WAKAMATSU’S EQUIVALENCE REVISITED

XIAO-WU CHEN, JIAQUN WEI

Abstract. For a certain Wakamatsu-tilting bimodule over two artin algebras A and B, Wakamatsu constructed an explicit equivalence between the stable module categories over the trivial extension algebra of A and that of B. We prove that Wakamatsu’s functor is a triangle functor, thus a triangle equivalence.

1. INTRODUCTION

Let A and B be two artin algebras. Denote by $T(A)$ and $T(B)$ their trivial extension algebras. For a certain Wakamatsu-tilting bimodule $A_T B$, Wakamatsu constructed in [19] an explicit equivalence between the stable module categories $T(A)$-mod and $T(B)$-mod.

Wakamatsu’s construction is parallel to the one in [15], where the bimodule $A_T B$ is assumed to have projective dimension at most one on both sides; also see [13] [12]. The forerunners of the work [15] are [13], [1] and [16]. On the other hand, if the bimodule $A_T B$ is tilting of finite projective dimension, a triangle equivalence between these stable module categories was obtained in [11]. Indeed, the result in [11] is more general, which claims that such a triangle equivalence exists provided that A and B are derived equivalent. However, the equivalence in [11] is less explicit but with the advantage of being a triangle equivalence.

It is natural to ask whether Wakamatsu’s equivalence is a triangle equivalence. The aim of this paper is to answer this question affirmatively.

In Section 2, we recall basic facts on cotorsion pairs and ∂-functors. We prove that Wakamatsu’s functor is a triangle functor in Section 3. In the last section, we recall the setting of [19], where Wakamatsu’s functor becomes a triangle equivalence.

We fix a commutative artinian ring R. Denote by $D = \text{Hom}_R(-, E)$ the Matlis duality, where E is the minimal injective cogenerator of R. For an artin R-algebra A, we denote by A-mod the category of finitely generated left A-modules. Any full subcategory of A-mod is assumed to be closed under isomorphisms. We identify right A-modules as left A^{op}-modules, where A^{op} is the opposite algebra.

2. COTORSION PAIRS AND ∂-FUNCTORS

In this section, we recall basic facts on cotorsion pairs and ∂-functors. We study special envelopes of short exact sequences. The main references on cotorsion pairs are [2] [5].
2.1. Cotorsion pairs. Let A be an artin R-algebra. Let $X = _AX$ be an A-module. For a full subcategory C of A-mod, a C-precover of X means a morphism $f : C \to X$ with $C \in C$ such that any morphism $t : C' \to X$ with $C' \in C$ factors through f, that is, $t = f \circ t'$ for some morphism $t' : C' \to C$. The subcategory C is said to be contravariantly finite, if any module has a C-precover. Dually, one has the notions of a C-preenvelop and a covariantly finite subcategory.

We say that a subcategory C is finite, if $C = \text{add}Y$ for some module A. Here, $\text{add}Y$ denotes the full subcategory formed by direct summands of finite direct sums of copies of Y. Observe that a finite subcategory is both contravariantly finite and covariantly finite.

Let V, W be two full subcategories of A-mod. We denote by $\perp V$ the full subcategory formed by those modules X satisfying $\text{Ext}^i_A(X, V) = 0$ for all $V \in V$.

By a special V-preenvelop of an A-module X, we mean a monomorphism $\alpha : X \to \text{V}$ with $V \in V$ and its cokernel contained in $\perp V$. Then α is indeed a V-preenvelop of X. This is obtained by applying $\text{Hom}_A(\cdot, V')$ to the exact sequence $0 \to X \to V \to \text{Cok} \to 0$ for each $V' \in \mathcal{V}$. Dually, one has the notion of a special W-precover.

A cotorsion pair (W, V) in A-mod consists of two full subcategories satisfying $W = \perp V$ and $V = W^\perp$, in which case, both W and V are closed under direct summands and extensions. A cotorsion pair (W, V) is complete if every A-module has a special V-preenvelop, which is equivalent to the condition that each module has a special W-precover; see [2, Lemma 2.2.6]. A cotorsion pair (W, V) is hereditary if $\text{Ext}^i_A(W, V) = 0$ for each $i \geq 1$, $W \in W$ and $V \in V$. In this case, we have $W = \perp V$ and $V = W^\perp$.

The first part of the following result is due to [2, Proposition 3.6]. We include a proof for completeness.

Lemma 2.1. Let (W, V) be a cotorsion pair which is complete and hereditary. Let $\xi : 0 \to X_1 \xrightarrow{f} X_2 \xrightarrow{g} X_3 \to 0$ be an exact sequence of modules. Take any special V-preenvelop α_1 and α_3 of X_1 and X_3, respectively. Then there is a commutative diagram with exact rows

$$
\begin{array}{cccccccc}
\xi : & 0 & \to & X_1 & \xrightarrow{f} & X_2 & \xrightarrow{g} & X_3 & \to & 0 \\
\xi_V : & 0 & \to & V_1 & \xrightarrow{fV} & V_2 & \xrightarrow{gV} & V_3 & \to & 0,
\end{array}
$$

where α_2 is a special V-preenvelop of X_2. Moreover, given any morphism $t : V_1 \to V$ in V satisfying $t \circ \alpha_1 = 0$, there exists a morphism $t' : V_2 \to V$ satisfying $t = t' \circ f_V$ and $t' \circ \alpha_2 = 0$.

