Placing M-Phasis on the Plurality of Hate: A Feature-Based Corpus of Hate Online
Dana Ruiter, Liane Reiners, Ashwin Geet d’Sa, Thomas Kleinbauer, Dominique Fohr, Irina Illina, Dietrich Klakow, Christian Schemer, Angeliki Monnier

To cite this version:
Dana Ruiter, Liane Reiners, Ashwin Geet d’Sa, Thomas Kleinbauer, Dominique Fohr, et al.. Placing M-Phasis on the Plurality of Hate: A Feature-Based Corpus of Hate Online. 13th International conference Language Resources and Evaluation Conference, European Language Resources Association (Elra), Jun 2022, Marseille, France. pp.791-804. hal-03712978

HAL Id: hal-03712978
https://hal.science/hal-03712978v1
Submitted on 4 Jul 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License
Placing M-Phasis on the Plurality of Hate:
A Feature-Based Corpus of Hate Online

Dana Ruiter†∗, Liane Reiners‡∗, Ashwin Geet D’Sa♣, Thomas Kleinbauer†
Dominique Fohr♣, Irina Illina♣, Dietrich Klakow†, Christian Schemer‡, Angeliki Monnier♠

†Spoken Language Systems Group, Saarland University, Germany
{druiter, kleiba, dietrich.klakow}@lsv.uni-saarland.de

‡Department of Communication, Johannes Gutenberg University Mainz
{liane.reiners, schemer}@uni-mainz.de

♣Université de Lorraine, CNRS, Inria, LORIA
{ashwin.geetdsa, dominique.fohr, irina.illina}@loria.fr

♠Université de Lorraine, CREM
angeliki.monnier@univ-lorraine.fr

Abstract

Even though hate speech (HS) online has been an important object of research in the last decade, most HS-related corpora over-simplify the phenomenon of hate by attempting to label user comments as hate or neutral. This ignores the complex and subjective nature of HS, which limits the real-life applicability of classifiers trained on these corpora. In this study, we present the M-Phasis corpus, a corpus of ∼ 9k German and French user comments collected from migration-related news articles. It goes beyond the hate-neutral dichotomy and is instead annotated with 23 features, which in combination become descriptors of various types of speech, ranging from critical comments to implicit and explicit expressions of hate. The annotations are performed by 4 native speakers per language and achieve high (0.77 ≤ κ ≤ 1) inter-annotator agreements. Besides describing the corpus creation and presenting insights from a content, error and domain analysis, we explore its data characteristics by training several classification baselines.

Keywords: Hate Speech, Corpus Creation, Feature-Based, Multi-Disciplinary, Bilingual, Migration

1. Introduction

The internet has made the exchange of information and ideas between individuals easier than ever before. But through the provision of anonymity and filter bubbles, it has also contributed to the propagation of hateful contents that are a threat to the open exchange of opinions. To gain insights into the dynamics and characteristics of different types of hateful speech and to develop counter-measures, communication researchers and computer scientists alike require high-quality annotated data.

To date, published datasets related to hate speech (HS) come with several limitations. Most corpora used to train HS classifiers over-simplify the phenomenon of HS by labelling user content with binary classes, e.g., hatenutral, whose underlying definition varies greatly across corpora (Jurgens et al., 2019). Another common limitation in HS corpora is the use of slur (Rost et al., 2016) or emotion word lists (Paltoglou et al., 2013) to identify and sample hateful content. These approaches are insensitive to more subtle forms of HS (i.e., implicit hate) that is conveyed through syntactical or contextual features (Cohen-Almagor, 2018). Further, most hate speech corpora are based on the same outlet, i.e., Twitter (more than 50% of datasets), and language, i.e., English (~ 40%) (Vidgen and Derczynski, 2021). Focusing on Twitter data is especially limiting, given that Twitter poses a special case of user interactions due to the small maximum length of tweets. The English-centrism ignores the cross-cultural differences of the manifestations of hate. Also, HS corpora often do not provide access to the conversational context in which a comment is embedded, which is problematic since HS highly depends on the context (Kovács et al., 2021). All of these limitations reduce the generalisability of HS analysis and classifiers.

In this paper, we present Migration and Patterns of Hate Speech in Social Media (M-Phasis), a corpus which focuses on the topic of migration and addresses several of the above limitations of current HS corpora. Our contributions are the following:

1. Collection (Section 3) of user comments which:
 1) are sampled from news articles that match migration-related regular expression keywords to ensure relevance to the topic of migration; 2) are not sampled based on a list of pre-defined slur keywords and thus also capture implicit forms of hate; 3) are derived from a diverse set of mainstream and fringe media outlets; 4) are in two lan-
guages, **French and German**, for which only few HS corpora exist; 5) are collected as a comment thread to allow context-sensitive analysis.

2. Comment annotations are based on **features** such as negative and positive evaluations, contrasting of groups, and expressions of emotion, which in combination become descriptors of various types of speech, ranging from critical comments to implicit and explicit hate.

3. To identify difficulties of the M-Phasis corpus and to provide a guide for future research, we train and evaluate **classification baselines** on it (Section 4) and analyse errors (Section 5).

4. **Analysis** of 1) the frequent agent-victim tuples found in the corpus (Section 6) as well as 2) of the domain differences between comments of different media outlets (Section 7).

2. **Related Work**

HS classifiers that detect abusive content online and flag it for human moderation or automatic deletion are the most common **computational approach** to counter HS online (Jurgens et al., 2019). These classifiers are furthermore important research tools, e.g., to explore the dynamics of specific types of HS online (Johnson et al., 2019) or to identify common targets of abuse that require special protection (Silva et al., 2021). The algorithms behind HS classifiers are manifold (Schmidt and Wiegand, 2017), ranging from statistical machine learning methods (Saleem et al., 2016) to neural approaches applying representations of language models (Yang et al., 2019) in single or multi-task (Plaza-Del-Arco et al., 2021) settings.

In **social sciences**, the focus of HS research lies on the analysis of the manifestation of hate, its dynamics and role in society. A common approach is quantitative content analysis. It focuses on the investigation of manifest media content in a systematic, objective and quantitative fashion (Berelson, 1952). Therefore, an extensive annotation protocol is developed. These annotations are more extensive than those typically performed in computer science, and often also take into account the context. Social science distinguishes between different forms of impolite, uncivil or intolerant communication (Coe et al., 2014; Su et al., 2018; Rossini, 2020); more fine-grained than the binary distinction commonly used in HS corpora. What distinguishes HS particularly from other concepts is that the hateful expression is group-oriented (Erjavec and Kovačić, 2012). Often content analyses treat HS as a special form of incivility (Ziegele et al., 2018) or harmful speech (Robert et al., 2016) without investigating it further. But there exist also exclusive HS content analyses focusing on e.g., racist speech (Harlow, 2015), gendered HS (Döring and Mohseni, 2020) or HS targeting refugees and immigrants (Paasch-Colberg et al., 2021).

