Trace Element Nutrition

Michael Deans*
Freelance Scientist, Chiswick, London, UK

*Corresponding author: Michael Deans, Freelance Scientist, Chiswick, London, UK. Tel: +442089956525; Email: michaeltdeans@gmail.com

Citation: Deans M (2017) Trace Element Nutrition. Int J ClinPatholDiagn: IJCP-108. DOI: 10.29011/IJCP-108.000008

Received Date: 31 July, 2017; Accepted Date: 7 September, 2017; Published Date: 14 September, 2017

Abstract

Recent reports of ice XIc corroborated my discovery of its phase transition at 72 K. Crystallizing in liquid nitrogen on Earth’s poles during a primordial ice-age, temperature fluctuations released ~ 4µ laser light. Polarized by multiple reflections in cloud and surface ice, it selectively activated nucleotides in tropical waters, creating chiral DNA. Some formed transport DNAs, tDNAs sharing transfer RNA’s H-bond-lined holes. Embedding in primitive cell membranes, laser light drove the active transport of charged carrier-substrate complexes through them. Concentration promoted their metabolism, a replicate tDNA signaled life’s origin. Complementing barrels of α-helical protein, sufficient Ca, Mn, I, Cu, F, Zn, Ag and Se and controlling acid air pollution would counter maladies associated with Western diets. Hairpin proteins predating the evolution of ribosome neutralized DNA’s acidity, binding uncoiled DNA to form minions. They pack DNA on chromosomes and facilitate their replication. Proton-ordered arrays of H-bonds on minion surfaces serve as biological clocks, ‘Chips in the brain’ and govern nine independent metabolic pathways. This paper addresses some consequences.

Introduction

(Figure 1) shows the phase transition at 72 K in proton-ordered ice XIc releasing ~ 4µ infrared laser light, ice-light. Ice XIc crystallized in liquid nitrogen on Earth’s poles during a primordial ice-age and temperature fluctuations drove its transition. Polarized by multiple reflections, ice-light reached Darwin’s warm tropical waters. There, lightening synthesized deoxy-nucleotides and photo-phosphorylated them, polymerizing to form chiral DNA. Some formed transfer RNA analogues, transport DNAs, tDNAs, sharing their H-bond-lined hole. tDNAs lined pores through coacervate proto-cell membranes. Ice-light powered a ratchet mechanism importing charged carrier-substrate complexes to them. Now some 2,000 tDNAs complementing barrels of α-helical protein control nine parallel pathways. Diets need satisfy their requirements to maintain health. Alternate neutral and basic [A, L, I | V and K | R] residues form anti-parallel β-pleated-sheet protein hairpins holding uncoiled B-helical DNA flat. P. creataes 17° bend between adjacent unitso forms a twenty-one-unit coil, degrading to a nucleosome core particle, NCP on extraction. The Fs in gramicidin S are analogous to bases. Further protein hairpins binding nine coils complete a minion. Stacked minions pack better than NCPs, predicting their dimensions and replicating 1,701 base-pairs without uncoiling or recoiling. H-bonds between bases, across pleated sheets and connecting ω-amines to phosphates hold minions together. The latter are concatenated and oscillate, accelerating protons along adjacent tunnels, T. Their default settings are retained, storing intellectual data; their progress measures the passage of time. Protons fuse with obstructing nuclei, driving the carbon-nitrogen cycle and emitting γ-rays with periods and frequencies matching those of pulsars.

Bioenergetics

(Figure 2) illustrates aspects of biological energy. The water molecules in ice XIc adopt the same positions as carbon atoms in diamond. Each water molecule is a dipole, they all point the same way, during the ice XIc phase transition, the ice crystal expands along its x-/y-axes and contracts along the z-axis to accommodate their irregular tetrahedral shape. The latent energy it released drove life’s origin. The three-stage cytochrome chain splits the energy released by the Krebs cycle oxidizing carbohydrates. Cholinesterase release choline from acetylcholine, its uptake changes membrane potential.
Figure 1: Background (A) Ice XIc transition (B) Primordial DNA synthesis (C) tRNA\textsubscript{Phe} (D) Ratchet Mechanism (E) Uncoiled DNA binds to β-pleated sheet (F) Phe in Gramicidin S (G) 21-unit coil and 9-coil minion (H) Stacked minions pack DNA on chromosome (I) Minions replicating (J) 3 sets of H-bonds (K) Concatenated H-bonds.

