Negative moments of the gaps between consecutive primes

Marek Wolf

Cardinal Stefan Wyszynski University, Faculty of Mathematics and Natural Sciences. College of Sciences, ul. Wóycickiego 1/3, PL-01-938 Warsaw, Poland, e-mail: m.wolf@uksw.edu.pl

Abstract

We derive heuristically approximate formulas for the negative k–moments $M_{-k}(x)$ of the gaps between consecutive primes $< x$ represented directly by $\pi(x)$ — the number of primes up to x. In particular we propose an analytical formula for the sum of reciprocals of gaps between consecutive primes $< x$: $M_{-1}(x) \sim \frac{\pi^2(x)}{x-2\pi(x)} \log \left(\frac{x}{2\pi(x)} \right) \sim x \log \log(x)/\log^2(x)$. We illustrate obtained results by the enormous computer data up to $x = 4 \times 10^{18}$.

Let p_n denotes the n-th prime number and $d_n = p_{n+1} - p_n$ denotes the n-th gap between consecutive primes. Let us consider the sum of reciprocals of gaps d_n over primes up to $p_n \leq x$:

$$\sum_{n=2}^{\pi(x)} \frac{1}{p_n - p_{n-1}}, \quad (1)$$

where $\pi(x)$ is, as usual, the number of primes up to x. To our knowledge there is no known formula for the above sum as a function of x. We can consider in general arbitrary negative moments of $p_{n+1} - p_n$:

$$M_{-k}(x) \equiv \sum_{n=2}^{\pi(x)} \frac{1}{(p_n - p_{n-1})^k}, \quad (2)$$

For the positive moments

$$M_k(x) \equiv \sum_{n=2}^{\pi(x)} (p_n - p_{n-1})^k \quad (3)$$

in [5, p.2056] it was conjectured that:

$$M_k(x) \sim k!x \log^{k-1}(x). \quad (4)$$
The symbol \(f(x) \sim g(x) \) means here that \(\lim_{x \to \infty} f(x)/g(x) = 1 \). In [11] we predicted the formula
\[
M_k(x) = \frac{\Gamma(k + 1)x^k}{\pi^{k-1}(x)} + \mathcal{O}_k(x). \tag{5}
\]
Above \(\Gamma(x) = \int_0^\infty t^{x-1}e^{-t}dt \) is the Gamma function generalizing the factorial thus the above formula is valid also for non-integer \(k \). By the Prime Number Theorem (PNT) the number of prime numbers below \(x \) is very well approximated by the logarithmic integral
\[
\pi(x) \sim \text{Li}(x) = \int_2^x \frac{du}{\log(u)}. \tag{6}
\]
Integration by parts gives the asymptotic expansion which should be cut at the term \(n_0 = \lfloor \log(x) \rfloor \):
\[
\text{Li}(x) = x \log(x) + x \log 2 \log(x) + 3! \frac{x}{\log^3(x)} + \cdots + n_0! \frac{x}{\log^{n_0+1}(x)}. \tag{6}
\]
Putting in (5) the approximation \(\pi(x) \sim x/\log(x) \) we recover (4).

Let \(\tau_d(x) \) denote the number of pairs of consecutive primes smaller than a given bound \(x \) and separated by \(d \):
\[
\tau_d(x) = \#\{p_n, p_{n+1} < x, \text{ with } p_{n+1} - p_n = d\}. \tag{7}
\]
In [9] (see also [8], [10]) we proposed the following formula expressing function \(\tau_d(x) \) directly by \(\pi(x) \):
\[
\tau_d(x) \sim C_2 \prod_{p|d, p>2} \frac{p-1}{p-2} \frac{\pi^2(x)}{x} \left(1 - \frac{2\pi(x)}{x}\right)^{\frac{d-1}{2}} \quad \text{for } d \geq 6, \tag{8}
\]
where the twins prime constant
\[
C_2 \equiv 2 \prod_{p>2} \left(1 - \frac{1}{(p-1)^2}\right) = 1.320323631693739\ldots
\]
The pairs of primes separated by \(d = 2 \) (“twins”) and \(d = 4 \) (“cousins”) are special as they always have to be consecutive primes (with the exception of the pair (3,7) containing 5 in the middle). For \(d = 4 \) we adapt the expression obtained from (8) for \(d = 2 \), which for \(\pi(x) \sim x/\log(x) \) goes into the the conjecture B of G. H. Hardy and J.E. Littlewood [2] eqs. (5.311) and (5.312)]:
\[
\tau_2(x) \left(\approx \tau_4(x)\right) \sim C_2 \frac{\pi^2(x)}{x} \approx C_2 \frac{x}{\log^2(x)}. \tag{9}
\]
We have
\[
M_{-k}(x) = \sum_{n=2}^{\pi(x)} \frac{1}{(p_n - p_{n-1})^k} = \sum_{d=2,4,6,\ldots} \frac{\tau_d(x)}{d^k}. \tag{10}
\]
We will assume that for sufficiently regular and decreasing functions \(f(n) \) the following formula holds:

\[
\sum_{k=1}^{\infty} \prod_{p|k, p > 2} \frac{p-1}{p-2} f(k) = \frac{1}{\prod_{p > 2} (1 - \frac{1}{(p-1)^2})} \sum_{k=1}^{\infty} f(k).
\] (11)

In other words we will replace the product over \(p|d \) in (8) by its mean value as \(E \).

Bombieri and H. Davenport \[1\] have proved that the number \(\frac{1}{\prod_{p > 2} (1 - \frac{1}{(p-1)^2})} \) is the arithmetical average of the product \(\prod_{p|k} \frac{p-1}{p-2} \):

\[
\frac{1}{n} \sum_{k=1}^{n} \prod_{p|k, p > 2} \frac{p-1}{p-2} = \frac{1}{\prod_{p > 2} (1 - \frac{1}{(p-1)^2})} + O(\log^2(n)).
\] (12)

Later H.L. Montgomery \[4, eq.(17.11)\] has improved the error term to \(O(\log(\log(x))) \).

Using this trick we get further from (8) and (10)

\[
M_{-k}(x) \sim 2 \frac{\pi^2(x)}{x - 2\pi(x)} \sum_{n=1}^{\infty} \frac{1}{(2n)^k} \left(1 - \frac{2\pi(x)}{x} \right)^n.
\] (13)

To calculate negative moments we need the formula for the series

\[
\sum_{n=1}^{\infty} \frac{q^n}{n^k} \equiv \text{Li}_k(q), \quad |q| < 1,
\] (14)

where \(\text{Li}_k(q) \) is a polylogarithm function of order \(k \), see, for example, \[3\] or \[6, Sect. 25.12\]. The \(\text{Li}_k(q) \) should not be confused with logarithmic integral in \[6\], where \(\text{Li}(x) \) appears without any subscript. Unfortunately the closed formula for polylogarithm is known only for \(k = 1 \) and is obtained by integrating term by term uniformly convergent geometrical series: \(\text{Li}_1(q) = -\log(1 - q) \). Hence we obtain

\[
M_{-1}(x) = \sum_{n=2}^{\pi(x)} \frac{1}{p_n - p_{n-1}} \sim \tilde{M}_{-1}^{(2)}(x) \equiv \frac{\pi^2(x)}{x - 2\pi(x)} \log \left(\frac{x}{2\pi(x)} \right).
\] (15)

We use the notation \(\tilde{M}_{-1}^{(2)}(x) \) for the analytical formula for \(M_{-k}(x) \) expressed by \(\pi(x) \), while \(\tilde{M}_{-k}^{(1)}(x) \) will refer to the formula for \(M_{-k}(x) \) expressed by series in \(1/\log(x) \), see below. Putting here for \(\pi(x) \) a few first terms from the expansion of \(\text{Li}(x) \) \[6\] and expanding in series of \(1/\log(x) \) we obtain

\[
M_{-1}(x) \sim \tilde{M}_{-1}^{(1)}(x) \equiv x \left(\frac{\log(\log(x)) - \log(2)}{\log^2(x)} + \frac{8\log(\log(x)) - 1 - 8\log(2)}{\log^3(x)} \right).
\] (16)

For large \(x \) using the notation \(\log_n(x) = \log(\log_{n-1}(x)) \) for the iterated logarithm we obtain the pleasant formula:

\[
\sum_{n=2}^{\pi(x)} \frac{1}{p_n - p_{n-1}} = 1 + \frac{1}{2} + \frac{1}{4} + \cdots + \frac{1}{p\pi(x) - p\pi(x)-1} \sim \frac{x \log_2(x)}{\log^2(x)}.
\] (17)
During over a seven months long run of the computer program we have collected the values of $\tau_d(x)$ up to $x = 2^{48} \approx 2.8147 \times 10^{14}$. The data representing the function $\tau_d(x)$ were stored at values of x forming the geometrical progression with the ratio 2, i.e. at $x = 2^{15}, 2^{16}, \ldots, 2^{47}, 2^{48}$. Such a choice of the intermediate thresholds as powers of 2 was determined by the employed computer program in which the primes were coded as bits. The data is available for downloading from http://pracownicy.uksw.edu.pl/mwolf/gaps.zip At the Tomás Oliveira e Silva web site http://sweet.ua.pt/tos/gaps.html we have found values of $\tau_d(x)$ for $x = 1.61 \times 10^{18}$ and $x = 4 \times 10^{18}$. In Table 1 we give a comparison of formulas (15) and (16) with exact values of $M_{-1}(x)$. We used the values of $\pi(x)$ calculated from the identity

$$\sum_d \tau_d(x) = \pi(x) - 1.$$

TABLE 1

The sum of reciprocals of gaps between consecutive primes< x compared with closed formulas (15) and (16). The ratios initially decrease and next slowly tend towards 1. The convergence in second column is very slow: the ratios are changing only on third places after dot for x spanning over eleven orders.

x	$M_{-1}(x)/M_{-1}^{(2)}(x)$	$M_{-1}(x)/M_{-1}^{(1)}(x)$
$2^{24} = 1.6777 \times 10^7$	0.8738	0.7638
$2^{26} = 6.7109 \times 10^7$	0.8731	0.7664
$2^{28} = 2.6844 \times 10^8$	0.8734	0.7699
$2^{30} = 1.0737 \times 10^9$	0.8738	0.7734
$2^{32} = 4.2950 \times 10^9$	0.8741	0.7769
$2^{34} = 1.7180 \times 10^{10}$	0.8744	0.7803
$2^{36} = 6.8719 \times 10^{10}$	0.8748	0.7836
$2^{38} = 2.7488 \times 10^{11}$	0.8751	0.7867
$2^{40} = 1.0995 \times 10^{12}$	0.8755	0.7898
$2^{42} = 4.3980 \times 10^{12}$	0.8759	0.7927
$2^{44} = 1.7592 \times 10^{13}$	0.8762	0.7955
$2^{46} = 7.0369 \times 10^{13}$	0.8766	0.7982
$2^{48} = 2.8147 \times 10^{14}$	0.8770	0.8007
1.61×10^{18}	0.8793	0.8145
4×10^{18}	0.8795	0.8157

For the second negative moment we will use the twice integrated geometrical series

$$\sum_{n=1}^{\infty} \frac{q^n}{n(n+1)} = \frac{q + (1-q) \log(1-q)}{q}, \quad |q| < 1. \quad (18)$$

as for large n we have $1/(n(n+1)) \approx 1/n^2$. In this way we obtain a crude approxi-
in the defining formula for M_{-k} we keep only a few first terms:

$$M_{-k}(x) = C_2 \frac{\pi^2(x)}{2^k x} \left(1 + \frac{1}{2^k} + \frac{2}{3^k} \left(1 - \frac{2\pi(x)}{x} \right)^2 + \right.$$

$$\left. + \frac{1}{4^k} \left(1 - \frac{2\pi(x)}{x} \right)^3 + \frac{4}{3^5} \left(1 - \frac{2\pi(x)}{x} \right)^4 + \frac{2}{6^6} \left(1 - \frac{2\pi(x)}{x} \right)^5 + \ldots \right)$$

(21)
Above we have used explicit values of the product $\prod_{p|k, p>2} \frac{p-1}{p-2}$ for $d = 2, 4, 6, 8, 10$ and 12. For example, for $k = 4$ keeping gaps up to $d = 10$ and developing powers of $1 - 2\pi(x)/x$ we obtain:

$$M_{-4}(x) \sim \tilde{M}^{(2)}_{-4} = C_2 \frac{\pi^2(x)}{16x} \left(\frac{34081595473}{3111696000} \cdot \frac{2500235267}{15558480000} \pi(x) + \frac{2244748963}{7779240000} \left(\frac{\pi(x)}{x} \right)^2 - \frac{1178322017}{3889620000} \left(\frac{\pi(x)}{x} \right)^3 + \frac{33735178}{121550625} \left(\frac{\pi(x)}{x} \right)^4 \right)$$

(22)

