Virtual Service Embedding With Time-Varying Load and Provable Guarantees

Gil Einziger, Member, IEEE, Gabriel Scalosub, Senior Member, IEEE, Carla Fabiana Chiasserini, Fellow, IEEE, and Francesco Malandrino, Senior Member, IEEE

Abstract—Deploying services efficiently while satisfying their quality requirements is a major challenge in network slicing. Effective solutions place instances of the services’ virtual network functions (VNFs) at different locations of the cellular infrastructure and manage such instances by scaling them as needed. In this work, we address the above problem and the very relevant aspect of sub-slice reuse among different services. Further, unlike prior art, we account for the services’ finite lifetime and time-varying traffic load. We identify two major sources of inefficiency in service management: (i) the overspending of computing resources due to traffic of multiple services with different latency requirements being processed by the same virtual machine (VM), and (ii) the poor packing of traffic processing requests in the same VM, leading to opening more VMs than necessary. To cope with the above issues, we devise an algorithm, called REShare, that can dynamically adapt to the system’s operational conditions and find an optimal trade-off between the aforementioned opposite requirements. We prove that REShare has low algorithmic complexity and is asymptotic 2-competitive under a non-decreasing load. Numerical results, leveraging real-world scenarios, show that our solution outperforms alternatives, swiftly adapting to time-varying conditions and reducing service cost by over 25%.

1 INTRODUCTION

Network slicing leads to a revolutionary transformation of mobile services, with technologies like software-defined networking (SDN) and network function virtualization (NFV) enabling flexible, fully virtualized environments. In this context, the automated management of the services that the network supports and of the underlying resources they consume is a major challenge. As requests for service deployment can arrive and leave at a very fast pace, it is important that deployment decisions are swift and able to dynamically adapt to the evolution of the network load. Additionally, each such deployment has to fulfill the services’ target key performance indicators (KPIs) and efficiently allocate the very diverse, geographically distributed, and differently owned resources.

Such requirements imply that when a service request from a third-party vertical (e.g., automotive industry or a content provider) reaches the system, the following steps should be automatically performed: (i) to identify the network segment (e.g., edge, aggregation, cloud) where to deploy the service, based on the service target latency and the infrastructure cost, (ii) to check whether part (or all) of the virtual network functions (VNFs) composing the service can re-use already deployed VNFs (i.e., (sub-)slices), (iii) if so, to scale the amount of resources allocated for the VNFs composing such (sub-)slices, so as to fulfill the target KPIs of all involved services, and (iv) to instantiate the VNFs that have to be deployed ex novo, and allocate a suitable amount of resources (e.g., CPU, memory, routers) for their processing and interconnection.

Such a process, also referred to as service orchestration or service embedding, entails multiple, inter-dependent decisions including VNF placement and virtual machine (VM) provisioning. In making such decisions, the orchestrator needs to avoid two main sources of inefficiency. The first is due to placing VNFs with different delay constraints on the same VM: in such a case, the most stringent delay constraint is effectively maintained also for the least demanding VNF, which implies that some of the processing allocated to handle the other VNFs is not minimal. Such additional capacity can be seen as derived from latency dissimilarity of colocated VNFs and it is removed when all those placed in a VM have exactly the same delay constraint. The second inefficiency is due to assigning (“packing”) VNFs in the VMs in a sub-optimal manner, that is, using more than the minimal number of VMs required.

Several works have addressed these aspects, including [1], [2], [3], [4], [5], [6], [7], by casting them into MILPs and proposing effective heuristics. Most of the existing studies, however, operate offline, i.e., assume that the set of service requests to deploy is known in advance and make the best (e.g., cost-effective) decisions for their instantiation. Importantly, our work is able to capture the effect of time-varying traffic conditions, i.e., with service instances exhibiting finite lifetime and time-varying traffic load and the...
flexible relationship between the computational resources assigned to a VNF and the resulting service times.

Further, unlike prior art [3], [4], [6], [7], our work accounts for the fact that next-generation networks are made of segments (e.g., cloud and edge) with different computational capability, latency, and cost: in this scenario, it is important that each service is supported by the segment with the most appropriate cost-performance trade-off. Furthermore, unlike state-of-the-art works like [8], [9], our system model and algorithms can account for the dynamic nature of the load networks have to serve. Such aspects are especially critical, as they influence a solution’s ability to cope with daily and weekly traffic patterns and the network topology.

In this paper, we make the following main contributions:

- we first develop a model that captures the main aspects of the NFV ecosystem and accounts for a time varying system load, as well as for the fact that there are different segments composing the network;
- we formulate the problem of service embedding taking the end-to-end latency as the main service KPI, and develop an algorithm, named REShare, which addresses all issues listed above – network segment identification, VNF placement/reuse, and resource scaling – and, importantly, handles a time-varying service requests load;
- we prove that REShare has low, namely, quadratic, computational complexity and is an asymptotic 2-competitive algorithm under a non-decreasing load;
- finally, using real-world load traces, we show that the cost of deploying and running services under REShare is much lower than under state-of-the-art solutions. Also, REShare can swiftly adapt to time-varying conditions, attaining excellent performance as the system load evolves.

The rest of the paper is organized as follows. Section 2 introduces the system model, while Section 3 outlines our approach and main results. Section 4 presents a heuristic strategy, which is our cornerstone for building the REShare algorithm, and analyzes its competitive ratio. REShare, along with its competitive analysis, is introduced in Section 5, while its performance is assessed in Section 6. After discussing the related work in Section 7, we conclude the paper in Section 8.

2 System Model

Our system model seeks to concisely represent the main features of next-generation network architectures, namely, their layered structure [10] and heterogeneity. Indeed, as reported in [11], [12], [13] for datacenters and in [14] for 5G networks, many relevant types of networks are organized in layers, with nodes at the same layer having similar features in terms of latency and cost; however, the features of different layers can be vastly different. In other words, any differences between nodes of the same layer are negligible when compared to those between nodes of different layers. By capturing such aspects, our model serves as the first step towards meeting the challenge they represent. Furthermore, we consider the NFV Orchestrator (NFVO), specified within the well-known NFV MANO (Management and Orchestration) architecture [15], as the decision-making entity. In both ETSI standards [15] and real-world 5G deployments [14], the NFVO has access to plentiful information concerning such aspects as: (i) the target KPIs of each service, e.g., its target end-to-end delay; (ii) the time for which each service instance shall be active; (iii) the VNFs composing the service; (iv) their computational requirements, which in turn determine the processing delay.

More specifically, the processing delay associated with a service is determined by (i) the available computational capabilities; (ii) the service computational complexity; and (iii) the service demand. The computational capabilities available to each service is one of our decision variables, as set forth next. As for the computational complexity of a given service, it is routinely obtained by profiling the service as it runs, hence, it can be considered a known quantity. Finally, the service demand can be either known a priori (e.g., in smart-factory applications) or reliably predicted [16], [17], as better detailed in Section 7.

We leverage these notions throughout our system model and algorithms, as set forth next. The most relevant notation we use is summarized in Table 1.

Symbol	Description
\(S, \mathcal{V} \)	set of services and VNFs (resp.)
\(\mathcal{V}_n \)	set of VNFs of request \(r \) for service \(s \)
\(a_s, \tau_r \)	arrival and duration (resp.) time of service instance request \(r \)
\(\lambda_r \)	load of service instance request \(r \)
\(D_r \)	request \(r \) delay constraint
\(\mathcal{G} \)	graph of layered topology of datacenters (nodes)
\(\ell \)	layer of a node (distance from leaf)
\(b \)	VM running in a node
\(\mu, \theta \)	maximum and actual (resp.) computing capability of a VM
\(l_r \)	leaf node where request \(r \) arrives
\(\Lambda(b) \)	overall load on VM \(b \)
\(d_{r,v} \)	forwarding latency from a leaf to a node in layer \(\ell \)
\(M_{r,v} \)	minimum processing latency of running \((r,v) \) alone in a VM
\(D_c \)	fair delay allocation of job \((r,v) \)
\(\kappa_f \)	fixed cost of a VM at level \(\ell \)
\(\kappa_p \)	proportional cost of a VM at level \(\ell \)
\(\sigma \)	sequence of requests

Services. Let \(S \) be the set of services that verticals may request and \(\mathcal{V} \) the set of all possible VNFs they may use. Requests for the deployment of service instances arrive sequentially at the system, and each new request \(r \) for an instance of service \(s \) requires a set \(\mathcal{V}_n \subseteq \mathcal{V} \). Such VNFs may either be freshly deployed or reuse existing VNF instances provided that isolation requirements are met.

Verticals and network operators commit to service level agreements (SLAs), detailing the cost and the quantity of services. We denote the set of VNFs of a service instance request (and the target latency introduced next) by \(\mathcal{V}_n(D_r) \), even if it depends only on \(s \).

1. We denote the set of VNFs of a service instance request (and the target latency introduced next) by \(\mathcal{V}_n(D_r) \), even if it depends only on \(s \).
the resources each vertical can use. Thus, the requests received at the NFVO do not exceed the resource budget for which the vertical is paying; i.e., there are always enough resources to deploy a service meeting the target KPIs. Thus, our problem is not whether or not to admit a service request, but how to embed it in the most efficient way.

Network System. Most real-world networks connecting datacenters exhibit a layered topology [11], [12], e.g., trees, fat trees, as well as SlimFly and DragonFly [13] (an example of such a layered topology appears in Fig. 1). Let \(G = (I, \mathcal{E}) \) be a graph modelling such a layered topology, with vertices, \(i \in I \), representing datacenters (also referred to as nodes), and edges, \(e \in \mathcal{E} \), representing communication links between datacenters. Each node can host a large [18] number of virtual machines (VMs). Each VM implements one VNF instance [14], and the same VNF instance can serve traffic belonging to one or more services.

Layers are numbered as follows: leaf nodes are at layer 0, and a generic node is at layer \(\ell > 0 \) if its distance in links from the closest leaf is \(\ell \). VMs are characterized by their computational capabilities, i.e., resources at their disposal. Intuitively, the more capable a VM is, the quicker it will be able to perform a given task. Specifically, a VM \(b \) running in some generic datacenter in node \(i \) has maximum speed (i.e., computing capability) \(\mu \) and can host a single VNF \(v \). We denote with \(\mu_v \leq \mu \) the amount of computing resources VM \(b \) is using, and with \(\theta_v \), the computing complexity of VNF \(v \). Intuitively, computational complexity expresses how difficult it is to run a certain VNF. If we fix the amount of computational capabilities, then the processing time required by a given task is proportional to its computational complexity. More formally, computational complexity is defined as the number of computing units required by VNF \(v \) to handle a unit of traffic: the higher \(\theta_v \), the more complex the associated VNF, and the more computational resources will be required to run it.

For ease of presentation, we treat the computing capability \(\mu \) as a scalar quantity, i.e., a number; therefore, \(\mu \) is able to represent only one type of system resources, e.g., CPU. Additional types of resources, like memory or storage, could be accounted for by converting both \(\mu \) and the service requirements to multi-dimensional variables, i.e., vectors. Our approach would work unmodified; however, so doing would entail significant additional notation complexity.

