OX40 and LAG3 are associated with better prognosis in advanced gastric cancer patients treated with anti-programmed death-1 antibody

Hirofumi Ohmura1, Kyoko Yamaguchi1, Fumiyasu Hanamura1, Mamoru Ito1, Akitaka Makiyama2, Keita Uchino3, Hozumi Shimokawa4, Shingo Tamura5, Taito Esaki5, Kenji Mitsugi6, Yoshihiro Shibata7, Kenji Tsuchihashi1, Hiroshi Ariyama1, Hitoshi Kusaba9, Yoshinao Oda10, Koichi Akashi1 and Eishi Baba1

BACKGROUND: Anti-PD-1 monoclonal antibody, nivolumab, has shown efficacy for advanced gastric cancer (AGC). However, the specific immune cell subsets predominantly activated during the period of anti-PD-1 therapy for AGC have not been clarified.

METHODS: Peripheral blood of 30 AGC patients treated with nivolumab was prospectively obtained before the initial and second administrations and at the time of progressive disease (PD). The proportions of immune cell subsets and the serum concentrations of cytokines were systematically analysed by flow cytometry. Associations of subsets and serum cytokines with therapeutic effects were evaluated.

RESULTS: After the initial administration, significant increases in activated central/effector memory, activated effector T cells, and activated T-helper 1 subsets were observed. At the time of PD, activated regulatory T cells, LAG3-positive CD4+/CD8+ T cells, and TIM3-positive CD4+/CD8+ T cells increased significantly. Significant positive correlations were shown between progression-free survival and proportions of LAG3-positive CD4+/CD8+ T cells and of OX40-positive CD4+/CD8+ T cells (log-rank \(p = 0.0008, 0.0003, 0.0035 \) and 0.0040).

CONCLUSIONS: Nivolumab therapy enhances activation of central/effector memory and effector subsets of CD4+ and CD8+ T cells. The expression levels of LAG-3 and OX40 on T cells correlated with the efficacy of nivolumab therapy and could be reasonable biomarkers for anti-PD-1 therapy.

British Journal of Cancer (2020) 122:1507–1517; https://doi.org/10.1038/s41416-020-0810-1

BACKGROUND

Gastric cancer is one of the most common malignancies and is the third leading cause of cancer-related death in the world. For patients with advanced and recurrent disease, platinum and fluoropyrimidine-based systemic chemotherapy is recommended as first-line treatment. For patients with disease refractory to first-line treatment, the following agents are selected for second-line treatment: paclitaxel, docetaxel, irinotecan, anti-vascular endothelial growth factor receptor 2 (VEGFR-2) antibody ramucirumab monotherapy, or ramucirumab plus paclitaxel. Nivolumab, a fully human anti-programmed death-1 (PD-1) monoclonal antibody, demonstrated a significant survival benefit for advanced or metastatic gastric cancer (AGC) previously treated with two or more chemotherapy regimens. PD-1 is the type I membrane glycoprotein expressed on the surface of T cells, B cells, and natural killer (NK) cells. The expression of PD-1 on T cells is promoted by T cell-activation induced via antigen presentation. Under the condition of continuous T cell-activation, including chronic infection or malignancies, PD-1 is strongly expressed on exhausted T cells. Exhausted T cells are characterised by the loss of function of cytokine production or cytotoxic activity. T cells receive an inhibitory signal after binding of PD-1 and the ligands PD-L1 or PD-L2, expressed on antigen-presenting cells (APCs) and tumour cells, resulting in the suppression of proliferation, cytokine production, and cytotoxic activity. Anti-PD-1 antibody is thought to activate tumour-specific T cells by interfering with the ligation of PD-1 on tumour-specific T cells and PD-L1/L2 on tumour cells in both priming and effector phases. Thus, it has been suggested that anti-PD-1 therapy modulates systemic host-immune reactions and exerts an anti-tumour effect. In fact, human anti-PD-1 antibody has shown efficacy in the treatment of malignancies derived from various organs, including malignant melanoma,
OX40 and LAG3 are associated with better prognosis in advanced gastric... H Ohmura et al.

non-small cell lung cancer, renal cell carcinoma, Hodgkin's lymphoma, head and neck cancer, and gastric cancer.12-17 However, the median overall survival time of AGC patients who received anti-PD-1 therapy in the previous study was around 5 months, and their prognosis remains poor.

Anti-PD-1 antibody is thought to activate tumour-specific T cells by interfering with the ligation of PD-1 expressed on tumour-specific T cells and PD-L1/L2 on tumour cells. Thus, PD-1-expressing T cells in the tumour site have been thought to be the main target of PD-1 blockade.18 In addition, PD-1-expressing T cells are observed not only in secondary lymphoid organs, but also in peripheral blood. T cells are activated through antigen presentation by APCs, and then express PD-1.19 Therefore, anti-PD-1 therapy may contribute to anti-tumour effects both directly and indirectly by inhibiting regulatory signalling in not only PD-1-expressing T cells in the tumour site, but also in PD-1-expressing T cells in the secondary lymphoid organs and peripheral blood. Patients who received anti-PD-1 therapy were divided into two groups: those who obtained a therapeutic effect, and they consist of the tail-plateau part in the Kaplan–Meier curve; and those who showed a poor therapeutic effect. Moreover, the effects of anti-PD-1 therapy on T cell subsets other than T cells in the tumour site and the subsequent impact on the systemic immune system have not yet been elucidated in AGC patients. Thus, with the peripheral blood obtained from patients before and after anti-PD-1 therapy, systemic immune cell subsets playing a main role in the anti-tumour effect and ones changing in responders or poor responders were examined.

