Night sky brightness measurement, quality assessment and monitoring

John C. Barentine1,2✉

Ground-based optical astronomy necessarily involves sensing the light of astronomical objects along with the contributions of many natural sources ranging from the Earth’s atmosphere to cosmological light. In addition, astronomers have long contended with artificial light pollution, which further adds to the ‘background’ against which astronomical objects are seen. Understanding the brightness of the night sky is therefore fundamental to astronomy. The last comprehensive review of this subject was nearly a half-century ago, and we have learned much about both the natural and artificial night sky since. This Review considers which influences determine the total optical brightness of the night sky, the means by which this brightness is measured and how night sky quality is assessed and monitored in the long term.

Environmental pollution caused by artificial light at night, commonly known as ‘light pollution’, is a source of substantial known and suspected hazards1–3. Light pollution now touches every continent except Antarctica4 and yields steadily increasing environmental pressure5. Of the world population, more than 80% of all people and more than 99% of people in the USA and Europe live in places where the brightness of the night sky is elevated due to light pollution4. Both the extent to which the indication of artificial light appears in satellite remote sensing data and the quantity of emitted light have increased globally on average by about 2% per year in recent years7. The spatial variance of anthropogenic light is large8, and both lit area and quantity of light are stable or decreasing in only a handful of countries7.

Light pollution manifests itself as a presence both on the ground and in the night sky. On the ground, we perceive its effects directly in forms such as glare and light trespass9, and indirectly in threats to human and wildlife biology10–12, public safety13,14 and energy security15–18. In the night sky, light pollution yields skylow, a condition in which artificial light directed upwards is scattered back to the ground, where it obscures our view of the stars19. The brightness of the night sky, relative to its assumed ‘pristine’ state absent anthropogenic light pollution, is related to the amount of artificial light emitted on the ground19–21, so night sky quality is often taken as a proxy for the conditions affecting natural darkness on Earth19,21.

Managing the resource of natural night-time darkness involves understanding its nature and the influences that threaten its integrity, which in turn requires knowing the initial state of the resource and how this state evolves with time22. Ground-based optical astronomy depends crucially on this knowledge to extract the maximum information value from the cosmic light that our telescopes and instruments collect1. Understanding the sources of light controlling the brightness of the night sky and how these components change on various timescales is therefore a fundamental concern to astronomy.

The factors that determine night sky brightness were last comprehensively reviewed in the literature almost 50 years ago21. In the time since, research combining elements of astronomy, atmospheric science and space physics has revealed a more complete picture of these factors. The deeper understanding of this phenomenon that results has implications for both how modern ground-based astronomical observatories are designed and operated as well as the outdoor lighting policies and practices that best support observatory site protection.

This Review considers which factors determine the brightness of the night sky (The natural and artificial night sky), how sky brightness is quantified (Existing sensing and monitoring capabilities), relevant units of measurement (Measurement units) and how night sky quality is classed, compared and ranked (Classifying and ranking night sky quality). Throughout the Review we refer to two acronyms frequently, mirroring their use in the literature: NSB (night sky brightness) and ALAN (artificial light at night).

The natural and artificial night sky

As night falls: setting the stage. From sunset to the onset of astronomical darkness, the brightness of the sky at the zenith decreases by a factor of about 4 × 105 (Fig. 1a). The time required to complete this transition varies with season and latitude; in the tropics it can take place in as little as 72 min. After sunset, the Sun continues to directly illuminate the atmosphere for some time. This period is called twilight, and during it sky brightness is dominated by the scattering of sunlight illuminating the atmosphere at progressively higher altitudes.

Since the amount of scattered sunlight depends on the number of scatterers along the direction of travel of light rays, and the density of scatterers decreases with height above the surface of the Earth, the brightness of the twilight sky drops rapidly as the Sun descends further below the horizon. First-order scattering of light dominates sky brightness from sunset until about the end of civil twilight, when the solar altitude reaches −6°. As the angle increases, second- and higher-order scattering become important23.

The colour of the twilight sky is generally the same blue as the daytime sky except for contributions resulting from a combination of Rayleigh scattering and absorption by ozone (O₃) molecules, whose concentration in the stratosphere peaks at altitudes of 30–35 km (ref. 24). When there are unusual quantities of particulates in the atmosphere, such as following major wildfire events and volcanic eruptions, scattered sunlight is subject to additional ‘deblueing’, resulting in vivid colours. The same circumstances are known

[1] Dark Sky Consulting, LLC, Tucson, AZ, USA. [2] Consortium for Dark Sky Studies, University of Utah, Salt Lake City, UT, USA.
[e-mail: john@darkskyconsulting.com]
to cause large variations in atmospheric extinction, affecting astronomical photometry. Opposite the setting Sun in the sky, the anti-twilight arch rises (Fig. 1b). Its warm tones represent the enhancement of backscattered sunset light delbued by its passage through the atmosphere at near-grazing angles. It reaches a maximum width of between 3 and 6° above the anti-solar point; below the arch, a deep blue tinged with purple indicates the projection of the Earth’s shadow onto the twilight sky.

Direct illumination of the atmosphere reaches the local zenith when the altitude of the Sun is approximately −6° and second-order scattering begins to become important. Around this time the lower boundary of direct solar irradiation reaches 35 km altitude, where it excites a layer of neutral sodium atoms to the P° state, causing them to emit in the 589.0/589.6 nm ‘D’ lines of Na I. By the time the solar angle reaches −6.5°, irradiation is reduced to the point where the intensity of the emission is equal to that of the corresponding absorption lines in the solar spectrum. The episode is so relatively short in duration that it has been described as the ‘sodium flash’.

As twilight progresses, a similar ‘oxygen flash’ happens as neutral oxygen atoms at altitudes from 200 to 300 km are directly irradiated by the Sun, yielding emission in the 1S → 3P 630/636 nm lines of O I. This is thought to contribute to the purplish hues of the sky during late twilight along with molecular scattering of sunlight at high altitudes and delbued illumination of the stratosphere and the troposphere. Since emission in the O I doublet is radiatively excited, the lines largely fade out after the onset of astronomical darkness.

However, a chemical process excites the same transitions on the night side of Earth, particularly at low magnetic latitudes, resulting in red oxygen ‘airglow’ that varies in intensity and sky distribution through the night in the tropics. Oxygen atoms at lower altitudes are collisionally excited and emit characteristically in the forbidden 1S → 1D transition at 577 nm. The resulting O I emission persists throughout the night. Figure 1a shows the stratification of sodium and oxygen airglow towards the limb of the Earth as seen from low Earth orbit. This phenomenon is discussed further in Airglow and aurorae.

Direct illumination of the entire atmosphere above an observer continues until the Sun reaches an altitude of −12° (nautical dusk). From here to a solar altitude of −18°, only the uppermost parts of the atmosphere seen in the direction of the horizon are still directly illuminated by the Sun. Once the Sun descends below −18°, direct illumination ceases and astronomical darkness begins. The sequence of events described here unfolds in reverse on the morning side of night, from the point when the Sun again reaches an altitude of −18° until sunrise.

Sources of natural light in the night sky. The total brightness at any point on the night sky is the sum of contributions from both natural and artificial sources, each of which is a function of azimuth (α) and altitude (γ). Some sources are also a function of time (t) (ref. 1), so in general

\[
B_{\text{sky}}(\alpha, \gamma, t) = \sum_{i=1}^{N} B_i(\alpha, \gamma, t). \tag{1}
\]

The natural, optical-light components of NSB have been reviewed in several publications, and are summarized in Tables 1 and 2. These components are divided into two sources: those that originate in or near the Earth’s atmosphere and those that originate in the space beyond the Earth’s atmosphere. Because the boundary between the atmosphere and outer space is not well defined, we include the Earth’s magnetic environment as part of the ‘atmosphere’ such that, for example, aurorae are not considered an astronomical phenomenon. Kocifaj et al. recently showed that artificial objects orbiting the Earth are a non-trivial contributor of diffuse light to the night sky as seen from the ground. We have included a value for this effect in Table 1. On the other hand, distinctly terrestrial sources of natural light at night, such as wildfire, lightning and bioluminescence, are typically neglected in NSB calculations because they are regarded as trivial contributors except on highly local spatial scales.

