Efficient and Near-Optimal Algorithms for Sampling Small Connected Subgraphs

Marco Bressan
Dipartimento di Informatica
Università degli Studi di Milano
marco.bressan@unimi.it
October 29, 2021

Abstract
We study the following problem: given an integer $k \geq 3$ and a simple graph G, sample a connected induced k-node subgraph of G uniformly at random. This is a fundamental graph mining primitive with applications in social network analysis, bioinformatics, and more. Surprisingly, no efficient algorithm is known for uniform sampling; the only somewhat efficient algorithms available yield samples that are only approximately uniform, with running times that are unclear or suboptimal. In this work we provide: (i) a near-optimal mixing time bound for a well-known random walk technique, (ii) the first efficient algorithm for truly uniform graphlet sampling, and (iii) the first sublinear-time algorithm for ε-uniform graphlet sampling.

1 Introduction
A k-graphlet of a graph G is a connected and induced k-vertex subgraph of G. Starting with triangles and wedges, and the discovery of triadic closure in social graphs [18], graphlets have become a central subject of study in social network analysis, clustering [27, 36] and graph neural networks [32]. The underlying idea is that, in many cases, the distribution of k-graphlets (the relative number of cliques, stars, paths, and so on) holds fundamental information about the nature of a complex network [30]. Understandably, these findings have sparked research on several basic graphlet mining problems such as finding, counting, listing, and sampling graphlets.

In this work we consider the two following problems. The uniform graphlet sampling problem asks, given G and k, to return a k-graphlet uniformly at random from the set V_k of all k-graphlets of G. The ε-uniform graphlet sampling problem asks, given G, k and $\varepsilon > 0$, to return a k-graphlet from any distribution whose total variation distance from the uniform distribution over V_k is at most ε. Clearly, an efficient algorithm for one of these problems yields an efficient algorithm for estimating the k-graphlet distribution. For this reason uniform and ε-uniform graphlet sampling have been investigated for almost a decade, both in theory and in practice [11, 12, 13, 14, 15, 17, 23, 28, 31, 34, 40]. Unfortunately, although sampling a random k-vertex subgraph of $G = (V, E)$ uniformly at random is trivial, sampling a graphlet is considerably more challenging, due to the fact that a graphlet is connected. Let $n = |V|$ and $m = |E|$. For uniform graphlet sampling, to date no algorithm is known that runs in less than $\Theta(n + m)$ time per sample. The only somewhat efficient algorithms known

\footnote{A short version of these results appeared in the Proceedings of ACM STOC 2021 [10].}
are for ε-uniform graphlet sampling, and they can be divided into direct sampling algorithms (that do not have a preprocessing phase) and two-phase sampling algorithms (which have a preprocessing phase and a sampling phase). We now discuss those algorithms briefly. Here and in what follows we assume that $n + m \gg k$, so that a running time of $2^{O(k)}(n + m)$ or $k^{O(k)}(n + m)$ is better than a running time of $O((n + m)^2)$. This reflects the fact that, today, real-world graphs can easily have billions of edges, but k rarely exceeds 5 or 10.

For direct sampling algorithms, the state of the art is the so-called k-graphlet walk. To begin, consider the graph $G_k = (V_k, E_k)$ whose vertices are the k-graphlets of G, and where there is an edge between two graphlets if their intersection is a $(k-1)$-graphlet. The k-graphlet walk is the lazy random walk over G_k. It is not hard to show that, if G is connected, this walk is ergodic and so converges to a stationary distribution. Thus, to obtain ε-uniform graphlets, one can run the walk until it comes ε-close to its stationary distribution, and then use rejection sampling. This technique is extensively used thanks to its simplicity and elegance \[1, 6, 17, 23, 28, 34, 40\]; the drawback is that its running time depends on $t_\varepsilon(G_k)$, the ε-mixing time of the walk, which can range anywhere from $\Theta(1)$ to $\Theta(n^{k-1})$ \[12, 13\]. Indeed, the analysis of $t_\varepsilon(G_k)$ is nontrivial, and between the best lower and upper bounds there is still a multiplicative gap of $\Delta^{k-1} \left[1\right]$.

For two-phase algorithms, the state of the art is an extension of the color coding technique of \[3\], proposed in \[12\]. This extension allows one to sample uniformly from the graphlets of G that are made colorful by a random k-coloring of the vertices of G. The algorithm has a preprocessing phase taking time $2^{O(k)}(n + m)$ and space $2^{O(k)}n$, and expected sampling time $k^{O(k)}\Delta$, and by increasing the space to $2^{O(k)}(n + m)$, one can reduce the expected sampling time to $k^{O(k)}$. It is not hard to show that, by increasing the preprocessing time and space to $2^{O(k)}(n + m)\log \frac{1}{\varepsilon}$, one can take ε-uniform graphlet samples in expected time $k^{O(k)}\left(\log \frac{1}{\varepsilon}\right)^2$ per sample. This algorithm however looks like an overkill for sampling, which makes one suspect that a faster algorithm is possible. We also observe that the fastest algorithm known for uniform graphlet sampling consists in running the color-coding extension above from scratch for every sample, using $2^{O(k)}(n + m)$ time per sample.

In conclusion, (i) we do not have tight bounds for the k-graphlet walk, (ii) we do not have an efficient algorithm for uniform graphlet sampling, and (iii) we do not know if the existing algorithms for ε-uniform graphlet sampling are optimal. The goal of our work is to reduce this gap.

2 Results

We give three contributions. First, we settle the mixing time of the k-graphlet walk up to multiplicative $k^{O(k)} \log^2 n$ factors. Second, we present the first efficient algorithm for uniform graphlet sampling, with a preprocessing linear in $n + m$ and an expected sampling time $k^{O(k)} \log \Delta$. Third, we give the first ε-uniform graphlet sampling algorithm with sampling time independent of G, and preprocessing time $O(n \log n)$, which is sublinear in m as long as $m = \omega(n \log n)$. The rest of this section overviews these results; later sections give the proofs.

2.1 Near-optimal mixing time bounds for the k-graphlet walk

Recall the graph G_k defined above, and let $t_\varepsilon(G_k)$ denote its ε-mixing time (see Section 4 for a formal definition); similarly, let $t_\varepsilon(G)$ be the ε-mixing time of G. Moreover, let $t = t_\frac{\varepsilon}{\Delta}$: it is well-known that $t_\varepsilon = O(t \cdot \log \frac{1}{\varepsilon})$, hence bounds on t yield bounds on t_ε for all $0 < \varepsilon \leq \frac{1}{\Delta}$. Finally, let $\rho(G) = \frac{\Delta}{\omega}$ be the ratio between the largest and the smallest degree of G. We prove:

Theorem 1. For all graphs G and all $k \geq 2$,

$$t(G_k) \leq t(G) \cdot k^{O(k)} \rho(G)^{k-1} \log n$$

(1)
Moreover, for any function \(\rho(n) \in \Omega(1) \cap O(n) \) there exists a family of arbitrarily large graphs \(G \) on \(n \) vertices that satisfy \(\rho(G) = \Theta(\rho(n)) \) and
\[
t(G_k) \geq t(G) \cdot k^{-O(k)} \rho(G)^{k-1} / \log n
\] (2)

Essentially, Theorem 1 says that the lazy walk on \(G_k \) behaves like the lazy walk on \(G \) slowed down by a factor \(\rho(G)^{k-1} \). This should be compared with the upper and lower bound of \([1]\), which are respectively \(t(G) \tilde{O}(\rho(G)^2(k-1)) \) and \(t(G) \Omega(\rho(G)^{k-1} \epsilon^{-1}) \). Ignoring \(k^{O(k)} \) poly log \(n \) factors, we improve those bounds by \(\rho(G)^{k-1} \) and \(\epsilon \) respectively.

From Theorem 1 we obtain the best bounds known for \(\varepsilon \)-uniform graphlet sampling based on random walks:

Theorem 2. There exists a random-walk based algorithm that, for all \(G \), all \(k \geq 2 \), and all \(\varepsilon > 0 \), returns an \(\varepsilon \)-uniform \(k \)-graphlet from \(G \) in expected time \(k^{O(k)} t(G) \rho(G)^{k-2} \log \frac{1}{\varepsilon} \).

Note that, although \(t(G_k) \) grows with \(\rho(G)^{k-1} \), the bound above grows with \(\rho(G)^{k-2} \). The reason is that, as noted in \([28, 40]\), sampling \(k \)-graphlets is equivalent to sampling the edges of \(G_{k-1} \). So, we can run the walk over \(G_{k-1} \) rather than over \(G_k \), which yields a mixing time proportional to \(\rho(G)^{k-2} \) rather than \(\rho(G)^{k-1} \). As a sanity check, when \(k = 2 \) our algorithm matches the natural bound \(O(t(G)) \) achieved by the simple random walk over \(G \).

Regarding the techniques, our proofs are very different from those of \([1]\). There, the authors showed a mapping between the cuts of \(G_k \) and those of \(G \); this allowed them to bound the conductance of \(G_k \) by a function of the conductance of \(G \), and then bound \(t(G_k) \) via Cheeger’s inequality. However, since Cheeger’s inequality can be loose by a quadratic factor, their upper bound on \(t(G_k) \) grows with \(\rho(G)^{2(k-1)} \) instead of \(\rho(G)^{k-1} \), see above. To avoid this, here we establish a connection between the relaxation times of \(G_i \) and \(G_{i+1} \), for all \(i = 1, \ldots, k-1 \), and thus between \(G_1 = G \) and \(G_k \). To this end we prove a technical result on the relaxation time of the lazy walk on the line graph of \(G \) (the graph encoding the adjacencies between the edges of \(G \)):

Lemma 1. Any graph \(G \) satisfies \(\tau(L(G)) \leq 20 \rho(G) \tau(G) \), where \(L(G) \) is the line graph of \(G \) and \(\tau(\cdot) \) denotes the relaxation time of the lazy random walk.

2.2 Uniform graphlet sampling

We describe the first efficient algorithm for uniform graphlet sampling:

Theorem 3. There exists a two-phase graphlet sampling algorithm, UGS (Uniform Graphlet Sampler), with the following guarantees:

1. the preprocessing phase runs in time \(O(nk^2 \log k + m) \) and space \(O(n) \)
2. the sampling phase returns \(k \)-graphlets independently and uniformly at random in \(k^{O(k)} \log \Delta \) expected time per sample.

The technique behind UGS is radically different from random walks and color coding. The key idea is to “regularize” \(G \), that is, to sort \(G \) so that each vertex \(v \) has maximum degree in the subgraph \(G(v) \) induced by \(v \) and all vertices after it (this can be done by just repeatedly removing the maximum-degree vertex from \(G \)). As we show, this makes each \(G(v) \) behave like a regular graph, which makes it efficient to perform rejection sampling of randomly grown spanning trees. It is worth noting that several attempts have been made to sample graphlets uniformly by growing random subsets and applying rejection sampling, see for instance \([24, 31]\). All those algorithms, however, have one crucial limitation: in the worst case, the rejection probability approaches \(1 - \Delta^{-k+1} \), in which case roughly \(\Delta^{k-1} \) rejection trials are needed to draw a single graphlet. It is somewhat surprising that the fact that just sorting \(G \) solves the problem has gone unnoticed until now.

UGS can also be used as a graphlet counting algorithm:
Theorem 4. Choose any $\varepsilon_0, \varepsilon_1, \delta \in (0, 1)$. There exists an algorithm that runs in time

$$O(m + k^{O(k)} \left(\frac{n}{\varepsilon_0^6} \log \frac{n}{\delta} + \frac{1}{\varepsilon_1^2} \log \frac{1}{\delta} \right) \log \Delta)$$

and, with probability $1 - \delta$, returns for every distinct (up to isomorphism) connected k-vertex graph H an additive $(\varepsilon_0 N_H + \varepsilon_1 N_k)$-approximation of N_H, where N_H is the number of graphlets of G isomorphic to H, and $N_k = |V_k|$ is the total number of k-graphlets in G.

2.3 Epsilon-uniform graphlet sampling

We present:

Theorem 5. There exists a two-phase graphlet sampling algorithm, APX-UGS, that for all $\varepsilon > 0$ has the following guarantees:

1. the preprocessing phase takes time $O \left(\left(\frac{1}{\varepsilon} \right)^{2\log \frac{n}{\varepsilon}} k^6 n \log n \right)$ and space $O(n)$

2. with high probability over the preprocessing phase, the sampling phase returns k-graphlets independently and ε-uniformly at random in $k^{O(k)} \left(\frac{1}{\varepsilon} \right)^{3+\log \frac{n}{\varepsilon}} \log \frac{1}{\varepsilon}$ expected time per sample.

The remarkable fact about APX-UGS is that its preprocessing time grows as $n \log n$, and is therefore independent of the edge set of G. This should be contrasted with the color-coding algorithm, whose preprocessing time grows as $n + m$. Moreover, our preprocessing time is polynomial in both $\frac{1}{\varepsilon}$ and k, while that of color coding is exponential in k. For what concerns the expected sampling time, like the one of color coding ours is independent of G, but it pays an extra poly $\frac{1}{\varepsilon}$ factor. However, we did not make hard attempts to optimize those factors, and they might be improved.

While UGS is rather simple, APX-UGS is considerably more involved. The high-level idea is, unsurprisingly, to “approximate” UGS in both phases. However, this turns out to be a delicate issue, which requires a careful combination of graph sketching, cut size estimation, and coupling arguments. The reason is that UGS relies crucially on a particular topological order of G, whose exact computation takes time $\Omega(m)$, and which is not clear how to approximate in time $o(m)$. In fact, it is not even clear what definition of “approximate order” is the right one for our purposes; in the end, the definition we use turns out to be nontrivial.

To conclude, we observe that APX-UGS is nearly optimal in our graph access model:

Theorem 6. For any $k \geq 2$ and any $\varepsilon \in [0, 1]$, any ε-uniform k-graphlet sampling algorithm has worst-case expected running time $\Omega(n/k)$ in the graph access model of [23].

Proof. Let G contain a k-path plus $n - k$ isolated vertices. In the worst case any algorithm must examine $\Omega(n/k)$ vertices in expectation before finding the only k-graphlet of G. \qed

The table below summarizes our upper bounds and the state of the art.

3 Related work

The k-graphlet walk algorithm was introduced by [10] without formal running time bounds. The first bounds on $t_\varepsilon(G_k)$ were given by [12], while the first bounds tying $t_\varepsilon(G_k)$ to $t_\varepsilon(G)$ were given by [11]. Recently, [28] developed a graphlet sampling random walk with running time $k^{O(k)} (\Delta \log \frac{n}{\varepsilon})^{k-3}$. Their approach is similar to ours as they build the k-graphlet walk recursively from the $(k - 1)$-graphlet walk. However, they assume one can sample edges uniformly at random from G in time $O(1)$, which requires a $O(n)$-time preprocessing, or an additional factor of $t_\varepsilon(G)$ to sample edges via random walks. Moreover, their running bound grows like Δ^k, while ours grows as $(\frac{\Delta}{\varepsilon})^k$.

4
We denote by V the worst-case, the rejection probability must be as large as $O(\log \Delta)$, a preprocessing time of $O(n + m)$ log $\frac{1}{\varepsilon}$, and an expected sampling time of $k^{O(1)} (\log \frac{1}{\varepsilon})^2$. See Appendix C for a complete proof. As said, one can also obtain uniform samples by running the entire algorithm from scratch, in $2^{O(k)}O(n + m)$ time per sample.

Rejection sampling is at the heart of several graphlet sampling algorithms, such as path sampling, and lifting. These algorithms start by drawing a random vertex from G and, then, repeatedly selecting random edges in the cut. This technique alone seems destined to fail: in the worst case, the rejection probability must be as large as $1 - \Delta^{-k+1}$, resulting in a vacuous $O(\Delta^{-k+1})$ running time bound. The main idea behind our algorithms is to make such a rejection sampling efficient by sorting G so to virtually “bucket” the graphlets, so that within every single bucket the sampling probabilities are roughly balanced.

There is also intense work on sampling and counting copies of a specific pattern H in sublinear time, including edges, triangles, cliques, and other patterns. However, “sublinear” there is meant in the maximum possible number of copies of H, which can be as large as $\Theta(m^2)$. It is also unclear how those techniques can be applied to uniform graphlet sampling.

4 Preliminaries and notation

Given $G = (V, E)$, we assume $V = \{1, \ldots, n\}$. We denote the degree of $v \in V$ by d_v. We assume the graph access model of [25], where these queries take constant time:

- neighbor query: given $v \in V$ and $i \in \mathbb{N}$, return the i-th neighbor of v in G, or -1 if $d_v < i$
- pair query: given $u, v \in V$, tell if $\{u, v\} \in E$.
- degree query: given $v \in V$, return d_v

For any $U \subseteq V$ and $U' \subseteq V \setminus U$, the cut between U and U' is $\text{Cut}(U, U') = E \cap (U \times U')$. The line graph $L(G) = (V', E')$ of a graph $G = (V, E)$ is defined by $V' = v_e : e \in E$, and $\{v_e, v_{e'}\} \in E'$ if and only if $[e \cap e'] = 1$. For $u, v \in V(G)$, we write $u \sim v$ for $\{u, v\} \in E(G)$.

A k-graphlet $g = (V(g), E(g))$ is a k-vertex subgraph of G that is connected and induced. With a slight abuse of notation, we may use g in place of $V(g)$, and $g \cap g'$ in place of $G[V(g) \cap V(g')]$. We denote by V_k the set of all k-graphlets of G. The k-graphlet graph of G is $G_k = (V_k, E_k)$, where $\{g, g'\} \in E_k$ if and only if $g \cap g' \in V_{k-1}$. We note that some works define g and g' to be adjacent if $|V(g) \cap V(g')| = k - 1$, but our proofs do not work in that case (and so the mixing time of those walks may not respect our bounds).
In this paper, “X holds with high probability for Y = Θ(Z)” means that for any fixed $a > 0$ we can make $P[X > 1 - n^{-a}]$ by choosing $Y \in \Theta(Z)$ sufficiently large. Similarly, “X has probability poly(x)” means that for any fixed $a > 0$ we can make $P[X < x^a]$ by adjusting the constants in our algorithms.

5 Near-optimal mixing time bounds for the k-graphlet walk

In this section we prove the results of Section 2.1. Towards this end, we need to recall some additional preliminary results on Markov Chains, random walks, and mixing.

5.1 Preliminaries

We denote by $X = \{X_t\}_{t \geq 0}$ a generic Markov chain over a finite state space \mathcal{V}. We denote by P the transition matrix of the chain, and π_t the distribution of X_t. We always assume that the chain is ergodic, and denote by $\pi = \lim_{t \to \infty} \pi_t$ its unique limit distribution. We also let $\pi^* = \min_{x \in \mathcal{V}} \pi(x)$ be the smallest stationary probability of any state. The ε-mixing time of X is $t_\varepsilon(X) = \min \{t_0 : \forall X_0 \in \mathcal{X} : \forall t \geq t_0 : \text{tvd}(\pi_t, \pi) \leq \varepsilon\}$. When we write $t(X)$, we mean $t_\varepsilon(X)$. Here $\text{tvd}(\sigma, \pi) = \max_{A \subseteq \mathcal{V}} (\sigma(A) - \pi(A))$ is the variation distance between the distributions σ and π; if $\text{tvd}(\sigma, \pi) \leq \varepsilon$ and π is uniform, then we say σ is ε-uniform.

A graph with non-negative edge weights is denoted by $\mathcal{G} = (\mathcal{V}, E, w)$ where $w : E \to \mathbb{R}^+_\infty$. For every $u \in \mathcal{V}$ we let $w(u) = \sum_{e \in E, u \in e} w(e)$. Any such \mathcal{G} induces a lazy random walk as follows. Let P_0 be the matrix given by $P_0(u,v) = \frac{w(u,v)}{w(u)}$. Now let $P = \frac{1}{2} (P_0 + I)$ where I is the identity matrix. This can be seen as adding a loop of weight $w(u)$ at each vertex of the graph. Note that P_0 and P are both stochastic. The lazy random walk over \mathcal{G} is Markov chain with state space \mathcal{V} and transition matrix P. By standard Markov chain theory, if \mathcal{G} is connected then the lazy random walk is ergodic, and converges to the limit distribution π given by $\pi(u) = \frac{w(u)}{\sum_{v \in \mathcal{V}} w(u)}$. It is well-known that the chain is time-reversible with respect to π, that is, $\pi(x)P(x,y) = \pi(y)P(y,x)$ for all $x,y \in \mathcal{V}$; and that every time-reversible chain on a finite state space \mathcal{V} can be seen as a random walk over a graph $\mathcal{G} = (\mathcal{V}, E, w)$ where $w(x,y) = \pi(x)P(x,y)$. Thus, we will often write \mathcal{G} in place of X, in which case X is understood to be the lazy chain over \mathcal{G}. The quantity $Q(x,y) = \pi(x)P(x,y)$ is called transition rate between x and y.

