α-Lipoic Acid Inhibits Adipocyte Differentiation by Regulating Pro-adipogenic Transcription Factors via Mitogen-activated Protein Kinase Pathways*

Obesity is associated with a number of pathological disorders such as non-insulin-dependent diabetes, hypertension, hyperlipidemia, and cardiovascular diseases. α-Lipoic acid (LA) has been demonstrated to activate the insulin signaling pathway and to exert insulin-like actions in adipose and muscle cells. Based on this similarity LA is expected to promote adipogenesis in pre-adipocytes. Here, however, we report that LA inhibited differentiation of 3T3-L1 pre-adipocytes induced by a hormonal mixture or troglitazone. Northern blot analysis of cells demonstrated that this inhibition was accompanied with attenuated expression of adipocyte-specific fatty acid-binding protein and lipoprotein lipase. Electrophoretic mobility shift assay and Western blot analysis of cells demonstrated that LA modulates transcriptional activity and/or expression of a set of anti- or pro-adipogenic transcription factors. LA treatment of 3T3-L1 pre-adipocytes also resulted in prolonged activation of major mitogen-activated protein kinase signaling pathways but showed little or no effect on the activity of the insulin receptor/Akt signaling pathway. These findings suggest that LA inhibits insulin or the hormonal mixture-induced differentiation of 3T3-L1 pre-adipocytes by modulating activity and/or expression of pro- or anti-adipogenic transcription factors mainly through activating the MAPK pathways.

Obesity is closely correlated with the prevalence of diabetes and cardiovascular disease. Plasma levels of leptin, tumor necrosis factor (TNF)α and non-esterified fatty acid are elevated in obesity and substantially contribute to the development of insulin resistance (1). Obesity is caused not only by hypertrophy of adipose tissue but also by adipose tissue hyperplasia, which triggers the transformation of pre-adipocytes into adipocytes (2).

The program of adipocyte differentiation is a complex process that involves coordinated expression of specific genes and proteins associated with each stage of differentiation. This program is regulated by several signaling pathways (3). Insulin, the major anabolic hormone, promotes in vivo accumulation of adipose tissue (4). Structurally unrelated inhibitors of phosphatidylinositol 3-kinase (PI3K), L2Y94002 and Wortmannin, were shown to block adipocyte differentiation in a time- and dose-dependent fashion (5), suggesting that the insulin receptor (IR)/Akt signaling pathway is important in transducing the pro-adipogenic effects of insulin. In contrast, mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) suppress the process of adipocyte differentiation (6, 7). TNFα is known to exert its anti-adipogenic effects, at least in part, through activation of the ERK pathway (6). However, p38 mitogen-activated protein kinase (p38K) is shown to promote adipocyte differentiation (8).

The signals that regulate adipogenesis either promote or block the cascade of transcription factors that coordinate the differentiation process. CCAAT element-binding proteins (C/EBP) β and δ and sterol response element-binding protein 1 (AD1/SREBP1) are active during the early stages of the differentiation process and induce the expression and/or activity of the peroxisome proliferator-activated receptor γ (PPARγ), a pivotal coordinator of adipocyte differentiation. Activated PPARγ induces exit from the cell cycle, and in cooperation with C/EBPα, stimulates the expression of many metabolic genes such as glucose transporter-4, lipoprotein lipase (LPL) (9), and adipocyte-specific fatty acid-binding protein (aP2) (10), thus constituting a functional lipogenic adipocyte. JNK and ERK suppress this process by phosphorylating and thereby attenuating the transcriptional activity of PPARγ (6, 7). Besides these integral members of the adipogenesis program, other transcription factors such as AP-1 (11) and CREB (12) are known to promote adipogenesis, whereas nuclear factor-κB (NF-κB) suppresses adipocyte differentiation (13). Therefore, the activity and/or the expression of these transcription factors are attractive pharmacological targets for modulating adipocyte tissue formation and deposition.

* This work was supported by Aging and Apoptosis Research Center Program Grant R11-079 from Korea Science and Engineering Foundation, by Brain Korea 21 Grant M103300, and by American Diabetes Association Grant 011868. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† To whom correspondence should be addressed: Dept. of Biological Sciences, Korea Advanced Inst. of Science and Technology, Guseong-dong 373-1, Yuseong-gu, Daejeon 305-701, South Korea, Tel.: 82-42-869-2625; Fax: 82-42-869-2610; E-mail: aschung@kaist.ac.kr.

