HOLOMORPHIC MAPS ONTO VARIETIES OF NON-NEGATIVE KODAIRA
DIMENSION

JUN-MUK HWANG, STEFAN KEBEKUS, THOMAS PETERNELL

CONTENTS

1. Introduction and Statement of Results 1
2. Proof of Theorem 1.2 2
3. Proof of Corollary 1.3 6
References 7

1. INTRODUCTION AND STATEMENT OF RESULTS

A classical result in complex geometry says that the automorphism group of a manifold of general type is discrete [Mat63]. It is more generally true that there are only finitely many surjective morphisms between two fixed projective manifolds X and Y of general type [KO75].

Rigidity of surjective morphisms, and the failure of a morphism to be rigid have been studied by a number of authors, the most general results being those of Borel and Narasimhan [BN67]. For target manifolds Y with Chern numbers $c_1(Y) = 0$ and $c_{dim Y}(Y) \neq 0$, rigidity has been shown by Kalka, Shiffman and Wong [KSW81]. These results have recently been generalized by Hwang [Hwa03] to the case where Y is a compact Kähler manifold with $c_1(Y) = 0$. Although in Hwang’s setup deformations need not be rigid, he is able to give a good description of the space of surjective morphisms.

In this paper we give a complete description of the space of surjective morphisms in the general setup where Y is a normal projective variety that is not covered by rational curves. Our main result, Theorem 1.2, states that surjective morphisms are rigid, unless there is a clear geometric reason for it.

- Deformations of surjective morphisms between normal projective varieties are unobstructed unless the target variety is covered by rational curves.
- If the target is not covered by rational curves, then surjective morphisms are infinitesimally rigid, except for those morphisms that factor via a variety with positive-dimensional automorphism group.

Notation 1.1. If X and Y are normal compact complex varieties, $\text{Hom}(X,Y)$ denotes the space of holomorphic maps $X \to Y$ and $\text{Hom}_s(X,Y)$ the space of surjective holomorphic maps. Given a morphism $f \in \text{Hom}(X,Y)$, let $\text{Hom}_f(X,Y)$ be the connected component of $\text{Hom}(X,Y)$ that contains f.

Theorem 1.2. Let X be a normal compact complex variety and Y be a projective normal variety which is not covered by rational curves. If $f : X \to Y$ is a surjective morphism,
then there exists a factorization

\[X \xrightarrow{\alpha} Z \xrightarrow{\beta} Y \]

where

1. \(\beta \) is a finite morphism which is étale outside of the singular set of \(Y \)
2. if \(\text{Aut}^0(Z) \) is the maximal connected subgroup of the automorphism group of \(Z \), then \(\text{Aut}^0(Z) \) is an Abelian variety, and the natural morphism

\[\text{Aut}^0(Z)/\text{Aut}(Z/Y) \cap \text{Aut}^0(Z) \to \text{Hom}_f(X, Y) \]

is isomorphic.

In particular, all deformations of surjective morphisms \(X \to Y \) are unobstructed, and the associated components of \(\text{Hom}(X, Y) \) are smooth Abelian varieties.

Corollary 1.3. In the setup of Theorem 1.2, if \(Y \) is smooth, then \(Y \) has a finite étale cover of the form \(T \times W \), where \(T \) is an Abelian variety of dimension \(h^0(X, f^*(T_Y)) \) and

\[\dim \text{Hom}_f(X, Y) \leq \dim Y - \kappa(Y), \]

where \(\kappa(Y) \) is the Kodaira dimension.

Remark 1.4. We conjecture that Theorem 1.2 and Corollary 1.3 are true when \(Y \) is a compact Kähler manifold of nonnegative Kodaira dimension. Our proof needs the projectivity assumption because it employs Miyaoka’s characterization of uniruledness.

The following corollaries are immediate consequences of Corollary 1.3.

Corollary 1.5. Let \(Y \) be a projective manifold which is not uniruled. If \(\pi_1(Y) \) is finite, then for each connected normal compact complex variety \(X \) the space \(\text{Hom}_s(X, Y) \) is discrete.

Corollary 1.6. Let \(Y \) be a projective \(n \)-dimensional manifold which is not uniruled. If \(c_n(Y) \neq 0 \), then for each connected normal compact complex variety \(X \) the space \(\text{Hom}_s(X, Y) \) is discrete.

