SUPPLEMENTARY MATERIAL

Flavonoids from the leaves of *Epimedium koreanum* Nakai and their potential cytotoxic activities

Huaran Zhang, Xuewei Wu, Jinxia Wang, Miaomiao Wang, Xiaoning Wang, Tao Shen, Shuqi Wang, Dongmei Ren.

Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, P. R. China

*Corresponding author. E-mail: rendom@sdu.edu.cn.

Abstract

Phytochemical studies on the leaves of *Epimedium koreanum* Nakai have resulted in the discovery of two new flavonol glycosides, koreanoside F (1) and koreanoside G (2), along with six known flavonoids. Their structures were elucidated on the basis of HRESIMS, UV, IR, 1D NMR and 2D NMR data. Absolute configurations of 1 and 2 was further determined by 13C-NMR spectra with gate decoupling (GD). All of the compounds were evaluated for cytotoxic activities by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazoliumbromide (MTT) assay. The results indicated that compounds 3, 5, 6, 7 and 8 inhibited the proliferation of A549 and NCI-292 cells with IC$_{50}$ values of 5.7-23.5 μM. Real-time monitoring in three kinds of lung cancer cells and a kind of human bronchial epithelial cells treated with compound 6 was also assessed.

Key words: *Epimedium koreanum* Nakai; flavonoids; cytotoxicity; flavonol glycoside
Contents

Figure S1 Key HMBC (H→C) and 1H–1H COSY (→) correlations of 1 and 2........... 1
Figure S2 UV spectrum of compound 1 in methanol .. 1
Figure S3 1H-NMR (600 MHz, methanol-d_4) spectrum of compound 1................... 2
Figure S4 13C-NMR (150 MHz, methanol-d_4) spectrum of compound 1.................. 3
Figure S5 HSQC spectrum of compound 1 .. 4
Figure S6 HMBC spectrum of compound 1 ... 5
Figure S7 1H–1H COSY spectrum of compound 1.. 6
Figure S8 13C-NMR (150 MHz, pyridine-d_5) spectrum with gate decoupling of compound 1 ... 7
Figure S9 13C-NMR (150 MHz, pyridine-d_5) spectrum of compound 1 7
Figure S10 HRESIMS of compound 1 ... 8
Figure S11 IR of compound 1 (KBr disc) .. 9
Figure S12 UV spectrum of compound 2 in methanol ... 9
Figure S13 1H-NMR (600 MHz, DMSO-d_6) spectrum of compound 2 10
Figure S14 13C-NMR (150 MHz, DMSO-d_6) spectrum of compound 2............... 11
Figure S15 HSQC spectrum of compound 2 .. 12
Figure S16 HMBC spectrum of compound 2 .. 13
Figure S17 1H–1H COSY spectrum of compound 2.. 14
Figure S18 13C-NMR (150 MHz, pyridine-d_5) spectrum with gate decoupling of compound 2 ... 15
Figure S19 HRESIMS of compound 2 ... 15
Figure S20 IR of compound 2 (KBr disc) .. 16
Figure S1 Key HMBC (H→C) and $^1\text{H}$$-^1\text{H}$ COSY (●) correlations of 1 and 2

Figure S2 UV spectrum of compound 1 in methanol
Figure S3 1H-NMR (600 MHz, methanol-d_4) spectrum of compound 1
Figure S4 13C-NMR (150 MHz, methanol-d_4) spectrum of compound 1.
Figure S5 HSQC spectrum of compound 1
Figure S6 HMBC spectrum of compound 1
Figure S7 1H-1H COSY spectrum of compound 1
Figure S8 13C-NMR (150 MHz, pyridine-d_5) spectrum with gate decoupling of compound 1

Figure S9 13C-NMR (150 MHz, pyridine-d_5) spectrum of compound 1
Figure S10 HRESIMS of compound 1
Figure S11 IR of compound 1 (KBr disc)

Figure S12 UV spectrum of compound 2 in methanol
Figure S13 1H-NMR (600 MHz, DMSO-d_6) spectrum of compound 2
Figure S14 13C-NMR (150 MHz, DMSO-d_6) spectrum of compound 2
Figure S15 HSQC spectrum of compound 2
Figure S16 HMBC spectrum of compound 2
Figure S17 1H-1H COSY spectrum of compound 2
Figure S18 13C-NMR (150 MHz, pyridine-d_5) spectrum with gate decoupling of compound 2

Figure S19 HRESIMS of compound 2
Figure S20 IR of compound 2 (KBr disc)

Figure S21 Real-time monitoring of cell viability treated with compound 6
Table S1 1H and 13C NMR data of compounds 1 and 2a (δ in ppm, J in Hz).

Position	1	2		
	δ_H	δ_C	δ_H	δ_C
2	158.9		156.3	
3	137.2		134.2	
4	180.5		177.7	
5	6.87, s	98.3	159.1	
6	110.6	6.25, s	98.6	
7	159.3		163.3	
8	6.85, s	95.6	103.9	
9	150.3		154.3	
10	108.7		103.6	
11	160.4	2.88, m	26.2	
12	164.9	3.54, m	60.1	
13	69.6			
14, 15	1.64, s	28.9		
1'	123.6		122.6	
2'	7.95, d (8.5)	131.9	7.90, d (8.9)	130.4
3'	7.13, d (8.5)	115.3	7.13, d (8.9)	114.1
4'	163.6		161.2	
5'	7.13, d (8.5)	115.3	7.13, d (8.9)	114.1
6'	7.95, d (8.5)	131.9	7.90, d (8.9)	130.4
4'-OMe	3.91, s	56.0	3.85, s	55.4
5-OH & 12.57, s \\

Rha \\
1" & 5.46 d (0.8) & 103.5 & 5.27, d (0.9) & 101.9 \\
2" & 4.26, s & 72.1 & 3.98, s & 70.1 \\
3" & 3.74, dd (9.2, 3.2) & 72.1 & 3.48, dd (9.2, 3.1) & 70.3 \\
4" & 3.36, m & 73.1 & 3.17, m & 71.1 \\
5" & 3.32, m & 71.9 & 3.08, m & 70.6 \\
6" & 0.92, d (6.0) & 17.7 & 0.78, d (6.1) & 17.4 \\

\(^a\) NMR data (\(\delta\)) were recorded for \(1\) at 600 MHz for \(^1\)H and 150 MHz for \(^{13}\)C in methanol-\(d_4\), and for \(2\) in DMSO-\(d_6\).

Table S2 The effects of compounds on the proliferation of A549 and NCI-H292 cells

Compound	IC\(_{50}\) (\(\mu\)M) for 48 h	
	A549	NCI-H292
1	>50	>50
2	>50	>50
3	18.75	17.17
4	>50	33.96
5	>50	6.439
6	7.901	5.689
7	13.89	14.75
8	18.31	23.53
CDDP	11.43	6.956