SECONDARY COMPOUNDS RELEASED BY RHIZOSPHERIC BACTERIA EXHIBIT FUNGISTIC ACTIVITY AGAINST PHYTOPATHOGENIC FUNGUS.

Sh. Anwar* F. Mahmood Researcher N. A.Tahir** G. F. Salih**
Assist. Lecturer Prof. Assist. Prof.

*Biological Dept./ College of Sciences / University of Sulaimani
**Horticulture Dept./ College of Agricultural Engineering Sciences/ University of Sulaimani

corresponds author: gaza.salih@univsul.edu.iq

ABSTRACT
The aim of conducted research was to devaluate the inhibition effect of metabolites secreted by some Rhizospheric bacteria on the growth of two pathogenic fungi: Rhizoctonia solani and Fusarium solani, 330 bacteria isolates were obtained from the rhizosphere of the wheat, tomato, cowpea and Mt. Atlas mastic tree grown in the Sulaimani. Thirty-five isolates were screened for suppression of phytopathogenic fungus. Results showed that most of these rhizospheric bacteria were have fungistic potential in different degrees. The highest inhibition of the linear growth of fungi was noted for F. solani and R. solani, by Bacillus cereus LXJ73 (90.41%), Bacillus atropheaus SM-1 (75%) respectively. Six bacterial isolates were selected which have potential effect on the growth of the two studied fungi, five isolates belonging to the Bacillus genus and one isolate belonging to the genus Klebsiella, these isolates were molecularly confirmed by 16SrRNA, and their activity for inhibiting fungal growth were studied. The extracted metabolities analysed by Gas chromatography-Mass spectrometry (GC-MS), showing that extracts contain different volatile organic compounds as Pyrrol[1,2-a]pyrazine-1,4-dione, hexahydro-, 2-Pentanone, 4-hydroxy-4-methyl-, Isososteviol methyl ester,2-methyl-, Butanoic acid, 3-methyl-, 3-Pyrrolidin-2-yl-propionic acid, 9-Octadecenamide, (Z), Hexadecane, Tridecane, 2,5-Piperazinedione, 3,6-bis(2-methyl propyl)-, 1,2-Benzenedicarboxylic acid, diisooctoyl ester, Acetic acid, Dodecane, beta.-D-Glucopyranose, 1,6-anhydro-, Lauric acid, 2-(hexadecyloxy)-3-(octadecyloxy)propyl ester and cis-Vaccenic acid. The presence of these compounds indicate that all studied Bacillus species and Klebsiella michiganensis M1-3-11having antagonistic activity and they can be used for development of biocontrol agents to reducing the phytopathogenic problems and decreasing mycotoxine in contaminated crops.

Keywords: biocontrol, rhizospheric bacteria, fungistic activity, volatile organic compounds.

Received:16/2/2021, Accepted:22/5/2021
INTRODUCTION

Disease control methods include the elimination of infected plants with subsequent chopping or use of systemic pesticides as part of integrated pest control strategies. However, given the need to consider restrictions on using agrochemicals for plant export and consumption, further research should focus on environmentally friendly alternatives for plant disease management. One of these alternatives is biological control, in which naturally occurring beneficial bacteria with antagonistic activity are used against the causes of disease. Bacterial or fungal strains which isolated from the endosphere or rhizosphere usually having the biocontrol agents concerning with plant diseases (18). Various bioactive compounds are produce by rhizobacteria as a particular interest, and they play an important function in supporting plant growth, productivity, and phytopathogens fungi protection. (4) Reports of rhizobacteria with antagonistic activity against fungal pathogens are widespread in the literature and Bacillus spp. and Pseudomonas spp. in especial are commonly cited among the most effective biocontrol agents. Multiple mechanisms may be implicated in the antifungal activity of rhizobacteria. Bacteria can outgrow fungi by competing for space or resources, or actively inhibit fungal development by emitting antibiotics in diffusible components (2). It has been shown the bacterial species secrete cyclo lipopeptides with antimicrobial effects, principally from the families of iturine, fengycin, or surfactant. (15) The antifungal effects of iturine and fengycin from Bacillus subtilis/B. amyloliquefy ancient was studies against Fusarium oxysporum and F. solani (6,17). The genus Bacillus has been shown to emit compounds, including aliphatic ketones that can impede the growth of several species of fusarium (8). The aim of the current study were (1) to isolate and identify the rhizospheric organisms from the rhizosphere of four plants species, wheat, cowpea, tomato, and Mt. Atlas mastic tree; (2) to assess the inhibitory impact of rhizospheric microorganisms from chose plants against the two chosen phaytopathoginic fungus; and (3) to analyze the antifungal characteristics of their organic extracts, and to expand the results for environmentally friendly biocontrol agents.

MATERIALS AND METHODS

Soil sampling: During the planting period between April 2017 and July 2018, soil samples with plant roots were collected from field trials of four different species: tomato (Solanum lycopersicum L.), cowpea (Vigna unguiculata L.), bread wheat (Triticum sativum L.), and Mt. Atlas mastic tree (Pistacia atlantica). The samples of the soil taken in triplicate in 20 cm depth and stored at 4 °C.

