Circulating Omega-6, But Not Omega-3 Polyunsaturated Fatty Acids, Are Associated with Clinical Outcomes in Patients with Acute Decompensated Heart Failure

Toshiyuki Nagai¹ *, Yasuyuki Honda¹, Yasuo Sugano¹, Kunihiro Nishimura², Michikazu Nakai², Satoshi Honda¹, Naotsugu Iwakami¹, Atsushi Okada¹, Yasuhide Asaumi¹, Takeshi Aiba¹, Teruo Noguchi¹, Kengo Kusano¹, Hisao Ogawa¹, Satoshi Yasuda¹, Toshihisa Anzai¹, NaDEF investigators¶

¹ Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan, 2 Preventive Medicine and Epidemiology Informatics, National Cerebral and Cardiovascular Center, Osaka, Japan

¶ Membership of the NaDEF investigators is provided in the Acknowledgments.

* nagaicncvc.go.jp

Abstract

Background

Circulating polyunsaturated fatty acid (PUFA) levels are associated with clinical outcomes in cardiovascular diseases including coronary artery disease and chronic heart failure (HF). However, their clinical implications in acute decompensated HF (ADHF) remain unclear. The aim of this study was to investigate the clinical roles of circulating PUFAs in patients with ADHF.

Methods

Circulating levels of PUFAs, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), arachidonic acid (AA) and dihomo-gamma linoleic acid (DGLA), were measured on admission to 685 consecutive ADHF patients. Adverse events were defined as all-cause death and worsening HF.

Results

During a median follow-up period of 560 days, 262 (38.2%) patients had adverse events. Although patients with adverse events had lower n-6 PUFA (AA + DGLA) level than those without, n-3 PUFA (EPA + DHA) level was comparable between the groups. Kaplan-Meier analyses showed that lower n-6 PUFA level on admission was significantly associated with the composite of all-cause death and worsening HF, all-cause death, cardiovascular death and worsening HF (p < 0.001, p = 0.005, p = 0.021, p = 0.019, respectively). In a multivariate Cox model, lower n-6 PUFA level was independently associated with increased risk of adverse events (HR 0.996, 95% CI: 0.993–0.999, p = 0.027).
Conclusions

Lower n-6 but not n-3 PUFA level on admission was significantly related to worse clinical outcomes in ADHF patients. Measurement of circulating n-6 PUFA levels on admission might provide information for identifying high risk ADHF patients.

Introduction

Heart failure (HF) is a common and growing public health problem worldwide. Although pharmacologic and non-pharmacologic therapies have been developed for patients with HF, mortality and morbidity remain significantly high [1, 2]. It is noteworthy that HF is a multisystem disease with multiple comorbidities including anemia, renal and hepatic dysfunction, malnutrition and cardiac cachexia [3–5]. Among them, poor nutritional status has been reported to be strongly associated with worse clinical outcomes in both acute and chronic HF patients [6–8]. Patients with HF are more prone to malnutrition for a variety of reasons, including symptomatic anorexia, early satiation, ascites, prescribed medication, psychological factors and catabolic/ana-bolic imbalance, which lead to a hypermetabolic state [9–11], and these are frequently observed in acute decompensated HF (ADHF) as an advanced stage of HF (stage C or D).

Polyunsaturated fatty acids (PUFAs), which are macronutrients, have usually been shown to be associated with beneficial health effects on cardiovascular disease (CVD) including coronary artery disease and HF [12, 13]; nevertheless, the two major types of long chain PUFAs, omega-3 (n-3) and omega-6 (n-6) PUFAs, were shown to have antagonistic effects. While the n-3 PUFAs emerged as anti-inflammatory and cardioprotective, the n-6 PUFAs were shown to be proinflammatory [14, 15]. Eicosanoids derived from n-3 PUFAs, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have been shown to have anti-inflammatory and antithrombotic effects in experimental and clinical settings, whereas those derived from n-6 PUFAs, arachidonic acid (AA) and dihomo-gamma linoleic acid (DGLA), act in an opposite manner. Indeed, despite conflicting evidence [16, 17], several clinical trials have demonstrated the cardioprotective effects of n-3 PUFAs to reduce cardiovascular events, including sudden cardiac death and acute myocardial infarction (AMI), in primary and secondary prevention settings of CVD [18, 19]. Furthermore, in an epidemiological study, decreased n-3 PUFA level was also associated with worse clinical outcomes following AMI [20]. However, the association between n-6 PUFAs and CVD and the role of PUFAs in patients with ADHF remain to be determined.

Because neither n-3 nor n-6 PUFAs can be synthesized de novo in mammals and are considered nutritionally essential [21], we hypothesize that circulating PUFAs may objectively reflect dietary consumption and also biologically relevant processes, such as absorption, incorpo-
ration, and metabolism, and therefore impairment of their absorption in decompensated HF could relate to worse clinical outcomes.

The aim of the current study was to clarify the roles of PUFAs in the clinical setting of ADHF.

