Como estávamos antes? Uma análise da oferta potencial e desigualdade de acesso geográfico aos recursos críticos para tratamento de COVID-19

How were we before? An analysis of the potential supply and inequality in the geographic access to critical resources for the COVID-19 treatment

Abstract The objective was to analyze the situation of the Metropolitan Area of Brasília (AMB) before the onset of the COVID-19 pandemic, focusing on the availability and geographical accessibility of critical resources for the treatment of acute respiratory crises caused by the SARS-CoV-2 virus. Geographic mapping of the population within the territory and geolocation of health facilities and resources, construction of a relationship network between the potential demand simulated to the public health system and the supply of resources available in December 2019. The relationship analysis is based on the theory of complex networks crossing socioeconomic data available in the CENSUS and information from the National Registry of Health Establishments (CNES) and analyzing the micro relationship of census tracts with the stock and availability of health resources concerning Adult ICU Bed Type II/III and Respirators/Ventilators. The Federal District (DF) health facilities concentrate more than 75% of the relationships of potential access to critical resources for the treatment of COVID-19. Although the regions surrounding the DF, belonging to Goiás state, have the greatest relative vulnerability in the studied territory, they are also the most lacking in spatial accessibility and availability of resources, evidencing a care imbalance within the AMB region.

Key words COVID-19, Health service access, Public Health, Data science, Complex networks

Resumo O objetivo deste artigo é analisar a situação da Área Metropolitana de Brasília (AMB) antes do início da pandemia de COVID-19 com foco na disponibilidade e acessibilidade de recursos críticos para o tratamento da crise aguda respiratória causada pelo vírus SARS-CoV-2. Mapeamento geográfico da população e geolocalização dos estabelecimentos e recursos de saúde, construção de rede de relacionamentos entre a demanda potencial ao sistema de saúde público e a oferta de recursos existente em dez/2019. Análise baseada na teoria de redes complexas cruzando dados socioeconômicos disponíveis no CENSO, dados do Cadastro Nacional de Estabelecimentos de Saúde (CNES) e o micro relacionamento dos setores censitários com o estoque e disponibilidade de recursos do tipo Leito de UTI Adulto Tipo II/III e Respiradores Mecânicos. Estabelecimentos do Distrito Federal (DF) concentram mais de 75% dos relacionamentos de acesso potencial aos recursos críticos para o tratamento de COVID-19. Embora as regiões do entorno do DF, pertencentes ao Goiás, apresentem a maior vulnerabilidade relativa no território estudado, são também as mais carentes de acessibilidade e disponibilidade de recursos, evidenciando um desequilíbrio assistencial dentro da região da AMB.

Palavras-chave COVID-19, Acesso aos serviços de saúde, Saúde Pública, Ciência de dados, Redes complexas
Introdução

No dia 26 de fevereiro de 2020, quando o Brasil reportou seu primeiro caso de COVID-19, iniciou-se uma corrida entre a capacidade assistencial do sistema de saúde e a ascendente curva de novos casos de síndrome respiratória aguda causada pelo novo coronavírus (SARS-CoV-2), conhecida como COVID-19. Leitos de Unidades de Tratamento Intensivo (UTI) e equipamentos médicos, tais como respiradores, são recursos críticos para o tratamento dos pacientes graves e a escassez destes recursos tem levado vários países a experimentar dificuldades no enfrentamento da pandemia, sendo a Itália o exemplo mais extremado no início da pandemia, onde os profissionais de saúde precisaram priorizar os pacientes que deveriam ter acesso ao cuidado devido, durante o pico da pandemia em algumas regiões do país.1,2

A proporção entre o número de pacientes que requerem tratamento intensivo na população infectada é um importante indicador do impacto desta síndrome viral. No período de 01 de março a 01 de maio de 2020, a Itália reportou 205.700 novos casos de infecção, enquanto a demanda por assistência intensiva foi em torno de 9-11% do total de casos notificados. Em março de 2020, o sistema de saúde italiano já apresentava uma ocupação de 1.028 leitos de terapia intensiva para o cuidado de pacientes com SARS-CoV-2, frente ao total de aproximadamente 5.200 leitos existentes.

A distribuição de recursos críticos para o tratamento dos casos graves da COVID-19 no Brasil apresenta diferentes realidades. Enquanto a dependência da assistência pública à saúde encontra-se em grande parte do território nacional acima de 80%, a distribuição de leitos e respiradores é desigual, gerando diferentes desafios para o enfrentamento da pandemia no nível local.3

O Distrito Federal, até abril de 2020, apresentava boa disponibilidade de recursos de UTI, em comparação às demais unidades federativas, com 30 leitos de UTI e 62 respiradores para cada 100.000 habitantes. Outra realidade pode ser percebida, no entanto, quando os números são analisados na perspectiva dos recursos disponíveis e oferecidos pelo Sistema Único de Saúde (SUS), ou seja, respectivamente, 6 leitos de UTI e 32 respiradores para cada 100.000 habitantes. Contudo, quando se diz "leitos/população" no Distrito Federal, não está incluída a população de quase um milhão de habitantes de 12 municípios que integram a Área Metropolitana de Brasília (AMB), na qual 86% da população não possui acesso à saúde suplementar privada e, destes, 33% buscam assistência à saúde prioritariamente na rede de serviços do Distrito Federal.4

