DISCOVERY OF RAPIDLY MOVING PARTIAL X-RAY ABSORBERS WITHIN GAMMA CASSIOPEIAE

K. Hamaguchi 1,2, L. Oskinova 3, C. M. P. Russell 4, R. Petre 4, T. Enoto 5,6, K. Morihana 7, and M. Ishida 8

1 CREST and X-ray Astrophysics Laboratory, NASA/GSFC, Greenbelt, MD 20771, USA; Kenji.Hamaguchi@nasa.gov
2 Department of Physics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
3 Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam, Germany
4 X-ray Astrophysics Laboratory, NASA/GSFC, Greenbelt, MD 20771, USA
5 The Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8302, Japan
6 Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
7 Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, 407-2, Nichigaichi, Sayo-cho, Sayo, Hyogo 670-5313, Japan
8 The Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara 252-5210, Japan

Received 2016 May 13; revised 2016 August 3; accepted 2016 August 3; published 2016 November 23

ABSTRACT

Gamma Cassiopeiae is an enigmatic Be star with unusually strong hard X-ray emission. The Suzaku observatory detected six rapid X-ray spectral hardening events called “softness dips” in a ∼100 ks observation in 2011. All the softness dip events show symmetric softness-ratio variations, and some of them have flat bottoms apparently due to saturation. The softness dip spectra are best described by either ∼40% or ∼70% partial covering absorption to kT ~ 12 keV plasma emission by matter with a neutral hydrogen column density of ~2 × 10^21 cm^-2, while the spectrum outside these dips is almost free of absorption. This result suggests the presence of two distinct X-ray-emitting spots in the γ Cas system, perhaps on a white dwarf (WD) companion with dipole mass accretion. The partial covering absorbers may be blobs in the Be stellar wind, the Be disk, or rotating around the WD companion. Weak correlations of the softness ratios to the hard X-ray flux suggest the presence of stable plasmas at kT ~ 0.9 and 5 keV, which may originate from the Be or WD winds. The formation of a Be star and WD binary system requires mass transfer between two stars; γ Cas may have experienced such activity in the past.

Key words: blue stragglers – stars: emission-line, Be – stars: individual (gamma Cassiopeiae) – stars: winds, outflows – white dwarfs – X-rays: stars

1. INTRODUCTION

The classical Be stars are enigmatic massive stars with circumstellar disks, whose formation is not yet understood (e.g., Rivinius et al. 2013). A subset of the class, the γ Cas analogues, is particularly interesting with unusually hard (kT ~ 10 keV), luminous (L_x ~ 10^{32–33} erg s^-1) X-ray activity compared with that of normal main-sequence B stars (see, e.g., Smith et al. 2016). The origin of their high-energy activity has been controversial for a long time.

As the name suggests, γ Cassiopeiae (γ Cas) is the prototype of the γ Cas class. It is a B0.5 IV e star (Tokovinin 1997) with R_∗ ~ 10 R_☉ and L ~ 34000 L_☉ (e.g., Sigut & Jones 2007) at a distance of 188 ± 4 pc (van Leeuwen 2007). Doppler measurements of optical emission lines suggest that γ Cas is a binary with a nearly circular orbit (e < 0.08) and a period of 203.5 days (Nemravova et al. 2012; Smith et al. 2012). The primary stellar mass is estimated as ~15 M_☉ from its effective temperature (Harmance et al. 2000), and the companion mass is estimated as ~0.8–1 M_☉ from the orbital solutions, assuming an orbital inclination of 45° (Nemravova et al. 2012; Smith et al. 2012). The Be disk has been resolved with optical/near-infrared interferometry. Its FWHM radius lies in the range 1.5–7.25 R_∗, depending on the wavelength measured (see references in Rivinius et al. 2013). From elongation of the interferometric images, the disk inclination is estimated to be ~40°–55° (Gies et al. 2007; Stee et al. 2012).

Gamma Cass has been studied intensively in X-rays with almost all the available observatories (White et al. 1982; Murakami et al. 1986; Parmar et al. 1993; Kubo et al. 1998; Smith et al. 1998, 2004, 2012; Owens et al. 1999; Robinson & Smith 2000; Lopes de Oliveira et al. 2010; Motch et al. 2015; Shrader et al. 2015). In all these observations the X-ray characteristics were found to be similar. The light curve is highly variable, with a “basal” component varying slowly on timescales of ~10 ks and a “shot” component varying rapidly on timescales of ~10–100 s. Comparisons of the light curves in different energy bands have revealed strong variations in spectral hardness, which are apparently uncorrelated to these flux variations. The X-ray spectrum shows multiple emission lines, notably from hydrogen-like, helium-like, and quasi-neutral K-shell iron. Though these lines are apparently weak, the broad-band spectrum does not show any non-thermal signature in continuum up to 100 keV and can be formally reproduced with optically thin thermal emission from a kT ~ 14 keV plasma with emission measure EM ~ (1–5) × 10^{55} cm^-3 and small metal abundance at ~0.3 solar, suffering absorption at log N_H ~ 22 cm^-2 on average. Nitrogen and oxygen K-shell lines and the iron L-shell line complex, resolved with high-resolution grating spectra, originate from a few relatively cool plasma components at kT ~ 0.1–4 keV with EM of (1–5) × 10^{54} cm^-3.

Because of its high-energy emission, the presence of a degenerate companion, such as a neutron star or a white dwarf (WD), has been discussed. The X-ray properties—no signature of non-thermal emission, no pulsation, and moderate X-ray luminosity at ~10^{33} erg s^-1—argue against the neutron-star hypothesis. The former two properties match with those of accreting WDs (cataclysmic variables), but the X-ray luminosity is around the upper end of such systems and might be too high for mass accretion onto the known γ Cas companion. As γ Cas has a circumstellar disk and shows apparently random, frequent X-ray shots, an alternative mechanism of a magnetic dynamo driven by the differential rotation between star and disk has also been proposed. However, no strong magnetic field has been detected.
bands gradually decline to reach the lowest level at ~100 ks from the start of the observation, stay at that level for ~5 ks, and then recover abruptly to the original flux level. Such short, low-flux intervals, called “cessations,” were also seen in earlier observations (Robinson & Smith 2000; Robinson et al. 2002; Smith et al. 2016).

