The prevalence and correlates of oral sex among low-tier female sex workers in Zhejiang province, China

Xin Zhou, Qiaoqin Ma*, Xiaohong Pan*, Lin Chen, Hui Wang, Tingting Jiang

Department of HIV/STD Control and Prevention, Center for Disease Control and Prevention of Zhejiang Province, Hangzhou, PR China

* qqma@cdc.zj.cn (QM); xhpan@cdc.zj.cn (XP)

Abstract

Objectives

Oral sex and its associated factors among low-tier female sex workers (FSWs) have not been documented in the Chinese literature. Here, we report this perspective in this group.

Methods

The data were derived from a large cross-sectional study conducted among low-tier FSWs using a structured questionnaire in 21 counties in Zhejiang province, China. The prevalence of oral sex and its associated factors among 2645 low-tier FSWs were analyzed using bivariate and multivariate analysis.

Results

Of all participants, 579 (21.9%) had performed oral sex with clients over the previous month. Multivariate analysis revealed that oral sex is related to being unmarried, low income, early initiation of commercial sex, having conducted commercial sex in more counties, longer duration of commercial sex, larger number of clients, ever having engaged in anal sex, less use of condoms and oral contraceptives during the previous month, low rate of adoption for contraception at the present time, and STI-related symptoms during the previous half year.

Conclusion

Oral sex practitioners among low-tier FSWs in China are at a higher risk of STI, HIV, and unwanted pregnancy compared to those who did not engage in oral sex. Behavioral interventions carried out among low-tier FSWs should specifically target low-tier FSWs who practice oral sex, should carefully take into account the characteristics of these FSWs, provide risk awareness education and training for condom use negotiation, and promote the availability of condom and reproductive health care, timely diagnosis, and treatment of STIs.
Introduction

Female sexual workers (FSWs) are a high-risk population for human immunodeficiency (HIV) infections, and require intervention compared to the general female population. The risk of HIV infection among FSWs is 13.5 times higher than that of the general female population in low- and middle-income countries [1], and the prevalence of STIs is high among FSWs [2–4]. In terms of working place, FSWs can be categorized into low-, middle-, and high-tier levels based on their different socio-economic levels, types of client, price charged, etc., with low-tier FSWs lying at the lower socio-economic level, working in lower sex trade places such as roadside shops and on-street small venues, and usually providing sexual services to clients at a similar socio-economic level, such as those who are aged, poorer, and less educated, and for a low price sexual trade fee [5–7].

To earn more money, low-tier FSWs must conduct sex with more clients, and provide high-risk sexual services [6, 7]. Moreover, condom use negotiation with clients is difficult for this group, resulting in less condom use among low-tier FSWs [8, 9]. Lower self-protection awareness, less condom use, low access to clinics, and high mobility of sex trade are all problems faced by low-tier FSWs related to HIV/STI transmission [5, 6, 10, 11]. According to China national HIV/AIDS sentinel surveillance report from 2011 to 2015, low-tier FSWs exhibited higher than middle- and high-tier FSWs in HIV and syphilis prevalence, with a HIV prevalence of 0.1–0.2% in middle- and high-tier FSWs versus 0.4–0.6% in low-tier FSWs, and a syphilis prevalence of 1.6–1.9% in middle- and high-tier FSWs versus 3.6–4.6% in low-tier FSWs. A high prevalence of HIV and syphilis was found among Chinese low-tier FSWs [12, 13]. Therefore, low-tier FSWs play an important role in facilitating HIV and STI transmission, and their high mobility could also introduce HIV/STI transmission from one place to another.

Oral sex is one of the most common sexual activities in commercial sexual services provided by low-tier FSWs, with studies on older male clients of FSWs in the US [14] and Peru [15] reporting that over 95% had engaged in oral sex with FSWs or clients over their lifetime. One Chinese study documented that 43.5% of FSWs had practiced oral sex [16], with the prevalence of Chinese heterosexual STD clinic attendees at 6.9% [17]. Some studies have also reported the prevalence of oral sex among common Chinese people. For example, a study in Guangzhou reported that 63.7% of women aged 20–50 had practiced oral sex in their lifetime [18]. The prevalence of oral sex is increasing among Chinese people, with the rate for fellatio at 16.2%, 30.4%, 35.2%, and 36.8%, respectively, in 2000, 2006, 2010, and 2015, while it was 20.3%, 32.6%, 38.8%, and 36.8%, for penililingus [19]. The rate of oral sex ever practiced by sexually active college students [20] and male college graduates [21] is 35.5% and 20.2%, respectively.

Although oral sex has been considered lower HIV-risk sexual behavior compared to vaginal and anal sexual behavior, evidence has shown that unprotected oral sex could be a route for HIV infection [22, 23], as well as STI infection, such as HPV, HSV, gonorrhea, syphilis, Chlamydia trachomatis, chancroid, and Neisseria meningitidis [24–27]. Chinese studies have exhibited that oral sex is an important marker for a profile of high-risk sexual behavior. Those who practiced oral sex (versus those who did not) among heterosexual STD clinic attendees were more likely to initiate sex early, to have multiple sexual partners, and to conduct more frequent sex [17]. Oral sex practitioners among male college graduates have more sexual partners, more casual sexual partners, more sexual partners from other colleges, and from society, and use condoms less than those who do not practice oral sex [21]. FSWs, particularly low-tier FSWs, are at high risk of HIV/STI infection due to their frequent exposure to different sexual clients. However, there are few data on the characteristics of oral sex practitioners and their role in HIV/STI transmission among lower-tier FSWs in China. Therefore, it is important to investigate oral sex and related factors among low-tier FSWs, to help understand and create targeted intervention for this population.
Materials and methods

Location and participants

The participants in this study came from a large cross-sectional study conducted in 21 counties that implemented the AIDS Care project in Zhejiang Province, from September to November 2013. The research method and a brief introduction to Zhejiang province and the AIDS Care project have already been introduced elsewhere [6].

