A STUDY OF THE EFFECTS OF ECTOMYCORRHIZAL INOCULATION WITH FIVE ISOLATES OF Pisolithus ON GROWTH OF Eucalyptus camaldulensis DEHN SEEDLINGS AT FOUR NUTRIENT REGIMES.

K. Misbahuzzaman and J. Wilson

*Forestry and Wood Technology Discipline, Khulna University, Khulna-9208, Bangladesh

*bCentre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB, Edinburgh, UK.

KUS-00/41-240900

Manuscript received: September 24,2000 accepted: June 3, 2002

Abstract: In this study, host-symbiont interactions between Eucalyptus camaldulensis seedlings and five isolates of ectomycorrhizal fungus Pisolithus tinctorius (Pers.) Coker and Couch in terms of colonisation and growth responses in vermiculite-peat at the end of 18 weeks were investigated. The treatment combinations consisted of five isolates of P. tinctorius (K55, PTE, PT3, PT7 and PT8) and four nutrient regimes (Ingestad's 2.5, 5.0, 10 and 20 mg l⁻¹ P). Only isolate K55 resulted in considerable colonisation (up to 27% root tips mycorrhizal) that occurred at 2.5 mg l⁻¹ P while the other isolates resulted in <1% colonisation. Colonisation by P. tinctorius K55 reduced growth in terms of shoot dry mass in E. camaldulensis seedlings. Regression of total dry mass of seedlings on the extent of colonisation was found to be negative.

Keywords: Eucalyptus camaldulensis Dehn.; Pisolithus tinctorius (Pers.) Coker and Couch; ectomycorrhiza.

Introduction
Eucalyptus predominantly form ectomycorrhizal (EM) associations in native forests (Chilvers, 1973; Malajczuk and Highton, 1981) and plantations (Chu-Chou and Grace, 1982; Brundrett et al., 1996). There are many studies on various aspects of Eucalyptus EM, including detailed analysis of colonised root systems (Chilvers and Gust, 1982a, 1982b), phosphate accumulation (Ashford et al., 1975, 1986), mycorrhizal type characterisation (Chilvers, 1968; Sievour et al., 1978 and Rose et al., 1981), synthesis of EM between compatible and incompatible fungi with a number of Eucalyptus species (Malajczuk et al., 1982, 1984), and some studies dealing with the details of the development of EM (Chilvers and Gust, 1982a and Massicote et al., 1987). There have been reports of growth stimulation of Eucalyptus species inoculated with EM fungi in nurseries, plantations and glasshouse experiments (Garbaye et al., 1988; Grove et al., 1991; Burgess et al., 1993, 1994). Studies on E. camaldulensis EM are, however, very few. Malajczuk and Hartney (1986) compared EM (by using Pisolithus tinctorius, Hydnangiun carneum, Scleroderma verrucosum and Laccaria laccata) formation on micropropagated plantlets and seedlings of E. camaldulensis and observed much more uniform mycorrhizal formation on micropropagated plantlets than seedlings. Aboelkhair et al. (1986) inoculated E. camaldulensis seedlings with Hymenogaster alba (Klotzsch) Bark. et Br. and P. tinctorius in a glasshouse using four concentrations of Ingestad's nutrient solution (Ingestad, 1971) and found that seedlings inoculated with P. tinctorius had significantly higher dry mass as compared to H. alba inoculated or non-mycorrhizal seedlings. They, however, did not report whether mycorrhiza formation and growth responses occurred at all four nutrient concentrations. Dixon and Hiol-hiol (1992) found that, despite similar leaf stomatal conductance and more negative plant water potential at the peak of the drought, P. tinctorius inoculated seedlings of E. camaldulensis were able to maintain a higher rate of photosynthesis than plants treated with Thelephora terrestris. There is therefore a need to identify appropriate nutrient regimes so that interactive effects of nutrient concentration and EM colonisation can be studied on growth of E. camaldulensis seedlings. The objective of the present study was to assess the effects of EM colonisation on growth of E. camaldulensis seedlings at various nutrient concentrations.

Materials and Methods

Inocula and inoculum preparation: The experiments involved five different isolates of the ectomycorrhizal fungus Pisolithus tinctorius (Pers.) Coker and Couch. Isolates PT7 and PT8 were cultured from young sporocarps produced by E. globulus inoculated with isolate PT3 in the pot experiments at a glasshouse in the Institute of Terrestrial Ecology (ITE), Edinburgh, UK while isolates PTE and K55 were supplied by the University of Kent, Kent, UK which were deposited under International Mycological Institute (IMI, Surrey, UK) collection (Table 1).