Figure 2: Bioenergetics. (A) Diamond structure (B) 2D model of ice transition and transition temperatures (C) Water molecules in ice XI\textsubscript{c} in 3D (D) Equivalence of ping-pong ball losing energy at successive bounces to (E) Equal energy release by stages of cytochrome chain F Cholinesterase.

Figure 3: Motility (A) Spindle (B) Centriole (C) \textalpha-helical protein (D) 3 \textalpha-helices pass 9 solitons (E) Retinal (F) Sliding filament model (G) Sarcomere of muscle (H) Chloroplast granum.

Active transport

Differentiation DNAs, dDNAs select from the 2000 tD-\textsubscript{NA}se embedded in every cell membrane determine cell diet, analogous to messenger RNAs selecting tRNAs for protein synthesis. Nine independent metabolic systems involving endocrine gland, charged carrier-substrate complex, tDNAs, and dDNAs control: motility, sensitivity, excretion, respiration, growth, bones and teeth, assimilation, reproduction and water transport. (Table 1) shows Mendeleev’s periodic table, highlighting essential, toxic and unused elements.

Table 1: Periodic table.

Period	Elements
1	H, He
2	Li, Be
13	K, Ca
14	Mg, Na
15	Al, Si
16	S, Cl
17	Ar, K
18	Br, Kr
19	Rb, Sr
20	Y, Zr
21	Nb, Mo
22	Tc, Ru
23	Rh, Pd
24	Ag, Cd
25	In, Sn
26	Sb, Te
27	Xe, I
28	Cs, Ba
29	La, Hf
30	Ta, W
31	Re, Os
32	Ir, Pt
33	Au, Hg
34	Tl, Pb
35	Bi, Po
36	At, Rn

Sufficient dietary calcium, potassium, manganese, iodine, copper, fluorine, zinc, silver and selenium prevent common mental and physical disorders.

Motility

(Figure 3) shows the oxidation of sulfur in hepatic glutathione to form sulfite. \(\text{SO}_3^-\) exchanges \(\text{Mg}^{2+}\) for \(\text{Ca}^{2+}\). Magnesium cofactors enzymes catalyzing ATP hydrolysis. They release phosphodiesters, \(\text{P}^-\text{P}^\text{bi}\) bond energy as \(\lambda \approx 4 \mu\) photons. Cell organelles afford resonant cavities mediating biological energy coupling more efficiently than mechanisms subject to thermodynamics. At cell division, centrioles’ nine components concentrate \(\text{P}^-\text{P}^\text{bi}\) bond energy, it’s transmitted to chromosomes along the conjugated \(\alpha\)-helical H-bond chains of spindle fibers to centrosomes. Protons accelerated along concatenated minion H-bond tunnels create alternating magnetic forces with frequencies determined by chromosome length, driving daughter chromosomes apart. Sarcomeres of striated muscle contracting to form \(\frac{1}{2}\)-wave resonant cavities for\(\lambda\) is more efficient than Huxley’s sliding filament model dependent on random engagements between actin and myosin [1]. The grana of chloroplasts are commensurate with sunlight wavelengths, resonating for photosynthesis. The cytochrome chain splits light quanta to \(\lambda\) stored in ATP. The conjugated [C=C]_h\textsubscript{bond} of vitamin A isomer retinal[2] conduct energy from intra-cellular sources as solitons
energizing such processes as silicon hexafluoride synthesis—dimerizing phosphate to pyrophosphate and oxidizing selenium to selenite, SeO_3^2.

Sensitivity

(Figure 4) shows sodium ions have the same shape and size as water molecules, such large hydrates as $\text{Na}^+\cdot 2\text{H}_2\text{O}$ make the cell sap viscous. Since potassium ions bind less water, substituting K^+ for Na^+ speeds reactions, explaining the fight or flight reaction [4]. Catecholamines adrenaline, noradrenaline and dopamine form 4-/6-member rings around K^+ and Na^+, exchanging 3 Na^+ for 2 K^+ at synaptic junctions [5]. This enables inter-minion information exchange and pain transmission. Substituting codeine or morphine creates larger complexes, preventing pain transmission by blocking tDNAs. The enrolments of more tDNAs to compensate increases pain sensitivity. Further drug consumption alleviates it, explaining addiction [6]. The differentiated brain areas (basis for the neural network model) employ different neurotransmitters. L-Dopa corrects dopamine deficiency, countering Parkinson’s disease [7].

