On Upper and Lower Bounds on the Length of Alternating Towers

Štěpán Holub1,*, Galina Jirásková2,**, and Tomáš Masopust3,***

1 Dept. of Algebra, Charles University, Sokolovská 83, 175 86 Praha, Czech Republic
dholub@karlin.mff.cuni.cz

2 Mathematical Institute, Slovak Academy of Sciences
Grešáková 6, 040 01 Košice, Slovak Republic
jiraskov@saske.sk

3 Institute of Mathematics, ASCR, Žižkova 22, 616 62 Brno, Czech Republic, and
TU Dresden, Germany
masopust@math.cas.cz

Abstract. A tower between two regular languages is a sequence of strings such that all strings on odd positions belong to one of the languages, all strings on even positions belong to the other language, and each string can be embedded into the next string in the sequence. It is known that if there are towers of any length, then there also exists an infinite tower. We investigate upper and lower bounds on the length of finite towers between two regular languages with respect to the size of the automata representing the languages in the case there is no infinite tower. This problem is relevant to the separation problem of regular languages by piecewise testable languages.

1 Introduction

The separation problem appears in many disciplines of mathematics and computer science, such as algebra and logic \cite{8,9}, or databases and query answering \cite{4}. Given two languages K and L and a family of languages \mathcal{F}, the problem asks whether there exists a language S in \mathcal{F} such that S includes one of the languages K and L, and it is disjoint with the other. Recently, it has been independently shown in \cite{4} and \cite{8} that the separation problem for two regular languages given as NFAs and the family of piecewise testable languages is decidable in polynomial time with respect to both the number of states and the size of the alphabet. It should be noted that an algorithm polynomial with respect to the number of states and exponential with respect to the size of the alphabet has been known in the literature \cite{13}. In \cite{4}, the separation problem has been shown to be equivalent to the non-existence of an infinite tower between the input languages. Namely, the languages have been shown separable by a

* Research supported by the Czech Science Foundation grant number 13-01832S.

** Research supported by grant APVV-0035-10.

*** Research supported by RVO 67985840 and by the DFG in grant KR 4381/1-1.
piecewise testable language if and only if there does not exist an infinite tower. In [8], another technique has been used to prove the polynomial time bound for the decision procedure, and a doubly exponential upper bound on the index of the separating piecewise testable language has been given. This information can then be further used to construct a separating piecewise testable language.

However, there exists a simple (in the meaning of description, not complexity) method to decide the separation problem and to compute the separating piecewise testable language, whose running time depends on the length of the longest finite tower. The method is recalled in Section 3. This observation has motivated the study of this paper to investigate the upper bound on the length of finite towers in the presence of no infinite tower. So far, to the best of our knowledge, the only published result in this direction is a paper by Stern [12], who has given an exponential upper bound $2^{|\Sigma|^2N}$ on the length of the tower between a piecewise testable language and its complement, where N is the number of states of the minimal deterministic automaton.

Our contribution in this paper are upper and lower bounds on the length of maximal finite towers between two regular languages in the case no infinite towers exist. These bounds depend on the size of the input (nondeterministic) automata. The upper bound is exponential with respect to the size of the input alphabet. More precisely, it is polynomial with respect to the number of states with the cardinality of the input alphabet in the exponent (Theorem 1). Concerning the lower bounds, we show that the bound is tight for binary languages up to a linear factor (Theorem 2), that a cubic tower with respect to the number of states exists (Theorem 3), and that an exponential lower bound with respect to the size of the input alphabet can be achieved (Theorem 4).

2 Preliminaries

We assume that the reader is familiar with automata and formal language theory. The cardinality of a set A is denoted by $|A|$ and the power set of A by 2^A. An alphabet Σ is a finite nonempty set. The free monoid generated by Σ is denoted by Σ^*. A string over Σ is any element of Σ^*; the empty string is denoted by ε.

For a string $w \in \Sigma^*$, $\text{alph}(w) \subseteq \Sigma$ denotes the set of all letters occurring in w.

