Title
The opsonizing ligand on Salmonella typhimurium influences incorporation of specific, but not azurophil, granule constituents into neutrophil phagosomes.

Permalink
https://escholarship.org/uc/item/2df3v843

Journal
The Journal of cell biology, 109(6 Pt 1)

ISSN
0021-9525

Authors
Joiner, KA
Ganz, T
Albert, J
et al.

Publication Date
1989-12-01

DOI
10.1083/jcb.109.6.2771

Peer reviewed
The Opsonizing Ligand on *Salmonella typhimurium*
Influences Incorporation of Specific, but Not Azurophil, Granule Constituents into Neutrophil Phagosomes

Keith A. Joiner,* Tomas Ganz,§ John Albert, II and Daniel Rotrosen*

*Laboratory of Parasitic Diseases and †Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; ‡Pulmonary Division, University of California at Los Angeles School of Medicine, Los Angeles, California 90024; and §Division of Molecular Virology and Immunology, Georgetown University, Rockville, Maryland 20852

Abstract. Phagosomes were purified from human neutrophils ingesting *Salmonella typhimurium* opsonized with adsorbed normal human serum or with rabbit IgG. Constituents within the phagosome were endogenously labeled by supplying the cells with 125I Na during phagocytosis. Lactoferrin and vitamin B$_{12}$ binding protein (TC1 and TC3), markers for specific granules, were present in the phagosomes from neutrophils ingesting *S. typhimurium* opsonized with IgG but were 3.5- to 5-fold less prominent in phagosomes from cells phagocytosing *Salmonella* bearing C3 fragments only.

In contrast, iodinated azurophilic granule components, most prominently defensins, were the major constituents in phagosomes prepared under both opsonization conditions. Furthermore, labeled complement (CR1 and CR3) and immunoglobulin (FcRIII) receptors were incorporated in the phagosome regardless of the ligand mediating phagocytosis. These results suggest that the ligand–receptor interactions mediating phagocytosis influence incorporation of neutrophil-specific granule contents into phagosomes.

The biochemical composition of neutrophil phagosomes is incompletely characterized. Although it is generally accepted that the membrane of the phagocytic vesicle is derived from the plasma membrane of the neutrophil, the extent to which the phagosome is modified during or after the process of internalization is not well understood. In particular, the influence of variations in the ligand–receptor systems involved in the phagocytic process upon the ultimate composition of the phagosome is largely unknown.

Earlier studies characterized the enzyme content of phagocytic vacuoles, examined transport functions of the neutrophil plasma membrane after phagocytosis, and demonstrated that plasma membrane constituents are incorporated into the phagosomes (9, 20, 50, 54, 57, 58). Experiments with surface labeled polymorphonuclear leukocytes (PMN) and macrophages have demonstrated losses in plasma membrane constituents during phagocytosis (20, 50, 57, 58) and, in several cases, the appearance of these molecules in the phagocytic compartment has been documented. In at least one instance, differential loss of functional surface receptor activity for the Fc portion of IgG (Fc receptor) with no loss of functional surface C3b receptor activity was suggested during phagocytosis of an antibody-coated particle by macrophages (39). There have been fewer attempts to purify and characterize either the membrane or soluble contents of the phagocytic vacuole. In macrophages, the composition of endocytic vesicle and phagosome membranes resembles the plasma membrane (34, 37). Purified macrophage phagosomes contain complement and Fc receptors (38) as well as large amounts of actin and intermediate filaments (56). Recently, Skubitz and Kinkead (49) characterized neutrophil phagosomes containing serum-opsonized paraffin oil. Using the neutrophil-specific monoclonal antibody AHN-1, which recognizes the lacto-N-pentofucose moiety (36), proteins consistent in molecular weight with the C3b receptor, CR1, and members of the Cdl8/Cdl1 family, CR3, LFA-1, and p150,95 (43), were identified in the phagocytic vesicle.

We have purified and characterized PMN phagosomes containing *Salmonella typhimurium*. Emphasis was placed on identifying and comparing the majority of the components within the phagosome under the different opsonization conditions. Using the technique of endogenous iodination (26, 28) to label components of interest, we found that phagocyte receptors and azurophil granule components, particu-
lyarly defensins, were incorporated into the phagosome and indiscriminately iodinated, regardless of the ligand coating *S. typhimurium*. For defensins, this represents the first evidence that these microbical peptides enter the phagolysosome during phagocytosis of bacteria. In contrast to the results with azurophil granule markers, iodinated lactoferrin and vitamin B₁₂ binding protein (TC1/TC3), markers for neutrophil-specific granules, were incorporated more extensively into phagosomes containing IgG-sensitized *S. typhimurium* than when adsorbed normal human serum (NHS) was used as the coating ligand. These are the first results to suggest that inclusion of secondary granule constituents into neutrophil phagosomes is influenced by the ligand on the particle being ingested.

Materials and Methods

Buffers and Reagents

The following buffers and reagents were used in these experiments: Hank's balanced salts solution (HBSS) containing 0.15 mM CaCl₂ and 1 mM MgCl₂ for iodination of IgG-sensitized HBSS containing 0.3 mM CaCl₂, 2 mM MgCl₂, and 2 × 10⁻⁴ M NaI; lysis buffer, consisting of 2% NP-40, 0.5% Na deoxycholate, 100 mM NaCl, 10 mM Tris, 0.5% NaN₃, 50 μM nitro phenyl guanido benzoate (NPGB) (Sigma Chemical Co., St. Louis, MO), 20 mM leupeptin (Boehringer Mannheim Biochemicals, Indianapolis, IN), and 20 mM pepstatin (Calbiochem-Behring Corp., La Jolla, CA); relaxation buffer, consisting of 100 mM KCl, 10 mM Pipes, 3 mM NaCl, and 2 mM MgCl₂, pH 7.3; and relaxation buffer containing 2.5 mM EGTA.

Bacteria, Growth Media, and Metabolic Labeling

S. typhimurium, strain RG108 (kindly provided by Dr. Robert Goldman, Abbott Laboratories, North Chicago, IL) was used for all experiments. Characteristics of this strain and conditions for growth, metabolic labeling with [35S]methionine, or surface iodination have been described previously (15, 22).

