Supporting Information

for

Regioselective cobalt(II)-catalyzed [2 + 3] cycloaddition reaction of fluoroalkylated alkynes with 2-formylphenylboronic acids: easy access to 2-fluoroalkylated indenols

Tatsuya Kumon, Miroku Shimada, Jianyan Wu, Shigeyuki Yamada and Tsutomu Konno

Beilstein J. Org. Chem. 2020, 16, 2193–2200. doi:10.3762/bjoc.16.184

Experimental procedures, characterization data (\(^1\)H, \(^{13}\)C, \(^{19}\)F NMR, IR, and HRMS), copies of \(^1\)H, \(^{13}\)C, and \(^{19}\)F NMR spectra
Table of contents

1. General informations S1
2. Cobalt catalyzed [2 + 3] cycloaddition and charactalization of products S3
 2-1. Typical procedure S4
 2-2. Charactalization of 2- and 3-fluoroalkylated indenols S4
3. Synthesis of 2-fluoroalkylated indanone S9
 3-1. Typical procedure S9
 3-2. Characterization of 2-fluoroalkylated indenone and indanone S9
4. Copies of 1H, 13C, 19F NMR, and HMBC spectra for new compounds S11
 1H NMR spectrum of 3-(4-Chlorophenyl)-2-trifluoromethyl-1H-inden-1-ol (3aA) S11
 13C NMR spectrum of 3-(4-Chlorophenyl)-2-trifluoromethyl-1H-inden-1-ol (3aA) S11
 19F NMR spectrum of 3-(4-Chlorophenyl)-2-trifluoromethyl-1H-inden-1-ol (3aA) S12
 1H NMR spectrum of 3-[4-(1,1-Dimethylethyl)phenyl]-2-trifluoromethyl-1H-inden-1-ol (3bA) S13
 13C NMR spectrum of 3-[4-(1,1-Dimethylethyl)phenyl]-2-trifluoromethyl-1H-inden-1-ol (3bA) S13
 19F NMR spectrum of 3-[4-(1,1-Dimethylethyl)phenyl]-2-trifluoromethyl-1H-inden-1-ol (3bA) S14
 1H NMR spectrum of 3-(4-Methoxyphenyl)-2-trifluoromethyl-1H-inden-1-ol (3cA) S15
 13C NMR spectrum of 3-(4-Methoxyphenyl)-2-trifluoromethyl-1H-inden-1-ol (3cA) S15
 19F NMR spectrum of 3-(4-Methoxyphenyl)-2-trifluoromethyl-1H-inden-1-ol (3cA) S16
 1H NMR spectrum of 3-(4-Biphenyl)-2-trifluoromethyl-1H-inden-1-ol (3eA) S17
 13C NMR spectrum of 3-(4-Biphenyl)-2-trifluoromethyl-1H-inden-1-ol (3eA) S17
 19F NMR spectrum of 3-(4-Biphenyl)-2-trifluoromethyl-1H-inden-1-ol (3eA) S18
 1H NMR spectrum of 3-(1-Naphthyl)-2-trifluoromethyl-1H-inden-1-ol (3fA) S19
 13C NMR spectrum of 3-(1-Naphthyl)-2-trifluoromethyl-1H-inden-1-ol (3fA) S19
 19F NMR spectrum of 3-(1-Naphthyl)-2-trifluoromethyl-1H-inden-1-ol (3fA) S20
 1H NMR spectrum of 3-(3-Chlorophenyl)-2-trifluoromethyl-1H-inden-1-ol (3gA) S21
 13C NMR spectrum of 3-(3-Chlorophenyl)-2-trifluoromethyl-1H-inden-1-ol (3gA) S21
 19F NMR spectrum of 3-(3-Chlorophenyl)-2-trifluoromethyl-1H-inden-1-ol (3gA) S22
 1H NMR spectrum of 3-(4-Chlorophenyl)-2-difluoromethyl-1H-inden-1-ol (3hA) S23
 13C NMR spectrum of 3-(4-Chlorophenyl)-2-difluoromethyl-1H-inden-1-ol (3hA) S23
 19F NMR spectrum of 3-(4-Chlorophenyl)-2-difluoromethyl-1H-inden-1-ol (3hA) S24
 1H NMR spectrum of 3-(4-Chlorophenyl)-2-nonafluorobutyl-1H-inden-1-ol (3iA) S25
 13C NMR spectrum of 3-(4-Chlorophenyl)-2-nonafluorobutyl-1H-inden-1-ol (3iA) S25
 19F NMR spectrum of 3-(4-Chlorophenyl)-2-nonafluorobutyl-1H-inden-1-ol (3iA) S26
 1H NMR spectrum of 3-(4-Chlorophenyl)-6-fluoro-2-trifluoromethyl-1H-inden-1-ol (3A) S27
 13C NMR spectrum of 3-(4-Chlorophenyl)-6-fluoro-2-trifluoromethyl-1H-inden-1-ol (3A) S27
19F NMR spectrum of 3-(4-Chlorophenyl)-6-fluoro-2-trifluoromethyl-1H-inden-1-ol (3aB) S28

1H NMR spectrum of 6-Chloro-3-(4-Chlorophenyl)-2-trifluoromethyl-1H-inden-1-ol (3aC) S29

13C NMR spectrum of 6-Chloro-3-(4-Chlorophenyl)-2-trifluoromethyl-1H-inden-1-ol (3aC) S29

19F NMR spectrum of 6-Chloro-3-(4-Chlorophenyl)-2-trifluoromethyl-1H-inden-1-ol (3aC) S30

1H NMR spectrum of 3-(4-Chlorophenyl)-6-methoxy-2-trifluoromethyl-1H-inden-1-ol (3aD) S31

13C NMR spectrum of 3-(4-Chlorophenyl)-6-methoxy-2-trifluoromethyl-1H-inden-1-ol (3aD) S31

19F NMR spectrum of 3-(4-Chlorophenyl)-6-methoxy-2-trifluoromethyl-1H-inden-1-ol (3aD) S32

1H NMR spectrum of 6-benzylthio-3-(4-Chlorophenyl)-2-trifluoromethyl-1H-inden-1-ol (3aE) S33

13C NMR spectrum of 6-benzylthio-3-(4-Chlorophenyl)-2-trifluoromethyl-1H-inden-1-ol (3aE) S33

19F NMR spectrum of 6-benzylthio-3-(4-Chlorophenyl)-2-trifluoromethyl-1H-inden-1-ol (3aE) S34

1H NMR spectrum of 3-(4-Chlorophenyl)-5-methoxy-2-trifluoromethyl-1H-inden-1-ol (3aF) S35

