Association of leukocyte telomere length with chronic kidney disease in East Asians with type 2 diabetes: A Mendelian randomization study

Resham L Gurung1*, Rajkumar Dorajoo2*, Yiamunaa M1, Ling Wang2, Sylvia Liu1, Jian-Jun Liu1, Yi Ming Shao1, Yuqing Chen3, Xueling Sim3, Keven Ang1, Tavintharan Subramaniam4, Wern Ee Tang5, Chee Fang Sum4, Jian-Jun Liu2, and Su Chi Lim1,3,4

1Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
2Genome Institute of Singapore, Agency for Science Technology and Research, Singapore
3Saw Swee Hock School of Public Health, Singapore, Singapore
4Diabetes Centre, Admiralty Medical Centre, Singapore
5National Healthcare Group Polyclinic, Singapore

Correspondence to: Su Chi Lim; E-mail: lim.su.chi@ktph.com.sg

*these authors contributed equally to this work
ABSTRACT

Background. Chronic kidney disease (CKD) is common among type 2 diabetes (T2D) and increases the risk of kidney failure and cardiovascular diseases. Shorter leukocyte telomere length is associated with CKD in patients with T2D. We previously reported single nucleotide polymorphisms (SNPs) associated with leukocyte telomere length in Asian population. In this study, we elucidated the association of these SNPs with CKD in patients with T2D using Mendelian randomization (MR) approach.

Methods. The cross-sectional association of 16 leukocyte telomere length SNPs with CKD, defined as an estimated glomerular filtration rate of less than 60ml/min/1.73m2 was assessed among 4,768 (1,628 cases, 3,140 controls) participants in the Singapore Study of Macro-angiopathy and Micro-vascular Reactivity in Type 2 Diabetes and Diabetic Nephropathy cohorts. MR analysis was performed using the random-effect inverse-variance weighted (IVW) method, the weighted median, MR-Egger and Radial MR adjusted for age and sex-stratified by cohorts and ethnicity (Chinese and Malays), then meta-analysed.

Results. Genetically determined shorter leukocyte telomere length was associated with increased risk of CKD in patients with T2D (meta-IVW adjusted odds ratio = 1.51 [95% confidence interval,1.12 - 2.12; $P = 0.007$; $P_{\text{het}} = 0.547$]). Similar results were obtained following sensitivity analysis. MR-Egger analysis (intercept) suggested no evidence of horizontal pleiotropy ($\beta = 0.010$, $P = 0.751$).

Conclusions. Our findings suggest that genetically determined leukocyte telomere length is associated with CKD in patients with T2D. Further studies are warranted to elucidate the causal role of telomere length in CKD progression.

Keywords: chronic kidney disease, Mendelian randomisation analysis, Telomere length, type 2 diabetes
INTRODUCTION

Telomeres are DNA-protein structures at the ends of chromosomes and protect the genome from damage (1). In most somatic tissues, telomeres shorten progressively with cell division (2). When telomere lengths are critically short, it triggers apoptosis or replicative senescence (3, 4). Therefore, telomere length is recognized as a biomarker for cellular ageing (5). Leukocyte telomere length, predominantly measured in epidemiological studies, is correlated with telomere length in multiple tissues in humans, including kidney tissues (6-8) and is inversely associated with risk of ageing-related diseases including cardiovascular disease and all-cause mortality (9-11).

Diabetic kidney disease (DKD) is a leading cause of renal failure, cardiovascular disease and mortality in patients with T2D (12-15). Observational studies have demonstrated inverse associations between leukocyte telomere length and risk of chronic kidney disease (CKD) in patients with T2D (16-19). However, observational studies are prone to reverse causation and confounding factors. Moreover, leukocyte telomere length is modulated by oxidative stress as well as inflammation, obesity, genetic and environmental factors (20, 21). Therefore, it is uncertain whether shorter leukocyte telomere length is causally associated with DKD.

