Quadratic Equation over Associative D-Algebra

Aleks Kleyn

Abstract. In this paper, I treat quadratic equation over associative D-algebra. In quaternion algebra H, the equation $x^2 = a$ has either 2 roots, or infinitely many roots. Since $a \in R$, $a < 0$, then the equation has infinitely many roots. Otherwise, the equation has roots $x_1, x_2, x_2 = -x_1$. I considered different forms of the Viète’s theorem and a possibility to apply the method of completing the square.

In quaternion algebra, there exists quadratic equation which either has 1 root, or has no roots.

Contents

1. Preface ... 2
1.1. Preface to Version 1 2
1.2. Preface to Version 2 2
1.3. Preface to Version 3 5
2. Representation of Universal Algebra 6
2.1. Universal Algebra 7
2.2. Representation of Universal Algebra 8
3. Linear Algebra 10
3.1. Module over Ring 10
3.2. Algebra over Commutative Ring 13
3.3. Linear Map of D-Algebra 15
3.4. Algebra with Conjugation 18
3.5. Polynomial over Associative D-Algebra 19
3.6. Quaternion Algebra 21
4. Simple Examples 22
5. Square Root .. 23
6. Algebra with Conjugation 27
7. Few Remarks .. 30
8. Questions and Answers 31
9. References ... 35
10. Index .. 37
11. Special Symbols and Notations 38
1. Preface

1.1. Preface to Version 1. Many years ago during algebra lessons at seventh grade, my teacher taught me how to solve quadratic equations. It was not difficult. Although it took me a long time to remember the formula, the simple idea to solve the equation by completing the square always allowed me to complete the required calculations.

In spite of its apparent simplicity, every time I learned something new I felt the thrill of discovery. The memory of this sense has been dulled by stronger experiences as years have gone by. But our fate is unpredictable and sometimes likes to play a joke on us. I go back to school. I again learn to solve quadratic equations; I again learn standard algebraic identities.

It is not important that I study noncommutative algebra instead of real numbers. My memory is leading me on a well known path, and I trust it. Somewhere, after the next turn, I will meet the thrill of new discovery once again.

June, 2015

1.2. Preface to Version 2. Shortly after the publication of the paper, I found the answer for the question 8.1 in the paper [10]. In this paper, authors consider equation which has form

\[xp_0x^* + xQ + Rx^* = S \]

where \(Q, R, S \) are \(H \)-numbers and \(p_0 \in R \). Since

\[x^* = -\frac{1}{2}(x + ix_i + jx_j + kx_k) \]

in quaternion algebra, then the equation (1.1) gets form

\[
-\frac{p_0}{2}x^2 - \frac{p_0}{2}xix_i - \frac{p_0}{2}xjx_j - \frac{p_0}{2}xkx_k \\
+ xQ - \frac{R}{2}x - \frac{R}{2}ix_i - \frac{R}{2}jx_j - \frac{R}{2}kx_k = S
\]

(1.2)

In the paper [10], there is complete analysis of solutions of the equation (1.1) (the theorem [10]-2 on the page 7).

However, I was confused by case 2, when the equation have one root or no one. According to the proof, we get unique root. However, the multiplicity of the root should be 2, since this is root of quadratic equation. So I decided to clarify this case for me by particular example. I chose the coefficients

\[Q = 4i \quad R = -4j \quad p_0 = 8 \]

I chose \(\text{scal}(S) \) so that \(\rho \), defined by the equality

\[
\rho = \frac{\text{scal}(S)}{p_0} + \frac{|Q + R^*|^2}{4p_0^2}
\]

has value 0

\[\text{scal}(S) = -\frac{|Q + R^*|^2}{4p_0} \]

\[= -\frac{|4i + 4j|^2}{4 \cdot 8} = -\frac{(4i + 4j)(-4i - 4j)}{32} \]

\[= -\frac{16 - 16ij - 16ji + 16}{32} = -1 \]
The choice of the value of S is based on the statement
\[
\operatorname{Im} S = -\frac{\operatorname{Im} \frac{RQ}{p_0}}{8} = -\frac{(4j)4i}{8} = -2k
\]
In this case, the equation (1.1) has form
\[
\begin{align*}
 x8x^* + 4x - 4jx^* &= -1 - 2k \\
 x &= -\frac{4i - 4j}{28} = \frac{1}{4}(i + j)
\end{align*}
\]
Since equations (1.1), (1.2) are equivalent, then the equation (1.5) has form
\[
(p)(x) = 0
\]
where polynomial $p(x)$ has form
\[
\begin{align*}
p(x) &= (-4 \otimes 1 \otimes 1 - 4 \otimes i \otimes i - 4 \otimes j \otimes j - 4 \otimes k \otimes k) \circ x^2 \\
 &\quad + (4 \otimes i + 2j \otimes 1 - 2k \otimes i - 2 \otimes j + 2i \otimes k) \circ x + 1 + 2k \\
 &= -4x^2 - 4ixi - 4jxj - 4kxxk \\
 &\quad + 4xi + 2jx - 2kxi - 2jx + 2irk + 1 + 2k
\end{align*}
\]
Since (1.6) is root of the equation (1.7), then the polynomial
\[
q(x) = x - \frac{1}{4}(i + j)
\]
is divisor of the polynomial $p(x)$. Applying division algorithm considered in the theorem 3.46, we get
\[
\begin{align*}
p(x) &= -4q(x)(x + jxj + kxx - i) \\
 &\quad + q(x)(i - j) - iq(x)(1 - k) + jq(x)(k + 1) - kq(x)(j + i)
\end{align*}
\]
The expression (1.10) does not answer my question. So I leave the question 8.1 open.

It is an interesting twist. The main point of this paper was to show that some ideas may simplify research in noncommutative algebra. At the same time, This article raises questions about the effectiveness of division algorithm considered in the theorem 3.46. This is good. To solve a problem, we need to see this problem.

Nevertheless, consider result of the division in details.
\[
\begin{align*}
p(x) &= (-4 \otimes (x + jxj + kxx - i) \\
 &\quad + 1 \otimes (i - j) - i \otimes (1 - k) + j \otimes (k + 1) - k \otimes (j + i)) \circ q(x)
\end{align*}
\]
Quotient is tensor
\[
\begin{align*}
s(x) &= -4 \otimes (x + jxj + kxx - i) \\
 &\quad + 1 \otimes (i - j) - i \otimes (1 - k) + j \otimes (k + 1) - k \otimes (j + i)
\end{align*}
\]
which linearly depends from x. According to the theorem [10]-2 on the page 7, the value of x different from value (1.6) is not a root of the tensor $s(x)$. From the
Applying division algorithm considered in the theorem and divide this polynomial over the polynomial

It is evident that this method does not work in case of multiple root.

However, it is evident that \[s(x) \text{ is not a root of the tensor } s(x). \]

To better understand construction which we considered here, consider the polynomial with known roots, for instance,

\[p(x) = 2(x - i)(x - j) + (x - j)(x - i) = 3x^2 - 2ix - 2xj - jx - xi + k \]

and divide this polynomial over the polynomial

\[r(x) = x - i \]

Applying division algorithm considered in the theorem 3.46, we get

\[
p(x) = 3(r(x) + i)x - 2ix - 2xj - jx - xi + k \\
= 3r(x)x + ix - 2xj - jx - xi + k \\
= 3r(x)x + i(r(x) + i) - 2(r(x) + i)j - j(r(x) + i) - (r(x) + i)i + k \\
= 3r(x)x + ir(x) - 2r(x)j - jr(x) - r(x)i \\
= (3 \otimes x + i \otimes 1 - 2 \otimes j - j \otimes 1 - 1 \otimes i) \circ r(x)
\]

Therefore, quotient of polynomial \(p(x) \) divided by polynomial \(r(x) \) is the tensor

\[s(x) = 3 \otimes x + i \otimes 1 - 2 \otimes j - j \otimes 1 - 1 \otimes i \]

It is evident that

\[s(j) = 1 \otimes (j - i) - (j - i) \otimes 1 \neq 0 \otimes 0 \]

However

\[s(j) \circ r(j) = 0 \]

It is evident that this method does not work in case of multiple root.

I am not yet ready to consider the division of the polynomial (1.8) by polynomial of power 2. Based on the equality (1.8), we may assume that divisor has form

\[
r(x) = -\frac{1}{4}(4x - i - j)(4x - i - j) - \frac{1}{4}(4x - i - j)i(4x - i - j)i \\
- \frac{1}{4}(4x - i - j)j(4x - i - j)j - \frac{1}{4}(4x - i - j)k(4x - i - j)k
\]

However, it is evident that \(r(x) \in R \) for any \(x \). This consideration finally convinced me that the theorem [10]-2 on the page 7 is true.

January, 2016
1.3. Preface to Version 3. I periodically look through my old papers. As time
passes, we see differently our statements. Now it was time to read this paper. I put
attention that I do not satisfy with the method which I used to divide polynomial
by polynomial.

If I divide polynomial

\[p(x) = 2(x - i)(x - j) + (x - j)(x - i) = 3x^2 - 2ix - 2xj - jx - xi + k \]

by polynomial

\[r(x) = x - i \]

I get tensor

\[s(x) = 3 \otimes x + i \otimes 1 - 2 \otimes j - j \otimes 1 - 1 \otimes i \]

as quotient. However I expect tensor

\[s(x) = 2 \otimes (x - j) + (x - j) \otimes 1 \]

The most important thing is that both answers are correct.

At this time I have seen the problem which I did not see two years ago. The
source of problem is how I do division.

To divide the polynomial \(p(x) \) by the polynomial \(r(x) \), I write the term 3\(x^2 \) in
the form 3\(xx \) and I substitute the expression \(r(x) + i \) instead of \(x \). However I
can write the term 3\(x^2 \) as follows

\[(3 - a)xx + axx \]

where \(a \) is any \(H \)-number. Quotient depends on choice of value of \(a \)

\[
\begin{align*}
p(x) &= (3 - a)(r(x) + i)x + ax(r(x) + i) - 2ix - 2xj - jx - xi + k \\
&= (3 - a)r(x)x + (3 - a)i x + arx(x) + axi - 2ix - 2xj - jx - xi + k \\
&= (3 - a)r(x)x + arx(x) + (3 - a)i(r(x) + i) \\
&+ a(r(x) + i)i - 2i(r(x) + i) - 2(r(x) + i)j - j(r(x) + i) - (r(x) + i)i + k \\
&= (3 - a)r(x)x + arx(x) + 3ir(x) - 3 - air(x) + a \\
&+ ar(x)i - a - 2ir(x) + 2 - 2r(x)j - 2k - jrx(x) + k - r(x)i + 1 + k \\
&= (3 - a)r(x)x + arx(x) + 3ir(x) - air(x) \\
&+ ar(x)i - 2ir(x) - 2r(x)j - jrx(x) - r(x)i \\
\end{align*}
\]

Therefore

\[p(x) = s_2(a, x) \circ r(x) \]

where

\[
\begin{align*}
s_2(a, x) &= (3 - a) \otimes x + ax \otimes 1 + (3 - a)i \otimes 1 \\
&+ a \otimes i - 2i \otimes 1 - 2 \otimes j - j \otimes 1 - 1 \otimes i \\
&= (3 - a) \otimes x + (ax - j - 2i + (3 - a)i) \otimes 1 + (a - 1) \otimes i - 2 \otimes j \\
&= (3 - a) \otimes x + (ax - j + i - ai) \otimes 1 + (a - 1) \otimes i - 2 \otimes j \\
\end{align*}
\]

It is easy to see that

\[
\begin{align*}
s_2(1, x) &= 2 \otimes x + (x - j - 2i + 2i) \otimes 1 + (1 - 1) \otimes i - 2 \otimes j \\
&= 2 \otimes (x - j) + (x - j) \otimes 1 \\
\end{align*}
\]

is the tensor that I expected.

This observation can be easily generalized.
Theorem 1.1. Let for tensors $s_1(x), s_2(x) \in A \otimes A$ following equalities are true
\[p(x) = s_1(x) \circ r(x) \]
\[p(x) = s_2(x) \circ r(x) \]
Then
\[(s_1(x) - s_2(x)) \circ r(x) = 0 \]
△

Theorem 1.2. Let $p(x)$ be polynomial of degree n and $r(x)$ be polynomial of degree $m < n$ and let the polynomial $r(x)$ be divisor of the polynomial $p(x)$. Let tensor $s_1(x)$ be quotient of the polynomial $p(x)$ divided by the polynomial $r(x)$. Then for any tensor $s(x) \in A \otimes A$ of degree not exceeding $n - m$ and such that
\[s(x) \circ r(x) = 0 \]
tensor
\[s_2(x) = s_1(x) + s(x) \]
is quotient of the polynomial $p(x)$ divided by the polynomial $r(x)$. □

If D-algebra A has finite basis \mathbb{F} and the polynomial $r(x)$ is divisor of the polynomial $p(x)$, then theorem 1.2 generates following algorithm to find the set of quotients of the polynomial $p(x)$ divided by the polynomial $r(x)$. Let $R(x)$ be matrix of coordinates of A-number with respect to the basis \mathbb{F}. Then tensor $s(x)$ corresponds to matrix $S(x)$ such that
\[S(x)R(x) = 0 \]
October, 2018

2. Representation of Universal Algebra

This section contains definitions and theorems which are necessary for an understanding of the text of this paper. So the reader may read the statements from this section in process of reading the main text of the paper.

Theorem 2.1. Let N be equivalence on the set A. Consider category \mathcal{A} whose objects are maps
\[f_1 : A \rightarrow S_1 \quad \ker f_1 \supseteq N \]
\[f_2 : A \rightarrow S_2 \quad \ker f_2 \supseteq N \]
We define morphism $f_1 \rightarrow f_2$ to be map $h : S_1 \rightarrow S_2$ making following diagram commutative

```
```

The map
\[\text{nat } N : A \rightarrow A/N \]
is universally repelling in the category \mathcal{A}. □
2.1. Universal Algebra. Proof. Consider diagram

(2.1) \[\ker f \supseteq N \]

From the statement (2.1) and the equality

\[j(a_1) = j(a_2) \]

it follows that

\[f(a_1) = f(a_2) \]

Therefore, we can uniquely define the map \(h \) using the equality

\[h(j(b)) = f(b) \]

\[\square \]

Definition 2.2. For any sets \(A, B \), Cartesian power \(B^A \) is the set of maps

\[f : A \to B \]

\[\square \]

Definition 2.3. For any \(n \geq 0 \), a map \(\omega : A^n \to A \)

is called \(n \)-ary operation on set \(A \) or just operation on set \(A \). For any \(a_1, \ldots, a_n \in A \), we use either notation \(\omega(a_1, \ldots, a_n) \), \(a_1 \ldots a_n \omega \) to denote image of map \(\omega \).

\[\square \]

Remark 2.4. According to definitions 2.2, 2.3, \(n \)-ari operation \(\omega \in A^{A^n} \).

\[\square \]

Definition 2.5. Operator domain is the set of operators \(\Omega \) with a map

\[a : \Omega \to N \]

If \(\omega \in \Omega \), then \(a(\omega) \) is called the arity of operator \(\omega \). If \(a(\omega) = n \), then operator \(\omega \) is called \(n \)-ary. We use notation

\[\Omega(n) = \{ \omega \in \Omega : a(\omega) = n \} \]

for the set of \(n \)-ary operators.

1. The statement of the theorem 2.1 is similar to the statement on p. [1]-119.
2. See definition of universal object of category in definition on p. [1]-57.
3. I follow the definition from the example (iv) on the page [12]-5.
4. Definition 2.3 follows the definition in the example (vi) on the page page [12]-13.
5. I follow the definition (1), page [12]-48.
Definition 2.6. Let A be a set. Let Ω be an operator domain. The family of maps

$$\Omega(n) \to A^n, \quad n \in \mathbb{N}$$

is called Ω-algebra structure on A. The set A with Ω-algebra structure is called Ω-algebra A_Ω or universal algebra. The set A is called carrier of Ω-algebra. \hfill \Box

The operator domain Ω describes a set of Ω-algebras. An element of the set Ω is called operator, because an operation assumes certain set. According to the remark 2.4 and the definition 2.6, for each operator $\omega \in \Omega(n)$, we match n-ary operation ω on A.

Definition 2.7. Let A, B be Ω-algebras and $\omega \in \Omega(n)$. The map

$$f : A \to B$$

is compatible with operation ω, if, for all $a_1, ..., a_n \in A$,

$$(2.2) \quad f(a_1)...f(a_n)\omega = f(a_1...a_n\omega)$$

The map f is called homomorphism from Ω-algebra A to Ω-algebra B, if f is compatible with each $\omega \in \Omega$. \hfill \Box

Definition 2.8. A homomorphism

$$f : A \to A$$

in which source and target are the same algebra is called endomorphism. We use notation $\text{End}(\Omega; A)$ for the set of endomorphisms of Ω-algebra A. \hfill \Box

Definition 2.9. Let the set A_2 be Ω_2-algebra. Let the set of transformations $\text{End}(\Omega_2, A_2)$ be Ω_1-algebra. The homomorphism

$$f : A_1 \to \text{End}(\Omega_2; A_2)$$

of Ω_1-algebra A_1 into Ω_1-algebra $\text{End}(\Omega_2, A_2)$ is called representation of Ω_1-algebra A_1 or A_1-representation in Ω_2-algebra A_2. \hfill \Box

2.2. Representation of Universal Algebra. We also use notation

$$f : A_1 \longrightarrow A_2$$

to denote the representation of Ω_1-algebra A_1 in Ω_2-algebra A_2.

Definition 2.10. Let the map

$$f : A_1 \to \text{End}(\Omega_2; A_2)$$

be an isomorphism of the Ω_1-algebra A_1 into $\text{End}(\Omega_2, A_2)$. Then the representation

$$f : A_1 \longrightarrow A_2$$

2.6 I follow the definition (2), page [12]-48.
2.7 I follow the definition on page [12]-49.
Definition 2.11. The representation
\[g : A_1 \longrightarrow A_2 \]
of the \(\Omega \)-algebra \(A_1 \) is called \textbf{free},\(^{2.9}\) if the statement
\[f(a_1)(a_2) = f(b_1)(a_2) \]
for any \(a_2 \in A_2 \) implies that \(a = b \).\(^\Box\)

Definition 2.12. Let
\[f : A_1 \longrightarrow A_2 \]
be representation of \(\Omega \)-algebra \(A_1 \) in \(\Omega \)-algebra \(A_2 \) and
\[g : B_1 \longrightarrow B_2 \]
be representation of \(\Omega \)-algebra \(B_1 \) in \(\Omega \)-algebra \(B_2 \). For \(i = 1, 2 \), let the map
\[r_i : A_i \rightarrow B_i \]
be homomorphism of \(\Omega \)-algebra. The tuple of maps \(r = (r_1, r_2) \) such that
\[(2.3) \quad r_2 \circ f(a) = g(r_1(a)) \circ r_2 \]
is called \textbf{morphism of representations from} \(f \) \textbf{into} \(g \). We also say that \textbf{morphism of representations of} \(\Omega \)-algebra in \(\Omega \)-algebra is defined. \(^\Box\)

Remark 2.13. We may consider a pair of maps \(r_1, r_2 \) as map
\[F : A_1 \cup A_2 \rightarrow B_1 \cup B_2 \]
such that
\[F(A_1) = B_1 \quad F(A_2) = B_2 \]
Therefore, hereinafter the tuple of maps \(r = (r_1, r_2) \) also is called map and we will use map
\[r : f \rightarrow g \]
Let \(a = (a_1, a_2) \) be tuple of \(A \)-numbers. We will use notation
\[r(a) = (r_1(a_1), r_2(a_2)) \]
for image of tuple of \(A \)-numbers with respect to morphism of representations \(r \). \(^\Box\)

Definition 2.14. If representation \(f \) and \(g \) coincide, then morphism of representations \(r = (r_1, r_2) \) is called \textbf{morphism of representation} \(f \). \(^\Box\)

\(^{2.8}\) See similar definition of effective representation of group in [17], page 16, [18], page 111, [13], page 51 (Cohn calls such representation faithful).

\(^{2.9}\) See similar definition of free representation of group in [17], page 16.
Definition 2.15. Let
\[f : A_1 \longrightarrow A_2 \]
be representation of \(\Omega_1 \)-algebra \(A_1 \) in \(\Omega_2 \)-algebra \(A_2 \) and
\[g : A_1 \longrightarrow B_2 \]
be representation of \(\Omega_1 \)-algebra \(A_1 \) in \(\Omega_2 \)-algebra \(B_2 \). Let
\[(\text{id} : A_1 \to A_1, \ r_2 : A_2 \to B_2) \]
be morphism of representations. In this case we identify morphism \((\text{id}, r_2)\) of representations of \(\Omega_1 \)-algebra and corresponding homomorphism \(r_2 \) of \(\Omega_2 \)-algebra and the homomorphism \(r_2 \) is called reduced morphism of representations. We will use diagram
\[
\begin{array}{ccc}
A_2 & \xrightarrow{r_2} & B_2 \\
\downarrow & & \downarrow \\
A_1 & \xrightarrow{g(a)} & B_2 \\
\downarrow & & \downarrow \\
f & & g
\end{array}
\]
to represent reduced morphism \(r_2 \) of representations of \(\Omega_1 \)-algebra. From diagram it follows
\[
r_2 \circ f(a) = g(a) \circ r_2
\]
We also use diagram
\[
\begin{array}{ccc}
A_2 & \xrightarrow{r_2} & B_2 \\
\downarrow & & \downarrow \\
A_1 & \xrightarrow{g} & B_2 \\
\downarrow & & \downarrow \\
f & \swarrow & g
\end{array}
\]
instead of diagram (2.4).

3. Linear Algebra

This section contains definitions and theorems which are necessary for an understanding of the text of this paper. So the reader may read the statements from this section in process of reading the main text of the paper.

3.1. Module over Ring. We define the sum of transformations \(f \) and \(g \) of an Abelian group according to rule
\[
(f + g)(a) = f(a) + g(a)
\]
Therefore, considering the representation
\[
f : D \longrightarrow A
\]
of the ring D in the Abelian group A, we assume

\[(3.1) \quad (f(a) + f(b))(x) = f(a)(x) + f(b)(x)\]

According to the definition 2.9, the map f is homomorphism of the ring D. Therefore

\[(3.2) \quad f(a + b) = f(a) + f(b)\]

The equality

\[(3.3) \quad f(a + b)(x) = f(a)(x) + f(b)(x)\]

follows from equalities (3.1), (3.2).

