Hyperbolicity of orders of quaternion algebras and group rings

S. O. Juriaansa \hspace{1em} A. C. Souza Filhob

\textit{Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, São Paulo, CEP 05315-970 - Brazil}

email addresses: aostanley@ime.usp.br \hspace{1em} bcalixto@ime.usp.br

Abstract

For a given division algebra of the quaternions, we construct two types of units of its \(\mathbb{Z}\)-orders: Pell units and Gauss units. Also, if \(K = \mathbb{Q}\sqrt{-d}\) for \(d\) a square free and \(R = I_K\), we classify \(R\) and \(G\) such that \(\mathcal{U}_1(RG)\) is hyperbolic. In particular, with a suitable geometric approach we prove that \(\mathcal{U}_1(RK_8)\) is hyperbolic iff \(d > 0\) and \(d \equiv 7 \pmod{8}\). In this case, the hyperbolic boundary \(\partial(\mathcal{U}_1(RG)) \cong S^2\), the two dimensional sphere.

1 Introduction

Hyperbolic groups were defined firstly by Gromov \cite{3}, from the concept of hyperbolic metric space.

Let \(G\) be a finitely generated group and \(\mathcal{G}\) its Cayley graph with the length metric, \(G\) is hyperbolic if \(\mathcal{G}\) is hyperbolic.

Gromov showed that if \(\Gamma\) is hyperbolic, then it does not contain a free abelian group of rank two, i.e., \(\mathbb{Z}^2 \not\rightarrow \Gamma\). If \(G\) is finite then \(\mathbb{Q}G\) has at most one Wedderburn component that is not a division ring and it is isomorphic to \(M_2(\mathbb{Q})\). This was first proved by Jespers in \cite{6}. Still in \cite{6}, Jespers classifies the finite groups \(G\) with non abelian free normal complement in \(\mathcal{U}_1(\mathbb{Z}G)\).

Recently, Juriaans, Passi and Prasad have classified the finite subgroups \(G\) whose group \(\mathcal{U}_1(\mathbb{Z}G)\) is hyperbolic. In the first section we extend this result, classifying the rings of algebraic integers \(R\) of a rational quadratic extensions and the finite groups \(G\) such that \(\mathcal{U}_1(RG)\) is hyperbolic.

Corrales \textit{et al}, in \cite{2}, 2004, determined generators of a subgroup of finite index of \(\mathcal{U}(\mathbb{H}(\mathbb{Z}((1+\sqrt{-7})/2)))\), whose units have norm 1.

For \(\mathbb{H}(\mathbb{Q}(\sqrt{d}))\) a division ring we construct some units of the group \(\mathcal{U}(\mathbb{H}(R))\). We obtain a Pell equation, whose solutions generate the units, which we call Pell units. Furthermore, we construct units of norm \(-1\), which gives rise to the definition of the Gauss units.
2 The rings R with $\mathcal{U}_1(RG)$ hyperbolic

Throughout the text, for d a square-free integer we mean that $d \in \mathcal{D} = \{d \in \mathbb{Z} \setminus \{-1, 0\} : c^2 \not| d$, for all integer c which $c^2 \neq 1\}$. We let K be the quadratic extension $\mathbb{Q}(\sqrt{-d})$ and $R := I_K$ be its ring of algebraic integers. The cyclic group of order n is denoted by C_n and the quaternion group of order 8 is denoted $K_8 := \{\pm 1, \pm i, \pm j, \pm k\}$.

If G is a finite abelian group the unit group $\mathcal{U}_1(RG)$ is a hyperbolic group if, and only if, its free rank is at most 1. In [15], it is shown that it is sufficient to consider G a cyclic group of order 2, 3, 4, 5, 6 or 8, and thus the free rank of $\mathcal{U}_1(RG)$ is calculated. When G is one of the non-abelian groups of the Theorem 3 of [7], we show that, in case $\mathcal{U}_1(RG)$ is hyperbolic, K is an imaginary quadratic extension and $G = K_8$. To prove the converse we use a geometric approach:

Definition 2.1 Let K be an algebraic number field and R be its ring of algebraic integers. For $a, b \in K$, we denote by $H(K) = (\frac{a, b}{K})$ the generalized quaternion algebra, i.e., $H(K)$ is the K-algebra

$$H(K) = K[i, j : i^2 = a, j^2 = b, -ji = ij =: k].$$

The set $\{1, i, j, k\}$ is a K-basis of $H(K)$. If $a, b \in R$, then

$$H(R) = R[i, j : i^2 = a, j^2 = b, -ji = ij =: k].$$

The norm of $x = x_1 + x_i + x_j + x_k k \in H(K)$ is $\eta(x) = x_1^2 - ax_i^2 - bx_j^2 + abx_k^2$.

