Subject Section

CScape-somatic: distinguishing driver and passenger point mutations in the cancer genome

Mark F. Rogers 1,*, Tom R. Gaunt 2 and Colin Campbell 1,*

1 Intelligent Systems Laboratory, University of Bristol, Bristol, BS8 1UB, United Kingdom
2 MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, BS8 2BN, United Kingdom

* To whom correspondence should be addressed.

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: Next generation sequencing technologies have accelerated the discovery of single nucleotide variants (SNVs) in the human genome, stimulating the development of predictors for classifying which of these variants are likely functional in disease, and which neutral. Recently we proposed CScape, a method for discriminating between cancer driver mutations and presumed benign variants (Rogers et al., 2017a). For the neutral class this method relied on benign germline variants found in the 1000 Genomes Project database. Discrimination could therefore be influenced by the distinction of germline versus somatic, rather than neutral versus disease-driver. This motivates the current paper in which we consider predictive discrimination between recurrent and rare somatic single point mutations based solely on using cancer data, and the distinction between these two somatic classes and germline single point mutations.

Results: For somatic point mutations in coding and non-coding regions of the genome, we propose CScape-somatic, an integrative classifier for predictively discriminating between recurrent and rare variants in the human cancer genome. In the present study we use purely cancer genome data and investigate the distinction between minimal occurrence and significantly recurrent somatic single point mutations in the human cancer genome. We show that this type of predictive distinction can give novel insight, and may deliver more meaningful prediction in both coding and non-coding regions of the cancer genome. Tested on somatic mutations, CScape-somatic outperforms alternative methods, reaching 74% balanced accuracy in coding regions and 69% in non-coding regions, while even higher accuracy may be achieved using thresholds to isolate high-confidence predictions.

Availability: Predictions and software are available at http://CScape-somatic.biocompute.org.uk/.

Contact: mark.f.rogers.phd@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Next generation sequencing technologies have accelerated the discovery of single nucleotide variants (SNVs) in the human genome, stimulating the development of predictors for classifying which of these variants are likely functional in disease, and which neutral. Predictors have been developed for variants in both coding and non-coding regions of the human genome. For example, in Shihab et al. (2015), we developed such a predictor based on pathogenic disease-driver germline variants from the Human Gene Mutation Database (HGMD) (Stenson, P.D., et al., 2014), and assumed neutral variants from the 1,000 Genomes Project Consortium (1000G) (The 1000 Genomes Project Consortium, 2012). Multiple types of data may be informative, so we used an integrative binary classifier which weighted component data-types according to their relative informativeness (Shihab et al., 2015). A variety of similar predictors have been proposed (Adzhubei et al., 2010; Kumar et al., 2009; Reva et al., 2011; Kircher, L.A. et al., 2014; Quang et al., 2014; Liu et al., 2016). In Rogers et al. (2017a) we proposed CScape, a classifier for predicting the driver-status of SNVs in the human cancer genome with a follow-on investigation of biological insights in Darbyshire et al. (2019). By a driver, we mean a...
disease-enabler, therefore including the sub-instances of gain-of-function, loss-of-function or both simultaneously.

As tumours evolve, they accrue thousands of somatic mutations that are commonly labeled according to their role in cancer development: driver mutations are subject to positive selection during a tumour’s evolutionary progress, as they confer a growth advantage and contribute to tumour growth. Passenger mutations accumulate as tumours evolve, and may confer no advantage or may even inhibit tumour fitness (Stratton et al., 2009; Pon and Marra, 2015). Oncogenesis is believed to be caused by a small number of key driver mutations (Martincincler et al., 2017; Darbyshire et al., 2019) that trigger tumour growth and induce subsequent passenger mutations as tumours proliferate (Bosic et al., 2010; McFarland et al., 2014; Pon and Marra, 2013). Many more passenger than driver mutations exist in cancer cells and distinguishing between the two classes remains a significant challenge (Marx, 2014). Germline mutations have been identified as drivers in genes such as BRCA1 and BRCA2, but it is estimated that up to 90% of cancer-related genes are influenced by somatic mutations: those that accrue during a patient’s lifespan (Futreal et al., 2004). Furthermore, the immune system could be expected to tolerate germline mutations but remove cells with particular types of somatic mutation, leading to distributions between germline and somatic variation. Hence understanding particular characteristics that differentiate somatic and germline mutation will be crucial to our understanding of how the disease progresses.

