A Trio–Rac1–Pak1 signalling axis drives invadopodia disassembly

Yasmin Moshfegh1,2, Jose Javier Bravo-Cordero1,2, Veronika Miskolci1, John Condeelis1 and Louis Hodgson1,3

Rho family GTPases control cell migration and participate in the regulation of cancer metastasis. Invadopodia, associated with invasive tumour cells, are crucial for cellular invasion and metastasis. To study Rac1 GTPase in invadopodia dynamics, we developed a genetically encoded, single-chain Rac1 fluorescence resonance energy (FRET) transfer biosensor. The biosensor shows Rac1 activity exclusion from the core of invadopodia, and higher activity when invadopodia disappear, suggesting that reduced Rac1 activity is necessary for their stability, and Rac1 activation is involved in disassembly. Photoactivating Rac1 at invadopodia confirmed this previously unknown Rac1 function. We describe here an invadopodia disassembly model, where a signalling axis involving TrioGEF, Rac1, Pak1, and phosphorylation of cortactin, causes invadopodia dissolution. This mechanism is critical for the proper turnover of invasive structures during tumour cell invasion, where a balance of proteolytic activity and locomotory protrusions must be carefully coordinated to achieve a maximally invasive phenotype.

Tumour invasion requires orchestration of actin-based protrusions capable of extracellular matrix (ECM) degradation and cell locomotion1–3. On epithelial to mesenchymal transformation4, tumours gain the ability to invade by protruding invadopodia, characterized by their ability to localize matrix metalloproteinases important for the proteolytic digestion of ECM (refs 5,6). In breast carcinomas, the ability of cells to form invadopodia and their invasive potential are directly correlated7; thus, understanding the molecular mechanisms regulating invadopodia functions is critical.

Cells assemble and protrude invadopodia during invasion8 and several members of the p21 Rho family of small GTPases, including Cdc42, RhoA and RhoC, are involved9,10. These GTPases cycle between a GTP-loaded ‘ON’ versus a GDP-loaded ‘OFF’ state11. Regulators controlling these states include guanine nucleotide exchange factors (GEF), GTPase activating proteins (GAP), and guanine nucleotide dissociation inhibitors12 (GDI). Cdc42 is crucial for invadopodia formation by activating neuronal Wiskott–Aldrich Syndrome protein (N-WASP), on which other invadopodia core proteins are assembled13. RhoC regulates invadopodia integrity by confining actin protrusion within the invadopodium10. RhoA is involved in the delivery of vesicles containing membrane type 1 matrix metalloproteinases to degradation sites14, and other functions associated with the actin cytoskeleton15. The mechanism by which these GTPases regulate their respective downstream functions at the invadopodia is spatially distinct16. This suggests that the spatiotemporal dynamics of Rho GTPase activations at or surrounding invadopodia are critical, yet not much is known about such dynamics of other Rho isoforms, specifically Rac1. Previous studies indicated that Rac1 overexpression and hyperactivity lead to aberrant cell motility and metastatic phenotypes15–21. Rac1 was necessary for invasive protrusions in human melanomas22, and MCF10A breast epithelial cells required Rac1 for TGF-β-dependent matrix degradation23. Rac1 was also required for invasion in Ras-transformed melanoblasts24. Although Rac1 seems to be required for pro-invasive functions in these cases, there is not yet a clear study of Rac1 during invadopodia functions at subcellular scales. A number of studies have begun to address this question22,23,25, and have shown evidence that Rac1 activation may drive invadopodia. However, this has never been directly observed, only indirectly inferred on the basis of traditional experimental methods. Invadopodia are highly regulated and transient subcellular structures, and Rac1 has equally fine spatiotemporal activation dynamics within cells26, making it difficult to accurately study using more conventional approaches.

To address this problem, we developed a FRET-based biosensor for Rac1. The biosensor enables direct visualization of Rac1 activities at subcellular resolution and on a timescale of seconds, while maintaining a single-chain structure and correct isoprenylation. Using this biosensor in combination with the focal photo-uncaging of Rac1 (ref. 27), we report a mechanism by which invasive breast carcinomas...
disassemble their invadopodia through Trio–Rac1 activation, through cortactin phosphorylation by p21 activated kinase 1 (Pak1). Here we report the involvement of Rac1 in invadopodia turnover, which could be essential in proper regulation of invasive protrusions during invasion and metastasis.

RESULTS

Rac1 restricts matrix-degrading invadopodia activity

To determine the requirement for Rac1 in invadopodia formation and function, we first silenced Rac1 in MTLn3 rat mammary adenocarcinoma cells and assayed for matrix degradation activity. On Rac1 depletion, degradation of extracellular matrix is markedly increased compared with control short interfering RNA (siRNA)-treated cells, suggesting that Rac1 controls invadopodia activity. This was recapitulated when Rac1 inhibitor NSC23766 was used. This is recapitulated in human MDA-MB231 and BT549 metastatic cell lines, but not in the MCF10A normal human breast epithelial cell line (Supplementary Fig. 1a–g). MTLn3 express Rac1 and Rac3, but not Rac2 (Fig. 1e). Rac1 RNA-mediated interference (RNAi) did not affect Rac3 expression levels (Fig. 1e), and multiple single siRNA oligonucleotides also resulted in the observed phenotype (Supplementary Fig. 1h). Enhanced degradation from Rac1 knockdown was probably not due to lack of cell motion, as the relative invadopodia lifetimes in these conditions were greatly increased, but the average number of invadopodia per cell at any one point in time remained the same (Fig. 1d and Supplementary Video 1). These results suggest that Rac 1 activity seems to restrict invadopodia lifetime as well as matrix degrading activity.

A single-chain Rac1 biosensor

Biochemical approaches cannot be used for observing Rac1 activity at invadopodia; we produced a genetically encoded single-chain Rac1 biosensor. A full-length Rac1 was placed at the carboxy terminus of the biosensor to maintain the hypervariable region and the correct lipid modification motif, important for plasma membrane and GDI interactions, similar in design to the previous RhoA biosensor. The tandem PBD allows for autoinhibitory mechanism of Pak1 by 14 amino-acid linker chain, monomeric Venus, and full-length Rac1. The tandem PBD allows for autoinhibitory mechanism of Pak1 by maintaining the autoregulatory moiety (amino acids 70–149; ref. 36). GDI interaction is the main difference to the previous-generation Rac1 biosensor, reflecting the regulatory cycle of Rac1 in vitro. As the size of the biosensor precluded in vivo purification, we overexpressed it in HEK293 cells and analysed the fluorescence spectra of mutant versions of the biosensor as previously described. Compared with wild-type (WT), the constitutively active (G12V and Q61L) mutants had a higher emission ratio (FRET/CFP), and the inactive mutants (T17N and T35S) had a reduced emission ratio. Co-expression of threefold excess GDI produced a reduced FRET ratio as expected in WT and G12V mutant versions of the biosensor (Fig. 2d,e).

When co-transfected with excess GDI, GEFs that are known to activate Rac1 (ref. 37) rescued Rac1 activity, but non-Rac1 GEFs did not rescue activity (Fig. 2f). Similarly, p50RhoGAP inhibited Rac1 activity, but the control Rap1GAP did not (Fig. 2f). These data show that the biosensor behaves accurately and is regulated by upstream regulators. The overexpression of G12V and T17N versions of the biosensor in MEFs shows that the in-cell difference in the FRET ratio based on imaging is approximately 40%, similar to the fluorometric analysis (Fig. 2g). In versions of the biosensor where both PBDs were mutated (H83D–H86D), FRET was reduced to dominant-negative and GDI-inhibited levels (Fig. 2h).

Rac1 activity is excluded from invadopodia

We produced an MTLn3 cell line stably incorporating the Rac1 biosensor under tet-OFF regulation to limit the biosensor expression to ≤20% of endogenous Rac1 (Fig. 2i; refs 33,38). We stimulated cells with EGF, triggering invadopodia precursor formation and observed Rac1 activity during early events. After stimulation, structures containing cortactin fluorescence appeared and remained throughout the 10-min duration of imaging, accompanied by a pronounced depletion of Rac1 activity within the invadopodium core (Fig. 3a,b and Supplementary Video 2). This exclusion of Rac1 activity was not due to loss of Rac1 from the invadopodia, as endogenous Rac1 or CFP–Rac1 is uniformly distributed (Fig. 3c and Supplementary Fig. 2a). A similar reduction in Rac1 activity was observed in fixed cells using Cy5-dye-labelled cortactin (Fig. 3d). MDA-MB-231 cells also show reduced Rac1 activity at invadopodia (Fig. 3e,f). Accumulated cortactin puncta are non-vesicular and degrade matrix (Supplementary Fig. 2b,c).

We examined how Rac1 is involved in invadopodia maintenance by observing Rac1 activity in steady-state invadopodia over a period of 3h. We began imaging pre-formed invadopodia and examined Rac1 activity throughout their lifetimes. We observed that when a stable invadopodium is present, Rac1 activity inside the invadopodium is significantly lower when compared with the region just outside (Fig. 3b), until the invadopodium disappears (Fig. 3g and Supplementary Video 3). At this point Rac1 activity is elevated (Fig. 3h and Supplementary Fig. 2d). This suggests that Rac1 activation could be associated with disassembly of invadopodia. As a control we compared this Rac1 activity profile to RhoA activity. As shown previously for EGF-induced invadopodia, steady-state RhoA activity also showed no significant changes (Supplementary Fig. 2e).

