Atopic dermatitis (AD) is a chronic inflammatory skin disease with pruritus, characterized by recurrent eczema with exacerbations and remissions. AD impairs patients’ QOL and places a heavy burden on patients. Recently, dupilumab, an anti–IL-4Rα antibody, was approved for the treatment of patients with moderate-to-severe AD who are refractory to topical agents and/or conventional systemic therapy. Clinical trials of dupilumab for AD demonstrated high efficacy and tolerable safety profiles. Furthermore, real-world evidence of dupilumab for AD is accumulating. Most of these data show favorable effectiveness and safety profile; however, they also clarified issues, including conjunctivitis and facial redness. There are still a certain number of patients with significant failure. In this article, we review real-world evidence of dupilumab for AD, identify concerns specific to dupilumab, and discuss unmet needs and issues to be addressed in the future.

INTRODUCTION

Dupilumab, an anti–IL-4Rα antibody, demonstrated efficacy for patients with moderate-to-severe atopic dermatitis (AD) who are refractory to topical agents and/or conventional systemic therapy with tolerable safety in clinical trials (Blauvelt et al., 2017; de Bruin-Weller et al., 2018b; Simpson et al., 2016b). Real-world evidence of dupilumab for AD has been accumulating. Most of those data show favorable effectiveness and safety profile; however, the gap between results of clinical trials and real-world data has been revealed, including effectiveness, the frequency of conjunctivitis, and facial redness. This article mainly focuses on and discusses those issues raised especially by real-world data. Furthermore, although results of clinical trials and real-world data demonstrated that dupilumab is effective in most patients with AD, there is still a significant number of patients with significant failure. For instance, in the LIBERTY AD SOLO 1 clinical trial, the percentage of patients receiving dupilumab who attained improvement of at least 50% on the Eczema Area and Severity Index (EASI), that is, EASI-50, from baseline to week 16 was 69% in patients receiving dupilumab every other week (q2w) (Simpson et al., 2016b). It reciprocally represents that around 30% of patients were refractory to dupilumab, which is still a large number. We also discuss the possible causes of inadequate response to dupilumab in certain patients with AD.

Efficacy and safety of dupilumab for adult patients with AD in clinical trials

Four major randomized, placebo-controlled, phase 3 trials of dupilumab in adult patients with moderate-to-severe AD whose disease was inadequately controlled by topical treatment were conducted: LIBERTY AD SOLO 1, SOLO 2, CHRONOS, and CAFE (Blauvelt et al., 2017; de Bruin-Weller et al., 2018b; Simpson et al., 2016b). LIBERTY AD SOLO 1 and SOLO 2 trials were monotherapy dupilumab trials, in which patients did not receive concomitant topical corticosteroid (TCS) and/or calcineurin inhibitors during the time that they were receiving dupilumab. In the LIBERTY AD CHRONOS trial, patients received TCS and/or calcineurin inhibitors while they were receiving dupilumab. In the LIBERTY AD CAFE trial, patients with an inadequate response or intolerance to cyclosporin A (CsA) or in whom CsA treatment was medically inadvisable were included. Concomitant TCS was allowed. Those clinical trials demonstrated efficacy of dupilumab for AD with tolerable safety. Generally, the incidence of conjunctivitis was higher in patients with AD receiving dupilumab. The long-term safety and efficacy of dupilumab in adult patients with moderate-to-severe AD were demonstrated in an open-label study of up to 76 weeks (Deleuran et al., 2020) or 3 years of duration (Beck et al., 2020). Analysis of clinical laboratory findings in three trials (LIBERTY AD SOLO 1 and 2 and CHRONOS) (Wollenberg et al., 2020) and investigation on 2,677 adult patients who were treated with dupilumab for up to 3 years (Beck et al., 2021) demonstrated no clinically meaningful changes in mean laboratory parameters, supporting continuous long-term use of dupilumab without laboratory monitoring. Clinical trials reported long-term efficacy of dupilumab with acceptable safety for children with moderate-to-severe AD (Cork et al., 2021, 2020b; Paller et al., 2020; Simpson et al., 2020).

Efficacy of dupilumab by ethnic subgroup

Kato et al. (2020) reported the efficacy and safety of dupilumab in Japanese patients with moderate-to-severe AD by analyzing the results of a 16-week, phase IIb dose-finding
trial (AD-1021), the LIBERTY AD SOLO 1 trial, and the LIB-
ERTY AD CHRONOS trial. Baseline disease severity was
numerically higher in the Japanese cohort than in the overall
study population. For instance, in the SOLO 1 trial, the me-
dian EASI of Japanese adult patients treated with placebo,
dupilumab 300 mg qw2w, and dupilumab 300 mg weekly
(qw), was 40, 37, and 36, respectively; the scores of the
overall population were 31.8, 30.4, and 29.8, respectively.
Generally, dupilumab significantly improved signs and
symptoms of AD, including pruritus and patients’ QOL,
compared with the placebo in the Japanese cohort, consistent
with the results in the overall study population. The propor-
tion achieving EASI-75 of Japanese adult patients treated with
placebo, dupilumab 300 mg qw2w, and dupilumab 300 mg qw
was 0%, 25.0%, and 51.4%, respectively, at week 16 in the
SOLO 1 trial; 22.2%, 62.5%, and 63.8% at week 16, and
24.1%, 50.0%, and 70.2% at week 52 in the CHRONOS
trial. The combined safety profile of dupilumab in the Japa-
nese cohort was similar to that in the total study populations.
Alexis et al. (2019) reported the results of post hoc analysis
from three phase 3 trials, LIBERTY AD SOLO 1, SOLO 2, and
CHRONOS, assessing the efficacy and safety of dupilumab
versus placebo by ethnic subgroup (White, Asian, Black/Af-
rican American). A total of 2,058 patients (White, n = 1,429;
Asian, n = 501; Black/African American, n = 128) were
included. Dupilumab significantly improved all assessed
outcomes compared with the placebo in the White and Asian
subgroups (LS mean percent changes in EASI were −44.5%,
−77.7%, and −78.0% in patients treated with placebo,
dupilumab 300 mg qw2w, and dupilumab 300 mg qw,
respectively, in White patients and −32.5%, −73.8%, and
−75.6%, respectively, in Asian patients). In the smaller Black/
African American subgroup, dupilumab significantly
improved the EASI endpoints (LS mean percent changes in
EASI were −39.1%, −70.8%, and −69.5% in patients treated
with placebo, dupilumab 300 mg qw2w, and dupilumab 300
mg qw, respectively) and mean changes in Peak Pruritus
numerical rating scale and Dermatology Life Quality Index
compared with the placebo, with positive numeric trends
favoring dupilumab in all other endpoints, suggesting that
dupilumab 300 mg qw may provide incremental benefits
over the qw2w regimen in Black/African American patients;
however, the interpretation is limited by the small sample
size of the Black/African American cohort and variations in
mean body weight between ethnic subgroups (the median
body weights of patients treated with placebo, dupilumab
300 mg qw2w, and dupilumab 300 mg qw were 76.4 kg, 77
kg, and 77 kg, respectively, in White patients; 65.55 kg, 64
kg, and 65.3 kg, respectively, in Asian patients; and 82 kg,
84.2 kg, and 81.9 kg, respectively, in Black/African American
patients).

Withdrawal of dupilumab
Worm et al. (2020) reported that longer dosage intervals
and withdrawal after the initial 16-week successful treat-
ment resulted in a diminution of response and induced a
higher incidence of treatment-emergent antidrug antibody.
They concluded that the approved regimen of 300 mg of
dupilumab every 2 weeks was recommended for long-term
therapy. It is known that a low trough concentration of an
antibody drug is associated with an increased risk of the
formation of antidrug antibody (Scheeverbeke et al., 2016).
Although the efficacy of dupilumab was not lower in pa-
patients who were positive for antidupilumab antibody than in
patients who were negative for this antidrug antibody,
longer intervals and repeated withdrawal and resumption
may eventually induce the formation of neutralizing anti-
drug antibody or non-neutralizing antidrug antibody that
can form immune complexes, resulting in increased clear-
ance of the drug (Carrascosa, 2013; Jahn and Schneider,
2009; Yin et al., 2015). In terms of immunogenicity, the
approved regimen of 300 mg of dupilumab every 2 weeks
was recommended for long-term treatment. Furthermore,
dupilumab targets not a cytokine (IL-4 and IL-13) but a
receptor (IL-4Rα). Therefore, right after initiating dupilu-
mba, IL-4 and IL-13 are possibly still abundant in the skin of
the patient even if the skin looks clear clinically. Abrupt
withdrawal of dupilumab at an early phase may result in
exacerbation. Indeed, abrupt cessation of brodalumab, an
IL-17RA antibody for psoriasis, is associated with a rapid
relapse of psoriasis, with some patients experiencing a
rebound (Masson Regnault et al., 2017). They concluded
that it is not advisable to stop treatment with brodalumab
abruptly even in patients who experience complete clear-
ance of psoriasis. Likewise, withdrawal of dupilumab at an
early phase is not recommended. Recently, Bangert et al.
(2021) revealed specific immune cell populations, mature
dendritic cells, TH2A, and Tc2 cells, that persisted for up to
1 year after clinical amelioration obtained by dupilumab
while being absent from healthy controls. Their data suggest
that it takes more than 1 year for treatment with dupilumab
to bring immunological remission even after having ach-
ieved clinical amelioration. Considering these data and its
sustained efficacy and tolerable safety in clinical trials,
abrupt cessation of dupilumab is not recommended and
long-term use of dupilumab can bring sustained
improvement.

