Fundamentals and applications of metal nanoparticle-enhanced singlet oxygen generation for improved cancer photodynamic therapy

Blassan P. George*, Alexander Chota, Paromita Sarbadhikary* and Heidi Abrahamse

Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa

The introduction of nanotechnology in the field of Photodynamic Therapy (PDT) has proven to have great potential to overcome some of the challenges associated with traditional organic photosensitizers (PS) with respect to their solubility, drug delivery, distribution and site-specific targeting. Other focused areas in PDT involve high singlet oxygen production capability and excitability of PS by deep tissue penetrating light wavelengths. Owing to their very promising optical and surface plasmon resonance properties, combination of traditional PSs with plasmonic metallic nanoparticles like gold and silver nanoparticles results in remarkably high singlet oxygen production and extended excitation property from visible and near-infrared lights. This review summarizes the importance, fundamentals and applications of on plasmonic metallic nanoparticles in PDT. Lastly, we highlight the future prospects of these plasmonic nanoengineering strategies with or without PS combination, to have a significant impact in improving the therapeutic efficacy of cancer PDT.

KEYWORDS
cancer, metallic nanoparticles, nanotechnology, photodynamic therapy, photosensitizers, photothermal therapy, singlet oxygen, surface plasmon resonance

1 Introduction

Cancer is a medical condition characterized by unregulated proliferation of abnormal cells and their metastatic abilities which allow them to spread from the site of origin to distant body tissues and organs, which if left untreated, leads to several serious medical complications and eventually death (Fares et al., 2020; Majidpoor and Mortezaei, 2021; Hanahan, 2022; Pavlova et al., 2022). According to the International Agency for Research on Cancer’s GLOBOCAN projections for 2020, global cancer incidence rate was reported to be 19.3 million cases in 2020, with projections of 30.2 million cases by 2040. The mortality rate is also anticipated to rise from 9.96 million of 2020 to 16.3 million by 2040 (Sung et al., 2021). The rise in the incidence and death rate can be ascribed to a number of
factors such as age, alcohol consumption, familial history, tobacco smoking, viruses, chemicals, and consistent exposure to radiations (e.g., ultraviolet radiation) (Danaei et al., 2005; Vineis and Wild, 2014; Whiteman and Wilson, 2016; Lewandowska et al., 2019).

The treatment of cancer is commonly categorized as being either curative or palliative dependent on the location and stage of the cancer (Neugut and Prigerson, 2017; Miller et al., 2019). In general, based on their target and mechanisms of action the anticancer treatment modalities are classified into two major groups: localized, and systemic (Figure 1) and each of them differs on basis of their benefits as well as their limitations which varies from mild to severely adverse side effects (Bidram et al., 2019; Debela et al., 2021; Pestana and Ibrahim, 2021).

Photodynamic therapy (PDT) is a relatively novel and clinically approved localized treatment modality which make use of electromagnetic radiation in the Visible and Near Infrared energy region to excite photosensitizing drugs known as photosensitizers (PSs) (Chen et al., 2022). As represented in Figure 2, in an excited state PS, the interactions of photosensitizers with molecular oxygen (O$_2$) and surrounding biomolecules results in the generation of highly toxic Reactive Oxygen Species (ROS) (Zhou et al., 2016; Dos Santos et al., 2019; Yanovsky et al., 2019; Li et al., 2020; Gunaydin et al., 2021). On molecular and cellular level, the generated ROS interacts with cellular organelles such as the mitochondria, endoplasmic reticulum, peroxisomes, and the nucleus and causing their structural and functional impairments to result into tumor cell death (Figure 2). However, as conventional PS do not accumulate in cell nuclei, thus PDT avoids the development of genetically resistant cells due to its very low potential of causing DNA damage, mutations, and carcinogenesis (Agostinis et al., 2011). As compared to conventional therapies PDT offers several advantages as anticancer
treatment which include less invasiveness, minimum induced side effects, tumor selectivity due to the preferential accumulation of PSs and targeted light irradiation of tumor lesions, repetition of treatment several times without inducing resistance in cancer cells, no scar formation after healing, cost effectiveness. However, like any other therapy, PDT also suffers from the limitations such as PS targetability, delivery and accumulation in tumor mass, skin photosensitivity, not applicable for metastatic cancers, ineffective for large or deep-seated tumors due to the inadequate penetration of light in tissues, and decreased PDT efficacy under tumor hypoxia conditions, all of which hampers the overall therapeutic outcome (Correia et al., 2021; Gunaydin et al., 2021).

Mechanistically PDT mediated ROS generation is facilitated by triplet excited PS state (‘PS*’), resulting into two main types of reactions i.e., type I and type II photochemical reactions (Figure 2). Type I PDT reactions, involve either the donation or acquisition an electron thereby forming radical anions or radical cations (Abrahamse and Hamblin, 2016). The generated ROS radicals (e.g., O$_2^•$) may undergo further reduction and oxidation (redox) reactions, and produce other intermediate ROS e.g., hydrogen peroxide (H$_2$O$_2$), and hydroxyl radical (OH$^•$) (Collin, 2019; Chen et al., 2022). Alternatively, PDT effects can initiate the activation/or induction of type II photochemical reactions in which singlet oxygen (1O$_2$) is generated through energy transfer between ‘PS*’ and 1O$_2$ (Chen et al., 2021). It is also worth mentioning that both type I and type II photochemical reactions can occur simultaneously in a competitive manner (Li et al., 2022). The overall efficacy of PDT in both type I and II reactions, is dependent on three primary components: light, PS and O$_2$. Unlike type I PDT photochemical reactions, emerging studies report type II photochemical reactions of having poor therapeutic efficacy in hypoxic cancer cells (Chen et al., 2021; Ma et al., 2022). Nevertheless, the mechanism of action of many PSs used in cancer treatment are based on induction of type II reactions (Chen et al., 2021; Li et al., 2022).