The volume of $U \subseteq \mathcal{V}$ is $\text{vol}(U) = \sum_{u \in U} w(u)$. The cut of $U \subseteq \mathcal{V}$ is $\text{Cut}(U) = \{e \in E : u \in U, u' \in \mathcal{V} \setminus U\}$, and its weight is $c(U) = \sum_{e \in \text{Cut}(U)} w(e)$. The conductance of $U \subseteq \mathcal{V}$ is $\Phi(U) = c(U) / \text{vol}(U)$. The conductance of \mathcal{G} is $\Phi(\mathcal{G}) = \min \{\Phi(U) : U \subseteq \mathcal{V}, \text{vol}(U) \leq \frac{1}{2} \text{vol}(\mathcal{V})\}$.

5.1.1 Spectral gaps and relaxation times

Definition 1. Let P be the transition matrix of X, and let $\lambda_* = \max \{|\lambda| : \lambda \text{ is an eigenvalue of } P, \lambda \neq 1\}$. The spectral gap of X is $\gamma = 1 - \lambda_*$. The relaxation time of X is $\tau(X) = \frac{1}{\gamma}$.

Classic mixing time theory (see e.g. [26]) gives the following relationships:

\[
\frac{1}{4\Phi} \leq \tau(X), t_\varepsilon(X) \leq \frac{2}{\Phi^2} \log \frac{1}{\varepsilon \pi^*},
\]

\[
(\tau(X) - 1) \log \frac{1}{2\varepsilon} \leq t_\varepsilon(X) \leq \tau(X) \log \frac{1}{\varepsilon \pi^*},
\]

One can show that the last inequality implies $\tau(X) \leq c t(X)$ for some (small) constant $c \geq 1$.

6
5.1.2 Dirichlet forms

For any function \(f : V \to \mathbb{R} \) let \(\text{Var}_\pi f = \mathbb{E}_\pi (f - \mathbb{E}_\pi f)^2 \).

Definition 2 (Dirichlet form; see [20], §13.2.1). Let \(f : V \to \mathbb{R} \) be any function. Then the Dirichlet form associated to \(P, \pi, f \) is:

\[
\mathcal{E}_{P,\pi}(f) = \frac{1}{2} \sum_{x,y \in V} (f(x) - f(y))^2 Q(x,y)
\]

(6)

The Dirichlet form characterises the spectral gap as follows:

Lemma 2 (see [20], Lemma 13.12). The spectral gap satisfies:

\[
\gamma = \min_{f \in \mathbb{R}^V, \text{Var}_\pi(f) \neq 0} \frac{\mathcal{E}_{P,\pi}(f)}{\text{Var}_\pi(f)}
\]

(7)

Next, we recall some results relating the spectral gaps of different chains.

5.1.3 Direct comparison

Lemma 3 ([20], Lemma 13.18). Let \(P \) and \(\tilde{P} \) be reversible transition matrices with stationary distributions \(\pi \) and \(\tilde{\pi} \), respectively. If \(\mathcal{E}_{\tilde{P},\tilde{\pi}}(f) \leq \alpha \mathcal{E}_{P,\pi}(f) \) for all functions \(f \), then

\[
\tilde{\gamma} \leq \left(\max_{x \in V} \frac{\pi(x)}{\tilde{\pi}(x)} \right) \alpha \gamma
\]

(8)

Lemma 4 ([2], Lemma 3.29). Consider a graph \(G = (V, \mathcal{E}) \) possibly with loops. Let \(w \) and \(w' \) be two weightings of \(\mathcal{E} \) and let \(\gamma \) and \(\gamma' \) be the spectral gaps of the corresponding random walks. Then:

\[
\gamma' \geq \gamma \cdot \frac{\min_{e \in \mathcal{E}} (w(e)/w'(e))}{\max_{v \in V} (w(v)/w'(v))}
\]

(9)

5.1.4 Collapsed chains

(See [2], §2.7.3).

Definition 3. Let \(A \subset V \) and let \(A^C = V \setminus A \) (note that \(A^C \neq \emptyset \)). The collapsed chain \(X^* \) has state space \(A \cup \{a\} \) where \(a \) is a new state representing \(A^C \), and transition matrix given by:

\[
P^*(u,v) = P(u,v) \quad u,v \in A
\]

(10)

\[
P^*(u,a) = \sum_{v \in A^C} P(u,v) \quad u \in A
\]

(11)

\[
P^*(a,v) = \frac{1}{\pi(A^C)} \sum_{u \in A^C} \pi(u) P(u,v) \quad v \in A
\]

(12)

\[
P^*(a,a) = \frac{1}{\pi(A^C)} \sum_{u \in A^C} \sum_{v \in A^C} \pi(u) P(u,v)
\]

(13)

Lemma 5 ([2], Corollary 3.27). The collapsed chain \(X^* \) satisfies \(\gamma(X^*) \geq \gamma(X) \).
5.1.5 Induced chains

Definition 4 ([26], §13.4). Let $\emptyset \neq A \subseteq V$ and $\tau_A^+ = \min\{t \geq 1 : X_t \in A\}$. The induced chain on A is the chain with state space A and transition probabilities:

$$P_A(x, y) = P(X_{t_A^+} = y | X_0 = x) \quad \forall x, y \in A$$

Lemma 6 ([26], Theorem 13.20). Let $\emptyset \neq A \subseteq V$, and let γ_A be the spectral gap for the chain induced on A. Then $\gamma_A \geq \gamma$.

5.2 Proof of the upper bound of Theorem 1

This section proves the upper bound of Theorem 1. First, Since $t(G_k) \leq \tau(G_k) \ln \frac{n}{\pi^*}$ and $\pi^* \geq k^{-O(k)}n^k$, we have $t(G_k) \leq O(\tau(G_k) \log n)$. Now consider the following inequality:

$$\tau(G_k) \leq \text{poly}(k)\rho(G)\tau(G_{k-1})$$

(15)

Applying (15) to $\tau(G_k), \tau(G_{k-1}), \ldots, \tau(G_2)$, and since $G_1 = G$ and $\tau(G) = O(t(G))$, we obtain:

$$t(G_k) \leq k^{O(k)}\rho(G)^{k-1}t(G) \log n$$

(16)

which is precisely the upper bound of Theorem 1. Thus, we only need to prove (15). The main obstacle in proving that inequality is in relating the spectral gaps of two very different walks — one over G and one over G_k. We overcome this obstacle by proving the following result:

Lemma 7. $\tau(G_k) \leq \text{poly}(k)\tau(L(G_{k-1}))$.

Together with Lemma 1 applied to G_{k-1}, this result yields precisely (15). Thus, we shall prove Lemma 7 and Lemma 1 in this order.

5.2.1 Proof of Lemma 7

From $L(G_{k-1})$ we will construct a weighted graph L_N such that $\tau(L_N) \leq \tau(L(G_{k-1}))$, and then we will prove that $\tau(G_k) \leq \text{poly}(k)\tau(L_N)$. Combining these two inequalities gives the claim.

For any $g \in V(G_k)$ let $H(g) = \{x_v \in V(L(G_{k-1})) : g = u \cup v\}$. Note that $\{H(g)\}_{g \in V(G_k)}$ is a partition of $V(L)$ into equivalence classes. Now let $V(G_k) = \{g_1, \ldots, g_N\}$, and let $L_0 = L(G_{k-1})$.

For each $i = 1, \ldots, N$ we define L_i by taking L_{i-1} and identifying $H(g_i)$. Formally, we let $L_i = (V(L_i), E(L_i), w_i)$, where $V(L_i) = V(L_{i-1}) \setminus H(g_i) \cup \{a_i\}$ with a_i being a new state representing $H(g_i)$, and:

$$w_i(x, x') = w_{i-1}(x, y) \quad x \neq a_i, x' \neq a_i$$

(17)

$$w_i(x, a_i) = \sum_{x' \in a_i} w_{i-1}(x, x') \quad x \neq a_i$$

(18)

$$w_i(a_i, a_i) = \sum_{x \in a_i} \sum_{x' \in a_i} w_{i-1}(x, x')$$

(19)

Now we prove two claims from which the thesis immediately follows.

Claim 1. $\tau(G_k) \leq \text{poly}(k)\tau(L_N)$.

Proof. We show that the walk on L_N is the lazy walk on G_k up to a reweighting of the edges by multiplicative factors in $[1, \text{poly}(k)]$. By Lemma 4 this implies the thesis. In particular we show that, if G_k is taken in its lazy version (with loops accounting for half of the vertex weight), then (1) $V(L_N) = V(G_k)$, (2) $E(L_N) = E(G_k)$, (3) $1 \leq \frac{w_N}{w_{G_k}} \leq \text{poly}(k)$. We denote the generic state $a_i \in L_N$ simply as g, meaning that a_i represents $H(g)$.
(1) $V(L_N) = V(G_k)$. Let $g \in V(L_N)$. By construction, $g = u \cup v$ for some $\{u,v\} \in E(G_{k-1})$. Hence g has k vertices and is connected, so it is a k-graphlet, and $g \in V(G_k)$. Conversely, let $g \in V(G_k)$ and let T be a spanning tree of g (which must exist since g is connected by definition). Let a,b be two distinct leaves of T and let $g' = g \setminus \{a\}$ and $g'' = g \setminus \{b\}$. Then g', g'' are connected and have $k-1$ vertices, so they are in $V(G_{k-1})$. Moreover $|g' \cap g''| = k-2$, so $\{g', g''\} \in E(G_{k-1})$. Thus $\{g', g''\} \in L(G_{k-1})$ and consequently $g \in V(L_N)$. Therefore $V(L_N) = V(G_k)$.

(2) $E(L_N) = E(G_k)$. First, both L_N and the lazy version of G_k have a loop at each vertex (L_N inherits from L_0 a positive self-transition probability at each vertex). Now let $\{g', g''\} \in E(L_N)$ be a non-loop edge. By construction of L_N we have $g' = u \cup v$ and $g'' = v \cup z$, with $\{u,v\}, \{u,z\} \in E(G_{k-1})$ and $u,v,z \in V(G_{k-1})$ distinct. This implies $g' \cap g'' = u$ and so $\{g', g''\} \in E(G_k)$. It follows that $E(L_N) \subseteq E(G_k)$. Now let $\{g', g''\} \in E(G_k)$ be a non-loop edge. Let $u = g' \cap g''$; note that by hypothesis u is connected and $|u| = k-1$, so $u \in V(G_{k-1})$. Now let $\{a'\} = g' \setminus g''$ and let b' be any neighbor of a in u. Choose any spanning tree T' of u rooted at b', and let $c' \neq b'$ be any leaf of T' (such a leaf exists since $|g| \geq 3$ and thus $|u| \geq 2$). We define $v = g' \setminus \{c'\}$. Note that by construction (1) v is connected and has size $k-1$, (2) $u \cap v$ is connected and has size $k-2$, and (3) $u \cup v = g'$. Therefore $v \in V(G_{k-1})$ and $\{u,v\} \in E(G_{k-1})$. A symmetric construction using g'' and u yields z such that $z \in V(G_{k-1})$ and $\{u,z\} \in E(G_{k-1})$ and $u \cup z = g''$. Now, by construction, $\{u,z\}$ and $\{a, v\}$ give two adjacent states $x_{uv}, x_{uz} \in V(L_0)$. Thus $x_{uv} \in H(g)$ and $x_{uz} \in H(g'')$. This implies that $\{g', g''\} \in E(L_N)$. So $E(G_k) \subseteq E(L_N)$ and we conclude that $E(G_k) = E(L_N)$.

(3) $1 \leq \frac{w_N}{w_{G_k}} \leq \text{poly}(k)$. First, let us consider non-loop edges. Let $\{a, a'\} \in E(L_N)$ with $a \neq a'$, and let g,g' be the corresponding elements of G_k; note that $g \neq g'$. Observe that $w_N(a,a') = |\text{Cut}(H(g), H(g'))|$, where the cut is taken in $L_0 = L(G_{k-1})$. Clearly $|\text{Cut}(H(g), H(g'))| \geq 1$ and $w_{G_k}(g,g') = 1$, therefore $1 \leq \frac{w_N(a,a')}{w_{G_k}(g,g')}$. For the other side, note that there are at most $\binom{k}{2}$ distinct pairs of $(k-1)$-graphlets $u, v \in G_{k-1}$ such that $u \cup v = g$. Thus, $H(g) \leq \binom{k}{2}$. The same holds for g'. Therefore, $|\text{Cut}(H(g), H(g'))| \leq \binom{k}{2}^2$. It follows that $\frac{w_N(a,a')}{w_{G_k}(g,g')} \leq \binom{k}{2}^2$.

A similar argument holds for the loops. First, recall that $w_{G_k}(g) = d_g$ by the lazy weighting. Consider then any non-loop edge $\{g, g'\} \in G_k$. Note that $\{g, g'\}$ determines $u = g \cap g' \in V(G_{k-1})$ unequivocally. Moreover, there exist some $v, z \in G_{k-1}$ such that $u \cup v = g$ and $u \cup z = g'$ and that $\{x_{uv}, x_{uz}\}$ is an edge in L_0; and note that there are at most k distinct v and at most k distinct z satisfying these properties. Therefore, every $\{g, g'\}$ can be mapped to a set of between 1 to k^2 edges in L_0, such that every edge in the set is in the cut between $H(g)$ and $H(g')$. Furthermore, note that different g' are mapped to disjoint sets, since any edge $\{x_{uv}, x_{uz}\}$ identifies unequivocally $g = u \cup v$ and $g' = u \cup z$. It follows that the cut of $H(g)$ is at least d_g and at most $k^2 d_g$. Since the cut has at least one edge, and $H(g)$ has at most $\binom{k^2}{2}$ internal edges, then the total weight of $H(g)$ is between 1 and $\text{poly}(k)$ times the cut. This is also $w_N(a)$, the weight of the state a representing g in L_N. The claim follows by noting that by construction $w_N(a) \leq w_N(a,a) \leq 2w_N(a)$.

Claim 2. $\tau(L_N) \leq \tau(L(G_{k-1}))$.

Proof. The walk on L_i is the walk L_{i-1} collapsed respect to $A^C = H(g_i)$, see Definition 3. Therefore by Lemma 5 (the spectral gaps of the two walks satisfy $\gamma(L_i) \geq \gamma(L_{i-1})$, and the relaxation times satisfy $\tau(L_i) \leq \tau(L_{i-1})$. Thus $\tau(L_N) \leq \tau(L_0) = \tau(L(G_{k-1}))$.

By combining Claim 1 and Claim 2 we obtain $\tau(G_k) = \text{poly}(k) \tau(L_N) \leq \text{poly}(k) \tau(L(G_{k-1}))$, proving Lemma 5.2.1.
5.2.2 Proof of Lemma 1

To avoid notational ambiguity, we restate Lemma 1 with G in place of G:

Lemma 1. Any graph G satisfies $\tau(L(G)) \leq 20 \rho(G) \tau(G)$, where $L(G)$ is the line graph of G and $\tau(\cdot)$ denotes the relaxation time of the lazy random walk.

The reader may refer to Figure 1 below.

We build an auxiliary weighted graph S', as follows. Let S be the 1-subdivision of G (the graph obtained by replacing each $\{u, v\} \in E(G)$ with the path $\{u, x_{uv}, v\}$ where x_{uv} is a new vertex representing $\{u, v\}$. We make S lazy by adding loops and assigning the following weights:

\[
\begin{align*}
 w_S(u, u) &= d_u & u &\in V(G) \\
 w_S(u, x_{uv}) &= 1 & \{u, v\} &\in E(G) \\
 w_S(x_{uv}, x_{uv}) &= 2 & \{u, v\} &\in E(G)
\end{align*}
\]

The graph S' is the same as S but with the following weights:

\[
\begin{align*}
 w_{S'}(u, u) &= d_u^2 & u &\in V(G) \\
 w_{S'}(u, x_{uv}) &= d_u & \{u, v\} &\in E(G) \\
 w_{S'}(x_{uv}, x_{uv}) &= d_u + d_v & \{u, v\} &\in E(G)
\end{align*}
\]

The reader may refer to Figure 1 below.

Figure 1: Left: a pair of $(k - 1)$-graphlets u, v forming an edge in G_{k-1}. Middle: how $\{u, v\}$ appears in S, the 1-subdivision of G. Right: the reweighting given by S'.

Now we prove two claims which, combined, yield the thesis.

Claim 3. $\tau(S') \leq 4\rho(G)\tau(G)$.

Proof. Let Δ, δ be the maximum and minimum degrees of G. First, note that

\[
\min_{(x, y) \in E(S)} \frac{w_S(x, y)}{w_{S'}(x, y)} \geq \frac{1}{\Delta} \quad \text{and} \quad \max_{x \in V(S)} \frac{w_S(x)}{w_{S'}(x)} \leq \frac{1}{\delta}
\]

By Lemma 1 this implies that $\gamma(S') \geq \rho(G)^{-1} \gamma(S)$, or equivalently $\tau(S') \leq \rho(G) \tau(S)$. Thus, we need only to show that $\tau(S) \leq 4\tau(G)$, or equivalently, $\gamma(G) \leq 4\gamma(S)$. We do so by comparing the numerators and denominators of γ in Lemma 3 for S and G.

Consider the walk on S and let π_S be its stationary distribution. Let f_S be the choice of f that attains the minimum in (1) under $\pi = \pi_S$. We will show that there exists $f_G \in \mathbb{R}^{V(G)}$ such that:

\[
\frac{\mathbb{E}_{f_G, \pi_G}(f_G)}{\text{Var}_{\pi_G}(f_G)} \leq 4 \frac{\mathbb{E}_{f_S, \pi_S}(f_S)}{\text{Var}_{\pi_S}(f_S)}
\]

By Lemma 2 this implies our claim, since the left-hand side of (27) bounds $\gamma(S)$ from above and the right-hand side equals $4\gamma(S)$. Now, first, note that $\pi_S(u) = \frac{4}{2}\pi_G(u)$ for all $u \in V(G)$ (the weight of u is the same in G and S, but the total sum of weights in S is $\frac{3}{2}$ that of G). Similar calculations show
that for all \(\{u,v\} \in E(\mathcal{G}) \) we have \(\pi_S(x_{uv}) = \frac{1}{3d_u} \pi_G(u) \), where \(d_u \) is the degree of \(u \) in \(\mathcal{G} \). Third, observe that since \(f_S \) attains the minimum in (7) then \(f_S(x_{uv}) = \frac{f_S(u) + f_S(v)}{2} \) for all \(\{u,v\} \in E(\mathcal{G}) \). Finally, let \(f_G \) be the restriction of \(f_S \) to \(V(\mathcal{G}) \).

First, we compare the numerator of (27) for \(\mathcal{S} \) and for \(\mathcal{G} \). To begin, note that:

\[
\mathcal{E}_{P_S,\pi_S}(f_S) = \sum_{\{u,v\} \in E(\mathcal{G})} \left((f_S(u) - f_S(x_{uv}))^2 Q_S(u, x_{uv}) + (f_S(v) - f_S(x_{uv}))^2 Q_S(u, x_{uv})\right)
\]

Observe that \(Q_S(u, x_{uv}) = Q_S(v, x_{uv}) = \pi_S(u) \frac{1}{2d_u} \), and as noted above, \(f_S(x_{uv}) = \frac{f_S(u) + f_S(v)}{2} \), thus \((f_S(u) - f_S(x_{uv})) = (f_S(v) - f_S(x_{uv})) = \frac{1}{2}(f_S(u) - f_S(v)) \). Recalling that \(\pi_S(u) = \frac{2}{3} \pi_G(u) \),

\[
\mathcal{E}_{P_S,\pi_S}(f_S) = \frac{1}{2} \sum_{\{u,v\} \in E(\mathcal{G})} (f_S(u) - f_S(v))^2 \pi_S(u) \frac{1}{2d_u}
\]

\[
= \frac{1}{3} \sum_{\{u,v\} \in E(\mathcal{G})} (f_S(u) - f_S(v))^2 \pi_G(u) \frac{1}{2d_u}
\]

On the other hand, since by construction \(f_G(u) = f_S(u) \) and since \(Q_G(u, v) = \pi_G(u) \frac{1}{d_u} \):

\[
\mathcal{E}_{P_G,\pi_G}(f_G) = \sum_{\{u,v\} \in E(\mathcal{G})} (f_G(u) - f_G(v))^2 Q_G(u, v)
\]

\[
= \sum_{\{u,v\} \in E(\mathcal{G})} (f_S(u) - f_S(v))^2 \pi_G(u) \frac{1}{2d_u}
\]

Comparing (30) and (32) shows that \(\mathcal{E}_{P_G,\pi_G}(f_G) = 3 \mathcal{E}_{P_S,\pi_S}(f_S) \).

