Quality of Metal Deposited Flux Cored Wire With the System Fe-C-Si-Mn-Cr-Mo-Ni-V-Co

Aleksander I Gusev 1, Nikolay A Kozyrev 1,*, Ivan V Osetkovskiy 1, Roman E Kryukov 1, Olga A Kozyreva 2

1 Siberian Industrial State University
654007, Russia, Kemerovo region, Novokuznetsk, Kirova street, 42
2 Kemerovo State University, 6, Krasnay street, Kemerovo, 650000

E-mail: *Kozyrev_na@mtsp.sibsiu.ru

Abstract: Studied the effect of the introduction of vanadium and cobalt into the charge powder fused wire system Fe-C-Si-Mn-Cr-Mo-V, used in cladding assemblies and equipment parts and mechanisms operating under abrasive and abrasive shock loads. The cored wires samples were manufactured in the laboratory conditions and using appropriate powder materials and as a carbon fluoride contained material were used the dust from gas purification of aluminum production, with the following components composition, %: Al2O3 = 21-46.23; F = 18-27; Na2O = 8-15; K2O = 0.4-6; CaO = 0.7-2.3; SiO2 = 0.5-2.48; Fe2O3 = 2.1-3.27; C = 12.5-30.2; MnO = 0.07-0.9; MgO = 0.06-0.9; S = 0.09-0.19; P = 0.1-0.18. Surfacing was produced on the St3 metal plates in 6 layers under the AN-26C flux by welding truck ASAW-1250. Cutting and preparation of samples for research had been implemented. The chemical composition and the hydrogen content of the weld metal were determined by modern methods. The hardness and abrasion rate of weld metal had been measured. Conducted metallographic studies of weld metal: estimated microstructure, grain size, contamination of oxide non-metallic inclusions.

Metallographic studies showed that the microstructure of the surfaced layer by cored wire system Fe-C-Si-Mn-Cr-Mo-Ni-V-Co is uniform, thin dendrite branches are observed. The microstructure consists of martensite, which is formed inside the borders of the former austenite grain retained austenite present in small amounts in the form of separate islands, and thin layers of δ-ferrite, which is located on the borders of the former austenite grains. Carried out an assessment the effect of the chemical composition of the deposited metal on the hardness and wear and hydrogen content. In consequence of multivariate correlation analysis, it was determined dependence to the hardness of the deposited layer and the wear resistance of the mass fraction of the elements included in the flux-cored wires of the system Fe-C-Si-Mn-Cr-Mo-Ni-V-Co. The calculated value of the average approximation error suggests that the dependence is adequate and can be used to determine the resulting indicators. These dependencies can be used to predict the hardness of the deposited layer and its wear resistance while changing the chemical composition of the weld metal.

Introduction

Mining equipment machines and mechanisms which work in abrasive and abrasive-shock conditions, breaks down early. Wear of working surface cause necessity for its recovering. That is why developing materials which could increase wear resistance of such details and technologies of their recovering is important purpose. Most advanced is the use of cored wires for depositing on the
wearing out surface of details. For this reason, in our and foreign countries is conducted the
development and manufacture of special surfacing cored wires [1-14]. Due to optimal selection of
doping method, deposited coatings exhibit high level of hardness, abrasive and abrasive-shock wear
resistance. Widespread flux cored wires of system Fe-C-Si-Mn-Cr-Ni-Mo classification type A and
B by International Institute of Welding are for depositing coatings on wearing out items surface [15].
Currently flux cored wires of this system manufactured by the firm DRATEC (Germany) brand DT-
SG 600 F and other cored wires firm ESAB brands OK Tubrodur 15.52, OK Tubrodur 58 O/G M are
widely used in our country.

Materials and methods of research

This work continues the research started to develop new formulations of flux-cored wires for
overlaying products working in conditions of abrasive wear in the mining industry [16-18],
particularly researching the influence of vanadium and cobalt on the level of wear and hardness of
surfaced coating once manufacturing test wire samples of system Fe-C-Si-Mn-Cr-Mo-Ni.

