Characteristics and land potential for sugarcane development in Blitar Regency, East Java Province

M M Pratamaningsih and A Mulyani
Indonesian Center for Agricultural Land Resources Research and Development, Bogor, Indonesia
E-mail: miramedia@pertanian.go.id

Abstract. The expansion of the sugarcane planting area needs to be supported by land resource data, such as characteristics and land suitability maps to optimize sugarcane growth and production. The study aimed to evaluate the land suitability, the dominant limiting factor, and the land availability for sugarcane development in Blitar Regency. Land suitability assessment was conducted by matching between land characteristics and sugarcane growth requirements. The study showed that the dominant soil in Blitar Regency was Kambisol Eutrik, having moderate to very deep soil depth, well-drained, and medium to a fine texture. The suitability classes of the land in the Blitar Regency were mostly marginally suitable (S3) covering of 87,529 ha (97.11%). This type of land has limiting factors, i.e., rooting condition (poorly drained and slightly coarse texture), nutrient retention (CEC <5 cmol, kg⁻¹, pH >8.0), nutrient availability (very low K₂O), and erosion hazard (slope 8 to 15%). The rest were classified as moderately suitable (S2) covering 2,604 ha (2.89%). The study implies that the extensification areas of sugarcane area in Blitar Regency around 21,876 ha could be expected to increase sugarcane productivity and sugar production.

1. Introduction
Sugarcane is one of the national strategic commodities that play essential role in the agricultural sector, particularly in the plantation subsector. Sugar consumption will continue to increase along with the enhancement of the population that has reached 265 million people [1] and the development of a downstream industry made from sugar. Sugar is a food for consumption and industrial raw material. In 2018, the area of sugarcane land reached 415,663 ha so that the sugarcane industry was a source of income for sugarcane farmers and workers in the sugar industry [2]. Sugar is also one of the necessities for most people and a relatively affordable source of calories.

In 2018, the national sugar production was 2.17 million tons [2], while the demand reached 5.1 million tons [3]. The gap in national sugar demand and its yield is likely to continue. In 2021, the total national sugar demand is projected to reach 5.3 million tons, with a total production of 2.5 million tons [3].

East Java Province had the most considerable contribution to sugar production, namely 51.15% of the total national sugar production with a total yield of 1,110,841 tons and the area of 196,897 ha in 2018 [2]. To achieve the target of self-sufficiency in sugar by 2029, the government through the Ministry of Agriculture has issued a Decree of the Minister of Agriculture No. 472 of 2018 concerning the Location of National Agricultural Areas, established Blitar Regency as one of the Locations of Priority Plantation Commodities for sugarcane [4].
Soil and climate are critical as environmental factors that affect the growth and yield of sugarcane [5]. Sugarcane plants grow optimally at <700 m above sea level (asl) altitude [6,7], and rainfall of 1,200 to 1,300 mm year\(^{-1}\) [8]. The growth and substance in sugarcane stalks are affected by soil properties and conditions [9]. According to Johnson and Richard [10], sugarcane can grow optimally in fertile soil with good permeability. Based on the land suitability criteria [11], the most suitable land for sugarcane is a land with 24 to 30\(^{\circ}\)C daily average temperature, medium to fine texture with a soil depth of >75 cm, soil pH 5.5 to 7.5, and flat slope (<3\%). Rainfall and slope are the main requirements for the growth of sugarcane.

The expansion of the sugarcane planting area needs to be supported by land resource data, such as land characteristics and suitability maps to optimize sugarcane growth and production. Sugarcane can grow both in paddy land and on dry land. Land use planning needs to consider limiting factors for growth and increased production. The study aimed to evaluate the land suitability, the dominant limiting factor, and the land availability for sugarcane development in Blitar Regency.

2. Materials and methods
The secondary data used for sugarcane land suitability analysis consist of (1) Land characteristics of Blitar Regency [12], (2) Map of Rupa Bumi Indonesia (RBI) Scale 1:25,000 [13], (3) Digital Elevation Model Nasional (DEMNAS) 8 m resolution [14], (4) Administrative Boundary Map [15], (5) Land Cover Map Scale 1:25,000 [16], (6) Forest Area Status Map [17], (7) Land Suitability Criteria for Sugarcane [11], dan (8) The Regency Spatial Planning Map (RTRW Map) of Blitar Regency [18].

