Serum hepcidin level and rheumatoid arthritis disease activity

Maryam Sahebari1, Zahra Rezaieyazdi1, Seyed Isaac Hashemy2, Sahar Khorasani3, Sanaz Shahgordi2, Mohammad Karim Alizadeh3, Abdolmomen Ghaeni3, Mandana Khodashahi1

Abstract

Objective: The present study aimed to determine the relationship between the serum hepcidin level and disease activity in patients with rheumatoid arthritis (RA).

Methods: This study was conducted on 80 patients with RA (36 cases with anemia of chronic disease [ACD] and 44 patients without ACD). Disease activity was measured by the 28-joint Disease Activity Score based on the erythrocyte sedimentation rate (DAS28-ESR). According to the DAS28-ESR score, 52 and 28 cases were categorized as inactive to moderately active RA (DAS28-ESR<5.1) and highly active RA (DAS28-ESR>5.1), respectively. In addition, the serum hepcidin level was evaluated in all patients to determine its correlation with the DAS28-ESR score.

Results: There was no significant difference between the RA with ACD and RA without ACD groups in terms of the median (interquartile range) hepcidin level (1207 [985.2] vs. 923.8 [677.3] ng/mL; P=0.57). Likewise, no significant difference was observed between the active RA and inactive to moderately active RA groups in this regard (1131.8 [991.3] vs. 1090.9 [631.4] ng/mL; P=0.53).

Conclusion: Hepcidin has no association with disease activity in RA. Therefore, it is not necessary to measure hepcidin to determine the RA activity.

Keywords: Rheumatoid arthritis, anemia, anemia of chronic disease, hepcidin, inflammation, DAS28-ESR

Introduction

Rheumatoid arthritis (RA) is the most common autoimmune arthritis, affecting approximately 0.5%-1% of people all over the world. In RA, proliferative synovitis leads to irreversible cartilage damage and joint destruction (1). Inflammatory synovitis in RA is partially related to the overproduction of tumor necrosis factor alpha (TNF-α), interleukin-1 (IL-1), IL-6, and IL-17 (1). In particular, IL-6 plays an important role in synovitis, and its serum level is directly associated with disease activity. The IL-6 blockers have been shown as highly effective in the treatment of RA (2). Hepcidin is an acute-phase reactant protein synthesized in the liver. This peptide fulfills two main functions through acting as a homeostatic regulator of iron metabolism (via iron release and mobilization control in hepatocytes, macrophages, etc.) and an inflammatory mediator (3, 4). The release of hepcidin is triggered by inflammatory mediators, such as IL-6 (4). Recent studies have revealed that this peptide adjusts the immune performance with neutralizing ferroportin in macrophages, hepatocytes, and enterocytes. Moreover, hepcidin increases intracellular iron resources and reduces gastrointestinal iron absorption and serum iron (3).

Several studies have addressed the role of hepcidin in RA (5-7). The majority of these studies have focused on the anemia of chronic disease (ACD), commonly observed in RA, and its association with hepcidin. The circulating serum hepcidin level is reported to increase in the RA patients with ACD (6). Rheumatoid anemia, a type of ACD, which is prevalent in RA patients results from several factors, including ineffective erythropoiesis, abnormalities of iron metabolism, and inflammatory markers (e.g., IL-6 and TNF-α) (8, 9).

As inflammation is a chronic condition in RA, proinflammatory cytokines can affect the serum iron levels and the synthesis of ferritin and hepcidin (9). Considering those facts and interactions among IL-6 and other cytokines, rheumatoid anemia, and hepcidin, hepcidin has been studied with some clinical implications. One of them is differentiating ACD from iron deficiency anemia, which can occur in RA as a result of the
treatments addressing RA (4, 5). These observations resulted in the identification of hepcidin as a major inducer of ACD in patients with RA (3, 8). This mostly relates to the rise of hepcidin as a result of cytokines, including IL-6, and the effect of this increased circulating hepcidin level on the iron metabolism.

In addition, some studies have investigated the relationship between hepcidin and the RA disease activity based on the associations between hematological parameters (e.g., hemoglobin level) and RA disease activity (6, 10, 11). There is evidence regarding the relationship of prohepcidin (i.e., prohormone of hepcidin) and IL-1 receptor antagonist gene polymorphism with the RA disease activity assessed by 28-joint Disease Activity Score (DAS28) (12).

