Modulation of the waterfall by a gauge field

David H. Lyth

Consortium for Fundamental Physics, Cosmology and Astroparticle Group,
Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
E-mail: d.lyth@lancaster.ac.uk

Mindaugas Karčiauskas

CAFPE and Departamento de Física Teórica y del Cosmos, Universidad de
Granada, Granada-18071, Spain
E-mail: mindaugas@ugr.es

ABSTRACT: We present the first complete calculation of the curvature perturbation generated during the hybrid inflation waterfall, caused by the coupling of the waterfall field to a gauge field A whose kinetic function f^2 depends on the inflaton field. We impose an upper bound on the field $W \equiv fA$ which ensures that it has a negligible effect before the waterfall. We confirm the claim of Soda and Yokoyama, that the perturbation δW generates a statistically anisotropic spectrum and bispectrum, which could easily be observable. We also discover a new phenomenon, whereby the time-dependent ‘varyon’ field W causes the inflaton contribution to vary during the waterfall. The varyon mechanism might be implemented also with a scalar field and might not involve the waterfall.

KEYWORDS: Primordial curvature perturbation.

*A preliminary version of this paper appeared as arXiv:1204.6619.
1. Introduction

During the waterfall of hybrid inflation, the perturbation of the waterfall field generates a contribution to the curvature perturbation. But its spectrum is proportional to k^3 which almost certainly makes it negligible on cosmological scales \[1\]. For the waterfall to generate a contribution with a nearly flat spectrum, its onset should be modulated by (i.e. depend upon the value of) some field that is different from both the inflaton and the waterfall field, and whose perturbation has a nearly flat spectrum.

Such modulation was first considered in \[2\] using a scalar field (and further explored in \[3, 4, 5, 6\]). Then the Soda and Yokoyama \[7\] used instead a $U(1)$ gauge
In this paper we give the first complete treatment of that case. The gauge field A has a kinetic function f^2 that depends on the inflaton field. We impose a condition ensuring that $W ≡ fA$ has a negligible effect before the waterfall, and take into account both the perturbation of f and the possible time-dependence of W. We confirm the claim of [7] that the perturbation $δW$ can generate a statistical anisotropic contribution to $ζ$, at a level which could easily be observed. We also find a new effect, which is that the time-dependence of W can cause a significant variation in the (statistically isotropic) inflaton contribution to $ζ$. We dub this new effect ‘the varyon mechanism’ and note that the varyon field might not be a gauge field and might not act during the waterfall.

We will take for granted the main ideas of modern cosmology described for instance in [9], and use the notation and definitions of [10, 9]. The unperturbed universe has the line element

$$ds^2 = -dt^2 + a^2(t)δ_{ij}dx^idx^j.$$ (1.1)

In the perturbed universe, we can choose a slicing (fixed t) and threading (fixed x), and write for a given quantity $g(x, t) = g(t) + δg(x, t)$. A different slicing with a time displacement $δt(x, t)$ gives a different perturbation $\tilde{δg}$. If g is rotationally invariant we have to first order

$$\tilde{δg}(x, t) - δg(x, t) = -\dot{g}(t)δt(x, t).$$ (1.2)

We will invoke this ‘gauge transformation’ without comment. In most cases g is homogeneous on one of the slicings.

We denote the Fourier component by $δg_k(t)$ where k is the coordinate wavenumber. Cosmological scales (probed directly by the CMB anisotropy and galaxy surveys) range from $k = k_0 ≡ (aH)_0$ to $k ∼ e^{15}k_0$, where $H ≡ \dot{a}/a$ and $(aH)_0$ is evaluated at the present epoch so that a_0/k_0 is about the size of the observable universe. A scale is ‘outside the horizon’ if $k < aH$. Inflation corresponds to $ε_H < 1$ where $ε_H ≡ -\dot{H}/H^2$. Cosmological scales leave the horizon during inflation and enter the horizon during the radiation-dominated era leading to Big Bang Nucleosynthesis (BBN).

2. The curvature perturbation $ζ$

2.1 Definition and $δN$ formula

To define $ζ$ one smoothes the metric on a super-horizon scale, and adopts the co-moving threading and the slicing of uniform energy density $ρ$. Then [11, 12]

$$ζ(x, t) ≡ \delta[\ln a(x, t)] = \delta[\ln (a(x, t)/a(t))] ≡ δN(x, t),$$ (2.1)

\footnote{This is extended to the non-Abelian case in [8].}
where \(a(x, t) \) is the locally defined scale factor (such that a comoving volume element is proportional to \(a^3(x, t) \)). The number of \(e \)-folds of expansion \(N(x, t, t^*) \) starts from a slice at time \(t^* \) on which \(a \) is unperturbed (‘flat slice’) and ends on a uniform \(\rho \) slice at time \(t \). Since the expansion between two flat slices is uniform, \(\delta N \) is independent of \(t^* \).

By virtue of the smoothing, the energy conservation equation is valid locally:

\[
\dot{\rho}(t) = -3 \frac{\partial a(x, t)}{\partial t} (\rho(t) + P(x, t)).
\] (2.2)

In consequence, \(\dot{\zeta} = 0 \) during an era when \(P(\rho) \) is a unique function. The success of the BBN calculation shows that \(P = \rho/3 \) to high accuracy just before cosmological scales start to enter the horizon. Then \(\zeta \) has a time-independent value \(\zeta(x) \) that is strongly constrained by observation. Within observational errors it is gaussian and statistically isotropic. Its spectrum is nearly independent of \(k \), with [13]

\[
\mathcal{P}_\zeta(k) \simeq (5 \times 10^{-5})^2
\] (2.3)

\[
n(k) - 1 \equiv d \ln \mathcal{P}_\zeta/d \ln k = \sim -0.032 \pm 0.012.
\] (2.4)

(The result for \(n(k) \) assumes that it has negligible scale dependence. It also assumes a tensor fraction \(r \ll 10^{-1} \), which will soon be tested by PLANCK [14].) For the reduced bispectrum [13] \(f_{\rm NL} \), current observation give \(|f_{\rm NL}| \lesssim 100 \) and barring a detection PLANCK will give \(|f_{\rm NL}| \lesssim 10 \). For \(f_{\rm NL} \) to ever be observable we need \(|f_{\rm NL}| \gtrsim 1 \).