Land suitability evaluation was conducted by matching land characteristics and sugarcane growth requirements [19,11], i.e., highly suitable (S1), moderately suitable (S2), marginally suitable (S3), and not suitable (N). Based on the land suitability map of sugarcane, the field verification was done to see the accuracy between land suitability classes and plant performance. The suitability map of the land was verified byoverlaying with the land use. The results were then mapped using the SPOT 6 image interpretation, the forest area status map, and the RTRW map of the Blitar Regency. Finally, a map of potential and land availability for sugarcane development in Blitar Regency was generated. The suitable lands were assumed to be available for sugarcane cultivation following the use of the land in the form of the annual crops, mixed gardens, shrubs, bare land, and grassland, which were in other land uses (APL). However, paddy land suitable for sugarcane was not included in the land available for sugarcane cultivation. This is following the policy of the local government that rice fields are designated for rice production and maintaining food sufficiency.

3. Results and discussion

Based on the SPOT 6 satellite imagery interpretation, the Blitar Regency has an area of 175,281 ha, most of the land has been used for agriculture, namely rice fields, dry fields, and mixed garden, including sugar cane plantations. The rest are in the form of settlements, offices and forest areas.

3.1. Land characteristic

Blitar Regency is found at the foot of Mount Kelud within the southern part of which consists of lowland and upland. Blitar Regency is split by the Brantas River and to the south are crossed by the South Karst Mountains. The northern part of Blitar is dominated by Volcanic landform, while the southern part is dominated by Karst. This can affect the potency of land for agriculture.

Blitar Regency has various relief, predominantly steep (25 to 40\%) covering 48,652 ha (27.76\%) (table 1). Generally, land with flat and undulating relief, which spread over Aluvial, Marine, Karst, partly Tectonic, and partly Volcanic, is potential for agriculture. However, it is necessary to pay attention to the limiting factors of plant growth, such as low soil fertility. Sugarcane was not suitable for planting on slopes >15\% because of the high risk of erosion.
Table 1. Relief/slope distribution lands in the Blitar Regency.

Symbol	Relief/Slope	Slope	Area	
f/A	Flat	<1	43,958	25.08%
N	Nearly flat	1-3	3,492	1.99%
u/B	Undulating/Gentle sloping	3-8	20,923	11.94%
r/C	Rolling/Sloping	8-15	16,513	9.42%
c/D	Hillocky/Moderately steep	15-25	39,563	22.57%
h/E	Hilly/Steep	25-40	48,652	27.76%
G	Extremely steep and abrupt	>60	3,801	2.17%
	Total		175,281	100.00%

Source: BBSDLP, 2017.

The soil types of the Blitar Regency were Litosol, Regosol, Andosol, Latosol, Molisol, Kambisol, Gleisol, and Mediteran [12]. Kambisol dominates 58.59% of the area of the Blitar Regency (table 2). The soil has a moderate to very deep depth, well drainage, medium to fine texture, slightly acidic to slightly alkaline pH, low to very high cation exchange capacity (CEC), and has a high to very high base saturation. The organic C content varies from low to high, and the total N is very low to moderate. Total P₂O₅ was moderate to very high and the total K₂O ranged from a very low to very high. Kambisol has a moderate to very high fertility levels [12].

Table 2. Soil types in Blitar Regency.

