ITERATIVE PROCESSES RELATED TO RIORDAN ARRAYS: THE RECIPROCATION AND THE INVERSION OF POWER SERIES

ANA LUZÓN

Abstract. We point out how Banach Fixed Point Theorem, and the Picard successive approximation methods induced by it, allows us to treat some mathematical methods in Combinatorics. In particular we get, by this way, a proof and an iterative algorithm for the Lagrange Inversion Formula.

1. Introduction: beginning with a simple question.

The results in this paper are consequences of special interpretations, as fixed point problems, of the two classical reversion processes in the realm of formal power series: the reciprocation, i.e. the reversion for the Cauchy product, and the inversion, i.e. the reversion for the composition of series.

The case of the reciprocation was studied in [4] and [5]. To unify our approach we also survey herein some of the previous results on this topic.

The aim of this paper is to show how the (Picard) successive approximation method induced by Banach’s Fixed Point Theorem (and some mild generalization) allows us to treat some mathematical methods in combinatorics getting so some associated algorithms. In particular:

1) To construct all elements in the Riordan group as a consequence of the iterative process obtained to calculate the reciprocal of any power series admitting it. Presenting also an algorithm and one pseudo-code description for it.

2) To construct, approximatively, the inverse of any power series (admitting it) in such a way that the Lagrange Inversion Formula can be first predicted and finally proved. We also describe the corresponding algorithm.

For completeness we are going to recall the metric fixed point theorems we will use, see, for example, [1] for the first one and [10] in page 212 for the second one.

Banach Fixed Point Theorem (BFPT). Let (X,d) be a complete metric space and f : X → X contractive. Then f has a unique fixed point x₀ and

\[f^n(x) \to x_0 \quad \text{for every} \quad x \in X. \]

Key words and phrases. Banach Fixed Point Theorem; ultrametric; Riordan group; Lagrange Inversion Formula.
Generalized Banach Fixed Point Theorem (GBFPT). Let \((X, d)\) be a complete metric space. Suppose \(\{f_n\}_{n \in \mathbb{N}} : X \rightarrow X\) is a sequence of contractive maps with the same contraction constant \(\alpha\) and suppose that \(\{f_n\} \rightarrow f\) (point to point). Then \(f\) is \(\alpha\)-contractive and for any point \(z \in X\) the sequence \(\{f_n \circ \cdots \circ f_1(z)\} \xrightarrow{n \to \infty} x_0\), where \(x_0\) is the unique fixed point of \(f\).

Our framework is the following: we consider \(\mathbb{K}\) a field of characteristic zero and the ring of power series \(\mathbb{K}[[x]]\) with coefficients in \(\mathbb{K}\). If \(g\) is any series given by \(g = \sum_{n \geq 0} g_n x^n\), we recall that the order of \(g\), \(\omega(g)\), is the smallest nonnegative integer number \(n\) such that \(g_n \neq 0\) if any exist. Otherwise, that is if \(g = 0\), we say that its order is \(\infty\). It is well-known that the space \((\mathbb{K}[[x]], d)\) is a complete ultrametric space where the distance between \(f\) and \(g\) is given by \(d(f, g) = \frac{1}{2^\omega(f-g)}\), \(f, g \in \mathbb{K}[[x]]\). Here we understand that \(\frac{1}{2^\infty} = 0\). Moreover the distance between \(f\) and \(g\) is less than or equal to \(\frac{1}{2^{n+1}}\), i.e. \(d(f, g) \leq \frac{1}{2^{n+1}}\), if and only if their \(n\)-degree Taylor polynomials are equals, \(T_n(f) = T_n(g)\). Finally the sum and product of series are continuous if we consider the corresponding product topology in \(\mathbb{K}[[x]] \times \mathbb{K}[[x]]\). See for example [7], [4] and [5] for these topics.

In this paper \(\mathbb{N}\) represents the set of natural numbers including 0.

This work is motivated by the following question:

Question 1. Can we sum the arithmetic-geometric series \(\sum_{k=1}^{\infty} k x^{k-1}\) using the Banach Fixed Point Theorem?.

We can sum the geometric series using BFPT. A visual proof of this fact can be found in [13]. Herein we recall an analytic proof: (the peculiar name of the following function will be justified later on). We consider

\[
h_{m,1} : (\mathbb{K}[[x]], d) \rightarrow (\mathbb{K}[[x]], d) \quad t \mapsto xt + 1
\]

Since \(h_{m,1}\) is contractive, in fact \(d(h_{m,1}(t_1), h_{m,1}(t_2)) \leq \frac{1}{2} d(t_1, t_2)\), we iterate at \(t = 0\) and we obtain:

\[
\begin{align*}
h_{m,1}(0) &= 1 \\
h_{m,1}^2(0) &= x + 1 \\
h_{m,1}^3(0) &= x^2 + x + 1 \\
h_{m,1}^4(0) &= x^3 + x^2 + x + 1 \\
that is, \\
h_{m,1}^{n+1}(0) &= \sum_{k=0}^{n} x^k
\end{align*}
\]
As the fixed point of $h_{m,1}$ is the solution of $xt + 1 = t$, then $t = \frac{1}{1-x}$ and from BFPT we induce

$$h_{m,1}^{n+1}(0) = \sum_{k=0}^{n} x^k \overset{n \rightarrow \infty}{\longrightarrow} \frac{1}{1-x}$$

which is the unique fixed point of the function, in this case, $h_{m,1}(t) \equiv h_1(t) = xt + 1$.

Now it is natural to wonder Question 1.

We organize the paper in the following way:

In Section 2 we use BFPT to a suitable function related to Question 1. We do not answer the question by this way but we find an interesting arithmetical triangle. Later and using GBFPT we answer the question. Actually we construct the whole Pascal triangle by this method, see [4] and [5].

In Section 3 we generalize the method above, to construct the Pascal triangle, finding so a way to construct arithmetical triangles $T(f \mid g)$ for any pair of series f and g with non null independent terms. Using the usual product of matrices, we identify the well-known Riordan group, see [4].

