Resistance exercise training at different loads in frail and healthy older adults: A randomised feasibility trial

Rebecca Marshall-McKenna a, Evan Campbell b, Frederick Ho c, Matthew Banger d, Jane Ireland e, Philip Rowe f, Christine McAlpine f, Kate McArthur f, Terence J. Quinn a, Stuart R. Gray *a,6.

ABSTRACT

Objectives: This trial aimed to determine the feasibility of recruitment, retention, adherence, and safety of a resistance training (RT) intervention to skeletal muscle failure in both frail and non-frail older adults.

Design: An 8-week randomised feasibility trial.

Setting and participants: Older adults, with and without frailty, recruited from both clinics and community.

Methods: Recruitment was based on the number of participants enrolled from those provided with a Patient Information Sheet (PIS). Retention was based on the number of participants who completed the trial. Adherence was based on the number of RT sessions attended out of 16. Outcomes included frailty (Fried criteria), muscle strength (maximal voluntary contraction), functional abilities (Short Physical Performance battery), quality of life (EQ-5D-5L), activities of daily living (LIADL) and safety (diary).

Results: Recruitment target (n = 60) was achieved within 15 months, 58 were randomised to high (n = 28) or low repetition-load (n = 28) groups. Mean age of participants was 72 years (range 65–93). Adherence and retention rate for the RT intervention was ≥70%. There was one serious adverse experience due to the RT intervention. There were no differences (P > 0.05) in effects of RT on outcome variables between low and high repetition-load groups.

Conclusions and implications: Recruitment of frail people was challenging. Older adults performing supervised RT to skeletal muscle failure was feasible and safe, with appropriate caution, and the repetition-load did not appear to influence its efficacy. Future research into the effectiveness of this simplified model of RT is warranted.

1. Background

Around the age of 40–50 years, skeletal muscle mass and function decline (Nelson and Fiatarone, 1994), with the loss of skeletal muscle function occurring at a threefold greater rate than skeletal muscle mass (Morat et al., 2016). Impaired skeletal muscle function, in particular low skeletal muscle strength, instead of low skeletal muscle mass, is now considered the principal identifier of sarcopenia in clinical practice (Cruz-Jentoft et al., 2018). Sarcopenia increases the likelihood of falls, decreases functional independence, and reduces quality of life (Beaudart et al., 2017), subsequently, loss of skeletal muscle mass and skeletal muscle strength in sarcopenia has a significant overlap with the physical phenotype of frailty (Fried et al., 2001).

In the UK, the annual excess health care costs associated with skeletal muscle weakness, not sarcopenia per se, has been estimated at £2.5 billion (Pinedo-Villanueva et al., 2019), yet healthcare costs may be higher as most studies have focused on hospitalisation rates (Bruyere et al., 2019). In the UK, the prevalence of sarcopenia is up to 34% in geriatric medicine outpatients (Reijnierse et al., 2015). Older adults in the community with declining muscle strength, a clinically silent process

* Corresponding author at: BHF Glasgow Cardiacorvascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8TA, United Kingdom of Great Britain and Northern Ireland.
E-mail address: stuart.gray@glasgow.ac.uk (S.R. Gray).

https://doi.org/10.1016/j.exger.2021.111496
Received 25 May 2021; Received in revised form 16 July 2021; Accepted 19 July 2021
Available online 21 July 2021
0531-5565/© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Montreal Cognitive Assessment (MoCA) (Nasreddine et al., 2005), months (participant recall); co-morbidities via the Charlson Comorbidity Index (CCI) (Charlson et al., 1987); assessment of frailty status using the Short Physical Performance Battery (SPPB) (Freiberger et al., 2012) was also performed. Ultrasound was used to measure muscle thickness of the vastus lateralis muscle at the midpoint of the thigh (50% of the difference between the trochanterion and tibiale laterale). Physical activity was measured using the PAL3™ and tibiale laterale. Activities of daily living such as climbing up and down stairs, and responses to gait perturbances during treadmill walking (data not presented in this manuscript). Participants were asked to wear an accelerometer for seven days and to complete a four-day food diary.