Considering this, hepcidin was proposed as a promising tool for the diagnosis and management of ACD in patients with RA. Furthermore, in a study, the reduction of disease activity was accompanied by a decrease in serum hepcidin levels (13). However, some studies observed no relationship between the serum hepcidin and RA disease activity (7).

Hepcidin has recently gained attention in the management of patients with RA; however, the application of this protein in the routine clinical management of this disease still requires further investigation. With this background in mind, the current study was conducted to determine the relationship between the serum hepcidin level and RA disease activity among patients with RA considering the role of ACD.

Methods

Study design and setting

This descriptive-analytic cross-sectional study was conducted in our Rheumatic Diseases Research Center (RDRC) between 2015 and 2016.

Study population and eligibility criteria

The study population corresponded to a group of RA patients with and without ACD. The RA diagnosis was based on the American College of Rheumatology criteria for RA (14). Furthermore, considering the World Health Organization criteria, anemia was defined as the serum hemoglobin levels of less than 12 and 13 g/dL for females and males, respectively. The patients referred for routine visits and follow-ups of their condition, and those whose laboratory findings indicated anemia, were eligible to participate in the study.

The patients who developed anemia due to ACD were included in the research. Therefore, those with anemia due to other causes, including iron deficiency, minor thalassemia, macroloblastic anemia, hemolyysis, and drug-induced bone marrow suppression, were excluded from the study. The diagnosis of ACD was accomplished by complete iron studies, including serum ferritin, serum iron, and total iron binding capacity (TIBC).

The ACD was defined as normal to decreased mean corpuscular volume, normal to increased red cell distribution width, decreased red blood cell count, low serum iron (normal level, 60-150 mcg/dL) and TIBC, increased serum ferritin (normal level, 40-200 mcg/L), and elevated erythrocyte sedimentation rate (ESR; normal levels, 0-20 mm/h in males and 0-30 mm/h in females) (15).

The exclusion criteria entailed the following: 1) underlying chronic/inflammatory conditions that can cause anemia (e.g., malignancy, renal disease, heart failure, diabetes, and autoimmune diseases other than RA); 2) pregnancy; 3) malnutrition; 4) bone marrow suppression; and 5) medication consumption for anemia, except for folic acid in methotrexate therapy), diabetes, and malignancy.

Research sampling

The study population was selected using the RDRC between 2015 and 2016. The data indicated that 36 (45%) participants were female. The mean age of 268 RA patients, 36 showed pure ACD, and 44 patients received. The prescribed medications mostly included oral prednisolone (5-7.5 mg per day), methotrexate (2.5 up to 15 mg per week), sulfasalazine (500-2,000 mg: in a few patients), alendronate (7 mg per week), a daily combination of calcium (1,000 mg) with vitamin D (800 IU), and folic acid (5 mg per week).

Statistical analysis

Other documented data were the RA duration and the treatment and medications the patients received. The prescribed medications mostly included oral prednisolone (5-7.5 mg per day), methotrexate (2.5 up to 15 mg per week), sulfasalazine (500-2,000 mg: in a few patients), alendronate (7 mg per week), a daily combination of calcium (1,000 mg) with vitamin D (800 IU), and folic acid (5 mg per week).

Statistical analysis

The continuous variables were presented as the mean, standard deviation, median, and interquartile range. The normality of distribution in the continuous data was assessed using the Kolmogorov-Smirov test, Shapiro-Wilk test, and histograms. To compare the categorical variables between the RA patients with and without ACD, the Chi-square test or Fischer’s exact test was employed. Furthermore, the comparison of the continuous variables between the RA patients with and without ACD, as well as between the inactive to moderately active RA and highly active RA groups, was performed using Student’s t-test and the Mann-Whitney U test for the normally and non-normally distributed data, respectively.

In addition, binary logistic regression analysis (stepwise method) was run to predict the variables that could affect the DAS28-ESR score. In this analysis, the DAS28-ESR score was considered as the dependent variable. A P-value less than 0.05 was considered statistically significant for two-by-two analyses. For logistic analysis, a P-value equal to 0.1 was considered statistically significant. All data analyses were performed in the SPSS software version 20.0 (IBM Corp.; Armonk, NY, USA).

Ethical consideration

This study was in line with the Declaration of Helsinki. The research objectives were explained to the patients, and their consent was obtained prior to the study. The study protocol was approved by the Ethics Committee of Mashhad University of Medical Sciences.