We define (alternating subsequence) towers as a generalization of Stern’s alternating towers [12]. For strings $v = a_1a_2\cdots a_n$ and $w \in \Sigma^*a_1\Sigma^*\cdots\Sigma^*a_n\Sigma^*$, we say that v is a subsequence of w or that v can be embedded into w, denoted by $v \preceq w$. For languages K and L and the subsequence relation \preceq, we say that a sequence $(w_i)_{i=1}^k$ of strings is an (alternating subsequence) tower between K and L if $w_i \in K \cup L$ and, for all $i = 1, \ldots, k - 1$,

- $w_i \preceq w_{i+1}$,
- $w_i \in K$ implies $w_{i+1} \in L$, and
- $w_i \in L$ implies $w_{i+1} \in K$.

We say that k is the length of the tower. Similarly, we define an infinite sequence of strings to be an infinite (alternating subsequence) tower between K
and L. If the languages are clear from the context, we omit them. Notice that the languages are not required to be disjoint, however, if there exists a $w \in K \cap L$, then there exists an infinite tower, namely w, w, w, \ldots.

For two languages K and L, we say that the language K can be embedded into the language L, denoted $K \preceq L$, if for each string w in K, there exists a string w' in L such that $w \preceq w'$. We say that a string w can be embedded into the language L, denoted $w \preceq L$, if $\{w\} \preceq L$.

A nondeterministic finite automaton (NFA) is a 5-tuple $M = (Q, \Sigma, \delta, Q_0, F)$, where Q is the finite nonempty set of states, Σ is the input alphabet, $Q_0 \subseteq Q$ is the set of initial states, $F \subseteq Q$ is the set of accepting states, and $\delta : Q \times \Sigma \to 2^Q$ is the transition function that can be extended to the domain $2^Q \times \Sigma^*$. The language accepted by M is the set $L(M) = \{w \in \Sigma^* \mid \delta(Q_0, w) \cap F \neq \emptyset\}$. A path π is a sequence of states and input symbols $q_0, a_0, q_1, a_1, \ldots, q_{n-1}, a_{n-1}, q_n$, for some $n \geq 0$, such that $q_{i+1} \in \delta(q_i, a_i)$, for all $i = 0, 1, \ldots, n - 1$. The path π is accepting if $q_0 \in Q_0$ and $q_n \in F$. We also use the notation $q_0 \xrightarrow{a_1a_2\cdots a_{n-1}} q_n$ to denote a path from q_0 to q_n under a string $a_1a_2\cdots a_{n-1}$.

The NFA M has a cycle over an alphabet $\Gamma \subseteq \Sigma$ if there exists a state q and a string w over Σ such that $\text{alph}(w) = \Gamma$ and $q \xrightarrow{w} q$.

We assume that there are no useless states in the automata under consideration, that is, every state appears on an accepting path.

3 Computing a Piecewise Testable Separator

We now motivate our study by recalling a “simple” method [5] solving the separation problem of regular languages by piecewise testable languages and computing a piecewise testable separator, if it exists. Our motivation to study the length of towers comes from the fact that the running time of this method depends on the maximal length of finite towers.

Let K and L be two languages. A language S separates K from L if S contains K and does not intersect L. Languages K and L are separable by a family F if there exists a language S in F that separates K from L or L from K.

A regular language is piecewise testable if it is a finite boolean combination of languages of the form $\Sigma^*a_1\Sigma^*a_2\Sigma^*\cdots \Sigma^*a_k\Sigma^*$, where $k \geq 0$ and $a_i \in \Sigma$, see [10,11] for more details.

Given two disjoint regular languages L_0 and R_0 represented as NFAs. We construct a decreasing sequence of piecewise testable languages $\ldots \preceq R_2 \preceq L_2 \preceq R_1 \preceq L_1 \preceq R_0$ as follows, show that a separator exists if and only if from some point on all the languages are empty, and use them to construct a piecewise testable separator.

For $k \geq 1$, let $L_k = \{w \in L_{k-1} \mid w \preceq R_{k-1}\}$ be the set of all strings of L_{k-1} that can be embedded into R_{k-1}, and let $R_k = \{w \in R_{k-1} \mid w \preceq L_k\}$, see Fig. 1. Let K be a language accepted by an NFA $A = (Q, \Sigma, \delta, Q_0, F)$, and let $\varepsilon(K)$ denote the language accepted by the NFA $A_\varepsilon = (Q, \Sigma, \delta_\varepsilon, Q_0, F)$.