Bacterial isolation and growth condition

The adhering soil of the roots zone in 3-6 mm thick were taken by sterile forceps from each studied plants. From this, 1gm of the soil was taken into the test tube with 9 ml of sterile distilled water then shaken in a rotary shaker at 150 rpm for 30 minutes before dil ution (11). To determine the colony-forming units (CFU), bacterial cultures were double diluted in a 96-well microplate by transferring 20 µl of bacterial culture into 180 µl Phosphate buffered saline with (dilutions 10⁻¹,10⁻²,10⁻³ and 10⁻⁴) (16). Then, from each dilution, 20 µl were placed onto the surface of LB agar. Plates were inverted and incubated at 30°C for 24h. For calculate the CFU per milliliter, the average number of bacterial colonies in 20 µl was multiplied by 50, and the dilution factor using the following formula:

\[\text{CFU mL}^{-1} = \text{Average number of colonies for a dilution} \times 50 \times \text{dilution factor} \]

For long-term storage, the bacterial isolates were grown in nutrient broth medium until they reached 10⁸ and the cells were agitated well then frozen at -80°C in 30% glycerol and 70% nutrient broth.

Microscopic and biochemical identification of the bacterial isolates

Microscopic examination was performed by preparing a thin smear, then gram stained with standard gram staining procedures as described by(22) and examined under oil lens(x100 power). Soil rhizosphere bacteria cells appeared in different sizes, shapes, and colors. The pink to red colors are gram-negative and pale purple to dark purple colors are gram-positive. Using VITEK® 2 Systems (bioMérieux, USA) for biochemical identification as the manufacturer's instruct-
tions, the stock culture isolates were sub cultured and the fresh Gram-negative isolate was subcultured on MacConkey agar plates and the Gram-positive isolates recultured on nutrient agar plates for 18 to 24 h at 30°C for activation. A bacterial suspension prepared by mixing a small bacterial colony with 3 ml of a 0.45% sodium chloride solution, and it was adjusted in a range between 0.5-0.63 for Gram-negative and 1.8-2.20 for Gram-positive spore-forming bacilli according to McFarland standard. The prepared test cards and specimen test tubes Placed in the cassette, then within 10 minutes the cassette transferred to the cassette loading station in the Vitek 2 system (23).

Molecular identification of selected isolates and Sequencing
The evaluating 16S rRNA sequences was performed for molecular Identification of bacterial strain by purifying the DNA genome of the bacterial strain through using the DNA purification kit for the bacterial genomic (Geneaid, Taiwan). The16SrRNA amplified by the PCR reaction, using forward BF27 (5'-AGAGTTTGATCCTGG CTCAG-3') and U1492R(5'-GGTTACCTT GTTACGACTT-3'). The PCR condition was performed in 3 stages , 1st stage initial denaturation at 94 °C for 5 min ; 2nd stage in 30 cycles denaturation at 94 °C for 1min, annealing at 52 °C for 1min and extension at 72 °C for 2 min; 3rd stage final extension at 72 °C for 5 min. Then using Easy pure®Quick Gel Extraction kit (Beijing, China) for purification and sequenced (Sangar sequencing, Macrogen South Korea). Then blasted with sequences related species from the NCBI GenBank database.

Antifungal activities of the Isolates
The dual culture assay performed for the antifungal activities of 35 isolates against two phytopathogenic fungi (R. solani and F. solani). Using potato dextrose agar (PDA) medium, for carrying out this a 6 mm plug from the edge of a old culture (5 day) of the pathogenic fungi inoculated at the center of PDA medium and then the fungus growth was stressed by inoculating the isolates in a long streak of 2 cm on the medium surface and 3 cm away from the fungi. Inhibition growth of the fungal was measured after incubation for 7 days at temperature 28-30°C and compared with that of the control (i.e., without the bacterial isolate). Isolates that showed significant antifungal activity against the phytopathogens in this tests were repeated in three replicates, thus, the inhibition rate was measured in percentage according to the formula of (9).

Isolate cultivation and crude extraction of bioactive compounds
Based on their antagonistic activities the most active isolates against the two selected fungi were cultivated for crude extraction of their active compounds. The selected isolates were cultured on a Luria Bertani plate (LB). The cultured plates were incubated at 30°C for 24hr (with 3 replicate). Each actively growing pure culture of the isolates was used to inoculate 100 ml of Luria Bertani broth (1). The extraction were performed by using the method (1) with some modifications, 10% of the cultured in LB broth were taken in to be used as a seed culture for fermentation medium in three separate 150 ml of (yeast extract, glucose, NaCl, oatmeal, CaCO₃ , at pH 7.0). Then the cultures were incubated at 30 °C for 10 days inshaking incubators of 180 rpm. Then the medium was centrifuged for 30 min at 6000 × g to separate the bacterial cells. The supernatant was mixed with unequal volumes of n-hexane as an organic solvent, then shacked for 30 min. and separated in a separating funnel. The solvent was removed by a rotary evaporator.

