Search for a Standard Model Higgs boson in the $H \rightarrow ZZ \rightarrow \ell^+\ell^−\nu\bar{\nu}$ decay channel with the ATLAS detector

The ATLAS Collaboration

A search for a heavy Standard Model Higgs boson decaying via $H \rightarrow ZZ \rightarrow \ell^+\ell^−\nu\bar{\nu}$, where $\ell = e, \mu$, is presented. It is based on proton-proton collision data at $\sqrt{s} = 7$ TeV, collected by the ATLAS experiment at the LHC in the first half of 2011 and corresponding to an integrated luminosity of 1.04 fb$^{-1}$. The data are compared to the expected Standard Model backgrounds. The data and the background expectations are found to be in agreement and upper limits are placed on the Higgs boson production cross section over the entire mass window considered; in particular the production of a Standard Model Higgs boson is excluded in the region $340 < m_H < 450$ GeV at the 95% confidence level.

PACS numbers: 14.80.Bn

The search for the Standard Model (SM) Higgs boson H is one of the most important aspects of the Large Hadron Collider (LHC) physics program. Direct searches at the CERN LEP $e^+e^−$ collider have set a lower limit of 114.4 GeV on the Higgs boson mass, m_H, at 95% confidence level. Searches by the CDF and D0 experiments at the Fermilab Tevatron $p\bar{p}$ collider have explored the mass range up to 200 GeV and exclude the additional region $156 < m_H < 177$ GeV. For m_H greater than twice the Z boson mass, m_Z, a significant fraction of Higgs bosons decay to two Z bosons. The $ZZ \rightarrow \ell^+\ell^-\nu\bar{\nu}$ decay channel offers a substantial branching fraction in combination with a good separation from potential background processes owing to the high transverse momentum, p_T, of the electron or muon pair from the leptonic Z decay and the high missing transverse momentum, E_T^{miss}, from the Z decaying to neutrinos.

The first cross section limits for a SM Higgs boson in the mass region $200 < m_H < 600$ GeV were set by the ATLAS and CMS collaborations in Refs. [6, 7]. This letter extends the $H \rightarrow ZZ \rightarrow \ell^+\ell^-\nu\bar{\nu}$ results therein, with a 30-fold increase in the integrated luminosity, as well as a significant improvement in the event reconstruction and background rejection.

The data sample considered in this search was recorded by the ATLAS experiment during the first half of the 2011 LHC run at a center-of-mass energy $\sqrt{s} = 7$ TeV. The integrated luminosity of the data sample, considering only data-taking periods where all relevant detector subsystems were operational, is 1.04 fb$^{-1}$.

The ATLAS detector has been described elsewhere. Simulated signal and background event samples are produced with Monte Carlo (MC) event generators, passed through a full GEANT4 simulation of the ATLAS detector and reconstructed with the same reconstruction software as the data. $H \rightarrow ZZ \rightarrow \ell^+\ell^-\nu\bar{\nu}$ ($\ell = e, \mu, \tau$) events are modelled using the POWHEG [11, 12] event generator, which includes matrix elements for the gluon fusion and the vector-boson fusion production mechanisms of the Higgs boson up to next-to-leading order. POWHEG is interfaced to PYTHIA [13] for the modelling of parton showers. The Higgs boson p_T spectrum is reweighted to the calculation of Ref. [14], which provides QCD corrections up to next-to-leading order and QCD soft-gluon resummations up to next-to-next-to-leading logarithms. An alternative sample of signal events is produced using the PYTHIA event generator, which includes only leading order matrix elements. In both cases PHOTOS [15] is used to model final-state radiation and TAUOLA [16] for the simulation of τ decays.