Antibodies and Antiserum

Rabbit anti-human lactoferrin (Cappel Laboratories, Malvern, PA) and rabbit anti-mouse IgG1 and anti-kappa light chain (Bio-Rad Laboratories, Richmond, CA) were purchased. Rabbit anti-TC1 and -TC3 was kindly provided by John O'Shea (National Institutes of Health, Bethesda, MD). mAb 44D (IgG1, kappa), also directed against 114 (IgG2a), recognizing CR1, was provided by John O'Shea (National Institutes of Health, Bethesda, MD). mAb IB4 (IgG2a), recognizing killing, was provided by Dr. Robert Allen, University of Colorado, Denver, CO. This antisera also recognizes lactoferrin, as determined by ELISA and immunoblots, although the ELISA titer was 64- to 128-fold lower than the titer of antilactoferrin (Joner, K. A., unpublished observations). mAb IB4 (25Ia2a), directed against the constant 3 chain (Del1 of CR3, LFA-1, and p50,95, was kindly donated by Sam Wright (Rockefeller University, New York). mAb IB4 (25Ig2a), recognizing CR1, was provided by John O'Shea (National Institutes of Health, Bethesda, MD). mAb 44D (25Ig1,kappa), also directed against CR1, was a gift from Victor Nussenzeig (New York University, New York). mAb 3G8 (25Ig1,kappa), recognizing FcyRII, was generously provided by Howard Flett (State University of New York, Stony Brook, NY).

Phagocytosis

Neutrophils were prepared using Ficol-Hypaque, dextran sedimentation, and hypotonic lysis and were treated with the protease inhibitors diisopropyl fluorophosphate (DFP), NPGB, pepstatin, and leupeptin, as reported before (5). AlP in 0.5% H₂O₂, and 25 μCi of carrier-free K²⁵I (Amersham Corp., Arlington Heights, IL) in a final volume of 200 μl of 0.34 M sucrose, 10 mM Na phosphate, pH 7.4. After a 30-min incubation at 37°C, the mixture was treated with acetic acid to 5% final concentration and analyzed on 12.5% acid-urea polyacrylamide gels. Aliquots of the supernatant were also concentrated by vacuum centrifugation (Speed-Vac; Savant Instruments, Hicksville, NY) and analyzed by 10%-20% gradient SDS-PAGE.

In Vitro Iodination of Purified Defensins by H₂O₂-myeloperoxidase (MPO)-125I

Individually purified defensins HNP-1, HNP-2, and HNP-3 were prepared as described previously (13). MPO for these experiments was a generous gift of Dr. Inge Olsson (University of Lund, Lund, Sweden). Iodination was performed by mixing 8 μg MPO, 7.5 μg each of HNP-1, HNP-2, and HNP-3, 0.5 mM H₂O₂, and 25 μCi of carrier-free K¹²⁵I (Amersham Corp., Arlington Heights, IL) in a final volume of 200 μl of 0.34 M sucrose, 10 mM Na phosphate, pH 7.4. After a 30-min incubation at 37°C, the mixture was treated with acetic acid to 5% final concentration and analyzed on 12.5% acid-urea polyacrylamide gels.

Autodiation in PMN Granule-enriched Fractions

Granule-enriched fraction was prepared by homogenization of 10⁶ PMN in 0.34 M sucrose, 10 mM Na phosphate, pH 7.4, in a Potter-Elvehjem homogenizer (Thomas Co., Philadelphia, PA) until >90% cells were broken as judged by phase-contrast microscopy. Intact cells, nuclei, and cell debris were removed by centrifugation at 200 × g for 10 min. The granules were collected by centrifugation in an Eppendorf microcentrifuge (Brinkmann Instruments Co., Westbury, NY) at 14,000 × g for 10 min and resuspended in 1 ml of the same buffer. A 100-μl aliquot of this suspension was mixed with 10 μg MPO and 0.5 mM H₂O₂ was added to 0.5 mM. The samples were incubated for 30 min at 37°C with another equal addition of H₂O₂ at 15 min. In some experiments, radiiodination was terminated before electrorophoretic analysis by the addition of unlabeled potassium iodide and sodium thiosulfate to 1 mM final concentration each. After addition of acetic acid to 5% final concentration, an aliquot of the sample was analyzed by 12.5% acid-urea PAGE or lyophilized and analyzed by 10%-20% gradient SDS-PAGE.

Immunoprecipitation of Radiolabeled Constituents from Externically Labeled Bacteria and from Plasma Membrane and Phagosome Peaks Purified on Sucrose Density Gradients

All immunoprecipitation experiments were performed in the same manner. Pools of defined volumes from gradient fractions were mixed one part sample to six parts lysis buffer and rotated at 4°C overnight. Pools of equal volume (proportional to cell equivalents) were used in all immunoprecipitation
experiments comparing results with different ligands. The detergent-insoluble residue was removed by centrifugation at 12,500 g for 30 min, and the supernatant was "procoated" by rotation on Sepharose 4B in lysis buffer at a ratio of 200 μl of resin to 1 ml of supernatant. Then 10 μl of the appropriate antisera or ascites or 100 μl of monoclonal tissue culture supernatant was added, and the mixtures were rotated for an additional 12-16 h at 4°C. When the primary antibody was rabbit antisera or a mouse monoclonal antibody other than IgG1, 20 μl of protein A-Sepharose was added. When the primary antibody was a monoclonal of the IgGl,kappa isotype, 20 μl of protein A-Sepharose bearing rabbit anti–mouse IgG1 and rabbit anti–mouse kappa light chain was added. Rotation at 4°C was continued for an additional 4 h. Samples were washed five times in lysis buffer, the final pellet was solubilized in 50 μl of SDS-PAGE sample buffer, and 40 μl of sample was loaded per lane for analysis by SDS-PAGE. Since the volume added. When the primary antibody was a monoclonal of the IgGl,kappa isotype, 20 μl of protein A-Sepharose bearing rabbit anti–mouse IgG1 and rabbit anti–mouse kappa light chain was added. Rotation at 4°C was continued for an additional 4 h. Samples were washed five times in lysis buffer, the final pellet was solubilized in 50 μl of SDS-PAGE sample buffer, and 40 μl of sample was loaded per lane for analysis by SDS-PAGE. Since the volume added.