EFFECTIVENESS AND SAFETY OF DUPILUMAB FOR AD IN
THE REAL WORLD
Real-world evidence of the effectiveness and safety of
dupilumab for AD
Accumulating real-world evidence has ensured the effec-
tiveness and tolerable safety of dupilumab both in the short
and in the long term. The articles searched in PubMed
and Google Scholar are shown in Table 1 (Ariëns et al., 2021,
2020; Armario-Hita et al., 2019; Faiz et al., 2019; Fargnoli et
al., 2020, 2019; Ferrucci et al., 2020; Jang et al., 2020; Jo
et al., 2020a, 2020b; Kim et al., 2020; Kreeshan et al.,
2021; Matsutani et al., 2020; Nettis et al., 2020b, 2020c;
Olesen et al., 2019; Patruno et al., 2021a, 2021b; Quint
et al., 2020; Ribero et al., 2020; Sears et al., 2021; Tauber
et al., 2019; Tavacchio et al., 2020; Uchida et al., 2021,
2019; Wang et al., 2020; Yamauchi et al., 2021). Patruno
et al. (2021a, 2021b) reported the effectiveness and safety of
dupilumab in elderly patients with AD in real life. Halling
et al. (2021) reported a systematic review and meta-analysis
of real-world data on the efficacy and safety of dupilumab in
patients with AD. Generally, the real-world data demon-
strated that dupilumab was a successful and well-tolerated
Publication	Country	Time (wk)	Number of Patients	EASI-75, %	Other Outcomes
Ariens et al. (2020)	The Netherlands	16	138	62	The most frequently reported side effect was conjunctivitis, occurring in 47 patients (34%).
Ariens et al. (2021)	The Netherlands	52	210	70.3	The most frequently reported adverse effect was conjunctivitis (34%).
Armario-Hita et al. (2019)	Spain	24	70	ND	EASI decreased to 6.5 (79.3% reduction), SCORAD diminished to 15 (69.3% reduction), and pruritus VAS decreased to 2.4 (69.9% reduction). The safety profile was favorable, with six reported cases of mild conjunctivitis.
Faiz et al. (2019)	France	3.8 mo (median)	241	48.8	Conjunctivitis was reported in 84 (38.2%) of 241 patients.
Fargnoli et al. (2019)	Italy	16	109	60.6	Adverse events were experienced by 19.2% (21/109) of the patients and they were all mild in intensity, conjunctivitis being the most common side effect.
Fargnoli et al. (2020)	Italy	48	1009	81.9	Conjunctivitis was diagnosed in 20.5% (21/102) at wk 24 and 8.1% (8/98) at wk 48, suggesting remission in most cases.
Ferrucci et al. (2020)	Italy	16	117	72.7	The majority of adverse events were mild in severity and included blepharoconjunctivitis (n = 14; 11.9%), facial redness (n = 6; 5.1%), and paradoxical psoriasis (n = 1; 0.8%).
Jang et al. (2020)	Korea	16	101	63.6	Adverse events from treatment included facial erythema (9.9%) and conjunctivitis (5.0%).
Jo et al. (2020b)	Canada	16	93	ND	A total of 51 (55%) patients reached IGA of 0/1, and 38 (41%) experienced ≥1 adverse events.
Jo et al. (2020a)	Canada	52	52	ND	IGA 0/1 was achieved by 28 (54%) of 52 patients at wk 52, similar to the proportion of patients achieving IGA 0/1 at wk 16 (30/48, 63%). Conjunctivitis (n = 4, 8%) was the most commonly reported adverse event.
Kim et al. (2020)	Canada	ND	34	ND	Of 34 patients, 33 showed some clinical improvement on initiating dupilumab. The most frequently reported adverse events were nasopharyngitis (n = 4, 11.8%) and conjunctivitis (n = 4, 11.8%).
Kreeshan et al. (2021)	United Kingdom	30	164	75.31	The most common side effects were eye symptoms, occurring in 43.1% of patients, with 16.3% developing conjunctivitis.
Matsutani et al. (2020)	Japan	16	53	ND	EASI score, DLQI, and POEM decreased by 73.1%, 73.6%, and 72.1%, respectively. Conjunctivitis was the most common side effect (15/53 patients, 28%).
Nettis et al. (2020c)	Italy	16	123	65.6	The median percentage change from baseline in the EASI score was −81.6. A total of 35 patients (28.5%) developed conjunctivitis during the study period.
Nettis et al. (2020b)	Italy	16	543	81.5	Overall, 12.2% of the patients developed conjunctivitis.
Olesen et al. (2019)	Denmark	3 mo	43	63.3	Seven patients (18.4%) developed conjunctivitis.
Patruno et al. (2021b)	Italy	16	276	ND	Data of elderly patients (aged ≥ 65 years) with severe (EASI ≥24) AD were retrospectively collected. The mean percentage reduction in EASI score was 68.84% (from 29.2 at baseline to 6.3 at 16 wk). No statistically significant difference regarding efficacy was found in elderly patients compared with the group of patients with AD aged 18–64 y. A total of 61 patients (22.51%) reported adverse events, conjunctivitis and flushing being the most frequent adverse events.
Patruno et al. (2021a)	Italy	52	105	ND	Data of elderly patients (aged ≥ 65 years) with severe (EASI ≥24) AD treated with dupilumab were studied. The mean EASI percentage improvement from baseline was 56.0%, 83.9%, and 87.2% after 16, 32, and 52 weeks, respectively. Adverse events were recorded in 30 (28.6%) of 105 patients, with conjunctivitis and injection-site reaction being the most frequent.
Quint et al. (2020)	Austria	52	94	71.4% (25/35) at wk 24, 71.4 (5/7) at wk 52	After 24 wk of treatment, the median IGA and EASI showed significant reductions compared with baseline (3.9 ± 0.7 vs. 1.4 ± 0.8 and 26.5 ± 12.5 vs. 6.4 ± 6.5). Similar values for all parameters were also observed after 52 weeks of treatment. Rosacea-like folliculitis was an unexpected side effect in 6.4% of patients.
Ribero et al. (2020)	Italy	4 mo	128	88	The most frequent adverse event was conjunctivitis (12%).
Sears et al. (2021)	United Kingdom	1 y	100	63.3	A total of 94% of patients had experienced an adverse event by 1 y. Ophthalmic adverse events were most common (76%).

(continued)
therapy for AD in the real world as in clinical trials; however, several reports indicate that dupilumab was slightly less effective in the real world than in clinical trials. In routine clinical practice, long-term effectiveness is related to persistence on therapy, which is generally defined as “the duration of time from initiation to discontinuation of therapy” (Cramer et al., 2008). Dal Bello et al. (2020) and Silverberg et al. (2021a) reported high persistence of dupilumab in the real world, indicating patients’ satisfaction with its effectiveness, tolerability, and treatment regimen. In some countries, there are still many patients who receive dupilumab injections at a clinic or hospital. Ito et al. (2020) described an increase in compliance rate by introducing self-injection of dupilumab at home.

Real-world data also highlighted that ocular adverse events commonly occur. Some real-world experiences raised the issue of facial redness during dupilumab treatment. We discuss these topics in the next chapter. Furthermore, psoriasisiform reaction during dupilumab treatment has been reported (Fowler et al., 2019; Napolitano et al., 2019; Schrom et al., 2020) with increased expression of IL-23A in the lesional skin (Napolitano et al., 2021). Arthritis and enthesitis during dupilumab treatment have also been reported (Bridgewood et al., 2021; de Wijs et al., 2020c; Ishibashi et al., 2020; Komaki et al., 2021; Willsmore et al., 2019). Development of alopecia areata (AA) after initiating dupilumab has also been reported (Kanda et al., 2019; Maloney et al., 2019; Ständer et al., 2020). As one of the plausible hypotheses, suppressing T helper type (Th) 2 by dupilumab could skew Th1/2/17 balance with subsequent relative upregulation of Th1 or Th17, which may result in the development of AA or psoriasisiform eruption.

Gap in effectiveness and safety between clinical trials’ data and real-world evidence

Some real-world data indicate that dupilumab was not so effective in the real world as in clinical trials. Because there is overlap in the clinical appearance of moderate-to-severe AD and mycosis fungoides (Silverberg, 2020), patients with mycosis fungoides can be misdiagnosed with AD (Chiba et al., 2019; Lazaridou et al., 2020; Newsom et al., 2021). Furthermore, some clinical features of allergic contact dermatitis and psoriasis are similar to those of AD. Those patients misdiagnosed with AD who received dupilumab might have been evaluated as non-responders. Moreover, although Investigator’s Global Assessment (IGA) and EASI are frequently used as evaluation tools for effectiveness of dupilumab, those results vary according to individual physicians. Objective evaluation tools could be useful to address this issue. Olesen et al. (2019) analyzed 43 patients with AD at a Danish tertiary referral center, which revealed a positive correlation between reduction in EASI score and reduction in serum lactate dehydrogenase (LDH) levels from baseline to 3-month follow-up (r = 0.70, P = 0.003). Matsutani et al. (2020) also reported a positive correlation of the change in EASI with the change in serum LDH levels from baseline to week 16 (r = 0.67, P < 0.0001). Those results suggest that a change in LDH level is one potential objective way to assess effectiveness of dupilumab. In addition, the differences in effectiveness of dupilumab among real-world reports and clinical trials may be accounted for by the difference of patients’ background, including prior systemic therapy such as cyclosporine, and characteristics, including patients’ weight and ethnicity as described earlier.

