BMJ Open
Enhanced recovery following hip and knee arthroplasty: a systematic review of cost-effectiveness evidence

Mark G Pritchard,1,2 Jacqueline Murphy,1,3 Lok Cheng,1,4 Roshni Janarthanan,1,2 Andrew Judge,5,6 Jose Leal1

Abstract

Objectives To assess cost-effectiveness of enhanced recovery pathways following total hip and knee arthroplasties. Secondary objectives were to report on quality of studies and identify research gaps for future work.

Design Systematic review of cost–utility analyses.

Data sources Ovid MEDLINE, Embase, the National Health Service Economic Evaluations Database and EconLit, January 2000 to August 2019.

Eligibility criteria English-language peer-reviewed cost–utility analyses of enhanced recovery pathways, or components of one, compared with usual care, in patients having total hip or knee arthroplasties for osteoarthritis.

Data extraction and synthesis Data extracted by three reviewers with disagreements resolved by a fourth. Study quality assessed using the Consensus on Health Economic Criteria list, the International Society for Pharmacoconomics and Outcomes Research and Assessment of the Validation Status of Health-Economic decision models tools; for trial-based studies the Cochrane Collaboration’s tool to assess risk of bias. No quantitative synthesis was undertaken.

Results We identified 17 studies: five trial-based and 12 model-based studies. Two analyses evaluated entire enhanced recovery pathways and reported them to be cost-effective compared with usual care. Ten pathway components were more effective and cost-saving compared with usual care, three were cost-effective, and two were not cost-effective. We had concerns around risk of bias for all included studies, particularly regarding the short time horizon of the trials and lack of reporting of model validation.

Conclusions Consistent results supported enhanced recovery pathways as a whole, prophylactic systemic antibiotics, antibiotic-impregnated cement and conventional ventilation for infection prevention. No other interventions were subject of more than one study. We found ample scope for future cost-effectiveness studies, particularly analyses of entire recovery pathways and comparison of incremental changes within pathways. A key limitation is that standard practices have changed over the period covered by the included studies.

Strengths and limitations of this study

► This systematic review of enhanced recovery pathways for hip and knee arthroplasties had a detailed search strategy, including entire pathways and their components.
► Appropriate tools were used to assess quality and validity of models, trials and economic evaluations.
► Conclusions were reliant on the availability, quality and validity of published studies into cost-effectiveness of hip and knee arthroplasty.

INTRODUCTION

Hip and knee arthroplasties are common procedures: around 1 million of each were performed in 2011 within Organisation for Economic Co-operation and Development countries,1,2 and rates continue to increase.3–6 Enhanced recovery is a multimodal approach to reduce surgical morbidity and mortality. Recognising that factors other than surgical technique affect patient outcomes, Kehlet7 considered how to optimise the preoperative, intraoperative and postoperative phases of patient care. These principles have been further developed specifically within the context of hip and knee arthroplasty.8–15 Common components of an enhanced recovery pathway for hip and knee arthroplasty are listed in box 1. A recent systematic review16 found that enhanced recovery after hip and knee arthroplasties reduced length of stay in hospital. The authors cited a study from New Zealand17 which found an enhanced recovery pathway to be cost saving, but the study did not include any data on cost-effectiveness.

Cost–utility analyses have become the preferred approach to inform decisions on healthcare resource allocation.18 19 In these, the effects of treatments are measured in quality-adjusted life years (QALY): the product of health-related quality of life (anchored at 0 for death and 1 for perfect health), and the time (in years) spent experiencing that level of health. Incremental cost-effectiveness ratios (ICER) are used to...
compare a treatment to a less effective alternative and a threshold value is used to determine whether it is cost-effective. Different countries have different thresholds for how much they are willing to pay per QALY gained.20

Systematic reviews of cost-effectiveness analyses have considered arthroplasty versus conservative management,21,22 and specific components of enhanced recovery such as thromboprophylaxis.23–25 However, we are not aware of any systematic reviews investigating the cost-effectiveness of a complete enhanced recovery pathway, or of most of the components. Our aim was to assess the cost-effectiveness evidence of enhanced recovery for patients having hip and knee arthroplasty. Specifically, we were interested in studies of adults having total hip arthroplasty (THA) or total knee arthroplasty (TKA) for osteoarthritis, comparing an enhanced recovery pathway or components of one against usual care. Secondarily, we wanted to report study quality and identify research gaps for future work.

METHODS

The complete methods are available in the published protocol,26 registered with the International Prospective Register of Systematic Reviews, number CRD42017059473.27 The selection of electronic databases and the search strategy were developed with an information specialist and in line with the preferred reporting items for systematic reviews and meta-analyses.28 We searched Ovid MEDLINE, Embase, the National Health Service Economic Evaluations Database (via the Cochrane Library) and EconLit (via ProQuest) for English-language peer-reviewed papers published between 1 January 2000 and 1 March 2017 which included a cost-utility analysis of an enhanced recovery pathway or components of one, compared with usual care in patients having hip or knee arthroplasties (the complete search strategy for each database is presented in online supplementary table A1). Additional publications meeting our inclusion criteria were identified from the reference lists of the included studies. We repeated our search in August 2019 to identify more recently published studies. Our target population was adults having surgery for osteoarthritis. Studies exclusively concerning populations with other indications for surgery were excluded. We included studies with patients having different indications for surgery if the majority had osteoarthritis, or if the presented results allowed independent extraction of data for the subpopulation with osteoarthritis. Given that osteoarthritis is an indication for 92% of hip and 96% of knee arthroplasties,29 we assumed that studies not providing details of the indication for surgery were representative of a population with osteoarthritis and therefore included these studies. Evaluations of surgical technique or choice of implant were excluded.

