Quantization of Deep Neural Networks for Accurate Edge Computing

WENTAO CHEN*, HAILONG QIU*, and JIAN ZHUANG, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences
CHUTONG ZHANG* and YU HU, Easylink Technology Co., Ltd
QING LU, TIANCHEN WANG, and YIYU SHI†, Department of Computer Science and Engineering, University of Notre Dame
MEIPING HUANG† and XIAOWE XU†, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences

Deep neural networks (DNNs) have demonstrated their great potential in recent years, exceeding the performance of human experts in a wide range of applications. Due to their large sizes, however, compression techniques such as weight quantization and pruning are usually applied before they can be accommodated on the edge. It is generally believed that quantization leads to performance degradation, and plenty of existing works have explored quantization strategies aiming at minimum accuracy loss. In this paper, we argue that quantization, which essentially imposes regularization on weight representations, can sometimes help to improve accuracy. We conduct comprehensive experiments on three widely used applications: fully connected network (FCN) for biomedical image segmentation, convolutional neural network (CNN) for image classification on ImageNet, and recurrent neural network (RNN) for automatic speech recognition, and experimental results show that quantization can improve the accuracy by 1%, 1.95%, 4.23% on the three applications respectively with 3.5x-6.4x memory reduction.

CCS Concepts:
• Computing methodologies → Artificial intelligence;
• Hardware → Emerging technologies.

Additional Key Words and Phrases: Edge computing, Deep neural networks, Quantization

*Both authors contributed equally to this research. Wentao Chen works at Easylink Technology Co., Ltd, and this work is done when he was an visiting scholar at Guangdong Provincial People’s Hospital.
†Corresponding authors.

Authors’ addresses: Wentao Chen; Hailong Qiu; Jian Zhuang, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Second Road, Guangzhou, Guangdong, 510080, chenwentao@live.com; Chutong Zhang; Yu Hu, Easylink Technology Co., Ltd, Wuhan, Hubei, 43000; Qing Lu; Tianchen Wang; Yiyu Shi, yshi4@nd.edu, Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556; Meiping Huang; Xiaowei Xu, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Second Road, Guangzhou, Guangdong, 510080, xiao.wei.xu@foxmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.
1550-4832/2021/1-Art1 $15.00
https://doi.org/10.1145/3451211

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.
1 INTRODUCTION

Deep Neural Networks (DNNs) have been widely used in various applications and show its great potential to tackle complex problems [1–3, 19, 26, 32]. Furthermore, it has been and continue to be instrumental in enabling/advancing breakthroughs in various disciplines, including disease diagnosis, real-time language translation, autonomous driving, etc. [8, 9, 15, 20, 25, 30, 31, 33, 33]. Meanwhile, edge computing for Internet of Things (IoT) has been widely studied which requires DNN models with small memory size and efficient computation [17, 27, 28]. Thus, there is a huge gap between current DNN models and the requirement of edge computing.

Recently, in order to accommodate DNNs on the edge, DNN quantization has become an active research topic [4, 5, 7, 11, 13, 16, 18, 34–36], which aims to represent DNN weights with less memory (precision) while maintaining acceptable accuracy with efficient memory and computation costs. It has been observed in the literature, however, that sometimes quantization can improve accuracy which can be credited to the reduction of overfitting [23]. Dynamic fixed point [29] can achieve 4x less memory operation cost with only 0.4-0.6% Top-5 accuracy loss for ImageNet classification [6]. Ternary weight network and binaryConnect [29] have further reduced the bit-width of weights to 2 bits or even 1 bit with a relatively larger accuracy loss. Recently, their enhanced version, trained ternary training and binary weight network [29] have reduced the accuracy loss to only 0.6-0.8%. There also exists some works using non-linear quantization to represent the parameter distribution for better accuracy [29]. Unlike the above works, some studies aims to quantize not only the weights but also the activations. Quantized neural networks, binarized neural networks, and XNOR-net [29] reduced the weights to only 1 bit and the activations to 1-2 bits resulting in a large reduction on memory and computation cost yet with significant accuracy loss. Two-Step quantization [24] has 2% drop for VGG-16 on ImageNet-2012 dataset and Integer-Arithmetic-Only quantization [14] has 3.1% accuracy loss. In some of the above works, we notice that quantization can sometimes improve the performance [29], however, there is no comprehensive studies to verify this point.

