Spinning σ-model solitons in $2 + 1$ Anti-de Sitter space

B. Harms and A. Stern

Department of Physics, University of Alabama,
Tuscaloosa, Alabama 35487, USA

ABSTRACT

We obtain numerical solutions for rotating topological solitons of the nonlinear σ-model in three-dimensional Anti-de Sitter space. Two types of solutions, $i)$ and $ii)$, are found. The σ-model fields are everywhere well defined for both types of solutions, but they differ in their space-time domains. Any time slice of the space-time for the type $i)$ solution has a causal singularity, despite the fact that all scalars constructed the curvature tensor are bounded functions. No evidence of a horizon is seen for any of the solutions, and therefore the type $i)$ solutions have naked singularities. On the other hand, the space-time domain, along with the fields, for the type $ii)$ solutions are singularity free. Multiple families of solutions exhibiting bifurcation phenomena are found for this case.

*bharms@ua.edu
†astern@ua.edu
1 Introduction

Asymptotically AdS solutions are of current interest due to their application to holography and their possible indication of phase transitions in the boundary field theory. Examples of such solutions are AdS black holes, AdS solitons, and their hairy extensions. Here we show the existence of asymptotically AdS σ-model solitons. Their stability requires the fields to be rotating. Nonrotating asymptotically AdS σ-model solitons were previously shown not to exist. This also is evident from a simple scaling argument. While the σ-model Lagrangian is scale invariant in two spatial dimensions for static field configurations, this is no longer the case in a background anti-de Sitter space. Rather, there is a contribution which scales like r^2, leading to an attractive force in addition to the gravitational attraction. The absence of any stabilizing forces, is thus consistent with the nonexistence of static solutions. The above arguments do not apply for rotating field configurations. We show that, as a result, there exist rotating topological solitons which approach AdS3 in the large distance limit. Asymptotically flat self-gravitating solitons in the 2 + 1 dimensional nonlinear σ-models have been known to exist for a long time. Analogous self-gravitating solutions, or skyrmions, in 3 + 1 dimensions are well known. Spinning solutions have also been considered. Solutions with large winding number (corresponding to baryon number) have been proposed to model dense stars. Singularities and horizons can arise for the latter solutions in space-times with various cosmological constants. Such solutions are hairy black holes, and they have been extensively studied. It is of interest to know if the 2 + 1 dimensional nonlinear σ-model also admits solutions with horizons at finite distances.

Solutions with singular metric tensors are of physical relevance in 2 + 1 gravity. Examples of singularities are the helical and conical singularities appearing in the metric tensor of point masses with, and without spin, respectively. As with our type i) solutions, all scalar quantities constructed from the associated curvature tensor are bounded everywhere. Furthermore, since our type i), as well as the type ii) solutions, are asymptotically AdS, they are of interest for the AdS/CFT correspondence.
cosmological constant and λ the boundary at spatial infinity $r \to \infty$.

$$S_{GHY} = \frac{1}{8\pi G} \int_{r \to \infty} d^2x \sqrt{-h} K .$$ \hspace{1cm} (2)

h is the determinant of the induced metric on the boundary, and K is the trace of the extrinsic curvature, $K = -\frac{1}{r^2} \partial_n (\sqrt{-g} \hat{n}^a)$, where \hat{n}_a is the unit vector normal to the boundary. S_{AdS} is the infinite AdS vacuum action, which we subtract off in order for the gravity contribution to the action to be finite. $\Phi_a \to$ constant in order for the matter contribution to the action to be finite. Therefore just as in flat space the domain for the nonlinear-sigma model on any time-slice is S^2, and topologically distinct field configurations result. We demand that Φ_a has a unique limit everywhere on S^2, including at the point associated with the origin, which may or may not be a causal singularity. We label the topological sectors by the winding number

$$n = -\frac{1}{8\pi} \int_{x=\text{constant}} d^2x \epsilon_{abc} \epsilon_{ij} \Phi_a \partial_i \Phi_b \partial_j \Phi_c ,$$ \hspace{1cm} (3)

where the integral is on any time-slice and n is normalized to be an integer. ϵ_{abc} and ϵ_{ij} denote totally antisymmetric tensors, and $i, j, .. = 1, 2$ are spatial indices.

In section two we write down the ansatz for the metric tensor and Φ_a and give asymptotic solutions near spatial infinity and the origin. Some numerical solutions are presented in section three. Collective coordinate quantization is shown in section four. The question of the existence of black hole solutions with nonlinear-sigma model hair is examined in section five, while some brief concluding remarks are given in section six.

2 Asymptotic solutions

We parametrize the two-dimensional space by polar coordinates (r, ϕ), and the time by t. Our ansatz for the metric tensor is expressed in terms of three radial functions A, B and Ω,

$$ds^2 = -A(r)dt^2 + \frac{B(r)}{A(r)} dr^2 + r^2 (d\phi + \Omega(r) dt)^2 ,$$ \hspace{1cm} (4)

while the σ-model fields Φ_a are written in terms of one radial function χ and a fixed angular velocity ω,

$$\begin{pmatrix} \Phi_1 \\ \Phi_2 \\ \Phi_3 \end{pmatrix} = \begin{pmatrix} \sin \chi(r) \cos (\phi - \omega t) \\ \sin \chi(r) \sin (\phi - \omega t) \\ \cos \chi(r) \end{pmatrix} .$$ \hspace{1cm} (5)

