Research Article

Lamia A. Siddig, Mohammad A. Khasawneh, Abdelouahid Samadi, Haythem Saadeh*, Nael Abutaha*, Mohammad Ahmed Wadaan

Synthesis of novel thiourea-/urea-benzimidazole derivatives as anticancer agents

https://doi.org/10.1515/chem-2021-0093
received July 22, 2021; accepted September 21, 2021

Abstract: A new series of urea and thiourea derivatives containing benzimidazole group as potential anticancer agents have been designed and synthesized. The structures of the synthesized compounds were characterized and confirmed by spectroscopic techniques such as 1H NMR, 13C NMR, and mass spectrometry. In vitro anticancer assay against two breast cancer (BC) cell lines, MDA-MB-231ER\(^{−}\)/PR\(^{−}\) and MCF-7ER\(^{+}\)/PR\(^{+}\), revealed that the cytotoxicity of 1-(2-(1H-benzo[d]imidazol-2-ylamino)ethyl)-3-p-toly thiourea (7b) and 4-(1H-benzo[d]imidazol-2-yl)-N-(3-chlorophenyl)piperazine-1-carboxamide (5d) were higher in MCF-7 with IC\(_{50}\) values of 25.8 and 48.3 \(\mu\)M, respectively, as compared with MDA-

1 Introduction

Benzimidazole is a very useful heterocycle for the development of molecules of pharmaceutical and biological interest. Compounds containing benzimidazole have been widely used in drug development and researchers around the world are actively seeking new uses and applications [1]. Benzimidazole derivatives have found applications in diverse therapeutic areas including antimicrobial [2–4], antifungal [5–8], antiviral [9,10], antitubercular [11–13], anti diabetic [14,15], anti-inflammatory [16,17], antihistaminic [18], antioxidant [19,20], and anticancer activities [21,22]. Moreover, benzimidazoles are one of the early classes of anticancer agents such as bendamustine (Figure 1) [23]. In addition, many derivatives showed anticancer activity against human liver carcinoma (HEP-G2) cell lines [22], while others derivatives possess potent anticancer activity against other human cancer cell lines [16] such as MCF-7, THP-1, PC-3, and A-549. Thiourea and urea are classes of organic compounds which have a wide diversity and multiple applications. Their derivatives demonstrate a broad range of pharmacological activities such as antimicrobial, anti diabetic, analgesic, and anticancer activities [24–26]. Several anticancer agents containing urea and thiourea functional groups reached clinical phases [27] such as Tandutinib and Enzalutamide, respectively (Figure 1). Moreover, novel series of benzimidazole-thiourea [28] and benzimidazole-urea [29] derivatives were synthesized and they exhibited potent antiproliferative activity against a group of human tumor cells compared to standard drugs. Hybrids of urea and benzimidazole showed potent anticancer activity and some derivatives are already in the drug market such as Glasdegib [30] (Figure 1).

According to the World Health Organization (WHO), the number of people diagnosed with cancer increased from 10 million in 2000 to 19.3 million in 2020. Breast cancer (BC) is the world’s most diagnosed cancer as reported by International Agency for Research on Cancer (IARC) in 2020 (WHO, 2021) with metastasis and drug
resistance being the main challenge for successful treatments [31]. Moreover, the drug resistance of cancer cells exerts more pressure to look for new effective chemotherapeutic agents. BC is subtyped or classified based on their genotypic differences and metastasis characteristics. The toxicity of the drug against different types of BC cells differs significantly due to variation in the metabolic outcome of their genotype [32,33].

Apoptosis is an important biological event that takes place in multicellular organisms to remove unwanted or damaged cells [34]. Apoptosis has been extensively used for therapeutic applications and biological studies and huge effort has been dedicated to the discovery of apoptosis-inducing molecules that may have antitumor potential [35].

Based on the biological activity profile of benzimidazole derivatives and thiourea and urea derivatives, the current study is aimed to synthesize novel thiourea- and urea-benzimidazole derivatives and evaluate their anticancer activity against two different cancer cell lines (MDA-MB-231ER−/PR− and MCF-7ER+/PR+) with different genotypic features.

2 Experimental methods

2.1 Materials and methods

Melting points were determined in open capillary tubes using the Sanyo Gallenkamp MPD 350-BM 3.5 Melting Point apparatus (UK), and are uncorrected. FT-IR spectra were recorded in a Thermo Nicolet Nexus 470 FT-IR spectrophotometer (USA). 1H NMR and 13C NMR spectra were recorded at room temperature in CDCl3 or DMSO-d6 as a solvent using Varian-400 MHz (USA). Solvent peaks (CDCl3: 7.26 [D] and 77.2 [C] ppm and DMSO-d6: 2.50 [D] and 39.7 [C] ppm) were used as internal references. The assignment of chemical shifts is based on standard NMR experiments (1H and 13C), TLC analyses on silica F254 and detection by UV light at 254 nm were performed. High resolution mass spectra (HRMS) were obtained (in positive or negative mode) using the electrospray ion trap (ESI) technique by collision-induced dissociation on a Bruker APEX-4 (7-Tesla) instrument. Column chromatography was performed on silica Gel 60 (230 mesh). Chemicals and reagents were purchased from Sigma-Aldrich Chemical Co. (1-Boc-ethylenediamine, 1-Boc-piperazine, 2-chlorobenzimidazole, and 4M HCl in dioxane) and Acros Organics, USA (2-chlorobenzimidazole, isothiocyanates, and isocyanates) and used without further purification. 2-(1-Piperazino)benzimidazole.2HCl (1) and N1-(benzimidazol-2-yl)ethane-1,2-diamine.2HCl (6) were prepared according to reported literature procedures [35–38].

