Strong rescattering in $K \to 3\pi$ decays
and low-energy meson dynamics

G. D’Ambrosio
Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, I-80125 Napoli, Italy
Dipartimento di Scienze Fisiche, Università di Napoli, I-80125 Napoli, Italy

G. Isidori, A. Pugliese
Dipartimento di Fisica, Università di Roma “La Sapienza”, I-00185 Roma, Italy
Istituto Nazionale di Fisica Nucleare, Sezione di Roma, I-00185 Roma, Italy

N. Paver
Dipartimento di Fisica Teorica, Università di Trieste, I-34100 Trieste, Italy
Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste, Italy
(February 1994)

Abstract

We present a consistent analysis of final state interactions in $K \to 3\pi$ decays in the framework of Chiral Perturbation Theory. The result is that the kinematical dependence of the rescattering phases cannot be neglected. The possibility of extracting the phase shifts from future $K_S - K_L$ interference experiments is also analyzed.

PACS numbers: 13.25.Es, 14.40.Aq, 11.30.Er

*Work supported in part by the Human Capital and Mobility Program, EEC Contract N. CHRX-CT920026.
I. INTRODUCTION

Unitarity requires that final state strong interactions should be taken into account in kaon decay amplitudes. On the other hand, such effects are interesting by themselves, as they reflect the properties of low-energy meson interactions. In this regard, they could represent a meaningful test of the theoretical approach based on effective chiral Lagrangians and the related amplitude expansions in powers of meson momenta (Chiral Perturbation Theory), which should incorporate general features of long-distance QCD [1,2].

The role of $\pi - \pi$ phase shifts in $K \to 2\pi$ decays has been extensively discussed [3]. These transitions involve the $\pi - \pi$ phase shifts at $\sqrt{s} = m_K$, and at this energy scale the correction to the leading order prediction in Chiral Perturbation Theory (ChPT) are found to be large in each isospin channel [4].

In $K \to 3\pi$, final state strong interactions act at substantially lower energy compared to $K \to 2\pi$, and consequently in current fits to experimental data they have been assumed to be negligible [5,6]. As a matter of fact, these effects could be experimentally accessible in the near future.

In the approximation of considering only two-body strong interactions, thus neglecting the irreducible 3π rescattering diagrams which should be suppressed by phase space, in principle $K \to 3\pi$ final state interactions can provide a complementary way to study $\pi - \pi$ phase shifts near threshold. Indeed, this is the region where these phase shifts can be most reliably predicted in the framework of ChPT. Therefore, such an analysis should allow an independent, and significant test of this theoretical approach, to be combined with, e.g., those from K_{l4} decays [7], also relevant to the $\pi - \pi$ low-energy region.

As another important point of interest, we recall that the knowledge of rescattering is crucial in order to estimate direct CP-violating asymmetries in $K \to 3\pi$ [8–11]. Manifestations of such asymmetries would allow to determine the existence of direct CP-violation in a channel alternative to $K \to 2\pi$, and to improve our knowledge of this phenomenon, which is predicted by the Standard Model but not clearly established yet.

As emphasized in [12], a convenient way to study final state interactions in $K \to 3\pi$ is to consider $K_L - K_S$ interference in vacuum as a function of time at “interferometry” machines such as LEAR [13] and the ϕ-factory DAΦNE [14,15]. The typical interference term has the form

$$\Re\left[\langle 3\pi|K_S\rangle^*\langle 3\pi|K_L\rangle \exp(i\Delta m t)\right] \exp\left(-\frac{\Gamma_S + \Gamma_L}{2} t\right),$$

where $\Delta m = m_L - m_S$ is the $K_L - K_S$ mass difference. Indeed, studies of the time dependence of Eq. (1) should lead to a determination of both the real and the (expected small) imaginary parts of the amplitudes. The advantage is that the latter ones appear linearly in (1), whereas they appear quadratically and consequently are much less accessible in width measurements. To obtain an order of magnitude estimate of the effect of the interference term, constant phase shifts (independent of energy) were assumed in Ref. [12].

Actually, in the case of $K \to 3\pi$ it is not quite appropriate to use the notion of constant phase shifts, because: i) there are two independent $I = 1$ final states which can be connected by strong interactions, so that one should introduce a 2×2 mixing (or rescattering) matrix; and ii) in general the rescattering matrix elements are functions of pions momenta.
Phenomenologically, $K \to 3\pi$ transition amplitudes for the various modes are expanded in powers of the kinematical variables with constant coefficients, so that the momentum dependence of rescattering should be taken into account for a consistent expansion. This is particularly desirable also in connection with momentum expansions predicted by ChPT. Previous theoretical estimates of momentum-dependent $K \to 3\pi$ strong rescattering were performed in the non-relativistic approximation in Ref. [16] and in leading order ChPT for charged kaons in Refs. [8] and [9]. In the framework of a complete analysis of all the ChPT quartic effects in $K \to 3\pi$, the imaginary parts were expanded in the kinematical variables and calculated numerically in Ref. [6].