Electron Microscopy of Fractions from Sucrose Density Gradients

Samples from gradient fractions were pooled, diluted 1:2 in relaxation buffer, and centrifuged at 25,000 rpm at 4°C in an SW55 rotor (Beckman Instruments, Inc.) for 30 min. The supernatant was discarded, and the pellet was fixed in a mixture of paraformaldehyde and glutaraldehyde in cacodylate buffer followed by osmium tetroxide in cacodylate buffer. Thin sections (60–80 nm) were cut and were stained with uranyl acetate and lead citrate.

Electron Microscopy of Whole Neutrophils

Tissue Preparation. Cells were fixed in 0.25% glutaraldehyde in 0.1 M PO4, pH 7.4, at 4°C for 1 h (6). They were washed in 5% o-trehalose dihydrate (No. 18, 835-2; Aldrich Chemical Co., Milwaukee, WI) in 0.1 M PO4, pH 7.4. The cells were incubated in 0.5 M trehalose in 0.1 M PO4, pH 7.4, overnight at 4°C.

Freezing and Thin Sectioning. The tissue was frozen in propane cooled with liquid nitrogen and quickly transferred to liquid nitrogen. Thin sections (pink, blue, and green) were cut at a temperature of about −90°C on an Ultracut E (Reichert-Jung, Vienna, Austria) using an FC4E low temperature sectioning system with a glass knife. They were picked up on glycerol and placed on formvar- and carbon-coated 160 mesh hexagonal grids.

Labeling. All grids were floated on drops at room temperature throughout labeling procedure. All grids were incubated in protein A at a concentration of 500 μg/mL in 0.1 M PO4, pH 7.4, for 30 min. They were washed in a BSA buffer, consisting of 1% BSA plus 10 mM glycine in 0.1 M PO4, pH 7.4, three times for 5 min. Grids were then incubated in either rabbit anti-human lactoferrin diluted 1:200 with BSA buffer or the BSA buffer alone for 1 h. All grids were washed three times for 5 min in BSA buffer. Then they were transferred to protein A-coupled 10-nm gold (Janssen Life Sciences Products, Piscataway, NJ) diluted 1:20 with BSA buffer. All grids were washed five times in PO4, pH 7.4, postfixed in 3% glutaraldehyde for 5 min, washed in water, and finally stained for 2 min in 2% polyvinylalcohol plus 0.1% uranyl acetate in water.

** FreeBSD and Thin Sectioning.** The tissue was frozen in propane cooled with liquid nitrogen and quickly transferred to liquid nitrogen. Thin sections (pink, blue, and green) were cut at a temperature of about −90°C on an Ultracut E (Reichert-Jung, Vienna, Austria) using an FC4E low temperature sectioning system with a glass knife. They were picked up on glycerol and placed on formvar- and carbon-coated 160 mesh hexagonal grids.

Labeling. All grids were floated on drops at room temperature throughout labeling procedure. All grids were incubated in protein A at a concentration of 500 μg/mL in 0.1 M PO4, pH 7.4, for 30 min. They were washed in a BSA buffer, consisting of 1% BSA plus 10 mM glycine in 0.1 M PO4, pH 7.4, three times for 5 min. Grids were then incubated in either rabbit anti-human lactoferrin diluted 1:200 with BSA buffer or the BSA buffer alone for 1 h. All grids were washed three times for 5 min in BSA buffer. Then they were transferred to protein A-coupled 10-nm gold (Janssen Life Sciences Products, Piscataway, NJ) diluted 1:20 with BSA buffer for 30 min. The grids were washed in PO4, pH 7.4, postfixed in 3% glutaraldehyde for 5 min, washed in water, and finally stained for 2 min in 7.7% uranyl acetate in water followed by 2% polyvinyl alcohol plus 0.1% uranyl acetate in water.

Results

Phagocytosis of S. typhimurium RGI08 by Neutrophils

The RGI08 strain of S. typhimurium used in these experiments was rapidly and extensively ingested by neutrophils after opsonization with adsorbed NHS or IgG. Ingestion of S. typhimurium, which under the growth conditions used was smooth and nonpiliated, was negligible in the absence of exogenous ligand (42, 60) (Table I). Since pretreatment of neutrophils with protease inhibitors decreased phagocytosis only marginally, phagolysosomes for our studies were obtained from neutrophils that were treated with protease inhibitors before mixing with opsonized bacteria.

Separation of Phagosomes on Sucrose Density Gradient Fractions

Distinct separation was obtained on sucrose density gradients between normal neutrophil constituents and phagosomes prepared with RGI08 incubated in adsorbed NHS (Fig. 1, a and b). Compared with opsonized bacteria not phagocytosed by neutrophils, bacteria liberated from neutrophils by N2 cavitation were shifted upward in the gradient (Fig. 1 b). A peak of MPO activity (27) was consistently found at tubes 28–32 in the presence (Fig. 1 b) but not in the absence (not shown) of Salmonella ingestion by neutrophils, suggesting that MPO was incorporated into the phagosome.

Electron Microscopy of Sucrose Density Gradient Fractions

To confirm the identity of the phagosome fraction, pools from the sucrose density gradient profile shown in Fig. 1 a were analyzed by transmission electron microscopy. Phagosomes were heavily enriched for bacteria, surrounded partially or completely by an additional membrane (Fig. 2). Electron-dense material, possibly derived from granules, was observed in the phagosome space. Bacteria were visualized in various states of degradation.

Preparation and Characterization of Phagosomes from Neutrophils Ingesting S. typhimurium in the Presence of 125I Na

We next sought to identify components involved in phagosome formation. Neutrophils halogenate particulate targets during phagocytosis via the MPO-H2O2-halide system (26, 28) and, hence, will iodinate targets if supplied with the halide 125I Na. Phagosomes were prepared from neutrophils ingesting S. typhimurium in the presence of 125I Na. One-dimensional SDS-PAGE analysis was done on selected fractions from the sucrose density gradients (Fig. 3, adsorbed NHS lanes). A variety of labeled constituents (80, 60, 44, 24, 17, and 14 kD) are present within the cytosol and plasma membrane pools. Iodinated constituents of >10 kD are minimal in the portions of the gradient corresponding to either specific granules (SG lanes) or azurophil granules (not shown). In contrast, labeled constituents of >200, 150–170, 95, 75, 45, 37, and 28 kD and multiple components <17 kD are present in the phagosome band but not in corresponding tubes from neutrophils treated with PMA (not shown). Selected constituents were confined to either the cytosol and plasma.