Recruitment, retention and adherence rates to the intervention were calculated as percentages. Recruitment was the number of participants enrolled out of the target sample size. Retention was the number of enrolled participants who completed the trial. Adherence was the number of RT sessions attended out of 16. The pre-determined criteria to proceed with a future trial was 80% recruitment rate within six months of the trial commencing, a 70% retention rate, and 70% adherence rate for both the RT groups. A weekly safety diary was completed with the participant to record general health issues (falls, medication changes or use of healthcare services) that occurred during participation in this study.

2.4. Randomisation

After baseline assessment participants were randomised, by a colleague independent of the trial using GraphPad Quickcalcs (https://www.graphpad.com/quickcalcs/randomise1.cfm), stratified by frailty to either high (70% of 1RM) or low (30% of 1RM) repetition-load groups using two sets of pre-prepared opaque sealed envelopes, one set for frail participants and one set for non-frail, this was to ensure similar allocation between the two groups.

2.5. Resistance training intervention

The RT intervention was 8 weeks, two individual sessions per week, supervised by a physiotherapist. The intervention targeted lower limb strengthening due to its relevance for maintaining functional activities of daily living (Lopez et al., 2018). Training sessions commenced with a warmup of walking and sit to stand chair exercises, each for 60 s. In the first four sessions participants were familiarised with the equipment (Optima Series, Life Fitness™), and the four exercises; knee extension (KE), leg press (LP), leg curl (LC) and calf press (CP). The physiotherapist discussed safety aspects, good posture, breathing techniques and gradually increased the repetition-load. The LC exercise was removed as participants found this too hard to complete with correct form. The lowest weight was 7 kg on knee extension, ankle weights were initially used for those requiring less repetition-load. By the fifth session participants worked at their allocated repetition-load and were encouraged to work to VMF. Duration of sessions/repetitions varied, and any reports of pain were recorded. The 1RM was reassessed halfway through the intervention and repetition-load adjusted accordingly.

2.6. Outcome measures

Skeletal muscle strength assessed via the measurement of 1-RM of the KE, LP and CP and via measurement, with a digital myometer (http://www.mie-uk.com/pgripmyo/), of maximal isometric torque during a maximal voluntary contraction (MVC) of the knee extensor and flexor muscles. Grip strength was measured using the Jamar dynamometer (Beaudart et al., 2016). The Short Physical Performance Battery (SPPB) (Freiberger et al., 2012) was also performed. Ultrasound was used to measure muscle thickness of the vastus lateralis muscle at the midpoint of the thigh (50% of the difference between the trochanterion and tibiale laterale). Physical activity was measured using the activPAL m micro (PAL Technologies Ltd., Glasgow, UK) for a 7-day period. Motion analysis was carried out (data to be reported in a subsequent publication).

The following questionnaires were completed: the EQ-5D-5L (Herdan et al., 2011), the Lawton Instrumental Activities of Daily Living (IADL) (Lawton and Brody, 1969), the Barthel Index of activities of daily living (ADL) (Collin et al., 1988) and the Life Curve™ (Gore et al., 2018). Food intake of each participant was recorded on a four-day
diary and analysed using WISP 4.0 dietary analysis software.

Four focus groups (FG) were conducted by members of the research team (EC/RMM) and an external academic colleague (KM), experienced in qualitative research (data to be reported in a subsequent publication).

2.7. Sample size

A formal sample size calculation was not performed. To inform the design of a future definitive RCT a recruitment target of 60 participants (30 per arm) was set (Billingham et al., 2013).

