Entanglement of graph states up to eight qubits

Xiao-yu Chen

College of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou, 310018, People’s Republic of China

Received 7 November 2009, in final form 14 March 2010
Published 5 April 2010
Online at stacks.iop.org/JPhysB/43/085507

Abstract
The entanglement of graph states up to eight qubits is calculated in the regime of iteration calculation. The entanglement measures could be the relative entropy of entanglement, the logarithmic robustness or the geometric measure. All 146 local inequivalent graphs are classified as two categories: graphs with identical upper LOCC entanglement bound and lower bipartite entanglement bound, graphs with unequal bounds. The latter may display non-integer logarithmic robustness, relative entropy of entanglement and the geometric measure.

1. Introduction
Multipartite entanglement plays an important role in quantum error correction and quantum computation. The quantification of multipartite entanglement is still an open problem even for a pure multipartite state. Until now, a variety of different entanglement measures have been proposed for multipartite setting. Among them are the (global) robustness of entanglement [1], the geometric measure [2] and the relative entropy of entanglement [3, 4]. The robustness measures the minimal noise (arbitrary state) that we need to add to make the state separable. The geometric measure is the distance of the state to the closest product state in terms of the fidelity. The relative entropy of entanglement is a valid entanglement measure for the multipartite state; it is the relative entropy of the state to the closest product state in terms of the fidelity. The geometric measure of entanglement [5–7], these entanglement measures are all equal for graph states. Thus, these entanglement measures are all equal for stabilizer states [8]. It is known that the set of graph states is a subset of the set of stabilizer states. The entanglement of multipartite state, the entanglement can only be obtained for some special scenario. Fortunately, due to the inequality among the logarithmic robustness, relative entropy of entanglement and geometric measure of entanglement [5–7], these entanglement measures are all equal for stabilizer states [8]. It is known that the set of graph states is a subset of the set of stabilizer states. Thus, these entanglement measures are all equal for graph states.

The paper is organized as follows. In section 2, we overview the concept of the graph state and graph state basis, the entanglement inequalities and the bounds of the entanglement. In section 3, we describe the iteration method of finding the closest product state. In section 4, we classify all the inequivalent graphs according to the entanglement bounds up to eight qubits and propose the precise values of entanglement. Section 5 is devoted to the precision of the iteration. Conclusions are given in section 6.

2. Preliminary
2.1. Graph state
A graph $G = (V; \Gamma)$ is composed of a set $V$ of $n$ vertices and a set of edges specified by the adjacency matrix $\Gamma$, which is an $n \times n$ symmetric matrix with vanishing diagonal entries and $\Gamma_{ab} = 1$ if vertices $a, b$ are connected and $\Gamma_{ab} = 0$ otherwise. The neighbourhood of a vertex $a$ is denoted by $N_a = \{v \in V | \Gamma_{av} = 1\}$, i.e. the set of all the vertices that are connected to $a$. Graph states $[9, 10]$ are useful multipartite entangled states that are essential resources for the one-way computing $[11]$ and can be experimentally demonstrated $[12, 13]$. To associate the graph state with the underlying graph, we assign each vertex a qubit; each edge represents the interaction between the corresponding two qubits. More physically, the interaction may be the Ising interaction of spin qubits. Let us denote the Pauli matrices at the qubit $a$ by $X_a, Y_a, Z_a$ and the identity by $I_a$. The graph state related to the graph $G$ is defined as

$$|G\rangle = \prod_{\Gamma_{ab}} U_{ab} |+\rangle_x^V = \frac{1}{\sqrt{2^n}} \sum_{\mu=0}^{1^n} (-1)^{\mu^T \Gamma a^T} |\mu\rangle_z$$

where $|\mu\rangle_z$ is the joint eigenstate of Pauli operators $Z_a (a \in V)$ with eigenvalues $(-1)^{\mu_a}, |+\rangle_x^V$ is the joint $+1$ eigenstate of Pauli.
operators $X_a$ ($a \in V$) and $U_{ab}$ ($U_{ab} = \text{diag}[1, 1, 1, -1]$ in the Z basis) is the controlled phase gate between qubits $a$ and $b$. 