Next, we compare the denominator of (27) for \(\mathcal{S} \) and for \(\mathcal{G} \). First, we have:

\[
\text{Var}_{\pi_S}(f_S) = \sum_{u \in V(\mathcal{G})} \pi_S(u) f_S(u)^2 + \sum_{\{u,v\} \in E(\mathcal{G})} \pi_S(x_{uv}) f_S(x_{uv})^2
\]

Since \(\pi_S(u) = \frac{2}{3} \pi_G(u) \) and \(f_S(u) = f_G(u) \), the first term equals \(\frac{2}{3} \) Var\(_{\pi_G}(f_G) \). Now we show that the second term is bounded by \(\frac{2}{3} \) Var\(_{\pi_G}(f_G) \). Recalling again that \(f_S(x_{uv}) = \frac{f_S(u) + f_S(v)}{2} \),

\[
\sum_{\{u,v\} \in E(\mathcal{G})} \pi_S(x_{uv}) f_S(x_{uv})^2 = \sum_{\{u,v\} \in E(\mathcal{G})} \pi_S(x_{uv}) \left(\frac{f_S(u) + f_S(v)}{2}\right)^2
\]

\[
\leq \sum_{\{u,v\} \in E(\mathcal{G})} \pi_S(x_{uv}) \frac{1}{2} (f_S(u)^2 + f_S(v)^2)
\]

\[
= \sum_{u \in V(\mathcal{G})} \sum_{\{u,v\} \in E(\mathcal{G})} \frac{1}{2} \frac{4}{3d_u} \pi_G(u) f_S(u)^2
\]

\[
= \frac{2}{3} \sum_{u \in V(\mathcal{G})} \pi_G(u) f_S(u)^2
\]

where (35) holds by convexity, and (36) holds since every \(u \in V(\mathcal{G}) \) is charged with \(\frac{1}{3d_u} \pi_S(x_{uv}) f_S(u)^2 \) by every \(\{u,v\} \in E(\mathcal{G}) \), and since \(\pi_S(x_{uv}) = \frac{1}{3d_u} \pi_G(u) \). Therefore \(\text{Var}_{\pi_S}(f_S) \leq \frac{1}{3} \) Var\(_{\pi_G}(f_G) \), so \(\text{Var}_{\pi_S}(f_G) \geq \frac{2}{3} \) Var\(_{\pi_G}(f_G) \).

By combining our two bounds, we obtain:

\[
\frac{\mathcal{E}_{P_G,\pi_G}(f_G)}{\text{Var}_{\pi_G}(f_G)} \leq \frac{3 \mathcal{E}_{P_S,\pi_S}(f_S)}{\frac{2}{3} \text{Var}_{\pi_S}(f_S)} = \frac{4 \mathcal{E}_{P_S,\pi_S}(f_S)}{\text{Var}_{\pi_S}(f_S)}
\]

which shows that \(\gamma(\mathcal{G}) \leq 4 \gamma(\mathcal{S}) \), completing the proof.
Claim 4. \(\tau(L(G)) \leq 5 \tau(S') \).

Proof. Let \(X = \{X_t\}_{t \geq 0} \) be the walk on \(S' \), and let \(Y = X[A] \) be the chain induced by \(X \) on the subset of states \(A = \{x_{uv} : (u, v) \in E\} \) (Definition 3). Since by Lemma 3 \(\tau(Y) \leq \tau(S') \), we need only to prove that \(\tau(L(G)) \leq 5 \tau(Y) \). To this end we show that \(Y \) is the random walk on the graph \(L' \) obtained by weighting \(L(G) \) as follows (see Figure 2 below):

\[
\begin{align*}
w_{L'}(x_{uv}, x_{uz}) &= 1 & v \neq z \\
w_{L'}(x_{uv}, x_{uv}) &= d_u + d_v + 2
\end{align*}
\]

(39)

(40)

Figure 2: Left: the graph \(S' \) described above. Right: the reweighted line graph \(L' \) obtained by weighting every loop \(\{x_{uv}, x_{uv}\} \) of \(L(G) \) with \((d_u + d_v + 2) \) instead of \((d_u + d_v - 2) \). The random walk over \(L' \) is exactly the random walk over \(S' \) observed only on the set of states \(\{x_{uv} : (u, v) \in E(G)\} \).

To prove the claim we compute the transition probabilities of \(Y \) from \(x_{uv} \). First, if \(Y_t = x_{uv} \) then we can assume \(X_s = x_{uv} \) for some \(s = s(t) \). From \(x_{uv} \), the possible transitions are \(Y_{t+1} = x_{uv} \) and \(Y_{t+1} = x_{uz} \) for some \(z \neq v \). The transition \(Y_{t+1} = x_{uv} \) happens if and only if one of these three disjoint events occurs:

1. \(X_{s+1} = x_{uv} \)
2. \(X_{s+1} = \ldots = X_{s'+1} = u \) and \(X_{s'} = x_{uv} \) for some \(s' \geq s + 2 \)
3. the same as (2) but with \(v \) in place of \(u \).

The probability of (1) is \(\frac{1}{2} \) by construction of the loop weights. The probability of (2) is the product of \(P(X_{s+1} = u \mid X_s = x_{uv}) = \frac{d_u}{2(d_u + d_v)} \) and \(P(X_{s'} = x_{uv} \mid X_{s'-1} = u) = \frac{1}{d_u} \), since \(X \) leaves \(u \) with probability 1, in which case it moves to \(x_{uv} \) with probability \(\frac{1}{d_u} \). Thus, the probability of (2) is \(\frac{1}{2(d_u + d_v)} \), and by symmetry the same is for (3). Therefore:

\[
P(Y_{t+1} = x_{uv} \mid Y_t = x_{uv}) = \frac{1}{2} + \frac{1}{d_u + d_v} = \frac{d_u + d_v + 2}{2(d_u + d_v)}
\]

(41)

The transition \(Y_{t+1} = x_{uz} \) is the same as event (2) above, only with \(X_{s'} = x_{uz} \) instead of \(X_{s'} = x_{uv} \). But conditioned on \(X_{s'-1} = u \) the two events have the same probability, therefore:

\[
P(Y_{t+1} = x_{uz} \mid Y_t = x_{uv}) = \frac{1}{2(d_u + d_v)}
\]

(42)

Thus the probabilities are proportional to 1 and \(d_u + d_v + 2 \), as \(w_{L'} \) says.

We can now conclude the proof of the claim. If \(d_u + d_v = 2 \), then \(|E(G)| = 1 \), so \(L(G) \) is the singleton graph and \(\tau(L(G)) = 0 \), and \(\tau(L(G)) \leq 5 \tau(S') \) holds trivially. Suppose instead \(d_u + d_v \geq 3 \). Then \(\frac{d_u + d_v + 2}{2} \leq \frac{5}{2} = 5 \). Therefore \(w_S \leq w_{L'} \leq 5 w_S' \), and Lemma 3 yields \(\tau(L(G)) \leq 5 \tau(S') \). The proof is complete.

By combining claims 3 and 4 we obtain \(\tau(L(G)) \leq 5 \tau(S') \leq 20 \rho(G) \tau(G) \), proving Lemma 1.
5.3 Proof of the lower bounds of Theorem 1

We ignore factors depending only on k, which are easily proven to be in $k^{O(k)}$. Consider a graph G formed by two disjoint cliques of order Δ, connected by a “fat path” (the Cartesian product of a path and a clique) of length $2(k - 1)$ and width δ, see Figure 3. The total number of vertices is $n = 2\Delta + 2(k - 1)\delta = \Theta(\Delta)$, and we choose Δ and δ so that $\rho(G) = \frac{\Delta}{2} \in \Theta(\rho(n))$.

![Figure 3](https://via.placeholder.com/150)

Figure 3: Above: the graph G for $k = 3, \delta = 6, \Delta = 3$; clique vertices in gray. Below: G collapsed in a weighted path P.

We start by bounding $t(G_k)$ from below with a conductance argument. Let C_u be the left clique of G, and for $i = 1, \ldots, k - 1$, let L_i be the vertices of G at distance i from C_u. Let U be the set of all k-graphlets of G containing at least $\frac{k}{2} + 1$ vertices from $C_u \cup L_1 \cup \ldots \cup L_{k-1}$, and $\bar{U} = V_k \setminus U$. Consider the cut between U and \bar{U} in G_k. Observe that $\text{vol}(U) \leq \text{vol}(\bar{U})$, which implies $\Phi(G_k) \leq \frac{c(U)}{\text{vol}(U)}$. Now, U contains at least $(\frac{\Delta}{k})^k = \Omega(\Delta^k)$ graphlets, each of which has $\Omega(\Delta)$ neighbors in G_k. Hence $\text{vol}(U) = \Omega(\Delta^{k+1})$. On the other hand, consider any $\{g, g'\} \in \text{Cut}(U, \bar{U})$. We claim that $g \cup g'$ is spanned by a tree on $k + 1$ vertices that does not intersect the cliques of G. Indeed, suppose by contradiction that $g \cap C_u \neq \emptyset$. Since $g \cup g'$ has diameter at most k, we deduce that $g' \setminus (C_u \cup L_1 \cup \ldots \cup L_k)$ has size at most 1. This contradicts the fact that $g' \in \bar{U}$, which would require $|g' \setminus (C_u \cup L_1 \cup \ldots \cup L_k)| \geq \frac{k}{2}$, which is strictly larger than 1 since $k \geq 3$. A symmetric argument proves that $g \cup g'$ does not intersect the right clique of G. Hence, $g \cup g'$ is spanned by a tree on $k + 1$ vertices of the fat path, and the number of such trees is $O(\delta^{k+1})$. Therefore, $c(U) = O(\delta^{k+1})$. We conclude that:

\[
\tau(G_k) \geq \frac{1}{2\Phi(G_k)} = \Omega\left(\rho(n)^{k+1}\right) \tag{43}
\]

Now we show that $\rho(n)^2 = \Omega(\tau(G))$. Let P be the weighted path graph obtained from G by identifying the vertices in each clique, and the vertices in every layer of the path (see the figure again). Let $X = \{X_t\}_{t \geq 0}$ be the random walk over G, and for all $t \geq 0$ let Y_t be the vertex of $V(P)$ corresponding to X_t. Note that $Y = \{Y_t\}_{t \geq 0}$ is the random walk over P, and that it is coupled to X. Now observe that, for any $t \geq 1$, if Y_t is at total variation distance ε from the stationary distribution π_Y of Y, then X_t is at total variation distance ε from the stationary distribution π_X of X. Therefore, $O(t(G)) = O(t(P))$, which implies $\tau(G) = O(t(P))$. In turn, P is a path of constant length whose edge weights are in the range $[\delta^2, \Delta^2]$. By Lemma 4 this implies that $(t(P) \in O(\rho(n)^2)$ times the mixing time of the walk on the unweighted version of P, which is constant. Therefore, $\tau(G) = O(\rho(n)^2)$, i.e., $\rho(n)^2 = \Omega(\tau(G))$.

Combining (43) with the fact that $\rho(n)^2 = \Omega(\tau(G))$ and that $t(G_k) = \Omega(\tau(G_k))$ yields the lower bound of Theorem 1.
5.4 Proof of Theorem

First we prove two ancillary facts, and then, Theorem

Lemma 8. For every \(g \in V(G_k) \) let \(T(g) = \{ \{u,v\} \in E(G_{k-1}) : u \cup v = g \} \). Then \(|T(g)| \leq \binom{k}{2} \), and given \(g \) we can compute \(|T(g)| \) in time \(O(\text{poly}(k)) \).

Proof. Every \(\{u,v\} \in T(g) \) satisfies: (i) \(u = g \setminus \{x\} \) and \(v = g \setminus \{y\} \) for some \(x, y \in g \), and (ii) \(u, v, \) and \(u \cap v \) are connected. Thus given \(g \) we can just enumerate all \(\binom{k}{2} \) pairs of vertices in \(g \) and count which ones have \(u, v, \) and \(u \cap v \) connected. This gives the bound on \(|T(g)| \) too. \(\square \)

Lemma 9. Any single step of the lazy walk over \(G_k \) can be simulated in poly\((k)\) expected time.

Proof. To decide whether to follow the loop we just toss a fair coin. Let us now see how to transition to a neighbouring graphlet uniformly at random. Let \(g \in V(G_k) \) be the current vertex of the walk and let \(N(g) \) be the set of neighbors of \(g \) in \(G_k \). For every \(y \in V(g) \), consider the following cut in \(G \):

\[
C(g, y) = \text{Cut}(y, V(G) \setminus V(g))
\]

Clearly, for every edge \(\{y, y'\} \in C(g, y) \), the graphlet \(g \cup y' \setminus x \) is adjacent to \(g \) in \(G_k \), provided that \(g \setminus x \) is connected. Moreover, \(|C(g, y)| \) can be computed in time \(O(k) \), as the difference between \(d_y \) and the number of neighbors of \(y \) in \(G \).

Now, for every \(x \in V(g) \) let \(c(x) = \sum_{y \in V(g) \setminus x} |C(g, y)| \) if \(g \setminus x \) is connected, and \(c(x) = 0 \) otherwise. Finally, let \(c = \sum_{x \in V(g)} c(x) \). We draw \(g' \) at random as follows. First, we draw \(x \in V(g) \) at random with probability \(c(x)/c \). Then, we draw \(y \in V(g) \setminus x \) at random with probability \(|C(g, y)|/c(x) \). Finally, we select an edge \(\{y, y'\} \) uniformly at random in \(C(g, y) \). To do this we just sample \(y' \) uniformly at random from the neighbors of \(y \) in \(G \) until hitting on \(V(G) \setminus V(g) \). This requires at most \(k \) trials in expectation, since \(y \) has at most \(k-1 \) neighbors in \(V(g) \), and has at least one neighbor in \(V(G) \setminus V(g) \), otherwise \(|C(g, y)|/c(x) = 0 \) and we wouldn't have chosen \(y \).

Now consider any \(g' \sim g \). Note that \(g' \) is identified by the pair \(\{x, y'\} \) where \(\{x\} = V(g) \setminus V(g') \) and \(\{y'\} = V(g') \setminus V(g) \). The probability that the random process above generates \(g' \) is:

\[
\frac{c(x)}{c} \sum_{y \in V(g) \setminus x} \frac{|C(g, y)|}{c(x)} \cdot \frac{1}{|C(g, y)|} = \frac{1}{c} |\{y \in V(g) \setminus x : y' \sim y\}|,
\]

that is, equal for all \(g' \) up to a multiplicative factor between 1 and \(k \). However, once we have drawn \(\{x, y'\} \) we can compute \(|\{y \in V(g) \setminus x : y' \sim y\}| \) in time poly\((k)\) and apply rejection sampling to make the output distribution uniform. The expected number of rejection trials is in poly\((k)\) as well, and so is the expected running time of the entire process. \(\square \)

We can now prove Theorem. Consider \(G_{k-1} \). By construction, \(\{u,v\} \in E(G_{k-1}) \) if and only if \(g = u \cup v \in V(G_{k-1}) \). Recall from Lemma the set \(T(g) \), and that \(|T(g)| \leq k^2 \). Hence, if we draw from a \(O(\frac{1}{k}) \)-uniform distribution over \(E(G_{k-1}) \), and accept the sampled edge \(\{u,v\} \) with probability \(\frac{1}{|T(g)|} \) where \(g = u \cup v \), the distribution of accepted graphlets will be \(\varepsilon \)-uniform. Let then \(X = \{X_t\}_{t \geq 0} \) be the lazy random walk over \(G_{k-1} \), and for all \(t \geq 0 \) let \(Y_t = X_t \cup X_{t+1} \). Then, \(Y_t \) is \(O(\frac{1}{k}) \)-uniform over \(E(G_{k-1}) \) if \(X_t \) is \(O(\frac{1}{k}) \)-uniform distribution over \(V(G_{k-1}) \). This holds since the distributions \(\pi_t \) of \(X_t \) and \(\sigma_t \) of \(Y_t \) satisfy \(\sigma_t = M \pi_t \), where \(M \) is a stochastic matrix. Since for stochastic matrices \(\|M\|_1 \leq 1 \), we have \(\|\sigma_t - \pi\|_1 \leq \|M(\pi_t - \pi)\|_1 \leq \|M\|_1 \|\pi_t - \pi\|_1 \) where \(\pi \) and \(\sigma \) are the stationary distributions of \(Y_t \) and \(X_t \). Thus, we just need to run the walk over \(G_{k-1} \) for \(t_{\varepsilon_k}(G_{k-1}) \) steps where \(\varepsilon_k = \Theta\left(\frac{1}{k}\right) \). From the proof of Theorem one can immediately see that \(t_{\varepsilon_k}(G_{k-1}) = k^{O(k)} O\left(t_{\varepsilon_k}(G) \rho(G) k^{-2} \log \frac{1}{\varepsilon_k}\right) \). (The \(\frac{1}{k^2} \) factor in \(k^{-2} \) is absorbed by \(k^{O(k)} \)). Finally, by Lemma each step takes \(O(\text{poly}(k)) \) time in expectation. This completes the proof.
6 Uniform graphlet sampling

This section presents our uniform graphlet sampling algorithm, Ugs. The key idea of the algorithm is to make rejection sampling efficient. To understand how, let us first describe why rejection sampling is usually not efficient. Suppose we have a generic random process that draws graphlets from V_k. For each graphlet $g \in V_k$ let $p(g)$ be the probability that the process yields g, and let $p^* = \min_{g \in V_k} p(g)$. In rejection sampling, when we draw g, we randomly accept it with probability $p^* p(g)^{-1}$. In this way, the probability that g is returned, which equals the probability that g is both sampled and accepted, is $p(g) p^* p(g)^{-1} = p^*$, which is independent of g. This makes the distribution of returned graphlets uniform regardless of p. The key problem is that p^* may be very small — which happens, for instance, if the random process samples graphlets by growing a random spanning tree around p. In rejection sampling, when we draw g, we will sample almost-uniformly from V and we will sample almost-uniformly from $B(v)$, and we will sample almost-uniformly from $B(v)$. To this end, we note that sampling from $B(v)$ amounts to sampling a k-graphlet from the subgraph $G(v)$ of G induced by v and all nodes after v in the order. This can be done efficiently since, as we will see, for our purposes $G(v)$ behaves like a regular graph. Moreover, we will be able to compute efficiently all the probabilities involved in this process. This will allow us to reject the sampled subgraph efficiently and with the correct probability, guaranteeing a truly uniform distribution.

6.1 A toy example: regular graphs

Let us build the intuition with a toy example. Suppose that G is d-regular. For simplicity suppose that G is connected, too. To begin, we let $p(v) = \frac{1}{n}$ for all $v \in V(G)$, and choose v according to p, i.e., uniformly at random. Note that $p(v)$ is roughly proportional to the number of k-graphlets containing v, which is easily seen to be between $k^{-\Theta(k)} d^{k-1}$ and $k^{O(k)} d^{k-1}$, for all v. Once we have chosen v, we sample a graphlet containing v, by running the following random growing process. Set $S_1 = \{v\}$, and for $i = 2, \ldots, k$, build S_i from S_{i-1} by choosing a random edge in the cut between S_{i-1} and the rest of G, and adding to S_{i-1} the other endpoint of the edge. Denote by $p_v(g)$ the probability that g is obtained when the random growing process starts at v, and by $p(g) = \sum_{v \in g} p(v)p_v(g)$ the probability that g is obtained. It is easy to show that for any $g \in V_k$ we have:

$$
\frac{1}{n} k^{-O(k)} d^{-(k-1)} \leq p(g) \leq \frac{1}{n} k^{O(k)} d^{-(k-1)}
$$

Now we design the rejection step. First, observe that by setting $p^* = \frac{1}{n} k^{-Ck} d^{-(k-1)}$ with C large enough, for all $g \in V_k$ we will have $p(g) \geq p^*$ and therefore $p^* p(g)^{-1} \leq 1$. Moreover, in time $k^{O(k)}$ we can easily compute $p(g)$ for any given g (this is shown below). In summary, once we have sampled g, we can efficiently compute $p_{acc}(g) = p^* p(g)^{-1} \leq 1$. Then, we accept g with probability $p_{acc}(g)$. The probability that g is sampled and accepted is $p(g) p_{acc}(g) = p^*$, which is independent of g. Therefore the distribution of the returned k-graphlets is uniform over V_k. Moreover, by the inequalities above we have $p_{acc}(g) \geq k^{-O(k)}$, hence we will terminate after $k^{O(k)}$ rejection trials in expectation. Thus, when G is d-regular, we have an efficient uniform graphlet sampling algorithm.
6.2 The preprocessing phase

Let \(G \) be an arbitrary graph. Our goal is to “regularize” \(G \), in a certain sense, so that we can apply the scheme of the toy example above. Let us start by introducing some notation. Given an order \(\prec \) over \(V \), we denote by \(G(v) = G\{u \geq v\} \) the subgraph of \(G \) induced by \(v \) and all nodes after it in the order, and for all \(u \in G(v) \), we denote by \(d(u|G(v)) \) the degree of \(u \) in \(G(v) \). Before moving to the algorithm, we introduce a definition that is central to the rest of the work.