We might call the exact sequence ξ_V a special V-preenvelop of ξ.

Proof. By a pushout of ξ along α_1, we have the following commutative exact diagram

$$
\begin{array}{cccccccc}
0 & \to & X_1 & \xrightarrow{f} & X_2 & \xrightarrow{g} & X_3 & \to & 0 \\
\alpha_2 & \downarrow & \alpha_1 & \downarrow & \alpha_3 & \downarrow & \alpha_3 & \\
0 & \to & V_1 & \xrightarrow{f'} & V_2 & \xrightarrow{g'} & V_3 & \to & 0
\end{array}
$$

Then α is a monomorphism with $\text{Cok}a = \text{Cok}\alpha_1$. Consider the exact sequence $0 \to X_3 \xrightarrow{\alpha_3} V_3 \to W_3 \to 0$. Since α_3 is a special V-preenvelop of X_3, its cokernel W_3
lies in W. By $\text{Ext}_A^2(W_3, V_1) = 0$, we have the following commutative exact diagram

![Diagram](image)

Then V_2 lies in \mathcal{V}. Put $\alpha_2 = a' \circ a$, which is a special \mathcal{V}-preenvelop, since its cokernel lies in W.

For the last statement, we consider the exact sequence $0 \to W_1 \xrightarrow{f_W} W_2 \to W_3 \to 0$ of the cokernels of α_i’s. Then $t = t \circ \pi_1$ for some morphism $t: W_1 \to \mathcal{V}$, where $\pi_1: V_1 \to W_1$ is the canonical projection. Since $\text{Ext}_A^2(W_3, V) = 0$, we infer that t factors through f_W, that is, $t = t'' \circ f_W$ for some morphism $t'': W_2 \to \mathcal{V}$. Set $t' = t'' \circ \pi_2$ with $\pi_2: V_2 \to W_2$ the canonical projection. Then we are done.\Box

The following result indicates that taking the special \mathcal{V}-preenvelop of a short exact sequence is partially functorial.

Lemma 2.2. Let (W, \mathcal{V}) be a cotorsion pair which is complete and hereditary. Assume that we are given the top of the following diagram, which is commutative with rows being short exact sequences. Consider their special \mathcal{V}-preenvelopes as in the previous lemma. Here, the morphisms $\alpha_i: X_i \to V_i$ and $\alpha_i': Y_i \to V_i'$ are the special \mathcal{V}-preenvelops. Then the dotted morphisms exist, which make the diagram commute.

![Diagram](image)

Proof. By the special \mathcal{V}-preenvelop α_1, we have a morphism $a_V: V_1 \to V_1'$ satisfying $\alpha_1' \circ a = a_V \circ \alpha_1$. For the same reason, we have $b_V': V_2 \to V_2'$ satisfying $\alpha_2' \circ b = b_V' \circ \alpha_2$. But, in general, $a_V \circ a_V \neq b_V' \circ f_V$. By a diagram-chasing, we do have $(h_V \circ a_V - b_V' \circ f_V) \circ \alpha_1 = 0$. By Lemma 2.1 there is a morphism $t': V_2 \to V_2'$ such that $t' \circ f_V = h_V \circ a_V - b_V' \circ f_V$ and $t' \circ \alpha_2 = 0$. Set $b_V = t' + b_V'$. Then there is a unique morphism c_V such that $c_V \circ g_V = k_V \circ b_V$. By a diagram-chasing, we obtain $\alpha_1' \circ c = c_V \circ \alpha_3$. Then we are done.$\Box$

2.2. **Stable categories and ∂-functors.** Let \mathcal{A} be an abelian category. Recall that it is a Frobenius category provided that it has enough projectives and enough injectives such that the class of projective objects coincides with the class of injective objects. The stable category \mathcal{A} modulo projectives is defined as follows: the objects
are the same as \(\mathcal{A} \); for two objects \(X, Y \), the Hom group, denoted by \(\text{Hom}_A(X,Y) \), is defined to be the quotient group \(\text{Hom}_A(X,Y)/P(X,Y) \), where \(P(X,Y) \) denotes the subgroup formed by morphisms that factor through projectives; the composition of morphisms is induced from \(\mathcal{A} \). For a morphism \(f: X \to Y \) in \(\mathcal{A} \), we denote by \(f: X \to Y \) the corresponding morphism in \(\mathcal{A} \).

