STABLE FUNCTIONS OF JANOWSKI TYPE

KONERI CHANDRASEKRAN, DEVASIR JOHN PRABHAKARAN, AND PRIYANKA SANGAL

Abstract. A function $f \in \mathcal{A}_1$ is said to be stable with respect to $g \in \mathcal{A}_1$ if

$$
\frac{s_n(f(z))}{f(z)} < \frac{1}{g(z)}, \quad z \in \mathbb{D},
$$

holds for all $n \in \mathbb{N}$ where \mathcal{A}_1 denote the class of analytic functions f in the unit disk $\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}$ normalized by $f(0) = 1$. Here $s_n(f(z))$, the n^{th} partial sum of $f(z) = \sum_{k=0}^{\infty} a_k z^k$ is given by $s_n(f(z)) = \sum_{k=0}^{n} a_k z^k$, $n \in \mathbb{N} \cup \{0\}$. In this work, we consider the following function $v_{\lambda}(A, B, z) = \left(\frac{1 + Az}{1 + Bz} \right)^{\lambda}$ for $-1 \leq B < A \leq 1$ and $0 \leq \lambda \leq 1$ for our investigation. The main purpose of this paper is to prove that $v_{\lambda}(A, B, z)$ is stable with respect to $v_{\lambda}(0, B, z) = \frac{1}{(1 + Bz)^{\lambda}}$ for $0 < \lambda \leq 1$ and $-1 \leq B < A \leq 0$. Further, we prove that $v_{\lambda}(A, B, z)$ is not stable with respect to itself, when $0 < \lambda \leq 1$ and $-1 \leq B < A < 0$.

Introduction & Main Results

Let \mathcal{A} denote the family of functions f that are analytic in the unit disk $\mathbb{D} := \{ z : |z| < 1 \}$. Let \mathcal{A}_1 is the subset of \mathcal{A} with the normalization $f(0) = 1$. A single valued function $f \in \mathcal{A}_1$ is said to be univalent in a domain $\Delta \subseteq \mathbb{C}$ if f is one-to-one in Δ. The class of all univalent functions with the normalization $f(0) = 0 = f'(0) - 1$ is denoted by \mathcal{S}. Let Ω be the family of functions ω, regular in \mathbb{D} and satisfying the conditions $\omega(0) = 0$ and $|\omega(z)| < 1$ for all $z \in \mathbb{D}$. For $f, g \in \mathcal{A}$, the function f is said to be subordinate to g, denoted by $f \prec g$ if and only if there exists an analytic function $\omega \in \Omega$ such that $f = g \circ \omega$. In particular, if g is univalent in \mathbb{D} then $f(0) = g(0)$ and $f(\mathbb{D}) \subseteq g(\mathbb{D})$ hold.

The function $zf(z) \in \mathcal{A}_1$ is starlike of order λ if $\text{Re} \left(\frac{zf(z)}{f(z)} \right) > \lambda$ for all $z \in \mathbb{D}$ and $0 \leq \lambda < 1$. The class of all starlike functions, denoted by $\mathcal{S}^*(\lambda)$ is a subclass of \mathcal{S}. The n^{th} partial sum $s_n(f(z))$ of $f(z) = \sum_{k=0}^{\infty} a_k z^k$ is given by $s_n(f(z)) = \sum_{k=0}^{n} a_k z^k$, $n = 0, 1, 2, \ldots$. For more details about the univalent functions, its subclasses and subordination properties, we refer [2, 3, 4].

The concept of stable functions was first introduced by Ruscheweyh and Salinas [6], while discussing the class of starlike functions of order λ, where $1/2 \leq \lambda < 1$. However, the class of starlike functions of order $\lambda \in [1/2, 1)$ is comparatively a much narrow class but it has many interesting properties too. Ruscheweyh and Salinas [6] proved the following result.

Theorem 1. [6] Let $\lambda \in [1/2, 1)$ and $zf \in \mathcal{S}^*(\lambda)$, then

$$
\frac{s_n(f(z))}{f(z)} \prec (1 - z)\lambda, \quad n \in \mathbb{N}, z \in \mathbb{D}.
$$

Theorem 1 has several applications in Gegenbauer polynomial sums and motivated by Theorem 1, Ruscheweyh and Salinas [6] introduced the concept of Stable functions which is stated.
as follows. For some $n \in \mathbb{N}$, a function F is said to be n-stable function with respect to G if

$$\frac{s_n(F(z))}{F(z)} \leq \frac{1}{G(z)},$$

for $F, G \in A_1$ and $z \in \mathbb{D}$.