FSWs who met the recruitment criteria were regarded as lower-tier FSWs, who were recruited as research participants if they were currently engaging in sex work on the street and/or at small venues, including hair salons, roadside shops, and other venues with fewer than nine FSWs. All the counties participating in this study conducted a survey to confirm the location of low-tier FSWs in their area and then developed a plan to complete this study.

In total, 2648 low-tier FSWs participated. Of these, 2645 FSWs who responded to the question “Have you engaged in oral sex with clients during the past month?” were included in the study analysis.

All participants who met the recruitment criteria were invited to voluntarily participate in the study, and informed of the study’s purpose, method, and that their privacy and confidentiality would be strictly protected. The interviews were conducted in a private, quiet space within the venues. The staff of local centers for disease control and prevention (CDCs), who were trained by research teams prior to the study, interviewed the participants using an anonymous questionnaire. Considering the low education background of the participants, oral consent was obtained from each participant, then recorded by ticking the box following the Chinese word “agree” at the beginning of the questionnaire. The study protocol including consent procedure was approved by the ethics committee of Zhejiang provincial center for disease prevention and control.

Questionnaire development and measures

The questionnaire used in this study was developed based on instruments used for HIV sentinel surveillance among FSWs and reviews of domestic and foreign literature regarding low-tier FSWs; it was then revised once more through repeated discussions within the research team and consultation with the staff of the CDCs who were responsible for behavioral interventions with FSWs in the counties studied. Finally, the questionnaire was modified through two pilot surveys with low-tier FSWs in two counties.

Self-reported oral sex with commercial clients during the previous one month was used as a dependent variable in the analysis. The independent variables included sociodemographic characteristics, factors related to sexual behavior, HIV/STI risk perception, and self-efficacy scale regarding condom use. The scale measuring self-efficacy regarding condom use consisted of three statements addressing whether a participant could persuade a client to use a condom when a client refused to do so during a sexual encounter, whether she could refuse sex when a client refused to use a condom, and whether she could insist on using a condom with clients every time. The possible responses were “I can,” “I can’t,” and “I’m not sure.” The scores for this scale ranged from 0 to 3, with 3 reflecting a high level of self-efficacy, 1–2 reflecting a middle level of self-efficacy, and 0 reflecting a low level of self-efficacy. The Cronbach’s alpha coefficient for this scale was 0.923.

Statistical analysis

Data were analyzed using SPSS for Windows (Version 17.0; SPSS Inc., Chicago, IL, USA). The prevalence of self-reported oral sex and the frequency distributions of the independent
variables were determined using bivariate analysis. The association between the dependent variable and each independent variable was computed using an odds ratio (OR) with a corresponding 95% confidence interval (95% CI) and a P-value based on a chi-square test of proportions. Variables identified as significantly associated with self-reported oral sex in the bivariate analyses were then entered into the logistic regression model to determine the independent contribution of each factor to predicting self-reported oral sex. A backward elimination procedure was used with a P value of >0.10 as the removal criteria. Chi-square analysis was used to compare the difference between those who performed oral sex and those who did not. A P-value of less than 0.05 was considered statistically significant for these bivariate and multivariate analyses.

Results

Sociodemographic characteristics

The sociodemographic characteristics of the oral-sex group and non-oral sex group are described in Table 1. In total, of the 2645 participants, 31.8% were 25 years or younger, while 27.4% were aged over 35 years. Overall, 10.2% were from the local area. Regarding education, 36.8% had received, at most, primary school education, while 53.1% had received junior high school education; 28.7% were unmarried and 62.5% were married or cohabiting. In terms of financial status, 28.2% earned an income of less than 3000 Yuan per month, while 40.4% earned an income of more than 3000 Yuan per month.

Table 1. Demographic characteristics of low-tier female sex worker (n = 2645).

Variable	Oral sex (N,%)*	Non-oral sex (N,%)*	Total (N,%)*
Age			
≤25	232(40.1)	610(29.5)	842(31.8)
26–35	233(40.2)	837(40.5)	1070(40.5)
≥36	114(19.7)	612(29.6)	726(27.4)
Residence			
Local area	68(11.7)	202(9.8)	270(10.2)
Not local area	41(88.3)	1864(90.2)	2375(89.8)
Education			
Primary school and below	185(32.0)	788(38.1)	973(36.8)
Junior high school	341(58.9)	1064(51.5)	1405(53.1)
High school and above	52(9.0)	210(10.2)	262(9.9)
Marital status			
Unmarried	230(39.7)	530(25.7)	760(28.7)
Married/had cohabited	313(54.1)	1340(64.9)	1653(62.5)
Widowed/divorced	36(6.2)	192(9.3)	228(8.6)
Income per month			
<3000	206(35.6)	540(26.1)	746(28.2)
3000–4000	205(35.4)	863(41.8)	1068(40.4)
>4000	161(27.8)	586(28.4)	747(28.2)
Location of sampling			
Street	59(10.2)	353(17.1)	412(15.6)
Hair salon	356(61.5)	1324(64.1)	1680(63.5)
Roadside	93(16.1)	184(8.9)	277(10.5)
Other	71(12.3)	200(9.7)	271(10.2)

*The percentage may not add up to 100% due to missing data.

https://doi.org/10.1371/journal.pone.0238822.t001
earned 3000–4000 Yuan (one Yuan is equal to approximately 0.14 US dollars). The working venues for respondents were the street (15.6%), hair salons (63.5%), roadside shops (10.5%), and other (10.2%).

In total, 579 participants (21.9%) had performed oral sex with clients over the previous month, while 2666 (78.1%) had not. Of those who had performed oral sex in this time period, 81.0% (469) had also conducted vaginal sex, 16.4% (329) had also performed both vaginal sex and anal sex, 0.3% (2) had also performed anal sex with a client, and 2.2% (13) had only performed oral sex with a client (Table 2).

