Genome-wide identification of \textit{Bacillus subtilis}\nZur-binding sites associated with a Zur box expands its\nknown regulatory network\nEric Prestel, Philippe Noirot, Sandrine Auger

To cite this version:
Eric Prestel, Philippe Noirot, Sandrine Auger. Genome-wide identification of \textit{Bacillus subtilis}\nZur-binding sites associated with a Zur box expands its known regulatory network. BMC Microbiology, BioMed Central, 2015, 15, 10.1186/s12866-015-0345-4. hal-01204456

HAL Id: hal-01204456
https://hal.archives-ouvertes.fr/hal-01204456
Submitted on 27 May 2020

\textbf{HAL} is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire \textbf{HAL}, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Genome-wide identification of *Bacillus subtilis* Zur-binding sites associated with a Zur box expands its known regulatory network

Eric Prestel¹,², Philippe Noirot¹,² and Sandrine Auger¹,²*

Abstract

Background: The *Bacillus subtilis* Zur transcription factor recognizes a specific DNA motif, the Zur box, to repress expression of genes in response to zinc availability. Although several Zur-regulated genes are well characterized, a genome-wide mapping of Zur-binding sites is needed to define further the set of genes directly regulated by this protein.

Results: Using chromatin immunoprecipitation coupled with hybridization to DNA tiling arrays (ChIP-on-chip), we reported the identification of 80 inter- and intragenic chromosomal sites bound by Zur. Seven Zur-binding regions constitute the Zur primary regulon while 35 newly identified targets were associated with a predicted Zur box. Using transcriptional fusions an intragenic Zur box was showed to promote a full Zur-mediated repression when placed within a promoter region. In addition, intragenic Zur boxes appeared to mediate a transcriptional cis-repressive effect (4- to 9-fold) but the function of Zur at these sites remains unclear. Zur binding to intragenic Zur boxes could prime an intricate mechanisms of regulation of the transcription elongation, possibly with other transcriptional factors. However, the disruption of zinc homeostasis in Δzur cells likely affects many cellular processes masking direct Zur-dependent effects. Finally, most Zur-binding sites were located near or within genes responsive to disulfide stress. These findings expand the potential Zur regulon and reveal unknown interconnections between zinc and redox homeostasis regulatory networks.

Conclusions: Our findings considerably expand the potential Zur regulon, and reveal a new level of complexity in Zur binding to its targets via a Zur box motif and via a yet unknown mechanism that remains to be characterized.

Keywords: Zur regulator, *B. subtilis*, ChIP-on-chip, Zinc homeostasis, Disulfide stress

Background

Zinc is an essential trace element for all forms of life. It serves as structural scaffold for protein folding and as cofactor for many enzymes and DNA-binding proteins [1,2]. However, due to its toxicity, mechanisms for zinc acquisition and efflux are tightly regulated according to metal ion requirements [3-5].

In the Gram positive bacterium *Bacillus subtilis*, transcription of genes involved in zinc homeostasis is regulated by Zur, a metalloprotein that binds Zn(II) as corepressor [6-9]. In *vivo*, Zur forms a homodimer that binds to a conserved DNA motif, the Zur box, which overlaps the σ²⁴-type promoter elements in target genes [10]. DNA-binding studies demonstrated that Zur requires a minimal 9-1-9 inverted repeat motif for high-affinity binding [11]. A stepwise activation model predicts that Zur may respond to a wide range of intracellular Zn(II) concentrations to gradually repress the Zur regulon [12]. Zur repression of genes encoding a high-affinity zinc ABC transporter ZnuACB [7], a putative low affinity zinc uptake system YciBC [10], a GTP cyclohydrolase IB involved in folate biosynthesis FolEB [13], and zinc-independent alternative ribosomal proteins (RpmEB, RpmGC, and RpsNB) [14-18]. In *B. subtilis*, zinc is also imported by the P-type ATPase ZosA, whose expression is controlled by the peroxide-sensing regulator, PerR [19]. Induction of ZosA in response to hydrogen peroxide stress leads to Zn(II) uptake, which...
plays an important protective role against oxidative stress
damage [19]. Both ZosA and ZnuABC zinc transporters
are involved in the competence developmental process
[20]. Zinc homeostasis is also maintained in *B. subtilis*
thanks to a zinc-inducible efflux pump CzcD important for
growth in the presence of high concentration of Zn(II)
[5,21]. Expression of this system is regulated at the
transcriptional level by the metallogegulator CzrA [5].

Despite knowledge of Zur-mediated regulation of zinc
homeostasis, a global identification of the genes directly
under Zur control is still missing. Here, we used chro-
matin immunoprecipitation of Zur-DNA complexes
coupled with hybridization of DNA to tiled oligonucleo-
tides arrays (ChIP-on-chip) to identify regions enriched
for Zur DNA-binding sites *in vivo*, at the genomic scale.
We provide evidence that Zur binds to 80 regions on
the chromosome, including previously known promoter
regions of the Zur primary regulon as well as a number
of inter- and intragenic regions. Half of the newly identi-
fied binding sites is associated with a predicted Zur box.
We showed that an intragenic Zur box was functional to
mediate a Zur-dependent repression when inserted in a
promoter region. In addition, several intragenic Zur
boxes were able to act as transcriptional *cis*-repressive
element but the direct role of Zur at intragenic sites
remains unclear. Finally, our study suggests that Zur
binding to newly identified targets could be primed to
fine-tune gene expression in interplay with other trans-
scription factors in response to specific conditions such
as the disulfide stress.