Theorem 3.1. Representation

\[f : D \rightarrow A\]

of the ring D in an Abelian group A satisfies the equality

\[(3.4) \quad f(0) = \overline{0}\]

where

\[\overline{0} : A \rightarrow A\]

such that

\[(3.5) \quad \overline{0} \circ v = 0\]

Proof. The equality

\[(3.6) \quad f(a)(x) = f(a + 0)(x) = f(a)(x) + f(0)(x)\]

follows from the equality (3.3). The equality

\[(3.7) \quad f(0)(x) = 0\]

follows from the equality (3.6). The equality (3.5) follows from the equalities (3.4), (3.7). \(\square\)

Theorem 3.2. Representation

\[f : D \rightarrow A\]

of the ring D in an Abelian group A is effective iff $a = 0$ follows from equation $f(a) = 0$.

Proof. Suppose $a, b \in R$ cause the same transformation. Then

\[(3.8) \quad f(a)(m) = f(b)(m)\]

for any $m \in A$. From equalities (3.3), (3.8), it follows that

\[(3.9) \quad f(a - b)(m) = 0\]

The equality

\[(3.10) \quad f(a - b) = \overline{0}\]

follows from equalities (3.5), (3.9). Therefore, the representation f is effective iff $a = b$. \(\square\)
Definition 3.3. Effective representation of commutative ring D in an Abelian group V

(3.11) $f : D \rightarrow V$ \hspace{1cm} $f(d) : v \rightarrow dv$

is called module over ring D or D-module. V-number is called vector. □

Theorem 3.4. Following conditions hold for D-module V:

3.4.1: associative law

(3.12) \((pq)v = p(qv)\)

3.4.2: distributive law

(3.13) \(p(v + w) = pv + pw\)

(3.14) \((p + q)v = pv + qv\)

3.4.3: unitarity law

(3.15) \(1v = v\)

for any $p, q \in D(1), v, w \in V$.

Proof. The theorem follows from the theorem [8]-4.1.3. □

Definition 3.5. Let \overline{e} be the quasibasis of D-module V and vector $\overline{v} \in V$ has expansion

(3.16) $\overline{v} = v_i e^i$

with respect to the quasibasis \overline{e}. $D(1)$-numbers v_i are called coordinates of vector \overline{v} with respect to the quasibasis \overline{e}. Matrix of $D(1)$-numbers $v = (v_i, i \in I)$ is called coordinate matrix of vector \overline{v} in quasibasis \overline{e}. □

Definition 3.6. Reduced morphism of representations

$f : A_1 \rightarrow A_2$

of D-module A_1 into D-module A_2 is called linear map of D-module A_1 into D-module A_2. Let us denote $L(D; A_1 \rightarrow A_2)$ set of linear maps of D-module A_1 into D-module A_2. □

Theorem 3.7. Linear map

$f : V_1 \rightarrow V_2$

of D-module V_1 into D-module V_2 satisfies to equations

(3.17) \(f \circ (a + b) = f \circ a + f \circ b\)

(3.18) \(f \circ (da) = d(f \circ a)\)

$a, b \in A_1, d \in D$
Proof. The theorem follows from the theorem [8]-4.2.2. □

Definition 3.8. Let D be commutative ring. D-module A is called algebra over ring D or D-algebra, if we defined product1,2 in A

\begin{equation}
vw = C \circ (v, w)
\end{equation}

where C is bilinear map

\begin{equation}
C : A \times A \to A
\end{equation}

If A is free D-module, then A is called free algebra over ring D. □

Theorem 3.9. The multiplication in the algebra A is distributive over addition

\begin{equation}
(a + b)c = ac + bc
\end{equation}

\begin{equation}
a(b + c) = ab + ac
\end{equation}

3.2. Algebra over Commutative Ring. Proof. The theorem follows from the theorem [8]-5.1.2. □

Convention 3.10. Element of D-algebra A is called A-number. For instance, complex number is also called C-number, and quaternion is called H-number. □

Definition 3.11. If the product in D-algebra A has unit element, then D-algebra A is called unital algebra3

The multiplication in algebra can be neither commutative nor associative. Following definitions are based on definitions given in [19], page 13.

Definition 3.12. The commutator

\begin{equation}
[a, b] = ab - ba
\end{equation}

measures commutativity in D-algebra A. D-algebra A is called commutative, if $[a, b] = 0$ □

Definition 3.13. The associator

\begin{equation}
(a, b, c) = (ab)c - a(bc)
\end{equation}

measures associativity in D-algebra A. D-algebra A is called associative, if $(a, b, c) = 0$ □

1 In some books (for instance, on page [1]-119) the theorem 3.7 is considered as a definition.

2 I follow the definition given in [19], page 1, [11], page 4. The statement which is true for any D-module, is true also for D-algebra.

3 See the definition of unital D-algebra also on the pages [3]-137.
Definition 3.14. The set
\[N(A) = \{ a \in A : \forall b, c \in A, (a, b, c) = (b, a, c) = (b, c, a) = 0 \} \]
is called the nucleus of an \(D \)-algebra \(A \). □

Definition 3.15. The set
\[Z(A) = \{ a \in A : a \in N(A), \forall b \in A, ab = ba \} \]
is called the center of an \(D \)-algebra \(A \). □

Convention 3.16. Let \(A \) be free algebra with finite or countable basis. Considering expansion of element of algebra \(A \) relative basis \(\mathfrak{e} \) we use the same root letter to denote this element and its coordinates. In expression \(a^2 \), it is not clear whether this is component of expansion of element a relative basis, or this is operation \(a^2 = aa \). To make text clearer we use separate color for index of element of algebra. For instance,
\[a = a^i e_i \] □

Convention 3.17. Let \(\mathfrak{e} \) be the basis of free algebra \(A \) over ring \(D \). If algebra \(A \) has unit, then we assume that \(e_0 \) is the unit of algebra \(A \). □

Theorem 3.18. Let \(\mathfrak{e} \) be the basis of free algebra \(A_1 \) over ring \(D \). Let
\[a = a^i e_i \quad b = b^i e_i \quad a, b \in A \]
We can get the product of \(a, b \) according to rule
\[(ab)^k = C^k_{ij} a^i b^j \]
where \(C^k_{ij} \) are structural constants of algebra \(A_1 \) over ring \(D \). The product of basis vectors in the algebra \(A_1 \) is defined according to rule
\[e_i e_j = C^k_{ij} e_k \]
Proof. The theorem follows from the theorem [8]-5.1.9. □

Definition 3.19. Let \(A_1 \) and \(A_2 \) be algebras over commutative ring \(D \). The linear map of the \(D \)-module \(A_1 \) into the \(D \)-module \(A_2 \) is called linear map of \(D \)-algebra \(A_1 \) into \(D \)-algebra \(A_2 \).
Let us denote \(\mathcal{L}(D; A_1 \to A_2) \) set of linear maps of \(D \)-algebra \(A_1 \) into \(D \)-algebra \(A_2 \). □

3.4 The definition is based on the similar definition in [19], p. 13.
3.5 The definition is based on the similar definition in [19], page 14.
Definition 3.20. Let A_1, \ldots, A_n, S be D-algebras. Polylinear map
\[f : A_1 \times \ldots \times A_n \rightarrow S \]
of D-modules A_1, \ldots, A_n into D-module S is called polylinear map of D-algebras A_1, \ldots, A_n into D-algebra S. Let us denote $\mathcal{L}(D; A_1 \times \ldots \times A_n \rightarrow S)$ set of polylinear maps of D-algebras A_1, \ldots, A_n into D-algebra S. Let us denote $\mathcal{L}(D; A^n \rightarrow S)$ set of n-linear maps of D-algebra A_1 ($A_1 = \ldots = A_n = A_1$) into D-algebra S. □ □

Theorem 3.21. Let A_1, \ldots, A_n be D-algebras. Tensor product $A_1 \otimes \ldots \otimes A_n$ of D-modules A_1, \ldots, A_n is D-algebra, if we define product by the equality
\[(a_1, \ldots, a_n) \ast (b_1, \ldots, b_n) = (a_1b_1) \otimes \ldots \otimes (a_nb_n) \]

3.3. Linear Map of D-Algebra. Proof. The theorem follows from the theorem [8]-6.1.3. □

Theorem 3.22. Let A be D-algebra. Let product in D-module $A \otimes A$ be defined according to rule
\[(p_0 \otimes p_1) \circ (q_0 \otimes q_1) = (p_0q_0) \otimes (q_1p_1) \]

A representation
\[h : A \otimes A \rightarrow \mathcal{L}(D; A \rightarrow A) \]
h(p) : $g \rightarrow p \circ g$
of D-algebra $A \otimes A$ in module $\mathcal{L}(D; A \rightarrow A)$ defined by the equality
\[(a \otimes b) \circ g = ab \quad a, b \in A \quad g \in \mathcal{L}(D; A \rightarrow A) \]

allows us to identify tensor $d \in A \times A$ and linear map $d \circ \delta \in \mathcal{L}(D; A \rightarrow A)$ where $\delta \in \mathcal{L}(D; A \rightarrow A)$ is identity map. Linear map $(a \otimes b) \circ \delta$ has form
\[(a \otimes b) \circ \delta = ab \]

Proof. The theorem follows from the theorem [8]-6.3.4. □

Convention 3.23. I assume sum over index i in expression like
\[a_{i,0}x_{a_{i-1}} \]

□

Theorem 3.24. Let A be finite dimensional associative D-algebra. Let \mathbb{B} be basis of D-module A. Let \mathbb{F} be the basis of left $A \otimes A$-module $\mathcal{L}(D; A \rightarrow A)$.

\[\text{3.24.1: The linear map } f \in \mathcal{L}(D; A \rightarrow A) \text{ has the following expansion} \]
\[f = f^k \circ F_k \]

where
\[f^k = f^k_{s_k,0} \otimes f^k_{s_k,1} \quad f^k \in A \otimes A \]

3.24.2: The linear map f has the standard representation
\[f = f^{k,ij}(e_i \otimes e_j) \circ F_k \]
\[f \circ x = f^{kij} e^i (F_k \circ x)e^j \]

Proof. The theorem follows from the theorem \([8]-6.4.1\). \qed

Definition 3.25. Expression \(f^k_{s,p} \), \(p = 0, 1 \), in equality (3.27) is called component of linear map \(f \). Expression \(f^{ij} \) in the equality (3.28) is called standard component of linear map \(f \). \qed

Theorem 3.26. Let \(A_1 \) be free \(D \)-module. Let \(A_2 \) be free associative \(D \)-algebra. Let \(\bar{F} \) be the basis of left \(A_2 \otimes A_2 \)-module \(\mathcal{L}(D; A_1 \to A_2) \). For any map \(F_k \in \bar{F} \), there exists set of linear maps
\[
F^1_k : A_1 \otimes A_1 \to A_2 \otimes A_2
\]
of \(D \)-module \(A_1 \otimes A_1 \) into \(D \)-module \(A_2 \otimes A_2 \) such that
\[
(3.29) \quad F_k \circ a \circ x = (F^1_k \circ a) \circ F_1 \circ x
\]
The map \(F^1_k \) is called conjugation transformation.

Proof. The theorem follows from the theorem \([8]-6.4.2\). \qed

Theorem 3.27. Let \(A_1 \) be free \(D \)-module. Let \(A_2, A_2 \) be free associative \(D \)-algebras. Let \(\bar{F} \) be the basis of left \(A_2 \otimes A_2 \)-module \(\mathcal{L}(D; A_1 \to A_2) \). Let \(\bar{G} \) be the basis of left \(A_3 \otimes A_3 \)-module \(\mathcal{L}(D; A_2 \to A_3) \).

3.27.1: The set of maps
\[
(3.30) \quad \bar{H} = \{ H_{lk} : H_{lk} = G_l \circ F_k, G_l \in \bar{G}, F_k \in \bar{F} \}
\]
is the basis of left \(A_3 \otimes A_3 \)-module \(\mathcal{L}(D; A_1 \to A_2 \to A_3) \).

3.27.2: Let
\[
(3.31) \quad f = f^k \circ F_k
\]
be expansion of linear map
\[
f : A_1 \to A_2
\]
with respect to the basis \(\bar{F} \). Let
\[
(3.32) \quad g = g^l \circ G_l
\]
be expansion of linear map
\[
g : A_2 \to A_3
\]
with respect to the basis \(\bar{G} \). Then linear map
\[
(3.33) \quad h = g \circ f
\]
\[3.6\] If \(D \)-module \(A \) is not free \(D \)-nodule, then we may consider the set
\[
\bar{F} = \{ F_k \in \mathcal{L}(D; A_1 \to A_2) : k = 1, \ldots, n \}
\]
of linear independent linear maps. The theorem is true for any linear map
\[
f : A \to A
\]
generated by the set of linear maps \(\bar{F} \).
Quadratic Equation over Associative D-Algebra

has expansion
\[h = h^{lk} \circ K_{lk} \]
with respect to the basis \overrightarrow{K} where
\[h^{lk} = g^{l} \circ (G^{k}_{m} \circ f^{m}) \]

Proof. The theorem follows from the theorem [8]-6.4.3. \qed

Theorem 3.28. Let A be free associative D-algebra. Let left $A \otimes A$-module $\mathcal{L}(D; A \to A)$ is generated by the identity map $F_{0} = \delta$. Let
\[f = f_{s \cdot 0} \otimes f_{s \cdot 1} \]
be expansion of linear map
\[f : A \to A \]
Let
\[g = g_{t \cdot 0} \otimes g_{t \cdot 1} \]
be expansion of linear map
\[g : A \to A \]
Then linear map
\[h = g \circ f \]
has expansion
\[h = h_{t s \cdot 0} \otimes h_{t s \cdot 1} \]
where
\[h_{t s \cdot 0} = g_{t \cdot 0} f_{s \cdot 0} \]
\[h_{t s \cdot 1} = f_{s \cdot 1} g_{t \cdot 1} \]

Proof. The theorem follows from the theorem [8]-6.4.4. \qed

Convention 3.29. In the equation
\[((a_{0}, ..., a_{n}, \sigma) \circ (f_{1}, ..., f_{n})) \circ (x_{1}, ..., x_{n}) \]
\[= (a_{0} \sigma(f_{1})a_{1}...a_{n-1} \sigma(f_{n})a_{n}) \circ (x_{1}, ..., x_{n}) \]
\[= a_{0} \sigma(f_{1} \circ x_{1})a_{1}...a_{n-1} \sigma(f_{n} \circ x_{n})a_{n} \]
as well as in other expressions of polylinear map, we have convention that map f_{i} has variable x_{i} as argument. \qed

Theorem 3.30. Let $A_{1}, ..., A_{n}, B$ be free modules over commutative ring D. D-module $\mathcal{L}(D; A_{1} \times ... \times A_{n} \to B)$ is free D-module.

Proof. The theorem follows from the theorem [8]-4.4.8. \qed

Theorem 3.31. Let A be associative D-algebra. Polylinear map
\[f : A^{n} \to A, a = f \circ (a_{1}, ..., a_{n}) \]
generated by maps \(I_{(s\cdot 1)}, \ldots, I_{(s\cdot n)} \in \mathcal{L}(D; A \to A) \) has form
\[
(3.43) \quad a = \sum_{i=0}^s \sigma_s(I_{(s\cdot 1)} \circ a_1) \cdot f_{(s\cdot n)}^n \ldots \sigma_s(I_{(s\cdot n)} \circ a_n) \cdot f_{(s\cdot n)}^n
\]
where \(\sigma_s \) is a transposition of set of variables \(\{a_1, \ldots, a_n\} \)

\[
\sigma_s = \begin{pmatrix} a_1 & \ldots & a_n \\ \sigma_s(a_1) & \ldots & \sigma_s(a_n) \end{pmatrix}
\]

Proof. The theorem follows from the theorem \([8]-6.6.6.\) \(\square\)

Theorem 3.32. Consider \(D \)-algebra \(A \). A representation
\[
h : A^{n+1} \otimes S_n \longrightarrow \mathcal{L}(D; A^n \to A)
\]
of algebra \(A^{n+1} \otimes \) in module \(\mathcal{L}(D; A^n \to A) \) defined by the equality
\[
(a_0 \otimes \ldots \otimes a_n, \sigma) \circ (f_1 \otimes \ldots \otimes f_n) = a_0 \sigma(f_1) a_1 \ldots a_{n-1} \sigma(f_n) a_n
\]
\(a_0, \ldots, a_n \in A \quad \sigma \in S_n \quad f_1, \ldots, f_n \in \mathcal{L}(D; A \to A)\)

allows us to identify tensor \(d \in A^{n+1} \) and transposition \(\sigma \in S^n \) with map
\[
(3.44) \quad (d, \sigma) \circ (f_1, \ldots, f_n) \quad f_i = \delta \in \mathcal{L}(D; A \to A)
\]
where \(\delta \in \mathcal{L}(D; A \to A) \) is identity map.

Proof. The theorem follows from the theorem \([8]-6.6.9.\) \(\square\)

Convention 3.33. Since the tensor \(a \in A^{\otimes(n+1)} \) has the expansion
\[
a = a_{i\cdot 0} \otimes a_{i\cdot 1} \otimes \ldots \otimes a_{i\cdot n} \quad i \in I
\]
then set of permutations \(\sigma = \{\sigma_i \in S(n) : i \in I\} \) and tensor \(a \) generate the map
\[
(a, \sigma) : A^n \to A
\]
defined by rule
\[
(a, \sigma) \circ (b_1, \ldots, b_n) = (a_{i\cdot 0} \otimes a_{i\cdot 1} \otimes \ldots \otimes a_{i\cdot n}, \sigma_i) \circ (b_1, \ldots, b_n)
\]
\(= a_{i\cdot 0} \sigma_i(b_1) a_{i\cdot 1} \ldots \sigma_i(b_n) a_{i\cdot n}\) \(\square\)

3.4. **Algebra with Conjugation.** Let \(D \) be commutative ring. Let \(A \) be \(D \)-algebra with unit \(e, A \neq D \).

Let there exist subalgebra \(F \) of algebra \(A \) such that \(F \neq A, D \subseteq F \subseteq Z(A) \),
and algebra \(A \) is a free module over the ring \(F \). Let \(\overline{e} \) be the basis of free module \(A \) over ring \(F \).
We assume that \(e_{\overline{e}} = 1 \).

Theorem 3.34. Structural constants of \(D \)-algebra with unit \(e \) satisfy condition
\[
(3.45) \quad C_{i\overline{e}k}^l = C_{k\overline{e}i}^l = \delta_{i}^{\overline{e}}
\]

Proof. The theorem follows from the theorem \([6]-3.5.\) \(\square\)
Consider maps
\[\text{Re} : A \rightarrow A \]
\[\text{Im} : A \rightarrow A \]
defined by equation
\[(3.46) \quad \text{Re} \ d = d^0 \quad \text{Im} \ d = d - d^0 \quad d \in D \quad d = d' e_i \]
The expression \(\text{Re} \ d \) is called **scalar of element** \(d \). The expression \(\text{Im} \ d \) is called **vector of element** \(d \).

According to \((3.46) \)
\[F = \{ d \in A : \text{Re} \ d = d \} \]
We will use notation \(\text{Re} \ A \) to denote **scalar algebra** of algebra \(A \).

Theorem 3.35. The set
\[(3.47) \quad \text{Im} \ A = \{ d \in A : \text{Re} \ d = 0 \} \]
is \((\text{Re} \ A) \)-module which is called **vector module** of algebra \(A \).
\[(3.48) \quad A = \text{Re} \ A \oplus \text{Im} \ A \]

PROOF. The theorem follows from the theorem [6]-4.1. □

According to the theorem 3.35, there is unique defined representation
\[(3.49) \quad d = \text{Re} \ d + \text{Im} \ d \]

Definition 3.36. The map
\[(3.50) \quad d^* = \text{Re} \ d - \text{Im} \ d \]
is called **conjugation in algebra** provided that this map satisfies
\[(3.51) \quad (cd)^* = d^* c^* \]
\((\text{Re} \ A) \)-algebra \(A \) equipped with conjugation is called **algebra with conjugation**. □ □

Theorem 3.37. The \((\text{Re} \ A) \)-algebra \(A \) is algebra with conjugation iff structural constants of \((\text{Re} \ A) \)-algebra \(A \) satisfy condition
\[(3.52) \quad C^{0}_{kl} = C^{0}_{lk} \quad C^{0}_{kl} = -C^{0}_{lk} \]
\[1 \leq k \leq n \quad 1 \leq l \leq n \quad 1 \leq p \leq n \]

PROOF. The theorem follows from the theorem [6]-4.5. □

3.5. **Polynomial over Associative \(D \)-Algebra.** Let \(D \) be commutative ring and \(A \) be associative \(D \)-algebra with unit. Let \(\mathcal{B} \) be basis of algebra \(\mathcal{L}(D; A \rightarrow A) \).

Theorem 3.38. Let \(p_k(x) \) be monomial of power \(k \) over \(D \)-algebra \(A \). Then
3.38.1: Monomial of power 0 has form \(p_0(x) = a_0 \), \(a_0 \in A \).
3.38.2: If \(k > 0 \), then
\[
p_k(x) = p_{k-1}(x)(F \circ x)a_k
\]
where \(a_k \in A \) and \(F \in \mathbb{T} \).

Proof. The theorem follows from the theorem [7]-4.1. In particular, monomial of power 1 has form \(p_1(x) = a_0(F \circ x)a_1 \).

Definition 3.39. We denote \(A_k[x] \) Abelian group generated by the set of monomials of power \(k \). Element \(p_k(x) \) of Abelian group \(A_k[x] \) is called **homogeneous polynomial** of power \(k \).

Convention 3.40. Let the tensor \(a \in A^{\otimes(n+1)} \). Let \(F(1), \ldots, F(n) \in \mathbb{T} \). When \(x_1 = \ldots = x_n = x \), we assume
\[
a \circ F \circ x^n = a \circ (F(1), \ldots, F(n)) \circ (x_1 \otimes \ldots \otimes x_n)
\]

Convention 3.41. If we have few tuples of maps \(F \in \mathbb{T} \), then we will use index like \([k] \) to index tuple
\[
F[k] = (F[k](1), \ldots, F[k](n))
\]

Theorem 3.42. We can present homogeneous polynomial \(p(x) \) in the following form
\[
p(x) = a_1 \circ F_1 \circ x^k \quad a_1 \in A^{\otimes(k+1)}
\]

Proof. The theorem follows from the theorem [7]-4.6.

Definition 3.43. We denote
\[
A[x] = \bigoplus_{n=0}^{\infty} A_n[x]
\]
direct sum\(^{3,7} \) of \(A \)-modules \(A_n[x] \). An element \(p(x) \) of \(A \)-module \(A[x] \) is called **polynomial** over \(D \)-algebra \(A \).