Bivariate analysis indicated that participants’ residence was not associated with self-reported oral sex. The FSWs aged 26–35 years (OR = 0.73, 95% CI = 0.59–0.90) and over or equal to 36 years (OR = 0.49, 95% CI = 0.38–0.63) compared with those under 26 years, those who were married or cohabiting (OR = 0.54, 95% CI = 0.44–0.66), and those who were widowed or divorced (OR = 0.43, 95% CI = 0.29–0.64) were negatively associated with oral sex compared with those who were unmarried, and those who earned 3000–4000 RMB (OR = 0.62, 95% CI = 0.50–0.78), and over 4000 RMB (OR = 0.72, 95% CI = 0.57–0.91). The FSWs who had received junior high school education (OR = 1.37, 95% CI = 1.12–1.67) were positively associated with oral sex compared with those who had received primary school education at most, those who worked from hair salons (OR = 1.61, 95% CI = 1.19–2.17), roadside shops (OR = 3.02, 95% CI = 2.09–4.39), or other (OR = 2.12, 95% CI = 1.44–3.13), or those who worked on the streets.

Correlates of self-reported oral sex during the previous month

Bivariate analysis indicated that the FSWs who were negatively associated with oral sex were those who had initiated commercial sex at the age of 26–30 years (OR = 0.58, 95% CI = 0.44–0.75) or over 30 years (OR = 0.28, 95% CI = 0.20–0.38) versus those who had initiated sex at the age of 20 or less than 20; those who always used condoms versus those who never/sometimes used condoms (OR = 0.49, 95% CI = 0.41–0.59); those who always used oral contraceptives versus those who never/sometimes used them (OR = 0.27, 95% CI = 0.16–0.43); those who used contraception versus those who did not use them (OR = 0.81, 95% CI = 0.67–0.97) (Contraception refers to intrauterine devices, tubal ligation, or the Norplant method; those FSWs who adopted one of these measures were considered to be using contraception); and those who had a score of 1–2 (OR = 0.68, 95% CI = 0.51–0.92) or 3 (OR = 0.55, 95% CI = 0.48–0.71) on the condom-use self-efficacy scale versus those who had a score of 0 on this scale were negatively associated with experience of oral sex (Table 3).

Those who engaged in commercial sex in two counties (OR = 2.08, 95% CI = 1.60–2.08), those working in three or more counties (OR = 3.94, 95% CI = 3.15–4.94) versus those engaging in commercial sex in one county; those who had engaged in commercial sex for 13–24 months (OR = 3.22, 95% CI = 2.45–4.24), and for over 24 months (OR = 2.71, 95% CI = 2.17–3.39) versus those who had worked for 1–12 months; those who had experienced commercial sex with 16–30 partners (OR = 4.06, 95% CI = 3.17–5.21), and over 30 partners (OR = 2.68,

Types of sex	N	%
Oral+vaginal	469	81.0
Oral+vaginal+anal	95	16.4
Oral+anal	2	0.3
only oral	13	2.2

Table 2. Categories of oral sex among low-tier female sex worker (n = 579).
Table 3. Correlates of oral sex during the previous month among low-tier female sex worker (n = 2645).

Variable	Total (N, %)	Oral sex (%)	Crude OR (95%CI) *	P value
Age of first commercial sex				
<21	551(20.8)	164(29.8)		
21–25	886(33.5)	232(26.2)	0.84(0.66–1.06)	0.140
26–30	628(23.7)	123(19.6)	0.58(0.44–0.75)	0.000
>30	563(21.3)	59(10.5)	0.28(0.20–0.38)	0.000
County number for commercial sex				
1	1165(44.0)	141(12.1)		
2	630(23.8)	140(22.2)	2.08(1.60–2.68)	0.000
>2	847(32.0)	298(35.2)	3.94(3.15–4.94)	0.000
Duration of commercial sex				
1-12months	1067(40.3)	131(12.3)		
13–24 months	428(16.2)	133(31.1)	3.22(2.45–4.24)	0.000
>24 months	1146(43.3)	315(27.5)	2.71(2.17–3.39)	0.000
Number of commercial clients during the previous one month				
<16	972(36.7)	104(10.7)		
16–30	855(32.3)	280(32.7)	4.06(3.17–5.21)	0.000
>30	799(30.2)	194(24.3)	2.68(2.06–3.47)	0.000
Anal sex during the previous one month				
No	2512(95.0)	482(19.2)		
Yes	133(5.0)	97(72.9)	11.35(7.64–16.85)	0.000
Condom use during the previous one month				
Never/sometimes	1290(48.8)	362(28.1)		
Always	1354(51.2)	217(16.0)	0.49(0.41–0.59)	0.000
Oral contraceptive use during the previous one month				
Never/sometimes	2400(90.7)	560(23.3)		
Always	241(9.1)	18(7.5)	0.27(0.16–0.43)	0.000
Contraception measures at present time				
No	1305(49.3)	310(23.8)		
Yes	1337(50.5)	269(20.1)	0.81(0.67–0.97)	0.024
STI related symptom during the previous half year				
No	2319(87.7)	467(20.1)		
Yes	317(12.0)	110(34.7)	2.11(1.64–2.71)	0.000
Having seen a doctor during the previous half year				
No	1876(70.9)	394(21.0)		
Yes	768(29.0)	185(24.1)	1.19(0.98–1.46)	0.082
STI diagnosed during the previous half year(n = 768)				
No	631(82.2)	137(21.7)		
Yes	137(17.8)	48(35.0)	1.95(1.31–2.90)	0.000
STI risk perception				
Impossible/unsure	1785(67.5)	299(16.8)		
Possible	860(32.5)	280(32.6)	2.40(1.99–2.90)	0.000
HIV risk perception				
Impossible/unsure	2052(77.6)	394(19.2)		
Possible	591(22.3)	183(31.3)	1.92(1.56–2.36)	0.000
Scale for self-efficacy for condom use				
0	1027(38.8)	280(27.3)		
1–2	358(13.5)	73(20.4)	0.68(0.51–0.92)	0.010

(Continued)
95% CI = 2.06–3.47) versus those who had had fewer partners; those who had experienced anal sex versus those who had not (OR = 11.35, 95% CI = 7.64–16.85); those who had shown STI-related symptoms during the previous 6 months (OR = 2.11, 95% CI = 1.64–2.71) versus those who had not; those diagnosed with an STI versus those who had not (OR = 1.95, 95% CI = 1.31–2.90) among those who had seen a doctor for STI diagnosis and treatment during the previous 6 months; those who believed that they were likely to contract STIs versus those who believed it was unlikely or unsure that they would contract STIs (OR = 2.40, 95% CI = 1.99–2.90); those who believed that it was likely that they might contract HIV versus those who believed it was impossible or who were unsure whether they might contract HIV (OR = 1.92, 95% CI = 1.56–2.36), were more likely to engage in oral sex. Having seen a doctor during the previous six months was not associated with experience of oral sex.