The method recalled here is not the original work of this paper and the credit for this should go to the authors of [5], namely to Wim Martens and Wojciech Czerwiński.
To show this, we have to prove the later, we show that let L be a maximal finite tower between L_0, hence if there is no infinite tower, languages other, L is computed above to construct a piecewise testable separator. For a string w which also implies $S = k \leq 1$, as depicted in Fig. 1. By Higman’s lemma [6], there exist $i < j$ such that $w_i \not\subseteq w_j$, hence $w_i \not\subseteq R_{j-1}$, which is a contradiction because $w_i \not\subseteq R_i$.

By construction, languages L_B and R_B are mutually embeddable into each other, $L_B \not\subseteq R_B \not\subseteq L_B$, which describes a way how to construct an infinite tower. Thus, if there is no infinite tower, languages L_B and R_B must be empty.

The constant B depends on the length of the longest finite tower. Let $(w_i)_{i=1}^\infty$ be a maximal finite tower between L_0 and R_0 and assume that w_i belongs to L_0. In the first step, the method eliminates all strings that cannot be embedded into R_0, hence w_i does not belong to L_1, but $(w_i)_{i=1}^\infty$ is a tower between L_1 and R_0. Thus, in each step of the algorithm, all maximal strings of all finite towers (belonging to the language under consideration) are eliminated, while the rests of towers still form towers between the resulting languages. Therefore, as long as there is a maximal finite tower, the algorithm can make another step.

Assume that there is no infinite tower ($L_B = R_B = \emptyset$). We use the languages computed above to construct a piecewise testable separator. For a string $w = a_1 a_2 \cdots a_\ell$, we define $L_w = \Sigma^* a_1 \Sigma^* a_2 \Sigma^* \cdots \Sigma^* a_\ell \Sigma^*$, which is piecewise testable by definition. Let $up(L) = \bigcup_{w \in L} L_w$. The language $up(L)$ is regular and its NFA is constructed from an NFA for L by adding self-loops under all letters to all states, see [7] for more details. By Higman’s Lemma [6], $up(L)$ can be written as a finite union of languages of the form L_w, for some $w \in L$, hence it is piecewise testable. For $k = B, B-1, \ldots, 1$, we define the piecewise testable languages $S_k = up(R_0 \setminus R_k) \setminus up(L_0 \setminus L_k)$ and show that $S = \bigcup_{k=1}^B S_k$ is a piecewise testable separator of L_0 and R_0.

To this end, we show that $L_0 \cap S_k = \emptyset$ and $R_0 \subseteq S$. To prove the former, let $w \in L_0$. If $w \in L_0 \setminus L_k$, then $w \not\in up(L_0 \setminus L_k)$, hence $w \not\in S_k$. If $w \in L_k$ and $w \in up(R_0 \setminus R_k)$, then there is $v \in R_0 \setminus R_k$ such that $v \not\subseteq w$. However, $R_k = \{u \in R_0 \mid u \not\subseteq L_k\}$, hence $v \in R_k$, a contradiction. Thus $L_0 \cap S_k = \emptyset$. To prove the later, we show that $R_{k-1} \setminus R_k \subseteq S_k$. Then $R_0 = \bigcup_{k=1}^B (R_{k-1} \setminus R_k) \subseteq S$. To show this, we have $R_{k-1} \setminus R_k \subseteq R_0 \setminus R_k \subseteq up(R_0 \setminus R_k)$. If $w \in R_{k-1}$ and $w \in up(L_0 \setminus L_k)$, then there is $v \in L_0 \setminus L_k$ such that $v \not\subseteq w$. However,
On Upper and Lower Bounds on the Length of Alternating Towers

4 The Length of Towers

Recall that it was shown in [4] that there is either an infinite tower or a constant bound on the length of any tower. We now establish an upper bound on the length of finite towers.

Theorem 1. Let A_0 and A_1 be NFAs with at most n states over an alphabet Σ of cardinality m, and assume that there is no infinite tower between the languages $L(A_0)$ and $L(A_1)$. Let $w_i \in L(A_i)$ be a tower between $L(A_0)$ and $L(A_1)$ such that $w_1 \in L(A_{i \mod 2})$. Then $r \leq \frac{m^{n+1}}{n-1}$.