Definition 3.44. The polynomial \(p(x) \) is called **divisor of polynomial** \(r(x) \), if we can represent the polynomial \(r(x) \) as
\[
r(x) = q_{i:0}(x)p(x)q_{i:1}(x) = (q_{i:0}(x) \otimes q_{i:1}(x)) \circ p(x)
\]

\(^{3,7} \) See the definition of direct sum of modules in [1], page 128. On the same page, Lang proves the existence of direct sum of modules.
Theorem 3.55. Let \(p(x) = p_1 \circ x + p_0 \) be polynomial of power 1 and \(p_1 \) be nonsingular tensor. Let
\[
r(x) = r_0 + r_1 \circ x + \ldots + r_k \circ x^k
\]
be polynomial of power \(k \). Then
\[
(3.54) \quad r(x) = s_0 + (q_0 + q_1(x) + \ldots + q_{k-1}(x)) \circ p(x)
\]
where \(q_i \in A_i[x] \otimes A \), \(i = 0, \ldots, k-1 \), is homogeneous polynomial of power \(i \).

PROOF. The theorem follows from the theorem [7]-6.9.

Theorem 3.56. Let
\[
p(x) = p_0 + p_1 \circ x
\]
be polynomial of power 1 and \(p_1 \) be nonsingular tensor. Let
\[
r(x) = r_0 + r_1 \circ x + \ldots + r_k \circ x^k
\]
be polynomial of power \(k \). Then
\[
(3.56) \quad r(x) = r_0 - ((r_1 \circ s \otimes r_1 \circ s) \circ p_1^{-1}) \circ p_0
\]
\[
- ((r_2 \circ s \otimes r_2 \circ s) \circ p_1^{-1}) \circ p_0
\]
\[
- \ldots - (((r_k \circ s \otimes r_k \circ s) \circ p_1^{-1}) \circ p_0
\]
\[
+ ((r_1 \circ s \otimes r_1 \circ s) \circ p_1^{-1}) \circ p(x)
\]
\[
+ ((r_2 \circ s \otimes r_2 \circ s) \circ p_1^{-1}) \circ p(x)
\]
\[
+ \ldots + (((r_k \circ s \otimes r_k \circ s) \circ p_1^{-1}) \circ p(x)
\]
\[
= r_0 - ((r_1 \circ s \otimes r_1 \circ s + (r_2 \circ s \otimes s) \otimes r_2 \circ s
\]
\[
+ \ldots + ((r_k \circ s \otimes r_k \circ s) \circ p_1^{-1}) \circ p_0
\]
\[
+ ((r_1 \circ s \otimes r_1 \circ s + (r_2 \circ s \otimes s) \otimes r_2 \circ s
\]
\[
+ \ldots + ((r_k \circ s \otimes r_k \circ s) \circ p_1^{-1}) \circ p(x)
\]

PROOF. The theorem follows from the theorem [7]-6.10.

Definition 3.47. Let \(R \) be real field. Extension field \(H \) is called the quaternion algebra if multiplication in algebra \(H \) is defined according to rule
\[
(3.57)
\]
\[
\begin{array}{ccc}
 i & j & k \\
i & -1 & k & -j \\
j & -k & -1 & i \\
k & j & -i & -1
\end{array}
\]

3.6. Quaternion Algebra. Elements of the algebra \(H \) have form
\[
x = x^0 + x^1 i + x^2 j + x^3 k
\]
\[
x^0, x^1, x^2, x^3 \in R
\]
Quaternion
\[i^* = i^0 - i^1 i - i^2 j - i^3 k \]
s called conjugate to the quaternion \(x \). We define the norm of the quaternion \(x \) using equation
\[|x|^2 = xx^* = (x^0)^2 + (x^1)^2 + (x^2)^2 + (x^3)^2 \]
From the equality (3.58), it follows that inverse element has form
\[x^{-1} = |x|^{-2} x^* \]

Theorem 3.48. Let
\[e_0 = 1 \quad e_1 = i \quad e_2 = j \quad e_3 = k \]
be basis of quaternion algebra \(H \). Then structural constants have form
\[C_{00}^0 = 1 \quad C_{01}^1 = 1 \quad C_{02}^2 = 1 \quad C_{03}^3 = 1 \]
\[C_{10}^1 = 1 \quad C_{11}^0 = -1 \quad C_{12}^3 = 1 \quad C_{13}^2 = -1 \]
\[C_{20}^2 = 1 \quad C_{21}^3 = -1 \quad C_{22}^0 = -1 \quad C_{23}^1 = 1 \]
\[C_{30}^3 = 1 \quad C_{31}^2 = 1 \quad C_{32}^1 = -1 \quad C_{33}^0 = -1 \]

Proof. Value of structural constants follows from the multiplication table (3.57).

Theorem 3.49. Equation
\[ax - xa = 1 \]
in quaternion algebra does not have solutions.

Proof. The theorem follows from the theorem [4]-7.1.

4. Simple Examples

Theorem 4.1.
\[(x + a)^2 = x^2 + (1 \otimes a + a \otimes 1) \circ x + a^2 \]

Proof. The identity (4.1) follows from the equality
\[(x + a)(x + a) = x(x + a) + a(x + a) = x^2 + xa + a^2 \]
\[= x^2 + (1 \otimes a + a \otimes 1) \circ x + a^2 \]

Theorem 4.2.
\[(x + a)^3 = x^3 + (1 \otimes 1 \otimes a + 1 \otimes a \otimes 1 + a \otimes 1 \otimes 1) \circ x^2 \]
\[+ (1 \otimes a^2 + a \otimes a + a^2 \otimes 1) \circ x + a^3 \]
Theorem 4.3.

\[(x + a)(x + b) = x^2 + (a \otimes 1 + 1 \otimes b) \circ x + ab\]

\[(x + a)(x + b) + (x + b)(x + a) = 2x^2 + ((a + b) \otimes 1 + 1 \otimes (a + b)) \circ x + ab + ba\]

Proof. The identity (4.4) follows from the equality

\[(x + a)(x + b) = x(x + b) + a(x + b) = x^2 + xb + ax + ab\]

The identity (4.5) follows from the equality

\[(x + a)(x + b) + (x + b)(x + a) = x(x + b) + a(x + b) + x(x + a) + b(x + a)\]

\[= 2x^2 + xb + ax + ab + xa + bx + ba\]

\[\Box\]

Theorem 4.4.

\[(c_{x,0} \otimes c_{x,1} \otimes c_{x,2}, \sigma_x) \circ (x + a, x + b)\]

\[= (c_{x,0} \otimes c_{x,1} \otimes c_{x,2}, \sigma_x) \circ x^2 + (c_{x,0} \sigma_x(a) c_{x,1} \otimes c_{x,2} + c_{x,0} \otimes c_{x,1} \sigma_x(b) c_{x,2}) \circ x + c_{x,0} \sigma_x(a) c_{x,1} \sigma_x(b) c_{x,2}\]

Proof. The identity (4.6) follows from the equality

\[(c_{x,0} \otimes c_{x,1} \otimes c_{x,2}, \sigma_x) \circ (x + a, x + b)\]

\[= c_{x,0} \sigma_x(a) c_{x,1} \sigma_x(x + b) c_{x,2}\]

\[= c_{x,0} (x + \sigma_x(a)) c_{x,1} (x + \sigma_x(b)) c_{x,2}\]

\[= c_{x,0} ((x + \sigma_x(a)) c_{x,1} x + (x + \sigma_x(a)) c_{x,1} \sigma_x(b)) c_{x,2}\]

\[= c_{x,0} (x c_{x,1} x + \sigma_x(a) c_{x,1} x + x c_{x,1} \sigma_x(b) + \sigma_x(a) c_{x,1} \sigma_x(b)) c_{x,2}\]

\[\Box\]

5. **Square Root**
Definition 5.1. The root \(x = \sqrt{a} \) of the equation
\[
x^2 = a
\]
in \(D \)-algebra \(A \) is called square root of \(A \)-number \(a \).
\[\square\]

In quaternion algebra the equation
\[
x^2 = -1
\]
has at least 3 roots \(x = i, x = j, x = k \). Our goal is the answer on the question how much roots has the equation (5.1).

Theorem 5.2. Roots of the equation \(^5.1\)
\[
(a + x)^2 = a^2
\]
satisfy to the equation
\[
x^2 + (1 \otimes a + a \otimes 1) \circ x = 0
\]

Proof. The equation (5.3) follows from (4.1), (5.2).
\[\square\]

Theorem 5.3.
\[
x^2 + (1 \otimes a + a \otimes 1) \circ x = x \left(\frac{1}{2} x + a \right) + \left(\frac{1}{2} x + a \right) x
\]

Proof. The identity (5.4) follows from the equation
\[
x^2 + (1 \otimes a + a \otimes 1) \circ x = \frac{1}{2} x^2 + xa + \frac{1}{2} x^2 + ax
\]
\[= x \left(\frac{1}{2} x + a \right) + \left(\frac{1}{2} x + a \right) x\]
\[\square\]

Corollary 5.4. The equation
\[
x^2 + (1 \otimes a + a \otimes 1) \circ x = 0
\]
has roots \(x = 0, x = -2a \).
\[\square\]

Theorem 5.5. \(x = j - i \) is a root of the equation
\[
x^2 + (1 \otimes i + i \otimes 1) \circ x = 0
\]

Proof. According to the theorem 5.3, the equation (5.6) is equivalent to the equation
\[
x \left(\frac{1}{2} x + i \right) + \left(\frac{1}{2} x + i \right) x = 0
\]
\[5.1\ We consider \(x \) as difference between 2 square roots.\]
From the equation (5.7), it follows that
\[(j - i)((j - i) + 2i) + ((j - i) + 2i)(j - i)\]
\[= (j - i)(j + i) + (j + i)(j - i)\]
\[= (j - i)j + (j - i)i + (j + i)(j - i)\]
\[= j^2 - ij + ji - i^2 + j^2 + ij - ji - i^2\]
\[= 0\]

The question arises. How many roots has the equation (5.6). From the equation (5.8)
\[x(x + 2a) + (x + 2a)x = 0\]
it follows that
\[x(x + 2a) = -(x + 2a)x\]
From the equality (5.9) it follows that product of A-numbers 2a + x, x is anti-commutative.

Theorem 5.6. Let \(\mathbb{F} \) be the basis of finite dimensional associative D-algebra. Let \(C_{kl} \) be structural constants of D-algebra A relative the basis \(\mathbb{F} \). Then the equation (5.3)
\[x^2 + (1 \otimes a + a \otimes 1) \circ x = 0\]
has a solution iff the system of equations (5.10)
\[C_{kl}(x^k x^l + x^k a^l + a^k x^l) = 0\]
has a solution where \(x = x^i e_i \).

Proof. The equation (5.10) follows from the equation (5.8).

Theorem 5.7. In quaternion algebra, if \(a = i \), then the equation (5.10) has set of solutions such that
\[x^0 = 0 \quad -(x^1)^2 - 2x^1 = (x^2)^2 + (x^3)^2\]
\[-2 \leq x^1 \leq 0\]

Proof. Since \(a = i \), then the equation (5.10) has form
\[C_{kl} x^k x^l + C_{kl} x^k + C_{1k} x^k = 0\]
\[C_{kl} x^k x^l + C_{kl} x^k + C_{1k} x^k = 0\]
\[C_{kl} x^k x^l + C_{kl} x^k + C_{1k} x^k = 0\]
\[C_{kl} x^k x^l + C_{kl} x^k + C_{1k} x^k = 0\]
\[C_{kl} x^k x^l + C_{kl} x^k + C_{1k} x^k = 0\]

According to the theorem 3.48, from (3.59), (5.13), it follows that
\[(x^0)^2 - (x^1)^2 - (x^2)^2 - (x^3)^2 - 2x^1 = 0\]
\[2x^0 x^1 + 2x^0 = 0\]
\[2x^0 x^2 + x^3 - x^3 = 0\]
\[2x^0 x^3 - x^2 + x^2 = 0\]
From the equation (5.15), it follows that either \(x^0 = 0\), or \(x^i = -1\). Since \(x^0 = 0\), then the equation (5.11) follows from the equation (5.14). The statement (5.12) follows from the requirement

\[-(x^i)^2 - 2x^i \geq 0\]

If \(x^i = -1\), then either \(x^0 = 0\), or \(x^2 = x^3 = 0\). The statement \(x^0 = 0\), \(x^2 = x^3 = 0\) is particular case of the statement of the theorem. The statement \(x^1 = -1, x^2 = x^3 = 0\) is not true, because the equation (5.14) gets form

\[(x^0)^2 + 1 = 0\]

\[\square\]

Theorem 5.8. In quaternion algebra, if \(a = 1\), then the equation (5.10) has 2 roots

\[(5.18)\]

\[
\begin{align*}
x^0 &= 0 & x^i &= 0 & x^2 &= 0 & x^3 &= 0 \\
x^0 &= -2 & x^i &= 0 & x^2 &= 0 & x^3 &= 0
\end{align*}
\]

Proof. Since \(a = 1\), then the equation (5.10) has form

\[
\begin{align*}
C^i_{k1}x^k x^i + C^i_{k0}x^k + C^i_{0k}x^k &= 0 \\
C^0_{k1}x^k + C^0_{k0}x^k + C^0_{0k}x^k &= 0 \\
C^1_{k1}x^k x^i + C^1_{k0}x^k + C^1_{0k}x^k &= 0 \\
C^2_{k1}x^k x^i + C^2_{k0}x^k + C^2_{0k}x^k &= 0 \\
C^3_{k1}x^k x^i + C^3_{k0}x^k + C^3_{0k}x^k &= 0
\end{align*}
\]

(5.19)

From (3.59), (5.19), it follows that

\[(5.20)\]

\[(x^0)^2 - (x^i)^2 - (x^2)^2 - (x^3)^2 + 2x^0 = 0\]

\[(5.21)\]

\[2x^0 x^i + 2x^i = 0\]

\[(5.22)\]

\[2x^0 x^2 + 2x^2 = 0\]

\[(5.23)\]

\[2x^0 x^3 + 2x^3 = 0\]

From equations (5.21), (5.22), (5.23), it follows that either

\[(5.24)\]

\[x^i = x^2 = x^3 = 0\]

or \(x^0 = -1\).

Since the equation (5.24) is true, then, from the equation (5.20), it follows that either \(x^0 = 0\), or \(x^0 = -2\). So we get roots (5.18).

Since \(x^0 = -1\), then the equation (5.20) has form

\[(5.25)\]

\[(x^i)^2 + (x^2)^2 + (x^3)^2 + 1 = 0\]

The equation (5.25) does not have real roots.

\[\square\]

Theorem 5.9.

\[(5.26)\]

\[b^2 - a^2 = \frac{1}{2}(b - a)(b + a) + \frac{1}{2}(b + a)(b - a)\]
Proof. From the identity (4.1), it follows that
(5.27) \((x + a)^2 - a^2 = x^2 + (1 \otimes a + a \otimes 1) \circ x\)
From (5.4), (5.27), it follows that
(5.28) \((x + a)^2 - a^2 = x \left(\frac{1}{2} x + a \right) + \left(\frac{1}{2} x + a \right) x\)
Let \(b = x + a\). Then
(5.29) \(x = b - a\)
From (5.28), (5.29), it follows that
(5.30) \(b^2 - a^2 = (b - a) \left(\frac{1}{2} (b - a) + a \right) + \left(\frac{1}{2} (b - a) + a \right) (b - a)\)
The identity (5.26) follows from the equality (5.30). \(\square\)

6. Algebra with Conjugation

According to theorems 5.2, 5.7, the equation
\(x^2 = -1\)
in quaternion algebra has infinitely many roots. According to the theorem 5.8, the equation
\(x^2 = 1\)
in quaternion algebra has 2 roots. I did not expect so different statements. However, where is the root of this difference?

Let \(\overline{e}\) be the basis of finite dimensional \(D\)-algebra \(A\). Let \(C_{kl}^{ij}\) be structural constants of \(D\)-algebra \(A\) relative the basis \(\overline{e}\). Then the equation
\(x^2 = a\)
has form
(6.1) \(C_{kl}^{ij} x^k x^l = a^i\)
relative to the basis \(\overline{e}\). The goal to solve the system of equations (6.1) is not easy task.

However we can solve this problem when algebra \(A\) has unit and is algebra with conjugation. According to the theorem 3.34, 3.37, structural constants of \(D\)-algebra \(A\) have following form
(6.2) \(C_{l0}^{00} = 1\) \(C_{ll}^{00} = C_{ll}^{00}\)
(6.3) \(C_{k0}^{kl} = C_{k0}^{kl} = 1\) \(C_{kl}^{0p} = -C_{lk}^{0p}\)
\(1 \leq k \leq n\) \(1 \leq l \leq n\) \(1 \leq p \leq n\)

Theorem 6.1. In \(D\)-algebra \(A\) with conjugation, the equation (6.1) gets form
(6.4) \((x^0)^2 + C_{kl}^{ij} x^k x^l = a^0\)
(6.5) \(2x^0 x^p = a^p\)
\(1 \leq k \leq n\) \(1 \leq l \leq n\) \(1 \leq p \leq n\)
Proof. The equation (6.4) follows from (6.1), (6.2) when \(i = 0 \). The equation (6.5) follows from (6.1), (6.3) when \(i > 0 \).

Theorem 6.2. Since \(\sqrt{a} \in \text{Im} A \), then \(a \in \text{Re} A \). The root of the equation
\[x^2 = a \]
satisfy to the equation
\[C_{kl}^0 x^k x^l = a^0 \]
\[1 \leq k \leq n \quad 1 \leq l \leq n \]

Proof. Since \(x \in \text{Im} A \), then
\[x^0 = 0 \]
The equality
\[a^p = 0 \quad 1 \leq p \leq n \]
follows from (6.5), (6.7). From the equality (6.8), it follows that \(a \in \text{Re} A \). The equation (6.6) follows from (6.4), (6.7).

The theorem 6.2 says nothing about number of roots. However following statement is evident.

Corollary 6.3. In quaternion algebra, since \(a \in R \), \(a < 0 \), then the equation
\[x^2 = a \]
has infinitely many roots.

Theorem 6.4. Since \(\text{Re} \sqrt{a} \neq 0 \), then roots of the equation
\[x^2 = a \]
satisfy to the equation
\[(x^0)^4 - a^0 (x^0)^2 + \frac{1}{4} C_{kl}^0 a^k a^l = 0 \]
\[x^k = \frac{a^k}{2 x^0} \]
\[1 \leq k \leq n \quad 1 \leq l \leq n \]

Proof. Since \(x^0 = \text{Re} \sqrt{a} \), then \(x^0 \neq 0 \). Therefore, the equation (6.10) follows from the equation (6.5). The equation
\[(x^0)^2 + C_{kl}^0 a^k a^l \frac{a^0}{4 (x^0)^2} = a^0 \]
follows from equations (6.4), (6.10). The equation (6.9) follows from the equation (6.11).

Theorem 6.5. Let \(H \) be quaternion algebra and \(a \) be \(H \)-number.
6.5.1: Since $\text{Re} \sqrt{a} \neq 0$, then the equation
\[x^2 = a \]
has roots $x = x_1, x = x_2$ such that
\[x_2 = -x_1 \]
\[(6.12) \]

6.5.2: Since $a = 0$, then the equation
\[x^2 = a \]
has root $x = 0$ with multiplicity 2.

6.5.3: Since conditions 6.5.1, 6.5.2 are not true, then the equation
\[x^2 = a \]
has infinitely many roots such that
\[(6.13) \]
\[x \in \text{Im} \ H \quad a \in \text{Re} \ H \quad |x| = \sqrt{-a} \]

Proof. The equation
\[(6.14) \]
\[(x^0)^2 - (x^1)^2 - (x^2)^2 - (x^3)^2 = a^0 \]
follows from (3.59), (6.4).

If $a = 0$, then the equation
\[(6.15) \]
\[(x^0)^2 - (x^1)^2 - (x^2)^2 - (x^3)^2 = 0 \]
follows from the equation (6.14). From (6.5), it follows that either $x^0 = 0$, or $x^1 = x^2 = x^3 = 0$. In both cases, the statement 6.5.2 follows from the equation (6.15).

Since $\text{Re} \sqrt{a} \neq 0$, then we can apply the theorem 6.4 to the equation (6.14). Therefore, we get the equation
\[(6.16) \]
\[(x^0)^4 - a^0 (x^0)^2 - \frac{1}{4}((a^1)^2 + (a^2)^2 + (a^3)^2) = 0 \]
which is quadratic equation
\[(6.17) \]
\[y^2 - a^0 y - \frac{1}{4}((a^1)^2 + (a^2)^2 + (a^3)^2) = 0 \]
relative
\[(6.18) \]
\[y = (x^0)^2 \]
Since
\[(a^1)^2 + (a^2)^2 + (a^3)^2 \geq 0 \]
then we have to consider two cases.

- Since \[(a^1)^2 + (a^2)^2 + (a^3)^2 > 0 \]
then, according to Viète’s theorem, the equation (6.17) has roots $y = y_1, y_1 < 0$, and $y = y_2, y_2 > 0$. According to the equality (6.18), we consider only the root $y = y_2, y_2 > 0$. Therefore, the equation (6.16) has two roots
\[(6.19) \]
\[x_1^0 = \sqrt{y_2} \quad x_2^0 = -\sqrt{y_2} \]
The equality \((6.12)\) follows from equalities \((6.10), (6.19)\).

• Since

\[
(a^1)^2 + (a^2)^2 + (a^3)^2 = 0
\]

then

\[
(6.20) \quad a^1 = a^2 = a^3 = 0
\]

Since \(\text{Re} \sqrt{a} \neq 0\), then the statement

\[
(6.21) \quad x^1 = x^2 = x^3 = 0
\]

follows from \((6.10), (6.20)\). Therefore, the equation \((6.17)\) has form

\[
(6.22) \quad y^2 - a^0 y = 0
\]

According to the proof of the theorem \(6.4\), the value \(y = 0\) is extraneous root. Therefore, the equation \((6.22)\) is equivalent to the equation

\[
(6.23) \quad y - a^0 = 0
\]

Let \(6.1 \ a^0 > 0\). From equations \((6.18), (6.23)\), it follows that the equation \((6.16)\) has two roots

\[
(6.24) \quad x_0^1 = \sqrt{a^0}, \quad x_0^2 = -\sqrt{a^0}
\]

The equality \((6.12)\) follows from equalities \((6.10), (6.24)\).

