Static Analysis Using the Cloud

Rahul Kumar
Microsoft Research, Redmond, WA, USA
Chetan Bansal
Microsoft Research, Redmond, WA, USA
Jakob Lichtenberg
Microsoft, Redmond, WA, USA

In this paper we describe our experience of using Microsoft Azure cloud computing platform for static analysis. We start by extending Static Driver Verifier to operate in the Microsoft Azure cloud with significant improvements in performance and scalability. We present our results of using SDV on single drivers and driver suites using various configurations of the cloud relative to a local machine. Finally, we describe the Static Module Verifier platform, a highly extensible and configurable platform for static analysis of generic modules, where we have integrated support for verification using a cloud services provider (Microsoft Azure in this case).

1 Introduction

The last decade has seen a marked increase in the use of formal methods and static analysis in a variety of domains such as software development and systems engineering. Applications of formal methods vary from defect discovery to automated/manual theorem proving for performing analysis and proving system correctness. The Static Driver Verifier tool is one such static analysis tool that enables the discovery of defects in Windows device drivers [13, 11]. It is and has been used with great effectiveness to check Windows device drivers for API compliance [9]. Currently, SDV is shipped as part of the Windows Driver Development Kit. As with other program analysis and defect discovery tools, the major issues with SDV are related to the performance and scalability of the tool. By performance, we refer to the total amount of time and memory resources required for performing the verification task (e.g., wall clock time, memory pressure etc.). Scalability on the other hand, is the size of the driver that we are able to successfully verify by proving the absence or presence of defects with no concern for utilized resources. Small drivers may be completely verifiable by SDV, but still face a performance problem because it takes a long time to completely verify them. For example, for WDM drivers, there are approximately 200 rules that need to be verified for each device driver. The maximum time that each rule can take to be verified is 50 minutes; thus, resulting in a maximum possible total of 10000 minutes, or 167 hours. Even on a multi-core computer, the verification can possibly span days. For device driver developers, this can be extremely frustrating and negative, possibly resulting in finally not using the tool for verification and losing confidence in static analysis in general. It is important to note that this particular problem can easily get worse if more rules are developed and verified on device drivers. Past experiences of using SDV on larger device drivers proved valuable for understanding the scalability problem that SDV runs into.

We attempt to solve some of these problems by enabling SDV to use a cloud platform such as Microsoft Azure [4]. CloudSDV is a Microsoft Azure based computation system that allows SDV to farm out its verification task to the cloud. Doing so, provides benefits in multiple different areas for both, users as well as developers of SDV:
• **Parallelize.** Multiple verification tasks can be dispatched simultaneously for parallel computation; thus, improving the performance of the verification run.

• **Offline Computation.** By farming out verification tasks to the cloud, it is possible to schedule the entire verification of a driver and re-visit the results at a later point.

• **Result storage.** Using cloud infrastructure, it is now possible to perform better result storage and telemetry for SDV. Results that were previously produced on local machines, are now recorded systematically in the cloud for future analysis (telemetry, learning etc.). Additionally, it also becomes easier to query for results in the past, whereas previously, such results would have been lost permanently.

• **Verification as a Service.** Similar to other software services, CloudSDV allows improvements and bug fixes to SDV to be distributed much more easily. Updates can also be distributed with a much higher cadence as opposed to being governed by a less frequent schedule of the parent software (in this case the Windows Driver Development Kit).

• **Scalability.** Moving verification tasks to the cloud does not solve the scalability problem in the traditional sense, but does provide the opportunity to verify larger drivers that have been resource intense to verify until now. For example, allowing a much larger timeout for each rule does not significantly increase the total verification time anymore. Rather, only a much smaller penalty is associated with the larger timeout; thus, allowing users to potentially get better results.

Based on our experience with SDV and other static analysis tools, we designed Static Module Verifier (SMV), a generic and extensible static analysis platform with integrated cloud support. SMV includes all the essential components of static analysis tools such as build interception, extensibility, storage and cloud integration.

The paper is organized as follows. Section 2 gives a brief introduction to SDV. Section 3 gives an overview of the architecture and implementation of CloudSDV. Section 3.4 presents the results of using CloudSDV on various drivers and test suites. Section 4 talks about the motivation and the goals behind SMV, while in Section 5 we discuss it’s architecture. Section 6 presents a brief overview of known related work in this area and Section 7 presents a discussion and conclusions.