Proof. First, we define some new concepts. We say that $w = v_1v_2 \cdots v_k$ is a cyclic factorization of w with respect to a pair of states (q, q') in an automaton A, if there is a sequence of states $q_0, q_1, \ldots, q_{k-1}, q_k$ such that $q_0 = q$, $q_k = q'$, and $q_i \xrightarrow{v_i} q_{i+1}$ for each $i = 1, 2, \ldots, k$, and either v_i is a letter, or the path $q_i \xrightarrow{v_i} q_j$ contains a cycle over $\text{alph}(v_i)$. We call v_i a letter factor if it is a letter and $q_i \neq q_j$, and a cycle factor otherwise. The factorization is trivial if $k = 1$. Note that this factorization is closely related to the one given in [1], see also [2], Theorem 8.1.11.

We first show that if $q' \in \delta(q, w)$ in some automaton A with n states, then w has a cyclic factorization $v_1v_2 \cdots v_k$ with respect to (q, q') that contains at most n cycle factors and at most $n - 1$ letter factors. Moreover, if w does not admit the trivial factorization with respect to (q, q'), then $\text{alph}(v_i)$ is a strict subset of $\text{alph}(w)$ for each cycle factor v_i, $i = 1, 2, \ldots, k$.

Consider a path π of the automaton A from q to q' labeled by a string w. Let $q_0 = q$. Define the factorization $w = v_1v_2 \cdots v_k$ inductively by the following greedy strategy. Assume we have defined the factors $v_1, v_2, \ldots, v_{i-1}$ such that $w = v_1 \cdots v_{i-1}w'$ and $q_0 \xrightarrow{v_1v_2 \cdots v_{i-1}} q_{i-1}$. The factor v_i is defined as the label of the longest possible initial segment π_i of the path $q_{i-1} \xrightarrow{w'} q'$ such that either π_i contains a cycle over $\text{alph}(v_i)$ or $\pi_i = q_{i-1}$, a, q_i, where $v_i = a$, so v_i is a letter. Such a factorization is well defined, and it is a cyclic factorization of w.

Let p_i, $i = 1, \ldots, k$, be a state such that the path $q_{i-1} \xrightarrow{v_i} q_i$ contains a cycle $p_i \rightarrow p_i$ over $\text{alph}(v_i)$ if v_i is a cycle factor, and $p_i = q_{i-1}$ if v_i is a letter factor. If $p_i = p_j$ with $i < j$ such that v_i and v_j are cycle factors, then we have a contradiction with the maximality of v_i since $q_{i-1} \xrightarrow{v_iv_{i+1} \cdots v_j} q_j$ contains a cycle $p_i \rightarrow p_i$ from p_i to p_i over the alphabet $\text{alph}(v_i)$. Therefore the factorization contains at most n cycle factors.

Note that v_i is a letter factor only if the state p_i, which is equal to q_{i-1} in such a case, has no reapparance in the path $q_{i-1} \xrightarrow{v_i} q'$. This implies that there are at most $n - 1$ letter factors. Finally, if $\text{alph}(v_i) = \text{alph}(w)$, then $v_i = v_1 = w$ follows from the maximality of v_1.

$L_k = \{u \in L_0 \mid u \not\in R_{k-1}\}$, hence $v \in L_k$, a contradiction. Thus, we have shown that $L_0 \cap S = \emptyset$ and $R_0 \subseteq S$. Moreover, S is piecewise testable because it is a finite boolean combination of piecewise testable languages.
We now define inductively cyclic factorizations of \(w_i\), such that the factorization of \(w_{i-1}\) is a refinement of the factorization of \(w_i\). Let \(w_r = v_{r,1}v_{r,2} \cdots v_{r,k_r}\) be a cyclic factorization of \(w_r\), defined, as described above, by some accepting path in the automaton \(A_r \mod 2\). Factorizations \(w_{i-1} = v_{i-1,1}v_{i-1,2} \cdots v_{i-1,k_{i-1}}\) are defined as follows. Let

\[
w_{i-1} = v'_{i,1}v'_{i,2} \cdots v'_{i,k_i},
\]

where \(v'_{i,j} \leq v_{i,j}\), for each \(j = 1, 2, \ldots, k_i\); note that such a factorization exists since \(w_{i-1} \leq w_i\). Then \(v_{i-1,1}v_{i-1,2} \cdots v_{i-1,k_{i-1}}\) is defined as a concatenation of cyclic factorizations of \(v'_{i,j}\), \(j = 1, 2, \ldots, k_i\), corresponding to an accepting path of \(w_{i-1}\) in \(A_{i-1} \mod 2\). The cyclic factorization of the empty string is defined as empty. Note also that a letter factor of \(w_i\) either disappears in \(w_{i-1}\), or it is “factored” into a letter factor.