Results

C-terminally SPA-tagged Zur is a functional regulator

The *B. subtilis* chromosome was modified at the *zur*
locus to express Zur fused at its C-terminus with the
SPA tag (Zur*SPA*). In the resulting *zur::zur-spa* strain, the
Zur*SPA* protein is under the control of its native expres-
sion signals. To examine the activity of the Zur*SPA* fusion
protein, the *yciC* promoter region was fused with the
lacZ reporter gene and introduced at the *amyE* locus
in wild-type, *zur::zur-spa* and Δ*zur::aphA3* strains (Methods
(Table 1)). Expression of *yciC*, monitored by measuring
the β-galactosidase activities, was repressed in wild-type and
zur::zur-spa cells (β-galactosidase activity ≤ 5 UE) whereas
it was increased by a 160-fold factor in Δ*zur* cells. Thus,
Zur*SPA* functionally repressed *yciC* expression as wild-type
Zur.

We further tested the effect of ion starvation on *yciC-
lacZ* expression in the same genetic backgrounds. The
strains were cultivated in MS medium and samples were
spread onto solid medium containing X-gal. A drop of
100 μM EDTA, an ion chelating agent, was deposited
at the center of the plates. After incubation, a char-
acteristic blue ring was observed around the EDTA drop

Strain	Genotype*	Source
BS81	trp	(Nicolas et al., [26])
BSAS36	zur::zur-spa erm	This work
BSAS39	amyE:pyciC-lacZ cat	This work
BSAS44	amyE:pyciC-lacZ cat zur::zur-spa erm	This work
BSAS45	Δ*zur:aphA3*	This work
BSAS49	amyE:pyciC-lacZ cat Δ*zur:aphA3*	This work
BSAS225	amyE:AymaD-lacZ cat	This work
BSAS331	amyE:pyMD-lacZ cat	This work
BSAS227	amyE:AymaD-lacZ cat	This work
BSAS332	amyE:pyMD-lacZ cat	This work
BSAS229	amyE:AymaD-lacZ cat	This work
BSAS333	amyE:AymaD-lacZ cat	This work
BSAS239	Δ*ymaD:aphA3*	This work
BSAS240	amyE:AkimD-lacZ cat	This work
BSAS329	amyE:AkimD-lacZ cat	This work
BSAS249	amyE:AkimD-lacZ cat	This work
BSAS250	amyE:AkimD-lacZ cat Δ*zur:aphA3*	This work
BSAS251	amyE:AkimD-lacZ cat Δ*zur:aphA3*	This work
BSAS252	amyE:AkimD-lacZ cat Δ*zur:aphA3*	This work
BSAS296	Δ*spa:spc*	This work
BLUC201	amyE:AymaD-luc cat	This work
BLUC204	amyE:AymaD-luc cat Δ*spa:spc*	This work
BLUC205	amyE:AymaD-luc cat Δ*zur:aphA3*	This work
BLUC202	amyE:AymaD-luc cat Δ*zur:aphA3*	This work
BLUC205	amyE:AymaD-luc cat Δ*zur:aphA3*	This work
BLUC227	amyE:AymaD-lacZ cat Δ*spa:spc*	This work

spa, pC194 chloramphenicol acetyl-transferase gene; *aphA3*, Enterococcus
ericids kanamycin-resistance gene; *erm*, erythromycin-resistance gene; *spc*,
Staphylococcus aureus spectinomycin-resistance gene.

(Additional file 1: Figure S1) indicating that ion deficiency
induced *yciC* expression in cells synthesizing Zur as well as
Zur*SPA* proteins. The binding of Zur*SPA* to the *yciC*
promoter region was reversible upon metal ion starvation. We
concluded from this data that the Zur*SPA* fusion protein
was functional for transcriptional regulation.

Genome-wide mapping of Zur binding sites

To identify Zur-binding targets in the *B. subtilis* gene-
ome, we carried out ChIP-on-chip experiments. The
zur::zur-spa strain was grown in LB medium to expo-
nential phase. After cross-linking, Zur-bound DNA was
immunoprecipitated using a SPA tag specific antibody.
The signals from two independent experiments were pro-
cessed and peaks corresponding to Zur*SPA* binding sites
were selected using a cut-off value of 4.0 (see Methods).
Overall 80 enriched DNA regions were identified from the
ChIP-on-chip signals (Additional file 2: Table S1). Among them, 5 were located in genomic regions known to belong to the Zur regulon (Figure 1A) [22]. As in parallel, we used the ChIP-on-chip methodology to study various *B. subtilis* transcription factors [23,24], we observed that all the peaks detected with Zur were exclusively specific to this regulator.