Table 1. Continued

Publication	Country	Time (wk)	Number of Patients	EASI-75, %	Other Outcomes
Tauber et al. (2019)	France	16	19	ND	The median SCORAD decreased by 55%. Overall, 22% of patients achieved a reduction in SCORAD of ≥75%. The ophthalmological examination showed worsening of conjunctivitis in 5 of 10 patients, stability in 4 of 10 patients, and improvement in 1 patient. Three patients developed de novo conjunctivitis.
Tavecchio et al. (2020)	Italy	52	221	83.33	None.
Uchida et al. (2019)	Japan	3 mo	22	ND	The EASI score significantly decreased by 44% on average at 1 month and by 69% at 3 months. Conjunctivitis was observed in eight patients (36%).
Uchida et al. (2021)	Japan	1 y	61	ND	The EASI score significantly decreased by a mean of 47.1% at 1 mo, 70.4% at 3 mo, 75.6% at 6 mo, and 76.5% at 12 mo. Conjunctivitis was observed in 13 patients (21.3%).
Wang et al. (2020)	United States	ND	77	ND	In 66 patients (86%), dupilumab improved clinical disease severity, with 23 patients (30%) experiencing complete clearance on dupilumab. Dupilumab was generally well tolerated and caused no serious adverse events. The most common side effects included dry eyes (n=8), conjunctivitis (n=6), and keratitis (n=3).
Yamauchi et al. (2021)	Japan	32	40	72.5	Of the 40 patients, 5 (12.5%) developed conjunctivitis.

Abbreviations: AD, atopic dermatitis; DLQI, Dermatology Life Quality Index; EASI, Eczema Area and Severity Index; IGA, Investigator’s Global Assessment; ND, not described; POEM, Patient-Oriented Eczema Measure; SCORAD, SCORing Atopic Dermatitis.
Predictors of the effectiveness of dupilumab for AD in the real-world studies

Predictors of the efficacy of dupilumab for AD have not been reported in clinical trials. Meanwhile, Kato et al. (2020) analyzed real-world data and advocated that serum LDH levels at baseline could be a negative predictor of the effectiveness of dupilumab for AD among biomarkers of AD. They retrospectively investigated the associations of baseline demographics and baseline laboratory results with the percentage reduction in EASI at 1, 3, 6, and 12 months after initiating dupilumab (Kato et al., 2020). The baseline serum LDH level was negatively correlated with the percentage reduction in EASI at 3, 6, and 12 months after initiating dupilumab but not at 1 month. Baseline serum levels of TARC and IgE and the number of circulating eosinophils were not associated with the percentage reduction in EASI at any of the studied time points. Patients with AD with allergic diseases tended to have a lower percentage reduction in EASI at 1 month but had a higher percentage reduction in EASI in the long term than patients without allergic diseases. These data suggest that a higher baseline serum LDH level is associated with poor effectiveness of dupilumab in the long term in patients with AD. Furthermore, it takes a longer time for patients with AD with allergic diseases to respond to dupilumab, but these patients respond better to dupilumab in the long term than patients without allergic diseases. Nakahara et al. (2020) have been exploring biomarkers that predict clinical improvement of AD in patients treated with dupilumab, including the percentage of eosinophils in blood cell count, LDH, total IgE, soluble IL-2 receptor, CCL17, CCL18, CCL22, CCL26, CCL27, IL-13, IL-22, IL-24, IL-25, IL-31, IL-33, thymic stromal lymphopoietin, peristin, and squamous cell carcinoma antigen-2. Biomarkers predicting the effectiveness of dupilumab will possibly be revealed in the future.

SPECIFIC CONCERNS WITH DUPILUMAB TREATMENT IN PATIENTS WITH AD

Conjunctivitis

Gap in the incidence of conjunctivitis between clinical trial data and real-world evidence. Results of clinical trials revealed that dupilumab is associated with increased incidence of conjunctivitis only in patients with AD but not in those with asthma, chronic rhinosinusitis with nasal polyps, or eosinophilic esophagitis (Akinlade et al., 2019; Bachert et al., 2016; Blauvelt et al., 2017; Castro et al., 2018; de Bruin-Weller et al., 2018b; Hirano et al., 2020; Rabe et al., 2018; Simpson et al., 2020; Thaçi et al., 2016; Wenzel et al., 2016, 2013). In the real world, dupilumab-associated conjunctivitis has also been reported (Achten et al., 2021; Armario-Hita et al., 2019; de Wijs et al., 2020a; Faiz et al., 2019; Fargnoli et al., 2019; Jo et al., 2020a; Liberman et al., 2020; Nahum et al., 2020; Nettis et al., 2020a; Ribero et al., 2020; Ruiz-Villaverde et al., 2019; Touhouche et al., 2021; Uchida et al., 2020; Wang et al., 2020). The incidence of conjunctivitis is higher in the real world (up to 62%) than in clinical trials (8.6–22.1%).

The incidence of conjunctivitis was lower especially in the first two phase 3 clinical trials, LIBERTY AD SOLO 1 and SOLO 2 (2.2% in placebo, 9.7% in dupilumab q2w, 7.3% in dupilumab qw in the pooled data) (Thaçi et al., 2019). Because conjunctivitis during dupilumab treatment is mild in most cases, dermatologists may have overlooked mild cases in these early clinical trials. Another possibility is that TCS was not allowed in those two clinical trials, whereas TCS was allowed in the later clinical trials, including LIBERTY AD CHRONOS and CAFÉ, and TCS is usually accompanied by dupilumab in the real world. The use of TCS might affect the incidence of conjunctivitis, although the mechanism is unknown. Because a lower percentage of patients suspected of having conjunctivitis by dermatologists were confirmed as having conjunctivitis by an ophthalmologist (Faiz et al., 2019), there might be a slight overestimation of dupilumab-associated conjunctivitis by dermatologists in the real world (Ferreira and Torres, 2020).

Characteristics of dupilumab-associated conjunctivitis. In most patients suffering from dupilumab-associated conjunctivitis, the severity is mild to moderate (Achten et al., 2021; Nahum et al., 2020; Nettis et al., 2020a; Touhouche et al., 2021), but severe cases or those with persistent conjunctivitis have been reported (Barnes et al., 2017; Li et al., 2020; Paulose et al., 2019; Popiela et al., 2021; Vingopoulos and Lazzaro, 2020). Dose adjustment or discontinuation of dupilumab is needed in certain cases (Achten et al., 2021). According to Bohner et al. (2021), the most common ocular symptoms were irritation/pain (97%), redness (83%), pruritus (62%), discharge (62%), and light sensitivity (21%). The most frequent signs were conjunctival injection (62%), superficial punctate keratitis (55%), and papillary reaction (28%). Achten et al. (2021) reported that the most frequently reported ophthalmological characteristics were tarsal and bulbar conjunctivitis and blepharitis (84.8%, 75.8%, and 66.7% of patients, respectively). Overall, 18.2% of patients presented with limbitis (Achten et al., 2021). Keratitis (Akinlade et al., 2019) is also reported. The timing of the onset of conjunctivitis after initiating dupilumab in patients with AD differed from 2 weeks to 4 months in individual reports (Nahum et al., 2020; Nettis et al., 2020a; Popiela et al., 2021; Uchida et al., 2020).

Risk factors for dupilumab-associated conjunctivitis. Focusing on risk factors for the development of conjunctivitis, analysis of the data of the clinical trials revealed that baseline disease-related factors, including AD severity, prior conjunctivitis history, and certain biomarkers (TARC, IgE, eosinophils), are associated with an increased incidence of conjunctivitis irrespective of treatment (in placebo-treated patients as well as in dupilumab-treated patients) (Akinlade et al., 2019). Increased biomarker levels (TARC, IgE and eosinophils) were associated with increased incidence of conjunctivitis in both groups. Although the data from the clinical trials could not identify risk factors specific for dupilumab-associated conjunctivitis, the real-world data suggest possible risk factors. Uchida et al. (2020) reported that dupilumab-associated conjunctivitis was associated with higher baseline serum levels of IgE and TARC but not with the clinical severity of AD and that a history of conjunctivitis and eosinophils showed its tendency. Nahum et al. (2020) and Nettis et al. (2020a) reported that the main predictor for the
development of dupilumab-associated conjunctivitis was a history of conjunctivitis. Touhouche et al. (2021) reported that dupilumab-induced ocular adverse events were associated with pre-existing dry eye disease with superficial punctate keratitis, eyelid eczema, history of food allergy, and IgE serum level >1,000 kU/l.

