Abstract. Let \((M,g)\) be a Riemannian manifold, \(L(M)\) its frame bundle. We construct new examples of Riemannian metrics, which are obtained from Riemannian metrics on the tangent bundle \(T M\). We compute the Levi–Civita connection and curvatures of these metrics.

1. Introduction

Let \((M,g)\) be a Riemannian manifold, \(L(M)\) its frame bundle. The first example of a Riemannian metric on \(L(M)\) was considered by Mok [12]. This metric, called the Sasaki–Mok metric or the diagonal lift \(g^d\) of \(g\), was also investigated in [5] and [6]. It is very rigid, for example, \((L(M), g^d)\) is never locally symmetric unless \((M,g)\) is locally Euclidean. Moreover, with respect to the Sasaki–Mok metric vertical and horizontal distributions are orthogonal. A wider and less rigid class of metrics \(\bar{g}\), in which vertical and horizontal distributions are no longer orthogonal, has been recently considered by Kowalski and Sekizawa in the series of papers [9, 10, 11]. These metrics are defined with respect to the decomposition of the vertical distribution \(\mathcal{V}\) into \(n = \dim M\) subdistributions \(\mathcal{V}_1, \ldots, \mathcal{V}_n\).

In this short paper we introduce a new class of Riemannian metrics on the frame bundle. We identify distributions \(\mathcal{V}_i\) with the vertical distribution in the second tangent bundle \(TT M\). Namely, each map \(R_i : L(M) \to TM\), \(R_i(u_1, \ldots, u_n) = u_i\) induces a linear isomorphism \(R_{i*} : \mathcal{H} \oplus \mathcal{V}_i \to TT M\), where \(\mathcal{H}\) is a horizontal distribution defined by the Levi–Civita connection \(\nabla\) on \(M\). By this identification we pull–back the Riemannian metric from \(TM\). We pull–back natural metrics, in the sense of Kowalski and Sekizawa [8], from \(TM\) and study the geometry of such Riemannian manifolds. We compute the Levi–Civita connection, the curvature tensor, sectional and scalar curvature.
2. Riemannian metrics on frame bundles

Let (M, g) be a Riemannian manifold. Its frame bundle $L(M)$ consists of pairs (x, u) where $x = \pi_{L(M)}(u) \in M$ and $u = (u_1, \ldots, u_n)$ is a basis of a tangent space $T_x M$. We will write u instead of (x, u). Let (x_1, \ldots, x_n) be a local coordinate system on M. Then, for every $i = 1, \ldots, n$ we have

$$u_i = \sum_j u^j_i \frac{\partial}{\partial x_j}$$

for some smooth functions u^j_i on $L(M)$. Putting $\alpha_i = x_i \circ \pi_{L(M)}$, (α_i, u^j_i) is a local coordinate system on $L(M)$. Let ω be a connection form of $L(M)$ corresponding to Levi–Civita connection ∇ on M. We have a decomposition of the tangent bundle $TL(M)$ into the horizontal and vertical distribution:

$$T_u L(M) = \mathcal{H}_u^{L(M)} \oplus \mathcal{V}_u^{L(M)},$$

where $\mathcal{H}^{L(M)} = \ker \omega$ and $\mathcal{V}^{L(M)} = \ker \pi_{L(M)*}$. Let X^h denotes the horizontal lift of a vector field X on M.

Decompose the second tangent bundle TTM into horizontal and vertical part, $T_* TM = \mathcal{H}^{TM}_* \oplus \mathcal{V}^{TM}_*$, with respect to the connection map $K : TTM \to TM$ and the projection in the tangent bundle $\pi_{TM} : TM \to M$, see for example [2]. Let $X^{h,TM}$ and $X^{v,TM}$ denote the horizontal and vertical lifts to TTM of a vector field X on M.

For an index $i = 1, \ldots, n$ define a map $R_i : L(M) \to TM$ as follows

$$R_i(u) = u_i, \quad u = (u_1, \ldots, u_n) \in L(M).$$

Proposition 2.1. The operator R_i has the following properties.

1. We have

$$R_i^* X^h = X^{h,TM}.$$

In particular, R_\ast^* is an isomorphism of $\mathcal{H}^{L(M)}$ and \mathcal{H}^{TM}.