Excretion

Manganesechlorides: MnCl_2^-, MnCl_3^- and MnCl_6^{4-} excrete salt in urine, sweat and tears. Catalyzing exchange of HCO_3^- for Cl^-, the chloride shift [8] controlling ionic strength. Erythrocytes carry oxygen bound to hemoglobin, the exchange of O_2 for $\text{CO}_2[9]$. Zn cofactors carbonic anhydrase: $\text{CO}_2 + \text{H}_2\text{O} \leftrightarrow \text{HCO}_3^- + \text{H}^+$. Together with CO_2 excretion, it controls pH.

Respiration

Figure 5 shows how littoral seaweeds’ purple and yellow colors reflect those of iodinium, I^- and I^-. The $\text{I}^-\cdot[\text{O}_2\cdot\text{H}_2\text{O}]_2$ complex protects them from tidal fluctuations in oxygen concentration. Iodine deficiency causes goiter [10] and the complex carries water into the aqueous humor causing exophthalmos. Nerve cell oxygen uptake is disrupted my mutant tDNAs, explaining bipolar disorder [11]. Mania and depression correlate with excess and deficient oxygenation. Lithium, diagonally related to iodine in the periodic table, stabilizes oxygen transport, and excess can cause kidney failure. tDNAs drive proton transport binding nitrogen to nitricotinamide, it fixes nitrogen more efficiently than the Haber process [12]. Parallel reaction photolyzed water, introducing the oxygen in Earth’s atmosphere [13]. This tDNA releases nitric oxide, controlling vasodilation and cyanide poisons it.

Growth

The liver inter-converts amino acids [14] ensuring a balanced mixture for the brain. The anterior pituitary packs somatotropin with copper for distribution throughout the body, promoting enzyme catalysis. Any metabolic disruption can signal somatotropin release, stimulating the hypothalamus to issue somatomedins supplying copper to endocrine glands, their hormones alert all body cells [15], an exquisitely tuned feedback reaction. Differentiation DNAs select tDNAs determining cell diet which controls metabolism, analogous to mRNAs selecting transfer RNAs for protein synthesis. tDNAs facing blastula and gastrula at cell division are starved of nutrients. Adenylcyclase driven substrate transport is replaced by guanylylcase synthesizing hook proteins. They pair, binding sister cells together, determining tissue morphology. Stem cells lack hooks, gametes and leucocytes have 1, spirogyra filaments 2, sponge sheets 3 and bi-layered worms 4. 5 hooks suffice to form all body tissues and limit their growth. A 6th hook enables neoplastic growths unless 1-hook leucocytes digest them. Biotechnologists creating variant tDNAs could yield monsters. Publication of a proof of my five-hook theorem, 3D equivalent of the Four-color mapping theorem [16] would encourage research on cancer treatment. Copper supplements control growth disorders and might ameliorate arthritis. Mutant tDNAs account for
acromegaly[17], dwarfs and giants. Copper accumulating in the eyes causes Wilson’s disease, (Figure 6).

Figure 6: Growth. (A) Liver equilibrates amino acids (B) Adenylcyclase substrate transport (C) Guanylylcase synthesizes hook proteins (D) Hook proteins govern tissue morphology.

Bone and tooth maintenance

Fluorine maintains bones and teeth, preventing bone fracture, osteoporosis and dental caries. The stability of fluorospar illustrates the affinity of Ca for F [18]. Silicon hexafluoride, SiF6= transports apatite and fluorapatite across osteoblast and osteoclast membranes. The ~265 nm UV light stored in vitamin D has energy matching that of Si ~ F bonds [19]. Continuous secretion of parathyroid hormone, PTH prevents toxic F-accumulation[20]. Retinal transfers energy as solitons, driving the pH sensitive reaction:

$$\text{SiO}_2^{2-} + 6\text{F}^- + 4\text{H}^+ + \text{UV} \rightarrow \text{SiF}_6^{2-} + 2\text{H}_2\text{O}$$

Acid conditions in kidney failure and at menopause cause osteoporosis [21]. Phosphate is scarce for plant life, they use silica to build their hard parts, apatite transports SiO2+[22]. SOx or NOx air pollution entering the stomata of forest trees causes leaf-fall [23]. Liming the soil has no effect, reducing interest in its regulation. SOx or NOx air pollution promotes inappropriate SiF6= synthesis in the nasal fossa and olfactory nerves deliver it to the brain. There its breakdown releases F- and deposits aluminosilicate plaques. F- Disrupts the citric acid cycle, progressively killing cells. It also disrupts protein folding [24] as nascent proteins pass through tDNAs, creating β-amylody and β-protein tangles. Mutant tRNAs misinterpreting mRNA sequences create similar tangles in prion diseases [25], embedded tRNAs render them infectious. Fluorinated anesthetics, typically administered for hip replacement, relieve Alzheimer Disease symptoms four days later [26].

