Online Solid-Phase Extraction—Inductively Coupled Plasma—Quadrupole Mass Spectrometry with Oxygen Dynamic Reaction for Quantification of Technetium-99

Makoto Matsueda,* Kayo Yanagisawa, Kazuma Koarai, Motoki Terashima, Kenso Fujiwara, Hironobu Abe, Akihiro Kitamura, and Yoshitaka Takagai*

ABSTRACT: Quantification of pg/L levels (i.e., 0.6 mBq/L) of radioactive technetium-99 (99Tc) was achieved within 15 min in the presence of isobaric and polyatomic interference sources such as ruthenium-99 (99Ru) and molybdenum hydride (98Mo1H) at 3–11 orders of magnitude higher concentrations. Online solid-phase extraction—inductively coupled plasma—quadrupole mass spectrometry (ICP−QMS) with oxygen (O2) dynamic reaction cell (online SPE−ICP−MS−DRC) was shown to be a thorough automatic analytical system, circumventing the need for human handling. At three stepwise separations (SPE−DRC−Q mass filters), we showed that interference materials allowed the coexistence of abundance ratios of 1.5 × 10−13 and 1.1 × 10−5 for 99Tc/Mo and 99Tc/Ru, respectively. A classical mathematical correction using the natural isotope ratio of 99Ru/102Ru was used to calculate the residues of 99Ru. Using this optimized system, a detection limit (DL; 3σ) of 99Tc was 9.3 pg/L (= 5.9 mBq/L) for a 50 mL injection and sequential measurements were undertaken at a cycle of 24 min/sample. For the measurement of a lower concentration of 99Tc, an AG1-X8 anion-exchange column was used to yield as a thermal neutron fission product of 235U (6.1%)6,7 and 239Pu (5.9%).7 The presence of 99Tc in the environment is thus a result of processes in nuclear energy sources. Discharge standards (WHO: 100 Bq/L,13 EPA (USA): 33 Bq/L14,15). Online solid-phase extraction of 99Tc from other coexisting nuclides to prevent isobaric and polyatomic interferences. Although the generation of isobars is possible through polyatomic ions (e.g., 40Ca16OH40Ar, 43Ca16O40Ar, 51V16O3, 59Co40Ar, 62Ni37Cl, 63Cu36Ar, 64Zn35Cl, 87Rb12C, and 87Sr12C),16,17 the primary isobaric and polyatomic interferences are often found around m/z 99 due to 98Mo1H and 99Ru. The occurrence rates of these interferences have been reported as the 99Mo/Mo ratio is on the order of 10−6 for ICP—single quadrupole MS (ICP−QMS)18 and ICP—sector field MS (ICP−SFMS),19 arising from the 12.76% of natural Ru that occurs as 99Ru. Other typical major interferences are caused by mass-spectral overlapping problems arising from peak tailing of excess amounts of 98Mo. Such peak tailing appears at m/z 99 due to the abundance of Mo (natural isotopes, i.e., (m/z 99)/Mo = 10−5−10−7).16,20,21 To overcome

INTRODUCTION

Technetium-99 (99Tc) is an artificial radionuclide (half-life: 2.13 × 105 y) and pure β− emitter (E_{max} = 292 keV).8 No stable isotopes of Tc occur in nature; instead, it is highly yielded as a thermal neutron fission product of 235U (6.1%)6,7 and 239Pu (5.9%).7 The presence of 99Tc in the environment is thus a result of processes in nuclear energy sources. Discharge from nuclear fuel reprocessing plants in marine environments is its primary source.9 The calculated released 99Tc amount was about 9 kg of 99Tc per 1 GW(e) year.10 Thus, monitoring for administration or regulation is very important. The most stable chemical species of Tc under oxidizing conditions is TcO4−, which has high mobility in environments. Consequently, the trends of 99Tc concentration in groundwater around nuclear facilities such as Sellafield11 and Hanford sites12 have been monitoring based on the drinking water standards (WHO: 100 Bq/L, EPA (USA): 33 Bq/L).13,14

To determine the presence of 99Tc, inductively coupled plasma−mass spectrometry (ICP−MS) has been widely utilized owing to its high sensitivity, rapidity, and high throughput instead of traditional radiometric analytical methods such as low-background β counter or liquid scintillation. ICP−MS analyses require the chemical separation
these interferences, the separation efficiency (discrimination) demands values exceeding 3.4×10^{-3} and 3.1×10^{-2} for ^{99}Tc/Mo and ^{99}Tc/Ru, respectively, shown in Table S1 in the Supporting Information (SI). The ^{99}Tc values were observed at monitoring points in the Sellafield and Hanford sites (less than 6 mBq/L, equivalent to 9.5 pg/L).11,12 Meanwhile, the Ru and Mo concentrations in typical environmental water are 0.5–1.5 ng/L and 30 ng/L–13.9 mg/L, respectively.22–24 Regarding Mo concentrations in freshwater, the concentrations are significantly different in the water type, sampling location, and depth of sampling.22 Numerous studies have addressed the utilization of solid-phase extraction (SPE) approaches as a means to separate and enrich ^{99}Tc prior to analysis via ICP–QMS. In particular, the commercially available TEVA resin has been widely used as the SPE resin for separating ^{99}Tc prior to ICP–MS analysis.25–30 The typical protocol of TEVA resin requires acidic conditions (0.05–0.1 M HNO$_3$) in the adsorption of ^{99}Tc onto the resin; in contrast, highly acidic conditions (6.5–8 M) are required for its elution.

Online SPE–ICP–MS is an automatic sequential analytical technology characterized by good repeatability and high-speed data acquisition. By virtue of these advantages, coupled SPE–ICP–MS systems have been widely employed to monitor environmental radioactivity.31–48 For radionuclide analysis, this coupled system provides radiological protection to operators by suppressing the exposure dose. For example, the system is useful for monitoring radioactivity during the decommissioning of nuclear power plants. In spite of this, relatively few studies have reported online SPE (TEVA resin)–ICP–MS methods for ^{99}Tc analysis.26,29,30,49 The primary reasons for this can be attributed to the difficulties involved in the direct introduction of eluate into ICP–MS (after SPE). Numerous challenges have been identified. (i) While all reported ^{99}Tc analyses of online SPE–ICP–MS used TEVA resin as the SPE column, the final solution eluted from the SPE column was obtained as a highly acidic solution (6.5–8.0 M HNO$_3$). This solution often damages parts of ICP–MS, causing Mo (interference element) to leak from the material of the ICP–MS [note: see the online SPE of ^{99}Tc in the Results and Discussion section]. To avoid this problem, the eluate after SPE (TEVA) must be collected before introduction into the ICP–MS; thus, reparation such as evaporation, dryness, and replacement is required to ensure that a milder solution is injected into the ICP–MS. Consequently, it is necessary to remedy inefficiency via an automatic system of ^{99}Tc analysis without human handling. (ii) Stricter separation of Mo and Ru from ^{99}Tc is required. Treatments requiring a large volume of the sample solution are necessary to measure very low concentrations of ^{99}Tc. A single-step separation using only SPE is not sufficient,50 and it is difficult to measure the background control on enriched concentrations of Mo and Ru. In other words, the DL of ^{99}Tc based on ICP–MS analysis depends on the abundance ratios of ^{99}Tc/Mo and ^{99}Tc/Ru. To improve the sensitivity of ^{99}Tc, it is crucial to suppress (i.e., to reduce the value of) the allowed abundance ratios of ^{99}Tc/Mo and ^{99}Tc/Ru.51 This requires a larger volume of sample to be preconcentrated in a smaller volume and directly injected into the ICP–MS system (either online or offline).