2 SDV Background

We first present a brief overview of SDV and how it functions. Figure 1 shows a high level overview of how SDV operates.

SDV takes as input the sources of the driver under test and optionally, a set of rules that are to be verified on the driver. Given a driver, SDV first ensures that the driver can be compiled correctly. Following this initial compilation, SDV then proceeds to combine the driver sources with the Operating System model and the rules that are to be verified on the driver. The Operating System model inside SDV is a set of C source files that model the Windows operating system in a manner that is most useful for performing verification by the analysis engine within SDV. There are two primary parts to the OS model. The stubs that provide a demonic model of the kernel APIs that can possibly be called by Windows device drivers, and the harness that simulates the operating system and how it would call into the driver to perform functions. The rules within SDV express temporal safety properties that drivers must adhere to. These rules are expressed in SLIC, which is a C-like language streamlined to express safety automaton. The result of combining the driver sources with the operating system model and rules is an intermediate...
binary file that can be consumed by the analysis engine for verification. It should be noted that each rule that is to be verified produces a new unique intermediate file. Thus, for N rules, there are N unique binary files that are created for performing the verification.

Until now SDV has only prepared the work that needs to be performed for verifying the driver. Once the verification files are ready for all the rules, SDV schedules the verification tasks in parallel, limiting the number of concurrent verification tasks to the total number of logical cores available in the local machine. Each verification task is limited to a *timeout* (in seconds) and *spaceout* (in MB) value that can be specified as a configuration to SDV. SDV waits for each verification run to complete and eventually reports results back to the user. Until the CloudSDV work presented in this paper, SDV was only capable of running on a single machine. For performing mass scale verification of many drivers, additional infrastructure had been developed for executing SDV in parallel on multiple machines, but such infrastructure was unintuitive and extremely tedious to use.

3 CloudSDV Design and Implementation

We now describe the architecture, design, and implementation details of CloudSDV. CloudSDV is implemented using C# and the .NET Microsoft Azure API. The analysis engines and other parts of SDV have been implemented using OCaml, C, and C++.

Figure 1 shows a high level overview of the CloudSDV system. In general, time flows from right to left (counter clockwise) in the figure. The right most side of the figure contains the CloudSDV client, which is slightly different from the normal SDV client described earlier. There is an extra option included in the normal SDV client to enable the CloudSDV scenarios. The CloudSDV client can be partitioned into two distinct parts. The first is the CloudSDV library that is a generic library that allows any application to interact with the CloudSDV Microsoft Azure service, and the second, is the SDV client slightly modified to interact with the CloudSDV library. The CloudSDV library provides a generic interface (the compute engine interface) that allows an application to schedule a verification task, upload files and other data for performing a verification task, and retrieve results from the computation platform. Fig-
Figure 2: An overview of the CloudSDV system.

Figure 3: Various implementations of the compute engine interface.

Kumar et al. illustrates the current implementations of the interface, with the bottom right hand box representing future implementations for other parallelization platforms. Based on the configuration of the application or command line arguments, the CloudSDV client can either choose to perform the verification tasks locally, or using the Microsoft Azure computation platform. In the future, we plan on providing additional implementations that can take advantage of other computation platforms such as clusters, super computers etc. It should be noted that currently, in all cases, the given driver is always compiled on the local machine and all the verification tasks themselves are created on the local machine.

After the CloudSDV client has compiled the driver and produced the various verification tasks that need to be run, each task is scheduled. This translates to two actions for each verification task: uploading the relevant payload/data to the cloud computation platform, and scheduling the verification task by inserting an entry into the work request queue. The payload/data is uploaded to Microsoft Azure’s blob storage [6], which allows storing large amounts of unstructured text or binary data for random direct access. The Azure queuing service is used for storing verification task requests [7]. Each verification task in the queue contains pointers to the data that has been previously uploaded by the CloudSDV client. Within the CloudSDV Azure implementation, there exist CloudSDV worker instances (grouped
vertically in the middle of the cloud). The worker instances are responsible for polling the work queue for new verification tasks that have been submitted by CloudSDV clients.

