chlorinated form of Ochratoxin A (OTA) and Ochratoxin C (OTC) is an ethyl ester of OTA as described in Figure 1 [9]. Among them Ochratoxin A is the most toxic member of the Ochratoxin which is structurally similar to the amino acid phenylalanine. Chemical name for Ochratoxin A contains 7-carboxy group to L-β-phenylalanine by a peptide bond. Briefly, the chemical abstract number, molecular formula and molecular mass of each Ochratoxins type is described in Table 1 [10]. On the other hand in acidic and alkaline solution Ochratoxin A shows different properties. For instance, in case of acidic and neutral pH, Ochratoxin A is easily soluble in polar organic solvents such as alcohol, ketone and chloroform. While in case of alkaline solution Ochratoxin A molecule is soluble in aqueous sodium bicarbonate and in all alkaline solution in general. However, OTA molecule in water, petroleum ether and saturated hydrocarbons are slightly soluble [11].

![Figure 1: Chemical structure of Ochratoxin (A, B and C).](https://www.peertechz.com/journals/international-journal-of-agricultural-science-and-food-technology)

Name	OTA	OTB	OTC
Chemical abstract number	303-47-9	4825-86-9	4865-85-4
Molecular formula	C_{20}H_{18}ClNO_{6}	C_{20}H_{19}NO_{6}	C_{22}H_{22}ClNO_{6}
Molecular mass(gmol\(^{-1}\))	403.8	369.4	431.9
[19]. Hence, to protect consumer from different health risks different International Organization was set the maximum permissible limits for Ochratoxin A in different food stuffs and alcoholic beverage. Then, the maximum limits of 5.0 ng/g Ochratoxin A in raw cereal grains whereas 3.0 ng/g in cereal-processed. Similarly, coffee and dried fruit 10 ng/g wines and cereal based baby food 2 μg/L and 0.5 ng/g respectively set by European commission [20]. Likewise, Ochratoxin A has also been determined in foods of animal origin such as pork blood products, pork kidney, pork liver, or pork meat. The reason the pigs are predominantly exposed to Ochratoxin A through their contaminated feed [18]. In short, Ochratoxin A is a secondary metabolite produced either by penicillin in cereal and cereal proceeds food or Aspergilli in wine, grapes, coffee and cocoa [21]. According to this in recent time several scientific communities has received increased primary attention towards the effects of Ochratoxin A because of its hazard to human and animal health [22]. In general, animals are directly exposed to mycotoxins through the consumption of mould feedstuff Whereas, human exposure can be via one of two routes; direct exposure due to the consumption of mould plant products, or indirect exposure through the consumption of contaminated animal products [23].

Food and Agricultural Organization (FAO, 1999) report estimated that around 12% of total Ochratoxin A intake comes from consumption of coffee. Through these contaminated foods and animal product consumption it leads several health problem to human beings. For instance, Ochratoxin A has been shown to be nephrotoxic, teratogenic, immunotoxic, and carcinogenic in human health [20]. The effect of Ochratoxin A is not only for human and animal health but also negative impacts on country economy and trading system. According to many experimental studies data indicate that the effect of mycotoxins leads serious problem to developing countries due to the combination of social, agricultural, economical and storage system can be contributed for exposure [29,31].

Effects of Ochratoxin A on animal health

Similar to that of human being, animals are exposed to Ochratoxin A causes when the feeds have been known to exhibit the form of intoxication which can leads to death through consumption [30]. Once the animals are exposed to Ochratoxin shows different clinical signs which leads to liver damage, reduced weight gain, and decline of products (like egg, meat, milk and milk products) [31,32]. As, a result the consequence becomes economic losses to both society and industry. A few scientists believed that Ochratoxin A contamination was linked to micronutrient deficiencies in animals whereas a few of them are now found to have reported that there is no relationship between ochratoxin-albumin. In addition, clinical manifestations poisoning include low reproductive capacity, gastrointestinal dysfunction and decline in feed utilization [32]. However, animal susceptibility to carcinogenesis by Ochratoxin A are varies with their sex, age, species, hormonal and nutritional status of the animal [33].

