Independent Measurement of the Top Quark Mass and the Light- and Bottom-Jet Energy Scales at Hadron Colliders

F. Fiedler

At hadron-colliders, the measurement of the mass \(m_t \) of the top quark and the absolute energy scale \(S \) for calorimeter jets are closely linked. While the scale \(S \) for light jets can be calibrated with hadronic \(W \) decays in the same \(t\bar{t} \) events used to measure \(m_t \), the main remaining systematic uncertainty on \(m_t \) is so far due to differences between \(S \) and the scale \(S_b \) for \(b \) jets [1]. A novel measurement technique has now been developed that allows a simultaneous determination of \(m_t, S_j, S_b \), and the jet energy resolution \(R \) from \(t\bar{t} \) events [2].

It is assumed that the full calorimeter calibration up to constant scales \(S \) and \(S_b \) has been performed before this method is applied. Three estimators, \(m_t^{\text{reco}}, S_j^{\text{reco}}, \) and \(S_b^{\text{reco}} \), are calculated for each selected event. Functions are derived to describe the expected estimator distributions (templates) for any given set of assumed values of \(m_t, S_j, S_b, \) and \(R \). A comparison of the measured estimator distributions in the data with these fitted templates then yields the \(m_t, S_j, S_b, \) and \(R \) values and their uncertainties.

The method has been tested using \(t\bar{t} \) events in 14 TeV pp collisions generated at parton level with ALPGEN [3]. The energies of the final-state quarks have been smeared according to a Gaussian resolution whose width is set to \(\sigma(E) = R \sqrt{E} \) with constant \(R \). All jet energies are multiplied by a factor \(S_j \), and \(b \)-jet energies by another factor \(S_b \). Tests have been performed with various \((m_t, S_j, S_b, R) \) parameter sets.

Standard \(t\bar{t} \) event selection criteria [2] are applied. In each event, assuming unambiguous \(b \)-jet identification, the estimator \(S_j^{\text{reco}} = \frac{m_{t,W}^{\text{reco}}}{m_W} \) is calculated from the known \(W \) mass \(m_W \) and the mass \(m_{t,W}^{\text{reco}} \) reconstructed from the smeared light-jet energies. A scan over \(S_b^{\text{reco}} \) values is performed. Given an assumed value of \(S_b^{\text{reco}} \), the reconstructed \(b \)-quark jet energies and momenta are scaled accordingly, and the missing transverse momentum is adjusted and taken as transverse momentum of the neutrino from the leptonic \(W \) decay. The longitudinal neutrino momentum \(p_z^{\nu} \) is then obtained from \(m_{t,W}^{\text{reco}} \), and the resulting top quark masses \(m_t^{\text{reco}} \) and \(m_{t,W}^{\text{reco}} \) of the top quarks with the leptonic/hadronic \(W \) decay are computed. If one finds \(m_t^{\text{reco}} = m_{t,W}^{\text{reco}} \), then this top quark mass and the corresponding \(S_b^{\text{reco}} \) value are taken as estimator values for the event. Events are only retained if exactly one solution with \(0.5 < S_b^{\text{reco}} < 2.0 \) and \(150 \text{ GeV} < m_t^{\text{reco}} < 200 \text{ GeV} \) is found.

After the preselection, events with a magnitude of the vector sum of \(b \)-quark jet transverse momenta of less than 50 GeV that yield poor independent information on the top quark mass and \(b \)-quark jet energy scale are rejected. Finally, the quantity \(\Delta^{\text{reco}} := \left| \frac{\partial m_t^{\text{reco}}}{\partial S_b^{\text{reco}}} \right| - \left| \frac{\partial m_{t,W}^{\text{reco}}}{\partial S_b^{\text{reco}}} \right| \) is obtained during the scan of \(S_b^{\text{reco}} \) values. Events with \(\Delta^{\text{reco}} < 30 \text{ GeV} \) have a degraded resolution and are rejected. The resulting \(S_b^{\text{reco}} \) estimator distributions for various choices of input parameters are shown in Figure 1 as an example.

![Figure 1: \(S_b^{\text{reco}} \) template when varying (left plot) the input \(S_j \) value, and (right plot) the input \(m_t \) value. The template parameterizations are overlaid.](http://example.com/figure1.png)

To test the method, pseudo-experiments are then performed using simulated events for various sets of input parameter values. Figure 2 shows results for the distributions of measured \(m_t, S_j, \) and \(S_b \) values. The correlation matrix between the four measured parameters is given by:

| \(m_t \) \(S_j \) \(S_b \) \(R \) |
|---|---|---|---|
| \(m_t \) | \(-0.09\) | \(-0.50\) | \(-0.22\) |
| \(S_j \) | \(-0.38\) | \(-0.11\) | \(-0.14\) |

Fig. 2: Pseudo-experiments: The correlation between \(m_t \) and \(S_b \) results (left plot), and that between \(S_j \) and \(S_b \) (right plot).

The parton-level tests of the method have been published [2] as a proof of principle. In the future, the method will be applied to fully simulated ATLAS events, and systematic uncertainties will be investigated.

References

[1] F. Fiedler, “Precision Measurements of the Top Quark Mass”, habilitation thesis, 2007. http://www.etp.physik.uni-muenchen.de/dokumente/thesis/habili_fiedler.pdf

[2] F. Fiedler, Eur. Phys. J. C 53 (2008) 41 [arXiv:0706.1640 [hep-ex]].

[3] M. L. Mangano et al., JHEP 307 (2003) 1