Figure 4 shows the state machine implemented by CloudSDV for dealing with messages in the request queue. As soon as a worker instance discovers a new task in the queue, the worker instances marks the task (queue item) as invisible to other instances. This is done atomically, so that other worker instances are unable to retrieve the same message. The transition from states S_0 to S_1 reflects this behavior. In state S_1, the worker is processing the verification task specified in the queue entry. Azure queues provide the ability to mark the message invisible for a specific time period. For a given timeout value specified to CloudSDV, we use $timeout + 300$ seconds as the invisibility period of the entry in the queue. After that time limit has been reached, the entry is automatically marked visible again. This is represented as the transition from states S_1 to S_0. This transition is only executed in cases where the worker was unable to process the task successfully within the allocated amount of time (due to unknown reasons arising from faulty code or unexpected crashes). In such cases, the result of the worker can be considered lost, and having marked the task as visible allows us to guarantee processing it again. In the case when the worker successfully processes the verification task, the entry is deleted from the queue permanently, as shown by the transition from states S_1 to S_2. State S_2 is a final state where the entry no longer exists in the queue. We choose $timeout + 300$ seconds as the value of the invisibility period to allow for delays. For example, it may be possible that the verification task completes extremely close to the timeout period, in which case, in highly congested network conditions, the delete message from the worker to the Azure queuing system may only arrive after the timeout has expired. The additional 300 second (arbitrary choice) buffer allows us to account for this scenario. Even with the additional buffer time, under extreme circumstances it is possible that the entry may be marked visible and then later deleted from the queue by the worker that originally dequeued the entry. In such a case, there is only a side effect if another worker has dequeued the same entry and marked it invisible before the original worker’s delete message was processed, but after the Azure queuing system marked the entry as visible. In this particular scenario, the entry is deleted by the original worker and the second worker (after performing the verification) eventually discards its results and proceeds to the next work item in the queue (based on an existence check in the queue). The disadvantage in this scheme is the possibility for redundant processing (at most one extra time), which arises in part due to Azure’s at-least-once best
effort FIFO queue semantics. In our experience and experiments, we never encountered this situation, which we believe is in part due to the large buffer we specify in the invisibility timeout period. On the other hand, the advantage of marking items as invisible/visible in the queue is the strong guarantee of always processing all tasks in the queue. Finally, we also impose a limit on the number of times an entry can be dequeued from the queue. Each time an entry is dequeued for processing, we modify the entry and increment the dequeue count. Once the specified limit is reached, the entry is deleted from the queue and the result of that verification task is listed as a ToolError. This condition is implemented to account for situations where the tools encounter an irrecoverable deterministic error and workers repeatedly try to complete the same task.

Both the timeout and the spaceout values are used to limit the amount of time and memory that can be consumed by the verification task on the worker instance. If these values are exceeded, the verification task is ended and the result is marked as a TimeOut or SpaceOut. These limits are user configurable only on the CloudSDV client. Once a verification task has been submitted to the queue, the configuration of the task can no longer be modified. The space and time restrictions for the verification task are enforced using a monitoring agent on the worker instance.

For each task that is executed, the instance also inserts telemetry data into Azure table storage [8]. Telemetry data is used for performing analysis of CloudSDV. Telemetry data and analysis includes various metrics such as time taken to complete task, average time a task was waiting in the queue before retrieval by a worker, number of times the task was marked visible/invisible etc. Telemetry data is anonymous and used solely for the purpose of studying the system to improve performance, stability, and efficiency.

During the entire time the verification is occurring in the cloud, the CloudSDV client is continuously polling the Result service bus for new available results. The service bus is a commonly accessible storage medium (between workers and CloudSDV client) where workers publish new results to a topic. Each topic in the result bus is the unique ID of the CloudSDV client that submitted verification tasks. This ID is made part of the task details, so the workers know where to publish the result. As soon as results are available for any scheduled tasks, the CloudSDV client reports the results to the user and exits. It should be noted that there is extremely little difference (regarding GUI and console output) in the experience the end user gets when using CloudSDV relative to just using the SDV client, which is considered a positive aspect of the CloudSDV system.

3.1 CloudSDV and SDV Versions

A salient feature provided by CloudSDV is the ability to use different versions of the core SDV product. This feature is especially useful for development and testing of new SDV versions, where one is interested in comparing two versions of SDV against each other. The feature enables SDV developers (analysis engine, rule, operating system model) to upload their custom versions of SDV to the Azure blob storage and run experiments on a mass scale very quickly. Using existing infrastructure, the developers are then able to regress their current results against saved baselines.