Focal activation of Rac1 disassembles invadopodia

To determine whether Rac1 activation triggers invadopodia disassembly, we used photoactivatable Rac1 (PA-Rac1; ref. 27) to activate Rac1 at pre-formed invadopodia and observe how it influences their dynamics. After photoactivation using 1-s pulses of 457 nm light every 30 s to MTLn3 cells expressing PA-Rac1 and two invadopodia markers (mTagRFP–cortactin and GFP–Tks5; ref. 40), the invadopodium containing cortactin fluorescence appeared and remained throughout the 10-min duration of imaging, accompanied by a pronounced depletion of Rac1 activity within the invadopodium core (Fig. 3a,b and Supplementary Video 2). This exclusion of Rac1 activity was not due to loss of Rac1 from the invadopodia, as endogenous Rac1 or CFP–Rac1 is uniformly distributed (Fig. 3c and Supplementary Fig. 2a). A similar reduction in Rac1 activity was observed in fixed cells using Cy5-dye-labelled cortactin (Fig. 3d). MDA-MB-231 cells also show reduced Rac1 activity at invadopodia (Fig. 3e,f). Accumulated cortactin puncta are non-vesicular and degrade matrix (Supplementary Fig. 2b,c).

We examined how Rac1 is involved in invadopodia maintenance by observing Rac1 activity in steady-state invadopodia over a period of 3h. We began imaging pre-formed invadopodia and examined Rac1 activity throughout their lifetimes. We observed that when a stable invadopodium is present, Rac1 activity inside the invadopodium is significantly lower when compared with the region just outside (Fig. 3b), until the invadopodium disappears (Fig. 3g and Supplementary Video 3). At this point Rac1 activity is elevated (Fig. 3h and Supplementary Fig. 2d). This suggests that Rac1 activation could be associated with disassembly of invadopodia. As a control we compared this Rac1 activity profile to RhoA activity. As shown previously for EGF-induced invadopodia, steady-state RhoA activity also showed no significant changes (Supplementary Fig. 2e).
Figure 1 Rac1 depletion increases invadopodia degradation activity. (a) Western blot of cell lysates of control and Rac1-siRNA-treated MTLn3 cells, blotted for Rac1 and β-actin. A representative image is shown from 3 blots. (b) MTLn3 cells transfected with control or Rac1 siRNA and plated on Alexa-405-conjugated gelatin overnight. Arrows point to invadopodia and sites of degradation. Scale bars, 10 µm. Representative image sets are shown from 50 image sets each for the control and Rac1 siRNA. (c) Quantification of mean degradation area per cell from b, including Rac1 inhibitor NSC23766 treatment at 100 µM. n = 60 fields for each condition, pooled from 5 independent experiments; error bars are s.e.m. Student’s t-test was used. **P = 0.00022, ^^^P = 0.011639. (d) Quantification of average number of invadopodia per cell, and mean invadopodia lifetime from time-lapse movies over a period of 6 h. Invadopodia lifetime was quantified as the time in minutes from the appearance to the disappearance of RFP–cortactin and Tks5–GFP co-localization spots. n = 9 invadopodia for each condition, pooled from 3 independent experiments; error bars are s.e.m. Student’s t-test was used. P = 0.418134 (number of invadopodia per cell, control versus Rac1 siRNA), P = 0.115958 (number of invadopodia per cell, control versus NSC23766), **P = 6.531 × 10⁻²⁷ (invadopodia lifetime). (e) MTLn3 cells contain Rac1 and Rac3, but not Rac2, and Rac1 siRNA knockdown does not alter the levels of Rac3. Western blot of MTLn3 cells treated with control or Rac1 siRNA and blotted for Rac1, Rac2 and β-actin (top left). Western blot of MTLn3 cells treated with control or Rac1 siRNA and blotted for Rac1 and Rac3 and β-actin (bottom left), and quantification of Rac3 protein levels in control and Rac1 knockdown conditions (right). n = 3 independent experiments, error bars are s.e.m. Student’s t-test was used. P = 0.3. Representative blots are shown from 3 blots for each condition. Uncropped images of blots are shown in Supplementary Fig. 9.

As the evidence pointed to Rac1 inducing invadopodia disassembly, we investigated downstream targets. Two well-studied Rac1 effectors are the Paks and the Wave protein family. Pak1–cortactin axis propagates Rac1-dependent invadopodia disassembly

Pak1–cortactin axis propagates Rac1-dependent invadopodia disassembly

As the evidence pointed to Rac1 inducing invadopodia disassembly, we investigated downstream targets. Two well-studied Rac1 effectors are the Paks and the Wave protein family. Pak1–cortactin axis propagates Rac1-dependent invadopodia disassembly.
a GTase, Pak1 phosphorylates cortactin on Ser 113, causing the release of cortactin from F-actin to promote the release of cortactin from F-actin and to promote the release of cortactin from F-actin. As Pak1 is one of the main downstream effectors of Pak1,
Figure 3 Rac1 activity at invadopodia. (a) Close-up of a single invadopodium forming at specific time points after EGF stimulation (Supplementary Video 2). Scale bar, 2 μm. Representative time-lapse panel is shown from 15 cell movies. (b) Linescan measurement along invadopodia of Rac1 activity and cortactin fluorescence. Invadopodia measured were approximately 1.3 μm in diameter, with a small percentage closer to 2 μm. n = 27 invadopodia, pooled from 6 independent experiments, with s.e.m. P = 0.047 (Student’s t-test). The x axis is the absolute distance measured. The fluorescence data sets were aligned to the maximal centre value position of cortactin fluorescence taken as the centre of the invadopodia cores. (c) Rac1 and cortactin antibodies were used to show endogenous localization of each protein. Unlike cortactin, which is concentrated in actively degrading invadopodia (white outlined insets), endogenous Rac1 (in either GDP- or GTP-bound conformations) is uniformly distributed throughout the cell. Scale bar, 10 μm. Representative image set from 17 image sets. (d) Rac1-biosensor-expressing MTLn3 cell plated on Alexa-568-conjugated gelatin and stained for cortactin using Cy5 post-fixation to exclude possibilities of spurious FRET between Venus and TagRFP–cortactin. Arrows point to exclusion of Rac1 activity (left) localized to spots of cortactin accumulation (middle) and holes in the matrix (right), indicating a mature, functional invadopodium. Scale bar, 10 μm. Representative image set from 22 image sets. (e) MDA-MB-231 cell expressing Rac1 biosensor, fixed and stained with antibody against endogenous cortactin. Dashed circles show invadopodia location and exclusion of Rac1 activity. Scale bar, 10 μm. Representative image set from 10 image sets. (f) Quantification of cortactin intensity and Rac1 biosensor activity inside and outside cortactin-enriched spots. Rac1 activity is lower inside invadopodia and higher outside, whereas cortactin accumulation is high inside and low outside. n = 19 invadopodia, pooled from 3 independent experiments, with s.e.m. Student’s t-test: **P = 1.2486 × 10^{-10} (cortactin), **P = 2.82709 × 10^{-5} (Rac1). (g) Representative biosensor-expressing MTLn3 cell at steady state with TagRFP–cortactin marker. Close-up of pre-formed invadopodium (T = X), and later time point when the invadopodium disappeared (T = X + 24 min). Scale bar, 2 μm. Representative images are shown from 50 cell movies. (h) Close-up of another invadopodium in its final stages. White and black circles show the invadopodium location and corresponding Rac1 activity levels. Left: steady-state invadopodia and associated reduced Rac1 activity. Middle: moment of elevated Rac1 activity at the core of invadopodia just before disappearance. Right: the same region after the disappearance of invadopodia. Scale bar, 2 μm. Representative image sets are shown from 4 cell movies that showed elevated activity of Rac1 before invadopodia disappearance. Total steady-state cell movie sets = 50.
Localized photoactivation of Rac1 induces invadopodia disassembly. (a, b) Representative images of MTLn3 cells triple-transfected with either PA-Rac1 (a) or C450A PA-Rac1 (b), and two invadopodia markers (Tks5 and cortactin), before and after photoactivation (PA). PA-Rac1 is uniformly distributed throughout the cells and not specifically concentrated at invadopodia structures, similarly to endogenous Rac1 distribution. Blue circles represent photoactivated region. Blue arrows point to same region after photoactivation (from Supplementary Video 4 and 5). Scale bars, 10µm. (a) Representative image set is shown from 40 image sets. (b) Representative image set is shown from 30 image sets. (c) Quantification of a and b. n=11 cells for each condition, pooled from 3 independent experiments, error bars are s.e.m. Student’s t-test was used. *P=1.19176 x 10^{-47}. (d) Quantification of percentage of invadopodia that disappear as a result of photoactivation with WT PA-Rac1 and C450A PA-Rac1. n=46 invadopodia (PA-Rac1), pooled from 3 independent experiments, n=19 invadopodia (C450A), pooled from 3 independent experiments, error bars are s.e.m. Student’s t-test was used. **P=0.00015175.

Next, we used RNAi against Pak1 (Fig. 5b and Supplementary Fig. 1h), recapitulating the results of Rac1 knockdown by increasing matrix degradation (Fig. 5c and Supplementary Fig. 1a–d). Invadopodia formation was unaffected by Pak1 siRNA, with no change in average invadopodia per cell, but invadopodia lifetime increased (Fig. 5d). Collectively, these results implicated Pak1 as
Pak1 links Rac1 to cortactin for invadopodia disassembly. (a) MTLn3 cell plated overnight on Alexa-568-conjugated gelatin and fixed and stained with cortactin or Pak1 antibodies to show endogenous localization. Scale bar, 10 µm. Representative image set is shown from 30 image sets. (b) Western blot of cell lysates of control and Pak1-siRNA-treated MTLn3 cells blotted for Pak1 and β-actin. A representative image is shown from 2 blots. (c) MTLn3 cells transfected with control siRNA or Pak1 siRNA and plated overnight on Alexa-568-conjugated gelatin, and fixed and stained with cortactin antibody (left). Yellow arrows show mature invadopodia and sites of matrix degradation. Quantification of mean degradation area per field (right). Scale bars, 10 µm. n = 45 fields for each condition, pooled from 4 independent experiments, error bars are s.e.m. Student’s t-test was used. *P = 0.041. Representative image set is shown from 40 image sets. (d) Quantification of mean invadopodia lifetime in control and Pak1-siRNA-treated cells, from time-lapse movies over a period of 6 h (left), and average number of invadopodia per cell (right). Invadopodia lifetime was quantified as the time in minutes from the appearance to the disappearance of RFP–cortactin and Tks5–GFP co-localized spots. n = 13 invadopodia for each condition, pooled from 3 independent experiments, error bars are s.e.m. Student’s t-test was used. **P = 2.883 × 10⁻¹², P = 0.364372402 (number of invadopodia per cell). (e) Representative images of a MTLn3 cell transfected with Pak1 siRNA, then triple-transfected with PA-Rac1 and two fluorescent invadopodia markers (cortactin and Tks5) before and after photoactivation (PA) (from Supplementary Video 6). Blue circles represent photoactivated region. Blue arrows point to the same region after photoactivation. Scale bar, 10 µm. Representative image set is shown from 27 image sets. Uncropped images of blots are shown in Supplementary Fig. 9.