In this study, we present online automation of the SPE–ICP–MS system requiring no human handling by applying a combination of three separations: (i) online SPE using TK201, (ii) O$_2$ dynamic reaction cell (DRC), and (iii) quadrupole mass filtering. Although the dynamic reaction cell (DRC) is an important technique for the separation of isobaric interference, no previous studies have addressed its use in separating Mo and ^{99}Tc. Combination effects on the quantification of ^{99}Tc are thus evaluated as part of the present study. In addition, the proposed method can allow additional combinations between offline preconcentration methods. Thus far, no study has considered ultralow abundance ratios of ^{99}Tc/Mo and ^{99}Tc/Ru in the automated ^{99}Tc analysis. Furthermore, spike and recovery tests for environmental water samples (e.g., groundwater, river water, deep pond mineral water, seawater, and concentrated seawater) were investigated.

EXPERIMENTAL SECTION

Apparatus. The online SPE–ICP–MS used in this study comprised the following instruments: a NexION 300X ICP–MS equipped with a DRC (PerkinElmer, Inc., Shelton, CT), a US5000AT+ ultrasonic nebulizer (USN; Teledyne CETAC Technology, NE), an FIAS400 flow injection system (PerkinElmer) featuring specially fabricated double eight-way switching valves, and an S10 autosampler (PerkinElmer). Ultrapure (>99.999%) gases were used for the DRC as collision/reaction gases (O$_2$, He, NH$_3$, CH$_4$), and argon ion source was used as the mixed-gas plasma (N$_2$).

Reagents and Preparation. A radioactive ^{99}Tc stock solution (50 Bq/g (= 79 ng/g); radioactive purity >99%) obtained from Kaken Corporation Ltd. (Ibaraki, Japan) was diluted to the required concentration. Solution mixtures of 70 elements were prepared by mixing XSTC series #1, #7, #8, and #13 standard stock solutions of metal ion mixtures (stable isotopes; concentration: 10 ng/L; SPEX Certiprep, Inc., Metuchen, NJ). Single-element stock solutions (1000 mg/L; atomic absorption spectrometry grade) were obtained from the FUJIFILM Wako Pure Chemical Co. (Osaka, Japan). Concentrated HNO$_3$ (ultrapure grade, 69 w/w%) was obtained from Kanto Chemical Co., Inc. (Tokyo, Japan). Ultrapure water (18.2 MΩ·cm) was obtained from a PURELAB Ultra purifier (ELGA, Bucks, U.K.). SPE powders (440 mg) of TK201 resin (particle diameter: 100–150 μm; TRISKEM International, Bruz, France) were packed half amounts into two empty polyetheretherketone (PEEK) columns (PerkinElmer; 3.5 mm I.D., 50 mm long). A strong anion exchanger, AG1-X8 (11.7 g), was used as the offline preconcentration resin (particle diameter: 100–150 μm; quaternary ammonium groups; BioRad Laboratories Inc. Hercules, CA) and packed into an empty polypropylene (PP) column (PerkinElmer; 18 mm I.D., 55 mm long). All other reagents, which were of analytical grade, were obtained from the FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan) and were used without further purification unless otherwise noted.

Sample Collection and Pretreatment. Preparation of Environmental Samples. River water, groundwater, deep pond mineral water, and seawater were collected in Fukushima, Ibaraki, and Kumamoto prefectures in Japan. A reference material, IAEA-443 Irish seawater, with an information value of 8, 8, and 99Tc/Ru. This requires a larger volume of sample to be preconcentrated in a smaller volume and directly injected into the ICP–MS system (either online or offline).

In this study, we present online automation of the SPE–ICP–MS system requiring no human handling by applying a combination of three separations: (i) online SPE using TK201, (ii) O$_2$ dynamic reaction cell (DRC), and (iii) quadrupole mass filtering. Although the dynamic reaction cell (DRC) is an important technique for the separation of isobaric interference, no previous studies have addressed its use in separating Mo and ^{99}Tc. Combination effects on the quantification of ^{99}Tc are thus evaluated as part of the present study. In addition, the proposed method can allow additional combinations between offline preconcentration methods. Thus far, no study has considered ultralow abundance ratios of ^{99}Tc/Mo and ^{99}Tc/Ru in the automated ^{99}Tc analysis. Furthermore, spike and recovery tests for environmental water samples (e.g., groundwater, river water, deep pond mineral water, seawater, and concentrated seawater) were investigated.
Offline Preconcentration for Lower Concentration of Environmental Samples. As an additional pretreatment, AG1-X8 strong anion exchanger was used before injection into the system following the procedures reported in the literature. Four milliliters of 100 mg/L rhenium (Re) was spiked into 40 L of seawater sample as a tracer [note: in this case, the recoveries between Tc and Re well corresponded. The capacity was commercially reported as 1.2 meq/mL (equal to 32 g/L as Re)]. Samples (40 L) were passed through the AG1-X8 anion-exchange column at a flow rate of 100 mL/min to enable the adsorption of 99Tc using a diaphragm pump (SIMDOS 10 FEM 1.10 TT. KNF Neuberger, Inc., Freiburg, Germany), after which the column was cleaned with 200 mL of 0.5 M HNO$_3$ (i.e., a preconcentration factor of 2003 times (from 40.055 L to 20 mL)). An aliquot (10.0 mL) of the condensed seawater was injected into the proposed system. To monitor the recovery of 99Tc, concentrations of the Re tracer were measured before and after preconcentration using the AG1-X8 anion-exchange column. The recovery rate ($R\%$) was calculated as follows

$$R\% = \frac{C_i V_i}{C_f V_f} \times 100$$ \hspace{1cm} (1)

where C_i and C_f are the initial and final concentrations of Re, respectively, and V_i and V_f are the initial and final (eluate) volumes, respectively.

Autosequential Online SPE–ICP–MS System. The scheme of the proposed SPE–ICP–MS–DRC system is shown in Figure 1, and the experimental parameters are shown in Table S2 in the SI. Two flow lines controlled by automation switching values were arranged in the system (Figure 1). Figure 1A shows valve position #1, which influences the online SPE step (red flow line) and the clean-up line (black flow line). Fifty milliliters of a sample solution containing 99Tc (0.7 M HNO$_3$ aq. sol.) was injected into the proposed system via an autosampler (red line). After injection, the sample passed through the SPE column via pump #2 at a flow rate of 5.0 mL/min. During the sample flow into the column, 99Tc was adsorbed onto the resin, while unabsorbed elements were discharged into the drain. Then, the column was rinsed with approximately 33 mL of 0.7 M HNO$_3$ (flow rate: 5.0 mL/min). During the abovementioned steps (i.e., sample injection, SPE step, and rinsing), 3.0 M HNO$_3$ flowed inside the other flow line (i.e., the black line), where it was merged with 100 ng/L rhodium (Rh) aq. sol. (0.4 M HNO$_3$) as an internal standard (ISTD) via pump #1 at a flow rate of 1.0 mL/min (3.0 M HNO$_3$; ISTD = 13:1). The resulting mixture was introduced into ICP–MS via the USN. After all sample volumes had passed through the SPE column, the valve was switched from position #1 to position #2.

