Analysis of changes in biochemical parameters of oral liquid under the influence of lecithin-calcium complex in young patients with multiple caries

O. S. Volkova

Kharkiv National Medical University, Ukraine

Given the high prevalence of dental caries, it is important to find new means and methods of prevention. At present preparations of natural origin, such as lecithin and calcium citrate, are widely used.

The aim was to study the lecithin-calcium complex effect on the oral fluid biochemical parameters of individuals with multiple dental caries.

Materials and methods. 85 KhNMU Dental Faculty students-volunteers were examined. Groups of participants were formed depending on the dental caries intensity level index value for the oral fluid biochemical parameters determination (degree of oral dysbiosis, antioxidant-prooxidant index) in patients before and after the start of the lecithin-calcium complex treatment course.

Results. In persons with multiple dental caries the degree of dysbiosis is 3 times higher than normal, the concentration of calcium decreases by 1.5 times and the antioxidant-prooxidant index reduces by 2 times. After lecithin-calcium complex treatment course the dysbiosis degree decreases almost by 8 times, the concentration of calcium and API return to normal. This indicates the ability of the lecithin-calcium complex to regulate the oral cavity microbiocenosis and restore antioxidant-prooxidant indices.

Conclusions. In patients with multiple dental caries the phenomena of the oral cavity dysbiosis, a decrease in the protective antioxidant system level and a decrease in the oral fluid calcium concentration are observed. The lecithin-calcium complex intake during the month completely eliminated the phenomenon of dysbiosis in the oral cavity, increased the antioxidant-prooxidant system level and the oral fluid calcium concentration to normal.

Key words: caries, lecithin, calcium citrate, dysbiosis, antioxidant-prooxidant index.
определяя биохимических показателей ротовой жидкости (степени дисбактериоза полости рта, антиоксидантно-прооксидантного индекса) у пациентов до и после приема курса лецитин-кальциевого комплекса.

Результаты. У лиц с множественным кариесом зубов степень дисбактериоза в 3 раза превышает норму, снижаются концентрации кальция в 1,5 раза, антиоксидантно-прооксидантный индекс (АПИ) – в 2 раза. После приема курса лецитин-кальциевого комплекса степень дисбактериоза снижается почти в 8 раз, концентрации кальция и АПИ возвращались к норме. Это свидетельствует о способности лецитин-кальциевого комплекса регулировать микрофлору полости рта и восстанавливать антиоксидантно-прооксидантные показатели.

Выводы. У больных с множественным кариесом зубов отмечают явления дисбактериоза полости рта, снижение уровня защитной антиоксидантной системы и снижение концентрации кальция в ротовой жидкости. Прием в течение месяца лецитин-кальциевого комплекса полностью устранил явления дисбиоза в ротовой полости, повысил до нормы уровень антиоксидантно-прооксидантной системы и концентрацию кальция в ротовой жидкости.

The purpose of this work was to study the effect of calcium citrate containing complex and as a source of phosphorus – lecithin on the oral fluid biochemical indicators in persons with multiple dental caries.

The choice of biochemical parameters of the oral fluid was due to the fact that the condition of latter largely determines the carious lesion pathogenesis [1–5]. Among the selected biochemical parameters were inflammation markers (MDA, TPA), a member of the remineralization system – calcium, one of the antioxidant system factors – enzyme catalase, and finally, enzymatic indicators of oral microbiocenosis state – urease and lysozyme.

Materials and methods

85 Kharkiv National Medical University 2, 3 and 5 courses Dental Faculty students-volunteers were examined. A survey of volunteer students in the clinic was conducted under standard conditions of the dental office by questioning and objective clinical oral cavity assessment with the use of diagnostic dental instruments. The condition of the oral cavity was examined according to the method proposed by WHO. When collecting anamnesis, attention was focused on harmful habits related to dental health, including the frequency of carbohydrate-containing foods consumption, irregular oral hygiene and low level of motivation for dental pathology. Patients underwent initial clinical examination and oral cavity sanitation with subsequent dynamic observation (after 6 and 12 months).

The analysis of the clinical examination results made it possible to form three groups of participants depending on the level of dental caries intensity (LCI) index value, which was performed using the index of carious tooth decay intensity – CFE index (C means the number of carious teeth, F – the number of sealed teeth, E -the number of removed or to be removed teeth), with division by patient’s age and interpretation according to Leus P. A. recommendations. For the adult population LCI <0.15 – low and LCI from 0.15 to 0.30 – average; LCI from 0.31 to 0.60 – high and LCI >0.60 indicates a very high level of caries intensity.