13C NMR spectrum of 3-(4-Chlorophenyl)-5-fluoro-2-trifluoromethyl-1H-inden-1-ol (3aF) S35

19F NMR spectrum of 3-(4-Chlorophenyl)-5-fluoro-2-trifluoromethyl-1H-inden-1-ol (3aF) S36

1H NMR spectrum of 3-(4-Chlorophenyl)-7-fluoro-2-trifluoromethyl-1H-inden-1-ol (3aG) S37

13C NMR spectrum of 3-(4-Chlorophenyl)-7-fluoro-2-trifluoromethyl-1H-inden-1-ol (3aG) S37

19F NMR spectrum of 3-(4-Chlorophenyl)-7-fluoro-2-trifluoromethyl-1H-inden-1-ol (3aG) S38

1H NMR spectrum of 2-(4-Chlorophenyl)-3-trifluoromethyl-2,3-dihydro-1H-indan-1-one (5aA) S39

13C NMR spectrum of 2-(4-Chlorophenyl)-3-trifluoromethyl-2,3-dihydro-1H-indan-1-one (5aA) S39

19F NMR spectrum of 2-(4-Chlorophenyl)-3-trifluoromethyl-2,3-dihydro-1H-indan-1-one (5aA) S40

1H NMR spectrum of 3-(4-Chlorophenyl)-3-trifluoromethyl-2,3-dihydro-1H-indan-1-one (6) S41

13C NMR spectrum of 3-(4-Chlorophenyl)-2-trifluoromethylinden-1-one (6) S41

19F NMR spectrum of 3-(4-Chlorophenyl)-3-trifluoromethyl-2,3-dihydro-1H-indan-1-one (6) S41

1H NMR spectrum of 3-(4-Chlorophenyl)-3-trifluoromethyl-2,3-dihydro-1H-indan-1-one (7) S43

13C NMR spectrum of 3-(4-Chlorophenyl)-3-trifluoromethyl-2,3-dihydro-1H-indan-1-one (7) S43

19F NMR spectrum of 3-(4-Chlorophenyl)-2-trifluoromethyl-2,3-dihydro-1H-indan-1-one (7) S44

HMBC spectrum of 2-(4-Chlorophenyl)-3-trifluoromethyl-2,3-dihydro-1H-indan-1-one (5aA) S45

HMBC spectrum of 3-(4-Chlorophenyl)-2-trifluoromethyl-2,3-dihydro-1H-indan-1-one (7) S45

5. References S46
1. General informations

1H and 13C NMR spectra were obtained using an AVANCE III 400 NMR spectrometer (1H: 400 MHz and 13C: 100 MHz) in chloroform-d (CDCl$_3$) (Bruker, Germany), and the chemical shifts are reported in parts per million (ppm) based on the residual proton signal of the NMR solvent. 19F NMR (376MHz) spectra were obtained using AVANCE III 400 NMR spectrometer in CDCl$_3$ with CFCl$_3$ ($\delta_F = 0$ ppm) as an internal standard (Bruker, Germany). The Bruker AVANCE III 400 NMR spectrometer was used for determining the yield of the products with trifluoromethylbenzene (CF$_3$C$_6$H$_5$) or hexafluorobenzene (C$_6$F$_6$) as internal references. Infrared spectra (IR) were taken on a JASCO FT/IR 4100 type A spectrometer as a film on a NaCl film or KBr plate; all spectra are reported in wavenumbers (cm$^{-1}$). High-resolution mass spectra were recorded on a JMS-700MS spectrometer (JEOL, Japan) using the fast-atom bombardment (FAB) method.

All reactions were carried out using dried glassware with a magnetic stir bar and routinely monitored by 19F NMR spectroscopy or thin-layer chromatography (TLC). All chemicals were of reagent grade and, if necessary, purified in the usual manner prior to use. Fluoroalkylated alkynes used in this research were prepared according to the literatures [1, 2]. Column chromatography was carried out on silica gel (Wako gel® 60N, 38-100 μm) and TLC analysis was performed on silica gel TLC plates (Merck, Silica gel 60F$_{254}$).
2. Cobalt-catalyzed [2 + 3] cycloaddition and characterization of products

2-1. Typical procedure.

In a 30 mL two-necked round bottomed-flask, equipped with a magnetic stir bar, were placed fluoroalkylated alkyne 1a (0.0818 g, 0.40 mmol), 2-formylphenylboronic acid (2A) (0.1200 g, 0.80 mmol), 1,3-bis(diphenylphosphino)propane (0.0165 g, 40 µmol), and Co(acac)₂·H₂O (0.0119 g, 41 µmol) in acetonitrile (1.2 mL)/Isopropyl alcohol (0.4 mL), and the resulting mixture was stirred at reflux temperature in an oil bath. After 18 h, the reaction mixture was cooled to room temperature. Subsequently, the reaction mixture was subjected to flash column chromatography using silica gel as stationary phase and acetone as mobile phase. After removal of the solvent from the eluent under reduced pressure, the residue was purified by silica gel column chromatography (Hexane/AcOEt = 5:1) to give the corresponding 3-(4-chlorophenyl)-2-trifluoromethyl-1H-inden-1-ol (3aA) (0.085 g, 0.27 mmol).

2-2. Characterizations of fluoroalkylated indenols

2-2.1. 3-(4-Chlorophenyl)-2-trifluoromethyl-1H-inden-1-ol (3aA)

Yield: 68%; white solid; M.p. 104.5–106.5 °C; eluent of the column chromatography: Hexane/EtOAc = 5/1; ¹H NMR (CDCl₃): δ 2.07 (br s, 1H, OH), 5.55 (s, 1H, CH), 7.12 (d, J = 7.4 Hz, 1H, ArH), 7.32–7.38 (m, 3H, ArH), 7.41 (td, J = 7.4, 0.97 Hz, 1H, ArH), 7.47 (d, J = 8.6 Hz, 2H, ArH), 7.64 (d, J = 7.4 Hz, 1H, ArH); ¹³C NMR (CDCl₃): δ 76.1 (m, C–OH), 122.6 (Ar), 123.3 (q, J = 269.5 Hz, CF₃), 124.3 (Ar), 129.0 (Ar), 129.1 (Ar), 129.3 (Ar), 129.9 (m, Ar), 130.4 (Ar), 131.8 (q, J = 30.9 Hz, C–CF₃), 135.3 (Ar), 141.1 (Ar), 144.1 (Ar), 148.0 (q, J = 4.5 Hz, CF₃–C=C); ¹⁹F NMR (CDCl₃, CFCl₃): δ −56.56 (s, 3F); IR (KBr) 3277, 1634, 1493, 1460, 1401, 1357, 1303, 1287, 1253, 1189, 1139, 1094, 1045, 1014, 840, 822, 779, 742 cm⁻¹; HRMS (FAB): calcd for [M⁺] C₁₀H₁₀ClF₃O: 310.0372, Found: 310.0382.

