HR-LC-MS based metabolic profiling of *Fusarium solani* a fungal endophyte associated with *Avicennia officinalis*

Sonawane HB¹*, Borde MY², Nikalje GC³, Terkar A², Math SK¹

¹PG Research Centre in Botany, Prof. Ramkrishna More Arts, Commerce and Science College, Akurdi, Pune- 411044, India
²Department of Botany, Savitribai Phule Pune University, Pun – 411007, India
³PG Research Centre in Botany, Seva sadan’s R. K Talreja College of Arts, Science and Commerce, Ulhasnagar, Mumbai – 421003, India

Sonawane HB, Borde MY, Nikalje GC, Terkar A, Math SK 2020 – HR-LC-MS based metabolic profiling of *Fusarium solani* a fungal endophyte associated with *Avicennia officinalis*. Current Research in Environmental & Applied Mycology (Journal of Fungal Biology) 10(1), 262–273, Doi 10.5943/cream/10/1/25

Abstract

Endophytic fungi form associations with plants, and often assist plant growth and produce bioactive metabolites, which confer resistance against plant pathogens and other stress factors. Mangrove plants being the flora of marshy and saline areas are highly tolerant to salinity and are rich in secondary metabolites. In this study, we isolated and identified *Fusarium solani* a fungal endophyte from leaves of mangrove, *Avicennia officinalis*. This endophyte was studied for metabolic profiling and further identification of bioactive compounds using HR-LC-MS based metabolomics. The fungal extract showed the presence of several anti-cancer compounds like 3-Pyridylacetic acid, Aloe-emodin, Antipyrine, Mitoxantrone, Sulfabenzamide etc. This metabolomic study highlights the potential of mangrove associated endophytic fungi for the production of industrially and medicinally important secondary metabolites.

Keywords – Endophytic fungi – Metabolomics – Mangroves – Secondary metabolites

Introduction

Endophytic fungi internally colonize plants without any apparent adverse effect, forms mutualistic association and occur ubiquitously in plants (Schulz et al. 2002). They produce a plethora of compounds with antimicrobial, plant growth-promoting and plant-stress alleviating properties (Strobel 2003). The fungal endophytes associated with mangrove plants are unique and are of special interest. Mangroves inhabit a special ecosystem, constituting saline marshy areas, which are the transition zone between marine and terrestrial habitats (Debbab et al. 2013). Similarly, mangroves harbor different fungal endophytes like marine, freshwater and soil-borne fungi (Ananda & Sridhar 2002).

Mangroves associated endophytic fungi represent the second largest ecological group of marine fungi (Sridhar 2004). About 200 species of fungal endophytes are isolated and identified (Liu et al. 2007). Endophytic fungi are less investigated and unexplored group which received considerable attention after they were found to protect their host against pathogens by secreting bioactive metabolites. Endophytes serve as potential source of novel natural products for exploitation in medicine, agriculture, and industry (Strobel 2003, Debbab et al. 2013). Endophytes
produce novel and diverse bioactive metabolites such as terpenoids, steroids, quinones, phenols, coumarins etc., which can act as antimicrobial, anticancer, and antiviral agents (Suryanarayanan et al. 2009, Arya et al. 2019). The fluctuations in pH, salinity, oxygen level and nutrients in mangrove ecosystem are responsible for the synthesis of diverse chemical compounds having biotechnological potential. It is believed that mangrove associated entophytes play an important role in the synthesis of these compounds (Suryanarayanan et al. 2011).

In this study, our objective was to assess the diversity of endophytic fungi isolated from leaves of *Avicennia officinalis* collected from different geographic localities and investigate the metabolite profile of one of the selected common fungus *Fusarium* for further identification of bioactive compounds using HR-LC-MS. As most of the naturally-derived compounds have antimicrobials and antioxidants potential, we also aimed to investigate the antimicrobial and antioxidant activity of the fungal extract.

Materials & Methods

Collection of host plants

The endophytic fungus used in this study was isolated from the leaves of *Avicennia officinalis*. Healthy leaves of mangrove were collected from the Sea shoreline of Dive agar (18°10'40.75"N, 72°59'4.09"E) and Shrivardhan (18° 2'44.45"N, 73° 1'49.51"E) (Fig. 1). The leaves were collected and stored in sterile polythene bags and brought to the laboratory.

