Antimicrobial susceptibility patterns and CTX-M β-lactamase producing clinical isolates from burn patients in Islamabad, Pakistan

Mubbashir Hussain, Shahzad Munir, Madiha Fatima, Kashif Rahim, Irfan Ahmed, Abdul Basit, Mir Zulqarnain Talpur, Nawaz Haider Bashir, Arslan Janjil, Muhammad Ameen Jamal

1. Introduction

In spite of continual advances in treatment of the burns, infection still remains a huge threat to patients. Septic processes account for 73% of death within the initial five days of post-burn[1-5]. Furthermore, exudate around burn wound is highly nutritive for growth and proliferation of microorganisms[6]. Skin is regarded as the first line defense against pathogens exposure; however, any thermal injury results in physical barrier disruption leading to pathogen invasion. Hence, skin damage along with compromised blood supply around wound and immunodeficiency increase acquisition of nosocomial infection in burn patients[5,7-11]. Moreover, long time hospitalization due to soil surrounding and hands of working staff also increases exposure of pathogens to patient’s skin surface[12] resulting in high death rate in infected patients as compared to non-infected ones[14,15].

Although, availability of effective treatment using antibiotics has reduced mortality rate in burn patients[2], the persistent and improper use of broad spectrum antibiotics particularly the third generation cephalosporin leads to the development of multiple drug resistance[16]. Therefore, the present study was aimed to investigate the virulence, epidemiology and antibiotic susceptibility pattern of clinical burn isolates.

1.2 Objective

To evaluate the prevalence of extended spectrum beta-lactamases (ESBL) in clinical isolates from burn patients using phenotypic and genotypic analyses.

1.3 Methodology

A total of 126 samples were collected from burn patients at a tertiary care hospital, Islamabad, Pakistan. Antibiotic sensitivity and ESBL prevalence were evaluated according to the Clinical Laboratory and Standards Institute, and molecular analysis of the CTX-M type ESBL gene was performed in 225 bacterial isolates from these samples.
resistant strains thus limiting therapeutic options[3,13,16-19]. The primary cause for production of multiple drug resistant strains is β-lactamases particularly extended spectrum β-lactamases (ESBL) whose incidence is steadily increasing all over the world[9,16,19-24]. Most prevalent types of ESBL are TEM (TEM1-2), SHV-1 and CTX-M which are produced by Gram negative bacilli. The TEM and CTX-M type β-lactamases are produced by Enterobacteriaceae, while SHV type by Klebsiella spp. The global spreading of CTX-M ESBL has also been reported since last 10 years in different regions of Europe, and Asia including China and Pakistan, hence early detection of these multi-drug resistant bacteria is important in defining therapies for the prevention of nosocomial infections in the community[22]. In these strains Escherichia coli (E. coli) was observed to be pandemic[22].

Due to limited research work in Pakistan, the present study aimed at evaluating the bacteria from burn victims for antimicrobial susceptibility pattern, detection of ESBL production in clinical isolates and further molecular detection of CTX-M type ESBL gene responsible for prevalence of ESBL.

2. Materials and methods

2.1. Sample collection

This study was conducted at Department of Microbiology, Kohat University of Sciences and Technology, Pakistan and National Institute of Health (NIH), Islamabad, Pakistan from January 2015 to August 2016. A total of 126 wound samples were collected from burn care center of Islamabad under sterile conditions and cultured aerobically for 24 h at 37°C in blood agar and McConkey agar for analyzing the morphological and biochemical characteristics.

2.2. Antibiotic susceptibility test

The antibiotic susceptibilities of isolated pathogens were checked through Kirby-Bauer’s disk diffusion method under aseptic conditions. Briefly, sterile swabs were used to pick the inoculums and streaking was done over the entire sterile surface of Mueller-Hinton agar plate. The streaking was repeated 2–3 times to ensure the proper distribution of bacterial inoculums to obtain the even lawn. The antimicrobials disks of specific concentration were dispensed and inoculation with standardized inoculums (0.5 McFarland) on Mueller Hinton agar. The center of the Petri plate was amended with augmentin (20 µg amoxicillin and 10 µg clavulanic acid) disc and the third generation cephalosporins antibiotic discs of cefotaxime (CTX, 30 µg), ceftazidime (CAZ, 30 µg), and ceftriaxone (CRO, 30 µg) placed at 15 mm distance from augmentin. A difference of > 5 mm between the zone of inhibition of a single disc and combination with clavulanic acid indicates the presence of ESBL positive isolate.