The control group consisted of 12 apparently healthy patients, without severe dental and somatic pathology, with LCI from 0 to 0.30. Criteria for patients with caries selection, based on objective clinical examination data, were the presence of a high and very high level of tooth decay (0.31 to 0.60 and above 0.60). Basic group included 52 patients in initial state and 21 patients in one month of lecithin-calcium complex treatment.

Patients of the study groups received a scheme of complex hygienic and preventive measures, which included the observance of rational and balanced diet, the rules of oral hygiene and hygiene control every two months during the year of observation. For individual oral hygiene throughout the year, Colgate toothpaste, “Triple Action with Fluoride” with an active fluoride concentration of 1450 ppm F (1.1 %) twice a day, a toothbrush with a high cleaning index, dental floss, “Colgate Plax” softener complex action “Tender mint” containing sodium fluoride (0.025 %), which was applied twice a day after tooth brushing within a month twice a year.

Additionally, from the first day of the examination patients of the basic group received a tableted lecithin-calcium complex “Lecithin-2”, manufactured by the NPA “Odessa Biotecnology” (TU U 15.8-13903778-82-2000) [3]. The composition of the drug includes: sunflower lecithin and calcium citrate in a ratio of 1:1. Patients took daily dose of 600 mg of lecithin-calcium complex three times a day for half an hour before eating 1 tablet until complete resorption.

Table 1. Biochemical indicators of oral fluid in patients with tooth decay before and after the lecithin-calcium complex treatment

Indicators, units	Control group (n = 52)	Initial state	Basic group: (n = 21)	In 1 month (n = 21)
MDA, mkmole/l	0.25 ± 0.01	0.23 ± 0.01	0.20 ± 0.02	0.140 ± 0.01
	P < 0.05	P < 0.05	P > 0.1	P > 0.05
TPA, mikat/l	3.00 ± 0.21	4.09 ± 0.39	2.61 ± 0.29	2.61 ± 0.29
	P < 0.01	P > 0.05	P < 0.05	P < 0.05
Catalase, mikat/l	0.305 ± 0.033	0.140 ± 0.01	0.270 ± 0.053	0.270 ± 0.053
	P < 0.001	P > 0.3	P < 0.05	P < 0.05
Calcium, mmole/l	0.92 ± 0.04	0.68 ± 0.04	0.68 ± 0.03	0.68 ± 0.03
	P < 0.001	P > 0.7	P < 0.01	P < 0.01

P: indicator of significant differences with the control group; P: indicator of significant differences with the basic group.

Table 2. Activity of urease and lysozyme in oral fluid of patients with tooth decay before and after the lecithin-calcium complex treatment

Enzyme activity	Control group (n = 12)	Initial state (n = 52)	Basic group: (n = 21)	In 1 month (n = 21)
Urease (U), mikat/l	0.104 ± 0.01	0.150 ± 0.03	0.030 ± 0.005	0.030 ± 0.005
	P > 0.05	P > 0.05	P < 0.05	P < 0.001
Lysozyme (L), units/l	62 ± 3	50 ± 3	50 ± 3	50 ± 3
	P < 0.001	P > 0.05	P < 0.001	P < 0.001
L-CPI	1.0	1.44 ± 0.19	0.29 ± 0.08	0.29 ± 0.08

P: indicator of significant differences with the control group; P: indicator of significant differences with the basic group.
in the oral cavity. The course of prevention was carried out within one month twice a year.

In patients on the first day of the examination, and then a month later, unstimulated saliva (morning on an empty stomach) was collected in accordance with the recommendations [6].

After the oral liquid centrifugation (3000 rpm, 15 minutes, 0 ... +5 °C) the volume of saliva was measured, the supernatant was taken, the concentration of malonic dialdehyde (MDA) [7,8], total proteolytic activity (TPA) [9], catalase activity [10], urease [11,12] and lysozyme [13], as well as the concentration of calcium [14], were determined.

To compare the indices, the oral liquid was as practically healthy, without pronounced dental and somatic pathology.

The relative activities of urease and lysozyme ratio was used to calculate the degree of the oral cavity dysbiosis according to the enzymatic method of A. Levitsky [15], and the antioxidant-prooxidant index (API) was calculated as the ratio of catalase activity and MDA concentration [7].

