AN XMM-NEwTON STUDY OF THE CORONAE OF \(\sigma^2 \) CORONAE BOREALIS

Jin A. Suh and Marc Audard

Columbia Astrophysics Laboratory, Mail Code 5247, 550 West 120th Street, New York, NY 10027; jas2010@columbia.edu, audard@astro.columbia.edu

Manuel Güdel

Paul Scherrer Institut, 5232 Villigen PSI, Switzerland; guedel@astro.phys.ethz.ch

AND

Frederik B. S. Paerels

Columbia Astrophysics Laboratory, Mail Code 5247, 550 West 120th Street, New York, NY 10027; frits@astro.columbia.edu

Received 2005 February 28; accepted 2005 May 11

ABSTRACT

We present results of XMM-Newton Guaranteed Time observations of the RS CVn binary \(\sigma^2 \) Coronae Borealis. The spectra obtained with the Reflection Grating Spectrometers and the European Photon Imaging Camera MOS2 were simultaneously fitted with collisional ionization equilibrium plasma models to determine coronal abundances of various elements. Contrary to the solar first ionization potential (FIP) effect, in which elements with a low FIP are overabundant in the corona compared to the photosphere, and contrary to the “inverse” FIP effect observed in several active RS CVn binaries, coronal abundance ratios in \(\sigma^2 \) CrB show a complex pattern, as supported by similar findings in the Chandra HETGS analysis of \(\sigma^2 \) CrB with a different methodology by Osten and coworkers in 2003. Low-FIP elements (<10 eV) have abundance ratios relative to Fe that are consistent with the solar photospheric ratios, whereas high-FIP elements have abundance ratios that increase with increasing FIP. We find that the coronal Fe abundance is consistent with the stellar photospheric value, indicating that there is no metal depletion in \(\sigma^2 \) CrB. However, we obtain a higher Fe absolute abundance than Osten and coworkers did. Except for Ar and S, our absolute abundances are about 1.5 times larger than those reported by Osten and coworkers. However, a comparison of their model with our XMM-Newton data (and vice versa) shows that both models work adequately in general. We find, therefore, no preference for one methodology over the other for deriving coronal abundances. Despite the systematic discrepancy in absolute abundances, our abundance ratios are very close to those obtained by Osten and coworkers. Finally, we confirm the measurement of a low density in \(\text{O} \text{vii} \) (<4 \(\times \) 10\(^{10} \) cm\(^{-3} \)) but could not confirm the higher densities measured in spectral lines formed at higher temperatures that were derived by other studies of \(\sigma^2 \) CrB due to the lower spectral resolution of the XMM-Newton grating spectrometers.

Subject headings: stars: activity — stars: coronae — stars: flare — stars: individual (\(\sigma^2 \) Coronae Borealis) — stars: late-type — X-rays: stars

Online material: color figures

1. INTRODUCTION

Studies of stellar coronae with X-ray missions such as XMM-Newton and the Chandra X-Ray Observatory have shown peculiar abundance patterns when compared to the coronal composition of the Sun. In the latter, elements with a first ionization potential (FIP) below about 10 eV appear, on average, overabundant compared to the high-FIP elements by a factor of a few (e.g., Meyer 1985). In addition, high-FIP elements are of solar photospheric composition (e.g., Feldman 1992; Laming et al. 1995). This abundance pattern is known as the “solar FIP effect.” Previous studies of stellar coronae with lower resolution detectors than those available on board XMM-Newton and Chandra and in the extreme ultraviolet range have shown a general depletion of the metal abundance (e.g., Antunes et al. 1994; White et al. 1994; Schmitt et al. 1996) and evidence for a solar-like FIP effect in some stars (Drake et al. 1997; Laming & Drake 1999) or its absence in others (Drake et al. 1995).

XMM-Newton and Chandra have reached unprecedented spectral resolution and sensitivity in the X-ray regime thanks to their grating spectrometers. This led to the discovery of an “inverse” FIP effect in HR 1099 (Brinkman et al. 2001; Drake et al. 2001), in which low-FIP elements are underabundant compared to the high-FIP elements. Other studies have strengthened the evidence for the presence of an inverse FIP effect in magnetically active stars (e.g., Audard et al. 2001b, 2003; Güdel et al. 2001a, 2001b; Huenemoerder et al. 2001, 2003; van den Besselaar et al. 2003; Raassen et al. 2003; Osten et al. 2003; Sanz-Forcada et al. 2003b) but have also shown that individually active stars show no strong correlation with the FIP (Audard et al. 2001a), and less active stars show a solar-like FIP effect (Güdel et al. 2002; Telleschi et al. 2005). A transition from the inverse to the solar-like FIP effect thus seems to occur with decreasing magnetic activity (Güdel et al. 2002; Audard et al. 2003). However, the inactive F star Procyon does not show any correlation between its coronal abundances and the elemental FIP (Drake et al. 1997; Raassen et al. 2002), although its cool corona (1–2 MK) should display a strong solar-like FIP effect in the transitional picture. Sanz-Forcada et al. (2004) argued that the comparison of coronal abundances to solar photospheric abundances instead of stellar photospheric abundances (which are often unknown or uncertain in the literature) could be misleading, as it could falsely
mimic inverse or solar-like FIP effects in stars. On the other hand, the photospheric composition of the solar analogs in the study of Telleschi et al. (2005) is known to be similar to the Sun’s; therefore, it appears that coronal abundance anomalies occur, at least in their sample.