Multivariate analysis

Controlling for possible confounding variables, multivariate analysis revealed that those FSWs who were married or cohabiting (OR = 0.65, 95%CI = 0.48–0.89), and those who were widowed or divorced (OR = 0.56, 95%CI = 0.34–0.92) versus those who were unmarried, earned an income of 3000–4000 RMB (OR = 0.59, 95% CI = 0.44–0.78), and over 4000 RMB (OR = 0.63, 95% CI = 0.47–0.85), those who had initiated sex at the age of 26–30 years (OR = 0.62, 95%CI = 0.43–0.89) or over 30 years (OR = 0.37, 95% CI = 0.24–0.56) versus those who had initiated sex at age 20 or less; those who always used a condom versus those who never/sometimes used a condom (OR = 0.55, 95% CI = 0.41–0.75); those who always used oral contraceptive versus those who never/sometimes used it (OR = 0.39, 95%CI = 0.22–0.67); and those who used contraception versus those who did not (OR = 0.70, 95% CI = 0.54–0.90), continue to be less likely to use condoms (Table 4).

Those FSWs who engaged in commercial sex in two counties (OR = 1.59, 95% CI = 1.17–2.16) and those working in three or more counties (OR = 2.13, 95%CI = 1.60–2.84) versus those engaging in commercial sex in just one county; those who had engaged in commercial sex for 13–24 months (OR = 2.47, 95% CI = 1.78–3.42), or for over 24 months (OR = 2.32, 95% CI = 1.73–3.11) versus those who had worked for 1–12 months; those who had experienced commercial sex with 16–30 partners (OR = 2.95, 95% CI = 2.22–3.93), and with over 30 partners (OR = 2.19, 95% CI = 1.60–3.00) versus those who had had fewer partners; those who had experienced anal sex versus those who had not (OR = 9.42, 95%CI = 6.00–14.80); and those who had shown STI-related symptoms during the previous 6 months (OR = 1.57, 95% CI = 1.15–2.13) versus those who had not, were more likely to engage in oral sex.

Discussion

To the best of our knowledge, this study is the first research of its kind to examine factors associated with oral sex among low-tier FSWs in China. We reported that the prevalence of oral sex practiced by low-tier FSWs in this study was 21.9%. Since we only measured this prevalence during the previous month, we are not able to compare this result with overseas FSWs [14, 15] or those in China [16], nor could we compare these data with those of common
Table 4. Multivariate analysis for association of oral sex.

Variable	Adjusted OR (95%CI) *	P value
Marital status		
Unmarried	1	
Married/cohabited	0.65(0.48–0.89)	0.006
Widowed/divorced	0.56(0.34–0.92)	0.021
Income of a family		
<3000	1	
3000–4000	0.59(0.44–0.78)	0.000
>4000	0.63(0.47–0.85)	0.003
Age of first commercial sex		
<21	1	
21–25	0.76(0.57–1.02)	0.064
26–30	0.62(0.43–0.89)	0.009
>30	0.37(0.24–0.56)	0.000
County number for commercial sex		
1	1	
2	1.59(1.17–2.16)	0.003
>2	2.13(1.60–2.84)	0.000
Duration of commercial sex		
1–12 months	1	
13–24 months	2.47(1.78–3.42)	0.000
>24 months	2.32(1.73–3.11)	0.000
Number of commercial client during the previous one month		
<16	1	
16–30	2.95(2.22–3.93)	0.000
>30	2.19(1.60–3.00)	0.000
Anal sex during the previous one month		
No	1	
Yes	9.42(6.00–14.80)	0.000
Condom use during the previous one month		
Never/sometimes	1	
Always	0.55(0.41–0.75)	0.000
Oral contraceptive use during the previous one month		
Never/sometimes	1	
Always	0.39(0.22–0.67)	0.001
Contraception measures at present time		
No	1	
Yes	0.70(0.54–0.90)	0.006
STI related symptom during the previous half year		
No	1	
Yes	1.57(1.15–2.13)	0.004

*OR = odd ratio; CI = confidence interval.

https://doi.org/10.1371/journal.pone.0238822.t004

Chinese people [18, 19], since previous studies have all used measures based on lifetime prevalence. However, we believe that the relatively large sample size and relatively high prevalence of oral sex during the previous month among our participants could guarantee the generalizability of our study findings, and the comparability between the results of this study and other
related literature. Another reason for the incomparability of the prevalence of oral sex between this study and other related studies is that these studies were conducted in different years following a revolution in sexual practices in China since 2000, and the subsequent dramatic increase in sexual behaviors traditionally adopted by few common people in China, such as oral and anal sex [19]. We speculate that the prevalence of oral sex among FSWs might also have increased quickly due to this trend in these years. The amazing rise in prevalence of oral sex among FSWs, with a concomitant increase in pharyngeal gonorrhea, has been reported in Singapore [28], pointing to the importance of this study.

Our study found that 2.2% of oral sex practitioners only practiced oral sex with their clients; the remaining majority have not only engaged in oral sex, but also in vaginal and/or anal sex, indicating that oral sex is just one type of commercial sexual service provided to clients. Previous studies have shown that low-tier FSWs are at a lower socio-economic level than higher-tier FSWs [5–7]. The income of those low-tier FSWs who practice oral sex is lower than those not performing oral sex in our study, implying that the economic situation of oral sex practitioners might be worse than that of other low-tier FSWs. This suggests that, due to economic reasons, they might be more willing to provide oral sex, or unable to reject clients’ requests for oral sex, anal sex, and unprotected sex.