In the present study, the specific subsets of immune cells predominantly activated and the changes in serum cytokine levels during the period of anti-PD-1 therapy for AGC were analysed, referencing standardised assays from the Human Immunology Project20 and our previous study of anti-PD-1 therapy for referencing standardised assays from the Human Immunology Project during the period of anti-PD-1 therapy for AGC were analysed, predominantly activated and the changes in serum cytokine levels after anti-PD-1 therapy, systemic immune cell subsets playing a main role in the anti-tumour effect and ones changing in

Peripheral blood immune cells and serum

Peripheral blood was collected using acid citrate dextrose solution-added blood collection tubes (8.5 mL) and serum-separating tubes (8 mL) from each patient before the initial and second administrations of nivolumab and at the time of PD. Peripheral blood mononuclear cells (PBMCs) were separated by gradient centrifugation of acid citrate dextrose solution-added blood collection tubes with Ficoll (Ficoll-Paque PLUS, GE Healthcare, Little Chalfont, UK), washed with PBS containing 2% FBS and 1 mM EDTA (FACS buffer), and then the cells were resuspended in FACS buffer on ice for subsequent flow cytometry. Otherwise, separated PBMSs were cryopreserved at −80 °C. Whole blood in serum-separating tubes was left to allow clotting at room temperature for 30 min. Clot was then removed by centrifuging at 1000g for 10 min at 4 °C to separate serum.

Flow cytometry

As described previously,21 a total of 5 × 10^7 PBMCs resuspended in 50 μL FACS buffer were incubated with fluorophore-conjugated antibodies at a final concentration of 1–5 μg/mL in the dark for 20 min on ice. The cells were then washed twice with FACS buffer, resuspended in 200 μL FACS buffer, and analysed. Flow cytometry was performed using FACS Aria III (BD Bioscience, Tokyo, Japan). The data of flow cytometry were exported as FCS files and analysed with FlowJo version 9 (Tomy Digital Biology, Tokyo, Japan). The 10 panels of flowcytometry-conjugated monoclonal antibodies for immunophenotyping are listed as follows: panel 1 (for the detection of naive/memory effector T cells and activated T cell phenotypes), FITC-CCR7/CD197 (G043H7, BioLegend, San Diego, CA, USA), PE-CD38 (BB-7, BioLegend), PE-CY7-CD3 (HIT3a, BioLegend), APC-CD8 (SK1, BioLegend), APC-CY7-CD45RA (HI100, BioLegend), BV421-HLA-DR (L243, BioLegend) and BV510-CD4 (OKT4, BioLegend); panel 2 (for the detection of regulatory T cells; Tregs), FITC-CD45R0 (UCHL1, BioLegend), PE-CD127 (A019D5, BioLegend), PerCP-Cy5.5-CD8 (SK1, BioLegend), PerCP-Cy5.5-CD14 (63D3, BioLegend), PE-CY7-CCR4/CD194 (L29H4, BioLegend), APC-CD25 (BC96, BioLegend), BV421-HLA-DR (L243, BioLegend), APC-CY7-CD3 (OKT3, BioLegend), and BV510-CD4 (OKT4, BioLegend); panel 3 (for the detection of activated phenotypes of Th and Tfh cells), FITC-CD3 (HIT3a, BioLegend), PE-CD38 (BB-7, BioLegend), PE-CY7-CCR6/CD196 (G034E3, BioLegend), APC-CXCR3/CD183 (G025H7, BioLegend), APC-CY7-CD8 (SK1, BioLegend), BV421-HLA-DR (L243, BioLegend), and BV510-CD4 (A161A1, BioLegend); panel 4 (for the detection of B cells), FITC-IgD (IA6-2, BioLegend), PE-CD24 (ML5, BioLegend), PerCP-CY5.5-CD14 (63D3, BioLegend), PE-CY7-CD20 (2H7, BioLegend), APC-CD27 (M-T271, BioLegend), APC-CY7-CD3 (HIT3a, BioLegend), BV421-CD19 (H1B19, BioLegend), and BV510-CD38 (BB-7, BioLegend); panel 5 (for the detection of NK cells, dendritic cells (DCs), and monocytes), FITC-CD11c (3.9, BioLegend), PE-HLA-DR (L243, BioLegend), PerCP-CY5.5-CD3 (HIT3a, BioLegend), PE-CY7-CD123 (6H6, BioLegend), APC-CD19 (HIB19, BioLegend), APC-CY7-CD16 (3G8, BioLegend), BV421-CD56 (NCAM162.6, BD), and BV510-CD14 (63D3, BioLegend); panel 6 (for the detection of Th cells and Tfh cells), FITC-CCR7/CD197 (G043H7, BD BioLegend), PE-PD1/CD279 (EH12.2H7, BioLegend), PerCP-CY5.5-CD14 (63D3, BioLegend),...
OX40 and LAG3 are associated with better prognosis in advanced gastric... H Ohmura et al.
OX40 and LAG3 are associated with better prognosis in advanced gastric.

