Synthesis of Magnetic Iron Oxide Nanoparticle from Logas Natural Sand and Its Application for the Catalytic Degradation of Methylene Blue

Rebi Septiawan 1, Erwin Amiruddin 2, Amir Awaluddin 3, Heri Hadianto 1, and Nindi Davini 1

1Magetic Laboratory, Physics Department Faculty of Mathematics and Natural Sciences Riau University, Indonesia 28293.
2Physics Department Faculty of Mathematics and Natural Sciences Riau University,
3Department of Chemistry Faculty of Mathematics and Natural Sciences Riau University

septiawan_rebi16@yahoo.com

Abstract. Structural properties, morphology, and the catalytic activity of hematite (α-Fe2O3) nanoparticles for degradation of methylene blue have been studied. For this purpose, the hematite particles were synthesised from Logas natural sand by 2 steps ball milling method. X-ray diffraction (XRD) confirmed the presence of a hematite (α-Fe2O3) phase. However, other phases such as SiO2 and FeTiO3 are also confirmed by XRD. Scanning electron microscopy (SEM) showed a wide distribution of particle sizes. Moreover, the shape of the grains is irregular form. The effect of reaction time and hematite nanoparticles dosage which affect the efficiency of catalytic reaction was investigated. Catalytic activity of hematite nanoparticles in the degradation of methylene blue (MB) was studied through ultraviolet visible spectroscopy (UV-Vis).

1. Introduction
Magnetic iron oxide particles such as hematite (α-Fe2O3), maghemite (γ-Fe2O3) and magnetite (Fe3O4) with controllable size and structure have attracted wide attention during the past few decades due to their catalytic and magnetic properties [1]. Among these oxides, hematite nanoparticles have broad applications including catalytic purposes [2], magnetic data storage [3], magnetic sensor [4], inks for photocopy machines [5], magnetic resonance imaging [6], and drug delivery target [7]. Magnetic iron oxide nanoparticles can be obtained by a variety of methods, including hydrothermal reaction [8], microwave [9], sol–gel method [10], micro emulsion method [11], forced hydrolysis [12], and physical methods [13,14]. In physical methods, one of well-known methods is ball milling [14-16]. The main advantage of this method is simple, efficient, high yield and low cost compared to other methods. Previous researchers [17,18] have used ball milling method to produce magnetic iron oxide nanoparticles. Controlling the particle size and morphology of as synthesized particles is very important, since their properties depend on the morphology and particle size [19]. Nowadays, researchers have focused on the investigation of the factors influencing the particle shape and size of the synthesized magnetic iron oxide nanoparticles. For example, previous researchers [20, 21] found that magnetic properties, phase and morphology of the obtained particles are depended on time, speed and types of milled balls.

Methylene blue is one of the dyes used in dyeing and painting textiles [22] and the release of this dye into the body of water or rivers can generate carcinogenic effects that may be harmful against human health and environment [23,24]. Therefore, removing the dyes from wastewater without
secondary pollution is very important for the safety environment. However, removal dyes from wastewater is very difficult process, since its chemical structure is stable and hard-degradation [23]. Various techniques have been developed to improve the efficiency to remove methylene blue from waste water, including adsorption [26], coagulation [27], and others [28]. However, advanced oxidation processes are promising technologies which aim at the decolourization and mineralization of a wide range of dyes and transform dyes into biodegradable or harmless products [29]. It is well known that advanced oxidation processes (AOPs) [30] has become a powerful oxidation technology that results the decomposition of methylene blue as organic contaminants in wastewater [31]. Therefore, Methylene blue is well known anionic dye which is popularly used as representative of contaminated wastewater in several experimental work [32, 33]. The objective of this study is to use magnetic iron oxide particles doped with cobalt ions prepared using ball milling method as a catalyst for decolourization of Methylene Blue.

2. Experimental procedure
The starting material was natural sand from Logas, Kuansing District Riau Province. In the first stage, the natural sand was dried prior to be processed by iron sand separator. The product of iron sand separator called ISS-1. In the second stage, the ISS-1 was mechanically milled for 60 h and 120 h. Hematite nanoparticles of 120 h of ball milling process were selected for further investigation. The structural and morphological properties of the hematite nanoparticles have been studied by X-Ray Diffractometer (XRD) and scanning electron microscope (SEM) respectively.

