Low Temperature Emergence of an Orbital-Selective Mott Phase in FeTe$_{1-x}$Se$_x$

Jianwei Huang1, Rong Yu2, Zhijun Xu3,4,5, Jian-Xin Zhu6,7, Qianni Jiang8, Meng Wang9, Han Wu1, Tong Chen1, Jonathan D. Denlinger10, Sung-Kwan Mo10, Makoto Hashimoto11, Genda Gu12, Pengcheng Dai1, Jiun-Haw Chu8, Donghui Lu11, Qimiao Si1, Robert J. Birgeneau5,13,14, M. Yi1,5

1Department of Physics and Astronomy, Rice Center for Quantum Materials, Rice University, Houston, Texas 77005, USA
2Department of Physics, Renmin University of China, Beijing 100872, China
3NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg Maryland 20899, USA
4Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, USA
5Department of Physics, University of California Berkeley, Berkeley, California 94720, USA
6Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
7Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
8Department of Physics, University of Washington, Seattle, Washington 98195, USA
9School of Physics, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
10Advanced Light Source, Lawrence Berkeley National Lab, Berkeley, California 94720, USA
11Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
12Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York, USA
13Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
14Department of Materials Science and Engineering, University of California, Berkeley, USA
To whom correspondence should be addressed: mingyi@rice.edu and robertjb@berkeley.edu
Electronic correlation is of fundamental importance to high temperature superconductivity. Iron-based superconductors are believed to possess moderate correlation strength, which combined with their multi-orbital nature makes them a fascinating platform for the emergence of exotic phenomena. Previously, it has been reported that iron-chalcogenide superconductors exhibit strong orbital-dependent correlation effects and that by raising temperature they crossover into an orbital-selective Mott phase. Here, we report spectroscopic evidence of the reorganization of the Fermi surface from FeSe to FeTe as Se is substituted by Te. This evolution is observed to be accompanied by a redistribution of the orbital-dependent spectral weight near the Fermi level together with a divergent behavior of a band renormalization in the d_{xy} orbital. All of our observations are further supported by our theoretical calculations to be salient spectroscopic signatures of such a non-thermal evolution from a strongly correlated metallic phase towards an orbital-selective Mott phase in FeTe$_{1-x}$Se$_x$ as Se concentration is reduced.

In multi-orbital quantum materials, orbital-dependent correlations and interactions often lead to exotic emergent phenomena. An extreme case is in the heavy fermion systems where the strongly localized f electrons coexist with itinerant electrons, the interactions between which give rise to an abundance of competing magnetic ground states and unconventional superconductivity in proximity to quantum criticality(1). Orbital-dependent correlation effects have also been reported to play important roles in Ca$_{2-x}$Sr$_x$RuO$_4$(2), VO$_2$(3), and transition metal dichalcogenide(4), primarily in a regime where selected orbitals experience significant mass enhancements towards a Mott-insulating limit while the remaining orbitals maintain a degree of itinerancy. Such a phase is known as an orbital-selective Mott phase (OSMP)(5–11). As the
system approaches an OSMP, the low energy electronic states are expected to undergo dramatic reconstruction such as redistribution in momentum space, leading to signatures in the transport behaviors. Such an evolution, while in principle observable via momentum-resolved spectroscopy, has proven to be difficult to resolve due to either the associated small energy scales(12–16) or incompatibility of experimental implementation of tuning parameters(17–19).

Recently, orbital-dependent correlation effects have been found in iron-based superconductors (FeSCs)(7, 20). In particular, while the FeSCs as bad metals are deemed to be moderately correlated compared to the cuprate high temperature superconductors, the electrons belonging to different orbitals are found to be correlated to different degrees—stronger in the \(d_{xy} \) orbital than in the \(d_{xz}/d_{yz} \) orbitals. This orbital-differentiation is enhanced by Hund’s coupling, and increases systematically in sync with the vertical elongation of the iron tetrahedron from the iron-phosphides to iron- pnictides to iron-chalcogenides(21), in which strong orbital-selectivity has been reported(22, 23). From the electronic degree of freedom, the effective mass of the \(d_{xy} \) orbital dominated band has been reported to be larger than that of the \(d_{xz}/d_{yz} \) orbitals. From both nuclear magnetic resonance and neutron scattering measurements, coexistence of both itinerant and local spins has been found(24), where the \(d_{xy} \) orbital contributes dominantly to the local spin susceptibility(25–27). For example, inelastic neutron scattering experiments on detwinned NaFeAs, a parent compound of FeSCs, have shown that spin waves of the system are orbital selective with high energy spin waves arise mostly from the \(d_{xy} \) orbital and obey the \(C_4 \) rotational symmetry, while the low energy spin wave are from the \(d_{xz}/d_{yz} \) orbitals that break the \(C_4 \) rotational symmetry below the nematic phase transition temperature(28). In addition, the neutron spin resonance coupled with superconductivity, seen in most FeSCs(29), seems to be mostly associated with the \(d_{yz} \) orbitals, thus suggesting orbital selective superconductivity(30).
Previous works, both experimental and theoretical, have shown that when the material system exhibits sufficient orbital-selectivity in the ground state, it can crossover into an orbital-selective incoherent state or OSMP with increasing temperature\(^{(31–33)}\). In this work, we present systematic evidence for a low-temperature tunability towards an OSMP in the FeTe\(_{1-x}\)Se\(_x\) family of superconductors without raising temperatures. Strong reorganization of the Fermi surface is observed in the absence of any symmetry-breaking electronic order, but instead accompanied by a redistribution of residual low energy spectral weight, orbital-dependent mass enhancement, and signatures of lower Hubbard band as we tune from the FeSe end towards FeTe. Combined with the temperature axis, we arrive at a comprehensive phase diagram of the orbital-selectivity in FeTe\(_{1-x}\)Se\(_x\), the understanding of which is consistent with anomalies reported in measurements of the Hall coefficient and resistivity.

