Effect of Gd-Doping on Structural, Optical, and Magnetic Properties of NiFe$_2$O$_4$ As-prepared Thin Films via Facile Sol–Gel Approach

Huixue Yao, Xueer Ning, Hong Zhao, Aize Hao,* and Muhammad Ismail

ABSTRACT: In the present research work, gadolinium-doped nickel ferrite (NiFe$_{2-x}$Gd$_x$O$_4$, $x = 0$–0.1) thin films have been synthesized by a facile sol–gel approach. The structural, optical, and magnetic performances of Gd-doping on nickel ferrite films have been investigated. The X-ray diffraction pattern indicated a cubic spinel ferrite structure and that the lattice parameter increased, while the crystalline size decreased with increasing the Gd concentration. Scanning electron microscopy analysis indicated that Gd-doped thin films were dense and smooth. The optical band gap value of the as-prepared thin films increased with increasing the Gd concentration. It showed that Gd-doping endowed nickel ferrite thin films with much better saturation magnetization (278.53 emu/cc) and remnant magnetization (67.83 emu/cc) at an appropriate 0.05 Gd-doping concentration. In addition, our results also revealed that the saturation magnetization remarkably increased, then sharply decreased with increasing of Gd doping content, which is attributed to effects of Gd-doping, exchange interaction, and redistribution of cations. Moreover, X-ray photoelectron spectroscopy analysis exhibited the effect of Gd-doping substitution on exchange interaction and redistribution of cations at the octahedral site and tetrahedral site.

INTRODUCTION

In ferrites system, spinel ferrites of extraordinary versatility are crucial materials and are widely applied in the electromagnetic devices field and for producing resonators, phase shifters, sensors, recording media, high-density data storage, and spintronics devices. The types of spinel ferrites have been classified into normal spinel ferrite, inverse spinel ferrite, and mixed spinel ferrite. For the above spinel ferrites types, nickel ferrite (NiFe$_2$O$_4$, NFO), as the classic inverse spinel structure, has gained much attention because of its peculiar physical and chemical properties (such as low-grade curie temperature, high electrical resistivity, high permeability, low magnetostriction, etc.). To further expand the technological application, much effort is being carried out to investigate microstructural, optical, electrical, and magnetic performances.

The doping of transition elements and rare-earth ions can significantly induce structural distortion and changes of optical and magnetic properties for NFO by partial substitution of Fe$^{3+}$ ions. Extensive studies of the impact of doping on magnetic properties of bulk, nanoparticles, and ceramics have been carried out. For example, Kamala Bharathi et al. investigated ferromagnetic properties and found that the substitution of Dy, Gd, and Nd for Fe lowered the saturation magnetization in NFO pellet samples. Singh et al. found that the doping of Gd$^{3+}$ ions reduced the magnetization and reflectance was dropped to 750 nm of the NiGd$_{0.04}$Fe$_{1.96}$O$_4$ nanoparticle system. Dixit et al. found that the magnetism and coercivity are dropped in Ce- and Gd-doped NFO nanoparticles. Recently, Heiba et al. reported that Gd concentration would lead to changes of magnetization and coercive field-dependent cation distributions linked with optic and magnetic performances in crystalline nickel ferrite.

Moreover, it is crucial to study these properties of NFO thin films for better prospects in magneto-electric and magneto-optical applications. Sun et al. revealed a hierarchy of optical band gaps by adopting first-principles calculations with optical spectroscopy to synthetically explore the electronic structure in epitaxial NFO thin films. Luiders et al. reported that magnetic moment enhanced about 250% in ultrathin NFO film resulting from Fe and Ni cations' abnormal distribution. Kamala Bharathi et al. revealed the influence of annealing on

Received: December 15, 2020
Accepted: February 16, 2021
Published: February 25, 2021
The doping of Gd concentration, which results from large ionic radii of Gd ions, plays a significant role in inducing changes in the optical and magnetic properties of the NiFe₂₋ₓGdₓO₄ nanoparticles. The X-ray diffraction (XRD) results reveal a single-phase inverse spinel structure. The lattice parameter (a) and crystallite size (D) of NiFe₂₋ₓGdₓO₄ films can be estimated using the Scherrer formula:

\[a = \frac{d_{hkl} \sqrt{h^2 + k^2 + l^2}}{\cos \theta} \]

The value of the lattice parameter changes from 8.365 Å to 8.383 Å when Gd concentration increases as shown in Figure 1b. The lattice constants slightly increase resulting from increasing Gd³⁺ concentration and Gd³⁺ substituting Fe³⁺ site. The increasing trend in the lattice constant is ascribed to the larger Gd³⁺ ionic radii in comparison with Fe³⁺.