Natural sources of light in the night sky range over several orders of magnitude in both surface brightness and wavelength. The total natural NSB, generally quoted for the zenith, is the sum of the astronomical sources with an allowance for quiescent, pseudo-continuum airglow, but not including other transient terrestrial sources such as aurorae. This averages about 205 S10(vis) or 1.7 × 10^−14 W m−2. This value is itself proposed as a unit of measurement, called one night sky unit (NSU) or one ‘sky’.

Note that the brightnesses of all natural light phenomena are quoted for ‘clear-air’ conditions at typical atmospheric optical depth (τ) values near mean sea level. NSB values of <1 NSU reported in the literature result from light losses due to, for example, turbidity in the lower troposphere that absorbs and scatters light out of the incoming beam.

Sources of light in the sky yield corresponding horizontal illuminances that span many orders of magnitude. To the extent that total NSB is related to the total ALAN emission on the ground, it also
Airglow and aurorae. In directions away from the ecliptic, these two energetic processes in the Earth’s upper atmosphere are the most important contributors to the total brightness of the natural night sky. The two mechanisms are distinguished primarily by the source of excitation: airglow derives from photoionization followed by radiative recombination, photochemical reactions, or ambient collisional excitation of atoms, whereas aurorae result from the collisional excitation of atoms by solar charged particles spiralling down the Earth’s magnetic field lines. Airglow dominates at virtually all latitudes, while aurorae are most important at high magnetic latitudes. Both light sources are temporally variable in terms of their distribution on the sky, and their intensities vary on timescales ranging from seconds to hours.

In addition to the polar aurorae, an adjunct phenomenon known as a mid-latitude stable auroral arc yields a lower-intensity glow seen across hundreds to thousands of kilometres on the ground. It is thought to result from impacts of magnetospheric electrons accelerated downwards along the Earth’s magnetic field. Unlike the polar aurorae, mid-latitude stable auroral arc excitation favours the \(^1\)D transition of O\(_i\) and emission in the 630 nm doublet\(^\text{36}\). Another transient subauroral arc only recently identified is the strong thermal emission velocity enhancement (STEVE), which seems to be related to ion drift in the ionosphere\(^\text{37}\).

As observed and photographed, the airglow often displays a periodic structure attributable to gravity waves in the atmosphere\(^\text{39}\). These waves can be generated by phenomena ranging from volcanic eruptions to turbulence in the stratosphere induced by the action of supercell thunderstorms (Fig. 2b,c). Shepherd and Cho\(^\text{40}\) presented orbital \(\text{O}_i\lambda 577\) nm observations indicating airglow enhancements up to a full order of magnitude over quiescent conditions when multiple zonal components of gravity waves come into phase at the same longitude.

The strength of the airglow contribution depends on the phase and amplitude of the solar cycle. Its time average can be approximated in \(\text{S}_\text{10(vis)}\) units according to

\[
B_{\text{airglow}} = 145 + 108(S - 0.8)
\]

where \(S\) is the solar 10.7 cm flux in units of megajanskys (ref. \(^\text{33}\)). As \(S\) is observed to vary roughly sinusoidally between 0.8 and 2.0 during the solar cycle, the quiescent-airglow contribution ranges between 145 and 270 \(\text{S}_\text{10(vis)}\). Excluding aerosol extinction in the lower atmosphere, natural NSB can therefore vary by a factor of nearly two both within one night and from night to night.

NSB is also observed to vary seasonally\(^\text{32}\), and certain episodes seem to correlate with solar activity even near solar minimum\(^\text{41}\). At least some of the seasonal variability is attributable specifically to changes in the strength of the airglow lines\(^\text{42}\). There are further indications of natural NSB enhancements that correlate in time at observing stations separated by thousands of kilometres\(^\text{44}\). These observations highlight the importance of temporal sampling and the ongoing need to develop a deeper understanding of airglow physics.

After accounting for line sources of radiation, there is an observed residual airglow ‘continuum’ that shows no spectroscopic structure\(^\text{45}\). It is spectrally flat over the visible wavelengths and adds no more than about 50 \(\text{S}_\text{10(vis)}\) to the brightness of the night sky\(^\text{46}\). The source of this pseudocontinuum is not entirely clear, in part because it is exceedingly difficult to fully distinguish it from zodiacal light and integrated starlight. Roach and Gordon\(^\text{43}\) concluded that the source of this light is a combination of “a real upper-atmosphere phenomenon” and sunlight multiply scattered far into the Earth’s night-side atmosphere. Kenner and Ogryzlo\(^\text{46}\) reviewed various proposed chemical reactions involving compounds of oxygen and nitrogen, along with their own laboratory data, to explain this emission. Bates\(^\text{47}\) argued that the continuum is formed by a multitude of products resulting from collisions between metastable oxygen atoms and air molecules, “thereby forming complexes that

![Fig. 2](image_url)
dissociate by allowed radiative transitions*. The consensus among researchers now is that the airglow continuum is composed of many hundreds of individual atomic and molecular spectral lines whose sharp features overlap to create a broad emission continuum.

Anthropogenic skyglow. Light from human-caused sources comprises the balance of NSB when added to the spatially and temporally variable contributions of natural sources. The visible manifestation of this light, commonly referred to as 'skyglow', forms in the lower atmosphere as a result of both small- and large-particle scattering. ALAN emitted on the ground influences skyglow through its spectral power distribution (SPD), angular emission function and the total lumen output of contributing light sources48.

Skyglow is observed to vary in brightness relative to the assumed zenith brightness of an unpolluted night sky by a factor of up to about 6,000 (ref. 49), at which point only a handful of the brightest stars are visible to the unaided human eye. In most urban contexts, skyglow dominates the light of the night sky (Fig. 3).

Table 1 | Sources of natural optical light in the night sky originating in and near the Earth’s atmosphere

Component	Sky	Average brightness	Dependences	Physical origin	
Airglow	Variable	50 (continuum)\(^b\)	Local time, elevation, Ambient excitation of atoms		
	(extended)	145-270 (line)\(^c\)	latitude, season, solar activity, and molecules in the upper atmosphere		
Aurora	Variable	IBC Class\(\text{I}: 70\)\(^a\)	Local time, magnetic latitude, Excitation of atoms and molecules in the upper atmosphere		
	(extended)	IBC Class II: 700	solar cycle phase, solar cycle		
	IBC Class III: 7000	intensity, wavelength	atmosphere by charged particles		
	IBC Class IV: 70,000				
Atmospheric	\(\phi \geq 80^\circ\)	\(\leq 50^\circ\)	Atmospheric aerosol	Multiple scattering of diffuse light\(^f\)	
	\(0^\circ \leq \theta \leq 360^\circ\)		optical depth	all sources of light	
	(horizon coordinates)			in the sky	
Space objects\(^h\)	Extended\(^i\)	\(> 15^\circ\)	Number, albedo and size	Reflected sunlight	
				distributions of space objects	

For each component, the angular extent of the light in the sky is given along with its average surface brightness, the factors that influence its extent and/or brightness, and its physical cause. \(S_{10}(\text{vis})\) is a linear unit equal to the surface brightness of a star whose visual magnitude is +10 and whose light is distributed over one square degree. In SI units, \(1 \text{S}_{10}(\text{vis}) \approx 1.04 \times 10^{-6} \text{cd m}^{-2}\). The large range in auroral brightness is rated from zero to four on a base-ten logarithmic scale (the International Brightness Coefficient, or IBC\(^{106,107}\)). All auroral brightnesses are drawn from ref. 108. ALAN emitted on the ground influences skyglow through its spectral power distribution (SPD), angular emission function and the total lumen output of contributing light sources48. Estimated value as of mid-2019.