We will work to first order in \(\zeta \), so that

\[
\zeta(x, t) = H(t) \delta t_{f\rho}(x, t),
\] (2.5)

where \(\delta t_{f\rho} \) is the time displacement from the flat slice to the uniform-\(\rho \) slice. A second-order calculation of \(\zeta \) is needed only to treat very small non-gaussianity corresponding to \(|f_{\rm NL}| \lesssim 1 \).

We adopt the usual assumption, whereby \(N(x, t, t^*) \) is determined by the values of one or more fields \(\phi_i(x, t) \), evaluated during inflation at an epoch \(t^* \):[2]

\[
N(x, t) = N(\phi_1^*(x), \phi_2^*(x), \ldots, t).
\] (2.6)

Defining the perturbations \(\delta \phi_i^* \) on a flat slice, one writes [11, 13]

\[
\zeta(x, t) = \sum N_i(t) \delta \phi_i^*(x) + \frac{1}{2} \sum_{ij} N_{ij}(t) \delta \phi_i^*(x) \delta \phi_j^*(x) + \cdots,
\] (2.7)

[2]To be more precise, \(N \) will depend also on some of the masses and couplings in the action, and it may depend too on the values of any fields with negligible dependence on \(x \) and \(t \) that have not time to reach their vacuum expectation values. That does not affect any of the following.
where a subscript \(i \) denotes \(\partial/\partial \phi_i^* \) evaluated at the unperturbed point of field space. The \(\phi_i \) are usually taken to be scalar fields, but it has been proposed \([7, 10]\) that some or all of them may be components of a vector field.

On each scale \(k \), the field perturbations are generated from the vacuum fluctuation at horizon exit and are initially uncorrelated. Ignoring scales leaving the horizon after \(t_\ast \) Eq. (2.7) defines a classical quantity \(\zeta \). In general it depends on \(t \), settling down to the observed quantity \(\zeta(x) \) by some time \(t_f \). Since \(\zeta(x) \) is nearly gaussian, one assumes that Eq. (2.7) is dominated by one or more linear terms involving nearly gaussian scalar fields. With \(t_\ast \) chosen as the epoch of horizon exit for a scale \(k \) this gives

\[
\mathcal{P}_\zeta(k, t) \simeq \sum_i N_i^2(t_\ast(k), t) \mathcal{P}_{\delta\phi_i^*}(k, t_\ast(k)) + \ldots,
\]

(2.8)

where the terms exhibited correspond to scalar fields, and the dots indicate vector field contributions \([10]\). Each contribution is positive.

2.2 Slow-roll inflation

Slow-roll inflation invokes Einstein gravity, and one or more scalar fields with the canonical kinetic term. The fields have practically gaussian perturbations, with \(\mathcal{P}_{\delta\phi^*} = (H/2\pi)^2 \) at horizon exit. During single-field slow-roll inflation, only the inflaton \(\phi \) has significant variation. Its unperturbed value \(\phi(t) \) satisfies

\[
3H \dot{\phi} \simeq -V'(\phi),
\]

(2.9)

where the potential \(V \) satisfies

\[
\epsilon \equiv \frac{1}{2} M_P^2(V' / V)^2 \simeq \epsilon_H \ll 1 \quad \text{(2.10)}
\]

\[
|\eta| \ll 1, \quad \eta \equiv M_P^2 V'' / V, \quad \text{(2.11)}
\]

giving \(\rho = 3M_P^2H^2 \simeq V \).

The perturbation \(\delta\phi^* \) generates a contribution \(\zeta_\phi \). Since \(\phi(x, t) \) is the only time-dependent field, the effect on \(N \) of its perturbation \(\delta\phi^*(x) \) can be removed by the time shift \(\delta t(x) \) which makes \(\phi^* \) homogeneous, which means that \(\zeta_\phi \) is time-independent. At first order,

\[
\zeta_\phi(x) = -(H/\dot{\phi}) \delta\phi^*(x),
\]

(2.12)

and

\[
\mathcal{P}_{\zeta_\phi}(k) \simeq \frac{1}{2\epsilon M_P^2} \left(\frac{H}{2\pi} \right)^2 \quad \text{(2.13)}
\]

\[
n_\phi(k) - 1 \equiv d\mathcal{P}_{\zeta_\phi}/d\ln k = 2\eta - 6\epsilon \simeq 2\eta \quad \text{(2.14)}
\]

where the right hand sides are evaluated at horizon exit. The second equality of Eq. (2.14) is appropriate for small-field models \([10]\) and it applies to the standard
hybrid inflation which we are going to consider. The contribution of \(\zeta_\phi \) to \(|f_{NL}| \) is \[17\] \(\lesssim 10^{-2}. \)

For multi-field slow-roll inflation, where two or more fields have significant variation during inflation, Eqs. (2.12)–(2.14) refer to the contribution of the field pointing along the inflaton trajectory at horizon exit. Field perturbations orthogonal to the (single- or multi-field) trajectory give no contribution to \(\zeta \) at horizon exit, but may contribute later. (This may occur during slow-roll inflation in a multi-field model, or during the waterfall, or after inflation through a curvaton-type mechanism.) We therefore have

\[
P_{\zeta}(k) \lesssim P_\zeta(k),
\]

(2.15)

where \(P_\zeta(k) \approx (5 \times 10^{-5})^2 \) is the observed quantity. The tensor fraction therefore satisfies

\[
r \leq 16 \epsilon,
\]

(2.16)

with \(\epsilon \) evaluated when \(k_0 \) leaves the horizon.\(^3\) This leads \[14\] to what has been called the Lyth bound, on the variation \(\Delta \phi \) of the inflaton field after \(k_0 \) leaves the horizon,

\[
r \lesssim 10^{-1} (\Delta \phi / M_P)^2.
\]

For the tensor fraction to be detectable in the foreseeable future one needs \(r \gtrsim 10^{-3} \)[18], which is impossible in a small-field model (\(\Delta \phi \lesssim 10^{-1} M_P \)).

3. The model

3.1 Hybrid inflation

We are interested only in the era starting with horizon exit for \(k_0 \) and ending with the onset of the waterfall. The relevant part of the action is taken to be

\[
S = \int d^4x \sqrt{-g} \left[\frac{1}{2} M_P^2 R - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - \frac{1}{2} \partial_\mu \chi \partial^\mu \chi - \frac{1}{4} f^2(\phi) F_{\mu\nu} F^{\mu\nu} - V \right],
\]

(3.1)

\[
V(\phi, \chi, A) = V_0 + \Delta V(\phi) + \frac{1}{2} m^2(\phi, A) \chi^2 + \frac{1}{4} \lambda \chi^4
\]

(3.2)

\[
m^2(\phi, A) \equiv h^2 A^2 + g^2 \phi^2 - m^2.
\]

(3.3)

with \(F_{\mu\nu} \equiv \partial_\mu B_\nu - \partial_\nu B_\mu \) and \(B_\mu \) a \(U(1) \) gauge field. To fix the normalization of \(f \), we set \(f = 1 \) at a time \(t_w \) just before the waterfall begins.