Ao se observar a realidade da AMB, colocase-se em debate os indicadores apresentados pela abordagem “Provider-to-Population Ratio”, onde a disponibilidade de um determinado recurso (neste caso, leitos e respiradores) é calculada em função da razão deste recurso com a população dentro de uma área geograficamente delimitada. Embora esta métrica seja tradicionalmente utilizada pela sua simplicidade e facilidade de transmitir a informação, conforme explica Guagliardo, ainda assim, possui reconhecidas limitações, que escondem disparidades e ocultam o reconhecimento de barreiras no acesso à saúde, as quais podemos citar:

i) Transposição de bordas entre o recorte espacial analisado, ou seja, ao considerar a relação recurso/população do Distrito Federal, é desconsiderada a população do entorno, que embora não pertença à região delimitada, representa uma população de quase 400.000 habitantes, potenciais usuários da rede de saúde, conforme estudo da Companhia de Planejamento do Distrito Federal (CODEPLAN);

ii) Desconsideração das variações da disponibilidade dos recursos dentro da região analisada, ou seja, como o Distrito Federal tem diferentes características com regiões expostas a diferentes determinantes sociais, existe a necessidade de entender a distribuição dos recursos para estas diferentes realidades;

iii) Não incorporação explícita de indicadores de acessibilidade geográfica, portanto, a desigualdade no acesso geográfico tende a passar despercebida, não destacando de forma objetiva barreiras geográficas de acesso entre a população e o recurso.

Analisar a distribuição de recursos de saúde utilizando métricas que destaquem as desigualdades intrarregionais e as barreiras geográficas de acesso é fundamental para compreender as decisões de uso do sistema de saúde e de cuidado com a saúde e, por último, sustentar o planejamento informado por evidências nas políticas públicas.

Este estudo teve o objetivo de analisar a distribuição intrarregional de recursos críticos para o tratamento dos casos graves da COVID-19, especificamente leitos de UTI e respiradores mecânicos, dentro da AMB, utilizando o menor nível de agregação possível, a fim de destacar aspectos relacionados com o acesso geográfico e disponibilidade de recursos.
Os objetivos do estudo também incluíram testar ferramentas de análise baseadas na Teoria de Redes Complexas aplicadas ao contexto da COVID-19, permitindo destacar áreas de maior concentração de recursos e a desigualdade entre populações, com diferentes níveis de vulnerabilidade social dentro da AMB, oferecendo, desta maneira, uma perspectiva complementar e mais detalhada quando comparada com análises de “Provider-to-Population” realizadas para a mesma região e, deste modo, respondendo à seguinte questão “Qual seria o arranjo em termos de disponibilidade, acesso geográfico e demanda potencial ao sistema público de saúde se uma demanda simulada de 1% da população da AMB necessitasse de recursos críticos ao tratamento de crise aguda respiratória?”.

Métodos

Realizou-se uma análise transversal de dados secundários do Cadastro Nacional de Estabelecimentos de Saúde11 (CNES) e dos dados agregados do CENSO de 201012. Foram usados os dados do CNES, referentes a dezembro de 2019, para extrair a geolocalização dos estabelecimentos de saúde e a disponibilidade de leitos de UTI e equipamentos do tipo “Respirador Mecânico”, sendo considerados estabelecimentos pertencentes à rede vinculada ao SUS e com recursos a disposição do sistema de saúde público. O CENSO de 2010 foi utilizado como fonte da malha de setores censitários e socioeconômicos agregados referentes à população que vive dentro destes recortes espaciais. Assim, a utilização dos setores censitários dentro da AMB permitiu uma análise intrarregional da vulnerabilidade da população e o acesso aos recursos de saúde através de coordenadas espaciais providas pelas duas bases citadas.

Na análise dos dados, foi aplicada a Teoria de Redes Complexas, apoiando-se na modelagem descrita por Costa et al.13, que apresenta um conjunto de métricas baseado em um modelo de relacionamento entre setores censitários e estabelecimentos de saúde, empregando os conceitos de centralidade e distância geográfica entre estas entidades. Este modelo permitiu avaliar a importância de determinados estabelecimentos e tipos de estabelecimentos na cobertura do acesso potencial aos serviços e recursos de saúde. O modelo apresentado aqui, portanto, complementa estas ideias, analisando a distribuição do estoque de recursos oferecidos pelos estabelecimentos de saúde para uma população que demanda um acesso potencial a estes recursos, empregando o conceito de acesso potencial desenvolvido por Andersen8 e de disponibilidade de recursos descrito por Penchansky e Thomas10.

A fim de identificar e analisar disparidades na distribuição dos recursos, foi empregada uma métrica de vulnerabilidade social, buscando-se compreender a realidade de acesso e disponibilidade de recursos entre diferentes condições de vulnerabilidade. Para cálculo da vulnerabilidade social relativa dentro do território da AMB foi utilizado o modelo criado por Drachler et al.14. Este índice, denominado de IVS-5, é composto por indicadores que descrevem a carência de uma região em termos de renda, infraestrutura de esgoto, acesso a água potável, serviço de coleta de lixo e densidade demográfica. Para este trabalho foi excluído o componente densidade demográfica. Este componente representa a dificuldade operacional de provisão à saúde em municípios com reduzida densidade demográfica, quando avaliámos esta condição dentro da análise intrarregional da AMB observamos regiões de baixa densidade demográfica que não representam condições de vulnerabilidade, como a existente nas regiões organizadas em condomínios horizontais.

O primeiro passo para o cálculo do IVS-5 foi identificar o percentual de carência de cada um dos indicadores, a Tabela 1 reflete a distribuição de cada indicador em função de percentis, em seguida, foi atribuído a cada setor censitário um IVS equivalente ao número de desvios padrão em escala Z acima e abaixo da média dos 5.616 setores utilizados no estudo (186 setores foram descartados devido à ausência de dados, correspondendo a 3,2% do total de setores). Como o IVS é normalizado pelo uso do escor Z, a média e o desvio padrão do IVS será representada, respectivamente, por 0 e 1. Esta maneira, ao normalizar pelo desvio padrão, conclui-se a construção do índice, criando faixas para cada nível de vulnerabilidade aplicadas por setor censitário e agrupadas por município da AMB na Tabela 2. É importante ressaltar que o índice trata de vulnerabilidade relativa dentro do território, não sendo, portanto, um índice universal de vulnerabilidade.

