Three new 2,5-diketopiperazines from the fish intestinal Streptomyces sp. MNU FJ-36

Yi-xin Oua,b, Jia-fu Huanga,b, Xiu-min Lia,b, Qian-jin Kangc,d and Yu-tian Pana,b

aEngineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, P.R. China; bCollege of Life Sciences and Technology, Minnan Normal University, Zhangzhou, P.R. China; cState Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China; dJoint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, P.R. China

1. Introduction

Marine microorganisms are an important resource for the discovery of the various bioactive natural compounds (Haefner 2003; Zhang et al. 2005; Marris 2006; Gerwick & Moore 2012; Sun et al. 2014). Remarkably, the mutualistic symbiosis relationship between fish and its intestinal microorganisms (and plant and its endophytes) has been established for a long time.
evolutionary time (Yan et al. 2012; Zhou, Yang, Peng, et al. 2013; Zhou, Yang, Yang, et al. 2013; Zhang et al. 2014). The microorganisms of animal guts are known to play a significant role in regulating the physiology, nutrition and immune system of their hosts. The gut contains 10^7–10^{11} bacteria per gram in the content, including proteobacteria, firmicutes, actinobacteria and so on (Sanchez et al. 2012). It is noteworthy that the intestinal fabric from the ocean-originated fishes is important but remains an unexplored resource for discovery of actinomycetes producing new metabolites. Therefore, chemical investigations on the intestinal microbes of the ocean-originated fish might afford novel chemical structures and bioactive lead compounds for drug discovery.

2,5-Diketopiperazines (2,5-DKPs) results from the condensation of two α-amino acids forming a cyclodipeptide skeleton, on which various modifications afford their diversified chemicals and bioactivities (Nakao et al. 2014). They are widely distributed in bacteria, fungi, plants and mammals (Belin et al. 2012; Borthwick 2012; Giessen et al. 2013; Hayashi et al. 2013; Giessen & Marahiel 2015; Sano & Nakao 2015). The actinobacteria-derived natural products are well known for their pharmacological potentials and versatile molecular architectures (Ai et al. 2014; Pu et al. 2012; Shaaban et al. 2013; Yang et al. 2014). In order to obtain new natural compounds with interesting biological activities, our chemical investigation of *Streptomyces* sp. MNU FJ-36 isolated from *Katsuwonus* sp. intestine resulted in the discovery of three new 2,5-DKPs compounds (Figure 1).

2. Results and discussion

The cultures of *S*. sp. MNU FJ-36 were carried out on 8 L ISP2 solid medium at 30 °C for 7 days, and the cultures were extracted at room temperature. The crude extract was purified by successive column chromatography on silica gel and *Sephadex* LH-20 to afford compounds 1–3. Their structures were assigned by spectroscopic approaches.

Compound 1 was obtained as a white amorphous powder. Its molecular formula of C$_{16}$H$_{22}$N$_2$O$_4$ was established on the positive high-resolution electrospray ionization mass spectroscopy (HR-ESI-MS) (m/z: 329.1468, [M + Na]$^+$, Calcd for 329.1477). 1H and 13C NMR data displayed the presence of an ABX benzene ring system (δ_H 7.06 (H-13, d, $J = 7.1$ Hz, 1H), δ_H 7.15 (H-12, d, $J = 6.9$ Hz, 1H) and δ_H 7.08 (H-9, d, $J = 1.5$ Hz, 1H)). In the HMBC spectrum of 1, the correlations of H-3 (δ_H 4.91, dd, $J = 7.1$ and 3.9 Hz, 1H) with C-2 (δ_C 169.5), C-5 (δ_C 170.9), C-7 (δ_C 40.6) and C-8 (δ_C 133.1), H-9 with C-7, C-8, C-10 (δ_C 148.9), C-11 (δ_C 149.9) and C-13 (δ_C 126.4), suggested that an aromatic amino acid with 1,3,4-trisubstituted benzene
moiety was involved in the structure of 1. The extensive analysis of the HMBC spectra of 1 indicated that H-6 (δ_H 4.49, m, 1H) was correlated with C-2, C-5, C-14 (δ_C 41.6) and C-15 (δ_C 25.2), H-15 (δ_H 1.31, m, 1H) was in correlation to C-6 (δ_C 51.9), C-14, C-16 (δ_C 22.2) and C-17 (δ_C 21.5) (Table S1). These results showed that a leucine residue was also incorporated in the chemical structure of 1. The OCH_3-18 (δ_H 3.91, s, 3H) was substituted at C-11 by the corrections of the H-atom 3.91 with C-11 in the HMBC spectrum. In addition, the both of H-3 and H-6 were correlated with C-2 and C-5 in the HMBC spectrum indicated that the leucine and the aromatic acid was connected to a 2,5-piperazinedione skeleton (Figure 2) (Blaha & Fric 1970; Du et al. 1992). The relative configuration of 1 was established by the ROESY spectrum analysis. Crucial correlations of H-3 with H-6 and H-7a (δ_H 2.83, dd, J = 10.9 and 5.1 Hz, 1H) with Ha-14 (δ_H 1.49, m, 1H) displayed that the H-3 and H-6 were assigned as the α-orientation (Table S1, Figure 2). Finally, the structure of 1 was determined to be 3-(3-hydroxy-4-methoxybenzyl)-6-isobutyl-2,5-diketopiperazine.