Statistical processing of data was carried out using the licensed package of programs Biostatistics v.4.03 and Statistica v.5.0; the obtained results reliability was assessed by the Student’s t-test, with a critical significance level P ≤ 0.05.

Results and discussion

Table 1 presents the results of oral fluid biochemical parameters determination in patients before and after 1 month of the lecithin-calcium complex intake, as well as in healthy people. As it can be seen from these data, only two markers of inflammation (MDA and TPA) increase significantly in persons with caries and also reliably return to normal after the lecithin-calcium complex treatment.

In patients with caries, the oral fluid calcium concentration is significantly 1.5 times reduced, but returns to normal after the course of treatment, which indicates the restoration of saliva remineralizing function.

In patients with tooth decay the catalase activity as one of antioxidant enzymes decreases by more than 2 times, and in a month of the lecithin-calcium complex intake this figure almost returns to normal.

Table 2 presents the results of urease (reflecting the degree of microbial contamination) and lysozyme (the most important factor of nonspecific immunity) activity determination, and also their relative activities are calculated, which are necessary for the oral cavity dysbiosis degree determination.

As it can be seen from these data, the activity of urease in the oral fluid of patients is slightly higher than normal (however, P > 0.05), and after the lecithin-calcium complex treatment the activity of urease decreases by 5 times, which indicates a decrease in the oral cavity microbial contamination. On the contrary, the activity of lysozyme in the oral fluid of patients with cavities is more than 2 times lower than in the norm, and after the lecithin-calcium complex intake significantly increases, although it does not return to normal.

The results of oral dysbiosis degree calculations regarding the relative activities of urease and lysozyme are shown in the Fig. 1, from which it can be seen that in persons with dental caries the degree of dysbiosis is 3 times higher than normal, and after a course of lecithin-calcium treatment it decreases almost by 8 times. This indicates the ability of the lecithin-calcium complex to regulate oral microbiocenosis, which certainly has a beneficial effect not only on the teeth condition, but also on other tissues of the oral cavity, and possibly on the whole organism state.

The change in the API index in patients with cavities before and after the lecithin-calcium complex treatment is shown in the Fig. 2.

From these data it is clear that the index of API falls in patients by 2 times, and after treatment returns to normal. Since this index reflects the state of one of the body’s defense systems, then, the lecithin-calcium complex in the form of the drug lecithin-calcium complex ensures the body’s defense systems restoration.

Conclusions

1. In patients with multiple dental caries, the oral cavity dysbiosis, decrease in the protective antioxidant system level and decrease in the oral fluid calcium concentration are observed.
2. The lecithin-calcium complex intake during the month completely eliminated the oral cavity dysbiosis phenomenon, raised the level of the antioxidant-prooxidant system and the oral fluid calcium concentration to normal.

Conflicts of Interest: author has no conflict of interest to declare.

Information about author: Volkova O. S., MD, PhD, Associate Professor, Therapeutic Dentistry Department, Kharkiv National Medical University, Ukraine.

Сведения об авторе: Volkova O. С., канд. мед. наук, доцент каф. терапевтической стоматологии, Харківський національний медичний університет, Україна.

Відомості про автора: Volkova O. С., канд. мед. наук, доцент каф. терапевтичної стоматології, Харківський національний медичний університет, Україна.

References

[1] Marchenko, N. S. (2013). Sostoyanie stomatologicheskogo zdorov'ya studentov medikov [The state of dental health of medical students]. Endooffle, 3–4, 32. [in Russian].

[2] Tarasova, N. V., Brt' E. A., Fedorova, T. V., Fedorov, V. A., & Galonskij, V. G. (2012) Rol' igienicheskogo vosпитания в системе перинатальной профилактики стоматологических заболеваний [The role of hygienic education in the system of primary prevention of dental diseases]. Sibirskoe medicinskoe obozreniye, 4(76), 6–11. [in Russian].

[3] Volkova, O. S., & Volkov, S. N. (2009). Biokhimicheskie izmeneniya v syvorote kryv, soderzhashchimkhina na kariesogennoj diete s dobavleniem fosfatidikholina (lecitina), rastitel'nogo masla i preparata kal'cija [The biochemical changes in blood serum of rats, kept to cariesogenic diet with phosphatidylcholine (lecithin), vegetable oil and calcium preparation]. Visnyk stomatolohii, 1(66), 6–10. [in Russian].