The functions A, B and χ are dimensionless, while Ω and ω have units of inverse-time. Without any loss of generality we can set $\chi(\infty) = 0$. Then for fields in the n^{th} topological sector, $\chi(0) = n\pi$. Upon substituting (4) and (5) into the action (including the Gibbons-Hawking-York term) we get

$$S = \frac{\pi}{\kappa} \int \frac{dt dr}{\sqrt{B}} \left\{ \partial_t A + \frac{r^3 (\partial_r \Omega)^2}{2} + \frac{2rB}{\ell^2} - r\kappa \left(A (\partial_r \chi)^2 + \left(\frac{1}{r^2} - \frac{(\omega + \Omega)^2}{A} \right) B \sin^2 \chi \right) \right\} - S_{AdS} ,$$ \hspace{1cm} (6)

where $\kappa = 8\pi G$, and we set $\Lambda = -\frac{1}{r^2}$. It is convenient to introduce the dimensionless radial variable $x = r/\ell$. Then

$$S = \frac{\pi}{\kappa} \int \frac{dt dx}{\sqrt{B}} \left\{ A' + \frac{x^3 \Omega^2}{2} + 2xB - x\kappa \left(A\chi'^2 + \left(\frac{1}{x^2} - \frac{(\omega + \Omega)^2}{A} \right) B \sin^2 \chi \right) \right\} - S_{AdS} ,$$ \hspace{1cm} (7)
where \(\tilde{\Omega} = \ell \Omega \) and \(\tilde{\omega} = \ell \omega \), and the prime denotes a derivative with respect to \(x \). Upon extremizing the action with respect to variations in \(A, B, \tilde{\Omega} \) and \(\chi \), we get

\[
\frac{1}{2} (\ln B)' = \kappa x \left(\chi'^2 + \frac{B}{A^2} (\tilde{\omega} + \tilde{\Omega})^2 \sin^2 \chi \right)
\]

\[
0 = A' + \frac{x^3 \tilde{\Omega}^2}{2} - 2xB + \kappa x \left(-A\chi'^2 + \left(\frac{1}{x^2} - \frac{(\tilde{\omega} + \tilde{\Omega})^2}{A} \right) B \sin^2 \chi \right)
\]

\[
\left(\frac{x^3 \tilde{\Omega}'}{\sqrt{B}} \right)' = \frac{2\kappa x}{A} \sqrt{B} (\tilde{\Omega} + \tilde{\omega}) \sin^2 \chi
\]

\[
\left(\frac{xA\chi'}{\sqrt{B}} \right)' = x \sqrt{B} \left(\frac{1}{x^2} - \frac{(\tilde{\omega} + \tilde{\Omega})^2}{A} \right) \sin \chi \cos \chi,
\]

respectively.

Next we write down the solutions to (8) in the asymptotic regions \(x \to \infty \) and \(x \to 0 \).

2.1 \(x \to \infty \)

For the asymptotic region \(x \to \infty \) we demand that \(\chi \to 0 \) and that we recover anti-de Sitter space in the limit. The large distance behavior for \(A, B, \tilde{\Omega} \) and \(\chi \) can be determined from (8):

\[
A \to x^2 - M + \frac{J^2}{x^2} + \frac{\kappa \nu^2 \left((\tilde{\Omega}_\infty + \tilde{\omega})^2 + 4M + 1 \right)}{12x^4} + O\left(\frac{1}{x^6} \right)
\]

\[
B \to 1 - \frac{2\kappa \nu^2}{x^4} + \frac{\kappa \nu^2 \left((\tilde{\Omega}_\infty + \tilde{\omega})^2 - 8M - 2 \right)}{3x^6} + O\left(\frac{1}{x^8} \right)
\]

\[
\tilde{\Omega} \to \tilde{\Omega}_\infty + \frac{J}{x^2} + \frac{\kappa \nu^2 \left(\tilde{\Omega}_\infty + \tilde{\omega} - 4J \right)}{12x^6} + O\left(\frac{1}{x^8} \right)
\]

\[
\chi \to \frac{\nu}{x^2} + \frac{\nu \left(- (\tilde{\Omega}_\infty + \tilde{\omega})^2 + 4M + 1 \right)}{8x^4} + O\left(\frac{1}{x^6} \right), \quad x \to \infty,
\]

where \(M, J, \tilde{\Omega}_\infty \) and \(\nu \) are constants, the first two being the mass and angular momentum parameters, respectively. The solution is consistent with the standard large distance behavior of the metric tensor for three-dimensional anti-de Sitter space with a localized matter source.\[4\] The Ricci scalar tends towards the \(AdS^3 \) value of \(-6\) in the limit. The constant \(\tilde{\Omega}_\infty \) can always be eliminated by transforming to the co-rotating frame at spatial infinity, where \(\tilde{\omega} \) in the ansatz \[5\] gets replaced by \(\tilde{\Omega}_\infty + \tilde{\omega} \). Conversely, we can transform to a frame where the \(\sigma \)-model fields are static by replacing \(\tilde{\Omega}_\infty \) by \(\tilde{\Omega}_\infty + \tilde{\omega} \).