In order to investigate the differences between these light curves, we produce time series of softness ratios with respect to \(\text{CR}[4−9] \). We define the softness ratios \(\text{SR}[0.5−1] \), \(\text{SR}[1−2] \), and \(\text{SR}[2−4] \) as the divisions of \(\text{CR}[0.5−1] \), \(\text{CR}[1−2] \), and \(\text{CR}[2−4] \) by \(\text{CR}[4−9] \) (i.e., \(\text{SR}[^\text{band}] = \text{CR}[^\text{band}] / \text{CR}[4−9] \) where “band” is \(0.5−1 \), \(1−2 \), or \(2−4 \)). The resulting plots of color variability are shown in Figure 2. \(\text{SR}[2−4] \) is flat, consistent with a constant model at above 97% confidence (reduced \(\chi^2 = 1.23 \), 134 degrees of freedom, hereafter dof). However, \(\text{SR}[1−2] \) begins to show dip-like structures; a constant model is inconsistent with this SR plot at a reduced \(\chi^2 \) of 10.1 (134 dof). These dips are even more pronounced in the softest band \(\text{SR}[0.5−1] \), and a constant model is rejected with a reduced \(\chi^2 \) of 25.0 (134 dof). Figure 2 also demonstrates that, in the softer energy band, these dips are deeper than the average SR value outside these dips. Similar variations in spectral color seen as spikes in the hardness ratio plots (\(\text{CR}[4.5−10]/\text{CR}[0.3−1] \)) were reported previously in \(\text{XMM-Newton} \) observations (Lopes de Oliveira et al. 2010; Smith et al. 2012).

The above result also implies that each SR variation has a baseline level at the highest clustering value (\(\sim 0.6 \) for \(\text{SR}[0.5−1] \) and \(\sim 2.1 \) for \(\text{SR}[1−2] \)). There are important reasons to choose this level as the baseline instead of a lower one. First, it constitutes a clear peak at \(\sim 2.1 \) for \(\text{SR}[1−2] \) and a maximum at \(\sim 0.6 \) for \(\text{SR}[0.5−1] \) (see histograms in the right panels of Figure 2). Second, all significant transitions of the SR value start or end at these baseline levels. For example, if we choose the baseline level at \(\sim 0.4 \) in \(\text{SR}[0.5−1] \), transitions at \(\sim 65 \) and 73 ks just pass this level. This level does not seem to be important physically and/or phenomenologically. Third, our baseline levels are consistent with that of zero absorption to \(kT \sim 12 \) keV X-ray emission, which is the major X-ray emission component of \(\gamma \text{Cas} \) (see Section 3.3). We therefore believe our choice of the baseline levels is the most physically reasonable.

Such spectral hardening could be produced by plasma heating, but these softness dip events do not occur coincidentally with intrinsic increases in flux traced with \(\text{CR}[4−9] \), which would indicate plasma heating (Figure 2). They can, instead, be produced in changes in the absorption column. The photoelectric absorption cross section depends on the X-ray photon energy as \(E^{-3} \) (Morrison & McCammon 1983). Cold matter in the line of sight with columns of \(N_H \sim 10^{21−22} \text{ cm}^{-2} \) absorbs only soft X-rays below \(\sim 2 \) keV.

In \(\text{SR}[0.5−1] \), we identify six clear softness dips (see Figure 3), two of which (dips 1 and 6) overlap with the start or end of the observation. Softness dips 1, 3, 4, and 6 show rapid fall and rise, while the others have relatively slow transitions. Softness dips 1, 4, and 6 have flat bottoms, while the others transition instantly from fall to rise. Though parts of these dips are missed because of the gaps in the data, their shapes appear to be symmetric. We therefore construct a phenomenological model, describing each softness dip by a symmetrical trapezoid with four parameters—center time \(t_c \), duration of flat bottom \(T_{fb} \), duration of fall/rise transition \(T_{fr} \), and depth \(\text{SR}_d \). Then, the shape of softness dip \(i \) can be formulated as

\[
\text{SR}^i(t) = \begin{cases} 0, & \text{if } T_{fb}^i / 2 + T_{fr}^i < |t - t_c^i| \\
\text{SR}_d^i, & \text{otherwise} \end{cases}
\]
We further exploit the information in the SRs and find a weak but significant correlation between each SR and CR[4–9]: at each energy band, the SR is higher in lower CR[4–9] (Figure 4, upper panels). The same plot but only with data points outside the softness dips (hereafter called the baseline interval: $\sum (T_{ib}^i + (T_{ib}^i/2 + T_{ub}^i), (T_{ib}^{i+1} + (T_{ib}^{i+1}/2 + T_{ub}^{i+1}))$) shows a linear correlation more clearly (see the black data points in the bottom panels of Figure 4). In fact, a linear fit to the plot of SR[0.5–1] versus CR[4–9] improves from 22.3 (dof: 133) to 2.45 (dof: 52) in reduced χ^2 value by excluding the data points for the softness dips. Therefore, this correlation is probably not produced by coincidental dip events. Such correlations can be produced if the plasma temperature tends to be higher or the absorption tends to be stronger at higher CR[4–9]. However, a similar plot for SR[15–40] in Figure 3 of Shrader et al. (2015) did not show any dependence on CR[4–9], even though the temperature increase should be most clearly seen in the highest energy range. It is also difficult to imagine a straightforward physical mechanism that could produce stronger absorption in the higher CR[4–9] range.

