Hyperprogression after anti-programmed cell death ligand-1 therapy in a patient with recurrent metastatic urothelial bladder carcinoma following first-line cisplatin-based chemotherapy: a case report

This article was published in the following Dove Medical Press journal:
Drug Design, Development and Therapy

Shiyu Mao1,*
Junfeng Zhang1,*
Yadong Guo1,*
Ziwei Zhang1
Yuan Wu2
Wentao Zhang2
Longsheng Wang1
Jiang Geng1
Yang Yan1
Xudong Yao1

1Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai 200072, PR China;
2Department of Urology, Shanghai Tenth People’s Hospital, Anhui Medical University, Hefei 230032, PR China
*These authors contributed equally to this work

Background: Immune checkpoint blockade targeting programmed cell death ligand-1 (PD-L1)/programmed death-1 (PD-1) signaling was approved recently for locally advanced and metastatic urothelial bladder carcinoma (UBC). Some patients experience a very rapid tumor progression, rather than clinical benefit, from anti-PD-L1/PD-1 therapy.

Case presentation: A 58-year-old male diagnosed with non-muscle-invasive bladder cancer 3 years ago received transurethral resection of bladder tumor (TURBT) and intravesical chemotherapy. TURBT was repeated a year later for recurrent and progressive UBC. Following further disease progression, he received a radical cystectomy (RC), pathologically staged as T2bN2M0, and adjuvant cisplatin-containing combination chemotherapy. When his disease progressed to metastatic UBC, he was started on anti-PD-L1 monotherapy and experienced ultrarapid disease progression within 2 months; imaging scans ruled out pseudoprogression. We observed a fourfold increase in tumor growth rate, defined as the ratio of post- to pretreatment rates. Next-generation sequencing of formalin-fixed paraffin-embedded RC tissues showed MDM2 amplification without MDM4 amplification, EGFR aberrations, or DNMT3A alterations. Immunohistochemistry showed grade 2+ PD-L1 labeling intensity of the RC tissues, with 15%–25% and 5%–10% PD-L1 immunopositive tumor cells and tumor-infiltrating immune cells, respectively.

Conclusion: Even in cases with PD-L1-positive tumors, MDM2 gene amplification may result in failure of anti-PD-L1 immunotherapy and rapid tumor growth. Therefore, genomic profiling may identify patients at risk for hyperprogression before immunotherapy.

Keywords: urothelial bladder carcinoma, programmed cell death ligand-1, immune checkpoint blockade, hyperprogression, MDM2

Introduction

Although platinum-based combination chemotherapy often prolongs the survival of patients with locally advanced or metastatic urothelial bladder carcinoma (UBC), progression remains almost inevitable with a median overall survival of only 14 months in 2014.1 The recent US FDA approval of immune checkpoint inhibitors that target the programmed cell death ligand-1 (PD-L1)/programmed death-1 (PD-1) receptor axis has changed how advanced or metastatic UBC is managed.2 Monoclonal PD-L1 antibodies can revitalize and enhance anticancer immunity by preventing PD-L1 from binding to PD-1 receptors.3

PD-L1 antibody was confirmed to produce durable objective responses and to have good tolerability in patients with inoperable advanced or metastatic UBC,4–7 leading to
its approval for use in patients whose disease progressed during or within 12 months following neoadjuvant or adjuvant platinum-based chemotherapy. However, immunomodulatory therapies, such as PD-L1 immunotherapy, can produce opposing effects in a subset of patients. Indeed, there have been several recent reports of patients who experienced rapid tumor progression while on immune checkpoint blockade (ICB), consistent with ICB-promoted hyperprogression. Thus, there is a critical and urgent need to identify the predictors and mechanisms of such hyperprogression to prevent tragic adverse outcomes of ICB. A recent study showed an association between tumor hyperprogression and specific genomic alterations, including MDM2 family amplification and EGFR aberrations.

Here, we report the case of an adult male patient with recurrent metastatic UBC whose disease progressed following platinum-based chemotherapy and then hyperprogressed shortly after initiation of ICB. UBCs have been reported to have relatively high PD-L1 expression among all cancers, and elevated PD-L1 expression intensity has been related to a higher probability of clinical response. Thus, we investigated the genomic profile and PD-L1 protein expression of the patients’ primary tumor following radical cystectomy (RC).