Results

Anemia of chronic disease

According to the results, 87.5% (n=70) of the participants were female. The mean age of the patients was 50.1±13.58 years (age range, 24-80 years). The data indicated that 36 (45%)
Table 1. Comparison of the demographic and clinical characteristics of rheumatoid arthritis patients with and without anemia of chronic disease

	All patients (n=80)	RA with ACD (n=36)	RA without ACD (n=44)	Sig.
Age, year	50.15 (±13.58)	51.97 (±14.18)	48.66 (±13.04)	0.28
Gender, female	70 (87.5%)	36 (100%)	34 (77.3%)	0.002
BMI, kg/m²	27.08 (±5.23)	25.19 (±4.69)	28.57 (±5.19)	0.004
RA duration, month	62.49 (±56.15)	48 [60]	54 [69]	0.56
RA therapy duration, month	4.78 (±4.38)	3.5 [4.8]	4 [5]	0.34
DAS28-ESR	4.51 (±1.51)	4.96 (±1.57)	4.15 (±1.37)	0.01
Serum hepcidin, ng/mL	1200.09 (±684.97)	1207 [985.2]	923.8 [677.3]	0.57
Serum iron, µg/dL	62.11 (±32.55)	53 (54)	57 (50)	0.55
Iron binding capacity, µg/dL	348 (±60.1)	349.42 (±75.15)	346.84 (±45.14)	0.94
Transferrin saturation, %	18.58 (±10.97)	14.45 [16.4]	16.46 [11.63]	0.62
Prednisolone	49 (61.3%)	21 (58.3%)	28 (63.6%)	0.62
Methotrexate	39 (48.8%)	16 (44.4%)	23 (52.3%)	0.48

RA: rheumatoid arthritis; TS: transferrin saturation; BMI: body mass index

*Student’s t-test, data are shown as the mean±standard deviation; *Chi-square test; *Mann-Whitney U test, data are presented as median [interquartile range]

Table 2. Comparison of demographic and clinical characteristics of patients with rheumatoid arthritis based on disease activity measured by DAS28-ESR

DAS28-ESR ≤5.1 (n=52)	DAS28-ESR >5.1 (n=28)	p	
Age	47.91 ±13.18	54.56 ±13.5	0.04
Gender, female	44 (86.1%)	26 (92.85%)	0.15
BMI, kg/m²	26.71 ±5.1	27.84 ±5.5	0.93
RA duration, month	48 [57]	36 [96]	0.91
RA therapy duration, month	4 [4]	3 [7.09]	0.83
Anemia of chronic disease	18 (34.61%)	18 (64.28%)	0.005
Serum hepcidin, ng/mL	1090.9 [631.4]	1131.8 [991.3]	0.53
Serum iron, µg/dL	57 [51]	46 [46]	0.09
TIBC, mcg/dL	352.42 (60.62)	339.33 (59.24)	0.36
Transferrin saturation, %	16.86 (15.67)	14.01 [11.55]	0.2
Prednisolone	37 (71.15%)	12 (42.85%)	0.02
Methotrexate dosage	3.75 [2.5]	1.25 [1.56]	0.01

RA: rheumatoid arthritis; BMI: body mass index; TIBC: total iron binding capacity

*Student’s t-test, data are shown as the mean±standard deviation; *Chi-square or Fischer’s exact test; *Mann-Whitney U test, data are presented as median [interquartile range]

Table 3. Input variables in the multiple logistic regression model recognized as significant predictors of active rheumatoid arthritis (DAS28-ESR>5.1)

	B	SE	p	Adjusted OR
Methotrexate dosage	-0.72	0.39	0.06	0.48
Constant	0.16	1.002	0.86	1.18

SE=standard error; OR=odds ratio

Eur J Rheumatol 2019; 6(2): 76-80

Table 3 presents the comparison of ratios between disease activity measured by DAS28-ESR.

The variables included in the binary logistic regression analysis were age, ACD, serum iron, serum hepcidin, and methotrexate dosage. Table 3 summarizes the results of the regression analysis. Methotrexate dosage remained a significant predictor of active RA (i.e., DAS28-ESR score >5.1).

28-joint Disease Activity based on erythrocyte sedimentation rate (DAS28-ESR)

Predictors of active rheumatoid arthritis

The variables included in the binary logistic regression analysis were age, ACD, serum iron, serum hepcidin, and methotrexate dosage. Table 3 summarizes the results of the regression analysis. Methotrexate dosage remained a significant predictor of active RA (i.e., DAS28-ESR score >5.1).