In the procedure described above we obtain a new parametrization of the elements in the Riordan group and so a new notation different from the usual ones. In Section 4 we try to justify the use of our notation alternatively to the usual notation. Our method of construction and our notation allow us to explain easily a way to add and delete columns suitably in a Riordan array to get another one. For a concrete kind of triangles, those denoted by $T(1 \mid a + bx)$, we can calculate the inverse only adding adequately new columns to those triangles. In fact it is an elementary operations method. We end this section giving expressions for the so called A and Z sequences of a Riordan array. These expressions are given in terms of our notation and related to the inversion in the Riordan group.

In Section 5 we give the main new results of this paper. We display an algorithm to construct the inverse of a series and we show the relation with the Lagrange Inversion Formula. In particular we prove that Banach Fixed Point theorem gives rise to the Lagrange Inversion Formula.

2. Two answers: a curious triangle and an iterative method

To answer the previous question, in this section we are going to recall lightly some examples and tools widely studied in [4] and [5].

It can be easily shown, see page 2257 in [5], that there are not a first-degree polynomial with coefficients in $\mathbb{K}[[x]]$, $f(t) = g(x) t + h(x)$, and any point, x_0, such that its $n + 1$-iteration coincides with the partial sum of the arithmetic-geometric series, that is:

$$\forall n, f^{n+1}(x_0) = \sum_{k=0}^{n} (k + 1)x^k.$$
In view of this, we are going to iterate a polynomial whose fixed point is the sum of the arithmetic-geometric series, that is \(\sum_{k=1}^{\infty} k x^{k-1} = \frac{1}{(1-x)^2} \). Since the equality \(t = \frac{1}{(1-x)^2} \) can be converted to \(t = 1 + (2x - x^2)t \), we consider the polynomial \(f(t) = 1 + (2x - x^2)t \), with coefficients in \(\mathbb{K}[x] \), and we initiate the iteration process at \(t = 0 \):

\[
\begin{align*}
 f(0) &= 1 \\
 f^2(0) &= 1 + 2x - x^2 \\
 f^3(0) &= 1 + 2x + 3x^2 - 4x^3 + x^4 \\
 f^4(0) &= 1 + 2x + 3x^2 + 4x^3 - 11x^4 + 6x^5 - x^6 \\
 f^5(0) &= 1 + 2x + 3x^2 + 4x^3 + 5x^4 - 26x^5 + 23x^6 - 8x^7 + x^8 \\
 f^6(0) &= 1 + 2x + 3x^2 + 4x^3 + 5x^4 + 6x^5 - 57x^6 + 72x^7 - 39x^8 + 10x^9 - x^{10}
\end{align*}
\]

We know that the sequence of iterations converges to the sum of the arithmetic-geometric series, because \(f \) is contractive in \((\mathbb{K}[x], d) \), but we can observe that in each iteration the partial sum of such series appears plus a remainder. We want to control the difference with the partial sum. To do this, we display the coefficients of the remainder as a matrix, that is:

\[
\begin{pmatrix}
-1 & 0 & 0 & \cdots \\
-4 & 1 & 0 & \cdots \\
-11 & 6 & -1 & \cdots \\
-26 & 23 & -8 & 1 & \cdots \\
-57 & 72 & -39 & 10 & -1 & \cdots \\
-120 & 201 & -150 & 59 & -12 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\]

Observing this matrix we recognize:

1. The rule of construction is similar to that of Pascal triangle: each element is twice the above element minus the element above to the left side, that is: \(a_{n,k} = 2a_{n-1,k} - a_{n-1,k-1} \).
2. The elements in the first column are Eulerian numbers except for the sign.
3. The sum of the elements in any row are triangular numbers with negative sign.
4. For every element, the sum of all elements in its row to the right and all elements above in its column is zero. That is, \(\sum_{k=j+1}^{n-1} a_{kj} + \sum_{k=j+1}^{n} a_{ik} = 0 \).
5. The general term is \(a_{n,j} = n + j - 1 + \sum_{k=1}^{j-1} (-1)^k (n+j-1-k)^2 n+j-2k \). Etc.

For an exhaustive development of this triangle see \([5]\).

The above approach, using \textbf{BFPT}, does not give us an exact answer to our question. To find an adequate answer we consider the \textbf{GBFPT}. This is our way to do this:

For computability facts we consider the sequence of functions, with polynomial coefficients, given by \(h_{0,2}(t) = xt \), \(h_{1,2}(t) = xt + x \), \(h_{2,2}(t) = xt + x + x^2 \), \(h_{3,2}(t) = xt + x + x^2 + x^3 \),

\[
h_{m,2}(t) = xt + x \sum_{k=0}^{m-1} x^k
\]

For an exhaustive development of this triangle see \([5]\).
Each function $h_{m,2}$ is $\frac{1}{2}$-contractive, so $\{h_{m,2}\}$ is an equi-contractive sequence of one-degree polynomials that converges to $h_2(t) = xt + \frac{x}{1-x}$, i. e.:

$$\{h_{m,2}\} \rightarrow h_2(t) = xt + \frac{x}{1-x}$$

It is easy to see that the crossed iterations induced by GBFPT are just the corresponding partial sums of the arithmetic-geometric series:

- $h_{0,2}(0) = 0$
- $h_{1,2}(h_{0,2}(0)) = x$
- $h_{2,2}(h_{1,2}(h_{0,2}(0))) = x + 2x^2$
- $h_{3,2}(h_{2,2}(h_{1,2}(h_{0,2}(0)))) = x + 2x^2 + 3x^3$

Now using again GBFPT we obtain that, since $xt + \frac{x}{1-x} = t \Rightarrow t = \frac{x}{(1-x)^2}$, then

$$\left(h_{m,2} \circ \cdots \circ h_{0,2}\right)(0) \rightarrow \frac{x}{(1-x)^2}$$

these crossed iterations at zero converge to the unique fixed point of h_2, that is, the sum of the arithmetic-geometric series. So the answer to our question is yes if we are allowed to use the generalized version of the BFPT.

