Histone Modifications within the Human X Centromere Region

Brankica Mravinac1,*, Lori L. Sullivan1,\dagger, Jason W. Reeves1,2, Christopher M. Yan1,5, Kristen S. Kopf1, Christine J. Farr3, Mary G. Schueler3, Beth A. Sullivan1,5\textasteriskcentered

1Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina, United States of America, 2University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America, 3Department of Genetics, University of Cambridge, Cambridge, United Kingdom, 4National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America, 5Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America

Abstract

Human centromeres are multi-megabase regions of highly ordered arrays of alpha satellite DNA that are separated from chromosome arms by unordered alpha satellite monomers and other repetitive elements. Complexities in assembling such large repetitive regions have limited detailed studies of centromeric chromatin organization. However, a genomic map of the human X centromere has provided new opportunities to explore genomic architecture of a complex locus. We used ChIP to examine the distribution of modified histones within centromere regions of multiple X chromosomes. Methylation of H3 at lysine 4 coincided with DXZ1 higher order alpha satellite, the site of CENP-A localization. Heterochromatic histone modifications were distributed across the 400–500 kb pericentromeric regions. The large arrays of alpha satellite and gamma satellite DNA were enriched for both euchromatic and heterochromatic modifications, implying that some pericentromeric repeats have multiple chromatin characteristics. Partial truncation of the X centromere resulted in reduction in the size of the CENP-A/Cenp-A domain and increased heterochromatic modifications in the flanking pericentromere. Although the deletion removed $\sim 1/3$ of centromeric DNA, the ratio of CENP-A to alpha satellite array size was maintained in the same proportion, suggesting that a limited, but defined linear region of the centromeric DNA is necessary for kinetochore assembly. Our results indicate that the human X centromere contains multiple types of chromatin, is organized similarly to smaller eukaryotic centromeres, and responds to structural changes by expanding or contracting domains.

Introduction

The centromere is a crucial locus for maintaining genome stability. It is the foundation for kinetochore formation, and directs the proper chromosomal segregation during cell division. Improper assembly or function at centromeres is responsible for cell cycle defects and genome instability [1,2,3]. Although centromeres are essential loci that are functionally similar, they show little consistency in DNA sequence content, ranging from the sequence-dependent 125 bp point centromere in the budding yeast \textit{Saccharomyces cerevisiae} to multi-megabase, epigenetically-regulated regional centromeres in primates [4]. The various roles of non-coding sequences, such as non-coding RNAs, microRNAs and siRNAs, in genome organization and regulation emphasize the importance in understanding how large megabase-sized regions of the DNA ensure genome stability and chromosome inheritance in meiosis and mitosis [5].

Replacement of core histones with histone variants, as well as posttranslational, covalent modification (acetylation, phosphorylation, methylation and ubiquitination) of the amino-terminal tails of histones correlate with distinctive chromatin states, such as transcriptionally repressive heterochromatin and open euchromatin that supports transcription [6]. Centromeres contain the histone H3 variant, CENP-A that replaces core H3 within centromeric nucleosomes. Not all H3 is replaced by CENP-A, and in fact, centromeric chromatin contains alternating subdomains of CENP-A and H3-containing nucleosomes [7], where H3 is dimethylated at lysine residue 4 (H3K4me2). H3K4me2, a modification associated predominantly with poised euchromatin, distinguishes CEN chromatin from surrounding blocks of chromatin that are enriched for H3K9mc2 and H3K9me3 nucleosomes [8,9]. A similar model for centromere organization is present in other organisms, such as fission yeast and \textit{Drosophila} [9,10].

The major DNA element of human centromeres is alpha satellite, a 171 bp repeat that is tandemly organized either as multimeric, higher–order repeat (HOR) arrays or as heterogeneous monomers lacking periodicity or hierarchy (monomeric alpha satellite) [11]. Centromeres are composed entirely of repetitive elements that have restricted accessibility to sequencing.
and assembling. Human genome assemblies end before extending through pericentromeric satellite DNA to the chromosome-specific HOR alpha satellite arrays. The X chromosome was the first chromosome for which a sequence assembly spanning both sides of the pericentromere was achieved [12,13]. These tour de force studies revealed that the X pericentromere is a complex mix of satellite families and transposable elements distributed between the euchromatic arm sequences and the homogenous array of chromosome-specific HOR alpha satellite DNA [13,14]. The X chromosome-specific HOR array (DXZ1) comprises approximately 2% of the entire chromosome length, although its size is heterogeneous, ranging 1.5–5 Mb, between homologues and among individuals [15]. DXZ1 not only genetically defines the centromere, but functionally is the site of kinetochore assembly (Fig. 1A) [13]. The kinetochore, marked by centromere proteins, such as CENP-A and CENP-C, is only assembled on a portion of the multi-megabase DXZ1 array [8,16]. The pericentromere region is comprised of divergent alpha satellite and other repetitive sequences (Fig. 1A). Monomeric alpha satellite arrays span 500 kb of X p pericentromere and 350 kb of X q pericentromere [12,13]. The X p pericentromeric region also contains additional repetitive DNA, such as gamma satellite, human satellite 4 (HSAT4), and transposable elements such as LINE repeats [13,14]. Abrupt sequence transitions separate the various satellite repeats, including monomeric and HOR alpha satellite (array junction), as well as euchromatic arms and monomeric arrays (satellite junctions) [17]. In fission yeast, the CENP-ACnp1 chromatin core and heterochromatic pericentromeric repeats are separated by a defined sequence boundary [18]. In this organism, the flanking repeats are important for chromosome stability [19,20].

