Critical Review

Breast Radiation Therapy Under COVID-19 Pandemic Resource Constraints—Approaches to Defer or Shorten Treatment From a Comprehensive Cancer Center in the United States

Lior Z. Braunstein, MD,a,*,1 Erin F. Gillespie, MD,a,b,1 Linda Hong, MD,c Amy Xu, MD,a Samuel F. Bakhour, MD,a,d John Cuaron, MD,a Boris Mueller, MD,a Beryl McCormick, MD,a Oren Cahlon, MD,a Simon Powell, MD,a and Atif J. Khan, MDa

aDepartment of Radiation Oncology, bCenter for Health Policy and Outcomes, cDepartment of Medical Physics, and dHuman Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York

Received 24 March 2020; revised 25 March 2020; accepted 25 March 2020

Abstract

Purpose: Breast radiation therapy accounts for a significant proportion of patient volume in contemporary radiation oncology practice. In the setting of anticipated resource constraints and widespread community infection with SARS-CoV-2 during the COVID-19 pandemic, measures for balancing both infectious and oncologic risk among patients and providers must be carefully considered. Here, we present evidence-based guidelines for omitting or abbreviating breast cancer radiation therapy, where appropriate, in an effort to mitigate risk to patients and optimize resource utilization.

Methods and Materials: Multidisciplinary breast cancer experts at a high-volume comprehensive cancer center convened contingency planning meetings over the early days of the COVID-19 pandemic to review the relevant literature and establish recommendations for the application of hypofractionated and abbreviated breast radiation regimens.

Results: Substantial evidence exists to support omitting radiation among certain favorable risk subgroups of patients with breast cancer and for abbreviating or accelerating regimens among others. For those who require either whole-breast or postmastectomy radiation, with or without coverage of the regional lymph nodes, a growing body of literature supports various hypofractionated approaches that appear safe and effective.

Conclusions: In the setting of a public health emergency with the potential to strain critical healthcare resources and place patients at risk of infection, the parsimonious application of breast radiation therapy may alleviate a significant clinical burden without compromising long-term oncologic outcomes. The judicious and personalized use of immature study data may be warranted in the setting of a competing mortality risk from this widespread pandemic.

© 2020 The Author(s). Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Breast radiation therapy (RT) is a curative component of treatment for many breast cancer presentations, albeit with limited locoregional benefit for certain patients and no survival implications for others (eg, ductal carcinoma in situ [DCIS]). In the setting of the COVID-19 pandemic, in which community infection represents a mortal risk, the anticipated benefit of breast RT in certain settings must be carefully weighed against infectious risk.

Although breast cancer represents the most common noncutaneous malignancy in the United States, limiting the overall use and duration of breast RT under conditions of extreme resource constraints is prudent and may significantly alleviate institutional burdens. Guidance from the US Centers for Disease Control and World Health Organization advise limiting the sorts of person-to-person interactions that are likely to occur in clinical spaces among patients and healthcare staff during prolonged daily-fractionation regimens. In addition, health care resources in many settings may need to be repurposed for pandemic management such that limiting utilization is of renewed importance. Therefore, abbreviated fractionation regimens with nascent feasibility literature, as presented here, should be more strongly considered than under typical conservative practice conditions.

Methods and Materials

A team of radiation oncologists who specialize in breast cancer management at our comprehensive cancer center convened multidisciplinary and cross-institutional contingency planning meetings over the early days of the COVID-19 pandemic to review the relevant literature and establish recommendations for the safe application of hypofractionated and abbreviated radiation regimens. The literature was reviewed with an emphasis on randomized controlled trial and level 1 evidence, followed by prospective observational studies, systematic reviews, and meta-analyses (summary outlined in Table 1).

Suggested Considerations

Omission of RT

In general, the omission of RT among those who are eligible should be prioritized. These subgroups of low-risk patients have been studied in landmark trials demonstrating a moderate local control benefit of RT without improvement in already excellent disease-specific survival outcomes.

- **DCIS**: Prospective observational studies and randomized controlled trials have reproducibly demonstrated a lack of survival benefit for RT among favorable DCIS presentations. It is therefore advisable to forgo RT for those with mammographically detected lesions <2.5 cm in size, of low or intermediate grade, and with adequate ≥ 2 mm resection margins. Caution is warranted if forgoing RT in patients under 40 years of age.