Recall that the Pascal triangle is given by:

$$\begin{array}{cccccccc}
1 & & & & & & & \\
1 & 1 & & & & & & \\
1 & 2 & 1 & & & & & \\
1 & 3 & 3 & 1 & & & & \\
1 & 4 & 6 & 4 & 1 & & & \\
1 & 5 & 10 & 10 & 5 & 1 & & \\
1 & 6 & 15 & 20 & 15 & 6 & 1 & \\
\vdots & \vdots \\
\end{array}$$

We have just constructed the first two columns of Pascal triangle using BFPT. In fact we needed only BFPT to construct the first one and GBFPT to get the second one. The main observation is that we can follow this iterative procedure to construct all columns. For example we can repeat the process to construct the third column. To get this goal, we interpret the above equicontractive sequence $h_{m,2}$ in the following way

$$h_{m,2}(t) = xt + x \sum_{k=0}^{m-1} x^k = xt + xT_{m-1,1}$$

where $T_{m-1,1}$ is the $m - 1$ degree Taylor polynomial of the first column (which is the geometric series). So in a similar way we consider the following equicontractive sequence:

$$h_{m,3}(t) = xt + x \sum_{k=0}^{m-1} kx^k = xt + xT_{m-1,2}$$
where $T_{m-1,2}$ is the Taylor polynomial of the second column (which is the arithmetic-geometric series). So, as one can easily prove, the crossed iterations for this sequence coincide with the partial sums of the third column:

$h_{0,3}(0) = 0$
$h_{1,3}(h_{0,3}(0)) = 0$,
$h_{2,3}(h_{1,3}(h_{0,3}(0))) = x^2$,
$h_{3,3}(h_{2,3}(h_{1,3}(h_{0,3}(0)))) = x^2 + 3x^3$,
$h_{4,3}(h_{3,3}(h_{2,3}(h_{1,3}(h_{0,3}(0)))))) = x^2 + 3x^3 + 6x^4$.

Using once more GBFPT, we obtain that these crossed iterations converge to the unique fixed point of the limit function $h_3(t) = xt + \frac{x}{(1-x)^2}$. Since

$$h_3(t) = xt + x \frac{x}{(1-x)^2} \Rightarrow t = \frac{x^2}{(1-x)^3}$$

then

$$(h_{m,3} \cdots h_{0,3})(0) = \sum_{k=0}^{m} \binom{k}{2} x^k \rightarrow \frac{x^2}{(1-x)^3}$$

Actually, as we said before, we can construct every column of Pascal triangle using this process:

Proposition 2. For $n \geq 2$, the n-column in Pascal’s triangle is obtained from the $(n-1)$-column applying the crossed iterations in GBFPT to the sequence $\{h_{m,n}\}_{m \in \mathbb{N}}$ where

$$h_{m,n}(t) = xt + xT_{m-1,n-1}$$

being $T_{m-1,n-1}$ the $(m-1)$-Taylor polynomial of the $(n-1)$-column.

3. THE GROUP OF ALL ARITHMETICAL TRIANGLES $T(f \mid g)$

Now we generalize the previous iterative method for any pair of series $f = \sum_{n \geq 0} f_n x^n$ and $g = \sum_{n \geq 0} g_n x^n$ such that $f_0 \neq 0$ and $g_0 \neq 0$. We construct the following arithmetical triangle $T(f \mid g)$, in this notation the Pascal triangle is $T(1 \mid 1-x)$, where the role of series 1 is played by the series f and the role of $1-x$ by g.

f	g			
f_0	g_0			
f_1	$d_{0,0}$			
f_2	$d_{1,0}$	$d_{0,1}$		
f_3	$d_{2,0}$	$d_{2,1}$	$d_{2,2}$	
\vdots	\vdots	\vdots	\vdots	\ddots
f	g	$\frac{xf}{g}$	$\frac{x^2f}{g^2}$	\cdots
In [4] we interpreted the calculation of \(\frac{f}{g} \) as a fixed point problem. Consider the sequence

\[
h_{m,1}(t) = T_m \left(\frac{g_0 - g}{g_0} \right) t + T_m \left(\frac{f}{g_0} \right)
\]

where \(T_m(f) \) is the m degree Taylor polynomial of \(f \). Observe that the sequence of crossed iterations has as its limit the unique fixed point of \(h_1(t) = \frac{g_0 - g}{g_0} t + \frac{f}{g_0} \), that is: \(\frac{f}{g} \). It is the first column of \(T(f \mid g) \).

To construct the second column and the next ones we consider the equicontractive sequences

\[
h_{m,n}(t) = T_m \left(\frac{g_0 - g}{g_0} \right) t + x T_{m-1} \left(\frac{x^{n-2}f}{g_0 g^{n-1}} \right)
\]

their corresponding limits are \(h_n(t) = \left(\frac{g_0 - g}{g_0} \right) t + x \left(\frac{x^{n-2}f}{g_0 g^{n-1}} \right) \) whose corresponding unique fixed points are

\[
t_n = \frac{x^{n-1}f}{g^n}
\]

The series \(t_n \) is just the n-column of our \(T(f \mid g) \).