2.2 \(x \to 0 \)

Two possible power series expansions for \(A, B, \tilde{\Omega} \) and \(\chi \) exist near the origin. Two of the functions, \(A \) and \(\tilde{\Omega} \), are singular at the origin for one solution, while all functions have a finite limit for the other. For the former, \(A, \tilde{\Omega} \sim \frac{1}{x^2} \), as \(x \to 0 \). More specifically, near the origin the solution has the form

\[
A \to \frac{J_0^2}{x^2} - M_0 + B_0 x^2 - \frac{\kappa}{3} M_0 \chi_0^2 x^4 + O(x^6)
\]
\[
B \to B_0\left(1 + 2\kappa\chi_2^2x^4 + \frac{\kappa\chi_2^2}{3J_0^2}(B_0 + 8M_0)x^6 + \mathcal{O}(x^8)\right)
\]
\[
\hat{\Omega} \to \frac{J_0}{x^2} + \hat{\Omega}_0 - \kappa J_0 \chi_2^2x^2 - \frac{2\kappa M_0 \chi_2^2}{3J_0}x^4 + \mathcal{O}(x^6)
\]
\[
\chi \to n\pi + \chi_2x^2 + \frac{\chi_2M_0}{2J_0^2}x^4 + \mathcal{O}(x^6) , \quad x \to 0 ,
\]

where \(J_0, M_0, B_0, \hat{\Omega}_0\) and \(\chi_2\) are constants. For finite \(J_0 \neq 0, M_0, B_0, \hat{\Omega}_0\), the time-time component \(g_{tt} = -A + x^2\hat{\Omega}^2\), as well as the remaining components of the metric tensor, are bounded at the origin,
\[
ds^2 \sim (M_0 + 2J_0\hat{\Omega}_0)dt^2 + \frac{B_0}{J_0^2}x^2dx^2 + 2J_0dtd\phi + x^2d\phi^2
\]

All scalars constructed from the curvature tensor are bounded in the \(x \to 0\) limit, e.g. the Ricci scalar tends toward \(\frac{4\kappa J_0^2\chi_2^2}{B_0^2} - 6\). Nevertheless, a causal singularity exists at the origin for this solution.

The power series solution (11) is not valid for \(J_0 = 0\). For this case one has the alternative power series solution
\[
A \to -M_0 - M_0x^2 + \frac{\kappa}{8}\chi_1^2(-3M_0 + (\tilde{\Omega}_0 + \tilde{\omega})^2)x^4 + \mathcal{O}(x^6)
\]
\[
B \to -M_0 - \kappa M_0\chi_1^2x^2 + \frac{\kappa}{8}\chi_1^2\left(-M_0\left(2\chi_1^2(5\kappa - 1) - 9\right) + (\tilde{\Omega}_0 + \tilde{\omega})^2\right)x^4 + \mathcal{O}(x^6)
\]
\[
\tilde{\Omega} \to \tilde{\Omega}_0 + \frac{\kappa}{4}\chi_1^2(\tilde{\Omega}_0 + \tilde{\omega})x^2 - \frac{\kappa}{48M_0}\chi_1^2(\tilde{\Omega}_0 + \tilde{\omega})\left(-M_0\left(2\chi_1^2(4\kappa - 1) - 7\right) - (\tilde{\Omega}_0 + \tilde{\omega})^2\right)x^4 + \mathcal{O}(x^6)
\]
\[
\chi \to n\pi + \chi_1x - \frac{\chi_1}{24M_0}\left(-M_0\left(2\chi_1^2(3\kappa - 1) - 9\right) - 3(\tilde{\Omega}_0 + \tilde{\omega})^2\right)x^3 + \mathcal{O}(x^5) , \quad x \to 0 ,
\]

where all functions have a finite limit. This solution is parametrized by \(M_0, \tilde{\Omega}_0\) and \(\chi_1\). The invariant length near the origin takes the form
\[
ds^2 \sim M_0(1 + x^2)dt^2 + \left(1 + (\kappa\chi_1^2 - 1)x^2\right)dx^2 + x^2d\phi^2 + \tilde{\Omega}_0dt^2
\]

For a Lorentzian space-time near the origin we need that \(M_0 < 0\). When \(\tilde{\Omega}_0 = 0\), any \(t\)-slice approaches flat Euclidean space as \(x \to 0\). When \(\tilde{\Omega}_0 \neq 0\), the space-time near the origin is rotating. In either case the space-time is singularity free.

3 Numerical solutions

We have not found any analytic solutions to (8) away from the asymptotic regions and therefore rely on numerical methods. We numerically integrate (8) subject to the asymptotic expressions (9) near the \(AdS^3\) boundary to obtain \(A, B, \hat{\Omega}\) and \(\chi\) at finite \(x\). For topological solitons \(\chi(0)\) must be an integer multiple of \(\pi\). The topological solitons solutions can be parametrized by the constants \(J, M, \nu\) and \(\hat{\Omega}_\infty\) appearing in (9). One strategy for obtaining solutions is to first fix three of the parameters (along with
κ and ˜ω), and then apply shooting methods to tune the remaining one such that χ → nπ as x → 0, where the winding number n is equal to a nonzero integer. Near the origin the solutions must satisfy either (10) or (12), corresponding to type i) or ii) solutions, respectively. The parameters appearing in (10) or (12) can then be determined numerically from M, J, ν and Ω∞. Conversely, given J0, M0, B0, Ω0 and χ2 of the expression (10) or M0, Ω0 and χ1 of (12) (and the winding number n) we can numerically determine the parameters M, J, ν and Ω∞ describing the large distance behavior.