For a Frobenius category \(\mathcal{A} \), its stable category \(\mathcal{A}^\text{st} \) has a natural triangulated structure. For the translation functor \(\Sigma \), we fix each object \(X \) an exact sequence \(0 \to X \xrightarrow{i} I(X) \xrightarrow{d_X} \Sigma(X) \to 0 \) with \(I(X) \) injective. Any exact sequence \(0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0 \) in \(\mathcal{A} \) yields an exact triangle \(X \xrightarrow{\xi} Y \xrightarrow{\omega} Z \xrightarrow{\psi} \Sigma(X) \), where \(\omega \) is given by the following commutative diagram

\[
\begin{array}{ccc}
0 & \to & X \\
\dfrac{f}{\xi} & \to & Y \\
\dfrac{g}{d_X} & \to & Z \\
\dfrac{\omega}{\psi} & \to & \Sigma(X) \\
\end{array}
\]

Here, we use the injectivity of \(I(X) \). The morphism \(\omega \) is not unique, but its image \(\omega \) in \(\mathcal{A}^\text{st} \) is unique. In particular, for a selfinjective algebra \(A \), its stable module category \(A\text{-mod} \) becomes a triangulated category. For details, we refer to \([3, I.2]\).

Let \(F: \mathcal{A} \to \mathcal{T} \) be an additive functor from an abelian category to a triangulated category. The translation functor on \(\mathcal{T} \) is denoted by \(\Sigma \). Following \([2, \text{Section 1}]\), we say that \(F \) is a \(\partial \)-functor provided that for each short exact sequence \(\xi: 0 \to X \xrightarrow{a} Y \xrightarrow{b} Z \to 0 \) in \(\mathcal{A} \), there is a chosen morphism \(\omega_\xi: F(Z) \to \Sigma(FX) \), which fits into an exact triangle \(F(X) \xrightarrow{F(f)} F(Y) \xrightarrow{F(g)} F(Z) \xrightarrow{\omega_\xi} \Sigma(FX) \). Moreover, the chosen morphism \(\omega_\xi \) is functorial in \(\xi \). More precisely, for each commutative exact diagram

\[
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow{a} & \swarrow{b} & \searrow{c} \\
X' & \xrightarrow{f'} & Y' \\
0 & \to & 0
\end{array}
\]

there is a morphism between exact triangles

\[
\begin{array}{c}
F(X) \xrightarrow{F(f)} F(Y) \xrightarrow{F(g)} F(Z) \xrightarrow{\omega_\xi} \Sigma(FX) \\
\downarrow{F(a)} & \downarrow{F(b)} & \downarrow{F(c)} & \downarrow{\Sigma(Fa)} \\
F(X') \xrightarrow{F(f')} F(Y') \xrightarrow{F(g')} F(Z') \xrightarrow{\omega_\xi'} \Sigma(FX').
\end{array}
\]

Indeed, it suffices to verify that the rightmost square commutes. We observe that for a Frobenius category, the canonical functor \(\mathcal{A} \to \mathcal{A}^\text{st} \) is a \(\partial \)-functor.

The following fact is well known.

Lemma 2.3. (\([3, \text{Lemma 2.5}]\)) Let \(\mathcal{A} \) be a Frobenius category and \(F: \mathcal{A} \to \mathcal{T} \) be a \(\partial \)-functor which vanishes on projective objects. Then the induced functor \(F: \mathcal{A}^\text{st} \to \mathcal{T} \) is a triangle functor.

3. Wakamatsu’s functor

In this section, we first recall from \([19]\) the construction of Wakamatsu’s functor. We will prove in Theorem 3.1 that it is a triangle functor.
3.1. The construction. Let A and B be two artin R-algebras. Let $A^* B$ be an A-B-bimodule, on which R acts centrally.

We denote by ε and η the counit and unit of the adjoint pair $(T \otimes_B -, \text{Hom}_A(T, -))$ on A-mod and B-mod, respectively. More precisely, for each A-module X, the map $\varepsilon_X: T \otimes_B \text{Hom}_A(T, X) \rightarrow X$ is defined by $\varepsilon_X(t \otimes f) = f(t)$; for each B-module Y, the map $\eta_Y: Y \rightarrow \text{Hom}_A(T, T \otimes_B Y)$ is given by $\eta_Y(y)(t) = t \otimes y$.

From now on, we assume that the A-B-bimodule T is faithfully balanced, that is, the structure maps $A \rightarrow \text{End}_{B^{op}}(T)$ and $B^{op} \rightarrow \text{End}_A(T)$ are both isomorphisms. In this case, we have two canonical bimodule isomorphisms

$$\delta: DT \otimes_A T \cong DB,$$

$$\delta': T \otimes_B DT \cong DA,$$

which are given by $\delta(f \otimes t)(b) = f(tb)$ and $\delta'(t \otimes f)(a) = f(at)$. Here, DT has the induced B-A-bimodule structure.

Recall that $T(A) = A \oplus DA$ is the trivial extension of A; it is a symmetric algebra, and thus selfinjective. A $(T(A))$-module is identified with a pair (X, ϕ), where X is an A-module and the structure map $\phi: DA \otimes X \rightarrow X$ is an A-module morphism satisfying $\phi \circ (DA \otimes \phi) = 0$. We sometimes suppress ϕ and denote the pair by X. Similar notation applies to $(T(B))$-modules.

For an A-module A_V, we consider the B-module

$$L(V) = \text{Hom}_A(T, V) \oplus (DT \otimes_A V),$$

whose elements are viewed as column vectors. Then $L(V)$ becomes a $T(B)$-module via the structure map

$$\begin{pmatrix} 0 & 0 \\ * & 0 \end{pmatrix}: DB \otimes_B L(V) \rightarrow L(V),$$

where $*$ is given by the composition $(DT \otimes \varepsilon_V) \circ (\delta^{-1} \otimes \text{Hom}_A(T, V))$. We observe that $L(T)$ is isomorphic to the regular module $T(B)$.