We suggest here that this correlation is most consistently explained by soft, stable X-ray emission. The presence of relatively cool plasmas at $kT \sim 0.1$–4 keV is suggested from nitrogen K, oxygen K, and iron L emission lines detected in high-resolution grating spectra (Smith et al. 2004, 2012). If some or all of these components are present stably during the Suzaku observation, their emission should produce the observed SR and CR[4–9] relation. We derive the contribution of these stable components, assuming that the hard, variable component does not change the spectral shape with CR[4–9], based on no apparent correlation of SR[15–40] to CR[4–9] (Figure 3 of Shrader et al. 2015). We reduce an equal number of count rates from CR in each band below 4 keV until the linear fit of each plot of SR versus CR[4–9] is flat. The result is shown as the red points in the bottom panels of Figure 4, which are obtained by reducing the soft CR by 0.213 (SR[0.5–1]), 0.418 (SR[1–2]), and 0.184 (SR[2–4]) counts s$^{-1}$.

Since this approach appears to work well, we redefine 10 energy bands between 0.3 and 4 keV and measure the reduction for each bin in the same way. We use all the XIS (0, 1, 3) data
Figure 2. XIS0+1+3 light curve in the 4–9 keV band (top: the same as the top panel in Figure 1), time series of the softness ratios (second panel, left: SR[2–4], third panel, left: SR[1–2], fourth panel, left: SR[0.5–1]) and distribution histograms of the softness ratios (right). The horizontal bars in the second, third, and fourth panels show average SRs during the baseline interval.

Figure 3. SR[0.5–1] fitted by the empirical model of softness dips (solid red line). Each softness dip interval employed for the spectral analysis is shown as a horizontal blue bar, while the baseline interval is shown as green bars.

Table 1

Softness Dip Parameters
i
τ_i^\prime (ks)
T_{fb} (ks)
T_{tr} (ks)
SR$_i^\prime$

Baseline

| SR$_{bl}$ | 0.61 ± 0.01 |

Notes. The errors denote 1σ confidence ranges.

a The other parameters are fixed in their error estimates.

b These values and errors are derived assuming that softness dip 1 (6) falls (reverses) at the start (end) of the observation. Since the softness dip starts (ends) before (after) the observation, only these limits can be placed.
between 0.5 and 4 keV and derive the reduction for the XIS1 from the ratio of count rates. The FI sensors are not sensitive below 0.5 keV, so we use only XIS1 for the 0.3−0.5 keV bin. Their 1σ errors are evaluated from the cases when a linear fit to the plot includes a flat solution within a 1σ error. Figure 5 shows the stable emission spectrum for XIS1 estimated from this method. The stable spectrum peaks at ∼0.9 keV and extends up to ∼4 keV. If this spectrum originates from optically thin thermal plasma emission, these profiles require at least two components at different temperatures, at $kT \sim 0.9$ keV and $\gtrsim 3$ keV. These temperatures are similar to the T_2 ($kT \sim 0.6$ keV) and T_3 ($kT \sim 4$ keV) components in the XMM-Newton observations in 2010 (Smith et al. 2012). In fact, the sum of the three cooler components in the best-fit XMM/OBS1 spectrum (T_1: $kT \sim 0.11$ keV, T_2 and T_3) fits nicely to this stable spectrum if the model normalization is multiplied by 0.64 (Figure 5). This result suggests that the stable spectrum has the same origin as the T_2 and T_3 components. The difference in normalization may be due to time variation or the different measurement method—we estimate the stable spectrum from the broad-band color variation, while Smith et al. (2012) estimated these cool components from emission lines in the time-averaged high-resolution spectra. The minor T_1 component might also be a part of this stable emission, but we cannot judge it conclusively from the Suzaku data.

3.3. Phase-resolved Spectra

To understand the nature of the softness dips, we extract XIS spectra during each dip, which is defined as the interval between the middle points of the fall and rise in the best-fit SR[0.5−1] model (i.e., $[t'_1 - (T_1 + T_2')/2, t'_1 + (T_1 + T_2')/2]$). We also extract XIS spectra of the baseline interval. The FI (XIS0 and 3) spectra of each interval are combined. The XIS1 spectra of the baseline interval, all the softness dips, and the stable emission are overlaid in the left panel of Figure 6. The baseline and softness dip spectra show variations in flux by a factor of $\lesssim 2$ in both the soft and hard bands. In the right panel of Figure 6, we show the XIS1 spectra of the baseline interval and the softness dips, normalized with the normalization parameter of the variable thermal component to the baseline spectrum. The softness dip spectra clearly have stronger soft-band cutoffs than the baseline spectrum, but they do not show significant changes in the hard-band slope or the flux ratio of the hydrogen-like and helium-like iron K emission lines. This plot further supports our conclusion that the softness dips are produced by changes in the absorption and not the plasma temperature.
We then fit all these spectra simultaneously. For the stable emission, we assume an absorbed two-temperature thermal model—\((\text{apec} + \text{apec})\)TBabs. For the hard variable emission, we apply a one-temperature thermal (apec) model plus two Gaussian lines at 6.40 and 7.04 keV for iron K\(_\alpha\) and K\(_\beta\) fluorescence, suffering common absorption.\(^{11}\) We fix all the thermal emission parameters except for the normalizations. We vary the normalization of the fluorescent iron K\(_\alpha\) line and fix the normalization of the fluorescent iron K\(_\beta\) line to 12% of this value.

We first try simple absorption (TBabs, Wilms et al. 2000) for the variable component. The spectra above 0.8 keV fit well, but the softness dip spectra below 0.8 keV show significant deviations with a bad chi-squared value (reduced \(\chi^2 = 1.50\), dof = 2214, see the residual in the bottom panel of Figure 7). This looks as if less absorbed emission emerges during each softness dip interval. Since the stable emission is constrained, this emission should be a part of the variable component, which is not absorbed during the softness dip event, so the absorption is partial. We therefore apply a partial covering model, pcfabs, for each softness dip, in addition to simple absorption.

