Scaling Behavior of Sub-100 nm InAlN/GaN HEMTs on Silicon for RF Applications

Peng Cui (pcui@sdu.edu.cn)
Shandong University

Yuping Zeng
University of Delaware

Research Article

Keywords: InAlN/GaN HEMT, Si substrate, fT/fmax, scale behavior

Posted Date: December 29th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1190647/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Scaling behavior of sub-100 nm InAlN/GaN HEMTs on silicon for RF applications

Peng Cui1,* and Yuping Zeng2,*

\textbf{Abstract}—Due to the low cost and the scaling capability of Si substrate, InAlN/GaN high-electron-mobility transistors (HEMTs) on silicon substrate have attracted more and more attentions. In this paper, a high-performance 50-nm-gate-length InAlN/GaN HEMT on Si with a high on/off current (I_{on}/I_{off}) ratio of 7.28×10^6, an average subthreshold swing (SS) of 72 mV/dec, a low drain-induced barrier lowering (DIBL) of 88 mV, an off-state three-terminal breakdown voltage (BV_{d}) of 36 V, a current/power gain cutoff frequency (f_{T}/f_{max}) of 140/215 GHz, and a Johnson’s figure-of-merit (JFOM) of 5.04 THz-V is simultaneously demonstrated. The device extrinsic and intrinsic parameters are extracted using equivalent circuit model, which is verified by the good agreement between simulated and measured S-parameter values. Then the scaling behavior of InAlN/GaN HEMTs on Si is predicted using the extracted extrinsic and intrinsic parameters of devices with different gate lengths (L_g). It presents that a f_{T}/f_{max} of 230/327 GHz can be achieved when L_g scales down to 20 nm with the technology developed in the study, and an improved f_{T}/f_{max} of 320/353 GHz can be achieved on a 20-nm-gate-length InAlN/GaN HEMT with regrown ohmic contact technology and 30% decreased parasitic capacitance. This study confirms the feasibility of further improvement of InAlN/GaN HEMTs on Si for RF applications.

\textbf{Index Terms}—InAlN/GaN HEMT, Si substrate, f_{T}/f_{max}, scale behavior.

\textbf{Background}—InAlN/GaN HEMTs on Si substrate have attracted more and more attentions due to the low cost and the scaling capability of Si substrate[1-4]. L. Li et al. demonstrated a InAlN/GaN HEMT on Si with a gate length (L_g) of 55 nm and a source-drain spacing (L_{sd}) of 175 nm [5]using n$^{++}$-GaN regrowth source/drain contacts. The device presents a maximum drain current ($I_{d,max}$) of 2.8 A/mm, a peak extrinsic transconductance (g_m) of 0.66 S/mm, and a current/power gain cutoff frequency (f_{T}/f_{max}) of 250/204 GHz. H. Xie et al. reported that a record f_T of 310 GHz was achieved on a InAlN/GaN HEMT on Si with a 40-nm gate length [6]. P. Cui et al. demonstrated an 80-nm gate-length InAlN/GaN HEMT on Si with a record high on/off current (I_{on}/I_{off}) ratio of 1.58×10^6, a steep subthreshold swing (SS) of 65 mV/dec, and a f_T of 200 GHz, resulting in a record high $f_T \times L_g = 16$ GHz\cdotμm [7]. N. Chowdhury et al. demonstrated a complementary logic circuit (an inverter) on a GaN-on-Si platform with a record maximum voltage gain of 27 V/V at an input voltage of 0.59 V with $V_{DD} = 5$ V [8]. H. Xie et al. reported an InAlN/GaN HEMT on Si with a f_T of 210 GHz and a three-terminal off-state breakdown voltage (BV_{d}) of 46 V, leading to a record high Johnson’s figure-of-merit (JFOM = $f_T \times BV_{d}$) of 8.8 THz-V [9].