2. Let \mathcal{V}^i be a linear subspace of $\mathcal{V}^{L(M)}$ spanned by fundamental vertical vectors A^\ast, where the matrix $A \in \mathfrak{gl}(n)$ has only nonzero i–th column. Then R_\ast^* is an isomorphism of \mathcal{V}^i and \mathcal{V}^{TM}, and is zero on \mathcal{V}^j for $j \neq i$. Moreover, there is a decomposition

$$\mathcal{V}^{L(M)} = \mathcal{V}^1 \oplus \ldots \oplus \mathcal{V}^m.$$

Proof. Easy computations left to the reader. □

By Proposition 2.1 we have natural identifications

$$\mathcal{H}^{L(M)} \leftrightarrow \mathcal{H}^{TM} \leftrightarrow TM \quad X^h \leftrightarrow X^{h,TM} \leftrightarrow X$$
and
\begin{equation}
(2.2) \quad V^i \leftrightarrow V^{TM} \leftrightarrow TM \leftrightarrow X^v,i \leftrightarrow X^{v,TM} \leftrightarrow X
\end{equation}

Hence, we have defined the vertical lift $X^{v,i} \in V^i$ of the vector $X \in TM$ satisfying the property

$$R_{v*} X^{v,i} = X^{v,TM}.$$

Let $c = (c_1, \ldots, c_n) \in \mathbb{R}^n$ and $C = (c_{ij})$ be an $n \times n$ matrix. We assume that the $(n + 1) \times (n + 1)$ matrix $ar{C} = \begin{pmatrix} 1 & c \\ c^T & C \end{pmatrix}$ is symmetric and positive definite. Let g_{TM} be a Riemannian metric on TM.

Now, we are able to define a new class of Riemannian metrics $\bar{g} = \bar{g}_{c, C}$ on $L(M)$. Let $F : L(M) \to TM$ be any smooth function. Put

$$\bar{g}(X^h, Y^h)_{u} = g_{TM}(X^{h,TM}, Y^{h,TM})_{F(u)},$$

$$\bar{g}(X^h, Y^{v,i})_{u} = c_i g_{TM}(X^{h,TM}, Y^{v,TM})_{F(u)},$$

$$\bar{g}(X^{v,i}, Y^{v,j})_{u} = c_{ij} g_{TM}(X^{v,TM}, Y^{v,TM})_{F(u)}.$$

Fix $u \in L(M)$. Let e_1, \ldots, e_n be a basis in $T_x M$, $\pi(u) = x$, such that $(e_1)^{h,TM}_F, \ldots, (e_n)^{h,TM}_F$ is an orthonormal basis in $\mathcal{H}^{TM}_{F(u)}$. Then

\begin{equation}
(2.3) \quad e_1^h, \ldots, e_n^h, e_1^{v,1}, \ldots, e_n^{v,1}, e_1^{v,n}, \ldots, e_n^{v,n}
\end{equation}

is a basis in $T_u L(M)$. Let G be a matrix of the Riemannian metric g_{TM} with respect to the basis $e_1^{h,TM}, \ldots, e_n^{h,TM}, e_1^{v,TM}, \ldots, e_n^{v,TM}$. The fact that \bar{g} is positive definite follows from the following lemma.

Lemma 2.2. Let

$$G = \begin{pmatrix} I & g^{hv} \\ g^{vh} & \hat{g} \end{pmatrix}$$

be a positive definite symmetric $2n \times 2n$ block matrix. Then the matrix

$$\bar{G} = \begin{pmatrix} I & c \otimes g^{vh} \\ c^T \otimes g^{hv} & C \otimes \hat{g} \end{pmatrix}$$

is positive definite.

