Energy Performance Estimation of ASHRAE 90.1 App. G System 7 VAV with Reheat using Dynamic B-SIM

Norbert Harmathy*¹

¹Budapest University of Technology and Economics, Faculty of Architecture, Department of Building Energetics and Building Service Engineering, 1111 Budapest, Műegyetem rkp. 3, Hungary

Abstract. The research presents an energy strategy during the design process using advanced energy performance simulation technology. Team coordination and building performance efficiency during the design process is aided by conducting a performance based assessment with comprehensive fully incorporated design, construction, energy, HVAC and annual building operation. Performance based decision making is demonstrated through an office building complex. The engineering decisions were based on performance enhancement and overall energy demand reduction, which was evaluated on an annual basis. The building envelope’s dominant curtain wall system was analyzed in detail in order to demonstrate qualitative energy performance improvement. ASHRAE 90.1 App. G System 7 VAV with reheat HVAC’s annual energy performance was estimated and evaluated from the aspect of end-use energy which is usually the baseline system for achieving LEED energy performance credits.

1 Introduction

The investigation covers the energetic and operational energy demand analysis of a 23205 sqm office building complex [1]. Operational energy demands and HVAC system operation were analyzed in detail using complex input datasets: climatic database, building structure, thermal loads, occupancy and HVAC system documentation. Various design alternatives were used to select the most preferable curtain-wall structure.

The calculations were performed with detailed dynamic energy simulation in EnergyPlus [2] engine. Our previous investigations were performed on existing buildings and their energy refurbishment processes [3-5]. Teams have demonstrated various approaches in energy analysis of office buildings using simulation techniques [6-8].

Our first task was to justify which curtain-wall window structure would be the most preferable from the energy performance aspect, and to demonstrate which is the most appropriate window type contributing to higher energy efficiency of the building.

* Corresponding author: harmathy@egt.bme.hu

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
During the investigation according to the buildings geometry the massing of the building contributed significantly to its energy performance.

We evaluated the influence of the curtain-wall structure on the heating and cooling energy requirements on an annual basis, from which we determined the annual energy savings.

The report includes the results of selecting the right facade glass structure that meets the energy and cost optimum requirements. The ASHRAE 90.1 VAV system was simulated in order to assess and evaluate its annual end use energy consumption in order to help decision-making in the early design phases of the energy strategy.

The VAV systems energy performance will form the baseline minimum requirement compared to which the project has to perform better.

2 Research focus and methodology

During the energy performance analysis, we focused on the following:

- Building simulation and determination of energy demands
- Determining detailed heating and cooling energy requirements
- Analysis of thermal load alternatives
- Influence of internal heat loads on the annual energy balance
- Determining the energy influence of the glass structure annually
- Analyzing the effect of different curtain wall systems’ thermal properties
- HVAC system simulation and end use energy determination of the project
- Total energy consumption potential

The virtual environment was created in EnergyPlus software where the simulation was performed according to the calculation models from the EnergyPlus Engineering documentation [9].

The geometric thermal model was created in Sketchup [10] and the data were imported in OpenStudio [11] software.

3 Dynamic simulation input parameters

3.1 Weather data – climatological data sets.

The climatic data was used from the Meteonorm [12] Swiss global database. The meteorological data package for Budapest contained more than 100,000 data. In the simulation process 30 year hourly averages were applied. In the dynamic simulation we used the following climatic data; air temperature, relative humidity, direct and indirect solar radiation, pressure, wind direction and wind speed.

The weather data for Budapest were used from the data packages of ASHRAE Climate Design Conditions [13] which are shown in Table 1.

Depending on the size and complexity of the building, we divided the model into 22 thermal zones. The energy zone allocation by area and volume is shown in Table 2.
Table 1. Weather file for BUDAORS, HUNGARY (WMO: 128380) from ASHRAE Climate Design Conditions

Lat:47.45N	Long:18.97E	Elev:132	StdP: 99.75	Time zone:1.00	Period:82-92

Annual Heating and Humidification Design Conditions

Coldest Month	Heating DB	Humidification DP/MCDB and HR	Coldest month WS/MCDB	MCWS/PCWD to 99.6% DB
	99.6%	99% DP HR MCD B	99% MCD B	0.4% MCWS/PCWD
1	-11.2	-9.0 -14.4 1.1 -9.8 -12.3 1.3	-7.3	18.0 -0.9 16.6 0.7