Low-tier FSWs were more mobile than other economic levels of FSW [29]. We found that approximately 56% of low-tier FSWs engaged in commercial sex in two or more counties, and the more likely they were to perform oral sex for clients, the more counties in which they performed commercial sex. FSWs were highly mobile, with reasons for changing residence and working locations most commonly related to increasing income. FSWs working in higher risk venues where they charge less have many characteristics in common with HIV positive and drug using FSWs, who have been found to be more mobile than those from other establishments [11]. Mobility among FSWs has been assumed to contribute to the spread of HIV, and HIV may spread to low-risk areas through mobile FSWs [30, 31]. Thus, importance should be attached to the mobility of FSWs who practice oral sex, particularly to reduce their risk of HIV/STI transmission in behavioral intervention, and to provide information about support facilities such as VCT clinics in different areas.

Our results indicate a significant association between occurrence of oral sex and longer duration of sex work. Prolonged length of sex work might increase the likelihood of oral sex; however, longer duration of sex work is an independent risk factor for STIs [32] and HIV infection [33]. Though some foreign studies have conversely documented that STI infections are higher in those with a shorter compared to those with a longer period of sex work [34–36], the risks of HIV/STI infection resulting from long duration of sex work among FSWs who practice oral sex should be noted in the Chinese context. We further compare the difference between those FSWs who engaged in commercial sex for 1–12 months and those who have practiced for over 12 months, and found that FSWs who had been engaged in sex work for a long duration were more likely to have had over 15 sexual clients (72.3% vs. 48.3%) and never/sometimes use a condom (53.9% vs. 41.3%) during the previous month, to report STI-related symptoms (13.4% vs. 9.9%), and to have been diagnosed with an STI in those who had seen a doctor (21.8% vs. 12.3%) during the previous half year.

We found that those who practiced oral sex were more likely to report ever having been diagnosed with an STI among FSWs who had seen a doctor during the previous half year in the bivariate analysis. This study provides further evidence that oral sex practitioners are more likely to report STI-related symptoms. Low-tier FSWs are more likely to report STIs [24–26] and genital symptoms [29] than higher-tier FSWs. We concluded, therefore, that of low-tier FSWs, oral sex practitioners are more vulnerable to STI infection than those who do not practice oral sex.
It is well understood that the risk of HIV infection and transmission during anal sex is significantly higher than during vaginal sex [37–39]. Though only 5% of our study participants reported practicing anal sex with their clients during the previous month, anal sex practice is the strongest predictor of oral sex in this study. These FSWs might conduct both oral and anal sex with their clients because they are more obedient to client requests in order to secure a deal in the sex trade, emphasizing that HIV prevention interventions should not ignore those practicing oral and anal intercourse to prevent HIV transmission.

Our study demonstrated that oral sex is a strong indicator of lower age of first instance of commercial sex, consistent with a previous Chinese study that oral sex practitioners are more likely to initiate sex at a younger age [17]. Sex initiation at a lower age has been confirmed to be related to having more sexual partners, having sex more frequently, diagnosis with an STI, history of pregnancy, induced abortion, and less condom and oral contraceptive use, compared with late initiators [40, 41]. Early age of sex initiation is also a predictor of HIV infection among sex workers in the Chinese literature [42]. These early initiators of commercial sex might be at greater risk of HIV/STI transmission, unwanted pregnancy, and induced abortion than other FSWs, and this should be considered an important indicator for intervention in low-tier FSWs.

There is more evidence to support the above arguments. In this study, oral sex practitioners are related to less use of condoms or oral contraceptives during the previous month and contraception use. We reported that only approximately 8% of oral sex practitioners always use oral contraceptives, 16% had always used condoms during the previous month, and 20% were currently adopting contraception measures. We reported that approximately 80% of oral sex practitioners are aged under 35 years, and they are more likely to be unmarried. Oral sex practitioners are mostly at the reproductive age. These results indicate a relatively low awareness of reproductive health, and a large unmet need in this respect in this group of low-tier FSWs, underscoring the need to expand FSW-friendly reproductive health services in Zhejiang province. The structural interventions, such as increasing condom availability in sex trade establishments, distribution of condoms free of charge by outreach workers, accessible reproductive-health services, and provision of reproductive health education may improve their reproductive health outcomes.

Sixteen percent of oral sex practitioners had used condoms consistently during their commercial sex in the previous month versus 51.2% of the total participants, and oral sex is significantly related to less condom use in this study. However, our multivariate analysis indicates that oral sex practitioners did not increase their likelihood of self-efficacy for condom use and risk perception for HIV and STI infection. Low condom use is common among FSWs in China [16]. The main purpose for which FSWs use condoms is for contraception, not for prevention of HIV and other STIs [43]. Only a small proportion of FSWs have access to condoms at their sex trade places [44], with the majority of women having to buy condoms themselves [16]. Half of FSWs had had the experience of condom breakage or slippage during sex [16]. Their lack of negotiating power and fear of losing clients resulted in low condom use among FSWs [45]. Low-tier FSWs reported a lower rate of condom use than higher tier FSWs, perhaps driven by the desire for more clients and higher trade fees, and hampered by their limited ability to negotiate for safer sex practices [8, 9, 29, 46]. Therefore, comprehensive intervention with multiple components, including addressing the barriers to condom use mentioned above, should be carried out among oral sex practitioners of low-tier FSWs. Multiple session interventions may be required as the condom use is so low in this group, and multiple session intervention has been found to be more effective than single session intervention for increasing condom use among FSWs [47].

We are not clear about the rate of condom use in oral sex, but could speculate that oral sex is much less protected than other sex practices. Foreign studies have shown that oral sex
among FSWs and their clients is less protected [14, 15]. One Chinese study revealed that 70.1% of FSWs always used condoms to protect themselves when they had vaginal sex with clients, and this figure was 57.9% for anal sex but only 22.7% for oral sex [16]. Those oral sex practitioners are at risk of HIV/STI infection through oral sex, vaginal sex, and anal sex. Oral sex is also associated with more commercial clients in this study. These FSWs also place more clients at risk of infection once infected.

