Antibacterial and antibiotic-modifying activities of three food plants (*Xanthosoma mafaffa* Lam., *Moringa oleifera* (L.) Schott and *Passiflora edulis* Sims) against multidrug-resistant (MDR) Gram-negative bacteria

Joachim K. Dzotam, Francesco K. Touani and Victor Kuete*

Abstract

Background: The present study was designed to investigate the antibacterial activities of the methanol extract of three edible plants, namely *Xanthosoma mafaffa*, *Moringa oleifera* and *Passiflora edulis* and their synergistic effects with some commonly used antibiotics against MDR Gram-negative bacteria expressing active efflux pumps.

Methods: Broth microdilution method was used to determine the minimum inhibitory concentrations (MICs) and the minimum bactericidal concentrations (MBCs) of the extracts, as well as those of antibiotics in association with the extracts.

Results: The phytochemical test indicate that all tested crude extracts contained polyphenols, triterpenes and steroids whilst other phytochemical classes were selectively distributed. Extracts showed antibacterial activities with minimum inhibitory concentrations ranging from 128-1024 μg/mL on the majority of the 19 tested Gram-negative bacterial strains. Extract from the pericarp of *P. edulis* inhibited the growth of 89.5 % of the 19 tested bacterial strains, the lowest minimal inhibitory concentration (MIC) value of 128 μg/mL being recorded against *Escherichia coli* AG100 strain. In the presence of Phenylalanine-Arginine β-Naphtylamide (PAβN), an efflux pump inhibitor (EPI), the activity of the extract from *X. mafaffa* increased on 40 % of tested strains. In combination with antibiotics, extracts of *X. mafaffa*, *M. oleifera* and pericarp of *P. edulis* showed synergistic effects with some antibiotics against more than 75 % of the tested bacteria.

Conclusion: The results of the present study indicate that the tested plants may be used in the treatment of bacterial infections including the multi-resistant bacteria.

Keywords: Antibiotic-potentiation, Gram-negative bacteria, *Moringa oleifera*, Multi-resistance, *Passiflora edulis*, *Xanthosoma mafaffa*
Background
Infectious diseases remain the major cause of mortality amongst children and young adults worldwide, with higher prevalence in developing countries [1]. Despite the abundance of antibiotics used in chemotherapy, there is a drastic increase of resistant bacteria. Resistance to antibiotics occurs typically as a result of drug inactivation or modification, target alteration, or reduced accumulation associated with decreased permeability and/or increased efflux [2]. The scarcity of new antimicrobials active against MDR bacteria propels the search of chemotherapeutic agents. While 25–50 % of current pharmaceuticals are derived from natural products, it was reported that none are used as antimicrobials [3]. Investigation of substances which can potentiate the activity of commonly used antibiotics are also being intensified [4–7]. Previous studies documented the good antimicrobial potential of natural products from higher plants [8, 9]. Several food plants were also documented as potential candidate to fight MDR Gram-negative bacteria. Some of them include Dichrostachys glomerata, Beilschmiedia cinnamomea, Aframomum citratum, Piper capense, Echinops giganteus, Fagara xanthoxyloides and Olax subscorpioides [4], Lactuca sativa, Sechium edule, Cucurbita pepo and Solanum nigrum [10], Piper nigrum and Vernonia amygdalina [11], Beilschmiedia obtusa, Pachypodanthium staudtii and Peperomia fernandopoi-a [12], Capsicum frutescens [13]. In our continuous search of functional food plants, we designed the present work to investigate in vitro antibacterial activity of the methanol extracts of three Cameroonian food plants, Moringa oleifera Lam. (Moringaceae), Xanthosoma mafaffa (L.) Schott (Araceae), Passiflora edulis Sims (Passifloraceae) against MDR bacteria. The study was extended to the ability of the studied extracts to potentiate the activity of some commonly used antibiotics against some of the tested MDR bacteria.