‡ The abbreviation used are: TNF, tumor necrosis factor; aP2, adipocyte-specific fatty acid-binding protein; AP-1, activator protein-1; C/EBP, CCAAT element-binding protein; CREB, cAMP-responsive element-binding protein; ERK, extracellular signal-regulated kinase; IR, insulin receptor; IRS, insulin receptor substrate; JNK, c-Jun N-terminal kinase; LA, α-lipoic acid; LPL, lipoprotein lipase; MAPK, mitogen-activated protein kinase; NF-κB, nuclear factor-κB; PI3K, phosphatidylinositol 3-kinase; p38K, p38 mitogen-activated protein kinase; PPAR, peroxisome proliferator-activated receptor; PPRE, PPAR-responsive element; TZ, troglitazone; FBS, fetal bovine serum; PBS, phosphate-buffered saline.
Recent studies have demonstrated that LA facilitates glucose transport and utilization in fully differentiated adipocytes, as well as in animal models of diabetes (14–16). These insulin-like actions of LA were mainly mediated by activation of IR/Akt signaling pathway. Considering that insulin stimulates adipogenesis, this study was undertaken to investigate whether LA promotes differentiation of pre-adipocytes to mature adipocytes.

EXPERIMENTAL PROCEDURES

Reagents—Cell culture reagents including Dulbecco’s modified Eagle’s medium and fetal bovine serum (FBS) were purchased from Invitrogen. [α-32P]dCTP and [γ-32P]dATP were from PerkinElmer Life Sciences, and [methyl-3H]thymidine was from Amersham Biosciences. 4G10 anti-phosphotyrosine antibody was from Upstate Biotechnology (Lake Placid, NY). Protein A/G-agarose, polyclonal anti-IR subunit (C-19), and other antibodies were from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). R form of [α]-lipoic acid (LA) was kindly provided by BASF AG (Ludwigshafen, Germany). If not specifically indicated, all other reagents were obtained from Sigma.

Cell Culture—3T3-L1 pre-adipocytes (American Type Culture Collection) were grown to confluence in Dulbecco’s modified Eagle’s medium containing 10% FBS, 100 units/ml of penicillin, and 100 µg/ml of streptomycin as described previously (16). Two days after confluence (at a post-confluent stage), adipogenesis was induced by treating cells with a solution containing 5 µg/ml insulin, 0.25 µM dexamethasone, and 0.5 mM 3-isobutyl-1-methylxanthine, which is referred to as a “hormonal mixture.” 20 mM stock solution of LA was freshly prepared in 20 mM HEPES, pH 7.4.

Oil Red O Staining—After the induction of differentiation, cells were stained with Oil Red O according to Ref. 17. Briefly, cells were washed twice with PBS and fixed with 10% formalin in PBS for 1 h; they were then washed three times with water. Cells were stained with Oil Red O (six parts of 0.6% Oil Red O dye in isopropanol and four parts of water) for 1 h. Excess of stain was removed by washing with water, and the stained cells were dried. The stained oil droplets was dissolved in isopropanol containing 4% Nonidet P-40 and were quantified by measuring the absorbance at 520 nm.

Northern Blotting—Total cellular RNA was purified from cultured cells using Trizol reagent (Molecular Research Center, Cincinnati, OH). RNA (10–30 µg) was electrophoresed on 1% agarose gel containing 37% formaldehyde and transferred to Hybond-N membrane (Amersham Biosciences) by capillary transfer. The membrane was fixed using an optimal UV cross-linking procedure and pre-hybridized at 68 °C in ExpressHyb hybridization solution (Clontech). cDNA probes for PPAR, LPL, and aP2 were labeled with [α-32P]dCTP (3000 Ci/mmol) using a random primer kit (TaKaRa). The blot was then washed twice with 2× SSC (300 mM NaCl, 30 mM sodium citrate, pH 7.0) containing 0.05× SDS at 25 °C, 0.1× SSC containing 0.1% SDS at 55 °C and autoradiographed at −70 °C.