Figure 1. Overview of human X centromere region. A. The short (Xp) and long (Xq) arm sides of the centromere are designated. The solid black bar represents higher order repeat (HOR) DXZ1 alpha satellite DNA which is composed of highly ordered 171 bp monomers organized into multi-megabased arrays. The array is not drawn to scale and is shown as the point from which the other pericentromeric genomic positions are centered. Each type of pericentromeric DNA is designated by differently shaded boxes. Regions of unordered alpha satellite monomers flank HOR alpha satellite. The short arm pericentromere contains other types of satellites such as gamma satellite and HSAT4. The junctions between DXZ1 alpha satellite (array junction) and between monomeric satellite and the chromosome arms (satellite junction) are denoted by arrowheads. The two sites located 150 kb outside of the centromere, ZXDA and LTR/LINE, are depicted because they were included in the ChIP analyses. The location of chromatin domains for CENP-A chromatin (kinetochore) and the flanking pericentromere (heterochromatin) are shown relative to the schematic genomic region. B. ChIP analysis using antibodies specific for mouse Cenp-A were used to confirm that mouse Cenp-A replaces human CENP-A at higher order alpha satellite DNA on the X chromosome that was transferred into a mouse cell line. ZXDA was used for normalization and establishment of background levels of enrichment (n = 3 with SD). Asterisks indicate statistically significant differences as calculated by a Student’s t-test (p < 0.05). doi:10.1371/journal.pone.0006602.g001
humans, however, systematic deletion of X pericentromeric sequences affects chromosome segregation and mitotic stability only slightly [21,22]. Epigenetic and functional characteristics of large pericentromeric regions in humans that separate the kinetochore region from the chromosome arms are not well defined.

In this work, we define a profile of histone modifications at various locations across the human X centromeric genome assembly. Chromatin immunoprecipitation-PCR (ChIP-PCR) with antibodies against various methylated lysine residues within histone tails was used to study heterochromatin and euchromatin enrichment across a ~3 Mb region. We interrogated 10 genomic sites, including transitions between different satellite arrays and between satellite arrays and chromosome arms, across multiple X centromeres. We also explored preservation of histone modification patterns at centromeres of human X chromosomes that had been transferred into interspecies hybrids. To evaluate the relationship between chromosome stability and long-range chromatin organization, we compared histone modification profiles at an X centromere before and after structural rearrangement. We have compiled a broad view of heterochromatin and euchromatin across a highly repetitive human centromere region.

Results

Chromosome-specific markers located within X centromere and pericentromere region

To identify X centromere-specific markers suitable for ChIP, genomic sequence spanning 450 kb of Xp pericentromere, 350 kb of Xq pericentromere, and regions 150 kb from Xp and Xq centromere-arm junction was analyzed in silico using UCSC Genome Browser (March 2006) human reference sequence assembly (NCBI Build 36.1). Specific primer sets were designed to amplify major genomic boundaries, such as centromere-arm [sat jxn] and monomeric-HOR array junctions [array jxn] [12,13], as well as between and within blocks of various satellite DNAs located within the pericentromere (Fig. 1A). Two sites, each located 150 kb outside of the centromere, one in Xp (ZXDA) and one in Xq (site 9), were non-centromeric assay points. Since these sites are located outside the centromere, we expected to observe a shift from centromeric histone modifications to those more indicative of euchromatin.

Euchromatin modifications are largely excluded from the extended centromere

Native chromatin was prepared from isolated nuclei from several different human cell lines (Table 1) and digested with micrococcal nuclease to generate fragments less than 1000 bp (<7 nucleosomes). This digested chromatin was used in ChIP with a panel of antibodies specific to methylated forms of H3K4, H3K9, H3K27 and H4K20. Precipitated DNA was analyzed by semi-quantitative PCR with primer sets spanning the X pericentromere/centromere region (Fig. 2; Table 2). With the exception of the primers for DXZ1, all primer pairs amplified genomic fragments less than 500 bp. At least three independent ChIP experiments were performed on each cell line, and PCRs were done in duplicate for every modification in each experiment. Enrichment for each modification at a specific site was calculated as a percentage of the input. Control genes, such as GAPDH and AFM, were included in the analyses. A primer pair 5’ to ZXDA, the first proximal gene located 150 kb from the Xp centromere-arm boundary, was also included in the analyses. Primers corresponding to 150 kb from the Xq centromere-arm boundary were also included (site 9) to address symmetry of the pattern of modifications and to assess chromatin environment outside the centromere.