All isolates of Pisolithus tinctorius were cultured initially on agar plates of modified Melin-Norkran's (MMN) solution at room temperature. These cultures were then used to inoculate 500 ml flasks containing vermiculite-peat soaked in 180 ml MMN solution using the method of Mason (1980). Flasks were maintained at room temperature for four months prior to use as inocula.

Growth conditions: The experiment was carried out between June-October of 1997 in a glasshouse at the Institute of Terrestrial Ecology, Edinburgh, UK. Seeds of E. camaldulensis Dehn. SILVERTON UMBRE. (CK) provenance were pre-soaked in 0.1% Thiram (a dithiocarbamate fungicide) for 24 h, dried and sown into sterile trays containing sterilised vermiculite-peat (VP). Seeds were germinated in a growth cabinet at a temperature of 15-25°C and under fluorescent light (16 h irradiance, at 240-260 μmol m⁻² s⁻¹).

*Corresponding author:

DOI: https://doi.org/10.53808/KUS.2002.4.2.0041-L
Seedlings were grown in sterilised VP with day/night thermal regime of 20/1±2°C and a light regime ranging between 400–800 μmol photons m⁻² s⁻¹. Vermiculite, peat and tap water were mixed in the proportions 45:10:175 by mass and sterilised. The mixture was autoclaved at a temperature of 121°C and a pressure of 1.06 kg cm⁻² for one hour. Two litre plastic pots were used for raising the seedlings. One seedling was transplanted from the tray into each pot. Inoculation was carried out by adding 4 g of mycelial VP to the planting hole. Control seedlings received autoclaved portions of the same inoculum. An Ingestad’s solution for birch (Ingestad, 1971) was modified according to Mason et al. (1999a,c) and supplied to the plants. The proportions of N, P and K were 100:16:55. Four nutrient concentrations (Ingestad’s 2.5, 5.0, 10 and 20 mg l⁻¹ P) were used where all nutrient elements were proportionally adjusted. Plants were supplied twice a week with the solution with a gradually increased dosage every three weeks so that a total of 2, 4, 8, or 16 mg were added to various nutrient treatment pots respectively at the end of 18 weeks.

Table 1. Origin of fungal inocula

Fungus	Country (place) of origin	Date of collection	Plate of origin
Pisolithus tinctorius (PTE)	Philippines (not known)	1990	Eucalyptus camaldulensis
Pisolithus tinctorius (K55)	Portugal (Obidos)	1993	E. globulus
Pisolithus tinctorius (P13)	Tasmania (Murdunna)	1990	E. globulus
Pisolithus tinctorius (P17)	Scotland (Glasshouse)	1993	E. tinctorius
Pisolithus tinctorius (P18)	Scotland (Glasshouse)	1993	E. tinctorius

Mycorrhizal assessment: Pots were soaked overnight in water and roots from each pot were washed off soil by applying a gentle flow of water so that no fine roots were lost. The complete root-system was laid out on top of a graduated glass plate with the root collar set at 0 cm. Three sub-samples, each one cm long, were taken which corresponded to the top, middle and bottom parts respectively of each root system. After washing and sub-sampling, samples were placed in Petri dishes in water for examination of the tips of all short roots under a dissecting microscope. Root tips that had a short root with a mycelial mantle were defined as ectomycorrhizal. When the sub-samples assessed had no colonisation on them, the remaining roots of the root system under investigation were checked for mycorrhizal root tips.

Statistical analysis: Data were analysed by Analysis of Variance (ANOVA). When data were found not to have a normal distribution, necessary transformations (for example, arcsine transformation for mycorrhizal percentages and log transformation for all other variables) were carried out to normalise distributions and enable statistical comparisons of means. Means were compared by Fisher’s least significant difference test when the results of Fisher’s F-test from ANOVA were significant at P <0.05. GENSTAT version 5.3 (Lawes Agricultural Trust, Rothamstead, Harpenden, Hertfordshire, UK) was used for statistical analysis and Microsoft Excel 97 for graphics.