A **hate speech corpus** that satisfies the different needs of computer and communication scientists requires quantity (to be able to learn detection) and granularity (to analyse various facets of HS). Due to the different research questions addressed in communication science, the granularity-focused corpora are usually not published. This reduces the reproducibility and constantly forces researchers to create their own data annotations, which is money and time consuming. The vast majority of published HS corpora thus favour quantity over granularity, which come with various known limitations. Firstly, most HS corpus focus on a binary classification, e.g., hate or non-hate (Alakrot et al., 2018), whose underlying meaning varies across corpus based on their annotation protocols. Depending on the focus of the HS corpus, the annotated classes vary greatly (Vidgen and Derczynski, 2021), ranging from: person-directed abuse (e.g., cyber bullying) (Walczyn et al., 2017) to group-directed abuse such as sexism (Jha and Mamidi, 2017) or racism (Waseem and Hovy, 2016; Sigurbjörnsdóttir and Derczynski, 2019). This diversity of class definitions makes it difficult to effectively combine corpora to train classifiers that generalise well across similar HS tasks (Ruiter et al., 2019) (Bose et al., 2021). Further, the binarisation (e.g., sexist/not-sexist) of HS phenomena often leads to classifiers that are unreliable and/or biased (Wiegand et al., 2019).

More recent corpora try to overcome this limitation by creating tasks of higher granularity, focusing on multi-class tasks which may describe the target type (group vs. individual) or intensity of the abuse (Ousidhoum et al., 2019). Basile et al. (2019) also annotate the aggressiveness of the abuse, focusing on migrants and women. The multi-class approach with a focus on migration makes this corpus the closest to our work. Overall there is a trend towards more complex annotations, but most approaches (including Basile et al. (2019)) still attempt to make judgements about what constitutes hate, which stands in contrast to the complex and subjective nature of HS.

We overcome the difficulty of objectively defining HS by moving beyond judgements of whether a statement is hateful or not. With the content-analytical approach in mind, we focus on annotating HS-related features, a procedure similar to the one of (Paasch-Colberg et al., 2021). Further, the M-Phasis corpus is based on user content posted on a variety of mainstream and fringe media platforms in two languages: French (FR) (Chung et al., 2019) and German (DE) (Bretsneider and Peters, 2017; Strauß et al., 2019; Mandl et al., 2019).

3. **The M-Phasis Corpus**

3.1. **Dataset Collection**

Choice of Outlets Instead of focusing on a single data source such as Twitter, we keep our sources diverse by focusing on user content posted in comment sections of several popular news outlets in France and
Germany. To cover a broad political spectrum, we focus on four mainstream news outlets and two/three fringe media outlets in France and Germany, respectively. Concretely, the French data is collected from mainstream outlets France Info (fi), Le Figaro (lf), Le Monde (lm), Valeurs Actuelles (va) and fringe media AgoraVox (av), Riposte Laïque (rl), while the German data stems from mainstream Tagesschau (ts), Welt (we), Zeit (ze), Focus (fo) and fringe Compact (co),Epoch Times (et), Junge Freiheit (jf). We also ensure that different outlet types are covered, i.e., daily (lf, lm, we) and weekly newspapers (fo, va, ze) and a public television channel (fi, ts). Most outlets have an equivalent in Germany/France with regard to e.g., the type of news source or political stance.

Collection Method and Time Frame The M-Phasis corpus consists of articles and their comment threads. To identify articles on our chosen news articles which are relevant to the topic of migration, we create a list of 8 (FR) or 9 (DE) migration-related keywords (see Appendix). Note that these keywords are only related to migration and not to migration and not to HS (i.e., no slurs), and consequently, the French data is collected from mainstream outlets Le Monde (lm), Valeurs Actuelles (va) and fringe media AgoraVox (av), Riposte Laïque (rl), while the German data stems from mainstream Tagesschau (ts), Welt (we), Zeit (ze), Focus (fo) and fringe Compact (co), Epoch Times (et), Junge Freiheit (jf). We also ensure that different outlet types are covered, i.e., daily (lf, lm, we) and weekly newspapers (fo, va, ze) and a public television channel (fi, ts). Most outlets have an equivalent in Germany/France with regard to e.g., the type of news source or political stance.

Corpus Structure To study different types of hate in user comments without an a-priori definition of HS, we develop an annotation protocol that includes various facets of how hate can be communicated in user comments. There are two units of analysis in the corpus: the article and the corresponding comments in its comment thread. On the article level, we capture the type of news pieces (fact or opinion oriented), the topic as well as the first three mentioned main agents (e.g., politicians, migrants, organisations etc.).

For comments, the classes differ between moderation or user comments. For moderation comments (i.e., written by moderators), only the type of moderating action (e.g., deletion, referral to the netiquette, etc.) is annotated. Note that we only have access to publicly available data, thus the proportion of hate comments collected in news outlets with strict moderation policies is affected. For all user comments, we annotate the topic, potential (agreeing or disagreeing) references to its parent and the use of amplifiers (i.e., stylistic reinforcing elements). The centrepiece of the corpus is the annotation of HS-related phenomena. Instead of giving annotators a definition of HS, we focus on HS features which in their combination become descriptors of hateful content, described below.

Hate Speech Features HS features are annotated across five modules (Figure [1]), each containing 1–7 categories (i.e., questions), which can each have several classes (i.e., answers). We present these together with an example instance: Keine Migranten mehr aufnehmen. Wir haben genügend eigene Sorgen. (No more migrants. We have enough worries of our own.)

- **c_ne**: Negative evaluation of an agent, e.g., migrant, politician; generalisation-level of agent, i.e., individual vs. group; whether the evaluation is explicit or implicit; reason for the evaluation, e.g., hypocrisy, ignorance, financial burden; the victim(s) of the behaviour of the agent; use of irony or swearwords. Here in the example: no negative evaluation.

- **c_pe**: Positive evaluation of an agent. The categories are analogous to c_ne. Here: none.