As discussed, among all the photogenerated ROS, 1O$_2$ generated through type II energy transfer reaction is considered to be the major determinant of PDT induced cell killing (Sai et al., 2021). However due to high reactivity, short lifetime and diffusion distance in cellular conditions, 1O$_2$ mediated PDT treatments are only effective within limited range (Kuimova et al., 2009). Thus, too little 1O$_2$ fails to effectually treat solid tumor mass, while very high amount of generated 1O$_2$ can damage and kill surrounding healthy cells leading to adverse effects. Presently, in clinical settings adjustment of delivered light intensity is done to control the extent of 1O$_2$ generation. Nonetheless, this approach suffers from limitations whereby (Pavlova et al., 2022) higher light fluency rates lead to O$_2$ depletion and PS photobleaching; and (Hanahan, 2022) long exposure time for low light fluency usually results into hypoxic condition due to vascular shutdown (Zhang et al., 2008).

In this regard, over the past decades tremendous advancements in nanotechnology have led to the development of several nanomaterials-based PS (nano-PS) designing strategy in an effort to enhanced photostability, O$_2$ generation efficacy. Among the several available nano-PSs, plasmonic metal nanoparticles (NPs) mediated enhancement in O$_2$ generation is a promising approach which holds potential for significant improvement of future PDT (Yaraki et al., 2022).

Various novel approaches are actively being explored to overcome several of these issues. Over the past decades the era of nanotechnology has also opened new opportunities for extensive application of nanomaterial-based PDT agents for therapy as well as diagnostics. Although several reviews have extensively discussed the important concepts, strategies, significant advances and rationale behind the designing and applications of metallic NPs in PDT (Sat et al., 2021; Li et al., 2022; Ma et al., 2022). This article majorly focuses on potential role of plasmonic metallic NPs with or without PS in the enhancement of O$_2$ generation as an approach for improved PDT of cancer. This article further discusses and provide an understanding of state-of-the-art designing strategy of plasmonic metallic NPs and underlying mechanism for boosted O$_2$ generation. Additionally, this review briefly introduces the basic principles of PDT in cancer and importance of nano-PSs in PDT.

2 Nano-Photosensitizers

Nanotechnology is defined as the technology on the nanoscale, representing a modern interdisciplinary science including physics, chemistry, biology, and engineering, which have revolutionized the bio-nanotechnology and nanomedicine fields with its promising applications in health and medicine extending from prevention, and diagnosis, to the treatment of severe diseases such as cancer (Chang et al., 2015; Kargozar and Mozafari, 2018; Prasad et al., 2018; Yao et al., 2020). The unique chemical, electrical, structural, mechanical, magnetic, and biological properties of nanoscale-sized materials have found wide application in nanomedicine, from drug delivery, in vivo imaging and therapy microfluidics, biosensors, microarray tests to tissue engineering. Nano-based drug delivery systems are of major interest in bio-medics which make use of nanostructures as delivery vehicles by encapsulating or attaching therapeutic drugs and delivering them to target tissues with specificity and selectivity alongside various routes of administration. Furthermore, nano delivery systems reduce the toxic side effects and high administrative doses of drugs by enhancing the therapeutic activity by prolonging the half-life of drugs, improving the solubility of hydrophobic drugs, and reducing potential immunogenicity with more precise controlled release of drugs in a sustained or stimuli-triggered fashion (Lombardo et al., 2019). Since the development of first-generation PSs,
the Food and Drug Administration (FDA) approved lipid-based nano-drug vehicles i.e., liposomes and micelles in the 1960s. Over a dozen of nanotechnology-based therapeutic products have been approved by FDA for both clinical trials and clinical applications (Shi et al., 2010; Patra et al., 2018; Sim and Wong, 2021).

The application of nanotechnology in PDT started with the first report by Labib et al., in 1991, whereby they showed the synthesis of cyanoacrylic nanocapsules (150–250 nm) and NPs (10–380 nm) encapsulated with phthalocyanine or naphthalocyanine derivatives (Labi b et al., 1991). Importantly, the encapsulated or loaded PS in the nanocarrier does not need to be released from the carrier as both molecular O$_2$ and generated 1O$_2$ are able to diffuse in and out of the nanocarrier. In contrast to chemotherapeutic drugs. This widened the use of several different materials and strategies for developing nano-PS (Figure 3), and generally are subclassified as: 1) Biodegradable NPs which includes natural or synthetic polymer-based NPs, which usually undergo in vivo enzymatic or hydrolytic degradation and thus are easily excreted out to minimize their long-term accumulation and toxicity or 2) nonbiodegradable NPs based on silica, ceramic and metals, which does not readily degrade in the biological system, but offers the advantage of easy control of particle size, shape, porosity, and monodispersibility and have multiple functionalities, making them valuable as theranostic agents (Huang et al., 2013; Lucky et al., 2015). The significance and broader applications of nanotechnology have also widened its scope into PDT for utilization of nano-PS for therapy and diagnostics, as well as overcoming its several limitations (Olivo et al., 2010; Lucky et al., 2015; Xie et al., 2021; Lee et al., 2022). Compared to the free molecular conventional PSs, nano-formulations of PSs impart certain unique and improved properties that make them more potent for PDT applications. First of all, nanomaterials act as a stable and potent drug delivery carrier which generally overcomes the shortcomings of free molecular PSs like hydrophobicity, aggregations, and low tumor cell/tissue specificity, and further permits higher loading of PSs allowing controlled delivery and accumulation in tumor mass in higher concentrations (Zhang et al., 2016; dos Santos et al., 2021; Yan et al., 2020). The smaller size and stability of NPs prolongs the circulation of PSs in the system, enables passive targeting and higher accumulation of PSs in the tumor mass by enhanced permeation and retention (EPR) effect, whereby the leaky and improperly generated tumor vasculatures allow enhanced penetration of circulating NPs in tumor tissues. Moreover, tumor accumulation of PS-loaded NPs can be further improved by active targeting through surface modifications of NPs with specific cancer-targeting ligands (dos Santos et al., 2021; Yan et al., 2020; Zarrintaj et al., 2018).