Proof. It suffices to show that each principal minor \bar{G}_k, $k = 1, \ldots, n+n^2$, of \bar{G} is positive. Obviously $\det\bar{G}_k = 1 > 0$ for $k = 1, \ldots, n$. Hence we assume $k > n$. Then each minor \bar{G}_k is of the same form as the whole matrix \bar{G}, thus
we will make calculations using matrix \tilde{G}. Computing the determinant of the block matrix we get

$$
\det \tilde{G} = \det(C \otimes \hat{g} - (c^T \otimes g^{vh})(c \otimes g^{hv}))
$$

$$
= \det(C \otimes \hat{g} - (c^T c) \otimes (g^{vh} g^{hv}))
$$

$$
= \det((C - c^T c) \otimes \hat{g} + (c^T c) \otimes (\hat{g} - g^{vh} g^{hv})).
$$

Since

$$
\det(C - c^T c) = \det \bar{C} > 0,
$$

$$
\det \hat{g} > 0,
$$

$$
\det(c^T c) \geq 0,
$$

$$
\det(\hat{g} - g^{vh} g^{hv}) = \det G > 0,
$$

it follows that matrices $(C - c^T c) \otimes \hat{g}$ and $(c^T c) \otimes (\hat{g} - g^{vh} g^{hv})$ are positive definite. Hence theirs sum is positive definite. □

If $\bar{C} = I$ and g_{TM} is the Sasaki metric, then we get Sasaki–Mok metric \bar{g}^d.

Assume now $\bar{C} = I$ and g_{TM} is a natural Riemannian metric on TM such that $g_{TM}(X^h, Y^h) = g(X, Y)$ and distributions $\mathcal{H}^{TM}, \mathcal{V}^{TM}$ are orthogonal. Hence, there are two smooth functions $\alpha, \beta : [0, \infty) \to \mathbb{R}$ such that

$$
\bar{g}(X^h, Y^h)_u = g(X, Y),
$$

$$
\bar{g}(X^h, Y^{v,i})_u = 0,
$$

$$
\bar{g}(X^{v,i}, Y^{v,j})_u = 0, \quad i \neq j,
$$

$$
\bar{g}(X^{v,i}, Y^{v,i})_u = \alpha(|u_i|^2)g(X, Y)
$$

$$
+ \beta(|u_i|^2)g(X, u_i)g(Y, u_i).
$$

(2.4)

The above Riemannian metric does not ”see” the index i of the distribution \mathcal{V}^i. Since all distributions $\mathcal{H}^{L(M)}, \mathcal{V}^1, \ldots, \mathcal{V}^n$ are orthogonal, it follows that we may put $F_i(u) = u_i$, that is consider a family of maps F_1, \ldots, F_n rather than one map F, in the last condition, to obtain the positive definite bilinear form, hence the Riemannian metric,

$$
\bar{g}(X^h, Y^h)_u = g(X, Y),
$$

$$
\bar{g}(X^h, Y^{v,i})_u = 0,
$$

$$
\bar{g}(X^{v,i}, Y^{v,j})_u = 0, \quad i \neq j,
$$

$$
\bar{g}(X^{v,i}, Y^{v,i})_u = \alpha(|u_i|^2)g(X, Y) + \beta(|u_i|^2)g(X, u_i)g(Y, u_i).
$$

(2.5)

We will write α_i and β_i instead of $\alpha(|u_i|^2)$ and $\beta(|u_i|^2)$, respectively.
3. Geometry of \bar{g}

Let (M, g) be a Riemannian manifold, $(L(M), \bar{g})$ its frame bundle equipped with the metric \bar{g} of the form (2.5). Let ∇ and R denote the Levi-Civita connection and the curvature tensor of \bar{g}, respectively.

We recall the identities concerning Lie bracket of horizontal and vertical vector fields [9]

\[[X^h, Y^h]_u = [X, Y]_u - \sum_i (R(X, Y)u_i)^{v,i}, \]

(3.1) \[[X^h, Y^{v,i}]_u = (\nabla_X Y)^{v,i}_u, \]

\[[X^{v,i}, Y^{v,j}]_u = 0. \]

Moreover, in the local coordinates, for $X = \sum_i \xi_i \partial_{x_i}$ we have

\[X^h(u_i) = -\sum_{a,b} \Gamma^j_{ab} u^a_i \xi_b \]

(3.2) \[X^{v,k}(u_i) = \xi_j \delta_{ik} \]

(3.3) where Γ^j_{ab} are Christoffel’s symbols [9].