Manufacturing of powder wire was conducted on laboratory machine. Diameter of powder wire
is 5mm, shell wire is made from metal ribbon of St3 grade. As a filler were used respective powder
materials: iron powder brand GIW1 by GOST 9849-86, ferrosilicon powder brand ФС 75 by GOST
1415-93, powder of high carbon ferrochrome brand FH900A by GOST 4757-91, powder of carbon
ferromanganese FMn 78(A) by GOST 4755-91, nickel powder PNK-1L5 by GOST 9722-97,
ferromolybdenum powder brand FMo60 by GOST 4759-91, ferrovanadium powder brand FW50U
0,6 by GOST 27130-94, cobalt powder brand PK-1U by GOST 9721-79, plus as carbon-contained
component dust was used from gas scrubbing of aluminum production, with the following
component composition, wt.%: Al₂O₃ = 21-46.23; F = 18-27; Na₂O = 8-15; K₂O = 0.4-6; CaO = 0.7-
2.3; Si₂O = 0.5-2.48; Fe₂O₃ = 2.1-3.27; C = 12.5-30.2; MnO = 0.07-0.9; MgO = 0.06-0.9; S = 0.09-
0.19; P = 0.1-0.18.

Surfacing was conducted by manufactured wire under the AN-26S flux, on the metal plates of the
brand St3 in 6 layers (to avoid mixing the weld metal with substrate) with the use of welding tractor
ASAW-1250, with the following surfacing conditions: I=450 A, U=30 B, V=10 cm/min. Further
plates were cut into appropriate test specimens. Chemical composition of the test specimens were
defined by GOST 10-543-98 X-ray fluorescence method on spectrometer XRF-1800 and atomic
emission method on spectrometer DFS-71. Chemical composition of the surfaced metal is shown in
table 1. Hardness of the researched samples was measured with the use of hardness meter MET-DU.
Wear resistance tests of samples was conducted on machine SMT-1 with the following conditions:
capacity 30 mA, rate 20 rpm. Metallographic analysis was conducted on optical microscope
OLYMPUS GX-51 in the light field in the limits of range ×100-1000 magnification after etching
samples by 4% nital to determine the degree of influence changes in chemical composition on
parameters of the microstructure. Martensite needles size was determined by GOST 8233-56 with ×
1000 magnification. Studying of longitudinal deposited metal samples on nonmetallic inclusions
existence was conducted in according with GOST 1778-70 with ×100 magnification.

Metallographic researches shown, that microstructure of surfaced layer by flux coder wire system
Fe-C-Si-Mn-Cr-Mo-Ni-V-Co is uniform, there are thin dendritic branches. The microstructure
consists of martensite, which is formed inside the borders of the former austenite grain, retained
austenite, which is presented in small amounts in the form of separate islands, and thin layers of δ-
ferrite, which is located on the borders of the former grain austenite.

It is found that the microstructure of the samples with a carbon content of 0.22 - 0.55% (samples
№ 1-6) observed fine-needled martensite with the needles size up to 6 microns (rating №4). The size
of the former austenite grain conforms to scales ranges №6 - 7 (figure 1a, b, table 2).

By reducing the carbon content in the deposited layer to 0.19-0.2% while varying chromium, nickel,
molybdenum and other present components in its composition, there is coarsening of the
martensite needles and increasing the size of the former austenite grains (figure 1b, table 2).
Fig. 1a. Microstructure of the researched samples, (a, c, e, g, i × 100), (b, d, f, h, j × 500):
a, b - №1; c, d - №2; e, f - №3; g, h - №4; i, j - №5
Fig. 2b. Microstructure of the researched samples, (a, c, e, g, i × 100), (b, d, f, h, j × 500): a, b №6; c, d №7; e, f №8; g, h №9; i, j №10
To conduct the analysis were determined factors, that influence on resulting index, and then were
selected most essential of them (table 1). After this initial check was made on the accuracy of the
values in index of the average approximation error:

\[\bar{e} = \frac{1}{m} \sum_{i=1}^{m} \left| \frac{Y_i - \tilde{Y}_i}{Y_i} \right| \times 100, \]

\[\text{where} \quad m - \text{the number of observations}; \quad \tilde{Y}_i - \text{calculated value of resulted index}; \quad Y_i - \text{real value of resulted index}. \]