\(^{11}\) Smith et al. (2012) suggested the presence of an extremely embedded hard thermal component. We consider it to be Compton reflection of the hard variable emission lines. Our preliminary fit to the Suzaku spectra suggests a negligible contribution of this component, possibly due to different geometry of the X-ray-emitting source and the cold matter or reflector (Morihana et al. 2014). We, therefore, do not include this component in our model.
common for all spectra, which is required for absorption to the baseline spectra. Then, the deviation decreases substantially (reduced $\chi^2 = 1.35$, dof = 2208, Table 2 and the top and middle panels of Figure 7). In summary, the model applied to each spectrum $F_{X,i}$ (i: baseline, 1–6) is

$$F_{X,i} = F_X[V] + F_X[S]$$

(5)

$$F_X[V] = (\text{apec} \{ kT[V], Z[V], \text{EM}[V] \}$$

$$+ \text{gauss}_{0.40} \{ F_X, \text{Fe K}\alpha[V] \})$$

$$+ \text{gauss}_{0.12} \{ 0.12F_X, \text{Fe K}\alpha[V] \})$$

$$\times \text{pcfabs} \{ N_{\text{H}, \text{PC}}[V], \text{CF}_{\text{PC}}[V] \}$$

$$\times \text{TBabs} \{ N_{\text{H}}[V] \}$$

(6)

$$F_X[S] = (\text{apec} \{ kT[S_C], \text{EM}[S_C] \}$$

$$+ \text{apec} \{ kT[S_{\text{HI}}], \text{EM}[S_{\text{HI}}] \}) \times \text{TBabs} \{ N_{\text{H}}[S] \}$$

(7)

where square brackets show the emission component—V_0; (ith) variable component, $S_{C/\text{HI}}$; (cool/hot) stable component—and curly brackets show free parameters for each spectral component. The spectral parameters with the subscript i are fitted independently between the spectra, while the others are tied between them. The best-fit plasma temperature of the variable component is $kT \sim 12.2$ keV, typical of γ Cas. The absorption columns of the partial absorbers are in the range $(2.4–8.1) \times 10^{21}$ cm$^{-2}$, while the covering fractions are localized in two ranges, ~40% and ~70%. The common absorption, representing the N_{H} to the baseline spectra, is very low at $\sim 3.8 \times 10^{20}$ cm$^{-2}$ and close to the column density to the Be star measured from the UV spectroscopy ($(1.45 \pm 0.3) \times 10^{20}$ cm$^{-2}$, Jenkins 2009). There is little local absorption outside the softness dip intervals. The equivalent width of the fluorescent iron K$_\alpha$ line does not vary significantly at ~ 60 eV, suggesting that the absorbers in the softness dip are not responsible for the iron fluorescence emission.

3.4. Pulse Search for Data above 2 keV

Earlier pulsation analysis with the XMM-Newton data was performed for the broad 0.8–10 keV band (Lopes de Oliveira et al. 2010; Smith et al. 2012). Since soft X-ray emission from γ Cas is affected by the dip events, we undertake a new pulse search only above 2 keV using the standard Fourier analysis. However, we find no significant pulse in our analysis, either.

4. DISCUSSION

We find that hard, variable X-ray emission from γ Cas is frequently occulted by absorbers with $\log N_{\text{H}} \sim 21–22$ cm$^{-2}$ on timescales of a kilosecond or longer during the Suzaku
observation. Earlier XMM-Newton observations of γ Cas also reported similar variations in the hardness ratio (Lopes de Oliveira et al. 2010; Smith et al. 2012). Gamma Cas and HD 110432, a γ Cas analogue, show changes in time-averaged X-ray absorption between observations (e.g., Figure 3 in Smith et al. 2016), which are perhaps caused by variations in numbers and column densities of softness dip absorbers for each observation. Rapidly changing X-ray absorbers are probably a common feature in γ Cas analogues.

All softness dips are symmetrical. This can be explained if, in each softness dip event, a blob-like absorber passes over a discrete X-ray-emitting region with a constant projection velocity. The triangular dips 2, 3, and 5 can be produced by absorbers that block only part of an X-ray-emitting region. The trapezoidal dips 1, 4, and 6 can be produced in the following three cases. In the first case, an absorber moves over an X-ray-emitting region in such a way that its covering factor is constant during the flat bottom, but this situation seems unlikely to occur. In the second case, an absorber is fully inside a larger X-ray-emitting region on projection during the flat bottom. In this case, T_{c} relates to the projection size of the absorber, while T_{d} corresponds to the travel length of the absorber over the X-ray-emitting region, i.e., the minimum size of the X-ray-emitting region. The size ratios of the X-ray-emitting region over the absorber ($T_{\text{d}}/T_{\text{c}}$) are $\gtrsim 45$, 2, 4, and 7 for softness dips 1, 4, and 6. Assuming two-dimensional symmetry on the projection surface, the areal ratios are $\gtrsim 2000$, 5, and 50. In this case, the covering factors of the partial covering absorbers are $\lesssim 0.05\%$, 17%, and 1.8%, which contradict those measured from the spectral fits, $\sim 41\%$, 65%, and 35%. In the third case, an absorber is larger than an X-ray-emitting region and fully obscures it during the flat bottom. In this case, T_{c} relates to the projection size of the X-ray-emitting region, and T_{d} corresponds to the absorber size. The covering factor of the absorber to this X-ray-emitting region becomes unity, so there should be other uncovered discrete X-ray-emitting regions that produce the flat-bottomed emission. We conclude that the third case—multiple X-ray-emitting regions, one of which is fully covered during each flat bottom—should be the only viable solution. Since the covering factor of each dip is $\gtrsim 40\%$, the covered X-ray-emitting region should be a major X-ray spot.