Consistently, prior conjunctivitis history is a risk factor of developing conjunctivitis after initiating dupilumab in both clinical trial data and real-world data. Reports on biomarkers as predictors for dupilumab-associated conjunctivitis are limited. Uchida et al. (2020) reported that only baseline serum TARC and IgE levels were significantly higher in patients who developed conjunctivitis, whereas TARC, IgE, and eosinophils were associated in clinical trials, which indicates that TARC and IgE are more sensitive predictors than eosinophils and possibly more useful in practice. Furthermore, baseline clinical severity did not demonstrate any association with incidence of conjunctivitis in the real world, whereas clinical trials have demonstrated that baseline AD severity was associated with an increased incidence of conjunctivitis. However, even in data from clinical trials, the difference in the incidence of conjunctivitis between patients with AD and those with a baseline of 4 was quite small in CHRONOS (0.06 vs. 0.09 per 100 patient-years) and in CAFÉ (0.22 vs. 0.23). Distinguishing the subtle differences in disease severity of AD among patients with moderate-to-severe AD (not including mild AD) is difficult for physicians.

Hypotheses of the pathomechanism of dupilumab-associated conjunctivitis. The pathomechanism of the development of dupilumab-associated conjunctivitis remains to be elucidated. However, several hypotheses have been proposed (Ferreira and Torres, 2020; Wohlrab et al., 2019) as follows: unmasking of pre-existent subclinical atopic or allergic inflammatory processes (Goederham et al., 2018); qualitative tear production failure (Fujishima et al., 1995); local immunodeficiency and resulting local infections with bacteria, viruses, chlamydia, or mycoplasma; increased expression of costimulating, proinflammatory molecules (i.e., OX40L) based on alterations in the immunological milieu; colonization of the Meibomian glands at the lid rim with Demodex mites (de Bruin-Weller et al., 2018a); eosinophilia, which plays a role in the occurrence of allergic eye conditions (Thyssen et al., 2017; Treister et al., 2018); reduced IL-13-related mucus production (Barnett and Ashari, 2020); disruption of an immune-mediated response of conjunctival-associated lymphoid tissue (Akinlade et al., 2019); and focal scarcity of conjunctival goblet cells (Bakker et al., 2019). Wohlrab et al. (2019) postulated another hypothesis that a lower bioavailability at the conjunctiva caused by the decreased diffusion of mAb and increased elimination via nFcR-dependent mechanisms (Fujishima et al., 1995) may cause quantitative and kinetic reduction in the local bioavailability of dupilumab, resulting in a shorter duration of the effect of the mAb in the respective part of the eye (Wohlrab et al., 2019), although it does not provide a coherent explanation for the described scarcity of goblet cells in patients with AD treated with dupilumab. Utine et al. (2021) advocate the hypothesis that because Th1-mediated inflammation is predominant in atopic keratoconjunctivitis, blocking the Th2 pathway with dupilumab therapy might result in a shift toward Th1, causing the ocular findings associated with dupilumab (Utine et al., 2021). Multiple factors may be involved in dupilumab-associated conjunctivitis. Further investigation is needed to clarify the pathomechanism of the development of dupilumab-associated conjunctivitis.

Facial redness

Real-world evidence raised the issue of facial redness that developed in some patients after initiation of dupilumab, although facial redness was not focused on as an adverse event in the clinical trials. To date, some case series of facial redness in dupilumab-treated patients with AD have been reported (Albader et al., 2019; de Beer et al., 2019; de Wijs et al., 2020b; Heibel et al., 2021; Herz et al., 2019; Igelman et al., 2020; Nakanishi et al., 2021; Okiyama et al., 2020; Quint et al., 2020; Seok et al., 2020; Soria et al., 2019; Stout and Silverberg, 2019; Suress and Murase, 2018; Waldman et al., 2020; Yamane et al., 2019; Zhu et al., 2019).

Waldman et al. (2020) characterized dupilumab facial redness by retrospectively reviewing medical records at several institutions. Dupilumab facial redness developed in 9 of 85 patients with AD (10.6%). Dupilumab facial redness often occurred by the time of the patient’s 2-month follow-up visit after drug initiation. Four theories have been proposed; dupilumab facial redness may represent a hypersensitivity reaction to dupilumab, site-specific treatment failure, a seborrheic dermatitis-like reaction to facial Malassezia species, paradoxical flaring of allergic contact dermatitis, or a combination of these. However, there is supporting and refuting evidence for each theory.

Jo et al. (2021) conducted a systematic review of facial and neck erythema associated with dupilumab treatment. They analyzed data on a total of 101 patients from 16 studies who were reported to have dupilumab-associated facial or neck erythema. Baseline AD on the face or neck was observed in 52 of the 101 patients (52%). The mean time to onset of facial or neck erythema after dupilumab initiation was 11 weeks. Almost half (45/101) of the patients reported that symptoms were different from their typical AD symptoms. Treatments that were commonly used to manage facial or neck erythema were TCSs (n = 43), topical calcineurin inhibitors (n = 32), and topical and oral antifungals (n = 18). Of the 57 patients with data on the course of the adverse event, treatment resulted in clearance in 4, improvement in 29, no response in 16, and worsening in 8. A total of 11 of 101 patients (11%) discontinued dupilumab owing to this adverse event. Proposed etiologies include rosacea, alcohol-induced facial flushing, allergic contact dermatitis, and seborrheic dermatitis (in which Malassezia furfur is possibly involved).

We should be aware that facial redness is not a diagnosis but a sign. Physicians need to determine the underlying diagnosis by making the most use of their clinical acumen. Facial redness in most cases is possibly accounted for by residual or poorly controlled facial AD, although the diagnosis is seborrheic dermatitis, allergic contact dermatitis, or rosacea in some cases. TCS withdrawal should also be considered. The amount of TCS use considerably decreases...
by improving pruritus after initiating dupilumab in most patients. Because facial redness is caused by different factors in individual patients, revealing the underlying diagnosis is the first step to address this issue.

IMPACT OF DUPILUMAB ON COMORBIDITIES AND DISEASE BURDEN OF AD

AD not only is a skin disease but also is associated with various comorbidities and burdens (Arima et al., 2018; Eckert et al., 2019; Silverberg, 2019). In this section, we focus on the impact of dupilumab on other comorbidities and burdens caused by AD.

Boguniewicz et al. (2021) reported that dupilumab improved asthma and/or chronic sinonasal conditions in adult patients with moderate-to-severe AD by analyzing the data obtained from four randomized, double-blinded, placebo-controlled trials.

Analyses of clinical trial data revealed that dupilumab brought improvement in pruritus, pain/discomfort, anxiety/depression, QOL, and usual activities of patients with AD (Cork et al., 2020a; de Bruin-Weller et al., 2018b; Silverberg et al., 2020; Simpson et al., 2016a) as in the real-world evidence (Ferrucci et al., 2020).

Patients with AD are susceptible to developing a variety of cutaneous infections, including infections by bacteria, viruses, and fungi (Langan et al., 2017; Simpson, 2012). A meta-analysis of eight randomized controlled trials in four publications with 2,706 participants revealed decreased risks of skin infection, including eczema herpeticum, in patients who received dupilumab compared with placebo (Fleming and Drucker, 2018). No significant associations were found for dupilumab with overall herpesvirus infections and overall infections. Regarding the reason for decreased risk of eczema herpeticum (Fleming and Drucker, 2018), it is known that IL-4 and IL-13 reduce epidermal LL-37, an antimicrobial peptide active against herpes simplex viruses (HSV)s (Franzen-Röhl et al., 2017; Howell et al., 2006), and that IL-4 and IL-13 enhance HSV-1 replication (Kim et al., 2013). Thus, blocking IL-4 and IL-13 may have specific antiviral effects. Furthermore, dupilumab increased gene expression of proteins associated with epidermal barrier function, including FLG, LOR, and claudins (Guttman-Yassky et al., 2019). Restoration of barrier function by dupilumab may contribute to reduced risk of cutaneous infection.

AD is associated with AA (Andersen et al., 2017; Mohan and Silverberg, 2015). Concomitant AA was improved by dupilumab in some reports, whereas AA developed after initiating dupilumab in others, as described previously (Harada et al., 2020; Marks et al., 2019; Sachdeva et al., 2021). Although AA has historically been classified as a primarily Th1-driven process, findings of genomic susceptibility loci and cytokine activation support involvement of the Th2 pathway (Renert-Yuval and Guttman-Yassky, 2016). In patients with improvement of AA, dupilumab, by inhibiting IL-4 and IL-13, dampens the downstream effect of inflammatory mediators, potentially leading to concomitant improvement of AA and AD (Marks et al., 2019; Sachdeva et al., 2021). However, these pathways warrant further investigation.

ISSUES TO BE ADDRESSED AND THE POSITIONING OF DUPILUMAB IN THE TREATMENT OF AD

Inadequate responders to dupilumab

Although results of clinical trials and accumulating real-world evidence of dupilumab have demonstrated higher efficacy and effectiveness than conventional therapy, there are still a certain number of patients with significant failure, as in other systemic therapies (Silverberg et al., 2021b). In AD, heterogeneity is identified by race (Noda et al., 2015), biomarkers (Sims et al., 2021), and severity of itch and skin lesions (Chovatiya et al., 2021). A variety of genetic and environmental factors are involved in the development and exacerbation of AD. The pathogenesis of AD is not so simple as to be explained merely by IL-4 and IL-13. This heterogeneity and compilation of the pathogenesis could account for a certain number of patients with significant failure for dupilumab. Clinical trials of upadacitinib and abrocitinib, Jak1-selective inhibitors, that can inhibit a wider range of the cytokine-signaling pathway than dupilumab, indicated the superior efficacy in patients receiving a high dose of them daily compared with dupilumab (Bieber et al., 2021a; Reich et al., 2021). In nonresponders to dupilumab, cytokines other than IL-4 and IL-13 could contribute more dominantly to the development of AD. Identifying the characteristics of such populations will lead to a smarter selection of drugs in the future.