2-2.2. 3-[4-(t-Butyl)phenyl]-2-trifluoromethyl-1H-inden-1-ol (3bA)

Yield: 69%; yellow solid; M.p. 45.4–47.3 °C; eluent of the column chromatography: Hexane/EtOAc = 5/1; ¹H NMR (CDCl₃): δ 1.38 (s, 9H, C–(CH₃)₃), 2.10 (d, J = 7.6 Hz, 1H, OH), 5.55 (d, J = 7.6 Hz, 1H, CH), 7.22 (d, J = 7.3 Hz, 1H, ArH), 7.31-7.41 (m, 4H, ArH), 7.49 (d, J = 8.4 Hz, 2H, ArH), 7.63 (d, J = 7.3 Hz, 1H, ArH); ¹³C NMR (CDCl₃): δ 31.4 ((CH₃)₃), 34.9 (C–(CH₃)₃), 76.2 (m, C–OH), 123.0 (Ar), 123.5 (q, J = 267.3 Hz, CF₃), 124.1 (Ar), 125.5 (Ar), 128.2 (m, Ar), 128.8 (Ar), 128.9 (Ar), 129.1 (Ar), 130.8 (q, J = 31.0 Hz, C–CF₃), 141.6 (Ar), 144.2 (Ar), 149.3 (q, J = 4.5 Hz, CF₃–C=C), 152.3 (Ar); ¹⁹F NMR (CDCl₃, CFCl₃): δ −56.33 (s, 3F); IR (KBr) 3309, 2965, 1634, 1462, 1362, 1257, 1192, 1145, 1112, 1079, 1035, 842, 824, 783, 748, 736, 705 cm⁻¹; HRMS (FAB): calcd for [M⁺] C₂₀H₁₉F₃O: 332.1388, Found: 332.1397.
2-2.3. 3-(4-Methoxyphenyl)-2-trifluoromethyl-1H-inden-1-ol (3cA)

Yield: 65%; yellow solid; M.p. 100.5–102.4 °C; eluent of the column chromatography: Hexane/EtOAc = 5/1; 1H NMR (CDCl₃): δ 2.02 (br s, 1H, OH), 3.87 (s, 3H, CH₃), 5.54 (s, 1H, CH), 7.01 (d, J = 8.8 Hz, 2H, ArH), 7.20 (d, J = 7.3 Hz, 1H, ArH), 7.31–7.42 (m, 4H, ArH), 7.63 (d, J = 7.3 Hz, 1H, ArH); 13C NMR (CDCl₃): δ 55.4 (OCH₃), 76.1 (m, C–OH), 114.1 (Ar), 122.8 (Ar), 123.6 (q, J = 270.7 Hz, CF₃), 124.1 (Ar), 124.2 (Ar), 128.8 (Ar), 129.2 (Ar), 129.9 (m, Ar), 130.6 (q, J = 31.0 Hz, C–CF₃), 141.6 (Ar), 144.3 (Ar), 149.0 (q, J = 4.4 Hz, CF₃–C=C), 160.3 (Ar); 19F NMR (CDCl₃, CFCl₃): δ –56.32 (s, 3F); IR (KBr) 3340, 2840, 1631, 1612, 1463, 1441, 1309, 1300, 1282, 842, 824, 798, 775, 717 cm⁻¹; HRMS (FAB): calcd for [M⁺] C₁₃H₁₃F₃O: 306.0868, Found: 306.0875.

2-2.4. 3-(4-Biphenyl)-2-trifluoromethyl-1H-inden-1-ol (3eA)

Yield: 63%; white solid; M.p. 172.0–174.5 °C; eluent of the column chromatography: Hexane/EtOAc = 5/1; 1H NMR (CDCl₃): δ 2.07 (br s, 1H, OH), 5.59 (s, 1H, CH), 7.24 (d, J = 7.4 Hz, 1H, ArH), 7.33–7.53 (m, 7H, ArH), 7.64–7.69 (m, 3H, ArH), 7.72 (d, J = 8.4 Hz, 2H); 13C NMR (CDCl₃): δ 76.2 (m, C–OH), 122.9 (Ar), 123.5 (q, J = 271.0 Hz, CF₃), 124.2 (Ar), 127.27 (Ar), 127.29 (Ar), 127.9 (Ar), 128.98 (Ar), 129.04 (Ar), 129.3 (Ar), 130.8 (Ar), 131.3 (q, J = 30.9 Hz, C–CF₃), 140.5 (Ar), 141.5 (Ar), 142.0 (Ar), 144.2 (Ar), 149.0 (q, J = 4.6 Hz, CF₃–C=C), the signal of one carbon was overlapped with other signals; 19F NMR (CDCl₃, CFCl₃): δ –56.37 (s, 3F); IR (KBr): 3539, 1630, 1460, 1381, 1360, 1254, 1237, 1195, 1158, 1143, 1104, 1080, 1034, 844, 787 cm⁻¹; HRMS (FAB): calcd for [M⁺] C₂₂H₁₃F₃O: 352.1075, Found: 352.1083.

2-2.5. 3-(1-Naphthyl)-2-trifluoromethyl-1H-inden-1-ol (3fA)