Following \[10\] we use the gauge with \(B_0 = \partial_i B_i = 0 \), and work with \(A_i \equiv B_i / a \) which is the field defined with respect to the locally orthonormal basis (as opposed to \(B_i \) which is defined with respect to the coordinate basis). The raised component is \(A^i = A_i \) (as opposed to \(B^i = B_i / a^2 \)). We also define the canonically normalized field \(W \equiv f A \). The waterfall field \(\chi \) is supposed to be the radial part of a complex field which is charged under the \(U(1) \) gauge field, generating the first term of Eq. (3.3).

\(^3\)This follows from the definition \(r \equiv P_h(k)/P_\zeta(k) \) with \(k \approx k_0 \), and the prediction \(P_h(k) = (8/M_P^2)(H/2\pi)^2 \) with \(H \) evaluated at horizon exit.
We are going to impose Eq. (3.12), which ensures that W has a negligible effect before the waterfall. Then, assuming suitable values for the parameters and field values, Eq. (3.1) gives what has been called [1] standard hybrid inflation [19, 20]. At each location, the waterfall begins when $m^2(\phi, A)$ falls to zero. Before it begins, the waterfall field χ vanishes up to a vacuum fluctuation which is set to zero, and we have slow-roll inflation with

$$V = V_0 + \Delta V(\phi) \simeq V_0.$$ \tag{3.4}$$

We will take H to be constant which is typically a good approximation. In contrast with [7], we will not assume $\Delta V(\phi) \propto \phi^2$.

During the waterfall, χ moves to it’s vev and then inflation ends. We will assume that the duration of the waterfall is so short that it can be taken to occur on a practically unique slice of spacetime. This requires $m \gg H$ and $H \lesssim 10^9 \text{GeV}$.

3.2 Field equations with $f \propto a^\alpha$

To work out the field equations, most previous authors have taken $f(\phi(x, t))$ to be a function only of time with $f \propto a^\alpha(t)$ (see however [21]). Taking spacetime to be unperturbed, the action (3.1) then gives for the unperturbed fields

\begin{align*}
\ddot{\phi}(t) + 3H \dot{\phi}(t) + V'(\phi(t)) &= 0 \tag{3.5} \\
\ddot{W}(t) + 3H \dot{W}(t) + \mu^2 W(t) &= 0 \tag{3.6}
\end{align*}

where

$$\mu^2 \equiv H^2(2 + \alpha)(1 - \alpha).$$ \tag{3.7}$$

By virtue of the flatness conditions (2.10) and (2.11), the first expression is expected to give the slow-roll approximation (2.9) more or less independently of the initial condition. Similarly, the second equation is expected to give the slow-roll approximation $3H \dot{W} \simeq -\mu^2 W$ if $|\mu|^2 \ll H^2$. This condition is assumed because the analysis would otherwise become much more complicated. It is equivalent to $\alpha \simeq 1$ or -2.

The first order perturbations satisfy

\begin{align*}
\delta \ddot{\phi}_k(t) + 3H \delta \dot{\phi}_k(t) + \left[(k/a)^2 + V''(\phi(t))\right] \delta \phi_k(t) &= 0 \tag{3.8} \\
\delta \ddot{W}_k(t) + 3H \delta \dot{W}_k(t) + \left[(k/a)^2 + \mu^2\right] \delta W_k(t) &= 0 \tag{3.9}
\end{align*}

Keeping only super-horizon scales, Eqs. (3.6) and (3.9) and give

$$3H \ddot{W}(x, t) \simeq -\mu^2 \delta W(x, t).$$ \tag{3.10}$$

The effect of the metric perturbation (back-reaction) on these equations vanishes in the limit where ϕ and W are constant [8, 22]. The assumption of unperturbed spacetime is therefore expected to be a good approximation.
In terms of W, the coupling $h^2 A^2 \chi^2$ becomes $\tilde{h}^2 W^2 \chi^2$, where $\tilde{h} \equiv h/f$. We are setting $f = 1$ when the waterfall begins at $t = t_w$. To generate δW from the vacuum fluctuation, one assumes that W is a practically free field while cosmological scales leave the horizon, corresponding to $\tilde{h} \ll 1$, or $h \ll e^{-N(k)\alpha}$ where $N(k)$ is the number of e-folds of inflation after horizon exit. With $\alpha \simeq 1$ this would make h too small to have a significant effect. One therefore assumes $\alpha \simeq -2$.

The simplest supersymmetric hybrid inflation model \cite{23} has ΔV increasing logarhythmically. Then $f(\phi)$ increases exponentially. The same behaviour holds for the non-hybrid model with the full potential $V \simeq 3M_p^2 H^2 \propto \phi^2$. It might be reasonable in string theory \cite{24}, and which could correspond to an attractor \cite{25}.

3.3 Field equations with $f(\phi)$

In this paper we recognise that f is supposed to be a function of the inflaton field ϕ, while retaining the assumption $f \propto a^\alpha$ for the unperturbed quantity. Using the slow-roll approximation with $\alpha = -2$ we have

$$\delta f = \frac{df}{d\phi} \delta \phi = \frac{df}{da} \frac{da}{dt} \frac{d\phi}{dt} \delta \phi = \frac{2}{\sqrt{2\epsilon M_p^2}} \delta \phi. \quad (3.11)$$

Since f is a function of ϕ, the term $-\frac{1}{4} f^2 F_{\mu \nu} F^{\mu \nu}$ in the action couples ϕ and W so that the right hand sides of Eqs. (3.5), (3.6), (3.8) and (3.9) are non-zero. We calculate them in the Appendix, and show that they are negligible if

$$\frac{\rho_W}{\epsilon \rho} = \frac{1}{2} \frac{\dot{W}^2}{2} \frac{1}{\epsilon \rho} \simeq \frac{1}{6} \frac{W^2}{\epsilon M_p^2} \ll 1, \quad (3.12)$$

where ρ_W is the energy density of W. We will assume this condition. It implies $\rho_W \ll \rho$, which also ensures that W has a negligible effect during slow-roll inflation. From Eqs. (2.3) and (2.13) the condition corresponds to

$$\frac{W(t)}{H} \lesssim 10^5 \left(\frac{P_\zeta(k)}{P_\zeta(k)} \right)^{1/2}, \quad (3.13)$$

where k is the scale leaving the horizon at time t.

