Does the Immigrant Advantage in Overweight/Obesity Persist over Time in Mexican American Youth?
NHANES 1988-1994 to 2005-2014

Luis E. Maldonado1 and Sandra S. Albrecht1,2

Objective: To examine whether the relationship between nativity and overweight/obesity has changed over time among Mexican American children and to investigate the implications of this pattern on overweight/obesity disparities relative to non-Hispanic white children.

Methods: Using cross-sectional data from Mexican American and non-Hispanic white children aged 4 to 17 years participating in the National Health and Nutrition Examination Surveys (1988-1994 \(N = 4,720\) and 2005-2014 \(N = 7,275\)) log-binomial regression was used to calculate prevalence ratios (PRs) of overweight/obesity by nativity status adjusting for sociodemographic covariates, survey period, and a nativity-by-survey period interaction. A separate covariate-adjusted model tested a three-level interaction between ethnicity, nativity, and survey period that included non-Hispanic white children.

Results: In 1988-1994, foreign-born Mexican Americans had significantly lower prevalence of overweight/obesity compared with US-born Mexican Americans (PR = 0.75, 95% CI: 0.61-0.94). However, by 2005-2014, the nativity gap in overweight/obesity had closed (PR = 0.94, 95% CI: 0.84-1.07). Moreover, while foreign-born Mexican Americans had the lowest levels of overweight/obesity in 1988-1994, by 2005-2014, foreign-born and US-born Mexican Americans had comparable estimates, both significantly higher than that of non-Hispanic white individuals.

Conclusions: Although overweight/obesity disparities between Mexican Americans and non-Hispanic white Americans had previously been specific to US-born Mexican Americans, disparities in more recent years have extended to foreign-born Mexican Americans.
shown that foreign-born Mexican American children have lower overweight/obesity prevalence than US-born Mexican American children (6), other studies have shown inverse (7) or null (8) patterns.

A possible reason for these mixed findings could be that the relationship between nativity (foreign birth vs. US birth) and obesity may be changing over time, particularly for immigrants from countries with an emerging obesity epidemic. Mexico, the largest source of immigrants coming to the United States (9), is one such country where obesity and obesity-promoting diets are on the rise (10). According to a study released in 2013 by the United Nations Food and Agriculture Organization, Mexico has surpassed the United States in obesity prevalence (11), having experienced the most rapid increase in obesity ever documented worldwide (12). Between 1999 and 2006, overweight/obesity prevalence in school-aged Mexican children (5-11 years of age) rose by an alarming 40% (13). While obesity continues to adversely impact US children as well, especially minorities such as Mexican Americans, there is some evidence that estimates may be leveling off (1). Taken together, these circumstances suggest that foreign-born Mexican American children may no longer exhibit a health advantage with respect to overweight/obesity compared with US-born Mexican American children. Thus, the aim of this study was to test the hypothesis that the relationship between nativity and overweight/obesity has changed over time among Mexican American children. In other words, do immigrant children of Mexican origin still exhibit an advantage with respect to overweight/obesity prevalence compared with US-born children? This is the first study, to our knowledge, to investigate this phenomenon in Mexican American children and to characterize secular trends in overweight/obesity by nativity status in this population. In a secondary analysis, we also evaluated the implications of this pattern on disparities in overweight/obesity relative to non-Hispanic white children over time.

Methods

Data came from NHANES, a series of repeated cross-sectional surveys conducted by the US Centers for Disease Control and Prevention (14). NHANES uses a complex, multistage sample design and is intended to be nationally representative of the US noninstitutionalized population. Survey participants completed in-home interviews followed by medical and laboratory examinations in mobile examination centers. We used data from NHANES III (1988-1994) and five pooled survey cycles from the continuous NHANES (2005-2014) to represent the two studied survey periods more than 20 years apart. Child and adolescent NHANES participants aged 4 to 17 years were measured for height and weight were measured with participants wearing standard examination gown and slippers. BMI was calculated by dividing weight (kilograms) by height (meters) squared, and overweight/obesity was defined as BMI at or above the age- and sex-specific 85th percentile based on the Centers for Disease Control and Prevention’s BMI-for-age growth charts (yes/no) (15).