Condition formation of Ochratoxin A in different commodities

The most important abiotic factors which influence the growth and Ochratoxin A production by such Spoilage fungi include water availability, temperature and gas composition [34]. Water activity is perhaps the most critical factor influences the germination, growth and establishment of molds on nutrient worthy substrates. The previous studies shown, that Ochratoxin A contamination was produced by P. verrucosum at water activity of 0.95 and a temperature of 25°C [35]. Similar to water activity, temperature is also second factor and highly contribution for the production of Ochratoxin A in different agricultural commodities. Number of investigation mentioned as the optimal temperature for Ochratoxin A production is between 25–30°C for A. ochraceus, 10–20°C for A. carbonarius and 20–25°C for A. niger aggregate [36–38]. Not only water and temperature factors but also some of the countries are creating favorable conditions for the formation of Ochratoxin A in different food and feeds.

For instance, in countries of South America, South Asia, and Africa where climate is hot and dry hence aspergillus species are the major Ochratoxin A producers [39]. Similarly, in temperate countries such as the United States, Canada, and Europe, where temperatures are moderate and can be contributed for the production of penicillium genus is the major Ochratoxin A producer [40]. Grain moisture contents are their own important factors for the growing of fungi and production of Ochratoxin A.
Several literature data indicate that Penicillium verrucosum is found mostly in grains with moisture contents are higher than about 14.5% [41]. In addition, the development P. verrucosum and formation of Ochratoxin A on different grain (wheat) when the moisture content ranging from 10–30% and 18–22% [42].

However, when the moisture content was detected below 17% the probability for the growth of P. verrucosum and production of Ochratoxin A is very low [34]. Similar to temperature and moisture contents, gas compositions are other factors for the growth of fungi and production of Ochratoxin A in different food stuffs, dried fruit, alcoholic beverage and coffee. According to [41] the effect of gas composition is highly contributed for the developments of p.verrucosum and Ochratoxin A formation in inoculated wheat grains for 28 days at 25°C. The effect Ochratoxin A was produced in a commodity largely depends on one or more fungal species is contaminating the commodity due to the presence favorable climatic factors, environmental condition and the way of handling practices such as, drying, storage, processing and transportation) and agricultural methods are play an important role for the growth of fungi and production of Ochratoxin A [43,44]. In generally, all the commodities including of processed and unprocessed food stuffs which are stored in improper manner and exposure for temperature and humidity for a long period of time create favorable conditions for mould growth and can be cause to mycotoxin contamination [42].

Analytical methods for Ochratoxin A

Several methods have been developed for the determination of Ochratoxin A in a variety of food commodities including cereals (barley, corn, wheat bran, and flour), coffee, cocoa, wine, beer, and dried fruits. In the present review some of the analytical methods that used for determination, separation and quantification of Ochratoxin A from different food stuffs, feeds and alcoholic beverage were discuss as follow.

Thin layer chromatography

Thin Layer Chromatography is a technique used to isolate non–volatile mixtures. During conducting the experiments, sheet of aluminum foil, plastic, or glass which is coated with a thin layer of adsorbent materials and materials usually including aluminum oxide, cellulose or silica gel [45]. Similar to the other chromatography methods, thin layer chromatography is depends on the separation principles. The separation relies on the relative affinity of compounds towards both the phases. The mobile phase move over the surface of the stationary phase [45]. On the other hand, thin layer chromatography the most widely used and established separation and detection technique for aflatoxin since its developments in the 1960s [46]. Not only for aflatoxin analysis but also used for determination of Ochratoxin A from different agricultural crops product. For instance, detection of 2.4 – 4 mg/Kg of Ochratoxin A, and 10 mg/Kg of Ochratoxin A from rice and wheat respectively [47]. The use of thin layer chromatography analysis for mycotoxins is still popular for both quantitative and semi-quantitative purposes. The main reason is due to its high throughput of samples, low operating cost and ease of identification of target compounds, using UV–vis spectral analysis especially in developing country [48]. However, when compared with other chromatographic techniques, thin layer chromatography detection limit is high, length of separation is limited and lack of automation [49].