2. Proof of Theorem 1.2

2.1. Step 1: Setup. Let \(X \) be a normal variety. Then the tangent sheaf \(T_X \) is by definition the dual of the sheaf \(\Omega_X^1 \) of differentials. If \(f : X \to Y \) is holomorphic, we consider \(\text{Hom}_f(X, Y) \), the connected component of \(\text{Hom}(X, Y) \) that contains \(f \). If \(f \) is additively surjective, since \(X \) is reduced, it is then well-known that

\[T_{\text{Hom}_f(X, Y)}|_f \cong \text{Hom}(f^*(\Omega_Y^1), \mathcal{O}_X). \]

See e.g. [Kol96, I, Thm. 2.16] for a proof in the algebraic case. We note that if \(Y \) is smooth, then \(\text{Hom}(f^*(\Omega_Y^1), \mathcal{O}_X) \cong H^0(X, f^*(T_Y)) \).

If in the set-up of Theorem 1.2 there are no infinitesimal deformations of the morphism \(f \), i.e. if \(\text{Hom}(f^*(\Omega_Y^1), \mathcal{O}_X) = \{0\} \), there is nothing to prove. We will therefore assume throughout that \(\text{Hom}(f^*(\Omega_Y^1), \mathcal{O}_X) \neq \{0\} \).

2.2. Step 2: Reduction to a finite morphism. In this section we reduce the proof of Theorem 1.2 to the case that the morphism \(f \) is finite. To this end, we will consider the Stein factorization of \(f \).

\[X \xrightarrow{\beta, \text{conn. fibers}} W \xrightarrow{h, \text{finite}} Y, \]
assume that Theorem 1.2 holds for the finite morphism \(h \), and show that \(\text{Hom}_f(X, Y) \) and \(\text{Hom}_h(W, Y) \) are then naturally isomorphic. The argumentation is based on the following elementary observation whose proof we leave to the reader.

Fact 2.1. Let \(h : S \to B \) be a morphism of complex spaces. Assume that \(S \) is smooth and compact, \(B \) is connected and that the associated morphism between the Zariski tangent spaces is everywhere isomorphic. Then \(h \) is surjective and étale.

In particular, \(h \) is an isomorphism if it is injective.

In order to apply Fact 2.1, observe that the Stein factorization (2.1) yields a canonical morphism of complex spaces

\[
A : \text{Hom}_h(W, Y) \to \text{Hom}_f(X, Y)
\]

which is injective because \(g \) is surjective. If \(\gamma \in \text{Hom}_h(W, Y) \) is any morphism, it is known that associated morphism between the Zariski tangentspaces at \(\gamma \) and \(\gamma \circ g \)

\[
T A : \frac{T_{\text{Hom}(W, Y)}|_\gamma}{\text{Hom}(\gamma^*(\Omega^1_Y), O_W)} \to \frac{T_{\text{Hom}(X, Y)}|_{\gamma \circ g}}{\text{Hom}(g^*\gamma^*(\Omega^1_Y), O_X)}
\]

is the pull-back via \(g \). Since \(g \) has connected fibers, \(g_*(O_X) = O_W \), and since \(g_* \) and \(g^* \) are adjoint functors, [Har77, p. 110], this map is isomorphic.

If Theorem 1.2 holds for the finite morphism \(h \), \(\text{Hom}_h(W, Y) \) will be a projective manifold. By Fact 2.1, the morphism \(A \) will then be isomorphic, and Theorem 1.2 will hold for \(f \), too. We are therefore reduced to showing Theorem 1.2 under the additional assumption that \(f \) is finite. We maintain this assumption throughout the rest of the proof.

Remark 2.2. If \(f \) is finite and \(H \in \text{Pic}(Y) \) ample, then \(f^*(H) \) will again be ample. Thus, the assumption that \(f \) is finite implies that \(X \) is projective. We can therefore argue in the algebraic category for the remainder of the proof.

2.3. **Step 3: Further setup.** In the sequel we will use the following notation:

- **ample bundle:** \(H \) . . . an ample line bundle on \(Y \)
- **exceptional sets:** \(X_s \ldots \) singular locus of \(X \)

 \[Y_s := f(X_s) \cup \{ \text{singular locus of } Y \} \]
- **open sets:** \(Y_0 := Y \setminus Y_s \)

 \[X_0 := f^{-1}(Y_0) \]

 \[f_0 := f|_{X_0} : X_0 \to Y_0 \]

It is well-known that the finite morphism \(f_0 \) defines a vector bundle on the quasi-projective target manifold \(Y_0 \).