Fig. 1 Kaplan–Meier plot of progression-free survival in enrolled patients (n = 30). Marks on the curve indicate patients who were censored. The horizontal axis indicates progression-free survival (PFS), and the vertical axis indicates the rate of PFS. PFS was defined as the time since study enrolment to progressive disease (PD) or death from any reason. Median PFS is 51 days (95% CI 35–77 days).

treatment, and at the time of PD. The changes in the proportions of CD4+ T cells and CD8+ T cells in the CD3+ T cells did not show significant trends. The proportions of naïve T cells (Tn, CD3+CD45RA−CCR7+), central memory T cells (Tcm, CD3+CD45RA−CCR7−), effector memory T cells (Tem, CD3+CD45RA−CCR7−), and effector T cells (Te, CD3+CD45RA−CCR7−) in the CD4+ and CD8+ T cells showed no significant differences after 1 cycle of nivolumab and at the time of PD (data not shown). CD4+ or CD8+ T cells expressing the activated phenotype (CD38+HLA-DR+) increased after administration of nivolumab in the Tcm, Tem, and Te subsets (Fig. 2a). On the other hand, these subsets tended to decrease at the time of PD, but they did not show significant changes except for CD4+ Tcm (Fig. 2a). The naïve Treg fraction (FrI, CD3+CD4+CD45RO−CD25−) increased significantly at the time of PD (Fig. 2b). No significant difference in the proportions of helper T cell (Th) subsets, including TH1 cells (CD45RO−CD25+), TH2 cells (CD45RO−CD25−), TH17 cells (CD45RO+CD27−), and TH11/17 cells (CD45RO+CD27+), was observed after 1 cycle of treatment (Fig. 2c). The proportion of activated TH1 cells (CXCR3−CXCR6−CD38−HLA-DR+) in the Th1 cell population increased significantly after 1 cycle of therapy, but no difference was observed for Th2, Th17, or Th11/17 (Fig. 2c). In terms of B cell subsets, no significant change was observed in the proportion of naïve B cells (CD19+IgD−CD27−), switched memory B cells (CD19+IgD−CD27+), IgM memory B cells (CD19+IgD+CD27+), transitional B cells (CD19+CD24−CD38−), and plasmablasts (CD19+CD20−CD38 high) in CD19+ B cells (Fig. 2d). The proportion of NK cells (CD3−CD19−CD56+) and myeloid DCs (mDC, HLA-DR+CD14−CD11c+CD123+) in the CD3−CD19− cell population decreased significantly at the time of PD. On the other hand, the proportion of monocytes (CD3−CD19HLA-DR+CD14low+) in the CD3−CD19− cell population increased significantly at the time of PD. No significant change was observed in plasmacytoid DCs (pDCs, HLA-DR+CD14−CD11c+) after anti-PD-1 therapy and at the time of PD (Fig. 2e). No significant difference in the proportion of follicular helper T cell (TH) subsets, including Tfh-Th1 cells (CD45RA−CD25−CXCR5−CXCR3−CXCR6−), Tfh-Th2 cells (CD45RA−CXCR5−CXCR3−CXCR6+), Tfh-Th17 cells (CD45RA−CXCR5−CXCR3−CXCR6+), and Tfh-Th1/17 cells (CD45RA−CXCR5+CXCR3−CXCR6+), was observed after 1 cycle of treatment (Fig. 2f). The proportion of Tfh-Th17 cells and Tfh-Th1/Th17 cells in CD4+ T cells decreased significantly at the time of PD (Fig. 2f). In terms of costimulatory (OX40, ICOS) and coinhibitory molecules (CTLA-4, TIGIT) on T cells, the proportion of OX40+ cells in CD4+ and in CD8+ T cells showed a significant

Table 1. Patients’ baseline characteristics.

Characteristic	n = 30
Age (years)	69 (36–82)
Sex	Male: 19 (63%), Female: 11 (37%)
ECOG PS	0: 5 (17%), 1: 17 (57%), 2: 8 (27%)
HER2 status	Positive: 7 (23%), Negative: 23 (77%)
Previous treatment regimens	Fluoropyrimidine: 28 (93%), Platinum: 24 (80%), Taxane: 26 (87%), Irinotecan: 3 (10%), Ramucirumab: 22 (73%), Trastuzumab: 5 (17%)
PD-L1 CPS	0: 1 (3%), ≥1: 17 (57%), <1: 12 (40%), Unknown: 1 (3%)

Table 2. Summary of treatment responses and reasons for discontinuation of nivolumab.

