Primary Skeletal Muscle Peripheral T-cell Lymphoma: An Autopsy Case Report and Review of the Literature

Hiroko Iizuka1, Sakiko Harada1,3, Noriaki Iwao1, Michiaki Koike1 and Masaaki Noguchi2

Abstract:
Primary skeletal muscle lymphoma is extremely uncommon, and there have only been eight previous case reports on primary skeletal muscle peripheral T-cell lymphoma, not otherwise specified (PSM-PTCL, NOS). We herein report an autopsy case of a 71-year-old woman with PSM-PTCL, NOS, who had a 24-year history of systemic sclerosis treated with immunosuppressive drugs. A post-mortem examination revealed infiltration of lymphoma cells positive for T-cell markers, cytotoxic markers, and p53. This case was considered to be one of other iatrogenic immunodeficiency-associated lymphoproliferative disorder (OIIA-LPD). This is the first case categorized under both PSM-PTCL, NOS, and OIIA-LPD.

Key words: primary skeletal muscle lymphoma, peripheral T-cell lymphoma, not otherwise specified, other iatrogenic immunodeficiency-associated lymphoproliferative disorders, systemic sclerosis, autopsy

(Intern Med Advance Publication) (DOI: 10.2169/internalmedicine.7391-21)

Introduction
Primary extranodal lymphoma is known to occur in the gastrointestinal tract, skin, lungs, and central nervous system; however, primary skeletal muscle lymphoma (PSML) is extremely rare (1). B-cell lymphoma, represented by diffuse large B-cell lymphoma (DLBCL), is the most frequent entity in PSML.

Primary skeletal muscle peripheral T-cell lymphoma, not otherwise specified (PSM-PTCL, NOS), are a group of rare and aggressive lymphomas, with only eight previous reports on the condition published (2-9). Peripheral T-cell lymphoma, not otherwise specified (PTCL, NOS) is the most common subtype of mature aggressive T-cell lymphoma, manifesting most often as a nodal disease (10).

We herein report a rare autopsy case of PSM-PTCL, NOS. In addition, our case was categorized as other iatrogenic immunodeficiency-associated lymphoproliferative disorder (OIIA-LPD). According to the World Health Organization’s (WHO) 2017 classification, OIIA-LPD is defined as lymphoid proliferations or lymphoma that develops in patients receiving immunosuppressive drugs for autoimmune diseases (11). OIIA-LPD is mainly a B-cell lymphoproliferative disorder (B-LPD) or Hodgkin lymphoma (HL) type, whereas T-cell LPD (T-LPD) is relatively rare. Thus, there have been no previous reports on PSM-PTCL, NOS in OIIA-LPD. Our case differed from the eight previously reported PSM-PTCL, NOS cases with regard to the patient characteristics and clinical course. We believe that our clinico-pathological findings provide additional information supporting our understanding of this rare lymphoma.

Case Report
The patient was 71-year-old woman. She had a history of surgery (osteosynthesis) for peritrochanteric femur fractures at 68 years old. She also had a 24-year history of systemic sclerosis (SSc), which was controlled with prednisolone (PSL) (5 mg/day) and cyclosporine (CyA) (100 mg/day). At 55 years old, she was diagnosed with pulmonary arterial hypertension (PAH) based on the results of right heart catheterization and started on beraprost and home oxygen therapy at another hospital. At 62 years old, she was transferred to

1Department of Hematology, Juntendo University Shizuoka Hospital, Japan, 2Department of Hematology, Juntendo University Urayasu Hospital, Japan and 3Department of Hematology, Juntendo University School of Medicine, Japan

Received: February 20, 2021; Accepted: March 18, 2021; Advance Publication by J-STAGE: May 7, 2021
Correspondence to Dr. Hiroko Iizuka, hiiduka@juntendo.ac.jp
our hospital because she had moved houses. Combination therapy with PSL and CyA was continued throughout the treatment period, and she received long-term administration. Her activities of daily living (ADL) gradually weakened because of chronic respiratory failure and steroid-induced myopathy.