2.8. Statistical analysis

Rates of recruitment, retention and adherence are presented using descriptive statistics. Baseline differences between the two groups were compared using two-sample t-tests (for continuous variables) and fisher’s exact test (for categorical variables). In the general linear models, time (pre- and post-intervention), group assignment, and time x group interactions were the independent variables. In addition, frailty x time interactions were also analysed to examine whether frailty may moderate the intervention effectiveness. No correction for multiplicity in data were carried out in this feasibility trial. Missing data was handled using complete data analysis. All analyses were conducted using R version 4.0.2.

3. Results

3.1. Baseline characteristics

The mean age of participants was 72.2 years (SD 6.3 years) and 63% were female. No differences were seen at baseline between the two groups (Table 1).

3.2. Total exercise load

The average total exercise load (repetitions*load) during each session was for the knee extensor exercise 441(270) kg in the high repetition load and was 509(370) kg in the low repetition group (p = 0.48). For the leg press the average total exercise load in each session was 1837 (1082) kg in the high repetition load and was 6316(3681) kg in the low repetition group (p < 0.001). For the calf press the average total exercise load in each session was 1582(587) kg in the high repetition load and was 6316(3681) kg in the low repetition load group (p < 0.001).

3.3. Recruitment, retention and adherence

The trial ran between 13.08.18 and 19.12.19. The first participant was recruited on 21.08.18, and 80% (n = 48) recruitment was achieved on 25.06.19 (10 months). The trial had a retention rate of 75% (45/60) and an adherence rate of 75.8% (364/480) (high repetition-load group) and 78.4% (351/448) (low repetition-load group). Thus, two of the three pre-determined criteria were achieved.

Patients (n = 25) were approached and provided with a PIS at outpatient clinics, of which, 40% (n = 10) were recruited (6 frail, 2 pre-frail, 1 non-frail). Members of the public (n = 85) contacted the trial coordinator following the newspaper adverts, of which 50 (59%) were recruited (31 non-frail,18 pre-frail). Two participants withdrew before randomisation (unable to transfer safely from a taxi; unforeseen commitments) (Fig. 1). Thus, 58 participants (6 frail, 20 pre-frail, 32 non-frail) were randomised to high (n = 30) and low repetition-load groups (n = 28). During RT training a total of 13 participants withdrew (4 frail, 4 pre-frail, 5 non-frail) (Fig. 1).

3.4. Safety diary

A serious adverse event (due to hospitalisation) was reported by one participant who had pneumonia during the Christmas holiday period, and was not related to the intervention. Overall, 22 participants had at least one entry recorded in the safety diary; 15 appointments for blood tests with GP/Nurse, medication changes (n = 4), chest infections requiring antibiotics (n = 3), follow up appointments with consultants (n = 4). During the intervention period, six participants reported falls, two at home and four on ice, all completed the trial.

In relation to the intervention,— one participant became hypotensive during post-assessment and was reviewed by staff and hospitalised for observation of bradycardia. Participants from both groups experienced several adverse experiences, of which three were expected experiences of RT; mechanical low back pain-low load; knee pain high load; delayed onset of muscle soreness-low load; and four unexpected experiences of RT; inflammation of talocrural joint, lateral hip pain, lower leg oedema-low load; and skin hypersensitivity over lower tibia-high load.

A total of 17 participants reported pain (n = 9 high load, n = 8 low load), of which, the KE exercise was the most frequent cause. Fifteen of these participants successfully completed the trial and two were withdrawn by the physiotherapist (change in medication causing fatigue and exacerbation of pre-existing back issues).

R. Marshall-McKenna et al.
Experimental Gerontology 153 (2021) 111496

Table 1: Baseline characteristics.
Characteristics
Age M (SD, min-max)
Sex
Female
Female
Body mass index M (SD)
Education M (SD)
SIMD status median, mode
MoCA M (SD, range)
CCI M (SD, range)
Falls M (SD, range)
Nutrition (daily) M (SD)
Total energy Kcal
Carbohydrate g
Sugars g
Protein g
Alcohol g
Left quadriceps MVC (Nm)
Right quadriceps MVC (Nm)
Left hamstrings MVC (Nm)
Right hamstrings MVC (Nm)
Knee extension (Kg) 1RM
Leg press (Kg) 1RM
Calf press (Kg) 1RM
Left VL thickness (mm)
Right VL thickness (mm)
SPB total score
SPBB 4 m gait time
SPBB 5: STS time
EQ-5-DL index
EQ-5-DL-VAS
Barthel index
LIADL
LifeCurve™®
ActivPAL™️ Daily steps