Table 1 – Surfaced layers’ chemical composition, hydrogen contain, wear and hardness

Sample number	Components weight content %	[H] cm\(^{-2}\)	Samples hardness	Samples wear, grams per revolution.													
	C	Si	Mn	Cr	Ni	Mo	B	V	Co	Al	Cu	Ti	P				
1	0.22	0.35	0.65	2.78	0.09	0.25	0	0.02	0.04	0.01	0.06	0.01	0.036	0.020	2.0	36	0.000040
2	0.43	0.37	0.84	7.04	0.42	0.49	0.01	0.03	0.06	0.02	0.08	0.01	0.038	0.020	2.0	56	0.000020
3	0.5	0.68	0.75	5.57	0.44	0.55	0.01	0.04	0.1	0.03	0.07	0.03	0.077	0.025	2.0	50	0.000015
4	0.55	0.81	0.7	5.59	0.6	0.38	0.01	0.03	0.11	0.07	0.07	0.05	0.044	0.023	2.4	53	0.000005
5	0.46	0.68	0.75	5.04	0.72	0.3	0.01	0.03	0.08	0.05	0.1	0.001	0.042	0.019	2.1	51	0.000071
6	0.44	0.74	0.73	5.59	0.86	0.53	0.01	0.03	0.09	0.06	0.07	0.02	0.038	0.020	2.3	52	0.000017
7	0.19	0.77	0.61	4.17	0.34	0.38	0.01	0.02	0.05	0.01	0.07	0.02	0.054	0.024	2.4	44.5	0.000071
8	0.19	0.63	0.65	4.06	0.3	0.38	0.01	0.03	0.06	0.01	0.08	0.03	0.056	0.019	1.7	43	0.000039
9	0.2	0.59	0.61	4.12	0.3	0.38	0.01	0.02	0.12	0.02	0.06	0.04	0.049	0.019	1.9	46	0.000044
10	0.2	0.64	0.6	4.03	0.3	0.39	0.01	0.03	0.2	0.01	0.08	0.03	0.058	0.021	2.0	30	0.000073

Table 2 – Characteristics of non-metallic inclusions and the structure of researched samples

Sample number	The contamination by nonmetallic inclusions, rating	Size of austenite gaine, raiting	Size of martensite needles, mcm	
	non-deformable silicates (fragile)	Oxides spot		
1	2b, 1b, 2a	1a	6, 7	3-6
2	2b, 1b, 3a	1a	7	2-6
3	1b, 2b, 3a	1a	7	2-6
4	2b, 1b, 2a, 3a	1a	6, 7	4-6
5	1b, 2b, 3a	1a	6, 7	3-6
6	1b, 2b, 3a	1a	7, 6	2-6
7	1b, 2a	1a	6	8-13
8	1b, 2b, 2a, 3a	1a, 2a	6	8-10
9	1b, 2b, 2a, 3a	1a, 2a	6	8-12
10	1b, 2b, 3a	1a, 2a	6	8-11

Assessing the influence of the flux-cored wires with chemical composition system Fe-C-Si-Mn-Cr-Mo-
Ni-V-Co on wear and hardness of the deposited layer was carried out by means of multivariate correlation
analysis, which allows to study the patterns of change in the resulting index, which depends on the behavior
of various factors, the procedures set forth in the works [19, 20, 21].

To conduct the analysis were determined factors, that influence on resulting index, and then were
selected most essential of them (table 1). After this initial check was made on the accuracy of the
information, it’s uniformity and conformity to the law of normal distribution. Further the model of factorial
system was built. Deterministic factor analysis is used, because of presence of independent factorial
signatures in the reduced system.

The connection type was determined using paired and partial correlation coefficients. It was found that the
relationship has a rectilinear character, as evidenced by the same factor determinism, which is for the
model of reduced factorial systems equal 1.

Calculation the key link indicators of correlation analysis was carried out in stages. Firstly, the first
factor was considered, which influence is the most significant, then the second, third etc. At each stage the
constraint equation and the parameters were calculated, by means of which was estimated its reliability.