Isolation of endophytic fungus

To remove unwanted fungal propagules from the leaf surface, leaves were washed thoroughly under running tap water for 2-3 min. The small pieces of leaves (~0.5cm of diameter) were cut from the midrib portion using a flame-sterilized surgical blade (Ezra et al. 2004). Then the leaf
pieces were surface sterilized by immersing in 70% ethanol for 1 min, followed by 4% sodium hypochlorite (v/v) for 2 min, and finally washed in sterile water for 1 min and then rinsed in sterile filter paper. Each piece placed in Petri plates containing potato dextrose agar (with chloramphenicol 150 mg/L). The plates sealed with parafilm strips and incubated in BOD incubator at 27°C for 20 days. The Petri plates monitored every day for the growth of endophytic fungi. The fungi that grow out from the tissues were isolated and stocked. The cultures were maintained on PDA slants at 4°C for the further screening process.

Culture identification

The fungal isolates were identified based on its morphological and reproductive characters using standard identification manual (Dugan et al. 2008).

Submerged Fermentation

The pure culture isolated by the above method was grown in Potato dextrose broth. The flasks were incubated in the shaker-incubator at 200 rpm for 5 days. The mycelium was aseptically transferred into 1000 mL Erlenmeyer flasks containing 300 mL PDB medium and incubated at 28 ± 1°C for 30 days under stationary conditions. Then the mycelium and filtrate were separately subjected to solvent extraction and used for metabolic profiling.

Authentication of endophytic fungi

The endophytic fungi isolate was identified to the species level based on the morphological features from National Fungal Culture Collection of India (NFCCI) Pune.

Molecular identification of endophytic fungi

To further validate the morphological identification, molecular identification was performed as per Ezra et al. (2004). The Fungal DNA was isolated by using XcelGen fungal genomic DNA isolation kit. DNA quality was estimated on 1% agarose gel. To perform Polymerase chain reaction (PCR), the ITS primer sets were ITS4 Forward GGAAGTAAAAGTCGTAACAAGG and ITS5 Reverse CAGACTT(G/A)TA(C/T)ATGGTCCAG. The polymerase chain reaction was performed using Eppendorf master cycler. PCR conditions were denaturation of DNA at 95°C for 3 min. then 40 cycles of PCR consisting of denaturation at 95°C for 1 min, primer annealing at 55°C for 45 sec. and extension at 72°C for 1 min. The sample was subjected to an additional extension at 72°C for 10 min at the end of the PCR cycles. PCR product was mixed with the loading buffer (DNA loading dye) with Gel Red stain and loaded on 1.4% Agarose gel and electrophoresis was done using 1X TAE buffer (Tris base acetic acid and EDTA). The fungal PCR product was then identified based on its nucleotide sequence from Eurofins Genomics India Pvt. Ltd. Bengaluru, India.

HR-LC-MS based metabolic profiling

For LC-MS analysis, 10 gm of dried fungal biomass was extracted in 100 ml HPLC grade methanol. The sample was sonicated for 5 mins and sent to IIT-Powai, India for High-resolution Mass Spectrophotometry (HR-LC-MS). The Agilent Technologies, TOF/Q-TOF Mass Spectrometer (Model- G6550A) with Dual AJS ESI as ion source with following details: Injection volume- 3 µl, Flow- 0.3 ml.min⁻¹, Mobile Phase consisted of A) 0.1% Formic acid and, B) 90% Acetonitrile + 10 % H₂O + 0.1% Formic acid, Min range (m/z) 125, Max range (m/z) 1000, Scan rate (spectra/sec) 1.00. The peaks were identified using the inbuilt library of LC-MS based on mass.

Antimicrobial activity

For the antimicrobial study, nutrient agar culture media were used with various incubation conditions. Nutrient agar plates were inoculated with standardized inoculum of the test microorganisms: Escherichia coli and Staphylococcus aureus. The filter paper discs (about 6 mm in diameter), containing the test compound (Amoxyccillin) and suspension of Fusarium fungal
filtrate at the desired concentration, were placed in the middle of the plate agar surface. The Petri plates were incubated under suitable conditions. Antimicrobial agent that diffuses into the agar and inhibits germination and growth of the test microorganism is considered for measuring the diameter of inhibition growth zone.