Additionally, selective accumulation of nano-PSs in higher concentration is also highly desirable to concentrate the PDT-induced ROS generation in tumor cells/tissues, due to the short lifetimes and diffusion distance of ROS under physiological conditions. The major PDT-generated ROS i.e., 1O$_2$ has a lifetime of 15–30 μs with the propagation distance up to 0.5–1 μm only (Peskova et al., 2021). Similarly, all other free radicals like O$_2^\cdot$ and OH$^\cdot$ ions being highly reactive have a short lifetime and mean distance in cells. While contrarily, hydrogen peroxide being uncharged and more stable has a longer life up to 1 ms in cells and can traverse membranes freely, and is majorly involved in the PDT-mediated oxidation of membrane lipids and
proteins in both primary and secondary response to irradiation of PSs (Peskova et al., 2021; Anjum et al., 2022). This eventually aggravates PDT-induced cell death and subsequent response (Peskova et al., 2021). Secondly, promising optical properties of several nanomaterials, especially metallic and semiconductor NPs, have been explored to modulate several photophysical properties of nearby PSs such as enhancement of light absorption efficiency, cross-section area, NIR excitation, fluorescence property, and energy transfer or electron transfer process to augment ROS generation to achieve improved penetration and efficacy of PDT (Wang et al., 2020). These properties are mainly offered by plasmonic metal NPs, aggregation-induced emissive nanodots, semiconductor NPs carbon-based quantum dots, Lanthanide doped upconversion NPs and ultrasmall metal nanoclusters (<2 nm) which are widely being explored for ROS enhancement, and advanced PDT approaches such as upconversion PDT, Two Photon PDT and Self-illuminated PDT (Zhang et al., 2016; dos Santos et al., 2021). However, as compare to noble metal NPs, semiconductor NPs like Quantum Dots and upconversion NPs with heavy elements and lanthanides, raises the health hazard concerns regarding their pharmacokinetic pharmacodynamic properties which such as their ultimate fate in the biological system, possibility of their degradation into toxic byproducts, and their short and long term effects (Lucky et al., 2015).

3 Metal nanoparticles

Metal-based nanomaterials are mainly categorized into 1) metal NPs i.e., pure forms of metal-based NPs, e.g., silver, copper, gold, titanium, platinum, zinc, magnesium, iron NPs, 2) metal oxide NPs such as titanium dioxide, silver oxide, zinc oxide, etc., 3) doped metal/metal oxide/metal nanomaterials and 4) metal sulfide and metal organic frameworks (MOFs) nanomaterials, e.g., AgS, CuS, FeS NPs, Zn-based MOF, Cu-based, Mn-based MOF, etc. (Yaqoob et al., 2020). Extensive discussion on important concepts, strategies, significant advances, and rationale behind the designing and general applications of metallic NPs in PDT is beyond the scope of this review and has already been extensively reviewed (García Calavia et al., 2018; Sun et al., 2018; Khursheed et al., 2022).

Importantly compared to free form of PSs, other than acting as drug carrier and inducing EPR effect, plasmonic metal NPs with or without PSs impart the advantages of 1) energy transducer whereby their large extinction coefficients about 5 orders of magnitude larger allows efficient energy transfer process for photosensitization thus needs lower laser energy to trigger PDT without damaging the nearby healthy cell, 2) enhance $^{1}\text{O}_2$ generation of PS based on a physical phenomenon called metal-enhanced $^{1}\text{O}_2$ generation 3) tuning the Surface Plasmon Resonance (SPR) in NIR wavelength region for deep tissue penetration (Ho-Wu et al., 2017; Younis et al., 2021; Yaraki et al., 2022). Metallic NPs may be synthesized and manipulated such that they can attach to antibodies, drugs, and ligands (Sharma et al., 2015; Venkatesh, 2018). Thus, with all these properties plasmonic metal NPs are best used for enhancing conventional PSs. In the following section, we have highlighted and signified the importance of the fundamental knowledge and mechanistic pathways of photo-nano-chemistry of plasmonic metallic NPs for a better understanding of the enhancement strategies for $^{1}\text{O}_2$ generation.

3.1 Plasmon resonance induced properties in noble metal nanoparticles

Among all the nanomaterials, metallic NPs have unique optical properties due to their ability to interact with an incident of electromagnetic radiation. These optical properties include extinction, absorption, Rayleigh scattering, and Raman scattering, and electronic property like conductivity along with the biocompatibility of metallic NPs make them a promising candidate for therapeutic as well as diagnostic applications (Krajczewski et al., 2019; Yaqoob et al., 2020; Khursheed et al., 2022). However, the optical properties of metals depend greatly on their size. Where the nanoscale metals (<5 nm) have a continuous band of energy levels i.e., an overlap between the valence and conduction bands: the outer valence electrons move around freely as conduction electrons within the metal, which respond efficiently to outside perturbations, such as electromagnetic fields. Under illumination, the oscillating electric field of the electromagnetic wave completely permeates the NP which perturbs the conduction electrons within the whole volume of the NP’s (Carrasco et al., 2020). Initially, the electrons coherently couple to this oscillating electric field and form an electron density or cloud. Once the wavelength of the incident light larger than the size of metallic NP is illuminated, the electron cloud decreases on the illuminated side of the NP and increases on the other opposite side resulting in an asymmetrically distributed electron cloud. This leads to a series of oscillations in the vicinity of the metallic NP creating an opposing electric field to the externally applied electric field. The resulting coherent/collective oscillations of the charge density and the corresponding electric field are denoted as localized surface plasmons (LSPs) as shown in Figure 4. These electronic oscillations produce two modes: 1) surface plasmon–polariton (SPP), which propagates along with the metal/dielectric interfaces, and 2) localized surface plasmon resonance (LSPR), which is confined in a very small volume around the isolated metallic NP. In general, the specific frequency at which the amplitude of the oscillation reaches the maximum is referred to as plasmon resonance frequency that leads to a LSPR. During LSPR, the electric field of incident light periodically displaces the NP sphere’s electrons with respect to the lattice ions, generating the oscillating electron density. Excitation of
LSPR causes nanoscale localization and enhancement of electromagnetic fields in the vicinity of the metal NPs. As shown in Figure 4, the LSPR electrons strongly absorb and scatter light at the LSPR wavelengths of plasmonic-metal NPs in both visible and near-infrared ranges (Kim et al., 2017). NPs of smaller than 15 nm, spectral resonance is dominated by absorption, while larger NPs of >15 nm have a scattering-dominated spectral resonance (Li et al., 2015).