Fact 2.3. The trace map gives a splitting

\[
(f_0)_*O_{X_0} \cong O_{Y_0} \oplus E^*_0
\]

where \(E^*_0 \) is a vector bundle on \(Y_0 \). In particular, the projection formula gives

\[
(f_0)_*(f_0)^*T_{Y_0} \cong T_{Y_0} \oplus (E^*_0 \otimes T_{Y_0}).
\]

Remark 2.4. The exceptional set \(Y_s \) is of codimension \(\geq 2 \). Thus, if \(m \in \mathbb{N} \) is sufficiently large and \(H_1, \ldots, H_{\dim Y - 1} \in |mH| \) are general members, then the general complete intersection curve

\[C := H_1 \cap \ldots \cap H_{\dim Y - 1} \]

does not intersect \(Y_s \). In particular, the vector bundle \(E^*_0 \) is defined all along \(C \).
2.4. **Step 4: Construction of the étale cover.** In this section we construct a factorization of the morphism f, which we assume to be finite, via an étale cover of Y. The important properties of the construction are summarized in the following proposition.

Proposition 2.5. In the setup of Theorem 1.2 there exists a canonical factorization of f via a finite morphism β that is étale outside of the singular set of Y,

$$
\begin{array}{cccc}
X & & & Y \\
\alpha & \overset{f}{\longrightarrow} & Z & \overset{\beta}{\longrightarrow} \\
\end{array}
$$

such that all infinitesimal deformations of f come from pull-backs of vector fields on Z, i.e. that the natural injective morphism

$$
\text{Hom}(\Omega^1_Z, \mathcal{O}_Z) \to \text{Hom}(\Omega^1_Z, \alpha^*(\mathcal{O}_X)) \cong \text{Hom}(\alpha^*(\Omega^1_Z), \mathcal{O}_X) \cong \text{Hom}(f^*(\Omega^1_Y), \mathcal{O}_X)
$$

is isomorphic.

Remark 2.6. In the formulation of Proposition 2.5 we have identified $\text{Hom}(\alpha^*(\Omega^1_Z), \mathcal{O}_X)$ and $\text{Hom}(f^*(\Omega^1_Y), \mathcal{O}_X)$. For this, we use the assumptions that f is finite and that β is étale outside of a set of codimension 2: the (reflexive) sheaves $(\alpha^*(\Omega^1_Z))^\vee$ and $(f^*(\Omega^1_Y))^\vee$ agree in codimension 1. Since X is normal, they must be isomorphic.

If Y is smooth, then Z must also be smooth and the natural morphism discussed in Proposition 2.5 is simply the pull-back map

$$
\alpha^*: H^0(Z, T_Z) \to H^0(X, \alpha^*(T_Z)) \cong H^0(X, f^*(T_Y)).
$$

We start the proof of Proposition 2.5 with the following lemma which links the existence of elements in $\text{Hom}(f^*(\Omega^1_Y), \mathcal{O}_X)$ that do not come from vector fields to the structure of the bundle \mathcal{E}_0.

Lemma 2.7. Assume that there exists an infinitesimal deformation $\sigma \in \text{Hom}(f^*(\Omega^1_Y), \mathcal{O}_X)$ which does not come from the pull-back of a vector field on Y. Then, if C is a general complete intersection curve and \mathcal{E}_0 the dual of \mathcal{E}_0^*, the restriction $\mathcal{E}_0|_C$ is nef, but not ample.

Proof. Since C is not contained in the branch locus, the fact that $\mathcal{E}_0|_C$ is nef is shown in [PS00] Thm. A of the appendix by R. Lazarsfeld] —as we need only the nefness on a general curve, we could also use the general semi-positivity theorem of Viehweg for images of relative dualizing sheaves.

Recall that $\text{codim}_X X \setminus X_0 \geq 2$. Sections in a reflexive sheaf which are defined on X_0 therefore extend uniquely to all of X. This yields identifications

$$
\begin{align*}
\text{Hom}(f^*(\Omega^1_Y), \mathcal{O}_X) &= H^0(X_0, (f_0)^*(T_{Y_0})) \\
&= H^0(Y_0, T_{Y_0} \oplus (\mathcal{E}_0^* \otimes T_{Y_0})) \\
&= H^0(Y, T_Y) \oplus H^0(Y_0, \mathcal{E}_0^* \otimes T_{Y_0}).
\end{align*}
$$