Table I. Phagocytosis and Killing of S. typhimurium RGI08 by Human Neutrophils

Ligand	Neutrophil pretreatment condition	Bacteria/PMN
None	Buffer	0.1
Adsorbed NHS	Buffer	17
Adsorbed NHS NaN/ NaPGB, leupeptin	14	
Adsorbed NHS DFP, NPGB, leupeptin, pepstatin	13	
IgG DFP	Buffer	19
IgG DFP, NPGB, leupeptin, pepstatin	13	

The phagocytosis assay was done as described previously (22) and in Materials and Methods. Briefly, preopsonized bacteria and neutrophils pretreated as shown were mixed at a ratio of 50:1, and rotated for 10 min at 37°C. Noningested bacteria were removed by washing, and the number of bacteria per cell was assessed by staining. Results represent the mean for two experiments in which 100 cells were counted for each condition. Greater than 95% of neutrophils had associated bacteria, and greater than 85% of bacteria were intracellular.
A280 PROFILE OF SDG SEPARATION OF PMN CONSTITUENTS

Figure 1. (a) A280 profile of sucrose density gradient separation of PMN constituents. Shown in the solid line is the A280 profile of the nitrogen cavitation supernatant from human neutrophils ingesting serum-incubated S. typhimurium after separation on a 28-75% linear sucrose density gradient (3-ml cushion of 75% sucrose). Peaks are labeled according to their standard migration position in this gradient system as well as identification using enzyme assay or by electron microscopy (Fig. 2). The dashed line shows the density profile of the gradient at 20°C. The phagosome peak is drawn as smooth, although the actual A280 tracing was irregular due to clumping of the constituents. PM, plasma membrane; SG, specific granules; AZG, azurophil granules; EG, eosinophil granules. (b) Sucrose density gradient profile of 35S-S. typhimurium after ingestion by neutrophils (---). The position of 35S-S. typhimurium RGI08 after serum incubation and addition to nitrogen cavitation supernatant is shown (-----). Also shown are the results from the MPO assay (A) (27) for selected fractions from 35S-S. typhimurium after ingestion by neutrophils. Neutrophils were pretreated with 3 mM DFP, 50 #M NPGB, 20 #M pepstatin, and 20 #M leupeptin for 30 min before phagocytosis of 35S-S. typhimurium. Phagocytosis was allowed to proceed for 10 min at 37°C, and the nitrogen cavitation supernatant was separated by sucrose density gradient using the gradient conditions described in a.

Two-dimensional gel electrophoresis was also used to analyze the iodinated constituents in the phagosome band (Fig. 4). Spots 1, 2, and 3 represent OMP F, OMP C, and OMP A (22; data not shown), the most prominent outer membrane proteins in S. typhimurium (for review see 32). Spot 7 has been identified as a fragment of C3 (22). Spots or bands 8-15 are unique to the phagosome fraction since they are not seen in two-dimensional gels of exogenously iodinated S. typhimurium (data not shown).

Phagosome fractions were analyzed for the presence of iodinated granule components. The species that make up most of the PMN granule protein (lactoferrin, MPO, elastase, cathepsin G, lysozome, and defensins) are readily acid soluble. Accordingly, their relative role as iodination targets can be estimated by analyzing acid extracts of homogenate fractions. Analysis by 10-20% gradient SDS-PAGE (Fig. 5)
Figure 2. Transmission electron micrographs of PMN containing *S. typhimurium* RG108: azurophil granule fraction (a) or phagosome fraction (b). In the phagosome fraction, the presence of bacteria (B) enclosed in phagosome membrane (arrows) and in various states of degradation are shown. Electron-dense material, possibly derived from granules, is illustrated in the phagosome space (arrowheads). Bar, 2 μm.

Figure 3. One-dimensional SDS-PAGE pattern of constituents endogenously iodinated by neutrophils during ingestion of *S. typhimurium* opsonized with adsorbed NHS or IgG. SDS-PAGE (5–15%) profiles of selected fractions from the sucrose density gradient separation are illustrated. Constant cell equivalents were loaded in each lane. The fractions are labeled according to composition based on the profile in Fig. 1 a. PM, plasma membrane; SG, specific granules. Also shown are the one-dimensional SDS-PAGE profiles of exogenously iodinated *S. typhimurium* after presensitization with adsorbed NHS (lane a) or IgG (lane b). The 75-kD β chain of C3 is marked (○). Molecules of 80 (○) and 64 kD (▲) are described in the text. On SDS-PAGE gels allowing resolution of components <10 kD, a major band of ~6–7 kD was seen in cytosol and phagosome fractions under both opsonization conditions.
showed that proteins of molecular weight ~4,000, comigrating with purified defensin standards (13), constituted the predominant acid-soluble iodinated species in the *S. typhimurium* phagosome. Identification of the 4-kD proteins as defensins was confirmed by their comigration with purified defensin standards in Au-PAGE (Fig. 6a), an electrophoretic system in which the migration of proteins is both charge and size dependent. Defensin iodination yielding the same electrophoretic patterns was readily observed when purified defensins were subjected to the action of the MPO-H2O2-¹²⁵I system or when H2O2 was added to granule-enriched PMN fractions (Fig. 6b). In both SDS-PAGE and Au-PAGE, several less prominent iodinated bands were seen on overexposed autoradiograms. One of the bands comigrated in both systems with purified elastase. Prominent iodinated bands comigrating with lactoferrin were identified only in preparations from neutrophils that ingested antibody-coated bacteria.