Further, due to the electron-electron and electron-phonon interactions, the resulting decoupling of the electronic cloud from the oscillating electric field promotes a particular subpopulation of conduction electrons to a high-energy state known as non-thermal electrons (Figure 4C). Non-thermal electrons have energy significantly above the Fermi level, a threshold energy level for electrons to engage in chemical reactions or leave the particle (ionization). Due to the electron-electron scattering effect, the non-thermal electron population becomes unstable for further thermalization, and the excess energy is redistributed among all the electrons in the particle, leading to hot electrons (Figure 4C). The hot-electron population having a longer lifetime is responsible for chemical reactivity after plasmon excitation. Finally, as shown in Figure 4D, due to the electron-electron and, electron-phonon scattering the heat from the hot-electron is redistributed to the whole NP and increases its overall temperature resulting in photothermal effect (Kim et al., 2017; Carrasco et al., 2020).

Most importantly, the rationale for designing plasmonic metallic NPs with desirable plasmonic properties i.e., LSPR and generated thermal energy is directly correlated with fine-tuning of their optical response which is greatly influenced by several factors such as the size and shape of metal NPs, the configuration of metal NPs, the wavelength of the incident light, dielectric function of the NPs and dielectric constant of the surrounding medium (Kelly et al., 2003; Khlebtsov and Dykman, 2010; Rycenga et al., 2011; Manzhos et al., 2021). Further, usually AgNPs and AuNPs show the LSPR band at 390 nm and 520 nm in the absorption spectra, respectively (Jain et al., 2008; Tong et al., 2009; Huang and El-Sayed, 2010). As a general rule, as the size of NPs increases, the LSPR peak in absorption spectra becomes more red-shifted. The Ag nanospheres solutions with a different mean diameter of 3.1 ± 0.6, 13.4 ± 5.8, 46.4 ± 6.1, and 91.1 ± 7.6 nm showed their LSPR peak wavelength at 390 nm, 393 nm, 408 nm, and 440 nm with a shoulder peak at 384 nm, respectively (Nallathamby et al., 2010).
Similarly, an increase in the size of AuNPs from 19 to 66 nm–106 nm shows a gradual red shift in LSPR wavelength, from 520 to 527 nm–531 nm respectively (Khaing Oo et al., 2012). Further, Li et al., demonstrated that the LSPR absorption peak varies for three AuNP shapes. The 15 nm diameter nanospheres showed a characteristic LSPR absorption at 520 nm, the nanorods of 30.2 nm length and 9.3 nm diameter exhibited transverse and longitudinal LSPR peaks at 515 and 735 nm, respectively and the nanostars with a core of 34.5 nm diameter displayed two LSPR bands at 532 and 675 nm (Li et al., 2012). Very few metals can act as potent plasmonic NPs in the visible region for example Li, Al, Cu, Pd, Ag, Pt, and Au. However, each metal has its own advantages and disadvantages for plasmonic applications based on its plasmonic resonance, chemical stability, nanostructure formation, and cost. For example, Ag has the strongest resonance across most of the spectrum from 300 to 1200 nm followed by Au and Cu which have LSPR excitation wavelengths longer than 500 and 600 nm, respectively. However, Cu nanostructures impose the concern of instability and toxicity for biological applications. Pt and Pd have the weakest resonance property and being the costliest among all, makes them unsuitable for large-scale applications. Al is only preferable for UV region applications and the high reactivity of Li makes it very difficult to handle as NPs. Considering all these factors, noble metals Au and Ag are the most promising as plasmonic NPs for in vivo applications. However, surface modification of Ag nanostructures is needed to enhance their biocompatibility and stability and attenuate their toxicity by eliminating the release of Ag+ ions. The bio-inertness, negligible reactivity, and ease of synthesis of Au nanostructures make them the most well-suited (Rycenga et al., 2011). Plasmonic NPs have extended biomedical applications, starting from biosensing, bioimaging, and drug delivery to photothermal therapy and PDT.

