Abstract
We determine the L^2-Betti numbers of all one-relator groups and all surface-plus-one-relation groups. We also obtain some information about the L^2-cohomology of left-orderable groups, and deduce the non-L^2 result that, in any left-orderable group of homological dimension one, all two-generator subgroups are free.

2000 Mathematics Subject Classification. Primary: 20F05; Secondary: 16S34, 20J05.
Key words. Left ordered group, L^2-Betti number, one-relator group, Thompson’s group.

1 Notation and background
Let G be a (discrete) group, fixed throughout the article.

We use $\mathbb{R} \cup \{-\infty, \infty\}$ with the usual conventions; for example, $\frac{1}{\infty} = 0$, and $3 - \infty = -\infty$. Let \mathbb{N} denote the set of finite cardinals, $\{0, 1, 2, \ldots\}$. We call $\mathbb{N} \cup \{\infty\}$ the set of vague cardinals, and, for each set X, we define its vague cardinal $|X| \in \mathbb{N} \cup \{\infty\}$ to be the cardinal of X if X is finite, and to be ∞ if X is infinite.

Mappings of right modules will be written on the left of their arguments, and mappings of left modules will be written on the right of their arguments.

Let $\mathbb{C}[G]$ denote the set of all functions from G to \mathbb{C} expressed as formal sums, that is, a function $a : G \to \mathbb{C}$, $g \mapsto a(g)$, will be written as $\sum_{g \in G} a(g)g$. Then $\mathbb{C}[G]$ has a natural CG-bimodule structure, and contains a copy of $\mathbb{C}G$ as $\mathbb{C}G$-sub-bimodule. For each $a \in \mathbb{C}[G]$, we define $\|a\| := (\sum_{g \in G} |a(g)|^2)^{1/2} \in [0, \infty]$, and $\text{tr}(a) := a(1) \in \mathbb{C}$.

Define
$$ l^2(G) := \{a \in \mathbb{C}[G] : \|a\| < \infty\}. $$

We view $\mathbb{C} \subseteq \mathbb{C}G \subseteq l^2(G) \subseteq \mathbb{C}[G]$. There is a well-defined external multiplication map
$$ l^2(G) \times l^2(G) \to \mathbb{C}[G], \quad (a, b) \mapsto a \cdot b, $$
where, for each $g \in G$, $(a \cdot b)(g) := \sum_{h \in G} a(h)b(h^{-1}g)$; this sum converges in \mathbb{C}, and, moreover, $|(a \cdot b)(g)| \leq \|a\| \|b\|$, by the Cauchy-Schwarz inequality. The external multiplication extends the multiplication of $\mathbb{C}G$.

The group von Neumann algebra of G, denoted $\mathcal{N}(G)$, is the ring of bounded $\mathbb{C}G$-endomorphisms of the right $\mathbb{C}G$-module $l^2(G)$; see [19 §1.1]. Thus $l^2(G)$ is an $\mathcal{N}(G)$-$\mathbb{C}G$-bimodule. We view $\mathcal{N}(G)$ as a subset of $l^2(G)$ by the map $\alpha \mapsto \alpha(1)$, where 1 denotes the identity element of $\mathbb{C}G \subseteq l^2(G)$. It can be shown that
$$ \mathcal{N}(G) = \{a \in l^2(G) \mid a \cdot l^2(G) \subseteq l^2(G)\}, $$
and
and that the action of $\mathcal{N}(G)$ on $l^2(G)$ is given by the external multiplication. Notice that $\mathcal{N}(G)$ contains $\mathbb{C}G$ as a subring and also that we have an induced ‘trace map’ $\text{tr}: \mathcal{N}(G) \to \mathbb{C}$. The elements of $\mathcal{N}(G)$ which are injective, as operators on $l^2(G)$, are precisely the (two-sided) non-zerodivisors in $\mathcal{N}(G)$, and they form a left and right Ore subset of $\mathcal{N}(G)$; see [19, Theorem 8.22(1)].

Let $\mathcal{U}(G)$ denote the ring of unbounded operators affiliated to $\mathcal{N}(G)$; see [19, §8.1]. It can be shown that $\mathcal{U}(G)$ is the left, and the right, Ore localization of $\mathcal{N}(G)$ at the set of its non-zerodivisors. For example, it is then clear that,

if x is an element of G of infinite order, then $x - 1$ is invertible in $\mathcal{U}(G)$. (1.0.1)

Moreover, $\mathcal{U}(G)$ is a von Neumann regular ring in which one-sided inverses are two-sided inverses, and, hence, one-sided zerodivisors are two-sided zerodivisors; see [19, §8.2].

There is a continuous, additive von Neumann dimension that assigns to every left $\mathcal{U}(G)$-module M a value $\dim_{\mathcal{U}(G)} M \in [0, \infty]$; see Definition 8.28 and Theorem 8.29 of [19]. For example,

if e is an idempotent element of $\mathcal{N}(G)$, then $\dim_{\mathcal{U}(G)} \mathcal{U}(G)e = \text{tr}(e)$; (1.0.2)

By Definition 6.50, Lemma 6.51 and Theorem 8.29 of [19], we can define, for each $n \in \mathbb{N}$, the nth L^2-Betti number of G as

$$b_n^{(2)}(G) := \dim_{\mathcal{U}(G)} H_n(\mathcal{U}(G) \otimes_{\mathbb{Z}G} \mathcal{P}),$$

where $\mathcal{U}(G)$ is to be viewed as a $\mathcal{U}(G)$-$\mathbb{Z}G$-bimodule. Of course,

$$H_n(\mathcal{U}(G) \otimes_{\mathbb{Z}G} \mathcal{P}) = \text{Tor}^Z_n(\mathcal{U}(G), Z) \simeq \text{Tor}^Z_{\mathbb{Z}G}_n(\mathcal{U}(G), Z) = H_n(G; \mathcal{U}(G)),$$

where, for the purposes of this article, it will be convenient to understand that $H_n(G; -)$ applies to right G-modules. Thus the L^2-Betti numbers do not depend on the choice of Z, nor on the choice of \mathcal{P}.

1.1 Remark. If G contains an element of infinite order, then [10, 11] implies that $\mathcal{U}(G) \otimes_{\mathbb{Z}G} Z = 0$, and $\mathcal{U}(G) \otimes_{\mathbb{Z}G} P_1 \to \mathcal{U}(G) \otimes_{\mathbb{Z}G} P_0 \to 0$ is exact, and $H_0(G; \mathcal{U}(G)) = 0$, and $b_0^{(2)}(G) = 0$. □

1.2 Remarks. In general, there is little relation between the nth L^2-Betti number, $b_n^{(2)}(G) = \dim_{\mathcal{U}(G)} H_n(G; \mathcal{U}(G)) \in [0, \infty]$, and the nth (ordinary) Betti number,

$b_n(G) := \dim_{\mathbb{Q}} H_n(G; \mathbb{Q}) \in [0, \infty]$.
We say that \(G \) is of type FL if, for \(Z = \mathbb{Z} \), there exists a resolution such that all the \(P_n \) are finitely generated free left \(ZG \)-modules and all but finitely many of the \(P_n \) are 0.

If \(G \) is of type FL, then it is easy to see that the \(L^2 \)-Euler characteristic
\[
\chi^{(2)}(G) := \sum_{n \geq 0} (-1)^n b_n^{(2)}(G)
\]
is equal to the (ordinary) Euler characteristic
\[
\chi(G) := \sum_{n \geq 0} (-1)^n b_n(G).
\]

We say that \(G \) is of type VFL if \(G \) has a subgroup \(H \) of finite index such that \(H \) is of type FL. In this event, the (ordinary) Euler characteristic of \(G \) is defined as
\[
\chi(G) := \frac{1}{[G:H]} \chi(H);
\]
this is sometimes called the virtual Euler characteristic. Here again, \(\chi^{(2)}(G) = \chi(G) \); see [19, Remark 6.81].

2 Summary of results

In outline, the article has the following structure. More detailed definitions can be found in the appropriate sections.