Case presentation
Patient characteristics and history
A 55-year-old man presented with left hip pain in October 2014. An initial workup revealed a left posterior mass in his bladder. Transurethral resection of bladder tumor (TURBT) pathology indicated stage-T2aG3 UBC. After the TURBT procedure, he began a 12-month course of intravesical instillation of epirubicin chemotherapy. However, 14 months after the resection surgery, a cystoscopy examination revealed bladder tumor recurrence. TURBT pathology indicated that the recurrent tumor was stage T1G3. The patient then received an additional 12-month course of adjuvant intravesical epirubicin chemotherapy instillations.

Disease progression was detected 11 months later, and TURBT pathology indicated that the advancing lesion was a stage T2G3 N0 UBC. He then received a RC, and the removed tumor was pathologically staged as T2bN2M0. Subsequently, he was treated with adjuvant cisplatin-containing combination chemotherapy for 3 months.

Twelve months after the RC, follow-up chest radiography and computer tomography (CT) revealed metastases in the right lumbar muscles, left adrenal gland, and lungs (Figure 1). In addition to bladder cancer, patient had no other history of cancer. The patient’s right lumbar mass biopsy puncture results indicated urothelial carcinoma. The patient was started on PD-L1 blockade monotherapy on December 19, 2017. Chest radiography and a full-body CT on January 15, 2018 showed pronounced enlargement of a left lung metastasis (1,004% increase from preimmunotherapy size) and progression of the right lumbar muscle and left adrenal gland metastases, as well as new multiple lymph node metastases involving a mediastinal, a left supraclavicular, and two hilar lymph nodes (Figure 1). He had developed a progressively enlarging right back mass with localized swelling and persistent severe pain, and was therefore admitted to our hospital.

In the hospital, while still receiving PD-L1 blockade monotherapy, the patient experienced unusually rapid disease progression demonstrated in repeated CT scans to rule out pseudoprogression. The patient terminated the immunotherapy after receiving two cycles of PD-L1 blockade treatment due to his rapid disease progression. A full-body CT, upper abdomen MRI, and positron emission tomography-CT on January 29, 2018 showed rapid progression of the metastatic lung lesions (1,078% increase from pre-immunotherapy cumulative size) and continued growth of the right lumbar muscle and left adrenal metastases, as well as the emergence of three liver metastases and at least seven bone metastases. Upon discovery of these changes, the patient’s treatment plan was changed to cisplatin/gemcitabine chemotherapy. One month after the patient began cisplatin/gemcitabine chemotherapy, we observed drastic reductions in lesion size (Figure 1).

To evaluate the patient’s treatment responses, we calculated tumor growth rate (TGR) vis-à-vis comparisons of tumor volume over time. TGR ratio was defined as the ratio of tumor volume growth change after, relative to that observed prior to, the treatment of interest. Comparing the TGR for the 8-week period following ICB to that for the 1-week period prior to ICB, we determined that the patient had a TGR ratio of 4.0, reflecting a fourfold increase in growth rate in association with ICB onset, meeting the criteria for hyperprogression (Figure 2). We employed Kato et al’s definition of hyperprogression criteria as follows: time-to-treatment failure (TTF) <2 months; increase in tumor burden >50%; and a >2-fold increase in TGR. All procedures performed in studies involving human participants were conducted in accordance with the ethical standards of Shanghai Tenth People’s Hospital (SHSY-IEC-4.0/17-16/01) and with the 1964 Helsinki declaration and its amendments or comparable ethical standards. Written informed consent was obtained from the patient to have the case details and any accompanying images published. The publication of the case details was approved by ethics committee of Shanghai Tenth People’s Hospital.
Assessments
Formalin-fixed paraffin embedded RC tissue samples were obtained from the Department of Pathology, Shanghai Tenth People’s Hospital. The samples were subjected to next-generation sequencing (NGS) and immunohistochemistry (IHC) with the aim of identifying possible predictive factors for immunotherapy-triggered hyperprogression. NGS was performed with a 499-gene panel assay (Table S1).
The panel included sequences for multiple gene variants previously suggested to be associated with hyperprogression including MDM2 family amplification, EGFR aberration, and DNMT3A alteration sequences. The mean sequencing coverage depth exceeded 15,000×. The NGS method employed revealed copy number alterations, gene rearrangements, and somatic mutations with 95% specificity and >90% sensitivity. The presence of ≥3 gene copies was considered gene amplification. IHC carried out with monoclonal rabbit anti-PD-L1 antibody (clone MXR003, working solution for 15 hours; Fujian Maixin, Fujian, PR China), goat anti-rabbit and -mouse secondary antibody (PV-6000, working solution for 1 hour; ZSGB-BIO, Beijing, PR China), and horse-radish peroxidase to enhance visualization (ZLI-9017; ZSGB-BIO). IHC-AP cell membrane staining intensity was graded as follows: 0, none; 1+, weak or incomplete; 2+, weak to medium; 3+, medium to strong and complete.