Nativity

Mexican American children were subdivided into two groups based on their country of birth. Mexican American children who were not born in the United States were considered foreign-born, and those born in the United States were US-born.

Covariates

All covariates were derived from self-reported data during in-person household interviews administered in English or Spanish. For children aged 4 to 11 years, covariate data were provided by a proxy. Householder information was captured through an in-person interview with the NHANES-designated “householder” and linked to the child in question. Covariates included child’s age (continuous), child’s sex (male or female), householder marital status (categorized as married if the householder reported being married or living with a partner, and unmarried if the householder reported being widowed, divorced, separated, or never married), and householder education (<12th grade, completed 12th grade or greater).

Statistical analyses

All analyses were conducted using Stata software, version 14.1 (StataCorp LLC, College Station, Texas). We used multiple imputation to account for missing data for household education and marital status (n = 461). For all analyses, appropriate sampling weights were incorporated to produce national population estimates and to account for unequal probabilities of selection, nonresponse, and noncoverage. The SVY module in Stata was used with Taylor series linearization methods to adjust for the complex survey design. Weighted proportions and means were used to characterize the analytic sample by ethnicity–nativity groupings (foreign-born Mexican Americans, US-born Mexican Americans, and non-Hispanic white children) within each survey period (1988-1994 and 2005-2014). Differences were evaluated using the t-statistic, and P < 0.05 was considered statistically significant.

Multivariable log-binomial models were used to first estimate prevalence ratios (PRs) of overweight/obesity comparing foreign-born with US-born Mexican American children (referent), adjusting for age, sex, and survey period (Model 1). To investigate whether the relationship between nativity and overweight/obesity differed over time, we tested an interaction between nativity and NHANES survey period (2005-2014 vs. 1988-1994 [ref]). P < 0.1 was considered a statistically significant interaction. Model 2 further adjusted for householder education and marital status. In a second set of models, we included non-Hispanic white children and replaced (2,706 Mexican American and 2,014 non-Hispanic white children in 1988-1994; 3,582 Mexican American and 3,693 non-Hispanic white children in 2005-2014).

Overweight/obesity status

Anthropometric body measurements were taken by trained technicians at the NHANES Mobile Examination Center. Height and weight were measured with participants wearing standard examination gown and slippers. BMI was calculated by dividing weight (kilograms) by height (meters) squared, and overweight/obesity was defined as BMI at or above the age- and sex-specific 85th percentile based on the Centers for Disease Control and Prevention’s BMI-for-age growth charts (yes/no) (15).
TABLE 1 Characteristics of foreign-born and US-born Mexican American and non-Hispanic white children aged 4-17 years, NHANES, 1988-1994 and 2005-2014 (N = 11,995)

	1988-1994 (N = 4,720)	2005-2014 (N = 7,275)						
	US-born Mexican	Foreign-born Mexican	Non-Hispanic white	P	US-born Mexican	Foreign-born Mexican	Non-Hispanic white	P
	American (n = 2,257)	American (n = 449)	(n = 2,014)		American (n = 3,064)	American (n = 518)	(n = 3,693)	
Overweight/obesity (%)^a	35.9	27.9	26.3	<0.001	44.4	44.1	33.0	<0.001
Age (y), mean (SE)	9.9 (0.1)	11.6 (0.2)	10.4 (0.1)	<0.001	9.9 (0.1)	12.2 (0.2)	10.7 (0.1)	<0.001
Female (%)	49.5	50.5	47.8	0.657	49.0	46.4	48.8	0.571
Household education (%)	Less than 12th grade	56.0	80.8	<0.001	49.7	73.8	10.8	<0.001
	High school degree or greater	44.0	19.2	83.2	50.3	26.2	89.2	
Householder marital status (%)^b				0.004				0.008
Unmarried	24.0	14.8	17.1		22.4	15.1	18.9	
Married	76.0	85.2	82.9		77.6	84.9	81.1	