In this paper, we extend the calculation of Refs. [8] and [9] to obtain the $K^0 \to 3\pi$ rescattering matrix in ChPT. To this purpose, we shall first review the general symmetry and unitarity constraints on $K \to 3\pi$ amplitudes, then we will construct a convenient, model independent parametrization of the strong rescattering matrix which is unique for all decay modes, and finally we will use ChPT to estimate it. The results can be applied to make more reliable predictions for the $K \to 3\pi$ time correlations. In addition, our analysis allows to clarify some delicate questions regarding direct CP-violation in $K^\pm \to (3\pi)^\pm$.

Specifically, the plan of the paper is as follows: in sect. II we set the formalism to expand $K \to 3\pi$ amplitudes; in sect. III we define the rescattering matrix and evaluate it in lowest order ChPT; in sect. IV we discuss some consequences for the Dalitz plot analysis and CP-violation; in sect. V we present the expectations for the interference term; finally, sect. VI contains some concluding remarks.

II. $K \to 3\pi$ FORMALISM

In the limit of CP conservation, there are five different channels for $K \to 3\pi$ decays:

$$
\begin{align*}
K^\pm &\to \pi^\pm \pi^\mp \pi^\mp \\
K^\pm &\to \pi^\pm \pi^0 \pi^0 \\
K_L &\to \pi^\mp \pi^+ \pi^0 \\
K_L &\to \pi^0 \pi^0 \pi^0 \\
K_S &\to \pi^+ \pi^- \pi^0 \\
&\quad \quad (I = 1, 2)
\end{align*}
$$

Here in parentheses we indicate the isospin values relevant to the final (3π) states, assuming only $\Delta I = 1/2, 3/2$ transitions. In principle, the K_S decay to the $I = 0$ state is not forbidden, but due to Bose symmetry it is strongly suppressed by a high angular momentum barrier [17] and we neglect it. The first four modes are dominated by $\Delta I = 1/2$ transitions, while the last one is a pure $\Delta I = 3/2$ transition and only recently has become accessible through time-dependent interference experiments [18].

For $K(p) \to \pi_1(p_1)\pi_2(p_2)\pi_3(p_3)$ decays we introduce the familiar kinematical invariants

$$
s_i = (p_K - p_i)^2 \quad \text{and} \quad s_0 = \frac{1}{3} \sum_i s_i = \frac{1}{3} m_K^2 + m_{\pi}^2,
$$

where the index $i = 3$ refers to the “odd” charge pion. Neglecting isospin breaking effects, following e.g. Refs. [14][19], we can decompose the decay amplitudes in the general form
\[A_{++-} = 2A_c(s_1, s_2, s_3) + B_c(s_1, s_2, s_3) + B_2(s_1, s_2, s_3) \]
\[A_{+00} = A_c(s_1, s_2, s_3) - B_c(s_1, s_2, s_3) + B_2(s_1, s_2, s_3) \]
\[A_{L-0} = A_n(s_1, s_2, s_3) - B_n(s_1, s_2, s_3) \]
\[A_{000} = 3A_n(s_1, s_2, s_3) \]
\[A_{S-0} = B_2(s_1, s_2, s_3). \] (4)

Here, reflecting Bose symmetry and the assumed CP conservation, all amplitudes \(A_j \) and \(B_j \) \((j = c, n, 2)\) are symmetric under exchange \((1 \leftrightarrow 2)\). Furthermore, the amplitudes \(A_j \) are completely symmetric for any permutation of the indices \(1, 2 \) and \(3\). Conversely, the amplitudes \(B_j \) do not have this symmetry, and under permutations of indices only obey the relation

\[B_j(s_1, s_2, s_3) + B_j(s_3, s_2, s_1) + B_j(s_1, s_3, s_2) = 0. \] (5)

Finally, the amplitude \(\tilde{B}_2 \) is antisymmetric for the exchange \((1 \leftrightarrow 2)\). It is not independent from the other ones, and can be expressed in terms of \(B_2 \) as

\[\tilde{B}_2(s_1, s_2, s_3) = \frac{2}{3} [B_2(s_3, s_2, s_1) - B_2(s_1, s_3, s_2)]. \] (6)

Concerning isotopic spin, the amplitudes \(A_j \) and \((B_c, B_n) \) correspond to \(\Delta I = 1/2 \) and \(\Delta I = 3/2 \) transitions to the \(I = 1 \) final three-pion state, while \(B_2 \) is associated to the \(\Delta I = 3/2 \) transition to \(I = 2 \).

From the decomposition above we note that there are two amplitudes leading to \(I = 1 \) final states, which differ for the pion exchange symmetry properties, namely the \(A \)'s are fully symmetric whereas the \(B \)'s have mixed symmetry. Accordingly, it is convenient to introduce the two matrices

\[T_c = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}, \quad T_n = \begin{pmatrix} 1 & -1 \\ 3 & 0 \end{pmatrix}, \] (7)

which in the \(I = 1 \) sector transform the symmetric and non-symmetric amplitudes into the physical ones for charged and neutral kaons, respectively. Thus:

\[\begin{pmatrix} A_{i+}^{(1)} \\ A_{i00}^{(1)} \end{pmatrix} = T_c \begin{pmatrix} A_c(s_i) \\ B_c(s_i) \end{pmatrix}, \quad \begin{pmatrix} A_{L+0}^{(1)} \\ A_{L000}^{(1)} \end{pmatrix} = T_n \begin{pmatrix} A_n(s_i) \\ B_n(s_i) \end{pmatrix}. \] (8)