In Section 3, we prove a useful technical result about \(\mathcal{U}(G) \) for special types of groups.

In Section 4, we calculate the \(L^2 \)-Betti numbers of one-relator groups. Let us describe the results.

For any element \(x \) of a group \(G \), we define the exponent of \(x \) in \(G \), denoted \(\exp_G(x) \), as the supremum in \(\mathbb{Z} \cup \{ \infty \} \) of the set of those integers \(m \) such that \(x \) equals the \(m \)th power of some element of \(G \). Then \(\exp_G(x) \) is a nonzero vague cardinal. We write \(G/\langle x \rangle \) to denote the quotient group of \(G \) modulo the normal subgroup of \(G \) generated by \(x \).

Suppose that \(G \) has a one-relator presentation \(\langle X \mid r \rangle \). Thus \(r \) is an element of the free group \(F \) on \(X \), and \(G = F/\langle r \rangle \).

Set \(d := |X| \in [0, \infty] \), \(m := \exp_F(r) \in [1, \infty] \), and \(\chi := 1 - d + \frac{1}{m} \in [-\infty, 1] \).

It is known that if \(d < \infty \) then \(G \) is of type VFL and \(\chi(G) = \chi \). If \(d = \infty \), then \(G \) is not finitely generated and \(\chi = -\infty \); here we define \(\chi(G) = -\infty \), which is non-standard, but it is reasonable.

In general, \(\max\{\chi(G), 0\} = \frac{1}{m} \).

In Theorem 4.2 we will show that,

\[
\begin{cases}
 \max\{\chi(G), 0\} & \text{if } n = 0, \\
 \max\{-\chi(G), 0\} & \text{if } n = 1, \\
 0 & \text{if } n \geq 2.
\end{cases}
\]

Lück [19, Example 7.19] gave some results and conjectures concerning the \(L^2 \)-Betti numbers of torsion-free one-relator groups, and (2.0.1) shows that the conjectured statements are true.

In Section 5, we calculate the \(L^2 \)-Betti numbers of an arbitrary surface-plus-one-relation group \(G = \pi_1(\Sigma)/\langle \alpha \rangle \). Here \(\Sigma \) is a connected orientable surface, and \(\alpha \) is
an element of the fundamental group, \(\pi_1(\Sigma) \). The surface-plus-one-relation groups were introduced and studied by Hempel [12], and further investigated by Howie [15]; these authors called the groups ‘one-relator surface groups’, but we are reluctant to adopt this terminology.

If \(\Sigma \) is not closed, then \(\pi_1(\Sigma) \) is a countable free group, see [20], and \(G \) is a countable one-relator group. In light of Theorem 4.2 we may assume that \(\Sigma \) is a closed surface.

Let \(g \) denote the genus of the closed surface \(\Sigma \), and let \(m = \exp_{\pi_1(\Sigma)}(\alpha) \). It is not difficult to deduce from known results that \(G \) is of type VFL and

\[
\chi(G) = \begin{cases}
1 & \text{if } g = 0, \\
0 & \text{if } g = 1, \\
2 - 2g + \frac{1}{m} & \text{if } g \geq 2.
\end{cases}
\]

Then \(\chi(G) \in (-\infty, 1] \) and \(\max\{\chi(G), 0\} = \frac{1}{|G|} \). In Section 5 we will show that (2.0.1) is also valid for surface-plus-one-relation groups.

For any group \(G \), \(b_n^{(2)}(G) = \frac{1}{|G|} \); see [19] Theorem 6.54(8)(b)]. It is obvious that if \(G \) is finite then \(b_n^{(2)}(G) = 0 \) for all \(n \geq 1 \). Thus, in essence, the foregoing results assert that if \(G \) is an infinite one-relator group, or an infinite surface-plus-one-relation group, then

\[
b_n^{(2)}(G) = \begin{cases}
-\chi(G) & \text{if } n = 1, \\
0 & \text{if } n \neq 1,
\end{cases}
\]

and we emphasize that, in this case, we understand that \(\chi(G) = -\infty \) if \(G \) is not finitely generated.

In Section 6 we consider a variety of situations where \(Z \) is a nonzero ring and there exists some positive integer \(n \) such that \(P_n = ZG^2 \) in a projective \(ZG \)-resolution (1.0.3) of \(ZG \). For example, this happens for two-generator groups and for two-relator groups.

Thus, in Corollary 6.8, we recover Lück’s result [19] Theorem 7.10] that all the \(L^2 \)-Betti numbers of Thompson’s group \(F \) vanish; see [6] for a detailed exposition of the definition and main properties of \(F \).

2.1 Definitions. Recall that \(G \) is left orderable if there exists a total order \(\leq \) of \(G \) which is left \(G \)-invariant, that is, whenever \(g, x, y \in G \) and \(x \leq y \), then \(gx \leq gy \). One then says that \(\leq \) is a left order of \(G \). The reverse order is also a left order. Since every group is isomorphic to its opposite through the inversion map, we see that ‘left-orderable’ is a short form for ‘one-sided-orderable’.

A group is said to be locally indicable if every finitely generated subgroup is either trivial or has an infinite cyclic quotient. Burns and Hale [5] showed that every locally indicable group is left orderable. This often provides a convenient way to prove that a given group is left orderable.

Recall that the cohomological dimension of \(G \) with respect to a ring \(Z \), denoted \(\text{cd}_Z G \), is the least \(n \in \mathbb{N} \) such that \(P_{n+1} = 0 \) in some projective \(ZG \)-resolution (1.0.3) of \(ZG \). The cohomological dimension of \(G \), denoted \(\text{cd}_Z G \), is \(\text{cd}_G G \). A classic result of Stallings and Swan says that the groups of cohomological dimension at most one are precisely the free groups.
Similarly, the homological dimension of G with respect to a ring Z, denoted $\text{hd}_Z G$, is the least $n \in \mathbb{N}$ such that $P_{n+1} = 0$ in some flat ZG-resolution of ZG. The homological dimension of G, denoted $\text{hd}_Z G$.

We understand that Robert Bieri, in the 1970’s, first raised the question as to whether the groups of homological dimension at most one are precisely the locally free groups. Notice that a locally free group has homological dimension at most one, since the augmentation ideal of a locally free group is a directed union of free groups. Recently, in [16], it was proved that if the homological dimension of G is at most one and G satisfies the Atiyah conjecture (or, more generally, the group ring ZG embeds in a one-sided Noetherian ring), then G is locally free. In Corollary 6.12 we show that if G is locally indicable, or, more generally, left orderable, and the homological dimension of G is at most one, then every two-generator subgroup of G is free.

Finally, in Proposition 6.13 we calculate the first three L^2-Betti numbers of an arbitrary left-orderable two-generator group of cohomological dimension at least three.

2.2 Notation. We will frequently consider maps between free modules over a ring U, and we will use the following format.

Let X and Y be sets.

By an $X \times Y$ row-finite matrix over U we mean a function $(u_{x,y}) : X \times Y \to U$, $(x,y) \mapsto u_{x,y}$ such that, for each $x \in X$, $\{y \in Y \mid u_{x,y} \neq 0\}$ is finite.

We write $\oplus_X U$ to denote the direct sum of copies of U indexed by X. If $n \in \mathbb{N}$, and $X = \{1,\ldots,n\}$, we identify $X = n$ and also write $\oplus_n U$ as U^n. An element of $\oplus_X U$ will be viewed as a $1 \times X$ row-finite matrix (u_{1x}) over U. Then $\oplus_X U$ is a left U-module in a natural way.

A map $\oplus_X U \to \oplus_Y U$ of left U-modules will be thought of as right multiplication by a row-finite $X \times Y$ matrix $(u_{x,y})$ in a natural way, and we will write $\oplus_X U \xrightarrow{(u_{x,y})} \oplus_Y U$.

3 Preliminary results about $U(G)$

For $a = \sum_{g \in G} a(g)g \in \mathbb{C}[[G]]$, we let $a^* = \sum_{g \in G} \overline{a(g^{-1})}g$ where \overline{z} indicates the complex conjugate of z. This involution restricts to $\mathbb{C}(G)$ and $\mathcal{N}(G)$, and extends in a unique way to $U(G)$. Furthermore, if $a, b \in \mathcal{N}(G)$, then $(ab)^* = b^*a^*$ and $a^*a = 0$ if and only if $a = 0$.