Mendelian Randomization (MR) approach uses single nucleotide polymorphisms (SNPs) that are robustly associated with a risk factor to estimate the causal relationship between a risk factor and a disease (22). Given that germline genetic variants are randomly assorted at meiosis, MR approach is less prone to residual biases, confounding and reverse causation. For inferencing causality, it is essential that the assumptions of MR are satisfied. These are: 1) the selected SNPs are associated with exposure (telomere length); 2) the selected SNPs are not associated with confounders; and 3) the selected SNPs are associated with outcome exclusively through their effect on exposure (telomere length). To our knowledge, the causal effect of shorter leukocyte telomeres in CKD in patients with T2D has not been evaluated in East Asians.

A recent large-scale genome-wide association studies (GWAS) in the Singapore Chinese Health Study (SCHS) cohort identified sixteen SNPs associated with Leukocyte telomere length (23). In the present study, we performed two-sample MR with summary statistics of SNP-leukocyte telomere length associations from the SCHS cohort and SNP-DKD association determined in this study to investigate the causal relationship between leukocyte telomere length and CKD in patients with T2D.
MATERIALS AND METHODS

SNP selection

Ten SNPs robustly associated ($P < 5 \times 10^{-8}$) with leukocyte telomere length in Singapore Chinese population (N=25,273; mean age= 55 years) and additional six independent SNPs identified after meta-analysis with European cohorts (n= 37,505) (23) were selected as instrument variables (IVs). These sixteen SNPs are located in different regions and close to genes coding for proteins involved in telomere homeostasis, such as shelterin complex, DNA repair pathways and telomerase enzyme. The list of sixteen SNPs selected as IV for Leukocyte telomere length and the coefficient estimate for leukocyte telomere length (β_{LTL}) are shown in Table 1. Together, these sixteen SNPs explained approximately 4% of the variation in Leukocyte telomere length in the Singaporean Chinese population (23). The beta estimate reflects changes in standard deviation (SD) of the standardized levels of leukocyte telomere length adjusted for age, sex and principal components.

Study design and cohorts

This is a cross-sectional study. We utilized two-sample MR framework using two non-overlapping cohorts. We used summary statistic of a GWAS of leukocyte telomere length in the Singapore Chinese Health Study (23). The association of SNPs with CKD was estimated in two independent T2D cohorts in Khoo Teck Puat Hospital: The Diabetes Nephropathy (DN) (24) and the Singapore Study of Macro-angiopathy and Micro-vascular Reactivity in T2D (SMART2D) (25) cohorts. Briefly, the DN is an on-going study including 4590 participants (age 21 years and above) recruited between March 2004 and December 2017, and the SMART2D dataset is a prospective cohort with baseline recruitment of 2052 T2D participants (age 21 years and above) between August 2011 and February 2014. Genotyping for the SMART2D and DN cohorts were carried using Illumina Humanomniexpress-24 Bead Chip and Illumina HumanOmniZhonghua Bead Chip, respectively and quality control procedures have been described previously (26, 27). An additional 253 Chinese and 245 Malay samples from the DN studies were genotyped using the Illumina GSA array, and quality control procedures are indicated in Supplementary data, Table S1. The estimated glomerular filtration rate (eGFR) in the DN and SMART2D datasets was calculated using Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation and CKD was defined as eGFR less than 60ml/min/1.73m2. In this study, only participants with information on renal condition and genotype

http://mc.manuscriptcentral.com/ckj
data were included (DN: Chinese = 2459, Malay = 837; SMART2D: Chinese = 1033, Malays = 439) (Supplementary data, Figure S1). Written informed consent was obtained from each participant, and the study has been approved by the National Healthcare Group Domain Specific Review Board (DSRB) in Singapore.