A request \(r \) is associated with a tuple \((\mathcal{V}_r, a_r, \tau_r, D_r, \lambda_r, l_r) \), where \(l_r \) specifies the leaf node at which the request arrives, \(a_r \) and \(\tau_r \) are, respectively, its arrival time and duration, \(\lambda_r \) is the traffic load, and \(D_r \) is the latency requirement. Having a finite lifetime for requests allows us to model time-varying network load. Specifically, as demonstrated in Section 6, fluctuations in the network load can be reproduced by adding, removing, or replacing service requests. Notice that the duration (i.e., lifetime) of a service is a distinct quantity from the time it takes to process an individual packet (or query) belonging to the service, and the quantities often differ by orders of magnitude. As an example, a smart factory service like the one discussed in Section 6.1 may be active for as long as a certain batch has to be produced, i.e., its service duration can be of minutes or days; in the other hand, individual messages pertaining to robot actions are processed in milliseconds.

For each VNF \(v \in \mathcal{V}_r \), we define \((r, v) \) as the job of running VNF \(v \) for request \(r \); each job \((r, v) \) has to be assigned to a VM \(b \) hosting \(v \), running on some node. Clearly, the jobs associated with a request arrive all upon the request’s arrival (i.e., at time \(a_r \)), and depart after the request’s duration \(\tau_r \) has elapsed (i.e., at time \(a_r + \tau_r \)), when all jobs \((r, v) \) are removed and the resources they consumed are freed. Finally, \(\Lambda(b) \) denotes the overall traffic load of the jobs assigned to VM \(b \).

Latency. The total latency incurred by request \(r \) is given by the sum of the traffic forwarding latency and the processing latency. To determine the former, we consider that routes between any two nodes in the topology have been pre-computed. We denote with \(d_t \) the traffic forwarding latency from a leaf node to a node at layer \(\ell \) owing to the layered structure of the network topology (e.g., edge, aggregation, and cloud layers), we have \(d_{\ell+1} > d_\ell \), reflecting the fact that farther-away layers take longer to reach than close-by ones. We further consider the forwarding latency incurred by request \(r \), where each job \((r, v) \) is deployed at some level \(\ell_v \), as the maximum forwarding latency over all levels hosting jobs of \(r \). The maximum forwarding latency captures the latency incurred by reaching the highest level, which hosts jobs corresponding to the request. Such a latency is the dominating component of the overall forwarding latency incurred by the job; indeed, as better detailed in Section 4, the large number of VMs available in each datacenter makes placing all VNFs of a service in the same node (albeit on different VMs) the most convenient option, hence, inter-VNF forwarding times are not significant.

As for the processing latency, we model each VM as an \(M/M/1 \) queue. Queuing models are commonly used in the literature to represent VMs in edge and cloud scenarios [1], [19], [20], [21], [22], with Markovian service [1], [20], [22] and arrival [1], [19], [20], [22] times being considered in most cases; the validity of such modeling assumption has also been confirmed through simulation-based validation [21]. Using a queuing model allows us to model how VNFs may be assigned different quantities of resources, e.g., CPU, and how such an amount impacts their processing time. This is in contrast with existing works, e.g., [3], [4], [6], [7], where VNF requirements are constant over time and no resource allocation decision is possible.

As per [23], the processing latency incurred on VM \(b \) running VNF \(v \) at speed \(\mu_b \) is \(\frac{1}{\mu_b} \). While VMs get assigned virtual cores in practice, it is fair to assume that \(\mu_b \)’s take on real values: indeed, given that each node corresponds to a
datacenter, it contains a very large number of physical cores, and each physical core can accommodate a high number (e.g., up to 32) of virtual cores. Importantly, a queuing model allows us to capture the flexible relation between the computational resources assigned to a VNF and the resulting processing times, i.e., VNFs process requests quicker if they have more resources. For stability, we must have\(\Lambda(b) < \mu_b / \theta_v \).

A deployment is said to be feasible for request \(r \) if the sum of the traffic forwarding latency and processing latency over all \(v \in V_r \), with the latter computed considering the maximum VM capability \(\bar{\mu} \) for all VNFs, does not exceed target delay \(D^r \). Also, for every \(r \), let \(\ell'(r) \) be the highest layer for which running all \(v \in V_r \) on VMs in a node at that layer is a feasible deployment. Next, we define the fair per-job delay allocation over the jobs \((r, v) \) as the per-job processing latency budget, which will serve as a guide for placing request's jobs, allocating computing resources to them, and performing VMs sharing across distinct jobs.

The intuition behind the fair delay allocation is to give more resources to more complex VNFs, i.e., those with larger computational requirements \(\theta_v \). Such an allocation is fair, in that no VNF contributes in a disproportionate manner to the total processing time. Specifically, a deployment of request \(r \) is feasible if the total processing latency of its jobs is at most \(D^r - d_{r(v)} \), then we distribute this latency budget over the distinct jobs \((r, v) \) according to their relative processing requirements. Namely, for each \((r, v) \), the fair per-job delay allocation is:

\[
D^r_v = \frac{M_{r,v}}{\sum_{u \in V_r} M_{r,u}} (D^r - d_{r(v)}),
\]

where \(M_{r,v} = \frac{1}{\bar{\mu}_v / \theta_v} \) is the latency incurred by running \(v \) using the maximum VM capability \(\bar{\mu}_v \), and \(\sum_{u \in V_r} M_{r,u} \) accounts for the relative time complexity of \(u \in V_r \). It follows that a job \((r, v) \) corresponding to a VNF \(v \) with a larger value of \(\theta_v \) will be assigned a larger value of \(D^r_v \).

Consider now request \(r \) such that job \((r, v) \) is deployed on a node at layer \(\ell'(r) \), while satisfying the fair per-job delay allocation. The overall processing latency of the request is at most:

\[
\sum_{v \in V_r} D^r_v = \sum_{v \in V_r} M_{r,v} D^r_v \quad \text{(1)}
\]

By the definition of \(\ell'(r) \) and the fact that forwarding latency is monotone with the node's level, we have that the overall latency of deploying request \(r \) is at most \(D^r_{\ell'(r)} \) and thus feasible. In the following, we will consider feasible service deployments that satisfy such fair per-job delay allocation, and we will compare our solution to an optimal solution that must also satisfy such fair per-job delay bounds.

Cost. Running a VM \(b \) at a node of layer \(\ell(b) \) implies a fixed cost, \(\kappa^{(b)} b \). The fixed cost reflects the fact that unused VMs still entail additional work for the hypervisor and keep resources allocated, both of which consume power [24], [25], hence, money. Furthermore, any VM \(b \) running on a node at layer \(\ell(b) \) at speed \(\mu_b \) incurs cost \(\kappa_p \mu_b \), which is proportional to the computing resources consumed by \(b \). Our model accounts for the fact that running VMs at a higher layer (closer to the cloud) is cheaper [26] than running VMs at lower layers (closer to the edge), i.e., \(\kappa_f^{(b)} < \kappa_f^{(b)} \) and \(\kappa_p^{(b)} < \kappa_p^{(b)} \). Cost parameters can also account for differentially-owned and/or federated resources, e.g., in different administrative domains.

Denoting by \(\sigma \) the sequence of requests handled by the system till the current time, we define \(\phi(A, \sigma) \) as the overall instantaneous cost of the deployment decisions made by an algorithm \(A \), i.e., the sum of fixed and proportional costs of all VMs currently used. \(\phi(A) \), instead, refers to the instantaneous cost of algorithm \(A \) at the end of the whole request arrival/departure process.

2.1 Problem Formulation

The main decisions we have to make are (i) whether VM \(b \) should be used for job \((r, v) \), expressed through binary variables \(y(r, b, v) \in \{0, 1\} \), and (ii) how much computational resources to assign to each VM, expressed through the real variable \(\mu_b \). Importantly, \(y \)-variables also express whether or not a certain VM \(b \) is active; specifically, \(b \) is active—hence, the corresponding fixed cost is incurred—if and only if it is used by at least one job, i.e., \(\sum_{r \in \sigma} y(r, b, v) \geq 1 \). Also notice that, in our system model, VMs do not migrate, hence, the values of the \(y \)-variables do not change during the lifetime of a job.

Our goal is to minimize the total cost, i.e.,

\[
\min_{y, \mu} \sum_b \left(\kappa_f^{(b)} \max_{y \in \{0, 1\}} y(r, b, v) + \kappa_p^{(b)} \mu_b \right).
\]

The two terms in (3) correspond to the fixed and proportional cost, respectively. The constraints we have to satisfy are that all target delays are met: for each job \((r, v) \), if \(b \) is the VM serving it, i.e., \(y(r, b, v) = 1 \), then we wish to impose \(\mu_b - \theta_v \Lambda(b) \leq D^r_v \). This is captured by requiring

\[
D^r_v \cdot y(r, b, v) (\mu_b - \theta_v \Lambda(b)) \geq y(r, b, v) \quad \forall (r, v),
\]

where \(\Lambda(b) = \sum_{r', v'} y(r', b, v') \lambda_{r'}. \) We further impose that

\[
\sum_{v} y(r, b, v) \geq 1, \quad \forall (r, v),
\]

\[
\sum_{v} \max_{b} y(r, b, v) \leq 1, \quad \forall b,
\]

(7)

where Eq. (5) ensures that every job is actually deployed, Eq. (6) mandates that each VM runs a single VNF, and Eq. (7) ensures that the capacity constraint of each VM is met. Since the problem is combinatorial in nature and non-linear, and the formulation is non-convex, we adopt a heuristic approach in designing an efficient and effective algorithm for solving the problem.

3 APPROACH AND MAIN RESULTS

We now describe the approach we use in designing our algorithm, REShare, which performs feasible VNF placement with time-varying service demand. REShare aims at minimizing the overall cost, and it is shown to be asymptotically 2-competitive when requests duration, \(\tau \), is unlimited.
to reduce the number of requests served before their deadline (and the resulting waste or resources), REShare seeks to minimize the dissimilarity between jobs that are co-located in the same VM;

- to reduce the bin-packing suboptimality, REShare leverages efficient, state-of-the-art bin-packing algorithms.

Our algorithm carefully manages these challenges according to the overall system load. Intuitively, we pack together diverse services at times of low system load to avoid creating many underutilized VMs. For high system loads, instead, we want to utilize individual VMs better and allow for minimal dissimilarity.

Our solution is based on a carefully designed algorithm, constant-REShare(c-REShare), with parameter \(\epsilon \), described in Section 4. The value of \(\epsilon \) governs the amount of dissimilarity allowed; smaller \(\epsilon \) values imply less dissimilarity. c-REShare(\(\epsilon \)) places all jobs corresponding to a request in a single node at the highest level for which the placement is feasible (even if it requires starting a new VM for every job). c-REShare(\(\epsilon \)) is shown to be asymptotically \((2 + \epsilon)\)-competitive under a non-decreasing load.