Moreover, the function F is said to be stable with respect to G, if F is n-stable with respect to G for every $n \in \mathbb{N}$. Particularly, if the function F is n-stable with respect to itself. Then for every $n \in \mathbb{N}, F$ is stable. In the present context, for $-1 \leq B < A \leq 1$, we define a function

$$v_\lambda(A, B, z) := \left(\frac{1 + A z}{1 + B z}\right)^\lambda$$

for $z \in \mathbb{D}$ and $\lambda \in (0, 1]$.

For $\lambda = 1/2$, Ruscheweyh and Salinas [7] proved that $v_{1/2}(1, -1, z)$ is stable function with respect to itself. The stability of $v_{1/2}(1, -1, z)$ is equivalent to the simultaneous non-negativity of general class of sine and cosine sums given by Vietoris [11], the most celebrated theorem of positivity of trigonometric sums. Ruscheweyh and Salinas [7] conjectured that $v_\lambda(1, -1, z)$ is stable for $0 < \lambda < 1/2$. Using computer algebra, for $\lambda = 1/4$ it was shown in [7] that $v_{1/4}(1, -1, z)$ is n-stable for $n = 1, 2, 3, \ldots, 5000$. In the limiting case, the validation of stability of $v_\lambda(1, -1, z)$ for $0 < \lambda < 1/2$ interpreted in terms of positivity of trigonometric polynomials.

Further extensions of Vietoris Theorem and stable functions to Cesàro stable functions and Generalized Cesàro stable functions have been studied in [4] and [9] respectively. In this direction, conjectures are also proposed in [9] that linked Generalized Cesàro stable functions with the positivity of trigonometric sums. Chakraborty and Vasudevarao [1] considered $A = 1 - 2\alpha, B = -1$ and proved the following result.

Theorem 2. [1] For $0 < \lambda \leq 1$ and $1/2 \leq \alpha < 1$, $v_\lambda(1 - 2\alpha, -1, z) = \left(1 + \frac{(1 - 2\alpha)z}{1 - z}\right)^\lambda$ is stable with respect to $v_\lambda(0, -1, z) = \frac{1}{(1 - z)^\lambda}$.

Chakraborty and Vasudevarao [1] also proved that $v_\lambda(1 - 2\alpha, -1, z)$ is not stable with respect to itself when $1/2 < \alpha < 1$ and $0 < \lambda \leq 1$. For $\lambda = 1$, the function $v_1(A, B, z) = \frac{1 + A z}{1 + B z}$ have been studied widely by many researchers. The analytic functions of A_1 subordinate to $\frac{1 + A z}{1 + B z}$ have been studied by Janowski [3] and the class of such functions is denoted by $\mathcal{P}(A, B)$. The functions of $\mathcal{P}(A, B)$ are called Janowski functions. Moreover, the set of functions $zf \in A_1$, for which $\frac{zf'(z)}{f(z)} < \frac{1 + Az}{1 + Bz}$ holds, called Janowski starlike functions and the class of such functions is denoted by $\mathcal{S}^*(A, B)$. It can be easily seen that $\mathcal{S}^*(1, -1) \equiv \mathcal{S}^*$.

In this paper, we show that $v_\lambda(A, B, z)$ is stable with respect to $v_\lambda(0, B, z) = 1/(1 + Bz)^\lambda$ for $0 < \lambda \leq 1$ and $-1 \leq B < A \leq 0$. Further, $v_\lambda(A, B, z)$ is not stable with respect to itself, when $0 < \lambda \leq 1$ and $-1 \leq B < 0$. We can write $v_\lambda(A, B, z)$ as,

$$v_\lambda(A, B, z) = \left(\frac{1 + A z}{1 + B z}\right)^\lambda$$

$$= (1 + Az)^\lambda (1 + Bz)^{-\lambda}$$

$$= \left[1 + \sum_{k=1}^{\infty} \frac{[\lambda]_k}{k!} A^k z^k \right] \left[1 + \sum_{k=1}^{\infty} \frac{\lambda}{k!} (-B)^k z^k \right]$$

$$= \sum_{n=1}^{\infty} \left(\sum_{k=0}^{n} \frac{[\lambda]_k}{k!} \frac{\lambda}{(n-k)!} A^k (-B)^{n-k} \right) z^n,$$