Discussion

Hepcidin is a small peptide associated with the red blood cell kinetics and inflammation in healthy individuals. This peptide acts as a major regulator of iron absorption in the intestines and iron recycling via macrophages (19). Hepcidin is considered to be an acute-phase reactant. The diagnostic significance of hepcidin has been reported in several conditions, such as inflammation, neoplastic diseases, and diabetes mellitus (20, 21).

Anemia is a major contributor to mortality in RA (3). In the current study, we evaluated the serum hepcidin level in patients with RA and its correlation with inflammation and anemia. Based on our findings, hepcidin showed no association with the RA activity, and it could not significantly predict active RA. These results are somehow inconsistent with some of the previously reported studies, which suggested that serum hepcidin may act as a surrogate marker.

All of the RA patients with ACD were female and had a significantly lower body mass index, higher number of tender joints, more active disease (i.e., a higher DAS28-ESR score), and higher ESR, compared to those without ACD. However, these groups were comparable in terms of other variables. The median serum hepcidin level was higher in the RA with ACD group, compared to that in the RA without ACD group; however, this difference was not statistically significant (p=0.57).

In patients who had ACD, Table 1 tabulates the clinical characteristics of the participants and comparison of the variables between the two groups with and without ACD.
Hepcidin has gained attention in RA studies owing to the involvement of IL-6 as a major multifunctional cytokine in this disease, which induces the hepcidin production (22, 23). Given the significant role of IL-6 in joint destruction, acute-phase reactant induction, and overall disease activity (24), blocking this inter-leukin reduces the RA activity (25). The IL-6 has been also introduced as the central ACD mediator (26). This interplay among IL-6, disease activity, and serum hepcidin has been the main reason to concentrate on the hepcidin level as a marker that could be used to evaluate the RA activity.

In the current study, the DAS28-ESR cut-off value of 5.1 was used to divide the patients into the low and high RA activity groups, following previous studies (11). In this report, the authors showed that, in agreement with our results, the hepcidin level was not different in RA with and without ACD cases. However, hepcidin showed a moderate correlation with disease activity (r=0.4). In the mentioned study, ESR had a higher correlation with disease activity (r=0.53) than hepcidin.

Given more evidence on the possible role of hepcidin in chronic inflammation, several studies have been conducted to elucidate other possible applications of hepcidin in clinical practice. For example, some efforts have been made to use hepcidin in discriminating ACD from iron deficiency anemia; however, hepcidin was not applicable in this regard (4). In addition, this peptide has been used to determine the clinical efficacy of some therapeutic interventions (27).

The RA duration can be also considered as a significant contributor when evaluating hepcidin and anemia in RA. In this regard, hepcidin was reported to show no correlation with changes in the hemoglobin level at the earlier RA stages (13). In the present study, the RA duration was not a significant predictor for the RA activity. Although the hepcidin level was higher in the RA with ACD group than that in the RA without ACD group, the difference was not statistically significant.

However, this result was in line with those from the previous studies demonstrating the elevation of the hepcidin level in the presence of ACD (6). The serum iron level could be normal or increased in patients with ACD. In the current study, serum iron was within the normal range in all participants, and it did not differ between the two groups based on the presence or absence of ACD.
4. Geerts I, Vermeersch P, Joosten E. Evaluation of the first commercial hepcidin ELISA for the differential diagnosis of anemia of chronic disease and iron deficiency anemia in hospitalized geriatric patients. ISRN Hematol 2012; 2012: 567491. [CrossRef]

5. van Santen S, van Dongen-Lases EC, de Vegt F, Laarakkers CM, van Riel PL, van Ede AE, et al. Hepcidin and hemoglobin content parameters in the diagnosis of iron deficiency in rheumatoid arthritis patients with anemia. Arthritis Rheum 2011; 63: 3672-80. [CrossRef]

6. Demirag MD, Haznedaroglu S, Sancak B, Konca C, Gulbahar O, Ozturk MA, et al. Circulating hepcidin in the crossroads of anemia and inflammation associated with rheumatoid arthritis. Intern Med 2009; 48: 421-6. [CrossRef]

7. Sellam J, Kotti S, Fellahi S, Bastard JP, Meyer M, Liote F, et al. Serum hepcidin level is not an independent surrogate biomarker of disease activity or of radiographic progression in rheumatoid arthritis: results from the ESPOIR cohort. Ann Rheum Dis 2013; 72: 312-4. [CrossRef]