However, to the best of our knowledge, the highest f_T/f_{max} of 454/444 GHz and 348/340 GHz were achieved on 20-nm-gate-length AlN/GaN HEMT [10] and 27-nm-gate-length InAlN/GaN HEMTs on SiC [11], respectively. Although excellent performances have been demonstrated, InAlN/GaN HEMTs on Si still presents much room to be improved compared with GaN HEMTs on SiC substrate. Hence, exploring the possible limiting factors of InAlN/GaN HEMTs on Si is significant to further improve the device performance. In this paper, high-performance InAlN/GaN HEMTs on Si are fabricated and demonstrated. The extrinsic and intrinsic parameters of devices with different gate lengths are extracted and the scale behavior of InAlN/GaN HEMTs on Si is predicted. It presents that a f_T/f_{max} of 230/327 GHz can be achieved when L_g scales down to 20 nm with the technology developed in the study, and an improved f_T/f_{max} of 320/353 GHz can be achieved on a 20-nm-gate-length InAlN/GaN HEMTs with regrowth ohmic contact technology and 30% decreased parasitic capacitance. This confirms the feasibility of further improvement of InAlN/GaN HEMTs on Si for RF applications.

\textbf{Experiment}

\textbf{Figure 1(a)} shows the used lattice-matched $\text{In}_{0.17}\text{Al}_{0.83}\text{N}/\text{GaN}$ heterostructure, which is grown on a Si substrate by metalorganic chemical vapor deposition (MOCVD). The epilayer structure consists of a 2-nm GaN cap layer, an 8-nm $\text{In}_{0.17}\text{Al}_{0.83}\text{N}$ barrier layer, a 1-nm AlN interlayer, a 15-nm GaN channel layer, a 4-nm $\text{In}_{0.12}\text{Ga}_{0.88}\text{N}$ back-barrier layer, and a 2-μm undoped GaN buffer layer. The electron sheet concentration and electron mobility measured by Hall measurements were 2.28×10^{13} cm$^{-2}$ and 1205 cm2/V\cdots, respectively.

\textbf{Figure 1(b)} shows the detailed device fabrication steps. The device fabrication started with mesa isolation using Cl$_2$/CH$_4$/He/Ar inductively coupled plasma etching. Then Ti/Al/Ni/Au stack was deposited and annealed at 850°C for 40s in N$_2$ to form the alloyed ohmic contacts. The ohmic contact resistance is 0.3 Ω\cdotμm. An oxygen plasma treatment was then

*Correspondence: pcui@sdu.edu.cn; yzeng@udel.edu
1Institute of Novel Semiconductors, Shandong University, Jinan, Shandong, 250100, China.

2Department of Electrical and Computer Engineering, University of Delaware, Newark, DE, 19716, USA

Full list of author information is available at the end of the article.
applied to form the oxide layer on top of the InAlN layer, which can effectively reduce the gate leakage current and improve RF performance [12-15]. Finally, a Ni/Au T-shaped gate with a gate head length (L_{head}) of 400 nm and a source-drain spacing (L_{sd}) of 600 nm was fabricated by electron beam lithography. Figure 1(c) shows a plan-view scanning electron microscopy (SEM) image of the InAlN/GaN HEMT with a gate head length (L_{head}) of 400 nm and a source-drain spacing (L_{sd}) of 600 nm. Figure 1(d) shows a SEM image of T-shaped gate structure depicting a gate footprint of 50 nm.

Results and discussion

A. DC performance

The DC current-voltage (I–V) measurements are carried out by using an Agilent B1500A semiconductor parameter analyzer. Figure 2(a) shows the output characteristic of the InAlN/GaN HEMT with a 50-nm gate length. The device on-resistance (R_{on}) extracted at gate-source (V_{gs}) of 0 V and drain-source voltage (V_{ds}) between 0 and 0.5 V is 1.33 Ω-mm. The gate-to-channel distance (L_{ch}) (including a 2-nm GaN, an 8-nm InAlN, and a 1-nm AlN) is 11 nm. Since L_{ch} is 50 nm, the device presents an aspect ratio (L_{ch}/L_{ch}) of 4.5. Due to the low L_{ch}/L_{ch}, the short-channel effects (SCEs) start to appear when V_{ds} is larger than 5 V and V_{gs} is between -4 to -1 V. At V_{gs} = 1 V, drain current (I_{d}) in saturation region presents a decrease with increased V_{ds}, an indication of the thermal effect.