Predictors of hyperprogression

NGS showed that the RC specimen from the present case had several malignancy-related alterations, including MDM2 amplification, a KRAS mutation, and a KMT2D mutation. It was not harboring an MDM4 amplification, EGFR aberrations, or DNMT3A alterations. The genomic alterations found are reported in Table 1 with descriptive information, including abundance, location, base and amino acid changes, and type of mutation.

To calibrate PD-L1 expression relative to the proportion of tumor cells present in the RC specimen, alternate sections were subjected to H&E staining and anti-PD-L1 IHC prior to evaluating PD-L1 expression. In the H&E-stained sections (Figure 3A), we observed a 40% tumor cell ratio; >100 PD-L1 immunopositive tumor cells were examined under a light microscope. PD-L1 staining was localized primarily to cell membranes, with some non-specific cytoplasm staining. Tumor-associated immune cells had PD-L1 immunopositive cytoplasm and membranes. Both tumor cells and tumor-infiltrating immune cells had grade 2+ PD-L1 staining intensity. We found that 15%–25% and 5%–10% of tumor cells and tumor-infiltrating immune cells, respectively, showed PD-L1 immunopositivity (Figure 3B).

Discussion

Blockade of the PD-1/PD-L1 pathway has produced durable clinical responses for some solid tumors and anti-PD-L1 agents have demonstrated a manageable safety profile and favorable clinical activity in patients with advanced, previously treated UBC.2,5–7 Currently, it is still a challenge to select the patients most likely to respond to

Figure 2 Tumor metastasis changes over time. The 0-month time point represents the start of PD-L1 blockade treatment. Abbreviation: PD-L1, programmed cell death ligand-1.
Table 1: Summary of NGS-revealed gene mutations

Gene	Location	Base mutation	Amino acid change	Abundance	Mutation type
KRAS	chr12:25398284	c.35G>A	p.Gly12Asp	22.82%	Missense
KMT2D	chr12:49426895	c.11593C>T	p.Gln386Sel	21.78%	Missense
MDM2	–	–	–	11.92 copies	Amplification
SPEN	chr1:16264490	c.10693C>T	p.Arg356Ter	1.26%	Nonsense
NOTCH2	chr1:120462059	c.5657G>A	p.Arg1886His	1.09%	Missense
AR	chrX:6676516	c.528C>A	p.Ser176Arg	95.11%	Missense
MUTYH	chr1:45798136	c.11593C>T	p.Val239Ile	1.52%	Missense
DDR2	chr1:162748503	c.2417G>A	p.Arg806Gln	1.43%	Missense
TCF7L2	chr10:114910785	c.904C>T	p.Arg1886His	1.09%	Missense
PTEN11	chr1:121926915	c.1535G>A	p.Arg512Gln	1.09%	Missense
IDH2	chr15:90630711	c.775G>A	p.Asp259Asn	1.19%	Missense
IGF1R	chr15:99465453	c.2278G>A	p.Ala760Thr	1.32%	Missense
PLCG2	chr16:81902844	c.505A>G	p.Ile169Val	46.35%	Missense
ARX1N2	chr17:63554353	c.386G>A	p.Arg1886His	1.08%	Missense
SMARCA4	chr19:11100064	c.1190G>A	p.Arg1886His	1.16%	Missense
LRP1B	chr2:141283458	c.7981G>A	p.Ala760Thr	1.32%	Missense
CASP8	chr2:202136289	c.533C>A	p.Leu169Val	46.35%	Missense
BAPI	chr3:52442077	c.272G>T	p.Cys91Phe	15.58%	Missense
EPHA5	chr4:66231683	c.2017T>A	p.Ser673Thr	46.75%	Missense
TET2	chr4:106155794	c.695A>G	p.Gln232Arg	46.42%	Missense
INP4B	chr4:14304366	c.2050G>A	p.Val848Ile	27.15%	Missense
FAT1	chr4:187524812	c.10868C>T	p.Arg512Gln	1.09%	Missense
FAT1	chr4:18754147	c.6265G>A	p.Arg1886His	1.09%	Missense
PDGFRB	chr5:149501461	c.2326G>A	p.Asp776Asn	50.00%	Missense
ARID1B	chr6:157405827	c.2069C>T	p.Asp776Asn	50.00%	Missense
ETV1	chr7:14027789	c.55G>A	p.Gly19Arg	45.92%	Missense
MAGI2	chr7:78130951	c.550G>A	p.Gly19Arg	45.92%	Missense
KMT2C	chr7:151860428	c.10234T>A	p.Arg3412Trp	1.07%	Missense
KAT6A	chr8:41906155	c.341G>C	p.Gly114Ala	4.56%	Missense
PREX2	chr8:69033224	c.3664C>A	p.Pro122Thr	50.00%	Missense
GID4	chr17:17942909	c.131G>C	p.Arg44Pro	12.48%	Missense
SOX10	chr22:38370185	c.718A>C	p.Thr240Pro	10.47%	Missense