Figure 1B (valve position #2) shows the steps involved in the elution of 99Tc and its measurement via ICP–MS (red flow line). The eluate (3.0 M HNO$_3$) was passed through the SPE column at a flow rate of 2.0 mL/min, and the adsorbed 99Tc was eluted. The elution shown by the red line was merged with the ISTD sol. in the black line (0.16 mL/min), after which 99Tc was introduced into the ICP–MS via the USN. During elution and measurement via ICP–MS, any liquid flowing along the black dotted line was retained until the next sample analysis. Following its introduction into the ICP–MS, the remaining Mo (and other high-valence metal ions) reacted with O$_2$ in the DRC and interference nuclides (i.e., the tailing from 95Mo and polyatomic ions such as 99MoH) were separated by the QMS filter. For the ISTD, the intensities of 99Tc as target ion are divided by the intensities of 115In. For quantification, a calibration curve (0.0, 0.1, 0.2, 0.5 ng/L) was prepared using a set of standard solutions vs peak areas (signal integration) of 99Tc. Signal integration was conducted by Microsoft Excel. Monitoring ions at m/z 98, 99, 102, and 103 were measured and identified as 95Mo, 99Tc, 102Ru, and 103Rh, respectively. In addition, the cell pass voltage was adjusted using natural Mo isotopes, and all isotopes of relative abundance for Mo were adjusted in the mass spectrometer.

Mathematical Correction of Measurement Values. To avoid isobaric interference from 99Ru, the classical mathematical correction using the isotopic ratio of Ru (99Ru/103Ru: mass bias was controlled).
where A_{observed} and A_99 correspond to the peak areas of m/z 99 observed via ICP–MS, m/z 102 from 102Ru, and the net value given by 99Tc, respectively. The value 99Ru/102Ru is mass-biased via ICP–MS.

The DL for online SPE–ICP–MS was calculated from the slope of the calculation curve and standard deviation (3σ) of the blank sample. With additional offline preconcentration (in this case, ion exchanger), the DL was calculated as follows:

$$DL_{\text{total}} = DL \times \frac{C_i}{C_f}$$

RESULTS AND DISCUSSION

As preliminary confirmation, a significant difference between the background noise signal at m/z 99 (typically 24.7 ± 4.8 cps in 0.4 M HNO$_3$ aq. sol.) and the signal intensity of the target was confirmed by injecting 10 metal ions (Mo: 10 mg/L, Ru: 100 mg/L, Ca: 500 mg/L, V: 100 μg/L, Co: 10 μg/L, Ni: 100 μg/L, Cu: 100 μg/L, Zn: 100 μg/L, Rb: 10 mg/L, Sr: 10 mg/L) into an ICP–MS. When 10 mg/L Mo and/or 100 ng/L Ru solutions were individually injected into the ICP–MS via the cyclonic spray chamber, the signal intensity at m/z 99 was both increased and disturbed by the presence of these elements (2678 ± 211 and 875 ± 30 cps for 98Mo$^{1+}$ and 99Ru, respectively). The other eight elements showed no impact on the intensity (m/z 99); therefore, we assumed that Mo and Ru were the primary sources of interference. When 0.27 mg/L of Mo or 3.7 ng/L of Ru is individually measured, the m/z 99 counts (>background level) were generated. In other words, without any separation, interference problems noted around m/z 99 were greater than the intensity ratios 2.7×10^{-5} and 3.7×10^{-12} for (m/z 99)/Mo and (m/z 99)/Ru, respectively. The intensity of Mo related to primary 98Mo$^{1+}$ and peak tailing from excess amounts of 98Mo is described in the Separation of Mo by DRC section.

Online SPE of 99Tc. By contrast with TEVA,51 a commercially available TK201 resin,52 was used to capture 99Tc under neutral pH and release 99Tc at concentrations of less than 3.0 M HNO$_3$. The two resins, TEVA and TK201, were evaluated; Figure S1 in the SI shows the adsorbability of 65 elements (10 mL of 100 μg/L each element). When the mixture solution passed through the SPE columns, the recoveries were calculated by the difference of the concentration. Both showed effective adsorption of 99Tc on the SPE column and the separation of Mo and Ru. The recovery rates (for 10 mL eluate; relative standard deviation, RSD) were 94.9% (±1.7%), 0.86% (±0.01%), and 0.37% (±0.02%) for 99Tc, Mo, and Ru in the TK201 resin, respectively. In contrast, the TEVA resin exhibited values of 104.6% (±0.56%), 0.13% (±0.02%), and 0.67% (±0.03%) for 99Tc, Mo, and Ru, respectively. These results indicate that the TK201 resin (without DRC) discriminates Mo from Tc in the ratios of 9.1×10^{-3} and $>3.9 \times 10^{-3}$ for 99Tc/Mo and 99Tc/Ru, respectively. These values were, however, insufficient to separate 99Tc from natural Ru and Mo in environmental waters. Water sample analysis (without any pretreatment) around nuclear facilities requires values below 3.4×10^{-3} and 3.1×10^{-2} for 99Tc/Mo and 99Tc/Ru, respectively.

On the other hand, the elution of 99Tc from the columns requires acid solution as the eluate. The TEVA resin used a higher concentration (8.0 M) of HNO$_3$, whereas TK20156 required a relatively low concentration (3.0 M). The direct injection of samples dissolved in higher concentrations of HNO$_3$ into ICP–MS can result in damage to certain interfaces and metallic parts of the ICP–MS (e.g., the sampling cone and/or skimmer cone). For two different concentrations of HNO$_3$ solutions (each 5 mL, with concentrations of 3.0 and 8.0 M) in contact with a Ni sampling cone (i.e., a part of the QMS) for 90 min, the resulting concentrations of Mo and Ru increased to 9.5 mg/L, 244.2 μg/L, and 67.3 g/L for Mo, Ru, and Ni, respectively (for 8.0 M HNO$_3$); in contrast, the values for 3.0 M HNO$_3$ were 4.5 mg/L, 56.8 μg/L, and 20.3 g/L for Mo, Ru, and Ni, respectively. To suppress damage of metallic parts and leakages of the interference material from these parts (i.e., to suppress background counts), a lower concentration of HNO$_3$ solution is preferable. These results showed that the TK201 resin was preferable over TEVA in the online 99Tc SPE column.

Achieving a DL of monitoring level (less than 6 mBq/L), it is necessary to enrich more 99Tc into the SPE column by increasing the sample volume. However, the SPE single column with the TK201 resin (220 mg) had lost 99Tc in proportion to the passed sample/rinse volume. Therefore, the inline style double SPE columns (440 mg) were employed to maintain the recovery rate. Figure S2A in the SI shows that the adsorption rate of 99Tc (1.0 μg/L, 10–100 mL) maintained over 99% up to 100 mL sample volume. Figure S2B in the SI shows the recovery rate of 99Tc, Mo, and Ru corresponding to rinse volume (after loading 50 mL sample). The final recovery rates were 99.6, 0.029, and 0.022% for 99Tc, Mo, and Ru, respectively (sample: 50 mL, rinse: 30 mL). The double SPE columns enhanced the sensitivity of 99Tc approximately five times, and the abundance ratios indicated 2.9 × 10^{-4} and 2.2 × 10^{-4} for 99Tc/Mo and 99Tc/Ru, respectively.