N (Number of participants), M (Mean), SD (Standard Deviation), SIMD (Scottish Index of Multiple Deprivation), MoCA (Montreal Cognitive Assessment), CCI (Charlson Comorbidity Index), Falls (over the past 12 months), MVC (Maximum voluntary contraction), (n) newtons, 1RM (one repetition maximum), VL (vastus lateralis).
3.5. Outcome measures

Of the 58 participants recruited, data for 45 participants were available for analysis (Fig. 1). Missing data was due to ill health (participant/researcher) or withdrawing from the intervention. The food diary was the most frequent incomplete outcome measure ($n = 10$). Following the RT intervention outcome measures were repeated, and no significant differences were observed between the raw scores of the two groups (Table 2).

3.6. Effects of exercise load on adaptations to resistance exercise training

Data were explored by load by fitting a load-time interaction effect to the model (Table 3). There were no group or interaction effects found for any outcome measures. There was a significant time effect between baseline and post-intervention for: muscle strength measurements of KE 1RM ($p < 0.02$); CP 1RM ($p < 0.03$) and 4 m walking time ($p < 0.03$). Similarly, time effects were found for the frailty score ($p < 0.04$) and the QoL EQ-5D-5L VAS ($p < 0.03$).

The data were also explored by frailty status, regardless of load, by fitting a frailty-time interaction effect to the model (Table A1 and Table 4). No time or frailty-time interaction effects were noted in strength and functional measures. However, there were group differences for muscle strength measurements; calf press 1RM ($p < 0.04$); leg press 1RM ($p < 0.03$); and functional measures SPPB total score ($p < 0.0002$); 4 m walking time ($p < 0.0001$) and number of steps ($p < 0.0001$). Group effects were observed for the frailty score ($p < 0.0001$), EQ-5D-5L VAS ($p < 0.0001$), LIADL ($p < 0.0001$) and Life Curve™ ($p < 0.0002$). Furthermore, there was a frailty-time interaction effect for the frailty score ($p < 0.0001$) and the LIADL ($p < 0.04$) with greater increases in those without frailty.

Fig. 1. CONSORT flow diagram displaying movement of participants.
outpatient setting. The feasibility of the intervention in terms of BMI (Body Mass Index), MVC (Maximum voluntary contraction), (n) newtons, 1RM (one repetition maximum), VL (vastus lateralis), STS (sit to stand).

Table 3

Measure	High Load (n = 22)	Low Load (n = 23)	p
Body mass index	27.0 (4.1)	28.7 (4.9)	0.22
Frailty score	0.27 (0.55)	0.50 (0.80)	0.28
Left quadriceps MVC (Nm)	119 (47)	128 (55)	0.54
Right quadriceps MVC (Nm)	116 (53)	134 (60)	0.29
Left hamstrings MVC (Nm)	47 (17)	47 (24)	0.94
Right hamstrings MVC (Nm)	53 (16)	52 (24)	0.90
Knee extension (Kg) 1RM	56 (29)	53 (21)	0.68
Leg press (Kg) 1RM	69 (25)	66 (22)	0.68
Calf press (Kg) 1RM	66 (22)	60 (16)	0.32
Left VL thickness (mm)	19.9 (3.8)	19.0 (3.8)	0.48
Right VL thickness (mm)	19.9 (3.7)	20.1 (3.6)	0.88