Nasional of classification [20]	Soil Taxonomy [21]	Area	
Soil Type	Soil Kind	ha	%
Litosol	Litosol	46	0.03
Regosol	Regosol Eutrik	5,056	2.93
Andosol	Andosol Eutrik	25,832	14.98
Latosol	Latosol Haplik	2,609	1.51
Molisol	Molisol Haplik	1,659	0.96
Kambisol Eutrik	Aquic Eutrudcepts	101,073	58.59
Kambisol Vertik	Vertic Eutrudcepts		
Kambisol Litik	Lithic Eutrudcepts, Lithic Dystrudepts	32,169	18.65
Kambisol Eutrik	Fluventic Eutrudcepts, Typic Eutrudcepts, Vitrandic Eutrudcepts, Andic Eutrudcepts, Arenic Eutrudcepts		
Gleisol	Gleisol Fluvik	4,053	2.35
Mediteran	Typic Hapludalfs	172,497	100.00

Source: BBSDLP, 2017.

Kambisol Eutrik and Gleisol Eutrik dominated the suitable lands. Kambisol and Gleisol were suitable for crops, such as sugarcane, tubers, and maize [22]. Kambisol and Gleisol have medium to fine texture and high base saturation. Still, the slightly alkaline soil, very low CEC, and deficient K nutrient become limiting factors for sugarcane growth. According to Jamil et al. [23], sugarcane can tolerate the acidity...
level and alkalinity of soil. Therefore, sugarcane can grow on the slightly acid to slightly alkali soil at pH 6.5 to 8.5.

3.2. Climate characteristic
Blitar Regency has average annual temperature ranging from 23.9 to 25.2°C and average humidity of 55.5%. The distribution of annual rainfall is presented on figure 1. The annual rainfall ranges from 1,565 to 3,066 mm year$^{-1}$ with eight wet months and four dry months based on Schmidt and Ferguson classification. The highest rainfall occurs in January, and the lowest is in July.

Rainfall affects the growth and production of sugarcane, which then affects the amount of sugar production [24]. Sugarcane can grow well in areas with rainfall ranging from 1,000 to 1,300 mm year$^{-1}$ with at least three dry months [25]. If there is not enough rainfall, then additional irrigation water is needed.

![Figure 1. Distribution of annual rainfall in the Blitar Regency, East Java.](image)

3.3. Land suitability of sugarcane
The result of the land suitability evaluation showed the suitable land in Blitar Regency was 90,133 ha with land suitability classes consist of moderately suitable land (S2) and marginally suitable land (S3) (table 3). The land suitability map of sugarcane is presented on figure 2. The limiting factor for growth and crop production on S2 was lighter than on S3. The S3 was limited by poorly drained and slightly coarse texture, soil depth of 50 to 75 cm, very low CEC (<5 cmol, kg$^{-1}$), pH >8.0 (slightly alkaline), very low total K$_2$O, and slope of 8 to 15%.

Symbol	Suitability Class	Limiting Factor	Area (ha)
S1	Highly Suitable	-	-
S2	Moderately Suitable	rooting condition, nutrient retention, nutrient availability, erosion hazard	2,604
S3	Marginally Suitable	oxygen availability, rooting condition, nutrient retention, nutrient availability, erosion hazard	87,529
	Total		90,133
Improvement efforts can be made to increase the productivity of S3 land. The availability of K nutrients in the soil can be improved with the addition of K fertilizers. K is a nutrient that determines the quality of plant production. The deficiency of K in sugarcane causes low sugar yields [9]. Also, the application of organic matter can improve soil structure and increase the ability of the soil to absorb nutrients and exchange cations.

Steep sloping land can cause the soil to be quickly eroded [26]. Therefore, the application of terracing and contour planting was recommended in slopes of 8 to 15%. The effect of slope steepness and soil erosion could be reduced by terracing, mulching, and contour planting applications [27]. Efforts to improve the drainage system could be made by making drainage channels to reduce excess water and improve soil aeration [11]. According to Jamil et al. [23], a good soil drainage system can prevent erosion so that soil and nutrient losses can be minimized.

![Figure 2. Land suitability map of sugarcane in the Blitar Regency.](image)

3.4. Analysis of land potential and availability

The results of the analysis of SPOT 6’s high-resolution satellite imagery and the forest area status map showed that the land use in the other land uses (APL) covering of 80,822 ha (89.67%), in production forest (HP) covering of 8,644 ha (9.59%), and in the protected forest (HL) was 667 ha (0.74%). Based on the result of overlay between the land suitability map with the land use map, the forest area status map, and the RTRW map of Blitar Regency, the potential and available land for sugarcane expansion were in APL covering 21,876 ha. Indonesian law states that plantation could only be carried out in other land uses (APL) [28].