Proposition 3.1. Connection ∇ satisfies the following relations

\[
\left(\nabla_{X^h} Y^h \right)_u = \left(\nabla_X Y \right)_u^h - \frac{1}{2} \sum_i (R(X, Y)u_i)^{v,i},
\]

\[
\left(\nabla_{X^h} Y^{v,i} \right)_u = \frac{\alpha_i}{2} (R(u_i, Y)X)_u^h + \left(\nabla_X Y \right)^{v,i}_u,
\]

\[
\left(\nabla_{X^{v,i}} Y^h \right)_u = \frac{\alpha_i}{2} (R(u_i, X)Y)_u^h,
\]

\[
\left(\nabla_{X^{v,i}} Y^{v,j} \right)_u = 0 \text{ for } i \neq j,
\]

\[
\left(\nabla_{X^{v,i}} Y^{v,j} \right)_u = \frac{\alpha_j^l}{\alpha_i} \left(g(X, u_i)Y^{v,j} + g(Y, u_i)X^{v,j} \right) + \frac{\beta_i^j - \alpha_i^l}{\alpha_i + \alpha_i^l} g(X, u_i)g(Y, u_i) \frac{\beta_i}{\alpha_i + \alpha_i^l} g(X, Y) U^i,
\]

where $U^i_u = u_i^{v,i}.

Proof. Follows from the formula for the Levi-Civita connection

\[2\bar{g}(\nabla_A B, C) = A\bar{g}(B, C) + B\bar{g}(A, C) - C\bar{g}(A, B) \]

\[+ \bar{g}([A, C], B) + \bar{g}([B, C], A) + \bar{g}([A, B], C) \]

relations (3.1) and the following equalities

\[X_u^{v,i}(g(u_i, Y)) = g(X, Y), \]

\[X_u^{v,i}(|u_i|^2) = 2(X, u_i), \]

\[X_u^h(g(u_i, Y)) = g(u_i, \nabla_X Y). \]
Before we compute the curvature tensor, we will need some formulas concerning the Levi–Civita connection ∇ of certain vector fields.

Lemma 3.2. The following equalities hold

\[
\nabla_{X^i} U^j = 0, \\
\nabla_{X^j} U^i = 0, \\
\nabla_{X^j} U^i = \frac{\alpha_i}{\alpha_i} |u_i|^2 \alpha'_i X^{v,i} + \frac{|u_i|^2 (\alpha_i \beta'_i - \alpha'_i \beta_i) + \alpha_i \beta_i}{\alpha_i (\alpha_i + |u_i|^2 \beta_i)} g(X, u_i) U^j.
\]

and

\[
\nabla_W (R(u_i, X)Y)^Q = \sum_j W(u_j^i) (R(u_i, X)Y)^Q + \sum_j u_j^i \nabla_W (R(\frac{\partial}{\partial x_j}, X)Y)^Q
\]

for any $W \in TL(M)$ and Q denoting the horizontal or vertical lift.

Proof. Follows by standard computations in local coordinates. \hfill \Box

Proposition 3.3. The curvature tensor \bar{R} satisfies the following relations

\[
\bar{R}(X^i, Y^j)Z^h = (R(X, Y)Z)^h + \frac{1}{2} \sum_i (\nabla_Z R)(X, Y)u_i)_{v,i} \\
- \frac{1}{4} \sum_i \alpha_i (R(u_i, R(Y, Z)u_i)X - R(u_i, R(X, Z)u_i)Y \\
- 2R(u_i, R(X, Y)u_i)Z^h, \\
\bar{R}(X^i, Y^j)Z^{v,i} = (R(X, Y)Z)^{v,i} + \frac{\alpha_i}{2} ((\nabla_X R)(u_i, Z)Y - (\nabla_Y R)(u_i, Z)X)^h \\
- \frac{\alpha_i}{4} \sum_j (R(X, R(u_i, Z)Y)u_j - R(Y, R(u_i, Z)X)u_j)^{v,j} \\
+ \frac{\alpha'_i g(Z, u_i)(R(X, Y)u_i)^{v,i} - \beta_i - \alpha'_i}{\alpha_i + |u_i|^2 \beta_i} g(R(X, Y)Z, u_i) U^i, \\
\bar{R}(X^i, Y^{v,i})Z^h = \frac{\alpha_i}{2} ((\nabla_X R)(u_i, Y)Z)^h - \frac{1}{2} (R(Z, X)Y)^{v,i} \\
+ \frac{\alpha'_i}{2 \alpha_i} g(Y, u_i)(R(X, Z)u_i)^{v,i} - \frac{\alpha_i}{4} \sum_j (R(X, R(u_i, Y)Z)u_j)^{v,j} \\
- \frac{\beta_i - \alpha'_i}{2 (\alpha_i + |u_i|^2 \beta_i)} g(R(X, Z)Y, u_i) U^i, \\
\bar{R}(X^i, Y^{v,j})Z^{v,j} = - \frac{\alpha_i \alpha_j}{4} (R(u_i, Y)R(u_j, Z)X)^h \\
\bar{R}(X^i, Y^{v,i})Z^{v,i} = \frac{\alpha'_i}{2} (g(Z, u_i) R(u_i, Y)X - g(Y, u_i) R(u_i, Z)X)^h \\
- \frac{\alpha_i^2}{4} (R(u_i, Y)R(u_i, Z)X)^h - \frac{\alpha_i}{2} (R(Y, Z)X)^h
\]