Within the three human cell lines studied, the euchromatin-associated modification H3K4me2 was present at DXZ1 satellite repeats (Fig. 2), a result that is consistent with existing models showing that nucleosomes containing H3K4me2 are interspersed with CENP-A-nucleosomes at centromeres [8,9,10,23]. In primary human dermal fibroblasts (HDF), H3K4me2 was detectable mainly at DXZ1 alpha satellite DNA. However, this modification was observed at several sites in the pericentromere in the transformed cell lines, HT1080 and a lymphoblast (EBV-transformed) line LT690 [24](Fig. 2). It was also decreased outside the centromere at site 9. Surprisingly, on X chromosomes that had been transferred into mouse cells, although CENP-A was concentrated on DXZ1 (Fig. 1B), H3K4me2 was not significantly enriched above the control genes, although it was not completely absent. In somatic cell hybrid line 2, H3K4me2 was also slightly enriched on gamma satellite DNA and HSAT4. Enrichment for H3K4me2 at multiple sites across the centromere in the transformed human cells compared to primary cells suggests that immortalization may cause notable chromatin changes at the human X centromere.

Heterochromatic histone modifications are variably spread through X centromeres

Centromere regions have been historically associated with heterochromatin [25]. Heterochromatic histone modifications such as H3K9 methylation and H3K27 methylation, characterize yeast, plant, insect and mammalian centromeres, primarily at sequences flanking the CENP-A chromatin core [8,9,26,27,28]. In the human cell lines, H3K9me2 was enriched at DXZ1 alpha

Table 1. Cell lines included in the study.

Cell line	Cell Type	Source/Reference	Karyotype/Notes
human dermal fibroblast (HDF)	primary neonatal foreskin fibroblasts	ATCC	46,XY
HT1080	fibrosarcoma	ATCC	46,XY/92,XXYY
LT690	lymphoblastoid	Ref. 15	46,XY
160-12 (somatic cell hybrid 1)	mouse-human hybrid; L cell derived	Ref.42	contains single human active X chromosomes
Aha-11ab1 (somatic cell hybrid 2)	mouse-human hybrid; L cell derived	Ref. 42	contains single human active X chromosome
HTM18TCB	hamster-human hybrid	Refs. 21, 22	contains single human X chromosome
FA3Wgb-4	hamster-human hybrid	Refs. 21, 22	truncated X chromosome from HTM18TCB line

doi:10.1371/journal.pone.0006602.t001
Figure 2. H3K4me2 across the X centromere in primary and immortalized human cells and two mouse-human hybrids containing X as the only human chromosome. The schematic at the top of the figure shows the structure of the X centromere. Each number along the centromere represents a genomic site that was interrogated by ChIP-PCR with a specific histone antibody. Each bar graph shows relative enrichment for each histone modification (n=3 with standard deviation, SD). Control regions, including GAPDH, AFM and X-linked ZXDA are also included. The bar graph shows enrichment calculated as percentage of input.

doi:10.1371/journal.pone.0006602.g002
Structural alteration of the X centromere correlates with chromatin reorganization

We next addressed how patterns of chromatin modifications were affected at an X centromere before and after it was structurally altered. The altered X centromere was derived from a single X chromosome that had been transferred into a hamster-human somatic cell hybrid (line HTM18TC8) and systematically truncated of the X centromere. Flanking DXZ1 in the human cell lines and somatic cell hybrid 2 flanking DXZ1 also appeared to be much more heterochromatic than in the normal X, suggesting that reduction in CENP-A domain size resulted from chromosomal truncation, flank the derivative X centromere.

First, we tested if the location of Cenp-A was altered by truncation of the X centromere. Cenp-A was used to optically position Cenp-A on extended chromatin fibers, confirming restriction of Cenp-A to DXZ1 alpha satellite DNA (Fig. 7). The molecular structure of the minichromosome is ~2 Mb of higher-order alpha satellite DNA DXZ1, 450 kb of Xp pericentromere, and 150 kb of proximal Xp (Fig. 7A). The selectable markers neomycin and hygromycin, used to select for deletion derivatives during chromosomal truncation, flank the derivative X centromere.

Table 2. Primer sets used for ChIP-PCR.