Abbreviation: NGS, next-generation sequencing.

Treatment with immunotherapeutic agents. Robertson et al reported that clustering by mRNA, lncRNA, and miRNA expression converged to identify subsets with differential epithelial–mesenchymal transition status, carcinoma-in-situ scores, histologic features, and survival in bladder cancer. Their analyses identified five expression subtypes that may stratify response to different treatments. Among these, mRNA luminal-papillary subtype and basal-squamous subtypes show increased expression of CD270 (PD-L1) and PD-1 immune markers, which correspond to lncRNA 1.

Figure 3: Anti-PD-L1 immunohistochemistry of bladder cancer tissues. Notes: (A) H&E stained tumor section with 40% tumor cell proportion. (B) Image of IHC PD-L1 labeled section subjected to PD-L1 percentage scoring. The percentages of tumor cells and tumor-infiltrating immune cells are 15%–25% and 5%–10%, respectively.

Abbreviations: PD-L1, programmed death ligand-1; IHC, immunohistochemistry.
and miRNA 2 subtypes, lncRNA 4 and miRNA 4 subtypes, respectively. These two subtypes may serve as predictive markers for response to immune checkpoint therapy. However, the occurrence of immunotherapy-induced hyperprogression in some patients with various cancer types has drawn attention to a critical potential risk of immunotherapy. Reports of UBC hyperprogression with anti-PD-1 antibody treatment specifically are rare. To the best of our knowledge, the presently reported circumstance of dramatic growth and metastatic spreading of neoplastic lesions following anti-PD-L1 antibody initiation in an MDM2-amplified patient with UBC is quite rare. The rapid shrinking of multiple metastatic lesions, especially in the lungs, observed during the subsequent cisplatin-gemcitabine treatment indicated that the ICB-associated progression observed in this patient was not pseudoprogression but rather true hyperprogression.

Predictors of and mechanisms underlying ICB-triggered hyperprogression remain to be elucidated. The limited information available to date has implicated two clinical variables, namely older age and regional recurrence in an irradiated field, and a handful of genomic alterations, namely MDM2/4 amplification, EGFR aberrations, and DNMT3A alterations, in hyperprogression. In a study of 131 patients, encompassing 21 tumor types, treated with PD-1/PD-L1 pathway blockade, without genomic profiling, Champiat et al observed rapid progression in 12 patients (9%), including 2/8 patients (25%) with bladder cancer. In a study of 155 patients with diverse cancers, Kato et al reported that 49 patients (31.6%) had poor clinical outcomes of immunotherapy, defined as a TTF <2 months. Molecular profiling of Kato et al’s patient group showed that those with a poor clinical outcome harbored MDM2/4, EGFR, and/or DNMT3A alterations, each of which emerged as an independent predictor of a poor outcome. Six patients had MDM2 or -4 amplification, and all of them experienced hyperprogression, including one patient with bladder cancer harboring an MDM2 amplification.

