A COMPARISON OF CLASSES IN
THE JOHNSON COKERNELS OF
THE MAPPING CLASS GROUPS OF SURFACES

NAOYA ENOMOTO, YUSUKE KUNO, AND TAKAO SATOH

Abstract. In [8], the first and the third authors introduced new classes in the
Johnson cokernels of the mapping class groups of surfaces by a representation
theoretic approach based on some previous results for the Johnson cokernels of
the automorphism groups of free groups. On the other hand, in [15], Kawazumi
and the second author introduced another type of classes by a topological
consideration of self-intersections of curves on a surface.

In this paper, we show that the classes found in [15] are contained in the
classes found in [8] in a stable range. Furthermore, we prove that the anti-
Morita obstructions \([1^{m+1}m]\) for \(m \geq 1\) obtained in [8] and a hook-type com-
ponent \([3,1^5]\) detected in [6] appear in their gap.

1. Introduction

Let \(\Sigma_{g,1}\) be a compact oriented surface of genus \(g\) with one boundary com-
ponent. The mapping class group \(M_{g,1}\) is the group of isotopy classes of orientation
preserving diffeomorphisms of \(\Sigma_{g,1}\) which fix the boundary component pointwise.
The Torelli group \(I_{g,1}\), which consists of mapping classes acting trivially on the first
homology \(H = H_1(\Sigma_{g,1}, \mathbb{Z})\), is an important subgroup of \(M_{g,1}\). There is a central
filtration \(I_{g,1} = M_{g,1}(1) \supset M_{g,1}(2) \supset M_{g,1}(3) \supset \cdots\) defined by the action on
the nilpotent quotients of the fundamental group of \(\Sigma_{g,1}\). The associated graded
quotient of this filtration is described by the Johnson homomorphisms
\[
\tau^M_k : gr^k(M_{g,1}) \rightarrow h_{g,1}(k), \quad k \geq 1.
\]

Here, \(gr^k(M_{g,1}) = M_{g,1}(k)/M_{g,1}(k+1)\) and \(h_{g,1}(k)\) is the kernel of the Lie bracket
\(H \otimes \mathbb{L}_2g(k+1) \rightarrow \mathbb{L}_2g(k+2)\), where \(\mathbb{L}_2g = \bigoplus_{m \geq 1} \mathbb{L}_2g(m)\) is the free Lie algebra
generated by \(H = \mathbb{L}_2g(1)\). Note that the collection \(\{\tau^M_k\}_k\) defines an injective
homomorphism of graded Lie algebras:
\[
\tau^M : gr(M_{g,1}) = \bigoplus_{k \geq 1} gr^k(M_{g,1}) \rightarrow h_{g,1} = \bigoplus_{k \geq 1} h_{g,1}(k).
\]

The space \(h_{g,1}\) is called the Lie algebra of symplectic derivations [18, 17].

The Johnson homomorphisms were introduced by Johnson [12, 13], and Morita [18] gave a refinement of the target. For recent developments in the theory
of Johnson homomorphisms, we refer to expository articles [9, 11, 16, 19, 21, 24].

A particularly important fact is that the map \(\tau^M_k\) is equivariant with respect to the action of the group \(M_{g,1}/I_{g,1} \cong Sp(2g, \mathbb{Z})\). This fact enables us to make use
of representation theory to analyze \(\tau^M_k\), in particular when we work over a field.
of characteristic zero. In what follows, putting \mathbb{Q} as a subscript or a superscript means that one takes tensor product with the rationals.

As shown by Johnson [12] the first Johnson homomorphism τ_1^M is surjective. It was first observed by Morita [18] that the map τ_k^M is not surjective for higher k. That is, for any odd $k \geq 3$, he constructed the surjective homomorphism

$$\text{Tr}_k : h^Q_{g,1}(k) \to S^k H_\mathbb{Q},$$

where S^k means the kth symmetric tensor product, and proved that $\text{Tr}_k \circ \tau_k^M = 0$. In other words, the map Tr_k is an obstruction for the surjectivity of the kth Johnson homomorphism τ_k^M. We call the quotient of $h^Q_{g,1}(k)$ by the image of τ_k^M the kth Johnson cokernel of the mapping class group $M_{g,1}$. The Sp-module structure of the Johnson cokernels becomes an interesting object of study. The Morita trace Tr_k detects the unique Sp-irreducible component $S^k H_\mathbb{Q}$ in the kth Johnson cokernel.

In [3], the first and the third authors introduced the Sp-homomorphism

$$c_k : h^Q_{g,1}(k) \to C^Q_{2g}(k).$$

(See §3.2 for its definition.) Here, $C^Q_{2g}(k)$ is the quotient module of $H^Q_{g,1}$ with respect to the action of the cyclic group of order k as cyclic permutations of the components of $H^Q_{g,1}$. By using the third author’s result in [22] that the space $C^Q_{2g}(k)$ coincides with the kth Johnson cokernel of the automorphism group of the free group, they proved that

$$\text{Im}(\tau_k^M) \subset \text{Ker}(c_k) \subset h^Q_{g,1}(k)$$

in a stable range. The map c_k is a refinement of Tr_k in the sense that $\text{Ker}(c_k) \subset \ker(\text{Tr}_k)$. Moreover, in [8] it was shown that for $k \equiv 1 \pmod{4}$ and $k \geq 5$, an Sp-irreducible component $[1^k]$ is detected in $h^Q_{g,1}(k)/\ker(c_k)$, hence in the kth Johnson cokernel. We call this component the anti-Morita obstruction.

There are several studies on the trace maps c_k and their application to the Johnson cokernels. In [6], the first author and Hikoe Enomoto detected several series of hook-type components in $h^Q_{g,1}(k)/\ker(c_k)$. Recently, by using the hairy graph complex, Conant [3] detected new Sp-components in the Johnson cokernels which cannot be detected by the trace maps c_k.

At the present stage, the structure of the Johnson cokernels has not been completely determined. By using the trace map c_k, Morita, Sakasai and Suzuki [20] determined it up to degree 6.

In [15], Kawazumi and the second author introduced the map

$$\delta^\text{alg}_k : h^Q_{g,1}(k) \to \bigoplus_{p+q=k, p,q \geq 1} C^Q_{2g}(p) \otimes C^Q_{2g}(q)$$

(See §3.3 for its definition.) The map δ^alg_k arises from the Turaev cobracket, a topological operation which measures self-intersections of curves on a surface. They showed that

$$\text{Im}(\tau_k^M) \subset \ker(\delta^\text{alg}_k) \subset h^Q_{g,1}(k),$$

and that $\ker(\delta^\text{alg}_k) \subset \ker(\text{Tr}_k)$.

The main purpose of this paper is to compare the two obstructions coming from c_k and from δ^alg_k. Our first result is as follows.

Theorem 1.1. For each $k \geq 1$ and $2g \geq k+2$, we have $\ker(c_k) \subset \ker(\delta^\text{alg}_k)$.

Our proof is based on a relation between several contraction maps defined on $H^* \otimes \mathbb{Z}H_2(k+1)$; see Theorem 2.6. We remark that recently, Alekseev, Kawazumi, Kuno and Naef [1] showed that the above theorem holds for any g in a completely different way.