\[\mathcal{R}(X^{v,i}, Y^{v,j}) Z^h = \alpha_i (R(X, Y) Z)^h \]
\[+ \frac{\alpha_i^2}{4} (R(u_i, X) R(u_i, Y) Z - R(u_i, Y) R(u_i, X) Z)^h \]
\[+ \alpha_i' g(X, u_i)(R(u_i, Y) Z)^h - g(Y, u_i)(R(u_i, X) Z)^h \]
\[\mathcal{R}(X^{v,i}, Y^{v,j}) Z^h = \frac{\alpha_i \alpha_j}{4} (R(u_i, X) R(u_j, Y) Z - R(u_j, Y) R(u_i, X) Z)^h \]
\[\mathcal{R}(X^{v,i}, Y^{v,j}) Z^{v,i} = C_i (g(X, u_i) g(Y, Z) - g(Y, u_i) g(X, Z)) U^i \]
\[+ (A_i g(Y, u_i) g(Z, u_i) + B_i g(Y, Z)) X^{v,i} \]
\[- (A_i g(X, u_i) g(Z, u_i) + B_i g(X, Z)) Y^{v,i} \]
\[\mathcal{R}(X^{v,i}, Y^{v,j}) Z^{v,k} = 0 \quad \text{if } i \neq j, j \]

where
\[A_i = \frac{3(\alpha'_i)^2 - 2 \alpha_i \alpha''_i}{\alpha_i^2} + \frac{\alpha_i \beta'_i - 2 \alpha'_i \beta_i (\alpha_i + |u_i|^2 \alpha_i')}{\alpha_i^2 (\alpha_i + |u_i|^2 \beta_i)} \]
\[B_i = \frac{\alpha_i \beta_i - 2 \alpha_i \alpha'_i - (\alpha'_i)^2 |u_i|^2}{\alpha_i (\alpha_i + |u_i|^2 \beta_i)} \]
\[C_i = -\frac{2 \alpha''_i}{\alpha_i + |u_i|^2 \beta_i} + 3 \alpha_i (\alpha'_i)^2 + 2 (\alpha'_i)^2 \beta_i |u_i|^2 + \alpha_i^2 \beta'_i - \alpha_i \beta_i^2 + \alpha_i \alpha'_i \beta'_i |u_i|^2}{\alpha_i (\alpha_i + |u_i|^2 \beta_i)^2} \]

Proof. Follows from the characterization of the Levi–Civita connection \nand Lemma [3,2] \hfill \Box

Remark 3.4. Notice that
\[A_i \alpha_i - B \beta_i = C_i (\alpha_i + |u_i|^2 \beta_i), \]
which is equivalent to the condition
\[\bar{g}(\mathcal{R}(X^{v,i}, Y^{v,i}) Z^{v,i}, W^{v,i}) = \bar{g}(\mathcal{R}(Z^{v,i}, W^{v,i}) X^{v,i}, Y^{v,i}). \]