After establishing the Rac1–Pak1 link, we examined whether the phosphorylation of cortactin by Pak1 was important. Focal uncaging of PA-Rac1 with an overexpressed mTagRFP–cortactin containing a non-phosphorylatable point mutation (S113A) where Pak1 is known to phosphorylate cortactin disassembled the invadopodia only 30% of the time, but the leading edge ruffling and lamellipodia protrusions were unaffected (Supplementary Fig. 3b,e and Video 7). Expression of the cortactin mutant alone

the immediate downstream target of Rac1 at the invadopodia to mediate disassembly.

To determine whether Pak1 is involved in this pathway, we silenced Pak1 and observed invadopodia dynamics on focal uncaging of Rac1. Uncaging PA-Rac1 in the Pak1 knockdown background did not cause the disappearance of invadopodia (approximately 19% invadopodia disappearance), but produced edge ruffling and a lamellipodium (Fig. 5e; Supplementary Fig. 3e and Video 6).
increases matrix degradation similar to depletion of Rac1 or Pak1 (Supplementary Fig. 3c), and increases invadopodia lifetime (Supplementary Fig. 3d).

Moreover, we used the proximity ligation assay (PLA) between cortactin and phospho-serine to measure the total phospho-serine levels of cortactin at invadopodia demonstrating whether the Rac1–Pak1 pathway leads to changes in the total phospho-serine content of cortactin at invadopodia in situ. Total cortactin phospho-serine is reduced significantly when Pak1 was silenced, supporting the link between Pak1 and cortactin (Supplementary Fig. 3f,g).
These results suggest that the Rac1–Pak1 pathway probably produces a destabilization of invadopodia structures through serine phosphorylation of cortactin.

TrioGEF activates Rac1 at invadopodia to induce disassembly

Spatial regulation of GTPases is crucial to their function and because they are activated by GEFs, we sought to determine which GEF may activate Rac1 at invadopodia for disassembly. First, we used the Rac1-inhibitor NSC23766, which inhibits Rac1 activation by TrioGEF and Tiam1 (ref. 46), and performed an invadopodia lifetime study over a 6-h time period. Untreated cells had average invadopodia lifetimes of 30 min (range: 14 min–2 h), measured by nTagRFP–cortactin and Tks5–GFP co-localization (Fig. 6a and Supplementary Video 8). In NSC23766-treated cells, invadopodia did not disappear during the time frame of image acquisition (Fig. 6a and Supplementary Video 9).

We used another Rac1-inhibitor Z62954982, which inhibits Rac1–Tiam1 interaction but not TrioGEF (ref. 47). The distribution of invadopodia lifetimes was similar to the control after the Z62954982 treatment, suggesting that Trio may activate Rac1 at invadopodia (Fig. 6a and Supplementary Video 10). Endogenous TrioGEF is localized to invadopodia (Fig. 6b), but endogenous Tiam1 does not (Supplementary Fig. 4a). No Tiam1–GFP accumulated at invadopodia (Supplementary Fig. 4b), and a dominant-negative mutant Tiam1 (ref. 48) did not affect invadopodia functions (Supplementary Fig. 4c). Furthermore, silencing TrioGEF (Fig. 6c and Supplementary Fig. 1h) recapitates the increase in degradation and invadopodia lifetimes (Fig. 6d,e and Supplementary Fig. 1a–d), but the average number of invadopodia per cell does not change (Fig. 6f), similar to the Rac1 RNAi result. We overexpressed the constitutively activated (Trio-D1SH3; ref. 49) and dominant-negative (N1406A-D1407A) form of the same Trio-D1SH3 (ref. 50), and observed that the active form reduced matrix degradation, but the dominant-negative form produced increased degradation (Fig. 6e). Full-length WT, dominant-negative, and the short dominant-negative Trio-D1SH3 are present in about 20% of invadopodia, but the Trio-D1ΔSH3-dominant-negative form lacking the tandem SH3 domain cannot localize at invadopodia, and EGF stimulation does not affect the localization of full-length Trio (Supplementary Fig. 5a–c). This means that Trio is recruited transiently to invadopodia through its SH3 domain at DH-PH-1 (Supplementary Fig. 5d) because less than 30% of invadopodia have Trio accumulation. Moreover, Trio is increased at invadopodia when endogenous Rac1 is silenced (Supplementary Fig. 5e), probably as a consequence of its disassembly defect. Trio knockdown lowers the global Rac1 activity levels in cells (Fig. 7a,b), making the difference between the inside and outside of invadopodia less pronounced (Fig. 7c). Furthermore, we performed PLA under Trio knockdown and found that the total phospho-serine levels on cortactin at invadopodia decreased significantly (Supplementary Fig. 3f,g).

An invadopodia-associated complex of cortactin, paclitax and PKC has been shown previously33, and the Git1–Pix–Pak complex can be recruited to cortactin through Git1 (ref. 52). Pix proteins are GEF for Rac1 and Cdc42 (ref. 53). α- and β-Pix both localize to invadopodia and this recruitment is unaffected by EGF stimulation; however, knocking down either of the endogenous pix isoforms reduced the amount of matrix degradation (Supplementary Fig. 6a–e). As this is the opposite phenotype to Rac1, Pak1 or TrioGEF knockdowns, the Pix proteins are probably involved during other aspects of invadopodia dynamics, but not in disassembly. Moreover, paxillin does not accumulate in the core of the invadopodia, suggesting that Pip localization at invadopodia is not paxillin-mediated (Supplementary Fig. 6f).

Trio–Rac1–Pak1 axis impacts invasion in three-dimensional environment

The pro-invasive role of Rac1 in aggressive tumours is documented in a number of systems15–20. We sought to determine whether the Trio–Rac1–Pak1 axis impacts three-dimensional (3D) invasion. Invasion is significantly impacted when Trio, Rac1 or Pak1 is silenced in metastatic tumour cells but not in MCF10A cells (Fig. 8a and Supplementary Fig. 1a–f). Motility in 3D collagen matrices is significantly impaired on Rac1, Pak1 or Trio depletion (Fig. 8b–d). Furthermore, matrix degradation in 3D is increased in the absence of the Trio–Rac1–Pak1 axis (Fig. 8e,f), suggesting that the same mechanism that aberrantly enhances the matrix degradation in 2D also operates under 3D conditions. These results suggest that proper coordination of matrix degradation and locomotory protrusions is required for efficient invasion in 3D environment.

DISCUSSION

We report the localized activation dynamics of Rac1 directly regulating the stability and disassembly of invadopodia through Pak1 and cortactin phosphorylation in metastatic breast carcinomas (Fig. 8g). We show that TrioGEF activates Rac1 at invadopodia, and this Trio–Rac1–Pak1 cascade is regulated independently from the lamellipodia compartment. This is probably through different immediate downstream effectors, because deleping either Trio or Pak1 did not abrogate EGF-stimulated lamellipodia protrusion, but depleting Rac1 did (Supplementary Fig. 7a). Importantly, we provided conserved observations for the Trio–Rac1–Pak1 axis in metastatic breast carcinomas but not in normal epithelial cells; a critical distinction in the signalling mechanisms used to affect efficient invasions between malignant versus normal cells.

As invadopodia are transient subcellular structures, we approached the problem by building a biosensor for Rac1. The fundamental difference between our sensor and the previous-generation system24 is that the latter is constitutively anchored to the plasma membrane through the k-Ras CAAX box34,35, producing GEF–GAP sensors. In our system the sequestration by GDI is correctly taken into account33.

Our data and other studies suggested that invasive tumours use two separate downstream signalling pathways to achieve efficient migration on Rac1 activation. The lamellipodia driven by Rac1 is Wave2-dependent13,34, indeed, we show here that in a Pak1-silenced background, photoactivation of Rac1 at an invadopodium does not result in its disassembly, and edge ruffling and lamellipodia protrusions are unaffected. The mechanism by which Pak1 enhances the turnover of invasive processes agrees with other studies suggesting Pak1 inducing the turnover of podosomes43,44, and cortactin phosphorylation by Pak destabilizing F-actin–cortactin association43. These studies and our results support the idea that the Rac1–Pak1 axis induces the turnover of many of these adhesive and invasive processes, including focal adhesions55–57.

Invasdopodia formation is a multistep process9. Efficient turnover of invadopodia seems critical to effective invasion. Previously, focal...
adhesion kinase was reported to antagonize c-Src to regulate the total number of invadopodia in MTLn3 cells; thus, overexpression of c-Src can produce greater numbers of structures58. We show that the number of structures is independently regulated by c-Src (refs 8,58,59) and not the Trio–Rac1–Pak1 axis (Supplementary Fig. 7b,c).