Genomic site	primer name	description	length	Position Assembly March 2006	Tm
1 (Xp sat jxn)	BS236/237	F: 5’ ATTTTTACGACCCATTTCGAC 3’	397 bp	chrX:62110033-62110567	55°C
2 (HSAT4)	BS392/393	F: 5’ TGTTCTGGAGGAGTCTCTC 3’	159 bp	chrX:62829011-62829169	64°C
3 (HSAT4-γ jxn)	BS222/223	F: 5’ CAGGGAGTATCTCCTGAGGAG 3’	355 bp	chrX:62829630-62829704	60°C
4 (γ-satellite)	BS160/161	F: 5’ TGCCTCCATGATTCAGTTACA 3’	339 bp	chrX:58329603-58329941	58°C
5 (γ-ALR jxn)	BS226/227	F: 5’ AGCCCGAGGAAAATATGACTGAGG 3’	224 bp	chrX:58335817-58336040	62°C
6 (Xq mono-HOR jxn)	BS240/241	F: 5’ AACGCGCTGGCTATCAAAAGGAAAT 3’	313 bp	chrX:58577182-58577494	64°C
7 (central)	BS15/14	F: 5’ ATATTTCCCATATCAAAACCA 3’	535 bp	chrX:61610033-61610567	55°C
8 (Xq HOR-mono jxn)	BS258/259	F: 5’ GCACCAAAAGCCTCTCAATC 3’	495 bp	chrX:61642633-61643127	61°C
9 (Xq sat jxn)	BS238/239	F: 5’ CCGTCTGGATCACAAGGCGATGCT 3’	389 bp	chrX:61962313-61962701	59°C
10 (Xq jxn-150 kb)	BS260/261	F: 5’ TGTGGTCAGCGAGATGTCTC 3’	475 bp	chrX:62111658-62112132	58°C

Table 2. Primer sets used for ChIP-PCR.

Genomic site	primer name	description	length	Position Assembly March 2006	Tm
1 (Xp sat jxn)	BS236/237	F: 5’ ATTTTTACGACCCATTTCGAC 3’	397 bp	chrX:62110033-62110567	55°C
2 (HSAT4)	BS392/393	F: 5’ TGTTCTGGAGGAGTCTCTC 3’	159 bp	chrX:62829011-62829169	64°C
3 (HSAT4-γ jxn)	BS222/223	F: 5’ CAGGGAGTATCTCCTGAGGAG 3’	355 bp	chrX:62829630-62829704	60°C
4 (γ-satellite)	BS160/161	F: 5’ TGCCTCCATGATTCAGTTACA 3’	339 bp	chrX:58329603-58329941	58°C
5 (γ-ALR jxn)	BS226/227	F: 5’ AGCCCGAGGAAAATATGACTGAGG 3’	224 bp	chrX:58335817-58336040	62°C
6 (Xq mono-HOR jxn)	BS240/241	F: 5’ AACGCGCTGGCTATCAAAAGGAAAT 3’	313 bp	chrX:58577182-58577494	64°C
7 (central)	BS15/14	F: 5’ ATATTTCCCATATCAAAACCA 3’	535 bp	chrX:61610033-61610567	55°C
8 (Xq HOR-mono jxn)	BS258/259	F: 5’ GCACCAAAAGCCTCTCAATC 3’	495 bp	chrX:61642633-61643127	61°C
9 (Xq sat jxn)	BS238/239	F: 5’ CCGTCTGGATCACAAGGCGATGCT 3’	389 bp	chrX:61962313-61962701	59°C
10 (Xq jxn-150 kb)	BS260/261	F: 5’ TGTGGTCAGCGAGATGTCTC 3’	475 bp	chrX:62111658-62112132	58°C

Table 2. Primer sets used for ChIP-PCR.
Figure 3. H3K9me2 enrichment at X centromeres in human cell lines and mouse-human hybrids. The schematic shows the structure of the X centromere. Each number along the centromere represents a genomic site or control region that was interrogated by ChIP-PCR with a specific histone antibody. Each bar graph shows relative enrichment for each histone modification (n=3 with SD). Control regions, including GAPDH, AFM and X-linked ZXDA are also included. The bar graph shows enrichment calculated as percentage of input.

doi:10.1371/journal.pone.0006602.g003
Figure 4. H3K27 mono-methylation (H3K27me1) at the X centromere in human cells and mouse-human somatic cell hybrids. Each number across the schematic representation of the centromere is a genomic site that was interrogated by ChIP-PCR. Control regions, including GAPDH, AFM and X-linked ZXDA are also included. The bar graph shows relative enrichment for H3K27 methylation (n = 3 with SD) calculated as percentage of input.

doi:10.1371/journal.pone.0006602.g004
Sullivan, unpublished). We conclude that centromeric chromatin repositions in response to underlying genomic changes at the centromere, but Cenp-A chromatin remains proportional to the total size of the centromeric array.

