At last in" the physiological roles of the tubular ER network

Li Lü1, Liling Niu2✉, Junjie Hu3✉

1 Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
2 Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
3 National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China

Received: 12 June 2020 / Accepted: 1 July 2020 / Published online: 4 August 2020

Abstract
In eukaryotic cells, the endoplasmic reticulum (ER) forms a continuous network of tubules and sheets. ER membranes are inter-connected by a class of dynamin-like GTPases termed atlastins (ATLs). Deletion or mutation of ATLs results in long and unbranched ER tubules in cells. Mutations in ATL1 in humans have been linked to the neurodegenerative disease hereditary spastic paraplegia. The basis of ATL-mediated membrane fusion has been studied extensively, but specific functions of ATL remain unclear. In this review, we summarize ER-related cellular processes that directly or indirectly involve ATL, including membrane trafficking, lipid metabolism, autophagy, microtubule dynamics, pathogen infections, calcium signaling, and protein homeostasis. These findings provide important clues for deciphering the physiological roles of the tubular ER network.

Keywords
Atlastin, Membrane trafficking, Lipid metabolism, Autophagy, Microtubule dynamics, Pathogen infections, Calcium signaling, Protein homeostasis

INTRODUCTION

The endoplasmic reticulum (ER) is a very dynamic membrane-bound structure, with tubules constantly growing, retracting, and sliding along one another. Several integral membrane proteins are involved in ER shaping and remodeling. Membrane curvature of ER tubules is generated and stabilized by two classes of membrane proteins, the reticulons and REEPs (Voeltz et al. 2006). Connecting tubules in a network requires membrane fusion, which is mediated by dynamin-like GTPase atlastin (ATL) family proteins (Hu et al. 2009; Orso et al. 2009).

ATL was first identified as the product of a mutant gene, SPG3A, which causes a neurological disorder called hereditary spastic paraplegia (HSP) (Zhao et al. 2001). The common features of HSP are progressive limb weakness, spasticity, and degeneration of the longest motor axons. Mammalian ATLs differ in tissue expression, with ATL1 expressed mainly in the neurons (Zhu et al. 2003), whereas ATL2 and ATL3 are expressed in peripheral tissues (Rismanchi et al. 2008). Danio rerio (zebrafish) has three ATL genes, with atl1 expression enriched in the brain (Fassier et al. 2010), and Drosophila melanogaster and Caenorhabditis elegans have only one ATL gene (Rismanchi et al. 2008), which is ubiquitously expressed. In contrast, yeast contains a functional ortholog of ATL called synthetic enhancer of Yop1 (Sey1p), and plants have a Sey1p-related protein called root hair defective 3 (RHD3).

The fusion activity of ATLs was first deduced through genetic analysis in the model systems. Depletion of ATLs results in aberrant ER morphology, unbranched ER in mammalian cells (Hu et al. 2009), and fragmented ER in...
atl-null mutant flies (Orso et al. 2009). In yeast, the effects of Sey1p deletion on ER morphology are highlighted only upon simultaneous loss of the ER-tubule-forming proteins Rtn1p or Yop1p (Anwar et al. 2012; Hu et al. 2009), which results in less tubular ER. ER SNARE Ufe1p was proposed to complement the function of Sey1p in yeast (Anwar et al. 2012). Mutations or deletions of RHD3 in plants produce thick cable-shaped ER tubules (Zheng et al. 2004).

Direct evidence of ATL-mediated fusion was obtained using in vitro reconstitution with purified proteins. Purified Drosophila ATL, Sey1p, and RHD3 can catalyze artificial liposome fusion in vitro in a GTP-dependent manner (Anwar et al. 2012; Orso et al. 2009; Zhang et al. 2013). Strikingly, purified Drosophila ATL alone is sufficient to create and maintain a stable, branched, and tubular network (Powers et al. 2017). Of note, this network resembles the tubular ER in many aspects (Fig. 1). Although the scales are somewhat different, the in vitro network allows mechanistic studies of membrane structures maintaining ER-like morphology.

ATL family proteins contain an N-terminal GTPase domain, a three-helix-bundle (3HB) region, a transmembrane (TM) region, and a C-terminal tail. Until recently, the membrane-bound region was thought to comprise two closely spaced TM segments, but it may actually consist of two intramembrane hairpin loops (Betancourt-Solis et al. 2018) similar to those in the reticulons and REEPs. Structural and biochemical studies have provided significant insight into the mechanism by which membranes are fused (Bian et al. 2011; Byrnes et al. 2013; Byrnes and Sondermann 2011; Liu et al. 2012, 2015; Yan et al. 2015). Upon GTP binding, ATL forms dimers on either the same (cis) or opposing membranes (trans) through the GTPase domain. GTP cycles promote more trans-dimerization, which brings adjacent membranes close for fusion. In addition, the membrane curvature and lipid instability caused by hydrophobic segments in the amphipathic C-terminal helix also contribute to membrane fusion (Faust et al. 2015; Liu et al. 2012). Ergosterol, a cholesterol equivalent in yeast cells, was recently suggested to interact with Sey1p to promote ER membrane fusion in Saccharomyces cerevisiae (Lee et al. 2019).

As only the trans-dimers of ATL can eventually result in membrane tethering and fusion, the formation of cis-dimers appears to be a futile cycle (Liu et al. 2015). Furthermore, not all trans-dimers can cause successful fusion, as many of them convert to monomers without mediating fusion (Liu et al. 2015). When the GTPase activity is inhibited, the in vitro reconstituted network disassembles rapidly (Wang et al. 2013). Both the tethered and fused ER tubules give rise to junction-like structures in cells. Taken together, it appears that most of the three-way junctions generated by membrane fusion may actually consist of tethered, rather than fused, tubules (Wang et al. 2013). Such surprising findings have important physiological relevance as discussed below.

In this review, we examine multiple ATL-related functions and their potential roles in physiology and disease. Some pathways are impacted by the fusogenic activity of ATL and depend on the integrity of the ER morphology; others specifically rely on the presence of ATL (see Fig. 2 for a summary).
The physiological roles of the tubular ER network

ATL IN COPII VESICLE PACKAGING

The vast majority of proteins that are transported to different cellular compartments or outside the cell require coat protein complex II (COPII) to exit the ER. COPII vesicles are formed at specialized sites within the ER, termed ER exit sites (ERESs). In *S. cerevisiae*, high-curvature domains of the ER are important for the organization of ERESs (Okamoto *et al.* 2012), indicating a role of tubular ER in regulating ERES formation.

