Heiska, Juho; Karppinen, Maarit

Gas-phase deposition of di- and tetra-lithium salts of 2,5-dihydroxyterephthalic acid

Published in:
Dalton Transactions

DOI:
10.1039/d2dt00055e

Published: 15/03/2022

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Heiska, J., & Karppinen, M. (2022). Gas-phase deposition of di- and tetra-lithium salts of 2,5-dihydroxyterephthalic acid. Dalton Transactions, 51(11), 4246-4251. https://doi.org/10.1039/d2dt00055e

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.
Gas-phase deposition of di- and tetra-lithium salts of 2,5-dihydroxyterephthalic acid†

Juho Heiska a,b and Maarit Karppinen† a,b

Thin films of two ambipolar lithium-organic electrode materials, Li₂DHTP and Li₄DHTP, are grown from gaseous precursors, Li(thd) (tetramethyl heptanedione) and DHTP (dihydroxyterephthalic acid). These precursors are pulsed into the reactor in a sequential manner like in atomic/molecular layer deposition, but the reaction product, i.e. the di- or the tetra-lithium salt, is controlled by adjusting the precursor pulse lengths.

Introduction

Metal salts of 2,5-dihydroxyterephthalic acid (H₄-DHTP) comprise an interesting group of coordination polymer (CP) and metal–organic framework (MOF) type metal–organic materials with extraordinarily rich coordination chemistries. 1–5 The richness arises from the two different reactive groups, carboxylic acid, and phenol, both present as duplicates in the H₄-DHTP molecule. This allows the formation of both di- and tetra-metal salts, depending on the bonding scheme and the degree of deprotonation of H₂-DHTP. A comprehensive account of the coordination modes with different metals is found in a recent paper by Quarez et al. 6 Potential applications proposed for these materials include gas adsorption, detection, and separation, 2,4,5,7,8 as well as active rechargeable batteries 3,9,10 and electrochromic devices. 11

With lithium, both the H₄-DHTP derivatives, Li₂DHTP and Li₄DHTP (Fig. 1), have been realized in crystalline form through conventional solution-synthesis routes, using respectively, Li₂CO₃ or MeOLi as the lithium source. 3,9,10 The Li-rich Li₄DHTP is air-sensitive though, yielding Li₂O as a result of auto-oxidation. 3 The carboxylate moiety undergoes reversible redox reactions at ca. 0.8 V vs. Li⁺/Li and the aryloxide (reacted phenol) at ca. 2.6 V vs. Li⁺/Li. This makes Li₄DHTP – similarly to Na₄DHTP 12 – an interesting ambipolar electrode material for symmetric cells with an average working potential of 1.8 V vs. Li⁺/Li. 9

Electrochemically active organic materials, in general, are currently gaining significant attention. They may not beat the state-of-the-art inorganic electrode materials in overall battery performance but could provide an attractive alternative when issues related to critical raw materials, energy-efficient synthesis/recycling, or gravimetric and mechanical properties are considered. The major challenges of the organic electrode materials are their intrinsically low electron conductivity and dissolution in liquid electrolytes; these issues can, however, be circumvented by applying the materials in thin-film form in combination with a solid electrolyte. 13–17 The all-solid-state thin-film configuration would also serve as an optimal model system for investigating the intrinsic properties of organic electrode materials and understanding their solid-state electrochemical behavior and stability. 15,18–22 Hence, it is important to develop reliable and scalable thin-film fabrication processes for the most interesting organic electrode materials.

In recent years, the combined ALD/MLD technique, 23–25 derived from the atomic layer deposition (ALD) technology of high-quality inorganic thin films for microelectronics and beyond, has been harnessed for the growth of many intriguing in situ crystalline metal–organic materials directly from gaseous precursors. 18–20,26–32 A prototype ALD process is based on two mutually reactive gaseous (or evaporated with moderate