2.4. DNA extraction and PCR detection of CTX-M gene

The whole genomic DNA was prepared from cultured strains. The CTX-M gene was amplified through specific oligonucleotides primers, forward primers CTX-M, F 5′-CTGCACGGTGTGTTAGGA-3′ and reverse primers CTX-M, R 3′-ACGGCTTTCTGCCTAGGTT-5′. The total PCR mixture was 25 µL containing template DNA (1 µL), dNTPs mixture of 1.5 µL (0.2 mmol/L each), 2.5 µL 10× PCR buffer (Ex Taq), 0.5 µL Taq polymerase (1.25 IU), 0.5 µL each primer stock solution (50 pmol/µL), 0.5 µL MgCl₂, and the remaining 18 µL volume was fulfilled by nuclease free water. Reaction conditions for primers were: initial denaturation for 5 min at 95°C, with 35 cycles of denaturation for 1 min at 95°C, annealing primer for 1 min at 58°C, and 2 min extension at 72°C followed by a final extension for at least 5 min at 72°C. The 1.5% agar gel was used to analyze the amplified products by comparing with standard molecular weight marker and subsequently amplified products were visualized by transilluminator using ethidium bromide.

3. Results

A total of 126 swabs were collected from burn patients attending the burn care center of Islamabad, Pakistan to identify isolates on suitable culture media by Gram staining and other biochemical tests. The isolated organisms were characterized for phenotypic production of ESBLs, CTX-M gene and antibiotic susceptibility. Out of 126 clinical samples, 90% (113/126) samples showed growth on selected media, while 10% (13/126) showed no growth. Out of 113 positive samples, 27% (31/113) samples had single isolates, while in 73% (82/113) samples, mixed microbial growth was found. The most prevalent bacterial species were E. coli (28.4%), Pseudomonas aeruginosa (P. aeruginosa) (22.2%), Staphylococcus aureus (S. aureus) (19.6%), Klebsiella pneumoniae (K. pneumoniae) (16.4%) and coagulase negative staphylococci (13.3%) (Tables 1 and 2).

Table 1: Distribution of bacterial isolates cultured from burn patients.

No.	Bacterial isolates	No. of isolates	Percentage
1	E. coli	64	28.4%
2	P. aeruginosa	50	22.2%
3	K. pneumoniae	37	16.5%
4	S. aureus	44	19.6%
5	Coagulase negative staphylococci	30	13.3%

The most effective agents among the beta-lactams tested were meropenem (88.88%) and imipenem (84.88%). Furthermore, the isolates showed the lowest susceptibility to ampicillin (10.66%),
followed by ceftriaxone (46.66%) and ceftazidime (62.66%). When combination of beta-lactams was tested, 70.66% isolates showed susceptibility to cefoperazone + sulbactam, 61.77% to piperacillin + tazobactam, while 26.66% to amoxicillin together with clavulanic acid. Further, among aminoglycosides, 81.77% isolates were susceptible to amikacin, and 32% to gentamicin. Among fluoroquinolones, maximum activity against isolates was displayed by ciprofloxacin (37.77%). Co-trimoxazole and doxycline demonstrated susceptibility of 18.66% and 30.66% respectively (Table 3). A total of 63 (28%) isolates were resistant to more than 3 antibiotics. The widespread multi-drug resistant isolates also exhibited resistance to co-trimoxazole and doxycline, and fluoroquinolones.

Table 2

Biochemical characteristics of bacterial isolates.

Bacterial isolates	Coagulase	DNase	Motility	Indole	Citrate	Oxidase	Catalase
E. coli	-	-	+	-	-	-	-
Klebsiella	-	-	-	+	-	-	+
Pseudomonas	-	+	-	-	-	-	-
Staphylococcus aureus	+	+	-	-	-	+	-

Table 3

Susceptibility of bacterial isolates to antimicrobial agents (*n* = 225).