Immunoblotting—Cells in 100-mm dishes were washed with ice-cold PBS containing 1 mM Na3VO4 and lysed with a lysis buffer, pH 7.2, consisting of 50 mM Tris-HCl, 150 mM NaCl, 1% Nonidet P-40, 0.5% sodium deoxycholate, 0.1% SDS, 1 mM EGTA, 25 mM NaF, 1 mM sodium orthovanadate, and 0.25% protease inhibitor mixture solution (Sigma). Cytosolic proteins were separated by 8–10% SDS-polyacrylamide gel, electrotransferred to a polyvinylidene difluoride membrane and immu-
noblotted. The immunoreactive bands were visualized with an enhanced chemiluminescence reagent (Amersham Biosciences).

\[^{3}H\text{Thymidine Uptake}—\] Proliferation of the cells was evaluated by a \([\text{methyl}^{3}H]\text{thymidine} \] uptake. Post-confluent cells in 12-well culture plates were incubated with LA, insulin, and/or the hormonal mixture for 24 h. Eight h before harvest, 1 \(\mu\)Ci of \([\text{methyl}^{3}H]\text{thymidine} \] was added to each well, and the incubation was stopped by washing the cells with ice-cold PBS containing 5% trichloroacetic acid. The \([\text{methyl}^{3}H]\text{thymidine} \] was quantitated using a liquid scintillation counter.

\textbf{Electrophoretic Mobility Shift Assay—} Nuclear extracts were prepared as described previously (18). Cells were treated with LA, insulin, or the mixture for the indicated time period and lysed in a hypotonic buffer (10 mM HEPES, 1.5 mM MgCl\(_2\), pH 7.5). The nuclei were pelleted by centrifugation at 3000 \(\times g\) for 5 min and lysed in a hypotonic buffer (30 mM HEPES, 1.5 mM MgCl\(_2\), 450 mM KCl, 0.3 mM EDTA, 10% glycerol, 1 mM dithiothreitol, 1 mM phenylmethylsulfonyl fluoride, 1 \(\mu\)g/ml apro tinin, and 1 \(\mu\)g/ml leupeptin). Following the lysis, the samples were centrifuged at 14,500 \(\times g\) for 30 min, and the supernatant was retained for use in the DNA binding assay. Two double-stranded deoxyoligonucleotides corresponding to NF-\(\kappa B\), AP-1, CREB, Sp-1 (Promega), PPAR\(\gamma\), and C/EBP\(\alpha\) (Santa Cruz) were end-labeled with \(\gamma\)-\(^{32}\)P\text{dATP} using T4 kinase (Takara). The nuclear extracts were then incubated with 1 \(\mu\)g/\(\mu\)l poly(dI-dC) and \(^{32}\)P-labeled DNA probe in a binding buffer (100 mM KCl, 30 mM HEPES, 1.5 mM MgCl\(_2\), 0.3 mM EDTA, 10% glycerol, 1 mM dithiothreitol, 1 mM phenylmethylsulfonyl fluoride, 1 \(\mu\)g/ml aprotinin, and 1 \(\mu\)g/ml leupeptin) for 10 min. Thereafter, the reaction mixture was separated in 5% polyacrylamide gel. Following the electrophoresis, the gel was dried and subjected to autoradiography. The specificity of each probe was examined by the addition of 100-fold excess of each unlabeled probe. An electrophoretic mobility gel supershift assay was performed to discriminate PPAR\(\gamma\) or C/EBP\(\alpha\) from other isoforms by incubating the reaction mixture with 1 \(\mu\)g of anti-PPAR\(\gamma\) or anti-C/EBP\(\alpha\) antibody on ice for 30 min, respectively.

\textbf{Transfection and Reporter Gene Assay—} NIH-3T3 fibroblasts cultured on six-well tissue culture plates were transiently transfected with an expression plasmid for mouse PPAR\(\gamma\) (1 \(\mu\)g/well) and a reporter plasmid with PPAR-responsive element (PPRE) (1 \(\mu\)g/well) using a LipofectAMINE 2000 reagent (Invitrogen) according to the manufacturer’s instructions. Twenty-four h after transfection, cells were supplemented with troglitazone, LA, or insulin, cultured for another 24–48 h, and then lysed in the recommended lysis buffer for luciferase assay. The luciferase activity was determined using the luciferase reporter assay system (Promega, Madison, WI) according to the manufacturer’s instructions. (PPRE\(\times 3\)-\(\beta\)-luciferase and mouse PPAR\(\gamma\) expression vectors were kindly provided by Dr. Young Yang (Korea Research Institute of Bioscience and Biotechnology).

\textbf{Data Presentation—} Data are presented as mean \(\pm\) S.D. (or S.E.) of at least three independent experiments performed in triplicate. Differences between means were assessed by one-way analysis of variance. The minimum level of significance was set at \(p < 0.05\).