Tumor response data	n (%)
Best overall response	CR: 0 (0%), PR: 1 (3.3%), SD: 5 (16.7%), PD: 24 (80%)
Treatment cycle	Median (range) 3.5 (1–21)
Reason for discontinuation of nivolumab	PD: 28 (96.6%), Adverse events: 1 (3.4%), Withdrawal of consent: 0 (0%)

CR: complete remission, PR: partial response, SD: stable disease, PD: progressive disease.
increase at the time of PD (Fig. 2g, h). In terms of exhaustion markers (LAG3, TIM3) on T cells, the proportion of both LAG3+ cells and TIM3+ cells in the CD4+ and CD8+ T cells increased significantly (Fig. 2i). Taken together, peripheral blood immune cell profiles after 1 cycle of anti-PD-1 therapy and at the time of PD showed significant increases or decreases as follows: (i) increase in activated CD4+/CD8+ Tcm, Tem and Te, and activated Th1 cells after 1 cycle of therapy; (ii) decrease in NK cells, myeloid DCs,
Fig. 2 Changes in immune cell phenotypes after anti-programmed death (anti-PD)-1 antibody treatment. The gating strategy and the change in each immune cell phenotype after administration of nivolumab are shown. **a** Proportion of activated CD4+ (CD69+) central/effector memory/effecter cells. **b** Proportion of regulatory T cells (Treg) fractions (Fri, Frl, and Frll) among CD4+ T cells. **c** Proportion of T-helper (Th) cells and of activated Th subsets among CD4+ T cells. **d** Proportion of naive B cells, IgM memory B cells, switched memory B cells, and plasmablasts among CD19+ B cells. **e** Proportion of natural killer (NK) cells, monocytes, and dendritic cells (DCs) among CD3-CD19-mononuclear cells. **f** Proportion of T-helper follicular (Thf) cells among CD4+ T cells. **g** Proportion of co-stimulatory marker (OX40, ICOS)-positive cells among CD4+/CD8+ T cells. **h** Proportion of co-inhibitory marker (CTLA-4, TIGIT)-positive cells among CD4+/CD8+ T cells. **i** Proportion of exhaustion marker (LAG3, TIM3)-positive cells among CD4+/CD8+ T cells. Cycle 0, pre-treatment, that is, prior to the first PD-1 antibody cycle; cycle 1, post-first treatment cycle (i.e. prior to the second PD-1 antibody cycle); PD, at the time of progressive disease; Matched patient samples are connected by coloured lines.

Tfh-Th17, and Tfh-Th1/17 at the time of PD; and (iii) increase in monocytes and CD4+/CD8+/OX40+, TIM3+, and LAG3+T cells at the time of PD. After anti-PD-1 treatment, it was technically difficult to detect PD-1 on peripheral blood T cells with flow cytometry. The competitive binding assay of other anti-PD-1 monoclonal antibodies (NAT105, MHI4, and EH12.2H7) with nivolumab targeting PD-1 on peripheral T cell was performed, but no antibody recognised distinctly different epitopes of the PD-1 molecule from nivolumab (data not shown).

Changes in cytokine concentrations after administration of nivolumab

The changes in serum Th cytokine concentrations were also evaluated in 30 AGC patients at 3 time points: prior to treatment, after 1 cycle of treatment, and at the time of PD. The serum IL-21 concentration decreased at the time of PD (Fig. 3). The other cytokines did not show significant changes during the time course (Fig. 3).

Associations between immune cell phenotype/serum cytokine concentration and prognosis