Based on the results of the assessment of land potential and availability, the moderately suitable (S2) land was 1,271 ha, and marginally suitable land (S3) was 20,605 ha. The largest moderately suitable land (S2) land was in Kesamben Subdistrict, and marginally suitable land (S3) land was in Kademangan Subdistrict. The potential land for sugarcane development was in mixed gardens, shrubs, bare land, and annual crops. Potential land with an area of >2,000 ha was in the southern part of the Blitar Regency, namely in Wonotirto Subdistrict 2,009 ha, Wates Subdistrict 2,231 ha, Panggungrejo Subdistrict 2,841 ha, Binangun Subdistrict 3,316 ha, and Kademangan Subdistrict 3,723 ha (table 4). Figure 3 presents the potential and land availability of sugarcane in the Blitar Regency.
Table 4. Potential and land availability for sugarcane development in the Blitar Regency.

Subdistrict	Mixed Garden	Shrub	Bare Land	Annual Crops	Total														
	S2	S3	Total																
Bakung	6	597	-	2	-	-	-	-	-	-	-	-	-	-	-	-	312	918	
Binangun	7	692	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2,615	3,316	
Doko	27	364	-	-	-	-	-	-	-	-	-	-	-	-	-	-	7	399	
Gandusari	8	31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	39	
Garum	32	144	-	-	-	-	-	-	-	-	-	-	-	-	-	-	32	83	
Kademangan	38	1,121	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15	2,548	3,723
Kanigoro	40	430	-	-	-	-	-	-	-	-	-	-	-	-	-	-	41	30	541
Kesamben	218	313	5	1	-	-	-	-	-	-	-	-	-	-	-	-	2	23	562
Nglegok	8	28	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	37
Panggungrejo	-	343	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2,498	2,841
Ponggok	29	333	-	-	-	-	1	23	-	-	-	-	-	-	-	-	23	392	779
Sanan Kulon	92	133	-	-	-	-	-	-	-	-	-	-	-	-	-	-	20	58	304
Selopuro	24	199	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	224
Selorejo	67	485	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	43	598
Srengat	91	838	-	2	2	112	183	-	-	-	-	-	-	-	-	-	1,229		
Sutojayan	41	141	-	1	22	32	353	-	-	-	-	-	-	-	-	-	590		
Talun	105	307	-	-	-	-	-	-	-	7	41	-	-	-	-	-	1,248	460	
Udanawu	79	123	-	-	-	-	-	-	-	1	6	71	-	-	-	-	1,534	280	
Wates	-	324	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1,907	2,231	
Wlingi	-	163	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	166	
Wonodadi	45	203	-	-	-	-	-	-	-	1	6	82	-	-	-	-	88	337	
Wonotirto	-	343	-	-	-	-	-	-	-	2	-	-	-	-	-	-	1,665	2,009	
Total	959	7,657	5	4	4	30	303	12,915	21,876										

Note: S2 = moderately suitable, S3 = marginally suitable.

Figure 3. Potential and land availability map of sugarcane in the Blitar Regency.
Sugarcane productivity in Blitar Regency within five years (2014 to 2018) had been decreased from 79.5 t ha⁻¹ in 2014 to 63.9 t ha⁻¹ in 2018 [29]. Therefore, expanding the sugarcane planting area is expected to increase sugarcane productivity and sugar production. Besides, increasing production can also be done by cultivating high-yielding sugarcane varieties and improve agronomic management and postharvest technology [28].