3.2 Role of plasmonic metal nanoparticles in PDT

In recent years metal NPs have gained tremendous interest in health sciences because of their conspicuous properties that are useful for the diagnosis and treatment of several diseases (Jamkhande et al., 2019). Common organic PSs e.g., silicon phthalocyanines and porphyrins, have been reported of having limitations such as lower molar extinction coefficients, poor photostability, poor enzymatic degradation, and inability to be activated by NIR light. This is because UV-Vis spectrum has poor tissue penetration depths, which overall restricts the use of NIR light-activated organic PSs in PDT with few exceptions (Vankayala et al., 2014a; Vankayala and Hwang, 2018; Lv, Zhang, Li, Wang, He; Sarbadhikary et al., 2021). The breakthrough observation of plasmon-mediated electron emission from the metallic NPs mainly gold and silver, into the surrounding media leading to ‘O_2’ generation upon direct light irradiation made them a potential PS candidate for PDT (Lv, Zhang, Li, Wang, He). Furthermore, as discussed, metallic NPs offer several advantages over organic PSs of high stability, high loading or conjugation efficiency, adjustable size, optical properties, easy surface functionalization, slow degradation, and long cycle time, making them more biocompatible and resistant to decomposition in biological applications, which allows tumor targeting, delivery and controllable release of PSs (Sun et al., 2018; Shang et al., 2021). The metallic NPs exhibit high extinction coefficient which generally compensates for the somewhat low ‘O_2’ yield and reduces the overall excitation power, thus, slowing down the depletion of tissue oxygen and promoting the reperfusion of tissue oxygen. Additionally, the feasibility of synthesis and functionalization of metallic NPs can easily tune their excitation wavelengths to the near-infrared (NIR) region, which in turn significantly enhances the penetration depth into the tissues and improve the overall in vivo PDT potential (Lv, Zhang, Li, Wang, He). Besides, these metallic NPs improve the overall efficacy of PDT via different phenomena like (Pavlova et al., 2022) efficient energy transfer from excited plasmonic metallic NPs either to molecular O_2 and/or to certain standard organic PSs like a FRET mechanism, and (Hanahan, 2022) light upconversion, where excitation of upconversion NPs by near-infrared radiation and emission of shorter wavelength light leads to the excitation of the organic PSs (Bucharskaya et al., 2016; Krajczewski et al., 2019; Sarbadhikary et al., 2021).

3.2.1 Free noble metallic plasmonic nanoparticles

Among all the metallic NPs, AuNPs have been most extensively used in PDT, because of their special property of LSPR which involves heating of AuNPs by the application of light of a specific wavelength to the surface of the AuNPs. As discussed, LSPR is an optical phenomenon that occurs when light interacts with conductive metallic NPs that are smaller than the incident wavelength. AuNPs with various shapes and sizes such as nanocage, nanoflower, nanoshell, nanosphere, nanorod, nanostar, and nanoporous Au disks. The specific wavelengths, emission frequencies, and emission wavelengths of different AuNPs are highly dependent on the size, shape, surface, and aggregation state of the NP’s (Petryayeva and Krull, 2011; Kim and Lee, 2018). The LSPR property of AuNPs allows rapid energy transfer from Au metal surface to molecular O_2 with high efficiency and forms ‘O_2’, thus inducing PDT even without the involvement of PS (Krajczewski et al., 2019). As discussed above both the initial nonthermal electrons, and later hot-electrons have enough energy to directly pump jump to the higher electronic levels of O_2 molecules generating ‘O_2’ by energy transfer with these hot-electrons (Carrasco et al., 2020). Gao et al., discussed the mechanism insights of plasmonic metal NP mediated generation of ROS under NIR one/two-photon
irradiation for PDT occurs via energy and electron transfer modes. Photoexcitation of surface plasmons on AuNPs first decay into hot electrons with energies between the vacuum level and Fermi level of the metal. The hot electrons with high-energy levels further transfer into and populate the 2π* antibonding O–O orbital, creating a fleeting negative ion, O2•−, which subsequently relaxes by releasing an electron back to the metallic NP surface to create O2. Further, it was shown that Au nanocages showed almost 6-fold increase in O2 generation capability under two-photon irradiation compared to a one-photon irradiation (Gao et al., 2014).

In 2006, George Pasparakis demonstrated the principle of producing O2 and ROS by irradiating AuNPs articles using continuous-wave and pulsed laser sources. Where it was shown that two different underlying photochemically and/or photothermally reactions are involved in AuNPs mediated cancer cell killing upon laser irradiation. First, one plasmon-activated pathway involves interactions of plasmons and hot electrons with molecular oxygen, and secondly an indirect photothermal pathway that induces the generation of extreme heat leading to particle fragmentation and increased thermionic electron emission, where both the pathways. The cancer death in the case of irradiation of AuNPs with continuous-wave and pulsed laser sources exhibited that generation of O2 and ROS significantly amplified the overall in vitro cancer cell death during photothermal and photodynamic treatment (Pasparakis, 2013).

For the first time, Vankayala et al. demonstrated that naked AuNPs alone have the potential to generate O2 to exert PDT effects. Au nanorods were shown to completely destroy melanoma tumors in mice upon irradiation with NIR 915 nm light via PDT effect which was far more effective than the AuNP mediated photothermal therapy (PTT) effect at 780 nm light excitation. Moreover, these NPs induced ~10-fold higher PDT cell death in HeLa cells irradiated with 940 nm (Vankayala et al., 2014a). Multi-branched Au nanoechinus structure with exceptionally high extinction coefficients in the NIR region (800–1700 nm) exhibited dual-modal in vivo PDT and PTT effects upon excitation with 915 nm (NIR I) and 1064 nm (NIR II) for the complete destruction of solid tumors in melanoma mice model. NIR activation of Au nanoechinus treated cancer cells at 940 nm demonstrated ~2.5 folds O2 generation when compared to 550 nm irradiation as well as dark (Vijayaraghavan et al., 2014). Several studies involving naked unmodified Au spheres, Au nanorods, Au bipyramids, Au nanocages, spherical hollow AuNPs, and Au nanorods in shells have also been shown to be potential materials for inducing O2 mediated PDT. These nanomaterials exhibit the maximum O2 generation efficiency when the incident laser wavelength overlaps with their SPR peaks (Lv, Zhang, Li, Wang, He; Vankayala et al., 2014b).

Further, it was shown that the O2 formation by metallic NPs is strongly dependent on their morphology. This was evident from the observation that O2 was generated by photo-irradiating silver nanomaterials of decahedrons and triangular plate morphology, but not by Ag nanocubes. In vitro studies exhibited ~4-fold higher photo-induced cellular deaths in HeLa cells with Ag decahedral NPs than Ag nanocubes upon irradiation with a 940 nm NIR light (Vankayala et al., 2013).