FeTe\(_{1-x}\)Se\(_x\) is a prototypical iron-based superconductor with the simplest crystal structure consisting of Fe-chalcogen layers\(^{(34)}\). The parent compound, FeTe, is an antiferromagnetic (AFM) metal\(^{(35–38)}\). Superconductivity emerges with the substitution of Se on Te sites, reaching a maximum \(T_c\) of 14.5 K in FeTe\(_{0.56}\)Se\(_{0.44}\)\(^{(38, 39)}\). With complete substitution of Se, FeSe is a superconductor below 8 K with a tetragonal to orthorhombic structural transition at 90 K\(^{(40)}\) and no long-range magnetic order\(^{(41)}\). As-grown single crystals of FeTe\(_{1-x}\)Se\(_x\) especially for low values of \(x\) have a tendency to harbor interstitial excess iron, which leads to spin-glass behavior and incoherence in the low energy electronic spectra. It has been shown that the excess Fe can be reduced or completely removed by either annealing in an oxygen or Te-vapor environment\(^{(42–45)}\). The removal of excess Fe also suppresses the spin-glass region of the phase diagram, resulting in a phase diagram that bares a closer resemblance to that of iron pnictides. Here we adopt Te-vapor annealing method to treat all as-grown single crystals to reduce excess
iron(46). Previously, a temperature induced crossover to an OSMP in optimally-substituted FeTe$_{0.56}$Se$_{0.44}$ has been reported(23). In this study, we utilize angle-resolved photoemission spectroscopy (ARPES) to study the low temperature behaviors of Fe$_y$Te$_{1-x}$Se$_x$ single crystals with varying Se content (nominally $x = 0, 0.11, 0.19, 0.28, 0.44,$ and 1). The Fe contents of the cleaved surface of these crystals are measured via energy dispersive x-ray spectroscopy following the ARPES measurements and determined to be $y = 1.08, 1.07, 1.03, 1.01, 1.00,$ and $1.00,$ respectively. For simplicity, we drop the y index in further discussions.

Results

We begin by comparing and contrasting the measured Fermi surface (FS) of the optimally-substituted FeTe$_{0.56}$Se$_{0.44}$ with that of the paramagnetic state of FeTe (Fig. 1). In FeTe$_{0.56}$Se$_{0.44},$ as previously reported, the Fermi surface consists of small hole pockets near the Brillouin zone (BZ) center (Γ) and electron pockets near the BZ corner (M). The wavevector difference between them matches the momentum transfer, where neutron spin resonance has been observed in the superconducting state(47). In FeTe, the apparent fermiology has drastically changed. While the hole pockets near Γ remain, the other dominant spectral weight appears along the BZ boundary centered at the X point. We note that such a change is not due to the emergence of the magnetic order in FeTe, as the FS is measured above the ordering temperature, and distinct reconstructions are observed across the magnetic transition (see SI Fig. S1). For the rest of the paper, we only discuss measurements on FeTe above the magnetic phase.

To understand the evolution of the change shown in Fig. 1, we present the measured FS of FeTe$_{1-x}$Se$_x$ with different Se concentrations across the phase diagram (Fig. 2). The measurements
under two distinct light polarizations reveal features with different orbital symmetries due to the photoemission matrix elements. Two qualitative changes can be observed with the decrease of the Se ratio \(x\): i) expansion of the electron pockets near the M point, and ii) emergence of a broad arc-like feature near the X point. We quantify each in turn. The expansion of the electron pocket around M with decreasing Se ratio \(x\) is evident in both sets of measurement under different polarizations. This expansion can be quantified by extracting the opening of the Fermi pocket in momentum (plotted as green solid circles in Fig. 2d). The second evident FS evolution is the emergence of a broad arc-like feature near the X point of the BZ, marked by a dashed purple line in FeTe (Fig. 2a1). From a consideration of photoemission matrix element effects, we attribute this feature to the \(d_{z^2}\) orbital (see SI). Comparing the FS across different Se content level, this feature evolves from a faint intensity near \(\Gamma\) that is the spectral weight from the outer \(d_{xy}\) hole band for \(x = 0.44\). This is evident from the band dispersion measured along the \(\Gamma\)-X direction as shown in Fig. 2c, where the Fermi momentum crossing \((k_F)\) of a hole-like band from the \(\Gamma\) point shifts toward the X point with decreasing \(x\). We employ two methods to quantify the evolution of this feature with Se content by tracking both the location of this feature in momentum and its spectral weight. To track the location, we extract the \(k_F\) of this feature along the \(\Gamma\)-X direction as indicated by the blue arrow in Fig. 2a5, and plot in Fig. 2d. This distance increases with decreasing \(x\) which confirms the systematic change. To quantify the emergence of the \(d_{z^2}\) spectral weight near the X point, we take the ratio of the intensity around the X point and the intensity around the M point in the following way. We first obtain the integrated spectral weight normalized by area within the blue box around the X point and the green box around the M point (Fig. 2a). From these we subtract a background from a featureless region in momentum space indicated by the black dashed box (Fig. 2a). For better comparison across samples, we take the
ratio of the background-subtracted spectral weight around X to that of the d_{yz} band around M for each sample and plot the trend in Fig. 2d. As Se content decreases, the intensity at X increases relative to that around M. The trend extracted using the same method for a set of FS measured under a rotated polarization shows the same behavior (Supplementary Fig. S2). Taking all the trends extracted from the FS evolution (Fig. 2d), a gradual rise is observed with decreasing Se ratio, and a more rapid change occurs below $x < 0.2$. Such type of FS evolution contrasts with that of any other iron-based superconductor phase diagrams with symmetry-breaking phase transitions. To understand the origin of this evolution, we examine the orbital-dependent correlation effects.