A graph state can also be viewed as the result of successively performing two-qubit control-Z operations $U_{ab}$ to the initially unconnected $n$-qubit state $|\psi\rangle^n$. It can be shown that a graph state is the joint +1 eigenstate of the $n$-vertex stabilizers

$$
K_a = X_a \prod_{b \in N_a} Z_b := X_a Z_{N_a}, \quad a \in V.
$$

(2)

Meanwhile, the graph state basis is $|G_{k_1,k_2,...,k_n}\rangle = \prod_{a \in V} Z_{ka}^{|G|}$, with $k_a = 0, 1$. Thus,

$$
K_a |G_{k_1,k_2,...,k_n}\rangle = (-1)^k_a |G_{k_1,k_2,...,k_n}\rangle.
$$

(3)

Since all of the graph basis states are local unitary equivalent, they all have equal entanglement, so we only need to determine the entanglement of the graph state $|G\rangle$. Once the entanglement of a graph state is obtained, the entanglement of all the graph basis states is obtained.

A widely used local operation in dealing with graph states is the so-called local complementation (LC) [14], which is a multi-local unitary operation $V_a$ on the $a$th qubit and its neighbours, defined as $V_a = \sqrt{K_a} = \exp(-i \frac{\pi}{2} X_a) \prod_{b \in N_a} \exp(i \frac{\pi}{2} Z_b)$. LC centred on a qubit $a$ is visualized readily as a transformation of the subgraph of the $a$th qubit’s neighbours, such that an edge between two neighbours of $a$ is deleted if the two neighbours are themselves connected, or an edge is added otherwise.

2.2. Entanglement inequalities

The global robustness of entanglement [1] is defined as the minimal positive number $t$

$$
R(\rho) = \min \ t \omega
$$

such that there exists a state $\omega$ such that $(\rho + t\omega)/(1 + t)$ is separable. The logarithmic robustness [15] is

$$
LR(\rho) = \log_2(1 + R(\rho)).
$$

(5)

The relative entropy of entanglement is defined as the ‘distance’ to the closest separable state with respect to the relative entropy [4],

$$
E_{\rho}(\rho) = \min \ S(\rho||\omega),
$$

(6)

where $S(\rho||\omega) = -S(\rho) - \text{tr}[\rho \log_2 \omega]$ is the relative entropy, $S(\rho)$ is the von Neumann entropy, and Sep is the set of separable states. The minimum is taken over all fully separable mixed states $\omega$.

The geometric measure of entanglement for a pure state $|\psi\rangle$ is defined as

$$
E_g(|\psi\rangle) = \min_{|\phi\rangle \in \text{Pro}} \log_2 |\langle \phi|\psi\rangle|^2,
$$

(7)

where Pro is the set of product states.

Hayashi et al [6] has shown that the maximal number $N$ of pure states in the set $\{|\psi_i\rangle | i = 1, \ldots, N\}$, which can be discriminated perfectly by LOCC, is bounded by the amount of entanglement they contain:

$$
\log_2 N \leq n - LR(|\psi_i\rangle) \leq n - E_{\rho}(|\psi_i\rangle) \leq n - E_g(|\psi_i\rangle),
$$

(8)

where $n = \log_2 D_H$, $D_H$ is the total dimension of the Hilbert space and $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ denotes the ‘average’.

A stabilizer state $|S\rangle$ is defined by the associated group $S = \{F_i\}_{i=1}^{w}$, where $F_i$ are made up of local Pauli operators, which stabilize the state in the sense of the eigen equations

$$
F_i |S\rangle = |S\rangle, \quad \forall F_i \in S.
$$

(9)

The group $S$ is called the stabilizer group, and equations (9) completely characterize the state. For a stabilizer state $|S\rangle$, it has been shown that [8]

$$
LR(|S\rangle) = E_r(|S\rangle) = E_\phi(|S\rangle).
$$

(10)

The technique is to prove $LR(|S\rangle) = E_r(|S\rangle)$ and utilizing inequality (8). The entanglement can be written as

$$
E(|S\rangle) = \min_{\phi \in \text{Pro}\phi} - \log_2 |\langle S|\phi\rangle|^2,
$$

(11)

where $|\phi\rangle = \prod_{i} (\sqrt{p_i} |0\rangle + \sqrt{1 - p_i} e^{i\psi_i} |1\rangle)$ is the product pure state.