It is generally believed that quantization of DNN weights lead to performance degradation. For example, two-step quantization [24] has a 2% accuracy drop on ILSVRC-2012 dataset and Integer-Arithmetic-Only quantization [14] has a 3.1% accuracy loss. Various works in the literature have explored the best ways to quantize the weights with minimum accuracy loss. To some extent, quantization essentially imposes regularization on weight representations. As such, it should also sometimes help to improve accuracy when overfitting issue presents in large neural networks.

To demonstrate this point, in this paper, we conduct extensive experiments using incremental quantization on three applications: medical image segmentation, image classification and automatic speech recognition. For fair comparison, we have re-implemented related methods and performed evaluations under the same hardware, deep learning frameworks and configurations. In medical image segmentation, our method can achieve 1% accuracy improvement compared with the current state-of-the-art method on the MICCIA Gland dataset. In image classification, extensive experiments are presented on ImageNet-2012 using a widely used CNN model VGG-16 [21], and the result shows that our proposed method exceeds the current best performance using VGG-16 by up to 1.95%. In automatic speech recognition, we quantize Deep Speech [12] network on the TIMIT dataset[10] and improves the accuracy by 4.23%. We also discuss the incremental quantization on the performance of simplified network with different bit widths, and the experimental results show that incremental
Quantization can no longer improve the performance of simplified networks with less overfitting. In addition, we get 3.5x-6.4x memory reduction, which is extremely beneficial in the context of edge computing.

Fig. 1. Illustration of quantization framework based on the suggestive annotation framework. In suggestive annotation with quantization, better training samples (suggestive training set) can be extracted from the original training set. In network training with quantization, better performance can be achieved by reduce overfitting.

2 PRELIMINARIES

In this section, we briefly review the incremental quantization method used in the experiments. The main goal of incremental quantization is to convert 32-bit-floating-point weights W into low-precision weights \hat{W} either power of two or zero with minimum accuracy loss. Each of \hat{W} is chosen from $P_l = \{ \pm 2^{n_1}, \cdots, \pm 2^{n_2} \}$, where n_1 and n_2 are two integer numbers determined by the max absolute value of W_l and expected quantized bit-width, and $n_2 \leq n_1$.

The training procedure of incremental quantization [34] is consisted of three operations: weight partition, group-wise quantization and re-training. Weights partition is the most crucial part of the whole process. We adopt pruning-inspired partition strategy to divide weights into two disjoint groups by comparing the absolute value with layer-wise threshold, which usually achieves better performance than random partition ([34]).

For the l-th layer, we define weights partition as shown in Eq. (1), where $A_l^{(1)}$ is the first group weights that need to be quantized and $A_l^{(2)}$ denotes the second group with remaining unquantized values.

$$A_l^{(1)} \cup A_l^{(2)} = W_l(i, j)$$
$$A_l^{(1)} \cap A_l^{(2)} = \emptyset$$

The weights in the first group are expected to form a low-precision base for the original model, thus they are quantized using Eq. (2),
\[w^q = \begin{cases}
\text{sign}(w) \times 2^p & \text{if } 3 \times 2^{p-2} \leq |w| \leq 3 \times 2^{p-1}; \\
\text{sign}(w) \times 2^m & \text{if } |w| \geq 2^m; \\
0 & \text{if } |w| < 2^{-l-1}
\end{cases} \]

(2)

where \(w^q \) are quantized weights, \(w \) represent original weights, \(u \) and \(l \) are upper and lower bounds of the quantized set \(l \leq p \leq u \).

By contrast, the second group remains floating-point values to compensate the accuracy loss in model, and will be re-trained. After one round, these three steps are further adopted only on the second group in the rest of the training process. As a result, all weights are quantized or to zeros hence we gain memory reduction with slight accuracy loss.

3 CASE STUDIES

3.1 Biomedical Image Segmentation

Table 1. Segmentation accuracy (averaged Dice score and F1 score in %) using different quantization bit width on the MICCAI Gland dataset.

Configurations	Bit width								
	Original	2 bits	3 bits	4 bits	5 bits	6 bits	7 bits	8 bits	9 bits
Float SA + Quantized NT	86.25	65.55	79.37	85.87	86.12	86.33	86.51	86.93	85.26
Quantized SA + Float NT	86.25	62.98	85.39	86.17	86.52	86.66	86.51	86.22	86.12

Table 2. Segmentation accuracy (averaged Dice score and F1 score in %) using different parallel FCNs on the MICCAI Gland dataset.