(1)
where \([\lambda]_k\) and \((\lambda)_k\) denote the factorial polynomials given as

\[
\begin{align*}
[\lambda]_k &= \lambda(\lambda-1)(\lambda-2)(\lambda-3)\cdots(\lambda-k+1), \\
(\lambda)_k &= \frac{\Gamma(\lambda+k)}{\Gamma(\lambda)} = \lambda(\lambda+1)\cdots(\lambda+k-1),
\end{align*}
\]

and \(\Gamma\) is well-known gamma function, for \(k = 1, 2, \cdots\) respectively with \([\lambda]_0 = 1 = (\lambda)_0\). So \(v_\lambda(A, B, z)\) can be written as

\[
v_\lambda(A, B, z) = 1 + \sum_{n=1}^{\infty} a_n(A, B, \lambda)z^n,
\]

where

\[
a_n := a_n(A, B, \lambda) = \sum_{k=0}^{n} \frac{[\lambda]_k (\lambda)_{n-k}}{k! (n-k)!} A^k (-B)^{n-k}.
\]

Now, we state two lemmas which will helpful to prove our main results.

Lemma 1. For \(0 < \lambda \leq 1\) and \(-1 \leq B < A \leq 0\), we have

\[
\sum_{k=0}^{n} \frac{[\lambda]_k (\lambda)_{n-k}}{k! (n-k)!} A^k (-B)^{n-k} > 0.
\]

Lemma 2. Let \(v_\lambda(A, B, z)\) be defined by (1). Then for \(\lambda \in (0, 1]\) and \(-1 \leq B < A \leq 0\),

\[
(m+1)(n+1) \left(\sum_{k=0}^{n+1} \frac{[\lambda]_k (\lambda)_{n+1-k}}{k! (n+1-k)!} A^k B^{n+1-k} \right) - mn \left(\sum_{k=0}^{n} \frac{[\lambda]_k (\lambda)_{n-k}}{k! (n-k)!} A^k B^{n-k} \right) \geq 0
\]

holds for all \(m, n \in \mathbb{N}\).

Now, we state main results of this paper which are about the stability of \(v_\lambda(A, B, z)\) with respect to \(v_\lambda(0, B, z)\) and \(v_\lambda(A, B, z)\) itself.

Theorem 3. For \(\lambda \in (0, 1]\) and \(-1 \leq B < A \leq 0\), \(v_\lambda(A, B, z)\) given in (1) is stable with respect to \(v_\lambda(0, B, z) = \frac{1}{(1+Bz)^\lambda}\).

If we substitute \(A = 0\) in Theorem 3, we get the following corollary which is also a generalization of the result given by Ruscheweyh and Salinas [6].

Corollary 1. For \(\lambda \in (0, 1]\) and \(-1 \leq B < 0\), \(v_\lambda(0, B, z) = \frac{1}{(1+Bz)^\lambda}\) is stable function.

Now for \(0 < \mu \leq \lambda \leq 1\), we have the following corollary of Theorem 3.

Corollary 2. For \(0 < \mu \leq \lambda \leq 1\) and for \(-1 \leq B < 0\) we have

\[
\frac{s_n(v_\mu(0, B, z))}{v_\lambda(0, B, z)} < \frac{1}{v_\lambda(0, B, z)}, \quad \text{for } z \in \mathbb{D}.
\]

Theorem 3 also generalizes result of Chakraborty and Vasudevarao [1] as if we substitute \(A = 1 - 2\alpha\) and \(B = -1\) in Theorem 3, reduces to Theorem 2. In other words, Theorem 2 is a particular case of Theorem 3.