Cancer invasion in vivo is a complex process involving localized regulations of signalling proteins, including GTPases. GEFs are established spatial activators of GTPases (ref. 37). The specific mechanism of TrioGEF control is not well known; however, we established a role for Trio as the activator of Rac1 at invadopodia. Trio contains two DH–PH domains, which target RhoG and Rac1, or RhoA (ref. 60). In glioblastoma, RhoG is involved in invadopodia formation25. In breast carcinoma, siRNA of RhoG has no effect on matrix degradation nor does RhoG accumulate at invadopodia (Supplementary Fig. 8). The difference could be because glioblastoma is not derived from epithelium and invades brain tissue locally; thus, the ECM environment is much different in brain than epithelium61. We showed that the SH3 domain of Trio is required for transient invadopodia localization (Supplementary Fig. 5d). These observations clearly point to the importance of localized regulation of GTPases within subcellular compartments; indeed, when TrioGEF was silenced, overall Rac1 activity was reduced by approximately 20% (Fig. 7). Although this had no effect on EGF-stimulated leading edge protrusion (Supplementary Fig. 7a), it clearly impacted invadopodia as both the lifetimes and matrix degradation were significantly altered. Thus, the functional regulation of how Trio activates Rac1 only at a specific time and in a context of invadopodia disassembly needs to be further explored. Also, other mechanisms may cooperate with the Trio–Rac1–Pak1 axis during turnover of invadopodia59.

Figure 7 TrioGEF affects Rac1 biosensor activation levels. (a) A MTLn3 cell expressing Rac1 biosensor and treated with control or Trio GEF siRNA plated on Alexa-405-conjugated gelatin and fixed and stained for endogenous cortactin. White squares are magnified (bottom panels) to show a mature, degrading invadopodium. Black circle highlights Rac1 activity corresponding to the invadopodium. Scale bars, 10 μm. Representative image set from 70 image sets. (b) Quantification of average whole-cell Rac1 biosensor activity in control and TrioGEF RNAi-depleted cells. Knocking down Trio causes Rac1 activity levels to drop outside the invadopodia. n = 18 cells for each condition, pooled from 3 independent experiments, error bars are s.e.m. Student’s t-test was used. **P = 1.50643 × 10⁻⁵. (c) Quantification of cortactin intensity in relation to Rac1 biosensor activity at invadopodia in control and TrioGEF-siRNA-treated cells. n = 14 invadopodia for each condition, pooled from 3 independent experiments, error bars are s.e.m. Student’s t-test was used. P = 3.1981 × 10⁻¹⁰, comparing the average Rac1 activity levels outside the invadopodia between the control versus the TrioGEF knockdown.
Figure 8 Trio–Rac1–Pak1 signalling axis is necessary for efficient invasion and 3D motility. (a) MTLn3 cells transfected with control, Rac1, Pak1 and Trio siRNA show reduced invasion through Matrigel. n = 12 fields pooled from 3 independent experiments per condition, error bars are s.e.m. Student’s t-test was used. ***P = 0.00065 (Rac1), ***P = 5.2 × 10⁻⁷ (Pak1), ***P = 0.00039 (Trio). (b) MTLn3 cells transfected with control, Rac1, Pak1 and Trio siRNA show reduced migration speed in 3D matrices. n = 24 cells from one experiment per condition were analysed, error bars are s.e.m. Student’s t-test was used. ***P = 1.88 × 10⁻¹⁵ (Rac1), ***P = 1.32 × 10⁻⁵ (Trio), *P = 0.022 (Pak1). (c) MTLn3 cells transfected with control, Rac1, Pak1 and Trio siRNA show reduced total distance migrated by cells over time in 3D matrices. n = 24 cells from one experiment per condition were analysed, error bars are s.e.m. Student’s t-test was used. ***P = 7.86 × 10⁻¹⁶ (Rac1), ***P = 2.24 × 10⁻⁵ (Trio), *P = 0.023 (Pak1). (d) Representative plots of x–y displacement (in micrometres) of 4 individual cell traces of cells moving in 3D matrices. Each panel shows 4 representative cell motility traces, out of a total of 24 cell traces per condition. (e) Representative images of the maximum projections of 100 µm stacks of MTLn3 cells treated with Trio, Rac1 or Pak1 siRNA and embedded in a 3D collagen-Matrigel matrix containing DQ-collagen. DQ-Col I intensity and DAPI staining is shown. Scale bar, 50 µm. Representative image set from 17 image sets for the control condition, from 18 image sets for Rac1 siRNA, from 17 image sets for Pak1 siRNA, and from 19 image sets for Trio siRNA. (f) Quantification of mean DQ-collagen (degradation) per field in MTLn3 cells treated with control, Rac1 Pak1 or Trio siRNA. n = 16 fields per condition, pooled from 3 independent experiments, error bars are s.e.m. Student’s t-test was used. **P = 0.0059 (Rac1), ***P = 0.00017 (Pak1), **P = 0.009 (Trio). (g) Model for the regulation of invadopodia turnover. For invadopodia to disassemble, Rac1 needs to be activated by TrioGEF. Downstream of Rac1, Pak1 phosphorylates cortactin at Ser 113, releasing cortactin and presumably mediating the destabilization of the F-actin filaments, disassembling the local actin cytoskeleton and ultimately the invadopodium structure.
On the basis of our observations, we propose two models where the Rac1-mediated disassembly of invasive protrusions could be advantageous for tumour cells. In 3D invasion in vivo, invadopodia and lamellipodia compartments converge into a single leading front⁴⁸. Rac1 activation at the leading front propagates through two separate downstream effector pathways to mediate: disassembly and clearance of components necessary for matrix degradation (through Pak1); and simultaneously, extend protrusions with locomotive characteristics as opposed to degradative (through Wave2). This is an efficient mechanism for switching between these two characteristics by a single upstream regulator. This model is consistent with reports of Rac1 producing pro-invasive phenotypes⁵⁰, because an ability to increase the invadopodia turnover could enhance the ability of tumours to switch rapidly between invasive versus locomotive protrusions. Indeed, cells depleted of Trio–Rac1–Pak1 have motility defects in 3D matrices (Fig. 8a–d). Alternatively, invasive cells in vivo continuously probe the microenvironment within the ECM to detect regions optimal for invasion⁵¹. Thus, microenvironmental cues could provide feedback to drive the turnover of degradative protrusions through regulation of localized Rac1 activity modulating the local turnover rates of lamellipodia versus invadopodia. In both models, our observations are consistent with the idea that the turnover of invadopodia is directly regulated through a mechanism activated by Rac1. Under normal conditions, invasive and locomotive protrusions are both cyclical and coordinated, where the end of one is coupled to the start of the other. Thus, when one component is perturbed, the entire cell motility cycle and the invasion machinery become stalled, resulting in aberrantly increased local matrix degradation (Fig. 8e,f) but impaired overall invasion and motility in 3D (Fig. 8a–d). This coordination is critical to efficient invasion and migration in 3D where all pieces of the system need to be functional, unlike in stimulated protrusions in 2D where the initial phase of protrusion formation can be unaffected by Pak1 or Trio depletion but not Rac1 (Supplementary Fig. 7a). By enhancing the turnover dynamics of invadopodia, Rac1 contributes to efficient cycling of matrix degradation versus locomotory protrusions in invasive tumours, allowing for facile cell migration in 3D.

METHODS

Methods and any associated references are available in the online version of the paper.

Note: Supplementary Information is available in the online version of the paper.

ACKNOWLEDGEMENTS

This work was supported by GM093121 (Y.M., J.J.B.-C., L.H.), T32GM007491 (Y.M., V.M.), and CA150344 (J.J.B.-C., J.C.). We acknowledge G. Rosenberger (Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf Campus, Germany) for providing the c-Parx–GFP construct⁵⁸, J. van Buul (Sanquin Research and Landsteiner Laboratory, Department of Molecular Cell Biology, Academic Medical Center, University of Amsterdam, The Netherlands) for providing the Trio constructs⁵⁹, and M. Way (Cell Motility Laboratory, Cancer Research UK, UK) for providing the c-Src constructs⁶⁰. This work is in partial fulfilment of the PhD requirements for Y.M. We thank the J. Condeelis, J. Segall and D. Cox laboratory members for their helpful discussions.

AUTHOR CONTRIBUTIONS

Y.M. and L.H. designed and built the biosensor. Y.M., J.J.B.-C., J.C. and L.H. designed the biological experiments. Y.M., J.J.B.-C. and V.M. performed the experiments. J.C. and L.H. advised and gave critical feedback. Y.M. wrote the original manuscript. J.J.B.-C. and L.H. revised the manuscript. J.J.B.-C., V.M., J.C. and L.H. finalized the manuscript.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

Published online at www.nature.com/dofinder/10.1038/ncb2972

Reprints and permissions information is available online at www.nature.com/reprints