Antioxidant activity (2, 2, Diphenyl -1-picryl hydrazyl (DPPH) Assay)

Radical scavenging activity of *Fusarium* extract against free DPPH (2, 2-Diphenyl-1-picrylhydrazyl) (Sigma–Aldrich) was determined spectrophotometrically. Various concentrations of *Fusarium* extract (10, 20, 30, 40, 50, 75 and 100 mg.mL\(^{-1}\)) and standard (Gallic acid) were used and 1 ml of DPPH (1 mM) dissolved in methanol. The mixture was vortexed and incubated in the dark for 30 minutes at room temperature and then absorbance of stable DPPH was recorded at 517 nm. The DPPH (containing no sample) was used as a control prepared using the same procedure. The activity was expressed as the percentage of inhibition that was calculated using the equation of DPPH radical scavenging activity (%) = \((Ac - As)/Ac \times 100\).

Results

Isolation and identification of endophytic fungi

Fungal endophyte, *Fusarium solani* was isolated from *Avicennia* leaves and cultured on Potato Dextrose Agar media (Fig. 2A). The fungal isolate was identified and authenticated at National Fungal culture collection of India (NFCCI)-A GharakarResearch Institute, Pune. The fungus was authenticated as *Fusarium solani* (Mart.) Sacc. Family- Nectriaceae using morphological and molecular methods. The fungus was found to show slightly curved hyaline microconidia in culture plate (Fig. 2B).

Fig. 2 – A Pure Culture of *Fusarium solani* endophytic fungi isolated from *Avicennia*. B Microconidia.

LC-MS based metabolic profiling

High throughput metabolic profiling of methanolic extract of *Fusarium* mycelium using HR-LC-MS was done for the identification of some important metabolites (Fig. 3). Based on the available literature, 38 annotated metabolites identified have shown bioactivity (Fig. 4). The anti-cancerous compounds included 3-Pyridylacetic acid, Aloe-emodin, Antipyrine, Mitoxantrone, Sulfabenzamide. Antioxidant metabolites were 2, 4, 6-Trimethylacetophenone Imine and Daidzein. Anti-inflammatory metabolites were Anabasamine, Desethylhydroxychloroquine and Mometasone.
Furoate. The Antimicrobial metabolites were, Antipyrine, Dihydrodeoxystreptomycin, Mometasone Furoate, Phenylacetic acid and Phenylpyruvic acid.

Fig. 3 – Chromatogram of LC-MS based metabolite profiling of *Fusarium solani*.

Antimicrobial activity

The results showed that *Fusarium* extracts exhibited high antibacterial activity against Gram-positive (*S. aureus*) and Gram-negative (*E. coli*) bacteria. The concentration of 250µg/100µl was found effective against both the bacteria. Gram-negative bacteria i.e. *E. coli* and *S. aureus* exhibited inhibition zones, whereas Gram-positive bacteria showed smaller inhibition zone, compared to the antibiotic control. *Fusarium* significantly inhibited the growth of *E.coli* and *S. aureus* (Fig. 5). *Fusarium* extract showed strong antibacterial activity and may be considered as an alternative to antibiotics with potential to deal with multi-drug resistant bacteria.

Antioxidant Activity

The fungal extract showed significant DPPH free radical scavenging activity (Fig. 6). Different concentrations of the extract ranging from 10 to 100 µg ml⁻¹ showed an increasing trend in the % inhibition.

Discussion

Mangrove ecosystem has become a valuable resporce for the isolation of endophytic fungi with considerable bio-potential. As many as 39 endophytic fungi were isolated from leaf tissues of *Rhizophora apiculata* and *R. mucronata* (Suryanarayanan et al. 1998). In another study, 35 species of fungal endophytes were isolated from roots of *Avicennia officinalis*, *Acanthus ilicifolius*, *R. mucronata* and *Sonneratiacaseolaris* (Ananda & Sridhar 2002). In the Northeast Brazil, mangroves like *Avicennia schauerniana*, *Rhizophora mangle* and *Laguncularia racemosa* were explored for the isolation of 40 species (Costa et al. 2012). Different fungi were isolated from leaves, bark and woody tissue of *Kandelia candi* in Hong Kong (Pang et al. 2008). Using root and stem tissues of *Bruguiera sexangula*, *Ceriopstagal*, *R. stylosa*, *R. apiculata* from the south coast of China, 38 species of fungi were reported (Xing & Guo 2011).
Fig. 4 – Classification of metabolites obtained from LC-MS based Metabolite profiling of *Fusarium solani* based on compounds with annotation, compounds without annotation and compounds with biological activity.

