Holographic Complexity in a Charged Supersymmetric Black Holes

Jie Jiang1,* and Ming Zhang2,†

1Department of Physics, Beijing Normal University, Beijing 100875, China
2Department of Physics, Jiangxi Normal University, Nanchang 330022, China
(Dated: September 16, 2020)

For an ordinary charged system, it has been shown that by using the “complexity equals action” (CA) conjecture, the late-time growth rate of the holographic complexity is given by a difference between the value of $\Phi Q + \Omega H \Omega$ on the inner and outer horizons. In this paper, we study the influence of the chiral anomaly on the complexity of the boundary quantum system. To be specific, we evaluate the CA holographic complexity of the charged supersymmetric black holes whose bulk action is modified by an additional Chern-Simons term of the electromagnetic fields. As a result, the late-time growth rate of the complexity will be corrected by some additional terms on the inner and outer horizons than the ordinary charged black holes. Our work implies that the late-time growth rate of the complexity can carry the information of the chiral anomaly for the boundary system.

I. INTRODUCTION

In recent years, there has been increasing interest in the idea that apply the quantum information theory into the gravitational theory in the context of the AdS/CFT correspondence. One of the most famous topics in this direction is holographic entanglement entropy. However, it has been claimed that the holographic entanglement entropy is not enough to describe the degrees of freedom inside the horizon of the black hole, where the geometry becomes nonstationary. As a result, the quantum circuit complexity of the boundary quantum system, which is used to describe the minimum number of basic operation gates connected to the target state and the reference state, has been proposed to describes the information inside the black hole horizon [1, 2]. From the holographic viewpoint, Brown et al. suggested that the circuit complexity of the boundary quantum system is given by some classical quantities in the bulk gravitational system, which is called “holographic complexity”. Then, there are two main conjectures which are proposed to construct this duality. The first one is the “complexity equals volume” (CV) conjecture [2, 3] and the second one is the “complexity equals action” (CA) conjecture [4, 5]. These conjectures have attracted a large number of researchers to study both holographic complexity and circuit complexity in quantum field theory [6–63].

In this paper, we only focus on the second conjecture, i.e., the CA conjecture, which suggests that the circuit complexity of the state $|\psi(t_L,t_R)\rangle$ in the boundary quantum system is dual to the on-shell bulk gravitational action I_{WDW} within the Wheeler-DeWitt (WDW) patch, which is the causal region that connects the timeslices t_L and t_R on the boundary, i.e., we have

$$C_A(|\psi(t_L,t_R)\rangle) \equiv \frac{I_{WDW}}{\pi \hbar}. \quad (1)$$

It has been argued in Ref. [4] that the late-time complexity growth should obey a bound

$$\frac{dC}{dt} \leq \frac{2M}{\pi \hbar}, \quad (2)$$

which is considered to be the Lloyd’s bound of boundary quantum system from the viewpoint of the AdS/CFT correspondence [64].

For the rotating and charged black holes with multiple horizons, series works [7–13] have showed that the late-time CA complexity growth rate can be expressed as

$$\lim_{t \to \infty} \frac{dC_A}{dt} = \frac{1}{\pi \hbar} \left[\left(M - \Phi_H^+ Q - \Omega_H^+ J \right) - \left(M - \Phi_H^- Q - \Omega_H^- J \right) \right], \quad (3)$$

where Q and J are electric charge and angular momentum on the inner and outer horizons individually. The index $\{ (++), (--)\}$ represents the quantities related to the inner and outer horizons. However, all of the above results are obtained in the ordinary charged boundary system. How will things become when we consider an anomalous quantum system? Whether can the complexity carry the information of the anomaly for the boundary system? In this paper, we would like to consider the influence of the chiral anomaly on the complexity. In order to make the boundary system chiral anomaly, it is convenient to introduce an additional Chern-Simons term of the electromagnetic field into the bulk action from the perspective of the AdS/CFT correspondence [73]. Then, based on the infow mechanism, the gauge invariance in the bulk gravitational theory will make the boundary quantum system chiral anomaly [73]. Therefore, to study the complexity of the boundary chiral system from the viewpoint of holography, we need a black hole solution in the Einstein-Maxwell-Chern-Simons theory. For simplicity, in this paper, we only consider the minimal gauged five-dimensional supergravity, which is a special case of the Einstein-Maxwell-Chern-Simons theory. The charged rotating black hole solutions in this theory were obtained in [74–77].

The remaining of this paper is organized as follows. In Sec. II, we first review the geometry in the charged supersymmetric black holes and introduce some basic spacetime quantities.
In Sec. III, we evaluate the time-dependence and the late-time result of the CA complexity growth rate using the CA conjecture. Finally, the conclusion and discussion are presented in Sec. IV.

