Doubled patterns with reversal are 3-avoidable

Pascal Ochem
LIRMM, CNRS, Université de Montpellier
Montpellier, France
ochem@lirmm.fr

January 7, 2022

Abstract

In combinatorics on words, a word w over an alphabet Σ is said to avoid a pattern p over an alphabet Δ if there is no factor f of w such that $f = h(p)$ where $h : \Delta^* \to \Sigma^*$ is a non-erasing morphism. A pattern p is said to be k-avoidable if there exists an infinite word over a k-letter alphabet that avoids p. A pattern is **doubled** if every variable occurs at least twice. Doubled patterns are known to be 3-avoidable. Currie, Mol, and Rampersad have considered a generalized notion which allows variable occurrences to be reversed. That is, $h(V^R)$ is the mirror image of $h(V)$ for every $V \in \Delta$. We show that doubled patterns with reversal are 3-avoidable. We also show that for every doubled pattern p, the growth rate of ternary words avoiding p is at least the growth rate of ternary square-free words. A previous version of this paper containing only the first result has been presented at WORDS 2021.

1 Introduction

The **mirror image** of the word $w = w_1w_2\ldots w_n$ is the word $w^R = w_nw_{n-1}\ldots w_1$. A pattern with reversal p is a non-empty word over an alphabet $\Delta = \{A, A^R, B, B^R, C, C^R, \ldots\}$ such that $\{A, B, C, \ldots\}$ are the **variables** of p. An **occurrence** of p in a word w is a non-erasing morphism $h : \Delta^* \to \Sigma^*$ satisfying $h(X^R) = (h(X))^R$ for every variable X and such that $h(p)$ is a factor of w. The avoidability index $\lambda(p)$ of a pattern with reversal p is the
size of the smallest alphabet Σ such that there exists an infinite word w over Σ containing no occurrence of p. A pattern p such that $\lambda(p) \leq k$ is said to be k-avoidable. To emphasize that a pattern is without reversal (i.e., it contains no X^R), it is said to be classical. A pattern is doubled if every variable occurs at least twice.

Our aim is to strengthen the following result.

Theorem 1. [1, 6, 7] *Every doubled pattern is 3-avoidable.*

First, we extend it to patterns with reversal.

Theorem 2. *Every doubled pattern with reversal is 3-avoidable.*

Then we obtain a lower bound on the number of ternary words avoiding a doubled pattern. The factor complexity of a factorial language L over Σ is $f(n) = |L \cap \Sigma^n|$. The growth rate of L over Σ is $\lim_{n \to \infty} f(n)^{1/n}$. We denote by $GR_3(p)$ the growth rate of ternary words avoiding the doubled pattern p.

Theorem 3. *For every doubled pattern p, $GR_3(p) \geq GR_3(AA)$.*

Let $v(p)$ be the number of distinct variables of the pattern p. In the proof of Theorem 1, the set of doubled patterns is partitioned as follows:

1. Patterns with $v(p) \leq 3$: the avoidability index of every ternary pattern has been determined [6].

2. Patterns shown to be 3-avoidable with the so-called power series method:
 - Patterns with $v(p) \geq 6$ [1]
 - Patterns with $v(p) = 5$ and prefix ABC or length at least 11 [7]
 - Patterns with $v(p) = 4$ and prefix $ABCD$ or length at least 9 [7]

3. Ten sporadic patterns with $4 \leq v(p) \leq 5$ whose 3-avoidability cannot be deduced from the previous results: they have been shown to be 2-avoidable [7] using the method in [6].

The proof of Theorems 2 and 3 use the same partition. Sections 3 to 5 are each devoted to one type of doubled pattern with reversal. Theorem 3 is proved in Section 6.
2 Preliminaries

A word \(w \) is \(d \)-directed if for every factor \(f \) of \(w \) of length \(d \), the word \(f^R \) is not a factor of \(w \).

Remark 4. If a \(d \)-directed word contains an occurrence \(h \) of \(X.X^R \) for some variable \(X \), then \(|h(X)| \leq d - 1 \).