Analysing of crude cell extract by GC-MS
Using GC-MS- QP2010 Ultra, (Shimadzu Co., Japan) for Identification and analysing of the bacterial metabolites. the helium flowed at 1 ml/min through an instrument supported with an Rtx-5ms column (30 m × 0.25 mm ID, 0.25 μm film thickness). The diluted sample was heated at 60°C for 30 min and 1 ml of the headspace was injected using a gas syringe (21). the temperature had been increased at 6°C per min, then the column was saved at 40°C for 2 min, then at 250°C for 13 min. The injection port was at 200°C and interface at 250°C. The chromatogram and mass spectra were recorded and analyzed. The m/z peaks representing mass to charge ratio charac teristic of the antimicrobial fractions were compared with those in the mass spectrum of NIST (National Institute for Standards and
Technology) library of the corresponding organic compound.

Statistical analyses
All data were statistically analyzed by using one-way ANOVA with 0.05 probability. Applying the Duncan test for comparing the means of the values among the treatments with one another.

RESULTS AND DISCUSSION

Characterization of rhizosphere bacteria

Plant growth promoting rhizobacteria (PGPR) were isolated from the rhizosphere of tomato (*Solanum lycopersicum* L.), cowpea (*Vigna unguiculata* L.), bread wheat (*Triticum sativum* L.), and Mt. Atlas mastic tree (*Pistacia atlantica*). Pure colonies were identified by morphological characteristics and biochemical methods. One hundred fourteen, 89, and 127 isolates are Gram-positive, Gram-negative, and bacilli spore, respectively, as shown in Figure (1).

![Figure 1. Frequency of bacterial isolates from the rhizosphere of selected plants represented by percent for each family](image)

Bacterial isolates with antifungal activity were confirmed their identification molecularly by sequencing their 16S rRNA gene for more confirmation. The partial sequences were ranged between 1430-1545bp, with a similarity of 98%-100% of the blasted sequence.

Antagonistic activity against the studied pathogenic fungi

The inhibition of pathogen mycelial growth and suppression of spore germination considered as a results of antagonistic activities of the rhizosphere bacteria against phytopathogens fungi. These 330 bacterial isolates are distinguished into 17 groups according to its response to the Gram-stain, and microscopic characteristics like size and cell shape of the bacterial cells were also done. 35 isolates from the total bacterial isolates were selected randomly that obtained from four plant species, they were checked for their antagonistic activity by growing each isolates with *R. solani*, and *F. solani* pathogens in one plates. The results of inhibition percentages of fungal growth by the 35 bacterial isolates are appeared in (Table-1). A significant difference in the growth inhibition was observed among the isolates. The radial growth of mycelial of the *R. solani* and *F. solani* pathogens were inhibited by all studied isolates, with inhibition percentages ranges from 20.83 to 90.42% and 41.25 to 75.00% against *R. solani*, and *F. solani*, respectively. Bacterial isolates with the local number 9, 20, and 6 from 35 isolates showed the value of growth suppression between 10-50, 50-80, and 80-100%, respectively, in *R. solani*. Whereas, 14, 13 and 8 isolates of 35 bacterial isolates exhibited a range of inhibition of growth from 30 to 50, 50 to 60, and 60 to 80% against *F. solani*. The highest inhibition of growth (90.42%) against *R. solani* was showed by *Bacillus cereus* LXJ73 followed by *Bacillus licheniforms* B27 (86.66%) and *Bacillus licheniformis* 1 (86.66%), while the maximum value of the growth inhibition (75%) in *F. solani* was displayed by *Bacillus atrophaeus* SM-1 followed by *Bacillus licheniformis* KUBOT-AB1 (66.87%) and *Klebsiella michiganensis* M1-3-11 (65.41%).
pesticides have helped farmers reduce crop losses caused by microbial phytopathogens, but they have also been linked to deforestation, the evolution of resistancy of the pathogens, and threats to validity of the human. Several studies have suggested the use of useful rhizospher bacteria as a biological control agents to solve the problems caused by phytopathogenic fungi and to reduce the harmful belongings of pesticide or a chemical fertilizer (18,6,2). (11) also showed growth inhibition of R. solani by B. licheniforms and B. pumillus. recently discovered that Bacillus VOCs inhibited many fungal growths in different degrees. In another investigation by(12) found that the severity of the pathogens was significantly reduced. Furthermore, our findings are came in agreement with the reporting of (14), who found B. Pumilus SMH101 has a strong antifungal spectrum against F. solani, R. solani, and C. albicans.