II. GEOMETRY OF THE FIVE-DIMENSIONAL CHARGED SUPERSYMMETRIC BLACK HOLES

In this paper, we focus on the five-dimensional minimal gauge supergravity with the bulk action

$$I_{\text{bulk}} = \int_M \mathcal{L} \left(R + \frac{12}{\ell^2} - \frac{1}{4} \mathcal{F} \right) + \frac{1}{3\sqrt{3}} \int_M \mathcal{F} \wedge \mathcal{F} \wedge \Lambda,$$

where $\mathcal{F} = d\mathcal{A}$ is the electromagnetic strength tensor, \mathcal{L} is the volume element of the metric g_{ab}, L is the cosmological radius, R is the Ricci Scalar, and we denote $\mathcal{F} = F_{ab} F^{ab}$. Varying the action, the equations of motion read

$$R_{ab} - \frac{1}{2} R g_{ab} - \frac{6}{L^2} g_{ab} = \frac{1}{2} \left(F_{c[a} F_{b]c} - \frac{8}{4} \mathcal{F} \right),$$

$$\nabla_a F^{ab} = \frac{1}{4\sqrt{3}} e^{6d} f_{de} F_{ef}. \quad (5)$$

Generally, the black hole solutions in this gravitational theory carry two angular momenta. For simplicity, in this following, we only focus on the special case which has two equal angular momenta. The solution is given by [75]

$$ds^2 = -\frac{f}{h} dt^2 + \frac{dr^2}{f} + \frac{r^2}{4} \left(\sigma_1^2 + \sigma_2^2 \right) + \frac{r^2}{4} \left(\sigma_3 - W dt \right)^2,$$

$$A = -\frac{\sqrt{3} q}{r^2} \left(dt - \frac{j}{2} \sigma_3 \right), \quad (6)$$

in which $\sigma_1, \sigma_2, \sigma_3$ are the usual left-invariant one-form of the three-sphere and they are given by

$$\sigma_1 = -\sin \psi d\theta + \cos \psi \sin \theta d\phi,$$
$$\sigma_2 = \cos \psi d\theta + \sin \psi \sin \theta d\phi,$$
$$\sigma_3 = d\psi + \cos \theta d\phi, \quad (7)$$

and

$$f = 1 + \frac{r^2}{L^2} - \frac{2m(1 - \eta)}{r^2} + \frac{q^2}{r^4} \left(1 - \frac{j^2}{L^2} + \frac{2L^2 m\chi}{q^2} \right),$$

$$W = \frac{2j(2m - q)^2 - q^2}{r^2 h},$$

$$h = 1 - \frac{j^2 q^2}{r^4} + \frac{2j^2 (m - q)}{r^4}, \quad (8)$$

with the quantity

$$\eta = \frac{j^2 (m - q)}{ml^2}. \quad (9)$$

The electric charge and angular momenta of the black hole are defined by

$$Q = \int_{S_\infty} \left(*F - \frac{1}{\sqrt{3}} F \wedge \Lambda \right), \quad J = \int_{S_\infty} *d\phi, \quad (10)$$

where

$$\varphi = \left(\frac{\partial}{\partial \psi} \right)^a \quad (11)$$

is the axial Killing vector field and S_∞ is a three-sphere at asymptotic infinity. For the charged supersymmetric black hole solution in Eq. (6), the energy, electric charge and angular momentum are given by

$$M = \frac{3\Omega_3 m}{4} \left(1 + \frac{\eta}{3} \right),$$

$$Q = \sqrt{3\Omega_3} q, \quad (12)$$

$$J = \frac{\Omega_3 j(2m - q)}{4}, \quad (13)$$

in which $\Omega_3 = 16\pi^2$ is the volume of the unit three-sphere with the line element

$$d\Omega_3^2 = d\theta^2 + \sin^2 \theta d\phi^2 + \cos^2 \theta d\psi^2. \quad (13)$$

As mentioned in the introduction, in the present work, we only consider the spacetime solution which describes a black hole with two Killing horizons. The inner and outer horizon is determined by $f(r_\pm) = 0$. From the line element of this solution, we can see that if there are some regions outside the horizon such that $h(r) \leq 0$, there will exist some naked closed timelike curves lying outside the horizon. Then, the causality of this spacetime will be destroyed. Moreover, if $h(r) < 0$ between the inner and outer horizon, the sign of the metric will become $(-, -, -, +, +)$, which is unphysical and cannot be used to describe a spacetime geometry. Taking these into account, in the following, we only focus on the black hole geometry where $h(r) > 0$ outside the inner horizon. In this case, the Killing vector fields which generates the inner and outer horizon are given by

$$k^a_{(\pm)} = \left(\frac{\partial}{\partial t} \right)^a + \Omega_{H(\pm)} \left(\frac{\partial}{\partial \psi} \right)^a \quad (14)$$

in which $\Omega_{H(\pm)} = W(r_\pm)$ presents the angular velocities of the inner and outer horizons. The corresponding temperature, entropy, and electric potential are given by

$$S^{(\pm)} = \frac{\Omega_3 \pi r_\pm^3 \sqrt{h(r_\pm)}}{2},$$

$$T^{(\pm)} = \frac{f'(r_\pm)}{4\pi \sqrt{h(r_\pm)}}, \quad \Phi_H^{(\pm)} = \frac{\sqrt{3} q(2 - a\Omega_{H(\pm)}^2)}{2r_\pm^2}. \quad (15)$$