Methods

Study Design

Data from the National cerebral and cardiovascular center acute DEcompensated heart Failure (NaDEF) registry, obtained between January 2013 and August 2015, were retrospectively
analyzed. The NaDEF registry is a single-center, observational, on-going, prospective cohort that includes all patients requiring hospitalization to our institution for the first time with a diagnosis of ADHF by at least two experienced cardiologists according to the Framingham ADHF criteria [22]. Follow-up was performed at 3, 6, 12, and 24 months after discharge by direct contact with patients or the patients' physicians in the hospital or outpatient clinic, telephone interview of patients or, if deceased, family members, and mail, by dedicated coordinators and investigators. Currently, 92.8% of enrolled patients are successfully followed-up. In this study, because patient information was anonymized and de-identified prior to analyses, written informed consent was not obtained from each patient. However, we publicized the study by posting a summary of the protocol (with an easily understood description) on the website of the National Cerebral and Cardiovascular Center; the notice clearly informed patients of their right to refuse enrollment. These procedures for informed consent and enrollment are in accordance with the detailed regulations regarding informed consent described in the guidelines, and this study, including the procedure for enrollment, has been approved by the Institutional Review Board of the National Cerebral and Cardiovascular Center (M22-025), and registered under the Japanese UMIN Clinical Trials Registration (UMIN000017024).

Study Population
From the 751 patients enrolled in the NaDEF registry, those with acute coronary syndrome receiving an EPA or DHA preparation, and those without measurement of PUFAs were excluded from this study. Finally, 685 patients were examined. Then the patients were divided into three groups according to the tertiles of n-6 PUFA level (low $< 157 \mu g/mL$, intermediate [157–198 μg/mL], and high [199 μg/mL ≤] levels) for obtaining more detailed risk stratification on future adverse events (Fig 1).

Blood Sampling, PUFA Measurements and Assessment of Nutritional Status
Venous blood samples were collected on admission, and routine laboratory tests were performed within a day of blood sampling using an automated analyzer, whereas additional measurements including PUFAs were performed afterward using freshly frozen samples kept at –80°C. Frozen serum samples were shipped to LSI Medience Corp., Tokyo, Japan, and EPA, DHA, AA and DGLA were measured by LC-MS/MS method, using a LC-MS8030 system (Shimadzu Corp., Kyoto, Japan). For the assessment of nutritional status, we used geriatric nutritional risk index (GNRI) which derived based on serum albumin level and body weight and has been recently validated for risk stratification in Japanese elderly ADHF patients [23].

Study Endpoints
The study endpoints were all-cause death, cardiovascular death and worsening HF, which was defined as worsening of symptoms and signs of HF requiring intensification of intravenous therapy or initiation of mechanical support during hospitalization, as used in major ADHF clinical trials [24, 25], or readmission because of HF after discharge.

Statistical Analyses
Results are presented as mean ± SD when normally distributed, and as median and interquartile range (IQR) when non-normally distributed. Differences between groups were analyzed by unpaired Student's t-test, Mann-Whitney U test, or ANOVA for continuous variables, and by chi-squared test or Fisher's exact test for dichotomous variables, when appropriate. For survival
Consecutive patients with hospitalized HF registered to NaDEF Jan 2013 – Aug 2015 (N = 751)

Excluded:
Acute coronary syndrome (N = 40)
Without PUFAs measurement on admission (N = 26)

Study population (N = 685)

N-6 PUFAs level (Tertiles)

High (n = 231)  Intermediate (n = 226)  Low (n = 228)

Fig 1. Flow diagram of study population.
doi:10.1371/journal.pone.0165841.g001
analyses, Kaplan-Meier survival plots were constructed by dividing n-6 PUFA levels on admission into tertiles (low, intermediate, and high levels), and log-rank testing was performed, to study the influence of n-6 PUFA levels on all-cause death, cardiovascular death and worsening HF. To evaluate the influence of n-6 PUFA levels on all-cause death and worsening HF, we constructed the following three Cox proportional-hazards regression models: model 1, crude; model 2, age, sex-adjusted; and model 3, fully adjusted. In model 3, based on the variables achieving \( p < 0.10 \) on univariate Cox analysis for adverse events and/or significant association with n-6 PUFA level, we included the following covariates: age, sex, ischemic cardiomyopathy etiology, systolic blood pressure, heart rate, estimated glomerular filtration rate (eGFR), GNRI, and hemoglobin, serum sodium, brain natriuretic peptide, total cholesterol, total bilirubin and C-reactive protein (CRP) levels, and history of atrial fibrillation, dyslipidemia, diabetes and chronic kidney disease, and use of statins, diuretics, spironolactone, angiotensin-converting enzyme inhibitors (ACE-Is) or angiotensin II receptor blockers (ARBs), beta blockers and intravenous inotropes. All tests were two tailed, and a value of \( p < 0.05 \) was considered statistically significant. All analyses were performed with SPSS\textsuperscript{®} for Windows version 23.0 (IBM, Corp., Armonk, NY, USA) and STATA\textsuperscript{®} 13 (Stata Corp., College Station, TX, USA).

Results

Baseline Characteristics and PUFA Levels in Patients With and Without Adverse Events

Of the 683 study patients, 262 (38.2%) had adverse events (all-cause death or worsening HF) during a median follow-up period of 560 days (interquartile range: 340 to 800 days). Mean age was 76 years, 60% were men, and median left ventricular ejection fraction (LVEF) was 37%. Regarding the etiology of HF, ischemic cardiomyopathy comprised 24%. Patients with adverse events had higher age, higher prevalence of diabetes, chronic kidney disease, atrial fibrillation, ischemic cardiomyopathy etiology, ACE-Is or ARBs use, beta blockers use, diuretic use, statin use and intravenous inotropes, higher brain natriuretic peptide, total bilirubin and CRP levels, and lower GNRI, heart rate, systolic blood pressure and eGFR, and lower hemoglobin, sodium, total cholesterol and albumin levels compared to those without adverse events (Tables 1 and 2).