Methods
Plant material and extraction
The three food plants used in this work were purchased from the Bamenda markets (West Region of Cameroon) in January 2014. The collected plant material were the leaves of Xanthosoma mafaffa, Moringa oleifera and the fruits of Passiflora edulis. The plants were identified at the National herbarium (Yaounde, Cameroon) where voucher specimens were deposited under the reference numbers (Table 1). Each plant sample was air dried and then powdered. The obtained powder (200 g) was extracted with methanol (MeOH; 1 L) for 48 h at room temperature with momentary shaking. Methanol was then removed under reduced pressure to give residues which constituted the crude extract. All extracts were then kept at 4 °C until further use.

Preliminary phytochemical screening
The major phytochemical classes such as alkaloids (Dragendorf’s and Mayer’s tests), triterpenes (Libermann Burchard’s test), flavonoids (Aluminum chloride test), anthraquinones (Borntrager’s test), polyphenols (Feric chloride test), sterols (Salkowski’s test), coumarins (Lacton test), saponins (Foam test) and tannins (Gelatin test) (Table 2) were investigated according to the commonly described phytochemical methods [14–17].

Antimicrobial assays
Chemicals for antimicrobial assay
Tetracycline (TET), cefepime (CEP), ciprofloxacin (CIP), norfloxacin (NOR), chloramphenicol (CHL), ampicillin (AMP), erythromycin (ERY), kanamycin (KAN) (Sigma-

![Image](https://i.imgur.com/3Z5Q5Q5.png)

Table 1 Information on plants used in the present study

Species (family); Voucher number	Traditional uses	Parts used traditionally	Bioactive or potentially bioactive components	Bioactivity of crude extract
Xanthosoma mafaffa (L.) Schott (Araceae); 18675/SRF/Cam	Bone disease (osteoarthritis) [37]	Leaves and tubers	ionone-I, ionone-II, megastigma-5,8-diene-4-1, 4-α-dihydroxyedulan-1, 3-hydroxyedulan, edulan-I, edulan-II, passifloric acid methyl ester [40]	Methanol extract: Sa, Sr, Ec, Pv and St [40]
Passiflora edulis Sims (Passifloraceae); 65104/HNC	Anxiety, insomnia and nervousness, antifungal, anti-inflammatory, antihyperglycemic [38], gastric trouble [39], antioxidant, cancer [40]	Leaves, fruit, bark and roots	4-(4′-O-acetyl-α-L-rhamnopyranosyl) benzylisothiocyanate, 4-(α-L-rhamnopyranosyl) benzylisothiocyanate, niaziminin, pterysopin, benzylisothiocyanate and 4-(α-L-rhamnopyranosyl) benzylglycosinolate [43]	Aqueous and ethanol extracts of seeds against Sa, Vc, Ec, Sc, Lw and On [44]
Moringa oleifera Lam. (Moringaceae); 49178/HNC	Dental caries, syphilis, typhoid, diarrhea, epilepsy, purgative, prostate cancer, water purification [41], fever, HIV-AIDS [42]	Leaves, flowers, seeds and barks		

⁎⁎(HNC) Herbier National du Cameroun, (SRF/Cam) Société des Reserves Forestières du Cameroun; (-): nor reported; Sa: Staphylococcus aureus; Ec: Escherichia coli; Se: Salmonella enteritidis; Lw: Litopenaeus vannamei; On: Ochroechromis nicoticus; Bs: Bacillus subtilis; St: Salmonella typhi; Sr: Streptococcus faecalis; Pv: Proteus vulgaris; HIV-AIDS: Human Immunodeficiency Virus- Acquired Immuno Deficiency Syndrome
Aldrich, St Quentin Fallavier, France) were used as reference antibiotics (RA). p-Iodonitrotetrazolium chloride (INT; Sigma-Aldrich) and Phenylalanine-Arginine-ß-Naphthylamide (PAßN; Sigma-Aldrich) were used as microbial growth indicator and efflux pumps inhibitor (EPI) respectively [18, 19].

Microbial strains and culture media
The studied microorganisms included sensitive and resistant strains of Escherichia coli (ATTC8739, AG100, AG100A, AG102, AG100ATet, W3110), Enterobacter aerogenes (ATCC13048, EA289, EA27, EA298, CM64), Klebsiella pneumoniae (ATCC11296, KP55, KP63, K24), Pseudomonas aeruginosa (PA01, PA124), Providencia stuartii (ATCC29914, NEA16) obtained clinically or from the American Type Culture Collection (ATCC). Their resistance profiles have been previously reported [7, 13, 20]. Nutrient agar were used for the activation of the tested Gram-negative bacteria [21].