Defining the two dimensionless Dalitz plot variables

\[Y = \frac{s_3 - s_0}{m_\pi^2} \quad \text{and} \quad X = \frac{s_1 - s_2}{m_\pi^2}, \] (9)

and taking into account the symmetry properties of \(A \)'s and \(B \)'s, we can expand the five independent amplitudes in Eq. (5) in powers of \(X \) and \(Y \) up to quadratic terms:

\[A_j = a_j + c_j(Y^2 + X^2/3) \]
\[B_j = b_j Y + d_j(Y^2 - X^2/3). \] (10)

Substituting Eq. (10) in Eq. (5), we obtain
values of quadratic slopes. In this approximation, we replace \(A \) and also imaginary parts proportional to the \(O(p) \) higher order imaginary parts of quadratic terms can occur similarly, but since the ones appear at the parts define the rescattering matrix relevant to the constant and linear terms. In principle, \(a \) by quadratic terms and the coefficients \(a \) equivalent, and take the form \(R \) the matrix \(d \) where \(\Phi \) represents the phase space element.

This decomposition can be easily related to the one introduced in Refs. [1,2].

III. 3\(\pi \) Final State Interaction

Since strong interactions are expected to mix the two \(I = 1 \) final states, we must introduce a strong interaction rescattering matrix which mixes the corresponding decay amplitudes. Projecting the final state (3\(\pi \)\(I = 1 \)) by means of the matrices \(T_c^{-1} \) and \(T_n^{-1} \) in the symmetric-nonsymmetric basis, we can define the scattering matrix \(R \), common to charged and neutral channels, as follows:

\[
\begin{pmatrix}
A_{++}^{(1)} \\
A_{+0}^{(1)}
\end{pmatrix}_R = T_c R
\begin{pmatrix}
A_c \\
B_c
\end{pmatrix} = T_c R T_c^{-1}
\begin{pmatrix}
A_{++}^{(1)} \\
A_{+0}^{(1)}
\end{pmatrix}
\]

(12)

\[
\begin{pmatrix}
A_{L-0}^L \\
A_{L00}
\end{pmatrix}_R = T_n R
\begin{pmatrix}
A_n \\
B_n
\end{pmatrix} = T_n R T_n^{-1}
\begin{pmatrix}
A_{L-0}^L \\
A_{L00}
\end{pmatrix}.
\]

(13)

Here the subscript \(R \) means that in the decay amplitude rescattering has been included. The matrix \(R \) defined above has diagonal elements which preserve the symmetry properties under pion exchanges, as well as off-diagonal elements which connect symmetric amplitudes to non-symmetric ones and viceversa.

The unitarity conditions are obtained by imposing conservation of probability, namely:

\[
\int d\Phi \left[|(A_{++}^{(1)})| R|^2 + |(A_{+00})| R|^2 \right] = \int d\Phi \left[|A_{++}^{(1)}|^2 + |A_{+00}|^2 \right],
\]

(14)

\[
\int d\Phi \left[|(A_{L-0}^L)| R|^2 + |(A_{L00})| R|^2 \right] = \int d\Phi \left[|A_{L-0}^L|^2 + |A_{L00}|^2 \right],
\]

(15)

where \(d\Phi \) represents the phase space element.

We now perform the calculation of \(R \) using ChPT. At the lowest order \(p^2 \), there are no quadratic terms and the coefficients \(a_j, b_j \) in \((10) \) are real if CP is conserved. At order \(p^4 \) loops and counterterms will appear, generating real parts with higher powers in \(X \) and \(Y \) and also imaginary parts proportional to the \(O(p^2) \) constants \(a_j \) and \(b_j \). These imaginary parts define the rescattering matrix relevant to the constant and linear terms. In principle, imaginary parts of quadratic terms can occur similarly, but since these ones appear at the higher order \(p^6 \) we neglect them, as it is also justified by the smallness of the experimental values of quadratic slopes. In this approximation, we replace \(A_{c,n} \) and \(B_{c,n} \) in \((12) \) and \((13) \) by \(a_{c,n} \) and \(b_{c,n} Y \) respectively. The unitarity conditions resulting from \((14) \) and \((15) \) are equivalent, and take the form

\[
5
\]
\[\int d\Phi \left[|R_{11}|^2 + \frac{2}{5} |R_{21}|^2 \right] = \int d\Phi \]
\[\int d\Phi \left[|R_{22}|^2 + \frac{5}{2} |R_{12}|^2 \right] Y^2 = \int d\Phi Y^2 \]
\[\int d\Phi \left[5R_{11}R_{12}^* + 2R_{21}R_{22}^* \right] Y = 0. \]

(16)

(17)

(18)

As anticipated, at \(O(p^2) \) there are only tree diagrams that can be easily computed with the leading order chiral weak Lagrangian \[20\], and there is no final state interaction so that \(R = I \) (trivial case). At order \(p^4 \) loop diagrams (Fig.1) generate imaginary parts, corresponding to on-shell propagators in internal lines, so that we can write

\[
R = I + i \begin{pmatrix} \alpha(s_i) & \beta'(s_i) \\ \alpha'(s_i) & \beta(s_i) \end{pmatrix}. \]

(19)