REShare uses c-REShare(\(\epsilon \)) with dynamically varying values of \(\epsilon \), depending on the overall system load. When the system load is low, bin-packing suboptimality is the dominant cost factor, and REShare uses a larger value for \(\epsilon \). When system load increases, bin-packing suboptimality is naturally reduced since any solution must use many VMs for supporting the load. In this case, REShare favors reducing dissimilarity by using a smaller value for \(\epsilon \). Fig. 2 provides an example of these aspects. One of the main novel elements of our approach is such an ability to switch between different decision-making strategies (expressed through different values of \(\epsilon \)) as the network load varies. Indeed, recent works [3], [4] leverage a forecast of future requests for the next few hours; [6] accounts for the network load evolution but always follows the same strategy, i.e., the same trade-off between resource consumption and overhead. Finally, [7] does not adapt its decision strategy to the load and deploys multiple replicas of each VNF chain to achieve robustness.

We decide when to transition between \(\epsilon \) values by maintaining a lower bound on the cost of an optimal solution (which is closely correlated with the overall system load). This approach also allows us to prove that REShare is asymptotically 2-competitive when requests duration, \(\tau_r \), is unlimited.

Notice that assuming infinite request duration is only required for our analysis. In practice, REShare is inherently designed to deal with time-varying load conditions where requests arrive and leave the system. We show the effectiveness of our approach through an extensive simulation study, presented in Section 6, which provides further insight into the dynamic behavior of REShare and the reasoning underlying our algorithmic approach.

3.1 An AWS-Based Experiment

Before describing our c-REShare approach, we perform a simple real-world experiment to demonstrate the first, and perhaps less intuitive, of the suboptimality sources that we discuss, namely, serving requests with different deadlines within the same node. We consider two types of requests:

- a MAFFT protein alignment task [27] whose target delay is 80 s;
- a WAV-to-FLAC audio conversion [28] whose target delay is 50 s.

We further consider two types of VMs available on Amazon AWS, namely, m1.small and m2.xlarge. For both VMs, we select the Ubuntu operating system, and run the benchmarks via the phoronix command. When ran alone, the MAFFT benchmark takes 37 s on an m2.xlarge machine, and 137 s on an m1.small one; the FLAC benchmark takes 11 s on an m2.xlarge, and 48 s on an m1.small.

A total of three requests arrive at very short interval from each other, in the following order: first a request for the MAFFT task (mafft_1), then one for the FLAC task (flac_1), and finally a second MAFFT request (mafft_2). Recall that we take an online approach, i.e., we embed all requests as soon as they arrive.

The possible decisions are summarized in Fig. 3. Clearly, when request mafft_1 arrives (step 1), we must create a new VM. Since an m1.small VM would be too slow, we must open an m2.xlarge VM, called xlarge_1 (step 2). After job flac_1 arrives (step 3), we can make two decisions: re-use existing VM xlarge_1, or open a new VM small_1 of type m1.small.

Re-using xlarge_1 (step 4a) would minimize both the number of VMs and the cost so far, however, things would be different after the arrival of the third job (step 5): using xlarge_1 (step 6a) would result in a violation of the target KPIs, hence, we need to open a new VM. Furthermore, such
a new VM can only be of type m2.xlarge (step 6b), resulting in a higher cost of 1 USD/hour.

Let us assume instead that we create a new VM for the newly-arrived flac_1 job, on the grounds that its target delay and complexity are vastly different from the ones of job mafft_1; importantly, a cheaper VM of type m1.small would suffice. Performing this counter-intuitive action allows us to serve request flac_2 on the existing VM xlarge_1 (step 6c), resulting in a total lower cost of 0.585 USD/hour.

In summary, avoiding serving requests with overly-different values of target delay within the same VM results in lower global costs. As confirmed in Table 2, it also results in requests served closer to their deadline, hence, intuitively, in less wasted computational capabilities.

4 THE c-RESHARE(ε) STRATEGY

This section describes and analyzes the constant-REShare (c-REShare) strategy, with a fixed parameter ε.

4.1 Algorithm Description

The details of c-REShare(ε) are presented in Algorithm 1, which takes ε, determining the level of VNF (hence, VM) sharing among jobs, as an input parameter. Given a request r, first c-REShare(ε) identifies layer ℓ*(r) (Line 3), which is the highest layer where the requested service instance can be deployed without violating the service KPI targets and keeping the fair per-job delay allocation (see Section 2). We remark that such a layer is selected because VNF deployment is cheaper at higher layers and that this layer can be found by conducting a binary search, i.e., in time that is logarithmic in the number of layers. Furthermore, c-REShare(ε) deploys all the service VNFs in the same node to minimize the traffic forwarding latency and maximize the computation latency budget. Recall that, as per our system assumptions, it is always possible to place in the same node all VNFs composing a service. Furthermore, whenever doing so is possible, it is also beneficial, as it avoids incurring inter-node forwarding latency.

The specific node i∗ at layer ℓ*(r) where the request traffic should be processed is chosen as the one providing the best load balancing (Line 4), i.e., the one that currently has the lowest load. However, it is important to highlight that the choice of i∗ does not affect the worst-case performance of the algorithm and that we can use alternative criteria (e.g., choosing the most-recently-used or most-loaded server) with similar guarantees.

Algorithm 1. c-REShare(ε)

1: for any arrival/departure of request r do
2: if r is arriving then
3: ℓ*(r) ← max{ℓ(fair delay allocation is met atℓ)}
4: i∗ ← Loadbalancing(G, ℓ*(r)) ▷ select node
5: for each v ∈ Vf do
6: j∗ ← [log(1+ε)Dv] ▷ determine latency range
7: VMAssignment((r, v), (i∗, v, j∗)-AP) ▷ assign job to a VM
8: else ▷ r is departing
9: for each v ∈ Vf do
10: VMdeassignment((r, v)) ▷ deallocate the job

Assigning jobs (r, v) to VMs can now be done independently over the VNFs, as long as the fair per-job delay allocation, Dv, v ∈ Vf, is met. Placing each job in a new or existing VM running v poses the following dilemma:

- on the one hand, we would like to share VMs as much as possible, to save on fixed costs;
- on the other, sharing the same VM among jobs with different delay allocation results in wasted capacity (as discussed earlier and exemplified in Fig. 2), and, thus, in higher proportional costs.

The parameter ε describes the tradeoff underlying such decisions. Specifically, let λmin = Inf{λv}, where we assume λmin > 0 and is known in advance; then we define a series of non-overlapping latency ranges Lj, where Lj = 1/(μ − λmin(1+ε)j+1), for j ≥ 1, and L0 = 1/(μ − λmin). Clearly,

3. All prices refer to the US-east availability zone.

case	service time [s]	cost [USD/hour]
6a	mafft_1: 85	0.5
6b	mafft_2: 85	1
6c	flac_1: 33	0.585

TABLE 2
AWS-Based Experiment: Service Time and Cost for the Different Options Reported in Fig. 3
we need to impose that $\lambda_{\min}(1 + \varepsilon)^{t+1} < \mu$; \forall j; then, the
number of latency ranges, J_ε, satisfies $J_\varepsilon < \log_{\left(\frac{\mu}{\lambda_{\min}}\right)^{t+1} - 1}$. c-REShare(\varepsilon) only shares the same VM among jobs within
the same latency range. Thus, a larger value of \varepsilon results in
wider ranges and jobs with more diverse fair delay allocations
sharing the same VM. On the contrary, a smaller value of \varepsilon implies narrower ranges and more similar jobs within
each range.

Given i^*, the objective is to assign each VNF $v \in V_n^i$ to a
suitable VM in i^*, such that the fair delay allocations are satis-
fied for all jobs on that VM (Line 6). In particular, given a
VNF v, we consider the VM Assignment Problem, hereinafter
referred to as (i, v, j)-AP, which assigns a job (r, v) to a VM in
node i, while ensuring that $D_r^v \in L_j$ (with $j = \lceil \log_{\left(\frac{\mu}{\lambda_{\min}}\right)^{t+1} - 1} \rceil$).
Since we only share VMs among jobs in the same range, it is
possible to consider separate assignment problems for differ-
ent values of j.

Algorithm 2. VMAssignment((r, v), (i, v, j)-AP)

1. **viabe_VMs \leftarrow \emptyset**
2. for every VM b in i hosting jobs (r', v) in L_j, do
 3. if $\frac{1}{\mu - \lambda_{\min}(1 + \varepsilon)^{t+1}} \cdot D_r^b > D_r^v$ then
 \quad check feasibility for the new job on b
 \quad continue \quad \triangleright continue to next VM
 4. for every $(r', v) \in b$ do
 \quad jobs already assigned to b
 \quad if $\frac{1}{\mu - \lambda_{\min}(1 + \varepsilon)^{t+1}} \cdot D_r^b \in D_r^v$ then
 \quad check feasibility for jobs already on b
 \quad continue \quad \triangleright continue to next VM
 5. **viabe_VMs \leftarrow viabe_VMs \cup \{b\} \triangleright reusable VMs**
 6. if **viabe_VMs \neq \emptyset** then
 \quad $b^* \leftarrow \arg\max_{b \in \text{viabe}_VMS} \lambda_{\min}(1 + \varepsilon)^{t+1} \cdot D_r^b$
 \quad $\mu_{b^*} \leftarrow \theta_i \left[\lambda(b) + \lambda(r)\right] + \frac{1}{\min(r', v) \cdot D_r^v}$
 \quad \triangleright adjust capability
 12. **else**
 13. \quad $b^* \leftarrow \text{create new VM in } i$
 14. \quad $\mu_{b^*} \leftarrow \theta_i \lambda_n + \frac{1}{\mu_{b^*}}$
 \quad \triangleright adjust capability
 15. **place(r, v) in b^***

The VM_assignment procedure for solving (i, v, j)-AP is
presented in Algorithm 2. It begins by looking for VMs whose
capacity could be expanded to accommodate the additional
load of job (r, v), while honoring its delay allocation D_r^v (Line 3) as well as that of previously allocated jobs
(Lines 5-7). It then places such VMs in set viabe_VMs (Line 8). If the set is not empty, in Line 10 the viable VM with
the least free capacity is selected, in a Best-fit [29] fashion.
If there are no viable VMs, a new VM is instantiated in
Line 13. In either case, job (r, v) is assigned to VM b^*
(Line 15). In Line 11 (and similarly in Line 14), the capacity of
b^* is adjusted to guarantee that the fair delay allocations
for all jobs assigned to b^* are met. Through simple manipula-
tion of the M/M/1 delay expression, this corresponds to
setting $\mu_{b^*} = \theta_i \lambda(b) + \lambda(r) + \frac{1}{\min(r', v) \cdot D_r^v}$. Line 8, and the
fact that the delay allocation of job (r, v) can always be satis-
fied by placing it in a new VM, imply that it is always
possible.

The departure of service instances is dealt with in
Algorithm 3, which removes all jobs of request r from the
VMs hosting them and readjusts the VMs capability to
release the resources while meeting the constraints of all
remaining jobs.

Algorithm 3. VMdeassignment((r, v))

1. $i \leftarrow \text{node running request } r$
2. $b \leftarrow \text{VM on node } i \text{ running job } (r, v)$
3. remove (r, v) from b
4. $\mu_b \leftarrow \theta_i \lambda(b) + \frac{1}{\min(r', v) \cdot D_r^v}$ \quad \triangleright adjust capability

4.2 Competitive Ratio Analysis

In this section, we compare the cost of c-REShare(\varepsilon)
against that of an optimal solution, denoted by OPT, which
is aware of the future sequence of service requests
that arrive at the NFVO. We derive our worst-case perfor-
mane guarantees for scenarios where each request has
infinite duration. This analysis guides our algorithmic
design and provides asymptotic performance guarantees
when system load tends to infinity. However, as we show
in later sections, our proposed solutions also provide sig-
dificantly improved performance in cases where requests
have a finite duration, and the system load increases and
decreases in a time-varying manner. We first provide
below an overview of our analysis.