- **Invasive disease**: The omission of RT is preferred among those age 70 years and older who have estrogen-receptor positive (ER+) tumors that are ≤ 3 cm in size with no involved nodes (pT1-2N0M0), negative resection margins (ie, “no tumor on ink”), and who are eligible to receive endocrine therapy. A large study with limited follow-up suggested that lowering this threshold to 65 years of age is also safe. For patients younger than 65 years of age, ongoing studies demonstrate equipoise with regard to those who have biomarker-low disease that otherwise fits the previously mentioned clinicopathologic parameters, but no mature data exist in this domain.

Delaying RT

Uncertainty surrounding the current public health emergency has made predictions about future resource allocation particularly challenging. Estimates of population-level relief range from weeks to over 1 year.

In the interest of alleviating current workload and resource constraints, evidence exists to support delaying RT among certain populations, as follows:

- **DCIS**: In patients requiring RT for DCIS, radiation can be safely delayed up to 12 weeks after breast-conserving surgery.

- **Invasive disease**: Patients with early-stage, node-negative, ER+ breast cancer can safely begin RT 8 to 12 weeks after breast-conserving surgery without compromising disease control or survival, with several large studies showing that a delay up to 20 weeks may be safe in an appropriate subset. There is limited evidence to guide the interval from chemotherapy to RT, and most trials initiate RT 4 to 6 weeks after chemotherapy. Extrapolation from the aforementioned surgical literature suggests that an interval of up to 12 weeks from chemotherapy to RT may be reasonable.

For patients with ER+ breast cancers, either DCIS or invasive, who may otherwise experience a delay or interruption in treatment, we support the prompt initiation of hormone therapy among those eligible. There is no evidence to suggest inferior local control or survival with concurrent hormonal therapy and radiation, including both tamoxifen and aromatase inhibitors. Though subtle differences in breast edema, fibrosis/cosmesis, and
Target	Total dose/no. of fractions	Technique/contours	Dose constraints (for shortest regimen only)	Notes
Partial breast	30 Gy/5 every other day	IMRT/VMAT (preferred)	30 Gy in 5 fractions:	Florence PBI trial[^22]
http://econtour.org/cases/47				
MSK prospective[^25,26]				
http://econtour.org/cases/108				
	daily (preferred) or daily	3D-CRT	D_{max}<110%	* Clips strongly preferred for targeting and daily setup
* Daily kv match to clips vs CBCT match to seroma |
| | (acceptable) | GTV (clips*) to PTV | V105% < 110% of breast volume | |
| | 40 Gy/10 daily | ~2 cm (1.5 cm | Ipsi breast-PTV V15 Gy < 50% | |
| | | to CTV with 5 mm PTV | Contra breast D_{max}<1 Gy | |
| | | margin) | Lung (ipsi) V10 Gy < 20% | |
| | | | Lung (contra) V5 Gy < 10% | |
| Whole breast | 26 Gy/5 daily ± 5.2 Gy | 3D-CRT | 26 Gy in 5 fractions: | UK FAST FORWARD[^35]
http://econtour.org/cases/117 |
| | × 1 boost | For left-sided, DIBH (preferred) and/or heart block | D_{max}<110% | |
| | 40 Gy/15 daily | | V107% < 2% of breast volume | |
| | 42.4 Gy/16 daily | | V105% < 5% of breast volume | |
| | | | Lung V8 Gy < 15% (<17% acceptable) | |
| | | | Heart V7 Gy < 5%, V1.5 Gy < 30% | |
| Postmastectomy (PMRT) | 42.56 Gy/16 | 3D-CRT or IMRT | 42.56 Gy in 16 fractions: | RTCHARM (NCT03414970)
http://econtour.org/cases/110 |
| | | | D_{max}<115% | |
| | | | V107% < 10 cm³ of PTV | |
| | | | Contra breast V3 Gy < 10% (preferred), V5 Gy < 10% (acceptable) | |
| | | | Lung V18 Gy < 35% (≤40% acceptable) | |
| | | | Heart mean < 3 Gy (preferred), ≤ 5 Gy (acceptable) | |
| | | | Heart V22.5 Gy < 10% (left-sided), V22.5 Gy < 2% (right-sided) | (see PMRT constraints)
UK START B[^33] and extrapolation from RTOG 1005[^50] |
| Breast and RNI | 42.56 Gy/16 with SIB to | 3D-CRT or IMRT | 3D CRT SIB involves a separate electron plan delivered after photon plan | |
| | tumor bed 48 Gy/16 (3 Gy/fx)| | Seroma/clips 7-10 mm for CTV, then another 5-7 mm for PTV. NOTE: expansions can be smaller for SIB. | |
| | 40 Gy/15 with SIB[^1] to | | Seroma/clips 7-10 mm for CTV, then another 5-7 mm for PTV. NOTE: expansions can be smaller for SIB. | |
| | tumor bed 48 Gy/15 (3.2 Gy/ fx)| | | |

