Changes in 3H-Spiperone, 3H-WB 4101 and 3H-Dihydroalprenolol Bindings to Brain Membranes Produced by Postnatal Pretreatment with Chlorpromazine in Adult Rats

Tetsu HAYASHI, Mineo KUNIHARA and Sakutaro TADOKORO
Behavioral Research Institute, Gunma University School of Medicine, Maebashi 371, Japan
Accepted June 3, 1985

Abstract—In order to elucidate possible mechanisms of the learning deficit produced by postnatal pretreatment with chlorpromazine (CPZ), changes in catecholamine receptors in the rat brain were investigated. Male neonates of Wistar strain rats were given s.c. 2 mg/kg/day of CPZ for 7 successive days from days 6 to 12 after birth. Effect of the postnatal pretreatment with CPZ on saturation constants for specific bindings of 3H-spioperone, 3H-WB 4101 and 3H-dihydroalprenolol, respectively, in 8 brain regions was investigated at 60 days after birth. Significant decreases in B_{max} values of 3H-WB 4101 binding sites in the cortex, thalamus, hypothalamus, mid brain and medulla oblongata/pons and decreases in K_d values of the binding sites in thalamus, hypothalamus and mid brain were observed in CPZ-pretreated rats when compared with corresponding B_{max} and K_d values obtained in saline-pretreated rats. Furthermore, significant decreases in both B_{max} and K_d values of 3H-DHA binding sites in the thalamus were detected in CPZ-pretreated rats when compared with those obtained in saline-pretreated rats. However, no alterations in 3H-spioperone binding sites in all brain regions were found between CPZ- and saline-pretreated rats. These results suggest that the learning deficit observed in CPZ-pretreated rats may be produced by a functional disorder of catecholaminergic, in particular α_1-noradrenergic neurons in the brain.

Previously, we reported that postnatal pretreatment with chlorpromazine (CPZ) frequently produced a deficit in discriminated lever-press avoidance learning after maturation in rats (1-4). In CPZ-pretreated animals, hyperirritability was observed showing unstable lever-pressing, vocalization, running or hopping and sometimes biting the grids in the experimental chamber when foot shock was delivered. However, when shock intensity was diminished, the lever-pressing was stabilized, and the acquisition processes of the avoidance learning were rather improved. Furthermore, in CPZ-pretreated animals, hypersusceptibility to several psychotropic drugs, such as methamphetamine or CPZ, was observed. These results suggested the possibility that functional disorder of catecholaminergic neurons might be implicated in the mechanisms underlying the learning deficit. However, details in the mechanisms of the learning deficit have not been elucidated.

The present study was designed to elucidate possible mechanisms of the learning deficit on the bases of receptor binding experiments.

Materials and Methods
Animals and drug treatment
Forty-eight male neonates obtained by 2 matings of 5 females with 2 male Wistar strain rats, which were supplied by the Institute of Experimental Animal Research of the Gunma University School of Medicine, were used. Twenty-four rats were given s.c. 2 mg/kg/day of CPZ (Contomin* Inj., Takeda) for 7 successive days from 6 to 12
days after birth, and the other 24 rats were given s.c. saline solution under the same conditions. Doses were made up to the volume of 1 ml/kg of body weight by diluting chlorpromazine hydrochloride with saline solution.

Groups of 5 or 6 animals were housed in stainless steel wire mesh cages of 38(D) x 25(W) x 20(H) cm after weaning at 21 days of age and had free access to a solid diet of MF (Oriental Yeast Co., Tokyo) and tap water. The animals were kept in a room at 24±2°C with a 12 hr light-dark cycle (fluorescent illumination on 7:00–19:00 hr). However, the humidity was not controlled.