In order to measure the height of a tower, we introduce a weight function \(f\) of factors in a factorization \(v_1v_2 \cdots v_k\). First, let

\[
g(x) = n \frac{n^x - 1}{n - 1}.
\]

Note that \(g\) satisfies \(g(x + 1) = ng(x) + (n - 1) + 1\). Now, let \(f(v_i) = 1\) if \(v_i\) is a letter factor, and let \(f(v_i) = g(|\text{alph}(v_i)|)\) if \(v_i\) is a cycle factor. Note that, by definition, \(f(\varepsilon) = 0\). The weight of the factorization \(v_1v_2 \cdots v_k\) is then defined by

\[
W(v_1v_2 \cdots v_k) = \sum_{i=1}^{k} f(v_i).
\]

Let

\[
W_i = W(v_{i,1}v_{i,2} \cdots v_{i,k_i}).
\]

We claim that \(W_{i-1} < W_i\) for each \(i = 2, \ldots, r\). Let \(v_1v_2 \cdots v_k\) be the fragment of the cyclic factorization of \(w_{i-1}\) that emerged as the cyclic factorization of \(v'_{i,j} \leq v_{i,j}\). If the factorization is not trivial, then, by the above analysis,

\[
W(v_1v_2 \cdots v_k) \leq n - 1 + n \cdot g(|\text{alph}(v_{i,j})| - 1) < g(|\text{alph}(v_{i,j})|) = f(v_{i,j}).
\]

Similarly, we have \(f(v'_{i,j}) < f(v_{i,j})\) if \(|\text{alph}(v'_{i,j})| < |\text{alph}(v_{i,j})|\). Altogether, we have \(W_{i-1} < W_i\) as claimed, unless

- \(k_{i-1} = k_i\),
- the factor \(v_{i-1,j}\) is a letter factor if and only if \(v_{i,j}\) is a letter factor, and
- \(\text{alph}(v_{i-1,j}) = \text{alph}(v_{i,j})\) for all \(j = 1, 2, \ldots, k_i\).

Assume that such a situation takes place, and show that it leads to an infinite tower. Let \(L\) be the language of strings \(z_1z_2 \cdots z_k\) such that \(z_j = v_{i,j}\) if \(v_{i,j}\) is a letter factor, and \(z_j \in \text{alph}(v_{i,j})^*\) if \(v_{i,j}\) is a cycle factor. Since \(w_i \in L(A_i \mod 2)\) and \(w_{i-1} \in L(A_{i-1} \mod 2)\) holds, the definition of a cycle factor implies that, for each \(z \in L\), there is some \(z' \in L(A_0) \cap L\) such that \(z \leq z'\), and also \(z'' \in L(A_1) \cap L\) such that \(z \leq z''\). The existence of an infinite tower follows. We have therefore proved \(W_{i-1} < W_i\).
The proof is completed, since \(W_r \leq f(w_r) \leq g(m) \), \(W_1 \geq 0 \), and the bound in the claim is equal to \(g(m) + 1 \). \(\square \)

For binary regular languages, we now show that there exists a tower of length at least \(n^2 - O(n) \) between two binary regular languages having no infinite tower and represented by automata with at most \(n \) states.

Theorem 2. The upper bound \(\frac{n^3 - 1}{n - 1} \) on the length of a maximal tower is tight for binary languages up to a linear factor.

Proof. Let \(n \) be an odd number and define the automata \(A_0 \) and \(A_1 \) with \(n - 1 \) and \(n \) states as depicted in Figs. 2 and 3, respectively.

The automaton \(A_0 = (\{1, 2, \ldots, n\}, \{a, b\}, \delta_0, 1, \{n - 1\}) \) consists of an \(a \)-path from state 1 through states 2, 3, \ldots, \(n - 3 \), respectively, to state \(n - 2 \), of \(a \)-transitions from state 1 to all states but itself and the final state, of self-loops under \(b \) in all but the states \(n - 2 \) and \(n - 1 \), and of a \(b \)-cycle from \(n - 2 \) to \(n - 1 \) and back to \(n - 2 \).