- **c_act**: Recommendation of an action or behaviour, e.g., adaption, elimination; explicitness of the recommendation; the agent suggested to perform the action and its level of generalisation; the victim(s) of the action and their level of generalisation. Here: a recommendation to treat migrants (victims), as a group, negatively but violence-free. The agent is unclear.

- **c_contr**: Contrasting between an in- and out-group, e.g., elite vs. the people. Here: migrants vs. German population.

- **c_emo**: Expression of a negative or positive emotion, the trigger of the emotion, e.g., migrants, media and its level of generalisation; whether the emotion is expressed via sarcasm. Here: no expression of emotion.
Multiple annotations of a single module are possible e.g., if an annotator wants to annotate several negative evaluations. The HS features above can be combined to create use-case-specific definitions of hate/negativity. For example, the c_{ne} module can be used to focus on explicit negative evaluations of groups to describe explicit HS, implicit negative evaluations with a reason for critical comments or explicit negative evaluations of individuals to focus on cyber bullying. Positive evaluations (c_{pe}) of controversial groups can also be signs of HS or radicalisation, and the recommendation of actions such as killing individuals or groups (c_{act}) is relevant for identifying HS content illegal in some countries (e.g., according to NetzDG in Germany).

We give more sample annotations and an overview of all annotated modules with their corresponding categories in the Appendix.

Annotators and Annotations

We recruited four annotators per country. They are native speakers of French/German interested in studying HS. They were paid the standard monthly salary of research assistants in Germany/France. The annotators went through an extensive training period. Each instance is annotated by a single annotator and the annotations were performed using HUMAN (Wolf et al., 2020).

At the end of the annotation process, we selected 100 user comments in French and German respectively, which were then annotated by two annotators each to calculate inter-annotator agreement using Brennan and Prediger’s Kappa (κ) (Brennan and Prediger, 1981). κ is calculated for each category, where each individual class per category is treated as a binary yes/no decision. This makes it possible to calculate the agreement when classes are not mutually exclusive. Over all categories, we observe high levels of agreement, with all categories being within a reasonable range of $0.77 \leq \kappa \leq 1$. We report the inter-annotator agreement values for all categories in the Appendix.

4. Task-Specific Classification Baselines

4.1. Experimental Setup

To provide first insights into the M-Phasis dataset, we train several baseline models on a number of classification tasks that are based on a subset of classes and categories of the M-Phasis dataset and analyse their performance and limitations. We focus on two classification tasks, namely task E (i.e., Evaluation of agents; based on module c_{ne}) and task A (i.e., Action Recommendation; module c_{act}), which are sentiment-related tasks. Each task is divided into 5 sub-tasks to replicate the structure of the M-Phasis corpus that is based on gradually more in-depth follow-up questions per module. Task $\{E|A\}$ have similar structures and are divided into $\{E|A\}-1$ (Does the comment contain a {negative or positive evaluation} action recommendation?), $\{E|A\}-2$ (Is the {evaluation} action recommendation implicit or explicit?), $\{E|A\}-3$a (Who is the target of the {evaluation} action recommendation?), $\{E|A\}-3$b (What is the {behaviour} action recommended to the target?), $\{E|A\}-3$c (Who is the {suggested} victim of the behaviour?). We provide a single train(ing), dev(lopment) and test(ing) split.

Data

Taking into account the sparsity of most categories in the original M-Phasis dataset, we create our task-based dataset using only those modules which...
contain sufficient labelled data. This resulted in using the $c_{[ne\,pe]}$ module for task E and c_{act} for task A. To avoid strong class imbalances within each sub-task, we clustered classes from the original set of classes together which were similar in their underlying meaning and which were sparse in their respective number of instances. We give a more detailed listing of the mapping between the original classes to the sub-tasks’ classes in the Appendix. We remove URLs from the text and replace them with a special token, i.e., [URL]. We randomly sample 1,000 and 500 instances from the corpus as the test and dev splits respectively. The remaining 2,806 (DE) or 2,178 (FR) instances are used for the training data. Sub-tasks {E|A}-3{a|b|c} are lower-resourced than sub-tasks {E|A}-1{2}, due to their higher number of classes and the smaller amount of available annotations. For each sub-task, the number of instances of the DE/FR train-dev-test splits and the number of classes are given in Table 2. To give insight into the class imbalance per sub-task, we also report the Kullback-Leibler divergence (D_{KL}) between the class distribution of a sub-task and a perfectly balanced class distribution. A rather balanced class distribution would thus lead to a D_{KL} close to 0.

Model Specifications and Evaluation Our baseline models (B) are transformer-based classifiers as implemented in the transformers library\footnote{https://github.com/huggingface\slash\transformers}. Specifically, we use bert-base-german-cased (DE) and camembert-base (Martin et al., 2020) (FR). To explore whether domain knowledge can be inserted into the models via intermediate masked-language model (MLM) training, we also fine-tune both language models on their respective DE or FR task-based training data for 20 epochs using the MLM objective to obtain task-tuned language models (B+T). We also explore whether the annotations in the German and French data are sufficiently consistent amongst each other to enable a bilingual learning that improves the classification performance in comparison to a monolingual model. Therefore, analogous to B+T, we fine-tune a multilingual model bert-base-multilingual-cased on the concatenation of the German and French training data using the MLM objective (M+T) and then learn classification jointly (M+T(J)) or separately (M+T(S)) on the German and French sub-tasks. All classification models are run over 10 seeded runs with early stopping ($\delta = 0.01$, patience = 5) and we report their average Macro F1 on the test set together with standard mean error. For the domain analysis we use the multilingual universal sentence encoder (Yang et al., 2020) to embed user comments, as it works well on semantic similarity tasks (Cer et al., 2018).

4.2. Results

Performing task-based intermediate MLM fine-tuning (B+T) leads to limited improvements over the monolingual baselines (B), with improvements up to +2.9 (DE, A-3c) on the German data (Table 3). All improvements are seen on the target-victim sub-tasks {E|A}-3{a|b|c}. Task domain knowledge acquired by the intermediate MLM training is thus mostly useful for the lower-resourced sub-tasks. For French, most tasks show no significant difference.

The multilingual baselines (M+T) are by far outperformed by their monolingual (B+T) counterparts. The training on both the French and German data jointly (M+T(J)) leads to some significant improvements on the more complex E-3{a|b|c} sub-tasks in comparison to the multilingual model which was trained on French or German separately (M+T(S)), indicating that there is a sufficient overlap in the French and German annotations such that the lower-resourced sub-tasks benefit from the joint learning; the gain of additional samples outweighing the loss obtained by a few noisy samples. Overall, we observe low F1 scores across all tasks. This underlines the difficulty of the tasks, which is mostly due to the small amount of samples and sparseness of minority classes, especially for the more complex sub-tasks. Methods focusing on low-resource classification (Hedderich et al., 2021) should be explored to overcome the sparsity in the corpus. We give a more detailed account on the error sources in Section 5.