The distribution of PUFA levels is shown in Fig 2; median PUFA (EPA, DHA, AA and DGLA) levels on admission were 40, 108, 153 and 25 μg/mL, respectively. Table 2 compares the levels and ratios of PUFAs in patients with and without adverse events. Although patients with adverse events had lower DHA, AA, DGLA, and n-6 (AA + DGLA) levels than those without, EPA and n-3 (EPA + DHA) levels, and EPA/AA, DHA/AA and n-3/n-6 ratios were comparable between the groups. In the present prospective cohort, n-6 rather than n-3 PUFA levels were associated with adverse events.

Baseline Characteristics by Tertiles of N-6 PUFA Level

Baseline clinical characteristics are shown in Tables 3 and 4. Although patients with low n-6 PUFA level were older and had lower GNRI, systolic blood pressure, hemoglobin, eGFR, sodium, total cholesterol, albumin, EPA and DHA levels, and lower prevalence of statin use compared to those with high n-6 PUFA, there were no significant differences in New York Heart Association functional class, LVEF, etiology of HF and prevalence of hemodialysis among the tertiles.

N-6 PUFA Level and Clinical Outcomes

Kaplan-Meier analyses showed that lower total n-6 PUFA level on admission was significantly associated with worse clinical outcomes including the composite of all-cause death and
worsening HF, all-cause death, cardiovascular death and worsening HF (log-rank; p < 0.001, p = 0.005, p = 0.021, p = 0.019, respectively, Fig 3). Cox proportional hazard analyses revealed that per point increase in n-6 PUFA level was associated with increased risk of adverse events [hazard ratio (HR): 0.994, 95% confidence interval (CI): 0.992–0.997, p < 0.001; HR: 0.995, 95% CI: 0.993–0.997, p < 0.001; and HR: 0.996, 95% CI: 0.993–0.999, p = 0.027; for models 1, 2, and 3, respectively], and patients with low n-6 PUFA level had a 1.4-fold increase in the risk of adverse events as compared with those with high n-6 PUFA level (p = 0.037, Table 5).

**Discussion**

The present study has shown that patients with lower n-6 PUFA level have a significantly higher incidence of adverse events (all-cause death and worsening HF) following ADHF, whereas n-3 PUFA level showed no significant association. Patients with lower n-6 PUFA level.
also had multiple co-morbid conditions including anemia and renal insufficiency. Furthermore, multivariate Cox analyses showed a lower n-6 PUFA level to be an independent determinant of adverse events. These findings suggest that n-6 rather than n-3 PUFA levels might be useful for identifying patients at high risk of adverse events following ADHF.

Although we could not explore the direct mechanisms for the association between lower n-6 PUFAs and worse clinical outcomes, there are several possible explanations. First, “consumption as a source of pro-inflammatory eicosanoids”; it has been strongly suggested that the two major types of long chain PUFAs, n-3 and n-6 PUFAs, have antagonistic effects. While the n-3 PUFAs emerged as cardioprotective, the n-6 PUFAs were shown to be pro-inflammatory [14, 15]. However, relevant intervention trials failed to link n-6 with a pro-inflammatory response [26–28]. Among them, Poudel-Tandukar et al. investigated the relationship between essential fatty acid status and CRP, and n-6 PUFAs were found to be inversely associated with serum CRP [28]. In the present study, n-6 PUFA levels also tended to be inversely associated with serum CRP level. N-6 PUFAs are known to be a major source of pro-inflammatory eicosanoids, and therefore it is speculated that n-6 PUFAs might be consumed by enhanced inflammatory responses in high risk ADHF patients. Second, “decreased production of vasodilators”;

Table 2. Findings of laboratory tests and intravenous treatment in patients with and without adverse events.

| Variable | Overall (N = 685) | Events (N = 262) | No events (N = 423) | P-value |
|----------|------------------|------------------|--------------------|---------|
| Laboratory data on admission | | | | |
| Hemoglobin, g/dL | 12.0 ± 2.1 | 11.5 ± 2.1 | 12.2 ± 2.1 | <0.001 |
| Sodium, mEq/L | 140 (138,142) | 139 (137,142) | 141 (138,143) | <0.001 |
| eGFR, ml/min | 37.2 (25.1,49.0) | 30.6 (20.2,40.5) | 41.2 (28.8,53.5) | <0.001 |
| BNP, pg/dL | 605 (323,1114) | 732 (393,1388) | 551 (276,983) | 0.001 |
| hs TnT, ng/mL | 0.04 (0.02,0.07) | 0.05 (0.03,0.09) | 0.03 (0.02,0.06) | 0.73 |
| Total bilirubin, mg/dL | 0.3 (0.2,0.4) | 0.3 (0.2,0.5) | 0.3 (0.2,0.4) | <0.001 |
| Total cholesterol, mg/dL | 157 ± 40 | 152 ± 41 | 161 ± 40 | 0.005 |
| Albumin, g/dL | 3.8 ± 0.4 | 3.7 ± 0.5 | 3.8 ± 0.4 | <0.001 |
| CRP, mg/dL | 0.4 (0.1,1.2) | 0.5 (0.2,2.1) | 0.3 (0.1,0.9) | 0.003 |
| Fatty acids concentration | | | | |
| EPA, μg/mL | 40 (26,62) | 39 (24,64) | 40 (26,62) | 0.71 |
| DHA, μg/mL | 108 (63,138) | 101 (77,138) | 111 (86,139) | 0.018 |
| AA, μg/mL | 153 (123,182) | 144 (113,169) | 157 (129,188) | <0.001 |
| DGLA, μg/mL | 25 (18,33) | 22 (17,30) | 26 (20,35) | <0.001 |
| N-3 PUFAs, μg/mL | 151 (113,202) | 146 (108,202) | 154 (116,202) | 0.11 |
| N-6 PUFAs, μg/mL | 178 (144,210) | 166 (133,199) | 187 (152,218) | <0.001 |
| Fatty acids ratio | | | | |
| EPA/AA | 0.27 (0.18,0.40) | 0.28 (0.18,0.45) | 0.26 (0.17,0.37) | 0.26 |
| DHA/AA | 0.72 (0.57,0.91) | 0.73 (0.59,0.95) | 0.71 (0.57,0.88) | 0.11 |
| N-3/N-6 PUFAs | 0.86 (0.65,1.11) | 0.88 (0.67,1.16) | 0.84 (0.64,1.08) | 0.14 |
| Intravenous treatment, n (%) | | | | |
| Diuretics | 509 (75) | 191 (74) | 318 (76) | 0.65 |
| Vasodilators | 412 (61) | 149 (57) | 263 (63) | 0.13 |
| Inotropes | 94 (14) | 54 (21) | 40 (10) | <0.001 |