\textbf{RESULTS}

\(\alpha\)-Lipoic Acid Suppresses the Hormonal Mixture- or Troglitazone-induced Differentiation of 3T3-L1 Pre-adipocytes—

3T3-L1 pre-adipocytes initiated their conversion to mature adipocytes 3 days after addition of either the hormonal mixture or insulin alone. Culturing these cells for another 6 days in the normal medium increased the number of fully differentiated adipocytes by 6.9 \(\pm\) 0.1- or 2.3 \(\pm\) 0.2-fold in cultures treated

Fig. 2. \(\alpha\)-Lipoic Acid suppresses troglitazone-induced pre-adipocyte differentiation. Post-confluent 3T3-L1 pre-adipocytes were treated with 10 \(\mu\)M TZ for 6 days in the absence or presence of indicated concentrations of LA. The cells were then incubated in the normal medium for an additional 3 days. A, morphological changes associated with adipogenesis were photographed (left panel) based on staining cellular triglyceride deposition by Oil Red O, which was expressed as -fold increase compared with untreated cells (right panel). * or ***, significant at \(p < 0.05\) or \(p < 0.001\) compared with untreated cells. #, significant at \(p < 0.05\) compared with TZ-treated cells. B, mRNA levels of LPL and aP2 were determined by Northern blot analysis (left panel) and were expressed as -fold increase compared with 28 S rRNA (right panel).
previously with the hormonal mixture or insulin alone, respectively (Fig. 1A). Treatment of cells with 5 ng/ml TNFα decreased differentiation by 13.2 ± 6.0%. However, co-treatment of the pre-adipocytes with LA inhibited the hormonal mixture- or insulin-induced differentiation and potentiated the anti-adipogenic effect of TNFα (Fig. 1A). Concordantly, mRNA levels of pro-adipogenic proteins such as aP2 and LPL were decreased by co-treatment with 250 or 500 μM LA and slightly increased by 100 μM LA (Fig. 1B). Troglitazone increases pre-adipocyte differentiation through up-regulation of PPARγ (19). In this study, 10 μM troglitazone increased adipocyte differentiation by 5.9 ± 0.1-fold. Co-treatment with 500 μM LA inhibited troglitazone-induced differentiation, which was accompanied with lower expression levels of aP2 and LPL genes (Fig. 2, A and B). These findings suggest that LA acts as a PPARγ antagonist.

α-Lipoic Acid Promotes De-differentiation of Adipocytes—

Adipocytes can be reversibly de-differentiated in the presence of TNFα (20). Consistently, long-term (9 days) treatment of 3T3-L1 adipocytes with 5 ng/ml TNFα significantly de-differentiated the adipocytes by 17.7 ± 3.9%, whereas the presence of insulin maintained cells in the differentiated state. Post-treatment with 500 μM LA for 6 days subsequent to the induction of differentiation by the hormonal mixture promoted de-differentiation by 19.1 ± 8.3 or 23.2 ± 2.3% in the absence or presence of insulin, respectively. LA post-treatment also increased TNFα-induced de-differentiation by 19.6 ± 11.4% (Fig. 3A). Consistently, 6-day treatment with 500 μM LA after treatment with the hormonal mixture decreased mRNA levels of PPARγ, aP2, and LPL (Fig. 3B), indicating that the de-differentiating effect of LA was mediated by down-regulation of expression of these adipogenic factors. However, lower concentrations of LA (100 μM) did not de-differentiate adipocytes but slightly increased mRNA levels of the adipogenic factors, indicating a biphasic mode of LA action.

α-Lipoic Acid Regulates Insulin and Mitogen-activated Protein Kinase Signaling Pathways—

LA is known to increase glucose uptake into fully differentiated 3T3-L1 adipocytes by activating the IR/Akt signaling pathway (16, 21). In pre-adipocytes, however, LA did not phosphorylate IR and IRS-1 within 30 min, whereas insulin strongly increased phosphorylation of both IR and IRS-1 from 5 min (Fig. 4, A and B). Furthermore, LA transiently activated Akt whereas the insulin-induced Akt activation lasted up to several hours (Fig. 4C). Treatment of pre-adipocytes with 10 nM insulin or 500 μM LA also activated ERK, JNK, and p38K (Fig. 5, A–C). Although LA activated major MAPKs for longer than 30 min, insulin transiently activated them (~5 min). PD98059, an MAPK/ERK kinase inhibitor, or Wortmannin, a PI3K inhibitor, abolished the phosphorylation of ERK or Akt, respectively, demonstrating that ERK or Akt activation was dependent on the
activity of their upstream kinase, MAPK/ERK kinase kinase, or PI3K, respectively.