In what follows, we consider $H(K) = K[i, j : i^2 = -1, j^2 = -1, -ji = ij =: k]$.

Definition 2.2 ([10]) The least natural number s for which the equation

$$-1 = a_1^2 + a_2^2 + \cdots + a_s^2, a_j \in K, 1 \leq j \leq s$$

is soluble is called the stufe of K, say $s(K)$. When this equation admits no solution we set $s := \infty$ and K is called formally real.

Rajwade, in [10], proved that if the quadratic extension $\mathbb{Q}(\sqrt{-d})$ has $s(K) = 4$ then $d \equiv 7 \pmod{8}$. Using this, in [15], we prove that the quaternion algebra $H(K)$ over K is a division ring if, and only if, $d \equiv 7 \pmod{8}$ and as a corollary we obtain that if $d \not\equiv 7 \pmod{8}$ then $\mathcal{U}(RK_8)$ is not hyperbolic. Defining a proper action of the group $SL_3(H(R)) := \{x \in H : \eta(x) = 1\}$ over the three-dimensional hyperbolic space \mathbb{H}, and a result of Gromov about the fundamental group of a closed n-dimension riemannian manifold of constant negative sectional curvature, we prove that if $d \equiv 7 \pmod{8}$ then the group $\mathcal{U}(RK_8)$ is hyperbolic.
Theorem 2.3 (Theorem 1.7.5 of [15]) Let \(R \) be the integral ring of a rational quadratic extension \(K = \mathbb{Q}(\sqrt{-d}) \) and \(d \) be a square-free integer. The unit group \(\mathcal{U}(RG) \) is hyperbolic if, and only if, \(G \) is one of the groups listed below and \(R \) (or \(K \)) determined by the respective value of \(d \):

1. \(G \in \{C_2, C_3\} \) and any \(d \).
2. \(G \) is an abelian group of exponent dividing \(n \) for:
 - \(n = 2 \) and \(d > 0 \); or
 - \(n = 6 \) and \(d = 3 \); or
 - \(n = 4 \) and \(d = 1 \).
3. \(G = C_4 \) and \(d > 0 \).
4. \(G = C_8 \) and \(d = 1 \).
5. \(G = K_8 \) and \(s(K) = 4 \), that is, \(d > 0 \) and \(d \equiv 7 \pmod{8} \).

For a metric space \(X \), let the maps \(r_1, r_2 : [0, \infty[\to X \) be proper, that is, \(r_i^{-1}(C) \) is compact for each compact \(C \subseteq X \). Two rays are equivalent if for each compact set \(C \subset X \) there exists \(N \in \mathbb{N} \), such that, \(r_i([N, \infty[), i = 1, 2 \), are in the same path connected component of \(X \setminus C \). The equivalence class of \(r \) is denoted by \(\text{end}(r) \); \(\text{End}(X) \) denotes the set of equivalence class and \(|\text{End}(X)| \) is the number of ends of \(X \). For a finitely generated group \(\Gamma \) and \(\mathcal{G} \) its Cayley graph, we define \(\text{Ends}(\Gamma) := \text{Ends}(\mathcal{G}) \) [3], [11].

Corollary 2.4 The group \(\mathcal{U}(RK_8) \) is hyperbolic if, and only if, \(d > 0 \) and \(d \equiv 7 \pmod{8} \). Furthermore, the hyperbolic boundary \(\partial(\mathcal{U}(RK_8)) \cong S^2 \), the two dimensional euclidean sphere, and \(\mathcal{U}(RK_8) \) has one end.

Observe that the previous corollary shows a class of hyperbolic groups of one end which are not virtually free.

Corollary 2.5 Let \(d \equiv 7 \pmod{8} \), if \(u_1 \cdots u_n \in \mathcal{U}(RK_8) \), then there exists \(m \in \mathbb{N} \), such that, \(\langle u_1^m, \ldots, u_n^m \rangle \) is a free group of rank less or equal to \(n \).