Fig. 5 – Antimicrobial activity of *Fusarium solani* against *A. coli*. *B. aureus*. (a = Positive control (Tetracyclin), b = *Fusarium* (250µg/ml), c = *Fusarium* (100µg/ml), d = *Fusarium* (50µg/ml), e = Negative control).
Mangrove associated fungi have attracting great attention of researchers as they serve as a reservoir of secondary metabolites with high biological activities (Wang et al. 2014). Wang et al. (2014) have described the isolation of secondary metabolites and their structural elucidation and biological activities from mangrove associated endophytic fungi. Song et al. (2012) characterized mangrove associated endophyte *Xylaria* sp. BL321 and identified three new eremophilane sesquiterpenes which showed inhibitory activity on α-glucosidase. An endophytic fungus *Talaromyces flavus* was isolated from *Sonneratia apetala* showing the presence of four new norsesquiterpene peroxides (talaperoxides A-D). These compounds tested against human cancer cell lines MCF-7, MDA-MB-435, HepG2, HeLa and PC-3, revealed that compound Talaperoxide B and D have cytotoxicity against all human cancer cell lines (Li et al. 2011). An endophytic fungus *Pestalotiopsis clavispora* was isolated from *Bruguiera sexangula* and evaluated for the presence of novel natural products. Three new triterpenoid derivatives, named (15α)-15-hydroxysoyasapogenol B (1), (7β, 15α)-7, 15-dihydroxysoyasapogenol B and (7β)-7,29-dihydroxysoyasapogenol B (Luo et al. 2011). Metabolic profiling of an endophytic fungus *Pestalotiopsis sp* isolated from *Rhizophora mucronata* showed presence of cytosporones J–N, coumarins pestalasins A–E, alkaloid pestalotiopsoid A, cytosporone C, dothiorelone B (7), and 3-hydroxymethyl-6, 8-dimethoxycoumarin (Xu et al. 2009).

The biological activities were classified in to major classes such as Antioxidants, Anti-inflammatory, Anti-microbial etc. (Table 1). Endophytic fungi *Halorosellinia* sp. and *Guignardia* sp. isolated from mangroves produced fourteen anthracenedione derivatives having anticancerous activity and the derivatives showed good inhibition of growth of KB and KBv200 cell (Zhang et al. 2010). *Kandelia candel* harboring fungus *Diaporthe* sp., produced compound, diaporthelactoneshowed cytotoxic activity against KB and Raji cell lines (Lin et al. 2005). Three compounds phomopsin A–C isolated from *Phomopsis sp* harboring on *Excoecaria agallocha* showed inhibitory effect on *Candida albicans* and *Fusarium oxysporum* (Huang et al. 2008).
Table 1 List of metabolites identified using HR-LC-MS based metabolic profiling and their biological activities.