2.3. Entanglement bounds

The entanglement is upper bounded by the local operation and classical communication (LOCC) bound $E_{\text{LOCC}} = n - \log_2 N$, and lower bounded by some bipartite entanglement deduced from the state, that is, the ‘matching’ bound $E_{\text{bi}}$ [16]. It is well known that all graph states are stabilizer states, so the inequality for the entanglement of a graph state is

$$
E_{\text{bi}} \leq E \leq E_{\text{LOCC}}.
$$

(12)

If the lower bound coincides with the upper bound, the entanglement of the graph state can be obtained. This is the case for ‘2-colourable’ graph states such as multipartite GHZ states, Steane code, cluster state and state of ring graph with even vertices. For a state of ring graph with odd $n$ vertices, we have $\left\lfloor \frac{n}{2} \right\rfloor \leq E \leq \frac{\sqrt{n}}{2}$ [16].

The fidelity $F_{\phi} = |\langle G|\phi\rangle|^2$ plays a crucial role in calculating the entanglement. For a graph state, we have

$$
E = \min_{\phi \in \text{Pro}\phi} - \log_2 |\langle G|\phi\rangle|^2 = - \log_2 (\max_{\phi \in \text{Pro}\phi} F_{\phi}).
$$

(13)

Denote $F = \max_{\phi \in \text{Pro}\phi} F_{\phi}$ as the fidelity between the graph state and the closest pure separable state. The upper LOCC bound for a graph state is

$$
E \leq n - |A|,
$$

(14)

since the largest number of entanglement basis states is $2^{|A|}$, where $|A|$ is the largest number of vertices with any two of the vertices not adjacent [16].

The entanglement is lower bounded by the entanglement of a bipartition of the graph. The lower bound can be found by ‘matching’ [16]. A convenient way of finding the lower bound of the entanglement is to find the largest set of non-adjacent edges first, and then assign the two vertices of each edge to two parties to form a bipartition of the graph. The vertices that are still not assigned can be assigned to either party. To verify if these edges are the last Bell pairs that can be obtained, one can apply local control-Z and LC to delete the redundant adjacent edges. It can be verified that all the graphs up to eight qubits in the literature can be treated in this manner to obtain the lower bound of the entanglement. This is not a difficult task since
most of the graphs in the literature are already in the simplest LC equivalent form. Thus, at least for graph states up to eight qubits, the lower bound of the entanglement can be obtained by counting the largest number of non-adjacent edges.

3. Iterative method for the closest product states

If the upper LOCC bound coincides with the lower bipartition bound, the entanglement of the graph state is determined and equals the bounds. Still there are graph states such that the two bounds do not meet. We need a systematical method to calculate the entanglement of such graph states according to equation (13). The product pure state \( |\phi\rangle \) can be denoted as

\[
|\phi\rangle = \prod_j (x_j|0\rangle + y_j|1\rangle)
\]

where \( x_j \) and \( y_j \) are the complex numbers subjected to \( |x_j|^2 + |y_j|^2 = 1 \). Denote \( f = \langle G|\phi\rangle \), then

\[
f = \frac{1}{\sqrt{2^n}} \sum_{\mu=0}^{1} \prod_j (x_j^{1-\mu_j} y_j^{\mu_j}).
\]

Let \( L = |f|^2 - \sum_j \lambda_j (|x_j|^2 + |y_j|^2) - 1 \), where \( \lambda_j \) are the Lagrange multipliers. Then \( \frac{\partial f}{\partial x_j} = 0 \) and \( \frac{\partial f}{\partial y_j} = 0 \) lead to

\[
\frac{\partial f}{\partial x_j} f^* - \lambda_j x_j^* = 0,
\]

\[
\frac{\partial f}{\partial y_j} f^* - \lambda_j y_j^* = 0.
\]

The two equations are combined to

\[
y_j^* \frac{\partial f}{\partial x_j} - x_j^* \frac{\partial f}{\partial y_j} = 0.
\]

The left-hand side of equation (19) is \( \langle G|\phi_j\rangle \), with

\[
|\phi_j\rangle = \prod_{k=1}^{j-1} (x_k|0\rangle + y_k|1\rangle)(y_j'|0\rangle - x_j'|1\rangle)
\times \prod_{m=j+1}^{n} (x_m|0\rangle + y_m|1\rangle).
\]