III. COMPLEXITY GROWTH RATE IN CA CONJECTURE

In this section, we would like to evaluate the growth rate of the holographic complexity for the above charged supersymmetric black holes based on the CA conjecture. That is to say, we need to evaluate the on-shell action within the WDW patch. As suggested by Lehner et al. [6], the total on-shell action should include not only the bulk action but the surface
terms, joint terms, and counterterms as well. Here the surface terms and joint terms are added to ensure the variational principle well-posed when the bulk region has a non-smooth boundary. The counterterms are introduced to make the total action invariant under the reparametrization of the null generator on the null segment. According to Ref. [6], the total action can be expressed as

\[
I = I_{\text{bulk}} + 2 \int_{B} d^{4}x \sqrt{|h|} K \pm 2 \int_{S} d^{3}\theta \sqrt{\tilde{\eta}} \left(16 \right) \\
+ 2 \int_{N} d\lambda d^{3}\theta \sqrt{\gamma} \kappa + 2 \int_{N} d\lambda d^{3}\theta \sqrt{\gamma} \Theta \ln(\ell_{c} \Theta) ,
\]

where \(B \) and \(N \) are the non-null and null segments of the boundary \(\partial M \) separately, \(S \) is a three-dimensional joint of the non-smooth boundary. Here \(h_{ab} \) and \(K \) are the induced metric and the trace of the extrinsic curvature on the non-null surface \(B \), \(\eta \) is a transformation parameter on the joint \(S \), \(\gamma_{ab} \) is the induced metric on the cross section of the null segment \(N \), \(\lambda \) is the parameter of the null generator \(k^{a} \) for the null segment \(N \), the parameter \(\kappa \) is given by \(k^{a} \nabla_{b} k^{b} = \kappa k^{a} \) and it measures the failure of the parameter \(\lambda \) to be an affine parameter for the null generator \(k^{a} \), \(\Theta = \nabla_{b} k^{b} \) is the expansion scalar of the null generator, and \(\ell_{c} \) is some arbitrary constant parameter.

In Fig. 1, we show the change of the WDW patch in the charged supersymmetric black holes which has two Killing horizons. Considering that the spacetime is invariant under the shift transformation \(t_{R} \rightarrow t_{R} - \delta t \), \(t_{L} \rightarrow t_{L} + \delta t \), without loss of generality, we fix the left boundary time at \(t_{L} = 0 \) and only vary the right boundary time \(t_{R} = t \) of the WDW patch. Since we only focus on the growth rate of the total action within the WDW patch, we can ignore the higher-order corrections \(\mathcal{O}(\delta t) \) of \(\delta t \). From Fig. 1, we can see that the bulk region \(\delta M_{m}^{(-)} \) can be generated by the horizon Killing vector \(k_{m}^{a} \) through the null segment \(N_{m}^{(-)} \) under the first-order approximation of \(\delta t \) (Generally, it can be generated by the Killing vector \(k_{m}^{a} + C \phi^{a} \) with any constant \(C \) because the null segment \(N_{m}^{(-)} \) is invariant under the axial transformation). Moreover, we shall choose \(\lambda \) to be an affine parameter of the null generators. As a result, the surface term vanishes on all null segments. With these in mind, the action change we need to evaluate can be divided into

\[
\delta I_{\text{WDW}} = I_{\delta M_{m}^{(-)}} - I_{\delta M_{m}^{(+)}},
\]

where \(\delta I_{\text{WDW}} \) is the change of the WDW patch.

Bulk contributions

We start by calculating the bulk contributions from the region \(\delta M_{m}^{(\pm)} \). Because the calculations are same for \(\delta M_{m}^{(+)} \) and \(\delta M_{m}^{(-)} \), we will neglect the index \((\pm) \) for all the quantities. From the equations of motion, we can further obtain

\[
R = \frac{1}{12} F_{12} \left(\frac{20}{L^{2}} \right) ,
\]

\[
R_{ab} = \frac{1}{2} F_{ac} F_{bc} - g_{ab} \left(\frac{F_{12} + \frac{4}{L^{2}}} {12} \right) .
\]
Then, the bulk contribution from the region $\delta M_m^{(+)}$ gives
\begin{equation}
I_{\delta M_m} = - \left(\frac{8}{L^2} + \frac{2}{6} \right) \int_{\delta M} \sqrt{-g} d^4 x + \frac{1}{3 \sqrt{3}} \int_{\delta M} F \wedge F \wedge A \tag{19}
\end{equation}
\[= - \delta t \left(\frac{8}{L^2} + \frac{2}{6} \right) \int_N \xi + \frac{\delta t}{3 \sqrt{3}} \int_N \xi \cdot (F \wedge F \wedge A). \]

Considering the facts that k^a is a Killing vector and $R^{[bcede]}$ vanishes, we have
\begin{equation}
\nabla_a \nabla^a k^b = - R^b_{\ a} k^a
= \left(\frac{2}{L^2} + \frac{4}{L^2} \right) k^b - \frac{1}{2} k^a F_{a c} F^{b c}. \tag{20}
\end{equation}

For the second term, we have
\begin{equation}
k^a F_{a c} F^{b c} = k^a \left(dA \right)_{a c} F^{b c} = \mathcal{L}_k A_{a c} F^{b c} + \nabla_a \left(\Phi F^{b c} \right)
= - \nabla_a \left(\Phi F^{ab} \right) + \Phi \nabla_a F^{ab}
= - \nabla_a \left(\Phi F^{ab} \right) + \frac{\Phi}{4 \sqrt{3}} \varepsilon^{b c d e f} F_{c d} F_{e f}, \tag{21}
\end{equation}
where we have denoted
\begin{equation}
\Phi^{(+)} = - A_{a c} k^a. \tag{22}
\end{equation}