The multivariate correlations of the proportion of baseline immune cell phenotype (%) and serum cytokine concentration (pg/ml) with median PFS (days) were assessed using a pairwise comparison method. CD4+/CD8+/LAG3+ cells in CD4+/CD8+ T cells, CD4+/CD8+/OX40+ T cells in CD4+/CD8+ T cells, and pDCs/CD3-CD19+ cells showed positive correlations with PFS (correlation coefficient: \(r = 0.7321, 0.6343, 0.3807, 0.4695 \) and 0.3586; \(p \leq 0.0001, 0.0002, 0.038, 0.0089, 0.033 \) and 0.0517). On the other hand, IL-21 showed a tendency for a negative correlation with PFS according to the median in terms of the proportion of CD8+/CD4+ +OX40+ T cells in CD4+ T cells that were higher than the median were defined as the “CD4+/CD8+/OX40+high” group, and those with a lower proportion were defined as the “CD4+/CD8+/OX40+low” group. In the same way, patients were categorised into “high” and “low” groups according to the median in terms of the proportion of CD8+/CD4+ +OX40+ T cells in CD8+ T cells, CD4+/CD8+/LAG3+ T cells in CD4+/CD8+ T cells, and pDCs in CD3-CD19- cells, and the serum concentration of IL-21: “CD8+/OX40+high” and “CD8+/OX40+low”, and “IL-21-high” and “IL-21-low”. Kaplan–Meier plots were drawn for the “high” and “low” groups. Prior to nivolumab therapy, PFS was significantly longer in the high group than in the low group in terms of CD8+/CD4+ +OX40+ T cells, CD4+/CD8+/LAG3+ T cells, and pDCs (log-rank \(p = 0.0004, 0.0010, <0.0001 \) and 0.001). After the first administration of nivolumab and at the time of PD, PFS was significantly longer in the high group than in the low group in terms of CD4+/CD8+/OX40+ T cells, CD4+/CD8+/LAG3+ T cells (log-rank \(p = 0.0035, 0.0040, 0.0008 \) and 0.0003). On the other hand, PFS in the high group was significantly shorter than in the low group in terms of IL-21 (log-rank \(p = 0.0325 \). No significant differences in PFS were observed, however, in terms of PD after the first therapy (Fig. 4a–f). These results suggest that LAG3+ T cells, OX40+ T cells, and pDCs are associated with a better prognosis. On the other hand, IL-21 was associated with a poorer prognosis. Multivariate analysis (Cox proportional hazard model) with OX40+/LAG3+ high or low groups and the background characteristics of patients including performance status (PS 0–1 or 2), MMR status (dMMR or proficient MMR), and CPS (CPS ≥ 1 or CPS < 1) was also performed. Prior to nivolumab therapy, the hazard ratio (HR) for PFS with the high group versus the low group in terms of CD8+/OX40+ T cells and CD4+/CD8+/LAG3+ T cells was 0.8387 (95% CI 0.0231-0.3030), 0.2673 (95% CI 0.1017-0.7025), and 0.1526 (95% CI 0.0502-0.4634), respectively (Likelihood ratio test, \(p < 0.0001, 0.0055, 0.0003 \)). After the first administration of nivolumab, the HR for PFS with the high group versus the low group in terms of CD8+/CD4+ +OX40+ T cells and CD4+/CD8+/LAG3+ T cells was 0.2450 (95% CI 0.0844-0.7110), 0.2289 (95% CI 0.0753-0.6959), 0.3796 (95% CI 0.1333-1.0813), and 0.3095 (95% CI 0.1111-0.8623), respectively (Likelihood ratio test, \(p = 0.0116, 0.0111, 0.0779 \) and 0.0245). In addition, the proportion of OX40+/LAG3+ T cells, which is associated with prognosis, was evaluated. OX40+/CD4+ T cells showed a significantly higher proportion of Tcm phenotype and a significantly lower proportion of Tn phenotype than OX40+/CD4+ T cells (mean ± standard error, 44.1% ± 2.79% vs 20.4% ± 1.62% and 10.7% ± 1.47% vs 35.6% ± 4.32%, Wilcoxon signed-rank test \(p < 0.001 \) and <0.001), and OX40+/CD8+ T cells showed a significantly higher proportion of Tcm phenotype and significantly lower proportion of Tem phenotype than OX40+/CD8+ T cells (9.75% ± 1.55% vs 5.50% ± 1.15% and 29.9% ± 3.06% vs 36.7% ± 3.42%, \(p < 0.001 \) and 0.006). LAG3+/CD4+ T cells showed a significantly higher proportion of Tn and significantly lower proportion of Tcm and Tem phenotype than LAG3-CD4+ T cells (60.5% ± 4.78% vs 24.5% ± 3.22%, 14.4% ± 1.73% vs 27.9% ± 2.09% and 13.6% ± 2.46% vs 38.9% ± 3.75%, \(p < 0.001, <0.001 \) and <0.001). LAG3+CD8+ T cells showed a significantly higher proportion of Tn and Te phenotype and significantly lower proportion of Tcm and Tem phenotype than LAG3-CD8+ T cells (23.0% ± 4.57% vs 5.96% ± 1.22%, 71.8% ± 4.72% vs 25.6 ± 2.67%, 1.06% ± 0.31% vs 12.4% ± 1.79% and 40.8% ± 1.03% vs 56.1% ± 3.13%, \(p < 0.001, <0.001, <0.001, <0.001 \) and <0.001). In addition, OX40+ cells showed no significant difference in the proportion of Tregs compared to OX40-T cells (2.24% ± 0.30% vs 2.54% ± 0.39%, \(p = 0.860 \), and LAG3+ T cells showed a significantly lower proportion of Tregs than that LAG3-T cells (1.23% ± 0.22% vs 2.57% ± 0.32%, \(p = 0.001 \), suggesting that Tregs are not a dominant population among LAG3/OX40+ T cells. These results are shown in Supplementary Fig. 3.

DISCUSSION

In this study, peripheral blood immune cells were comprehensively studied to clarify specific subgroups that correlate closely with the efficacy of anti-PD-1 therapy for AGC patients. The median PFS of the present cohort was 1.72 months (95% CI: 1.17–2.57 months),
which is almost equivalent to that in the ATTRACTION-02 study (1.61 months, 95% CI: 1.54–2.30 months), even though PS 2 patients accounted for 27% of the patients in the cohort. The changes in the proportion of immune cell subsets during the time course of anti-PD-1 therapy showed a similar pattern to our previous findings in malignant melanoma (MM) patients. A significant increase in activated CD4+CD8+ Tcm, Tem, Te and Th1 after 1 cycle of anti-PD-1 treatment and the trend of their decreases at the time of PD were observed. These observations were almost the same as those in MM cases. Tn differentiates into Te after antigen presentation by APCs in secondary lymphoid tissues, and some Te survives and exists as Tcm or Tem. Effector and memory T cells are antigen-specific populations after priming. PD-1 blockade not only reinvigorates the cytotoxicity of CD8+ T cells in tumour tissue, but it also enhances tumour antigen priming to Tn in secondary lymphoid tissues. In fact, T cells in lymph nodes are activated, and CD8+ Tcms in tumour infiltrating T cells (TILs) are increased after anti-PD-1 therapy. Peripheral blood T cells exhibiting memory and effector phenotypes in AGC patients may not necessarily possess anti-tumour activity. They might include a non-tumour-specific T cell population, and they might also include exhausted

Fig. 3 Changes in cytokines after anti-PD-1 antibody treatment. The changes of serum Th cytokine levels (pg/mL) at 3 time points: prior to treatment, after 1 cycle of treatment, and at the time of PD. Cycle 0, cycle 1, and PD in the figure mean the time point prior to first treatment, post-first treatment cycle, and at the time of PD, respectively. Matched patient samples are connected by coloured lines.
OX40 and LAG3 are associated with better prognosis in advanced gastric... H Ohmura et al.

Fig. 4 Kaplan–Meier plots of PFS according to immune cell phenotypes and cytokines. PFS by treatment groups in patients according to the ratio of immune cell subsets and serum cytokine concentrations. The median PFS (days) and hazard ratio (HR, 95% CI) of each group are shown. a “CD4+LAG3-high” group (CD4+LAG3+ T cells/CD4+ T cells ≥3%, blue curve) and “CD4+LAG3-low” group (CD4+LAG3+ T cells <3%, red curve). b “CD8+LAG3-high” group (CD8+LAG3+ T cells/CD8+ T cells ≥2%, blue curve) and “CD8+LAG3-low” group (CD8+LAG3+ T cells <2% red curve). c “CD4+OX40-high” group (CD4+OX40+ T cells/CD4+ T cells ≥15%, blue curve) and “CD4+OX40-low” group (CD4+OX40+ T cells/CD4+ T cells <15% red curve). d “CD8+OX40-high” group (CD8+OX40+ T cells/CD8+ T cells ≥5%, blue curve) and “CD8+OX40-low” group (CD8+OX40+ T cells/CD8+ T cells <5% red curve). e “pDC-high” group (pDC/CD3-CD19- cells ≥1%, blue curve) and “pDC-low” group (pDC/CD3-CD19- cells <1% red curve). f “IL-21-high” group (serum level of IL-21 ≥15 pg/mL, blue curve) and “serum level of IL-21 <15 pg/mL, red curve).