Receptor binding

3H-Spiperone (SPP) binding assay: The animals were killed by decapitation at 60 days after birth, and brains were rapidly removed. Each brain was divided into 8 regions: the cerebral cortex, striatum, hippocampus, hypothalamus, thalamus, midbrain, medulla oblongata/pons and cerebellum according to the method of Glowinski and Iversen (5) with a minor modification. 3H-SPP (18 Ci/mmol, Amersham Japan) binding tests to these regions were performed by the method of Usdin et al. (6). Fresh tissues were homogenized in 50 mM Tris-HCl buffer (pH=7.7) using an ultrasonic homogenizer (US-150, Nissei Co., Ltd., Tokyo) and then centrifuged at 50,000 g for 20 min. Each of the resultant pellets was resuspended in 50 mM Tris-HCl buffer (pH=7.7) and centrifuged again at 50,000 g for 20 min. Finally, the pellet was resuspended in 50 mM Tris-HCl buffer (pH=7.1) containing 0.1% ascorbic acid. The reaction mixture (1 ml) containing the membrane suspension (about 0.5 mg protein), 3H-SPP (final concentrations, 0.11–2 nM) and d-Ala2-Enkephalinamide (final concentration, 1 nM) was incubated at 37°C for 20 min. Then the mixture was filtered through a Whatman GF/B filter under vacuum. The filter was rinsed three times with 5 ml ice cold Tris-HCl buffer (pH=7.7).

3H-WB 4101 binding assay

3H-WB 4101 {2-[(2′,6′-dimethoxy)phenoxyethylamino]methyl benzodioxan} (27 Ci/mmol, Amersham Japan) binding was performed by the method of U'Prichard et al. (7). Fresh tissues were homogenized in 50 mM Tris-HCl buffer (pH=7.7) using the ultrasonic homogenizer, and then each membrane suspension obtained was centrifuged at 50,000 g for 20 min. The resulting pellet was resuspended in the same buffer and centrifuged as before. The reaction mixture (1 ml) consisted of the membrane suspension (about 0.5 mg protein), 3H-WB 4101 (final concentrations, 0.11–2 nM) and phentolamine (final concentration, 0.5 mM). The mixture was incubated at 25°C for 20 min and then filtered through a Whatman GF/B filter under vacuum. The filter was rinsed three times with 5 ml ice cold Tris-HCl buffer (pH=7.7).

3H-dihydroalprenolol binding assay

3H-DHA (44 Ci/mmol, Amersham Japan) binding was performed by the method of Bylund and Snyder (8). Fresh tissues were homogenized in 50 mM Tris-HCl buffer (pH=8.0) and centrifuged at 50,000 g for 20 min. The pellet obtained was rehomogenized in the same buffer and centrifuged as before. The reaction mixture (1 ml) consisted of the membrane suspension (about 0.5 mg protein), 3H-DHA (final concentrations, 0.11–2 nM) and propranolol (final concentration, 10 μM). The mixture was incubated at 23°C for 20 min and was then filtered through a Whatman GF/B filter under vacuum. The filter was rinsed three times with 5 ml ice cold Tris-HCl buffer (pH=8.0).

Kd and Bmax values were determined by Scatchard analysis only for each case where significant difference in specific binding was observed between CPZ- and saline-pretreated rats. Protein concentration was determined by the method of Lowry et al. (9).

Statistical analysis

Differences between groups were assessed statistically by one way ANOVA followed by Student's t-test. They were considered to be significant when P was equal or less than 0.05.

Results

There were no significant differences in specific bindings of 3H-SPP in all brain regions between CPZ- and saline-pretreated rats. However, as shown in Table 1, significant
Table 1. Effects of postnatal pretreatment with chlorpromazine on specific bindings of 3H-sperone, 3H-WB 4101 and 3H-DHA in rat brain

	Cerebellum	Medulla +pons	Mid brain	Thalamus	Hypothalamus	Hippocampus	Striatum	Cortex
Saline-pretreated	14.1±3.7	12.8±5.6	33.6±4.3	44.9±5.5	61.2±3.9	35.6±3.5	268.6±11.8	97.1±4.2
CPZ-pretreated	15.5±3.8	10.5±3.3	33.4±4.9	45.8±5.6	55.0±3.3	36.8±7.3	250.2±17.1	94.1±6.1

	Cerebellum	Medulla +pons	Mid brain	Thalamus	Hypothalamus	Hippocampus	Striatum	Cortex
Saline-pretreated	31.1±3.2	39.4±2.3	44.5±1.2	54.5±3.0	47.4±2.3	88.4±4.9	41.7±3.8	70.4±4.0
CPZ-pretreated	31.7±3.1	30.6±0.9***	34.0±2.1***	45.2±1.8**	36.1±2.4***	84.5±4.8	33.5±2.2	54.5±4.0*