Definition 5. \(\prec \) is an \(\alpha \)-degree-dominating order (\(\alpha \)-DD order) of \(G \) if for all \(v \) and all \(u \succ v \) we have \(d(v|G(v)) \geq \alpha d(u|G(v)) \).

Our algorithm starts by computing a 1-dominating order for \(G \), which guarantees that \(v \) has the largest degree in \(G(v) \). Such an order can be easily computed in time \(O(n + m) \) by repeatedly removing from \(G \) the node of maximum degree \cite{20}. (Later on, we will need to compute approximate \(\alpha \)-DD orders for \(\alpha < 1 \) in time roughly \(O(n \log n) \), which is not as easy). After computing our 1-DD order \(\prec \), in time \(O(n + m) \) we also sort the adjacency lists of \(G \) accordingly, via bucket sort. This will be used to find efficiently the edges of \(G(v) \) via binary search.

Next, we virtually partition graphlets into buckets.

Definition 6. The bucket \(B(v) \) is the set of graphlets whose smallest node according to \(\prec \) is \(v \).

Clearly, the buckets \(B(v) \) form a partition of \(\mathcal{V}_k \). Similarly to \(d^{k-1} \) in the toy example above, here \(d(v|G(v))^{k-1} \) gives a rough estimate of the number of graphlets in \(B(v) \). Indeed, if \(B(v) = \emptyset \), then we can easily show that:

\[
k^{-O(k)}|B(v)| \leq d(v|G(v))^{k-1} \leq k^{O(k)}|B(v)|
\]

It is easy to see that the \(d(v|G(v)) \) are known after computing \(\prec \). Hence, we will use \(d(v|G(v))^{k-1} \) as a proxy for \(|B(v)| \). In time \(O(n) \) we compute:

\[
Z = \sum_{v \in V : B(v) \neq \emptyset} d(v|G(v))^{k-1}
\]

\[
p(v) = I\{B(v) \neq \emptyset\} \cdot \frac{d(v|G(v))^{k-1}}{Z}, \quad \forall v \in V(G)
\]

This defines a distribution \(p \) over the buckets that we will use in the sampling phase. Note that, to compute \(Z \) and \(p \), we must detect whether \(B(v) = \emptyset \) for each \(v \). To this end, we use a BFS from \(v \) that explores \(G(v) \) and stops as soon as \(k \) nodes are found. We can show that this takes time \(O(k^2 \log k) \) by listing edges from the end of the adjacency lists. This makes our overall preprocessing time grow to \(O(nk^2 \log k + m) \), as claimed in Theorem \ref{th:buckets}. This concludes our preprocessing phase. See Algorithm \ref{alg:dd} for the pseudocode.

Algorithm 1 DD(G)

1: compute \(\prec \) using a bucketing algorithm \(\triangleright O(n + m) \)
2: sort the adjacency lists of \(G \) according to \(\prec \) \(\triangleright O(n + m) \)
3: compute \(d(v|G(v)) \) for all \(v \in V(G) \) \(\triangleright O(n + m) \)
4: for each \(v \in V \) do
5: check if \(B(v) \neq \emptyset \) with a BFS \(\triangleright O(k^2 \log k) \)
6: let \(b_v = I\{B(v) \neq \emptyset\} \cdot d(v|G(v))^{k-1} \)
7: return \(\prec \) and \(\{b_v\}_{v \in V} \)

Lemma 10. \(\text{DD}(G) \) can be implemented to run in time \(O(nk^2 \log k + m) \). The output order \(\prec \) is a 1-DD order for \(G \) and thus satisfies \(d(v|G(v)) \geq d(u|G(v)) \) for all \(u \succ v \). The output estimates \(b_v > 0 \) satisfy \(\frac{b_v}{k^{-O(k)}} \in [k^{-O(k)}, k^{O(k)}] \).
Proof. Consider the first two lines of DD(G). Computing \prec takes time $O(n+m)$ by a standard bucketing technique [29]. Sorting the adjacency lists of G according to \prec takes time $O(n+m)$ via bucket sort. With one final $O(n+m)$-time pass we compute, for each v, the position i_v of v in its own sorted adjacency list, from which we compute $d(v|G(v)) = d_v - i_v$ in constant time for each v.

Now consider the main loop. Clearly, $B(v) \neq \emptyset$ if and only if k nodes are reachable from v in $G(v)$. Thus, we perform a BFS in $G(v)$, starting from v, and stopping as soon as k pushes have been made on the queue (counting v as well). To keep track of which nodes have been pushed we can use a dictionary; as we need to hold at most k entries, every insertion and lookup will take time $O(\log k)$.

After popping a generic node u from the queue, we proceed as follows. We take every neighbor z of u in reverse order (that is, according to \succ). If $z \succ v$ and z has not been pushed, then we push it. As soon as we encounter $z \prec u$, we stop and pop a new node from the queue. Suppose that, after popping u, we examine ℓ of its neighbors. Then, at least $\ell+1$ nodes must have been pushed so far, since u itself was pushed, and every neighbor examined was certainly pushed (before, or when examined). Thus, for every node u we examine at most $k-1$ neighbors (since we stop the whole algorithm as soon as k nodes are pushed). Since we push at most k nodes in total, we also pop at most k nodes in total. Therefore, we examine a total of $O(k^2)$ nodes. Thus, we spend a total time $O(k^2 \log k)$.

Summarizing, we obtain a total time bound of $O(n+m) + O(nk^2 \log k) = O(nk^2 \log k + m)$.

The claim on b_v follows by Lemma [21] since in $G(v)$ node v has maximum degree $d(v|G(v))$. □

6.3 The sampling phase

The sampling phase starts by drawing a node v from the distribution p. Using the alias method [39], each such random draw takes time $O(1)$ after a $O(n)$-time-and-space preprocessing (which we do in the preprocessing phase). Once we have drawn v, we draw a graphlet from $B(v)$ using what we call the random growing process at v. This is the same process used in the toy example above, but restricted to the subgraph $G(v)$.

Definition 7. The random growing process at v is defined as follows: $S_1 = \{v\}$, and for each $i = 1, \ldots, k-1$, $S_{i+1} = S_i \cup \{u_i, u'_i\}$, where $\{u_i, u'_i\}$ is uniform random over $\text{Cut}(S_i, G(v) \setminus S_i)$.

Now we make two key observations. First, the random growing process at v returns a roughly-uniform random graphlet of $B(v)$, and can be implemented efficiently thanks to the sorted adjacency lists of G. Second, the probability that the random growing process returns a specific graphlet g can be computed efficiently, thanks again to the sorted adjacency lists. These two facts are proven below; before, however, we need a technical result about the size of the cuts in $G(v)$.

Lemma 11. Let $V(G)$ be sorted according to a 1-DD order. Consider any sequence of sets S_1, \ldots, S_{k-1} such that $S_1 = \{v\}$, that $G(v)|S_i$ is connected for all i, and that $S_i = S_{i-1} \cup \{s_i\}$ for some $s_i \in G(v)$. Then for all $i = 1, \ldots, k-1$:

$$i^{-1} \leq \frac{|\text{Cut}(S_i, G(v) \setminus S_i)|}{d(v|G(v))} \leq i \quad \text{(50)}$$

Proof. Let $c_i = |\text{Cut}(S_i, G(v) \setminus S_i)|$ for short. For the lower bound, note that $c_i \geq 1$ for all $i = 1, \ldots, k-1$ since $G[S_k]$ is connected. Moreover $c_1 = d(v|G(v))$ since $S_1 = \{v\}$. Now, if $c_1 \leq i$ then $\frac{c_1}{i} \leq 1$ and therefore $c_i \geq \frac{i}{i}$. If instead $c_1 \geq i$, since the degree of v in S_i is at most $i-1$, then the cut of S_i still contains at least $c_1 - |S_i| + 1 \geq c_1 - (i-1)$ edges. Therefore:

$$c_i \geq c_1 - (i-1) \geq c_1 - (i-1)\frac{c_1}{i} = \frac{c_1}{i} = \frac{1}{i} \cdot d(v|G(v)) \quad \text{(51)}$$

For the upper bound, note that:

$$c_i \leq \sum_{u \in S_i} d(u|G(v)) \leq \sum_{u \in S_i} d(v|G(v)) = i \cdot d(v|G(v)) \quad \text{(52)}$$

where we used the fact that v is the maximum-degree node of $G(v)$.

□
Algorithms RAND-GROW(G, v) and PROB(G, S) below gives the pseudocode of the random growing process and of the algorithm for computing the probability that the process returns a particular graphlet. Lemma 12 shows that RAND-GROW(G, v) can be implemented efficiently and that it returns a graphlet that is roughly uniform. Lemma 13 shows that PROB(G, S) is correct and efficient.

Algorithm 2 RAND-GROW(G, v)
1: \(S_1 = \{v\} \)
2: for \(i = 1, \ldots, k - 1 \) do
3: \(\text{for } u \in S_i \text{ do} \)
4: \(c_i(u) = d(u|G(v)) - \text{(degree of } u \text{ in } G[S_i]) \)
5: draw \(u \) with probability \(\frac{c_i(u)}{\sum_{z \in S_i} c_i(z)} \)
6: draw \(u' \) u.a.r. from the neighbors of \(u \) in \(G(v) \setminus S_i \)
7: \(S_{i+1} = S_i \cup \{u'\} \)
8: return \(S_k \)

Algorithm 3 PROB(G, S = \{v, u_2, \ldots, u_k\})
1: \(p = 0 \)
2: for each permutation \(\sigma = (\sigma_2, \ldots, \sigma_k) \) of \(u_2, \ldots, u_k \) do
3: \(p_\sigma = 1 \)
4: for each \(i = 1, \ldots, k - 1 \) do
5: \(S_i = \{v, \sigma_2, \ldots, \sigma_i\} \)
6: \(n_i = \text{number of neighbors of } \sigma_{i+1} \text{ in } S_i \)
7: \(c_i(u) = d(u|G(v)) - \text{(degree of } u \text{ in } G[S_i]) \)
8: \(p_\sigma = p_\sigma \cdot \frac{n_i}{c_i} \)
9: \(p = p + p_\sigma \)
10: return \(p \)

Lemma 12. Suppose \(G \) is sorted according to a 1-DD order and choose any \(v \) such that \(B(v) \neq \emptyset \). Then RAND-GROW(G, v) runs in time \(O(k^3 \log \Delta) \). Moreover, for any \(g = G[S] \in B(v) \), the probability \(p(S) \) that RAND-GROW(G, v) returns \(S \) is between \(\frac{1}{(k-1)!} d(v|G(v))^{-(k-1)} \) and \((k - 1)^3 d(v|G(v))^{-(k-1)} \).

Proof. Running time. Consider one iteration of the main loop. For every \(u \in S_i \), computing \(c_i(u) \) takes time \(O(k \log \Delta) \). Indeed, in time \(O(\log \Delta) \) we locate the position of \(v \) in the adjacency list of \(u \), which subtracted from \(d_u \) yields \(d(u|G(v)) \). Then, we compute the number of neighbors of \(u \) in \(S_i \) in time \(O(k) \) using edge queries. Thus, the cycle over \(u \in S_i \) takes \(O(k^2 \log \Delta) \) in total. Drawing \(u \) takes time \(O(k) \). Finally, drawing \(u' \) takes \(O(k) \) as well. To see this, note that if \(u \) had no neighbors in \(S_i \), then we could just draw a node uniformly at random from the last \(d(u|G(v)) \) elements of the adjacency list of \(u \). However, \(u \) has neighbors in \(S_i \). But we still know the (at most \(k \)) disjoint sublists of the adjacency lists containing the neighbors in the cut. Thus we can draw a uniform integer \(j \in [c_i(u)] \) and select the \(j \)-th neighbor of \(u \) in \(G(v) \setminus S_i \) in time \(O(k) \). This proves that one iteration of the main loop of RAND-GROW takes time \(O(k^2 \log \Delta) \). Thus, RAND-GROW runs in time \(O(k^3 \log \Delta) \).

Probability. Consider any \(S \) such that \(g = G[S] \in B(v) \). Thus \(S \) is a \(k \)-node subset such that \(v \in S \) and that \(G[S] \) is connected. We compute an upper bound and a lower bound on the probability \(p(S) \) that the algorithm returns \(S \).

Clearly, there are at most \((k - 1)! \) sequences of nodes that RAND-GROW(G, v) can choose to produce \(S \). Fix any such sequence, \(v, u_2, \ldots, u_k \), and let \(S_i = \{v, \ldots, u_i\} \). Let \(c_i(u) = |\text{Cut}(u, G(v)) \setminus \{u\}| \).
We therefore set the acceptance probability to:

\[P(u_{i+1} = u') = \frac{d(u'|S_i \cup u')}{c_i} \leq \frac{i^2}{d(v)G(v)} \]

(53)

where in the inequality we used the facts that \(d(u'|S_i \cup u') \leq i \) is the number of neighbors of \(u' \) in \(S_i \), and that \(c_i \geq \frac{d(v)G(v)}{i} \) by Lemma 11. Thus the probability that RAND-GROW\((G, v)\) draws the particular sequence \(v, u_2, \ldots, u_k \) is at most \(\prod_{i=1}^{k-1} \frac{i^2}{d(v)G(v)} = (k-1)!^2 d(v)G(v)^{-(k-1)}. \) Since there are at most \((k-1)! \) sequences, \(p(S) \leq (k-1)!^2 d(v)G(v)^{-(k-1)}. \)

On the other hand, since \(G[S] \) is connected, then there is at least one sequence \(v, u_2, \ldots, u_k \) such that \(c_i \geq 1 \) for all \(i = 1, \ldots, k-1 \), which therefore satisfies:

\[P(u_{i+1} = u') = \frac{d(u'|S_i \cup u')}{c_i} \geq \frac{1}{i d(v)G(v)} \]

(54)

where we used the facts that \(d(u'|S_i \cup u') \geq 1 \), since \(u' \) is a neighbor of some \(u \in S_i \), and that \(c_i \leq i \cdot d(v)G(v) \), by Lemma 11. So the probability that RAND-GROW\((G, v)\) draws this particular sequence is at least \(\prod_{i=1}^{k-1} \frac{1}{d(v)G(v)} = \frac{1}{(k-1)! d(v)G(v)} \), which is a lower bound on \(p(S) \).

Lemma 13. \(\text{Prob}(G, S = \{v, u_2, \ldots, u_k\}) \) runs in time \(\text{poly}(k)O(k! \log \Delta) \) and outputs the probability \(p(S) \) that RAND-GROW\((G, v)\) returns \(S \).

Proof. The proof is essentially the same of Lemma 12 \(\square \)

We can now complete the sampling phase by performing a rejection step. After drawing \(v \) with probability \(p(v) \), we draw a random graphlet \(g \) from \(\mathcal{B}(v) \) by invoking RAND-GROW\((G, v)\), and we compute \(p_v(g) \) by invoking \(\text{Prob}(G, g) \). By construction, the overall probability that we have drawn \(g \) is \(p(g) = p(v) \cdot p_v(g) \). By the definition of \(p(v) \) and by Lemma 12:

\[k^{-O(k)} \frac{1}{Z} \leq p(v) \cdot p_v(g) \leq k^{O(k)} \frac{1}{Z} \]

(55)

We therefore set the acceptance probability to:

\[p_{acc}(g) = \frac{k^{-Ck}}{p(v) \cdot p_v(g) \cdot Z} \]

(56)

This makes the probability that \(g \) is sampled and accepted equal to:

\[p(g) \cdot p_{acc}(g) = p(v) \cdot p_v(g) \cdot \frac{k^{-Ck}}{p(v) \cdot p_v(g) \cdot Z} = k^{-Ck} \]

which is independent of \(g \) and thus constant over \(\mathcal{V}_k \). For \(C \) large enough, \((55) \) and \((56) \) imply \(p_{acc} \in [k^{-O(k)}, 1] \). Therefore, \(p_{acc}(g) \) is a valid probability, and moreover, we will accept a graphlet after \(k^{O(k)} \) trials in expectation. As by Lemma 12 and Lemma 13 the running time of a single trial is \(\text{poly}(k) \log \Delta \), the total expected time per sample is \(k^{O(k)} \log \Delta \), as claimed in Theorem 9.

To wrap up, Algorithm 4 gives the main body of Ugs.
Algorithm 4 UGS(G)

1: \((\prec, \{b_v\}_{v \in V}) = \text{DD}(G)\)
2: let \(Z = \sum_{v \in V} b_v\)
3: let \(p(v) = \frac{b_v}{Z}\) for each \(v \in V\)
4: let \(\beta_k(G) = \frac{1}{k^2}\frac{Z}{\sum_{v \in V} b_v}\)
5:
6: function sample()
7: while true do
8: draw \(v\) from the distribution \(p\)
9: \(S = \text{Rand-Grow}(G, v)\)
10: \(p(S) = \text{Prob}(G, S)\)
11: with probability \(\frac{\beta_k(G)}{p(v)p(S)}\) return \(S\)

7 Epsilon-uniform graphlet sampling

This section describes our \(\varepsilon\)-uniform graphlet sampling algorithm, APX-UGS. At a high level, APX-UGS is an adaptation of UGS. To begin, we observe that UGS relies on the following key ingredients. First, the vertices of \(G\) are sorted according to a 1-DD order \(\prec\), which ensures that each subgraph \(G(v)\) behaves like a regular graph for what concerns sampling (Lemma 12). Second, the edges of \(G\) are sorted according to \(\prec\) as well, which makes it possible to compute the size of the cuts \(|\text{Cut}(u, G(v) \setminus S_i)|\) in time proportional to \(\log \Delta\) (Lemma 12 and 13). Unfortunately, both ingredients require a \(\Theta(m)\)-time preprocessing. To reduce the preprocessing time to \(O(n \log n)\), we introduce:

1. A preprocessing routine that computes w.h.p. an approximate \(\alpha\)-DD order, together with good bucket size estimates. By “approximate” we also mean that some buckets might be erroneously deemed empty, but we guarantee that those buckets contain a fraction \(\leq \varepsilon\) of all graphlets.

2. A sampling routine that emulates the one of UGS, but replaces the exact cut sizes with additive approximations. These approximations are good enough that, with good probability, APX-UGS behaves as UGS, including the rejection step.

Achieving these guarantees is not just a matter of sampling and concentration bounds. For instance, to obtain an \(\alpha\)-DD order, we cannot just sub-sample the edges of \(G\) and compute the 1-DD order on the resulting subgraph: the sorting process would introduce correlations, destroying concentration. Similarly, we cannot just compute a multiplicative estimate of \(|\text{Cut}(u, G(v) \setminus S_i)|\): without sorted lists this would require \(\tilde{\Omega}(\Delta)\) queries, as we might have \(d_u = \Delta\) and \(|\text{Cut}(u, G(v) \setminus S_i)| = 1\). Similar obstacles arise in estimating \(p_v(g)\).

7.1 Approximating a degree-dominating order

We introduce our notion of approximate degree-dominating order. In what follows, \(b = (b_v)_{v \in V}\) is a vector of bucket size estimates.