Using the strong \(O(p^2) \) chiral Lagrangian

\[
\mathcal{L}_S^{(2)} = \frac{F_\pi^2}{4} \text{tr} \left[\partial_\mu \Sigma \partial^\mu \Sigma^\dagger + M(\Sigma + \Sigma^\dagger) \right], \]

(20)

where \(\Sigma = \exp(i\phi/\sqrt{2}F_\pi) \), \(\phi \) is the octect matrix of the pseudoscalar fields, \(F_\pi \) is the pion decay constant (\(F_\pi \approx 93 \text{ MeV} \)) and \(M = \text{diag}(m_\pi^2, m_\pi^2, 2m_K^2 - m_Z^2) \), we find

\[
\alpha(s_i) = \frac{1}{32\pi F_\pi^2} \sum_{i=1}^{3} \frac{1}{3} v_i (2s_i + m_\pi^2), \]

(21)

\[
\alpha'(s_i) = \frac{1}{32\pi F_\pi^2} \sum_{i=1}^{2} \frac{5}{3} \left[v_i (s_i - m_\pi^2) - v_3 (s_3 - m_\pi^2) \right], \]

(22)

\[
\beta(s_i) = \frac{1}{32\pi F_\pi^2} \left[\frac{1}{3} \sum_{i=1}^{3} v_i (s_i - 4m_\pi^2) + \frac{2}{3} m^2 v_3 (s_3 - s_0) - v_i (s_i - s_0) \right], \]

(23)

\[
\beta'(s_i) = \frac{1}{32\pi F_\pi^2} \sum_{i=1}^{3} \frac{2}{3} v_i \frac{(s_i - m_\pi^2)(s_0 - s_i)}{s_3 - s_0}, \]

(24)

where \(v_i \) are the “velocities”: \(v_i = (1 - 4m_\pi^2/s_i)^{1/2} \). At this order, only the unitarity condition \([18]\) is nontrivial and implies

\[
\int d\Phi [2\alpha'(s_i) - 5\beta'(s_i)] Y = 0. \]

(25)

This condition is exactly verified by the functions in Eqs. \([24]\) and Eq. \([24]\), as expected since ChPT is an effective field theory where unitarity is perturbatively satisfied.

We remark that the rescattering matrix \(R \) could have been directly evaluated by just integrating the \(\pi - \pi \) scattering amplitude over the phase space of intermediate particles. Actually, once the matrix \(R \) has been defined, one could improve the lowest order Eqs. \([21]\)-\([24]\) by including all higher orders in strong interactions, or even by replacing them by any other available phenomenological information on \(\pi - \pi \) scattering. Analogously, for the weak amplitudes \(a_c, b_c \) and \(a_n, b_n \) one could use either the ChPT predictions or the available experimental determinations.
For the decay into the $I = 2$ final states there is only one amplitude, with definite
symmetry under pion exchange which must be preserved by strong interactions. Thus, we
can write

$$(B_2)_R = b_2 Y (1 + i \delta(s_i))$$
$$(\bar{B}_2)_R = \frac{2}{3} b_2 X (1 + i \tilde{\delta}(s_i)),$$

where two functions δ and $\tilde{\delta}$ are again not independent because $(B_2)_R$ and $(\bar{B}_2)_R$ must satisfy
Eq. (3). At the lowest non trivial order in ChPT we find

$$\delta(s_i) = \frac{1}{32\pi F^2} \left[\frac{1}{3} \sum_{i=1}^{3} v_i(s_i - 4m^2)
ight.$$\[\left. + \frac{1}{3} \sum_{i=1}^{2} \frac{v_i(s_i - s_0)(2s_i - 5m^2) - v_3(s_3 - s_0)(2s_3 - 5m^2)}{s_3 - s_0} \right].$$

Regarding three-body rescattering, which will appear at two loops, we would expect its
contribution to the functions α, α', β, β' and δ to be rather small, as being suppressed by
phase space, assuming that the three-body coupling is not anomalously large. This is indeed
the case for the leading order Lagrangian (20). Regarding higher orders in ChPT, $O(p^4)$
contributions to R might be relevant, similar to the case of $\pi - \pi$ phase shifts where the
scattering lengths turn out to be affected at the $20\% - 30\%$ level [4]. We can take these
figures as an indication for the accuracy of the subsequent applications of Eqs. (21)-(27).

IV. CONSEQUENCES FOR DALITZ PLOT ANALYSIS AND CP-VIOLATION

As expected from the smallness of the available phase space, the functions α, α', β, β'
and δ are smaller than unity over the whole Dalitz plot. Indeed, by expanding in powers of
X and Y up to quadratic terms, we obtain

$$\alpha(X,Y) \approx \alpha_0 + \alpha_1(Y^2 + X^2/3) \quad [\alpha_0 \approx 0.13 \quad \alpha_1 \approx -2.9 \times 10^{-3}]$$
$$\alpha'(X,Y) \approx \alpha'_0 Y + \alpha'_1(Y^2 - X^2/3) \quad [\alpha'_0 \approx -0.12 \quad \alpha'_1 \approx 3.4 \times 10^{-3}]$$
$$\beta(X,Y) \approx \beta_0 + \beta_1(Y^2 - X^2/3)/Y \quad [\beta_0 \approx 0.047 \quad \beta_1 \approx 4.7 \times 10^{-3}]$$
$$\beta'(X,Y) \approx \beta'_0(Y^2 + X^2/3)/Y \quad [\beta'_0 = \alpha'_0/5]$$
$$\delta(X,Y) \approx \delta_0 + \delta_1(Y^2 - X^2/3)/Y \quad [\delta_0 = -\beta_0 \quad \delta_1 \approx -0.020].$$

Using Eqs. (12), (13), (26) and (28) we can expand both real and imaginary parts of all
$K \rightarrow 3\pi$ amplitudes up to linear terms.