In this paper we focus on a machine learning approach to distinguishing between driver and passenger SNVs across the human cancer genome. The development of such classifiers will be important for interpreting cancer sequence databases currently being compiled, such as the Cancer Genome Atlas (Weinstein et al., 2013), the International Cancer Genome Consortium (Zhang et al., 2011) and national programmes such as the Genomics England (100,000 genomes) Project. Mirroring previous methods (Shihab et al., 2015; Rogers et al., 2015, 2017a), we use an integrative classifier and select features from a wide variety of data sources. Using leave-one-chromosome-out cross-validation (LOCO-CV), the proposed method, which we call CScape-somatic, outperforms alternative models, achieving balanced test accuracies of 74% in coding regions and 69% in non-coding regions.

We also associate a confidence measure to the predicted class assignments (cf. Supplementary Section 1). To interpret this confidence measure, in Supplementary Section 4, we consider two thresholds, a default threshold and a high-confidence threshold. If we restrict prediction to highest confidence instances only (cautious classification) then balanced accuracy in LOCO-CV rises to 92% for coding regions and 87% for non-coding regions, though with this level of test accuracy is confined to 10% of coding and 9% of non-coding nucleotide positions across the genome, respectively.

2 Materials and Methods

2.1 Recurrence thresholds

We assembled two datasets based on variants found in the COSMIC database (version 84, February 2018) (Forbes et al., 2010). Among the COSMIC database annotations is the recurrence level, or the number of times a mutation has been observed in different cases. In the discussion below, highly recurrent variants have a recurrence of \(r \geq \rho \), where we select \(\rho = 8 \) in non-coding regions and \(\rho = 7 \) in coding regions. The dependence of predictive accuracy on unseen validation data, versus recurrence level \(r \), is depicted in Figure 1. For somatic variants, the other category of interest will be rare somatic SNVs which occur once in the whole dataset (\(r = 1 \)). These two categories of somatic alterations will contain variants with differing disease-driver statuses. It is reasonable to assume that some highly recurrent variants, specific to cancer samples and absent from healthy individuals, are actually neutral passengers. A recurrent somatic SNV could be closely co-located within a region where there is an active disease driver. Similarly a rare somatic SNV (\(r = 1 \)) could actually be a rare driver. However, it is plausible to assume that recurrently observed somatic SNVs, which are restricted to cancer samples, are enriched for driver mutations. Similarly, rare somatic SNVs could be expected to be enriched for neutral variants. Even if this statement were challenged, we point out that the consequence of the current study is to show that membership of these two classes can be predicted with a non-trivial accuracy on unseen test data, and hence these two classes must have different enrichments and characteristics. Our interest in discriminating recurrent somatic SNVs from rare somatic SNVs is therefore that it provides an alternative insight beyond a discrimination between germline neutrals (from healthy individuals) and recurrent somatic variants from cancer patients, absent from healthy individuals (Rogers et al., 2017a). This latter distinction could be influenced by a bias towards germline versus somatic discrimination, rather than the intended distinction of passenger versus disease-driver.

A further possible bias may be introduced if our class of negative examples, say the rare variants, are located in different genomic regions from the positive examples, the highly recurrent variants. For example, the positives may appear predominantly near transcription start sites while negatives are distributed more broadly (Richie et al., 2014; Kircher, L.A. et al., 2014; Shihab et al., 2015). To ensure the locations of rare somatic mutations approximate those of recurrent somatic mutations, we select only those rare mutations found within a window \(u \) of a recurrent mutation. For coding examples we use \(u = 10,000 \), and for non-coding examples we use \(u = 1,000 \) (Supplementary Section 1). Hence our final training
sets, outlined in Supplementary Tables 1 and 2, consist of 27,575 coding examples and 10,908 non-coding examples.

Feature Groups

All of our data are based on the GRCh37/hg19 version of the human genome and detailed further in the Supplementary. Following our previous work (Shihab et al., 2015; Rogers et al., 2015, 2017b,a), we annotated our datasets using more than 30 feature groups that could be predictive of pathogenicity. For discriminating between somatic variants, we found the following feature categories to be predictive:

- **Genomic** features include GC content, local mutation frequency (Martincorenova and Campbell, 2015), sequence spectra (Leslie et al., 2002), proximity to gene features such as splice sites or transcription factor binding sites, predicted functional elements, and measures of region uniqueness.
- **Evolutionary** evolutionary features include a comprehensive set of conservation-based measures provided by tools such as PhastCons (Siepel et al., 2005), PhyloP (Pollard et al., 2010) and FATHMM (Shihab et al., 2015).
- **Consequences** (coding only) using the Variant Effect Predictor (McLaren et al., 2016) we use binary vectors to represent allele consequences and the affected amino acids within all transcripts associated with a mutation.