In adipocytes at the early stage of differentiation, LA could not induce a detectable level of IR, IRS-1, and Akt phosphorylation within 60 min (Fig. 6, A and B), whereas LA strongly activated ERK and JNK (Fig. 6C) but not p38K (data not shown). Insulin, on the other hand, strongly activated IR, IRS, and Akt phosphorylation from 5 to 60 min, as well as ERK and JNK at the early stage of differentiation (Fig. 6).

α-Lipoic Acid Inhibits Insulin- or Hormonal Mixture-induced Mitotic Clonal Expansion—After growth arrest at confluence, pre-adipocytes re-enter the cell cycle and undergo several rounds of mitosis, referred to as mitotic clonal expansion (22). Initiation of the clonal expansion involves expression of immediate early genes, *fos*, *jun*, *myc*, C/EBPβ, and C/EBPδ, to drive confluent 3T3-L1 pre-adipocytes from G0 into G1 (23, 24). Insulin or the hormonal mixture promoted the clonal expansion 1 day after initiation of the induction as was evident by an increase in the rate of thymidine uptake (Fig. 7A). When cells were serum-deprived for 4 h, the protein expression of immediate early genes such as c-Fos and c-Jun was not detectable, whereas insulin or the hormonal mixture strongly induced expression of these proteins within several hours (Fig. 7B). LA co-treatment, however, significantly inhibited insulin- or the hormonal mixture-induced clonal expansion and decreased the expression of c-Fos and c-Jun (Fig. 7). Moreover, basal expression of c-Fos, c-Jun, and c-Myc in the presence of 10% FBS was diminished after treatment of cells with LA for 24 h in the absence or presence of insulin or the hormonal mixture (Fig. 7C). Two members of the retinoblastoma family of tumor suppressor proteins p107 and p130 are also known to regulate adipocyte differentiation by regulating its mitotic clonal expan-
sion phase. On a quiescent day 0 preadipocytes, high levels of p130 appear whereas p107 levels are barely detectable. After 24 h of the hormonal mixture stimulation, a significant increase appears in p107 levels with a concomitant decrease in the levels of p130 (25). In our study, p107, but not p130, is highly inducible by treatment with the hormonal mixture for 24 h, and LA co-treatment decreased the expression of p107 but not p130 (Fig. 7C). These findings suggest that LA inhibits the process of clonal expansion by suppressing the expression of several immediate early genes and some retinoblastoma family members.

Regulation of Pro- or Anti-adipogenic Transcription Factor Activities by α-Lipoic Acid—Pre-adipocytes displayed strong NF-κB activity, whereas fully differentiated adipocytes exhibited strong PPARγ and C/EBPα activities, regardless of the presence of FBS in their culture media (Fig. 8A). Fully differentiated adipocytes also displayed higher AP-1 and CREB activities compared with pre-adipocytes, which was further in-
creased in the presence of 10% FBS in the culture media. Sp-1 activity, however, was the same in all groups.

Two-h treatment of pre-adipocytes with LA strongly inhibited AP-1, C/EBP, and CREB activities, while increasing NF-κB activity; however, the hormonal mixture induced an opposite response (Fig. 8B). Interestingly, insulin alone also increased NF-κB activity, along with AP-1, C/EBP, and CREB activities. Co-treatment of pre-adipocytes with LA and insulin or the hor-
monal mixture resulted in increased NF-κB activity and decreased activities of AP-1, C/EBP, and CREB in the nuclear fractions of pre-adipocytes. These findings strongly suggest that LA inhibits insulin- or the hormonal mixture-induced adipocyte differentiation by oppositely regulating nuclear translocation of pro- and anti-adipogenic transcription factors.

In adipocytes at the early stage of differentiation, 3 h of treatment with LA strongly inhibited transcriptional activity of PPARγ, C/EBPα, and AP-1, but not Sp-1, in the absence or presence of insulin (Fig. 9A). Pretreatment of cells with PD98059, an ERK inhibitor, or SP600125, a JNK inhibitor, partially reversed inhibition of C/EBPα or PPARγ, C/EBPα, and AP-1, respectively (Fig. 9B). Specific DNA binding activity of PPARγ and C/EBPα was also demonstrated by the super-shift assay using anti-PPARγ and anti-C/EBPα antibodies, respectively (Fig. 9C).