Statistical Analysis

Association of leukocyte telomere length shortening SNPs with CKD

The association of each IV with CKD in the KTPH cohort was determined by logistic regression adjusted for age and sex. Analysis was first performed separately in the DN and SMART2D, stratified by ethnic group and pooled using a random effect meta-analysis (\(\beta_{\text{SNP-CKD}} \)). Heterogeneity in meta-analyzed data was determined using \(I^2 \) statistic and Cochran’s Q P-value (\(P_{\text{het}} \)) < 0.05 was determined to be significantly heterogenous.

Mendelian randomization analysis

The SNP-leukocyte telomere length (\(\beta_{\text{SNP-LTL}} \)) and SNP-CKD (\(\beta_{\text{SNP-CKD}} \)) coefficients were combined using an inverse-variance-weighted (IVW) method to give an overall estimate of the causal effect. This method assumes that all the SNPs included are valid instruments, and the effect size represents a weighted average of Wald ratio estimates derived from all the IVs (28). The odds ratio (OR) from the weighted regression represents the increased risk of CKD per SD shortening in leukocyte telomere length. Heterogeneity in meta-analyzed data was determined using \(I^2 \) statistic and Cochran’s Q P-value (\(P_{\text{het}} \)) < 0.05 was determined to be significantly heterogenous.

Sensitivity analysis

The weighted median method and MR-Egger regression were performed to assess if the MR IVW estimates are biased and affected by violation of MR assumptions (i.e. horizontal pleiotropy) (29). The weighted median method employs the weighted empirical distribution function of each SNP ratio estimate and provides a median value. This approach yields a consistent estimate of a true causal effect as long as more than 50% of SNPs are valid (29). The MR-Egger regression was utilised to formally test for potential violations of MR assumptions. Intercept with \(P > 0.05 \) indicates no horizontal pleiotropy exists. We also performed leave-one-out analysis, where each SNP was removed systematically, and IVW analysis was performed in the remaining fifteen SNPs, to identify potentially influential SNP driving the association. All analysis was performed using R, version 3.1.2. and Stata released 14.0 (StatCorp LP). The MendelianRandomisation and RadialMR R package were
used to perform MR and sensitivity analysis. *P* values were 2-sided, and evidence of association was declared at *P* < 0.05.

RESULTS

Among the 4,768 T2D participants, the mean age [SE] was 58.4 [11.7] years, 57.7% were male, and 34.1% had CKD at baseline (Supplementary data, Table S2). The list of instrumental variables for leukocyte telomere length and their pooled association with CKD from the DN and SMART2D cohorts using random-effect inverse-variance weighted are shown in Table 1 and Supplementary data, Table S3. Of the sixteen SNPs, rs41293836 (β = 0.126, SE = 0.058, *P* = 0.029) and rs2302588 (β = 0.115, SE = 0.076, *P* = 0.035) were associated with increased risk of CKD.

Primary MR analysis using IVW method demonstrated that shorter genetically predicted leukocyte telomere length was associated with increased risk of CKD (OR = 1.51, 95%CI 1.12 - 2.12, *P* = 0.007; *P* _het_ = 0.547) (Table 2 and Fig.1). Similar observation was obtained using the weighted median analysis (OR = 1.52, 95%CI 1.03 - 2.24, *P* = 0.035). The MR-Egger regression showed no evidence of directional pleiotropy (intercept β = 0.010, SE = 0.028, *P* = 0.715). Radial MR approach also did not reveal evidence of outlying genetic variants, in agreement with the MR-Egger regression analysis (Fig.2).

We further performed leave-one-out analysis to explore whether the associations between genetically determined leukocyte telomere length and CKD was driven by particular SNPs. Compared with the observed results (OR = 1.51) from 16 SNPs, the ORs fluctuated from 1.39 to 1.63, and the largest decrease and increase in OR was observed after removing rs41293836 and rs12415148, respectively. However, only removal of rs41293836 (near TINF2) attenuated the association of leukocyte telomere length and CKD (*P* = 0.080), suggesting TINF2 may drive the IVW point estimate (Supplementary data, Figure S2). Among the sixteen SNPs, data on association for eight of these SNPs with HbA1c levels in East Asian population was available in the MAGIC study. MR analysis found no causal relation between leukocyte telomere length and HbA1c levels (β = 0.022, SE = 0.035, *P* = 0.534). We calculated the power for this study with the assumption that the proportion of leukocyte telomere length variance explained by all sixteen SNPs is R² = 4% and with type 1 error of 0.05. Using mRnd (https://shiny.cnsgenomics.com/mRnd/), this study had 82% power to detect per allele effect of leukocyte telomere length on CKD with corresponding OR of 1.50, at a significant level of 0.05.
DISCUSSION