High-level description of the analysis. At the heart of our
analysis lies a load argument across distinct layers, where
we compare the load handled by c-REShare(\varepsilon) at some layer
to that handled by OPT. We consider a shadow solution,
SHA(\varepsilon) (described in the sequel), which is allowed to pro-
duce a fractional assignment, and should also satisfy relaxed
delay constraints. This solution runs most of its VMs at full
capacity, and the cost of such VMs serves as a lower bound
on the cost of OPT. We show that the cost induced by
the deployment performed by c-REShare(\varepsilon) is comparable
to that of this lower bound, and provide an additional bound
on the additive cost of all remaining VMs that may be used
by OPT. In what follows, we provide a detailed account of
our analysis.

We first show that c-REShare(\varepsilon) performs feasible deploy-
ments for any service request.

Lemma 1. If c-REShare(\varepsilon) assigns r to node i^* at layer $\ell(r)$,
allocation VM capability $\mu_{r'}$, then such a deployment of the
service instance is feasible.

Proof. Consider r being placed at node i^*, located at layer
$\ell(r)$. By the definition of Algorithm 1, $\ell(r)$ is the highest
layer where deploying all $v \in V_n^i$ on new VMs in a node at
layer ℓ is feasible. When considering Algorithm 2, each
job (r, v) is placed in one of the viable VMs at i^* where
running the VM at maximum processing capability ensures
a feasible solution (Lines 2-7). Since Algorithm 2 uses
the minimal capability that ensures feasibility
(Lines 11-14), the result follows.

Next, we compare the performance of c-REShare(\varepsilon) to the
optimum. To bound the competitive ratio and leverage load
rearrangement arguments in our proofs, we introduce an
alternative request (hence, job) arrival/departure process,
and an alternative placement strategy. Specifically, for any
job (r, v) associated with latency range L_j, i.e., such that
\[D^v_r \in \left(\frac{1}{\mu - \lambda_{\min}(1+\varepsilon)}, \frac{1}{\mu - \lambda_{\min}(1+\varepsilon)/r} \right) \] (or, possibly, \(D^v_r = \frac{1}{\mu - \lambda_{\min}} \) in the case of \(j = 0 \)), we define a corresponding top job \((r, v) \), as equivalent to \((r, v) \) but associated with delay constraint \(D^v_r = D^v_r = \frac{1}{\mu - \lambda_{\min}} \geq D^v_r \)). Note that all top jobs falling in the same latency range \(L_j \) have the same delay constraint \(D_j \).

A Shadow Strategy. We now introduce the shadow fractional assignment (SHA(\(\varepsilon \))), a fractional placement strategy, whose cost will be used to determine a lower bound on the cost of OPT within the analysis of c-REShare(\(\varepsilon \)). Furthermore, in Section 5 we also use SHA(\(\varepsilon \)) explicitly within our algorithm REShare, which can handle time-varying load.

SHA(\(\varepsilon \)) uses the same \(\varepsilon \) value as c-REShare(\(\varepsilon \)), and operates as follows: (i) it handles the top job sequence \(\{r, v\} \); (ii) it never places in the same VM jobs associated with different \(L_j \) (hence, by (i) and the definition of top jobs, with different delay allocations); (iii) it places a job in a single node; In case of a request departure, SHA(\(\varepsilon \)) removes the load associated with the corresponding jobs and fractionally rearranges the remaining load; thus, the cost of the resulting placement is equivalent to that of re-running SHA(\(\varepsilon \)) on all the remaining requests.

SHA(\(\varepsilon \)) is used in two manners: (i) guiding the decisions of our dynamic algorithm, REShare (details are provided in Section 5), and (ii) identifying a lower bound on the cost of OPT. We now briefly explain how the cost of SHA(\(\varepsilon \)) can be used to define a lower bound on the cost of OPT, where we refer to this property as the relaxation property of SHA(\(\varepsilon \)). Note that by using the top sequence with a fractional assignment, for each VNF \(v \), every latency value \(D_j \) of a top job, and every node \(i \), all the VMs, save at most one, used by SHA(\(\varepsilon \)) in \(i \) work at full computing capacity \(\mu \) to handle jobs associated with \(v \) and \(D_j \). Since such full VMs handle the load placed upon them in the most efficient manner (i.e., there are no inefficiencies due to placing jobs with different delay constraints on the same VM), this amount of load must also be handled by OPT. All other properties of SHA(\(\varepsilon \)) essentially relax the constraints imposed on OPT. It follows that the cost of running these full VMs serves as a lower bound on the cost of OPT.

We begin our analysis by showing that c-REShare(\(\varepsilon \)) places jobs in the highest layer possible.

Lemma 2. If c-REShare(\(\varepsilon \)) places the jobs of request \(r \) in node \(i^* \) at layer \(\ell \'(r) \), then OPT and SHA(\(\varepsilon \)) both place every job \((r, v) \) in some node \(i \) at some layer \(\ell \) \(\leq \ell \'(r) \).

Proof. We start by showing that the claim holds for OPT. Assume, by contradiction, that OPT places some job \((r, v) \) at node \(i \) at layer \(\ell \(r) \) and \(\ell \(r) \). Then, the network latency of OPT is higher than that of c-REShare(\(\varepsilon \)) (since the traffic associated with \(r \) has to reach layer \(\ell \(r) \), i.e., \(d_r > d_r \)). As for the processing latency yielded by the OPT placement, this is at least \(\sum_{r \in \mathcal{V}_r} M_{y,r} \). By construction, c-REShare(\(\varepsilon \)) ensures that node \(i \) is at the highest layer \(\ell \(r) \) for which \(\sum_{r \in \mathcal{V}_r} M_{y,r} \leq D^v_r - d_r \); this implies that the assignment made by OPT is not feasible, thus contradicting the initial assumption. By item (iii) in the definition of SHA, the above argument also holds for SHA(\(\varepsilon \)).

In the remainder of this section, we consider that requests have an infinite duration, i.e., \(\tau_r = \infty \), for all arriving requests \(r \). Under this condition, we can bound the total amount of traffic load (over all possible service requests) that SHA(\(\varepsilon \)) may process at a different layer than the one selected by c-REShare(\(\varepsilon \)) for any given node used by c-REShare(\(\varepsilon \)), any VNF, and any latency range.

Lemma 3. For every node \(i \) at layer \(\ell \), every VNF \(v \), and latency range \(L_j \), the overall load of VNF \(v \) handled by c-REShare(\(\varepsilon \)) at \(i \) and associated with \(L_j \) is that handled by SHA(\(\varepsilon \)) at a layer \(\ell \neq \ell \) at most \(n_r \cdot \lambda_{\min}(1+\varepsilon)^j + 1 \), where \(n_r \) is the number of nodes at layer \(\ell \).

Proof. Assume by contradiction that there exist some VMs running VNF \(v \) at layer \(\ell \), associated with latency range \(L_j \), that, according to SHA(\(\varepsilon \)), handle a load higher than \(n_r \cdot \lambda_{\min}(1+\varepsilon)^j + 1 \), while c-REShare(\(\varepsilon \)) handles that load at node \(i \) at layer \(\ell \neq \ell \). By Lemma 2, we have that \(\ell \neq \ell \). By the pigeonhole principle [30], there exists at least one node at a layer \(\ell \) \(< \ell \), such that there exists a total load of at least \(\lambda_{\min}(1+\varepsilon)^j + 1 \) corresponding to \(L_j \), that is handled by c-REShare(\(\varepsilon \)) in node \(i \) at layer \(\ell \), but is handled by SHA(\(\varepsilon \)) in node \(i' \) at layer \(\ell \). Without loss of generality, we assume that there exists a full VM in node \(i' \) at layer \(\ell \) that, according to SHA, processes \(\lambda_{\min}(1+\varepsilon)^j + 1 \) traffic with latency range \(L_j \). This assumption is fair since SHA(\(\varepsilon \)) applies a fractional load assignment and places in the same VM only jobs associated with the same latency range, while the delay constraints of all jobs in that latency range are the same in the top sequence.

Consider now an alternative solution, SHA(\(\varepsilon \)), which is identical to SHA(\(\varepsilon \)), except for having this entire VM run at some node \(i' \) at layer \(\ell + 1 \). First, note that this produces a feasible shadow fractional assignment for the workload handled by SHA(\(\varepsilon \)) and does not require increasing the processing speed of the VM at layer \(\ell + 1 \). Indeed, since c-REShare(\(\varepsilon \)) places these jobs at layer \(\ell + 1 \) or higher, the per-job latency constraint is satisfied for the solution of SHA(\(\varepsilon \)) and, by definition of \(L_j \), SHA(\(\varepsilon \)) already processes \(\lambda_{\min}(1+\varepsilon)^j \) traffic at \(\ell \) using the maximum VM computing capability. Second, the cost of SHA(\(\varepsilon \)) is strictly smaller than the cost of SHA(\(\varepsilon \)) since, at layer \(\ell + 1 \), both the proportional cost and the fixed cost are smaller than at layer \(\ell \). This contradicts the optimality of SHA, thus completing the proof.

Next, for every VNF \(v \), every node \(i \), and every latency range \(L_j \), let \(N_{i,j}^v \) be the total load due to all jobs \((r, v) \) that are handled by c-REShare(\(\varepsilon \)) in node \(\ell \), at layer \(\ell \). We next provide an upper bound on the maximum number of VMs that c-REShare(\(\varepsilon \)) requires to handle such load, which is then used to prove the competitive ratio of c-REShare(\(\varepsilon \)).

Lemma 4. Given VNF \(v \), node \(i \), and latency range \(L_j \), the number of VMs used by c-REShare(\(\varepsilon \)) to handle workload \(N_{i,j}^v \) is at most \(\frac{2N_{i,j}^v}{\lambda_{\min}(1+\varepsilon)^j} + 1 \).
Proof. First, note that the delay constraint \(D_{ij}^v \) of every job \((r, v)\) contributing to \(\Lambda_{ij}^v \) is at least \(\frac{1}{\mu - \lambda(1 + \epsilon)^{\epsilon}} \). It follows that we can pack a load of at least \(\lambda(1 + \epsilon)^{\epsilon} \), while satisfying the delay constraints of the jobs assigned to the VM. We therefore view this latter quantity as the lower bound on the size of the VMs in the \((r, v, j)\)-AP.