Configurations	Parallel number						
	Original	2	3	4	5	6	7
Float SA + Float NT	86.25	86.23	85.93	85.81	86.24	87.25	86.32
Float SA + 7 bits NT	86.25	86.2	85.39	85.32	86.84	86.08	85.74

Table 3. Segmentation accuracy (averaged Dice score and F1 score in %) using different bit width and 5 parallel FCNs on the MICCAI Gland dataset.

Configurations	Bit width								
	Original	2 bits	3 bits	4 bits	5 bits	6 bits	7 bits	8 bits	9 bits
Float SA + 5 FCNs	87.85	64.40	85.94	88.20	88.51	88.77	89.12	87.86	87.55
7 bits SA + 5 FCNs	87.55	71.88	80.13	87.55	88.63	88.73	89.2	88.67	87.53

3.1.1 Network Quantization. As shown in Fig. 1, the network quantization for biomedical image segmentation has two steps: suggestive annotation (SA) with quantization and network training (NT) with quantization. In the first step, we add a quantization module to suggestive FCNs for high uncertainty. In the second step, quantization of segmentation FCNs are performed with the suggestive training samples for higher accuracy. The FCN is a 34 layer network, and more details can refer to [32]. In order to obtain high representativeness, each FCN in suggestive FCNs...
should be diverse for high uncertainty with acceptable accuracy. However, usually DNNs including FCNs are over-parameterized, and a large portion of the parameters is redundant. Thus, multiple suggestive FCNs will have very small variance of the final prediction though with different weight initialization. The adopted regularization techniques including weight decay and dropout scheme further make the multiple suggestive FCNs to be almost the same. By adding quantization to suggestive annotation, the above requirement can be satisfied. Though it may be a little offensive since most of the time it will degrade the accuracy, it is particularly appreciated by suggestive FCNs that focus on uncertainty. Particularly quantization transforms the originally continuous weight space, where the weights of several networks can be arbitrarily close, into a sparse and discrete one, and thus increasing the distances between the trained networks and accordingly the diversity of the outputs. Note that accuracy should be also considered and too offensive quantization methods should be avoided.

3.1.2 Experimental Setup. We adopt the 2015 MICCAI Gland Challenge dataset [22] which has 85 training images (Part A: 37 normal glands, and Part B: 48 abnormal glands) and 80 testing images (Part A: 60 normal glands, and Part B: 20 abnormal glands). In suggestive annotation [32], 16 images with the highest uncertainty scores are extracted first, and then 8 images are collected based on their representativeness using similarity, which are added to the suggested training set in each iteration. Totally there are 120 iterations in suggestive annotation, and totally 960 suggested training samples are produced. We quantize the weights to 2 bits to 9 bits. For ensembling method, We test 2 FCNs to 7 FCNs. We also discuss the overfitting problem with a simplified version of FCN by reducing the filter numbers by half. All the experiments are evaluated considering detection (F1 score) and segmentation (dice score) [29], and their averaged results are reported.

The training parameters are as follows. We adopt a simple learning rate scaling strategy: set learning rate to 5×10^{-4} in the initial stage, and to 5×10^{-5} when the iteration time reaches a threshold. All the configurations are repeated 4 times and the one with the optimal performance is selected for comparison.

3.1.3 Results and Analysis. As there are two networks in suggestive annotation, we discussed both of the two with incremental quantization. As shown in Table 1, we first analysis the performance of quantization methods in SA with quantization and NT with quantization. We can notice that compared with the original setting, quantization can improve the accuracy by 0.26% and 0.31% for quantized NT and quantized SA, respectively.

As shown in Table 2, we can discover that ensembling method can improve the segmentation accuracy most of the time. Similar to Table 1, the optimal accuracy is achieved in some median parallel number, e.g., 6 for float SA + 7 bits NT.

As shown in Table 3, we further discussed quantization on both SA and NT with the optimal parallel number. The trend is the same as that in Table 1, and the median bit width (7 bits) obtains the best performance. With both quantization and ensemble method, we can achieve a promising performance on the MICCAI 2015 Gland dataset, which outperforms the state-of-the-art method by 1%. In addition, our method can also obtain 4.6x and 6.4x reduction on memory usage for incremental quantization with 7 bits and 5 bits, respectively. Note that as activations are in floating point representation, the runtime are not affected.