A variable that appears only once in a pattern is said to be isolated. The formula \(f \) associated to a pattern \(p \) is obtained by replacing every isolated variable in \(p \) by a dot. The factors between the dots are called fragments. An occurrence of a formula \(f \) in a word \(w \) is a non-erasing morphism \(h \) such that the \(h \)-image of every fragment of \(f \) is a factor of \(w \). As for patterns, the avoidability index \(\lambda(f) \) of a formula \(f \) is the size of the smallest alphabet allowing the existence of an infinite word containing no occurrence of \(f \). Recently, the avoidability of formulas with reversal has been considered by Currie, Mol, and Rampersad [3, 4] and me [8].

Recall that a formula is nice if every variable occurs at least twice in the same fragment. In particular, a doubled pattern is a nice formula with exactly one fragment.

The avoidability exponent \(AE(f) \) of a formula \(f \) is the largest real \(x \) such that every \(x \)-free word avoids \(f \). Every nice formula \(f \) with \(v(f) \geq 3 \) variables is such that \(AE(f) \geq 1 + \frac{1}{2v(f)-3} \) [11].

Let \(\simeq \) be the equivalence relation on words defined by \(w \simeq w' \) if \(w' \in \{w, w^R\} \). Avoiding a pattern up to \(\simeq \) has been investigated for every binary formulas [2]. Remark that for a given classical pattern or formula \(p \), avoiding \(p \) up to \(\simeq \) implies avoiding simultaneously all the variants of \(p \) with reversal.

Recall that a word is \((\beta^+, n)\)-free if it contains no repetition with exponent strictly greater than \(\beta \) and period at least \(n \).

3 Formulas with at most 3 variables

For classical doubled patterns with at most 3 variables, all the avoidability indices are known. There are many such patterns, so it would be tedious to consider all their variants with reversal.

However, we are only interested in their 3-avoidability, which follows from the 3-avoidability of nice formulas with at most 3 variables [10].

Thus, to obtain the 3-avoidability of doubled patterns with reversal with at most 3 variables, we show that every minimally nice formula with at most
3 variables is 3-avoidable up to \(\simeq \).

The minimally nice formulas with at most 3 variables, up to symmetries, are determined in [10] and listed in the following table. Every such formula \(f \) is avoided by the image by a \(q \)-uniform morphism of either any infinite \((\frac{5}{4}^+)\)-free word \(w_5 \) over \(\Sigma_5 \) or any infinite \((\frac{7}{5}^+)\)-free word \(w_4 \) over \(\Sigma_4 \), depending on whether the avoidability exponent of \(f \) is smaller than \(\frac{7}{5} \).

Formula \(f \)	\(= f^R \)	\(AE(f) \)	Word	\(q \)	\(d \)	Freeness
\(ABA.BAB \)	yes	1.5	\(g_a(w_4) \)	9	9	\(\frac{131}{90}^{-+}, 28 \)
\(ABCA.BCAB.CABC \)	yes	1.333333333	\(g_b(w_5) \)	6	8	\(\frac{4^+}{7}, 25 \)
\(ABCBA.CBABC \)	yes	1.333333333	\(g_c(w_5) \)	4	9	\(\frac{30^+}{73}, 18 \)
\(ABCA.BCAB.CBC \)	no	1.381966011	\(g_d(w_5) \)	9	4	\(\frac{62^+}{45}, 37 \)
\(ABA.BCB.CAC \)	yes	1.5	\(g_e(w_4)^1 \)	9	4	\(\frac{67^+}{45}, 37 \)
\(ABCA.BCAB.CBAC \)	yes\(^2\)	1.333333333	\(g_f(w_5) \)	6	6	\(\frac{41^+}{24}, 31 \)
\(ABCA.BAB.CAC \)	yes	1.414213562	\(g_g(w_4) \)	6	8	\(\frac{89^+}{63}, 61 \)
\(ABCA.BAB.CBC \)	no	1.430159709	\(g_h(w_4) \)	6	7	\(\frac{17^+}{72}, 61 \)
\(ABCA.BAB.CBC \)	no	1.381966011	\(g_i(w_5) \)	8	7	\(\frac{127^+}{96}, 41 \)
\(ABCBA.CABC \)	no	1.361103081	\(g_j(w_5) \)	6	8	\(\frac{4^+}{3}, 25 \)
\(ABCBA.CAC \)	yes	1.396608253	\(g_k(w_5) \)	6	13	\(\frac{4^+}{3}, 25 \)