The overall load on each VM \(b \) of \((i, v, j)\)-AP, except for maybe one, is at least \(\lambda(1 + \epsilon)^{\epsilon} \). This argument follows from the fact that if there were two VMs with load strictly less than \(\lambda(1 + \epsilon)^{\epsilon} \), combining their loads on a single VM would have resulted in a VM with an overall load of at most \(\lambda(1 + \epsilon)^{\epsilon} \). This assignment is still feasible and incurs a lower placement cost. Thus, running such a VM at speed \(\bar{\mu} \) would result in every job \((r, v)\) assigned to the VM experiencing a latency at most \(\frac{1}{\mu - \lambda(1 + \epsilon)^{\epsilon}} \leq D_{ij}^v \), where the inequality follows from the definition of \(L_j \). This contradicts the definition of VM assignment (Alg. 2), which assigns jobs to already open VMs if the overall load on the VM would still result in a feasible solution (for some speed no larger than \(\bar{\mu} \)). Hence, the overall number of VMs used by c-REShare(\(\epsilon \)) for handling \(\Lambda_{ij}^v \) is at most \(\frac{2 \Lambda_{ij}^v}{\lambda(1 + \epsilon)^{\epsilon}} + 1 \), which proves the theorem. \(\square \)

Theorem 1. c-REShare(\(\epsilon \)) is a \((1 + \epsilon) \)-asymptotic competitive algorithm when service requests have unlimited duration.

Proof. Consider \(\Lambda_{ij}^v \); this can be seen as the sum of loads of two types of jobs: type 1, corresponding to jobs that are handled by SHA(\(\epsilon \)) at some node \(i' \) at layer \(\ell \), with an overall load \(\Lambda_{ij}^v \), and type 2, corresponding to jobs that are handled by SHA(\(\epsilon \)) at some node at a layer other than \(\ell \), with an overall load of \(\Lambda_{ij}^v = \Lambda_{ij}^v - \Lambda_{ij}^v \). We denote the amount of resources used by c-REShare(\(\epsilon \)) for handling \(\Lambda_{ij}^v \) by c-REShare(\(\epsilon \)), and that used by SHA(\(\epsilon \)) for handling jobs contributing to \(\Lambda_{ij}^v \) by SHA(\(\epsilon \)).

First, by Lemma 4, we have that the overall number of VMs used by c-REShare(\(\epsilon \)) for handling load \(\Lambda_{ij}^v \) is at most

\[
\frac{2 \Lambda_{ij}^v}{\lambda(1 + \epsilon)^{\epsilon}} + 1 = \frac{2 \Lambda_{ij}^v}{\lambda(1 + \epsilon)^{\epsilon}} + \frac{2 \Lambda_{ij}^v}{\lambda(1 + \epsilon)^{\epsilon}} + 1 \\
\leq \frac{2 \Lambda_{ij}^v}{\lambda(1 + \epsilon)^{\epsilon}} + \frac{2 n \lambda(1 + \epsilon)^{\epsilon}}{\lambda(1 + \epsilon)^{\epsilon}} + 1 \\
= \frac{2 \Lambda_{ij}^v}{\lambda(1 + \epsilon)^{\epsilon}} + 2 n (1 + \epsilon) + 1,
\]

where the inequality follows from Lemma 3. If we let \(\kappa' = \frac{\lambda}{\lambda - \lambda(1 + \epsilon)^{\epsilon}} \) denote the cost of running a single VM at maximum speed in node \(i \) at layer \(\ell \), then

\[
\phi(\text{c-REShare}(\epsilon)) \leq \frac{2 \Lambda_{ij}^v}{\lambda(1 + \epsilon)^{\epsilon}} \kappa' + [2 n (1 + \epsilon) + 1] \kappa,
\]

which serves as a lower bound on the number of VMs used by SHA(\(\epsilon \)) for handling the total load \(\Lambda_{ij}^v + \Lambda_{ij}^v \).

First, note that the latency constraint of each top job contributing to \(\Lambda_{ij}^v \) is exactly \(\lambda(1 + \epsilon)^{\epsilon} \). Using similar arguments as those used to prove Lemma 4, we can conclude that the maximum load on any VM running any such job is \(\lambda(1 + \epsilon)^{\epsilon + 1} \), which we view as the size of the VMs used by SHA(\(\epsilon \)) for handling these jobs. Recall that SHA(\(\epsilon \)) can place jobs fractionally, and it does not place jobs with different latency range on the same VM. It follows that all VMs handling such jobs at layer \(\ell \), except for at most one, are completely full (recall that SHA(\(\epsilon \)) is optimal and therefore, without loss of generality, can be assumed to place all jobs at a level in a single node at that level). Then, all these full VMs have a load equal to their size. Consequently, the number of full VMs required by SHA(\(\epsilon \)) for handling jobs contributing to \(\Lambda_{ij}^v \) is at least:

\[
\frac{\Lambda_{ij}^v}{\lambda(1 + \epsilon)^{\epsilon + 1}} \geq \frac{\lambda}{\lambda(1 + \epsilon)^{\epsilon + 1}} - 1, \quad \text{which translates into}
\]

\[
\phi(\text{SHA}(\epsilon)) \geq \left(\frac{\Lambda_{ij}^v}{\lambda(1 + \epsilon)^{\epsilon + 1}} - 1 \right) \kappa', \quad (9)
\]

where \(\phi(\text{SHA}(\epsilon)) \) is the cost associated with running only the full VMs used by SHA(\(\epsilon \)). Hence, we have:

\[
\phi(\text{c-REShare}(\epsilon)) \leq 2 (1 + \epsilon) \left(\frac{\Lambda_{ij}^v}{\lambda(1 + \epsilon)^{\epsilon + 1}} - 1 \right) \kappa' + [2 n + 2 (1 + \epsilon) + 1] \kappa
\]

\[
\leq 2 (1 + \epsilon) \phi(\text{SHA}(\epsilon)) + (2 n + 2 (1 + \epsilon) + 1) \kappa', \quad (10)
\]

where the first inequality follows from (8), and the second from (9). By the relaxation property of SHA(\(\epsilon \)), the overall cost of VMs used by SHA(\(\epsilon \)), and working at full computation capacity, serves as a lower bound on the cost of OPT. Summing over all nodes \(i \), VNFs \(v \), and latency ranges \(j \), we get:

\[
\phi(\text{c-REShare}(\epsilon)) \leq 2 (1 + \epsilon) \phi(\text{OPT}) + (2 n + 2 (1 + \epsilon) + 1) J_{\ell} |V| \sum_{i} \kappa.
\]

(11)

Since \(J_{\ell} \leq \log(1 + \epsilon) \), Eq. (11) implies that

\[
\lim_{\phi(\text{OPT}) \to -\infty} \frac{\phi(\text{c-REShare}(\epsilon))}{\phi(\text{OPT})} \leq 2 (1 + \epsilon),
\]

thus completing the proof. \(\square \)

5 DYNAMICALLY ADJUSTING \(\epsilon \): RESHARE

In this section, we present the REShare algorithm, which dynamically adjusts \(\epsilon \) in order to optimize the deployment of service instances as the service request load varies arbitrarily over time. The design of REShare draws upon the analysis of the competitive ratio of c-REShare(\(\epsilon \)). Our analysis indicates that we get a better multiplicative competitive ratio when decreasing \(\epsilon \), implying that, ideally, for infinite duration requests, and ever increasing load, it is best to set \(\epsilon \) as small as possible. Our analysis also shows that the
additive terms in the competitive performance of c-REShare (ε) increase as ε decreases. Thus, using very small values of ε may end up being inefficient when the load is small. Consequently, REShare starts with a large ε to minimize the constant overheads, and, as the load increases, it reduces ε to optimize the asymptotic competitive ratio. Finally, since REShare explicitly deals with time-varying workloads, it increases ε when the total load declines, as the constant terms have a larger impact on its performance.

To do so, REShare simulates our shadow strategy SHA (ε) alongside the actual decisions it performs and uses the cost of SHA(ε) as an indicator of the system load, which is then leveraged to dynamically adjust the value of ε being used by REShare. Specifically, as the service request load increases, c-REShare(ε) gets asymptotically closer to SHA(ε) when ε is small, at the cost of a larger additive term due to the VMs partitioning into latency ranges \(L_j \) \((0 \leq j \leq J) \). This notion yields the main design criterion for REShare: ε should be gradually reduced as the load grows, and instead increased when the load drops, as also depicted in Fig. 2. Importantly, we show that REShare has low complexity and it is asymptotically 2-competitive when requests have infinite duration, i.e., \(τ_r = ∞ \); also, as shown in Section 6, it can effectively cope with very diverse, practical scenarios.

REShare can be seen as a way to apply different versions of c-REShare(ε), constantly adjusting the value of ε as the service load varies over time. Specifically, REShare begins by running c-REShare(ε) with a large initial value of ε; at the same time, it simulates SHA(ε) and keeps track of its cost. When the load goes beyond a threshold that, as detailed below, depends on the ratio between c-REShare(ε)'s costs and SHA(ε)'s costs, we keep track of the current load and reduce ε. This action is performed again and again as long as the load increases, following the arrival of new requests.

Once the load drops below the previous load mark, which is essentially due to requests leaving the system, we increase ε to its previous value. This approach is applied repeatedly as long as the load decreases.

Finally, we remark that, although we consider that service instances arrive and leave, their traffic load remains constant during their lifetime. REShare can also cope with time-varying values of \(λ_r \). In particular, one can look at a change in the value of \(λ_r \) as if the current service instance left and another, exhibiting the new value of \(λ_r \), arrived.

5.1 Algorithm Description

To formally define REShare, we use the following notation. Let \(t_0 \) be the arrival time of the first request. We then look at sequence \(σ \) as the concatenation of subsequences \(σ_1, σ_2, \ldots \), such that \(σ_q \) is the sequence of requests arriving/departing in interval \(I_q = [t_{q-1}, t_q) \), for \(q \geq 1 \). Intervals are periods of time during which ε remains unchanged: for every \(I_q \), c-REShare(ε) uses a given ε to determine the latency ranges, as described in Algorithm 1. We indicate such value by \(ε_{h(q)} \), where \(h(q) \) denotes the index of the level of the system load at the beginning of \(I_q \). The algorithm keeps track of the most recent load threshold, associated with index \(h(q) \), throughout its execution, using parameter \(T_{h(q)} \). Also, let us define:

\[
Y_q = \hat{ϕ}(\text{SHA}(ε_{h(q)}), σ_q),
\]

\[
Z = [(2n + 2)(1 + ε^*) + 1]\log \frac{μ}{\lambda_{\text{min}}} |V| \sum_{i} k_i^f,
\]

where, similarly to the proof of Theorem 1, \(\hat{ϕ}(\text{SHA}(ε_{h(q)}), σ_q) \) is the cost associated with running only the full VMs used by \(\text{SHA}(ε_{h(q)}) \). Here, \(ε^* > 0 \) is an initial value that satisfies \(ε^* ≥ ε_{h(q)} \forall q \). We remark that the cost in (12) refers to the end of the interval \(I_q \) and that \(Z \) represents the second term in Eq. (10), which is independent of both \(q \) and \(h(q) \). For every request \(r \) arriving or departing during \(I_q \), we let \(σ_q' \) denote the subsequence of request arrivals and departures in \(σ_q \) up to (and including) the arrival/departure of \(r \). We further extend the above notation and define \(Y_q' = \hat{ϕ}(\text{SHA}(ε_{h(q)}), σ_q') \). At any time \(t \), let \(Y_q' \) be the value of \(Y_q \) for the last interval in which \(ε = ε_{h(q)} \) over all intervals \(I_q \) ending no later than \(t \). We then define:

\[
C_q = \frac{Z}{ε_{h(q)} \log (1 + ε_{h(q)}),}
\]

\[
S_q = \frac{1}{ε_{h(q)}} \sum_{p=1}^{h(q)-1} (2 + 3ε_{h(p)})Y_q'.
\]

Note that during interval \(I_q \), both \(C_q \) and \(S_q \) are fixed.