As shown in Table 4, we also discuss quantization with simplified networks, e.g., small models. We can notice that when the network model is smaller, the segmentation accuracy with 4 bits and 8 bits are no longer improved, however, there is a significant accuracy degradation. This is due to the fact that smaller network with less parameters has less overfitting, and quantization further reduce the network’s representation capability resulting with degraded performance.
Table 4. Segmentation accuracy (averaged Dice score and F1 score in %) using quantization with 4 bits and 8 bits with small models.

Network	float	4 bit	8 bit
simplified (Quantized SA + Float NT)	82.53	78.14	82.14
simplified (Float SA + Quantized NT)	82.53	76.12	81.27

3.2 Image Classification

3.2.1 Network Quantization. We use incremental quantization [34] on VGG-16 model for image classification. The original VGG-16 has 16 layers (13 conv-layers and 3 FC layers) as shown in Fig. 2. Besides that, we focus on the parameter-redundancy problem on VGG-16. We re-train two small VGG-16 models with the first five convolutional layers of the original eight layers) and the first eight convolutional layers of the original 11 layers), respectively for overfitting analysis.

3.2.2 Experimental Setup. We adopt the ILSVRC-2012 dataset [6] which contains over 1.2 million training images and over 50,000 testing images. VGG-16 [21] is adopted for classification. We quantize the weights from 2 bits to 7 bits for discussion. Additionally, we test two VGG models to 9 VGG models to further clarify the compensation of ensemble learning in terms of accuracy loss brought by weight quantization. And for small VGG-16 models, we compare 4 bits quantization and 8 bits quantization with floating weights. Learning rate is set to 1×10^{-4} with learning rate decay as 1×10^{-6}. Stochastic gradient descent (SGD) function is selected to be the optimizer and Momemtum of 0.9 is used to accelerate training. In order to unify the variables and discuss how the bit width impact the network performance, the max value of the quantized weights is set to 4.0, and it takes 4 iterations from full floating-point weights to quantized weights, and the accumulated portions of quantized weights at four iterative steps are {50%, 75%, 87.5%, 100%}.

Table 5. Image classification performance (top-1 error in %) of VGG-16 model [14] with weights from 2 bits to 9 bits on ImageNet dataset.

Configurations	Quantization bit width							
Original	2 bits	3 bits	4 bits	5 bits	6 bits	7 bits	8 bits	9 bits
VGG-16	69.29	42.61	63.72	67.70	66.64	69.68	70.36	70.48

Table 6. Image classification performance (top-1 error in %) of VGG-16 model [14] with parallel numbers from 2 to 7 on ImageNet dataset.

Configurations	parallel numbers						
Original	2	3	4	5	6	7	
VGG-16	69.29	70.18	70.10	70.10	69.31	69.82	68.58
VGG-16 with 8 bits	69.29	70.10	71.24	71.03	69.80	69.17	69.85

3.2.3 Results and Analysis. We compare our result with the original and small VGG-16 models. As shown in Table 5, the configuration with 8 bits obtains the optimal performance, which gets a 1.1% improvement. We set a variety of ensemble experiments as the control group to discuss the effect of ensemble methods. The result of six configurations from two to seven parallel models using 32-bit floating-point weights are shown in Table 6. With three parallel models, we can get a 0.81% performance improvement. While for the VGG-16 model with 8 bits representation and parallel
Fig. 2. Illustration of quantization framework on the VGG-16 model. In small VGG models, we remove the first layers (with a feature map size of 112x112x128) and halved the channels of the rest layers except for the first two input layers. In small VGG-16 models with 5 layers, we remove the third and forth layers (with feature map sizes of 28x28x512 and 14x14x512, respectively). In small VGG-16 models with eight layers, we only remove the forth layer.

Table 7. Classification performance (top-1 error in %) comparison between floating pointss, 4 bits and 8 bits representations using small VGG-16 models on ImageNet.

Network	Float	4 bit	8 bit
VGG-16 with 5 conv-layers	64.14	64.12	64.05
VGG-16 with 8 conv-layers	66.04	66.00	66.02

number from two to seven, we get a 1.95% improvement with 2 parallel models compared with the original model. In addition, 4x memory reduction is obtained with quantization.