The automaton \(A_1 = (\{1, 2, \ldots, n\}, \{a, b\}, \delta_1, 1, \{1, n\}) \) consists of a \(b \)-path from state 1 through states 2, 3, \ldots, \(n - 1 \), respectively, to state \(n \), of an \(a \)-transition from state \(n \) to state 1, and of \(b \)-transitions going from state 1 to all even-labeled states.

Consider the string

\[
(b^{n-1}a)^{n-3}(b^n b).
\]

This string consists of \(n - 2 \) parts of length \(n \) and belongs to \(L(A_0) \). Note that deleting the last letter \(b \) results in a string that belongs to \(L(A_1) \). Deleting
another letter b from the right results in a string belonging again to the language $L(A_0)$. We can continue in this way alternating between the languages until the letter a is the last letter, that is, until the string $(b^{n-1}a)^{n-3}$, which belongs to $L(A_1)$. Now, we delete the last two letters, namely the string ba, which results in a string from $L(A_0)$, and we can continue with deleting the last letters b again as described above. Moreover, we cannot accept the prefix b^{n-2} in A_0, hence the length of the tower is at least $n(n-2)-(n-3)-(n-2)=n^2-4n+5$.

To show that there is no infinite tower between the languages $L(A_0)$ and $L(A_1)$, we can use the techniques described in [4,8], or to use the algorithm presented in Section 3. We can also notice that letter a can appear at most $n-3$ times in any string from $L(A_0)$ and that after at most $n-1$ occurrences of letter b, letter a must appear in a string from $L(A_1)$. As the languages are disjoint, any infinite tower would have to contain a string from $L(A_1)$ of length more than $n \cdot (n-3) + (n-1)$. But any such string in $L(A_1)$ must contain at least $n-2$ occurrences of letter a, hence it cannot be embedded into any string of $L(A_0)$. This means that there cannot be an infinite tower.

In Theorem 2 we have shown that there exists a tower of a quadratic length between two binary languages having no infinite tower. Now we show that there exist two quaternary languages having a tower of length more than quadratic.

Theorem 3. There exist two languages with no infinite tower having a finite tower of a cubic length.

Proof. Let n be a number divisible by four and define the automata A_0 and A_1 with $n-1$ and n states as shown in Figs. 4 and 5, respectively.

The automaton $A_0 = (\{1,2,\ldots,n\}, \{a,b,c,d\}, 1, \{n-1\})$ consists of an a-path through states $1,2,\ldots,n-2$, respectively, of a-transitions from state 1 to all other states but itself and the final state, of self-loops under symbols b,c,d in all but the final state, and of a b-transition from all, but the final state, to the final state.

The automaton $A_1 = (\{1,2,\ldots,n\}, \{a,b,c,d\}, \delta_1, 1, \{\frac{n}{2}, n\})$ consists of two parts. The first part is constituted by states $1,2,\ldots,\frac{n}{2}$ with a d-path through states $1,2,\ldots,\frac{n}{2}$, respectively, by self-loops under b,c in states $1,2,\ldots,\frac{n}{2}-1$, and by d-transitions from state 1 to all of states $2,3,\ldots,\frac{n}{2}$. The second part is constituted by states $\frac{n}{2},\ldots,n$ with a bc-path through states $\frac{n}{2},\ldots,n-1$, respectively, by a-transitions from state $n-1$ to states 1 and n, by a c-transition from state $n-1$ to state n, and by b-transitions from state $\frac{n}{2}$ to all odd-numbered states between $\frac{n}{2}$ and $n-1$.

Note that the languages are disjoint since A_0 accepts strings ending with b, while A_1 accepts strings ending with $a,c,$ or d.

Consider the string

$$\left[(bd(bc)^{\frac{n}{2}})^{2-2} bd(bc)^{\frac{n}{2}-1} ba \right]^{n-3} \cdot (bd(bc)^{\frac{n}{2}})^{2-2} bd(bc)^{\frac{n}{2}-1} bcb.$$

This string belongs to $L(A_0)$ and consists of $n-3$ parts each of length $\frac{n^2}{4} + \frac{n}{2} - 2$, plus one part of length $\frac{n^2}{4} + \frac{n}{2} - 1$. We can delete the last letters one by one,
obtaining strings alternating between \(L(A_1) \) and \(L(A_0) \). Hence the length of this tower is \((n - 2) \cdot \left(\frac{n^2}{2} + \frac{n}{2} - 2 \right) + 1 \), which results in a tower of length \(\Omega(n^3) \).