Studies were independently screened based on their titles and abstracts by four reviewers (MGP, JM, LC and JL). Full texts were obtained for studies chosen for inclusion by any reviewer. As an amendment to the protocol, evaluations of thromboprophylaxis were excluded at the full-text stage due to a recent comprehensive systematic review in that area.23 Data extraction was performed for remaining studies by three reviewers (MGP, JM and RJ), with disagreements resolved by a fourth reviewer (JL). The data extraction form is included in the published protocol.26

To assess the quality of studies, we completed the Consensus on Health Economic Criteria (CHEC) list30 for each publication. For model-based studies, we also used the questionnaire produced by the International Society for Pharmacoeconomics and Outcomes Research (ISPOR),31 and the Assessment of the Validation Status of Health-Economic (AdViSHE) decision models tool.32 We

Box 1 Suggested components of an enhanced recovery pathway for hip and knee arthroplasty patients, data from references cited in text.

Preoperative
▶ Education.
▶ Discharge planning.
▶ Multidisciplinary assessment.
▶ Neuromuscular electrical stimulation.
▶ Nutrition screening.
▶ Optimisation of comorbidities.
▶ Physiotherapy.
▶ Premedication (possibly including standardised analgesia and steroids).
▶ Pulsed electromagnetic fields.

Intraoperative
▶ Standardised intravenous fluids.
▶ Avoid unnecessary blood transfusion.
▶ Minimally invasive surgery.
▶ Reduce heat loss.
▶ Specified anaesthetic requirements, such as spinal anaesthesia.
▶ Local infiltration of anaesthesia.
▶ Tranexamic acid.
▶ Prophylactic antibiotics.
▶ Intravenous dexamethasone.
▶ Avoid unnecessary drains.
▶ Computer-assisted surgery.

Postoperative
▶ Analgesia.
▶ Scheduled antiemetic.
▶ Physical therapy starting on day of surgery.
▶ Avoid unnecessary blood transfusion.
▶ Oxygen administration.
▶ Avoid sleep disturbances.
▶ Early oral nutrition.
▶ Wound care.
▶ Thromboprophylaxis.
▶ Neuromuscular electrical stimulation.
▶ Aim for early discharge.
added the Cochrane Collaboration’s tool to the original protocol to assess risk of bias in trial-based studies, referring to the original reports of trial outcomes where necessary. We assessed the quality of the data sources used in the studies according to a prespecified hierarchy of evidence tool (see online supplementary table A2). For each component of a study, a score of 1 represented the use of the most appropriate data source, with increasing numbers representing progressively less appropriate sources.

The principal outcomes were a point estimate of cost-effectiveness in terms of incremental cost per QALY gained, and the probability of an intervention being cost-effective according to the willingness to pay threshold used by the authors of each study. We also examined whether an intervention could be cost-effective in a different country or setting than the original study. Hence, we assumed the studies to be generalisable and the ICERs to be comparable after conversion into 2016 purchasing power parity international dollars (US PPP).36 As the studies had different methodologies and looked at different combinations of components of the enhanced recovery pathway, no quantitative synthesis of the study results was attempted.

Patient and public involvement
No patient involved.

RESULTS

Study selection
Our original search identified 11 060 publications, and one additional publication was found from other sources. We repeated the search in August 2019 and identified 3903 additional studies. After excluding duplicates, we screened 8657 titles and abstracts. We excluded 8482 papers based on their abstracts. For one study, we were unable to obtain the full text but it did not appear to be a cost-effectiveness study from the abstract. We therefore reviewed 174 full texts. We excluded 157 studies following

![Flow diagram of studies included in this review and reasons for exclusion, modified from Moher et al.](http://bmjopen.bmj.com/ BMJ Open: first published as 10.1136/bmjopen-2019-032204 on 15 January 2020. Downloaded from http://bmjopen.bmj.com/ on February 10, 2020 at Bodleian Libraries of the University of Oxford. Protected by copyright.

Figure 1 Flow diagram of studies included in this review and reasons for exclusion, modified from Moher et al.28 NHS EED, National Health Service Economic Evaluations Database; QALY, quality-adjusted life year.
review of their full texts (reasons for exclusion given in figure 1) and included 17 papers in this review.37–53

Overview of included studies
Table 1 summarises the 17 included studies. Eight studies included both THA and TKA,37 38 40–43 45 49 five only THA44 46–48 53 and four only TKA.39 50–52 Two papers looked at an entire enhanced recovery pathway.37 38 We identified cost–utility evaluations of optimisation of comorbidities (specifically morbid obesity),39 measures to reduce allo-
genic blood transfusion,42–44 local infiltration of anaes-
thetic,45 prophylactic antibiotics and other infection prevention measures41 46–49 and physical therapy before or after surgery.40 50–52 The final study53 concerned the optimal timing of follow-up which, although not included in our prior list of enhanced recovery interventions, we have included here as being allied to the pathway. Five studies were trial-based economic evaluations,37 38 40 45 51 of the remaining 12 being model-based. Eight studies were from Europe,37 38 40 45 47–51 seven from the USA39 41–44 46 52 and two from Australia.48 53 Perspective, time horizon, discount rates and price year used in each study are reported in online supplementary table A3. The study perspective varied from only hospital costs to a broader (societal) cost perspective.37–41 49 50 52 Types of costs captured in each study are reported in online supplementary table A4. Of the seven studies eliciting utilities, QALYs were informed by utility values based on the EQ-5D-3L instrument in six studies37 40 45 50 52–54 and on the 15D instrument in one study (online supplementary table A5).51