Several theoretical studies have produced models to explain the solar FIP effect (see reviews by Hénoux 1995, 1998; also Arge & Mullan 1998; Schwadron et al. 1999; McKenzie 2000). In the stellar context, Güdel et al. (2002) suggested that the non-thermal electrons observed in the radio could explain the inverse FIP effect in active stars, and possibly the FIP effect in inactive stars. Recently, Laming (2004) proposed a model that unifies the FIP and inverse FIP effects by exploring the effects on the upper chromospheric plasma of the wave ponderomotive forces. Laming (2004) suggested that the observed solar FIP effect could be turned into an inverse FIP effect after fine-tuning model parameters. Further theoretical work is needed to address the wide range of FIP-dependent coronal abundances in the Sun and stars. In the meantime, we need to increase the sample of stars and study their coronal abundances to understand the mechanism at the origin of the element fractionation in the Sun and in stars. In this paper, we present the *XMM-Newton* study of the RS CVn binary *σ*² CrB, which is composed of two solar analogs as well, albeit spun up by tidal forces.

2. THE RS CVn BINARY *σ*² CORONAE BOREALIS

The object *σ*² CrB (HD 146361, TZ CrB) is an active RS CVn binary system at a distance of 21.7 pc (Perryman et al. 1997) whose components have spectral types of F9 V and G0 V (Strassmeier & Rice 2003). This object is a component of a visual binary with an orbital period of 1000 yr, with the other component (σ¹ CrB) at a separation of 6"6. No eclipse takes place in *σ*² CrB due to the low inclination angle of 28° (Bakos 1984), and the orbit has a period of *P* = 1.14 days (e.g., Drake et al. 1989). Strassmeier & Rice (2003) reported a 0.017 day difference between the rotation and orbital periods and interpreted it as differential rotation of the surface. The masses and radii of the components are close to the solar values, i.e., *M* ~ 1.1 *M*☉ and *R* ~ 1.2 *R*☉ (Barden 1985; Drake et al. 1989). A detailed list of the physical parameters of *σ*² CrB can be found in Strassmeier et al. (1993) and Strassmeier & Rice (2003).

The binary *σ*² CrB has been observed extensively from radio to X-rays (see Osten et al. 2000 and references therein). In the X-ray and extreme-ultraviolet (EUV) regimes, several studies have investigated the properties of the corona of *σ*² CrB (Agrawal et al. 1981, 1985, 1986; van den Oord et al. 1988; Pasquini et al. 1989; Stern et al. 1992; Osten et al. 2000). Recently, Osten et al. (2003) presented the *Chandra* spectrum of *σ*² CrB obtained with the High Energy Transmission Grating Spectrometer (HETGS) as part of a coordinated observing campaign in the radio, EUV, and X-ray regimes. They found a bi-modal emission measure distribution with peaks at 6–8 and 30 MK. The Fe abundance was found to be depleted, as is frequently seen in bright RS CVn binaries (Audard et al. 2003), whereas Ne/Fe and Ar/Fe abundance ratios were above solar ratios. Although these ratios are indicative of an inverse FIP effect in *σ*² CrB, other elements did not show a specific correlation with the FIP. In particular, the low-FIP (6 eV) element Al was overabundant with respect to Fe. With our analysis of the *XMM-Newton* spectra, we aim to compare derived abundances with those of Osten et al. (2003). We discuss the coronal abundances of *σ*² CrB in the context of the FIP and inverse FIP effects in the Sun and stars.

3. OBSERVATIONS AND DATA REDUCTION

The observations of *σ*² CrB were performed by *XMM-Newton* (Jansen et al. 2001) and were spread over three epochs: 2001 August 29 (hereafter 101), 2001 August 31 (hereafter 201), and 2002 February 22/23 (hereafter 301). The first observation lasted for approximately 7 ks and was interrupted by solar flare activity; therefore, we do not discuss this data set further (except as a light curve in Fig. 1). Solar activity was again high for the two remaining epochs; nevertheless, we obtained spectra with sufficient quality. We provide a log of these observations in Table 1.

All data were reduced with the *XMM-Newton* Science Analysis System (SAS), version 5.4.1, and the calibration files of 2003 June using standard procedures (e.g., Audard et al. 2003). The European Photon Imaging Camera (EPIC; Turner et al. 2001) MOS2 data (in small-window mode) were slightly piled up, and therefore we excised the center of the point-spread function (PSF) to avoid this problem (e.g., Lumb et al. 2000). A background template was obtained from a region on an outer EPIC MOS2 CCD. Its exposure was corrected for vignetting, since we assumed here that the dominant X-ray background was due to the cosmic X-ray background (i.e., the instrumental
and particle backgrounds, which are not vignette, were negligible). The EPIC MOS1 data (in timing mode) were not used due to the small window size, which prevented us from defining an appropriate background in this mode. The EPIC pn data were taken in timing mode as well and are also not discussed here.

Despite the high solar activity at the end of each observation (Fig. 1), we used the complete Reflection Grating Spectrometer (RGS; den Herder et al. 2001) data, since a comparison with the “cleaned” data (selecting periods with low solar activity) showed that they were similar. However, we preferred to use the cleaned EPIC spectra, since they showed no significant contamination at high energies, compared to the full-exposure spectra. We show the selected good time intervals (GTIs) in Figure 1. Thanks to the low count rate variability of σ^2 CrB during the XMM-Newton observations, the different treatments of GTIs between the EPIC and the RGS data had a negligible impact.

In our EPIC images, there was no evidence for X-rays from the visual binary component σ^1 CrB. Its X-ray emission could in principle be separated (6σ) if it was bright enough. Indeed, both Castor AB low-mass components were detected with XMM-Newton EPIC MOS for a separation of 3.9; Gudel et al. 2001a.) This suggests that the X-ray luminosity of σ^1 CrB is much fainter than that of σ^2 CrB. The Chandra zeroth-order image confirms the faintness of this component (R. Osten 2003, private communication). Therefore, no significant contamination by σ^1 CrB is expected in the EPIC and RGS data of σ^2 CrB.

