Comparative study of fungal stability between *Metarhizium* strains after successive subculture

Rana H. M. Hussien¹²*, Said M. Ezzat¹, Ali A. El Sheikh², James W. D. Taylor³ and Tariq M. Butt³

Abstract

Background: *Metarhizium* species are considered one of the most outstanding powerful biological control agents that have been commercialized as biopesticides against various agricultural pests. Fungal stability with successive in vitro cultivation is a desirable trait for a large-scale production of fungal biopesticide.

Main body: The new Egyptian strain *Metarhizium anisopliae* AUMC 3262 exhibited auspicious results when compared to *Metarhizium brunneum* ARSEF 4556 and *M. brunneum* V275 based on the variations of fungal characteristics, and essential quality control parameters (radial growth rate, conidial yield, viability, and virulence) after repeated in vitro subculturing. Changes in morphological characteristics were noted at both AUMC 3262 and ARSEF 4556. Following the 5th subculture, decreased conidial yield was noted, though radial growth remained stable, confirming that there is a non-positive correlation between conidial yield and radial growth rate for these species. In contrast, V275 showed a high morphological stability, conidial yield, and radial growth rate after repeated subculture. The three tested strains manifested high viability up to 100% and displayed the same pattern of Pr1 production. A slight variation was recorded in the median lethal time (LT₅₀) values against the great wax moth, *Galleria mellonella* (L.), larvae between different subcultures of the tested *Metarhizium* strains.

Conclusion: The new Egyptian strain AUMC 3262 showed a high stability with a slight difference in some parameters after the successive subculture compared to both ARSEF4556 and V275.

Keywords: Fungal stability, *Metarhizium* strains, Pr1, Virulence

Background

Application of the entomopathogenic fungi (EPF), as an alternative to conventional chemical pesticides, represents a safe sustainable crop protection method for integrated pest management (IPM) strategies. More than 700 species of EPF are used as biological control agents, with particular emphasis on *Metarhizium* spp. (Humber, 2008). Approximately 39% of mycoinsecticides based on genus *Metarhizium* as an active ingredient (Faria and Wriaght, 2007), probably due to their high host specificity, non-persistence, and eco-friendly with a unique mode of action against target pests. *M. anisopliae* showed high mortality rates against the stored grain pests *Sitophilus granarius* and *S. oryza* depending on conidial concentrations and the absence or presence of food (Ak, 2019), while evaluation of different strains of *M. anisopliae* against *Spodoptera exigua* and *S. littoralis* showed a high accumulative mortality rate (100%) against 2nd and 4th larval instars of *S. littoralis* and 1st and 3rd instars of *S. exigua* larvae (Anand and Tiwary, 2009; Han et al., 2014).

EPF used as biological control agents are characterized by critical factors to be used effectively in IPM programs, one key aspect concerning propagule stability after repetitive subculture or mass production. Genus
Metarhizium has the ability to be mass produced using a biphasic production system on a wide variety of relatively inexpensive organic substrates (Jenkins et al., 1998). Moreover, M. anisopliae AUMC 3262 could be mass produced on cheap agriculture byproducts using biphasic production technique (Ezzat et al., 2019).

Sector formation is an important sign of fungal instability resulting from cultural degeneration. Sectors can differ from the parent culture in a range of morphological and physiological characteristics, including a decline in infective propagule production and certain metabolites, resulting in decreased fungal pathogenicity (Shah and Butt, 2005). The sterile sectors cause reduced spore yield and increased production costs, making the end product less cost-effective; in addition, a virulent inoculum could decrease the end product efficacy when compared with competing agents (Rayan et al., 2002).

The production of stable conidial yield with high viability is also an imperative parameter for commercial purposes as insect mortality is dose-dependent; the more conidia that adhere to the body of the insect, the faster the fungus will kill the host insect (Butt, 2002). Following conidial attachment to the insect cuticle, the conidia germinate and exert a combination of passive hydrophobic and electrostatic forces, followed by secretion of cuticle-degrading enzymes. Cell wall-bound subtilisin protease Pr1 plays a pivotal role in insect cuticle penetration. Furthermore, Pr1 is classified as a pathogenicity determinant (St. Leger et al., 1987). Small and Bidochka (2005) found that M. anisopliae Pr1 genes are upregulated from the point of initial infection until the mycelia emerge and produce conidia on the surface of the cadaver, indicating a potential link between conidial virulence and Pr1 production. Consequently, the ability of M. anisopliae conidia to produce a high amount of Pr1 qualifies its use as a biocontrol agent.