Enzyme-Linked Immunosorbent Assay (ELISA)

Enzyme linked immunosorbent assay is a plate based assay technique which is used for detecting and quantifying substances such as peptides, proteins, antibodies and hormones. Similar to the previously discussed analytical methods, also enzyme linked immunosorbent assay methods have their own advantages and limitations during the conducting of analysis. Enzyme linked immunosorbent assay methods have advantages due to their simplicity, and number of samples that can be analyzed at the same time. In addition, it requires low volume samples, quicker sample cleanup, simple and specific [45]. However, enzyme linked immunosorbent assay is less accurate and relatively low sensitivity and low efficiency compared with other chromatography techniques [50]. In addition, false positive or negative results are observed because of cross–reactions among molecules or interferences. Therefore, enzyme linked immunosorbent assay kits should not be used as a quantitative method and should only be used with foods for which they have been extensively tested and demonstrated to work [51]. Moreover, one of the documented reports showed that during the uses of enzyme linked immunosorbent assay methods sufficient controls must be employed for each test, to ensure the validity of the quantification unless difficult to obtain accurate result [52].

High Performance Liquid Chromatography (HPLC)

In fact, more advanced and sensitive analytical methods for determining Ochratoxin A and Ochratoxins in biological materials are being developed consecutively toward the sophisticated development of instrumentation and analytical techniques. Like other forms of chromatography, HPLC allows the separation of chemical constituents through the use of a mobile phase and a stationary phase. The mobile and stationary phase is liquid and solid respectively. In the recent time high performance liquid chromatograph techniques are more popular and preferable analytical methods for mycotoxins analysis compared with other chromatographic methods [53]. For example, compared with thin layer chromatography methods HPLC is extremely quick and efficient [54]. The reason that it uses a pump, rather than gravity, to force a liquid solvent through a solid adsorbent material, with different chemical components separating out as they move at different speeds[49]. Moreover, the process can be completed in roughly 10 to 30 minutes, and it delivers high resolution. As the above mentioned early a number of methods are used for determination of Ochratoxin A from different plant and animal origin food stuffs. However, high performance liquid chromatography with fluorescence light detector (HPLC–FLD) and Immunoaffinity column cleanup techniques are primarily used for quantification of Ochratoxin A in large number of sorts of food stuffs both animal and plant origins [55]. The recent study have documented the use of Immunoaffinity column in
The majority of the present study report indicate that Ochratoxin A is a significant mycotoxin in many food and feed samples. It is widely used for determination and quantification of Ochratoxin A levels from plant and animal origin samples such as, rice, coffee beans, and peanuts. For instance, clean-up techniques are the specific binding of Ochratoxin A on to the antibody and the near – complete removal of the matrix interference [57]. Nevertheless, in the case of Ochratoxin A, underestimation can be observed if extraction is done in an alkaline condition, because Ochratoxin A is converted into open–ring Ochratoxin A (OP-OA) and no longer recognized by antibodies [58].

Conclusion

Ochratoxin A is belonging to a family of structurally related, secondary fungal metabolites produced by various Penicillium and Aspergillus strains. This secondary metabolite mycotoxin groups are leads seer heath problem for human and animal health during the consumption of contaminated food and feeds. For instance, the human being exposure for a long period with Ochratoxin A contaminated diets leads to several health problems such as, kidney, liver cancer and weakening of the immunity system. Likewise, hepatotoxic, carcinogenic, genotoxic, immunotoxic, teratogenic, and neurotoxic type of disease are occurred on animal health. Several environmental and climatic conditions are playing an important role for the formation of Ochratoxin A in different agricultural commodity. For example, optimal temperature between 25–30°C and moisture contents are higher than about 14.5% of the food contained food stuffs are easily exposure for mould development and formation of Ochratoxin A. In addition, the effect of gas composition is highly contributed for the developments of p.verrucosum and Ochratoxin A formation when incubated and storage of agricultural commodity for a long period of time. Finally, different analytical techniques are widely used for determination and quantification of Ochratoxin A concentration from plant and animal origin sample such as, thin layer chromatography, enzyme linked immunosorbent assay and high performance liquid chromatography. However, majority of the present study report indicate that Ochratoxin A widely detected and quantify from the different food and food contained sample by using high performance liquid chromatography analytical techniques. The main reasons for this assay the instrument is highly sensitivity, high resolution and high efficiency compared with other analytical techniques.