Since conditions \(6.5.1, 6.5.2\) are not true, then \(a \neq 0\); however \(\text{Re} \sqrt{a} = 0\). According to the theorem \(6.2\), \(a \in \text{Re} A\), \(a^0 \neq 0\) and the equation

\[
(6.25) \quad (x^1)^2 + (x^2)^2 + (x^3)^2 = -a^0
\]

follows from the equation \((6.6)\) and from the equality \((3.59)\). Let \(6.2 \ a^0 < 0\). Then the equation \((6.25)\) has infinitely many roots satisfying to condition \((6.13)\). □

7. Few Remarks

I was ready to the statement that the equation

\[
x^2 = a
\]

has infinitely many roots. However the theorem \(6.5\) is more surprising. A number of roots in quaternion algebra \(H\) depends on the value of \(H\)-number \(a\).

Square root in complex field \(C\) has two values. We use Riemann surface\(^{7.1} RC\) to represent the map

\[
\sqrt{\cdot} : z \in C \to \sqrt{z} \in RC
\]

I think that we can consider similar surface in quaternion algebra. However the topology of such surface is more complicated.

Mathematicians have studied the theory of noncommutative polynomials during the XX century; and knowledge of the results obtained during this time is important to continue research.

In the book [14], on page 48, Paul Cohn wrote that study of polynomials over noncommutative algebra \(A\) is not easy task. To simplify the task and get some

\(^{6.1}\)We considered the value \(a^0 = 0\) in the statement \(6.5.2\). We considered the value \(a^0 < 0\) in the statement \(6.5.3\).

\(^{6.2}\)We considered the value \(a^0 > 0\) in the statement \(6.5.1\).

\(^{7.1}\)The definition of Riemann surface see [16], pages 170, 171.
preliminary statements, Paul Cohn suggested to consider polynomials whose coefficients are \(A \)-numbers and written on the right. Thus, according to Cohn, a polynomial over \(D \)-algebra has form
\[
p(x) = a_0 + xa_1 + \ldots + x^na_n \quad a_i \in A
\]
This convention allowed us to overcome difficulties related with noncommutative algebra and to get interesting statements about polynomials. However, in general, not every statement is true.

We consider the following example. In the book [15], page 262, Tsit Lam considers polynomials whose coefficients are \(A \)-numbers and written on the left.\(^7.2\) According to Tsit Lam, the product of polynomials has form
\[
(x - a)(x - b) = x^2 - (a + b)x + ab
\]
The product (7.1) of polynomials is not compatible with the product in \(D \)-algebra \(A \).

Although we can consider the equation (7.1) as generalization of the Viète’s theorem,\(^7.3\) Tsit Lam draws our attention to the statement that \(A \)-number \(a \) is not the root of the polynomial \(f \). I think, this one of the reason, why the definition of left, right and pseudo roots was considered in [2, 15].

My road into the theory of noncommutative polynomials passes through calculus (section [9]-5.2). Somebody’s road may passes through physics. I think that mathematical operation must be consistent with request from other theories. Development of new ideas and methods allows us to move forward in the study of noncommutative polynomials. The goal of this paper is to show what future do we have today to study noncommutative polynomials.

8. Questions and Answers

In this section, I collected questions that must be answered to study noncommutative polynomials. We will concentrate our attention on quadratic equation
\[
(a_{s,0} \otimes a_{s,1} \otimes a_{s,2}) \circ x^2 + (b_{t,0} \otimes b_{t,1}) \circ x + c = 0
\]
on the Viète theorem and on completing the square.

Let \(r(x) \) be a polynomial of order 2. According to the definition 3.44, polynomial
\[
p(x) = x - a = (1 \otimes 1) \circ x - a
\]
is divisor of polynomial \(r(x) \), if there exist polynomials \(q_{t,0}(x), q_{t,1}(x) \) such that
\[
r(x) = q_{t,0}(x)p(x)q_{t,1}(x)
\]
According to the theorem 3.45, for every \(i \), the power of one of the polynomials \(q_{t,0}(x), q_{t,1}(x) \) equals 1, and the other polynomial is \(A \)-number. Since the polynomial \(r \) has also root \(b \), is it possible to represent the polynomial \(r \) as product of polynomials \(x - a, x - b \). In what order should we multiply polynomials \(x - a, x - b \)? Considering the symmetry of roots \(a \) and \(b \), I expect that factorization of polynomial \(r(x) \) into factors has form
\[
r(x) = (c, \sigma) \circ (x - a, x - b) = (c_{s,0} \otimes c_{s,1} \otimes c_{s,2}, \sigma_s) \circ (x - a, x - b)
\]
\(^7.2\)The difference in notation used by Cohn and Lam to represent polynomial is not important.
\(^7.3\)In the proposition [2]-1.1, Vladimir Retakh considered another statement for the Viète’s theorem for polynomial over noncommutative algebra.
Therefore, I expect that factorization of polynomial \(r(x) \) into factors is bilinear map of polynomials \(x - a \), \(x - b \).

Question 8.1. Let
\[
\text{(8.4)} \quad a \not\in Z(A) \lor (b \not\in Z(A) \land c \not\in Z(A))
\]
Let polynomial \(p(x) \) have form
\[
\text{(8.5)} \quad p(x) = (x - b)(x - a) + (x - a)(x - c)
\]
8.1.1: Is the value \(x = a \) a single root of the polynomial \(p(x) \) or is there another root of the polynomial \(p(x) \)?
8.1.2: Is there a representation of the polynomial \(p(x) \) in the form (8.3).

Let \(a, b \in Z(A) \). Then
\[
(x - b)(x - a) = x^2 - bx - xa + ba = x^2 - xb - ax + ab = (x - a)(x - b)
\]
and we can reduce expression of the polynomial (8.5)
\[
p(x) = (x - b)(x - a) + (x - a)(x - c) = (x - a)(x - b) + (x - a)(x - c)
\]
\[
= (x - a)(2x - b - c)
\]
The answer is evident. So the request (8.4) (which is negation of the condition that either \(a, b \in Z(A) \), or \(a, c \in Z(A) \)) is a necessary condition in the formulation of the question 8.1.

From construction considered in subsection 1.2, it follows that quadratic equation may have 1 root. Now I am ready to give one more example of quadratic equation which has 1 root.

Theorem 8.2. In quaternion algebra, there exists quadratic equation which has 1 root.

Proof. According to the theorem 3.49, the polynomial
\[
p(x) = jx - xj - 1
\]
does not have root in the quaternion algebra. Therefore, the polynomial
\[
p(x)(x - i) = (jx - xj - 1)(x - i) = jx^2 - xjx - x - jxi - xk + i
\]
has 1 root.

Theorem 8.3. In quaternion algebra, there exists quadratic equation which has no root.

Proof. According to the theorem 3.49, polynomials
\[
p(x) = jx - xj - 1
\]
\[
q(x) = kx - xk - 1
\]
do not have root in the quaternion algebra. Therefore, the polynomial
\[p(x)q(x) = (jx - xj - 1)(kx - xk - 1) \]
\[= (jx - xj - 1)kx - (jx - xj - 1)xk + jx - xj - 1 \]
\[= jxkx - xjxk - xkx - jxxk + xk + jx - xj - 1 \]

has no root.

Question 8.4. Whether there are irreducible polynomials of degree higher than 2? What is the structure of the set of irreducible polynomials?

Question 8.5. Does the set of roots of polynomial (8.3) depend on tensor \(a \) and the set of permutations \(\sigma \)?

Question 8.6. For any tensor \(b_{i \cdot 0} \otimes b_{i \cdot 1} \in A \otimes A \), is there an \(A \)-number \(a \) such that
\[1 \otimes a + a \otimes 1 = b_{i \cdot 0} \otimes b_{i \cdot 1} \]

Let the answer to the question 8.6 be positive. Then, using the identity (4.1), we can apply the method of completing the square in order to solve the reduced quadratic equation
\[x^2 + (p_{s \cdot 0} \otimes p_{s \cdot 1}) \circ x + q = 0 \]
There is good reason to believe that the answer to the question 8.6 is negative.

The set of polynomials (8.3) is too large to consider the Viéte’s theorem. The Viéte’s theorem assumes reduced quadratic equation. Therefore, to consider the Viéte’s theorem, we must consider the polynomials whose coefficient before \(x^2 \) is equal to \(1 \otimes 1 \otimes 1 \). The simplest form of such polynomials is
\[c(x - x_1)(x - x_2) + d(x - x_2)(x - x_1) = 0 \]
where \(c, d \) are any \(A \)-numbers such that
\[c + d = 1 \]

Theorem 8.7 (François Viéte). Since quadratic equation
\[x^2 + (p_{s \cdot 0} \otimes p_{s \cdot 1}) \circ x + q = 0 \]
has roots \(x = x_1, x = x_2 \), then there exist \(A \)-numbers \(c, d \),
\[c + d = 1 \]
such that one of the following statements is true
\[p_{s \cdot 0} \otimes p_{s \cdot 1} = -(c x_1) \otimes 1 + c \otimes x_2 + (d x_2) \otimes 1 + d \otimes x_1 \]
\[q = c x_1 x_2 + d x_2 x_1 \]
\[p_{s \cdot 0} \otimes p_{s \cdot 1} = -(x_1 c) \otimes 1 + 1 \otimes (c x_2) + (x_2 d) \otimes 1 + 1 \otimes (d x_1) \]
\[q = x_1 c x_2 + x_2 d x_1 \]
\[p_{s \cdot 0} \otimes p_{s \cdot 1} = -(x_1 \otimes c + 1 \otimes (x_2 c) + x_2 \otimes d + 1 \otimes (x_1 d)) \]
\[q = x_1 x_2 c + x_2 x_1 d \]
Proof. The statement \((8.9)\) follows from the equality
\[
 c(x - x_1)(x - x_2) + d(x - x_2)(x - x_1)
 = c(x - x_1)x - c(x - x_1)x_2 + d(x - x_2)x - d(x - x_2)x_1
 = cx^2 - cx_1x - cxx_2 + cx_1x_2 + dx^2 - dx_2x - dxx_1 + dx_2x_1
 = x^2 - cx_1x - cxx_2 - dx_2x - dxx_1 + cx_1x_2 + dx_2x_1
\]
The statement \((8.10)\) follows from the equality
\[
 (x - x_1)c(x - x_2) + (x - x_2)d(x - x_1)
 = (x - x_1)cx - (x - x_1)cx_2 + (x - x_2)dx - (x - x_2)dx_1
 = xcx - x_1cx - xcx_2 + x_1cx_2 + xdx - x_2dx - xdx_1 + x_2dx_1
 = x^2 - cx_1x - cxx_2 - dx_2x - dxx_1 + x_1cx_2 + x_2dx_1
\]
The statement \((8.11)\) follows from the equality
\[
 (x - x_1)(x - x_2)c + (x - x_2)(x - x_1)d
 = (x - x_1)xc - (x - x_1)x_2c + (x - x_2)xd - (x - x_2)x_1d
 = x_2c - x_1xc - x_2x_2c + x_1x_2c + x^2d - x_2xd - x_1xd + x_2x_1d
 = x^2 - x_1xc - x_2x_2c - dx_2d - x_1xd + x_1x_2c + x_2x_1d
\]

Question 8.8. In the theorem 8.7, did I list all possible representation of reduced equation \((8.8)\)?

We consider the question 8.1 from the point of view of the theorem 8.7. Let the polynomial \(p(x) = (x - b)(x - a) + (x - a)(x - c)\) have roots \(x = a, x = d\). There exist \(A\)-numbers \(f, g\),
\[
f + g = 1
\]
such that
\[
2afd + 2dga = ba + ac
\]
We have got the equation of power 2 relative two unknown.

Question 8.9. Let \(x = c\) be the root of polynomial \((8.3)\). Will the polynomial \(r(x)\) change when we use value \(c\) instead of value \(b\).

Values \(x = i, x = -i\) generate polynomial
\[
r(x) = (x - i)(x + i) + (x + i)(x - i)
 = x(x + i) - i(x + i) + (x + i)x - (x + i)i
 = x^2 + xi - ix - i^2 + x^2 + ix - xi - i^2
 = 2x^2 + 2
\]
Values \(x = i, \ x = -j \) generate polynomial

\[
q(x) = (x - i)(x + j) + (x + j)(x - i)
\]

\[
= x(x + j) - i(x + j) + (x + j)x - (x + j)i
\]

\[
= x^2 + xj - ix - ij + x^2 + jx - xi - ji
\]

\[
= 2x^2 + x(j - i) + (j - i)x
\]

As we can see, polynomial \(r(x) \), \(q(x) \) are different. Even more

\[
q(-i) = 2(-i)^2 + (-i)(j - i) + (j - i)(-i)
\]

\[
= 2(-1) + (-i)j - (-i)i + j(-i) - i(-i)
\]

\[
= -2 - ij + i^2 - ji + i^2 = -2 + 2i^2 = -4
\]

Therefore, if polynomial \(r(x) \) of second order has infinitely many roots, then we cannot randomly choose values from the set of roots to write down factorization of polynomial \(r(x) \) into factors. However, from the theorem 8.10, it follows that factorization of polynomial \(r(x) \) into factors is not defined uniquely.

Theorem 8.10. Let quaternions \(a, b \) satisfy the equality

\[
ab + ba = 0
\]

Then

\[
(x - a)(x - b) + (x - b)(x - a) = x(x - (a + b)) + (x - (a + b))x
\]

Proof. The equality

\[
(x - a)(x - b) + (x - b)(x - a) = x^2 - ax - xb + ab + x^2 - bx - xa + ba
\]

\[
= 2x^2 - (a + b)x - x(a + b)
\]

follows from the equality (8.20). The equality (8.21) follows from equalities (5.4), (8.22).

\[\Box\]

9. References

[1] Serge Lang, Algebra, Springer, 2002
[2] Vladimir Retakh, From factorizations of noncommutative polynomials to combinatorial topology, eprint arXiv:0911.4454 (2009)
[3] Kevin McCrimmon; A Taste of Jordan Algebras; Springer, 2004
[4] Aleks Kleyn, Linear Equation in Finite Dimensional Algebra, eprint arXiv:0912.4061 (2010)
[5] Aleks Kleyn, Linear Maps of Free Algebra, eprint arXiv:1003.1544 (2010)
[6] Aleks Kleyn, Algebra with Conjugation, eprint arXiv:1105.4307 (2011)
[7] Aleks Kleyn, Polynomial over Associative D-Algebra, eprint arXiv:1302.7204 (2013)
[8] Aleks Kleyn, Linear Map of D-Algebra, eprint arXiv:1502.04063 (2015)
[9] Aleks Kleyn, Introduction into Calculus over Banach Algebra, eprint arXiv:1601.03259 (2016)

[10] Rida T. Farouki, Graziano Gentili, Carlotta Giannelli, Alessandra Sestini, Caterina Stoppato, Solution of a quadratic quaternion equation with mixed coefficients, eprint arXiv:1506.05848 (2015)

[11] John C. Baez, The Octonions, eprint arXiv:math.RA/0105155 (2002)

[12] Paul M. Cohn, Universal Algebra, Springer, 1981

[13] Paul M. Cohn, Algebra, Volume 1, John Wiley & Sons, 1982

[14] Paul M. Cohn, Skew Fields, Cambridge University Press, 1995

[15] T. Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, 1991

[16] Shabat B. V., Introduction to Complex Analysis, Moscow, Nauka, 1969

[17] Postnikov M. M., Geometry IV: Differential geometry, Moscow, Nauka, 1983

[18] Alekseyevskii D. V., Vinogradov A. M., Lychagin V. V., Basic Concepts of Differential Geometry, VINITI Summary 28, Moscow. VINITI, 1988

[19] Richard D. Schafer, An Introduction to Nonassociative Algebras, Dover Publications, Inc., New York, 1995
10. INDEX

A-number 13
A-representation in Ω-algebra 8
algebra over ring 13
algebra with conjugation 19
arity 7
associative D-algebra 13
associative law 12
associator of D-algebra 13
norm of quaternion 22
carrier of Ω-algebra 8
Cartesian power 7
center of D-algebra A 14
commutative D-algebra 13
commutator of D-algebra 13
component of linear map 16
conjugation in algebra 19
conjugation transformation 16
coordinate matrix of vector 12
coordinates 12
D-algebra 13
D-module 12
distributive law 12
divisor of polynomial 20
effective representation 9, 11
dermosmorphism 8
free algebra over ring 13
free representation 9
homogeneous polynomial 20
homoorphism 8
linear map 12, 14
map is compatible with operation 8
module over ring 12
monomial of power k 19
morphism of representation f 9
morphism of representations from f into g 9
morphism of representations of Ω1-algebra
in Ω2-algebra 9
n-ary operation on set 7
nucleus of D-algebra A 14
operation on set 7
operator domain 7
polylinear map 15
polynomial 20
quadratic equation 31
quaternion algebra 21
reduced morphism of representations 10

reduced quadratic equation 33
representation of Ω1-algebra A in Ω2-algebra M 8
scalar algebra of algebra 19
scalar of element of algebra 19
square root 24
standard component of linear map 16
structural constants 14
unital algebra 13
unitarity law 12
universal algebra 8
vector 12
vector module of algebra 19
vector of element of algebra 19
Ω-algebra 8
11. Special Symbols and Notations

\(A[x] \) \hspace{1em} \text{\(A \)-algebra of polynomials over \(D \)-algebra \(A \)} \hspace{1em} 20
\((a, b, c) \) \hspace{1em} \text{associator of \(D \)-algebra} \hspace{1em} 13
\([a, b] \) \hspace{1em} \text{commutator of \(D \)-algebra} \hspace{1em} 13
\(A_\Omega \) \hspace{1em} \text{\(\Omega \)-algebra} \hspace{1em} 8
\(A_k[x] \) \hspace{1em} \text{set of homogeneous polynomials} \hspace{1em} 20
\(\sqrt{\alpha} \) \hspace{1em} \text{square root} \hspace{1em} 24
\(B^A \) \hspace{1em} \text{Cartesian power} \hspace{1em} 7
\(C_{ij} \) \hspace{1em} \text{structural constants} \hspace{1em} 14
\(d^* \) \hspace{1em} \text{conjugation in algebra} \hspace{1em} 19
\(\text{End}(\Omega; A) \) \hspace{1em} \text{set of endomorphisms} \hspace{1em} 8
\(f_{sk lp} \) \hspace{1em} \text{component of linear map} \(f \) \hspace{1em} \text{of division ring} \hspace{1em} 16
\(F_k^d \) \hspace{1em} \text{conjugation transformation} \hspace{1em} 16
\(H \) \hspace{1em} \text{quaternion algebra} \hspace{1em} 21
\(\text{Im} A \) \hspace{1em} \text{vector module of algebra} \(A \) \hspace{1em} 19
\(\text{Im} d \) \hspace{1em} \text{vector of element} \(d \) \hspace{1em} \text{of algebra} \hspace{1em} 19
\(\mathcal{L}(D; A_1 \to A_2) \) \hspace{1em} \text{set of linear maps} \hspace{1em} 12, 14
\(\mathcal{L}(D; A_1 \times \ldots \times A_n \to S) \) \hspace{1em} \text{set of polylinear maps} \hspace{1em} 15
\(\mathcal{L}(D; A^n \to S) \) \hspace{1em} \text{set of} \(n \)-\text{linear maps} \hspace{1em} 15
\(N(A) \) \hspace{1em} \text{nucleus of \(D \)-algebra} \(A \) \hspace{1em} 14
\(\text{Re} A \) \hspace{1em} \text{scalar algebra of algebra} \(A \) \hspace{1em} 19
\(\text{Re} d \) \hspace{1em} \text{scalar of element} \(d \) \hspace{1em} \text{of algebra} \hspace{1em} 19
\(Z(A) \) \hspace{1em} \text{center of \(D \)-algebra} \(A \) \hspace{1em} 14
\(\Omega \) \hspace{1em} \text{operator domain} \hspace{1em} 7
\(\Omega(n) \) \hspace{1em} \text{set of} \(n \)-\text{ary operators} \hspace{1em} 7
Квадратное уравнение над ассоциативной D-алгеброй

Александр Клейн

Аннотация. В статье рассматривается квадратное уравнение над ассоциативной D-алгеброй. В алгебре кватернионов H, уравнение $x^2 = a$ имеет либо 2 корня, либо бесконечно много корней. Если $a \in R, a < 0$, то уравнение имеет бесконечно много корней. В противном случае, уравнение имеет корни $x_1, x_2, x_2 = -x_1$. Я рассмотрел варианты теоремы Виета и возможность применить метод выделения полного квадрата.

В алгебре кватернионов существует квадратное уравнение, которое либо имеет 1 корень, либо не имеет корней.

СОДЕРЖАНИЕ

1. Предисловие .. 2
1.1. Предисловие к изданию 1 2
1.2. Предисловие к изданию 2 2
1.3. Предисловие к изданию 3 5
2. Представление универсальной алгебры 6
2.1. Универсальная алгебра 7
2.2. Представление универсальной алгебры 9
3. Линейная алгебра .. 11
3.1. Модуль над кольцом 11
3.2. Алгебра над коммутативным кольцом 13
3.3. Линейное отображение D-алгебры 15
3.4. Алгебра с сопряжением 19
3.5. Многочлен над ассоциативной D-алгеброй 20
3.6. Алгебра кватернионов 22
4. Простые примеры .. 23
5. Квадратный корень .. 24
6. Алгебра с сопряжением 28
7. Несколько замечаний 31
8. Вопросы и ответы ... 32
9. Список литературы ... 36
10. Предметный указатель 38
11. Специальные символы и обозначения 39

Aleks_Kleyn@MailAPS.org.
http://AleksKleyn.dyndns-home.com:4080/ http://arxiv.org/a/kleyn_a_1.
http://AleksKleyn.blogspot.com/.
1. ПРЕДИСЛОВИЕ

1.1. ПРЕДИСЛОВИЕ К ИЗДАНИЮ 1. Много лет назад, в седьмом классе на уроках алгебры, моя учительница научила меня решать квадратные уравнения. Это не было сложно. Хотя потребовалось время, чтобы запомнить формулу, простая идея выделения полного квадрата всегда позволяла выполнить необходимые вычисления.

Несмотря на кажущуюся простоту, каждый раз узнавая что-то новое, я испытывал радость открытия. С годами более сильные чувства притупили воспоминание этого чувства. Но судьба наша непредсказуема и иногда любит пошутить. Назад в школу. Я опять учусь решать квадратные уравнения, изучаю стандартные алгебраические тождества.

Это неважно, что я изучаю некоммутативную алгебру вместо действительных чисел. Память ведёт меня по известной дороге, и я ей доверяю. Где-то там, за поворотом, меня ждёт радость нового открытия.