The grain size (D) of NiFe₂₋ₓGdₓO₄ samples is estimated from Scherrer formula:

\[D = \frac{0.94 \lambda}{\beta \cos \theta} \]

Herein, \(\lambda \) is wavelength, \(\beta \) is the measured half-width of the most intense diffraction peak (111), and \(\theta \) is the diffraction angles of diffraction peak (111) plane. Crystallite size shows a shrinking trend with the increasing doping content of Gd³⁺ ions. The values are shown in Table 1 and are consistent with the reported results. We try to clarify the reason for this decreasing trend. On the one hand, the large size mismatching between Gd³⁺ and Fe³⁺ can lead to grain anisotropy when the replacement of ions generates strain inside the crystal volume with an increase of Gd³⁺ doping content. Moreover, the balance of the crystal anisotropy and volume strain to each other can maintain in a stable equilibrium state. As a result, the grain size decreases with increasing Gd³⁺ concentration and Gd³⁺ substituting Fe³⁺ site. The increasing trend in the lattice constant is ascribed to the larger Gd³⁺ ionic radii in comparison with Fe³⁺.

The grain size (D) of NiFe₂₋ₓGdₓO₄ samples is estimated from Scherrer formula:

\[D = \frac{0.94 \lambda}{\beta \cos \theta} \]

Herein, \(\lambda \) is wavelength, \(\beta \) is the measured half-width of the most intense diffraction peak (111), and \(\theta \) is the diffraction angles of diffraction peak (111) plane. Crystallite size shows a shrinking trend with the increasing doping content of Gd³⁺ ions. The values are shown in Table 1 and are consistent with the reported results. We try to clarify the reason for this decreasing trend. On the one hand, the large size mismatching between Gd³⁺ and Fe³⁺ can lead to grain anisotropy when the replacement of ions generates strain inside the crystal volume with an increase of Gd³⁺ doping content. Moreover, the balance of the crystal anisotropy and volume strain to each other can maintain in a stable equilibrium state. As a result, the grain size decreases with increasing Gd³⁺ concentration and Gd³⁺ substituting Fe³⁺ site. The increasing trend in the lattice constant is ascribed to the larger Gd³⁺ ionic radii in comparison with Fe³⁺.

The grain size (D) of NiFe₂₋ₓGdₓO₄ samples is estimated from Scherrer formula:

\[D = \frac{0.94 \lambda}{\beta \cos \theta} \]

Herein, \(\lambda \) is wavelength, \(\beta \) is the measured half-width of the most intense diffraction peak (111), and \(\theta \) is the diffraction angles of diffraction peak (111) plane. Crystallite size shows a shrinking trend with the increasing doping content of Gd³⁺ ions. The values are shown in Table 1 and are consistent with the reported results. We try to clarify the reason for this decreasing trend. On the one hand, the large size mismatching between Gd³⁺ and Fe³⁺ can lead to grain anisotropy when the replacement of ions generates strain inside the crystal volume with an increase of Gd³⁺ doping content. Moreover, the balance of the crystal anisotropy and volume strain to each other can maintain in a stable equilibrium state. As a result, the grain size decreases with increasing Gd³⁺ concentration and Gd³⁺ substituting Fe³⁺ site. The increasing trend in the lattice constant is ascribed to the larger Gd³⁺ ionic radii in comparison with Fe³⁺.

The grain size (D) of NiFe₂₋ₓGdₓO₄ samples is estimated from Scherrer formula:

\[D = \frac{0.94 \lambda}{\beta \cos \theta} \]

Herein, \(\lambda \) is wavelength, \(\beta \) is the measured half-width of the most intense diffraction peak (111), and \(\theta \) is the diffraction angles of diffraction peak (111) plane. Crystallite size shows a shrinking trend with the increasing doping content of Gd³⁺ ions. The values are shown in Table 1 and are consistent with the reported results. We try to clarify the reason for this decreasing trend. On the one hand, the large size mismatching between Gd³⁺ and Fe³⁺ can lead to grain anisotropy when the replacement of ions generates strain inside the crystal volume with an increase of Gd³⁺ doping content. Moreover, the balance of the crystal anisotropy and volume strain to each other can maintain in a stable equilibrium state. As a result, the grain size decreases with increasing Gd³⁺ concentration and Gd³⁺ substituting Fe³⁺ site. The increasing trend in the lattice constant is ascribed to the larger Gd³⁺ ionic radii in comparison with Fe³⁺.