To enable multiple version support, each component of CloudSDV must be aware of the specific version being used. The CloudSDV client can be configured to specify the SDV version that is to be used for the verification. Each verification task that is created from that client, will also contain the same version string that is to be used for verification. In the Azure cloud, when each worker instance starts processing a new task request, it first checks to see if the SDV version specified is present on the worker instance or not. If present, the worker instance switches to using the specified SDV version and completes the task. If not present, the worker instance first downloads the specified SDV version from
CloudSDV’s private blob store. If the version cannot be found in the blob store, the worker instance marks the verification task as completed and provides an error code as the final result.

SDV developers (infrastructure, OS model, analysis engines, and rules) are provided special access and instructions for uploading their private versions of SDV.

3.2 CloudSDV Monitor

As part of the CloudSDV infrastructure, we also implemented a simple CloudSDV monitoring tool that allows us to monitor the current state of a CloudSDV deployment. Our goal is to have the monitor serve as a one stop location for administrators to view/modify the status of CloudSDV. The monitor is deployed as a Microsoft Azure application itself. As configuration, it takes the list of CloudSDV deployments to monitor. Currently we have two deployments in Asia and US. Given a deployment, the CloudSDV Monitor shows basic information about the deployment, the number of current active workers, and the status of the task queue. For each entry, we display the globally unique identifier for the task, the name of the driver, the rule being verified on the driver, the version of SDV requested the submission time, and the exact command that is to be used for performing the verification task. Future versions of the monitor are intended to be more interactive and enable administrators to perform operations on individual tasks or the entire deployment itself. It is also possible, that in future versions, users of the cloud verification service will be able to submit, cancel, and monitor jobs.

3.3 Autoscale

To minimize costs incurred on a regular basis, the CloudSDV system always operates with a default of two worker instances. Along with the default 2 workers, we use the Autoscale feature of Microsoft Azure to adjust to incoming verification tasks. The Autoscale feature is configured to increase the number of active workers based on the size of the queue. Since Azure monitors the length of the queue at fixed intervals (CloudSDV uses an interval of 10 minutes), any time the length of the queue exceeds the configured limit, a certain number of new instances of the workers are created (CloudSDV specifies this number as 50). This process can potentially repeat itself until an upper limit of the total number of worker instances is reached (for CloudSDV this limit is 200). It should be noted that the new worker instances created are not immediately available; it can take anywhere up to 10 minutes for the workers to be fully functional and available, although, in practice we observe that all the new worker instances are available between 2 and 3 minutes. Further, each worker once activated has no SDV versions available to it. Rather, a new worker lazily acquires SDV versions as new tasks from the queue are processed. All results presented in this paper are using the Autoscale feature as described here. We believe it would be interesting to repeat the experiments with different configurations of the Autoscale feature, or to disable Autoscale and always have 200 instances available. We plan on doing such experiments in the future.

3.4 Results

We now present our test methodology and results of using the CloudSDV system. To test CloudSDV, we first selected two drivers that vary in size and complexity. These drivers have been a part of the SDV test suite for a long time and continue to serve as good baseline drivers for testing. fail_driver1 is an extremely small and simple driver that SDV can verify relatively easily. The serial driver is a much larger driver that takes a very long time to compile and verify. An 8 core machine may take 6 hours to compile and verify all 200 rules. After testing on individual drivers, we tested CloudSDV using test
suites that are also available in SDV. The test suites specify a set of drivers and rules to be checked on the drivers. Each rule results in a single verification task, so in total, there are $drivers \times rules$ checks that are produced. Typically, the test suites can be run locally, or using the SDV test infrastructure which will distribute the tasks over a set of machines (managed personally). It should be noted that SDV test infrastructure does not parallelize over all drivers and all checks, rather only over all checks, one driver at a time. This choice was made to accommodate for infrastructure limitations. In contrast, when we utilize CloudSDV, we parallelize over all drivers and all checks. This is possible because the infrastructure limitations are not relevant anymore. We use the JOM tool to help us parallelize over all drivers. Figure 5(a) illustrates the parallelism as implemented with CloudSDV, and Figure 5(b) illustrates the parallelism as implemented by the SDV test infrastructure. Each dashed line followed by a solid line is one driver being compiled and then verified.