References

1. Angelina P, Celeste L (2010) Mycotoxin food and feed regulation and specific case of Ochratoxin A: A review of the worldwide status. Journal of Food Additives and Contaminations 27: 1-11. Link: https://bit.ly/35liUCL
2. Rosa V, Antonella A, Carlo G, Francesco P (2008) Determination of Ochratoxin A in green coffee beans by solid phase micro extraction and liquid chromatography with fluorescence detection. Journal of Chromatography A 1187: 145-150. Link: https://bit.ly/2HzBjRt
3. Stoev D, Vet H (2010) Toxicol. Journal of food science 6: 40-46.
4. IARC (1993) Monography on the evaluation of carcinogenic risks to humans some naturally occurring substance. Journal of International agency for research on cancer 56: 489-496.
5. Lucchetta, G, Bazzu G Dal C, Bellotto M (2010) Occurrence of black aspergilli and Ochratoxin A on grapes in Italy. Journal of Toxins 2: 840–855. Link: https://bit.ly/35NdTG
6. Ali K, Shehzad A, Muhammad R, Muhammad S (2013) Ochratoxin A in Cereal Products, Potential Hazards and Prevention strategies: A Review. Journal of Food Sciences 23: 52-61. Link: https://bit.ly/3oApoiu
7. Moharram R, Ali A, Mohammad S, Shehzad A (2013) Ochratoxin A in cereal products potential hazards and prevention strategies: A review Journal of Food Science 23: 52–61. Link: https://bit.ly/3kEtpry
8. Ternesgen A, Teshome G (2018) Major mycotoxin, occurrence, prevention and control approach. Journal of Biotechnology 12. 1-11. Link: https://bit.ly/2HNSmHu
9. Sofia C Angelina P, Celeste M (2011) Human Ochratoxin A biomarkers from exposure to effect. Crit Rev Toxicol 41: 187-212. Link: https://bit.ly/2HtfA9T
10. Gunus, R, Ercan N, Imik H (2018) Determination of Ochratoxin A levels in mixed feed and feed stuffs used in some laying hens and ruminants enterprises of Sivas city. Journal of Poultry Science 20: 85-90. Link: https://bit.ly/31TbHlP
11. Andre K, Ali A (2010) Ochratoxin A: General overview and actual molecular status. Journal of Toxins 2: 461-493. Link: https://bit.ly/37HfrQz
12. Frantisek M, Vladimir O, Anine P, Jakub T (2016) Ochratoxin A: 50 years of research of toxins. Journal of Toxins 87: 191. Link: https://bit.ly/3SHMf0N
13. Pittet A (1996) Natural occurrence of mycotoxin in foods and feeds. Journal of Rev Med Vet 6: 479-492.
14. Zhao Y, Yuan Y, Bai X, Liao X (2020) Multi mycotoxins analysis in liquid milk by UHPLC after magnetic solid phase extraction based on PEGYLATED multi walled carbon nano tube. Food Chemistry 305: 125429. Link: https://bit.ly/3jHVB1n
15. Meflah S, Abid S, Dias T (2015) Mechanisms underlying the effect of commercial starter culture and a native yeast on Ochratoxin A production in meat product. Journal of Risk Assessment 33: 157-166.
16. El D, Gambacorta L, Solfrizzo M (2019) Multi mycotoxin occurrence in species and herbs commercialized in Lebanon. Journal of Food Control 95: 63-70. Link: https://bit.ly/3oC3Csv
17. Balendres M, Karlousky P, Cumagun C (2019) Mycotogenic fungi and mycotoxin agricultural crop commodities in Philippines. Journal of Food Science 8: 249. Link: https://bit.ly/2G8KjW
18. Peter K (2016) Assessment of the levels of Ochratoxin a in coffee bean from the coffee growing region of Kamba, Kenya. Journal of Food Science and Quality Management 53: 55-70. Link: https://bit.ly/2HIpMcj
19. Eskola M, Kos G, Elliott T, Kriska R (2019) Worldwide contamination of food crops with mycotoxins. Crit Rev Food Sci Nutr 59: 1-17. Link: https://bit.ly/34AuUs4
20. Durate S, Pena A, Lino C (2010) A review on Ochratoxin A occurrence and effects of processing of cereal and cereal derived food products. Food Microbiol 27: 187-198. Link: https://bit.ly/2HO62TR
21. Maria P, Maria L, Juan M, Sola A (2012) Control of Ochratoxin A production in grapes. Journal of Toxin 4: 364-372. Link: https://bit.ly/2HL8txC
22. Mantle P (2002) Risk assessment and the importance of Ochratoxins. International Biodeterioration & Biodegradation 50: 143-146. Link: https://bit.ly/3mvxMr7
23. Scudamore K, MacDonald S (1998) A collaborative studies of an HPLC method for determination of Ochratoxin a in wheat using Immunofluoimetry Column clean-up. Food Addit Contam 15: 401-410. Link: https://bit.ly/37xNf8y
24. Marechera G (2015) Estimation of the potential adoption of Ala safe among...
25. Medina A, Akbar A, Baaazeem A, Magan N (2017) Climate change, food security and mycotoxins. Journal of Food Science 31: 143-154. Link: https://bit.ly/37PUKuJ