	Cerebellum	Medulla +pons	Mid brain	Thalamus	Hypothalamus	Hippocampus	Striatum	Cortex
Saline-pretreated	14.1±2.6	16.1±2.2	17.4±2.9	17.9±2.8	22.7±2.8	34.0±4.1	35.4±3.8	33.2±1.7
CPZ-pretreated	15.8±2.6	12.9±1.9	14.5±1.6	9.6±1.5**	17.6±3.6	28.0±1.1	35.0±9.6	33.4±4.6

Binding tests were done at a fixed ligand concentration (final concentration about 1.5 nM in all cases)

*P<0.05, **P<0.01, ***P<0.001 vs. controls
differences in specific bindings of 3H-WB 4101 in the cortex, thalamus, hypothalamus, mid brain and medulla oblongata/pons were observed, while significant decrease in the binding of 3H-DHA in the thalamus was observed between CPZ and saline-pretreated rats.

Table 2. Effect of postnatal pretreatment with chlorpromazine on saturation constants for specific bindings of 3H-WB 4101 and 3H-DHA in rat brain

Ligands	Regions	Constants	Saline-pretreated (1 ml/kg/day×7) (N=5)	CPZ-pretreated (2 mg/kg/day×7) (N=5)
		K_d (nM)	0.87±0.05	0.76±0.07
		B_{max} (fmol/mg prot)	119.16±3.91	86.33±4.12***
Cortex		K_d	1.16±0.10	0.85±0.06*
		B_{max}	109.08±5.65	69.58±2.60***
Thalamus		K_d	0.65±0.08	0.41±0.03*
		B_{max}	131.22±6.90	64.82±1.77***
3H-WB 4101	Hypothalamus	K_d	1.67±0.08	0.75±0.10***
		B_{max}	104.26±3.63	55.91±3.86***
Mid brain		K_d	0.48±0.06	0.41±0.03
		B_{max}	57.65±2.58	46.65±1.68**
Medulla-Pons		K_d	0.49±0.03	0.33±0.04**
		B_{max}	25.62±0.87	14.94±0.74***

*P<0.05, **P<0.01, ***P<0.001 vs. controls

The primary action of CPZ is considered to block both dopamine and noradrenaline receptors in the brain, while HPD blocks more selectively dopamine receptor than noradrenaline receptor (10, 11). On the other hand, amphetamines release both central and peripheral catecholamines and inhibit reuptake of the amines at the synaptic sites (12-14). A small dose of AMOK is thought to stimulate the autoreceptor (15, 16), while a large dose causes a stimulation of the postsynaptic dopamine receptor (17). It is, therefore, suggested that the learning deficit observed in CPZ-pretreated rats may be produced by a functional disorder of catecholaminergic, in particular noradrenergic neurons in the brain.

3H-SPP has been successfully used as a

Table 2 represents B_{max} and K_d values of 3H-WB 4101 and 3H-DHA binding sites in the regions where significant differences in the specific bindings were observed between CPZ- and saline-pretreated rats.

Table 2 represents B_{max} and K_d values of 3H-WB 4101 and 3H-DHA binding sites in the regions where significant differences in the specific bindings were observed between CPZ- and saline-pretreated rats. Significant decreases in B_{max} values of 3H-WB 4101 binding sites in the cortex, thalamus, hypothalamus, mid brain and medulla oblongata/pons, and significant decreases in K_d values of the binding sites in the thalamus, hypothalamus and mid brain were observed in CPZ-pretreated rats when compared with corresponding B_{max} and K_d values obtained in saline-pretreated rats. Furthermore, significant decreases in both B_{max} and K_d values of 3H-DHA binding sites in the thalamus of CPZ-pretreated rats were detected when compared with those obtained in saline-pretreated rats.

Discussion

Previously, we reported that postnatal pretreatment with CPZ frequently produced behavioral abnormalities, in particular irreversiblelearning deficit, and that its intensity and incidence rates were observed in a dose-dependent manner (1-4). Furthermore, hypersusceptibility to methamphetamine (MAP) and CPZ was observed in CPZ-pretreated rats, but that to apomorphine (AMOR) and haloperidol (HPD) was not detected in the same rats (2-4). It was also shown that there was a critical period for the administration of CPZ to produce such abnormalities.

