The Intriguing Plerionic Supernova Remnant: G21.5-0.9

Safi-Harb, S.¹

U. of Manitoba, Department of Physics and Astronomy, 515 Allen Bldg., Winnipeg, MB, R3T 2N2 Canada

Harrus, I. M., Petre, R.

NASA/GSFC, Code 662, Greenbelt, MD 20771, USA

Pavlov, G. G., Koptsevitch, A. B., & Sanwal, D.

Penn. State University, 525 Davey Lab, PA, 16802, USA

Abstract. G21.5−0.9 is a center-brightened (or plerionic) supernova remnant (SNR) whose properties hint at the presence of a pulsar – yet no pulsations have been found at any wavelength. Early observations with Chandra led to the discovery of an extended component, making the SNR at least twice as big as originally thought. Our analysis indicates that this low-surface brightness extended component is non-thermal with a filamentary hard structure in the northern quadrant. We perform a spatially resolved spectroscopy and find no evidence of line emission using a 72 ksec exposure with ACIS-S. The 5′ diameter remnant is well fitted with a power law with a photon index steepening from 1.5 to 2.7 ($N_H=2.2\times10^{22}$ cm$^{-2}$). Using a 76 ksec exposure with the HRC, we derive an upper limit of 16% on the pulsed fraction from a putative pulsar. We also infer the parameters of the ‘hidden pulsar’ in G21.5−0.9. This remnant remains unique and intriguing since it is, to date, the only candidate whose size is bigger in X-rays than in the radio.

1. Introduction

G21.5−0.9 has a flat radio spectral index, and is highly polarized (Green 2000). It is a 1.3′ diameter plerion (~ 1.9 pc at a distance of 5.0 kpc) in the radio, infrared, and in X-rays (prior to Chandra; Becker and Szymkowiak 1981). Early Chandra observations (Slane et al. 2000) revealed a low-surface brightness extended component interpreted as the missing SNR shell. G21.5−0.9 shares similar properties to 3C 58 and CTB 87, plerions having a spectral break at low frequencies and classified as plerions of the second kind (Woltjer et al. 1997). Bock, Wright, & Dickel (2001) have however recently questioned the spectral break in G21.5−0.9. In this paper, we highlight the Chandra observations.

¹NSERC fellow; samar@physics.umanitoba.ca
More details about the analysis (including ROSAT and ASCA observations) and interpretation of our results can be found in Safi-Harb et al. (2001).

2. Imaging

In Fig. 1, we show the Chandra images of G21.5−0.9 in the soft and hard energy bands. With ROSAT and previous radio observations, only the bright 40″ radius core is detected. Chandra allowed the discovery of a faint extended component (Fig. 1, left) making the SNR at least twice as big as previously thought. In Fig. 2, the hardness ratio map (2.4–10 keV over 0.5–2.4 keV) shows that the central core is harder than the extended component (in agreement with our spectral analysis below). Moreover, the extended component is harder in the northern quadrant, with brighter knots and filamentary structures.

3. Spatially Resolved Spectroscopy:

We perform a spatially resolved spectroscopy of the plerion using a 72 ksec exposure with Chandra ACIS S3. The spectrum of the inner core is extracted from a circle of radius $R=40''$ (with rings of 5'' thickness). For the extended component, we extract a spectrum from 50''−150''. All spectra are best described by a power law with the photon index, Γ, steepening away from the bright center from 1.5 to 2.7 ($N_H=2.2\times10^{22}$ cm$^{-2}$). We rule out thermal models for the extended component. Collisional equilibrium ionization (CEI) models, such as apec, yield poor fits ($\chi^2_\nu\sim1.15$). Non-equilibrium ionization (NEI) models, such as PHSOCK, are unlikely since they yield a very low ionization timescale, and an interstellar column density, N_H, much lower than that derived for the SNR (Table 1). Furthermore, we find no evidence of line emission from the filaments and knots. Their spectra are well fitted with a power law model.
Figure 2. Hardness ratio map (2.4–10 over 0.5–2.4 keV) obtained with ACIS-S and smoothed with a Gaussian with $\sigma = 3^\prime$. The northern knotty quadrant is harder than the rest of the extended component.

Table 1. Spectral parameters of the fits to the low-surface-brightness extended component using ACIS-S3 observations.

Model	N_H ($\times 10^{22} \text{ cm}^{-2}$)	Model Parameter	$\chi^2 (\nu)$
Power Law	1.83 (1.77–1.90)	$\Gamma = 2.36$ (2.30-2.43)	1.0 (658)
PSHOCK	1.53 (1.48–1.57)	$kT = 3.50$ (3.28–3.74) keV	0.86 (657)
		$\tau^b = 1.1$ (0.8–1.3) $\times 10^9$ cm$^{-3}$ s	

aBest fit values are indicated. When freezing N_H to 2.2×10^{22} cm$^{-2}$, the power law model gives $\Gamma = 2.73 \pm 0.04$ ($\chi^2 = 0.98; \nu = 659$), and thermal models are rejected ($\chi^2 \sim 1.5$)

bThe ionization timescale, $n_e t$; where n_e is the postshock electron density, and t is the age of the shock

4. The putative pulsar

The morphology and spectrum of the inner core indicate the presence of a pulsar powering G21.5–0.9. We did not find pulsations using the ASCA and Chandra archival observations. Using 5 HRC observations totaling to 76 ksec, we put an upper limit on the pulsed fraction of 16%. We also measure an unabsorbed flux of 2.4×10^{-12} erg cm$^{-2}$ s$^{-1}$ from the point source. The failure to detect pulsations could be due to a beaming effect. Using various $L_X-\dot{E}$ empirical relationships for pulsar-powered plerions, we find that a plausible estimate of the spin down energy loss, \dot{E}, is $E_{37} \equiv \dot{E}/(10^{37}$ erg s$^{-1}) \sim 3–6$. In the Kennel and Coroniti (1984) model, the pulsar wind gets shocked at a radius, R_s, given by equating the pressure of the pulsar’s wind with the pressure in the nebula. Beyond this radius, a non-relativistic flow transports the plasma from the shock region to the edge of the nebula. The size of the nebula, R_n, is related to the shock radius, R_s as: $R_n/R_s \sim 1/\sqrt{\sigma}$; where σ is the so-called pulsar wind magnetization parameter defined as the ratio of the Poynting flux to the particles flux. Using
the power law fit to the inner $40''$ radius core, we estimate a shock radius $R_s \sim 0.08-0.11$ pc ($\sim 3''-5''$ at 5 kpc). The pulsar wind parameter σ is $\sim (4-11) \times 10^{-4}$, indicating a particle dominated wind. In Table 3, we summarize the inferred parameters of the putative pulsar in G21.5$-$0.9, in comparison with the Crab and 3C 58 pulsars.

Table 2. Inferred parameters of the putative pulsar in G21.5$-$0.9, in comparison with the Crab and the newly discovered pulsar in 3C 58 (Slane et al., this proceedings).

	G21.5$-$0.9	Crab	3C 58
Distance (kpc)	5	2	2.6
L_X (0.5–10 keV) (1035 erg s$^{-1}$)	3.3D_g^2	210	0.3
\dot{E} (1037 erg s$^{-1}$)	3–6	47	2.6
σ	(4–11)$\times 10^{-4}$	3$\times 10^{-3}$	–
P (ms)a	144$\tau_3^{-0.5} \dot{E}_{37}^{0.5}$	33	67
B_0 (1013 Gauss)	1.1 $\tau_3^{-1} \dot{E}_{37}^{-0.5}$	0.4	0.36

a τ_3 is the age in units of 3 kyr; \dot{E}_{37} the spin-down energy loss in units of 1037 erg s$^{-1}$

5. Conclusions and future work

The extended component is non-thermal—agreement with XMM-Newton observations (Warwick et al. 2001). The softening of the spectral index away from the core could be explained by synchrotron losses. Unlike other plerions, G21.5$-$0.9 is the only candidate whose X-ray size is bigger than its radio size. Deep radio observations (recently performed with the VLA) will allow us to search for the radio counterpart of the extended X-ray component and the missing SNR shell. Since G21.5$-$0.9 is bright and heavily absorbed, a significant fraction of its flux would be scattered by dust (R. Smith, private communication). Future work should include modeling a dust scattering X-ray halo.

References

Becker, R.H. & Szymkowiak, A.E. 1981, ApJ, 248, 23
Bock, D., Wright, M., & Dickel, J. 2001, ApJ, 561, L203
Green, D. A. 2000, http://www.mrao.cam.ac.uk/surveys/snrs/
Kennel, C. F. & Coroniti, F. V. 1984, ApJ, 283, 694
Safi-Harb, S. et al. 2001, ApJ, 561, 308
Slane, P. et al. 2000, ApJ, 533, L29
Warwick, R. S. et al. 2001, A&A, 365, 248
Woltjer, L. et al. 1997, A&A, 325, 295