Based on the above consideration, the length of the X-ray-emitting region (L_{proj}) is expressed in terms of the projected velocity of the absorber (v_{proj}) and the transition timescale as $L_{\text{proj}} \sim v_{\text{proj}} T_{\text{b}}$. The SR[0.5–1] fit suggests at least two distinct groups in T_{b} at 0.4–1 ks and 4–7 ks. This might suggest two kinds of absorbers with different projection velocities or two different X-ray-emitting regions occulted by the absorbers. On the other hand, the absorber’s projection length (l_{proj}) and the line-of-sight depth (d_{L}) are related to the dip parameters T_{b} and N_{H} as $l_{\text{proj}} \sim v_{\text{proj}} T_{\text{b}} \sim (T_{\text{b}}/T_{\text{c}}) L_{\text{proj}}$ and $d_{\text{L}} \sim N_{\text{H}}/\rho_{\text{abs}}$ where ρ_{abs} is the absorber’s density. Their ratio is $l_{\text{proj}}/d_{\text{L}} \sim \rho_{\text{abs}} v_{\text{proj}} T_{\text{b}}/N_{\text{H}} \sim \rho_{\text{abs}} L_{\text{proj}} T_{\text{b}}/T_{\text{c}} N_{\text{H}}$. The value $T_{\text{b}}/T_{\text{c}} N_{\text{H}}$ ranges over a factor of $\gtrsim 25$ for dips 1, 4, and 6. If ρ_{abs} and L_{proj} do not change significantly between the absorbers, the absorber may not be three-dimensionally symmetric, i.e., $l_{\text{proj}} \sim l_{\text{d}}$.

The best-fit result of the partial covering model suggests two covering factors, ~ 0.4 and ~ 0.7. This result may not be consistent with the magnetic star–disk dynamo theory, in which X-rays originate from multiple magnetic loops on the Be stellar surface (see Smith et al. 2016). Assuming that the magnetic loops spread evenly over the Be star’s surface, a single X-ray absorber should have a size of ~ 0.4 stellar radii ($\sim 4 R_{\odot}$) and move with a projection velocity of up to ~ 5000 km s$^{-1}$, which is unrealistic for the wind or disk of the Be star. On the other hand, this result seems to fit with a mass-accreting compact star, which has small numbers of discrete X-ray-emitting regions. Interestingly, the sum of the two covering factors is close to unity, perhaps suggesting that one of two distinct X-ray-emitting regions on the magnetic poles of the dipole is occulted occasionally. The cessation seen at $\sim 10^5$ s is also

Variable Emission	Baseline	1	2	3	4	5	6
$kT[V]$ (keV)
$Z[V]$ (solar)
EM[V] (105 cm$^{-3}$)
$F_{X_{\text{proj}}}$ (10$^{-5}$ ph cm$^{-2}$ s$^{-1}$)
EW[V] (eV)
N_{H}/V (1021 cm$^{-2}$)
C_{10} (%)
Stable Emission
$kT[S_{\text{C}}]/kT[S_{\text{H}}]$ (keV)
EM$[S_{\text{C}}]/$EM$[S_{\text{H}}]$ (1034 cm$^{-3}$)
N_{H} (1021 cm$^{-2}$)
$F_{X}[S_{\text{C}}]/F_{X}[S_{\text{H}}]$ (10$^{-12}$ erg cm$^{-2}$ s$^{-1}$)
$L_{X_{\text{C}}}/L_{X_{\text{H}}}$ (1014 erg s$^{-1}$)

Reduced χ^2 (dof) 1.35 (2208) ...

Notes: The errors denote 90% confidence ranges. EW: equivalent width. PC: partial covering. CF$_{10}$: covering fraction. V_{H}: (6th) variable component. $S_{\text{C}}/S_{\text{H}}$: (cool/ hot) stable component. The abundances of the stable emission components are fixed at 1 solar value. F_{X}: observed flux between 0.3 and 10 keV. L_{X}: absorption-corrected intrinsic luminosity between 0.3 and 10 keV. The distance is assumed to be 188 pc.
similar to the drops in flux observed in the high-mass X-ray binary Vela X-1, which can be explained by the propeller effect— inhibition of mass accretion due to the change in the ram pressure of the infalling gas (Kreykenbohm et al. 2008). As described in the introduction, the companion is perhaps not an accreting neutron star since it shows no evidence of either a power-law tail up to 100 keV or pulsations (Lopes de Oliveira et al. 2010; Smith et al. 2012; Shrader et al. 2015; this work), although a recent model argues for the existence of neutron stars with spectral characteristics like those of γ Cas (K. Postnov 2016, in preparation). A $kT \sim 12$ keV thermal plasma cannot be produced by free-fall accretion onto a subdwarf with $\log g \lesssim 6.5$ (Heber 2009). Hence, we propose that the hard, variable X-ray emission originates from accretion hot spots on a $\sim 1 \ M_\odot$ WD companion (Figure 8).

The known WD binary systems that fit most of the above characteristics are the intermediate polars (IP). The IPs are composed of a late-type donor star and a weakly magnetized accreting WD ($B < 10 \ M_\odot$) and their X-ray luminosities range up to $\sim 10^{33} \ erg \ s^{-1}$ (Yuasa et al. 2010). However, they tend to have higher plasma temperatures ($kT > 20$ keV) and larger absorption columns ($\log N_H \sim 22-23 \ cm^{-2}$) than γ Cas. An exception is EX Hydrae with low $kT \sim 13$ keV and $N_H \sim 7 \times 10^{21} \ cm^{-2}$, which may be produced by mass accretion on relatively large areas and accretion shocks at a high altitude ($\approx 0.3 - 1 \ R_{WD}$, Allan et al. 1998; Hayashi & Ishida 2014). The X-ray absorption column of γ Cas during the baseline interval is an order of magnitude smaller than that of EX Hydrae, possibly suggesting even larger accretion spots.