3.1 Type i) solutions

Numerical solutions satisfying (10) near the origin corresponding to type i) solutions are found for large regions of the parameter space. Examples of the behavior of the functions A(x) and χ(x) for these solutions appear in figures 1 through 5. There we plot χ versus log(x) and log(A) versus log(x) for different values of n, ˜ω, M, J and κ. We set Ω∞ = 0, which means that we are working in the co-rotating frame as x → ∞. In the captions we list the fitted values for ν for each solution. One example which appears in all figures 1-5 is an n = 1 soliton with κ = ˜ω = M = J = 1 and ν ≈ 2.33. For this example the functions A, B, Ω and χ tend towards (10) as x → 0, with the following values for the short distance parameters: M0 ~ −.34, J0 ~ .094, B0 ~ .0035, Ω0 ~ 1.92 and χ2 ~ −14.9.

Solutions i) with winding number one, two and three with M = J = κ = ˜ω = 1 are shown in figures 1a and 1b. n = 1 solutions are plotted for different rotation velocities ˜ω, including zero, (with M = J = κ = 1) in figures 2a and 2b. n = 1 solutions are plotted for different values of the mass parameter, including 0 and −1, (with J = κ = ˜ω = 1) in figures 3a and 3b and different values of the angular momentum parameter, including 0, (with M = κ = ˜ω = 1) in figures 4a and 4b. Finally, n = 1 solutions are plotted in figures 5a and 5b for different values of κ (with M = J = ˜ω = 1). From the results in figures 2 and 4, neither a nonzero rotation velocity ˜ω in the internal space nor a nonzero angular momentum J is necessary to stabilize the soliton, since we find solutions when either ˜ω or J are zero. On the other hand, we find no solutions when both ˜ω and J vanish, which is consistent with the no-go result in [8]. In addition, we find novel solutions where both the mass and angular momentum parameters vanish, M = J = 0, and one with M = −1, J = 0. If one takes these as parameters for the BTZ black hole, the former would correspond to a zero mass black hole and the latter would correspond to anti-de Sitter space. An example of a soliton with M = J = 0 occurs for κ = ˜ω = 1, ν = .77, and a soliton with M = −1, J = 0 occurs for κ = ˜ω = 1, ν ≈ 1.061. As required, A approaches x2 as x → ∞ for all of the above examples, while it does not pass through zero for any x. The latter behavior indicates that there are no horizons. A and Ω go as 1/x2 near the origin.

3.2 Type ii) solutions

Numerical solutions ii) can also be found for which all of the functions are bounded, including at the origin where they approach (12). These solutions cover a smaller region in parameter space than i) since they correspond to the limiting case of J0 → 0 in (11). By integrating from x → ∞ using (9) and from x → 0 using (12) we can match the four functions A, B, Ω and χ, along with their derivatives, at finite x to arbitrary accuracy. An example of such a solution is shown in figure 6(a), where M0 ≈ −.193, Ω0 ≈ −2.09, χ1 ≈ −8.08, ω ≈ 1.37 and κ ≈ .246. All four functions are well behaved at the origin. By matching the functions and their derivatives at x = 1, we determined the parameters of the large distance solution (9) to be M ≈ .0539, J ≈ .0817, Ω∞ ≈ −2.77 and ν ≈ .241. As in the previous figures, A does not cross the x-axis, indicating no horizons. The function χ(x) monotonically decreases from
Figure 1: **Varying** n. Self-gravitating rotating solitons with parameters: $M = J = \kappa = \tilde{\omega} = 1$. χ versus log x is plotted in figure (a) and log A versus log x is plotted in figure (b). $\nu \approx 2.33$ gives the $n = 1$ soliton (solid curve), $\nu \approx 4.92$ gives the $n = 2$ soliton (dashed curve) and $\nu \approx 7.52$ gives the $n = 3$ soliton (dot-dashed curve).

Figure 2: **Varying** $\tilde{\omega}$. $n = 1$ self-gravitating solitons with parameters: $M = J = \kappa = 1$ for different values of $\tilde{\omega}$. χ versus log x is plotted in figure (a) and log A versus log x is plotted in figure (b). $\nu \approx 2.33$ gives the soliton with $\tilde{\omega} = 1$ (solid curve), $\nu \approx 1.48$ gives the soliton with $\tilde{\omega} = 0$ (dashed curve) and $\nu \approx 1.22$ gives the soliton with $\tilde{\omega} = -1$ (dot-dashed curve).

Figure 3: **Varying** M. $n = 1$ self-gravitating solitons with parameters: $J = \kappa = \tilde{\omega} = 1$ for different values of the mass parameter M. χ versus log x is plotted in figure (a) and log A versus log x is plotted in figure (b). $\nu \approx 2.33$ gives the soliton with $M = 1$ (solid curve), $\nu \approx 2.89$ gives the soliton with $M = 0$ (dashed curve) and $\nu \approx 3.42$ gives the soliton with $M = -1$ (dot-dashed curve).
Figure 4: **Varying** J. $n = 1$ self-gravitating solitons with parameters: $M = \kappa = \tilde{\omega} = 1$ for different values of the angular momentum parameter J. χ versus $\log x$ is plotted in figure (a) and $\log A$ versus $\log x$ is plotted in figure (b). $\nu \approx 2.33$ gives the soliton with $J = 1$ (solid curve), $\nu \approx .569$ gives the soliton with $J = 0$ (dashed curve) and $\nu \approx 1.22$ gives the soliton with $J = -1$ (dot-dashed curve).