4. DATA ANALYSIS

The reduced RGS and EPIC MOS2 spectra were fitted simultaneously using collisional ionization equilibrium (CIE) plasma models with variable elemental abundances and temperatures. A free constant multiplicative model was allowed to deal with cross-calibration normalization effects between the RGS and the EPIC spectra. We used XSPEC (ver. 11.2.0; Arnaud 1996) software with the APEC (ver. 1.3.0; Smith et al. 2001) code that contains line and continuum emissivities. We used the Greaves & Sauval (1998) set of solar photospheric abundances. Such a set was also used by Osten et al. (2003), thus allowing a direct comparison between their and our results.

We used a multi-T approach with free temperatures and emission measures (EMs) and variable abundances (C, N, O, Ne, Mg, Si, S, Ar, Ca, and Fe). We added a photoelectric absorption component using Wisconsin cross sections of Morrison & McCammon (1983) but left the value of the column density fixed at 2×10^{19} cm$^{-2}$ (Osten et al. 2000), since the XMM-Newton
data are not sensitive to such a low value. Sanz-Forcada et al. (2003a) suggest a value of 2.5×10^{18} cm$^{-2}$, but the difference is negligible. We fixed the abundance of Ni to be equal to the abundance of Fe.

Furthermore, we used a similar approach as Audard et al. (2003). Several wavelength ranges in the spectra were discarded, since they include low-Z L-shell transitions, which are insufficiently described in current atomic databases (Audard et al. 2001a, 2003; Lepson et al. 2003). With this procedure, we have derived the element abundances from the more reliable emission lines of low-Z K-shell ions. The full list of excluded wavelength ranges is given in Table 2.

Figures 2a–2b show the EPIC MOS2 and RGS spectra overlaid with a best-fit model using a four-temperature CIE model. The EPIC MOS2 data at wavelengths shorter than 18 Å were used to model the high-energy tail of the X-ray spectrum and the emission lines inaccessible to the RGS; significant overlap with the RGS (8–18 Å) was kept to make sure the high-T component would be well linked to the lower T components, which mainly produce emission lines in the RGS band. The hot Fe Kα complex at 6.7 keV (weak in the EPIC MOS2 data but clearly detected in the EPIC pn data, not shown here) indicates the presence of hot plasma, whereas the O vii triplet reveals cool plasma. We list the best-fit parameters of four-T CIE models for the 201 and 301 observations in Table 3. We also list the abundances reported by Osten et al. (2003) for the Chandra observation of σ^2 CrB.

5. DISCUSSION

5.1. Coronal Abundances

We derived absolute abundances (i.e., abundances relative to H) with respect to the solar photospheric abundances given by Grevesse & Sauval (1998). However, abundance ratios, e.g., relative to Fe, have been found to be more robust (e.g., Audard et al. 2004; Telleschi et al. 2005). Therefore, we give abundance ratios to Fe in Table 3. Figure 3 shows the abundance ratios as a function of the FIP using the solar photospheric set of Grevesse

![Fig. 2a](image_url)
TABLE 3

Best-Fit Parameters for RGS + MOS2 Together with Abundances from Osten et al. (2003)

Parameters	201	301	Osten et al. (2003)
[C/Fe]	$-0.24^{+0.05}_{-0.08}$	$-0.28^{+0.08}_{-0.09}$	\ldots
[N/Fe]	$-0.09^{+0.04}_{-0.08}$	-0.16 ± 0.10	$-0.07^{+0.07}_{-0.08}$
[O/Fe]	$-0.22^{+0.02}_{-0.04}$	$-0.22^{+0.03}_{-0.05}$	-0.16 ± 0.01
[Ne/Fe]	$+0.11^{+0.03}_{-0.04}$	$+0.15 \pm 0.05$	$+0.16 \pm 0.01$
[Mg/Fe]	$+0.04^{+0.04}_{-0.03}$	$+0.08 \pm 0.05$	-0.00 ± 0.01
[Si/Fe]	$-0.06^{+0.06}_{-0.07}$	$-0.09^{+0.08}_{-0.09}$	-0.10 ± 0.01
[S/Fe]	$-0.45^{+0.19}_{-0.16}$	$-0.49^{+0.19}_{-0.2}$	-0.28 ± 0.05
[Ar/Fe]	$+0.04^{+0.04}_{-0.03}$	$+0.15^{+0.05}_{-0.04}$	$+0.2 \pm 0.01$
[Ca/Fe]	$-0.12^{+0.04}_{-0.03}$	$+0.16^{+0.05}_{-0.04}$	\ldots
[Fe/H]	-0.17 ± 0.01	-0.13 ± 0.02	-0.34 ± 0.02
T_1 (MK)	$3.83^{+0.10}_{-0.26}$	$3.34^{+0.18}_{-0.19}$	\ldots
T_2 (MK)	7.74 ± 0.08	7.48 ± 0.08	\ldots
T_3 (MK)	$14.7^{+0.56}_{-0.52}$	$14.4^{+0.50}_{-0.60}$	\ldots
T_4 (MK)	$28.4^{+0.13}_{-0.15}$	$31.6^{+0.06}_{-3.4}$	\ldots
log EM$_1$ (cm$^{-3}$)	52.7 ± 0.10	52.5 ± 0.10	\ldots
log EM$_2$ (cm$^{-3}$)	53.1 ± 0.10	53.1 ± 0.10	\ldots
log EM$_3$ (cm$^{-3}$)	52.9 ± 0.10	52.9 ± 0.10	\ldots
log EM$_4$ (cm$^{-3}$)	52.7 ± 0.10	52.8 ± 0.10	\ldots
χ^2/d.o.f	1.34	1.48	\ldots
Sauval (1998). We plot the abundance ratios obtained for the 301 observation shifted by +0.2 eV for clarity. The figure shows two regimes. Below 10 eV, low-FIP elements have about the same abundances and are close to the solar photospheric values. Above 10 eV, the abundance ratios increase with increasing FIP, as observed in several other RS CVn binaries (Audard et al. 2003). Figure 11 of Osten et al. (2003) shows a similar pattern, although these authors preferred to interpret it as an absence of a FIP-dependent pattern.