Continuous variables are presented as mean ± SD if normally distributed, and median (interquartile range) if not normally distributed. Categorical variables are presented as number of patients (%). AA = arachidonic acid; BNP = brain natriuretic peptide; CRP = C-reactive protein; DGLA = dihomo-gamma-linolenic acid; DHA = docosahexaenoic acid; eGFR = estimated glomerular filtration rate; EPA = eicosapentaenoic acid; hs TnT = high sensitive troponin T; N-3 = omega-3; N-6 = omega-6; PUFAs = polyunsaturated fatty acids.

doi:10.1371/journal.pone.0165841.t002
DGLA and AA are known to become several sources of respective different vasoactive eicosanoids. DGLA and AA are sources of prostaglandins (PG) of 1 series, and PG of 2 series, thromboxanes, leukotrienes of 4 series and nitric oxide (NO), respectively [29]. Among them, PGE$_1$, which is formed from DGLA and is a potent arteriolar vasodilator, has beneficial effects on myocardial energetics and cardiac function in patients with severe ischemic HF [30]. PGI$_2$ (prostacyclin), a product of AA, could have similar beneficial actions in view of the fact that PGI$_2$ is also a potent vasodilator and possesses antiarrhythmic actions, similarly to PGE$_1$ [31–34]. These PGs are known to enhance NO synthesis and release [35–38], suggesting that NO

**Table 3. Baseline characteristics by tertiles of n-6 PUFA level.**

| Variable                        | Overall (N = 685) | Low (N = 228) | Intermediate (N = 226) | High (N = 231) | P-value |
|---------------------------------|-------------------|---------------|------------------------|----------------|---------|
| N-6 range, μg/mL                | -                 | < 157         | 157–198                | 199 <            | -       |
| Age, years                      | 76 ± 12           | 77 ± 11       | 76 ± 11                | 73 ± 13         | 0.008   |
| Male, n (%)                     | 410 (60)          | 151 (66)      | 134 (59)               | 125 (54)        | 0.029   |
| Body mass index                 | 23.0 ± 4.3        | 22.9 ± 4.2    | 22.9 ± 4.2             | 23.2 ± 4.4      | 0.67    |
| GNRI                            | 99.6 ± 11.2       | 97.5 ± 11.2   | 99.6 ± 10.4            | 101.6 ± 11.6    | <0.001  |

**Past history, n (%)**

- Hypertension: 506 (74), 161 (71), 166 (73), 179 (77), 0.24
- Diabetes: 251 (37), 92 (40), 69 (31), 90 (39), 0.059
- Dyslipidemia: 361 (53), 104 (46), 107 (47), 150 (65), <0.001
- CKD: 363 (53), 143 (63), 108 (48), 112 (49), 0.002
- Hemodialysis: 13 (2), 5 (2), 6 (3), 2 (1), 0.35
- Prior MI: 159 (23), 54 (24), 51 (23), 54 (23), 0.95
- Atrial fibrillation: 354 (52), 142 (62), 110 (49), 102 (44), <0.001
- NYHA III or IV, n (%): 552 (81), 190 (83), 180 (80), 182 (79), 0.42
- Systolic BP, mmHg: 140 ± 32, 133 ± 32, 140 ± 30, 146 ± 32, <0.001
- LVEF, %: 37 (23,54), 38 (23,55), 37 (23,52), 35 (22,54), 0.94

**Etiology, n (%)**

- ICM: 166 (24), 57 (25), 52 (23), 57 (25), 0.73
- DCM: 119 (17), 34 (15), 43 (19), 42 (18),
- HCM: 28 (4), 13 (6), 9 (4), 6 (3),
- HHD: 70 (10), 21 (9), 20 (9), 29 (13),
- Valves: 166 (24), 55 (24), 59 (26), 52 (23),

**Oral medication on admission, n (%)**

- ACE-I or ARBs: 361 (53), 129 (57), 111 (49), 121 (53), 0.26
- Beta blockers: 358 (52), 128 (56), 114 (50), 116 (50), 0.37
- Diuretics: 378 (55), 152 (67), 120 (53), 106 (46), <0.001
- Spironolactone: 140 (20), 54 (24), 43 (19), 43 (19), 0.34
- Statins: 249 (36), 67 (29), 76 (34), 106 (46), <0.001