Positioning dupilumab in the treatment of AD

Dupilumab demonstrated higher efficacy with a favorable safety profile for refractory patients with moderate-to-severe AD than conventional therapy. Recently, baricitinib, a Jak1/2-selective inhibitor, has been approved for the treatment of AD in some countries and will be in more countries in the near future. Upadacitinib and abrocitinib will be also available soon. Those Jak inhibitors inhibit the pathway of AD pathogenesis more specifically than conventional drugs, such as CsA and azathioprine, which enables higher efficacy in erupption and pruritus with tolerable safety. We herein discuss an optimal use of dupilumab and Jak inhibitors based on the current evidence.

Dupilumab has evidence of reducing the risks of cutaneous infection (Fleming and Drucker, 2018) and improving depression and anxiety (Cork et al., 2020a) and is approved for asthma (Castro et al., 2018), but Jak inhibitors do not, at least based on the current evidence. Therefore, dupilumab is more suitable for patients who have suffered from cutaneous infection, including eczema herpeticum; those suffering from depression and/or anxiety; and those with asthma than Jak inhibitors.

Regarding safety, dupilumab generally demonstrated more favorable safety profiles because dupilumab blocks only the IL-4 and IL-13 pathway. In prioritizing safety, dupilumab is a better option. Jak inhibitors have some contradictions, and potential increased risks of certain diseases are concerned. Patients with particular complications, such as malignancy, severe renal dysfunction, embolism/thrombosis, and cardiovascular diseases, should avoid Jak inhibitors. We should also be aware that the safety profile is different in individual Jak inhibitors (Bieber et al., 2021a, 2021b; Reich et al., 2021).
Jak inhibitors are preferable to dupilumab for patients who prefer an oral drug to injection or cannot perform self-injection. Because repeated withdrawal and resumption of dupilumab is not recommended in terms of immunogenicity as mentioned previously, Jak inhibitors are suitable for patients who want to receive it for the short term, for instance, owing to economic reasons or seasonal flares.

The unmet needs of dupilumab are conjunctivitis, facial redness, and certain population of nonresponders. Regarding conjunctivitis, Jak inhibitors do not increase its risks (Bieber et al., 2021a, 2021b; Reich et al., 2021). Patients suffering from dupilumab-induced severe conjunctivitis may want to change their treatment to Jak inhibitors. Evidence of facial redness and effectiveness of Jak inhibitors for inadequate responders to dupilumab has never been reported. The accumulation of evidence is needed.

CONCLUSION
Dupilumab demonstrated high efficacy, high effectiveness, favorable safety, and improvement in comorbidities caused by AD. Accumulating real-world data has uncovered the differences between the real world and clinical trials and revealed some issues to be addressed, including conjunctivitis and facial redness. There are still a certain number of patients with significant failure. Further investigation is needed to elucidate them.

ACKNOWLEDGMENTS
This article has no funding source.

CONFLICT OF INTEREST
The authors state no conflict of interest.

REFERENCES
Achten R, Bakker D, Ariens L, Lans A, Thijs J, van der Schaft J, et al. Long-term follow-up and treatment outcomes of conjunctivitis during dupilumab treatment in patients with moderate-to-severe atopic dermatitis. J Allergy Clin Immunol Pract 2021;9:139–92.e2.

Akinlade B, Guttman-Yassky E, de Bruin-Weller M, Simpson EL, Blauvelt A, Cork MJ, et al. Conjunctivitis in dupilumab clinical trials. Br J Dermatol 2019;181:459–73.

Albader SS, Alharbi AA, Alenezi RF, Alsaif FM. Dupilumab side effect in a patient with atopic dermatitis: a case report study. Biologies 2019;13:79–82.

Alexis AF, Rendon M, Silverberg JF, Pariser DM, Lockshin B, Griffiths CE, et al. Efficacy of dupilumab in different racial subgroups of adults with moderate-to-severe atopic dermatitis: a randomized, placebo-controlled phase 3 trials. J Drugs Dermatol 2019;18:804–13.

Andersen YM, Egberg A, Gislason GH, Skov L, Thyssen JP. Autoimmune diseases in adults with atopic dermatitis. J Am Acad Dermatol 2017;76:274–80.e1.

Arien LFM, van der Schaft J, Bakker DS, Balak D, Romeijn MLE, Kouwenhoven T, et al. Dupilumab is very effective in a large cohort of difficult-to-treat adult atopic dermatitis patients: first clinical and biomarker results from the BioDay registry. Allergy 2020;75:116–26.

Arien LFM, van der Schaft J, Spekhorst LS, Bakker DS, Romeijn GLE, Kouwenhoven TA, et al. Dupilumab shows long-term effectiveness in a large cohort of treatment-refractory atopic dermatitis patients in daily practice: 52-week results from the Dutch BioDay registry. J Am Acad Dermatol 2021;84:1000–9.

Arima K, Gupta S, Gadkari A, Hiragun T, Kono T, Katayama I, et al. Burden of atopic dermatitis in Japanese adults: analysis of data from the 2013 National Health and Wellness Survey. J Dermatol 2018:45:9–6.

Armario-Hita JC, Pereyra-Rodriguez J, Silvestre JF, Ruiz-Villaverde R, Valero A, Izu-Bellosa R, et al. Treatment of moderate-to-severe atopic dermatitis with dupilumab in real clinical practice: a multicentre, retrospective case series. Br J Dermatol 2019;181:1072–4.

Bachert C, Mannent L, Naclerio RM, Mulloll J, Ferguson BJ, Gevaert P, et al. Effect of subcutaneous dupilumab on nasal polyp burden in patients with chronic sinusitis and nasal polyposis: a randomized clinical trial. JAMA 2016;315:469–79.

Bakker DS, Ariens LFM, van Luijk C, van der Schaft J, Thijs JL, Schutteelaar MLA, et al. Goblet cell scarring and conjunctival inflammation during treatment with dupilumab in patients with atopic dermatitis. Br J Dermatol 2019;180:1248–9.

Bangert C, Rindler K, Krausgruber T, Alkon N, Thaler FM, Kurz H, et al. Persistence of mature dendritic cells, Th2A, and Tc2 cells characterize clinically resolved atopic dermatitis under IL-4R blockade. Sci Immunol 2021;6:eabe2749.

Barnes AC, Blundford AD, Perry JD. Cicatricial ectropion in a patient treated with dupilumab. Am J Ophthalmol Case Rep 2017;7:120–2.

Barnett BP, Afshari NA. Dupilumab-associated mucin deficiency (DAMD) [published correction appears in Transl Vis Sci Technol 2020;9:21]. Transl Vis Sci Technol 2020;9:29.

Beck LA, Thaci D, Deleuran M, Blauvelt A, Bissonnette R, de Bruin-Weller M, et al. Dupilumab provides favorable safety and sustained efficacy for up to 3 years in an open-label study of adults with moderate-to-severe atopic dermatitis. Am J Clin Dermatol 2020;21:567–77.

Beck LA, Thaci D, Deleuran M, de Bruin-Weller M, Chen Z, Khokhar FA, et al. Laboratory safety of dupilumab for up to 3 years in adults with moderate-to-severe atopic dermatitis: results from an open-label extension study. J Dermatol Treat 2021;1–9.

Bieber T, Simpson EL, Silverberg JF, Thaci D, Paul C, Pink AE, et al. Abrocitinib versus placebo or dupilumab for atopic dermatitis. N Engl J Med 2021a;384:1101–12.

Bieber T, Thyssen JP, Reich K, Simpson EL, Katoh N, Torrelo A, et al. Pooled safety analysis of baricitinib in adult patients with atopic dermatitis from 8 randomized clinical trials. J Eur Acad Dermatol Venereol 2021b;35:476–85.

Blauvelt A, de Bruin-Weller M, Goorhem M, Cather JC, Weisman J, Pariser D, et al. Long-term management of moderate-to-severe atopic dermatitis with dupilumab and concomitant topical corticosteroids (LIBERTY AD CHRONOS): a 1-year, randomised, double-blinded, placebo-controlled, phase 3 trial. Lancet 2017;389:2287–303.

Boguniewicz M, Beck LA, Sher L, Guttman-Yassky E, Thaci D, Blauvelt A, et al. Dupilumab improves asthma and sinonasal outcomes in adults with moderate to severe atopic dermatitis. J Allergy Clin Immunol Pract 2021;9:1212–23.e6.

Bohner A, Topham C, Strunc J, Haynes D, Brazil M, Clements J, et al. Dupilumab-associated ocular surface disease: clinical characteristics, treatment, and follow-up. Cornea 2021:40:584–9.

Bridgewood C, Sharif K, Freeston J, Saleem B, Russell T, Watad A, et al. Regulation of enthesal IL-23 expression by IL-4 and IL-13 as an explanation for arthropathy development under dupilumab therapy. Rheumatology (Oxford) 2021;60:2461–6.

Carrascosa JM. Immunogenicity in biologic therapy: implications for dermatology. Actas Dermosifiliogr 2013;104:471–9.