For a $T(A)$-module $X = (X, \phi)$, the B-module $DT \otimes_A X$ becomes a $T(B)$-module via the structure map $DB \otimes_B (DT \otimes_A X) \rightarrow DT \otimes_A X$, which is given by the composition

$$-(DT \otimes \phi) \circ (DT \otimes \delta' \otimes X) \circ (\delta^{-1} \otimes DT \otimes_A X).$$

Here, the minus sign is needed in the following construction.

We assume that (W, V) is a complete cotorsion pair in A-mod such that $W \cap V = \text{add} T$. For each A-module X, we fix a special V-preenvelop $\alpha_X: X \rightarrow V(X)$ once and for all.

We observe that $DT \otimes \alpha_X$ is always injective by

$$\text{Tor}^A_1(DT, \text{Cok} \alpha_X) \simeq D\text{Ext}^1_A(\text{Cok} \alpha_X, T) = 0.$$

For a morphism $f: X \rightarrow X'$, there is a morphism $f_V: V(X) \rightarrow V(X')$ satisfying $\alpha_{X'} \circ f = f_V \circ \alpha_X$. Note that the morphism f_V is not unique.

We recall from [19] Section 1] the construction of Wakamatsu’s functor

$$S: T(A)\text{-mod} \rightarrow T(B)\text{-mod}.$$

By [19] Lemma 1.1] and [15] Proposition 1.5], for each $T(A)$-module $X = (X, \phi)$, we have the following injective $T(B)$-module homomorphism

$$\Delta_X: DT \otimes_A X \rightarrow L(V(X)) = \text{Hom}_A(T, V(X)) \oplus (DT \otimes_A V(X)),$$

where Δ_X is given by the composition

$$\text{Hom}_A(T, - \alpha_X \circ \phi \circ (\delta' \otimes X)) \circ \eta_{DT \otimes_A X}.$$
We define $S(X)$ to be the cokernel of this monomorphism. This notation is somehow sloppy, since $S(X)$ depends on (X, ϕ), not just the underlying A-module X.

For a morphism $f: (X, \phi) \to (X', \phi')$ of $T(A)$-modules, we take any morphism $f_V: V(X) \to V(X')$ satisfying $\alpha_{X'} \circ f = f_V \circ \alpha_X$. Then the left square in the following diagram commutes.

\[
\begin{array}{cccccc}
0 & \longrightarrow & DT \otimes_A X & \longrightarrow & L(V(X)) & \longrightarrow & S(X) & \longrightarrow & 0 \\
& & DT \otimes f & & L(f_V) & & S(f) & \\
0 & \longrightarrow & DT \otimes_A X' & \longrightarrow & L(V(X')) & \longrightarrow & S(X') & \longrightarrow & 0
\end{array}
\]

Then there is a unique morphism $S(f)$ making the diagram commute. However, the morphism $S(f)$ depends on the choice of f_V, but its image $S(f)$ in the stable category $T(A)$-mod is independent of the choice. This completes the construction of Wakamatsu’s functor S: see [19, Lemma 1.2]. Since the functor S depends on the cotorsion pair (W, V), we will say that S is associated to (W, V).

In what follows, when we write $S(f)$, we mean the corresponding morphism in $T(B)$-mod. We have to keep in mind that $S(f)$ depends on the choice of f_V, not just f.

The following subtlety has to be clarified; compare the treatment in the third paragraph of [19, p.19]. Assume that we are given a special V-preenvelope $\alpha'_X: X \to V'(X)$, which might not equal the fixed α_X. Replacing $V(X)$ by $V'(X)$ and α_X by α'_X in (3.1), we obtain the cokernel $S'(X)$. Then we have a canonical isomorphism in $T(B)$-mod:

\[\text{can}: S'(X) \xrightarrow{\sim} S(X).\]

Indeed, there is a morphism $s: V'(X) \to V(X)$ satisfying $\alpha_X = s \circ \alpha'_X$. Then a similar diagram as (3.2) defines the above isomorphism, which is independent of the choice of s. Consider the previous morphism $f: (X, \phi) \to (X', \phi')$. There is a morphism $f_V: V'(X) \to V(X')$ satisfying $f_V \circ \alpha'_X = \alpha_{X'} \circ f$. Then by replacing f_V by $f_{V'}$ in (3.2), we obtain a morphism

\[S'(f): S'(X) \longrightarrow S(X'),\]

which depends on the choice of $f_{V'}$. We observe the following fact

\[S'(f) = S(f) \circ \text{can}.\]

This fact enables us to abuse $S'(X)$ with $S(X)$, $S'(f)$ with $S(f)$. The notation $S'(f)$ also applies, if the range X' of f has taken a special V-preenvelop, different from the fixed one.