Assessment of study and reporting quality
Using the CHEC list, the quality of the studies was generally good (figure 2A). Items raising more concerns were the short time horizons of the five trial-based studies (1 year)37 38 40 45 51 and three model-based studies (between 6 weeks and 7 years).44 45 49 Using the Cochrane Collaboration’s tool (figure 2B) for the five trials47 54–57 studies were based on, the risk of bias was low for items such as incomplete outcome data and selective reporting but high or uncertain for the remainder. Four trial reports stated that the participants were allocated at random,54–57 and the fifth was a before and after trial whereby patients were recruited consecutively from a waiting list.37 Larsen and colleagues discussed stratification, Kauppila and colleagues reported a computer-generated sequence and Villadsen and colleagues used sequentially numbered sealed opaque envelopes. The staff administering the interventions were not blinded to allocation in any trial, and in three trials outcomes were assessed by researchers aware of the treatment allocation. Using the ISPOR questionnaire, the quality of the model-based studies was generally good (figure 2C). However, none of the model-based studies reported a detailed process for internal and external validation. Four studies were based on previously published models.58–61 Of these, only Briggs and colleagues (the basis for Fusco and Turchetti’s model) provided details of model validation. Some model-based studies excluded potentially important outcomes, for example, Cummins and colleagues did not include the possibility of requiring more than one revision surgery, and in Bolz and colleagues’ model there was no reduction in utility associated with delayed revisions. Further limitations in model validation were highlighted with the AdViSHE tool (figure 2D).32

The hierarchy of evidence used in the studies is reported in online supplementary table A6. Three model-based studies scored poorly as they did not use randomised trial data to inform the clinical effective size of the interventions being analysed. Most studies did not cite a source for the assumption of the duration of treatment effect beyond that observed in the primary source for clinical effect size. Four trial-based studies and one model-based study included assessments of utilities from patients using validated tools and scored highly in terms of quality of evidence.

Results of economic evaluation
The results of the included studies are summarised in table 2. Costs, QALYs and ICERs for each comparison performed in each study are listed in online supplementary table A7.

Whole recovery pathway
Two studies considered multiple components of the enhanced recovery pathway. The first study was an economic analysis of a randomised trial with 56 THA and 31 TKA participants in Denmark.38 The pathway used in the treatment arm (‘accelerated care’) had no difference from the control group (‘conventional rehabilitation’) in terms of intraoperative management, analgesia, nausea control or bowel regulation. Differences in the treatment protocols between the two arms involved patient education, nutrition, admission times, staffing and mobilisation (described in online supplementary table A8). The accelerated care pathway was the dominant strategy both overall and in the subgroup of THA patients (ie, less costly and more effective than the control group). For TKA patients, the authors found the accelerated care pathway to be cost-saving but less effective compared with the control group although not statistically significant. There was a cost saving of 618 075 Danish krone per QALY lost with accelerated care compared with conventional rehabilitation, which made it cost-effective (threshold of 160 000 krone per QALY in Denmark).

The second study was an economic evaluation of a before and after trial with 98 THA and 62 TKA participants in the Netherlands.37 The intervention (‘Joint Recovery Programme’) consisted of a 20 min pre-assessment screening 6 weeks before the operation for physical assessment and analysis of the home situation to aid discharge planning, patient education sessions 1–2 weeks before surgery, group rehabilitation sessions and supervision by physical therapists and nurses (online supplementary table A8). Patients in the ‘usual care’ group underwent
Authors, publication year	Comparison	Joint	Study type	Country
Enhanced recovery pathway				
Brunenberg et al, 2005	Joint Recovery Programme (pre-assessment and intensive rehabilitation), vs conventional care	Hip and knee	Trial-based	The Netherlands
Larsen et al, 2009	Accelerated perioperative care and rehabilitation, vs conventional care	Hip and knee	Trial-based	Denmark
Preoperative				
Mclawhorn et al, 2016	Bariatric surgery followed by TKA 2 years later, vs immediate TKA	Knee	Markov model	USA
Fernandes et al, 2017	Supervised neuromuscular exercise and an educational package, vs educational package alone	Hip and knee	Trial-based	Denmark
Courville et al, 2012	Preoperative nasal screening for *Staphylococcus aureus* colonisation followed by mupirocin treatment for patients with positive cultures, vs empirical treatment of all preoperative patients with mupirocin, vs standard infection prevention measures without *S. aureus* screening or mupirocin decolonisation	Hip and knee	Decision tree model	USA
Intraoperative				
Jackson et al, 2000	Postoperative erythrocyte recovery and transfusion, vs usual transfusion practice	Hip and knee	Markov model	USA
Ramkumar et al, 2018	Single-dose intravenous tranexamic acid, vs single-dose intravenous aminocaproic acid, vs no pharmacologic haemostatic agent	Hip and knee	Decision-tree model	USA
Sonnenberg, 2002	Autologous blood donation and transfusion, vs usual practice without autologous donation	Hip	Markov model	USA
Marques et al, 2015	Intraoperative local anaesthetic wound infiltration administered before wound closure in addition to standard anaesthesia, vs standard anaesthesia	Hip and knee	Trial-based	UK
Cummins et al, 2009	Antibiotic-impregnated bone cement, vs conventional cement	Hip	Markov model	USA
Graves et al, 2016	Nine arms, comparing combinations of prophylactic systemic antibiotics, antibiotic-impregnated cement, laminar airflow and body exhaust suits	Hip	Markov model	UK
Merollini et al, 2013	No antibiotic prophylaxis, antibiotic prophylaxis and antibiotic-impregnated cement and antibiotic prophylaxis and laminar airflow, each compared with a baseline strategy of routine antibiotic prophylaxis	Hip	Markov model	Australia
Nherera et al, 2017	Single-use negative pressure wound therapy dressings, vs usual care	Hip and knee	Decision-tree model	UK
Postoperative				
Fusco and Turchetti, 2010	10 face-to-face rehabilitation sessions plus 10 telesessions, vs 20 face-to-face rehabilitation sessions	Knee	Markov model	Italy
Kauppila et al, 2011	Multidisciplinary biopsychosocial outpatient rehabilitation programme, vs conventional orthopaedic care	Knee	Trial-based	Finland
Smith et al, 2018	Telephonic health coaching and financial incentives vs telephone calls conveying general health messages	Knee	Markov model	USA
Bolz et al, 2010	2-yearly routine follow-up vs follow-up at 3 months and 1 or 2 years, vs no follow-up	Hip	Markov model	Australia