About one month before hospitalization, the patient’s left thigh became progressively swollen, and she was admitted with complaints of trouble walking due to the pain. Contrast computed tomography (CT) revealed a 10-cm heterogeneous mass involving the left iliopsoas muscle, and highly elevated levels of serum soluble interleukin-2 receptor (sIL-2R) (6,313 U/mL) and lactate dehydrogenase (LDH) (2,129 IU/L) were observed (Table 1). Based on these findings, we suspected malignant lymphoma.

On admission, she had a temperature of 99 °F, and her oxygen saturation of hemoglobin at rest with 3 L/min oxygen supplementation was 92%. Swelling and diffuse redness of the left inguinal region and thigh, with left inguinal lymph node (LN) swelling, were observed. Laboratory studies revealed anemia and thrombocytopenia (hemoglobin level, 10.1 g/dL; platelet count, 4.1×10⁴/μL). Positron emission tomography (PET) imaging with [18F] fluorodeoxyglucose (FDG) demonstrated increased uptake of FDG within the entire left iliopsoas muscle (Fig. 1a-c). The abnormal muscle was isointense on T1-weighted imaging and hyperintense on T2-weighted imaging, with a heterogeneous mass (Fig. 2a-d). A bone marrow (BM) examination showed normal cellularity and no evidence of abnormal cells.

We requested a biopsy of the left iliopsoas muscle tumor from an orthopedic doctor; however, the request was re-

Table 1. Laboratory Findings on Admission.

Test	Value
WBC	4.700/μL
Neutrophil	78 %
Lymphocytes	9 %
Monocytes	12 %
RBC	298×10⁴/μL
Hb	10.1 g/dL
Hct	30.9 %
PLT	4.1×10⁴/μL
PT-INR	1.08
APTT/NC	33.0/26.8 sec
FIB	261 mg/dL
D-dimer	1.9 μg/dL
sIL-2R	6,313 U/mL
HIV	-
HTLV-1	-

WBC: white blood cell, RBC: red blood cell, Hb: hemoglobin, Hct: hematocrit, PLT: platelet, PT-INR: prothrombin time-international normalized ratio, APTT: activated partial thromboplastin time, NC: normal control, FIB: fibrinogen, HIV: human immunodeficiency virus, HTLV-1: human T-cell leukemia virus type I, TP: total protein, Alb: albumin, T-Bil: total bilirubin, AST: aspartate transaminase, ALT: alanine transaminase, LDH: lactate dehydrogenase, CPK: creatine phosphokinase, BUN: blood urea nitrogen, Cre: creatinine, UA: uric acid, CRP: C-reactive protein: sIL-2R: soluble interleukin-2 receptor, KL-6: Krebs von den Lungen-6

Figure 1. PET imaging with FDG showed an increased FDG uptake in the left iliopsoas (a, b). In addition to the iliopsoas muscle, the para-aortic LN, right hilar LN, and juxta-esophageal LN showed an FDG abnormal accumulation (c).
Figure 2. MRI findings. On T1-weighted (T1w) images, PSML had a similar signal intensity to muscle (a, b). On T2-weighted (T2w) images, the signal intensity of PSML was moderately increased compared to muscle (c, d).