4. Conclusions
The dominant soil in Blitar Regency is Kambisol Eutrik, which has a moderate to very deep soil depth, well-drained, and medium to fine texture. The land suitability classes for sugarcane in Blitar Regency are moderately suitable (S2) and marginally suitable (S3). The limiting factors for marginally suitable (S3) land are poorly drained or excessively drained, slightly coarse soil texture, soil depth of 50 to 75 cm, CEC <5 cmol, kg⁻¹, pH >8.0 (slightly alkaline), very low to low K nutrient, and slope of 8 to 15%. The potential and available land for sugarcane expansion is 21,876 ha. The available lands are mixed garden, shrub, bare land, and annual crops. The largest areas are in Kademangan Subdistrict 3,723 ha, Binangun Subdistrict 3,316 ha, Panggungrejo Subdistrict 2,841 ha, and Wonotirto Subdistrict 2,009 ha. Meanwhile, in other subdistricts the land spreading evenly with areas of less than 2,000 ha. The unsuitable land, especially the areas with slopes >15%, sand texture, or shallow soils, are not recommended for planting sugarcane.

Acknowledgments
This study data was funded by the Indonesian Center for Agricultural Land Resources Research and Development (ICALRRD) Budget Implementers (DIPA BBSDLPl Year 2017 and the cooperation fund from PG Rejoso Manis Indo. We are thankful to our survey team who helped in technical and fieldwork: Saefoel Bachri, Muchlas Ubaidillah, and Rima Melina Friccilia. All authors are the main contributor in this paper which contributed in field work, collected and analysis the data, and writing the manuscript.

References
[1] BPS 2019 Statistik Indonesia 2019 (in Bahasa) (Jakarta: Badan Pusat Statistik)
[2] BPS 2018 Statistik Tebu Indonesia 2018 (in Bahasa) (Jakarta: Badan Pusat Statistik)
[3] Databoks 2019 2021 Neraca gula nasional diproyeksi defisit 3 Juta ton https://databoks.katadata.co.id/datapublish/2019/01/14/2021-neraca-gula-nasional-diproyeksi-defisit-35-jutaton Diakses 8 Mei 2020 (in Bahasa)
[4] Kementerian Pertanian 2018 Keputusan Menteri Pertanian Republik Indonesia nomor 472/Kpts/RC.040/6/2018 tentang lokasi kawasan pertanian nasional (in Bahasa) (Jakarta: Kementerian Pertanian)
[5] Neswati R, Lopulisa C, Nathan M and Ramlan A 2016 Land suitability index for estimating sugar cane productivity in the humid tropics of South Sulawesi Indonesia Jurnal Tropical Soils 21(2) 115-122
[6] Almedi A and Soelistyono R 2019 Pengaruh waktu tanam dan ketinggian tempat terhadap pertumbuhan tanaman tebu (Saccharum officinarum L.) (in Bahasa) Jurnal Produksi Tanaman 6 (10) 2476-2481
[7] Torrecilla V C, Marrero A G, Pupo F G and Pérez H G 2010 Effect of altitude on sugarcane flowering synchronisation in Cuba International Society of Sugar Cane Technologists Proceedings of the XXVIIth Congress Proc. Int. Soc. Sugar Cane Technol 27 1-6
[8] Silva W K D M, Medeiros S E L, da Silva L P, Coelho Junior L M and Abrahão R 2020 Sugarcane production and climate trends in Paraiba state (Brazil) Environmental Monitoring and Assessment 192 1-12
[9] Ritung S and Suryani E 2013 Karakteristik tanah dan kesesuainan lahan tanaman tebu di Kecamatan Kunduran Blora Jawa Tengah (in Bahasa) Jurnal Tanah dan Iklim 37(1) 57-68
[10] Johnson R M and Richard Jr E P 2005 Sugarcane yield, sugarcane quality, and soil variability in Louisiana Agronomy Journal 97 760–771
[11] Ritung S, Nugroho K, Mulyani A and Suryani E 2011 *Petunjuk Teknis Evaluasi Lahan untuk Komoditas Pertanian* edisi revisi (in Bahasa) (Bogor: Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian, Badan Penelitian dan Pengembangan Pertanian)

[12] BBSSDLNP 2017 *Atlas Peta Tanah Semidetail Skala 1:50,000 Kabupaten Blitar, Provinsi Jawa Timur* (in Bahasa) (Bogor: Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian, Badan Penelitian dan Pengembangan Pertanian)