This study offers new insights into the oral sex related factors among Chinese FSWs. Our study is subject to several limitations, however. First, the cross-sectional nature of this study did not allow cause-and-effect relationships to be established between low-tier FSWs engaged in oral sex and risk behaviors. Second, we conducted this investigation in 21 counties during a limited time period, and the FSWs included in this study may have been more accessible and more willing to participate. The results presented in this article may not be generalizable to the whole province or to China. Third, our findings may be limited by the validity of self-reported measures, as our questionnaire contained some sensitive sexual behavior questions [48], and social desirability may have resulted in over- or under-reporting of sexual behaviors. Fourth, recall bias may occur to FSWs in our study, due to their education status and working environment, though we tried to interview them on sexual behaviors mainly in the previous month.

Conclusion

In conclusion, our study reported that low-tier FSWs who engaged in oral sex exhibited a profile of higher-risk behaviors such as early initiation of commercial sex, being more mobile, longer duration of sex work, more commercial clients, lower use of condoms and contraceptives, no use of contraception, and a reported history of STI symptoms compared with other low-tier FSWs. They not only place themselves, but also their commercial clients and regular partners at greater risk of STI/HIV infection and reproductive health problems. Prevention programs targeting low-tier FSWs working on streets, at hair salons, in roadside shops, and in other venues should specifically target low-tier FSWs who practice oral sex, should carefully take into account the characteristics of these FSWs, provide risk awareness education and training for condom use negotiation, and promote the availability of condom and reproductive health care, timely diagnosis, and treatment of STIs.

Acknowledgments

The research sites were 21 counties in Zhejiang province, where the AIDS Care project, a pilot program initiated by the national Ministry of Health and the provincial Bureau of Health to support and promote HIV prevention policy-making, HIV-related education, behavioural interventions, counselling and screening, antiretroviral treatments, and so on were implemented. This study was one of these series of activities. The authors wish to thank the outreach staff of CDCs from Xiacheng district, Xiaoshan district, Fuyang city, Zhenhai district, Yinzhou district, Putuo District, Lucheng district, Xixiang district, Nanhu district, Deqing county, Anji county, Shangyu city, Shaoxing county, Yongkang city, Dongyang city, Wenling city, Shangyu county, Qingtian county, Yiwu city, Longyou County, Kecheng District for their contributions in the field implementation of this study. The authors also thank the FSWs participants of this study for their time and willingness of information sharing.

Author Contributions

- **Conceptualization:** Qiaoqin Ma.
- **Data curation:** Xin Zhou.
The prevalence and correlates of oral sex among low-tier FSWs in China

Formal analysis: Qiaoqin Ma.

Investigation: Xin Zhou, Lin Chen, Hui Wang, Tingting Jiang.

Methodology: Xin Zhou, Qiaoqin Ma.

Supervision: Qiaoqin Ma, Xiaohong Pan.

Writing – original draft: Xin Zhou.

Writing – review & editing: Qiaoqin Ma.

References

1. Baral S, Beyrer C, Muessig K, Poteat T, Wirt AL, Decker MR, et al. Burden of HIV among female sex workers in low-income and middle-income countries: a systematic review and meta-analysis. Lancet Infect Dis. 2012; 12:538–549. https://doi.org/10.1016/S1473-3099(12)70066-X PMID: 22424777

2. Poon AN, Li Z, Wang N, Hong Y. Review of HIV and other sexually transmitted infections among female sex workers in China. AIDS Care. 2011; 23:5–25. https://doi.org/10.1080/09540121.2011.554519 PMID: 21660747

3. Szwarcwald CL, de Almeida WDS, Damacena GN, de Souza-Júnior PRB, Ferreira-Júnior ODC, Guimarães MDC, et al. Changes in Attitudes, Risky Practices, and HIV and Syphilis Prevalence Among Female Sex Workers in Brazil From 2009 to 2016. Medicine (Baltimore). 2018, 97: S46–S53. https://doi.org/10.1097/MD.0000000000002277 PMID: 29893747

4. Bernier A, Rumyantseva T, Reques L, Volkova N, Kyburz Y, Maximov O, et al. HIV and Other Sexually Transmitted Infections Among Female Sex Workers in Moscow (Russia): Prevalence and Associated Risk Factors. Sex Transm Infect. 2020 Mar 18 pii: sextrans-2019-054299. https://doi.org/10.1136/sextrans-2019-054299 PMID: 32188772

5. Tucker JD, Yin YP, Wang B, Chen XS, Cohen MS. An expanding syphilis epidemic in China: epidemiology, behavioural risk and control strategies with a focus on low-tier female sex workers and men who have sex with men. Sex Transm Infect. 2011 Dec; 87. https://doi.org/10.1136/sti.2010.048314 PMID: 22110145

6. Ma Q, Jiang J, Pan X, Cai G, Wang H, Zhou X, et al. Consistent condom use and its correlates among female sex workers at hair salons: a cross-sectional study in Zhejiang province, China. BMC Public Health, 2017 Nov 28: 910. https://doi.org/10.1186/s12889-017-4891-6 PMID: 29185301

7. Sun k, Li SJ, Zhang JM, Fan RL, Jing ZZ, Yang QW, et al. Analysis on condom use negotiation with sex partners and condom use in female sex workers. Chin J Epidemiol, 2019 Jul; 40: 795–799. https://doi.org/10.3760/cma.j.is.sn.0254-6450.2019.07.012 PMID: 31357801

8. White RG, Orroth KK, Korenromp EL, Bakker R, Wambura M, Sewankambo NK, et al. Can population differences explain the contrasting results of the Mwanza, Rakai, and Masaka HIV/sexually transmitted disease intervention trials?: A modeling study. J Acquir Immune Defic Syndr. 2004 Dec; 37: 1500–1513. https://doi.org/10.1097/01.qai.0000127060.94627.31 PMID: 15602129

9. Sun K, Lu S,Guo W, Li DM. Progress of research on influencing factors of condom use among female sex workers. Chin J Epidemiol. 2018 Aug; 39: 1135–1142 https://doi.org/10.3760/cma.j.issn.0254-4961.2018.07.012 PMID: 27258500