Separation of Mo by DRC. To remove the small amount of residual Mo, DRC separations were investigated using typical gases (O$_2$, NH$_3$, He, and CH$_4$) for the separation step. To confirm the effect of DRC, 1.0 μg/L 99Tc and a 104× excess concentration (10 mg/L) of Mo (dissolved in 0.4 M HNO$_3$) were individually injected into the ICP–MS via the cyclonic spray chamber, which is connected with a microflow-type nebulizer without an online SPE column. Figure S3 in the SI shows the effects of several gases on the DRC. Numerous studies have addressed the utilization of such an O$_2$ gas-loading approach as a means to separate Mo55,56 however, the quantitative removal of Mo via different gas species has not yet been investigated. Oxygen was found to be most effective in the removal of Mo (i.e., m/z 98 and 99 for 98Mo and 98Mo$^{1+}$, respectively) while maintaining the intensity of 99Tc. The intensities of 98Mo and 98Mo$^{1+}$ decreased to background levels, as shown in Figure S3A,B in the SI. In contrast, the intensity of 99Tc was maintained against O$_2$ exposure (Figure S3C in SI). Other gases (He, CH$_4$, and NH$_3$) were found to be insufficient for the removal of excess amounts of Mo, although slight decreases were observed in m/z 98 and 99. The major differences between O$_2$ and these gases result from oxidation (addition of O atoms) and the simple collision effect.57 In addition, the 10$^{-1}$–10$^{-2}$ intensity of Tc decreased under exposure to NH$_3$ and He (Figure S3C), whereas Tc survived under O$_2$ and CH$_4$. It seems that the charge transfer occurred notably under NH$_3$, which has the lowest ionization potential.
(10.16, 12.07, and 12.6 eV for NH₃, O₂, and CH₄, respectively),58,59 and high pressure of He excluded Tc with increasing the number of collisions.60

Figure 2A shows the mass spectrum of Mo without the O₂ reaction in DRC. Mo has seven natural isotopes (relative abundances): 92 (14.84%), 94 (9.25%), 95 (15.92%), 96 (16.68%), 97 (9.55%), 98 (24.13%), and 100 (9.63%). Despite no isotope with mass number 99 occurring in nature, an obvious signal was confirmed on the target position (m/z) of 99, and many signals were observed over 100. These originate from 98Mo¹H and polyoxides of Mo (such as MoO and MoO₂; formation of Mo polyoxometalate is well known and detected by ICP−MS59). In addition, the mass spectrometric signal tailing arising from excess Mo (primary source: 98Mo+) may be observed over m/Δm = approx. 10².16,20 Figure 2B shows the mass spectrum of Mo with the O₂ reaction in DRC. Mo signals are observed to shift to higher mass numbers stemming from MoO₂ and MoO₂H. The interfered species (98Mo⁺ and 98Mo¹H⁺) disappeared, and the resulting position (m/z) of 99 has no features. Figure 2C shows the mass spectrum of 1 μg/L 99Tc in the presence of a 10⁴× excess concentration of Mo (10 mg/L) with O₂ reactions in DRC, demonstrating that the resulting signal of 99Tc survives.

The volume (flow rate) of O₂ influenced the intensity of Mo, whereas the intensity of 99Tc remained constant within the entire volume of O₂, as shown in Figure 3A. In the absence of O₂ (0 mL/min), the variety of Mo species such as 98Mo (m/z 98), 99Mo⁺H⁻ (m/z 99), 98Mo¹O⁻ (m/z 114), and 99Mo¹O₂⁻ (m/z 130) existed natively. Among them, 98Mo⁺, 98Mo¹H⁻, 99Mo¹OH⁻, and 99Mo¹O⁻ decreased logarithmically with increasing O₂. A small amount of 99Mo¹⁶O⁻ and 98Mo¹⁶OH⁻ survived at higher O₂ flow rates; otherwise, di- and trioxide ions and their related hydrated ions (i.e., 98Mo¹⁶O₂²⁻, 99Mo¹⁶O₃⁻, 98Mo¹⁶O₃H⁻, and 99Mo¹⁶O₃H⁻, and others), which are thermodynamically stable with a binding energy of 144 kcal/mol for MoO₂,61 were present within the entire flow rate of O₂. Under He gas atmospheres,51,62 the presence of higher oxides, for example, 98Mo¹⁶O₄⁻, 99Mo¹⁶O₅⁻,
and $^{98}\text{Mo}_{16}O_{4}^-$, was reported; however, these were not detected in the DRC of the ICP–MS. The oxidation process of Mo in He atmospheres depends on the concentration of O$_{2}$, similar phenomena control the mechanisms of oxidation in the DRC. In contrast, the intensity of ^{99}Tc (1.0 μg/L) varied only 1% from the initial intensity under O$_{2}$ flows of up to 1.5 mL/min. When 1.00 ng/L ^{99}Tc solutions with different amounts of Mo were measured, the quantitative tolerance of ^{99}Tc under the condition of a 2.0 mL/min O$_{2}$ flow rate; it was found to depend on the flow rate of O$_{2}$ as shown in Figure 3B. Consequently, the DRC (without online SPE) discriminated 5×10^{-10} for $^{99}\text{Tc}/\text{Mo}$ under the condition of a 2.0 mL/min O$_{2}$ flow rate; i.e., it means that the count rate of Mo in m/z 99 corresponds to only 5×10^{-10} of ^{99}Tc. Otherwise, the DRC was not effective for removing ^{99}Ru (see Figure S4).

Mathematical Correction of ^{99}Tc from ^{99}Ru. To avoid interference from small amounts of ^{99}Ru residues, a mathematical correction21 was applied following the protocol presented in the Experimental Section. The isotope abundance ratio of $^{99}\text{Ru}/^{102}\text{Ru}$ was 0.388 obtained from the measurement result of Ru standard (100 μg/L), and the concentration of Ru after SPE was only 0.022% of its initial concentration. The measurement error of ^{99}Ru was within 5%. Overlapping ^{99}Ru counts on the observed peak (m/z 99) were successfully eliminated because the solution with nonspiked ^{99}Tc showed a signal equal to the background signal after correction. The correction satisfied the condition under which a significant difference between the intensities of net A_{99} and A_{99-102} (i.e., $0.388 \times A_{99-102}$), that is greater than the value of the measurement error of Ru (5%) is required: $A_{99} > 1.05 \times (0.388 \times A_{99-102})$. Therefore, the coexistence ratio (mass abundance) for $^{99}\text{Tc}/\text{Ru}$ was 0.05 (i.e., $5/100$).

Autosequential Online SPE–DRC–ICP–MS System. Figure 4 shows the chromatographic peaks (m/z 99) obtained using the proposed online SPE–DRC–ICP–MS system, which combines the TK201 online SPE and O$_{2}$-DRC. These peaks appeared at a retention time (RT) of 194 s, which was constant despite the changing concentration of ^{99}Tc and/or coexistence of Mo and Ru. The elution of the peak tail ended at 366 s, and the analytical time for all of the samples was 24 min. The time depended on the sample volume; a majority of the time was consumed in the process of the SPE preconcentration rather than ICP–MS measurement. All experiments were conducted by injecting 50 mL of sample volume to maintain a total analytical time of 24 min. The peak width was 4.3 min, denoting 8.5 mL of the eluate volume from the SPE (cf. eluate flow rate: 2.0 mL/min). This resulted in SPE preconcentration in which the sample volume (initial injection: 50 mL) was enhanced by 5.9 times. Peak height and peak area depended on the concentration of ^{99}Tc, both of which exhibited a linear trend. For 50 mL of injected sample, the DL (σ) regarding the peak area was 9.3 pg/L (equal to 5.9 mBq/L) and the relative standard deviation (RSD) was 1.7% (50 mL of 0.2 ng/L ^{99}Tc; n = 3). In addition, BEC and limit of quantification (LOQ) were 71.5 pg/L (45 mBq/L) and 30 pg/L (20 mBq/L), respectively.