$H \rightarrow ZZ \rightarrow \ell^+\ell^-\ell^+\ell^−$ and $H \rightarrow ZZ \rightarrow \ell^+\ell^-q\bar{q}$ samples are also simulated using the same generators as for the $H \rightarrow ZZ \rightarrow \ell^+\ell^-\nu\bar{\nu}$ samples, whilst $H \rightarrow W^+W^- \rightarrow \ell^+\nu\ell^−\bar{\nu}$ events are produced using the MC@NLO generator [17], interfaced to HERWIG [18] and JIMMY [19] in the gluon fusion channel and the SHERPA [20] generator in the vector-boson fusion channel. These channels contribute to the signal yield and are considered as part of the signal. In particular, $H \rightarrow W^+W^- \rightarrow \ell^+\nu\ell^−\bar{\nu}$ decays contribute as much as 77% to the signal expectation after the full selection for $m_H = 200$ GeV decreasing to 13% at $m_H = 300$ GeV. Independence of the analysis with respect to other ATLAS Higgs boson searches [21, 22] is ensured through mutually exclusive selection requirements on the dilepton invariant mass, the number of leptons or the event missing transverse momentum.

The cross sections for Higgs boson production, the associated branching fractions [24], as well as their uncertainties, are compiled in Ref. [25]. They correspond to next-to-next-to-leading order in QCD for the gluon fusion [26, 27] and the vector boson fusion [28] processes. In addition, QCD soft-gluon resummations up to next-to-
next-to-leading logarithms are available for the gluon fusion process \[33\], while next-to-leading order electroweak corrections are applied to both the gluon fusion \[34, 35\] and the vector boson fusion \[36, 37\] processes. These cross section calculations do not account for the width of the Higgs boson, which is implemented through an ad-hoc Breit-Wigner line shape applied at the event generator level. Recent studies \[25, 38\] have indicated that effects due to off-shell Higgs boson production and interference with other SM processes may become sizeable at the highest masses \(m_H > 400\) GeV considered in this search. In the absence of a full calculation, a conservative estimate of the possible size of such effects was made and the impact on the obtained limits in this channel was found to be less than 2\% for \(m_H = 400\) GeV growing to about 25\% at \(m_H = 600\) GeV.

Different event generators are chosen to model a range of important background processes. The ALPGEN generator \[39\] interfaced with HERWIG for parton showers and hadronisation is used to simulate \(W / Z + \text{jets}\) backgrounds. MC@NLO, interfaced to HERWIG and JIMMY, is used for the production of top-pair, single top and diboson (\(WW, WZ\) and \(ZZ\)) backgrounds. PYTHIA is used to simulate \(b\bar{b}\) and \(cc\) samples as well as alternative samples for the \(Z\) and \(ZZ\) backgrounds. All simulated background samples are scaled to the highest available precision calculations for the relevant process. An overview of the used predictions and their uncertainties is given in Ref. \[40\].

Data used for the search in the electron and muon channels were collected primarily using single lepton triggers with \(p_T\) thresholds of 20 and 18 GeV respectively. The expected trigger efficiency is close to 100\% in the electron channel and about 95\% in the muon channel for signal events passing all the selection criteria described below.

Electron candidates are reconstructed from electromagnetic calorimeter clusters, with shapes consistent with those expected from electromagnetic showers, matched to tracks reconstructed in the inner detector. Details of the electron reconstruction and identification can be found in Ref. \[41\]. The electron candidates are required to pass the standard ATLAS “medium” selection criteria and have \(p_T > 20\) GeV and pseudorapidity \(|\eta| < 2.47\).

Muons are identified by reconstructing tracks in the muon spectrometer. These tracks are then extrapolated back to the beam line to find a matching inner detector track. Details of muon reconstruction and identification can be found in Ref. \[41\]. Only muons with \(p_T > 20\) GeV and \(|\eta| < 2.5\) are considered.

Jets are used in this analysis to reject backgrounds from events with heavy quark decays or from events with fake \(E_T^{\text{miss}}\) due to mis-measured jets. For this purpose jets are reconstructed from clusters of energy deposits in the calorimeters using the anti-\(k_t\) algorithm \[42\] with a radius parameter \(R = 0.4\). Only jets with \(p_T > 25\) GeV and \(|\eta| < 2.5\) are considered.

To remove leptons associated with jets, such as those originating from semi-leptonic decays of \(b\) hadrons, leptons are not considered in the analysis if the sum of inner detector track momenta in a cone \(\Delta R < 0.2\) around the lepton direction is greater than 10\% of the \(p_T\) of the lepton itself or if the lepton is within a distance \(\Delta R < 0.4\) of the nearest jet.

