The Itô transform for a general class of pseudo-differential operators

Rémi Léandre
Institut de Mathématiques. Université de Bourgogne.
21000. Dijon. FRANCE.

June 15, 2010

Abstract
We give an Itô formula for a general class of pseudo-differential operators.

1 Introduction
Let us recall what is the Itô formula for a purely discontinuous martingale $t \to M_t$ with values in \mathbb{R} [1]. Let f be a C^2 function on \mathbb{R}. We have

\[f(M_t) = f(M_0) + \int_0^t f'(M_s^-)dM_s + \sum_{s \leq t} f(M_s) - f(M_s^-) - f'(M_s^-)\Delta M_s \] (1)

It is the generalization of the celebrated Itô formula for the Brownian motion $t \to B_t$ on \mathbb{R} [1]

\[f(B_t) = f(B_0) + \int_0^t f'(B_s)dB_s + 1/2 \int_0^t f''(B_s)ds \] (2)

A lot of stochastic analysis tools for diffusions were translated by Léandre in semi-group theory in [6], [7], [8], [10], [11], [14], [15], [16], [18]. Some basic tools of stochastic analysis for the study of jump processes were translated by Léandre in semi-group theory in [11], [12], [19]. For review on that, we refer to the review of Léandre [9], [17].

Léandre has extended the Itô formula for the Brownian motion to the case of some classical partial differential equations in [19], [21], [22], [23]. In such a case, there is until now no convenient measure on a convenient path space associated to this partial differential equation. In [23], we have extended the Itô formula for jump process for an integro-differential generator when there is until now no stochastic process associated. Jump processes are generically generated by pseudo-differential operators which satisfy the maximum principle [5].
In this paper, we give an Itô formula for a general class of positive elliptic pseudo differential operators. For material on pseudo-differential operators, we refer on [2], [3], [4] and [5]. Since the considerations below on pseudo-differential operators are more and less classical, we won’t enter in the technical details of the proof.

2 The two semi-groups

Let \(\hat{u} \) be the Fourier transform of a smooth function \(u \) on \(\mathbb{R}^d \). Let \(a(x, \xi) \) be a global symbol of order \(m \) on \(\mathbb{R}^d \). It is a smooth function from \(\mathbb{R}^d \times \mathbb{R}^d \) into \(\mathbb{C} \) such that for all \(k, k' \)

\[
\sup_{x \in \mathbb{R}^d} |D_x^k D_\xi^{k'} a(x, \xi)| \leq C_{k,k'} |\xi|^{-k'}
\]

We say that a global symbol of order \(m \) is elliptic if for \(|\xi| > M \)

\[
\inf_{x \in \mathbb{R}^d} |a(x, \xi)| \geq C_M |\xi|^m
\]

We consider the proper pseudodifferential operator associated to the symbol \(a \): the Fourier transform of \(L_0 u \) is given by

\[
\int_{\mathbb{R}^d} a(x, \xi) \hat{u}(\xi) d\xi
\]

We consider its adjoint \(L_0^* \) on \(L^2(dx) \) and we put \(L = L_0^* L_0 \).

All the considerations of [2] which were valid on a compact subset of \(\mathbb{R}^d \) are still true because (3) and (4) are valid globally. In particular, \(L \) is essentially selfadjoint on \(L^2(dx) \) and generates a contraction semi-group \(P_t \) on \(L^2(dx) \).

Let us consider a smooth function \(f \) from \(\mathbb{R}^d \) into \(\mathbb{R} \) with compact support and a smooth function \(v \) with compact support from \(\mathbb{R}^d \times \mathbb{R} \) into \(\mathbb{C} \). \((x, y)\) denotes the generic element of \(\mathbb{R}^d \times \mathbb{R} \). We consider the smooth function from \(\mathbb{R}^d \) into \(\mathbb{R} \)

\[
\hat{v}(x) = v(x, f(x))
\]

We consider the function \(\varpi \) from \(\mathbb{R}^d \times \mathbb{R} \) into \(\mathbb{C} \)

\[(x, y) \mapsto v(x, y + f(x))\]

We apply \(L \) to \(\varpi \), \(y \) being frozen. We get a function \(L\varpi \). We put

\[(\hat{L}v)(x, y) = (L\varpi)(x, y - f(x))\]

Definition 1 \(\hat{L} \) is called the Itô transform of \(L \).