The grain size (D) of NiFe₂₋ₓGdₓO₄ samples is estimated from Scherrer formula:

\[D = \frac{0.94 \lambda}{\beta \cos \theta} \]

Herein, \(\lambda \) is wavelength, \(\beta \) is the measured half-width of the most intense diffraction peak (111), and \(\theta \) is the diffraction angles of diffraction peak (111) plane. Crystallite size shows a shrinking trend with the increasing doping content of Gd³⁺ ions. The values are shown in Table 1 and are consistent with the reported results. We try to clarify the reason for this decreasing trend. On the one hand, the large size mismatching between Gd³⁺ and Fe³⁺ can lead to grain anisotropy when the replacement of ions generates strain inside the crystal volume with an increase of Gd³⁺ doping content. Moreover, the balance of the crystal anisotropy and volume strain to each other can maintain in a stable equilibrium state. As a result, the grain size decreases with increasing Gd³⁺ concentration and Gd³⁺ substituting Fe³⁺ site. The increasing trend in the lattice constant is ascribed to the larger Gd³⁺ ionic radii in comparison with Fe³⁺.

The grain size (D) of NiFe₂₋ₓGdₓO₄ samples is estimated from Scherrer formula:

\[D = \frac{0.94 \lambda}{\beta \cos \theta} \]
Herein, \(a \) represents the lattice constant value, \(r \) (O\(^{2-}\)) is oxygen ion radius (1.35 Å), \(\mu \) is oxygen ion parameter, in perfect spinel ferrite \(\mu = 3/8 \). \(r_A \) and \(r_B \) are the ionic radii of tetrahedral and octahedral site, respectively, whereas A–O and B–O are bond lengths. Jump lengths are expressed by \(L_A \) and \(L_B \). The calculated value is listed in Table 1. The results reveal that ionic radii values and magnetic ion and bond length distances change into larger values with the Gd\(^{3+}\) content increase resulting from lattice constant’s increase. The level of growth of \(r_A \) is less compared with that of \(r_B \) when the content of Gd\(^{3+}\) ions is increasing. The aforementioned results are similar to those of the other researchers.\(^{34}\)

The typical surface morphology images are displayed in Figure 2a–e, suggesting that the samples are uniform. Additionally, Gd doping induces a clear decrease in the crystalline size of NFO thin films with Gd concentration increase, which resulted from larger ionic radii Gd\(^{3+}\) into smaller Fe\(^{3+}\) in NFO lattice to suppress the growth of grains.\(^{24}\) This trend is consistent with our XRD results. Figure 2f presents the typical cross-sectional morphology image of the NiFe\(_{1.9}\)Gd\(_{0.1}\)O\(_4\) films on quartz substrate (inset shows optical band gap (\(E_g \)) vs Gd-doping concentration curves).

The optical transmittance spectra of Gd-doped NFO samples are presented in Figure 3a. The spectral features of NFO films are sensitive to Gd-doping concentration. A remarkable enhancement in the transmittance can be observed in NiFe\(_{1.925}\)Gd\(_{0.075}\)O\(_4\) thin films compared with that in pure NFO films. With increasing Gd-doping content, it is observed that Gd-doped NFO films show higher transparency, which suggests high quality and transparency.

To better understand the optical performance change owing to Gd substitution, a further investigation of the optical band gap is performed. Nickel ferrite is direct band gap materials and follows the form\(^{31}\)

\[
(\alpha h \nu)^2 = B(h \nu - E_g)
\]
\(h\nu \) presents incident photon energy, \(\alpha \) is absorption coefficient, \(B \) presents absorption edge width parameters, and \(E_g \) is the band gap.

The \((a\nu)^2\) versus \(\nu \) curves of NFO-doping films are shown in Figure 3b. The values in higher absorption regions are fitted to linear regression. The band gap values could be calculated and are listed in Table 2. It is evident that band gap increases with Gd content increase, changing from 2.58 to 2.75 eV on NFO also similar to the reported values of 2.5 eV of NFO.

Table 2. Optical Band Gap (\(E_g \)) and Magnetic Parameters (Saturation Magnetization (\(M_s \)), Remnant Magnetization (\(M_r \)), Coercive Field (\(H_c \)), and Squareness Ratio (\(R \)) vs Gd-Doping Concentration (\(x = 0, 0.025, 0.05, 0.075, \) and 0.1) of NiFe\(_{2}\)Gd\(_{0.1}\)O\(_4\) Thin Films at Room Temperature

Gd content \(x \)	\(E_g \) (eV)	\(M_s \) (emu/cc)	\(M_r \) (emu/cc)	\(H_c \) (Oe)	\(R = M_r/M_s \)
\(x = 0 \)	2.58	145.29	42.96	154.05	0.296
\(x = 0.025 \)	2.60	164.47	40.02	138.26	0.244
\(x = 0.05 \)	2.87	278.53	67.83	108.41	0.243
\(x = 0.075 \)	2.73	72.38	15.36	116.04	0.226
\(x = 0.1 \)	2.75	70.51	10.21	87.57	0.145