[4] Denisov, A. B. (2009). Slyzina i slizyanye zhlezezy [Saliva and salivary glands]. Moscow: Izdatel'stvo RAMN. [in Russian].

[5] Novit'kaya, I. K., & Tereshina, T. P. (2013). Rol' slizy v obespechenii processov mineralizacii zubov (obzor) [Saliva role in ensuring processes of the mineralization of teeth (review)]. Innovatvi v stomatolohii, 2, 37–41. [in Russian].

[6] Noskov, V. B. (2008). Slyzina v klinicheskoj laboratornoj diagnostike (obzor literature) [Saliva in clinical laboratory diagnosis (a review of literature)]. Klinicheskaia laboratornaya diagnostika, 6, 14–18. [in Russian].

[7] Levitsinskij, A. P., Den'gina, S. A., Pustovoit, P. I., Toker, E. A., Anshukova, O. I., Goncharuk, S. V., & Skiba, V. Ya. (2011). Biokhimicheskie markery vosplaniya i disbiozy v slyune bol'nykh kariestitom [The biochemical markers of inflammation and disbiotics in saliva of patients with cholecystitis]. Visnyk stomatologijy, 1(74), 21–23. [in Russian].

[8] Stal' naja, I. D., & Garishvili, T. G. (1977). Metod opredeleniya malonovogo dial'degida s pomoshch'yu tiobarbiturovoj kisloty [Method of determination of malondialdehyde with tiobarbituric acid]. Sovremennyye metody v biohimii. (P. 66–68). Moscow: Medicina. [in Russian].

[9] Levii, K. P., Konovalov, M. V., Lyov, I. F., Barabash, R. D., & Volodkina, V. V. (1973). Kallikreiny i nespecificheskie proteazy v slyune bol'nykh yazvennoj bolezni zheludka i dvenadcatiperstnoj kishki [Kallikreins and nonspecific proteases in saliva of patients with ulcerous stomach and duodenal ulcers]. Voprosy medicinskoy khimii, 19(6), 633–638. [in Russian].

[10] Grin, S. V. (1959). Modifikatsiya metoda opredeleniya aktivnosti katalazы v biologicheskikh substratah (Modification of the method for determining the activity of catalase in biological substrates). Laboratornaya diagnostika, 4, 45–46. [in Russian].

[11] Kaskova, L. F. (2012), Marchenko, K. V. (2012). Zmira rivnia aktyvnosti lizozymy ta uresy rozviti redny v ditei u protsesi profilaktychnykh zakhodov [Changing the level of activity of lysozyme and urease of oral liquid in children in the process of preventive measures]. Ukrains'kyi stomatologichnyi al'manskii, 2, 97–98. [in Ukrainian].

[12] Gavrikova, L. M., & Segen, I. T. (1996). Ureaznaya aktivnost' rotoy zhvidkosty u bol'nykh s ostroj odontogennoj infekcije chelyustno-licevoj oblasti [Urea activity of the oral liquid in patients with acute odontogenic infection of the maxillofacial area]. Stomatologiya, 75, 49–50. [in Russian].

[13] Kaskova, L. F., Pavlenkova, O. S. (2015). Pokazateli izoziomy i ureszy rotoy zhvidkosti detej, chasto boleyushchikh ORVI [Indicators of lysozyme and ureas of oral fluid in children who are often ill with ARVI]. Molodyj uchenyy, 16 (96), 71–73. [in Russian].

[14] Levii, K. P., Den'gina, O. V., Makarenko, O. A., et al. (2010). Biokhimicheskie markery vosplaniya tkaney rotoy polosti [Biochemical markers of inflammation of the tissues of the oral cavity]. Odessa. [in Russian].

[15] Levii, K. P., Makarenko, O. A., Selvanskaya, I. A., Rossakhanova, L. N., Den'gina, O. V., Pochtar, V. N., et al. (2007). Fermentativenyj metod opredeleniya disbiozy polosti rta dlya skrininga pro- i prebiotikov [Enzymatic method for determining oral dysbiosis for screening pro- and prebiotics]. Kyiv: GFCh. [in Russian].

Конфлікт інтересів: автор має відсутні конфлікти інтересів.

Оригінальні ісследования

Запорожский медицинский журнал. Том 20, № 3(108), май – июнь 2018 г.