Definition 8. A pair \((\prec, b)\) where \(b = (b_v)_{v \in V}\) is an \((\alpha, \beta)\)-DD order for \(G\) if:

1. \(\sum_{v : b_v > 0} |B(v)| \geq (1 - \beta) \sum_v |B(v)|\)
2. \(b_v > 0 \implies k^{-O(k)} \beta \leq \frac{b_v}{|B(v)|} \leq k^O(k) \frac{1}{\beta}\)
3. \(b_v > 0 \implies d(v|G(v)) \geq \alpha d_v \geq \alpha d(u|G(v))\) for all \(u \succ v\)
4. \(v \prec u \implies d_v \geq 3k\alpha d_u\)

Let us elaborate on this. The first property says that the buckets that are deemed nonempty hold a fraction \(1 - \beta\) of all graphlets. The second property says that every bucket that is deemed
nonempty comes with a good estimate of its size. The third property says that \prec is an α-DD order if restricted to the buckets that are deemed nonempty, and gives an additional guarantee on d_v. The fourth property will be used later on. The idea is that, if we look only at buckets that are deemed nonempty, we will have guarantees similar to a 1-DD order; but bear in mind that here the edges of G will not be sorted, and this will complicate things significantly.

The algorithm below, Apx-DD(G, β), computes efficiently an (α, β)-DD order with $\alpha = \beta^{-\frac{1}{2k+1}} \frac{1}{6k^2}$. This will be enough for our purposes. In the remainder we prove Lemma 14 and Lemma 15, which give the guarantees of Apx-DD(G, β). For technical reasons, instead of α the proofs and the algorithm use $\eta = \alpha k = \epsilon \frac{1}{16k^2}$. The intuition of the algorithm is the following. We start at round $t = 0$ with \prec_0 being the order of $V(G)$ by nonincreasing degree; this corresponds to the optimistic guess that $d(v|G(v)) = d_v$ for all v. Then, we take every $v \in V(G)$ in the order of \prec_0, and we check if $d(v|G(v))$ is indeed close of d_v. To this end we sample $\frac{1}{k} \log n$ random neighbors of v, for some appropriate η and check how many are after v in \prec. If that fraction is at least η, then we let $b_v = (d_v)^{k-1}$ and set $\prec_{t+1} = \prec_t$ unchanged. Otherwise, we let $b_v = 0$ and update \prec_{t+1} from \prec_t by pushing v to its “correct” position. This is enough for vertices of sufficiently high degree, but not for those of small degree. Indeed, for those vertices $B(v)$ might be empty even though $d(v|G(v))$ is close to d_v, just because $d(v|G(v))$ is small in an absolute sense. Hence, for vertices of small degree we check whether $B(v) \neq \emptyset$ explicitly.

Algorithm 5 Apx-DD(G, β)

1: let $\eta = \beta^{-\frac{1}{2k+1}} \frac{1}{6k^2}$ and $h = \Theta(\eta^{-2} \log n)$
2: init $s_v = d_v$ for all $v \in V$
3: init \prec so that $u \prec v \iff (s_u > s_v) \lor ((s_u = s_v) \land (u > v))$
4: for each v in V in nonincreasing order of degree do
5: sample h neighbors x_1, \ldots, x_h of v u.a.r.
6: let $X = \sum_{j=1}^h \{ x_j \succ v \}$
7: if $X \geq 2\eta h$ then
8: let $b_v = (d_v)^{k-1}$
9: else
10: let $b_v = 0$ and $s_v = 3\eta d_v$
11: update \prec so that $u \prec v \iff (s_u > s_v) \lor ((s_u = s_v) \land (u > v))$
12: for each $v : d_v \leq k/\eta$ do
13: if $B(v) \neq \emptyset$ then
14: compute $d(v|G(v))$ and let $b_v = d(v|G(v))^{k-1}$
15: else
16: let $b_v = 0$
17: return \prec and $\{b_v\}_{v \in V}$

Lemma 14. With high probability Apx-DD(G, β) returns an (α, β)-DD order for G with $\alpha = \beta^{-\frac{1}{2k+1}} \frac{1}{6k^2}$.

Lemma 15. Apx-DD(G, β) can be implemented to run in time $O\left(\beta^{-\frac{1}{2k+1}} k^6 n \log n \right)$.

To carry out the proofs, we need some notation and a few observations about Apx-DD(G, β). We denote by:

- $t = 1, \ldots, n$ the generic round of the first loop
- \prec_t the order \prec at the very beginning of round t
- $G_t(v) = G[\{ z : z \geq_t v \}]$ the subgraph induced by v and the vertices after it at time t
We denote the returned order by \prec_n (formally it would be \prec_{n+1} but clearly this equals \prec_n), and by $G_n(\cdot)$ the subgraphs induced in G under such an order. By b_v we always mean the value of b_v at return time, unless otherwise specified.

Observation 1. For any t, if $v \succ t_v$ then $s_t(u) \leq s_t(v)$.

Proof. By definition $u \succ v$ if and only if $(s_t(u) < s_t(v)) \lor ((s_t(u) = s_t(v)) \land (u < v))$. Therefore in particular $s_t(u) \leq s_t(v)$.

Observation 2. If $u \prec_{t_v} v$ then $G_{t_v}(v) \subseteq G_{t_v}(u)$ and $d(u|G_{t_v}(v)) \leq d(u|G_{t_v}(u))$.

Proof. By definition, $G_{t_v}(v) \subseteq G_{t_v}(u)$ means \{ $z : z \geq v$ \} \subseteq \{ $z : z \geq u$ \}, which is equivalent to \{ $z : z \prec_{t_v} u$ \} \subseteq \{ $z : z \prec_{t_v} v$ \}. Consider then any $z : z \prec_{t_v} v$. This implies $z \prec_{t_v} u$ (since $u \prec_{t_v} v$) and $t_z < t_u$ (since $t_u > t_v$). But z cannot be moved past v in any round $t > t_v$. Thus $z \prec_{t_v} u$. Therefore \{ $z : z \prec_{t_v} u$ \} \subseteq \{ $z : z \prec_{n} u$ \}, as desired. The second claim follows by the monotonicity of $d(u|\cdot)$.

Observation 3. For all v and all $t \geq t_v$ we have $d(v|G_{t_v}(v)) \geq d(v|G_{t_v}(v))$, with equality if $b_v > 0$.

Proof. Consider any $z : z \prec_{t_v} v$. Note that $t_z < t_v$, hence $z \notin G_{t_v}(v)$ by definition of $G_{t_v}(v)$. Moreover z will never be moved past v in any round $t \geq t_v$, so $z \notin G_{t_v}(v)$ as well. Therefore $G_{t_v}(v) \subseteq G_{t_v}(v)$ for all $t \geq t_v$. Now the claim follows by monotonicity of $d(v|\cdot)$, and by noting that if $b_v > 0$, then v is not moved at round t_v and thus $G_{t_v}(v) = G_{t_v}(v)$ for all $t \geq t_v$.

Observation 4. In any round, conditioned on past events, w.h.p. $|X - \mathbb{E}X| \leq \eta h$.

Proof. Consider round t_v. Conditioned on past events, the X_j are independent binary random variables. Therefore by Hoeffding’s inequality:

$$
\mathbb{P}(|X - \mathbb{E}X| > h\eta) < 2e^{-2h^2\eta^2} = e^{-\Theta(\log n)} = n^{-\Theta(1)}
$$

(58)

where $h = \Theta(\eta^{-2} \log n)$ and thus the $\Theta(1)$ at the exponent can be chosen arbitrarily large.

Observation 5. With high probability, $d(v|G_{t_v}(v)) \leq s_{n+1}(v)$ for every v anytime in any round t.

Proof. If $s_{n+1}(v) = d_v$ then clearly $s_{n+1}(v) \geq d_v(G_{t_v}(v))$. Suppose instead that $s_{n+1}(v) = 3\eta d_v$. By Observation 3, $d(v|G_{t_v}(v)) \leq d(v|G_{t_v}(v))$. So, we only need to show that with high probability $d(v|G_{t_v}(v)) \leq 3\eta d_v$. Consider the random variable $X = \sum_{j=1}^{h} X_j$ at round t_v, and note that $\mathbb{E}X_j = \frac{d(v|G_{t_v}(v))}{d_v}$. Therefore, if $d(v|G_{t_v}(v)) > 3\eta d_v$, then $\mathbb{E}X > 3\eta h$. Now, the algorithm updates s_v only if $X < 2\eta h$. This implies the event $X < \mathbb{E}X - \eta h$, which by Observation 3 fails with high probability. Thus with high probability $d(v|G_{t_v}(v)) \leq 3\eta d_v$.

Observation 6. If round t_v of the first loop sets $b_v > 0$ then w.h.p. $d(v|G_{t_v}(v)) \geq \eta d_v$, else w.h.p. $d(v|G_{t_v}(v)) \leq 3\eta d_v$. If the second loop sets $b_v > 0$ then w.h.p. $d(v|G_{t_v}(v)) \geq \frac{2}{7}d_v$ deterministically.

Proof. The first claim has the same proof of Observation 3 if $d(v|G_{t_v}(v)) < \eta d_v$, then $\mathbb{E}X < \eta h$, so $b_v > 0$ implies $X \geq 2\eta h$ and thus $X > \mathbb{E}X + \eta h$. Similarly, if $d(v|G_{t_v}(v)) > 3\eta d_v$, then $\mathbb{E}X > 3\eta h$, so letting $b_v = 0$ implies $X < 2\eta h$ which means $X < \mathbb{E}X - \eta h$. Both events fail with high probability by Observation 3. For the second claim, note that the second loop sets $b_v > 0$ only if $d_v \leq \frac{2}{7}d_v$, which implies $\frac{2}{7}d_v \leq 1$, and if $B(v) \neq \emptyset$, which implies $d(v|G_{n}(v)) \geq 1$. Thus, $d(v|G_{n}(v)) \geq \frac{2}{7}d_v$. Observation 3 gives $d(v|G_{t_v}(v)) \geq d(v|G_{n}(v))$, concluding the proof.
Observation 7. With high probability, for all v, for all $u \succ v$ we have $d(u|G_n(v)) \leq s_{n+1}(v)$.

Proof. Consider the beginning of round t_u. Suppose that $v \prec_{t_u} u$, which implies $t_v < t_u$. Then:

$$s_{n+1}(v) = s_{t_u+1}(v)$$

$$= s_{t_u}(v)$$

$$\geq s_{t_u}(u)$$

Observation 1

$$= d_u$$

by construction

$$\geq d(u|G_n(v))$$

since $t_v < t_u$

(59)

(60)

(61)

(62)

(63)

Suppose instead $u \prec_{t_u} v$. Then, with high probability:

$$s_{n+1}(v) \geq s_{n+1}(u)$$

Observation 1 using $u \succ v$

$$\geq d(u|G_t(u))$$

Observation 5 with $t = t_u$

$$\geq d(u|G_n(v))$$

Observation 2

(64)

(65)

(66)

In any case, $d(u|G_n(v)) \leq s_{n+1}(v)$.

Proof of Lemma 14. For technical reasons we prove the four properties of (\prec, b), see Definition 8 in a different order. Moreover, we substitute $\alpha = \frac{3}{\eta}$. This yields the four properties:

1. if $v \prec u$, then $d_v \geq 3\eta d_u$
2. if $b_v > 0$, then $d(v|G(v)) \geq \frac{b_v}{k} \geq \frac{\eta}{k} \cdot d(u|G(v))$ for all $u \succ v$
3. if $b_v > 0$ then $k^{-O(k)} \leq \frac{b_v}{|B(v)|} \leq \frac{k^{O(k)}}{\beta}$
4. $\sum_{v, b_v > 0} |B(v)| \geq (1 - \beta) \sum_{v \in V} |B(v)|$

Proof of (1) Simply note that $d_v \geq s_{n+1}(v) \geq s_{n+1}(u) \geq 3\eta d_u$, where the middle inequality holds by Observation 1 since $u \succ v$.

Proof of (2) Consider any $u \succ v$ with $b_v > 0$. Then with high probability:

$$d(v|G_n(v)) = d(v|G_{t_u}(v))$$

Observation 3 using $b_v > 0$ and $t = n$

$$\geq \frac{\eta}{k} d_v$$

Observation 6 using $b_v > 0$

$$= \frac{\eta}{k} s_{n+1}(v)$$

by the algorithm, since $b_v > 0$

$$\geq \frac{\eta}{k} d(u|G_n(v))$$

Observation 7 since $u \succ v$

(67)

(68)

(69)

(70)

Proof of (3) First, we show that if $b_v > 0$ then w.h.p. $|B(v)| \geq 1$. If v is processed by the second loop, then $b_v > 0$ if and only if $|B(v)| \geq 1$. Otherwise, we know $d_v > \frac{k}{\eta}$, and w.h.p.:

$$d(v|G_n(v)) = d(v|G_{t_u}(v))$$

Observation 3 using $b_v > 0$

$$\geq \eta d_v$$

Observation 8 using $b_v > 0$

$$> k$$

as $d_v > \frac{k}{\eta}$

(71)

(72)

(73)

So w.h.p. $d(v|G_n(v)) > k$, in which case $G_n(v)$ contains a k-star centered in v, implying $|B(v)| \geq 1$. 23
Thus we continue under the assumption $|B(v)| \geq 1$. To ease the notation define $d^*_v = d(v|G_n(v))$ and $\Delta^*_v = \max_{u \in G(v)} d(u|G_n(v))$. Lemma 24 applied to $G_n(v)$ yields:

$$k^{-O(k)} (d^*_v)^{k-1} \leq |B(v)| \leq k^{O(k)} (\Delta^*_v)^{k-1}$$ (74)

We now show that w.h.p.:

$$\beta k^{-O(k)} (\Delta^*_v)^{k-1} \leq b_v \leq \frac{1}{\beta} k^{O(k)} (d^*_v)^{k-1}$$ (75)

which implies our claim. For the upper bound, note that by construction $b_v \leq (d^*_v)^{k-1}$ and that, by point (2) of this lemma, w.h.p. $d_v \leq \frac{k}{\eta} d^*_v$. Substituting η we obtain:

$$b_v \leq (d_v)^{k-1} \leq (d^*_v)^{k-1} \left(\frac{k}{\eta}\right)^{k-1} = \frac{1}{\beta} k^{O(k)} (d^*_v)^{k-1}$$ (76)

For the lower bound, note that since $b_v > 0$ then $b_v \geq (d^*_v)^{k-1}$. Indeed, if $b_v > 0$, then either $b_v = (d_v)^{k-1} \geq (d^*_v)^{k-1}$ from the first loop, or $b_v = (d^*_v)^{k-1}$ from the second loop (since the value $d(v|G(v))$ in the second loop equals $d(v|G_n(v))$, that is, d^*_v). Now, point (2) of this lemma gives $d^*_v \geq \frac{k}{\eta} \cdot d(u|G_n(v))$ for all $u \succ v$. Thus $\Delta^*_v = \max_{u \in G(v)} d(u|G_n(v)) \leq \frac{k}{\eta} d^*_v$. Therefore:

$$(\Delta^*_v)^{k-1} \leq \left(\frac{k}{\eta} d^*_v\right)^{k-1} = \beta k^{O(k)} (d^*_v)^{k-1} \leq \beta k^{O(k)} b_v$$ (77)

Proof of (4) We prove the equivalent claim:

$$\sum_{v:b_v=0} |B(v)| \leq \beta \sum_{v \in V} |B(v)|$$ (78)

Consider any v with $b_v = 0$ and $|B(v)| > 0$. These are the only vertices contributing to the left-hand summation. First, we note that $d_v > \frac{k}{\eta}$. Indeed, if $|B(v)| > 0$ and $d_v \leq \frac{k}{\eta}$, then the second loop of APX-DD processes v and sets $b_v = (d(v|G_n(v)))^{k-1}$, which is positive since $|B(v)| > 0$ implies $d(v|G(v)) > 0$. Thus, we can assume that $b_v = 0$, $|B(v)| \geq 1$, $d_v > \frac{k}{\eta}$, and v is not processed in the second loop. Since $d_v > \frac{k}{\eta} > k - 1$, then G contains at least $(\frac{d_v}{k-1}) \geq 1$ stars centered around v. Each such star contributes 1 to $\sum_{v \in V} |B(v)|$. Since $\frac{(d_v)^{k-1}}{(k-1)^{k-1}} \leq \frac{d_v}{(k-1)}$ whenever $(\frac{d_v}{k-1}) \geq 1$, we obtain:

$$\sum_{v:b_v=0} \frac{(d_v)^{k-1}}{(k-1)^{k-1}} \leq \sum_{v:b_v=0} \left(\frac{d_v}{k-1}\right)^{k-1} \leq k \sum_{v:b_v=0} |B(v)| \leq k \sum_{v} |B(v)|$$ (79)

where the factor k arises from each star being counted up to k times by the left-hand side (once for each vertex in the star).

On the other hand, by Observation 3 and Observation 4, w.h.p. $d(v|G_n(v)) \leq s_{n+1}(v)$ and $d(u|G_n(v)) \leq s_{n+1}(v)$ for all $u \succ v$. Hence, the maximum degree of G_v is w.h.p. at most $s_{n+1}(v)$. But $s_{n+1}(v) = 3\eta d_v$, since $b_v = 0$ is set in the first loop. Thus, the maximum degree of G_v is at most $3\eta d_v$. By Lemma 24 then,

$$\sum_{v:b_v=0} |B(v)| \leq \sum_{v:b_v=0} (k-1)!(3\eta d_v)^{k-1}$$ (80)
By coupling (79) and (80) and substituting $\eta = \beta \frac{1}{6k^2}$, we obtain:

$$\sum_{v:b_u=0} |B(v)| \leq \frac{\sum_{v:b_u=0}(k-1)!(3\eta d_v)^{k-1}}{k \sum_{v:b_u=0} (d_v)^{k-1}}$$

which for all $k \geq 2$ is bounded from above by β. The proof is complete. □

Proof of Lemma 15. First of all we observe that, until return time, Apx-DD never needs to compute \prec explicitly. Indeed, \prec is used only to check whether $u \prec v$ for two generic vertices $u, v \in G$. This however boils down to evaluating $(s_u > s_v) \lor ((s_u = s_v) \land (u > v))$, which takes time $O(1)$. Therefore we only need to keep the values s_v updated in an array; the updates of \prec at lines 9 and 11 are implicit.

Now let us bound the running time. The initialization of Apx-DD is dominated by sorting V in order of degree, which takes time $O(n)$ via bucket sort. In the first loop, at each iteration we draw $O(\eta^{-2} \log n)$ samples, each of which takes time $O(1)$ via neighbor queries. Evaluating $x_j \succ v$ takes time $O(1)$, and computing X takes time $O(h) = O(\eta^{-2} \log n)$. Updating s_v takes time $O(1)$. Thus, each iteration of the first loop takes time $O(\eta^{-2} \log n)$.

Consider now the second loop; we claim that each iteration takes time $O(\eta^{-2} k^2 \log k)$. To see this, let us describe the BFS in more detail. We start by pushing v in the queue, and we maintain the invariant that the queue holds only vertices of $G(v)$. To this end, when we pop a generic vertex u, we examine every edge $\{u, z\} \in E(G)$, and push z only if $z \succ v$ and z was not pushed before. Note that checking whether $z \succ v$ takes time $O(1)$. Now we bound the number of neighbors z of u that are examined. First, this number is obviously at most d_u. Recall that $3\eta d_u \leq s_{n+1}(u)$ by construction of the algorithm. Moreover, since $u \in G_n(v)$, then $u \succ_{n+1} v$, which by Observation 11 implies $s_{n+1}(u) \leq s_{n+1}(v) \leq d_u \leq \frac{1}{\eta}$. Therefore, $d_u \leq \frac{1}{\eta \eta}$. Hence, the number of neighbors z of u that are examined is at most $\frac{1}{\eta \eta}$. Since we push at most k vertices before stopping, the total number of vertices/edges examined by each BFS is in $O(\eta^{-2} k^2)$. To store the set of pushed vertices we use a dictionary with logarithmic insertion and lookup time. Hence, each BFS will take time $O(\eta^{-2} k^2 \log k)$. Finally, computing $d(v\mid G(v))$ also takes time $d_v \leq \frac{1}{\eta \eta}$. Thus each iteration of the second loop runs in time $O(\eta^{-2} k^2 \log k)$.