In Sections 4 and 5, we shall see that the narrow hypotheses of the following result hold whenever G is a one-relator group or a surface-plus-one-relation group.

3.1 Theorem. Suppose that G has a normal subgroup H such that H is the semidirect product $F \rtimes C$ of a free subgroup F by a finite subgroup C, and that G/H is locally indicable, or, more generally, left orderable.

Let $m = |C|$, and let $e = \frac{1}{m} \sum_{c \in C} c \in \mathbb{C}G$.

Then the following hold.

(i) Each torsion subgroup of G embeds in C.

(ii) Each nonzero element of $e \mathbb{C}Ge$ is invertible in $e U(G)e$.

(iii) For all $x \in U(G)e$ and $y \in e \mathbb{C}Ge$, if $xy = 0$ then $x = 0$ or $y = 0$.
Proof. Each torsion subgroup of G lies in H and has trivial intersection with F, and therefore embeds in C.

Notice that e is a projection, that is, e is idempotent and $e^* = e$. Clearly, $\text{tr}(e) = \frac{1}{m}$. Also, $eU(G)e$ is a ring and $eCGe$ is a subring of $eU(G)e$. Moreover, in $eU(G)e$, one-sided inverses are two-sided inverses.

Let $a \in eCGe - \{0\}$. We want to show that a is left invertible in $eU(G)e$.

Let T be a transversal for the right (or left) H-action on G, and suppose that T contains 1. Write $a = t_1a_1 + \cdots + t_na_n$ where the t_i are distinct elements of T, and, for each i, $a_i \in \mathbb{C}(H)e - \{0\}$.

Let x be a left order for G/H. We may assume that $t_1H \prec \cdots \prec t_nH$. To show that a is left invertible in $eU(G)e$, it suffices to show that $(ea_1t_1^{-1}e)a$ is left invertible in $eU(G)e$. On replacing a with $(ea_1t_1^{-1}e)a = a_1t_1^{-1}a$, we see that we may assume that $t_1 = 1$ and $a_1 \in eCGe - \{0\}$.

By (1), m is the least common multiple of the orders of the finite subgroups of H. Now the strong Atiyah conjecture holds for H; see [18] or [19] Chapter 10. Hence $\dim_{U(H)}U(H)a_1 \geq \frac{1}{m} = \text{tr}(e)$. Of course, $U(H)a_1 \subseteq U(H)e$, and thus $\dim_{U(H)}U(H)a_1 \leq \dim_{U(H)}U(H)e = \text{tr}(e)$. Hence $\dim_{U(H)}U(H)a_1 = \text{tr}(e)$.

Also, $U(H)(a_1 + 1 - e) = U(H)a_1 \oplus U(H)(1 - e)$. Hence

$$\dim_{U(H)}U(H)(a_1 + 1 - e) = \dim_{U(H)}U(H)a_1 + \dim_{U(H)}U(H)(1 - e) = \text{tr}(e) + \text{tr}(1 - e) = 1.$$

This implies that $a_1 + 1 - e$ is invertible in $U(H)$. The $*$-dual of [17] Theorem 4 now implies that $a + 1 - e = 1(a_1 + 1 - e) + t_2a_2 + \cdots + t_na_n$ is invertible in $U(G)$.

It is then straightforward to show that a is invertible in $eU(G)e$.

(1) Suppose that $y \neq 0$. Then $x^*xyy^* = 0$, $yy^* \in eCGe - \{0\}$ and $x^*x \in eU(G)e$. By (1), yy^* is invertible in $eU(G)e$. Hence $x^*x = 0$ and $x = 0$. \qed

3.2 Remark. The above proof shows that the conclusions of Theorem 3.1 hold under the following hypotheses: H is a normal subgroup of G; G/H is left orderable; the strong Atiyah conjecture holds for H; and, e is a nonzero projection in $\mathbb{C}H$ such that $\frac{1}{\text{tr}(e)}$ is the least common multiple of the orders of the finite subgroups of H. \qed

3.3 Theorem. If G is locally indicable, or, more generally, left orderable, then every nonzero element of $\mathbb{C}G$ is invertible in $U(G)$. \qed

4 One-relator groups

We shall now calculate the L^2-Betti numbers of one-relator groups.

4.1 Notation. Suppose that G is a one-relator group, and let $(X \mid r)$ be a one-relator presentation of G.

Here r is an element of the free group F on X and $G = F/\langle r \rangle$.

Let $m = \text{exp}_F(r)$ and let $d = |X|$. These are vague cardinals. Here $m \neq 0$; moreover, $m = \infty$ if and only if $r = 1$, in which case $G = F$.

If \(m < \infty \), then \(r = q^m \) for some \(q \in F \). Let \(c \) denote the image of \(q \) in \(G \), and let \(C = \langle c \rangle \leq G \). Then \(C \) has order \(m \). Let \(e = \frac{1}{m} \sum_{x \in C} x \in \mathbb{C}G \).

If \(m = \infty \), we define \(e = 0 \in \mathbb{C}G \).

In any event \(e \) is a projection and \(\text{tr}(e) = \frac{1}{m} \).

There is an exact sequence of left \(\mathbb{Z}G \)-modules

\[
0 \rightarrow \bigoplus_{x \in X} \mathbb{Z}G \rightarrow \mathbb{Z}G \rightarrow \mathbb{Z} \rightarrow 0 \quad \text{if } m = \infty,
\]

\[
0 \rightarrow \mathbb{Z}[G/C] \rightarrow \mathbb{Z} \rightarrow 0 \quad \text{if } d = 1 \text{ and } m < \infty,
\]

\[
0 \rightarrow \mathbb{Z}[G/C] \rightarrow \bigoplus_{x \in X} \mathbb{Z}G \rightarrow \mathbb{Z} \rightarrow 0 \quad \text{if } d \geq 2 \text{ and } m < \infty.
\]

see [7], specifically, Lemma 6.21 and \((*)\) on p. 167 in the proof of Theorem 6.22. In all cases, there is then an exact sequence of left \(\mathbb{C}G \)-modules

\[
0 \rightarrow \mathbb{C}Ge \xrightarrow{(a_1,x)} \bigoplus_{x \in X} \mathbb{C}G \xrightarrow{(b_{x,1})} \mathbb{C}G \rightarrow \mathbb{C} \rightarrow 0; \quad (4.1.1)
\]

for each \(x \in X \), \(b_{x,1} \) is the image of \(q \) in \(\mathbb{C}G \), and \(a_{1,x} \) is the left Fox derivative \(\frac{\partial q}{\partial x} \in e\mathbb{C}G \).

If \(d < \infty \), then \(G \) is of type VFL and

\[
\chi(G) = 1 - d + \frac{1}{m} \in (-\infty, 1]; \quad (4.1.2)
\]

see Theorem 6.22 and Corollary 6.15 of [7], for the cases where \(m < \infty \) and \(m = \infty \), respectively.

In the case where \(d = \infty \), that is, \(G \) is a non-finitely-generated one-relator group, we define \(\chi(G) := -\infty \). This is non-standard, but it extends (4.1.2).

It is easy to verify that \(\frac{1}{|G|} = \max \{\chi(G), 0\} \). In fact, by abelianizing \(G \), we see that \(G \) is finite if and only if either \(d = 1 \) and \(m < \infty \), or \(d = 0 \) (and hence \(m = \infty \)).

We shall now prove the following.

4.2 Theorem. If \(G \) is a one-relator group, then, for \(n \in \mathbb{N} \),

\[
b_n^{(2)}(G) = \begin{cases}
\max\{\chi(G), 0\} \left(= \frac{1}{|G|}\right) & \text{if } n = 0, \\
\max\{-\chi(G), 0\} & \text{if } n = 1, \\
0 & \text{if } n \geq 2.
\end{cases} \quad (4.2.1)
\]

Proof. Suppose that Notation 4.1 holds.