Results

Influence of inoculation and nutrient regime on mycorrhizal colonisation: Although five fungal inoculants were used in the experiment, only P. tinctorius isolate K55 resulted in significant colonisation (up to 27% of the root tips mycorrhizal) at the end of 18 weeks. The other inoculants resulted in colonisation of only <1% of the root tips. Most colonisation was found to have occurred at 2.5 mg l⁻¹ P that was significantly (P =0.007) higher than that at either 10 mg l⁻¹ P or 20 mg l⁻¹ P (Fig. 1). There was no significant difference among colonisation at 5.0 mg l⁻¹ P, 10 mg l⁻¹ P and 20 mg l⁻¹ P (Fig. 1).

![Fig. 1: Mean extent of ectomycorrhizal colonisation (%) by Pisolithus tinctorius isolate K55 under four nutrient treatments: P1, 2.5 mg l⁻¹ phosphorus (P); P2, 5.0 mg l⁻¹ P; P3, 10 mg l⁻¹ P; P4, 20 mg l⁻¹ P. Bars indicate mean and means with different letters are significantly (P <0.05) different.](image-url)
with this isolate showed significantly lower shoot dry mass than those under the uninoculated control as well as from those under the inoculation treatments using *P. tinctorius* isolates PTE, PT8 but not PT3 and PT7 at 2.5 mg l\(^{-1}\) P (Fig. 2). Shoot dry mass of the seedlings inoculated with *P. tinctorius* K55 at the other three nutrient treatments were not significantly different from the uninoculated control.

Mycorrhizal colonisation resulted in negative growth responses in terms of stem diameter only (P=0.023). The other variables such as height, leaf area, stem dry mass, leaf dry mass, root dry mass and total dry mass were not affected by mycorrhizal colonisation. Stem diameter in the *P. tinctorius* isolate K55 treatment (which resulted in most of the colonisation) was significantly lower as compared to those by isolate PTE or isolate PT7 or the uninoculated control. Isolates K55, PT3 and PT8 did not differ significantly in their effects on stem diameter. Regression between total dry mass and the extent of colonisation (Fig. 3) by the isolate K55 was significant (P <0.05); total dry mass decreased with an increasing extent of colonisation by the isolate K55.

![Graph showing shoot dry mass vs inoculation treatment](image)

Inoculation treatment

Fig. 2: Mean shoot dry mass of *Eucalyptus camaldulensis* seedlings inoculated with five different isolates of *Pisolithus tinctorius* (K.55, PTE, PT3, PT7 and PT8) including control (CON) under four nutrient treatments: P1, 2.5 mg l\(^{-1}\) phosphorus (P); P2, 5.0 mg l\(^{-1}\) P; P3, 10 mg l\(^{-1}\) P; P4, 20 mg l\(^{-1}\) P. Bars indicate mean and means with different letters are significantly (P <0.05) different.

![Graph showing total dry mass vs extent of colonisation](image)

Fig. 3. Regression of the total dry mass of *E. camaldulensis* seedlings on extent of colonisation by *Pisolithus tinctorius* isolate K.55.

\[y = -0.2999x + 13.839 \]

\[R^2 = 0.5125 \]

Discussion

Among the five fungal isolates used in the experiment, only *P. tinctorius* K55 resulted in colonisation (up to 27% of the root tips) while the other isolates resulted in only <1% colonisation of the fine root tips. Colonisation by the isolate *P. tinctorius* K55 led to a negative growth response in *E. camaldulensis* seedlings in terms of shoot dry mass at 2.5 mg l\(^{-1}\) P (Fig. 2). Most of the colonisation was found at 2.5 mg l\(^{-1}\)
P. This confirms the other findings where lower P concentrations (2-4 ppm) have been reported to be more favourable for EM formation in Eucalyptus by P. tinctorius (Burgess et al., 1993; Mason et al., 1999b). EM fungi, in general, require a larger amount of plant photosynthate as compared to arbuscular mycorrhizal fungi for their growth and maintenance (Smith and Read, 1997), and this can be realised from the fact that they need to form extensive mycelial mats or mantle on the root surface before penetrating the root endodermis to establish a functional symbiosis which involves formation of a Hartig net along with internal hyphae. Colpaert et al. (1996) stated that reduced seedling growth in response to EM colonisation may be the result of increased below-ground carbon allocation or it may be a consequence of high nutrient retention by the mycobiont.