We remark that \((x, y) \mapsto (x, y + f(x))\) is a diffeomorphism of \(\mathbb{R}^d \times \mathbb{R} \) which keeps the measure \(dx \otimes dy \) invariant. This shows:
Theorem 2 \(\hat{L} \) is positive symmetric on \(L^2(dx \otimes dy) \). It admits therefore a self-adjoint extension still denoted \(\hat{L} \). This self-adjoint extension generates a semigroup \(\hat{P}_t \) of contraction on \(L^2(dx \otimes dy) \).

We get

Theorem 3 (Itô formula) We have the relation for all smooth function \(v \) with compact support

\[
P_t(v)(x) = (\hat{P}_t(v))(x, f(x)) \tag{9}
\]

Remark: If we consider the generator \(L = \sum X_i^2 \) where the \(X_i \) are smooth vector fields, \(\hat{L} = \sum \hat{X}_i^2 \) where

\[
\hat{X}_i = (X_i, <X_i, df>) \tag{10}
\]

which corresponds to the generator of [19], [21], [22]. Analogous remark holds for the considerations of [23].

3 Proof of the Itô formula

Lemma 4 If \(v \) is a smooth function on \(\mathbb{R}^d \times \mathbb{R} \) whose all derivatives belong to \(L^2 \), \(\hat{P}_t v \) is still a smooth function whose all derivatives belong to \(L^2 \).

Proof: Let

\[
\overline{L}_1 = \hat{L} + \left(-\frac{\partial^2}{\partial y^2}\right)^{m/2} \tag{11}
\]

\(\overline{L} \) commute with \(\hat{L} \). Therefore, for all \(k \)

\[
(\overline{L}_1^k)\hat{P}_t = (\hat{P}_t)(\overline{L}_1^k) \tag{12}
\]

If \(v \) satisfies the hypothesis, \(\hat{P}_t v \) belongs to the domain of \(\overline{L}_1^k \). But \(\overline{L} \) is the transform of

\[
\hat{L} = L + \left(-\frac{\partial^2}{\partial y^2}\right)^{m/2} \tag{13}
\]

under the change of variable \((x, y) \to (x, y + f(x)) \). Therefore \(\hat{P}_t v \) belongs to the domain of \(\hat{L}^k \). The result arises by Garding inequality.

Let \(\phi \) be a smooth function from \(\mathbb{R}^d \) into \([0, 1]\), equals to 0 if \(|\xi| \geq 2 \) and equals to 1 if \(|\xi| \leq 1 \). We consider the global symbol

\[
a_{\lambda}(x, \xi) = \phi(\xi/\lambda)a(x, \xi) \tag{14}
\]

and the operator \(L_{0,\lambda}, L_{0,\lambda}^* \) associated to it. Classically

\[
L_{0,\lambda} u(x) = \int_{\mathbb{R}^d} K_{\lambda}(x, y)u(y)dy \tag{15}
\]

\[
L_{0,\lambda}^* u(x) = \int_{\mathbb{R}^d} \overline{K}_{\lambda}(y, x)u(y)dy \tag{16}
\]
Lemma 5 If u is smooth whose all derivative belong to L^2, then $(L_0 - L_{0,\lambda})u$ tends to zero as well as all his derivatives and in L^2 when $\lambda \to \infty$. The same holds for $(L_0^\ast - L_{0,\lambda}^\ast)u$.