†Department of Chemistry and Materials Science, Aalto University, FI-00076 Espoo, Finland. E-mail: maarit.karppinen@aalto.fi
aVaasa University of Applied Sciences, Energy & Environmental Technology, FI-65200 Vaasa, Finland
bElectronic supplementary information (ESI) available. See DOI: 10.1039/d2dt00055e
heating) precursors sequentially pulsed into the reactor chamber to facilitate the atomic layer by atomic layer film growth with excellent control for the film thickness, homogeneity, and conformity. Ideally, the two successive surface reactions should saturate and be self-limiting, meaning that the growth per cycle (GPC) levels of to a constant value when long enough precursor pulses are applied. Molecular layer deposition (MLD) is an extension of ALD, to deposit purely organic thin films from two different organic precursors in a similar fashion; ideally, the process controllability and the film quality should be of the same level as in ALD. Then, in the hybrid ALD/MLD technique a metal-bearing ALD precursor is combined with an organic MLD precursor to deposit metal–organic thin films within the same sequential gas–surface reaction scheme. The precursor pulse times required for perfect saturation are somewhat reactor and reaction condition specific, but usually these pulsing times do not exceed a few seconds for metal precursors and a few tens of seconds for heavy organic precursors (longer pulse lengths needed due to their typically lower vapor pressures).

In this communication, we use a similar sequential precursor supply scheme to introduce Li(thd) (thd = 2,2,6,6-tetramethyl-3,5-heptanedione) and H4-DHTP precursor vapors in an ALD/MLD reactor chamber. Excitingly, the films grow in a highly reproducible manner such that the film thickness is well controlled by the number of ALD/MLD cycles applied (once the other deposition parameters are fixed), but the end product, i.e. Li2DHTP or Li4DHTP, depends on the lengths of the precursor pulses. The two types of films are readily distinguished from each other with X-ray diffraction, infrared absorption, and cyclic voltammetry data.

Methods

Commercial H4-DHTP powder (98%, Sigma-Aldrich) and in-house synthesized Li(thd) powder were used as the precursors; the reagents for Li(thd) synthesis were LiOH (98%, Alfa Aesar) and 2,2,6,6-tetramethyl-3,5-heptanedione (Tokyo Chemical Industry Co. Ltd) and the product was purified by sublimation. The films were grown on p-doped silicon test wafers (Okmetic Ltd), and also on stainless steel disks (MTI Corporation) as the deposition product was found to be Li2DHTP. Then, the films were coated on stainless steel substrates (Ø 15.5 mm). These coated steel disks were applied as a working electrode in CR2016 coin cells assembled in a glove box (<1 ppm of O2 and <0.1 ppm of H2O). The samples were dried in a vacuum (110 °C) and moved under vacuum into a glovebox (<1 ppm for O2, <0.1 ppm for H2O). Lithium foil (Sigma Aldrich, 99.9%) was used as a counter electrode, and 1 M LiPF6 in 1:1 EC:DMC as electrolyte. The cells were let to stabilize for 24 hours prior to the cyclic voltammetry (CV) measurements (Autolab PGSTA302N potentiotstat).

Results

Since H4-DHTP contains both carboxylic acid and phenol functional groups, we could expect from our previous experiences with terephthalic acid and hydroquinone precursors combined with Li(thd) and LiHMDS (lithium bis(trimethylsilyl)amide), respectively,18,19,37 that H4-DHTP could readily react with these common lithium precursors; for the present study, our choice was Li(thd), but presumably, LiHMDS would work similarly. Based on these previous experiences, we selected the following precursor and purge pulsing sequence for our initial experiments: 4 s Li(thd)/4 s N2/10 s H4-DHTP/30 s N2. As was predicted, this process was found to yield Li-organic thin films in a reproducible manner independent of the pulsing sequence. Further analysis with GIXRD and FTIR (details discussed later) indicated that the films were in situ crystalline of the Li2DHTP phase.

Among the two types of functional groups, the carboxylic acid group is more acidic and our assumption was that it would react first with Li(thd); indeed, this seems to be the case as the deposition product was found to be Li2DHTP. Then, the exciting discovery was that apparently the reaction proceeds further to Li4DHTP if the Li(thd) pulse length is elongated. When the Li(thd) pulse length exceeded 32 s (while keeping the H4-DHTP pulse length fixed at 10 s), the crystalline films were found to transform into amorphous Li4DHTP phase. This second reaction step resulting in Li4DHTP was noticed – besides the GIXRD observation – from the GPC versus Li(thd) pulse length plot in Fig. 2, as this plot does not show the ordinary saturation behavior expected for a prototype ALD/MLD process yielding a single product. From Fig. 2, essentially phase-pure Li2DHTP films could be grown with the rate of ca. 4–8 Å per cycle, while the GPC value seen in the case of the essentially phase-pure Li4DHTP films was ca. 13 Å per cycle, i.e. roughly twice the value seen for Li2DHTP. It should
However, it should be noted that compared to the Li$_2$DHTP films, the Li$_4$DHTP films were less uniform with some thickness profile along the flow direction, and thus the GPC values were less precise.

