pH Evaluation over a Period of 6 months of Two-bottle Water-based Self-etching Primers: An In Vitro Study

Antonio Signore¹, Nicola De Angelis², Nicolò Di Tullio³, Andrea Amaroli⁴, Luca Solimei⁵

ABSTRACT

Aim and objective: The objective of this study was to monitor the pH stability over a period of 6 months of two-bottle self-etching (SE) primers.

Materials and methods: Four commercially available two-bottle SE primer solutions, Adhese SE (Ivoclar Vivadent; Schaan, Liechtenstein), Clearfil SE (Kuraray; Tokyo, Japan), Contax Primer (DMG; Hamburg, Germany), and Enabond SE (Micerium; Avegno (Ge), Italy), containing water as the main solvent were selected. The pH values during a 6-month storage period at intermittent temperature were daily measured by means of a microprocessor-based pH/temperature meter and hence recorded, tabulated, and analyzed.

Results: The mean values of overall pH measurements and standard deviation for Adhese SE, Clearfil SE, Contax Primer, and Enabond SE are, respectively, 1.70 (±0.01), 1.72 (±0.01), 1.20 (±0.01), 1.80 (±0.01). One-way ANOVA did not detect any significant change of the mean pH values of all measurements over time.

Conclusion: The conventional 6-months storage did not affect the pH values of the water-containing primers of two-bottle SE adhesives.

Clinical significance: This study provides evidence that conventional storage under adequate conditions did not affect the pH values of the water-containing primers of two-bottle SE adhesives with different monomer formulations. Clinicians may rely on the known pH value of the selected SE adhesive during shelf-life.

Keywords: Adhesive, pH, Primers, Self-etching.

The Journal of Contemporary Dental Practice (2021): 10.5005/jp-journals-10024-3172

INTRODUCTION

The strategy of self-etching (SE) adhesives is to simultaneously etch and prime enamel and dentin, integrating the dissolved smear layer and the partially demineralized tissues into the adhesive interface.¹,² Currently SE adhesives are applied in single-step or two-steps, depending on the treatment modalities employed by the manufacturers.³ The degree of enamel and dentin demineralization is dependent on the pH of the priming solution, which is related to the composition and concentration of the acids and/or polymerizable acidic resin monomers.² In addition, the type of solvents and co-monomers plays a major role, as they affect the film forming properties and adhesive strength.⁴

A well-established classification for SE adhesives is according to their acidity.¹,⁵ The pH value of the most SE primers ranges between 0.4 and 2.6, higher than that of the conventional 37% phosphoric acid (around 0.5).¹,²,⁶,⁷ The aggressiveness of the SE adhesives has been classified based on the extent of hybridization at the dentin-adhesive interface. The SE adhesives have been graded as strong (pH ≤1), exhibiting a hybrid layer of some micrometers in depth; intermittently strong or moderate (pH: 1–2), possessing a hybrid layer depth of 1–2 μm; mild (pH: 2–2.5), demonstrating an ~1 μm hybrid layer of ultra-mild (pH >2.5), with a nanosized hybrid layer.¹,⁸

Recent studies have critically pointed out the vulnerable stability of SE adhesives as an intrinsic disadvantage, a shelf-life evaluation has been advocated to be fundamental to verify the materials’ behavior over time.⁹,¹⁰ To the authors’ knowledge, there is no information about any possible pH variation of these adhesives during shelf-life. Thus, the aim of the present investigation was to monitor the stability of the pH values of water-containing primers of two-step SE adhesive systems during a 6-month storage period at 4°C. The first null hypothesis tested was that the pH changes during the storage period. The second null hypothesis tested was that pH variation during storage period differs between the materials tested.

MATERIALS AND METHODS

Four commercially available two-bottle SE adhesives, Adhese SE (Ivoclar Vivadent; Schaan, Liechtenstein), Clearfil SE (Kuraray; Tokyo, Japan), Contax Primer (DMG; Hamburg, Germany), and Enabond SE (Micerium; Avegno (Ge), Italy), were selected according to the presence of water as the main solvent in the SE primer components. Four bottles of each adhesive system were purchased from the suppliers and only the SE primer components were used as test materials. The dental adhesives monitored and their compositions...
are listed in Table 1. Storage, experimental part, and data evaluation were performed in the Dental Clinic of the Department of Surgical and Diagnostic Sciences at the University of Genova, Italy.