As a first application of the formalism we can discuss the role of rescattering in CP-
odd charge asymmetries in $K^\pm \rightarrow 3\pi$. Contrary to $K \rightarrow 2\pi$, where direct CP-violation is
suppressed by the smallness of the $\Delta I = 3/2$ amplitude, in $K \rightarrow 3\pi$ an observable effect
can potentially arise also from the interference of the two $\Delta I = 1/2$ amplitudes. For
a nonvanishing effect it is crucial that the relevant amplitudes have different electroweak
phases (which can be the case only at order p^4 in the framework of ChPT) as well as
different rescattering phases.
Let us consider, for example, the amplitudes for $K^+ \to (\pi^+\pi^+\pi^-)_{I=1}$. From the preceding relations we easily obtain

$$\Re e(A_{++-}^{(1)}) = 2a_c + b_c Y$$

$$\Im m(A_{++-}^{(1)}) = 2a_c\alpha_0 + a_c\alpha_0'Y + b_c\beta_0Y = 2a_c\alpha_0 + b_cY\left(\beta_0 + \frac{a_c}{b_c}\alpha_0'\right)$$

In Eq. (30) the contribution of α_0' is multiplied by the sizable factor $|a_c/b_c| \approx 3.5 - 4.0$, and dominates over the one of β_0 by almost one order of magnitude. This shows that the kinematical dependence of rescattering functions is relevant in constructing the imaginary parts of the amplitudes. Nevertheless, such a large imaginary contribution to the term linear in Y does not help in generating the large CP-violating interference between the two $I = 1$ amplitudes suggested in Ref. [21]. Indeed, of the two Y-dependent terms in Eq. (30), the one proportional to a_c has the same weak phase as the constant term and consequently, as already noticed in Ref. [9,10], the CP-violating interference between the amplitudes to the two $I = 1$ states must be proportional to the small difference $(\alpha_0 - \beta_0)$.

In principle, the rescattering phases should be included in the analysis of CP conserving Dalitz plot parameters. Their contribution could affect the determination of the linear and the quadratic slopes. However, since in this case the imaginary parts appear quadratically, their effect is of order p^8 in ChPT and thus for completeness also the other contributions of the same order should be included. As a curiosity, we estimate the contribution of $\Im mA_{000}^L$ to the quadratic slope h, in the Dalitz plot of $K_L \to 3\pi$, defined by

$$|A_{000}^L|^2 = (\Re eA_{000}^L)^2 + (\Im mA_{000}^L)^2 \propto 1 + h(Y^2 + X^2/3) + ...$$

Using Eqs. (13) and (28), we find:

$$\Im mA_{000}^L = 3a_n\alpha_0 + 3(b_n\beta_0' + a_n\alpha_1)(Y^2 + X^2/3),$$

which gives the contribution to h

$$h^{(\text{Im})} = 2a_0\left(\alpha_1 + \frac{b_n}{a_n}\beta_0'\right) \approx +1.4 \times 10^{-3}.$$ \hspace{1cm} (33)

This number turns out to be of the same order of the experimental value of h [22],

$$h = -(3.3 \pm 1.1) \times 10^{-3},$$

but is substantially smaller than the p^6 contribution theoretically estimated in Ref. [23].

V. MEASUREMENTS OF THE RESCATTERING MATRIX IN INTERFEROMETRY MACHINES

As pointed out in sect. I, measurements of $K_L - K_S$ interference as a function of time should represent a convenient means to determine the (3π) rescattering matrix elements,

1This numerical result is obtained with the value of b_n/a_n resulting from the fit of Ref. [I].
because this observable depends linearly on \(\Im m[(A^S_{+\pm 0})^*A^L_{+\pm 0}]\). To this purpose, “interferometry machines” such as DAΦNE and LEAR should have the advantage that interference naturally occurs in vacuum there. It is possible to measure \(K_L - K_S\) interference terms also in fixed-target experiments where statistics can be higher, however in this case an accurate knowledge of the regeneration amplitude is required.

Recent LEAR data \(^{13}\) give a preliminary indication of the term proportional to \(\cos(\Delta m t)\) in Eq. (1) and suggest the possibility of measuring in the near future also the \(\sin(\Delta m t)\) component. Consequently, it is worthwhile to improve the order of magnitude estimates of Ref. \(^{12}\) and, using the ChPT results of sects. III, IV, to derive predictions for machines like LEAR and DAΦNE based on that definite theoretical model.