Our second result gives explicit differences between the two obstructions.

Theorem 1.2. Assume that $g \geq k + 1$.

(i) For any $k \equiv 1 \mod 4$ such that $k \geq 5$, the Sp-irreducible component $[1^k]$ lies in $\ker(\delta^\text{alg}_k)/\ker(\delta^\text{alg}_0)$. Thus $\ker(\delta^\text{alg}_k) \subseteq \ker(\delta^\text{alg}_0)$.

(ii) For $k = 8$, an Sp-irreducible component $[3, 1^5]$ appears in $\ker(\delta^\text{alg}_8)/\ker(\delta^\text{alg}_8)$.

Topologically, each of the components in $\ker(\delta^\text{alg}_k)/\ker(\delta^\text{alg}_0)$ is a component of the kth Johnson cokernel, and cannot be detected by the usual Turaev cobracket, but by the framed version of it; see [1] and [14]. By some computer calculations, the first author and Hikoe Enomoto have checked that $[4, 1^5]$ also appears in $\ker(\delta^\text{alg}_8)/\ker(\delta^\text{alg}_0)$. They conjecture that $[3, 1^k-3]$ ($5 \leq k \equiv 0 \mod 4$) and $[4, 1^{k-4}]$ ($9 \leq k \equiv 1 \mod 4$) appear in $\ker(\delta^\text{alg}_k)/\ker(\delta^\text{alg}_0)$. These results and observations suggest that the difference of $\ker(\delta^\text{alg}_k)$ and $\ker(\delta^\text{alg}_0)$ are not so small.

2. ANDREADAKIS-JOHNSON THEORY FOR Aut F_n

In this section, we review the Andreadakis-Johnson filtration and the Johnson homomorphisms of the automorphism groups of free groups. For details, see [23] for example.

2.1. Johnson homomorphisms of Aut F_n. Let F_n be a free group of rank $n \geq 2$ with basis x_1, \ldots, x_n and let $\text{Aut} F_n$ be the automorphism group of F_n. The group $\text{Aut} F_n$ acts naturally on the abelianization $H := F_n^\text{ab} := F_n/[F_n, F_n]$ of F_n. The kernel of this action is called the IA-automorphism group and denoted by IA_n. The basis x_1, \ldots, x_n induces a basis of H and we can identify $\text{Aut} H$ with the general linear group $\text{GL}(n, \mathbb{Z})$. Thus we have the group extension

$$1 \to \text{IA}_n \to \text{Aut} F_n \to \text{GL}(n, \mathbb{Z}) \to 1.$$

Let $F_n = \Gamma_n(1) \supset \Gamma_n(2) \supset \cdots$ be the lower central series of F_n. Namely it is defined by $\Gamma_n(1) := F_n$ and $\Gamma_n(k) := [\Gamma_n(k-1), F_n]$ for $k \geq 2$. It is classically known that the associated graded quotient

$$\mathcal{L}_n := \bigoplus_{k \geq 1} \mathcal{L}_n(k), \quad \text{where} \quad \mathcal{L}_n(k) := \Gamma_n(k)/\Gamma_n(k+1),$$

has the graded Lie algebra structure induced from the commutator bracket on F_n and is isomorphic to the free Lie algebra generated by $H = \mathcal{L}_n(1)$. Moreover, we have the canonical embedding

$$\mathcal{L}_n(k) \hookrightarrow H^\otimes k.$$

The group $\text{Aut} F_n$ acts naturally on $F_n/\Gamma_n(k+1)$. The kernel of this action is denoted by $\mathcal{A}_n(k)$. Then the subgroups $\mathcal{A}_n(k)$ form the descending filtration $\text{IA}_n = \mathcal{A}_n(1) \supset \mathcal{A}_n(2) \supset \cdots$ which we call the Andreadakis-Johnson filtration. Andreadakis proved the following theorem.

Theorem 2.1 (Andreadakis [2]).

(i) For any $k, \ell \geq 1$, $\sigma \in \mathcal{A}_n(k)$ and $x \in \Gamma_n(\ell)$, we have $\sigma(x)x^{-1} \in \Gamma_n(k+\ell)$.
(ii) For any \(k, \ell \geq 1 \), we have \([\mathcal{A}_n(k), \mathcal{A}_n(\ell)] \subset \mathcal{A}_n(k+\ell)\), namely the Andreadakis-Johnson filtration \(\{\mathcal{A}_n(k)\} \) is a descending central filtration of \(\text{IA}_n \).

By Theorem 2.1 (i), for any \(k \geq 1 \) we can define the homomorphism
\[
\tilde{\tau}_k : \mathcal{A}_n(k) \to \text{Hom}_\mathbb{Z}(H, \mathcal{L}_n(k + 1))
\]
by
\[
\sigma \mapsto (x \mod \Gamma_n(2) \mapsto \sigma(x)x^{-1} \mod \Gamma_n(k + 2)).
\]
The kernel of \(\tilde{\tau}_k \) coincides with \(\mathcal{A}_n(k+1) \) and we obtain the injective homomorphism
\[
\tau_k : \text{gr}^k(\mathcal{A}_n) \hookrightarrow \text{Hom}_\mathbb{Z}(H, \mathcal{L}_n(k + 1)) = H^* \otimes_\mathbb{Z} \mathcal{L}_n(k + 1),
\]
where \(\text{gr}^k(\mathcal{A}_n) := \mathcal{A}_n(k)/\mathcal{A}_n(k + 1) \). We call \(\tau_k \) the \(k \)-th Johnson homomorphism of \(\text{Aut} F_n \).

Next, we define a variant of the Johnson homomorphism \(\tau_k \). Let \(\text{IA}_n = \mathcal{A}'_n(1) \supset \mathcal{A}'_n(2) \supset \cdots \) be the lower central series of \(\text{IA}_n \), and set \(\text{gr}^k(\mathcal{A}'_n) := \mathcal{A}'_n(k)/\mathcal{A}'_n(k + 1) \). By Theorem 2.1 (ii), we have \(\mathcal{A}'_n(k) \subset \mathcal{A}_n(k) \) for any \(k \). Thus we obtain the (not necessarily injective) homomorphism
\[
\tau'_k := \tau_k \circ i_k : \text{gr}^k(\mathcal{A}'_n) \to H^* \otimes_\mathbb{Z} \mathcal{L}_n(k + 1),
\]
where the map \(i_k : \text{gr}^k(\mathcal{A}'_n) \to \text{gr}^k(\mathcal{A}_n) \) is induced from the inclusion \(\mathcal{A}'_n(k) \hookrightarrow \mathcal{A}_n(k) \).

The group \(\text{Aut} F_n \) acts naturally on each graded quotient \(\mathcal{L}_n(k) \). Moreover, it acts on the normal subgroup \(\mathcal{A}_n(k) \) by conjugation, and hence on the graded quotients \(\text{gr}^k(\mathcal{A}_n) \) and \(\text{gr}^k(\mathcal{A}'_n) \). The action of the subgroup \(\text{IA}_n \) on these quotients is trivial, and we obtain the well-defined action of the group \(\text{GL}(n, \mathbb{Z}) = \text{Aut} F_n/\text{IA}_n \) on \(\mathcal{L}_n(k) \), \(\text{gr}^k(\mathcal{A}_n) \) and \(\text{gr}^k(\mathcal{A}'_n) \). The homomorphisms \(\tau_k \) and \(\tau'_k \) are \(\text{GL}(n, \mathbb{Z}) \)-equivariant.