Continuous variables are presented as mean ± SD if normally distributed, and median (interquartile range) if not normally distributed. Categorical variables are presented as number of patients (%). ACE-I = angiotensin-converting enzyme inhibitor; ARB = angiotensin II receptor blocker; BP = blood pressure; CKD = chronic kidney disease; DCM = dilated cardiomyopathy; GNRI = geriatric nutritional risk index; HCM = hypertrophic cardiomyopathy; HHD = hypertensive heart disease; ICM = ischemic cardiomyopathy; LVEF = left ventricular ejection fraction; MI = myocardial infarction; N-6 = omega-6; NYHA = New York Heart Association.

doi:10.1371/journal.pone.0165841.t003

doi:10.1371/journal.pone.0165841.g002
and PGs act in concert with each other to modulate cardiac function. They are also potent inhibitors of atherosclerosis, and interference with their action, as by free radicals, could lead to HF [39]. Taking these findings together, it is proposed that deficiency of n-6 PUFAs, especially DGLA and AA, may cause decreased production of PGE\(_1\), PGI\(_2\) and NO, thereby resulting in a decompensated state of HF. Third, "insufficiency due to malnutrition"; HF may promote malnutrition based on several mechanisms including gut edema, anorexia from inflammatory cytokine production, limitation in eating and food preparation due to fatigue, and increased work of breathing, especially in advanced right sided HF [40]. Despite the underlying mechanisms being unclear, insufficiency of n-6 PUFAs may occur more readily compared with that of n-3 PUFAs in advanced HF patients.

The effects of PUFAs as dietetic management in HF patients are controversial; therefore, little information is provided in the major HF management guidelines [41–43]. In spite of the fact that the Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico-Heart Failure (GISSI-HF) trial showed a modest survival advantage from n-3 PUFA supplementation in HF [44], several recent clinical trials failed to show clear benefit from n-3 PUFAs in high risk patients with cardiovascular disease [17, 45]. In contrast, in animal models of congestive HF, higher dietary n-6 PUFA protected against the development of cardiac hypertrophy and systolic dysfunction, and improved total mortality [46, 47]; however, in patients with coronary artery disease, previous reports examining the effect of n-6 PUFA intake showed inconsistent

### Table 4. Findings of laboratory tests and intravenous treatment by tertiles of n-6 PUFA level.

| Variable                        | Overall (N = 685) | Low (N = 228) | Intermediate (N = 226) | High (N = 231) | P-value |
|---------------------------------|-------------------|---------------|------------------------|----------------|---------|
| N-6 range, μg/mL                | -                 | < 157         | 157–198                | 199 <=         | -       |
| Laboratory data on admission    |                   |               |                        |                |         |
| Hemoglobin, g/dL                | 12.0 ± 2.1        | 11.4 ± 2.2    | 11.9 ± 1.9             | 12.6 ± 2.1     | <0.001  |
| Sodium, mEq/L                   | 140 (138,142)     | 139 (137,142) | 140 (138,143)          | 140 (138,143)  | <0.001  |
| eGFR, ml/min                    | 37.2 (25.1,49.0)  | 32.7 (21.9,44.8) | 37.8 (27.6,51.5)     | 40.2 (27.3,51.3) | <0.001  |
| BNP, pg/dL                      | 605 (323,1114)    | 574 (323,1377) | 663 (319,1154)        | 610 (337,944)  | 0.057   |
| hs TnT, ng/mL                   | 0.04 (0.02,0.07)  | 0.04 (0.03,0.07) | 0.04 (0.02,0.07)    | 0.04 (0.02,0.06) | 0.33    |
| Total bilirubin, mg/dL          | 0.3 (0.2,0.4)     | 0.3 (0.2,0.6)  | 0.3 (0.2,0.4)         | 0.2 (0.2,0.3)  | <0.001  |
| Total cholesterol, mg/dL        | 157 ± 40          | 132 ± 29      | 159 ± 32               | 180 ± 43       | <0.001  |
| Albumin, g/dL                   | 3.8 ± 0.4         | 3.6 ± 0.5     | 3.8 ± 0.4              | 3.9 ± 0.4      | <0.001  |
| CRP, mg/dL                      | 0.4 (0.1,1.2)     | 0.5 (0.2,1.6)  | 0.5 (0.2,1.5)          | 0.3 (0.1,0.8)  | 0.11    |
| AA, μg/mL                       | 153 (123,182)     | 111 (95,123)  | 153 (144,160)          | 197 (181,231)  | <0.001  |
| DGLA, μg/mL                     | 25 (18,33)        | 17 (15,22)    | 26 (20,31)             | 35 (27,42)     | <0.001  |
| EPA, μg/mL                      | 40 (26,62)        | 29 (21,48)    | 43 (29,69)             | 48 (33,68)     | <0.001  |
| DHA, μg/mL                      | 108 (83,138)      | 87 (67,109)   | 114 (89,139)           | 129 (98,158)   | <0.001  |
| Systolic BP, mmHg               | 140 ± 32          | 133 ± 32      | 140 ± 30               | 146 ± 32       | <0.001  |
| LVEF, %                         | 37 (23,54)        | 38 (23,55)    | 37 (23,52)             | 35 (22,54)     | 0.94    |
| Intravenous treatment, n (%)    |                   |               |                        |                |         |
| Diuretics                       | 509 (75)          | 164 (72)      | 176 (79)               | 169 (73)       | 0.22    |
| Vasodilators                    | 412 (61)          | 120 (53)      | 134 (60)               | 158 (69)       | 0.002   |
| Inotropes                       | 94 (14)           | 34 (15)       | 31 (14)                | 29 (13)        | 0.73    |

Continuous variables are presented as mean ± SD if normally distributed, and median (interquartile range) if not normally distributed. Categorical variables are presented as number of patients (%). AA = arachidonic acid; BNP = brain natriuretic peptide; CRP = C-reactive protein; DGLA = dihomo-gamma-linolenic acid; DHA = docosahexaenoic acid; eGFR = estimated glomerular filtration rate; EPA = eicosapentaenoic acid; hs TnT = high sensitive troponin T; N-6 = omega-6.

doi:10.1371/journal.pone.0165841.t004
results [48–50]. Adequately powered and well-designed randomized control trials to show the benefit of n-6 PUFAs are needed.

