Evaluation of some new synthesis benzothiazole and benzimidazole derivatives as potential antimicrobial and anticancer agents

Amani Abd Elrazig Salman Abd Elaziz 1, *, Ahmed M. Farag 2, Ishraga Izzeldin Abdelrahim Alagib 3, Emad M. Abdallah 3, Nawadir Eltieb Abdlla Mohammed 1

1Department of Basic Science (Chemistry), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
2Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
3Department of Laboratory Sciences, College of Sciences and Arts, Qassim University, Al-Rass, Saudi Arabia

ARTICLE INFO

Article history:
Received 15 September 2019
Received in revised form
14 December 2019
Accepted 17 December 2019

Keywords:
Benzothiazoles
Benzimidazoles
β-ketosulphones
Pyrazolo[5,1-c]-1,2,4-triazine
Arlyhydrazone
Pyridazine
Antimicrobial
Anticancer

ABSTRACT

There is an urgent global need to develop new antimicrobial and anti-cancer drugs. In the current study, the biological evaluation of some synthesized phenylsulfonyl of benzothiazole and benzimidazole moiety-containing pyrazolo [5, 1-c]-1, 2, 4-triazine derivative [6, 7, 11,12, 16 and 17], arylhydrazone derivatives and pyridazine derivative [20, 21, 25, 26, 29 and 29] was carried out for antimicrobial and anticancer activity. The synthesized compounds containing pyrazolo [5,1-c]-1, 2, 4-triazine derivative [6, 7] exhibited higher activity against Staphylococcus aureus compared with control drug Chloramphenicol. While arylhydrazones 20 and 21 were found to be equal to the control drug. For antifungal activity, the compounds 6, 7, 20 and 21 were possessed the same potency as cycoheximide against Aspergillus fumigatus. The anticancer activity on Hepatocellular carcinoma (HEPG2) of the compounds 6, 7, 20 and 21 exhibited excellent activities, more potent than the reference drug. The findings of this study are worthwhile; however, further pharmaceutical and toxicological studies are recommended to be carried out.

© 2020 The Authors. Published by IASE. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

In recent decades, many outbreaks of antimicrobial resistance have been reported. This alarming phenomenon mainly results from the rapid development of microbial mutation and resistance to drugs, while innovations in the pharmaceutical industry are very slow and disproportionate to this growing risk, which requires new strategies to control these mutant pathogens and launching extensive investigations to develop new antimicrobial drugs (Cheng et al., 2016; Cole, 2013). Similarly, the increasing recurrence of carcinoid tumors worldwide with limited effective medications shows the constant need to develop new anticancer drugs (Ali et al., 2012). Benzothiazole and benzimidazole derivatives are notable pharmacological activities heterocyclic compounds (Anand and Wakode, 2017; Váradi et al., 2014). Their derivatives possess important biological activities (Dai et al., 2013; Telvekar et al., 2012), anti-tumour (Weekes and Westwell, 2009), anticancer (Solomon et al., 2009), antiplierferative agent (Racané et al., 2018), anthelmintic and antiprotozoal (Mavrova et al., 2010; Torres-Gómez et al., 2008), antibacterial (He et al., 2004), antifungal (Göker et al., 2002), antiphaptic (Kopańska et al., 2004). β -keto sulphones have attracted in synthetic chemists (Gopalan and Jacobs, 1990). The different pharmacological activities of heterocycles directed to synthesis benzothiazole and benzimidazole derivatives (Ali et al., 2016; Farag et al., 2008). The research program investigated synthesized β-ketosulphone benzimidazole and benzothiazole derivatives (1, 2) as an intermediate for the synthesis of new heterocyclic derivatives (Darweesh et al., 2016).

In continuation of a research program and an attempt to develop new antimicrobial and anticancer drugs, the current study was carried out, which aimed to evaluate some biological properties (antimicrobial and anticancer) of some synthesized heterocyclic derivatives containing pyrazoloazaine and pyridazine incorporating benzothiazole and benzimidazole moieties.
2. Materials and methods

2.1. Chemistry

All melting points were determined using an open glass capillary melting point apparatus. The infrared spectrophotometers using potassium bromide disks method. The 1H and 13C NMR spectra were recorded on a Varian Mercury (VXR-300) NMR spectrometer at 300 and 75 MHz respectively using CDCl$_3$ and DMSO-d$_6$. Mass spectra were recorded on a Shimadzu GCMS-QP 1000 EX mass spectrometer at 70 e.v. β-keto sulfones 1 and 2 (Darweesh et al., 2014), 5-(4-chlorophenyl)-5-amino-1H-pyrazole (3) (Elmagdi et al., 1976), 2-cynomethylbenzothiazole (18) (Copeland and Day, 1943), diazonium salts of 5-amino-l,2,4-triazole (8) and 2-aminohydroxybenzimidazoles (13) (Elmagdi et al., 1979) were been ready by using methods from the literature.