Июнь, 2015

1.2. ПРЕДИСЛОВИЕ К ИЗДАНИЮ 2. Вскоре после публикации статьи, я нашёл ответ на вопрос 8.1 в статье [10]. В этой статье авторы рассматривают уравнения вида

\[(1.1) \quad xp_0x^* + xQ + Rx^* = S\]

где \(Q, R, S\) - \(H\)-числа и \(p_0 \in \mathbb{R}\). Поскольку

\[x^* = \frac{1}{2}(x + ixi + jxj + kxk)\]

в алгебре кватернионов, то уравнение \((1.1)\) имеет вид

\[(1.2) \quad -\frac{p_0}{2}x^2 - \frac{p_0}{2}xxi - \frac{p_0}{2}xjxj - \frac{p_0}{2}xkkk + xQ - \frac{R}{2}x - \frac{R}{2}ixi - \frac{R}{2}jxj - \frac{R}{2}kxk = S\]

В статье [10], дан полный анализ решений уравнения \((1.1)\) (теорема [10]-2 на странице 7).

Однако меня смутил вариант 2, когда уравнение может иметь один корень. Согласно доказательству, мы получаем единственный корень. Однако кратность этого корня должна быть 2, так как это корень квадратного уравнения. Поэтому я решил проверить этот вариант на конкретном уравнении. Я выбрал коэффициенты

\[Q = 4i \quad R = -4j \quad p_0 = 8\]

Я выбрал \(\text{scal}(S)\) так, чтобы \(\rho\), определённое равенством

\[(1.3) \quad \rho = \frac{\text{scal}(S)}{p_0} + \frac{|Q + R^*|^2}{4p_0^2}\]
Квадратное уравнение над ассоциативной D-алгеброй имело значение 0

$$scal(S) = -\frac{|Q + R^*|^2}{4p_0}$$

(1.4)

$$= -\frac{|4i + 4j|^2}{4 \cdot 8} = -\frac{(4i + 4j)(-4i - 4j)}{32}$$

$$= -\frac{16 - 16ij - 16ji + 16}{32} = -1$$

Выбор значения S основан на утверждении

$$\text{Im } S = -\text{Im } RQ$$

$$(p_0) = -\text{Im } (4j4i) = -2k$$

В этом случае уравнение (1.1) имеет вид

(1.5)

$$x^8 + 4xi - 4jx^* = -1 - 2k$$

и имеет единственный корень

(1.6)

$$x = -\frac{Q^* + R}{2p_0} = -\frac{-4i - 4j}{2 \cdot 8} = \frac{1}{4}(i + j)$$

Так как уравнения (1.1), (1.2) эквивалентны, то уравнение (1.5) можно записать в виде

(1.7)

$$p(x) = 0$$

gде многочлен $p(x)$ имеет вид

$$p(x) = (-4 \otimes 1 \otimes 1 - 4 \otimes i \otimes i - 4 \otimes j \otimes j - 4 \otimes k \otimes k) \circ x^2$$

$$+ (4 \otimes i + 2j \otimes 1 - 2k \otimes i - 2 \otimes j + 2i \otimes k) \circ x + 1 + 2k$$

(1.8)

$$= -4x^2 - 4ixi - 4jxj - 4kxk$$

$$+ 4xi + 2jx - 2kxi - 2xj + 2ixk + 1 + 2k$$

Так как (1.6) является корнем уравнения (1.7), то многочлен

(1.9)

$$q(x) = x - \frac{1}{4}(i + j)$$

является делителем многочлена $p(x)$. Применяя алгоритм деления, рассмотренный в теореме 3.46, мы получим

$$p(x) = -4q(x)(x + 1 + jxj + kxk - i)$$

$$+ q(x)(i - j) - iq(x)(1 - k) + jq(x)(k + 1) - kq(x)(j + i)$$

(1.10)

Выражение (1.10) не даёт ответа на поставленный вопрос. Поэтому я оставляю вопрос 8.1 открытым.

Это интересный поворот. Основная задача этой статьи была показать, что некоторые идеи могут облегчить исследование в области некоммутативной алгебры. В тоже время, эта статья поднимает вопрос об эффективности алгоритма деления, рассмотренного в теореме 3.46. Это хорошо. Чтобы решить задачу, мы должны её увидеть.

Тем не менее, рассмотрим результат деления более подробно.

$$p(x) = (-4 \otimes (x + 1 + jxj + kxk - i)$$

$$+ 1 \otimes (i - j) - i \otimes (1 - k) + j \otimes (k + 1) - k \otimes (j + i)) \circ q(x)$$

(1.11)
Очевидно, что
\[s(j) = 1 \otimes (j - i) - (j - i) \otimes 1 \neq 0 \otimes 0 \]

Но
\[s(j) \circ r(j) = 0 \]

Очевидно, что этот метод не работает в случае кратных корней.

Я пока не готов рассмотреть деление многочлена (1.8) на многочлен второй степени. Опираясь на вид многочлена (1.8), мы можем предположить, что делитель имеет вид
\[r(x) = -\frac{1}{4}(4x - i - j)(4x - i - j) - \frac{1}{4}(4x - i - j)i(4x - i - j)i \]
\[\quad - \frac{1}{4}(4x - i - j)j(4x - i - j)j - \frac{1}{4}(4x - i - j)k(4x - i - j)k \]

Однако, очевидно, что \(r(x) \in R \) для любого \(x \). Это рассуждение окончательно убедило меня, что теорема [10]-2 на странице 7 верна.

Январь, 2016
1.3. Пределение к изданию 3. Периодически я просматриваю свои старые статьи. По прошествии времени мы видим иначе пройденный путь. Допила очередь и до этой статьи. Я обратил внимание, что я не удовлетворён методом, который я использовал для деления многочлена.

Если я делию многочлен

\[p(x) = 2(x - i)(x - j) + (x - j)(x - i) = 3x^2 - 2ix - 2xj - jx - xi + k \]

на многочлен

\[r(x) = x - i \]

я получаю тензор

\[s(x) = 3 \otimes x + i \otimes 1 - 2 \otimes j - j \otimes 1 - 1 \otimes i \]

как частное от деления. Однако я ожидаю тензор

\[s(x) = 2 \otimes (x - j) + (x - j) \otimes 1 \]

Самое главное, что оба ответа верны.

В этот раз я увидел задачу, которой я не видел два года назад. Корень проблемы в том, как я выполняю операцию деления.

Для того, чтобы поделить многочлен \(p(x) \) на многочлен \(r(x) \), я записываю слагаемое \(3x^2 \) в виде \(3xx \) и вместо \(x \) я подставляю выражение \(r(x) + i \).

Однако слагаемое \(3x^2 \) может быть записано в виде

\[(3 - a)xx + axx \]

где \(a \) - произвольное \(H \)-число. Частное от деления зависит от выбора значения \(a \)

\[p(x) = (3 - a)(r(x) + i)x + ax(r(x) + i) - 2ix - 2xj - jx - xi + k \]

\[= (3 - a)r(x)x + (3 - a)ix + axr(x) + axi - 2ix - 2xj - jx - xi + k \]

\[= (3 - a)r(x)x + axr(x) + (3 - a)i(r(x) + i) \]

\[+ a(r(x) + i)i - 2i(r(x) + i) - 2(r(x) + i)j - j(r(x) + i) - (r(x) + i)i + k \]

\[= (3 - a)r(x)x + axr(x) + 3ir(x) - 3 - air(x) + a \]

\[+ ar(x)i - a - 2ir(x) + 2 - 2r(x)j - 2k - jr(x) + k - r(x)i + 1 + k \]

\[= (3 - a)r(x)x + axr(x) + 3ir(x) - air(x) \]

\[+ ar(x)i - 2ir(x) - 2r(x)j - jr(x) - r(x)i \]

Следовательно

\[p(x) = s_2(a, x) \circ r(x) \]

где

\[s_2(a, x) = (3 - a) \otimes x + ax \otimes 1 + (3 - a)i \otimes 1 \]

\[+ a \otimes i - 2i \otimes 1 - 2 \otimes j - j \otimes 1 - 1 \otimes i \]

\[= (3 - a) \otimes x + (ax - j - 2i + (3 - a)i) \otimes 1 + (a - 1) \otimes i - 2 \otimes j \]

\[= (3 - a) \otimes x + (ax - j + i - ai) \otimes 1 + (a - 1) \otimes i - 2 \otimes j \]

Легко видеть, что

\[s_2(1, x) = 2 \otimes x + (x - j - 2i) \otimes 1 + (1 - 1) \otimes i - 2 \otimes j \]

\[= 2 \otimes (x - j) + (x - j) \otimes 1 \]

является ожидаемым тензором.
Это наблюдение легко обобщить.

Теорема 1.1. Пусть для тензоров \(s_1(x), s_2(x) \in A \otimes A \) верны равенства

\[
p(x) = s_1(x) \circ r(x) \]

\[
p(x) = s_2(x) \circ r(x) \]

Тогда

\[
(s_1(x) - s_2(x)) \circ r(x) = 0
\]

\[\square\]

Теорема 1.2. Пусть \(p(x) \) - многочлен степени \(n \) и \(r(x) \) - многочлен степени \(m < n \), который является делителем многочлена \(p(x) \). Пусть тензор \(s_1(x) \) является частным от деления многочлена \(p(x) \) на многочлен \(r(x) \). Тогда для произвольного тензора \(s(x) \in A \otimes A \) степени, не превышающей \(n - m \), и такого, что

\[
s(x) \circ r(x) = 0
\]

тензор

\[
s_2(x) = s_1(x) + s(x)
\]

является частным от деления многочлена \(p(x) \) на многочлен \(r(x) \). \[\square\]

Если \(D \)-алгебра \(A \) имеет конечный базис \(\mathbb{F} \) и многочлен \(r(x) \) является делителем многочлена \(p(x) \), то теорема 1.2 порождает следующий алгоритм для построения множества частных от деления многочлена \(p(x) \) на многочлен \(r(x) \). Пусть \(R(x) \) - матрица координат \(A \)-числа относительно базиса \(\mathbb{F} \). Тогда тензору \(s(x) \) соответствует матрица \(S(x) \) такая, что

\[
S(x)R(x) = 0
\]

Октябрь, 2018

2. ПРЕДСТАВЛЕНИЕ УНИВЕРСАЛЬНОЙ АЛГЕБРЫ

В этом разделе собраны определения и теоремы, которые необходимы для понимания текста предлагаемой статьи. Поэтому читатель может обращаться к утверждениям из этого раздела по мере чтения основного текста статьи.

Теорема 2.1. Пусть \(N \) - отношение эквивалентности на множестве \(A \). Рассмотрим категорию \(A \) объектами которой являются отображения \(f_1, f_2 : A \to S_1, S_2 \) \(\ker f_1 \supseteq N \) \(\ker f_2 \supseteq N \)

Мы определим морфизм \(f_1 \to f_2 \) как отображение \(h : S_1 \to S_2 \), для которого коммутативна диаграмма

\[
\begin{array}{ccc}
S_1 & \xrightarrow{h} & S_2 \\
\downarrow{f_1} & & \downarrow{f_2} \\
A & \xrightarrow{?} & \end{array}
\]
2.1. Универсальная алгебра. Доказательство. Рассмотрим диаграмму

\begin{equation}
\begin{array}{c}
\text{nat } N : A \rightarrow A/N \\
\text{является универсально отталкивающим в категории } A. \quad (2.2)
\end{array}
\end{equation}

Из утверждения (2.1) и равенства
\[j(a_1) = j(a_2) \]
следует
\[f(a_1) = f(a_2) \]
Следовательно, мы можем однозначно определить отображение \(h \) с помощью равенства
\[h(j(b)) = f(b) \]
\[\square \]

Определение 2.2. Для любых множеств \(A, B \), декартова степень \(B^A \) - это множество отображений
\[f : A \rightarrow B \]
\[\square \]

Определение 2.3. Пусть дано множество \(A \) и целое число \(n \geq 0 \). Отображение
\[\omega : A^n \rightarrow A \]
называется \(n \)-арной операцией на множестве \(A \) или просто операцией на множестве \(A \). Для любых \(a_1, ..., a_n \in A \), мы пользуемся любой из форм записи \(\omega(a_1, ..., a_n), a_1...a_n\omega \) для обозначения образа отображения \(\omega \). \[\square \]

Замечание 2.4. Согласно определениям 2.2, 2.3, \(n \)-арная операция \(\omega \in A^{A^n} \). \[\square \]

1. Утверждение теоремы 2.1 аналогично утверждению на с. [1]-94.
2. Определение универсального объекта смотри в определении на с. [1]-47.
3. Я следую определению из примера (IV), [12], страницы 17, 18.
4. Определение 2.3 опирается на определение в примере (vi), страница [12]-26.
Определение 2.5. Область операторов - это множество операторов Ω вместе с отображением

$$a : \Omega \rightarrow N$$

Если $\omega \in \Omega$, то $a(\omega)$ называется арностью оператора ω. Если $a(\omega) = n$, то оператор ω называется n-арным. Мы пользуемся обозначением

$$\Omega(n) = \{\omega \in \Omega : a(\omega) = n\}$$

для множества n-арных операторов.

Определение 2.6. Пусть A - множество, а Ω - область операторов. Семейство отображений

$$\Omega(n) \rightarrow A^n, \quad n \in N$$

называется структурой Ω-алгебры на A. Множество A со структурой Ω-алгебры называется Ω-алгеброй A_Ω или универсальной алгеброй. Множество A называется носителем Ω-алгебры.

Область операторов Ω описывает множество Ω-алгебр. Элемент множества Ω называется оператором, так как определение Ω-алгебры предполагает некоторое множество. Согласно замечанию 2.4 и определению 2.6, каждому оператору $\omega \in \Omega(n)$ сопоставляется n-арная операция ω на A.

Определение 2.7. Пусть A, B - Ω-алгебры и $\omega \in \Omega(n)$. Отображение

$$f : A \rightarrow B$$

согласовано с операцией ω, если для любых $a_1, ..., a_n \in A$,

$$(2.2) \quad f(a_1) ... f(a_n) \omega = f(a_1 ... a_n \omega)$$

Отображение f называется гомоморфизмом Ω-алгебр A в Ω-алгебру B, если f согласовано с каждым $\omega \in \Omega$.

Определение 2.8. Гомоморфизм

$$f : A \rightarrow A$$

источником и целью которого является одна и та же алгебра, называется эндоморфизмом. Мы обозначим $\text{End}(\Omega; A)$ множество эндоморфизмов Ω-алгебры A.

Определение 2.9. Пусть множество A_2 является Ω_2-алгеброй. Пусть на множестве преобразований $\text{End}(\Omega_2; A_2)$ определена структура Ω_1-алгебры. Гомоморфизм

$$f : A_1 \rightarrow \text{End}(\Omega_2; A_2)$$

2.5 Я следую определению 1, страница [12]-62.
2.6 Я следую определению 2, страница [12]-62.
2.7 Я следую определению на странице [12]-63.
\(\Omega_1 \)-алгебра \(A_1 \) в \(\Omega_2 \)-алгебре \(\text{End}(\Omega_2, A_2) \) называется представлением \(\Omega_1 \)-алгебры \(A_1 \) или \(A_1 \)-представлением в \(\Omega_2 \)-алгебре \(A_2 \). □

2.2. Представление универсальной алгебры. Мы будем также пользоваться записью

\[
\begin{array}{c}
\text{\(f : A_1 \longrightarrow A_2 \)}
\end{array}
\]

для обозначения представления \(\Omega_1 \)-алгебры \(A_1 \) в \(\Omega_2 \)-алгебре \(A_2 \).

Определение 2.10. Мы будем называть представление

\[
\begin{array}{c}
\text{\(f : A_1 \longrightarrow A_2 \)}
\end{array}
\]

\(\Omega_1 \)-алгебры \(A_1 \) эффективным, если отображение

\[
\begin{array}{c}
\text{\(f : A_1 \rightarrow \text{End}(\Omega_2, A_2) \)}
\end{array}
\]

является изоморфизмом \(\Omega_1 \)-алгебры \(A_1 \) в \(\text{End}(\Omega_2, A_2) \). □

Определение 2.11. Мы будем называть представление

\[
\begin{array}{c}
\text{\(g : A_1 \longrightarrow A_2 \)}
\end{array}
\]

\(\Omega_1 \)-алгебры \(A_1 \) свободным, если из утверждения

\[
\begin{array}{c}
\text{\(f(a_1)(a_2) = f(b_1)(a_2) \)}
\end{array}
\]

для любого \(a_2 \in A_2 \) следует, что \(a = b \). □

Определение 2.12. Пусть

\[
\begin{array}{c}
\text{\(f : A_1 \longrightarrow A_2 \)}
\end{array}
\]

представление \(\Omega_1 \)-алгебры \(A_1 \) в \(\Omega_2 \)-алгебре \(A_2 \) и

\[
\begin{array}{c}
\text{\(g : B_1 \longrightarrow B_2 \)}
\end{array}
\]

представление \(\Omega_1 \)-алгебры \(B_1 \) в \(\Omega_2 \)-алгебре \(B_2 \). Для \(i = 1, 2 \), пусть отображение

\[
\begin{array}{c}
\text{\(r_i : A_i \rightarrow B_i \)}
\end{array}
\]

является гомоморфизмом \(\Omega_1 \)-алгебры. Кортеж отображений \(r = (r_1, r_2) \) таких, что

\[
\begin{array}{c}
\text{\(r_2 \circ f(a) = g(r_1(a)) \circ r_2 \)}
\end{array}
\]

называется морфизмом представлений из \(f \) в \(g \). Мы также будем говорить, что определён морфизм представлений \(\Omega_1 \)-алгебры в \(\Omega_2 \)-алгебре. □

\[2.8 \text{ Аналогичное определение эффективного представления группы смотри в [17], страница 16, [18], страница 111, [13], страница 51 (Кон называет такое представление точным).}

\[2.9 \text{ Аналогичное определение свободного представления группы смотри в [17], страница 16.} \]
Замечание 2.13. Мы можем рассматривать пару отображений r_1, r_2 как отображение

$$F : A_1 \cup A_2 \to B_1 \cup B_2$$

такое, что

$$F(A_1) = B_1 \quad F(A_2) = B_2$$

Поэтому в дальнейшем кортеж отображений $r = (r_1, r_2)$ мы будем также называть отображением и пользоваться записью

$$r : f \to g$$

Пусть $a = (a_1, a_2)$ - кортеж A-чисел. Мы будем пользоваться записью

$$r(a) = (r_1(a_1), r_2(a_2))$$

dля образа кортежа A-чисел при морфизме представлений r. □

Определение 2.14. Если представления f и g совпадают, то морфизм представлений $r = (r_1, r_2)$ называется морфизмом представления f. □

Определение 2.15. Пусть

$$f : A_1 \to A_2$$

представление Ω_1-алгебры A_1 в Ω_2-алгебре A_2 и

$$g : A_1 \to B_2$$

представление Ω_1-алгебры A_1 в Ω_2-алгебре B_2. Пусть

$$(id : A_1 \to A_1, \; r_2 : A_2 \to B_2)$$

морфизм представлений. В этом случае мы можем отождествить морфизм (id, r_2) представлений Ω_1-алгебры и соответствующий гомоморфизм $r_2 \Omega_2$-алгебры и будем называть гомоморфизм r_2 приведенным морфизмом представлений. Мы будем пользоваться диаграммой

(2.4)

для представления приведенного морфизма r_2 представлений Ω_1-алгебры. Из диаграммы следует

(2.5)

$$r_2 \circ f(a) = g(a) \circ r_2$$

Мы будем также пользоваться диаграммой

(2.5)
3. Линейная алгебра

В этом разделе собраны определения и теоремы, которые необходимы для понимания текста предлагаемой статьи. Поэтому читатель может обращаться к утверждениям из этого раздела по мере чтения основного текста статьи.

3.1. Модуль над кольцом. Сумма преобразований f и g абелевой группы определяется согласно правилу

$$ (f + g)(a) = f(a) + g(a) $$

Поскольку, рассматривая представление $$ f : D \longrightarrow A $$

кольца D в абелевой группе A, мы полагаем

(3.1) $$(f(a) + f(b))(x) = f(a)(x) + f(b)(x)$$

Согласно определению 2.9, отображение f является гомоморфизмом кольца D. Следовательно

(3.2) $$ f(a + b) = f(a) + f(b) $$

Равенство

(3.3) $$ f(a + b)(x) = f(a)(x) + f(b)(x) $$

является следствием равенств (3.1), (3.2).

Teorema 3.1. Представление

$$ f : D \longrightarrow A $$

кольца D в абелевой группе A удовлетворяет равенству

(3.4) $$ f(0) = \overline{0} $$

где

$$ \overline{0} : A \rightarrow A $$

отображение такое, что

(3.5) $$ \overline{0} \circ v = 0 $$

Доказательство. Равенство

(3.6) $$ f(a)(x) = f(a + 0)(x) = f(a)(x) + f(0)(x) $$

является следствием равенства (3.3). Равенство

(3.7) $$ f(0)(x) = 0 $$

является следствием равенства (3.6). Равенство (3.5) является следствием равенств (3.4), (3.7).
Теорема 3.2. Представление

\[f : D \rightarrow A \]

кольца \(D \) в абелевой группе \(A \) эффективно тогда и только тогда, когда из равенства \(f(a) = 0 \) следует \(a = 0 \).

Доказательство. Если \(a, b \in R \) порождают одно и то же преобразование, то

\[f(a)(m) = f(b)(m) \]

для любого \(m \in A \). Из равенств (3.3), (3.8) следует, что

\[f(a - b)(m) = 0 \]

Равенство

\[f(a - b) = 0 \]

является следствием равенств (3.5), (3.9). Следовательно, представление \(f \) эффективно тогда и только тогда, когда \(a = b \). □

Определение 3.3. Эффективное представление коммутативного кольца \(D \) в абелевой группе \(V \)

\[f : D \rightarrow V \]

называется модулем над кольцом \(D \) или \(D \)-модулем. \(V \)-число называется вектором. □

Теорема 3.4. Элементы \(D \)-модуля \(V \) удовлетворяют соотношениям

3.4.1: закон ассоциативности

\[(pq)v = p(qv) \]

3.4.2: закон дистрибутивности

\[p(v + w) = pv + pw \]

\[(p + q)v = pv + qv \]

3.4.3: закон унитарности

\[1v = v \]

для любых \(p, q \in D(1), v, w \in V \).