Extract analysis by GC-MS
The GC–MS analysis indicated that out of the six strains found, K. michiganensis M1-3-11, B. licheniforms KUBOTAB1, B. licheniforms B27, B. cereus LXJ73, B. sonorensis KW50P, and B. atrouphes SM1, B. atrouphes SM1 had the most metabolites with 27, B. licheniforms B27 had the fewest metabolites, with just five, while isolates K. michiganensis M1-3-11, B. licheniforms KUBOTAB1, B. cereus LXJ73, and B. sonorensis KW50P had 20, 14, 24, and 26 metabolites, respectively. some organic compounds were repeteadly detected by the four isolates, Klebsiella michiganensis M1-3-11, B. licheniforms B27, B. sonorensis KW50P and B. atrouphes SM1 is pyrrolo [1,2-a] pyrazine-1,4-dione, hexahydro-1,4-dione. Others compound repeted to B. licheniforms KUBOTAB1, B. cereus LXJ73 undecane. Those common to K. michiganensis M1-3-11, B. licheniforms KUBOTAB1is Tridecane. The predominated components in different isolates extracts were: 2-Pentanone, 4-hydr oxy-4-methyl- and Pyrrolo[1,2 alpyra zine-1,4-dione, hexahydro- in K. michiganensis M1-3-11, undecane, Bis-(3,5,5-trimethyl hexyl) phthalate, Butanoic acid, 3-methyl- andPyrrolo[1,2-a]pyrazine-1,4-dione, hexa hydro- in B. licheniforms KUBOTAB1, 3-Octanone, 8-(6-tricosyl-2-methyl,1,3-dioxan -4-yl)-4-methyl-[4R-[4.alpha. (R®),6.beta.]] and Lauric acid, 2-(hexadecyloxy)-3-(octadecyloxy)propylester in B. licheniforms B27, pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro- and 9-Octadecenamide, (Z)- in B. cereus LXJ73, Butanoic acid, 3-methyl- and pyrrolo[1,2-a]pyrazine-1,4-dione, hexa hydro- in B. sonorensis KW50P, and Butanoic acid, 3-methyl-, Butanoic acid, 2-methyl- and pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- in B. atrouphes SM1. A variety of compounds have several biological pro perties including cytotoxicity, antioxidant, anti inflammatory, antimicro bial, and anti viral activities were observed (25). Isolated 3- Pyrrolidin-2-yl-propionic acid as a bioactive organic compound from Klebsiella michiganensis M1-3-11, B. sonorensis KW50P, and B. atrouphes SM1 showed its antifungal activity against aflatoxin producing Aspergillus by (5). B. cereus LXJ73 formed hexadecane, which had antimicrobial, antifungal, and antioxi dant properties (26). B. licheniforms B27 and B. cereus LXJ73 produced the saturated fatty acid lauric acid, which repoted that suppressing the growth of R. solani (24). Dodecane, which was found in B. cereus LXJ73, had antifungal properties (19).Penta decane was detected in B. cereus LXJ73 displayed for F. oxysporum growth according to (27). In a study by (12) showed significant antimicrobial activity of B. licheniforms.
Table 1. The inhibition zone (%) caused by PGPR against some phytopathogens fungus

Name	Inhibition of Growth %	Rhizoctonia solani	Fusarium solani
Bacillus cereus LX73	90.417 a	62.500 abcd	
Bacillus licheniformis B27	86.667 ab	61.250 abded	
Bacillus licheniformis1	86.667 ab	54.167 bcdef	
Bacillus atrophaeus SM-1	83.333 ab	75.000 a	
Bacillus sonorenseis Kw50p	81.250 ab	57.500 abdef	
Bacillus zhangzhouensis Qi_110	80.000 ab	65.000 abc	
Klebsiella michiganensis M1-3-11	79.167 ab	65.417 abc	
Bacillus safensis JS5	77.083 ab	47.917 bedefgh	
Bacillus pumilus 3-19	75.000 abc	56.250 abdefd	
Bacillus licheniforms KUBOTAB1	75.000 abc	66.875 ab	
Paenibacillus fuchanolyticus	65.417 abdefg	40.417 fgh	
Pseudomonas putida	64.583 abdefg	46.667 dcfgh	
Klebsiella pneumonia	60.417 abdefgh	53.333 bedf	
Bacillus coagulans	60.417 abdefgh	49.167 bedfg	
Bacillus megatherium	60.417 abdefgh	40.147 abe	
Pseudomonas fluorescens	60.417 abdefgh	58.333 babedef	
Rhizobium radiobacter	56.250 abdefg	33.750 gb	
Burkholderia giadioli	52.083 abdefg	47.917 bedefgh	
Coronobacter sakazakii /	47.917 bedefgh	45.417 defgh	
Geobacillus toebii	36.250 cdefgh	44.167 dfg	
Brevibacillus laterosporus	34.167 dfg	31.250 h	
Moganella morganii	30.417 efgh	47.917 bedefgh	
Alloioococcus otitis	30.000 fgh	34.167 gh	
Pantoea spp	29.167 fgh	57.292 abefgh	
Bacillus gelatinii	27.917 gh	47.917 bedefgh	
Virgibacillus pantothenticus	27.083 gh	56.667 abedefg	
Streptococcus suis L	20.833 h	42.500 efgh	
Pr > F (Strains)	< 0.0001	< 0.0001	
Significant	Yes	Yes	