2.2. The reaction of β-keto sulfones 1 and 2 with diazonium salt of heterocyclic amines 3, 8, 13 General procedure

Diazonium salt of (5-amino-3-phenylpyrazole (3), 3-amino-l,2,4-triazole (8), or 2-amino-benzimidazoles (13) (2 mmol) was mixed to a stirred cold solution of β-keto sulfones 1 and 2 (2 mmol) in pyridine (30 ml) for 30 min at 0-5°C. The mixture was stirred for 3 h after addition complete. The solid was obtained by filtration, washed thoroughly with H$_2$O, dried. Finally, recrystallization from DMF/H$_2$O to afford 6, 7, 11, 12, 16 and 17, respectively.

2-(7-(4-Chlorophenyl)-3-(phenylsulfonyl) pyrazolo [5, 1-c] [1, 2, 4]-triazin-4-yl) benzo-thiazole (6)

Yield 78%; (mp. 170°C); 1H NMR (300 MHz, DMSO-d$_6$): δ 7.42-8.13 (m, 13H, ArH’s), 6.99 (s, 1H, pyrazolo-8-CH). MS (m/z): 503.03 (M$^+$ (100); IR (KBr): ν: 1597 cm$^{-1}$ (C=N). Anal. Found (calculated). For C$_{29}$H$_{18}$N$_3$OCl$_2$: S; C, 57.19 (57.20); H, 2.83 (2.80); S, 12.68 (12.72); N, 13.94 (13.90).

7-(4-Chlorophenyl)-4-(1-methyl-1H-benzimidazol-2-yl)-3-(phenylsulfonyl) pyrazolo [5, 1-c]-1, 2, 4-triazine (7)

Yield 72%; (mp. 188°C); 1H NMR (300 MHz, DMSO-d$_6$): δ 4.02 (s, 3H, NCH$_3$), δ 7.20-7.89 (m, 13H, ArH’s), 6.89 (s, 1H, pyrazolo-8-CH). MS (m/z): 500 (M$^+$ (100); IR (KBr): ν: 1597 cm$^{-1}$ (C=N). Anal. Found (calculated) For C$_{30}$H$_{21}$N$_3$OCl$_2$: S; C, 59.96 (59.94); H, 3.39 (3.42); S, 6.41 (6.40); N, 16.80 (16.78).

2-(3-(Phenylsulfonyl) 1-[1, 2, 4] triazolo [5, 1-c][1, 2, 4]triazin-4-yl) benzo-thiazole (11)

Yield 72%; (mp. 205-206°C); 1H NMR (300 MHz, DMSO-d$_6$): δ 7.43-8.41 (m, 9H, ArH’s), 8.57 (s, 1H, triazolo-7-CH). 13C NMR (75 MHz, DMSO-d$_6$): δ 120.23, 121.53, 124.30, 125.32, 128.10, 129.57, 133.43, 133.02, 136.22, 152.54, 156.04, 156.05, 156.63; MS (m/z): 394 (M$^+$ (100); IR (KBr): ν: 1607 cm$^{-1}$ (C=N). Anal. Found (calculated). For C$_{31}$H$_{23}$N$_3$O$_2$: S; C, 51.73 (51.77); H, 2.57 (2.56); S, 16.23 (16.26); N, 21.34 (21.31).

4-(1-Methyl-1H-benzimidazol-2-yl)-3(phenylsulfonyl)-[1, 2, 4]-triazolo[5, 1-c][1, 2, 4]-triazine (12)

Yield 72%; (mp. 110°C); 1H NMR (300 MHz, DMSO-d$_6$): δ 4.02 (s, 3H, NCH$_3$), δ 7.20-8.04 (m, 9H, ArH’s), 8.47 (s, 1H, triazolo-7-CH). 13C NMR (75 MHz, DMSO-d$_6$): δ 31.97, 111.67, 121.43, 123.60, 128.10, 129.22, 133.36, 134.01, 136.02, 140.54, 141.11, 148.45, 148.57. MS (m/z): 391 (M$^+$ (100); IR (KBr): ν: 1607 cm$^{-1}$ (C=N). Anal. Found (calculated). For C$_{32}$H$_{23}$N$_3$O$_2$: S; C, 55.19 (55.23); H, 3.25 (3.35); S, 8.21 (8.19); N, 25.19 (25.05).

4-(Benzothiazol-2-yl)-3-(phenylsulfonyl)-[1, 2, 4]-triazino[4, 3-a] benzimidazole (16)

Yield 70%; (mp. 166°C); 1H NMR (300 MHz, DMSO-d$_6$): δ 7.41-8.16 (m, 13H, ArH’s). MS (m/z): 443 (M$^+$ (100); IR (KBr): ν: 1607 cm$^{-1}$ (C=N). Anal. Found (calculated). For C$_{31}$H$_{18}$N$_3$O$_2$: S; C, 59.56 (59.58); H, 3.01 (2.95); S, 14.42 (14.46); N, 15.76 (15.79).