Доказательство. Теорема является следствием теоремы [8]-4.1.3. □

Определение 3.5. Пусть \(\bar{v} \) - квазибазис \(D \)-модуля \(V \), и вектор \(v \in V \) имеет разложение

\[\bar{v} = v_i e^i \]

относительно квазибазиса \(\bar{v} \). \(D(1) \)-числа \(v_i \) называются координатами вектора \(v \) относительно квазибазиса \(\bar{v} \). Матрица \(D(1) \)-числа \(v = (v_i, i \in I) \) называется координатной матрицей вектора \(v \) в квазибазисе \(\bar{v} \). □
Определение 3.6. Приведенный морфизм представлений $f : A_1 \rightarrow A_2$ D-модуля A_1 в D-модуль A_2 называется линейным отображением D-модуля A_1 в D-модуль A_2. Обозначим $\mathcal{L}(D; A_1 \rightarrow A_2)$ множество линейных отображений D-модуля A_1 в D-модуль A_2.

Теорема 3.7. Линейное отображение $f : V_1 \rightarrow V_2$ D-модуля V_1 в D-модуль V_2 удовлетворяет равенствам

(3.17) $f \circ (a + b) = f \circ a + f \circ b$

(3.18) $f \circ (da) = d(f \circ a)$

$a, b \in A_1$, $d \in D$

Доказательство. Теорема является следствием теоремы [8]-4.2.2.

Определение 3.8. Пусть D - коммутативное кольцо. D-модуль A называется алгеброй над кольцом D или D-алгеброй, если определена операция произведения $v w = C \circ (v, w)$ где C - билинейное отображение $C : A \times A \rightarrow A$

Если A является свободным D-модулем, то A называется свободной алгеброй над кольцом D.

Теорема 3.9. Произведение в алгебре A дистрибутивно по отношению к сложению

(3.20) $(a + b)c = ac + bc$

(3.21) $a(b + c) = ab + ac$

3.2. Алгебра над коммутативным кольцом. Доказательство. Теорема является следствием теоремы [8]-5.1.2.

Соглашение 3.10. Элемент D-алгебры A называется A-числом. Например, комплексное число также называется C-числом, а квaternion называется H-числом.

3.1 В некоторых книгах (например, на странице [1]-94) теорема 3.7 рассматривается как определение.

3.2 Я следую определению, приведенному в [19], страница 1, [11], страница 4. Утверждение, верное для произвольного D-модуля, верно также для D-алгебры.
Определение 3.11. Если произведение в D-алгебре A имеет единичный элемент, то D-алгебра A называется унитальной алгеброй.\footnote{Смотрите определение унитальной алгебры также на страницах [3]-137.}

Произведение в алгебре может быть ни коммутативным, ни ассоциативным. Следующие определения основаны на определениях, данных в [19], страница 13.

Определение 3.12. Коммутатор

$$[a, b] = ab - ba$$

служит мерой коммутативности в D-алгебре A. D-алгебра A называется коммутативной, если

$$[a, b] = 0$$

Определение 3.13. Ассоциатор

$$(a, b, c) = (ab)c - a(bc)$$

служит мерой ассоциативности в D-алгебре A. D-алгебра A называется ассоциативной, если

$$(a, b, c) = 0$$

Определение 3.14. Ядро D-алгебры A - это множество\footnote{Определение дано на базе аналогичного определения в [19], с. 13.}

$$N(A) = \{a \in A : \forall b, c \in A, (a, b, c) = (b, a, c) = (b, c, a) = 0\}$$

Определение 3.15. Центр D-алгебры A - это множество\footnote{Определение дано на базе аналогичного определения в [19], страница 14.}

$$Z(A) = \{a \in A : a \in N(A), \forall b \in A, ab = ba\}$$

Соглашение 3.16. Пусть A - свободная алгебра с конечным или счётным базисом. При разложении элемента алгебры A относительно базиса мы пользуемся одной и той же корневой буквой для обозначения этого элемента и его координат. В выражении a^2 не ясно - это компонента разложения элемента алгебры или это операция возведения в степень. Для облегчения чтения текста мы будем индекс элемента алгебры выделять цветом. Например,

$$a = a^i e_i$$

\footnote{При разложении элемента алгебры a относительно базиса мы пользуемся одной и той же корневой буквой для обозначения этого элемента и его координат. В выражении a^2 не ясно - это компонента разложения элемента алгебры или это операция возведения в степень. Для облегчения чтения текста мы будем индекс элемента алгебры выделять цветом. Например, $a = a^i e_i$.}
Соглашение 3.17. Пусть \mathbb{F} - базис свободной алгебры A над кольцом D. Если алгебра A имеет единицу, положим e_0 - единица алгебры A. □

Теорема 3.18. Пусть \mathbb{F} - базис свободной алгебры A_1 над кольцом D. Пусть

$$a = a^i e_i, \quad b = b^i e_i, \quad a, b \in A$$

Произведение a, b можно получить согласно правилу

$$(ab)^k = C_{ij}^k a^i b^j$$

где C_{ij}^k - структурные константы алгебры A_1 над кольцом D. Произведение базисных векторов в алгебре A_1 определено согласно правилу

$$e_i e_j = C_{ij}^k e_k$$

Доказательство. Теорема является следствием теоремы [8]-5.1.9. □

Определение 3.19. Пусть A_1 и A_2 - алгебры над коммутативным кольцом D. Линейное отображение D-модуля A_1 в D-модуль A_2 называется линейным отображением D-алгебры A_1 в D-алгебру A_2.

Обозначим $\mathcal{L}(D; A_1 \rightarrow A_2)$ множество линейных отображений D-алгебры A_1 в D-алгебру A_2. □

Определение 3.20. Пусть A_1, \ldots, A_n, S - D-алгебры. Мы будем называть полилинейное отображение

$$f : A_1 \times \ldots \times A_n \rightarrow S$$

D-модулей A_1, \ldots, A_n в D-модуль S полилинейным отображением D-алгебр A_1, \ldots, A_n в D-модуль S. Обозначим $\mathcal{L}(D; A^n \rightarrow S)$ множество полилинейных отображений D-алгебры A_1, \ldots, A_n в D-модуль S. Обозначим $\mathcal{L}(D; A^n \rightarrow S)$ множество n-линейных отображений D-алгебры $A_1 (A_1 = \ldots = A_n = A_1)$ в D-алгебру S.

Теорема 3.21. Пусть A_1, \ldots, A_n - D-алгебры. Тензорное произведение $A_1 \otimes \ldots \otimes A_n$ D-модулей A_1, \ldots, A_n является D-алгеброй, если мы определям произведение согласно правилу

$$(a_1, \ldots, a_n) \ast (b_1, \ldots, b_n) = (a_1 b_1) \otimes \ldots \otimes (a_n b_n)$$

3.3. Линейное отображение D-алгебры. Доказательство. Теорема является следствием теорем [8]-6.1.3. □

Теорема 3.22. Пусть A является D-алгеброй. Пусть произведение в D-модуле $A \otimes A$ определено согласно правилу

$$(p_0 \otimes p_1) \circ (q_0 \otimes q_1) = (p_0 q_0) \otimes (q_1 p_1)$$
Представление
\[h : A \otimes A \longrightarrow \mathcal{L}(D; A \rightarrow A) \quad h(p) : g \rightarrow p \circ g \]

\(D \)-алгебры \(A \otimes A \) в модуле \(\mathcal{L}(D; A \rightarrow A) \), определённое равенством
\[(a \otimes b) \circ g = ab \quad a, b \in A \quad g \in \mathcal{L}(D; A \rightarrow A) \]
позволяет отождествить тензор \(d \in A \times A \) с линейным отображением \(d \circ \delta \in \mathcal{L}(D; A \rightarrow A) \), где \(\delta \in \mathcal{L}(D; A \rightarrow A) \) - тождественное отображение.

Линейное отображение \((a \otimes b) \circ \delta \) имеет вид
\[(3.25) \quad (a \otimes b) \circ c = abc \]

Доказательство. Теорема является следствием теоремы [8]-6.3.4.

Соглашение 3.23. В выражении вида
\[a_{i,0} \cdot x_{i,1} \]
pредполагается сумма по индексу \(i \).

Теорема 3.24. Пусть \(A \) - конечная мерная ассоциативная \(D \)-алгебра. Пусть \(\mathcal{F} \) - базис \(D \)-модуля \(A \). Пусть \(\mathcal{F} \) - базис левого \(A \otimes A \)-модуля \(\mathcal{L}(D; A \rightarrow A) \).

3.24.1: Линейное отображение \(f \in \mathcal{L}(D; A \rightarrow A) \) имеет следующее разложение
\[(3.26) \quad f = f^k \circ F_k \]
где
\[(3.27) \quad f^k = f^k_{0,1} \otimes f^k_{1,1} \quad f^k \in A \otimes A \]

3.24.2: Линейное отображение \(f \) имеет стандартное представление
\[(3.28) \quad f = f^{k,ij}(e_i \otimes e_j) \circ F_k \]
\[f \circ x = f^{k,ij} e^i(F_k \circ x) e^j \]

Доказательство. Теорема является следствием теоремы [8]-6.4.1.

Определение 3.25. Выражение \(f^{k,ij}_{p,q} \), п = 0, 1, в равенстве (3.27) называется компонентой линейного отображения \(f \). Выражение \(f^{k,ij} \) в равенстве (3.28) называется стандартной компонентой линейного отображения \(f \).

Теорема 3.26. Пусть \(A_1 \) - свободный \(D \)-модуль. Пусть \(A_2 \) - свободная ассоциативная \(D \)-алгебра. Пусть \(\mathcal{F} \) - базис левого \(A_1 \otimes A_2 \)-модуля \(\mathcal{L}(D; A_1 \rightarrow A_2) \).

Если \(D \)-модуль \(A \) не является свободным \(D \)-модулем, то мы будем рассматривать множество
\[\overline{\mathcal{F}} = \{ F_k \in \mathcal{L}(D; A_1 \rightarrow A_2) : k = 1, ..., n \} \]
линейно независимых линейных отображений. Теорема верна для любого линейного отображения
\[f : A \rightarrow A \]
порождённого множеством линейных отображений \(\overline{\mathcal{F}} \).
Для любого отображения \(F_k \in \overline{\mathcal{F}} \), существует множество линейных отображений
\[
F^l_k : A_1 \otimes A_1 \rightarrow A_2 \otimes A_2
\]
\(D \)-модуля \(A_1 \otimes A_1 \) в \(D \)-модуль \(A_2 \otimes A_2 \) таких, что
\[
F_k \circ a \circ x = (F^l_k \circ a) \circ F_l \circ x
\]
Отображение \(F^l_k \) называется преобразованием сопряжения.

ДОКАЗАТЕЛЬСТВО. Теорема является следствием теоремы [8]-6.4.2.

Теорема 3.27. Пусть \(A_1 \) - свободный \(D \)-модуль. Пусть \(A_2, A_3 \) - свободные ассоциативные \(D \)-алгебры. Пусть \(\overline{\mathcal{F}} \) - базис левого \(A_2 \otimes A_2 \)-модуля \(\mathcal{L}(D; A_1 \rightarrow A_2) \). Пусть \(\overline{\mathcal{G}} \) - базис левого \(A_3 \otimes A_3 \)-модуля \(\mathcal{L}(D; A_2 \rightarrow A_3) \).

3.27.1: Множество отображений
\[
\overline{\mathcal{F}} = \{ H_{lk} : H_{lk} = G_l \circ F_k, G_l \in \overline{\mathcal{G}}, F_k \in \overline{\mathcal{F}} \}
\]
является базисом левого \(A_3 \otimes A_3 \)-модуля \(\mathcal{L}(D; A_1 \rightarrow A_2 \rightarrow A_3) \).

3.27.2: Пусть линейное отображение
\[
f : A_1 \rightarrow A_2
\]
имеет разложение
\[
f = f^k \circ F_k
\]
относительно базиса \(\overline{\mathcal{F}} \). Пусть линейное отображение
\[
g : A_2 \rightarrow A_3
\]
имеет разложение
\[
g = g^l \circ G_l
\]
относительно базиса \(\overline{\mathcal{G}} \). Тогда линейное отображение
\[
h = g \circ f
\]
имеет разложение
\[
h = h^l_k \circ K_{lk}
\]
относительно базиса \(\overline{\mathcal{K}} \), где
\[
h^l_k = g^l_i \circ (G^m_m \circ f^m)
\]

ДОКАЗАТЕЛЬСТВО. Теорема является следствием теоремы [8]-6.4.3.

Теорема 3.28. Пусть \(A \) - свободная ассоциативная \(D \)-алгебра. Пусть левый \(A \otimes A \)-модуль \(\mathcal{L}(D; A \rightarrow A) \) порождён тождественным отображением \(F_0 = \delta \). Пусть линейное отображение
\[
f : A \rightarrow A
\]
имеет разложение
\[
f = f_{s,0} \otimes f_{s+1}
\]

3.27.1: Множество отображений
\[
\overline{\mathcal{F}} = \{ H_{lk} : H_{lk} = G_l \circ F_k, G_l \in \overline{\mathcal{G}}, F_k \in \overline{\mathcal{F}} \}
\]
является базисом левого \(A_3 \otimes A_3 \)-модуля \(\mathcal{L}(D; A_1 \rightarrow A_2 \rightarrow A_3) \).

3.27.2: Пусть линейное отображение
\[
f : A_1 \rightarrow A_2
\]
имеет разложение
\[
f = f^k \circ F_k
\]
относительно базиса \(\overline{\mathcal{F}} \). Пусть линейное отображение
\[
g : A_2 \rightarrow A_3
\]
имеет разложение
\[
g = g^l \circ G_l
\]
относительно базиса \(\overline{\mathcal{G}} \). Тогда линейное отображение
\[
h = g \circ f
\]
имеет разложение
\[
h = h^l_k \circ K_{lk}
\]
относительно базиса \(\overline{\mathcal{K}} \), где
\[
h^l_k = g^l_i \circ (G^m_m \circ f^m)
\]

ДОКАЗАТЕЛЬСТВО. Теорема является следствием теоремы [8]-6.4.3.
Пусть линейное отображение

\[g : A \rightarrow A \]

имеет разложение

\begin{equation}
(3.37) \quad g = g_{t0} \otimes g_{t1}
\end{equation}

Тогда линейное отображение

\begin{equation}
(3.38) \quad h = g \circ f
\end{equation}

имеет разложение

\begin{equation}
(3.39) \quad h = h_{ts0} \otimes h_{ts1}
\end{equation}

где

\begin{align}
&h_{ts0} = g_{t0} f_{s0} \\
&h_{ts1} = f_{s1} g_{t1}
\end{align}

Доказательство. Теорема является следствием теоремы \([8]-6.4.4.\)

Соглашение 3.29. В равенстве

\begin{equation}
((a_0, \ldots, a_n, \sigma) \circ (f_1, \ldots, f_n)) \circ (x_1, \ldots, x_n)
\end{equation}

также как и в других выражениях полилинейного отображения, принято соглашение, что отображение \(f_i\) имеет своим аргументом переменную \(x_i\).

Теорема 3.30. Пусть \(A_1, \ldots, A_n, B\) - свободные модули над коммутативным кольцом \(D\). \(D\)-модуль \(L(D; A_1 \times \ldots \times A_n \rightarrow B)\) является свободным \(D\)-модулем.

Доказательство. Теорема является следствием теоремы \([8]-4.4.8.\)

Теорема 3.31. Пусть \(A\) - ассоциативная \(D\)-алгебра. Полилинейное отображение

\begin{equation}
(3.42) \quad f : A^n \rightarrow A, a = f \circ (a_1, \ldots, a_n)
\end{equation}

порождённое отображениями \(I_{(s,1)}, \ldots, I_{(s,n)} \in L(D; A \rightarrow A)\), имеет вид

\begin{equation}
(3.43) \quad a = f_{s0}^n \sigma_s(I_{(s,1)} \circ a_1) f_{s1}^n \ldots \sigma_s(I_{(s,n)} \circ a_n) f_{sn}^n
\end{equation}

где \(\sigma_s\) - перестановка множества переменных \(\{a_1, \ldots, a_n\}\)

\[\sigma_s = \begin{pmatrix} a_1 & \ldots & a_n \\ \sigma_s(a_1) & \ldots & \sigma_s(a_n) \end{pmatrix} \]

Доказательство. Теорема является следствием теоремы \([8]-6.6.6.\)

Теорема 3.32. Рассмотрим \(D\)-алгебру \(A\). Представление

\[h : A^{n+1} \otimes S_n \rightarrow L(A; A^n \rightarrow A) \]
алгебры $A^{n+1} \otimes$ в модуле $L(D; A^n \to A)$, определённое равенством

$$(a_0 \otimes \ldots \otimes a_n, \sigma) \circ (f_1 \otimes \ldots \otimes f_n) = a_0 \sigma(f_1)a_1 \ldots a_{n-1} \sigma(f_n)a_n$$

$$a_0, \ldots, a_n \in A \quad \sigma \in S_n \quad f_1, \ldots, f_n \in L(D; A \to A)$$

позволяет отождествить тензор $d \in A^{n+1}$ и перестановку $\sigma \in S^n$ с отображением

$$(d, \sigma) \circ (f_1, \ldots, f_n) = \delta \in L(D; A \to A)$$

где $\delta \in L(D; A \to A)$ - тождественное отображение.

Доказательство. Теорема является следствием теоремы [8]-6.6.9. □

Соглашение 3.33. Если тензор $a \in A^{\otimes(n+1)}$ имеет разложение

$$a = a_{i_0} \otimes a_{i_1} \otimes \ldots \otimes a_{i_n} \quad i \in I$$

то множество перестановок $\sigma = \{\sigma_i \in S(n) : i \in I\}$ и тензор a порождают отображение

$$(a, \sigma) : A^{\times n} \to A$$

определенное равенством

$$(a, \sigma) \circ (b_1, \ldots, b_n) = (a_{i_0} \otimes a_{i_1} \otimes \ldots \otimes a_{i_n}, \sigma) \circ (b_1, \ldots, b_n)$$

$$= a_{i_0} \sigma_i(b_1)a_{i_1} \ldots \sigma_i(b_n)a_{i_n}$$

3.4. Алгебра с сопряжением. Пусть D - коммутативное кольцо. Пусть A - D-алгебра с единицей e, $A \neq D$.

Пусть существует подалгебра F алгебры A такая, что $F \neq A, D \subseteq F \subseteq Z(A)$, и алгебра A является свободным модулем над кольцом F. Пусть e - базис свободного модуля A над кольцом F. Мы будем полагать $e_0 = 1$.

Теорема 3.34. Структурные константы D-алгебры с единицей удовлетворяют условию

$$(3.45) \quad C^i_{0k} = C^i_{k0} = \delta^i_k$$

Доказательство. Теорема является следствием теоремы [6]-3.5. □

Рассмотрим отображения

$$\text{Re} : A \to A$$
$$\text{Im} : A \to A$$

определенные равенством

$$(3.46) \quad \text{Re} d = d^0, \quad \text{Im} d = d - d^0 \quad d \in D \quad d = d^i e_i$$

Выражение $\text{Re} d$ называется скаляром элемента d. Выражение $\text{Im} d$ называется вектором элемента d.

Согласно (3.46)

$$F = \{d \in A : \text{Re} d = d\}$$

Мы будем пользоваться записью $\text{Re} A$ для обозначения алгебры скаляров алгебры A.

Теорема 3.35. Множество

(3.47) \(\text{Im } A = \{d \in A : \text{Re } d = 0\} \)
является \((\text{Re } A)\)-модулем, который мы называем модуль векторов алгебры \(A\).

(3.48) \(A = \text{Re } A \oplus \text{Im } A \)

ДОКАЗАТЕЛЬСТВО. Теорема является следствием теоремы \([6]-4.1\).
Согласно теореме 3.35, однозначно определено представление

(3.49) \(d = \text{Re } d + \text{Im } d \)

Определение 3.36. Отображение

(3.50) \(d^* = \text{Re } d - \text{Im } d \)
называется сопряжением в алгебре при условии, если это отображение удовлетворяет равенству

(3.51) \((cd)^* = d^* c^* \)

\((\text{Re } A)\)-алгебра \(A\), в которой определено сопряжение, называется алгеброй с сопряжением.

Теорема 3.37. \((\text{Re } A)\)-алгебра \(A\) является алгеброй с сопряжением тогда и только тогда, когда структурные константы \((\text{Re } A)\)-алгебры \(A\) удовлетворяют условию

(3.52) \(C^p_{kl} = C^p_{lk} \quad C^0_{kl} = -C^p_{lk} \)

\(1 \leq k \leq n \quad 1 \leq l \leq n \quad 1 \leq p \leq n\)

ДОКАЗАТЕЛЬСТВО. Теорема является следствием теоремы \([6]-4.5\).

3.5. Многочлен над ассоциативной \(D\)-алгеброй. Пусть \(D\) - коммутативное кольцо и \(A\) - ассоциативная \(D\)-алгебра с единицей. Пусть \(F\) - базис алгебры \(L(D; A \rightarrow A)\).

Теорема 3.38. Пусть \(p_k(x)\) - одночлен степени \(k\) над \(D\)-алгеброй \(A\). Тогда

3.38.1: Одночлен степени 0 имеет вид \(p_0(x) = a_0, a_0 \in A\).
3.38.2: Если \(k > 0\), то

\(p_k(x) = p_{k-1}(x)(F \circ x)a_k \)

где \(a_k \in A\) и \(F \in F\).

ДОКАЗАТЕЛЬСТВО. Теорема является следствием теоремы \([7]-4.1\).
В частности, одночлен степени 1 имеет вид \(p_1(x) = a_0(F \circ x)a_1\).

Определение 3.39. Обозначим \(A_k[x]\) абельную группу, порождённую множеством одночленов степени \(k\). Элемент \(p_k(x)\) абельной группы \(A_k[x]\) называется однородным многочленом степени \(k\).
Квадратное уравнение над ассоциативной D-алгеброй

Соглашение 3.40. Пусть тензор $a \in A^{\otimes(n+1)}$. Пусть $F(1), ..., F(n) \in \mathcal{F}$. Если $x_1 = ... = x_n = x$, то мы положим

$$a \circ F \circ x^n = a \circ (F(1), ..., F(n)) \circ (x \otimes ... \otimes x_n)$$

Соглашение 3.41. Если мы имеем несколько кортежей отображений $F \in \mathcal{F}$, то мы будем пользоваться индексом вида $[k]$ для индексирования кортежа

$$F[k] = (F[k](1), ..., F[k](n))$$

Теорема 3.42. Однородный многочлен $p(x)$ может быть записан в виде

$$p(x) = a_{[s]} \circ F_{[s]} \circ x^k \quad a_{[s]} \in A^{\otimes(k+1)}$$

Доказательство. Теорема является следствием теоремы [7]-4.6.