Figure 2(b) shows the transfer characteristic with the extracted extrinsic transconductance (g_{m}) of the InAlN/GaN HEMT with a 50-nm gate length at V_{ds} = 10 V. The maximum saturation drain current (I_{d,max}) is 2.01 A/mm at V_{gs} = 1 V and V_{ds} = 10 V. The g_{m} perk (g_{m,peak}) is 493 mS/mm. To the best of our knowledge, the record high I_{d,max} of 2.8 A/mm and g_{m,peak} of 660 mS/mm were achieved on a 55-nm gate-length InAlN/GaN HEMT on Si with regrowth technology and L_{sd} of 175 nm [5]. The lower both I_{d} and g_{m,peak} in this study result from the regrowth-free technology and the larger source-drain spacing (L_{sd} = 600 nm).

Figure 3(a) shows the transfer and gate current (I_{g}) characteristics in semi-log scale of the InAlN/GaN HEMT with a 50-nm gate length at V_{gs} = 5 V and 10 V, respectively. At V_{ds} = 10 V, the device off-current (I_{off}) is 2.76 x 10^{-7} A/mm and the I_{off}/I_{on} ratio is 7.28 x 10^{6}, which are higher than the record reported values (I_{off} of 7.12 x 10^{-7} A/mm and I_{off}/I_{on} ratio of 1.58 x 10^{6}) achieved from the InAlN/GaN HEMT on Si [16]. An average subthreshold swing (SS) of 72 mV/dec over more than two orders of I_{g} is extracted from the transfer curve. The drain-induced barrier lowering (DIBL) of 88 mV/V is extracted at I_{g} = 10 mA/mm between V_{gs} = 10 V and V_{ds} = 5 V, which is the lowest value among the reported GaN HEMTs on Si. The lowest DIBL value suggests a suppressed SCEs for the sub-100nm gate-length device. Figure 3(b) shows the off-state three-terminal breakdown characteristic of the 50-nm InAlN/GaN HEMT measured at V_{gs} = +8 V. The device features a BV_{ds} of 36 V at a drain leakage current of 1 mA/mm.
using a two-port short/open/load/through method. On-wafer range from 1 to 65 GHz. The network analyzer is calibrated for the RF performance improvement by further decreasing the resistance (Ω·mm) for the RF performance improvement by further decreasing the resistance (Ω·mm). For the RF performance improvement by further decreasing the resistance (Ω·mm), the 140-GHz InAlN/GaN HEMT with peak values, presenting a good device linearity.

\[\frac{1}{2} \times B_{\text{Vds}}(\text{max}) = 10 \text{ V and } 5 \text{ V,} \]

\[V_{\text{gs}} = -8 \text{ V of the InAlN/GaN HEMT with a 50-nm gate length. The } B_{\text{Vds}} \text{ of 36 V was determined.} \]