8. Means RT, Jr. Hepcidin and anemia. Blood Rev 2004; 18: 219-25. [CrossRef]

9. Masson C. Rheumatoid anemia. Joint Bone Spine 2011; 78: 131-7. [CrossRef]

10. Talukdar M, Barui G, Adhikari A, Karmakar R, Ghosh UC, Das TK. A Study on Association between Common Haematological Parameters and Disease Activity in Rheumatoid Arthritis. J Clin Diagn Res 2017; 11: E011-ec04. [CrossRef]

11. Kim HR, Kim KW, Yoon SY, Kim SH, Lee SH. Serum pro-hepcidin could reflect disease activity in patients with rheumatoid arthritis. Korean Med Sci 2010; 25: 348-52. [CrossRef]

12. Swellam M, Gabal KM, Youssef SS. Interleukin-1 receptor antagonist gene polymorphism and hepcidin in rheumatoid arthritis: Correlations with clinical and laboratory indices of disease activity. IUBMB Life 2013; 65: 883-8. [CrossRef]

13. Ostgard RD, Glerup H, Junk AG, Kragstrup TW, Stengaard-Pedersen K, Hetland ML, et al. Hepcidin plasma levels are not associated with changes in haemoglobin in early rheumatoid arthritis patients. Scand J Rheumatol 2017; 46: 441-5. [CrossRef]

14. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988; 31: 315-24. [CrossRef]

15. Gangat N, Wolanskyj AP. Anemia of chronic disease. Semin Hematol 2013; 50: 232-8. [CrossRef]

16. Prevoo ML, van’t Hof MA, Kuper HH, van Leeuwen MA, van de Putte LB, van Riel PL. Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum 1995; 38: 44-8. [CrossRef]

17. Wells G, Becker JC, Teng J, Dougados M, Schiff M, Smolen J, et al. Validation of the 28-joint Disease Activity Score (DAS28) and European League Against Rheumatism response criteria based on C-reactive protein against disease progression in patients with rheumatoid arthritis, and comparison with the DAS28 based on erythrocyte sedimentation rate. Ann Rheum Dis 2009; 68: 954-60. [CrossRef]

18. Salaffi F, Cimmino MA, Leardini G, Gasparini S, Grassi W. Disease activity assessment of rheumatoid arthritis in daily practice: validity, internal consistency, reliability and congruency of the Disease Activity Score including 28 joints (DAS28) compared with the Clinical Disease Activity Index (CDAI). Clin Exp Rheumatol 2009; 27: S52-9. [CrossRef]

19. Nemeth E, Valore EV, Terret M, Schiller G, Lichtenstein A, Ganz T. Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood 2003; 101: 2461-3. [CrossRef]

20. Kali A, Charles MV, Seetharam RS. Hepcidin - A novel biomarker with changing trends. Pharmacogen Rev 2015; 9: 35-40. [CrossRef]

21. Aregbesola A, Voutilainen S, Virtanen JK, Aregbesola A, Tuomainen TP. Serum hepcidin concentrations and type 2 diabetes. World J Diabetes 2015; 6: 978-82. [CrossRef]

22. Hashizume M, Mihara M. The roles of interleukin-6 in the pathogenesis of rheumatoid arthritis. Arthritis 2011; 2011: 765624. [CrossRef]

23. Rodriguez R, Jung CL, Gabayan V, Deng JC, Ganz T, Nemeth E, et al. Hepcidin induction by pathogens and pathogen-derived molecules is strongly dependent on interleukin-6. Infect Immun 2014; 82: 745-52. [CrossRef]

24. Cronstein BN. Interleukin-6—a key mediator of systemic and local symptoms in rheumatoid arthritis. Bull NYU Hosp Jt Dis 2007; 65(Suppl 1): S11-5. [CrossRef]

25. Schinnerling K, Aguillon JC, Catalán D, Soto L. The role of interleukin-6 signalling and its therapeutic blockage in skewing the T cell balance in rheumatoid arthritis. Clin Exp Immunol 2017; 189: 12-20. [CrossRef]

26. Raj DS. Role of interleukin-6 in the anemia of chronic disease. Semin Arthritis Rheum 2009; 38: 382-8. [CrossRef]

27. Doyle MK, Rahman MU, Frederick B, Birbara CA, de Vries D, Toedter G, et al. Effects of subcutaneous and intravenous golimumab on inflammatory biomarkers in patients with rheumatoid arthritis: results of a phase 1, randomized, open-label trial. Rheumatology (Oxford) 2013; 52: 1214-9. [CrossRef]