In the presently reported case, this patient was only 58 years old and had not received radiation therapy (RT). Upon starting anti-PD-L1 antibody treatment, the patient experienced rapid clinical deterioration with a marked acceleration in tumor growth (fourfold increase in progression rate and TTF of 1.4 months) accompanied by the emergence of new liver and bone metastases. IHC revealed PD-L1 expression in up to a quarter of RC tumor cells and up to a tenth of tumor-infiltrating immune cells, which suggests that PD-L1 immunopositivity is not a reliable indicator of immunotherapy sensitivity. Retrospective genomic profiling by NGS aimed at identifying hyperprogression predictors and clues regarding its mechanism showed MDM2 amplification without accompanying MDM4 or ERGR alterations. Similarly, Kriegmair et al found that patients with low MDM4 and high MDM2 expression tended to have poor muscle-invasive bladder cancer outcomes. These data point to MDM2 amplification as a predictive biomarker candidate for rapid ICB-triggered cancer progression.

Normally, PD-1/PD-L1 pathway activation is associated with anti-tumor immunity evasion that enables immunogenic tolerance. However, unfortunately, in some patients with UBC, the PD-1/PD-L1 pathway appears to have been linked with oncogenic signaling that triggers tumor proliferation and progression. Melanoma cell-intrinsic functions of PD-1/PD-L1 signaling might modulate several alternative signaling networks, including some that favor tumor growth. Such an effect may be secondary to an accumulation of oncogenes in tumor cells. Because our patient’s tumor had MDM2 amplification, in the absence of a p53 mutation, it may be that amplification of MDM2 inhibited the wild-type p53 tumor suppressor. Indeed, antigen-specific CD4+ T-cell responses have been reported to down-modulate tumor suppressor p53 through T-cell receptor signaling by decreasing expression of p53 while escalating expression of MDM2, the protein product of which mediates posttranscriptional inactivation of p53. In addition to T-cell receptor signaling increasing interferon-γ suppression of the PD-1 pathway – which activates JAK-STAT signaling thereby increasing interferon regulatory factor-8 expression – it may also induce MDM2 expression.

Immune checkpoints occupy crucial regulatory pathways for the maintenance of immune homeostasis. Numerous immune cell subsets express PD-1 in tumor microenvironments, including macrophages, T cells, B cells, natural killer cells, and dendritic cells. Thus, ICB could trigger compensatory mechanisms and adaptive immune resistance, enabling an acceleration of tumor growth.

If the presently observed hyperprogression phenomenon is specific to anti-PD-1/PD-L1 monotherapy, it might be solved with mechanistically sound combination therapies. In metastatic castration-resistant prostate cancer mouse models, intratumoral myeloid-derived suppressor cells inhibited CD4+ and CD8+ T-cell proliferation, and PD-1/ PD-L1 blockade combined with myeloid-derived suppressor cell-targeted therapies yielded excellent synergistic efficacy against ICB resistance. Indeed, RT has been reported to enhance T-cell recognition of malignant cells through induction of MHCI expression and neoantigen generation. Meanwhile, PD-L1 has been found to be upregulated after RT, and combining RT with PD-L1 blockade has been found to enhance anti-tumor treatment effects. Likewise, chemotherapy has been reported to augment intra-tumor
CD8+ T-cell infiltration, consistent with the notion that immunogenic chemotherapies could increase the anticancer efficacy of ICB.32–34 These studies support the strategy of developing innovative combination therapies to overcome undesirable tumor responsivity to PD-1/PD-L1 blockade.

In summary, genomic testing of malignant tumors prior to treatment, preferably in an early stage, may reveal which patients harbor genetic alterations associated with hyperprogression. The present case indicates that patients with MDM2 amplification in particular should not receive anti-PD-L1 monotherapy, even in cases where tumor cells or tumor-associated immune cells are found to express PD-L1. Large-cohort studies are needed to confirm this link. ICB-triggered hyperprogression may be avoided with a combined treatment.