We first examine the low-temperature (10 K) band renormalization across the phase diagram. Near the BZ center along the high symmetry direction Γ-M, three hole-like bands are observed near the Fermi level (E_F) for all Se content (Fig. 3a). This can be better visualized from the second energy derivative plots (Fig. 3b). Consistent with previous results(48), these three bands from the innermost band to the outermost are identified as dominantly d_{xz}, d_{yz}, and d_{xy}, respectively. The dashed lines overlaid on the images are fittings to a parabolic curve of the band dispersion, with green representing the d_{yz} orbital and blue the d_{xy} orbital. As the phase diagram is traversed along the substitution-axis at 10 K, it is evident that the band curvature of the d_{yz} band does not vary strongly while that of the d_{xy} band flattens considerably with decreasing Se content. Since the effective mass for each band is proportional to the inverse of the band curvature, we can extract the orbital-dependent mass enhancement by taking the ratio between the fitted band effective mass from experimental data m^* and the corresponding band effective mass from first-principle calculations m_{DFT}. The resulting orbital-dependent mass enhancement as a function of Se content is plotted in Fig. 3c, which is consistent with the trend from
previously reported results for higher Se content (49, 50). First, we observe an orbital-dependent band renormalization. The d_{xy} orbital has a much larger band renormalization factor than the d_{yz} orbital. Second, while the mass enhancement of the d_{yz} orbital rises slowly with decreasing Se ratio x, a divergent behavior of the mass enhancement for the d_{xy} orbital is observed with decreasing Se content. We also plot the inverse of the d_{xy} mass enhancement, showing a linear trend versus Se ratio with a fitted intercept of $x = -0.1$. These results strongly indicate that FeTe is in proximity to an OSMP ground state and suggest that the evolution of the apparent fermiology is associated with the gradual disappearance of the d_{xy} spectral weight as x is decreased.

In addition, a previous report shows that at $x = 0.44$, the d_{xy} spectral weight gradually disappears with increasing temperature (23). Indeed, when measured at 150 K, the spectral weight for the d_{xy} hole band disappears, leaving the itinerant d_{xz} and d_{yz} hole bands near Γ (Fig. 3b5), suggestive of a temperature induced crossover into the OSMP. A similar disappearance of the d_{xy} spectral weight is also observed for $x = 0.25$, with a lower crossover temperature than that of $x = 0.44$ (See SI Fig. S3), suggesting that the ground state of $x = 0.11$ is closer to that of the OSMP than that of the $x = 0.44$ compound.

The orbital-dependent band renormalization, nearly divergent d_{xy} band effective mass, and redistribution of spectral weight around the FS, taken together can be understood as manifestations of the tendency of the FeTe$_{1-x}$Se$_x$ system towards an OSMP when Se is gradually replaced with Te. In the presence of relatively strong electron correlations, orbital-dependent correlations become strong, where the d_{xy} orbital-dominated band near E_F gradually diminishes together with the divergence of its mass enhancement. This disappearance of the d_{xy} states near E_F in turn results in a redistribution of the residual electronic states at E_F as the FeTe end of the
phase diagram is approached. This process is captured by our theoretical calculation based on a five-orbital Hubbard model for FeTe$_{1-x}$Se$_x$ (Section VI of SI). We find that the substitution of larger Te atoms for smaller Se atoms increases the Fe-Se/Te bond length and decreases the Fe-Te/Se-Fe bond angle. The former effect increases the overall correlation strength by lengthening the dominant hopping path while the latter effect suppresses the effective hopping for the largely in-plane d_{xy} orbital more than that of the other orbitals, pushing the system toward an OSMP.