Table 2. Characterization of VOCs emitted by *Klebsiella michiganensis* M1-3-11, analyzed by –GC-MS

No. peak	Compound	RT(min)	RA(%)
1	2-Pentanone, 4-hydroxy-4-methyl-	3.187	37.6
2	Oxime-, methoxy-phenyl_	3.582	0.33
3	2-[4-Chloro-trans-styril]-6-chloro-5-[4-chlorophenyl]-4-[3,5	4.148	0.41
4	bis[pyrrolidinomethy]-4-hydroxyanilin]		
5	Rhodium, di.-mu.-chlorobis[1,2,5,6,-eta.-]-1,5-cyclooctadiene]dih-	4.262	0.42
6	N-Benzyl-2-[(benzyl-phenyl-carbamoyl)-methoxy]-1,2-diphenyl-ethoxy]-N-phenyl-acetamide	4.61	0.44
7	Phenylethyl Alcohol	5.249	0.83
8	1,4,3,6-Dianhydro-alpha.-d-glucopyranose	6.026	1.01
9	2,4,4-Trimethylbut-2-enolide	6.557	0.78
10	Tridecane	7.209	0.56
11	Tetradecane	8.055	1.32
12	1-Oxaspiro[4,5]decane 4-carbonitrile, 2-oxo-	8.497	3.83
13	3-Pyrrolidin-2-y1-propionic acid	9.351	0.42
14	3-Pyrrolidin-2-y1-propionic acid	9.56	1.79
15	Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydroro	9.793	1.21
16	2-(E)-Heptenoic acid, (4S)-4-[(R)-alanyl]amino]-6-methyl-	10.011	33.19
17	Piperazine, 1,4-bis(1-oxoacetadecyl)-	12.175	3.14
18	2,5-Piperazinedione, 3,6-bis(2-methylpropyl)-	12.275	0.95
19	Ketone, vinyl-pyrrolinidyl-	14.786	7.3
20	Ergotaman-3',6',18-trione, 9,10-dihydro-12'-hydroxy-2'-methyl-5'- (phenylmethyl)-, (5',alpha,10.alpha)-	15.076	2.37
		17.645	2.09
Table 3. Characterization of VOCs emitted by *B. licheniforms* KUBOTAB1, analyzed by –GC-MS

No. peak	Compound	RT(min)	RA(%)
1	Butanoic acid, 3-methyl-	3.052	7.73
2	1-Pentacontanol	3.293	1.45
3	1-Pentanol, 4-methyl-2-propyl-	3.593	2.95
4	1-Decanol, 2-ethyl-	3.836	4.72
5	.beta.-Thionaphthol maltung heptaacetate	3.925	1.7
6	Nonane, 2-methyl-	4.175	10.17
7	Heptadecane, 2,6-dimethyl-	4.72	2.25
8	Undecane	5.01	11.09
9	1,4:3,6-Dianhydro-alpha.-d-glucopyranose	6.025	3.66
10	Naphthalene, decahydro-2,6-dimethyl-	6.071	4.09
11	Naphthalene, decahydro-1,5-dimethyl-	6.112	4.67
12	Tridecane	7.209	6.91
13	Bis-(3,5,5-trimethylhexyl) phthalate	8.493	8.31
14	Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-	10.013	30.29

Table 4. Characterization of VOCs emitted by *B. licheniforms* B27, analyzed by –GC-MS

No. peak	Compound	RT(min)	RA(%)	
1	Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-	10.01	3.1	
2	3-Octanone, 8-(6-tricosyl-2-methyl-1,3-dioxan-4-yl)-4-methyl-	[4R-[4 alpha.-R],6 beta.]]-	25.094	8.15
3	Cholestanol[3,2-c]isocoumarin-1'-(2'H)-one, 3',4'-dihydro-6',7'-dimethoxy-	25.85	2.22	
4	3-Octanone, 8-(6-tricosyl-2-methyl-1,3-dioxan-4-yl)-4-methyl-	[4R-[4 alpha.-R],6 beta.]]-	26.981	13.56
5	Lauric acid, 2-(hexadecyloxy)-3-(octadecyloxy)propyl ester	27.935	72.96	

Table 5. Characterization of VOCs emitted by *B. cereus* LXJ73, analyzed by –GC-MS