We next asked if the structural rearrangement produced changes in the profile of histone modifications at the deleted X centromere that might explain reduction in Cenp-A domain size (Fig. 8). The distribution of H3K4me2 remained low across the normal X centromere and the deleted X. On the deleted X, the marker genes, neomycin and hygromycin, were as enriched as the X-linked gene ZXDA for H3K4me2 (Fig. 8) and H3K4me3 (data not shown). However, H3K4me2 appeared to be decreased at pericentromeric sites 2 and 3 and at the centromeric site DXZ1. Furthermore, the retained Xp pericentromere showed changes in enrichment for H3K27me1. In particular, it was increased at sites 1 and 3 and slightly decreased at DXZ1. Since the normal and deleted X are genetically identical, we conclude that displacement of pericentric chromatin domains as well as centromeric chromatin domains are a consequence of the large genomic deletion of the X centromere.

Figure 5. H3K27 trimethylation (H3K27me3) at the X centromere in human cells and mouse-human somatic cell hybrids. Each number across the schematic representation of the centromere is a genomic site that was interrogated by ChIP-PCR. The bar graph shows relative enrichment for H3K27 methylation (n = 3 with SD). Control regions, including GAPDH, AFM and X-linked ZXDA are also included. The bar graph shows relative enrichment for H3K27 methylation (n = 3 with SD) calculated as percentage of input.

doi:10.1371/journal.pone.0006602.g005
Figure 6. H4K20 trimethylation (H4K20me3) at the X centromere in two human cell lines and one of the mouse-human somatic cell hybrids. Each number across the schematic representation of the centromere is a genomic site that was interrogated by ChIP-PCR. Control regions, including GAPDH, AFM and X-linked ZXDA are also included. The bar graph shows relative enrichment for H3K27 methylation (n = 3 with SD) calculated as percentage of input.
doi:10.1371/journal.pone.0006602.g006
Discussion

In this study, histone modifications correlated with open or repressive chromatin were assayed at intervals spanning the centromeric genome assembly on multiple X chromosomes [12,13]. Our results provide a broad view of the chromatin assembled within a multi-megabase functional domain on different X chromosomes and in various mammalian backgrounds. Our data confirms that CENP-A is limited to a defined portion of HOR alpha satellite DNA [7,8]. In each human cell line studied,
Repressive histone modifications, such as H3K9, H3K27 and H4K20 methylation, were also accumulated at multiple satellite arrays, such as alpha satellite, HSAT4 and gamma satellite. Heterochromatic modifications appeared to decrease beyond the centromere-arm junctions. A similar transition between heterochromatin and euchromatin has been described by a peak of heterochromatic histone modifications on human chromosome 21, implying that other human chromosomes may share similar centromere-arm chromatin boundaries [29].

At some centromeric sites in transformed/immortalized cell lines, H3K4me2 and heterochromatic modifications appeared to coincide. Mammalian tumor cells often exhibit departure from

Figure 8. Comparision of histone modifications across a normal and deleted version of the same X centromere. The schematics at the top show the structure of the normal (A) and partially deleted (B) X centromere. Each chromosome is contained in a human-hamster cell line. The numbers along the centromere represents genomic sites interrogated by ChIP-PCR with a specific histone antibody. The line plots shows average relative enrichment for each histone modification across the centromere region (n = 3 with SD). Control regions, including GAPDH and and X-linked ZXDA are also included. The bar graph shows relative enrichment for H3K27 methylation (n = 3 with SD) calculated as percentage of input. Asterisks indicate statistically significant differences in enrichment for a modification at a particular site between the normal X and deleted X as determined by a Student’s t-test (p<0.05).

doi:10.1371/journal.pone.0006602.g008
normal patterns of DNA methylation and histone acetylation and methylation, including at repetitive regions [30,31]. We also observed differences in histone modification patterns (such as H3K4me2 and H3K9me2) between the primary cell line HDF and the transformed cells HT1080 and LT690. These changes may reflect individual differences in chromatin organization or, most likely, consequences of immortalization by viral or oncogenic transformation [32]. In several cell lines, the large arrays of gamma satellite and alpha satellite DNA appeared as a combination of both open chromatin and compact heterochromatin. Chromatin within these satellite regions may be naturally dynamic or the distribution and/or position of the chromatin on the arrays may be functionally significant. Euchromatic and heterochromatic histone modifications mutually reside in other types of repeats such as HOR alpha satellite DNA and heterochromatic histone modifications mutually reside in other cell lines due to a smaller kinetochore region. Small chromosome size could limit the degree of chromatin remodeling and/or favor the assembly of heterochromatin, so that the deleted X centromere cannot achieve or maintain appropriate amounts and types of centromeric chromatin. Indeed, it has been reported that increasing heterochromatin on small human artificial chromosomes impairs kinetochore formation and chromosome stability [40]. Our study, combined with other studies in Drosophila, yeast and maize emphasize a similar correlation between the amount of centromeric chromatin and chromosome stability [19,38,39].