Figure 4 shows a comparison of coronal abundances obtained in the best fits to the XMM-Newton 201 and 301 observations and extends it to a comparison of the abundances obtained by Osten et al. (2003). It shows that the abundance ratios are very similar for the three sets. On the other hand, the absolute abundances are systematically higher in our fits than in those by Osten et al. (2003) by a factor of about 1.5. Although two different observations (e.g., at two different epochs) could, in principle, yield different abundances because the dominant X-ray-emitting regions are not the same and the observed average coronal composition could be different, it is far more probable that different analysis techniques could lead to different best-fit abundances (e.g., Audard et al. 2004). Furthermore, the spectral inversion problem being an ill-posed problem, small statistical variations can lead to discrepant results via the differential emission measure (DEM) inversion (Craig & Sauval 1998).

![Figure 3. Abundance ratios relative to Fe and relative to solar abundances (Grevesse & Sauval 1998) for the 201 and 301 observations as a function of the FIP. For clarity, we shifted the 301 data points by +0.2 eV. Statistical errors only are shown; systematic errors probably range up to 0.1–0.2 dex. For Ca (201) and Ar (301), upper limits are shown with an arrow down to the bottom of the figure.](image)

![Figure 4. Comparisons between abundances obtained in this paper and those by Osten et al. (2003). Panel (d) shows absolute abundances instead of abundance ratios to Fe (a–c). Abundance ratios are robust and similar, whereas our absolute (relative to H) abundances are systematically higher than those derived by Osten et al. (2003). Some abundances discussed in the text are labeled for clarity. The dotted line represents a 1:1 correlation, whereas the dashed line in panel (d) represents a 1.5:1 correlation.](image)
It is, therefore, difficult to estimate which set of abundances is preferred. On the other hand, it is worthwhile to stress the robustness of abundance ratios that show (whatever the technique and the data set) that a complex FIP-dependent abundance pattern is present in σ^2 CrB’s corona.

The use of a solar photospheric set of abundances to compare with stellar coronal abundances is naturally problematic, since stars can have a photospheric composition at variance from the Sun’s. Accurate surface abundances are difficult to derive for magnetically active stars in view of their rapid rotation and surface spots. Strassmeier & Rice (2003) have, however, obtained estimates of the photospheric abundances of the low-FIP elements Fe and Ca, $A_{\text{Fe}} = 7.30$ and $A_{\text{Ca}} = 6.07$ (with the usual $A_H = 12$ notation; they estimate an uncertainty of ~ 0.1 dex). Comparing with the solar values from Grevesse & Sauval (1998; $A_{\text{Fe}} = 7.50$ and $A_{\text{Ca}} = 6.36$), σ^2 CrB’s photosphere appears depleted with [Fe/H] $= -0.20$ and [Ca/H] $= -0.29$. Our spectral fits obtain [Fe/H] ~ -0.15, which is consistent with the stellar photospheric value. In contrast, Osten et al. (2003) obtain a slightly depleted coronal Fe abundance. It seems safe to conclude that the coronal Fe abundance in σ^2 CrB is close to the photospheric value, in contrast to the solar case, in which the coronal Fe abundance is enhanced by a factor of a few. This situation is also different from that in several magnetically active stars that show a similar U-shaped abundance pattern but a net Fe depletion in their corona (e.g., Güdel et al. 2001b; Sanz-Forcada et al. 2003b; Telleschi et al. 2005). It is difficult to discuss the case of Ca, since we derived large uncertainties and Osten et al. (2003) did not obtain a Ca abundance. Nevertheless, a scenario appears to emerge in which low-FIP elements are depleted in very active stars that show an inverse FIP effect. The abundances of the lowest FIP elements in intermediate active stars, such as σ^2 CRB, increase to become quasi-photospheric, while the intermediate-FIP elements still have their abundances depleted; thus, the abundance pattern shows a U shape. Finally, in the less active stars, low-FIP elements have their abundances

Fig. 5.—(a) XMM-Newton RGS1 and RGS2 fluxed spectra (uncorrected for interstellar absorption, which is in any case negligible in this wavelength range) compared with the Chandra quiescent model (superposed line) of Osten et al. (2003) for 6.5–15.5 Å. Error bars are not shown for clarity. (b) Same as (a), but for 15–25 Å. (c) Same as (a), but for 25–35 Å. [See the electronic edition of the Journal for a color version of this figure.]
further increased to become superphotospheric, and intermediate-FIP elements have their abundances become quasi-photospheric. Such stars show an abundance pattern similar to the solar FIP effect.

5.2. A Comparison with the Osten et al. Model

Our methodological approach to the XMM-Newton data (i.e., multi-T components) differs significantly from the approach by Osten et al. (2003; i.e., separate treatment of continuum and lines, reconstruction of a DEM distribution based on extracted Fe line fluxes). We focus in this section on comparing their model with ours. Specifically, we test whether their Chandra model can provide an adequate fit to our XMM-Newton data and vice versa. Some caveats should be mentioned: (1) Osten et al. (2003) use APEC, version 1.10, whereas we use the more recent APEC, version 1.3; (2) σ^2 CrB’s X-ray luminosity was 1.39 times higher during the XMM-Newton observation ($L_X = 3.8 \times 10^{30}$ ergs s$^{-1}$) than during the Chandra observation ($L_X = 2.7 \times 10^{30}$ ergs s$^{-1}$). In our comparison, we take this correction factor into account. However, it remains unclear whether this factor should be applied to all temperature components or only part of them. (3) It is possible that real changes in the X-ray spectrum (e.g., due to EM or abundance variations) occurred between the two observations. We assume in this study that this was not the case.