Figure 5: **Varying** κ. $n = 1$ self-gravitating solitons with parameters: $M = J = \tilde{\omega} = 1$ for different values of κ. χ versus $\log x$ is plotted in figure (a) and $\log A$ versus $\log x$ is plotted in figure (b). $\nu \approx 2.33$ gives the soliton with $\kappa = 1$ (solid curve), $\nu \approx 1.76$ gives the soliton with $\kappa = .25$ (dashed curve) and $\nu \approx 1.52$ gives the soliton with $\kappa = .05$ (dot-dashed curve).
\[\pi \text{ to } 0 \text{ as } x \text{ goes from } 0 \text{ to } \infty. \] On the other hand, solutions can also be found where \(\chi(x) \) has multiple nodes, as is illustrated in figure 6(b) for solutions with zero, one and two nodes. The depicted \(n = 1 \) solutions have common values for \(\kappa, \omega \) and \(M_0 \), and differing values of the parameters \(\chi_1 \) and \(\tilde{\Omega}_0 \).

The space of nonsingular solutions can be parametrized by \(\omega, \kappa, M_0, \tilde{\Omega}_0 \) and \(\chi_1 \). We span the parameter space for the zero, one and two node solutions in figures 7, 8(a) and 8(b). Keeping \(\kappa \) and \(\omega \) fixed, we plot \(-\chi_1\) versus \(\tilde{\Omega}_0 \) in figure 7. \(\chi_1(\tilde{\Omega}_0) \) is seen to be multi-valued, with a cusp singularity occurring for the zero node solutions at some minimum value of \(\tilde{\Omega}_0 \). (Analogous behavior has been noted for self-gravitating Skyrmions.[16])

\(-\chi_1(\kappa) \) [with \(\omega \) and \(M_0 \) held fixed] is plotted in figure 8(a) and \(-\chi_1(-M_0) \) [with \(\omega \) and \(\kappa \) held fixed] is plotted in figure 8(b). Finite domains are seen for both of these functions, implying upper bounds on the allowed values for \(\kappa \) and \(-M_0 \). We also get no soliton solutions in the limiting cases of \(\kappa \to 0 \) and \(-M_0 \to 0 \). [The latter limit corresponds to the function \(A \) vanishing at the origin, indicating a horizon in the zero radius limit. So if solutions existed with \(-M_0 \to 0 \) they could coincide with the zero radius limit of the horizon of a hairy black hole. Thus the absence of such solutions is consistent with not finding any black hole solutions with \(\sigma \)-model hair, which is what we report in section five.]

![Figure 6: Singularity-free solutions.](image)

(a)

Figure 6: Singularity-free solutions. In (a), \(\chi \) (solid curve), \(A \) (large dashed curve), \(B \) (dot-dashed curve) and \(-\tilde{\Omega} \) (small dashed curve) are plotted versus \(x \) for a singularity-free solution for the following values of the parameters introduced in \([12]\): \(M_0 \approx -0.193, \tilde{\Omega}_0 \approx -2.09, \chi_1 \approx -8.08, \omega \approx 1.37 \) and \(\kappa \approx 0.246 \). In (b), \(\chi(x) \) is plotted for three different soliton solutions having \(\kappa \approx 0.12, \omega \approx 1.3721 \) and \(M_0 \approx -0.2 \) The monotonically decreasing solution (solid curve) has \(\chi_1 \approx -5.80 \) and \(\tilde{\Omega}_0 \approx -3.01 \); The single node solution (dashed curve) has \(\chi_1 \approx -11.94 \) and \(\tilde{\Omega}_0 \approx -3.52 \); The double node solution (dotted curve) has \(\chi_1 \approx -23.25 \) and \(\tilde{\Omega}_0 \approx -4.19 \).

4 Collective coordinate quantization

The collective coordinate quantization of the soliton allows for an alternative definition of the mass and angular momentum of the soliton. We denote them by \(M \) and \(J \), respectively. Both can be computed from the action \([11]\) evaluated for the soliton. A Chern-Simons term \([30], [31]\) can be included in the total action, and this will produce a contribution which is linear in the angular velocity, in addition to those
Figure 7: $-\chi_1(\tilde{\Omega}_0)$ [with $\kappa = .12$ and $\omega = 1.3721$] is plotted for the solutions having monotonically decreasing χ (solid curve), the single node solutions (dashed curve) and the double node solutions (dotted curve). $\chi_1(\tilde{\Omega}_0)$ is seen to have a cusp singularity at $\tilde{\Omega}_0 \approx -3.02$ for the zero node solutions.

Figure 8: In (a) , $-\chi_1(\kappa)$ [with $\omega \approx 1.3721$ and $M_0 \approx -.019389$] is plotted for the solutions having monotonically decreasing χ (solid curve), the single node solutions (dashed curve) and the double node solutions (dotted curve). The maximum value for κ for the zero node solutions is approximately .28. In (b), $-\chi_1(-M_0)$ [with $\omega \approx 1.3721$ and $\kappa \approx .12$] is plotted for the solutions having monotonically decreasing χ (solid curve), the single node solutions (dashed curve) and the double node solutions (dotted curve). The maximum value for $-M_0$ for the zero node solutions is approximately .58.
coming from (1). However, such contributions do not affect the energy spectrum, and so we will not consider the Chern-Simons term.