In the table above, the columns indicate respectively, the considered minimally nice formula \(f \), whether is equivalent to its reversed formula, the avoidability exponent of \(f \), the infinite ternary word avoiding \(f \), the value \(q \) such that the corresponding morphism is \(q \)-uniform, the value such that the avoiding word is \(d \)-directed, and the suitable property of \((\beta^n, n)\)-freeness used in the proof that \(f \) is avoided. We list below the corresponding morphisms.

\(^1\)The formula \(ABA.BCB.CAC \) seems also avoided up to \(\simeq \) by the Hall-Thue word, i.e., the fixed point of \(0 \to 012; 1 \to 02; 2 \to 1 \).

\(^2\)We mistakenly said in [10] that \(ABCA.BCAB.CBAC \) is different from its reverse.
As an example, we show that $ABCBA.CAC$ is avoided by $g_k(w_5)$. First, we check that $g_k(w_5)$ is $(\frac{4}{3}, 25)$-free using the main lemma in [6], that is, we check the $(\frac{4}{3}, 25)$-freeness of the g_k-image of every $(\frac{5}{7})$-free word of length at most $2 \times \frac{4}{3} - 5 = 32$. Then we check that $g_k(w_5)$ is 13-directed by inspecting the factors of $g_k(w_5)$ of length 13. For contradiction, suppose that $g_k(w_5)$ contains an occurrence h of $ABCBA.CAC$ up to \simeq. Let us write $a = |h(A)|$, $b = |h(B)|$, $c = |h(C)|$.

Suppose that $a \geq 25$. Since $g_k(w_5)$ is 13-directed, all occurrences of $h(A)$ are identical. Then $h(ABCBA)$ is a repetition with period $|h(ABC)| \geq 25$. So the $(\frac{4}{3}, 25)$-freeness implies the bound $\frac{2a + 2b + c}{a + 2b + c} \leq \frac{4}{3}$, that is, $a \leq b + \frac{1}{2}c$.

In every case, we have

$$a \leq \max \{b + \frac{1}{2}c, 24\}.$$

Similarly, the factors $h(BCB)$ and $h(CAC)$ imply

$$b \leq \max \{\frac{1}{2}c, 24\}$$

and

$$c \leq \max \{\frac{1}{2}a, 24\}.$$

Solving these inequalities gives $a \leq 36$, $b \leq 24$, and $c \leq 24$. Now we can check exhaustively that $g_k(w_5)$ contains no occurrence up to \simeq satisfying these bounds.
Except for $ABCBA.CBABC$, the avoidability index of the nice formulas in the above table is 3. So the results in this section extend their 3-avoidability up to \simeq.

4 The power series method

The so-called power series method has been used [1, 7] to prove the 3-avoidability of many classical doubled patterns with at least 4 variables and every doubled pattern with at least 6 variables, as mentioned in the introduction.

Let p be such a classical doubled pattern and let p' be a doubled pattern with reversal obtained by adding some $-R$ to p. Without loss of generality, the leftmost appearance of every variable X of p remains free of $-R$ in p'. Then we will see that p' is also 3-avoidable. The power series method is a counting argument that relies on the following observation. If the h-image of the leftmost appearance of the variable X of p is fixed, say $h(X) = w_X$, then there is exactly one possibility for the h-image of the other appearances of X, namely $h(X) = w_X$. This observation can be extended to p', since there is also exactly one possibility for $h(X^R)$, namely $h(X^R) = w_X^R$.