B. RF performance

The device RF performance is measured with a frequency range from 1 to 65 GHz. The network analyzer is calibrated using a two-port short/open/load/through method. On-wafer open and short structures is used to eliminate the effects of parasitic elements. Figure 4(a) shows the current gain (|b2|), unilateral gain (U), and the maximum stable gain (MSG) as a function of frequency at V_{\text{ds}} = 10 V, V_{\text{gs}} = -3 V after de-embedding. \(f_t \times f_{\text{max}} \) of 140/215 GHz for the InAlN/GaN HEMT with a 50-nm gate length is obtained by extrapolation of |b2| as a -20 dB/dec slope. An \(f_t \times f_{\text{max}} \) of 173 GHz is obtained, which is the highest record values among the reported InAlN/GaN HEMTs on Si with regrowth-free ohmic contact technology. To the best of our knowledge, the highest \(f_t \times f_{\text{max}} \) of 226 GHz \(f_t \times f_{\text{max}} = 250/204 \text{ GHz} \) was achieved on a 55-nm InAlN/GaN HEMT on Si with regrowth technology. Here for our device, the alloyed ohmic resistance \(R_C: 0.3 \text{ Ω-mm} \) is higher than the reported regrowth ohmic contact resistance \(R_C: 0.05 \text{ Ω-mm} \) [5]. This presents a high potential for the RF performance improvement by further decreasing the ohmic contact resistance. Due to \(f_t \times f_{\text{max}} \) of 140/215 GHz, products of \(f_t \times L_g \) and \(f_{\text{max}} \times L_d \) of 7.0 and 10.75 GHz·μm are achieved, respectively. Although neither passivation nor field plate technology is used, the 140-GHz InAlN/GaN HEMT with an \(B_{\text{Vds}} \) of 36 V presents a Johnson’s figure-of-merit (JFOM = \(f_t \times B_{\text{Vds}} \)) of 5.04 THz·V. Figure 4(b) shows the measured \(f_t \) and \(f_{\text{max}} \) of the 50-nm InAlN/GaN HEMT as a function of V_{\text{gs}}. Both \(f_t \) and \(f_{\text{max}} \) show a gradual decrease compared with their peak values, presenting a good device linearity.

C. Equivalent circuit model

Figure 5. (a) Equivalent-circuit model for InAlN/GaN HEMT. The intrinsic elements are shown in the red dashed box. (b) Comparison of the simulated and measured S-parameters for the InAlN/GaN HEMT with a 50-nm gate length at \(V_{\text{ds}} = 10 \text{ V and } V_{\text{gs}} = -3 \text{ V.} \)
The classical 16-element equivalent-circuit model is used for the InAlN/GaN HEMT, as shown in Figure 5 (a) [17, 18]. Based on this model, the device extrinsic and intrinsic parameters are extracted in Table I [17-19]. The slight discrepancy between the simulated and measured S-parameter values is observed in Figure 5 (b), verifying the accuracy of the extracted extrinsic and intrinsic parameters. The f_T and f_{max} can be calculated using [17, 20]

$$f_T = \frac{G_m}{2\pi (C_{gs} + C_{gd})(1/G_m + (R_s + R_g)) + (C_{gd} \cdot G_m/G_d)(R_s + R_g)},$$

$$f_{max} = \frac{f_T}{\sqrt{2\pi L_g \cdot R_s + R_g + 2\pi f_T \cdot R_s \cdot C_{gd}}}.$$

where G_m and G_d are the intrinsic transconductance and drain-source conductance, respectively; C_{gs} and C_{gd} are the gate-source and gate-drain parasitic capacitance, respectively; R_s, R_d, R_g, and R_l are the parasitic source access resistance, drain access resistance, gate electrode resistance, and input resistance, respectively.

The calculated $f_T/f_{max} = 145/218$ GHz is very close to the value ($f_T/f_{max} = 140/215$ GHz) extracted by extrapolation of $|h_{21}|^2$ with a -20 dB/dec slope, which confirms the excellent device RF performance. The high intrinsic transconductance/drain-source conductance (G_m/G_d) ratio of 10.6 contributes to the high f_{max}.

D. Scaling behavior

The InAlN/GaN HEMTs with L_g between 50 nm and 350 nm are fabricated. Figure 6(a) shows the measured f_T/f_{max} of the InAlN/GaN HEMTs with different L_g at $V_{gs} = -3$ V and $V_{ds} = 10$ V. The devices with L_g of 50, 70, 100, 150, 250, and 350 nm present f_T/f_{max} of 140/215, 135/205, 120/170, 90/160, 60/136, 36/128 GHz, respectively. $f_T \times L_g$ and $f_{max} \times L_g$ are obtained in Figure 6(b). A $f_T \times L_g$ peak of 15 GHz·µm is achieved on the 250-nm-gate-length InAlN/GaN HEMT with a f_T of 135 GHz. $f_{max} \times L_g$ presents a decrease from 44.8 GHz·µm ($L_g = 350$ nm) to 10.75 GHz·µm ($L_g = 50$ nm). The decrease of both $f_T \times L_g$ and $f_{max} \times L_g$ as L_g scales down means that the effect of parasitic parameters is more pronounced, thus hindering the improvement of f_T and f_{max}. Due to the large head length of T-shaped gate ($L_{head} = 400$ nm), the transistors features higher f_{max} and $f_{max} \times L_g$.