Unaugmenting (4.1.1) and applying \(\mathcal{U}(G) \otimes_{\mathbb{Z}G} \) gives

\[
0 \rightarrow \mathcal{U}(G)e \xrightarrow{(a_1,x)} \bigoplus_{x \in X} \mathcal{U}(G) \xrightarrow{(b_{x,1})} \mathcal{U}(G) \rightarrow 0; \quad (4.2.2)
\]

the homology of (4.2.2) is then \(H_n(G; \mathcal{U}(G)) \).

We claim that

\[
\text{if } y \in \mathcal{U}(G)e - \{0\} \text{ and } a \in e\mathbb{C}G - \{0\}, \text{ then } ya \neq 0. \quad (4.2.3)
\]

This is vacuous if \(m = \infty \).

If \(m < \infty \), let \(H \) denote the normal subgroup of \(G \) generated by \(c \). Then \(G/H = \langle X \mid q \rangle \) is a torsion-free one-relator group. Hence \(G/H \) is locally indicable.
where \(x, y \)
\[
α \not\in S.
\]

5.1 Theorem

Following.

Let \(g \in G \) denote the genus of \(\Sigma \). Then \(g \in \mathbb{N} \)
\[
\pi_1(\Sigma) = \langle x_1, x_2, \ldots, x_{2g-1}, x_{2g} \mid [x_1, x_2][x_3, x_4] \cdots [x_{2g-1}, x_{2g}] \rangle,
\]
where \([x, y] \) denotes \(xyx^{-1}y^{-1} \). Since this is a one-relator presentation, we have \(α \neq 1 \). In particular, \(g \) is nonzero. The non-one-relator cases are included in the following.

5.1 Theorem

Let \(Σ \) be a closed orientable surface of genus at least one, let \(S = π_1(Σ) \), let \(α \) be a nontrivial element of \(S \), and let \(G = S/\langle α \rangle \).

Let \(g \) denote the genus of \(Σ \), let \(m = \exp_α(α) \), and let \(Q \) be a nonzero ring in which \(\frac{1}{m} \) is defined, that is, if \(m < \infty \) then \(mQ = Q \). Then the following hold.

(i) \(G \) is of type VFL and \(χ(G) = \min\{2 - 2g + \frac{1}{m}, 0\} \)
\[
\begin{align*}
0 & \quad \text{if } g = 1, \\
2 - 2g + \frac{1}{m} & \quad \text{if } g \geq 2.
\end{align*}
\]

(ii) \(cdQ(G) = \min\{2, g\} \)
\[
\begin{align*}
1 & \quad \text{if } g = 1, \\
2 & \quad \text{if } g \geq 2.
\end{align*}
\]

(iii) For \(n \in \mathbb{N} \), \(b_{2n}^0(G) = -δ_{n,1}χ(G) = \begin{cases} -χ(G) & \text{if } n = 1, \\
0 & \text{if } n \neq 1. \end{cases} \)
Proof. We break the proof up into a series of lemmas and summaries of notation.

5.2 Notation. As in [3] Examples I.3.5(v), the expression \(S_1 *_{S_0} \alpha \) will denote an HNN extension, where it is understood that \(S_1 \) is a group, \(S_0 \) is a subgroup of \(S_1 \) and \(\alpha \) is an injective group homomorphism \(\alpha: S_0 \to S_1, a \mapsto a^\alpha \). The image of this homomorphism is denoted \(S_0^\alpha \).

5.3 Lemma (Hempel). If \(g \geq 2 \), then there exists an HNN-decomposition \(S = S_1 *_{S_0} \alpha \) such that \(S_1 \) is a free group, \(\alpha \) lies in \(S_1 \), and the normal subgroup of \(S_1 \) generated by \(\alpha \) intersects both \(S_0 \) and \(S_0^\alpha \) trivially.

Hence, \(G = S/\langle \alpha \rangle \) has a matching HNN-decomposition \(S/\langle \alpha \rangle = S_1/\langle \alpha \rangle *_{S_0} S_0 \).

Proof. This was implicit in the proof of [12] Theorem 2.2, and was made explicit in [14] Proposition 2.1.

5.4 Lemma (Hempel). If \(m < \infty \), there exists \(\beta \in S \) such that \(\beta^m = \alpha \), and the image of \(\beta \) in \(G \) has order \(m \).

Proof. As this is obvious for \(g = 1 \), we may assume that \(g \geq 2 \). Thus we have matching HNN-decompositions \(S = S_1 *_{S_0} \alpha \) and \(G = S/\langle \alpha \rangle = S_1/\langle \alpha \rangle *_{S_0} S_0 \), as in Lemma 5.3.

Let \(m' = \exp S_1 \alpha \). Since \(\alpha \neq 1 \) and \(S_1 \) is free, we see that \(m' < \infty \). Choose \(\beta \in S_1 \) such that \(\beta^{m'} = \alpha \). Let \(c \) denote the image of \(\beta \) in \(G \), and let \(C = \langle c \rangle \leq G \). Then \(C \) has order \(m' \), and every torsion subgroup of \(S_1/\langle \alpha \rangle \) embeds in \(C \). From the HNN decomposition for \(G \), we see that any finite subgroup of \(G \) is conjugate to a subgroup of \(S_1/\langle \alpha \rangle \), and hence has order dividing \(m' \).

A similar argument shows that for any positive integer \(i \), \(S/\langle \alpha^i \rangle \) has a matching HNN decomposition, and therefore has a subgroup of order \(m'i \) and a subgroup of order \(i \). It follows that if \(\alpha = \gamma^j \) for some positive integer \(j \) then \(S/\langle \alpha \rangle \) has a subgroup of order \(j \), and hence \(j \) divides \(m' \). It now follows that \(m = m' < \infty \).

5.5 Notation. Let \(\beta \) denote an element of \(S \) such that \(\beta^m = \alpha \).

Let \(c \) denote the image of \(\beta \) in \(G \). Let \(C = \langle c \rangle \), a cyclic subgroup of \(G \) of order \(m \).

Let \(e = \frac{1}{m} \sum_{x \in C} x \), an idempotent element of \(CG \) with \(\text{tr}(e) = \frac{1}{m} \); we shall also view \(e \) as an idempotent element of \(QG \).

Let \(H \) denote the normal subgroup of \(G \) generated by \(c \); thus, \(G/H \simeq S/\langle \beta \rangle \).

5.6 Lemma. (i) \(H \) has a free subgroup \(F \) such that \(H = F \rtimes C \).

(ii) \(G/H \) is locally indicable.

(iii) Every torsion subgroup of \(G \) embeds in \(C \).

(iv) If \(x \in U(G) e - \{0\} \) and \(y \in eCG - \{0\} \), then \(xy \neq 0 \).

Proof. (i) As this is clear for \(g = 1 \), we may assume that \(g \geq 2 \).

By Lemma 5.3 with \(\beta \) in place of \(\alpha \), there exists an HNN-decomposition \(S = S_1 *_{S_0} \alpha \) where \(S_1 \) is a free group, \(\beta \) lies in \(S_1 \), and the normal subgroup of \(S_1 \) generated by \(\beta \) intersects both \(S_0 \) and \(S_0^\beta \) trivially. Hence \(\alpha \) lies in \(S_1 \), and the normal subgroup of \(S_1 \) generated by \(\alpha \) intersects both \(S_0 \) and \(S_0^\alpha \) trivially. It follows that we can make identifications:

\[
G = S/\langle \alpha \rangle = S_1/\langle \alpha \rangle *_{S_0} S_0 \quad \text{and} \quad G/H = S/\langle \beta \rangle = S_1/\langle \beta \rangle *_{S_0} S_0.
\]
Thus we have matching HNN-decompositions for \(S, G \) and \(G/H \).

Let us apply Bass-Serre theory, following, for example, [3] Chapter 1. Consider the action of \(H \) on the Bass-Serre tree for the above HNN-decomposition of \(G \). Then \(H \) acts freely on the edges. Let \(H_0 \) denote the normal subgroup of \(S_1/\langle \alpha \rangle \) generated by \(c \). Then \(H_0 \) is a vertex stabilizer for the \(H \)-action, and the other vertex stabilizers are \(G \)-conjugates of \(H_0 \). By Bass-Serre theory, or the Kurosh Subgroup Theorem, \(H \) is the free product of a free group and various \(G \)-conjugates of \(H_0 \).

By [11] Theorem 1, \(H_0 \) itself is a free product of certain \(S_1/\langle \alpha \rangle \)-conjugates of \(C \).

Thus \(H \) is the free product a free group and various \(G \)-conjugates of \(C \). If we map each of these \(G \)-conjugates of \(C \) isomorphically to \(C \), and map the free group to 1, we obtain an epimorphism \(H \rightarrow C \). Applying [3] Proposition I.4.6] to this epimorphism, we see that its kernel \(F \) is free. Clearly, \(H = F \times C \). This proves (i) and (v). Since \(G/H = S/\langle \beta \rangle \) and \(\beta \) is not a proper power in \(S, G/H \) is locally indicable by [12] Theorem 2.2).

Let us dispose of the case where \(g = 1 \), which is well known and included only for completeness.

5.7 Lemma. If \(g = 1 \), then the following hold.

(i) \(H = C \) and \(G/C \) is infinite cyclic generated by \(xC \) for some \(x \in G \).

(ii) \(0 \rightarrow \mathbb{Z}[G/C] \xrightarrow{x-1} \mathbb{Z}[G/C] \rightarrow \mathbb{Z} \rightarrow 0 \) is an exact sequence of left \(\mathbb{Z}G \)-modules.

(iii) \(0 \rightarrow QGe \xrightarrow{x-1} QGe \rightarrow Q \rightarrow 0 \) is an exact sequence of left \(QG \)-modules.

(iv) \(\langle x \rangle \) is an infinite cyclic subgroup of \(G \) of finite index, \(G \) is of type \(VFL \), \(\chi(G) = 0 \) and \(cdQG = 1 \).

(v) The homology of \(0 \rightarrow U(G)e \xrightarrow{x-1} U(G)e \rightarrow 0 \) is \(H_n(G;U(G)) \).

(vi) For each \(n \in \mathbb{N} \), \(b^{(2)}_n(G) = 0 \).}

5.8 Remark. For \(g = 1 \), Lemma 5.7(ii) gives the augmented cellular chain complex of a one-dimensional \(E(G) \) which resembles the real line.

5.9 Notation. Henceforth we assume that \(g \geq 2 \).

Let \(X = \{x_1, x_2, \ldots, x_{2g-1}, x_{2g}\} \), let \(F \) be the free group on \(X \), and let \(r_1 = [x_1, x_2] \cdots [x_{2g-1}, x_{2g}] \in F \). Then \(S = \langle X \mid r_1 \rangle \).

Let \(g_2 \) be any element of \(F \) which maps to \(\beta \) in \(S \), and let \(r_2 = g_2^n \). Then \(G = \langle X \mid r_1, r_2 \rangle \).

For \(i \in \{1, 2\}, j \in \{1, \ldots, 2g\} \), we set \(a_{i,j} := \frac{\partial r_i}{\partial x_j} \in \mathbb{Z}G \), the left Fox derivatives, and \(b_{j,1} := x_j - 1 \in \mathbb{Z}G \).

Notice that \(me = \sum_{x \in C} x \in \mathbb{Z}G \) and \(a_{2,j} = \frac{\partial x_1}{\partial x_j} = (me) \frac{\partial x_1}{\partial x_j} \).

5.10 Lemma (Howie). The sequence of left \(\mathbb{Z}G \)-modules

\[
0 \rightarrow \mathbb{Z}G \oplus \mathbb{Z}[G/C] \xrightarrow{(a_{1,i})} \mathbb{Z}G^{2g} \xrightarrow{(b_{j,1})} \mathbb{Z}G \rightarrow \mathbb{Z} \rightarrow 0
\]

is exact.
Proof. Howie [15, Theorem 3.5] describes a \(K(G,1) \), and it is straightforward to give it a CW-structure as follows.

We take a \(K(S,1) \) with one zero-cell, \(2g \) one-cells, and a two-cell which is a \(2g \)-gon, and then the exact sequence of left \(ZS \)-modules arising from the augmented cellular chain complex of the universal cover of the \(K(S,1) \) is

\[
0 \longrightarrow ZS \overset{(a_{1,j})}{\longrightarrow} ZS^{2g} \overset{(b_{j,1})}{\longrightarrow} ZS \longrightarrow Z \longrightarrow 0,
\]

where we view the \(a_{1,j} \) and \(b_{j,1} \) as elements of \(ZS \).

We take a \(K(C,1) \) with one cell in each dimension such that the infinitely repeating exact sequence of left \(ZC \)-modules arising from the augmented cellular chain complex of the universal cover of the \(K(C,1) \) is

\[
\cdots \longrightarrow ZC \overset{mc}{\longrightarrow} ZC \overset{-1}{\longrightarrow} ZC \overset{mc}{\longrightarrow} ZC \overset{-1}{\longrightarrow} ZC \longrightarrow Z \longrightarrow 0.
\]

By [15, Theorem 3.5], we get a \(K(G,1) \) by melding the one-skeleton of our \(K(C,1) \) into the one-skeleton of our \(K(S,1) \) in the natural way; the attaching map of the two-cell at the homology level is then \((a_{2,j}) \). The exact sequence of left \(ZG \)-modules arising from the augmented cellular chain complex of the three-skeleton of the universal cover of the \(K(G,1) \) is

\[
ZG \overset{(0,1-c)}{\longrightarrow} ZG^2 \overset{(a_{1,j})}{\longrightarrow} ZG^{2g} \overset{(b_{j,1})}{\longrightarrow} ZG \longrightarrow Z \longrightarrow 0.
\]

The lemma now follows easily. \(\square \)

We now imitate the proof of [11, Theorem 2].

5.11 Lemma. \(G \) is of type VFL and \(\chi(G) = 2 - 2g + \frac{1}{m} \).

Proof. Let \(p \) be a prime divisor of \(m \). It was shown in [11] that \(S \) is residually a finite \(p \)-group; see [10, Theorem B] for an alternative proof. Hence there exists a finite \(p \)-group \(P = P(p) \) and a homomorphism \(S \to P \) whose kernel does not contain \(\beta_m^P \), and we assume that \(P \) has smallest possible order. The centre \(Z(P) \) of \(P \) is nontrivial. By minimality of \(P \), \(\beta_m^P \) lies in the kernel of the composite \(S \overset{1}{\longrightarrow} P \overset{1}{\longrightarrow} P/Z(P) \). Thus \(\beta_m^P \), and \(\beta_m^P \), are mapped to \(Z(P) \). By minimality of \(P \), \(\beta_m^P \) is mapped to 1 in \(P \).

By considering the direct product of such \(P(p) \), one for each prime divisor \(p \) of \(m \), we find that there is a finite quotient of \(S \) in which the image of \(\beta \) has order exactly \(m \).

Hence there exists a normal subgroup \(N \) of \(G \) such that \(N \) has finite index in \(G \) and \(N \cap C = \{1\} \). It follows that \(N \) acts freely on \(G/C \). The number of orbits is

\[
|N\setminus(G/C)| = |N\setminus G/C| = |(N\setminus G)/C| = [G:N]/m,
\]

where the last equality holds since \(C \) acts freely on \(N\setminus G \), on the right.

Now [5.10.1] is a resolution of \(Z \) by free left \(ZN \)-modules. Thus \(N \) is of type FL, and, in particular, \(N \) is torsion-free. It is now a simple matter to calculate \(\chi(G) \) \((= \frac{1}{[G:N] \chi(N)} \).