INT colorimetric assay for MIC and MBC determinations
The MIC determinations on the tested bacteria were conducted using rapid p-Iodonitrotetrazolium chloride (INT) colorimetric assay according to described methods [18] with some modifications [22, 23]. The test samples and RA were first of all dissolved in DMSO/Mueller Hinton Broth (MHB) or DMSO/7H9 broth. The final concentration of DMSO was lower than 2.5 % and does not affect the microbial growth [24, 25]. The solution obtained was then added to Mueller Hinton Broth, and serially diluted two fold (in a 96- wells microplate). One hundred microlitre (100 μL) of inoculum

Table 2
Extraction yields and phytochemical composition of the plant extracts

Extracts	Xanthosoma mafaffa leaves extract	Passiflora edulis Pericarps (fruits) extract	Moringa oleifera leaves extract
Yield (%)	4.30	3.92	3.95
Alkaloids	-	-	+
Polyphenols	+	+	+
Flavonoids	-	+	+
Anthraquinones	-	-	+
Coumarins	+	-	+
Tannins	+	-	+
Triterpenes	+	+	+
Sterols	+	+	+
Saponins	+	+	+

(-): Absent; (+): Present; Yield calculated as the ratio of the mass of the obtained methanol extract/mass of the plant powder

Table 3
Minimal Inhibitory Concentration (MIC) in μg/mL of methanol extracts from the studied plants and chloramphenicol

Bacterial strains	Tested samples, MIC and MBC and MIC in the presence of PAßN in parenthesis (μg/mL)											
	Xanthosoma mafaffa	Passiflora edulis	Moringa oleifera	Chloramphenicol								
	MIC	MBC	R	MIC	MBC	R	MIC	MBC	R			
E. coli	ATCC8739	-	-	-	-	-	256	-	-			
		256	128 (<4)	1024	8	128 (256)	-	-	4	-	-	
	AG100	128	-	1024	8	128 (256)	-	-	4 (<4)	256	64	
	AG100A	512	1024	2	512	1024	2	512	-	2	64	32
	AG102	512	1024	2	256	1024	2	1024	-	16	64 (32)	256
	AG100ATet	256	1024	1024	1024	2	1024	1	64	32	256	
	WA110	1024	-	256	-	256	-	256	-	8	16	2
E. aerogenes	ATCC13048	-	-	256	-	256	-	1024	-	8	128	16
	EA289	512	1024	2	512	1024	2	1024	-	64	32	512
	EA27	256	-	256	-	1024	-	1024	-	64 (<4)	512	
	EA298	-	-	512	-	-	-	-	32	256		
	CM64	-	-	-	-	-	-	-	256 (4)	256		
K. pneumoniae	ATCC11296	256	-	256	-	-	-	-	4	512	128	
	KP55	1024	1024	2	1024	1024	2	1024	-	64	16	128
	KP63	1024	1024	2	-	-	-	-	-	256	256	
	K24	-	-	1024	-	-	-	-	-	64	256	
P. aeruginosa	PA01	-	256	-	1024	-	-	-	-	16	256	
	PA124	-	-	-	-	-	-	-	-	64 (4)	512	
P. stuartii	ATCC29914	-	-	1024	1024	2	1024	2	-	32	4	256

R: MIC/MBC; -: MIC > 1024 or not detected; (): values in parenthesis are MIC of substance in the presence of PAßN at 30 μg/mL
1.5 x 10^6 CFU/mL prepared in appropriate broth was then added [22, 23]. The plates were covered with a sterile plate sealer, then agitated to mix the contents of the wells using a plate shaker and incubated at 37 °C for 18 h. The assay was repeated thrice. Wells containing adequate broth, 100 μL of inoculum and DMSO to a final concentration of 2.5 % served as negative control. The MIC of samples was detected after 18 h incubation at 37 °C, following addition (40 μL) of 0.2 mg/mL of INT and incubation at 37 °C for 30 min. Viable bacteria reduced the yellow dye to a pink. MIC was defined as the lowest sample concentration that prevented the color change of the medium and exhibited complete inhibition of microbial growth [18]. The MBC was determined by adding 50 μL aliquots of the preparations, which did not show any growth after incubation during MIC assays, to 150 μL of adequate broth. These preparations were incubated at 37 °C for 48 h. The MBC was regarded as the lowest concentration of extract, which did not produce a color change after addition of INT as mentioned above [22, 23].