4-(1-Methylbenzimidazol-2-yl)-3 (phenylsulfonyl)-1, 2, 4-triazino-o[4, 3-a] benzimidazole (17)

Yield 70%; (mp. 175°C); 1H NMR (300 MHz, DMSO-d$_6$): δ 4.02 (s, 3H, NCH$_3$), δ 7.38-7.94 (m, 13H, ArH’s). MS (m/z): 440 (M$^+$ (100); IR (KBr): ν: 1607 cm$^{-1}$ (C=N). Anal. Found (calculated) For C$_{32}$H$_{21}$N$_3$O$_2$: S; C, 62.68 (62.72); H, 3.64 (3.66); S, 7.33 (7.28); N, 19.12 (19.08).

2.3. The reaction of β-keto sulfones 1 and 2 with benzene diazonium chloride

Sodium acetate trihydrate (4 g), was added to a stirred cold solution of keto-sulfone of benzothiazole 1 and benzimidazole 2 (10 mmol) in ethanol (25 ml), the mixture was cooled to 0°C and treated with aniline diazonium salt solution (10 mmol) with rapid stirring for 30 min and continued stirred for further 2h at 0°C then stored at 4°C for 6 h. The mixture was filtrated to collect the solid product, washed with water and dried; then recrystallized from ethanol to yield aryldiazonene 20 and 21 respectively.

1-(benzothiazol-2-yl)-2-(2-phenylhyrazono)-2-(phenylsulfonyl) ethanone (20)

Yield 80%; (mp. 180°C); 1H NMR (300 MHz, DMSO-d$_6$): δ 7.07-8.33 (m, 14H, ArH’s). 11.11 (s, 1H, NH). 13C NMR (75 MHz, DMSO-d$_6$): δ 113.05, 120.94, 122.74, 124.35, 125.29, 128.40, 129.20, 129.28, 133.52, 138.27, 139.40, 142.16, 160.25, 162.67, 182.35, 154.21. MS (m/z): 421 (M$^+$ (100); IR (KBr):
1-(1-Methylbenzimidazol-2-yl)-2-(2-phenylhyrazono)-2-(phenyl-sulfonyl) ethanol (21)

Yield 74%; (mp. 204 °C); 1H NMR (300 MHz, DMSO-d6): δ 4.02 (s, 3H, NCH3), 6.79-7.86 (m, 14H, ArH’s), 11.01 (s, 1H, NH). 13C NMR (75 MHz, DMSO-d6): δ 31.95 (NCH), 6.94 (3.24); S, 13.65 (3.22); H, 3.24 (3.22); S, 13.65 (3.22); N, 14.88 (14.92).

2.4. The reaction of arylhydrazone 20 and 21 with malonitrile

(5mmol), cyano-methyl-benzothiazole (22) or malonitrile, in ethanol (25 ml) was added to a solution of arylhydrazone 20 and 21 (5mmol). Drops of piperidine were added to the mixture, refluxed for 3-4 h then poured into ice-cold water. Dil HCl was added to neutralize the mixture and formed a precipitate. The solid product was collected by filtration. The crystals of the pyridazine derivative 25, 26, 29, and 30 were afforded by the recrystallized solid from DMF.

(4, 5)- (Bisbenzthiazol-2-yl)-1, 6-dihydro-6-imino-3-(phenylsulfonyl)-1-(phenyl) pyridazine (25)

Yield (50%); (mp. 258 °C); 1H NMR (300 MHz, DMSO-d6): δ 6.74-8.14 (m, 18H, ArH’s), 11.88 (s, 1H, NH), MS (m/z): 577 (M+) (100); IR (KBr): v: 1620 (C=N), 3332 (NH) cm⁻¹ Anal. Found (calculated) for C32H29N2O12S4 (%): C, 64.91 (64.96); H, 6.41 (6.46); S, 18.04 (18.01).

2.5. Antifungal activity

The synthesized compounds were screened (in vitro) for antifungal potential against selected fungi, namely Aspergillus fumigatus (RCMB 002003), Geotrichum candidum (RCMB 002006), Candida albicans (RCMB 005002) and Syncephalastrum racemosum (RCMB 005003) using Sabouraud dextrose agar. The cultures of fungi were purified by a single spore isolation assay. The antifungal activity test was performed by the agar well diffusion method as mentioned in Choudhary and Thomsen (2001). Briefly, Sabouraud dextrose agar was prepared as the manufacturer’s instructions, poured in sterile plates, left until solidified, and kept at room temperature upside-down for 15 minutes to remove the moisture. 0.1 ml of Fungal culture was swabbed over the sabouraud dextrose agar plates and left for about five minutes. Wells of size 6 mm were punched out on the agar plates using a good cutter. 100 μl of the tested samples (at a concentration of 10 mg/mL) was poured into the wells. All tested compounds were dissolved in dimethyl sulfoxide (DMSO), and the solvent was loaded separately as a negative control. Thereafter, the plates were incubated at 30°C for 3-4 days. The plates were then inspected for the presence of a zone of inhibition. The inhibition zone was measured three times to get a mean value. A standard antifungal drug, cycloheximide was used as a positive control.