Then, we can get
\begin{equation}
2 \nabla_a \nabla^a k^b = \left(\frac{2}{L^2} + \frac{4}{L^2} \right) k^b + \nabla_a \left(\Phi F^{ab} \right) - \frac{\Phi}{4 \sqrt{3}} \varepsilon^{b c d e f} F_{c d} F_{e f}, \tag{23}
\end{equation}
Using the language of differential forms, the above identity can be expressed as
\begin{equation}
- \left(\frac{2}{L^2} + \frac{4}{L^2} \right) \ast k = d(\ast d k - \Phi \ast F) + \frac{\Phi}{\sqrt{3}} F \wedge F \tag{24}
\end{equation}
On the other hand, we have
\begin{equation}
k \cdot (F \wedge F \wedge A) = 2 (k \cdot F) \wedge F \wedge A - \Phi F \wedge F
= 2 d \Phi \wedge F \wedge A - \Phi F \wedge F
= 2 d(\Phi F \wedge A) - 3 \Phi F \wedge F \tag{25}
\end{equation}
Summing the above results, we can further obtain
\begin{equation}
\int \frac{I_{\delta M_m}}{\delta t} = \int_N d \left[\ast d k - \Phi \ast F + \frac{2}{3 \sqrt{3}} \Phi F \wedge A \right]
= \int_{\partial N} \left[\ast d k - \Phi \ast F + \frac{2}{3 \sqrt{3}} \Phi F \wedge A \right]
= \int_{S_\mu} \ast d k - \int_{S_a} \ast d k + \Phi(r_m) \int_{S_\mu} \left[\ast F - \frac{2}{3 \sqrt{3}} F \wedge A \right]
= \int_{S_\mu} \ast d \xi + \Omega \mathcal{H} J + \Phi(r_m) Q - \chi(r_m) \Phi(r_m) + \mathcal{Q}(r_m). \tag{26}
\end{equation}
where we have denoted
\begin{equation}
\chi(r) = - \frac{1}{3 \sqrt{3}} \int_{S_r} F \wedge A = \Omega q^2 a^2 \frac{2}{\sqrt{3} r^4}, \tag{27}
\end{equation}
\begin{equation}
\mathcal{Q}^{(+)}(r) = - \int_{S_r} \ast d k \pm
= \frac{\Omega \sqrt{3}}{32 \hbar} \left[4 h f' - 4 f h' + h^3 r^2 W'(\Omega H^{(+)} - W) \right], \tag{27}
\end{equation}
in which S_r is a three-sphere with radius r. After completing all of the indexes, the bulk contributions yield
\begin{equation}
d \frac{I_{\text{bulk}}}{dt} = \frac{I_{\delta M_m}^{(-)}}{\delta t} - \frac{I_{\delta M_m}^{(+)}}{\delta t}
= \left(\Omega H^{(-)} - \Omega H^{(+)} \right) J + \left[\Phi^{(-)}(r_m) - \Phi^{(+)}(r_m) \right] Q \tag{28}
- \left[\chi^{(-)}(r_m) \Phi^{(-)}(r_m) - \chi^{(+)}(r_m) \Phi^{(+)}(r_m) \right]
+ \mathcal{Q}^{(-)}(r_m) - \mathcal{Q}^{(+)}(r_m)
\end{equation}

At the late times $t = t_R \to \infty$, we have $r_m^{(+)} \to r \pm$. Then, the growth rate of the bulk action becomes
\begin{equation}
\lim_{t \to \infty} \frac{d I_{\text{bulk}}}{dt} = \left(\Omega H^{(-)} J + \Phi^{(-)} Q - \chi^{(+)} \Phi^{(-)} + T^{(-)} S^{(-)} \right)
- \left(\Omega H^{(+)} J + \Phi^{(+)} Q - \chi^{(-)} \Phi^{(+)} + T^{(+)} S^{(+)} \right) \tag{29}
\end{equation}
where we have denoted
\begin{equation}
\chi^{(+)} = \chi(r_{\pm}) . \tag{30}
\end{equation}