In many mycorrhizal experiments, an initial growth drain on seedlings by mycorrhizal fungi have often been encountered (Janos, 1996). Often C drain is offset by an increased uptake of nutrient elements from soil/growth-medium by mycorrhizal seedlings. However, when seedlings fail to assimilate sufficient photosynthate to cover for an initial loss due to mycorrhizal association because of, for example, a low availability of light or a shorter day length, then a negative growth response can be seen. Availability of light varied between 400-800 μmol m−2 s−1 throughout the experimental period. In a recent study, Jones et al. (1998) have reported that E. coccifera successfully formed both EM and AM at 400-500 μmol m−2 s−1 in a growth cabinet. Therefore, negative growth response in E. camaldulensis seedlings in the experiment may not be because of low supply of light. The highest extent of colonisation by the isolate P. tinctorius K55 observed in this study was around 27% of fine root tips which has resulted in reduced shoot growth but not total dry mass in seedlings. The other isolates of P. tinctorius used in the experiment resulted in <1% colonisation of the fine root tips and had no significant effect on seedling growth.

Burgess et al. (1994) reported a positive growth response in P. tinctorius inoculated E. grandis seedlings at similar P (4 mg kg−1 in the form of Ca(H2PO4) + H2O) and N (150 mg per pot in the form of NH4NO3) concentrations. Therefore, a low N supply to mycorrhizal seedlings in this experiment as compared to that of Burgess et al. (1994) perhaps was not suitable for mycorrhizal effectiveness which therefore resulted in reduced shoot growth in the inoculated seedlings. There was significantly negative regression between the extent of colonisation and total dry mass (Fig. 3) in the P. tinctorius K55 treatment. This further indicated that this treatment contributed to a negative growth response in the seedlings.

References
Abouelkhair, K. S., Omran, T. A. and Badran, O. A., 1986. Effect of mycorrhizal types and fertiliser rate on growth of Eucalyptus camaldulensis seedlings. In: Mycorrhizae: Physiology and Genetics (eds V. Gianinazzi-Pearson and S. Gianinazzi). 1st European Symposium on Mycorrhizae, Dijon, 1-5 July, 1985. INRA, Paris, France, pp. 497-502.
Ashford, A. E., Ling Lee, M. and Chilvers, G. A., 1975. Polyphosphate in eucalypt mycorrhizas: a cytochemical demonstration. New Phytologist 74: 447-453.
Ashford, A. E., Peterson, R. L., Dwarte, D. and Chilvers, G. A., 1986. Polyphosphate granules in eucalyptus mycorrhizas: determination by energy dispersive X-ray microanalysis. Canadian Journal of Botany 64: 677-687.
Brundrett, M., Bouguer, N., Dell, B., Grove, T. and Malajczuk, N., 1996. Working with Mycorrhizas in Forestry and Agriculture. Australian Centre for International Agricultural Research Monograph 32. Canberra, Australia.
Burgess, T., Dell, B. and Malajczuk, N., 1994. Variation in mycorrhizal development and growth stimulation by 20 Pisolithus isolates inoculated on to Eucalyptus grandis W. Hill ex Maiden. New Phytologist 127: 731-739.
Burgess, T., Malajczuk, N. and Grove, T. S., 1993. The ability of 16 ectomycorrhizal fungi to increase growth and phosphorus uptake of Eucalyptus globulus Labill. and E. diversicolor F. Muell. Plant and Soil 153: 155-164.
Chilvers, G. A., 1968. Some distinctive types of eucalypt mycorrhiza. Australian Journal of Botany 16: 49-70.
Chilvers, G. A., 1973. Host range of some eucalypt mycorrhizal fungi. Australian Journal of Botany 21: 103-111.
Chilvers, G. A. and Gust, L. W., 1982a. The development of mycorrhizal populations on pot-grown seedlings of Eucalyptus st-Johnii R. T. Bak. New Phytologist 90: 677-699.
Chilvers, G. A., and Gust, L. W., 1982b. Comparisons between the growth rates of mycorrhizas, uninfected roots and a mycorrhizal fungus of Eucalyptus st- Johnii R. T. Bak. New Phytologist 91: 453-466.
Cho-Chou, M., and Grace, L. J., 1982. Mycorrhizal fungi of Eucalyptus in the north island of New Zealand. Soil Biology and Biochemistry 14: 133-137.
Colpaert, J. V., Van Laere, A. and Van Assche, J. A., 1996. Carbon and nitrogen allocation in ectomycorrhizal and non- mycorrhizal Pinus sylvestris L. seedlings. Tree Physiology 16: 787-793.
Effect of ectomycorrhiza on growth of Eucalyptus camaldulensis Delnh. seedling.