The organization of the Golgi depends on efficient bidirectional vesicular transport with the ER. Inhibition of protein export from the ER disrupts Golgi organization, resulting in the formation of tubulovesicular Golgi clusters. Several studies have demonstrated that Golgi morphology and distribution are affected in some mammalian cell lines and plant cells lacking ATL family GTPases or upon expression of dominant-negative mutant forms (Chen *et al.* 2011; Namekawa *et al.* 2007; Rismanchi *et al.* 2008; Stefano *et al.* 2012; Zhao *et al.* 2016).

It was suggested recently that ATL plays a general role in regulating the timely exit of newly synthesized cargo into the secretory pathway. ATL loss-of-function results in decreased COPII formation and reduced ER export (Behrendt *et al.* 2019; Niu *et al.* 2019; Pawar *et al.* 2017). Deletion of ATL significantly slows the mobility of ER contents, which lead to a deficiency in cargo packaging. Intriguingly, ATL1 mutant R77A, which is capable of tethering but not fusing ER tubules, restores both protein flow and COPII formation. Conversely, transient fragmentation of the ER results in reduced efficiency of COPII packaging (Niu *et al.* 2019). The lateral tension of the membrane has been reported to greatly influence membrane fluidity (Quemeneur *et al.* 2014). Thus, ATL-mediated membrane tethering may facilitate the mobility of cargo proteins by maintaining the lateral tension of the ER membrane. Similarly, the efficiency of inner nuclear membrane protein targeting, which appears to occur mostly via lateral diffusion in the connected ER and nuclear envelope membranes, is also affected in ATL-depleted cells due to impaired mobility of ER contents (Pawar *et al.* 2017).

Even though ATL deletion causes apparent defects in COP II formation, it does not engage the COPII component directly and, thus, has a general impact on a variety of cargos (Niu *et al.* 2019). It is not clear at this stage whether different ATLs regulate a subset of cargos. ATL possesses very little luminal exposure, making it limited for cargo sampling.

ATL IN ENDOCYTIC TRAFFICKING

The ER forms extensive membrane contact sites (MCSs) with endosomes in vertebrates. These MCSs are involved in multiple key processes regulating the shape and functions of endosomes, including biogenesis, fission, trafficking, cholesterol and calcium exchange (Rainborg *et al.* 2015). Several studies have suggested a central role of endosomes in regulating growth cone motility during axon growth and regeneration (Cosker *et al.* 2008; Sann *et al.* 2009; Steketee *et al.* 2011). During axon regeneration, ATL is required to concentrate the ER near the axon growth cone (Zhu *et al.* 2006). In zebrafish spinal neurons, ATL partially colocalizes with markers of early and late endosomes, which are scattered along axons and enriched in growth cones (Fassier *et al.* 2010).

Endocytic trafficking also plays important roles in regulating the activity and distribution of developmental signaling pathways (Villasenor *et al.* 2016). Functional synaptic vesicles are required for effective communication between neurons and their targets (Regueir *et al.* 2009; Zweifel *et al.* 2005). Retrograde endocytosis-regulated bone morphogenetic protein (BMP) signaling from postsynaptic muscles to presynaptic motor neurons is crucial for synaptic development and plasticity at larval neuromuscular junctions (NMJs) in *Drosophila* (Aberle *et al.* 2002; Marques *et al.* 2002; McCabe *et al.* 2003, 2004). Disruption of ATL1 in zebrafish motor neurons results in severe locomotion defects and impairs presynaptic function, possibly by upregulating BMP signaling (Fassier *et al.* 2010). Similarly, in *Drosophila*, downregulation or overexpression of ATL in motor neurons results in locomotor defects in larvae and adults (De Gregorio *et al.* 2017; Lee *et al.* 2008; Summerville *et al.* 2016), and correlates with
defects in axonal secretory organelle and presynaptic protein distribution (De Gregorio et al. 2017). Synaptic vesicle release is also impaired after ATL downregulation (De Gregorio et al. 2017; Lee et al. 2009). In cultured cortical rat neuron cells and HEK293T cells, expression of some SPG3A mutants exhibits a dominant-negative effect on trafficking of BMP receptor II (BMPRII) (Zhao and Hedera 2013). Taken together, these findings suggest that ATL regulates trafficking of signaling molecules, particularly in motor neurons.

In plant cells, endocytosis is critical for the intracellular trafficking and polarity of the hormone auxin, a master regulator of plant growth (Jaillais and Chory 2010; Ljung 2013). In the absence of RHD3, the positioning and streaming of endosomes are affected, and the auxin transport machinery is disrupted, which subsequently increases the levels of auxin and inhibits root growth (Stefano et al. 2015). Collectively, ATL-mediated ER remodeling ensures a proper platform for endosomal contact, indirectly regulating endosomal function.

ATL IN LD BIOGENESIS

In eukaryotic cells, one of the key functions of the tubular ER is synthesizing, metabolising, and distributing lipids and sterols. Electron microscopy studies have revealed that lipid droplets (LDs) are closely associated with the ER membrane (Binnns et al. 2010; Choudhary et al. 2015). LD formation tends to occur in ER tubules, where the high membrane curvature stress may help lens structure formation by locally disturbing the lipid bilayer (Jacquier et al. 2011; Thiam and Foret 2016). Perturbations of tubular ER structure, including changing the balance between sheets and tubules, or inhibiting the formation of tubular junctions, result in abnormal LD formation. ER-shaping proteins, including ATL (Klemm et al. 2013), REEP1 (Renoise et al. 2016) and reticulons (Joshi et al. 2018; Wang et al. 2018), are reported to be involved in the biogenesis of LDs. Depletion of ATL in C. elegans or Drosophila results in small LDs and decreased tissue triglycerides (Klemm et al. 2013). In contrast, co-expression of REEP1 with ATL1 in mammalian cells induces the formation of very large LDs (Klemm et al. 2013). ATL triple KO in NIH-3T3 cells results in defects in adipocyte-like differentiation (Zhao et al. 2016). A microRNA, miR-30b-5p, regulates LD size and secretion in the mammary epithelial cells of transgenic mice by targeting ATL2 (Le Guillou et al. 2019). Although many SPG mutants cause changes in LD morphology, whether LD abnormalities are related to the pathogenesis of HSP is unclear. Thus far, direct interaction between ATL and known LD biogenesis machinery has not been reported. ATL likely acts independently by merging nascent LDs or contributes by regulating lipid mobility in the ER.