Theorem 3. Let \(f = \sum_{n \geq 0} f_n x^n \) and \(g = \sum_{n \geq 0} g_n x^n \) with \(g_0 \neq 0 \), then the Riordan matrix \(T(f \mid g) = (d_{n,k}) \) is given by

if \(k = 0 \), then

\[
d_{0,0} = \frac{f_0}{g_0}, \quad d_{n,0} = -\frac{g_1}{g_0} d_{n-1,0} - \frac{g_2}{g_0} d_{n-2,0} \cdots - \frac{g_n}{g_0} d_{0,0} + \frac{f_n}{g_0}
\]

if \(k > 0 \), then

\[
d_{n,k} = -\frac{g_1}{g_0} d_{n-1,k} - \frac{g_2}{g_0} d_{n-2,k} \cdots - \frac{g_n}{g_0} d_{k,k} + \frac{d_{n-1,k-1}}{g_0}
\]

This theorem gives us the following algorithm to construct for columns any Riordan matrix:

Algorithm 4. Given \(f = \sum_{n \geq 0} f_n x^n \) and \(g = \sum_{n \geq 0} g_n x^n \) with \(g_0 \neq 0 \):

Step 1: Calculate the first column \(d_{n,0} \).

\[
d_{0,0} = \frac{f_0}{g_0}, \quad d_{n,0} = -\frac{g_1}{g_0} d_{n-1,0} - \frac{g_2}{g_0} d_{n-2,0} \cdots - \frac{g_n}{g_0} d_{0,0} + \frac{f_n}{g_0}
\]

Step k: Calculate the k-column, \(d_{n,k} \), using \(k - 1 \)-column.

\[
d_{n,k} = -\frac{g_1}{g_0} d_{n-1,k} - \frac{g_2}{g_0} d_{n-2,k} \cdots - \frac{g_n}{g_0} d_{k,k} + \frac{d_{n-1,k-1}}{g_0}
\]
We can write this algorithm in an informal pseudo-code:

```
READ (f,g,n)
SET (d,aux)
CALCULATE d[0,0]=f[0]/g[0]
% We calculate the first column
FOR i=1 to n
  FOR k=1 to n
    CALCULATE aux(k,i)=g[i-k]*d[k,0]
  END
  CALCULATE d(i,0)=1/g[0]*(f[i]-SUM(aux(:,i)))
END
% We calculate the remaining columns
FOR j=1 to n
  FOR i=1 to n
    FOR k=1 to i
      CALCULATE aux(k,i)=g[i-k]*d[k,j]
    END
    CALCULATE d(i,j)=1/g[0]*(d(i-1,j-1)-SUM(aux(:,i)))
  END
END
PRINT(f,g,d)
```

So to construct the arithmetical triangle $T(f \mid g)$ it is enough to know the ordered pair of series f and g, i. e. the data, and the algorithm of dividing two series. Every column is constructed by the same rule as that in $\frac{f}{g}$ but the coefficients of $\frac{f}{g}$ are replaced with the coefficients of the previous column. Except for the first column, here we need and auxiliary column, the coefficients of f.

We can consider the matrix $T(f \mid g)$, like in Linear Algebra, as the associated matrix to a \mathbb{K}-linear continuous function, see [4]:

$$
T(f \mid g) : (\mathbb{K}[[x]], d) \to (\mathbb{K}[[x]], d) \\
\quad h \mapsto T(f \mid g)(h) = \frac{f}{g} h \left(\frac{x}{g} \right)
$$

Using the classical definition of composition of maps and the behavior of the associated matrix, we can easily find the formulas for the product and the inverse for these triangles.

$$
T(f_1 \mid g_1)T(f_2 \mid g_2) = T \left(f_1 f_2 \left(\frac{x}{g_1} \right) \bigg| g_1 g_2 \left(\frac{x}{g_1} \right) \right)
$$

$$
(T(f \mid g))^{-1} = T \left(\frac{1}{f(\omega^{-1})} \bigg| \frac{1}{g(\omega^{-1})} \right), \quad \omega = \left(\frac{x}{g} \right), \quad \omega \circ \omega^{-1} = \omega^{-1} \circ \omega = x
$$
So if we consider the set of the all arithmetical triangles with \(f_0 \neq 0 \) and \(g_0 \neq 0 \) and the usual product of matrices we obtain a group. Actually this group is the well-known Riordan group.

4. On the \(T(f \mid g) \) notation.

We have received some critics about our notation. Someone could think that our notation is, in some sense, cumbersome. Of course it depends strongly on the way you approach or you run into this group. In this section we are going to give some reasons why our notation could be very adequate. The basic formula relating our to the classical notation is

\[
(d(x), h(x)) = T \left(\frac{xd}{h} \mid \frac{x}{h} \right) = \left(\frac{f(x)}{g(x)} \cdot \frac{x}{g} \right) = T(f \mid g) = (d_{i,j})_{i,j \geq 0}
\]

The fundamental equality with our notation is:

\[
T(f|g) = T(f|1)T(1|g)
\]

This equality in the other notation is:

\[
\left(\frac{f(x)}{g(x)} \cdot \frac{x}{g(x)} \right) = \left(f(x), x \right) \left(\frac{1}{g(x)} \cdot \frac{x}{g(x)} \right)
\]

In \([1]\) we can see that every element of the Riordan group \([9]\) can be expressed by means of the product of a lower triangular Toeplitz matrix whose columns are the coefficients of series \(f \), shifted conveniently, the matrix \(T(f \mid 1) \), and a renewal array, the matrix \(T(1 \mid g) \) described by Rogers in \([8]\). These last kind of matrices are really similar to the Jabotinsky matrices, see \([3]\). We want to point out that the structure of every element of the Riordan group is essentially in the structure of the matrix \(T(1 \mid g) \). For example, to know a closed formula for the general term of \(T(1 \mid g) \) gives us at once a closed formula for the general term in \(T(f \mid g) \). This matrix \(T(1 \mid g) \), for us, is intrinsically related to the calculation of \(\frac{1}{g} \), which is its first column.