Comparison of Phagosomes from Neutrophils Ingesting *S. typhimurium* Bearing C3 or IgG

The iodination profile of phagosomes containing *S. typhimurium* sensitized with either adsorbed NHS or IgG was compared. The extent of total iodination within the phagosomes was equivalent under the two opsonization conditions (Table II). Furthermore, the percentage of ¹²⁵I counts per minute either precipitated by TCA, pelleted by ultracentrifugation, or remaining detergent insoluble were equivalent. Several major differences were noted when phagosomes were compared by one- (Fig. 3) and two-dimensional (not shown) gel electrophoresis. A major band at 75 kD, representing the β chain of C3, was present in phagosomes only when adsorbed NHS was the ligand (Fig. 3, adsorbed NHS lanes) (22). On the other hand, bands at 80 and 64 kD were present in the phagosomes when IgG was the ligand (Fig. 3, IgG lanes) but were much less prominent when organisms were opsonized with adsorbed NHS. The 80-kD band includes lactoferrin, and the 64-kD band is vitamin B₁₂ binding protein (TCI/TC3) as shown below. Additional categorization of bands by mo-

Figure 4. Two-dimensional gel electrophoresis of the phagosome fraction from a sample prepared as described in the legend to Fig. 3 for adsorbed NHS lanes. Selected spots or groups of spots are numbered for purposes of identification.

Figure 5. Identification by one-dimensional gel electrophoresis of acid-soluble granule components within phagosomes. SDS-PAGE (10–20%) profile of acid-soluble components within fractions from a sample prepared as described in the legend to Fig. 3 and in Materials and Methods. (Lanes T, C, P, PS, and F) total, cytosol, plasma membrane, plasma membrane and specific granules, and phagolysosome, respectively.
Figure 6. Identification of low molecular weight, acid-soluble proteins as defensins based on comigration with purified defensin standards in Au-PAGE. The left-hand panel shows cytosol, plasma membrane, specific granules, azurophil granules, azurophils and phagolysosomes, and total (lanes C, P, S, A, AF, F, and T, respectively). The positions of the three defensins are labeled HNP-1,2,3. Lactoferrin is labeled LF. The right-hand panel shows in vitro iodinations with mixtures including 0.5 mM hydrogen peroxide, 25 μCi Na125I, and the following: (lane g) PMN granules; (lane m,d) defensins and MPO; (lane +a) same as lane m,d with 1 mM Na azide; (lane +c) same as lane m,d with 40 μg/ml catalase; (lane c) catalase only; (lane d) defensins only; (lane m) MPO only. Lane m,d was exposed for 30 min, and the other lanes were exposed for 180 min (amounts as described under Materials and Methods). Since similar amounts of defensins and MPO are present on the gel in the first two lanes, it appears that the system is partially latent in (intact) granules.

Table II. Incorporation of 125I into Phagosome Fractions of Neutrophils Ingesting S. typhimurium

Experiment	Adsorbed NHS 125I	IgG 125I			
	n	%	n		%
1	7.4 × 10^6	67.1±	7.8 × 10^6	65.7±	
2	5.0 × 10^6	93.3±	6.12 × 10^6	90.4±	
3	2.8 × 10^6	33.9±	2.3 × 10^6	29.8±	
4	3.8 × 10^6	5.0 × 10^6			

* Total counts in peak tube from phagosome fraction.
† Percent of total counts precipitated by 10% TCA.
‡ Percent of total counts pelleted by centrifugation. The phagosome sample from the initial sucrose density gradient was diluted 1:1 in relaxation buffer and centrifuged for 1 h at 68,000 g.
§ Percent of total counts remaining detergent insoluble. The phagosome sample was mixed 1 vol sample to 2 vol lysis buffer and rotated overnight at 4°C. The percent of 125I counts per minute pelleted at 15,000 g for 30 min, representing predominantly bacterial outer membrane proteins (Joiner, K. A., unpublished observation), is shown.

Identification of an 80-kD Band as Lactoferrin

Iodinated lactoferrin was immunoprecipitated from cytosol but not from specific granules under both opsonization conditions (Fig. 7). Cytosol, plasma membrane, specific granule, and phagosome fractions from neutrophils ingesting S. typhimurium bearing C3 or IgG were probed by immunoprecipitation and immunoblot for the presence of lactoferrin. Iodinated lactoferrin was identified in the phagosome with IgG as a ligand but was barely detectable (fivefold less intense by densitometric scanning) in the phagosome fraction from neutrophils ingesting S. typhimurium bearing C3. This result was confirmed by immunoblot (not shown). Iodinated lactoferrin was present to the same extent in phagosomes when IgG alone and C3 plus IgG were compared as ligands (not shown).

Incorporation of lactoferrin within phagosomes was examined by electron microscopy of protein A–gold–stained frozen thin sections of whole neutrophils (Fig. 8). There were threefold more gold particles specific for lactoferrin within phagosomes containing IgG-coated S. typhimurium than within phagosomes containing serum-opsonized S. typhimurium (Table IV).
Table III. Categorization of Bands by Molecular Weight, Location, TX 114 Partition, and Identity when Two Opsonization Conditions Are Compared

Location	Adsorbed NHS	IgG	Identity
Cytosol/plasma membrane	22	22	TC1/TC3
	64, 80	-	Lactoferrin
	80	-	
Phagosome	28*	28*	OMP A
	37*	37*	OMP F, C
	75	-	β Chain C3
	<10	<10	Defensins

The location and molecular weight of bands is based on the gels from seven experiments with adsorbed NHS and three experiments with IgG. Additional bands are apparent in Fig. 3, but only those molecules demonstrating a consistent migration pattern in all experiments are listed. The identification of bands is based on experiments present elsewhere in this manuscript.

* Partition in detergent phase in TX 114.
† Presumptive, based on relative molecular mass and acid solubility.

Identification of 64- and 80-kD Bands as TC1/TC3

To confirm that specific granule components other than lactoferrin were differentially incorporated as the ligand was varied, iodinated TC1/TC3 was immunoprecipitated from cytostol, specific granule, and phagosome fractions (Fig. 9). Anti-serum to TC1/TC3 immunoprecipitated bands of 80, 64, and 42 kD. These components were seen in cytostol under both opsonization conditions, were absent from specific granules, and were sixfold more intense in phagosomes containing *Salmonella* opsonized with IgG. Addition of excess unlabeled lactoferrin to the anti-TC1/TC3 antisera before immunoprecipitation decreased the intensity but did not eliminate the 80-kD band (not shown).