3.2. The ∂-functor

The above recalled Wakamatsu’s functor S vanishes on projective $T(A)$-modules; see [19, Lemma 1.3]. Then it induces an additive functor from the stable module category of $T(A)$ to that of $T(B)$. Our main result claims that the induced functor is a triangle functor, provided that the cotorsion pair (W, V) is in addition hereditary.

Theorem 3.1. Let $A T_B$ be a faithfully balanced A-B-bimodule. Assume that (W, V) is a complete hereditary cotorsion pair in A-mod satisfying $W \cap V = \text{add} T$. Then Wakamatsu’s functor $S: T(A)$-mod $\to T(A)$-mod associated to (W, V) is a ∂-functor. In particular, it induces a triangle functor $T(A)$-mod $\to T(B)$-mod.

Proof. The second statement follows from Lemma 3.3. For the first statement, we take an exact sequence $\xi: 0 \to (X_1, \phi_1) \xrightarrow{f} (X_2, \phi_2) \xrightarrow{g} (X_3, \phi_3) \to 0$ in $T(A)$-mod.
Recall the fixed special V-preenvelops $\alpha_{X_1}: X_1 \rightarrow V(X_1)$ and $\alpha_{X_3}: X_3 \rightarrow V(X_3)$. Applying Lemma 2.1, we obtain the following commutative exact diagram

$$
\begin{array}{c}
0 \rightarrow X_1 \xrightarrow{f} X_2 \xrightarrow{g} X_3 \xrightarrow{0} \\
\downarrow\alpha_{X_1} \downarrow\alpha'_{X_2} \downarrow\alpha_{X_3} \\
0 \rightarrow V(X_1) \xrightarrow{f'_{V'}} V'(X_2) \xrightarrow{g'_{V'}} V(X_3) \rightarrow 0.
\end{array}
$$

Here, α'_{X_2} is a special V'-preenvelop, which might not equal the fixed α_{X_2}. For this reason, we use the notation $f'_{V'}$ and $g'_{V'}$, instead of $f_{V'}$ and $g_{V'}$.

We have the following commutative diagram in $T(B)$-mod with exact rows.

$$
\begin{array}{c}
0 \rightarrow DT \otimes_A X_1 \xrightarrow{DT \otimes f} L(V(X_1)) \xrightarrow{L(f_{V'})} S(X_1) \rightarrow 0 \\
\downarrow DT \otimes f \downarrow L(f_{V'}) \downarrow S(f) \\
0 \rightarrow DT \otimes_A X_2 \xrightarrow{DT \otimes g} L(V'(X_2)) \xrightarrow{L(g_{V'})} S'(X_2) \rightarrow 0 \\
\downarrow DT \otimes g \downarrow L(g_{V'}) \downarrow S'(g) \\
0 \rightarrow DT \otimes_A X_3 \xrightarrow{DT \otimes 1} L(V(X_3)) \xrightarrow{S'(g)} S(X_3) \rightarrow 0
\end{array}
$$

Here, for the notation $S'(f)$ and $S'(g)$, we refer to the last paragraph in the previous subsection.

We claim that the sequence $0 \rightarrow S(X_1) \xrightarrow{S'(f)} S'(X_2) \xrightarrow{S'(g)} S(X_3) \rightarrow 0$ is exact. For the claim, we view the columns in the above diagram as complexes. The middle complex is written as $\text{Hom}_A(T, V(X_3)) \oplus (DT \otimes_A V(X_3))$. Since $\text{Ext}_A^1(T, V(X_1)) = 0$, the subcomplex $\text{Hom}_A(T, V(X_3))$ is acyclic. The claim is equivalent to the fact that the following monomorphism

$$DT \otimes \alpha_{X_1}: DT \otimes_A X_1 \longrightarrow DT \otimes_A V(X_3)$$

is a quasi-isomorphism. However, the cokernel of $DT \otimes \alpha_{X_1}$ is isomorphic to $DT \otimes W(X_3)$, where each $W(X_i)$ is the cokernel of α_{X_i}, respectively. Here, we abuse $W(X_2)$ with $W(X_2)$, the cokernel of α'_{X_2}. The cokernels $W(X_i)$ belong to W and the complex $W(X_3)$ is acyclic. It follows that the complex $DT \otimes W(X_3)$ is also cyclic, since $\text{Tor}_A^1(DT, W(X_3)) \cong D\text{Ext}_A^1(W(X_3), T) = 0$. From this, we infer that $DT \otimes \alpha_{X_1}$ is a quasi-isomorphism. We are done with the claim.

Thanks to the claim and (2.1), we have an exact triangle in $T(B)$-mod

$$S(X_1) \xrightarrow{S'(f)} S'(X_2) \xrightarrow{S'(g)} S(X_3) \xrightarrow{\omega} \Sigma(SX_1).$$

Identifying $S'(X_2)$ with $S(X_2)$ via the canonical isomorphism (5.3) and using (5.4), we obtain the desired triangle

$$S(X_1) \xrightarrow{S'(f)} S(X_2) \xrightarrow{S'(g)} S(X_3) \xrightarrow{\omega} \Sigma(SX_1).$$

It remains to show that ω is functorial in ξ. Before doing this, we notice that $\omega(\xi)$ seems to depend on our choice of α'_{X_2}, $f'_{V'}$ and $g'_{V'}$. We claim that $\omega(\xi)$ is actually independent of the choice. This will be proved along with the functorial property of $\omega(\xi)$.