Metabolite	RT	Mass	m/z	Formula	Biological activity	Reference
2,4,6-trimethylacetophenoneImine	26.53	161.1193	162.1266	C11H15N	Antioxidant activity	Yuswan et al. 2015
2-amino-tetradecanoic acid	13.64	243.2184	244.2256	C14H20NO2	Antifungal and antitumor	Guo et al. 2009
2R-aminohexadecanoic acid	15.59	271.2493	272.2565	C16H33NO2	Cytotoxic potential	Ravi & Krishnan 2017
3-amino-2-naphthoic acid	3.655	187.0621	188.0693	C16H16NO2	Antiallergy activity	Althuis et al. 1979
3-methoxy-4-hydroxyphenylglycol glucuronide	3.207	360.1035	383.0926	C15H20O10	Norepinephrine metabolites	Elsworth et al. 1983
3-pyridylacetic acid	1.181	137.0468	138.054	C2H7NO2	Inhibitors of androgen biosynthesis for prosthetic cancer treatment	Rowlands et al. 1995
4-hydroxy-6-methylpyran-2-one	3.169	201.135	202.1422	C10H19N	Anti-inflammatory agent	Barbosa-Filho et al. 2006
Aloe-emodin	7.566	270.0516	271.0589	C15H10O5	Anticancer agent	Pecere et al. 2000
Anabasamine	1.407	253.1522	254.1595	C16H19N	Anti-inflammatory	Barbosa-Filho et al. 2006
Antipyrine	10.62	188.0962		C11H12N2O	Anti-bacterial and anti-cancer activity	Muna et al. 2017
Capryloylglycine	1.273	201.135	202.1422	C10H19NO3	Cosmetic treatment	Sparavigna et al. 2014
Daidzein	8.211	254.0564	255.0636	C16H16O4	Antioxidant activity	Foti et al. 2005
Desethylhydroxychloroquine	13.076	307.1433	308.1504	C16H22ClN2O	Anti-inflammation	Robinson et al. 2016
Dextroamphetamine	1.192	135.1021	158.0913	C9H13N	Acute psychologic and neuroendocrine effect	Schrantee et al. 2016
Dihydrodeoxystreptomycin	10.127	567.2863	568.2935	C22H41N1O11	Antifungal activity	Pawar et al. 2017
Dinoconazole	11.099	256.1029	257.1095	C15H16N5S	Inhibition of tumour necrosis	Bertini et al. 1991
Genkwanin	8.4	284.0669	285.0742	C16H12O5	Melanoma B16F10 cell proliferation	Bouzaiene et al. 2016
Mitoxantrone	4.63	444.1969	467.186	C22H28N4O6	Anticancer activity	Shenkenberg & Von-Hoff 1986
Mometasone Furoate	1.071	520.1404	543.1293	C22H30Cl2O6	Antibacterial, Anti-inflammatory	Neher et al. 2008
Neuraminic acid	1.201	267.094	268.1022	C9H17NO8	Binding Activity of Influenza A Viruses	Sauer et al. 2014
Oleamide	18.559	281.2701	282.2774	C19H35NO	Actions on blood pressure and core body temperature	Reséndiz et al. 2001
Phenylacetic acid	5.728	136.0541	159.0433	C9H8O2	Antityrosinase and antimicrobial activities	Zhu et al. 2011
Table 1 Continued.

Metabolite	RT	Mass	m/z	Formula	Biological activity	Reference
Phenylethylamine	5.057	121.0908	144.0799	C₈H₁₁N	Analgesic effects	Mosnaim et al. 2014
Phenylpyruvic acid	1.239	164.0464	165.0537	C₅H₄O₃	Antimicrobial activity	Chaudhari & Gokhale 2016
Phenylpyruvic acid	1.239	164.0464	165.0537	C₅H₄O₃	Antimicrobial activity	Chaudhari & Gokhale 2016
Phthalic acid Mono-2-ethylhexyl	15.794	278.1499	301.1391	C₁₆H₂₂O₄	Estrogen-antagonist activities	Ohtani et al. 2005
Ester						
Succinoadenosine	2.457	383.1057	384.1128	C₁₄H₁₇N₅O₅S	Fumarate Levels	Dennison et al. 2010
Succinoadenosine	2.457	383.1057	384.1128	C₁₄H₁₇N₅O₅S	Fumarate Levels	Dennison et al. 2010
Sulfabenzamide	0.814	276.055	299.0443	C₁₃H₁₂N₂O₃S	Promotes autophagic cell death in T-47D breast cancer cells through p53/ DRAM pathway	Mohammadpour et al. 2012
Tranexamic acid	3.326	157.1092	158.1164	C₈H₁₅NO₂	Fibrinolytic activity of vein walls	Astedt et al. 1977
Tuberonic acid	6.064	226.1193	227.1266	C₁₂H₁₈O₄	Thioglucohydrolase activity	Sansenya et al. 2011

Conclusion

Endophytic fungi hold great potential for the synthesis of novel bioactive compounds of pharmaceutical, agricultural and industrial significance. The present study showed the isolation and characterization of endophytic fungi, *Fusarium solani* isolated from a mangrove, *Avicennia marina*. The presence of five anticancer and other bioactive metabolites in *Fusarium* highlighted its bioprospecting for pharmaceutical application. Further studied on the isolation, purification and characterization of these biologically active metabolites should pave way for their use for different functionalities.