Data are weighted means or proportions, as indicated.
^a Overweight/obesity defined as having BMI at or above the age- and sex-specific 85th percentile based on Centers for Disease Control and Prevention BMI-for-age growth charts.
^b Householder marital status categorized as married if the householder reported being married or living with a partner and as unmarried if the householder reported being widowed, divorced, separated, or never married.

the two-level nativity variable with a three-level ethnicity–nativity variable (non-Hispanic white children as the referent). We similarly tested its interaction with NHANES survey period to determine whether disparities in overweight/obesity among foreign-born and US-born Mexican American children compared with non-Hispanic white children had changed over time. In sensitivity analyses, we further examined whether the patterns we report differed by sex and for children (aged 4-11 years) compared with adolescents (aged 12-17 years).

Results

Table 1 presents the sample characteristics by ethnicity–nativity groupings and by NHANES survey period. In 1988-1994, US-born Mexican American children had the highest prevalence of overweight/obesity (35.9%), while foreign-born Mexican American (27.9%) and non-Hispanic white (26.3%) children had estimates comparable to each other. Although overweight/obesity prevalence increased over time for all groups, the magnitude of increase was largest for foreign-born Mexican American children (16.2 percentage points). As a result, by 2005-2014, US-born and foreign-born Mexican American children had similar estimates of overweight/obesity (44.4% and 44.1%, respectively), which were considerably higher than for non-Hispanic white children (33.0%). Over time, all groups of children increasingly lived in homes where the householder had more education. Nevertheless, Mexican American children, regardless of nativity, continued to live in households with lower household education than non-Hispanic white children.

Table 2 shows age- and sex-adjusted (Model 1) and covariate-adjusted models (Model 2) estimating PR of overweight/obesity status by nativity among Mexican American children. Because there was evidence that the interaction between nativity and survey period was statistically significant (P = 0.069), we present results stratified by survey period. Confirming the patterns we report in Table 1, in 1988-1994, foreign-born Mexican American children had significantly lower prevalence of being overweight/obesity compared with US-born Mexican American children (Model 1: PR 0.77, 95% CI: 0.61-0.96). In contrast, in 2005-2014, there was no longer evidence of a difference in overweight/obesity by nativity (Model 1: PR = 0.95, 95% CI: 0.84-1.07). After further adjustment for the householder’s marital status and education (Model 2), the results remained quantitatively similar (1988-1994: PR = 0.75, 95% CI: 0.61-0.94; 2005-2014: PR = 0.94, 95% CI: 0.84-1.07). In sensitivity analyses, we found that these patterns were also present for both boys and girls and for children and adolescents to a similar degree (data not shown).

We next investigated how changes in the relationship between nativity and overweight/obesity may have influenced disparities relative to non-Hispanic white children over time. There was borderline evidence of heterogeneity by survey period only in the disparity between foreign-born Mexican American and non-Hispanic white children (P interaction = 0.12). For ease of interpretation, Figure 1 displays predicted probabilities estimated from stratified multivariable log-binomial regression models of overweight/obesity by survey period that included non-Hispanic white children. In 1998-1994, US-born Mexican American children had a predicted probability of overweight/obesity that was statistically significantly higher by 5 percentage points than non-Hispanic white children, whereas estimates for foreign-born Mexican American children were similar to non-Hispanic white children. Although predicted probabilities of overweight/obesity substantially increased for all ethnicity–nativity groups in 2005-2014 compared with 1988-1994, this increase was most pronounced in foreign-born Mexican American children, who experienced an increase of 8 percentage points over this time frame. As a result, in 2005-2014, the estimates for foreign-born Mexican
TABLE 2 Prevalence ratios of overweight/obesity by nativity status stratified by NHANES survey period (1988-1994 and 2005-2014) among Mexican American children aged 4-17 years (N = 6,288)