Annual Cooling, Dehumidification, and Enthalpy Design Conditions

Hottest Month	Hottest Month DB Range	Cooling DB/MCWB	Evaporation WB/MCDB	MCWS/PCWD to 0.4% DB											
	0.4%	1%	2%	0.4%	1%	2%									
7	10.3	31.0	20.1	29.3	19.7	27.8	19.2	21.3	28.9	20.5	27.5	19.8	26.1	2.9	180
18.6	13.7	24.3	17.9	13.1	23.6	17.3	12.5	23.0	62.1	28.9	59.4	27.9	56.9	26.1	923

Extreme Annual Design Conditions

Extreme Annual WS	Extreme Annual DB	n-Year Return Period Values of Extreme DB																	
	Mean	Stand.deviation	n=5 years	n=10 years	n=20 years	n=50 years													
1%	5%	2%	Min	Max	1%	2.5%	5%	Min	Max	1%	2.5%	5%	Min	Max	1%	2.5%	5%	Min	Max

Monthly Climatic Design Conditions

Monthly Design Dry Bulb and Mean Coincident Wet Bulb Temperatures
0.4%
2%
5%

Monthly Climatic Design Conditions	Tavg	Sd	H10	H18	C10	C18	CDH10	CDH18	CDH23	CDH26
Annual	10.6	4.66	236	3072	1452	246	2089	573		
Jan	10.6	4.66	236	3072	1452	246	2089	573		
Feb	10.6	4.66	236	3072	1452	246	2089	573		
Mar	10.6	4.66	236	3072	1452	246	2089	573		
Apr	10.6	4.66	236	3072	1452	246	2089	573		
May	10.6	4.66	236	3072	1452	246	2089	573		
Jun	10.6	4.66	236	3072	1452	246	2089	573		
Jul	10.6	4.66	236	3072	1452	246	2089	573		
Aug	10.6	4.66	236	3072	1452	246	2089	573		
Sep	10.6	4.66	236	3072	1452	246	2089	573		
Oct	10.6	4.66	236	3072	1452	246	2089	573		
Nov	10.6	4.66	236	3072	1452	246	2089	573		
Dec	10.6	4.66	236	3072	1452	246	2089	573		
Monthly Design Wet Bulb and Mean Coincident Dry Bulb Temperatures

	10%	5%	2%	0.4%	0.4%
DB	5.7	5.6	5.6	4.2	4.2
MCWB	4.0	4.0	4.0	4.0	4.0
WB	7.5	6.6	6.6	6.6	6.6
MCDB	9.8	8.4	8.4	9.8	9.8

Clear Sky Solar Irradiance

	wb	db	td
taub	0.33	0.355	0.37
taud	2.45	2.302	2.298

Table 2. Thermal zoning with area and volume

Thermal zone	Area [m²]	Volume [m³]
1 Open Office North 0	1425.15	6595.03
2 Open Office North 2	1278.78	3580.57
3 Open Office North 3	1278.78	3580.57
4 Open Office North 4	1155.29	3234.81
5 Open Office North 5	1161.40	3251.92
6 Open Office North 6	1161.40	3251.92
7 Open Office South 0	1576.57	6936.89
8 Open Office South 1	3402.77	10208.32
9 Open Office South 2	1432.48	4010.94
10 Open Office South 3	1432.48	4010.94
11 Open Office South 4	1432.48	4010.94
12 Open Office South 5	1519.52	4254.66
13 Open Office South 6	1519.52	4653.65
14 Open Office South 7	690.57	2386.66
15 Sanitary & Communication 0	390.75	1904.55
16 Sanitary & Communication 1	317.60	952.80
17 Sanitary & Communication 2	379.35	1062.18
18 Sanitary & Communication 3	379.35	1062.18
19 Sanitary & Communication 4	379.35	1062.18
20 Sanitary & Communication 5	379.35	1062.18
21 Sanitary & Communication 6	379.35	1062.18
22 Sanitary & Communication 7	132.30	370.44
Total	23204.57	72506.51

3.2 Building envelope and curtain-wall thermal properties
The building structure and layers were used in the thermal simulation according to the design and construction documentation. The objective was to analyze and simulate the building envelope’s dual pane glass construction on the annual building energy performance. The building envelope’s glass structure consisted of three glass structure types of which all are Argon filled, where under glazing A1 two different glass structures are applied according to project documentation:

1. Glazing A1; U-Factor = 1.40 W/m²K, SHGC1= 0.4, SHGC2= 0.3, Glass Visible Transmittance1 = 0.70 with inner pane shading and Argon gas (Southern facade), Glass Visible Transmittance2 = 0.70 without inner pane shading.
2. Glazing A2; U-Factor = 1.40 W/m²K, SHGC= 0.5, Glass Visible Transmittance = 0.73 (East and West orientation)
3. Glazing A3; U-Factor = 1.40 W/m²K, SHGC= 0.6, Glass Visible Transmittance = 0.80 (North orientation)

The focus was on the structural and energetic performance of the facade glazing. The use of adequate glazing is of utmost importance for efficient energy reduction and user comfort. Choosing the right glass structure depends from; building’s type and function, the building floor area, window to wall ratio, facade orientation, internal heat loads, building location and climate zone. The listed parameters all affect the efficiency of the glass structure, building on the energy of the building. We investigated the influence of the heat transfer factor (U), the solar factor (g) and the light transmission factor (τ) on the yearly energy requirements and user comfort of the building. The title is set in bold 16-point Arial, justified. The first letter of the title should be capitalised with the rest in lower case. You should leave 22 mm of space above the title and 6 mm after the title.

3.3 Thermal comfort demand and building operation data

The energy simulation allows detailed analysis of building operation according to schedules. Its significance lies in the fact that we can investigate the energy and heat loads of a building according to various time dependant scenarios. With energy simulation, we calculated the building's energy demand annually using the following data:

Heating period (indoor air temperature):

Minimum indoor air temperature was 20°C during permanently occupied periods. Outside working hours the maximum allowed temperature fall was 4°C. The heating system operates with an automatic indoor air temperature sensor setting.

Cooling period (indoor air temperature):

Maximum indoor air temperature was 26°C during permanently occupied periods. Outside working hours the cooling system is not operating. The cooling system operates with an automatic indoor air temperature sensor setting.

In both periods, the perimeter values of air temperatures were maintained daily in 10 hour intervals (8-18h). In case changes in occupancy schedules of the building, number of people and work hours, the energy demands will change. The results of the energy simulation apply only to the specified 10 hours working time and to the perimeter values of the specified air temperature. Air change rate and specified air volume in thermal zones was calculated according to equation 1 where n is the number of people and A is the area in m².

\[
q_{tot} = n \times 25.2 + A \times 2.52
\]

\[
q_{tot} = 2520 \times 25.2 + 21400 \times 2.52
\]

\[
q_{tot} = 117432 \text{ m}^3/\text{h}
\]
For the office spaces 0.46 ach was assumed. In the simulation we counted 0.8 1/h air change was the maximum intensity during working hours. During unoccupied periods the air change rate was 0.1 1/h. The intensity of air exchange depends on working time. From 7 to 18 hours constant air volume was estimated.

4 Energy performance results

4.1 Annual energy demands for heating and cooling

With the energy simulation run-time of 8760 hours annual heating and cooling energy demands were determined for two operational scenarios:

Permanent maximum heat loads – entire building is occupied during working hours

Without internal heat loads – estimation of internal loads influence on the energy performance. Particular emphasis was placed on the curtain wall’s glass structure and its energy performance. The heating and cooling energy requirements with different grazing types from the simulations are shown in Table 3. The energy demands were classified according to the parameters of the facade glass structure. Table 4 shows the percent-age deviation of the aggregate annual energy demand.

Curtain wall glazing properties	Heating [MWh/a]	Cooling [MWh/a]	Heating per m2 [MWh/m2/a]	Cooling per m2 [MWh/m2/a]
With constant maximum internal heat loads				
A1 g1=0.4; g2=0.3	1228	658	53	28
A2 g=0.5	1184	800	51	34
A3 g=0.6	1151	941	49	40
Without internal heat loads				
A1 g1=0.4; g2=0.3	1557	60	67	3
A2 g=0.5	1475	138	63	6
A3 g=0.6	1415	228	61	10

Total energy [MWh/a]	Percentual reduction [%]	Reduced energy [MWh/a]
A1 1886	9.8% according to A3	206
	5% according to A2	98
A2 1984	5% according to A3	108
A3 2092	0%	0

4.2 ASHRAE VAV with reheat energy performance simulation

Following the heating and cooling demand assessment according to adequate glazing assignment of the Variable air volume (VAV) HVAC systems was simulated in order to assess their annual operating performance. The following table 5 shows the end energy uses for the VAV System with reheat and table 6 shows the annual electricity consumption of interior lighting and equipment.