Kidneys excretion of AlF6= is accompanied by brain clearance of F. Acid air pollution control or a pharmaceutical delivering F to the brain might manage the condition. Other pathologies include vitamin D deficiency causing rickets, F- supplements might prove more effective than UV lamps, sunlight and cod liver oil [27]. Fluoridation of water supplies substitutes F- for OH-, hardening tooth enamel and preventing dental caries [28]. Excess F- can cause fluorosis, tea supplies adequate F [29], (Figure 7).

Figure 7: Bone and tooth maintenance. (A) Vitamin D stores UV light energy (B) SiF6= synthesis (C) Pineal hormones transport Ag+.

Assimilation

Transporting the Zn2+-βD-glucose complex controls carbohydrate metabolism. Pancreatic α- and β-cells release glucagon and insulin, insulin delivers Zn and glucagon clears it. Zn2+ binds to the triangle of sweetness [30]. Defective glucose transport causes diabetes, implanting a Zn monitor might help manage it. Zn determines appetites for food and sex [31], anticipating food promotes insulin secretion, anorexia nervosa and bulimia respond to Zn supplements. Breathing oxygen initiates adult hemoglobin replacing the fetal form, releasing bilirubin. The Zn in colostrum conjugates it, preventing neonatal jaundice [32]. Zn in the traditional midwife’s pewter spoon was as effective as current exposure to blue light. Zn deficiency prevented OH-proline incorporation to collagen, causing sailors’ scurvy, the vitamin C in limes prevented it [33]. ZnS, the active ingredient of Calamine™ lotion, works the same way. Vitamin C derivative 2-keto-Lgulonate takes Zn where insulin can’t reach. The vitamin C supplements Linus Pauling advocated prevents rhinovirus entry to nasal tDNAs[34]. The Zn in caviar increases libido and Cu in coil contraceptives competing with Zn inhibits sperm glucose uptake, preventing fertilization. Alcohol consumption and barbiturates cause Zn transfer to cofactor hepatic alcohol dehydrogenase for detoxification [35], reduced brain Zn supply starves it of glucose, causing inebriation. Better Zn nutrition might manage alcoholism. Beryllium, lead and indium, Be++, Pb++ and In++ mimic Zn++, Victorians used beryllium as a poison, calling it glucinium for its sweet taste [36]. Using lead acetate as a sweetener killed ancient Romans. Indium is diagonally related to zinc in the periodic table, it may mediate endocrine gland divalent ion uptake, (Figure 8).
Figure 8: Assimilation 2-keto-L-gulonate and β-D-glucose bind zinc.

Reproduction

Serotonin forms 6-member rings around Ag⁺, c.f. K⁺-adreneline. Exchanging creatine for creatinine replenishes ATP. Retinal transfers solitons from pink Ag porphyrin, converting P to PP. The PP-Arg2 complex delivers the atomic ingredients (24H, 12C, 11O, 8N and 2P) for DNA replication at cell division, anti-cancer drugs canaverine, aminoimidazole, dacarbazine and chloroplatinate mimic it. Ag was used in medicine before antibiotics were introduced [37]. Ag colloid successfully treated animal cancer, suggesting its reinstatement [38], (Figure 9).

Figure 9: Reproduction. (A) Pineal hormones transport Ag⁺ (B) Creatine/ creatinine exchange replenishes ATP (C) PP-Arg2 complex transports PP, (D) Anti-cancer drugs mimic PP-Arg2.