	Model 1		Model 2	
	PR	(95% CI)	PR	(95% CI)
1988-1994				
US-born	ref	–	ref	–
Foreign-born	0.77	0.61	0.75	0.61
2005-2014				
US-born	ref	–	ref	–
Foreign-born	0.95	0.84	0.94	0.84

Estimates derived from log-binomial regression models. Results from models stratified by NHANES survey period presented for ease of interpretation (P interaction: nativity/survey period = 0.069).

Model 1: Adjusted for age (continuous) and sex (male/female).
Model 2: Adjusted for age (continuous), sex (male/female), household marital status (married/unmarried), and household education (<12th grade/≥12th grade) (high school diploma includes GED).

PR, prevalence ratios.

American children surpassed those of non-Hispanic white children and approached estimates found among US-born Mexican Americans.

Finally, in a sensitivity analysis using the available data on length of time in the United States from 2005-2014, we examined whether newer immigrants (<5 years living in the United States) continued to retain an advantage with respect to overweight/obesity compared with US-born individuals. Our findings indicated that the prevalence of overweight/obesity among the newest immigrants did not differ from estimates found for US-born individuals (Supporting Information Table S1).

Discussion

Our study showed that while foreign-born Mexican American children aged 4 to 17 years previously exhibited an advantage with respect to overweight/obesity relative to US-born Mexican Americans, that advantage was no longer present in more recent years. This finding supports our hypothesis that the relationship between nativity and overweight/obesity has changed over time in this population. Furthermore, although disparities in childhood overweight/obesity between Mexican American and non-Hispanic white children had previously been specific to US-born Mexican Americans, disparities in recent years have extended to foreign-born Mexican Americans.

Few studies have examined differences in overweight/obesity by nativity or by immigrant generation in Mexican American children or adolescents. One study also using NHANES data found a significantly higher prevalence of overweight/obesity in US-born Mexican American children compared with foreign-born children but used data from earlier years (1988-2004) (6). Another study that reported findings to the contrary—that foreign-born Mexican American children had a higher prevalence of overweight/obesity than US-born children—used data from later years (2006-2008) and among youth living in California (7). Despite what seems like mixed findings, these studies nevertheless corroborate our results and support our hypothesis that the relationship between nativity and overweight/obesity has changed over time. Only one other study evaluated heterogeneity in associations between nativity and weight outcomes over time, but this was in adults (16). Moreover, while several published studies have documented trends in overweight/obesity by race/ethnicity among children and adolescents in the United States (1,17,18), none has distinguished trends by nativity, and none has evaluated whether the overweight/obesity advantage that appears to characterize immigrants has changed over time.

Our study was not designed to uncover the reasons why foreign-born Mexican American children in NHANES no longer possessed an overweight/obesity advantage, but the following are potential explanations. The recent, yet rapid, nutrition transition in Mexico may be partly accountable. In prior decades, Mexican children migrating to the United States were leaving an environment that was considerably less obesogenic than the one they were migrating to. As a result, Mexican children likely engaged in healthier behaviors, potentially contributing to their healthy weight advantage relative to their US-born peers. Findings from nutrition surveys in Mexico have supported the idea that diets were indeed healthier then (10). However, over the course of two decades, macro-level factors such as the development and assertive marketing of inexpensive, convenient, and high-calorie foods; agricultural subsidies; and wide secular changes in work, lifestyles, and transportation have been operating in Mexico, contributing to the emergence of the obesity epidemic there (19). In recent years, the proportion of overall daily energy intake from sugar-sweetened beverages in Mexican adolescents and adults has exceeded that of the United States (20). This transition to a diet high in calories and processed foods and increasingly sedentary lifestyles in Mexico, exacerbated by exposure to the obesogenic environment in the United States,
is potentially placing foreign-born Mexican American children at further risk for weight gain and obesity.