Conflict of interest: All the authors confirmed that there is no conflict of interest.

Acknowledgement

This work was financed by the Board of College and University Development, Savitribai Phule Pune University, Pune.

References

Althuis TH, Moore PF, Hess HJ. 1979 – Development of ethyl 3,4-dihydro-4-oxopyrimido(4,5-b) quinoline-2-carboxylate, a new prototype with oral antiallergy activity. Journal of Medicinal Chemistry 22 (1), 44–48.

Ananda K, Sridhar KR. 2002 – Diversity of endophytic fungi in the roots of mangrove species on the west coast of India. Canadian Journal of Microbiology 48(10):871–878.
Arya SS, Sharma MM, Das RK, Rookes J et al. 2019 – Vanillin mediated green synthesis and application of gold nanoparticles for reversal of antimicrobial resistance in Pseudomonas aeruginosa clinical isolates. Heliyon 5(7), e02021.

Astedt B, Mattsson W, Trope Č. 1977 – Treatment of advanced breast cancer with chemotherapeutics and inhibitor of coagulation and fibrinolysis. Acta Medica Scandinavica 201, 491–495.

Barbosa-Filho JM, Piuvezam MR, Moura MD, Silva MS et al. 2006 – Anti-inflammatory activity of alkaloids: a twenty-century review. Revista Brasileira de Farmacognosia 16(1), 109–139.

Bertini R, Mengozzi M, Bianchi M, Sipe JD, Ghezzi P. 1991 – Chlorpromazine protection against interleukin-1 and tumornecrosis factor-mediated activities in vivo. International Journal of Immunopharmacology 13, 1085–1090.

Bouzaïene NN, Fadwa C, Aicha S, Leila C, Kamel G. 2016 – Effect of apigenin-7-glucoside, genkwanin and naringenin on tyrosinase activity and melanin synthesis in B16F10 melanoma cells. Life Sciences 144, 80–85.

Chaudhari SS, Gokhale DV. 2016 – Phenyllactic acid: a potential antimicrobial compound in lactic acid bacteria. Journal of Bacteriology and Mycology 2 (5), 121–125.

Costa I, Maia L, Cavalcanti M. 2012 – Diversity of leaf endophytic fungi in mangrove plants of Northeast Brazil. Brazilian Journal of Microbiology 43, 1165–73.

Debbab A, Aly AH, Proksch P. 2013 – Mangrove derived fungal endophytes- A chemical and biological perception. Fungal Diversity 61, 1–27.

Demuner AJ, Valente VM, Barbosa LC, Rathi AH et al. 2009 – Synthesis and phytotoxic activity of new pyridones derived from 4-hydroxy-6-methylpyridin-2(1H)-one. Molecules 14(12), 4973–4986.

Dennison JB, Ayres ML, Kaluarachchi K, Plunkett W, Gandhi V. 2010 – Intracellular Succinylation of 8-Chloroadenosine and Its Effect on Fumarate Levels. The Journal of Biological Chemistry. 285(11), 8022–8030.

Dugan FM. 2008 – Fungi in the Ancient World: How Mushrooms, Mildews, Molds, and Yeast Shaped the Early Civilizations of Europe, the Mediterranean, and the Near East. APS Press – The American Phytopathological Society, St. Paul, Minnesota, U.S.A. 140 pp.

Elsworth JD, Roth RH, Redmond DE Jr. 1983 – Relative importance of 3-methoxy-4-hydroxyphenylglycol and 3,4-dihydroxyphenylglycol as norepinephrine metabolites in rat, monkey, and humans. Journal of Neurochemistry 41(3), 786–793.

Ezra D, Hess WM, Strobel GA. 2004 – New endophytic isolates of Muscodor albus, a volatile-antibiotic-producing fungus, Microbiology 150, 4023–4031.

Foti P, Erba D, Riso P, Spadafranca A et al. 2005 – Comparison between daidzein and genistein antioxidant activity in primary and cancer lymphocytes, Archives of Biochemistry and Biophysics 433(2), 421–427.

Guo Z, Cheng F, Zou K, Wang J et al. 2009 – Secondary metabolites from the mangrove endophytic fungus Penicillium sp. (SBE-8). Natural Product Communications. 4, 1481–1483.