Immunoprecipitation of Iodinated Complement and Fc Receptors in Phagosomes from Neutrophils Ingesting *Salmonella* Bearing C3

Immunoprecipitation experiments were done to identify iodinated complement and Fc receptors within the purified phagosomes from neutrophils ingesting *S. typhimurium* bearing C3. We used a monoclonal antibody (3G8) to the most prominent neutrophil Fc receptor, FcγRIII (11), an mAb (IB4) to the common β chain (Cδ18) of the Cδ18/Cδ11 family, and an mAb (44D) directed against CRI (Fig. 10, left).

Figure 7. Immunoprecipitation of iodinated lactoferrin

from cytostol, specific granule, and phagosome fractions of PMN ingesting *S. typhimurium*. Samples prepared as described in the legend to Fig. 3 were immunoprecipitated with antibody to lactoferrin as described in Materials and Methods and analyzed by 5-15% SDS-PAGE. Also shown are the SDS-PAGE profiles of total lysates (Total lanes) of exogenously labeled *S. typhimurium* after presensitization with adsorbed NHS (lanes a) or IgG (lanes b), and the results when these two samples were immunoprecipitated with antilactoferrin (anti-LF lanes). Results of total lysates from lanes a and b show that no iodinated constituent from the bacteria comigrates with lactoferrin. Results from the immunoprecipitation of samples in lanes a and b with antilactoferrin show that the lower molecular mass bands (<25 kD) seen in the phagosome fractions are derived from the bacteria rather than representing degradation fragments of lactoferrin.
A diffuse band, migrating between 50 and 70 kD and consistent with FcRIII (11, 21, 47, 48), was visible when mAb 3G8 was used with phagosome fractions. Bands at 150 and 165 kD, consistent with the \(\alpha \) chains of p150,95 and CR3, respectively, along with the common 95-kD \(\beta \) chain were identified using IB4. The identity of these molecules was confirmed in separate experiments using monoclonals specific for the \(\alpha \) chains of p150,95 and CR3 (not shown). A faint band at 240 kD was immunoprecipitated with the anti-CR1 mAb 44D.

Table IV. Protein A-Gold Staining for Lactoferrin in Frozen Thin Sections of Whole Neutrophils Ingesting Salmonella

Opsonization condition	Gold particles/phagosome
IgG	38.4 ± 11 \(^{\dagger} \)
IgG control	6 ± 5
Adsorbed NHS	16 ± 12
Adsorbed NHS control	6 ± 3

Thin frozen sections of whole neutrophils containing Salmonella opsonized with IgG or adsorbed NHS were stained with antilactoferrin followed by protein A-gold as described in Materials and Methods. In control samples, the antilactoferrin antibody was omitted. Phagosomes of equivalent size were counted for the two opsonization conditions. Gold particles overlying bacteria and within the phagosome space were counted.

* Number of phagosomes assessed in two separate experiments.

\(^{\dagger} \) Mean ± SD.

Discussion

We have purified and characterized phagosomes from human neutrophils ingesting *S. typhimurium*. As demonstrated by one- and two-dimensional electrophoresis and immunoprecipitation, bacterial outer membrane proteins, humoral ligands, azurophil granule components, and cell surface complement and Fc receptors are indiscriminately iodinated and incorporated into the phagosome regardless of whether C3 fragments, IgG, or a combination of the two ligands mediates phagocytosis.
The Journal of Cell Biology, Volume 109, 1989

2780

Massive discharge of azurophil granules into phagosomes is the sine qua non of phagolysosome formation in neutrophils (for review see 4, 16). In our experiments, several iodinated azurophil granule components were found in phagosomes, and the azurophil granule marker MPO was identified by enzymatic assay (Fig. 1b) within the phagosome-enriched subcellular fractions. More importantly, the process of endogenous iodination, which we used to identify constituents involved in phagolysosome formation, depends upon the presence of MPO within the phagocytic vacuole. In contrast, the extent to which specific granules fuse with and discharge contents into phagosomes is unclear. Bainton (5) suggested that fusion of specific and azurophilic granules from rabbit peritoneal exudate neutrophils with phagocytic vacuoles was sequential, with specific granule fusion occurring early in the process of phagosome formation. Subsequently, Pryzwansky et al. (40) demonstrated that both MPO and lactoferrin appeared on the cell surface within 5 s after neutrophils were challenged with serum-incubated E. coli. Earlier, Leffell and Spitznagel (30, 31) exposed human neutrophils to Latex beads covered with either immune complexes or immunoglobulin. The majority of lactoferrin released by the neutrophils was recovered in the medium, while MPO, an azurophil granule marker, was preferentially located in the phagosomes. Specific granule contents are readily and, in many cases, uniquely discharged from the neutrophil by soluble stimuli or during “frustrated phagocytosis” (for review see 4, 16). Taken as a whole, these results have suggested that specific granules function predominantly as secretory vesicles (59). Nonetheless, the mechanism responsible for the ready fusion of specific granules with the plasma membrane is unknown. One interpretation of our results is that aggregated Fc receptors, induced by immunoglobulin on the phagocytic particle, may be a sufficient signal to induce fusion of specific granules with the phagosome membrane. The capacity of aggregated immunoglobulin within immune complexes or on phagocytic particles to direct these ingested constituents to lysosomes is well established in macrophages (33, 35, 55). Alternatively, the rate of phagosome closure may be slower for complement-opsonized than for antibody-opsonized S. typhimurium, leading to more complete discharge of specific granule components outside the cell in the former case.

Antibody presensitization of Toxoplasma gondii (25), Legionella pneumophila (19), Chlamydia psittaci (12), and Mycobacterium tuberculosis (3) before entry of these organisms into macrophages overcomes the block in phagosome-lysosome fusion associated with entry of native organisms into the cells. We have recently shown that entry of antibody-coated T. gondii into fibroblasts stably transfected with murine FcγRII also leads to fusion of parasitophorous vacuoles with lysosomes (Joiner, K. A., S. A. Fuhrman, H. Miettinen, L. H. Kasper, and I. S. Mellman, manuscript submitted for publication). Although rapid and efficient fusion of neutrophil azurophil granules with phagosomes does not require antibody coating of the particle, one interpretation of our results is that fusion of phagosomes with specific granules may be enhanced by phagocytosis via Fc receptors.