All salient features of our experimental observations presented can be captured in this set of calculations, as shown by a direct comparison of the calculations for the correlated metallic phase and the OSMP (Fig. 4). In the strongly correlated metallic phase calculated for $x = 0.5$ (Fig. 4b), the d_{xy} dominated bands are strongly renormalized (blue arrow). To capture the experimentally observed band renormalizations, we use a U of ~ 3eV (Section VI of SI). When projected unto a Fermi surface mapping within a finite integration energy window about E_F, the flattened d_{xy} hole pocket intensity becomes largely incoherent and enlarged due to its strongly renormalized bandwidth, resulting in a large faint hole pocket around the Γ point (blue arrow in Fig. 4d). When the OSMP phase is entered, the d_{xy} band intensity disappears from E_F (Fig. 4a). The hybridization between the heavy d_{xy} band and other orbitals disappears, leading to the appearance of restructured FS. This is most apparent along the Γ-X direction. In the strongly correlated metallic phase (Fig. 4d), the strongly renormalized d_{xy} cross E_F along Γ-X. In the OSMP (Fig. 4c), a band from higher binding energy of dominantly d_{z^2} orbital rises to E_F, forming the large pocket around the X point, consistent with our observed emergence of the arc-like feature around the X point. Regarding the concomitant evolution of the band dispersions, in the regime approaching the OSMP, the d_{xy} bandwidth would narrow while its spectral weight diminishes, causing the hybridization between this d_{xy} band and the highly dispersive d_{z^2} band to
decrease. This behavior is analogous to the hybridization of the heavy f-electron band and dispersive d-electron band in heavy fermion systems. This is consistent with our observed dispersions along the Γ-X direction (Fig. 2c and supplementary Fig. S4). For $x = 0.44$, both momentum distribution curve (MDC) and energy distribution curve (EDC) fitting of the hole-like dispersion near Γ agree well. With decreasing x, the fitting between MDCs and EDCs becomes increasingly distinct. As MDC fitting identifies better the steep dispersions while EDC flatter dispersions(51), the increasing disagreement is consistent with the tendency of an increasingly flat d_{xy} band and the rising up of a dispersive d_{z^2} band. Simultaneously, the calculated d_{xz}/d_{yz} electron pocket enlarges, as observed experimentally. As a function of x, the calculated coherence factor, Z, for the d_{xz}/d_{yz} orbital is compared to that of the d_{xy} orbital (Fig. 4c), where localization of the d_{xy} orbital appears for $x < 0.2$ with $U \sim 3$ eV.

Discussions

Finally, taking all the results together, we arrive at the phase diagram for the FeTe$_{1-x}$Se$_x$ material family (Fig. 5). While previous results(23) indicate that for optimally substituted compound at $x = 0.44$, the OSMP can be reached via raised temperature at a characteristic temperature of 110 K, our observations reported here show that in the low temperature limit, the replacement of Se by Te also leads the material system towards the OSMP. This is supported by spectroscopic evidence of strongly orbital-selective band renormalization where the d_{xy} effective mass tends toward a divergent behavior as the FeTe end is approached. Concomitantly, spectral weight from other orbitals redistribute near the E_F to replace the diminishing d_{xy} spectral weight. The characteristic crossover temperature for the OSMP therefore decreases with decreasing x.
This is confirmed by our measurement for a sample with $x = 0.25$, where the temperature identified by the disappearance of d_{xy} is measured to be 70 K (Supplementary Fig. S3).

Our understanding of the evolution from an orbital-dependent correlated metallic phase to an OSMP across the FeTe$_{1-x}$Se$_x$ phase diagram as observed from ARPES is also consistent with results reported by other probes. It has been reported that the compensated parent compounds of multi-band iron-based superconductors exhibit a negative Hall coefficient, R_H, due to the dominance of the electron mobility. This is observed in isovalent-substituted BaFe$_2$(As,P)$_2$, where across the entire phase diagram, R_H remains negative(52, 53). For FeTe$_{1-x}$Se$_x$, however, there is a systematic change that varies as a function of substitution(54). This is clearly shown in the measurement over the phase diagram of Te-vapor treated FeTe$_{1-x}$Se$_x$(54). Contrary to the behavior in BaFe$_2$(As,P)$_2$, Hall resistivity measurements on FeTe$_{1-x}$Se$_x$ exhibit a maximum and a subsequent sign-change at lower temperatures while the total charge carrier remains neutral. This turn-over behavior marked by the maximum indicates the onset of a competing behavior. This characteristic temperature can be explained by the decoherence of the d_{xy} portions of the electron pocket around the M point, leading to a reduction in the electron contribution to R_H. An alternative interpretation of the negative Hall coefficient in the iron pnictides is the (π, π) spin fluctuations that make the hole carriers behave like electron carriers in the Hall measurements(55). The localization of the d_{xy} orbital could change the fermiology away from the nesting condition associated with the (π, π) spin fluctuations. This in turn suppresses the (π, π) spin fluctuations, which reduces the negative contribution to the Hall coefficient. This characteristic temperature scale extracted from R_H exhibits a similar trend with Se ratio x, similar to T_{coh}, which is the temperature where the spectral weight of d_{xy} orbital vanishes with increasing temperature. We also note that in a recent magneto-transport measurement, such coherent-
incoherent crossover is also reported(56). It has also been pointed out that this coherent-incoherent crossover temperature scale of the d_{xy} orbital is coupled to the B_{2g} nematic susceptibility measured by elastoresistance, and hence suggests the potential important role played by the d_{xy} orbital to nematicity in the iron-based superconductors(54). Previous studies of both Dynamic Mean Field Theory (DMFT) and ARPES have also identified the incoherent spectral weight in the high binding energy regime of FeSe as the lower Hubbard band (LHB), indicating the presence of strong electron correlations in this material system(57, 58). The incoherent feature has also been observed by our ARPES measurements as well as theoretical calculations (SI Fig. S10).