In this study, we used a two-sample MR framework to demonstrate that shorter genetically predicted leukocyte telomere length was also associated with increased risk of CKD in patients with T2D. This finding was robust and consistent in the sensitivity analysis. Leave-out-one analysis suggests rs41293836 near TINF2 may drive the observed association between genetically determined leukocyte telomere length and CKD.

Our findings is consistent with observational studies where shorter leukocyte telomere length was associated with renal dysfunction cross-sectionally (16, 18) and prospectively (17, 30). Specifically, in the meta-analysis of MMKD (n = 166) and CRISIS cohort (n = 889), shorter leukocyte telomere length was significantly associated with increased risk for CKD progression in diabetic patients but not in non-diabetic patients (17). These results are in contrast to a study demonstrating that the association between leukocyte telomere length and CKD was entirely explained by age (31). These inconsistent findings may be due to residual confounding or biased by reverse causation in conventional observational studies. To the best of our knowledge, this is the first MR analyses investigating the potential causal relationship between leukocyte telomere length and CKD in East Asians with T2D. A previous MR study performed in non-diabetic Europeans reported a lack of causal relationship between leukocyte telomere length and kidney function defined using continuous traits (creatinine, albumin and cystatin) in the general population (32). Moreover, the analysis with CKD was not reported. This difference might reflect different pathophysiologic mechanism behind CKD in T2D, and general population or could be due to different selection and strength of the IVs used in this study. We also found that the association observed in our study seems to be driven by rs41293836 near TINF2/TGM1 loci in chromosome 14, which is monomorphic or rare in European population but polymorphic and common in the Chinese population. Additionally, given that diabetes condition is associated with an elevated level of oxidative stress and inflammation, factors that also accelerate telomere shortening and ageing (33), it is possible that impact of telomere shortening on renal function is exacerbated in diabetic condition as compared to non-diabetic. Further studies are warranted to elucidate the exact role of telomere length in CKD in diabetic population.

Examination of the associations between individual leukocyte telomere length genetic risk loci and CKD highlighted TERF1 interacting nuclear factor 2 (TINF2) as the main driver of the association. Several studies have identified deleterious mutations in TINF2 in patients with short telomere length.
syndrome diseases such as dyskeratosis congenita (DKC) and idiopathic pulmonary fibrosis (34-36). TINF2 is a component of the telomere shelterin protein complex and regulates telomerase activity (37). In germline and stem cells, telomerase activity is essential for the maintenance of telomere length and therefore, cell renewal capacity. However, the role of TINF2 in CKD in patients with T2D has not yet been clearly demonstrated. In human kidney, telomere length decreases more rapidly in the renal cortex than in the medulla during ageing (2), contributing to the cortical scarring and glomerular senescence observed in ageing kidneys. Using mice model, Westhoff et al. showed that shorter telomere contributed to increased renal injury and decreased recovery after insult (38). Therefore, it is likely that shorter leukocyte telomere, as a result of increased oxidative stress and chronic inflammation, may reflects a state of compromised immune response and increased susceptibility to renal injury. Alternatively, as leukocyte telomere length is correlated with intrarenal telomere length \(r = 0.4, P = 0.001 \) (39), it is also likely that shorter telomeres increase the likelihood of chromosomal damage, leading to cellular senescence or apoptosis and renal damage.