Table 1 shows the results of using CloudSDV on various drivers and test suites. The Local run is performed using an Intel(R) Xeon(R) CPU with 64 logical cores with a total of 64 GB of memory. The same machine is also used as the CloudSDV client machine for utilizing the CloudSDV cloud (for compilations and submitting tasks to the cloud). For each driver and test suite, we list the total number of drivers and checks to be performed on the driver along with the time taken ($hh:mm$) when using the local machine and when using a maximum of 20, 100, and 200 worker instances in the CloudSDV cloud.

For fail_driver1, where each verification task is at most 3 seconds (as measured in the past on a local machine), the local verification run completes in approximately 55 minutes. Most of that time is spent creating the 192 different verification tasks, 1 for each rule. Utilizing CloudSDV is actually ineffective in this case because each verification check has to be transported to the cloud before it can be completed. The additional overhead of transporting and waiting for results creates a slowdown, irre-
Table 2: Statistics for time spent by a task waiting in the queue.

Mean	Median	Standard Deviation	Minimum	Maximum
24.87s	11.51s	27.35s	1s	91s

Table 2 shows statistics for time spent by a single verification task in the queue. These results were gathered over a total of 3858 checks. As shown in the table, on average, a verification task spends around 25 seconds waiting in the queue before a worker starts to process the task. This number can prove to be too high if the verification task itself is trivial and does not require much time to be processed and completed. On the other hand, for much larger tasks that require significantly more time to complete, the time spent waiting in the queue proves to be trivial and has no noticeable impact on the entire time taken for verifying the driver. The maximum time any task spent waiting in the queue was 91 seconds, which is a direct result of the Microsoft Azure Autoscale feature. This happens when all worker instances are busy with a task and the tasks in the queue are waiting either for new instances to be created or for an existing worker instance to poll the queue for a new task.

4 SMV: Static Module Verifier

Based on our experience of developing and shipping static analysis tools over the years, we realized that most static analysis tools have very similar workflows and requirements. As shown in Figure 6, most static analysis tools require:

- **Build.** Perform a basic build of the module to verify it can be compiled and linked successfully.
Figure 6: Generalized workflow of Static Analysis Tools.

- **Build Interception.** Build interception to create the required build artifacts and Intermediate Representation (IR) of the module being analyzed. In most cases this is usually persisting the AST or CFG of the input source code, which is further consumable by analysis engines.

- **Portability.** Ability to support multiple build environments and platforms. Modules can be built using various different type of build systems such as Make [2], Ant [1], MSBuild [10] etc.

- **Analysis.** Execution of analyses engine on the produced build artifacts.

- **Storage.** Storage of build artifacts for future use and re-use.

- **Resources.** Computation and storage infrastructure (such as cloud), which can be utilized for processing a large number of tasks and storing results.

With these objectives in mind, we have created the SMV platform. SMV is designed with a plug-in-based architecture that allows clients (analysis tool developers) easily configure SMV for their environment (build system, compiler etc.) and incorporate their static analysis tool. Out of the box, SMV provides the build interception technology, the framework for executing the analysis, and the cloud services. The generated artifacts can also be saved for future use, and analyses can be run in parallel using Azure cloud infrastructure. It takes as input the following:

- Module that is to be built/analyzed.

- Configuration file for the analysis tool that specifies how the module is to be built, how the build is to be intercepted, and what analysis if any is to be executed after that.

- Optionally, a path to the analysis plugin which implements the SMV plugin interface. This allows the plugin to further customize the actions of SMV by performing custom pre and post processing between the build, intercepted build, and analysis actions. Examples of such customization may include obfuscation of source code for sharing defects with third parties, file cleanup, persisting results to custom data sinks etc.

5 Architecture

We now briefly present the architecture of the SMV platform. Figure 7 shows the high level design of SMV. The main building blocks of SMV are:
• **Build.** SMV supports several build environments, out of the box like MSBuild and Make. As a first step, it tries to do a normal build followed by an intercepted build. The intercepted build produces the build artifacts required by the analysis engine. For the intercepted build, we intercept calls to the compiler and the linker, which produces the rawcfg and li files, respectively. These are then consumed and analysed by the engine. This step is fully customizable – any binary can be intercepted and then a sequence of events can be performed in its stead.

• **Job Scheduler.** Once the build stage has successfully completed, IR is available to be consumed by the analysis stage. The IR along with the exact command to invoke the analyses are provided as input to the job scheduler. The job scheduler is responsible for scheduling the various tasks that are created in the analysis stage. Currently, we have two implementations: a local execution or a Microsoft Azure based scheduler that schedules jobs on the cloud. The infrastructure for performing the job on the cloud is a slight generalization from the CloudSDV infrastructure presented earlier.