Continued
conventional physiotherapy for 1 hour/day and did not receive pre-assessment screening or information sessions, and discharge arrangements were addressed during admission to hospital. The joint recovery programme intervention was dominant for both hip and knee replacement, resulting in a cost saving of US$1261 per patient for THA and US$3336 per patient for TKA, with no statistically significant difference in effect. The probability that the joint recovery programme was the most cost-effective option was above 80% for THA and TKA for willingness to pay thresholds up to US$45 000.

Preoperative components

McLawhorn and colleagues used a Markov model to assess the cost-effectiveness of bariatric surgery 2 years before TKA for morbidly obese (body mass index≥35 kg/m²) patients who were candidates for both operations due to end-stage knee osteoarthritis and failed non-operative weight-loss interventions. The strategy including bariatric surgery was cost-effective at the stated willingness to pay threshold of US$100 000 per QALY in 98.8% of probabilistic simulations.

Fernandes and colleagues conducted an economic evaluation alongside a trial of 8 weeks of supervised neuromuscular exercise in addition to an educational package prior to surgery. Their point estimate was that the intervention was dominant, with a saving of 132 euro and a benefit of 0.04 QALYs. It had an 84% probability of being cost-effective at a willingness to pay threshold of 40 000 euro per QALY.

Courville and colleagues compared three strategies of screening for and treating Staphylococcus aureus colonisation to prevent deep surgical site infections for TKA and THA. They found that decolonisation of all preoperative patients with mupirocin, without testing for S. aureus, was the dominant strategy (cheaper and more effective) when compared with treating patients testing positive only for S. aureus, or no screening or decolonisation for S. aureus.

Intraoperative components

Strategies to reduce allogenic blood transfusions were collection of autologous blood prior to surgery, aseptic collection of wound drainage and use of aminocaproic acid or tranexamic acid to reduce bleeding. Autologous blood collection was found to be cost-effective at US$2750 per QALY gained, whereas wound drainage collection was not, costing US$5.7 million per QALY gained. However, in the latter study, the only benefit of avoiding allogenic transfusion considered was a reduced risk of blood-borne virus infection. In contrast, Sonnenberg’s model for THA found a minimal effect from the risk of blood-borne virus infection in either costs or outcomes; 99.6% of the increase in QALYs was due to a reduced risk of bacterial infection. When the risk of bacterial infection was removed from this model, the ICER increased to US$2.5 million per QALY gained. Use of tranexamic acid was more effective and cost-saving compared with either aminocaproic acid or not using a haemostatic agent.
Marques and colleagues conducted economic evaluations of adding local wound infiltration with bupivacaine to usual anaesthetic care for THA and TKA. The infiltration of local anaesthetic was found to be dominant compared with standard anaesthesia in both THA and TKA patients.

Three studies used Markov models to investigate similar measures to reduce surgical site infection in the USA, the UK and Australia. The dominant strategy in all three included the use of antibiotic-impregnated cement. The two studies that looked at other factors each found use of prophylactic systemic antibiotics to be dominant over non-use, and use of conventional ventilation in operating theatres to be dominant over laminar airflow ventilation. Graves and colleagues considered the use of body exhaust suits and found them to be dominated by strategies that did not include use of these suits. A fourth study investigated using single-use negative pressure wound dressings to reduce surgical site infection.

Postoperative components

Fusco and Turchetti used a Markov model to evaluate a strategy of 10 face-to-face rehabilitation sessions followed by 10 telerehabilitation sessions after TKA, compared with 20 face-to-face sessions. They found the strategy including telerehabilitation to be cost saving, and improved range of movement (knee flexion). However, they found no utility data for patients following a telerehabilitation programme so their base case assumed it to be non-inferior to face-to-face rehabilitation. In a sensitivity analysis, if telerehabilitation conferred an improvement in quality of life of at least 2.5%, the strategy’s probability of being cost-effective was 1; if it led to a reduction in quality of life of at least 2.5%, the probability of being cost-effective was 0 (each at a willingness to pay threshold of 30 000 euros per QALY).