Thus, equation (4) shows that the graph state is orthogonal to all \( |\phi_j\rangle \) \((j = 1, \ldots, n)\) when \( |\phi\rangle \) is the closest product state. It is clear that \( |\phi\rangle \) is orthogonal to all \( |\phi_j\rangle \) \((j = 1, \ldots, n)\) too. Denote \( z_j = y_j/x_j \); the derivatives are

\[
\frac{\partial f}{\partial x_j} = \frac{1}{\sqrt{2^n}} \sum_{\nu=0}^{v} \prod_{k\neq j} (x_k^{1-\mu_k} y_k^{\mu_k})
\]

\[
= \prod_{k\neq j} x_j \sum_{\nu=0}^{v} \prod_{k\neq j} y_k^{\mu_k},
\]

\[
\frac{\partial f}{\partial y_j} = \frac{1}{\sqrt{2^n}} \sum_{\nu=0}^{v} \prod_{k\neq j} (x_k^{1-\mu_k} y_k^{\mu_k})
\]

\[
= \prod_{k\neq j} x_j \sum_{\nu=0}^{v} \prod_{k\neq j} y_k^{\mu_k}.
\]

where \( v = \{\mu_1, \ldots, \mu_{j-1}, 0, \mu_{j+1}, \ldots, \mu_n\} \), \( v' = \{\mu_1, \ldots, \mu_{j-1}, 1, \mu_{j+1}, \ldots, \mu_n\} \) and \( 1' = \{1, \ldots, 0, 1, \ldots, 1\} \), \( 0' = \{0, \ldots, 0, 1, 0, \ldots, 0\} \). The binary vector \( 1' \) has all its entries equal to 1 except the \( j \)th entry being 0. \( 0' \) is the logical NOT of \( 1' \). From equation (19) we obtain the iterative equations for \( z_j \),

\[
z_j^* = \frac{\sum_{\nu=0}^{1} (-1)^{1+v} \prod_{k\neq j} z_k^{\mu_k}}{\sum_{\nu=0}^{1} (-1)^{1+v} \prod_{k\neq j} z_k^{\mu_k}}.
\]

We consider the change of fidelity in one step of iteration, that is, we only renew \( z_j \) according to equation (23) while keeping all the other \( z_k (k \neq j) \) invariant in the step. Let \( h_j = \frac{\partial f}{\partial x_j}, g_j = \frac{\partial f}{\partial y_j} \); then \( h_j \) and \( g_j \) are invariant in the step. \( f = x_jh_j + y_jg_j \). Forgetting the iteration equation for a while, we seek the maximization of the fidelity with respect to \( x_j = \cos \theta, y_j = \sin \theta e^{i\phi} \). The maximal fidelity should be \( |f|^2 = |h_j|^2 + |g_j|^2 \), which is achieved when

\[
z_j = \frac{y_j}{x_j} = \frac{g_j}{h_j}.
\]

Condition (24) of maximal fidelity is just the iterative equation (23). Thus, in each step of the iteration, the fidelity does not decrease. The fidelity increases abruptly or keeps unchanged in one step. In fact in each step, the fidelity can increase continuously from its initial value to its final value by changing \((\theta, \phi)\) continuously.

Starting with any initial complex random vector \( z = (z_1, \ldots, z_n) \), the iterative equation renews each \( z_j \) successively, and the fidelity increases (or does not change). After all \( z_j \) are renewed, a new round of iteration starts. The fidelity reaches its maximum after a sufficient number of iterations. There may be the case that the fidelity reaches its local maximum. To find the global maximum, we run the iterative algorithm many times with random initial \( z \). Moreover, we calculate the fidelity of the graph state with respect to random separable states for a million times to determine roughly the possible range of the fidelity before the iteration calculation.

4. Classification of the graph state up to eight qubits

The LC inequivalent graphs up to seven qubits are all plotted in [9] and numbered. There are a two-qubit graph (no 1), a three-qubit graph (no 2), 2 of four-qubit graphs (no 3 and no 4), 4 of five-qubit graphs (no 5 to no 8), 11 of six-qubit graphs (no 9 to no 19), 26 of seven-qubit graphs (no 20 to no 45). In [17], the authors plotted all 101 LC inequivalent graphs of eight qubits. The graphs of eight qubits are numbered from no 46 to no 146.

4.1. Graph states with equal lower and upper bounds

The entanglement of graph states with equal lower and upper bounds can be calculated with the methods in [16]. It is listed in tables 1 and 2 for completeness.