ATL IN ER-PHAGY

ER function and morphology are tightly linked to autophagy (Lamb et al. 2013). In response to starvation, autophagy is primarily thought to be a process that non-selectively degrades cellular material to meet cellular energy requirements. However, autophagy can also selectively target organelles and cellular structures that are damaged or need to be turned over (Stolz et al. 2014). The ER is primarily considered the major source of autophagosome membranes (Hayashi-Nishino et al. 2009; Yla-Anttila et al. 2009). Recent studies have demonstrated that, under starvation conditions, fragments of the ER are incorporated into autophagosomes and sent for lysosomal degradation in a process called ER-phagy (Dikic 2017; Mochida et al. 2015). Autophagy receptors are characterized by the ability to directly bind LC3/GABARAP family members through an LC3 interaction region (LIR; or GABARAP interaction motifs [GIMs]) and autophagic cargo (Rogov et al. 2014, 2017). Several ER surface proteins, including FAM134B (Khaminets et al. 2015), Rtn3 (Grumati et al. 2017), Sec62 (Fumagalli et al. 2016), CCPG1 (Smith et al. 2018), ATL3 (Chen et al. 2019), and TEX264 (Chino et al. 2019), have been shown to contain conserved domains that act as receptors that mediate ER turnover.

ATL3, the weakest fusogen of the ATL family, has been shown to function as an ER-phagy receptor to promote degradation of the tubular ER (Chen et al. 2019). ATL3 interacts specifically with the GABARAP subfamily via two GIM domains. The ATL3 mutations (Y192C and P338R), which are associated with hereditary sensory and autonomic neuropathy (HSAN), disrupt the interaction between ATL3 and GABARAP. The first GIM domain in ATL3 is also conserved in ATL1, and the Y192C mutation (Y196C in ATL1, an HSP-related mutation) localizes in this GIM, suggesting that dysfunction in ER-phagy may be involved in neurodegenerative disease pathogenesis. However, both GIMs are embedded in α-helical structures, making their accessibility questionable. Whether ATL3 influences ER-phagy or autophagy in general by acting as a receptor remains to be investigated.

Given that the ER is a continuous membrane system, it is critical to remodel the ER to segregate components targeted for autophagy from the rest of the ER. ATL2 has been shown to be such a remodeling factor (Liang et al. 2018).
2018). ATL2 colocalizes with FAM134B under both fed and starved conditions. When ATL2 is depleted, FAM134B overexpression fails to induce ER-phagy, indicating that ATL2 acts downstream of FAM134B in regulating ER-phagy (Liang et al. 2018). As FAM134B is mainly localized to the edge of ER sheets, ATL2 likely indirectly regulates sheet turnover. Intriguingly, three ATL family members have been suggested to functionally compensate for one another in regulating ER remodeling during ER-phagy.

ATL IN MICROTUBULE DYNAMICS

The ER is closely associated with microtubules in mammalian cells (Friedman and Voeltz 2011; Staehelin 1997; Terasaki et al. 1986; Voeltz et al. 2002). Several ER-resident membrane proteins, including STIM1 (Grigoriev et al. 2008), Clmp63 (Klopfenstein et al. 1998), P180 (Ogawa-Goto et al. 2007), REEP1 (Park et al. 2010), and Sec61β (Zhu et al. 2018), have been reported to interact directly with microtubules. Although this association is generally thought to regulate the morphogenesis and positioning of the ER, the alignment of ER tubules with the cytoskeleton is not always perfect. In addition, an ER network can be generated in vitro in the absence of an intact cytoskeleton (Dreier and Rapoport 2000). Thus, the specific function of the ER-microtubule interaction remains unclear. One hint is that microtubules may locally immobilize ER to promote efficient protein synthesis (Zhu et al. 2018). Another study reported that the localization of the ER in the axon is controlled by the crosstalk between ER-shaping proteins and microtubules. Local ER-microtubule interactions promote inter-stabilization of ER tubules and microtubule, and drive neuronal polarity (Farias et al. 2019).

In zebrafish, depletion of atl leads to severe defects in larval spinal motor neuron axons, namely, multiple aberrant branching associated with a lack of stable microtubules (Fassier et al. 2010). In a human neuronal model of SPG3A, axons show impaired growth (Zhu et al. 2014). In a Drosophila SPG3A model, the kinetics of microtubule assembly and disassembly are altered in muscles, which results in the abnormal accumulation of stable microtubules (Lee et al. 2009). The disruption of microtubules further results in defects in NMJs, which are responsible for muscle-neuron signaling. Importantly, the synapse and muscle defects in the Drosophila SPG3A model, and the axon growth defects in human SPG3A neurons, can be rescued by microtubule-binding agents (Lee et al. 2009; Zhu et al. 2014), emphasizing the importance of the ATL-regulated tubular ER and microtubule interaction.

The ER–microtubule association is not only necessary for axon development, but also plays a role in dendrites. Atln-1 is required for neuronal ER morphology in sensory neuron PVD in C. elegans (Liu et al. 2019). Interestingly, microtubule network is more stable in atln-1 mutant worms. Both ER and microtubule extension into the branches are defective in the mutant animals. These results suggest that ATL regulates dendritic branches and ATL-regulated ER morphology in turn influence microtubule network.

In Arabidopsis, RHD3 loss-of-function suppresses root waving, skewing, and epidermal cell file rotation (Yuen et al. 2005). Root movement is thought to be controlled by microtubules (Roy and Bassham 2014). The mutant does not respond to low doses of the microtubule-depolymerizing drug propyzamide, indicating that RHD3, like ATL in worm, may promote microtubule dynamics in Arabidopsis (Yuen et al. 2005). Consistently, taxol treatment, which stabilizes microtubule and decreases its dynamics, causes the formation of wavy root hairs as seen in the RHD3 mutant (Bibikova et al. 1999).

ATL IN INFECTION

The pathogenic bacterium Legionella pneumophila replicates in host cells within a distinct compartment termed the Legionella-containing vacuole (LCV) (Bruggemann et al. 2006; Hubber and Roy 2010; Isberg et al. 2009). LCVs communicate with the endosomal, retrograde, and secretory vesicle trafficking pathway, and eventually associate with the ER (Robinson and Roy 2006; Swanson and Isberg 1995). Interestingly, a proteomic analysis of purified LCVs identified Dictyostelium discoideum Sey1 (DdSey1, ATL3 homolog) and Rtn4a as conserved LCV host components (Hoffmann et al. 2014). DdSey1 was further found to promote intracellular replication of L. pneumophila in host cells (Steiner et al. 2017). Live cell imaging revealed that DdSey1 regulates LCV expansion at later stages of infection (Steiner et al. 2017). Thus, DdSey1 is involved in mediating extensive ER remodeling around LCVs during their maturation.