Table I

Extrinsic parameters	Intrinsic parameters
$C_{pgd} = 1.16$ fF	$C_{gs} = 444$ fF/mm
$C_{pgs} = 26.35$ fF	$C_{gd} = 104$ fF/mm
$C_{psh} = 26.21$ fF	$C_d = 318$ fF/mm
$L_s = 3.17$ pH	$R_i = 0.90$ Ω mm
$L_g = 4.03$ pH	$G_m = 573$ mS/mm
$L_d = 4.30$ pH	$G_0 = 54$ mS/mm
$R_s = 0.43$ Ω mm	$R_s/G_0 = 10.6$
$R_d = 0.26$ Ω mm	$\tau = 1.09$ ps
$R_L = 0.45$ Ω mm	$f_{T, model} = 145$ GHz
	$f_{max, model} = 218$ GHz

Figure 6. (a) Measured f_T and f_{max} as a function of L_g at $V_{gs} = -3$ V and $V_{ds} = 10$ V. (b) $f_T \times L_g$ and $f_{max} \times L_g$ as a function of L_g.

Figure 7. Measured and linear fitted (a) gate-source parasitic capacitance C_{gs} and (b) gate-drain parasitic capacitance C_{gd} as a function of L_g at $V_{gs} = -3$ V and $V_{ds} = 10$ V.
To shed more light on the scaling behavior, the extrinsic and intrinsic parameters of these devices are further extracted using the equivalent circuit model discussed above. C_{gs} can be separated to two parts: gate-source intrinsic capacitance ($C_{gs,int}$) and gate-source extrinsic capacitance ($C_{gs,ext}$). It means $C_{gs} = C_{gs,int} + C_{gs,ext}$ [21]. C_{gd} is the same with C_{gs} and can also be written as $C_{gd} = C_{gd,int} + C_{gd,ext}$. Figure 7 shows the extracted C_{gs} and C_{gd} as a function of L_g. Both C_{gs} and C_{gd} present a linear dependence upon L_g. By linear fitting, the $C_{gs,ext}$ and $C_{gd,ext}$ are obtained from C_{gs} and C_{gd} at $L_g = 0$ nm [21], as shown in Figure 7. Here $C_{gs,ext}$ of 93.05 fF/mm and $C_{gd,ext}$ of 97.65 fF/mm are determined, respectively.

The total delay (τ) of transistors can be written as [21] [22]

$$\tau = \frac{1}{2\pi f_T} = \tau_t + \tau_{ext} + \tau_{par} \quad (2)$$

Here τ is partitioned into three components: transit time (τ_t), parasitic charging delay (τ_{ext}), and parasitic resistance delay (τ_{par}).

τ_t is the transit time under the gate region. It is related to the gate length as well as the electron velocity (v_e) under the gate region, and can be calculated by [21] [22]

$$\tau_t = \frac{C_{gsi} + C_{gdi}}{G_m} = \frac{L_g}{v_e}. \quad (3)$$

τ_{ext} is parasitic charging delay through $C_{gs,ext}$ as well as $C_{gd,ext}$, and can be written as [21] [22]

$$\tau_{ext} = \frac{C_{gs,ext} + C_{gd,ext}}{G_m}. \quad (4)$$

τ_{par} is parasitic resistance delay mainly associated with R, as well as R_d, and can be written as [21] [22]

$$\tau_{par} = C_{gd}(R_g + R_d)[1 + \left(\frac{C_{gs}}{C_{gd}}\frac{G_m}{G_n}\right)]. \quad (5)$$

Figure 8. Extracted delay (τ) and electron velocity (v_e) as a function of L_g at $V_{gs} = -3$ V and $V_{ds} = 10$ V.