The graphs that are ‘2-colourable’ up to eight qubits are listed in table 1. It is a well-known fact in graph theory that a graph is 2-colourable iff it does not contain any cycles of
Table 1. Entanglement of 2-colourable graph states.

| E  | No |
|----|----|
| 1  | 2, 3, 5, 9, 20, 46 |
| 2  | 4, 6, 7, 10–12, 15, 21–24, 31, 47–51, 69–70 |
| 3  | 13–14, 18, 25–30, 34, 38, 43, 52–63, 74, 76–77, 81, 83–84, 103–104, 122 |
| 4  | 64–88, 89, 91, 95, 99–100, 120, 128, 143 |

Table 2. Entanglement of 2-colourable graph states with equal bounds.

| E  | No |
|----|----|
| 3  | 16–17, 32–33, 35–37, 71–73, 75, 78–80, 82, 102, 121 |
| 4  | 86, 88, 90, 92–94, 96–98, 106–119, 123–127, 129–132, 135, 136*, 144 |

* The LC equivalent of no 136.

odd length. The LOCC upper bound and the lower bipartite bound of the entanglement for ‘2-colourable’ graph state can be obtained by the methods described in [16]. For each of these ‘2-colourable’ graph states, it has been found that the two bounds coincide with each other $E_{LOCC} = E_{bi} = E_{g}$, and the geometric measure is equal to the entanglement in Schmidt measure [9], $E_{S} = E_{g} = E$. Table 1 shows the results.

The LOCC bound for a ‘non 2-colourable’ graph can be obtained with the largest set of non-adjacent vertices. The lower bipartite bound can be found by first searching for the largest set of non-adjacent edges, and then verifying the candidate Bell pairs with local control-Z and LC. Thus for the ‘non 2-colourable’ graph, the entanglement bounds of the graph state can be obtained with ‘balls’ (vertices) and ‘sticks’ (edges) in the graph. When $E_{LOCC} = E_{bi} = E_{g}$, the graph states are shown in Table 2 (with $E = E_{g} = E_{S}$). No 101 graph is special for the graph state has the geometric measure $E_{g} = 4$, the Schmidt measure $E_{S} = 3$.

4.2. Graph states with unequal bounds

Up to eight qubits, what is left are the ‘non 2-colourable’ graph states whose upper entanglement bound $E_{LOCC} (E_{g})$ and lower bound $E_{bi} (E_{i})$ do not coincide. We utilize equation (23) to iteratively calculate the entanglement and find the closest product state with random initial complex numbers for $|i⟩$ ($j = 1, \ldots, n$). The values of the geometric measure are listed in Table 3.

A detailed comparison of computed closest product states of no 8, no 39, no 41, no 45, no 85, no 105, no 134, no 137, no 138, no 140 shows that all these closest states have a substructure of the closest product state of the ring 5 graph (no 8), although graph no 140 does not contain the ring 5 graph explicitly, graph no 45 seems to contain graph no 19 as its subgraph. The ring 5 graph is essential to all these graph states with entanglement $k + 0.9275$ (integer $k$). In [18] an identical product closest state is supposed for the ring 5 graph state, and it has been shown that the entanglement of the ring 5 graph state is

$$E_{ring5} = 1 + \log_{2}3 + \log_{2}(3 - \sqrt{3}) \approx 2.9275.$$ (25)

Denote $|\Phi_{j}\rangle = \sqrt{p}|0⟩ + \sqrt{1-p}e^{i\varphi_{j}}|1⟩$ ($j = 1, \ldots, 4$), with $\sqrt{p} = \sqrt{\frac{1}{2}(1 - \frac{1}{\sqrt{5}})} \approx 0.4597$, $\varphi_{1} = \frac{\pi}{4}$, $\varphi_{2} = -\frac{\pi}{4}$, $\varphi_{3} = \frac{5\pi}{4}$, $\varphi_{4} = -\frac{3\pi}{4}$. Typically, the closest product state of the ring 5 graph state is

$$|\phi_{ring5}\rangle = |\Phi_{1}\rangle^{\otimes 5},$$ (26)