Para modelagem do acesso geográfico e disponibilidade dos recursos críticos, foram estabelecidos relacionamentos partindo dos setores censitários para as unidades de saúde considerando um cenário aonde 1% da população do setor demandasse este recurso. O valor de 1% representa uma demanda simulada parametrizada.
no modelo de tal forma que uma porção proporcional de todas as setores censitários pudessem participar da distribuição dos recursos, não é esperado que este valor represente a prevalência da crise respiratória aguda dentro do território da AMB. Esta pesquisa tem como objetivo simular a aplicação de um modelo de acessibilidade e disponibilidade de recursos, por outro lado, achados

Tabela 1. Distribuição dos Indicadores e do índice de vulnerabilidade social no território da AMB.

AMB	(A) % Domicílios com renda per capita <0,5 salário mínimo	(B) % Domicílios sem água da rede pública	(C) % Domicílios sem sanitário em rede de esgoto ou pluvial	(D) % Domicílios sem coleta de lixo	% Relativo de Vulnerabilidade Social do Setor (A + B + C + D) / 4
	25 50 75 95	25 50 75 95	25 50 75 95	25 50 75 95	25 50 75 95
Brasília	3 13 25 41	0 0 1 88	0 0 2 95	0 0 20	1 4 8 46
Luziânia	25 32 40 51	4 45 92 100	64 96 98 100	0 1 5 99	31 38 58 82
Águas Lindas de Goiás	28 34 40 51	1 6 22 92	87 97 99 100	0 2 10 73	31 35 41 72
Valparaiso de Goiás	12 22 30 44	1 16 48 81	1 12 87 99	0 0 36 9	20 32 53
Formosa	18 32 46 58	1 3 21 100	35 69 92 98	0 0 13 100	15 27 41 84
Novo Gama	25 33 39 51	0 3 16 93	8 9 86 99	0 0 3 78	12 32 38 72
Planaltina	27 35 44 56	0 2 30 100	74 92 98 99	0 2 25 98	26 34 50 81
Sto. Ant. de Descoberto	28 37 42 51	1 8 95 99	11 68 95 99	0 3 32 99	15 34 59 81
Cidade Ocidental	17 28 36 49	0 3 24 100	1 61 93 99	0 1 10 92	6 26 39 74
Cristalina	22 31 39 54	1 12 100 100	12 81 97 100	0 5 96 100	19 41 72 83
Padre Bernardo	36 42 47 57	2 68 97 100	70 95 99 100	0 2 45 91	100 36 61 78
Alexânia	31 37 44 50	8 19 97 100	86 98 99 99	0 2 43 96	33 38 62 82
Cocalzinho de Goiás	30 36 41 56	1 82 97 100	85 94 98 100	1 3 83 99	32 53 76 83
Total	5 18 30 46	0 0 3 98	0 0 49 99	0 0 68 2	6 27 65

Nota: Distribuição dos percentis de cada indicador, por exemplo, para o indicador (A) Brasília apresenta 41% dos domicílios com renda per capita <0,5 salário mínimo para o percentil 95.

Fonte: Autores, com base nos dados do CENSO 2010 (IBGE).

Tabela 2. Distribuição do índice de vulnerabilidade social por desvio padrão nos setores censitários da AMB.

AMB	Desvios Padrão da Média da Vulnerabilidade no Território										
	-1 a -0,51	-0,5 a 0	0,01 a 1	1,01 a 2	>2	Total					
Brasília	2.590	60%	1.018	24%	590	4%	131	3%	4.293		
Luziânia	11	5%	21	9%	80	33%	68	28%	62	25%	242
Águas Lindas de Goiás	1	1%	18	10%	90	50%	54	30%	16	9%	179
Valparaiso de Goiás	31	18%	41	23%	77	44%	20	12%	6	3%	175
Formosa	7	5%	30	22%	60	44%	9	7%	30	22%	136
Novo Gama	15	12%	23	19%	49	40%	26	22%	9	7%	122
Planaltina	1	1%	13	12%	49	45%	23	21%	22	21%	108
Sto. Ant. de Descoberto	1	1%	20	25%	23	29%	15	19%	21	26%	80
Cidade Ocidental	18	23%	10	13%	28	37%	11	14%	10	13%	77
Cristalina	4	5%	13	17%	19	25%	10	13%	29	40%	75
Padre Bernardo	6	12%	1	2%	9	17%	9	17%	27	52%	52
Alexânia	0	0%	3	7%	17	38%	10	23%	14	32%	44
Cocalzinho de Goiás	1	3%	0	0%	12	36%	8	24%	12	36%	33
Total	2.680	47%	1.211	22%	903	16%	427	8%	389	7%	5.616

Fonte: Autores, com base nos dados do CENSO 2010 (IBGE).
no campo da carência do acesso potencial dentro de um território podem colaborar com estudos epidemiológicos microrregionais orientando as ações do serviço de saúde.

Partindo de cada setor censitário, o algoritmo de relacionamento buscou os estabelecimentos de saúde mais próximos que possuísem a quantidade de recursos equivalente ou maior que a demanda potencial do setor. Se um setor censitário possuir 1.000 moradores, este setor demandaria 10 unidades dos recursos (1% da população), e se, num raio de 2.500 metros, fossem encontrados 3 estabelecimentos de saúde com distâncias euclidianas menores que o raio de busca e com a soma dos recursos disponíveis destes estabelecimentos maior ou igual a demanda potencial do setor censitário, entende-se que esta demanda foi atendida e a busca do algoritmo se encerra. Além disso, o algoritmo admite a variação de 20% na distância, portanto, se a menor distância de um estabelecimento para o setor for 1.000 metros, estabelecimentos localizados em até 1.200 metros são admitidos como dentro do raio de busca (Figura 1).