Autopsy Findings

At the autopsy, the patient showed swelling of the para-aortic LN, right hilar LN, periesophageal LN, hepatomegaly (weight = 1,430 g), and splenomegaly (weight = 150 g), in addition to the left iliopsoas tumor and left inguinal lymphadenopathy. Immunohistochemical staining of the left inguinal LN, which was not a major lesion, revealed lymphoma cell populations positive for CD2, CD3, CD4, CD30, PD-1, TIA1, and granzyme B and negative for CD5, CD8, CD10, CD20, CD56, and ALK. Nuclear staining demonstrated the presence of Ki-67 in approximately 80% of the cells (Fig. 3a-h). In the left iliopsoas tumor, there was diffuse proliferation of lymphoma cells, including CD3(+), CD5(−), CD20(−), and p53(+), and approximately 80% of the cells were positive for Ki-67 (Fig. 4a-d). In the spleen, the tumor cells were CD3(+), CD20(−), and Epstein-Barr encoding region in situ hybridization (EBER-ISH) (−) (Fig. 4e-h). Monoclonal rearrangement of the T-cell receptor beta chain genes on the DNA-extracted specimen obtained via Southern blotting was found in the left iliopsoas tumor, left inguinal LN, and right hilar LN. A chromosomal aberration analysis (G-banding) revealed growth failure in any specimen. The overall findings supported the definitive diagnosis of PTCL, NOS. Furthermore, although this case showed lymphoma cell infiltration of multiple LNs, the resultant LN enlargement was slight. We believe that the main lesion was the bulky iliopsoas mass. We ultimately diagnosed her disease as PSM-PTCL, NOS.

Discussion

A few large-scale, single-center studies have reported that the incidence rate of PSML was 0.11% (1)-0.21% (9) among all malignant lymphomas. Yang et al. reported that 6 of 8 PSML cases were DLBCL, while 1 of the remaining 2
Figure 3. Immunohistochemistry of PTCL, NOS of the left inguinal LN. Hematoxylin and Eosin staining, original magnification x400 (a), tumor cells were CD3-positive (b), CD20-negative (c), CD5-negative (d), CD4-positive (e), CD8-negative (f), CD30 focally weakly positive (g), CD56-negative (h), TIA-1 focally positive (i), Granzyme B partially positive (j), and PD-1 weakly positive (k). Ki-67 staining showed a proliferation index of approximately 80% (l).

Figure 4. Immunohistochemistry of PTCL, NOS of the left iliopectoral and spleen. Diffuse proliferation of large lymphocytes in the left iliopectoral and spleen (a, e, Hematoxylin and Eosin staining, original magnification x400). The upper part (a-d) is the iliopectoral tumor, and the lower part (e-h) is the spleen. Tumor cells are CD3-positive (b, f) and p53-positive (c). Ki-67 staining showed a proliferation index of approximately 80% (d). In the spleen, tumor cells were CD20-negative (g) and EB-ER-ISH-negative (h).
was anaplastic large cell lymphoma, and the other was PTCL, NOS (9). The average age was 54.8 (range 23-76) years old, which was relatively young. The most common sites of tumors were the extremities, especially the lower extremities, including the quadriceps femoris, iliopectineus, and buttocks. The pathogenesis of lymphoma arising in the musculature is unclear; however, PSML is thought to occur in chronic inflammation in extranodal sites (12). Several reports have described the development of lymphoma at sites of chronic injuries or drug injections (13). In our case, a screw had been inserted in the left femur for the surgical treatment of peritrochanteric femur fracture. We suspect that the surgical history in the present patient was related to the development of PSML.

Eighty percent of PSML cases are histologically confirmed to be B-cell lymphoma (14). There have only been 8 previous reports on PSM-PTCL, NOS (Table 2). Six of the patients (75%, 6/8) were under 50 years old at the time of the diagnosis, and most patients had no remarkable history. Our patient was 71 years old, making her the oldest patient reported thus far, and she had a history of SSc and PAH. Our patient’s background differed from those of other PSM-PTCL, NOS patients. We predicted from case presentation that almost cases had good performance status, except for the two cases with rhabdomyolysis (No. 4 and 6) and the case with massive infarction caused by dissemination of the lymphoma cells (No. 1). The prognostic Index for PTCL-U (PIT) (15), which is a specific prognostic model of PTCL-U, showed that 3 (60%, 3/5) cases were classified into groups 3 and 4. PIT groups 3 and 4 of PTCL-U have a poor prognosis, with a 5-year survival probability of just 26.8%. Furthermore, we suspected the present patient would have a dismal prognosis due to the extranodal subtype; however, surprisingly 7 (87.5%, 7/8) previous cases of PSM-PTCL, NOS responded to cyclophosphamide, doxorubicin, vincristine, prednisolone (E, etoposide), PBSCT: peripheral blood stem cell transplantation

Table 2. Clinical Features and Imaging Findings of Patients with PSM-PTCL, NOS.