Table 4

Measure	Time x β-coefficient (95% CI) P
BMI	-0.90 (-3.62, 1.81) 0.52
Frailty score	-0.59 (-1.17, -0.02) 0.04*
Left quadriceps MVC (Nm)	0.35 (-0.25, 0.95) 0.32
Right quadriceps MVC (Nm)	0.53 (-0.25, 1.29) 0.29
Left Hamstrings MVC (Nm)	0.60 (-0.25, 1.58) 0.23
Right Hamstrings MVC (Nm)	0.34 (-0.25, 0.91) 0.23
Knee extension (Kg) 1RM	0.02* (-0.13, 0.12) 0.28
Leg press (Kg) 1RM	0.07 (-0.14, 0.27) 0.32
Calf press (Kg) 1RM	0.03* (-0.14, 0.27) 0.26
Left VL thickness (mm)	0.22 (-0.13, 0.57) 0.23
Right VL thickness (mm)	0.19 (-0.14, 0.52) 0.23
SPB total score	0.09 (-0.17, 0.24) 0.66
SPB 4 m gait time	0.03* (-0.12, 0.06) 0.21
SPB 5+ STS time	0.30 (-0.45, 0.65) 0.38
Right grip (Kg)	0.28 (-0.45, 0.98) 0.79
Left grip (Kg)	0.30 (-0.45, 0.98) 0.79
EQ5D5L Index	0.24 (-0.45, 0.98) 0.79
LIADL	0.33 (-0.45, 0.98) 0.79
LifeCurve™ 3 daily steps	0.22 (-0.45, 0.98) 0.79

BMI (Body Mass Index), MVC (Maximum voluntary contraction), (n) newtons, 1RM (one repetition maximum), VL (vastus lateralis), STS (sit to stand).
The authors would like to thank all the participants who were involved in this trial, Lynsey Johnston and Dr. Kris McGill.

Funding sources

This work was supported by the Dunhill Medical Trust (Grant R604/0717).

References

Al-Ozaiei, E., Alsaeed, D., Alroudhan, D., Voase, N., Hara, A., Gill, J.M.R., Sattar, N., Walsh, P., Gray, C.M., Boonpor, J., Celis-Morales, C., Gray, S.R., 2021. Skeletal muscle and metabolic health: how do we increase muscle mass and function in people with type 2 diabetes? J. Clin. Endocrinol. Metab. 106, 309–317. https://doi.org/10.1210/clinem/dgaa835.

Beaudet, C., McCloskey, E., Bruyère, O., et al., 2016. Sarcopenia in daily practice: assessment and management. BMC Geriatr. 16, 170. https://doi.org/10.1186/s12877-016-0348-4.

Beaudet, C., Zazria, M., Pascale, F., Register, J.Y., Bruyère, O., 2017. Health outcomes of sarcopenia: a systematic review and meta-analysis. PLoS ONE 12 (1), e0169548. https://doi.org/10.1371/journal.pone.0169548.

Billingham, S.A.M., Whitehead, A.L., Julliou, S.A., 2013. An audit of sample sizes for pilot and feasibility trials undertaken in the United Kingdom registered in the United Kingdom clinical research network database. BMC Med. Res. Methodol. 13, 249. https://doi.org/10.1186/1471-2288-13-249.

Charlton, M.E., Pompei, P., Ales, K., et al., 1987. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J. Chronic Dis. 40 (5), 373–383. https://doi.org/10.1016/0021-9681(87)90117-8.

Collin, C., Wade, D.T., Davies, S., et al., 1988. The Barthel ADL index: a reliability study. Int. Disabil. Stud. 10, 61–65.

Cruz-Jentoft, A.J., Bahat, G., Bauer, J., et al., 2018. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 1–16. https://doi.org/10.1093/ageing/afy169.

Eldridge, S.M., Chan, C.L., Campbell, M.J., 2016. CONSORT 2010 statement: extension to randomised pilot and feasibility trials [Internet]. Pilot Feasibility Stud. 2 (1), 64. http://pilotfeasibilitystudies.biomedcentral.com/articles/10.1186/s40814-016-0100-5.