T cells due to continuous tumour antigen presentation. However, the activated memory cells, effector cells, and Th1 cells that increased transiently after anti-PD-1 therapy may contain certain tumour antigen-specific clones. In this study, Treg subsets were classified by surface markers, with the CD3+CD4+CD45RO+CD25-low population as naive Tregs (Fr I), and the CD3+CD4+CD45RO+CD25-high population as effector Tregs (Fr II). Naive Tregs differentiate into effector Tregs, and effector Tregs suppress T cell function. The proportion of Fr II at the time of PD showed a significant increase, similar to our previous study of MM. In previous reports of MM and ovarian cancer, the proportion of Tregs in peripheral blood or tumour tissue was correlated with clinical stage. and Tregs of peripheral blood increased in non-responders to anti-PD-1 therapy after treatment, whereas they decreased in responders, indicating that an increase of Tregs in peripheral blood or tumour tissue may induce a state refractory to anti-PD-1 therapy. In the present study, increases in naïve/effector Tregs were observed at the time of PD, and this effector Treg fraction, which has a T cell inhibitory function, was thought to be functionally enhanced at the time of PD. Effector Tregs may be an
effective biomarker for predicting the progression of disease during anti-PD-1 therapy. Exhaustion markers (TIM3, LAG3, TIGIT) were analysed on T cells. PD-1 expression on the T cell surface is induced by T cell activation, and its expression increases with T cell exhaustion. Therefore, it is difficult to definitively identify the status of T cell exhaustion with PD-1 expression alone. The expressions of exhaustion markers, PD-1, TIM3, LAG3, and TIGIT, are correlated with the expression of the transcription factor Eomesodermin (Eomes) in chronic infections and tumour models.43–45 Eomes-high PD-1-high T cells, which show defects in T cell functions such as cytokine production, proliferation, and cytotoxicity, have been reported to be difficult to reinvigorate with PD-1 administration.46–48 In fact, in cancerous ascites of gastrointestinal cancer patients during the time course of PD, multiple exhaustion markers, PD-1- and TIM3-positive T cells, increased, and this is thought to be a phenomenon that reflects the progression of T cell exhaustion.37 The expressions of multiple exhaustion markers were then analysed in the present study. The proportions of LAG3- and TIM3-positive T cells showed no significant changes after anti-PD-1 therapy. However, these subsets increased significantly at the time of PD. T cells expressing LAG3 and TIM3 at the time of PD were thought to be exhausted populations with deficiencies in functions and the inability to respond to anti-PD-1 therapy. A high proportion of OX40+/LAG-3+ T cells before and after the anti-PD-1 treatment was significantly correlated with a better prognosis in the present study. OX40 is a member of the TNFR superfamily, expressed on the surface of activated CD4+ and CD8+ T cells, Tregs, and transmits costimulatory signals by binding to OX40 ligand (OX40L).48,49 The OX40/OX40L signal is thought to be involved in the formation and survival of memory CD4+ and CD8+ T cells40–42 and has been reported to suppress inhibitory functions of Tregs and differentiation into Tregs.43 Furthermore, OX40 agonistic antibody enhanced infiltration of CD8+ T cells into tumour tissues and cytotoxicity against tumour cells,44,45 suggesting its contribution to the anti-tumour effects of OX40/OX40L signalling. A higher proportion of OX40-positive T cells has been observed in peripheral blood of chronic graft-versus-host disease cases and gastric cancer cases,56,57 but there has been no report of the correlation with prognosis in solid tumours, to the best of our knowledge. In addition, it has been reported that OX40 expression of TILs and prognosis were positively correlated in colorectal cancer and MM cases.48,49 These findings suggest that OX40-associated formation and survival of memory T cells and suppression of Tregs might enhance the anti-tumour effect and contribute to the favourable prognosis. Neoa- ntagen-specific T cell clones have emerged and increased transiently after anti-PD-1 therapy,29 which may enhance anti-tumour effects by OX40/OX40L signalling. On the other hand, LAG3 binds to MHC class II and negatively regulates T cell activation, cytotoxicity, and cytokine production. LAG3 is expressed on activated CD4+ and CD8+ T cells and Tregs and is overexpressed with the exhaustion of T cells.50 Although LAG3 is the exhaustion marker, LAG3 expression on the cell surface first requires T cell activation.51 A positive correlation has been observed between LAG3 expression of TILs and prognosis in oesophageal cancer, non-small cell lung cancer, and microsatellite instability-high colorectal cancer cases.52–54 The expression of PD-1 and LAG-3 in TILs is positively correlated,55 and it has been reported that inhibition of both PD-1 and LAG3 showed a synergistic effect in T cell activation.56 In addition, CD8+ T cells expressing PD-1, TIM3 and LAG3 were thought to be tumour-reactive and neo-antigen-specific.57 Taken together, LAG3-positive T cells express PD-1, and PD-1/PD-L1 blockade might restore the anti-tumour effect of tumour-specific exhausted T cells, which might lead to improvement of the prognosis. In the present study, LAG3-positive T cells, which are associated with a better prognosis after anti-PD-1 therapy, might have included an exhausted subset that is tumour-specific and can be reinvigorated by PD-1/PD-L1 blockade. On the other hand, LAG3-positive T cells at the time of PD might express multiple exhaustion markers and Eomes and be too exhausted to respond to anti-PD-1 therapy.

The predictive factors for response to anti-PD-1 antibody in gastric cancer have been reported: PS, MSI/dMMR status, and PD-L1 CPS.56,59 However, other predictive factors are not well known. In the present study, the proportion of OX40+/LAG3+ T cells was found to be a potential predictive factor independent of these background factors on multivariate analysis (Cox proportional hazard model).

This study has several limitations. First, this was a prospective study, but it was based on actual clinical practice and included various patient backgrounds, and CT was performed by the attending physicians based on the clinical practice; thus, the CT evaluation period was not clearly defined. The fact that the CT evaluation was not subject to independent central imaging facility review was also considered to be a limitation in this study. However, this study was based on actual clinical practice and considered to be valuable in that respect. Second, the number of antigens that could be analysed by flow cytometry at one time was limited due to the technical limitation of fluorescence leakage, and 10 panels of fluorophore-conjugated monoclonal antibodies were used for immunophenotyping. Thus, there was difficulty in evaluating the status of co-expression of some antigens. One of the future prospects is multidimensional analysis of protein expression at the single-cell level using a new platform such as mass cytometry.

Activated Tcm, Tem, and Te increased after anti-PD-1 therapy in AGC patients. These proportions of OX40 and LAG3-positive T cells in peripheral blood before and after anti-PD-1 therapy are expected to be predictive biomarkers for anti-PD-1 therapy. Further analyses of the changes of immune cell subsets with anti-PD-1 therapy are required to better understand the immunological and clinical impact of PD-1-blockade in gastric cancer patients.