The COSMIC database also provides a set of *mutational signatures* that are specific to oncogenic mutations. These are associated with various distinct forms of mutation, such as DNA replication errors, defective DNA repair, enzymatic DNA modification, and exposure to mutagens (Alexandrov et al., 2013). However, this signature set is still evolving and may represent only a subset of potential oncogenic driver signals. Furthermore, metrics used to derive some of these signatures are based in part on drivers gleaned from the COSMIC database and potentially could bias our models.

Hence our final models use seven distinct feature groups: Conservation, GC content, Sequence uniqueness, Local mutation frequency, Proximity to gene features, Spectrum and Functional elements. More detailed descriptions of these feature groups, and the machine learning method used, appear in the Supplementary and in (Rogers et al., 2017a).

Cscape-somatic models

We evaluated all models using leave-one-out cross validation (LOCO-CV) testing, omitting mitochondrial and allosomal (X and Y) chromosomes from testing as these have evolutionary characteristics distinct from autosomal chromosomes, and tend to yield fewer examples. For each fold we leave out one test chromosome while the remaining 21 chromosomes are used to train the model, using the same model parameters for all folds. Except where noted, we trained models using randomly selected, balanced sets of 4,000 positive and 4,000 negative examples. This smaller subset of examples yields accuracy nearly as high as with complete training sets, as the training data normalisation, where we standardise features by subtracting the mean and dividing by the standard deviation. For these models we observed no difference in performance between the raw feature values and standardised data. The final CSS-noncoding model includes five feature groups: Conservation, Local mutation frequency, Distance from gene features, and two related to sequence: GC content and Sequence uniqueness.

3 Results

Measurable differences between germline and somatic neutral variants

The methodology we use will be similar to that used with Cscape (Rogers et al., 2017a). However, the key difference is that we wish to explore the potential for discriminating between two different classes of somatic variants: highly recurrent SNVs, which we label as positives, and rare SNVs which we label as negatives. The other distinction is between the neutral germline variants we used to train our Cscape models and the \(r = 1 \) somatic SNVs in cancer samples. To investigate this latter distinction, we evaluated 30 different feature groups to detect differences between these latter two classes of variants.

Non-coding data: germline versus somatic

In non-coding regions, several feature groups yielded different distributions for \(r = 1 \) somatic variants and germline neutral variants. These are depicted in Figure 2 and Supplementary Figure 2, and the distinction is highly significant by hypothesis testing. For example, PhyloP conservation scores for \(r = 1 \) somatic variants tend to be higher (associated with more highly-conserved regions) and fall within a narrower range than neutral germline variants (Figure 2, top). Based on our mutation tolerance measure, \(r = 1 \) somatic variants reside in regions where somatic variants typically cluster, while benign germline variants appear in these regions less often (Figure 2, bottom). These patterns are consistent with other features in the same groups (Supplementary Figure 2), and hence supports our hypothesis that by developing models focused solely on somatic variants, we may begin to tease out differences between cancer drivers and putative passenger variants. However one should be cautious about drawing inferences from these results. For example, germline neutral variants have higher percent GC content scores in coding regions, but lower scores in non-coding regions, so it is unclear whether GC content plays a significant role, or whether it merely correlates with other features.
Coding data: germline versus somatic

Conservation estimates feature prominently in many methods designed to predict pathogenic or oncogenic variants in coding regions of the genome, including our own FATHMM-MKL (Shihab et al., 2015), FATHMM-XF (Rogers et al., 2017b) and CScape (Rogers et al., 2017a). The selection of positive examples (pathogenic or oncogenic) is relatively clear, but selecting appropriate neutral examples may be challenging. Hence we used conservation scores to assess characteristic differences between neutral germline and somatic variants. For our analysis we use three different methods for scoring conserved positions in a genome: PhyloP (Siepel et al., 2005), PhyLOP (Pollard et al., 2010) and FATHMM (Shihab, H.A. et al., 2013). PhyloP produces scores that correspond to the probability that a particular position is in a conserved region: high scores correspond to high conservation probability. PhyLOP yields scores in a broader range, but positive scores generally correspond to conserved regions and negative scores, to variable regions. FATHMM scores also span a relatively broad range. In this case, negative scores correspond to conserved regions and positive scores reflect variable regions.