**Study Limitations**

First, no information was available with regard to lifestyle and dietary intake of PUFAs; therefore, we could not exclude the influence of dietary intake on PUFA levels. Second, PUFAs were not measured in the cell membrane. PUFAs in the cell membrane were reported to be direct precursors of pro- and anti-inflammatory eicosanoids. However, it was reported that cell membrane EPA/AA ratio was strongly correlated with serum EPA/AA ratio in the Japanese population [51]. Third, we measured only EPA and DHA as n-3 PUFAs, and AA and DGLA as n-6 PUFAs among all PUFAs, although these four metabolites are representative precursors of eicosanoids that may affect the cardiovascular system. Finally, low n-6 PUFAs group were older and worse in their renal function; moreover, total bilirubin and cholesterol, albumin, and all fatty acids levels as well as GNRI were lower in the low n-6 PUFAs group. Therefore, low n-6 PUFAs level might reflect older chronic kidney disease with malnutrition.

**Conclusions**

Lower n-6 PUFA level on admission was significantly related to worse clinical outcomes in ADHF patients, whereas n-3 PUFA level was not. These results suggest that measurement of circulating n-6 PUFAs rather than n-3 PUFAs levels on admission might provide information for risk stratification of ADHF patients.

**Acknowledgments**

We are grateful for the contributions of all the investigators, clinical research co-ordinators, and data managers involved in the NaDEF study. NaDEF Investigators: Yukio Aikawa, Hiroki Nakano, Seiji Takashio, Yoshiya Yamamoto, Masahiro Yamamoto, Tetsufumi Motokawa and Yasuhiro Hamatani (Department of Cardiovascular Medicine, National Cerebral and
Author Contributions

Conceptualization: T. Nagai.

Data curation: T. Nagai YH KN MN.

Formal analysis: T. Nagai KN MN.

Funding acquisition: T. Nagai T. Anzai.

Investigation: T. Nagai.

Methodology: T. Nagai.

Project administration: T. Nagai.

Resources: T. Nagai T. Anzai.

Software: T. Nagai KN MN.

Supervision: T. Noguchi KK HO SY T. Anzai.

Validation: T. Nagai KN MN.

Visualization: T. Nagai YH YS KN MN SH NI AO YA T. Aiba T. Noguchi KK HO SY T. Anzai.

Writing – original draft: T. Nagai T. Anzai.

Writing – review & editing: T. Nagai T. Anzai.

References

1. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, et al. Heart disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation. 2011; 123(4):e18–e209. doi: 10.1161/CIR.0b013e3182009701 PMID: 21160056

2. Jhund PS, Macintyre K, Simpson CR, Lewsey JD, Stewart S, Redpath A, et al. Long-term trends in first hospitalization for heart failure and subsequent survival between 1986 and 2003: a population study of 5.1 million people. Circulation. 2009; 119(4):515–23. doi: 10.1161/CIRCULATIONAHA.108.812172 PMID: 19153268

3. Mijan-de-la-Torre A. Recent insights on chronic heart failure, cachexia and nutrition. Curr Opin Clin Nutr Metab Care. 2009; 12(3):251–7. doi: 10.1097/MCO.0b013e32832a2171 PMID: 19363338

4. Ronco C, McCullough P, Anker SD, Anand I, Aspromonte N, Bagshaw SM, et al. Cardio-renal syndromes: report from the consensus conference of the acute dialysis quality initiative. Eur Heart J. 2010; 31(6):703–11. ehp507 doi: 10.1093/eurheartj/ehp507 PMID: 20037146

5. Nikolaou M, Parissis J, Yilmaz MB, Seronde MF, Kivikko M, Laribi S, et al. Liver function abnormalities, clinical profile, and outcome in acute decompensated heart failure. Eur Heart J. 2013; 34(10):742–9. ehs332 doi: 10.1093/eurheartj/ehs332 PMID: 23091203

6. Zapatero A, Barba R, Gonzalez N, Losa JE, Plaza S, Canora J, et al. Influence of obesity and malnutrition on acute heart failure. Rev Esp Cardiol (Engl Ed). 2012; 65(5):421–6. S0300-8932(11)00804-9 doi: 10.1016/j.rec.2011.09.011 PMID: 22133785
7. Aziz EF, Javed F, Pratap B, Musat D, Nader A, Pulimi S, et al. Malnutrition as assessed by nutritional risk index is associated with worse outcome in patients admitted with acute decompensated heart failure: an ACAP-HF data analysis. Heart Int. 2011; 6(1):e2. doi: 10.4081/hi.2011.e2 hi.2011.e2 [pii]. PMID: 21977302

8. Anker SD, Ponikowski P, Vamey S, Chua TP, Clark AL, Webb-Peploe KM, et al. Wasting as independent risk factor for mortality in chronic heart failure. Lancet. 1997; 349(9058):1050–3. S0140-6736(96)07015-8 [pii] doi: 10.1016/S0140-6736(96)07015-8 PMID: 9107242

9. Schiffman SS. Taste and smell in disease (first of two parts). N Engl J Med. 1983; 308(21):1275–9. doi: 10.1056/NEJM198305263082107 PMID: 6341841

10. Jacobsson A, Pihl E, Martensson J, Fridlund B. Emotions, the meaning of food and heart failure: a grounded theory study. J Adv Nurs. 2004; 46(5):514–22. doi: 10.1111/j.1365-2648.2004.03025.x JAN03025 [pii]. PMID: 15139940

11. Anker SD, Sharma R. The syndrome of cardiac cachexia. Int J Cardiol. 2002; 85(1):51–66. S0167527302002334 [pii]. PMID: 12163209

12. Mulvad G, Pedersen HS, Hansen JC, Dewailly E, Jul E, Pedersen M, et al. The Inuit diet. Fatty acids and antioxidants, their role in ischemic heart disease, and exposure to organochlorines and heavy metals. An international study. Arctic Med Res. 1996; 55 Suppl 1:20–4.