3. Catalytic degradation of Methylene blue
The catalytic performance of samples was studied based on degradation of methylene blue in an aqueous solution. 15 mL aqueous solution of methylene blue with a concentration of 25 was placed into the reaction glass, and hematite nanoparticles powder as much as 0.15 mg/L was added. The concentration of oxidizing agent (H₂O₂) was 15 ml. The aqueous solutions of methylene blue were mechanically stirred for 2 hours to establish the equilibrium. At every 2 hours time intervals, 1 mL of solution was removed and then analysed using the UV-Vis spectrophotometer. The degradation rate of MB was calculated using C_0/C_t where, C_0 and C_t are the initial and at given time concentration of methylene blue respectively.

4. Results and Discussion
Figure 1 shows the powder XRD patterns of magnetic iron oxide particles synthesized from Logas natural sand in Kuansing District Riau Province using ball milling for 60 hours and two step ball milling for (60+60) hours. The as synthesised iron oxide particles for both times are highly crystalline with diffraction peaks corresponding hematite (α-Fe₂O₃) phase. The XRD pattern for magnetic oxide particles synthesized for 60 hours revealed eight intense peaks in the whole spectrum of 2θ values ranging from 10° to 90°. The diffraction peaks are clearly shown at 20 values of 23.993°, 32.761°, 35,372°, 40,465°, 48,956°, 53,385°, 61,822° and 63, 469°. Which are well corresponding to the (102), (104), (110), (113), (024), (116), (018), and (214) planes of hematite (α-Fe₂O₃). It also can be seen from Fig. 2 that some other diffraction peaks from other crystalline forms such as silicon (Si) and ilminate phase (FeTiO₃) were detected, which demonstrates that these magnetic iron oxide particles (α-Fe₂O₃) samples are not purely hematite as confirmed by X-Ray Fluorescence Spectroscopy (XRF) results [21]. The intensity of (1 0 4) reflection is stronger for magnetic iron oxide synthesized for 60 hours than that of 2 step ball milling. This indicates the product grown along (1 0 4) direction. Average crystallite size is calculated using Scherrer’s formula $D = k \lambda / \beta \cos \theta$, where D is the crystalline size, k is the Scherrer’s constant (k = 0.9), λ is the wavelength of the X-ray used, β is the (FWHM) intensity and θ is the diffraction angle of the peak. Average crystallite size is determined for flections (104) for first step ball milling (60 hours) and second step ball milling (60+60) hours are 44.9 nm and 39.2 nm respectively. The average crystallite size decreases with increase in milling time.
A comparison of SEM images shows a reduced particle size in the ball-milled magnetic iron oxide particles as milling time increases from 60 to 120 hours are shown in Figure 2. It can be clearly observed from low-resolution SEM images (1000x magnifications) that the 60 hours and 120 hours of the synthesized hematite nanoparticles show an irregular morphology. In the case of 60 hours milling time, particles size decreases after 120 h of ball milling with irregular sizes and shapes. As ball milling time increases the size of the particles becomes smaller compared to those for 60 hours milled time.

Figure 2. Scanning electron microscope (SEM) images for magnetic iron oxide particles (a) milled for 60 hours and (b) 120 hours milling time
Figure 3a shows the effect reaction time on methylene blue degradation for H$_2$O$_2$, α-Fe$_2$O$_3$ and H$_2$O$_2$+ α-Fe$_2$O$_3$ while the remaining parameters such as pH, concentration of solution and magnetic iron oxide amount were kept constant. From Figure 3(a), it can be seen that when only H$_2$O$_2$ was added into the solution, then methylene blue was nearly not degraded. Moreover, the degradation of methylene blue could not be observed when magnetic iron oxide particles were added into the solution. However, as mentioned in Fig. 3, the degradation efficiency of methylene blue was very high when H$_2$O$_2$ combined with hematite nanoparticles (H$_2$O$_2$+ α-Fe$_2$O$_3$). Higher degradation efficiency of methylene blue is due to the combination effect (H$_2$O$_2$+ α-Fe$_2$O$_3$). This result is agree well with other researcher [34]. Within 14 hours, the methylene blue was removed about 84.89 % and 88.90 % for 0.1 g and 0.15 g hematite nanoparticles respectively. This was due to the efficient peroxidise activity of α-Fe$_2$O$_3$ particles. This result clearly showed that there is a strong combination effect between the H$_2$O$_2$ and α-Fe$_2$O$_3$ hematite nanoparticles on degradation efficiency of methylene blue. The removal of methylene blue from the solution for 14 hours reaction time was about 88.90%. The corresponding plot of methylene blue removal as function of reaction time in the presence of hematite (α-Fe$_2$O$_3$) nanoparticles is shown in Figure 3(b). Accordingly, the degradation efficiency of MB was found to be much larger for catalyst mass of 0.1 and 0.15 g compared to that of 0.05 g. The degradation efficiency or MB removal is not change after 8 hours for mass of hematite nanoparticles of 0.10 and 0.15g. Figure 3c shows the effect of the amount hematite (α-Fe$_2$O$_3$) nanoparticles on the degradation efficiency of methylene blue. In this experiment, the amount of H$_2$O$_2$ was chosen to be 15 ml. Variation of amount of hematite nanoparticles is to obtain the information about how much magnetic iron oxide particles is needed in order to remove methylene blue from aqueous solution. It can be seen from Fig.3c that the degradation efficiency of methylene blue increases as the amount of magnetic iron oxide increases from 0.05 mg to 0.10 mg for degradation time of 14 hours. Increasing the amount of magnetic iron oxide particles to 0.15 g, the trend of degradation efficiency seems to be independent of the amount of magnetic iron oxide particles.