Our work has extended the profile of histone modifications from the short arm- and long arm-centromere boundaries into the X centromere using sequences that have been excluded from the genomic assembly and from all genomic tiling arrays. As additional genomic information becomes available, finer details of chromatin organization between normal and mutant centromeres can be tested and compared.

Methods
Cell culture
Six cell lines were used in this study (Table 1). Human HDF-XSN dermal fibroblasts and HT1080 fibrosarcoma cells were cultured in minimum essential medium alpha (MEM alpha; Invitrogen) supplemented with 10% FBS and antibiotics (Invitrogen). Human lymphoblast cell line LT690 was grown in RPMI supplemented with 15% FBS, antibiotics (Invitrogen) and hypoxanthine-aminopterin-thymidine (HAT; Invitrogen) [15]. Human-mouse somatic cell hybrid lines (L cell derivatives) containing a normal human active X chromosome, AHA-11aB1 [41] and 160-12 [42], and human-Chinese hamster somatic cell hybrid line (HTM18TC6) were grown in MEM-alpha supplemented with HAT (Invitrogen) [43]. A human-Chinese hamster hybrid line (FA3Wg6-4) containing a 2.7 Mb human X minichromosome (IKNA3) generated by telomere truncation [21] was maintained in MEM-alpha supplemented with antibiotics, 0.5 mg/mL hygromycin B (Invitrogen), and 1 mg/mL G418 sulfate (Mediatech).

Chromatin immunoprecipitation (ChIP)
Native chromatin containing oligonucleosomes were isolated from cultured cells and prepared by micrococcal nuclease
digestion as described [7]. The size of fragmented chromatin ranged between 200–1000 bp. 25 ug of digested chromatin (per IP reaction) was immunoprecipitated with various antibodies as previously described [6]. Antibodies recognizing lysine-specific histone modifications H3Kme2 (ab1220 or ab7766), H3Kme3 (ab5590), H3K9me2 (ab1822 or ab7300), H3K9me3 (ab8996), H5K27me1 (Upstate 07-448), H3K27me3 (Upstate 07-449), H4K20me3 (ab9053), and histone variant CENP-A (Abcam ab13939; Millipore 07-754) were purchased from Abcam (Cambridge, MA) and (07-574) Millipore. Anti-mouse Cenp-A and anti-hamster Cenp-A polyclonal antibodies were raised against synthetic Cenp-A N-terminal peptides and produced and purified from rabbit serum by Quality Controlled Biochemicals (QCB, Hopkinton, MA). To control for non-specific binding, a mock control with no antibody was included in each ChIP experiment. One-tenth (2.5 ug) of starting material was kept aside as input DNA control. Chromatin diluted in 1-1.2 ml ChIP Dilution Buffer supplemented with protease inhibitors was pre-cleared with 100 ul salmon sperm DNA/protein A or G agarose slurry for 2 hours at 4°C. Pre-cleared chromatin was incubated with 1–5 ug primary antibodies and 80 ul salmon sperm DNA/protein A or G agarose slurry overnight at 4°C. The precipitated immunocomplexes were washed in a series of buffers (Low Salt Immune Complex Wash Buffer, High Salt Immune Complex Wash Buffer, LiCl Immune Complex Wash Buffer, and 1xTE buffer), and eluted from antibody-bead mixtures with buffer containing 1% SDS and 0.1 M NaHCO3. The eluate was treated with proteinase K and RNaseA (40 ug/ml) in 200 mM NaCl, 40 mM Tris-HCl pH 6.5, and 10 mM EDTA pH 8.0 for 1 hour at 42°C. DNA was recovered by phenol/chloroform extraction, and was dissolved in 40 ul of Molecular Biology Grade Water (HyClone). At least three independent ChIP experiments for each antibody were performed.