Another contributing factor that may explain why foreign-born Mexican Americans have had a higher prevalence of overweight/obesity in recent years relates to changing selection migration dynamics. Individuals who choose to and are able to migrate are thought to be healthier relative to their native populations and are thus selected for their ability to better cope with the rigors of the migration process. The health selection hypothesis has been offered as an alternative explanation for the health advantage that immigrants appear to exhibit despite their low socioeconomic status. It is possible that while healthier children without obesity may have constituted the immigrant streams of 20 years ago, this pattern of health selection may have shifted over time. However, support for the existence of health selection as an explanation for the immigrant health advantage is mixed, and it is less likely to operate in children. Thus, while we cannot discount the role of changes in the health selectivity of immigrant children over time as an explanation for our findings, it is likely that other factors are contributing to the patterns we report.

The higher prevalence of overweight/obesity among foreign-born Mexican Americans in the most recent NHANES survey years may also be due to the fact that these children had been living in the United States for a longer period of time than foreign-born Mexican Americans sampled in NHANES III. Longer length of time in the United States has been associated with more obesity in immigrant adults. Unfortunately, because data on length of time in the United States were unavailable in NHANES III for Mexican American children, we were unable to determine whether the higher prevalence of overweight/obesity in foreign-born Mexican Americans in 2005-2014 relative to 1988-1994 could be due to differences in average length of time in the United States among immigrants across the two time periods. However, in a sensitivity analysis of only the 2005-2014 data, we found that the newest immigrants (<5 years living in the United States) did not possess an advantage with respect to overweight/obesity compared with US-born individuals. This suggests that foreign-born Mexican American children may be migrating to the United States with estimates of overweight/obesity similar to those of US-born children. Nevertheless, because we could not determine whether the distributions of length of time in the United States differed among immigrants between the two survey periods, we cannot discount its role in contributing to our findings.

Regardless of the reasons underlying the considerable increases in overweight/obesity among foreign-born Mexican American children, these findings have negative implications for their health prospects, as well as those of US-born Mexican Americans, as they age into adulthood. Childhood obesity is a risk factor for the development of chronic diseases in adulthood, such as diabetes, cardiovascular disease, coronary heart disease, and several cancers. With overweight/obesity on the rise among foreign-born Mexican American children, and remaining high among US-born Mexican American children, this has the potential to further exacerbate disparities in cardio-metabolic disorders between Mexican Americans and non-Hispanic white individuals. Furthermore, because a high proportion of Latinos lack health insurance, there is a great likelihood that chronic diseases are likely to be both undiagnosed and severe. Although the Affordable Care Act decreased the proportion of uninsured Mexican Americans from 43% to 32% from 2011 to 2015, a large proportion continues to remain uninsured. Furthermore, Mexican Americans are less likely to be insured compared with non-Hispanic white individuals. Altogether, these health-related issues pose a major threat to the health of the next generation of Mexican Americans.

These findings support the need to increase health surveillance among foreign-born Mexican American children. Although Latinos tend to have, on average, lower all-cause mortality and higher life expectancy, despite a lower socioeconomic status, as compared with non-Hispanic white children, this may no longer be the case for foreign-born Mexican American children. Given the long-term consequences of childhood obesity, health practitioners should be encouraged to regularly screen all Mexican American children for overweight/obesity. Additionally, interventions and policies targeting overweight/obesity in Mexican American children should include improvements to health care access, utilization of health care services, and increased screening for overweight/obesity, particularly among the foreign-born.