As for overfitting, we discuss the performance of 4 bits and 8 bits quantization on small VGG-16 models. We shorten the original VGG-16 model to contain 5/8 conv-layers with 3 FC layers. As shown in Table. 7, we get 0.02% precision loss after quantization on both two simplified VGG-16 models. Comparing to the results in Table. 5, it can be concluded that quantization can benefit the over-parameterized models to some extent. However, if the original model is already simplified, the inhibiting effect of quantization will be faded.

3.3 Automatic Speech Recognition

3.3.1 Network Quantization. We use incremental quantization [34] on Deep Speech for speech recognition task. As shown in Fig. 3, the original Deep Speech has 5 hidden layers, composed of 3 time-distributed FC layers, 1 bi-directional RNN layer, 1 time-distributed FC layer followed by 1
Fig. 3. Illustration of quantization framework on the Deep Speech. For small Deep Speech models, we remove the second and third FC layers.

Table 8. Automatic speech recognition performance (classification error rate in %) on Deep Speech [34] with weights from 2 bits to 9 bits.

Configurations	Quantization bit width								
	Original	2 bits	3 bits	4 bits	5 bits	6 bits	7 bits	8 bits	9 bits
Deep Speech	48.13	60.33	64.30	69.53	52.93	47.20	49.50	52.40	**44.70**

Table 9. Automatic speech recognition performance (classification error rate in %) on Deep Speech [34] with parallel numbers from 2 to 7.

Configurations	Parallel numbers						
	Original	2	3	4	5	6	7
Deep Speech	48.13	45.37	47.30	**43.93**	42.83	46.23	43.30
Deep Speech with 9 bits	48.13	**43.90**	46.17	48.07	48.83	53.90	45.53

Table 10. Automatic speech recognition performance (classification error rate in %) comparison between floating points, 4 bits and 8 bits representations using small Deep Speech models

Network	float	4 bit	8 bit
Small Deep Speech	50.04	**47.05**	47.08

softmax layer as output. We remove 2 time-distributed FC layers before the RNN layer to simplify the model, and re-train the small model on TIMIT.

3.3.2 Experiment Setup. We adopt the DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus dataset (TIMIT) [10] which contains 6300 sentences read by 630 different Americans for Deep Speech (DS) network [12]. We quantize the weights to 2 bits to 7 bits, and we test two to nine models in ensemble method. For training parameters, we set learning rate to 1×10^{-4} with a learning rate decay of 1×10^{-6}. The predicted error rate will be evaluated by the word error rate (WER).

ACM J. Emerg. Technol. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.
3.3.3 Results and Analysis. As shown in Table 8, the quantized model with 9 bits obtains the optimal performance which is 3.43% higher than the model with floating point representation. As shown in Table 9, with three parallel networks, we can get an improvement of 4.2%. Using two parallel models, our method obtains the optimal performance among all the configurations which is 4.23% higher than the original method, which is 0.03% better than the ensemble model. In addition, 3.6x reduction on memory usage can be achieved.

In Table 10, we discuss the quantization effectiveness on small Deep Speech models using 4 bits and 8 bits. Our model can get an improvement of 3% compared with the original model.

3.4 Discussion

As for the accuracy, we can notice that incremental quantization can improve the segmentation performance by around 1% on the MICCIA Gland dataset. For image classification, we ended up using the 8-bit fixed-point VGG-16 model for two parallel models to achieve a 1.95% improvement compared with the original model. For speech recognition, the optimal performance obtained an improvement of 4.23% over the original Deep Speech model. In addition, our method has a up to 3.5-6.4x reduction on memory usage. By comparing network training with and without quantization in Table 1, Table 5 and Table 8, we can observe that network training with quantization will not always improve the performance, and the optimal performance is achieved with some median bit width, e.g., 6 bits and 7 bits. Thus, with proper incremental quantization, the accuracy can usually be improved with memory reduction.

As for the impact on ensemble method, six parallel FCNs, two parallel CNNs, and two parallel RNNs with quantization reaches the optimal performance on segmentation, classification and automatic speech recognition, respectively. Also the optimal accuracy is achieved in some median parallel number. Thus, a proper parallel number can improve the accuracy by sacrificing some memory operation and computation cost.

For overfitting, we discuss the corresponding small models in the three applications with quantization. As shown in Table 4, Table 7 and Table 10, we can notice that when the model is much smaller than the original networks, the accuracy degrades seriously such as the results in medical image segmentation and image classification. When the model is only simplified a bit such as the small model in automatic speech recognition, the accuracy is still improved. This is possibly due to the fact that large models usually have more overfitting than small ones. Thus, when quantization is applied, the overfitting in large models is reduced, resulting with improved performance. However, for small models with less overfitting, the overfitting is reduced and the representation capability is also degraded resulting with accuracy loss. Therefore, incremental quantization may be used as a regulation method to reduce overfitting.