Yield: 28%; yellow solid; M.p. 111.5–113.8 °C; eluent of the column chromatography: Hexane/EtOAc = 5/1; (atropisomer 1 and 2): 1H NMR (CDCl₃): δ 2.18 (br s, 1H, OH), 2.29 (br s, 1H, OH), 5.69 (s, 1H, CH), 5.75 (s, 1H, CH), 6.76 (t, J = 8.0 Hz, 2H, ArH), 7.18–7.26 (m, 2H, ArH), 7.35–7.80 (m, 14H, ArH), 7.90–7.98 (m, 4H, ArH); 13C NMR (CDCl₃): δ 76.15 (m, C–OH), 76.21 (m, C–OH), 123.1 (Ar), 123.32 (Ar), 123.33 (q, J = 270.8 Hz, CF₃), 123.4 (q, J = 270.0 Hz, CF₃), 124.0 (Ar), 124.1 (Ar), 125.3 (Ar), 125.5 (Ar), 125.7 (Ar), 126.01 (Ar), 126.02 (Ar), 126.38 (Ar), 126.41 (Ar), 126.5 (Ar), 126.6 (Ar), 128.56 (Ar), 128.60 (Ar), 128.96 (Ar), 128.99 (Ar), 129.25 (Ar), 129.31 (Ar), 129.35 (Ar), 129.39 (Ar), 129.7 (Ar), 130.0 (Ar), 130.9 (Ar), 131.2 (Ar), 133.3 (q, J = 31.0 Hz, C–CF₃), 133.4 (Ar), 133.6 (Ar), 133.7 (q, J = 31.2 Hz, C–CF₃), 142.08 (Ar), 142.14 (Ar), 143.7 (Ar), 144.0 (Ar), 148.4 (q, J = 4.7 Hz, CF₃–C=C), 148.8 (q, J = 4.7 Hz, CF₃–C=C), the signal of one carbon was overlapped with other signals; 19F NMR (CDCl₃, CFCl₃): δ –58.23 (s, 3F), –57.59 (s, 3F); IR (KBr): 3326, 1643, 1460, 1403, 1361, 1270, 1250, 1220, 1193, 1170, 1147, 1121, 1074, 1050, 1031,
2-2.6. 3-(3-Chlorophenyl)-2-trifluoromethyl-1H-inden-1-ol (3gA)

Yield: 72%; yellow oil; eluent of the column chromatography: Hexane/EtOAc = 5/1; 1H NMR (CDCl₃): δ 2.08 (d, J = 7.2 Hz, 1H, OH), 5.56 (d, J = 7.2 Hz, 1H, CH), 7.12 (d, J = 7.5 Hz, 1H, ArH), 7.25–7.50 (m, 6H, ArH), 7.64 (d, J = 7.4 Hz, 1H, ArH); 13C NMR (CDCl₃): δ 75.9 (C–OH), 122.5 (Ar), 123.1 (q, J = 271.1 Hz, CF₃), 124.2 (Ar), 126.7 (Ar), 128.3 (Ar), 129.1 (Ar), 129.3 (Ar), 129.9 (Ar), 132.0 (q, J = 31.3 Hz, C–CF₃), 133.7 (Ar), 134.5 (Ar), 140.9 (Ar), 144.0 (Ar), 147.6 (q, J = 4.3 Hz, CF₃–C=C), the signal of one carbon was overlapped with other signals; 19F NMR (CDCl₃, CFCl₃): δ −56.63 (s, 3F); IR (neat): 3338, 3072, 2888, 2681, 1638, 1588, 1480, 1195, 1080, 786, 712 cm⁻¹; HRMS (FAB): calcd for [M⁺] C₂₀H₁₃F₃O: 326.0918, Found: 326.0923.

2-2.7. 3-(4-Chlorophenyl)-2-difluoromethyl-1H-inden-1-ol (3hA)

Yield: 43%; yellow solid; M.p. 91.2–92.2 °C; eluent of the column chromatography: Hexane/EtOAc = 5/1; 1H NMR (CDCl₃): δ 2.28 (d, J = 6.6 Hz, 1H, OH), 5.62 (d, J = 6.6 Hz, 1H, CH), 6.46 (t, J = 54.4 Hz, 1H, CF₂H), 7.21 (d, J = 7.3 Hz, 1H, ArH), 7.31–7.42 (m, 4H, ArH), 7.50 (d, J = 8.5 Hz, 2H, ArH), 7.64 (d, J = 7.3 Hz, 1H, ArH); 13C NMR (CDCl₃): δ 75.3 (C–OH), 112.9 (t, J = 231.5 Hz, CHF₂), 121.9 (Ar), 124.4 (Ar), 128.6 (Ar), 129.0 (Ar), 129.3 (Ar), 130.08 (Ar), 130.12 (Ar), 135.5 (Ar), 135.7 (t, J = 22.7 Hz, C–CF₂H), 140.8 (Ar), 144.7 (Ar), 147.1 (t, J = 10.4 Hz, CF₂H–C=C); 19F NMR (CDCl₃, CFCl₃): δ −111.51 (dd, J = 316.5, 54.4 Hz, 1F), −110.50 (dd, J = 316.5, 54.4 Hz, 1F); IR (KBr): 3311, 2341, 1916, 1625, 1491, 1375, 1170, 1113, 1081, 1048, 1014, 941, 930, 835, 824, 793, 768, 744, 726, 715 cm⁻¹; HRMS (FAB): calcd for [M⁺] C₁₆H₁₀ClF₂O: 310.0372, Found: 310.0378.

2-2.8. 3-(4-Chlorophenyl)-2-nonfluorobutyl-1H-inden-1-ol (3iA)

Yield: 43%; yellow solid; M.p. 95.2–96.7 °C; eluent of the column chromatography: Hexane/EtOAc = 5/1; 1H NMR (CDCl₃): δ 2.15 (br s, 1H, OH), 5.59 (s, 1H, CH), 6.97 (d, J = 7.5 Hz 1H, Ar), 7.22–7.30 (m, 2H, ArH), 7.33 (td, J = 7.6, 0.85 Hz, 1H, ArH), 7.38–7.46 (m, 3H, ArH), 7.64 (dm, J = 7.8 Hz, 1H, ArH); 13C NMR (CDCl₃): δ 76.8 (C–OH), 108.0–123.0 (m, 3C, CF₂–C₃F₇), 116.4 (tt, J = 257.2, 33.9 Hz, CF₂–C₃F₇), 122.7 (Ar), 124.1 (Ar), 128.7 (Ar), 129.3 (Ar), 129.4 (Ar), 129.8 (br s, Ar), 130.4 (t, J = 22.3 Hz, 1C), 130.8 (Ar), 135.0 (Ar), 141.7 (Ar), 144.4 (Ar), 151.6 (t, J = 5.7 Hz, C₄F₉H–C=C); 19F NMR (CDCl₃, CFCl₃): δ −126.38 to −126.25 (m, 2F), −122.00 to −121.78 (m, 2F), −104.07 (quin., J = 13.3 Hz, 2F), −81.43 (t, J = 9.7 Hz, 3F); IR (KBr): 3436, 1625, 1491, 1461, S6
1415, 1354, 1334, 1294, 1231, 1199, 1131, 1091, 1065, 870, 842, 831, 795, 768, 744, 732 cm⁻¹; HRMS (FAB): calcd for [M⁺] C₁₉H₁₆ClF₃O: 460.0276, Found: 460.0266.