Table 2 | Sources of natural optical light in the night sky originating beyond the Earth’s atmosphere

Component	Sky	Average brightness	Dependences	Physical origin	
Zodiacal	\(\lambda - \lambda_{\odot}\)	\(\beta = \pm 90^\circ: 78^\circ\)	Season, latitude	Sunlight scattered by interplanetary dust	
	(ecliptic coordinates)	(140°, 0°): 164		interplanetary dust	
		(90°, 0°): 250		\((0^\circ < \phi < 180^\circ)\)	
		(60°, 0°): 500		\((30^\circ, 0^\circ): 2,330\)	
Gegenschein	\(175^\circ < \lambda - \lambda_{\odot} < 185^\circ;\) \(-5^\circ \leq \beta \leq +5^\circ\)	40–205\(^h\)	Season, latitude	Sunlight backscattered by interplanetary dust \((\phi = 0^\circ)\)	
Integrated	\(\epsilon, b\) (Galactic)	\(b = \pm 90^\circ: 25–30^\circ\)	Season, latitude	Unresolved stars	
starlight	coordinates	\(b = 0^\circ: 100–260^\circ\)	in the Milky Way		
Diffuse	\(\epsilon, b\)	\(\leq 66^\circ\)	Starlight scattered by	interstellar dust	
galactic light					
Extragalactic	\(\epsilon, b\)	\(\leq 2\)	Cosmological model, cosmological redshift	galaxies\(^f\)	

The order and contents of the columns are the same as in Table 1. *Refs. 23,44,45. Ref. 19. Ref. 15. At 4,250 Å (refs. 20,46). Ref. 14. Ref. 16. Diffuse Cosmic Optical Background\(^{123}\). Lauer et al.\(^{124}\) report “a flux component of unknown origin” of \(8.06 \pm 1.92 \text{nW m}^{-2} \text{sr}^{-1}\) in New Horizons Long-Range Reconnaissance Imager measurements at \(\lambda = 0.608 \mu\text{m}\) after subtracting the estimated contribution from the integrated light of external galaxies. Estimated value as of mid-2019.
The presence of ice and snow on the ground intensifies skyglow due to their high reflectivities, enhancing upward-directed emissions from cities; models of skyglow formation over cities show an almost linear relationship between ground reflectance and artificial NSB. Measurements of the effect show an up to threefold increase in NSB in cities due to snow cover on the ground, and snow cover further amplifies skyglow itself due to reflections of the sky from the ground. Skyglow is also sensitive to the presence of very fine particles in the air, which may be increased by certain kinds of air pollution. Cloudy nights make the problem even worse; overcast conditions over cities increase horizontal illuminance at ground level by a factor of up to ten. On the other hand, the comparative absence of ALAN in rural areas means that cloud cover tends to darken the night-time sky and landscape. On an overcast night far from sources of anthropogenic light, the measured NSB can be up to about a factor of six lower than on a clear night at the same location. Skyglow is now well understood as a matter of radiative transfer, and models have steadily become more sophisticated and better representative of real-world conditions. The total light output of a city is the strongest predictor of NSB in the urban environment, and of the brightness of ‘light domes’ over cities as seen from remote locations. Modellers have also attempted to infer the so-called city emission function as a means of describing the distribution of the anthropogenic light over a city causing skyglow. Understanding the city emission function is crucial for predicting the appearance of skyglow both within and outside the city; for example, light rays emitted at very shallow upward angles yield the greatest impact on NSB as seen at distances from dozens to hundreds of kilometres. Shadowing of city light emissions by topographic features is also known to influence the city emission function.

The scattering of light in the Earth’s atmosphere. The behaviour of light during its flight through the atmosphere is governed by the frequency-dependent radiative transfer equation:

\[
\frac{dI}{d\tau} = -I + S
\]

where \(I \) is the light intensity, \(\tau \) is the optical depth and \(S \) is the 'source function' defined by the ratio of emission and absorption coefficients. In the simple case of a plane-parallel atmosphere, or otherwise in conditions where the atmosphere is horizontally homogeneous, it has the general solution:

\[
I(\tau) = I(0) e^{-\tau} + \int_{0}^{\tau} S(\tau') e^{-(\tau - \tau')} \text{d}\tau'.
\]

This formula governs the frequency-dependent intensity of light as it traverses a medium with optical depth \(\tau \). In short, it holds that the change in intensity during the traverse is the sum of light added to the beam less the sum of light removed from the beam. Light can be added through direct emission from the medium and removed via absorption and scattering.

The remainder of this section focuses on the scattering of light by atmospheric constituents, as this process dominates the radiative transfer process in determining NSB. We assume local thermodynamic equilibrium, which is a reasonable approximation for clear sky/air conditions, and for the moment we neglect both complete absorption of light and direct emission from the atmosphere through, for example, airglow.

Two modes of scattering control the behaviour of light as it transits the atmosphere: Rayleigh scattering and Mie scattering. These modes depend largely on the size of the scattering particles, which are composed of two principal atmospheric constituents: molecules and ‘aerosols’ (a suspension of fine solid particles or liquid droplets in air). Rayleigh scattering is important when the wavelengths of light involved are much smaller than the size of the scattering particles. The scattering strength is strongly dependent on wavelength \((I \propto \lambda^{-4}) \). Mie scattering applies exclusively to homogeneous, spherical particles and shows almost no scattering strength dependence on wavelength; in comparison, the particles in the Earth’s atmosphere are distinctly inhomogeneous and irregular in shape. To the extent that atmospheric particles are comparable in size to the wavelength of light, rather than much smaller or much larger, circumstances are reasonably approximated by Mie scattering. The distinction between Rayleigh and Mie scattering is obvious in everyday experience: the blue colour of the daytime sky results from strong Rayleigh scattering of short-wavelength visible light by diatomic nitrogen molecules comprising the majority of the lower atmosphere, while clouds are white or grey depending on whether they reflect or transmit (attenuated) sunlight.
Short-wavelength light is efficiently Rayleigh scattered even along short optical paths, yielding blue-rich spectra near light sources and progressively deblued spectra at large distances. Rayleigh scattering dominates NSB in both cases. Mie scattering becomes an important influence in and near cities, especially where particulate pollution from vehicle exhaust and industrial activity are common.\(^{11,61}\) Furthermore, multiple-order scattering is often important in real-world situations. Sophisticated radiative transfer codes account for this in skylow models, although they tend to become processor intensive as the number of scattering orders increases.

Some light exits the atmosphere completely, whether directly or after one or more scattering events, and can be detected from orbit. This forms the basis of remote sensing of upward radiance, which is discussed in Remote sensing of NSB.

Existing sensing and monitoring capabilities

The measurement of NSB from ground-based platforms has been recently reviewed by Hänel et al.\(^{67,68}\) We summarize the relevant points here.

Sensing. There are two basic approaches to measure and monitor NSB: look upwards from the ground or look down from orbit. The former mode involves direct sensing of NSB, while the latter mode predicts NSB seen from the ground by sensing upward-directed radiance and applying a model of how light propagates through the atmosphere. Raw ground-based measurements are model independent but typically limited geographically and temporally. We focus here largely on the ground-based approach, but briefly comment on new capabilities for remotely sensing NSB in Remote sensing of NSB.

Direct measurements of NSB from the ground involve sensors that integrate the flux of light through a known solid angle, within some wavelength range and over some length of time. These divide into two types: single-channel devices and multichannel devices.