The absence of X-ray pulses from γ Cas can also be explained if the spot on the opposite side from us is large enough that a part of it always appears in our sight.

The accretion spots should be smaller than the diameter of the companion star, i.e., $L_{\text{proj}} \lesssim 0.02 \ R_{\odot}$ for a $1 \ M_\odot$ WD (Provencal et al. 1998). The projection velocity of a blob relative to the X-ray-emitting source should be $v_{\text{proj}} \sim \frac{L_{\text{proj}}}{T_{\text{tr}}} \lesssim 20 \ km \ s^{-1}$ for softness dips 1, 3, 4, and 6. We here consider the following three components in the presumed Be + WD binary system that could work as X-ray absorbers: (i) Be stellar wind, (ii) Be decretion disk, and (iii) WD accretion disk or the accretion flow onto the companion. For case (i), the wind velocity is measured as $\sim 1700 \ km \ s^{-1}$ (Henrichs et al. 1983; Smith & Robinson 1999). Since the companion was almost at quadrature during the Suzaku observation ($\phi \sim 0.57$ in the ephemeris in Orbit 1 in Smith et al. 2012), its projection velocity is $\sim 1500 \ km \ s^{-1}$, which may be too fast for the X-ray absorbers. For case (ii), the decretion disk rotates much more slowly around the primary star, but the separation between the Be star and the $1 \ M_\odot$ companion is $\sim 350 \ R_{\odot}$, while the Be disk should not extend beyond the radius of the Roche lobe, which is $\sim 213 \ R_\odot$ (Eggleton 1983). Also the Be disk may not be in the line of sight to the companion star. For case (iii), the Keplerian motion is $\sim 40 \ km \ s^{-1}$ at $100 \ R_\odot$ from a $1 \ M_\odot$ companion, and faster at smaller distances. The absorbers should rotate very far from the WD in an orbit oblique to the orbital plane to meet the condition $v_{\text{proj}} \lesssim 20 \ km \ s^{-1}$. All these components are expected to move faster than the estimated velocity range of

![Figure 8. Possible geometry of the X-ray-emitting and absorbing components.](image_url)
the blob. We may need to consider another possible absorbing source.

We also compare the measurements of X-ray column density for γ Cas, during both the soft states and the baseline interval, with those expected if the X-ray source is indeed at the position of the WD and embedded in the Be wind. For a separation of $a = 370 R_\odot$, a radius of $R = 10 R_\odot$, and a $\beta = 1$ velocity law, i.e., $v(r) = v_\infty (1 - R/r)^{\beta}$, the column density of a smooth, non-rotating wind to the WD at quadrature (which is independent of the orbital inclination for a circular orbit) is $N_{H2} = (M_\gamma/v_\infty) 3.1 \times 10^{20} \text{cm}^{-2}$ where M_γ is the mass-loss rate in units of $10^{-7} M_\odot \text{yr}^{-1}$, and v_∞ is the terminal velocity of the wind v_∞ in units of 10^8cm s^{-1}. Rotation lowers the wind density as a function of the polar angle to the rotation axis θ by $\rho(\theta) \sim \sqrt{1 - \Omega \sin^2(\theta)}$ (Owocki et al. 1998) where $\Omega = v_\text{rot}^2/R/GM$ is the square of the ratio of the equatorial rotation speed v_rot to the equatorial Keplerian velocity. As Be stars are rapid rotators, values of Ω are quite high —$0.8 [0.95]$ have densities at the equator that are factors of $0.45 [0.22]$ lower than at the poles, so the quoted N_{H2} formula above is an upper limit. Alternatively, any gravitational focusing of the wind by the WD (most likely a small effect) and material flowing around the WD (a larger effect) will increase the N_{H2} values obtained from this calculation. Additionally, the inclusion of clumping can cause N_{H2} to fluctuate in time by an order of magnitude depending on the clump model (Oskinova et al. 2012), as indeed is shown by this analysis. So ideally the computed N_{H2} values should be between the baseline interval $N_{H2} = 3.8 \times 10^{20} \text{cm}^{-2}$ and the softness dip interval $N_{H2} = (2.4-8.1) \times 10^{21} \text{cm}^{-2}$. Plugging in the γ Cas parameters of $v_\infty = 7$ (Henrichs et al. 1983; Smith & Robinson 1999) and mass-loss rates ranging from $M_\gamma \sim 0.1$ (Henrichs et al. 1980) to $M_\gamma \sim 5$ (upper limit in Lamers & Waters 1987, lower value quoted is $M_\gamma \sim 0.25$), the expected absorbing column lies in the range $N_{H2} = (0.18-9.2) \times 10^{20} \text{cm}^{-2}$. The upper limit of this range lies within the values for the softness dip interval and baseline interval, and is consistent with the high mass-loss rate found by Lamers & Waters (1987).

In either scenario, some of these absorbers may be trapped by the companion and accreted onto its surface. The absorber mass is expressed as $M_{abs} \sim \gamma m_p \rho_{abs} L_{bol}/2 \gamma$ where m_p is the proton mass and γ is the mass fraction with respect to hydrogen (1.39 for matter of solar abundance). For softness dip 4, $M_{abs} \sim 5 \times 10^{-16} \text{g} \sim 3 \times 10^{-17} M_\odot$. If a blob similar to this size accretes onto the presumed WD companion, the gravitational energy released is $\sim 10^{34} \text{erg}$, which is comparable to the X-ray energies of the short events (Robinson & Smith 2000).