3.4 The perturbation δW

The evolution equation for $W(x,t)$ is the same as that of a free scalar field with mass-squared μ^2, and we are assuming $|\mu|^2 \ll H^2$. Treating the Fourier component $\delta W_k(t)$ as an operator and assuming the vacuum state well before horizon exit, one finds well after horizon exit the approximately scale-independent vacuum expectation value

$$\frac{k^3}{2\pi^2} \langle \delta W^i_k(t) \delta W^j_k(t) \rangle = \left(\delta^{ij} - \hat{k}^i \hat{k}^j \right) \delta^3(k + k') \left(\frac{H}{2\pi} \right)^2 \left(\frac{k}{a(t)H} \right)^{3\mu^2/8\pi^2}, \quad (3.14)$$
where hats denote unit vectors. From Eq. (3.10), the operator δW_k has almost constant phase which means that δW_k can be treated as a classical quantity with this correlator.

The decomposition

$$W(x, t) = W(t) + \delta W(x, t)$$ \hspace{1cm} (3.15)

is made in some box of coordinate size L around the observable universe, with $W(t)$ the average within the box. After smoothing on a cosmological scale k, the spatial average of $(\delta W)^2$ (evaluated within a region not many orders of magnitude bigger than the observable universe) is of order $\ln(kL)(H/2\pi)^2$. We assume $W(t) \gg H$, which is reasonable because $W^2(t)$ at a typical position is expected to be at least of order the mean square of $(\delta W)^2$ evaluated within a box with size $M \gg L$.[26]

Including both the inflaton and W and assuming that cubic and higher terms are negligible, Eq. (2.7) becomes [10]

$$\zeta(x, t) = \zeta_\phi(x, t) + \zeta_W(x, t) + \sum_i \frac{1}{2} N_{\phi i}(t) [\delta \phi_i(x)]^2 + N_{\phi \phi} \delta \phi(x) \delta W^*_i(x)$$ \hspace{1cm} (3.16)

$$\zeta_\phi(x, t) \equiv N_{\phi}(t) \delta \phi(x),$$ \hspace{1cm} (3.17)

$$\zeta_W(x, t) \equiv \sum_i N_i(t) \delta W^*_i(x) + \frac{1}{2} \sum_{ij} N_{ij}(t) \delta W^*_i(x) \delta W^*_j(x),$$ \hspace{1cm} (3.18)

where the subscripts on N denote partial derivatives evaluated on the unperturbed trajectory. We are assuming Eq. (3.12), which ensures that before the waterfall ζ_W is negligible while $\zeta(x, t)$ is close to the time-independent quantity given by Eq. (2.12).

4. Effect of the waterfall on ζ

4.1 End-of-inflation formula

Let us denote the contribution generated during the waterfall by ζ_w.[4] To evaluate it, we assume that the waterfall happens very quickly so that it can be regarded as taking place on a single spacetime slice. Then [1][2]

$$\zeta_w(x) = H \delta t_{\rho \rho}(x) = H \left[\frac{\delta \rho_w(x)}{\dot{\rho}(t_w)} - \frac{\delta \rho_w(x)}{\dot{\rho}(t_+)} \right] \approx H \frac{\delta \rho_w(x)}{\dot{\rho}(t_w)} \approx H \delta t_{\rho \rho}.$$ \hspace{1cm} (4.1)

In this equation, $t_{\rho \rho}(x)$ is the proper time elapsing between a uniform-ρ slice at time t_w just before the waterfall and a uniform-ρ slice at time t_+ just after the waterfall, while $t_{\rho \rho}$ is the same thing with the final slice the waterfall slice itself.

This end-of-inflation formula actually holds if the waterfall slice is replaced by any sufficiently brief transition from inflation to non-inflation. In [1] it is invoked

[4] Notice that we are using the subscript w to indicate the waterfall era. The quantity ζ_w is the total change in ζ during the waterfall, which as we shall see can be different from the contribution ζ_W of δW.
for the transition beginning *during* the waterfall, at the epoch when the evolution of χ becomes non-linear. We are here applying it to the entire waterfall. It was first given \[2\] with A in Eq. (3.3) replaced by a scalar field. In \[2\] the slope of the potential in the A direction was assumed to be negligible corresponding to single-field hybrid inflation, and the same assumption was made in several later papers \[4\]. The assumption was relaxed in \[4, 5, 6\], corresponding to what has been called \[5\] multi-brid inflation. Following \[7\] we are here taking A to be the magnitude of a $U(1)$ gauge field. One can also replace A by a non-Abelian gauge field \[8, 27, 28\].

4.2 Waterfall contribution: general formula

Instead of calculating ζ_w directly, we calculate

$$\zeta(x, t_+) = \zeta_w(x) + \zeta_\phi(x),$$

(4.2)

where $\zeta_\phi(x)$ is given by Eq. (2.12). We do this first without specifying the function $m^2(\phi, A)$ or the nature of A. We define $\phi_w(A)$ by $m^2(\phi_w, A) = 0$. (If this equation has more than one solution $\phi_w(A)$, we choose one of them.) The waterfall occurs when $\phi(x, t) = \phi_w(x, t)$.

If $t_{f\rho}(x)$ is the displacement from the flat slice at t_w to the uniform ρ slice at t_+ we have $\zeta(x, t_+) = H\delta t_{f\rho}(x)$. Making the good approximation $\delta t_{f\rho} = \delta t_{fw}$, where t_{fw} is the displacement from the flat slice to the waterfall slice, we have

$$\phi(x, t_w + \delta t_{f\rho}(x)) = \phi(t_w) + \delta \phi(x, t_w) + \dot{\phi}(t_w)\delta t_{f\rho}(x)$$

(4.3)

$$\phi_w(x, t_w + \delta t_{f\rho}(x)) = \phi_w(t_w) + \delta \phi_w(x, t_w) + \dot{\phi}_w(t_w)\delta t_{f\rho}(x),$$

(4.4)

where $\delta \phi$ and $\delta \phi_w$ are defined on the flat slice. For the unperturbed values this gives $\phi(t_w) = \phi_w(t_w)$. For the perturbations it gives $\phi(t_w) = \phi_w(t_w)$. For the perturbations it gives

$$\zeta(x, t_+) = H\delta t_{f\rho}(x) = H\frac{\delta \phi_w(x, t_w) - \delta \phi(x, t_w)}{\phi(t_w) - \phi_w(t_w)}.$$

(4.5)

During hybrid inflation $\dot{\phi} < 0$, and we need $\dot{\phi}(t_w) < \dot{\phi}_w(t_w)$, or the waterfall will never start.