In coding regions, conservation scores tend to yield good discrimination between pathogenic and benign germline variants (Shihab et al., 2015; Rogers et al., 2017b), or between somatic driver and neutral germline variants (Rogers et al., 2017a). Hence it is not surprising that several conservation scoring methods also exhibit different distributions between rare somatic variants and neutral germline variants in coding regions (Figure 3). Here we show the results for two methods: PhaSTCons (Siepel et al., 2005) and PhyLOP (Pollard et al., 2010) (we find similar results for scores from FATHMM (Shihab, H.A. et al., 2013), Supplementary Figure 3). For conservation scores we found that putative somatic passenger variants tend to have score distributions associated with more highly conserved regions than neutral germline variants. Note that we observed the same pattern in conservation scores for non-coding variants, where rare somatic variants were also associated with more highly-conserved regions (Figure 2). These results are consistent with the idea that germline variants under selective pressure occur less frequently in conserved regions that are intolerant to variation. By contrast, rare somatic variants are under little or no selective pressure once tumours proliferate, and hence may tend to arise in conserved regions with a greater frequency.

Fig. 2. Scoring distributions for SNVs in its non-coding datasets show differences between germline (1000 Genomes) and rare somatic (COSMIC, r = 1) examples. The features that discriminate most clearly between germline and somatic variants are those associated with conservation scores (top) and the somatic mutation frequency within a local region (bottom). Conservation scores do not yield the kind of discrimination we see typically when comparing pathogenic or oncogenic mutants with presumed benign variants, however PhyloP scores suggest that putative somatic passenger variants are more closely associated with highly-conserved regions (lower scores indicate greater conservation) than benign germline variants (top). This same pattern holds for other conservation scores, but the distinction is less clear (Supplementary Figure 2). Somatic variants also appear to reside in regions with higher mutation tolerance, as measured by the number of somatic variants found within a region of 1,000 positions (bottom). The individual probabilities that the two distributions in each subplot come from the same underlying distribution are upper bounded by 10^{-18} and hence the differences are certainly statistically significant.

Fig. 3. Two methods for estimating conservation in coding regions show that there are differences in scoring distributions between germline (1000 Genomes) and rare somatic (COSMIC, r = 1) variants. With PhaSTCons scores (top) germline neutral variants tend to have low scores associated with more highly conserved regions, while somatic neutral variants tend to have higher scores. PHYLOP scores (bottom) exhibit a similar pattern where again, high scores are associated with conserved regions while low scores are associated with more variable regions. While these differences are subtle, this suggests that developing a coding-region classifier strictly based on somatic variants may yield better specificity for cancer drivers than the current CScape coding model. The individual probabilities that the two distributions in each subplot come from the same underlying distribution are upper bounded by 10^{-18} and hence the differences are certainly statistically significant.
Classifying recurrent and rare somatic variants

Classifier	Bal. Acc	Sens.	Spec.	MCC	PPV
CSS-non-coding	0.69	0.64	0.74	0.38	0.73
cautious (τ = 0.84)	0.84	0.87	0.81	0.67	0.91
CSS-coding	0.74	0.72	0.77	0.48	0.76
cautious (τ = 0.91)	0.92	0.96	0.88	0.85	0.93

Table 1. Statistics for CSS-non-coding and CSS-coding applied to LOCO-CV test data provide estimates of how the models are likely to perform on new examples. Shown are the performance statistics for each model: sensitivity (Sens., the proportion of positive examples correctly classified), specificity (Spec., the proportion of negative examples correctly classified), balanced accuracy (Bal. Acc.), the Matthews correlation coefficient (MCC) and the positive predictive value (PPV, the proportion of positive predictions that are true positives). τ is the cutoff on the confidence for cautious classification.

Classifying somatic variants in non-coding regions

Fig. 4. Comparison between CScape-somatic performance in LOCO-CV (non-coding regions, COSMIC data) with prediction results for CScape, CADD and FunSeq2 on the same examples (CSS=CScape-somatic and CS=CScape). Top: CScape-somatic dramatically outperforms other methods on the COSMIC training data with accuracy over 65%. Of the other methods, only FunSeq2 appears to yield prediction accuracy better than chance, at 52.7%. The remaining methods fare poorly, including the original CScape. Bottom: We see the same trend with ROC scores, as CS-somatic yields satisfactory ranking performance of 0.75, while only FunSeq2 yields rankings better than chance.

Cancer specific predictors have been proposed for prediction in coding regions of the cancer genome (Adzhubei et al., 2010; Kumar et al., 2009; Wong et al., 2011). General purpose predictors have also been proposed for prediction across the entire genome (coding and non-coding regions) using catalogued disease-drivers across a variety of disease traits (e.g. HGMD (Stenson, P.D., et al., 2014)), and recently we have seen the emergence of classifiers designed to discriminate between cancer drivers and presumed benign variants from germline databases (Fu et al., 2014; Rogers et al., 2017a). However, there is currently a lack of predictors specifically trained to discriminate between somatically acquired putative drivers and passengers, particularly for non-coding regions of the cancer genome.