Virulence maintained over several generations is the most important factor in choosing the fungi as effective biocontrol agents. Several reports have stated that EPF, including M. anisopliae, tended to experience a loss or reduction in sporulation and virulence (attenuation), following successive subculture on artificial media (Santoro et al., 2014). These studies also confirmed that the virulence was improved or restored when the pathogen was passed through a suitable insect host or particular culture media (Wang and St. Leger, 2005).

In this study, a new Egyptian isolate, M. anisopliae AUMC 3262, the promising M. brunneum ARSEF 4556, and the commercial M. brunneum V275 strains were evaluated for their fungal stability and efficacy that could help in developing mass production strategy and commercialization process.
replicates previously prepared (total no. 15). Morphological changes and sector formation were observed daily, and surface radial growth was recorded from the 3rd to 15th days and was calculated following the equation:

\[
\frac{\text{Colony diameter at the end of incubation period} - \text{Fungal disc diameter}}{\text{Total incubation days}}
\]

Conidial yield and viability

From the previous prepared 15 plates, 5-mm agar plugs were taken randomly after 15-day incubation from each plate and placed in 1 ml of 0.03% (v/v) Tween 80 then vortexed to suspend the spores. Spore yield was determined, using an Improved Neubauer hemocytometer, Germany. Germination and viability were assessed according to Inglis et al. (2012). 15 SDAY plates were inoculated with 50 μl of the previous conidial suspension (4 × 10^7 conidia/ml), then incubated in darkness at 25 ± 2 °C, after 20–24 h. Plates were examined for germination at × 40 (100 conidia per microscopic field). A spore was considered to have germinated if it had formed a germ tube that was as long as the spore width.

Determination of spore bound Pr1

Conidia-bound Pr1 activity was determined according to Shah et al. (2005) as follows: 10 mg of conidia was harvested from 15-day-old culture and washed once with 1 ml of 0.03% (v/v)aq. Tween 80 and twice with 1 ml distilled water, then incubated in 1 ml of 0.1 M Tris-HCl (pH 7.95) containing 1 mM Succinyl-Ala-Ala-Pro-Phe-p-nitroanilide (Sigma-Aldrich UK) for 5 min at room temperature. After incubation, conidia were pelleted by centrifugation at 12,000 rpm for 5 min (Sanyo, Harrier 18/80 centrifuge). The supernatant (200 μl) was transferred to a 96-well flat-bottom plate, optical grade (Greiner Bio-One) and absorbance measured, using a BioTek Synergy H1 multi-mode reader at 405 nm. Buffered substrate was used as a control.

Determination of fungal virulence

Assessment of conidial virulence for each subculture was carried out against the last larval instar of *G. mellonella*. Batches of 10 *G. mellonella* larvae were immersed for 10 s in 10 ml of 0.03% (v/v) aqueous Tween 80 conidial suspension (4 × 10^7 conidia/ml) prepared from each subculture. Excess conidial suspension was removed by transferring the inoculated insects to filter paper before moving them to a 90-mm Petri dish lined with filter paper moistened with distilled water and sealed with paradigm tape. No food was provided. Control insects were immersed in 0.03% (v/v) aqueous Tween 80 only. Treatments were carried out in triplicate. All dishes were incubated at 25 ± 2 °C in darkness and monitored daily for 5 days.

Statistical analysis

LT_{50} was calculated using Bio-Stat V5 (analyst soft inc. V.5.9.33). Other results were expressed as the mean ± standard error (SE). Statistical significance was determined by the way of analysis of variance (one-way ANOVA, SPSS software version 16), followed by the least significant difference LSD test.