The two phases, Li$_2$DHTP and Li$_4$DHTP, present in the samples were most easily distinguished by FTIR (Fig. 3a). In both cases, the features seen in the spectra can be interpreted based on the spectra previously reported and interpreted for bulk Li$_2$DHTP to Li$_4$DHTP samples (ESI S1–3†). The most important features are the asymmetric (ν_{as}) and symmetric (ν_{s}) vibrations of the carboxylate group. The separation of these vibrations gives a rough indication of the binding mode between the metal ion and the carboxylate group. The transformation from Li$_2$DHTP to Li$_4$DHTP decreases the peak separation from 281 to 193 cm$^{-1}$ and shifts the position of the ν_{as} peak from 1642 to 1557 cm$^{-1}$. The straightforward interpretation of these observations would be that the binding mode changes from monodentate for Li$_2$DHTP to bridging type for Li$_4$DHTP.\(^\text{18}\) The coordination chemistry of DHTP is however quite complicated, and verification of this interpretation would require knowledge of the detailed crystal structure which unfortunately is known for neither Li$_2$DHTP nor Li$_4$DHTP. Indeed, only the crystal structure of hydrated Li$_2$DHTP\cdot4H$_2$O is known,\(^\text{6}\) but this structure is apparently different from those of Li$_4$DHTP and Li$_8$DHTP judging from their different XRD patterns. An additional important signature to distinguish Li$_4$DHTP from Li$_2$DHTP in FTIR is the wide absorption feature seen for Li$_2$DHTP in the 2500–3000 cm$^{-1}$ area due to intramolecular hydrogen bonding between the phenol and carbonyl groups. These peaks are naturally not seen for Li$_4$DHTP, as such hydrogen bonds are not possible.

The phase composition of the films was visible also from the XRR and GIXRD data (Fig. 3b and c). The film densities derived from the XRR data were different for the films composed of Li$_2$DHTP (1.73 g cm$^{-3}$) and Li$_4$DHTP (1.52 g cm$^{-3}$). From GIXRD, the Li$_2$DHTP films are well crystalline, with very intense peaks at 27.6° and 28.6°; the intensity ratio and peak positions match the previously reported diffraction pattern for evacuated bulk samples of Li$_2$DHTP (but not those of Li$_4$DHTP\cdot4H$_2$O,\(^\text{6}\) as already mentioned).\(^\text{10}\) The as-deposited Li$_4$DHTP films were amorphous, but were crystallized in ambient conditions over the night, forming – most likely – the quinone variant (no phenol groups) of Li$_2$DHTP, and eventually – unless protected – Li$_2$O as reported earlier for bulk samples.\(^\text{2}\) In contrast to Li$_4$DHTP, the Li$_2$DHTP films were stable in ambient conditions, and did not absorb moisture.

We characterized the electrochemical properties of the Li$_2$DHTP and Li$_4$DHTP films with cyclic voltammetry measurements (Fig. 4). Firstly, for Li$_2$DHTP cycled between 1.5–3.5 V,
no electrochemical activity due to the alkoxide/quinone pair was observed; the irreversible peaks seen are probably due to the electrochemical activity of the phenol (–OH). It is known that phenol groups can be lithiated at low potentials coupled with formation of H2 gas. Here also, the Li2DHTP film could be electrochemically lithiated into Li4DHTP by sweeping the potential to 0.1 V and back to OCV. After this lithiation cycle the alkoxide/quinone redox pair appeared at ca. 2.6 V vs. Li+/Li, as expected. The as-grown amorphous Li4DHTP film behaved in a different fashion; it exhibited only a single redox pair centered around 2.9 V (and unstable behaviour at higher voltages), which does not exactly agree with the expected quinone redox pair value. Whether or not this peak is due to some other redox pair in the molecule remained to be clarified in more detailed studies in the future. However, here we like to refer to a somewhat similar case of ALD V2O5 films, grown in both crystalline and amorphous forms depending on the precursors used, and showing different electrochemical characteristics depending on the crystalline/amorphous nature of the films. Finally, we should mention that among the two phases, Li2DHTP and Li4DHTP, the latter is preferred for the electrochemical applications, as it possesses the required functional groups both for the negative (–COOLi) and the positive (–OLi) electrode redox couples. Moreover, in this compound the phenol groups are already lithiated such that no H2 is formed during the cell operation.