Kauppila and colleagues performed an economic evaluation of a 10-day outpatient rehabilitation course between 2 and 4 months after TKA which included clinical assessments, physical activity, sessions with a psychologist and lectures from an orthopaedic surgeon, nutritionist and social worker. They found that patients who completed this course had higher costs and slightly worse quality of life outcomes over 1 year of follow-up (though the difference was non-significant at the 5% level) compared with those receiving conventional orthopaedic care.

Smith and colleagues used a Markov model to investigate a postoperative strategy combining telephonic health coaching and financial incentives to increase physical activity. The intervention increased costs by US$300 and was associated with an increase in utility of 0.005 QALYs. The point-estimate ICER was US$57 200 per QALY, with a 70% probability of being cost-effective at a willingness to pay threshold of US$100 000 per QALY.

Bolz and colleagues compared three follow-up strategies: two yearly routine follow-up; follow-up twice at 3 months, and between 1 and 2 years after surgery; or no follow-up. The model assumed that no revisions would be delayed in either strategy that included follow-up, and the outcomes for these two strategies were identical in each analysis. The no follow-up strategy was dominant for any assumed rate of delayed revision between 1% and 50%.

Figure 2 Assessments of study quality based on tools from (A) Consensus on Health Economic Criteria, (B) International Society for Pharmacoeconomics and Outcomes Research, (C) assessment of the validation status of Health-Economic decision models tool and (D) Cochrane Collaboration. Note that the study by Brunenberg and colleagues was a non-randomised before and after trial and we have included it in panel (D) for completeness.
Table 2 Summary of findings from studies included in this analysis

Authors, country	Population	Strategy	Cost-effective?
Enhanced recovery pathway			
Brunenberg *et al*, The Netherlands\(^{37}\)	THA and TKA	Conventional care	–
		Joint Recovery Programme (pre-assessment and intensive rehabilitation)	Yes, more effective and less costly
Larsen *et al*, Denmark\(^{38}\)	THA	Conventional care	–
		Accelerated perioperative care and rehabilitation	Yes, more effective and less costly
	TKA	Conventional care	–
		Accelerated perioperative care and rehabilitation	Yes, less effective but less costly
Preoperative			
McLawhorn *et al*, USA\(^{39}\)	Morbid obese TKA	Immediate TKA	–
		Bariatric surgery, followed by TKA 2 years later	Yes
Fernandes *et al*, Denmark\(^{40}\)	THA and TKA	Educational package	–
		Supervised neuromuscular exercise in addition to educational package	Yes, more effective and less costly
Couville *et al*, USA\(^{41}\)	THA and TKA	Standard infection prevention measures without *Staphylococcus aureus* screening or *mupirocin* decolonisation OR preoperative nasal screening for *S. aureus* followed by *mupirocin* treatment for patients with positive cultures	–
		Empirical treatment of all preoperative patients with *mupirocin*	Yes, more effective and less costly
Intraoperative			
Jackson *et al*, USA\(^{42}\)	THA and TKA	Usual transfusion practice	–
		Postoperative erythrocyte recovery and transfusion	No
Ramkumar *et al*, USA\(^{43}\)	THA and TKA	No pharmacologic haemostatic agent OR single-dose intravenous aminocaproic acid	–
		Single-dose intravenous tranexamic acid	Yes, more effective and less costly
Sonnenberg, USA\(^{44}\)	THA	Usual practice without autologous donation	–
		Autologous blood donation and transfusion	Yes
Marques *et al*, UK\(^{45}\)	THA and TKA	Standard anaesthesia	–
		Intraoperative local anaesthetic wound infiltration administered before wound closure in addition to standard anaesthesia	Yes, more effective and less costly
Cummins *et al*, USA\(^{46}\)	THA	Conventional cement	–
		Antibiotic-impregnated bone cement	Yes, more effective and less costly
Graves *et al*, UK\(^{47}\)	THA	No systemic antibiotics, plain cement and conventional ventilation	–
		Systemic antibiotics, antibiotic-impregnated cement and conventional ventilation	Yes, more effective and less costly
Merollini *et al*, Australia\(^{48}\)	THA	No antibiotic prophylaxis OR antibiotic prophylaxis OR antibiotic prophylaxis and *laminar airflow*	–
		Antibiotic prophylaxis and antibiotic-impregnated cement	Yes, more effective and less costly
Nherera *et al*, UK\(^{49}\)	THA and TKA	Usual care	–
		Single-use negative pressure wound therapy dressings	Yes, more effective and less costly
Postoperative			
Fusco and Turchetti, Italy\(^{50}\)	TKA	20 face-to-face rehabilitation sessions	–
		10 face-to-face rehabilitation sessions plus 10 telesessions	Yes, same effectiveness but less costly

Continued
We identified 15 studies presenting cost–utility data for components of an enhanced recovery pathway. These studies covered only a few of the potential enhanced recovery pathway components and were conducted across different healthcare systems using different cost perspectives. Three studies investigated overlapping strategies for reducing surgical infections supporting the use of prophylactic systemic antibiotics, antibiotic-impregnated cement and conventional ventilation.46–48 No other interventions were examined by more than one study. Scope to combine or generalise results is therefore limited.

The studies identified in this review were generally of good quality according to the CHEC list50 with a short time horizon identified as a key limitation in nine studies (between 6 weeks and 7 years). This is of significant concern as short time horizons will not capture or model the impact of the interventions on costs and benefits accruing over the long post-acute care period of interest. Furthermore, we also found that the large majority of studies did not consider ethical aspects and distributional implications of their findings. When the models were assessed against the ISPOR questionnaire,31 there were concerns about the lack of model validation work, potentially questioning the reliability of 10 of the 12 studies identified. The trials were generally of good quality. One trial was a non-randomised before and after trial,37 and participants were not blinded to the intervention for post-operative interventions in any of the studies. However, we concluded that the overall risk of bias among the studies appeared low.

Limitations of this review

We may have missed relevant evidence by limiting our search to reports published in the English language and excluding studies that did not report QALYs. Cost–utility analyses enable comparison between different interventions and are the preferred intelligence for healthcare allocation decisions.18 19 We therefore felt justified in limiting our review to studies reporting QALYs. We identified one study excluded due to not reporting QALYs that investigated a complete enhanced recovery pathway.66 In this study, the recovery pathway was found to be cost-saving and associated with statistically significant differences in
knee flexion and extension at 6 months. However, the clinical significance of these differences was not discussed and no health-related quality of life data were collected.66

The second limitation is that standard practices have changed during the period covered by the included studies. For example, many enhanced recovery techniques are now standard practice,7 and Nherera and colleagues49 even included enhanced recovery pathway as usual care in their model. Furthermore, other practices in the included studies are now outdated. For example, patients in the control group of Brunenberg and colleagues’ trial had an in-patient stay of 9.4 days,37 whereas by 2015 the mean length of stay in England was 4.9 days for TKA and 5.4 days for THA8 and has further decreased since.67 Also, practices such as blood transfusion rates have changed greatly; the two studies included in this review assumed transfusion rates of 89%44 to 100%,42 whereas rates in 2014 were 22% for THA and 18% for TKA patients,68 and rates of infection from blood transfusion are now lower than those used in the models.69

Research gaps for future work

Use of prophylactic systemic antibiotics and antibiotic-impregnated cement, and thromboprophylaxis23–25 are the only measures investigated in more than one cost–utility analysis. There is therefore very wide scope for further investigation of components of enhanced recovery. Pathways have a ‘whole package’ benefit in excess of the sum of their parts and can be used to ensure dissemination of evidence-based practice and delivery of more consistent care.70–72 From this perspective, specific components within a pathway might be less important than the degree of compliance with a protocol. However, as the use of care pathways becomes more prevalent, optimising their components will be the next step in improving outcomes.

CONCLUSIONS

There is limited cost–utility evidence, either for an entire enhanced recovery pathway or for individual components of a pathway, for patients having THA or TKA. There are also concerns regarding the ability of short time horizons in trials in this area to capture relevant outcomes, and regarding a general lack of reporting of model validation. Our findings support the use of enhanced recovery pathways as a whole, prophylactic systemic antibiotics, antibiotic-impregnated cement and conventional ventilation. No other interventions were assessed by more than one study. Those single studies supported use of empirical preoperative S. aureus decolonisation of all patients with mupiricin, single-dose intravenous tranexamic acid, wound infiltration with local anaesthetic, single-use negative pressure wound therapy dressings, bariatric surgery for morbidly obese patients requiring TKA, use of telehabilitation and telephonic health coaching with financial incentives to increase physical activity. However, we were unable to conclude how transferable these findings would be into other healthcare systems. There is ample scope for future cost-effectiveness studies into enhanced recovery for THA and TKA patients. In particular, we recommend analysis of entire enhanced recovery pathways and comparison of incremental changes of components within pathways rather than considering aspects of care in isolation.

Author affiliations

1 Nuffield Department of Population Health, University of Oxford, Oxford, UK
2 John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
3 Wolfson Institute of Preventive Medicine - Barts and the London, Queen Mary University of London, London, UK
4 Stoke Mandeville Hospital, Buckinghamshire Healthcare NHS Trust, Aylesbury, UK
5 Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
6 Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NORiMS), University of Oxford, Oxford, UK

Acknowledgements

We are grateful to Nia Roberts, information specialist, and Rafael Pinedo-Villanueva, senior research associate in health economics, both at the University of Oxford, for their assistance with the search strategy.

Contributors

JM, AJ and JL designed the study and all authors defined the inclusion criteria. JM, JC and JL developed the search strategies. JM and LC piloted the search strategy and inclusion criteria. JM and JL developed the data extraction form. JM, JC and JL screened the studies. JM, MGP and RJ extracted the data. MGP wrote the draft of the manuscript. JM and JL provided critical revisions to the article and all authors approved the final version of the article to be published. JL is the guarantor of the review.

Funding

This project was funded by the National Institute for Health Research Health Services and Delivery Research Programme (project number 14/46/02). Support was received from the Oxford NIHR Biomedical Research Centre, Nuffield Orthopaedic Centre, University of Oxford. AJ was supported by the NIHR Biomedical Research Centre at the University Hospitals Bristol NHS Foundation Trust and the University of Bristol.

Disclaimer

The views and opinions expressed herein are those of the authors and do not necessarily reflect those of the HSSDR Programme, NIHR, NHS or the Department of Health and Social Care.

Competing interests

None declared.

Patient consent for publication

Not required.

Provenance and peer review

Not commissioned; externally peer reviewed.

Data availability statement

All data relevant to the study are included in the article or uploaded as supplementary information.

Open access

This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/

ORCID iDs

Mark G Pritchard http://orcid.org/0000-0003-1726-8989
Jacqueline Murphy http://orcid.org/0000-0002-3927-7002
Andrew Judge https://orcid.org/0000-0003-3015-0432
Jose Leal http://orcid.org/0000-0001-7870-6730

REFERENCES

1 Pabinger C, Geissler A. Utilization rates of hip arthroplasty in OECD countries. Osteoarthritis Cartilage 2014;22:734–41.
2 Pabinger C, Lothaler H, Geissler A. Utilization rates of knee-arthroplasty in OECD countries. Osteoarthritis Cartilage 2015;23:1664–73.
3 Ackerman IN, Bohensky MA, de Steiger R, et al. Lifetime risk of primary total hip replacement surgery for osteoarthritis from 2003 to
Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med* 2009;6:e1000097.

National Joint Registry. 13th annual report 2016: national joint Registry for England, Wales, Northern Ireland and the Isle of Man: surgical data to 31 December 2015. Hemel Hempstead, UK: National Joint Registry, 2016.

Evers S, Goossens M, de Vet H, et al. Criteria list for assessment of methodological quality of economic evaluations: consensus on health economic criteria. *Int J Technol Assess Health Care* 2005;21:240–5.

Jaime Caro J, Eddy DM, Kan H, et al. Questionnaire to assess relevance and credibility of modeling studies for informing health care decision making: an ISPOR-AMCP-NPC Good Practice Task force report. *Value Health* 2014;17:174–82.

Vemer P, Corro Ramos I, van Voorn GAK, et al. AdViSHE: a validation-assessment tool of health-economic models for decision makers and model users. *PharmacoEconomics* 2016;34:349–61.

Higgins JPT, Altman DG, Gøtzsche PC, et al. The Cochrane collaboration’s tool for assessing risk of bias in randomised trials. *BMJ* 2011;343:d5928.

Cooper N, Coyle D, Abrams K, et al. Use of evidence in decision models: an appraisal of health technology assessments in the UK since 1997. *J Health Serv Res Policy* 2005;10:245–50.

Coyle D, Lee KM. Evidence-based economic evaluation: how the use of different data sources can impact results. In: Donaldson C, Mugford M, Vale L, eds. *Evidence-Based health economics: from effectiveness to efficiency in systematic review*. London, UK: BMJ Publishing Group, 2002:55–66.

Organisation for Economic Co-operation and Development. Prices and purchasing power parities, 2017. Available: http://stats.oecd.org/Index.aspx?DataSetCode=CPL [Accessed 19 Sep 2017].

Brunenberg DE, van Steyn MJ, Sluimer JC, et al. Joint recovery programme versus usual care: an economic evaluation of a clinical pathway for joint replacement surgery. *Med Care* 2005;43:1018–26.

Larsen K, Hansen TB, Thomsen PB, et al. Cost-effectiveness of accelerated perioperative care and rehabilitation after total hip and knee arthroplasty. *J Bone Joint Surg Am* 2009;91:761–72.

McLachhorn AS, Southren D, Wang YC, et al. Cost-effectiveness of bariatric surgery prior to total knee arthroplasty in the morbidly obese: a computer model-based evaluation. *J Bone Joint Surg Am* 2016;98:e6.

Fernandes L, Roos EM, Overgaard S, et al. Supervised neuromuscular exercise prior to hip and knee replacement: 12-month clinical effect and cost-utility analysis alongside a randomised controlled trial. *BMJ Musculoskelet Disord* 2017;18:5.

Courville XF, Tomek IM, Kirkland KB, et al. Cost-effectiveness of preoperative nasal mucropin treatment in preventing surgical site infection in patients undergoing total hip and knee arthroplasty: a cost-effectiveness analysis. *Infect Control Hosp Epidemiol* 2012;33:152–9.

Jackson BR, Umlas J, AuBuchon JP. The cost-effectiveness of postoperative recovery of rbcS in preventing transfusion-associated virus transmission after joint arthroplasty. *Transfusion* 2000;40:1063–6.

Ramkumar DB, Ramkumar N, Tapp SJ, et al. Pharmacologic hemostatic agents in total joint arthroplasty—a cost-effectiveness analysis. *J Arthroplasty* 2018;33:2092–9.

Sonnenberg GJ. A health economic analysis of autologous transfusion. *Transfusion Medicine and Hemotherapy* 2002;29:175–83.

Marques EMR, Blom AW, Lenguerrand E, et al. Local anaesthetic wound infiltration in addition to standard anaesthetic regimen in total hip and knee replacement: long-term cost-effectiveness analyses alongside the APEX randomised controlled trials. *BMJ* 2016;353:i3151.

Cummins JS, Tomek IM, Kantor SR, et al. Cost-effectiveness of antibiotic-impregnated bone cement used in primary hip arthroplasty. *J Bone Joint Surg Am* 2009;91:834–41.

Graves N, Wloch C, Wilson J, et al. A cost-effectiveness modelling study of strategies to reduce risk of infection following primary hip replacement based on a systematic review. *Health Technol Assess* 2016;20:1–144.