26. Kulandavelu V, Thirukonda N, Rajeev B, Periyasamy P (2011) Management of Aspergillus ochraceus and Ochratoxin-A contamination in coffee during on-farm processing through commercial yeast inoculation. Journal of Biological Control 57: 215-222. Link: https://bit.ly/31SFsa

27. Lalini R, Kanti B (2010) Ochratoxin food contaminants: impacts on human health. Journal on Human of Toxins 2: 771-779. Link: https://bit.ly/3mYasxi

28. Muzaffer D, Jose F (2010) Ochratoxins in feeds, a risk for animal and human health. Journal of Toxicology and Food Science 1: 1-10. Link: https://bit.ly/3e4H9zm

29. Ferrao J, Bell V, Chabite T, Fernades T (2017) Mycotoxins, food and health. Journal of Health and Food Science 5: 1-10. Link: https://bit.ly/3e4H9zm

30. Madhavan T, Gopalan C (1968) The effects of dietary protein on carcinogens of ochratoxins. Arch Pathol 80: 133–137. Link: https://bit.ly/2TY7HzVI

31. Patterson D, Allcroft R (1970) Metabolism of ochratoxins in susceptible and resistance animal species. Journal of Food and Toxicology 8: 43–53.

32. Robens J, Richard J (1992) Contamination and Toxicological. Journal of Environmental Contamination 127: 69-85.

33. Alim N, Naseem Z, Yasha N, Sajia H (2014) Aflatoxin: a potential threat to human health. Journal of Food Science 24: 256–271. Link: https://bit.ly/2Tww3be

34. Naresh M, David A (2005) Conditions of formation of Ochratoxin A in drying, transport and in different commodities. Food Addit Contam 1: 10-16. Link: https://bit.ly/2G7TQwS

35. Bucheli P, Taniwaki M (2002) Research on the origin and the impact of postharvest handling and manufacturing on the presence of ochratoxin A in coffee – Review. Food Addit Contam 19: 665–665. Link: https://bit.ly/3mPirtO

36. Ramos A, Labemia N, Mann S, Sanchis V, Magan N (1998) Effect of water activity and temperature on growth and ochratoxin production by three strains of Aspergillus ochraceus on a barley extract medium and on barley grains. Int J Food Microbiol 44: 133-140. Link: https://bit.ly/3R1MU6f

37. Belli N, Mitchell D, Marín S, Alegre I (2005) Ochratoxin A-producing fungi in Spanish wine grapes and their relationship with meteorological conditions. Journal of Plant Pathology 113: 233-239.