Castro M, Corren J, Pavord ID, Maspero J, Wenzel S, Rabe KF, et al. Dupilumab efficacy and safety in moderate-to-severe uncontrolled asthma. N Engl J Med 2018;378:2486–96.

Chiba T, Nagai T, Osada SI, Manabe M. Diagnosis of mycosis fungoides following administration of dupilumab for misdiagnosed atopic dermatitis. Acta Derm Venereol 2019;99:818–9.

Chovatiya R, Lei D, Ahmed A, Chavda R, Gabriel S, Silverberg J. Clinical phenotyping of atopic dermatitis using combined itch and lesional severity: a prospective observational study. Ann Allergy Asthma Immunol 2021;127:83–90.e2.
Cork MJ, Eckert L, Simpson EL, Armstrong A, Barbator S, Puig L, et al. Dupilumab improves patient-reported symptoms of atopic dermatitis, symptoms of anxiety and depression, and health-related quality of life in moderate-to-severe atopic dermatitis: analysis of pooled data from the randomized trials SOLO 1 and SOLO 2. J Dermatol Treat 2020a:31:606–14.

Cork MJ, Thaçi D, Eichenfield LF, Arkwright PD, Hultsch T, Davis JD, et al. Dupilumab in adolescents with uncontrolled moderate-to-severe atopic dermatitis: results from a phase IIa open-label trial and subsequent phase III open-label extension. Br J Dermatol 2020b;182:85–96.

Cork MJ, Thaçi D, Eichenfield LF, Arkwright PD, Sun X, Chen Z, et al. Dupilumab provides favourable long-term safety and efficacy in children aged > 6 to < 12 years with uncontrolled severe atopic dermatitis: results from an open-label phase IIa study and subsequent phase III open-label extension study. Br J Dermatol 2021;184:857–70.

Cramer JA, Roy A, Burrell A, Fairchild CJ, Fuldeere MJ, Ollendorf DA, et al. Medication compliance and persistence: terminology and definitions. Value Health 2008;11:44–7.

Dal Bello G, Maurelli M, Schena D, Girolomoni G, Gisondi P. Drug survival of dupilumab compared to cyclosporin in moderate-to-severe atopic dermatitis patients. Dermatol Ther 2020;33:e13979.

de Beer FSA, Bakker DS, Haeck I, Ariens L, van der Schaft J, van Dijk MR, et al. Dupilumab facial redness: positive effect of itraconazole. JAAD Case Rep 2019;5:888–91.

de Bruin-Weller M, Graham NMH, Pirozzi G, Shumel B. Could conjunctivitis be caused by colonization with demodex and increased interleukin-17 levels?: reply. Br J Dermatol 2018a;178:1220–1.

de Bruin-Weller M, Thaçi D, Smith CH, Reich K, Cork MJ, Radin A, et al. Dupilumab with concomitant topical corticosteroid treatment in adults with atopic dermatitis with an inadequate response or intolerance to ciclosporin A or when this treatment is medically inaccessible: a placebo-controlled, randomized phase III clinical trial (LIBERTY AD CAFÉ). Br J Dermatol 2018b;178:1083–101.

de Wijs LEM, Bosma AL, Erler NS, Hollestein LM, Gerbens LA, Middelkamp-Hup MA, et al. Effectiveness of dupilumab treatment in 93 patients with atopic dermatitis: daily practice data. Br J Dermatol 2020a;182:418–26.

de Wijs LEM, Nguyen NT, Kunkeler ACM, Nijsten T, Damman J, Hijnen DJ. Clinical and histopathological characterization of paradoxical head and neck erythema in patients with atopic dermatitis treated with dupilumab: a case series. Br J Dermatol 2020b;183:745–9.

de Wijs LEM, van der Waa JD, van der Waa JD, de Jong PHP, Hijnen DJ. Polyenthesitis during treatment of atopic dermatitis patients. Dermatol Ther 2020;33:e13979.

de Wijs LEM, van der Waa JD, de Jong PHP, Hijnen DJ. Acute arthritis and arthralgia as an adverse drug reaction to dupilumab. Clin Exp Dermatol 2020c;45:262–3.

Deleuran M, Thaçi D, Beck LA, de Bruin-Weller M, Blauvelt A, Forman S, et al. Dupilumab shows long-term safety and efficacy in patients with moderate to severe atopic dermatitis enrolled in a phase 3 open-label extension study. J Am Acad Dermatol 2020;82:377–88.

Eckert L, Gupta S, Gadkari A, Mahajan P, Gelderman JM. Burden of illness in adult patients with atopic dermatitis treated with dupilumab: a meta-analysis of randomized controlled trials. J Am Acad Dermatol 2018;78:62–9.e1.

Fowler E, Silverberg JI, Fox JD, Yosipovitch G. Psoriasisiform dermatitis after initiation of treatment with dupilumab for atopic dermatitis. Dermatitis 2019;30:214–6.

Fujishima H, Takeuchi T, Shinozaki N, Saiio I, Tsuaki M. Measurement of IL-4 in tears of patients with seasonal allergic conjunctivitis and vernal keratoconjunctivitis. Clin Exp Immunol 1993;102:395–8.

Gooderham M, McDonald J, Papp K. Diagnosis and management of conjunctivitis for the dermatologist. J Cutan Med Surg 2018;22:200–6.

Gutman-Yassky E, Bissonneurre R, Ungar B, Suarez-Fariñas M, Ardeleanu M, Esaki H, et al. Dupilumab progressively improves systemic and cutaneous abnormalities in patients with atopic dermatitis. J Allergy Clin Immunol 2019;143:55–72.

Halling AS, Loft N, Silverberg JI, Gutman-Yassky E, Thysen JP. Real-world evidence of dupilumab efficacy and risk of adverse events: a systematic review and meta-analysis. J Am Acad Dermatol 2021;84:139–47.

Harada K, Irisawa R, Ito T, Uchiyama M, Tsuaki R. The effectiveness of dupilumab in patients with alopecia areata who have atopic dermatitis: a case series of seven patients. Br J Dermatol 2020;183:396–7.

Heibel HD, Hendricks AJ, Foshee JP, Shi VW, Rosacea associated with dupilumab therapy. J Dermatol Treat 2021;32:114–6.

Herz S, Petri M, Sondermann W. New alcohol flushing in a patient with atopic dermatitis under therapy with dupilumab. Dermatol Ther 2019;32:e12762.

Hirano I, Dhillon ES, Hamilton JD, Collins MH, Peterson K, Chehade M, et al. Efficacy of dupilumab in a phase 2 randomized trial of adults with active eosinophilic esophagitis. Gastroenterology 2020;158:111–22.e10.

Howell MD, Wollenberg A, Gallo RL, Flag B, Streib JE, Wong C, et al. Cathelicidin deficiency predisposes to eczema herpeticum. J Allergy Clin Immunol 2006;117:836–41.

Igelman SJ, Na C, Simpson EL. Alcohol-induced facial flushing in a patient with atopic dermatitis treated with dupilumab. J Eur Acad Dermatol Venereol 2020;34:e319–21.

Itô M, Kamata M, Uchida H, Nagata M, Fukaya S, Hayashi K, et al. Introduction of self-injection increases compliance with dupilumab administration in adult patients with atopic dermatitis: a single-center retrospective study. JADAD Int 2020;1:91–2.

Jahn EM, Schneider CK. How to systematically evaluate immunogenicity of therapeutic proteins - regulatory considerations. N Biotechnol 2009;25:280–6.

Jang DH, Heo SJ, Jung HJ, Park MY, Seo SJ, Ahn J. Retrospective study of dupilumab treatment for moderate to severe atopic dermatitis in Korea: efficacy and safety of dupilumab in real-world practice. J Clin Med 2020;9:1892.

Jo CE, Finstad A, Georgakopoulos JR, Piugot V, Yeung J, Drucker AM. Facial and neck erythema associated with dupilumab treatment: a systematic review. J Am Acad Dermatol 2021;84:1339–47.

Jo CE, Georgakopoulos JR, Ladda M, Ighani A, Mufti A, Drucker AM, et al. Evaluation of long-term efficacy, safety, and reasons for discontinuation of dupilumab for moderate to severe atopic dermatitis: results from a phase III extension study. J Am Acad Dermatol 2020a;82:1399–40.

Jo CE, Georgakopoulos JR, Ladda M, Ighani A, Mufti A, Drucker AM, et al. Short-term evaluation of the real-world efficacy and safety of dupilumab for the treatment of moderate-to-severe atopic dermatitis: a Canadian multicenter retrospective cohort study [Formula: see text]. J Cutan Med Surg 2020b;24:468–73.
Kanda N, Koto M, Hoashi T, Saeki H. Case of alopecia areata during dupilumab treatment for atopic dermatitis. J Dermatol 2019;46: e332–3.

Kato A, Kamata M, Ito M, Uchida H, Nagata M, Fukaya S, et al. Higher baseline serum lactate dehydrogenase level is associated with poor effectiveness of dupilumab in the long term in patients with atopic dermatitis. J Dermatol 2020;47:1013–9.

Katoh N, Kataoka Y, Saeki H, Hide M, Kabashima K, Itoh T, et al. Efficacy and safety of dupilumab in Japanese adults with moderate-to-severe atopic dermatitis: a subanalysis of three clinical trials. Br J Dermatol 2020;183:39–51.