To evaluate the role of efflux pumps in the susceptibility of Gram-negative bacteria to *Xanthosoma mafaffa*, *Moringa oleifera* and *Passiflora edulis*, crude extracts were tested in the presence of PAßN (at 30 μg/mL) against ten selected MDR phenotypes (*E. coli* AG100, AG102 and AG100ATet, *E. aerogenes* EA289, EA27 and CM64, *K. pneumoniae* KP55 and KP63, *P. aeruginosa* PA124 and *P. stuartii* NAE16).

Extracts from *Xanthosoma mafaffa*, *Moringa oleifera* and *Passiflora edulis* were also tested in association with

Table 4 MIC (FIC) of different antibiotics in association with the extract of *Xanthosoma mafaffa* at MIC/2, MIC/4 against ten MDR bacteria strains

Antibiotics	Bacterial strains, MIC (μg/mL) of antibiotics in the absence and presence of the extract												
Extract concentration	**PA124**	**AG100**	**AG102**	**AG100ATet**	**EA27**	**EA289**	**CM64**	**KP55**	**KP63**	**NEA16**	**PBS5 (%)**		
CIP	0	16	0.50	0.50	-	1	1	1	0.50	2	-	1	
CMI/2	16(1),*	0.50(1),*	<0.50(na),*	-	-	-	-	-	-	-	-	-	
CMI/4	16(1),*	0.50(1),*	<0.50(na),*	-	-	-	-	-	-	-	-	-	
NOR	0	128	2	4	4	8	8	4	16	-	-	4	
CMI/2	128(1),*	2(1),*	<1(na),*	-	-	-	8(2),*	8(2),*	4(8),*	-	-	32(4),*	
CMI/4	128(1),*	2(1),*	<1(na),*	-	-	-	8(2),*	8(2),*	4(8),*	-	-	32(4),*	
CHL	0	64	4	8	64	64	64	64	256	64	-	32	
CMI/2	64(1),*	4(1),*	1(0.13),*	-	-	-	32(0.50),*	32(0.50),*	4(0.06),*	-	-	16(0.50),*	
CMI/4	64(1),*	4(1),*	2(0.25),*	-	-	-	16(0.25),*	16(0.25),*	32(0.50),*	-	-	16(0.50),*	
ERY	0	128	0.50	0.50	-	16	16	16	256	32	-	32	
CMI/2	128(0.50),*	0.50(0.50),	<0.50(na),	-	-	-	8(0.50),	8(0.50),	8(0.50),	-	-	16(0.50),	
CMI/4	64(0.50),*	<0.50(na),*	32(0.50),*	-	-	-	32(0.50),*	32(0.50),*	64(1),*	-	-	64(1),*	
KAN	0	64	0.50	0.50	2	8	8	32	16	16	-	16	
CMI/2	32(0.50),*	<0.50(na),	<0.50(na),	-	-	-	8(0.50),	8(0.50),	8(0.50),	-	-	16(0.50),	
CMI/4	64(0.50),*	<0.50(na),	1(2),	1(1),	1(1),	1(1),	1(1),	1(1),	-	-	16(1),		
TET	0	16	32	2	64	64	64	64	8	8	32	32	
CMI/2	8(0.50),	16(0.50),	<0.50(na),	4(0.06),	4(0.06),	4(0.06),	4(0.06),	4(0.06),	-	-	10		
CMI/4	0.50(1),	16(1),	32(1),	1(0.50),	4(0.06),	8(0.25),	8(0.25),	8(0.25),	16(0.50),	2(0.50),	-	10	
AMP	0	-	-	-	128	-	-	-	-	-	-	-	
CMI/2	-	-	-	-	128(1),	-	-	-	-	-	128(na),	-	-
CMI/4	-	-	-	-	128(1),	-	-	-	-	-	128(na),	-	-
CEF	0	-	64	32	-	-	-	-	-	-	-	-	
CMI/2	-	-	64(1),	32(1),	1(0.50),	8(0.25),	8(0.25),	8(0.25),	16(0.50),	2(0.50),	-	10	
CMI/4	-	-	64(1),	32(1),	1(0.50),	8(0.25),	8(0.25),	8(0.25),	16(0.50),	2(0.50),	-	10	