In the collective coordinate approach one replaces $\tilde{\omega}$ with a dynamical angular velocity $\dot{\psi}$, with the caveat that its variation is sufficiently small so that it doesn’t significantly change the values of the mass M or the moment of inertia I of the soliton. M is defined as the $\dot{\psi}$-independent contribution to the soliton action, while $I/2$ is the coefficient of the quadratic contribution in $\dot{\psi}$. As indicated above, there is also a linear contribution. Thus the soliton action can be written

$$S = \int dt \left\{ \frac{1}{2} I \dot{\psi}^2 + \alpha \dot{\psi} - M \right\},$$

(14)

where I, α and M are given by the radial integrals

$$I = 2\pi \int dx x \sqrt{B/A} \sin^2 \chi,$$

$$\alpha = 2\pi \int dx x \tilde{\Omega} \sqrt{B/A} \sin^2 \chi,$$

$$M = -\frac{\pi}{\kappa} \int dx \sqrt{B} \left\{ A' + \frac{x^2 \tilde{\Omega}^2}{2} + 2x B - \frac{\tilde{\Omega}^2}{A} B \sin^2 \chi \right\} - 4x \sqrt{B}. \right.$$

(15)

The infinite AdS vacuum action S_{AdS} was subtracted from \mathcal{M}. The angular momentum of the soliton is $J = I \dot{\psi}$. From the asymptotic behavior (13) as $x \to \infty$ and the behavior (11) or (12) as $x \to 0$, the integral expressions for I, α and M are finite. (This is in contrast to the moment of inertia for the σ-model soliton in Minkowski space-time, which is not bounded, leading to a spontaneous breakdown of rotational symmetry.\[32\]) For the $n = 1$ solution with $M = J = 1$ appearing in figures 1 through 5 we get $M \approx -22.1$ and $J = I \tilde{\omega} \approx 7.6$. For the topological soliton illustrated in figure 6 having $M \approx .0539$ and $J \approx .0817$ we get $M \approx 2.1$ and $J = I \tilde{\omega} \approx 2.78$.

The Hamiltonian for the system is

$$H = \frac{J^2}{2I} + M.$$

(16)

The angular momentum J is related to the canonical momentum p_ψ by $J = p_\psi - \alpha$. Its Poisson bracket with the $U(1)$ phase $e^{i\psi}$ is then

$$\{ e^{i\psi}, J \} = ie^{i\psi}.$$

(17)

In passing to the quantum theory the spectrum of the operator \hat{J} corresponding to J is not unique, the eigenvalues being integers plus an arbitrary constant.\[30],\[31\] It obeys the commutator

$$[\hat{e}^{i\psi}, \hat{J}] = -\hbar \hat{e}^{i\psi},$$

(18)

where $\hat{e}^{i\psi}$ is the operator corresponding to $e^{i\psi}$. The algebra has the Casimir operator $\exp \frac{2\pi i}{\hbar} \hat{J}$, whose eigenvalues are phases $e^{i\phi_m}$ which label different irreducible representations in the quantum theory. The spectrum for \hat{J} is then \hbar times an integer m plus an arbitrary phase constant, $\hbar m + \frac{\phi_0 \hbar}{2\pi}$, and so from (16) the energy eigenvalues are

$$E_m = \frac{\hbar^2}{2I} \left(m + \frac{\phi_0}{2\pi} \right)^2 + \mathcal{M}.$$

(19)

Of course the energy spectrum depends on an additional integer n, the winding number, since I and \mathcal{M} do.
5 The question of hairy BTZ black hole solutions

The functions $A(x)$ and $B(x)$ were positive for all of the numerical solutions obtained previously by integrating either from $x \to 0$ or $x \to \infty$. Thus none of these solutions developed horizons. We can instead assume a priori the existence of at least one horizon. In the case of multiple horizons, let $x_H > 0$ denote the the location outer most one. Then $A(x_H) = 0$. A consistent solution of (8) near the horizon, $x - x_H \ll 1$, can be obtained by demanding that $\tilde{\Omega}(x_H) = -\tilde{\omega}$. A power series expansion for the functions A, B, Ω and χ can then be determined from three independent parameters, say $B_H = B(x_H)$, $\chi_H = \chi(x_H)$ and $\tilde{\Omega}_1 = \tilde{\Omega}'(x_H)$, as well as x_H. Up to first order in $x - x_H$,

$$
A \to A_1 (x - x_H) + O((x - x_H)^2)
$$

$$
B \to B_H + B_1 (x - x_H) + O((x - x_H)^2)
$$

$$
\tilde\Omega \to -\tilde\omega + \tilde\Omega_1 (x - x_H) + O((x - x_H)^2)
$$

$$
\chi \to \chi_H + \chi_1 (x - x_H) + O((x - x_H)^2),
$$

where the horizon parameters A_1, B_H, B_1, $\tilde\Omega_1$, χ_H and χ_1 satisfy

$$
A_1 = 2B_H x_H - \frac{\tilde\Omega_1^2 x_H^3}{2} - \frac{\kappa B_H \sin^2 \chi_H}{x_H},
$$

$$
B_1 = \frac{2\kappa x_H B_H (\chi_H^2 + B_H \tilde\Omega_1^2 \sin^2 \chi_H)}{A_1^2},
$$