Discussion
To gain a deeper understanding of the surface chemistry features of our Li(thd) + H4-DHTP deposition process, we carried out a set of additional experiments with different combinations of precursor pulse lengths (Table S1†). The clear conclusion was that essentially phase pure (crystalline) Li2DHTP films are reproducibly obtained when the Li(thd) pulse length is short and also clearly shorter than that of H4-DHTP. On the other hand, to deposit pure (amorphous) Li4DHTP films the Li(thd) pulse needs to be considerably longer than that of H4-DHTP. When the H4-DHTP pulse length was of the same magnitude as that of Li(thd), the GPC value became very high (exceeding even 30 Å per cycle when the pulse length was 32 s for both precursors); it should be noted, however, that the film thickness determination was somewhat ambiguous for the films with the highest GPC values due to their roughness.

Tentatively, we assume that the Li4DHTP phase forms through a similar lithium-replacing reaction as is known to occur for the transformation of MgF2 to LiF. Hence, intuitively one might think that an efficient method to fabricate Li4DHTP could be to lithiate Li2DHTP just with a very long Li(thd) pulse at the end of the film growth process. However, in practice, this may not work as pure Li4DHTP is difficult to form in the given conditions. This is further explained below.

In Fig. 5 we present a schematic illustration of the reaction process. In phase 1, the faster reaction between Li(thd) and the carboxylic acid group takes place forming initially Li2DHTP. After this, Li2DHTP lays on the surface and if the incoming Li(thd) pulse is long enough, the lithiation of the phenyl moiety also begins, to eventually form Li4DHTP in phase 2. Most likely this second reaction step is less controlled than the first one, being thus the underlying reason why the Li4DHTP films were less uniform than the Li2DHTP films. In phase 3, the formed Li2DHTP reacts with the incoming H4-DHTP precursor; here again, the carboxylic acid group reacts more readily than the phenyl group with the –OLi group. This reaction converts one Li2DHTP moiety into two Li4DHTP moieties, which can again react in the “expected” way with the H4-DHTP precursor. The proposed surface reac-
tions could be simplified with the following exchange reactions:

\[
2\text{Li(thd)}(\text{ads}) + \text{H}_4\text{DHTP} \rightarrow \text{Li}_2\text{DHTP} + 2\text{H}_2\text{DHTP} \rightarrow 2\text{Li}_2\text{DHTP} \rightarrow 2\text{Li}_2\text{DHTP} + 2\text{H}_2\text{DHTP}
\]

Owing to the exchange of H\(_4\)DHTP to Li\(_2\)DHTP, during one cycle four H\(_4\)DHTP moieties may be deposited on the surface. Thus, to make the deposition process for Li\(_2\)DHTP films as controllable as possible, the formation of Li\(_4\)DHTP during the process should be avoided, as its transformation back to Li\(_2\)DHTP leaves extra molecules on the surface.

The Li\(_2\)DHTP films, on the other hand, often exhibited gradients over areas where the precursor flux is expected to be the highest; the most straightforwardly expected cause for this is an insufficient precursor pulse time. It seems that Li\(_2\)DHTP forms fastest on the substrate areas that saturate first. If the whole film area is not successfully converted into Li\(_4\)DHTP, large growth gradients may quickly form due to the extra surface species generated (that would again saturate quicker than the other areas making the problem even worse).

Finally, we like to mention that in principle, it should be possible to perfectly transform the entire film into Li\(_2\)DHTP and then back to Li\(_2\)DHTP to achieve uniform Li\(_2\)DHTP coatings with an extraordinarily high growth rate. However, this was difficult to achieve in practice and the experiments resulted in non-uniform growth along the flow direction. In the future, it might be interesting to play with the reactivity of the lithium precursor. Towards this research direction, we already carried out a few experiments with LiHMDS that is the lithium precursor. Towards this research direction, we already carried out a few experiments with LiHMDS that is the lithium precursor.

In the future, it might be interesting to play with the reactivity of the lithium precursor. Towards this research direction, we already carried out a few experiments with LiHMDS that is the lithium precursor.