Here we consider the distinction between rare somatic variants and highly recurrent somatic variants, with the working assumption that the former class is enriched for neutral passengers while being distinct from germline neutrals, and with the latter class enriched for drivers. In Figure 4 we present results demonstrating that CSS-non-coding outperforms rival prediction tools for this distinction, based on the use of COSMIC data, both in terms of accuracy (top) and area-under-ROC-curve (AUC) score (bottom). In comparison with general-purpose classifiers such as CADD (Kircher, L.A., et al., 2014), and cancer-specific methods such as CScape (Rogers et al., 2017a) and FunSeq2 (Fu et al., 2014), our CSscape-somatic model yields dramatically higher accuracy and AUC performance. CSscape-somatic test accuracy with LOCO-CV is 68.2% while its nearest competitor, FunSeq2 yields 52.7%. Similarly, CSscape-somatic yields an AUC score of 0.73 substantially higher than its nearest competitor, FunSeq2, with 0.52.

International Cancer Genome Consortium (ICGC) test data

Fig. 5. Performance of the best CSscape-somatic model with the original CSscape, CADD and FunSeq2 on the ICGC test set for non-coding regions (CSS=CSscape-somatic and CS=CSscape). Top: CSscape-somatic yields accuracy from 60.0% up to 64.2% on the ICGC test sets, substantially higher than competitors. The closest competitor changes at each ICGC recurrence level: FunSeq2 for ICGC r ≥ 2 at 50.9%, CADD for ICGC r ≥ 3 at 50.5%, and CADD for ICGC r ≥ 4 at 51.4%. Bottom: CSscape-somatic yields AUC scores from 0.64 to 0.73. None of the competitor yield scores better than random chance (0.50), and with the exception of the original CSscape, perform worse as the driver threshold r increases.
ICGC data includes patient identifiers, which enables us to find cancer variants that occur more than once. Hence this dataset provides a good independent test for models that might discriminate between putative driver mutations (those found in multiple patients) and rare, prospectively neutral, mutations (those found just once). Within the ICGC data, we found 52,825 examples in non-coding regions after we applied our strict filtering criteria. This procedure yielded 37,802 variants associated with only one patient, and 15,023 examples associated with two or more patients. We selected positive examples using three different recurrence levels: \(r \geq 2 \), \(r \geq 3 \) and \(r \geq 4 \) (we found no examples associated with more than four patients). In each case, we restricted rare variants to be within 1,000 nucleotide positions of highly recurrent putative driver, to mitigate potential bias related to genomic locations. This yielded 37,802 rare variants and 15,023 recurrent variants at \(r \geq 2 \), 3,781 rare variants and 1,548 recurrent variants at \(r \geq 3 \), and 1,207 rare variants and 481 recurrent variants at \(r \geq 4 \).

Generally we found that CADD, which was trained solely on germline or simulated variants, and models such as CScape, FunSeq2, IMAN, FATHMM-MKL, and FATHMM-SF, trained on combinations of germline and somatic variants perform poorly on this test set. CScape-somatic yields substantially higher balanced accuracy and AUC scores than competing methods on these data. Interestingly, this model performs better as the recurrence level increases: from 60% at \(r \geq 2 \) up to 64% at \(r \geq 4 \) (Figure 5). This observation implies there is a substantive difference between low-recurrence and high-recurrence variants, supporting our previously stated assumption that high-recurrence variants are more likely to be driver mutations. The remaining models all perform worse in terms of AUC scores as the IGC driver threshold \(r \) increases, the lone exception being the original CScape (Figure 5, bottom).

Evaluation on TERT/SDHD/PLEKHS1 examples from non-coding regions

Mutation	CSS	CS	FS†	CADD
TERT				
5:g1295228G>A	+ (0.56)	+ (0.52)	+ (1.33)	+ (0.34)
5:g1295229G>A	+ (0.51)	+ (0.62)	+ (1.69)	+ (0.66)
5:g1295250G>A	+ (0.51)	+ (0.58)	+ (0.56)	+ (0.31)
SDHD				
11:g111957523C>T	+ (0.52)	+ (0.81)	+ (1.00)	+ (1.64)
11:51975541C>T	+ (0.68)	+ (0.67)	+ (1.62)	+ (0.82)
11:g111957544C>T	+ (0.87)	- (0.40)	+ (1.00)	+ (0.64)
PLEKHS1				
10:g11551590G>A	+ (0.71)	+ (0.65)	- (0.17)	- (0.10)
10:g11551593C>T	+ (0.57)	(0.71)	- (0.17)	- (0.06)

Table 2. Tests on verified cancer drivers from non-coding regions show that CSscape-somatic predicts all variants correctly, while the original CSscape correctly predicts all but one SDHD variant. FunSeq2 and CADD predict the TERT and SDHD examples correctly, but both mis-classify the PLEKHS1 examples. For each method we present the predicted label (driver, †= passenger) with the associated score in parentheses. (Classifiers: CSS = CSscape-somatic, CS = CSscape, FS = FunSeq2). †For FunSeq2 we use a threshold of 0.56 (Rogers et al., 2017a).

