Supplementary Material
Superconductivity in functionalized niobium-carbide MXenes

Cem Sevik
E-mail: cem.sevik@uantwerpen.be
Department of Physics & NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
Department of Mechanical Engineering, Faculty of Engineering, Eskisehir Technical University, 26555 Eskisehir, Turkey

Jonas Bekaeart
E-mail: jonas.bekaert@uantwerpen.be
Department of Physics & NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium

Milorad V. Milošević
E-mail: milorad.milosevic@uantwerpen.be
Department of Physics & NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium

Bulk Nb$_2$CCl$_2$ structures with $P6_3mmc$ and $P-3m1$ symmetries

![Diagram showing bulk Nb$_2$CCl$_2$ structures](image)

Figure S1: (a) Schematic representation of the periodic unit-cell of the Nb$_2$CCl$_2$ crystals with space group symmetries (a) $P6_3mmc$ and (b) $P-3m1$. The calculated phonon dispersion along with phonon density of states, and electronic band structures of Nb$_2$CCl$_2$ crystals with space group symmetries (c) $P6_3mmc$ and (d) $P-3m1$.

Exfoliation energies (E_x)

\[E_x = \left(E_{\text{bulk}} - n^*E_{\text{2D}} \right)/N \]

- E_{bulk} = Total energy of the bulk structure
- E_{2D} = Total energy of the single layer
- n = Number of layers in the bulk unit cell
- N = Number of atoms in the unit cell of the bulk structure

Materials	E_x (meV/Atom)
Nb$_2$CS$_2$	-1.08
Nb$_2$CCl$_2$	-1.03
Nb$_3$C$_2$S$_2$	-0.53
Nb$_3$C$_2$Cl$_2$	-0.52

Note: Total energies were obtained using the PBE functional, without the inclusion of vdW interactions.
Monolayer Nb\(_2\)CCl\(_2\)

Superconducting properties
\[ts\text{mear} = 0.0075 \text{ Ha} \; \mu' = 0.13 \; T_C = 9.6 \; K \]

(a) Periodic unit-cell
(b) Phonon dispersion
(c) Band structure
(d) Eliashberg function and e-ph coupling (\(\lambda\))

Figure S2: (a) Schematic representation of the periodic unit-cell of the considered crystal. The calculated (b) phonon dispersion along with e-ph coupling (size of red circles) and phonon density of states, (c) electronic band structure, and (d) Eliashberg function and integrated e-ph coupling constant (\(\lambda\)). The size of red circles is scaled with 1/100 for a better view. Here the red, grey, and green lines correspond to the Nb, Cl, and S atoms, respectively.

Monolayer Nb\(_2\)CCl\(_2\)

The Fermi level dependent superconducting properties of monolayer Nb\(_2\)CCl\(_2\)

(a) Eliashberg function and integrated e-ph coupling constant for Fermi level shifted by gating to 0, -70, and -110 meV. (b) The calculated superconducting transition temperature \(T_C\), along with electronic density of states at \(E_F\).

Figure S3: (a) Eliashberg function and integrated e-ph coupling constant for Fermi level shifted by gating to 0, -70, and -110 meV. (b) The calculated superconducting transition temperature \(T_C\), along with electronic density of states at \(E_F\).
Bulk-layered Nb$_2$CS$_2$

The calculated nesting function

![Graph showing calculated nesting function for Nb$_2$CS$_2$ (bulk).](image)

Figure S4: The calculated nesting function for Nb$_2$CS$_2$ (bulk).

Monolayer Nb$_2$CS$_2$

The change in Eliashberg function and integrated e-ph coupling constant (λ) with applied strain

Strain	T_c (K)
(a) 0%	10.7
(b) 2%	11.0
(c) 4%	12.0
(d) -2%	4.9

![Graphs showing Eliashberg function and integrated e-ph coupling constant for different strains.](image)

Figure S5: The calculated Eliashberg function and integrated e-ph coupling constant (λ) for different strain values (tensile (+) and compressive (-)). Here, $\mu^* = 0.13$ and $t_{\text{smear}} = 0.005$ Ha.
Bulk Nb$_2$CSe$_2$

Superconducting properties

\[t_{\text{smear}} = 0.0015 \text{ Ha} \quad T_c = 0.0 \text{ K} \]

Figure S6: (a) Schematic representation of the periodic unit-cell of the considered crystal. The calculated (b) phonon dispersion along with e-ph coupling (size of red circles) and phonon density of states, (c) electronic band structure, and (d) Eliashberg function and integrated e-ph coupling constant (λ). The size of red circles is scaled with 1/100 for a better view. Here the red, grey and green lines correspond to the Nb, Se, and C atoms, respectively.