No. peak	Compound	RT(min)	RA(%)
1	Butanoic acid, 2-methyl-	3.159	6.3
2	Octane, 4-ethyl-	3.595	1.29
3	3-Carbethoxy-6-n-butyl-7-octadecylmercapto-4-quinoline	4.363	3.64
4	Undecane	5.01	3.96
5	Bicyclo[3.1.1]hept-3-en-2-ol, 4,6,6-trimethyl-	5.442	9.63
6	Undecane	5.791	6.93
7	1,4:3,6-Dianhydro-alpha.-d-glucopyranose	6.019	2.18
8	Bicyclo[2.2.2]octane, 1,2,3,6-tetramethyl-	6.075	2.15
9	Naphthalene, decahydro-1,5-dimethyl-	6.111	2.37
10	Pentadecane	7.208	2.59
11	.beta.-D-Glucopyranose, 1,6-anhydro-	8.049	2.81
12	Hexadecane	8.497	2.83
13	1,3,5-Cycloheptatriene, 2,5-dihexyl-7,7-dimethyl-	8.769	1.93
14	1,3,5-Cycloheptatriene, 2,4-dihexyl-7,7-dimethyl-	8.93	2.16
15	Dodecane, 1',thiobis-	9.827	3.14
16	Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-	10.008	21
17	Phthalic acid, butyl undecyl ester	11.785	4.01
18	N-Isosetylidene-2-butylamine	15.087	2.72
19	9-Octadecenamide, (Z)-	17.294	11.24
20	Hexanedioic acid, mono(2-ethylhexyl)ester	17.657	1.72
21	Isosteviol methyl ester	18.679	0.32
22	Methyl steviol	18.877	0.93
23	Lauric acid, 2-methylbutyl ester	19.037	1.14
24	1,2-Benzenedicarboxylic acid, diisooctyl ester	19.703	3.01
Table 6. Characterization of VOCs emitted by *B. sonorensis* KW50P, analyzed by –GC-MS:

No. Peak	Compound	RT(min)	RA(%)
1	Butanoic acid, 3-methyl	3.197	28.36
2	Butanoic acid, 2-methyl	3.248	8.03
3	Evonine	3.483	0.51
4	Oxime-, methoxy-phenyl-	3.525	0.44
5	1,4:3,6-Dianhydro-alpha-d-glucopyranose	6.023	1.8
6	Naphthalene, decahydro-1,5-dimethyl	6.17	1.03
7	Bicyclo[2.2.2]oct-5-ene-2-carbonitrile, 2-chloro-	7.568	0.73
8	Phenol, 2,4-bis(1,1-dimethylthyl)-	7.947	0.59
9	.beta.-D-Glucopyranose, 1,6-anhydro-	8.042	3.67
10	Benzaldehyde, 4-(dimethylamino)-	8.292	1.62
11	d-Arabinohexonic acid, 2-deoxy-3,4,5-tris-O-(trimethylsilyl)-, trimethylsilyl ester, bis(trimethylsilyl)	8.533	1.1
12	o-Acetyl-N,N'-carbonyl-tetrahydro-solasodine	9.348	0.67
13	Docriacontyl trifluoroacetate	9.566	1.97
14	3-Pyrroldin-2-yl-propionic acid	9.796	2.24
15	Ppyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-	10.005	24.68
16	Pentadecanoic acid	10.378	1.2
17	6-Oxabicyclo[3.1.0]hexan-3-one, 2,2,4,4-tetramethyl-	10.447	1.36
18	n-Hexadecanoic acid	11.862	2.36
19	Nitro-1-arginine	12.192	2.82
20	2,5-Piperazinedione, 3,6-bis(2-methylpropyl)-	14.792	2.21
21	2-Decene, 3-methyl-, (Z)-	15.075	5.61
22	9-Octadecenamide, (Z)-	17.294	1.81
23	5-Ethyl-1-nonene	17.656	1.11
24	Iseosteviol methyl ester	18.683	1.59
25	Methyl steviol	18.875	0.62
26	1,2-Benzenedicarboxylic acid, diisooctyl ester	19.705	1.86

Table 7. Characterization of VOCs emitted by *B. atrouphes* SM1, analyzed by –GC-MS

No. peak	Compound	RT(min)	RA(%)
1	Butanoic acid, 3-methyl	3.225	18.01
2	Butanoic acid, 2-methyl	3.309	10.76
3	3-Pyrindinemethamine	7.566	0.17
4	3,6-Dimethylpyrazine-2,5-dione	8.237	1.41
5	Diethyl Phthalate	8.469	0.84
6	(1,3)Diazepan-2,4-dione	8.558	1.65
7	2,5-Piperazinedione, 3,6-bis(2-methylpropyl)-	8.897	2.96
8	5-Methoxypyrroldin-2-one	9.358	4.1
9	3-Pyrroldin-2-yl-propionic acid	9.569	3.47
10	3-Pyrroldin-2-yl-propionic acid	9.808	1.42
11	Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-	10.08	29.21
12	Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)-	11.645	1.3
13	N(1)-(3-Methyl-1,2,4-oxadiazol-5-y1)-pyrrolidine carboxamidine	11.791	2.35
14	Nitro-1-arginine	12.223	2.96
15	Hexahydro-2(1H)azocinone	13.004	1.98
16	9-Octadecenamide, (Z)-	13.398	0.91
17	Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(phenylmethyl)-	14.062	1.22
18	2,5-Piperazinedione, 3,6-bis(2-methylpropyl)-	14.821	1.89
19	Hexanal, 3-(hydroxymethyl)-4-methyl	15.103	2.06
20	1,9-Dioxacyclohexadeca-4,13-diene-2-10-dione, 7,8,15,16-tetrahydro-	15.667	0.62
21	Ergotaman-3',6',18-trione, 9,10-dihydro-12'-hydroxy-2'-methyl-5'	17.024	0.45
22	7(8H)-Pteridinone, 6-methyl	17.142	3.4
23	9-Octadecenamide, (Z)-	17.1301	0.88
24	Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(phenylmethyl)-	17.66	0.58
25	7(8H)-Pteridinone, 6-methyl	19.676	2.05
26	Lupeol	26.494	0.65
27	Lup-20(29)-en-3-ol, acetate, (3.beta.)-	28.651	2.71