A comparative table of both notations is given:

| Name | \((d(t),t)\) | \(T(f|g)\) |
|-----------------------|----------------|------------|
| Identity | \((1, t)\) | \(T(1 \mid 1)\) |
| Pascal | \(\left(\frac{1}{1 - t}, \frac{1}{1 - t} \right)\) | \(T(1 \mid 1 - t)\) |
| Appel subgroup element| \((d(t),t)\) | \(T(d \mid 1)\) |
| Associated subgroup element | \((1,th(t))\) | \(T \left(\frac{1}{1}, \frac{1}{1} \right)\) |
| Bell subgroup element | \((d(t),td(t))\) | \(T \left(1 \mid \frac{1}{a} \right)\) |

A curious and symbolically important, for us, property of our notation is the way to give, by means of the parameters, the natural powers of the Pascal triangle:

Proposition 5. For every \(n \in \mathbb{N} \), we have \(T^n(1 \mid 1 - x) = T(1 \mid 1 - nx) \)
Proof. Let us proceed by induction.

For $n = 2$: $T^2(1 \mid 1 - x) = T(1 \mid 1 - x)T(1 \mid 1 - x)$, $\omega = \frac{x}{1-x}$. So

$$T^2(1 \mid 1 - x) = T(1 \mid 1 - x)(1 - \frac{x}{1-x}) = T(1 \mid 1 - 2x)$$

Suppose that $T^{n-1}(1 \mid 1 - x) = T(1 \mid 1 - (n-1)x)$, then

$$T^n(1 \mid 1 - x) = T(1 \mid 1 - x)T^{n-1}(1 \mid 1 - x) = T(1 \mid 1 - x)T(1 \mid 1 - (n-1)x) = T(1 \mid 1 - nx)$$

Another reason why for us our notation is natural, is related to the way we begun to study these topics. One of the first things we did was to find our curious triangle described in Section 2. From our notation, the description as a Riordan array is:

$${\begin{array}{cccccccc}
-1 & -4 & 1 & -11 & 6 & -1 & -26 & 23 & -8 & 1 \\
-57 & 72 & -39 & 10 & -1 & -120 & 201 & -150 & 59 & -12 & 1 \\
\vdots & \vdots \\
\end{array}} = T\left(\frac{1}{(1-x)^2} \mid 2x-1\right)$$

This notation resembles both the problem we were treating and the algorithm of construction.

Another thing we can describe easily with our notation is the fact that, with our construction method by columns, we can add new columns to the left for every element of the Riordan group to obtain again a Riordan array intrinsically related to the initial one, for example:

$${\begin{array}{cccccccc}
1 & -1 & 2 & 3 & 4 & 5 & 6 & 7 \\
-4 & 1 & -11 & 6 & -1 & -26 & 23 & -8 & 1 \\
-57 & 72 & -39 & 10 & -1 & -120 & 201 & -150 & 59 & -12 & 1 \\
\vdots & \vdots \\
\end{array}} = T\left(\frac{2x-1}{(1-x)^2} \mid 2x-1\right)$$

Note that we added a new column to the left and look at the way the parameters changed in our notation.
In general we can construct a family of new Riordan matrices closely related to it. For example by definition of Riordan array we get

\[
T(fg | g) = \begin{pmatrix}
 f_0 \\
 f_1 & d_{0,0} \\
 f_2 & d_{1,0} & d_{1,1} \\
 f_3 & d_{2,0} & d_{2,1} & d_{2,2} \\
 f_4 & d_{3,0} & d_{3,1} & d_{3,2} & d_{3,3} \\
 \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\]

By the same way we observe that \(T(fg^m | g)\) for \(m \in \mathbb{N}\) is the matrix obtained from \(T(f | g)\) by deleting the first \(m\)-rows and \(m\)-columns. Moreover \(T(fg^m | g)\) is the unique Riordan matrix with the property that by deleting the first \(m\)-rows and \(m\)-columns from it, we obtain \(T(f | g)\). In fact it can be easily proved the following:

Proposition 6. Let \(T(f | g) = (d_{n,k})_{n,k \in \mathbb{N}}\) be a Riordan matrix, and \(m \in \mathbb{Z}\) then \(T(fg^m | g) = (\tilde{d}_{n,k})_{n,k \in \mathbb{N}}\), with \(\tilde{d}_{n,k} = \lfloor x^{n-k} \rfloor fg^{m-k-1}\). Where \([x^j]S\) stands for the \(j\)-coefficient of the formal power series \(S\).

We can always embed any \(T(f|g)\) in a bi-infinite lower triangular matrix.
For our example we have

\[
\begin{pmatrix}
 \vdots \\
 -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 8 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 -23 & -6 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 26 & 11 & 4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
 \vdots \\
 -5 & -4 & -3 & -2 & -1 & 0 & 0 & 0 & 0 & 0 \\
 -4 & -3 & -2 & -1 & 0 & 1 & 0 & 0 & 0 & 0 \\
 -3 & -2 & -1 & 0 & 1 & 2 & -1 & 0 & 0 & 0 \\
 -2 & -1 & 0 & 1 & 2 & 3 & -4 & 1 & 0 & 0 \\
 -1 & 0 & 1 & 2 & 3 & 4 & -11 & 6 & -1 & 0 \\
 0 & 1 & 2 & 3 & 4 & 5 & -26 & 23 & -8 & 1 \\
 \vdots
\end{pmatrix}
\]

This construction is very nice in the case of Riordan matrices of the kind \(T(1 \mid a + bx) \), (treated as change of variables in \([5]\)). For these matrices we have

\[
\begin{pmatrix}
 \vdots \\
 \frac{1}{a} \left(\frac{a}{1-bx} \right)^4 \\
 \frac{1}{a} \left(\frac{a}{1-bx} \right)^3 \\
 \frac{1}{a} \left(\frac{a}{1-bx} \right)^2 \\
 \frac{1}{a} \\
 \frac{1}{a} \left(\frac{1-bx}{a} \right) \\
 \frac{1}{a} \left(\frac{1-bx}{a} \right)^2 \\
 \down\downarrow \\
 (a+bx)^3 & (a+bx)^2 & (a+bx) & 1 \\
 \down \downarrow \\
 \vdots
\end{pmatrix}
\]