Figure 9. Extracted intrinsic transconductance (G_m) and intrinsic conductance (G_n) as a function of L_g at $V_{gs} = -3$ V and $V_{ds} = 10$ V.

Figure 10. Extracted delay components as a function of L_g. The delay (τ) is partitioned into three components: transit time (τ_t), parasitic charging delay (τ_{ext}), and parasitic resistance delay (τ_{par}).
Supplementary Information

Not applicable.

Abbreviations

HEMT: high-electron-mobility transistors; I_{on}/I_{off}: on/off current ratio; SS: subthreshold swing; DIBL: low drain-induced barrier lowing; BV_{ds}: off-state three-terminal breakdown voltage; f_{T}/f_{max}: current/power gain cutoff frequency; JFOM: Johnson’s figure-of-merit; g_{m}: extrinsic transconductance; MOCVD: metalorganic chemical vapor deposition; SEM: scanning electron microscopy; I_{d}: drain current; I_{g}: gate current; L_{g}: gate length; L_{sd}: source-drain spacing; V_{gs}: gate-source voltage; V_{ds}: drain-source voltage; R_{on}: on-resistance; SCEs: short-channel effects; $|h_{11}|$: current gain; U: unilateral gain; MSG: maximum stable gain.

Acknowledgements

The authors declare that they have no competing interests.

Authors’ Contributions

P. C. and Y. Z. contributed to the research design, experiment measurements, data analysis, and manuscript preparation. All authors reviewed this manuscript.

Funding

This work was supported in part by the NASA International Space Station under Grant 80NSSC20M0142, and in part by Air Force Office of Scientific Research under Grant FA9550-19-1-0297 and Grant FA9550-21-1-0076.

Availability of Data and Materials

The datasets supporting the conclusions of this article are included in the article.

Authors’ information

1Institute of Novel Semiconductors, Shandong University, Jinan, Shandong, 250100, China.

2Department of Electrical and Computer Engineering, University of Delaware, Newark, DE, 19716, USA

Competing interests

The authors declare that they have no competing interests.
References

[1] K. J. Chen, O. Häberlen, A. Lidow, C. Lin Tsai, T. Ueda, Y. Uemoto, and Y. Wu: GaN-on-Si power technology: Devices and applications. *IEEE Transactions on Electron Devices* 2017, 64: 779-795.

[2] M. Ishida, T. Ueda, T. Tanaka, and D. Ueda: GaN on Si technologies for power switching devices. *IEEE Transactions on Electron Devices* 2013, 60: 3053-3059.

[3] H.-S. Lee, K. Ryu, M. Sun, and T. Palacios: Wafer-level heterogeneous integration of GaN HEMTs and Si (100) MOSFETs. *IEEE Electron Device Letters* 2011, 33: 200-202.

[4] A. Minko, V. Hoel, E. Morvan, B. Grimbert, A. Soliani, E. Delos, D. Ducatteau, C. Gaquiere, D. Theron, and J. De Jaeger: AlGaN-GaN HEMTs on Si with power density performance of 1.9 W/mm at 10 GHz. *IEEE Electron Device Letters* 2004, 25: 453-455.

[5] L. Li, K. Nomoto, M. Pan, W. Li, A. Hickman, J. Miller, K. Lee, Z. Hu, S. J. Bader, and S. M. Lee: GaN HEMTs on Si With Regrown Contacts and Cutoff/Maximum Oscillation Frequencies of 250/204 GHz. *IEEE Electron Device Letters* 2020, 41: 689-692.

[6] H. Xie, Z. Liu, Y. Gao, K. Ranjan, K. E. Lee, and G. I. Ng: Deeply-scaled GaN-on-Si high electron mobility transistors with record cut-off frequency f_C of 310 GHz. *Applied Physics Express* 2019, 12: 126506.