We assume that there is a commutative diagram in $T(A)$-mod with exact rows

$$\xi:\quad 0 \xrightarrow{} (X_1, \phi_1) \xrightarrow{f} (X_2, \phi_2) \xrightarrow{g} (X_3, \phi_3) \xrightarrow{} 0 \\
\downarrow a \downarrow b \downarrow c \\
0 \xrightarrow{} (Y_1, \psi_1) \xrightarrow{h} (Y_2, \psi_2) \xrightarrow{k} (Y_3, \psi_3) \xrightarrow{} 0.$$
For ξ', we have the following commutative diagram

\[
\begin{array}{c}
0 \longrightarrow Y_1 \overset{h}{\longrightarrow} Y_2 \overset{k}{\longrightarrow} Y_3 \longrightarrow 0 \\
0 \overset{\alpha_{Y_1}}{\longrightarrow} V(Y_1) \overset{b_{V'}}{\longrightarrow} V'(Y_2) \overset{c_{V'}}{\longrightarrow} V(Y_3) \longrightarrow 0,
\end{array}
\]

which yields an exact sequence $0 \rightarrow S(Y_1) \overset{S(h)}{\rightarrow} S'(Y_2) \overset{S'(k)}{\rightarrow} S(Y_3) \rightarrow 0$ of $T(B)$-modules. We apply Lemma 2.2 to obtain the relevant morphisms $a_Y: V(X_1) \rightarrow V(Y_1)$, $b_{V'}: V''(X_2) \rightarrow V'(Y_2)$ and $c_{V'}: V(X_3) \rightarrow V(Y_3)$, which make the diagram commute. Then we obtain a commutative diagram between two 3×3 modules. We apply Lemma 2.2 to obtain the relevant morphisms ω. This proves that ξ' is independent of our choice.

\[\square\]

4. Wakamatsu-tilting bimodules

In this section, we recall from [13, 9] basic facts on Wakamatsu-tilting bimodules. For a certain Wakamatsu-tilting bimodule, Wakamatsu’s functor in Theorem 3.1 can be defined and becomes a triangle equivalence.

Let $\mathcal{A}T$ be an A-module satisfying $\text{Ext}^i_A(T, T) = 0$ for each $i \geq 1$. Write T^\perp for the full subcategory consisting of those modules X satisfying $\text{Ext}^i_A(T, X) = 0$ for each $i \geq 1$. Set $\mathcal{T}X$ to be the full subcategory formed by those modules X, which admit a long exact sequence $\cdots \rightarrow T^{-2} \overset{d^{-2}}{\longrightarrow} T^{-1} \overset{d^{-1}}{\longrightarrow} T^0 \rightarrow X \rightarrow 0$ with each $T^{-i} \in \text{add}T$ and each cokernel $\text{Cok}d^{-i} \in T^\perp$. In particular, $\mathcal{T}X \subseteq T^\perp$. Recall from [2, Proposition 5.1] that $\mathcal{T}X$ is closed under extensions, cokernels of monomorphisms and direct summands. Similarly, we have the subcategories $\mathcal{X}_T \subseteq T^\perp$.

Let $\mathcal{A}T_B$ be an A-B-bimodule. We say that $\mathcal{A}T_B$ is a Wakamatsu-tilting bimodule provided that it is faithfully balanced satisfying $\text{Ext}^i_A(T, T) = 0 = \text{Ext}^i_B(T, T)$ for each $i \geq 1$. An A-module $\mathcal{A}T$ is a Wakamatsu-tilting module if the natural bimodule $\mathcal{A}T_B$ is Wakamatsu-tilting with $B = \text{End}_A(T)^{op}$. In this case, the dual bimodule $\mathcal{B}(DT)_A$ is also Wakamatsu-tilting, and thus the B-module $\mathcal{B}(DT)$ is Wakamatsu-tilting.

We collect known facts on Wakamatsu-tilting bimodules in the following lemma.

Lemma 4.1. Let $\mathcal{A}T_B$ be a Wakamatsu-tilting bimodule. Then the following statements hold.

1. $(\perp_r \mathcal{X}, \mathcal{X})$ and $(\mathcal{A}T, (\mathcal{A}T)^\perp)$ are both hereditary cotorsion pairs in A-mod; moreover, $(\perp_r \mathcal{X})' \cap \mathcal{T}X = \text{add}T = \mathcal{X}_T \cap (\mathcal{X}_T)^\perp$ and $(\mathcal{A}T)^\perp \subseteq \mathcal{T}X$.
2. $(\mathcal{X}_{DT}, (\mathcal{X}_{DT})^\perp)$ and $(\perp_r \mathcal{X}_{DT})$ are both hereditary cotorsion pairs in B-mod; moreover, $\mathcal{X}_{DT} \cap (\mathcal{X}_{DT})^\perp = \text{add}DT = (\perp_r \mathcal{X})' \cap DT\mathcal{X}$ and $(\perp_r \mathcal{X}_{DT}) \subseteq \mathcal{X}_{DT}$.
(3) There are equivalences between these subcategories given by the Hom and tensor functors.

\[
T\mathcal{X} \supseteq (\mathcal{X}_T)^\perp; \quad \mathcal{X}_T \supseteq \perp(\mathcal{T}\mathcal{X})
\]

In general, the above cotorsion pairs are not complete.