LA	SP	E-1	E-2	E-3a	E-3b	E-3c	A-1	A-2	A-3a	A-3b	A-3c
DE	Train	2,806	1,931	1,931	1,794	1,078	2,806	624	624	624	624
DE	Dev	500	351	351	320	184	500	114	114	114	114
DE	Test	1,000	681	681	632	365	1,000	225	225	225	225
DE	D_{KL}	0.36	0.072	0.205	0.259	0.369	0.162	0.212	0.326	0.565	0.516
FR	Train	2,178	1,741	1,741	1,584	1,323	2,178	680	680	680	680
FR	Dev	500	409	409	382	206	500	327	327	327	327
FR	Test	1,000	795	795	719	607	1,000	327	327	327	327
FR	D_{KL}	0.483	0.072	0.245	0.199	0.369	0.072	0.042	0.116	0.335	0.096

Table 2: Number of instances within each sub-task (E, A) in the train, dev test splits (SP) of the German (DE) and French (FR) language (LA) corpora. The class imbalance per sub-task is given via the Kullback-Leibler divergence (D_{KL}) between the sub-task class distribution of classes and a perfectly balanced class distribution.
The most common causes for over-blacklisting are blacklisting classified as containing a negative evaluation (i.e., from comments without an evaluation but which were annotated specific error types (Table 4). On the German side, the most common error stems from comments (i.e., classified as over-blacklisting, which was prevalent in 18% of instances. The most common causes for over-blacklisting are i) naming of countries or places (5%; EX-1), ii) naming of people (especially politicians; 3%) or iii) other trigger words (e.g., Nazi, Politiker (politician); 4%; EX-2). This is due to the topical bias in the M-Phasis corpus. Its focus is on the topic of migration, which is ensured by selecting news articles based on migration-related keywords. This enables the inclusion of comments containing implicit and explicit forms of hate, as well as positive sentiments. However, due to this topical focus, politicians are frequent recipients of negative evaluations (Section 5), and thus the classifier mistakenly learned to equate the appearance of political actors with a negative sentiment. While topical bias is not uncommon in HS corpora (Wiegand et al., 2019), it should be taken into account when using this data to train models, especially those going into production. A negative evaluation being ignored by the classifier (i.e., classified as no evaluation) is the second most common error (6%). Mistakes in the annotations are one reason, e.g., in cases where a negative action recommendation was mistakenly annotated as a negative evaluation (EX-3). Denoising or similar techniques can be used to mitigate the effects of noise in the annotations. Another source of error stems from the models, which only allow to attribute a single label to each instance. However, in some cases several actors are annotated in the original M-Phasis corpus with varying evaluations. A multi-label classifier could be used to model this complexity. Lastly, when the negative evaluation is too implicit or dependent on context, the classifier was not able to detect it (2%; EX-4). The annotators were always shown the context of a given comment (e.g., the article or comment to which the current instance is referring to), which was ignored by our classifiers. Including this contextual information may improve the classification of implicit evaluations. On the French side, we observe much less cases of over-blacklisting (2%), while the prevalence of ignoring negative evaluations is the same as for the German model (6%). The reduced prevalence of over-blacklisting might be due to the larger proportion of fringe media content in the French corpus (44.5% vs. 22.8% in Germany), thus reducing the amount of neutral/informative content to be mistakenly black-listed.

Table 3: Average Macro F1 of different classification models CM for language LA on the relevant sub-tasks (E,A)

LA	CM	E-1	E-2	E-3a	E-3b	E-3c	A-1	A-2	A-3a	A-3b	A-3c
DE B	55.6±.5	58.7±.4	49.2±.4	27.8±.9	35.2±.4	72.3±.4	56.2±.1	31.0±.8	30.8±.5	33.1±.4	
DE B+T	55.0±.2	58.6±.4	51.6±.6	29.9±.8	35.4±.3	71.3±.4	57.8±.9	28.9±.9	30.8±.1	36.0±.5	
DE M+T(S)	48.3±.5	52.4±.2	45.9±.5	23.4±.4	32.1±.2	65.1±.3	52.3±.1	28.9±.9	28.7±.2	28.2±.7	
DE M+T(J)	49.0±.1	48.1±.4	47.5±.4	23.6±.4	34.9±.7	64.1±.2	49.5±.2	30.7±.1	26.8±.7	28.4±.8	
FR B	59.3±.7	63.3±.4	54.1±.5	32.9±.3	39.0±.3	66.9±.5	53.7±.8	40.4±.5	42.1±.6	40.8±.6	
FR B+T	59.6±.3	63.4±.3	53.4±.4	33.5±.3	37.1±.6	67.6±.3	53.2±.4	41.1±.5	43.8±.7	40.1±.7	
FR M+T(S)	50.3±.1	58.8±.5	44.3±.6	23.1±.3	32.7±.4	60.2±.2	51.2±.1	34.5±.8	32.1±.7	34.2±.9	
FR M+T(J)	49.2±.8	49.0±.3	45.3±.6	28.0±.4	33.5±.4	51.4±.4	52.3±.2	36.9±.6	30.6±.2	34.6±.4	

5. Qualitative Error Analysis

To further identify shortcomings of the baseline models and difficulties related to the corpus structure, we perform a qualitative error analysis. We focus on the two best models in DE (B) and FR (B+T) on task E-1, as this task focuses on positive/negative evaluations of agents and is thus not far from the popular sentiment analysis task. To this end, we have sampled 100 instances from the DE and FR test set predictions and annotated specific error types (Table 4).