The other graph states may have their closest product states

$$|\phi_{No.39}\rangle = |(-)|0⟩|\Phi_{3}\rangle|\Phi_{5}\rangle^{\otimes 4},$$ (27)

$$|\phi_{No.41}\rangle = |\Phi_{4}\rangle|\Phi_{1}\rangle^{\otimes 3}|\Phi_{5}\rangle|0⟩|0⟩,$$ (28)

$$|\phi_{No.45}\rangle = |(-)|0⟩|\Phi_{4}\rangle|\Phi_{3}\rangle^{\otimes 3}|\Phi_{5}\rangle, $$ (29)

$$|\phi_{No.85}\rangle = |(-)|0⟩|\Phi_{3}\rangle^{\otimes 2}|\Phi_{5}\rangle|0⟩,$$ (30)

$$|\phi_{No.105}\rangle = |(+)|0⟩|\Phi_{1}\rangle^{\otimes 5}|1⟩,$$ (31)

$$|\phi_{No.134}\rangle = |(-)|0⟩|\Phi_{3}\rangle^{\otimes 2}|\Phi_{5}\rangle|0⟩,$$ (32)

$$|\phi_{No.137}\rangle = |(+)|0⟩|\Phi_{1}\rangle^{\otimes 5}|\Phi_{5}\rangle|0⟩,$$ (33)

$$|\phi_{No.138}\rangle = |\Phi_{2}\rangle|\Phi_{3}\rangle^{\otimes 2}|0⟩|0⟩|\Phi_{5}\rangle^{\otimes 2},$$ (34)

$$|\phi_{No.140}\rangle = |1⟩|\Phi_{2}\rangle^{\otimes 2}|\Phi_{5}\rangle^{\otimes 3}|0⟩,$$ (35)

where $|±⟩ = \frac{1}{\sqrt{2}}(|0⟩ \pm |1⟩)$.

The next graph set (no 19, no 139, no 141) with non-integer entanglement ($k + 0.5850$) graph states is specified by no 19 ([6,0,4]) stabilizer state. The entanglement of no 19 is

$$E_{No.19} = 2 + \log_{2}3 \approx 3.5850.$$ (36)

Typically, the closest product state is

$$|\phi_{No.19}\rangle = |\Phi_{3}\rangle^{\otimes 3}|\Phi_{4}\rangle^{\otimes 3}.$$ (37)

The closest states for no 139 and no 141 graph state can be

$$|\phi_{No.139}\rangle = |(-)|1⟩|\Phi_{4}\rangle|\Phi_{1}\rangle^{\otimes 3}|\Phi_{5}\rangle|\Phi_{1}\rangle,$$ (38)

$$|\phi_{No.141}\rangle = |(-)|0⟩|\Phi_{2}\rangle|\Phi_{1}\rangle^{\otimes 3}|\Phi_{5}\rangle|\Phi_{2}\rangle.$$ (39)

The no 139 and no 141 graphs have no 19 as their subgraph.

The entanglement of the no 133 graph state is

$$E_{No.133} = 2 + 3 \log_{2}3 + \log_{2}(2 - \sqrt{3}) \approx 4.8549.$$ (40)

Its closest product state can be

$$|\phi_{No.133}\rangle = |\Phi_{4}\rangle|\Phi_{1}\rangle^{\otimes 2}|\Phi_{4}\rangle^{\otimes 2}|\Phi_{1}\rangle^{\otimes 2}|\Phi_{4}\rangle.$$ (42)

The entanglement of no 44 is $E_{No.44} = 4$. Its closest product state can be

$$|\phi_{No.44}\rangle = |0⟩^{\otimes 2}|(+)|0⟩^{\otimes 3}|0⟩.$$ (43)

where $|0⟩ = \frac{1}{\sqrt{2}}(|0⟩ - |i⟩)$. The closest product states for no 40, 42, 142, 145, 146 can also be obtained; the iteration calculation should be modified as explained in the next section.
5. Precision of iteration

We concentrate on the precision of iteration for calculating the entanglement of graph state whose lower and upper bounds do not meet. Let $\Delta = |E_{\text{numeric}} - E_{\text{proposed}}|$ be the computational error of the iteration, where $E_{\text{numeric}}$ is the entanglement determined by iteration, $E_{\text{proposed}}$ is the entanglement proposed in the former section. We use the exact value of $E_{\text{proposed}}$ rather than its approximation. For simplicity, we just give the successful probabilities of achieving the precision within $\Delta \leq 10^{-14}$ for some reasonable rounds of iteration with random initial conditions. From the actual numerical calculations, we can see that a precision of $10^{-14}$ is limited by the computer for our iterative algorithm (without double precision calculation).