2.6. Antibacterial activity

Agar well diffusion method was used in the screening of the antibacterial potential of the synthesized compounds as mentioned in the literature (Choudhary and Thomsen, 2001). Briefly, bacterial strains were sub-cultured overnight prior of the experiment, these strains were Staphylococcus aureus (RCMB 000106) and Bacillus subtilis (RCMB 000107) as Gram positive bacteria, while a Gram-negatives were Pseudomonas aeruginosa (RCMB 000102) and Escherichia coli (RCMB 000103) In a septic conditions, Petri-dishes containing Nutrient agar were prepared and bacterial strains were swabbed over the solidified agar. Wells (6mm) were made using sterile metallic bores and 100 μl of the tested compounds (concentration 10 mg/mL) were loaded into the wells. All compounds were prepared
in dimethyl sulfoxide (DMSO) and DMSO was also loaded as a control. Chloramphenicol and Cephalothin were used as antibacterial standard drug. The plates were kept for incubation overnight for 24 hours and then the plates were inspected for the appearance of the zone of inhibition. Each inhibition zone was measured three times to get a mean value.

2.7. Anti-cancer activity

The synthesized compounds were sent to the Bioassay-Cell Culture Laboratory, for in-vitro primary antitumor screening on Hepato cellular carcinoma (HEPG2) (American Type Culture Collection). Cell viability was specified by the mitochondrial-dependent reduction of the yellow MTT (3-(4, 5- dimethylthiazol-2-yl)-2, 5- diphenyl tetrazolium bromide) to purple formazan.

The following method was carried out in aseptic conditions using a Laminar flow cabinet (Baker, SG403INT, Sanford, ME, USA). Hepatocellular carcinoma (HEPG2) cell line was cultured in RPMI-1640 and MCF7 cell lines were cultured in DMEM. Cells were plated in 96-well plates (having about 10000 cells/well). The cultured plates were incubated incubation at 37°C for about 24 hours and 5% CO2 atmosphere before treatment with the compounds to enable direct attachment of the cell to the plate. The investigated compounds were dissolved in DMSO. Different concentrations of the tested compounds (50, 25, 12.5, 6.25, 3.125 and 1.56 ug) were added to the cell monolayer. Thereafter, the plate was incubated for 48 hours at 37°C. After the incubation period, media were aspirated and a crystal violet solution (1%) was loaded to each well and left for around 30 minutes. The strain was removed, and the plates were rinsed using tap water until the removal of all excess stain. Then, glacial acetic acids (30%) were added to all wells and mixed thoroughly, subsequently, the absorbance of the plates was measured. The treated samples were compared with the non-treated (control). All tests were carried out in triplicate and the cell cytotoxic effect of each tested compound was measured (Mosmann, 1983).

3. Results and discussion

3.1. Chemistry

The diazonium salts of 3-chlorophenyl-5-amino-1H-pyrazole (3), 5-amino-1,2,4-triazole (8) or 2- amino-1H-benzimidazole (13), was added to the cold solution of β-ketosulfonyl 1 and 2 in pyridine to afford intermediates 4, 5, 9, 10, 14 and 15 respectively which underwent cyclization to form pyrazolo [5, 1-c]-1, 2, 4-triazine 6 and 7, triazolo [5, 1-c](1, 2, 4) triazine and triazino [4, 3-a] benzimidazole derivatives (6, 7, 11, 12, 16 and 17) respectively (Fig. 1).

![Synthetic route to fused ring heterocycles 6, 7, 11, 12, 16 and 17](image-url)
The structures of compounds (6, 7, 11, 12, 16 and 17) were characterized based on their spectral data and elemental analyses. The formation of pyrazoles and triazoles derivatives (6, 7, 11, 12) was confirmed by the disappearance of NH band in IR spectra. The 1H NMR spectra of compounds (6, 7, 11, 12, 16 and 17) displayed a multiplet signal between δ (7.20-8.41) ppm which were attributed to aromatic protons. While a singlet signal of (CH) in pyrazoles and triazoles derivatives (6, 7, 11, 12) appeared around δ (6.89-8.57). A singlet signal δ 4.02 (N-CH3) appeared in the spectra of benzimidazole derivatives (7, 12 and 17). The C13 NMR spectra of compounds 11 and 12 displayed the most characteristic carbon signals, CH3 signals appeared around δ 31.97, C=N signal appeared around δ 141.0-157.0 and aromatic carbon peaks at range δ 111.0-136.0. In addition, the mass spectra of synthesized compounds were agreement with expected structures.