Assim, o modelo de demanda potencial de 1% da população responderia a questões sobre acessibilidade geográfica, ou seja, onde estariam os recursos mais próximos se 1% da população do setor precisasse deles, enquanto a disponibilidade, descreveria a proporção de recursos existente para esta demanda potencial. Em seguida, foi formulada uma métrica que emprega a relação População-Recursos por estabelecimento de saúde e, portanto, destacando os estabelecimentos mais sobrecarregados e onde estão localizados. Por último, ponderou-se a população atendida em função de sua vulnerabilidade geográfica, demonstrando a acessibilidade e a disponibilidade à recursos em função do índice de IVS-5 calculado.

A métrica de centralidade utilizada para estabelecer a importância dos estabelecimentos de saúde, em função de relação entre demanda potencial e recursos, é baseada na métrica de PageRank da teoria de redes. Considerando que a rede representou nós do tipo Setor Censitário e Estabelecimentos de Saúde relacionando-se em função da demanda potencial por recursos, em termos práticos, a centralidade por PageRank representa o somatório de um atributo de importância dos setores censitários (população ou população ponderada pela vulnerabilidade)

Figura 1. Centralidade - Peso Populacional e Disponibilidade.

Fonte: Autores, 2020.
que foi transmitido de maneira equilibrada (ou seja, dividida pelos demais estabelecimentos de saúde que potencialmente podem ofertar aquele recurso em distâncias similares). Por sua vez, “centralidade” representa uma importante ferramenta analítica para determinar a importância estrutural de um nó dentro de uma rede e, neste artigo, foi empregada a fim de determinar quais estabelecimentos de saúde são chave no provimento à demanda potencial de recursos dentro do cenário simulado.

Dentro do contexto deste trabalho, os nós representam, ao mesmo tempo, os estabelecimentos de saúde e os setores censitários, sendo, portanto, uma rede caracterizada pela existência de duas partições que se relacionam unidirecionalmente, partindo do setor censitário para o estabelecimento de saúde e, desta maneira, estabelecendo uma estrutura de rede bimodal. Assim, o cálculo de centralidade de um vértice \(p_i \) (um estabelecimento de saúde), ou de um grupo de vértices \(p_k \) de estabelecimento de saúde correlacionados (do mesmo tipo estabelecimento), se dará sob a seguinte formulação:

\[
C_{pr}(p_i) = \frac{\sum_{j=1}^{n} a(p_j, p_i)}{\sum_{j=1}^{n} p_j} \left(\frac{C_{pr}(p_j) + (p_j^{IVS} * p_j^{IVP})}{p_j} \right) \cdot p_i^s
\]

Sendo \(a(p_j, p_i) = 1 \) se, e somente se o vértice \(p_j \) (um setor censitário) apresenta um relacionamento com o vértice \(p_i \) (o estabelecimento de saúde ou o grupo de vértices em análise), do contrário será igual a 0, indicando que não há relacionamento entre \(p_i \) e \(p_j \). Para cada relacionamento de \(p_i \) com \(p_j \) (um setor censitário do vetor de relacionamentos), \(p_j \) terá os seguintes atributos: \(p_j^{IVS} = \) Indicador de Vulnerabilidade social do setor \(p_j \); \(p_j^{IVP} = \) Disponibilidade Total de Recursos para o Setor \(p_j \), ou seja, o somatório de recursos disponíveis em todos os relacionados que partem de setor censitário \(p_j \) para os estabelecimentos de saúde e dado pela função somatória entre a função de relacionamento entre \(p_i \) e cada setor \(p_j \) (onde, mas uma vez, o resultado será 0 ou 1) e a quantidade de recursos \(p_j^s \) existente em cada estabelecimento de saúde.

Por último, a variável \(p_i^s \) representa o total de recursos disponíveis no estabelecimento (ou conjunto de estabelecimentos) \(p_i \), em análise. Portanto a centralidade \(C_{pr}(p_j) \) será calculada pela relação de população do setor censitário dividida pelo total de recursos disponíveis para aquele setor (dentro da regra de relacionamento por proximidade) e multiplicado pela quantidade de recursos disponíveis no estabelecimento em análise. O componente \(C_{pr}(p_j) \), por sua vez, representa a centralidade do autovetor, que opera de forma recursiva na fórmula, caso o setor censitário tenha relacionamentos, para esta formulção este componente representou uma constante de valor igual a 0, visto que não existem relacionamentos de entrada nos setores censitários. Para preparação dos dados, aplicação do cálculo às tabelas, análise e visualização de dados foram empregadas as ferramentas Gephi e a linguagem R.

Para finalizar, o modelo foi aplicado para os recursos equipamento “64-RESPIRADOR/ VENTILADOR” e, em seguida, os leitos do tipo: “75-UTI ADULTO - TIPO II”, “76-UTI ADULTO - TIPO III”. Os seguintes dados foram obtidos para análise:

i) Distância euclidiana média entre os setores censitários e as unidades de saúde que oferecem Respiradores e Leitos.

ii) Distribuição da distância de acesso geográfico por classe de vulnerabilidade social para cada recurso

iii) Diferenças do acesso geográfico aos recursos quando considerado setores censitários do Distrito Federal e setores dos municípios do entorno pertencentes à AMB.

iv) Importância dos Estabelecimentos de Saúde em função da população potencial coberta e relação recurso/população por estabelecimento.