We further compared our data with previous *in silico* studies [25]. The promoter-proximal Zur-binding sites upstream of *yrpE* and the pseudogene S903 (also named *rpmGC*) exhibited Zur box motifs. We then tested expression of the *yrpE* gene in wild-type and Δ*zur* cells by using a transcriptional fusion between the *yrpE* promoter region and the *lacZ* reporter gene. Expression of the PyrpE promoter was 30-fold increased in a zur mutant compared to the wild-type during the exponential phase of growth (Additional file 1: Figure S1). These results demonstrated the Zur-dependent regulation of *yrpE*. We also detected Zur binding upstream of the short *yczL* gene, encoding a protein of unknown function. Expression of *yczL* is co-regulated with *yciC* and is driven from a single promoter leading to the *yczLyciC* transcript [26]. Altogether, these findings delineated the Zur primary regulon, which is now composed of 11 genes expressed from 7 distinct promoters (*znuABC*, *folEByciB*, *rpsNB*, *rpmEB*, *rpmGC*, *yczLyciC* and *yrpE*) fulfilling three criteria: (i) *in vivo* Zur binding in ChIP-on-chip experiments; (ii) presence of a Zur box; (iii) Zur-dependent regulation of expression.

In addition, 37 additional promoter-proximal Zur binding sites were detected less than 200 base-pairs upstream

Figure 1 Typical Zur-binding sites during growth of *B. subtilis* in exponential phase in LB medium. Each of the 10 panels represents a chromosomal region with annotated genes. The ChIP-on-chip profiles with the peaks detected are represented in blue. (A) Zur*SPA*-binding sites in promoter regions of the known Zur regulon. (B) Zur-binding sites in intragenic regions.
of a translational start site (Additional file 2: Table S1) suggesting a Zur-dependent expression and existence of new candidates to be part of the Zur regulon. The expression of all the genes belonging to the Zur primary regulon displayed a similar expression profile whereas the expression of the genes closed to the 37 newly identified promoter-proximal sites did not appear correlated with the Zur primary regulon [26]. These genes might be controlled by Zur under specific unknown conditions. The presence of predicted Zur boxes in these regions is discussed below.

Finally, 35 peaks were located within intragenic regions more than 200 bp downstream a start codon (Figure 1B). The location of these regions was intriguing since none Zur intragenic binding site has so far been described.

Prediction of Zur boxes within Zur-binding sites
To investigate the presence of Zur boxes within the newly identified Zur-binding sites, we performed *in silico* analyses. Zur binds to DNA sites, which display high sequence similarity to those recognized by Fur and PerR although regulon overlap in naturally occurring promoter/operator sites has not been reported [27-29]. Here, we used the MEME standard bioinformatic method [30] to identify common motifs among genomic regions representing 100 bp centered at each Zur-binding sites. An appealing feature of this program is its ability to automatically compute optimal motif widths, in contrast to the majority of current motif-finding software. We did not impose a constraint that the motif must be an inverted repeat sequence on the search. This yielded a 20-nt motif present in 40 Zur-binding sites and matching the previously reported Zur box consensus (Figure 2A and B) [25]. The conserved nucleotides at positions 4, 5, 15 and 16 corresponded to the most critical for Zur binding (Figure 2C) [11].

Seven predicted Zur boxes occurred in the promoter regions belonging to the Zur regulon, validating our *in silico* approach. The 33 newly identified Zur boxes were associated to *in vivo* Zur binding in inter- as well as in intragenic regions with a broad distribution of ChIP-Scores (see Methods), which reflect the strength of *in vivo* Zur-DNA interaction (Additional file 3: Table S2). Correlation between ChIP-Scores and the degree of similarity of each Zur box to the consensus sequence was investigated. As shown in Figure 3, no clear correlation was observed. It is possible that differences in ChIP-Scores result not only from Zur-DNA binding affinity but also from differences in cross-linking efficiency at some DNA regions. Interestingly, the highest ChIP-Scores (>15) were associated to Zur boxes located less than 50 bp from a translational start site (Figure 4) suggesting that the genomic location could contribute to the strength of Zur binding *in vivo*.

Next, the Zur box consensus was submitted to FIMO [31] to identify putative Zur box in all the *B. subtilis* genome. Hits with a *p* value of \(\leq 10^{-6} \) were regarded as significant, resulting in 167 candidates including the 40 Zur boxes associated with *in vivo* Zur binding (see above) (Additional file 4: Table S3). These results showed that only a set of potential Zur boxes were bound by Zur, at least in the conditions used. Half of the Zur-binding sites detected by ChIP-on-chip did not display a significant match to the Zur box consensus. As shown in Figure 4, these sites were located in inter- as well as in intragenic with some high ChIP-Scores.
Using MEME, we were unable to identify a common DNA sequence motif among Zur targets that lack a canonical Zur box motif.

The intragenic Zur box from ymaD promotes a Zur-mediated repression when placed within a promoter region

We further investigated the functionality of an intragenic Zur box to be recognized by the wild-type Zur protein to promote a repressive effect on transcription. We chose the intragenic Zur box located in the ymaD gene encoding a putative peroxiredoxin. Peroxiredoxins are important for antioxidant defense by reducing hydrogen peroxide (H_2O_2), which induces the zinc uptake system ZosA in B. subtilis [19]. A ΔymaD deleted strain (Table 1) was constructed and the sensitivity of this ymaD mutant to H_2O_2 was tested in liquid medium. After 30 min of growth in the presence of 400 μM H_2O_2, 0.005% and 1% survival was observed for the mutant and the wild-type cells, respectively (Additional file 5: Figure S2). Thus, deletion of the ymaD gene increased the sensitivity of the cells to H_2O_2, indicating that YmaD plays a role in protecting cells against oxidative stress.