Proof. For (1), we refer to [9, Proposition 3.1], and (2) follows from (1) applied to the dual bimodule \(B(DT)_A\). For (3), we refer to [19, Proposition 2.14]. □

Following [20], a Wakamatsu-tilting bimodule \(A_TB\) is good provided that there are cotorsion pairs \((\mathcal{W}, \mathcal{V})\) in \(A\)-mod and \((\mathcal{Y}, \mathcal{Z})\) in \(B\)-mod, respectively, which satisfy the following conditions.

(GW1) These two cotorsion pairs are complete hereditary.

(GW2) \(\mathcal{W} \cap \mathcal{V} = \text{add}T\) and \(\mathcal{Y} \cap \mathcal{Z} = \text{add}DT\).

(GW3) The adjoint pair \((T \otimes_B -, \text{Hom}_A(T, -))\) induces an equivalence \(\mathcal{V} \sim \mathcal{Y}\).

(GW4) The adjoint pair \((DT \otimes_A -, \text{Hom}_B(DT, -))\) induces an equivalence \(\mathcal{W} \sim \mathcal{Z}\).

We mention that these conditions are essentially given in [19, Hypothesis 1.4]. In the above situation, we observe that \((\mathcal{X}_T)^\perp \subseteq \mathcal{V} \subseteq \mathcal{T}\mathcal{X}\). Indeed, one proves that \(A_T\) is an Ext-projective generator for \(\mathcal{V}\) and then applies [9, Corollary 3.3]; also see [20, Proposition 3.2.2].

In the following example, we use the well-known fact: a cotorsion pair \((\mathcal{C}, \mathcal{D})\) is complete if and only if \(\mathcal{D}\) is covariantly finite, if and only if \(\mathcal{C}\) is contravariantly finite; see [2, Proposition 1.9].

Example 4.2. Let \(A_TB\) be a Wakamatsu-tilting bimodule.

(1) If both \(A_T\) and \(T_B\) have finite projective dimension, then \(A_TB\) is called a **tilting bimodule**. This coincides with the tilting module of finite projective dimension in [10, 4, 6]. In this case, the cotorsion pairs \((\perp(\mathcal{T}\mathcal{X}), \mathcal{T}\mathcal{X})\) and \((\mathcal{X}_DT, (\mathcal{X}_DT)^\perp)\) are complete; see [19, Theorem 2.17]. In this case, we have \(\mathcal{T}\mathcal{X} = T^\perp\); see [2, Theorem 5.4]. Hence, by Lemma 4.1 a tilting bimodule is a good Wakamatsu-tilting bimodule.

If both \(A_T\) and \(T_B\) have finite injective dimension, then \(A_TB\) is called a **cotilting bimodule**. By duality, we observe that a cotilting bimodule is a good Wakamatsu-tilting bimodule.

(2) Following [20], the Wakamatsu-tilting bimodule \(A_TB\) is said to be of **finite type**, if either the subcategory \(\perp(\mathcal{T}\mathcal{X})\) or \((\mathcal{X}_T)^\perp\) of \(A\)-mod is finite. This happens when \(A\) or \(B\) is of finite representation type; for an explicit example, see [19, Example 3.1]. Then a Wakamatsu-tilting bimodule of finite type is good.

Indeed, if \((\perp(\mathcal{T}\mathcal{X}))\) is finite, so is \((\mathcal{X}_DT)^\perp\) by Lemma 4.1(3). Then both cotorsion pairs \((\perp(\mathcal{T}\mathcal{X}), \mathcal{T}\mathcal{X})\) and \((\mathcal{X}_DT, (\mathcal{X}_DT)^\perp)\) are complete. Similar argument applies if \((\mathcal{X}_T)^\perp\) is finite.

We now reformulate Wakamatsu’s equivalence as follows, which combines [19, Theorem 1.5] and Theorem 3.1.

Theorem 4.3. (Wakamatsu) Let \(A_TB\) be a good Wakamatsu-tilting bimodule with the relevant cotorsion pairs \((\mathcal{W}, \mathcal{V})\) and \((\mathcal{Y}, \mathcal{Z})\) as above. Then the Wakamatsu’s functor

\[
S: T(A)\text{-mod} \rightarrow T(B)\text{-mod}
\]

associated to \((\mathcal{W}, \mathcal{V})\) is a triangle equivalence. □
Remark 4.4. We keep the assumptions in Theorem 4.3.

(1) If the given Wakamatsu-tilting bimodule $A_T B$ is tilting, there is a triangle equivalence between $T(A)-\text{mod}$ and $T(B)-\text{mod}$ obtained in [11, Theorem 3.1]. It would be of interest to compare these two triangle equivalences. If the tilting module has projective dimension at most one, these two triangle equivalences might coincide in view of [14, Theorem 8].