Compound 2 was isolated as an amorphous powder. Its molecular formula was C_{16}H_{20}N_{2}O_{4} with eight degree of unsaturation, which was validated by HR-eSI-MS (m/z: 327.1312 [M + Na]^+, Calcd for 327.1321) and in combination with NMR spectra analysis. The 1H and 13C NMR spectra of 2 were very similar to those of 1, except for a methylene group H-18 (δ_H 5.08, s, 2H, δ_C 56.9) carrying two oxygen atoms in 2 instead of the OCH_3-18 in 1 (Table S2). In the HMBC spectrum, the cross signals between the methylene protons at H-18 with C-10 (δ_C 150.1) and C-11 (δ_C 149.4) indicated that the methylene group was located between the C-10 and C-11 via O-atoms (Figure 2). The extensive 1-D and 2-D NMR analysis indicated that the leucine and aromatic acid residues in 2 were identical to 1. In the ROESY spectrum, correlations of H-3 (δ_H 4.93, dd, J = 7.2 and 3.8 Hz, 1H) with H-6 (δ_H 4.43, m, 1H), H-7a (δ_H 2.89, dd, J = 10.6 and 5.4 Hz, 1H) with Ha-14 (δ_H 1.46, m, 1H) revealed that 2 had the same α-orientation configuration to 1 (Table S2, Figure 2). Therefore, the structure of 2 was elucidated as 3-(1,3-benzodioxol-5-ylmethyl)-6-isobutyl-2,5-diketopiperazine.

Compound 3 was obtained as an amorphous powder. The HR-ESI-MS (m/z: 313.1157 [M + Na]^+, Calcd for 313.1164) of 3 indicated the molecular formula C_{15}H_{18}N_{2}O_{4}, which was further supported by its 1H, 13C and DEPT NMR spectra. Comparison of the NMR data of 3 with those of 2, suggested 3 had a very similar structure to 2. The HMBC correlations from H-14 (δ_H 2.35, m, 1H) to C-6 (δ_C 59.2), C-15 (δ_C 20.4) and C-16 (δ_C 19.6), together with the COSY correlations of H-14 with H-6 (δ_H 4.92, d, J = 7.8 Hz, 1H), H-7a (δ_H 2.89, dd, J = 10.6 and 5.4 Hz, 1H) with Ha-14 (δ_H 1.46, m, 1H) revealed that 2 had the same α-orientation configuration to 1 (Table S2, Figure 2). Therefore, the structure of 2 was elucidated as 3-(1,3-benzodioxol-5-ylmethyl)-6-isobutyl-2,5-diketopiperazine.

Figure 2. Key HMBC, 1H–1H COSY and ROESY correlations for 1, 2 and 3.
On the basis of the above evidence, compound 3 was defined as 3-(1,3-benzodioxol-5-ylmethyl)-6-isopropyl-2,5-diketopiperazine. All three new compounds were assayed for their cytotoxic effects on the P388, A-549 and HCT-116 cell lines by the MTT method with doxorubicin as the positive control. The three compounds displayed weak cytotoxicity against A-549 cell line, and compounds 2 and 3 also showed weak cytotoxicity against HCT-116 cell line (Table 1).

Table 1. Cytotoxicity analysis of compounds 1–3 in three cancer cell lines.

Cell lines	Cytotoxicity (IC50, μg/mL)	Doxorubicin	1	2	3
P388	0.011 ± 0.002	>100	>100	>100	
A-549	0.255 ± 0.050	89.4 ± 5	35.4 ± 7	28.4 ± 5	
HCT-116	0.025 ± 0.005	>100	75.4 ± 4	45.4 ± 6	

ROESY spectrum (Table S3, Figure 2). On the basis of the above evidence, compound 3 was defined as 3-(1,3-benzodioxol-5-ylmethyl)-6-isopropyl-2,5-diketopiperazine.

3. Conclusions

The chemical investigation of cultures of the S. sp. MNU FJ-36 resulted in the isolation of three new 2,5-DKPs 1–3. All of the compounds displayed weak cytotoxicity against A-549 cell line, and compounds 2 and 3 also exhibited weak inhibitory activity against HCT-116 cell line.

Supplementary material

Supplementary material relating to this article is available online, alongside the experimental part, Table S1–S3.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work received financial supports from the National Natural Science Foundation of P.R. China [grant number 21476137], [grant number 312700097]; Zhangzhou Science and Technology Bureau, Fujian, P.R. China [grant number ZZ2014J11]; State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P.R. China [grant number MMLKF14-10]; the Education Department of Fujian Province, P.R. China [grant number JK2015028] and Minnan Normal University, Fujian, P.R. China [grant number 4002L21234].