10. Chen Yi, Shen ZY, Tang ZZ, et al Declining inconsistent condom use but increasing HIV and syphilis prevalence among older male clients of female sex workers. Medicine, 2016 May, 95:e3726 https://doi.org/10.1097/MD.0000000000001326 PMID: 27258500

11. Wang H, Chen RY., Sharp GB., Brown K., Smith K., Ding G., et Mobility, risk behavior and HIV/STI rates among female sex workers in Kaiyuan City, Yunnan Province, China. BMC Infectious Diseases, 2010 Jul; 10:198 https://doi.org/10.1186/1471-2334-10-198 PMID: 20615260

12. Zhou C, Rou K, Dong WM, Wang Y, Dong W, Zhou Y, et al. High prevalence of HIV and syphilis and associated factors among low-fee female sex workers in mainland China: a cross-sectional study. BMC Infect Dis. 2014 Apr, 14: 225. https://doi.org/10.1186/1471-2334-14-225 PMID: 24767104

13. Dong W, Zhou C, Rou KM, Wu ZY, Chen J, Scott SR, et al. A community-based comprehensive intervention to reduce syphilis infection among low-fee female sex workers in China: a matched-pair, community-based randomized study. Infect Dis Poverty. 2019 Dec, 8:97. https://doi.org/10.1186/s40249-019-0611-x PMID: 31791415

14. Milrod C, Monto M. Older Male Clients of Female Sex Workers in the United States. Arch Sex Behav. 2017 Aug, 46:1867–1876. https://doi.org/10.1007/s10508-016-0733-3 PMID: 27048262

15. Brown B, Blas MM, Cabral A, Carcamo C, Gravitt PE, Halsey N. Oral sex practices, oral human papillomavirus and correlations between oral and cervical human papillomavirus prevalence among female
16. Cai Y, Shi R, Shen T, Pei B, Jiang X, Ye X, et al. A study of HIV/AIDS related knowledge, attitude and behaviors among female sex workers in Shanghai China. BMC Public Health. 2010 Jun, 28:377. https://doi.org/10.1186/1471-2458-10-377 PMID: 20584296

17. Ma Q, Pan X, Cai G, Yan J, Xu Y, Ono-Kihara M, et al. The Characteristics of Heterosexual STD Clinic Attendees Who Practice Oral Sex in Zhejiang Province, China. Plos One, 2013 Jun, 8:e67092. https://doi.org/10.1371/journal.pone.0067092 PMID: 23825627

18. Tao X, Cao MZ, Zhang B, Zhang EH, Cai LH. A survey of the Sexual behavior of female adults with different ages in Guangzhou. Chinese Journal of Andrlogy. 2009, 23:19–22.

19. Huang YY, Pan SM. Sexual techniques changes of China in the 21th century—based on four population-based surveys. The Chinese Joumal of human sexuality. 2016 Nov, 25:150–154. https://doi.org/10.3969/j.issn.1672-1993.2016.11.049

20. Zong SL, Shen SM, Feng C, Xu M, Hou L, Wu YT, et al. AIDS-related knowledge, attitude and high risk sexual behavior of medical students in higher vocational college. The Chinese Journal of human sexuality. 2017, 6:147–150. https://doi.org/10.3969/j.issn.1672-1993.2017.03.047

21. Chen WY, Pan XH, Guo ZH, Zhou X, Wang H, Ma QQ. Analysis of oral sexual behavior and related factors among male students from college graduation in Hangzhou. Chin J Prev Med, 2019 Mar, 53:289–292 https://doi.org/10.3760/cma.j.issn.0253-9624.2019.03.010 PMID: 30841669

22. Hawkins DA. Oral Sex and HIV Transmission. Sex Transm Infect. 2001, 77:307–8. https://doi.org/10.1136/sti.77.5.307 PMID: 11588267

23. Campo J, Perea MA, Del Romero J, Cano J, Hernando V, Bascones A. Oral transmission of HIV, reality or fiction? An update. Oral Dis. 2006 May, 12:219–28 https://doi.org/10.1111/j.1601-0825.2005.01187.x PMID: 16700731

24. Burrel S, Boutolleau D, Ryu D, Agut H, Merkel K, Leendertz FH, et al. Ancient Recombination Events between Human Herpes Simplex Viruses. Molecular Biology and Evolution. 2017, 34:1713–1721. https://doi.org/10.1093/molbev/msx113 PMID: 28369565

25. Fakhry C, Gillison ML. Clinical Implications of Human Papillomavirus in Head and Neck Cancers. Journal of Clinical Oncology, 2006, 24:2606–2611. https://doi.org/10.1200/JCO.2006.06.1291 PMID: 16763272

26. Edwards S, Carne C. Oral sex and the transmission of viral STIs. Sex Transm Infect.1998 Feb, 74:6–10. https://doi.org/10.1136/sti.74.1.6 PMID: 9634307

27. Edwards S, Carne C. Oral Sex and Transmission of Non-Viral STIs. Sex Transm Infect.1998 Apr, 74:95–100. https://doi.org/10.1136/sti.74.2.95 PMID: 9634339

28. Wong ML, Chan RK, Koh D, Wee S. Factors Associated With Condom Use for Oral Sex Among Female Brothel-Based Sex Workers in Singapore. Sex Transm Dis. 2000 Jan, 27:39–45. https://doi.org/10.1097/00007435-200001000-00008 PMID: 10654867

29. Han L, Zhou C, Li Z, Poon AN, Rou K, Fuller S, et al. Differences in Risk Behaviours and HIV/STI Prevalence Between Low-Fee and Medium-Fee Female Sex Workers in Three Provinces in China. Sex Transm Infect. 2016 Jun, 92:309–15. https://doi.org/10.1136/sextrans-2015-052173 PMID: 2647599

30. Sopheab H, Gorbach PM, Gloyd S, Leng HB. Rural sex works in Cambodia: work characteristics, risk behaviours, HIV, and syphilis. Sex Transm Infect 2003 Aug. 79:e2. https://doi.org/10.1136/sti.79.4.e2 PMID: 12902610