The strengths of this study are the robust genetic instrument identified in the same population explaining approximately 4% of the variance in leukocyte telomere length (doubled the phenotypic variance identified in Europeans previously) and the use of multiple MR methods with different assumptions. Moreover, we used two-sample MR where IV and the estimation of the IV with CKD in patients with T2D was derived from two independent populations, reducing bias in the causal estimate (40). However, this study also has some limitations. Firstly, the IV was derived for blood telomere length and not telomere length in renal tissues. However, studies have shown that leukocyte telomere length correlates with telomere length in other tissues, including renal tissues \(r = 0.4, P = 0.001 \) (6, 39, 41). Secondly, pooled data using random-effect meta-analysis from the Chinese and Malay T2D participants were included in MR analysis to increase the sample size and hence statistical power. Thirdly, the SNPs selected as IVs were derived mainly from non-diabetic population, which may potentially reduce the validity of the measure in our study. However, we have shown that in a subset of KTPH Chinese type 2 diabetic subjects \(n = 1602 \), twelve SNPs were directionally consistent in type 2 diabetic population (binomial \(P = 0.028 \)) and the top hit at chromosome 14 (rs41293836) showed statistically significant association with leukocyte telomere length (23). Lastly, given that individual-level telomere length data was not available for all the participants in our study population, we were not able to assess if the instrumental variable is associated with CKD independent of its
effect on telomere length. Although we performed sensitivity analysis and demonstrated the absence of directional pleiotropic effects, we cannot completely exclude the possibility.

In summary, we demonstrated a potential role of leukocyte telomere length in the development of CKD in East Asians with T2D. However, further studies in larger-scale East Asian T2D population is warranted to validate our findings and elucidate the causal role of telomere length in CKD progression. With potential therapies to minimise premature leukocyte telomere shortening available (42, 43), preventing premature telomere shortening may provide a strategy to prevent CKD and reduce the public burden of diabetes-related complications.

ACKNOWLEDGEMENTS

We sincerely thank participants of the studies for their valuable contributions.

FUNDING

The work was funded by the Singapore Ministry of Health’s National Medical Research Council under its CG-IRG (MOH-000066) and AHPL SIG II/15205. SC Lim is supported by the Singapore Ministry of Health’s National Medical Research Council under its CSA (NMRC/CSA-INV/0020/2017). The funder has no role in study design, data analysis, manuscript writing and decision to submit for publication.

AUTHORS’ CONTRIBUTIONS

R.L.G and S.C.L designed the study; R.L.G, Y.M, S.L, J.J.L, Y.M.S, K.A and S.C.L contributed to the recruitment, sample collection and data acquisition; R.D, L.W, Y.C and X.S generated genotyping data; R.L.G and R.D performed data and statistical analysis. R.L.G drafted the manuscript. All authors contributed important intellectual content and revised the manuscript critically. All authors have approved the submission of the manuscript for publication. S.C.L is the guarantor of this work and has full access to all the data in the study.

CONFLICT OF INTEREST STATEMENT

The authors declare no competing financial and/or non-financial interests in relation to the work described. The results presented in this paper have not been published previously in whole or part.
DATA AVAILABILITY STATEMENT