The missing transverse momentum is measured as the (negative) vectorial sum of the transverse momenta of all clusters in the calorimeters within \(|\eta| < 4.5\) and all selected muons in the event. Calorimeter deposits associated with muons are subtracted to avoid double counting.

Events are required to contain a reconstructed primary vertex formed from at least 3 tracks and exactly two oppositely charged electrons or muons, consistent with originating from the primary vertex. The dilepton mass distribution is shown in Fig. 1. Inclusive \(Z\) boson production is the dominant background at this stage of the analysis. To suppress backgrounds from top, \(W\), and QCD multijet production, the dilepton invariant mass, \(m_{\ell\ell}\), is required to satisfy \(|m_Z - m_{\ell\ell}| < 15\) GeV.

![FIG. 1: The dilepton invariant mass distribution for events with exactly two oppositely charged electrons or muons. The inset at the bottom of the figure shows the ratio between the data and the combined background expectations as well as a band corresponding to the combined systematic uncertainties of the analysis.](image-url)
The chosen cut achieves an efficiency of about 70% for identifying real b-jets, with a light-quark jet rejection of about 80% \cite{43}.

To exploit the mass dependent kinematic features of $H \rightarrow ZZ \rightarrow \ell^+\ell^-\nu\bar{\nu}$ production, the search is subdivided into a low Higgs boson mass ($m_H < 280$ GeV) and a high Higgs boson mass ($m_H \geq 280$ GeV) search region, where dedicated cuts are applied to two important discriminating variables used to reduce the background contributions: E_T^{miss} and the azimuthal angle between the two leptons, $\Delta \phi(\ell, \ell)$. Figure 2 shows the distributions of these variables after the application of the $m_\ell\ell$ window cut. Since inclusive Z production gives rise to a steeply falling E_T^{miss} distribution, systematic uncertainties on the E_T^{miss} reconstruction are particularly important to estimate this background correctly. The dominant contributions to the E_T^{miss} uncertainty come from the knowledge of the jet energy scale and the modelling of inclusive Z production. Figure 2 shows that a good agreement within systematic uncertainties is observed between data and the combined background expectation. In the low m_H region, events are required to satisfy $E_T^{miss} > 66$ GeV, whilst in the high m_H region the requirement is $E_T^{miss} > 82$ GeV. These cuts reduce significantly the backgrounds from processes with no or modest genuine missing transverse momentum originating from unobserved neutrinos.

The boost of the Z bosons originating from a Higgs boson decay increases with m_H, thus reducing the expected opening angle between the leptons. In the low m_H region this boost is expected to be modest and a cut $1 < \Delta \phi(\ell, \ell) < 2.64$ is applied. In the high m_H region an upper limit $\Delta \phi(\ell, \ell) < 2.25$ is required.

Finally, in the high m_H region, events are also rejected if the azimuthal angle between the missing transverse momentum vector and the direction of the $Z \rightarrow \ell\ell$ boson candidate is $\Delta \phi(\vec{p}_T^{miss}, \vec{p}_T^{\ell\ell}) < 1$. The efficiency of the event selection is very similar in the electron and muon channels, ranging from 3% for $m_H = 200$ GeV to about 48% for $m_H = 600$ GeV.

SM pair production of Z bosons has a final state identical to the signal, and is therefore expected to survive most of the applied selection criteria and form a continuum in the transverse mass distribution (defined below). The normalisation for this background is obtained from a calculation including next-to-leading order terms \cite{44} with an additional 6% term to account for missing quark-box diagrams ($gg \rightarrow ZZ$) \cite{45}. A 11% normalisation uncertainty is assigned to this background, estimated from scale, PDF and model uncertainties. WW and WZ backgrounds are normalised in a similar way.

The background from inclusive Z production is derived from MC, after checking that the simulation describes well the data in samples selected by requiring the presence of a lepton pair. The background from top events is also taken from the MC prediction. This prediction is verified to agree with data, within systematic uncertainties, in two independent control samples: the first one requires at least one identified b-jet, while the second selects events containing electron-muon pairs.