As each loops makes at most n iterations, the total running time of Apx-DD(G, β) is:

$$O(n \log n) + O(n \eta^{-2} \log n) + O(n \eta^{-2} k^2 \log k) = O(\eta^{-2} k^2 n \log n)$$

Replacing $\eta = O(\beta^{-\frac{1}{2}} k^{-2})$ shows that the running time is in $O(\beta^{-\frac{1}{2}} k^6 n \log n)$, as claimed. □

We can conclude the preprocessing phase of Apx-Ugs. We set $\beta = \frac{\varepsilon}{6}$, and run $(\prec, b) = Apx-DD(G, \beta)$. Then, for all v we let $p(v) = \frac{b_v}{\sum_u b_u}$; we also set a few other variables. The running time is dominated by Apx-DD(G, β), which by Lemma 15 takes time $O(\varepsilon^{-\frac{1}{2}} k^6 n \log n)$. This proves the preprocessing time bound of Theorem 5 and completes the description of the preprocessing phase.
7.2 The sampling phase: A coupling of algorithms

Recall that, by Lemma 14 with high probability the preprocessing phase yields an \((\alpha, \frac{\alpha}{2})\)-DD order \((\prec, \beta)\) for \(G\), with \(\alpha = \Theta(\varepsilon^{-2}k^{-3})\). From now on we assume this holds. Then, by Definition 8 \(\cup_{v \in \mathcal{B}(v)}b(v)\) contains a fraction \(1 - \frac{3}{2}\) of all graphlets. Hence, our goal becomes sampling \(\frac{\alpha}{2}\)-uniformly from \(\cup_{v \in \mathcal{B}(v)}b(v)\). By the triangle inequality, this will give an \(\varepsilon\)-uniform distribution over \(\mathcal{Y}_k\). To achieve \(\frac{\alpha}{2}\)-uniformity over \(\cup_{v \in \mathcal{B}(v)}b(v)\), we modify Ugs step by step. To begin, we consider what would happen if we sorted \(G\) according to \(\prec\) and ran the sampling phase of Ugs using the bucket size estimates \(\beta\). We show that, by mildly reducing the acceptance probability, we could make the output graphlet distribution uniform over \(\cup_{v \in \mathcal{B}(v)}b(v)\). The resulting algorithm, Ugs-Compare\((G, \varepsilon)\), is given below. Note that Ugs-Compare\((G, \varepsilon)\) is just for analysis purposes; we use it as a comparison term, to establish the \(\varepsilon\)-uniformity of our algorithm.

Algorithm 6 Ugs-Compare\((G, \varepsilon)\)

1. let \(C_1 = \) a large enough universal constant
2. let \(\beta = \frac{\alpha}{2}\)
3. \((\prec, \beta) = \text{Apx-DD}(G, \alpha, \beta)\)
4. let \(Z = \sum_{v \in V}b(v)\), and for each \(v \in V\) let \(p(v) = \frac{b(v)}{Z}\)
5. sort the adjacency lists of \(G\) according to \(\prec\)
6: function SAMPLE()
7: while true do
9: draw \(v\) from the distribution \(p\)
10: \(S = \text{Rand-Grow}(G, v)\)
11: \(p_v(S) = \text{Prob}(G, S)\)
12: with probability \(\frac{1}{p(v)p_v(S)}Zk^{-C_1k}\) return \(S\)

Lemma 16. In Ugs-Compare\((G, \varepsilon)\), suppose Apx-DD\((G, \alpha, \beta)\) succeeds (Lemma 14), and let \(p_{\text{acc}}(v, S) = \frac{1}{p(v)p(S)}Zk^{-C_1k}\) be the expression computed by SAMPLE\((\cdot)\) at line 12. Then \(p_{\text{acc}}(v, S) \in \left[\varepsilon^2k^{-O(k)}, 1\right]\), and moreover, the distribution of the graphlets returned by SAMPLE\((\cdot)\) is uniform over \(\cup_{v \in \mathcal{B}(v)}b(v)\).

Proof. Rewrite:

\[
p_{\text{acc}}(v, S) = \frac{1}{p(v)p(S)}Zk^{-C_1k} = \frac{1}{p(S)}Zk^{-C_1k} = \frac{\beta k^{-C_1k}}{b_v p(S)}
\]

If Apx-DD\((G, \alpha, \beta)\) succeeds then \((\prec, \beta)\) is an \((\alpha, \beta)\)-order with \(\alpha = \beta \varepsilon^{O(1)}\); we will show that, if this is the case, then the last expression in (87) is in \([\varepsilon^2k^{-O(k)}, 1]\). This implies that \(p_{\text{acc}}(v, S)\) is a well-defined probability; the uniformity of the returned graphlets then follows immediately from the fact that the sampling routine is the one of Ugs.

Upper bound. We bound \(b_v p(S)\) from below. First, since \(v\) was chosen, then \(p_v > 0\) and thus \(b_v > 0\), in which case by construction Apx-DD\((G, \alpha, \beta)\) sets:

\[
b_v = \min(d_v, d(v|G(v)))^{k-1} \geq d(v|G(v))^{k-1}
\]

Now we adapt the lower bound on \(p(S)\) of Lemma 12 by modifying 53. By Definition 8 \(b_v > 0\) implies \(|B(v)| > 0\), so the hypotheses of Lemma 12 are satisfied. Since \(G[S]\) is connected, then at least one sequence \(v, u_2, \ldots, u_k\) exists such that \(c_i \geq 1\) for all \(i = 1, \ldots, k - 1\), and \(p(S)\) is at
least the probability that RAND-GROW follows that sequence. By Lemma 13 all $u \succ v$ satisfy $d(u)\leq \frac{1}{\alpha} \cdot d(v)$; this holds for $u = v$ as well, since $\alpha \leq 1$. It follows that $c_i \leq \frac{1}{\alpha} d(v)$ for all $i = 1, \ldots, k - 1$. Hence, for all $i = 1, \ldots, k - 1$, (93) becomes:

$$p(u_{i+1} = v) \geq \frac{\alpha}{kd(v)}$$

Thus the probability that the algorithm follows v, u_2, \ldots, u_k is at least

$$p(S) \geq \prod_{i=1}^{k-1} \frac{\alpha}{kd(v)} = \frac{\alpha^{k-1}}{(k-1)! d(v)\alpha^{k-1}}$$

Combining (88) and (90), we conclude that for some absolute constant C_2:

$$b_v \cdot p(S) \geq d(v)\alpha^{k-1}. \frac{\alpha^{k-1}}{(k-1)! d(v)\alpha^{k-1}} \geq \frac{\alpha^{k-1}}{(k-1)!}$$

and therefore

$$\frac{\beta k^{-(c_1k)}}{b_v \cdot p(S)} \leq \frac{\beta k^{-(c_1k)}}{\alpha^{k-1}} \leq \frac{\beta k^{-(c_1-k)}}{\alpha^{k-1}}$$

for some constant C_3. Choosing $C_1 \geq C_3$, the acceptance probability is in $[0, 1]$.

Lower bound. We bound $b_v \cdot p(S)$ from above. On the one hand, note that the upper bound on $p(S)$ of Lemma 12 applies even for an (α, β)-order. Indeed, that bound is based on the lower bound of Lemma 11 whose proof uses only $d(v)$ but not $d(u)$ for any $u \succ v$. Thus,

$$p(S) \leq \frac{k^{C_4k}}{d(v)\alpha^{k-1}}$$

for some constant C_4. On the other hand, $b_v \leq d_v^{k-1}$ by construction of APX-DD. Moreover, since $b_v > 0$, by Definition 8 we have $d_v \leq \frac{1}{\alpha} d(v)$. Therefore,

$$b_v \leq \frac{1}{\alpha^{k-1}} d(v)\alpha^{k-1}$$

We conclude that:

$$b_v \cdot p(S) \leq \frac{1}{\alpha^{k-1}} d(v)\alpha^{k-1} \frac{k^{C_4k}}{d(v)\alpha^{k-1}} = \frac{k^{C_4k}}{\alpha^{k-1}}$$

Since $\alpha = \beta\frac{1}{\alpha^{k-1}}$, we have:

$$b_v \cdot p(S) \leq \frac{k^{C_4k}(6k^3)^{k-1}}{\beta} \leq \frac{k^{C_4k}}{\beta}$$

for some constant C_5. Hence,

$$\frac{\beta k^{-(c_1k)}}{b_v \cdot p(S)} \geq \frac{\beta k^{-(c_1k)}}{\beta k^{C_5k}} = \beta^2 c^{-(c_1k)}$$

Replacing $\beta = \frac{\epsilon}{2}$ shows that the acceptance probability is at least $\epsilon^2 k^{-O(k)}$, as claimed.
UGS-COMPARE is now our baseline. Our goal is building an algorithm whose output distribution is $\frac{\epsilon}{3}$-close to that of UGS-COMPARE, without using the sorted adjacency lists. To this end we will carefully re-design the routines of UGS and use several coupling arguments. In what follows we assume that $V(G)$ is sorted by \prec, and we fix some $v \in V(G)$ with $b_v > 0$.

7.2.1 Approximating the cuts

First, we show how to estimate efficiently the size of the cuts encountered by the random growing process. We will use these estimates to approximate the random growing process itself, as well as the computation of $p_v(g)$. The quality of our estimates and the cost of computing them are both based on the properties of (α, β)-DD orders.

Algorithm 7 EstimateCuts($G, v, U, \alpha, \beta, \delta$)

1. let $\ell = \frac{1}{\ell \log \frac{1}{\beta\delta}}$. $h = \Theta\left(\ell^2 \log \frac{1}{\delta}\right)$
2. let $\bar{c}(U) = 0$
3. for each $u \in U$ do
 4. sample h neighbors x_1, \ldots, x_h of u i.i.d. u.a.r.
 5. let $X = \sum_{j=1}^{h} \mathbb{I} \{x_j \succ v \wedge x_j \notin U\}$
 6. if $X \geq \ell$ then let $\bar{c}(u) = \frac{h}{\ell} X$ else let $\bar{c}(u) = 0$
7. return $\{\bar{c}(u)\}_{u \in S}$

Lemma 17. EstimateCuts(G, v, U, α, β) runs in time $O\left(|U|^2 \frac{1}{k^3\alpha^2} \log \frac{1}{\delta}\right)$.

Proof. At each iteration EstimateCuts(G, v, U, α, β) draws $h = O\left(\frac{1}{k^2\alpha^2} \log \frac{1}{\beta\delta}\right)$ samples, which is in $O\left(\frac{1}{k^3\alpha^2} \log \frac{1}{\delta}\right)$ as $\log \frac{1}{\beta\delta} = O\left(k \log \frac{1}{\beta}\right)$. For each sample, computing $\mathbb{I} \{x_j \succ v \wedge x_j \notin U\}$ takes time $O(|U|)$ via edge queries. Summing over all iterations gives a bound of $O(|U||U|) \cdot O\left(\frac{1}{k^3\alpha^2} \log \frac{1}{\delta}\right) = O\left(|U|^2 \frac{1}{k^3\alpha^2} \log \frac{1}{\delta}\right)$. \square

Lemma 18. Let $G[U]$ be a connected subgraph of $G(v)$ on $i < k$ vertices containing v. With probability $1 - \text{poly} \frac{1}{U}$, the output of EstimateCuts($G, v, U, \alpha, \beta, \delta$) satisfies:

$$|\bar{c}(u) - c(u)| \leq \delta d(v|G(v)) \quad \forall u \in U$$ \hspace{1cm} (99)

where $c(u) = |\text{Cut}(u, G(v) \setminus U)|$. In this case, then $|\bar{c}(U) - c(U)| \leq |U|\delta k c(U)$ too, where $\bar{c}(U) = \sum_{u \in U} \bar{c}(u)$ and $c(U) = \sum_{u \in U} c(u) = |\text{Cut}(U, G(v) \setminus U)|$.

Proof. Fix any $u \in U$, and consider the iteration where the edges of u are sampled. For each $j \in [h]$ let $X_{u,j} = \mathbb{I} \{x_j \succ v \wedge x_j \notin U\}$. Clearly, $\mathbb{E}[X_{u,j}] = \frac{h c(u)}{d(u)}$. Let $X_u = \sum_{j=1}^{h} X_{u,j}$; this is the value of X tested by the algorithm at u’s round. To begin, we note that:

$$\mathbb{E}\left[\frac{d_u}{h} X_u\right] = \frac{d_u}{h} \mathbb{E}\left[\sum_{j=1}^{h} X_{u,j}\right] = c(u)$$ \hspace{1cm} (100)

Define $\gamma(u) = \frac{d_u}{h} X_u$. Clearly,

$$\mathbb{P}\left(|\gamma(u) - c(u)| > \delta d(v|G(v))\right) = \mathbb{P}\left(|X_u - \mathbb{E}[X_u]| > h \frac{d(v|G(v))}{d_u}\right)$$ \hspace{1cm} (101)
Note that the algorithm can set \(\hat{c}(u) = \gamma(u) \) or \(\hat{c}(u) = 0 \). First, we show that \(\gamma(u) \) is concentrated around \(c(u) \). Then, we deal with the value of \(\hat{c}(u) \) set by the algorithm.

Clearly \(X \) is the sum of \(h \) i.i.d. indicator random variables. By Hoeffding’s inequality, for any \(\delta > 0 \), we have \(\Pr(|X_u - \mathbb{E}X_u| > t) < 2e^{-2t^2/h} \). With \(t = \frac{\delta d(v|G(v))}{d_u} \), we obtain:

\[
\Pr \left(|X_u - \mathbb{E}X_u| > \delta \frac{d(v|G(v))}{d_u} \right) < 2 \exp \left(-\frac{2\delta^2 (d(v|G(v)))^2}{d_u} \right)
\]

(102)

Now, as \(b_u > 0 \) and \(u \geq v \), by Definition 8 we have \(d(v|G(v)) \geq \alpha d_u \) and \(d_v \geq 3k\alpha d_u \). Hence, \(d_u < \frac{1}{3k\alpha^2} d(v|G(v)) \), so \(\frac{d(v|G(v))}{d_u} > 3k\alpha^2 \). Therefore:

\[
\delta^2 \left(\frac{d(v|G(v))}{d_u} \right)^2 \geq 9h \delta^2 k^2 \alpha^4
\]

(103)

However, note that \(h = \Theta \left(\frac{1}{\delta^2 k^2 \alpha^4 \log \frac{k}{\beta}} \right) \). Thus, \(\Pr \left(|\gamma(u) - c(u)| > \delta d(v|G(v)) \right) \leq \text{poly} \left(\frac{k}{\beta} \right) \).

Now, the algorithm fails if it either sets \(\hat{c}(u) = \gamma(u) \) and \(|\gamma(u) - c(u)| > \delta d(v|G(v)) \), or if it sets \(\hat{c}(u) = 0 \) and \(|0 - c(u)| > \delta d(v|G(v)) \). The probability of the first event is at most the probability that \(|\gamma(u) - c(u)| > \delta d(v|G(v)) \), which is poly \(\frac{k}{\beta} \) as shown above. So we must bound the probability that \(\hat{c}(u) = 0 \) and \(|0 - c(u)| > \delta d(v|G(v)) \); this second condition is just \(c(u) > \delta d(v|G(v)) \). Recalling that \(\mathbb{E}X_u = h\frac{c(u)}{d_u} \) and that \(\frac{d(v|G(v))}{d_u} \geq 3k\alpha^2 \) and \(\delta = \frac{\delta}{\text{poly}(k)} \), we obtain:

\[
\mathbb{E}X_u = h \frac{c(u)}{d_u} > h \delta \frac{d(v|G(v))}{d_u} \geq 3k \delta \alpha^2 \delta
\]

(104)

Note that \(h \delta \alpha^2 \delta = \frac{h}{\ell} \in \Omega \left(\sqrt{h \log \frac{k}{\beta}} \right) \). Also note that \(\ell = o \left(\frac{h}{k^2 \alpha^4} \right) \). This implies:

\[
\mathbb{E}X_u - \ell = \Omega \left(\sqrt{h \log \frac{k}{\beta}} \right)
\]

(105)

Now, \(\hat{c}(u) = 0 \) by construction of the algorithm implies \(X_u < \ell \), which can be rewritten as \(X_u < \mathbb{E}X_u - t \) with \(t = \mathbb{E}X_u - \ell = \Omega \left(\sqrt{h \log \frac{k}{\beta}} \right) \). Since \(X_u \) is the sum of \(h \) i.i.d. indicator random variables, Hoeffding’s inequality gives:

\[
\Pr (X_u - \mathbb{E}X_u < t) < e^{-2t^2/h} = \exp \left(-\frac{\Omega \left(\sqrt{h \log \frac{k}{\beta}} \right)^2}{h} \right) = \exp \left(-\frac{\Omega \left(\frac{k}{\beta} \right)}{h} \right)
\]

(106)

Hence this event has probability at most poly \(\frac{\beta}{\ell} \), too. We conclude that \(|\hat{c}(u) - c(u)| \leq \delta d(v|G(v)) \) with probability at least \(1 - \text{poly} \left(\frac{\beta}{k^2 \alpha^4} \right) \). By a union bound over \(u \in S \), this proves the claim for the \(\hat{c}(u) \).

For \(\hat{c}(U) \), note that:

\[
|\hat{c}(U) - c(U)| = \left| \sum_{u \in U} \hat{c}(u) - \sum_{u \in U} c(u) \right| \leq \sum_{u \in U} |\hat{c}(u) - c(u)| \leq |U| \delta d(v|G(v))
\]

(107)

By Lemma 11, \(d(v|G(v)) \leq kc(U) \), concluding the proof. □
7.2.2 Approximating the random growing process

Using EstimateCuts we now run an approximate random growing process as follows. Start with $S_i = \{v\}$, and at each step $i = 1, \ldots, k-1$, run EstimateCuts with $U = S_i$. This gives estimates of $|\text{Cut}(u, G(v) \setminus S_i)|$ for all $u \in S_i$. Using these estimates, sample a random edge near-uniformly from $\text{Cut}(S_i, G(v) \setminus S_i)$. The result is the following routine whose output distribution is close to RAND-GROW.

Algorithm 8 APX-RAND-GROW($G, v, \alpha, \beta, \gamma$)

1: $S_1 = \{v\}$
2: for $i = 1, \ldots, k-1$
3: $(\hat{c}_i(u))_{u \in S_i} = \text{EstimateCuts}(G, v, S_i, \alpha, \beta, O(\gamma k^{-4}))$
4: $\hat{c}_i = \sum_{u \in S_i} \hat{c}_i(u)$
5: draw u with probability $\frac{\hat{c}_i(u)}{\hat{c}_i}$ (if all $\hat{c}_i(u) = 0$ then FAIL)
6: repeat
7: draw u' u.a.r. from the adjacency list of u
8: until $u' \in G(v) \setminus S_i$
9: let $S_{i+1} = S_i \cup \{u'\}$
10: return S_k

Lemma 19. Let p be the output distribution of RAND-GROW(G, v) and q the output distribution of APX-RAND-GROW($G, v, \alpha, \beta, \gamma$). Then, $\text{tvd}(p, q) \leq \gamma + \text{poly} \frac{\delta}{k}$.

Proof. We establish a coupling between the two algorithms. For $i = 1$, both algorithms set $S_1 = \{v\}$. Now suppose that both algorithms agree on S_1, \ldots, S_i and they are about to choose S_{i+1}. We show that with probability $1 - \frac{\delta}{k^2}$ they agree on the next edge drawn, and therefore on S_{i+1}. Here, C is a constant that we can make arbitrarily large by appropriately choosing the constants used along the algorithm and in EstimateCuts.

For $u \in S_i$ let $c_i(u) = |\text{Cut}(u, G(v) \setminus S_i)|$, and let $c_i = \sum_{u \in S_i} c_i(u)$. For each $u \in S_i$, let $p_i(u) = \frac{\hat{c}_i(u)}{c_i}$ and $q_i(u) = \frac{\hat{c}_i(u)}{c_i}$. So $p_i(u)$ is the probability that RAND-GROW draws u at line 5 and $q_i(u)$ the probability that APX-RAND-GROW draws u at line 5.