31. Ford K, Wirawan DN, Reed BD, Muliawan P, Wolfe R. The Bali STD/AID S Study: evaluation of an intervention for sex workers. Sex Transm Dis 2002 Jan. 29:50–8. https://doi.org/10.1097/00007435-200201000-00009 PMID: 11773879

32. Nasrian M, Kianersi S, Hoseini SG, Kassaian N, Yaran M, Shoaei P, et al. Prevalence of Sexually Transmitted Infections and Their Risk Factors Among Female Sex Workers in Isfahan, Iran: A Cross-Sectional Study. J Int Assoc Provid AIDS Care. 2017 Nov/Dec. 16: 608–614. https://doi.org/10.1177/23259741772836 PMID: 29017374

33. Simonse JN, Plummer FA, Ngugi EN, Black C, Kreiss JK, Gakinya MN, et al. HIV infection among lower socioeconomic strata prostitutes in Nairobi. AIDS. 1990 Feb. 4:139–144. https://doi.org/10.1097/00002030-199002000-00007 PMID: 2328096

34. Brunham RC, Kimani J, Bwayo J, Maitha G, Maclean I, Yang C, et al. The epidemiology of Chlamydia trachomatis within a sexually transmitted diseases core group. J Infect Dis. 1996 Apr; 173:950–956. https://doi.org/10.1093/infdis/173.4.950 PMID: 8603976

35. Kreiss JK, Kviati NB, Plummer FA, Roberts PL, Waiyaki P, Nquji E, et al. Human immunodeficiency virus, human papillomavirus, and cervical intraepithelial neoplasia in Nairobi prostitutes. Sex Transm Dis. 1992 Jan-Feb; 19:54–59. https://doi.org/10.1097/00007435-199201000-00011 PMID: 1313992
36. Venegas VS, Villafranca P, Madrid JP, Cosenza H, Bygdeman S. Gonorrhoea and urogenital chlamydial infection in female prostitutes in Tegucigalpa, Honduras. Int J STD AIDS. 1991 May-Jun; 2: 195–199. https://doi.org/10.1177/095646249100200309 PMID: 1907500

37. Shannon K, Strathee SA, Goldenberg SM, Duff P, Wanga P, Rusakova M, et al. Global epidemiology of HIV among female sex workers: influence of structural determinants. Lancet. 2015 Jan; 385:55–71. https://doi.org/10.1016/S0140-6736(14)60931-4 PMID: 25059947

38. Patel P, Borkowf CB, Brooks JT, Lasry A, Lansky A, Mermin J. Estimating per-act HIV transmission risk: a systematic review. AIDS 2014 Jun; 28:1509–1519. https://doi.org/10.1097/QAD.000000000000298 PMID: 24809629

39. Longo JD, Simaleko MM, Diemer HS, Grésenguet G, Brucker G, Belec L. Risk Factors for HIV Infection Among Female Sex Workers in Bangui, Central African Republic. Plos One. 2017 Nov, 12:e0187654. https://doi.org/10.1371/journal.pone.0187654 PMID: 29108022

40. Ma QQ, Ono-Kihara M, Cong LM, Xu G, Pan XH, Zamani S, et al. Early Initiation of Sexual Activity: A Risk Factor for Sexually Transmitted Diseases, HIV Infection, and Unwanted Pregnancy Among University Students in China. BMC Public Health. 2009 Apr, 22:111. https://doi.org/10.1186/1471-2458-9-111 PMID: 19383171

41. Li J, Li S, Yan H, Xu D, Xiao H, Cao Y, et al. Early sex initiation and subsequent unsafe sexual behaviors and sex-related risks among female undergraduates in Wuhan, China. Asia Pac J Public Health. 2015 Mar, 27:21S–9S. https://doi.org/10.1177/10539514549186 PMID: 25208545

42. Wang J, Ding G, Zhu Z, Zhou C, Wang N. Analysis of HIV Correlated Factors in Chinese and Vietnamese Female Sex Workers in Hekou, Yunnan Province, a Chinese Border Region. Plos One. 2015 Jun, 10:e0129430. https://doi.org/10.1371/journal.pone.0129430 PMID: 26053040

43. Wang YX, Kang DM, Liao MZ, Tao XR, Wang GY, Zhang N, et al. Analysis of condom use and its factors on female sex workers in Shandong province. Chin J Prev Med. 2011 May; 45:435–439. https://doi.org/10.3760/cma.j.issn.0253-9624.2011.05.011

44. Rou K, Wu Z, Sullivan SG, Li F, Guan J, Xu C, et al. A five-city trial of a behavioral intervention to reduce sexually transmitted disease/HIV risk among sex workers in China. AIDS Behav. 2007 Dec; 21:S95–S101. https://doi.org/10.1097/01.aids.0000304703.77755.c7 PMID: 18172399

45. Zhang H, Liao M, Nie X, Pan R, Wang C, Ruan S, et al. Predictors of consistent condom use based on the Information-Motivation-Behavioral Skills (IMB) model among female sex workers in Jinan, China. BMC Public Health. 2011 Feb; 11:113. https://doi.org/10.1186/1471-2458-11-113 PMID: 21329512

46. Li Y, Detels R, Lin P, Fu X, Deng Z, Liu Y, et al. Difference in risk behaviors and STD prevalence between street-based and establishment-based FSWs in Guangdong Province, China. AIDS Behav. 2012 May; 16:943–51. https://doi.org/10.1007/s10461-011-0102-0 PMID: 22220688

47. Chow EP, Tung K, Tucker JD, Muessig KE, Su S, Zhang X, et al. Behavioral Interventions Improve Condom Use and HIV Testing Uptake Among Female Sex Workers in China: A Systematic Review and Meta-Analysis. AIDS Patient Care STDS. 2015 Aug. 29:454–60. https://doi.org/10.1089/apc.2015.0043 PMID: 26217951

48. Guida J, Fukunaga A, Liu H. Biomarker Validation of Self-Reported Sex Among Middle-Aged Female Sex Workers in China. Ann Epidemiol. 2017 Mar, 27: 181–186. https://doi.org/10.1016/j.annepidem.2017.01.002 PMID: 28185717