Theorem 4. For \(\lambda \in (0, 1]\) and \(-1 \leq B < A < 0\), \(v_\lambda(A, B, z) = \left(\frac{1+Az}{1+Bz}\right)^\lambda\) is not stable with respect to itself.
Proof of Main Results

Proof of Lemma 1. Consider,
\[
1 = (1 - z)^{\lambda}(1 - z)^{-\lambda}
\]
\[
= 1 + \sum_{n=1}^{\infty} \left(\sum_{k=0}^{n} \frac{[\lambda]_k}{k!} \frac{(\lambda)_{n-k}}{(n-k)!} (-1)^k \right) z^n
\]
Comparing the coefficients of \(z^n\) on both the sides we have
\[
\sum_{k=0}^{n} \frac{[\lambda]_k}{k!} \frac{(\lambda)_{n-k}}{(n-k)!} (-1)^k = 0,
\]
which can be expanded as
\[
\frac{(\lambda)(\lambda+1)\cdots(\lambda+n-1)}{(n)!} \lambda + \frac{(\lambda)(\lambda+1)\cdots(\lambda+n-2)}{(n-1)!} \left(\frac{\lambda}{1!}\right) (-1) \\
+ \frac{(\lambda)(\lambda+1)\cdots(\lambda+n-3)\lambda(\lambda-1)}{(n-2)!} \left(-\frac{\alpha}{\beta}\right)^2 + \cdots + \frac{\lambda(\lambda)(\lambda-1)\cdots(\lambda+n-2)}{(n-1)!} \left(-\frac{\alpha}{\beta}\right)^{n-1} \\
+ \frac{(\lambda)(\lambda-1)\cdots(\lambda-n+1)}{n!} \left(-\frac{\alpha}{\beta}\right)^n \geq 0.
\]
After multiplying by \(\beta^n\) we obtain
\[
\beta^n \sum_{k=0}^{n} \frac{[\lambda]_k}{k!} \frac{(\lambda)_{n-k}}{(n-k)!} (-1)^k \left(\frac{\alpha}{\beta}\right)^k \geq 0
\]
By substituting \(\alpha = -A\), \(\beta = -B\) in (3) so that for \(-1 \leq B < A \leq 0\), the lemma is proved. \(\square\)

Proof of Lemma 3. Let \(v_\lambda(A, B, z)\) be defined by (1). Then,
\[
v_\lambda(A, B, z) = \left(\frac{1 + A z}{1 + B z}\right)^{\lambda} = 1 + a_1 z + a_2 z^2 + a_3 z^3 + \cdots
\]
\[
v_\lambda'(A, B, z) = \lambda \left(\frac{1 + A z}{1 + B z}\right)^{\lambda-1} \left(\frac{(1 + B z)A - (1 + A z)B}{(1 + B z)^2}\right)
\]
\[
= \frac{\lambda(A - B)(1 + A z)^{\lambda-1}}{(1 + B z)^{\lambda+1}}
\]
\[
(1 + B z)v_\lambda'(A, B, z) = \lambda(A - B)(1 + A z)^{\lambda-1}(1 + B z)^{-\lambda}
\]
Since \(0 > A > B, 0 < \lambda \leq 1\), \((1 + A z)^{\lambda-1} = 1 + (\lambda - 1)A z + \frac{(\lambda-1)(\lambda-2)}{2!} A^2 z^2 + \cdots\) and \((1 + B z)^{-\lambda} = 1 - \lambda B z + \frac{\lambda(\lambda+1)}{2!} B^2 z^2 + \cdots\) have positive Taylor series coefficients. A simple
computation yields that
\[(1 + Bz)v'_{\lambda}(A, B, z) = (a_1 + 2a_2z + 3a_3z^2 + \cdots)(1 + Bz)\]
\[= a_1 + \sum_{n=1}^{\infty}((n + 1)a_{n+1} + Bna_n)z^n.\] (5)

Since right hand side of (4) has positive Taylor coefficients, from (4) and (5) we conclude that
\[(n + 1)a_{n+1} + Bna_n > 0, \quad n \in \mathbb{N}.\] (6)

The left hand side of the expression given in (2) can be rewritten as
\[(m + 1)(n + 1)a_{n+1} + mnBa_n.\] (7)

Equivalently, (7) can be written as
\[m((n + 1)a_{n+1} + Bna_n) + (n + 1)a_{n+1}.\]

Using (6) and the fact that \(a_n \geq 0\) for \(m, n \in \mathbb{N}\), the lemma is proved for \(\lambda \in (0, 1]\) and \(-1 \leq B < A \leq 0\). □

Before going to proceed further for the proof of Theorem 3, it is easy to verify the following relations.

\[s'_{n}(v_{\lambda}(A, B, z), z) = s_{n-1}(v'_{\lambda}(A, B, z), z),\]
\[zs'_{n}(v_{\lambda}(A, B, z), z) = s_{n}(zv'_{\lambda}(A, B, z), z),\]
\[z^2s'_{n}(v_{\lambda}(A, B, z), z) = s_{n}(z^2v'_{\lambda}(A, B, z), z).\] (8)

Now, we are ready to give the proof of Theorem 3.