Single-channel devices. Single-channel devices are patterned on photoelectric photometers used by astronomers for almost a century. These devices, such as the popular Sky Quality Meter\(^{69,70}\), rely on simple and well understood physics, require little electric current to operate and are usually small enough to be easily portable. They typically employ light-to-frequency converters, whose output is a signal pulse stream, the frequency of which is linearly proportional to received light intensity. Their light response is determined in the laboratory, with on-board lookup tables relating measured frequency to light intensity tied to calibrated light sources. Since the response of light-to-frequency converters is also sensitive to ambient operating temperature, sensing of the air temperature is required to properly correct the measured frequency. This is usually done on board the measurement device.

Most commercially available devices have their own photometric passbands modelled on Johnson–Cousins \(V\)\(^{71}\). Researchers have experimented with other filters, but \(V\) was chosen to match the bulk of existing literature data and the human visual response to light under photopic conditions. Infrared blocking filters are often used in combination with the quantum efficiency profile of the semiconductor material of the light-to-frequency converter to achieve the desired effective passband. Optics may be used to constrain the opening angle defining the device’s angular field of view. Although single-channel device measurements indicate only the brightness of the night sky averaged across a fairly large acceptance angle, some authors report creating crude two-dimensional maps of NSB by interpolating spot measurements from these devices\(^{72}\).

Single-channel devices have a number of advantages, including ease of use, portability, a physically simple sensing mechanism, temperature compensation, good repeatability, rapid capture and display of data and a relatively long historical record of use. However, there are certain drawbacks to these devices. To sense a sufficient amount of light to yield a measurable signal, they must integrate it over a relatively large solid angle. They offer little meaningful spatial resolution in most applications, making them generally unsuitable for monitoring the behaviour of light domes near the horizon. Finally, there are differences among commercially available devices in terms of photometric passbands that complicate comparison of results among different device types.

Multichannel devices. Multichannel detectors consist of arrays of light-sensitive elements whose output is multiplexed through one or more signal amplifiers. The ideal example is an imaging spectroradiometer, which provides a complete set of information about the wavelength-dependent brightness of the night sky in any given direction. However, the current generation of such devices is too slow to capture time-resolved NSB data, and they tend to be prohibitively expensive. More often encountered are cameras capturing two-dimensional images, particularly commercial digital single-lens reflex cameras and mirrorless interchangeable lens cameras; see, for example, ref. \(^{23}\). Some are operated with photometric filters to yield a particular effective passband, while others use Bayer filter mosaics to capture native (pseudo-)true-colour images through the combination of broadband red-, green- and blue-filtered data (Fig. 4a).

The main advantage these cameras have over single-channel devices is the ability to produce two-dimensional images with some amount of both angular and spectral resolution. They are often paired with very wide-angle lenses to capture views with solid angles as large as \(2\pi\text{sr} (180^\circ)\) in a single exposure \(^{1}\), while others build up multiple-image mosaics with angular offsets between exposures so that the results can later be ‘stitched’ together in software\(^{1}\). As a result, these devices provide much more spatial information about the distribution of NSB than do single-channel devices.

Depending on the pixel scale of the detector, star images may be sufficiently sampled that flux calibration can be performed using spectrophotometric standard stars; other imaging systems make use of laboratory calibrations from reference light sources and employ integrating spheres for illumination of the camera and lens. Spatial distortion information for particular lens and camera combinations can be used to correct lens aberrations after the fact in software\(^{24}\).

Multichannel devices have their own drawbacks. Due to sensor size and pixel scale, they generally have limited angular resolution. When imagers are used with fisheye lenses to capture all-sky data in single exposures, significant angular distortions are induced near the horizon. Their multispectral functionality is usually limited to a few broad passbands. Finally, there is as yet no standard, SI-traceable reporting unit for NSB measurements. This issue is discussed further in Measurement units.

Colour considerations. A concern adjunct to characterizing NSB is the SPD of sky light. As the preceding discussion suggests, the sensed NSB is the result of integrating, with respect to wavelength, the convolution of the SPD of the night sky with the spectral passband of the measuring device. The SPD of the night sky is a complex function of the various physical processes from which it results (The natural and artificial night sky); it is further modulated by wavelength-dependent scattering during the transit of night sky light through the Earth’s atmosphere. Measurements of NSB in both radiometric and photometric units are therefore strongly dependent on the night sky’s spectrum\(^{11}\). Because most devices used to sense NSB have relatively large spectral bandwidths, the responses of these instruments interact with the night sky SPD in complex ways and call for careful consideration when interpreting measurements\(^{15}\).

Some authors report the use of metrics such as the correlated colour temperature of the night sky as a means of characterizing its spectral qualities\(^{63,24}\). While the correlated colour temperature relates to the spectra of thermal sources, its utility is diminished
as the SPDs of sources become increasingly non-thermal. Since many NSB components, such as airglow and aurorae, have decidedly non-thermal SPDs, the use of the correlated colour temperature alone is unlikely to give reliable information about the night sky.

Data modelling. Modelling of NSB observations can assist with their analysis and interpretation. For example, Duriscoe80 reported successfully recovering the anthropogenic component of NSB from mosaicked all-sky image data by subtracting two-dimensional models of natural sources of light. To the extent that construction and application of such models can be automated, they hold the promise of rapidly disentangling natural sources of light in the night sky from artificial sources for the purposes of modelling the angular and temporal evolution of skyglow.

For spectrally resolved measurements, it is possible to model the natural components of NSB in wavelength space to subtract and remove them, leaving behind only the spectrum of artificial light sources. Figure 4b shows the decomposition of a night sky spectrum containing both natural light sources and anthropogenic skyglow. The ‘Continuous’ component is the sum of contributions from natural light sources other than airglow line emission. ‘Emission’ consists of modelled line airglow contributions. ‘ALAN’ is the sum of several common lamp spectra. The sum of all components is the ‘Fit’ line. From this decomposition it was determined that the continuous component of the natural sky (zodiacal light, scattered starlight and airglow pseudocontinuum) is nearly constant at all visible wavelengths and has a spectral radius of \(\sim 2 \, \text{nW m}^{-2} \text{sr}^{-1} \text{nm}^{-1} \) (ref. 77).

There are a handful of additional approaches to modelling NSB that add other inputs to the direct sensing of light. For example, Kolláth and Kolláth78 used raw backscatter data from a laser ceilometer to provide inputs to Monte Carlo simulations of sky radiances measured simultaneously from the ground using calibrated cameras. The authors applied this technique to infer the vertical structure of the radience distribution of the night sky.

Remote sensing of NSB. NSB is now routinely measured by remotely sensing upward-directed radiance using a variety of platforms, including Earth-orbiting satellites79, the International Space Station80, aeroplanes81,82, drones83 and balloons84,85. The use of remote sensing to infer NSB in this manner offers a number of attractive qualities. Chief among these is the ability to collect information about NSB from essentially anywhere on Earth, which decouples NSB measurement and monitoring from the deployment of ground-based sensors. Falchi and coworkers provided such a global data product most recently in 201686. They calibrated the radiance–NSB relationship using many thousands of ground-based NSB measurements, but their predictions are sometimes inaccurate. This may be the result of models assuming a flat Earth, which therefore do not take into account the screening effect of regional topography, or due to the fact that locally variable atmospheric turbidity can induce time-dependent scattering effects. In particular, at astronomical observatories, which tend to be located in comparatively dry, high-altitude sites, the aerosol content is probably overestimated as therefore also is the computed scattering. However, this map remains our only truly global view of light pollution.

Diffuse light seen around cities in remote sensing imagery from Earth orbit was long thought to result from a combination of sensing artefacts and low spatial resolution87,88, but it is now recognized as a real signal corresponding to light scattered in the atmosphere. Kocifaj and Bará89 showed that certain aerosol properties, such as the particle size number distribution, can be successfully retrieved from orbital radiometry of the angular radiance distribution of the scattered light near cities. Sánchez de Miguel et al.90 recently found a strong correlation between the zenith NSB measured on the ground and orbital radiance measurements at both low and high resolution. They suggested that creating accurate regional or even global NSB maps based on radiance measurements from the newest generation of orbital radiation should be possible.