Storage
During the storage period of 6 months, the SE adhesives were kept at 4°C in a refrigerator. To simulate clinical usage, we removed the primer bottles from the refrigerator on a daily basis and exposed to an ambient temperature (20–25°C) for 8 hours, before storing them back to the refrigerator.

pH Measurements
For pH measurements a microprocessor-based pH/temperature meter with a nominal accuracy of ±0.01 pH and ±0.4°C (HI-8424, Hanna Instruments, Woonsocket, Rhode Island, United States) was used, equipped with a semi-micro electrode (HI-1330B) and a temperature probe (HI-7662) for automatic temperature compensation. Before use, the instrument was calibrated using two buffered solutions provided with the pH meter (pH 7.01 and pH 4.01). For each pH measurement, the electrode and probe were submerged into the specimen vials to be tested, cleaned after each measurement and stored according to manufacturer instructions.

The pH measurements were performed daily, with the exception of the festive days for 6 months from June 2020 to November 2020. Four readings per day (n = 4), with an interval of approximately 2 hours, were made for each SE primer solution and they were averaged and considered as daily value for statistical analysis. During the monitoring period (22 weeks, namely, 110 days), 440 measurements have been done for each group (meaning 110 averaged daily value for each SE primer). The first measurement of each group was performed immediately after being unpacked and was considered as the respective initial pH value, hence, baseline for the analysis of the present study.

Statistical Analysis
Statistical methods used to assess the change over time of pH values of each product are analysis of variance (one-way ANOVA) and Pearson’s product moment correlation coefficient (PMCC). A significance level of 5% was adopted in all tests. Homoscedastic distribution of data was assessed using the Kolmogorov-Smirnov test. The software used for the analysis was the IBM SPSS Statistics for iOS, Version 25.0 (IBM Corp., Armonk, New York, United States).

Results
The baseline pH values that were recorded prior to the mean value of everyday recording were Adhese SE 1.70, Clearfil SE 1.73, Contax Primer 1.21, and Enabond SE 1.80. The average pH value of four repetitions (n = 4) at baseline (day one) was for each material the mean of overall pH measurements and standard deviation has been calculated: Contax Primer had the lowest mean pH value 1.20 (±0.01) and Enabond SE had the highest one 1.80 (±0.01). The mean pH values of Adhese SE and Clearfil SE were approximately the same, 1.70 (±0.01) and 1.72 (±0.01), respectively.

Mean pH values, 95% confidence interval (CI), linear trends as well as PMCC and one-way ANOVA are represented in Figure 1. One-way ANOVA did not detect any significant change of the mean pH values of all measurements over time when considering the pH values of each product: Adhese SE (p = 0.261), Clearfil SE Bond 2 (p = 0.380), Contax (p = 0.281), Enabond SE (p = 0.597). Moreover, the correlation study (time vs pH) detected negligible correlations for each product: Adhese SE (r = 0.108), Clearfil SE Bond 2 (r = 0.084), Contax (r = 0.104), Enabond SE (r = 0.051). Homoscedastic distribution of data using the Kolmogorov-Smirnov test reported that each product was normally distributed: Adhese SE (p = 0.179), Clearfil SE Bond 2 (p = 0.149), Contax (p = 0.174), Enabond SE (p = 0.188).

Based on the aim and objectives of the study, no statistical inference was observed, as the study is merely descriptive.