![Figure 3](image_url)

Figure 3. (a) Trend of degradation of methylene blue in presence of H$_2$O$_2$, α-Fe$_2$O$_3$ and H$_2$O$_2$+ α-Fe$_2$O$_3$, (b) influence of amount of hematite nanoparticles on the MB removal and (c) Effect of reaction time on methylene blue removal as a function of hematite nanoparticle amount.
The optimum weight of magnetic iron oxide particles in the removal of methylene blue is shown in Fig. 3c. The weight of the magnetic iron oxide particles that used were 0.05, 0.10, and 0.15mg. Magnetic iron oxide particles were tested for optimum weight in a reaction time of 14 hours. It was found that trend of degradation depends on the amount of magnetic iron oxide particles and rising of the catalyst loading to 0.10 g/L improves the degradation very significantly, while afterward the trend of methylene removal shows to be independent of the magnetic iron oxide particles mass.

5. Conclusion
From the above studies, it may be concluded that the hematite nanoparticle size can be modified by ball milling method as confirmed by SEM. The XRD patterns demonstrate that the product of ball milling is not purely hematite, however, there are other diffraction peaks from other crystalline forms such as silicon (Si) and titanium (Ti). Therefore, further experiments are needed to obtain particles in nanometer size and purely hematite phase. The ball milled hematite nanoparticles for 120 hours showed high catalytic activity in methylene blue removal. The methylene blue removal percentage arrived at above 88% for reaction time of 14 hours. The results showed that hematite nanoparticles dosage affects the degradation efficiency of methylene blue.