On the German side, the most common error stems from comments without an evaluation but which were classified as containing a negative evaluation (i.e., over-blacklisting), which was prevalent in 18% of instances. The most common causes for over-blacklisting are i) naming of countries or places (5%; EX-1), ii) naming of people (especially politicians; 3%) or iii) other trigger words (e.g., Nazi, Politiker (politician); 4%; EX-2). This is due to the topical bias in the M-Phasis corpus. Its focus is on the topic of migration, which is ensured by selecting news articles based on migration-related keywords. This enables the inclusion of comments containing implicit and explicit forms of hate, as well as positive sentiments. However, due to this topical focus, politicians are frequent recipients of negative evaluations (Section 5), and thus the classifier mistakenly learned to equate the appearance of political actors with a negative sentiment. While topical bias is not uncommon in HS corpora (Wiegand et al., 2019), it should be taken into account when using this data to train models, especially those going into production. A negative evaluation being ignored by the classifier (i.e., classified as no evaluation) is the second most common error (6%). Mistakes in the annotations are one reason, e.g., in cases where a negative action recommendation was mistakenly annotated as a negative evaluation (EX-3). Denoising or similar techniques can be used to mitigate the effects of noise in the annotations. Another source of error stems from the models, which only allow to attribute a single label to each instance. However, in some cases several actors are annotated in the original M-Phasis corpus with varying evaluations. A multi-label classifier could be used to model this complexity. Lastly, when the negative evaluation is too implicit or dependent on context, the classifier was not able to detect it (2%; EX-4). The annotators were always shown the context of a given comment (e.g., the article or comment to which the current instance is referring to), which was ignored by our classifiers. Including this contextual information may improve the classification of implicit evaluations.

On the French side, we observe much less cases of over-blacklisting (2%), while the prevalence of ignoring negative evaluations is the same as for the German model (6%). The reduced prevalence of over-blacklisting might be due to the larger proportion of fringe media content in the French corpus (44.5% vs. 22.8% in Germany), thus reducing the amount of neutral/informative content to be mistakenly black-listed.

6. Target Analysis

One important set of features of the M-Phasis corpus are the target annotations. This includes the annotation of positive and negative evaluations of targets in user comments (i.e., c_user) or task E in Section 4). Concretely, a target (agent) is evaluated by a user based on their actions (evaluation) which have caused harm (or benefit) to a third party (victim). Analogous to these agent-evaluation-victim triples, we also obtain agent-action-victim triples (i.e., c_agentc_task A), where a user suggests that the agent performs an action (action) under which a victim should suffer. We explore some of the main trends found in the triple annotations.

For both the German and the French portions of the M-Phasis corpus, politicians (2.5k (DE) /4.4k (FR) mentions and migrants (1k/1.7k) were the most common targets of negative evaluations. On the German portion (Figure 2), the most common mentions of political agents with a negative evaluation were EU and Merkel. Indicating a negative sentiment towards the current government and its handling of the topic of migration. The most frequent negatively evaluated action of these political agents on the German side was passivity (712 times). The two major mentioned victims of the behaviour of politicians are, by a large part

Note that these numbers are reduced in Figures 2 and 3, as they only show the most frequent evaluations/actions.
Table 4: Example instances (EX) from the DE and FR task E-1 test set with the error type \((\text{reference} \to \text{predicted}) \) of the best performing classification models in DE (B) and FR (B+T). Classes: none (\(\emptyset\)), negative (N).

EX	Instance	Type
1	Es gibt die ersten Verdachtsfälle in Äthiopien. [...]	\(\emptyset \to N\)
2	Der Berufswunsch dieses jungen Mannes: Politiker! Mehr ist dazu nicht zu sagen.	\(\emptyset \to N\)
3	Man muss sie registrieren (eindeutig, Fingerabdrücke etc!), und Versorgung/Sozialleistungen gibt’s nur an registrierten Ort. Punkt.	\(N \to \emptyset\)
4	Chouette 2 de moins. (Cool 2 less.)	\(N \to \emptyset\)

Figure 2: Agent-Evaluation-Victim sankeys for the two most common agents, \textit{politician} (left) and \textit{migrant} (right), in the German portion of the M-Phasis dataset. We show the 5/3 most common evaluations/victims respectively.

The two most frequent agents to be addressed in an action recommendation by the German users (Figure 3 (left)) are either political actors (792) or the German population (289). German politicians are most frequently called to force foreigners to adapt to German society (240) and when they are called to treat someone negatively, the largest victim group are mostly foreign political entities (\textit{EU, Türkei (Turkey), Griechenland (Greece)}. When politicians are called to treat someone positively, the suggested beneficiary are most frequently migrants (78). Similar trends are also found in French user comments. While the German calls for action tend to be more moderate, the action recommendations in France (Figure 3 (right)) include more radical actions such as physical violence towards (74) or elimination of (29) foreigners. It is unclear whether this more radical manifestation of hate towards migrants is due to an increased societal radicalisation or a difference in the data, where a) German comments are more likely to be published in mainstream media compared to French comments (Section 7), or b) the German news outlets are more pro-active in their moderation strategies, deleting more radical comments before we could collect them for the M-Phasis corpus. The sparsity of most triples makes their prediction using classification models especially difficult, which can be observed in the generally low F1 scores of the baselines on sub-tasks \(\{E|A\}-3\{a|b|c\}\) (Table 3).

Table 5: Average Macro F1 of German classification models CM tested on the mainstream (M) or fringe (F) test set (TS) of the relevant sub-tasks (E). Standard mean errors given as bounds. Top scores outside of the error bounds of other models in bold.

TS CM	E-1	E-2	E-3a	E-3b	E-3c
M B	53.8±.2	56.7±.3	49.7±.5	26.3±.8	35.1±.6
F B	\textbf{57.1±.9}	\textbf{61.0±.1}	46.6±.1	24.7±.1	21.6±.2
M B+T	53.8±.1	56.8±.2	49.8±.6	\textbf{26.6±.7}	\textbf{35.2±.5}
F B+T	51.7±.1	\textbf{59.3±.1}	50.9±.7	22.4±.8	17.4±.8

7. Domain Analysis

The M-Phasis corpus contains user comments from various news outlets. As these outlets differ in political orientation, their user comments also tend to differ in style. This can lead to domain differences across instances, which can affect the performance of classifiers trained on the M-Phasis dataset. To quantify this domain difference between user comments, we generate embeddings on the concatenation of all user comments belonging to a single news outlet using universal sen-
Figure 3: Agent-Action-Victim sankeys for the most common agent (politician) in the German (left) and French (right) portions of the M-Phasis dataset. We show up to 5/3 of the most common evaluations/victims respectively.

Figure 4: Cosine similarity between universal sentence encoder embeddings of user comments in DE (top-right triangle) or FR (bottom-left triangle) news outlets.

In the M-Phasis corpus, the train-dev-test splits, model outputs and annotation protocol are made public under https://github.com/uds-lsv/mphasis.