Kim BE, Bin L, Ye YM, Ramamorthy P, Leung DYM. IL-25 enhances HSV-1 replication by inhibiting filaggrin expression, and acts synergistically with Th2 cytokines to enhance HSV-1 replication. J Invest Dermatol 2013;133:2678–85.

Kim NS, Malyyar K, Oliveira L, O'Toole A, Goodeham MJ. Real-world experience of dupilumab in the treatment of moderate-to-severe atopic dermatitis. Int J Dermatol 2020;59:e361–3.

Komaki R, Miyagaki T, Nakajima K, Mitsuishi S, Kishi A, Miyano K, et al. Arthritis and enthesisitis during dupilumab therapy completely remitted by celecoxib. J Dermatol 2021;48:e279–80.

Kreeshan FC, Al-Janabi A, Warren RB, Hunter HJA. Real-world experience and laboratory monitoring of dupilumab in patients with moderate to severe atopic dermatitis in a tertiary centre. Dermatol Ther (Heidelb) 2021;11:149–60.

Langan SM, Abuabara K, Henrickson SE, Hoffstad O, Margolis DJ. Increased risk of cutaneous and systemic infections in atopic dermatitis-a cohort study. J Invest Dermatol 2017;137:1375–7.

Lazandou I, Ram-Wolf C, Bouaziz JD, Bégon E, Battistella M, Rivet J, et al. Dupilumab treatment in two patients with cutaneous T-cell lymphoma. Acta Derm Venereol 2020;100:adv00271.

Li G, Berkenstock M, Soiberman U. Corneal ulceration associated with dupilumab-induced ocular surface disease (DIOSD) in patients with atopic dermatitis. Br J Ophthalmol 2021;105:642–8.

Liberman P, Shilera AS, Berkenstock M. Dupilumab-associated conjunctivitis in patients with atopic dermatitis. Cornea 2020;39:784–6.

Maloney NJ, Worswick S, Cheng K. Development of alopecia in patients treated with dupilumab. Dermatol Ther 2019;32:e12869.

Marks DH, Mesinkovska N, Senna MM. Cause or cure? Review of dupilumab and alopecia areata [e-pub ahead of print]. J Am Acad Dermatol 2019. https://doi.org/10.1016/j.jaad.2019.06.010 (accessed 8 August, 2021).

Masson Regnault M, Konstantinou MP, Khemis A, Poulin Y, Bourcieux M, Amelot F, et al. Early relapse of psoriasis after stopping brodalumab: a retrospective cohort study in 77 patients. J Eur Acad Dermatol Venereol 2017;31:1491–6.

Matsutani M, Imai Y, Inoue Y, Hosotani Y, Kusakabe M, Natsukai M, et al. Real-world use of dupilumab for 53 patients with atopic dermatitis in Japan. J Cutan Immunol Allergy 2020;5:35–6.

Mohan GC, Silverberg JI. Association of vitiligo and alopecia areata with atopic dermatitis: a systematic review and meta-analysis. JAMA Dermatol 2015;151:522–8.

Nahun Y, Mimouni M, Livny E, Bahar I, Hodak E, Lehem YA. Dupilumab-induced ocular surface disease (DIOSD) in patients with atopic dermatitis: clinical presentation, risk factors for development and outcomes of treatment with tacrolimus ointment. Br J Ophthalmol 2020;104:776–9.

Nakahara T, Izuhashi K, Onozuka D, Nunomura S, Tamagawa-Mineoka R, Masuda K, et al. Exploration of biomarkers to predict clinical improvement of atopic dermatitis in patients treated with dupilumab: a study protocol. Medicine (Baltimore) 2020;99:e22043.

Nakanishi M, Tamagawa-Mineoka R, Arakawa Y, Masuda K, Katoh N. Dupilumab-resistant facial erythema - dermoscopic, histological and clinical findings of three patients. Allergol Int 2021;70:156–8.

Napolitano M, Scalvenzi M, Fabbrocini G, Cinelli E, Patruno C. Occurrence of psoriasiform eruption during dupilumab therapy for adult atopic dermatitis: a case series. Dermatol Ther 2019;32:e13142.

Nettis E, Bonzano L, Patella V, Detoraki A, Trerotoli P, Lombardo C, et al. Dupilumab-associated conjunctivitis in patients with atopic dermatitis: a multicentre real-life experience. J Invest Allergol Clin Immunol 2020a;30:201–4.

Nettis E, Ferrucci SM, Ortoncelli M, Pellacani G, Fofi C, Di Leo E, et al. Use of dupilumab for 543 adult patients with moderate-to-severe atopic dermatitis: a multicenter, retrospective study [e-pub ahead of print]. J Invest Allergol Clin Immunol 2020. https://doi.org/10.18176/jiaci.0641 (accessed 8 August, 2021).

Nettis E, Patella V, Lombardo C, Detoraki A, Macchia L, Di Leo E, et al. Efficacy of dupilumab in atopic comorbidities associated with moderate-to-severe atopic dermatitis. Allergy 2020c;75:2653–61.

Newson M, Hrin ML, Hamid RN, Strowd LC, Ahn C, Jorizzo JL, et al. Two cases of mycosis fungoides diagnosed after treatment non-response to dupilumab. Dermatol Online J 2021;27:13030.

Noda S, Sánchez-Fariñas M, Ungar B, Kim SJ, de Guzman Strong C, Xu H, et al. The Asian atopic dermatitis phenotype combines features of atopic dermatitis and psoriasis with increased TH17 polarization. J Allergy Clin Immunol 2015;136:1254–64.

Okiyama N, Nakamura Y, Ishitsuka Y, Inoue S, Kubota N, Saito A, et al. Successful topical treatment with ketconazole for facial rashes refractory to dupilumab in patients with atopic dermatitis: case reports. J Eur Acad Dermatol Venereol 2020;34:e474–6.

Olesen CM, Holm JG, Narreslet LB, Sørensen JV, Thomsen SF, Agner T. Treatment of atopic dermatitis with dupilumab: experience from a tertiary referral centre. J Eur Acad Dermatol Venereol 2019;33:1562–8.

Paller AS, Siegfried EC, Thaci D, Wollenberg A, Cork MJ, Arkwright PD, et al. Efficacy and safety of dupilumab with concomitant topical corticosteroids in children 6 to 11 years old with severe atopic dermatitis: a randomized, double-blind, placebo-controlled phase 3 trial [published correction appears in J Am Acad Dermatol 2021;84:230]. J Am Acad Dermatol 2020;83:1282–93.

Patruno C, Fabbrocini G, Longo G, Argenziano G, Ferrucci SM, Stingeni L, et al. Successful treatment and safety of long-term dupilumab treatment in elderly patients with atopic dermatitis: a multicentre real-life observational study. Am J Clin Dermatol 2021a;22:581–6.

Patruno C, Napolitano M, Argenziano G, Peris K, Ortotcelli M, Girolomoni G, et al. Dupilumab therapy of atopic dermatitis of the elderly: a multicentre, real-life study. J Eur Acad Dermatol Venereol 2021b;35:958–64.

Paulose SA, Sherman SW, Dagi Glass LR, Sub LH. Dupilumab-associated blepharoconjunctivitis. Am J Ophthalmol Case Rep 2019;16:100848.

Papiola MZ, Barabara R, Turnbull AMJ, Corden E, Martinez-Falero BS, O’Driscoll D, et al. Dupilumab-associated ocular surface disease presentation, management and long-term sequelae [e-pub ahead of print]. Eye (Lond) 2021. https://doi.org/10.1038/s41433-020-01379-9 (accessed 8 August, 2021).

Quint T, Brunner PM, Sinz C, Steiner I, Ristik R, Vigl K, et al. Dupilumab for the treatment of atopic dermatitis in an Austrian cohort-real-life data shows rosacea-like folliculitis. J Clin Med 2020;9:1241.

Rabe KF, Nair P, Brusselle G, Maspéro JF, Castro M, Sher L, et al. Efficacy and safety of dupilumab in glucocorticoid-dependent severe asthma. N Engl J Med 2018;378:2475–85.

Reich K, Teixeira HD, de Bruin-Weller M, Bieber T, Soong W, Kabashima K, et al. Safety and efficacy of upadacitinib in combination with topical corticosteroids in adolescents and adults with moderate-to-severe atopic dermatitis (AD Upi): results from a randomised, double-blind, placebo-controlled, phase 3 trial [published correction appears in Lancet 2021;397:2336]. Lancet 2021;397:2169–81.

Renert-Yuval Y, Guttmann-Yassky E. A novel therapeutic paradigm for patients with extensive alopecia areata. Expert Opin Biol Ther 2016;16:1005–14.

Ribero S, Giura MT, Viola R, Ramondetta A, Siliquini N, Cardone P, et al. Effectiveness and safety of dupilumab for the treatment of atopic dermatitis in adult cohort: a real-life Italian tertiary centre experience. J Eur Acad Dermatol Venereol 2020;34:e380–3.
Simpson EL, Dominguez-Cruz J, Armaro-Hita JC, Martinez-Pilar L, Alcantara-Luna S, Pereyra-Rodriguez JJ. Dupilumab: short-term effective-ness and security in real clinical practice - a retrospective multicentric study. J Eur Acad Dermatol Venereol 2019;33:e21–2.