We have used the quiescent DEM of Osten et al. (realization 2) together with the quiescent abundances reported in their Table 5. (We set the C and Ca abundances equal to the Fe abundance, and we set Ni = 0.1 times the solar photospheric value, as described by Osten et al. [2003].) However, after discussions with Osten, we discovered that their quiescent DEM (as shown in their Fig. 10a) is accurate from log $T(K) = 6.0$ to 7.4 for the continuum and that the last point at log $T(K) = 7.5$ was used only for the emission lines. However, this temperature bin essentially contributed a few tens of percent to the flux in the Fe $K\alpha$ complex. This oversight plays no significant role for our comparison exercise with the XMM-Newton data. Thus, in practice, we constructed in XSPEC a multi-T model with 15 components at temperatures of log $T(K) = 6.0$–7.4 with intervals of $\Delta \log T = 0.1$ dex. We used the DEM values of

\[\text{Fig. 5b} \]
Osten et al., multiplied them by the original DEM bin width ($\Delta \log T = 0.1$ dex) to obtain the total EM for each temperature component, and further divided by 2, since Osten et al. (2003) accounted for the fact that half the radiation is absorbed by the star.

We then convolved the model of Osten et al. (2003) in XSPEC3 (using our RGS RMF [Redistribution Matrix File]); we have also convolved our \textit{XMM-Newton} EPIC MOS2 (301) model through the Advanced CCD Imaging Spectrometer (ACIS-S) and HETGS first-order RMF/ARF (Ancillary Response File) provided by Osten.4 Figures 5a–5c compare the \textit{XMM-Newton} RGS data overlaid with the \textit{Chandra} model of Osten et al., whereas Figures 6a–6c show the \textit{Chandra} HETGS data (provided by Osten) overlaid with the \textit{XMM-Newton} model.

We find surprisingly good agreement, despite different absolute abundances. There are, however, some discrepancies. In Figure 5b, the Fe \textit{xvii} $\lambda 15$ line is overestimated, compared to that in the \textit{XMM-Newton} data. But this is no different from the analysis of Osten et al. (2003), which overestimated the \textit{Chandra} Fe \textit{xvii} line flux as well (see their Fig. 10a, center panel). In addition, the Osten et al. model overestimates the RGS continuum level by about 40% at wavelengths longer than 25 Å (Fig. 5c). A few possible explanations can be put forward. (1) The \textit{Chandra} HETGS wavelength range ends around 25 Å; therefore, the Osten et al. model had no possibility to accurately take into account the flux beyond this instrumental limit. Sako et al. (2003) reported a similar situation in which the model of Lee et al. (2001), based on HETGS data, could reproduce the general properties of the RGS spectrum of MCG –6-30-15 below 23 Å, but it overestimated the flux for $\lambda > 25$ Å. (2) Calibration problems at long wavelengths are possible; however, the 40% overestimate is larger than the current calibration.

3 Osten et al. (2003) used the composite trapezoidal rule to integrate the line and continuum flux at a specific wavelength. The composite trapezoidal rule helps to calculate the integral of a function $f(x)$ over an interval $[a,b]$ subdivided into N subintervals $[x_i, x_{i+1}]$ of widths $h = (b-a)/N$ (thus $x_i = a + ih$ for $i = 0, 1, \ldots, N$). The integral is then equal to $h/2 [f(a) + f(b)] + h \sum_{i=1}^{N-1} f(x_i)$. Thus, we used half the DEM values at $\log T(K) = 6.0$ and 7.4 in XSPEC.

4 We have checked that our 15-T model based on the model of Osten et al. was correct by convolving it through the same \textit{Chandra} response matrix files and comparing it with their synthesized model, provided by Osten.
uncertainties. (3) It was inadequate to multiply the EMs of Osten et al.’s model by a constant value of 1.39 to account for the X-ray luminosity difference of σ^2 CrB between the Chandra and XMM-Newton observations. It is possible that the variation is due to some part of the DEM only (e.g., at high temperatures). However, the long-wavelength continuum level is essentially determined by the high-temperature components (which describe the short- and mid-wavelength ranges accurately), and therefore we find this possibility less probable. Instead, we propose that the lack of spectral coverage in the range 25–40 Å by the Chandra HETGS slightly biased the EMD of Osten et al. (2003) to overestimate the long-wavelength flux. We note that although Osten et al. (2003) used Extreme Ultraviolet Explorer (EUVE) line fluxes to determine their DEM, these authors did not make use of the continuum level in the EUVE wavelength range (which is about 5 times lower than the continuum level at 30 Å).

Our XMM-Newton model (whose EMs were divided by 1.39) shows generally excellent agreement with the Chandra data (Figs. 6a–6c). However, the flux in the Ar xvii triplet near 4 Å was underestimated; it suggests that Ar abundances obtained from simultaneous EPIC + RGS fits might be underestimated generally. The Osten et al. model, however, predicts L-shell fluxes of Ar and S lines at long wavelengths that are consistent with the RGS data (Fig. 5c), despite the long-standing problem of the lack of atomic data of L-shell lines of low-Z elements or their inaccuracy in current atomic databases (Audard et al. 2001a; Raassen et al. 2002; Lepson et al. 2003).