2.2 Synthesis

2.2.1 General synthesis of benzimidazole-thiourea derivatives (4a–j, 7b) and benzimidazole-urea derivatives (5b–e, 8b)

To a stirred solution of compounds 1 or 6 (1.1 mmol) in dry acetonitrile (10 mL), was added excess triethylamine
(4 mmol) and the corresponding isothiocyanatobenzene 2a–i or isocyanatobenzene 3b–e (1.0 mmol). The mixture was stirred at room temperature overnight. The solvent was removed under vacuum, dissolved in ethyl acetate (20 mL) and then washed with water. The organic layer was dried over anhydrous sodium sulfate and the solution was concentrated. The crude product was filtered, dried, and recrystallized from ethyl acetate/hexane.

2.2.2 4-(1H-Benz[d]imidazol-2-yl)-N-phenylpiperazine-1-carbethioamide (4a)

Off white solid (0.53 g, 86%); mp 229–231°C; Rf = 0.74 (9:1 dichloromethane/methanol), IR (KBr, cm⁻¹) 3,399 (NH), 1,530 (C=O), 1H NMR (400 MHz, DMSO-d₆) δ 9.49 (s, 1H), 7.32–7.28 (m, 4H), 7.27–7.14 (m, 2H), 7.15–7.10 (m, 1H), 7.07–7.15 (m, 2H), 4.11–4.09 (m, 4H), 3.68–3.66 (m, 4H). 13C NMR (100 MHz, DMSO-d₆) δ 182.0 (C=O), 155.7, 141.4, 137.5, 128.5, 125.8, 124.9, 120.5, 113, 47.7, 46.02. HRMS (ESI): m/z calcd for C₁₉H₂₀N₄S [M + H] 338.14394, found 338.14339.

2.2.3 4-(1H-Benz[d]imidazol-2-yl)-N-(p-tolyl)piperazine-1-carbethioamide (4b)

Off white solid (0.28 g, 72%); mp 231–233°C; Rf = 0.72 (9:1 dichloromethane/methanol), IR (KBr, cm⁻¹) 3,430 (NH), 1,523 (C=O), 1H NMR (400 MHz, DMSO-d₆) δ 11.53 (s, 1H), 9.37 (s, 1H), 7.33 (m, 2H), 7.27–7.14 (m, 2H), 7.13–7.06 (m, 2H), 6.95 (m, 2H), 4.16–3.95 (m, 4H), 3.67–3.47 (m, 4H), 2.28 (s, 3H). 13C NMR (100 MHz, DMSO-d₆) δ 182.1 (C=O), 156.0, 138.7, 134.1, 130.8, 129.0, 126.2, 126.0, 120.3, 47.6, 46.0, 21.0. HRMS (ESI): m/z calcd for C₁₀H₂₀N₄S [M + H] 352.15959, found 352.15904.

2.2.4 4-(1H-Benz[d]imidazol-2-yl)-N-(4-methoxyphenyl)piperazine-1-carbethioamide (4c)

White solid (0.38 g, 57%); mp 285–287°C; Rf = 0.77 (9:1 dichloromethane/methanol), IR (KBr, cm⁻¹) 3,413 (NH), 1,527 (C=O), 1H NMR (400 MHz, DMSO-d₆) δ 11.46 (s, 1H), 9.31 (s, 1H), 7.16 (m, 4H), 6.86 (m, 4H), 4.13–3.94 (m, 4H), 3.73 (s, 3H), 3.64–3.52 (m, 4H). 13C NMR (100 MHz, DMSO-d₆) δ 182.2 (C=O), 156.9, 156.0, 134.2, 127.9, 126.3, 120.2, 116.5, 113.6, 55.6, 47.6, 46.10. HRMS (ESI): m/z calcd for C₁₂H₂₂N₄OS [M + H] 368.15451, found 368.15491.

2.2.5 4-(1H-Benz[d]imidazol-2-yl)-N-(3-chlorophenyl)piperazine-1-carbethioamide (4d)

Off white solid (0.20 g, 74%); mp 248–250°C; Rf = 0.74 (9:1 dichloromethane/methanol), IR (KBr, cm⁻¹) 3,428 (NH), 1,529 (C=O), 1H NMR (400 MHz, DMSO-d₆) δ 11.56 (s, 1H), 9.54 (s, 1H), 7.46 (m, 1H), 7.37–7.27 (m, 2H), 7.25–7.20 (m, 2H), 7.17 (m, 1H), 6.95 (m, 2H), 4.11–4.02 (m, 4H), 3.69–3.54 (m, 4H). 13C NMR (100 MHz, DMSO-d₆) δ 181.7 (C=O), 155.9, 142.9, 139.0, 132.6, 125.1, 124.4, 123.9, 120.3, 113.0, 47.8, 46.9. HRMS (ESI): m/z calcd for C₁₈H₁₉ClN₅S [M + H] 372.10497, found 372.10442.

2.2.6 4-(1H-Benz[d]imidazol-2-yl)-N-(4-chlorophenyl)piperazine-1-carbethioamide (4e)

Off white solid (0.53 g, 79%); mp 246–248°C; Rf = 0.71 (9:1 dichloromethane/methanol), IR (KBr, cm⁻¹) 3,399 (NH), 1,524 (C=O), 1H NMR (400 MHz, DMSO-d₆) δ 11.48 (s, 1H), 9.50 (s, 1H), 7.63–7.40 (m, 1H), 7.34 (m, 3H), 7.22 (m, 2H), 6.94 (m, 2H), 4.17–3.98 (m, 4H), 3.70–3.51 (m, 4H). 13C NMR (100 MHz, DMSO-d₆) δ 118.1 (C=O), 156.1, 140.4, 128.8, 128.3, 127.4, 125.5, 119.6, 115.6, 47.8, 46.0. HRMS (ESI): m/z calcd for C₁₈H₁₉ClN₅S [M + H] 372.10497, found 372.10465.

2.2.7 4-(1H-Benz[d]imidazol-2-yl)-N-(4-nitrophenyl)piperazine-1-carbethioamide (4f)

Yellow solid (0.25 g, 91%); mp 204–206°C; Rf = 0.84 (9:1 dichloromethane/methanol), IR (KBr, cm⁻¹) 3,435 (NH), 1,530 (C=O), 1H NMR (400 MHz, DMSO-d₆) δ 11.63 (s, 1H), 9.96 (s, 1H), 8.18 (d, J = 9.2 Hz, 2H), 7.63 (d, J = 9.1 Hz, 2H), 7.23 (m, 2H), 6.96 (m, 2H), 4.13–4.06 (m, 4H), 3.68–3.60 (m, 4H). 13C NMR (100 MHz, DMSO-d₆) δ 181.3 (C=O), 155.7, 148.2, 142.6, 128.8, 124.4, 137.2, 120.4, 113.4, 48.3, 46.0. HRMS (ESI): m/z calcd for C₁₈H₁₉NO₂S [M + H] 383.12902, found 383.12877.

2.2.8 4-(1H-Benz[d]imidazol-2-yl)-N-(2-fluorophenyl)piperazine-1-carbethioamide (4g)

Yellowish solid (0.21 g, 80%); mp 268–270°C; Rf = 0.8 (9:1 dichloromethane/methanol), IR (KBr, cm⁻¹) 3,458 (NH), 1,528 (C=O), 1H NMR (400 MHz, DMSO-d₆) δ 11.82 (s, 1H), 9.50 (s, 1H), 7.32–7.21 (m, 5H), 7.21–7.13 (m, 1H), 7.04–6.94 (m, 2H), 4.17–3.96 (m, 4H), 3.74–3.58 (m, 4H).
2.2.9 4-((1H-Benz[d]imidazol-2-yl)-N-(3-fluorophenyl)
piperazine-1-carbothioamide (4h)

White solid (0.52 g, 80%); mp 229–231°C; Rf = 0.71 (9:1 dichloromethane/methanol), IR (KBr, cm⁻¹) 3,410 (NH), 1,535 (C=S); ¹H NMR (400 MHz, DMSO-d₆) δ 11.58 (s, 1H), 7.26 (dt, J = 11.2, 2.3 Hz, 1H), 7.16 (m, 1H), 4.10–4.04 (m, 4H), 3.66–3.58 (m, 4H). ¹³C NMR (100 MHz, DMSO-d₆) δ 181.7, 156.4, 143.3 (d, ¹JC-F = 4.5 Hz), 138.2, 129.9 (d, ¹JC-F = 3.1 Hz), 121.1, 120.0 (d, ¹JC-F = 2.9 Hz), 120.5, 112.2 (d, ¹JC-F = 24 Hz), 110.1 (d, ¹JC-F = 21 Hz), 47.9, 46.1. HRMS (ESI): m/z calcd for C₁₈H₁₉FN₅S [M + H] 536.13452, found 536.13397.

2.2.10 4-((1H-Benz[d]imidazol-2-yl)-N-(4-fluorophenyl)
piperazine-1-carbothioamide (4i)

Beige solid (0.64 g, 98%); mp 248–250°C; Rf = 0.78 (9:1 dichloromethane/methanol), IR (KBr, cm⁻¹) 3,193 (NH), 1,569 (C=S); ¹H NMR (400 MHz, DMSO-d₆) δ 11.48 (s, 1H), 7.24 (m, 2H), 7.14 (m, 2H), 6.94 (m, 2H), 4.28–3.89 (m, 4H), 3.79–3.50 (m, 4H). ¹³C NMR (100 MHz, DMSO-d₆) δ 182.2 (C=S), 159.7 (d, ¹JC-F = 240 Hz), 155.3, 138.1, 137.7 (d, ¹JC-F = 3 Hz), 128.2 (d, ¹JC-F = 8.3 Hz), 123.9, 120.6, 115.1 (d, ¹JC-F = 22 Hz), 47.5, 46.0. HRMS (ESI): m/z calcd for C⁻¹₈H₁₉FN₅S [M + H] 536.13452, found 536.13407.

2.2.11 4-((1H-Benz[d]imidazol-2-yl)-N-(4-(trifluoromethyl)phenyl)piperazine-1-carbothioamide (4j)

White solid (0.248 g, 84%); mp 242–266°C; Rf = 0.78 (9:1 dichloromethane/methanol), IR (KBr, cm⁻¹) 3,423 (NH), 1,529 (C=S); ¹H NMR (400 MHz, DMSO-d₆) δ 9.73 (s, 1H), 8.95 (s, 1H), 7.66 (d, J = 8.5 Hz, 1H), 7.58 (d, J = 8.5 Hz, 1H), 7.27 (dd, J = 5.8, 3.2 Hz, 1H), 7.02 (dd, J = 5.7, 3.2 Hz, 1H), 4.20–4.00 (m, 4H), 3.76–3.58 (m, 4H). ¹³C NMR (100 MHz, DMSO-d₆) δ 181.8 (C=S), 156.0, 145.3, 129.0, 126.3, 125.6, 124.8, 124.1, 123.8, 123.6, 120.3, 48.0, 46.0. HRMS (ESI): m/z calcd for C₁₉H₁₉F₅N₅S [M + H] 406.13133, found 406.13162.

2.2.12 4-((1H-Benz[d]imidazol-2-yl)-N-(p-toly1)
piperazine-1-carboxamide (5b)

Beige solid (0.34 g, 55%); mp 298–300°C; Rf = 0.74 (9:1 dichloromethane/methanol), IR (KBr, cm⁻¹) 3,407 (NH), 1,637 (C=O); ¹H NMR (400 MHz, DMSO-d₆) δ 11.46 (s, 1H), 8.55 (s, 1H), 7.34 (m, 2H), 7.21 (s, 2H), 7.06 (m, 2H), 7.00–6.85 (m, 2H), 3.59 (dd, J = 7.1, 3.4 Hz, 4H), 3.53 (dd, J = 7.1, 3.6 Hz, 4H). ¹³C NMR (100 MHz, DMSO-d₆) δ 156.4 (C=O), 155.5, 138.2, 137.7, 131.1, 129.6, 129.2, 120.3, 118.6, 115.5, 109.5, 46.4, 43.6, 20.8. HRMS (ESI): m/z calcd for C₁₉H₂₂N₂O [M + H] 336.18244, found 336.18256.

2.2.13 4-((1H-Benz[d]imidazol-2-yl)-N-(4-methoxyphenyl)piperazine-1-carboxamide (5c)

Off white solid (0.16 g, 63%); mp 297–299°C; Rf = 0.75 (9:1 dichloromethane/methanol), IR (KBr, cm⁻¹) 3,467 (NH), 1,634 (C=O); ¹H NMR (400 MHz, DMSO-d₆) δ 11.55 (s, 1H), 8.48 (s, 1H), 7.39–7.31 (m, 2H), 7.21 (m, 2H), 6.94 (m, 2H), 6.88–6.80 (m, 2H), 3.70 (s, 3H), 3.61–3.55 (m, 4H), 3.55–3.49 (m, 4H). ¹³C NMR (100 MHz, DMSO-d₆) δ 156.3 (C=O), 155.7, 154.9, 133.7, 133.3, 122.0, 120.3, 114.4, 114.0, 55.5, 46.4, 43.5. HRMS (ESI): m/z calcd for C₁₉H₁₉F₅N₂O [M + H] 352.17735, found 352.17744.

2.2.14 4-((1H-Benz[d]imidazol-2-yl)-N-(3-chlorophenyl)
piperazine-1-carboxamide (5d)

White solid (0.41 g, 63%); mp 287–289°C; Rf = 0.68 (9:1 dichloromethane/methanol), IR (KBr, cm⁻¹) 3,434 (NH), 1,636 (C=O); ¹H NMR (400 MHz, DMSO-d₆) δ 11.46 (s, 1H, NH), 8.82 (s, 1H, NH), 7.67 (s, 1H), 7.42 (d, J = 8.8 Hz, 1H), 7.27 (t, J = 8.4 Hz, 1H), 7.21 (m, 2H), 6.99 (d, J = 8.4 Hz, 1H), 6.94 (m, 2H), 3.63–3.57 (m, 4H), 3.56–3.50 (m, 4H). ¹³C NMR (100 MHz, DMSO-d₆) δ 156.4 (CSO), 155.5, 142.5, 136.2, 135.6, 131.1, 129.9, 129.6, 129.2, 120.3, 118.6, 46.3, 43.6. HRMS (ESI): m/z calcd for C₁₉H₁₉F₅N₂O [M + H] 356.12781, found 356.12726.

2.2.15 4-((1H-Benz[d]imidazol-2-yl)-N-(4-chlorophenyl)
piperazine-1-carboxamide (5e)

Off white solid (m = 0.304 g, 50%); mp 287–289°C; Rf = 0.70 (9:1 dichloromethane/methanol), IR (KBr, cm⁻¹)
3,259 (NH), 1,642 (C=O); 1H NMR (400 MHz, DMSO-d$_6$) δ 11.46 (s, 1H), 8.77 (s, 1H), 7.39 (d, $J = 8.9$ Hz, 2H), 7.29 (d, $J = 8.9$ Hz, 2H), 7.21 (m, 2H), 7.08–6.75 (m, 2H), 3.59 (dd, $J = 7.1$, 3.6 Hz, 4H), 3.53 (dd, $J = 6.8$, 3.7 Hz, 4H). 13C NMR (100 MHz, DMSO-d$_6$) δ 155.3, 139.2, 138.1, 137.6, 129.1, 128.3, 126.1, 120.4, 111.7, 46.4, 43.4. HRMS (ESI): m/z calcd for C$_{18}$H$_{19}$ClN$_5$O $[M + H]$ 356.12781, found 356.12726.

2.2.16 1-(2-(1H-Benzo[d]imidazol-2-ylamino)ethyl)-3-p-tolythioure (7b)

Beige solid (m = 0.182 g, 97%); mp 165–167°C, IR (KBr, cm$^{-1}$) 3,270 (NH), 1,705 (C=O); 1H NMR (400 MHz, Methanol-d$_6$) δ 8.33 (s, 1H), 7.38–7.31 (m, 2H), 7.26–7.19 (m, 2H), 7.18–7.11 (m, 2H), 7.10–7.01 (m, 2H), 6.42 (s, 1H), 3.57–3.54 (m, 2H), 3.50–3.47 (m, 2H), 2.24 (s, 3H). 13C NMR (100 MHz, DMSO-d$_6$) δ 157.5 (C=O), 151.2, 136.5, 132.1, 130.7, 128.9, 123.0, 119.5, 111.0, 43.4, 38.5. HRMS (ESI): m/z calcd for C$_{19}$H$_{20}$N$_5$O $[M + H]$ 310.16679, found 310.16639.

2.3 Cytotoxicity assay

The cytotoxic activity of the synthesized compounds was assessed in human BC cell lines. MDA-MB-231$^\text{ER}(-)/\text{PR}(-)$ and MCF-7$^\text{ER}(-)/\text{PR}(-)$ cancer cells were obtained from German Collection of Cell Cultures (DSMZ, Germany). Cells were

X	S	R	%Yield	O	Code	R	%Yield
4a	H		86		5a	4-CH$_3$	55
4b	4-CH$_3$		72	5b	4-CH$_3$	55	
4c	4-OCH$_3$		57	5c	4-OCH$_3$	63	
4d	3-Cl		74	5d	3-Cl	63	
4e	4-Cl		79	5e	4-Cl	50	
4f	4-NO$_2$		91	8b	4-CH$_3$	77	
4g	2-F		80				
4h	3-F		80				
4i	4-F		98				
4j	4-CF$_3$		84				
7b	4-CH$_3$		97				

Scheme 1: Synthesis of benzimidazole thiourea (4a–j, 7b) and benzimidazole urea (5b–e, 8b) derivatives.
Table 1: The concentration with 50% inhibition (IC50 in µM) of derivatives 7b and 5d against breast cancer cell lines, MCF7 and MDA-MB-231

	MCF-7 (IC50 in µM)	MDA-MB-231 (IC50 in µM)
7b	25.8 ± 0.5	54.3 ± 0.09
5d	48.3 ± 0.8	89.5 ± 0.1

cultured in high glucose DMEM (UFC Biotech, Saudi Arabia) containing 1% of antibiotic (Penicillin–Streptomycin, UFC Biotech, Saudi Arabia) supplemented with 10% of fetal bovine serum (GIBCO, USA). These cells were maintained at 37°C and in 5% of CO2. Cells were seeded in 96-well plates (5 × 10^4 cells/well) and treated with different concentrations for 24 h. Afterwards, the medium containing the compounds was removed. Subsequently, MTT solution (5 mg mL^-1) was added to each well and incubated for 2 h. Then, absorbance was read in a microplate reader (Microplate Reader, Biotek) using 550 nm wavelengths. The control received only DMSO of 0.1%. IC50 values were determined using the OriginPro 8.5 software.

2.4 Light microscopy

To investigate the effects of active compounds on the morphology of MCF-7, the cells were seeded in DMEM. The cells were treated with 2 × IC50 value for 24 h, and imaged using a light microscope (Leica, Germany) at 200× magnification.

2.5 4′,6-Diamidino-2-phenylindole (DAPI) staining assay

DAPI staining was carried according to ref. [39] with modifications. Cells were cultured in a 24-well culture
plate (Nist, China) for 24 h. After incubation with $2 \times IC_{50}$ of 7b and 5d for 24 h, cells were washed with PBS, fixed with ice cold methanol for 5 min and then were again washed with PBS. After washing, the cells were stained with DAPI (1 μg mL$^{-1}$) and incubated in dark for 30 min. Methanol was used as a control. The cells were photographed using a fluorescence microscope (Evos, USA).

2.6 Acridine orange/ethidium bromide (AO/EB) staining

MCF-7 cells were incubated with 7b and 5d ($2 \times IC_{50}$) as described in the Section 2.5 for 24 h, then stained with AO/EB (2 μg mL$^{-1}$) for 10 min, and were viewed using fluorescence microscopy.

2.7 Caspases-3/7

The assessment of caspase-3/7 was carried out based on the manufacturer’s manual. Briefly, the cells were cultured in a 24-well culture plate (Nist, China) for 24 h. The cells were treated as described in the Section 2.5. After treatment, 1 μg mL$^{-1}$ of caspase-3/7 reagent (Invitrogen, USA) was added and shaken for 30 s and incubated in dark for 30 min. Methanol was used as a control. The cells were photographed using a fluorescence microscope.

3 Results and discussion

The synthesis of thiourea and urea derivatives of benzimidazole is outlined in Scheme 1. The synthesis of target thiourea 4a–j and urea 5b–e was achieved by reacting 2-(piperazin-1-yl)-1H-benzo[d]imidazole hydrochloride 1 [30,31] with substituted isothiocyanates 2a–j and isocyanates 3b–e, respectively, in the presence of an excess of triethylamine to obtain good yields. Similarly, two derivatives thiourea 7b and urea 8b were prepared by reacting N1-(1H-benzo[d]imidazol-2-yl)ethane-1,2-diamine hydrochloride 6 [38] with isothiocyanates 2b and isocyanates 3b, respectively. The purity of the prepared compound is confirmed by recrystallization, its melting point, chromatographic technique, and spectroscopy data.

![Figure 3](image-url)
The newly synthesized compounds (4a–j, 7b) and (5b–e, 8b) were characterized by MS, 1H and 13C NMR, and IR spectral data. These data, detailed in the experimental part, are consistent with the suggested structures. The 13C NMR data revealed the presence of a signal between 181.1 and 182.7 ppm for compounds (4a–j, 7b) and between 155.3 and 157.5 ppm for compounds (5b–e, 8b). This signal corresponds to quaternary carbons C=S and C=O, respectively. In the IR spectra, absorption bands associated with C=S and C=O stretching vibrations are appearing between 1,523 and 1,596 cm$^{-1}$ for compounds (4a–j, 7b) and between 1,634 and 1,642 cm$^{-1}$ for compounds (5b–e, 8b), respectively.

The HRMS of the synthesized compounds are in good agreement with the calculated values.

The diversity of the proposed compounds in Scheme 1 is evident from the different functional groups (urea and thiourea), substitution on the phenyl ring including activating and deactivating groups, and also from using the piperazine and ethylenediamine as spacers. These structure variations can help investigating the structure–activity relationship.

The newly synthesized thiourea 4a–j and urea 5b–e were investigated for cytotoxicity using MTT cell viability assay in two human BC cell lines, MCF-7 and MDA-MB-
As shown in Figures 2 and 3, only the compounds 7b and 5d were cytotoxic to the tested cancer cell lines. For the remaining compounds, the IC₅₀ values were not calculated because they were higher than 1,000 µg mL⁻¹. However, the cytotoxicity of compounds 7b and 5d was higher in MCF-7 with IC₅₀ values of 25.8 and 48.3 µM, respectively, as compared with their activity on MDA-MB-231 cells. The IC₅₀ values for 7b and 5d compounds were 54.3 and 89.5 µM, respectively, on MDA-MB-231 cells (Table 1).

Morphological alternations in the cells were observed using phase contrast microscope after incubation with 7b and 5d for 24 h. Cells in the control group retained the morphological form, most of which were adherent to the surface, tightly packed, and distinctively monolayer. Exposure of the BC cells to 7b and 5d compounds led to rounding, shrinkage of the cells, loss of contact, and debris formation (Figures 2b and c and 3b and c).

The potential of inducing apoptosis by the 7b and 5d was assessed by DAPI staining. The results indicated that the number of apoptotic cells was higher in 7b- and 5d-treated cells than DMSO control. The changes that took place in MCF-7 cells as a result of 7b and 5d treatments are represented in Figures 4a and b and 5a and b. The treatment resulted in chromatin condensation and nuclear fragmentation which are apoptotic indicators.

Figure 5: Fluorescence image of MCF-7 cells treated with DAPI, AO/EB, or caspase-3/7 regent after 24 h of treatment with 5d. DAPI staining shows chromatin condensation and nuclear fragmentation as indicated with arrows: (a) untreated cells and (b) treated cells. AO/EB staining: (c) untreated cells and (d) treated cells. Live cells are stained evenly green, whereas apoptotic cells are characterized by shiny green and yellow-orange staining due to loss of membrane integrity and chromatin condensation. Caspase-3/7 activation: (e) untreated cells and (f) treated cells. Caspase-3/7 activation was demonstrated by green fluorescence. Magnification ×200.
The apoptotic morphology was detected by AO/EB fluorescent staining of MCF-7 cells incubated with 7b and 5d compounds. As evident in Figures 4c and d and 5c and d, nuclei stained with green color demonstrate live cells, while greenish yellow and orange-red nuclei show apoptotic cells. The red color shows dead cells. The negative control (untreated cells) cells appeared bright green.

In apoptotic cells, caspase-3/7 activity cleaves the substrate, releasing a DNA dye, which moves to the nucleus and binds with DNA that gives shiny green fluorescence. The treated cells (Figures 4e and f and 5e and f) showed an increase in the caspase-3/7 activity after 24 h of exposure to 7b and 5d, indicating that the apoptosis induced is caspase-3/7 dependent.

Apoptosis is a highly organized physiological mechanism to destroy abnormal cells [40] and it is an attractive endpoint in anticancer agents’ research. It is induced by many effective anticancer agents [41]. A variety of compounds have been known to induce apoptosis in various human cancer cells. So it is important to screen for apoptotic inducers from synthetic anticancer compounds. There are many ways of detecting apoptosis. Detection of apoptosis using fluorescence microscope has many advantages over other methods because it does not include an enzymatic reaction that is affected by many variables such as pH, temperature, and composition buffers [42]. Single and double staining methods for detecting apoptosis (AO/EB), produce reliable and reproducible results. The results of the apoptotic cell identified by the AO/EB method are highly reproducible [43].

Induction of apoptosis is often linked to the activation of caspases. Incubation of MCF-7 cells with 7b- and 5d-induced caspase-3/7 activity is evident by a bright green fluorescence in treated cells after 24 h. Thus, apoptosis induced by 7b and 5d was caspase dependent. Both pathways, intrinsic and extrinsic pathways, activate downstream effector caspases mainly caspase-3 and caspase-7 [44]. Apoptosis is the main target in treatment strategies of cancer. Anticancer compounds that induce apoptosis are promising candidate for cancer therapy. Further studies are required to assess other pathways for apoptosis. These data provide a scientific foundation for the discovery and development of novel anticancer compounds from benzimidazole thiourea and benzimidazole urea derivatives.

4 Conclusion

In summary, we have designed and synthesized a series of 16 novel compounds (4a–j), (5b–e), 7b, and 8b that contain benzimidazole, piperazone, ethylenediamine, and urea or thiourea moieties. These compounds were characterized by using suitable spectroscopic techniques including 1H and 13C NMR, IR, and high-resolution mass spectrometry. In vitro anticancer assay against breast cancer cell lines, MCF-7 and MDA-MB-231, revealed that the cytotoxicity of compounds 7b and 5d were higher in MCF7 with IC50 values of 25.8 and 48.3 µM, respectively, as compared with their activity in MDA-MB-231 cells. These results could be a lead to prepare new benzimidazole derivatives with potent anticancer activity.

Acknowledgements: The authors are grateful to the Deanship of Scientific Research, King Saud University, for funding through Vice Deanship of Scientific Research Chairs.

Funding information: The research was funded by Vice Deanship of Scientific Research Chairs, King Saud University.

Author contributions: Lamia Ali Siddig carried out the synthesis experiments and characterization. Abdelouahid Samadi carried out the spectral analysis and characterization. Mohammad A Khasawneh and Haythem A. Saadeh conceived and planned the synthesis. Nael Abutaha and Mohammad A. Wadaan conceived, planned, and carried out the experiments in bioassay. Haythem A. Saadeh was in charge of overall direction and planning, and wrote the manuscript with input from all authors. All authors have read and agreed to publish the manuscript.

Conflict of interest: The authors declare no conflict of interest.

Ethical approval: The conducted research is not related to either human or animal use.

Data availability statement: All data are included in this published article.

References

[1] Kardile D, Arora P. Review on: benzimidazole derivatives as potent biological agent. J Curr Pharm Res. 2011;1(4):300–5.
[2] Hakeem S, Singh I, Sharma P, Uppal A, Khajuria Y, Verma V, et al. Molecular dynamics analysis of the effects of GTP, GDP and benzimidazole derivative on structural dynamics of a cell division protein FtsZ from Mycobacterium tuberculosis. J Biomol Struct Dyn. 2019;37(16):4361–73. doi: 10.1080/07391102.2018.1548979.
Alasmary FAS, Snelling AM, Zain ME, Alafeefy AM, Awaad AS, Karodia N. Synthesis and evaluation of selected benzimidazole derivatives as potential antimicrobial agents. Molecules. 2015;20(8):15206–23. doi: 10.3390/molecules200815206.

Desai NC, Pandya D, Vaja D. Synthesis and antimicrobial activity of some heterocyclic compounds bearing benzimidazole and pyrazoline motifs. Med Chem Res. 2018;27(1):52–60. doi: 10.1007/s00044-017-2040-5.

Karabunun AC, Çavuşcu BK, Çevik UA, Osmanie D, Sa BN, Levent S, et al. Synthesis and antifungal potential of some novel benzimidazole-1,3,4-oxadiazole compounds. Molecules. 2019;24(1):1–14. doi: 10.3390/molecules24010191.

Ke Y, Zhi X, Yu X, Ding G, Yang C, Xu H. Combinatorial synthesis of benzimidazole-azo-phenol derivatives as antifungal agents. Comb Chem High Throughput Screen. 2014;17(1):89–95. doi: 10.2174/18362073113166660058.

Si W, Zhang T, Li Y, She D, Pan W, Gao Z, et al. Synthesis and biological activity of novel benzimidazole derivatives as potential antifungal agents. J Pesticide Sci. 2016;41(1):15–9. doi: 10.1584/pjst.15-037.

Keller P, Müller C, Engelhardt I, Hiller E, Lemuth K, Eickhoff H, et al. An antifungal benzimidazole derivative inhibits ergosterol biosynthesis and reveals novel sterols. Antimicrob Agents Chemother. 2005;59(10):6296–307. doi: 10.1128/AAC.00640-15.

Shaker YM, Omar MA, Mahmoud K, Elhallouty SM, El-Senousy WM, Ali MM, et al. Synthesis, in vitro and in vivo antitumor and antiviral activity of novel 1-substituted benzimidazole derivatives. J Enzyme Inhib Med Chem. 2015;30(5):826–45. doi: 10.1080/14756366.2014.979344.

Dittmer A, Woskobojnik I, Adfeldt R, Drach JC, Townsend LB, Voigt S, et al. Tetralohagenized benzimidazole α-ribonucleosides are active against rat cytomegalovirus. Antivir Res. 2017;137:102–7. doi: 10.1016/j.antiviral.2016.11.012.

Surineni G, Gao Y, Hussain M, Liu Z, Lu Z, Chhotaray C, et al. Design, synthesis, and in vitro biological evaluation of novel benzimidazole tethered allylidenehydrazinylmethylxazole derivatives as potent inhibitors of Mycobacterium tuberculosis. MedChemComm. 2019;10(1):49–60. doi: 10.1039/c8md00389k.

Yadav S, Narasimhan B, Lim SM, Ramasamy K, Vasudevan M, Shah SAA, et al. Synthesis and evaluation of antimicrobial, antitubercular and anticancer activities of benzimidazole derivatives. Egypt J Basic Appl Sci. 2018;5(1):100–9. doi: 10.1016/j.ejbas.2017.11.001.

Araujo DML, Maste MM, Alegao S, Saxena A. Synthesis, antitubercular evaluation and docking studies of benzimidazole analogs. Int J Pharm Sci Res. 2018;9(9):3696–704. doi: 10.13040/IJPSR.0975-8233.9(9):3696-04.

Ushiroda K, Maruta K, Takazawa T, Nagano T, Tajii M, Kohno T, et al. Synthesis and pharmacological evaluation of novel benzoylazole-based PPAR α/γ activators. Bioorg Med Chem Lett. 2011;21(7):1978–82. doi: 10.1016/j.bmc.2011.02.032.

Özil M, Emirk M, Beldüz A, Ülker S. Molecular docking studies and synthesis of novel bisbenzimidazole derivatives as inhibitors of α-glucosidase. Bioorg Med Chem. 2016;24(21):5103–14. doi: 10.1016/j.bmc.2016.08.024.

Gaba M, Singh D, Singh S, Sharma V, Gaba P. Synthesis and pharmacological evaluation of novel 5-substituted-1-(phenylsulfonyl)-2-methylbenzimidazole derivatives as anti-inflammatory and analgesic agents. Eur J Med Chem. 2010;45(6):2245–49. doi: 10.1016/j.ejmech.2010.01.067.

Kumar N, Sharma CS, Ranawat MS, Singh HP, Chauhan LS, Dashora N. Synthesis, analgesic and anti-inflammatory activities of novel mannich bases of benzimidazoles. J Pharm Invest. 2015;45(1):65–71. doi: 10.1007/s40005-014-0145-0.

Anand K, Wakode S. Development of drugs based on benzimidazole heterocycle: recent advancement and insights. Int J Chem Stud. 2017;5(2):350–62.

Alpan AS, Sankaya G, Çoban G, Parlar S, Armagan G, Alptüzün V. Mannich-benzimidazole derivatives as antioxidant and anticholinesterase inhibitors: synthesis, biological evaluations, and molecular docking study. Arch Der Pharm. 2017;350(7):1–15. doi: 10.1002/ardp.201600351.

Karmaker N, Lira DN, Das BK, Kumar U, Rouf ASS. Synthesis and antioxidant activity of some novel benzimidazole derivatives. Dhaka Univ J Pharm Sci. 2017;16(2):245–9. doi: 10.3329/djups.v16i2.35263.

Refaat HM. Synthesis and anticancer activity of some novel 2-substituted benzimidazole derivatives. Eur J Med Chem. 2010;45(7):2949–56. doi: 10.1016/j.ejmech.2010.03.022.

Azam M, Khan AA, Al-Resayes SI, Islam MS, Saxena AK, Dwivedi S, et al. Synthesis and characterization of 2-substituted benzimidazoles and their evaluation as anticancer agent. Spectrochim Acta Part A Mol Biomol Spectrosc. 2015;142:286–91. doi: 10.1016/j.saa.2015.01.016.

Ibrahim H, Refaat M. Versatile mechanisms of 2-substituted benzimidazoles in targeted cancer therapy. Future J Pharm Sci. 2020;6(1):1–20. doi: 10.1186/s43094-020-00048-8.

Nas Z, Zahoor M, Umar MN, Alghamdi S, Sahibzada MUK, UlBari W. Synthesis, characterization, and pharmaceutical evaluation of thiourea derivative. Open Chem. 2020;18(1):764–77. doi: 10.1515/chem-2020-0139.