Proof of Theorem 3. To show that \(v_{\lambda}(A, B, z)\) is stable with respect to \(v_{\lambda}(0, B, z)\), it is enough to show that
\[\frac{s_{n}(v_{\lambda}(A, B, z), z)}{v_{\lambda}(A, B, z), z} \prec \frac{1}{v_{\lambda}(0, B, z)}, \quad z \in \mathbb{D}\]
for all \(n \in \mathbb{N}\), i.e., to prove that
\[\frac{(1 + Bz)^\lambda s_{n}(v_{\lambda}(A, B, z), z)}{(1 + Az)^\lambda} \prec (1 + Bz)^\lambda, \quad z \in \mathbb{D},\]
which can be equivalently written as
\[\frac{(1 + Bz)s_{n}(v_{\lambda}(A, B, z), z)^{\frac{1}{\lambda}}}{(1 + Az)^{\frac{1}{\lambda}}} \prec (1 + Bz).\]

To show that , it is enough to prove that
\[\left|\frac{(1 + Bz)s_{n}(v_{\lambda}(A, B, z), z)^{\frac{1}{\lambda}}}{(1 + Az)^{\frac{1}{\lambda}}} - 1\right| \leq |B| \leq 1, \quad z \in \mathbb{D}.\]

For fixed \(n\) and \(\lambda\), we consider the following function
\[h(z) = 1 - \frac{(1 + Bz)s_{n}(v_{\lambda}(A, B, z), z)^{\frac{1}{\lambda}}}{(1 + Az)^{\frac{1}{\lambda}}}, \quad z \in \mathbb{D}.\]