Subsequently, we tested the ability of the ymaD intragenic Zur box to promote Zur-mediated regulation. In a previous in silico prediction, a unique Zur box motif was detected in the yrpE promoter region from nucleotide −22 to −41 relative to the translational start site [25]. yrpE is transcribed from a σA-dependent promoter (Figure 5A) [26]. Two types of transcriptional fusions with the promoter region of the yrpE gene were constructed. First a pA$_{yrpE}$-lacZ fusion was obtained using the yrpE promoter sequence spanning from −241 to −1 related to the translational start site, which included the native Zur box sequence. The fusion sequence was integrated at the amyE locus of the wild-type and Δzur strains (Table 1). Expression of the pA$_{yrpE}$ promoter was 20-fold increased in a Δzur mutant compared to the wild-type (Figure 5B). In the second pB$_{yrpE}$-lacZ fusion, the native Zur box of yrpE was replaced by the intragenic Zur box sequence from ymaD (Figure 5A). This fusion exhibited 16-fold higher level in Δzur cells than in the wild-type (Figure 5B). Thus, the intragenic Zur box sequence from ymaD was recognized by Zur to mediate transcriptional repression when located in a promoter region. This confirmed the hypothesis that intragenic Zur box sequences are functional Zur binding sites.

Intragenic Zur boxes: a role in transcription elongation?

Some transcription factors, such as B. subtilis CodY and CcpA regulators, can regulate the transcription
elongation by a roadblock mechanism [32,33]. Thus, we tested whether several intragenic Zur binding sites could participate in such a regulatory process. The ydeO, ywhC and ktrD genes contain intragenic Zur-binding sites and encode putative membrane protein, potential zinc metalloprotease, and K^+ -transporting ATPase, respectively. They are transcribed from σ^A-dependent promoters [26]. Different DNA regions were fused to the lacZ reporter gene and integrated at the amyE locus of the wild-type strain (Figure 6A, Table 1). The pAyynaD, pAydeO, pAywhC and pAktrD fusions contained the promoter region and the start of the encoding-sequence including the native Zur box. The pBynaD, pBydeO, pBywhC and pBktrD fusions contained symmetric mutations in each half-site of the Zur box at position 4 and 5 (Figure 6A) because these point- mutations were shown to completely abrogate Zur binding (Gabriel et al., [11]). β-galactosidase activities were examined during exponential growth (Figure 6B). Expression values of the pAyynaD, pAydeO, pAywhC and pAktrD fusions ranged between 2 and 42 units of β-galactosidase activity. In contrast, the pBynaD, pBydeO, pBywhC and pBktrD fusions were 4- to 9-fold upregulated (Figure 6B) suggesting that intragenic Zur boxes mediate a transcriptional cis-repressive effect. Expression of the pA and pB fusions was also tested in a zur mutant but similar levels of expression was observed in Δzur and wild-type cells (data not shown).

Zur-binding sites overlap genes responding to disulfide stress

Our analyses revealed that a large overlap existed between the location of Zur-binding sites and genes whose expression responds to disulfide stress [24]. Zur-binding sites were located less than 400 bp upstream of the translational start site or in the coding sequences of 31-activated and 19-repressed genes in response to diamide stress (Additional file 6: Table S4). Furthermore, Zur-binding sites are associated to 10 genes (citR, cysK, ilvA, katA, S1408, pps, ybxG, ynaD, yusD, yvcI) reported to be directly regulated by Spx [24], suggesting that Zur- and Spx-mediated regulations partially overlap.

To investigate a potential role of an intragenic Zur box to mediate a disulphide stress response, we choose to test the effect of diamide treatment on ynaD expression in wild-type and Δspx genetic backgrounds. As it is known that LacZ activity is very sensitive to diamide addition, we constructed a pAyynaD'-lacZ and pBynaD'-lacZ fusions in the wild-type (WT) strain and the Δzur deleted mutant. Nucleotides are numbered relative to the translational start site of the ynaD gene. Location of the Zur box is indicated by boxes. White box, native Zur box sequence from the ynaD, β-galactosidase activities were measured at least 3 times independently.

Expression of the transcriptional pA and pB fusions	WT	zur mutant
pAyynaD'	6 ≤	104 ± 11
pBynaD'	6 ≤	83 ± 13

Figure 5 Structure of the yrpE promoter region and expression of yrpE-lacZ transcriptional fusions. (A) Detailed view of the yrpE promoter region in the two transcriptional fusions. The σ^A-dependent recognition site is underlined, the ribosome-binding site is capitalized. The Zur box motif is bold. In pAyynpE, the Zur box motif is the native sequence. In pByynpE, the Zur box motif is the intragenic Zur box sequence from ynaD. The six nucleotides differences are indicated in bold capital letters. (B) Expression of the transcriptional pAyynpE-lacZ and pBynaD-lacZ fusions in the wild-type (WT) strain and the Δzur deleted mutant. Nucleotides are numbered relative to the translational start site of the yrpE gene. Location of the Zur box is indicated by boxes. White box, native Zur box sequence from the yrpE promoter region; black box, Zur box sequence identified within the ynaD gene; β-galactosidase activities were measured at least 3 times independently.