2.2.9. 3-(4-Chlorophenyl)-6-fluoro-2-trifluoromethyl-1H-inden-1-ol (3aB)

Yield: 36%; yellow solid; M.p. 108.2–109.7 °C; eluent of the column chromatography: Hexane/EtOAc = 5/1; ¹H NMR (CDCl₃): δ 2.20 (d, J = 6.6 Hz, 1H, OH), 5.52 (d, J = 6.6 Hz, 1H, CH), 6.99–7.09 (m, 2H, ArH), 7.31–7.37 (m, 3H, ArH), 7.47 (d, J = 8.6 Hz, 2H, ArH); ¹³C NMR (CDCl₃): δ 75.6 (C–OH), 112.6 (d, J = 24.2 Hz, Ar), 116.1 (d, J = 23.0 Hz, Ar), 123.1 (q, J = 270.9 Hz, CF₃), 123.9 (d, J = 8.8 Hz, Ar), 129.1 (Ar), 129.8 (Ar), 130.1 (Ar), 131.5 (m, C–CF₃), 135.5 (Ar), 136.9 (d, J = 2.2 Hz, Ar), 146.5 (d, J = 8.5 Hz, CF₃–C=C), 147.4 (d, J = 3.8 Hz, Ar), 168.8 (d, J = 250.1 Hz, Ar); ¹⁹F NMR (CDCl₃, CFCl₃): δ –111.89 to –111.81 (m, 1F), –56.64 (s, 3F); IR (KBr): 3337, 1634, 1614, 1604, 1591, 1492, 1455, 1434, 1402, 1310, 1266, 1013, 906, 882, 864, 835, 762, 739, 716 cm⁻¹; HRMS (FAB): calcd for [M⁺] C₁₆H₉ClF₃O: 328.0278, Found: 328.0278.

2.2.10. 6-Chloro-3-(4-chlorophenyl)-2-trifluoromethyl-1H-inden-1-ol (3aC)

Yield: 26%; yellow solid; M.p. 136.0–138.0 °C; eluent of the column chromatography: Hexane/EtOAc = 5/1; ¹H NMR (CDCl₃): δ 2.36 (d, J = 7.5 Hz, 1H, OH), 5.53 (d, J = 7.5 Hz, 1H, CH), 7.04 (d, J = 8.1 Hz, 1H, ArH), 7.29–7.36 (m, 3H, ArH), 7.47 (d, J = 8.6 Hz, 2H, ArH), 7.61 (d, J = 1.8 Hz, 1H, ArH); ¹³C NMR (CDCl₃): δ 75.7 (m, C–OH), 123.0 (q, J = 271.1 Hz, CF₃), 123.5 (Ar), 125.0 (Ar), 129.1 (Ar), 129.5 (Ar), 129.8 (m, Ar), 129.9 (Ar), 131.9 (q, J = 31.5 Hz, C–CF₃), 135.5 (Ar), 135.6 (Ar), 139.5 (Ar), 145.7 (Ar), 147.3 (q, J = 4.4 Hz, CF₃–C=C); ¹⁹F NMR (CDCl₃, CFCl₃): δ –56.69 (s, 3F); IR (KBr): 3224, 1637, 1580, 1492, 1401, 1358, 1292, 1250, 1193, 1149, 1120, 1088, 1064, 1043, 1013, 933, 901, 870, 824, 779, 704 cm⁻¹; HRMS (FAB): calcd for [M⁺] C₁₅H₉Cl₂F₃O: 343.9983, Found: 343.9982.

2.2.11. 3-(4-Chlorophenyl)-6-methoxy-2-trifluoromethyl-1H-inden-1-ol (3aD)

Yield: 49%; yellow solid; M.p. 133.0–134.0 °C; eluent of the column chromatography: Hexane/EtOAc = 4/1; ¹H NMR (CDCl₃): δ 2.20 (d, J = 7.2 Hz, 1H, OH), 3.85 (s, 3H, CH₃), 5.48 (d, J = 7.2 Hz, 1H, CH), 6.83 (dd, J = 8.4, 2.3 Hz, 1H, ArH), 7.01 (d, J = 8.4 Hz, 1H, ArH), 7.20 (d, J = 2.3 Hz, 1H, ArH), 7.34 (d, J = 8.5 Hz, 2H, ArH), 7.45 (d, J = 8.5 Hz, 2H, ArH); ¹³C NMR (CDCl₃): δ 55.8 (CH₃), 75.8 (C–OH), 110.8 (Ar), 114.4 (Ar), 123.4 (q, J = 270.6 Hz, CF₃), 123.5 (Ar), 128.9 (Ar), 129.5 (q, J = 31.2 Hz, C–CF₃), 129.8 (Ar), 130.6 (Ar), 133.6 (Ar), 135.2 (Ar), 146.3 (Ar), 148.0 (q, J = 4.5 Hz, CF₃–C=C), 161.2 (Ar); ¹⁹F NMR (CDCl₃, CFCl₃): δ –56.22 (s, 3F); IR (KBr): 3406, 3064, 2946, 2846, 2681, 2319, 1623, 1490, 1360, 1273, 1144, 1041, 813, 764 cm⁻¹; HRMS (FAB): calcd for [M⁺] C₁₇H₁₂ClF₃O₂: 340.0478, Found: 340.0475.
2-2.12. 6-Benzylxoy-3-(4-chlorophenyl)-2-trifluoromethyl-1H-inden-1-ol (3aE)

Yield: 41%; white solid; M.p. 105.2–106.0 °C; eluent of the column chromatography: Hexane/EtOAc = 5/1; \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 2.08 (br s, 1H, OH), 5.13 (s, 2H, CH\(_2\)), 5.49 (s, 1H, CH), 6.91 (dd, \(J = 8.4, 2.4\) Hz, 1H, ArH), 7.02 (d, \(J = 8.4\) Hz, 1H, ArH), 7.24–7.48 (m, 10H, ArH); \(^{13}\)C NMR (CDCl\(_3\)): \(\delta\) 70.4 (O–CH\(_2\)), 75.7 (C–OH), 111.7 (Ar), 115.3 (Ar), 123.4 (q, \(J = 270.8\) Hz, CF\(_3\)), 127.4 (Ar), 127.5 (Ar), 128.3 (Ar), 128.8 (Ar), 129.8 (Ar), 129.9 (Ar), 129.6 (q, \(J = 31.7\) Hz, C–CF\(_3\)), 129.8 (Ar), 130.6 (Ar), 133.8 (Ar), 135.1 (Ar), 136.5 (Ar), 146.3 (Ar), 147.9 (q, \(J = 4.5\) Hz, CF\(_3\)=C=C), 160.2 (Ar); \(^{19}\)F NMR (CDCl\(_3\), CFCl\(_3\)): \(\delta\) –56.27 (s, 3F); IR (KBr): 3359, 3034, 2872, 1905, 1609, 1361, 1236, 1158, 1077, 824, 737 cm\(^{-1}\); HRMS (FAB): calcd for [M\(^+\)] \(\text{C}_{23}\text{H}_{16}\text{ClF}_3\text{O}_2\): 416.0791; Found: 416.0802.