In [22], the third author completely determined the structure of the cokernels of \(\tau'_k \) in a stable range. Let \(\mathcal{C}_n(k) \) be the quotient module of \(H^* \otimes^k \) by the action of the cyclic group of order \(k \). Namely,
\[
\mathcal{C}_n(k) := H^* \otimes^k/(a_1 \otimes a_2 \otimes \cdots \otimes a_k - a_2 \otimes \cdots \otimes a_k \otimes a_1 | a_i \in H).
\]
One has \(\mathcal{C}_n(0) = \mathbb{Z} \) and \(\mathcal{C}_n(1) = H \). Let
\[
\pi_k : H^* \otimes^k \to \mathcal{C}_n(k)
\]
be the natural projection, and let \(\Phi_{12} : H^* \otimes^k H^* \otimes^{k+1} \to H^* \otimes^k \) be the contraction map defined by
\[
\Phi_{12}(f \otimes a_1 \otimes a_2 \otimes \cdots a_{k+1}) = f(a_1)a_2 \otimes \cdots \otimes a_{k+1},
\]
where \(f \in H^* \) and \(a_i \in H \). For simplicity, its restriction to \(H^* \otimes \mathcal{L}_n(k + 1) \) is denoted by the same letter: thus we obtain the map
\[
\Phi_{12} : H^* \otimes \mathcal{L}_n(k + 1) \to H^* \otimes^k.
\]

Theorem 2.2 (Satoh, [22]). Suppose \(k \geq 2 \) and \(n \geq k + 2 \).

(i) The homomorphism \(\pi_k \circ \Phi_{12} : H^* \otimes \mathcal{L}_n(k + 1) \to \mathcal{C}_n(k) \) is surjective.

(ii) We have \(\text{Im} \tau'_k = \text{Ker}(\pi_k \circ \Phi_{12}) \), namely \(\text{Coker}(\tau'_k) \cong \mathcal{C}_n(k) \).

Formulas of the \(\text{GL} \)-irreducible decompositions of \(\mathcal{C}_n(k) \) and \(\text{Im}(\tau'_k) \) are given in [7].
Remark 2.3. Recently Darné [5] showed that the natural map \(i_k : \text{gr}^k(A'_n) \to \text{gr}^k(A_n) \) is surjective for \(n \geq k + 2 \). This means that the stable \(k \)th cokernel Coker(\(\tau_k \)) coincides with Coker(\(\tau'_k \)). Namely, in the stable range, the Johnson cokernels for Aut \(F_n \) are completely determined over \(\mathbb{Z} \).

2.2. A generating set of \(\text{Im} \tau'_k \). Let \(e_1, \ldots, e_n \) be the standard basis of \(H = F^\text{ab} \) induced from the basis \(x_1, \ldots, x_n \) of \(F_n \), and \(e_1^*, \ldots, e_n^* \) the dual basis of \(H^* \). For any \(a_1, a_2, \ldots, a_k \in H \), we set

\[
[a_1, a_2, \ldots, a_k] := [\cdots[[a_1, a_2], a_3], \ldots], a_k] \in L_n(k).
\]

This is called a \(k \)-simple commutator. We have a generating set of \(\text{Im} \tau'_k \) as a \(\mathbb{Z} \)-module in a stable range.

Proposition 2.4. Suppose \(k \geq 2 \) and \(n \geq k + 2 \). Then the image of \(\tau'_k \) is generated as a \(\mathbb{Z} \)-module by the following four types of elements in \(H^* \otimes_\mathbb{Z} L_n(k + 1) \):

\[
(K_1) \ e_i^* \otimes [e_{i_1}, e_{i_2}, \ldots, e_{i_{k+1}}] \quad \text{for any } 1 \leq i, i_1, \ldots, i_{k+1} \leq n \text{ such that } i_1, \ldots, i_{k+1} \neq i,
\]

\[
(K_2) \ e_i^* \otimes [e_{i_1}, e_{i_2}, \ldots, e_{i_k}, e_i] \quad \text{for any } 1 \leq i, i_1, \ldots, i_k \leq n \text{ such that } i_1, \ldots, i_k \neq i.
\]

\[
(K_3) \ e_i^* \otimes [e_{i_1}, e_{i_2}, \ldots, e_{i_k}, e_j] - e_j^* \otimes [e_j, e_{i_1}, e_{i_2}, \ldots, e_{i_{k-1}}] \quad \text{for any } 1 \leq i, j, i_1, \ldots, i_{k-1} \leq n \text{ such that } i, j \neq i_1, \ldots, i_k. \text{ (possibly } i = j)\]

\[
(K_4) \ e_i^* \otimes [e_{i_1}, e_{i_2}, \ldots, e_{i_{k+1}}] - \sum_{j=1}^{k+1} \delta_{i,j} e_m^* \otimes [e_{i_1}, \ldots, e_{i_{j-1}}, e_m, e_{i_{j+1}}, \ldots, e_{i_k}, e_{i_{k+1}}] \quad \text{for any } 1 \leq i, m, i_1, \ldots, i_{k+1} \leq n \text{ such that } i = i_j \text{ for some } 1 \leq j \leq k + 1 \text{ and } m \neq i_1, \ldots, i_{k+1}.
\]

Proof. It is easily seen that these elements belong to Ker(\(\pi_k \circ \Phi_{12} \)). In §3.2 in [22], it was shown that these elements belong to \(\text{Im} \tau'_k \). Furthermore, by the arguments in the process of the proof of \(\text{Im} \tau'_k \supset \text{Ker}(\pi_k \circ \Phi_{12}) \), it turns out that the above elements generate \(\text{Ker}(\pi_k \circ \Phi_{12}) \) as a \(\mathbb{Z} \)-module. Since \(\text{Ker}(\pi_k \circ \Phi_{12}) = \text{Im} \tau'_k \), we obtain the required result.

We remark that each of \(\text{gr}^k(A'_n) \) is finitely generated since \(A_n \) is finitely generated. We should also remark that due to a recent work by Church, Ershov and Putman [4], each of \(A'_n(k) \) and \(A_n(k) \) is finitely generated in a stable range. However it seems to be still open to describe an explicit finite generating system of them.