Note that, as in the Pascal triangle, we can see the above matrix in the following way

\[
\begin{pmatrix}
 \frac{1}{a} T^{-1} (1 \mid a + bx) \\
 0 \\
 T(1 \mid a + bx)
\end{pmatrix}
\]

Where \(\frac{1}{a} T^{-1} (1 \mid a + bx) \) is \(\frac{1}{a} T^{-1} (1 \mid a + bx) \) placed in the same way as the inverse of the Pascal triangle is placed in the Hexagon of Pascal in page 194 in \([2]\). Note that \(T^{-1} (1 \mid a + bx) = T(1 \mid \frac{1-bx}{a}) \). This gives us a method to calculate \(T^{-1} (1 \mid a + bx) \) by means of elementary operations.
Our algorithm of construction do not need the so called A and Z sequences of a Riordan array, see [6] and [11]. But, in our notation, they appear in the expression of the inverse of the Riordan array $T(f \mid g)$ giving us specially aesthetic formula:

Proposition 7. Let $f = \sum_{n \geq 0} f_n x^n$ and $g = \sum_{n \geq 0} g_n x^n$ be two formal power series with $f_0 \neq 0$ and $g_0 \neq 0$. Suppose that A and Z represent the A-sequence and the Z-sequence, respectively, of $T(f \mid g)$. Then

(i) $T^{-1}(1 \mid g) = T(1 \mid A)$

(ii) $T^{-1}(f \mid g) = T\left(\frac{g_0}{f_0}(A - xZ)\mid A\right)$

Proof. (i) From Theorem 1.3 of [11], the A-sequence is the unique series, with $A(0) \neq 0$, such that $\frac{1}{g} = A\left(\frac{x}{g}\right)$. So $\frac{x}{g} = xA\left(\frac{x}{g}\right)$. If $\omega = \frac{x}{g}$ then $\omega = xA(\omega)$. On the other hand as $\omega^{-1} \circ \omega = x$ and $\omega = \frac{x}{g}$ then $x = \omega g$, composing with ω^{-1} we get $\omega^{-1} = xg(\omega^{-1})$ and $\frac{\omega^{-1}}{x} = g(\omega^{-1})$. So composing with ω^{-1} but now in $\omega = xA(\omega)$ we get $x = \omega^{-1}A(x)$ then $1 = \frac{\omega^{-1}}{x}A(x)$ so $1 = g(\omega^{-1})A(x)$ then $A(x) = \frac{1}{g(\omega^{-1})}$. Since $T^{-1}(1 \mid g) = T(1 \mid \frac{1}{g(\omega^{-1})}) = T(1 \mid A)$.

(ii) From Theorem 2.3 in [6] we obtain that the Z is determined by the equality $\omega^{-1}Z = 1 - \frac{f_0g(\omega^{-1})}{g_0f(\omega^{-1})}$. From here we get $\frac{1}{f(\omega^{-1})} = \frac{g_0}{f_0}(A - xZ)$. So

$$T^{-1}(f \mid g) = T\left(\frac{1}{f(\omega^{-1})} \mid \frac{1}{g(\omega^{-1})}\right) = T\left(\frac{g_0}{f_0}(A - xZ) \mid A\right)$$

\[\square\]

Corollary 8.

$$T^{-1}(f \mid g) = T(1 \mid A)T\left(\frac{1}{f} \mid 1\right)$$

5. **Lagrange inversion formula via Banach fixed point Theorem**

In the previous section we showed that to calculate the inverse of $T(1 \mid g)$ we need, in particular, to calculate ω^{-1}, where $\omega = \frac{x}{g}$ and then $\omega^{-1} = xg(\omega^{-1})$. So we consider the function $F : x\mathbb{K}[x] \to x\mathbb{K}[x]$ defined by $F(y) = xg(y)$. Here $x\mathbb{K}[x]$ represents the series with null independent term. This function is $\frac{1}{2}$-contractive since

$$d(F(y_1), F(y_2)) = \frac{1}{2^{\omega(xg(y_1) - xg(y_2))}} \leq \frac{1}{2}d(y_1, y_2)$$
The domain, \(x \mathbb{K}[[x]] \), of \(F \) is the closed ball, in \((\mathbb{K}[[x]], d)\), whose center is the series \(S = 0 \) and the ratio is \(\frac{1}{2} \). Consequently our domain is also complete with the relative metric. So the unique fixed point of \(F \) is \(\omega^{-1} = \left(\frac{1}{g} \right)^{-1} \) and BFPT can be applied.

The BFPT gives us a theoretical iterative process to calculate \(\omega^{-1} \). To convert this method into an effective approximation process we first note that the relation \(d(S_1, S_2) \leq \frac{1}{2^m+1} \) means that the \(m \) degree Taylor polynomials of both series are equals, that is \(T_m(S_1) = T_m(S_2) \). Then we obtain the following algorithm:

Suppose \(g = \sum_{n=0}^{\infty} g_n x^n \). We begin to iterate at \(S = 0 \). \(F(0) = g_0 x \). This means that \(T_1(\omega^{-1}) = g_0 x \). Using the \(\frac{1}{2} \)-contractivity of \(F \) we get \(T_2(F(0)) = T_2(\omega^{-1}) \). Since \(F(g_0 x) = g_0 x + g_0 g_1 x^2 + \cdots \) we obtain \(T_2(\omega^{-1}) = g_0 x + g_0 g_1 x^2 \). Similar arguments allow us to prove that \(T_3(F(g_0 x + g_0 g_1 x^2)) = T_3(\omega^{-1}) \). The above construction can be summarized in the following (the notation is as above):

Proposition 9.

\[
T_m(\omega^{-1}) = T_m(F(T_{m-1}(F(\cdots(F(T_1(F(0))))\cdots))))
\]