1. Fidler, I. J. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat. Rev. Cancer 3, 453–458 (2003).
2. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).
3. Conen, E. Tracking the seed and tending the soil: evolving concepts in metastatic breast cancer. Discov. Med. 14, 97–104 (2012).
4. Thiery, J. P. Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2, 442–454 (2002).
5. Linder, S., Wiesener, C. & Himmel, M. Degrading devices: invadosomes in proteolytic cell invasion. Annu. Rev. Cell Dev. Biol. 27, 185–211 (2011).
6. Murphy, D. A. & Courtneidge, S. A. The ‘ins’ and ‘outs’ of podosomes and invadopodia: characteristics, formation and function. Nat. Rev. Mol. Cell Biol. 12, 413–426 (2011).
7. Coopman, P. J., Do, M. T., Thompson, E. W. & Mueller, S. C. Phagocytosis of cross-linked gelatin matrix by human breast carcinoma cells correlates with their invasive capacity. Clin. Cancer Res. 4, 507–515 (1998).
8. Oser, M. et al. Contactin regulates coflin and WAPSp activities to control the stages of invadopodium assembly and maturation. J. Cell Biol. 186, 571–587 (2009).
9. Struckhoff, A. P., Rana, M. K. & Worthylake, R. A. RhoA can lead the way in tumor cell invasion and metastasis. Front. Biosci. 16, 1915–1926 (2011).
10. Bravo-Cordero, J. J. et al. A novel spatiotemporal RhoC activation pathway locally regulates coflin activity at invadopodia. Curr. Biol. 21, 635–644 (2011).
11. Jaffe, A. B. & Hall, A. Rho GTPases: biochemistry and biology. Annu. Rev. Cell Dev. Biol. 21, 247–269 (2005).
12. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002).
13. Yamaguchi, H. et al. Molecular mechanisms of invadopodium formation: the role of the N-WASP-Par6 complex pathway and cofillin. J. Cell Biol. 168, 441–452 (2005).
14. Sakurai-Yageta, M. et al. The interaction of IQGAP1 with the exocyst complex is required for tumor cell invasion downstream of Cdc42 and RhoA. J. Cell Biol. 181, 997–1008 (2008).
15. Keele, P. J., Westwick, J. K., Whitehead, I. P., Der, C. J. & Parise, L. V. Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through Ph(3)K. Nature 390, 632–636 (1997).
16. Sahai, E. & Marshall, C. J. RHO-GTPases and cancer. Nat. Rev. Cancer 2, 133–142 (2002).
17. Baugher, P. J., Krishnamoorthy, L., Price, J. E. & Dharmawardhane, S. F. Rac1 and Rac3 isoform activation is involved in the invasive and metastatic phenotype of human breast cancer cells. Breast Cancer Res. 7, R965–R974 (2005).
18. Sun, D., Xu, D. & Zhang, B. Rac signaling in tumorigenesis and as target for anticancer drug development. Drug Resist. Updates 9, 274–287 (2006).
19. Vega, F. M. & Ridley, A. J. Rho GTPases in cancer cell biology. FEBS Lett. 582, 2093–2101 (2008).
20. Barriero-Real, L. & Kazaniotis, M. G. Rho GEFs and cancer: linking gene expression and metastatic dissemination. Sci. Signal. 5, pe43 (2012).
21. Fritz, G., Just, I. & Kaina, B. Rho GTPases are over-expressed in human tumors. Int. J. Cancer 81, 682–687 (1999).
22. Nakahara, H. et al. Involvement of Cdc42 and Rac small G proteins in invadopodia formation of RPMI7951 cells. Genes Cells 8, 1019–1027 (2003).
23. Pignatelli, J., Tumbarello, D. A., Schmidt, R. P. & Turner, C. E. Hic-5 promotes invadopodia formation and invasion during TGF-beta-induced epithelial-mesenchymal transition. J. Cell Biol. 197, 421–437 (2012).
24. Li, A. et al. Activated mutant NRas(Q61K) drives aberrant melanocyte signaling, survival, and invasiveness via a Rac1-dependent mechanism. J. Invest. Dermatol. 132, 2610–2621 (2012).
25. Kwiatkowska, A. et al. The small GTPase RhoG mediates glioblastoma cell invasion. Mol. Cancer 11, 65 (2012).
26. Krupnick, V. S. et al. Localized Rac activation dynamics visualized in living cells. Science 290, 333–337 (2000).
27. Yu, K. I. et al. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461, 104–108 (2009).
28. El-Sibai, M. et al. RhoA/ROCK-mediated switching between Cdc42- and Rac1-dependent protrusion in MTLLn3 carcinoma cells. Exp. Cell Res. 314, 1540–1552 (2008).
29. Calleja, R., Young, R., Olive, M. & Reeves, W. J. Jr Breast tumor cell lines from pleural effusions. J. Natl Cancer Inst. 53, 661–674 (1974).
30. Lasfargues, E. Y., Coutinho, W. G. & Redfield, E. S. Isolation of two human tumor epithelial cell lines from solid breast carcinomas. J. Natl Cancer Inst. 61, 967–978 (1978).
31. Littlewood-Evans, A. J. et al. The osteoclast-associated protease cathepsin K is expressed in human breast carcinoma. Cancer Res. 57, 5386–5390 (1997).
32. Tait, L., Soule, H. D. & Russo, J. Ultrastructural and immunocytochemical characterization of an immortalized human breast epithelial cell line, MCF-10. Cancer Res. 50, 6087–6094 (1990).

33. Pertz, O., Hodgson, L., Klemke, R. L. & Hahn, K. M. Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 440, 1069–1072 (2006).

34. Itoh, R. E. et al. Activation of rac and cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells. Mol. Cell Biol. 22, 6582–6591 (2002).

35. Nakamura, T., Kurokawa, K., Kiyokawa, E. & Matsuda, M. Analysis of the spatiotemporal activation of rho GTPases using Raichu probes. Methods Enzymol. 406, 315–332 (2006).

36. Lei, M. et al. Nck adaptor proteins link Tks5 to invadopodia actin regulation and ECM degradation. J. Cell Sci. 227, 2727–2740 (2009).

37. Gao, Y., Dickerson, J. B., Guo, F., Zheng, J. & Zheng, Y. Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc. Natl Acad. Sci. USA 101, 7618–7623 (2004).

38. Rossman, K. L., Der, C. J. & Sondek, J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat. Rev. Mol. Cell Biol. 167–180 (2005).

39. Desmarais, V. et al. N-WASP and cortactin are involved in invadopodium-dependent chemotaxis to EGF in breast tumor cells. Cell Motil. Cytoskeleton 66, 303–316 (2009).

40. Styli, S. S. et al. Nck adaptor proteins link Tks5 to invadopodia actin regulation and ECM degradation. J. Cell Sci. 122, 2727–2740 (2009).

41. Whale, A., Hashim, F. N., Fram, S., Jones, G. E. & Wells, C. M. Signalling to cancer invasion: coordination of Rho GTPase activities during cell protrusion. Nature 461, 99–103 (2009).

42. Machacek, M. et al. Coordination of Rho GTPase activities during cell protrusion. Nature 461, 99–103 (2009).

43. Desmarais, V. et al. N-WASP and cortactin are involved in invadopodium-dependent chemotaxis to EGF in breast tumor cells. Cell Motil. Cytoskeleton 66, 303–316 (2009).

44. Webb, B. et al. PAK1 induces podosome formation in A7r5 vascular smooth muscle cells in a PAK-interacting exchange factor-dependent manner. Am. J. Physiol. Cell Physiol. 289, C898–C907 (2005).

45. Key, G., Dickerson, J. B., Guo, F., Zheng, J. & Zheng, Y. Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc. Natl Acad. Sci. USA 101, 7618–7623 (2004).

46. Ferri, N., Corsini, A., Bottino, P., Clerici, F. & Contini, A. Virtual screening approach for the identification of new Rac1 inhibitors. J. Med. Chem. 52, 4087–4090 (2009).

47. Stam, J. C. et al. Targeting of Tiam1 to the plasma membrane requires the cooperative function of the N-terminal pleckstrin homology domain and an adjacent protein interaction domain. J. Biol. Chem. 272, 28447–28454 (1997).

48. Van Rijssel, J., Hoogenbeem, M., Wester, L., Hordijk, P. L. & Van Buul, J. D. The N-terminal DH-PH domain of Trio induces cell spreading and migration by regulating lamellipodia dynamics in a Rac1-dependent fashion. PLoS ONE 7, e29912 (2012).

49. Debreceni, B. et al. Mechanisms of guanine nucleotide exchange and Rac-mediated signaling revealed by a dominant negative trio mutant. J. Biol. Chem. 279, 3777–3786 (2004).

50. Bowden, E. T., Barth, M., Thomas, D., Glazer, R. I. & Mueller, S. C. An invasion-related complex of cortactin, paxillin and PKCmu associates with invadopodia at sites of extracellular matrix degradation. Oncogene 18, 4440–4449 (1999).

51. Manabe, R., Kovalenko, M., Webb, D. J. & Horwitz, A. R. GIT1 functions in a motile, multi-molecular signaling complex that regulates protrusive activity and cell migration. J. Cell Sci. 115, 1497–1510 (2002).

52. Frank, S. R. & Hansen, S. H. The PIX-GIT complex: a G protein signaling cassette in control of cell shape. Semin. Cell. Dev. Biol. 19, 234–244 (2008).

53. Sarmiento, C. et al. WASP family members and formin proteins coordinate regulation of cell protrusions in carcinoma cells. J. Cell Biol. 180, 1245–1260 (2008).

54. Manser, E. et al. Expression of constitutively active alpha-PAK reveals effects of the kinase on actin and focal complexes. Mol. Cell Biol. 17, 1129–1143 (1997).

55. Frost, J. A., Khokhlatchev, A., Stipp, S., White, M. A. & Cobb, M. H. Differential effects of PAK1-activating mutations reveal activity-dependent and -independent effects on cytokinetic regulation. J. Biol. Chem. 273, 28191–28198 (1998).

56. Kloss, W. B., Daniels, R. H., Otte, C., Bokoch, G. M. & Schwartz, M. A. A role for p21-activated kinase in endothelial cell migration. J. Cell Biol. 147, 831–844 (1999).

57. Chan, K. T., Corteso, C. L. & Huttonlocher, A. FAK alters invadopodia and focal adhesion composition and dynamics to regulate breast cancer invasion. J. Cell Biol. 185, 357–370 (2009).

58. Corteso, C. L. et al. Calpain 2 and PTP1B function in a novel pathway with Src to regulate invadopodia dynamics and breast cancer cell invasion. J. Cell Biol. 180, 957–971 (2008).

59. Van Rijssel, J. & Van Buul, J. D. The many faces of the guanine-nucleotide exchange factor trio. Cell Adh. Migr. 6, 482–487 (2012).

60. Wen, P. Y. & Kesari, S. Malignant gliomas in adults. N. Engl. J. Med. 359, 492–507 (2008).

61. Bravo-Cordero, J. J., Hodgson, L. & Condeelis, J. Directed cell invasion and migration during metastasis. Curr. Opin. Cell Biol. 24, 277–283 (2012).

62. Lee, K. et al. Matrix compliance regulates Rac1b localization, NADPH oxidase assembly, and epithelial-mesenchymal transition. Mol. Biol. Cell 23, 4097–4108 (2012).

63. Gringo, A. et al. PAK4 and alphaPix determine podosome size and number in macrophages through localized actin regulation. J. Cell Biol. 209, 568–579 (2006).

64. Newsome, T. P., Scaplehorn, N. & Way, M. SRC mediates a switch from microtubule- to actin-based motility of vaccinia virus. Science 306, 124–129 (2004).
METHODS

Cell lines. MTLn3 were cultured and transfected as previously described44. MDA-MB-231 (ATCC HTB-26) and BT-549 (ATCC HTB-122) were cultured in DMEM with 10% fetal bovine serum (FBS), antibiotics (Invitrogen) and insulin (for BT-549 only) (Invitrogen), as suggested by ATCC.