The primary action of CPZ is considered to block both dopamine and noradrenaline receptors in the brain, while HPD blocks more selectively dopamine receptor than noradrenaline receptor (10, 11). On the other hand, amphetamines release both central and peripheral catecholamines and inhibit reuptake of the amines at the synaptic sites (12-14). A small dose of AMOK is thought to stimulate the autoreceptor (15, 16), while a large dose causes a stimulation of the postsynaptic dopamine receptor (17). It is, therefore, suggested that the learning deficit observed in CPZ-pretreated rats may be produced by a functional disorder of catecholaminergic, in particular noradrenergic neurons in the brain.

3H-SPP has been successfully used as a
dopamine D₂-receptor labeler (6). However, several biochemical studies indicated that ³H-SPP labeled 5-HT₂ receptor as well as dopamine receptor in frontal cortex (18, 19). Therefore, it is recommended to use ³H-SPP in D₂-receptor binding studies in the presence of ketanserin, a S₁₂-serotonin blocker. ³H-WB 4101 and ³H-DHA label α₁- and β-adrenergic receptors, respectively, in animal brains (7, 8).

In the present experiment, marked decreases in the maximum density of ³H-WB 4101 and ³H-DHA binding sites (Bₘₐₓ) with increases in the ligand affinity (1/Kₐ) were observed, particularly in ³H-WB 4101 binding tests, while no alterations in ³H-SPP binding sites were found when CPZ was pretreated. Consequently, the results obtained in the present experiment suggest that CPZ-pretreatment during early postnatal periods produces functional disorders of noradrenergic neurons in the brain, in particular those of α₁-noradrenergic neurons in adult rats. Furthermore, these results well support the previous results obtained on the bases of behavioral and pharmacological experiments (2-4), although it is difficult to explain in detail the correlation between the receptor changes and the brain function.

It has been reported by many researchers that central catecholaminergic mechanisms are implicated in the avoidance learning (20-23). Fuxe and Hanson (21) investigated the correlation between central catecholaminergic neurons and conditioned avoidance response in rats using a histochemical fluorescence technique, and they reported that the noradrenergic neurons played an important role as an arousal system essential for the establishment of the avoidance response. On the other hand, Tonge (24) reported that CPZ given to female Wistar strain rats during pregnancy and suckling periods produced a decrease in noradrenaline and an increase in its metabolite contents in the brain of the offspring.

It is concluded that the changes in central noradrenergic neurons are one of the possible mechanisms of the learning deficit observed in CPZ-pretreated rats.

References

1 Hayashi, T. and Tadokoro, S.: Learning deficits produced by postnatal pretreatment with chlorpromazine in adult rats. Neurobehav. Toxicol. Teratol. 3, 27-35 (1981)
2 Hayashi, T.: Learning deficit produced by postnatal pretreatments with antipsychotic drugs in adult rats. In Learning and Memory. Drugs as Reinforcer, Edited by Saito, S. and Yanagita, T., p. 3-21, Excerpta Medica, Amsterdam (1982)
3 Hayashi, T. and Tadokoro, S.: Detection of behavioral abnormalities, especially learning impairment in rats, and its application to behavioral teratology. Cong. Anom. 20, 339-358 (1980) (in Japanese)
4 Hayashi, T.: Behavioral changes produced by postnatal pretreatments with psychotropic drugs in adult rats. Especially, learning abnormalities. Japan. J. Neuropsychopharmacol. 2, 191-201 (1984) (in Japanese)
5 Glowinski, J. and Iversen, L.L.: Regional studies of catecholamines in the rat brain—II. The disposition of ³H-dopamine and ³H-dopa in various regions of the brain. J. Neurochem. 13, 655-669 (1966)
6 Usdin, T.B., Creese, I. and Snyder, S.H.: Regulation by cations of ³H-spiroperidol binding associated with dopamine receptors of rat brain. J. Neurochem. 34, 669-676 (1980)
7 U'Prichard, D.C., Greenberg, D.A. and Snyder, S.H.: Binding characteristics of a radiolabeled agonist and antagonist at central nervous system alpha noradrenergic receptors. Mol. Pharmacol. 13, 454-473 (1977)
8 Bylund, D.B. and Snyder, S.H.: Beta adrenergic receptor binding in membrane preparations from mammalian brain. Mol. Pharmacol. 12, 568-580 (1976)
9 Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275 (1951)
10 Clement-Cormier, Y.C., Kebabian, J.W., Petzold, G.L. and Greengard, P.: Dopamine-sensitive adenylate cyclase in mammalian brain: A possible site of action of antipsychotic drugs. Proc. Natl. Acad. Sci. U.S.A. 71, 1113-1117 (1974)
11 Andén, N.-E., Butcher, S.G., Corrodi, H., Fuxe, K. and Ungerstedt, U.: Receptor activity and turnover of dopamine and noradrenaline after neuroleptics. Eur. J. Pharmacol. 11, 303-314 (1970)
12 Heikkila, R.E., Orlansky, H., Mytilineou, C. and Cohen, G.: Amphetamine: Evaluation of d- and
I-isomers as releasing agents and uptake inhibitors for \(^3\)H-dopamine and \(^3\)H-norepinephrine in slices of rat neostriatum and cerebral cortex. J. Pharmacol. Exp. Ther. 194, 47-56 (1975)