The magnetic hysteresis loops of Gd-doped NFO thin films are obtained by applying the magnetic field of 10 kOe. It can be seen from Figure 4a that all samples exhibit ferromagnetic behavior due to their narrow M–H loop and the shape of these loops vary with the increases in Gd concentration in the NFO films. Different magnetic parameters (saturation magnetization \(M_s \), remnant magnetization \(M_r \), coercivity \(H_c \), and squareness ratio \(R \)) were measured via these M–H loops, and the values are listed in Table 2. Magnetic moments and saturation magnetization are highly dependent on the Gd-doping concentration increase. The saturation magnetization first increases and then sharply decreases as shown in Figure 4b. It is noticed that the NiFe\(_{2}\)Gd\(_{0.05}\)O\(_4\) sample shows remarkable improvement for \(M_s \) and \(M_r \) values compared to those for the pure NFO film in Figure 4b. The above improvement in the magnetic performance can explain that the doping of the Gd\(_{3}^{+}\) ions in ferrite films leads to an increase of whole magnetic moments and redistribution of cations. \(^2\text{1,24,25,37–42}\)

The whole magnetization is given according to Neel’s model \(^3\text{9}\)

\[
M = M_A - M_B
\]

Here, \(M_A \) and \(M_B \) represent the A and B sublattice magnetic moments in \(\mu_B \), respectively. It is noted that the total magnetic moment value in the ferrimagnetic materials depends on the number of magnetic ions taking up the tetrahedral (A) and octahedral (B) sites. As a result, magnetization variation is dependent on the type and number of magnetic ions at different sites. \(^2\text{1,24,37–39}\)

In NFO material, \(\text{Fe}^{3+} \) ions are equally distributed between tetrahedral and octahedral sites, whereas the octahedral sites are occupied by \(\text{Ni}^{2+} \) ions. The net magnetic moment of NFO is 2 \(\mu_B \). Nevertheless, Gd doped into NFO lattice will result in the substitution of \(\text{Fe}^{3+} \) ions at the B site via \(\text{Gd}^{3+} \) ions. The \(\text{Gd}^{3+} \) ions possess a large spin magnetic moment of 7.9 \(\mu_B \) compared with that of \(\text{Fe}^{3+} \) ion of 5 \(\mu_B \). Therefore, a small part substitution of \(\text{Gd}^{3+} \) ions could lead to an increase in the total magnetic moment to enhance magnetization.

It is also noticed that the magnetization decreases above 0.05 Gd-doping concentration, which is attributed to weak...
exchange interaction and redistribution of cations at high Gd-doping concentration.24,37–41 The magnetic property of ferrites is largely dependent on the Fe3+–Fe3+ interaction with 3d electrons spin coupling. The Gd3+ enters the Fe lattice, then Gd3+–Fe3+ interaction occurs with 3d–4f electron coupling. Thus, the magnetic exchange interaction in A and B site cations is reduced, resulting in magnetization change. Furthermore, the Gd3+–Fe3+ interactions are weak due to interactions mainly arising from the indirect 4f–5d–5d–4f mechanism.39 There are some reported research studies relating to magnetization decrease in NiFe\textsubscript{1+\alpha}Gd\textsubscript{\alpha}O\textsubscript{4} nanoparticles and Gd-doped CoFe\textsubscript{2}O\textsubscript{4}.25,41 It is also noticed that the coercivity decreases from 154.05 to 108.41 Oe, then increases to 116.04 Oe, and finally sharply decreases to 87.57 Oe with increasing of the Gd3+ concentration as shown in Figure 4d. Furthermore, the squareness ratio (R = M/M\textsubscript{s}) of Gd-doping NFO films is listed in Table 2. It is shown that the R value decreases with increasing Gd content. Coercivity has been regarded as a microstructure performance, and it is strongly related with defects and strains in the material. In our work, a remarkable decrease in the coercivity has been observed, which is linked with poorer crystallization, larger lattice distortion, and large strain in NFO thin films by Gd-doping.2,11,43

To further investigate the chemical states and impact of Gd ion on magnetic properties considering that cation redistribution of tetrahedral and octahedral sites on NFO thin films, XPS was performed. The XPS spectra of representative samples were collected using high-resolution Ni, Fe, Gd, and O as shown in Figure 5. Figure 5a shows Ni 2p XPS spectra with satellite peaks appearing in 2p\textsubscript{1/2} and 2p\textsubscript{3/2} binding energy side regions. It shows that Ni presents an oxidation state. The deconvolution of 2p peak regions of samples shows two nonequivalent bonds because of tetrahedral and octahedral lattice sites. For NiFe\textsubscript{2−\alpha}Gd\textsubscript{\alpha}O\textsubscript{4} (x = 0.05) thin films, the contributions to the overall intensity of Ni ions at the O\textsubscript{h} and T\textsubscript{d} sites are 78 and 22\%, respectively. Nevertheless, for NiFe\textsubscript{2−\alpha}Gd\textsubscript{\alpha}O\textsubscript{4} (x = 0.1), the contributions to total intensity of Ni ions at the O\textsubscript{h} and T\textsubscript{d} sites are 78 and 22\%, respectively, as shown in Table 3.