Conclusion

The determination of different biological active compounds qualitatively from crude extracts of 6 selected rhizospheric bacteria by using GC-MS indicated different chemical compounds with high molecular weight and low molecular weight in varying amounts revealed in each of the bacterial extracts. 6 identical VOCs are detected in both *Bacillus* and *Klebsiella*. These active compounds are important biologically as antibiotic, antifungal compounds by inducing systematic resistance of plants important. The inhibition of pathogen mycelial growth and suppression of spore production.
germination conceded as a result of antagonistic activities of the rhizosphere bacteria against phytopathogens fungi. These results are a best example of the bioc...er bacteria.

REFERENCES

1. Ajilogba, Caroline F., and O. Olubukola Babalola. 2019. GC–MS Analysis of volatile organic compounds from bam–bara groundnut rhizobacteria and their antibacterial properties. World Journal of Microbiology and Biotechnology. 35(6):1–19. https://doi.org/10.1007/s11274-019-26607-1
2. Anelise Beneduzi, Adriana Ambrosini, and Luciane M.P. Passaglia. 2012. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. https://doi.org/10.1515/jph.2012.195. https://doi.org/10.1111/jph.12501
3. Aydi Ben Abdallah, Rania, Hayfa Jabnoun-Khiareddin, Ahlem Nefzi, Sonia Mokni-Tilili, and Mejda Daami-Remadi. 2016. Biocontrol of fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Sola num elaeagnifolium Stems. Journal of Phytopathology. 64(10). https://doi.org/10.1111/j.ph.2012.00060020
4. Backer, Rachel, J. Stefan Rokem, Gayathri Ilangumaran, John Lamont, Dana Praslickova, Emily Ricci, Sowmyalakshmi Subramanian, and Donald L. Smith. 2018. Plant growth-promoting rhizobacteria: context, mechanisms of action, androoad map to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Science. Frontiers Media S.A. https://doi.org/10.3389/fpls.2018.01473.
5. Bharose, A.A., and H. P. Gajera. 2018. Antifungal activity and metabolites study of Bacillus strain against aflatoxins producing Aspergillus. Journal of Applied Microbiology and Biochemistry. 02(02):1–8. https://doi.org/10.21767/2577-1412.1000241
6. Cavoy, Hélène, Delphine Debois, Laurent Franzil, Edwin De Pauw, Philippe Thonart, and Marc Ongena. 2015. Lipo peptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Microbial Biotechnology. 8(2): 281–95. https://doi.org/10.1111 /1751-7915.12238.
7. Egamberdieva, Difuza, Stephan Wirth, Undine Behrendt, Parvaiz Ahmad, and Gabriele Berg. 2017. Antimicrobial activity of medicinal Plants Correlates with the proportion of antagonistic endophytes. Frontiers in Microbiology. 8(February). https://doi.org/10.3389/fmicb.2017.00199.
8. Guevara-Avendaño, Edgar, Alix Adrina Bejarano-Bolívar, Ana Luisa Kiel-Martínez, Mónica Ramírez-Vázquez, Alfonso Méndez-Bravo, Eneas Aguirre von Wobeser, Diana Sánchez-Rangel, José A. Guerrero-Ancllo, Akif Eskalen, and Frédérique Reverchon. 2019. Avocado rhizobacteria emit volatile organic compounds with antifungal activity against Fusarium solani, Fusarium Sp. associated with kuroshio shot hole borer, and colletotrichum gloeosporioides. Microbiological Research. 219:74–83. https://doi.org/10.1016/j.micres.2018.11.009
9. Guevara-Avendaño, Edgar, Joseph D. Carrillo, Cedric Ndinga-Muniania, Kevin Moreno, Alfonso Méndez-Bravo, José A. Guerrero-Ancllo, Akif Eskalen, and Frédérique Reverchon. 2018. Antifungal activity of avocado rhizo bacteria against Fusarium euwila liceaeae and graphium Spp., associated with euwallacea Spp. N. fornicatus, and phytophthora cinna moom. Antonievan Leeuwenhoek, International Journal of General and Molecular Microbiology. 111(4):563–72. https://doi.org/10.1007/s10482-017-0977-5
10. He, Chao Nan, Wan Qiong Ye, Ying Ying Zhu, and Wen Wen Zhou. 2020. Antifungal activity of volatile organic compounds produced by Bacillus methyl otrophicus and Bacillus thuringiensis against five common spoilage fungi on Loquats. Molecules. 25(15). https://doi.org/10.3390/molecules25153360
11. Hynes, Russell K., Grant C.Y. Leung, Danielle L.M. Hirkala, and Louise M. Nelson. 2008. Isolation, selection, and characterization of beneficial rhizobacteria from pea, lentil, and chickpea grown in western canada. Canadian Journal of Microbiology. 54(4):248–58. https://doi.org/10.1139/W08-008
12. Jebur, H.A.and Auda, J.M. 2020. Evaluation of antimicrobial activity of partialpurified bacteriocin from local isolate of Bacillus subtilis.
licheniforms HI2020 MT192715.1. Iraqi Journal of Agricultural Sciences – 2022:53(5):1174-1183