Acknowledgments
This study was funded by the Natural Science Foundation of China (grant number 81472389) and Shanghai Health and Family Planning Commission Key Project (grant number 20124008). The abstract of this paper was presented at the Global Congress on Bladder Cancer 2018 as a poster presentation with interim findings. The poster’s abstract was published in Abstract book (ISBN 9789462210165) and as an e-poster online: https://abstracts.mirrorsmed.org/abstracts/hyperprogression-after-immunotherapy-patient-recurrent-and-metastatic-urothelial-bladder.

Author contributions
YY and XY designed and guided the present study. SM, JZ, and YG collected the study data. SM, YW, ZZ, and WZ analyzed and interpreted the data. LW, JZ, and YG made figures and tables. SM was a major contributor in writing the manuscript. JG, YY, and XY revised the manuscript. All authors contributed to data analysis, drafting and revising the article, gave final approval of the version to be published, and agree to be accountable for all aspects of the work.

Disclosure
The authors report no conflicts of interest in this work.

References
1. Bellmunt J, Orsola A, Leow JJ, et al. Bladder cancer: ESMO practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25(Suppl 3):iii40–iii48.
2. Balar AV, Galsky MD, Rosenberg JE, et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet. 2017;389(10064):67–76.
3. Stewart R, Morrow M, Hammond SA, et al. Identification and characterization of MEDI4736, an antagonistic anti-PD-L1 monoclonal antibody. Cancer Immunol Res. 2015;3(9):1052–1062.
4. Rosenberg JE, Hoffman-Censits J, Powles T, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387(10031):1909–1920.
5. Powles T, Eder JP, Fine GD, et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 2014;515(7528):558–562.
6. Powles T, O’Donnell PH, Massard C, et al. Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma: updated results from a phase 1/2 open-label study. JAMA Oncol. 2017;3(9):e172411.
7. Massard C, Gordon MS, Sharma S, et al. Safety and efficacy of durvalumab (MEDI4736), an anti-programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J Clin Oncol. 2016;34(26):3119–3125.
8. Syed YY. Durvalumab: first global approval. Drugs. 2017;77(12):1369–1376.
9. Saida-Bouzid E, Defaucheux C, Karabakjian A, et al. Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Ann Oncol. 2017;28(7):1605–1611.
10. Chubachi S, Yasuda H, Irie H, et al. A case of non-small cell lung cancer with possible “disease flare” on nivolumab treatment. Case Rep Oncol Med. 2016;2016:1–3.
11. Yoshida T, Furuta H, Hida T. Risk of tumor flare after nivolumab treatment in patients with irradiated field recurrence. Med Oncol. 2017;34(3):3434.
12. Alexander GS, Palmer JD, Tuluc M, et al. Immune biomarkers of treatment failure for a patient on a phase I clinical trial of pembrolizumab plus radiotherapy. J Hematol Oncol. 2016;9(1):96.
13. Champiat S, Dercle L, Ammari S, et al. Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/ PD-L1. Clin Cancer Res. 2017;23(8):1920–1928.
14. Kato S, Goodman A, Walavalkar V, Barkauskas DA, Sharabi A, Kurzrock R. Hyperprogressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate. Clin Cancer Res. 2017;23(15):4242–4250.
15. Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol. 2008;8(6):467–477.
16. Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–1639.
17. Ferris RL, Blumenschein G, Fayette J, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375(19):1856–1867.
18. Robertson AG, Kim J, Al-Ahmadie H, et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell. 2018;174(4):1033.
19. Kriegmair MC, Balk M, Wirtz R, et al. Expression of the p53 inhibitors MDM2 and MDM4 as outcome predictor in muscle-invasive bladder cancer. Anticancer Res. 2016;36(10):5205–5214.
20. Kelffel S, Posch C, Barthel SR, et al. Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth. Cell. 2015;162(6):1242–1256.
21. Wade M, Li YC, Wali GM. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer. 2013;13(2):83–96.
22. Watanabe M, Moon KD, Vacchio MS, Hodes RJ. Downmodulation of tumor suppressor p53 by T cell receptor signaling is critical for antigen-specific CD4+ T cell responses. Immunity. 2014;40(5):681–691.
23. Peng W, Liu C, Xu C, et al. PD-1 blockade enhances T-cell migration to tumors by elevating IFN-γ-inducible chemokines. Cancer Res. 2012;72(20):5209–5218.
24. Schindler C, Levy DE, Deckter T. JAK-STAT signaling: from interferons to cytokines. J Biol Chem. 2007;282(28):20059–20063.
25. Waight JD, Netherby C, Hensen ML, et al. Myeloid-derived suppressor cell development is regulated by a STAT/IRF-8 axis. J Clin Invest. 2013;123(10):4464–4478.
26. Zhao Y, Yu H, Hu W. The regulation of MDM2 oncogene and its impact on human cancers. Acta Biochim Biophys Sin (Shanghai). 2014;46(3):180–189.
27. Gordon SR, Maute RL, Dulken BW, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545(7655):495–499.
28. Lu X, Horner JW, Paul E, et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature. 2017;543(7647):728–732.
29. Newcomb EW, Demaria S, Lukyanov Y, et al. The combination of ionizing radiation and peripheral vaccination produces long-term survival of mice bearing established invasive GL261 gliomas. Clin Cancer Res. 2006;12(15):4730–4737.
30. Dovedi SJ, Adlard AL, Lipowska-Bhalla G, et al. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res. 2014;74(19):5458–5468.
31. Walshaw RC, Honeychurch J, Illidge TM, Choudhury A. The anti-PD-1 era – an opportunity to enhance radiotherapy for patients with bladder cancer. Nat Rev Urol. 2018;15(4):251–259.
32. Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell. 2015;28(6):690–714.
33. Dosset M, Vargas TR, Lagrange A, et al. PD-1/PD-L1 pathway: an adaptive immune resistance mechanism to immunogenic chemotherapy in colorectal cancer. Oncoimmunology. 2018;7(6):e1433981.
34. Song W, Shen L, Wang Y, et al. Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap. Nat Commun. 2018;9(1):2237.
Supplementary material