Table 3. Analysis Results of Ni 2p\textsubscript{1/2} and Fe 2p\textsubscript{3/2} XPS Spectra for NiFe\textsubscript{2−\alpha}Gd\textsubscript{\alpha}O\textsubscript{4} (x = 0.05 and 0.1) Thin Films

Gd content	spectrum	BE (eV)	assignment	atomic percentage (%)
x = 0.05	Ni 2p\textsubscript{3/2}	855.0	Ni2+ (O\textsubscript{h})	78
	Ni 2p\textsubscript{3/2}	856.7	Ni2+ (T\textsubscript{d})	57
	Fe 2p\textsubscript{3/2}	710.9	Fe3+ (O\textsubscript{h})	69
	Fe 2p\textsubscript{3/2}	712.8	Fe3+ (T\textsubscript{d})	22
x = 0.1	Ni 2p\textsubscript{3/2}	855.0	Ni2+ (O\textsubscript{h})	78
	Ni 2p\textsubscript{3/2}	856.7	Ni2+ (T\textsubscript{d})	57
	Fe 2p\textsubscript{3/2}	711.2	Fe3+ (O\textsubscript{h})	69
	Fe 2p\textsubscript{3/2}	713.0	Fe3+ (T\textsubscript{d})	31

Figure 5b presents the Fe 2p core-electron spectra of NiFe\textsubscript{2−\alpha}Gd\textsubscript{\alpha}O\textsubscript{4} (x = 0.05) and NiFe\textsubscript{2−\alpha}Gd\textsubscript{\alpha}O\textsubscript{4} (x = 0.1) samples. It contains Fe 2p\textsubscript{3/2} and Fe 2p\textsubscript{1/2} sections based on spin orbital splitting. The Fe 2p spectra are resolved into three peaks, the first peak is of Fe2+ and the rest of them are attributed to two lattice sites of Fe3+.42–44 The doublets in films could be assigned to Fe 3p ions at O\textsubscript{h} sites and T\textsubscript{d} sites. The overall intensity contributions of Fe ions at O\textsubscript{h} sites and T\textsubscript{d} sites are 43 and 57\% of NiFe\textsubscript{2−\alpha}Gd\textsubscript{\alpha}O\textsubscript{4} (x = 0.05). However, the contributions to the overall intensity of Fe ions at O\textsubscript{h} sites and T\textsubscript{d} sites are 69 and 31\% of NiFe\textsubscript{2−\alpha}Gd\textsubscript{\alpha}O\textsubscript{4} (x = 0.1), respectively, as presented in Table 3. Therefore, Gd ion doping could induce changes of cation redistribution, which results in the change of magnetic property.38–41 Figure 5c shows 4d\textsubscript{3/2} and 4d\textsubscript{5/2} of Gd 4d, suggesting Gd3+ existence.45 Figure 5d exhibits the investigation of the O 1s peak. The low-fitting binding energy peak corresponds to the lattice oxygen, whereas the higher binding energy peak is ascribed to the non-lattice oxygen.2,11,45 This work would further stimulate much effort on the rare-earth-doped nickel ferrites thin film performances.
CONCLUSIONS

In summary, Gd-doped NiFe₂O₄ thin films were prepared via a facile sol–gel method. XRD revealed the formation of a cubic spinel ferrite structure. Additionally, Gd doping induced the increase of lattice parameter and decrease of crystalline size. With increasing the Gd concentration from 0 to 0.1, the value of optical band gap increased from 2.58 to 2.75 eV for Gd-doped NiFe₂O₄ thin films. Moreover, our results indicated that Gd-doping had important impacts on the magnetic property of NiFe₂O₄ thin films. The saturation of magnetization first increased, then decreased due to the effect of Gd-doping, exchange interaction, and redistribution of cations. However, the coercive field decreased with increasing Gd concentration. Our work suggests that Gd-doped NiFe₂O₄ thin films have potential applications in multifunctional materials.

EXPERIMENTAL SECTION

The NiFe₂₋ₓGdₓO₄ thin films (x = 0, 0.025, 0.05, 0.075, and 0.1) are synthesized using the facile sol–gel approach.⁹,¹⁰ The precursor solution is prepared using starting materials for Ni(CH₃COO)₂·4H₂O (AR, 99.90%, Aladdin), Fe(NO₃)₃·9H₂O (AR, 99.90%, Aladdin), and Gd(NO₃)₃·5H₂O (AR, 99.99%, Aladdin) with the stoichiometric molar ratio of 1:(2 – x):x. The thin films are synthesized on Pt and quartz substrates using spin-coating and annealed at 700 °C in 1 h. The crystalline phase has been investigated by XRD with Rigaku using spin-coating and annealed at 700 °C. The chemical states are analyzed via XPS performed using a 3150 UV double-beam spectrophotometer. Spectrophotometric measurements of samples have been performed using a 3150 UV double-beam spectrophotometer. The magnetism was measured via Quantum Design PPMS-9 at room temperature. The chemical states are analyzed via XPS (ESCALAB 250).