With a few exceptions, we find, therefore, excellent agreement among different models derived with different techniques from different data sets; the models show very similar abundance ratios but different absolute abundances. This exercise casts some doubt on the preference of one method over the other to determine coronal abundances, and it demonstrates that the

Fig. 6.—(a) Chandra MEG1 and HEG1 fluxed spectra (uncorrected for interstellar absorption, which is in any case negligible in this wavelength range) compared with our XMM-Newton EPIC MOS2 + RGS (301) best-fit model (superposed line). (b) Same as (a), but for 8–14 Å. (c) Same as (a), but for 14–26 Å. The 17–26 Å panels show the MEG data only. [See the electronic edition of the Journal for a color version of this figure.]
determination of true absolute abundances remains a challenge. Other studies support this interpretation. For example, Audard et al. (2004) studied the bright FK Com–type giant YY Men using different methods and found that for a given data set (either Chandra or XMM-Newton), slight differences in absolute abundances were derived. However, they found excellent agreement for the abundance ratios relative to Fe. In parallel, Telleschi et al. (2005) studied the XMM-Newton data of a sample of solar analogs with different methods as well. They also observed the robustness of abundance ratios and demonstrated the presence of a transition from a solar-like FIP effect in inactive stars to an inverse FIP effect in active stars. Garcia-Alvarez et al. (2005) used one method but different sets of emission lines to derive the coronal abundances in AB Dor (and V471 Tau) and found similar abundances. They further compared their results with those in earlier studies and found good agreement in the general trend, albeit with some significant differences. Thus, in brief, despite the use of various methodologies, abundance patterns as a function of the FIP appear robust and look dependent on the magnetic activity level. However, it remains challenging (1) to constrain absolute abundances and (2) to compare coronal abundances to their photospheric counterparts.

5.3. Electron Density

High-resolution X-ray spectra observed with XMM-Newton and Chandra allow us to determine electron densities from line ratios of He-like ions. The ratio \(R \) of the flux in the forbidden (\(f \)) line to the flux in the intercombination (\(i \)) line is indeed density-sensitive. In particular, the \(\text{O vii} \) triplet is most useful in measuring coronal densities of the order of \(10^{10} \) cm\(^{-3} \) and is relatively blend-free (in contrast to \(\text{Ne ix} \)) and well resolved (in contrast to, e.g., \(\text{Mg xi} \) and \(\text{Si xiii} \) for the RGS). We have

\(R \) is a function of electron density, and it is useful in determining the electron density of the corona. In the case of \(\text{O vii} \) triplet, it is a good indicator for densities around \(10^{10} \) cm\(^{-3} \). The figure shows the fluxes of different elements as a function of wavelength, indicating the presence of various ions and their ratios, which can be used to infer the electron density and other physical properties of the corona.
obtained line fluxes for the O \textsc{vii} triplet using δ functions convolved through the instrumental response. We list them in Table 4 together with 68% confidence ranges ($\Delta \chi^2 = 1$). The R ratio is equal to 2.81 \pm 0.77, corresponding to an upper limit to the electron density of 4×10^{10} cm$^{-3}$ (Porquet et al. 2001), assuming a photoexcitation contribution by the radiation field with $T_{\text{eff}} \approx 6000$ K.

Osten et al. (2003) and Testa et al. (2004) reported for O \textsc{vii} an electron density of $\sim 2 \times 10^{10}$ cm$^{-3}$, i.e., consistent with ours. These authors and Sanz-Forcada et al. (2003a) quote (higher) electron densities from other He-like triplets and Fe lines (in the EUV range), which we cannot confirm due to the poorer spectral resolution of the RGS (or the lack of wavelength coverage). Unfortunately, the N \textsc{vi} triplet is too faint to measure any line flux.

5.4. Opacity

Our CIE models assume an optically thin plasma, so it is necessary to verify that opacity effects play a negligible role. We examined the ratio of the Fe \textsc{xvii} spectral lines at 15.01 and 15.26 Å, since this ratio is sensitive to opacity effects (the 15.01 Å line has a large oscillator strength). The measured Fe \textsc{xvii} fluxes are shown in Table 4.

Until recently, theoretical values for the ratio used to range from 3.0 to 4.7 (Bhatia & Doschek 1992), significantly different from laboratory measurements, which suggest a range from 2.8 to 3.2 (Brown et al. 1998, 2001; Laming et al. 2000). However, recent theoretical work has brought the theoretical ratio closer to the laboratory ratio (Chen & Pradhan 2002; Chen et al. 2003; Fournier & Hansen 2005). We obtain a flux ratio in σ^2 CrB of 3.02 \pm 0.15, i.e., consistent with the ratios derived by Osten.
et al. (2003; 3.01 ± 0.26 with the High-Energy Grating [HEG] and 2.94 ± 0.15 with the Medium-Energy Grating [MEG]). Ness et al. (2003) derived a slightly lower ratio (2.56 ± 0.13), probably because of a different treatment of the continuum. Nevertheless, they also concluded that this value was close to the ratio obtained in laboratory measurements. Thus, the line ratio indicates that there are no significant opacity effects in the corona of σ^2 CrB.

6. SUMMARY AND CONCLUSIONS

We have presented a study of the XMM-Newton observations of the binary σ^2 CrB. No large flare was detected during the observations. We focused our analysis on the determination of the coronal abundances by means of a multi-τ approach. Although such models do not give an accurate representation of the coronal DEM, they suffice to obtain good measurements of coronal abundances and abundance ratios in particular (e.g., Audard et al. 2004; Telleschi et al. 2005). We have, furthermore, compared our resulting abundances with those of Osten et al. (2003), who published the Chandra data of σ^2 CrB. We find very good agreement between their abundance ratios (relative to the Fe abundance) and ours but find a systematic difference in the absolute abundances. Upon checking whether their model could fit our XMM-Newton data, we have obtained an excellent agreement (after correcting the published DEM; see § 5.2). At wavelengths longer than 25 Å, their model overestimates the continuum level. We argue that their model, based on HETGS data below this wavelength, did not constrain their DEM well enough to account for the longer wavelength range. Our XMM-Newton best-fit model also reproduces the Chandra HETGS spectra remarkably well. Thus, abundance ratios are found to be robust, whereas the discrepancy in absolute abundances found between our model and that of Osten et al. probably stems from the different methodologies. Similar results have been found elsewhere (Audard et al. 2004; Telleschi et al. 2005; Garcia-Alvarez et al. 2005). Nevertheless, the presence of abundance patterns as a function of the FIP seems reliable.