Sachdeva M, Witol A, Multfi A, Maliyar K, Yeung J. Alopecia areata related paradoxical reactions in patients on dupilumab therapy: a systematic review [published correction appears in J Cutan Med Surg 2021;25:464]. J Cutan Med Surg 2021;25:451–2.

Schaeverbeke T, Truchetet ME, Kostine M, Barnetche T, Bannwarth B, Richez C. Immunogenicity of biologic agents in rheumatoid arthritis pa-tients: lessons for clinical practice. Rheumatology (Oxford) 2016;55:210–20.

Schor MP, Kobs A, Nedosrot S. Clinical psoriasisiform dermatitis following dupilumab use for autoeczematization secondary to chronic stasis dermatitis. Cureus 2020;12:e7031.

Sears AV, Woolf RT, Grimalева Е, Abdulrahman W, Robbie S, Menon B, et al. Real-world effectiveness and tolerability of dupilumab in adult atopic dermatitis: a single-centre, prospective 1-year observational cohort study of the first 100 patients treated. Br J Dermatol 2021;184:755–7.

Seek SH, An JH, Shin JU, Lee HJ, Kim DH, Yoon MS, et al. Facial redness in atopic dermatitis patients treated with dupilumab: a case series. Allergy Asthma Immunol Res 2020;12:1063–5.

Silverberg JI. Comorbidities and the impact of atopic dermatitis. Ann Allergy Asthma Immunol 2019;123:144–51.

Silverberg JI. Atopic dermatitis in adults. Med Clin North Am 2020;104:157–76.

Silverberg JI, Guttman-Yassky E, Gadkari A, Kuznik A, Mallya UG, Mastey V, et al. Real-world persistence with dupilumab among adults with atopic dermatitis. Ann Allergy Asthma Immunol 2021;126:40–5.

Silverberg JI, Simpson EL, Guttman-Yassky E, Cork MJ, de Bruin-Weller M, Yosipovitch G, et al. Dupilumab significantly modulates pain and discomfort in patients with atopic dermatitis: a post hoc analysis of 5 randomized clinical trials [e-pub ahead of print]. Dermatitis 2020. https://doi.org/10.1097/DER.0000000000000698 (accessed 8 August, 2021).

Silverberg JI, Thysen JP, Fahrbach K, Mickle K, Cappelleri JC, Romero W, et al. Comparative efficacy and safety of systemic therapies used in moderate-to-severe atopic dermatitis: a systematic literature review and network meta-analysis [e-pub ahead of print]. J Eur Acad Dermatol Venereol 2021. https://doi.org/10.1111/jdv.17351 (accessed 8 August, 2021).

Simpson EL. Comorbidity in atopic dermatitis. Curr Dermatol Rep 2012;1:29–38.

Simpson EL, Bieber T, Eckert L, Wu R, Ardeleanu M, Graham NM, et al. Patient burden of moderate to severe atopic dermatitis (AD): insights from a phase 2b clinical trial of dupilumab in adults. J Am Acad Dermatol 2016a;74:491–8.

Simpson EL, Bieber T, Guttman-Yassky E, Beck LA, Blauvelt A, Cork MJ, et al. Two phase 3 trials of dupilumab versus placebo in atopic dermatitis. N Engl J Med 2016b;375:2335–48.

Simpson EL, Paller AS, Siegried EC, Boguniewicz M, Sher L, Gooderham MJ, et al. Dupilumab: short-term effective-ness and security in real clinical practice - a retrospective multicentric study. J Eur Acad Dermatol Venereol 2019;33:e21–2.

Staumont-Salle D, Barbarot S, et al. Efficacy and safety of dupilumab in adults with moderate-to-severe atopic dermatitis inadequately controlled by topical treatments: a randomised, placebo-controlled, dose-ranging phase 2b trial. Lancet 2016;387:40–52.

Thaci D, Simpson EL, Deleuran M, Kataoka Y, Chen Z, Gadkari A, et al. Efficacy and safety of dupilumab monotherapy in adults with moderate-to-severe atopic dermatitis: a pooled analysis of two phase 3 randomized trials (LIBERTY AD SOLO 1 AND LIBERTY AD SOLO 2). J Dermatol Sci 2019;94:266–75.

Timens JP, Toff PB, Halling-Overgaard AS, Gislason GH, Skov L, Egeberg A. Incidence, prevalence, and risk of selected ocular disease in adults with atopic dermatitis. J Am Acad Dermatol 2017;77:280–6.e1.

Touhouche AT, Cassagne M, Bérard E, Giordano-Labadie F, Didier A, Fournié P, et al. Incidence and risk factors for dupilumab associated ocular adverse events: a real-life prospective study. J Eur Acad Dermatol Venereol 2021;35:172–9.

Treister AD, Kraft-Cooper C, Lio PA. Risk factors for dupilumab-associated conjunctivitis in patients with atopic dermatitis. JAMA Dermatol 2018;154:1208–11.

Uchida H, Kamata M, Kato A, Mizukawa I, Watanabe A, Agematsu A, et al. One-year real-world clinical effectiveness, safety, and laboratory safety of dupilumab in Japanese adult patients with atopic dermatitis: a single-center retrospective study. J Am Acad Dermatol 2021;84:547–50.

Uchida H, Kamata M, Mizukawa I, Watanabe A, Agematsu A, Nagata M, et al. Real-world effectiveness and safety of dupilumab for the treatment of atopic dermatitis in Japanese patients: a single-centre retrospective study. Br J Dermatol 2019;181:1083–5.

Uchida H, Kamata M, Nagata M, Fukaya S, Hayashi K, Fukuyasu A, et al. Conjunctivitis in patients with atopic dermatitis treated with dupilumab is associated with higher baseline serum levels of immunoglobulin E and thymus and activation-regulated chemokine but not clinical severity in a real-world setting. J Am Acad Dermatol 2020;82:1247–9.

Ulte CA, Li G, Asbell P, Piluggleter S, Akpek E. Ocular surface disease associated with dupilumab treatment for atopic diseases. Ocul Surf 2021;19:151–6.

Vingopoulos F, Lazzaro DR. Dupilumab-associated blepharocconjunctivitis with giant papillae. Int Med Case Rep J 2020;13:303–5.

Waldrman RA, DeWane ME, Sloan B, Grant-Kels JM. Characterizing dupilumab facial redness: a multi-institution retrospective medical record review. J Am Acad Dermatol 2020;82:230–2.

Wang C, Kraus CN, Patel KG, Ganesan AK, Grando SA. Real-world experience of dupilumab treatment for atopic dermatitis in adults: a retrospective analysis of patients’ records. Int J Dermatol 2020;59:253–6.

Wenzel S, Castro M, Corren J, Maspervo J, Wang L, Zhang B, et al. Dupilumab efficacy and safety in adults with uncontrolled persistent asthma despite use of medium-to-high-dose inhaled corticosteroids plus a long-acting β2 agonist: a randomised double-blind placebo-controlled pivotal phase 2b dose-ranging trial. Lancet 2016;388:831–44.

Wenzel S, Ford L, Pearlman D, Spector S, Sher L, Skobieranda F, et al. Dupilumab in persistent asthma with elevated eosinophil levels. N Engl J Med 2013;368:2455–66.

Willsmore ZN, Woolf RT, Hughes C, Menon B, Kirkham B, Smith CH, et al. Development of inflammatory arthritis and enthesitis in patients on dupilumab: a case series. Br J Dermatol 2019;181:1068–70.

Woehrl J, Werfel T, Wollenberg A. Pathomechanism of dupilumab-associated inflammatory eye symptoms. J Eur Acad Dermatol Venereol 2019;33:e435–6.

Wollenberg A, Beck LA, Blauvelt A, Simpson EL, Chen Z, Chen Q, et al. Laboratory safety of dupilumab in moderate-to-severe atopic dermatitis: results from three phase III trials (LIBERTY AD SOLO 1, LIBERTY REVIEW). Review of Dupilumab for Atopic Dermatitis
M Kamata and Y Tada
Review of Dupilumab for Atopic Dermatitis

AD SOLO 2, LIBERTY AD CHRONOS. Br J Dermatol 2020;182:1120–35.

Worm M, Simpson EL, Thaci D, Bissonnette R, Lacour JP, Beissert S, et al. Efficacy and safety of multiple dupilumab dose regimens after initial successful treatment in patients with atopic dermatitis: a randomized clinical trial. JAMA Dermatol 2020;156:131–43.

Yamane MLM, Belsito DV, Glass LRD. Two differing presentations of periocular dermatitis as a side effect of dupilumab for atopic dermatitis. Orbit 2019;38:390–4.

Yamauchi T, Sasaki S, Lee ES, Tamura T, Seki M, Miwa T, et al. Dupilumab treatment ameliorates clinical and hematological symptoms, including blood eosinophilia, in patients with atopic dermatitis. Int J Dermatol 2021;60:190–5.

Yin L, Chen X, Vicini P, Rup B, Hickling TP. Therapeutic outcomes, assessments, risk factors and mitigation efforts of immunogenicity of therapeutic protein products. Cell Immunol 2015;295:118–26.

Zhu GA, Chen JK, Chiou A, Ko J, Honari G. Assessment of the development of new regional dermatoses in patients treated for atopic dermatitis with dupilumab. JAMA Dermatol 2019;155:850–2.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/