*Antibiotics [TET tetracycline, CIP ciprofloxacin, NOR norfloxacin, KAN kanamycin, CHL chloramphenicol, ERY erythromycin, AMP ampicillin, CEF cefepime]

*Bacterial strains: *Escherichia coli* [AG100, AG102, AG100ATet], *Pseudomonas aeruginosa* [PA124], *Enterobacter aerogenes* [CM64, EA27, EA289], *Klebsiella pneumoniae* [KP55], *Providencia stuartii* [NAE16]

*PBSS: percentage of bacteria strain on which synergism has been observed; S: Synergy, I: Indifference; na: not applicable; The values in bold represent the cases of synergy between extract and antibiotic; (-): >256 μg/mL.
antibiotics at their sub-inhibitory concentrations as obtained in each bacterium (MIC/2 and MIC/4) [4, 5, 11] against ten MDR phenotypes. Fractional inhibitory concentration (FIC) was calculated as the ratio of MICAntibiotic in combination/MICAntibiotic alone and the results were discussed as follows: synergy (≤0.5), indifferent (>0.5 to 4), or antagonism (>4) [26, 27]. All assays were performed in triplicate.

Results

Phytochemical composition

The results of the phytochemical screening (Table 2) showed that all the tested plant extracts contain polyphenols, triterpenes, sterols and saponins. The other classes of secondary metabolites were selectively distributed. Also, the extract from M. oleifera contains all the classes of screened secondary metabolites.

Antibacterial activity

Results of the antibacterial activities of the tested extracts alone and in some cases in the presence of the PAβN on a panel of 19 Gram-negative bacteria are summarized in Table 3. It appears that the extracts from P. edulis inhibited the growth of 17/19 (89.5 %) bacteria with a concentration ranged from 128 to 1024 μg/mL. The two other samples showed selective activities, their inhibitory activity being recorded on 13/19 (68.4 %) and 11/19 (57.9 %) tested bacteria for M. oleifera and X. mafaffa extracts respectively. The lowest MIC value (128 μg/mL) was

Table 5 MIC (FIC) of different antibiotics in association of the extract of Passiflora edulis at MIC/2, MIC/4 against ten MDR bacteria strains

Antibiotics	Bacterial strains, MIC (μg/mL) of antibiotics in the absence and presence of the extract	Extract concentration	PA124	AG100	AG102	AG100Aset	EA27	EA289	CM64	KP55	KP63	NEA16	PBSS (%)
CIP		CMI/2	16(1)	0.50	0.50	-	1(1)	1(1)	0.50	2	-	1	
		CMI/4	16(1)	0.50	0.50	-(na)	0(0.06)	0(0.50)	-	-	-	-	
NOR		CMI/2	128	2	4	2	0.50	0.50	2	1.00	2	1	
		CMI/4	128	2	4	2	0.50	0.50	2	1.00	2	1	
CHL		CMI/2	64	1(1)	1(1)	-	4	8	4	16	-	4	
		CMI/4	64	1(1)	1(1)	-	4	8	4	16	-	4	
ERY		CMI/2	64	0.50	0.50	-	16	16	256	32	-	32	
		CMI/4	64	0.50	0.50	-	16	16	256	32	-	32	
KAN		CMI/2	64	0.50	0.50	-	16	16	256	32	-	32	
		CMI/4	64	0.50	0.50	-	16	16	256	32	-	32	
TET		CMI/2	8	2	2	2	8	32	4	16	-	16	
		CMI/4	8	2	2	2	8	32	4	16	-	16	
AMP		CMI/2	64	0.50	0.50	-	16	16	256	32	-	32	
		CMI/4	64	0.50	0.50	-	16	16	256	32	-	32	
CEF		CMI/2	64	0.50	0.50	-	16	16	256	32	-	32	
		CMI/4	64	0.50	0.50	-	16	16	256	32	-	32	