REShare is formally defined in Algorithm 4. REShare takes as input the value \(ε^* \), which is the initial value of ε and is used to define \(Z \). For each \(q = 1, 2, \ldots \), the subsequence \(σ_q \) will be implicitly defined during the execution of REShare, according to the requests \(r \) handled by the algorithm between consecutive updates to the value of ε. Index \(h(q) \), instead, keeps track of the evolution of the system load (by updating \(T_{h(q)} = \Lambda \) in line 7, with \(\Lambda \) being the current system-wide load), and of the corresponding value of ε given as input to c-REShare, which is used as a subroutine within REShare (c-REShare(ε_{h(q)})). It follows that, by calling c-REShare with different values of the parameter \(ε_{h(q)} \), REShare can adjust to the traffic load as this changes over time, always using the most appropriate values of ε.

Algorithm 4. REShare

1: init \(q = 1; \) \(h(1) = 1; ε_{h(1)} = ε^*; T_{h(1)} = 0 \)
2: for each service request \(r \) arriving or departing do
3: handle \(r \) in c-REShare(ε_{h(q)})
4: update the cost \(r \) in SHA(ε_{h(q)})
5: if \(Y_q' ≥ \max\{C_q, S_q\} \) then
6: \(ε_{h(q+1)} ← ε_{h(q)}/2 \) \(\triangleright \) reduce ε
7: \(T_{h(q+1)} ← \Lambda \) \(\triangleright \) set load threshold
8: \(Y_{h(q)} ← Y_q' \)
9: \(h(q + 1) ← h(q) + 1 \) \(\triangleright \) update load level index
10: \(q ← q + 1 \)
11: else if \(\Lambda < T_{h(q)} \) then
12: \(h(q + 1) ← h(q) - 1 \) \(\triangleright \) departure, load below threshold
13: \(q ← q + 1 \)

Assume that the condition in Line 5 holds for some \(q \) and request \(r \) arriving or departing during \(σ_q \). Since the right-
hand side of the condition is fixed, this implies that $Y_{q(h)}^r$ has increased due to handling r, which means that r has arrived at the system, causing $Y_{q(h)}^r$ to increase beyond the value of the right-hand side. Since $Y_{q(h)}^r \geq C_{q(h)}$ along with the fact that in Line 8 $Y_{h(q)}$ is set to be $Y_{q(h)}$, we have:

$$
\varepsilon_{h(q)} \frac{Y_{h(q)}}{Y_{h(q)}^r} \geq Z \frac{1}{\log(1 + \varepsilon_{h(q)})},
$$

(16)

Intuitively, using the insight derived from the analysis presented in Section 4, Eq. (16) implies that a mere $\varepsilon_{h(q)}$ fraction of the cost $\phi(SHA(\varepsilon_{h(q)}), \sigma_q)$ is already sufficiently larger than the cost incurred by REShare for handling requests in different nodes than the ones used by SHA($\varepsilon_{h(q)}$), for input sequence σ_q. Also, since $Y_{q(h)} \geq S_q$, it follows that:

$$
\varepsilon_{h(q)} \frac{Y_{h(q)}}{Y_{h(q)}^r} \geq \sum_{p=1}^{h(q)-1} (2 + 3\varepsilon_p) \frac{Y_p}{Y_{p(h)}}.
$$

(17)

Eq. (17) means that a fraction $\varepsilon_{h(q)}$ of $Y_{h(q)}$, i.e., a fraction $\varepsilon_{h(q)}$ of the cost $\phi(SHA(\varepsilon_{h(q)}), \sigma_q)$ is already sufficiently larger than the cumulative cost of SHA over the previous time intervals to warrant a change of ε. We note that these lower bounds on the cost of SHA($\varepsilon_{h(q)}$) are commensurate to the load encountered by the system (both by SHA($\varepsilon_{h(q)}$) and REShare), during interval I_p, and they come in handy for the analysis of REShare’s competitive ratio.

When service requests expire and make the overall system load drop below the previous threshold (Line 11), the algorithm reverts to using the previous load level index $(h(q) - 1)$, and, consequently, its corresponding value of ε.

5.2 Complexity and Competitive Ratio Analysis

We first observe that the complexity of REShare is remarkably low: from inspection of Algorithms 1, 2, 3, and 4 and considering the complexity of SHA(ε), the total complexity of REShare is $O(B|V^r_t|)$ where B is the number of VMs currently used.

In the remainder of this subsection, we assume that requests have unlimited τ_r, i.e., there are no departures, and we analyze the competitive ratio of REShare in such a setting. In particular, under this assumption, we have that $h(q) = q$ for all q. For simplicity, we henceforth use index h to represent both q and $h(q)$. Furthermore, under these settings $Y_h = Y_{h(q)}$; thus we simply use Y_h to denote either $Y_{h(q)}$ or Y_q.

To prove REShare’s competitive ratio, we proceed as follows. First, let us recall the observations made in Section 5.1, i.e., whenever the condition in Line 5 of Algorithm 4 holds, the overall load handled by the system at that point is significantly higher than the load at the beginning of the interval. In such a case, we reduce the value of ε to be used in the subsequent interval (Line 6). Since index h serves as a proxy to the overall load in the system, this update rule for the value of ε implies that $\lim_{h \to \infty} \sum_{p=1}^{h} \phi(SHA(\varepsilon_p), \sigma_p) = \infty$ if $\lim_{h \to \infty} \varepsilon_h = 0$. This is due to the fact that ever-decreasing values of ε yield ever-narrower latency ranges, hence a higher number of used VMs. Second, c-ResShare(ε_h), as well as SHA(ε_h), handle the requests arriving in different intervals using a new series of latency ranges, hence they cannot reuse already deployed VNFs. Thus, the costs associated with different intervals I_h can be considered separately.

Third, we prove the following lemma, which is the key result to derive the asymptotic competitive ratio of REShare.

Lemma 5. For every $k = 1, 2, \ldots$,

$$
\sum_{h=1}^{k} \phi(REShare, \sigma_h) \leq (2 + 4\varepsilon_k) \sum_{h=1}^{k} \phi(SHA(\varepsilon_h), \sigma_k).
$$

Proof. By the definitions of Y_h and Z given in Eqs. (12)-(13), Eq. (10) implies (after changing the logarithm base) that

$$
\phi(REShare, \sigma_h) \leq (2 + 2\varepsilon_h) Y_h + \frac{1}{\log(1 + \varepsilon_h)}.
$$

(18)

By plugging Eq. (16) into Eq. (18), we obtain

$$
\phi(REShare, \sigma_h) \leq (2 + 3\varepsilon_h) Y_h.
$$

(19)

By summing over h in (19) and using (17), we get

$$
\sum_{h=1}^{k} \phi(REShare, \sigma_h) \leq (2 + 3\varepsilon_k) Y_k + \sum_{h=1}^{k-1} (2 + 3\varepsilon_h) Y_h
\leq (2 + 4\varepsilon_k) Y_k.
$$

(20)

By the definition of Y_k, the thesis follows.

The following theorem is an immediate corollary of Lemma 5, for the case of unbounded τ_r.

Theorem 2. When τ_r is unbounded, REShare is asymptotically 2-competitive.

Proof. By the update rule of ε_h in line 6 of REShare, we have that $\lim_{h \to \infty} \varepsilon_h = 0$. By using Lemma 5, this therefore implies that $\lim_{h \to \infty} \frac{\phi(REShare)}{\sum_{p=1}^{h} \phi(SHA(\varepsilon_p), \sigma_p))} < 2$. Since $\sum_{p=1}^{h} \phi(SHA(\varepsilon_p, \sigma_p))$ is a lower bound on $\phi(\text{OPT})$, the theorem follows.

6 NUMERICAL RESULTS

In this section, we describe the scenarios we use for our performance evaluation (Section 6.1), the workloads we consider (Section 6.2), the benchmark solutions we compare against (Section 6.3), and the results we obtain (Section 6.4).

6.1 Reference Scenarios

We consider two hierarchical topologies akin those originally proposed in [31] and used in many research works thereafter. The first is organized in three layers [32]: (i) edge, closest to the users (leaf nodes) but the most expensive (normalized, per-VM fixed cost of 7.5); (ii) aggregation, cheaper than edge (normalized, per-VM fixed cost of 2.5) but incurring a moderate extra traffic forwarding latency; (iii) cloud, cheapest (normalized, per-VM fixed cost of 1) but associated with the longest extra latency. The second is a four-layer topology, including a fog layer that incurs a per-VM fixed cost of 10. Cost figures are obtained from [26], presenting the technical and economic aspects of datacenters of different sizes, which can be placed at different network segments.
Each VM has a computing capability of $\bar{\mu} = 100$ packets/ms, and a per-packet proportional cost of 1/100th its fixed cost. This reflects findings reported in [25], i.e., that idle VMs consume roughly half as much power as fully-utilized ones (with the latter incurring both fixed and proportional costs). In the three-layer scenario, the extra latency associated with the aggregation and the cloud layer is, respectively, 15 ms and 30 ms. In the four-layer one, the fog layer has no extra latency, while the latency of all other layers is increased by 5 ms.

6.2 Workloads

We consider different workloads for our performance evaluation from three of the main application realms of slicing-enabled networks: connected vehicles, smart factories, and cloud-edge computing.

Vehicular Domain. We begin by considering the three-layer topology and the main services of the vehicular domain, presented in [33] and described in Table 3:

- Intersection Collision Avoidance (ICA): vehicles periodically broadcast Cooperative Awareness Messages (CAMs) including their position, speed, and acceleration; a collision detector checks if any pair of vehicles are on a collision course and, if so, it issues an alert;
- Vehicular see-through (CT): cars display on their onboard screen the video captured by the preceding vehicle, e.g., a large truck obstructing the view;
- Entertainment (EN): passengers consume streaming content, provided with the assistance of a content delivery network (CDN) server.

In addition to their service-specific VMs, all services leverage a virtual communication sub-slice, as listed at the top of Table 3. New service requests are generated whenever a new location, or the crossing surveilled by ICA becomes more crowded, thus triggering a service scale out.

The computational requirements of the VNFs (i.e., their complexity) reported in Table 3 come from [34]; instead, the demand we apply is synthetically generated, in order to demonstrate how our approach handles rapid demand fluctuations. Specifically, the service request process is as follows:

1) for the first 15 s of the time horizon under study, a new request arrives every second;
2) after that, and until 800 s from the beginning of the horizon, no further requests arrive;
3) between 800 and 1,000 s from the beginning, 1,000 more requests (5 per second) arrive;
4) those requests leave the system, at the same rate, between 1,000 and 1,200 s after the beginning of the horizon.

The first requests represent long-running services, which are active even during periods of low traffic. The subsequent request arrivals represent a sudden surge in vehicular activity, to which more service requests are associated, and an equally sudden decrease thereof.