AUTHOR INFORMATION

Corresponding Author
Aize Hao – Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, PR China; orcid.org/0000-0002-7793-7470; Email: h1061717965@163.com

Authors
Huixue Yao – Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, PR China
Xueer Ning – Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, PR China
Hong Zhao – Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, PR China
Muhammad Ismail – School of Electronics Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.0c06097

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported from National Natural Science Foundation of China (no. 12064042), Natural Science Foundation of Xinjiang Autonomous Region (no. 2020D01C054), Scientific Research Program of Higher Education Institution of Xinjiang Autonomous Region (no. XJEDU2020Y007) and PhD. Research Startup Foundation of Xinjiang University (no. BS180276).

REFERENCES

(1) Schloemann, E. Advances in ferrite microwave materials and devices. J. Magn. Magn. Mater. 2000, 209, 15–20.
(2) Hao, A.; Ismail, M.; He, S.; Qin, N.; Chen, R.; Rana, A. M.; Bao, D. Enhanced resistive switching and magnetic properties of Gd-doped NiFe₂O₄ thin films prepared by chemical solution deposition method. Mater. Sci. Eng., B 2018, 229, 86–95.
(3) Eerenstein, W.; Mathur, N. D.; Scott, J. F. Multiferroic and magnetoelectric materials. Nature 2006, 442, 759–765.
(4) Luiders, U.; Barthelémy, A.; Bibles, M.; Bouzehouane, K.; Fusil, S.; Jacquet, E.; Contour, J.-P.; Bobo, J.-F.; Fontcuberta, J.; Fert, A. NiFe₂O₄: A versatile spinel material brings new opportunities for spintronics. Adv. Mater. 2006, 18, 1733–1736.
(5) Dolia, S. N.; Sharma, R.; Sharma, M. P.; Saxena, N. S. X-ray diffraction and optical band gap study of nanoparticles of NiFe₂O₄. Indian J. Pure Appl. Phys. 2006, 44, 774–776.
(6) Sun, Q.-C.; Sims, H.; Mazumdur, D.; Ma, X.; Holinsworth, B. S.; O’Neal, K. R.; Kim, G.; Butler, W. H.; Gupta, A.; Musfeldt, J. L. Optical band gap hierarchy in a magnetic oxide: Electronic structure of NiFe₂O₄. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 86, 205106.
(7) Rai, R. C.; Wilser, S.; Guminiai, M.; Cai, B.; Naikmuri, M. L. Optical and electronic properties of NiFe₂O₄ and CoFe₂O₄ thin films. Appl. Phys. A 2012, 106, 207–211.
(8) Himcinschi, C.; Vreijou, I.; Salvan, G.; Frank, M.; Tallenberg, A.; Zahn, D. R. T.; Rafaja, D.; Kortus, J. Optical and magneto-optical studies of nickel and cobalt ferrite epitaxial thin films and submicron structures. J. Appl. Phys. 2013, 113, 084101.
(9) Holinsworth, B. S.; Mazumdur, D.; Sims, H.; Sun, Q. C.; Urtisiggi, M. K.; Sarker, S. K.; Gupta, A.; Butler, W. H.; Musfeldt, J. L. Chemical tuning of the optical band gap in spinel ferrites: CoFe₂O₄ vs NiFe₂O₄. Appl. Phys. Lett. 2013, 103, 082406.
(10) Hu, W.; Qin, N.; Wu, G.; Lin, Y.; Li, S.; Bao, D. Opportunity of spinel ferrite materials in nonvolatile memory device applications based on their resistive switching performances. J. Am. Chem. Soc. 2012, 134, 14658–14661.
(11) Hao, A.; He, S.; Qin, N.; Chen, R.; Bao, D. Ce-doping induced enhancement of resistive switching performance of Pt/NiFe₂O₄/Pt memory devices. Ceram. Int. 2017, 43, S481–S487.
(12) Matzen, S.; Moussy, J.-B.; Wei, P.; Gatel, C.; Cezar, J. C.; Arrio, M. A.; Sainctavit, P.; Moodera, J. S. Structure, magnetic ordering, and spin filtering efficiency of NiFe₂O₄ (111) ultrathin films. Appl. Phys. Lett. 2014, 104, 182404.
(13) Bandgar, S. B.; Vadiyar, M. M.; Ling, Y.-C.; Chang, J.-Y.; Han, S.-H.; Ghule, A. V.; Kolekar, S. S. Metal precursor dependent synthesis of NiFe₂O₄ thin films for high-performance flexible symmetric supercapacitor. ACS Appl. Energy Mater. 2018, 1, 638–648.
(14) Kumari, K.; Kumar, R.; Barman, P. B. Tuning of structural, magnetic and optical properties of NiFe₂O₄ films by implementing high magnetic fields. Thin Solid Films 2020, 712, 138321.
(15) Hao, A.; Jia, D.; Ismail, M.; Chen, R.; Bao, D. Compounds, Controlling of resistive switching and magnetism through Cu²⁺ ions.
substitution in nickel ferrite based nonvolatile memory. J. Alloys Compd. 2019, 790, 70–77.