[7] P. Cui, A. Mercante, G. Lin, J. Zhang, P. Yao, D. W. Prather, and Y. Zeng: High-performance InAlN/GaN HEMTs on silicon substrate with high $f_C \times L_g$. *Applied Physics Express* 2019, 12: 104001.

[8] N. Chowdhury, Q. Xie, M. Yuan, K. Cheng, H. W. Then, and T. Palacios: Regrowth-free GaN-based Complementary Logic on a Si Substrate. *IEEE Electron Device Letters* 2020.

[9] H. Xie, Z. Liu, Y. Gao, K. Ranjan, K. E. Lee, and G. I. Ng: CMOS-compatible GaN-on-Si HEMTs with cut-off frequency of 210 GHz and high Johnson’s figure-of-merit of 8.8 THz. *V. Applied Physics Express* 2019.

[10] Y. Tang, K. Shinohara, D. Regan, A. Corrion, D. Brown, J. Wong, A. Schmitz, H. Fung, S. Kim, and M. Micovic: Ultrahigh-Speed GaN High-Electron-Mobility Transistors With f_{max} of 454/444 GHz. *IEEE Electron Device Letters* 2015, 36: 549-551.

[11] M. L. Schuette, A. Keterson, B. Song, E. Beam, T.-M. Chou, M. Pilla, H.-Q. Tseng, X. Gao, S. Guo, and P. J. Fay: Gate-recessed integrated E/D GaN HEMT technology with $f_{max} \times 300$GHz. *IEEE Electron Device Letters* 2013, 34: 741-743.

[12] J. W. Chung, J. C. Roberts, E. L. Piner, and T. Palacios: Effect of Gate Leakage in the Subthreshold Characteristics of AlGaN/GaN HEMTs. *IEEE Electron Device Letters* 2008, 29: 1196-1198.

[13] J. W. Chung, T.-W. Kim, and T. Palacios, “Advanced gate technologies for state-of-the-art f_C in AlGaN/GaN HEMTs,” in *2010 International Electron Devices Meeting*, 2010: 30.2. 1-30.2. 4.

[14] D. S. Lee, J. W. W. Chung, H. Wang, X. Gao, S. P. Guo, P. Fay, and T. Palacios: 245-GHz InAlN/GaN HEMTs With Oxygen Plasma Treatment. *IEEE Electron Device Letters* 2011, 32: 755-757.

[15] R. H. Wang, G. W. Li, O. Laboutin, Y. Cao, W. Johnson, G. Snider, P. Fay, D. Jena, and H. L. Xing: 210-GHz InAlN/GaN HEMTs With Dielectric-Free Passivation. *IEEE Electron Device Letters* 2011, 32: 892-894.

[16] P. Cui, A. Mercante, G. Lin, J. Zhang, P. Yao, D. W. Prather, and Y. Zeng: High-performance InAlN/GaN HEMTs on silicon substrate with high $f_{max} \times L_g$. *Applied Physics Express* 2019.

[17] S. Bouzid-Driad, H. Maher, N. Defrance, V. Hoel, J.-C. De Jaeger, M. Ducatteau, C. Gaquiere, D. Theron, and J. De Jaeger: AlGaN-GaN HEMTs on Si with power density performance of 1.9 W/mm at 10 GHz. *IEEE Electron Device Letters* 2004, 25: 453-455.

[18] C. F. Campbell and S. A. Brown: An analytic method to determine GaAs FET parasitic inductances and drain resistance under active bias conditions. *IEEE transactions on microwave theory and techniques* 2006, 54: 3616-3622.

[19] D. H. Kim, B. Brar, and J. A. Del Alamo, “f'f= 688 GHz and f max= 800 GHz in L g= 40 nm In 0.7 Ga 0.3 As MHEMTs with g m max > 2.7 mS/mm,” in *2011 International Electron Devices Meeting*, 2011: 13.6. 1-13.6. 4.