PCR Analysis

Immunoprecipitated DNA (IP DNA) was amplified with centromere-specific primers for semi-quantitative PCR using a Biorad iCycler and/or quantitative PCR (qPCR) using a Stratagene MXP3000. Primers were designed using UCSC Genome Browser on March 2006 human reference sequence assembly (NCBI Build 36.1). Primers that amplified higher-order alpha satellite and gamma satellite specific for the human X chromosome were published previously [16,44]. Primers were validated experimentally as being chromosome X-specific by PCR amplification of DNA from three human male (XY) cell lines and validated experimentally as being chromosome X-specific by PCR amplification of DNA from three human male (XY) cell lines and were used to detect the primary antibodies. Slides were washed three times between antibody treatments in 1X PBS+0.05% Tween-20 for 5 minutes at room temperature. Before FISH, slides were fixed in 8% formalin for 5–10 minutes. 5 uL of DXZ1 FISH probe directly labeled with Spectrum Green (Abbott Laboratories) was hybridized to each area of fibers for at least 16 hours at 37°C. Slides were washed in 60–65% formamide/2X SSC, pH 7 at 42°C, followed by several washes in 2X SSC+0.1% Tween-20 at 42°C. Slides were then mounted in Vectashield (Vector Labs, Burlingame, CA) containing 5–10 ug/ml DAPI and visualized on an inverted Olympus IX-71 attached to the Delvelvision RT imaging system (Applied Imaging, Inc). Images of chromatin fibers were visualized at 100× magnification. At least 15 individual chromatin fibers were analyzed. Since they often spanned multiple fields of view, they were captured using the “Capture Panels” option in the SofWoRx application and the fields of view for each fiber were merged together using the “Stitch Image” option. Areas of Cenp-A staining and DXZ1 fluorescence were measured using the “Measure Distances” tool in SofWoRx. Cenp-A length in megabases was calculated using the formula: Cenp-A length = sum of normal X and deleted X chromosomes. If a p value was less than 0.05, it was considered statistically significant.

Statistics

Students t-test (two-tailed) was used to calculate significant differences in enrichment between chromatin modifications, chromatin domain sizes, and CENP-A/DXZ1 ratios at centromeres of normal X and deleted X chromosomes. If a p value was less than 0.05, it was considered statistically significant.

Acknowledgments

We thank Deirdre B. Parsons and Chris Shaw for technical assistance, and Kristin Maloney for comments on the manuscript. KSK was an NSF-REU/IgSP Summer Fellow.

Author Contributions

Conceived and designed the experiments: BAS. Performed the experiments: BM LLS JWR CMY KSK BAS. Analyzed the data: BM BAS. Contributed reagents/materials/analysis tools: CF MGS. Wrote the paper: BAS.