An OSMP is depicted by the coexistence of itinerant orbital and localized orbital within one material system(2–4). In the FeTe$_{1-x}$Se$_x$ case, it is the itinerant d_{xz}/d_{yz} orbitals and the localized d_{xy} orbital. To achieve an OSMP in FeTe$_{1-x}$Se$_x$, besides the strong electron-electron interaction, three other ingredients are necessary: i) Crystal field splitting that separates the d_{xy} orbital from d_{xz}/d_{yz}; ii) Bare bandwidth of the d_{xy} orbital being narrower than that of the d_{xz}/d_{yz} orbitals; iii) Suppression of the inter-orbital interactions due to Hund’s J(20). The observation of a low temperature tunable pathway towards an OSMP in FeTe$_{1-x}$Se$_x$ is somewhat reminiscent of the tunability across a quantum critical point in the heavy fermion systems where the heavy f-electrons coexist with the itinerant d-orbital electrons and the hybridization between the two depends on a non-thermal tuning parameter. In the vicinity of such a quantum critical point, a variety of magnetic and superconducting phases are often found to emerge. The observation of the proximity to such an OSMP ground state in the iron-chalcogenide system may suggest similar origins of exotic emergent phases.
Methods

The high quality FeTe$_{1-x}$Se$_x$ single crystal series was synthesized using the flux method (59). The FeSe single crystal was synthesized using chemical vapor transport (60). The excess Fe in as-grown FeTe$_{1-x}$Se$_x$ single crystals was reduced by annealing in Te vapor atmosphere (61). ARPES experiments were performed at beamline 5-4 of the Stanford Synchrotron Radiation Lightsource, beamline 4.0.3 and beamline 10.0.1 of the Advanced Light Source equipped with hemispherical electron analyzers. The angular resolution was set to 0.3°. The total energy resolution was set to 15 meV or better. All samples were cleaved in situ at 10 K and all the measurements were conducted at ultra-high vacuum with a base pressure of 3 x 10$^{-11}$ torr.

References

1. S. Kirchner, et al., Colloquium: Heavy-electron quantum criticality and single-particle spectroscopy. Rev. Mod. Phys. 92, 011002 (2020).
2. V. I. Anisimov, I. A. Nekrasov, D. E. Kondakov, T. M. Rice, M. Sigrist, Orbital-selective Mott-insulator transition in Ca$_{2-x}$Sr$_x$RuO$_4$. Eur. Phys. J. B 25, 191–201 (2002).
3. S. Mukherjee, et al., Tuning a strain-induced orbital selective Mott transition in epitaxial VO$_2$. Phys. Rev. B 93, 241110 (2016).
4. S. Qiao, et al., Mottness Collapse in 1T-TaS$_{2-x}$Se$_x$ Transition-Metal Dichalcogenide: An Interplay between Localized and Itinerant Orbitals. Phys. Rev. X 7, 041054 (2017).
5. L. De’Medici, A. Georges, S. Biermann, Orbital-selective Mott transition in multiband systems: Slave-spin representation and dynamical mean-field theory. Phys. Rev. B 72,
6. M. Ferrero, et al., Pseudogap opening and formation of Fermi arcs as an orbital-selective Mott transition in momentum space. *Phys. Rev. B* **80**, 064501 (2009).

7. Z. P. Yin, K. Haule, G. Kotliar, Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides. *Nat. Mater.* **10**, 932–935 (2011).

8. M. Greger, M. Kollar, D. Vollhardt, Emergence of a Common Energy Scale Close to the Orbital-Selective Mott Transition. *Phys. Rev. Lett.* **110**, 046403 (2013).

9. R. Yu, Q. Si, Orbital-selective mott phase in multiorbital models for alkaline iron selenides $K_{1-x}Fe_{2+y}Se_2$. *Phys. Rev. Lett.* **110**, 146402 (2013).

10. A. Georges, L. de’ Medici, J. Mravlje, Strong Correlations from Hund’s Coupling. *Annu. Rev. Condens. Matter Phys.* **4**, 137–178 (2013).

11. L. de’ Medici, G. Giovannetti, M. Capone, Selective Mott Physics as a Key to Iron Superconductors. *Phys. Rev. Lett.* **112**, 177001 (2014).

12. S. Danzenbächer, et al., Momentum dependence of 4f hybridization in heavy-fermion compounds: Angle-resolved photoemission study of YbIr$_2$Si$_2$ and YbRh$_2$Si$_2$. *Phys. Rev. B* **75**, 045109 (2007).

13. S. Fujimori, et al., Itinerant nature of U 5f states in uranium mononitride revealed by angle-resolved photoelectron spectroscopy. *Phys. Rev. B* **86**, 235108 (2012).

14. M. Neupane, et al., Fermi surface topology and hot spot distribution in the Kondo lattice system CeB$_6$. *Phys. Rev. B* **92**, 104420 (2015).

15. Q. Y. Chen, et al., Direct observation of how the heavy-fermion state develops in CeCoIn$_5$. *Phys. Rev. B* **96**, 045107 (2017).
16. D. Leuenberger, *et al.*, Dehybridization of f and d states in the heavy-fermion system YbRh$_2$Si$_2$. *Phys. Rev. B* **97**, 165108 (2018).