Acknowledgments
We thank our annotators for their keen work. The project on which this paper is based is funded by the DFG (WI 4204/3-1) and ANR (ANR-18-FRAL-0005).
9. Bibliographical References

Alakrot, A., Murray, L., and Nikolov, N. S. (2018). Dataset construction for the detection of anti-social behaviour in online communication in arabic. Procedia Computer Science, 142:174–181. Arabic Computational Linguistics.

Basile, V., Bosco, C., Fersini, E., Nozza, D., Patti, V., Rangel Pardo, F. M., Rosso, P., and Sanguinetti, M. (2019). SemEval-2019 task 5: Multilingual detection of hate speech against immigrants and women in twitter. In Proceedings of the 13th International Workshop on Semantic Evaluation, pages 54–63, Minneapolis, Minnesota, USA, June. Association for Computational Linguistics.

Berelson, B. (1952). Content Analysis in Communication Research. Foundations of communication research. Free Press.

Bose, T., Illina, I., and Fohr, D. (2021). Unsupervised domain adaptation in cross-corpora abusive language detection. In Proceedings of the Ninth International Workshop on Natural Language Processing for Social Media, pages 113–122, Online, June. Association for Computational Linguistics.

Brennan, R. L. and Prediger, D. J. (1981). Coefficient kappa: Some uses, misuses, and alternatives. Educational and Psychological Measurement, 41(3):687–699.

Bretschneider, U. and Peters, R. (2017). Detecting offensive statements towards foreigners in social media. In HICSS.

Cer, D., Yang, Y., Kong, S., Hua, N., Limtiaco, N., John, R. S., Constant, N., Guajardo-Cespedes, M., Yuan, S., Tar, C., Sung, Y., Strope, B., and Kurzweil, R. (2018). Universal sentence encoder. CoRR, abs/1803.11175.

Chung, Y.-L., Kuzmenko, E., Tekiroglu, S. S., and Guerini, M. (2019). CONAN - COutner NArratives through nichesourcing: a multilingual dataset of responses to fight online hate speech. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 2819–2829, Florence, Italy, July. Association for Computational Linguistics.

Coe, K., Kenski, K., and Rains, S. A. (2014). Online and uncivil? Patterns and determinants of incivility in newspaper website comments. Journal of Communication, 64(4):658–679.

Cohen-Almagor, R. (2018). Taking north american white supremacist groups seriously: The scope and the challenge of hate speech on the internet. International Journal for Crime, Justice and Social Democracy, 7(2):38–57, Jun.

Döring, N. and Mohseni, M. R. (2020). Gendered hate speech in youtube and younow comments: Results of two content analyses. SCM Studies in Communication and Media, 9(1):62–88.

Erjavec, K. and Kovačič, M. P. (2012). “you don’t understand, this is a new war!” analysis of hate speech in news web sites’ comments. Mass Communication and Society, 15(6):899–920.

Harlow, S. (2015). Story-chatterers stirring up hate: Racist discourse in reader comments on u.s. newspaper websites. Howard Journal Of Communications, 26:21–42, 01.

Hedderich, M. A., Lange, L., Adel, H., Strötgen, J., and Klakow, D. (2021). A survey on recent approaches for natural language processing in low-resource scenarios. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 2545–2568, Online, June. Association for Computational Linguistics.

Jha, A. and Mamidi, R. (2017). When does a compliment become sexist? analysis and classification of ambivalent sexism using twitter data. In Proceedings of the Second Workshop on NLP and Computational Social Science, pages 7–16, Vancouver, Canada, August. Association for Computational Linguistics.

Johnson, N., Leahy, R., Restrepo, N., Velasquez, N., Zheng, M., Manrique, P., Devkota, P., and Wuchty, S. (2019). Hidden resilience and adaptive dynamics of the global online hate ecology. Nature, 573:1–5, 09.

Jurgens, D., Hemphill, L., and Chandrasekharan, E. (2019). A just and comprehensive strategy for using NLP to address online abuse. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3658–3666, Florence, Italy, July. Association for Computational Linguistics.

Kovács, G., Alonso, P., and Saini, R. (2021). Challenges of hate speech detection in social media. SN Computer Science, 2, 04.

Mandl, T., Modha, S., Majumder, P., Patel, D., Dave, M., Mandlia, C., and Patel, A. (2019). Overview of the hasoc track at fire 2019: Hate speech and offensive content identification in indo-european languages. In Proceedings of the 11th Forum for Information Retrieval Evaluation, FIRE ’19, page 14–17, New York, NY, USA. Association for Computing Machinery.

Martin, L., Muller, B., Ortiz Suárez, P. J., Dupont, Y., Romary, L., de la Clergerie, É., Seddah, D., and Sagot, B. (2020). CamemBERT: a tasty French language model. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7203–7219, Online, July. Association for Computational Linguistics.

Ousidhoum, N., Lin, Z., Zhang, H., Song, Y., and Yeung, D.-Y. (2019). Multilingual and multi-aspect hate speech analysis. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 4675–4684, Hong Kong,
Sung, Y.-h., Strope, B., and Kurzei, R. (2020). Multilingual universal sentence encoder for semantic retrieval. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 87–94, Online, July. Association for Computational Linguistics. Ziegele, M., Koehler, C., and Weber, M. (2018). Socially destructive? Effects of negative and hateful user comments on readers’ donation behavior toward refugees and homeless persons. Journal of Broadcasting & Electronic Media, 62(4):636–653.

Appendix A: List of Keywords
In order to identify articles related to the topic of migration, we compose a list of regular expression keywords related to this topic. The keywords for France and Germany are equivalent in meaning, however, for Germany there exists one additional keyword, since we include both the more modern and politically correct term geflüchtete* (refugee) and its older counterpart flüchtling*, which are both the equivalent of the French keyword réfugié(s).
Concretely, the French keywords are: étrangers (foreigners), immigré(s) (immigrant(s)), migrant(s), réfugié(s), demandeur(s) d’asile (seeker(s) of asylum), asile, immigration, migration.
The German keywords are: zugwander* (immigrant(s)), einwander* (immigrant(s)), migrant*, flüchtling*, geflüchtete*, ausländer* (foreigner(s)), asyl* (asylum or seeker(s) of asylum), immigra* (immigration or immigrant(s)), migration*.