Joint contributions

We next turn to calculate the joint contributions from meeting points $S_m^{(\pm)}$. We first focus on the joint $S_m^{(+)}$ which is formed by the intersection of the past right and past left null segments. From the line element (6), it is not hard to see
\begin{equation}
(k_1)_a = (dv)_a + \frac{1}{f(r)} (dr)_a, \tag{31}
\end{equation}
\begin{equation}
(k_2)_a = (dv)_a - \frac{1}{f(r)} (dr)_a \tag{32}
\end{equation}
are the affinely null generator of the past right and past left null segments separately. The transformation parameter of this joint is given by $\eta = \ln |[k_1 \cdot k_2]| / 2$ [6]. Using the above null generators, we can further obtain
\begin{equation}
k_1 \cdot k_2 = - \frac{2 h(r)}{f(r)}. \tag{33}
\end{equation}
Then, the joint contribution from $S_m^{(+)}$ is given by
\begin{equation}
I_{S_m^{(+)}} = - \frac{\Omega r^3 \sqrt{h}}{4} \ln \left[- f/h \right]_{r = r_m^{(+)}}. \tag{34}
\end{equation}
From Eq. (31), we can see that these two segments are determined by $t + r^*(r) = t_R$ and $t - r^*(r) = t_L = 0$. Here $r^*(r)$ is the tortoise coordinate and it is defined by
\begin{equation}
r^*(r) = - \int_{r_L}^{r} \frac{dr}{f(r)}, \tag{35}
\end{equation}
where we have fixed the coordinate to satisfy the condition
\begin{equation}
\lim_{r \to \infty} r_*(r) = 0. \tag{36}
\end{equation}
From Ref. [11], the tortoise coordinate can also be written as
\[
\tau(r) = \ln\left(\frac{|r-r_+|}{r}\right) - \ln\left(\frac{|r-r_-|}{r}\right) - \frac{1}{r_- - r_+} \int_{r_-}^{r_+} G(r)dr
\]
with
\[
g(r) = \frac{\tilde{f}(r)}{(r-r_+)(r-r_-)}, \\
G(r) = \frac{g(r_+)(r-r_+)}{g(r_+)(r-r_+)} - \frac{g(r_-)(r-r_-)}{g(r_-)(r-r_-)}.
\]
From the above discussion, the radius of \(S_m^{(+)}\) can be further obtained,
\[
r^*(r_m^{(+)}) = -\frac{t}{2}.
\]
Then, we can get its change rate as
\[
\frac{dl_m^{(+)}}{dt} = -\frac{1}{2} \tilde{f}(r_m^{(+)}).
\]
Using the above results, we have
\[
\frac{dl_m^{(+)}}{dt} = \frac{\Omega_3 r^3 (h f' - f h')}{8h} + \frac{\Omega_3 r^2 (6h + rh') f \ln[-f/h]}{16h} \left|_{r_m^{(+)}}\right.
\]
Similarly, the contribution from the joint \(S_m^{(-)}\) can also be obtained with a same calculation. Then, the growth rate of the joint contribution is given by
\[
\frac{dl_{\text{joint}}^{(+)}}{dt} = \frac{\Omega_3 r^3 (h f' - f h')}{8h} + \frac{\Omega_3 r^2 (6h + rh') f \ln[-f/h]}{16h} \left|_{r_m^{(-)}}\right.
\]
where we have used the result
\[
r^*(r_m^{(-)}) = \frac{t}{2}.
\]
for the meeting point \(S_m^{(-)}\). At the sufficient late times, we have
\[
\lim_{l \to m} \frac{dl_{\text{joint}}}{dt} = T^{(+)} S^{(+)} - T^{(-)} S^{(-)}.
\]
We can see that this term will cancel the TS term in the bulk contributions.

Counterterm contributions

Finally, we are going to evaluate the counterterm contributions. We first consider the past right null segment. From Eq. (31), the expansion of the null generator on this segment gives
\[
\Theta = \frac{6h + rh'}{2r\sqrt{h}}.
\]
Then, the counterterm of the past right null segment can be shown as
\[
I_{ct}^{(pe)} = \frac{\Omega_3}{8} \int_{r_m^{(+)}}^{r_m^{(-)}} d\lambda r^2 (6h + rh') \ln\left(\frac{(6h + rh')\ell_{ct}}{2r\sqrt{h}}\right)_{r=r(\lambda)}.
\]
Here \(\lambda\) is the affine parameter of the null generator \(k_1^a = (\partial / \partial \lambda)^a\). Together with Eq. (31), we can find that \(r^*(\lambda) = \sqrt{h}\), which implies that \(d\lambda = dr / \sqrt{h}\). Then, we have
\[
I_{ct}^{(pe)} = \frac{\Omega_3}{8} \int_{r_m^{(+)}}^{r_m^{(-)}} dr^2 (6h + rh') \ln\left(\frac{(6h + rh')\ell_{ct}}{2r\sqrt{h}}\right).
\]
Using Eq. (39), we can further obtain
\[
\frac{dl_{ct}^{(pe)}}{dt} = \frac{\Omega_3 r^2 (6h + rh') f \ln\left(\frac{(6h + rh')\ell_{ct}}{2r\sqrt{h}}\right)}{16h} \left|_{r_m^{(+)}}\right.
\]
Again, the counterterm contributions from other segments can also be obtained similarly and the final result can be expressed as
\[
\frac{dl_{ct}^{(pe)}}{dt} = \frac{\Omega_3 r^2 (6h + rh') f \ln\left(\frac{(6h + rh')\ell_{ct}}{2r\sqrt{h}}\right)}{8h} \left|_{r_m^{(+)}}\right.
\]
Complexity growth rate