2.3. Contractions and \(\text{Im} \tau'_k \). We generalize the contraction map \(\Phi_{12} \) in §2.1. For each \(1 \leq \ell \leq k + 1 \), we consider the contraction map \(\Phi_{1,\ell+1} : H^* \otimes_\mathbb{Z} H^{\otimes k+1} \to H^{\otimes k} \) defined by the formula

\[
\Phi_{1,\ell+1}(f \otimes a_1 \otimes \cdots \otimes a_{k+1}) = f(a_\ell) a_1 \otimes \cdots \otimes a_{\ell-1} \otimes a_{\ell+1} \otimes \cdots \otimes a_{k+1},
\]

where \(f \in H^* \) and \(a_\ell \in H \). We denote its restriction to \(H^* \otimes_\mathbb{Z} L_n(k + 1) \) by the same letter: thus we obtain the map

\[
\Phi_{1,\ell+1} : H^* \otimes_\mathbb{Z} L_n(k + 1) \to H^{\otimes k}.
\]

For \(y \in H \) and \(e_i \) for \(1 \leq j \leq k \), in order to describe the expansion of the simple commutator \([y, e_{i_1}, \ldots, e_{i_k}] \) in \(H^{\otimes k} \), we introduce the following notation. For an ordered subset \(S = (i_1, i_2, \ldots, i_\ell) \) of the ordered set \((i_1, i_2, \ldots, i_k) \), define

\[
e_{S} := e_{i_1} \otimes e_{i_2} \otimes \cdots \otimes e_{i_\ell}, \quad e_{S} := e_{i_1} \otimes e_{i_2} \otimes \cdots \otimes e_{i_\ell}.
\]
Let S^c be the ordered complement of S. For example, if S is the ordered subset $(2, 4, 5)$ of $(1, 2, \ldots, 6)$, we have $S^c = (1, 3, 6)$ and
\[
e_2^c = e_2 \otimes e_4 \otimes e_5, \quad e_3^c = e_3 \otimes e_4 \otimes e_2, \quad e_6^c = e_6 \otimes e_3 \otimes e_1.
\]
Then, we have
\[
[y, e_{i_1}, \ldots, e_{i_k}] = \sum_{S \subseteq (i_1, i_2, \ldots, i_k)} (-1)^{|S|} e_S \otimes y \otimes e_{S^c}
\]
where S ranges over all ordered subset of (i_1, i_2, \ldots, i_k), and $|S|$ denotes the number of elements in S. We can easily obtain the following lemma.

Lemma 2.5. As notation above, for any $1 \leq \ell \leq k + 1$, if $i \neq i_1, i_2, \ldots, i_k$ then we have
\[
\Phi_{1, \ell + 1}(e_i^* \otimes [e_1, e_{i_1}, \ldots, e_{i_k}]) = \sum_{S \subseteq (i_1, i_2, \ldots, i_k)} (-1)^{\ell - 1} e_S \otimes e_{S^c}.
\]

For any $1 \leq \ell \leq k + 1$, define the homomorphism
\[
\varpi_\ell : H^\otimes \kappa \rightarrow C_n(\ell - 1) \otimes C_n(k - \ell + 1)
\]
by
\[
\varpi_\ell(a_1 \otimes \cdots a_k) = \pi_{\ell - 1}(a_1 \otimes \cdots \otimes a_{\ell - 1}) \otimes \pi_{k - \ell + 1}(a_{\ell} \otimes \cdots \otimes a_k),
\]
and set
\[
\Theta_\ell := \varpi_\ell \circ \Phi_{1, \ell + 1} : H^\ast \otimes \mathbb{Z} H^\otimes k + 1 \rightarrow C_n(\ell - 1) \otimes C_n(k - \ell + 1).
\]

We denote the restriction of this map to $H^\ast \otimes \mathbb{Z} L_n(k + 1)$ by the same letter:
\[
\Theta_\ell : H^\ast \otimes \mathbb{Z} L_n(k + 1) \rightarrow C_n(\ell - 1) \otimes C_n(k - \ell + 1).
\]

Theorem 2.6. Suppose $k \geq 2$ and $n \geq k + 2$. For any $1 \leq \ell \leq k + 1$, we have
\[
\text{Ker}(\Theta_1) \subset \text{Ker}(\Theta_\ell)
\]
in $H^\ast \otimes \mathbb{Z} L_n(k + 1)$.

Proof. By Proposition 2.4 and $\text{Ker}(\Theta_1) = \text{Ker}(\pi_k \circ \Phi_{12}) = \text{Im} \tau_k$, it suffices to show that all the generators of type K_1, K_2, K_3 and K_4 of $\text{Im} \tau'_k$ belong to $\text{Ker}(\Theta_\ell)$ for any $1 \leq \ell \leq k + 1$. Clearly, generators of type K_1 belong to $\text{Ker}(\Theta_\ell)$. Consider a generator of type K_2. We have
\[
\Phi_{1, \ell + 1}(e_i^* \otimes (\{e_{i_1}, e_{i_2}, \ldots, e_{i_k}\} \otimes e_i - e_i \otimes \{e_{i_1}, e_{i_2}, \ldots, e_{i_k}\})) = \begin{cases} 0 & \text{if } \ell \neq 1, k + 1, \\ \pm[e_{i_1}, e_{i_2}, \ldots, e_{i_k}] & \text{if } \ell = 1, k + 1.
\end{cases}
\]

This shows that generators of type K_2 belong to $\text{Ker}(\Theta_\ell)$, since $L_n(k)$ is in the kernel of the projection $\pi_k : H^\otimes k \rightarrow C_n(k)$.

For a generator
\[
X = e_i^* \otimes [e_{i_1}, e_{i_1}, \ldots, e_{i_k}] - e_j^* \otimes [e_{j}, e_{i_k}, e_{i_1}, \ldots, e_{i_{k-1}}]
\]
of type K_3. By Lemma 2.5, we have
\[
\Phi_{1, \ell + 1}(X) = (-1)^{\ell - 1} \left[\sum_{S \subseteq (i_1, i_2, \ldots, i_k)} e_S \otimes e_{S^c} - \sum_{T \subseteq (i_{k+1}, i_1, \ldots, i_{k-1})} e_T \otimes e_{T^c} \right].
\]
Here the first sum is written as
\[\sum_{i_k \in S \mid |S| = \ell - 1} e^{S_i} \otimes e^{S_j} + \sum_{i_k \notin S \mid |S| = \ell - 1} e^{S_i} \otimes e^{S_j}, \]
and the second sum is written as
\[\sum_{i_k \in T \mid |T| = \ell - 1} e^{T_i} \otimes e^{T_j} + \sum_{i_k \notin T \mid |T| = \ell - 1} e^{T_i} \otimes e^{T_j}. \]
Then we have
\[\sum_{i_k \in S \mid |S| = \ell - 1} e^{S_i} \otimes e^{S_j} - \sum_{i_k \in T \mid |T| = \ell - 1} e^{T_i} \otimes e^{T_j} = \sum_{S_0 \subseteq (t_1, \ldots, t_{\ell - 1}) \mid |S_0| = \ell - 2} e_{i_k} \otimes e^{S_0} \otimes e^{S_j} - \sum_{T_0 \subseteq (t_1, \ldots, t_{\ell - 1}) \mid |T_0| = \ell - 2} e^{T_0} \otimes e_{i_k} \otimes e^{T_j} = 0 \]
since \(\pi_{\ell - 1}(e_{i_k} \otimes e^{S_0}) = \pi_{\ell - 1}(e^{T_0} \otimes e_{i_k}) \). Similarly, the remaining terms
\[\sum_{i_k \in S \mid |S| = \ell - 1} e^{S_i} \otimes e^{S_j} - \sum_{i_k \notin T \mid |T| = \ell - 1} e^{T_i} \otimes e^{T_j} \]
are annihilated by \(\varpi_\ell \). This shows that \(\Phi_{1, \ell + 1}(X) \) is in the kernel of \(\varpi_\ell \) and thus generators of type \(K_31 \) belong to \(\text{Ker}(\Theta_\ell) \) for any \(1 \leq \ell \leq k + 1 \).