Table S1: Gene detection list

ABL1	ABL2	ACVR1	ACVR1B	AGO2	AKT1	AKT2	AKT3	ALK	ALOX12B
AMER1	AR	APOC	ANKRD1	ARAF	ARFRP1	ARID1A	ARID1B	ARID2	ARID5B
ASXL1	ASXL2	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXIN2	AXL
B2M	BAPI	BARD1	BCL10	BCL2	BCLL1	BCLL1I	BCL2L2	BCL6	BCO
BCORL1	BIRC3	BLM	BMP1A	BRAF	BRACA1	BRCA2	BRD3	BRD4	BRIP1
BTG1	BTK	C1orf30	CARD1	CALR	CARM1	CASP8	CBFB	CBL	CCND1
CCND2	CCND3	CCNE1	CD274	CD276	CD74	CD79A	CD79B	CDC42	CDC73
CDH1	CDK12	CDK4	CDKN1A	CDK6	CDKN2A	CDKN1B	CDK8	CDKN2B	CIC
CEBPA	CHD2	CHD4	CHEK1	CHEK2	CDKN2C	CREBBP	CRKL	CFL2	CSDE1
CFTR	CFS3R	CTCF	CTNNB1	CTNN1	CTX4	CYLD	CYSLTR2	DAXX	DDR2
Dicer1	DNMT3B	Dnajb1	DNMT1	DNMT3A	DIS3	DOT1L	DROSHA		
DUSP4	E2F3	EED	EGF	EGF	ELF1AX	ELF4	ELF3	EML4	EP300
EPAS1	EPAC1	EPHA3	EPHA5	EPHA7	EPB1	ERBB2	ERBB3	ERBB4	ERCC1
ERCC2	ERCC3	ERCC4	ERCC5	ERF	ERG	ERF2	ESI1	ETV1	ETV6
EZH2	FAM64C	FAM8A	FAM175A	FANCA	FANCDD	FANCE	FANCC	FANCF	FANCG
FANCL	FAS	FAT1	FBXW7	FGFI	FGFI1	FGFI2	FGFI3	FGFRS	FLI3
FGFR	FGFR6	FGFR1	FGFR2	FGFR3	FGFR4	FLCN	FH	FLI1	FLI2
FOLR3	FOX4	FOXL2	FOXO1	FOXP1	FRS2	FUBP1	FYN	GABRA6	GATA1
GATA2	GATA3	GATA4	GATA6	GDI	GLI	GNAI1	GNAI2	GNAQ	GNAS
G0PC	GRP1	GREM1	GRIN2A	GRM3	GRK3B	GSTA1	H3F3A	H3F3B	HAC1
HDAC4	HIST1H1C	HGF	HIST1H3B	HLA-A	HLA-B	HIST1H2B	HNF1A	HIST1H3G	HOXB13
HRAS	HSP90AA1	HSD3B1	ID3	IDH1	IDH2	IFNGR1	IGF1	IGF1R	IGF2
IKBKE	IZF1	IL10	IL7R	INHBA	INPP4A	INPP4B	INPL1	INSR	IFR2
IRE1	IRE1	IRE2	JAK1	JAK2	JAK3	JUN	KAT6A	KDM5A	KDM5C
KDM6A	KDR	KEAP1	KEL	KIT	KLF4	KHL6	KMT2A	KMT2B	KMT2C