Antibiotics [TET: tetracycline, CIP: ciprofloxacin, NOR: norfloxacin, KAN: kanamycin, CHL: chloramphenicol, ERY: erythromycin, AMP: ampicillin, CEF: ceftaxime]

*Bacterial strains: Esherichia coli [AG100, AG101, AG100Aset], Pseudomonas aeruginosa [PA124, Enterobacter aerogenes [CM64, EA27, EA289], Klebsiella pneumonia [KP55], Providencia stuartii [NEA16].

| PBSS (%) | Percentage of bacteria strain on which synergism has been observed; (I): FIC (Fractional Inhibitory Concentration) of the antibiotics after association with plants extract; S: Synergy, I: Indifference; na: not applicable; The values in bold represent the cases of synergy between extract and antibiotic; (r): >256 μg/mL. |
obtained with *P. edulis* and *M. oleifera* extracts on *Escherichia coli* AG100.

Role of efflux pumps in the susceptibility of Gram-negative bacteria

Ten of the studied MDR bacteria were also tested for their susceptibility to the plant extracts in the presence of the PAβN at 30 μg/mL. The results showed that when combined with the extracts, PAβN improves the activity (decrease of MIC values) of *X. mafaffa* on 4/10 (40 %) of tested MDR strains. The EPI also improved the activity of *P. edulis* against *E. coli* AG100 (Table 3).

Effects of the association of the extracts with antibiotics

A preclinical study was performed against *P. aeruginosa* PA124. This allowed selection of the appropriate sub-inhibitory concentrations of MIC/2 and MIC/4 for further studies. All the three extracts were combined separately with eight antibiotics (CIP, NOR, CHL, ERY, KAN, TET, CEF and AMP) to evaluate their possible synergetic effects. The results summarized in Tables 4, 5 and 6 showed synergetic effects of the three tested extract with most of tested antibiotics except β-lactams (CEF and AMP). At MIC/2 of the extract from *X. mafaffa*, synergistic effects were observed with 6/8 (75 %) antibiotics (CIP, NOR, CHL, ERY, KAN, TET) against the tested MDR bacteria. Synergistic effects (FIC ranging from 0.5 to 0.03) were noted with the associations of each of the *X. mafaffa, P. edulis* and *M. oleifera* extracts and antibiotics. Low FIC values of 0.03 were obtained with the associations of *M. oleifera* extracts + ERY and *M. oleifera* extract + CHL against *Enterobacter aerogenes* EA27.

Table 6 MIC (FIC) of different antibiotics after the association of the extract of *Moringa oleifera* at MIC/2, MIC/4 against ten MDR bacteria strains.