Per the results of calculations obtained dependencies, the adequacy of which was checked by actual
values in index of the average approximation error:

\[\bar{e} = \frac{1}{m} \sum_{i=1}^{m} \left| \frac{Y_i - \tilde{Y}_i}{Y_i} \right| \times 100, \]

\[\text{where} \quad m - \text{the number of observations}; \quad \tilde{Y}_i - \text{calculated value of resulted index}; \quad Y_i - \text{real value of resulted index}. \]
Hardness and wear resistance dependencies of deposited metal from its mass fraction of the elements included in the cored wire system Fe-C-Si-Mn-Cr-Mo-Ni-V-Co obtained in consequence of the analysis:
- Hardness of the deposited metal (with no regard for contained hydrogen): \(y = 535.343 + 168.120 \cdot C - 276.437 \cdot Si - 890.442 \cdot Mn + 6.037 \cdot Cr + 108.957 \cdot Ni + 445.851 \cdot Mo - 433.688 \cdot Co + 477.567 \cdot Cu \) (approximation error 0.01%);
- Hardness of the deposited metal (with the regard for contained hydrogen): \(y = 214.819 - 163.253 \cdot C - 307.499 \cdot Si - 353.293 \cdot Mn - 21.239 \cdot Cr + 33.871 \cdot Ni + 858.517 \cdot Mo - 280.917 \cdot Co + 321.784 \cdot Cu + 13.830 \cdot H \) (approximation error 0.01%);
- Wear resistance of the samples (with no regard for contained hydrogen): \(y = 0.002005 + 0.001110 \cdot C - 0.000804 \cdot Si - 0.003522 \cdot Mn + 0.000040 \cdot Cr + 0.000500 \cdot Ni + 0.000460 \cdot Mo - 0.001061 \cdot Co - 0.005525 \cdot Al + 0.003132 \cdot Cu \) (approximation error 0.32%);
- Wear resistance of the samples (with the regard for contained hydrogen): \(y = 0.000260 - 0.000695 \cdot C - 0.000973 \cdot Si - 0.000597 \cdot Mn - 0.000108 \cdot Cr + 0.000091 \cdot Ni + 0.002707 \cdot Mo - 0.000229 \cdot Co + 0.002283 \cdot Cu + 0.000075 \cdot H \) (approximation error 10.74%).

Calculated values of average approximation error argue that obtained dependencies are adequate and they can be used to define the resulted indexes.

In consequence of multivariate correlation analysis, it was determined dependence to the hardness of the deposited layer and the wear resistance of the mass fraction of the elements included in the flux-cored wires of the system Fe-C-Si-Mn-Cr-Mo-Ni-V-Co.

Conclusions.
1. It is found that, by reducing carbon contained in the surfaced metal down to 0.19-0.2% while changing contain of chromium, nickel, molybdenum and other present components in its composition, promotes increasing in the size of martensite needles and former grain austenite.
2. In consequence of multivariate correlation analysis, it was determined dependence to the hardness of the deposited layer and the wear resistance of the mass fraction of the elements included in the flux-cored wires of the system Fe-C-Si-Mn-Cr-Mo-Ni-V-Co. These dependencies can be used to predict the hardness of the deposited layer and its wear resistance while changing the chemical composition of the weld metal.