$$
\chi_1 = \frac{B_H \sin(2\chi_H)}{2x_H^4 A_1}.
$$

Setting χ at $x = x_H$ equal to an integer multiple of π in (21) leads to $\chi_1 = 0$, along with the vanishing of higher derivatives of χ at $x = x_H$. Therefore there are no solutions for this case, and so the domain $x \geq x_H$ of the nonlinear σ-model cannot be taken to be S^2. Since we desire no horizons in the domain $x \geq x_H$, we require that $A(x), B(x) > 0$ in this domain and so $A_1 > 0$. Therefore, $B_H (1 - \frac{\kappa \sin^2 \chi_H}{2x_H^4}) > \frac{\tilde\Omega_1^2 x_H^3}{2}$ and $\sin^2 \chi_H < \frac{2x_H^4}{\kappa}$. The above conditions are of course satisfied for the ‘bald’ BTZ solution where the four functions A, B, $\tilde\Omega$ and χ are respectively

$$
A_{BTZ} = x^2 - M + \frac{J^2}{x^4} \quad B_{BTZ} = 1 \quad \tilde\Omega_{BTZ} = \tilde\Omega_{\infty} + \frac{J}{x^2} \quad \chi_{BTZ} = 0.
$$

Then identifying x_H with the outer horizon, $x_H^2 = \frac{1}{2} (M + \sqrt{M^2 - 4J^2})$, we get the following results for the horizon parameters

$$
A_1 = \frac{2}{x_H} \sqrt{M^2 - 4J^2} \quad B_H = 1 \quad \tilde\Omega_1 = -\frac{2J}{x_H^3}
$$

$$
\tilde\Omega_{\infty} + \tilde\omega + \frac{J}{x_H^2} = B_1 = \chi_H = \chi_1 = 0.
$$

For a hairy black hole we drop the restriction of $\chi_H = \chi_1 = 0$ as well as the other conditions in (23) that yield the BTZ solution. A monotonically decreasing function $\chi(x)$ and monotonically increasing function for $A(x)$ require $\chi_1 < 0$ and $A_1 > 0$, respectively. From the last equation in (21) and $B_H > 0$ it
follows that $\sin(2\chi_H) < 0$. Given these inequalities on the horizon parameters, along with the conditions (21), we can then integrate the equations of motion (22) from x_H to $x \to \infty$. Upon so doing we were unable to recover the asymptotic solution (9) at $x \to \infty$, and hence we did not find any black hole solutions with nonlinear σ-model hair.

6 Concluding remarks

We obtained numerical solutions for two types, $i)$ and $ii)$, of rotating self-gravitating topological solitons of the nonlinear σ-model where the space-time approaches AdS^3 in the large distance limit. Upon embedding the solutions in $3+1$ dimensions, they can be interpreted as cosmic strings. For the type $i)$ solution, any time slice of the space-time domain has a causal singularity, which is analogous to the BTZ black hole singularity. On the other hand, the space-time domain is singularity free for type $ii)$ solutions. $\chi(x)$ for such solutions exhibit an arbitrary number of nodes. No evidence of a horizon was seen for any of the solutions. Therefore these solutions are not hairy black holes, and furthermore the type $i)$ solutions have naked singularities.

Among the lines of inquiry that remain to be investigated is the search for black hole solutions with nonlinear σ-model hair, analogous to the known $3+1$ dimensional black hole solutions with Skyrme hair. This may require the inclusion of higher order derivative terms, analogous to the Skyrme term, in the nonlinear σ-model action. While the solitons obtained here are topologically stable, the question of whether or not they are stable under local fluctuations needs to be determined. Finally, it is worthwhile to understand the role that these new three-dimensional AdS solutions may or may not play for the two-dimensional space-time boundary field theory.

REFERENCES

[1] E. Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories,” Adv. Theor. Math. Phys. 2, 505 (1998).

[2] M. Banados, C. Teitelboim and J. Zanelli, “The Black hole in three-dimensional space-time,” Phys. Rev. Lett. 69, 1849 (1992) doi:10.1103/PhysRevLett.69.1849; M. Banados, M. Henneaux, C. Teitelboim and J. Zanelli, “Geometry of the (2+1) black hole,” Phys. Rev. D 48, 1506 (1993) Erratum: [Phys. Rev. D 88, 069902 (2013)].

[3] G. T. Horowitz and R. C. Myers, “The AdS / CFT correspondence and a new positive energy conjecture for general relativity,” Phys. Rev. D 59, 026005 (1998).

[4] M. Henneaux, C. Martinez, R. Troncoso and J. Zanelli, “Black holes and asymptotics of 2+1 gravity coupled to a scalar field,” Phys. Rev. D 65, 104007 (2002).

[5] M. Banados and S. Theisen, “Scale invariant hairy black holes,” Phys. Rev. D 72, 064019 (2005).

[6] Y. Brihaye, B. Hartmann and S. Tojiev, “AdS solitons with conformal scalar hair,” Phys. Rev. D 88, 104006 (2013).

[7] A. Anabalon, D. Astefanesei and D. Choque, “Hairy AdS Solitons,” arXiv:1606.07870 [hep-th].

[8] P. Bizon and A. Wasserman, “A Note on the non-existence of sigma-model solitons in the 2+1 dimensional AdS gravity,” Phys. Rev. D 71, 108701 (2005).
[9] G. Clement, “Field-Theoretic Extended Particles in Two Space Dimensions,” Nucl. Phys. B 114, 437 (1976).

