Reserves and Ways to Reduce Energy Consumption in Monolithic Housing Building in the Construction of the Facility Complex

O A Korol¹, R Sh Butaev¹

¹Moscow State University of Civil Engineering, Yaroslavskoe sh., 26, 129337, Moscow, Russia

E-mail: professorkorol@mail.ru

Abstract. The main types of energy consumers on the construction site are: construction machines, processes and infrastructure of the construction site. According to research and practical experience, more than 50 varieties of construction machines and mechanisms are used at various stages of construction of the property. Construction machines and mechanisms are integral elements of construction production. For each of them use different types of fuels: liquid fuel, gas, electricity, etc. Also various types of energy processes and maintenance of the construction site. The integral estimation and correct comparison of all energy consumption allows to carry out only their representation in the form of conditional indicators to which all others are given. In comparison with the point construction, the construction of a complex of buildings is characterized by a high integral level of energy consumption. The choice of the method of work production is decisive. This method determines the simultaneous operation of a large number of construction equipment, which leads to a significant increase in energy costs. Analysis of the parameters of organizational and technological models and their corresponding schedules of energy consumption allows you to choose rational organizational and technological solutions for the construction of complex buildings that reduce energy consumption during the construction of buildings.

1. Introduction

Organization of construction production is associated with the development of measures to ensure the construction of facilities and their commissioning in a given time with high quality and optimal financial, labor and material costs. Organizational and technological modeling allows the choice of rational theoretical and practical solutions in the process of construction projects, taking into account various factors, among which one of the essential is energy consumption and, as a consequence, the reduction of energy costs.

To calculate the energy consumption at the construction site, it is necessary to identify and systematize the main types of energy consumers. Detailing the composition of energy consumers at all stages of the construction of separately erected monolithic multi-storey buildings is performed in the previous studies [1-7]. When implementing a complex development project, it is necessary to take into account the methods of work and the order of construction of objects in the complex, which is usually accompanied by the summation of energy capacities.

However, due to the peculiarities of the repair and construction industry, combining the adaptation
of materials and designs of the previous and new generations, as well as combining the types of work that differ in technology and organization, the improvement of manufacturability is associated with the development of new approaches, algorithms, methods, forms and methods that together form technological mechanism.

A characteristic feature of the construction of a complex of objects is the simultaneous use of different types of energy resources. To estimate their total volume, they must be reduced to conventional units. [8-13]

Graphical interpretation of organizational and technological models is a calendar plan, which can be presented in the form of a line chart. The schedule of machines and mechanisms, defined by the schedule, allows you to build a diagram of energy consumption, accompanying mechanized construction processes and work, as well as the intensification of technological processes. Calculation of energy resources required for the operation of the construction site is determined in accordance with the established norms of their consumption.

2. Materials and methods

Construction machines and mechanisms are the most-consumed resources on the construction site. Consumers are represented in table.1.

Table 1. Liquid fuel consumers, electricity consumers, construction site infrastructure.

Electricity consumer	Consumers of liquid fuel
Painting station	Tamper
Plaster station	Bulldozer
Heated concrete and the base plate	Mini-loader
Heated utility spaces, and points of protection	Auto concrete pump
Table for reinforcing	Truck mixer
Construction hoist	Mobile crane
Vibratory hammer	Excavator
Heated valves and working areas with heaters	Compressor
Electric winch	Stationary concrete pump
Welding transformer	
Electric heating of floors	Lighting of the premises and the security guards
Power tool	Lighting exterior flood lights 2 kW (b. 24 hour)
Lighting products	Emergency lighting
Thawing of a ground vertical electrode	Lighting security
Tower crane	Heated utility spaces, and points of protection

The representative object consisting of 15 residential, monolithic buildings is subject to climatic factors, which can lead to an increase in energy consumption. [14-17]

In the cold climatic period of more than 1000 kW is required for concrete heating, space heating, etc. Consumption of electricity is almost 3 times more than liquid fuels consumption. The data from the table are taken by calculating the number of machines and mechanisms involved in the representative object, taking into account the consumption of each construction mechanism and the duration of construction production.

Interest in improving the sustainability of buildings and reducing their energy consumption is growing all over the world. The observed shift towards sustainable design and operation, as well as cost reduction in solving environmental problems, is relevant in monolithic housing construction in the construction of the facility complex.

The duration of construction is a long time period, including various seasonal conditions and temperature and humidity fluctuations, which, in turn, affect the consumption of energy resources on the construction site. (see Fig.1 and Fig.2.)
Figure 1. Decomposition of mechanized works of fuel and energy resources comparison.

Figure 2. Comparison of the structure of types of consumers of fuel and energy resources at the construction site, depending on different terms of construction.

The reduction of electricity consumption is achieved by changing the start of construction at the design stage (see Fig.3-6).

Figure 3. Chart 01.01.2017-17.10.2017(304 working days).
11 712 944 kW/h.
3. Results and discussion
The object is the representative consists of 15 monolithic houses takes on average 15-16 million kW/h. By changing the start of the construction period consumption kW/h may be reduced to 11 million.