13. Liu, Xiang, Shengman Lyu, Shurong Zhou, and J.A. Corey Bradshaw. 2016. Warming and fertilization alter the dilution effect of host diversity on disease severity. Ecology. https://doi.org/10.1890/15-1784.1

14. Manal, M. El-Naggar, A. H. Ibrahim Hassan, G. Battah Mohamed, Kh Abd Al-Gawad Faghr, and S. Ibrahim Mohamed. 2014. Antifungal agent production from a new marine Bacillus pumilus SMH101. African Journal of Microbiology Research 8 (3): 286–296. https://doi.org/10.5897/ajmr2013.6379

15. Meena, K. R., and S. S. Kanwar. 2015. Lipopeptides as the antifungal and anti bacterial agents: applications in food safety and therapeutics. BioMed research international, 473050. https://doi.org/10.1155/2015/473050

16. Miles, A A, S S Misra, and J 0 Irwin. 2021. The estimation of the bactericidal power of the blood with a note. https://doi.org/10.1017/S002217240001158X

17. Mnif, Ines, Ines Hammami, Mohamed Ali Triki, Manel Cheffi Azabou, Semia Elouze-Chaabouni, and Dhouha Ghribi. 2015. Antifungal efficiency of a lipopeptide biosurfactant derived from Bacillus subtilis SPB1 versus the phyto-pathogenic fungus, Fusarium solani. Environmental Science and Pollution Research 22 (22): 18137–47. https://doi.org/10.1007/s11356-015-5005-6

18. O’Brien, Philip A. 2017. Biological Control of Plant Diseases. Australasian Plant Pathology 46 (4): 293–304. https://doi.org/10.1007/s13313-017-0481-4

19. Ottonelli Stopiglia, Cheila Denise, Fabrício Mezzomo Collares, Fabrício Aulo Ogliari, Evandro Piva, Carmen Beatriz Borges Fortes, Susana Maria Werner Samuel, and Maria Lúcia Scroferneker. 2012. Antimicrobial activity of [2-(methacryloyloxy) ethyl] trimethyl ammonium chloride against candida spp. Revista Iberoamericana de Micologia. https://doi.org/10.1016/j.rijam.2011.03.003.

20. Sha, Yuexia, Qingchao Zeng, and Shuting Su. 2020. Screening and characterization of Bacillus strains isolated from non-rhizospheric rice soil for the biocontrol of rice blast. Plant Pathology Journal 36 (3): 231–43. https://doi.org/10.5423/PPJ. OA.02.2020.0028

21. Shimodat, Mitsuya, and Takayuki Shibamoto. 1990. Isolation and identification of headspace volatiles from brewed coffee with an on-column GC/MS method. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf00093a045

22. Smith, Ann C., and Marise A. Hussey. 2005. Gram stain protocols. American Society for Microbiology 1:14

23. Tian, Yueru, Bing Zheng, Bei Wang, Yong Lin, and Min Li. 2016. Rapid identification and multiple susceptibility testing of pathogens from positive-culture sterile body fluids by a combined MALDI-TOF mass spectrometry and vitek susceptibility system. Frontiers in Microbiology 7 (APR).

24. Walters, D. R., R. L. Walker and K. C. Walker. 2003. Lauric acid exhibits antifungal activity against plant pathogenic fungi. Journal of Phytopathology – wiley Online library.

25. Yang, E. J., and H. C. Chang. 2010. Purification of a new antifungal Compound produced by Lactobacillus plantarum AF1 isolated from kimchi. International Journal of Food Microbiology. https://doi.org/10.1016/j.ijfoodmicro.2010.02.012

26. Yogeswari, S., S. Ramalakshmi, R. Neelavathy, and J. Muthumary. 2012. Identification and comparative studies of different volatile fFrations from monochaetia kansensis by GC-MS. Global Journal of Pharmacology 6 (2): 65–71

27. Yuan, Jun, Waseem Raza, Qirong Shen, and Qiwei Huang. 2012. Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Applied and Environmental Microbiology 78 (16): 5942–44.

https://doi.org/10.1128/AEM.01357-12.