Appendix B: Annotation Overview
We give an overview over the different modules, categories and classes that annotators annotate for each article or comment instance.
Articles are presented to the annotators in the annotation tool without context. Article annotations only have a single module article. The first question (category) shown to the annotators is n.2 (Table 8), which is always followed by n.3. If the annotator annotates n.3 = 0 (i.e., migration not a topic), then the annotation of the article instance is over and the next instance is shown. If any other class is chosen, then the annotator is asked to also annotate n.A, where they are asked to choose the first three mentioned agents in the article.
Comments are presented to the annotators together with their direct parent as context, e.g., the news article or another comment to which the current comment is a reply. As we discern between user comments and moderation comments, the first category shown to annotators is c.usmod (Table 9). If the annotator chooses c.usmod = 0 (i.e., moderating comment), then the annotation of this comment instance is over and the annotation tool proceeds to the next instance. Otherwise, if the comment is annotated as a user comment, the annotation tool continues with all follow-up questions in the meta module, i.e., c.refn to c.amp. Then, the annotation tool enters the c.ne module, where negative evaluations are annotated. If the annotator chooses c.ne_{1} = 0, it will skip all following categories in the c.ne module and jump to the next module c.pe. Otherwise, it will proceed to ask all dependent follow-up categories c.ne_{2} to c.ne_{7}. At the end of the c.ne module, the annotation tool asks the annotator whether they want to annotate any further negative evaluations. If this is the case, the tool loops back to the beginning of the c.ne module. If not, the tool continues to the next module c.pe, where positive evaluations are annotated. This module functions analogous to the c.ne module, such that it is only traversed if the annotator states that there is a positive evaluation. Again, multiple traversals are also possible. After the c.pe module, the annotation tool goes to the c.act module. If the first category c.act_{0} = 0, then the tool skips all follow-up categories, otherwise it traverses all categories in the module. Again, several traversals are possible if the annotators choose to annotate several action recommendations. After the c.act module, there is a single category c.contr, which also allows multiple answers, followed by the last module, c emo. Analogous to previous modules, its dependent categories c emo_{2a} to c emo_{3} are only shown if the annotators state that there is an explicit expression of emotions in c emo_{1}.

Appendix C: Inter-Annotator Agreement
The 100 user comments selected for calculating the inter-annotator agreement were collected from 5 different articles in German and French respectively. Each user comment is annotated by two annotators. We use Brennen and Prediger’s Kappa (κ) and the percentage agreement (agg) to calculate the inter-annotator agreement. The two metrics are calculated for each category, where each individual class per category is treated as a binary yes/no decision. Some categories are dependent on other categories, i.e., if an annotator annotates c.ne_{2} = 1 (determinant), then all following categories c.ne_{3} = 7 (dependents) are follow-up questions based on the choice taken in c.ne_{2} (e.g., is the agent a group or an individual?). Thus, we only compare the annotations of two annotators on these dependent categories, if they share the same determinant annotation. The determinants are always compared to each other. The determinant → dependants groups in the annotations are c.ne_{2} → c.ne_{3} → c.pe_{1} → c.pe_{2} → c.pe_{3} → c.pe_{4} → c.pe_{5} → c.pe_{6} → c.pe_{7}. The average agreement and κ per category is reported in Table 6.

Appendix D: Sample Annotations
We show one example annotation from each country in the corpus to give an intuition how the different annotation modules and categories are applied.

Und Dumm-Michel darf diese Migranten finanziieren. Unglaublich!! (And stupid Michel
The above sample instance is a German user comment replying to another comment written under an article talking about new migrants arriving in Berlin. It contains an amplifier (!!) (i.e., \(c_{\text{amp}} = 1\)). It contains an explicit negative evaluation of migrants as a group (\(c_{\text{ne},1} = 1, c_{\text{ne},2} = 1, c_{\text{ne},3} = 2\)), and the reason for the evaluation is them being a financial burden (\(c_{\text{ne},4} = 5\)). The German population (Dumm-Michel) is the victim of this behaviour (\(c_{\text{ne},5} = 1\)). There is no sarcasm (\(c_{\text{ne},6} = 0\)) or swearwords (\(c_{\text{ne},7} = 0\)). There is no positive evaluation (\(c_{\text{pe},1} = 0\)), which is why all follow-up categories in the \(c_{\text{pe}}\) module are skipped during annotation. Similarly, there is no action recommendation (\(c_{\text{act}} = 0\)), contrasting (\(c_{\text{contr}} = 0\)) or expression of emotion (\(c_{\text{emo},1} = 0\)).

Qu’ils les renvoient en Asie. La frontière est proche. (They should send them back to Asia. The border is close.)

The above sample instance is a French user comment referring to an article talking about new refugee camps opening on Lesbos and Chios (Greece). It contains no amplifier (\(c_{\text{amp}} = 0\)), no negative evaluation (\(c_{\text{ne},1} = 0\)) and no positive evaluation (\(c_{\text{pe},1} = 0\)). It does contain an explicit action recommendation (\(c_{\text{act}} = 1\)), namely a negative violence-free treatment (Qu’ils les renvoient en Asie) (\(c_{\text{act},1} = 3\)). The suggested agent of the action recommendation is unclear (\(c_{\text{act},2a} = 99\)) and the victims are migrants (\(c_{\text{act},3a} = 1\)) as a group (\(c_{\text{act},3b} = 2\)). There is no contrasting (\(c_{\text{contr}} = 0\)) or expression of emotion (\(c_{\text{emo},1} = 0\)).

Appendix E: Class Mapping

For the task-specific classification tasks, we select a subset of the M-Phasis categories and their classes. In Table 7 we list the mapping of M-Phasis categories and classes to (sub-)tasks and their classes.

Category	DE agg	DE κ	FR agg	FR κ
c_usmod	1.00	1.0	–	–
c_refn	0.89	0.87	0.83	0.79
c_refc	0.96	0.94	0.93	0.90
c_topic	0.90	0.89	0.91	0.90
c_amp	0.96	0.94	0.88	0.78
c_ne1	0.96	0.95	0.96	0.95
c_ne2	0.96	0.95	0.95	0.95
c_ne3	0.99	0.99	0.99	0.99
c_ne4	0.99	0.99	0.99	0.99
c_ne5	0.99	0.99	0.99	0.99
c_ne6	0.99	0.99	0.99	0.99
c_ne7	0.99	0.99	0.99	0.99
c_pe1	0.84	0.80	0.83	0.77
c_pe2	0.99	0.98	0.98	0.98
c_pe3	0.99	0.99	1.0	1.0
c_pe4	0.99	0.99	0.99	0.99
c_pe5	1.0	1.0	1.0	1.0
c_act	0.96	0.96	0.93	0.93
c_act1	0.95	0.98	0.92	0.92
c_act2a	0.98	0.95	0.97	0.97
c_act2b	0.96	0.95	0.89	0.88
c_act3a	0.98	0.98	0.97	0.97
c_act3b	0.93	0.92	0.90	0.89
c_contr	0.96	0.96	0.94	0.93
c_emo1	0.97	0.97	0.83	0.77
c_emo2a	0.99	0.98	0.94	0.94
c_emo2b	0.98	0.97	0.82	0.76
c_emo3	0.98	0.97	0.83	0.77

Table 6: Average agreement \(\text{agg}\) and Brennen and Prediger’s Kappa \(\kappa\) across all classes in a given category for the German (DE) and French (FR) side.
Table 7: The mapping of sub-task classes to their corresponding original category and class(es).