Incremental quantization can not only reduce memory consumption of 3.5x-6.4x, but also speedup the processing. As the optimization mainly comes from transforming multiplication to addition in the convolution calculation, specific hardware modules are required for speedup. Thus, the speedup depends on specific hardware such as CPU, GPU and FPGAs. If no specific hardware module is implemented for such transforming, no speedup is obtained, e.g., on existing CPUs and GPUs. If we implement specific hardware module for 2D convolution operation on FPGAs, the speedup can be 1.7x-7.8x according to [28]. Note that the speedup depends on a variety of factors such as hardware platforms and network structures.

4 CONCLUSION

Among deep neural networks (DNNs), compression techniques such as weight quantization and pruning are usually applied before they can be accommodated on the edge. It is generally believed
that quantization leads to performance degradation, and plenty of existing works have explored quantization strategies aiming at minimum accuracy loss. In this paper, we show that quantization can sometimes help to improve accuracy by imposing regularization on weight representations. We conduct comprehensive experiments on three widely used applications: fully connected network (FCN) for biomedical image segmentation, convolutional neural network (CNN) for image classification, and recurrent neural network (RNN) for automatic speech recognition, and experimental results show that incremental quantization can improve the accuracy by 1%, 1.95%, 4.23% on the three applications respectively with 3.5x-6.4x memory reduction. As a case in compression techniques, incremental quantization shows great potential to reduce overfitting, and there may exist some general rules and strategies to enable other compression techniques to have the capability of reducing overfitting. We encourage related researchers to explore this interesting topic, which is also our future work.

ACKNOWLEDGMENTS
This work was supported by the National key Research and Development Program of China (No. 2018YFC1002600), the Science and Technology Planning Project of Guangdong Province, China (No. 2017B090904034, No. 2017B030314109, No. 2018B090944002, No. 2019B020230003), Guangdong Peak Project (No. DFJH201802), the National Natural Science Foundation of China (No. 62006050).

REFERENCES
[1] Beatriz Blanco-Filgueira, Daniel García-Lesta, Mauro Fernández-Sanjurjo, Victor Manuel Brea, and Paula López. 2019. Deep learning-based multiple object visual tracking on embedded system for iot and mobile edge computing applications. *IEEE Internet of Things Journal* 6, 3 (2019), 5423–5431.
[2] Hao Chen, Xiaojuan Qi, Jie-Zhi Cheng, Pheng-Ann Heng, et al. 2016. Deep Contextual Networks for Neuronal Structure Segmentation. In *AAAI*. 1167–1173.
[3] Hao Chen, Xiaojuan Qi, Lequan Yu, and Pheng-Ann Heng. 2016. Dcan: Deep contour-aware networks for accurate gland segmentation. In *CVPR*. 2487–2496.
[4] Matthieu Courbariaux and Y Bengio. [n.d.]. Binarynet: Training deep neural networks with weights and activations constrained to+ 1 or-1. CoRR abs/1602.02830 (2016).
[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet: A large-scale hierarchical image database. In *CVPR*. IEEE, 248–255.
[6] Yukun Ding, Jinglan Liu, and Yiyu Shi. 2018. On the Universal Approximability of Quantized ReLU Neural Networks. *arXiv preprint arXiv:1802.03646* (2018).
[7] Marc Egger and Detlef Schoder. 2017. Consumer-oriented tech mining: Integrating the consumer perspective into organizational technology intelligence-the case of autonomous driving. In *Proceedings of the 50th Hawaii International Conference on System Sciences*.
Quantization of Deep Neural Networks for Accurate Edge Computing

[15] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 2012. 3D convolutional neural networks for human action recognition. *IEEE transactions on pattern analysis and machine intelligence* 35, 1 (2012), 221–231.

[16] Fengfu Li, Bo Zhang, and Bin Liu. 2016. Ternary weight networks. *arXiv preprint arXiv:1605.04711* (2016).

[17] Zihao Liu, Xiaowei Xu, Tao Liu, Qi Liu, Yanzhi Wang, Yiyu Shi, Wujie Wen, Meiping Huang, Haiyuan Yuan, and Jian Zhuang. 2019. Machine vision guided 3d medical image compression for efficient transmission and accurate segmentation in the clouds. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 12687–12696.