Coupled of the β-ketosulfones 1 and 2 with diazotized aniline, to afford arylhydrazone derivatives 20 and 21 (Fig. 2) as starting materials for synthesized biologically interesting pyridazine derivatives (Kaji et al., 1984). The β-ketosulfones 1 and 2 coupled with diazotized aromatic amines such as aniline, to give the corresponding arylhydrazone derivatives 20 and 21 (Fig. 2). The obtained arylhydrazones 20 and 21 have been utilized as starting materials for the synthesis of a pyridazine ring systems, which are considered as interesting biologically molecules.

![Fig. 2: Synthetic route to arylhydrazone derivatives 20 and 21](image)

Thus, the arylhydrazones 20 and 21 condensed with 2-cynomethylbenzothiazole (22) and malonnitril under reflux in ethanol with catalytic piperidine to formed pyridazine derivatives 25, 26, 29 and 30 respectively (Fig. 3). The obtained pyridazines structures were constructed based on their spectral data and elemental analyses. As in IR spectra, the appearance of the absorption band in obtained compounds near 3332 cm⁻¹ indicated the presence of NH and band around (1597-1620) due to C=N, while (C≡N) band at 2233 appeared in 29 and 30. From 1H NMR spectra a singlet signals near 11.88 ppm due NH protons in all synthesized compounds. The structure of the obtained compounds was also confirmed by their mass spectra.

3.2. Antimicrobial evaluation

The synthesized compounds were screened for them in vitro antibacterial activity against Streptococcus aureus and Bacillus subtilis as Gram-positive bacteria and Escherichia coli and Salmonella typhimurium as Gram-negative bacteria. Synthesized compounds were also evaluated for them in vitro antifungal potential against some fungal strains, namely Aspergillus fumigatus, Candida albicans, Geotrichum candidum, and Synecphalastrum racemosum. Microorganisms were tested against the activity of solutions of concentrations (5 μg/mL) and using inhibition zone diameter (IZD) in mm as an indicator for the antimicrobial activity (agar well diffusion assay). The fungicide drugs; Cycloheximide and the bactericide drugs; Chloramphenicol and Cephalothin were used as references to determine the efficacy of the tested compounds under the same conditions. The results are summarized in Table 1 and Table 2. Generally, the most susceptible bacteria to the tested compounds were the gram positives (Staphylococcus aureus and Bacillus subtilis). Whereas the most susceptible fungi to the examined derivatives were Aspergillus fumigatus Also, all other microorganisms also showed varied sensitivity to the tested compounds.

The results in Table 1 revealed that 2-(7-(4-Chlorophenyl)-3-(phenylsulfonyl) pyrazolo [5, 1-c][1, 2, 4]-triazin-4-yl) benzothiazole (6) and 7-(4-Chlorophenyl)-4-(1-methyl-1H-benimidazol-2-yl)-3-(phenylsulfonyl) pyrazolo [5, 1-c][1, 2, 4]-triazine (7) were found to be more active compared to the standard drug Chloramphenicol against Staphylococcus aureus, while the compounds: arylhydrazones 20 and 21, were found to be equipotent to Staphylococcus aureus. As well, the results of the antifungal activity of the synthesized compounds showed that the compounds 6, 7, 20 and 21 were equipotent to the standard drug cycloheximide against Aspergillus Fumigatus. Moreover, some compounds, like derivatives numbers 11, 12, 16, 17, 25 and 26 showed moderate activity against Staphylococcus aureus.

![Diagram](image)
Table 1: Antibacterial activities of the synthesized compounds

Tested compounds	Gram (+)	Staphylococcus aureus (SA)	Bacillus subtilis (BS)	Escherichia coli anaerobic (EC)	Salmonella typhimurium (ST)
		6	7	11	12
		25.4±0.03	25.3±0.04	21.5±0.04	23.3±0.01
		23.3±0.07	25.3±0.02	19.2±0.05	21.4±0.08
		16.5±0.04	23.3±0.09	16.6±0.04	17.3±0.06
				19.1±0.02	15.9±0.05
				18.2±0.01	13.0±0.08
				22.4±0.02	15.5±0.02
				22.4±0.05	20.1±0.03
				23.6±0.07	15.5±0.02
				24.4±0.01	22.6±0.70
				25.7±0.05	20.1±0.03
				14.4±0.20	17.1±0.05
				21.6±0.05	15.5±0.02
				17.6±0.02	12.3±0.01
				14.0±0.03	10.0±0.06
				11.0±0.03	11.2±0.05
				9.4±0.01	11.2±0.05
Chloramphenicol		24.5±0.05	32.4±0.03	-	24.3±0.02
Cephalothin		-	-	-	28.5±0.08

Data are presented as mean ±SD. Mean zone of inhibition in mm ± Standard Deviation. The good diameter is 6 mm.