Choosing \(\ket{\overline{K^0}} = CP\ket{K^0}\), the CP-even and CP-odd eigenstates are \(\ket{K_{1,2}} = (\ket{K^0} \pm \ket{\overline{K^0}})/\sqrt{2}\), and, with the Wu-Yang phase convention, the mass eigenstates are (assuming \(CPT\) invariance)

\[
\ket{K_{S,L}} = p\ket{K^0} \pm q\ket{\overline{K^0}} \equiv \frac{\ket{K_{1,2}} + \varepsilon\ket{K_{2,1}}}{\sqrt{1 + |\varepsilon|^2}},
\]

(35)

The proper time evolution of initial \(K^0\) or \(\overline{K^0}\) states is

\[
\ket{K^0(t)} = \frac{\sqrt{1 + |\varepsilon|^2}}{\sqrt{2}(1 + \varepsilon)} \left[\ket{K_S} \exp \left(-\frac{\Gamma_{St}}{2} - i m_S t \right) + \ket{K_L} \exp \left(-\frac{\Gamma_{Lt}}{2} - i m_L t \right) \right],
\]

\[
\ket{\overline{K^0}(t)} = \frac{\sqrt{1 + |\varepsilon|^2}}{\sqrt{2}(1 - \varepsilon)} \left[\ket{K_S} \exp \left(-\frac{\Gamma_{St}}{2} - i m_S t \right) - \ket{K_L} \exp \left(-\frac{\Gamma_{Lt}}{2} - i m_L t \right) \right].
\]

(36)

At LEAR, tagged \(K^0\) and \(\overline{K^0}\) are produced, and the simplest means to observe interference is represented by the asymmetry

\[
A_f^{+\mp 0}(t) = \frac{\int d\Phi f(X, Y) \left[|A(K^0 \rightarrow \pi^+\pi^-\pi^0)|^2 - |A(\overline{K^0} \rightarrow \pi^+\pi^-\pi^0)|^2 \right]}{\int d\Phi \left[|A(K^0 \rightarrow \pi^+\pi^-\pi^0)|^2 + |A(\overline{K^0} \rightarrow \pi^+\pi^-\pi^0)|^2 \right]}
\]

(37)

where \(f(X, Y)\) is an odd-\(X\) function chosen in order to disentangle the different kinematical dependences. Up to first order in \(\varepsilon\), the decay amplitude squared as a function of time is given by

\[
|A \left(K^0(\overline{K^0}) \rightarrow \pi^+\pi^-\pi^0 \right)|^2 \simeq \frac{1}{2} \left\{ 1 \mp 2 \Re \varepsilon \{ \exp (-\Gamma_{St}) |A_S|^2 + \exp (-\Gamma_{Lt}) |A_L|^2 \pm 2 \exp (-\Gamma t) [\Re (A_L A^*_S) \cos (\Delta m t) + \Im (A_L A^*_S) \sin (\Delta m t)] \} \right\},
\]

(38)

where \(\Delta m = m_L - m_S\), \(\Gamma = (\Gamma_L + \Gamma_S)/2\) and \(A_{S,L} \equiv A_{+\pm 0}.\) Then Eq. (37) can be rewritten as

\[
A_f^{+\mp 0}(t) = \frac{2e^{-\Gamma t} \int d\Phi f(X, Y) \Re A_L \Re A_S}{\int d\Phi [e^{-\Gamma_{St}} |A_S|^2 + e^{-\Gamma_{Lt}} |A_L|^2]} \left[\cos (\Delta m t) + \delta_f \sin (\Delta m t) + O(\delta_f^2) \right],
\]

(39)

where
\[
\delta_f = \frac{\int d\Phi f(X,Y) [3mA_L \Re A_S - 3mA_S \Re A_L]}{\int d\Phi f(X,Y) \Re A_L \Re A_S}.
\] (40)

At the planned DAΦNE machine, a \(K_S - K_L\) coherent state will be produced and the interference term of Eq. (41) can be studied by looking at the final state \((l^+ \pi^+ \nu, \pi^+ \pi^- \pi^0)\) \([12]\). Following Ref. [24], we define for a generic decay \(K_{S,L} K_{L,S} \rightarrow f_1(t_1)f_2(t_2)\) an intensity
\[
I(f_1, f_2; t) = \frac{1}{2} \int_{|t|}^{\infty} dT \langle f_1(t_1) f_2(t_2) \rangle |i|^2,
\] (41)
where \(t = t_1 - t_2\) and \(T = t_1 + t_2\). Choosing \(f_1 = l^+ \pi^+ \nu\) and \(f_2 = \pi^+ \pi^- \pi^0\), we can define an asymmetry similar to \(A_f^{-0}(t)\), namely
\[
R_f^+(t) = \frac{\int d\Phi f(X,Y) I(l^+ \pi^+ \nu, \pi^+ \pi^- \pi^0; t)}{\int d\Phi I(l^+ \pi^+ \nu, \pi^+ \pi^- \pi^0; t)}.
\] (42)