17. P. Gegenwart, Q. Si, F. Steglich, Quantum criticality in heavy-fermion metals. *Nat. Phys.* **4**, 186–197 (2008).

18. Q. Si, F. Steglich, Heavy fermions and quantum phase transitions. *Science* **329**, 1161-1166 (2010).

19. E. D. Mun, *et al.*, Magnetic-field-tuned quantum criticality of the heavy-fermion system YbPtBi. *Phys. Rev. B* **87**, 075120 (2013).

20. Q. Si, R. Yu, E. Abrahams, High-temperature superconductivity in iron pnictides and chalcogenides. *Nat. Rev. Mater.* **1**, 16017 (2016).

21. M. Yi, Y. Zhang, Z.-X. Shen, D. Lu, Role of the orbital degree of freedom in iron-based superconductors. *npj Quantum Mater.* **2**, 57 (2017).

22. Z. P. Yin, K. Haule, G. Kotliar, Fractional power-law behavior and its origin in iron-chalcogenide and ruthenate superconductors: Insights from first-principles calculations. *Phys. Rev. B* **86**, 195141 (2012).

23. M. Yi, *et al.*, Observation of universal strong orbital-dependent correlation effects in iron chalcogenides. *Nat. Commun.* **6**, 7777 (2015).

24. P. Dai, J. Hu, E. Dagotto, Magnetism and its microscopic origin in iron-based high-temperature superconductors. *Nat. Phys.* **8**, 709–718 (2012).

25. J. Li, *et al.*, Spin-Orbital-Intertwined Nematic State in FeSe. *Phys. Rev. X* **10**, 011034 (2020).

26. Y. Li, *et al.*, Dynamic Spin-Lattice Coupling and Nematic Fluctuations in NaFeAs. *Phys. Rev. X* **8**, 021056 (2018).
27. Y. Song, et al., Unusual suppression of a spin resonance mode by magnetic field in underdoped NaFe\(_{1-x}\)Co\(_x\)As: Evidence for orbital-selective pairing. *Phys. Rev. B* **98**, 064507 (2018).

28. D. W. Tam, et al., Orbital selective spin waves in detwinned NaFeAs. *Phys. Rev. B* **102**, 054430 (2020).

29. P. Dai, Antiferromagnetic order and spin dynamics in iron-based superconductors. *Rev. Mod. Phys.* **87**, 855–896 (2015).

30. L. Tian, et al., Spin fluctuation anisotropy as a probe of orbital-selective hole-electron quasiparticle excitations in detwinned Ba(Fe\(_{1-x}\)Co\(_x\))\(_2\)As\(_2\). *Phys. Rev. B* **100**, 134509 (2019).

31. F. Hardy, et al., Evidence of Strong Correlations and Coherence-Incoherence Crossover in the Iron Pnictide Superconductor KFe\(_2\)As\(_2\). *Phys. Rev. Lett.* **111**, 027002 (2013).

32. H. Miao, et al., Orbital-differentiated coherence-incoherence crossover identified by photoemission spectroscopy in LiFeAs. *Phys. Rev. B* **94**, 201109 (2016).

33. R. Yang, et al., Observation of an emergent coherent state in the iron-based superconductor KFe\(_2\)As\(_2\). *Phys. Rev. B* **96**, 201108 (2017).

34. F.-C. Hsu, et al., Superconductivity in the PbO-type structure -FeSe. *Proc. Natl. Acad. Sci.* **105**, 14262–14264 (2008).

35. D. Fruchart, et al., Structure antiferromagnetique de Fe\(_{1.125}\)Te accompagnée d’une deformation monoclinique. *Mater. Res. Bull.* **10**, 169–174 (1975).

36. W. Bao, et al., Tunable (\(\delta\pi, \delta\pi\))-Type Antiferromagnetic Order in \(\alpha\)-Fe(Te,Se) Superconductors. *Phys. Rev. Lett.* **102**, 247001 (2009).

37. S. Li, et al., First-order magnetic and structural phase transitions in Fe\(_{1+y}\)Se\(_x\)Te\(_{1-x}\). *Phys. Rev. B* **79**, 054503 (2009).
38. T. J. Liu, et al., From (π,0) magnetic order to superconductivity with (π,π) magnetic resonance in Fe$_{1.02}$Te$_{1-x}$Se$_x$. *Nat. Mater.* 9, 716–720 (2010).

39. A. Martinelli, et al., From antiferromagnetism to superconductivity in Fe$_{1+y}$Te$_{1-x}$Se$_x$ (0≤x≤0.20): Neutron powder diffraction analysis. *Phys. Rev. B* 81, 094115 (2010).

40. T. M. McQueen, et al., Tetragonal-to-Orthorhombic Structural Phase Transition at 90 K in the Superconductor Fe$_{1.01}$Se. *Phys. Rev. Lett.* 103, 057002 (2009).

41. T. M. McQueen, et al., Extreme sensitivity of superconductivity to stoichiometry in Fe$_{1+δ}$Se. *Phys. Rev. B* 79, 014522 (2009).

42. Y. Sun, et al., Evolution of superconducting and transport properties in annealed FeTe$_{1-x}$Se$_x$ (0.1 ≤ x ≤ 0.4) multiband superconductors. *Supercond. Sci. Technol.* 28, 044002 (2015).