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
REFERENCES

1. Blackburn EH. Structure and function of telomeres. Nature. 1991;350(6319):569-73.
2. Melk A, Ramassar V, Helms LM, Moore R, Rayner D, Solez K, et al. Telomere shortening in kidneys with age. J Am Soc Nephrol. 2000;11(3):444-53.
3. Hayflick L. The Limited in Vitro Lifetime of Human Diploid Cell Strains. Exp Cell Res. 1965;37:614-36.
4. Harley CB, Futterer AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345(6274):458-60.
5. Jylhava J, Pedersen NL, Hagg S. Biological Age Predictors. EBioMedicine. 2017;21:29-36.
6. Demanelis K, Jasmine F, Chen LS, Chernoff M, Tong L, Delgado D, et al. Determinants of telomere length across human tissues. Science. 2020;369(6509).
7. Daniali L, Benetos A, Susser E, Kark JD, Labat C, Kimura M, et al. Telomeres shorten at equivalent rates in somatic tissues of adults. Nat Commun. 2013;4:1597.
8. Sabharwal S, Verhulst S, Guirguis G, Kark JD, Labat C, Roche NE, et al. Telomere length dynamics in early life: the blood-and-muscle model. FASEB J. 2018;32(1):529-34.
9. Cheng F, Luk AO, Tam CHT, Fan B, Wu H, Yang A, et al. Shortened Relative Leukocyte Telomere Length Is Associated With Prevalent and Incident Cardiovascular Complications in Type 2 Diabetes: Analysis From the Hong Kong Diabetes Register. Diabetes Care. 2020;43(9):2257-65.
10. Mons U, Muezzinler A, Schottker B, Dieffenbach AK, Butterbach K, Schick M, et al. Leukocyte Telomere Length and All-Cause, Cardiovascular Disease, and Cancer Mortality: Results From Individual-Participant-Data Meta-Analysis of 2 Large Prospective Cohort Studies. Am J Epidemiol. 2017;185(12):1317-26.
11. Wang Q, Zhan Y, Pedersen NL, Fang F, Hagg S. Telomere Length and All-Cause Mortality: A Meta-analysis. Ageing Res Rev. 2018;48:11-20.
12. Ragot S, Saulnier PJ, Velho G, Gand E, de Hauteclercq A, Slaoui Y, et al. Dynamic Changes in Renal Function Are Associated With Major Cardiovascular Events in Patients With Type 2 Diabetes. Diabetes Care. 2016;39(7):1259-66.
13. Krolewski AS, Skupien J, Rossing P, Warram JH. Fast renal decline to end-stage renal disease: an unrecognized feature of nephropathy in diabetes. Kidney Int. 2017;91(6):1300-11.
14. Reidy K, Kang HM, Hostetter T, Susztak K. Molecular mechanisms of diabetic kidney disease. J Clin Invest. 2014;124(6):2333-40.

15. Collaboration GBDCKD. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2020.

16. Testa R, Olivieri F, Sirolla C, Spazzafumo L, Rippo MR, Marra M, et al. Leukocyte telomere length is associated with complications of type 2 diabetes mellitus. Diabet Med. 2011;28(11):1388-94.

17. Raschenberger J, Kollerits B, Ritchie J, Lane B, Kalra PA, Ritz E, et al. Association of relative telomere length with progression of chronic kidney disease in two cohorts: effect modification by smoking and diabetes. Sci Rep. 2015;5:11887.

18. Tentolouris N, Nzietchueng R, Cattan V, Poitevin G, Lacolley P, Papazafiropoulou A, et al. White blood cells telomere length is shorter in males with type 2 diabetes and microalbuminuria. Diabetes Care. 2007;30(11):2909-15.

19. Gurung RL, M Y, Liu S, Liu JJ, Lim SC. Short Leukocyte Telomere Length Predicts Albuminuria Progression in Individuals With Type 2 Diabetes. Kidney Int Rep. 2018;3(3):592-601.

20. Barnes RP, Fouquerel E, Opresko PL. The impact of oxidative DNA damage and stress on telomere homeostasis. Mech Ageing Dev. 2019;177:37-45.

21. Blackburn EH, Epel ES, Lin J. Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science. 2015;350(6265):1193-8.

22. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23(R1):R89-98.

23. Dorajoo R, Chang X, Gurung RL, Li Z, Wang L, Wang R, et al. Loci for human leukocyte telomere length in the Singaporean Chinese population and trans-ethnic genetic studies. Nat Commun. 2019;10(1):2491.

24. Liu JJ, Lim SC, Yeoh LY, Su C, Tai BC, Low S, et al. Ethnic disparities in risk of cardiovascular disease, end-stage renal disease and all-cause mortality: a prospective study among Asian people with Type 2 diabetes. Diabet Med. 2016;33(3):332-9.