(2) Consider the category $T(A)-\text{Mod}$ of arbitrary $T(A)$-modules. Using filtered colimits and [8, Theorem 2.4], we obtain a cotorsion pair in $T(A)-\text{Mod}$ and a cotorsion pair in $T(B)-\text{Mod}$, which still satisfy (GW1)-(GW4). Here, we have to replace “add” by “Add” in (GW2). Then we obtain a triangle functor

$$S: T(A)-\text{Mod} \rightarrow T(B)-\text{Mod},$$

which is an equivalence by Theorem 4.3 and infinite dévissage.

(3) We view $T(A) = A \oplus DA$ as a \mathbb{Z}-graded algebra with $\deg A = 0$ and $\deg DA = 1$. Then the category $T(A)-\text{gr}$ of graded $T(A)$-modules is equivalent to the module category of the repetitive algebra of A; in particular, it is a Frobenius category. By [6, Theorem II.4.9], there is a triangle full embedding from the bounded derived category $D^b(A-\text{mod})$ of $A-\text{mod}$ to the stable category $T(A)-\text{gr}$.

A graded $T(A)$-module (X, ϕ) consists of a graded A-module X with a structure map $\phi : DA \otimes X \rightarrow X$ of degree one, which satisfies $\phi \circ (DA \otimes \phi) = 0$. Then a parallel argument as in [19, Section 1] carries over to graded modules, and thus we obtain a triangle equivalence

$$S: T(A)-\text{gr} \rightarrow T(B)-\text{gr}.$$

The construction of S is similar to the one in [17, Section 2], where the grading shift by one appears naturally. For the details, we refer to [20, Section 4]. We might call the above equivalence S a repetitive equivalence between the algebras A and B. It seems that a good Wakamatsu-tilting module plays a similar role for repetitive equivalence as a tilting module for derived equivalences.

We observe that the above repetitive equivalence S usually will not restrict to a derived equivalence, that is, an equivalence between $D^b(A-\text{mod})$ and $D^b(B-\text{mod})$; see the explicit example in [19, Examples 3.1 and 3.2], where the two algebras are not derived equivalent.

References

[1] I. Assem, Y. Iwanaga, Stable equivalence of representation-finite trivial extension, J. Algebra 102 (1986), 33–38.

[2] M. Auslander, I. Reiten, Applications of contravariantly finite subcategories, Adv. Math. 86 (1991), 111–152.

[3] X.W. Chen, Relative singularity categories and Gorenstein-projective modules, Math. Nachr. 284(2-3) (2011), 199–212.

[4] E. Cline, B. Parshall, L.L. Scott, Derived categories and Morita theory, J. Algebra 104 (1986), 307–409.

[5] R. Göbel, J. Trlifaj, Approximations and Endomorphism Algebras of Modules, De Gruyter Expo. Math. 41, Walter de Gruyter, Berlin/New York, 2006.

[6] D. Happel, Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Math. Soc., Lecture Notes Ser. 119, Cambridge Univ. Press, Cambridge, 1988.

[7] B. Keller, Derived categories and universal problems, Comm. Algebra 19 (1991), 699–747.

[8] H. Krause, O. Solberg, Applications of cotorsion pairs, J. London Math. Soc. (2) 68 (2003), 631–650.

[9] F. Mantese, I. Reiten, Wakamatsu tilting modules, J. Algebra 278 (2004), 532–552.

[10] Y. Miyashita, Tilting modules of finite projective dimension, Math. Z. 193 (1986), 113–146.
[11] J. Rickard, Derived equivalences and stable equivalences, J. Pure Appl. Algebra 61 (1989), 303–317.
[12] H. Tachikawa, Selfinjective algebras and tilting theory, Lecture Notes Math. 1177, 272–307, Springer-Verlag, New York/Berlin, 1986.
[13] H. Tachikawa, Reflection functors and Auslander-Reiten translations for trivial extensions of hereditary algebras, J. Algebra 90 (1984), 98–118.
[14] H. Tachikawa, T. Wakamatsu, Applications of reflection functors for self-injective algebras, Lecture Notes Math. 1177, 308–327, Springer-Verlag, New York/Berlin, 1986.
[15] H. Tachikawa, T. Wakamatsu, Tilting functors and stable equivalences for self-injective algebras, J. Algebra 109 (1987), 138–165.
[16] T. Wakamatsu, Partial Coxeter functors of selfinjective algebras, Tsukuba J. Math. 9 (1985), 171–183.
[17] T. Wakamatsu, Stable equivalence between universal covers of trivial extension self-injective algebras, Tsukuba J. Math. 9 (1985), 299–316.
[18] T. Wakamatsu, On modules with trivial self-extensions, J. Algebra 114 (1988), 106–114.
[19] T. Wakamatsu, Stable equivalence for self-injective algebras and a generalization of tilting modules, J. Algebra 134 (1990), 298–325.
[20] J. Wei, Repetitive equivalences and Wakamatsu-tilting modules, arXiv:1601.0139v1.

Xiao-Wu Chen
Key Laboratory of Wu Wen-Tsun Mathematics, Chinese Academy of Sciences,
School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026,
Anhui, PR China

Jiaqun Wei
Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China.