(16) Li, Z.; Liu, Y.; Zou, S.; Lu, C.; Bai, H.; Mu, H.; Duan, J. Removal and adsorption mechanism of tetracycline and cefotaxime contaminants in water by NiFe2O4-COF-chitosan-terephthalaldehyde nanocomposites film. Chem. Eng. J. 2020, 382, 123008.

(17) Shinde, T. J.; Gadkari, A. B.; Vasambekar, P. N. Influence of Nd3+ substitution on structural, electrical and magnetic properties of nanocrystalline nickel ferrites. J. Alloys Compd. 2012, 513, 80–85.

(18) Sahariya, J.; Mund, H. S.; Sharma, A.; Dashora, A.; Itou, M.; Sakurai, Y.; Ahuja, B. L. Magnetic properties of NiFe2−xRexO4 (RE=Dy, Gd) using magnetic Compton scattering. J. Magn. Magn. Mater. 2014, 360, 113–117.

(19) Kamala Bharathi, K.; Balamurugan, K.; Santhosh, P. N.; Pattabiraman, M.; Markandeyulu, G. Magnetcapacitance in Dy-doped Ni ferrite. Phys. Rev. B: Condens. Matter Mater. Phys. 2008, 77, 172401.

(20) Kamala Bharathi, K.; Markandeyulu, G. Ferroelectric and ferromagnetic properties of Gd substituted nickel ferrite. J. Appl. Phys. 2008, 103, 073909.

(21) Kamala Bharathi, K.; Arout Chełvane, J.; Markandeyulu, G. Magnetoelctric properties of Gd and Nd-doped nickel ferrite. J. Magn. Magn. Mater. 2009, 321, 3677–3680.

(22) Singh, J. P.; Dixit, G.; Srivastava, R. C.; Agrawal, H. M.; Asokan, K. Looking for the possibility of multi ferroism in Ni0.73Gd0.27Fe2O4 nanoparticle system. J. Phys. D: Appl. Phys. 2011, 44, 435306.

(23) Shirsath, S. E.; Jadhav, S. S.; Toksha, B. G.; Patange, S. M.; Jadhav, K. M. Influence of Ce+4 ions on the structural and magnetic properties of NiFe2O4. J. Appl. Phys. 2011, 110, 031914.

(24) Dixit, G.; Pal Singh, J.; Srivastava, R. C.; Agrawal, H. M. Magnetic resonance study of Ce and Gd doped NiFe2O4 nanoparticles. J. Magn. Magn. Mater. 2012, 324, 479–483.

(25) Heiba, Z. K.; Imam, N. G.; Bakr Mohamed, M. Temperature dependent cation distribution correlated with optical and magnetic properties of nanocrystalline NiFe2−xGdxO4. J. Mol. Struct. 2015, 1095, 61–68.

(26) Ugendar, K.; Samanta, S.; Rayaprol, S.; Siriguri, V.; Markandeyulu, G.; Nanda, B. R. K. Effect of frustrated exchange interactions and spin-half-impurity on the electronic structure of strongly correlated NiFe2O4. Phys. Rev. B 2017, 96, 035138.

(27) Lüders, U.; Biber, M.; Bobo, J. F.; Canioni, M.; Bertacco, R.; Fontcuberta, J. Enhanced magnetic moment and conductive behavior in NiFe2−xO4 spinel ultrathin films. Phys. Rev. B: Condens. Matter Mater. Phys. 2005, 71, 134419.

(28) Seifikar, S.; Tabei, A.; Sachet, E.; Rawdanowicz, T.; Bassiri-Gharb, N.; Schwartz, J. Growth of (111) oriented NiFe2O4 polycrystalline thin films on Pt (111) via sol-gel processing. J. Appl. Phys. 2012, 112, 063908.

(29) Hoppe, M.; Döring, S.; Gorgoi, M.; Cramm, S.; Müller, M. Enhanced ferrimagnetism in austriallic NiFe2O4 in the crossover to the ultrathin-film limit. Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 91, 054418.