To show that there is no infinite tower between the languages, we can use the techniques described in [4,8], or the algorithm presented in Section 3.

As the last result of this paper, we prove an exponential lower bound with respect to the cardinality of the input alphabet.

Theorem 4. There exist two languages with no infinite tower having a finite tower of an exponential length with respect to the size of the alphabet.

Proof. For every non-negative integer \(m \), we define a pair of nondeterministic automata \(A_m \) and \(B_m \) over the input alphabet \(\Sigma_m = \{a_1, a_2, \ldots, a_m\} \cup \{b, c\} \) with a tower of length \(2^{m+2} \) between \(L(A_m) \) and \(L(B_m) \), and such that there is no infinite tower between the two languages.

The two-state automaton \(A_m = (\{1, 2\}, \Sigma_m, \delta_m, 1, \{2\}) \) has self-loops under all symbols in state 1 and a \(b \)-transition from state 1 to state 2. The automaton is shown in Fig. 6 (left), and it accepts all strings over \(\Sigma_m \) ending with \(b \).

![Fig. 4. Automaton \(A_0; n - 1 = 7 \).](image)

![Fig. 5. Automaton \(A_1; n = 8 \) and \(F = \{\frac{n}{2}, n\} \).](image)
The automata B_m are constructed inductively as follows. The automaton $B_0 = (\{p, q, r\}, \{b, c\}, \gamma_0, \{p\}, \{p, r\})$ accepts the finite language $\{\varepsilon, bc\}$, and it is shown in Fig. 6 (right).

Assume that we have constructed the nondeterministic finite automaton $B_m = (Q_m, \Sigma_m, \gamma_m, S_m, \{p, r\})$. We construct the nondeterministic automaton $B_{m+1} = (Q_m \cup \{m + 1\}, \Sigma_m \cup \{a_{m+1}\}, \gamma_m \cup \{m + 1\}, \{p, r\}, \{p, r\})$ by adding a new initial state $m + 1$ to Q_m, and transitions on a fresh input symbol a_{m+1}.

The transition function γ_{m+1} extends γ_m so that it defines self-loops under all letters of Σ_m in the new state $m + 1$, and adds the transitions on input a_{m+1} from state $m + 1$ to all the states of S_m, that is, to all the initial states of B_m.

The first two steps of the construction, that is, automata B_1 and B_2, are shown in Figs. 7 and 8, respectively. Note that $L(B_m) \subseteq L(B_{m+1})$ since all the initial states of B_m are initial in B_{m+1} as well, and the set of final states is $\{p, r\}$ in both automata.

By induction on m, we show that there exists a tower between the languages $L(A_m)$ and $L(B_m)$ of length 2^{m+2}. More specifically, we prove that there exists a sequence $(w_i)_{i=1}^{2^{m+2}}$ such that w_i is a prefix of w_{i+1} and $|w_{i+1}| = |w_i| + 1$ for all $i = 1, \ldots, 2^{m+2} - 1, w_1 = \varepsilon$, so $w_1 \in L(B_m)$, and $w_{2^{m+2}} \in L(A_m)$. Thus, the tower is fully characterized by its longest string $w_{2^{m+2}}$. Moreover, by definition, the letter b appears on all odd positions of $w_{2^{m+2}}$.

If $m = 0$, then such a tower is ε, b, bc, bcb, and it is of length 2^2. Assume that for some m, we have a sequence of prefixes of length 2^{m+2} as required above, and such that the length of its longest string wb is $2^{m+2} - 1$. Consider the automata A_{m+1} and B_{m+1} and the string

$$wba_{m+1}wb.$$

The length of this string is $2^{(m+1)+2} - 1$, which results in $2^{(m+1)+2}$ prefixes.

By the assumption, every odd position is occupied by letter b, hence every prefix of an odd length belongs to $L(A_{m+1})$. It remains to show that all even-
On Upper and Lower Bounds on the Length of Alternating Towers

Fig. 8. Automaton B_2.

length prefixes belong to $L(B_{m+1})$. Let x be such a prefix. If x does not contain a_{m+1}, then it is a prefix of wb and belongs to $L(B_m)$ by the induction hypothesis. If $x = wba_{m+1}y$, then B_{m+1} reads the string wb in state $m + 1$. Then, on input a_{m+1}, it goes to an initial state of B_m. From this initial state, the string y is accepted as a prefix of wb by the induction hypothesis. Thus x is in $L(B_{m+1})$.