Regulation of PPARγ Transactivation by α-Lipoic Acid in NIH-3T3 Fibroblasts—To confirm that the inhibitory effect of LA on PPARγ DNA binding activity affects its transactivation capacity, NIH-3T3 cells were transiently transfected with mouse PPARγ gene and PPRE vector. 20 μM troglitazone, a well known PPARγ agonist, strongly stimulated PPARγ-mediated luciferase activity after 24 or 48 h by 3.5 ± 0.1- or 3.1 ± 0.2-fold, respectively (Fig. 10). Insulin also acted as a weak PPARγ agonist and increased the luciferase activity by 1.5 ± 0.1- or 1.3-fold after 24 or 48 h, respectively. LA alone, however, weakly increased luciferase activity when used at 500 μM for 24 h. On the contrary, co-treatment of cells with LA signifi-
cantly inhibited troglitazone-induced PPARγ transactivation by 43.9 ± 0.9 or 19.5 ± 4.7% after 24 or 48 h, respectively. These findings demonstrate that LA alone acts as a weak PPARγ agonist, but it is a strong antagonist of PPARγ in the presence of other PPARγ agonists.

DISCUSSION

In this study, we demonstrated that LA inhibits differentiation of 3T3-L1 pre-adipocytes and that major MAPK signaling pathways mediate collateral actions of LA on clonal expansion and adipocyte maturation by attenuating the expression and activation of the immediate early genes such as c-Fos and c-Jun and by negatively regulating integral members of the differentiation program, PPARγ and C/EBPa.

MAPK Signaling Pathways Mediate Actions of α-Lipoic Acid on Adipogenesis—Several lines of evidence indicate that pro-adipogenic transcription factors such as PPARγ and members of the C/EBP family can be negatively regulated by MAPKs. Epidermal growth factor, platelet-derived growth factor, lipoxygenase-1 metabolites, and prostaglandin F2α were shown to phosphorylate and attenuate transcriptional activity of PPARγ by activating MAPK signaling pathways (26–28). Similarly, LA treatment of pre-adipocytes inhibited insulin- or the hormonal mixture-induced trancriptional activity of PPARγ and C/EBPα, which was accompanied with strong activation of ERK and JNK. Furthermore, inhibitors of ERK or JNK activity abolished the inhibitory effect of LA on insulin- or the hormonal mixture-induced adipogenesis. On the other hand, LA hardly stimulated phosphorylation of IR or IRS-1 both in pre-adipocytes and in adipocytes at the early stage of differentiation. In particular, upon LA treatment, a transient Akt phosphorylation was detected in pre-adipocytes though it was not detectable in adipocytes at the early stage of differentiation. In
contrast, insulin strongly activated IR and IRS-1 and induced long lasting Akt activation in pre-adipocytes and in adipocytes at the early stage of differentiation. Taken together, these findings exclude possible involvement of Akt activation in LA-induced inhibition of adipogenesis and demonstrate that LA down-regulates PPARγ, C/EBPα, AP-1, and Sp-1 were determined by electrophoretic mobility shift assay (A and B). Supershift assays for PPARγ and C/EBPα were conducted using anti-PPARγ and anti-C/EBPα antibodies. The supershifted complexes were indicated as a or b, respectively. Arrows indicate specific bindings of nuclear protein to the labeled DNA.

Regulation of Adipogenesis by α-Lipoic Acid

Fig. 9. α-Lipoic acid regulation of pro-adipogenic transcription factors in adipocytes at the early stage of differentiation. Adipogenesis was induced by treatment of 3T3-L1 pre-adipocytes with the hormonal mixture for 3 days after which cells were maintained in the normal medium for an additional 3 days. Thereafter, cells were serum-deprived for 4 h, were pre-treated with MeSO (as control), 50 μM PD98059 (PD), or 100 nM SP600125 (SP) for 30 min, and were then treated with 10 μM insulin and/or 500 μM LA for 3 h. Cells were washed with ice-cold PBS, and DNA binding activities of PPARγ, C/EBPα, AP-1, and Sp-1 were determined by electrophoretic mobility shift assay (A and B). Supershift assays for PPARγ and C/EBPα were conducted using anti-PPARγ and anti-C/EBPα antibodies. The supershifted complexes were indicated as a or b, respectively. Arrows indicate specific bindings of nuclear protein to the labeled DNA.
Regulation of Adipogenesis by \(\alpha\)-Lipoic Acid

Though LA increases glucose uptake into muscle or adipose tissue by activating the IR/Akt signaling pathway, the underlying mechanism for regulation of adipogenesis by LA appears to be different. Our findings strongly suggest that LA regulates adipogenesis mainly through activation of MAPKs such as ERK and JNK independent of activation of IR/Akt signaling pathway.