Fragala, M.S., Cadore, E.L., Dorgo, S., et al., 2019. Resistance training for older adults: position statement form the national strength and conditioning association. J. Strength Cond. Res. 33 (8), 2019–2052.

Freiberger, E., de Vreede, P., Schroeve, D., et al., 2012. Performance-based physical function in older community-dwelling persons: a systematic review of instruments. Age Ageing 41, 712–721. https://doi.org/10.1093/ageing/afx099.

Fried, L.P., Tangen, C.M., Walston, J., et al., 2001. Frailty in older adults: evidence for a phenotype. J. Gerontol. Ser. A 56 (3), M146-57.

Gore, P.G., Kingston, A., Johnson, G.R., et al., 2018. New horizons in the compression of functional decline. Age Ageing 47, 764–768. https://doi.org/10.1093/ageing/afy145.

Herdmann, M., Gudex, C., Lloyd, A., 2011. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual. Life Res. 20 (10), 1727–1736.
Lawton, M.P., Brody, E.M., 1969. Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist 9, 179–186.

Lopez, P., Pinto, R.S., Radeselli, R., et al., 2018. Benefits of resistance training in physically frail elderly: a systematic review. Aging Clin. Exp. Res. 30, 889–899. https://doi.org/10.1007/s40520-017-0863-z.

McLeod, J.C., Stokes, T., Phillips, S.M., 2019. Resistance exercise training as a primary countermeasure to age-related chronic disease. Front. Physiol. 10, 645. https://doi.org/10.3389/fphys.2019.00645.

Morat, T., Gilmore, K.J., Rice, C.L., 2016. Neuromuscular function in different stages of sarcopenia. Exp. Gerontol. 81, 28–36. https://doi.org/10.1016/j.exger.2016.04.014 [Internet]. Available from:

Morton, R.W., Oikawa, S.Y., Wavell, C.G., et al., 2016. Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. J. Appl. Physiol. 121 (1), 129–138. http://jap.physiology.org/content/jap/early/2016/05/09/japplphysiol.00154.2016.full.pdf.

Nasreddine, Z.S., Phillips, N.A., Bedirian, V., et al., 2005. The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53 (4), 695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.

Nelson, M.E., Fiatarone, M., 1994. Morganti C et al effects of high-intensity strength training on multiple risk factors for osteoporotic fractures. JAMA 272, 1909–1914.

Pinedo-Villanueva, R., Westbury, L.D., Syddall, H.E., et al., 2019. Health care costs associated with muscle weakness: a UK population – based estimate. Calcif. Tissue Int. 104 (2), 137–144. https://doi.org/10.1007/s00223-018-0478-1.

Rasiah, J., Cummings, G.G., Gruneir, A., Oelke, N.D., Estabrooks, C., Holroyd-Leduc, J., 2020. Prefrailty in older adults: a concept analysis. Int. J. Nurs. Stud. 108, 103618 https://doi.org/10.1016/j.ijnurstu.2020.103618.

Reijnders, E.M., Trappeburg, M.C., Leter, M.J., 2015. The impact of different diagnostic criteria on the prevalence of sarcopenia in health elderly participants and geriatric outpatients. Gerontology 61 (6), 491–496. https://doi.org/10.1159/000377699.

Stefanski, D.G.A., Dzulkarnain, A., Gray, S.R., 2019. Comparing the effects of low and high load resistance exercise to failure on adaptive responses to resistance exercise in young women. J. Sports Sci. 37 (12), 1375–1380. https://doi.org/10.1080/02640414.2018.1559536.

Van Roie, E., Bautmans, I., Coudyzer, W., Boen, F., Delecluse, C., 2015. Low- and high-resistance exercise: long-term adherence and motivation among older adults. Gerontology 61, 551–560. https://doi.org/10.1159/000381473.

Vlietstra, L., Hendrickx, W., 2018. Exercise interventions in healthy older adults with sarcopenia: a systematic review and meta-analysis. Australas. J. Ageing 37 (3), 169–183.