Results and discussion

Effect of successive subculture on quality control parameters

Morphological characteristics

Specific criteria must be met by EPF to be used as biocontrol alternatives to chemical pesticides. Sector formation and changes in morphological and physiological characteristics could cause significant commercial problems including a decline in the production of certain metabolites and virulence as well as conidial yield. All of the tested strains shared almost the same morphological appearance of a circular, dark olivaceous-green colony. ARSEF 4556 was characterized by a very good sporulation pattern with the 1st subculture, as the conidia were arranged as central layers. Following the 5th subculture, yellow sectors appeared and increased gradually in size with the following subcultures, while AUMC 3262 was found to have small, central white mycelial growth, which increased in size from the 7th subculture until full coverage of the Petri dish was observed at the 9th subculture. The changes in fungal morphology and sector appearance were noted in both AUMC 3262 and ARSEF 4556 after the 5th and 7th subcultures and increased with the successive subcultures were often observed in fungal cultures maintained on artificial media as a result of cultural degradation, caused by age of the culture, method of propagation or nature of the culture media itself (Shah and Butt 2005 and Wang et al., 2005a). This is attributed to mutation, transposons, or genomic rearrangement (Firon et al., 2002). In contrast, V275 maintained its morphology until the 9th subculture. A small mycelial growth appeared over the colony center (Fig. 1).

Monitoring of radial growth rate, conidial yield, and viability

Effective EPF must be characterized by the production of a highly stable conidial yield with high viability along with frequent subcultures. The growth rate and conidial yield varied across the tested *Metarhizium* isolates, and the radial growth rate of AUMC 3262 was found to be
different between different subcultures, gradually decreasing in size from 4.2 ± 0.11 mm/day at 1st subculture to 3.7 ± 0.13 mm/day at 9th subculture. Furthermore, the conidial yield obtained with AUMC 3262 showed some instability, ranging from 4.43 ± 0.69 × 10⁷ conidia/ml at the 1st subculture to 1.93 ± 0.40 × 10⁷ conidia/ml at 5th subculture, which was found to be the lowest conidial yield observed. On the other hand, V275 and ARSEF 4556 offered a relatively stable radial growth pattern between subcultures, ranging from 3.4 ± 0.54 to 3.9 ± 0.11 mm/day for V275 and 2.75 ± 0.08 to 2.60 ± 0.06 mm/day for ARSEF 4556, which represent the lowest linear growth rate through different subcultures. Although the 1st subculture of ARSEF 4556 showed a superior production of conidia with a value of 6.23 ± 0.23 × 10⁷ conidia/ml, a significant decrease ($P < 0.05$) in conidial yield observed through successive subculture, dropped to 3.36 ± 0.18 × 10⁷ conidia/ml at 9th subculture, whereas V275 displayed a high stability in conidia production through successive subcultures, ranging from 4.46 ± 0.38 to 3.80 ± 0.55 × 10⁷ conidia/ml with a non-significant difference through successive subcultures ($P > 0.05$) as shown in Table 1. This study revealed that the radial growth rate varied between fungal species and strains, with no relationship between conidial yield and radial growth rate. Similarly, Safavi et al. (2007) reported that $M. anisopliae$ strains showed a high radial growth rate with a low conidial yield in contrast to 3 tested isolates of $B. bassiana$, which provided a high radial growth rate with a high conidial yield, depending on the provided nutrition. This suggests that there is no correlation between increased radial growth rate and conidial yield.

Effect of successive subculturing on the activity of conidial Pr1 enzyme

Following attachment to the insect cuticle, the conidia begin to germinate, exerting a combination of passive hydrophobic and electrostatic forces, followed by secretion of cuticle-degrading enzymes. One of the most important cuticle-degrading enzymes contribute to fungal pathogenicity is the subtilisin-like Pr1. Although Pr1 is not the only pathogenicity determinant for $Metarhizium$ species, mutant $M. anisopliae$ lacking the Pr1 gene was found to be less pathogenic (Wang et al., 2002). A slight fluctuation was reported in Pr1 production between ARSEF 4556, AUMC 3262, and V275 with non-significant differences through successive subcultures of Fig. 1 Influence of successive subculture on morphology and sector formation after 15 days growth on SDAY at 25 ± 2 °C. a The first subculture of ARSEF 4556. b The ninth subculture of ARSEF 4556. c The first subculture of AUMC 3262. d The ninth subculture of AUMC 3262. e The first subculture of V275. f The ninth subculture of V275.