[18] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016. Xnor-net: Imagenet classification using binary convolutional neural networks. In *European Conference on Computer Vision*. Springer, 525–542.

[19] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional networks for biomedical image segmentation. In *MICCAI*. Springer, 234–241.

[20] Chuck Rosenberg. 2013. Improving photo search: A step across the semantic gap. *Google Research Blog* (2013).

[21] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition. *arXiv preprint arXiv:1409.1556* (2014).

[22] Korsuk Sirinukunwattana, Josien PW Pluim, Hao Chen, Xiaojuan Qi, Pheng-Ann Heng, Yun Bo Guo, Li Yang Wang, Bogdan J Matuszewski, Elia Bruni, Urko Sanchez, et al. 2017. Gland segmentation in colon histology images: The glass challenge contest. *Medical image analysis* 35 (2017), 489–502.

[23] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: A simple way to prevent neural networks from overfitting. *The Journal of Machine Learning Research* 15, 1 (2014), 1929–1958.

[24] Peisong Wang, Qihao Hu, Yifan Zhang, Chunjie Zhang, Yang Liu, and Jian Cheng. 2018. Two-step quantization for low-bit neural networks. In *Proceedings of the IEEE Conference on computer vision and pattern recognition*. 4376–4384.

[25] Tianchen Wang, Xiaowei Xu, Jinjun Xiong, Qianjun Jia, Haiyuan Yuan, Meiping Huang, Jian Zhuang, and Yiyu Shi. 2020. Ica-unet: Ica inspired statistical unet for real-time 3d cardiac cine mri segmentation. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*. Springer, 447–457.

[26] Xiaowei Xu, Yukun Ding, Sharon Xiaobo Hu, Michael Niemier, Jason Cong, Yu Hu, and Yiyu Shi. 2018. Scaling for edge inference of deep neural networks. *Nature Electronics* 1, 4 (2018), 216–222.

[27] Xiaowei Xu, Qing Lu, Tianchen Wang, Yu Hu, Chen Zhuo, Jinglan Liu, and Yiyu Shi. 2018. Efficient hardware implementation of cellular neural networks with incremental quantization and early exit. *ACM Journal on Emerging Technologies in Computing Systems (JETC)* 14, 4 (2018), 1–20.

[28] Xiaowei Xu, Qing Lu, Tianchen Wang, Jinglan Liu, Cheng Zhuo, Xiaobo Sharon Hu, and Yiyu Shi. 2017. Edge segmentation: Empowering mobile telemedicine with compressed cellular neural networks. In *2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)*. IEEE, 880–887.

[29] Xiaowei Xu, Qing Lu, Lin Yang, Sharon Hu, Danny Chen, Yu Hu, and Yiyu Shi. 2018. Quantization of fully convolutional networks for accurate biomedical image segmentation. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 8300–8308.

[30] Xiaowei Xu, Tianchen Wang, Yiyu Shi, Haiyuan Yuan, Qianjun Jia, Meiping Huang, and Jian Zhuang. 2019. Whole heart and great vessel segmentation in congenital heart disease using deep neural networks and graph matching. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*. Springer, 477–485.

[31] Xiaowei Xu, Tianchen Wang, Jian Zhuang, Haiyuan Yuan, Meiping Huang, Jianzheng Cen, Qianjun Jia, Yuhao Dong, and Yiyu Shi. 2020. Imagechd: A 3d computed tomography image dataset for classification of congenital heart disease. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*. Springer, 77–87.

[32] Lin Yang, Yizhe Zhang, Jianxu Chen, Siyuan Zhang, and Danny Z Chen. 2017. Suggestive annotation: A deep active learning framework for biomedical image segmentation. In *International conference on medical image computing and computer-assisted intervention*. Springer, 399–407.

[33] Li Zhang, Haixin Ai, Wen Chen, Zimo Yin, Huan Hu, Junfeng Zhu, Jian Zhao, Qi Zhao, and Hongsheng Liu. 2017. CarcinoPred-EL: novel models for predicting the carcinogenicity of chemicals using molecular fingerprints and ensemble learning methods. *ACM J. Emerg. Technol. Comput. Syst.*, Vol. 1, No. 1, Article 1. Publication date: January 2021.