Notice that this straightforward generalization of the power series method from classical doubled patterns to doubled patterns with reversal cannot be extended to avoiding a doubled pattern up to \simeq. Indeed, if $h(X) = w_X$ for the leftmost appearance of the variable X and w_X is not a palindrome, then there exist two possibilities for the other appearances of X, namely w_X and w_X^R.

5 Sporadic patterns

Up to symmetries, there are ten doubled patterns whose 3-avoidability cannot be deduced by the previous results. They have been identified in [7] and are listed in the following table.
Let \(w_5 \) be any infinite \(\left(\frac{5^+}{4} \right) \)-free word over \(\Sigma_5 \) and let \(h \) be the following 9-uniform morphism.

\[
\begin{align*}
 h(0) &= 020022221 \\
 h(1) &= 011111221 \\
 h(2) &= 010202110 \\
 h(3) &= 010022112 \\
 h(4) &= 000022121
\end{align*}
\]

First, we check that \(h(w_5) \) is 7-directed and \(\left(\frac{139}{108}, 46 \right) \)-free. Then, using the same method as in Section 3, we show that \(h(w_5) \) avoids up to \(\simeq \) these ten sporadic patterns simultaneously.

6 Growth rate of ternary words avoiding a doubled pattern

Theorem 1 obviously holds for \(p = AA \). Without loss of generality, we do not need to consider a doubled pattern \(p \) that contains an occurrence of another doubled pattern. In particular, \(p \) is square-free. So we need to show that \(GR_3(p) \) is at least \(GR_3(AA) \), which is close to 1.30176 \[12\].

If \(p \) is 2-avoidable, then \(p \) is avoided by sufficiently many ternary words. By Lemma 4.1 in \[6\], \(\lambda(p) = 2 \) implies that \(GR_3(p) \geq 2^\frac{1}{7} > GR_3(AA) \).

Moreover, for every doubled pattern \(p \) whose 3-avoidability has been obtained via the power series method, we even get \(GR_3(p) > 2 > GR_3(AA) \).
According to the partition of the set of doubled patterns mentioned in the introduction, the two remarks above handle the case $v(p) \geq 4$. To handle the case $v(p) \leq 3$, we explore (by manual backtracking) the space of square-free doubled patterns, using the 2-avoidability of $ABACBC$ [6], $ABCACB$ [6], and $ABCBABC$ [5].

\begin{itemize}
 \item A is unavoidable
 \item AB is unavoidable
 \item ABA is unavoidable
 \item $ABAC$ is unavoidable
 \item $ABACA$ is unavoidable
 \item $ABACAB$ is unavoidable
 \item $ABACABA$ is unavoidable
 \item $ABACABC$ is 2-avoidable ($BACABC$ is the reverse of $ABCACB$)
 \item $ABACB$ is unavoidable
 \item $ABACBA$ is unavoidable
 \item $ABACBAB$ is not doubled (it is the formula $ABA.BAB$)
 \item $ABACBABC$ is 2-avoidable ($ACBABC$ is $ABCACB$)
 \item $ABACBC$ is 2-avoidable
 \item ABC is unavoidable
 \item $ABCAB$ is unavoidable
 \item $ABCABA$ is unavoidable
 \item $ABCA$ is unavoidable
 \item $ABCAB$ is unavoidable
 \item $ABCABA$ is unavoidable
 \item $ABCABAC$ is 2-avoidable ($BCABAC$ is $ABCACB$)
 \item $ABCAC$ is unavoidable
 \item $ABCACB$ is 2-avoidable
 \item $ABCB$ is unavoidable
 \item $ABCBAB$ is unavoidable
 \item $ABCBABC$ is 2-avoidable
 \item $ABCBAC$ is 2-avoidable (it is the reverse of $ABCACB$)
\end{itemize}

7 Conclusion

Unlike classical formulas, we know that there exist avoidable formulas with reversal of arbitrarily high avoidability index [8]. Maybe doubled patterns and nice formulas are easier to avoid. We propose the following open problems.
• Are there infinitely many doubled patterns up to \(\simeq\) that are not 2-avoidable?