Resultados e discussão

Duas redes foram construídas para análise, a primeira baseada na busca de respiradores constituída de 16.884 relacionamentos entre 5.616 setores censitários com 71 estabelecimentos que apresentaram equipamentos em uso disponíveis para o SUS. A segunda rede foi baseada na disponibilidade à leitos de UTI Adulto tipo II e Tipo III, conforme critério utilizado pelo IBGE para estudo de disponibilidade regional destes recursos. Na rede de disponibilidade de leitos foram formados 24.617 relacionamentos entre 5.616 setores censitários e 21 estabelecimentos, formando uma rede dividida em duas camadas, a primeira, constituída pela procura de leitos tipo II, e a segunda, pela procura de leitos tipo III.
Na rede de respiradores, as maiores concen-
trações de relacionamentos foram observadas
entre os Hospitais Regionais das regiões adminis-
trativas de Brasília, com destaque para o Hospital
Regional de Santa Maria que possui uma central-
idade normalizada que representa o atendimen-
to de 12% dos relacionamentos possíveis desta
rede. O conceito de centralidade normalizada é
um determinante da importância de um nó den-
tro da estrutura da rede, um estabelecimento que
tenha 100% dos relacionamentos (Centralidade
Normalizada igual a 1) possui relacionamento
com todos os setores censitários e é responsável
pela exclusividade na oferta do recurso para es-
tes setores. Portanto, como podemos observar
na Tabela 3, doze estabelecimentos de saúde concen-
tram 75,2% da centralidade normalizada da po-
pulação do Distrito Federal e dos 12 municípios
do estado de Goiás pertencentes à AMB.

A população dos municípios do entorno de
Brasília representa 38% do total da população
da AMB de 3.529.346 (conforme Censo IBGE de
2010), enquanto isto, embora os estabelecimen-
tos de saúde listados na Tabela 3 estejam loca-
lizados no Distrito Federal, 22% dos relaciona-
mentos destes estabelecimentos são com setores
censitários localizados em municípios do entor-
no de Brasília, demonstrando, portanto, a sensi-
bilidade destes estabelecimentos na cobertura de
lacunas de disponibilidade de respiradores loca-
lizadas nas cidades do estado de Goiás.

Quando observamos a rede de relacionamen-
tos para leitos de UTI Adulto Tipo II (Tabela 4),
observamos uma concentração de 95,8% de to-
doos os relacionamentos em 11 estabelecimentos
de saúde, mais uma vez, todos localizados no
Distrito Federal, ao mesmo tempo, 27,7% de to-
doos os relacionamentos destes estabelecimentos
tem como origem setores censitários localizados
nos municípios do entorno de Brasília. Os rela-
cionamentos baseados na procura de leitos de
UTI Adulto Tipo III demonstram ainda mais
concentração, tendo 99,8% da rede sendo aten-
dida por 3 estabelecimentos de saúde (Tabela 4),
todos localizados em Brasília, com 27% destes re-
lationamentos tendo origem setores censitários
com origem no entorno.

Na perspectiva do índice de vulnerabilidade
relativo (Gráfico 1), calculado para a região do
AMB, observa-se que, quanto maior é a condição
de vulnerabilidade, maior é a barreira para acesso
geográfico a respiradores. Em grande parte, esta
população vulnerável encontra-se no entorno de
Brasília (mapa interativo https://rpubs.com/cos-
ta_/heatmapvul01), em municípios do Estado de
Goiás, e tem o sistema de saúde do Distrito Fe-
deral como opção mais próxima para cobertura
da lacuna assistencial destes municípios. Enquan-

Tabela 3. Estabelecimentos com Centralidade Normalizada de até 3% da Rede.

Estabelecimento	Distância P50/P75 (KM)	Demanda Potencial Centralidade (B)	Demanda/Respiradores (C)	Centralidade Normalizada (D=E+F)	Centralidade Normalizada DF (E)	Centralidade Normalizada Entorno (F)
Hospital Reg. Sta. Maria	5,4/7,9	4.402,87	22,24	0,124	0,037	0,087
Hospital São Francisco (Ceilândia)	5,3/19,6	4.219,40	210,97	0,119	0,091	0,028
Hospital Reg. Samambaia	6,0/7,3	4.043,22	122,52	0,114	0,112	0,002
Hospital Reg. Taguatinga	3,2/5,4	2.196,40	27,80	0,062	0,060	0,002
Hospital Reg. Planaltina	4,7/15,6	2.178,67	217,87	0,062	0,043	0,018
Hospital Reg. Sobradinho	5,2/7,7	1.831,69	32,71	0,051	0,030	0,001
Hospital Reg. Ceilândia	9,0/22,2	1.618,69	43,75	0,045	0,031	0,014
Hospital Reg. Gama	3,1/20,6	1.524,37	56,46	0,043	0,035	0,008
Hospital da Região Leste	7,2/14,4	1.240,52	62,03	0,035	0,034	>0,001
Hospital DOMED (Ceilândia)	11,1/21,7	1.215,49	63,97	0,034	0,025	0,009
Hospital São Mateus (Cruzeiro)	5,3/6,5	1.193,31	51,88	0,033	0,033	>0,001
Hospital Reg. Asa Norte	3,7/5,2	1.066,99	62,76	0,030	0,030	>0,0001

Nota: Uma versão interativa do mapa com as unidades de saúde e a projeção da vulnerabilidade no território pode ser acessada em: https://rpubs.com/costa_/heatmapvul02.

Fonte: Autores, com base nos dados do CENSO 2010 (IBGE) e CNES Dez/2019.
Tabela 4. Estabelecimentos com Centralidade Normalizada de até 3% da Rede.

Estabelecimento	Distância P50/P75 (KM)	Demanda Potencial (Centralidade)	Demanda/Leito	Centralidade Normalizada (D=E+F)	Centralidade Normalizada DF (E)	Centralidade Normalizada DF entorno (F)
Hospital Reg. Sta. Maria	10,9/25,2	6.067,66	209,23	0,171	0,038	0,133
Hospital Reg. Samambaia	6,7/19,0	5.664,53	283,23	0,160	0,139	0,021
Hospital DOMED (Ceilândia)	5,1/21,2	4.243,45	326,42	0,120	0,096	0,024
Hospital da Região Leste	21,3/40,7	3.547,63	394,18	0,100	0,074	0,026
Hospital Reg. de Sobradinho	19,8/34,7	3.211,78	353,30	0,091	0,073	0,018
Hospital Reg. Taguatinga	7,9/24,7	2.462,27	410,38	0,069	0,060	0,009
Hospital Reg. Ceilândia	5,2/21,3	2.179,48	363,25	0,061	0,050	0,011
Hospital São Mateus (Cruzeiro)	6,5/8,5	1.881,08	235,14	0,053	0,052	0,001
Hospital da Região do Gama	22,0/29,9	1.772,46	221,56	0,050	0,036	0,014
Hospital Reg. Asa Norte	5,5/6,3	1.673,96	167,40	0,047	0,039	0,008
Hospital Materno Infantil de Brasil	10,1/17,6	1.301,86	325,47	0,036	0,035	0,001