Few oncogenic single-point mutations have been verified in non-coding regions. The most prominent to date are three mutations in the TERT promoter region (Huang et al., 2013; Horn et al., 2013; Weinhold et al., 2014). These have been characterised as disruptions to putative E2F transcription specific (ETS) family transcription factor binding sites, that include five additional mutations in SDHD and PLEKHS1 (Weinhold et al., 2014).
For classifying driver mutations, coding regions have received considerably more attention than non-coding regions. However, few models have been developed expressly to differentiate between somatically acquired cancer drivers and passenger mutations. Hence we are interested in seeing whether a classifier trained on rare putative passengers and highly recurrent putative drivers in coding regions can discriminate between these two classes, better than existing models. Results on our COSMIC training data, shown in Figure 6, show that most methods struggle to make this distinction. Of the methods tested, only the original CScape yields prediction accuracy better than chance, at 59.2%. The remaining methods fare less well, even the TransFIC methods that were optimized for somatic variants. Bottom: We see the same trend with ROC scores, as CScape-somatic yields satisfactory ranking performance of 0.82, while only the original CScape yields rankings better than chance, at 0.62. (CSS=CScape-somatic; CS=CScape; TF-MAS=TransFIC-MutationAssessor, TF-PPH2=Transfic-Polyphen2 and TF-SIFT=TransFIC-SIFT)

We see similar performance characteristics on our ICGC test set: the CScape-somatic coding classifier yields 64% accuracy and an AUC score of 0.69, while the best of the remaining methods, CScape, manages 50% accuracy and an AUC of 0.61. Taken with the performance on our COSMIC data set, these results suggest that models trained to discriminate between presumed cancer drivers and generic neutral germline variants may be poor with distinguishing between true drivers and passengers.

We note that the performance of the CScape-somatic coding classifier drops considerably between the COSMIC training set and the ICGC test set. By contrast, the original CScape performs slightly better on the ICGC test set at 59% accuracy compared with 56% accuracy on the COSMIC data set. There are two possible reasons for this: either the ICGC test set does not represent cancer drivers and putative passengers as well as the COSMIC dataset, or the CScape-somatic coding model may over-fit the COSMIC dataset. After filtering out examples found in our training set, the ICGC test sets are relatively small, with just 1,695 driver and 2,921 putative passenger mutations in the set. As a result, we did not have sufficient test data to stratify by recurrence levels with putative drivers
defined by recurrence levels as low as two. When we test our coding model on unseen COSMIC data where drivers are identified using recurrence levels of just two or higher, performance indeed drops considerably, to a balanced accuracy of 62.3%, slightly lower than its performance on the ICGC test data using the same recurrence levels. Thus while we cannot rule out some degree of over-fitting, these results suggest that relatively low recurrence levels in the ICGC data account for some of the observed performance difference.

We have used the COSMIC dataset for model training and the ICGC dataset for test evaluation. Of course, it is also possible to train on ICGC data and test on COSMIC. Though this leads to a slightly lower test performance, we consider and evaluate this alternative in Supplementary Section 5.

Aside from evaluations on test data, we can also test the model for biologically meaningful prediction. There are a number of well characterised cancer driver mutations stemming from variants in coding regions. For example, the H_{is}1047Arg substitution derives from A to G at location 3:178952085 (GRCh37/hg19) in the driver gene PIK3CA and has been implicated in various cancers (Janku et al., 2011). Using CScape-somatic (http://CScape-somatic.biocompute.org.uk/) this is a high confidence predicted driver (at 0.927). In Supplementary Section 6, we further tested CScape-somatic on a range of other recurring single point driver mutations in coding regions, residing in well known cancer genes, and characterised by Rheinbay et al. (Extended Data Figure 1 in Rheinbay (2017)) as SNV-drivers. Their study uses data from the Pan-Cancer Analysis of Whole Genomes Consortium and uses in excess of 2,700 cancer genomes from more than 2,500 patients. Subject to the proviso given in Supplementary Section 6, the presented classifier correctly predicts all of these well characterised drivers from the driver-genes $KRAS$, PIK3CA, TP53, NRAS and IDH1.