He M, Kunze KL, Trager WF. 1995 – Inhibition of (S)-warfarin metabolism by sulfinpyrazone and its metabolites. Drug Metabolism and Disposition 23 (6), 659–663.

Huang Z, Cai X, Shao C, She Z et al. 2008 – Chemistry and weak antimicrobial activities of phomopsins produced by mangrove endophytic fungus Phomopsis sp. ZSU-H76. Phytochemistry 69, 1604–1608. ISBN 978-0-89054-361-0.

Li H, Huang H, Shao C, Huang H et al. 2011 – Cytotoxic Norsesquiterpene Peroxides from the Endophytic Fungus Talaromyces flavus Isolated from the Mangrove Plant Sonneratia apetala. Journal of Natural Products 74 (5), 1230–1235.

Lin X, Huang Y, Fang M, Wang J et al. 2005 – Cytotoxic and antimicrobial metabolites from marine lignicolous fungi, Diaporthe sp. FEMS Microbiology Letters 251 (1), 53–58.

Liu AR, Wu XP, Tong XU. 2007 – Research advances in endophytic fungi of mangrove. Chinese Journal of Applied Ecology 18, 912–918.
Luo DQ, Deng HY, Yang X, Shi BZ, Zhang JZ. 2011 – Oleanane-Type Triterpenoids from the Endophytic Fungus Pestalotiopsis clavispora Isolated from the Chinese Mangrove Plant Bruguiera sexangula. Helvetica Chimica Acta. 94 (6), 1041–1047.

Mohammadpour R, Shahroksh S, Farahnak S, Hasheminaisal S et al. 2012 – Sulfabenzamide promotes autophagic cell death in T-47D breast cancer cells through p53/ DRAM pathway. Journal of Cell and Molecular Biology 10 (1), 41–54.

Mosnaim A, Hudzik T, Wolf M. 2014 – Analgesic Effects of β-Phenylethylamine and Various Methylated Derivatives in Mice. Neurochemical research. 39(9), 1675–1680.

Muna A, Hassan H, Hassan D. 2017 – Synthesis, anti-bacterial and anti-cancer activities of Some Antipyrine Diazenyl Benzaldehyde Derivatives and Antipyrine-Based Heterocycles. Iraqi National Journal of Chemistry 17, 140–148.

Neher A, Gstöttner M, Scholtz A, Nagl M. 2008 – Antibacterial Activity of Mometasone Furoate. Arch Otolaryngol Head Neck Surg.134 (5), 519–521.

Ohtani Y, Shimada Y, Shiraishi F, Kozawa K. 2005 – Estrogen-antagonist activities of phthalic acid mono-n-butyl ester and phthalic acid mono-2-ethylhexyl ester. Environmental sciences: an International Journal of Environmental Physiology and Toxicology. 12, 207–12.

Pang, KL, Vrijmoed L, Goh T, Plaingam N, Jones EB. 2008 – Fungal endophytes associated with Kandelia candel (Rhizophoraceae) in Mai Po Nature Reserve, Hong Kong. Botanica Marina 51 (3), DOI: 10.1515/BOT.2008.012.

Pawar S, Kalyankar V, Dhamangaonkar B, Dagade S et al. 2017 – Biochemical profiling of antifungal activity of Betel leaf (Piper betle L.) extract and its significance in traditional medicine. Journal of Advanced Research in Biotechnology 2(1), 4.

Pecere TM, Vittoria G, Carla M, Cristina P et al. 2000 – Aloe-emodin Is a New Type of Anticancer Agent with Selective Activity against Neuroectodermal Tumors. Cancer Research 60(11), 2800–2804.

Ravi L, Krishnan K. 2017 – Cytotoxic Potential of N-hexadecanoic Acid Extracted from Kigelia pinnata Leaves. Asian Journal of Cell Biology 12 (1): 20–27.

Resendiz AH, Lhys G, Cravatt BF, Henriksen SJ. 2001 – Effect of Oleamide on Sleep and Its Relationship to Blood Pressure, Body Temperature, and Locomotor Activity in Rats, Experimental Neurology 72 (1), 235–243.

Robinson WH, Lepus CM, Wang Q, Raghu H et al. 2016 – Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nature Reviews Rheumatology 12 (10), 580–592.