Monolayer Nb$_3$C$_2$

Superconducting properties

\[t_{\text{smear}} = 0.010 \text{ Ha} \quad T_c = 1.0 \text{ K} \]

Figure S7: (a) Schematic representation of the periodic unit-cell of the considered crystal. The calculated (b) phonon dispersion along with e-ph coupling (size of red circles) and phonon density of states, and (c) Eliashberg function and integrated e-ph coupling constant (λ). The size of red circles is scaled with 1/100 for a better view. Here the blue, and red lines correspond to the Nb, and C atoms.
Bulk Nb$_3$C$_2$Cl$_2$

Space group $P-3m1$

Phonon dispersion

$t_{\text{smear}} = 0.0075$ Ha

(a) Periodic Unit-Cell

![Diagram of periodic unit-cell](image)

(b) Phonon dispersion

![Phonon dispersion diagram](image)

Figure S8: (a) Schematic representation of the periodic unit-cell of the considered crystal. (b) The calculated phonon dispersion along with e-ph coupling (size of red circles) and phonon density of states.

Superconducting properties

$t_{\text{smear}} = 0.0050$ Ha $T_c = 28.1$ K

(a) Periodic unit-cell

![Diagram of periodic unit-cell](image)

(b) Phonon dispersion

![Phonon dispersion diagram](image)

(c) Band structure

![Band structure diagram](image)

(d) Eliashberg function and e-ph coupling (λ)

![Eliashberg function diagram](image)

Figure S9: (a) Schematic representation of the periodic unit-cell of the considered crystal. The calculated (b) phonon dispersion along with e-ph coupling (size of red circles) and phonon density of states, (c) electronic band structure, and (d) Eliashberg function and integrated e-ph coupling constant (λ). The size of red circles is scaled with 1/10 for a better view. Here the red, grey and green lines correspond to the Nb, S, and C atoms, respectively.
Bulk Nb$_2$CCl$_2$

The calculated electronic density of states and carrier doping level

![Graph](image)

Figure S10: The calculated electronic density of states and corresponding electron doping for bulk Nb$_2$CCl$_2$. Here, the Fermi level is set to 0 eV.

Monolayer Nb$_2$CCl$_2$

The calculated electronic density of states and carrier doping level

![Graph](image)

Figure S11: The calculated electronic density of states and corresponding electron doping for monolayer Nb$_2$CCl$_2$. Here, the Fermi level is set to 0 eV.
Monolayer Nb$_2$CCl$_2$

The change in band structure with tensile strain

Tensile Strain (%)	Band Structure
0.00 %	![Band Structure](image1)
0.25 %	![Band Structure](image2)
0.50 %	![Band Structure](image3)
0.75 %	![Band Structure](image4)
1.00 %	![Band Structure](image5)

Figure S12: The calculated band structures for different tensile strain values.
Monolayer Nb$_2$CCl$_2$

The change in Eliashberg function and integrated e-ph coupling constant (λ) with tensile strain

(a) 0.00% $T_c = 10.5$ K	(b) 0.25% $T_c = 11.8$ K
![Graph](image1.png)	![Graph](image2.png)

(c) 0.50% $T_c = 16.4$ K	(d) 0.75% $T_c = 25.6$ K
![Graph](image3.png)	![Graph](image4.png)

(e) 1.00% $T_c = 4.3$ K
![Graph](image5.png)

Figure S13: The calculated Eliashberg function and integrated e-ph coupling constant (λ) for different tensile strain values. Here, $\mu^* = 0.13$ and $t_{smear} = 0.0075$ Ha.
The change in phonon dispersion with tensile strain

Figure S14: The calculated phonon dispersions for different tensile strain values.
Monolayer Nb$_2$CS$_2$

Superconducting properties
$t_{\text{smear}} = 0.0015$ Ha $T_c = 10.7$ K

Figure S15: (a) Schematic representation of the periodic unit-cell of the considered crystal. The calculated (b) phonon dispersion along with e-ph coupling (size of red circles) and phonon density of states, (c) electronic band structure, (d) Eliashberg function and integrated e-ph coupling constant (λ). The size of red circles is scaled with 1/10 for a better view. Here the red, grey, and green lines correspond to the Nb, S, and C atoms, respectively.

Monolayer Nb$_2$CS$_2$

The change in band structure with applied strain

Figure S16: The calculated band structures for different strain values (tensile (+) and compressive (-)).
Monolayer Nb$_2$CS$_2$

The change in phonon dispersion with applied strain

(a) 0.00 %	(c) 4.00 %
![Graph](a)	![Graph](c)

(b) 2.00 %	(d) -2.00 %
![Graph](b)	![Graph](d)

Figure S17: The calculated phonon dispersions for different strain values (tensile, + and compressive, -).

Monolayer Nb$_2$CS$_2$

The calculated nesting function

![Graph](nesting_function)

Figure S18: The calculated nesting function for Nb$_2$CS$_2$ (2D).