However, there are other problems with existing satellite remote sensing platforms. For example, the Day–Night Band of the Visible Infrared Imaging Radiometer Suite (VIIRS-DNB), deployed onboard the Suomi NPP and NOAA-20 satellites, has no spectral sensitivity shortwards of 500 nm. The instrument is therefore effectively blind to the strong peak in white light-emitting diode emissions near 450 nm. This limits what can be reliably inferred concerning short-wavelength light sources within the data set90.

Monitoring. In the context of this Review, ‘monitoring’ of NSB refers to its repeated measurement to look for trends on timescales ranging from minutes to years. Monitors, as do sensing devices, fall into two general categories: those that function autonomously, and those whose operation requires human attendants.

Autonomous monitors are sensing devices fitted into weatherproof housings with their own electric power supplies and, optionally, network connections. Some of them save their measurements to on-board memory, while others relay them to another location for storage via a local network or the Internet. At present, autonomous monitors tend to be single-channel devices with few requirements for field calibration. These monitors are subject to regular insolation during the daytime, which appears to contribute to photometric zero-point drift, possibly through the deterioration of optical and/or electronic components due to solar ultraviolet light irradiation91. Some authors report attempts to calibrate these long-term secular trends using lumiance sources such as the twilight sky92.

Attempts to construct autonomous all-sky imagers have tended to leverage existing facilities marketed to amateur astronomers as cloud sensors; other, purpose-built devices, such as the ASTMON system93, are intended as fully robotic instruments whose data acquisition and reduction are automated and which function as permanent monitors.

Fig. 4 | Typical broadband digital imaging passbands and night sky spectra. \(a \). Representative spectral sensitivity curves of some commercial digital cameras (red, green and blue lines corresponding to broad RGB bands) and the astronomical V-band response (black line). \(b \). The night sky spectrum over Zselic International Dark Sky Park, Hungary (yellow), and its decomposition and fit (other colours). See main text for a description of the fit components. Figure adapted with permission from ref. 77, Elsevier.
Attended monitors may function automatically, but they require a human operator for set-up and maintenance. This is usually because the monitoring device is not permanently installed and lacks equipment to make it durable in the natural environment. The operator may also direct details of the data collection protocol such as manually switching slides in a rotating filter wheel. An example of this is the Road Runner system, in which a single-channel sensing device is mounted on the roof of a car and collects NSB data continuously while the vehicle is driven\(^9\). Another example is the US National Park Service Night Sky Team (NPS NST) imaging storage location via the Internet, leaving them vulnerable to network interruptions. There are also concerns about data reporting formats, although some effort has been put into designing and promoting a standard protocol for recording NSB data\(^9\).

Temporal sampling frequency. Other monitoring considerations involve the frequency of data collection, in both the temporal and spatial senses. Given the timescales on which the natural NSB varies, sampling frequency is important so as to fully understand the brightness range of the natural night-time environment; the same applies to skyglow, which tends to vary in slower and more predictable ways. The presence of skyglow can ‘stabilize’ NSB if it significantly exceeds the radiance of natural sources of light in the night sky, as in many bigger cities. In such cases, only weak apparent variations exist from night to night. NSB monitors therefore typically perform best in urban environments, while potentially giving ambiguous information in naturally dark locations.

Various approaches to visualizing NSB time-series data are suggested in the literature. Perhaps the most common method is the NSB densitogram, commonly referred to as a ‘jellyfish plot’. In this representation, the NSB is plotted against the local time, and each pixel is colour coded to represent the number of observations in a time series that fall into that particular (time, NSB) bin. It is a convenient way to compress a lengthy time series into a single plot as well as to quickly discern between typical and atypical NSB conditions.

This kind of data visualization helps inform efforts to characterize night sky quality at a given location and follow its evolution in time. For example, Bará et al.\(^9\) suggest that a well sampled jellyfish plot can be used to extract meaningful sky quality metrics. In Fig. 5, a jellyfish plot is collapsed to a two-dimensional distribution in frequency versus zenith NSB. Peaks corresponding to the various brightness regimes are evident in the result. From this, the authors conclude that no single value of the NSB fully represents the variety of conditions at any particular observing site.

Some limited efforts have been made to apply, for example, Fourier analysis techniques to time-domain measurements of NSB. For instance, Puschign, Wallner and Posch\(^9\) used fast Fourier transform frequency analysis of nightly mean NSB measurements made using a network of Sky Quality Meters in Austria. From this analysis they concluded that the circalunar periodicity of NSB, of biological importance to a number of nocturnal species, essentially disappears for maintained zenith brightnesses higher than about 16.5 mag arcsec\(^{-2}\) (\(\approx 32 \text{ mcd m}^{-2}\)).

Bará et al.\(^9\) further considered whether the NSB sampling rate on a timescale of minutes influences average sky quality indicators using measurements collected in long (for example, yearly) time periods, concluding that it does not. Resampling a series of zenith brightnesses obtained with Sky Quality Meters in 1 min readings to sampling intervals of 5 and 10 min, they found that the maximum absolute difference of the full-width at half-maximum (FWHM) of the darkest peak in a histogram of time-series NSB values was \(<0.0009 \text{ mag arcsec}^{-2}\) for a 5 min sampling interval and \(<0.0017 \text{ mag arcsec}^{-2}\) for a 10 min sampling interval. These values are well below the measured precision of the Sky Quality Meter (\(\leq 5\%)\).

However, the question of which temporal NSB sampling frequencies are sufficient to yield a sense of the typical night sky quality at a given location is not well formed because there is as yet no general agreement as to what we mean by ‘typical’. If this were clearly and definitively decided, a simple analysis would easily reveal the optimal sampling parameters to yield the desired metric. An example of how this approach may be applied to NSB data is discussed in NSB histograms.

Spatial sampling frequency. Characterizing the typical NSB across a large geographic area demands consideration of the appropriate spatial sampling frequency to ensure uniform results, especially with respect to acceptable measurement uncertainties. To date there is one published study on this subject, by Bará\(^9\), based on data from Falchi et al.\(^9\). Bará found that a useful rule of thumb is that one measurement per square kilometre is sufficient to constrain the zenith NSB at any point in a sampled region to a precision of \(\pm 0.1 \text{ mag arcsec}^{-2}\) root mean square. However, the author notes that “exact reconstruction of the zenithal NSB maps from samples taken at the Nyquist rate seems to be considerably more demanding”.

Measurement units

NSB measurements found in the literature are reported in several different, and sometimes confusing, units. Although one occasionally finds illuminances reported in SI units such as microlux, the majority of measurements are surface brightness terms. As a further complication, measurements can be either radiometric or photometric depending on whether they refer broadly to the entire visible spectrum or instead are weighted by the spectral response of the human eye, respectively. Some units characterizing NSB in surface brightness terms are as follows.

- Candela per square metre (cd m\(^{-2}\)), a linear, SI unit informally called the ‘nit’. The unit is based on the SI units of luminous intensity (cd) and area (m\(^2\)). The centimetre–gram–second equivalent is the stilb. 1 stilb = 1.04 \times 10^{-2} \text{ cd m}^{-2}.
- Lambert (L), a linear, non-SI unit defined as \(\pi^{-1} \text{ cd cm}^{-2}\) (\(\approx 3,183 \text{ cd m}^{-2}\)).
- \(S_0(\text{vis})\), a linear, non-SI unit defined as the surface brightness of an \(m_v = +10\) star whose light is distributed over one square degree. \(1 S_0(\text{vis}) = 1.04 \times 10^{-6} \text{ cd m}^{-2}\).
- Magnitude per square arcsecond (mag arcsec\(^{-2}\), or mpsa), a logarithmic, non-SI unit defined such that if an area on the sky contained only exactly one magnitude N star in each square arcsecond the sky brightness would be \(N \text{mag arcsec}^{-2}\).
- Night sky unit (NSU), a linear, non-SI unit introduced in Sources of natural light in the night sky as the average zenith NSB away from the ecliptic assuming quiescent-airglow conditions and the absence of skyglow (\(<0.2 \text{ mcd m}^{-2}\) in the V band). It is sometimes called a ‘natural sky unit’ or a sky.