Abbreviations: 3D-CRT = 3D conformal radiation therapy; CBCT = cone beam computed tomography; CTV = clinical target volume; DIBH = deep inspiration breath hold; GTV = gross tumor volume; IMRT = intensity modulated radiation therapy; MSK = Memorial Sloan Kettering; PBI = partial breast irradiation; PMRT = post-mastectomy radiation; PTV = planning target volume; RNI = regional nodal irradiation; RTOG = Radiation Therapy Oncology Group; SIB = simultaneous integrated boost; VMAT = volumetric modulated arc therapy.

For illustrative case presentations and guidance in contouring and planning the various regimens described, including target volumes, organs at risk, and relevant expansions, please visit http://econtour.org/hypofrac. Online cases also include dosimetric guidance and the dose constraints used in various supportive protocols.
lung toxicity have been reported, the overall evidence is mixed and should not limit use of concurrent therapy.21

Accelerated partial breast irradiation

A large body of literature, including several landmark prospective trials, has established the safety and efficacy of accelerated partial breast irradiation (APBI) among appropriately selected patients. This paradigm is based on the historical observation that most recurrences occur proximate to the tumor cavity, such that treatment of the tumor bed with a margin has now been shown to confer outcomes similar to whole-breast RT in select settings. Moreover, utilization of a smaller target volume allows for acceleration of the overall regimen from 3 to 6 weeks to 1 to 2 weeks—a critical gain under resource-constrained circumstances. Additional benefits may include reduced acute toxicity, as evidenced by 10-year follow-up of the Florence regimen (30 Gy in 5 fractions, administered every other day).22

Various techniques and fractionation regimens are available for partial breast radiation. The use of brachytherapy is discouraged in the setting of strain on hospital resources; it also yields increased opportunities for exposure and infection. Accelerated external beam partial breast radiation regimens using 3D conformal radiation therapy (3D-CRT) now have a large body of evidence supporting their use, with 38.5 Gy in 10 fractions delivered twice daily as a well-studied scheme. In one report, cosmesis appeared to score worse with this regimen,23 although in the seminal US study this appeared to be less of a concern.24 Other well-established options for APBI include 40 Gy in 10 fractions daily using 3D-CRT25,26 and 30 Gy in 5 fractions every other day using intensity modulated radiation therapy22 (daily fractionation appears well tolerated; personal correspondence, March, 2020). Meanwhile, 40 Gy in 15 daily fractions to the partial breast is also an effective regimen, though it is more prolonged than the other APBI options.27

American Society for Radiation Oncology (ASTRO) consensus guidelines28 and a group in the United Kingdom29 have identified a population for which there is reasonable agreement regarding suitability of APBI: patients 50 years of age or older with screen-detected invasive disease that is \(\leq 2 \) cm in size, ER+, and node negative, or DCIS that is low/intermediate grade and \(\leq 2.5 \) cm in size. Of note, NSABP-B39 also included 800 patients with ER− breast cancer who exhibited excellent local control, suggesting that APBI may be reasonable among this group.

Whole-breast RT and hypofractionated regimens

Among patients who require whole-breast RT without nodal treatment, hypofractionation is the preferred standard of care in the United States.30,31 To that end, a number of fractionation schemes are well supported by randomized trials, including 42.56 Gy in 16 fractions32 and 40 Gy in 15 fractions.33 Data are emerging for more extreme hypofractionation, supporting 28.5 Gy in 5 once-weekly fractions,34 as well as a more accelerated daily regimen of 26 Gy in 5 daily fractions.35 Although long-term local recurrence data are not yet available for FAST FORWARD, 3-year normal tissue toxicity appears equivalent to the well-tolerated 3-week fractionation scheme. Although various concerns have slowed widespread adoption of shorter regimens for whole-breast radiation, a number of prospective phase 2, single-arm, and retrospective series have demonstrated efficacy and safety among groups that were previously thought to be of particular concern, including those with high-grade tumors,36 DCIS,37 young age,38 or triple-negative breast cancer.39

Postmastectomy and/or regional nodal irradiation

Analyses of 2 landmark studies, MA.20 and EORTC 22922, reproducibly demonstrated that regional nodal irradiation reduces distant recurrence risk and significantly improves disease-free survival, even among those with a limited axillary disease burden.39,40 As a result, an increasing number of patients have become eligible to receive comprehensive regional nodal irradiation after breast conservation or PMRT. Unfortunately, hypofractionated nodal irradiation has yet to see widespread adoption in the United States, although a nascent literature does suggest it is safe to employ 40 Gy in 15 daily fractions targeting the breast/chest wall and regional nodes (presuming the supraclavicular hotspot is below 105%; otherwise, 39 Gy in 15 fractions is preferred),33,41-43 with ongoing studies using this regimen in a randomized fashion to suggest true clinical equipoise (RT-CHARM: NCT03414970; FABREC: NCT03422103). The UK FAST FORWARD trial includes a 5-fraction lymphatic RT cohort, but this is not yet considered safe outside of a trial or in the setting of palliation.

Boost to the tumor bed

Boost RT has more limited applications in emergency settings:

- **DCIS**: The largest study to date evaluating the benefit of a boost in the setting of DCIS found a <2% local control benefit following whole breast radiation.44 Given the absence of a survival benefit, boost can be omitted in resource-constrained settings, as was standard on Radiation Therapy Oncology Group (RTOG) 9804.3 However, as noted earlier, caution is warranted among those younger
than 40 years of age, in whom boost was shown to improve local control by 10% at 72 months.45

- Invasive disease: Following whole breast radiation, a tumor bed boost should be considered only in the presence of significant local recurrence risk factors: ≤60 years of age, high grade tumors, or inadequate margins.46

A standard boost after hypofractionated whole breast radiation involves 4 to 6 fractions, although evidence suggests that a simultaneous integrated boost may be similarly safe and effective.17,48 In the setting of ultra-hypofractionation with 5-fraction regimens, it is reasonable to consider a single 5.2 Gy dose to the tumor bed (personal correspondence), although this fractional boost dose remains to be reported beyond the brachytherapy literature.39

For patients receiving whole breast and nodal irradiation, a simultaneous integrated boost (SIB) can reduce treatment visits. This can be achieved with intensity modulated radiation therapy or volumetric modulated arc therapy but is also possible with a supplemental electron field delivered with each 3D-CRT fraction.

Patient prioritization

Under extreme circumstances, it may be necessary to prioritize which patients with breast cancer can receive RT services. Prioritization of patients for whom RT is anticipated to provide a survival benefit is paramount. Based on available evidence and nascent clinical judgement, we have defined tiers of elevated priority (Table 2). Of note, prioritization within each tier is left to the treating physician’s discretion based on patient age, comorbidities, risk of exposure, and predicted benefit of RT.

Table 2 Prioritization of radiation for breast cancer based on treatment indication

Tier 1 (high priority for breast RT)	Inflammatory breast cancer
Tier 2 (intermediate priority for breast RT)	Residual node positivity after NAC
	4 or more positive nodes (N2)
	Recurrent disease
	Node-positive TNBC
	Extensive LVI
	ER+ with 1-3 positive nodes (N1a)
	Path NO after NAC
	LVI (NOS)
	Node negative TNBC
	Early-stage ER+ breast cancer (esp. older)
	DCIS
	Otherwise not meeting criteria for tiers 1-2

Abbreviations: DCIS = ductal carcinoma in situ; ER+ = estrogen-receptor positive; LVI = lymphovascular invasion; NAC = neo-adjuvant chemotherapy; NOS = not otherwise specified; RT = radiation therapy; TNBC = triple negative breast cancer.

Discussion

As governments restrict public movement to limit continued spread of the SARS-CoV-2 pandemic, radiation oncologists must now make an unprecedented calculus on behalf of our patients: the mortal risk of presenting for treatment and being exposed to infection versus the benefit of RT itself. It therefore behooves us to consider (1) omitting RT when appropriate, (2) delaying radiation while initiating hormone therapy in low-risk patients with ER+ breast cancer, and (3) rapidly adopting accelerated schemes when possible in a concerted effort to protect our communities and conserve scarce health care resources.

For illustrative case presentations and guidance in contouring and planning the various regimens described, including target volumes, organs at risk, and relevant expansions, please visit http://econtour.org/hypofrac. Online cases also include dosimetric guidance and the dose constraints used in various supportive protocols.

Acknowledgements

We acknowledge the input and expertise of our esteemed colleagues in Florence, Italy, including Dr Icro Meattini and Dr Livia Marrazzo, and those in the United Kingdom, Dr Charlotte Coles and Professor John Yarnold, as well as Dr Neil Taunk at the University of Pennsylvania, Dr Naamit Gerber at New York University, and the work of our clinical research fellows, Dr Lara Hilal from American University of Beirut in Lebanon and Kaitlyn Lapen from the University of Illinois Chicago.

References

1. Gunderson LL, Tepper JE, eds. *Clinical Radiation Oncology*. 3rd ed. Philadelphia, PA: W.B. Saunders; 2012.
2. Solin L, Gray R, Hughes L, et al. Surgical excision without radiation for ductal carcinoma in situ of the breast: 12-year results from the ECOG-ACRIN E5194 study. *J Clin Oncol Off J Am Soc Clin Oncol*. 2015;33:3938-3944.
3. McCormick B, Winter K, Hudis C, et al. RTOG 9804: A prospective randomized trial for good-risk ductal carcinoma in situ comparing radiotherapy with observation. *J Clin Oncol*. 2015;33:709-715.
4. Morrow M, Zee KJV, Solin LJ, et al. Society of Surgical Oncology—American Society for Radiation Oncology—American Society of Clinical Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in ductal carcinoma in situ. *Ann Surg Oncol*. 2016;23:3801-3810.
5. Zee KJV, Liberman L, Samili B, et al. Long term follow-up of women with ductal carcinoma in situ treated with breast-conserving surgery: The effect of age. *Cancer*. 1999;86:1757-1767.
6. Cronin PA, Olcese C, Patil S, Morrow M, Zee KJV. Impact of age on risk of recurrence of ductal carcinoma in situ: Outcomes of 2996 women treated with breast-conserving surgery over 30 years. *Ann Surg Oncol*. 2016;23:2816-2824.

7. Moran MS, Schnitt SJ, Giuliano AE, et al. SSO-ASTRO consensus guideline on margins for breast-conserving surgery with whole breast irradiation in stage I and II invasive breast cancer. *Int J Radiat Oncol Biol Phys*. 2014;88:553.

8. Hughes KS, Schnaper LA, Bellon JR, et al. Lumpectomy plus tamoxifen with or without irradiation in women age 70 years or older with early breast cancer: Long-term follow-up of CALGB 9343. *J Clin Oncol*. 2013;31:2382-2387.

9. Kunkler IH, Williams LJ, Jack WL, Cameron DA, Dixon JM. Investigators on behalf of the PI. Breast-conserving surgery with or without irradiation in women aged 65 years or older with early breast cancer (PRIME II): A randomised controlled trial. *Lancet Oncol*. 2015;16:266-273.

10. Baggi R, Griffith K, Harris EE, et al. Planned interim analysis results from a prospective multicenter single-arm cohort study of patients receiving endocrine therapy but not radiotherapy after breast-conserving surgery for early-stage breast cancer with favorable biologic features. *Int J Radiat Oncol Biol Phys*. https://doi.org/10.1016/j.ijrobp.2019.06.392

11. Braunstein LZ, Iannone A, Taghian AG, Wong J, Bellon J, Harris JR. PRECISION (profiling early breast cancer for radiotherapy omission): An ongoing phase II study of breast-conserving surgery without adjuvant radiotherapy for favorable-risk breast cancer. *J Clin Oncol*. 2018;36:392. ASCO Abstract 2018.

12. TROG. 16.04 (ANZ 1601/BIG16-02) Examining personalised radiation therapy for low-risk early breast cancer (EXPERT). Available at: https://clinicaltrials.gov/ct2/show/NCT02889874, Accessed March 24, 2020.

13. CDC. CDC situation summary. Available at: https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/summary.html. Accessed March 20, 2020.

14. WHO. World Health Organization - coronavirus disease. Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019. Accessed March 20, 2020.

15. Shurell E, Olcese C, Paill S, McCormick B, Zee KJV, Pilewskie ML. Delay in radiotherapy is associated with an increased risk of disease recurrence in women with ductal carcinoma in situ: Risk of IBTR with RT delay in DCIS. *Cancer*. 2017;124:46-54.

16. Olivotto IA, Lesperance ML, Truong PT, et al. Intervals longer than 20 weeks from breast-conserving surgery to radiation therapy are associated with inferior outcome for women with early-stage breast cancer who are not receiving chemotherapy. *J Clin Oncol*. 2008;27:16-23.

17. Karlsson P, Cole BF, Colleoni M, et al. Timing of radiotherapy and outcome in patients receiving adjuvant endocrine therapy. *Int J Radiat Oncol Biol Phys*. 2010;80:398-402.

18. Pierce LJ, Hutchins LF, Green SR, et al. Sequencing of tamoxifen and radiotherapy after breast-conserving surgery in early-stage breast cancer. *J Clin Oncol*. 2005;23:24-29.

19. Harris EER, Christensen VJ, Hwag W-T, Fox K, Solin LJ. Impact of concurrent versus sequential tamoxifen with radiation therapy in early-stage breast cancer patients undergoing breast conservation treatment. *J Clin Oncol*. 2005;23:11-16.

20. Cecchini MJ, Yu E, Potvin K, D’souza D, Lock M. Concurrent or sequential hormonal and radiation therapy in breast cancer: A literature review. *Curves*. 2015;7:e264.

21. Azria D, Belkacemi Y, Romieu G, et al. Concurrent or sequential adjuvant letrozole and radiotherapy after conservative surgery for early-stage breast cancer (CO-HO-RT): A phase 2 randomised trial. *Lancet Oncol*. 2010;11:258-265.

22. Livi L, Meattini I, Marrazzo L, et al. Accelerated partial breast irradiation using intensity-modulated radiotherapy versus whole breast irradiation: 5-year survival analysis of a phase 3 randomised controlled trial. *Eur J Cancer* *Oxf Engl* 1990. 2015;51:451-463.

23. Whelan TJ, Julian JA, Berrang TS, et al. External beam accelerated partial breast irradiation versus whole breast irradiation after breast conserving surgery in women with ductal carcinoma in situ and node-negative breast cancer (RAPID): A randomised controlled trial. *Lancet*. 2019;394:2165-2172.

24. White JR, Winter K, Cecchinini RS, et al. Cosmetic outcome from post lumpectomy whole breast irradiation (WBI) versus partial breast irradiation (PBI) on the NRG Oncology NSABP B-39/RTGOG 0413 phase III clinical trial. Paper presented at: *The Annual Meeting of the American Society for Radiation Oncology*. 2019.

25. Fitzgerald K, Flynn J, Zhang Z, et al. Patterns of recurrence among higher risk patients receiving daily external beam accelerated partial breast irradiation to 40 Gy in ten fractions. *Adv Radiat Oncol*. 2019;5:27-33.

26. Braunstein LZ, Thor M, Flynn J, et al. Daily fractionation of external beam accelerated partial breast irradiation to 40 Gy is well tolerated and locally effective. *Int J Radiat Oncol Biol Phys*. 2019;104:859-866.

27. Coles CE, Griffin CL, Kirby AM, et al. Partial-breast radiotherapy after breast conservation surgery for patients with early breast cancer (UK IMPORT LOW trial): 5-year results from a multicentre, randomised, controlled, phase 3, non-inferiority trial. *Lancet*. 2017;390:1048-1060.

28. Correa C, Harris EE, Leonardy MC, et al. Accelerated partial breast irradiation: Executive summary for the update of an ASTRO evidence-based consensus statement. *Pract Radiat Oncol*. 2017;7:73-79.

29. Taylor CW, Dodwell D, Darby SC, Broggio J, McGale P. Eligibility for partial breast radiotherapy in England. *Clin Oncol*. 2019;32:217-220.

30. Smith BD, Bellon JR, Bliztulau R, et al. Radiation therapy for the whole breast: Executive summary of an American Society for Radiation Oncology (ASTRO) evidence-based guideline. *Pract Radiat Oncol*. 2018;8:145-152.

31. Hahn C, Kavanagh B, Bhattachar A, et al. Choosing wisely: The American Society for Radiation Oncology’s top 5 list. *Pract Radiat Oncol*. 2014;4:349-355.

32. Whelan TJ, Pignol J-P, Levine MN, et al. Long-term results of hypofractionated radiotherapy for breast cancer. *New Engl J Med*. 2010;362:513-520.