3 The Pell and Gauss Units

Definition 3.1 Let \(K \) be an algebraic number field and \(R \) its ring of algebraic integers. For \(a, b \in K \), we denote by \(H(K) = \left(\frac{a, b}{K} \right) \) the generalized quaternion algebra, i.e., \(H(K) \) is the \(K \)-algebra

\[
H(K) = K[i, j : i^2 = a, j^2 = b, -ji = ij =: k].
\]

The set \(\{1, i, j, k\} \) is a \(K \)-basis of \(H(K) \). If \(a, b \in R \), then

\[
H(R) = R[i, j : i^2 = a, j^2 = b, -ji = ij =: k].
\]
Proposition 3.2 Let $u = u_1 + u_2i + u_3j + u_4k \in \mathcal{U}(H(R))$ with norm $\eta(u)$. The following conditions hold:

1. $u^2 = 2u_1u - \eta(u)$
2. If $d \equiv 7 \pmod{8}$ and $\eta(u) = 1$, then u is torsion if, and only if, $u_1 \in \{ -1, 0, 1 \}$. Thus, the order $o(u)$ is either $o(u) = 4, 2$ or 1.
3. If $d \equiv 7 \pmod{8}$, and $\eta(u) = -1$ then $o(u) = \infty$.

Let $L := \mathbb{Q}(\sqrt{d})$ and $\xi \neq \psi \in \{ 1, i, j, k \}$. For $\epsilon = x + y\sqrt{d} \in \mathcal{U}(I_L)$, we denote $u_{(\epsilon)} := x\sqrt{-d}\xi + y\psi \in H(K)$.

Proposition 3.3 Let $d \equiv i \pmod{4}, i \in \{ 2, 3 \}$ and $\xi \neq \psi \in \{ 1, i, j, k \}$. The following conditions hold:

1. $u_{(\epsilon)} \in \mathcal{U}(H(R))$ if, and only if, $\epsilon = p + m\sqrt{d} \in \mathcal{U}(I_L)$.
2. If $1 \notin \text{supp}(u)$ then $u_{(\epsilon)}$ is torsion.
3. If $\mu, \nu \in \mathcal{U}(I_L)$ and $1 \in \text{supp}(u_{(\mu)}) \cap \text{supp}(u_{(\nu)})$, then $u_{(\mu)}u_{(\nu)} = u_{(\mu\nu)}$.
4. If $1 \in \text{supp}(u_{(\epsilon)})$, then $\langle u_{(\epsilon)} \rangle = \{ u_{(\epsilon^n)}, n \in \mathbb{Z} \}$.
5. For $d \equiv 3 \pmod{4}$ and $F := \mathbb{Q}(\sqrt{2d})$.

$$u = m\sqrt{-d}\xi + p\psi + (1 - p)\phi \in \mathcal{U}(H(R)) \iff \epsilon = (2p - 1) + m\sqrt{2d} \in \mathcal{U}(I_F)$$

Theorem 3.4 Let $H(K)$ be a division ring. If $x + y\sqrt{d} \in \mathcal{U}(I_L)$, then

$$u = \begin{cases} \frac{x}{2}\sqrt{-d} + \frac{y}{2}(x + y)i + \frac{x}{2}(x - y)k & \text{if } y \equiv 0 \pmod{2} \\ x\sqrt{-d} + (xy\sqrt{d})i + (\frac{x^2 - y^2}{2}d)j + (\frac{1 + (x^2 - y^2)}{2}d)k & \text{if } y \equiv 1 \pmod{2} \end{cases}$$

are units in $H(R)$.

Definition 3.5 The given units above are called Pell Units. For $l \in \{ 2, 3 \}$, a Pell l-unit is a unit whose support has cardinality l, and the unique non integer coefficient is of the form $m\sqrt{-d}$.
Theorem 3.6 Let $H(K)$ be a division ring. If $m \equiv 2 \pmod{4}$, then there exist integers p, q, r, such that, $u = m\sqrt{-d} + pi + qj + rk \in U(H(R))$.

Definition 3.7 A unit u of $H(R)$ whose support has cardinality $l := |\text{supp}(u)| > 1$, the unique non integer coefficient of u is of the form $m\sqrt{-d}$ and $m^2 \pm 1$ is a sum of three square integers is called a Gauss unit, or a Gauss l-unit.