Conclusions—Several PPAR\(\gamma\) agonists such as thiazolidinediones have been recommended for the treatment of diabetes by improving insulin sensitivity and glucose uptake (19). Treatment with current PPAR\(\gamma\) agonists, however, leads to increased adiposity and body weight gain in rodents (39), which subsequently contribute to the enhanced insulin resistance. In our study, LA at lower concentrations (100 \(\mu\)M) promoted adipogenesis whereas at higher concentrations (250 and 500 \(\mu\)M) it was inhibitory. Importantly, LA inhibited adipogenesis induced by insulin or troglitazone indicating that co-treatment with LA may be beneficial in preventing obesity induced by PPAR\(\gamma\) agonists by maintaining optimal adipogenesis. Although LA increases glucose uptake into muscle or adipose tissue by activating the IR/Akt signaling pathway, the underlying mechanism for regulation of adipogenesis by LA appears to be different. Our findings strongly suggest that LA regulates adipogenesis mainly through activation of MAPKs such as ERK and JNK independent of activation of IR/Akt signaling pathway.

REFERENCES

1. Leong, K. S., and Wilding, J. P. (1999) *Baillieres Best Pract. Res. Clin. Endocr. Metab.* 13, 221–237
2. Carn, J. F., Dohm, L. G., Pories, W. J., and Sinha, M. K. (1989) *Diabetes Metab. Rev.* 5, 665–689
3. Totti, F. M., Totti, S. V., Larrick, J. W., and Ringuol, G. M. (1989) *J. Cell Biol.* 108, 1105–1113
4. Zhang, B., Berger, J. Zhou, G., Elbrecht, A., Biowas, S., White-Carrington, S., Szalkowski, D., Muller, D. E., and Zhang, B. (1996) *J. Biol. Chem.* 271, 31771–31774
5. Xia, X., and Serrero, G. (1999) *J. Cell. Physiol.* 178, 9–16
6. Pinto de Mora, J., Perras, A., Aun, N., and Santos, E. (1997) *Mol. Cell. Biol.* 17, 6068–6075
7. Camp, H. S., Tafuri, S. R., and Leff, T. (1999) *Endocrinology* 140, 392–397
8. Engelman, J. A., Lissanti, M. P., and Scherer, P. E. (1996) *J. Biol. Chem.* 273, 32111–32120
9. Schonjans, K., Peinado-Onsurbe, J., Lefebvre, A. M., Heyman, R. A., Brigg, D. C., Deeb, S., Saelens, B., and Autrey, J. (1996) *EMBO J.* 15, 5336–5346
10. Tontonoz, P., Hu, E., Graves, R. A., Budavari, A. I., and Spiegelman, B. M. (1994) *Genes Dev.* 8, 1224–1234
11. Yang, M. W., Christy, R. J., Cook, J. S., Kelly, T. J., and Lane, M. D. (1989) *Proc. Natl. Acad. Sci. U. S. A.* 86, 3629–3633
12. Reusch, J. E., Colton, L. A., and Klemm, D. J. (2000) *Mol. Cell. Biol.* 20, 1068–1020
13. Raan, H., Hachoen, N., Golub, T. R., Van Parijs, L., and Lodish, H. F. (2002) *Diabetes* 51, 1319–1336
14. Estrada, D. E., Ewart, H. S., Tsakirides, T., Velchak, A., Ramal, T., Tritschler, H., and Klp, A. (1996) *Diabetes* 45, 1798–1804
15. Eason, R. C., Archer, H. E., Akhtar, S., and Bailey, C. J. (2002) *Diabetes Obes. Metab.* 4, 29–35
16. Moisl, I., Troish, O., Park, Y. C., Cho, K. J., and Packer, L. (2002) *Arch. Biochem. Biophys.* 397, 384–391
17. Moreno-Aliaga, M. J., and Matsumura, F. (1999) *Mol. Pharmacol.* 56, 91–101