38. Esteban A, Baracca M, Bragulat R, Cabañes F (2011) Infection and Quantification of Ochratoxigenic Fungi in Barley and Wheat Naturally Contaminated with Ochratoxin A. J Food Prot 78: 1350-1356. Link: https://bit.ly/2G7FFJc

39. Lee H, Magan N (2000) Impact of environment and interspecific interactions between spoilage fungi and Aspergillus ochraceus on growth and Ochratoxin production in maize grain. Int J Food Microbiol 61: 11-16. Link: https://bit.ly/38K4i0U

40. Kuruc. J, Hegstadt H, Lee K, Wolf-Hall C (2015) Aspergillus ochraceus and Ochratoxin A in Barley during_crop_2015-09-23.png

41. Caires V, Aldred D, Magan N (2005) Water, temperature and gas composition interactions affect growth and Ochratoxin A production by isolates of

smallholder maize farmers in lower eastern Kenya. African Journal of Agriculture and Resource Economics 10: 72-85. Link: https://bit.ly/37P8KUj

42. Ahmad A, Jae H (2017) Occurrence, Toxicity, and Analysis of major Mycotoxins in Food. Occurrence, Toxicity, and Analysis of major Mycotoxins in Food 14: 632-638. Link: https://bit.ly/3oBc4bn

43. Marta T, Bedaso K (2016) Occurrence, importance and control of mycotoxins: A review. Journal of Cogent Food & Agriculture 2: 1191-1203. Link: https://bit.ly/33CxoVM

44. Opara M, Zarafi A, Alabi O, Banwo O, Kriska R (2017) Mycotoxin patterns in ear rot infected maize: A review comprehensive case study in Nigeria. Food Control 73: 1159-1168. Link: https://bit.ly/34Clamnd

45. Reich E, Schibli A (2007) High-performance thin-layer chromatography for the analysis of medicinal plants. Theme. Link: https://bit.ly/3kk77ek

46. Santos E, Vargas A (2002) Immunoaffinity column clean up and thin layer chromatography for determination of OTA in green coffee. Food Addit Contam 19: 447-458. Link: https://bit.ly/3e4nYG9

47. Pittet A, Royer D (2002) Rapid, low cost Thin Layer Chromatographic screening for the detection of OTA in green coffee. J Agric Food Chem 50: 243-247. Link: https://bit.ly/3kIeniV8

48. Nicholas W, Turner S, Subrah M, Sergey A (2009) Analytical methods for determination of mycotoxins: A review. Anal Chim Acta 632: 168–180. Link: https://bit.ly/3KpW4g

49. Jarmila SS, Frantisek M, Vladimir O, Tomas R (2013) Determination of Ochratoxin A in Food by High Performance Liquid Chromatography. Journal of Analytical Letters 46: 1495-1504. Link: https://bit.ly/2HJDtao

50. Rašić D, Domijan M, Ivić D, Cvjetković B (2009) ELISA and HPLC analysis of ochratoxin A in red wines of Croatia. Journal of food control 20: 590–592. Link: https://bit.ly/34U1kN

51. Scott P (2002) Methods of analysis for OTA. Journal of mycotoxins and Food Security 10:117-134.

52. Sharaf S, Moawiya A, Haddad F, Parisi S (2020) Validation of HPLC and Enzyme-Linked Immunosorbent Assay (ELISA) Techniques for Detection and Quantification of Aflatoxins in Different Food Samples. Foods 9: 181. Link: https://bit.ly/34g9f1N

53. Pruslin F, Winston R, Rodman TC (1991) Caveats and suggestions for the determination of ochratoxin A in red wines of Croatia. Journal of Food and Toxicology 2: 1495-1504. Link: https://bit.ly/3kK77ek

54. Valetta H (1998) Chromatographic techniques. Journal of Chromatography 75: 211-242.

55. Frantisek M, Annie L, Vladimir O, Jakub T (2016) Ochratoxin A: 50 Years of Research. Journal of Toxins 8: 191. Link: https://bit.ly/34F9f1N

56. Scott P, Truckess M (1997) Application of Immunoaffinity columns to mycotoxin analysis. J AOAC Int 80: 941–994. Link: https://bit.ly/2HN2bXw

57. Castellari M, Fabbi S, Fabiani A, Arnati A (2000) Comparison of different Immunoaffinity clean-up procedures for high-performance liquid chromatographic analysis of Ochratoxin A in wines. J Chromatogr A 888: 129–136. Link: https://bit.ly/3jFHFVP

58. Castegnaro M, Tozlovanu M, Wild C, Molinié A, Pfoh L (2006) Advantages and drawbacks of Immunoaffinity columns in analysis of mycotoxins in food. Mol Nutr Food Res 50: 480-487. Link: https://bit.ly/3JFHFVP

Copyright: © 2020 Atumo S. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.