Antibiotics	Bacterial strains, MIC (μg/mL) of antibiotics in the absence and presence of the extract	Extract concentration	PA124	AG100	AG102	AG100Aet	EA27	EA289	CM64	KP55	KP63	NAE16	PBSS (%)
CIP		0	16	0.50	0.50	-	-	-	-	-	-	-	0
CM/2		32(2)	0.50(1)	0.50(1)	-	(na)	1(1)	0.50(0.50)	4(8)	<0.50(na)	(na)	1(1)	20
CM/4		32(2)	0.50(1)	0.50(1)	-	(na)	1(1)	0.50(0.50)	8(16)	<0.50(na)	(na)	1(1)	20
NOR		0	128	2	2(0.25)	-	4(1)	4(0.50)	64(16)	8(0.50)	(na)	2(0.50)	40
CM/2		128(1)	<1(na)	<1(na)	-	-	4(1)	4(0.50)	64(16)	8(0.50)	(na)	2(0.50)	40
CM/4		128(1)	<1(na)	<1(na)	-	-	4(1)	4(0.50)	64(16)	8(0.50)	(na)	2(0.50)	40
CHL		0	64	4	8	64	64	64	256	64	-	32	0
CM/2		32(0.50)	4(1)	1(0.13)	64(1)	32(0.50)	32(0.50)	128(0.50)	2(0.03)	(na)	32(1)	60	
CM/4		64(1)	4(1)	2(0.25)	64(1)	32(0.50)	32(0.50)	256(1)	4(0.06)	(na)	32(1)	40	
ERY		0	128	0.50	0.50	-	16	16	256	32	-	32	0
CM/2		128(1)	<0.50(na)	<0.50(na)	128(na)	8(0.50)	8(0.50)	128(0.50)	1(0.03)	128(na)	16(0.50)	90	
CM/4		128(1)	<0.50(na)	<0.50(na)	128(na)	8(0.50)	8(0.50)	256(1)	4(0.13)	128(na)	16(0.50)	80	
KAN		0	64	0.50	0.50	2	8	32	4	16	-	16	0
CM/2		32(0.50)	<0.50(na)	<0.50(na)	<0.50(na)	1(0.13)	2(0.06)	8(2)	4(0.25)	(na)	4(0.25)	80	
CM/4		64(1)	<0.50(na)	<0.50(na)	1(0.50)	2(0.25)	4(0.13)	256(4)	8(0.50)	(na)	8(0.50)	70	
TET		0	16	32	2	64	32	32	8	2	8	32	0
CM/2		16(1)	16(0.50)	1(0.50)	8(0.13)	16(0.50)	40(0.13)	8(1)	<0.50(na)	40(0.50)	8(0.25)	80	
CM/4		16(1)	32(1)	<0.50(0.50)	8(0.13)	16(0.50)	40(0.13)	64(8)	<0.50(na)	40(0.50)	8(0.25)	80	
AMP		0	-	-	-	-	-	-	-	-	-	-	0
CM/2		-	-	-	-	-	-	-	-	-	-	-	0
CEF		-	-	-	-	-	-	-	-	-	-	-	0
CM/4		-	-	-	-	-	-	-	-	-	-	-	0

Antibiotics (TET tetracycline, CIP ciprofloxacin, NOR norfloxacin, KAN kanamycin, CHL chloramphenicol, ERY erythromycin, AMP ampicillin, CEF: ceftipime)

*Bacterial strains: Escherichia coli AG100, AG102, AG100Aet, Pseudomonas aeruginosa [PA124], Enterobacter aerogenes [CM64, EA27, EA289], Klebsiella pneumoniae [KP55], Providencia stuartii [NAE16].

PBSS: percentage of bacteria strain on which synergism has been observed; (FIC Fractional Inhibitory Concentration) of the antibiotics after association with plants extract; S: Synergy, I: Indifference; na: not applicable; The values in bold represent the cases of synergy between extract and antibiotic; >: >256 μg/mL.
Discussion
Phytochemical screening revealed the presence of several classes of secondary metabolites such as alkaloids, polyphenols, flavonoids, anthraquinones, coumarins, sapo-
nins, tannins, triterpenes and steroids. Several molecules belonging to these classes were found to be active on pathogenic microorganisms [3, 28–30]. The presence of such metabolites in the studied plant extracts can provide a preliminary explanation on their antibacterial activities. Differences were observed in the antibacterial activities of the extracts. These could be due to the differences in their chemical composition as well as in the mechanism of action of their bioactive constituents [3]. As shown in Table 2, all the extracts are rich in secondary metabolites especially the extract from M. oleifera (which contains all the tested classes); However, activity does not depend only on the presence of secondary metabolites in the plant extracts, but mostly on their concentration and the possible interactions with other constituents.

To the best of our knowledge, the antibacterial activity of X. mafaffa is being reported here for the first time. The inhibitory activity of M. oleifera was previously re-
ported against some bacteria such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Salmonella typhi [31]. The present study confirmed the antimicrobial potential of this plant and provide addi-
tional information on its ability to inhibit the growth of MDR bacteria.