• **Storage.** Currently all jobs that are submitted to the cloud are archived. The archive entry includes the job inputs, exact command line for executing the analysis, and the analysis engine(s) that were used. Today, we only support storage in Microsoft Azure, but in the future we plan on generalizing this to support multiple data sources and sinks.

• **Plugin.** SMV is designed with a plugin based architecture. Each plugin consists of the following pieces:

 – **XML configuration files.** These are the tool specific XML files that tell SMV how to build, intercept, and analyze the module in question.

 – Optional C# code that implements the SMVPlugin interface which can be used to perform pre-build, post-build, pre-analysis, post-analysis, actions, parse specialized command line arguments etc.

 – The tool binaries and configuration files and other meta-data itself. For example, if we have an engine that requires some data files, the plugin would contain the binaries and the data files.

6 Related Work

In the past, parallel techniques for model checking have been explored in great depth. [23] specifically focused on parallelizing the Murphi model checker for speeding up the exploration of states and also possibly achieving higher scalability by exploring more states and verifying larger models. Kumar et. al. present work in [21] that performs load balancing of parallel model checking algorithms. Work presented in [15] investigates how to perform LTL model checking in a distributed environment. Work presented in [20] also aims at taking advantage of availability of greater resources and computation power.

Given the body of work in parallel model checking, and the rise of static analysis as a more practical solution for certain problems, it was only a matter of time before the case for static analysis in the cloud was made [16]. To this effect, [17] presents work that ports the CPAChecker to the Google App-Engine and exposes the abilities through API as well as a web interface. To our knowledge, this work is the closest to the work presented in this paper but has key differences. Primarily, the work in [17] focuses on using the Google App-Engine in a Platform as a Service (PaaS) setting, while our work is focused on using Microsoft Azure in a Infrastructure as a Service (IaaS) setting. Due to this primary
difference, porting the verification technologies involved no effort in CloudSDV, whereas [17] had to make significant changes to CPAChecker for it to function correctly using the Google App-Engine.

Cloud based testing services have also become more practical and popular. [19] and [18] present cloud based frameworks and environments for performing automated testing.

Scan-Build [12], is a tool which is part of the LLVM/Clang compiler codebase [22]. The Scan-Build tool is similar to the first stage of SMV, wherein it systematically intercepts calls to the compiler for a Make based build, and performs static analysis on the source files. Although similar in theory, there are multiple differences relative to SMV. SMV is customizable and build system agnostic. Additionally, SMV is also capable of performing interception for any binary in question, while Scan-Build only performs interception for calls to specific compiles. Finally, Scan-Build only performs static analysis using the Clang analyses, or a Clang based plugin that has been developed by a user. SMV on the other hand allows analysis to be performed for the entire module, not a single file at a time, and allows the use of any analysis technology that is available.

7 Conclusion

We have presented a method for parallelizing the SDV verification tool using Microsoft Azure. The architecture and implementation make use of core concepts provided by Microsoft Azure (blobs, queues, workers, Autoscale etc.). Using the CloudSDV implementation, we were able to perform large scale verification of drivers and SDV test suites in a sound and consistent manner. Our results show that the CloudSDV implementation is extremely performant and scalable. At worst, CloudSDV performs as well as a local verification run, and in the best case, CloudSDV is capable of delivering extremely large amounts of speedup. We conclude that the observed speedup is directly proportional to the amount of verification checks that can be submitted to the CloudSDV system. From our current experiments and results, we observe that CloudSDV is extremely effective for large test suites containing a lot of verification tasks, but not as effective for single drivers.

Currently, the CloudSDV implementation is being evaluated for integration with the primary SDV product that is shipped with the Windows Driver Kit. The evaluation is primarily for the purpose of
exposing the CloudSDV service to driver developers, both internal and external. As future work in this specific area, we plan on performing more experiments with different configurations of the Autoscale feature to identify a possible sweet spot. We also plan on investigating the potential to make the CloudSDV client asynchronous (remove polling) and offline, where one can schedule jobs and exit the CloudSDV client (not be required to have the client running continuously).