Discussion

Using the ChIP-on-chip methodology, we identified 80 enriched DNA-regions in the B. subtilis chromosome
that are reproducibly bound by the Zur repressor under abundant zinc growth conditions. We recovered the known Zur regulon and confirmed that the predicted Zur boxes present upstream of *yrpE* and *rpmGC* [17,25] are functional binding sites in vivo. These data allow to define the Zur primary regulon, which is now composed of 7 transcription units. Consequently, the whole Zur binding sites identified by ChIP-on-chip appear relevant. Remarkably, a second set of 33 newly identified sites bound by Zur contained a Zur box motif, which differs from the Fur and PerR boxes at positions 4, 5, 15, and 16 and displays conservation of bases at flanking positions that are not strongly conserved in Fur and PerR boxes (positions 1,2,3 and 18, 19, 20) (Figure 2) [11,29]. The last set of Zur binding DNA sites did not contain any direct-repeat sequence or any common motif by the standard bioinformatic methods that we used, suggesting that Zur recognizes degenerated Zur box sequences or that other factors are required for Zur binding at these sites. Interestingly, the Zur binding sites with and without predicted Zur box exhibit a similar distribution relative to coding sequences, with an enrichment around the translation start site (Figure 4), suggesting that both types of sites are functionally similar.

A surprising result from this study was the finding that 35 Zur binding sites are located in intragenic regions. Sixteen of those contain a predicted Zur box. This contrasts sharply with in silico studies, which tend to consider transcription factor-targets within coding sequences as artefacts. Analysis with transcriptional fusions using the

Figure 6 Expression of various transcriptional fusions in the wild-type and the Δzur strains. (A) Scheme of the DNA regions inserted upstream from the *lacZ* reporter gene. Nucleotides are numbered relative to the translational start site of the *ymaD*, *ywhC*, *ydeO* and *ktrD* genes. The native intragenic Zur boxes are indicated by black boxes. The mutated intragenic Zur boxes are indicated by white boxes. The generated point-mutations in the Zur box sequences are indicated in bold capital letters. (B) Cells were grown in LB medium. β-galactosidase activities were determined in extracts prepared from exponentially growing cells at OD600 of 0.6.
lacZ reporter gene allowed us to show that the intragenic Zur box sequence from the ymaD gene was fully functional for Zur-mediated repression when placed in a promoter region. Thus, the experimental strategies used in this study revealed unexpected and functional Zur binding sites. In addition, we showed that the intragenic Zur box within ymaD, ydeO, ywhC and ktrD genes had a cis-repressive effect (3- to 10-fold) on transcription. Expression of these genes was also tested in a Δzur mutant but similar levels of expression was observed in Δzur and wild-type cells (data not shown). As disruption of zinc homeostasis in Δzur cells likely affects many cellular processes, the direct role of Zur binding to the intragenic Zur boxes could be masked by other regulatory effects.

Our study highlights the presence of Zur boxes within a subset of genes encoding functions related to metal ion homeostasis or oxidative stress. We showed that the ymaD gene codes for putative peroxiredoxin-related protein, which plays a role in protecting cells against oxidative stress. Interestingly, ymaD is also under direct regulation by Spx [24] a global transcription key regulator for maintaining redox homeostasis of B. subtilis cells exposed to disulfide stress [34]. The intragenic Zur box of ymaD did not appear to play a direct role on the Spx-dependent regulation. Remarkably, we observed that the ymaD transient induction upon exposure to diamide was abolished in Δzur cells (data not shown) pointing to an interconnection of the Zur- and Spx-mediated responses. As the degradation of Spx is ensured by the ClpXP protease [35], disruption of zinc homeostasis in Δzur cells could impact on the activity of the Zn-dependent protein ClpX and, as a consequence, on the turnover of Spx. Overall, it was not possible to conclude about the direct role of Zur to mediate a regulation via the intragenic Zur boxes because of Δzur deletion may entail significantly changes in other transcription factors activity. In this intricate regulatory network, the binding of Zur to intragenic Zur boxes may contribute to fine-tune gene expression in response to zinc availability.

The interconnection between Zur and Spx may involve more than one gene as Zur binding sites were detected within or near 10 Spx-regulated genes and overall near 50 genes responsive to diamide stress (Additional file 6: Table S4). Overlap between disulfide and oxidative stress responses was previously identified in B. subtilis for the katA gene encoding a catalase. Expression of katA is under the dual control of PerR [29] and Spx [24] regulators. In addition, a regulatory interplay between the responses to zinc deprivation and disulfide stress has been described in Streptomyces coelicolor, where the activity of the thiol-disulfide metabolism regulator σR is induced upon zinc limitation [36]. Our results emphasize the
complex interplay between the regulatory networks controlling zinc homeostasis and redox homeostasis, especially the oxidative and disulfide stress responses.

Conclusions

The Chip-on-chip approach used in this study allowed to considerably expand the catalogue of in vivo Zur-binding sites to 80 inter- as well as intragenic regions. Half of those is associated with an in silico predicted Zur box. The binding of Zur to the newly identified targets may contribute to fine-tune gene expression under specific conditions, our results highlighting a complex link between Zur and the disulfide stress response. Intragenic Zur boxes could be involved in an intricate mechanisms of regulation of the transcription elongation, possibly with other transcriptional factors. Future investigations will be required to investigate the role of Zur binding sites in transcriptional regulation.