Additional backgrounds can arise from QCD multijet events or inclusive W production due to heavy flavour decays or jets faking leptons. The normalisation of the W background is obtained from the ratio between data and MC in control samples of like-sign electron-electron and electron-muon events with high E_T^{miss}. The QCD multijet background in the electron channel is determined using a data sample based on a loosened electron selection, thus dominated by jets; this sample is scaled to describe the tails of the $m_\ell\ell$ distribution. In the muon channel, the background from heavy flavour decays is studied using simulation, whereas other muon sources from multijet events are constrained using a sample of like-sign muon pairs in data. In both cases the background is found to
be negligible.

The signal efficiencies and overall background expectations are similar in the electron and the muon channels, therefore only combined results are presented. The numbers of candidate \(H \to ZZ \to \ell^+\ell^- \nu\bar{\nu} \) events selected in data and the expected yields from signal and background processes are shown in Table I.

Source	low \(m_H \) search	high \(m_H \) search
\(Z \)	\(19.1 \pm 2.6 \pm 0.9 \)	\(6.0 \pm 1.4 \pm 1.8 \)
\(W \)	\(8.5 \pm 2.3 \pm 8.5 \)	\(3.1 \pm 1.0 \pm 3.1 \)
\(\text{top} \)	\(29.9 \pm 1.3 \pm 6.0 \)	\(14.9 \pm 0.8 \pm 3.1 \)
\(\text{multijet} \)	\(0.4 \pm 0.4 \pm 0.2 \)	\(0.0 \pm 0.0 \pm 0.0 \)
\(ZZ \)	\(17.6 \pm 0.4 \pm 2.1 \)	\(14.7 \pm 0.4 \pm 1.7 \)
\(WZ \)	\(16.7 \pm 0.6 \pm 2.0 \)	\(12.1 \pm 0.5 \pm 1.4 \)
\(WW \)	\(12.4 \pm 0.4 \pm 1.5 \)	\(4.6 \pm 0.3 \pm 0.5 \)
Total	\(104.6 \pm 3.8 \pm 16.0 \)	\(55.3 \pm 2.0 \pm 7.8 \)
Data	85	47

The systematic uncertainties include experimental uncertainties related to the selection and calibration of electrons, muons, jets and \(b \)-jets, which are also explicitly propagated to the \(E_T^{\text{miss}} \) calculation. Shape uncertainties for the signal and for the single \(Z \) and \(ZZ \) backgrounds are estimated using PYTHIA as an alternative MC generator.

Normalisation uncertainties for signal (gluon fusion \(+4\% \) and VBF \(-10\% \)) and diboson backgrounds (11%) are obtained from theory \([23] \); uncertainties for the inclusive \(Z \) boson production (2.5%), top quark production (9%), inclusive \(W \) boson production (100%) and QCD multijet production in the electron channel (50%) are estimated from data. A 3.7% luminosity uncertainty \([46] \) is included for those processes for which the normalisation is not obtained from the data. The dominant systematic uncertainties in the analysis are the \(E_T^{\text{miss}} \) uncertainties for the \(Z \) background, the \(b \)-tagging uncertainty for the top background and the normalisation uncertainties for the signal and the \(W \) and diboson backgrounds.

After the event selection, the Higgs boson search is performed by looking for an excess of data over the SM background expectation in the transverse mass distribution of the selected \(e\nu\nu \) and \(\mu\nu\nu \) events. The transverse mass is calculated from the lepton pair and the \(p_T^{\text{miss}} \) vector as:

\[
m_T^2 \equiv \left[\sqrt{m_Z^2 + |p_T^{\ell\ell}|^2} + \sqrt{m_Z^2 + |p_T^{\text{miss}}|^2} \right]^2 - \left[p_T^{\ell\ell} + p_T^{\text{miss}} \right]^2.
\]

Figure 3 shows the \(m_T \) distribution in the high \(m_H \) search region. Signal to background ratios for different \(m_H \) values, determined in a \(m_T \) window defined to enclose 95% of the corresponding signal events, are listed in Table II.