Определение 3.43. Обозначим $A[x] = \bigoplus_{n=0}^{\infty} A_n[x]$ прямую сумму 3.7 A-модулей $A_n[x]$. Элемент $p(x)$ A-модуля $A[x]$ называется многочленом над D-алгеброй A.

Определение 3.44. Многочлен $p(x)$ называется делителем многочлена $r(x)$, если мы можем представить многочлен $r(x)$ в виде

$$r(x) = q_i \cdot 0(x)p(x)q_{i-1}(x) = (q_i \cdot 0(x) \otimes q_{i-1}(x)) \circ p(x)$$

Теорема 3.45. Пусть $p(x) = p_1 \circ x + p_0$ - многочлен степени 1 и p_1 - невырожденный тензор. Пусть

$$r(x) = r_0 + r_1 \circ x + ... + r_k \circ x^k$$

многочлен степени k. Тогда

$$r(x) = s_0 + (q_0 + q_1(x) + ... + q_{k-1}(x)) \circ p(x)$$

где $q_i \in A_i[x] \otimes A$, $i = 0, ..., k-1$, - однородный многочлен степени i.

Доказательство. Теорема является следствием теоремы [7]-6.9.

3.7 Смотри определение прямой суммы модулей в [1], страница 98. Согласно теореме 1 на той же странице, прямая сумма модулей существует.
Теорема 3.46. Пусть

\begin{equation}
(3.55)\quad p(x) = p_0 + p_1 \circ x
\end{equation}

- многочлен степени 1 и p_1 - невырожденный тензор. Пусть

\begin{equation}
(3.56)\quad r(x) = r_0 + r_1 \circ x + \ldots + r_k \circ x^k
\end{equation}

многочлен степени k. Тогда

\begin{equation}
\begin{split}
r(x) &= r_0 - ((r_1 \circ 0 \otimes r_1 \circ 0) \circ p_0^{-1}) \circ p_0 \\
&\quad - (((r_2 \circ 0 \otimes r_2 \circ 0) \circ p_0^{-1}) \circ p_0 \\
&\quad - \ldots - (((r_k \circ 0 \otimes r_k \circ 0) \circ p_0^{-1}) \circ p_0 \\
&\quad + ((r_1 \circ 0 \otimes r_1 \circ 0) \circ p_0^{-1}) \circ p(x) \\
&\quad + \ldots + (((r_k \circ 0 \otimes r_k \circ 0) \circ p_0^{-1}) \circ p_0 \\
&\quad = r_0 - ((r_1 \circ 0 \otimes r_1 \circ 0 + (r_2 \circ 0 \otimes r_2 \circ 0) \otimes r_2 \circ 0 \\
&\quad + \ldots + (r_k \circ 0 \otimes r_k \circ 0) \circ p_0^{-1}) \circ p_0 \\
&\quad + ((r_1 \circ 0 \otimes r_1 \circ 0 + (r_2 \circ 0 \otimes r_2 \circ 0) \otimes r_2 \circ 0 \\
&\quad + \ldots + (r_k \circ 0 \otimes r_k \circ 0) \circ p_0^{-1}) \circ p_0 \\
&\quad x = x^0 + x^1 i + x^2 j + x^3 k
\end{split}
\end{equation}

Кватернион

\begin{equation}
x^* = x^0 - x^1 i - x^2 j - x^3 k
\end{equation}

называется сопряжённым кватерниону x. Мы определим норму кватерниона x равенством

\begin{equation}
(3.58)\quad |x|^2 = xx^* = (x^0)^2 + (x^1)^2 + (x^2)^2 + (x^3)^2
\end{equation}

Из равенства (3.58) следует, что обратный элемент имеет вид

\begin{equation}
x^{-1} = |x|^{-2} x^*
\end{equation}

Доказательство. Теорема является следствием теоремы [7]-6.10. □

Определение 3.47. Пусть R - поле действительных чисел. Расширение H поля R называется алгеброй кватернионов, если произведение в алгебре H определено согласно правилам

\begin{equation}
(3.57)\quad i j k
\end{equation}

\begin{align*}
i &-1 k -j \\
j &k -1 i \\
k &j -i -1
\end{align*}

3.6. Алгебра кватернионов. Элементы алгебры H имеют вид

\begin{equation}
x = x^0 + x^1 i + x^2 j + x^3 k
\end{equation}

$x^0, x^1, x^2, x^3 \in R$

Кватернион

\begin{equation}
x^* = x^0 - x^1 i - x^2 j - x^3 k
\end{equation}

называется сопряжённым кватерниону x. Мы определим норму кватерниона x равенством

\begin{equation}
(3.58)\quad |x|^2 = xx^* = (x^0)^2 + (x^1)^2 + (x^2)^2 + (x^3)^2
\end{equation}

Из равенства (3.58) следует, что обратный элемент имеет вид

\begin{equation}
x^{-1} = |x|^{-2} x^*
\end{equation}
Теорема 3.48. Положим

\[e_0 = 1 \quad e_1 = i \quad e_2 = j \quad e_3 = k \]

базис алгебры кватернионов \(H \). Тогда структурные константы имеют вид

(3.59)

\[
\begin{align*}
C_{00}^0 &= 1 & C_{11}^1 &= 1 & C_{22}^2 &= 1 & C_{33}^3 &= 1 \\
C_{10}^1 &= 1 & C_{01}^0 &= -1 & C_{12}^2 &= 1 & C_{23}^3 &= -1 \\
C_{20}^2 &= 1 & C_{21}^2 &= -1 & C_{32}^3 &= -1 & C_{13}^1 &= 1 \\
C_{30}^3 &= 1 & C_{31}^3 &= 1 & C_{22}^2 &= -1 & C_{33}^3 &= -1
\end{align*}
\]

Доказательство. Значение структурных констант следует из таблицы умножения (3.57).

Теорема 3.49. Уравнение

\[ax - xa = 1 \]

в алгебре кватернионов не имеет решений.

Доказательство. Теорема является следствием теоремы [4]-7.1.

4. Простые примеры

Теорема 4.1.

(4.1) \[(x + a)^2 = x^2 + (1 \otimes a + a \otimes 1) \circ x + a^2 \]

Доказательство. Тождество (4.1) является следствием равенства

\[
(x + a)(x + a) = x(x + a) + a(x + a) = x^2 + xa + ax + a^2
\]

\[
= x^2 + (1 \otimes a + a \otimes 1) \circ x + a^2
\]

Доказательство. Равенство

\[
(x + a)(x + a)(x + a) = (x + a)(x^2 + (1 \otimes a + a \otimes 1) \circ x + a^2)
\]

\[
= x(x^2 + (1 \otimes a + a \otimes 1) \circ x + a^2) + a(x^2 + (1 \otimes a + a \otimes 1) \circ x + a^2)
\]

\[
= x^3 + x(1 \otimes a + a \otimes 1) \circ x + xa^2 + ax^2 + a(1 \otimes a + a \otimes 1) \circ x + a^3
\]

(4.3) \[
= x^3 + (1 \otimes 1 \otimes a + 1 \otimes a \otimes 1) \circ x^2 + (1 \otimes a^2) \circ x
\]

\[
+ (a \otimes 1 \otimes 1) \circ x^2 + (a \otimes a + a^2 \otimes 1) \circ x + a^3
\]

\[
= x^3 + (1 \otimes 1 \otimes a + 1 \otimes a \otimes 1 + a \otimes 1 \otimes 1) \circ x^2
\]

\[
+ (1 \otimes a^2 + a \otimes a + a^2 \otimes 1) \circ x + a^3
\]
является следствием тождества (4.1). Тождество (4.2) является следствием равенства (4.3).

Теорема 4.3.

(4.4) \((x + a)(x + b) = x^2 + (a \otimes 1 + 1 \otimes b) \circ x + ab\)

(4.5) \((x + a)(x + b) + (x + b)(x + a) = 2x^2 + ((a + b) \otimes 1 + 1 \otimes (a + b)) \circ x + ab + ba\)

Доказательство. Тождество (4.4) является следствием равенства

\((x + a)(x + b) = x(x + b) + a(x + b) = x^2 + xb + ax + ab\)

Тождество (4.5) является следствием равенства

\((x + a)(x + b) + (x + b)(x + a) = x(x + b) + a(x + b) + x(x + a) + b(x + a)\)

\[= 2x^2 + xb + ax + ab + xa + bx + ba\]

Теорема 4.4.

(4.6) \[
(c_{s,0} \otimes c_{s,1} \otimes c_{s,2}, \sigma_s) \circ (x + a, x + b)
\]

\[= (c_{s,0} \otimes c_{s,1} \otimes c_{s,2}, \sigma_s) \circ x^2 + (c_{s,0}, \sigma_s(a), c_{s,1} \otimes c_{s,2} \circ x + c_{s,0} \sigma_s(a) c_{s,0} c_{s,1}) \sigma_s(b) c_{s,2}\]

Доказательство. Тождество (4.6) является следствием равенства

\[(c_{s,0} \otimes c_{s,1} \otimes c_{s,2}, \sigma_s) \circ (x + a, x + b)\]

\[= c_{s,0} \sigma_s(x + a) c_{s,1} \sigma_s(x + b) c_{s,2}\]

\[= c_{s,0} (x + \sigma_s(a)) c_{s,1} (x + \sigma_s(b)) c_{s,2}\]

\[= c_{s,0} (x + \sigma_s(a)) c_{s,1} x + (x + \sigma_s(a)) c_{s,1} \sigma_s(b) c_{s,2}\]

\[= c_{s,0} x c_{s,1} x + \sigma_s(a) c_{s,1} x + x c_{s,1} \sigma_s(b) + \sigma_s(a) c_{s,1} \sigma_s(b) c_{s,2}\]

5. Квадратный корень

Определение 5.1. Решение \(x = \sqrt{a}\) уравнения

(5.1) \(x^2 = a\)

в \(D\)-алгебре \(A\) называется квадратным корнем \(A\)-числа \(a\).

В алгебре кватернийонов уравнение

\(x^2 = -1\)

имеет по крайней мере 3 корня \(x = i, x = j, x = k\). Наша задача - ответить на вопрос как много корней имеет уравнение (5.1).
Теорема 5.2. Корни уравнения

(5.2) \((a + x)^2 = a^2\)

удовлетворяют уравнению

(5.3) \(x^2 + (1 \otimes a + a \otimes 1) \circ x = 0\)

Доказательство. Уравнение (5.3) является следствием (4.1), (5.2).

Теорема 5.3.

(5.4) \(x^2 + (1 \otimes a + a \otimes 1) \circ x = x\left(\frac{1}{2}x + a\right) + \left(\frac{1}{2}x + a\right)x\)

Доказательство. Тождество (5.4) следует из равенства

\[
x^2 + (1 \otimes a + a \otimes 1) \circ x = \frac{1}{2}x^2 + xa + \frac{1}{2}x^2 + ax = x\left(\frac{1}{2}x + a\right) + \left(\frac{1}{2}x + a\right)x
\]

Следствие 5.4. Уравнение

(5.5) \(x^2 + (1 \otimes a + a \otimes 1) \circ x = 0\)
имеет корни \(x = 0, x = -2a\).

Теорема 5.5. \(x = j - i\) является корнем уравнения

(5.6) \(x^2 + (1 \otimes i + i \otimes 1) \circ x = 0\)

Доказательство. Согласно теореме 5.3, уравнение (5.6) равносильно уравнению

(5.7) \(x\left(\frac{1}{2}x + i\right) + \left(\frac{1}{2}x + i\right)x = 0\)

Из уравнения (5.7) следует, что

\[
(j - i)((j - i) + 2i) + ((j - i) + 2i)(j - i) = (j - i)(j + i) + (j + i)(j - i) = (j - i)(j + i) + (j + i)(j - i) = j^2 - ij + ji - i^2 + j^2 + ij - ji - i^2 = 0
\]

Возникает вопрос. Как много корней имеет уравнение (5.6). Из уравнения

(5.8) \(x(x + 2a) + (x + 2a)x = 0\)
следует, что

(5.9) \(x(x + 2a) = -(x + 2a)x\)

5.1 Мы обозначаем \(x\) разность между 2 квадратными корнями.
Из равенства (5.9) следует, что произведение A-чисел $2a + x$, x антикоммута-
тивно.

Теорема 5.6. Пусть \mathfrak{F} - базис конечно мерной ассоциативной D-алгебры A. Пусть C_{kl}^i - структурные константы D-алгебры A относительно базиса \mathfrak{F}. Тогда уравнение $x^2 + (1 \otimes a + a \otimes 1) \circ x = 0$ имеет решение тогда и только тогда, когда система уравнений

\[
(5.10) \quad C_{kl}^i (x^k x^l + x^k a^l + a^k x^l) = 0
\]

имеет решение, где $x = x^i e_i$.

ДОКАЗАТЕЛЬСТВО. Равенство (5.10) следует из равенства (5.8). □

Теорема 5.7. В алгебре кватернионов, если $a = i$, то уравнение (5.10) имеет множество решений таких, что

\[
(5.11) \quad x^0 = 0, \quad -(x^1)^2 - 2x^1 = (x^2)^2 + (x^3)^2
\]

\[
(5.12) \quad -2 \leq x^i \leq 0
\]

ДОКАЗАТЕЛЬСТВО. Если $a = i$, то равенство (5.10) имеет вид

\[
(5.13) \quad C_{kl}^i x^k x^l + C_{kl}^i x^k + C_{kl}^i x^l = 0
\]

Согласно теореме 3.48, из (3.59), (5.13) следует, что

\[
(5.14) \quad (x^0)^2 - (x^1)^2 - (x^2)^2 - (x^3)^2 - 2x^1 = 0
\]

\[
(5.15) \quad 2x^0 x^1 + 2x^0 = 0
\]

\[
(5.16) \quad 2x^0 x^2 + x^2 - x^3 = 0
\]

\[
(5.17) \quad 2x^0 x^3 - x^2 + x^2 = 0
\]

Из уравнения (5.15) следует, что либо $x^0 = 0$, либо $x^1 = -1$. Если $x^0 = 0$, то равенство (5.11) является следствием равенства (5.14). Утверждение (5.12) является следствием требования

\[-(x^1)^2 - 2x^1 \geq 0\]

Если $x^1 = -1$, то либо $x^0 = 0$, либо $x^2 = x^3 = 0$. Утверждение $x^0 = 0$, $x^1 = -1$ является частным случаем утверждения теоремы. Утверждение $x^1 = -1$, $x^2 = x^3 = 0$ неверно, так как равенство (5.14) принимает вид

\[(x^0)^2 + 1 = 0\]
Теорема 5.8. В алгебре кватернионов, если \(a = 1 \), то уравнение (5.10) имеет 2 корня

\[
\begin{align*}
x^0 &= 0 \quad x^1 = 0 \quad x^2 = 0 \quad x^3 = 0 \\
x^0 &= -2 \quad x^1 = 0 \quad x^2 = 0 \quad x^3 = 0
\end{align*}
\]

Доказательство. Если \(a = 1 \), то равенство (5.10) имеет вид

\[
\begin{align*}
C_{k_1}x^k x^k + C_{k_0}x^k + C_{k_1}x^k &= 0 \\
C_{k_1}x^k x^k + C_{k_0}x^k + C_{k_1}x^k &= 0 \\
C_{k_1}x^k x^k + C_{k_0}x^k + C_{k_1}x^k &= 0 \\
C_{k_1}x^k x^k + C_{k_0}x^k + C_{k_1}x^k &= 0
\end{align*}
\]

(5.19)

Из (3.59), (5.19) следует, что

\[
\begin{align*}
(x^0)^2 - (x^1)^2 - (x^2)^2 - (x^3)^2 + 2x^0 &= 0 \\
2x^0 x^1 + 2x^0 &= 0 \\
2x^0 x^2 + 2x^2 &= 0 \\
2x^0 x^3 + 2x^3 &= 0
\end{align*}
\]

(5.20) (5.21) (5.22) (5.23)

Из уравнений (5.21), (5.22), (5.23) следует, что либо

\[
x^1 = x^2 = x^3 = 0
\]

либо \(x^0 = -1 \).

Если равенство (5.24) верно, то из уравнения (5.20) следует, что либо \(x^0 = 0 \)

либо \(x^0 = -2 \). Следовательно, мы получили решения (5.18).

Если \(x^0 = -1 \), то равенство (5.20) имеет вид

\[
(x^1)^2 + (x^2)^2 + (x^3)^2 + 1 = 0
\]

Уравнение (5.25) не имеет действительных корней. \(\square \)

Теорема 5.9.

\[
b^2 - a^2 = \frac{1}{2}(b - a)(b + a) + \frac{1}{2}(b + a)(b - a)
\]

Доказательство. Из тождества (4.1) следует, что

\[
(x + a)^2 - a^2 = x^2 + (1 \otimes a + a \otimes 1) \circ x
\]

Из (5.4), (5.27) следует, что

\[
(x + a)^2 - a^2 = x \left(\frac{1}{2}x + a \right) + \left(\frac{1}{2}x + a \right) x
\]

Пусть \(b = x + a \). Тогда

\[
x = b - a
\]
Из (5.28), (5.29) следует, что

\[(5.30) \quad b^2 - a^2 = (b - a) \left(\frac{1}{2} (b - a) + a \right) + \left(\frac{1}{2} (b - a) + a \right) (b - a)\]

Тождество (5.26) является следствием равенства (5.30).

6. АЛГЕБРА С СОПРЯЖЕНИЕМ

Согласно теоремам 5.2, 5.7, уравнение

\[x^2 = -1\]

в алгебре кватернионов имеет бесконечно много корней. Согласно теореме 5.8, уравнение

\[x^2 = 1\]

в алгебре кватернионов имеет 2 корня. Я не ожидал столь различные утверждения. Однако, где корень этого различия?

Пусть \(\bar{e} \) - базис конечно мерной D-алгебры \(A \). Пусть \(C_{kl}^i \) - структурные константы D-алгебры \(A \) относительно базиса \(\bar{e} \). Тогда уравнение

\[x^2 = a\]

имеет вид

\[(6.1) \quad C_{kl}^i x^k x^l = a^i\]

относительно базиса \(\bar{e} \). Решение системы уравнений (6.1) - не самая простая задача.

Однако решение этой задачи возможно, если алгебра \(A \) имеет единицу и является алгеброй с сопряжением. Согласно теоремам 3.34, 3.37, структурные константы D-алгебры \(A \) имеют следующий вид

\[(6.2) \quad C_{00}^0 = 1 \quad C_{0l}^0 = C_{lk}^0\]

\[(6.3) \quad C_{k0}^k = C_{0k}^k = 1 \quad C_{kl}^p = -C_{lk}^p\]

\[1 \leq k \leq n \quad 1 \leq l \leq n \quad 1 \leq p \leq n\]

Теорема 6.1. В D-алгебре \(A \) с сопряжением уравнение (6.1) имеет вид

\[(6.4) \quad (x^0)^2 + C_{kl}^0 x^k x^l = a^0\]

\[(6.5) \quad 2 x^0 x^p = a^p\]

\[1 \leq k \leq n \quad 1 \leq l \leq n \quad 1 \leq p \leq n\]

Доказательство. Уравнение (6.4) является следствием (6.1), (6.2) когда \(i = 0 \). Уравнение (6.5) является следствием (6.1), (6.3) когда \(i > 0 \).

Теорема 6.2. Если \(\sqrt{a} \in \text{Im} A \), то \(a \in \text{Re} A \). Корень уравнения

\[x^2 = a\]

удовлетворяет уравнению

\[(6.6) \quad C_{kl}^0 x^k x^l = a^0\]
1 ≤ k ≤ n 1 ≤ l ≤ n

Доказательство. Если \(x \in \text{Im} A \), то

\begin{equation}
(6.7) \quad x^0 = 0
\end{equation}

Равенство

\begin{equation}
(6.8) \quad a^p = 0 \quad 1 \leq p \leq n
\end{equation}

является следствием (6.5), (6.7). Из равенства (6.8) следует, что \(a \in \text{Re} A \). Уравнение (6.6) является следствием (6.4), (6.7).

Теорема 6.2 ничего не говорит о числе корней. Однако следующее утверждение очевидно.

Следствие 6.3. В алгебре кватернионов, если \(a \in R, a < 0 \), то уравнение

\(x^2 = a \)

имеет бесконечно много корней.

\[\text{Теорема 6.4. Если Re} \sqrt{a} \neq 0, \text{ то корни уравнения} \]

\[x^2 = a\]

удовлетворяют равенству

\begin{equation}
(6.9) \quad (x^0)^4 - a^0 (x^0)^2 + \frac{1}{4} C_{ki}^0 a^k a^l = 0
\end{equation}

\begin{equation}
(6.10) \quad x^k = \frac{a^k}{2 x^0} \quad 1 \leq k \leq n 1 \leq l \leq n
\end{equation}

Доказательство. Так как \(x^0 = \text{Re} \sqrt{a} \), то \(x^0 \neq 0 \). Следовательно, равенство (6.10) является следствием равенства (6.5). Равенство

\begin{equation}
(6.11) \quad (x^0)^2 + C_{ki}^0 a^k a^l \frac{1}{4 (x^0)^2} = a^0
\end{equation}

является следствием равенств (6.4), (6.10). Равенство (6.9) является следствием равенства (6.11).

\[\text{Теорема 6.5. Пусть H - алгебра кватернионов и a - H-число.}\]

6.5.1: Если Re \(\sqrt{a} \neq 0 \), то уравнение

\[x^2 = a\]

имеет корни \(x = x_1, x = x_2 \) такие, что

\[x_2 = -x_1\]

6.5.2: Если \(a = 0 \), то уравнение

\[x^2 = a\]

имеет корень \(x = 0 \) кратности 2.
6.5.3: Если условия 6.5.1, 6.5.2 не верны, то уравнение
\[x^2 = a \]
имеет бесконечно много корней таких, что
\[x \in \text{Im} H \quad a \in \text{Re} H \quad |x| = \sqrt{-a} \]

Доказательство. Уравнение
\[(x^0)^2 - (x^1)^2 - (x^2)^2 - (x^3)^2 = a^0 \]
является следствием (3.59), (6.4).

Если \(a = 0 \), то уравнение
\[(x^0)^2 - (x^1)^2 - (x^2)^2 - (x^3)^2 = 0 \]
является следствием уравнения (6.14). Из (6.5) следует, что либо \(x^0 = 0 \), либо \(x^i = x^i = x^i = 0 \). В обоих случаях, утверждение 6.5.2 следует из уравнения (6.15).