Indeed, for \(t > 0\) we have
\[
I(l^+ \pi^+ \nu, \pi^+ \pi^- \pi^0; t > 0) = \frac{\Gamma_L(l^+ \pi^+ \nu)}{2\Gamma} \left\{ \exp(-\Gamma_S t)|A_L|^2 + \exp(-\Gamma_L t)|A_S|^2 \right. \nonumber \\
\pm 2 \exp(-\Gamma t) |\Re (A_L A_S^*) \cos(\Delta m t) - \Im (A_L A_S^*) \sin(\Delta m t)| \right. \nonumber \\
\left. \pm 2 \exp(-\Gamma t) |\Re (A_L A_S^*) \cos(\Delta m t) - \Im (A_L A_S^*) \sin(\Delta m t)| \right. \nonumber \\
and therefore
\]
\[
R_f^+(t > 0) = \pm \frac{2e^{-\Gamma t}}{\int d\Phi [e^{-\Gamma_L t}|A_S|^2 + e^{-\Gamma_S t}|A_L|^2]} \left[\cos(\Delta m t) - \delta_f \sin(\Delta m t) \right],
\] (43)
\[
R_f^+(t > 0) = \pm \frac{2e^{-\Gamma t}}{\int d\Phi [e^{-\Gamma_L t}|A_S|^2 + e^{-\Gamma_S t}|A_L|^2]} \left[\cos(\Delta m |t|) + \delta_f \sin(\Delta m |t|) \right].
\] (44)

where \(\delta_f\) is the same as defined in Eq. (40) and terms of order \(\delta_f^2\) have been neglected. For \(t < 0\) the analogue of Eq. (44) is
\[
R_f^-(t < 0) = \pm \frac{2e^{\Gamma |t|}}{\int d\Phi [e^{\Gamma_S |t|}|A_S|^2 + e^{\Gamma_L |t|}|A_L|^2]} \left[\cos(\Delta m |t|) + \delta_f \sin(\Delta m |t|) \right].
\] (45)

However, due to the exchange \(\Gamma_L \leftrightarrow \Gamma_S\), the denominator in Eq. (44) quickly becomes much larger than in Eq. (44), and suppresses the interference effect.

Considering for \(\delta_f\) the first non-vanishing order in ChPT, which is \(O(p^6)\) in the numerator and \(O(p^4)\) in the denominator, we obtain
\[
\delta_f = \frac{\int d\Phi f(X,Y) \left[a_n(\alpha - \alpha' - \delta) X + b_n(\beta - \beta' - \tilde{\delta}) XY \right]}{\int d\Phi f(X,Y) \left[a_n X + b_n XY \right]}.
\] (46)

If we use as weight function \(f(X,Y) = \text{sgn}(X)\), we obtain numerically the following result:
\[
\delta_X = 0.18 \pm 0.01.
\] (47)

Essentially, this turns out to be: \(\delta_X = \alpha_0 - \delta_0\), and is practically independent of the theoretical uncertainties on the small ratio \(b_n/a_n\). For this reason the result (47) is in good agreement with the prediction of Ref. [12].
On the other hand, choosing \(f(X, Y) = \text{sgn}(YX) \) we obtain numerically:

\[
\delta_{XY} = 0.30 \pm 0.05. \tag{48}
\]

This result is about a factor four larger than obtained in \cite{12}, \(\delta_{XY} \approx 0.07 \). Indeed, by expanding the rescattering functions, in the present calculation we have

\[
\delta_{XY} \simeq \frac{(\beta_0 - \delta_0) + \frac{a_n}{b_n}(\alpha'_0 - 2\delta_1)}{1 - \frac{a_n}{b_n} \int d\Phi |X| \text{sgn}(Y)} \tag{49}
\]

Eq. (49) shows that also in the case of \(\delta_{XY} \) the \(Y \)-dependent terms give a sizable contribution, since they are multiplied by the large factor \((a_n/b_n) \). The error in Eq. (48) accounts for the theoretical uncertainty on \((a_n/b_n) \), for which either the experimental value or the \(O(p^2) \) ChPT prediction can be used.

VI. CONCLUDING REMARKS

In the previous sections we have introduced a general formalism to consistently account for final states interactions in \(K \to 3\pi \) amplitudes, and have used leading order Chiral Perturbation Theory to evaluate the rescattering matrix. We have considered some potentially observable effects of rescattering on Dalitz plot variables. The results indicate that the off-diagonal elements of the rescattering matrix in the \(I = 1 \) sector induce sizable imaginary parts in the \(X \) and \(Y \) dependent amplitudes. However, these large imaginary parts are not easily detected from Dalitz plot analyses and cancel in direct CP-violating asymmetries.

Planned experiments at “interferometry machines” can have direct access to the rescattering matrix elements \(\text{via} \) appropriately defined time-dependent asymmetries, which we have estimated in leading order ChPT. As examples of the typical effects expected in this framework, Fig. 2 shows the asymmetry \(A_{+0}^{L}(t) \) of Eq. (39) relevant to LEAR. The solid line represents the asymmetry with no rescattering \((\delta_X = 0) \), the dashed line corresponds to the leading ChPT estimate of Eq. (47), and finally the dotted line would result by doubling the value of \(\delta_X \). To obtain Fig. 2, for the real parts of the amplitudes \(A_{+0}^{L} \) and \(A_{+0}^{S} \) we have used the expansion (11) with the values of the parameters obtained in the fit of [6]. As one can see, the curves in this figure have similar shapes, but possibly could be distinguished in high precision experiments.