References

1. Blower MD, Karpen GH (2001) The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nat Cell Biol 3: 730–739.

2. Heun P, Erhardt S, Blower MD, Weiss S, Skora AD, et al. (2006) Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev Cell 10: 303–315.
3. Weaver BA, Silk AD, Montagna C, Verdiri-Pinard P, Cleveland DW (2007) Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 11: 25–36.
4. Sullivan BA, Blower MD, Karpen GH (2001) Determining centromere identity: cyclical stories and forking paths. Nat Rev Genet 2: 584–596.
5. Bernstein E, Allis CD (2005) RNA meets chromatin. Genes Dev 19: 1635–1655.
6. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403: 41–45.
7. Blower MD, Sullivan BA, Karpen GH (2002) Conserved organization of centromeric chromatin in flies and humans. Dev Cells 3: 1–11.
8. Lam AL, Bevin CD, Bonney CF, Rudd MK, Sullivan BA (2006) Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA. Proc Natl Acad Sci U S A 103: 4186–4191.
9. Sullivan BA, Karpen GH (2004) Coherent chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol 11: 1076–1083.
10. Cam HF, Sagiya T, Chen ES, Chen X, FitzGerald PC, et al. (2005) Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nat Genet 37: 809–819.
11. Rudd MK, Willard HF (2004) Analysis of the centromeric regions of the human genome assembly. Trends Genet 20: 529–533.
12. Ross MT, Graham DV, Colley AJ, Scherer S, McLay K, et al. (2005) The DNA sequence of the human X chromosome. Nature 434: 325–337.
13. Schueler MG, Higgins AW, Rudd MK, Grunshaw K, Willard HF (2001) Genomic and genetic definition of a functional human centromere. Curr Biol 294: 109–115.
14. Schueler MG, Dunn JM, Bird CP, Ross MT, Viggiano L, et al. (2005) Progressive proximal expansion of the primate X chromosome centromere. Proc Natl Acad Sci U S A 102: 10563–10568.
15. Mahtani MM, Willard HF (1990) Pulsed-field gel analysis of alpha-satellite DNA at the human X chromosome centromere: high-frequency polymorphisms and array size estimate. Genomics 7: 607–613.
16. Spence JM, Grütter R, Ebersole TA, Valdivia WC, et al. (2002) Co-localization of centromere activity, proteins and topoisomerase II within a subdomain of the major X alpha satellite cell. EMBO J 21: 5269–5280.
17. Schueler MG, Sullivan BA (2006) Structural and functional dynamics of human centromeric chromatin. Annu Rev Genomics Hum Genet 7: 301–313.
18. Scott KC, Merritt SI, Willard HF (2006) A heterochromatin barrier partitions the fission yeast centromere into discrete chromatin domains. Curr Biol 16: 119–129.
19. Bernard P, Maure JF, Partridge JF, Genier S, Javerzat JP, et al. (2001) Requirement of heterochromatin for cohesion at centromeres. Science 294: 5269–5280.
20. Elswell K, Olson T, Turner BM, Cranston G, Allshire RC (1997) Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 91: 1021–1032.
21. Mills W, Grütter R, Lee C, Farr CJ (1999) Generation of an approximately 2.4 Mb human X centromere-based minichromosome by targeted telomere-associates chromosome fragmentation in DT10. Hum Mol Genet 8: 751–761.
22. Spence JM, Mills W, Mann K, Huxley C, Farr CJ (2006) Increased missegregation and chromosome loss with decreasing chromosome size in vertebrate cells. Chromosoma 115: 60–74.
23. Greaves IK, Rangaasamy D, Ridgway P, Tremethick DJ (2007) H2AZ contributes to the unique 3D structure of the centromere. Proc Natl Acad Sci U S A 104: 525–530.
24. Mahtani MM, Willard HF (1998) Physical and genetic mapping of the human X chromosome centromere: repression of recombination. Genome Res 8: 100–110.
25. Wakimoto B (1997) The spreading influence of heterochromatin. Trends Genet 13: 349.
26. Partridge JF, Bergstrom B, Allshire RC (2000) Distinct protein interaction domains and protein spreading in a complex centromere. Genes Dev 14: 783–792.
27. Martens JH, O’Sullivan RJ, Braunsweig U, Opravil S, Radolf M, et al. (2005) The profile of repeat-associated histone lysine methylation states in the mouse epigenome. Embo J 24: 808–812.
28. Yan H, Jin W, Nagaki K, Tian S, OuYang S, et al. (2005) Transcription and histone modifications in the recombinatin-free region spanning a rice centromere. Plant Cell 17: 3227–3238.
29. Grunau C, Board J, Brun ME, De Sario A (2006) Mapping of the interaction between euchromatin and centromeric chromatin. Nat Genet 21: Genome Res 16: 1198–1207.
30. Fraga MF, Ballestar E, Villar-Garcia A, Boix-Chornet M, Espada J, et al. (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37: 391–400.
31. Fraga MF, Esteller M (2005) Towards the human cancer epigenome: a first draft of histone modifications. Cell Cycle 4: 1377–1381.
32. Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7: 21–33.
33. Bernstein BE, Mikkelsen TS, Nie X, Kamal M, Huebert DJ, et al. (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125: 315–326.
34. Kim JH, Ebersole T, Kouprina N, Noskov VN, Ohzeki JI, et al. (2009) Human gamma-satellite DNA maintains open chromatin structure and protects a transgene from epigenetic silencing. Genome Res.
35. Hansen RS, Canfield TK, Stanek AM, Ketiges EA, Gardier SM (1998) Reactivation of XIST in normal fibroblasts and a somatic cell hybrid: abnormal localization of XIST RNA in hybrid cells. Proc Natl Acad Sci U S A 95: 5133–5138.
36. Lehnhertz B, Ueda Y, Derijck AA, Braunsweig U, Perez-Burgos L, et al. (2003) Su(var)39-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol 13: 1192–1200.
37. Peters AH, Kuhnich S, Mechtler K, O’Sullivan RJ, Derijck AA, et al. (2003) Partitioning and plasticity of repressive histone methylation states in mammalian centromeres. Mol Cell 12: 1577–1589.
38. Leung JK, Karpen GH, Cooper TL (2000) Sister-chromatid cohesion via MEI-S332 and kinetochore assembly are separable functions of the Drosophila centromere. Curr Biol 10: 997–1000.
39. Jin W, Lamb JC, Vega JM, Dawe RK, Birchler JA, et al. (2005) Molecular and functional dissection of the maize B chromosome centromere. Plant Cell 17: 1412–1425.
40. Nakano M, Cardinale S, Noskov VN, Gassmann R, Vagnarelli P, et al. (2008) Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev Cell 14: 507–522.
41. Dorman BP, Shimizu N, Ruddle FH (1973) Genetic analysis of the human X chromosome: antigenic marker for the human X chromosome in human-mouse hybrids. Proc Natl Acad Sci U S A 70: 2363–2367.
42. Brown CJ, Willard HF (1989) Nonactivation of a selectable human X-linked gene that complements a murine temperature-sensitive cell cycle defect. Am J Hum Genet 45: 592–598.
43. Farr CJ, Bayne RA, Kipling D, Mills W, Grütter R, et al. (1995) Generation of a human X-derived minichromosome using telomere-associated chromosome fragmentation. EMBO J 14: 5444–5454.
44. Warburton PE, Greig GM, Haaf T, Willard HF (1991) PCR amplification of chromosome-specific alpha satellite DNA: definition of centromeric STS markers and polymorphic analysis. Genomics 11: 324–333.