Table 8: Annotation modules for articles and their respective categories. Labels for each category are given with the corresponding number of German (DE) and French (FR) user comments that are part of the comment thread of an article with the given label.
Module	Category	Description	Label Code	Label Description	#Samples (DE)	#Samples (FR)
C_m (type of comment)	C_mod	type of comment	0	non-modrating comment	70	27
	C_modu	user comment	1	user comment	4,759	3,910
	C_modu	non-user comment	2	non-user comment	874	1,079
	C_modu	approval of the article	3	approval of the article	132	118
	C_modu	refusal of the article	4	refusal of the article	418	252
	C_modu	establishment reference, without evaluating it	5	establishment reference, without evaluating it	3,102	2,799
	C_modu	cannot tell	99	cannot tell	70	32
C_ref	reference to news article	0	makes no reference to news article	874	1,079	
	C_ref	approval of the article	1	approval of the article	132	118
	C_ref	refusal of the article	2	refusal of the article	418	252
	C_ref	establishment reference, without evaluating it	3	establishment reference, without evaluating it	3,102	2,799
	C_ref	cannot tell	99	cannot tell	70	32
C_rep	topic of comment	0	same as C_rep	4,230	3,338	
	C_rep	same as C_rep	1	yes	1,083	1,024
	C_rep	same as C_rep	2	no	1,083	1,024
C_neg (negative evaluations)	C_neg	negative evaluation	0	no	1,351	544
	C_neg	yes	1	yes	2,148	2,083
	C_neg	not sure	2	yes, implicit	829	863
	C_neg	same as C_neg	99	cannot tell	164	1,077
C_pos	level of generalization	1	case-specific	1,997	1,328	
	C_pos	generalization	2	generalization	2,218	1,908
	C_pos	cannot tell	99	cannot tell	180	33
C_neg	reason for the evaluation	1	paucity	604	604	
	C_neg	conspiracy or hypocrisy	2	conspiracy or hypocrisy	778	804
	C_neg	ignorance	3	ignorance	378	302
	C_neg	criminal behaviour	4	criminal behaviour	243	309
	C_neg	financial burden	5	financial burden	149	133
	C_neg	incompleteness	6	incompleteness	23	117
	C_neg	illusion	7	illusion	73	185
	C_neg	characterized	8	characterized	12	79
	C_neg	character trait	9	characterized	350	289
	C_neg	political conviction	10	characterized	440	191
	C_neg	cannot tell	99	cannot tell	344	271
C_ne (emotions)	C_ne	positive evaluation	1	same as C_ne	1,997	1,328
	C_ne	agent	2	same as C_ne	829	863
	C_ne	same as C_ne	99	cannot tell	164	1,077
	C_ne	reason for the evaluation	1	efficiency	118	248
	C_ne	honesty	2	honesty	30	52
	C_ne	social norms	3	social norms	77	133
	C_ne	exemplary behavior	4	exemplary behavior	69	83
	C_ne	financial advantages	5	financial advantages	17	19
	C_ne	cultural enrichment	6	cultural enrichment	2	52
	C_ne	characterized	7	characterized	30	64
	C_ne	political conviction	8	characterized	62	40
	C_ne	cannot tell	99	cannot tell	28	44
C_ne (emotions)	C_ne	iron	1	same as C_ne	1,997	1,328
	C_ne	same as C_ne	99	cannot tell	164	1,077
C_act	action	0	no action	3,708	2,647	
	C_act	explicit action	1	explicit action	834	817
	C_act	implicit action	2	implicit action	201	451
	C_act	positive treatment	1	positive treatment	172	160
	C_act	call for change/adaptation	2	call for change/adaptation	591	496
	C_act	negative but violence-free treatment	3	negative but violence-free treatment	228	552
	C_act	physical violence	4	physical violence	18	80
	C_act	elimination/killing	5	elimination/killing	8	90
	C_act	cannot tell	99	cannot tell	22	20
C_act	agent	1	same as C_act	172	160	
	C_act	level of generalization	1	same as C_act	172	160
	C_act	same as C_act	99	cannot tell	22	20
C_con (contrasting)	C_con	contrasted groups	0	none	3,760	2,030
	C_con	elite vs. the people	1	elite vs. the people	191	678
	C_con	globalism vs. states	2	globalism vs. states	5	41
	C_con	right-wing vs. left-wing camps	3	right-wing vs. left-wing camps	40	98
	C_con	less advantaged citizen vs. migrants	4	less advantaged citizen vs. migrants	24	28
	C_con	French vs. migrants	5	French vs. migrants	1	483
	C_con	Germans vs. migrants	6	Germans vs. migrants	134	4
	C_con	Frenchs vs. other political actors abroad	7	Frenchs vs. other political actors abroad	1	58
	C_con	Germans vs. other political actors abroad	8	Germans vs. other political actors abroad	134	0
	C_con	Anti-immigrants vs. immigrants vs. others	9	Anti-immigrants vs. immigrants vs. others	35	106
	C_con	Pro-immigrants vs. anti-immigrants	10	Pro-immigrants vs. anti-immigrants	46	95
	C_con	Good migrants vs. bad migrants	11	Good migrants vs. bad migrants	55	30
	C_con	Present vs. past	12	Present vs. past	76	28
	C_con	cannot tell	99	cannot tell	200	222
C_em (emotions)	C_em	explicit expression of emotion	0	none	4,575	3,910
	C_em	negative emotion	1	negative emotion	110	165
	C_em	positive emotion	2	positive emotion	38	165
	C_em	expression of amusement/dedicating	3	expression of amusement/dedicating	21	0
	C_em	same as C_em	99	cannot tell	21	16
C_taka	topic of comment	0	same as C_taka	4,230	3,338	
	C_taka	same as C_taka	99	cannot tell	164	1,077

Table 9: Annotation modules for comments and their respective categories. Labels for each category with their corresponding number of German (DE) and French (FR) comments.