The results of this work are very important taking in account the medicinal importance of the tested MDR bacteria [32–36] and also the fact that samples used are edible plants. In the presence of PAßN (EPI), the anti-
bacterial activity of some of the extracts increased, suggesting that some active constituents may have intra-
cellular target. In the presence of the EPI, the activity of M. oleifera remain unchanged, indicating that the bio-
active compounds of this extract are not the substrates of bacterial efflux pumps, as the tested MDR bacteria over-express efflux pumps [32–36]. However, it should be observed that in certain cases (Table 3), MIC values of Xanthosoma mafaffa and Passiflora edulis extracts increased in the presence of PAßN. A possible explanation is that some active constituents of these extracts may act in the cell coat, inhibiting the synthesis of pep-
tidoglycan. In such case, in the absence of PAßN, such compounds are extruded from the cytoplasm of bacteria by efflux pumps, then re-cross the cell membrane to reach their target in the coat, explaining while the MIC value is lower; in presence of PAßN, the efflux pumps are blocked and such compounds could not be expelled from the cytoplasm, reducing their concentration in the cell coat and consequently their activity, explaining their higher MIC values.

In the recent years, scientists intensified the search of substances with ability to restore the activity of available antibiotics to MDR bacteria. In this work, synergistic effects were noted with the associations of X. mafaffa, P. edulis and M. oleifera extracts and some antibiotics, pro-
viding additional information of their possible use to combat MDR phenotypes.

Conclusion
The results of the present investigation show that X. mafaffa, P. edulis and M. oleifera may be useful in the control of many infectious diseases, particularly those caused by the multidrug resistant Gram-negative bac-
teria. These extracts may be used alone or in combina-
tion with certain antibiotics such as tetracycline, ciprofloxacin, norfloxacin, chloramphenicol, erythro-
mycin, kanamycin but not beta-lactamines. The isolation of the active compounds from the three plants constit-
tutes the limitation of the present study and will be fur-
ther performed. Also, further investigations of the plant extracts are warranted in vivo to validate their use for the control of infectious diseases.

Abbreviations
AMP: Ampicillin; ATCC: American type culture collection; CEF: Cefepime; CFU: Colony forming unit; CHL: Chloramphenicol; CIP: Ciprofloxacin; DMSO: Dimethylsulfoxoyde; EPI: Efflux pump inhibitor; ERY: Erythromycin; FIC: Fractional inhibitory concentration; INT: p-iodonitrotetrazolium chloride; KAN: Kanamycin; MDR: Multidrug resistant; MHB: Mueller hinton broth; MIC: Minimal inhibitory concentration; NOR: Norfloxacin; PAßN: Phenylalanine arginine-ß-Naphthylamide; RND: Resistance nodulation-cell division; STR: Streptomycin; TET: Tetracycline.

Competing interests
The authors declare that there are no conflict of interests.

Authors’ contributions
JKD and FTK carried out the study; VK supervised the work, designed the ex-
periments, wrote the manuscript, provided the bacterial strains and chemicals; all authors read and approved the final manuscript.

Acknowledgements
Authors are thankful to the Cameroon National Herbarium for identification of plants.

Received: 16 June 2015 Accepted: 8 January 2016
Published online: 11 January 2016

References
1. WHO: World Health Statistics 2013. http://www.who.int/gho/publications/
world_health_statistics/2013/en/2013, Accessed on February 2014.
2. Poole K. Mechanisms of bacterial biocide and antibiotic resistance. J Appl
Microbiol. 2002;92(Supp0):S55–64.
3. Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev.
1999;12:564–82.
4. Fankam AG, Kuete V, Voukeng IK, Kuate JR, Pages JM. Antibacterial activities
of selected Cameroonian spices and their synergistic effects with antibiotics
against multidrug-resistant phenotypes. BMC Complement Altern Med.
2011;11:104.
5. Voukeng IK, Kuete V, Dzoyem JP, Fankam AG, Noumedem JA, Kuate JR,
et al. Antibacterial and antibiotic-potentiation activities of the methanol
extract of some cameroonian spices against Gram-negative multi-drug
resistant phenotypes. BMC Res Notes. 2012;5:299.