• Is there a nice formula up to \(\simeq\) that is not 3-avoidable?

A first step would be to improve Theorem 2 by generalizing the 3-avoidability of doubled patterns with reversal to doubled patterns up to \(\simeq\). Notice that the results in Sections 3 and 5 already consider avoidability up to \(\simeq\). However, the power series method gives weaker results. Classical doubled patterns with at least 6 variables are 3-avoidable because

\[
1 - 3x + \left(\frac{3x^2}{1 - 3x^2} \right)^v
\]

has a positive real root for \(v \geq 6\). The (basic) power series for doubled patterns up to \(\simeq\) with \(v\) variables would be

\[
1 - 3x + \left(\frac{6x^2}{1 - 3x^2} - \frac{3x^2 + 3x^4}{1 - 3x^4} \right)^v.
\]

The term \(\frac{6x^2}{1 - 3x^2}\) counts for twice the term \(\frac{3x^2}{1 - 3x^2}\) in the classical setting, for \(h(V)\) and \(h(V)^R\). The term \(\frac{3x^2 + 3x^4}{1 - 3x^4}\) corrects for the case of palindromic \(h(V)\), which should not be counted twice. This power series has a positive real root only for \(v \geq 10\). This leaves many doubled patterns up to \(\simeq\) whose 3-avoidability must be proved with morphisms.

Looking at the proof of Theorem 2, we may wonder if a doubled pattern with reversal is always easier to avoid than the corresponding classical pattern. This is not the case: backtracking shows that \(\lambda(ABCA^R C^R B) = 3\), whereas \(\lambda(ABCACB) = 2\) [6].

The proof of Theorem 3 suggests the following open problem:

• Is every square-free doubled pattern 2-avoidable?

It would imply Theorem 3 and it resembles the conjecture that there exist only finitely many 2-unavoidable doubled patterns [7, 9].

References

[1] J. Bell, T. L. Goh. Exponential lower bounds for the number of words of uniform length avoiding a pattern. Inform. and Comput. 205 (2007), 1295-1306.
[2] J. Currie and L. Mol. The undirected repetition threshold and undirected pattern avoidance. *Theor. Comput. Sci.* **866** (2021), 56–69.

[3] J. Currie, L. Mol, and N. Rampersad. A family of formulas with reversal of high avoidability index. *International Journal of Algebra and Computation* **27**(5) (2017), 477–493.

[4] J. Currie, L. Mol, and N. Rampersad. Avoidance bases for formulas with reversal. *Theor. Comput. Sci.* **738** (2018), 25–41.

[5] L. Ilie, P. Ochem, and J.O. Shallit. A generalization of repetition threshold. *Theoret. Comput. Sci.* **92**(2) (2004), 71–76.

[6] P. Ochem. A generator of morphisms for infinite words. *RAIRO: Theoret. Informatics Appl.* **40** (2006), 427–441.

[7] P. Ochem. Doubled patterns are 3-avoidable. *Electron. J. Combinatorics.* **23**(1) (2016), #P1.19.

[8] P. Ochem. A family of formulas with reversal of arbitrarily high avoidability index. *Theoret. Comput. Sci.* **896** (2021), 168–170.

[9] P. Ochem and A. Pinlou. Application of entropy compression in pattern avoidance. *Electron. J. Combinatorics.* **21**(2) (2014), #RP2.7.

[10] P. Ochem and M. Rosenfeld. On some interesting ternary formulas. *Electron. J. Combinatorics.* **26**(1) (2019), #P1.12.

[11] P. Ochem and M. Rosenfeld. Avoidability of palindrome patterns. *Electron. J. Combinatorics.* **28**(1) (2021), #P1.4.

[12] A. Shur. Growth rates of complexity of power-free languages. *Theoret. Comput. Sci.* **411**(34-36) (2010), 3209–3223.