(30) Kamala Bharathi, K.; Vemuri, R. S.; Noor-A-Alam, M.; Ramana, C. V. Effect of annealing on the microstructure of NiFe2−xDy0.075O4 thin films. Thin Solid Films 2012, 520, 1794–1798.

(31) Bharathi, K. K.; Vemuri, R. S.; Ramana, C. V. Dysprosium-substitution induced changes in the structure and optical properties of nickel ferrite (NiFe2O4) thin films. Chem. Phys. Lett. 2011, 504, 202–205.

(32) Yadav, R. S.; Hulvica, J.; Masliko, J.; Kalina, L.; Wasserbauer, J.; Hajdíčková, M.; Enve, V.; Kůřitka, I.; Kožáková, Z. Impact of Nd3+ in CoFe2O4 spinel ferrite nanoparticles on cation distribution, structural and magnetic properties. J. Magn. Magn. Mater. 2016, 399, 109–117.

(33) Chaudhari, V.; Shirsath, S. E.; Mane, M. L.; Kadam, R. H.; Shelke, S. B.; Mane, D. R. Crystallographic, magnetic and electrical properties of Ni0.6Cu0.2Zn0.2LaFe2O4 nanoparticles fabricated by sol-gel method. J. Alloys Compd. 2013, 549, 213–220.

(34) Farid, H. M. T.; Ahmad, I.; Bhatti, K. A.; Ali, I.; Ramay, S. M.; Mahmood, A. The effect of praseodymium on Cobalt-Zinc spinel ferrites. Ceram. Int. 2017, 43, 7325–7360.

(35) Farid, M. T.; Ahmad, I.; Kanwal, M.; Murtaza, G.; Ali, I.; Khan, S. A. The role of praseodymium substituted ions on electrical and magnetic properties of Mg spinel ferrites. J. Magn. Magn. Mater. 2017, 428, 136–143.

(36) Balaji, S.; Kalai Selvan, R.; John Berchmans, L.; Angappan, S.; Subramaniam, K.; Augustin, C. O. Combustion synthesis and characterization of Sn4+ substituted nanocrystalline NiFe2O4. Mater. Sci. Eng., B 2005, 119, 119–124.

(37) Dixit, G.; Singh, J. P.; Srivastava, R. C.; Agrawal, H. M. Structural, optical and magnetic studies of Ce doped NiFe2O4 nanoparticles. J. Magn. Magn. Mater. 2013, 334, 65–71.

(38) Sepeľák, V.; Bergmann, I.; Feldhoff, A.; Heitjans, P.; Krumča, F.; Menzel, D.; Litterst, F. J.; Campbell, S. J.; Becker, K. D. Nanocrystalline nickel ferrite, NiFe2O4: mechanosynthesis, non-equilibrium cation distribution, canted spin arrangement, and magnetic behavior. J. Phys. Chem. C 2007, 111, 5026–5033.

(39) Heiba, Z. K.; Bakr Mohamed, M.; Arda, I.; Dogan, N. Cation distribution correlated with magnetic properties of nanocrystalline gadolinium substituted nickel ferrite. J. Magn. Magn. Mater. 2015, 391, 195–202.

(40) Mund, H. S.; Sahariya, J.; Choudhary, R. J.; Phase, D. M.; Dashora, A.; Itou, M.; Sakurai, Y.; Ahuja, B. L. Study of spin and orbital magnetization in Dy-and Gd-doped Co ferrite using magnetic Compton scattering. Appl. Phys. Lett. 2013, 102, 232403.

(41) Puli, V. S.; Adireddy, S.; Ramana, C. V. Chemical bonding and magnetic properties of gadolinium (Gd) substituted cobalt ferrite. J. Alloys Compd. 2015, 644, 470–475.

(42) Jaffari, G. H.; Rumaiz, A. K.; Woicik, J. C.; Shah, S. I. Influence of oxygen vacancies on the electronic structure and magnetic properties of NiFe2O4 thin films. J. Appl. Phys. 2012, 111, 093906.

(43) Anjum, S.; Jaffari, G. H.; Rumaiz, A. K.; Rafique, M. S.; Shah, S. I. Role of vacancies in transport and magnetic properties of nickel ferrite thin films. J. Phys. D: Appl. Phys. 2010, 43, 265001.

(44) Hao, A.; Jia, D.; Ismail, M.; Huang, W.; Chen, R.; Bao, D. Electric field induced manipulation of resistive and magnetization switching in Pt/NiFe2−0.5Gd0.5O4/Pt memory devices. Appl. Phys. Lett. 2019, 114, 203502.

(45) Cao, X.; Li, X.; Gao, X.; Yu, W.; Liu, X.; Zhang, Y.; Chen, L.; Cheng, X. Forming-free colossal resistive switching effect in rare-earth-oxide Gd2O3 films for memristor applications. J. Appl. Phys. 2009, 106, 073723.