ATL is also targeted by viral infection. Many plant RNA viruses achieve successful infection by remodeling host cellular membranes (Cotton et al. 2009). Turnip mosaic virus (TuMV), a positive-strand RNA virus, remodels the ER to generate viral vesicles. These viral vesicles are sites of viral replication, intracellular movement, and intercellular spread (Cotton et al. 2009; Grangeon et al. 2012, 2013). Viral replication in primary...
infected cells and the intercellular movement of TuMV were recently reported to be impaired in RHD3 mutant plants with delayed maturation of the viral vesicles (Movahed et al. 2019). Hijacking of the endomembrane system, including the ER, is a common effort by other viruses. ATLs have been shown to facilitate Zika virus replication (Monel et al. 2019). In addition, ATL3 specifically appears at the replication site, co-localizing with viral proteins NS2A and NS2B3. ATL-deleted cells have been used to test for infections by flavivirus (Neufeldt et al. 2019). A lack of ATL2 causes replication organelle defects, whereas a lack of ATL3 affects virion assembly. Specific interactions between ATLs and viral replication-related complexes were assessed. Thus, individual ATLs were proposed to play differentiated and specific roles during viral infections. The role of ATL1 in HIV-1 replication has also been investigated (Shen et al. 2017).

ATL IN CALCIUM SIGNALING

The connection between the ER and plasma membrane (PM) plays important roles in regulating store-operated calcium entry (SOCE) (Lam and Galione 2013). STIM1 is a Ca\(^{2+}\) sensor located at the ER membrane. When Ca\(^{2+}\) levels are low in the ER, STIM1 oligomerizes and migrates to the ER–PM junctions to interact with the Orai channel in the PM and activate SOCE (Hogan et al. 2010).

Disruption of the tubular ER network can cause defects in SOCE. It has been shown that knockdown of Rtn4a, which results in a less tubular ER, can inhibit SOCE in cultured mouse embryonic fibroblasts (Jozsef et al. 2014). Recently, it was revealed that ATL may also be involved in this pathway. ATL1 overexpression or deletion, or the expression of dominant-negative mutants inhibits SOCE (Li et al. 2017). Ca\(^{2+}\) has been suggested to play key roles in regulating the outgrowth of dendrites and axons (Mattson et al. 1988, 1990). ATL1 and overexpression of its GTP-binding mutation K80A in neuroendocrine PC-12 cells reduce nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells in a SOCE-dependent manner (Li et al. 2017). These findings suggest another potential mechanism underlying ATL-related neuronal disorders.

ATL IN PROTEIN HOMEOSTASIS

Effective ER quality control of newly synthesized proteins is important for maintaining protein homeostasis. When the ability of the ER to balance protein synthesis demand and capacity is compromised, cells experience stress. In conditions of ER stress, a largely conserved signaling pathway, the unfolded protein response (UPR), is activated (Ron and Walter 2007). The UPR measures unfolded protein levels in the ER and adjusts the production of ER chaperones and degradation factors to maintain acceptably low levels of misfolded proteins in the lumen.

In Arabidopsis, loss of RHD3 negatively affects UPR activation by interfering with the function of the master regulator inositol-requiring enzyme 1 (IRE1) (Lai et al. 2014). RHD3 acts upstream of IRE1 and is required for proper clustering and activation (Lai et al. 2014). In C. elegans, perturbation of the IRE1 arm of the UPR pathway causes loss of PVD dendritic branches (Wei et al. 2015). Although dendrite morphogenesis seems normal in atln-1 single mutant, ire-1 and atln-1 double mutants demonstrate enhanced PVD dendrite arborization defects (Liu et al. 2019). These findings suggest that ATLN-1 functions synergistically with IRE1 in regulating the UPR. In mammalian cells, the basal level of Bip, an ER stress marker, is elevated in the ATL1/2/3 triple KO NIH-3T3 cells at steady state. There is increased sensitivity in the KO cells at lower concentrations of inducers of ER stress (Zhao et al. 2016). It was also shown recently that another ER stress marker, phosphorylated eIF2\(\alpha\), is increased in COS-7 and HeLa cells lacking ATL2 and ATL3, possibly by affecting proteins exiting the ER (Niu et al. 2019).

ER stress is well known to be relevant to neurodegenerative disorders (Martinez et al. 2017; Remondelli and Renna 2017). However, a recent study suggested that impaired protein synthesis also results in dendritic spinogenesis defects (Shih and Hsueh 2016), as inhibition of protein synthesis using the translation blocker cycloheximide and mTOR inhibitor rapamycin reduced dendritic spine density in cultured hippocampal neurons. Valosin-containing protein (VCP) is an AAA+ ATPase that functions as a chaperone regulating diverse cellular processes determined by its cofactors (Meyer et al. 2012; Yamanaka et al. 2012). VCP, together with its cofactor P47 and ATL1, regulates dendritic spine formation in neurons by influencing the efficiency of protein synthesis (Shih and Hsueh 2016). These results suggest a potential role of ATL1 in the regulation of protein synthesis and dendritic spinogenesis, likely indirectly.

PERSPECTIVE

Several neurodegenerative disorders are caused by genetic defects in proteins involved in the shaping and
The physiological roles of the tubular ER network