Case	Age/sex	PH	PS	Location	BM involve-ment	LDH (IU/L)	PIT group	Rhabdo-myolysis	MRI	Treatment	Outcome	Reference
our case	71/F	SSc, PAH, femoral trochanteric fracture	-		-	2,129	4	iso	prednisolone	died 19 days after admission	-	
1	23/F	healthy	4	iliopectineus	-	356	3	-	NA	died 26 days after admission	-	2)
2	56/M	healthy	0	sartorius muscle	- normal	1	-	high	NA	CHOP x6→ PBSCT chemotherapy	disease free for 1 year	3)
3	49/F	NA	0	soleus muscle	- NA NA	iso	high				disease free for 3 years	4)
4	32/M	NA	1	quadratus lumborum	+	590	3	+	NA	CHOEP x2	Alive	5)
5	40/M	NA	0	trapezius muscle	- NA NA	iso	high			CHOP x6	disease free for 6 months	6)
6	62/M	DM, HT	2	psoas	- NA NA NA						disease free for 6 months	7)
7	43/M	healthy	1	quadriceps femoris	-	6,655	2	-	NA	CHOPE x6	disease free for 2 years	8)
8	28/F	healthy	0	sternocleidomastoid	- NA NA					surgery→ CHOP	disease free for 4 years	9)
Table 3. Immunohistochemistry Findings of Patients with PSM-PTCL, NOS.

Case	CD2	CD3	CD4	CD5	CD8	TIA-1	Granzyme B	CD30	EBER-ISH	P53	Ki67
1	+	+	+	-	-	+	NA	NA	-	NA	80%
2	NA	+	+	-	-	-	NA	NA	-	NA	10%
3	NA	+	-	-	-	-	NA	NA	-	NA	80%
4	+	+	NA	+	NA	NA	+	-	-	NA	60-70%
5	NA	+	-	-	+	NA	NA	-	NA	NA	80%
6	+	+	-	+	+	+	-	-	NA	NA	80%
7	NA	+	NA	NA	NA	NA	-	NA	-	NA	80%
8	NA	+	NA	NA	NA	-	NA	-	NA	NA	80%

NA: not available, TIA-1: T cell intracellular antigen 1, EBER-ISH: Epstein–Barr virus-encoded RNAs detected by in situ hybridization

a previous report, ML was detected in rheumatoid arthritis patients (19); therefore, the effects of CyA leading to ML development need to be carefully monitored, regardless of the duration of CyA treatment, but especially in those undergoing long-term treatment. The major types of OIIA-LPDs are DLBCL and HL, comprising 58% and 15.3% of 274 cases of OIIA-LPD, respectively (11). T-LPD is uncommon, and a recent report by Satou et al. reported that only 6 (13.9%, 6/43) patients were subclassified as PTCL, NOS among a total of 43 cases of T-LPD. Furthermore, only 5 (11.6%, 5/43) patients had primary extranodal lymphoma, while there were no patients with PSM-PTCL (20). Several subtypes of OIIA-LPD have a high Epstein-Barr virus (EBV)-positivity; however, a previous report revealed that patients with T-LPD had a significantly lower proportion of EBV-positive tumor cells than those with B-LPD (18). In our case, where non-MTX T-LPD was also EBER-ISH-negative, we suspected that the mechanisms underlying tumorigenesis did not involve EBV reactivation.