Smart-Factory Domain. Digital twins are computer models of real objects, controlling the behavior of their physical counterparts. As detailed in [34], in smart-factory scenarios semi-autonomous robots are controlled by entities running within the network infrastructure. Also in this case we consider the three-layer scenario, along with the services specified in Table 3. The main tasks to perform are: (i) fine-grained control of robot actions; (ii) planning of their actions and mobility; (iii) configuration of the robots; (iv) the digital twin itself. Comparing the smart factory to the vehicular service characteristics in Table 3, one can notice how, while the end-to-end delays required in the two scenarios are comparable, the structure of the services is fairly different. Specifically, the smart-factory scenario only includes one service, including four VNFs, besides the virtual communication sub-slice. It follows that comparing the performance of REShare across these two use cases captures both quantitative differences and qualitative variability.

Real-World Computing Load. Finally, we move to the four-layer scenario and consider a real-world scenario where the demand comes from the GWA Materna trace [35], [36], which depicts the real-world evolution of the demand of a major cloud operator in Europe.

We also consider a different service request arrival process, where requests arrive and depart faster. Specifically:

1) for the first 15 s of the time horizon under study, a new request arrives every second;
2) after that, and until 780 s from the beginning of the horizon, no further requests arrive;
3) between 780 and 800 s from the beginning, 1,000 more requests (50 per second) arrive;
4) those requests leave the system, at the same rate, between 800 and 1,000 s after the beginning of the horizon.
those requests leave the system, at the same rate, between 1,180 and 1,200 s after the beginning of the horizon.

6.3 Benchmark Strategies

We compare REShare against two benchmarks. The first one is the shadow assignment used in Section 4.2. As discussed in Section 4.2, the cost of full VMs used by such a strategy is a lower bound on the optimum because it is allowed to place different parts of the same request at different hosts, which neither the optimum nor REShare are, of course, allowed to do, and it also handles relaxed delay constraints. Notice how SHA is not a concrete strategy that could be applied in a real-world scenario, but rather it serves as a proxy of the lower bound on the optimum cost. In other words, the closer to SHA a strategy is, the better that strategy performs.

The second benchmark, labeled RelaxSoTA in the plots, is an adaptation to our scenario of the highly influential works [3], [4]; importantly, the same approach has been later followed by further studies on edge computing [37], distributed machine learning [38], and energy-efficient mobile gaming [39]. Such approaches are based upon solving a convex relaxation of the placement problem every time a new request arrives, and making the placement decisions associated with the highest values of the relaxed variables. Notice that, unlike REShare, the RelaxSoTA approach may place VNFs of the same service at different layers.

In summary, we can say that both benchmarks have an advantage over REShare, respectively, the ability to split VNFs and to spread a service across multiple layers. Therefore, comparing REShare against such powerful alternatives yields additional relevance to our results.

Price-of-Dissimilarity (PoD). The PoD captures the additional computational capacity used because of the difference in delay constraints among the jobs served by the same VM (see also Section 3). By the definition of the latency incurred on VM b running VNF v at speed μ_v, the delay incurred by any job assigned to b is $\mu_v - \theta_v \Lambda(b)$. We then define the PoD of VM b running on node i as: $\max_{(r,v)} \left\{ \left(\frac{1}{T_i} - (\mu_v - \theta_v \Lambda(b)) \right) \mid (r,v) \right\}$ is assigned to b. For any feasible assignment, the PoD of any VM b is non-negative; also, when all jobs assigned to b have the same delay constraint (as in SHA), it is possible to pick μ_v such that the PoD is zero.

6.4 Results

Vehicular Domain. A fundamental aspect to investigate is the cost of REShare and its alternatives. In Fig. 4(left), we compare REShare, c-REShare(ε) with four different values of ε (identified by different markers), and the relaxation-based, state-of-the-art approach. For better readability, all values are normalized to the cost of SHA, which is why some cumulative costs in Fig. 4(right) appear to decrease. The gray, dotted line shows the number of requests in the system.

It can be immediately seen that REShare is substantially cheaper than the state-of-the-art benchmark we compare against and performs close to SHA, whose cost, we recall, is very close the optimum. Furthermore, REShare is cheaper than c-REShare(ε) for all ε values; this confirms the effectiveness of the strategy implemented in Algorithm 4, whereby the value of ε is adjusted according to time-varying load conditions.

Fig. 4(right) presents the evolution of instantaneous (i.e., per time unit) costs during and around the load peak. Note that low values of ε are associated with a lower cost in high-traffic periods, while larger ε values yield lower costs in low-traffic periods, as highlighted in Fig. 2. This observation is consistent with how ε values determine how much PoD we tolerate on each open VM. When only a few requests are present, it is cheaper to tolerate a high PoD (large ε) since, otherwise, we would open an excessive number of (near empty) VMs. However, when the number of requests is high, the larger ε implies that we utilize the open VMs inefficiently. As for REShare, its cost is always close, albeit not equal, to the one of the cheapest instance of c-REShare(ε) due to the switching behavior of Algorithm 4. Transitions between different ε values are marked in Fig. 4(right) by upwards- and downwards-pointing triangles.

We now characterize how ε affects the system’s performance and cost. Fig. 5(left) shows how much of the services delay budget (D_r) is consumed by traffic forwarding (yellow areas) and processing (green areas). The traffic forwarding overheads are determined entirely by level choice to accommodate the job, which is the same for all ε values. However, larger values of ε result in shorter processing times. Shorter processing times, i.e., providing services earlier than their constraint, correspond to more computing resources unnecessarily provisioned and thus higher-than-needed costs.
This is confirmed by Figs. 5(center) and 5(right), highlighting how the VMs capacity is used. Green areas therein correspond to the load VMs have to serve, which cannot be reduced. The sum of orange and red areas correspond to the margin $\mu_b - \theta, \lambda(b)$ of the VMs (see Section 4.1); such a quantity must be larger than $\frac{1}{\tau}$ for all requests served by each VM. In particular, the orange areas correspond to the margin that VMs would have if all requests they serve had the same latency constraints, while the red ones correspond to the PoD. Finally, gray areas correspond to the difference $\bar{\mu} - \mu_b$ between the maximum and actually allocated VM capacities.

We can see that larger ε values are always associated with a higher PoD. If the load is low (as in Fig. 5(center)), larger ε values, implying more VM sharing and a higher PoD, may be an acceptable alternative to provisioning more VMs. This observation explains the behavior we observed in Fig. 4, where larger values of ε result in lower cost in spite of a higher PoD. For high load (Fig. 5(right)), limiting the PoD is instrumental in reducing the quantity of consumed resources. Specifically, from Fig. 5(right), we can see that the PoD is over 5% for RelaxSoTA, while it drops below 1% for REShare.

Smart-Factory Domain. Figs. 6 and 7 present the performance of REShare and its alternatives for the smart-factory application. Fig. 6 confirms that REShare yields the lowest cumulative cost (left plot), despite not necessarily being the cheapest solution at every point in time (right plot). It is also interesting to notice how the faster pace at which the load evolves also implies that c-REShare with low values of ε
cannot catch up with REShare, and yield a substantially higher cumulative cost (first plot). REShare, on the other hand, can quickly go through all ε values and reach the optimal one, as shown by the green and red triangles at the bottom of the second plot of Fig. 6.

Fig. 7 shows how, despite the different services, smaller values of ε are consistently associated with a smaller PoD, though not necessarily with the lowest cost. By quickly reaching the right value of ε, REShare keeps the PoD below 1%, compared to 13% of RelaxSoTA.

Materna Workload. The results for the real-world scenario based on the Materna trace are summarized in Figs. 8 and 9. We can observe a behavior that is effectively equivalent to Figs. 6 and 7, which further confirms how REShare works well with different loads and network topologies. As we can see from Fig. 9(right), the PoD for REShare is below 1%, compared to 21% of RelaxSoTA. Throughout all scenarios, using REShare in lieu of state-of-the-art approaches consistently yields very significant cost savings, as summarized in Table 4. Interestingly, savings are higher in more complex scenarios, e.g., the real-world one.

7 RELATED WORK

The pioneering work on VNF placement [40] casts the problem into a generalized assignment problem (GAP), and proposes a bi-criteria approximation thereto. Recent works [1], [2], [3], [5], [9], [45] widen the focus of the orchestration problem to include traffic routing as well as VNF placement. These studies present non-linear (and non-convex) problem formulations and, thus, resort to heuristics to solve the resulting problem. Other popular methodologies include graph theory [41], [46] and set-covering [42]. Several works also account for VNFs performing, e.g., caching [47], [48]. [8] follows a similar approach and jointly solves the problems of VNF placement and scheduling, i.e., which physical resources to use and when. In the same setting, [43] makes placement and scheduling decisions accounting for multiple resources, e.g., memory and storage, so as to reflect the requirements of the existing VNFs. Other works focus on specific services, e.g., [44] considers multicast streaming in MEC scenarios, and its peculiar requirements in terms of network latency and VNF capacity.

Most schemes work offline, i.e., all the service instances are known in advance. Among the few online approaches that deal with requests arriving at different times, [49], [50] incrementally update the current configuration, minimizing
the changes to accommodate the new requests. In a similar setting, [3], [4] process service requests via a randomized approach. More recently, [51] performed placement offline and routing online.

While many works account for the fact that individual hosts (e.g., VMs) may have different capabilities and features, few consider layered topologies. Among those, [45], [52] focus on the choice between edge and cloud resources, and [53] studies the same problem with reference to caching, while [54] aims at jointly placing the VNFs and the data they need. Finally, several works characterize or predict service requests’ arrival, thereby simplifying network management. Approaches include exploiting the traffic variability to reduce the amount of needed resources [55], using reinforcement learning to predict traffic [56], and estimating the resources needed by each request before admitting it [57]. Although REShare does not require any knowledge about the future evolution of the time demand, such information can be exploited, when available, to further improve its performance.

Conclusively, unlike REShare and c-RESHare, existing works [3], [4], [6], [7] assume that VNF requirements are constant over time, and either are or are not satisfied by VMs. In Table 5, we provide a summary of the comparison between previous work studying competitive approaches to VM placement, and our proposed solution. Importantly, ours is the only work featuring both a constant competitive ratio and the ability to deal with dynamic scenario, i.e., time-varying service demand.

A research problem closely related, albeit orthogonal, to REShare is represented by predicting the future demand for content and services. Examples include [16], where the authors envision using a deep neural network (DNN) to forecast the future demand, and make network orchestration decisions based upon such a forecast. In a similar spirit, [17] explores novel DNN architectures to better predict the load of cloud applications. It is important to stress that, whenever available, such predictions can seamlessly be integrated within REShare and further boost its performance.

8 Conclusions and Future Work

We addressed the problem of creating and scaling network slices while trying to reuse existing (sub-)slices across different services. We considered the availability of resources at different locations, including edge, aggregation, and cloud, and a time-varying system workload with service requests, arrivals, and departures. To effectively create and scale sub-slices, we proposed a low-complexity algorithm, which we proved to be asymptotic 2-competitive in the case of a non-decreasing load. Furthermore, numerical results obtained considering real-world services showed that our solution outperforms alternative approaches, for time-varying workloads, reducing the service cost by over 25%.
Future work will focus on extending our system model, most notably, by considering: (i) workload prediction as an approach to resource allocation for time-varying workloads, and (ii) VM migration, i.e., the possibility that VNFs move across different nodes during the service lifetime, and the consequent need to balance the activation of fewer VMs against migration cost. Furthermore, we will seek to implement REShare and assess its performance in real-world scenarios, first in small-scale testbeds and then through larger, cloud-based experiments. By so doing, we will be able to better prove the practical effectiveness of our solution.