Proposition 3.8 Let u be a unit of norm $\eta(u) = 1$, $l \in \{2, 3\}$, and $H(K)$ a division ring.

u is a Pell l-unit if, and only if, u is a Gauss l-unit

Theorem 3.9 Let $d \equiv 7 \pmod{8}$. If $u, v \in U(H(R))$ are Gauss 2-units, and $\text{supp}(u) \cap \text{supp}(v) = \{1\}$, then there exists $m \in \mathbb{N}$, such that, $\langle u^m, v^m \rangle$ is a free group of rank two.

In [2], the authors exhibit a set of generators S of $SL_1(H(\mathbb{Z}(\frac{1+i\sqrt{-7}}{2})))$. The gauss unit $v = 6\sqrt{-7} + 15i + 5j + k$ has norm $\eta(v) = -1$, therefore $U(H((\frac{1+i\sqrt{-7}}{2}))) = \langle S, v \rangle$. The elements of the set $S \setminus \{i, j\}$ are units of the form $m\sqrt{-7} + (m - \sqrt{-7}^2)i + pj$, possibly with a permutation of the coefficients. If the condition $d \equiv 7 \pmod{8}$ is assumed. Then the solutions of the equation $m^2 + 2p^2 = 2 + d$, give rise to these units.

Acknowledgements

This work is part of the second authors Ph.D thesis. He would like to thank his thesis supervisor Prof. Dr. Stanley Orlando Juriaans for his guidance during this work.

References

[1] I. Kapovich, N. Benakli, Boundaries of hyperbolic groups. Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), 39–93, Contemp. Math., 296, Amer. Math. Soc., Providence, RI, 2002.

[2] C. Corrales, E. Jespers, G. Leal, A. del Río, Presentations of the unit group of an order in a non-split quaternion algebra, Advances in Mathematics 186(2004) 498-524.
[3] M. Gromov, *Hyperbolic Groups*, in *Essays in Group Theory*, M. S. R. I. publ. 8, Springer, 1987, 75-263.

[4] A. Herman, Y. Li, M. M. Parmenter, *Trivial Units for Group Rings with G-adapted Coefficient Rings*, Canad. Math. Bull., vol. 48(1), (2005), 80-89.

[5] A. Herman, Y. Li, *Trivial Units for Group Rings over Rings of Algebraic Integers*, Proceedings of the American Mathematical Society, volume 134, number 3, pages 631-635, S 0002-9939(05)08018-4

[6] E. Jespers, *Free Normal Complements and the Unit Group of Integral Group Rings*, Proceedings of the American Mathematical Society, vol 122, number 1, 1994.

[7] S. O. Juriaans, I. B. S. Passi, D. Prasad, *Hyperbolic Unit Groups*, Proceedings of the American Mathematical Society, vol 133(2), 2005, pages 415-423.

[8] A. Pfister, *Zur Darstellung von -1 als Summe von Quadraten in Einem Körper*, Journal London Math. Soc., 40(1965), 150-165.

[9] C. Small, *Sums of Three Squares and Levels of quadratic Number Field*, Amer. math. Monthly, 93(1986), n°(4), 276-279.

[10] A. R. Rajwade, *A note on the Stufe of quadratic fields*, Indian J. Pure and App. Maths, 6 (1975), pages 725-726.

[11] M. R. Bridson, A. Haefliger, *Metric Spaces of Non-Positive Curvature*, Springer, Berlin, 1999.

[12] A. H. Clifford, G. B. Preston, *The Algebraic Theory of Semigroups*, American Mathematical Society, Mathematical Surveys number 7, Rhode Island, 1961.

[13] J. Elstrodt, F. Grunewald, J. Menniche, *Groups Acting on Hyperbolic Space*, Springer Monographs in Mathematics, Berlin, 1998.

[14] F. C. Polcino-Milies, S. K. Sehgal, *An introduction to Group Rings*, Kluwer Academic Publishers, Dordrecht, 2002.

[15] A.C. Souza Filho, *Sobre uma Classificação dos Anéis de Inteiros, dos Semigrupos Finitos e dos RA-Loops com a Propriedade Hiperbólica (On a Classification of the Integral Rings, Finite Semigroups and RA-Loops with the Hyperbolic Property)*, PhD. Thesis, IME-USP, São Paulo, 2006, 108 pages.