It is easy to see that
\[v'_{\lambda}(A, B, z) = \lambda(A - B)\frac{(1 + Az)^{\lambda - 1}}{(1 + Bz)^{\lambda + 1}} = \lambda(A - B)\frac{v_{\lambda}(A, B, z)}{(1 + Bz)(1 + Az)},\]
which can be rewritten in the following form
\[v_{\lambda}(A, B, z) - \frac{(1 + (A + B)z + ABz^2)}{\lambda(A - B)}v'_{\lambda}(A, B, z) = 0 \quad \text{for} \quad z \in \mathbb{D}.\] (9)
A simple calculations gives that
\[
h'(z) = \frac{A - B}{(1 + Az)^2} s_n(v_\lambda(A, B, z), z)^{1/\lambda} - \frac{(1 + Bz)}{(1 + Az)^\lambda} s_n(v_\lambda(A, B, z), z)^{1/\lambda - 1} s_n'(v_\lambda(A, B, z), z)
\]
\[
= \frac{(A - B) s_n(v_\lambda(A, B, z), z)^{1/\lambda}}{(1 + Az)^2} \left(s_n(v_\lambda(A, B, z), z) - \frac{(1 + Az)(1 + Bz)}{(A - B)\lambda} s_n'(v_\lambda(A, B, z), z) \right)
\]
Using relations (8) in (10), we get
\[
h'(z) = \frac{(A - B) s_n(v_\lambda(A, B, z), z)^{1/\lambda - 1}}{(1 + Az)^2} \left[s_n \left(v_\lambda(A, B, z), z \right) - \frac{(1 + Az)(1 + Bz)}{(A - B)\lambda} v_n'(A, B, z, z) \right]
\]
\[\quad + \frac{(n + 1)}{\lambda(A - B) \sum_{k=0}^{n+1} \frac{[\lambda]_k (\lambda)_{n-k+1}}{k! (n-k+1)!} A^k (-B)^{n-k+1} z^n} \]
\[\quad - \frac{nAB}{\lambda(A - B) \sum_{k=0}^{n} \frac{[\lambda]_k (\lambda)_{n-k}}{k! (n-k)!} A^k (-B)^{n-k} z^{n+1}}.\]
Substituting (8) in (11) and using definition of \(a_n\), the following form of \(h'(z)\) can be obtained.
\[
h'(z) = \frac{z^n s_n(v_\lambda(A, B, z), z)^{1/\lambda - 1}}{(1 + Az)^2} \left((n + 1)a_n + ABzn_n \right)
\]
\[= \frac{z^n s_n(v_\lambda(A, B, z), z)^{1/\lambda - 1}}{\lambda} \left((n + 1)a_n + ABzn_n \right) (1 + Az)^{-2}
\]
\[= \frac{z^n s_n(v_\lambda(A, B, z), z)^{1/\lambda - 1}}{\lambda} \left((n + 1)a_n + ABzn_n \right) (1 - 2Az + 3A^2z^2 - 4A^3z^3 + \cdots)
\]
\[= \frac{z^n s_n(v_\lambda(A, B, z), z)^{1/\lambda - 1}}{\lambda} \left((n + 1)a_n + \sum_{m=1}^{\infty} (m + 1)(n + 1)a_n + mnBn_n(1 - A)^m z^m \right).
\]
Since \(A \in (-1, 0]\), we have \(-A \geq 0\). Therefore in view of Lemma 1, we obtain \(a_n > 0\) for all \(n \in \mathbb{N}\). Further, from Lemma 2 we obtain \((m + 1)(n + 1)a_n + Bn_n > 0\) for all \(n, m \in \mathbb{N}\). Thus
\[
(n + 1)a_n + \sum_{m=0}^{\infty} [(m + 1)(n + 1)a_n + Bn_n](-A)^m z^m
\]
represents a series of positive Taylor’s coefficients. Since \(a_n > 0\) for all \(n \in \mathbb{N}\), the function \(v_\lambda(A, B, z)\) has a series representation with positive Taylor coefficients. Hence,
\[
|s_n(v_\lambda(A, B, z), z)| \leq s_n(v_\lambda(A, B, z), |z|)
\]
holds and consequently
\[
|h'(z)| \leq h'(|z|), \quad \text{for all } z \in \mathbb{D}\text{ holds.} \tag{12}
\]
Since \(h(0) = 0\) and \(h(-B) = 1\), using (12) we obtain
\[
|h(z)| = \left| \int_0^{z} h'(t)dt \right| \leq \int_0^{B} h'(t) \left(-\frac{t^2}{B} \right) dt \leq \int_0^{B} h'(t) dt = 1, \quad z \in \mathbb{D}.
\]
Therefore,
\[
\left| \frac{(1 + Bz)(s_n(v, A, B, z), z)}{(1 + Az)^{1/\lambda} - 1} \right| < 1, \quad z \in \mathbb{D}.
\]
which implies that
\[
\frac{s_n(v_\lambda(A, B, z), z)}{v_\lambda(A, B, z)} < \frac{1}{v_\lambda(0, B, z)}.
\]
Therefore, \(v_\lambda(A, B, z) \) is \(n \)-stable with respect to \(v_\lambda(0, B, z) \) for all \(n \in \mathbb{N} \). Hence \(v_\lambda(A, B, z) \) is stable with respect to \(v_\lambda(0, B, z) \) for all \(0 < \lambda \leq 1 \) and \(-1 \leq B < A \leq 0 \).

For the proof of Corollary 2 we need the following proposition which follows the same procedure as given in [5].

Proposition 1. Let \(\alpha, \beta > 0 \) and \(B \in [-1, 0) \). If \(F \prec (1 + Bz)^\alpha \) and \(G \prec (1 + Bz)^\beta \) then \(FG \prec (1 + Bz)^{\alpha + \beta} \) for \(z \in \mathbb{D} \).

Proof. The function \(\log(1 + Bz) \) is convex univalent for \(z \in \mathbb{D} \) and \(B \in [-1, 0) \). Our claim follows from

\[
\frac{1}{\alpha + \beta} \log(F(z)G(z)) = \frac{\alpha}{\alpha + \beta} \log(1 + Bu(z)) + \frac{\beta}{\alpha + \beta} \log(1 + Bv(z)) \prec \log(1 + Bz),
\]

where \(u, v \) are analytic functions such that \(|u(z)| \leq |z| \) and \(|v(z)| \leq |z| \) for \(z \in \mathbb{D} \).