Of these, the magnitude per square arcsecond is most often encountered, being the native reporting unit of, among other devices, the popular Sky Quality Meter. Transformations between magnitudes per square arcsecond and SI luminance units have been derived so that astronomical brightnesses in, for example,
Review Article

The band-averaged radiance of the natural night sky under clear-air conditions has been derived for scotopic and mesopic viewing conditions and depends on the SPD of the source, transformation equations have been derived. Noting that the relationship between these quantities can be approximately transformed to photometric values. Noting that the relationship between these quantities depends on the SPD of the source, transformation equations have been derived for scotopic and mesopic viewing conditions and calibrated using zero-point luminances determined from a variety of night sky spectra.

Kolláth recently discussed the problem of different effective photometric passbands among both single-channel and multichannel devices used to measure NSB, as well as the lack of standardized, SI-traceable reporting units. Since the range of the band-averaged spectral radiance of a device is independent of the selected passband for spectrally flat or constant sky radiance, the measured band-averaged spectral radiance is of the same order and takes the SI unit of watts per square metre per steradian per metre. Given typical NSB values and the wavelengths of light involved, a more natural unit is nanowatts per square metre per steradian per nanometre, which the authors propose as a dark sky unit (DSU). In this unit, the band-averaged radiance of the natural night sky under clear-air and quiescent-airglow conditions is approximately 1–2, while a cloudy sky yields a value of about 1. These numbers are applicable for any passband defined in the visible spectrum. On nights when airglow is particularly active and its spectrum is dominated by line emission rather than the pseudocontinuum, it can increase the band-averaged radiance at the zenith by almost a factor of two as compared to nights when airglow is relatively inactive.

Classifying and ranking night sky quality

Measurement and monitoring of NSB are usually conducted to meet one or more objectives. These may involve gathering a baseline of night-time conditions to initially characterize the quality of the night sky before monitoring begins, with an eye towards assessing the impact of skyglow on an area. This supports site selection for new ground-based astronomical observatories. Long-term monitoring helps site managers identify potential threats to night sky quality and assess the efficacy of various mitigations.

While NSB can be quantified, there is no fully objective quality determination or ranking system for the night sky, in part because the experience is distinctly human focused. Any attempt to compare or rank sky quality must admit the inability to completely specify what for many people is an emotional, psychological and sensory experience. Furthermore, we now know that the natural night sky varies considerably in brightness on timescales ranging from minutes (aurorae) to years (atmospheric extinction from events such as volcanic eruptions). As a result, relative measurements that look for trends in NSB at a single location are often more reliable than meta-analyses that aim to quantitatively compare two or more locations.

The aerosol content of the lower atmosphere is an important factor controlling the perceived quality of the night sky for two reasons. One is that aerosols are responsible for the direct attenuation of light from astronomical objects, making them appear to be less bright than they would be above the Earth’s atmosphere. The other reason is that aerosols scatter light—whether natural or artificial—and raise the level of the sky background. These effects jointly act to reduce the contrast between astronomical objects and the background, making them difficult to see. In cities, the scattered light of skyglow overwhelmingly dominates attenuation of starlight as the cause of this contrast reduction, but in rural areas direct attenuation competes with scattering.

The importance of aerosols in otherwise naturally dark places may well explain measurements of NSB apparently falling below the naturally imposed ‘floor’ discussed in Sources of natural light in the night sky. However, with these unnaturally dark skies should come a diminished ability to see faint stars, whose dim light is substantially or completely extinguished during its passage through the atmosphere. This suggests that night sky quality is ultimately determined by some combination of objective sky brightness measurements and subjective impressions of the visibility of faint astronomical objects.

Both subjective (observer-dependent) and objective (device-dependent) quality metrics have been proposed and are discussed below. Several of these metrics are intercompared in Fig. 6a.

Subjective metrics. Naked-eye limiting magnitude. Subjective metrics tend to rely on the human visual system for sensing NSB. Some approaches use estimates of the visual or naked-eye limiting magnitude as an indicator of NSB, given empirical relationships between the two (Fig. 6b). Naked-eye limiting magnitude estimates are the basis for citizen science efforts such as Globe At Night, whose data have been shown in aggregate to correctly approximate the NSB as measured through direct sensing.

Bortle scale. Other subjective metrics are more impressionistic, such as the Bortle scale, which ranks night sky quality on a

Fig. 5 | NSB histogram made by integrating a time series of measurements obtained over one year at Páramos, Spain. The upper plot demonstrates the method schematically, with the result shown in the lower plot. ‘Arms’ on either side of the plot (A) represent the rapid sky brightness change during twilight. The brightest nights (B) are those during which moonlight directly illuminates the detector. C represents nights during which clouds scatter moonlight and reflect city lights. D corresponds to moonless nights when clouds amplify city skyglow. The darkest nights (E) correspond to clear conditions with no moonlight contribution. UTC, Coordinated Universal Time. Figure reproduced from ref. 90, MDPI.
scale ranging from one to nine. While the Botlle scale is intuitive, anecdotally some users report sufficient ambiguity in the descriptions of the Botlle classes that estimates are often not reliable to better than one full step in the scheme of classes.

The apparent brightness and degree of visual structure in naked-eye observations of the Milky Way is sometimes suggested as an alternative indicator of night sky quality. Crumey suggested that the fundamental visibility of the Milky Way is an indicator of what we would call a ‘dark’ sky, but notes the useful limits of this idea.

Objective metrics. Anthropogenic light ratio. The US NPS has proposed the anthropogenic light ratio (ALR) as the most basic means of representing the relative amount of skyglow visible from a given site. It is the ratio of anthropogenic to natural NSB averaged over the entire sky. The latter quantity is usually taken as the ‘night sky unit’ described in Sources of natural light in the night sky. For purposes of computing ALR, NPS assumes an unpolluted night sky to have a zenith luminance of 78 nL (~0.25 mcd m–2), or 21.79 mag arcsec–2). ALR is linear and unitless, and it can be equivalently expressed as a percentage. As a consequence, comparisons between sites in terms of ALR are easily made.

ALR is in fairly wide use as an NSB metric. For example, Falchi et al. used ALR as the basis for the maps presented in the New World Atlas of Artificial Night Sky Brightness. Duriscoe et al. proposed a method for estimating ALR with high confidence over large regions using cloud-free, composite satellite images and a simplified spatial model. However, as an all-sky average, ALR fails to adequately characterize the distribution of light near the horizon where the light domes of cities appear. A potential adaptation of ALR that would make it more robust is to specify it as a function of altitude and azimuth.

Sky quality index. NPS has also devised and promoted the sky quality index, a metric derived from the distribution of sky luminance values in all-sky image data modelled using the method of Duriscoe, described in Data modelling, to remove the light of the natural sky and leave only the anthropogenic contribution. The sky quality index can take any value from 0 to 100, where 100 is defined as a night sky entirely devoid of skyglow.

Illuminance metrics. Duriscoe also proposed a number of quantities derived from calibrated all-sky imagery that could be used to objectively characterize NSB at a given site. These include the average all-sky luminance (both total observed and that from skyglow alone) and the maximum horizontal and vertical illuminances. suggested characterizing a night sky by sampling the darkest area of the sky relative to the distance between that point and the ecliptic and the galactic equator to minimize contributions from the zodiacal light and diffuse galactic light, respectively.