We have also presented SMV, a more generalized version of SDV and CloudSDV that allow for verification of any module. The technology in SMV is highly configurable, portable, and extensible. Currently SMV is being evaluated as a generic verification platform to be used within Microsoft.

8 Acknowledgments

We would like to thank B. Ashok, Apoorv Upreti, Vlad Levin, and Thomas Ball for their valuable input and support of this work.

References

[1] Ant. http://www.ant.apache.org
[2] GNU Make. http://www.gnu.org/software/make/
[3] JOM. https://wiki.qt.io/Jom
[4] Microsoft Azure. https://azure.microsoft.com/en-us/
[5] Microsoft Azure Autoscale. https://azure.microsoft.com/en-us/documentation/articles/cloud-services-how-to-scale/
[6] Microsoft Azure Blob Storage. https://msdn.microsoft.com/library/azure/dd179376.aspx
[7] Microsoft Azure Queue Storage. http://azure.microsoft.com/en-us/documentation/articles/storage-introduction/
[8] Microsoft Azure Table Storage. https://azure.microsoft.com/en-us/documentation/articles/storage-table-design-guide/
[9] Microsoft DDI compliance rules. http://msdn.microsoft.com/en-us/library/windows/hardware/ff552840.aspx
[10] Microsoft MSBUILD. https://msdn.microsoft.com/en-us/library/ms171452(v=vs.90).aspx
[11] Microsoft Static Driver Verifier. http://msdn.microsoft.com/en-us/library/windows/hardware/ff552808.aspx
[12] Scan-Build. http://clang-analyzer.llvm.org/scan-build.html
[13] Thomas Ball, Byron Cook, Vladimir Levin & Sriram K Rajamani (2004): SLAM and Static Driver Verifier: Technology transfer of formal methods inside Microsoft. In: Integrated formal methods, Springer, pp. 1–20, doi:10.1007/978-3-540-24756-2_1
[14] Thomas Ball & Sriram K Rajamani (2002): SLIC: A specification language for interface checking (of C). Technical Report. Available at https://www.microsoft.com/en-us/research/publication/slic-a-specification-language-for-interface-checking-of-c/
[15] J. Barnat, L. Brim & Petr Ročkai (2007): Scalable Multi-core LTL Model-checking. In: Proceedings of the 14th International SPIN Conference on Model Checking Software, Springer-Verlag, Berlin, Heidelberg, pp. 187–203, doi:10.1007/978-3-540-73370-6_13 Available at http://dl.acm.org/citation.cfm?id=1770532.1770550
[16] Michael Barnett, Mehdi Bouaziz, Manuel Fahndrich & Francesco Logozzo (2013): A case for static analyzers in the cloud. In: Bytecode 2013. Available at http://research.microsoft.com/apps/pubs/default.aspx?id=183458.

[17] Dirk Beyer, Georg Dresler & Philipp Wendler (2014): Software Verification in the Google App-Engine Cloud. In: Computer Aided Verification, Springer, pp. 327–333, doi 10.1007/978-3-319-08867-9_21.

[18] George Candea, Stefan Bucur & Cristian Zamfir (2010): Automated software testing as a service. In: Proceedings of the 1st ACM symposium on Cloud computing, ACM, pp. 155–160, doi 10.1145/1807128.1807153.

[19] Liviu Ciortea, Cristian Zamfir, Stefan Bucur, Vitaly Chipounov & George Candea (2010): Cloud9: A software testing service. ACM SIGOPS Operating Systems Review 43(4), pp. 5–10, doi 10.1145/1807128.1807153.

[20] G. J. Holzmann, R. Joshi & A. Groce (2008): Swarm Verification. In: Proceedings of the 2008 23rd IEEE/ACM International Conference on Automated Software Engineering, ASE ’08, IEEE Computer Society, Washington, DC, USA, pp. 1–6, doi 10.1109/ASE.2008.9.

[21] Rahul Kumar & Eric G Mercer (2005): Load balancing parallel explicit state model checking. Electronic Notes in Theoretical Computer Science 128(3), pp. 19–34, doi 10.1016/j.entcs.2004.10.016.

[22] Chris Lattner (2008): LLVM and Clang: Next generation compiler technology. In: The BSD Conference, pp. 1–2.

[23] Ulrich Stern & David L Dill (2001): Parallelizing the Murf verifier. Formal Methods in System Design 18(2), pp. 117–129, doi 10.1023/A:1008771324652.