For all graph states presented in table 3 except no 40, 42, 142, 145, 146, the algorithm can be applied directly. The successful probabilities ($P_s$) are listed in table 3. The round of the iteration is set to 150 except for no 140, whose round of iteration is 300. We renew $\mathbf{z}$ after each round of iteration instead of renewing $\mathbf{z}$ after each step of the round in the actual calculation for the reason of programming. In order to calculate the success probability, we run the algorithm 1000 times for each graph state to count the number of algorithm that achieves the precision within $\Delta \leq 10^{-14}$.

For no 40, 42, 142, 145, 146 graph states, direct application of iterative algorithm fails. The numerical results of entanglement are all greater than the values given in table 3, but the precision of the calculation is far from satisfactory. The precision can be $10^{-4}$ or so. A detailed analysis of the separable state which gives the best numerical value of entanglement shows us that the iterative equations (23) are correlated. The common figure of these nonlinear correlations of equations can be illustrated by applying the iterative algorithm to the simplest graph state, the no 1 graph state (Bell pair). The iterative equations should be

$$z_1^* = \frac{1 - z_2}{1 + z_2} \quad (44)$$

$$z_2^* = \frac{1 - z_1}{1 + z_1} \quad (45)$$

Substituting equation (45) into equation (44), we obtain the identity $z_1^* = z_2^*$. Thus, the two equations are correlated. The correlation of equations leads to the failure of iteration. We can delete one of equation (44) and equation (45) to solve the problem. The fidelity is

$$|f|^2 = \frac{[1 + z_1 + z_2 - z_1 z_2]^2}{4(1 + |z_1|^2)(1 + |z_1|^2)} \quad (46)$$

Applying equation (44) and ignoring equation (45), we obtain the correct maximal fidelity $|f|^2 = \frac{1}{4}$. Thus, to obtain the maximal fidelity, we should omit some of the equations and use the remaining equations for iteration. For no 40, 42, 142 and 146, we omit one of the equations, indicated in table 3 with notation (1) behind the successful probabilities. For no 145, we omit two of the equations, indicated in table 3 with notation (2) behind the success probability. In the numerical calculations, we set one or two $z_i$ to random numbers that do not change in the iteration, respectively. Since we do not know if all the equations are correlated or only some of them are correlated, we calculate all possible choices of fixing $z_i$. For a given graph state, some of the choices of fixing $z_i$ may not lead to sufficiently high successful probabilities or simply fail. The successful probabilities shown in table 3 are the best.

We can see that the entanglement of all graph states in table 3 can be efficiently calculated by iterative algorithm with very high precision. Most of them can be calculated directly, and five of them can be calculated with modified iterative algorithm.

A heuristic point of view is that we can set the fixed $z_i$ to be 0. For an $n$-vertex graph state $|G_n\rangle$, the closest separable state should be $|\phi_n\rangle = |\phi_{n-1}\rangle|0\rangle$ when we set $z_n = 0$ without loss of generality. Denote the $n$-bit binary vector $\mathbf{\mu}_n$ as $(\mu_{n-1}, v_n)$, and the $n \times n$ adjacent matrix $\Gamma_n$ as \( \Gamma_n = \begin{pmatrix} c & e \\ 0 & \end{pmatrix} \); then

$$\frac{1}{2}(\mu_{n-1}, 0)\Gamma_n(\mu_{n-1}, 0)^T = \frac{1}{2} \mu_{n-1} \Gamma_{n-1} \mu_{n-1}^T \quad (47)$$

Since $\langle \phi_n | \mu_n \rangle = \langle \phi_{n-1} | 0 \rangle | \mu_n \rangle = \langle \phi_{n-1} | \mu_{n-1} \rangle \delta_{0n}$, from the definition of the graph state, we have

$$\langle G_n | \phi_{n-1} \rangle | 0 \rangle = \frac{1}{\sqrt{2}} \langle G_{n-1} | \phi_{n-1} \rangle \quad (48)$$

where $G_{n-1}$ is the subgraph of $G_n$. From equation (48), a general relation for entanglement of any graph state and its subgraph state follows