Dixon, R. K. and Hiol-hiol, F., 1992. Gas exchange and photosynthesis of Eucalyptus camaldulensis seedlings inoculated with different ectomycorrhizal symbionts. Plant and Soil 147: 143-149.

Garbaye, J., Delwaule, J. C. and Diangana, D., 1988. Growth response of eucalypts in the Congo to ectomycorrhizal inoculation. Forest Ecology and Management 24: 151-157.

Grove, T. S., Malajczuk, N., Burgess, T., Thomson, B. and Hardy, G., 1991. Growth responses of plantation eucalypts to inoculation with selected ectomycorrhizal fungi. In: Symposium on Intensive Forestry: the Role of Eucalyptus (ed A. P. G. Schonau). Durban, South Africa. pp. 86-93.

Ingestad, T., 1971. A definition of optimum nutrient requirements in Birch seedlings. II Physiologia Plantarum 24: 118-125.

Janos, D. P., 1996. Mycorrhizas, succession, and the rehabilitation of deforested lands in the humid tropics. In: Fungi and Environmental Change (eds J. C. Frankland, N. Magan and G. M. Gadd). Cambridge University Press, Cambridge, UK. pp. 129-162.

Jones, M. D., Durall, D. M. and Tinker, P. B., 1998. A comparison of arbuscular and ectomycorrhizal Eucalyptus coecifera: growth response, phosphorus uptake efficiency and external hyphal production. New Phytologist 140:125-134.

Malajczuk, N. and Hartney, V. J., 1986. Procedures for inoculation of micropropagated plantlets of Eucalyptus camaldulensis with ectomycorrhizal fungi, and comparison with seedling inoculation using inoculum contained in a peat/vermiculite carrier. Australian Forestry Research 16: 190-206.

Malajczuk, N. and Highton, F. J., 1981. Ectomycorrhizae associated with jarrah. Australian Journal of Botany 29: 453-462.

Malajczuk, N., Molina, R. and Trappe, J. M., 1982. Ectomycorrhiza formation in Eucalyptus. 1. Pure culture synthesis, host specificity and mycorrhizal compatibility with Pinus radiata. New Phytologist 91: 467-482.

Malajczuk, N., Molina, R. and Trappe, J.M., 1984. Ectomycorrhiza formation in Eucalyptus. 2. The ultrastructure of compatible and incompatible mycorrhizal fungi and associated roots. New Phytologist 96: 43-53.

Mason, P. A., 1980. Aseptic synthesis of sheathing (ecto-) mycorrhizas. In: D. S. Ingram and J. P. Helgeson (eds), Tissue Culture Methods for Plant Pathologists. Blackwell Scientific Publications, Oxford, UK. pp. 173-178.

Mason, P. A., Ibrahim, K., Ingleby, K. Munro, R. C. and Wilson, J., 1999a. Mycorrhizal development and growth of inoculated Eucalyptus globulus (Labill.) seedlings in wet and dry conditions in the glasshouse. Forest Ecology and Management, 4840: 1-10.

Mason, P. A., Ingleby, K. Munro, R. C., Wilson, J. and Ibrahim, K., 1999b. The effect of reduced phosphorus concentration on mycorrhizal development and growth of Eucalyptus globulus Labill. seedlings inoculated with 10 different fungi. Forest Ecology and Management. 4838: 1-10.

Mason, P. A., Ingleby, K. Munro, R. C., Wilson, J. and Ibrahim, K., 1999c. Interactions of nitrogen and phosphorus on mycorrhizal development and shoot growth of Eucalyptus globulus Labill. seedlings inoculated with 2 different ectomycorrhizal fungi. Forest Ecology and Management 4839: 1-10.

Massicote, H. B., Peterson, R. L., and Ashford, A. E., 1987. Ontogeny of Eucalyptus pilularis- Pisolithus tinctorius ectomycorrhizae. 1. Light microscopy and scanning electron microscopy. Canadian Journal of Botany 65: 1927-1939.

Rose, R. W. Jr., Van Dyke, C. G. and Davey, C. B., 1981. Scanning electron microscopy of three types of ectomycorrhiza formation on Eucalyptus nova-anglica in the south-eastern United States. Canadian Journal of Botany 59: 683-688.

Seviour, R. J., Hamilton, D. and Chivers, G. A., 1978. Scanning electron microscopy of surface features of eucalypt mycorrhizas. New Phytologist 80: 153-156.

Smith, S. E. and Read, D. J., 1997. Mycorrhizal Symbiosis. 2nd Edition. Academic Press, London New York.