Methods

Bacterial strains and growth conditions

The B. subtilis strains used in this work are listed in Table 1. E. coli and B. subtilis cells were grown in Luria-Bertani (LB) medium or in MS medium containing 62 mM K$_2$HPO$_4$, 44 mM KH$_2$PO$_4$, 17 mM trisodium citrate, 11 mM K$_2$SO$_4$, 0.4% glucose, 0.06% L-glutamine, 0.01% L-tryptophan, 0.1% casamino acids, 1 mM MgSO$_4$, 1 mM CaCl$_2$, 100 μM FeCl$_3$ citrate, 112 μM ZnCl$_2$, 5 μM MnCl$_2$, 25 μM CuCl$_2$. Antibiotics were added at the following concentrations when required: 100 μg ampicillin ml$^{-1}$; 5 μg kanamycin ml$^{-1}$; 10 μg erythromycin ml$^{-1}$; 5 μg chloramphenicol ml$^{-1}$; 60 μg spectinomycin ml$^{-1}$. Solid media were prepared by addition of 20 g Agar noble 1$^{-1}$ (Difco). Standard procedures were used to transform E. coli [37] and B. subtilis [38].

DNA manipulations

DNA manipulations and cloning procedures were performed as described elsewhere [37] according to standard procedures. Restriction enzymes, Pfu DNA polymerase and phage T4 DNA ligase were used as recommended by the manufacturer (Biolabs). DNA fragments were purified from agarose gels using the QIAquick kit (Qiagen).

Construction of plasmids and strains

A B. subtilis strain expressing a C-terminal SPA-tagged Zur protein (hereafter ZurSPA) was constructed by chromosomal integration of a translational fusion between the zur coding sequence and the sequential peptide affinity (SPA) tag sequence [39,40], resulting in the BSAS36 strain expressing ZurSPA under the control of its native promoter as unique source of Zur. In this purpose, the zur coding sequence (from nucleotide +13 to +435 relative to the translational start site) was amplified by PCR with oligonucleotides creating an Acc651 restriction site at the 5’ end (5’-GGAAATTGGTACCggaacgtgtaacc tatataaa-3’) and a NcoI restriction site at the 3’ end of the fragment (5’-GGAAATTCCATGccagctagtgtt tctgtt-3’). The PCR product was cloned into plasmid pMUTIN-SPA subsequent to digestion with Acc651 and NcoI [41]. The resulting plasmid was used to transform B. subtilis and to select for erythromycin-resistance. Integration was confirmed by PCR and verified by DNA sequencing.

The zur mutant BSAS45 was constructed by homologous replacement of the Zur coding sequence with the kanamycin-resistance gene aphA3 using a joining PCR technique [42]. The aphA3 gene was first amplified. The region upstream of the zur gene (nucleotides −887 to +65 relative to the translational start site) was amplified by PCR with a 21 bp aphA3 fragment at its 3’ end. The region downstream of zur (nucleotides +366 to +1321) was amplified with a 21 bp aphA3 fragment at its 5’ end. The three DNA fragments were combined and then a PCR reaction was performed with the two external oligonucleotides. The final product, corresponding to the two regions flanking zur with the inserted aphA3 cassette in between, was purified from a gel and used to transform B. subtilis. Integration and deletion were confirmed by PCR and verified by DNA sequencing. The ymdA mutant BSAS239 was constructed by the same strategy. The region upstream of the ymdA gene (nucleotides −921 to +90 relative to the translational start site) was amplified by PCR with a 21 bp aphA3 fragment at its 3’ end. The region downstream of ymdA (nucleotides +400 to +1431) was amplified with a 21 bp aphA3 fragment at its 5’ end. The joining PCR, corresponding to the two regions flanking ymdA with the inserted aphA3 cassette in between was used to transform B. subtilis.

The spx mutant BSAS296 was constructed by homologous replacement of the Spx coding sequence with a spectinomycin-resistance gene spc. The spc gene was first amplified. The region upstream of the spx gene (nucleotides −861 to +57 relative to the translational start site) was amplified by PCR with a 21 bp spc fragment at its 3’ end. The region downstream of spx (nucleotides +348 to +1270) was amplified with a 21 bp spc fragment at its 5’ end. The three DNA fragments were combined and then a PCR reaction was performed with the two external oligonucleotides. The final product, corresponding to the two regions flanking spx with the inserted spc cassette in between, was purified from a gel and used to transform B. subtilis. Integration and deletion were confirmed by PCR and verified by DNA sequencing.

To construct transcriptional fusions with the lacZ reporter gene, DNA fragments corresponding to the various promoter regions under investigation were amplified by PCR. Oligonucleotides were used to create an EcoRI

Page 9 of 12
restriction site at the 5’ end and a BamHI restriction site at the 3’ end of the fragments. PCR products were cloned into plasmid pAC6 subsequent to digestion with EcoRI and BamHI [43]. In this way, the promoter region of yciC (from nucleotide –312 to –1 relative to the translational start site) was fused with the lacZ reporter gene. The transcriptional fusions with the lacZ gene were subsequently integrated at the amyE locus of B. subtilis (Table 1). To generate pBynaD, pBydeO, pBywhC and pBkttrD fusions, we used large primers introducing point-mutations in the Zur box motifs (Figure 6A). The resulting constructs were verified by DNA sequencing. β-galactosidase specific activities were measured during exponential phase growth in LB medium, as described by Miller with cell extracts obtained by lysozyme treatment [44]. One unit of β-galactosidase activity was defined as the amount of enzyme that produces 1 nmol o-nitrophenol min⁻¹ at 28°C. The mean values and standard deviations of at least three independent experiments are shown.