2-2.13. 3-(4-Chlorophenyl)-5-fluoro-2-trifluoromethyl-1H-inden-1-ol (3aF)

Yield: 48%; white solid; M.p. 110.0–110.8 °C; eluent of the column chromatography: Hexane/EtOAc = 5/1; \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 2.10 (br s, 1H, OH), 5.53 (s, 1H, CH), 6.81 (dd, \(J = 8.4, 2.3\) Hz, 1H, ArH), 7.08 (td, \(J = 8.4, 2.3\) Hz, 1H, ArH), 7.33 (d, \(J = 8.4\) Hz, 2H, ArH), 7.48 (d, \(J = 8.4\) Hz, 2H, ArH), 7.58 (dd, \(J = 8.4, 4.9\) Hz, 1H, ArH); \(^{13}\)C NMR (CDCl\(_3\)): \(\delta\) 75.3 (C–OH), 110.2 (d, \(J = 24.6\) Hz, Ar), 115.7 (d, \(J = 23.0\) Hz, Ar), 122.9 (q, \(J = 271.2\) Hz, CF\(_3\)), 125.6 (d, \(J = 9.1\) Hz, Ar), 129.1 (Ar), 129.7 (Ar), 133.5 (q, \(J = 31.3\) Hz, C–CF\(_3\)), 135.6 (Ar), 139.5 (Ar), 143.2 (d, \(J = 8.6\) Hz, Ar), 146.9–147.1 (m, 2C, CF\(_3\)=C=C, Ar), 163.8 (d, \(J = 247.2\) Hz, Ar); \(^{19}\)F NMR (CDCl\(_3\), CFCl\(_3\)): \(\delta\) –112.26 to –112.19 (m, 1F), –56.88 (s, 3F); IR (KBr): 3336, 3073, 2918, 1921, 1745, 1628, 1592, 1360, 1200, 1126, 820 cm\(^{-1}\); HRMS (FAB): calcd for [M\(^+\)] \(\text{C}_{16}\text{H}_{9}\text{ClF}_4\text{O}\): 328.0278; Found: 328.0275.

2-2.14. 3-(4-Chlorophenyl)-7-fluoro-2-trifluoromethyl-1H-inden-1-ol (3aG)

Yield: 15%; yellow solid; M.p. 96.2–97.0 °C; eluent of the column chromatography: Hexane/EtOAc = 5/1; \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 2.38 (d, \(J = 4.9\) Hz, 1H, OH), 5.81 (d, \(J = 4.9\) Hz, 1H, CH), 6.91 (d, \(J = 7.5\) Hz, 1H, ArH), 7.07 (t, \(J = 8.6\) Hz, 1H, ArH), 7.29–7.37 (m, 3H, ArH), 7.47 (d, \(J = 8.6\) Hz, 2H, ArH); \(^{13}\)C NMR (CDCl\(_3\)): \(\delta\) 74.1 (C–OH), 116.7 (d, \(J = 20.6\) Hz, Ar), 118.7 (d, \(J = 3.0\) Hz, Ar), 122.8 (q, \(J = 271.3\) Hz, CF\(_3\)), 128.8 (d, \(J = 16.0\) Hz, Ar), 129.0 (Ar), 129.8 (d, \(J = 1.1\) Hz, Ar), 129.9 (Ar), 131.6 (d, \(J = 7.3\) Hz, Ar), 132.2 (qd, \(J = 31.7, 1.3\) Hz, C–CF\(_3\)), 133.5 (Ar), 144.2 (d, \(J = 5.6\) Hz, Ar), 147.5–147.8 (m, 1C, CF\(_3\)=C=C), 159.3 (d, \(J = 251.8\) Hz, Ar); \(^{19}\)F NMR (CDCl\(_3\), CFCl\(_3\)): \(\delta\) –119.95 to –119.88 (m, 1F), –56.88 (s, 3F); IR (KBr): 3330, 2928, 1938, 1920, 1624, 1598, 1476, 1360, 1251, 1193, 1091, 800 cm\(^{-1}\); HRMS (FAB): calcd for [M\(^+\)] \(\text{C}_{16}\text{H}_{9}\text{ClF}_4\text{O}\): 328.0278; Found: 328.0279.
2-2.15. *trans*-2-(4-Chlorophenyl)-3-trifluoromethyl-2,3-dihydro-1H-indan-1-one (5aA)

Yield: 32% (Reaction conditions: Entry 5 in Table 1); orange oil; eluent of the column chromatography: Hexane/EtOAc = 10/1; 1H NMR (CDCl$_3$): δ 3.96 (d, $J = 4.1$ Hz, 1H, Ar–CH\equiv); 4.12 (qd, $J = 8.6$, 4.1 Hz, 1H, CH–CF$_3$), 7.09 (d, $J = 8.5$ Hz, 2H, ArH), 7.32 (d, $J = 8.5$ Hz, 2H, ArH), 7.61 (td, $J = 7.0$, 1.5, 1H, ArH), 7.73–7.81 (m, 2H, ArH); 7.90 (d, $J = 7.7$ Hz, 1H, ArH); 13C NMR (CDCl$_3$): δ 52.0 (q, $J = 28.7$ Hz, C–CF$_3$), 53.8 (m, CH–Ar), 125.2 (Ar) 126.3 (q, $J = 278.9$ Hz, CF$_3$), 127.0 (Ar), 129.47 (Ar), 129.49 (Ar), 130.3 (Ar), 134.0 (Ar), 136.07 (Ar), 136.10 (Ar), 136.7 (Ar), 146.1 (m, Ar), 210.7 (C=O); 19F NMR (CDCl$_3$, CFCl$_3$): δ −69.87 (d, $J = 8.6$ Hz, 3F); IR (neat): 1730, 1606, 1590, 1494, 1465, 1362, 1294, 1262, 1254, 1198, 1159, 1118, 1094, 1015, 822, 761, 714 cm$^{-1}$; HRMS (FAB): calcd for [M+H]$^+$ C$_{16}$H$_{11}$ClF$_3$O: 311.0451, Found: 311.0461.