Cobertura de Leitos UTI Adulto Tipo III sobre a Demanda Potencial de 1% da População

Estabelecimento	Distância P50/P75 (KM)	Demanda Potencial (Centralidade)	Demanda/Leito	Centralidade Normalizada (D=E+F)	Centralidade Normalizada DF (E)	Centralidade Normalizada DF entorno (F)
Inst. De Cardiologia do DF	22,0/34,6	16.465,77	823,29	0,466	0,360	0,106
Hospital de Base do DF	26,9/36,0	11.771,08	588,55	0,333	0,227	0,106
Hospital SARAH Brasília	26,9/36,1	7.056,59	588,05	0,199	0,136	0,063

Nota: Uma versão interativa do mapa com as unidades de saúde e a projeção da vulnerabilidade do território pode ser acessado em: https://rpubs.com/costa_hecmapvul03.

Fonte: Autores, com base nos dados do CENSO 2010 (IBGE) e CNES Dez/2019.

Gráfico 1. Distribuição da distância para acesso à respiradores em função da vulnerabilidade social.

Fonte: Autores, com base nos dados do CENSO 2010 (IBGE) e CNES Dez/2019.
to pouco mais de 1% da demanda potencial com origem no DF precisa percorrer mais de 20 quilômetros para ter acesso a um respirador, nos municípios do entorno analisados esta proporção chega a 33%. Este número é alarmante ao observarmos que o total de relacionamentos do entorno corresponde 27,5% de todos os relacionamentos da rede e, ao mesmo tempo, concentra setores com maior vulnerabilidade relativa (Tabela 2), ou seja, 71% dos setores com mais de 1 desvio padrão da média de vulnerabilidade do território encontram-se na região do entorno do DF da AMB.

Esta relação entre distância média e vulnerabilidade social relativa se mantém quando analisamos a distribuição de Leitos Adultos Tipo II e III (Gráficos 2 e 3), aumentando ainda mais a distância entre os setores mais vulneráveis e os estabelecimentos que oferecem os leitos. Embora a centralização de recursos de maior complexidade seja um aspecto esperado, é relevante observar que mesmo em regiões de maior concentração populacional, como em Val Paraíso do Goiás e Luziânia, a ausência destes recursos leva a um aumento da demanda por leitos nos estabelecimentos de saúde localizados na borda do DF.

A distribuição da centralidade dos relacionamentos para os três recursos analisados demonstra que o modelo foi capaz de capturar uma forte dependência dos municípios do entorno da AMB à rede pública de saúde do DF na demanda aos recursos críticos para o tratamento do COVID-19. Embora o entorno tenha o peso de 27,5% dos relacionamentos da rede, nenhum estabelecimento de saúde do entorno apresentou centralidade normalizada de pelo menos 3%. Desta maneira, o enfrentamento a uma epidemia com as características do COVID-19 em uma simulação de demanda de 1% da população teria potencial de causar uma sobrecarga no sistema de saúde do DF que não é refletido nos números de “recurso por população” tradicionalmente divulgados. Além disto, é importante lembrar que o modelo incluiu municípios adjacentes à AMB, pertencentes aos estados de Goiás e Minas Gerais, embora esta população não tenha sido objeto de análise, os estabelecimentos de saúde destas regiões foram utilizados quando esta era a opção mais próxima para um setor censitário da AMB.

Gráfico 2. Distribuição da distância para acesso à Leitos de UTI Adulto Tipo II em função da vulnerabilidade social.

Fonte: Autores, com base nos dados do CENSO 2010 (IBGE) e CNES Dez/2019.
Gráfico 3. Distribuição da distância para acesso à Leitos de UTI Adulto Tipo III em função da vulnerabilidade social.

Fonte: Autores, com base nos dados do CENSO 2010 (IBGE) e CNES Dez/2019.

Considerações finais

Desde o início da pandemia, a escassez de recursos para o tratamento de crise aguda respiratória já chamava a atenção da comunidade científica. Além disso, na época, já era estimado que 5% da população poderia contrair o vírus dentro de 3 meses, e entre estes, 20% poderiam demandar o uso de serviços médicos avançados no tratamento da crise aguda21. No Brasil esta preocupação não foi diferente, trabalhos como apresentado por Bezerra et al.22 e nota técnica23 apresentada pelo Instituto de Estudos para Políticas de Saúde (IEPS) traduzem-se como uma latente preocupação acerca da escassez de recursos, especialmente num país onde há um desequilíbrio no acesso à infraestrutura de serviços de saúde.

A escassez de recursos e a dificuldade de acesso implicam aspectos críticos para combater a evolução da doença, por se tratar de uma condição inflamatória aguda, sua evolução pode levar a lesões cardíacas e renais, além de complicações no sistema circulatório. Exceto em casos assintomáticos, a doença manifesta-se como uma crise respiratória aguda, semelhante a uma típica infecção respiratória viral, podendo levar a até 14% das incidências a demandar tratamento via oxigenoterapia24. Nota-se também o papel de determinantes sociais como renda e adensamento da moradia como agentes determinantes do agravo e letalidade dos casos COVID-19, portanto, observamos uma doença onde há evidente determinação social tanto para o incremento da incidência quanto para a mortalidade, condição apontada por Figueiredo et al.24. Portanto, compreender o acesso a recursos críticos e a exposição da população a condições de vulnerabilidade social constituem importantes dimensões para compreensão do fenômeno de mortalidade e gravidade dos quadros de COVID-19.