Category	Electricity [GJ]	Electricity [kWh]	Gas [GJ]	Water [m3]
Heating	-	-	4843.80	-
Table 6. Annual end uses per interior lighting and equipment in GJ an kWh

Category	Electricity [GJ]	Electricity [kWh]
Interior Lighting	2226.45	618458
Interior Equipment	2931.12	814200

Proportional presentation of the total annual energy consumption for each energy consumer per category is shown in figure 1.

![VAV system annual energy consumption by category](image)

Fig. 1. VAV system annual energy consumption by category

The findings indicated that the highest energy consumption was demonstrated for the heating, supplied by natural gas. All other categories have electricity supply so if converted into primary energy these proportions will change and reflect completely different results. According to the Hungarian primary energy conversion factor for electricity is 2.5 and natural gas is 1.0 [14]. The results for primary energy consumption are shown in table 7.

Table 7. Primary energy consumption of system

Source-use	Primary energy [MWh]
Electricity total	5012.58
Gas total	1345.55

5 Conclusion

The investigation presented that the energy demand could be influenced by the selection of adequate glazing type which can be determined by analysing the curtain wall’s influence on the total energy demand as function dependant. Findings indicated that for an office building with high internal heat gains can lower its heating demands by selecting glazing in wider SHGC interval from 0.3 to 0.6. The changes between the total energy demand (heating and cooling) scenarios for the three simulated glazing types was max. 9.8% on
annual basis. However, investment in glazing with more efficient low-E layers is higher. Nevertheless, cooling should be taken in account seriously since the deviation was 30%. It was concluded that high energy reduction can be achieved according to the HVAC system operation, the electricity end energy use for the VAV system resulted with 2060 GJ/a (572 MWh) electricity and 4843 GJ/a (1345 MWh) for heating. Conversion into source consumption demonstrated different results the total primary electric energy for HVAC including lighting and equipment was 3.7 times higher compared to the gas primary energy. Further investigations will evaluate the energy performance of more efficient HVAC system as VRF system, air source heat pump, packaged terminal units, fan coils, geothermal source etc. The baseline performance should inform the designers which should be the necessary measures needed to be undertaken for overall building performance.

Acknowledgement

The research reported in this paper was supported by the Higher Education Excellence Program of the Ministry of Human Capacities in the frame of Artificial Intelligence research area of Budapest University of Technology and Economics (BME FIKP-MI/SC).

References

1. Szerdahelyi, L.: Office Building Project Documentation. Aspectus Architect Ltd. 2018. Budapest. Hungary
2. EnergyPlus, https://energyplus.net/ accessed 2018
3. Harmathy, N., Murgul, V.: Heat Pump System Simulation towards Energy Performance Estimation in Office Buildings. Procedia Engineering 165, (2016) 10.1016/j.proeng.2016.11.932.
4. Harmati N, Folić R, Magyar Z, Dražić J, Kurtović-Folić N. Building envelope influence on the annual energy performance in office buildings. Thermal Science 20:(2). (2016) pp. 679-693. doi: 10.2298/TSCI141111109H
5. Harmathy N, Magyar Z, Folic R. Multi-criterion optimization of building envelope in the function of indoor illumination quality towards overall energy performance improvement. Energy 144. (2016) pp. 302-317. doi: 10.1016/j.energy.2016.07.162
6. Evins, R. Multi-level optimization of building design, energy system sizing and operation. Energy 90. 2015: pp. 1775-1789. doi: 10.1016/j.energy.2015.07.007
7. Krstić-Furundžić A., Kosić T. Assessment of energy and environmental performance of office building models: A case study, Energy and Buildings, (2015) 10.1016/j.enbuild.2015.06.050
8. Capeluto I.G., Ochoa C.E. Simulation-based method to determine climatic energy strategies of an adaptable building retrofit façade system. Energy 76, (2014) pp. 375-384. Doi: 10.1016/j.energy.2014.08.028
9. EnergyPlus Engineering Reference, version 8.0 documentation, accessed 2018 https://energyplus.net/sites/all/modules/custom/nrel_custom/pdfs/pdfs_v8.8.0/Enginee ring Reference.pdf
10. Sketchup, https://www.sketchup.com/ accessed 2017
11. OpenStudio, http://nrel.github.io/OpenStudio-user-documentation/ accessed 2017
12. Meteonorm, http://www.meteonorm.com/ accessed 2015
13. ASHRAE Climate Design Conditions, http://ashrae-meteo.info/ accessed 2018
14. TNM 7/2006 energy efficiency regulation homepage:
 https://net.jogtar.hu/jogszabaly?docid=A0600007.TNM/ accessed 2019