Finally, consider a generator
\[X = e^*_i \otimes \{i_1, i_2, \ldots, i_{k + 1}\} - \sum_{j=1}^{k+1} \delta_{i, i_j} e^*_m \otimes \{i_1, \ldots, i_{j-1}, e_m, i_{j+1}, \ldots, i_k, i_{k+1}\} \]
of type \(K_4 \). Assume \(i_{j_1} = \cdots = i_{j_s} = i \). For any \(1 \leq \ell \leq k + 1 \), we can calculate \(\Phi_{1, \ell + 1}(e^*_i \otimes \{i_1, i_2, \ldots, i_{k+1}\}) \) by taking all contractions between \(e^*_i \) and \(e_{i_{j_s}} \) for \(1 \leq s \leq t \). In particular, the contribution of the contraction between \(e^*_i \) and \(e_{i_{j_s}} \) for a fixed \(s \) is equal to that of
\[\Phi_{1, \ell + 1}(e^*_m \otimes \{i_1, \ldots, i_{j_s-1}, e_m, i_{j_s+1}, \ldots, i_k, i_{k+1}\}). \]
Therefore we see that \(\Phi_{1, \ell + 1}(X) = 0 \). This completes the proof of Theorem 2.6.

3. Structures of the Johnson Cokernels of \(\mathcal{M}_{g,1} \)

In this section, we turn our attention to the mapping class group \(\mathcal{M}_{g,1} \) and prove Theorem 3.1 in Introduction.

3.1. Johnson homomorphisms for \(\mathcal{M}_{g,1} \). We review the Johnson homomorphisms and their cokernels of \(\mathcal{M}_{g,1} \), following [S]. Given a base point on the boundary, the fundamental group \(\pi_1(\Sigma_{g,1}) \) of the surface \(\Sigma_{g,1} \) is a free group \(\mathcal{F}_{2g} \) of rank \(2g \). Take a basis \(x_1, x_2, \ldots, x_{2g} \) of \(\pi_1(\Sigma_{g,1}) \) such that the product \(\prod_{i=1}^{2g}[x_i, x_{i+g}] \) is parallel to the boundary component. The homology classes \(e_1, \ldots, e_{2g} \) of \(x_1, \ldots, x_{2g} \)
be the lower central series of I where J group.
For any H and commutative diagram.
The kernel of π embedding M ral action of the mapping class group $\text{Aut}(\Sigma)$ induced from the Dehn-Nielsen embedding and the Johnson homomorphisms of τ.
Recall from seminal work of Hain [10] shows that the rational images of τ classes in the Johnson cokernels. These classes are defined by the $\text{Sp}(2, \mathbb{Z})$-homomorphism g, k. The space H can identify $k \subset M$ and be τ.

Theorem 3.1 (Hain [10]). We have $\text{Im} \tau^{M}_{k, Q} = \text{Im} \tau^{M}_{k, Q}$ in $H_{Q} \otimes \mathbb{Q} L_{2g}^{Q}(k + 1)$. The space H^{*} is canonically isomorphic to H by the Poicaré duality and we can identify $H^{*} \otimes L_{2g}(k + 1)$ with $H \otimes L_{2g}(k + 1)$. In [18], Morita proved that $\text{Im} \tau^{M}_{k} \subset \mathfrak{h}_{g, 1}(k)$, where $\mathfrak{h}_{g, 1}(k)$ is the kernel of the left bracketing homomorphism $H \otimes L_{2g}(k + 1) \to L_{2g}(k + 2), \ X \otimes u \mapsto [X, u]$.

3.2. Enomoto-Satoh’s obstructions. In [8], Enomoto and Satoh introduced new classes in the Johnson cokernels. These classes are defined by the Sp-homomorphism $c_{k} : \mathfrak{h}_{g, 1}(k) \to H_{Q} \otimes \mathbb{Q} L_{2g}^{Q}(k + 1) \cong H_{Q}^{*} \otimes \mathbb{Q} L_{2g}^{Q}(k + 1) \otimes L_{2g}(k)$.
where Θ_1 has been introduced in \cite{2.3}. The following commutative diagram holds:

\[
\text{Im}(\tau_{k,Q}^M) \xrightarrow{\text{Thm 3.1}} \text{Im}(\tau_{k,Q}^M) \subset \text{Im}(\tau_{k,Q}^M) \subset h_{g,1}(k) \xrightarrow{\Theta_k} C_{2g}(k) \xrightarrow{c_k} \text{Im}(\tau_{k,Q}^M) \subset \text{Ker}(c_k) \subset h_{g,1}(k).
\]

By using Theorem 2.2 and Theorem 3.1 they \cite{8} proved that $\text{Im}(\tau_{k,Q}^M) \subset \text{Ker}(c_k) \subset h_{g,1}(k)$.

3.3. Kawazumi-Kuno’s obstructions.

In \cite{15}, Kawazumi and Kuno introduced another type of classes in the Johnson cokernels by using some topological consideration on self-intersections of loops on the surface $\Sigma_{g,1}$. In more detail, they considered an operation called the Turaev cobracket, and showed that its graded version δ gives rise to an obstruction for the Johnson image. (For more details, see \cite{15} and \cite{16}.)

The map δ is homogeneous of degree (-2) and the degree k part

\[
\delta_k^{a_k} : H_{\mathbb{Q}}^{\otimes k+2} \rightarrow \bigoplus_{p,q \geq 1} C_{2g}^{\otimes}(p) \otimes C_{2g}^{\otimes}(q)
\]

sends $a_1 \otimes \cdots \otimes a_{k+2}$ to

\[
\sum_{1 \leq i < j \leq k+2, \atop 1 \leq j < i \leq k+1} a_i^* \delta_j \left\{ \begin{array}{c}
\pi(a_{i+1} \otimes \cdots \otimes a_{j-1}) \otimes \pi(a_{j+1} \otimes \cdots \otimes a_{k+2} \otimes a_1 \otimes \cdots \otimes a_{i-1}) \\
-\pi(a_{j+1} \otimes \cdots \otimes a_{k+2} \otimes a_1 \otimes \cdots \otimes a_{j-1}) \otimes \pi(a_{i+1} \otimes \cdots \otimes a_{j-1})
\end{array} \right. \}
\]

Here, $a_i^* \in H_{\mathbb{Q}}^*$ is the element corresponding to $a_i \in H_{\mathbb{Q}}$ through the Poincaré duality $H_{\mathbb{Q}}^* = H_{\mathbb{Q}}$, and π denotes the projection $\pi : H_{\mathbb{Q}}^{\otimes l} \rightarrow C_{2g}^{\otimes}(l)$ when it is applied to $H_{\mathbb{Q}}^{\otimes l}$. By restriction (and using the same letter), we obtain the map

\[
\delta_k^{a_k} : h_{g,1}(k) \rightarrow \bigoplus_{p,q \geq 1} C_{2g}^{\otimes}(p) \otimes C_{2g}^{\otimes}(q).
\]

In \cite{15}, it was shown that

\[
\text{Im}(\tau_{k,Q}^M) \subset \text{Ker}(\delta_k^{a_k}) \subset h_{g,1}(k).
\]

3.4. Proof of Theorem 1.1

Here we give a proof of Theorem 1.1. Recall from \cite{2.3} the homomorphism $\Theta_\ell : H_{\mathbb{Q}}^{\otimes k+1} \rightarrow C_{2g}^{\otimes}(\ell - 1) \otimes C_{2g}^{\otimes}(k - \ell + 1)$. We can regard it as a map from $H_{\mathbb{Q}}^{\otimes k+2} = H_{\mathbb{Q}}^{\otimes k+1}$ by the Poincaré duality.