Hussien et al. Egyptian Journal of Biological Pest Control (2021) 31:2
the 3 *Metarhizium* strains (*P* > 0.05) (Table 2). Production of Pr1 by *M. anisopliae* and *B. bassiana* conidia is affected by different nutritional conditions as well as repeated subcultures (Dhar and Kaur, 2010 and Wanida and Poonsuk, 2012). In the same context, Shah et al. (2007) reported that spore adhesion, hydrophobicity, and spore-bound Pr1 declined, following the first subculture, as the spore-bound Pr1 was directly correlated with a decline in virulence, and so is used as a quality control marker to monitor changes in virulence. A slight fluctuation in Pr1 production between the examined strains and subcultures was noted, but this did not affect the virulence of the tested fungi. This is likely due to relative Pr1 production still being high enough to maintain a high virulence.

Effect of successive subculture on conidial virulence

Significant differences (*P* < 0.05) were noted among subcultures in the median lethal time (*LT*₅₀) against *G. mellonella* larvae. Table 2 shows the fluctuations in *LT*₅₀ between the tested isolates, with conidia of V275 representing the most aggressive isolate with an *LT*₅₀ of 2.71 ± 0.01 days obtained with conidia produced by the 7th subculture. Nahar et al. (2008) and Santoro et al. (2014) recorded that *M. anisopliae* displayed a decreased virulence against *Helicoverpa armigera* Hubner (Lepidoptera: Noctuidae) after 20–40 subcultures on nutrient-rich media. There is however little information about this phenomenon and how EPF stability changes when cultured on artificial media, but Brownbridge et al. (2001) believe that attenuation of virulence may be due to random mutation or caused by subculture conditions. Wang et al. (2005b) and Wang and St Leger (2005) studies on *M. anisopliae* returned this to the pathogenicity-related genes, which are upregulated differently when the fungus grows on different artificial media or media containing insect hemolymph.

Conclusion

EPF efficacy depends on several factors including fungal strain and the species of tested insects. Successive subculture affects greatly on the fungal quality control parameters, as appeared with both ARSEF4556 and AUMC3262, which showed changes in morphological characters, conidial yields and radial growth rates, and stability of both fungal viability and Pr1 production, while V275 displayed high stability with all examined parameters after repeated subculture.

Table 1 Effect of successive subculture on radial growth rate and conidial yield of ARSEF 4556, AUMC 3262, and V275 after 15 days growth on SDAY at 25 ± 2°C

Subcultures	Radial growth rate (mm/day)	Conidial yield (× 10⁷)				
	ARSEF4556	AUMC 3262	V275	ARSEF4556	AUMC 3262	V275
1st	2.71 ± 0.04^a	4.22 ± 0.11^a	3.39 ± 0.54^a	6.23 ± 0.23^a	4.43 ± 0.69^a	4.00 ± 0.45^a
3rd	2.60 ± 0.21^b	4.13 ± 0.06^{ab}	3.66 ± 0.7^a	5.26 ± 1.17^b	2.46 ± 0.38^b	4.03 ± 0.60^a
5th	2.75 ± 0.08^b	4.08 ± 0.04^{abc}	3.62 ± 0.07^a	5.03 ± 0.42^b	1.93 ± 0.40^b	3.80 ± 0.55^a
7th	2.66 ± 0.11^b	3.82 ± 0.17^{bc}	3.77 ± 0.02^a	3.70 ± 0.15^b	2.50 ± 0.23^b	4.46 ± 0.38^a
9th	2.60 ± 0.06^b	3.73 ± 0.13^b	3.95 ± 0.11^a	3.36 ± 0.18^{bc}	2.70 ± 0.15^b	4.34 ± 0.72^a

Each value represents the mean of three replicates. The means within a column followed by the same letter are not significantly different (LSD test, *P* > 0.05).