Antibiotic	Resistant No. (%)	Intermediate No. (%)	Susceptible No. (%)
Ampicillin	189 (84.00%)	12 (5.33%)	24 (10.66%)
Amoxicillin-clavulanate	147 (65.33%)	18 (8.00%)	60 (26.66%)
Cefradine	172 (76.44%)	13 (5.77%)	40 (17.77%)
Cefaclor	169 (75.11%)	11 (4.88%)	45 (20.00%)
Ceftriaxone	90 (40.00%)	23 (10.22%)	112 (49.77%)
Ceftazidime	75 (33.33%)	9 (4.00%)	141 (62.66%)
Cefpirome	50 (22.22%)	6 (2.66%)	105 (46.66%)
Cefoperazone + sulbactam	39 (17.33%)	27 (12.00%)	159 (70.66%)
Piperacillin-tazobactam	54 (24.00%)	32 (14.22%)	139 (61.77%)
Meroopen	23 (10.22%)	3 (1.33%)	200 (88.88%)
Imipenem	31 (13.77%)	3 (1.33%)	191 (84.88%)
Gentamicin	136 (60.44%)	17 (7.55%)	72 (32.00%)
Ciprofloxacin	138 (61.33%)	2 (0.88%)	85 (37.77%)
Amikacin	33 (14.66%)	8 (3.55%)	184 (81.77%)
Doxycline	145 (64.44%)	11 (4.88%)	69 (30.66%)
Co-trimoxazole	176 (78.22%)	7 (3.11%)	42 (18.66%)

In the present study, out of 225 isolates, 89 were found ESBL positive while 136 were ESBL negative. In 89 ESBL positive isolates, 59.55% showed susceptibility to aminoglycosides amikacin while 51.68% to combined antibiotics amoxicillin-clavulanic acid. However, ESBL positive isolates were more resistant (28.08%) to amikacin (Table 4). Among all the antimicrobial agents tested, only ceftazidime and ceftriaxone showed less efficacy (12.35% and 15.73% susceptibility, respectively). Among fluoroquinolones levofloxacin also displayed better efficacy against ESBL isolates. In all 89 ESBL positive strains, susceptibility to levofloxacin was 47.19%. The susceptibility to imipenem was about three times higher in ESBL negative cases as compared to positive ones (61.02% vs 23.59%). Moreover, 41 ESBL positive isolates were susceptible to piperacillin-tazobactam and ciprofloxacin. CTX-M gene analysis of ESBL positive isolates showed that only 19% (17/89) produced CTX-M gene. Furthermore, molecular characterization of CTX-M, class A β-lactamase, which is active against cepotaxime, was carried out by PCR and it was observed that *bla*_{CTX-M} was prevalent in 19% isolates (Figure 1).

Table 4

Antibiotic susceptibility patterns of ESBL positive and negative isolates (*n* = 225).

Antibiotic	ESBL positive (*n* = 89)	ESBL negative (*n* = 136)		
	Resistant No. (%)	Sensitive No. (%)	Resistant No. (%)	Sensitive No. (%)
Ceftriaxone	64 (71.91%) 14 (15.73%)	51 (37.50%) 89 (59.55%)		
Ceftazidime	67 (75.28%) 11 (12.35%)	57 (41.91%) 75 (55.14%)		
Amikacin	25 (28.08%) 53 (59.55%)	41 (30.14%) 91 (66.91%)		
Ciprofloxacin	30 (33.70%) 41 (46.06%)	41 (30.14%) 69 (50.73%)		
Amoxicillin-clavulanic acid	32 (35.95%) 46 (51.68%)	42 (30.88%) 92 (67.64%)		
Tobramycin	36 (40.44%) 42 (47.19%)	49 (36.02%) 77 (56.16%)		
Gentamicin	75 (84.00%) 14 (15.73%)	52 (38.23%) 72 (52.94%)		
Imipenem	54 (60.67%) 21 (23.59%)	35 (25.73%) 83 (61.02%)		
Piperacillin-tazobactam	31 (34.83%) 41 (46.06%)	43 (31.61%) 77 (56.61%)		

![Figure 1](image-url)
prevalent species (37%) followed by *K. pneumoniae* (15%) and *S. aureus* (12%) has been reported in other studies[1,5]; the prevalence of *P. aeruginosa* in the present study was comparable to that in the previous report[5]. Moreover, *S. aureus* (25%) followed by *P. aeruginosa* (13%) and coagulase-negative staphylococci (9%) were found in another report[7]. This may be due to continuous altering pattern of bacterial isolates in burn wound.