Our study has some limitations. Because longer length of residence in the United States has been previously associated with higher obesity in foreign-born adults, the increasing trends in overweight/obesity among foreign-born Mexican American children may reflect the fact that children sampled in 2005-2014 had been living in the United States for a longer period of time compared with children sampled in NHANES III. Unfortunately, we could not directly test this hypothesis because data on length of time in the United States were not collected for children in NHANES III. This would have helped us to better evaluate the role of length of US residence on the overweight/obesity trends we reported for the foreign-born Mexican American children. Our study may have also been underpowered to detect statistically significant interactions between nativity and survey period (and by ethnicity–nativity and survey period) at P < 0.05. The sample size for the foreign-born subjects in the later survey period was small even though several NHANES survey cycles were pooled to improve power. Nevertheless, the magnitude of the estimated difference in the nativity gradient across the survey periods is indicative of an important and concerning trend that should be replicated in other data sets. Given the cross-sectional nature of our study, conducted only on the US side of the border, we were also unable to observe how overweight/obesity developed longitudinally, and we could not directly investigate the reasons underlying the increasing trends in overweight/obesity among foreign-born Mexican Americans. Longitudinal studies that follow cohorts of children in Mexico migrating to the United States are necessary to better identify the causal mechanisms driving overweight/obesity in foreign-born Mexican American children. Our study also has several strengths. It is the first to evaluate the relationship between nativity and overweight/obesity in Mexican American children across 20 years using nationally representative data. In addition, while most studies base participants’ height and weight data on self-report, data from NHANES are based on information collected during clinical examination.

In summary, our results provide evidence that the advantage previously held by foreign-born Mexican American children with respect to overweight/obesity was no longer present in more recent years. Although disparities in overweight/obesity between Mexican American and non-Hispanic white children had previously been specific to US-born Mexican Americans, disparities in recent years have extended to foreign-born Mexican Americans. This trend is cause for alarm given the long-term health consequences of childhood obesity and the challenges this poses for efforts to address health disparities. Although national trends in overweight/obesity are rarely
disaggregated by nativity, closer surveillance of the health of foreign-born Mexican American children is clearly warranted.

© 2018 The Obesity Society

References

1. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of obesity and trends in body mass index among US children and adolescents, 1999-2010. JAMA 2012;307:483-490.

2. Albrecht SS, Gordon-Larsen P. Ethnic differences in body mass index trajectories from adolescence to adulthood: a focus on Hispanic and Asian subgroups in the United States. PLoS One 2013;8:e72983. doi:10.1371/journal.pone.0072983

3. Whitaker RC, Wright JA, Pepe MS, Seidel KD, Dietz WH. Predicting obesity in young adulthood from childhood and parental obesity. N Engl J Med 1997;337:869-875.

4. Albrecht SS, Diez Roux AV, Kandula NR, Osypuk TL, Ni H, Shrager S. Immigrant assimilation and BMI and waist size: a longitudinal examination among Hispanic and Chinese participants in the multi-ethnic study of atherosclerosis. Obesity (Silver Spring) 2013;21:1695-1703.

5. Garcia L, Gold EB, Wang L, Yang X, Mao M, Schwartz AV. The relation of acculturation to overweight, obesity, pre-diabetes and diabetes among US Mexican American women and men. Ethn Dis 2012;22:58-64.

6. Liu JH, Chu YH, Frongillo EA, Probst JC. Generation and acculturation status are associated with dietary intake and body weight in Mexican American adolescents. J Nutr 2012;142:298-305.

7. Buttenheim AM, Pobley AR, Hshk K, Chung CY, Goldman N. The shape of things to come? Obesity prevalence among foreign-born vs. US-born Mexican youth in California. Soc Sci Med 2013;78:1-8.

8. Gordon-Larsen P, Harris KM, Ward DS, Popkin BM. National Longitudinal Study of Adolescent Health. Acculturation and overweight-related behaviors among Hispanic immigrants to the US: the National Longitudinal Study of Adolescent Health. Soc Sci Med 2003;57:2023-2034.