18. Cho, K. J., Yun, C. H., Youn, D. Y., Cho, Y. S., Kimchish, G., Packer, L., and Chung, A. S. (2000) *Toxicol. Appl. Pharmacol.* 168, 64–71
19. Spiegelman, B. M. (1998) *Diabetes* 47, 507–514
20. Ron, D., Brasier, A. R., McGehee, R. F. Jr., and Habener, J. F. (1992) *J. Clin. Invest.* 89, 223–233
21. Yaworsky, K., Somwar, R., Ramal, T., Tritschler, H. J., and Klp, A. (2000) *Diabetologia* 43, 294–303
22. Berns, D. A., Belanowicz, M. A. Kelly, T. J., Jr., and Lane, M. D. (1985) *J. Biol. Chem.* 260, 5563–5567
23. Smas, C. M., Chen, L., Zhao, L., Latasa, M. J., and Sul, H. S. (1999) *J. Biol. Chem.* 274, 12823–12841
24. MacDougall, O. A., and Lane, M. D. (1995) *Annu. Rev. Biochem.* 64, 345–373
25. Richen, V. M., Lyle, R. E., and McGehee, R. E. J. (1997) *J. Biol. Chem.* 272, 10117–10124
26. Camp, H. S., and Tafuri, S. R. (1997) *J. Biol. Chem.* 272, 10811–10816
27. Hsi, L. C., Wilson, L., Nixon, J., and Eting, L. E. (2001) *J. Biol. Chem.* 276, 34545–34552
28. Reginato, M. J., Krakow, S. L., Bailey, S. T., and Lazar, M. A. (1998) *J. Biol. Chem.* 273, 1855–1858
29. Distel, R. J., Ro, H. S., Rosen, B. S., Groves, D. L., and Spiegelman, B. M. (1997) *Cell* 89, 835–844
30. Homma, K., Kurihara, H., Nishio, Y., Takeda, T., Yamamoto, T., Adamachi, K., Morishige, K., Ohmichi, M., Matsuzawa, Y., and Murata, Y. (2000) *J. Biol. Chem.* 275, 11404–11411
31. Renard, P., and Raes, M. (1999) *Cell Biol. Toxicol.* 15, 341–344
32. Yamashita, K., Nakashima, T., Kawakami, A., Miyatani, H., Ida, M., Mitiga, K., Nakata, K., and Eguchi, K. (2002) *Clin. Exp. Immunol.* 129, 379–384
33. Whitmarsh, A. J., and Davis, R. J. (1996) *J. Mol. Biol.* 258, 598–607
34. Deak, M., Clifton, A. D., Lucoque, L. M., and Alessi, D. R. (1998) *EMBO J.* 17, 4426–4441
35. Chakraborti, S., and Chakraborti, T. (1998) *Cell Signal.* 10, 675–683
36. Steiman, R. A., Hoffman, B., Iro, A., Guilulfus, C., Liebermann, D. A., and el-Houseini, M. E. (1994) *Oncomics* 9, 3399–3396
37. Kim, K. Y., Rhim, T., Choi, L., and Kim, S. S. (2001) *J. Biol. Chem.* 276, 40591–40596
38. Buschmann, T., Potapova, O., Bar-Shira, A., Ivanov, V. N., Fuhs, S. Y., Henderson, S., Fried, V. A., Minamoto, T., Alarcon-Vargas, D., Ficus, M. R., Gaarde, W. A., Holbrook, N. J., Shiloh, Y., and Ronai, Z. (2001) *Mol. Cell. Biol.* 21, 2743–2754
39. Hallakou, S., Doare, L., Foullelle, F., Kergoat, M., Guerre-Millo, M., Berthault, M. P., Dugail, I., Morin, J., Awurer, A., and Forre, P. (1997) *Diabetes* 46, 1393–1399
α-Lipoic Acid Inhibits Adipocyte Differentiation by Regulating Pro-adipogenic Transcription Factors via Mitogen-activated Protein Kinase Pathways
Kyung-Joo Cho, Hae-Eun Moon, Hadi Moini, Lester Packer, Do-Young Yoon and An-Sik Chung

J. Biol. Chem. 2003, 278:34823-34833.
doi: 10.1074/jbc.M210747200 originally published online June 30, 2003

Access the most updated version of this article at doi: 10.1074/jbc.M210747200

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 39 references, 22 of which can be accessed free at http://www.jbc.org/content/278/37/34823.full.html#ref-list-1