The work suggests stable X-ray emission from two plasma components. The cool component has log $L_X/L_{bol} \sim -7.3$ (L_{bol}: bolometric luminosity), $kT \sim 0.9 \text{keV}$, and no apparent time variation, which is similar to X-ray emission from OB stars (e.g., Berghöfer et al. 1997). This component most likely originates from radiatively driven winds from the primary Be star. The hot component has a luminosity that is only a factor of 3 higher, $\sim 2.0 \times 10^{31} \text{erg s}^{-1}$, than the cool component, but it has a very high plasma temperature at $kT \sim 5 \text{keV}$. This may originate from the head-on collision between the Be disk and the WD wind, or between the Be disk and the Be wind if the disk is not wind-fed.

A WD is the end product of a star with an initial mass of $\lesssim 10 M_\odot$ (see references in Winget & Kepler 2008). A star born with $\sim 15 M_\odot$ should explode as a core-collapse supernova (SN) before the companion evolves into a WD. A possible evolutionary channel that produces a Be + WD binary system is binary interaction. At a late evolutionary stage, significant mass of the (current) companion may be stripped off to the (current) primary star through mass transfer. The companion loses mass to drive core nuclear burning and becomes a WD, while the primary star increases its mass to become a Be star. Simulations suggest that binary interaction can produce 10^9 Be + WD binary systems in our galaxy (Shao & Li 2014). The star that gains mass is expected to become an outlier among the cluster members in the H–R diagram, recognized as a blue straggler (Knigge et al. 2009). Actually, a few γ Cas analogues are classified as blue stragglers (Smith et al. 2016). The rapid rotation and Be disk of γ Cas and its analogues could be an outcome of the mass transfer activity.

Manmucci et al. (2006) suggest two populations in SNe Ia: stars in one explode within 10^6 yr of their stellar birth and stars in the other over a much wider time range up to $\sim 3 \text{Gyr}$. γ Cas companion could explode as a “prompt” SN Ia if the supposed mass accretion continues. Assuming a WD companion with $M \sim 1 M_\odot \sim 0.01 R_\odot$, and a 10% conversion efficiency from gravitational energy to X-ray energy, the mass accretion rate is estimated to be $\sim 8 \times 10^{-10} M_\odot \text{yr}^{-1}$. At this rate, it takes $\sim 5 \times 10^8 \text{yr}$ to gain $0.4 M_\odot$ and reach the Chandrasekhar mass limit, which is longer than the lifetime of a 15 M_\odot star. The mass accretion rate needs to be actually higher than the above estimate to increase significantly in a later stage if the WD companion is to explode as a “prompt” SN Ia.

5. CONCLUSION

The Suzaku XIS observation of γ Cas in 2011 July detected flux variations on short ($\lesssim 1 \text{ks}$) and long ($\gtrsim 10 \text{ks}$) timescales in all of the 0.5–1, 1–2, 2–4, and 4–9 keV bands. These light curves look very similar at a first glance, but they show abrupt color variations, which are recognized as “softness dips” in time series of the softness ratios. These observed variations are typical of γ Cas because earlier X-ray observations detected similar variations in flux and color from the star. We identify six softness dip events in time series of the softness ratio of the 0.5–1 keV band to the 4–9 keV band. These dips are recognized more weakly in the softness ratios of the harder energy band and are apparently not correlated with the 4–9 keV flux variation. This result indicates that the softness dips are produced by sudden increases in X-ray absorption in the line of sight, and not by variation of the plasma temperature.

All six softness dips are symmetrical in time series of the softness ratios and some of them show saturation-like flat bottoms. Each softness dip can be reproduced by a symmetrical trapezoidal shape with two transition timescales of 0.4–1 ks and 4–7 ks. All spectra during each softness dip interval and outside the dips (baseline interval) can be reproduced by $kT \sim 12 \text{keV}$ plasma emission with iron K fluorescense. The baseline spectrum suffers almost negligible absorption at $N_{H2} \sim 3.8 \times 10^{20} \text{cm}^{-2}$, which is consistent with the optical

12 We do not mention here the origin of the rapid rotation and Be disk of the classical Be stars in general. Meurs et al. (1992) found insignificant difference in X-ray luminosity between the classical Be stars and normal OB stars, and therefore did not suggest the presence of a compact companion for every classical Be star.
extinction. The softness dip spectra need additional absorption of \(N_H \sim (2.4 - 8.1) \times 10^{21} \text{ cm}^{-2} \) covered partially by \sim 35\%--80\%. The absorbers are perhaps blobs passing over an X-ray-emitting region, which is perhaps one of the magnetically funneled accretion spots of a WD companion orbiting around the Be star.

The softness ratio in each energy band has a weak but significant correlation with the 4--9 keV flux, suggesting the presence of stable, soft X-ray emission. The stable spectrum reproduced from the correlation plots requires two plasma components at \(kT \sim 0.9 \) and 5.4 keV with negligible absorption, which probably correspond to the intermediate-temperature components found from high-resolution grating spectra. The cool component probably originates from the Be primary stellar wind, while the hot component may originate from the head-on collision of either the Be or WD wind with the Be disk.

The formation of a Be + WD binary requires mass transfer between two relatively massive stars. Gamma Cas may have experienced such activity in the past, which might be responsible for the rapid rotation of the Be star and the formation of the Be disk. If significant mass accretes back from the Be star during its lifetime, the WD companion might explode as a prompt SN Ia.

The authors are grateful to the anonymous referee for very useful comments and suggestions that helped to significantly improve the paper. The authors appreciate Drs. D. Vanbeveren, S. Drake, M. Smith, K. Mukai, K. Pottschmidt, and C. Shrader for providing important information and discussion. This research has made use of data obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC), provided by NASA’s Goddard Space Flight Center. This research has made use of NASA’s Astrophysics Data System Bibliographic Services. K.H. is supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Universities Space Research Association under contract with NASA.

