Supplementary Material

Reagents for labeling with pH-independent fluorescein-based tags

Stanislav N. Zelinskiy,a Elena N. Danilovtseva,a Viktor A. Pal'shin,a Uma M. Krishnan,b and Vadim V. Annenkov*a

aLimnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3, Ulan-Batorskaya St., P.O. Box 278, Irkutsk, 664033, Russia
bCentre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical and Biotechnology, SASTRA University, Thanjavur – 613401, Tamil Nadu, India
Email: annenkov@lin.irk.ru, annenkov@yahoo.com

Table of Contents

1. Chemical structures of compounds applied for introducing fluorescein moieties ...S2
2. 1H and 13C NMR spectra of 2 ..S3
3. 1H and 13C NMR spectra of 4 ..S4
4. Absorption spectra of Olig-Flu in different buffer solutions ...S5
5. Absorption spectra of 2 and 4 solutions ..S5
6. Absorption spectra of 2 and 4 in different buffer solutions ...S6
7. Absorption spectra of ZS-424, ZS-493, ZS-495 in different buffer solutions ...S7
8. Excitation spectra of fluorescein, Olig-Flu, 2 and 4 in different buffer solutions ..S8
9. Excitation spectra of ZS-424 and ZS-493 in different buffer solutions ...S9
10. Excitation spectra of ZS-495 in different buffer solutions ...S9
11. Emission spectra of ZS-424 and ZS-493 in different buffer solutions ..S10
12. Emission spectra of ZS-495 in different buffer solutions ...S10
Scheme S1. Chemical structures of compounds applied for introducing fluorescein moieties into organic molecules.
Figure S10. 1H and 13C NMR spectra of 2 in CDCl$_3$.
Figure S11. 1H and 13C NMR spectra of 4 in CDCl$_3$.
Figure S1. Absorption spectra of Olig-Flu in different buffer solutions. Concentration 1 mg/mL.

Figure S2. Absorption spectra of 2 (A, B) and 4 (C, D) solutions in water (pH 7) – A, C, and in 1,4-dioxane – B, D. Concentration 5 µM.
Figure S3. Absorption spectra of 2 (A) and 4 (B) in different buffer solutions. Concentration 2.5 µM for A and 10 µM for B.
Figure S4. Absorption spectra of ZS-424 (A), ZS-493 (B), ZS-495 (C) in different buffer solutions. Concentrations 0.47 mg/mL for A, 0.36 mg/mL for B and 1 mg/mL for C.
Figure S5. Excitation spectra of fluorescein (A), Olig-Flu (B), 2 (C) and 4 (D) in different buffer solutions at emissions 523 nm. Concentrations 0.5 µM for A and B, 2.5 µM for C, 5 µM for D.
Figure S6. Excitation spectra of ZS-424 (A) and ZS-493 (B) in different buffer solutions at emissions 523 nm. Concentrations 0.47 mg/mL for A and 0.36 mg/mL for B.

Figure S7. Excitation spectra of ZS-495 in different buffer solutions at emission 545 nm. Concentrations 1 mg/mL.
Figure S8. Emission spectra of ZS-424 (A) and ZS-493 (B) in different buffer solutions at excitation 490 nm. Concentrations 0.47 mg/mL for A and 0.36 mg/mL for B.

Figure S9. Emission spectra of ZS-495 in different buffer solutions at excitation 490 nm. Concentrations 1 mg/mL.