Behrendt L, Kurth I, Kaether C (2019) A disease causing ATLASTIN 3 mutation affects multiple endoplasmic reticulum-related pathways. Cell Mol Life Sci 76(7):1433–1445
Betancourt-Solis MA, Desai T, McNew JA (2018) The atlastin membrane anchor forms an intramembrane hairpin that does not span the phospholipid bilayer. J Biol Chem 293(48):18514–18524
Bian X, Klemm RW, Liu TY, Zhang M, Sun S, Sui XW, Liu XQ, Rapoport TA, Hu JJ (2011) Structures of the atlastin GTPase provide insight into homotypic fusion of endoplasmic reticulum membranes. Proc Natl Acad Sci USA 108(10):3976–3981
Bibikova TN, Blancofor EB, Gilroy S (1999) Microtubules regulate tip growth and orientation in root hairs of Arabidopsis thaliana. Plant J 17(6):657–665
Binnis D, Lee S, Hilton CL, Jiang QX, Goodman JM (2010) Seipin is a discrete homooligomer. Biochemistry 49(50):10747–10755
Bruggemann H, Cazalet C, Buchrieser C (2006) Adaptation of Legionella pneumophila to the host environment: role of protein secretion, effectors and eukaryotic-like proteins. Curr Opin Microbiol 9(1):86–94
Byrnes LJ, Sondermann H (2011) Structural basis for the nucleotide-dependent dimerization of the large G protein atlastin-1/SPG3A. Proc Natl Acad Sci USA 108(6):2216–2221
Byrnes LJ, Singh A, Szoet K, Benvin NM, O'Donnell JP, Zipfel WR, Sondermann H (2013) Structural basis for conformational switching and GTP loading of the large G protein atlastin. EMBO J 32(3):369–384
Chen J, Stefano G, Brandizzi F, Zheng HQ (2011) Arabidopsis RHD3 mediates the generation of the tubular ER network and is required for Golgi distribution and motility in plant cells. J Cell Sci 124(13):2241–2252
Chen QZ, Xiao Y, Chai PY, Zheng PL, Teng JL, Chen JG (2019) ATL3 is a tubular ER-phagy receptor for GABARAP-mediated selective autophagy. Curr Biol 29(5):846
Chino H, Hatta T, Natsume T, Mizushima N (2019) Intrinsically disordered protein TEX264 mediates ER-phagy. Mol Cell 74(5):909–921
Choudhary V, Ojha N, Golden A, Prinz WA (2015) A conserved family of proteins facilitates nascent lipid droplet budding from the ER. J Cell Biol 211(2):261–271
Cosker KE, Courchesne SL, Segal RA (2008) Action in the axon: generation and transport of signaling endosomes. Curr Opin Neurobiol 18(3):270–275
Cotton S, Grangeon R, Thivierge K, Mathieu I, Ide C, Wei TY, Wang AM, Laliberte JF (2009) Turnip mosaic virus RNA replication occurs independently of microtubules by a controlled fusion reaction. J Cell Biol 148(4):883–898
Farias GG, Freal A, Tortosa E, Stuchi R, Pan XX, Portegies S, Will L, Altelaar M, Hoogenraad CC (2019) Feedback-driven mechanisms between microtubules and the endoplasmic reticulum instruct neuronal polarity. Neuron 102(1):184–201
Fassier C, Hutt JA, Scholpp S, Lumsden A, Giro M, Nothias F, Schneider-Maunoury S, Houart C, Hazan J (2010) Zebrafish atlastin controls motility and spinal motor axon architecture via inhibition of the BMP pathway. Nat Neurosci 13(11):1380–1387

Acknowledgments We thank Dr. Alicia Prater for proofreading. J. Hu is supported by the National Natural Science Foundation of China (31630020) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB39000000). L. Lu¨ is supported by the key project of Tianjin Research Program of Application Foundation and Advanced Technology (19JCZDJC35600).

Compliance with Ethical Standards
Conflict of interest Li Lu¨, Liling Niu, and Junjie Hu declare that they have no conflict of interest.

Research Involving Human and Animal Rights This article does not contain any studies with human or animal subjects performed by any of the authors.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References
Aberle H, Haghighi AP, Fetter RD, McCabe BD, Magalhaes TR, Goodman CS (2002) Wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron 33(4):545–558
Anwar K, Klemm RW, Condon A, Severin KN, Zhang M, Ghirlando R, Hu JJ, Rapoport TA, Prinz WA (2012) The dynamin-like GTPase Sey1p mediates homotypic ER fusion in S. cerevisiae. J Cell Biol 197(2):209–217
Bibikova TN, Blancofor EB, Gilroy S (1999) Microtubules regulate tip growth and orientation in root hairs of Arabidopsis thaliana. Plant J 17(6):657–665
Binns D, Lee S, Hilton CL, Jiang QX, Goodman JM (2010) Seipin is a discrete homooligomer. Biochemistry 49(50):10747–10755
Bruggemann H, Cazalet C, Buchrieser C (2006) Adaptation of Legionella pneumophila to the host environment: role of protein secretion, effectors and eukaryotic-like proteins. Curr Opin Microbiol 9(1):86–94
Byrnes LJ, Sondermann H (2011) Structural basis for the nucleotide-dependent dimerization of the large G protein atlastin-1/SPG3A. Proc Natl Acad Sci USA 108(6):2216–2221
Byrnes LJ, Singh A, Szoet K, Benvin NM, O’Donnell JP, Zipfel WR, Sondermann H (2013) Structural basis for conformational switching and GTP loading of the large G protein atlastin. EMBO J 32(3):369–384
Chen J, Stefano G, Brandizzi F, Zheng HQ (2011) Arabidopsis RHD3 mediates the generation of the tubular ER network and is required for Golgi distribution and motility in plant cells. J Cell Sci 124(13):2241–2252
Chen QZ, Xiao Y, Chai PY, Zheng PL, Teng JL, Chen JG (2019) ATL3 is a tubular ER-phagy receptor for GABARAP-mediated selective autophagy. Curr Biol 29(5):846
Chino H, Hatta T, Natsume T, Mizushima N (2019) Intrinsically disordered protein TEX264 mediates ER-phagy. Mol Cell 74(5):909–921
Choudhary V, Ojha N, Golden A, Prinz WA (2015) A conserved family of proteins facilitates nascent lipid droplet budding from the ER. J Cell Biol 211(2):261–271
Cosker KE, Courchesne SL, Segal RA (2008) Action in the axon: generation and transport of signaling endosomes. Curr Opin Neurobiol 18(3):270–275
Cotton S, Grangeon R, Thivierge K, Mathieu I, Ide C, Wei TY, Wang AM, Laliberte JF (2009) Turnip mosaic virus RNA replication occurs independently of microtubules by a controlled fusion reaction. J Cell Biol 148(4):883–898
Farias GG, Freal A, Tortosa E, Stuchi R, Pan XX, Portegies S, Will L, Altelaar M, Hoogenraad CC (2019) Feedback-driven mechanisms between microtubules and the endoplasmic reticulum instruct neuronal polarity. Neuron 102(1):184–201
Fassier C, Hutt JA, Scholpp S, Lumsden A, Giròs B, Nothias F, Schneider-Maunoury S, Houart C, Hazan J (2010) Zebrafish atlastin controls motility and spinal motor axon architecture via inhibition of the BMP pathway. Nat Neurosci 13(11):1380–1387

© The Author(s) 2020

111 | August 2020 | Volume 6 | Issue 4
Faillais Y, Chory J (2010) Unraveling the paradoxes of plant hormone signaling. J Biol Chem 289(47):4772–4783

Friedman JR, Voeltz GK (2011) The ER in 3D: a multifunctional dynamic membrane network. Trends Cell Biol 21(12):709–717

Fumagalli F, Noack J, Bergmann TJ, Cebollero E, Pisoni GB, Fasana E, Fregno I, Galli C, Loi M, Solda T, D’Antuono R, Raimondi A, Jung M, Melnyk A, Schorr S, Schreiber A, Simonelli L, Varani L, Wilson-Zbinden C, Zerbe O, Hofmann K, Peter M, Quadrini M, Zimmermann R (2017) Translocon component Sec62 acts in endoplasmic reticulum turnover during stress recovery (vol 18, pg 1173). Nat Cell Biol 19(1):76–76