Table 2 Influence of successive subculture on the activity of Pr1 enzyme and the *LT*₅₀ values of ARSEF4556, AUMC3262, and V275 after 15 days growth on SDAY at 25 ± 2°C

Subcultures	Pr1 (μmol ml^{−1} min^{−1})	*LT*₅₀				
	ARSEF4556	AUMC 3262	V275	ARSEF4556	AUMC3262	V275
1st	0.73 ± 0.015^a	0.68 ± 0.056^a	0.77 ± 0.025^a	2.27 ± 0.07^b	2.14 ± 0.04^b	1.69 ± 0.12^b
3rd	0.72 ± 0.013^b	0.73 ± 0.030^b	0.77 ± 0.016^b	2.34 ± 0.09^b	2.07 ± 0.02^{bc}	2.41 ± 0.02^a
5th	0.72 ± 0.014^b	0.71 ± 0.11^b	0.73 ± 0.036^b	2.21 ± 0.05^b	1.92 ± 0.03^c	2.05 ± 0.03^b
7th	0.73 ± 0.002^b	0.66 ± 0.10^b	0.79 ± 0.010^b	2.71 ± 0.01^b	2.21 ± 0.05^{ab}	2.05 ± 0.03^b
9th	0.73 ± 0.014^b	0.70 ± 0.021^b	0.74 ± 0.027^b	2.36 ± 0.02^b	2.34 ± 0.09^b	2.27 ± 0.07^{ab}

Each value represents the mean of three replicates. The means within a column followed by the same letter are not significantly different (LSD test, *P* > 0.05). *LT*₅₀ median lethal time. Pr1 activity is expressed as μmol ml^{−1} min^{−1} released from succinyl-ala-ala-pro-phe-p-nitroanilide.
Abbreviations
AUMC: Assiut University Mycological Center; ARSEF: The Agricultural Research Service Collection of Entomopathogenic Fungal Cultures; IPM: Integrated pest management programs; Prl1: Protease enzyme; EPF: Entomopathogenic fungi; LT50: Median lethal time

Acknowledgements
We are grateful to the Egyptian mission sector for their support of the first author in completing this research at Swansea University, UK. Also, we would like to express our sincere gratitude and appreciation to the biocontrol and natural products group at the department of biosciences, Swansea University, for their assistance and support.

Authors’ contributions
TB suggested the aim of study and designed the experimental work. SE and AE designed the research and performed the statistical analysis. RH and JT conducted the study and wrote and revised the manuscript. All the authors read and approved the manuscript.

Funding
No fund.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Botany, Faculty of Science, Zagazig University, Zagazig, Egypt. 2Department of Pest Physiology, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt. 3Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK.

Received: 4 August 2020 Accepted: 6 December 2020
Published online: 02 January 2021