Duriscoe criticized this approach because it does not account for the influence of the (spatially averaged) airglow, which increases with zenith distance by a factor of five between the zenith and the horizon.

NSB histograms. Bertolo et al. recently analysed NSB data obtained using the Veneto Sky Quality Meter network, comparing the night sky quality at seven sites in northeastern Italy. They characterized the distribution of time-series Sky Quality Meter measurements by using the FWHM of the darkest peak of the histogram. elaborated on this idea, proposing as a metric which is the average value of the readings within the FWHM of the darkest peak of the histogram under no-Sun no-Moon conditions. They contrasted against defined as the average of the upper tertile of NSB values obtained under the same no-Sun no-Moon conditions. While is advantageous in bright, generally urban contexts and suitable for long-term site monitoring, is superior to in naturally dark locations. In the latter case, can be strongly influenced by very dark NSB measurements due to effects such as overcast or foggy conditions and snow cover obscuring the detector field of view.

Sky brightness percentiles. examined over 1,500 NPS Night Sky Team imaging datasets collected along with Sky Quality Meter measurements and visual observations from hundreds of US national parks and monuments over nearly two decades, finding strong correlations between various commonly used night sky quality metrics. She performed a principal component analysis on 53 metrics derived from 1,391 complete datasets and concluded that only five principal components are required to explain 99% of variations among the metrics. concluded that zenith brightness and five brightness percentiles (50, 95, 99, 99.995 and 99.999) represent a minimum set that provides non-redundant characteristics of night sky quality.

Received: 16 February 2022; Accepted: 6 July 2022; Published online: 29 August 2022
References

1. Gaston, K. J., Gaston, S., Bennie, J. & Hopkins, J. Benefits and costs of artificial nighttime lighting of the environment. *Environ. Rev.* 23, 14–23 (2015).

2. Falchi, F. in Urban Pollution: Science and Management (eds Charlesworth, S. M. & Booth, C. A.) 147–156 (Wiley-Blackwell, 2018).

3. Green, R. F., Luginbühl, C. B., Wainscoat, R. J. & Duriscoe, D. The growing threat of light pollution to ground-based observatories. *Astron. Astrophys.* Rev. 30, 1 (2022).

4. Falchi, F. et al. The new world atlas of artificial night sky brightness. *Sci. Adv.* 2, 1600377 (2016).

5. Gaston, K. J., Duffy, J. P., Gaston, S., Bennie, J. & Davies, T. W. Human alteration of natural light cycles: causes and ecological consequences. *Oecologia* 176, 917–931 (2014).

6. Falchi, F. et al. Pervasive changes of biological impacts of artificial light at night. *Integr. Comp. Biol.* 61, 1098–1110 (2021).

7. Kyba, C. C. M. et al. Artificially lit surface of earth at night increasing in radiance and extent. *Sci. Adv.* 3, 1701528 (2017).

8. Falchi, F. et al. Light pollution in USA and Europe: the good, the bad and the ugly. *J. Environ. Manage.* 248, 109227 (2019).

9. Sim, Y., Kim, I., Choi, A. & Sung, M. A preliminary study of an evaluation method for discomfort glare due to light trespass. *Light. Res. Technol.* 49, 632–650 (2016).

10. Schroer, S. & Hölker, F. in Handbook of Advanced Lighting Technology (eds Karlbeck, R. et al.) 1–33 (Springer, 2016).

11. Svechkina, A., Portnov, B. A. & Trop, T. The impact of artificial light at night on human and ecosystem health: a systematic literature review. *Landscape Ecol.* 35, 1725–1742 (2020).

12. Boyce, P. Light, lighting and human health. *Light. Res. Technol.* 54, 101–144 (2021).

13. Warwik, P. O. Effects of road lighting on motorways. *Traffic Inf. Prev.* 10, 273–289 (2009).

14. Marchant, P., Hale, J. D. & Saddler, J. P. Does changing to brighter road lighting improve road safety? Multilevel longitudinal analysis of road traffic collision frequency during the relighting of a UK city. *J. Epidemiol. Community Health* 74, 467–472 (2020).

15. Kyba, C. C. M., Hanel, A. & Hölker, F. Redefining efficiency for outdoor lighting. *Energy Environ. Sci.* 7, 1806–1809 (2014).

16. Schulte-Römer, N., Meier, J., Söding, M. & Dannemann, E. The LED paradox: how light pollution challenges experts to reconsider sustainable lighting. *Sustainability* 11, 6160 (2019).

17. Cinzano, P. & Falchi, F. Toward an atlas of the number of visible stars. *J. Quant. Spectrosc. Radiat. Transf.* 253, 107059 (2020).

18. Garstang, R. H. Model for artificial night-skym illumination. *Publ. Astron. Soc. Pac.* 98, 364–375 (1986).

19. Kocifaj, M. & Lampächer, H. A. S. Skyglow: a retrieval of the approximate brightness of urban to rural skylight with all-sky photometry. *J. Imaging* 5, 237–293 (2019).

20. Kocifaj, M. Are population-based models advantageous in estimating the lumen outputs from light-pollution sources? *Mon. Not. R. Astron. Soc.* Lett. 496, L138–L141 (2020).

21. Jechow, A., Kyba, C. C. M. & Hölker, F. Mapping the brightness and color of urban to rural skylight with all-sky photometry. *J. Quant. Spectrosc. Radiat. Transf.* 250, 106998 (2020).

22. Aubé, M. Physical behaviour of anthropogenic light propagation into the nocturnal environment. *Phil. Trans. R. Soc. B* 370, 20140117 (2015).

23. Falchi, F. Campaign of sky brightness and extinction measurements using a portable C D camera. *Mon. Not. R. Astron. Soc.* 412, 33–48 (2010).

24. Jechow & Hölker Skyglow—the amplification of skyglow by snow and clouds can exceed full moon illumination in suburban areas. *J. Imaging* 5, 69 (2019).

25. Wallner, S. & Kocifaj, M. Impacts of surface albedo variations on the night sky brightness—a numerical and experimental analysis. *J. Quant. Spectrosc. Radiat. Transf.* 239, 106648 (2019).

26. Liu, M. et al. Research on the influence of weather conditions on urban night light environment. *Sustain. Cities Soc.* 54, 101980 (2020).

27. Kocifaj, M. & Barentine, J. C. Air pollution mitigation can reduce the nocturnal environment. *Sci. Rep.* 11, 14622 (2021).

28. Sicézor, T. The impact of clouds on the brightness of the night sky. *J. Quant. Spectrosc. Radiat. Transf.* 247, 106962 (2020).

29. Kyba, C. C. M., Ruhtz, T., Fischer, J. & Hölker, F. Cloud coverage acts as an amplifier for ecological light pollution in urban ecosystems. *PloS ONE* 6, 17307 (2011).

30. Jechow, A., Hölker, F. & Kyba, C. C. M. Using all-sky differential photometry to investigate how nocturnal clouds darken the night sky in rural areas. *Sci. Rep.* 9, 1391 (2019).

31. Luginbühl, C. B., Lockwood, G. W., Davis, R. D., Pick, K. & Selders, J. From the ground up i: light pollution sources in Flagstaff, Arizona. *Publ. Astron. Soc. Pac.* 121, 185–203 (2009).

32. Kocifaj, M., Solano Lampärcher, H. A. & Kudracki, F. Retrieval of Garstang’s emission function from all-sky camera images. *Mon. Not. R. Astron. Soc.* 453, 819–827 (2015).

33. Kocifaj, M. Towards a comprehensive city emission function (CCEF). *J. Quant. Spectrosc. Radiat. Transf.* 205, 253–256 (2018).