Other than the free AuNPs, their aggregates have been also evaluated as PSs for PDT. Where it has been shown that aggregation of AuNPs usually significantly increases the efficiency and yield of O2 generation than for the isolated unaggregated forms (Han et al., 2012; Jiang et al., 2013). For example, two-photon induced O2 generation capabilities of aggregated Au nanospheres and short Au nanorods were 15.0- and 2.0-fold higher respectively compared to their unaggregated state (jiang et al., 2013). Direct photosensitization of Au clusters like organic-soluble Au25 (Phenylenethanethiolate) 18− and water-soluble Au25 (Captropril)18− have also been demonstrated to efficiently produce O2 under visible/near-IR (532, 650, and 808 nm) irradiation. Photoexcitation of water-soluble Au25 (Captropril) 18− clusters at 808 nm induced photodynamic cell killing of cancer cells (Kawasaki et al., 2014). Usually, metal nanoclusters of less than 2 nm in size do not have LSPR, but rather, they exhibit discrete optical transitions (Diez and Ras, 2011; Jin and Higaki, 2021). They have several valuable properties for PDT application which include long-lived triplet excited states, absorption cross-sections, high photostability, small metal clusters that are ideal for deeper penetration in the cells, and O2 generation efficiency. Ho-Wu showed the O2 generation capacity of three different metal nanoclusters in the order of Au144 > Au25, Ag32, which was several orders of magnitude higher than plasmonic Au NPs (40 nm). This increase in O2 production is attributed to the high absorption cross-section-to-volume ratio in nanoclusters resulting in enhanced triplet excited states population (Ho-Wu et al., 2017).

Other, than free plasmonic metal NPs, the approach of incorporation of plasmonic metallic NPs into inorganic semiconductors such as TiO2 have been explored for plasmon-enhanced O2 generation under visible light irradiation. This overcomes the limitations of inorganic semiconductor NPs which can only be excited by UV light illumination, which restricts their application for in vivo PDT. The proposed mechanism involves LSPR-induced generation of high-energy (hot) electrons in metallic NPs upon photoexcitation of metal-semiconductor nanostructures with visible light, these hot electrons via the electron transfer process are then transferred to the conduction band of semiconductor NPs. Subsequently, the electrons in the semiconductor conduction band reduce the surrounding O2 molecules to O2−, which later oxidizes to O2 by the holes remaining in metal NPs or returns to the ground state O2 (Zhou et al., 2015). Some reported examples of such metal-semiconductor hybrid nanostructures include AuNPs deposited...
Hematoporphyrin IX-loaded mesoporous silica (Ag@mSiO2@nanostructures consisting of plasmonic Ag NPs coated by resulted in a 1.4 and 1.8-fold enhancement in photogenerated nanospheres of 13 nm, coated without and with a pectin layer.

Excitation of Ag@mSiO2@HPIX hybrids with 400 nm excitation, thus effective for deep-tissue cancer treatments. cancer cells upon exposure to red/near-infrared light exhibited a higher 1O2 generation with an enhancement factor (Wang et al., 2016). The 1O2 quantum yield was measured to be higher for Zinc-hexadecafluoro-phthalocyanine coated AuNPs (0.65) compared to the value of 0.45 for free Zinc-hexadecafluoro-phthalocyanine (Hone et al., 2002).

Similarly, hybrid PS- metallic nanocarriers like AuNP-core with SiO2-shell incorporated with methylene blue (MB) (Chu et al., 2013), silica-coated Au nanostars embedded with MB (Fales et al., 2011), silica-coated AuNRs linked with tetra-substituted carboxyl aluminum phthalocyanine (AlC6Pc) (Ke et al., 2014), 5-aminolevulinic acid-conjugated AuNPs (Khaing Oo et al., 2008), phthalocyanine conjugated AuNP (Wieder et al., 2006), exhibited Au plasmonic effect for enhanced 1O2 generation efficacy resulting into enhanced PDT effect. The capability of plasmonic NPs to generate 1O2 is also shown to vary with the distance between PS and the metallic surface of NPs. For example, 1O2 generation of AlC6Pc was reported to be highest for AuNRs@SiO2-AlCl3Pc with the silica shell thickness of 10.6 nm between AlCl3Pc and Au nanorod surface, when excited with 680 nm light (Ke et al., 2014). de Melo et al. showed that excitation with 415 nm light, riboflavin-silver nanospheres of 13 nm, coated without and with a pectin layer resulted in a 1.4 and 1.8-fold enhancement in photogenerated 1O2 generation respectively, compared to the free riboflavin solution (De Melo et al., 2012). In another study, Protoporphyrin IX (PpIX) coated Ag core SiO2 shell NPs demonstrated that the ~100 nm Ag core surrounded by the thinnest SiO2 shell of ~5 nm induced the highest enhancement in photogenerated 1O2 up to 5 times compared to PpIX-functionalized SiO2 NPs. This is attributed to the efficient excitation of the LSPR of Ag NPs and overlap between PpIX absorption band and the excitation of Ag NP LSPR (Lismont et al., 2016a).