References

Ai W, Lin XP, Tu Z, Tian XP, Lu X, Mangaladoss F, Zhong ZL, Liu Y. 2014. Axinelline A, a new COX-2 inhibitor from *Streptomyces axinellae* SCSIO02208. Nat Prod Res. 28:1219–1224.

Belin P, Moutiez M, Lautru S, Seguin J, Pernodet JL, Gondry M. 2012. The nonribosomal synthesis of diketopiperazines in tRNA-dependent cyclodipeptide synthase pathways. Nat Prod Rep. 29:961–979.

Bláha K, Frič I. 1970. Amino acids and peptides. XCVI. Optical rotatory properties of some diastereomeric 3,6-disubstituted 2,5-piperazinediones. Collect Czech Chem Commun. 35:619–643.

Borthwick AD. 2012. 2,5-Diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem Rev. 112:3641–3716.
Du Z, Zhou X, Shi Y, Hu H. 1992. Studies on the synthesis of amino acids. XII. Solid-liquid phase transfer catalytic dicondensation of 1,4-diacetyl-2,5-piperazinedione with aldehydes. Chin J Chem. 10:82–88.
Gerwick WH, Moore BS. 2012. Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem Biol. 19:85–98.
Giessen TW, Marahiel MA. 2015. Rational and combinatorial tailoring of bioactive cyclic dipeptides. Front Microbiol 6: 785.
Giessen TW, von Tesmar AM, Marahiel MA. 2013. Insights into the generation of structural diversity in a trna-dependent pathway for highly modified bioactive cyclic dipeptides. Chem Biol. 20:828–838.
Haefner B. 2003. Drugs from the deep: marine natural products as drug candidates. Drug Discov Today. 8:536–544.
Hayashi Y, Yamazaki-Nakamura Y, Yakushiji F. 2013. Medicinal chemistry and chemical biology of diketopiperazine-type antimicrotubule and vascular-disrupting agents. Chem Pharm Bull (Tokyo). 61:889–901.
Marris E. 2006. Marine natural products: drugs from the deep. Nature. 443:904–905.
Nakao M, Toriuchi Y, Fukayama S, Sano S. 2014. Synthesis and conformational characterization of diketopiperazines bearing a benzyl moiety. Chem Lett. 43:340–342.
Pu X, Li G, Yang T, Yi J, Zhang G, Luo Y. 2012. A new cyclododeca[d]oxazole derivative from Streptomyces spp. CIBYL1. Nat Prod Res. 27:603–608.
Sanchez LM, Wong WR, Riener RM, Schulze CJ, Linington RG. 2012. Examining the fish microbiome: vertebrate-derived bacteria as an environmental niche for the discovery of unique marine natural products. PLoS One. 7:e35398.
Sano S, Nakao M. 2015. Chemistry of 2,5-diketopiperazine and its bis-lactim ether: a brief review. Heterocycles. 91:1349–1375.
Shaaban KA, Singh S, Elshahawi SI, Wang X, Ponomareva LV, Sunkara M, Copley GC, Hower JC, Morris AJ, Kharel MK, Thorson JS. 2013. The native production of the sesquiterpene isopterocarpolone by Streptomyces sp. RM-14-6. Nat Prod Res. 28:337–339.
Sun D, Sun W, Yu Y, Li Z, Deng Z, Lin S. 2014. A new glutarimide derivative from marine sponge-derived Streptomyces anulatus S71. Nat Prod Res. 28:1602–1606.
Yan Q, van der Gast CJ, Yu Y. 2012. Bacterial Community Assembly and Turnover within the Intestines of Developing Zebrafish. PLoS One. 7:e30603.
Yang HJ, Huang XZ, Zhang ZL, Wang CX, Zhou J, Huang K, Zhou JM, Zheng W. 2014. Two novel amphomycin analogues from Streptomyces canus strain FIM-0916. Nat Prod Res. 28:861–867.
Zhao J, Wang JD, Liu CX, Yuan JH, Wang XJ, Xiang WS. 2014. A new prenylated indole derivative from endophytic actinobacteria Streptomyces sp. neau-D50. Nat Prod Res. 28:431–437.
Zhang L, An R, Wang J, Sun N, Zhang S, Hu J, Kuai J. 2005. Exploring novel bioactive compounds from marine microbes. Curr Opin Microbiol. 8:276–281.
Zhou H, Yang Y, Peng T, Li W, Zhao L, Xu L, Ding Z. 2013. Metabolites of Streptomyces sp., an endophytic actinomycete from Alpinia oxyphylla. Nat Prod Res. 28:265–267.
Zhou H, Yang Y, Yang X, Li W, Xiong Z, Zhao L, Xu L, Ding Z. 2013. A new cyclic tetrapeptide from an endophytic Streptomyces sp. YIM67005. Nat Prod Res. 28:318–323.