Proof: $(L_0 - L_{0,\lambda})u$ is given by the oscillatory integral
\[
\int \int_{\mathbb{R} \times \mathbb{R}^d} \exp\{2\pi i < x - y | \xi > (1 - \phi(\xi/\lambda))a(x, \xi)u(y)dyd\xi \} \quad (17)
\]
The result holds by integrating by parts in y. Analog statement work for $(L_0^\ast - L_{0,\lambda}^\ast)u$.

Proof of the Itô formula: We put
\[
L_{\lambda} = L_{0,\lambda}^\ast L_{0,\lambda} \quad (18)
\]
L_{λ} is a continuous operator acting on bounded continuous function on \mathbb{R}^d endowed with its uniform norm. The same is true for its Itô transform \hat{L}_{λ}. Therefore L_{λ} generates a semi-group $P_{\lambda,t}$ on bounded continuous functions on \mathbb{R}^d. \hat{L}_{λ} generates a semi-group $\hat{P}_{\lambda,t}$ on bounded continuous functions on $\mathbb{R}^d \times \mathbb{R}$. Moreover if u and v are bounded continuous,
\[
P_{\lambda,t}u = \sum \frac{1}{n!} L^n_{\lambda} u \quad (19)
\]
and
\[
\hat{P}_{\lambda,t}v = \sum \frac{1}{n!} \hat{L}^n_{\lambda} v \quad (20)
\]
But
\[
L^n_{\lambda} \hat{v}(x) = (\hat{L}^n_{\lambda} v)(x, f(x)) \quad (21)
\]
Therefore
\[
P_{\lambda,t} \hat{v}(x) = (\hat{P}_{\lambda,t}v)(x, f(x)) \quad (22)
\]
But $(\hat{P}_{\lambda,t} - \hat{P}_t)(v)$ is solution of the parabolic equation
\[
- \frac{d}{dt}v_t = \hat{L}_{\lambda}v_t + (\hat{L}_{\lambda,t} - \hat{L})\hat{P}_t v \quad (23)
\]
with initial condition 0. The result arises from the two previous lemma, by the method of variation of constants since $P_{\lambda,t}$ is a semi-group of contraction on $L^2(dx \otimes dy)$. This shows that for $\lambda \to \infty$
\[
\hat{P}_{\lambda,t}v \to \hat{P}_t v \quad (24)
\]
in $L^2(dx \otimes dy)$. Similarly, in $L^2(dx)$
\[
P_{\lambda,t} \hat{v} \to P_t \hat{v} \quad (25)
\]
We remark that \hat{L}_{λ} commute with \overline{L}_{1}. Therefore
\[
(\overline{L}_{1}^\ast)(\hat{P}_{\lambda,t} - \hat{P}_t)v = (\hat{P}_{\lambda,t} - \hat{P}_t)(\overline{L}_{1}^\ast v) \quad (26)
\]
By a similar argument to the proof of lemma (4), we can show that the convergence in (24) and (25) works for the uniform topology and not in L^2 only. This shows the result. ♦
References

[1] C. Dellacherie, P.A. Meyer: Probabilités et potentiel (II). Théorie des martingales. Hermann. Paris (1980).

[2] J. Dieudonné: Eléments d’analyse VII. Gauthier-Villars. Paris (1977).

[3] P. Gilkey: Invariance theory, the heat equation and the Atiyah-Singer theorem. 2d edition. CRC Press, Boca Raton (1995).

[4] L. Hoermander: The analysis of linear partial differential operators (III). Springer, Heidelberg (1984)

[5] N. Jacob: Pseudo differential operators. Markov processes (II). Generators and their potential theory. Imperial College Press. London (2002).

[6] R. Léandre: Malliavin Calculus of Bismut type without probability. In "Festchrift in honour of K. Sinha". A.M. Boutet de Monvel and al eds, Proc. Indian. Acad. Sci (Math. Sci), 116, 2006, 507-518. arXiv:0707.2143v1[math.PR]

[7] R. Léandre: Varadhan estimates without probability: lower bounds. In "Mathematical methods in engineerings" (Ankara), D. Baleanu and al eds. Springer, Heidelberg, 2007, 205-217.