Если \(\text{Re} \sqrt{a} \neq 0 \), то мы можем применить теорему 6.4 к уравнению (6.14). Следовательно, мы получим уравнение
\[(x^0)^4 - a^0 (x^0)^2 - \frac{1}{4}((a^1)^2 + (a^2)^2 + (a^3)^2) = 0 \]
которое является квадратным уравнением относительно
\[y = (x^0)^2 \]
Так как
\[(a^1)^2 + (a^2)^2 + (a^3)^2 \geq 0 \]
то мы должны рассмотреть два варианта.
- Если
 \[(a^1)^2 + (a^2)^2 + (a^3)^2 > 0 \]
 то, согласно теореме Виета, уравнение (6.17) имеет корни \(y = y_1, y_1 < 0 \) и \(y = y_2, y_2 > 0 \). Согласно равенству (6.18), мы рассматриваем только корень \(y = y_2, y_2 > 0 \). Следовательно, уравнение (6.16) имеет два корня

\[x_0^0 = \sqrt{y_2}, \quad x_2^0 = -\sqrt{y_2} \]

Равенство (6.12) является следствием равенств (6.10), (6.19).

- Если
 \[(a^1)^2 + (a^2)^2 + (a^3)^2 = 0 \]
 то

\[a^1 = a^2 = a^3 = 0 \]

Так как \(\text{Re} \sqrt{a} \neq 0 \), то утверждение

\[x^i = x^i = x^i = 0 \]
является следствием (6.10), (6.20). Следовательно, уравнение (6.17) имеет вид

\begin{equation}
y^2 - a^0 y = 0
\end{equation}

Согласно доказательству теоремы 6.4, значение \(y = 0 \) является посторонним корнем. Следовательно, уравнение (6.22) эквивалентно уравнению

\begin{equation}
y - a^0 = 0
\end{equation}

Пусть \(a^0 > 0 \). Из уравнений (6.18), (6.23) следует, что уравнение (6.16) имеет два корня

\begin{equation}
x_1^0 = \sqrt{a^0}, \quad x_2^0 = -\sqrt{a^0}
\end{equation}

Равенство (6.12) является следствием равенств (6.10), (6.24).

Если условия 6.5.1, 6.5.2 не верны, то \(a \neq 0 \), однако \(\text{Re} \sqrt{a} = 0 \). Согласно теореме 6.2, \(a \in \mathbb{R} A \), \(a^0 \neq 0 \) и уравнение

\begin{equation}
(x_1^2)^2 + (x_2^2)^2 + (x_3^2)^2 = -a^0
\end{equation}

является следствием уравнения (6.6) и равенства (3.59). Пусть \(a^0 < 0 \). Тогда уравнение (6.25) имеет бесконечно много корней, удовлетворяющих условию (6.13).

7. Несколько замечаний

Я был готов к утверждению, что уравнение

\[x^2 = a \]

имеет бесконечно много корней. Однако утверждение теоремы 6.5 оказалось более неожиданным. Число корней в алгебре кватернионов \(H \) зависит от значения \(H \)-числа \(a \).

Квадратный корень в поле комплексных чисел \(\mathbb{C} \) имеет два значения. Мы пользуемся римановой поверхностью \(\mathbb{C} \) для представления отображения

\[\sqrt{z} : z \in \mathbb{C} \to \sqrt{z} \in \mathbb{C} \]

Я полагаю, что похожую поверхность мы можем рассматривать в алгебре кватернионов. Однако подобная поверхность имеет более сложную топологию.

Математики изучали теорию некоммутативных полиномов на протяжении XX века, и знание полученных результатов важно для продолжения исследования.

В книге [14], на странице 48, Пол Кон пишет, что изучение многочленов над некоммутативной алгеброй \(A \) - задача непростая. Чтобы сделать задачу проще и получить некоторые предварительные результаты, Пол Кон предложил рассматривать многочлены, у которых коэффициенты являются \(A \)-числами и записаны справа. Таким образом, согласно Кону, многочлен над \(D \)-алгеброй \(A \) имеет вид

\[p(x) = a_0 + x a_1 + \ldots + x^n a_n \quad a_i \in A \]

6.1 Мы рассмотрели значение \(a^0 = 0 \) в утверждении 6.5.2. Мы рассмотрели значение \(a^0 < 0 \) в утверждении 6.5.3.

6.2 Мы рассмотрели значение \(a^0 > 0 \) в утверждении 6.5.1.

7.1 Определение римановой поверхности смотри в [16], страницы 170, 171.
Это соглашение позволило преодолеть трудности, связанные с некоммутативностью, и получить интересные утверждения о многочленах. Однако, вообще говоря, не все утверждения верны.

Мы рассмотрим следующий пример. В книге [15], страница 262, Цит Лам рассматривает многочлены, у которых коэффициенты являются \(A \)-числами и записаны слева.\(^{7,2}\) Согласно Цит Ламу, произведение многочленов имеет вид
\[
(x - a)(x - b) = x^2 - (a + b)x + ab
\]
Произведение (7.1) многочленов не согласовано с произведением в \(D \)-алгебре \(A \).

Хотя мы можем рассматривать равенство (7.1) как обобщение теоремы Виета, \(^7,3\) Цит Лам обращает наше внимание на утверждение, что \(A \)-число \(a \) не является корнем многочлена \(f \). По-видимому, это одна из причин, почему понятия левого, правого и псевдо корней рассмотрены в [2, 15].

Мой путь в теорию некоммутативных многочленов проходит через математический анализ (раздел [9]-5.2). У кого-то путь может проходить через физику. Я полагаю, что математическая операция должна быть согласована с требованиями других теорий. Развитие новых идей и методов позволяет продвинуться в изучении некоммутативных многочленов. Цель этой статьи - показать, какими возможностями мы располагаем сегодня для изучения некоммутативных полиномов.

8. Вопросы и ответы

В этом разделе я собрал вопросы, на которые необходимо ответить для изучения некоммутативных многочленов. Мы сконцентрируем наше внимание на квадратном уравнении
\[
(a_s \otimes a_{s-1} \otimes a_{s-2}) \circ x^2 + (b_{t-1} \otimes b_{t-1}) \circ x + c = 0
\]
на теореме Виета и методе выделения полного квадрата.

Пусть \(r(x) \) - многочлен степени 2. Согласно определению 3.44, многочлен
\[
p(x) = x - a = (1 \otimes 1) \circ x - a
\]
является делителем многочлена \(r(x) \), если существуют многочлены \(q_{i,0}(x) \), \(q_{i,1}(x) \) такие, что
\[
r(x) = q_{i,0}(x)p(x)q_{i,1}(x)
\]
Согласно теореме 3.45, для каждого \(i \), степень одного из многочленов \(q_{i,0}(x) \), \(q_{i,1}(x) \) равна 1, а другой многочлен является \(A \)-числом. Если многочлен \(r \) имеет также корень \(b \), можем ли мы представить многочлен \(r \) в виде произведения многочленов \(x - a, x - b \). В каком порядке мы должны перемножать многочлены \(x - a, x - b \)? Учитывая симметрию корней \(a \) и \(b \), я ожидаю, что разложение многочлена \(r(x) \) на множители имеет вид
\[
r(x) = (c, \sigma) \circ (x - a, x - b) = (c_{s-0} \otimes c_{s-1} \otimes c_{s-2}, \sigma_s) \circ (x - a, x - b)
\]
Следовательно, я ожидаю, что разложение многочлена \(r(x) \) на множители является билинейным отображением многочленов \(x - a, x - b \).

\(^{7,2}\) Различие в формате записи многочлена, предложенного Коном и Ламом, непринципиально.

\(^{7,3}\) В утверждении [2]-1.1, Владимир Ретах рассмотрел другую формулировку теоремы Виета для многочленов над некоммутативной алгеброй.
Вопрос 8.1. Пусть

(8.4) \(a \notin \mathbb{Z}(A) \lor (b \notin \mathbb{Z}(A) \land c \notin \mathbb{Z}(A))\)

Пусть многочлен \(p(x)\) имеет вид

(8.5) \(p(x) = (x - b)(x - a) + (x - a)(x - c)\)

8.1.1: Является ли значение \(x = a\) единственным корнем многочлена \(p(x)\) или существует ещё один корень многочлена \(p(x)\)?

8.1.2: Существует ли представление многочлена \(p(x)\) в виде (8.3).

\[
\begin{align*}
(8.4) & \quad a \notin \mathbb{Z}(A) \lor (b \notin \mathbb{Z}(A) \land c \notin \mathbb{Z}(A)) \\
(8.5) & \quad p(x) = (x - b)(x - a) + (x - a)(x - c) \\
8.1.1: & \quad \text{Является ли значение } x = a \text{ единственным корнем многочлена } p(x) \text{ или существует ещё один корень многочлена } p(x) \text{?} \\
8.1.2: & \quad \text{Существует ли представление многочлена } p(x) \text{ в виде (8.3).}
\end{align*}
\]

Пусть \(a, b \in \mathbb{Z}(A)\). Тогда

\[
(x - b)(x - a) = x^2 - bx - xa + ba = x^2 - xb - ax + ab = (x - a)(x - b)
\]

и мы можем упростить выражение многочлена (8.5)

\[
p(x) = (x - b)(x - a) + (x - a)(x - c) = (x - a)(x - b) + (x - a)(x - c)
\]

\[
= (x - a)(2x - b - c)
\]

Ответ очевиден. Поэтому условие (8.4) (который является отрицанием условия что либо \(a, b \in \mathbb{Z}(A)\), либо \(a, c \in \mathbb{Z}(A)\)) является необходимым условием в формулировке вопроса 8.1.

Из построений, рассмотренных в разделе 1.2, следует, что квадратное уравнение может иметь 1 корень. Сейчас я готов привести ещё один пример квадратного уравнения, которое имеет 1 корень.

Теорема 8.2. В алгебре кватернионов существует квадратное уравнение, которое имеет 1 корень.

Доказательство. Согласно теореме 3.49, многочлен

\[
p(x) = jx - xj - 1
\]

не имеет корней в алгебре кватернионов. Следовательно, многочлен

\[
p(x)(x - i) = (jx - xj - 1)(x - i) = jx^2 - xjx - x - jxi - xk + i
\]

имеет 1 корень.

Теорема 8.3. В алгебре кватернионов существует квадратное уравнение, которое не имеет корней.

Доказательство. Согласно теореме 3.49, многочлены

\[
p(x) = jx - xj - 1 \\
q(x) = kx - xk - 1
\]

не имеют корней в алгебре кватернионов. Следовательно, многочлен

\[
p(x)q(x) = (jx - xj - 1)(kx - xk - 1)
\]

не имеет корней.
Вопрос 8.4. Существуют ли неприводимые многочлены степени выше чем 2? Какова структура множества неприводимых многочленов?

Вопрос 8.5. Зависит ли множество корней многочлена (8.3) от тензора вида и множества перестановок σ?

Вопрос 8.6. Для любого тензора вида, существует ли A-число а такое, что

(8.6) \(1 \otimes a + a \otimes 1 = b_{i,0} \otimes b_{i,1} \)

Допустим, ответ на вопрос 8.6 положителен. Тогда, опираясь на тождество (4.1), мы можем применить метод выделения полного квадрата для решения приведенного квадратного уравнения

\[x^2 + (p_{s,0} \otimes p_{s,1}) \circ x + q = 0 \]

Есть все основания полагать, что ответ на вопрос 8.6 отрицателен.

Множество многочленов (8.3) слишком велико, чтобы рассмотреть теорему Виета. Теорема Виета предполагает приведенное квадратное уравнение. Следовательно, чтобы рассмотреть теорему Виета, мы должны рассмотреть многочлены, у которых коэффициент при \(x^2 \) равен 1 \(\otimes 1 \otimes 1 \). Самая простая форма таких многочленов имеет вид

(8.7) \[c(x - x_1)(x - x_2) + d(x - x_2)(x - x_1) = 0 \]

где с, d - любые A-числа такие, что

\[c + d = 1 \]

Теорема 8.7 (Франсуа Виет). Если квадратное уравнение

(8.8) \[x^2 + (p_{s,0} \otimes p_{s,1}) \circ x + q = 0 \]

имеет корни \(x = x_1, x = x_2 \), то существуют A-числа c, d,

\[c + d = 1 \]

такие, что одно из следующих утверждений верно

(8.9) \[p_{s,0} \otimes p_{s,1} = -((c x_1) \otimes 1 + c \otimes x_2 + (d x_2) \otimes 1 + d \otimes x_1) \]

\[q = x_1 x_2 + d x_2 x_1 \]

(8.10) \[p_{s,0} \otimes p_{s,1} = -((x_1 c) \otimes 1 + 1 \otimes (c x_2) + (x_2 d) \otimes 1 + 1 \otimes (d x_1)) \]

\[q = x_1 c x_2 + x_2 d x_1 \]

(8.11) \[p_{s,0} \otimes p_{s,1} = -(x_1 \otimes c + 1 \otimes (x_2 c) + x_2 \otimes d + 1 \otimes (x_1 d)) \]

\[q = x_1 x_2 c + x_2 x_1 d \]

Доказательство. Утверждение (8.9) является следствием равенства

\[c(x - x_1)(x - x_2) + d(x - x_2)(x - x_1) = c(x - x_1)x - c(x - x_1)x_2 + d(x - x_2)x - d(x - x_2)x_1 \]

\[= c x^2 - c x_1 x - c x_1 x_2 + c x_1 x_2 + d x^2 - d x_2 x - d x_2 x_1 + d x_2 x_1 \]

\[= x^2 - c x_1 x - c x_2 - d x_2 x - d x_1 + c x_1 x_2 + d x_2 x_1 \]

(8.12)
Утверждение (8.10) является следствием равенства
\[(x - x_1)c(x - x_2) + (x - x_2)d(x - x_1)\]
\[= (x - x_1)c - (x - x_1)cx_2 + (x - x_2)dx - (x - x_2)dx_1\]
\[= x_1cx - x_1cx_2 + x_1cx_2 + xdx - x_2dx - xdx_1 + x_2dx_1\]
\[= x^2 - x_1cx - xcx_2 - x_2dx - xdx_1 + x_1cx_2 + x_2dx_1\]
Утверждение (8.11) является следствием равенства
\[(x - x_1)(x - x_2)c + (x - x_2)(x - x_1)d\]
\[= (x - x_1)c - (x - x_1)x_2c + (x - x_2)x_1d - (x - x_2)x_1d\]
\[= x^2c - x_1xc - x_2xc + x_1x_2c + x^2d - x_2xd - x_1x_2d + x_1x_2d\]
\[= x^2 - x_1xc - xx_2c - x_2xd - xx_1d + x_1x_2c + x_2x_1d\]

Вопрос 8.8. Перечислены ли в теореме 8.7 все возможные представления приведенного уравнения (8.8)? □

Мы можем рассмотреть вопрос 8.1 с точки зрения теоремы 8.7. Предположим, что многочлен
\[(8.15)\]
\[p(x) = (x - b)(x - a) + (x - a)(x - c)\]
имеет корни \(x = a, x = d\). Существуют \(A\)-числа \(f, g,\)
\[f + g = 1\]
такие, что
\[(8.16)\]
\[2afd + 2dga = ba + ac\]
Мы получили уравнение степени 2 с двумя неизвестными.

Вопрос 8.9. Пусть \(x = c\) корень многочлена (8.3). Если мы запишем значение с вместо значения \(b\), изменится ли многочлен \(r(x)\)? □

Значения \(x = i, x = -i\) порождают многочлен
\[(8.17)\]
\[r(x) = (x - i)(x + i) + (x + i)(x - i)\]
\[= x(x + i) - i(x + i) + (x + i)x - (x + i)i\]
\[= x^2 + xi - ix - i^2 + x^2 + ix - xi - i^2\]
\[= 2x^2 + 2\]
Значения \(x = i, x = -j\) порождают многочлен
\[(8.18)\]
\[q(x) = (x - i)(x + j) + (x + j)(x - i)\]
\[= x(x + j) - i(x + j) + (x + j)x - (x + j)i\]
\[= x^2 + xj - ix - ij + x^2 + jx - xi - ji\]
\[= 2x^2 + x(j - i) + (j - i)x\]
Как мы видим, многочлены \(r(x), q(x)\) различны. Более того
\[(8.19)\]
\[q(-i) = 2(-i)^2 + (-i)(j - i) + (j - i)(-i)\]
\[= 2(-1) + (-i)j - (-i)i + j(-i) - i(-i)\]
\[= -2 - ij + t^2 - ji + i^2 = -2 + 2i^2 = -4\]
Следовательно, если многочлен \(r(x) \) второй степени имеет бесконечно много корней, то мы не можем произвольно выбрать значения из множества корней, чтобы записать разложение многочлена \(r(x) \) на множители. Однако из теоремы 8.10 следует, что разложение многочлена \(r(x) \) на множители не определено однозначно.

Теорема 8.10. Пусть кватернионы \(a, b \) удовлетворяют равенству

\[
ab + ba = 0
\]

Тогда

\[
(x - a)(x - b) + (x - b)(x - a) = x(x - (a + b)) + (x - (a + b))x
\]

Доказательство. Равенство

\[
(x - a)(x - b) + (x - b)(x - a) = x^2 - ax + xb + ab + x^2 - bx - xa + ba = 2x^2 - (a + b)x - x(a + b)
\]

является следствием равенства (8.20). Равенство (8.21) является следствием равенств (5.4), (8.22). \qed

9. Список литературы

[1] Серж Ленг, Алгебра, М., Мир, 1968
[2] Vladimir Retakh, From factorizations of noncommutative polynomials to combinatorial topology, eprint arXiv:0911.4454 (2009)
[3] Kevin McCrimmon; A Taste of Jordan Algebras; Springer, 2004
[4] Александр Клейн, Линейное уравнение в конечномерной алгебре, eprint arXiv:0912.4061 (2010)
[5] Александр Клейн, Линейные отображения свободной алгебры, eprint arXiv:1003.1544 (2010)
[6] Александр Клейн, Алгебра с сопряжением, eprint arXiv:1105.4307 (2011)
[7] Александр Клейн, Многочлен над ассоциативной \(D \)-алгеброй, eprint arXiv:1302.7204 (2013)
[8] Александр Клейн, Линейное отображение \(D \)-алгебры, eprint arXiv:1502.04063 (2015)
[9] Александр Клейн, Введение в математический анализ над банаховой алгеброй, eprint arXiv:1601.03259 (2016)
[10] Rida T. Farouki, Graziano Gentili, Carlotta Giannelli, Alessandra Sestini, Caterina Stoppato, Solution of a quadratic quaternion equation with mixed coefficients, eprint arXiv:1506.05848 (2015)
[11] John C. Baez, The Octonions, eprint arXiv:math.RA/0105155 (2002)
[12] П. Кои, Универсальная алгебра, М., Мир, 1968
[13] Paul M. Cohn, Algebra, Volume 1, John Wiley & Sons, 1982
[14] Paul M. Cohn, Skew Fields, Cambridge University Press, 1995
[15] Т. Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, 1991
[16] Шабат Б. В., Введение в комплексный анализ, М. Наука, 1969
[17] Постников М. М., Лекции по геометрии, семестр IV, Дифференциальная геометрия, М. Наука, 1983
[18] Алексеевский Д. В., Виноградов А. М., Лychагин В. В., Основные понятия дифференциальной геометрии
Итоги ВИНИТИ 28
М. ВИНИТИ, 1988
[19] Richard D. Schafer, An Introduction to Nonassociative Algebras, Dover Publications, Inc., New York, 1995
10. ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

A-число 13
A-представление в Ω-алгебре 9
D-алгебра 13
D-модуль 12
n-арная операция на множестве 7
алгебра кватернионов 22
алгебра над кольцом 13
алгебра с сопряжением 20
алгебра скалярных алгебры 19
арность 8
ассоциативная D-алгебра 14
ассоциатор D-алгебры 14
вектор 12
вектор элемента алгебры 19
гомоморфизм 8
dекартова степень 7
делитель многочлена 21
закон ассоциативности 12
закон дистрибутивности 12
закон унитарности 12
квадратное уравнение 32
квадратный корень 24
коммутативная D-алгебра 14
коммутатор D-алгебры 14
компонент линейного отображения 16
координатная матрица вектора 12
координаты 12
линейное отображение 13, 15
многочлен 21
модуль векторов алгебры 20
модуль над кольцом 12
морфизм представлений Ω₁-алгебры в Ω₂-алгебре 9
морфизм представлений из f в g 9
морфизм представления f 10
норма кватерниона 22
носитель Ω-алгебры 8
область операторов 8
однородный многочлен 20
одночлен степени k 20
операція на множество 7
отображение согласовано с операцией 8
полилинейное отображение 15
представление Ω₁-алгебры A в Ω₂-алгебре M 9
преобразование сопряжения 17
приведенное квадратное уравнение 34
приведенный морфизм представлений 10
свободная алгебра над кольцом 13
свободное представление 9
скаляр элемента алгебры 19
сопряжение в алгебре 20
стандартная компонента линейного отображения 16
структурные константы 15
универсальная алгебра 8
унитальная алгебра 14
центр D-алгебры A 14
эндоморфизм 8
эффективное представление 9, 12
ядро D-алгебры A 14
Ω-алгебра 8
11. Специальные символы и обозначения

$A[x]$ A-алгебра многочленов над D-алгеброй A 21
(a, b, c) ассоциатор D-алгебры 14
$[a, b]$ коммутатор D-алгебры 14
A_Ω Ω-алгебра 8
$A_k[x]$ множество однородных многочленов 20
\sqrt{a} квадратный корень 24
B^A декартова степень 7
C_{ij}^k структурные константы 15
d^* сопряжение в алгебре 20
$\text{End}(\Omega; A)$ множество эндоморфизмов 8
f_{ik}^j компонента линейного отображения f тела 16
F_k^l преобразование сопряжения 17
H алгебра кватернионов 22
$\text{Im} A$ модуль векторов алгебры A 20
$\text{Im} d$ вектор элемента d алгебры 19
$\mathcal{L}(D; A_1 \rightarrow A_2)$ множество линейных отображений 13, 15
$\mathcal{L}(D; A_1 \times \ldots \times A_n \rightarrow S)$ множество полилинейных отображений 15
$\mathcal{L}(D; A^n \rightarrow S)$ множество n-линейных отображений 15
$N(A)$ ядро D-алгебры A 14
$\text{Re} A$ алгебра скаляров алгебры A 19
$\text{Re} d$ скаляр элемента d алгебры 19
$Z(A)$ центр D-алгебры A 14
Ω область операторов 8
$\Omega(n)$ множество n-арных операторов 8