43. C. Dong, et al., Revised phase diagram for the FeTe$_{1-x}$Se$_x$ system with fewer excess Fe atoms. *Phys. Rev. B* 84, 224506 (2011).

44. W. Lin, et al., Role of chalcogen vapor annealing in inducing bulk superconductivity in Fe$_{1+y}$Te$_{1-x}$Se$_x$. *Phys. Rev. B* 91, 060513 (2015).

45. Y. Sun, et al., Dynamics and mechanism of oxygen annealing in Fe$_{1+y}$Te$_{0.6}$Se$_{0.4}$ single crystal. *Sci. Rep.* 4, 4585 (2015).

46. Z. Xu, et al., Coexistence of superconductivity and short-range double-stripe spin correlations in Te-vapor annealed FeTe$_{1-x}$Se$_x$ (x≤0.2). *Phys. Rev. B* 97, 214511 (2018).

47. Y. Qiu, et al., Spin Gap and Resonance at the Nesting Wave Vector in Superconducting FeSe$_{0.4}$Te$_{0.6}$. *Phys. Rev. Lett.* 103, 067008 (2009).

48. K. Nakayama, et al., Angle-resolved photoemission spectroscopy of the iron-chalcogenide superconductor Fe$_{1.03}$Te$_{0.7}$Se$_{0.3}$: Strong coupling behavior and the universality of interband
scattering. *Phys. Rev. Lett.* **105**, 197001 (2010).

49. J. Maletz, *et al.*, Unusual band renormalization in the simplest iron-based superconductor FeSe$_{1-x}$. *Phys. Rev. B* **89**, 220506 (2014).

50. Z. K. Liu, *et al.*, Experimental observation of incoherent-coherent crossover and orbital-dependent band renormalization in iron chalcogenide superconductors. *Phys. Rev. B* **92**, 235138 (2015).

51. W. Zhang, *et al.*, High Energy Dispersion Relations for the High Temperature Bi$_2$Sr$_2$CaCu$_2$O$_8$ Superconductor from Laser-Based Angle-Resolved Photoemission Spectroscopy. *Phys. Rev. Lett.* **101**, 017002 (2008).

52. L. Fang, *et al.*, Roles of multiband effects and electron-hole asymmetry in the superconductivity and normal-state properties of Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$. *Phys. Rev. B* **80**, 140508 (2009).

53. S. Kasahara, *et al.*, Evolution from non-Fermi- to Fermi-liquid transport via isovalent doping in BaFe$_2$(As$_{1-x}$P$_x$)$_2$ superconductors. *Phys. Rev. B* **81**, 184519 (2010).

54. Q. Jiang, *et al.*, Nematic Fluctuations in an Orbital Selective Superconductor Fe$_{1+y}$Te$_{1-x}$Se$_x$. *arXiv* **2006**, 15887 (2020).

55. L. Fanfarillo, E. Cappelluti, C. Castellani, L. Benfatto, Unconventional Hall Effect in Pnictides from Interband Interactions. *Phys. Rev. Lett.* **109**, 096402 (2012).

56. T. Otsuka, *et al.*, Incoherent-coherent crossover and the pseudogap in Te-annealed superconducting Fe$_{1+y}$Te$_{1-x}$Se$_x$ revealed by magnetotransport measurements. *Phys. Rev. B* **99**, 184505 (2019).

57. D. V. Evtushinsky, *et al.*, Direct observation of dispersive lower Hubbard band in iron-based superconductor FeSe. *arXiv* **1612**, 02313 (2016).
58. M. D. Watson, et al., Formation of Hubbard-like bands as a fingerprint of strong electron-electron interactions in FeSe. *Phys. Rev. B* **95**, 081106 (2017).

59. T. J. Liu, et al., Charge-carrier localization induced by excess Fe in the superconductor Fe_{1+y}Te_{1-x}Se_x. *Phys. Rev. B* **80**, 174509 (2009).

60. T. Chen, et al., Anisotropic spin fluctuations in detwinned FeSe. *Nat. Mater.* **18**, 709–716 (2019).

61. Y. Koshika, et al., Effects of annealing under tellurium vapor for Fe_{1.03}Te_{0.8}Se_{0.2} single crystals. *J. Phys. Soc. Japan* **82**, 023703 (2013).

62. Y. A. Ovchenkov, et al., Nematic properties of FeSe_{1-x}Te_x crystals with a low Te content. *arXiv* **1909**, 00711 (2019).

Acknowledgement

We are thankful to Yu He for enlightening discussions. ARPES experiments were performed at the Advanced Light Source and the Stanford Synchrotron Radiation Lightsource, which are both operated by the Office of Basic Energy Sciences, U.S. DOE. Work at University of California, Berkeley and Lawrence Berkeley National Laboratory was funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Contract No. DE-AC02-05-CH11231 within the Quantum Materials Program (KC2202) and the Office of Basic Energy Sciences. The ARPES work at Rice University was supported by the Robert A. Welch Foundation Grant No. C-2024 as well as the Alfred P. Sloan Foundation. The materials synthesis efforts at Rice are supported by the US Department of Energy (DOE), Basic Energy Sciences (BES), under Contract No. DE-SC0012311 and the Robert A. Welch Foundation, Grant No. C-1839 (P.D.). Theory work at Rice University is supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award No. DE-SC0018197, and by the Robert A. Welch Foundation Grant No. C-1411. Theory work at Renmin University has in part been supported by the National Science Foundation of China Grant No. 11674392, Ministry of Science and Technology of China, National Program on
Key Research Project Grant No.2016YFA0300504 and Research Funds of Renmin University of China Grant No. 18XNLG24 (R.Y.). Theory work at Los Alamos was carried out under the auspices of the U.S. Department of Energy National Nuclear Security Administration under Contract No. 89233218CNA000001, and was supported by the LANL LDRD Program. Work at the University of Washington was supported by NSF MRSEC at UW (DMR1719797). Work at Sun Yat-Sen University was supported by the National Natural Science Foundation of China (Grant No. 11904414), Natural Science Foundation of Guangdong (No. 2018A030313055), National Key Research and Development Program of China (No. 2019YFA0705700), and Young Zhujiang Scholar program.