9. González-Barrera A. More Mexicans leaving than coming to the US. Pew Research Center Hispanic Trends website. http://www.pewhispanic.org/2015/11/19/more-mexicans-leaving-than-coming-to-the-u-s/ . Published November 19, 2015. Accessed August 8, 2016.

10. Rivera JA, Barquera S, Gonzalez-Cossio T, Olaiz G, Sepulveda J. Nutrition transition in Mexico and in other Latin American countries. Nutr Rev 2004;62:8149-8157.

11. Food and Agriculture Organization. The State of Food and Agriculture. Rome: Food and Agriculture Organization of the United Nations; 2013.

12. Barquera S, Campos-Nonato I, Aguilar-Salinas C, Lopez-Ridaura R, Arredondo A, Rivera-Dommarco J. Diabetes in Mexico: cost and management of diabetes and its complications and challenges for health policy. Global Health 2013;9:3. doi:10.1186/1744-8603-9-3

13. Olaiz GR, Rivera J, Shamah T, eds. Encuesta nacional de salud y nutrición 2006. Cuernavaca, México: Instituto Nacional de Salud Pública; 2006.

14. Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey. http://www.cdc.gov/nchs/nhanes.htm. Updated April 30, 2018. Accessed January 7, 2016.

15. National Center for Health Statistics. Data Table of BMI-for-age Charts. Centers for Disease Control and Prevention website. https://www.cdc.gov/growthcharts/html_charts/bmiagerev.htm. Updated August 24, 2001. Accessed December 22, 2016.

16. Albrecht SS, Diez Roux AV, Aiello AE, Schulz AJ, Abraido-Lanza AF. Secular trends in the association between nativity/length of US residence with body mass index and waist circumference among Mexican Americans, 1988-2008. Int J Public Health 2013;58:573-581.

17. Ogden CL, Carroll MD, Lawman HG, et al. Trends in obesity prevalence among children and adolescents in the United States, 1988-1994 Through 2013-2014. JAMA 2016;315:2292-2299.

18. Ogden CL, Carroll MD, Flegal KM. High body mass index for age among US children and adolescents, 2003-2006. JAMA 2008;299:2401-2405.

19. Wallinga D. Agricultural policy and childhood obesity: a food systems and public health commentary. Health Aff (Millwood) 2010;29:405-410.

20. Duffey KJ, Popkin BM. Shifts in patterns and consumption of beverages between 1965 and 2002. Obesity (Silver Spring) 2007;15:2739-2747.

21. Van Hook J, Baker E, Altman CE, Frisco ML. Canaries in a coalmine: Immigration and overweight among Mexican-origin children in the US and Mexico. Soc Sci Med 2012;74:125-134.

22. Oza-Frank R, Cunningham SA. The weight of US residence among immigrants: a systematic review. Obes Rev 2010;11:271-280.

23. Reilly JJ, Kelly J. Long-term impact of overweight and obesity in childhood and adolescence on morbidity and premature mortality in adulthood: systematic review. Int J Obes (Lond) 2011;35:891-898.

24. Gonzalez-Barrera A, Lopez MH. A demographic portrait of Mexican-Origin Hispanics in the United States. http://www.pewhispanic.org/2013/05/01/a-demographic-portrait-of-mexican-origin-hispanics-in-the-united-states/ . Published May 1, 2013. Accessed November 12, 2016.

25. Doty MM, Blumenthal D, Collins SR. The Affordable Care Act and health insurance for Latinos. JAMA 2014;312:1735-1736.

26. Alcala HE, Chen J, Langelier BA, Roby DH, Ortega AN. Impact of the Affordable Care Act on health care access and utilization among Latinos. J Am Board Fam Med 2017;30:52-62.

27. Abraido-Lanza AF, Chao MT, Florez KR. Do healthy behaviors decline with greater acculturation? Implications for the Latino mortality paradox. Soc Sci Med 2005;61:1243-1255.