Grangeon R, Agbeci M, Chen J, Grondin G, Zheng HQ, Laliberte JF (2012) Impact on the endoplasmic reticulum and Golgi apparatus of turnip mosaic virus infection. J Virol 86(17):9255–9265

Grangeon R, Jiang J, Wan J, Agbeci M, Zheng HQ, Laliberte JF (2013) 6K(2)-induced vesicles can move cell to cell during turnip mosaic virus infection. Front Microbiol 4:351. https://doi.org/10.3389/fmicb.2013.00351

Grigoriev I, Gouveia S, Van der Vaart B, Demmers J, Smyth JT, Muller S, Golden A, Prinz WA (2018) Lipid droplet and peroxisome biogenesis occur at the same ER subdomains. Nat Commun 9:112

Grigoriev I, Gouveia S, Van der Vaart B, Demmers J, Smyth JT, Muller S, Golden A, Prinz WA (2018) Lipid droplet and peroxisome biogenesis occur at the same ER subdomains. Nat Commun 9:112

Han J, Shibata Y, Zhu PP, Voss C, Rismanchi N, Prinz WA, Rapoport TA, Blackstone C (2009) A class of dynamin-like GTPases in regulating lipid droplet size. Cell Rep 3(5):1465–1475

Klopfenstein DRC, Kappeler F, Hairi HP (1998) A novel direct interaction of endoplasmic reticulum with microtubules. EMBO J 17(21):6168–6177

Lai YS, Stefano G, Brandizzi F (2014) ER stress signaling requires RHD3, a functionally conserved ER-shaping GTPase. J Cell Sci 127(15):3227–3232

Lam AK, Galione A (2013) The endoplasmic reticulum and functional membrane communication during calcium signaling. Biochim Biophys Acta 1833(11):2542–2559

Lamb CA, Yoshiyori T, Tofee SA (2013) The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol 14(12):759–774

Le Guillou S, Labieh J, Pechoux C, Aujean E, Caillle J, Leroux C, Legrand B, Fregno I, Galli C, Loi M, Melnyk A, Schorr S, Schreiber A, Simonelli L, Varani L, Wilson-Zbinden C, Zerbe O, Hofmann K, Peter M, Quadrini M, Zimmermann R (2017) Translocon component Sec62 acts in endoplasmic reticulum turnover during stress recovery (vol 18, pg 1173). Nat Cell Biol 19(1):76–76

Lee Y, Paik D, Bang S, Kang J, Chun B, Lee S, Bae E, Chung J, Kim J (2008) Loss of spastic paraplegia gene atlastin induces age-dependent death of dopaminergic neurons in Drosophila. Neurobiol Aging 29(1):84–94

Lee M, Paik SK, Lee MJ, Kim YJ, Kim S, Nahm M, Oh SJ, Kim HM, Yim J, Lee CJ, Bae YC, Lee S (2009) Drosophila Atlastin regulates the stability of muscle microtubules and is required for synapse development. Dev Biol 330(2):250–262

Lee M, Moon Y, Lee S, Lee C, Jun Y (2019) Ergosterol interacts with Sey1p to promote atlastin-mediated endoplasmic reticulum membrane fusion in Saccharomyces cerevisiae. PASEB J 33(3):3590–3600

Li J, Yan B, Si HJ, Peng X, Zhang SYL, Hu JJ (2017) Atlastin regulates store-operated calcium entry for nerve growth factor-induced neurite outgrowth. Sci Rep 7:43490. https://doi.org/10.1038/srep43490

Liang IR, Lingeman E, Ahmed S, Corn JE (2018) Atlastins remodel the endoplasmic reticulum for selective autophagy. J Cell Biol 217(11):4049–4050

Liu TY, Bian X, Sun S, Hu XY, Klemm RW, Prinz WA, Rapoport TA, Hu JJ (2012) Lipid interaction of the C terminus and association of the transmembrane segments facilitate atlastin-mediated homotypic endoplasmic reticulum fusion. Proc Natl Acad Sci USA 109(32):E2146–E2154

Liu TY, Bian X, Romano FB, Shemesh T, Rapoport TA, Hu JJ (2015) Cis and trans interactions between atlastin molecules during membrane fusion. Proc Natl Acad Sci USA 112(15):E1851–E1860