Another study reported a nanosystem composed of mesoporous silica-coated Au nanorods incorporated with indocyanine green (ICG). The LSPR peak of the Au nanorod core was fine-tuned to overlap with the absorption band of ICG, which by maximizing the local field enhancement of AuNR, improves the absorption coefficient of incorporated ICG and protecting the ICG molecules against photodegradation thus eventually showing strong augmentation in 1O2 yield without changing ICG payload. Further, the incorporation of ICG in the silica shell led to the formation of ICG aggregates having high photostability and thermal stability than ICG monomers. The reported design principle enhanced the antitumor efficacy of ICG against human breast carcinoma cells in both in vitro and in vivo models, through a synergistic effect of plasmonic-PDT and photothermal therapy. Further, 1O2 production for the Au@SiO2-ICG after 1-, 2-, and 3-min irradiation with 808 nm laser was observed to be 1.5, 3.6, and 6.3 times respectively with respect to free ICG. Additionally, the nano platform facilitated trimalodal imaging with ICG-mediated NIR fluorescence and two-photon luminescence/photocoustic tomography due to AuNRs (Li et al., 2014). Extending the applications of plasmonic metallic NPs, a nanocomposite consisting of a core of NaYF4:Yb/Er upconversion NPs conjugated with Au nanorods and coated with a silica shell embedded with methylene blue (MB) was evaluated for its plasmon-enhanced PDT efficacy. Hereby, the efficacy of ROS generation by 980 nm irradiation of UCP@SiO2:MB was observed to vary with the thickness of the SiO2 shell as 4.5 > 8.2 > 1.5 > 13.2 nm. Thus, UCPs served as a light converter NIR to visible light to excite MB, and AuNRs effectively enhanced the upconversion efficiency and ROS generation via the LSPR effect and exhibited efficient photodynamic ability both in vitro and in vivo oral cancer model (Chen et al., 2016). As a proof of principle Oo et al. assessed the correlation of enhanced 1O2 generation with the particle size of metallic NPs which in turn controls the LSPR field. Whereby, PpIX was conjugated with AuNPs of 19, 66, and 106 nm diameter and investigated for their PDT efficacy against breast cancer cells in vitro study. The results revealed that the 66 nm PpIX-AuNPs induced the highest PDT-mediated cell destruction, consistent with their highest cellular uptake and 1O2 production. Herein, different sizes of Au NPs also influenced the ROS enhancement ratio by 1:3.33:11.65 for 19, 66, and 106 nm, respectively (Khaing Oo et al., 2012). A nanocomposite design composed of silica-coated Au-Ag
nanocage core functionalized with Yb–2,4-dimethoxyhematoporphyrin (Au-Ag/SiO$_2$/Yb-HP) also demonstrated efficient generate on of 1O$_2$ and enhanced cancer cell killing simultaneously with IR-luminescence imaging (Khlebtsov et al., 2011). Table 1 shows common metal NP-PSs for enhanced PDT with variations in photochemical properties.
4 Conclusion

In recent years PDT is gaining a prominent interest among clinicians and patients, because of several improvements in the advanced PS designing and delivery strategies, technology, and optoelectronic equipment, and overcoming the limitations of PDT. As discussed in this review nanotechnology is one the field which has proven to be a very promising approach for future advancements and applications of clinical PDT. Among several different NPs, plasmonic metallic NPs exhibit a number of desirable and unique properties for use in PDT including providing a good biocompatible PS carrier, enhancing the 1O$_{2}$ generation in conjugation with PS, increasing the fluorescence property of PS for fluorescence imaging, and shifting the excitation wavelength from visible to NIR region along with enhancing the absorption coefficient of PS for deep cancer treatment. This approach offers the flexibility of using any type of PSs which relies on the interactions of light with the plasmonic metal NPs to act as an efficient energy transducer for the PS that are placed in close proximity. Thus, plasmonic engineering strategy is a promising approach to enhance the 1O$_{2}$ generation efficiency of PSs, rather than developing new more potent PSs. Moreover, such metal-enhanced nano-PSs exhibit the property of higher photostability and minimum photobleaching, making them a potential theranostic agent for image-guided therapy. Figure 5 represents a schematic illustration of the best-known mechanistic insights of PTT and PDT effects of metal plasmonic NP within the cell ultimately leading to cancer cell death.

However, efficient plasmonic metal NP enhanced 1O$_{2}$ generation phenomena is dependent on several factors like size, shape, composition, the distance of PS from metalcore, excitation wavelength, and even metal NPs-PS molar ratio. would affect the final SOG enhancement factor. Thus, future work should be directed toward determining the optimized conditions and effective parameters for different plasmonic NP-PS formulations. Besides the promising properties of metallic NPs, it is of utmost importance to carefully examine the long-term toxicity, pharmacokinetics, and pharmacodynamic properties of metallic nanocarriers to avoid their unnecessary liver and kidney accumulation. Therefore, it is expected that plasmonic NPs and plasmonic composites will have a tremendous impact on the detection and treatment of cancer in the near future provided their inherent toxicity issues are taken care of before proceeding into clinical trials.

Author contributions

BPG and PS confirmed the article theme, structure. BPG, AC, and PS wrote the review. AC designed the figures. BPG and HA supervised the whole work, contributed to writing, and critically revised and modified this article. All authors have read and approved the final version to the final version of the manuscript.

Funding

This work is supported by the South African Research Chairs initiative of the Department of science and technology and National Research Foundation of South Africa (Grant No 98337), South African Medical Research Council (Grant No. SAMRC EIP007/2021) as well as grants received from the University Re-search Committee (URC), University of Johannesburg and the Council for Scientific and Industrial Research (CSIR)-National Laser Centre (NLC).

Research reported in this review article was supported by the South African Medical Research Council (SAMRC) through its Division of Research Capacity Development under the Research Capacity Development Initiative from funding received from the South African National Treasury. The content and findings reported/illustrated are the sole deduction, view and responsibility of the researcher and do not reflect the official position and sentiments of the SAMRC.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Acknowledgments

The authors sincerely thank the South African Research Chairs initiative of the Department of science and technology and National Research Foundation of South Africa, South African Medical Research Council (SAMRC) and Laser Research Centre (LRC), University of Johannesburg.
Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 71 (3), 209–249. doi:10.3322/caac.21660

Tong, L., Wei, Q., Wei, A., and Cheng, J. X. (2009). Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. Photochem. Photobiol. 85, 21–32. doi:10.1111/j.1751-1097.2008.00507.x

Vankayala, R., Huang, Y. K., Kalluru, P., Chiang, C. S., and Hwang, K. C. (2014). First demonstration of gold nanorods-mediated photodynamic therapeutic destruction of tumors via near infra-red light activation. Small 10 (8), 1612–1622. doi:10.1002/smll.201302719