As the main criterion for the successful achievement of this goal, a reduction in the consumption of...
fuel and energy resources by 40%, expressed in specific physical units, or in units of conventional fuel, is accepted. Reduction of energy consumption in the construction industry can be achieved through the implementation of a set of appropriate energy-saving measures: the Combination of energy-corrective measures for all stages of organizational and technological design and construction fully covers the entire investment cycle and can be implemented as a whole and decomposition. In this case, you can choose to evaluate activities for individual types of work, facilities or programs of construction companies and corporations. [18-21]

Methodology of formation of organizational and technological mechanism for the implementation of energy saving measures during the construction of monolithic house building and also includes the methodology of evaluation of reduction of consumption of energy resources in organizational and technological design and during the construction of monolithic housing construction, based on the algorithm of formation and flexible adaptation of the complex energy-saving solutions.

4. Conclusions
Thus, the carried out researches revealed that rational design of monolithic housing construction has reserves of energy saving which can be used at development of the project of production of works in a complex of energy saving actions.

The analysis made it possible to identify the following main reserves in the composition of technological processes and organization of works on the construction site for the development of measures to adjust energy costs on the construction site. These include: mechanized technological processes and work; heat treatment of building structures in the process of construction of the building; organization of work on the construction site (calendar, shift, number of employees); infrastructure of the construction site.

References
[1] Korol O A Basic approaches and principles of formation of methods of estimation of efficiency of energy-saving actions in construction production Publishing house Science education (Moscow) ISSN: 1815-4972
[2] Korol E A, Komissarov S V, Kagan P B, harutyunov S G Solving problems of organizational and technological modeling of construction processes Publishing house PGS ISSN: 0869-7019
[3] Oleynik P P Organizatsiya stroitelstva Publishing House: Profizdat
[4] Korol O A Classification and ranking of energy costs to ensure the requirements of energy minimization of modern construction production Publisher: National research Moscow state University of civil engineering
[5] Grabowyi K P, Korol A O Analysis of energy consumption on the construction site and reserves for their conservation Journal: Natural and technical Sciences Publisher: Limited liability company Sputnik+ ISSN: 1684-2626
[6] Korol O A Analysis of the influence of the number of construction workers on the energy consumption of the household town in the conditions of construction production Journal: Natural and technical Sciences Publisher: Limited liability company Sputnik+ ISSN: 1684-2626
[7] Korol O A 2015 Scientific review 12 327
[8] Korol E A, Pugach E M, Nikolaev A E 2009 Architecture and construction 5 415
[9] Korol E A, Komissarov S V, Kagan P B, Arutyunov S G 2011 Industrial and civil construction 3(43)
[10] Borkovskaya V G 2013 Environmental and economic model life cycle of buildings based on the concept of "Green Building" Applied Mechanics and Materials 467 Materials Science and Mechanical Engineering Chapter 2 Building Materials and Construction Technologies pp 287-290 DOI: 10.4028/www.scientific.net/AMM.467.287
[11] Borkovskaya V G 2013 The concept of innovation for sustainable development in the construction business and education Applied Mechanics and Materials vol 475-476 15 Engineering Management pp 1703-1706 DOI: 10.4028/www.scientific.net/AMM.475-476.1703
[12] Borkovskaya V, Degaev E, Burkova I 2018 Environmental economic model of risk management and costs in the framework of the quality management system MATEC Web of Conf. 193 05027 DOI: https://doi.org/10.1051/matecconf/201819305027

[13] Borkovskaya V, Passmore D 2018 Application of Failure Mode and Effects Analysis in Ecology in Russia MATEC Web of Conf. vol 193 05027 DOI: https://doi.org/10.1051/matecconf/201819305026

[14] Borkovskaya V G 2018 Project Management Risks in the Sphere of Housing and Communal Services Journal MATEC Web of Conferences vol 251 06025 DOI: https://doi.org/10.1051/matecconf/201825106025

[15] Borkovskaya V G, Lyapuntsova E V, Nogovitsyn M 2019 Risks and safety in construction by increasing efficiency of investments E3S Web of Conferences vol 97 DOI: https://doi.org/10.1051/e3sconf/20199706036

[16] Korol E A, Gaydysheva Y, Passmore D 2018 Integration of organizational-technological and social aspects in the realization of the program of renovation of residential development Journal MATEC Web of Conferences vol 251 06025 DOI: https://doi.org/10.1051/matecconf/201825106025

[17] Korol O, Shushunova N, Lopatkin D, Zanin A, Shushunova T 2018 Application of High-tech Solutions in Ecodevelopment Journal MATEC Web of Conferences, vol 251 06025 DOI: https://doi.org/10.1051/matecconf/201825106002

[18] Korol O A 2015 Analysis of the impact of the number of construction workers on the energy consumption of a domestic town in the conditions of construction production Natural and Technical Sciences pp 594-596

[19] Pleshivtsev A, Korol O, Barkhi R 2018 Risks on Optimization of Life Cycle of Technology of Installation of Transformed Low-rise Buildings from Sandwich Panels Journal MATEC Web of Conferences vol 251 06024 DOI: https://doi.org/10.1051/matecconf/201825106024

[20] Kas’yanov V F, Danilchenko V, Amelin V, Tolmachev V 2018 Environmental risk management Forecasting and modeling of emergency risk management Journal MATEC Web of Conferences vol 251 06030 DOI: https://doi.org/10.1051/matecconf/201825106030

[21] Lyapuntsova E, Belozerova Yu, Drozdova I, Korol O 2019 Safety in construction in the field of investment in urban infrastructure E3S Web of Conferences vol 97 DOI: https://doi.org/10.1051/e3sconf/20199706034