3. Synthesis of 2-fluoroalkylated indanone

3-1. Typical procedure

In a 30 mL two-necked round bottomed-flask, equipped with a magnetic stir bar, were placed 2-fluoroalkylated indenol 3aA (0.169 g, 0.54 mmol) and MnO$_2$ (0.458 g, 5.3 mmol) in dichloromethane (20 mL), and the resulting mixture was stirred at 0 ºC in an ice bath. After 0.5 h, the reaction mixture was percolated by cellaite with ethyl acetate. After removal of the solvent from the eluent under reduced pressure, the residue was purified by silica gel column chromatography (hexane/EtOAc = 5:1) to give the corresponding 3-(4-chlorophenyl)-2-trifluoromethylinden-1-one (6, 0.136 g, 0.44 mmol).

To a stirred solution of the 6 (0.136 g, 0.44 mmol) above under H$_2$ in MeOH (9.3 mL) was added 1 mol % of Pd/C (0.00500 g Pd/C, 4.7 μmol based on [Pd]) at room temperature, then the mixture was stirred at room temperature. After 14 h, the reaction mixture was subjected to flash column chromatography using silica gel as stationary phase and acetone as mobile phase. After removal of the solvent from the eluent under reduced pressure, the residue was purified by silica gel column chromatography (hexane/EtOAc = 10:1) to give the corresponding 3-(4-chlorophenyl)-2-trifluoromethyl-2,3-dihydro-1H-indan-1-one (7) (0.0793 g, 0.26 mmol).

3-2. Characterization of 2-fluoroalkylated indenone and indanone

3-2.1. 3-(4-Chlorophenyl)-2-trifluoromethylinden-1-one (6)

Yield: 81%; yellow solid; eluent of the column chromatography: Hexane/EtOAc = 5/1; 1H NMR (CDCl$_3$): δ 7.07–7.12 (m, 1H, ArH), 7.40–7.47 (m, 4H, ArH), 7.53 (d, $J = 8.6$ Hz, 2H, ArH), 7.61–7.67 (m, 1H, ArH); 13C NMR (CDCl$_3$): δ 121.7 (q, $J = 271.4$ Hz, CF$_3$), 121.9 (q, $J = 32.4$ Hz, C–CF$_3$), 123.6 (Ar), 123.9 (Ar), 128.5 (Ar), 129.2 (Ar), 129.4 (m, Ar), 129.9 (m, Ar), 131.6 (Ar), 134.1 (Ar), 137.0 (Ar), 142.7 (Ar), 162.4 (q, $J = 3.9$ Hz, CF$_3$–C=); 190.4 (C=O); 19F NMR (CDCl$_3$, CFCl$_3$): δ
-57.96 (s, 3F); IR (KBr): 1720, 1618, 1591, 1488, 1456, 1401, 1360, 1230, 1196, 1177, 1143, 1119, 1092, 1011, 850, 833, 822, 768, 735, 706 cm⁻¹; HRMS (FAB): calcd for [M+H]⁺ C₁₆H₉ClF₃O: 309.0294, Found: 309.0287.

3-2.2. trans-3-(4-Chlorophenyl)-2-trifluoromethyl-2,3-dihydro-1H-indan-1-one (7)

Yield: 58%; yellow oil; eluent of the column chromatography: Hexane/EtOAc = 10/1; ¹H NMR (CDCl₃): δ 3.32 (qd, J = 9.8, 4.7 Hz 1H, CH–CH–CF₃), 4.70 (d, J = 4.7 Hz, 1H, Ar–CH), 7.08 (d, J = 8.5 Hz, 2H, ArH), 7.25 (dm, J = 7.6 Hz, 1H, ArH); 7.33 (d, J = 8.5 Hz, 2H, ArH), 7.50 (t, J = 7.6 Hz, 1H, ArH), 7.66 (tm, J = 7.6 Hz, 1H, ArH), 7.88 (d, J = 7.6 Hz, 1H, ArH); ¹³C NMR (CDCl₃): δ 45.9 (m, CH–Ar), 59.6 (q, J = 26.2 Hz, C–CF₃), 124.6 (Ar), 124.8 (q, J = 279.5 Hz, CF₃), 126.9 (Ar), 129.1 (Ar), 129.46 (Ar), 129.54 (Ar), 133.9 (Ar), 135.7 (Ar), 136.5 (Ar), 140.0 (Ar), 155.0 (Ar), 195.9 (m, C=O); ¹⁹F NMR (CDCl₃, CFCl₃): δ –67.15 (d, J = 9.8 Hz, 3F); IR (neat) 1731, 1493, 2973, 1360, 1322, 1293, 1257, 1216, 1200, 1161, 1114, 1014, 762, 753(m) cm⁻¹; HRMS (FAB): calcd for [M+H]⁺ C₁₆H₁₁ClF₃O: 311.0451, Found: 311.0440.
4. Copies of 1H, 13C, 19F NMR, and HMBC spectra for new compounds

1H NMR spectrum of 3-(4-Chlorophenyl)-2-trifluoromethyl-1H-inden-1-ol (3aA)

13C NMR spectrum of 3-(4-Chlorophenyl)-2-trifluoromethyl-1H-inden-1-ol (3aA)
19F NMR spectrum of 3-(4-Chlorophenyl)-2-trifluoromethyl-1H-inden-1-ol (3aA)
1H NMR spectrum of 3-[4-(t-Butyl)phenyl]-2-trifluoromethyl-$1H$-inden-1-ol (3bA)

NMR data were obtained using a Bruker spectrometer. The spectrum shows the chemical shifts and peak assignments for the protons in the molecule.

13C NMR spectrum of 3-[4-(t-Butyl)phenyl]-2-trifluoromethyl-$1H$-inden-1-ol (3bA)

NMR data were obtained using a Bruker spectrometer. The spectrum shows the chemical shifts and peak assignments for the carbon atoms in the molecule.
19F NMR spectrum of 3-[4-(t-Butyl)phenyl]-2-trifluoromethyl-1H-inden-1-ol (3bA)
1H NMR spectrum of 3-(4-Methoxyphenyl)-2-trifluoromethyl-1H-inden-1-ol (3cA)

13C NMR spectrum of 3-(4-Methoxyphenyl)-2-trifluoromethyl-1H-inden-1-ol (3cA)
19F NMR spectrum of 3-(4-Methoxyphenyl)-2-trifluoromethyl-1H-inden-1-ol (3cA)
1H NMR spectrum of 3-(4-Biphenyl)-2-trifluoromethyl-1H-inden-1-ol (3eA)

13C NMR spectrum of 3-(4-Biphenyl)-2-trifluoromethyl-1H-inden-1-ol (3eA)
19F NMR spectrum of 3-(4-Biphenyl)-2-trifluoromethyl-1H-inden-1-ol (3eA)
^{1}H NMR spectrum of 3-(1-Naphthyl)-2-trifluoromethyl-1H-inden-1-ol (3fA)