Table 2: Antifungal activities of the synthesized compounds

Tested compounds	Aspergillus Fumigatus (AF)	Candida albicans (CA)	Geotricum candidum	Syncophalastrum racemosum
	6	11.8±0.04	22.4±0.02	10.9±0.04
	7	10.4±0.08	21.6±0.05	12.0±0.05
	11	10.5±0.03	10.7±0.03	13.5±0.06
	12	12.9±0.05	13.7±0.06	11.3±0.02
	14	12.7±0.06	11.3±0.2	13.6±0.03
	16	13.5±0.01	12.4±0.3	10.7±0.04
	17	9.4±0.07	21.9±0.6	12.6±0.04
	20	10.7±0.03	21.5±0.4	12.1±0.02
	21	10.3±0.04	19.5±0.06	11.3±0.04
	25	9.5±0.03	13.4±0.03	NA
	26	6.9±0.02	9.2±0.06	NA
	29	5.7±0.08	8.7±0.05	NA
	30	27.0±0.01	22.4±0.5	23.1±0.3
cycloheximide	25.2±0.04	22.4±0.5	23.1±0.3	

NA: Not active. Data are presented as mean ± SD.
Interestingly, all compounds exhibited almost less activity against *Candida albicans* and almost all compounds exhibited low antibacterial activities against the gram-negative bacteria (*Escherichia coli* and *Salmonella typhimurium*). It is believed that the differences between the sensitivity of the Gram-positive and the Gram-negative bacteria are related to the thickness of the bacterial cell wall, the gram-negative have impenetrable cell wall, because of the presence of an outer membrane covering the peptidoglycan layer which makes it more resistant to antibiotics (Nazzaro et al., 2013). The antimicrobial activity relationship of the synthesized compounds 6 and 7 revealed that the maximum activity was observed with compounds 6 and 7, having a pyrazolo-triazine with chloro substituent in the phenyl group incorporating benzothiazole and benzimidazole nucleus. However, the current study provides some interesting compounds as potent antimicrobial drugs. A similar study on a series of synthesized benzothiazole derivatives reported potent antimicrobial activity against some bacterial strains, namely *Bacillus subtilis*, *Escherichia coli*, *Streptomyces griseus* and also found effective against some fungal strains, namely *Candida albicans* and *Aspergillus niger* (Soni et al., 2010). Also, various previous studies showed that some benzimidazole and benzoazazole exhibited excellent results against some bacterial strains and benzothiazole against some fungal strains (Padalkar et al., 2016; Tahlan et al., 2019).

3.3. Anticancer evaluation

The synthesized compounds were preliminarily screened for their cytotoxic activity (in vitro) against human cancer cell line including Hepatocellular carcinoma (HEPG2). Table 3, shows the in-vitro cytotoxic activity of the newly synthesized compounds at a concentration of 50 µM, where seven compounds revealed anticancer activity percentage against the tested human cancer cell line.

Some of the synthesized compounds gave cytotoxic activity inhibition of cell viability at concentration 50µg. Using the MTT method, to calculate their IC₅₀ (µM) value which corresponds to the concentration required for 50% inhibition of cell viability (Table 3).

Vinblastine is a widely used anticancer agent, it was used as a reference anticancer drug in the current study. The tested derivatives showed significant activity against the HEPG2 cancer cell line, where some compounds showed moderate or no activity.

The compounds 6, 7, 20 and 21 presented excellent activities with IC₅₀ values, which recorded 2.45, 2.55,1.22 and 1.12 µg, respectively (Table 3), more potent than the reference drug (Vinblastine, IC₅₀ value 2.60µM), while compounds 11, 12, 16 and 17 were found to be slightly less effective than the reference drug. The compounds 29 and 30 exhibited no activity (Table 3). Interestingly, the current results are in agreement with previous studies, which showed that some synthesized derivatives of benzothiazole and benzimidazole possessed noticeable anticancer activity (Youssef et al., 2012; Xiang et al., 2012).

Table 3: Anticancer activity (IC₅₀ ±µM) of the synthesized compounds against human cancer cell line (HEPG2)

Tested compounds	Cytotoxicity IC₅₀ (µg)
Vinblastine	2.60
6	2.45
7	2.55
11	3.83
12	3.67
16	4.21
17	3.95
20	1.22
21	1.12
29	NA
30	NA

*IC₅₀ compound concentration required to inhibit tumor cell proliferation by 50%; Values are means of three experiments; NA: No activity.

4. Conclusion

There is an intrinsic need for new antimicrobial and anticancer drugs, benzothiazole still considered as one of the most versatile classes of compounds with various biological activities. In the current study, a series of pyrazolo [5, 1-c]-1, 2, 4-triazindine, pyridazine derivative with phenylsulfonyl of benzothiazole and benzimidazole moiety were synthesized and evaluated for their antimicrobial and anticancer activities. Some compounds exhibited potent antibacterial, antifungal and anticancer activity. Although, this in vitro screening requires further pharmaceutical investigations, such as in vivo studies using experimental animals, understanding the mode of action of these compounds, possible toxicity or side effects, drug interactions and many more.