33. Haviland JS, Owen JR, Dewar JA, et al. The UK Standardisation of Breast Radiotherapy (START) trials of radiotherapy hypofractionation for treatment of early breast cancer: 10-year follow-up results of two randomised controlled trials. *Lancet Oncol*. 2013;14:1086-1094.

34. Agrawal RK, Alhasso A, Barrett-Lee PJ, et al. First results of the randomised UK FAST Trial of radiotherapy hypofractionation for treatment of early breast cancer (CRUKE/04/015). *Radiother Oncol*. 2011;100:93-100.

35. Brunt AM, Wheatley D, Yarnold J, et al. Acute skin toxicity associated with a 1-week schedule of whole breast radiotherapy compared with a standard 3-week regimen delivered in the UK FAST-Forward Trial. *Radiother Oncol*. 2016;120:114-118.

36. Bane AL, Whelan TJ, Pond GR, et al. Tumor factors predictive of response to hypofractionated radiotherapy in a randomized trial following breast conserving therapy. *Ann Oncol*. 2014;25:992-998.

37. Lalani N, Paszat L, Sutradhar R, et al. Long-term outcomes of hypofractionation versus conventional radiation therapy after breast-conserving surgery for ductal carcinoma in situ of the breast. *Int J Radiat Oncol Biol Phys*. 2014;90:1017-1024.

38. Rock K, Ng S, Murray L, Su J, Fyles A, Koch CA. Local control in young women with early-stage breast cancer treated with hypofractionated whole breast irradiation. *Breast*. 2018;41:89-92 (Lancet 378 9804 2011).

39. Whelan TJ, Olivotto IA, Parleukar WR, et al. Regional nodal irradiation in early-stage breast cancer. *New Engl J Med*. 2015;373:307-316.

40. Poortmans PM, Collette S, Kirkove C, et al. Internal mammary and mediastinal supravacular irradiation in breast cancer. *New Engl J Med*. 2015;373:317-327.
41. Leong N, Truong PT, Tankel K, Kwan W, Weir L, Olivotto IA. Hypofractionated nodal radiation therapy for breast cancer was not associated with increased patient-reported arm or brachial plexopathy symptoms. *Int J Radiat Oncol Biol Phys*. 2017;99:1166-1172.

42. Chitapanarux I, Klunklin P, Pinipatcharalert A, et al. Conventional versus hypofractionated postmastectomy radiotherapy: A report on long-term outcomes and late toxicity. *Radiat Oncol*. 2019;14:175.

43. Wang S-L, Fang H, Song Y-W, et al. Hypofractionated versus conventional fractionated postmastectomy radiotherapy for patients with high-risk breast cancer: A randomised, non-inferiority, open-label, phase 3 trial. *Lancet Oncol*. 2019;20:352-360 (Chin J Clin Oncol 42 2015).

44. Moran MS, Zhao Y, Ma S, et al. Association of radiotherapy boost for ductal carcinoma in situ with local control after whole-breast radiotherapy. *JAMA Oncol*. 2017;3:1060.

45. Omlin A, Amichetti M, Azria D, et al. Boost radiotherapy in young women with ductal carcinoma in situ: A multicentre, retrospective study of the Rare Cancer Network. *Lancet Oncol*. 2006;7:652-656.

46. Bartelink H, Maingon P, Poortmans P, et al. Whole-breast irradiation with or without a boost for patients treated with breast-conserving surgery for early breast cancer: 20-year follow-up of a randomised phase 3 trial. *Lancet Oncol*. 2015;16:47-56.

47. Cooper BT, Formenti-Ujlaki GF, Li X, et al. Prospective randomised trial of prone accelerated intensity modulated breast radiation therapy with a daily versus weekly boost to the tumor bed. *Int J Radiat Oncol Biol Phys*. 2016;95:571-578.

48. Shaikh F, Chew J, Hochman T, et al. Hypofractionated whole breast irradiation in women less than 50 years old treated on four prospective protocols. *Int J Radiat Oncol Biol Phys*. 2018;101:1159-1167.

49. Polgár C, Fodor J, Major T, et al. Breast-conserving treatment with partial or whole breast irradiation for low-risk invasive breast carcinoma—5-year results of a randomized trial. *Int J Radiat Oncol Biol Phys*. 2007;69:694-702.

50. RTOG. RTOG 1005. Available at: https://www.rtog.org/ClinicalTrials/ProtocolTable/StudyDetails.aspx?action=openFile&FileID=9366. Accessed March 21, 2020.