Now we invoke Eq. (3.3). Discounting the strong cancellation $m^2 \simeq h^2 A^2$ it gives

$$\phi_w(x, t) = \frac{1}{g}(m^2 - h^2 A^2(x, t))^{1/2} \simeq \frac{m}{g} - \frac{1}{2} \frac{h^2 A^2(x, t)}{mg}.$$

(4.6)

In most previous work, A is taken to be a scalar field. For single-field hybrid inflation \[2, 3\], $\dot{\phi}_w$ is supposed to be negligible. Then ϕ_w has a practically time-independent value and the waterfall slice corresponds to simply $\phi(x, t) = \phi_w(x)$. For two-brid inflation \[4, 5, 6\], ϕ and A have equal status and the time-dependence of ϕ_w is significant. We have checked that in this case, Eqs. (4.3) and (4.6) are equivalent to the result (4.1) given in \[3\].
In our case A is the magnitude of a $U(1)$ gauge field with the action (3.1). Let us first follow [7] by setting $\alpha = -2$. From Eq. (3.10), this makes $W(x, t)$ time-independent. Then, if we ignore the perturbation δf we have $A(x, t) \propto 1/f \propto a^2$. This gives Eq. (3.16) for $\zeta(x, t_+)$, with

$$\zeta_\phi(x, t_+) = \frac{\zeta_\phi(x)}{1 - X}, \quad \zeta_W(x, t_+) = \frac{\zeta_W(x)}{1 - X},$$

where

$$X \equiv \frac{h^2 W^2(t_w)}{M_P m g \sqrt{2 \epsilon(t_w)}},$$

and

$$\zeta_W(x) = -(X/W^2(t_w)) \left(W(t_w) \cdot \delta W(x, t_w) + \frac{1}{2} \delta W(x, t_w) \cdot \delta W(x, t_w) \right). \quad (4.10)$$

(We display t_w for future reference, even though we are for the moment taking W to be time-independent.) We need $X < 1$ for the waterfall to end.

Ignoring the time-dependence of A we have $\zeta_W(x, t_+) = \zeta_W(x)$, which is the result obtained in [7]. We see that ζ_W becomes bigger when the time-dependence is taken into account. The effect of the time-dependence of A was previously considered in [29], who conclude that it decreases ζ_W by a factor $e^{-2N(k)}$ making it far too small to have an observable effect. But the calculation of [29] is not from first principles because A is treated as a scalar field.

We have yet to include δf. This has no effect on ζ_W, but for ζ_ϕ it cancels the effect of \dot{A} giving

$$\zeta_\phi(x, t_+) = \zeta_\phi(x). \quad (4.11)$$

In the above we worked with $\phi_w(A)$ defined by $m^2(\phi_w, A) = 0$. That allows comparison with previous work where A is a scalar field, and with [7, 24] where A is the magnitude of a gauge field. But in the latter case the calculation becomes simpler if we use instead $\phi_w(W)$ defined by $m^2(\phi_w, (W/f(\phi_w)) = 0$, because it is W that decouples from ϕ. With our current assumption $\mu^2 = 0$, \dot{W} vanishes which means that $\dot{\phi}_w(W) = 0$. Evaluating $\delta \phi_w(W)$ we again arrive at Eqs. (1.8) and (4.11). According to this derivation, the factor $1 - X$ which was absent in [7] comes from δf.

5 We have checked that in this and the following cases, the third and fourth terms of Eq. (3.16) are negligible.
4.3 The varyon mechanism

Allowing $\mu^2 \neq 0$, we have $\dot{W} \neq 0$ and hence $\phi_w(W) \neq 0$. This gives

$$
\zeta(x, t^+) = \left[1 + \frac{\mu^2}{6H^2} \frac{X}{1 - X} \right]^{-1} \left[\zeta_\phi(x) + \frac{\dot{\zeta}_W(x)}{1 - X} \right]
$$

We see that $\zeta_\phi(x, t)$ is altered by the waterfall, which seems to contradict the statement in Section 2.2, that the slow-roll inflation result $\zeta_\phi(x)$ given by Eq. (2.12) persists even after slow-roll ends. There is in fact no contradiction, because the presence of $W(t)$ means that we are not dealing with exact slow-roll inflation. As a result, $\phi(x, t)$ is not the only time-dependent field, and the effect on $N(x, t, t_*)$ of its perturbation $\delta \phi_s$ is not removed by the time shift which makes ϕ_s homogeneous.

Note that the perturbation $\delta W_s(x)$ is in this context irrelevant. It is the quantity $\dot{W}(t)$ that is causing the effect.

In our case W is the magnitude of a gauge field and its effect on ζ occurs during the waterfall. But in general, any time-dependent field might do the same thing, i.e. have a negligible effect during slow-roll inflation but a significant one later owing to the time-dependence of its unperturbed part. The only exception is if the field is a slowly rolling scalar field; in that case its effect is just to slightly alter the direction in field space of the trajectory, which as we discussed in Section 2.2 will still give the (almost unchanged) the time-independent perturbation $\zeta_\phi(x)$. We propose to call a field causing the new effect a varyon.

The varyon mechanism can remove the bound (2.15) and hence the bound (2.16) on the tensor fraction. That might allow an observable tensor fraction within a small-field inflation model. The possibility of avoiding Eq. (2.16) was mooted in [31, 32] but they did not find a mechanism. One can easily avoid Eq. (2.16) by abandoning the canonical kinetic term for the inflaton [33] and we are now, for the first time, pointing to a possible mechanism with the canonical kinetic term.

In our case, the varyon W has only a small effect except in the the very fine-tuned regime $(1 - X) \ll |\mu^2|/H^2$. Even if its effect is significant, and reduces ζ_ϕ (positive μ^2) so as to give $r > 12\epsilon$, it cannot make r big enough to observe because the end-of-inflation formula requires $H \lesssim 10^9$ GeV corresponding to $r < 10^{-10}$. It remains to be seen if a different varyon, perhaps a scalar field, can give a more interesting result.