On comparing the histopathologic features of the previous eight cases of PSM-PTCL, NOS and our own, our patient seems to have distinct clinicopathologic features, such as being positive for cytotoxic markers (TIA-1, Granzyme B) and p53-positive, having a high Ki-67 index, and being weakly positive for CD30 (Table 3). Unfortunately, immunohistochemical studies of the previous PSM-PTCL, NOS cases were performed with limited staining. Therefore, it was difficult for us to describe the clinicopathological features of this rare disease entity, PSM-PTCL, NOS. Among them, we focused on p53, especially regarding tumorigenicity. The TP53 gene is an important tumor suppressor gene, and a TP53 mutation is involved in the events of tumorigenesis, being present in a variety of cancer subtypes. A previous report demonstrated a positive correlation between TP53 mutation and p53 expression in PTCL using next-generation sequencing and immunohistochemical staining patterns (21). p53 overexpression was observed in 19.6% (11/56) of peripheral mature T and NK cell lymphomas, indicating an extremely poor prognosis. PTCL is a heterogeneous group, and PTCL, NOS is a wastebasket category with broad morphological and immunophenotypic characteristics. However, a recent study demonstrated distinct genetic profiles in these subtypes of PTCL, NOS. Two major defined molecular subtypes of PTCL-NOS include PTCL-GATA3 and PTCL-TBX21, which have distinct biological differences in oncogenic pathways and prognoses (22). PTCL-GATA3 showed a worse overall survival and more aberrant genome expression than PTCL-TBX21. TP53 mutations were associated with PTCL-GATA3; thus, aberrant TP53 signaling due to a mutation was significantly associated with PTCL-GATA3 (p < 0.001), and TP53 functional impairment may lead to distinct clonal evolution (23). We considered the overexpression of p53 to likely be associated with an aggressive clinical course and high-grade oncogenicity.

In conclusion, we reported the first case of PSM-PTCL, NOS, and OIIA-LPD. It was suggested that the cause of the rapid fatal course in this case, unlike previous cases of PSM-PTCL, NOS, was a combination of patient immunodeficiency and high-grade oncogenicity of the tumor, reflected by the positive p53 expression. The clinical and pathologic characteristics are neither consistent nor clear. Gene expression profiling studies may increase our understanding of the molecular pathogenesis of this rare entity, PSM-PTCL, NOS.

The authors state that they have no Conflict of Interest (COI).

Acknowledgement
The authors would like to thank Editage (www.editage.jp) for the English language review.

Statement of Ethics
Informed consent was obtained from the family of the patient for allowing both the post-mortem examination and tt publication of this study.

Funding Sources
The authors declare that there are no funding sources associated with this study.

Author Contributions
All authors contributed to the management of the patient, reviewed the manuscript, and reviewed the literature.
References

1. Travis WD, Banks PM, Reiman HM. Primary extranodal soft tissue lymphoma of the extremities. Am J Surg Pathol 11: 359-66, 1987.

2. Fragou M, Karakitsos D, Kalogeromitros A, Samonis G, Karabinis A. Peripheral T-cell lymphoma presenting as an ischemic stroke in a 23-year-old woman: a case report and review of the literature. J Med Case Rep 3: 83, 2009.

3. Alekshun TJ, Rezania D, Ayala E, Cualing H, Sokol L. Skeletal muscle peripheral T-cell lymphoma. J Clin Oncol 26: 501-503, 2008.

4. Chim CS, Loong F, Ooi GC, Srivastava G, Liang R. Primary skeletal muscle lymphoma. Am J Med 112: 79-80, 2002.

5. Liu Z, Medeiros LJ, Young KH. Peripheral T-cell lymphoma with unusual clinical presentation of rhabdomyolysis. Hematol Oncol 35: 125-129, 2017.