To complete the proof, it remains to show that there is no infinite tower between the languages. We can either use the techniques described in [4,8], or the algorithm presented in Section 3. However, to give a brief idea why it is so, we can give an inductive argument. Since $L(B_0)$ is finite, there is no infinite tower between $L(A_0)$ and $L(B_0)$. Consider a tower between $L(A_{m+1})$ and $L(B_{m+1})$. If every string of the tower belonging to $L(B_{m+1})$ is accepted from an initial state different from $m + 1$, then it is a tower between $L(A_m)$ and $L(B_m)$, so it is finite. Thus, if there exists an infinite tower, there also exists an infinite tower where all strings belonging to $L(B_{m+1})$ are accepted only from state $m + 1$. However, every such string is of the form $(\{a_1, \ldots, a_m\} \cup \{b, c\})^*a_{m+1}y$, where the string y is accepted from an initial state different from $m + 1$. Cutting off the prefixes from $(\{a_1, \ldots, a_m\} \cup \{b, c\})^*a_{m+1}$ results in an infinite tower between $L(A_m)$ and $L(B_m)$, which is a contradiction. \[\square\]

5 Conclusions

The definition of towers can be generalized from subsequences to basically any relation on strings, namely to prefixes, suffixes, etc. Notice that our lower-bound examples in Theorems 2, 3, and 4 are actually towers of prefixes, hence they give a lower bound on the length of towers of prefixes as well.

On the other hand, the upper-bound results cannot be directly used to prove the upper bounds for towers of prefixes. Although every tower of prefixes is also a tower of subsequences, the condition that there are no infinite towers is weaker for prefixes. The bound for subsequences therefore does not apply to languages that allow an infinite tower of subsequences but only finite towers of prefixes.

Finally, note that the lower-bound results are based on nondeterminism. We are aware of a tower of subsequences (prefixes) showing the quadratic lower bound for deterministic automata. However, it is an open question whether a longer tower can be found or the upper bound is significantly different for deterministic automata.
References

1. Almeida, J.: Implicit operations on finite J-trivial semigroups and a conjecture of I. Simon. Journal of Pure and Applied Algebra 69, 205–218 (1990)
2. Almeida, J.: Finite semigroups and universal algebra, Series in Algebra, vol. 3. World Scientific (1995)
3. Almeida, J., Zeitoun, M.: The pseudovariety J is hyperdecidable. RAIRO – Theoretical Informatics and Applications 31(5), 457–482 (1997)
4. Czerwiński, W., Martens, W., Masopust, T.: Efficient separability of regular languages by subsequences and suffixes. In: Proc. of ICALP. LNCS, vol. 7966, pp. 150–161. Springer (2013), full version available at http://arxiv.org/abs/1303.0966
5. Czerwiński, W., Martens, W., Masopust, T.: Personal communication. (2013)
6. Higman, G.: Ordering by divisibility in abstract algebras. Proceedings of the London Mathematical Society s3-2(1), 326–336 (1952)
7. P. Karandikar, P.S.: On the state complexity of closures and interiors of regular languages with subwords. In: Proc. of DCFS (2014), to appear. Available at http://arxiv.org/abs/1406.0690
8. Place, T., van Rooijen, L., Zeitoun, M.: Separating regular languages by piecewise testable and unambiguous languages. In: Chatterjee, K., Sgall, J. (eds.) Proc. of MFCS. LNCS, vol. 8087, pp. 729–740. Springer (2013)
9. Place, T., Zeitoun, M.: Separating regular languages with first-order logic. In: Proc. of CSL-LICS (2014), accepted. Available at http://arxiv.org/abs/1402.3277
10. Simon, I.: Hierarchies of Events with Dot-Depth One. Ph.D. thesis, Dept. of Applied Analysis and Computer Science, University of Waterloo, Canada (1972)
11. Simon, I.: Piecewise testable events. In: GI Conference on Automata Theory and Formal Languages. pp. 214–222. Springer (1975)
12. Stern, J.: Characterizations of some classes of regular events. Theoretical Computer Science 35, 17–42 (1985)