Components involved in phagosome formation were identified by endogenous iodination. The major advantages of this approach are its sensitivity and the information it provides about the major components of the phagocyte and the phagocytic target which are exposed to the MPO–H2O2–halide system. Despite the demonstration by Klebanoff (26) over 20 years ago that bacteria are iodinated during phagocytosis, this system has not been used to identify specific microbial constituents exposed to halogenating substances. Segal et al. (44) performed subcellular fractionation studies on neutrophils ingesting IgG-coated Staphylococcus aureus in the presence of 125I Na and compared their results with neutrophils treated with PMA. These workers concluded that the subcellular distribution of 125I and the SDS-PAGE profile of iodinated constituents was not substantially different in the presence or absence of bacteria and that no iodination of bacterial proteins or opsonins could be detected. These studies
Figure 10. Immunoprecipitation of CR1, Cd18/Cd11 molecules, and FcγRIII from sucrose gradient fractions of neutrophils ingesting S. typhimurium, prepared as described in Fig. 3. (Left) Phagosome fraction of neutrophils ingesting S. typhimurium opsonized with adsorbed NHS. (Right) Plasma membrane (PM) and phagosome fractions of neutrophils ingesting S. typhimurium opsonized with IgG. (Lanes a) 1B4 (anti-CR1); (lanes b) IB4 (anti-Cd18); (lanes c) 3G8 (anti-FcγRIII). No bands >35 kD were immunoprecipitated from the phagosome fraction with protein A-Sepharose alone (not shown). The majority of iodinated receptors within the pools were immunoprecipitated under the conditions used (as described in Materials and Methods): no specific bands were seen when the supernatant from the first immunoprecipitation was subjected to repeat immunoprecipitations.

were done in the absence of added protease inhibitors during phagocytosis and without the application of immunoprecipitation to identify iodinated constituents. Our results indicate that identification of iodinated constituents is critically dependent upon inclusion of protease inhibitors and, in particular, the lipid soluble inhibitor, DFP, before phagocytosis (2, 22). Of most interest, bands of >60 kD were only faintly iodinated in the absence of protease inhibitors (22; data not shown). Thus, cell surface receptors and microbial ligands, in particular C3, were especially susceptible to proteolysis.

Defensins are a family of peptides abundant in the dense granules of mammalian granulocytes and certain macrophages (14, 46). They are broadly microbicidal and cytotoxic in vitro (for review see 14, 45). It has recently been suggested that interactions between defensins and S. typhimurium may play a critical role in the pathogenesis of salmonellosis (10). Our finding that defensins are prominent components of phagolysosomes that contain S. typhimurium is consistent with this hypothesis. More generally, the recovery of iodinated defensins from phagolysosomes provides further circumstantial evidence for the participation of these peptides in microbicidal events. The prominence of defensins among the iodinated species may be due to their relative abundance in the azurophil granules of PMN, where they constitute ~25% of total protein (41), and/or a result of their high content (10%) of tyrosine (46), the preferred amino acid for stable iodination. The physiologic role of phagolysosomal defensin halogenation remains to be established. Defensin-halogen adducts less stable than the iodopeptides noted here could function as potent cytotoxins or microbicides. Alternatively, the presence of defensins could protect more sensitive PMN components from damage by reactive halogen intermediates (52). These possibilities are under investigation.

In conclusion, these results indicate that azurophil granule constituents and cell surface phagocytic receptors of neutrophils are indiscriminantly iodinated and incorporated into phagosomes containing S. typhimurium regardless of the ligand on the organism, but that inclusion of secondary granule constituents into the phagosome is influenced by the ligand on the particle being ingested.

Received for publication 5 May 1989 and in revised form 5 July 1989.

References

1. Allen, R. H., and P. W. Majerus. 1972. Isolation of vitamin B12 binding proteins using affinity chromatography. J. Biol. Chem. 247:7702-7708.
2. Amrein, P. C., and T. P. Stossel. 1980. Prevention of degradation of human polymorphonuclear leukocyte proteins by diisopropylphosphofluoridate. Blood. 56:442-4447.
3. Armstrong, J. A., and P. D'Arcy-Hart. 1975. Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli: reversal of the usual non-fusion pattern and observations on bacterial survival. J. Exp. Med. 142:1-16.
4. Baggiolini, M., and B. Dewald. 1984. Exocytosis by neutrophils. In Regulation of Leukocyte Function. R. Snyderman, editor. Plenum Publishing Corp., New York. 221-245.
5. Bainton, D. F. 1973. Sequential degranulation of the two types of polymorphonuclear leukocyte granules during phagocytosis of microorganisms. J. Cell Biol. 58:249-264.
6. Bainton, D. F., L. J. Miller, T. K. Kishimoto, and T. A. Springer. 1987. Leukocyte adhesion receptors are stored in peroxidase-negative granules of human neutrophils. J. Exp. Med. 166:1641-1653.
7. Borregaard, N., J. M. Heiple, E. R. Simons, and R. A. Clark. 1983. Subcellular localization of the b-cytochrome component of the human neutrophil microbicidal oxidase translocation during activation. J. Cell Biol. 97:52-61.
8. Boyum, A. 1968. Isolation of mononuclear cells and granulocytes from human peripheral blood. Scand. J. Clin. Lab. Invest. 21:77-89.
10. Fields, P. A., E. A. Groisman, and F. Heffron. 1989. A Salmonella locus that controls resistance to microbialid proteins from phagocytic cells. Science. 243:1059-1062.

11. Fleit, H. B., S. D. Wright, and J. C. Unkeless. 1982. Human neutrophil Fcy receptor distribution and structure. Proc. Natl. Acad. Sci. USA. 79:3275-3279.

12. Fries, R. R., and P. A. Cohn. Interaction of L cells and Chlamydia psittaci: entry of the parasite and host response to its development. J. Bacteriol. 110: 706-716.

13. Ganz, T., M. E. Selsted, D. S. Klarke, S. L. S. Harwig, K. Daher, and R. I. Horwitz. 1989. Human neutrophil phagocytosis and oxidative metabolism: a re-evaluation. J. Cell Biol. 109: 86:712-86:722.