25. Pek SL, Tavintharan S, Wang X, Lim SC, Woon K, Yeoh LY, et al. Elevation of a novel angiogenic factor, leucine-rich-alpha2-glycoprotein (LRG1), is associated with arterial stiffness, endothelial dysfunction, and peripheral arterial disease in patients with type 2 diabetes. J Clin Endocrinol Metab. 2015;100(4):1586-93.
26. Lim SC, Dorajoo R, Zhang X, Wang L, Ang SF, Tan CSH, et al. Genetic variants in the receptor for advanced glycation end products (RAGE) gene were associated with circulating soluble RAGE level but not with renal function among Asians with type 2 diabetes: a genome-wide association study. Nephrol Dial Transplant. 2017;32(10):1697-704.

27. Gurung RL, Dorajoo R, Liu S, M Y, Liu JJ, Wang L, et al. Genetic markers for urine haptoglobin is associated with decline in renal function in type 2 diabetes in East Asians. Sci Rep. 2018;8(1):5109.

28. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37(7):658-65.

29. Hemani G, Bowden J, Davey Smith G. Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum Mol Genet. 2018;27(R2):R195-R208.

30. Ameh Ol, Okpechi IG, Dandara C, Kengne AP. Association Between Telomere Length, Chronic Kidney Disease, and Renal Traits: A Systematic Review. OMICS. 2017;21(3):143-55.

31. Bansal N, Whooley MA, Regan M, McCulloch CE, Ix JH, Epel E, et al. Association between kidney function and telomere length: the heart and soul study. Am J Nephrol. 2012;36(5):405-11.

32. Telomeres Mendelian Randomization C, Haycock PC, Burgess S, Nounu A, Zheng J, Okoli GN, et al. Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases: A Mendelian Randomization Study. JAMA Oncol. 2017;3(5):636-51.

33. Palmer AK, Gustafson B, Kirkland JL, Smith U. Cellular senescence: at the nexus between ageing and diabetes. Diabetologia. 2019;62(10):1835-41.

34. Walne AJ, Vulliamy T, Beswick R, Kirwan M, Dokal I. TINF2 mutations result in very short telomeres: analysis of a large cohort of patients with dyskeratosis congenita and related bone marrow failure syndromes. Blood. 2008;112(9):3594-600.

35. Savage SA, Giri N, Baerlocher GM, Orr N, Lansdorp PM, Alter BP. TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita. Am J Hum Genet. 2008;82(2):501-9.

36. Alder JK, Stanley SE, Wagner CL, Hamilton M, Hanumanthu VS, Armanios M. Exome sequencing identifies mutant TINF2 in a family with pulmonary fibrosis. Chest. 2015;147(5):1361-8.

37. Pike AM, Strong MA, Ouyang JPT, Greider CW. TIN2 Functions with TPP1/POT1 To Stimulate Telomerase Processivity. Mol Cell Biol. 2019;39(21).
38. Westhoff JH, Schildhorn C, Jacobi C, Homme M, Hartner A, Braun H, et al. Telomere shortening reduces regenerative capacity after acute kidney injury. J Am Soc Nephrol. 2010;21(2):327-36.

39. De Vusser K, Pieters N, Janssen B, Lerut E, Kuypers D, Jochmans I, et al. Telomere length, cardiovascular risk and arteriosclerosis in human kidneys: an observational cohort study. Aging (Albany NY). 2015;7(10):766-75.

40. Lawlor DA. Commentary: Two-sample Mendelian randomization: opportunities and challenges. Int J Epidemiol. 2016;45(3):908-15.

41. Friedrich U, Griese E, Schwab M, Fritz P, Thon K, Klotz U. Telomere length in different tissues of elderly patients. Mech Ageing Dev. 2000;119(3):89-99.

42. Townsley DM, Dumitriu B, Liu D, Biancotto A, Weinstein B, Chen C, et al. Danazol Treatment for Telomere Diseases. N Engl J Med. 2016;374(20):1922-31.