Water transport

Membrane potential precludes Mitchell’s chemiosmosis [39] assuming water diffuses freely through unit membranes. The residue of saturated fat breakdown, mevalonate, is named after Valerian, aka all heal[40]. Exchanging mevalonate-5-phosphate for mevalono-lactone-5-phosphate transports water. The posterior pituitary installs S ~ Se bonds in oxytocin and vasopressin [41]. Vitamin E, α-tocopherol transfers solitons, creating selenite, SeO₃⁻ which exchanges Ca²⁺ for Mn²⁺. Manganese cofactors enzymes converting surplus mevalonate to cholesterol [42], feedstock for steroid hormones. Selenium deficiency causes most Western morbidity: preeclampsia, cancers of breast, bowel, cervix and prostate and heart attacks and strokes.

The best evidence is the persistent correlation between breast cancer distribution and surface geology [43]. Hard water percolating through sedimentary and igneous rocks incorporates remnants of early selenium-dependent life, it’s preferable to soft water, seafloor manganese nodules also evidence selenium-dependency. Animal husbandry affords much evidence [44]: The sulfur in superphosphate fertilizer competes with it, causing white muscle disease in sheep, selenium deficient pregnant cattle suffer hypertension and swine get heart failure en route to market, (Figure 10).

Figure 10: Water transport. (A) Mevalonate transports water (B) Cholesterol synthesis (C) Blood pressure controls: 1-tDNA water transport genetics 2- Consuming saturated fat 3-LDL/HDL cholesterol transport 4-Mn and cholesterol synthesis 5-Exercise and Ca 6-S metabolism and glutathione 7-HgMe prevents Me₂Se accessing pituitary 8-Se deficiencies [45-47].

Conclusion

Provision of limes to mariners for preventing scurvy, iodine for goiter, cod liver oil for rickets and fluoridation for dental caries are precedents for selenium supplementation to prevent heart attacks and common cancers. Research focused on enzyme-catalyzed metabolism ignores underlying biochemistry, attention to dietary nutrient content ensures health and longevity.

Acknowledgments

For further reading, see ‘Science Uncoiled’, Melrose Press. This research has received no financial support, I’m the sole author.

References

1. Huxley AF, Niedergerke R (1954) Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature 173: 971-973.
2. Kane MA, Napoli JL (2010) Quantification of endogenous retinoids. Methods Mol. Biol652: 1-54.
3. Sinkala Z (2001) Soliton/exciton transport in proteins. J Theoretical Biology241: 919-927.

4. Cannon WB Bodily changes in pain, hunger, fear and rage, (D. Appleton, 1916).

5. Martini FH, et al. Anatomy and physiology, (Wiley, ed 2, 2007).

6. Volkow ND, Koob GF, McLellan AT (2016) Neurobioblogic advances from the brain disease model of addiction. N England J Med 374: 363-371.

7. Cucca A, Mazzucco S, Bursomanno A, Antonutti L, Di Girolamo FG, et al. (2014) Amino-acid supplementation in L-Dopa treated Parkinson’s disease patients. Clinical Nutrition 34: 1189-1194.

8. Westen EA, Pranque HD (2003) A reexamination of mechanisms underlying the arteriovenous chloride shift. Physiological and Biochemical Zoology 76: 603-614.

9. Marta M, Patamia M, Lupi A, Antenucci M, Di Iorio M, et al. (1996) Bovine hemoglobin cross-linked through the β chains. J Biological Chemistry 271: 7473-7478.

10. Frilling A, Liu C, Weber F (2004) Benign multinodular goiter. Scandinavian Journal of Surgery 93: 278-281.

11. Scott LJ, Mugila P, Kong XQ, Guan W, Flickinger M, et al. (2009) Genome-wide association and meta-analysis of bipolar disorder in individuals of European ancestry. Proc Natl Acad Sci USA 106: 7501-7506.

12. Haber F, Nobel Lectures, Chemistry 1901-21, (Elsevier, 1920).

13. Butterfield NJ (2007) Macroevolution and macroecology through deep time. Paleontology 50: 41-55.

14. Vilsstrup H, Hepatic amino acid conversion and urea synthesis. Current opinion in gastroenterology6: 407-411.

15. Deans MT (1988) Some biochemical consequences of a consistent framework for the origin of life.

16. Gonthier G (2008) Formal proof the four-color theorem. Notices American Mathematical Society 11: 1382-1393.

17. Renahan AG, O’Connell J, O’Halloran D, Shanahan F, Potten CS, et al. (2003) Acromegaly and colon cancer: a comprehensive review of its epidemiology, biological mechanisms and clinical implications. Hormone Metab Res 35: 712-725.