Vankayala, R., and Hwang, K. C. (2018). Near-infrared-light-activatable nanomaterial-mediated phototheranostic nanomedicines: an emerging paradigm for cancer treatment. Adv. Mater. 30 (23), 1706320. doi:10.1002/adma.201706320

Vankayala, R., Koo, C. L., Sagadevan, A., Chen, P. H., Chiang, C. S., Hwang, K. C., et al. (2013). Morphology dependent photosensitization and formation of singlet oxygen (1Δg) by gold and silver nanoparticles and its application in cancer treatment. J. Mater. Chem. B 1 (35), 4379. doi:10.1039/c3tb20804a

Vankayala, R., Lin, C. C., Kalluru, P., Chiang, C. S., and Hwang, K. C. (2014). Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light. Biomaterials 35 (21), 5527–5538. doi:10.1016/j.biomaterials.2014.03.065

Venkatesh, N. (2018). Metallic nanoparticle: a review. Biomed. J. Sci. Tech. Res. 4 (2). doi:10.26717/bjstr.2018.04.001011

Vijayraghavan, P., Liu, C. H., Vankayala, R., Chiang, C. S., and Hwang, K. C. (2014). Designing multi-branched gold nanoechinus for NIR light activated dual modal photodynamic and photothermal therapy in the second biological window. Adv. Mat. 26 (39), 6689–6695. doi:10.1002/adma.201400703

Vines, P., and Wild, C. P. (2014). Global cancer patterns: causes and prevention. Lancet 383, 549–557. doi:10.1016/S0140-6736(13)62224-2

Wang, L., Hassanreza Khafghari, M., and Meunier, M. (2020). Optical properties and applications of plasmonic-metal nanoparticles. Adv. Funct. Mater. 30 (51), 2005400. doi:10.1002/adfm.202005400

Wang, P., Tang, H., and Zhang, P. (2016). Plasmonic nanoparticle-based hybrid photosensitizers with broadened excitation profile for photodynamic therapy of cancer cells. Sci. Rep. 6, 34981. doi:10.1038/srep34981

Whiteman, D. C., and Wilson, L. F. (2016). The fractions of cancer attributable to modifiable factors: a global review. Cancer Epidemiol. 44, 203–221. doi:10.1016/j.canep.2016.06.013

Wieder, M. E., Hone, D. C., Cook, M. J., Handley, M. M., Gavriloic, J., Russell, D. A., et al. (2006). Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a ‘Trojan horse. Photochem. Photobiol. Sci. 5 (8), 727–734. doi:10.1039/b602830f

Xie, J., Wang, Y., Chou, W., Jangil, P., Ge, Y., Xu, Y., et al. (2021). Overcoming barriers in photodynamic therapy harnessing nano-formulation strategies. Chem. Soc. Rev. 50.

Yang, K., Zhang, Y., Mu, C., Xu, Q., Jing, X., Wang, D., et al. (2020). Versatile nanoplatforms with enhanced photodynamic therapy: designs and applications. Theranostics 10, 7287–7318. doi:10.7150/thno.46288

Yang, Y., and Wang, H. (2021). Recent progress in nanophosensitizers for advanced photodynamic therapy of cancer. J. Phys. Mat. 4 (1), 014003. doi:10.1088/2515-7639/dac9ce

Yanovsky, R. I., Bartenstein, D. W., Rogers, G. S., Isakoff, S. J., and Chen, S. T. (2019). Photodynamic therapy for solid tumors: a review of the literature. Photodermatol. Photoimmunol. Photomed. 35, 295–303. doi:10.1111/ppg.12889

Yao, Y., Zhou, Y., Liu, L., Xu, Y., Chen, Q., Wang, Y., et al. (2020). Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front. Mol. Biosci. 7, 193. doi:10.3389/fmolb.2020.00193

Yaqoob, A. A., Ahmad, H., Parveen, T., Ahmad, A., Oves, M., Ismail, I. M. I., et al. (2020). Recent advances in metal decorated nanomaterials and their various biological applications: a review. Front. Chem. 8, 341. doi:10.3389/fchem.2020.00341

Yaraki, T. M., Bin, L., and Tan, Y. N. (2022). Emerging strategies in enhancing singlet oxygen generation of nano-photosensitizers toward advanced phototherapy. Nanomicro. Lett. 14, 123. doi:10.1007/s40820-022-00856-y

Younis, M. R., He, G., Qu, J., Lin, J., Huang, P., and Xia, H. X. (2021). Inorganic nanomaterials with intrinsic singlet oxygen generation for photodynamic therapy. Adv. Sci. 8.

Zarrintaj, P., Ahmadi, Z., Hosseinnejad, M., Saeb, M. R., Laheurte, P., and Mozafari, M. (2018). “Photosensitizers in medicine: Does nanotechnology make a difference?,” in Materials today: Proceedings.

Zhang, R., Xing, R., Jiao, T., Ma, K., Chen, C., Ma, G., et al. (2016). Carrier-free, chemophotodynamic dual nanodrugs via self-assembly for synergistic antitumor therapy. ACS Appl. Mater. Interfaces 8 (21), 13262–13269. doi:10.1021/acsami.6b02416

Zhang, Y., Aslan, K., Previte, M. J. R., and Geddes, C. D. (2008). Plasmonic engineering of singlet oxygen generation. Proc. Natl. Acad. Sci. U. S. A. 105 (6), 1798–1802. doi:10.1073/pnas.0709501105

Zhou, N., López-Puente, V., Wang, Q., Polavarapu, L., Pastoriza-Santos, I., and Xu, X. H. (2015). Plasmon-enhanced light harvesting: applications in enhanced photocatalysis, photodynamic therapy and photovoltaics. RSC Adv. 5, 28076–28097. doi:10.1039/C5RA01819F

Zhou, Z., Song, J., Nie, L., and Chen, X. (2016). Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem. Soc. Rev. 45, 6597–6626. doi:10.1039/c6cr00271d