MCF10A (ATCC CRL 10317) were cultured following the ATCC protocols. MCF10A were transfected as previously described20. MDA-MD-231 and BT-549 were transfected by nucleofection according to the manufacturer’s protocols (Lonza). All cell lines were mycoplasma tested.

Intramolecular biosensor for Rac1. The biosensor for Rac1 was subcloned within the multiple cloning site (MCS) of pTriEX-His-Myc4 (Novagen) between the Nool and Xhol restriction sites. The construct consisted of the monomeric Cerulean (mCerulean) fluorescent protein8, a BamHI restriction site, two tandem p21-binding domains (PDZ; amino-acid residues 70–149) from Pak1, separated by a HindIII restriction site and GGSGGGSGGS GG linker, the monomeric Venus (mVenus) fluorescent protein9, an EcoRI restriction site, a full-length Rac1, and a Xhol site immediately following the stop codon. mCerulean was subcloned between the NcoI and BamHI MCS restriction sites using the primer pair 5′-CCATGGTGAACAGGGCGGAG-3′ and 5′-GAATCTTGTGACGTCATC-3′. The first PBD was subcloned between the BamHI and HindIII sites using the primer pair 5′-GAATCTAAAGAGGCGGAGGATTTGCTTCT-3′ and 5′-AAGGGTCTGGACGACCTGACCTGATTCATG-3′. The second PBD with HX3D and HX6D GTCase-binding-deficient point mutations was subcloned between the HindIII and Nool sites using the primer pair 5′-AAAGCTTCCACAGCCTTGAGAGGCCTGGCGAAAAGGAGCGCCAGA GATTCTTCCTC-3′ and 5′-CTCTGCCTGATCATGTGACATGCTC-3′. Point mutagenesis was performed using the Quickchange PCR mutagenesis kit (Strategene).

mVenus was subcloned between the Nool and EcoRI sites using the primer pair 5′-GCGGGCCGCAATATGGAAGCCGAGGACAGGTA C-3′ and 5′-CTGTCACTGTCGTCATTGCATGCTC-3′. Full-length Rac1 was subcloned between the Nool and EcoRI sites using the primer pair 5′-GAATCTAAGAGGCGGAGGATTTGCTTCT-3′ and 5′-CTTACAAACAGCAGAGCTGACCTGATTCATC-3′. The design of the biosensor is such that the built-in binding domain does not compete against the binding of endogenous targets by the activated biosensor (Fig. 2c). This feature is critical to reducing potential-negative or overexpression artefacts.

Biosensor validation—fluorescence assay. The biosensor expression construct was transfected into LinXe cells plated 8 x 104 overnight over poly-L-lysine in 6-well plates, using Lipofectamine Plus (Invitrogen) according to the manufacturer’s protocols. The total amount of DNA was 700 ng per well. In cases where the biosensor was co-transfected with upstream regulators, the biosensor/GDI ratio was 1:3. The biosensor/GDI/GEF ratio was 1:3:1:2. At 48 h after transfection, cells were fixed with 3.7% formaldehyde in PBS and their fluorescence spectrum was measured using a confocal microscope (Carl Zeiss, LSM 510) with excitation at 488 nm and a 505 nm long-pass filter. The detection range was set at 600–700 nm for Cy3 and 670–750 nm for Cy5.

Intradopodia degradation assay. All imaging experiments were performed as previously described119,120. Alexa-568 or -488 conjugated thin gelatin matrix (Invitrogen) was prepared on MatTek dishes (MatTek) as previously described118. Gelatin degradation was measured by quantifying the average area of non-fluorescent pixels per field. Approximately 15 random fields were imaged per condition and each independent experiment was performed at least 3 times and averaged. Intradopodia were identified by cortactin and Tks5 staining and manually counted from images.

Reagents and antibodies. mTagRFP–cortactin has been previously described163. Cortactin antibody was purchased from Abcam (ab13333 clone 0.2:1; used at 1:200). Rac1 (sc-95 clone C-11), Pak1 (sc-882 clone N-20), TrioGEF (sc-28564 clone H-120), Tiam1 (sc-872 clone C-20), β-actin (sc-69879 clone AC-15), β-Pi (sc-136035 clone 23) and α-Pi (sc-10927 clone Q-20) antibodies were purchased from Santa Cruz Biotechnologies. RhoG (44-846 clone 1F3 E3; Eina), a third Coolsnap HQII camera (Roper Photometrics) mounted on the bottom 100% throughput port of an Olympus beam-splitter module, and a set of excitation–emission filter wheels to direct the mTagRFP emission, were used on an Olympus IX71 inverted microscope (Olympus) equipped with a Xenon arc lamp. The excitation–emission filter wheel was used to direct the mTagRFP emission. Images were obtained using an Olympus ×60 PlanApoN 1.45 NA UIS2 DIC lens and Metamorph software. Filter sets used for the ratiometric imaging were: mCerulean: ET436-20X, ET480-40M and Tiam-1 PH-CC-Ex (IC50 = 12.2 μM; ref. 47).

Invadopodia degradation assay. All imaging experiments were performed as previously described119,120. Alexa-568 or -488 conjugated thin gelatin matrix (Invitrogen) was prepared on MatTek dishes (MatTek) as previously described118. Gelatin degradation was measured by quantifying the average area of non-fluorescent pixels per field. Approximately 15 random fields were imaged per condition and each independent experiment was performed at least 3 times and averaged. Intradopodia were identified by cortactin and Tks5 staining and manually counted from images.
(Chroma Technology); FRET: ET436-20X, ET535-30M (Chroma Technology); mTagRFP: FF585-29, FF628-32 (Semrock).

The primary fluorescence dichroic turret used a 10/90 reflection/transmittance mirror (Olympus) that provided the compatibility for all of the band-pass filter sets used. Cells were illuminated with a 100 W Hg lamp through a 10% transmittance neutral density filter. At each time point, mCerulean and FRET images were recorded simultaneously for 700 ms with binning 2 × 2 neutral density filter. At each time point, mCerulean and FRET images were recorded simultaneously for 700 ms with binning 2 × 2 neutral density filter. An mTagRFP–cortactin image was then acquired with 500 ms exposure at 2 × 2 binning.

Invadopodia lifetime was measured in MTLn3 cells expressing TagRFP–cortactin and Tks5–GFP plus various experimental conditions. Cells were plated on thin gelatin matrix and imaged for 6 h with 2 min between frames. Lifetime was quantified by measuring the time from appearance of cortactin and Tks5–GFP co-localized spots to time of disappearance.

Image processing. Metamorph software (Molecular Devices) was used to perform image analysis, as previously described. Briefly, images were dark-current, shading-corrected and background-subtracted, followed by a nonlinear coordinate transformation to achieve a pixel-by-pixel matching of all three camera channels. Binary masks generated through intensity thresholding were applied to each emission channel, and the matched FRET and mCerulean image sets were then ratioed to depict Rac1 activation throughout the cell. A linear pseudocolour lookup table was applied, and the ratio values were normalized to the lower scale value. The ratio was corrected for photobleaching using a previously described approach.

Photoactivation. MTLn3 cells were triple-transfected with photoactivatable Rac (PA-Rac; ref. 27) fused to mTagBFP, mTagRFP–cortactin, and Tks5–GFP using Lipofectamine 2000, one day before imaging, and plated on thin-gelatin-coated glass coverslips overnight. Spots (3 nm) where invadopodia were present were irradiated with 1 s pulses of 457 nm light, every 30 s. Cortactin and DIC images were acquired every 5 s for 10 min. Metamorph software was used to measure RFP and GFP intensities.

Invasion assay. A Transwell invasion assay (number 354483 BD, Bioscience) was performed and analysed as previously described.

Three-dimensional motility and matrix degradation assay. Preparation of 3D cultures was done as previously described.

3D motility experiments were performed using a Delta Vision microscope under a ×20 magnification objective lens and imaged every 5 min for 6 h. For DQ-collagen degradation experiments, imaging was performed using a Leica SP5 confocal microscope with a ×20 magnification objective lens. Cells were cultured in a mixture of collagen–Matrigel–DQ-collagen 3D matrices for 16 h before fixation and staining with DAPI. Z-stacks of 100 μm depth at 5 μm Z-increments were acquired and the DQ-collagen degradation index was calculated as summation of the mean florescence intensity per Z-slice over the total number of planes per field in the DQ-type I collagen channel.

Proximity ligation assay. MTLn3 cells were plated on gelatin matrix, fixed, permeabilized, and stained with primary antibodies for cortactin and phakinin and Phalloidin 488.

The proximity ligation assay was performed according to manufacturer’s instructions for the Duolink II Probe anti-rabbit PLUS, PLA probe anti-mouse MINUS, and detection reagent orange (Olink Bioscience).