14. Ganz, T., M. E. Selsted, and R. L. Lehrer. 1987. Defensins: natural peptide antibiotics of human neutrophils. J. Clin. Invest. 76:1427-1435.

15. Goldman, R. C., and M. F. Muller. 1989. Complement attack on altered Salmonella: release of bacterial polysaccharide during receptor-mediated phagocytosis. J. Cell Biol. 96:887-895.

16. Melnick, D. A., W. M. Nauseef, S. D. Markowitz, J. P. Gardner, and H. L. Malech. 1985. Biochemical analysis and subcellular localization of a neutrophil-specific antigen, PMN-7, involved in the respiratory burst. J. Immunol. 134:3346-55.

17. Muller, W. A., R. M. Steinman, and Z. A. Cohn. 1980. The membrane proteins of the vacular system. I. Analysis by a novel method of intravascular iodination. J. Cell Biol. 86:292-303.

18. Muller, W. A., R. M. Steinman, and Z. A. Cohn. 1983. Membrane proteins of the vacular system. III. Further studies on the composition and recycling of endocytic vacule membrane in cultured macrophages. J. Cell Biol. 96:29-36.

19. Petty, H. R., D. G. Haferman, and H. M. McConnell. 1980. Specific antibody-dependent phagocytosis of lipid vesicles by RAW 264 macrophages results in the loss of cell surface Fe receptor but not C3b receptor activity. J. Immunol. 125:2391-2396.

20. Pryzbylski, K. E., R. K. MacRae, J. K. Spitznagel, and J. H. Cooney. 1979. Early degradation of human neutrophils: immunocytochemical studies of surface and intracellular phagocytic events. Cell. 18:1025-1033.

21. Rice, W. G., T. Ganz, J. M. Kinkade, Jr., M. E. Seidt, R. L. Lehrer, and R. T. Parmley. 1987. Defensin-rich dense granules of human neutrophils. Blood. 70:757-765.

22. Salmon, J. E., S. Kapur, and R. P. Kimberly. 1987. Opsonin-independent ligation of Fc receptors: the 3G8-bearing receptors on neutrophils mediate the phagocytosis of concanavalin A-treated erythrocytes and nonopsonized Escherichia coli. J. Exp. Med. 166:1798-1813.

23. Sanchez-Madrid, F., J. A. Naga, E. Robbins, P. Simon, and T. A. Springer. 1983. A human leukocyte differentiation antigen family with diverse α subunits and a common β subunit. The lymphocyte function-associated (LFA)-1, the CD8b complement receptor (OKM1/Mac1), and the p150,95 molecule. J. Exp. Med. 158:1785-1803.

24. Segal, A. W., R. C. Garcia, and A. M. Harper. 1982. Ligation by stimulant of human neutrophils. J. Cell Biol. 93:2106-2126.

25. Howard, F. D., H. R. Petty, and H. M. McConnell. 1982. Identification of phagocytosis-associated surface proteins in macrophages by two-dimensional gel electrophoresis. J. Cell Biol. 92:283-288.

26. Huizinga, T. W. J., C. E. van der Schoot, C. Jost, R. Klaasen, M. Kleijer, A. E. G. Kr. van dem Borne, D. Roos, and P. A. T. Tetteroo. 1988. The Ig-linked receptor FeRIII is released on stimulation of neutrophils. Nature (Lond.). 333:667-669.

27. Joiner, K. A., and J. E. Schweinle. 1989. Halogenation and proteolysis of complement component C3 during phagocytosis of Salmonella typhimurium by human neutrophils. J. Immunol. 142:3164-3170.

28. Klebanoff, S. J. 1967. Isolation of ions of plasma: a bacterial cell wall. J. Exp. Med. 126:1063-1078.

29. Klebanoff, S. J. 1980. Myeloperoxidase-mediated cytocidal system. In The Reticuloendothelial System. Vol. 2. A. J. Sbarra and R. R. Strauss, editors. Plenum Publishing Corp., New York. 279-308.

30. Klebanoff, S. J., and R. A. Clark. 1977. Ionization by human polymorphonuclear leukocytes: a re-evaluation. J. Lab. Clin. Med. 89:675-686.

31. Kloor, G. 1970. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature (Lond.). 227:680-685.

32. Leffell, M. S., and J. K. Spitznagel. 1974. Intracellular and extracellular degradation of human polymorphonuclear azurophil and specific granules induced by immune complexes. Infect. Immun. 10:1241-1249.

33. Leffell, M. S., and J. K. Spitznagel. 1975. Fate of human lactoferrin and myeloperoxidase in phagocytizing human neutrophils: effects of immunoglobulin G subclasses and immune complexes coated on latex beads. Infect. Immun. 12:813-820.

34. Leininger, B., and L. van Alphen. 1983. Molecular architecture and functioning of the outer membrane of Escherichia coli and other gram-negative bacteria. Biochim. Biophys. Acta. 737:51-115.

35. Mellman, I., and R. D. Berlin. 1973. Effect of phagocytosis on membrane transport of nonelectrolytes. J. Exp. Med. 134:1016-1035.

36. Ukonnen, P., V. Lewis, M. Marsh, A. Helenius, and I. Mellman. 1986. Transport of macrophage Fe receptors and Fe receptor-bound ligands to lysosomes. J. Exp. Med. 163:95-106.

37. Vaux, D. J. T., and S. Gordon. 1985. Intracellular antigens associated with the cytoplasmic surface of phagolysosomes. J. Cell Sci. 77:109-127.

38. Willinger, M., and R. Fr. Frankel. 1979. Fate of surface proteins of rabbit polymorphonuclear leukocytes during phagocytosis. I. Identification of surface proteins. J. Cell Biol. 82:32-44.

39. Wright, D. G., and J. I. Gallin. 1979. Secretory responses of human neutrophils: exocytosis of specific (secondary) granules by human neutrophils during adherence in vitro and during exudation in vivo. J. Immunol. 123:285-294.

40. Wright, S. D., and M. T. C. Jong. 1983. Adhesion-promoting receptors on human macrophages recognize Escherichia coli by binding to lipopolysaccharide. J. Exp. Med. 164:1876-1888.