34. Kocifaj, M., Solano-Lampärcher, H. A. & Videen, G. Night-sky radiometry can revolutionize the characterization of light-pollution sources globally. *Proc. Natl. Acad. Sci. USA* 116, 7712–7717 (2019).

35. Luginbühl, C. B., Boley, P. A. & Davis, D. R. The impact of light source spectral power distribution on sky glow. *J. Quant. Spectrosc. Radiat. Transf.* 139, 21–26 (2014).

36. Cinzano, P., Falchi, F. & Elvidge, C. D. Naked-eye star visibility and limiting magnitude mapped from DMSP-OLS satellite data. *Mon. Not. R. Astron. Soc.* 323, 34–46 (2001).

37. Rybicki, G. B. & Lightman, A. P. Radiative Processes in Astrophysics (Wiley-VCH, 1985).
94. Zamorano, J. et al. STARS4ALL night sky brightness photometer. Int. J. Sustain. Light. 18, 49–54 (2017).
95. Kyba, C. C. M. & Lolkema, D. E. A community standard for recording skyglow data. Astron. Geophys. 53, 617–618 (2012).
96. Puschign, J., Wallner, S. & Posch, T. Circumferential variations of the night sky brightness—An FPT perspective on the impact of light pollution. Mon. Not. R. Astron. Soc. 492, 2622–2637 (2019).
97. Bará, S. Characterizing the zenithal night sky brightness in large territories: how many samples per square kilometre are needed? Mon. Not. R. Astron. Soc. 473, 4146–4173 (2017).
98. Frye, L., Bará, S., Aubé, M., Barentine, J. C. & Zamorano, J. On the relation between the astronomical and visual photometric systems in specifying the brightness of the night sky for mesoscopically adapted observers. LEUKOS https://doi.org/10.1080/15502724.2021.1921593 (2021).
99. Crumey, A. Human contrast threshold and astronomical visibility. Mon. Not. R. Astron. Soc. 442, 2600–2619 (2014).
100. Kyba, C. C. M. et al. Citizen science provides valuable data for monitoring global night sky luminance. Sci. Rep. 3, 1835 (2013).
101. Bortle, J. E. Introducing the Bortle Dark-Sky Scale. Sky Telesc. 101, 126–129 (2001).
102. Moore, C., Turina, F. & White, J. Recommended Indicators and Thresholds of Night Sky Quality for NPS State of the Park Reports—Interim Guidance https://irma.nps.gov/Datastore/DownloadFile/476525 (2015).
103. Duriscoe, D. M., Anderson, S. J., Luginbühl, C. B. & Baugh, K. E. A simplified model of all-sky artificial sky glow derived from VIIRS Day/ Night band data. J. Quant. Spectrosc. Radiat. Transf. 214, 133–145 (2018).
104. Patat, F. UVBI RUSky brightness during sunspot minimum at ESO-Paranal. Astron. Astrophys. 400, 1183–1198 (2003).
105. Bertolo, A., Binotto, R., Ortolani, S. & Sapienza, S. Measurements of night sky brightness in the Veneto region of Italy: Sky Quality Meter network results and differential photometry by digital single lens reflex. J. Imaging 5, 56 (2019).
106. Seaton, M. J. Excitation processes in the aurora and airglow 1. Absolute intensities, relative ultra-violet intensities and electron densities in high latitude aurorae. J. Atmos. Terr. Phys. 4, 285–294 (1954).
107. Hunten, D. M. Some photometric observations of auroral spectra. J. Atmos. Terr. Phys. 7, 141–151 (1955).
108. Chamberlain, J. in International Geophysics (ed. Van Mieghem, J.) Vol. 2, 704 (Academic, 1961).
109. Hong, S. S., Kwon, S. M., Park, Y. S. & Park, C. Transfer of diffuse astronomical light and airglow in scattering earth atmosphere. Earth Planets Space 50, 487–491 (1998).
110. Hong, S. S., Park, Y. S., Kwon, S. M., Park, C. & Weinberg, J. L. Radiative transfer in a scattering spherical atmosphere. J. Korean Astron. Soc. 35, 41–57 (2002).
111. Kwon, S. M., Hong, S. S. & Weinberg, J. L. An observational model of the zodiacal light brightness distribution. New Astron. 10, 91–107 (2004).
112. Kwon, S. M. Temporal and spatial variations of the atmospheric diffuse light. J. Korean Astron. Soc. 22, 141–159 (1989).
113. Bassa, C. G., Hainaut, O. R. & Galadí-Enríquez, D. Analytical simulations of the effect of satellite constellations on optical and near-infrared observations. Astron. Astrophys. 657, 75 (2022).
114. Tanabe, H. Photoelectric observations of the Gegenschein. Publ. Astron. Soc. Japan 57, 339–366 (2005).
115. Leinert, C. Zodiacal light—a measure of the interplanetary environment. Space Sci. Rev. 18, 381–393 (1975).
116. James, J. F., Mukai, T., Watanabe, T., Ishiguro, M. & Nakamura, R. The morphology and brightness of the zodiacal light and gegenschein. Mon. Not. R. Astron. Soc. 288, 1022–1026 (1997).
117. Bullington, A. et al. Measurements of the Gegenschein brightness from the Solar Mass Ejection Imager (SMEI). Icarus 203, 124–133 (2009).
118. Nawar, S., Tadross, A., Mikhail, J. & Morcos, A. Brightness and color of the integrated starlight at celestial, elliptic and galactic poles. Preprint at https://arxiv.org/abs/1011.2941 (2010).
119. Flässer, H. & Haug, U. Über eine lichtelektrische Flächenphotometrie der südlichen und nördlichen Milchstraße in zwei Farben und die Struktur des galaktischen Systems. Mit 10 Textabbildungen. Z. Astrophys. 50, 121 (1960).
120. Witt, A. N. & Lillie, C. F. Diffuse galactic light and the albedo of interstellar dust in the 1500 Å to 4250 Å region. Astron. Astrophys. 25, 397–404 (1974).
121. Toller, G. A Study of Galactic Light, Extragalactic Light, and Galactic Structure using Pioneer 10 Observations of Background Starlight. PhD thesis, State Univ. New York at Stony Brook (1981).
122. Dube, R. R., Wickes, W. C. & Wilkinson, D. T. Extragalactic background light at 3100 Å. Astron. J. 215, L51–L52 (1977).
123. Lauer, T. R. & Longmore et al. New Horizons observations of the cosmic optical background. Astrophys. J. 906, 77 (2021).
124. Lauer, T. R. et al. Anomalous flux in the cosmic optical background. Mon. Not. R. Astron. Soc. 442, 2600–2619 (2014).
125. Beier, P. E. in E-Prints Complutense Report on Sky Quality Meter, Version l (Istituto di Scienza e Tecnologia dell’Inquinamento Luminoso, 2007).
126. Glumac, N. et al. Review ARticleNaTURE asTRoNomy.
Acknowledgements
Many individuals contributed positively to the content and clarity of this manuscript with their informal reviews and comments. In particular, we wish to thank S. Bará (Universidade de Santiago de Compostela, Spain), G. Esquerdo (Fred Lawrence Whipple Observatory, USA), L.-W. Hung (US NPS Natural Sounds and Night Skies Division, USA), Z. Kolláth (Konkoly Observatory, Hungary) and K. Walczak (Adler Planetarium, USA) for their helpful feedback.

Competing interests
The author declares the following competing interests. Financial competing interests: the author is self-employed as a consultant in the field that is the subject of this Review. Non-financial competing interests: the author is an unpaid member of committees of the American Astronomical Society and International Astronomical Union that advocate or lobby for interests that are the subject of this Review.

Additional information
Correspondence should be addressed to John C. Barentine.
Peer review information Nature Astronomy thanks Miroslav Kocifaj and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. © Springer Nature Limited 2022