Following this process we get

\[
\begin{align*}
T_1(\omega^{-1}) &= g_0 x \\
T_2(\omega^{-1}) &= g_0 x + g_0 g_1 x^2 \\
T_3(\omega^{-1}) &= g_0 x + g_0 g_1 x^2 + (g_0 g_1^2 + g_0 g_2) x^3 \\
T_4(\omega^{-1}) &= g_0 x + g_0 g_1 x^2 + (g_0 g_1^2 + g_0 g_2) x^3 + (g_0 g_1^3 + 3g_0^2 g_1 g_2 + g_0 g_3) x^4 \\
T_5(\omega^{-1}) &= g_0 x + g_0 g_1 x^2 + (g_0 g_1^2 + g_0 g_2) x^3 + (g_0 g_1^3 + 3g_0^2 g_1 g_2 + g_0 g_3) x^4 + (g_0 g_1^4 + 6g_0^2 g_1^2 g_2 + 2g_0^3 g_2^2 + 4g_0^2 g_1 g_3 + g_0 g_4) x^5
\end{align*}
\]

If we recall the Cauchy powers of the series \(g \):

\[
\begin{align*}
g(x) &= g_0 + g_1 x + g_2 x^2 + g_3 x^3 + g_4 x^4 + \cdots \\
g^2(x) &= g_0^2 + 2g_0 g_1 x + (2g_0 g_2 + g_1^2) x^2 + (2g_0 g_3 + 2g_1 g_2) x^3 \cdots \\
g^3(x) &= g_0^3 + 3g_0^2 g_1 x + (3g_0 g_1^2 + g_0 g_2^2) x^2 + (6g_0 g_1 g_2 + 3g_0 g_2 g_3 + g_1^3) x^3 + \cdots \\
g^4(x) &= g_0^4 + 4g_0^3 g_1 x + (4g_0^2 g_1^2 + 6g_0 g_1 g_2^2 + 6g_0 g_2 g_3 + g_1^4) x^2 + (4g_0 g_1^3 + 3g_0^2 g_1 g_2^2 + 3g_0^2 g_2 g_3 + g_1^5) x^3 + \cdots \\
g^5(x) &= g_0^5 + 5g_0^4 g_1 x + (5g_0^3 g_1^2 + 10g_0^2 g_1 g_2 + 10g_0 g_1 g_2 + g_1^3 + 5g_0^2 g_1^3 + 10g_0 g_2^3 + 5g_0 g_3 g_2 + 10g_0^2 g_2 g_3 + 5g_0 g_1 g_3 + 10g_0^3 g_2 + 25g_0^2 g_2^2 + 25g_0 g_2 g_3 + 10g_0 g_3^2 + g_1^4 + 5g_0^2 g_1^2 g_2 + 5g_0^2 g_2^2 + 10g_0 g_1 g_2^2 + 10g_0 g_2 g_3 + 10g_0 g_1 g_3 + 10g_0^2 g_2 g_3 + 10g_0 g_2^2 g_3 + 5g_0 g_3^2 + 10g_0 g_2 g_3 + 10g_0 g_3^2 + 5g_0 g_3^2 + g_1^5) x^4 + \cdots
\end{align*}
\]

comparing adequately the coefficients of \(\omega^{-1} \) and the powers of \(g \) we obtain the next relationships:

\[
\begin{align*}
[x] \omega^{-1} &= [x^0] g \\
[x^2] \omega^{-1} &= \frac{1}{2}[x^1] g^2 \\
[x^3] \omega^{-1} &= \frac{1}{3}[x^2] g^3 \\
[x^4] \omega^{-1} &= \frac{1}{4}[x^3] g^4 \\
[x^5] \omega^{-1} &= \frac{1}{5}[x^4] g^5
\end{align*}
\]
These equalities allow us to predict and motivate the classical Lagrange Inversion Formula, see [12] page 36:

\[[x^{n+1}]\omega^{-1} = \frac{1}{n+1}[x^n]g^{n+1}, \text{ with } \omega = \frac{x}{g} \]

From now on we denote \(T_j \equiv T_j(\omega^{-1}) \). To show how this process works note that

\[F(T_n) = x(g_0 + g_1T_n + g_2T_n^2 + \cdots + g_nT_n^n + \cdots) = \]

\[= T_n + (g_1[x^n]T_n + g_2[x^n]T_n^2 + \cdots + g_n[x^n]T_n^n)x^{n+1} + S_{n+2} \quad \text{with} \quad S_{n+2} \in x^{n+2}\mathbb{K}[[x]] \]

So

\[[x^{n+1}]F(T_n) = \sum_{k=1}^{n}[x^k]g[x^n](\omega^{-1})^k \]

Because \([x^n](\omega^{-1})^k = [x^n](T_n)^k \) for any \(k \leq n \). Suppose now that we know

\[n[x^n](\omega^{-1})^k = k[x^{n-k}]g^n \quad \text{for} \quad k \leq n \]

then

\[[x^{n+1}]F(T_n) = [x^{n+1}]\omega^{-1} = \frac{1}{n+1} \sum_{k=1}^{n} k[x^k]g[x^{n-k}]g^n = \frac{1}{n} [x^{n-1}]g'g^n = \frac{1}{n+1}[x^n]g^{n+1} \]

Note that in the above development we need to know \(n[x^n](\omega^{-1})^k = k[x^{n-k}]g^n \) for \(k \leq n \).

In fact we can give a proof of all above using essentially the fact that \(\omega^{-1} \) is a fixed point of certain contractive function.