To construct transcriptional fusions with the luc reporter gene, we used the assembly Gibson’s procedure [45] to obtain transcriptional fusions with luc instead of the lacZ gene. The PUC18cm-luc plasmid [46] was used as template to amplify the luc reporter gene. The sequence of the resulting constructs were verified by DNA sequencing. The mean values and standard deviations of at least three independent experiments are shown.

Luciferase assay

For the detection of luciferase activity, strains were first grown in LB medium to an optical density at 600 nm (OD₆₀₀) of 2. Cells were then centrifuged and resuspended in fresh LB medium, adjusting all the cultures to an OD₆₀₀ of 1. These pre-cultures were then diluted 20 fold in fresh LB medium and 200 μl was distributed in each of two wells in a 96-well black plate (Corning). 10 μl of luciferin were added to each well to reach a final concentration of 1.5 mg/ml (4.7 mM). The cultures were incubated at 37°C with agitation in a PerkinElmer Envision 2104 Multilabel Reader equipped with an enhanced sensitivity photomultiplier for luminometry. The temperature of the clear plastic lid was maintained at 38°C to avoid condensation. Relative Luminescence Unit (RLU) and OD₆₀₀ were measured at 5 min intervals.

Genome-wide determination of the Zur-binding sites by ChIP-on-chip

Chromatin Immnunoprecipitation assays were performed to measure the chromosome-wide DNA-binding profiles of Zur, as described previously [26]. Briefly, strain BSAS36 was cultivated at 37°C until an OD₆₀₀ of 0.6 in LB medium with 1 μg erythromycin ml⁻¹. Cells were treated with formaldehyde, cellular DNA was extracted and sonicated, and an antibody against the SPA-tag was used to preferentially purify the DNA regions specifically cross-linked to ZurSPA. The immuno-precipitated DNA (IP) and the control whole cell DNA extract (WCE) were labeled with Cy3 and Cy5, respectively, and co-hybridized to the B. subtilis Roche-NimbleGen tiled microarrays [47].

Peak sequence extraction and analysis

Identification of peaks corresponding to chromosomal Zur binding sites was performed as described in [48]. IP/ WCE ratios (log2) were corrected for dye bias using Loess regression on the MA plot. The signal was smoothed by two rounds of sliding window averaging (29 probes, around 320 bp). Maxima (or minima) were defined as probes for which the smoothed signal is the highest (or lowest respectively) into the window used for smoothing. Peaks within the same 300 bp window were merged. The peak height was calculated as the log2 ratio difference between the smoothed signal values of the maxima and the adjacent minima. In order to quantify enrichment of Zur-bound DNA regions, the signal was smoothed and a ChipScore was calculated as described by Buescher et al. [23]. Briefly, this score is based on the distribution of the peak height values and estimates for each peak its relative distance from the median (ChipScore = [height-median]/[upperquartile-median]). Only the regions associated with a peak scoring ≥ 4 [a threshold determined empirically from ChIP-on-chip experiments with the transcription factor CcpA [23]] in both replicates were considered as putative Zur-binding sites in the subsequent analyses.

Availability

The data discussed in this publication have been deposited in NCBI’s Gene Expression Omnibus and are accessible through GEO Series accession number GSE64671 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE64671).

Additional files

Additional file 1: Figure S1. (A) Effect of ion starvation on the expression of a yciC-lacZ transcriptional fusion in various genetic backgrounds. The BSAS39 (zur⁺) and BSAS44 (zur⁺-spa) strains were cultivated in the MS defined medium until OD₆₀₀ of 1. Samples of 2 ml of the cultures were spread onto solid MS medium containing 20 μg/ml -X-gal. A drop of 10 μl 100 μM EDTA was deposited at the center of each plate. Blue rings corresponded to expression of the fusion in cells around the inhibition zone of EDTA drops. (B) Expression of yypE under the control of Zur Strains were grown in LB medium. Growth was monitored by measuring the optical density at 600 nm: dark circles, wild-type; grey circles, Δzur. Promoter activity of PypE-lacZ was measured in wild-type (blue circles) and Δzur (red circles) cells.

Additional file 2: Table S1. Mapping of Zur DNA binding sites by ChIP-on-chip.

Additional file 3: Table S2. Zur box-like motifs located in Zur-binding regions detected by ChIP-on-chip.
Additional file 4: Table S3. FIMO analysis of the occurrence of the Zur box motif in the whole B. subtilis genome.

Additional file 5: Figure S2. Comparison of the effect of hydrogen peroxide on the survival of ΔydaM and wild-type cells. Survival of BSAS239 ΔydaM (open triangles) and wild-type (black triangles) growing cells in LB medium were calculated after 15 and 30 min of challenge with 400 μM H₂O₂. Hydrogen peroxide was added at OD₆₀₀ of 0.6. One hundred percent corresponds to the number of c.f.u. before H₂O₂ was applied (approx. 5.10⁻⁵ c.f.u. ml⁻¹ of each culture).