Now we are ready to give proof of Corollary 2.

Proof of Corollary 2. For \(0 < \mu \leq \lambda \leq 1 \) we have,

\[
\frac{1}{\lambda} \log \left((1 + Bz)^\lambda s_n(v_\mu(0, B, z), z) \right)
= \frac{1}{\lambda} \log \left((1 + Bz)^{\lambda - \mu} (1 + Bz)^\mu s_n(v_\mu(0, B, z), z) \right)
= \frac{1}{\lambda} \log(1 + Bz)^{\lambda - \mu} + \frac{1}{\lambda} \log \left((1 + Bz)^\mu s_n(v_\mu(0, B, z), z) \right)
= \frac{1}{\lambda} \log(1 + Bu(z))^{\lambda - \mu} + \frac{1}{\lambda} \log(1 + Bw(z))^\mu
\]

\(\prec (1 + Bz)^\lambda \)

for \(|u(z)| \leq |z| \) and \(|w(z)| \leq |z| \). Therefore, \((1 + Bz)^\lambda s_n(v_\mu(0, B, z), z) \prec (1 + Bz)^\lambda \) holds for all \(z \in \mathbb{D} \) and \(0 < \mu \leq \lambda \leq 1 \).

Now we prove that \(v_\lambda(A, B, z) \) is not stable with respect to itself for \(\lambda \in (0, 1] \) and \(-1 \leq B < A \leq 0 \).

Proof of Theorem 3. For \(-1 \leq B < A \leq 0 \), to prove that \(v_\lambda(A, B, z) \) is stable with respect to itself, we need to show that

\[
\frac{s_n(v_\lambda(A, B, z), z)}{v_\lambda(A, B, z)} \prec \frac{1}{v_\lambda(A, B, z)}, \quad z \in \mathbb{D}.
\]

Equivalently \(G(z) \prec H(z) \) where

\[
G(z) := \frac{(1 + Bz)s_n(v_\lambda(A, B, z), z)}{1 + Az} \quad \text{and} \quad H(z) := \frac{1 + Bz}{1 + Az}.
\]

Since \(G(z) \) and \(H(z) \) are analytic in \(\mathbb{D} \) for \(-1 \leq B < A \leq 0 \) and \(H(z) \) is univalent in \(\mathbb{D} \). In the point of view of the subordination, we have \(G(z) \prec H(z) \) if and only if \(G(0) = H(0) \) and \(G(\mathbb{D}) \subseteq H(\mathbb{D}) \) and \(G = H \circ \omega \), where \(\omega \in \Omega \) analytic in \(\mathbb{D} \) satisfying \(\omega(0) = 0 \) and \(|\omega'(0)| < 1 \).

In view of the Schwartz Lemma, we have \(|\omega'(z)| \leq |z| \) for \(z \in \mathbb{D} \) and \(|\omega'(0)| \leq 1 \). If \(G \prec H \), it follows that \(|G'(0)| \leq |H'(0)| \) and \(G(|z| \leq r) \subseteq H(|z| \leq r), 0 \leq r \leq 1 \).

Let \(\omega = H(z) = \frac{1 + Bz}{1 + Az} \), then \(z = \frac{1 + B\omega}{1 + A\omega} \). Therefore, the image of \(|z| \leq r \) under \(H(z) \) is \(|\frac{1 + B\omega}{1 + A\omega}| \leq r \) which after simplification is equivalent to \(|w - C(r, A, B)| \leq R(r, A, B)| \) where

\[
C(r, A, B) := \frac{r^2A - B}{B^2 - r^2A^2} \quad \text{and} \quad R(r, A, B) := \frac{r(A - B)}{B^2 - r^2A^2}.
\]
To show that $G \not\prec H$, it is enough to show that $G(|z| \leq r) \not\subset H(|z| \leq r)$. To prove that $G(|z| \leq r) \not\subset H(|z| \leq r)$, it is enough to choose a point z_0 with $|z_0| \leq r_0$ such that $G(z_0)$ does not lie in the disk $|\omega - C(r, A, B)| \leq R(r, A, B)$ for some $-1 \leq B < A \leq 0$.