^{13}C NMR spectrum of 3-(1-Naphthyl)-2-trifluoromethyl-1H-inden-1-ol (3fA)
19F NMR spectrum of 3-(1-Naphthyl)-2-trifluoromethyl-1H-inden-1-ol (3fA)
1H NMR spectrum of 3-(3-Chlorophenyl)-2-trifluoromethyl-$1H$-inden-1-ol (3gA)

13C NMR spectrum of 3-(3-Chlorophenyl)-2-trifluoromethyl-$1H$-inden-1-ol (3gA)
19F NMR spectrum of 3-(3-Chlorophenyl)-2-trifluoromethyl-1H-inden-1-ol (3gA)
1H NMR spectrum of 3-(4-Chlorophenyl)-2-difluoromethyl-1H-inden-1-ol (3hA)

13C NMR spectrum of 3-(4-Chlorophenyl)-2-difluoromethyl-1H-inden-1-ol (3hA)
19F NMR spectrum of 3-(4-Chlorophenyl)-2-difluoromethyl-1H-inden-1-ol (3hA)
1H NMR spectrum of 3-(4-Chlorophenyl)-2-nonafluorobutyl-1H-inden-1-ol (3iA)

![1H NMR spectrum of 3-(4-Chlorophenyl)-2-nonafluorobutyl-1H-inden-1-ol (3iA)](image)

13C NMR spectrum of 3-(4-Chlorophenyl)-2-nonafluorobutyl-1H-inden-1-ol (3iA)

![13C NMR spectrum of 3-(4-Chlorophenyl)-2-nonafluorobutyl-1H-inden-1-ol (3iA)](image)
19F NMR spectrum of 3-(4-Chlorophenyl)-2-nonfluorobutyl-1H-inden-1-ol (3iA)
1H NMR spectrum of 3-(4-Chlorophenyl)-6-fluoro-2-trifluoromethyl-H-inden-1-ol (3aB)

13C NMR spectrum of 3-(4-Chlorophenyl)-6-fluoro-2-trifluoromethyl-H-inden-1-ol (3aB)
19F NMR spectrum of 3-(4-Chlorophenyl)-6-fluoro-2-trifluoromethyl-1H-inden-1-ol (3aB)
1H NMR spectrum of 6-Chloro-3-(4-chlorophenyl)-2-trifluoromethyl-$1H$-inden-1-ol ($3aC$)

13C NMR spectrum of 6-Chloro-3-(4-chlorophenyl)-2-trifluoromethyl-$1H$-inden-1-ol ($3aC$)
19F NMR spectrum of 6-Chloro-3-(4-chlorophenyl)-2-trifluoromethyl-$1H$-inden-1-ol (3aC)
1H NMR spectrum of 3-(4-Chlorophenyl)-6-methoxy-2-trifluoromethyl-1H-inden-1-ol (3aD)

13C NMR spectrum of 3-(4-Chlorophenyl)-6-methoxy-2-trifluoromethyl-1H-inden-1-ol (3aD)
19F NMR spectrum of 3-(4-Chlorophenyl)-6-methoxy-2-trifluoromethyl-1H-inden-1-ol (3aD)
\(^1\)H NMR spectrum of 6-Benzylx-3-(4-chlorophenyl)-2-trifluoromethyl-1\(H\)-inden-1-ol (3aE)

\(^{13}\)C NMR spectrum of 6-Benzylx-3-(4-chlorophenyl)-2-trifluoromethyl-1\(H\)-inden-1-ol (3aE)
19F NMR spectrum of 6-Benzylxy-3-(4-chlorophenyl)-2-trifluoromethyl-$1H$-inden-1-ol (3aE)
1H NMR spectrum of 3-(4-Chlorophenyl)-5-fluoro-2-trifluoromethyl-1H-inden-1-ol (3aF)

13C NMR spectrum of 3-(4-Chlorophenyl)-5-fluoro-2-trifluoromethyl-1H-inden-1-ol (3aF)
19F NMR spectrum of 3-(4-Chlorophenyl)-5-fluoro-2-trifluoromethyl-1H-inden-1-ol (3aF)
1H NMR spectrum of 3-(4-Chlorophenyl)-7-fluoro-2-trifluoromethyl-1H-inden-1-ol (3aG)

13C NMR spectrum of 3-(4-Chlorophenyl)-7-fluoro-2-trifluoromethyl-1H-inden-1-ol (3aG)
19F NMR spectrum of 3-(4-Chlorophenyl)-7-fluoro-2-trifluoromethyl-1H-inden-1-ol (3aG)
1H NMR spectrum of 2-(4-Chlorophenyl)-3-trifluoromethyl-2,3-dihydro-$1H$-indan-1-one (5aA)

13C NMR spectrum of 2-(4-Chlorophenyl)-3-trifluoromethyl-2,3-dihydro-$1H$-indan-1-one (5aA)
19F NMR spectrum of 2-(4-Chlorophenyl)-3-trifluoromethyl-2,3-dihydro-1H-indan-1-one (5aA)
1H NMR spectrum of 3-(4-Chlorophenyl)-2-trifluoromethyl-inden-1-one (6)

13C NMR spectrum of 3-(4-Chlorophenyl)-2-trifluoromethyl-inden-1-one (6)
19F NMR spectrum of 3-(4-Chlorophenyl)-2-trifluoromethyl-inden-1-one (6)
1H NMR spectrum of 3-(4-Chlorophenyl)-2-trifluoromethyl-2,3-dihydro-1H-indan-1-one (7)

13C NMR spectrum of 3-(4-Chlorophenyl)-2-trifluoromethyl-2,3-dihydro-1H-indan-1-one (7)
19F NMR spectrum of 3-(4-Chlorophenyl)-2-trifluoromethyl-2,3-dihydro-1H-indan-1-one (7)
HMBC spectrum of 2-(4-Chlorophenyl)-3-trifluoromethyl-2,3-dihydro-1H-indan-1-one (5aA)

HMBC spectrum of 3-(4-Chlorophenyl)-2-trifluoromethyl-2,3-dihydro-1H-indan-1-one (7)
5. References

1. Hiyama, T.; Sato, K.; Fujita, M. *Bull. Chem. Soc. Jpn.* **1989**, *62*, 1352–1354.

2. Konno, T.; Chae, J.; Kanda, M.; Nagai, G.; Tamura, K.; Ishihara, T.; Yamanaka, H. *Tetrahedron* **2003**, *59*, 7571–7580.