4.4 Anisotropic spectrum and bispectrum

Since we are taking $W \gg H$, the linear term of ζ_W dominates, leading to a spectrum of the form [7, 10]

$$
\mathcal{P}_{\zeta}(k) = \mathcal{P}_\zeta(k) \left[1 - \beta \left(\mathbf{A} \cdot \mathbf{k} \right)^2 \right].
$$

\footnote{In [30], this formula is given with $1 - X$ incorrectly replaced by $1 + X$. That makes the first term must be close to 1 whatever the value of X.}
On cosmological scales, observation requires $|\beta| \lesssim 10^{-1}$, and barring a detection PLANCK will give $|\beta| \lesssim 10^{-2}$ [34]. We therefore have $\mathcal{P}_\zeta(k) \simeq \mathcal{P}_\zeta(k)$ with (Eq. (2.3)) $\mathcal{P}_\zeta(k) \simeq (5 \times 10^{-5})^2$.

With the parameters constrained to give $\beta \ll 1$, we have [7, 10] $
\beta = \frac{h^4W^2(t_w)}{m^2g^2} \epsilon(t_k) \times \frac{\mathcal{P}_{\zeta}(k)}{\mathcal{P}_\zeta(k)} (1 - X)^{-2} \times e^{-\frac{2\mu}{3H^2}N(k)} \left[1 + \frac{\mu^2}{6H^2} \frac{X}{1 - X} \right]^{-2},
\quad (4.14)$ where t_k is the epoch of horizon exit for the scale k, and \mathcal{P}_{ζ_0} is given by Eq. (2.13). The first line is the result of [7], who assumed $\mathcal{P}_\zeta(k) = \mathcal{P}_{\zeta_0}(k)$. The first factor of the second line drops that assumption while the second factor takes account of the inhomogeneity of $f(\phi)$. The third line allows $\mu \neq 0$.

Including the quadratic term of ζ_w we reproduce the result of [7] for the reduced bispectrum:
\[f_{NL} = f_{NL}^{iso}(1 + f_{ani}(k_1, k_2, k_3)) \quad (4.15) \]
where
\[f_{ani} = \frac{-(\dot{A} \cdot \dot{k}_1)^2 - (\dot{A} \cdot \dot{k}_2)^2 + (\dot{k}_1 \cdot \dot{k}_2)(\dot{A} \cdot \dot{k}_1)(\dot{A} \cdot \dot{k}_2)}{\sum k_i^2/k_3^2} + 2 \text{ perms.} \quad (4.16) \]
\[f_{NL}^{iso} = \frac{5 \beta^2}{3X}. \quad (4.17) \]

5. Conclusion

Although there is so far no evidence for statistical anisotropy of the primordial curvature perturbation ζ, mechanisms have been proposed for generating it. Most of them invoke a vector field.

One mechanism takes the vector field to be homogeneous during inflation, but causes significant anisotropy in the expansion [35] (for a recent review of this approach see [36]). Then the perturbations of scalar fields generated from the vacuum fluctuation will be statistically anisotropic, and so too will be ζ on the usual assumption that it originates from one or more of these perturbations.

A different mechanism takes the inflationary expansion to be practically isotropic, but generates a vector field perturbation from the vacuum fluctuation [7, 10] (for the most recent paper on this approach see [37]).

In this paper we have given the first complete treatment of the version of the second mechanism proposed in [7], which couples the waterfall field to a gauge field

\footnote{The use of a vector field to generate a contribution to ζ was first mooted in [38].}
A whose kinetic function f^2 depends on the inflaton. We have confirmed their claim that the statistical anisotropy could easily be big enough to observe, and we have also discovered a completely new effect; if $W \equiv fA$ is time-dependent it causes the usual *inflaton* contribution ζ_ϕ to vary during the waterfall. This ‘varyon’ effect might still occur if W is replaced by a time-dependent (but not slowly rolling) *scalar* field and it might have nothing to do with the waterfall.

6. Acknowledgments

DHL acknowledges support from the Lancaster-Manchester-Sheffield Consortium for Fundamental Physics under STFC grant ST/J00418/1, and from UNILHC23792, European Research and Training Network (RTN) grant. MK is supported by the grants CPAN CSD2007-00042 and MICINN (FIS2010-17395). We thank K. Dimopoulos, H. Firouzjahi, J. Soda and S. Yokoyama for discussion in the early stage of this work.

A. Equations of Motion for $\phi(x, t)$ and $W(x, t)$

Extremizing the action in Eq. (3.1) with respect to fields ϕ, B_μ and their derivatives we obtain field equations

$$\left[\partial_\mu + \partial_\mu \ln \sqrt{-g} \right] \partial^\mu \phi + V' + \frac{1}{2} f f' F_{\mu \nu} F^{\mu \nu} = 0; \quad (A.1)$$

$$\left[\partial_\mu + \partial_\mu \ln \sqrt{-g} \right] f F_{\mu \nu} = 0, \quad (A.2)$$

where $g \equiv \det(g_{\mu \nu})$ and $f' \equiv \partial f / \partial \phi$. Choosing the temporal gauge $B_0 = 0$ and a line element of the unperturbed universe in Eq. (1.1), one finds equations of motion for the fields $\phi(x, t)$ and $B(x, t)$

$$\ddot{\phi} + 3H \dot{\phi} - a^{-2} \nabla^2 \phi + V' = \frac{1}{2} f f' F_{\mu \nu} F^{\mu \nu}, \quad (A.3)$$

$$\ddot{B}_i + \left(H + 2 \frac{\dot{f}}{f} \right) \dot{B}_i - a^{-2} \nabla^2 B_i = a^{-2} 2 \frac{\partial_i f}{f} \partial_j B_j, \quad (A.4)$$