Merollini KMD, Crawford RW, Whitehouse SL, et al. Surgical site infection prevention following total hip arthroplasty in Australia: a cost-effectiveness analysis. *Am J Infect Control* 2013;41:803–9.

Nherera LM, Trueman P, Karlakki SL. Cost-effectiveness analysis of single-use negative pressure wound therapy dressings (eNPWT) to reduce surgical site complications (SSC) in routine primary hip and knee replacement. *J Med Rep Anal* 2015;8:197–82.

Fusco F, Turchetti G. Telehabilitation after total knee replacement in Italy: cost-effectiveness and cost-utility analysis of a mixed
telerehabilitation-standard rehabilitation programme compared with usual care. BMJ Open 2016;6:e009964.
51 Kauppila A-M, Sintonen H, Aronen P, et al. Economic evaluation of multidisciplinary rehabilitation after primary total knee arthroplasty based on a randomized controlled trial. Arthritis Care Res 2011;63:335–41.
52 Smith KC, Paltiel AD, Yang HY, et al. Cost-effectiveness of health coaching and financial incentives to promote physical activity after total knee replacement. Osteoarthritis Cartilage 2018;26:1495–505.
53 Bolz KMD, Crawford RW, Donnelly B, et al. The cost-effectiveness of routine follow-up after primary total hip arthroplasty. J Arthroplasty 2010;25:191–6.
54 Larsen K, Sørensen OG, Hansen TB, et al. Accelerated perioperative care and rehabilitation intervention for hip and knee replacement: a randomized controlled study of its effects on functional capacity and quality of life. Clin Rehabil 2010;24:398–411.
55 Kauppila A-M, Kylönen E, Ohtonen P, et al. Multidisciplinary rehabilitation after primary total knee arthroplasty: a randomized controlled study of its effects on functional capacity and quality of life. Ann Rheum Dis 2014;73:1130–7.
56 Villadsen A, Overgaard S, Holsgaard–Larsen A, et al. Postoperative effects of neuromuscular exercise prior to hip or knee arthroplasty: a randomised controlled trial. Ann Rheum Dis 2014;73:1130–7.
57 Wylde V, Lenguerrand E, Gooberman-Hill R, et al. Effect of local anaesthetic infiltration on chronic postsurgical pain after total hip and knee replacement: the APEX randomised controlled trials. Pain 2015;156:1161–70.
58 Briggs A, Sculpher M, Britton A, et al. How likely are new prostheses to be effective? A systematic review of economic evaluations of enhanced recovery pathways for colorectal surgery. Cochrane Database Syst Rev 2010;97:CD006632.
59 Birkmeyer JD, Goodnough LT, AuBuchon JP, et al. The cost-effectiveness of preoperative autologous blood donation for total hip and knee replacement. Transfusion 1993;33:544–51.
60 Sonnenberg FA, Gregory P, Ymtovian R, et al. The cost-effectiveness of autologous transfusion revisited: implications of an increased risk of bacterial infection with allogeneic transfusion. Transfusion 1999;39:908–17.
61 Losina E, Walensky RP, Kessler CL, et al. Cost-effectiveness of total knee arthroplasty in the United States: patient risk and hospital volume. Arch Intern Med 2009;169:1113–21. discussion 21-2.
62 Jones EL, Wainwright TW, Foster JD, et al. A systematic review of patient reported outcomes and patient experience in enhanced recovery after orthopedic surgery. Ann R Coll Surg Engl 2014;96:89–94.
63 Stowers MDJ, Lemanu DP, Hill AG. Health economics in enhanced recovery after surgery programmes. Canadian Journal of Anaesthesia 2015;62:219–30.
64 Lemanu DP, Singh PP, Stowers MDJ, et al. A systematic review to assess cost effectiveness of enhanced recovery after surgery programmes in colorectal surgery. Colorectal Disease 2014;16:338–46.
65 Lee L, Li C, Landry T, et al. A systematic review of economic evaluations of enhanced recovery pathways for colorectal surgery. Ann Surg 2014;259:670–6.
66 Köksal Ismet, Taht M, Şimşek ME, et al. Efficacy of rapid recovery protocol for total knee arthroplasty: a retrospective study. Acta Orthop Traumatol Turc 2015;49:383–8.
67 Garriga C, Murphy J, Leal J, et al. Impact of a national enhanced recovery after surgery programme on patient outcomes of primary total knee replacement: an interrupted time series analysis from “The National Joint Registry of England, Wales, Northern Ireland and the Isle of Man”. Osteoarthritis Cartilage 2019;27:1280–93.
68 Hart A, Khalil JA, Carli A, et al. Blood transfusion in primary total hip and knee arthroplasty, incidence, risk factors, and thirty-day complication rates. J Bone Joint Surg Am 2014;96:1945–51.
69 Norfolk D. Handbook of transfusion medicine. Norwich, UK: TSO, 2013.
70 Simpson JC, Moonesinghe SR, Grocott MPW, et al. Enhanced recovery from surgery in the UK: an audit of the enhanced recovery partnership programme 2009–2012. Br J Anaesth 2015;115:560–8.
71 Panella M, Marchisio S, Di Stasio LA. Reducing clinical variations with clinical pathways: do pathways work? Int J Qual Health Care 2003;15:509–21.
72 Rotter T, Kinsman L, James EL, et al. Clinical pathways: effects on professional practice, patient outcomes, length of stay and hospital costs. Cochrane Database Syst Rev 2010;97:CD006632.