Liu XZ, Guo XY, Niu LL, Li XX, Sun F, Hu JJ, Wang XM, Shen K (2019) Atlastin-1 regulates morphology and function of endoplasmic reticulum in dendrites. Nat Commun 10:568. https://doi.org/10.1038/s41467-019-08478-6
Movahed N, Sun J, Vali H, Laliberté J-F, Zheng H (2019) A host ER
Okamoto M, Kurokawa K, Matsuura-Tokita K, Saito C, Hirata R,
Niu L, Ma T, Yang F, Yan B, Tang X, Yin H, Wu Q, Huang Y, Yao ZP,
Neufeldt CJ, Cortese M, Scaturro P, Cerikan B, Wideman JG, Tabata
Namekawa M, Muriel MP, Janer A, Latouche M, Dauphin A, Debeir
Meyer H, Bug M, Bremer S (2012) Emerging functions of the VCP/
McCabe BD, Hom S, Aberle H, Fetter RD, Marques G, Haerry TE,
McCabe BD, Marques G, Bao H, Haerry TE, Shimell MJ, Duchek P,
Ljung K (2013) Auxin metabolism and homeostasis during plant
development. Development 140(5):943–950
Marques G, Bao H, Haerry TE, Shimell MJ, Duchek P, Zhang B,
O’Connor MB (2002) The Drosophila BMP type II receptor
wishful thinking regulates neuromuscular synapse morphol-
y and function. Neuron 33(4):529–543
Martinez G, Duran-Aniotz C, Cabral-Miranda F, Vivar JP, Hetz C
(2017) Endoplasmic reticulum proteostasis impairment in aging.
Aging Cell 16(4):615–623
Mattson MP, Dou P, Kater SB (1988) Outgrowth-regulating actions of
glutamate in isolated hippocampal pyramidal neurons. J Neurosci 8(6):2087–2100
Mattson MP, Murain M, Guthrie PB (1990) Localized calcium influx
orients axon formation in embryonic hippocampal pyramidal
neurons. Dev Brain Res 52(1–2):201–209
McCabe BD, Marques G, Haghhighi AP, Fetter RD, Crotty ML, Haerry TE,
Goodman TC, O’Connor MB (2003) The BMP homolog Gbb
provides a retrograde signal that regulates synaptic growth at the
Drosophila neuromuscular junction. Neuron 39(2):241–254
McCabe BD, Hom S, Aberle H, Fetter RD, Marques G, Haerry TE, Wan H,
O’Connor MB, Goodman CS, Haghhighi AP (2004) Highwire regulates presynaptic BMP signaling essential for
synaptic growth. Neuron 41(6):891–905
Meyer H, Bug M, Bremer S (2012) Emerging functions of the VCP/
p97 AAA-ATPase in the ubiquitin system. Nat Cell Biol 14(2):117–123
Mochida K, Oikawa Y, Kimura Y, Kiritako K, Hirano H, Ohsumi Y,
Nakatogawa H (2015) Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the
nucleus. Nature 522(7555):359–362
Monel B, Rajah MM, Hafirassou ML, Sid Ahmed S, Burlaud-Gaillard
Nakano A (2012) High-curvature domains of the ER are
orients axon formation in embryonic hippocampal pyramidal
neurons. Cell Microbiol 8(5):793–805
Movahed N, Sun J, Vali H, Laliberté J-F, Zheng H (2019) A host ER
fusogen is recruited by turnip mosaic virus for maturation of
viral replication vesicles. Plant Physiol 179(2):507–518
Namekawa M, Muriel MP, Janer A, Latouche M, Dauphin A, Debeir T,
Martin E, Duyckaerts C, Prigent F, Depienne C, Sittler A, Bron C,
Ruberg M (2007) Mutations in the SPG3A gene encoding the GTPase atlastin interfere with vesicle trafficking
in the ER/Golgi interface and Golgi morphogenesis. Mol Cell Neurosci 35(1):1–13
Neufeldt CJ, Cortese M, Scaturro P, Cerikan B, Wideman JG, Tabata K,
Moraes T, Oleksiuk O, Pichlmair A, Bartenschlager R (2019)
ER-shaping atlastin proteins act as central hubs to promote
flavivirus replication and virion assembly. Nat Microbiol 4(12):2416–2429
Niu L, Ma T, Yang F, Yan B, Tang X, Yin H, Wu Q, Huang Y, Yao ZP,
Wang J, Guo Y, Hu J (2019) Atlastin-mediated membrane tethering is critical for cargo mobility and exit from the
endoplasmic reticulum. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1908409116
Ogawa-Goto K, Tanaka K, Ueno T, Tanaka K, Kurata T, Sata T, Irie S
(2007) p180 is involved in the interaction between the endoplasmic reticulum and microtubules through a novel
microtubule-binding and bundling domain. Mol Biol Cell 18(10):3741–3751
Okamoto M, Kurokawa K, Matsuura-Tokita K, Saito C, Hirata R,
Nakano A (2012) High-curvature domains of the ER are important for the organization of ER exit sites in Saccha-
romyces cerevisiae. J Cell Sci 125(14):3412–3420
Orso G, Pendin D, Liu S, Tosetto J, Moss TJ, Faust JE, Micaroni M,
Egorova A, Martinuzzi A, McNew JA, Daqa A (2009) Homotypic fusion of ER membranes requires the dynamin-like
GTPase Atlastin. Nature 460(7258):978–U958
Park SH, Zhu PP, Parker RL, Blackstone C (2010) Hereditary
spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER
network. J Clin Investig 120(4):1097–1110
Pawar S, Ungricht R, Tiefenboeck P, Leroux JC, Kutay U (2017)
Efficient protein targeting to the inner nuclear membrane requires Atlastin-dependent maintenance of ER topology.
Elife 6:e28202. https://doi.org/10.7554/eLife.28202
Powers RE, Wang SY, Liu TY, Rapoport TA (2017) Reconstitution of the tubular endoplasmic reticulum network with purified
components. Nature 543(7644):257–260
Quemener F, Sigurdsson JK, Renner M, Atzberger PJ, Bassereau P,
Lacoste D (2014) Shape matters in protein mobility within membranes. Proc Natl Acad Sci USA 111(14):5083–5087
Raiborg C, Wenzel EM, Stemmark H (2015) ER-endosome contact sites: molecular compositions and functions. EMBO J
34(14):1848–1858
Regehr WG, Carey MR, Best AR (2009) Activity-dependent regulation of synapses by retrograde messengers. Neuron 63(2):154–170
Rendonelli P, Renna M (2017) The endoplasmic reticulum unfolded protein response in neurodegenerative disorders and its potential therapeutic significance. Front Mol Neurosci 10:187. https://doi.org/10.3389/fnmol.2017.00187
Renvoise B, Malone B, Falgairolle M, Munasinghe J, Stadler J, Bibila C, Park SH, Blackstone C (2016) Reep1 null mice reveal a
converging role for hereditary spastic paraplegia proteins in lipid droplet regulation. Hum Mol Genet 25(23):5111–5125
Rismanchi N, Soderblom C, Stadler J, Zhu PP, Blackstone C (2008)
Atlastin GTPases are required for Golgi apparatus and ER morphogenesis. Hum Mol Genet 17(11):1591–1604
Robinson CG, Roy CR (2006) Attachment and fusion of endoplasmic reticulum with vacuoles containing Legionella pneu-
mophila. Cell Microbiol 8(5):793–805
Rogov V, Dotsch V, Johansen T, Kirkvin V (2014) Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell 53(2):167–178
Rogov VV, Stolz A, Ravichandran AC, Rios-Szwed DO, Suzuki H,
Knaiss A, Lahr F, Wakatsuki S, Dotsch V, Dikic I, Dobson RC, McEwan DG (2017) Structural and functional analysis of the GABARAP interaction motif (GIM). EMBO Rep 18(8):1382–1396
Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529
Roy R, Bassham DC (2014) Root growth movements: waving and
skewing. Plant Sci 221:42–47
Sann P, Wang ZP, Brown H, Jin YS (2009) Roles of endosomal trafficking in neurite outgrowth and guidance. Trends Cell Biol 19(7):317–324
Shen WY, Liu B, Liu Z, Feng JB, Liu C, Kong XH (2017) Host protein atlastin-1 promotes human immunodeficiency virus (HIV-1) replication. Virological Sinica 32(4):330–341
Shib YT, Hseueh YP (2016) VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation.
Nat Commun 7:11020. https://doi.org/10.1038/ncomms11020
Smith MD, Harley ME, Kemp AJ, Wills J, Lee M, Arends M, von
Kriegsheim A, Behrends C, Wilkinson S (2018) CCPG1 is a non-canonical autophagy cargo receptor essential for
ER-phagy and pancreatic ER proteostasis. Dev Cell 144(2):217–232
Staehelin LA (1997) The plant ER: a dynamic organelle composed of a large number of discrete functional domains. Plant J 11(6):1151–1165
Stefano G, Renna L, Mos T, Mcnew JA, Brandizzi F (2012) In Arabidopsis, the spatial and dynamic organization of the endoplasmic reticulum and Golgi apparatus is influenced by the integrity of the C-terminal domain of RHD3, a non-essential GTPase. Plant J 69(6):957–966
Stefano G, Renna L, Lai YS, Slabaugh E, Mannino N, Buono RA, Otegui MS, Brandizzi F (2015) ER network homeostasis is critical for plant endosome streaming and endocytosis. Cell Discov 1:15033. https://doi.org/10.1038/celldisc.2015.33
Steiner B, Swart AL, Welin A, Weber S, Personnic N, Kaech A, Freyre C, Ziegler U, Klemm RW, Hilbi H (2017) ER remodeling by the large GTPase atlastin promotes vacuolar growth of Legionella pneumophila. EMBO Rep 18(10):1817–1836
Steketee MB, Moysidis SN, Jin XL, Weinstein JE, Pita-Thomas W, Raju HB, Iqbal S, Goldberg JL (2011) Nanoparticle-mediated signaling endosome localization regulates growth cone motility and neurite growth. Proc Natl Acad Sci USA 108(47):19042–19047
Stolz A, Ernst A, Dikic I (2014) Cargo recognition and trafficking in selective autophagy. Nat Cell Biol 16(6):495–501
Summerville JB, Faust JE, Fan E, Pendin D, Daga A, Formella J, Stern J, McNew JA (2016) The effects of ER morphology on synaptic structure and function in Drosophila melanogaster. J Cell Sci 129(8):1635–1648
Swanson MS, Isberg RR (1995) Association of Legionella pneumophila with the macrophage endoplasmic-reticulum. Infect Immun 63(9):3609–3620
Terasaki M, Chen LB, Fujiwara K (1986) Microtubules and the endoplasmic-reticulum are highly interdependent structures. J Cell Biol 103(4):1557–1568
Thiam AR, Forret L (2016) The physics of lipid droplet nucleation, growth and budding. Biochim Biophys Acta 1861:715–722
Villasenor R, Kalaidzidis Y, Zerial M (2016) Signal processing by class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 124(3):573–586
Wang SY, Romano FB, Field CM, Mitchinson TJ, Rapoport TA (2013) Multiple mechanisms determine ER network morphology during the cell cycle in Xenopus egg extracts. J Cell Biol 203(5):801–814
Wang S, Idrissi FZ, Hermansson M, Grippa A, Ejsing CS, Carvalho P (2018) Seipin and the membrane-shaping protein Pex30 cooperate in organelle budding from the endoplasmic reticulum. Nat Commun 9(1):2939
Wei X, Howell AS, Dong XT, Taylor CA, Cooper RC, Zhang JQ, Sun W, Sherwood DR, Shen K (2015) The unfolded protein response is required for dendrite morphogenesis. Elife 4:e06963. https://doi.org/10.7554/eLife.06963
Yamanaka K, Sasagawa Y, Ogura T (2012) Recent advances in p97/VCP/Cdc48 cellular functions. Biochem Biophys Acta 1823(1):130–137. https://doi.org/10.1016/j.bbamcr.2011.07.001
Yan LM, Sun S, Wang W, Shi JM, Hu XY, Wang SY, Su D, Rao ZH, Hu JJ, Lou ZY (2015) Structures of the yeast dynamin-like GTPase Sey1p provide insight into homotypic ER fusion. J Cell Biol 210(6):961–972
Yla-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL (2009) 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5(8):1180–1185
Yuen CYL, Sedbrook JC, Perrin RM, Carroll KL, Masson PH (2005) Loss-of-function mutations of ROOT HAIR DEFECTIVE3 suppress root waving, skewing, and epidermal cell file rotation in Arabidopsis. Plant Physiol 138(2):701–714
Zhang M, Wu FY, Shi JM, Zhu YM, Zhu ZM, Gong QQ, Hu JJ (2013) ROOT HAIR DEFECTIVE3 family of dynamin-like GTPases mediates homotypic endoplasmic reticulum fusion and is essential for Arabidopsis development. Plant Physiol 163(2):713–720
Zhao JL, Hedera P (2013) Hereditary spastic paraplegia-causing mutations in atlastin-1 interfere with BMPRII trafficking. Mol Cell Neurosci 52:87–96
Zhao X, Alvarado D, Rainier S, Lemons R, Hedera P, Weber CH, Tukel T, Apak M, Heiman-Patterson T, Ming L, Bui M, Fink JK (2001) Mutations in a newly identified GTPase gene cause autosomal dominant hereditary spastic paraplegia. Nat Genet 29(3):326–331
Zhao GH, Zhu PP, Renvoie B, Maldonado-Baez L, Park SH, Blackstone C (2016) Mammalian knock out cells reveal prominent roles for atlastin GTPases in ER network morphology. Exp Cell Res 349(1):32–44
Zheng HQ, Kunst L, Hawes C, Moore I (2004) A GFP-based assay reveals a role for RHD3 in transport between the endoplasmic reticulum and Golgi apparatus. Plant J 37(3):398–414
Zhu PP, Patterson A, Lavoie B, Stadler J, Shoeb M, Patel R, Blackstone C (2003) Cellular localization, oligomerization, and membrane association of the hereditary spastic paraplegia 3A (SPG3A) protein atlastin. J Biol Chem 278(49):49063–49071
Zhu PP, Soderblom C, Tao-Cheng JH, Stadler J, Blackstone C (2006) SPG3A protein atlastin-1 is enriched in growth cones and promotes axon elongation during neuronal development. Hum Mol Genet 15(8):1343–1353
Zhu PP, Denton KR, Pierson TM, Li XJ, Blackstone C (2014) Pharmacologic rescue of axon growth defects in a human iPSC model of hereditary spastic paraplegia SPG3A. Hum Mol Genet 23(21):5638–5648
Zhu Y, Zhang G, Lin S, Shi J, Zhang H, Hu J (2018) Sec61beta facilitates the maintenance of endoplasmic reticulum homeostasis by associating microtubules. Protein Cell 9(7):616–628
Zweifel LS, Kuruvilla R, Ginty DD (2005) Functions and mechanisms of retrograde neurotrophin signalling. Nat Rev Neurosci 6(8):615–625