Now, if APX-RAND-GROW and RAND-GROW both choose u, then we can couple them so that they choose the same edge. This holds since both algorithms draw u' uniformly from all neighbors of u in $G(v) \setminus S_i$. So the probability that the two algorithms choose a different edge is at most the probability that they choose u differently, that is, by $\text{tvd}(q_i, p_i) = \frac{1}{2} ||q_i - p_i||_1$. Therefore:

$$\text{tvd}(q_i, p_i) = \frac{1}{2} \sum_{u \in S_i} |q_i(u) - p_i(u)| = \sum_{u \in T} (q_i(u) - p_i(u)) = \sum_{u \in T} \left(\frac{\hat{c}_i(u)}{c_i(S_i)} - \frac{c_i(u)}{c_i} \right)$$

(108)

where $T = \{ u \in S_i : q_i(u) > p_i(u) \}$. Now, by Lemma 18 with probability $1 - \text{poly} \frac{\delta}{k}$, we have $|\hat{c}_i(u) - c_i(u)| \leq \delta d(c|G(v))$ for all $u \in S_i$, and $|\hat{c}(S_i) - c_i| \leq k^2 \delta c_i$. In this case,

$$\frac{\hat{c}_i(u)}{c_i(S_i)} - \frac{c_i(u)}{c_i} \leq \frac{c_i(u) + \delta d(c|G(v))}{c_i(1 - k^2 \delta)} - \frac{c_i(u)}{c_i}$$

(109)

$$= \frac{c_i(u) + \delta d(c|G(v)) - c_i(u)(1 - k^2 \delta)}{c_i(1 - k^2 \delta)}$$

(110)

$$= \frac{\delta d(c|G(v)) + k^2 \delta c_i(u)}{c_i(1 - k^2 \delta)}$$

(111)
Clearly, \(c_i(u) \leq c_i \), and by Lemma 11 \(d(c(G(v))) \leq kc_i \). Therefore:

\[
\frac{\delta d(c(G(v))) + k^2 \delta c_i(u)}{c_i(1-k^2\delta)} \leq \frac{\delta k c_i + k^2 \delta c_i}{c_i(1-k^2\delta)} \leq \frac{\delta k + k^2 \delta}{1-k^2\delta} = \frac{2\delta k^2}{1-k^2\delta} \leq k \cdot \frac{2\delta k^2}{1-k^2\delta} = \frac{2\delta k^3}{1-k^2\delta} \quad (115)
\]

For any \(\delta = O\left(\frac{k^2}{\gamma}\right) \), this is in \(O\left(\frac{k^2}{\gamma}\right) \). Taking the sum over \(u \in T \), we obtain \(\text{tvd}(q_i, p_i) = O\left(\frac{k^2}{\gamma}\right) \).

Thus, the two algorithms will disagree on \(S_{i+1} \) with probability at most \(\text{poly} \frac{k}{\gamma} + O(\gamma) \). By a union bound on all \(i \), the algorithms disagree on \(S_k \) with probability \(\text{poly} \frac{k}{\gamma} + O(\gamma) \). The \(O(\gamma) \) part can made smaller than \(\gamma \) by choosing \(\delta = O\left(\frac{k^2}{\gamma}\right) \) small enough.

Lemma 20. Apx-Rand-Grow\((G, v, \alpha, \beta, \gamma)\) has expected running time \(O\left(\frac{k^2}{\gamma} \log \frac{1}{\gamma}\right) \).

Proof. At each iteration, since \(|S_i| < k \), by Lemma 17 obtaining the cut estimates takes time \(O\left(\frac{k}{\alpha \gamma} \log \frac{1}{\gamma}\right) \). As \(\delta = O\left(\frac{k}{\gamma}\right) \), this gives a bound of \(O\left(\frac{k^2}{\gamma} \log \frac{1}{\gamma}\right) = O\left(\frac{k^4}{\gamma} \log \frac{1}{\gamma}\right) \). We show that this dominates the expected time of the trials at lines 4-8 as well.

Let \(T \) be the random variable giving the number of times lines 4-8 are executed. Let \(\mathcal{E}_u \) be the event that \(u \in S_i \) is chosen at line 4. Clearly \(\mathcal{E}_u \) implies \(c_i(u) > 0 \). Thus, \(\mathbb{P}(\mathcal{E}_u) \leq \mathbb{P}(c_i(u) > 0) \).

Moreover, conditioned on \(\mathcal{E}_u \), the algorithm returns after \(\frac{d_u}{c_i(u)} \) trials in expectation. Therefore:

\[
\mathbb{E}T = \sum_{u \in S_i} \mathbb{P}(\mathcal{E}_u) \mathbb{E}[T | \mathcal{E}_u] \leq \sum_{u \in S_i} \mathbb{P}(c_i(u) > 0) \frac{d_u}{c_i(u)} \quad (116)
\]

Now recall EstimateCuts. By construction \(c_i(u) > 0 \) implies \(X_u \geq \ell \), where \(\mathbb{E}X_u = \frac{c_i(u)}{d_u} h \). By Markov’s inequality:

\[
\mathbb{P}(c_i(u) > 0) = \mathbb{P}(X \geq \ell) \leq \frac{\mathbb{E}X}{\ell} = \frac{c_i(u)}{d_u} \frac{h}{\ell} \leq \frac{c_i(u)}{d_u} (\ell \log k) \beta \quad (117)
\]

Therefore:

\[
\mathbb{E}T \leq \sum_{u \in S_i} \frac{c_i(u)}{d_u} \ell \log k \beta \frac{d_u}{c_i(u)} \leq k \ell \log k \beta = \frac{1}{\alpha \gamma} \log k \beta = \frac{k}{\alpha \gamma} \log \frac{1}{\gamma} \quad (118)
\]

Finally, note that each single trial takes time \(O(k) \) via edge queries. The resulting time bound is in \(O\left(\frac{k^2}{\gamma} \log \frac{1}{\gamma}\right) \), which is dominated by the sampling running time, see above. \(\Box \)

7.2.3 Approximating the acceptance probability

Next, we compute an acceptance probability. For any \(g \in B(v) \), let \(q_\beta(g) \) be the probability that Apx-Rand-Grow returns \(g \). If we could compute \(q_\beta(g) \), we would be done. However, computing \(q_\beta(g) \) requires computing the exact sizes of the cuts, which takes time \(\Omega(\Delta) \) in the worst case. Fortunately, we can show that a good approximation of \(p_\beta(g) \), the probability that Rand-Grow returns \(g \), is sufficient. By the properties of \((\alpha, \beta)\)-DD orders, we can compute such an approximation efficiently.

Lemma 21. For any \(g = G[S] \in B(v) \) and \(\rho > 0 \), Apx-Prob\((G, S, \alpha, \beta, \rho)\) runs in time \(k \frac{O(k)}{\rho \alpha} \log \frac{1}{\rho} \), and with probability \(1 - \text{poly} \frac{k}{\rho} \) returns a multiplicative \((1 \pm \rho)\)-approximation \(\hat{p}_\rho(g) \) of \(p_\rho(g) \).
Algorithm 9 APX-PROB\((G, S = \{v, u_2, \ldots, u_k\}, \alpha, \beta, \rho)\)

1: \(\hat{p} = 0\)
2: for each permutation \(\sigma = (\sigma_2, \ldots, \sigma_k)\) of \(u_2, \ldots, u_k\) do
3: \(\hat{p}_\sigma = 1\)
4: for each \(i = 1, \ldots, k - 1\) do
5: \(S_i = \{v, \sigma_2, \ldots, \sigma_i\}\)
6: \(n_i = |\text{Cut}(S_i, \sigma_{i+1})|\)
7: \((\hat{c}_i(u))_{u \in S_i} = \text{ESTIMATECUTS}(G, v, S_i, \alpha, \beta, \rho, O(\frac{\rho}{\delta}))\)
8: \(\hat{c}_i = \sum_{u \in S_i} \hat{c}_i(u)\)
9: \(\hat{p}_\sigma = \hat{p}_\sigma \cdot \frac{\hat{c}_i}{c_i}\)
10: \(\hat{p} = \hat{p} + \hat{p}_\sigma\)
11: return \(\hat{p}\)

Proof sketch. The running time analysis is straightforward. For the correctness, let \(\Sigma\) be the set of all permutations \(\sigma = (\sigma_1, \ldots, \sigma_k)\) of \(v, u_2, \ldots, u_k\) such that \(\sigma_1 = v\). For each \(\sigma \in \Sigma\), let \(S_\sigma^0\) be the first \(i\) nodes in \(S\) as given by \(\sigma\). Note that APX-PROB returns:

\[
\hat{p} = \sum_{\sigma \in \Sigma} \frac{\prod_{i=1}^{k-1} n(S_\sigma^i)}{c(S_\sigma^i)}
\]

(119)

where \(n(S_\sigma^i)\) is the size of the cut between \(S_\sigma^i\) and \(\sigma_{i+1}\), and \(\hat{c}(S_\sigma^i)\) is the value of \(\hat{c}_i\) used by the APX-PROB. Instead, PROB\((G, S)\) returns:

\[
p = \sum_{\sigma \in \Sigma} p_\sigma = \sum_{\sigma \in \Sigma} \frac{\prod_{i=1}^{k-1} n(S_\sigma^i)}{c(S_\sigma^i)}
\]

(120)

Therefore,

\[
\frac{\hat{p}}{p} = \frac{\sum_{\sigma \in \Sigma} \prod_{i=1}^{k-1} c(S_\sigma^i)}{\sum_{\sigma \in \Sigma} \prod_{i=1}^{k-1} \hat{c}(S_\sigma^i)}
\]

(121)

Look at a single term \(\sigma\). Note that \(\hat{c}(S_\sigma^i)\) is estimated as in \(\text{ESTIMATECUTS}(G, v, U, \alpha, \beta, \delta)\), but with \(k\) times as many samples. Therefore, the guarantees of Lemma 18 apply, but the deviation probability shrinks by a factor \(2^{-k}\). Since there are at most \(2^k\) different subsets \(S_\sigma^i\), by a union bound, with probability \(1 - \text{poly}\left(\frac{\delta}{k}\right)\) we have \(\hat{c}(S_\sigma^i) \in c(S_\sigma^i) \cdot (1 \pm \delta k^2)\) for all \(S_\sigma^i\) simultaneously, where we used \(|S| \leq k\). Thus,

\[
\frac{\prod_{i=1}^{k-1} c(S_\sigma^i)}{\prod_{i=1}^{k-1} \hat{c}(S_\sigma^i)} = \prod_{i=1}^{k-1} \frac{c(S_\sigma^i)}{\hat{c}(S_\sigma^i)} \leq \left(\frac{1}{1 \pm \delta k^2}\right)^{k-1}
\]

(122)

For \(\delta = O\left(\frac{\rho}{\delta^2}\right)\) small enough, the right-hand side is in \((1 \pm \rho)\). This gives \(\frac{\hat{p}}{p} \in (1 \pm \rho)\), as claimed. \(\blacksquare\)

7.2.4 Coupling the algorithms

We conclude the sampling phase of APX-UGS. After drawing \(v\), we invoke APX-RAND-GROW\((G, v, \alpha, \beta, \gamma)\) and APX-PROB\((G, S, \alpha, \beta, \rho)\) with \(\gamma = \rho = \varepsilon^3 k^{-C_2k}\), where \(S\) is the set of vertices returned by APX-RAND-GROW. Hence we have a random graphlet \(g = G[S]\) together with a probability estimate \(\hat{p}_v(g)\). We then accept \(g\) with probability inversely proportional to \(\hat{p}_v(g)\). For reference, see the code below.
Algorithm 10 APX-Ugs(G, ε)

1: let $C_1, C_2 = $ large enough universal constants
2: let $\beta = \frac{\varepsilon}{2}$ and let $(\prec, b) = $ APX-DD(G, α, β)
3: let $Z = \sum_{v \in V} b_v$, and for each $v \in V$ let $p(v) = \frac{b_v}{Z}$
4: sort $V(G)$ according to \prec
5: function SAMPLE()
6: while true do
7: draw v from the distribution p
8: $S = $ APX-Rand-Grow($G, v, \alpha, \beta, \varepsilon^3 k^{-C_2 k}$)
9: $\hat{p}(S) = $ APX-Prob($G, S, \alpha, \beta, \varepsilon^3 k^{-C_2 k}$)
10: with probability $\min(1, \frac{1}{p(v) \hat{p}(S)} \frac{\beta}{Z^{k^{-C_1 k}}})$ return S

The next two lemmas show that APX-Ugs satisfies the claims of Theorem 3.

Lemma 22. Suppose that the preprocessing of APX-Ugs(G, ε) succeeds (Lemma 14). Then, each invocation of SAMPLE() returns a graphlet independently and ε-uniformly at random from G.

Proof. By Lemma 14, APX-DD(G, α, β) with high probability returns an (α, β)-DD order for G. The rest of the proof is conditioned on this event. We will couple the sampling phases of APX-Ugs(G, ε) and Ugs-Compare(G, ε). Note that the the preprocessing phases of the two algorithms are identical (save for the fact that Ugs-Compare also sorts the adjacency lists). In particular, they use the same order \prec over $V(G)$, which induces the same bucketing $\{B(v)\}_{v \in V}$, as well as the same bucket size estimates $\{b_v\}_{v \in V}$, and therefore also the same distribution p over V.

Let $H = \{v \in V : b_v > 0\}$. Let U_V and U_H be the uniform distributions respectively over $\cup_{v \in V} B(v)$ and $\cup_{v \in H} B(v)$, and let q be the output distribution of APX-Ugs::Sample. Our claim is that $\text{tvd}(q, U_V) \leq \varepsilon$. By the triangle inequality, $\text{tvd}(q, U_V) \leq \text{tvd}(U_H, U_V) + \text{tvd}(q, U_H)$, and by Definition 8 the buckets indexed by H hold a fraction at least $1 - \beta = 1 - \frac{\varepsilon}{2}$ of all graphlets, hence $\text{tvd}(U_H, U_V) \leq \frac{\varepsilon}{2}$. Therefore, to prove that $\text{tvd}(q, U_V) \leq \varepsilon$ we need only to prove that $\text{tvd}(q, U_H) \leq \frac{\varepsilon}{2}$, which we do in the remainder.

First, by Lemma 14 U_H is precisely the output distribution of Ugs-Compare::Sample. Thus, we will couple Ugs-Compare::Sample and APX-Ugs::Sample; under this coupling they will return the same graphlet with probability at least $1 - \frac{\varepsilon}{2}$, establishing that $\text{tvd}(q, U_H) \leq \frac{\varepsilon}{2}$

To begin, since the Ugs-Compare::Sample and APX-Ugs::Sample use the same distribution p over the buckets, we can couple them so that they choose the same bucket $B(v)$. Now let S_P denote the random set of nodes drawn by Ugs-Compare::Sample at line 10 and by S_Q the one drawn by APX-Ugs::Sample at line 10. As the two algorithms invoke respectively Rand-Grow(G, v) and APX-Rand-Grow($G, v, \alpha, \frac{\varepsilon}{2}, \varepsilon^3 k^{-C_2 k}$), Lemma 10 yields:

$$\text{tvd}(S_P, S_Q) \leq \varepsilon^3 k^{-C_2 k} + \text{poly}(\frac{\varepsilon}{k})$$

Hence, we can couple the two algorithms so that $\Pr(S_Q \neq S_P) \leq \varepsilon^3 k^{-C_2 k}$.

Now let X_P be the indicator random variable of the event that Ugs-Compare::Sample accepts S_P (line 12 of Ugs-Compare), and X_Q the indicator random variable of the event that APX-Ugs::Sample accepts S_Q (line 11 of APX-Ugs). The outcome of Ugs-Compare::Sample is the pair (S_P, X_P), and that of APX-Ugs::Sample is the pair (S_Q, X_Q). Let D_P and D_Q be the distributions of respectively (S_P, X_P) and (S_Q, X_Q). Note that $D_P(\cdot | X_P = 1)$ and $D_Q(\cdot | X_Q = 1)$ are the distributions of the graphlets returned by respectively Ugs-Compare::Sample and APX-Ugs::Sample. Thus, our goal is to show:

$$\text{tvd}(D_P(\cdot | X_P = 1), D_Q(\cdot | X_Q = 1)) \leq \frac{\varepsilon}{2}$$

(124)
Let \(X_\nu = \max(X_P, X_Q) \) be the indicator random variable of the event that at least one algorithm accepts its graphlet. Clearly \(\mathbb{P}(X_\nu = 1) \geq \mathbb{P}(X_P = 1) \), and by Lemma 10 \(P(X_P = 1) \geq \varepsilon^2 k^{-O(k)} \). By the triangle inequality:

\[
tvd(D_P(\cdot|X_P = 1), D_Q(\cdot|X_Q = 1)) \leq tvd(D_P(\cdot|X_P = 1), D_P(\cdot|X_\nu = 1))
+ tvd(D_P(\cdot|X_\nu = 1), D_Q(\cdot|X_Q = 1))
+ tvd(D_Q(\cdot|X_Q = 1), D_Q(\cdot|X_\nu = 1))
\] (125)

Let us start by bounding the middle term. We have:

\[
tvd(D_P(\cdot|X_\nu = 1), D_Q(\cdot|X_Q = 1)) \leq \mathbb{P}(S_Q \neq S_P | X_\nu = 1)
\] (126)

by the coupling

\[
\leq \frac{\mathbb{P}(S_Q \neq S_P)}{\mathbb{P}(X_\nu = 1)}
\] (127)

\[
\leq \frac{\mathbb{P}(S_Q \neq S_P)}{\varepsilon^2 k^{-O(k)}} \quad X_\nu = \max(X_P, X_Q)
\] (128)

\[
\leq \frac{\mathbb{P}(S_Q \neq S_P)}{\varepsilon^2 k^{-C_2 k}} \quad \text{Lemma 10}
\] (129)

\[
\leq \varepsilon^3 k^{-C_3 k}
\] (130)

\[
= \varepsilon k^{-(C_2 + C_3)k}
\] (131)

for some \(C_3 \) independent of \(C_2 \).

We bound similarly the sum of the other two terms. For the first term note that:

\[
tvd(D_P(\cdot|X_P = 1), D_P(\cdot|X_\nu = 1)) \leq \mathbb{P}(X_P = 0 | X_\nu = 1)
\] (132)

This is true since \(D_P(\cdot|X_P = 1) \) is just \(D_P(\cdot|X_\nu = 1) \) conditioned on \(X_P = 1 \), an event which has probability \(1 - \mathbb{P}(X_P = 0 | X_\nu = 1) \). Symmetrically, for the last term

\[
tvd(D_Q(\cdot|X_Q = 1), D_Q(\cdot|X_\nu = 1)) \leq \mathbb{P}(X_Q = 0 | X_\nu = 1)
\] (133)

Thus:

\[
tvd(D_P(\cdot|X_P = 1), D_P(\cdot|X_\nu = 1)) + tvd(D_Q(\cdot|X_Q = 1), D_Q(\cdot|X_\nu = 1))
\] (134)

\[
\leq \mathbb{P}(X_P = 0 | X_\nu = 1) + \mathbb{P}(X_Q = 0 | X_\nu = 1)
\] (135)

Now,

\[
\mathbb{P}(X_P = 0 | X_\nu = 1) + \mathbb{P}(X_Q = 0 | X_\nu = 1) = \mathbb{P}(X_P \neq X_Q | X_\nu = 1)
\] (136)

\[
\leq \frac{\mathbb{P}(X_P \neq X_Q)}{\mathbb{P}(X_\nu = 1)}
\] (137)

\[
\leq \frac{\mathbb{P}(X_P \neq X_Q)}{\varepsilon^2 k^{-O(k)}} \quad \text{see above}
\] (138)

For the numerator,

\[
\mathbb{P}(X_Q \neq X_P) \leq \mathbb{P}(S_Q \neq S_P) + \mathbb{P}(X_Q \neq X_P | S_Q = S_P)
\] (139)

\[
\leq \varepsilon^3 k^{-C_2 k} + \mathbb{P}(X_Q \neq X_P | S_Q = S_P) \quad \text{see above}
\] (140)

As said, \(\mathbb{P}(S_Q \neq S_P) \leq \varepsilon_1 \). As \(X_Q \) and \(X_P \) are binary, our coupling yields:

\[
\mathbb{P}(X_Q \neq X_P | S_Q = S_P) = \left| \mathbb{P}(X_P = 1 | S_Q = S_P) - \mathbb{P}(X_Q = 1 | S_Q = S_P) \right|
\] (141)

\[
\leq \frac{\mathbb{P}(X_P = 1 | S_Q = S_P)}{\mathbb{P}(X_Q = 1 | S_Q = S_P)} - 1
\] (142)
Now, let S be any realization of S_Q and S_P. By construction of the algorithms, $\mathbb{P}(X_P = 1 \mid S_P = S) = \nu$, and $\mathbb{P}(X_Q = 1 \mid S_Q = S) = \min(1, \tilde{\nu})$, where:

$$
\nu = \frac{1}{p(v) p(S)} \beta^{k-C_1k}, \quad \tilde{\nu} = \frac{1}{p(v) \tilde{p}(S)} \beta^{k-C_1k}
$$

(143)

Therefore:

$$
\mathbb{P}(X_Q \neq X_P \mid S_Q = S_P) \leq \left| \frac{\nu}{\min(1, \tilde{\nu})} - 1 \right| \leq \left| \frac{\tilde{\nu}}{\tilde{\nu}} - 1 \right| = \left| \tilde{\nu}(S) - 1 \right| \mathbb{P}(S) - 1
$$

(144)

where the second inequality holds since, if $\tilde{\nu} > 1$, then

$$
\left| \frac{\nu}{\min(1, \tilde{\nu})} - 1 \right| = \left| \frac{\nu}{1} - 1 \right| < \left| \frac{\nu}{\tilde{\nu}} - 1 \right|
$$

(145)

Now, by Lemma 21 with probability $1 - \text{poly} \frac{C}{k}$ we have $\tilde{\nu}(S) \in (1 \pm \varepsilon^3 k^{-C_2k})p(S)$. So, if this event holds, we have $\mathbb{P}(X_Q \neq X_P \mid S_Q = S_P) \leq \varepsilon^3 k^{-C_2k}$. If it fails, we still have the trivial bound $\mathbb{P}(X_Q \neq X_P \mid S_Q = S_P) \leq 1$. By the law of total probability,

$$
\mathbb{P}(X_Q \neq X_P \mid S_Q = S_P) \leq \left(1 - \text{poly} \frac{C}{k} \right) \varepsilon^3 k^{-C_2k} + \text{poly} \frac{C}{k} = O(\varepsilon^3 k^{-C_2k})
$$

(146)

Applying these two bounds to the right-hand side of (139), we obtain:

$$
\mathbb{P}(X_Q \neq X_P) = O(\varepsilon^3 k^{-C_2k})
$$

(147)

Going back to (138), we obtain:

$$
\mathbb{P}(X_P = 0 \mid X_Q = 1) + \mathbb{P}(X_Q = 0 \mid X_Q = 1) = O \left(\frac{\varepsilon^3 k^{-C_2k}}{\varepsilon^2 k^2} \right) = O(\varepsilon)
$$

(148)

By taking this bound together with (131), we conclude that:

$$
\text{tvd}(\mathcal{D}_P(\mid X_P = 1), \mathcal{D}_Q(\mid X_Q = 1)) = O(\varepsilon)
$$

(149)

which we can bring below $\frac{k}{2}$ by adjusting the constants. This concludes the proof. \(\square\)

Lemma 23. Suppose that the preprocessing of APX-Ugs(G, ε) succeeds (Lemma 14). Then, each invocation of Sample() has expected running time $k^{O(k)} \varepsilon^{-4 - \frac{1}{4\alpha^2}} \log \frac{1}{\varepsilon}$.

