How significant is vertical ground motion from low magnitude earthquakes?

Janneke van Ginkel1,2, Elmer Ruigrok2,3, and Rien Herber1

1ESRIG, Groningen University, Groningen, the Netherlands (j.a.van.ginkel@rug.nl)
2R&D Seismology and Acoustics, Royal Netherlands Meteorological Institute, De Bilt, The Netherlands
3Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands

Up to now, almost all of the ground motion modeling and hazard assessment for seismicity in the Netherlands focuses on horizontal motion. As a rule of thumb, the strength of vertical ground motions is taken as 2/3 of that of horizontal ground motions. In reality of course, amplifications and V/H ratios are site-dependent and thus vary regionally. Recent studies have indeed shown that vertical ground motion is not always simply 2/3 of the horizontal motion. However, these studies are performed in areas with high magnitude (Mw>5.0) earthquakes and the question is whether vertical motion is relevant to be included in seismic hazard assessment for low magnitude earthquakes (to date, max Mw=3.6 in Groningen).

In the Netherlands, the top part of the soils is practically always unconsolidated, so the elastic waves generated by deeper (~3000m) seated earthquakes will be subject to transformation when arriving in these layers. Recordings over a range of depth levels in the Groningen borehole network show the largest amplification to occur in the upper 50 meters of the sedimentary cover. We not only observe a strong amplification from shear waves on the horizontal components, but also from longitudinal waves on the vertical component. A better understanding of vertical motion of low magnitude earthquakes aims to support the design of re-enforcement measures for buildings in areas affected by low magnitude seismicity. Furthermore, interference between the longitudinal -and shear waves might contribute to damage on structures.

This study presents observations of longitudinal wave amplification in the frequency band 1-10 Hz, corresponding to resonance periods of Dutch buildings. From 19 seismic events, with a minimum of magnitude two, we retrieved transfer functions (TFs) from the vertical component, showing a strong site response at certain locations. In addition, we calculate event V/H ratios and VH factors from the surface seismometer. These results are compared with the TFs and show a similar pattern in terms of site response. Furthermore, the sites with highest vertical amplification correspond to very low (800-900 m/s) P-wave velocities. Our study shows that vertical amplification is very site dependent. However, the question whether the vertical motion is significant enough to form a real hazard can only be answered through cooperation between seismologist and structural engineer.
How to cite: van Ginkel, J., Ruigrok, E., and Herber, R.: How significant is vertical ground motion from low magnitude earthquakes?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5505, https://doi.org/10.5194/egusphere-egu2020-5505, 2020