Statistical analysis. All P values were determined using a Student t-test. No statistical methods were used to pre-determine the sample size; no vertebrate animals were involved. No randomizations were used. The investigators were not blinded to allocation during experiments and outcome assessment. Statistical tests used are stated in every figure legend with P values as appropriate. Data distribution should meet the normal distribution requirements. No estimate of variation.
A Trio–Rac1–Pak1 signalling axis drives invadopodia disassembly

Yasmin Moshfegh, Jose Javier Bravo-Cordero, Veronika Miskolci, John Condeelis and Louis Hodgson

Nat. Cell Biol. **16**, 571–583 (2014); published online 25 May 2014; corrected after print 23 January 2015

In the version of this Article originally published, the Author Contributions section was incorrect and should have read: 'Y.M. and L.H. designed and built the biosensor. Y.M., J-J.B.C., J.C. and L.H. designed the biological experiments. Y.M., J-J.B.C. and V.M. performed the experiments. J.C. and L.H. advised and gave critical feedback. Y.M. wrote the original manuscript. J-J.B.C. and L.H. revised the manuscript. J-J.B.C., V.M., J.C. and L.H. finalized the manuscript.' This has now been corrected in the online versions of the Article.
Supplementary Figure 1 Trio-Rac1-Pak1-axis promote invasion in human invasive tumor cells but not in normal breast epithelial cells, and RNAi specificity. (A) Representative images from human MDA-MB-231 showing cortactin (invadopodia marker) and changes in 405-gelatin matrix-degradation with siRNA against: control, Rac1, Pak1, and Trio. Scale Bar= 10μm. Representative image set is from 40 image sets for Control, from 40 image sets for Rac1 siRNA, from 39 image sets for Pak1 siRNA, and from 41 image sets for Trio siRNA. (B) Left: Quantification of the degradation area per field in MDA-MD-231 from (A). n= 39 fields per condition, pooled from 3 independent experiments. Student’s t-test: ***p=3.18x10⁻⁶(Rac1), ***p=1.67x10⁻⁵(Pak1), ***p=2.81x10⁻⁶(Trio). Right: MDA-MD-231 with control, Rac1, Pak1 and Trio-siRNA show reduced invasion through matrigel. n=24 fields per condition, pooled from 6 independent experiments. Student’s t-test: ***p=0.3(Rac1), p=0.7(Pak1), p=0.7(Trio). (C) Representative images from human BT-549 showing cortactin (invadopodia marker) and changes in 405-gelatin matrix-degradation with siRNA against: control, Rac1, Pak1, and Trio. Scale Bar= 10μm. Representative image set is from 29 image sets for Control, from 28 image sets for Rac1 siRNA, from 35 image sets for Pak1 siRNA, and from 31 image sets for Trio siRNA. (D) Left: Quantification of the degradation area per field in BT-549 from (C). n= 29 fields per condition, pooled from 3 independent experiments. Student’s t-test: *p=0.042(Rac1), *p=0.048(Pak1), **p=0.008(Trio). Right: BT-549 with control, Rac1, Pak1 and Trio-siRNA show reduced invasion through matrigel. n= 16 fields pooled from 4 independent experiments per condition. Student’s t-test: *p=0.01(Rac1), **p=0.009(Pak1), *p=0.02(Trio). (E) Representative images from human MCF10A showing cortactin and the 405-gelatin matrix with siRNA against: control, Rac1, Pak1, and Trio. Scale Bar= 10μm. Representative image set is from 40 image sets for Control, from 40 image sets for Rac1 siRNA, from 43 image sets for Pak1 siRNA, and from 40 image sets for Trio siRNA. (F) Left: Quantification of the degradation area per field in MCF10A from (E). n= 40 fields per condition, pooled from 3 independent experiments. Student’s t-test: p= 0.3(Rac1), p= 0.7(Pak1), p= 0.7(Trio). Right: Invasion through matrigel in MCF10A with control, Rac1, Pak1 and Trio-siRNA. n=24 fields per condition, pooled from 6 independent experiments. Student’s t-test: p=0.4(Rac1), p=0.059(Pak1), p=0.09(Trio). (G) Top: Western blot of Rac1, Pak1, Trio, β-actin, mDia1, GAPDH levels in control, Rac1, Pak1, and Trio-siRNA-treated MDA-MB-231. Middle: Western blot of Rac1, Pak1, Trio, β-actin, mDia1 levels in control, Rac1, Pak1, and Trio-siRNA-treated BT-549. Bottom: Western blot of Rac1, Pak1, Trio, mDia1, GAPDH levels in control, Rac1, Pak1, and Trio-siRNA-treated MCF10A. All blots shown are from single blots. (H) Western blots from MTLn3 with control and single oligonucleotides of Rac1 (top), Pak1 (middle) or TrioGEF (bottom)-siRNA and detecting Rac1, β-actin (top), Pak1, β-actin (middle) or Trio, mDia1 (bottom). Right: Quantifications of matrix-degradation for single oligonucleotide-knockdown condition. n=29 fields for each condition, pooled from 3 independent experiments, with S.E.M. Student’s t-test: **p=1.8x10⁻¹⁷(#2); p=5.7x10⁻¹²(#4: Rac1-siRNA), **p=0.0001(#1); **p=8.7x10⁻⁸(#3: Pak1-siRNA), **p=5.6x10⁻⁷(#1); ***p=9.4x10⁻⁶(#3;TrioGEF-siRNA). Representative blots are shown from 1 blot for Rac1 panel, 1 blot for Pak1 panel and 2 blots for the TrioGEF panel.
Supplementary Figure 2 Rac1 is inactive in, but does not accumulate at mature invadopodia, the structures are non-vesicular, Rac1 activity in disappearing invadopodia, and control RhoA biosensor at steady-state invadopodia. (A) Still-frames taken from a live-cell movie of MTLn3 expressing TagRFP-cortactin and CFP-Rac1. Insets show zoom on a single invadopodium (white box) during formation up to steady-state (top) and before and during disassembly (bottom). Throughout the invadopodium’s lifetime Rac1 does not accumulate at the cortactin spot, and maintains its homogeneous distribution. Scale bar=10μm. (B) Representative image of MTLn3 plated on 405-gelatin matrix and stained for Transferrin, cortactin and TKS5. Insets show magnified invadopodium precursor with no matrix degradation activity (left white box), and a mature invadopodium actively degrading the gelatin matrix (right white box). In both cases there is no enrichment of the vesicle marker clathrin. (D) Additional examples of Rac1 activity changes at invadopodia prior to the disappearance. White and black circles show the invadopodium location and corresponding Rac1 activity levels. Red arrows indicate the moment of elevated Rac1 activity prior to the disappearance of invadopodium. Pseudocolor scale: 1.0 (Black) to 1.62 (Red). Scale bar=2μm. (E) Left: RhoA activity dynamics in RhoA biosensor-expressing MTLn3 cells, transfected with TagRFP-cortactin and imaged under steady state conditions on gelatin matrix. Images were acquired every minute. Tag-RFP-cortactin (top), RhoA activity (middle) and biosensor localization (bottom) images are shown at different time points. White boxes are magnified on the right. Black and white circles indicate invadopodia. Scale bar=10μm and 5μm (insets). Pseudocolor scale: 1.0 (Black) to 3.0 (White). Right: Quantification of RhoA activity (normalized to time=0) during steady-state invadopodia lifetimes. No significant change in RhoA activity was observed between any of the time points (p>0.05). n=16 invadopodia, pooled from 3 independent experiments, with S.E.M. Student’s t-test was used.
Supplementary Figure 3 Pak1 is recruited to invadopodia in Rac1-depleted cells, photo-uncaging of Rac1 at invadopodia containing phosphorylation deficient cortactin, and Pak1 modulates serine phosphorylation of cortactin,

(A) Representative image of MTLn3 cell transfected with Rac1 siRNA, then plated on Alexa-405 conjugated gelatin and fixed and stained with cortactin and Pak1 antibodies to show endogenous protein localization. Arrows point to sites of mature, degrading invadopodia. Scale bar=10μm. Representative image set is from 30 image sets. (B) Representative images of MTLn3 cell transfected with PA-Rac1, S113A TagRFP-cortactin, and Tks5-GFP before and after photoactivation. Blue circles show photoactivated region. Blue arrows point to invadopodia after photoactivation. Scale bars=10μm. Representative image set is shown from 51 image sets. (C) Expression of cortactin S113A mutant alone increases matrix degradation area. Quantification of mean degradation area of control and cortactin mutant-overexpressing cells plated on fluorescent matrix overnight. n=30 fields, pooled from 3 independent experiments, with S.E.M. Student's t-test was used. **p=9.193x10^{-13}. (E) Quantification of percentage of invadopodia that disappear as a result of photoactivation with PA-Rac1, in control, Pak1 knockdown, and cortactin S113A mutant conditions. n=46 invadopodia (PA-Rac) pooled from 3 independent experiments, n=27 invadopodia (Pak1 siRNA) pooled from 3 independent experiments, n=61 invadopodia (Cortactin S113A) pooled from 3 independent experiments, error bars are S.E.M. Student's t-test was used. **p=3.278x10^{-5} (Pak1 siRNA), **p=1.91167x10^{-5} (Cortactin S113A). (F) Representative images of MTLn3 cell fixed and stained with antibodies to cortactin, pSerine, and 488-phalloidin (F-actin) showing: Proximity ligation assay spots (cortactin-phosphoserine interaction), cortactin and F-actin. Insets show sites of colocalization of cortactin with F-actin, and cortactin with the phosphoserine-cortactin interaction detected by PLA. Scale bar=10μm. Representative image set is from 46 image sets. (G) Quantification of the percentage of invadopodia containing positive PLA staining for control, Rac1, Pak1, and TrioGEF-knockdowns. Invadopodia were identified as F-actin and cortactin positive spots. n=300 invadopodia per condition, pooled from 3 independent experiments, error bars are S.E.M. Student's t-test was used. *p=0.0397 (Pak1 KD), *p=0.019 (Trio KD).
Supplementary Figure 4 Tiam1 does not accumulate at invadopodia and is not required for matrix degradation activity. (A) MTLn3 cell plated on Alexa-405 conjugated gelatin matrix and fixed and stained with antibodies for cortactin and Tiam1. Arrows point to sites of mature invadopodia. Endogenous Tiam1 is uniformly distributed and does not focally accumulate at invadopodia. Scale Bar= 10μm. Representative image set is from 30 image sets. (B) Still images from a time lapse movie of MTLn3 cell transfected with Tiam1-FL-GFP (FL: Full-Length) and TagRFP-cortactin, and starved and stimulated with EGF. Insets show an invadopodium precursor formed after stimulation (bottom panel), while there is no corresponding enrichment of Tiam1 (top panel). Scale bar = 10μm. Representative image set is from 16 cell movies. (C) Quantification of average matrix degradation area per field from MTLn3 cells transfected with GFP or a dominant negative Tiam1 mutant (GFP-Tiam1-PH-CC-EX) and plated overnight on fluorescent matrix. n=31 fields for each condition, pooled from 3 independent experiments, error bars are S.E.M. Student’s t-test was used. p=0.347.
Supplementary Figure 5 TrioGEF recruitment and regulation at invadopodia.