13. Colin-Ramirez E, Castillo-Martinez L, Orea-Tejeda A, Zheng Y, Westerhout CM, Ezekowitz JA. Dietary fatty acids intake and mortality in patients with heart failure. Nutrition. 2014; 30(11–12):1366–71. S0899-9007(14)00197-X [pii] doi: 10.1016/j.nut.2014.04.006 PMID: 25280414

14. Ghosh S, Novak EM, Innis SM. Cardiac proinflammatory pathways are altered with different dietary n-6 linoleic to n-3 alpha-linolenic acid ratios in normal, fat-fed pigs. Am J Physiol Heart Circ Physiol. 2007; 293(5):H2919–27. 00324.2007 doi: 10.1152/ajpheart.00324.2007 PMID: 17720770

15. De Lorgeril M. Essential polyunsaturated fatty acids, inflammation, atherosclerosis and cardiovascular diseases. Subcell Biochem. 2007; 42:283–97. PMID: 17612056

16. Kromhout D, Giltay EJ, Geleijnse JM, Alpha Omega Trial G. n-3 fatty acids and cardiovascular events after myocardial infarction. N Engl J Med. 2010; 363(21):2015–26. doi: 10.1056/NEJMoa1003603 PMID: 20929341

21. Cunnane SC. Problems with essential fatty acids: time for a new paradigm? Prog Lipid Res. 2003; 42(6):544–68. S0163782703000389 [pii]. PMID: 14559071

22. McKee PA, Castelli WP, McNamara PM, Kannel WB. The natural history of congestive heart failure: the Framingham study. N Engl J Med. 1971; 285(26):1441–6. doi: 10.1056/NEJM197112232852601 PMID: 5122894

23. Honda Y, Nagai T, Iwakami N, Sugano Y, Honda S, Okada A, et al. Usefulness of Geriatric Nutritional Risk Index for Assessing Nutritional Status and Its Prognostic Impact in Patients Aged >/= 65 Years With Acute Heart Failure. Am J Cardiol. 2016; 118(4):550–5. doi: 10.1016/j.amjcard.2016.05.045 PMID: 27324158

24. Massie BM, O’Connor CM, Metra M, Ponikowski P, Teerlink JR, Cotter G, et al. Rolofylline, an adenosine A1-receptor antagonist, in acute heart failure. N Engl J Med. 2010; 363(15):1419–28. doi: 10.1056/NEJMoa0912613 PMID: 20925544

25. Teerlink JR, Cotter G, Davison BA, Feltier GM, Filippatos G, Greenberg BH, et al. Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. Lancet. 2013; 381(9880):29–39. doi: 10.1016/S0140-6736(12)61855-8 PMID: 23141816
26. Ferrucci L, Cherubini A, Bandinelli S, Bartali B, Corsi A, Lauretani F, et al. Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers. J Clin Endocrinol Metab. 2006; 91(2):439–46. jc.2005-1303 [pii] doi: 10.1210/jc.2005-1303 PMID: 16234304

27. Arya S, Isharwal S, Misra A, Pandey RM, Rastogi K, Vikram NK, et al. C-reactive protein and dietary nutrients in urban Asian Indian adolescents and young adults. Nutrition. 2006; 22(9):865–71. S0899-9007(06)00223-1 [pii] doi: 10.1016/j.nut.2006.05.002 PMID: 16829027

28. Poudel-Tandukar K, Nanri A, Matsushita Y, Sasaki S, Ohta M, Sato M, et al. Dietary intakes of alpha-linolenic and linoleic acids are inversely associated with serum C-reactive protein levels among Japanese men. Nutr Res. 2009; 29(6):363–70. S0271-5317(09)00090-6 [pii] doi: 10.1016/j.nutres.2009.05.012 PMID: 19628101

29. Das UN. Nutritional factors in the prevention and management of coronary artery disease and heart failure. Nutrition. 2015; 31(2):283–91. doi: 10.1016/j.nut.2014.08.011 PMID: 25592005

30. Awan NA, Needham KE, Evenson MK, Hermanovich J, Gradman M, Mason DT. Beneficial effects of prostaglandin E1 on myocardial energetics and pump performance in severe CHF. Acta Med Scand Suppl. 1981; 652:169–72. PMID: 6949463

31. Das UN. Prostacyclin as an endogenous anti-arrhythmic agent. Basic Res Cardiol. 1983; 78(6):716–8. PMID: 6362651

32. Das UN. Prostaglandins and cardiac arrhythmias. Med J Aust. 1981; 2(3):157–8. PMID: 7289951

33. Das UN. Lipoxin A4 may function as an endogenous anti-arrhythmic molecule. Med Hypotheses. 1999; 53(4):340–7. doi: 10.1006/niox.1999.0231 S1089-8603 (99)90231-8 [pii]. PMID: 10444373