Since we assume that the infinitesimal deformation σ does not come from the pull-back of a vector field, we obtain a section $\check{\sigma} \in H^0(Y_0, \mathcal{E}_0^* \otimes T_{Y_0})$, i.e., a morphism of vector bundles

$$
\check{\sigma}: \mathcal{E}_0 \to T_{Y_0}.
$$

After removing further sets of codimension 2, if necessary, we may assume without loss of generality that

$$
\mathcal{F} := \text{Image}(\check{\sigma}) \subset T_{Y_0}
$$

is a locally free subsheaf of T_{Y_0}. The restriction of its dual to a general complete intersection curve, $\mathcal{F}^*|_{C}$, is then a torsion-free quotient of $\Omega^1_{Y_0}|_{C}$, which, by Miyaoka’s celebrated theorem [Miy87] cor. 6.4] (see also Theorem 9.0.1 of Shepherd-Barron’s article in [Kol92]).
has non-negative degree. Equivalently, we can say that \(F|_C \) has non-positive degree. But \(F|_C \) is a quotient of \(E_0|_C \) and should therefore have positive degree if \(E_0|_C \) was ample. We conclude that \(E_0|_C \) is not ample. \(\square \)

The existence of a factorization of \(f \) via a cover of \(Y_0 \) now follows from the argumentation of \cite{PS05} proof of Prop. 3.8. For the reader’s convenience, we reproduce the proof here.

Lemma 2.8. In the setup of lemma \ref{2.7} after perhaps removing further subsets of codimension two, if necessary, the morphism \(f_0 \) factors via an étale cover \(Y_0^{(1)} \to Y_0 \), which is not an isomorphism.

Proof. To factorize the morphism \(f_0 \), it suffices to find a coherent subsheaf \(F \subset E_0^* \) such that \(\mathcal{O}_Y \oplus F \subset \mathcal{O}_Y \oplus E_0^* \cong (f_0)_* \mathcal{O}_X \) is a sheaf of \(\mathcal{O}_Y \)-algebras, i.e. closed under the multiplication map

\[
\mu : (\mathcal{O}_Y \oplus E_0^*) \otimes (\mathcal{O}_Y \oplus E_0^*) \to \mathcal{O}_Y \oplus E_0^*
\]

We can then set \(Y_0^{(1)} := \text{Spec} \mathcal{F} \). If \(F \subset E_0^* \) is a sub-vectorbundle that has degree zero on the general complete intersection curve, then it follows that the natural morphism \(Y_0^{(1)} \to Y_0 \) is étale.

As a first step towards the construction of \(\mathcal{F} \), we fix a complete intersection curve \(C \subset Y_0 \) and construct \(Y_0^{(1)} \) only over \(C \). Since the restriction \(E_0|_C \) is nef, but not ample, it follows from \cite{PS00} Lem. 2.3 that there exists a unique maximal ample subbundle \(V_C \subset E_0|_C \) such that the quotient \(E_0|_C / V_C \) has degree zero. Let \(\mathcal{F}_C \subset E_0^* \) be the kernel of the associated map \(E_0^*|_C \to V_C^* \) which is a sub-vectorbundle of degree zero. It is then clear that \(\mathcal{O}_C \oplus \mathcal{F}_C \subset \mathcal{O}_C \oplus E_0^*|_C \) is closed under multiplication, as the map

\[
\mu' : (\mathcal{O}_C \oplus \mathcal{F}_C) \otimes (\mathcal{O}_C \oplus \mathcal{F}_C) \to \mathcal{O}_C \oplus \mathcal{E}_0^*|_C / \mathcal{O}_C \oplus \mathcal{F}_C
\]

is necessarily zero.

To end the proof of Lemma \ref{2.8} we need to extend the sub-vectorbundle \(V_C \subset E_0|_C \) to all of \(Y_0 \), i.e. we need to find a sub-vectorbundle \(T \subset E_0 \) such that for a general complete intersection curve \(C' \subset Y_0 \), the restriction \(T|_{C'} \subset E_0|_{C'} \) is the unique maximal ample subbundle. For this, consider the Harder-Narasimhan filtration of \(E_0|_{C'} \),

\[
0 = E_0|_{C'}^{(0)} \subset E_0|_{C'}^{(1)} \subset \cdots \subset E_0|_{C'}^{(f)} = E_0|_{C'}.
\]

It is an elementary computation to see that there exists a number \(k \) such that \(V_C = E_0|_{C'}^{(k)} \). In this setup, after removing further subsets of codimension two, if necessary, the theorem of Mehta-Ramanathan \cite{Kol92} Thm. 9.1.1.7 (see also \cite{MR82}) guarantees that \(V_C \) extends to all of \(Y_0 \), as required. \(\square \)

Remark 2.9. János Kollár pointed out to us that the proof of Lemma \ref{2.8} really shows that if an antinef vector bundle on a curve has a section after pull back, then it has a section after an étale pull back

It is a classical result that the cover \(Y_0^{(1)} \to Y_0 \) can be extended to \(Y \).