![Figure 3](image-url)

FIG. 3: The transverse mass distribution of \(H \to ZZ \to \ell^+\ell^- \nu\bar{\nu} \) candidates in the high \(m_H \) search region for the data (dots), the expected backgrounds (histograms) and a Higgs boson of mass 380 GeV (filled histogram). The electron and muon channels are combined.

The number and distribution of candidate \(H \to ZZ \to \ell^+\ell^- \nu\bar{\nu} \) events observed in the data agree with the expected backgrounds within the uncertainties, with no indication of an excess. Upper limits are set on the Higgs boson production cross section relative to its predicted SM value as a function of \(m_H \). The limits are extracted from a maximum likelihood fit to the \(m_T \) distribution following the \(CL_s \) modified frequentist formalism with the profile likelihood test statistic \([47, 48] \). All systematic uncertainties are taken into account.

Figure 4 shows the expected and observed limits at the 95% confidence level. The expected limit is lowest around \(m_H = 380 \) GeV where it is 1.1 times the SM Higgs boson mass range, and the expected limits agree with the expectations within the \(\pm 2\sigma \) band. A SM Higgs boson in the range \(340 \) GeV < \(m_H < 450 \) GeV is excluded at the 95% confidence level.

In summary, results of a search for a heavy SM Higgs boson with a mass in the range \(200 < m_H < 600 \) GeV decaying to \(ZZ \to \ell^+\ell^- \nu\bar{\nu} \) have been presented. These results are based on a data sample corresponding to an integrated luminosity of 1.04 fb\(^{-1}\), recorded with the ATLAS detector at the LHC. No evidence for a signal is observed and cross section limits are placed over
the entire mass range, excluding the production of a SM Higgs boson in the region $340 < m_H < 450$ GeV at the 95% confidence level.

We thank CERN for the very successful operation of the LHC, as well as the support of our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Geocrates of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

FIG. 4: Observed and expected 95% confidence level upper limits on the Higgs boson production cross section divided by the SM prediction. The green and yellow bands indicate the $\pm 1\sigma$ and $\pm 2\sigma$ fluctuations, respectively, around the median sensitivity. The limits are based on 1.04 fb$^{-1}$ of data at $\sqrt{s} = 7$ TeV.