The antibiotic susceptibility patterns revealed that the most potent antimicrobial agents were meropenem and imipenem with 88.88% and 84.88% susceptibility which resembles to the findings of previous literature[19,30]. Similarly, high activity of aminoglycosides has been investigated[19,31] and in the current study amikacin showed high susceptibility (81.77%) against the isolates. While the data revealed that the isolates showed high resistance to ampicillin (84%), and in the previous studies conducted in Pakistan, isolates were highly resistant to penicillin[19,32,33]. Moreover, 39.5% (89/225) isolates were ESBL positive while remaining 60.5% (136/225) were ESBL negative and high susceptibility was observed in ESBL negative isolates (Table 4), which is similar to the finding of other works[19,32].

The persistent use of antibiotics due to increased selection pressure in hospitals often leads to MDR microorganisms and we found that 28% isolates were resistant to three or more antibiotics, which was practically the same as that previously reported[34]. However, higher percentage of MDR microorganisms (upto 73%) has also been reported[34]. Moreover, the period of hospitalization, hygienic conditions and drinking water quality also propagate *Enterobacteriaceae* strains circulation leading to MDR[21].

In routine laboratory tests, ESBLs are usually detected phenotypically; however, genotypic confirmation is essential for epidemiological studies in hospitals, and in the present study *CTX-M* gene was predominantly found in *E. coli* and *Klebsiella* spp. Similar finding has already been reported that all strains of *E. coli* had *CTX-M* gene[21]. It has also been documented that clinical isolates of *E. coli* and *Klebsiella* spp. are resistant to many antibiotics such as aminoglycosides, cotrimoxazole and ciprofloxacin, but none of the resistance was displayed to carbapenem[21,36], which was generated due to *CTX-M* enzyme production. Piperacillin-tazobactam antibiotics combination exhibited even more susceptibility against *CTX-M*-producing isolates. The isolate in the UK produces an OXA-1 β-lactamase, resulting in resistance to multiple or combinations of antibiotics[34].

Furthermore, molecular characterization of *CTX-M*, class A β-lactamase, which is active against cefotaxime, was carried out by PCR and it was observed that *blaCTX-M* was prevalent in 19% isolates (Figure 1). However, this prevalence was comparatively higher than that in previous report (19% vs 2.3%)[18]. We believed that, the emergence of *CTX-M* gene conferred antibiotic resistance in microbes. The *CTX-M* emergence from Pakistan is frightening; therefore further studies are required for molecular epidemiology of *CTX-M* type ESBLs.

The increasing resistance to antibiotics among burn isolates is a matter of concern, as there is limited treatment against multidrug resistance. The *CTX-M* gene is a new emerging gene for beta lactamase resistance from burn patients in Pakistan. In Pakistan, there is a great need for genotypic characterization of responsible gene. Furthermore, considering variety of burn isolates, regular microbiological surveillance and their antimicrobial resistance pattern will help us in properly formulating antibiotic therapy and reducing mortality from septic infections.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgments

We are thankful to National Institute of Health (NIH), Islamabad, Pakistan and Department of Microbiology, Kohat University of Science and Technology for providing funds to carry out the project.

References

[1] Singh NP, Rani M, Gupta K, Sagar T, Kaur IR. Changing trends in antimicrobial susceptibility pattern of bacterial isolates in a burn unit. *Burns* 2017; 43(5): 1083-7.
[2] Lee HG, Jang J, Choi JE, Chung DC, Han JW, Woo H, et al. Blood stream infections in patients in the burn intensive care unit. *Infect Chemother* 2013; 45(2): 194-201.
[3] Dawra R, Sharma R, Bachhiwal R, Vyas A. High incidence of multidrug resistant *Pseudomonas aeruginosa* isolated from infected burn wounds in a tertiary hospital. *Int J Curr Microbiol Appl Sci* 2017; 6(2): 1134-9.
[4] Perween N, Prakash SK, Aggarwal P, Gupta LM. Nosocomial burn wound infections due to non-fermenting Gram negative bacteria: our experiences from a tertiary care center in North India. *Ann Path Lab Med* 2016; 3(5): 415-20.
[5] Mehta S, Singh K, Sawhney N, Singh VA, Goyal S. Time related changes in pathogenic bacterial patterns in burn wound infections and their antibiotic sensitivity traits. *Bangladesh J Med Sci* 2017; 16(2): 295-301.
[6] Gonzalez MR, Flechot B, Lauciello L, Jafari P, Applegate LA, Raffoul W, et al. Effect of human burn wound exudate on *Pseudomonas aeruginosa* virulence. *mSphere* 2016; 1(2): e00111-15.
[7] Dimuzio EE, Healy DP, Durkee P, Neely AN, Kagan RJ. Trends in bacterial wound isolates and antimicrobial susceptibility in a pediatric burn hospital. *J Burn Care Res* 2014; 35(5): 304-11.
[8] Heidari H, Emaneini M, Dabiri H, Jabalameli F. Virulence factors,
antimicrobial resistance pattern and molecular analysis of enterococcal strains isolated from burn patients. Microb Pathog 2016; 90: 93-7.

[9] Neyestanaki DK, Mirsalehian A, Rezagholizadeh F, Jabalameli F, Taherikalani M, Emaneini M. Determination of extended spectrum beta-lactamases, metallo-beta-lactamases and ampc-beta-lactamases among carbapenem resistant Pseudomonas aeruginosa isolated from burn patients. Burns 2014; 40(8): 1556-61.

[10] Hakemi Vala M, Hallajzadeh M, Hashemi A, Goudarzi H, Tarhani M, Sattarzadeh Tabrizi M, et al. Detection of ambler class a, b and d ss-lactamases among Pseudomonas aeruginosa and acinetobacter baumannii clinical isolates from burn patients. Ann Burns Fire Disasters 2014; 27(1): 8-13.

[11] Fallah F, Borhan RS, Hashemi A. Brief communication detection of bla (imp) and bla (vim) metallo-beta-lactamases genes among Pseudomonas aeruginosa strains. Int J Burn Trauma 2013; 3(2): 122-4.

[12] Ho AL, Chambers R, Malic C, Papp A. Universal contact precautions do not change the prevalence of antibiotic resistant organisms in a tertiary burn unit. Burns 2017; 43(2): 265-72.

[13] Yezi S, Shibli AM, Memish ZA. The molecular basis of β-lactamase production in Gram-negative bacteria from Saudi Arabia. J Med Microbiol 2015; 64(2): 127-36.

[14] Kaushik R, Kumar S, Sharma R, Lal P. Bacteriology of burn wounds- the first three years in a new burn unit at the medical college chandigarh. Burns 2001; 27(6): 595-7.

[15] Taneya N, Emmanuel R, Chari P, Sharma M. A prospective study of hospital-acquired infections in burn patients at a tertiary care referral centre in North India. Burns 2004; 30(7): 665-9.

[16] De Almeida KDCF, Calomino MA, Deutsch G, De Castilho SR, De Paula GR, Esper LMR, et al. Molecular characterization of multidrug-resistant (mdr) Pseudomonas aeruginosa isolated in a burn center. Burns 2017; 43(1): 137-43.

[17] Livermore DM. Current epidemiology and growing resistance of Gram-negative pathogens. Korean J Intern Med 2012; 27(2): 128-42.

[18] Farshadzadeh Z, Khosravi AD, Alavi SM, Parhizgari N, Hoveizavi H. Spread of extended-spectrum β-lactamase genes of bla oxa-10, bla per-1 and bla ctx-m in Pseudomonas aeruginosa strains isolated from burn patients. Burns 2014; 40(8): 1575-80.

[19] Ahmad M, Hassan M, Khalid A, Tariq I, Asad MHHB, Samad A, et al. Prevalence of extended spectrum β-lactamase and antimicrobial susceptibility pattern of clinical isolates of pseudomonas from patients of Khyber Pakhtunkhwa, Pakistan. Biomed Res Int 2016; 2016: 6068429.

[20] Jain A, Roy I, Gupta MK, Kumar M, Agarwal S. Prevalence of extended-spectrum β-lactamase-producing Gram-negative bacteria in septicemic neonates in a tertiary care hospital. J Med Microbiol 2003; 52(5): 421-5.

[21] Djuikoue IC, Njajou O, Kamga HG, Fokunang C, Bongoe A, Bruno EO, et al. Prevalence of ctx-m beta-lactamases in Escherichia coli from community-acquired urinary tract infections and associated risk factors among women in cameroon. J Epidemiol Res 2017; 3(1): 51-6.

[22] Paul S, Jhora ST, Dey PP. Evaluation of phenotypic methods to identify extended spectrum beta-lactamase (ESBL) producing Gram negative bacteria. Bangladesh J Med Microbiol 2017; 8(1): 21-4.

[23] Mirza SH, Salman M, Khurshid U, Waqar MA. Ctx-m ESBL enzyme in Escherichia coli from urology patients in Rawalpindi, Pakistan. J Pak Med Assoc 2006; 56(12): 576-8.

[24] Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev 2005; 18(4): 657-86.

[25] Moghaddam MN, Zolfaghari MR, Tavakoli-Hoseini N. Ctx-m-15 type β-lactamases from clinical isolates of Escherichia coli by polymerase chain reaction and DNA sequencing. Zahedan J Res Med Sci 2017; doi: 10.5812/zjrms.5814.

[26] Azzopardi EA, Azzopardi E, Camilleri L, Villapalos J, Boyce DE, Drzwulske P, et al. Gram negative wound infection in hospitalised adult burn patients-systematic review and metaanalysis. PloS One 2014; 9(4): e95042.

[27] Su IH, Ko WC, Shih CH, Yeh FH, Sun YN, Chen JC, et al. A dielectrophoresis system for testing antimicrobial susceptibility of Gram-negative bacteria to beta-lactam antibiotics. Anal Chem 2017; 89(8): 4635-41.

[28] Creighton J, Heffernan H, Howard J. Isolation of seven distinct carbapenemase-producing Gram-negative organisms from a single patient. J Antimicrob Chemother 2017; 72(1): 317-9.

[29] Yoon J. Bacterial strains and antimicrobial resistance of wound infection in burn patients. Korean J Fam Pract 2016; 6(3): 179-84.

[30] Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, et al. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol 2015; 13(5): 310-7.

[31] Sasirekha B, Manasa R, Ramya P, Sneha R. Frequency and antimicrobial sensitivity pattern of extended spectrum β-lactamases producing E. coli and Klebsiella pneumoniae isolated in a tertiary care hospital. Al Ameen J Med Sci 2010; 3(4): 265-71.

[32] Bishnoi BR, Binnani A, Gupta PS. Prevalence and antimicrobial susceptibility pattern of extended spectrum beta-lactamase producing Escherichia coli and Klebsiella pneumoniae isolated at a tertiary care institute in north west region of Rajasthan, India. Int J Curr Microbiol Appl Sci 2016; 5(7): 912-23.

[33] Ullah F, Malik SA, Ahmed J. Antimicrobial susceptibility pattern and ESBL prevalence in Klebsiella pneumoniae from urinary tract infections in the north-west of Pakistan. Afr J Microbiol Res 2009; 3(11): 676-80.

[34] Ullah F, Malik SA, Ahmed J. Antimicrobial susceptibility and ESBL prevalence in Pseudomonas aeruginosa isolated from burn patients in the north west of Pakistan. Burns 2009; 35(7): 1020-5.

[35] Wainis M, Walker SA, Daneman N, Elligsen M, Palmay L, Simor A, et al. Impact of hospital length of stay on the distribution of Gram negative bacteria in burn patients. J Antimicrob Chemother 2014; 69(6): 1415-21.

[36] Rozycka M, Kozera K, Gondek P, Jankowska M. Prevalence of beta-lactamase enzymes among Enterobacter cloacae in hospital environments. World J Pharm Sci 2013; 2(6): 6548-58.