[8] R. Léandre: Positivity theorem in semi-group theory. Mathematische Zeitschrift 258, 2008, 893-914.

[9] R. Léandre: Applications of the Malliavin Calculus of Bismut type without probability. In "Simulation, Modelling and Optimization" (Lisboa), A. M. Madureira C.D. 2006, pp. 559-564. WSEAS transactions on mathematics 5, 2006, 1205-1211.

[10] R. Léandre: The division method in semi-group theory. In "Applied mathematics" (Dallas) K. Psarris edt. W.S.E.A.S. press, Athens, 2007, 7-11.

[11] R. Léandre: Leading term of a hypoelliptic heat-kernel. WSEAS Transactions on mathematics 6, 2007, 755-763.

[12] R. Léandre: Girsanov transformation for Poisson processes in semi-group theory. In "Num. Ana. Applied. Mathematics." (Corfu) T. Simos edt. A.I.P. Proceedings 936, 2007, 336-339.

[13] R. Léandre: Malliavin Calculus of Bismut type for Poisson processes without probability. In "Fractional order systems". J. Sabatier and al eds. Jour. Eur. systemes Automatisés. 42, 2008, 715-733.

[14] R. Léandre: Wentzel-Freidlin estimates in semi-group theory. in "Control, Automation, Robotics and Vision" (I.E.E.E.), (Hanoi), Yeng Chai Soh edt, C.D., I.E.E.E. 2008, 2233-2236.
[15] R. Léandre: Varadhan estimates in semi-group theory: upper bound. "Applied computing conference" (Istanbul). M. Garcia-Planas and al eds. W.S.E.A.S. press, 2008, 77-80.

[16] R. Léandre: Varadhan estimates without probability: upper bound. WSEAS transactions on mathematics 7, 2008, 244-253.

[17] R. Léandre: Malliavin Calculus of Bismut type in semi-group theory. Far East Journal of Mathematical Sciences 30, 2008, 1-26.

[18] R. Léandre: Large deviations estimates in semi-group theory. In "Num. Ana. Applied. Mathematics" (Kos), T. Simos edt. A.I.P. Proceedings 1048, 2008, 351-355.

[19] R. Léandre: Itô-Stratonovitch formula for a four order operator on a torus. In "Non-Euclidean Geometry and its applications" (Debrecen), S. Nagy edt, Acta Physica Debrecina 42, 2008, 133-137.

[20] R. Léandre: Regularity of a degenerated convolution semi-group without to use the Poisson process. To appear in "Nonlinear Science and Complexity" (Porto) M. Silva and al eds. Mittag Leffler Preprint. Fall 2007. S.P.D.E. 10.

[21] R. Léandre: Itô-Stratonovitch formula for the Schroedinger equation associated to a big order operator on a torus. In "Fractional order differentiation" (Ankara), G. Zaslavsky and al eds, Physica Scripta T 136, 2009, 014028.

[22] R. Léandre: Itô-Stratonovitch formula for the wave equation on a torus. In "Computations of stochastic systems". M.A. El-Tawil edt. Trans. Comp. Sciences VII. L.N.C.S. 5890, 2010, 68–75.

[23] R. Léandre: Itô formula for an integro differential operator without an associated stochastic process. To appear in "ISAAC 2009" (London), J. Wirth edt.

[24] R. Léandre: Wentzel-Freidlin estimates for jump processes in semi-group theory: lower bound. In "Int.Conf.Dif.Geometry.Dynamical. Systems" (Bucuresti), V. Balan and al eds. B.S.G. Proceedings 17, 2010, 107-113.

[25] R. Léandre: Wentzel-Freidlin estimates for jump processes: upper bound. To appear in "Worldcomp 10" (Las-Vegas) H. Arabnia edt.

[26] K Yosida: Functional analysis. Springer, Heidelberg, 1977.