Author contributions

M.Y. proposed and designed the research. The ARPES measurements were carried out by M.Y., M.W., J.W.H., H.W. with the help of D.H.L, M.H., J.D.D, and S.-K.M. The data were analyzed by J.W.H., and M.Y. Single crystals of FeTe$_{1-x}$Se$_x$ were synthesized by Z.J.X and G.D.G. FeSe were synthesized by T.C. under the guidance of P.D. Theoretical calculations were carried out by R.Y., J.-X.Z. and Q.S. Hall measurements were carried out by Q.Z. and J.H.C.. J.W.H. and M.Y. wrote the paper with input by all co-authors. M.Y. and R.J.B. oversaw the project.

Additional information

Correspondence and requests for materials should be addressed to Robert J. Birgeneau and Ming Yi.

Competing interests: The authors declare no competing interests.
FIG. 1: Fermi surfaces of FeTe and FeTe$_{0.56}$Se$_{0.44}$. (a) Measured Fermi surfaces for FeTe taken at 80K. (b) Measured FS for FeTe$_{0.56}$Se$_{0.44}$ taken at 10K. Both maps were measured with 72eV photons and symmetrized according to C$_4$ rotational symmetry of the crystal structure.
FIG. 2: Fermi surface evolution and related spectral weight change with Se ratio x. (a1)-(a5)
Measured Fermi surfaces for different Se ratio x under linear horizontal polarization with out-of-plane component with 72 eV photons. The orange squares mark the 2-Fe BZ. (b1)-(b5), Same as (a1)-(a5) except with linear vertical polarization. (c1)-(c5) Band image along Γ-X-Γ overlaid with the band dispersions obtained by MDC and EDC fittings. The red curves represent corresponding MDCs at E_F and the black curves are the fitted results with single Lorentzian function. (d) Fermi surface size and spectral weight change as a function of Se ratio x. The solid dark circles represent the ratio between the area-averaged spectral weight within the blue dashed region at X and that of the green dashed region at M after subtracting an area-averaged background from the dark dashed region in (a). The empty dark squares are extracted in the same manner from an independent set of measured Fermi surfaces using a mixed polarization shown in supplementary Fig. S2. The green circles mark the extracted size of the d_{xz} electron pocket as marked in (a5), while the blue circles plot the k_F points of the band crossing along Γ-X as marked in (a5).
FIG. 3: Orbital-dependent evolution of band effective mass in FeTe$_{1-x}$Se$_x$. (a1)-(a4) Band dispersions measured with 22 eV photons at 10 K along the Γ-M direction around the BZ center for different x. (a5) Same measurement as a4 except taken at 150K. (b1)-(b5) Corresponding second energy derivative images of (a1)-(a5). Parabolic fittings of the d_{yz} and d_{xy} hole bands are overlaid. (c) Extracted band enhancement factor m^*/m_{DFT} for d_{yz} and d_{xy} are plotted as a function of x represented by circles. The shaded lines are guides to the eyes. Diamond markers show the inverse of the d_{xy} mass enhancement where the shaded pink line is a linear fit. The empty markers are reproduced from Ref. [(50)].
FIG. 4: Theoretical calculations of FeTe$_{1-x}$Se$_x$. (a) Calculated band structure for the OSMP FeTe$_{0.9}$Se$_{0.1}$. The pink arrow indicates a dominantly d_{z^2} band along Γ-X. (b) Same as (a) but for the strongly correlated metallic phase in FeTe$_{0.5}$Se$_{0.5}$, where the blue arrow shows the d_{xy} band. (c) Calculated FS for FeTe$_{0.9}$Se$_{0.1}$, where reconstructed spectral weight is marked by a pink arrow. (d) Same as (c) but for FeTe$_{0.5}$Se$_{0.5}$. (e) Orbital-resolved coherence factor Z as a function of x. Solid line represents $U = 3$ eV, dashed line represents $U = 2.65$ eV.
FIG. 5: **Phase diagram of FeTe$_{1-x}$Se$_x$.** T_N(56), T_s(62) and T_c(38, 62) represent the bi-collinear spin-density wave transition, tetragonal to orthorhombic structure transition, and superconducting transition adapted from previous reports. The temperatures for R_H max and $R_H = 0$ are extracted from the Hall resistivity measurements(54). T_{coh} is the temperature at which the photoemission spectral weight of d_{xy} orbital is observed to vanish (supplementary Fig. S3). The background with gradient color suggests the OSMP crossover.