Goffin E, Lamoral-Theys D, Tajeddine N, de Tulipio P, Mondin L, Lefranc F, et al. N-Aryl-N′-(chroman-4-yl)ureas and thioureas display in vitro anticancer activity and selectivity on apoptosis-resistant glioblastoma cells: screening, synthesis of simplified derivatives, and structure-activity relationship analysis. Eur J Med Chem. 2012;54:834–44. doi: 10.1016/j.ejmech.2012.06.050.

Vega-Pérez JM, Periñán I, Argandaña M, Vega-Holm M, Palo-Nieto C, Burgos-Morón E, et al. Isoprenyl-thiourea and urea derivatives as new farnesyl diphosphate analogues: synthesis and in vitro antimicrobial and cytotoxic activities. Eur J Med Chem. 2012;58:591–612. doi: 10.1016/j.ejmech.2012.10.042.

Ronchetti R, Moroni G, Carotti A, Gioiello A, Camaioni E. Recent advances in urea- and thiourea-containing compounds: focus on innovative approaches in medicinal chemistry and organic synthesis. RSC Med Chem. 2021;12(7):1046–64. doi: 10.1039/d1md00058f.

Madabhushi S, Mallu KKR, Vangipuram VS, Kurva S, Poornachandra Y, Ganesh Kumar C. Synthesis of novel benzimidazole functionalized chiral thioureas and evaluation of their antibacterial and anticancer activities. Bioorg Med Chem Lett. 2014;24(20):4822–5. doi: 10.1016/j.bmcl.2014.08.064.

Wang W, Kong D, Cheng H, Tan L, Zhang Z, Zhuang X, et al. New benzimidazole-2-urea derivatives as tubulin inhibitors. Bioorg Med Chem Lett. 2014;24(17):4250–3. doi: 10.1016/j.bmcl.2014.07.035.
[30] Tahlan S, Kumar S, Kakkar S, Narasimhan B. Benzimidazole scaffolds as promising antiproliferative agents: a review. BMC Chem. 2019;13(3):1–16. doi: 10.1186/s13065-019-0579-6.

[31] Yu DD, Wu Y, Shen HY, Lv MM, Chen WX, Zhang XH, et al. Exosomes in development, metastasis and drug resistance of breast cancer. Cancer Sci. 2015;106(8):959–64. doi: 10.1111/cas.12715.

[32] Dai X, Cheng H, Bai Z, Li J. Breast cancer cell line classification and its relevance with breast tumor subtyping. J Cancer. 2017;8(16):3131–41. doi: 10.7150/jca.18457.

[33] Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull. 2017;7(3):339–48. doi: 10.15171/apb.2017.041.

[34] Newmeyer DD, Ferguson-Miller S. Mitochondria: releasing power for life and unleashing the machineries of death. Cell. 2003;112(4):481–90. doi: 10.1016/S0092–8674(03)00116–8.

[35] Masood A, Azmi AS, Mohammad RM. Small molecule inhibitors of Bcl-2 family proteins for pancreatic cancer therapy. Cancers. 2011;3(2):1527–49. doi: 10.3390/cancers3021527.

[36] Lv F, Li ZF, Hu W, Wu X. Small molecules enhance functional O-mannosylation of alpha-dystroglycan. Bioorg Med Chem. 2015;23(24):7661–70. doi: 10.1016/j.bmc.2015.11.011.

[37] Wang L, Koffer M, Brosch G, Melesina J, Sipli W, Martinez ED, et al. 2-Benzazolyl-4-piperazin-1-ylsulfonylbenzenecarboxylic acids as novel selective histone deacetylase-6 inhibitors with antiproliferative activity. PLoS One. 2015;10(12):e0134556. doi: 10.1371/journal.pone.0134556.

[38] Devine WG, Diaz-Gonzalez R, Ceballos-Perez G, Rojas D, Satoh T, Tear W, et al. From Cells to Mice to Target: Characterization of NEU-1053 (SB-443342) and Its Analogues for Treatment of Human African Trypanosomiasis. Am Chem Soc Infect Dis. 2017;3(3):225–36. doi: 10.1021/acs.infectdis.6b00202.

[39] Radhika NK, Sreejith PS, Asha VV. Cytotoxic and apoptotic activity of Cheilanthes farinosa (Forsk.) Kaulf. against human hepatoma, Hep3B cells. J Ethnopharmacol. 2010;128(1):166–71. doi: 10.1016/j.jep.2010.01.002.

[40] Aigner T. Apoptosis, necrosis, or whatever: How to find out what really happens? J Pathol. 2002;198(1):1–4. doi: 10.1002/path.1172.

[41] El-Menshawy BS, Fayad W, Mahmoud K, El-Hallouy SM, El-Manawy M, Olofsson MH, et al. Screening of natural products for therapeutic activity against solid tumors. Ind J Exp Biol. 2010;48(3):258–64.

[42] Galluzzi L, Aaronson SA, Abrams J, Alnemri ES, Andrews DW, Baehrecke EH, et al. Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ. 2009;16(8):1093–107. doi: 10.1038/cdd.2009.44.

[43] Baskić D, Popović S, Ristić P, Arsenijević NN. Analysis of cycloheximide-induced apoptosis in human leukocytes: Fluorescence microscopy using annexin V/propidium iodide versus acidin orange/ethidium bromide. Cell Biol Int. 2006;30(11):924–32. doi: 10.1016/j.cbi.2006.06.016.

[44] Woo HJ, Jun DY, Lee JY, Woo MH, Yang CH, Kim YH. Apoptogenic activity of 2α,3α-dihydroxyurs-12-ene-28-oic acid from Prunella vulgaris var. lilacina is mediated via mitochondria-dependent activation of caspase cascade regulated by Bcl-2 in human acute leukemia Jurkat T cells. J Ethnopharmacol. 2011;135(3):626–35. doi: 10.1016/j.jep.2011.03.067.