18. Ford TD (1994) Blue John fluor spar. Geology today 10: 186-190.

19. Waldron RS (2008) The extreme Si-F bond strength, 582 kJ/Mol, C & EN86: 3.

20. Walter F (2003) The Parathyroid Glands and Vitamin D, in: Medical Physiology: A Cellular & Molecular Approach. 1094 Elsevier/Saunders.

21. World Health Organ Tech (2003) Prevention and management of osteoporosis. World Health Organ Tech Rep Ser 921: 1-164.

22. Bidle KD, Azam F (1999) Accelerated dissolution of diatom silica by marine bacterial assemblages. Nature 397: 508-512.

23. Kiikkilä M (2005) Heavy metal pollution and remediation of forest soil around the Harjavarta Cu-Ni smelter, in SW Finland. Silva Fennica37: 399-415.

24. Chaudhuri TK, Paul S (2006) Protein-misfolding diseases and chaperone-based therapeutic approaches. FEBS Journal 273: 1331-1349.

25. Prusiner SB, Woereman AL, Mordes D, Watts J, Rampersaud R, et al. (2015) Evidence for α-synuclein prions causing multiple system atrophy in humans with Parkinsonism. Proc Natl Acad Sci USA 112: E5308-E5317.

26. Hemnings HC, Hopkins PM (2006) Foundations of anesthesia: basic sciences for clinical practice. Elsevier Health Sciences.

27. Weisberg P, Scanlon KS, Ruweil L, Cogswell ME (2004) Nutritional rickets among children in the United States: review of cases reported between 1986 and 2003. Am J Clin Nutr 80: 1697S-1705S.

28. Carey CM (2014) Focus on fluorides: update on the use of fluoride for the prevention of dental caries. J Evidence Based Clinical Practice: 95-102.

29. Karak T, Bhagat RM (2010) Trace elements in tea leaves, made tea and tea infusion: a review. Food Research International 43: 2234-2252.

30. Hough L, Emsley J (1986) The shape of sweeteners to come. New Scientist 1509: 23.

31. Shay NF, Mangian HF (2000) Neurobiology of zinc-influenced eating behavior. J Nutrition 130: 14935-14995.

32. Sediak TW, Saleh M, Higginson DS, Paul BD, Juluri KR, et al. (2009) Bilirubin and glutathione have complementary antioxidant and cyto-protective roles. Proc Natl Acad Sci USA 106: 5171-5176.

33. Agarwal A, Shaharyar A, Kumar A, Bhat MS, Mishra M (2015) Scurvy in a pediatric age group - a disease often forgotten? Clinical orthopedics and trauma 6: 101-107.

34. Pauling L, Vitamin C and the Common Cold, (W. H. Freeman, 1970).

35. Brandt EG, Mikko H, Tore B, Tomas O, Olle E (2009) Molecular dynamics study of zinc binding to cysteines in a peptide mimic of the alcohol dehydrogenase structural zinc site. Physical Chemistry Chemical Physics 11: 975-983.

36. Kier LB (1972) A molecular theory of sweet taste. J Pharm Sci 61: 1394-1397.

37. Maillard JY, Hartemann P (2013) Silver as an antimicrobial: facts and gaps in knowledge. Critical Rev Microbiology 39: 373-383.

38. Kehr RW (2012) advocates colloidal silver for treating cancer.

39. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature191: 144-148.

40. Puroelley M Medicinal properties of herbs and plants (Page, 2015).

41. Huber D, Veinante P, Stoop R (2005) Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science 308: 245-248.

42. Russel DW (1992) Cholesterol biosynthesis and metabolism. Cardiovasc Drug Therapy 6: 103-110.

43. Kuldoff M, Feuer EJ, Miller BA, Freedman LS (1997) Breast cancer clusters in the northeast United States: a geographic analysis. Am J Epidemiology146: 161-170.

44. Nat Res Council, Nutrient requirements of small ruminants (National Academies Press 2006).

45. Nutrients in drinking water.WHO(2005).

46. Haug A, Graham RD, Christophersen OA, Lyons GH (2007) How to use the world’s scarce selenium resources efficiently to increase the selenium concentration in food. MicrobEcol Health Dis19: 209-228.

47. Lund D, Karmas E, Harris RS (1988) Effects of Heat Processing on Nutrients. Nutritional Evaluation of Food Processing: 319-354.