Finally, we like to mention that in principle, it should be possible to perfectly transform the entire film into Li\(_2\)DHTP and then back to Li\(_2\)DHTP to achieve uniform Li\(_2\)DHTP coatings with an extraordinarily high growth rate. However, this was difficult to achieve in practice and the experiments resulted in non-uniform growth along the flow direction. In the future, it might be interesting to play with the reactivity of the lithium precursor. Towards this research direction, we already carried out a few experiments with LiHMDS that is the lithium precursor.

In the future, it might be interesting to play with the reactivity of the lithium precursor. Towards this research direction, we already carried out a few experiments with LiHMDS that is the lithium precursor. Towards this research direction, we already carried out a few experiments with LiHMDS that is the lithium precursor.

Conclusions

We have presented straightforward and reproducible gas-phase fabrication routes for two intriguing Li-organic materials, Li\(_2\)DHTP and Li\(_4\)DHTP, for the first time. The processes are based on two precursors only, i.e. Li(thd) and H\(_4\)DHTP, sequentially pulsed in an ALD/MLD type reactor. The exciting feature – which distinguishes the processes from the ideal ALD/MLD scheme – is that the phase composition of the films is controlled by the precursor pulse lengths, the Li\(_2\)DHTP films requiring shorter and the Li\(_4\)DHTP films longer Li(thd) pulses. The Li(thd) + H\(_4\)DHTP process delivers the Li\(_2\)DHTP films in in situ crystalline form, while the Li\(_4\)DHTP films are initially amorphous but are crystallized during storage in ambient conditions. Preliminary characterization of the films with cyclic voltammetry experiments demonstrated that both the Li\(_2\)DHTP and Li\(_4\)DHTP films are electrochemically active, as desired.

We foresee that similar unconventional surface-reaction pathways as found and successfully utilized here for the Li\(_2\)DHTP and Li\(_4\)DHTP films could be innovatively exploited also with other interesting organic molecules with multiple different reactive groups connected to the same organic moiety.

Author contributions

Juho Heiska: Conceptualization, methodology, investigation, writing – original draft, visualization. Maarit Karppinen: Supervision, funding acquisition, writing – original Draft.

Conflicts of interest

There are no conflicts of interest to declare.

Acknowledgements

Funding was received from the Academy of Finland (Profi 3 and PREIN) for this study which also made use of RawMatTERS Finland Infrastructure (Aalto – RAMI).