The abundance ratios relative to the coronal Fe abundance showed a correlation with the FIP, but such a correlation was similar to neither the inverse FIP effect observed in very active binaries (e.g., Audard et al. 2003) nor the solar-like FIP effect observed in less active stars (e.g., Telleschi et al. 2005). The abundance ratios of low-FIP elements (<10 eV) with respect to Fe are similar to the solar photospheric abundance ratios; for intermediate-FIP elements, they are, however, considerably lower but increase with increasing FIP. Such an abundance pattern has already been observed in other magnetically active stars (Güdel et al. 2001b; Sanz-Forcada et al. 2003b; Huenemoerder et al. 2003). However, Garcia-Alvarez et al. (2005) found the abundances of the very low FIP elements (Al, Ca, and Na) in AB Dor to be similar to, or lower than, those of low FIP (Mg, Si, and Fe), in contrast to the results of Sanz-Forcada et al. It is possible that these patterns are real, but we emphasize that coronal abundances are often compared to the solar photospheric composition due to the lack of available or reliable measurements in magnetically active, fast-rotating stars. In the case of σ^2 CrB, the Fe and Ca photospheric abundances of the σ^2 CrB binary were available (Strassmeier & Rice 2003) and suggested that the low Fe abundance in σ^2 CrB’s corona was in fact consistent with the photospheric value.

Finally, we obtained an upper limit of the coronal density based on the O vi triplet ($n_e < 4 \times 10^{10}$ cm$^{-3}$), which is consistent with other measurements in σ^2 CrB (Osten et al. 2003; Testa et al. 2004). Osten et al. (2003), Sanz-Forcada et al. (2003a), and Testa et al. (2004) found higher densities ($n_e \sim 10^{12}$ cm$^{-3}$) from spectral lines formed at higher temperatures than O vi. However, due to the lower spectral resolution of the RGS (compared to the Chandra HETGS), we could not confirm such coronal densities.

In conclusion, this study has confirmed that the abundance ratio pattern in σ^2 CrB’s corona does not follow that of a simple inverse FIP effect or of a solar-like FIP effect but appears to be more complex. However, the lack of data on photospheric abundances in σ^2 CrB for comparison still casts doubt on whether such a pattern is real or mirrors the stellar composition. Nevertheless, the underabundance of Fe in σ^2 CrB’s corona (compared to the solar photospheric Fe abundance) appears robust and is consistent with its abundance found in the stellar photosphere.

Rachel Osten is warmly thanked for providing the Chandra data and model and access to her software and for useful comments that improved the content of this paper. The Columbia group acknowledges support from NASA to Columbia University for XMM-Newton mission support and data analysis. M. G. acknowledges support from the Swiss National Science Foundation (grant 20-66875.01). This work is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). We thank an anonymous referee for useful comments that improved this paper.

REFERENCES

Agrawal, P. C., Markert, T. H., & Rieger, G. R. 1985, MNRAS, 213, 761
Agrawal, P. C., Rao, A. R., & Rieger, G. R. 1986, MNRAS, 219, 777
Agrawal, P. C., White, N. E., & Rieger, G. R. 1981, MNRAS, 196, 73P
Antunes, A., Nagase, F., & White, N. E. 1994, ApJ, 436, L83
Argue, C. N., & Mullan, D. J. 1998, Sol. Phys., 182, 293
Arnaud, K. A. 1996, in ASP Conf. Ser. 101, Astronomical Data Analysis Software and Systems V, ed. G. H. Jacoby & J. Barnes (San Francisco: ASP), 17
Audard, M., Behar, E., Güdel, M., Raassen, A. J. J., Porquet, E., Mewe, R., Foley, C. R., & Bromage, G. E. 2001a, A&A, 365, L329
Audard, M., Güdel, M., & Mewe, R. 2001b, A&A, 365, L318
Audard, M., Güdel, M., Srees, A., Raassen, A. K. K., & Mewe, R. 2003, A&A, 398, 1137
Audard, M., Telleschi, A., Güdel, M., Skinner, S. L., Pallavicini, R., & Mitra-Kraev, U. 2004, ApJ, 617, 531
Bakos, G. 1984, AJ, 89, 1740
Barden, S. C. 1985, ApJ, 295, 162
Bhatia, A. K., & Doschek, G. A. 1992, At. Data Nucl. Data Tables, 52, 1
Brinkman, A. C., et al. 2001, A&A, 365, L324
Brown, G. V., Beiersdorfer, P., Chen, H., Chen, M. H., & Reed, K. J. 2001, ApJ, 557, L75
Brown, G. V., Beiersdorfer, P., Liedahl, D. A., Wildmann, K., & Kahn, S. M. 1998, ApJ, 502, 1015
Chen, G. X., & Pradhan, A. K. 2002, Phys. Rev. Lett., 89, 013202
Chen, G.-X., Pradhan, A. K., & Eissner, W. 2003, J. Phys. B, 36, 453
Craig, J. J. D., & Brown, J. C. 1976a, A&A, 49, 239
Craig, J. J. D., & Brown, J. C. 1976b, Nature, 264, 340
den Herder, J. W., et al. 2001, A&A, 365, L7
Drake, J. J., Brickhouse, N. S., Kashyap, V., Laming, J. M., Huenemoerder, D. P., Smith, R., & Wargelin, B. J. 2001, ApJ, 548, L81
Drake, J. J., Laming, J. M., & Widing, K. G. 1995, ApJ, 443, 393
Drake, J. J., Laming, J. M., & Widing, K. G. 1997, ApJ, 478, 403
Drake, S. A., Simon, T., & Linsky, J. 1989, ApJS, 71, 905
Feldman, U. 1992, Phys. Scr., 46, 202
Fournier, K. B., & Hansen, S. B. 2005, Phys. Rev. A, 71, 012717
Garcia-Alvarez, D., Drake, J. J., Lin, L., Kashyap, V. L., & Ball, B. 2005, ApJ, 621, 1009
Grevesse, N., & Sauval, A. J. 1998, Space Sci. Rev., 85, 161