Summing all the previous results and using the CA conjecture in Eq. (1), one can further obtain

$$\pi h \frac{dC_A}{dt} = \left(\Omega_{H}^{(-)} - \Omega_{H}^{(+)} \right) I + \left[\Phi^{(-)} (r_{m}^{(-)}) - \Phi^{(+)} (r_{m}^{(+)}) \right] Q$$

$$- \chi (r_{m}^{(-)} \Phi^{(-)} (r_{m}^{(-)}) + \chi (r_{m}^{(+)} \Phi^{(+)} (r_{m}^{(+)})$$

$$+ \bar{\mathcal{F}}^{(\pm)} (r_{m}^{(\pm)}) - \bar{\mathcal{F}}^{(\pm)} (r_{m}^{(\pm)})$$

$$- \left[\Omega r^{2} (6 h + r h') f \left(\frac{(6 h + r h') f f_{c}^{2}}{4 r^{2} h^{2}} \right) \right]_{r_{m}^{(\pm)}}$$

where we have denoted

$$\bar{\mathcal{F}}^{(\pm)} (r) = \frac{\Omega h^{2} \rho^{3} W'}{32} (\Omega_{H}^{(\pm)} - W).$$

In Fig. 2, we show the time-dependence of the CA complexity growth rate in the charged supersymmetric black holes. This figure shows a similar behavior with the case of the RN-AdS black holes where the late time value is approached above.

Finally, we consider the late-time limit of the complexity growth rate. From Eq. (50), it is easy to get

$$\lim_{t \rightarrow \infty} \frac{dC_A}{dt} = \frac{1}{\pi h} \left[\left(\Omega_{H}^{(-)} + \Phi^{(-)} Q - \chi^{(-)} \Phi^{(-)} \right) \right.$$}

$$\left. - \left(\Omega_{H}^{(+)} + \Phi^{(+)} Q - \chi^{(-)} \Phi^{(+)} \right) \right].$$

The above results show the difference from the ordinary charged system as shown in Eq. (3). Here the late-time growth rate will be corrected by some additional terms which are evaluated on the inner and outer horizons, i.e., $\chi^{(\pm)} \Phi^{(\pm)} - \chi^{(-)} \Phi^{(-)}$.

IV. CONCLUSION AND DISCUSSION

In this paper, we considered the five-dimensional minimal gauged supergravity, which is a special case of the Einstein-Maxwell-Chern-Simons theory. From the perspective of AdS/CFT, the dual bound system of this bulk gravity is a real anomaly. To study the influence of the arial anomaly of the boundary system to the complexity, we evaluated the growth rate of the holographic complexity in a charged and rotating supersymmetric black holes by using the CA conjecture. As a result, we found that the time-dependence of the complexity growth rate shares similar behavior as the cases of the RN black holes. However, the late-time rate is different from the result (3) of the ordinary charged system. Here it is corrected by an additional term $\chi_{H} \Phi_{H}$ which is evaluated on the inner and outer horizons. These imply that the late-time growth rate of the complexity carries some information of the chiral anomaly for the boundary quantum system. Moreover, from the above calculations, it is not hard to verify that the additional corrections $\alpha (\chi_{H}^{(\pm)} \Phi_{H}^{(\pm)} - \chi_{H}^{(-)} \Phi_{H}^{(-)})$ will also appear in a general Einstein-Maxwell-Chern-Simons gravity, which includes a general Chern-Simons term

$$I_{GS} = \frac{\alpha}{2 \sqrt{3}} \int_{M} F \wedge F \wedge A.$$

with a coupling constant α. Our work strongly implies that the anomaly of the boundary will play an important role in complexity.

ACKNOWLEDGEMENTS

Jie Jiang is supported by the National Natural Science Foundation of China (Grants No. 11775022 and 11873044). Ming Zhang is supported by the Initial Research Foundation of Jiangxi Normal University with Grant No. 12020023.

[1] S. Aaronson, “The Complexity of Quantum States and Transformations: From Quantum Money to Black Holes,” arXiv:1607.05256.
[2] L. Susskind, “Computational complexity and black hole horizons,” Fortsch. Phys. 64 24 (2016).
[3] D. Stanford and L. Susskind, “Complexity and shock wave geometries,” Phys. Rev. D 90, 126007 (2014).
[4] A. R. Brown, D. A. Roberts, L. Susskind, B. Swingle and Y. Zhao, “Holographic complexity equals bulk action?” Phys. Rev. Lett. 116 191301 (2016).
[5] A. R. Brown, D. A. Roberts, L. Susskind, B. Swingle and Y. Zhao, “Complexity, action, and black holes,” Phys. Rev. D 93 086006 (2016).
[6] L. Lehner, R. C. Myers, E. Poisson and R. D. Sorkin, "Gravitational action with null boundaries" Phys. Rev. D 94, 084046 (2016).
[7] R. G. Cai, S. M. Ruan, S. J. Wang, R. Q. Yang and R. H. Peng, “Action growth for AdS black holes,” JHEP 1809 161 (2016).
[8] W. D. Guo, S. W. Wei, Y. Y. Li and Y. X. Liu, “Complexity growth rates for AdS black holes in massive gravity and $f(R)$ gravity,” Eur. Phys. J. C 77, 904 (2017).
[9] P. Wang, H. Yang and S. Ying, “Action growth in $f(R)$ gravity,” Phys. Rev. D 96, no. 4, 046007 (2017).
[10] W. J. Pan and Y. C. Huang, “Holographic complexity and action growth in massive gravities,” Phys. Rev. D 95, no. 12, 126013 (2017).
[11] D. Carmi, S. Chapman, H. Marrochio, R. C. Myers and S. Sugishita, “On the time dependence of holographic complexity,” JHEP 1711 188 (2017).
[12] Z. Y. Fan and M. Guo, “Holographic complexity and thermodynamics of AdS black holes,” arXiv:1903.04127.
[13] J. Jiang, “Action growth rate for a higher curvature gravitational theory,” Phys. Rev. D 98, 086018 (2018).
[14] Z. Y. Fan and M. Guo, “On the Noether charge and the gravity duals of quantum complexity,” JHEP 1808, 031 (2018).
[15] Y. S. An, R. G. Cai and Y. Peng, “Time Dependence of Holographic Complexity in Gauss-Bonnet Gravity,” Phys. Rev. D
Y. S. An and R. H. Peng, “Effect of the dilaton on holographic complexity growth,” Phys. Rev. D 97 066022 (2018).