13 Stein, L. and Wise, C.D.: Release of norepinephrine from hypothalamus and amygdala by rewarding medial forebrain bundle stimulation and amphetamine. J. Comp. Physiol. Psychol. 67, 189–198 (1969)

14 Tyler, T.D. and Tessel, R.E.: Amphetamine’s locomotor-stimulant and norepinephrine-releasing effects: Evidence for selective antagonism by nisoxetine. Psychopharmacology (Berlin) 64, 291–296 (1979)

15 DiChiara, G., Corsini, G.U., Mereu, G.P., Tissari, A. and Gessa, G.L.: Self-inhibitory dopamine receptors: Their role in the biochemical and behavioral effects of low doses of apomorphine. In Advances in Biochemical Pharmacology, Edited by Roberts, P.J., Vol. 19, p. 275–292, Raven Press, New York (1978)

16 Nowycky, M.C. and Roth, R.H.: Dopamine neurons: Role of presynaptic receptors in the regulation of transmitter biosynthesis. Prog. Neuropsychopharmacol. 2, 139–168 (1978)

17 Ernst, A.M.: Mode of action of apomorphine and dexamphetamine on gnawing compulsion in rats. Psychopharmacologia (Berlin) 10, 316–323 (1967)

18 Bischoff, S., Bittiger, H. and Krauss, J.: In vivo \(^3\)H-spiperone binding to the rat hippocampal formation: involvement of dopamine receptors. Eur. J. Pharmacol. 68, 305-315 (1980)

19 Mita, T., Kuno, T., Nakai, H. and Tanaka, C.: Evidence for the presence of D\(_2 \) and 5-HT\(_2 \) receptors in the prefrontal cortex. Japan. J. Pharmacol. 32, 1027–1032 (1982)

20 Oei, T.P.S. and King, M.G.: Catecholamines and aversive learning: A review. Neurosci. Biobehav. Rev. 4, 161–173 (1980)

21 Fuxe, K. and Hanson, L.C.F.: Central catecholamine neurons and conditioned avoidance behavior. Psychopharmacologia (Berlin) 11, 439–447 (1967)

22 Solanto, M.V. and Hamburg, M.D.: DDC-induced amnesia and norepinephrine: A correlated behavioral-biochemical analysis. Psychopharmacology (Berlin) 66, 167–170 (1979)

23 Kovács, G.L., Bohus, B. and Versteeg, D.H.G.: Facilitation of memory consolidation by vasopressin: Mediation by terminals of the dorsal noradrenergic bundle? Brain Res. 172, 73–85 (1979)

24 Tonge, S.R.: Permanent alterations in catecholamine concentrations in discrete areas of brain in the offspring of rats treated with methylamphetamine and chlorpromazine. Br. J. Pharmacol. 47, 425–427 (1973)