Discussion
In daily practice the clinicians apply SE adhesive strategy being aware of the known pH value of the selected SE adhesive and of the corresponding interaction with enamel and dentin. Morphological studies demonstrated that enamel etching pattern and the degree of demineralization and interaction with dentin are correlated with the acidity of the SE primers.13 This implies that it is reasonable to speculate that a possible variation of the pH during shelf-life may affect the conditioning pattern and bonding performance on dental substrates.14

Based on the experimental design and the findings of the present study, storage duration and conditions did not influence the pH value of the tested SE primers. Although a 2-year shelf-life is commonly recommended for SE adhesives, in the current study, the testing period was limited to 6 months reflecting the actual clinical conditions.15 As these adhesives are consumed at a fast rate by most clinicians, a longer storage time has been considered clinically not corresponding to real life conditions.16

No significant pH differences were identified in any SE primers as a function of time. This leads to rejection of the first null hypothesis that the pH of the tested materials changes during the storage period. The current study, however, found fluctuations in the pH for all evaluated SE adhesives during recording period. It is worth mentioning that in multiple pH measurements realistic
It is worth to mention that the Safety Data Sheet (Section 9: Physical and chemical properties) of the investigated materials, with the exception of Enabond SE, does not provide precise data about the pH; therefore, any direct comparison with the information provided by the manufacturer would be misleading. Moreover, to date no scientific data about any possible pH variation of SE adhesive primers during shelf-life are available.

Water-free (ethanol- or acetone-based) SE priming solutions were not included in this study, due to different volatility and dielectric constant of these solvents, which influence the dissociation behavior of acids. Despite that apparent limitation of the pH measurement technology, pH deviations to the second decimal remaining close to the theoretical values are considered acceptable.

Moreover, despite the different formulations, insignificant mean pH variations have been observed between the SE primers during storage time. Therefore the second null hypothesis, which claims that the pH variation during storage period differs between the tested materials, should be rejected as well.

Fig 1A to D: Mean pH values ± 95% CI and PMCC of (A) Adhese SE; (B) Clearfil SE Bond 2; (C) Contax; (D) Enabond SE. One-way ANOVA p-value and PMCC r are reported for each product.
intermittent storage temperature or a hydrolytic degradation of
the acidic monomers and co-monomers may change the original
formulations leading to pH changes. Nevertheless, based on
the results of the present study, it can be assumed that the extent
of these phenomena should be limited, since the pH was not changed.
Consequently, we may assume that the reactivity of the primers,
regarding the demineralization capacity, at least, is not changed.

Accumulated evidence is showing that when the adhesives’
shelf-life was tested by accelerated aging procedures, methacrylate
monomers undergo rapid hydrolysis under acidic aqueous
conditions. When water is mixed with the acidic monomers, a
considerable amount of methacrylates is already decomposed
by progressive acid-catalyzed hydrolysis of the ester bonds in
the methacrylate monomers by water during the guaranteed shelf-life,
especially if the material is stored under inadequate conditions.

Storage duration and conditions, such as temperature, which
normally accelerates the degradation processes, greatly influence
the hydrolytic stability. However, in a previous study of Nishiyama
et al., the authors demonstrated that hydrolysis of functional
methacrylate monomers occurs despite conservation carried out
according to the manufacturers’ instructions. The hydrolysis of
the adhesive monomers completely changes the chemical composition
and their physical properties.

However, in our study design, direct correlation between
degradation phenomena and pH stability was not detectable.

The experimental set-up used in this study had several
limitations that deserve some comments. As already mentioned in
the present investigation, only water-based SE priming solutions
were tested. The results may have been different if SE primers
with more volatile solvents, such as ethanol or acetone-based
systems, had been investigated. Therefore, ideally, also ethanol-
or acetone-based SE primers should be included in a foreseeable
future study, to fully assess the suggested results. In addition,
measuring the pH only is not sufficient to monitor the hydrolytic
degradation of functional methacrylate monomers under acidic
aqueous conditions. A lack of data assessing a direct correlation
between degradation phenomena of functional monomers and pH
stability encourages future investigations on this matter. The study
limitations include the fact that an absolute worst case scenario was
tested, by leaving the samples to an ambient temperature (20–25°C)
for 8 hours on a daily basis. These limitations should be considered
when interpreting the results.

Conclusion
Within the experimental limitations of this study, it is possible to
conclude that the storage time under appropriate conditions does
not affect primers’ pH values of two-bottle SE adhesives. Whereas
the pH stability over time of SE priming solutions is not influenced
by different formulations.

Acknowledgments
Authors wish to thank all manufacturers for the generous donation
of materials. Special gratitude is extended to Prof. George Eliades
from the University of Athens, Greece and Prof. Vassilios Kaitsas
from the University of Genoa, Italy, for data evaluation and valuable
discussion.

References
1. Tay FR, Pashley DH. Aggressiveness of contemporary self-etching
systems. I: depth of penetration beyond dentin smear layers. Dent
Mater 2001;17(4):296–308. DOI: 10.1016/s0109-5641(00)00087-7.
2. Van Meerbeeck B, Yoshihara K, Yoshida Y, et al. State of the art of
self-etch adhesives. Dent Mater 2011;27(1):17–28. DOI: 10.1016/j.
dental.2010.10.023.
3. Van Meerbeeck B, De Munck J, Yoshida Y, et al. Buonocore memorial
lecture. Adhesion to enamel and dentin: current status and future
challenges. Oper Dent 2003;28(3):215–235. PMID: 12760093.
4. Moszner N, Salz U, Zimmermann J. Chemical aspects of self-
etching enamel-dentin adhesives: a systematic review. Dent Mater
2005;21(10):895–910. DOI: 10.1016/j.dental.2005.05.001.
5. Salz U, Mücke A, Zimmermann J, et al. pH stability of self-
etching enamel-dentin adhesives: a systematic review. Dent Mater
2012;28(1):96–105. DOI: 10.1016/j.dental.2011.05.002.
6. Koshiro K, Sidhu SK, Inoue S, et al. Hydrolysis of functional
methacrylate monomers in a single-bottle self-etching primer--correlation of
pH stability with water exposure. J Adhes Dent 2006;8(3):143–150. PMID: 16830660.
7. Van Landuyt KL, Nishiyama N, Fujita K, et al. Hydrolytic stability
of self-etching primer systems. I: depth of penetration beyond dentin
smear layers. Dent Mater 2005;21(10):895–910. DOI: 10.1016/j.dental.2005.05.001.
8. Salz U, Mücke A, Zimmermann J, et al. pH and buffering
capacity of acrylic monomers commonly used in self-etching primers.
J Adhes Dent 2005;8(3):143–150. PMID: 16830660.
9. Nishiyama N, Suzuki K, Yoshida H, et al. Hydrolytic stability
of methacrylamide in aqueous solution. Biomaterials 2004;25(6):965–969. DOI: 10.1016/s1042-6190(03)00616-1.
10. Salz U, Zimmermann J, Zeuner F, et al. Hydrolytic stability of self-
etching adhesive systems. J Adhes Dent 2005;7(2):107–116. PMID:
16052759.
11. Lima GdaS, Ogliari FA, da Silva EO, et al. Influence of water
centration in an experimental self-etching primer on the bond
strength to dentin. J Adhes Dent 2008;10(3):167–172. PMID: 18652264.
12. Moura SK, Pelizzaro A, Dal Bianco K, et al. Does the acidity of self-
etching primers affect bond strength and surface morphology of
enamel? J Adhes Dent 2008;25(6):75–83. PMID: 16708718.
13. Breschi L, Gobbi P, Mazzotti G, et al. High resolution SEM evaluation of
dentin etched with maleic and citric acid. Dent Mater 2002;18(1):26–35.
DOI: 10.1016/s0109-5641(01)00017-3.
14. Salz U, Mücke A, Zimmermann J, et al. Conditioning effect on dentin,
resin tags and hybrid layer of different acidity self-etch adhesives
applied to thick and thin smear layer. J Dent 2006;34(10):775–783.
DOI: 10.1016/j.jdent.2006.03.001.
15. Nishiyama N, Fujita Y, Fujita K, et al. Hydrolysis of functional
monomers in a single-bottle self-etching primer--correlation of
13C NMR and TEM findings. J Dent Res 2006;85(5):422–426. DOI:
10.1177/15405910608500505.
16. Cheng KL, Zhu DM. On calibration of pH meters. Sensors
2005;5(4):209–219. DOI: 10.3390/s5040209.
17. Meirnath G, Spitzer P. Uncertainties in determination of pH.
Microchim Acta 2000;13(3–4):155–168. DOI: 10.1007/s006040070005.
18. Pashley DH, Carvalho RM, Tay FR, et al. Solvation of dried dentin matrix
by water and other polar solvents. Am J Dent 2002;15(2):97–102. PMID:
12092999.