34. Sakai M, Minami T, Hara N, Nishihara I, Kitade H, Kamiyama Y, et al. Stimulation of nitric oxide release from rat spinal cord by prostaglandin E2. Br J Pharmacol. 1998; 123(5):890–4. doi: 10.1038/sj.bjp.0701661 PMID: 9535017

35. Wang W, Diamond SL. Does elevated nitric oxide production enhance the release of prostacyclin from shear stressed aortic endothelial cells? Biochem Biophys Res Commun. 1997; 233(3):748–51. S0006-291X(97)96548-7 [pii] doi: 10.1006/bbrc.1997.6548 PMID: 9169926

36. Faletti A, Perez Martinez S, Perotti C, de Gimeno MA. Activity of ovarian nitric oxide synthase (NOs) during ovulatory process in the rat: relationship with prostaglandins (PGs) production. Nitric Oxide. 1999; 3(4):340–7. doi: 10.1006/noox.1999.0231 S1089-8603(99)90231-8 [pii]. PMID: 10444373

37. Wen F, Watanabe K, Yoshida M. Nitric oxide enhances PGI(2)production by human pulmonary artery smooth muscle cells. Prostaglandins Leukot Essent Fatty Acids. 2000; 62(6):369–78. doi: 10.1054/plef.2000.0168 S0952327800901686 [pii]. PMID: 10913230

38. Sakai M, Minami T, Hara N, Nishihara I, Kitade H, Kamiyama Y, et al. Stimulation of nitric oxide release from rat spinal cord by prostaglandin E2. Br J Pharmacol. 1998; 123(5):890–4. doi: 10.1038/sj.bjp.0701661 PMID: 9535017

39. Das UN. Can free radicals induce coronary vasospasm and acute myocardial infarction? Med Hypotheses. 1992; 39(1):90–4. 0306-9877(92)00147-5 [pii] PMID: 1435400

40. Anker SD, Coats AJ. Cardiac cachexia: a syndrome with impaired survival and immune and neuroendocrine activation. Chest. 1999; 115(3):836–47. PMID: 10084500

41. Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, et al. 2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation. 2009; 119(14):e391–479. doi: 10.1161/CIRCULATIONAHA.109.192065 PMID: 19324966

42. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2012; 14(8):803–69. doi: 10.1093/eurjhf/hfs105 PMID: 22828712

43. Heart Failure Society of A, Lindenfeld J, Albert NM, Boehmer JP, Collins SP, Ezekowitz JA, et al. HFSA 2010 Comprehensive Heart Failure Practice Guideline. J Card Fail. 2010; 16(6):e1–194. doi: 10.1016/j.cardfail.2010.04.004 PMID: 20610207

44. Gissi HFi, Tavazzi L, Maggioni AP, Marchioli R, Barlera S, Franzosi MG, et al. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 2008; 372(9645):1223–30. doi: 10.1016/S0140-6736(08)61239-8 PMID: 18757090

45. Kotwal S, Jun M, Sullivan D, Perkovic V, Neal B. Omega 3 Fatty acids and cardiovascular outcomes: systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes. 2012; 5(6):808–18. doi: 10.1161/CIRCOUTCOMES.112.966168. PMID: 23110790

46. Kotwal S, Jun M, Sullivan D, Perkovic V, Neal B. Omega 3 Fatty acids and cardiovascular outcomes: systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes. 2012; 5(6):808–18. doi: 10.1161/CIRCOUTCOMES.112.966168. PMID: 23110790
46. Chicco AJ, Sparagna GC, McCune SA, Johnson CA, Murphy RC, Bolden DA, et al. Linoleate-rich high-fat diet decreases mortality in hypertensive heart failure rats compared with lard and low-fat diets. Hypertension. 2008; 52(3):549–55. HYPERTENSIONAHA.108.114264 [pii] doi: 10.1161/HYPERTENSIONAHA.108.114264 PMID: 18663155

47. Mulligan CM, Sparagna GC, Le CH, De Mooy AB, Routh MA, Holmes MG, et al. Dietary linoleate preserves cardiolipin and attenuates mitochondrial dysfunction in the failing rat heart. Cardiovasc Res. 94(3):460–8. cvs118 [pii] doi: 10.1093/cvr/cvs118 PMID: 22411972

48. Mozaffarian D, Micha R, Wallace S. Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: a systematic review and meta-analysis of randomized controlled trials. PLoS Med. 2010; 7(3):e1000252. doi: 10.1371/journal.pmed.1000252 PMID: 20351774

49. Chowdhury R, Warnakula S, Kunutsor S, Crowe F, Ward HA, Johnson L, et al. Association of dietary, circulating, and supplement fatty acids with coronary risk: a systematic review and meta-analysis. Ann Intern Med. 2014; 160(6):398–406. doi: 10.7326/M13-1788 PMID: 24723079

50. Ramsden CE, Zamora D, Leelarthaepin B, Majchrzak-Hong SF, Faurot KR, Suchindran CM, et al. Use of dietary linoleic acid for secondary prevention of coronary heart disease and death: evaluation of recovered data from the Sydney Diet Heart Study and updated meta-analysis. BMJ. 2013; 346:e8707. doi: 10.1136/bmj.e8707 PMID: 23386268

51. Yanagisawa N, Shimada K, Miyazaki T, Kume A, Kitamura Y, Ichikawa R, et al. Polyunsaturated fatty acid levels of serum and red blood cells in apparently healthy Japanese subjects living in an urban area. J Atheroscler Thromb. 2010; 17(3):285–94. PMID: 20288612