F. Englert and R. Brout, Phys. Rev. Lett. 13, 321 (1964).
[2] P. W. Higgs, Phys. Rev. Lett. 13, 508 (1964)
[3] G. S. Guralnik, C. R. Hagen and T. W. B. Kibble, Phys. Rev. Lett. 13, 585 (1964)
[4] LEP Working Group for Higgs boson searches, Physics Letters B 565, 61 (2003)
[5] CDF and D0 Collaborations, (2011), arXiv:1107.5518 [hep-ex].
[6] ATLAS Collaboration, Eur. Phys. J. C71, 1728 (2011)
[7] CMS Collaboration, Phys.Lett. B699, 25 (2011)
[8] ATLAS Collaboration, JINST 3, S08003 (2008)
[9] E. Agostinelli et al., GEANT4 Collaboration, Nucl. A 506, 250 (2003)
[10] ATLAS Collaboration, Eur. Phys. J. C70, 823 (2010)
[11] S. Alioli, P. Nason, C. Oleari and E. Re, JHEP 04, 002 (2009)
[12] P. Nason and C. Oleari, JHEP 02, 037 (2010)
[13] T. Sjöstrand et al., JHEP 05, 026 (2006)
[14] G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Nucl. Phys. B737, 73 (2006)
[15] P. Golonka and Z. Was, Eur. Phys. J. C45, 97 (2006)
[16] Z. Was, Nucl. Phys. Proc. Suppl. 98, 96 (2001)
[17] S. Frixione and B. Webber, JHEP 2002, 029 (2002)
[18] G. Corcella et al., JHEP 01, 010 (2001)
[19] J. M. Butterworth, J. R. Forshaw and M. H. Seymour, Z. Phys. C72, 637 (1996)
[20] T. Gleisberg et al., JHEP 0902, 007 (2009)
[21] ATLAS Collaboration, ATLAS-CONF-2011-134 (2011).
[22] ATLAS Collaboration, ATLAS-CONF-2011-131 (2011).
[23] ATLAS Collaboration, (2011), submitted to Phys. Lett. B, arXiv:1108.5064 [hep-ex].
[24] A. Djouadi, J. Kalinowski and M. Spira, Comput. Phys. Commun. 108, 56 (1998)
[25] LHC Higgs Cross Section Working Group, S. Dittmaier, C. Mariotti, G. Passarino and R. Tanaka (Eds.), CERN-2011-002 (2011), arXiv:1101.0593 [hep-ph].
[26] R. V. Harlander and W. B. Kilgore, Phys. Rev. Lett. 88, 201801 (2002)
[27] A. Anastasiou and K. Melnikov, Phys. Rev. D64, 220 (2002)
[28] A. Djouadi, J. Kalinowski and M. Spira, Comput. Phys. Commun. 108, 56 (1998)
[29] C. Anastasiou, J. Butterworth, J. Forshaw and M. Seymour, Phys. Rev. D75, 025009 (2007)
[30] V. Ravindran, J. Smith and W. L. van Neerven, Comput. Phys. Commun. 172, 266 (2006)
[31] P. Nason and C. Oleari, JHEP 02, 037 (2010)
[32] T. Sjöstrand et al., JHEP 05, 026 (2006)
[33] A. Djouadi, J. Kalinowski and M. Spira, Comput. Phys. Commun. 108, 56 (1998)
[34] C. Anastasiou, J. Butterworth, J. Forshaw and M. Seymour, Phys. Rev. D75, 025009 (2007)
[35] V. Ravindran, J. Smith and W. L. van Neerven, Comput. Phys. Commun. 172, 266 (2006)
[36] M. Ciccolini, A. Denner and S. Dittmaier, Phys. Rev. Lett. 99, 161803 (2007).
[37] M. Ciccolini, A. Denner and S. Dittmaier, Phys. Rev. D77, 013002 (2008).
[38] C. Anastasiou, S. Buehler, F. Herzog and A. Lazopoulos, (2011), arXiv:1107.0683 [hep-ph].
[39] M. L. Mangano et al., JHEP 07, 001 (2003).
[40] ATLAS Collaboration, ATLAS-CONF-2011-042 (2011).
[41] ATLAS Collaboration, JHEP 12, 060 (2010).
[42] M. Cacciari, G. P. Salam and G. Soyez, JHEP 04, 063 (2008).
[43] ATLAS Collaboration, ATLAS-CONF-2011-102 (2011).
[44] J. M. Campbell and R. K. Ellis, Phys. Rev. D60, 113006 (1999).
[45] T. Binoth, N. Kauer, and P. Mertsch, arXiv:0807.0024 [hep-ph].
[46] ATLAS Collaboration, ATLAS-CONF-2011-116 (2011).
[47] A. L. Read, J. Phys. G28, 2693 (2002).
[48] G. Cowan et al., Eur. Phys. J. C71, 1554 (2011).
Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain

(a) Institute of Physics, University of Belgrade, Belgrade; (b) Vinca Institute of Nuclear Sciences, Belgrade, Serbia

Department for Physics and Technology, University of Bergen, Bergen, Norway

Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America

Department of Physics, Humboldt University, Berlin, Germany

Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland

School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom

(a) Department of Physics, Bogazici University, Istanbul; (b) Division of Physics, Dogus University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep; (d) Department of Physics, Istanbul Technical University, Istanbul, Turkey

(a) INFN Sezione di Bologna; (b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy

Physikalisches Institut, University of Bonn, Bonn, Germany

Department of Physics, Boston University, Boston MA, United States of America

Department of Physics, Brandeis University, Waltham MA, United States of America

(a) Universidade Federal do Rio de Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil

Physics Department, Brookhaven National Laboratory, Upton NY, United States of America

(a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnică Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania

Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina

Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

Department of Physics, Carleton University, Ottawa ON, Canada

CERN, Geneva, Switzerland

Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America

(a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile

(a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) High Energy Physics Group, Shandong University, Shandong, China

Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France

Nevis Laboratory, Columbia University, Irvington NY, United States of America

Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark

(a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy

Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland

The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland

Physics Department, Southern Methodist University, Dallas TX, United States of America

Physics Department, University of Texas at Dallas, Richardson TX, United States of America

DESY, Hamburg and Zeuthen, Germany

Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany

Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany

Department of Physics, Duke University, Durham NC, United States of America

SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3, 2700 Wiener Neustadt, Austria

INFN Laboratori Nazionali di Frascati, Frascati, Italy

Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany

Section de Physique, Université de Genève, Geneva, Switzerland

(a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy

(a) E. Andronikashvili Institute of Physics, Georgian Academy of Sciences, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia

II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
Netherlands
105 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
106 Department of Physics, Northern Illinois University, DeKalb IL, United States of America
107 Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia
108 Department of Physics, New York University, New York NY, United States of America
109 Ohio State University, Columbus OH, United States of America
110 Faculty of Science, Okayama University, Okayama, Japan
111 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
112 Department of Physics, Oklahoma State University, Stillwater OK, United States of America
113 Palacký University, RCPDM, Olomouc, Czech Republic
114 Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
115 LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
116 Graduate School of Science, Osaka University, Osaka, Japan
117 Department of Physics, University of Oslo, Oslo, Norway
118 Department of Physics, Oxford University, Oxford, United Kingdom
119 (a)INFN Sezione di Pavia; (b)Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Pavia, Italy
120 Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
121 Petersburg Nuclear Physics Institute, Gatchina, Russia
122 (a)INFN Sezione di Pisa; (b)Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
123 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
124 (a)Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal; (b)Departamento de Física Teórica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
125 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
126 Faculty of Mathematics and Physics, Charles University Prague, Praha, Czech Republic
127 Czech Technical University, Prague, Praha, Czech Republic
128 State Research Center Institute for High Energy Physics, Protvino, Russia
129 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
130 Physics Department, University of Regina, Regina SK, Canada
131 Ritsumeikan University, Kusatsu, Shiga, Japan
132 (a)INFN Sezione di Roma I; (b)Dipartimento di Fisica, Università La Sapienza, Roma, Italy
133 (a)INFN Sezione di Roma Tor Vergata; (b)Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
134 (a)INFN Sezione di Roma Tre; (b)Dipartimento di Fisica, Università Roma Tre, Roma, Italy
135 (a)Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b)Centre National de l’Energie des Sciences Techniques Nucléaires, Rabat; (c)Université Cadi Ayyad, Faculté des sciences Semlalia Département de Physique, B.P. 2390 Marrakech 40000; (d)Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e)Faculté des Sciences, Université Mohammed V, Rabat, Morocco
136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France
137 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
138 Department of Physics, University of Washington, Seattle WA, United States of America
139 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
140 Department of Physics, Shinshu University, Nagano, Japan
141 Fachbereich Physik, Universität Siegen, Siegen, Germany
142 Department of Physics, Simon Fraser University, Burnaby BC, Canada
143 SLAC National Accelerator Laboratory, Stanford CA, United States of America
144 (a)Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b)Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
145 (a)Department of Physics, University of Johannesburg, Johannesburg; (b)School of Physics, University of the Witwatersrand, Johannesburg, South Africa
146 (a)Department of Physics, Stockholm University; (b)The Oskar Klein Centre, Stockholm, Sweden
147 Physics Department, Royal Institute of Technology, Stockholm, Sweden
148 Department of Physics and Astronomy, Stony Brook University, Stony Brook NY, United States of America
149 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
America

\(^z\) Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary

\(^y\) Also at California Institute of Technology, Pasadena CA, United States of America

\(^z\) Also at Institute of Physics, Jagiellonian University, Krakow, Poland

\(^{aa}\) Also at Department of Physics, Oxford University, Oxford, United Kingdom

\(^{ab}\) Also at Institute of Physics, Academia Sinica, Taipei, Taiwan

\(^{ac}\) Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America

\(^{ad}\) Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France

\(^{ae}\) Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France

\(^{af}\) Also at Department of Physics, Nanjing University, Jiangsu, China

\(^*\) Deceased