Proof of Theorem 1.1 Let ζ be the cyclic permutation of the components of $H_{\mathbb{Q}}^{\otimes k+2}$ given by $\zeta(a_1 \otimes a_2 \otimes \cdots \otimes a_{k+2}) := a_2 \otimes \cdots \otimes a_{k+2} \otimes a_1$ and set $\zeta_{k+2} := \sum_{i=0}^{k+1} \zeta^i \in \text{End}(H_{\mathbb{Q}}^{\otimes k+2})$. Then, we see that

\[
\delta_k^{a_k} = (\Theta_2 + \cdots + \Theta_k)\zeta_{k+2}
\]

on $H_{\mathbb{Q}}^{\otimes k+2}$. Since any element of $h_{g,1}^Q(k)$ is ζ-invariant in $H_{\mathbb{Q}}^{\otimes k+2}$ (for instance, see \cite[Proposition 5.2]{8}), one has $\delta_k^{a_k} = (k+2)(\Theta_2 + \cdots + \Theta_k)$ on $h_{g,1}^Q(k)$.
The homomorphism Θ_1 is nothing but the trace map c_k, and hence $\ker c_k = \ker \Theta_1$. By Theorem 2.6, $\ker \Theta_1 \subset \ker \Theta_\ell$ for any $\ell \geq 2$. Therefore, $\ker c_k \subset \ker \delta_k^{\text{alg}}$ on $\mathfrak{h}_{g,1}(k)$.

Remark 3.2. There is a refinement of δ_k^{alg} which uses the same formula but we allow $j - i$ to be 1 or $k + 1$ so that p and q can be zero in the target. This map comes from a framed version of the Turaev cobracket and does actually have the same information as c_k. For more detail, see [1] and [14].

4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. We consider polynomial representations of $\text{GL}(2g, \mathbb{Q})$ and rational representations of $\text{Sp}(2g, \mathbb{Q})$. The isomorphism classes of GL-irreducible polynomial representations are parametrized by partitions λ such that their lengths $\ell(\lambda)$ are at most $2g$. We denote by (λ) the GL-irreducible polynomial representation corresponding to a partition λ. The isomorphism classes of Sp-irreducible rational representations are parametrized by partitions λ such that their lengths $\ell(\lambda)$ are at most g. We denote by $[\lambda]$ the Sp-irreducible rational representation corresponding to a partition λ.

4.1. Anti-Morita obstruction $[1^k]$.

In this subsection, we prove Theorem 1.2(i).

First, we recall the anti-Morita obstruction. In [8], we have the following result.

Theorem 4.1 ([Enomoto and Satoh [8], Theorem 1]). Suppose $g \geq k + 1$ and $k \equiv 1 \pmod{4}$ and $k \geq 5$. The multiplicities of Sp-irreducible representations $[1^k]$ are exactly one in $\mathfrak{h}_{g,1}(k)/\ker(c_k)$.

We also recall the GL-irreducible decomposition of $C_{2g}^Q(k)$ obtained by [7].

Lemma 4.2 ([7], Corollary 4.2(2))). Suppose $2g \geq k$. The multiplicity $[C_{2g}^Q(k) : (1^k)]$ of (1^k) in $C_{2g}^Q(k)$ is equal to 1 if k is odd, and 0 if k is even.

Proof of Theorem 1.2(i). Note that $g \geq k + 1$ implies $2g \geq k$. Assume $k \equiv 1 \pmod{4}$ and $k \geq 5$.

To prove that the Sp-homomorphism $\delta_k^{\text{alg}} : \mathfrak{h}_{g,1}(k) \to \bigoplus_{p,q \geq 1} C_{2g}^Q(p) \otimes C_{2g}^Q(q)$ annihilates the Sp-irreducible component $[1^k]$ in $\mathfrak{h}_{g,1}(k)/\ker(c_k)$, it is sufficient to show that $[1^k]$ does not appear in all $C_{2g}^Q(p) \otimes C_{2g}^Q(q)$ for $p, q \geq 1$ and $p + q = k$. By the GL-Sp branching rule, it is enough to show that there is no $\text{GL}(2g, \mathbb{Q})$-irreducible representation (1^k) in $C_{2g}^Q(p) \otimes C_{2g}^Q(q)$ for $p + q = k$ and $p, q \geq 1$.

For partitions μ and ν of p and q respectively, suppose $(\mu) \otimes (\nu)$ has the GL-irreducible representation (1^k). If $\ell(\mu) < p$ or $\ell(\nu) < q$, we have $\ell(\mu) + \ell(\nu) < k$. Then by the Littlewood-Richardson rule, there is no GL-irreducible representation (1^k) in $\mu \otimes \nu$. Hence, we consider $\ell(\mu) = p$ and $\ell(\nu) = q$. This case is nothing but $\mu = (1^p)$ and $\nu = (1^q)$. Since $p + q = k \equiv 1 \pmod{4}$, the signatures of p and q are different. By Lemma 4.2, there is no component $(1^p) \otimes (1^q)$ in $C_{2g}^Q(p) \otimes C_{2g}^Q(q)$. This is a contradiction. □

Remark 4.3. Especially, for $5 \leq k \equiv 1 \pmod{4}$ and $g \geq k + 1$, an Sp-irreducible component $[1^k]$ appears in $\ker(\Theta_2)/\ker(c_k)$, thus $\ker(c_k) \neq \ker(\Theta_2)$.

4.2. A hook-type component [3,1⁵]. In this subsection, we prove Theorem 1.2 (ii).

First, in [6, Theorem 1.1], several series of hook-type Sp-irreducible components \([r+1,1^{k-r-1}]\) are detected in \(k\)th Johnson cokernel \(\mathfrak{h}_{g,1}(k)/\ker(c_k)\). An Sp-irreducible representation \([3,1⁵]\) for \(k = 8\) and \(r = 2\) is one of such components.

Proposition 4.4. For \(g \geq 9\), an Sp-irreducible component \([3,1⁵]\) appears in \(\mathfrak{h}_{g,1}(8)/\ker(c_8)\).

Note that the multiplicity of \([3,1⁵]\) is larger than or equal to 1 in each \(C^n_2(p) \otimes C^n_2(8-p)\) for \(1 \leq p \leq 7\). Therefore, to prove that \([3,1⁵]\) lies in \(\ker(\delta^k_8)/\ker(c_8)\), we need to use a different way from the previous subsection. We consider a maximal vector which gives a component \([3,1⁵]\) in \(\mathfrak{h}_{g,1}(8)/\ker(c_8)\) and prove that it lies in \(\ker(\Theta_8)\) for \(2 \leq \ell \leq 8\).