References
Ak K (2019) Efficacy of entomopathogenic fungi against the stored-grain pests, Sitophilus granarius L. and S. oryzae L. (Coleoptera: Curculionidae). Egypt J Biol Pest Control 29:12
Anand A, Tiwary BN (2009) Pathogenicity of entomopathogenic fungi to eggs and larva of Spodoptera litura, the common cutworm. Biol Sci and Technol 19:919–929
Ansa MA, Butt TM (2011) Effects of successive subculturing on stability, virulence, conidial yield, germination, and shelf-life entomopathogenic fungi. J Appl Microbiol 110:1460–1469
Brownbridge M, Costa S, Jaronski ST (2001) Effects of invitro passage of Beauveria bassiana on virulence of Bemisia argentifolii. J Invertebr Pathol 77:280–283
Butt TM (2002) Use of entomopathogenic fungi for the control of insect pests. Mycota (Esser K & Bennett JW. Eds), Volume editor Kempenk, F., pp. 111-134.
Dhar P, Kaur G (2010) Production of cuticle degrading proteases by Beauveria bassiana and their induction in different media. Afr J Biochem Res 3:65–72
Dimbi S, Manania NK, Lux SA, Mueke JM (2004) Effect of constant temperatures on germination, radial growth and virulence of Metarhizium anisopliae to three species of African tephritid fruit flies. Biocontrol 49:83–94
Ezzat SM, El-Sheikh AA, Hussien RHM (2019) Mass production of Metarhizium anisopliae AUMC 3262 strain isolated from Egyptian habitat and its virulence against Spodoptera littoralis larvae (Boisd.). Ann Agr Bio Res 24:277–282
Faria M, Wright S (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256
Firon A, Beauvais A, Latge JP, Grosjean C, Christoph E (2002) Characterization of essential genes by parasexual genetics in the human fungal pathogen Aspergillus fumigatus: impact of genomic rearrangements associated with electroporation of DNA. Genetics 161:1077–1087
Han JH, Kim JJ, Lee SY (2014) Insecticidal activity of Metarhizium anisopliae FT83 against the different stages of beet armyworm, Spodoptera exigua. Kor J Pest Sci 18:417–421
Humber RA (2008) Evolution of entomopathogenic fungi. J Invertebr Pathol 98:262–266
Inglis GD, Enkerli J, Gottel MS (2012) Laboratory techniques used for entomopathogenic fungi: Hypocreales. In: Lacey LL (ed) Manual of techniques in invertebrate pathology. Academic Press, Amsterdam, pp 189–233
Jenkins NE, Hevelio G, Langaewal J, Cherry AJ, Lomer CJ (1998) Development of mass production technology for aerial conidia for use as mycopesticides. Biocontrol Inform 19:21–31
Nahar PK, Kulkarni SA, Kuley MS, Chavan SB, Kulkarni G, Rajendran A, Yadav PD, Shouche Y (2008) Effect of repeated in vitro subculturing on the virulence of Metarhizium anisopliae against Helicoverpa armigera (Lepidoptera: Noctuidae). Biocontrol Sci Tech 18:337–355
Rayan MJ, Bridge PD, Smith D, Jeffries P (2002) Phenyrogenic degradacon occurs during sector formation in Metarhizium anisopliae. J Appl Microbiol 93, 163–168.
Safavi SA, Shah FA, Pakdel AK, Rasouli GR, Bandani AR, Butt MT (2007) Effect of nutrition on growth and virulence of the entomopathogenic fungus Beauveria bassiana. FEMS Microbiol Lett 270:116–123
Santoro PH, Zoretti J, Constanski K, Pedro MGJ (2014) Conidial production, virulence, and stress tolerance of Beauveria bassiana conidia after successive in vitro subculturing. Revista Colombiana de Entomologia 4085–90
Shah FA, Allen N, Wright CJ, Butt TM (2007) Repeated in-vitro subculturing alters spore surface properties and virulence of Metarhizium anisopliae. FEMS Microbiol Lett 276:60–66
Shah FA, Butt TM (2005) Influence of the nutrition on the production and physiology of sectors produced by the insect pathogenic fungus Metarhizium anisopliae. FEMS Microbiol Lett 250:201–207
Shah FA, Cheng SW, Butt MT (2005) Nutrition influences growth and virulence of the insect pathogenic fungus Metarhizium anisopliae. FEMS Microbiol Lett 251:259–266
Small CL, Bidochka MJ (2005) Up-regulation of Prl, a subtilisin like protease, during conidiation in the insect pathogen Metarhizium anisopliae. Mycol Res 109:307–313
St. Leger RJ, Charnley AK, Cooper RM (1987) Characterization of cuticle degrading proteases produced by the entomopathogen Metarhizium anisopliae. Arch Biochem Biophys 253:221–232
Wang C, Butt TM, St. Leger RJ (2005a) Colony sectorization of Metarhizium anisopliae var. acridium. Eukaryot Cell 4:937–941
Wang C, Types MA, Butt TM (2002) Detection and characterization of prl1 virulent protease from Metarhizium anisopliae. FEMS Microbiol Lett 213:19–23
Wang C, Types MA, Butt TM (2002) Detection and characterization of prl1 virulent protease from Metarhizium anisopliae. FEMS Microbiol Lett 213:19–23
Wanida P, Poonsuk P (2012) Evaluation of strains of Metarhizium anisopliae against the different stages of beet armyworm, Spodoptera exigua. Kor J Pest Sci 42:704–718
Wang C, Types MA, Butt TM (2002) Detection and characterization of prl1 virulent protease from Metarhizium anisopliae. FEMS Microbiol Lett 213:251–255
Wanida P, Poonsuk P (2012) Evaluation of strains of Metarhizium anisopliae against Spodoptera litura on the basis of their virulence, germination rate, conidia production, radial growth and enzyme activity. Mycobiology 40:111–116

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.