Putting above instead of $\pi(x)$ a few terms from the expansion (6) for $\text{Li}(x)$ the series in powers of $1/\log(x)$ follows:

$$M_{-4}(x) \sim \tilde{M}^{(1)}_{-4} = C_2 \frac{x}{16 \log^2(x)} \left(\frac{14168273}{12960000} + \frac{14168273}{6480000} \frac{1}{\log(x)} + \frac{468091}{864000} \left(\frac{1}{\log(x)} \right)^2 + \frac{27005921}{6480000} \left(\frac{1}{\log(x)} \right)^3 \right)$$

(23)

In Table 3 we show how good the above approximation is. We do not know why ratios in the third columns are closer to one than in second.

x	$M_{-4}(x)/\tilde{M}^{(2)}_{-4}(x)$	$M_{-4}(x)/\tilde{M}^{(1)}_{-4}(x)$
$2^{24} = 1.6777 \times 10^7$	1.012003	1.008288
$2^{26} = 6.7109 \times 10^7$	1.007536	1.004022
$2^{28} = 2.6844 \times 10^8$	1.006260	1.002853
$2^{30} = 1.0737 \times 10^9$	1.006038	1.002751
$2^{32} = 4.2950 \times 10^9$	1.005621	1.002445
$2^{34} = 1.7180 \times 10^{10}$	1.005218	1.002190
$2^{36} = 6.8719 \times 10^{10}$	1.004711	1.001826
$2^{38} = 2.7488 \times 10^{11}$	1.004403	1.001666
$2^{40} = 1.0995 \times 10^{12}$	1.004104	1.001513
$2^{42} = 4.3980 \times 10^{12}$	1.003863	1.001417
$2^{44} = 1.7592 \times 10^{13}$	1.003657	1.001349
$2^{46} = 7.0369 \times 10^{13}$	1.003471	1.001297
$2^{48} = 2.8147 \times 10^{14}$	1.003311	1.001265
1.61×10^{18}	1.002630	1.001258
4×10^{18}	1.002580	1.001268
We can obtain another approximate formula. Namely in (21) it is possible to sum over all d and separate terms without $\pi(x)/x$ and with first and second power of $\pi(x)/x$ using the equation (11). In this manner we obtain:

\[M_{-k} \sim \frac{\pi^2(x)}{2^{k-1}(x - 2\pi(x))} \left(\zeta(k) - \frac{2\pi(x)}{x} \left(\zeta(k-1) - \frac{1}{2^k} \right) \right.
\left. + \frac{2\pi^2(x)}{x^2} \left(\zeta(k-2) - \zeta(k-1) - \frac{1}{2^{k-1}} \right) \right) + \ldots \]

(24)

Here $\zeta(k) = \sum_n 1/n^k$ is the Riemann zeta function at integer arguments. Above we have to demand $k \geq 4$ to avoid infinity of $\zeta(1)$.

Acknowledgement: I thank Professor Roger Heath–Brown for e-mail exchange.

References

[1] E. Bombieri and H. Davenport. Small differences between prime numbers. Proc. Royal Soc., A293:1–18, 1966.

[2] G. H. Hardy and J. E. Littlewood. Some problems of ‘Partitio Numerorum’ III: On the expression of a number as a sum of primes. Acta Mathematica, 44:1–70, 1922.

[3] L. Lewin. Polylogarithms and associated functions. North Holland, 1981.

[4] H. Montgomery. Topics in Multiplicative Number Theory. Springer-Verlag, Heidelberg, New York, Inc, 1971. Springer Lecture Notes 227.

[5] T. Oliveira e Silva, S. Herzog, and S. Pardi. Empirical verification of the even Goldbach conjecture and computation of prime gaps up to $4 \cdot 10^{18}$. Mathematics of Computation, 83, 2014.

[6] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark. NIST handbook of mathematical functions. NIST and CUP, 2010.

[7] L. Veptas. An efficient algorithm for accelerating the convergence of oscillatory series, useful for computing the polylogarithm and hurwitz zeta functions. Numerical Algorithms, 47(3):211252, Mar 2008.

[8] M. Wolf. Applications of statistical mechanics in number theory. Physica A, 274(1–2):149 – 157, 1999.

[9] M. Wolf. Some heuristics on the gaps between consecutive primes. math.NT/1102.0481, Feb. 2011.
[10] M. Wolf. Nearest-neighbor-spacing distribution of prime numbers and quantum chaos. *Phys. Rev. E*, 89:022922–1–022922–11, Feb 2014.

[11] M. Wolf. On the moments of the gaps between consecutive primes. *arXiv:math.NT/1705.10766*, May 2017.