1086 SUH ET AL. Vol. 630
Güdel, M., Audard, M., Magee, H., Franciosini, E., Grosso, N., Cordova, F. A., Pallavicini, R., & Mewe, R. 2001a, A&A, 365, L344
Güdel, M., Audard, M., Sres, A., Wehrli, R., Behar, E., Mewe, R., Raassen, A. J. J., & Magee, H. R. M. 2002, in ASP Conf. Ser. 277, Stellar Coronae in the Chandra and XMM-Newton Era, ed. F. Favata & J. J. Drake (San Francisco: ASP), 497
Güdel, M., et al. 2001b, A&A, 365, L336
Hénoux, J.-C. 1995, Adv. Space Res., 15, 23
———. 1998, Space Sci. Rev., 85, 215
Huenemoerder, D. P., Canizares, C. R., Drake, J. J., & Sanz-Forcada, J. 2003, ApJ, 595, 1131
Huenemoerder, D. P., Canizares, C. R., & Schulz, N. S. 2001, ApJ, 559, 1135
Jansen, F., et al. 2001, A&A, 365, L1
Laming, J. M. 2004, ApJ, 614, 1063
Laming, J. M., & Drake, J. J. 1999, ApJ, 516, 324
Laming, J. M., Drake, J. J., & Widing, K. G. 1995, ApJ, 443, 416
Laming, J. M., et al. 2000, ApJ, 545, L161
Lee, J. C., Ogle, P. M., Canizares, C. R., Marshall, H. L., Schulz, N. S., Morales, R., Fabian, A. C., & Iwasawa, K. 2001, ApJ, 554, L13
Lepson, J. K., Beiersdorfer, P., Behar, E., & Kahn, S. M. 2003, ApJ, 590, 604
Lumb, D. H., et al. 2000, Proc. SPIE, 4140, 22
McKenzie, J. F. 2000, Sol. Phys., 196, 329
Meyer, J. P. 1985, ApJS, 57, 173
Morrison, R., & McCammon, D. 1983, ApJ, 270, 119
Ness, J.-U., Schmitt, J. H. M. M., Audard, M., Güdel, M., & Mewe, R. 2003, A&A, 407, 347
Osten, R. A., Ayres, T. R., Brown, A., Linsky, J., & Krishnamurthi, A. 2003, ApJ, 582, 1073
Osten, R. A., Brown, A., Ayres, T. R., Linsky, J. L., Drave, S. A., Gagné, M., & Stern, R. A. 2000, ApJ, 544, 953
Pasquini, L., Schmitt, J. H. M. M., & Pallavicini, R. 1989, A&A, 226, 225
Perryman, M. A. C., et al. 1997, A&A, 323, L49
Porquet, D., Mewe, R., Dubau, J., Raassen, A. J. J., & Kaastra, J. S. 2001, A&A, 376, 1113
Raassen, A. J. J., Mewe, R., Audard, M., & Güdel, M. 2003, A&A, 411, 509
Raassen, A. J. J., et al. 2002, A&A, 389, 228
Sako, M., et al. 2003, ApJ, 596, 114
Sanz-Forcada, J., Brickhouse, N. S., & Dupree, A. K. 2003a, ApJS, 145, 147
Sanz-Forcada, J., Favata, F., & Micela, G. 2004, A&A, 416, 281
Sanz-Forcada, J., Maggio, A., & Micela, G. 2003b, A&A, 408, 1087
Schmitt, J. H. M. M., Stern, R. A., Drake, J. J., & Kuerster, M. 1996, ApJ, 464, 898
Schwadron, N. A., Fisk, L. A., & Zurbuchen, T. H. 1999, ApJ, 521, 859
Smith, R. K., Brickhouse, N. S., Liedahl, D. A., & Raymond, J. C. 2001, ApJ, 556, L91
Stern, R. A., Uchida, Y., Walter, F., Vilhu, O., Hannikainen, D., Brown, A., Veale, A., & Haisch, B. M. 1992, ApJ, 391, 760
Strassmeier, K. G., Hall, D. S., Fekel, F. C., & Scheck, M. 1993, A&AS, 100, 173
Strassmeier, K. G., & Rice, J. B. 2003, A&A, 399, 315
Telleschi, A., Güdel, M., Briggs, K. R., Audard, M., Ness, J.-U., & Skinner, S. L. 2005, ApJ, 622, 653
Testa, P., Drake, J. J., & Peres, G. 2004, ApJ, 617, 508
Turner, M. J. L., et al. 2001, A&A, 365, L27
van den Boselaar, E. J. M., Raassen, A. J. J., Mewe, R., van der Meer, R. L. J., Güdel, M., & Audard, M. 2003, A&A, 411, 587
van den Oord, G. H. J., Mewe, R., & Brinkman, A. C. 1988, A&A, 205, 181
White, N. E., et al. 1994, PASJ, 46, L97

No. 2, 2005

XMM-NEWTON STUDY OF σ^2 CrB

1087