Choose $z_0 = 0.915282 - 0.357037i$, $A = -0.679$, $B = -0.97$, and $\lambda = 0.3$. Then $G(z_0) = 0.8697 + 0.5845i$, $C(r_0, A, B) = 0.634444$ and $R(r_0, A, B) = 0.576521$. Clearly $G(z_0)$ does not lie in the disk $|\omega - C(r_0, A, B)| \leq R(r_0, A, B)$. Therefore $G \not\prec H$ i.e., $\lambda \not\in [1/2, 1)$.

The graphical illustration of these values is also given here in Figure 1. Hence $v_\lambda(A, B, z)$ is not stable with respect to itself.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{G(z_0, A, B) \not\subset H(z_0, A, B) for z_0 = 0.915282 - 0.357037i, A = -0.679, B = -0.97, and \lambda = 0.3.}
\end{figure}

Choose $z_0 = 0.915282 - 0.357037i$, $r_0 = 0.98$, $A = -0.679$, $B = -0.97$, $\lambda = 0.3$ and $n = 1$. Then $G(z_0) = 0.8697 + 0.5845i$, $C(r_0, A, B) = 0.634444$ and $R(r_0, A, B) = 0.576521$. Clearly $G(z_0)$ does not lie in the disk $|\omega - C(r_0, A, B)| \leq R(r_0, A, B)$. Therefore $G \not\prec H$ i.e., $\lambda \not\in [1/2, 1)$ does not hold. The graphical illustration of these values is also given here in Figure 1. Hence $v_\lambda(A, B, z)$ is not stable with respect to itself.

\begin{thebibliography}{9}
1. S. Chakraborty, A. Vasudevarao, \textit{On stable Functions}, Comput. Methods Funct. Theory \textbf{18} (2018) 677-688.
2. P.L. Duren, \textit{Univalent Functions}, Springer–Verlag, Berlin, 1983.
3. W. Janowski, Some extremal problems for certain families of analytic functions. I, Ann. Polon. Math. \textbf{28} (1973), 297–326.
4. S. R. Mondal and A. Swaminathan, \textit{Stable functions and extension of Vietoris’ theorem}, Results Math. \textbf{62} (2012), no. 1-2, 33–51.
5. S. Ruscheweyh, \textit{Convolutions in geometric function theory}, Séminaire de Mathématiques Supérieures, 83, Presses Univ. Montréal, Montreal, QC, 1982.
6. S. Ruscheweyh and L. Salinas, \textit{On starlike functions of order $\lambda \in [1/2, 1)$}, Ann. Univ. Mariae Curie-Skłodowska Sect. A \textbf{54} (2000), 117–123.
7. S. Ruscheweyh and L. Salinas, \textit{Stable functions and Vietoris’ theorem}, J. Math. Anal. Appl. \textbf{291} (2004), no. 2, 596–604.
8. S. Koumandos and S. Ruscheweyh, \textit{On a conjecture for trigonometric sums and starlike functions}, J. Approx. Theory \textbf{149} (2007), no. 1, 42–58.
9. P. Sangal and A. Swaminathan, \textit{On generalized Cesàro Stable functions}, Mathematical Inequalities and Applications, \textbf{22} (1), (2019). 227247.
\end{thebibliography}
10. Wolfram Research, Inc. Mathematica. Version 10.0
11. L. Vietoris, Über das Vorzeichen gewisser trigonometrischer Summen, Sitzungsber, Oest. Akad. Wiss. 167, 1958, 125–135.

KONERI CHANDRASEKARN, DEPARTMENT OF MATHEMATICS, JEPPIAAR SRR ENGINEERING COLLEGE, AFFILIATED TO ANNA UNIVERSITY, CHENNAI 603 103, INDIA
E-mail address: kchandru2014@gmail.com

DEVASIR JOHN PRABHAKARAN, DEPARTMENT OF MATHEMATICS, MIT CAMPUS, ANNA UNIVERSITY, CHENNAI 600 044, INDIA
E-mail address: asirprabha@yahoo.com

PRIYANKA SANGAL, DEPARTMENT OF MATHEMATICS, R.C.U. GOVT. P.G. COLLEGE UTTARKASHI, UTTARAKHAND 249193, INDIA
E-mail address: sangal.priyanka@gmail.com