ACKNOWLEDGEMENTS

We would like to thank Dr Gen Hirano, Dr Chintatsu Makiyama, Dr Satoru Yamaga, Dr Masato Komoda, Dr Michitaka Nakano, Dr Kotone Takeyoshi, Dr Kosuke Sagara, Dr Tomomi Aikawa, Dr Sakuya Koreshi, Dr Yuzo Matsushita, Dr Shiro Kawaike, Dr Kenro Tanoue, Dr Yuta Okumura, Dr Ryosuke Taguchi, Dr Yasuhiro Doi, Dr Masato Uenomachi, Dr Kohsei Arimizu, Dr Shohei Moriyama, Dr Shohei Ueno, Dr Koki Uehara, and Dr Moe Kondo for their support. Our previous small cohort study had been presented at ASCO Gastrointestinal Cancers Symposium as the abstract (Ohmura, H., Yamaguchi, K., Hanamura, F., Ito, M., Makiyama, A., Uchino, K., et al. Activation of central effector/memory T cells in advanced gastric cancer patients treated with anti-programmed death-1 antibody. J. Clin. Oncol. 37(Suppl. 4) (2019) (abstract S4)). Based on the study, more eligible cases were registered, and analysis of immune cell subsets, quantification of cytokine and immunohistological study were performed in this study.

AUTHOR CONTRIBUTIONS

H.Oh., K.Y. and E.B. designed the studies. H.Oh. carried out the measurements. H.Oh. carried out the statistical analysis and discussed it with KV and EB. FH, MI, A.M., K.U., T.S., H.S., T.E., K.M., Y.S., H.Od., K.T., H.A., HK, Y.O. and K.A. carried out the clinical study. H.Oh., K.Y. and E.B. wrote the paper, and all authors critically read and approved the final paper.

ADDITIONAL INFORMATION

Ethics approval and consent to participate This study was approved by the Ethics Committee of Kyushu University Hospital, Kyushu Hospital, Kyushu Medical Center, Kyushu Cancer Center, Hamanomachi Hospital, Wajiro Hospital, and Saikeikai Fukuoka General Hospital, and was performed according to the guidelines for biomedical research specified in the Declaration of Helsinki. Written, informed consent was obtained from each patient participating in this study.

Data availability The data used and analysed during this study are available from the corresponding author on reasonable request.
OX40 and LAG3 are associated with better prognosis in advanced gastric... H Ohmura et al.
41. Mousavi, S. F., Soroosh, P., Takahashi, T., Yoshikai, Y., Shen, H., Lefrancois, L. et al. OX40 costimulatory signals potentiate the memory commitment of effector CD8+ T cells. *J. Immunol.* **181**, 5990–6001 (2008).

42. Soroosh, P., Ine, S., Sugamura, K. & Ishii, N. Differential requirements for OX40 signals on generation of effector and central memory CD4+ T cells. *J. Immunol.* **179**, 5014–5023 (2007).

43. Xiao, X., Kroemer, A., Gao, W., Ishii, N., Demirci, G. & Li, X. C. OX40/OX40L costimulation affects induction of Foxp3+ regulatory T cells in part by expanding memory T cells in vivo. *J. Immunol.* **181**, 3193–3201 (2008).

44. Gough, M. J., Ruby, C. E., Redmond, W. L., Dhungel, B., Brown, A. & Weinberg, A. D. OX40 agonist therapy enhances CD8 infiltration and decreases immune suppression in the tumor. *Cancer Res.* **68**, 5206–5215 (2008).

45. Peng, W., Williams, L. I., Xu, C., Melendez, B., McKenzie, J. A., Chen, Y. et al. Anti-OX40 antibody directly enhances the function of tumor-reactive CD8+ T cells and synergizes with PI3Kbeta inhibition in PTEN loss melanoma. *Clin. Cancer Res.* **25**, 6406–6416 (2019).

46. Martins, M. R., Santos, R. L. D., Jatahy, K. D. N., Matta, M. C. D., Batista, T. P., Junior, J. I. C. et al. Could OX40 agonist antibody promote activation of the anti-tumor immune response in gastric cancer? *J. Surg. Oncol.* **117**, 840–844 (2018).

47. Kotani, A., Ishikawa, T., Matsumura, Y., Ichinohe, T., Ohno, H., Hori, T. et al. Correlation of peripheral blood OX40+(CD134+)-T cells with chronic graft-versus-host disease in patients who underwent allogeneic hematopoietic stem cell transplantation. *Blood* **98**, 3162–3164 (2001).

48. Petty, J. K., He, K., Corless, C. L., Vetto, J. T. & Weinberg, A. D. Survival in human colorectal cancer correlates with expression of the T-cell costimulatory molecule OX-40 (CD134). *Am. J. Surg.* **183**, 512–518 (2002).

49. Ladanyi, A., Somlai, B., Gilde, K., Fejos, Z., Gaudi, I. & Timar, J. T-cell activation marker expression on tumor-infiltrating lymphocytes as prognostic factor in cutaneous malignant melanoma. *Clin. Cancer Res.* **10**, 521–530 (2004).

50. Long, L., Zhang, X., Chen, F., Pan, Q., Phiphatwatchara, P., Zeng, Y. et al. The promising immune checkpoint LAG-3 from tumor microenvironment to cancer immunotherapy. *Genes Cancer* **9**, 176–189 (2018).

OX40 and LAG3 are associated with better prognosis in advanced gastric cancer. H Ohmura et al.