Embora os resultados apresentados aqui sejam fruto de um processo de simulação de demanda potencial, estes resultados permitiram lançar luz sobre como métricas e agregações baseadas em “Provider-to-Population” podem conduzir a interpretações superficiais quanto à distribuição e acesso a recursos, muito embora, esta abordagem seja frequentemente empregada...
pela mídia, instituições de pesquisa e divulgação científica6,23,25. As técnicas aqui empregadas, por outro modo, buscaram a desagregação dos dados espaciais ao menor agregado possível, tentando, portanto, expor de forma mais precisa as condições espaciais de acesso. Embora existam diferentes técnicas para estimar a acessibilidade e disponibilidade de recursos em um território, os modelos baseados em disponibilidade de recursos e serviços no provedor mais próximo são empregados de forma mais frequente, podendo variar quanto as diferentes técnicas para medir a impedância de deslocamento e a distância8,26,27 e variar quanto a formulação da disponibilidade, podendo basear-se em funções de decaimento em função da distância ou competição por recursos28. Este modelo empregou uma modelagem que prioriza a perspectiva do estabelecimento de saúde e sua importância posicional na rede de relacionamentos, assumindo simplificações, mas ao mesmo tempo oferecendo uma perspectiva mais rica que o emprego da proporção entre recurso e a população total de um território.

Como todo modelo que representa a realidade do objeto de estudo, existem limitações. Em primeiro lugar, é preciso considerar que o acesso aos serviços de saúde tem determinantes e características multidimensionais, tais como descritas por Andersen9 ou Penchansky e Thomas10. Além disso, o modelo usou distâncias euclidianas como parâmetro determinante da decisão sobre o uso de um ou outro estabelecimento de saúde, adotando a perspectiva da acessibilidade geográfica e, portanto, não considerando aspectos como a aceitabilidade do serviço pela população, por exemplo, que potencialmente afetaria a disponibilidade do serviço. Embora seja um conceito simples, a distância euclidiana pode ser um bom modelo de acessibilidade geográfica por ser uma aproximação em geral adequada para regiões sem complexidade topográfica e com boa cobertura de malha urbana de ruas e avenidas27,29,30.

A discrepância entre a infraestrutura pública de assistência à saúde do Distrito Federal e dos municípios do entorno de Brasília é um fenômeno conhecido, e muitos são os fatores que levam a população do entorno buscar o sistema de saúde do DF, entre eles podemos citar, o encaminhamento pelas unidades de atenção básica, percepção de baixa resolutividade da rede de saúde do entorno em comparação com a rede de média e alta complexidade da capital federal, ausência de recursos ou serviços de média e alta complexidade, entre outros27. Este desequilíbrio, expresso em diferentes realidades assistenciais, não pode se perder em recortes agregados da realidade, devendo estar presente e ser alvo de atenção em qualquer modelo que construa evidências para o planejamento de ações para o enfrentamento de crises sanitárias e epidemias, especialmente tratando-se de regiões metropolitanas integradas e com elevada mobilidade urbana.

Embora o Complexo Regulador em Saúde do DF conte com uma central de regulação interestadual, esta estrutura opera no âmbito de procedimentos de alta complexidade, havendo necessidade do desenvolvimento de ações pactuadas para a gestão do fluxo de assistência de saúde dos demais níveis de atenção dentro do território metropolitano formado pelo Distrito Federal e Goiás31. Ações isoladas e sem um planejamento integrado, podem causar fricções entre os agentes responsáveis pela condução das políticas públicas, especialmente em uma pandemia, onde há um desequilíbrio da estrutura demanda e oferta de serviços. Um exemplo disso foi observado na própria AMB quando veículos de imprensa noticiaram32 que o Governo do Distrito Federal consideraria, por decreto, impedir o acesso à saúde da população residente no Goiás à rede de saúde pública do DF.

\textbf{Colaboradores}

DRT Costa trabalhou na concepção e delineamento da pesquisa, redação do artigo, análise e interpretação dos dados. JOM Barreto trabalhou na concepção e delineamento da pesquisa, revisão crítica e aportes teóricos e aprovação da versão final. RB Sampaio trabalhou na revisão crítica e aportes teóricos e aprovação da versão final.
Referências

1. Vergano M, Bertolini G, Giannini A, Cristina GR, Livigni S, Mistrutelli G, Riccioni I, Petriti F. Clinical Ethics Recommendations for the Allocation of Intensive Care Treatments, in Exceptional, Resource-Limited Circumstances: the Italian perspective during the COVID-19 epidemic. Crit Care 2020; 24:165.

2. Mounk Y. The extraordinary decisions facing Italian doctors [Internet]. The Atlantic; 2020 [cited 2020 jul 20]. Available from: https://www.theatlantic.com/ideas/archive/2020/03/who-gets-hospital-bed/667807/.

3. World Health Organization (WHO). COVID-19 situation in the European Region [Internet]. [cited 2020 maio 10]. Available from: https://covid19.euro.who.int/en.

4. Remuzzi A, Remuzzi G. COVID-19 and Italy: what next? Lancet 2020; 395:1225-1228.

5. Castro MC, Carvalho LR, Chin T, Kahn R, Franca GVA, Macario EM, Oliveira WK. Demand for hospitalization services for COVID-19 patients in Brazil. MedRxiv; 2020 [preprint].

6. Instituto Brasileiro de Geografia e Estatística (IBGE). Delimitação do Espaço Metropolitan: (CODEPLAN). Brasília: CODEPLAN; 2014.

7. Instituto Brasileiro de Geografia e Estatística (IBGE). Delimitação do Espaço Metropolitan: (CODEPLAN). Brasília: CODEPLAN; 2014.