[10] M. Heusler, S. Droz and N. Straumann, “New black hole solutions with hair,” Phys. Lett. B 268, 371 (1991); “Stability analysis of selfgravitating skyrmions,” Phys. Lett. B 271, 61 (1991); M. Heusler, N. Straumann and Z. h. Zhou, “Selfgravitating solutions of the Skyrme model and their stability,” Helv. Phys. Acta 66, 614 (1993).

[11] T. Ioannidou, B. Kleihaus and J. Kunz, “Spinning gravitating skyrmions,” Phys. Lett. B 643, 213 (2006).

[12] N. K. Glendenning, T. Kodama and F. R. Klinkhamer, “Skyrme Topological Soliton Coupled To Gravity,” Phys. Rev. D 38, 3226 (1988).

[13] B. M. A. G. Piette and G. I. Probert, “Towards skyrmion stars: Large baryon configurations in the Einstein-Skyrme model,” Phys. Rev. D 75, 125023 (2007).

[14] S. Nelmes and B. M. A. G. Piette, “Skyrmion stars and the multilayered rational map ansatz,” Phys. Rev. D 84, 085017 (2011).

[15] H. Luckock and I. Moss, “Black Holes Have Skyrmion Hair,” Phys. Lett. B 176, 341 (1986).

[16] P. Bizon and T. Chmaj, “Gravitating skyrmions,” Phys. Lett. B 297, 55 (1992); “Critical collapse of Skyrmions,” Phys. Rev. D 58, 041501 (1998).

[17] B. Kleihaus, J. Kunz and A. Sood, “SU(3) Einstein-Skyrme solitons and black holes,” Phys. Lett. B 352, 247 (1995).

[18] T. Tamaki, K. i. Maeda and T. Torii, “Internal structure of Skyrme black hole,” Phys. Rev. D 64, 084019 (2001).

[19] N. Sawado, N. Shiiki, K. i. Maeda and T. Torii, “Regular and black hole Skyrmions with axi-symmetry,” Gen. Rel. Grav. 36, 1361 (2004); N. Shiiki and N. Sawado, “Regular and black hole solutions in the Einstein-Skyrme theory with negative cosmological constant,” Class. Quant. Grav. 22, 3561 (2005); “Black hole skyrmions with negative cosmological constant,” Phys. Rev. D 71, 104031 (2005); “Black holes with skyrme hair,” [gr-qc/0501025]

[20] Y. Brihaye and T. Delsate, “Skyrmion and Skyrme-black holes in de Sitter spacetime,” Mod. Phys. Lett. A 21, 2043 (2006).

[21] A. B. Nielsen, “Skyrme Black Holes in the Isolated Horizons Formalism,” Phys. Rev. D 74, 044038 (2006).

[22] Y. S. Duan, X. H. Zhang and L. Zhao, “Topological aspect of black hole with Skyrme hair,” Int. J. Mod. Phys. A 21, 5895 (2006).

[23] D. D. Doneva, I. Z. Stefanov and S. S. Yazadjiev, “Solitons and Black Holes in a Generalized Skyrme Model with Dilaton-Quarkonium field,” Phys. Rev. D 83, 124007 (2011); D. D. Doneva, K. D. Kokkotas, I. Z. Stefanov and S. S. Yazadjiev, “Time Evolution of the Radial Perturbations and Linear Stability of Solitons and Black Holes in a Generalized Skyrme Model,” Phys. Rev. D 84, 084021 (2011).
[24] G. W. Gibbons, C. M. Warnick and W. W. Wong, “Non-existence of Skyrmion-Skyrmion and
Skyrmion-anti-Skyrmion static equilibria,” J. Math. Phys. 52, 012905 (2011).

[25] F. Canfora and H. Maeda, “Hedgehog ansatz and its generalization for self-gravitating Skyrmions,”
Phys. Rev. D 87, 084049 (2013).

[26] G. Dvali and A. Gussmann, “Skyrmion Black Hole Hair: Conservation of Baryon Number by Black
Holes and Observable Manifestations,” arXiv:1605.00543 [hep-th].

[27] C. Adam, O. Kichakova, Y. Shnir and A. Wereszczynski, “Hairy black holes in the general Skyrme
model,” Phys. Rev. D 94, 024060 (2016).

[28] S. B. Gudnason, M. Nitta and N. Sawado, “Black hole Skyrmion in a generalized Skyrme model,”
arXiv:1605.07954 [hep-th].

[29] J. W. York, Jr., “Role of conformal three geometry in the dynamics of gravitation,” Phys. Rev. Lett.
28, 1082 (1972); G. W. Gibbons and S. W. Hawking, “Action Integrals and Partition Functions in
Quantum Gravity,” Phys. Rev. D 15 (1977) 2752.

[30] M. J. Bowick, D. Karabali and L. C. R. Wijewardhana, “Fractional Spin via Canonical Quantization
of the O(3) Nonlinear Sigma Model,” Nucl. Phys. B 271 (1986) 417.

[31] A. P. Balachandran, G. Marmo, B. S. Skagerstam and A. Stern, “Classical topology and quantum
states,” Singapore, Singapore: World Scientific (1991) 358 p.

[32] A. Stern, “Frozen Solitons in a Two-dimensional Ferromagnet,” Phys. Rev. Lett. 59, 1506 (1987).