References
[1] Kirchgaßner M, Badisch E, Franek F. Behaviour of iron-based hardfacing alloys under abrasion and impact. / Wear Journal. 2008. Vol.265. P. 772–779.
[2] Azzoni M. Directions and developments in the types of hard phases to be applied in abrase deposits against abrasion. / Weld International. 2009. Vol.23. P. 706–716.
[3] Klimpel A. Abrasion resistance of GMA metal cored wires surfaced deposits. / Klimpel A, Dobrzanksi LA, Janicki D, Lisiecki A. // Materials Processing Technology. 2005. Vol.164 165. P. 1056–1061.
[4] Wang Q, Li X. Effects of Nb, V, and W on microstructure and abrasion resistance of Fe–Cr–C hardfacingalloys. / Welding. 2010. Vol 89. P. 133–139.
[5] Metlitskii V.A. Flux-cored wires for arc welding and surfacing of cast iron / Welding International. 2008. Vol 22. P. 796-800.
[6] R. Kejzar & J. Grum. Hardfacing of Wear-Resistant Deposits by MAG Welding with a Flux-Cored Wire Having Graphite in Its Filling / Welding International. 2005. Vol 20. P. 961-976.
[7] R. Li. Wear and high temperature oxidation behavior of wire arc sprayed iron based coatings / R. Li, D. Y. He, Z. Zhou, Z. J. Wang & X. Y. Song. // Surface Engineering. 2014. Vol 30. P. 784-790.
[8] H. R. Ma. Fe-based amorphous coating with high corrosion and wear resistance / H. R. Ma, X. Y. Chen, J. W. Li, C. T. Chang, G. Wang, H. Li, X. M. Wang & R. W. Li // Surface Engineering. 2016. Vol 46. P. 1-7.
[9] M.A. Filippov. Structure and wear resistance of deposited alloys based on metastable chromium–carbon austenite / M.A. Filippov, V.I. Shumyakov, S.A. Balin, A.S. Zhilin, V.V. Lehchilo&GA. Rimer. // Welding International. 2015. Vol 29. P. 819-822.
[10] D.S. Liu, R.P. Liu&Y.H. Wei. Influence of tungsten on microstructure and wear resistance of iron base hardfacing alloy / Materials Science and Technology. 2013. Vol 30. P. 316-322.
[11] S. C. Lim. WearresistantWC–Co composite hard coatings // S.C. Lim, M. Gupta, Y.S. Goh&K.C. Seow. // Surface Engineering. 1997. Vol 13. P. 247-250.
[12] Zhuk Yu. Super-Hard Wear-Resistant Coating Systems / Materials Technology. 1999. Vol 14. P. 126-129.
[13] J. Hardell. Abrasive wear behaviour of hardened high strength boron steel / J. Hardell, A. Yousfi, M. Lund, L. Pelcastre&B. Prakash // Tribology - Materials, Surfaces & Interfaces. 2014. Vol 8. P. 90-97.
[14] X.T. Deng. Epsilon carbide precipitation and wear behaviour of low alloy wear resistant steels / X.T. Deng, T.L. Fu, Z.D. Wang, R.D.K. Misra&G. D. Wang // Materials Science and Technology. 2016. Vol 32. P. 320-327.
[15] Technology of electro-fusion welding steels and alloys / Publishing by B.E.Paton. M.: Metallurgy, 1974. 768p.
[16] GusevA.I. Studyingpropertiesofmetaldepositedbypowderwireofsystem C-Mn-Si-Cr-V-Mo-Co / GusevA.I., OsetkovskiyI.V.// Progressivetechnologiesandeconomicin mechanical engineering: Works collection of VII National Scientific-Practical conference for students and young students in 2 volumes. Vol. 1. Urga Technological Institute. – Tomsk: Publishing of Tomsk Polytechnic University, 2016. – P. 91-94.
[17] A study on the properties of the deposited metal by flux cored wires 40GMFR and 40H3G2MF/ A I Gusev, N V Kibko, N A Kozyrev, M V Popova, I V Osetkovsky// IOP Conf. Series: Materials Science and Engineering 150 (2016) 012033- pages 1-9 doi:10.1088/1757-899X/150/1/012033
[18] Structure and properties of deposited layers, surfaced by using powder wires 40GMFR and 40H3G2MF / Gusev A.I., Kibko N.V., Popova M.V., Kozyrev N.A., Osetkovskiy I.V. // Bulletin of mining metallurgy section in Russian Academy of Natural Science. Metallurgy department: Collection of Scientific works - Vol. 36.- Novokuznetsk: Publishing. SibISU, 2016 P. 174-181.
[19] Wentzel E.S. Thetheoryofprobabilities / E.S. Wentzel. M.: High School, 1999. 576 p.
[20] Wentzel E.S. Thetheoryofprobabilities and its engineering applications / E.S. Wentzel, L.A. Ovcharov. – M.: Publishing center «Academy», 2003. 464 p.
[21] Gmurman V.E. Thetheoryofprobability and mathematical statistics / V.E. Gmurman. – M.: High School, 2003. 479 p.