(A) Representative images of MTLn3 cells transfected with Trio-FL-GFP (FL: Full-Length) or Trio-D1ΔSH3-DN-GFP (D1SH3 fragment lacking the SH3 domain and with a point mutation at N1406A-D1407A making it dominant negative (DN)). Cells were fixed and stained with cortactin and TKS5 antibodies. White boxes are magnifications of the indicated areas. Arrows point to single invadopodia. Scale bar = 10μm. (B) Quantification of the percentage of invadopodia that show Trio at invadopodia. The bars represent the percentage of Trio positive invadopodia. n=100 invadopodia per condition, pooled from 5 independent experiments, error bars are S.E.M. Student’s t-test was used. *p=0.031 (Trio-FL-GFP vs. Trio-D1ΔSH3-DN-GFP), **p=0.0075 (Trio-FL-DN-GFP vs. Trio-D1ΔSH3-DN-GFP). (C) Quantification of the percentage of invadopodia that show Trio at invadopodia before and after EGF stimulation. n=30 invadopodia per condition, pooled from 3 independent experiments, error bars are S.E.M. Student’s t-test was used. p=0.6. (D) Examples of Trio recruitment to invadopodium prior to invadopodium disappearance. MTLn3 cells were transfected with cortactin-mRFP and Trio-GFP and image every 2 minutes for 3 hours. Scale bar= 1μm. (E) Trio recruitment to invadopodia in MTLn3 cells treated with control or Rac1 siRNA. n=150 invadopodia, pooled from 3 independent experiments, with S.E.M. Student’s t-test was used. ***p=2.25x10^-34.
Supplementary Figure 6 Depletion of α-Pix or β-Pix inhibits matrix degradation by invadopodia and paxillin does not accumulate at invadopodia. (A) Representative images of MTLn3 cell transfected with α-Pix-GFP and stained for cortactin and Tks5 as invadopodia markers. White squares boxes are magnified. Arrows point to invadopodia. Scale bar = 10μm. Representative image set is from 9 image sets. (B) Representative images of MTLn3 cell transfected with β-Pix-GFP and stained for cortactin and Tks5 as invadopodia markers. White square boxes are magnified. Arrows point to invadopodia. Scale bar = 10μm. Representative image set is from 13 image sets. (C) Western blot of MTLn3 cells transfected with α-Pix, β-Pix or control siRNA and blotted for α-Pix, β-Pix, and β-actin. Representative blot from 1 blot each for the α- and β-Pix. (D) Quantification of the degradation area per field in MTLn3 cells transfected with control, α-Pix, or β-Pix siRNA. n=40 fields per condition, pooled from 4 independent experiments, with S.E.M. Student’s t-test was used. **p=0.0004 (α-Pix), ***p=3.37x10^{-5} (β-Pix). (E) Quantification of percentage of invadopodia with α-Pix (left) or β-Pix (right) before and after EGF stimulation for 3 minutes. n=40 invadopodia for each condition, pooled from 3 independent experiments, with S.E.M. Student’s t-test was used. p=0.59 (α-Pix), p=0.39 (β-Pix). (F) Representative image of an MTLn3 cell plated on Alexa-405 conjugated gelatin matrix and fixed and stained with paxillin, cortactin and Tks5 antibodies. White squares show magnifications of an invadopodium precursor with no matrix degradation activity (left), and a mature invadopodia actively degrading the gelatin matrix. No enrichment of paxillin is seen at the core of the invadopodia in both cases. Scale bar = 10μm. Representative image set is from 10 image sets.
Supplementary Figure 7 Pak1 and Trio are not required for EGF-stimulated lamellipodia protrusion but Rac1 is required, and Src regulation of cortactin-Tks5-containing structures is independent of Trio-Rac1-Pak1-axis. (A) MTLn3 cells transfected with control, Rac1, Pak1 or Trio siRNA. Mean cell area over time is plotted for serum-starved MTLn3 cells stimulated with 5nM EGF, n=10 cells each from one experiment were analyzed, with S.E.M. Student’s t-test was used. p=5.06493x10^-08 (Rac1 KD), p= 1.29769x10^-05 (Pak1 KD), p= 0.058908959 (Trio KD). (B) Representative images of MTLn3 cell transfected with GFP, wildtype c-Src-GFP (Src-WT-GFP), constitutively activated (Y528F; Src-CA-GFP) or dominant negative (K296R-Y528F; Src-DN-GFP). Cortactin staining is shown. Scale bar = 10μm. Representative image set is from 44 image sets for Cortactin-GFP-control, from 53 image sets for Cortactin-Src-WT-GFP, from 43 image sets for Cortactin-Src-CA-GFP, and 47 image sets for Cortactin-Src-DN-GFP. (C) Quantification of the average number of cortactin and Tks5 positive structures per cell in MTLn3 cells treated with control, Rac1, Pak1 or Trio siRNA and transfected with GFP, Src-WT-GFP, Src-CA-GFP or Src-DN-GFP. n= 20 cells per condition, pooled from 7 independent experiments, error bars are S.E.M. Student’s t-test was used. Control siRNA p-values: ***p=3.3x10^-15 (Src-WT), ***p=1.28x10^-14 (Src-CA), *p=0.011 (Src-DN). Rac1 siRNA p-values: ***p=7.38x10^-18 (Src-WT), ***p=6.84x10^-25 (Src-CA), *p=0.035 (Src-DN). Pak1 siRNA p-values: ***p=2.35x10^-10 (Src-WT), ***p=3.16x10^-12 (Src-CA), *p=0.001 (Src-DN). Trio siRNA p-values: ***p=6.87x10^-12 (Src-WT), ***p=4.08x10^-16 (Src-CA), *p=0.003 (Src-DN).
Supplemental Figure 8 RhoG is not required for invadopodia matrix degradation activity. (A) Western blot of RhoG and β-actin protein levels in control and RhoG siRNA treated cells. (B) Quantification of average degradation area per field in control and RhoG siRNA treated cells. n=40 fields per condition, pooled from 4 independent experiments, error bars are S.E.M. Student’s t-test was used, p=0.77. (C) Representatives images from a time lapse movie of MTLn3 cell transfected with cortactin-mRFP and RhoG-CFP, serum starved then stimulated with EGF for 8 minutes. White boxes are magnifications showing no enrichment of RhoG at invadopodia. Scale bar=10μm.
Supplemental Figure 9 Uncropped images of western blots. Black box indicated the cropped part included in the corresponding figure.
Supplemental Video Legends

Supplemental Video 1
Invadopodia lifetimes are dramatically increased when Rac1 is silenced. Rac1-depleted MTLn3 cell transfected with two invadopodia markers, TagRFP-cortactin and TKS5-GFP, and time-lapse imaged every 2 minutes over 6 hours. Cortactin and TKS5 fluorescence co-localization show invadopodia.

Supplemental Video 2
Rac1 activity at invadopodia is abrogated during invadopodium formation. Serum-starved MTLn3 cell expressing Rac1 biosensor and TagRFP-cortactin stimulated with EGF (zoomed view of single invadopodium). Imaged every 10 seconds for 10 minutes.

Supplemental Video 3
Rac1 activity inside the invadopodium is significantly lower compared to the region outside, until when the invadopodium disappears. MTLn3 cell expressing Rac1 biosensor and TagRFP-cortactin at steady state (zoomed view of single invadopodium). Imaged every 1 minute.

Supplemental Video 4
Focal photo-uncaging of PA-Rac1 induces disappearance of invadopodium. Uncaging Rac1 at a single invadopodium (arrow) in MTLn3 cell expressing PA-Rac1 and TagRFP-cortactin. Imaged every 5 seconds for 10 minutes. Photoactivation pulses start at 25 second time point.

Supplemental Video 5
Photo-uncaging the dark-mutant (C450A) of PA-Rac1 has no effect on invadopodium. Photoactivation of single invadopodium (arrow) using the C450A light-insensitive PA-Rac1 mutant in an MTLn3 cell expressing TagRFP-cortactin. Imaged every 5 seconds for 10 minutes. Photoactivation pulses start at 25 second time point.

Supplemental Video 6
Depletion of PAK1 prevents disappearance of invadopodium upon focal photo-uncaging of PA-Rac1. Uncaging Rac1 at a single invadopodium (arrow) in an MTLn3 cell treated with PAK1 siRNA and expressing TagRFP-cortactin. Imaged every 5 seconds for 10 minutes. Photoactivation pulses start at 25 second time point.

Supplemental Video 7
Phosphorylation deficient mutant (S113A) of cortactin prevents disappearance of invadopodium upon focal photo-uncaging of PA-Rac1. Uncaging Rac1 at a single invadopodium (arrow) in a cell overexpressing S113A-mutated TagRFP-cortactin. Imaged every 5 seconds for 10 minutes. Photoactivation pulses start at 25 second time point.

Supplemental Video 8
Invadopodia turnover dynamics under control conditions in MTLn3 cells. MTLn3 control cell transfected with two invadopodia markers, TagRFP-cortactin and TKS5-GFP, and time lapse-imaged every 2 minutes over 6 hours. Cortactin and TKS5 fluorescence co-localization show invadopodia.

Supplemental Video 9
Invadopodia turnover dynamics in MTLn3 cells treated with Rac1 inhibitor NSC23766. MTLn3 cell transfected with two invadopodia markers, TagRFP-cortactin and TKS5-GFP, and time-lapse imaged every 2 minutes over 6 hours, with 100μM NSC23766 (Rac1 Inhibitor) treatment.

Supplemental Video 10
Invadopodia turnover dynamics in MTLn3 cells treated with Rac1 inhibitor Z62954982. MTLn3 cell transfected with two invadopodia markers, TagRFP-cortactin and TKS5-GFP, and time-lapse imaged every 2 minutes over 6 hours, with 25μM Z62954982 (Rac Inhibitor II) treatment.