Proof. First, we bound the expected number of rounds of APX-Ugs::APX-Rand-Grow. Recall X_P and X_Q from the proof of Lemma 22. Note that $\mathbb{P}(X_Q = 1) \geq \mathbb{P}(X_P = 1) - \mathbb{P}(X_Q \neq X_P)$. Moreover, the proof of Lemma 22 showed $\mathbb{P}(X_Q \neq X_P) = O(\varepsilon^3 k^{-C_2k})$. Therefore, $\mathbb{P}(X_Q = 1) \geq \mathbb{P}(X_P = 1) - O(\varepsilon^3 k^{-C_2k})$. However, by Lemma 16 $\mathbb{P}(X_P = 1) \geq k^{-C_2k}$ for some constant C_3. Therefore, $\mathbb{P}(X_Q = 1) \geq \varepsilon^2 k^{-C_3k} - \varepsilon^3 k^{-C_2k} = k^{-O(k)}\varepsilon^2$. So the expected number of rounds performed by APX-Ugs::APX-Rand-Grow is bounded by $k^{O(k)} \varepsilon^{-2}$.

Now we bound the expected time spent in each round. By Lemma 20 and as $\gamma = \varepsilon^3 k^{-C_2k}$ and $\alpha = \beta = \frac{1}{6k}$ and $\beta = \frac{3}{2}$, APX-Rand-Grow($G, v, \alpha, \beta, \gamma$) has expected running time at most:

$$
O \left(\frac{k^9}{\gamma^2 \alpha^4} \log \frac{1}{\gamma} \right) = k^{O(k)} \varepsilon^{-4 - \frac{1}{4\alpha^2}} \log \frac{1}{\varepsilon}
$$

(150)

Note that the bound holds at each round, regardless of past events. Using Lemma 21 one can show the same bound holds for the running time APX-Prob($G, S, \alpha, \beta, \rho$), where $\rho = \varepsilon^3 k^{-C_2k}$.

Therefore, the total expected running time satisfies:

$$
\mathbb{E}[T] \leq k^{O(k)} \varepsilon^{-2} \cdot k^{O(k)} \varepsilon^{-4 - \frac{1}{4\alpha^2}} \log \frac{1}{\varepsilon} = k^{O(k)} \varepsilon^{-8 - \frac{1}{4\alpha^2}} \log \frac{1}{\varepsilon}
$$

(151)

which concludes the proof. \(\square\)
8 Conclusions

We have shown that, starting from just sorting a graph in linear time, one can overcome the usual inefficiency of rejection sampling of graphlets. This idea yields the first efficient uniform and ε-uniform graphlet sampling algorithms, with preprocessing times $O(|G|)$ and $O(|V(G)| \log |V(G)|)$. These are the first algorithms with strong theoretical guarantees for these problems in a long line of research that spans the last decade. Due to their simplicity, we believe that our algorithms are amenable to being ported in parallel, distributed, or dynamic settings; these are all directions for future research. We also leave open the problem of determining whether $\Omega(|G|)$ operations are necessary for uniform graphlet sampling when $|G| = \omega(|V(G)|)$; a positive answer would imply the optimality of our uniform sampling algorithm.

Acknowledgements

Part of this work was done while the author was at the Sapienza University of Rome. The author was partially supported by Google under the Focused Award “Algorithms and Learning for AI” (ALL4AI), by the Bertinoro International Center for Informatics (BICI), by the European Research Council under the Starting Grant DMAP 680153, and by the Department of Computer Science of the Sapienza University of Rome under the grant Dipartimenti di Eccellenza 2018-2022”.

References

[1] M. Agostini, M. Bressan, and S. Haddadan. Mixing time bounds for graphlet random walks. *Information Processing Letters*, 152:105851, 2019.

[2] D. Aldous and J. Fill. *Reversible Markov chains and random walks on graphs*. 1995.

[3] N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. C. Sahinalp. Biomolecular network motif counting and discovery by color coding. *Bioinformatics*, 24(13):i241–249, Jul 2008.

[4] N. Alon, R. Yuster, and U. Zwick. Color-coding. *J. ACM*, 42(4):844–856, 1995.

[5] S. Assadi, M. Kapralov, and S. Khanna. A Simple Sublinear-Time Algorithm for Counting Arbitrary Subgraphs via Edge Sampling. In *Proc. of ITCS*, volume 124, pages 6:1–6:20, 2018.

[6] M. A. Bhuiyan, M. Rahman, M. Rahman, and M. Al Hasan. Guise: Uniform sampling of graphlets for large graph analysis. In *Proc. of IEEE ICDM 2012*, pages 91–100, 2012.

[7] A. S. Biswas, T. Eden, and R. Rubinfeld. Towards a Decomposition-Optimal Algorithm for Counting and Sampling Arbitrary Motifs in Sublinear Time. In *Proc. of APPROX/RANDOM*, volume 207, pages 55:1–55:19, 2021.

[8] A. Bonato, D. F. Gleich, M. Kim, D. Mitsche, P. Prałat, Y. Tian, and S. J. Young. Dimensionality of social networks using motifs and eigenvalues. *PloS one*, 9(9):e106052, 2014.

[9] M. Bressan. Faster subgraph counting in sparse graphs. In *Proc. of IPEC*, volume 148 of *LIPIcs*, pages 6:1–6:15, 2019.

[10] M. Bressan. Efficient and near-optimal algorithms for sampling connected subgraphs. In *Proc. of ACM STOC*, page 1132–1143, 2021.

[11] M. Bressan. Faster algorithms for counting subgraphs in sparse graphs. *Algorithmica*, 2021.
[12] M. Bressan, F. Chierichetti, R. Kumar, S. Leucci, and A. Panconesi. Counting graphlets: Space vs time. In Proc. of ACM WSDM, pages 557–566, 2017.

[13] M. Bressan, F. Chierichetti, R. Kumar, S. Leucci, and A. Panconesi. Motif counting beyond five nodes. ACM Trans. Knowl. Discov. Data, 12(4), Apr. 2018.

[14] M. Bressan, S. Leucci, and A. Panconesi. Motivo: Fast motif counting via succinct color coding and adaptive sampling. Proc. VLDB Endow., 12(11):1651–1663, July 2019.

[15] M. Bressan, S. Leucci, and A. Panconesi. Faster motif counting via succinct color coding and adaptive sampling. ACM Trans. Knowl. Discov. Data, 15(6), May 2021.

[16] J. Chen, W. Hsu, M. L. Lee, and S.-K. Ng. Nemofinder: Dissecting genome-wide protein-protein interactions with meso-scale network motifs. In Proc. of ACM KDD, page 106–115, 2006.

[17] X. Chen, Y. Li, P. Wang, and J. C. S. Lui. A general framework for estimating graphlet statistics via random walk. Proc. VLDB Endow., 10(3):253–264, Nov. 2016.

[18] D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning about a Highly Connected World. Cambridge University Press, 2010.

[19] T. Eden, A. Levi, D. Ron, and C. Seshadhri. Approximately counting triangles in sublinear time. SIAM Journal on Computing, 46(5):1603–1646, 2017.

[20] T. Eden, S. Mossel, and R. Rubinfeld. Sampling Multiple Edges Efficiently. In Proc. of APPROX/RANDOM, volume 207, pages 51:1–51:15, 2021.

[21] T. Eden, D. Ron, and C. Seshadhri. On approximating the number of k-cliques in sublinear time. SIAM Journal on Computing, 49(4):747–771, 2020.

[22] T. Eden and W. Rosenbaum. On Sampling Edges Almost Uniformly. In Proc. of SOSA, volume 61, pages 7:1–7:9, 2018.

[23] G. Han and H. Sethu. Waddling random walk: Fast and accurate mining of motif statistics in large graphs. In Proc. of IEEE ICDM, pages 181–190, 2016.

[24] M. Jha, C. Seshadhri, and A. Pinar. Path sampling: A fast and provable method for estimating 4-vertex subgraph counts. In Proc. of WWW, pages 495–505, 2015.

[25] T. Kaufman, M. Krivelevich, and D. Ron. Tight bounds for testing bipartiteness in general graphs. SIAM Journal on Computing, 33(6):1441–1483, 2004.

[26] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov Chains and Mixing Times. American Mathematical Society, 2009.

[27] P. Li, H. Dau, G. Puleo, and O. Milenkovic. Motif clustering and overlapping clustering for social network analysis. In Proc. of IEEE INFOCOM, pages 1–9, 2017.

[28] R. Matsuno and A. Gionis. Improved mixing time for k-subgraph sampling. In Proc. of SIAM SDM, pages 568–576, 2020.

[29] D. W. Matula and L. L. Beck. Smallest-last ordering and clustering and graph coloring algorithms. J. ACM, 30(3):417–427, July 1983.

[30] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network motifs: Simple building blocks of complex networks. Science, 298(5594):824–827, 2002.
A Ancillary results

Lemma 24. Let $G = (V, E)$ be any graph, and for any $v \in V$ let N_v be the number of k-graphlets of G containing v. If $N_v > 0$, then:

$$N_v \geq \frac{(d_v)^{k-1}}{(k-1)^{k-1}} = (d_v)^{k-1} k^{-O(k)}$$

(152)

Moreover, if $d_u \leq \Delta$ for all $u \in G$, then:

$$N_v \leq (k-1)!\Delta^{k-1} = (\Delta)^{k-1} k^{O(k)}$$

(153)

Proof. For the lower bound, if $d_v \leq k - 1$ then $\frac{(d_v)^{k-1}}{(k-1)^{k-1}} \leq 1$, so if $N_v \geq 1$ then $N_v \geq \frac{(d_v)^{k-1}}{(k-1)^{k-1}}$. If instead $d_v > k - 1$, then $N_v \geq \frac{(d_v)^{k-1}}{(k-1)^{k-1}}$ since any set of nodes formed by v and $k - 1$ of its neighbors is connected. However $N_v \geq \frac{(d_v)^{k-1}}{(k-1)^{k-1}}$ since $\binom{a}{b} \geq \frac{a^b}{b}$ for all $a \geq 1$ and all $b \in [a]$.

For the upper bound, note that we can construct a connected subgraph on k nodes containing v by starting with $S_1 = \{v\}$ and at every step $i = 1, \ldots, k - 1$ choosing a neighbor of S_i in $G \setminus S_i$. Since each $u \in G$ has degree at most Δ, then S_i has at most $i\Delta$ neighbors. Thus the total number of choices is at most $\prod_{i=1}^{k-1} i\Delta = (k-1)!\Delta^{k-1}$. □
B Proof of Theorem 4

We start by running the preprocessing phase of Ugs. Let \(N_k = \sum_{v \in V} |B(v)| \) be the total number of \(k \)-graphlet occurrences in \(G \). We compute an estimate \(\hat{N}_k \) of \(N_k \) such that \(|\hat{N} - N_k| \leq \varepsilon_0 N \) with probability at least \(1 - \frac{1}{n} \). To this end, for each \(v \in V \) such that \(B(v) \neq \emptyset \), we estimate \(|B(v)| \) up to a multiplicative error \((1 \pm \varepsilon_0) \) with probability \(1 - \frac{1}{2n} \), as detailed below. By a union bound, setting \(\hat{N}_k \) to the sum of all those estimates will satisfy the bound above.

To estimate \(|B(v)| \), we run the sampling routine of Ugs over bucket \(B(v) \). However, after \(S \) is sampled, instead of rejecting it randomly, we return the probability \(p(S) \) computed by Prob(G,S). By Lemma 13, \(p(S) \) is exactly the probability that \(S \) is sampled. Thus, if \(X \) is the random variable denoting the output value of this modified routine, we have:

\[
\mathbb{E}[X] = \sum_{S \in B(v)} p(S) \cdot \frac{1}{p(S)} = |B(v)|
\]

It remains to apply concentration bounds. To this end, note that \(X \leq k^{O(k)} \mathbb{E}[X] \) by Lemma 12. Thus, \(X \in \left[0, k^{O(k)} \mathbb{E}[X] \right] \). Therefore, by averaging over \(\ell \) independent samples of \(X \), we obtain:

\[
P \left(\frac{1}{\ell} \sum_{i=1}^{\ell} X_i - \mathbb{E}[X] > \varepsilon_0 \mathbb{E}[X] \right) < 2 \exp \left(-\frac{(\varepsilon_0 \mathbb{E}[X])^2 \ell}{k^{O(k)} \mathbb{E}[X]^2} \right) = 2 \exp \left(-\frac{\varepsilon_0^2 \ell}{k^{O(k)}} \right)
\]

Therefore, our guarantees are achieved by setting \(\ell = k^{O(k)} \varepsilon_0^{-2} \ln \frac{2n}{\delta} \). Since we have at most \(n \) nonempty buckets, to estimate \(\hat{N}_k \) we use a total of \(k^{O(k)} \varepsilon_0^{-2} \ln \frac{2n}{\delta} \) samples.

Next, we estimate the graphlet frequencies via the sampling routine of Ugs. For every distinct (up to isomorphism) \(k \)-node simple connected graph \(H \), let \(N_H \) be the number of distinct \(k \)-graphlet occurrences of \(H \) in \(G \). Clearly, \(\sum_H N_H = N_k \). Let \(f_H = \frac{N_H}{N_k} \) be the relative frequency of \(H \). Now, we take \(\text{poly}(k) \frac{4}{\varepsilon_1} \ln \frac{1}{\delta} \) independent uniform samples. By standard concentration bounds, we obtain an estimate \(\hat{f}_H \) of \(f_H \) such that \(|\hat{f}_H - f_H| \leq \frac{\varepsilon_0}{2} \) with probability at least \(1 - \frac{\delta}{\text{poly}(k)} \). Since there are \(2^{\text{poly}(k)} \) distinct \(k \)-node (connected) graphs, by a union bound we obtain such an estimate \(\hat{f}_H \) for all \(H \) simultaneously with probability \(1 - \frac{\delta}{\text{poly}(k)} \).

Now, for all \(H \), we set \(\hat{N}_H = \hat{N}_k \hat{f}_H \). By a union bound, with probability at least \(1 - \delta \) we have simultaneously for all \(H \):

\[
\hat{N}_H - N_H = \hat{N}_k \hat{f}_H - N_H \leq N_k (1 + \varepsilon_0) \left(f_H + \frac{\varepsilon_1}{2} \right) - N_H \leq (1 + \varepsilon_0) N_H + N_k (1 + \varepsilon_0) \frac{\varepsilon_1}{2} - N_H \leq \varepsilon_0 N_H + \varepsilon_1 N_k
\]

on the one hand, and similarly, \(\hat{N}_H - N_H \geq -\varepsilon_0 N_H - \varepsilon_1 N_k \) on the other hand. Therefore \(\hat{N}_H - N_k \leq \varepsilon_0 N_H + \varepsilon_1 N_k \) with probability at least \(1 - \delta \) for all \(H \) simultaneously, as desired.

The running time is given by (i) the preprocessing phase, which takes time \(O(k^2 + m) \); (ii) \(k^{O(k)} \varepsilon_0^{-2} \ln \frac{2n}{\delta} + \text{poly}(k) \frac{4}{\varepsilon_1} \ln \frac{1}{\delta} \) samples, each one taking time \(k^{O(k)} \log \Delta \) as per Theorem 3. This gives a total running time of:

\[
O(k^2 n + m) + \left(k^{O(k)} \varepsilon_0^{-2} \ln \frac{2n}{\delta} + \text{poly}(k) \frac{4}{\varepsilon_1} \ln \frac{1}{\delta} \right) k^{O(k)} \log \Delta
\]

which is in \(O(m) + k^{O(k)} \left(\varepsilon_0^{-2} \ln \frac{n}{\delta} + \varepsilon_1^{-2} \ln \frac{1}{\delta} \right) \log \Delta \). The proof is complete.
C Epsilon-uniform sampling via color coding

We show how to use the color coding algorithm of [12] in a black-box fashion to perform \(\varepsilon \)-uniform sampling from \(G \). The overhead in the running time and space is \(2^{O(k)}O\left(\log \frac{1}{\varepsilon}\right) \), and the overhead in the sampling time is \(2^{O(k)}O\left((\log \frac{1}{\varepsilon})^2\right) \).

First, we perform \(\ell = O\left(\varepsilon^k \log \frac{1}{\varepsilon}\right) \) independent runs of the preprocessing phase of the algorithm of [12], storing all their output count tables. This gives a time-and-space \(O\left(\varepsilon^k \log \frac{1}{\varepsilon}\right) \) overhead with respect to [12]. In each run, any graphlet \(g \) has probability \(\frac{k^k}{\varepsilon^k} \geq e^{-k} \) of becoming colorful. Thus, with \(O\left(\varepsilon^k \log \frac{1}{\varepsilon}\right) \) independent runs, \(g \) is colorful with probability \(1 - \text{poly } \varepsilon \) in at least one run, and appears in the respective count table. As shown in [12], for each run \(i = 1, \ldots, \ell \) one can estimate, within a multiplicative \((1 \pm \varepsilon) \) factor, the number of colorful graphlets \(N_i \), using \(O\left(\frac{k^k}{\varepsilon^k} \log \frac{1}{\varepsilon}\right) \) samples. In time \(O\left(\frac{k^k}{\varepsilon^k} \log \frac{1}{\varepsilon}\right) \), we can do so for all runs with probability \(1 - \text{poly } \varepsilon \). This concludes the preprocessing phase.

For sampling, we choose a random run \(i \in [\ell] \) with probability proportional to the estimate of \(N_i \). Then, we draw a graphlet from that run uniformly at random using the sampling phase of [12]. This yields a graphlet uniformly at random from the union of all colorful graphlets in all runs. Thus, the probability that a specific graphlet \(g \) is sampled is proportional to the number of runs \(\ell(g) \) where \(g \) is colorful, which we can compute by looking at the colors assigned to \(g \) by every run in time \(\ell = O\left(\varepsilon^k \log \frac{1}{\varepsilon}\right) \). Then, we accept \(g \) with probability \(\frac{1}{\ell(g)} \geq \frac{1}{\varepsilon^k} \). Therefore we need at most \(\ell = O\left(\varepsilon^k \log \frac{1}{\varepsilon}\right) \) trials in expectation before a graphlet is accepted. This gives an overhead of \(O\left(\varepsilon^k \log \frac{1}{\varepsilon}\right)^2 \) in the sampling phase. This construction can be derandomized using an \((n, k)\)-family of perfect hash functions of size \(\ell = 2^{O(k)} \log n \), see [4]. This derandomization would increase the time and space of the preprocessing by a factor \(\log n \), but we would still need to estimate the number of graphlets in each run, so the final distribution would still be non-uniform.