\(\square \)

Together Lemma 5.7(iv) and Lemma 5.11 give Theorem 5.1(i).
By Lemma 5.10, the following is clear.
5.12 Corollary. The sequence of left QG-modules

$$0 \rightarrow QG \oplus QGe \xrightarrow{(a_{i,j})} QG^{2g} \xrightarrow{(b_{j,i})} QG \rightarrow Q \rightarrow 0$$

is exact. □

5.13 Lemma. $\text{cd}_Q G = 2$.

Proof. By Corollary 5.12, $\text{cd}_Q G \leq 2$. It remains to show that $\text{cd}_Q G \geq 1$. Let us suppose that $\text{cd}_Q G \leq 1$ and derive a contradiction.

By Notation 5.6 and Lemma 5.9, H is the (normal) subgroup of G generated by the elements of finite order. By Dunwoody’s Theorem [S, Theorem IV.3.13], G is the fundamental group of a graph of finite groups; by [S, Proposition I.7.11], H is the normal subgroup of G generated by the vertex groups. From the presentation of G as in [S, Notation I.7.1], it can be seen that G/H is a free group.

Since $G/H = S/\langle \beta \rangle$, the abelianization of G/H has \mathbb{Z}-rank $2g$ or $2g - 1$. Thus the rank of the free group G/H is $2g$ or $2g - 1$. Hence $\chi(S/\langle \beta \rangle)$ is $2 - 2g$ or $-2g$.

But $\chi(S/\langle \beta \rangle) = 3 - 2g$ by Lemma 5.11. This is a contradiction. □

Together Lemma 5.7 and Lemma 5.13 give Theorem 5.11. By Corollary 5.12 with $Q = \mathbb{C}$, the following is clear.

5.14 Corollary. The homology of

$$0 \rightarrow U(G) \oplus U(G)e \xrightarrow{(a_{i,j})} U(G)^{2g} \xrightarrow{(b_{j,i})} U(G) \rightarrow 0$$

is $H_\ast(G;U(G))$. □

We now come to the subtle part of the argument.

5.15 Lemma. $U(G) \oplus U(G)e \xrightarrow{(a_{i,j})} U(G)^{2g}$ is injective.

Proof. Let (u, v) be an arbitrary element of the kernel. Thus, $(u, v) \in U(G) \oplus U(G)e$ and

for each $j \in \{1, \ldots, 2g\}$, $ua_{1,j} + va_{2,j} = 0$ in $U(G)$. (5.15.1)

Consider first the case where u does not lie in vCG. We shall obtain a contradiction.

We form the right CG-module $W = U(G)/(vCG)$, and let $w = u + vCG \in W$. By (5.15.1),

for each $j \in \{1, \ldots, 2g\}$, $wa_{1,j} = 0$ in W. (5.15.2)

Let $K = \{x \in G \mid wx = w\}$. Clearly, K is a subgroup of G.

We claim that $K = G$; it suffices to show that $\{x_1, \ldots, x_{2g}\} \subseteq K$.

We will show by induction that, if $j \in \{0, 1, \ldots, g\}$, then $\{x_1, \ldots, x_j\} \subseteq K$. This is clearly true for $j = 0$. Suppose that $j \in \{1, \ldots, g\}$ and that it is true for $j - 1$. We will show it is true for j. Let $k = [x_1, x_2] \cdots [x_{2j-3}, x_{2j-2}]$; then k lies in K by the induction hypothesis. Recall that $r_1 = [x_1, x_2] \cdots [x_{2g-1}, x_{2g}]$. By (5.15.2) and Notation 5.9

$$0 = wa_{1,j-1} = w \frac{\partial r_1}{\partial x_{2j-1}} = wk(1 - x_{2j-1} x_{2j} x_{2j-1}^{-1})$$
and

\[0 = wa_{1,j} = u \left(\frac{\partial r_1}{\partial x_{2j}} \right) = w k x_{2j-1} (1 - x_{2j} x_{2j-1}^{-1} x_{2j}^{-1}). \]

Since \(K = \{ x \in G \mid w(1 - x) = 0 \} \), we see that \(K \) contains

\[k(x_{2j-1} x_{2j} x_{2j-1}^{-1}) k^{-1} \]

and \((k x_{2j-1})(x_{2j} x_{2j-1}^{-1} x_{2j}^{-1})(k x_{2j-1})^{-1} \).

Thus \(K \) contains

\[x_{2j-1} x_{2j} x_{2j-1}^{-1} \]

and \(x_{2j-1} (x_{2j} x_{2j-1}^{-1} x_{2j}^{-1}) x_{2j-1}^{-1} \),

and it follows easily that \(K \) contains \(x_{2j} x_{2j-1}^{-1} \), \(x_{2j} - 1 \), and \(x_{2j} \). This completes the proof by induction.

Hence, \(K = G \), and \(w \) is fixed under the right \(G \)-action on \(W \). Thus, the subset \(u + vCG \) of \(\mathcal{U}(G) \) is closed under the right \(G \)-action on \(\mathcal{U}(G) \). We denote the set \(u + vCG \) viewed as right \(G \)-set by \((u + vCG)_G \). Notice that \(u + vCG \) does not contain 0.

By Lemma 5.6(iii), the surjective map \(eCG \to vCG \), \(x \mapsto vx \), is either injective or zero. In either event, \(vCG \) is a projective right \(C \)-module. By the left-right dual of \(\mathbb{F} \) Corollary 5.6 there exists a right \(G \)-tree with finite edge stabilizers and vertex set \((u + vCG)_G \). It follows that there exists a (left) \(G \)-tree \(T \) with finite edge stabilizers and vertex set \(C(u + vCG) \). Alternatively, one can use \(T \) to prove that \(b_n^{(2)}(G) = 0 \) and deduce that \((u, v) = (0, 0) \), which is also a contradiction.

Thus \(u \) lies in \(vCG \), and there exists \(y \in eCG \) such that \(u = vy \).

We consider first the case where \(v \neq 0 \). For each \(j \in \{1, \ldots, 2g\} \),

\[v(y a_{1,j} + a_{2,j}) = u a_{1,j} + v a_{2,j} = 0 \]

by Lemma 5.10, and by Lemma 5.6(iv), \(0 = y a_{1,j} + a_{2,j} = y a_{1,j} + e a_{2,j} \). Hence, \((y, e) \) lies in the kernel of \(CG \oplus CG e \xrightarrow{(a_{i,j})} CG^{2g} \); since this map is injective by Corollary 5.12 we see \(e = 0 \), which is a contradiction.

Thus \(v = 0 \), and hence \(u = 0 \).

By Lemma 5.10 and Remark 1.7 it is straightforward to obtain the following.

5.16 Lemma. The \(\mathcal{U}(G) \)-dimensions of the kernel and the image of the map

\[\mathcal{U}(G) \oplus (G)e \xrightarrow{(a_{i,j})} \mathcal{U}(G)^{2g} \]

are 0 and \(1 + \frac{1}{m} \), respectively.

The \(\mathcal{U}(G) \)-dimensions of the image and the kernel of the map

\[\mathcal{U}(G)^{2g} \xrightarrow{(b_{i,j})} \mathcal{U}(G) \]

are 1 and \(2g - 1 \), respectively.

For \(n \in \mathbb{N} \), \(b_n^{(2)}(G) = \begin{cases} (2g - 1) - (1 + \frac{1}{m}) & \text{if } n = 1, \\ 0 & \text{if } n \neq 1. \end{cases} \]

Together Lemma 5.7[1] and Lemma 5.10 give Theorem 5.1[1]. This completes the proof of Theorem 5.1[1].
6 Left-orderable groups

Throughout this section we will frequently make the following assumption.

6.1 Hypotheses. There exist nonzero rings \(Z \) and \(U \) such that \(ZG \) is a subring of \(U \) and each nonzero element of \(ZG \) is invertible in \(U \).

This holds, for example, if \(G \) is locally indicable, or, more generally, left orderable, with \(Z \) being any subring of \(\mathbb{C} \), and \(U \) being \(U(G) \), by Theorem 6.2.

Notice that \(ZG \) has no nonzero zerodivisors, and hence \(G \) is torsion free.

6.2 Lemma. Let \(U \) be a ring, and let \(X \) and \(Y \) be sets.

Let \(A \) and \(B \) be nonzero row-finite matrices over \(U \) in which each nonzero entry is invertible, such that \(A \) is \(X \times 2 \), \(B \) is \(2 \times Y \), and the product \(AB \) is the zero \(X \times Y \) matrix.

Then \(\oplus_X U \xrightarrow{A} U^2 \xrightarrow{B} \oplus_Y U \) is an exact sequence of free left \(U \)-modules.

Moreover, \(U^2 \) has a left \(U \)-basis \(v_1, v_2 \) such that \(\ker B = \im A = Uv_1 \) and \(B \) induces an isomorphism \(Uv_2 \simeq \im B \).

Proof. Write \(A = (a_{x,i}) \) and \(B = (b_{y,j}) \).

There exists \(x_0 \in X \) such that \((a_{x_0,1}, a_{x_0,2}) \neq (0, 0) \). We take \(v_1 = (a_{x_0,1}, a_{x_0,2}) \).

Clearly \(Uv_1 \subseteq \im A \subseteq \ker B \). Without loss of generality, there exists \(y_0 \in Y \) such that \(b_{1,y_0} \) is invertible in \(U \). We take \(v_2 = (1, 0) \).

Since \(AB = 0 \), \(a_{x_0,1}b_{1,y_0} + a_{x_0,2}b_{2,y_0} = 0 \). Thus \(a_{x_0,1} = -a_{x_0,2}b_{2,y_0}b_{1,y_0}^{-1} \). Hence \(a_{x_0,2} \) cannot be zero, and is therefore invertible.

Hence \(v_1, v_2 \) is a basis of \(U^2 \), and \(b_{2,y_0}b_{1,y_0}^{-1} = -a_{x_0,2}a_{x_0,1} \).

Consider any \((a_1, a_2) \in \ker B \). Then \(a_1b_{1,y_0} + a_2b_{2,y_0} = 0 \), and

\[
(a_1, a_2) = (-a_2b_{2,y_0}b_{1,y_0}^{-1}, a_2) = a_2(-b_{2,y_0}b_{1,y_0}^{-1})
\]

\[
= a_2(a_{x_0,2}^{-1}a_{x_0,1}, 1) = a_2a_{x_0,2}^{-1}(a_{x_0,1}, a_{x_0,2}) = a_2a_{x_0,2}^{-1}v_1 \in Uv_1,
\]

as desired. Finally, \(Uv_2 \simeq (Uv_1 + Uv_2)/Uv_1 = U^2/\ker B \simeq \im B \).

6.3 Remark. We see from the proof that the hypotheses that \(A \) and \(B \) are nonzero and every nonzero entry in \(A \) and \(B \) is invertible can be replaced with the hypotheses that some element of the first row of \(B \) is invertible, and some element of the second column of \(A \) is invertible.

There are other variations, but the stated form is most convenient for our purposes.

6.4 Proposition. Suppose that Hypotheses 6.1 hold, and suppose that there exists a positive integer \(n \) and a resolution of \(\mathbb{Z} \) by projective left \(ZG \)-modules such that \(P_n = ZG^2 \). Then either the map \(P_{n+1} \to P_n \) in is the zero map or \(H_n(G; U) = 0 \).

Proof. We may assume that \(P_{n+1} \to P_n \) is nonzero. Then we have an exact sequence

\[
P_{n+1} \to P_n \to P_{n-1},
\]
and we want to deduce that

\[
U \otimes_{ZG} P_{n+1} \to U \otimes_{ZG} P_n \to U \otimes_{ZG} P_{n-1}
\]
remains exact.

This is clear if \(P_n \to P_{n-1} \) is the zero map. Thus we may assume that the maps in (6.4.1) are nonzero.

By adding a suitable \(ZG \)-projective summand to \(P_{n+1} \) with a zero map to \(P_n \), we may assume that \(P_{n+1} \) is \(ZG \)-free without affecting the images. Similarly, we may assume that we have specified \(ZG \)-bases of \(P_{n+1} \), \(P_n \) and \(P_{n-1} \), and that the maps in (6.4.1) are represented by nonzero matrices over \(ZG \).

The maps in (6.4.2) are then represented by nonzero matrices over \(U \) with all coefficients lying in \(ZG \). Now we may apply Lemma 6.2 to deduce that (6.4.2) is exact, as desired.

\[6.5 \text{ Remark.} \] In Proposition 6.4 if we replace the hypothesis \(P_n = ZG^2 \) with the hypothesis \(P_n = ZG^1 \), then it is easy to see that at least one of the maps \(P_{n+1} \to P_n \), \(P_n \to P_{n-1} \) is necessarily the zero map.

Applying Proposition 6.4 with \(U = U(G) \), together with Theorem 3.3, we obtain the following two results.

\[6.6 \text{ Corollary.} \] Let \(G \) be a left-orderable group, and let \(Z \) be a subring of \(C \). Suppose that there exists a positive integer \(n \) and a resolution (1.0.3) of \(Z \) by projective left \(ZG \)-modules such that \(P_n = ZG^2 \). Then either \(\text{cd}_Z G \leq n \) or \(b^{(2)}_n(G) = 0 \).

\[6.7 \text{ Corollary.} \] If \(G \) is a left-orderable group, and there exists an exact \(CG \)-sequence of the form

\[\cdots \to C \to CG^2 \to CG \to CG \to CG \to C
\]

in which all the \(\partial_n \) are nonzero, then all the \(b^{(2)}_n(G) \) are zero.

\[\text{Proof.} \] Since \(\partial_0 \) is nonzero, we see that \(G \) is nontrivial. Since \(G \) is torsion-free, \(b^{(2)}_0(G) = 0 \). For \(n \geq 1 \), \(b^{(2)}_n(G) = 0 \) by Proposition 6.4.

\[6.8 \text{ Corollary (Lück [19, Theorem 7.10])}. \] All the \(L^2 \)-Betti numbers of Thompson’s group \(F \) vanish.

\[\text{Proof.} \] This follows from Corollary 6.7 since \(F \) is orderable, see [6], and has a resolution as in (6.7.1), see [4].

We now look at situations where we can deduce that a two-generator group is free.

\[6.9 \text{ Proposition.} \] Suppose that Hypotheses 6.1 hold. The following are equivalent.

\(a) \) \(G \) is a two-generator group, and \(H_1(G; U) \cong U \).

\(b) \) \(G \) is a two-generator group, and \(H_1(G; U) \neq 0 \).

\(c) \) \(G \) is free of rank two.

\[\text{Proof.} \] \((a) \Rightarrow (b) \) is obvious.

\((b) \Rightarrow (c) \). Let \(\{x, y\} \) be a generating set of \(G \). Then we have an exact sequence of left \(ZG \)-modules

\[\oplus_R ZG \to ZG^2 \to ZG \to Z \to 0, \]
where R is the set of relators which have a nonzero left Fox derivative in ZG. By Proposition [6.4] with $n = 1$, we see that R is empty, and that the augmentation ideal is left ZG-free on $x - 1$ and $y - 1$.

A result of Bass-Nakayama [21, Proposition 1.6] then says that G is freely generated by x and y. This can be seen geometrically, as follows. Let $\Gamma = \Gamma(G, \{x, y\})$ denote the Cayley graph of G with respect to the subset $\{x, y\}$. The above exact sequence is precisely the augmented cellular Z-chain complex of Γ. It is then straightforward to show that Γ is a tree, and that G is freely generated by x and y.

(c) \Rightarrow (a) is straightforward.

6.10 Corollary. The following are equivalent.

(a) G is a two-generator left-orderable group and $b_1^{(2)}(G) \neq 0$.
(b) G is free of rank two.

6.11 Theorem. Suppose that Hypotheses 6.1 hold. If $\text{hd}_Z G \leq 1$ then every two-generator subgroup of G is free.

Proof. Since the hypotheses pass to subgroups, we may assume that G itself is generated by two elements, and it remains to show that G is free.

We calculate $H_*(G; U)$ in the case where G is not free.

By Hypotheses 6.4 G is torsion free. As in Remark 1.1 if $H_0(G; U) \neq 0$, then G is free of rank zero. Thus we may assume that $H_0(G; U) = 0$.