The maximum allowances of coexistence (capable abundance) obtained by multiplying each part of the values were 1.5×10^{-13} (online SPE and DRC) and 1.1×10^{-5} (online SPE and mathematical correction) for $^{99}\text{Tc}/\text{Mo}$ and $^{99}\text{Tc}/\text{Ru}$, respectively (shown in Table 1).

Additional Offline Preconcentration: Anion-Exchange Preconcentration (IC). Presently, typical ICP–MS techniques for ^{99}Tc use additional preconcentration methods to enhance the amount of ^{99}Tc because of its low concentration levels. The proposed method can be optionally used with offline preconcentration methods such as ion-exchange preconcentration (IC) and/or other additional SPE methods. In this study, 40.448 L of seawater was preconcentrated using AG1-X8 anion-exchange resin and prepared to a volume of 20.00 mL (i.e., volume ratio: 2022-fold), and the initial concentrations of Tc (as a tracer), Mo, and Ru in the seawater were 10.1, 10.2, and 0.53 μg/L, respectively. The recovery rates (R%) of Tc (as a tracer), Mo, and Ru were 55.1, 1.21, and 3.00%, respectively. These values for Mo and Ru were 4.5 \times 10$^{-3}$ and 3.6 \times 10$^{-3}$, i.e., $^{99}\text{Tc}/\text{Mo}$ and $^{99}\text{Tc}/\text{Ru}$, respectively.

The resulting coexistence in the entire system can theoretically be allowed to decrease to 2.1 \times 10$^{-14}$ and 6.9 \times 10$^{-6}$ for $^{99}\text{Tc}/\text{Mo}$ and $^{99}\text{Tc}/\text{Ru}$, respectively. When using additional preconcentration methods, the DL$_{\text{initial}}$ (σ) was 70.0 fg/L (the DL value was improved 1114-times greater than the single use of the online method of DL (10 mL sample injection): 78.0 pg/L). In addition, this value is approximately 1000 times greater than that enabled by methods of coexistence. Using this IC, an additional 9 h of analytical time was required (entire time of analysis: 10 h).

The final concentrations of Mo and Ru determined after IC preconcentration were 248.1 and 31.6 μg/L, respectively. Although the proposed system (online SPE–ICP–MS–DRC) has the ability to achieve abundance values of 1.5×10^{-13} and 1.1×10^{-5} for $^{99}\text{Tc}/\text{Mo}$ and $^{99}\text{Tc}/\text{Ru}$, respectively, the actual abundances after the IC preconcentration were 4.0×10^{-12} and 3.2×10^{-4} for $^{99}\text{Tc}/\text{Mo}$ and $^{99}\text{Tc}/\text{Ru}$, respectively. Considering these values, the maximum preconcentration factor of seawater would be 3.2×10^{3} times, and its initial maximum volume can reach values of 1.18×10^{3} L (with preconcentrates down to 20 mL).

Alternatively, a large-volume auto-preconcentration method for ^{99}Tc or a high-performance separator25 can be employed in the condition of less than the abundance ratio. Previously, Shi25 reported that a large-volume auto-preconcentration method can achieve preconcentration from 200 L to several mL while maintaining an abundance ratio of $10^{-5}–10^{-7}$ for $^{99}\text{Tc}/\text{Mo}$ and $^{99}\text{Tc}/\text{Ru}$; such approaches are compelling means to improve sensitivity.
Comparison with Other Methods. When compared with existing techniques, the online SPE–ICP–MS–DRC technique proposed herein exhibits superior characteristics in terms of DL and required sample volume, as shown in Table S4 in the SI. The proposed method has the lowest DL of the online methods in the list. Most existing methodologies for 99Tc analysis using ICP–MS use the TEVA resin; therefore, manual handing is necessary during analysis and sample applications are limited. For example, seawaters have extremely low values of 99Tc/Mo and/or 99Tc/Ru. Furthermore, low values of 99Tc/Mo and/or 99Tc/Ru mean that it is difficult to increase the initial volume of the sample. Based on these comparisons, online SPE–ICP–MS–DRC should be the method of choice for 99Tc quantification, especially when considering measurements of environmental samples.

Measurement of Environmental Samples. The proposed results for five 99Tc-spiked environmental samples containing a certified reference sample (IAEA-443) are summarized in Table 1. Without any additional pretreatment or omitting matrix elements from these samples before analysis, their quantified 99Tc values agreed well with the spiked numbers. Concentrations of Mo and Ru in the environmental samples measured via ICP–MS (normal) with dilution (10⁰–10⁴) using the HNO₃ solution were 0.39, 0.015, 14.8, and 9.8 μg/L for Mo in river water, groundwater, deep pond mineral water, and seawater, respectively. In contrast, concentrations of Ru were ND (<0.67), 1.6, 11.1, and 1313 ng/L for river water, groundwater, deep pond mineral water, and seawater, respectively. This gives 99Tc/Mo and 99Tc/Ru values of 6.8 × 10⁻³–6.7 × 10⁻² and 7.6 × 10⁻⁴–1.5 × 10⁰, respectively. The resulting 99Tc concentrations are significantly higher than those of Mo and Ru (approx. 6 and 3 orders of magnitude for Mo and Ru, respectively). In addition, the certificated reference material (IAEA-443 seawater) containing 0.159–0.250 mBq/kg of 99Tc was measured by this method, and the resultant value significantly corresponded, as shown in Table 2.

This study also used condensed seawater samples with additional IC preconcentration to achieve a 2000-times enhancement of 99Tc sensitivity (40–20 mL). Among these experiments, aliquot volumes (10 mL), including 99Tc (100 pg), were directly injected into the system without any further preparation. 8% was 55.1% (Re tracer), and the DL of 99Tc was 70.0 fg/L (44.3 μBq/L). The concentration of nonspiked and spiked samples showed values below the DL (70.0 fg/L) and 111 pg (70.3 μBq), respectively. The use of additional (optional) pretreatment methods such as IC resin separation prior to online SPE–ICP–MS–DRC analysis did not preclude the quantification of fg/L 99Tc concentrations.

CONCLUSIONS

In this study, the direct quantification of 99Tc in small aliquot volumes (50 mL) of environmental samples containing picogram levels of 99Tc was presented using online ICP–MS–DRC. Although 99Tc analyses using ICP–MS generally get disturbed in the presence of Mo and Ru, the combination of SPE, DRC, and QMS filter techniques allowed the coexistence of abundance ratios of 1.5 × 10⁻¹³ and 1.1 × 10⁻⁵ for 97Tc/Mo and 99Tc/Ru, respectively. Neither chemical separation nor manual handling was required to remove isobaric interferences from Ru and Mo during the measurement sequence. Background 99Tc noise signals were effectively suppressed via a thorough investigation of their noise sources. As most existing methodologies of 99Tc analysis do not allow the measurement of ultralow abundance (99Tc/Mo and 99Tc/Ru), it was difficult to analyze seawater samples. When investigating DRC, both optimization of the measurement and the removed species of Mo were considered. Under optimized conditions, a small volume of aliquot (50 mL) containing picogram concentrations of 99Tc was successfully analyzed using the proposed online ICP–MS–DRC method even in the presence of 10¹¹ or 10¹² times greater Mo and Ru interference sources. In many previous reports, significant interference has been ignored. Herein, we achieved the measurement of ultralow abundances (99Tc/Mo and 99Tc/Ru) using the proposed method, thus showing that it can be applied to large-volume preconcentrations. Environmental samples, such as river water, groundwater, deep pond mineral water, and seawater, can be analyzed within 24 min using this method.

Table 1. Abundance Ratio of 99Tc/Mo and 99Tc/Ru at Each Separation Step

separation step	99Tc/Mo	99Tc/Ru
online SPE	2.9 × 10⁻⁴	2.2 × 10⁻⁴
DRC with O₂	5.0 × 10⁻¹⁰	5.0 × 10⁻²
mathematical correction	1.5 × 10⁻¹³	1.1 × 10⁻⁵
online ICP–MS–DRC	4.0 × 10⁻⁴	3.2 × 10⁻⁴
offline preconcentration	5.8 × 10⁻¹⁸	3.5 × 10⁻⁹
offline preconcentration + online ICP–MS–DRC		

Table 2. 99Tc-Spike and Recovery Test Results for Environmental Samples

sample a	addition/pg (mBq)	online SPE–ICP–MS–DRC/pg (mBq) b
river water	0.00	ND
	10.0 (6.33)c	9.84 ± 0.53 (6.23 ± 0.33)
groundwater	0.00	ND
	10.0 (6.33)c	8.92 ± 0.16 (5.65 ± 0.10)
deep pond mineral water	0.00	ND
	10.0 (6.33)c	9.94 ± 0.20 (6.29 ± 0.13)
seawater	0.00	ND
	10.0 (6.33)c	8.85 ± 0.92 (5.60 ± 0.58)
seawater (IAEA-443)	12.6–19.8 (8.0–12.5)c	15.81 ± 0.76 (10.00 ± 0.48)

a All samples were prepared using a 0.7 M HNO₃ solution. b n = 3; all samples (50 mL) were directly injected into the online SPE–ICP–MS–DRC without any additional preconcentration. c ND: non-detection (<9.3 pg/L; equal to 0.465 pg for 50 mL). d Total volume 50 mL (i.e., 0.2 ng/L). e Concentrated sample. The reported range is 0.251–0.395 ng/L (0.159–0.250 mBq/kg).
Indeed, direct analysis using this method, as well as a combination of additional preconcentration, is applicable. The proposed method is a new and effective analytical methodology for rapid and trace analysis of 99Tc in environmental samples. It is particularly useful for distinguishing the very low abundances between 99Tc and potential interference (i.e., from 99Tc/Mo and 99Tc/Ru) and is thus useful in the field of environmental radioactivity monitoring.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.1c02756.

99Tc, Mo, and Ru concentrations in water samples (Table S1); parameters of online SPE–ICP–MS–DRC measurement (Table S2); flowchart of stepwise control of valve switching (Table S3); comparison of the recovery (R%) of 65 elements on the commercial SPE resins (Figure S1); adsorption and isolation property of 99Tc using TK201 resin with the double-column inline style (Figure S2); behaviors of 98Mo, 98Mo/H, and 99Tc with various types of gases in DRC (Figure S3); comparison of O$_2$ effects in DRC for 99Tc and 99Ru (Figure S4); and comparison of analytical performance with other reported methods (Table S4) (PDF).

AUTHOR INFORMATION

Corresponding Authors

Makoto Matsueda — Faculty of Symbiotic Systems Science, Cluster of Science and Technology, Fukushima University, Fukushima 960-1296, Japan; Collaborative Laboratories for Advanced Decomposition Science, Japan Atomic Energy Agency, Fukushima 963-7700, Japan; Email: matsueda.makoto@jaea.go.jp

Yoshitaka Takagai — Faculty of Symbiotic Systems Science, Cluster of Science and Technology, Fukushima University, Fukushima 960-1296, Japan; Institute of Environmental Radioactivity, Fukushima University, Fukushima 960-1296, Japan; orcid.org/0000-0002-7760-5636; Email: s015@ipc.fukushima-u.ac.jp

Authors

Kayo Yanagisawa — Faculty of Symbiotic Systems Science, Cluster of Science and Technology, Fukushima University, Fukushima 960-1296, Japan

Kazuma Koarai — Collaborative Laboratories for Advanced Decomposition Science, Japan Atomic Energy Agency, Fukushima 963-7700, Japan

Motoki Terashima — Collaborative Laboratories for Advanced Decomposition Science, Japan Atomic Energy Agency, Fukushima 963-7700, Japan

Kenso Fujiwara — Collaborative Laboratories for Advanced Decomposition Science, Japan Atomic Energy Agency, Fukushima 963-7700, Japan

Hironobu Abe — Collaborative Laboratories for Advanced Decomposition Science, Japan Atomic Energy Agency, Fukushima 963-7700, Japan

Akihiro Kitamura — Collaborative Laboratories for Advanced Decomposition Science, Japan Atomic Energy Agency, Fukushima 963-7700, Japan; Present Address: Naraha Center for Remote Control Technology Development, Sector of Fukushima Research and Development, Japan

Atomic Energy Agency (JAEA), 1-22 Nakamaru, Yamadaoka, Naraha, Fukushima 979-0513, Japan

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.1c02756

Acknowledgments

The authors gratefully acknowledge funding from the JAEA Nuclear Energy S&T and Human Resource Development Project through a concentrating wisdom (Grant Number JPJA19H19210081).

REFERENCES

(1) Riley, J. P.; Siddiqui, S. A. The Determination of Technetium-99 in Seawater and Marine Algae. Anal. Chim. Acta 1982, 139, 167–176.

(2) Harvey, B. R.; Ilbett, R. D.; Williams, K. J.; Lovett, M. B. The Determination of Technetium-99 in Environmental Materials. Fish. Res. 1991, 22.

(3) Chiu, J. H.; Chu, T. C.; Weng, P. S. Radiochemical Determination of Technetium-99 in LLW by Chelation with Sodium Diethyl Dithiocarbamate (NaDDC) and Extraction with Chloroform. J. Radioanal. Nucl. Chem. Artic. 1991, 150, 493–507.

(4) Wigley, F.; Warwick, P. E.; Croudace, I. W.; Caborn, J.; Sanchez, A. L. Optimised Method for the Routine Determination of Technetium-99 in Environmental Samples by Liquid Scintillation Counting. Anal. Chim. Acta 1999, 380, 73–82.

(5) Chen, Q.; Dahlgaard, H.; Nielsen, S. P. Determination of 99Tc in Sea Water at Ultra Low Levels. Anal. Chim. Acta 1994, 285, 177–180.

(6) Darab, J. G.; Smith, P. A. Chemistry of Technetium and Rhenium Species during Low-Level Radioactive Waste Vitrification. Chem. Mater. 1996, 8, 1004–1021.

(7) Icenhower, J. P.; Qafoku, N. P.; Zachara, J. M.; Martin, W. J. The Biogeochemistry of Technetium: A Review of the Behavior of an Artificial Element in the Natural Environment. Am. J. Sci. 2010, 310, 721–752.

(8) Shi, K.; Hou, X.; Roos, P.; Wu, W. Determination of Technetium-99 in Environmental Samples: A Review. Anal. Chim. Acta 2012, 709, 1–20.

(9) Centre for Environment Fisheries and Aquaculture Science. Radioactivity in Food and the Environment 2019: RIFE 25.

(10) García-León, M. 99Tc in the Environment: Sources, Distribution and Methods. J. Nucl. Radiochem. Sci. 2005, 6, 253–259.

(11) Sellafield Ltd. Monitoring Our Environment - Discharges and Environmental Monitoring. Annual Report, 2019.

(12) U.S. Department of Energy Assistant Secretary for Environmental Management. Hanford Site Groundwater Monitoring Report for 2019.

(13) World Health Organisation. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organisation: Genova, 2017.

(14) United States Environmental Protection Agency. Radionuclides in Drinking Water: A Small Entity Compliance Guide.

(15) O’Hara, M. J.; Burg, S. R.; Grate, J. W. Quantification of Technetium-99 in Complex Groundwater Matrices Using a Radiometric Preconcentrating Minicolumn Sensor in an Equilibrium-Based Sensing Approach. Anal. Chem. 2009, 81, 1068–1078.

(16) Hou, X.; Roos, P. Critical Comparison of Radiometric and Mass Spectrometric Methods for the Determination of Radionuclides in Environmental, Biological and Nuclear Waste Samples. Anal. Chim. Acta 2008, 608, 105–139.
(17) Keith-Roach, M. J.; Stürup, S.; Oughton, D. H.; Dahlgaard, H. Comparison of Two ICP-MS Set-Ups for Measuring 99Tc in Large Volume Water Samples. Analyst 2002, 127, 70–75.
(18) Roos, P. Analysis of Radionuclides Using ICP-MS. Radioact. Environ. 2008, 11, 295–330.
(19) Sahli, H.; Röllin, S.; Corcho Alvarado, J. A. Determination of 99Tc in Environmental Samples and Depleted Uranium Penetrators Using ICP-MS. J. Radioanal. Nucl. Chem. 2017, 311, 1633–1642.
(20) Lehbo, J.; Hou, X. J. Chemistry and Analysis of Radionuclides; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2011; p 348.
(21) Thomas, R. Practical Guide to ICP-MS: A Tutorial for Beginners, 3rd ed.; CRC Press: New York, 2013; p 53, 136–138.
(22) Smedley, P. L.; Kinniburgh, D. G. Molybdenum in Natural Waters: A Review of Occurrence, Distributions and Controls. Appl. Geochem. 2001, 84, 387–432.
(23) Stettenbach, K. J.; Amano, M.; Kreamer, D. K.; Hodge, V. F. Testing the Limits of ICP-MS: Determination of Trace Elements in Ground Water at the Part-Per-Trillion Level. Groundwater 1994, 32, 976–985.
(24) Bekov, G. I.; Letokhov, V. S.; Radaev, V. N.; Baturin, G. N.; Egorov, A. S.; Kursky, A. N.; Narseyev, V. A. Ruthenium in the Ocean. Nature 1984, 312, 748–750.
(25) Shi, K.; Qiao, J.; Wu, W.; Roos, P.; Hou, X. Rapid Determination of Technetium-99 in Large Volume Seawater Samples Using Sequential Injection Extraction Chromatographic Separation and ICP-MS Measurement. Anal. Chem. 2012, 84, 6783–6789.
(26) Walas, S.; Kleszcz, K.; Tobiasz, A.; Mrowiec, H.; Mietelski, J. W. Determination of Technetium-99 in Peat by Flow Injection–Inductively Coupled Plasma Mass Spectrometry. Anal. Lett. 2016, 49, 2755–2765.
(27) Kołacińska, K.; Samczynski, Z.; Dudek, J.; Bojarska-Czajka, A.; Trojanowicz, M. A. Comparison Study on the Use of Dowex 1 and TEVA-Resin in Determination of 99Tc in Environmental and Nuclear Coolant Samples in a SIA System with ICP-MS Detection. Talanta 2018, 184, 527–536.
(28) Eroglu, A. E.; McLeod, C. W.; Leonard, K. S.; McCubbin, D. Determination of Technetium in Seawater Using Ion Exchange and Inductively Coupled Plasma Mass Spectrometry with Ultrasonic Nebulization. Spectrochim. Acta, Part B 1998, 53, 1221–1233.
(29) Rodríguez, R.; Leal, L.; Miranda, S.; Ferrer, L.; Avivar, J.; García, A.; Cerdà, V. Automation of 99Tc Extraction by LOV Prior ICP-MS Detection: Application to Environmental Samples. Talanta 2015, 133, 88–93.
(30) Wu, H. C.; Su, T. Y.; Tsai, T. L.; Jung, S. B.; Yang, M. H.; Tyan, Y. C. Rapid Determination of Technetium-99 by Automatic Solid Phase Extraction and Inductively Coupled Plasma Mass Spectrometry. RSC Adv. 2014, 4, 39226–39230.
(31) Das, D.; Dutta, M.; Cervera, M. L.; de la Guardia, M. Recent Advances in On-Line Solid-Phase Pre-Concentration for Inductively-Coupled Plasma Techniques for Determination of Mineral Elements. TrAC, Trends Anal. Chem. 2012, 33, 35–45.
(32) Liang, P.; Qin, Y.; Hu, B.; Peng, T.; Jiang, Z. Nanometer-Size Titanium Dioxide Microcolumn on-Line Preconcentration of Trace Metals and Their Determination by Inductively Coupled Plasma Atomic Emission Spectrometry in Water. Anal. Chim. Acta 2001, 440, 207–213.
(33) Takagai, Y.; Furukawa, M.; Kameo, Y.; Suzuki, K. Sequential Inductively Coupled Plasma Quadrupole Mass-Spectrometric Quantification of Radioactive Strontium-90 Incorporating Cascade Separation Steps for Radioactive Contamination Rapid Survey. Anal. Methods 2014, 6, 355–362.
(34) Furukawa, M.; Takagai, Y. Split Flow On-Line Solid-Phase Extraction Coupled with Inductively Coupled Plasma Mass Spectrometry System for One-Shot Data Acquisition of Quantification and Recovery Efficiency. Anal. Chem. 2016, 88, 9397–9402.
(35) Ayala, A.; Takagai, Y. Sequential Injection Analysis System Exploiting On-Line Solid-Phase Extraction for the Determination of Strontium and Nickel by Microwave Plasma Atomic Emission Spectrometry. Anal. Sci. 2018, 34, 387–390.
(36) Furukawa, M.; Matsueda, M.; Takagai, Y. Ultrasonic Mist Generation Assist Argon–Nitrogen Mix Gas Effect on Radioactive Strontium Quantification by Online Solid-Phase Extraction with Inductively Coupled Plasma Mass Spectrometry. Anal. Sci. 2018, 34, 471–476.
(37) Furukawa, M.; Takagai, K.; Matsunami, H.; Komatsuzaki, Y.; Kawakami, T.; Shinano, T.; Takagai, Y. Rapid Quantification of Radioactive Strontium-90 in Fresh Foods via Online Solid-Phase Extraction–Inductively Coupled Plasma–Dynamic Reaction Cell-Mass Spectrometry and Its Comparative Evaluation with Conventional Radiometry. ACS Omega 2019, 4, 11276–11284.
(38) Yanagisawa, K.; Matsueda, M.; Furukawa, M.; Takagai, Y. Development of Online Dilution System for Quantification of 90Sr Using Automatic Solid-Phase Extraction Inductively Coupled Plasma Mass Spectrometry. Anal. Sci. 2020, 36, 1131–1135.
(39) Kołacińska, K.; Chajduk, E.; Dudek, J.; Samczynski, Z.; Lokas, E.; Bojanowska-Czajka, A; Trojanowicz, M. Automation of Sample Processing for ICP-MS Determination of 90Sr Radionuclide at ppq Level for Nuclear Technology and Environmental Purposes. Talanta 2017, 169, 216–226.
(40) Vilas, V. V.; Millet, S.; Sandow, M.; Pérez, L. I.; Serrano-Purroy, D.; van Winkel, S.; de las Heras, L. A. An Automated Seafast ICP-DRC-MS Method for the Determination of 90Sr in Spent Nuclear Fuel Leachates. Molecules 2020, 25, No. 1429.
(41) Kim, H.; Kang, Y. G.; Lee, Y. J.; Choi, S. D.; Lim, J. M.; Lee, J. H. Automated Extraction Chromatographic Radionuclide Separation System for Analysis of 90Sr in Seawater. Talanta 2020, 217, No. 121055.
(42) Wang, W.; Evans, R. D.; Newman, K.; Khokhar, R. Automated Separation, Preconcentration and Measurement of 90Sr in Liquid Samples with Complex Matrices by Online Ion Exchange Chromatography Coupled with Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Talanta 2021, 222, No. 121488.
(43) Ceballos, M. R.; García-Tenorio, R.; Estela, J. M.; Cerdà, V.; Ferrer, L. An Integrated Automatic System to Evaluate U and Th Dynamic Lixiviation from Solid Matrices, and to Extract/Prec-Concentrate Leached Analyses Previous ICP-MS Detection. Talanta 2017, 175, 507–513.
(44) Arnaquist, I. J.; di Vacri, M. L.; Hoppe, E. W. An Automated Ultraceanion Exchange Separation Method for the Determinations of 232Th and 238U in Copper Using Inductively Coupled Plasma Mass Spectrometry. Nucl. Instrum. Methods Phys. Res., Sect. A 2020, 965, No. 163761.
(45) Xiao, G.; Jones, R. L. Determination of 239Pu in Urine by Sector Field Inductively Coupled Plasma Mass Spectrometry (SF-ICP-MS) Using an Automated Offline Sample Preparation Technique. J. Radioanal. Nucl. Chem. 2021, 277–287.
(46) Avivar, J.; Ferrer, L.; Casas, M.; Cerdà, V. Fully Automated Lab-on-Valve-Multisyringe Flow Injection Analysis-ICP-MS System: An Effective Tool for Fast, Sensitive and Selective Determination of Thorium and Uranium at Environmental Levels Exploiting Solid Phase Extraction. J. Anal. At. Spectrom. 2012, 27, 327–334.
(47) Qiao, J.; Hou, X.; Roos, P.; Miró, M. Rapid and Simultaneous Determination of Neptunium and Plutonium Isotopes in Environmental Samples by Extraction Chromatography Using Sequential Injection Analysis and ICP-MS. J. Anal. At. Spectrom. 2010, 25, 1769–1779.
(48) Perna, L.; Betti, M.; Moreno, J. M. B.; Fuoco, R. Investigation on the Use of UTEVA as a Stationary Phase for Chromatographic Separation of Actinides On-Line to Inductively Coupled Plasma Mass Spectrometry: J. Anal. At. Spectrom. 2001, 16, 26–31.
(49) Kim, C. K.; Kim, C. S.; Rho, B. H.; Lee, J. I. Rapid Determination of 99Tc in Environmental Samples by High Resolution ICP-MS Coupled with on-Line Flow Injection System. J. Radioanal. Nucl. Chem. 2002, 252, 421–427.
(50) Shi, K.; Hou, X.; Roos, P.; Wu, W. Stability of Technetium and Decontamination from Ruthenium and Molybdenum in Determination of 99Tc in Environmental Solid Samples by ICPMS. Anal. Chem. 2012, 84, 2009–2016.
Mas, J. L.; García-León, M.; Bolívar, J. P.
99Tc Detection in Water Samples by ICP-MS.
Radiochim. Acta 2004, 92, 39–46.

Chen, Q.; Dahlgaard, H.; Hansen, H. J. M.; Aarkrog, A.
Determination of
99Tc in Environmental Samples by Anion Exchange
and Liquid-Liquid Extraction at Controlled Valency.
Anal. Chim. Acta 1990, 228, 163–167.

Mas, J. L.; Tagami, K.; Uchida, S.
Method for the Detection of Tc in Seaweed Samples Coupling the Use of Re as a Chemical Tracer and
Isotope Dilution Inductively Coupled Plasma Mass Spectrometry.
Anal. Chim. Acta 2004, 509, 83–88.

Triskem International (French).
TK201 Resin Product Sheet.

Neubauer, K. R.; Knopp, M. A.; Davidowski, L.; Dionne, L.
Trace Analyses in Metal Matrices Using the ELAN DRC II.
Appl. Note 2019, 100, 1–8.

Amais, R. S.; Virgilio, A.; Schiavo, D.; Nóbrega, J. A.
Tandem Mass Spectrometry (ICP-MS/MS) for Overcoming Molybdenum Oxide Interferences on Cd Determination in Milk.
Microchem. J. 2015, 120, 64–68.

Sugiyama, N.; Nakano, K.
Reaction Data for 70 Elements Using O2, NH3, and H2 Gases with the Agilent 8800 Triple Quadrupole ICP-MS.
Agil. Technol. Appl. Note. P/NS990-4585EN, 2014; pp 1–14.

Tanner, S. D.; Baranov, V. I.; Bandura, D. R.
Reaction Cells and Collision Cells for ICP-MS: A Tutorial Review.
Spectrochim. Acta, Part B 2002, 57, 1361–1452.

D’Ilio, S.; Violante, N.; Majorani, C.; Petrucci, F.
Dynamic Reaction Cell ICP-MS for Determination of Total As, Cr, Se and V in Complex Matrices: Still a Challenge?
A Review.
Anal. Chim. Acta 2011, 698, 6–13.

Yamada, N.
Kinetic Energy Discrimination in Collision/Reaction Cell ICP-MS: Theoretical Review of Principles and Limitations.
Spectrochim. Acta, Part B 2015, 110, 31–44.

Martínez, A.; Köster, A. M.; Salahub, D. R.
Reaction of a Mo Atom with H2, N2, and O2: A Density Functional Study.
J. Phys. Chem. A 1997, 101, 1532–1541.

Koyanagi, G. K.; Caraiman, D.; Blagojevic, V.; Bohme, D. K.
Gas-Phase Reactions of Transition-Metal Ions with Molecular Oxygen: Room-Temperature Kinetics and Periodicities in Reactivity.
J. Phys. Chem. A 2002, 106, 4581–4590.

Chung, K. H.; Do Choi, S.; Choi, G. S.; Kang, M. J.
Design and Performance of an Automated Radionuclide Separator: Its Application on the Determination of
99Tc in Groundwater.
Appl. Radiat. Isot. 2013, 81, 57–61.

International Atomic Energy Agency.
Interlaboratory Comparison of Radionuclides in Irish Sea Water - IAEA-443.