Corollary 3.5. Let \(X, Y \) be two orthonormal vectors in the tangent space \(T_x M \). Then the scalar curvature \(\mathcal{K} \) of \((L(M), \bar{g}) \) and \(K \) of \((M, g) \) are related as follows
\[\mathcal{K}(X^h, Y^h) = K(X, Y) - \frac{3}{4} \sum_i \alpha_i |R(X, Y) u_i|^2, \]
\[\mathcal{K}(X^h, Y^{v,i}) = \frac{\alpha_i^2}{4(\alpha_i + \beta_i g(Y, u_i)^2)} |R(u_i, Y) X|^2, \]
\[\mathcal{K}(X^{v,i}, Y^{v,i}) = \frac{A_i (g(X, u_i)^2 + g(Y, u_i)^2) + B_i}{\alpha_i + \beta_i (g(X, u_i)^2 + g(Y, u_i)^2)} \]
\[\mathcal{K}(X^{v,i}, Y^{v,j}) = 0 \quad \text{for } i \neq j. \]
In particular, if \((M, g)\) is of constant sectional curvature \(\kappa\), then
\[
\overline{K}(X^h, Y^h) = \kappa - \frac{3}{4} \kappa^2 \sum_i \alpha_i (g(X, u_i)^2 + g(Y, u_i)^2),
\]
\[
\overline{K}(X^h, Y^{v,i}) = \frac{\kappa^2 \alpha_i^2 g(X, u_i)^2}{4(\alpha_i + \beta_i g(Y, u_i))} \geq 0.
\]
If, moreover, \(\sum_i \alpha_i(t_i) t_i < \frac{4}{3\kappa}\) for all \(t_i > 0\), then \(\overline{K}(X^h, Y^h) > 0\).

Proof. The formula for \(\overline{K}\) follows by Proposition 3.3. Since \(g(X, u_i)^2 + g(Y, u_i)^2 \leq |u_i|^2\), hence, if \((M, g)\) is of constant sectional curvature and \(\sum_i \alpha_i(t_i) t_i < \frac{4}{3\kappa}\), then
\[
\overline{K}(X^h, Y^h) \geq \kappa - \frac{3}{4} \kappa^2 \sum_i \alpha_i |u_i|^2 > 0.
\]

□

Corollary 3.6. The scalar curvature \(\overline{s}\) of \((L(M), \bar{g})\) at \(u \in L(M)\) is of the form
\[
\overline{s} = s - \frac{1}{4} \sum_{i,j,k} \alpha_k |R(e_i, e_j) u_k|^2
+ \sum_k \left(\frac{n(n-1)B_k}{\alpha_k} + \frac{2(nA_k \alpha_k - B_k \beta_k)}{\alpha_k^2} |u_k|^2 + \frac{(n+3)C_k \beta_k}{\alpha_k^2} |u_k|^4
+ \frac{(n-1)\beta_k (B_k(2\alpha_k + \beta_k) + A_k \alpha_k)}{\alpha_k (\alpha_k + |u_k|^2 \beta_k)} + \frac{2C_k \beta_k^2}{\alpha_k^2 (\alpha_k + |u_k|^2 \beta_k)} |u_k|^6 \right),
\]
where \(s\) is the scalar curvature of \((M, g)\) and \(e_1, \ldots, e_n\) is an orthonormal basis in \(T_xM\), \(\pi_{L(M)}(u) = x\).

Proof. Fix \(u \in L(M)\) and let \(e_1, \ldots, e_n\) be an orthonormal basis in \(T_xM\), \(\pi_{L(M)}(u) = x\). Then (2.3) forms a basis of \(T_uL(M)\). Put
\[
\bar{g}_i^j = \bar{g}(e_i^{v,k}, e_j^{v,k}) = \alpha_k \delta_{ij} + \beta_k g(e_i, u_k) g(e_j, u_k).
\]
The inverse matrix \((\bar{g}_i^j)\) to \((\bar{g}_i^j)\) is of the form
\[
\bar{g}_i^j \approx \frac{1}{\alpha_k} \delta_{ij} - \frac{\beta_k}{\alpha_k (\alpha_k + |u_k|^2 \beta_k)} g(e_i, u_k) g(e_j, u_k).
\]
Hence
\[
\overline{s} = \sum_{i,j} \bar{g}(\bar{R}(e_i^h, e_j^h) e_j^h, e_i^h) + 2 \sum_{i,j,k} \bar{g}_i^j \bar{g}(\bar{R}(e_i^h, e_j^{v,k}) e_i^{v,k}, e_j^h)
+ \sum_{i,j,k,l,p} \bar{g}_i^j \bar{g}_k^l \bar{g}(\bar{R}(e_i^{v,k}, e_j^{v,k}) e_i^{v,k}, e_j^{v,k})
\]
Follows now from Proposition 3.3 and the equality
\[
\sum_{i,j} |R(e_i, e_j)u_k|^2 = \sum_{i,j} |R(u_k, e_j)e_i)|^2.
\]
□