As in [3,1] we fix a symplectic basis \([e_1, \ldots, e_g, e_{g+1}, \ldots, e_{2g}]\) of \(H_Q\). Set \(i' := 2g - i + 1\) for each integer \(1 \leq i \leq 2g\). We see that

\[
\langle e_i, e_j \rangle = 0 = \langle e_{i'}, e_{j'} \rangle, \quad \langle e_i, e_{j'} \rangle = \delta_{ij} = -\langle e_{i'}, e_i \rangle, \quad (1 \leq i, j \leq g).
\]

For each integer \(1 \leq i \leq 2g\), we define \(e_i^* = \begin{cases} e_{i'}, & (1 \leq i \leq g), \\ -e_{i'}, & (g + 1 \leq i \leq 2g). \end{cases}\) Then

\[
\langle e_i, e_j^* \rangle = \delta_{ij} \quad \text{for any} \ i, j.
\]

Set \(\omega = \sum_{i=1}^{2g} e_i \otimes e_i^* \in H^2_Q\). We identify \(H_Q\) with \(H^*_Q\) by \(v \mapsto \langle v, \bullet \rangle\). Note that \(\langle e_{i'}, e_r \rangle e_{i'}^* = e_r\) for \(1 \leq r \leq 2g\).

We define

\[
v_{[3,1⁵]} := \omega \otimes (e_1 \wedge e_2 \wedge e_3 \wedge e_4 \wedge e_5 \wedge e_6) \otimes e_1 \otimes e_1 \in H^\otimes Q
\]

where \(e_1 \wedge e_2 \wedge \cdots \wedge e_6\) is the anti-symmetrizer \(\sum_{\sigma \in \mathfrak{S}_6} \text{sgn}(\sigma) e_{\sigma(1)} \otimes e_{\sigma(2)} \cdots \otimes e_{\sigma(6)} \in H^\otimes Q\).

Let \(s_i\) be the permutation of \(i\) and \(i + 1\). By the Brauer-Schur-Weyl duality, the set of elements \([v_{[3,1⁵]} : \tau \cdot \theta \cdot \zeta_{10} (\tau \in \mathfrak{S}_{10})]\) generates the space of Sp-maximal vectors corresponding to Sp-irreducible components \([3,1⁵]\) in \(\mathfrak{h}_{g,1}(8)\), where \(\theta = (1 \rightarrow s_2)(1 \rightarrow s_3)(1 \rightarrow s_8)(1 \rightarrow s_2)\) is the Dynkin-Specht-Weyl idempotent and \(\zeta_{10} \in \text{End}(H^\otimes Q)\) is defined in the proof of Theorem 1.1.

In [6], a component \([3,1⁵]\) is detected in \(\mathfrak{h}_{g,1}(8)/\ker(c_8)\) by proving the following claim.

Proposition 4.5 ([6 Proposition 3.8]). \(c_8(v_{[3,1⁵]} \theta \zeta_{10}) \neq 0\).

Recall from [3,4] that, up to scalar, \(\delta^k_8\) is equal to \(\Theta_2 + \cdots + \Theta_8\). Therefore the following theorem implies Theorem 1.2 (ii).

Theorem 4.6. For \(2 \leq \ell \leq 8\), we have \(\Theta_\ell(v_{[3,1⁵]} \theta \zeta_{10}) = 0\).

Proof. Note that it is sufficient to prove the claim for \(\ell = 2, 3, 4, 5\). We use the following notations. The \((i, j)\)-expansion operator \(D_{ij} : H^\otimes_Q \rightarrow H^\otimes_{Q+2}\) is given by

\[
(v_1 \otimes \cdots \otimes v_k) D_{ij} = \sum_{r=1}^{2g} v_1 \otimes \cdots \otimes v_{i-1} \otimes e_r \otimes v_i \otimes \cdots \otimes v_{j-2} \otimes e_r^* \otimes v_{j-1} \otimes \cdots \otimes v_k.
\]
The element \(\Lambda_{a,b} \in H^\otimes_Q \) is given by
\[
\sum_{\sigma \in S_6} \text{sgn}(\sigma) e_{\sigma(1)} \otimes \cdots \otimes e_{\sigma(6)}.
\]

In [6, Proposition 3.3], we have
\[
v[3,15]^{\omega} = (e_1 \wedge \cdots \wedge e_6) \otimes e_1^{\otimes 2} \cdot (D_{12} - 3D_{14} + 3D_{16} - D_{18}) + e_1 \otimes (e_1 \wedge \cdots \wedge e_6) \otimes e_1 \cdot (-2D_{13} + 6D_{15} - 6D_{17} + 2D_{19}) + e_1^{\otimes 2} \otimes (e_1 \wedge \cdots \wedge e_6) \cdot (D_{14} - 3D_{16} + 3D_{18} - D_{11,9}).
\]

Let us denote the three terms in the right hand side by \(v_1, v_2 \) and \(v_3 \).
For the 13-contraction operator \(\Phi_{13} \), we obtain
\[
\Phi_{13}(v_1) = 2\Lambda_{1,8} + 2\Lambda_{6,7} - 2\Lambda_{2,3} + 3\Lambda_{1,4} - 3\Lambda_{1,6},
\]
\[
\Phi_{13}(v_2) = (-4g - 2)\Lambda_{1,8} + (-4g - 2)\Lambda_{1,2} - 4\Lambda_{6,8} + 4\Lambda_{2,4},
\]
\[
\Phi_{13}(v_3) = 2\Lambda_{1,2} - 2\Lambda_{3,4} + 2\Lambda_{7,8} - 3\Lambda_{1,4} + 3\Lambda_{1,6}.
\]

Then we have
\[
\Phi_{13}(v[3,15]^{\omega})= -(4g)(\Lambda_{1,2} + \Lambda_{1,8}) + 2(\Lambda_{6,7} - \Lambda_{2,3}) + 4(\Lambda_{2,4} - \Lambda_{6,8}) + 2(\Lambda_{7,8} - \Lambda_{3,4}).
\]

The first term is in the kernel of \(\varpi_2 : H^\otimes_Q \to C_{2g}(1) \otimes C_{2g}(7) \) because \(\Lambda_{1,2} \) and \(\Lambda_{1,8} \) are of the form \(e_1 \otimes \) (a maximal vector with weight \((2,1^5) \) in \(H^\otimes_Q \)), and \((2,1^5) \) does not appear in \(C_{2g}(7) \) ([6 Corollary 4.2]). The remaining three terms are also in the kernel of \(\varpi_2 \) because they cancel each other in \(C_{2g}(1) \otimes C_{2g}(7) \). Hence we obtain \(v[3,15]^{\omega} \in \text{Ker}(\Theta_2) \).

For the 14-contraction operator \(\Phi_{14} \), we have
\[
\Phi_{14}(v[3,15]^{\omega}) = (4g)\Lambda_{1,2} + (-6g + 1)(\Lambda_{3,4} + \Lambda_{7,8}) - 2\Lambda_{3,5} - 2\Lambda_{4,5} + 6\Lambda_{4,6} - 6\Lambda_{5,6} + 6\Lambda_{5,7} - 2\Lambda_{6,7} - 2\Lambda_{6,8}.
\]

The first term is in the kernel of \(\varpi_3 \) because \([1^6] \) does not appear in \(C_{2g}(6) \). All the other terms are in the kernel of \(\varpi_3 \) because each term is contained in \(e_i \otimes e_j \otimes v - e_j \otimes e_i \otimes v \in H^\otimes_Q \). Hence we obtain \(v[3,15]^{\omega} \in \text{Ker}(\Theta_3) \).