KMT2D	KNSTRN	KRAS	LATS1	LATS2	LMO1	LRP1B	LRK2	LYT2	LZTR1
MAGI2	MALT1	MAP2K1	MAP2K2	MAP2K4	MAP3K1	MAP3K13	MAPK1	MAP3K14	MAP3K
MAX	MCL1	MDC1	MDM2	MDM4	MED12	MEF2B	MEN1	MET	MGA
MITF	MLH1	MPL	MRH1A	MSH2	MSH3	MSH6	MSI2	MST1R	MTO1
MUTHY	MYC	MYCL1	MYCN	MYD88	MYD101	NAT2	NBN	NCOA3	NCOA1
NERG1	NF1	NF2	NFE2L2	NFKB1A	NCK2-1	NCH1	NOTCH1	NOTCH2	NOTCH4
NPM1	Nras	Nsd1	NTRK1	NTRK2	NTRK3	NUFL2	NUPT1	OPRM1	PAK1
PAK1	PAK2	PAK2B	PARK2	PARP2	PAR2	PAX5	PBRM1	PDCD1	PDK1
PDGFRA	PDGFRB	PDGFK1	PGR	PIK3CA	PIK3CB1	PIK3CB2	PIK3CB3	PIK3CG	PIK3CG2
PIK3CB	PIK3CD	PIK3CG	PIK3RI	PIK3R2	PIK3R3	PIK3R1A	PIK3R1B	PIK3R1C	PIK3R1D
PIM5	PNR1C	POLD1	PTPN11	POL	PPAR	PPP1DA	PPP1DC	PRDM1	PRDM14
PREX2	PRKAR1A	PRKCI	PRKDK1	PRKDC	PRSS8	PTC1H1	PTC2H1	PTPRD	PTPR5
PTPR5	PTPRT	QKI	RASB5	RAC1	RAC2	RAD1	RAD50	RAD51	RAD51B
RADS1	RADS1	RADS2	RADS4L	RAF1	RANBP2	RARA	RASA1	RASB	RB1
RECQL	RECQL4	RET	RFTD2	RHEB	RHA	RICTOR	RIT1	RNF43	
ROCK1	ROS1	RPTOR	RUNX1T1	RRAGC	RPS6KB1	RPS6KA4	RRA2	RRM1	RTEL1
RUNX1	RRXRA	RYBP	SDHAF2	SDHA	SDHB	SLC19A1	SDHC	SDHD	SETD2
SFTP	SMARCA4	SFB2	SMARCB1	SHOC2	SHO1	SMARCD1	SLT2	SLX4	SMAD2
SMAD3	SNCAP	SMAD4	SOS1	SMO	SOS1	STAT5A	SOX10	SOX17	SOX2
SOX9	SOX5	STEN	STK11	SPO	SPTA1	SPTA1	SRC	SRC5	STAG2
STAT3	SUZ12	STAT4	SYK	TAF1	TAP1	TAP2	TBX3	TCEB1	TC
TES	TCF7L2	TERT	TGFBR1	TET1	TET2	TGFBR2	TOP1	TMEM127	TMRPSS2
TNAIP3	TNFRSF14	TOP2A	TPS1	TPS63	TPS3BP1	TRAF7	TRAF2	TSC1	TSC2
TSHR	TMS	U2AF1	VEGF	VHL	WHSC1	WHSC1L1	WISP3	WT1	WWTR1
XAP	XPO1	XRCC2	YAP1	YES1	ZBTB2	ZFHX3	ZNF217	ZNF703	