Additional file 6: Table S4. Overlap between Zur binding-sites and response to diamide stress.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
EP and SA conceived and designed the experiments, analyzed the data and drafted the manuscript. PN participated in the design of the study and helped to draft the manuscript. All authors read and approved the final manuscript.

Acknowledgments
We would like to thank Dr Etienne Dervyn for the help with transcriptomic analyses and Dr Nathalie Pigeonneau for the help with ChIP-on-chip data analyses. We are grateful to Dr Elena Bidnenko and Dr Olivier Delumeau for careful reading of the manuscript.

Received: 23 September 2014 Accepted: 13 January 2015
Published online: 04 February 2015

References
1. McCaff KA, Huang CC, Ferke CA. Function and Mechanism of Zinc Metalloenzymes. J Nutr. 2002;132(5):1437–46.
2. Krishna SS, Majumdar I, Grishin NV. Structural classification of zinc fingers. Nucleic Acids Res. 2003;31(2):532–50.
3. McDevitt CA, Ogunniyi AD, Valkov E, Lawrence MC, Kobe B, McEwan AG, et al. A molecular mechanism for bacterial susceptibility to zinc. PLoS Pathog. 2011;7(11):e1002357.
4. Blencowe DK, Morby AP. Zn(II) metabolism in prokaryotes. FEMS Microbiol. Rev. 2003;27(2–3):291–311.
5. Moore CM, Gaballa A, Hui M, Ye RW, Helmann JD. Genetic and physiological responses of Bacillus subtilis to metal ion stress. Mol Microbiol. 2005;57(1):27–40.
6. Patzer SI, Hantke K. The ZnuABC high-affinity zinc uptake system and its regulator Zur. J Bacteriol. 2000;182(8):6906–49.
7. Gaballa A, Helmann JD. Identification of a zinc-specific metalloregulatory protein, Zur, controlling zinc transport operons in Bacillus subtilis. J Bacteriol. 1998;180(22):5815–21.
8. Oulton CE, Tobin DA, Penner-Hahn JE, O’Halloran TV. Characterization of the metal receptor sites in Escherichia coli Zur, an unsensitive zinc(II) metalloregulatory protein. Biochemistry. 2001;40(35):10417–23.
9. Lee JW, Helmann JD. Functional specialization within the Fur family of metalloregulators. Biometals. 2007;20(3):485–99. Epub 2007 Jan 2010.
10. Gaballa A, Wang T, Ye RW, Helmann JD. Functional analysis of the B. subtilis Zur regulon. J Bacteriol. 2002;184(23):6508–14.
11. Gabriel SE, Miyagi F, Gaballa A, Helmann JD. Regulation of the B. subtilis yciC gene and insights into the DNA-binding specificity of the zinc-sensing metalloregulator Zur. J Bacteriol. 2008;190(10):3482–8.
12. Ma Z, Gabriel SE, Helmann JD. Sequential binding and sensing of Zn(II) by B. subtilis Zur. Nucleic Acids Res. 2011;39(21):1930–8.
13. Sankaran B, Bonnett SA, Shah K, Gabriel SE, Reddy R, Schimmel P, et al. Zinc-independent folate biosynthesis: genetic, biochemical, and structural investigations reveal new metal dependence for GTP cyclohydrolase IB. J Bacteriol. 2010;192(3):693–703.
14. Nanamiya H, Akanuma G, Natori Y, Murayama K, Kosono S, Kudo T, et al. Zinc is a key factor in controlling alternation of two types of L31 protein in the B. subtilis subtilisin. Biol. Chem. 2004;52(1):273–83.
15. Akanuma G, Nanamiya H, Natori Y, Nomura N, Kawamura F. Liberation of zinc-containing L31 (RpmE) from ribosomes by its paralogous gene product, YtaA, in Bacillus subtilis. J Bacteriol. 2006;188(12):7175–20.
41. Lecontine F, Serena C, Velten M, Costes A, McGovern S, Meile JC, et al. Anticipating chromosomal replication fork arrest: SSB targets repair DNA helicases to active forks. Embo J. 2007;26(19):4239–51.

42. Wach A. PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast. 1996;12(3):259–65.

43. Stülke J, Martin-Verstraete I, Zagorec M, Rose M, Klier A, Rapoport G. Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT. Mol Microbiol. 1997;25(1):65–78.

44. Miller JH. Assay of B-galactosidase. Cold Spring Harbor: Cold Spring Harbor Laboratory; 1972.

45. Gibson DG, Young I, Chuang RF, Venter JC, Hutchison 3rd CA, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009;6(5):343–5.

46. Mirouze N, Prepiak P, Dubnau D. Fluctuations in spo0A transcription control rare developmental transitions in Bacillus subtilis. PLoS Genet. 2011;7(4):e1002048.

47. Rasmussen S, Nielsen HB, Jarmer H. The transcriptionally active regions in the genome of Bacillus subtilis. Mol Microbiol. 2009;73:1043–57.

48. Reppas NB, Wade JT, Church GM, Struhl K. The transition between transcriptional initiation and elongation in E. coli is highly variable and often rate limiting. Mol Cell. 2006;24:747–57.

Submit your next manuscript to BioMed Central and take full advantage of:

• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit