Effectiveness and Safety Profile of Alternative Tobacco and Nicotine Products for Smoking Reduction and Cessation: A Systematic Review

Neily Zakiyah1,2
Febby V Purwadi1,2
Widia N Insani1,2
Rizky Abdulah1,2
Irma M Puspitasari1,2
Melisa I Barliana1,2,4
Ronny Lesmana2,5,6
Amaliya A Amaliya1
Auliya A Suwantika1,2,8

1Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, Indonesia; 2Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, West Java, Indonesia; 3Research Department of Practice and Policy, School of Pharmacy, University College London, London, UK; 4Department of Biological Pharmacy, Biotechnology Pharmacy Laboratory, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, Indonesia; 5Division of Biological Activity, Central Laboratory, Universitas Padjadjaran, Bandung, West Java, Indonesia; 6Department of Periodontics, Faculty of Dentistry, Universitas Padjadjaran, Bandung, West Java, Indonesia; 7Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, Indonesia; 8Center for Health Technology Assessment, Universitas Padjadjaran, Bandung, West Java, Indonesia

Background: Alternative tobacco and nicotine products such as electronic cigarettes (EC), smokeless tobacco, and nicotine replacement therapy (NRT) are currently being assessed as options in tobacco harm reduction due to their potential role in smoking reduction and smoking cessation.

Objective: To provide the current evidence on the effectiveness and safety of various alternative tobacco and nicotine products for smoking reduction and cessation.

Methods: A systematic review using databases from MEDLINE (PubMed), EMBASE, and The Cochrane Library was conducted up to December 2020 to identify eligible experimental and observational studies assessing the use of alternative tobacco and nicotine products on smoking reduction and smoking cessation and the safety of these products. The Cochrane Risk of Bias 2 (RoB 2) and ROBINS-I tools were used to assess the risk of bias of the included studies. Results were described through a narrative synthesis of the evidence.

Results: From 1955 retrieved references, 44 studies (31 randomized controlled trials/RCTs and 13 prospective cohort studies) met the inclusion criteria and were included in the review. Twenty-nine studies were assessing EC, one study evaluated heat-not-burn (HNB) product, five studies were focused on snus, and nine studies assessed NRT in the form of nicotine patch, gum, etc. The overall results suggested that alternative tobacco and nicotine products in the form of EC, snus, and NRT can moderately reduce daily cigarette consumption and have potential to assist smoking cessation attempts, with fewer adverse events.

Conclusion: The findings suggested that alternative tobacco and nicotine products have a potential role in assisting smoking reduction and cessation, highlighting their role in the tobacco harm reduction approach. Further studies should focus on investigating long-term outcomes, safety, and effectiveness of alternative tobacco and nicotine products to better inform smoking reduction/cessation policy.

PROSPERO Registration Number: CRD42020205830.

Keywords: cigarette smoking, smoking cessation, smoking reduction, nicotine, e-cigarettes, snus, nicotine replacement therapy, harm reduction

Background

Smoking is the most significant modifiable risk factor of morbidity and mortality, associated with a wide range of diseases, such as chronic obstructive pulmonary disease (COPD), coronary heart disease (CHD), stroke, lung cancer, and other chronic diseases.1-4 The prevalence of COPD, in particular, increased with prolonged smoking duration both in men and women.5 Smoking-related illnesses are estimated to cause...
more than eight million deaths annually, worldwide. Recent population-based studies showed that prolonged smoking was associated with 10 years reduced life expectancy, and cessation before the age of 40 reduced the risk of smoking-related death by up to 90%. Evidence suggests that approximately half of the smokers reported having made a quit attempt in the past year, but less than 10% of such attempts succeed.

Behavioral approaches such as cognitive behavior therapy, group therapy programs, or individual counseling sessions with or without pharmacotherapy, eg, varenicline, bupropion, etc, have been proven effective for smoking cessation interventions. In patients with COPD, improved lung function and respiratory symptoms were observed in those who received nicotine partial agonist, in addition to individual counseling. However, these interventions have to be delivered by professional facilitators such as physicians, clinical psychologists, nurses, etc. Alternative tobacco and nicotine products such as nicotine replacement therapy (NRTs), electronic nicotine delivery systems (ENDS), electronic cigarette (e-cigarette/EC), and low-nitrosamine smokeless tobacco, are self-help initiated, less invasive interventions that have the potential to assist cessation by attenuating withdrawal symptoms. These adjunct strategies facilitate a transition to abstinence, typically by providing either a markedly lower level or no nicotine, but with much-reduced health risks as a substantially lower amount of harmful chemical constituents are present. Several clinical trials showed that alternative nicotine and tobacco products were more effective for facilitating sustained abstinence and rated significantly more pleasant than other interventions. These harm reduction attempts have the potential to generate tangible public health benefits; nevertheless, this is counterbalanced with concern regarding widespread re-normalization of addiction behavior and its adverse consequences. In a small-scale laboratory-based study, Vardavas et al showed that adverse pulmonary effect was observed following the use of alternative nicotine products. Previous studies showed that the alternative tobacco and nicotine products are currently used by 0.5–5% of the adult population, with up to 20% of smokers using these products as reduction/cessation aid. However, there is little clarity regarding the overall effectiveness and safety of the alternative tobacco and nicotine products and their role in smoking reduction and cessation.

Assessing the risks and benefits of the alternative tobacco and nicotine products is important to better inform tobacco harm reduction policy. Previous systematic reviews have been conducted, but these reviews primarily focused on a single form of alternative tobacco and nicotine products. did not investigate the safety, and performed within the context of a single country, limiting its generalizability. Thus, this comprehensive systematic review was performed to provide an understanding of the overall effectiveness and safety of the alternative tobacco and nicotine products for smoking reduction and/or cessation.

Methods

This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA; Supplementary materials). The objectives and methods of this review were registered in the International Prospective Register of Systematic Review (PROSPERO; Supplementary materials).

Search Strategy

The following databases were used to identify relevant literature, ie, MEDLINE (PubMed), EMBASE, and The Cochrane Library up to December 2020. A systematic search was conducted in these electronic databases to identify relevant studies on the topic of alternative tobacco and nicotine products. The definition of alternative tobacco and nicotine products in this study included heat-not-burn (HNB) products, electronic cigarette (EC), smokeless tobacco such as chewing tobacco, snuff, and snus, and nicotine replacement therapy (NRT) in the form of gum, transdermal patch, nasal spray, oral inhaler, etc. Details on the definition of alternative tobacco and nicotine products are provided in Supplementary materials Table S1.

The following keywords were used for the search: “Electronic Nicotine Delivery Systems” OR “E-Cigarette Vapor” OR “Vaping” OR “e-cigarette” OR “tobacco, smokeless” OR “Tobacco Use Cessation Devices” OR “tobacco, waterpipe” OR “Smoking Water Pipes” AND “drug-related side effects and adverse reactions” OR “Smoking Cessation” OR “Smoking Reduction” (for details on search strategy in all databases see Supplementary materials Table S1).

Study Selection

The search records from all electronic databases were exported to Mendeley reference manager and checked for duplicates. Screening process was carried out in two
stages, ie, initial screening based on title and abstracts followed by full-text screening. Both screening processes were independently performed by two reviewers (NZ and FVP). Any discrepancies were resolved by consensus or by discussions with a third and fourth reviewer (AAS and WNI). The following inclusion criteria were used for the screening process: published articles were selected if they assessed the utilization of alternative tobacco and nicotine products in terms of smoking reductions and smoking cessation or assessing the safety profile of alternative tobacco and nicotine products in terms of reported clinical-related adverse event or clinical and laboratory-measured adverse events in the adult population, published in the last 10 years. Studies on animals and cells, any protocol articles, conference proceedings, review articles, and non-English studies were excluded in the initial screening process. In the full-text screening, we included both experimental (randomized-controlled trials/RCTs) and observational studies (retrospective/prospective cohort, case-control design and nonintervention arms of randomized controlled trials). Irrelevant studies, cross-sectional, case series, and case reports were excluded.

Data Syntheses and Extraction

From each included study, two reviewers (NZ and FVP) extracted data using a predetermined standardized data extraction form. This form was approved by all authors and amended as required. We extracted data regarding study characteristics (author, year of publication, country, study design, characteristics of participants, number of participants, type of interventions, outcome measure, length of study and funding source), and study design. We also extracted study outcomes in terms of smoking reduction, smoking cessation and adverse events along with its reported effect measures.

Risk of Bias and Quality Assessments

Risk of bias and quality assessments were independently evaluated by two reviewers (NZ and FVP) using The Cochrane Risk of Bias 2 tool (RoB 2) for RCTs, in which each included study was assessed qualitatively using five domains ie, randomization process, deviations from intended interventions, missing outcome data, measurement of the outcome, and selection of the reported result. The overall bias for each study was then classified as high, some concerns or low risk of bias, based on the criteria listed in the RoB 2 detailed guideline. Risk of bias graph was derived from this tool. The ROBINS-I tool was used for assessing the risk of bias in nonrandomized and observational studies. The following domains were evaluated, ie confounding, selection of participants, classifications of interventions, deviations from intended intervention, missing data, measurement of outcome and selection of reported results. The overall risk of bias from these domains was qualitatively categorized as critical, serious, moderate or low risk of bias, based on the criteria explained in the ROBINS-I detailed guideline.

Results

Systematic Search

The initial search retrieved 1955 records in PubMed, Embase and the Cochrane Library. After removing 363 duplicates, 1592 articles were screened by title and abstract, excluding 889 records. After the full text screening on 703 articles, 43 articles were included in the systematic review (Figure 1). One extra relevant study was identified from the included references, resulting in the final inclusion of 44 studies.

In terms of study design, 31 studies were RCTs (experimental) and the remaining 13 studies were prospective cohort studies (observational). Based on criteria of alternative tobacco and nicotine products explained previously in the methods, 29 included articles were assessing EC, in which 16 articles were RCTs, and 13 studies were prospective cohort studies. one RCT assessing HNB products, five RCTs assessing snus (categorized as smokeless tobacco) and nine RCTs focusing on NRT (eg, nicotine patch, gum, etc). We did not find any observational studies in categories other than EC products.

Characteristics of Included Studies

The general characteristics and study outcomes of included studies are provided in Table 1. The majority of the studies were assessing EC (68%), followed by NRT (21%), smokeless tobacco (9%) and HNB products (2%). Most of the included studies were carried out in high-income countries, such as the USA (20/43), Italy (7/43) and the UK (5/43). The length of included RCTs varied, from days, weeks, to one year. Details on the outcomes in smoking reduction, smoking cessation and adverse events of the included studies are summarized in Supplementary materials. Table S1
Smoking Reduction

There were nine RCTs \(22,55–57,59,63,66,68,69\) and nine prospective cohort studies \(70–74,78,80–82\) in the EC group, four RCTs on snus \(18,54,85,86\) and two RCTs on NRT \(87,91\) which evaluated the effect of alternative tobacco and nicotine products in smoking reduction. Although variation in number of participants and length of the study was observed between included RCTs in the EC group, all studies reported moderately smoking reduction among trial participants, in which five studies \(22,55,57,63,69\) reported approximately 50% or more reduction in the number of cigarette consumption per day. In addition, three studies reported a greater reduction in nicotine EC compared to non-nicotine EC. \(63,66,69\) Results from cohort studies suggested a similar trend, that the use of EC resulted in a considerably decreased number of cigarettes per day, \(71–74,80–82\) and that EC use was associated with higher odds of reduced daily cigarette consumption. \(70,74\) Nevertheless, contradictory results were also observed among studies, as two studies argued that EC might decrease the likelihood of lowering cigarette consumption. \(70,78\)

Studies on the use of snus for smoking reduction suggested that snus can lead to a decline in number of cigarettes used per day, although the observed reductions were moderate, approximately in a range of 20–30%. \(18,85,86\) In addition, one study that defined their primary endpoint as smoking reduction \(\geq 50\%\) suggested that there was no statistically significant difference between snus and the placebo group, although the proportion of participants that reported more than 75% reduction was significantly higher in the snus group. \(54\) Two out of four included RCTs on snus suggested that snus may be inefficient as a harm reduction approach compared to another type of alternative tobacco and nicotine products, ie nicotine gum, \(86\) and that provision of snus did not increase smoking abstinence. \(18\) Furthermore, that RCTs that focused on NRT in the form of nicotine gum and transdermal nicotine patches also reported a moderate reduction in cigarette consumption. \(87,91\)

Smoking Cessation

In terms of smoking cessation, seven included RCTs \(22,55–57,59,66,69\) and all included prospective cohort studies \(70–82\) assessing EC were observing the quit attempts among participants. Due to variation in the length of the study, the definition of smoking cessation was also varied between studies. All seven RCTs had a long duration of observation, and smoking abstinence was observed in a prolonged manner, ie, continuous abstinence ranging from six months to one year. Overall, the results from seven RCTs in the EC group suggested a very modest portion of subjects who were abstinent from cigarette smoking. \(22,55–57,59,66,69\) The results from cohort studies showed conflicting results with regard to smoking cessation. Ten cohort studies indicated that the use of EC was associated...
Author, Year of Publication	Country	Participants	Type of Intervention(s)	Main Outcomes	Main Conclusion	Length of Study	Overall Risk of Bias	Funding		
Haziza et al 2016	Switzerland	21–65 years old; smoke ≥10 commercially available non-menthol cigarettes per day for ≥3 consecutive years	THS 2.2	–	–	✓	The incidence of AE in THS group is lower than cigarettes group. Oropharyngeal pain and vertigo percentage is higher in THS groups	5 days	Some concerns	Sponsored
Bullen et al 2013	New Zealand	≥18 years old; smoke ≥10 cigarettes per day for the past year	EC, nicotine patches or non-nicotine EC	✓	✓	✓	EC, with or without nicotine were modestly effective for smoking cessation, and few AEs	6 months	Low	Nonprofit
Caponnetto et al 2013	Italy	≥18 years old; smoke ≥10 factory made cigarettes per day for at least the past 5 years	Group A (12 weeks of 7.2 mg EC), group B (6-weeks of 7.2 mg EC and 6 weeks with 5.4 mg EC), and group C (12 weeks of non-nicotine EC)	✓	✓	✓	EC, with or without nicotine decreased cigarette consumption without any significant reported AEs	1 year	Low	Sponsored
Adriaens et al 2014	Belgium	Mean age 43.71 years old; smoke ≥10 cigarettes per day for at least 3 years	Two different ECs (EC1 and EC2) as experimental groups and control groups (cigarettes). After 8 weeks, the control group are allowed to smoke EC	✓	✓	–	EC was considered effective for smoking reduction and smoking cessation	32 weeks	Some concerns	N/A
D’Ruiu et al 2015	USA	21–65 years old; smoke an average of ≥10 manufactured cigarettes per day for at least 12 months	Five different types of classic and flavored EC (product A-E) or product F: cigarettes	–	–	✓	The use of EC is considered tolerable	11 Days	Some concerns	Sponsored
Table 1 (Continued).

Author, Year of Publication	Country	Participants Characteristics	Number	Type of Intervention(s)	Main Outcomes	Main Conclusion	Length of Study	Overall Risk of Bias	Funding		
Cibella et al 2016⁹⁹	Italy	≥18 years old; smoke ≥10 tobacco cigarettes per day, for at least the past 5 years	183	Group A: 12 weeks EC 2.4%; Group B: 6 weeks EC 2.4% and 6 weeks EC 1.8%; Group C: 12 weeks non-nicotine EC	✓	✓	✓	Smoking reduction and cessation is considered moderate. The EC is well tolerable	1 year	Some concerns	Sponsored
Cravo et al 2016⁶⁰	UK	21–65 years old; BMI 18–35 kg/m²; smoke 5–30 cigarettes per day for at least one year	387	Switching to using an EVP prototype or continuing to smoke their own cigarettes brand for a total of 12 weeks	–	–	✓	More participants in the EVP group experienced AEs	12 weeks	Some concerns	Sponsored
Farsalinos et al 2016⁶¹	Italy	≥18 years old; smoke ≥10 tobacco cigarettes per day for at least the past 5 years	300	2.4% EC, or 1.8% EC or non-nicotine EC	–	–	✓	Quitters group showed the highest reduction of systolic BP. Diastolic BP also significantly reduced	1 year	Low	Sponsored
Kumral et al 2016⁶²	Turkey	≥18 years old; Smoke one pack of cigarettes per day for at least 5 years	98	Smokers using EC to quit (EC group); Group 2: Smokers who quit smoking without the aid of medical therapy and a device (non-EC group)	–	–	✓	Sinonasal symptoms were better after 3 months of cessation of cigarette smoking	3 months	Some concerns	N/A
Tseng et al 2016⁶³	USA	21–35 years old; daily smoker; smoke ≥10 cigarettes per day	99	Disposable 4.5% EC or non-nicotine EC for 3 weeks	✓	–	✓	Using EC increases the odds of CPD reduction by 50% without any significant reported AEs	3 weeks	Low	Nonprofit
Walele et al 2016⁶⁴	UK	21–65 years old; BMI 18–35 kg/m²; smoke 5–30 cigarettes per day for at least one year	24	Part 1: 4 groups consist of different doses of EC. NRT nicotine inhalator and cigarettes Part 2: 4 groups with different doses of EC	–	–	✓	The highest nicotine concentration EC has more frequent AEs	1 week	Some concerns	Sponsored
Study (Year)	Country	Age	Smoking Habit	Number	Intervention	CPD Rate	AE Rate	Conclusion	Duration	Concerns	Funding Source
----------------------	---------	-----	---------------	--------	---	---------	---------	---	---------	----------	----------------
D’Ruiz et al 2017	USA	21–65 years old; smoke ≥10 manufactured tobacco cigarettes per day	105	Different types of rechargeable EC (Group A1-A3); different types of rechargeable and disposable EC + usual brand cigarettes (Group B1-B3); or complete tobacco and nicotine product cessation (group C)	-	-	Exclusive use of EC reduces more number of CPD than dual users. EC is considered effective as a cessation method	1 week	Some	Sponsored	
Baldassarri et al 2018	USA	≥18 years old; smoke 1 or more tobacco cigarettes per day	40	Both groups received standard care (nicotine patch and counselling) and were randomized to: EC or non-nicotine EC	✓	✓	There is no significant difference in cigarette consumption reduction and AEs among both groups, and only a small portion of subjects abstinent from smoking	24 weeks	Some	Nonprofit	
George et al 2019	UK	≥18 years old; smoke ≥15 cigarettes per day for at least 2 years	114	Group 1: EC containing 16 mg nicotine; Group 2: non-nicotine EC plus nicotine flavoring. Group 3: unwilling to quit continued with cigarettes in a parallel preference arm	-	-	Switching to EC improves FMD and vascular endothelial function significantly	1 month	Some	Nonprofit	
Hjek et al 2019	UK	≥18 years old; smoke ≥10 cigarettes (amount not specified)	886	Nicotine-replacement products or EC (18 mg/mL)	✓	✓	EC is more effective in reducing cigarette consumption than NRT. More AEs experienced in the EC group	1 year	Some	Nonprofit	
Veldheer et al 2019	USA	21–65 years old; smoke ≥10 cigarettes per day	520	Cigsub (a non-aerosol producing, non-nicotine containing cigarette substitute) or EC (with 0, 8, or 36 mg/mL nicotine concentration)	✓	-	EC is more effective in reducing cigarette consumption than cig-sub	9 months	Some	Nonprofit	
Walker et al 2020	New Zealand	≥18 years old; smoke tobacco cigarettes (amount not specified)	1124	Patches (21 mg, 24h); patches plus EC (18 mg/L), or patches plus a non-nicotine EC	✓	✓	Similar percentage on cigarette reduction in both groups. The patches + EC group is significantly higher in continuous abstinence	6 months	High	Nonprofit	
Author, Year of Publication	Country	Participants	Type of Intervention(s)	Main Outcomes	Main Conclusion	Length of Study	Overall Risk of Bias	Funding			
----------------------------	---------	--------------	-------------------------	---------------	----------------	----------------	---------------------	---------			
Joksić et al 2011¹⁴	Serbia	20–65 years old; smoke >10 cigarettes per day for >1 year	Snus (0.5 or 1.0 g) or placebo	✓ ✓ ✓	Snus was more likely to help smoking cessation than placebo. Significantly more people in snus group were reporting smoking reduction. Overall, the snus was well-tolerated	48 weeks	Low	Sponsored			
Fagerstrom et al 2012²⁰	USA	25–65 years old; smoke daily for at least a year	Snus (0.5 or 1.0 g) or placebo	– ✓ ✓	Snus is efficient to achieve continuous smoking abstinence. Treatment-related AEs are more frequently reported in the snus group	28 weeks	Low	Sponsored			
Burris et al 2014³⁵	USA	18–65 years old; smoke ≥10 cigarettes per day on average for at least 1 year	(1) Cigarettes, (2) Snus to cope or (3) Snus to reduce	✓ – ✓	Snus declined the number of cigarette consumption with mostly mild AEs	2 weeks	Some concerns	Nonprofit			
Allen et al 2016⁴⁶	USA	18–70 years old; smoke ≥10 cigarettes per day	Snus (2.5 mg or 2.6 mg nicotine/pouch or 4 mg nicotine gum	✓ ✓ ✓	Women were more likely than men to report AEs during the study. Snus may not be an optimal harm reduction approach for either gender	1 year	High	Nonprofit			
Carpenter et al 2017¹⁸	USA	≥19 years old; smoke ≥ 10 cigarettes per day	Six-week supply of snus or not received snus	✓ ✓ ✓	There is no significant difference in cigarette reduction among both groups, but snus users are less likely to quit cigarettes	58 weeks	Some concerns	Nonprofit			
Nicotine Replacement Therapy (NRT)

Study	Country	Age	Smoking	PREP Group	Control Group	Duration	Source	Notes			
Carpenter and Gray (2010)	USA	18–65 years old; smoke ≥10 cigarettes per day on average for at least 1 year	31	PREP Group: different brand of tobacco lozenges; Control Group: cigarettes	✓	–	✓	Nicotine gum is moderately efficient in reducing cigarette consumption. Mild AEs are more commonly experienced by PREP group	2 weeks	Some concerns	Nonprofit
Carpenter et al (2011)	USA	≥18 years old; smoke at least 10 cigarettes per day	849	PQA alone or NRT sampling within the context of a PQA	–	✓	–	Nicotine therapy did not give a synergic effect to practice quit attempt (PQA)	6 weeks	Some concerns	Nonprofit
Tønnesen et al (2012)	Denmark and Germany	≥18 years old; smoke cigarettes daily for the last 3 years or more (no lower limit of cigarettes)	479	NMS or placebo spray	–	✓	✓	NMS has a higher continuous abstinence rate than placebo. However, it may increase body weight. The incidence of AEs and SAEs cases is higher in NMS subjects	1 year	Some concerns	N/A
Buller et al (2014)	USA	18–30 years old. Smoke at least 1 cigarette in the past 30 days	3094	Randomized to one of three cessation services. Smokers could request a free two-week course of nicotine patches	–	✓	–	NRT use helps smoking cessation and achieve continuous abstinence	26 weeks	Some concerns	Nonprofit
Schnoll et al (2015)	USA	≥18 years old; smoke at least 10 cigarettes per day	525	8 (standard), 24 (extended), or 52 weeks (maintenance) of transdermal nicotine patches 21 mg	✓	✓	✓	Long-term use of NRT reduces more cigarette consumption but not increases the odds of abstinence. The long-term use of NRT is well tolerated	1 year	Some concerns	Nonprofit
Caldwell et al (2016)	New Zealand	18–70 years old; smoke at least 9 cigarettes per day	502	Active inhaler or placebo inhaler. Subjects from both groups received active nicotine patches 21 mg/24 h for 18 weeks, 14 mg/24 h for 2 weeks, and 7 mg/24 h for 2 weeks.	–	✓	✓	Combined NRT use (inhaler and patch) increases the likelihood to be abstinent. The AE of inhaler and patch are experienced by most subjects in both groups. However the most common side effect in the combined group is progressively declining over time	6 months	Low	Nonprofit

(Continued)
Author, Year of Publication	Country	Participants	Type of Intervention(s)	Main Outcomes	Main Conclusion	Length of Study	Overall Risk of Bias	Funding
Schlam et al 2018a,b	USA	≥18 years old; smoke ≥5 cigarettes per day over the past 6 months	(1) medication adherence counselling vs none; (2) automated medication adherence calls vs none; (3) electronic medication monitoring with feedback and counselling vs e-monitoring alone; (4) 26 vs 8 weeks of nicotine patch plus nicotine gum; and (5) maintenance counselling vs none	– ✓ ✓	The percentage of days participants used the patch and the number of nicotine gum used were associated with abstinence	1 year	Some concerns	Nonprofit
Preloading Investigators 2018a,b	UK	≥18 years old; regularly smoke cigarettes, cigars, or roll-up tobacco cigarettes	Preloading arm: nicotine patches 21 mg/24 h; control: not receive nicotine patches	– ✓ ✓	Nicotine patch use before quitting has bigger odds on abstinence. There is one case of SAE that is possibly due to nicotine patch use, which is acute coronary syndrome in 64 year old woman	1 year	Some concerns	Nonprofit
Leung et al 2019a,b	Hong Kong	≥18 years old; smoke ≥10 cigarettes per day for at least 1 year	Combined NRT group received counselling and nicotine patches and gum (2 mg). Single NRT group received counselling and a nicotine patches	– ✓ ✓	Smoking abstinence rate is higher in combined NRT use with small number of AE and non-significant difference between groups	1 year	Some concerns	N/A

Observational; Prospective cohort

Electronic Cigarettes (EC)

| Polosa et al 2011a,b | Italy | 18–60 years old, smoke ≥15 factory-made cigarettes per day | EC users (a full 4-weeks supply of 7.4 mg EC) and were followed up prospectively for 6 months | ✓ ✓ ✓ | EC can significantly reduce the number of CPD. The AEs is waning eventually | 6 months | Serious | Sponsored |
Study Authors	Country	Age, Smoking History	Sample Size	Follow-Up	Outcome Measures	Duration	Risk Level	Funding Source
Polosa et al 2014[1]	Italy	18–60 years old, smoking ≥15 factory-made cigarettes per day for at least the past 10 years	40	✓	EC users for a period of 6 months and followed up prospectively for 2 years	2 years	Serious	Sponsored
Polosa et al 2014[2]	Italy	18–60 years old, smoking ≥15 factory-made cigarettes per day for at least the past 10 years	50	✓	EC users and followed-up for 6 months prospectively	6 months	Serious	Sponsored
Al-Delaimy et al 2015[3]	USA	18–59 years, had smoked at least 100 cigarettes during their lifetime	1000	✓	Surveyed California smokers at 2 time points 1 year apart	1 year	Moderate	N/A
Rahman et al 2016[4]	Malaysia	18–65 years old; use e-cig alone or with tobacco cigarette for last 1 month	220	–	(1) single user EC and (2) dual user (EC+cigarettes)	1 month	Serious	N/A
Shi et al 2016[5]	USA	≥18 years old	2454	✓	A representative cohort of US smokers from the 2010 Tobacco Use Supplement to the Current Population Survey (TUS-CPS) was re-interviewed 1 year later	1 year	Serious	Nonprofit
Mantey et al 2017[6]	USA	18–29 years old, current/former cigarette smokers	627	✓	The use of EC by current and former cigarettes smoker	1 year	Moderate	Non-profit
Mohamed et al 2018[7]	Malaysia	≥18–65 years old; existing sole EC and dual users using ECs for at least 1 month	218	✓	24-week observational study of sole EC and dual user using EC for at least 1 month	6 months	Serious	N/A
Weaver et al 2018[8]	USA	≥18 years old; current and established smokers	1284	–	Survey of established smokers at baseline for a 12-month follow-up study on their smoking and EC use	1 year	Moderate	Nonprofit

(Continued)
Table 1 (Continued).

Author, Year of Publication	Country	Participants	Type of Intervention(s)	Main Outcomes	Main Conclusion	Length of Study	Overall Risk of Bias	Funding
Berry et al 2019	USA	≥25 years old, smoke tobacco cigarettes	Data from Population Assessment of Tobacco and Health (PATH) study to investigate the associations between EC initiation and cigarettes cessation/reduction	✓ ✓ –	Smokers who initiated daily EC smoking has higher odds of quitting smoking	1 year	Serious	Nonprofit
Flacco et al 2019	Italy	30–75 years old; smoke ≥1 tobacco (only) cigarette daily for ≥6 months (tobacco smokers); users of any type of e-cig for ≥6 months (e-cig users); users of both tobacco and e-cig for ≥6 months (dual users)	4-years EC use follow-up of cigarettes user, EC user, and dual user	✓ ✓ –	Dual user decrease the cigarette consumption but did not increase the likelihood of smoking cessation or reduction	48 months	Moderate	Nonprofit
Gomajee et al 2019	France	Adult smokers (mean age 44.9) and former smokers (mean age 43.6)	The use of EC by current and former smokers from the CONSTANCES cohort participants, and who had at least 1 completed follow-up questionnaire	✓ ✓ –	EC smokers reduce cigarette consumption significantly and EC use longer than 1 year has a higher chance of quitting smoking	1 year	Moderate	Nonprofit
Sweet et al 2019	USA	≥18 years; responded as “daily” or “some days/week” use of tobacco cigarettes, smokeless tobacco, e-cigarettes, or dual use of two or more products	Participants enrolled in the Tobacco User Adult Cohort and categorized as dual user (daily user of cigarettes and daily or some days per week use of EC). Participants were interviewed face-to-face every 6 months, through 18 months	2713 ✓ –	No significant difference in cigarette consumption reduction. Dual users have higher odds in quitting at 6 months	18 months	Moderate	Nonprofit

Notes: Overall bias for RCTs (experimental) were assessed using Cochrane Risk of Bias 2 tool (RoB 2), while observational studies were assessed using ROBINS-I tools; Sponsored: the study was funded by a profit organization; Nonprofit: the study was funded by a nonprofit organization; N/A: the study did not report funding.

Abbreviations: RCT, randomized controlled trial; THS, tobacco heating system; AEs, adverse events; SAEs, serious adverse events; EVP, electronic vapor product; BP, blood pressure; MCC, mucociliary clearance; FMD, flow-mediated dilation; EC, e-cigarette; NRT, nicotine replacement therapy; CPD, cigarette per day; PQA, practice quit attempt; NMS, nicotine metered spray.
with a higher likelihood of smoking abstinence and that EC increased the odds to abstain from cigarettes,71–74,76,77,79–82 while three cohort studies suggested that any EC users may be at increased risk for smoking cessation failure and that the use of EC was associated with lower success rate to quit smoking,70,75,78 with reported adjusted odds ratio (aOR) \(0.41; 95\% \text{ confidence interval (CI): 0.186–0.93,}^{70}\) aOR 0.4, \(95\% \text{CI: 0.2–0.8}^{78}\) and aOR 0.25, \(95\% \text{CI (0.11–0.57)}^{75}\). In addition, three studies showed that single user EC had much higher odds to abstain from cigarette consumption than dual users (EC+ cigarette).73,76,79 In addition, there was variation in the length of observed abstinence among the included prospective cohort studies, ranging from seven days to 12 months follow-up.

Studies on snus as a smoking cessation method were also unequivocal in their conclusion of whether snus can be an efficient harm reduction approach. Two studies showed that snus was approximately two to three times more efficient in attaining continuous abstinence compared to placebo54,84 while two other studies suggested that snus could reduce the likelihood to quit smoking and that snus may not be an ideal way in reducing tobacco harm.18,86 Moreover, overall NRT use showed that they helped in sustaining smoking abstinence and that two studies92,95 observed a synergistic effect of NRT combination in abstinence rate. More details on study outcomes, including length of abstinence in each study, are provided in Table S1.

Adverse Events

Adverse events were either self-reported or laboratory-measured. Almost all RCTs studies in the EC group were assessing its potential adverse events (14 out of 16 studies).22,55,56,58–67,69 In addition, five out of 13 prospective cohort studies on EC also reported adverse events.76,79–82 The most frequently reported adverse events in the EC group were classified as mild, such as cough, mouth, and throat irritation, headache, difficulty sleeping, and abnormal dreams. Two studies reported the incidence rate of adverse events of nicotine EC compared to nicotine patches (1.05, 95\% CI: 0.82–1.34)55 and incidence rate associated with the use of EC (1.60, 95\% CI: 1.55–1.65).60 Overall results indicated no significant intervention-related severe adverse events. Similar results were also observed in EC cohort studies, that the most frequently reported adverse events were moderate eg, mouth and throat-related problems. The only included HNB study reported the safety profile of tobacco heating system (THS) and indicated only moderate adverse events as well, for instance, headache, oropharyngeal pain, and abnormal spirometry, with the estimated incidence of 62.5\% in THS and 70.7\% in the cigarette group.83 Moreover, all studies assessing snus reported intervention-related adverse events. Four studies comparing smokers who were randomized to use snus and no snus (identified as control or placebo) showed that the adverse events were more frequently reported in the snus group compared to the control group.18,54,84,85 The adverse events were mostly considered mild eg, nausea, burning in throat, and mouth, and stomach problems. One study assessed the use of snus vs nicotine gum for different gender showed that women were more likely to inform adverse events during the study than men.86

In addition, three NRT studies that assessed the use of tobacco lozenges,87 nicotine metered spray,89 and nicotine patches94 described that the adverse events were more common in the intervention group rather than in the control or placebo group. The reported adverse events were mostly mild, however one study suggested the occurrence of severe adverse events ie, acute coronary syndrome, which was possibly related to the use of nicotine patches.94 The remaining studies on NRT suggested rather moderate adverse events.91–93,95

Risk of Bias and Quality Assessment

Across the 44 articles included in this review, 31 studies were RCTs. According to study design classification in the RoB 2 tool, 29 studies18,22,54–57,59–63,65–69,83–95 were classified as parallel-group trials and the remaining two were categorized as crossover trials.58,64 Based on RoB tool assessment, 22 studies out of 31 included RCTs (71\%) had some risk of bias, two studies had high risk of bias (6\%) and seven studies were deemed low in their risk of bias assessment (23\%). In details, 96\% of studies had low risk through a selection of the reported result, 96\% studies had low risk from measurement of the outcome, 78\% had low risk of bias from missing outcome data, 70\% were assessed as had a low risk of bias through deviations from intended interventions, and 44\% studies had low risk of bias from randomization process. Figure 2 depicts the risk of bias assessment in these 30 included RCTs.