List of symbols

- mp: Melting point
- Anal: Elemental analysis
- DMF: Dimethylformamide
- CDCl₃: Deuterated chloroform
- DMSO: Dimethyl sulfoxide
- m/z: mass to charge ratio
- MS: Mass spectrometry
- C¹³ NMR: Carbon 13 nuclear magnetic resonance
- H NMR: Proton nuclear magnetic resonance

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

Ali KA, Ragab EA, Abdelghafar HS, and Farag AM (2016). Facile synthetic approaches for new series of pyrazole-4-carbonitrile derivatives. Research on Chemical Intermediates, 42(4):
Anand K and Wakode S (2017). Development of drugs based on benzimidazole heterocyclic. Recent advancement and insights. International Journal of Chemical Studies, 5(2): 350-362.

Cheng G, Dai M, Ahmed S, Hao H, Wang X and Yuan Z (2016). Antimicrobial drugs in fighting against antimicrobial resistance. Frontiers in Microbiology, 7: 470. https://doi.org/10.3389/fmicb.2016.00470

Choudhary M and Thomsen WJ (2001). Bioassay techniques for drug development. CRC Press, Boca Raton, USA.

Cope J (2013). Antimicrobial resistance, infection control and planning for pandemics: The importance of knowledge transfer in healthcare resilience and emergency planning. Journal of Business Continuity and Emergency Planning, 6(2): 122-135.

Copeland RAB and Day AR (1943). Synthesis of some new 2-benzimidazolecarboxylic acid and 2-benzimidazoleacetic acid. Journal of the American Chemical Society, 65(6): 1072-1075. https://doi.org/10.1021/ja01246a019

Dai D, Burgeson JR, Gharaibeh DN, Moore AL, Larson RA, Cerruti PG, and Sekar N (2016). Synthesis and antimicrobial activity of novel 2-substituted benzimidazole, benzoxazole and benzothiazole derivatives. Arabian Journal of Chemistry, 9(52): S1125-S1130. https://doi.org/10.1016/j.arabjc.2011.12.006

Elagndi MH, El-Moghayar MR, Fleita DH, Hafez EA, and Fahmy SM (1976). Pyrimidine derivatives and related compounds. 4. A route for the synthesis of pyrazolo[3,4-d]pyrimidines, pyrazolo[3,4-d]pyrimidines, and pyrazolo[1,5-c]triazines. The Journal of Organic Chemistry, 41(24): 3781-3784. https://doi.org/10.1021/jo00886a002 PMid:993883

Elagndi MH, Fahmy SM, Hafez EA, El-Moghayar MRH, and Amer SAR (1979). Pyrimidine derivatives and related compounds: A novel synthesis of pyrimidines, pyrazolo[4,3-d]pyrimidines and isoazolo[4,3-d]pyrimidine. Journal of Heterocyclic Chemistry, 16(6): 1109-1111. https://doi.org/10.1002/jhet.5570160606

Farag AM, Mayhoub AS, Barakat SE, and Bayomi AH (2008). Synthesis of new N-phenylpyrazole derivatives with potent antimicrobial activity. Bioorganic and Medical Chemistry, 16(8): 4569-4578. https://doi.org/10.1016/j.bmc.2008.02.043 PMid:18313934

Göker H, Kus C, Boykun DW, Yildiz S, and Altanlar N (2002). Synthesis of some new 2-substituted-phenyl-1H-benzimidazole-5-carbonitriles and their potent activity against Candida species. Bioorganic and Medical Chemistry, 10(8): 2589-2596. https://doi.org/10.1016/S0968-0896(02)00103-7

Gopalan AS and Jacobs HK (1990). Synthesis of (3S)-(+)-parasorbic acid and (S)-(+)-2-tridecanol acetate: Bakers' yeast reductions of γ and 8 ketosulfones. Tetrahedron Letters, 31(39): 5575-5578. https://doi.org/10.1016/S0040-4039(00)97900-0

He Y, Yang J, Wu B, Risen L, and Swayne EE (2004). Synthesis and biological evaluations of novel benzimidazoles as potential antibacterial agents. Bioorganic and Medicinal Chemistry Letters, 14(5): 1217-1220. https://doi.org/10.1016/j.bmcl.2003.12.051 PMid:14980669

Kaji K, Nagashima H, Nagao S, Tabashi K, and Oda H (1994). Synthesis of Pyridazino [4,5-ε][1,3,4] thiadiazines and the Ring Contraction to Pyrazolo [3,4-d] pyridazines through Extrusion of Sulfer. Chemical and Pharmaceutical Bulletin, 32(11): 4437-4446. https://doi.org/10.1248/cpb.32.4437