A. Reynolds and S. F. Ross, Class. “Complexity in de Sitter Space,” Quant. Grav. 34 175013 (2017).

S. Chapman, H. Marrochio and R. C. Myers, “Complexity of Formation in Holography,” JHEP 1701 062 (2017).

X. H. Feng and H. S. Liu, “Holographic Complexity Growth Rate in Horndeski Theory,” arXiv:1811.03303.

D. Carmi, R. C. Myers and P. Rath, “Comments on Holographic Complexity,” JHEP 1703 118 (2017).

M. Alishahiha, “Holographic Complexity,” Phys. Rev. D 92 126009 (2015).

C. A. Agon, M. Headrick and B. Swingle, “Subsystem Complexity and Holography,” arXiv:1804.01561.

O. Ben-Ami and D. Carmi, “On Volumes of Subregions in Holography and Complexity,” JHEP 1611, 129 (2016).

J. Jiang and M. Zhang, “Holographic complexity of the electromagnetic black hole,” arXiv:1905.07576.

Y. Zhao, “Uncomplexity and Black Hole Geometry,” Phys. Rev. D 97, 126007 (2018)

Z. Fu, A. Maloney, D. Marolf, H. Maxfield and Z. Wang, “Holographic complexity is nonlocal,” JHEP 1802 072 (2018).

M. Alishahiha, A. Faraji Astaneh, M. R. Mohammadi Mozaffar and A. Mollabashi, “Complexity Growth with Lifshitz Scaling and Hyperscaling Violation,” JHEP 1807 042 (2018).

J. Couch, S. Eccles, W. Fischler and M. L. Xiao, “Holographic complexity and noncommutative gauge theory,” JHEP 1803 108 (2018).

B. Swingle and Y. Wang, “Holographic Complexity of Einstein-Maxwell-Dilaton Gravity,” JHEP 1809 106 (2018).

M. Moosa, “Evolution of Complexity Following a Global Quench,” JHEP 1803 031 (2018).

B. Chen, W. M. Li, R. Q. Yang, C. Y. Zhang and S. J. Zhang, “Holographic subregion complexity under a thermal quench,” JHEP 1807 034 (2018).

H. S. Liu and H. Lu, “Action Growth of Dyonic Black Holes and Electromagnetic Duality,” arXiv:1905.06409.

A. Bhattacharyya, A. Shekar and A. Sinha, “Circuit complexity in interacting QFTs and RG flows,” JHEP 1810, 140 (2018).

T. Ali, A. Bhattacharyya, S. Shajidul Haque, E. H. Kim and N. Moynihan, “Time Evolution of Complexity: A Critique of Three Methods,” JHEP 1904, 087 (2019).

T. Ali, A. Bhattacharyya, S. Shajidul Haque, E. H. Kim and N. Moynihan, “Post-Quench Evolution of Distance and Uncertainty in a Topological System: Complexity, Entanglement and Revivals,” arXiv:1811.05985.

S. A. Hosseini Mansoori, V. Jahnke, M. M. Qaemmaqami and Y. D. Olivas, “Holographic complexity of anisotropic black branes,” arXiv:1808.00067.

K. Hashimoto, N. Iizuka, and S. Sugishita, “Time Evolution of Complexity in Abelian Gauge Theories - And Playing Quantum Othello Game -”, arXiv:1707.03840.

R. A. Jefferson and R. C. Myers, “Circuit complexity in quantum field theory,” JHEP 1710 107 (2017).

S. Chapman, M. P. Heller, H. Marrochio and F. Pastawski, “Towards Complexity for Quantum Field Theory States” Phys. Rev. Lett. 120, 121602 (2018).

R.-Q. Yang, “A Complexity for Quantum Field Theory States and Application in Thermofield Double States,” Phys. Rev. D 97, 066004 (2018).

R. Q. Yang, C. Niu, C. Y. Zhang, and K.-Y. Kim, “Comparison of holographic and field theoretic complexities for time dependent thermofield double states,” JHEP 1802 082 (2018).

R. Q. Yang, Y. S. An, C. Niu, C. Y. Zhang and K. Y. Kim, “More on complexity of operators in quantum field theory,” JHEP 1903 161 (2019).