According to ROBINS-I tool to assess the risk of bias in the included observational studies, seven out of 13 studies (54\%) had serious risk of bias and six studies had moderate risk of bias (46\%). The overall risk of bias assessment from RoB 2 and ROBINS-I can be seen in Table 1.
This systematic review described the utilization of alternative tobacco and nicotine products in terms of assisting current cigarette smokers in reducing their daily cigarette consumption, and smoking cessation by tempering withdrawal symptoms. This review also defined the potential adverse events that could occur due to using different types of alternative tobacco and nicotine products. Overall, the results indicated that the use of alternative tobacco and nicotine products had the potential to encourage smoking reduction by decreasing the number of cigarettes the current smokers used, even though variations in the efficacy of different products were observed. EC with or without nicotine, snus, and NRT were observed to have a moderate effect in the smoking reduction. Moreover, the effectiveness of alternative tobacco and nicotine products on smoking cessation was consistently observed in almost all included experimental and observational studies, even though the abstinence verification method and the degree of effectiveness were varied among different products. Even if the effectiveness is considered moderate, the use of these products was observed to associate with a reduction in the number of cigarettes used, which is prominent in highlighting the substantial evidence demonstrating that gradual reduction in cigarette consumption could further initiate future quit attempts.

Among all alternative tobacco and nicotine products, EC was the most frequently examined product to aid reduction/cessation among the included studies (n=18/44). In addition to helping relieve nicotine withdrawal similar to other interventions, EC use was regarded as an effective behavioral substitute, as it addressed additional sensory and behavioral cues of smoking. The existing literature suggested that EC might be helpful in reduction/cessation attempts, with several RCTs consistently reporting EC as superior compared to the NRT. Another recent trial conducted in the context of the stop smoking service in England further demonstrated that using EC as a cessation aid was likely to be cost-effective compared to NRT in the same setting. It generated a significantly higher one-year quit rate and incurred lower costs than NRT. Further studies comparing clinical efficacy, as well as the economic benefits of these interventions, are required to determine the generalizability of this finding.

Similar to previous reviews, we found that short to medium-term use of EC was associated with few adverse events, of which the large majority were considered non-serious. The longest follow-up period was observed in a study by Polosa et al, showing that EC was well-tolerated during six-months use with no major adverse event (requiring hospitalization/unscheduled primary care consultation) occurring during the two-year period.
follow-up period. In addition, potential pulmonary and cardiovascular benefit was observed in a study where cigarette smokers changed partly or completely to EC for five days, suggesting potential for harm reduction. Nevertheless, clinical evidence on long-term impact has yet to be characterized. Several studies have shown that toxicants generated from filler (eg, glycerol, polyglycerol) and nicotine inhalation in ECs might contain carcinogens, oxidants, and irritants, such as formaldehyde, acetaldehyde, methylglyoxal, and acrolein, and its chronic exposure has been associated with inflammation. Yet, previous study showed that compared with combustible tobacco products, ECs contain a significantly lower level of toxicants. Understanding whether lower exposure to these toxicants will result in tangible long-term health benefit/harm is urgently required.

Although the findings from this review indicated that ECs might be one of the potential strategies in tobacco harm reduction, it should be emphasized that since EC products were very diverse in both design and characteristics, the effectiveness and safety might differ as well. Exposure to nicotine and other potentially toxic substances in ECs was varied and depended largely on product characteristics, such as liquid constituents, device characteristics, and settings. In addition, the risk of smoking relapse in a former smoker using ECs remains unclear. The most recent systematic review and meta-analysis study showed an increased risk of smoking relapse among EC users (RR 1.38 (95%CI: 1.11–1.65)). However, this pooled estimate was based on very few studies (three studies in the quantitative analysis). Therefore, more studies are needed to further confirm this finding.

Besides, the included studies primarily focused on the potential effectiveness of ECs for smoking reduction and cessation in adult smokers, when in reality, these products were also being used by youth, possibly those who had never tried cigarettes. There are also increasing public health concerns that ECs may renormalize “smoking-like” behavior, particularly among youth. The prevalence of EC use among adolescent populations is currently increasing, posing a concern whether ECs are exposing this vulnerable group to nicotine. Although there is evidence that ECs are considered safer in comparison to cigarettes, the early exposure to nicotine may predict concerning patterns of future nicotine use. In addition, there have been reports of pulmonary risks such as the condition electronic-cigarette-associated lung injury (EVALI) and neurodevelopmental effects. Furthermore, very little evidence existed on EC as a smoking cessation approach among youth.

In order to assess EC as one of the tobacco harm reduction approaches at a population level, a thorough understanding of the estimation of both potential benefits and harms from EC should also be taken into account. In addition, the huge variation in terms of length of studies and the number of participants in the included studies in this review suggested that more well-designed RCTs and observational studies are needed to further clarify our findings.

Studies on the use of snus for smoking reduction were not unequivocal in their conclusion whether snus can be an efficient smoking reduction/cessation approach. In one of the largest trials involving 1236 participants that reported snus decreased quit attempts, the provision of snus was unguided without any additional support. The importance of behavioral support as an adjunct for smoking reduction/cessation programs has been underlined by a previous Cochrane review by Hartmann-Boyce et al. This review showed high-certainty evidence that provision of behavioral support (eg, group therapy/individual counseling, either in-person or by telephone; written material), in addition to pharmacotherapy was likely to increase quit attempts by up to 20%, based on pooled estimates from 65 trials.

Previous meta analysis comprising two RCTs investigating effectiveness of snus showed that snus increased quit rates. Nevertheless, both trials had relatively small sample sizes (n=250 and 319), and both success rates were relatively low. Snus had been reported as the preferred method for quitting in Scandinavian countries, and previous observational studies using self-reported data confirmed that compared with the NRT, snus increased probability of cessation, presumably owing to the nicotine uptake from snus that resembles that of combustible tobacco compared to latter approach. Nevertheless, the degree of evidence was low, suggesting further research is currently needed to expand the evidence base for the utility, as well as safety, of snus as a reduction/cessation aid.

Different forms and delivery methods of NRT had been evaluated by the included studies, including patches, inhaler, mouth sprays, gum/lozenges, or comparison of different forms. Combined NRT products had been consistently reported as superior to assist cessation up to 52 weeks and that NRT can increase the chance to successfully stop smoking. A previous review showed...
that combination NRT produced greatest benefits relative to monotherapy for smoking cessation.118 It has been estimated that the use of different forms of NRT resulted in more adequate nicotine replacement from various mechanisms, possibly generating additive effects (i.e., patch releases steady-state nicotine serum level to prevent acute withdrawal, while another NRT form, eg, gum/lozenge, may provide a coping mechanism addressing the behavioral urge of smoking).49,116,117 Our restriction to include references in the last 10 years might be limiting the effectiveness of NRT in smoking reduction/cessation because the availability of NRT products and their role had been assessed extensively since as early as the 1980s.17 However, the reason for our restriction was to showcase and focus on the most recent evidence on alternative tobacco and nicotine products.

As nicotine may interfere with the cardiovascular system, presumably through sympathetic neural stimulation and systemic catecholamine release, cardiovascular safety profile associated with NRT use has been extensively examined.23,89,91–95,119–121 Relatively long-term (five-year observation period) impact of NRT gum use was assessed by Murray et al, which showed that long-term exposure of this intervention was not associated with major adverse cardiovascular events.119 Among patients with a history of acute coronary syndrome, no excess risk of recurrent cardiovascular events was observed following the use of NRT in this high-risk population.121 As NRT delivers nicotine without a combustion process, the risk might be lower compared to that of EC,23 nevertheless, current evidence remains unclear with regard to this comparison, and further robust investigation is required.

Alternative tobacco and nicotine products, including EC, smokeless tobacco, and NRT, are a current development in tobacco harm reduction.23,122 According to evidence gathered by this review as well as previous research,17,23,34,36,38,40 these approaches can be considered to be less harmful in a means of causing fewer adverse events compared to a cigarette and has the potential to assist smoking reduction and even cessation. Among smokers, the urge to smoke is often tough to break, and relapse is prevalent even for those who intend to quit smoking.56 Therefore, to prevent tobacco-related morbidity and mortality, there is an urgency for alternative and more efficient means to reduce the harms caused by a particular behaviour. The approach in tobacco harm reduction includes amending and adjusting regulations that potentially can escalate damages, empowering people and policymakers with accurate information and evidence-based policy, and suggesting alternatives and substitutions of lower-risk products that may further promote the cessation of cigarette smoking to current smokers.123 In addition, to ensure efficient resource allocation for such policy, more economic evaluation studies comparing clinical effectiveness and cost of different alternative tobacco and nicotine products would be valuable to support evidence-based public health initiatives.96

Furthermore, the strength of our review lies in the provision of comprehensive information on the role of different types of alternative tobacco and nicotine products in smoking reduction/cessation, as well as their potential safety issues. In addition, we used extensive search strategies, resulting in a relatively large number of included studies. Nevertheless, this review also has limitations. First, due to heterogeneity of the included studies, we were unable to conduct a meta-analysis, nevertheless a narrative review has been provided outlining current evidence on this topic and highlighting gap that remains unexplored for future studies. Another limitation was the risk of publication bias since we did not search grey literature, as we only included peer-reviewed published studies to ensure comparable study quality.