8. Guagliardo MF. Spatial accessibility of primary care: concepts, methods and challenges. Int J Health Geogr 2004; 3(1):3.

9. Andersen RM. Revisiting the Behavioral Model and Access to Medical Care: Does It Matter? J Health Soc Behav 1995; 36(1):1-10.

10. Penchansky R, Thomas JW. The concept of access – definition and relationship to consumer satisfaction. Med Care 1981; 19(2):127-140.

11. Brasil. Ministério da Saúde (MS). Departamento de Informática do SUS. CNES, Cadastro Nacional de Estabelecimentos de Saúde [Internet]. [acessado 2020 maio 8]. Disponível em: http://cnes.datasus.gov.br/pages/sobre/institucional.jsp.

12. Instituto Brasileiro de Geografia e Estatística (IBGE). Guia do Censo [Internet]. [acessado 2020 abr 12]. Disponível em https://censo2010.ibge.gov.br/materiais/guia-do-censo/operacao-censitaria.html.

13. Costa DRT, Barreto JOM, Sampaio RB. Modelo Teórico-Metodológico baseado na Teoria de Redes Complexas para Análise da Oferta Potencial dos Serviços de Saúde. Cien Saude Colet 2021; 26(Supl. 2):3791-3804.

14. Drachler ML, Lobato MA, Lermen JJ, Fagundes S, Ferla AA, Drachler CW, Teixeira LB, Leite JC. Desenvolvimento e validação de um índice de vulnerabilidade social aplicado a políticas públicas do SUS. Cien Saude Colet 2014; 19(9):3849-3858.

15. Page L, Brin S, Motwani R, Winograd T. The PageRank Citation Ranking: Bringing Order to the Web. Technical Report [Internet]. Stanford InfoLab; 1999 [cited 2019 jun 10]. Available from: http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf.

16. Freman LC. Centrality in Social Network Conceptual Clarification. Social Networks 1978; 1(3):215-239.

17. Borgatti SP, Everett MG. Network analysis of 2-mode data. Social Networks 1997; 19(3):243-269.

18. Ezevest MG, Borgatti SP. The Centrality of Groups and Classes. J Math Social 1999; 23(3):181-201.

19. Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks [computer program]. International AAAI Conference on Weblogs and Social Media; 2009.

20. R Core Team. R: A language and environment for statistical computing [Internet]. Vienna: R Foundation for statistical computing [cited 2019 jun 10]. Available from: https://www.R-project.org/.

21. Emanuel EJ, Persad G, Upshur R, Thome B, Parker M, Glickman A, Zhang C, Boyle C, Smith M, Phillips JP. Fair Allocation of Scarce Medical Resources in Time of Covid-19. N Engl J Med 2020; 382(21):2049-2055.

22. Bezerra ECD, Santos PSD, Lisbinfski FC, Dias LC. Análise espacial das condições de enfrentamento à COVID-19: Uma proposta de Índice da Infraestrutura da Saúde do Brasil. Cien Saude Colet 2020; 25(12):4957-4967.

23. Rache B, Rocha R, Nunes I, Spinola P, Malik AM, Massuda A. Necessidade de Infraestrutura do SUS em Preparo para COVID-19: leitos de UTI, respiradores e ocupação hospitalar. Instituto de Estudos para Políticas de Saúde. Nota técnica nº 3 [Internet]. 2020 [acessado 2020 jun 10]. Disponível em: https://ieps.org.br/wp-content/uploads/2020/04/IEPS-NT3.pdf.

24. Figueiredo AM, Figueiredo DCM, Gomes LB, Massuda A, Gil-Garcia E, Vianna RPT, Rapo M. Social determinants of health and COVID-19 infection in Brazil: an analysis of the pandemic. Rev Bras Enferm 2020; 73(Supl. 2):e20200673.

25. Jones E. Respiradores Vitais: Gooners e Hospitais correm contra o tempo em busca de aparelhos que salvam vidas em meio à pandemia de coronavírus [Internet]. Revista Pesquisa FAPESP; 2020 [acessado 2021 jan 10]. Disponível em: https://revistapesquisa.fapesp.br/respiradores-vitais/.

26. Fyer GE, Drisko J, Krugman RD, Vojir CP, Prochazka A, Miyoshi T, Miller ME. Multi-method Assessment of Access to Primary Medical Care in Rural Colorado. J Rural Health 1999; 15(1):113-121.

27. Apparicio P, Gelb J, Dubé A-S, Kingham S, Gauvin L, Robitaille E. The approaches to measuring the potential spatial access to urban health services revisited: distance types and aggregation-error issues. Int J Health Geogr 2017; 16(1):32.

28. Guagliardo MF, Ronzio CR, Cheung I, Shacko E, Joseph JG. Physician accessibility: an urban case study of pediatric providers. Health Place 2004; 10(3):273-283.
29. Jones SG, Ashby AJ, Momin SR, Naidoo A. Spatial Implications Associated with Using Euclidean Distance Measurements and Geographic Centroid Imputation in Health Care Research. *Health Serv Res* 2010; 45(1):316-327.

30. Pires MR, Göttems LB, Martins CM, Guilhem D, Alves ED. Oferta e demanda por média complexidade/SUS: relação com atenção básica. *Cien Saude Colet* 2010; 15(Supl. 1):1009-1019.

31. Batista SR, Vilarins GCM, Lima MG, Silveira TB. The Regulatory Complex for Health Care in the Federal District, Brazil and the challenge for integrating levels of health care. *Cien Saude Colet* 2019; 24(6):2043-2052.

32. Valente J. COVID-19: DF quer fechar hospitais a pessoas que moram em Goiás [Internet]. Agência Brasil; 2020 [acessado 2019 jun 10]. Disponível em: https://agenciabrasil.ebc.com.br/politica/noticia/2020-05/covid-19-df-quer-fechar-hospitais-pessoas-que-moram-em-goiias.