Theorem 10. (Lagrange inversion via Banach Fixed Point Theorem) Let \(\mathbb{K} \) be a field of characteristic zero. Suppose that \(\omega \) is a formal power series in \(\mathbb{K}[[x]] \) with \(\omega(0) = 0 \) and \(\omega'(0) \neq 0 \). Then

\[n[x^n](\omega^{-1})^k = k[x^{n-k}] \left(\frac{x}{\omega} \right)^n \quad \text{for} \quad n, k \in \mathbb{N} \]

Proof. Let \(g = \frac{x}{\omega} \). So \([x^0]g \neq 0 \). As proved before \(\omega^{-1} \) is the unique fixed point of the \(\frac{1}{2} \)-contractive function \(F : x\mathbb{K}[[x]] \to x\mathbb{K}[[x]] \) defined by \(F(y) = xyg(y) \). Iterating at \(y = 0 \) we get

\[[x^1]\omega^{-1} = [x^1]F(0) = [x^0]g \]

If \(k > 1 \), note that \([x^1](\omega^{-1})^k = 0 \) and \([x^{1-k}]g = 0 \) and then

\[[x^1]\omega^{-1} = k[x^{1-k}]g \]

Let proceed by induction on \(n \). Suppose that

\[j[x^j](\omega^{-1})^k = k[x^{j-k}]g^j \quad \text{for} \quad j \leq n, \quad k \geq 1 \]

Note that there are actually only a finite number of suppositions on \(k \). Because if \(j < k \),
then \([x^{j-k}]g^j = 0 = [x^j](\omega^{-1})^k \). Then the equality holds trivially.
Since $\omega^{-1} = xg(\omega^{-1})$, then for any k $(\omega^{-1})^k = x^k g^k(\omega^{-1})$. Consequently

$$[x^{n+1}](\omega^{-1})^k = [x^{n+1}]x^k g^k(\omega^{-1}) = [x^{n+1-k}]g^k(\omega^{-1}) = \sum_{j=0}^{n+1-k} [x^j]g^k[x^{n+1-k}]^j(\omega^{-1})^j$$

by the induction hypothesis

$$[x^{n+1}](\omega^{-1})^k = \frac{1}{n+1-k} \sum_{j=0}^{n+1-k} j[x^j]g^k[x^{n+1-k-j}]g^{n+1-k}$$

Let us call $h = g^k$

$$[x^{n+1}](\omega^{-1})^k = \frac{1}{n+1-k} \sum_{j=0}^{n+1-k} j[x^j]h[x^{n+1-k-j}]h^{\frac{n+1-k}{k}} = \frac{1}{n+1-k} \sum_{j=1}^{n+1-k} [x^{j-1}]h'[x^{n+1-k-j}]h^{\frac{n+1-k}{k}} =$$

$$= \frac{1}{n+1-k} \sum_{j=0}^{n-k} [x^j]h'[x^{n-k-j}]h^{\frac{n+1-k}{k}} = \frac{1}{n+1-k} [x^{n-k}](h'h^{\frac{n+1-k}{k}}) =$$

$$= \frac{1}{n+1-k} [x^{n-k}'] \left(\frac{k}{n+1} h^{\frac{n+1-k}{k}} \right)' = \frac{k}{n+1} [x^{n+1-k}]h^{\frac{n+1}{k}} = \frac{k}{n+1} [x^{n+1-k}]g^{n+1}$$

The development above gives us the following algorithm to calculate the coefficients of the compositional inverse of $\omega = \frac{x}{g}$:

Algorithm 11. Given $g = \sum_{j=0}^\infty g_j x^j$, with $g_0 \neq 0$. Given $F(y) = xg(y)$, $y \in \mathbb{K}[x]$.

step 1: (Initial.) $T_1 = g_0 x$.

step k (2 to n): Calculate the Taylor polynomial of order k of $F(T_{k-1})$

We can write this algorithm in an informal pseudo-code:

```
READ (g,F,n)
SET T
CALCULATE for i from 2 to n do
T[i]:=convert(series(F(T[i-1],x=,i)),polynom);
end
PRINT T
```

Acknowledgment: The author thanks Manuel A. Morón for his helpful comments. I also thank the referee for his/her suggestions and comments which strongly improved earlier version of this paper. The author was partially supported by the grant MICINN-FIS2008-04921-C02-02.
REFERENCES

[1] J. Dugundji and A. Granas. *Fixed Point Theory*. Monografie Matematyczne. Tom 61. PWN- Polish Scientific Publishers. Volume I (1982.)

[2] P. Hilton, D. Holton and J. Pedersen. *Mathematical Reflections: from a room with many windows*. Springer. 2002.

[3] J. L. Lavoie and R. Tremblay. *The Jabotinsky matrix of a power series*. SIAM J. Math. Anal. 12 (1981) 819-825.

[4] A. Luzón and M. A. Morón. *Ultrametrics, Banach’s fixed point theorem and the Riordan group*. Discrete Appl. Math. 156 (2008) 2620-2635.

[5] A. Luzón and M. A. Morón. *Riordan matrices in the reciprocation of quadratic polynomials*. Linear Algebra Appl. 430 (2009) 2254-2270.

[6] D. Merlini, D. G. Rogers, R. Sprugnoli, M.C. Verri. *On some alternative characterizations of Riordan arrays*. Canadian J. Math. 49(2) (1997) 301-320.

[7] Alain M. Robert. *A course in p-adic analysis*. Graduate Texts in Mathematics. 198 Springer N.Y. 2000.

[8] D.G. Rogers. *Pascal triangles, Catalan numbers and renewal arrays*. Discrete Math. 22 (1978) 301-310.

[9] L. W. Shapiro, S. Getu, W.J. Woan and L. Woodson. *The Riordan group*. Discrete Appl. Math. 34 (1991) 229-239.

[10] J. Sotomayor. *Lições de equações diferenciais ordinárias*. Projeto Euclides IMPA. Brasil(1979)

[11] R. Sprugnoli. *Riordan arrays and combinatorial sums*. Discrete Math. 132 (1994) 267-290.

[12] Richard P. Stanley. *Enumerative Combinatorics. Vol. II*. Cambridge University Press. 1999.

[13] The Viewpoints 2000 Group. *Proof without Words: Geometric Series*. Mathematics Magazine Vol.74 N°4 (Oct 2001) 320.

Departamento de Matemática Aplicada a los Recursos Naturales. E.T. Superior de Ingenieros de Montes. Universidad Politécnica de Madrid. 28040-Madrid, SPAIN

E-mail address: anamaria.luzon@upm.es