By Proposition 6.9 if $H_1(G, U) \neq 0$, then G is free of rank two. Thus we may assume that $H_1(G; U) = 0$.

Since $H_n(G; U) = 0$, we have an exact sequence of projective left U-modules

$$0 \longrightarrow U \otimes ZG P \longrightarrow U^2 \longrightarrow U \longrightarrow 0.$$

This sequence splits, and we see that $U(U \otimes ZG P)$ is finitely generated.

Hence $ZG P$ is finitely generated, by the following standard argument. Let R be a set such that P is a ZG-summand of $\oplus_R ZG$, that is, P is a ZG-submodule of $\oplus_R ZG$ and we have a ZG-linear retraction of $\oplus_R ZG$ onto P. We may assume that R is minimal, that is, for each $r \in R$, the image of P under projection onto the rth coordinate is nonzero. Then $U \otimes ZG P$ is a U-submodule of $\oplus_R U$, and here also R is minimal. Since $U(U \otimes ZG P)$ is finitely generated, R is finite, as desired.

Now $ZG Z$ has a resolution by finitely generated projective left ZG-modules. By [2] Theorem 4.6(c), $\text{cd}_Z G \leq 1$: in essence, $ZG \omega$ is finitely related and flat, and is therefore projective. Since G is torsion free, G is free by Stallings’ Theorem; see Remark II.2.3(ii) (or Corollary IV.3.14) in [8].

6.12 Corollary. Suppose that G is locally indicable, or, more generally, that G is left orderable. If $\text{hd}_G \leq 1$ then every two-generator subgroup of G is free.
We now turn from two-generator groups to two-relator groups.

6.13 Proposition. Suppose that G is left orderable, that G has a presentation $(X \mid R)$ with $|R| = 2$, and that $cd G \geq 3$.

Then $b_0^{(2)}(G) = 0$, $b_1^{(2)}(G) = |X| - 2$, and $b_2^{(2)}(G) = 0$.

Proof. The given presentation of G yields an exact sequence of \mathbb{Z}-modules

$$\cdots \rightarrow \oplus Y \mathbb{Z}G \xrightarrow{A} \mathbb{Z}G^2 \xrightarrow{B} \oplus X \mathbb{Z}G \xrightarrow{C} \mathbb{Z}G \rightarrow \mathbb{Z} \rightarrow 0.$$

Then $H_*(G, \mathcal{U}(G))$ is the homology of the sequence

$$\cdots \rightarrow \oplus Y \mathcal{U}(G) \xrightarrow{A} \mathcal{U}(G)^2 \xrightarrow{B} \oplus X \mathcal{U}(G) \xrightarrow{C} \mathcal{U}(G) \rightarrow 0. \tag{6.13.1}$$

Since G is left orderable, G is torsion free. Since $cd G \neq 0$, G is non-trivial. Hence G has an element of infinite order. By Remark 1.1 $b_0^{(2)}(G) = 0$ and the $\mathcal{U}(G)$-dimension of ker C in (6.13.1) is $|X| - 1$.

Since G is left orderable, all nonzero elements of CG are invertible in $\mathcal{U}(G)$ by Theorem 3.3. Since $cd G \geq 3$, $b_2^{(2)}(G) = 0$ by Corollary 6.6. Moreover, by Lemma 6.2 the $\mathcal{U}(G)$-dimension of im B in (6.13.1) is one.

Finally, $b_1^{(2)}$ is the difference between the $\mathcal{U}(G)$-dimensions of ker C and im B in (6.13.1), that is, $|X| - 2$. Of course, the hypotheses clearly imply that $|X| \geq 2$. \hfill \square

Suppose that G is a left-orderable two-relator group. We know the first three L^2-Betti numbers of G if $cd G \geq 3$ by Proposition 6.13. If $cd G \leq 1$, then G is free, and again one knows the L^2-Betti numbers. There remains the case where $cd G = 2$; here all we know are the L^2-Betti numbers of torsion-free surface-plus-one-relation groups; these groups are left-orderable by [12, Theorem 2.2] and they are clearly two-relator groups.

Acknowledgments

The research of the first-named author was funded by the DGI (Spain) through Project BFM2003-06613.

References

[1] Gilbert Baumslag, On generalized free products, Math. Z. 78(1962), 423–438.
[2] Robert Bieri, Homological dimension of discrete groups, second edition, Queen Mary College Mathematical Notes, London, 1981.
[3] S. D. Brodskii, Equations over groups and groups with one defining relation, Siberian Math. J. 25(1984), 235–251.
[4] Kenneth S. Brown and Ross Geoghegan, An infinite-dimensional torsion-free FP_{∞} group, Invent. Math. 77(1984), 367–381.
[5] R. G. Burns and V. W. D. Hale, A note on group rings of certain torsion-free groups, Canad. Math. Bull. 15(1972), 441–445.
[6] J. W. Cannon, W. J. Floyd and W. R. Parry, Introductory notes on Richard Thompson’s groups, Enseign. Math. 42(1996), 215–256.
[7] I. M. Chiswell, Euler characteristics of discrete groups, pp. 106–254 in: Groups: topological, combinatorial and arithmetic aspects (ed. T. W. Müller), London Math. Soc. Lecture Note Ser. 311, CUP, Cambridge, 2004.
[8] Warren Dicks and M. J. Dunwoody, Groups acting on graphs, Cambridge Stud. Adv. Math. 17, CUP, Cambridge, 1989.

Errata at: http://mat.uab.cat/~dicks/DDerr.html
18

L^2-Betti numbers of one-relator groups

[9] Warren Dicks and M. J. Dunwoody, Retracts of vertex sets of trees and the almost stability theorem, math.GR/0510151 version 3

[10] Eldon Dyer and A. T. Vasquez, Some properties of two-dimensional Poincaré duality groups, pp. 45–54 in: Algebra, topology, and category theory: a collection of papers in honor of Samuel Eilenberg (eds. Alex Heller, Myles Tierney and Samuel Eilenberg), Academic Press, New York, 1976.

[11] J. Fischer, A. Karrass and D. Solitar, On one-relator groups having elements of finite order, Proc. Amer. Math. Soc. 33(1972), 297–301.

[12] John Hempel, One-relator surface groups, Math. Proc. Cambridge Philos. Soc. 108(1990), 467–474.

[13] James Howie, On locally indicable groups, Math. Z. 180(1982), 445–461.

[14] James Howie, A short proof of a theorem of Brodski˘ı, Publ. Mat. 44(2000), 641–647.

[15] James Howie, Some results on one-relator surface groups, Bol. Soc. Mat. Mexicana (3), 10 (Special Issue) (2004), 255–262. Erratum ibid, 545–546.

[16] Peter Kropholler, Peter Linnell and Wolfgang Lück, Groups of small homological dimension and the Atiyah conjecture, math.GR/0401312

[17] Peter A. Linnell, Zero divisors and $L^2(G)$, C. R. Acad. Sci. Paris Sér. I Math. 315(1992), 49–58.

[18] Peter A. Linnell, Division rings and group von Neumann algebras, Forum Math. 5(1993), 561–576.

[19] Wolfgang Lück, L^2-invariants: theory and applications to geometry and K-theory, Ergeb. Math. Grenzgeb.(3) 44, Springer-Verlag, Berlin, 2002.

[20] Ian Richards, On the classification of noncompact surfaces, Trans. Amer. Math. Soc. 106(1963), 259–269.

[21] Richard G. Swan, Groups of cohomological dimension one, J. Algebra 12(1969), 585–601.

DEPARTAMENT DE MATEMÀTIQUES, UNIVERSITAT AUTÒNOMA DE BARCELONA, E-08193 BEL-LATERRA (BARCELONA), SPAIN
E-mail address: dicks@mat.uab.cat
URL: http://mat.uab.cat/~dicks/

DEPARTMENT OF MATHEMATICS, VIRGINIA TECH, BLACKSBURG, VA 24061-0123, USA
E-mail address: linnell@math.vt.edu
URL: http://www.math.vt.edu/people/linnell/