In Fig. 3 we report the asymmetry \(R_{X}^{+}(t) \) of Eq. (44) relevant to DAΦNE, and the three curves refer to the same cases considered in Fig. 2. Here we note that rescattering affects the shape of the curves more significantly, especially for \(t > 0 \) where the asymmetry can become quite large. However, this occurs for the values of \(t \) where the number of events

\(^2\)The unknown quadratic term in \(A_{+0}^{S} \) can affect to some extent the numerical result for \(\delta_{XY} \) \cite{11}, and its effect can be roughly taken into account by doubling the error in Eq. (48).
becomes smaller. As an indication, the total expected number of events at $t > 0$, with the planned DAΦNE luminosity $5 \times 10^{32} cm^{-2} sec^{-1}$, is of the order of 10^3/year.

In conclusion, the analysis presented here shows the interest of experimental efforts to accurately measure the kind of asymmetries discussed here. The ultimate goal would be the determination of the $K \to 3\pi$ rescattering matrix elements testing ChPT in the strong sector, but in any case even a reasonable upper bound would represent an important information in this regard. Furthermore, the direct measurement of the CP conserving $K_S \to 3\pi$ amplitude is by itself an important achievement, extremely useful in order to test chiral symmetry in non-leptonic weak interactions.

ACKNOWLEDGMENTS

We would like to thank L. Maiani for useful discussions.
REFERENCES

[1] J. Gasser and H. Leutwyler, Ann. Phys. **158** (1984) 142; Nucl. Phys. **B250** (1985) 465.
[2] H. Georgi, “Weak Interactions and Modern Particle Physics”, Benjamin/Commings, Menlo Park, 1984.
[3] W. Ochs, Munich Preprint MPI-Ph/Ph91-35, published in \(\pi N \) Newsletters **3** (1991) 25.
[4] J. Gasser and U.G. Meissner, Phys. Lett. **B258** (1991) 219.
[5] T. J. Devlin and J. O. Dickey, Rev. Mod. Phys. **51** (1979) 237.
[6] J. Kambor, J. Missimer and D. Wyler, Phys. Lett. **B261** (1991) 496.
[7] For a review and references see J. Bijnens, G. Ecker and J. Gasser, in *The DAΦNE Physics Handbook*, Eds. L. Maiani, G. Pancheri and N. Paver (INFN Frascati, 1992), p. 115.
[8] B. Grinstein, S. J. Rey and M. Wise, Phys. Rev. D **33** (1986) 1495.
[9] G. Isidori, L. Maiani and A. Pugliese, Nucl. Phys. **B381** (1992) 522.
[10] G. D’Ambrosio, G. Isidori and N. Paver, Phys. Lett. **B273** (1991) 497.
[11] B. Weinstein and L. Wolfenstein, Rev. Mod. Phys. **65** (1993) 1113.
[12] G. D’Ambrosio and N. Paver, Phys. Rev. D **46** (1992) 252, Preprint INFNNA-IV-93-31, UTS-DFT-93-29, to appear in Phys. Rev. D (April 1994).
[13] P. Pavlopoulos, in *Flavour Mixing in Weak Interactions*, Ed. L. L. Chau, Series Ed. A. Zichichi, Plenum Press (New York), 1984.
[14] For a review see *The DAΦNE Physics Handbook*, Eds. L. Maiani, G. Pancheri and N. Paver (INFN Frascati, 1992).
[15] M. Fukawa et al., *Physics at a \(\phi \) factory*, KEK Report 90-12 (1990).
[16] V. N. Gribov, Nucl. Phys. **5** (1958) 653; B. Ya Zeldovich, Yad. Fiz. **6** (1966) 840 [Sov. J. Nucl. Phys. **6** (1967) 611].
[17] C. Zemach, Phys. Rev. **133** (1964) 1201.
[18] T. Nakada, Report PSI-PR-93-18 (1993), to appear in the Proceedings of the XVI International Symposium on Lepton-Photon Interactions at High Energies, August 10-15, 1993, Ithaca (USA).
[19] S. Weinberg, Phys. Rev. Lett. **17** (1966) 61.
[20] J. A. Cronin, Phys. Rev. **161** (1967) 1483.
[21] A. A. Bel’kov, G. Bohm, D. Ebert and A. V. Lanyov, Phys. Lett. **B232** (1989) 118.
[22] Fermilab E731 Collaboration, S. V. Somalwar et al., Phys. Rev. Lett. **68** (1992) 2580.
[23] J. Kambor, J. F. Donoghue, B. R. Holstein, J. Missimer and D. Wyler, Phys. Rev. Lett. **68** (1992) 1818.
[24] I. Dunietz, J. Hauser and J. L. Rosner, Phys. Rev. D **35** (1987) 2166; J. Bernabeu, F. J. Botella and J. Roldan, Phys. Lett. **B211** (1988) 225.
FIGURES

FIG. 1. Loop diagrams relevant to $K \rightarrow 3\pi$ rescattering. The symbols \bullet and \circ indicate the weak and the strong vertices, respectively.

FIG. 2. The asymmetry A_{X}^{+0} of Eq. (39) vs. t. The full, dashed and dotted lines correspond to $\delta_X = 0, 0.2$ and 0.4, respectively.

FIG. 3. The asymmetry R_{X}^{+} of Eq. (44) for positive and negative t. The full, dashed and dotted lines correspond to $\delta_X = 0, 0.2$ and 0.4, respectively.
This figure "fig1-1.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9403235v1
Fig. 1
This figure "fig1-2.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9403235v1
Fig. 2
This figure "fig1-3.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9403235v1
Fig. 3