For the 15-contraction operator \(\Phi_{15} \), we have
\[
\Phi_{15}(v[3,15]^{\omega}) = 12g(\Lambda_{1,8} + \Lambda_{3,4}) + 4(\Lambda_{4,5} - \Lambda_{7,8}) + 4(\Lambda_{5,6} - \Lambda_{6,7}) + 8(\Lambda_{6,8} - \Lambda_{4,6}).
\]

In the first term, by dividing \(\sum_{\sigma \in S_6} \sum_{\sigma(1)=1}^{\sigma(2)=1} + \sum_{\sigma(3)=1}^{\sigma(5)=1} \) they are in the kernel of \(\varpi_4 \). The remaining three terms are also in the kernel of \(\varpi_4 \) because they cancel each other in \(C_{2g}(3) \otimes C_{2g}(5) \). Thus we obtain \(v[3,15]^{\omega} \in \text{Ker}(\Theta_4) \).

For the 16-contraction operator \(\Phi_{16} \), we have
\[
\Phi_{16}(v[3,15]^{\omega}) = -(6g + 1)(\Lambda_{1,2} + \Lambda_{3,4} - \Lambda_{5,6} - \Lambda_{7,8}) + 2(\Lambda_{6,7} - \Lambda_{2,3} + \Lambda_{2,4} - \Lambda_{6,8} + \Lambda_{1,3} - \Lambda_{5,7}).
\]

Since the projection \(H^\otimes_Q \to C_{2g}(4) \) annihilates the elements \(e_i \wedge e_j \wedge e_k \wedge e_l \), all the terms are in the kernel of \(\varpi_5 \). Therefore we obtain \(v[3,15]^{\omega} \in \text{Ker}(\Theta_5) \). \(\square \)
Acknowledgments

The first author is supported by JSPS KAKENHI 26870368 and 18K03204. He also would like to thank Hikoe Enomoto for his careful support on some computer calculations. The second author is supported by JSPS KAKENHI 26800044 and 18K03308. The third author is supported by JSPS KAKENHI 24740051 and 16K05155.

References

1. A. Alekseev, N. Kawazumi, Y. Kuno and F. Naef; The Goldman-Turaev Lie bialgebra and the Kashiwara-Vergne problem in higher genera, arXiv:1804.09566 (2018)
2. S. Andreadakis; On the automorphisms of free groups and free nilpotent groups, Proc. London Math. Soc. (3) 15 (1965), 239–268.
3. J. Conant; The Johnson Cokernel and the Enomoto-Satoh invariant, Algebr. Geom. Topol. 15 (2015), no. 2, 801–821.
4. T. Church, M. Ershov and A. Putman; On finite generation of the Johnson filtrations, arXiv:1711.04779 (2017)
5. J. Darné; On the stable Andreadakis Problem, J. Pure Appl. Algebra 223 (2019), no. 12, 5484–5525.
6. H. Enomoto and N. Enomoto; Sp-irreducible components in the Johnson cokernels of the mapping class groups of surfaces I, J. Lie Theory 24 (2014), no. 3, 687-704.
7. N. Enomoto and T. Satoh; On the derivation algebra of the free Lie algebra and trace maps, Algebraic and Geometric Topology 5 (2011), no. 11, pp.2861–2901
8. N. Enomoto and T. Satoh; New series in the Johnson cokernels of the mapping class groups of surfaces, Algebraic and Geometric Topology 14 (2014), no. 2, 627–669.
9. K. Habiro and G. Massuyeau; From mapping class groups to monoids of homology cobordisms: a survey, in: “Handbook of Teichmüller theory”, edited by A. Papadopoulos, Volume III, EMS Publishing House, Zurich (2012), 465–529.
10. R. Hain; Infinitesimal presentations of the Torelli group, Journal of the American Mathematical Society 10 (1997), 597–651.
11. R. Hain; Johnson homomorphisms, arXiv:1909.03914 (2019)
12. D. Johnson; An abelian quotient of the mapping class group, Math. Ann. 249 (1980), 225–242.
13. D. Johnson; A survey of the Torelli group, Contemp. Math. 20 (1983), 165–179.
14. N. Kawazumi; A regular homotopy version of the Goldman-Turaev Lie bialgebra, the Enomoto-Satoh traces and the divergence cocycle in the Kashiwara-Vergne problem, RIMS Kokyuroku 1936 (2015), 137–141.
15. N. Kawazumi and Y. Kuno; Intersections of curves on surfaces and their applications to mapping class groups, Ann. Inst. Fourier (Grenoble) 65 (2015), no. 6, 2711–2762.
16. N. Kawazumi and Y. Kuno; The Goldman-Trace Lie bialgebra and the Johnson homomorphisms, in: “Handbook of Teichmüller theory”, edited by A. Papadopoulos, Volume V, EMS Publishing House, Zurich (2015), 98–165.
17. M. Kontsevich; Formal (non)commutative symplectic geometry, The Gelfand Mathematical Seminars, 1990-1992, 173,187, Birkhäuser Boston, Boston, MA, 1993.
18. S. Morita; Abelian quotients of subgroups of the mapping class group of surfaces, Duke Mathematical Journal 70 (1993), 699–726.
19. S. Morita; Structure of the mapping class group of surfaces: a survey and a prospect, Proceedings of the Kirbyfest (Berkeley, CA, 1998), 349–406, Geom. Topol. Monogr., 2, Geom. Topol. Publ., Coventry, 1999.
20. S. Morita, T. Sakasai and M. Suzuki; Structure of symplectic invariant Lie subalgebras of symplectic derivation Lie algebras, Adv. Math. 282 (2015), 291–334.
21. T. Sakasai; Johnson-Morita theory in mapping class groups and monoids of homology cobordisms of surfaces, Winter Braids Lect. Notes 3 (2016), Winter Braids VI (Lille, 2016), Exp. No. 4, 25 pp.
22. T. Satoh; On the lower central series of the IA-automorphism group of a free group, J. Pure Appl. Algebra 216 (2012), no. 3, 709–717.
23. T. Satoh; *A survey of the Johnson homomorphisms of the automorphism groups of free groups and related topics*, in: “Handbook of Teichmüller theory”, edited by A. Papadopoulos, Volume V, EMS Publishing House, Zurich (2015), 167–209.

24. T. Satoh; *On the Johnson homomorphisms of the mapping class groups of surfaces*, Handbook of group actions. Vol. I, 373–407, Adv. Lect. Math. (ALM), 31, Int. Press, Somerville, MA, 2015.

THE UNIVERSITY OF ELECTRO-COMMUNICATIONS.

E-mail address: enomoto-naoya@uec.ac.jp

TSUDA UNIVERSITY.

E-mail address: kunotti@tsuda.ac.jp

TOKYO UNIVERSITY OF SCIENCE.

E-mail address: takao@rs.tus.ac.jp