$$E_n \leq E_{n-1} + 1 \quad (49)$$

The equality holds for the case when $|\phi_n\rangle = |\phi_{n-1}\rangle|0\rangle$ is the closest separable state. For graph states no 40, 42, 142, 145, 146, we can choose $|\phi_n\rangle = |\phi_{n-1}\rangle|0\rangle$ as the closest separable state when $|\phi_{n-1}\rangle$ is the closest separable state of the subgraph state. The calculation of the entanglement can be reduced; we have

$$E_n = E_{n-1} + 1 \quad (50)$$
for these graph states. The subgraphs of no 40 and no 42 belong to the set \{no 13, no 14, no 17, no 18\}; the entanglement of all the subgraph states is 3. Thus the entanglement of no 40 and no 42 is 4. The subgraphs of no 40, no 42 and no 46 belong to the set \{no 40, no 42, no 44\}; the entanglement of all the subgraph states is 4. Thus, the entanglement of no 40, no 45 and no 46 is 5.

6. Conclusions

The entanglement of graph states measured in terms of the geometric measure (also with the logarithmic robustness, the relative entropy of entanglement) is given up to eight qubits. We use the iterative method to calculate the fidelity of graph state with respect to closest separable pure state. The iterative equations are results of the maximization of the fidelity. The equations have a clear meaning that graph state should be orthogonal to all other separable states that are orthogonal to the closest separable state. We have proved that in each step of a round of iteration the fidelity does not decrease. The iteration calculation has a very high efficiency if the resultant closest state does not contain |0⟩ or |1⟩ at all qubits (no 8, no 19, no 133). The precision of the iteration calculation can be less than \(10^{-14}\) for all graph states up to eight qubits with unequal lower and upper entanglement bounds. To avoid possible missing of the global maximum, with random initial parameters, we calculate the fidelity for each graph state a million times without iteration in order to determine its rough range, and calculate the maximal fidelity 1000 times with iteration. The probabilities of successful iterations (when the precision is less than \(10^{-14}\)) are given. The precision of the numerical calculation is defined as the difference of the numerical and the proposed exact entanglement. For some of the graph states, the iterative equations may correlate with each other. We analyze the situations and present a revised iterative algorithm to obtain the entanglement. In all the cases of unequal bounds, the entanglement may be equal to its upper bound (integer) or in between the bounds (not to be an integer). For all non-integer entanglement cases discussed, we have found that the qubit states |Φ⟩ are the indispensable ingredients of the closest separable states. Based on our calculation, the non-integer entanglement graphs could be further classified according to the number of |Φ⟩ in the closest separable state.

Acknowledgments

Funding by the National Natural Science Foundation of China (grant no 60972071), Zhejiang Province Science and Technology Project (grant no 2009C31060) is gratefully acknowledged.

References

[1] Vidal G and Tarrach R 1999 Phys. Rev. A 59 141
[2] Wei T-C and Goldbart P M 2003 Phys. Rev. A 68 042307
[3] Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 78 2275
[4] Vedral V and Plenio M B 1998 Phys. Rev. A 57 1619
[5] Wei T-C, Ericsson M, Goldbart P M and Munro W J 2004 Quant. Inform. Comput. 4 252
[6] Hayashi M, Markham D, Murao M, Owari M and Virmani S 2006 Phys. Rev. Lett. 96 040501
[7] Wei T-C 2008 Phys. Rev. A 78 012327
[8] Hayashi M, Markham D, Murao M, Owari M and Virmani S 2008 Phys. Rev. A 77 012104
[9] Hein M, Eisert J and Briegel H J 2004 Phys. Rev. A 69 062311
[10] Schlingemann D and Werner R F 2002 Phys. Rev. A 65 012308
[11] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
[12] Walther P et al 2005 Nature 434 169
[13] Lu C Y et al 2007 Nature Phys. 3 91
[14] Hein M, Dur W, Eisert J, Raussendorf R, van den Nest M and Briegel H J 2006 arXiv:quant-ph/0602096
[15] Cavalcanti D 2006 Phys. Rev. A 73 044302
[16] Markham D, Miyake A and Virmani S 2007 New J. Phys. 9 194
[17] Cabello A, Lopez-Tarrida A J, Moreno P and Portillo J R 2008 arXiv:0812.4625 [quant-ph]
[18] Chen X Y and Jiang L Z 2009 arXiv:0906.5130 [quant-ph]