[13] BIG 2016a *Peta rupabumi Indonesia digital Badan Informasi Geospasial* (in Bahasa) (Jakarta: Badan Informasi Geospasial)

[14] BIG 2016b *Digital elevation model nasional Badan Informasi Geospasial* (in Bahasa) (Jakarta: Badan Informasi Geospasial)

[15] BIG 2016c *Peta batas administrasi digital Badan Informasi Geospasial* (in Bahasa) (Jakarta: Badan Informasi Geospasial)

[16] BIG 2016d *Peta penutupan lahan digital Badan Informasi Geospasial* (in Bahasa) (Jakarta: Badan Informasi Geospasial)

[17] KLHK 2016 *Peta status kawasan hutan Kementerian Lingkungan Hidup dan Kehutanan (in Bahasa)* (Jakarta: Kementerian Lingkungan Hidup dan Kehutanan)

[18] Pemerintah Kabupaten Blitar 2013 *Peraturan Daerah Kabupaten Blitar Nomor 5 Tahun 2013 tentang Rencana Tata Ruang Wilayah Kabupaten Blitar Tahun 2011 – 2031* *Lembaran Daerah Kabupaten Blitar Blitar Tahun 2013 Nomor 3/E* (in Bahasa) (Blitar: Sekretariat Daerah)

[19] Djaenudin D, Marwan H, Subagyo H and Hidayat A 2003 *Petunjuk Teknis Evaluasi Lahan Untuk Komoditas Pertanian* edisi pertama (in Bahasa) (Bogor: Balai Penelitian Tanah)

[20] Subardja D, Ritung S, And M, Sukarman, Suryani E and Subandiono R E 2016 *Petunjuk Teknis Klasifikasi Tanah Nasional* edisi kedua (in Bahasa) (Bogor: Balai Besar Litbang Sumberdaya Lahan Pertanian, Badan Litbang Pertanian)

[21] Soil Survey Staff 2014 *Keys to Soil Taxonomy* twelfth edition (Washington DC United States: Department of Agriculture National Resources Conservation Services)

[22] Ayolagha G A and Opene G A 2013 *Characterization, classification and land capability evaluation of Ndoni Meander belt soils in Niger delta* *Journal of Agriculture, Forestry and the Social Sciences* 11(1) 65-83

[23] Jamil M, Ahmed R and Sajjad H 2017 *Land suitability assessment for sugarcane cultivation in Bijnor district, India using geographic information system and fuzzy analytical hierarchy process* *GeoJournal* 83(3) 595-611

[24] Inman-Bamber N G 2004 *Sugarcane water stress criteria for irrigation and drying off* *Field Crops Research*. 89(1) 107-122

[25] Pusat Penelitian dan Pengembangan Perkebunan 2012 *Budidaya dan Pasca Panen Tebu* (in Bahasa) (Jakarta: IAARD Press)

[26] Dumipto P K, Rayes M L and Agustina C 2019 *Evaluasi kesesuaian lahan untuk tanaman tebu pada lahan karst formasi wonosari (TMWL)* Kecamatan Gedangan Kabupaten Malang (in Bahasa) *Jurnal Tanah dan Sumberdaya Lahan* 6 (2) 1361-1374

[27] Torimtubun D, Gaspersz E J, Osok R M, and Talakua S M 2018 *Evaluasi kesesuaian lahan untuk tipe penggunaan lahan tanaman pangan lahan kering di Daerah Alian Sungai Wae Batu Merah Kota Ambon Provinsi Maluku* (in Bahasa) *Jurnal Budidaya Pertanian* 14 (2) 81-88

[28] Sulaiman A A, Sulaeman Y, Mustikasari N, Nursyamsi D and Syakir A M 2019 *Increasing sugar production in Indonesia through land suitability analysis and sugar mill restructuring* *land* 8(4) 61

[29] BPS 2019 *Kabupaten Blitar dalam Angka 2019* (in Bahasa) (Blitar: Badan Pusat Statistik)