References
[1] Chen D H, Chen D R, Jiao X L and Zhao Y T 2003 J. Mater. Chem 13 2266–2270
[2] Casbeer E, Sharma V K, and Li X-Z 2012 Synthesis and photocatalytic activity of ferrites under visible light: a review Separation and Purification Technology 87 1–14
[3] Khedr M H, Halim K S A and Soliman N K 2009 Synthesis and photo catalytic activity of nano-sized iron oxides J. Mater. Lett 63 598–601
[4] Black C T, Murray C B, Sandstrom R L and Sun S 2000 Science 290 1131
[5] Ataeefard M, Ghasemi E and Ebadi M 2014 Effect of micro and nanomagnetite on printing toner properties, The Scientific World Journal 2014 Article ID706367
[6] Zhang S, Qi, Y Y, Yang H, Gong M F, Zhang D and Zou L G 2013 Optimization of the Composition of Bimetallic Core/Shell Fe2O3/Au Nanoparticles for MRI/CT Dual-Mode Imaging Journal of Nanoparticle Research 15 2023
[7] Mahmoudi M, Sant S, Wang B, Laurent S and Sen T 2011 Advanced Drug Delivery Reviews 63 24
[8] Chen F, Gao Q, Hong G and Ni J 2008 Synthesis and characterization of magnetite dodecahedron nanostructure by hydrothermal method Journal Magnetism and magnetic Material 320 1775–1780
[9] Tang Y Z and Zhang W M 1998 Chem. Res. Appl 10 419
[10] Itoh H and Sugimoto T J 2003 Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles J. Colloid Interface Sci 265 283–295
[11] Woo K and Lee H J 2004 Journal Magnetism and magnetic Material 272–276
[12] Jiang J S, Yang X L, Chen L W and Zhou N F 1988 Appl. Phys. A 45 245
[13] Arbain R, Othman M and Palaniandy S 2011 Minerals Engineering 24 1
[14] Amiruddin E and Prayitno A 2019 The synthesis of magnetic nanoparticles from natural iron sand of Kata beach Pariaman West Sumatera using ball milling method as environmental material MATEC Web of Conferences 276 06014
[15] Erwin A, Salomo S, Adhy P, Utari N, Ayu W, Wita Y and Nani S 2020 Magnetic iron oxide particles (Fe3O4) fabricated by ball milling for improving the environmental quality IOP Conf. Series: Materials Science and Engineering 845(2020) 012051
[16] Randrianantoandro N,Mercier A M, Hervieu M and Grenache J M 2001 Mater. Lett 47 2001 150
[17] Jiang J S, Gao L, Yang L S, Guo J K 2000 Acta Phys. Chim. Sinica 16 312
[18] Razavi-Tousi S and Szpunar J 2015 Effect of ball size on steady state of aluminium powder and efficiency of impacts during milling. Powder Technology 284 149–158
[19] Diamandescu L, Tarabasau D M, Pogrion N P, Totovina A and Bibicu I 1999 Ceram. Int 25
[20] Lee J S, Lee C S, Oh S T and Kim J G 2001 Phase evolution of Fe2O3 nanoparticle during high energy ball milling Scr. Mater 44 2023
[21] Amiruddin E, Awaluddin A, Sihombing M, Royka A and Syahrul T Morphology and structural properties of undoped and cobalt doped magnetic iron oxide particles for improving the environmental quality International Journal of Engineering and Advanced Technology (IJEAT) 9(6)
[21] Yang L, Zhang Y, Liu X, Jiang X, Zhang Z, Zhang T and Zhang T 2014 Chem. Eng. J. 246 88–96
[22] Ozcan A S and Ozcan A 2004 Adsorption of acid dyes from aqueous solutions onto acid activated bentonite. J. Colloid Interf. Sci 276 39–46
[23] Mohan D, Singh K P, Singh G and Kumar K 2002 Removal of dyes from waste water using fly ash, alow cost adsorbant. Ind. Eng.Chem. Res 41 3688–3695
[24] Ghanbari F and Moradi M 2017 Chem. Eng. J 310 41–62
[25] Debajyoti M, Giridhar M, Radhakrishnan S, Satish P 2008 Adsorption of Sulfonated Dyes by Polyamiline Emeraldine Salt and Its Kinetics J. Phys. Chem. B 112 10153-10157
[26] Shi B Y, Li G H, Wang D S, Feng C H, Tang H X 2007 Removal of Direct Dyes by Coagulation: The Performance of Preformed Polymeric Aluminum Species J. Hazard. Mater 143 567-574
[27] Xu Y Y, Zhou M, Geng H J, Hao J J, Ou Q Q, Qi S D, Chen H L, Chen X G 2012 A Simplified Method for Synthesis of Fe3O4@PAA Nanoparticles and Its Application for the Removal of Basic Dyes Appl. Surf. Sci 258 3897-3902
[28] Andreozzi, Caprio V, Insola A and Marotta R 1999 Advanced oxidation processes (AOP) for water purification and recovery Catal. Today 53 51–59
[29] Yang Y, Pignatello J J, Ma J and Mitch W A 2014 Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs) Environ. Sci. Technol 48 2344-2351
[30] Pouran S R, Abdul Aziz A R, Daud W M A and Embong Z 2015 Niobium substituted magnetite as a strong heterogeneous Fenton catalyst for wastewater treatment, Appl. Surf. Sci 351 175-187
[31] Gupta V K, Gupta B, Rastogi A, Agarwal S and Nayak A 2001 J. Hazard. Mater 186 891
[32] Liu W, Hu Q, Mo F, Hu J, Feng Y, Tang H, Ye H and Miao S 2014 J. Molec. Cataly A: Chemical 395 322
[33] Jiang J, Zou J, Zhu L, Huang L, Jiang H and Zhang Y 2011 Degradation of Methylene Blue with H2O2Activated by Peroxidase-Like Fe3O4Magnetic Nanoparticles, Journal of Nano science and Nanotechnology 11 4793–4799