Rowlands MG, Barrie SE, Chan F, Houghton J et al. 1995 – Esters of 3-pyridylacetic acid that combine potent inhibition of 17 alpha-hydroxylase/C17,20-lyase (cytochrome P45017 alpha) with resistance to esterase hydrolysis. Journal of Medicinal Chemistry 38, 4191–4197.

Sansenya S, Oppasiri R, Kuaprasert B, Chun-Jung C, Cairns JRK. 2011 – The crystal structure of rice (Oryza sativa L.) Os4BGlu12, an oligosaccharide and tuberonic acid glucoside-hydrolyzing β-glucosidase with significant thioglucohydrolase activity. Archives of Biochemistry and Biophysics 510, 62–72.

Sauer AK, Liang CH, Stech J, Peeters B et al. 2014 – Characterization of the sialic acid binding activity of influenza A viruses using soluble variants of the H7 and H9 hemagglutinins. PLoS One 9(2), 89529.

Schrantee A, Ferguson B, Stoffers D, Booij J et al. 2016 – Effects of dexamphetamine-induced dopamine release on resting-state network connectivity in recreational amphetamine users and healthy controls. Brain Imaging Behaviour 10(2), 548–558.

Schulz B, Boyle C, Draeger S, Römmert AK, Krohn K. 2002 – Endophytic fungi:a source of novel biologically active secondary metabolites. Mycological Research 106, 996–1004.

Shenkenberg TD, Von-Hoff DD. 1986 – Mitoxantrone: A New Anticancer Drug with Significant Clinical Activity. Annals of Internal Medicine 105, 67–81.

Song Y, Wang J, Huang H, Ma L et al. 2012 – Four eremophilane sesquiterpenes from themangrove endophytic fungus Xylaria sp. BL321. Marine Drugs 10, 340–348.
Sparavigna A, Tenconi B, De P, Ileana GG. 2014 – Evaluation of the Activity and Tolerability of a Cosmetic Treatment for the Periocular Area on the Aging Face: Controlled Clinical and Instrumental Evaluation vs. Placebo. Cosmetics 1, 105–116.

Sridhar K. 2004 – Mangrove fungi in India. Current Science 86, 1586-1587.

Strobel GA. 2003 – Endophytes as source of bioactive products. Microbes and Infection 5(6), 535–544.

Suryanarayanan TS, Govindarajulu MB, Thirumalai E, Reddy MS, Money NP. 2011 – Agni’s fungi: heat-resistant spores from the Western Ghats, southern India. Fungal Biology 115, 833–838.

Suryanarayanan TS, Kumaresan V, Johnson JA. 1998 – Foliar fungal endophytes from two species of the mangrove Rhizophora. Canadian Journal of Microbiology 44, 1003–1006.

Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Sasse F et al. 2009 – Fungal endophytes and bioprospecting. Fungal Biology Review 23, 9–19.

Wang KW, Wang SW, Wu B, Wei JG. 2014 – Bioactive natural compounds from the mangrove endophytic fungi. Mini Rev. Medicinal Chemistry 14, 370–391.

Xing XK, Guo SX. 2011 – Fungal endophyte communities in four Rhizophoraceae mangrove species on the south coast of China. Ecological Research 26, 403–409.

Xu J, Kjer J, Sendker J, Wray V et al. 2009 – Cytosporones, coumarins, and an alkaloid from the endophytic fungus Pestalotiopsis sp. isolated from the Chinese mangrove plant Rhizophora mucronata. Bioorganic & Medicinal Chemistry. 17 (20), 7362–7367.

Yuswan MHMY, Al-Obaidi JR, Rahayu A. 2015 – New bioactive molecules with potential antioxidant activity from various extracts of wild edible Gelam mushroom (Boletus spp.). Advances in Bioscience and Biotechnology 6, 320–329.

Zhang JY, Tao LY, Liang YJ, Chen LM et al. 2010 – Anthracenedione derivatives as anticancer agents isolated from secondary metabolites of the mangrove endophytic fungi. Marine drugs 8(4), 1469–1481.

Zhu YJ, Zhou HT, Hu YH, Tang JY et al. 2011 – Antityrosinase and antimicrobial activities of 2-phenylethanol, 2-phenylacetaldehyde and 2-phenylacetic acid. Food Chemistry 124 (1), 298–302.