A. R. Brown and L. Susskind, “Second law of quantum complexity” Phys. Rev. D 97 086015 (2018).

A. P. Reynolds and S. F. Ross, “Complexity of the AdS Soliton,” Class. Quant. Grav. 35 095006 (2018).

P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi and K. Watanabe, “Liouville Action as Path-Integral Complexity: From Continuous Tensor Networks to AdS/CFT,” JHEP 1711 097 (2017).

R. Khan, C. Krishnan, and S. Sharma, “Circuit Complexity in Fermionic Field Theory,” Phys. Rev. D 98, 126001 (2018).

J. Jiang and X. W. Li, “Modified “complexity equals action” conjecture,” arXiv:1903.05476.

M. Guo, J. Hernandez, R. C. Myers and S. M. Ruan, “Circuit Complexity for Coherent States,” JHEP 1810 011 (2018).

J. Jiang, J. Shan and J. Yang, “Circuit complexity for free Fermion with a mass quench,” arXiv:1810.00537.

R. Q. Yang, Y. S. An, C. Niu, C. Y. Zhang and K. Y. Kim, “Principles and symmetries of complexity in quantum field theory,” Eur. Phys. J. C 79, 109 (2019).

K. Goto, H. Marrochio, R. C. Myers, L. Queimada and B. Yoshida, “Holographic Complexity Equals Which Action?,” JHEP 1902, 160 (2019).

S. Chapman, J. Eisert, L. Hackl, M. P. Heller, R. Jefferson, H. Marrochio and R. C. Myers, “Complexity and entanglement for thermofield double states,” SciPost Phys. 6, 034 (2019).

J. Jiang and X. Liu, “Circuit Complexity for Fermionic Thermofield Double states,” Phys. Rev. D 99, 026011 (2019).

L. Hackl and R. C. Myers, “Circuit complexity for free fermions,” JHEP 1807 139 (2018).

R. Nally, “Stringy Effects and the Role of the Singularity in Holographic Complexity,” arXiv:1902.09545.

J. Jiang and H. Zhang, “Surface term, corner term, and action growth in F(Riemann) gravity theory,” Phys. Rev. D 99, 086005 (2019).

J. Jiang and B. X. Ge, “Investigating two counting methods of the holographic complexity,” Phys. Rev. D 99, 126006 (2019).

S. Chapman, H. Marrochio and R. C. Myers, JHEP “Holographic complexity in Vaidya spacetimes. Part I,” 1806 046 (2018).

D. A. Roberts, D. Stanford and L. Susskind, “Localized shocks,” JHEP 1503, 051 (2015).

S. Chapman, H. Marrochio and R. C. Myers, “Holographic complexity in Vaidya spacetimes. Part II,” JHEP 1806 114 (2018).

J. Jiang, “Holographic complexity in charged Vaidya black hole,” Eur. Phys. J. C 79 130 (2019).

L. Susskind and Y. Zhao, “Switchbacks and the Bridge to Nowhere,” arXiv:1408.2823.

Z. Y. Fan and M. Guo, “Holographic complexity under a global quantum quench,” arXiv:1811.01473.

S. Lloyd, Nature 406 1047 (2000).

A. H. Taub, “Empty space-times admitting a three parameter group of motions,” Annals Math. 53, 472 (1951).

E. Newman, L. Tamburino, and T. Unti, “Empty-space generalization of the Schwarzschild metric,” J. Math. Phys. 4, 915 (1963).

C. W. Misner, “The Flatter regions of Newman, Unti and Tamburino’s generalized Schwarzschild space,” J. Math. Phys. 4, 924 (1963).

R. A. Hennigar, D. Kubiznak, and R. B. Mann, “Thermodynamics of Lorentzian Taub-NUT spacetimes,” arXiv:1903.08668.
[69] A. B. Bordo, F. Gray, and D. Kubiznak, “Thermodynamics and Phase Transitions of NUTty Dyons,” arXiv:1904.00030.

[70] C. V. Johnson, “The Extended Thermodynamic Phase Structure of Taub-NUT and Taub-Bolt,” Class. Quant. Grav. 31 225005 (2014).

[71] N. Alonso-Alberca, P. Meessen and T. Ortin, “Supersymmetry of topological Kerr-Newman-Taub-NUT-AdS space-times,” Class. Quant. Grav. 17, 2783 (2000).

[72] A. Ashtekar and S. Das, “Asymptotically Anti-de Sitter space-times: Conserved quantities,” Class. Quant. Grav. 17 L17 (2000).

[73] K. Landsteiner, “Notes on Anomaly Induced Transport,” Acta Phys. Polon. B 47, 2617 (2016).

[74] J. B. Gutowski and H. S. Reall, “Supersymmetric AdS5 black holes,” JHEP 0402, 006 (2004).

[75] M. Cvetic, H. Lu and C. N. Pope, “Charged Kerr-de Sitter black holes in five dimensions,” Phys. Lett. B 598, 273 (2004).

[76] M. Cvetic, H. Lu and C. N. Pope, “Charged rotating black holes in five dimensional U(1)**3 gauged N=2 supergravity,” Phys. Rev. D 70, 081502 (2004).

[77] Z.-W. Chong, M. Cvetic, H. Lu and C. N. Pope, “General non-extremal rotating black holes in minimal five-dimensional gauged supergravity,” Phys. Rev. Lett. 95, 161301 (2005).