Corollary 2.10. In the setup of Lemma \ref{2.7} the morphism \(f \) factors via a normal variety \(Y^{(1)} \),

\[
X \xleftarrow{a} Y^{(1)} \xrightarrow{b} Y
\]

where \(b \) is a finite morphism of degree \(>1 \), étale outside of the singular locus of \(Y \).
Proof. The factorization for $f_0 : X_0 \to Y_0$ via an unbranched cover $b_0 : Y_0^{(1)} \to Y_0$ is shown in Lemma 2.8. Since Y is normal, [DG24 Thm. 3.5] says that there exists a unique normal compactification $Y^{(1)} \supset Y_0^{(1)}$ with a finite morphism $b : Y^{(1)} \to Y$ that extends b_0 and is étale outside of the singular set.

The proof is finished if we show that the associated rational map $a : X \dasharrow Y^{(1)}$ is a morphism. That, however, follows from the fact that b is a morphism. Thus, the following two prerequisites are verified. Note that the proof of Theorem 1.2 is finished if we show that $f = b \circ a$ is a morphism and that b is finite. □

Proof of Proposition 2.5. If all infinitesimal deformations of f come from pull-backs of vector fields on Z, i.e. if $\text{Hom}(f^*(\Omega^1_Y), \mathcal{O}_X) \cong H^0(Z, T_Z)$, there is nothing to prove: set $Z = Y$.

If there exists an infinitesimal deformation $\sigma_1 \in \text{Hom}(f^*(\Omega^1_Y), \mathcal{O}_X)$ that is not a pull-back of a vector field on Y, apply Corollary 2.10 and obtain a factorization of f via a cover $b : Y^{(1)} \to Y$. If there is a section $\sigma_2 \in \text{Hom}(f^*(\Omega^1_Y), \mathcal{O}_X) = \text{Hom}(a^*(\Omega^1_{Y^{(1)}_0}), \mathcal{O}_X)$, which is not the pull-back of a vector field on $Y^{(1)}$, apply Corollary 2.10 again to the morphism $a : X \to Y^{(1)}$. Proceed inductively, creating a sequence of covers

$$X \stackrel{f}{\longrightarrow} Y^{(d)} \longrightarrow Y^{(d-1)} \longrightarrow \cdots \longrightarrow Y^{(1)} \longrightarrow Y$$

The process terminates because the degree of f is finite. Let $Z := Y^{(d)}$ be the terminal variety. □

2.5. Step 5: end of proof. The factorization of f given in Proposition 2.5 yields a natural morphism

$$\iota : \text{Aut}^0(Z) \to \text{Hom}_f(X, Y)$$

$$g \mapsto \beta \circ g \circ \alpha$$

Note that the proof of Theorem 1.2 is finished if we show that ι is étale. This will be guaranteed by Fact 2.1 as soon as the following two prerequisites are verified.

Aut$^0(Z)$ is proper: By assumption, the variety Y is not uniruled. Thus, the variety Z is also not uniruled, and it follows from [Ros56] that the automorphism group $\text{Aut}^0(Z)$ does not contain an algebraic subgroup which is isomorphic to \mathbb{C} or to \mathbb{C}^*. The group $\text{Aut}^0(Z)$ must therefore be an Abelian variety, $\text{Aut}^0(Z) \cong \mathbb{C}^m/\Gamma$. In particular, $\text{Aut}^0(Z)$ is proper.