Notes and references

1. J. De Bellis, D. Belli Dell’Amico, G. Ciancaleoni, L. Labella, F. Marchetti and S. Samaritani, *Inorg. Chim. Acta*, 2019, 495, 118937.
2. R. Sanz, F. Martínez, G. Orcajo, L. Wojtas and D. Briones, *Dalton Trans.*, 2013, 42, 2392–2398.
3. S. Renault, S. Gottis, A.-L. Barrès, M. Courty, O. Chauvet, F. Dolhem and P. Poizot, *Energy Environ. Sci.*, 2013, 6, 2124.
4. S. R. Caskey, A. G. Wong-Foy and A. J. Matzger, *J. Am. Chem. Soc.*, 2008, 130, 10870–10871.
5. H. Chun and D. Moon, *Cryst. Growth Des.*, 2017, 17, 2140–2146.
6. É. Quarez, A. Jouhara, S. Grolleau, F. Dolhem, N. Dupré and P. Poizot, *CrystEngComm*, 2020, 22, 1653–1663.
7. B. Li, H.-M. Wen, W. Zhou and B. Chen, *J. Phys. Chem. Lett.*, 2014, 5, 3468–3479.
8. Y. Lv, T. Xu, P. Xu, H. Yu and X. Li, in 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSUDCERS), IEEE, 2017, pp. 303–306.
9. S. Wang, L. Wang, K. Zhang, Z. Zhu, Z. Tao and J. Chen, *Nano Lett.*, 2013, 13, 4404–4409.
10. Q. Deng, J. Xue, W. Zou, L. Wang, A. Zhou and J. Li, *J. Electroanal. Chem.*, 2016, 761, 74–79.
11. H. Shiozawa, Z. Melnikova, Z. Bastl, H. Peterlik, M. Kalbac and O. Frank, *ChemRxiv*, 2021, 1–17.
12. S. Wang, L. Wang, Z. Zhu, Z. Hu, Q. Zhao and J. Chen, *Angew. Chem., Int. Ed.*, 2014, 53, 5892–5896.
13 P. Poizot, J. Gaubicher, S. Renault, L. Dubois, Y. Liang and Y. Yao, Chem. Rev., 2020, 120, 6490–6557.
14 B. Häupler, A. Wild and U. S. Schubert, Adv. Energy Mater., 2015, 5, 140234.
15 J. Heiska, M. Nisula and M. Karppinen, J. Mater. Chem. A, 2019, 7, 18735–18758.
16 Y. Liang and Y. Yao, Joule, 2018, 2, 1690–1706.
17 Y. Lu and J. Chen, Nat. Rev. Chem., 2020, 4, 127–142.
18 J. Heiska, M. Nisula, E.-L. Rautama, A. J. Karttunen and M. Karppinen, Dalton Trans., 2020, 49, 1591–1599.
19 M. Nisula and M. Karppinen, Nano Lett., 2016, 16, 1276–1281.
20 J. Multia, J. Heiska, A. Khayyami and M. Karppinen, ACS Appl. Mater. Interfaces, 2020, 12, 41557–41566.
21 J. Kint, F. Mattelaer, M. Minjauw, B. Zhao and C. Detavernier, J. Vac. Sci. Technol., A, 2019, 37, 050904.
22 B. Zhao, M. Nisula, A. Dhara, L. Henderick, F. Mattelaer, J. Dendooven and C. Detavernier, Adv. Mater. Interfaces, 2020, 7, 2001022.
23 P. Sundberg and M. Karppinen, Beilstein J. Nanotechnol., 2014, 5, 1104–1136.
24 S. M. George, Chem. Rev., 2010, 110, 111–131.
25 O. Nilsen, K. Klepper, H. Nielsen and H. Fjellvåg, ECS Trans., 2008, 16, 3–14.
26 J. Penttinen, M. Nisula and M. Karppinen, Chem. – Eur. J., 2019, 25, 11466–11473.
27 J. Penttinen, M. Nisula and M. Karppinen, Chem. – Eur. J., 2017, 23, 18225–18231.
28 A. Khayyami, A. Philip and M. Karppinen, Angew. Chem., Int. Ed., 2019, 58, 13400–13404.
29 E. Ahvenniemi and M. Karppinen, Chem. Commun., 2016, 52, 1139–1142.
30 O. Nilsen, V. Miikkulainen, K. B. Gandrud, E. Østreng, A. Ruud and H. Fjellvåg, Phys. Status Solidi, 2014, 211, 357–367.
31 H. H. Sonsteby, J. E. Bratvold, V. A.-L. K. Killi, D. Choudhury, J. W. Elam, H. Fjellvåg and O. Nilsen, J. Vac. Sci. Technol., A, 2020, 38, 060804.
32 M. Madadi, J. Heiska, J. Multia and M. Karppinen, ACS Appl. Mater. Interfaces, 2021, 13, 56793–56811.
33 A. S. Asundi, J. A. Raiford and S. F. Bent, ACS Energy Lett., 2019, 4, 908–925.
34 R. W. Johnson, A. Hultqvist and S. F. Bent, Mater. Today, 2014, 17, 236–246.
35 V. Cremers, R. L. Puurunen and J. Dendooven, Appl. Phys. Rev., 2019, 6, 021302.
36 J. Multia, A. Khayyami, J. Heiska and M. Karppinen, J. Vac. Sci. Technol., A, 2020, 38, 032406.
37 M. Nisula, J. Linnera, A. J. Karttunen and M. Karppinen, Chem. – Eur. J., 2017, 23, 2988–2992.
38 V. Zeleňák, Z. Vargová and K. Györyová, Spectrochim. Acta, Part A, 2007, 66, 262–272.
39 E. S. Gil and R. O. Couto, Rev. Bras. Farmacogn., 2013, 23, 542–558.
40 S. Goriparti, M. N. K. Harish and S. Sampath, Chem. Commun., 2013, 49, 7234.
41 J. Lee and M. J. Park, Adv. Energy Mater., 2017, 7, 1602279.
42 C. Wang, W. Tang, Z. Yao, Y. Chen, J. Pei and C. Fan, Org. Electron., 2018, 62, 536–541.
43 X. Chen, E. Pomerantseva, K. Gregorczyk, R. Ghodssi and G. Rubloff, RSC Adv., 2013, 3, 4294.
44 M. Mäntymäki, J. Hämäläinen, E. Puukilainen, T. Sajavaara, M. Ritala and M. Leskelä, Chem. Mater., 2013, 25, 1656–1663.