Conclusion

The results suggest that the use of alternative tobacco and nicotine products has been shown to potentially influence smoking reduction and cessation process, with various degree of effectiveness between different products. Available evidence indicated that these products are generally well-tolerated following short to medium-term use. The most common adverse events reported included mouth and throat-related irritation, dry cough, headache, and changes in pulmonary laboratory functions which were considerably milder than with conventional cigarettes. These findings are also highlighting the potential role of these products in a tobacco harm reduction approach. Further studies should focus on investigating long-term outcome, safety and effectiveness of alternative tobacco and nicotine products and also on monitoring both product use and awareness to better inform smoking reduction/cessation policy.

Data Sharing Statement

All data generated or analyzed during this study are included in this published article and Table S1.
Author Contributions
Study conception and design: NZ, FVP, WNI, AAS; search strategy: NZ, FVP, AAS; study screening: NZ, FVP, WNI, AAS; data organization and presentation: NZ, FVP, RA, MIB, IMP; appraisal of included studies: NZ, FVP, WNI; data analysis and interpretation: NZ, FVP, WNI, RA, AAS; initial manuscript drafting: NZ, WNI; manuscript review and finalization: NZ, FVP, WNI, RA, IMP, MIB, RL, AA, AAS. All authors contributed to data analysis, drafting or revising the article, have agreed on the journal to which the article will be submitted, gave final approval of the version to be published, and agree to be accountable for all aspects of the work.

Funding
This research was funded by the Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran.

Disclosure
The authors reported no conflicts of interest in this work.

References
1. O’Keeffe LM, Taylor G, Huxley RR, Mitchell P, Woodward M, Peters SA. Smoking as a risk factor for lung cancer in women and men: a systematic review and meta-analysis. BMJ Open. 2018;8(10):e021611. doi:10.1136/bmjopen-2018-021611
2. Hackshaw A, Morris JK, Boniface S, Tang JL, Milenković D. Low cigarette consumption and risk of coronary heart disease and stroke: meta-analysis of 141 cohort studies in 55 study reports. BMJ. 2018;360:j5855. doi:10.1136/bmj.j5855
3. Jones-Burton C, Seliger SL, Scherer RW, et al. Cigarette smoking and incident chronic kidney disease: a systematic review. Am J Nephrol. 2007;27(4):342–351. doi:10.1159/000103382
4. Terzikhan N, Verhamme KMC, Hofman A, Stricker BH, Brusselle GG, Lahousse L. Prevalence and incidence of COPD in smokers and non-smokers: the Rotterdam Study. Eur J Epidemiol. 2016;31(8):785–792. doi:10.1007/s10654-016-0132-z
5. Liu Y, Pleasants RA, Croft JB, et al. Smoking duration, respiratory symptoms, and COPD in adults aged 45 years with a smoking history. Int J COPD. 2015;10:1409–1416. doi:10.2147/COPD.S82259
6. World Health Organization. WHO report on the global tobacco epidemic 2019: offer help to quit tobacco. Geneva; 2019.
7. Jha P, Ramasundarahettige C, Lansdown V, et al. 21st-century hazards of smoking and benefits of cessation in the United States. N Engl J Med. 2013;368(4):341–350. doi:10.1056/NEJMsa1211128
8. Sakata R, McGale P, Grant EJ, Ozasa K, Peto R, Darby SC. Impact of smoking on mortality and life expectancy in Japanese smokers: a prospective cohort study. BMJ. 2012;345:e7093. doi:10.1136/bmj.e7093
9. Creamer MR, Wang TW, Babb S, et al. Tobacco product use and cessation indicators among adults: United States, 2018. Morb Mortal Wtky Rep. 2019;68:1013–1019. doi:10.15585/mmwr.mm6845a2
10. Hughes JR, Keely J, Naud S. Shape of the relapse curve and long-term abstinence among untreated smokers. Addiction. 2004;99(1):29–38. doi:10.1111/j.1556-4044.2004.00540.x
11. Stead LF, Carroll AJ, Lancaster T. Group behaviour therapy programmes for smoking cessation. Cochrane Database Syst Rev. 2017;2017.
12. Stead LF, Kolipilai P, Fanshawe TR, Lancaster T. Combined pharmacotherapy and behavioural interventions for smoking cessation. Cochrane Database Syst Rev. 2016;2016.
13. Pezzuto A, Carico E. Effectiveness of smoking cessation in smokers with COPD and nocturnal oxygen desaturation: functional analysis. Clin Respir J. 2020;14(1):29–34. doi:10.1111/crj.13096
14. Pezzuto A, Stellato M, Catania G, et al. Short-term benefit of smoking cessation along with glycoproteinon on lung function and respiratory symptoms in mild COPD patients: a retrospective study. J Breath Res. 2018;12(4):046007. doi:10.1088/1752-7163/aad0a8
15. Etter JF. Nicotine replacement therapy for long-term smoking cessation: a meta-analysis. Tob Control. 2006;15(4):280–285. doi:10.1136/tc.2005.015487
16. Villalobos RE, Ambrocio GPL, Fernandez L. Electronic cigarettes for smoking cessation: an individual patient meta-analysis of randomized controlled trials. In: Tobacco, Smoking Control and Health Education. European Respiratory Society; 2019:OA5135.
17. Hartmann-Boyce J, Chepkin SC, Ye W, Bullen C, Lancaster T. Nicotine replacement therapy versus control for smoking cessation. Cochrane Database Syst Rev. 2018(5):CD009014.6
18. Carpenter MJ, Wahlquist AE, Burris JL, et al. Snus undermines quit attempts but not abstinence: a randomised clinical trial among US smokers. Tob Control. 2017;26(2):202–209. doi:10.1136/tobaccocontrol-2015-052783
19. Tayarah R, Long GA. Comparison of select analytes in aerosol from e-cigarettes with smoke from conventional cigarettes and with ambient air. Regul Toxicol Pharmacol. 2014;70(3):704–710. doi:10.1016/j.yrtph.2014.10.010
20. Wagner KA, Flora JW, Melvin MS, et al. An evaluation of electronic cigarette formulations and aerosols for harmful and potentially harmful constituents (HPHCs) typically derived from combustion. Regul Toxicol Pharmacol. 2018;95:153–160. doi:10.1016/j.yrtph.2018.03.012
21. Bullen C, McRobbie H, Thornley S, Glover M, Lin R, Laugesen M. Effect of an electronic nicotine delivery device (e-cigarette) on desire to smoke and withdrawal: user preferences and nicotine delivery: randomised cross-over trial. Tob Control. 2010;19(2):98–103. doi:10.1136/tc.2009.031567
22. Hajek P, Phillips-Waller A, Przulj D, et al. A randomized trial of E-cigarettes versus nicotine-replacement therapy. N Engl J Med. 2019;380(7):629–637. doi:10.1056/NEJMoa1808779
23. Farsalinos KE, Polosa R. Safety evaluation and risk assessment of electronic cigarettes as tobacco cigarette substitutes: a systematic review. Ther Adv Drug Saf. 2014;5(2):67–86. doi:10.1177/2042098614524430
24. Vakkalanka JP, Hardison LS, Holstege CP. Epidemiological trends in electronic cigarette exposures reported to U.S. Poison Centers. Clin Toxicol. 2014;52(5):542–548. doi:10.3109/15563650.2014.913176
25. Vardavas CI, Anagnostopoulos N, Kougius M, Evangelopoulos V, Connolly GN, Behrakis PK. Short-term pulmonary effects of using an electronic cigarette: impact on respiratory flow resistance, impedance, and exhaled nitric oxide. Chest. 2012;141(6):1400–1406. doi:10.1378/chest.11-2443
26. McNeill A, Brose LS, Caldwell R, et al. Evidence review of e-cigarettes and heated tobacco products 2018. A report commissioned by public health England. 2018.
27. Jackson SE, Hill E, Shahab L, Beard E, Michie S, Brown J. Prevalence and correlates of long-term e-cigarette and nicotine replacement therapy use: a prospective study in England. BMJ Open. 2019;9(10):e029252. doi:10.1136/bmjopen-2019-029252
28. Mirbolouk M, Charkhchi P, Kianoush S, et al. Prevalence and distribution of E-cigarette use among U.S. adults: behavioral risk factor surveillance system, 2016. Ann Intern Med. 2018;169(7):429. doi:10.7326/M17-3440