The tangent morphism is everywhere isomorphic: It is known that for any automorphism $g \in \text{Aut}^0(Z)$, the morphism T_ι between Zariski tangent spaces,

$$T_{\iota} : T_{\text{Aut}^0(Z)}|_g \to T_{\text{Hom}(X, Y)}|_{\beta \circ g \circ \alpha}$$

$$H^0(Z, g^*(T_Z)) \to \text{Hom}(\beta \circ g \circ \alpha)^*(\Omega^1_Y), \mathcal{O}_X)$$

is given by the natural injective morphism of sheaves

$$\text{Hom}(g^*(\Omega^1_Z), \mathcal{O}_Z) \to \text{Hom}(g^*(\Omega^1_Y), \alpha^*(\mathcal{O}_X)) \cong \text{Hom}(\alpha^*g^*(\Omega^1_Z), \mathcal{O}_X)$$

$$H^0(Z, g^*(T_Z)) \to \text{Hom}(\beta \circ g \circ \alpha)^*(\Omega^1_Y), \mathcal{O}_X)$$

Since g is an automorphism, $g^*(\Omega^1_Z) \cong \Omega^1_Z$, and Proposition 2.5asserst that this morphism is indeed isomorphic.

This ends the proof of Theorem 1.2. □

3. Proof of Corollary 1.3

In the setup of Corollary 1.3, the varieties Y and Z are smooth. If $\text{Aut}^0(Z)$ is trivial, i.e. $H^0(Z, T_Z) = 0$, there is nothing to prove. Otherwise, since Z is not uniruled, the fact
that Z is a Torus-Seifert fibration follows from [Lie78, Thm. 4.9]. By [Lie78, Thm. 4.10], we have that
\[
\dim H^0(Z, T_Z) + \kappa(Z) \leq \dim Z
\]
and therefore
\[
\dim \text{Hom}_f(X, Y) \leq \dim Y - \kappa(Z) \leq \dim Y - \kappa(Y).
\]

\[\square\]

REFERENCES

[BN67] A. Borel and R. Narasimhan. Uniqueness conditions for certain holomorphic mappings. *Invent. Math.*, 2:247–255, 1967.

[DG94] G. Dethloff and H. Grauert. Seminormal complex spaces. In *Several complex variables, VII*, volume 74 of *Encyclopaedia Math. Sci.*, pages 183–220. Springer, Berlin, 1994.

[Har77] R. Hartshorne. *Algebraic Geometry*, volume 52 of *Graduate Texts in Mathematics*. Springer, 1977.

[Hwa03] J.-M. Hwang. Rigidity of surjective holomorphic maps to Calabi-Yau manifolds. to appear in Math. Zeit.

[KO75] S. Kobayashi and T.Ochiai. Meromorphic mappings onto compact spaces of general type. *Inv. Math.*, 31:7–16, 1975.

[Kol92] J. Kollár, editor. *Flips and abundance for algebraic threefolds*. Société Mathématique de France, Paris, 1992. Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991, Astérisque No. 211 (1992).

[Kol96] J. Kollár. *Rational curves on algebraic varieties*, volume 32 of *Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics*. Springer-Verlag, Berlin, 1996.

[KSW81] M. Kalka, B. Shiffman, and B. Wong. Finiteness and rigidity theorems for holomorphic mappings. *Michigan Math. J.*, 28(3):289–295, 1981.

[Lie78] D. Liebermann. Compactness of the Chow scheme: Applications to automorphisms and deformations of Kähler manifolds. In Francois Norguet, editor, *Fonctions de Plusieurs Variables Complexes III*, number 670 in *Lecture Note in Mathematics*, pages 140–186. Springer, 1978.

[Mat63] H. Matsumura. On algebraic groups of birational transformations. *Atti Accad. Naz. dei Lincei*, 34:151–155, 1963.

[Miy87] Y. Miyaoka. The Chern classes and Kodaira dimension of a minimal variety. In *Algebraic geometry, Sendai, 1985*, volume 10 of *Adv. Stud. Pure Math.*, pages 449–476. North-Holland, Amsterdam, 1987.

[MR82] V.B. Mehta and A. Ramanathan. Semistable sheaves on projective varieties and their restriction to curves. *Math. Ann.*, 258(3):213–224, 1981/82.

[PS00] T. Peternell and A.J. Sommese. Ample vector bundles and branched coverings. *Comm. Algebra*, 28(12):5573–5599, 2000. With an appendix by R. Lazarsfeld, Special issue in honor of Robin Hartshorne.

[PS03] T. Peternell and A.J. Sommese. Ample vector bundles and branched coverings, II. In *Proceedings of the Fano conference, Torino, 2002*, Ed. A. Collino, A. Conte, M. Marchisio, pages 625–645, Torino 2004.

[Ros56] M. Rosenlicht. Some basic theorems on algebraic groups. *Amer. J. Math.*, 78:401–443, 1956.