4 Discussion

In this study we have investigated the feasibility of developing models that can accurately predict the likely influence of different classes of somatic mutations on tumorigenesis. Our hypothesis was twofold. Firstly, there are characteristic differences in many of the features distinguishing rare somatic variants, which are prospectively enriched for neutral passenger variants, and benign germline variants. The latter category is frequently used to train methods for SNV driver status annotation. Secondly, these features can play an important role in discriminating between rare somatic variants, putatively passengers, and highly recurrent somatic variants, restricted to cancer patients, and which are likely to be enriched for drivers. We found evidence to support the first hypothesis within features that measure degree of conservation across the genome, mutation frequency or GC content in the region surrounding each variant. We also present the CScape-somatic model to distinguish these two classes of somatic variant in coding and non-coding regions of the genome. Both the coding and non-coding sub-classifiers, optimized separately within their respective domains, rely to some degree on the same features: conservation, mutation frequency and GC content.

To our knowledge, the CScape-somatic model is the first to discriminate solely between somatic cancer variants. We compared our new model to our original C-Scape model which was trained to discriminate between somatic driver variants and benign germline variants, and found that while the original model provides weak discrimination between highly recurrent and rare somatic variants, the new model provides substantially higher test accuracy across the entire genome. We also compared this new model to CADD, FunSeq2 and the three TransFC models: TransFC-MutationAssessor, TransFC-SIFT and TransFC-Polyphen2. Of these latter models, only FunSeq2 has been optimized to predict oncogenic variants. The remaining five models were all developed to discriminate pathogenic germline variants from benign germline variants. In nearly all cases we found that models trained on germline variants as the neutral control, were unable to distinguish between highly recurrent putative oncogenic drivers and and rare somatic variants, likely to be putative passenger variants. Only models trained on cancer variants, CScape-somatic and FunSeq2, provided weak discrimination on some test data for this type of distinction.