In the case of a Cheeger–Gromoll type metric we have:

Corollary 3.7. Assume

\[\alpha_i(t) = \beta_i(t) = \frac{1}{1+t}, \quad t > 0.\]

Then

\[
K(X^{v,i}, Y^{v,i}) = \frac{-t_i(g(X, u_i)^2 + g(Y, u_i)^2) + t_i^2 + 3t_i + 3}{(1+t_i)^2(1 + g(X, u_i)^2 + g(Y, u_i)^2)},
\]

where \(t_i = |u_i|^2\). In particular, if \((M, g)\) is of constant sectional curvature \(0 < \kappa < \frac{4}{3n}\), then sectional curvature \(K\) is nonnegative.

Proof. We have

\[
\sum_i \alpha_i(t_i)t_i = \sum_i \frac{t_i}{1 + t_i} < \frac{4}{3\kappa}
\]

for all \(t_i > 0\) if and only if \(0 < \kappa < \frac{4}{3n}\). Hence, by Corollary 3.5, \(\overline{K}(X^h, Y^h) \geq 0\) for \(X, Y \in T^*_xM\) unit and orthogonal. Moreover, \(g(X, u_i)^2 + (Y, u_i)^2 \leq |u_i|^2 = t_i\).

Thus

\[
\overline{K}(X^{v,i}, Y^{v,i}) \geq \frac{-t_i^2 + t_i^2 + 3t_i + 3}{t_i(1 + t_i)^2} = \frac{3}{t_i(t_i + 1)} > 0.
\]

□

REFERENCES

[1] M. T. K. Abbassi, M. Sarih, On natural metrics on tangent bundles of Riemannian manifolds. Arch. Math. (Brno) 41 (2005), no. 1, 7192.
[2] P. Baird, J. C. Wood, Harmonic morphisms between Riemannian manifolds, Oxford University Press, Oxford 2003.
[3] M. Benyounes, E. Loubeau, C. M. Wood, Harmonic sections of Riemannian vector bundles, and metrics of Cheeger-Gromoll type. Differential Geom. Appl. 25, no. 3, 322–334 (2007).
[4] M. Benyounes, E. Loubeau, C. M. Wood, The geometry of generalised Cheeger-Gromoll metrics. ArXiv, http://arxiv.org/abs/math/0703059.
[5] L. A. Cordero, M. de Leon, Lifts of tensor fields to the frame bundle. Rend. Circ. Mat. Palermo (2) 32 (1983), no. 2, 236–271.
[6] L. A. Cordero, M. de Leon, On the curvature of the induced Riemannian metric on the frame bundle of a Riemannian manifold. J. Math. Pures Appl. (9) 65 (1986), no. 1, 81–91.
[7] P. Dombrowski, On the geometry of the tangent bundle. J. Reine Angew. Math. 210, 73–88 (1962).
[8] O. Kowalski, M. Sekizawa, Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles. A classification. Bull. Tokyo Gakugei Univ. (4) 40 (1988), 129.
[9] O. Kowalski, M. Sekizawa, On curvatures of linear frame bundles with naturally lifted metrics. Rend. Semin. Mat. Univ. Politec. Torino 63 (2005), no. 3, 283–295.
[10] O. Kowalski, M. Sekizawa, On the geometry of orthonormal frame bundles. Math. Nachr. 281 (2008), no. 12, 1799–1809.
[11] O. Kowalski, M. Sekizawa, On the geometry of orthonormal frame bundles. II. Ann. Global Anal. Geom. 33 (2008), no. 4, 357–371.

[12] K. P. Mok, On the differential geometry of frame bundles of Riemannian manifolds. J. Reine Angew. Math. 302 (1978), 16–31.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE
UNIVERSITY OF ŁÓDŹ
UL. BANACHA 22, 90-238 ŁÓDŹ
POLAND
E-mail address: kamiln@math.uni.lodz.pl