Mathematical Simulation of the Problem of the Pre-Critical Sandwich Plate Bending in Geometrically Nonlinear One Dimensional Formulation

I B Badriev, V V Banderov and M V Makarov

Kazan Federal University, 18 Kremlyovskaya Street, 420008, Kazan, Russian Federation
Kazan National Research Technical University, 10 Karl Marx Street, 420111, Kazan, Russian Federation

E-mail: ildar.badriev1@mail.ru

Abstract. In this paper we consider the geometrically nonlinear problem of determining the equilibrium position of a sandwich plate consisting of two external carrier layers and located between transversely soft core, connected with carrier layer by means of adhesive joint. We investigate the generalized statement of the problem. For its numerical implementation we offer a two-layer iterative process and investigate the convergence of the method. Numerical experiments are carried out for the model problem.

1. Introduction

Multilayer structures, in particular plates, are widely used in various fields of modern technology, aerospace, aviation, shipbuilding; industrial, civil and transport construction, chemical and power engineering [1–6]. The interest in layered plates associated primarily with the fact that they have a set of properties and features that are qualitatively different from conventional constructions. In this paper the construction and study of a generalized statement of geometrically nonlinear problem of the bending of sandwich plate with transversal-soft core are carried out. To solving the problem an iterative method is proposed and its convergence is investigated. In the study correctness of a generalized statement and the convergence of method we use the pseudomonotone operators apparatus. Note that the generalized statement of physically non-linear and geometrically linear problem in the form of saddle problems, as well as a method for its solution were considered in [7–10]. The study of nonlinear problems of the shells theory, including the approximate methods for their solution in [11–18] is carried out.

2. Problem statement

In this paper we consider the problem of determining the stress-strain state of an infinitely long sandwich plate with transversal-soft core. The width of the plate is \(a\), the core thickness is \(2h\), the thickness of the carrier layers are equal \(2h_k\), where \(k\) is the number of the layer. To describe the stress-strain state in the carrier layers are used the equations of Kirchhoff-Love model, in the core the equations of elasticity theory, simplified by the accepted model of transversely soft layer and integrated over its thickness with the satisfaction of the of conjugation conditions of the layers on the
displacements [19–21]. According to [19–21], we introduce the following notations (here and in what follows we assume that \(k = 1, 2 \)), \(X^1_{(k)}, X^3_{(k)} \) are surface load components reduced to the middle surface of the \(k \)-th layer, \(u^{(k)} \) and \(w^{(k)} \) are bending and axial displacements of the middle surface points of \(k \)-th layer, respectively, \(T_{11}^{(k)}, M_{11}^{(k)} \) are the inner membrane forces and bending moments in the \(k \)-th layer respectively. The plate edges are assumed fixed, so that the conditions \(u^{(k)}(x) = 0, \ d w^{(k)}/dx = 0 \) are satisfied at \(x = 0, \ x = a \). Let us consider the problem in geometrically nonlinear statement, i.e.,

\[
T_{11}^{(k)} = B_{(k)} \left(d u^{(k)}/dx + \frac{1}{2} (d w^{(k)}/dx)^2 \right),
\]

\[
M_{11}^{(k)} = D_{(k)} q^2 w^{(k)} / dx^2,
\]

where \(B_{(k)} = 2 h_{(k)} E^{(k)} / (1 - \nu_{12}^{(k)} \nu_{21}^{(k)}) \) is the stiffness of \(k \)-th layer on the tension-compression, \(E^{(k)} \) and \(\nu_{12}^{(k)}, \nu_{21}^{(k)} \) are the first-order elastic modulus and Poisson's coefficients of the material of the carrier \(k \)-th layer, \(D_{(k)} = B_{(k)} h_{(k)}^2 / 3 \) is the bending stiffness of \(k \)-th layer. Let \(U = (w^{(1)}, w^{(2)}, u^{(1)}, u^{(2)}) \) be a displacements vector of points of the middle surface of the \(k \)-th layer, \(q^1 \) be a tangential stresses in the core. For \(q^1 \) we assume the boundary conditions

\[
q^1(0) = q^1(a) = 0
\]

are satisfied. In [19–21] to describe the stress-strain state of sandwich plate following strain energy functional was constructed

\[
L(U, q^1) = P(U, q^1) - A_s(U, q^1) - A_q(U, q^1),
\]

where

\[
P(U, q^1) = \frac{1}{2} \int_0^a \left\{ \sum_{k=1}^2 \left[B_{(k)} \left(d u^{(k)}/dx + \frac{1}{2} (d w^{(k)}/dx)^2 \right)^2 + D_{(k)} (d^2 w^{(k)}/dx^2)^2 \right] + c_1 (q^1)^2 + c_2 (d q^1/dx)^2 + c_3 (w^{(2)} - w^{(1)})^2 \right\} dx
\]

is the strain potential, \(c_1 = 2h / G_{13}, \ c_2 = 2h^3 / 3 E_3, \ c_3 = E_3 / (2h), \ G_{13}, E_3 \) are the transverse shear and compression modules of a core,

\[
A_s(U, q^1) = \int_0^a \sum_{k=1}^2 \left[X^1_{(k)} u^{(k)} + M^1_{(k)} d w^{(k)}/dx + X^3_{(k)} w^{(k)} \right] dx
\]

is the work of given external forces and moments, \(M^1_{(k)} \) is the surface moment of external forces, reduced to the middle surface of the \(k \)-th layer, and

\[
A_q(U, q^1) = \int_0^a \left[(u^{(1)} - u^{(2)}) - \sum_{k=1}^2 H_{(k)} d w^{(k)}/dx + c_1 q^1 - c_2 d q^1/ dx^2 \right] q^1 dx
\]

is the work of unknown tangential stresses on corresponding displacements. It has been established [22] that the solution of the problem of the sandwich plate equilibrium is a stationary point of the functional \(L \).
3. Generalized statement of the problem

Let $V_k = W^{(k)}_2 ((0, a))$ be the Sobolev spaces $[23, 24]$ with inner products $(u, \eta)_k = \int_0^a d^k u / dx^k \cdot d^k \eta / dx^k \, dx$, V_q be the Sobolev space of functions with compact support on $(0, a)$ having the first generalized derivative, integrable with the square, with the inner product $(\gamma, \zeta)_\gamma = \int_0^a [c_2 y(x) \gamma(x) + c_3 d \gamma / dx \, d \zeta / dx] \, dx$. We denote the inner product in V through $(\cdot, \cdot)_V$.

Using the Sobolev embedding theorem and the Rellich-Kondrashov theorem $[23, 24]$, it is easy to verify that the functional L is well defined on $q V V$ \times \times. We obtain the equations for the stationary points of the functional L. For this purpose we find the Gateaux its derivatives $[24, 25]$. Let us rewrite the functional L in the form $L(U, q^j) = \Phi_0(U) + \Phi_1(U, q^j) - \Phi_2(q^j)$, where

\[
\Phi_0(U) = \frac{1}{2} \int_0^a \left\{ \sum_{k=1}^2 B_{(k)} \left(\frac{d u^{(k)}}{dx} + \frac{1}{2} \left(\frac{d w^{(k)}}{dx} \right)^2 \right)^2 + D_{(k)} \left(\frac{d^2 w^{(k)}}{dx^2} \right)^2 \right\} \, dx + c_3 (w^{(2)} - w^{(1)})^2 \, dx - \int_0^a \sum_{k=1}^2 \left[X_{(k)}^1 u^{(k)} + M_{(k)}^1 d w^{(k)} / dx + X_{(k)}^3 w^{(k)} \right] \, dx,
\]

\[
\Phi_1(U, q^j) = \int_0^a \left[\sum_{k=1}^2 H_{(k)} \frac{d w^{(k)}}{dx} + (u^{(2)} - u^{(1)}) \right] q^j \, dx, \quad \Phi_2(q^j) = \frac{1}{2} \int_0^a \left\{ c_1 (q^j)^2 + c_2 \left(\frac{d q^j}{dx} \right)^2 \right\} \, dx
\]

Defining the Gateaux derivatives we have that the stationary points of the functional L are the solutions of variational equations (integral identities)

\[
\frac{a}{2} \int_0^a \left[\sum_{k=1}^2 B_{(k)} \left(\frac{d u^{(k)}}{dx} + \frac{1}{2} \left(\frac{d w^{(k)}}{dx} \right)^2 \right)^2 \right] \frac{d \eta^{(k)}}{dx} \, dx + \frac{a}{2} \int_0^a \sum_{k=1}^2 B_{(k)} \left(\frac{d u^{(k)}}{dx} + \frac{1}{2} \left(\frac{d w^{(k)}}{dx} \right)^2 \right) \frac{d w^{(k)}}{dx} \, dx + \frac{a}{2} \int_0^a d^2 w^{(k)} / dx^2 \, dx + \frac{a}{2} \int_0^a \sum_{k=1}^2 \left[X_{(k)}^1 \eta^{(k)} + M_{(k)}^1 d \eta^{(k)} / dx + X_{(k)}^3 \eta^{(k)} \right] \, dx
\]

\[
+ c_3 \int_0^a (w^{(2)} - w^{(1)}) (z^{(2)} - z^{(1)}) \, dx + \int_0^a \left\{ \sum_{k=1}^2 H_{(k)} \frac{d z^{(k)}}{dx} + (\eta^{(2)} - \eta^{(1)}) \right\} q^j \, dx = 0 \quad \forall Z \in V,
\]

\[
\int_0^a \left\{ \sum_{k=1}^2 H_{(k)} \frac{d w^{(k)}}{dx} + (u^{(2)} - u^{(1)}) + c_2 q^j \right\} y + c_2 d q^j / dx \, dy / dx \, dx = 0 \quad \forall y \in V_i
\]

Summing the integral identities, we obtain the variational equation

\[
b((U, q^j), (Z, y)) = ((f_1, 0), (Z, y))_{y \times q} \quad \forall (Z, y) \in W = V \times V_q.
\]

Again using the Sobolev embedding theorem and the Rellich-Kondrashov theorem $[23, 24]$ it is easy to verify that the form $b(\cdot, \cdot)$ defined on $W \times W$ is linear and bounded to the second argument, and therefore, generates an operator $A : W \to W$, the right side (9) generates an element $F \in W$. Thus (3) can be written as operator equation

\[
A(U, q^j) = F.
\]
Recall that the operator \(A_0 : V \to V' \) is called pseudomonotone \([26, 27]\) if it is bounded and the weak convergence of the sequence \(\{ u_k \}_{k=1}^{\infty} \) in \(V \) to \(u^* \) and the inequality
\[
\limsup_{k \to +\infty} \langle A_0 u_k, u_k - u^* \rangle \leq 0
\]
imply that the following relationship holds
\[
\liminf_{k \to +\infty} \langle A_0 u_k, u_k - \eta \rangle \geq \langle A_0 u^*, u^* - \eta \rangle
\]
for all \(\eta \). The following result holds.

Theorem 1. Operator \(A \) is continuous, coercive and pseudomonotone.

From Theorem 1 and general results of the theory of monotone operators \([25, 26]\) it implies that the following theorem is true.

Theorem 2. The problem (10) has at least one solution.

4. Iterative method

To solve the problem (10) in analogy to \([28–32]\) we propose the following iteration process has been. Let \((U_n, q_n^1) \) be any element from \(W \). For \(n = 0, 1, 2, \ldots \) we find \((U_n, q_n^1) \) as a solution of the problem

\[
J((U_{n+1}, q_{n+1}^1) - (U_n, q_n^1)) = \tau(F - A(U_n, q_n^1)), \tag{11}
\]

where \(J : W \to W \) is a duality operator \([26]\), \(\tau > 0 \) is an iterative parameter.

Following \([33–36]\), we can prove the following theorem on the convergence of the iterative method.

Theorem 3. There is a constant \(\tau_0 \) such that for \(0 < \tau < \tau_0 \) the sequence \((U_n, q_n^1) \) weakly converges to some solution of the problem (10) as \(n \to +\infty \).

The proposed method (11) for solving the problem have been implemented numerically. Software package in Matlab environment was developed and carried out calculations for the model problem. For the model problem, numerical experiments were carried out. Iteration parameter was chosen empirically. The calculations were performed for the following characteristics: \(a = 1 \) cm, \(h_{(1)} = h_{(2)} = 0.005 \) cm, \(h = 0.05 \) cm, \(G_{13} = 15 \) MPa, \(E_3 = 25 \) MPa, \(X_{(1)}^3 = 0.0319 \) MPa, \(X_{(2)}^3 = 0 \), \(E^{(k)} = 7 \cdot 10^4 \) MPa, \(\nu_{(1)}^{(k)} = \nu_{(2)}^{(k)} = 0.3 \), \(X_{(k)}^1 = 0 \), \(M_{(k)}^1 = 0 \), \(k = 1, 2 \). The results of numerical experiments are shown in figures 1–3.

![Figure 1. Axial displacements in carrier layers.](image-url)

It should be noted that formulated for \(q^1 \) boundary conditions (1) correspond to the presence of, at the edges \(x = 0 \), \(x = a \) the diaphragms, this leads to the formation of the maximum transverse
tangential stresses in sections the filler a distance of about its thickness $2h$, as observed in figure 2. The limiting the free end sections $x = 0$, $x = a$ displacements in axial direction leads to the formation to the formation of a significant in magnitude membrane forces $T_{(1)}^{11}$, $T_{(2)}^{11}$ in the carrying layers $T_{(1)}^{11}$, $T_{(2)}^{11}$, the force $T_{(i)}^{11}$ of which is a contraction in cross-section $x = a/2$. For this reason, in the neighborhood of this section should be expected buckling carrier layers in a mixed form. It is easy to verify that the first two equations of (1) implies that $T_{(1)}^{11} + T_{(2)}^{11} = \text{const}$, in the implementation of which can be verified on the basis of the results shown in figure 3.

![Figure 2. Tangential stresses in core.](image1)

![Figure 3. Membrane forces in carrier layers.](image2)

5. Conclusion
In this paper, we construct a generalized statement for the geometrically nonlinear problem of the bending of a sandwich plate in a one-dimensional formulation in the form of an operator equation in the Sobolev space. The solvability of the equation is proved on the basis of general results of the monotone operators theory. To solve the problem, a two-layer iterative process is proposed and its convergence is investigated. The results of numerical experiments, their correspondence to the physical picture of the problem, showed both the adequacy of the mathematical model and the effectiveness of the proposed iterative method. The results of the work can be used in the design of the sandwich structures.
Acknowledgements
This work was supported by the Russian Science Foundation (project 16-11-10299).

References
[1] Berezhnoi D V and Paimushin V N 2011 Two formulations of elastoplastic problems and the theoretical determination of the location of neck formation in samples under tension Journal of Applied Mathematics and Mechanics 75 (4) 447-62
[2] Akishev N I, Zakirov I I, Paimushin V N and Shishov M A Theoretical-experimental method for determining the averaged elastic and strength characteristics of a honeycomb core of sandwich designs Mechanics of Composite Materials 47 (4) (2011) 377-386
[3] Abdrakhmanova A I and Sultanov L U 2016 Numerical modelling of deformation of hyperelastic incompressible solids Materials Physics and Mechanics 26 (1) 30-2
[4] Rahmani O and Lashkari M J 2015 Bending analysis of sandwich plates with composite face sheets and compliance functionally graded syntactic foam core Journal of Mechanical Engineering Science 1 1-24
[5] Paimushin V N 2008 Static and dynamic beam forms of the loss of stability of a long orthotropic cylindrical shell under external pressure Journal of Applied Mathematics and Mechanics 72 (6) 738–47
[6] Liang Y and Izzuddin B A 2016 Large displacement analysis of sandwich plates and shells with symmetric/asymmetric laminated Journal of Mechanical Engineering Science 1 1-24
[7] Badriev I B, Makarov M V and Paimushin V N 2015 Solvability of physically and geometrically nonlinear problem of the theory of sandwich plates with transversally-soft core Russian Mathematics. 59 (10) 57-60
[8] Badriev I B, Garipova G Z, Makarov M V and Paimushin V N 2015 Numerical Solution of the Issue about Geometrically Nonlinear Behavior of Sandwich Plate with Transversal Soft Filler Research Journal of Applied Sciences 10 (8) 428-35
[9] Badriev I B, Garipova G Z, Makarov M V, Paimushin V N and Khabibullin R F 2015 Solving Physically Nonlinear Equilibrium Problems for Sandwich Plates with a Transversally Soft Core Lobachevskii Journal of Mathematics 36 (4) 474-81
[10] Badriev I B, Makarov M V and Paimushin V N 2016 Numerical Investigation of Physically Nonlinear Problem of Sandwich Plate Bending Procedia Engineering 150 1050-5
[11] Paimushin V N and Polyakova N V 2009 The consistent equations of the theory of plane curvilinear rods for finite displacements and linearized problems of stability Journal of Applied Mathematics and Mechanics 73 (2) 220-36
[12] Berezhnoi D V, Sachenkov A A and Sagdatullin M K 2014 Geometrically nonlinear deformation elastoplastic soil Applied Mathematical Sciences 8 (127) 6341-8
[13] Badriev I B, BanderoV V V and Zadvornov O A 2013 On the equilibrium problem of a soft network shell in the presence of several point loads Applied Materials and Mechanics 392 188-90
[14] Abdrakhmanova A I, Garifullin I R, Davydov R L, Sultanov L U and Fakhirutdinov L R 2015 Investigation of Strain of Solids for Incompressible Materials Applied Mathematical Sciences 9 (118) 5907-14
[15] Davydov R L and Sultanov L U 2015 Numerical Algorithm for Investigating Large Elasto-Plastic Deformations Journal of Engineering Physics and Thermophysics 88 (5) 1280-8
[16] Badriev I B, Makarov M V and Paimushin V N 2016 Mathematical Simulation of Nonlinear Problem of Three-point Composite Sample Bending Test Procedia Engineering 150 1056-62.
[17] Sultanov L U 2016 Analysis of finite elasto-plastic strains. Medium kinematics and constitutive equations Lobachevskii Journal of Mathematics 37 (6) 787-93
[18] Berezhnoi D V, Paimushin V N and Shalashilin V I 2010 Studies of quality of geometrically nonlinear elasticity theory for small strains and arbitrary displacements Mechanics of Solids 44 (6) 837-51
[19] Paimushin V N and Bobrov S N 2000 Refined geometric nonlinear theory of sandwich shells with a transversely soft core of medium thickness for investigation of mixed buckling forms *Mechanics of composite materials* 36(1) 59-66

[20] Paimushin V N 1983 Variational-methods in the non-linear 3-dimensional problems of conjugation of deformable-bodies *Doklady Akademii Nauk* 273 (5) 1083-86

[21] Paimushin V N 1987 Nonlinear theory of the central bending of three-layer shells with defects in the form of sections of bonding failure *Soviet Applied Mechanics* 23 (11) 1038-1043

[22] Paimushin V N 1987 Generalized Reissner variational principle in nonlinear mechanics of three-dimensional composite solids, with applications to the theory of multilayer shells *Mechanics of solids* 22 (2) 166-174

[23] Adams R A 1975 *Sobolev Spaces* (New York, San Francisco, London, Academic Press)

[24] Gajewskii H, Gröger K and Zacharias K 1974 *Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen* (Berlin, Akademie-Verlag)

[25] Ekeland I and Temam R 1976 *Convex Analysis and Variational Problems*, (Amsterdam, North-Holland)

[26] Lions J-L 1969 *Quelque problèmes méthodes de résolution des problèmes aux limites nonlinéaires* (Paris, Dunod)

[27] Brézis H 1968 *Équations et inéquations non linéaires dans les espaces vectoriels en dualité* *Annales de l'institut Fourier* 18 (1) 115-75

[28] Dubrovin V T, Chebakova V Ju and Zheltukhin V S 2016 Radio-Frequency Discharge at Low Pressure: a Non-Local Problem Statement Approach *Procedia Engineering* 150 1041–5

[29] Badriev I B 2013 On the Solving of Variational Inequalities of Stationary Problems of Two-Phase Flow in Porous Media *Applied Mechanics and Materials* 392 183-7

[30] Badriev I B and Karchevskii M M 1989 Convergence of the iterative Uzawa method for the solution of the stationary problem of seepage theory with a limit gradient *Journal of Soviet Mathematics* 45 (4) 1302-9

[31] Badriev I B and Nechaeva L A 2013 Mathematical simulation of steady filtration with multivalued law *PNRPU Mechanics Bulletin* (3) 37-65

[32] Badriev I B 1989 Application of duality methods to the analysis of stationary seepage problems with a discontinuous seepage law *Journal of Soviet Mathematics* 45 (4) 1310-4

[33] Chebakova V J, Gerasimov A V and Kirpichnikov A P 2016 On the solving of one type of problems of mathematical physics, IOP Conference Series: Materials Science and Engineering 158 (1) 012023

[34] Badriev I B, Zadvornov O A and Saddek A M 2001 Convergence Analysis of Iterative Methods for Some Variational Inequalities with Pseudomonotone Operators *Differential Equations* 37 (7) 934-942

[35] Badriev I B, Zadvornov O A, Ismagilov L N and Skvortsov E V 2009 Solution of plane seepage problems for a multivalued seepage law when there is a point source *Journal of Applied Mathematics and Mechanics* 73 (4) 434-42