Recasting the above equations in terms of $W \equiv fB/a$ and dropping gradient terms, one arrives at equations of motion for homogeneous fields $\phi(t)$ and $W(t)$

$$\ddot{\phi} + 3H \dot{\phi} + V' = \frac{f'}{f} \left[\dot{W} + \left(H - \frac{\dot{f}}{f} \right) W \right]^2, \quad (A.5)$$

$$\ddot{W} + 3H \dot{W} + \left(2H^2 - H \frac{\dot{f}}{f} - \frac{\dot{f}}{f} \right) W = 0, \quad (A.6)$$

where we also used $\dot{H} \simeq 0$.
Decomposing the field $W(x, t)$ as in Eq. (A.13) and similarly the field $\phi(x, t)$, we find equations of motion for $\delta \phi(x, t)$ and $\delta W(x, t)$ from Eqs. (A.3) and (A.4). Keeping only the first order terms and switching to the Fourier space they become

$$
\delta \ddot{\phi}_k + 3H \delta \dot{\phi}_k + \left(\frac{k^2}{a^2} + V'' \right) \delta \phi_k = 2 f' \left[\dot{W} + \left(H - \frac{\dot{f}}{f} \right) W \right] \left[\delta \dot{W}_k + \left(H - \frac{\dot{f}}{f} \right) \delta W_k - \delta \left(\frac{\dot{f}}{f} \right)_k W \right] \tag{A.7}
$$

$$
\delta \ddot{W}_k + 3H \delta \dot{W}_k + \left(2H^2 - H \frac{\dot{f}}{f} - \frac{\dot{f}}{f} \right) \delta W_k + \frac{k^2}{a^2} \delta W_k = \left[H \delta \left(\frac{\dot{f}}{f} \right)_k + \delta \left(\frac{\dot{f}}{f} \right)_k + \frac{f'}{f} \frac{k^2}{a^2} \delta \phi_k \right] W. \tag{A.8}
$$

With our choice $f \propto a^\alpha$ for the unperturbed f, the above expressions become

$$
\delta \ddot{\phi}_k + 3H \delta \dot{\phi}_k + \left(\frac{k^2}{a^2} + V'' \right) \delta \phi_k = \frac{-2\alpha}{\sqrt{2\epsilon M_P}} \left[\dot{W} + H (1 - \alpha) W \right] \left[\delta \dot{W}_k + H (1 - \alpha) \delta W_k - \alpha W \frac{H}{\phi} \delta \phi_k \right] \tag{A.9}
$$

$$
\delta \ddot{W}_k + 3H \delta \dot{W}_k + \left(\frac{k^2}{a^2} + \mu^2 \right) \delta W_k = \frac{-\alpha W}{\sqrt{2\epsilon M_P}} \left[\ddot{\phi}_k + H (1 + 2\alpha) \delta \phi_k + \frac{k^2}{a^2} \delta \phi_k \right] \tag{A.10}
$$

The energy density of the vector field in Eq. (3.1) is given by $\rho_B(x, t) = -f^2 F_{\mu\nu} F^{\mu\nu}/4$. From this it is easy to see that the background value of $\rho_B(x, t)$ is given by

$$
\rho_B(t) = \frac{1}{2} f^2 \left(\frac{\dot{B}}{a} \right)^2 = \frac{1}{2} \left[\dot{W} + \left(H - \frac{\dot{f}}{f} \right) W \right]^2 \simeq \frac{1}{2} H^2 W^2. \tag{A.11}
$$

The right hand side of Eq. (A.5) is negligible if ρ_B satisfies Eq. (3.12). We now show that the same is true of the right hand sides of Eqs. (A.9) and (A.10). At the epoch $k \sim aH$, the terms on the left hand sides are of order H^3 and Eq. (3.12) ensures that the right hand sides are indeed much smaller. At the epoch $aH/k = \exp(N_k(t)) \gg 1$, the first term of each left hand side is negligible. The other two terms are of order $|\eta| \equiv |V''|/3H^2$ for Eq. (A.9) and of order $|\eta_W| \equiv |\mu^2|/3H^2$ for Eq. (A.10). Eq. (3.12) ensures that the right hand side of Eq. (A.9) is negligible, and it ensures that the right hand side of Eq. (A.10) is negligible if also $|\eta_W| \gg 10^{-5}$. But the latter condition is irrelevant, because its violation makes the time-dependence of W (coming then from the right hand side) negligible.
References

[1] D. H. Lyth, “The hybrid inflation waterfall and the primordial curvature perturbation,” JCAP 1205 (2012) 022.

[2] F. Bernardeau and J. P. Uzan, “Inflationary models inducing non-gaussian metric fluctuations,” Phys. Rev. D 67 (2003) 121301; F. Bernardeau, L. Kofman and J. P. Uzan, “Modulated fluctuations from hybrid inflation,” Phys. Rev. D 70 (2004) 083004; D. H. Lyth, “Generating the curvature perturbation at the end of inflation,” JCAP 0511, 006 (2005).

[3] L. Alabidi and D. Lyth, “Curvature perturbation from symmetry breaking the end of inflation,” JCAP 0608 (2006) 006; D. H. Lyth and A. Riotto, “Generating the Curvature Perturbation at the End of Inflation in String Theory,” Phys. Rev. Lett. 97 (2006) 121301; M. P. Salem, “On the generation of density perturbations at the end of inflation,” Phys. Rev. D 72 (2005) 123516; L. Leblond and S. Shandera, “Cosmology of the Tachyon in Brane Inflation,” JCAP 0701 (2007) 009; B. Dutta, L. Leblond and J. Kumar, “Tachyon Mediated Non-Gaussianity,” Phys. Rev. D 78 (2008) 083522; C. -M. Lin, “Large non-Gaussianity generated at the end of Extended D-term Hybrid Inflation,” arXiv:0908.4168 [hep-ph]; T. Suyama, T. Takahashi, M. Yamaguchi and S. Yokoyama, “On Classification of Models of Large Local-Type Non-Gaussianity,” JCAP 1012, 030 (2010).

[4] F. Vernizzi and D. Wands, “Non-gaussianities in two-field inflation,” JCAP 0605 (2006) 019.

[5] M. Sasaki, “Multi-brid inflation and non-Gaussianity,” Prog. Theor. Phys. 120, 159 (2008).

[6] A. Naruko and M. Sasaki, “Large non-Gaussianity from multi-brid inflation,” Prog. Theor. Phys. 121 (2009) 193; H. -Y. Chen, J. -O. Gong and G. Shiu, “Systematics of multi-field effects at the end of warped brane inflation,” JHEP 0809 (2008) 011; H. -Y. Chen, J. -O. Gong and G. Shiu, “Systematics of multi-field effects at the end of warped brane inflation,” JHEP 0809 (2008) 011; C. T. Byrnes, “Large non-Gaussianity from two-component hybrid inflation,” JCAP 0902 (2009) 017; L. Alabidi, K. Malik, C. T. Byrnes and K. -Y. Choi, “How the curvaton scenario, modulated reheating and an inhomogeneous end of inflation are related,” JCAP 1011 (2010) 037;

[7] S. Yokoyama and J. Soda, “Primordial statistical anisotropy generated at the end of inflation,” JCAP 0808 (2008) 005.