29. Brown J, West R, Beard E, Mitchie S, Shahab L, McNeill A. Prevalence and characteristics of e-cigarette users in Great Britain: findings from a general population survey of smokers. Addict Behav. 2014;39(6):1120–1125. doi:10.1016/j.addbeh.2014.03.009

30. Adkison SE, O’Connor RJ, Bansal-Travers M, et al. Electronic nicotine delivery systems. Am J Prev Med. 2013;44(3):207–215. doi:10.1016/j.amepre.2012.10.018

31. Dockrell M, Morrison R, Bauld L, McNeill A. E-cigarettes: prevalence and attitudes in great Britain. Nicotine Tob Res. 2013;15(10):1737–1744. doi:10.1093/ntt/nrt057

32. Douptcheva N, Gmel G, Studer J, Deline S, Etter J-F. Use of electronic cigarettes among young Swiss men: table 1. J Epidemiol Community Health. 2013;67(12):1075–1076. doi:10.1136/jech.2013-201512

33. Beard E, West R, Mitchie S, Brown J. Association between electronic cigarette use and changes in quit attempts, success of quit attempts, use of smoking cessation pharmacotherapy, and use of stop smoking services in England: time series analysis of population trends. BMJ. 2016;i4645. doi:10.1136/bmj.i4645

34. Lee PN. Epidemiological evidence relating snus to health—an updated review based on recent publications. Harm Reduct J. 2013;10:36. doi:10.1186/1477-5517-10-36

35. McRobbie H, Bullen C, Hartmann-Boyce J, Hajek P. Electronic cigarettes for smoking cessation and reduction. In: McRobbie H, editor. Cochrane Database of Systematic Reviews. Chichester, UK: John Wiley & Sons; Ltd. 2014.

36. Silagy C, Lancaster T, Stead L, Mant D, Fowler G. Nicotine replacement therapy for smoking cessation. In: Stead L, editor. Cochrane Database of Systematic Reviews. Chichester, UK: John Wiley & Sons; Ltd. 2004.

37. Schick SF, Blount DC, Jacob P, et al. Biomarkers of exposure to electronic cigarette use and changes in quit attempts, success of quit attempts, use of smoking cessation pharmacotherapy, and use of electronic-nicotine-delivery-systems ends. Accessed July 6, 2021.

38. Rahman MA, Hann N, Wilson A, Mntzagianian G, Worrall-Carter L. E-cigarettes and smoking cessation: evidence from a systematic review and meta-analysis. PLoS One. 2015;10(3):e0122544. doi:10.1371/journal.pone.0122544

39. Worku D, Worku E. A narrative review evaluating the safety and efficacy of e-cigarettes as a newly marketed smoking cessation tool. SAGE Open Med. 2019;7:205031211987140. doi:10.1177/2050312119871405

40. Moore D, Aveyard P, Connoock M, Wang D, Fry-Smith A, Barton P. Effectiveness and safety of nicotine replacement therapy assisted reduction to stop smoking: systematic review and meta-analysis. BMJ. 2009;338:b402. doi:10.1136/bmj.b4024

41. Malas M, van der Tempel J, Schwartz R, et al. Electronic cigarettes for smoking cessation: a systematic review. Nicotine Tob Res. 2016;18(10):1926–1936. doi:10.1093/ntt/nrt119

42. Mersha AG, Eftekhari P, Bovill M, Tollosa DN, Gould GS. Leveling evidence of adherence to nicotine replacement therapy and its impact on smoking cessation: a protocol for systematic review and meta-analysis. BMJ Open. 2020;10(9):e039775. doi:10.1136/bmjopen-2020-039775

43. Wang W, Cai Y, He Z, Feng N. Electronic cigarette use in China: awareness, prevalence and regulation. Tob Induc Dis. 2019;17. doi:10.18332/tid/105393

44. Moher D, Liberati A, Tetzlaff J, Altman DG, Group TP. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. doi:10.1371/journal.pmed.1000097

45. World Health Organization. WHO | Heat-Not-Burn tobacco products information sheet [Internet]. World Health Organization; 2020 [cited October 21, 2020]. Available from: https://apps.who.int/tobacco/publications/prod_regulation/heat-not-burn-products-information-sheet/en/index.html. Accessed July 6, 2021.

46. U.S Food and Drug Administration. E-cigarettes, and other electronic nicotine delivery systems (ENDS) | FDA [Internet]. FDA; 2020 [cited October 21, 2020]. Available from: https://www.fda.gov/tobacco-products/products/ingredients-components/evaporizers-e-cigarettes-and-other-electronic-nicotine-delivery-systems-ends. Accessed July 6, 2021.

47. U.S Food and Drug Administration. Smokeless tobacco products, including dip, snuff, snus, and chewing tobacco | FDA [Internet]. FDA; 2020 [cited October 21, 2020]. Available from: https://www.fda.gov/tobacco-products/products/ingredients-components/smokeless-tobacco-products-including-dip-snuff-snus-and-chewing-tobacco. Accessed July 6, 2021.

48. Wadgave U, Nagesh L. Nicotine replacement therapy: an overview. Int J Health Sci. 2016;10:425–435.

49. Molyneux A. Nicotine replacement therapy. Br Med J. 2004;328:454–456. doi:10.1136/bmj.328.7437.454

50. Sterne JAC, Savovij V, Page MJ, et al. Rob 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;28:366.

51. Higgins JPT, Savovij V, Page MJ; on behalf of the RoB2 Development Group. Risk of bias tools - current version of RoB 2 [Internet]. 2019 [cited October 22, 2020]. Available from: https://www.riskofbias.info/welcome/rob-2-0-tool/current-version-of-rob-2. Accessed July 6, 2021.

52. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;12:355.

53. Sterne JAC, Higgins JPT, Elbers RG, Reeves BC; the development group for R-I. Risk of bias tools - ROBINS-I detailed guidance [Internet]. 2016 [cited October 21, 2020]. Available from: https://www.riskofbias.info/welcome/home/current-version-of-robins-i-robins-i-detailed-guidance–2016. Accessed July 6, 2021.

54. Joksić G, Spasojević-Tišma V, Antić R, Nilsson R, Rutqvist LE. Randomized, placebo-controlled, double-blind trial of Swedish snus for smoking reduction and cessation. Harm Reduct J. 2011;13(8):25. doi:10.1186/1477-5517-8-25

55. Bullen C, Howe C, Laugesen M, et al. Electronic cigarettes for smoking cessation: a randomised controlled trial. Lancet. 2013;382(9905):1629–1637. doi:10.1016/S0140-6736(13)61842-5

56. Caponnetto P, Campagna D, Cibella F, et al. Effectiveness and safety of an e-Liquid electronic cigarette (ECLAT) as tobacco cigarette substitute: a prospective 12-month randomized control design study. PLoS One. 2013;8(6):e66317. doi:10.1371/journal.pone.0066317

57. Adriaens K, Van Gucht D, Declerck P, Baeyens F. Effectiveness of the electronic cigarette: an eight-week Flemish study with six-month follow-up on smoking reduction, craving and experienced benefits and complaints. Int J Environ Res Public Health. 2014;11(11):11220–11248. doi:10.3390/ijerph11111220

58. D’Ruiz CD, Graff DW, Yan XS, D’Ruiz CD, Graff DW, Yan XS. Nicotine delivery, tolerability and reduction of smoking urge in smokers following short-term use of one brand of electronic cigarettes. BMC Public Health. 2015;15:991. doi:10.1186/s12889-015-2349-2

59. Cibella F, Campagna D, Caponnetto P, et al. Lung function and respiratory symptoms in a randomized smoking cessation trial of electronic cigarettes. Environ Sci. 2016;130(21):1929–1937. doi:10.1042/CS20160268

60. Bravo AS, Bush J, Sharma G, et al. A randomised, parallel group study to evaluate the safety profile of an electronic vapour product over 12 weeks. Regul Toxicol Pharmacol. 2016;81(Suppl 1):S1–S14. doi:10.1016/j.yrtph.2016.10.003
Dovepress

Zakiyah et al

61. Farsalinos K, Cibella F, Caponnetto P, et al. Effect of continuous smoking reduction and abstinence on blood pressure and heart rate in smokers switching to electronic cigarettes. Intern Emerg Med. 2016;11:85–94. doi:10.1007/s11739-015-1361-y

62. Kumral TL, Saltürk Z, Yildirim G, et al. How does electronic cigarette smoking affect sinonasal symptoms and nasal mucociliary clearance? B-ENT. 2016;12:17–21.