43. Rodrigues CE, Capcha JM, de Braganca AC, Sanches TR, Gouveia PQ, de Oliveira PA, et al. Human umbilical cord-derived mesenchymal stromal cells protect against premature renal senescence resulting from oxidative stress in rats with acute kidney injury. Stem Cell Res Ther. 2017;8(1):19.
Table 1. SNPs selected as instrumental variable and its association with leukocyte telomere length and CKD

SNP	Chr	Position (hg19)	Gene	Test Allele	SNP-LTL β	SE (β)	log_e (OR)	SE	P
rs3219104	1	226562621	PARP1	A	-0.074	0.009	-0.013	0.048	0.780
rs11890390	2	54485682	ACYP2	C	-0.040	0.012	0.125	0.065	0.055
rs2293607	3	169482335	TERC	C	-0.120	0.009	0.030	0.058	0.406
rs10857352	4	164101482	NAF1	A	-0.064	0.011	-0.004	0.079	0.544
rs7705526	5	1285974	TERT	C	-0.118	0.009	0.044	0.050	0.386
rs777644	7	124599749	POT1	G	-0.058	0.009	0.076	0.049	0.126
rs28365964	8	73920883	TERF1	T	-0.270	0.035	0.249	0.219	0.256
rs12415148	10	105680586	OBFC1	T	-0.204	0.020	0.005	0.074	0.947
rs7095953	10	101274425	NIKX2-3	C	-0.047	0.009	0.059	0.048	0.222
rs227080	11	108247888	ATM	G	-0.060	0.009	0.068	0.066	0.102
rs2302588	14	73404752	DCAF4	G	-0.042	0.011	0.115	0.076	0.035
rs41293836	14	24721327	TINF2	C	-0.233	0.017	0.126	0.058	0.029
rs2967374	16	82209861	MPHOSPH6	G	-0.056	0.012	-0.041	0.083	0.704
rs1001761	18	662103	TYMS	A	-0.042	0.010	-0.101	0.090	0.256
rs7253490	19	22293706	ZNF208, ZNF257, ZNF676	C	-0.036	0.010	-0.051	0.051	0.317
rs41309367	20	62309554	RTEL1	T	-0.058	0.010	0.064	0.101	0.529

LTL leukocyte telomere length, *Chr* chromosome number, *TA* test allele, *OR* odds ratio, *SE* standard error, *CKD* chronic kidney disease.
Figure 1. Scatter plot to visualise the causal effect of Leukocyte telomere length on CKD.

Each data point (black dot) represents a single-nucleotide polymorphism selected as instrumental variable. Vertical and horizontal lines centred at each data point represent 95% confidence intervals for each association. The slope of the (bold) line is the instrumental variable regression estimate of the effect of leukocyte telomere length on CKD risk. **CKD** chronic kidney disease, **LTL** leukocyte telomere length.
Table 2. Mendelian randomization for leukocyte telomere length on CKD

	N SNPs	*OR (95% CI)	P	P_{het}
Inverse variance weighted	16	1.51 (1.12-2.12)	0.007	0.547
Weighted Median	16	1.52 (1.03-2.24)	0.035	
MR-Egger	16	1.38 (0.82-2.35)	0.220	0.481
Intercept*		0.010 (0.028)	0.715	

*Odds ratio per 1-SD shortening in Leukocyte telomere length. *Intercept is presented as β coefficients with SEs. Model adjusted for age and sex. P_{het} represent Cochran’s Q P-value after meta-analysis. N SNPs number of SNPs, OR odds ratio; and P_{het}, Cochrane’s Q stats P-value.
Figure 2. Radial plot to visualize individual outlier SNPs in the MR estimates for CKD

Black dots show valid SNPs and green dots (If any) display invalid outlier SNPs. (-----) represents ratio estimates of each SNPs. IVW inverse variance weighted.