Facility: Suzaku (XIS).

REFERENCES

Allan, A., Hellier, C., & Beardmore, A. 1998, MNRAS, 295, 167
Arnaud, K. A. 1996, in ASP Conf. Ser. 101, Astronomical Data Analysis Software and Systems V, ed. G. H. Jacoby & J. Barnes (San Francisco, CA: ASP), 17
Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481
Bergfors, T. W., Schmitt, J. H. M. M., Danner, R., & Cassinelli, J. P. 1997, A&A, 322, 167
Eggleton, P. P. 1983, ApJ, 268, 368
Gies, D. R., Baguño, W. G., Jr., Baines, E. K., et al. 2007, ApJ, 654, 527
Hamann, P., Habuda, P., Štefl, S., et al. 2000, A&A, 364, L85
Hayashi, T., & Ishida, M. 2014, MNRAS, 441, 3718
Heber, U. 2009, ARA&A, 47, 211
Henrichs, H. F., Hammerschlag-Hensberge, G., Howarth, I. D., & Barr, P. 1983, ApJ, 268, 807
Henrichs, H. F., Hammerschlag-Hensberge, G., & Lamers, H. J. G. L. M. 1980, in 2nd European IUE Conf., ESA Special Publication 157, ed. B. Battrick & J. Mort (Paris: ESA), 147
Horaguchi, T., Kogure, T., Hirata, R., et al. 1994, PASJ, 46, 9
Jenkins, E. B. 2009, ApJ, 700, 1299
Knegge, C., Leigh, N., & Sills, A. 2009, Natur, 457, 288
Kokubun, M., Makishima, K., Takahashi, T., et al. 2007, PASJ, 59, 53
Koyama, K., Tsunemi, H., Dotani, T., et al. 2007, PASJ, 59, 21
Kreykenbohm, I., Wilms, J., Kretschmar, P., et al. 2008, A&A, 492, 511
Kubo, S., Murakami, T., Ishida, M., & Corbet, R. H. D. 1998, PASJ, 50, 417
Lamers, H. J. G. L. M., & Waters, L. B. F. M. 1987, A&A, 182, 80
Lopes de Oliveira, R., Smith, M. A., & Motch, C. 2010, A&A, 512, A22
Mannucci, F., Della Valle, M., & Panagia, N. 2006, MNRAS, 370, 773
Meurs, E. J. A., Pieters, A. J. M., Pols, O. R., et al. 1992, A&A, 265, L41
Mitsuda, K., Bautz, M., Inoue, H., et al. 2007, PASJ, 59, 1
Morihana, K., Tsujimoto, M., & Ishida, M. 2014, in Suzuki-MAXI 2014: Expanding the Frontiers of the X-ray Universe, ed. M. Ishida, R. Petre, & K. Mitsuda, 184
Morrison, R., & McCammon, D. 1983, ApJ, 270, 119
Motch, C., Lopes de Oliveira, R., & Smith, M. A. 2015, ApJ, 806, 177
Murakami, T., Koyama, K., Inoue, H., & Agrawal, P. C. 1986, ApJL, 310, L31
Nemravová, J., Harmanec, P., Koubský, P., et al. 2012, A&A, 537, A59
Oskinova, L. M., Feldmeier, A., & Kretschmar, P. 2012, MNRAS, 421, 2820
Owens, A., Oosterbroek, T., Parmar, A. N., et al. 1999, A&A, 348, 170
Owocki, S. P., Gayley, K. G., & Crammer, S. R. 1998, in ASP Conf. Ser. 131, Properties of Hot Luminous Stars, ed. I. Howarth (San Francisco, CA: ASP), 237
Parmar, A. N., Israel, G. L., Stella, L., & White, N. E. 1993, A&A, 275, 227
Provencal, J. L., Shipman, H. L., Høg, E., & Thejll, P. 1998, ApJ, 494, 759
Rivinius, T., Carciofi, A. C., & Martayan, C. 2013, A&ARv, 21, 69
Robinson, R. D., & Smith, M. A. 2000, ApJ, 540, 474
Robinson, R. D., Smith, M. A., & Henry, G. W. 2002, ApJ, 575, 435
Serlemitsos, P. J., Soong, Y., Chan, K.-W., et al. 2007, PASJ, 59, 9
Shao, Y., & Li, X.-D. 2014, ApJ, 796, 37
Shrader, C. R., Hamaguchi, K., Sturmer, S. J., et al. 2015, ApJ, 799, 84
Sigut, T. A. A., & Jones, C. E. 2007, ApJ, 668, 481
Smith, M. A., Cohen, D. H., Gu, M. F., et al. 2004, ApJ, 600, 972
Smith, M. A., Lopes de Oliveira, R., & Motch, C. 2016, ApJS, 58, 782
Smith, M. A., Lopes de Oliveira, R., Motch, C., et al. 2012, A&A, 540, A53
Smith, M. A., & Robinson, R. D. 1999, ApJ, 517, 866
Smith, M. A., Robinson, R. D., & Corbet, R. H. D. 1998, ApJ, 503, 877
Stee, P., Delaa, O., Monnier, J. D., et al. 2012, A&A, 545, A59
Takahashi, T., Abe, K., Endo, M., et al. 2007, PASJ, 59, 35
Tokovinin, A. A. 1997, A&AS, 124, 75
van Leeuwen, F. 2007, A&A, 474, 653
White, N. E., Swank, J. H., Holt, S. S., & Parmar, A. N. 1982, ApJ, 263, 277
Wilms, J., Allen, A., & McCray, R. 2000, ApJ, 542, 914
Winget, D. E., & Kepler, S. O. 2008, ARA&A, 46, 157
Yuasa, T., Nakazawa, K., Makishima, K., et al. 2010, A&A, 520, A25

Hamaguchi et al.