Kopańska K, Najda A, Zebrowska J, Chomicz L, Piekarczyk J, Myjak P, and Bretnor M (2004). Synthesis and activity of 1H-benzimidazole and 1H-benzotriazole derivatives as inhibitors of Acanthamoeba castellanii. Bioorganic and Medicinal Chemistry, 12(10): 2617-2624. https://doi.org/10.1016/j.bmcl.2004.03.022 PMid:15110843

Mavrova AT, Vuchev D, Anichka K, and Vassilev N (2010). Synthesis, antitrichinelliosis and antiprotozoal activity of some novel thieno [2,3-d] pyrimidin-4(3H)-ones containing benzimidazole ring. European Journal of Medicinal Chemistry, 45(12): 5856-5861. https://doi.org/10.1016/j.ejmech.2010.09.050 PMid:20950896

Mosmann T (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2): 55-63. https://doi.org/10.1016/0022-1759(83)90393-4

Nazzaro F, Frattanni F, De Martino L, Coppola R, and De Feo V (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 6(12): 1451-1474. https://doi.org/10.3390/ph6121451

Padalkar VS, Borse BN, Gupta DV, Phatangare KR, Patil VS, Umape PG, and Sekar N (2016). Synthesis and antimicrobial activity of novel 2-substituted benzimidazole, benzoxazole and benzothiazole derivatives. Arabian Journal of Chemistry, 9(S2): S1125-S1130. https://doi.org/10.1016/j.arabjc.2011.12.006

Racané L, Ptiček L, Sedić M, Grbčić P, Pavelić SK, Bertoša B, and Karinski-Zamola G (2018). Eco-friendly synthesis, in vitro anti-proliferative evaluation, and 3D-QSAR analysis of a novel series of monocaticon 2-aryl/heteroaryl-substituted 6-(2-imidazolyl) benzothiazole mesylates. Molecular Diversity, 22(3): 723-741. https://doi.org/10.1007/s11030-018-9827-2 PMid:29667008

Solomo VR, Hu C, and Lee H (2009). Hybrid pharmacophore design and synthesis of isatin–benzothiazole analogs for their anti-breast cancer activity. Bioorganic and Medicinal Chemistry, 17(21): 7585-7592. https://doi.org/10.1016/j.bmcl.2009.08.068 PMid:19804979

Soni B, Ranawat MS, Sharma R, Bhandari A, and Sharma S (2010). Synthesis and evaluation of some new benzothiazole derivatives as potential antimicrobial agents. European Journal of Medicinal Chemistry, 45(7): 2938-2942. https://doi.org/10.1016/j.ejmech.2010.03.019 PMid:20413186

Talhan S, Kumar S, and Narasimhan B (2019). Antimicrobial potential of 1H-benzo[d] imidazole scaffold: A review. BMC Chemistry, 13: 18. https://doi.org/10.1186/s13065-019-0521-y PMid:31384767 PMid:CPC6661827

Telkevir VN, Bairwa VK, Satardkar K, and Bellubi A (2012). Novel 2-(4-aryloxysulfonyl) hydrazinyl benzothiazole derivatives as anti-tubercular agents. Bioorganic and Medicinal Chemistry Letters, 22(1): 649-652.
Torres-Gómez H, Hernández-Núñez E, León-Rivera I, Guerrero-Alvarez J, Cedillo-Rivera R, Moo-Puc R, and Navarrete-Vázquez G (2008). Design, synthesis and in vitro antiprotozoal activity of benzimidazole-pentamidine hybrids. Bioorganic and Medicinal Chemistry Letters, 18(11): 3147-3151. https://doi.org/10.1016/j.bmcl.2008.05.009 PMid:18486471

Váradi A, Palmer TC, Notis PR, Redel-Traub GN, Afonin D, Subrath JJ, and Majumdar S (2014). Three-component coupling approach for the synthesis of diverse heterocycles utilizing reactive nitrilium trapping. Organic Letters, 16(6): 1668-1671. https://doi.org/10.1021/ol500328t PMid:24580074 PMCid:PMC3969103

Weekes AA and Westwell AD (2009). 2-Arylbenzothiazole as a privileged scaffold in drug discovery. Current Medicinal Chemistry, 16(19): 2430-2440. https://doi.org/10.2174/092986709788682137 PMid:19601790

Xiang P, Zhou T, Wang L, Sun CY, Hu J, Zhao YL, and Yang L (2012). Novel benzothiazole, benzimidazole and benzosazole derivatives as potential antitumor agents: Synthesis and preliminary in vitro biological evaluation. Molecules, 17(1): 873-883. https://doi.org/10.3390/molecules17010873 PMid:22252503 PMCid:PMC6268746

Youssef MA, Malik A, Badr HM, Elbayaa YR, and S Sultan A (2012). Synthesis and anticancer activity of novel benzimidazole and benzothiazole derivatives against HepG2 liver cancer cells. Medicinal Chemistry, 8(2): 151-162. https://doi.org/10.2174/157340612800493719 PMid:22385181