63. Tseng FY, Ostroff JS, Campo A. A randomized trial comparing the effect of nicotine versus placebo electronic cigarettes on smoking reduction among young adult smokers. Nicotine Tob Res. 2016;18(10):1937–1943. doi:10.1093/ntr/nrw017

64. Walete T, Sharma G, Savioz R, Martin C, Williams J. A randomised, crossover study on an electronic vapour product, a nicotine inhalator and a conventional cigarette. Part B: safety and subjective effects. Regul Toxicol Pharmacol. 2016;74:193–199. doi:10.1016/j.yrtph.2015.12.004

65. D’Ruiz CD, O’Connell G, Graff DW, Yan XS. Measurement of cardiovascular and pulmonary function endpoints and other physiological effects following partial or complete substitution of cigarettes with electronic cigarettes in adult smokers. Regul Toxicol Pharmacol. 2017;87:36–53. doi:10.1016/j.yrtph.2017.05.002

66. Baldassarri SR, Bernstein SL, Chupp GL, Slade MD, Fucito LM, Toll BA. Electronic cigarettes for adults with tobacco dependence enrolled in a tobacco treatment program: a pilot study. Addict Behav. 2018;80:1–5. doi:10.1016/j.addbeh.2017.11.033

67. George J, Hussain M, Vadiveloo T, et al. Cardiovascular effects of switching from tobacco cigarettes to electronic cigarettes. J Am Coll Cardiol. 2019;74:3112–3120. doi:10.1016/j.jacc.2019.09.067

68. Veldheer S, Parag V, Verbiest M, Laking G, Laugesen M, Bullen C. Pulmonary and other health effects of electronic cigarette use among adult smokers participat- ing in a randomized controlled smoking reduction trial. Addict Behav. 2019;91:95–101. doi:10.1016/j.addbeh.2018.10.041

69. Walker N, Parag V, Verbiest M, Laking G, Laugesen M, Bullen C. Nicotine patches used in combination with e-cigarettes (with and without nicotine) for smoking cessation: a pragmatic, randomised trial. Lancet Respir Med. 2020;8:54–64. doi:10.1016/S2213-2600(19)30269-3

70. Al-Delaimy WK, Myers MG, Leas EC, Strong DR, Hofstetter CR. E-cigarette use in the past and quitting behavior in the future: a population-based study. Am J Public Health. 2015;105(6):1213–1219. doi:10.2105/AJPH.2014.302482

71. Sweet L, Brasky TM, Cooper S, et al. Quitting behaviors among smokers switching to electronic cigarettes with or without nicotine: a national survey. Am J Public Health. 2015;105(6):1213–1219. doi:10.2105/AJPH.2014.302482

72. Goemajee R, El-Khoury F, Goldberg M. Association between electronic cigarette use and smoking reduction in France. JAMA Intern Med. 2019;179(9):1193–1200. doi:10.1001/jamainternmed.2019.1483

73. Flacco ME, Ferrante M, Fiore M. Cohort study of electronic cigarette use: safety and effectiveness after 4 years of follow-up. Eur Rev Med Pharmacol Sci. 2019;23(1):402–412. doi:10.26355/eurrev_201901_16789

74. Berry KM, Reynolds LM, Collins JM, et al. E-cigarette initiation and associated changes in smoking cessation and reduction: the population assessment of tobacco and health study, 2013–2015. Tob Control. 2019;28(1):42–49. doi:10.1136/tobaccocontrol-2017-054108

75. Weaver SR, Huang J, Pechacek TF, Heath JW, Ashley DL, Eriksen MP. Are electronic nicotine delivery systems helping cigarette smokers quit? Evidence from a prospective cohort study of U.S. adult smokers, 2015–2016. PLoS One. 2018;13(7):e0198047. doi:10.1371/journal.pone.0198047

76. Mohamed MHN, Rahman A, Jamshed S, Mahmood S. Effectiveness and safety of electronic cigarettes among sole and dual user vapers in Kuantan and Pekan, Malaysia: a six-month observational study. BMC Public Health. 2018;18:1–10. doi:10.1186/s12889-018-5951-2

77. Mantey DS, Cooper MR, Loukas A, Perry CL. E-cigarette use and cigarette smoking cessation among Texas college students. Am J Health Behav. 2017;41(6):750–759. doi:10.5993/ AJHB.41.6.9

78. Shi Y, Pierce JP, White M, et al. E-cigarette use and smoking reduction or cessation in the 2010/2011 TUS-CPS longitudinal cohort. BMC Public Health. 2016;16:1–9. doi:10.1186/s12889-016-3770-x

79. Rahman A, Nik Mohamad M, Jamshed S. Evaluating effectiveness and safety toward electronic cigarette among Malaysian vapers: one-month observational study. Arch Pharm Pract. 2016;7(2):43–53. doi:10.4103/2045-080X.181038

80. Polosa R, Caponnetto P, Maglia M, Morjaria JB, Russo C. Success rates with nicotine personal vaporizers: a prospective 6-month pilot study of smokers not intending to quit. BMC Public Health. 2014;14:1–9. doi:10.1186/1471-2458-14-1159

81. Polosa R, Morjaria JB, Caponnetto P. Effectiveness and tolerability of electronic cigarette in real-life: a 24-month prospective observational study. Intern Emerg Med. 2014;9(5):537–546. doi:10.1007/s11739-013-0977-2

82. Polosa R, Caponnetto P, Morjaria JB, et al. Effect of an electronic nicotine delivery device (e-cigarette) on smoking reduction and cessation: a prospective 6-month pilot study. BMC Public Health. 2011;11:786. doi:10.1186/1471-2458-11-786

83. Haziza C, de La Bourdonnaye G, Skida D, et al. Evaluation of the tobacco heating system 2.2. Part 8: 5-day randomized reduced exposure clinical study in Poland. Regul Toxicol Pharmacol. 2016;81(Suppl 2):S139–S150. doi:10.1016/j.yrtph.2016.11.003

84. Fagerstrom K, Rutqvist LE, Hughes JR. Snus as a smoking cessa- tion aid: a randomized placebo-controlled trial. Nicotine Tob Res. 2012;14:306–312. doi:10.1093/ntr/ntr214

85. Burris JL, Carpenter MJ, Wahlquist AE, Cummings KM, Gray KM. Brief, instructional smokeless tobacco use among cigarette smokers who do not intend to quit: a pilot randomized clinical trial. Nicotine Tob Res. 2014;16(4):397–405. doi:10.1093/ ntr/nit161

86. Allen A, Vogel RI, Meier E, et al. Gender differences in snus versus nicotine gum for cigarette avoidance among a sample of US smokers. Drug Alcohol Depend. 2016;168:8–12. doi:10.1016/j. drguldep.2016.08.624

87. Carpenter MJ, Gray KM. A pilot randomized study of smokeless tobacco use among smokers not interested in quitting: changes in smoking behavior and readiness to quit. Nicotine Tob Res. 2010;12(2):136–143. doi:10.1093/ntr/ntp186

88. Carpenter MJ, Hughes JR, Gray KM, Wahlquist AE, Saladin ME, Alberg AJ. Nicotine therapy sampling to induce quit attempts among smokers unmotivated to quit: a randomized clinical trial. Arch Intern Med. 2011;171(21):1901–1907. doi:10.1001/ archinternmed.2011.492

89. Tønnesen P, Lauri H, Perfekt R, Mann K, Batra A. Efficacy of a nicotine mouth spray in smoking cessation: a randomised, double-blind trial. Eur Respir J. 2012;40(3):548–554. doi:10.1183/09031936.00155811

90. Buller DB, Halperin A, Severson HH, et al. Effect of nicotine replacement therapy on quitting by young adults in a trial comparing cessation services. J Public Health Manag Pract. 2014;20(2):E7–E15. doi:10.1097/PHH.0b013e3182a08c87

91. Schnoll RA, Goelz PM, Veluz-Wilkins A, et al. Long-term nicotine replacement therapy: a randomized clinical trial. JAMA Intern Med. 2015;175(4):504–511. doi:10.1001/jamainternmed.2014.8313

Journal of Multidisciplinary Healthcare 2021:14

https://doi.org/10.2147/JMDH.S319727

1973
Dovepress

Publish your work in this journal

The Journal of Multidisciplinary Healthcare is an international, peer-reviewed open-access journal that aims to represent and publish research in healthcare areas delivered by practitioners of different disciplines. This includes studies and reviews conducted by multidisciplinary teams as well as research which evaluates the results or conduct of such teams or healthcare processes in general. The journal covers a very wide range of areas and welcomes submissions from practitioners at all levels, from all over the world. The manuscript management system is completely online and includes a very quick and fair peer-review system. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.

Submit your manuscript here: https://www.dovepress.com/journal-of-multidisciplinary-healthcare-journal