K*(892)⁰ and φ(1020) production at midrapidity in pp collisions at √s = 8 TeV

ALICE Collaboration

Abstract

The production of K*(892)⁰ and φ(1020) in pp collisions at √s = 8 TeV were measured using Run 1 data collected by the ALICE collaboration at the LHC. The p_T-differential yields d²N/dydp_T in the range 0 < p_T < 20 GeV/c for K*⁰ and 0.4 < p_T < 16 GeV/c for φ have been measured at midrapidity |y| < 0.5. Moreover, improved measurements of the K*(892) and φ(1020) at √s = 7 TeV are presented. The collision energy dependence of p_T distributions, p_T-integrated yields and particle ratios in inelastic pp collisions are examined. The results are also compared with different collision systems. The values of the particle ratios are measured to be similar to those found at other LHC energies. In pp collisions a hardening of the particle spectra is observed with increasing energy, but at the same time it is also observed that the relative particle abundances are independent of the collision energy. The p_T-differential yields of K*⁰ and φ in pp collisions at √s = 8 TeV are compared with the expectations of different Monte Carlo event generators.
1 Introduction

The study of resonances plays an important role in understanding particle production mechanisms. Particle production at LHC energies has both soft and hard-scattering origins. The hard scatterings are perturbative processes and are responsible for production of high-p_T particles, whereas the bulk of the particles are produced due to soft interactions, which are non-perturbative in nature. High-p_T particles originate from fragmentation of jets and their yield can be calculated by folding the perturbative Quantum Chromodynamics (pQCD) calculations for elementary parton-parton scatterings with universal fragmentation functions determined from experimental data [1–3]. The production yield of low-p_T particles cannot be estimated from the first principles of QCD, hence predictions require phenomenological models in the non-perturbative regime. In this paper, we discuss $K^*(892)$ and $\phi(1020)$ production in pp collisions at $\sqrt{s} = 8$ TeV. The $\phi(1020)$ meson is a vector meson consisting of strange quarks ($s\bar{s}$). The production of $s\bar{s}$ pairs was found to be significantly suppressed, compared to $u\bar{u}$ and $d\bar{d}$ pairs in pp collisions due to the larger mass of the strange quark [4, 5]. The $K^*(892)$ is a vector meson with a similar mass to the $\phi(1020)$, but differs in strangeness content by one unit, which may help in understanding the strangeness production dynamics. Measurements of particle production in inelastic pp collisions provide input to tune the QCD inspired Monte Carlo (MC) event generators such as EPOS [6], PYTHIA [7] and PHOJET [8, 9]. Furthermore, the measurements in inelastic pp collisions at $\sqrt{s} = 8$ TeV reported in this paper serve as reference data to study nuclear effects in proton–lead (p–Pb) and lead–lead (Pb–Pb) collisions.

In this article, the p_T-differential and p_T-integrated yields and the mean transverse momenta of $K^0(892)$ and $\phi(1020)$ at midrapidity in pp collisions at $\sqrt{s} = 8$ TeV are presented. The energy dependence of the p_T distributions and particle ratios to the charged pions and kaons in pp collisions is examined and discussed. The yields of pions and kaons measured previously by ALICE [10, 11] at $\sqrt{s} = 0.9$ and 7 TeV are used to obtain the yields in pp collisions at $\sqrt{s} = 8$ TeV. Moreover, updated measurements of the $K^0(892)$ and $\phi(1020)$ at $\sqrt{s} = 7$ TeV are presented; our first measurements for that collision system were published in Ref. [12]. These results include an extension of the $K^0(892)$ measurement to high p_T and an improved re-analysis of the $\phi(1020)$. This measurement has updated track-selection cuts, which are identical to those described for the measurements at $\sqrt{s} = 8$ TeV, has an improved estimate of the systematic uncertainties, and extends to greater values of p_T. Throughout this paper, the results for $K^+(892)^0$ and $K^- (892)^0$ are averaged and denoted by the symbol K^0, while $\phi(1020)$ is denoted by ϕ unless specified otherwise.

This article is organized as follows. The experimental setup is briefly explained in Sec. 2 and the analysis procedure is given in Sec. 3. The results and discussions are presented in Sec. 4 followed by the conclusions in Sec. 5.

2 Experimental setup

The ALICE detector can be used to reconstruct and identify particles over a wide momentum range, thanks to the low material budget, the moderate magnetic field and the presence of detectors with excellent particle identification (PID) techniques. The comprehensive description of the detector and its performance during the LHC Run 1 are reported in Refs. [13, 14].

The detectors used for this analysis are described in the following. V0 detectors are two plastic scintillator arrays used for the triggering and event characterization. They are placed along the beam direction at 3.3 m (VOA) and −0.9 m (V0C) on either side of the interaction point with a pseudorapidity coverage of $2.8 < \eta < 5.1$ and $-3.7 < \eta < -1.7$, respectively. The Inner Tracking System (ITS), which is located between 3.9 cm and 43 cm radial distance from the beam axis, is made up of six layers of cylindrical silicon detectors (2 layers of silicon pixels, 2 layers of silicon drift and 2 layers of double-side silicon strips). As it provides high-resolution space points close to the interaction point, the momentum and angular resolution of the tracks reconstructed in the Time Projection Chamber (TPC) is improved.
The TPC is the main tracking device covering full azimuthal acceptance and the pseudorapidity range $-0.9 < \eta < 0.9$. It is a 92 m3 cylindrical drift chamber filled with an active gas. It is divided in two parts by a central cathode and the end plates consist of multi-wire proportional chambers. The TPC is also used for particle identification via the measurement of the specific ionization energy loss (dE/dx) via ionization in the gas. The Time of Flight (TOF) detector consists of large multigap resistive plate chambers. It has pseudorapidity coverage $-0.9 < \eta < 0.9$, full azimuthal acceptance and a time resolution of < 50 ps. The TOF is used for the particle identification at intermediate momenta. The particle identification techniques based on the TPC and TOF signals are presented in detail in the next section.

3 Data analysis

The measurements of K^{*0} and ϕ meson production in pp collisions at $\sqrt{s} = 8$ TeV were performed during Run 1 data taking with the ALICE detector in 2012 using a minimum bias trigger as discussed in Sec. 3.1. A total of around 45M events were analysed for both $\sqrt{s} = 7$ and 8 TeV and the corresponding integrated luminosities are 0.72 nb$^{-1}$ and 0.81 nb$^{-1}$, respectively. The K^{*0} and ϕ resonances are reconstructed via their hadronic decay channels with large branching ratios (BR): $K^{*0} \rightarrow \pi^{\pm}K^{\mp}$ with BR = 66.6% and $\phi \rightarrow K^{+}K^{-}$ with the recent updated BR = 49.2% [15]. When comparing the new ϕ results to older ones, the old results are scaled by the ratio 0.489/0.492 [15][16] to account for the new branching ratio value.

3.1 Event and track selection

For pp collisions at $\sqrt{s} = 8$ TeV, the events were selected with a minimum bias trigger based on a coincidence signal in V0A and V0C. For pp collisions at $\sqrt{s} = 7$ TeV, the trigger condition is same as in [12]. The ITS and TPC are used for tracking and reconstruction of charged particles and of the primary vertex. Events having the primary vertex coordinate along the beam axis within 10 cm from the nominal interaction point are selected. Pile-up events are rejected if more than one vertex is found with the Silicon Pixel Detector (SPD). A primary track traversing the TPC induces signals on a maximum of 159 tangential pad-rows, each corresponding to one cluster used in track reconstruction. For this analysis high quality charged tracks are used, to select pion and kaon candidates coming from the decays of K^{*0} and ϕ. Tracks are required to have at least 70 TPC clusters and a χ^2 per track point ($\chi^2/N_{\text{clusters}}$) of the track fit in the TPC less than 4. Moreover, tracks must be associated with at least one cluster in the SPD. To ensure a uniform acceptance by avoiding the edges of the TPC, tracks are selected within $|\eta| < 0.8$. In order to reduce contamination from secondary particles coming from weak decays, cuts on the distance of closest approach to the primary vertex in the transverse plane (DCA$_{xy}$) and longitudinal direction (DCA$_{z}$) are applied. The value of DCA$_{xy}$ is required to be less than 7 times its resolution: DCA$_{xy}(p_T) < (0.0105 + 0.035p_T^{-1.1})$ cm (p_T in GeV/c) and DCA$_{z}$ is required to be less than 2 cm. To improve the global resolution, the p_T of each track is choosen to be greater than 0.15 GeV/c.

In the TPC, particles are identified by measuring the dE/dx in the TPC gas, whereas in the TOF it is done by measuring the time of flight. The particles in the TPC are selected using a cut on the difference of the mean value of the dE/dx to the expected dE/dx value for a given species divided by the resolution σ_{TPC}. This cut is expressed in units of the estimated σ_{TPC}. As described below, this is optimized for each analysis and depends on the signal-to-background ratio and on the transverse momentum. Particles are identified in the TOF by comparing the measured time of flight to the expected one for a given particle species. The cut is expressed in units of the estimated resolution σ_{TOF}. The TOF allows pions and kaons to be unambiguously identified up to momentum $p \approx 1.5$ GeV/c and also removes contamination from electrons. The two mesons can be distinguished from (anti)protons up to $p \approx 2.5$ GeV/c.

For K^{*0} and ϕ reconstruction three TPC PID selection criteria are used, depending on the momentum of the daughter particle. Both pions and kaons are selected using a cut of $|N_{\text{TPC}}| < 2.0$ for $p(K^{\pm}, \pi^{\pm}) > 0.4$ GeV/c. Here, $p(K^{\pm}, \pi^{\pm})$ denotes the momenta of pions and kaons. Similarly, for
p(K^\pm, \pi^\pm) < 0.3 \text{ GeV}/c$, a cut of $|N\sigma_{TPC}| < 6.0$ is applied, while a cut of $|N\sigma_{TPC}| < 4.0$ for $0.3 < p(K^\pm, \pi^\pm) < 0.4 \text{ GeV}/c$ is applied. For the new analysis of the K^0 (\phi) at $\sqrt{s} = 7 \text{ TeV}$, the specific energy loss for pion and kaon candidates is required to be within $2 \sigma_{TPC}$ of the expected mean, irrespective of the momentum. Also, a TOF $3\sigma_{TOF}$ veto cut is applied for K^0 for both $\sqrt{s} = 7$ and 8 TeV. “TOF veto” means that the TOF 3σ cut is applied only for cases where the track matches a hit in the TOF.

3.2 Raw yield extraction

The K^0 (\phi) meson is reconstructed through its dominant hadronic decay channel $K^0 \rightarrow \pi^\pm K^\mp$ ($\phi \rightarrow K^+ K^-$) by calculating the invariant mass of its daughters at the primary vertex. The invariant mass distribution of the decay daughter pairs is constructed taking unlike-sign pairs of K and \pi (K) candidates for K^0 (\phi) in the same event. The rapidity of the \pi K (KK) pairs is required to lie within the range $|y_{\text{pair}}| < 0.5$. As an example, the \pi K (KK) invariant mass distribution for $\sqrt{s} = 8 \text{ TeV}$ is shown in Fig. 1 for $0 < p_T < 0.2 \text{ GeV}/c$ ($0.6 < p_T < 0.7 \text{ GeV}/c$).

![Figure 1](image-url)

Figure 1: (Color online) (Upper panels) Invariant mass distributions (closed black point) for the K^0 (left) and \phi (right) in pp collisions at 8 TeV in the p_T range $0 < p_T < 0.2 \text{ GeV}/c$ and $0.6 < p_T < 0.7 \text{ GeV}/c$, respectively. The combinatorial background (open red circles) is estimated using unlike-sign pairs from different events (mixed event). The statistical uncertainties are shown as bars. (Lower panels) K\pi (left) and KK (right) invariant mass distributions in the same p_T ranges after combinatorial background subtraction together with the fits to the signal and background contribution.

The shape of the uncorrelated background is obtained via the event mixing technique, calculating the invariant mass distribution of unlike-sign $\pi^\pm K^\mp$ (K^0) or $K^+ K^-$ (\phi) combinations from different events,
as shown in upper panel of Fig. [1]. To avoid mismatch due to different acceptances and to assure a similar event structure, only tracks from events with similar vertex positions (Δz < 1 cm) and track multiplicities (Δn < 5) were mixed. For the φ meson in pp collisions at √s = 7 TeV, the multiplicity difference for event mixing is restricted to Δn ≤ 10. To reduce statistical uncertainties each event was mixed with 5 other similar events. For √s = 8 TeV, the mixed event background is normalized in the mass range 1.1 < M_{K π} < 1.5 GeV/c² (1.04 < M_{KK} < 1.06 GeV/c²) for K^0(φ) so that it has the same integral as the unlike-charge distribution in that normalization region. For √s = 7 TeV, the mixed event background is normalized in the mass range 1.1 < M_{K π} < 1.15 GeV/c² and 1.048 < M_{KK} < 1.052 GeV/c² for K^0(φ) and φ, respectively. This combinatorial background is subtracted from the unlike-charge mass distribution in each p_T bin. Due to an imperfect description of the combinatorial background, as well to the presence of a correlated background, a residual background still remains. The correlated background can arise from correlated Kπ (KK) pairs for K^0(φ), misidentified particle decays or jets.

The K^0 raw yield is extracted from the Kπ invariant mass distribution in different p_T bins between 0 and 20 GeV/c. After the combinatorial background subtraction the invariant mass distribution is fitted with the combination of a Breit-Wigner function for the signal peak and a second-order polynomial for the residual background. The fit function for K^0 is given by

$$\frac{dN}{dM_{K^0π^±}} = A × \frac{Γ_0}{(M_{K^0π^±} - m_0)^2 + Γ_0^2} + (B M_{K^0π^±}^2 + C M_{K^0π^±} + D).$$ (1)

Here m_0 is the fitted mass pole of the K^0, Γ_0 is the resonance width and A is the yield of the K^0 meson. B, C and D are the fit parameters in the second-order polynomial.

The φ raw yield is extracted from the KK invariant mass distribution in different p_T bins between 0.4 and 16 GeV/c after the combinatorial background subtraction. For the φ fit function, the detector mass resolution is taken into account due to the smaller width of the φ meson. This is achieved by using a Breit-Wigner function convoluted with a Gaussian function, which is known as Voigtian function. The KK invariant mass distribution is fitted with the combination of a Voigtian function for the signal peak and a second-order polynomial for the residual background. The fit function for φ is given by

$$\frac{dN}{dM_{KK}} = \frac{A Γ_0}{(2πσ^2/2)^2} × \int_{-∞}^{+∞} \exp\left(\frac{(M_{KK} - m')^2}{2σ^2}\right) \frac{1}{(m' - m_0)^2 + Γ_0^2} d m' + (B M_{KK}^2 + C M_{KK} + D).$$ (2)

Here m_0 is the fitted mass pole of the φ, Γ_0 is the resonance width fixed to the value in vacuum and σ is the p_T-dependent mass resolution, which ranges from 1 to 3 MeV/c².

To extract the raw yields of K^0(φ), for each p_T bin the invariant mass histogram is integrated over the region 0.801 < m_{K^0(φ)} < 0.990 (1.01 < m_φ < 1.03), i.e. a range of three times the nominal width around the nominal mass. The integral of the residual background function in the same range is then subtracted. To also consider the contribution from the tails outside the integration regions, yields are extracted from the signal peak fit function and added to the yields calculated from the histogram.

3.3 Normalisation and correction

The K^0 and φ raw yields (N_{raw}) are normalised to the number of inelastic pp collisions and corrected for the branching ratio (BR), vertex selection, detector geometric acceptance (A) and efficiency (ε) and signal loss. The K^0 and φ corrected yields are obtained by

$$\frac{d^2N}{dp_Tdy} = \frac{N_{raw} × ε_{SL}}{N_{cell} × BR × dP_T × dγ × ε_{rec}} × f_{norm} × f_{vtx}$$ (3)
K∗(892)0 and φ(1020) production at midrapidity in pp collisions at √s = 8 TeV ALICE Collaboration

Table 1: Systematic uncertainties in the measurement of K∗0 and φ yields in pp collisions at √s = 7 and 8 TeV. The global tracking uncertainty is pT-independent, while the other single-valued systematic uncertainties are averaged over pT. The values given in ranges are minimum and maximum uncertainties depending on pT.

Source	pp. √s = 8 TeV	pp. √s = 7 TeV		
K∗0 (%)	8.7	8.5		
φ (%)	1.9	4.0		
Hadronic Interaction	0 – 3.4	neg.		
Material budget	0 – 5.4	neg.		
Global tracking efficiency	6.0	neg.		
Branching ratio	6.0	neg.		
Total	11.3 – 12.1	6.7 – 9.1	13.0	9.5

Here \(\varepsilon_{\text{rec}} = A \times \varepsilon\) is the correction that accounts for the detector acceptance and efficiency. The \(\varepsilon_{\text{SL}}\) is the signal loss correction factor and accounts for the loss of K∗0(φ) mesons incurred by selecting events that satisfy only the ALICE minimum bias trigger, rather than all inelastic events. This is a particle species and pT-dependent correction factor which is peaked at low pT, indicating that events that fail the trigger selection have softer pT spectra than the average inelastic event. The signal loss correction factor is about 1% at low-pT and negligible for pT > 1 GeV/c. This correction is the ratio of the pT spectrum from inelastic events to the pT spectrum from triggered events and it is evaluated using Monte Carlo simulations.

\(N_{\text{evt}}\) is the number of triggered events and a trigger efficiency \(f_{\text{norm}}\) is used to normalize the yield to the number of inelastic pp collisions. The value of the inelastic normalization factor for pp collisions at √s = 8 TeV is 0.77 ± 0.02, which is the ratio between the V0 visible cross section [17] and the inelastic cross section [18]. Similarly, we correct the yield with \(f_{\text{vtx}}\), which is the ratio of the number of events for which a good vertex was found to the total number of triggered events. This is estimated to be 0.972. The new results at 7 TeV are normalized as in [12].

The A × \(\varepsilon\) correction factor is determined with a Monte Carlo simulation using PYTHIA8 as event generator and GEANT3 [19] as transport code for the simulation of the detector response. The A × \(\varepsilon\) is obtained as the fraction of K∗0 and φ reconstructed after passing the same event selection and track quality cuts as used for the real event to the total number of generated resonances. This A × \(\varepsilon\) value is small at low pT and increases with increasing pT. This value is independent of pT above 5-6 GeV/c [12].

3.4 Systematic uncertainties

The systematic uncertainties on pT-differential yield, summarised in Table 1, are due to different sources such as signal extraction, background subtraction, track selection, global tracking uncertainty, knowledge of the material budget and the hadronic interaction cross section.

The systematic uncertainties associated to the signal extraction are estimated by varying the fitting ranges, the order of residual backgrounds (from 1st order to 3rd order), the width parameter and the mixed event background normalization range. The signal extraction systematic uncertainties also include the background subtraction systematic uncertainties, which are estimated by changing the methods used to estimate the combinatorial background (like-sign and event-mixing). The PID cuts and the track quality selection criteria are varied to obtain the systematic uncertainties due to the track selection. The relative uncertainties due to signal extraction and track selection for K∗0 (φ) are 8.7% (1.9%) and 4% (2%), respectively at √s = 8 TeV.
The global tracking uncertainty is calculated using ITS and TPC clusters for charged decay daughters. The relative systematic uncertainty due to the global tracking efficiency is 3% for charged particles, which results in a 6% effect for the πK and KK pairs used in the reconstruction of the K⁺⁰ and φ, respectively. The systematic uncertainty due to the residual uncertainty in the description of the material in the Monte Carlo simulation contributes up to 3.4% for K⁺⁰ (3.1% for φ). The systematic uncertainty due to the hadronic interaction cross section in the detector material is estimated to be up to 2.8% for K⁺⁰ and up to 5.4% for φ. The uncertainties are accordingly propagated to the K⁺⁰ and φ [20, 21]. The total systematic uncertainties, which are found to be p_T dependent, range in from 11.3% to 12.1% for K⁺⁰ and from 6.7% to 9.1% for φ. The uncertainties at √s = 7 TeV are similarly estimated, totalling to comparable values, as seen in Table 1. To keep consistency with the published results, the systematic uncertainty due to the hadronic interaction cross section in the detector material and material budget uncertainties for √s = 7 TeV are considered negligible [12].

4 Results and discussion

4.1 Transverse momentum spectra and differential yield ratios

Here, we report the measurement of K⁺⁰ and φ in inelastic pp collisions at √s = 8 TeV in the range up to p_T = 20 GeV/c for K⁺⁰ and up to p_T = 16 GeV/c for φ. Also, we present the new measurements of K⁺⁰ and φ in inelastic pp collisions at √s = 7 TeV in the range up to p_T = 20 GeV/c for K⁺⁰ and up to p_T = 21 GeV/c for φ. For both energies, the first bin of K⁺⁰ starts at p_T = 0 GeV/c and for φ, it starts at p_T = 0.4 GeV/c. In Fig. 2, we show the transverse momentum spectra of K⁺⁰ and φ at midrapidity |y| < 0.5 and fitted with the Lévy-Tsallis distribution [22, 23]. The ratio of data to Lévy-Tsallis fit shows good agreement of data with model within systematic uncertainties. The fit parameters are shown in Table 2.

Figure 2: (Color online) Upper panel shows the p_T spectra of K⁺⁰ and φ in inelastic pp collisions at 7 TeV (left) and 8 TeV (right) and fitted with the Lévy-Tsallis distribution [22, 23]. The normalisation uncertainty in the spectra is $^{+3.3}_{-2.6}$% for 7 TeV and 2.69% for 8 TeV. The vertical bars show statistical and the boxes show systematic uncertainties. The lower panels show the ratio of data to the Lévy-Tsallis fit. Here, the bars show the systematic uncertainty.
K*(892)\(^0\) and \(\phi(1020)\) production at midrapidity in pp collisions at \(\sqrt{s} = 8\) TeV

ALICE Collaboration

Table 2: Parameters extracted from the Lévy-Tsallis fit to the K\(^*\)\(^0\) and \(\phi\) transverse momentum spectra in inelastic pp collisions at \(\sqrt{s} = 7\) and 8 TeV.

Particles	\(\sqrt{s} = 8\) TeV	\(\sqrt{s} = 7\) TeV
K\(^*\)\(^0\)	260 ± 5 6.65 ± 0.03	261 ± 6 6.92 ± 0.14
\(\phi\)	306 ± 6 7.28 ± 0.03	300 ± 5 7.18 ± 0.04

The energy evolution of the transverse momentum spectra for K\(^*\)\(^0\) and \(\phi\) is studied by calculating the ratio of \(p_T\)-differential yields for inelastic events at \(\sqrt{s} = 7\) and 8 TeV to that at \(\sqrt{s} = 2.76\) TeV \[24\]. This is shown in Fig. 3. The differential yield ratio to 2.76 TeV is consistent for 7 and 8 TeV within systematic uncertainties. The systematic uncertainties at both collision energies are largely uncorrelated. Therefore, the quadratic sum of those is taken as systematic uncertainties on the ratios. For both K\(^*\)\(^0\) and \(\phi\), the differential yield ratio is independent of \(p_T\) within systematic uncertainties up to about 1 GeV/c for the different collision energies. This suggests that the particle production mechanism in soft scattering regions is independent of collision energy over the measured energy range. An increase in slope of differential yield ratios is observed for \(p_T > 1-2\) GeV/c.

Figure 3: (Color online) Ratios of transverse-momentum spectra of K\(^*\)\(^0\) and \(\phi\) in inelastic events at \(\sqrt{s} = 7\) and 8 TeV to the transverse-momentum spectra in pp collisions at \(\sqrt{s} = 2.76\) TeV. The statistical and systematic uncertainties are shown as vertical error bars and boxes, respectively. The normalisation uncertainties are indicated by boxes around unity.

4.2 \(p_T\)-integrated yields

Table 3 shows the K\(^*\)\(^0\) and \(\phi\) integrated yield (dN/dy) and mean transverse momenta (\(\langle p_T \rangle \)) in inelastic pp collisions at \(\sqrt{s} = 8\) TeV. As the \(\phi\) spectrum starts from 0.4 GeV/c, for the calculation of dN/dy and \(\langle p_T \rangle\), the spectrum is extrapolated down to \(p_T = 0\) GeV/c using a Lévy–Tsallis fit \[22, 23\]. The extrapolated part amounts to about 15% of the yield. Alternative fit functions (Boltzmann distribution, Bose-Einstein distribution, power-law, \(m_T\) exponential and \(p_T\) exponential) have been tried for the extrapolation, giving a contribution of 1.5% to the total systematic uncertainty on dN/dy. In case of K\(^*\)\(^0\), no extrapolation is needed as the distribution is measured for \(p_T > 0\) GeV/c. Table 3 also shows the dN/dy and \(\langle p_T \rangle\) of \(\phi\) at \(\sqrt{s} = 7\) TeV. The dN/dy and \(\langle p_T \rangle\) of the re-analysed K\(^*\)\(^0\) remains unchanged as reported in \[12\].
4.3 Particle ratios

For the calculation of the particle ratios, the values of dN/dy for π⁺ + π⁻ and K⁺+K⁻ in pp collisions at √s = 8 TeV are estimated via extrapolation using the data points available at different LHC collision energies \([10, 11]\) namely 0.9 and 7 TeV. The data points are fitted with the following polynomial function,

\[
A(\sqrt{s})^n + B.
\]

Here, A, n and B are the fit parameters. For the calculation of the uncertainties on the extrapolated value, the central values of the data points are shifted within their uncertainties and fitted with the same function. The π⁺ + π⁻ and K⁺+K⁻ energy extrapolated yields in inelastic pp collisions at √s = 8 TeV are 4.80 ± 0.21 and 0.614 ± 0.032. Here onwards, π⁺ + π⁻ is denoted as π and K⁺+K⁻ is denoted as K.

Figure 4 shows the ratio of the dN/dy of K⁰ (φ) to that of π in the left (right) panel, as a function of the collision energy. π has no strangeness content, K⁰ has one unit of strangeness, and φ is strangeness neutral but contains two valence strange (anti)quarks. It is observed that the K⁰/π and φ/π ratios are independent of the collision energy within systematic uncertainties, which indicates that the chemistry of the system is independent of the energy from the RHIC to LHC energies. This also suggests that the strangeness production mechanisms do not depend on energy in inelastic pp collisions at LHC energies.

Table 3: K⁰ and φ integrated yields and \(\langle p_T \rangle\) in inelastic pp collisions at \(\sqrt{s} = 7\) and 8 TeV. The systematic uncertainties include the contributions from the uncertainties listed in Table 1, and the choice of the spectrum fit function for extrapolation is also included for the φ. Here, “stat.” and “sys.” refer to statistical and systematic uncertainties, respectively.

Particles	measured \(p_T\) (GeV/c)	dN/dy	\(\langle p_T \rangle\) (GeV/c)
\(K^0\)	0.0 – 20.0	0.101 ± 0.001 (stat.) ± 0.014 (sys.)	1.037 ± 0.006 (stat.) ± 0.029 (sys.)
φ	0.4 – 16.0	0.0335 ± 0.0003 (stat.) ± 0.0030 (sys.)	1.146 ± 0.005 (stat.) ± 0.040 (sys.)
\(\sqrt{s} = 7\) TeV			
φ	0.4 – 21.0	0.0320 ± 0.0003 (stat.) ± 0.0030 (sys.)	1.132 ± 0.005 (stat.) ± 0.020 (sys.)

It is interesting to compare the particle ratios, \(K^0/K\) and \(\phi/K\) measured in inelastic pp collisions with different collision systems and collision energies in order to understand the production dynamics. In the left and right panel of Fig. 5, the ratio \(K^0/K\) and \(\phi/K\) is plotted as a function of center-of-mass energy per nucleon pair for different collision systems. The \(K^0/K\) and \(\phi/K\) ratios are independent of the collision energy and of the colliding system. The only exception is the \(K^0\) in central nucleus–nucleus collisions; we attribute the suppression of the \(K^0/K\) ratio to final state effects in the late hadronic stage \([23]\). The behaviours of these ratios in pp collisions agree with the predictions \([25, 26]\) of a thermal model in the grand-canonical limit.

The ratio \(\phi/K^0\) as a function of center-of-mass energy is plotted in Fig. 6. The ratio seems to be independent of collision energy and appears to follow a behavior expected from thermal production, within experimental uncertainties.
Figure 4: (Color online) Particle ratios of K^0/π (left) and ϕ/π (right) are presented for pp collisions as a function of the collision energy. Bars (when present) represent statistical uncertainties. Boxes represent the total systematic uncertainties or the total uncertainties for cases when separate statistical uncertainties were not reported. [10–12, 25, 27–32]

Figure 5: (Color online) Particle ratios of K^0/K (left) and ϕ/K (right) are presented for pp, high-multiplicity p–Pb, central d–Au, and central A–A collisions [10–12, 27–30, 32–41] as a function of the collision energy. Bars (when present) represent statistical uncertainties. Boxes represent the total systematic uncertainties or the total uncertainties for cases when separate statistical uncertainties were not reported. The value given by a grand-canonical thermal model with a chemical freeze-out temperature of 156 MeV [26] is also shown.

4.4 Comparison to models

QCD-inspired MC event generators like PYTHIA 8 [7], PHOJET [8, 9] and EPOS-LHC [6] are used to study multi-particle production, which is predominantly a soft, non-perturbative process. The measurements are compared with the MC model predictions. PYTHIA 8 and PHOJET use the Lund string fragmentation model [42] for the hadronisation of light and heavy quarks. We compare our data with the Monash 2013 tune [7] for PYTHIA 8, which is an updated parameter set for the Lund hadronisation compared to previous tunes. To describe the non-perturbative phenomena (soft/semi-hard processes), PYTHIA 8 includes multiple parton–parton interactions while PHOJET uses the Dual Parton Model [43]. For hard scatterings, particle production in both models is based on perturbative QCD and only consider two particle scatterings. For multiple scatterings, the EPOS-LHC model invokes Gribov’s Reggeon Field Theory [44], which features a collective hadronisation via the core-corona mechanism [45]. The final
K*(892)^0 and \(\phi(1020) \) production at midrapidity in pp collisions at \(\sqrt{s} = 8 \text{ TeV} \) ALICE Collaboration

Figure 6: (Color online) Particle ratio \(\phi / K^* \) presented for pp collisions [12, 25, 27, 28] as a function of the collision energy. Bars (when present) represent statistical uncertainties. Boxes represent the total systematic uncertainties or the total uncertainties for cases when separate statistical uncertainties were not reported.

state partonic system consists of longitudinal flux tubes which fragment into string segments. The high energy density string segments form the so-called “core” region, which evolves hydrodynamically to form the bulk part of the system in the final state. The low-density region is known as the “corona”, which expands and breaks via the production of quark-antiquark pairs and hadronises using the vacuum string fragmentation. Recent data from LHC have been used already to tune the EPOS-LHC model [6].

Figure 7 shows a comparison of the \(K^* \) (left) and \(\phi \) (right) \(p_T \) spectra in inelastic pp collisions with PYTHIA8, PHOJET and EPOS-LHC. The bottom panels show the ratios of the \(p_T \) spectra from models to the measured \(p_T \) spectra by ALICE. The total fractional uncertainties from the real data, including both statistical and systematic uncertainties are shown as shaded boxes. PYTHIA 8 overestimates the \(p_T \) spectra for \(K^* \) at very low \(p_T \) but describes in the intermediate-\(p_T \) region, which approaches the experimental data at high \(p_T \). For the \(\phi \) meson, PYTHIA 8 under predicts the yields from the experimental data by about a factor of two. PHOJET has a softer \(p_T \) spectrum for \(K^* \) and it explains the data above \(p_T > 4 \text{ GeV/c} \). For the \(\phi \) meson, PHOJET predicts the yields similarly as PHYTHIA 8 at low \(p_T \), while it approaches the experimental data at higher \(p_T \). For the \(K^* \), EPOS-LHC describes the \(p_T \) spectra at low \(p_T \) and overestimates the data above 4 GeV/c. For the \(\phi \) meson when PYTHIA and PHOJET fail to describe the \(p_T \)-spectra, the EPOS-LHC model approaches to the data at low \(p_T \) and deviates monotonically from it with increasing \(p_T \).

5 Conclusions

The measurements are presented for \(K^* \) and \(\phi \) production at midrapidity in inelastic pp collisions at \(\sqrt{s} = 8 \text{ TeV} \) in the range \(0 < p_T < 20 \text{ GeV/c} \) for \(K^* \) and \(0.4 < p_T < 16 \text{ GeV/c} \) for \(\phi \). Also, updated measurements at \(\sqrt{s} = 7 \text{ TeV} \) are presented, which improve the results previously published in [12]. In comparison to other LHC energies, a hardening of the \(p_T \) spectra is observed with an increasing collision energy. The \(K^*/\pi \) and \(\phi/\pi \) ratios are independent of collision energy within systematic uncertainties. This indicates that there is no strangeness enhancement in inelastic pp collisions as the collision energy is increased. Similar behavior is observed for the \(K^* / K \) and \(\phi / K \) ratios as a function of collision energy. Also, no energy dependence of the \(\phi / K^* \) ratio in minimum bias pp collisions at LHC energies is observed, which suggests there is no energy dependence of the chemistry of the system. None of the MC models seem to explain the \(K^* \) spectra in complete \(p_T \) region whereas PHOJET and PYTHIA describe the data for intermediate and high-\(p_T \) regions. However, the MC models fail to explain the \(p_T \) spectra of
Figure 7: (Color online) Comparison of the K^{*0} (left) and ϕ (right) p_T spectra measured in inelastic pp collisions with those obtained from PYTHIA8 (Monash tune) [7], PHOJET [8, 9] and EPOS-LHC [??]. The bottom plots show the ratios of the p_T spectra from the models to the measured p_T spectra by ALICE. The total fractional uncertainties from data are shown as shaded boxes.

ϕ meson completely. These pp results will serve as baseline for the measurements in p–Pb and Pb–Pb collisions.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF); [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MOEC), Ministry of Science and Technology of China (MOEC), China; Croatian Science Foundation and Ministry of Science and Education, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research — Natural Sciences, the Carlsberg Foundation and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Energie Atomique (CEA), Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS) and Région des Pays de la Loire, France; Bundesministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Tech-
K’(892)0 and φ(1020) production at midrapidity in pp collisions at √s = 8 TeV

References

[1] J. C. Collins, D. E. Soper, and G. F. Sterman, “Factorization of Hard Processes in QCD”, Adv. Ser. Direct. High Energy Phys. 5 (1989) 1–91

[2] D. de Florian, R. Sassot, M. Epele, R. J. Hernández-Pinto, and M. Stratmann, “Parton-to-Pion Fragmentation Reloaded”, Phys. Rev. D91 no. 1, (2015) 014035, arXiv:1410.6027 [hep-ph]

[3] D. de Florian, M. Epele, R. J. Hernandez-Pinto, R. Sassot, and M. Stratmann, “Parton-to-Kaon Fragmentation Revisited”, Phys. Rev. D95 no. 9, (2017) 094019, arXiv:1702.06353 [hep-ph]

[4] P. K. Malhotra and R. Orava, “Measurement of Strange Quark Suppression in Hadronic Vacuum”, Z. Phys. C17 (1983) 85

[5] A. Wroblewski, “On the strange quark suppression factor in high-energy collisions”, Acta Phys. Polon. B16 (1985) 379–392.

[6] T. Pierog, I. Karpenko, J. M. Katzy, E. Yatsenko, and K. Werner, “EPOS LHC: Test of collective hadronization with data measured at the CERN Large Hadron Collider”, Phys. Rev. C92 no. 3, (2015) 034906, arXiv:1306.0121 [hep-ph]

[7] P. Skands, S. Carrazza, and J. Rojo, “Tuning PYTHIA 8.1: the Monash 2013 Tune”, Eur. Phys. J. C74 no. 8, (2014) 3024, arXiv:1404.5630 [hep-ph]

[8] R. Engel and J. Ranft, “Hadronic photon-photon interactions at high-energies”, Phys. Rev. D54 (1996) 4244–4262, arXiv:hep-ph/9609373 [hep-ph]
K∗(892)0 and φ(1020) production at midrapidity in pp collisions at √s = 8 TeV

ALICE Collaboration

[9] R. Engel, “Photoproduction within the two component dual parton model. 1. Amplitudes and cross-sections”, Z. Phys. C66 (1995) 203–214

[10] ALICE Collaboration, K. Aamodt et al., “Production of pions, kaons and protons in pp collisions at √s = 900 GeV with ALICE at the LHC”, Eur. Phys. J. C71 (2011) 1655, arXiv:1101.4110 [hep-ex]

[11] ALICE Collaboration, J. Adam et al., “Measurement of pion, kaon and proton production in proton-proton collisions at √s = 7 TeV”, Eur. Phys. J. C75 no. 5, (2015) 226, arXiv:1504.00024 [nucl-ex]

[12] ALICE Collaboration, K. Aamodt et al., “The ALICE experiment at the CERN LHC”, JINST 3 (2008) S08002.

[13] ALICE Collaboration, B. Abelev et al., “Performance of the ALICE Experiment at the CERN LHC”, Int. J. Mod. Phys. A29 (2014) 1430044, arXiv:1402.4476 [nucl-ex].

[14] Particle Data Group Collaboration, M. Tanabashi et al., “Review of Particle Physics”, Phys. Rev. D98 no. 3, (2018) 030001.

[15] Particle Data Group Collaboration, C. Patrignani et al., “Review of Particle Physics”, Chin. Phys. C40 no. 10, (2016) 100001.

[16] ALICE Collaboration, “ALICE luminosity determination for pp collisions at √s = 8 TeV”, https://cds.cern.ch/record/2255216.

[17] R. Brun, R. Hagelberg, M. Hansroul, and J. C. Lassalle, “Geant: Simulation Program for Particle Physics Experiments. User Guide and Reference Manual”, CERN-DD-78-2-REV , CERN-DD-78-2 (1978).

[18] C. Loizides, J. Kamin, and D. d’Enterria, “Improved Monte Carlo Glauber predictions at present and future nuclear colliders”, Phys. Rev. C97 no. 5, (2018) 054910, arXiv:1710.07098 [nucl-ex] [erratum: Phys. Rev.C99,no.1,019901(2019)].

[19] ALICE Collaboration, B. Abelev et al., “Centrality dependence of π, K, p production in Pb-Pb collisions at √sNN = 2.76 TeV”, Phys. Rev. C88 (2013) 044910, arXiv:1303.0737 [hep-ex].

[20] ALICE Collaboration, B. Abelev et al., “Multiplicity Dependence of Pion, Kaon, Proton and Lambda Production in p-Pb Collisions at √sNN = 5.02 TeV”, Phys. Lett. B728 (2014) 25–38, arXiv:1307.6796 [nucl-ex].

[21] C. Tsallis, “Possible Generalization of Boltzmann-Gibbs Statistics”, J. Statist. Phys. 52 (1988) 479–487.

[22] STAR Collaboration, B. I. Abelev et al., “Strange particle production in p+p collisions at √sNN = 200-GeV”, Phys. Rev. C75 (2007) 064901, arXiv:nucl-ex/0607033 [nucl-ex].

[23] ALICE Collaboration, J. Adam et al., “K∗(892)0 and φ(1020) meson production at high transverse momentum in pp and Pb-Pb collisions at √sNN = 2.76 TeV”, Phys. Rev. C95 no. 6, (2017) 064606, arXiv:1702.00555 [nucl-ex].

[24] ALICE Collaboration, B. Abelev et al., “K∗(892)0 and φ(1020) production in Pb-Pb collisions at √sNN = 2.76 TeV”, Phys. Rev. C91 (2015) 024609, arXiv:1404.0495 [nucl-ex].
K′(892)^0 and φ(1020) production at midrapidity in pp collisions at \(\sqrt{s} = 8\) TeV ALICE Collaboration

[26] J. Stachel, A. Andronic, P. Braun-Munzinger, and K. Redlich, “Confronting LHC data with the statistical hadronization model”, J. Phys. Conf. Ser. 509 (2014) 012019, arXiv:1311.4662 [nucl-th].

[27] STAR Collaboration, J. Adams et al., “\(K(892)^*\) resonance production in Au+Au and p+p collisions at \(\sqrt{s_{NN}} = 200\)-GeV at STAR”, Phys. Rev. C71 (2005) 064902, arXiv:nucl-ex/0412019 [nucl-ex].

[28] STAR Collaboration, J. Adams et al., “\(\phi\) meson production in Au + Au and p+p collisions at \(\sqrt{s_{NN}} = 200\)-GeV”, Phys. Rev. C71 (2005) 064902, arXiv:nucl-ex/0412019 [nucl-ex].

[29] ALICE Collaboration, K. Aamodt et al., “Strange particle production in proton-proton collisions at \(\sqrt{s} = 0.9\) TeV with ALICE at the LHC”, Eur. Phys. J. C71 (2011) 1594, arXiv:1012.3257 [hep-ex].

[30] STAR Collaboration, B. I. Abelev et al., “Measurements of \(\phi\) meson production in relativistic heavy-ion collisions at RHIC”, Phys. Rev. C79 (2009) 064903, arXiv:0809.4737 [nucl-ex].

[31] STAR Collaboration, J. Adams et al., “Identified particle distributions in pp and Au+Au collisions at \(\sqrt{s_{NN}} = 200\) GeV”, Phys. Rev. Lett. 92 (2004) 112301, arXiv:nucl-ex/0310004 [nucl-ex].

[32] ALICE Collaboration, B. Abelev et al., “\(K^*\) production in Cu+Cu and Au+Au collisions at \(\sqrt{s_{NN}} = 62.4\) GeV and 200 GeV”, Phys. Rev. C84 (2011) 034909, arXiv:1006.1961 [nucl-ex].

[33] PHENIX Collaboration, S. S. Adler et al., “Production of \(\phi\) mesons at mid-rapidity in \(\sqrt{s_{NN}} = 200\) GeV Au+Au collisions at RHIC”, Phys. Rev. C72 (2005) 014903, arXiv:0809.4737 [nucl-ex].

[34] STAR Collaboration, M. M. Aggarwal et al., “\(K^{*0}\) production in Cu+Cu and Au+Au collisions at \(\sqrt{s_{NN}} = 62.4\) GeV and 200 GeV”, Phys. Rev. C84 (2011) 034909, arXiv:1006.1961 [nucl-ex].

[35] NA49 Collaboration, C. Alt et al., “Energy dependence of \(\phi\) meson production in central Pb+Pb collisions at \(\sqrt{s_{NN}} = 6\) to 17 GeV”, Phys. Rev. C78 (2008) 044907, arXiv:0806.1937 [nucl-ex].

[36] STAR Collaboration, B. I. Abelev et al., “Hadronic resonance production in d+Au collisions at \(\sqrt{s_{NN}} = 200\)-GeV at RHIC”, Phys. Rev. C78 (2008) 044906, arXiv:0801.0450 [nucl-ex].

[37] NA49 Collaboration, S. V. Afanasiev et al., “Production of \(\phi\) mesons in p + p, p + Pb and central Pb + Pb collisions at E(beam) = 158-A-GeV”, Phys. Lett. B491 (2000) 59–66.

[38] NA49 Collaboration, S. V. Afanasiev et al., “Energy dependence of pion and kaon production in central Pb + Pb collisions”, Phys. Rev. C66 (2002) 054902, arXiv:nucl-ex/0205002 [nucl-ex].

[39] STAR Collaboration, C. Adler et al., “Midrapidity \(\phi\) production in Au + Au collisions at \(\sqrt{s_{NN}} = 130\)-GeV”, Phys. Rev. C65 (2002) 041901.

[40] PHENIX Collaboration, A. Adare et al., “Measurement of neutral mesons in p+p collisions at \(\sqrt{s} = 200\) GeV and scaling properties of hadron production”, Phys. Rev. D83 (2011) 052004, arXiv:1005.3674 [hep-ex].

[41] PHENIX Collaboration, A. Adare et al., “Identified charged hadron production in p + p collisions at \(\sqrt{s} = 200\) and 62.4 GeV”, Phys. Rev. C83 (2011) 064903, arXiv:1102.0753 [nucl-ex].
K*(892)º and φ(1020) production at midrapidity in pp collisions at \(\sqrt{s} = 8 \) TeV

ALICE Collaboration

[42] B. Andersson, G. Gustafson, G. Ingelman, and T. Sjostrand, “Parton Fragmentation and String Dynamics”, *Phys. Rept.* **97** (1983) 31–145.

[43] A. Capella, U. Sukhatme, C.-I. Tan, and J. Tran Thanh Van, “Dual parton model”, *Phys. Rept.* **236** (1994) 225–329.

[44] G. A. Schuler and T. Sjostrand, “Hadronic diffractive cross-sections and the rise of the total cross-section”, *Phys. Rev.* **D49** (1994) 2257–2267.

[45] K. Werner, “Core-corona separation in ultra-relativistic heavy ion collisions”, *Phys. Rev. Lett.* **98** (2007) 152301. [arXiv:0704.1270 [nucl-th]].
A The ALICE Collaboration

S. Acharya111, D. Adamov23, S.P. Adhya113, A. Adler23, J. Adolfs22, M.M. Aggarwa28, G. Aglieri Rinelli22, M. Agnele21, N. Agrawa103,85, Z. Ahammed121, S. Ahmad121, S.U. Ahrens100, A. Akindinov100, M. Al-Turany105, S.N. Alan142, D.S.D. Albuquerque122, D. Aleksandrov60, B. Alessandri55, H.M. Alfa16, E. Alfaro Molin181, B. Ali117, Y. Ali163, A. Alic123, A. Alkim22, J. Alme122, T. Alt163, L. Altenkampe22, I. Altsybee16, M.N. Aanae16, C. Andre143, D. Andreo122, H.A. Andrews109, A. Andronic144, M. Angeletti16, V. Anguelov105, C. Ansor123, T. Aoki111, F. Antinori105, P. Antonioli116, R. Anwar20, N. Apalapu28, L. Aphracte111, H. Arpels112, S. Arcell121, R. Arnaldi135, M. Arratia102, I.C. Arsen121, M. Arslanbek16, A. Augustini16, R. Averbuch105, S. Aziz121, M.D. Azmi121, A. Badal121, Y.W. Baek118, S. Bagnasco112, X. Bai110, R. Bainhach105, R. Bahl121, A. Baldi118, A. Baldisseri105, M. Ball118, S. Balouzi105, R.C. Barad121, R. Barberi122, L. Barogiogl105, G.G. Barna12, L.S. Barnby122, V. Barre112, P. Bartalini12, K. Barth118, E. Bartocha19, F. Baruffal110, N. Bastid121, S. Bas103, G. Batigne111, B. Batyuny121, P.C. Battering121, D. Baur11, J.L. Bazo Alba111, I.G. Bearder11, C. Beddo113, N.K. Behren103, I. Belykov19, F. Bellini121, R. Bellwies110, V. Belyaev121, G. Bence115, S. Beol121, A. Bercuc117, Y. Berdnik105, D. Berenyi110, R.A. Bertens130, D. Berzani55, M.G. Beso11, L. Betx103, A. Bhasin119, I.R. Bhat119, M.A. Bhatt12, B. Bhattacharjee20, L. Bianchi21, H. Bin103, N. Bianchi31, J. Bielecki31, J. Bie112, G. Bieda31, A. Bilandzic117, G. Bird125, R. Biswas18, S. Biswa11, J.T. Bla123, D. Blau126, C. Blum105, G. Boc121, F. Bock121, A. Bogdanov12, L. Boldizs151, A. Bolodezy181, M. Bombarda155, G. Bonomi155, H. Bore137, A. Borris111, M. Borr12, H. Boss111, E. Botta126, L. Brat188, P. Braun-Munzig105, M. Bregani121, T.A. Broke17, M. Bro111, E.J. Brucker111, E. Brum155, G.E. Brus110, M.D. Buckland122, D. Budnikov105, H. Buesching106, S. Bufalin110, O. Bugno113, P. Buhler113, P. Bunc113, Z. Buthelezi31, J.B. But124, J.T. Buxtor125, S.A. Bysia111, D. Caffarr128, A. Cal115, E. Calvo Villa110, R.S. Camach121, P. Cainer122, A.A. Capo111, F. Carne110, J. Casti112, J. Casti112, J.G. Contrera112, T.M. Cormic121, Y. Corrales Morales111, P. Cort125, M.R. Cosentino111, F. Cost121, S. Costanz110, J. Cr112, F. Crochet61, P. Crochet125, E. Cuatt121, L. Cun111, D. Dabrowski118, D. Dahm118, M. Dainese19, F.P.A. Dam121, S. Dai112, M.C. Danisch11, A. Danel107, D. Das110, I. Das110, P. Da110, S. Da110, A. Das110, S. Das110, A. Dash110, S. Das110, A. De108, G. Dess121, C. De113, C. De113, J. De113, E. Delfo118, S. De113, H.F. De113, K.R. De113, A. Delo118, S. Delsa113, D. Devetak105, P. Dhank110, D. Di Bari110, A. Di Maur131, R.A. Diaz101, T. Dietel121, P. Dillensege121, Y. Ding110, R. Div110, O. Djupsjo111, U. Dmitriev122, A. Dobri122, B. Donig117, O. Dordi111, K. Dupl110, L. Drag188, M. Dukhish119, P. Dupieu111, R.J. Ehlers46, D. El110, H. Engel119, E. Epp116, B. Erazm111, F. Erhardt111, A. Erokh113, M.R. Ers122, B. Espgn105, G. Euliss11, J. Euri110, D. Evans110, S. Evdokim110, F. Fabbi110, M. Faggi110, J. Faivre110, A. Fanton111, M. Fast110, P. Fecch110, A. Feli110, S. Feo110, G. Feo110, A. Fernandez Telle110, A. Ferrere117, A. Ferrerette110, A. Festani110, V.J.G. Feuillard110, H. Fig111, S. Flach110, D. Finogeev110, F.M. Fiod121, G. Fioren210, S. Flo110, S. Foert110, P. Fok110, S. Fokin110, E. Fragiacome110, U. Frankenfeld105, G.G. Fronza110, U. Fuchs110, C. Furg110, A. Furt110, M. Fusco Girardi101, J.J. Ga110, M. Galardi110, A.M. Gage110, A. Gal110, C.D. Galvan110, P. Ganot110, C. Garab110, E. Garcia-So110, K. Garg110, C. Garg110, G. Garib110, K. Gar110, P. Gas110, E.F. Gauss110, M.B. Gay Ducat110, M. Germa111, J. Ghos110, P. Ghos110, S.K. Ghos110, P. Gianott110, P. Giubell110, P. Giubil110, P. Gia110, D.M. Gomez Coral110, A. Gomez Ramirez110, V. Gonzalez110, P. Gonzalez-Zamora110, S. Gorbonov110, L. Gou110, S. Gotov110, V. Grabski110, L.K. Gracz110, K.L. Grah110, L. Grein110, A. Grell110, C. Grigoriu110, V. Grigoriev110, A. Grigoryan110, S. Grigoryan110, O.S. Groettiv110, J.M. Gronfe111, F. Gross111, J.F. Grose-Oetting111, R. Gross111, R. Guernann111, B. Guerz110, M. Guittiere110, K. Gulbrands110, T. Gunj110, A. Gupta110, R. Gupta110, I.B. Guzman110, R. Haaki110, M.K. Hab110, C. Hadjd110, H. Hamag110, G. Ham110, M. Han110, R. Hanning110, M.A. Hare110, A. Harlenderov110, J.W. Harr110, A. Harto110, J.A. Hanse110, H. Har110, D. Hatzifoti110, J. Hay110, P. Haue110, S. Hayash110, A.D.L. Hecc110, S.T. Hecc110, E. Hell110, H. Helstro110, A. Herhel110, E.G. Herne110, G. Herrera Corra110, F. Herrmann110, K.F. Hetland110, T.E. Hilder110, H. Hill110, C. Hill110, B. Hippolyt110, B. Hohlwe110, D. Horal110, S. Hornung110, R. Hosokawa110, K+(892) and φ(1020) production at midrapidity in pp collisions at √s = 8 TeV ALICE Collaboration
K*(892) and φ(1020) production at midrapidity in pp collisions at √s = 8 TeV

ALICE Collaboration

P. Hristov, C. Huang, C. Hughes, P. Huhn, T.J. Humani, H. Hushnum, L.A. Husovai, N. Hussain, S.A. Hussain, T. Hussain, D. Hutter, D.S. Hwang, J.P. Iddon, R. Ikka, M. Inaba, M. Ippolito, M.S. Islam, M. Ivanov, V. Ivanov, V. Izzicheev, B. Jacak, N. Jaconac, P.M. Jacob, M.B. Jadhav, S. Jadlovska, J. Jadlovski, S. Jaelan, C. Jahnke, M.J. Jakubowski, M.A. Janik, M. Jerci, O. Jevonić, R.T. Jimenez Bustamante, M. Jin, F. Jonas, F.G. Jone, J. Jungh, M. Jun, A. Jusko, P. Kalika, A. Kalwein, J.H. Kang, V. Kapli, S. Kač, A. Karasou, A. Karasou, A. Karasou, V. Karachev, T. Karavichević, P. Karczmarczyk, E. Karpechev, U. Kebschull, R. Keide, M. Keil, B. Ketzer, Z. Khabanova, A.M. Khar,

S. Khar, S.A. Khan, A. Khanzadeev, Y. Kharlov, A. Khattri, A. Khudić, B. Kileng, B. Kin, B. Kin, D. Kin, D.J. Kin, E.J. Kin, H. Kin, J. Kin, J.S. Kin, J. Kin,

J. Kin, J. Kin, D. Kin, D. Kin, T. Kin, T. Kin, T. Kirsiš, I. Kisel, I. Kiselev,

A. Kisie, J.L. Klaić, C. Kleijn, J. Kleij, S. Kleijn, C. Klein-Böing, S. Klewin, A. Kluge,

M.L. Kniche, A.G. Köhn, C. Kobda, M.K. Köhler, T. Kollegger, A. Kondratyev,

N. Kondratyev, T. Kondratyuk, P.J. Konopka, L. Kost, O. Koválenko, V. Kovánc, L. Kowalski, I. Kráľ, A. Kravčáková, L. Kreis, M. Krivda, F. Krizel, K. Kricka, Gajdosová, M. Krüge, E. Kryshev, M. Krzewicki, A.M. Kuberd, V. Kučer, C. C. Kuhn, P.G. Kuijer, A. Kurepin, C. Kurepin, A. Kuryak, J. Kviapi, M. K, O. Kwapi, J.Y. Kwori, Y. Kwori, S.L. La Point, P. La Rocca, Y.S. LaH, L. Langovic, K. Lapidou, A. Lardeous, P. Lario, O. Laut, R. Lavička, T. Lazarev, R. Le, A. Lec, L. Lecom, D.E. Lesser, M. Leitet, P. Leváč, X. Li, L. Li, J. Li, J. Li,

R. Lietava, B. Lin, S. Linka, V. Lindenstruth, S.W. Lindsay, C. Lippmann, M.A. Liss, L. Litichevsky, A. Liu, S. Liu, W.J. Llopp, I.M. Lofne, V. Logino, C. Loizides, P. Loncescu, X. Lope, E. López Torres, P. Luettinger, R.R. Luhde, M. Lunardon, G. Luparello, M. Luppi, A. Maevskaya, M. Mager, S.M. Mahmood, T. Mahmoud, A. Maier, R.D. Majka, M. Malae, Q.W. Malin, L. Malinina, D. Mal'Kevich, P. Malzacher, A. Mamonov, G. Mandaglia,

V. Mank, F. Manso, V. Manzari, Y. Maas, M. Marchison, J. Marc, G.V. Margagliotti, A. Margotti, J. Marguti, A. Marin, C. Marker, M. Marquart, N.A. Martin, P. Martineng,

J.L. Martínez, M.I. Martínez, G. Martinez García, M. Martinez Pérez, S. Masciocchi, M. Masera, A. Masoni, L. Massacrifici, E. Masson, A. Mastroserio, A.M. Mathis, O. Matonoha, P.F. Matouk, J.J. Matyi, C. Maye, M. Mazzioli, M.A. Mazzon,

A.F. Mechler, F. Medd, M. Melakianais, A. Menchaca-Rocha, M. Emeni, M. Meres, N. Miret, S. Mhlango, Y. Miak, L. Michele, M.M. Mieselskis, D.L. Mihaylov, O. Mikhailo, W. Mihaylo, A. Mischke, B. Ming, A.N. Mishra, D. Miškowiak, C.M. Mitić, A. Modali, N. Mohammad, A.P. Mohanty, B. Mohanty,

M. Mohsin Khali, M. Monda, M.M. Monda, C. Mordasin, D.A. Moreira De Godoi, L.A.P. Moore, H. Moradi, A. Morreale, A. Morsch, T. Mrnjavac, V. Muccifora, E. Mudnic,

D. Mühlheim, S. Muhuri, J.D. Mulligat, M.G. Munho, M. Münnig, R.H. Munze, H. Murakami, S. Muraki, S. Musi, J. Musinsky, C.J. Myers, J.W. Myrcha, B. Naik,

R. Naïf, B.K. Nandi, R. Nani, C. Nappi, M.U. Naru, A.F. Nasiripour, H. Natal da Luz, C. Nattrass, R. Nayak, T.K. Nayak, S. Nazarenko, R.A. Nagaro De Oliveira, L.L. Nelleg,

S.V. Nesbí, G. Neskov, S. Nesci, B.S. Nielsen, G. Nesci, S. Nikulin, V. Nikulin, F. Noferini, P. Nomokonov, G. Noon, J. Norman, N. Novitzky, T. Nowakowski, A. Nyaming, J. Nystrand,

M. Ogina, A. Oikarinen, J. Olenczyk, A.C. Oliveira Da Silva, M.H. Oliver, C. Oppedisani, R. Oravecz, A. Ortiz Velasquez, A. Oskarsson, J. Otwinowski, K. Oyama, Y. Pachmayer, V. Pacieja, D. Pagand, G. Paidi, T. Pain, J. Pan, A.K. Pandey, S. Panebianco, V. Papikyan, P. Pare, J.K. Park, J.E. Parkhill, S. Parmar, A. Passfeld, S.P. Patak, R.N. Patri,

B. Paul, H.P. Pe, T. Peitzman, H. Peng, L.G. Pereira, H. Pereira Da Costa, D. Peresunko, G.M. Perez, E. Perez Lezama, V. Peskov, Y. Pesot, V. Petracèl, M. Petrovic, R.P. Pezz, S. Pian, M. Piksa, S. Pillo, D.O.L.D. Pimentel, O. Pinzacci, L. Pinsky, C. Pinto,

S. Pisan, D.B. Piya, F. Piatnizkii, M. Ploskov, M. Platinis, V. Pliquet, J. Pluta, S. Počovnik, M.P. Pogyosy, B. Polichtchouk, N. Polija, W. Poonsawat, A. Pop, H. Poppenborg, I. Porteboeuf-Houssay, V. Pozdniakov, S.K. Prasad, R. Preghenella, F. Printz, C.A. Pruneau, I. Pshenichno, M. Puccia, B. Pulido, T. Puni, D.K. Purananand, J. Putschke, R.E. Quishpe, S. Ragon, S. Rahi, S. Rajput, J. Raji, A. Rakotofibrand, J. Ramel, F. Rami,

R. Ranaiw, S. Ranival, S.S. Risänpää, B.T. Rascan, R. Rat, V. Ratz, I. Ravens, S.V. Nesbo, S. Raha, L.A.P. Moreno, V. Ressò, R. Renford, S. Raha, L.A.P. Moreno, V. Ressò, R. Renford, S.V. Nesbo, S. Raha, L.A.P. Moreno, V. Ressò, R. Renford.
A. Reshetov, J.-P. Reverte, K. Reygers, V. Ribordy, T. Richert, M. Richte, P. Riedler, W. Riegler, F. Riggi, C. Ristea, S.P. Rodé, M. Rodríguez Cahuantzi, K. Rodo, R. Rogalev, E. Rogocho, D. Rohr, D. Röhricke, F.S. Rokita, F. Ronchetti, E.D. Rosas, K. Rosolka, P. Rosne, A. Ross, A. Rouot, D. Roukoutakis, A. Roy, P. Roy, O.V. Rueda, R. Rui, B. Rumiantseva, A. Rustamov, E. Ryabinkin, Y. Ryabov, A. Rybicki, H. Ryktoni, S. Sadhu, S. Sadovsky, K. Safarík, S.K. Sahai, B. Sahoo, P. Sahok, R. Sahoh, S. Sahod, P.K. Sahuj, J. Saimi, S. Saka, S. Sambyal, V. Samsonov, V.R. Sanchez, A. Sandoval, A. Sarkan, D. Sarkar, N. Sarkan, P. Sarma, V.M. Sarth, M.P. Savás, E. Scapparone, B. Schaefer, J. Schambach, H.S. Scheid, C. Schiaia, R. Schicker, A. Schmid, C. Schmidt, H.R. Schmidt, M.O. Schmidt, M. Schmied, N.V. Schmid, A.R. Schmit, J. Schukraft, Y. Schurt, K. Schwart, K. Schweda, G. Sciot, E. Scoppari, M. Šefčík, J.E. Sege, Y. Sekiguchi, D. Sekihata, Y. Sekihata, Y. Sekihata, I. Selyuzhenko, S. Senyuku, D. Sererebyakov, E. Serradilla, P. Sert, A. Sevcenc, A. Shabanov, A. Shabetai, R. Shahoyan, W. Shai, A. Shangaraev, A. Sharmar, A. Sharma, H. Sharma, M. Sharm, N. Sharm, A.I. Sheikh, K. Shigaki, M. Shimomura, S. Shirinkin, Q. Shao, Y. Sibiriankin, S. Siddhant, T. Siemiaczuk, D. Silvermyr, C. Silvestre, G. Simatovic, G. Simonetti, I.T. Singh, R. Singh, V.K. Singh, V. Singh, S. Sinha, B. Sitare, M. Sitta, T.B. Skala, M. Slupeck, N. Smirno, R.J.M. Snelling, T.W. Snelmar, I. Socci, J. Socci, J. Song, O. Song, A. Songmoamlan, I. Sorame, S. Sorensen, I. Spetkova, I. Stach, I. Stag, P. Stanku, M.J. Steffani, E. Stenlund, V. Stroc, M.M. Stroete, P. Stratki, A.A.P. Suaide, C. Sugitate, C. Suire, M. Suleymanov, M. Suljic, R. Sultov, M. Sumber, S. Sumowidagdo, K. Suzuki, J.S. Swain, A. Szabo, I. Szarka, U. Tabassani, G. Taillelep, J. Takahashi, G.J. Tambave, S. Tang, M. Tarhini, M.G. Tarzil, A. Tauro, G. Tejeda Muñoz, A. Telesca, C. Terrevo, Y. Thakur, S. Thakur, D. Thomas, F. Thoresen, R. Tienal, A. Tikhonov, A.R. Timmins, A. Toti, N. Topilskaya, M. Toppi, F. Torres-Acosta, S.R. Torres, A. Trihardi, S. Tripathi, T. Tripathi, S. Trop, S. Trogo, G. Trumbetti, L. Tropp, V. Trubnikov, W.H. Trzask, T.P. Trzeciak, B.A. Trzeciak, T. Tsuji, A. Tumku, H.J. Turrisi, T.S. Tveten, K. Ullalan, I.N. Umak, A. Ura, G.L. Usage, A. Utrobić, V. Valdorić, N. Valdorić, N. van der Kolk, L.V.R. van Doremalen, M. van Leeuwen, P. Van de Vyver, D. Varghese, Z. Varga, Z. Varga, M. Varga-Kofarage, A. Varga, M. Vargyai, M. Varm, M. Vasileiou, A. Vasiliu, V. Vázquez-Dogan, O. Vazquez-Dogan, V. Vechernin, A.M. Vee, E. Vercellin, V. Vergara Limón, L. Verma, L. Verma, R. Verdetts, M.G.D.L. Vicenci, L. Vicković, J. Vinkan, J. Vinkan, M. Vinkan, Z. Vilakazi, O. Villalba, L. Villar, O. Villalba, A. Villar, A. Villar, G. Vinod, A. Vinogradov, D. Visk, G. Vislovsk, A. Vislovsk, A. Vislovsk, V. Vislavicius, A. Vodopyanov, B. Volk, M.A. Völkt, K. Voloshin, S.A. Voloshin, G. Volpe, B. von Halle, I. Vorobyev, D. Vos, D. Vosjok, A. Wagner, M. Weber, S.G. Weber, E. Weis, D.F. Weiss, R.C. Wenzel, M.J. Wenzel, J. Widmann, A. Wie, J. Wiechert, C. Will, A.G. Willen, J.A. Wills, E. Willsher, M. Windelband, M. Wite, J. Wite, Y. Wite, R.X. Xie, C. Yalcin, K. Yamakawa, S. Yang, S. Yang, X. Yi, H. Yokoyama, O. Yoon, O. Yoon, S. Yuan, Y. Yurchenko, V. Zaccaro, D. Zafren, A. Zaman, A. Zampolli, H.J.C. Zapolda, N. Zardoshi, A. Zarochentsev, P. Závada, N. Zavvialov, H. Zbroszczyk, M. Zhalov, X. Zhang, Z. Zhang, C. Zhao, V. Zherebevski, N. Zhigareva, D. Zhou, Y. Zhou, Z. Zhou, J. Zhu, Y. Zhu, A. Zichichi, M.B. Zimmermann, G. Zinovjev, N. Zurla.
K*(892)0 and φ(1020) production at midrapidity in pp collisions at √s = 8 TeV ALICE Collaboration

5 California Polytechnic State University, San Luis Obispo, California, United States
6 Central China Normal University, Wuhan, China
7 Centre de Calcul de l’IN2P3, Villeurbanne, Lyon, France
8 Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
9 Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
10 Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi’, Rome, Italy
11 Chicago State University, Chicago, Illinois, United States
12 China Institute of Atomic Energy, Beijing, China
13 Chonbuk National University, Jeonju, Republic of Korea
14 Comenius University Bratislava, Faculty of Mathematics, Physics and Informatics, Bratislava, Slovakia
15 COMSATS University Islamabad, Islamabad, Pakistan
16 Creighton University, Omaha, Nebraska, United States
17 Department of Physics, Aligarh Muslim University, Aligarh, India
18 Department of Physics, Pusan National University, Pusan, Republic of Korea
19 Department of Physics, Sejong University, Seoul, Republic of Korea
20 Department of Physics, University of California, Berkeley, California, United States
21 Department of Physics, University of Oslo, Oslo, Norway
22 Department of Physics and Technology, University of Bergen, Bergen, Norway
23 Dipartimento di Fisica dell’Università ‘La Sapienza’ and Sezione INFN, Rome, Italy
24 Dipartimento di Fisica dell’Università and Sezione INFN, Cagliari, Italy
25 Dipartimento di Fisica dell’Università and Sezione INFN, Trieste, Italy
26 Dipartimento di Fisica dell’Università and Sezione INFN, Turin, Italy
27 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Bologna, Italy
28 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Catania, Italy
29 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Padova, Italy
30 Dipartimento di Fisica ‘E.R. Caianiello’ dell’Università and Gruppo Collegato INFN, Salerno, Italy
31 Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy
32 Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and INFN Sezione di Torino, Alessandria, Italy
33 Dipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFN, Bari, Italy
34 European Organization for Nuclear Research (CERN), Geneva, Switzerland
35 Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
36 Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
37 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
38 Faculty of Science, P.J. Šafářik University, Košice, Slovakia
39 Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
40 Gangneung-Wonju National University, Gangneung, Republic of Korea
41 Gauhati University, Department of Physics, Guwahati, India
42 Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
43 Helsinki Institute of Physics (HIP), Helsinki, Finland
44 High Energy Physics Group, Universidad Autónoma de Puebla, Puebla, Mexico
45 Hiroshima University, Hiroshima, Japan
46 Hochschule Worms, Zentrum für Technologietransfer und Telekommunikation (ZTT), Worms, Germany
47 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
48 Indian Institute of Technology Bombay (IIT), Mumbai, India
49 Indian Institute of Technology Indore, Indore, India
50 Indonesian Institute of Sciences, Jakarta, Indonesia
51 INFN, Laboratori Nazionali di Frascati, Frascati, Italy
52 INFN, Sezione di Bari, Bari, Italy
53 INFN, Sezione di Bologna, Bologna, Italy
54 INFN, Sezione di Cagliari, Cagliari, Italy
55 INFN, Sezione di Catania, Catania, Italy
\(K'(892)^0 \) and \(\phi(1020) \) production at midrapidity in pp collisions at \(\sqrt{s} = 8 \text{ TeV} \)

ALICE Collaboration

56 INFN, Sezione di Padova, Padova, Italy
57 INFN, Sezione di Roma, Rome, Italy
58 INFN, Sezione di Torino, Turin, Italy
59 INFN, Sezione di Trieste, Trieste, Italy
60 Inha University, Incheon, Republic of Korea
61 Institut de Physique Nucléaire d’Orsay (IPNO), Institut National de Physique Nucléaire et de Physique des Particules (IN2P3/CNRS), Université de Paris-Sud, Université Paris-Saclay, Orsay, France
62 Institute for Nuclear Research, Academy of Sciences, Moscow, Russia
63 Institute for Subatomic Physics, Utrecht University/Nikhef, Utrecht, Netherlands
64 Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
65 Institute of Physics, Homi Bhabha National Institute, Bhubaneswar, India
66 Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
67 Institute of Space Science (ISS), Bucharest, Romania
68 Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
69 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
70 Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
71 Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
72 iThemba LABS, National Research Foundation, Somerset West, South Africa
73 Johann-Wolfgang-Goethe Universität Frankfurt Institut für Informatik, Fachbereich Informatik und Mathematik, Frankfurt, Germany
74 Joint Institute for Nuclear Research (JINR), Dubna, Russia
75 Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
76 KTO Karatay University, Konya, Turkey
77 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France
78 Lawrence Berkeley National Laboratory, Berkeley, California, United States
79 Lund University Department of Physics, Division of Particle Physics, Lund, Sweden
80 Nagasaki Institute of Applied Science, Nagasaki, Japan
81 Nara Women’s University (NWU), Nara, Japan
82 National and Kapodistrian University of Athens, School of Science, Department of Physics, Athens, Greece
83 National Centre for Nuclear Research, Warsaw, Poland
84 National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, India
85 National Nuclear Research Center, Baku, Azerbaijan
86 National Research Centre Kurchatov Institute, Moscow, Russia
87 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
88 Nikhef, National institute for subatomic physics, Amsterdam, Netherlands
89 NRC Kurchatov Institute IHEP, Protvino, Russia
90 NRC Kurchatov Institute - ITEP, Moscow, Russia
91 NRNU Moscow Engineering Physics Institute, Moscow, Russia
92 Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom
93 Nuclear Physics Institute of the Czech Academy of Sciences, Řež u Prahy, Czech Republic
94 Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
95 Ohio State University, Columbus, Ohio, United States
96 Petersburg Nuclear Physics Institute, Gatchina, Russia
97 Physics department, Faculty of science, University of Zagreb, Zagreb, Croatia
98 Physics Department, Panjab University, Chandigarh, India
99 Physics Department, University of Jammu, Jammu, India
100 Physics Department, University of Rajasthan, Jaipur, India
101 Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
102 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
103 Physik Department, Technische Universität München, Munich, Germany
104 Politecnico di Bari, Bari, Italy
105 Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
106 Rudjer Bošković Institute, Zagreb, Croatia