6. Tanaka Y, Hayashi Y, Kato J, et al. Diffuse skeletal muscles uptake of [18F] fluorodeoxyglucose on positron emission tomography in primary muscle peripheral T-cell lymphoma. Intern Med 50: 2021-2024, 2011.

7. Sasaki K, Yamato M, Yasuda K, Rakugi H, Isaka Y. Rhabdomyolysis caused by peripheral T-cell lymphoma in skeletal muscle. Am J Emerg Med 31: 1537.e3-5, 2013.

8. Yamaguchi H, Hashimoto M, Mizuki T, et al. Skeletal muscle T-cell lymphoma following hemophagocytic syndrome. Rinsho Ketsueki 41: 712-717, 2000 (in Japanese).

9. Yang J, Zhang F, Fang H, Ye Z, Lin S, Han A. Clinicopathologic features of primary lymphoma in soft tissue. Leuk Lymphoma 51: 2039-2046, 2010.

10. Savage KJ, Chhanabhai M, Gascoyne RD, Connors JM. Characterization of peripheral T-cell lymphomas in a single North American institution by the WHO classification. Ann Oncol 15: 1467-1475, 2004.

11. Swerdlow SH, Campo E, Pileri SA, et al. World Health Organization classification of hematopoietic and lymphoid tissue. revised 4th ed. International Agency for Research on Cancer, Lyon, 2017: 453-464.

12. Keung YK, Liang R. Report of a case of primary skeletal muscle lymphoma and review of the literature. Acta Haematol 96: 184-186, 1996.

13. Surov A. Imaging findings of skeletal muscle lymphoma. Clin Imaging 38: 594-598, 2014.

14. Ueno A, Kuribayashi K, Iyama S, et al. Two cases of primary skeletal muscle lymphoma, and a review of the literature. Rinsho Ketsueki 46: 1141-1145, 2005 (in Japanese).

15. Gallamini A, Stelitano C, Calvi R, et al. Peripheral T-cell lymphoma unspecified (PTCL-U): a new prognostic model from a retrospective multicentric clinical study. Blood 103: 2474-2479, 2004.

16. Derenzini E, Casadei B, Pellegrini C, et al. Non-hodgkin lymphomas presenting as soft tissue masses: a single center experience and meta-analysis of the published series. Clin Lymphoma Myeloma Leuk 13: 258-265, 2013.

17. Vettori S, Staibano S, Mascolo M, et al. Non-Hodgkin’s lymphoma in systemic sclerosis: case and literature review. Clin Rheumatol 29: 1-6, 2010.

18. Ichikawa A, Arakawa F, Kiyasu J, et al. Methotrexate/iatrogenic lymphoproliferative disorders in rheumatoid arthritis: histology, Epstein-Barr virus, and clonality are important predictors of disease progression and regression. Eur J Haematol 91: 20-28, 2013.

19. Zijimans JM, van Rijthoven AW, Khun PM, Jiwa NM, Dijkmans BA, Khun-Nelemans JC. Epstein-Barr virus-associated lymphoma in a patient with rheumatoid arthritis treated with cyclosporine. N Engl J Med 326: 1363, 1992.

20. Satou A, Tsuzuki T, Nakamura S. Other Iatrogenic Immunodeficiency-Associated Lymphoproliferative Disorders with a T- or NK-cell phenotype. J Clin Exp Hematol 59: 56-63, 2019.

21. Huang HS, Liao CK, Liu TT, You HL, Wang MC, Huang WT. TP 53 mutations in peripheral mature T and NK cell lymphomas: a whole-exome sequencing study with correlation to p53 expression. Hum Pathol 80: 145-151, 2018.

22. Iqbal J, Wright G, Wang C, et al. Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma. Blood 123: 2915-2923, 2014.

23. Heavican TB, Bouska A, Yu J, et al. Genetic drivers of oncogenic pathways in molecular subgroups of peripheral T-cell lymphoma. Blood 133: 1664-1676, 2019.