[8] M. Karciauskas, “The Primordial Curvature Perturbation from Vector Fields of General non-Abelian Groups,” JCAP 1201, 014 (2012).

[9] D. H. Lyth and A. R. Liddle, The primordial density perturbation, Cambridge University Press, 2009;
K. Dimopoulos, M. Karciauskas, D. H. Lyth and Y. Rodriguez, “Statistical anisotropy of the curvature perturbation from vector field perturbations,” JCAP 0905 (2009) 013.

A. A. Starobinsky, “Multicomponent de Sitter (inflationary) stages and the generation of perturbations”, Pisma Zh. Eksp. Teor. Fiz. 42 (1985) 124 [JETP Lett. 42 (1985) 152]; M. Sasaki and E. D. Stewart, “A General Analytic Formula For The Spectral Index Of The Density Perturbations Produced During Inflation,” Prog. Theor. Phys. 95 (1996) 71;

D. H. Lyth, K. A. Malik, and M. Sasaki, “A general proof of the conservation of the curvature perturbation,” JCAP 0505 (2005) 004.

E. Komatsu, N. Afshordi, N. Bartolo, D. Baumann, J. R. Bond, E. I. Buchbinder, C. T. Byrnes and X. Chen et al., “Non-Gaussianity as a Probe of the Physics of the Primordial Universe and the Astrophysics of the Low Redshift Universe,” arXiv:0902.4759 [astro-ph.CO].

D. H. Lyth and Y. Rodriguez, “The Inflationary prediction for primordial non-Gaussianity,” Phys. Rev. Lett. 95, 121302 (2005).

D. H. Lyth, ‘What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy?,” Phys. Rev. Lett. 78, 1861 (1997).

J. M. Maldacena, “Non-Gaussian features of primordial fluctuations in single field inflationary models,” JHEP 0305, 013 (2003).

L. Verde, H. Peiris and R. Jimenez, “Optimizing CMB polarization experiments to constrain inflationary physics,” JCAP 0601 (2006) 019; M. Amarie, C. Hirata and U. Seljak, “Detectability of tensor modes in the presence of foregrounds,” Phys. Rev. D 72 (2005) 123006.

A. D. Linde, “Axions in inflationary cosmology,” Phys. Lett. B 259 (1991) 38.

E. J. Copeland, A. R. Liddle, D. H. Lyth, E. D. Stewart and D. Wands, “False vacuum inflation with Einstein gravity,” Phys. Rev. D 49, 6410 (1994).

R. Namba, “Curvature Perturbations from a Massive Vector Curvaton,” arXiv:1207.5547 [astro-ph.CO].

A. R. Liddle and D. H. Lyth, Cosmological Inflation and Large-Scale Structure, Cambridge University Press, 2000.

G. R. Dvali, Q. Shaﬁ and R. K. Schaefer, “Large scale structure and supersymmetric inflation without ﬁne tuning,” Phys. Rev. Lett. 73 (1994) 1886
[24] J. Martin and J. i. Yokoyama, “Generation of Large-Scale Magnetic Fields in Single-Field Inflation,” JCAP 0801 (2008) 025

[25] M. -a. Watanabe, S. Kanno and J. Soda, “Inflationary Universe with Anisotropic Hair,” Phys. Rev. Lett. 102 (2009) 191302. S. Kanno, J. Soda and M. -a. Watanabe, “Anisotropic Power-law Inflation,” JCAP 1012 (2010) 024. R. Emami, H. Firouzjahi, S. M. Sadegh Movahed and M. Zarei, “Anisotropic Inflation from Charged Scalar Fields,” JCAP 1102 (2011) 005. J. M. Wagstaff and K. Dimopoulos, “Particle Production of Vector Fields: Scale Invariance is Attractive,” Phys. Rev. D 83 (2011) 023523 [arXiv:1011.2517 [hep-ph]]. S. Hervik, D. F. Mota and M. Thorsrud, “Inflation with stable anisotropic hair: Is it cosmologically viable?,” JHEP 1111 (2011) 146

[26] D. H. Lyth, “The curvature perturbation in a box,” JCAP 0712 (2007) 016.

[27] N. Bartolo, E. Dimastrogiovanni, S. Matarrese and A. Riotto, “Anisotropic bispectrum of curvature perturbations from primordial non-Abelian vector fields,” JCAP 0910, 015 (2009); N. Bartolo, E. Dimastrogiovanni, S. Matarrese and A. Riotto, “Anisotropic Trispectrum of Curvature Perturbations Induced by Primordial Non-Abelian Vector Fields,” JCAP 0911, 028 (2009).

[28] M. Karciauskas, “Generating ζ with non-Abelian Vector Fields,” AIP Conf. Proc. 1458 (2011) 443.

[29] R. Emami and H. Firouzjahi, “Issues on Generating Primordial Anisotropies at the End of Inflation,”; JCAP 1201, 022 (2012).

[30] D. H. Lyth and M. Karciauskas, “Statistically anisotropic curvature perturbation generated during the waterfall,” arXiv:1204.6619 [astro-ph.CO].

[31] N. Bartolo, E. W. Kolb and A. Riotto, “Post-inflation increase of the cosmological tensor-to-scalar perturbation ratio,” Mod. Phys. Lett. A 20, 3077 (2005).

[32] M. S. Sloth, “Suppressing super-horizon curvature perturbations?,” Mod. Phys. Lett. A 21, 961 (2006).

[33] V. F. Mukhanov and A. Vikman, “Enhancing the tensor-to-scalar ratio in simple inflation,” JCAP 0602, 004 (2006).

[34] A. R. Pullen and M. Kamionkowski, “Cosmic Microwave Background Statistics for a Direction-Dependent Primordial Power Spectrum,” Phys. Rev. D 76 (2007) 103529.

[35] S. Kanno, M. Kimura, J. Soda and S. Yokoyama, “Anisotropic Inflation from Vector Impurity,” JCAP 0808 (2008) 034.

[36] J. Soda, “Statistical Anisotropy from Anisotropic Inflation,” Class. Quant. Grav. 29 (2012) 083001.
[37] K. Dimopoulos and M. Karciauskas, “Parity Violating Statistical Anisotropy,” JHEP 1206 (2012) 040.

[38] K. Dimopoulos, “Can a vector field be responsible for the curvature perturbation in the Universe?,” Phys. Rev. D 74 (2006) 083502.

[39] K. Dimopoulos, M. Karciauskas and J. M. Wagstaff, “Vector Curvaton with varying Kinetic Function,” Phys. Rev. D 81 (2010) 023522