REFERENCES

[1] S. Agarwal, F. Malandrino, C. F. Chiasserini, and S. De, “VNF placement and resource allocation for the support of vertical services in 5G networks,” *IEEE/ACM Trans. Netw.*, vol. 27, no. 1, pp. 433–446, Feb. 2019.

[2] J. Martín-Pérez, F. Malandrino, C. F. Chiasserini, M. Groshev, and C. J. Bernardos, “KPI guarantees in network slicing,” *IEEE/ACM Trans. Netw.*, vol. 30, no. 2, pp. 655–668, Apr. 2022.

[3] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassulas, “Joint placement and preemption and routing in multi-cell mobile edge computing networks,” in *Proc. IEEE Conf. Comput. Commun.*, vol. 2019, pp. 10–18.

[4] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassulas, “Service placement and request routing in MEC networks with storage, computation, and communication constraints,” *IEEE/ACM Trans. Netw.*, vol. 28, no. 3, pp. 1047–1060, Jun. 2020.

[5] F. Malandrino, C. F. Chiasserini, G. Einziger, and G. Scalousb, “Reducing service deployment cost through VNF sharing,” *IEEE/ACM Trans. Netw.*, vol. 27, no. 6, pp. 2363–2376, Dec. 2019.

[6] J. Liu, W. Lu, F. Zhou, P. Lu, and Z. Zhu, “On dynamic service function chain deployment and readjustment,” *IEEE Trans. Netw. Service Manag.*, vol. 14, no. 3, pp. 543–553, Sep. 2017.

[7] G. Moualla, T. Turletti, and D. Saucier, “Online robust placement of service chains for large data center topologies,” *IEEE Access*, vol. 7, pp. 60 150–60 162, 2019.

[8] T. He, H. Khamfroush, S. Wang, T. La Porta, and S. Stein, “It’s hard to share: Joint service placement and request scheduling in edge clouds with sharable and non-sharable resources,” in *Proc. IEEE/ACM Conf. Cloud Comput.*, 2019, pp. 465–475.

[9] H. Feng, J. Llorca, A. M. Tulino, D. Ráz, and A. F. Molisch, “Approximation algorithms for the NFV service distribution problem,” in *Proc. IEEE Conf. Comput. Commun.*, 2017, pp. 1–9.

[10] T. Lehman et al., “Multilayer networks: An architecture framework,” *IEEE Comms. Mag.*, vol. 49, no. 5, pp. 122–130, May 2011.

[11] T. Taleb, K. Samdanis, B. Mada, H. Flink, S. Dutta, and D. Sabella, “On multiaccess edge computing: A survey of the emerging 5G network edge cloud architecture and orchestration,” *IEEE Comm. Surv. Tut.*, vol. 19, no. 3, pp. 1657–1681, Third Quarter 2017.

[12] Building Telco Edge Infrastructure: MEC, Private LTE & vRAN. Accessed: Nov. 2021. Available: https://telco.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/microsites/telco/vmware-building-telco-edge-infrastructure.pdf

[13] M. A. Mollah, P. Faizian, M. S. Rahman, X. Yuan, S. Pakin, and M. Lang, “A study of toplogy design approaches for HPC interconnects,” in *Proc. IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput.*, 2018, pp. 392–401.

[14] 5GROWTH Consortium, “Final design and evaluation of the innovations of the 5G end-to-end service platform,” 5GROWTH Deliverable 2.3, 2022. Available: https://5growth.eu

[15] ETSI, Open Source MANO (OSM). Accessed: Jul. 2020.

[16] G. Moualla, T. Turletti, and D. Saucez, “Online robust placement and resource allocation for the support of vertical services,” in *Proc. IEEE/ACM Int. Conf. Util. Cloud Comput.*, 2015, pp. 522–527.

[17] 5G-TRANSFORMER Consortium, “Final system design and techno-economic analysis,” 5G-TRANSFORMER deliverable 1.4, 2019. [Online]. Available: http://5g-transformer.eu

[18] Timed MAFFt Alignment, OpenBencharking, 2020. [Online]. Available: https://openbenchmarking.org/test/pts/mafft

[19] FLAC Audio Encoding, OpenBencharking, 2019. [Online]. Available: https://openbenchmarking.org/test/pts/mafft

[20] L. Epstein and A. Levin, “A robust APTAS for the classical bin packing problem,” *Math. Prog.*, vol. 119, no. 1, pp. 33–49, 2009.

[21] W. A. Trybulec, “Pigeon hole principle,” *J. Formalized Math.*, vol. 2, pp. 575–579, 1990.

[22] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture for mobile computing,” in *Proc. IEEE Conf. Comput. Commun.*, 2016, pp. 1–9.

[23] J. Martín-Pérez, L. Cominardi, C. J. Bernardos, A. de la Oliva, and A. Azzoora, “Modeling mobile edge computing deployments for low latency multimedia services,” *IEEE Trans. Broadcast.*, vol. 65, no. 2, pp. 464–474, Jun. 2019.

[24] C. Casetti et al., “Arbitration among vertical services,” in *Proc. IEEE/ACM Int. Symp. Personal, Indoor Mobile Radio Commun.*, 2018, pp. 513–517.

[25] L. Girletti, M. Groshev, C. Guimarães, C. J. Bernardos, and A. de la Oliva, “An intelligent edge-based digital twin for robotics,” in *Proc. IEEE Globecom Workshops*, 2020, pp. 1–6.

[26] A. Kohne, M. Spohr, L. Nagel, and O. Spinczyk, “FederaCloudSim: A SLA-aware federated cloud simulation framework,” in *Proc. ACM Workshop CloudSim*, 2014, pp. 1–5.

[27] A. Kohne, D. Pasternak, L. Nagel, and O. Spinczyk, “Evaluation of SLA-based decision strategies for VM scheduling in cloud data centers,” in *Proc. ACM Workshop Cloud Infrastructure Platforms*, 2016, pp. 1–5.

[28] S. Josiló and G. Dán, “Joint wireless and edge computing resource management with dynamic network slice selection,” *IEEE/ACM Trans. Netw.*, vol. 30, no. 4, pp. 1865–1878, Aug. 2022.

[29] J. T. Dinh, D. N. Nguyen, D. T. Hoang, T. V. Pham, and E. Dutkiewicz, “In-network computation for large-scale federated learning over wireless edge networks,” *IEEE Trans. Mobile Comput.*, to be published, doi: 10.1109/TMC.2022.3190260.

[30] F. Spinelli and V. Mancuso, “A migration path toward green edge gaming,” in *Proc. IEEE Int. Symp. World Wireless, Mobile Multimedia Netw.*, 2022, pp. 347–356.

[31] R. Cohen, L. Levner, J. S. Naor, and D. Raz, “Near optimal placement of virtual network functions,” in *Proc. IEEE Conf. Comput. Commun.*, 2015, pp. 1346–1354.

[32] S. Dräxler, H. Karl, and Z. Á. Mann, “JASPER: Joint optimization of scaling, placement, and routing of virtual network services,” *IEEE Trans. Netw. Service Manage.*, vol. 15, no. 3, pp. 946–960, Sep. 2018.
[42] Y. Sang, B. Ji, G. R. Gupta, X. Du, and L. Ye, “Provably efficient algorithms for joint placement and allocation of virtual network functions,” in Proc. IEEE Conf. Comput. Commun. 2017, 2017, pp. 1–9.

[43] V. Farhadi et al., “Service placement and request scheduling for data-intensive applications in edge clouds,” IEEE/ACM Trans. Netw., vol. 29, no. 2, pp. 779–792, Apr. 2021.

[44] Y. Ma, W. Liang, J. Wu, and Z. Xu, “Throughput maximization of NFV-enabled multicasting in mobile edge cloud networks,” IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 2, pp. 393–407, Feb. 2020.

[45] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas, “Joint service placement and request routing in multi-cell mobile edge computing networks,” in Proc. IEEE Conf. Comput. Commun., 2019, pp. 10–18.

[46] W. Ma, O. Sandoval, J. Beltran, D. Pan, and N. Pissinou, “Traffic aware placement of interdependent NFV middleboxes,” in Proc. IEEE Conf. Comput. Commun., 2019, pp. 1–9.

[47] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading for mobile edge computing in dense networks,” in Proc. IEEE Conf. Comput. Commun., 2018, pp. 207–215.

[48] M. Chen, Y. Hao, L. Hu, M. S. Hossain, and A. Ghoneim, “Edge-CoCaCo: Toward joint optimization of computation, caching, and communication on edge cloud,” IEEE Wirel. Comm., vol. 25, no. 3, pp. 21–27, Jun. 2018.

[49] T. Lukovszki, M. Rost, and S. Schmid, “It’s a match!: Near-optimal and incremental middleware deployment,” ACM SIGCOMM Comput. Commun. Rev., vol. 46, no. 1, pp. 30–36, 2016.

[50] T. Lukovszki, M. Rost, and S. Schmid, “Approximate and incremental network function placement,” Elsevier J. Parallel Distrib. Comput., vol. 120, pp. 159–169, 2018.

[51] M. Blücher, R. Khalili, L. Wang, and P. Eugster, “Letting off STEAM: Distributed runtime traffic scheduling for service function chaining,” in Proc. IEEE Conf. Comput. Commun., 2020, pp. 824–833.

[52] Y. Guo, A. L. Stolyar, and A. Walid, “Shadow-routing based dynamic algorithms for virtual machine placement in a network cloud,” IEEE Trans. Cloud Comput., vol. 6, no. 1, pp. 209–220, Jan.–Mar. 2018.

[53] I. Cohen, G. Einziger, R. Friedman, and G. Scalosub, “Access strategies for network caching,” in Proc. IEEE Conf. Comput. Commun., 2019, pp. 28–36.

[54] K. Kamran, E. Yeh, and Q. Ma, “DECO: Joint computation, caching and forwarding in data-centric computing networks,” in Proc. ACM Int. Symp. Mobile Ad Hoc Netw. Comput., 2019, pp. 111–120.

[55] M. Bouet and V. Conia, “Mobile edge computing resources optimization: A geo-clustering approach,” IEEE Trans. Netw. Service Manage., vol. 15, no. 2, pp. 787–796, Jun. 2018.

[56] V. Sciancalepore, F. Z. Yousaf, and X. Costa-Perez, “z-TORCH: An automated NFV orchestration and monitoring solution,” IEEE Trans. Netw. Service Manage., vol. 15, no. 4, pp. 1292–1306, Dec. 2018.

[57] B. Han, V. Sciancalepore, D. Feng, X. Costa-Perez, and H. D. Schotten, “A utility-driven multi-queue admission control solution for network slicing,” in Proc. IEEE Conf. Comput. Commun., 2019, pp. 55–63.

For more information on this or any other computing topic, please visit our Digital Library at www.computer.org/csdl.