References

Adzhubei, I., Schmidt, S., Peshkin, L., Ramensky, V., Geragosian, A., Bork, P., Kondrashov, A., and Sunyaev, S. (2010). A method and server for predicting damaging missense mutations. Nature Methods, 7, 249–249.
Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Aparicio, S. A., Behjati, S., Biankin, A., V. Bignell, G. R., Bolli, N., Borg, A., Boterssen-Dalke, A.-L., et al. (2013). Signatures of mutational processes in human cancer. Nature, 508(7483), 415.
Boi, J., Antal, T., Oltuski, H., Carter, H., Kim, D., Chen, S., Karchin, R., Kinker, K. W., Vogelstein, B., and Novak, M. A. (2010). Accumulation of driver and passenger mutations during tumor progression. Proceedings of the National Academy of Sciences, 107(41), 18345–18350.
Dobrzyński, M., de Tiel, Z., Rogers, M. F., Gaut, T. R., and Campbell, C. (2019). Estimating the frequency of single point driver mutations across common solid tumours. Nature Scientific Reports, to appear.
Forbes, S. A. et al. (2010). Cosmic: compiling complete cancer genomes in the catalog of somatic mutations in cancer. Nuclear acid research, 38(suppl_1), D945–D950.
Fu, Y., Liu, Z., Lou, S., Bedford, J., Mu, X. J., Yip, K. Y., Khurana, E., and Gerstein, M. (2014). FunSeq2: a framework for prioritizing noncoding regulatory variants in cancer. Genome Biology, 15(10), 480.
Futreal, P. A., Coin, L., Marshall, D., Muff, T., Hubbard, T., Wooster, R., Rahman, N., and Stratton, M. R. (2004). A census of human cancer genes. Nature reviews cancer, 4(3), 177.
Gonzalez-Perez, A., De-Puoz, J., and Lopez-Bigas, N. (2012). Improving the prediction of the functional impact of cancer mutations by baseline tolerance transformation. Genome medicine, 4(1), 1.
Horn, S., Figl, A., Rachakonda, P. S., Fischer, C., Sucker, A., Giat, A., Kadef, S., Moll, I., Nagore, E., Hemminki, K., et al. (2013). Tumor promoters mutations in familial and sporadic melanoma. Science, 339(6122), 959–961.
Huang, F. W., Bodis, E., Xu, M. J., Kryukov, G. V., Chin, L., and Garraway, L. A. (2013). Highly recurrent tss promoter mutations in human melanoma. Science, 339(6122), 979–979.
Janku, F. and et al. (2011). PIK3ca mutations frequently coexist with ras and braf mutations in patients with advanced cancers. PLoS One, 6(7), e22769.
Kircher, I. A. et al. (2014). A general framework for estimating the relative pathogenicity of human genetic variants. Nature Genetics, 46, 310–315.
Kumar, P., Henikoff, S., and Ng, P. (2009). Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Proc., 4, 1073–81.
Leskie, C. E., Eskin, E., and Noble, W. S. (2002). The spectrum kernel: A string kernel for SVM protein classification. In Pacific Symposium on Biocomputing, volume 7, pages 566–575. World Scientific.
Liu, X., Li, C., and Boevink, E. (2016). The performance of deleteriousness prediction scores for rare non-protein-changing single nucleotide variants in human genes. Journal of Medical Genetics, pages jmggenetics-2016.
Martincorena, I. and Campbell, P. J. (2015). Somatic mutation in cancer and normal cells. Science, 349(6255), 1483–1489.
Martincorena, I., Raine, K., Gersting, M., Etzioni, K., Haase, K., Van Loo, P., Davies, H., Stratton, M., and Campbell, P. (2017). Universal patterns of selection in cancer and somatic tissues. Cell, 171, 1029–1041.
Marx, V. (2014). Cancer genomes: discriminating drivers from passengers. McFarland, C. T., Murny, L. A., and Kosuke, S. (2014). Tag-of-war between driver and passenger mutations in cancer and other adaptive processes. Proceedings of the National Academy of Sciences, 111(42), 15153–15158.
McLaren, W., Gil, L., Hunt, S. E., Riat, H. S., Ritchie, G. R., Thormann, A., Flicek, P., Oil, B. G., Nik-Zainal, S., Bond, G. A., et al. (2013). The Ensembl variation database. Database, 18, 2013–2013.
McLaren, W., Gil, L., Hunt, S. E., Riat, H. S., Ritchie, G. R., Thormann, A., Flicek, P., Oil, B. G., Nik-Zainal, S., Bond, G. A., et al. (2013). The Ensembl variation database. Database, 18, 2013–2013.
McLaren, W., Gil, L., Hunt, S. E., Riat, H. S., Ritchie, G. R., Thormann, A., Flicek, P., Oil, B. G., Nik-Zainal, S., Bond, G. A., et al. (2013). The Ensembl variation database. Database, 18, 2013–2013.
McLaren, W., Gil, L., Hunt, S. E., Riat, H. S., Ritchie, G. R., Thormann, A., Flicek, P., Oil, B. G., Nik-Zainal, S., Bond, G. A., et al. (2013). The Ensembl variation database. Database, 18, 2013–2013.
McLaren, W., Gil, L., Hunt, S. E., Riat, H. S., Ritchie, G. R., Thormann, A., Flicek, P., Oil, B. G., Nik-Zainal, S., Bond, G. A., et al. (2013). The Ensembl variation database. Database, 18, 2013–2013.
Reva, B., Antipin, Y., and Sander, C. (2011). Predicting the functional impact of protein mutations: application to cancer genomics. *Nucleic Acids Research*, 39, e118.

Rheinbay, E. et al. (2017). Discovery and characterization of coding and non-coding driver mutations in more than 2,500 whole cancer genomes. *bioRxiv* working paper.

Ritchie, G., Dunham, I., Zeggini, E., and Flicek, P. (2014). Functional annotation of noncoding sequence variants. *Nat. Methods*, 11, 204–206.

Rogers, M., Campbell, C., Shihab, H., Gaunt, T., Mott, M., and Cooper, D. (2015). Sequential data selection for predicting the pathogenic effects of sequence variation. In *Bioinformatics and Biomedicine (BIBM), 2015 IEEE International Conference on*, pages 639–644.

Rogers, M. F., Shihab, H. A., Gaunt, T. R., and Campbell, C. (2017a). CScape: a tool for predicting oncogenic single-point mutations in the cancer genome. *Scientific reports*, 7(1), 11597.

Rogers, M. F., Shihab, H. A., Mort, M., Cooper, D. N., Gaunt, T. R., and Campbell, C. (2017b). FATHMM-XF: accurate prediction of pathogenic point mutations via extended features. *Bioinformatics*, 34(3), 511–513.

Shihab, H., Rogers, M., Gough, J., Mort, M., Cooper, D., Day, I., Gaunt, T., and Campbell, C. (2015). An integrative approach to predicting the functional effects of non-coding and coding sequence variation. *Bioinformatics*, 31, 1536–1543.

Shihab, H. A. et al. (2013). Predicting the functional, molecular and phenotypic consequences of amino acid substitutions using hidden markov models. *Hum. Mutat.*, 34, 37–45.

Siepel, A., Bejerano, G., Pedersen, J., Hinichs, A., Hou, M., Rosenbloom, K., Clawson, H., Spieth, J., Hiller, L., Richards, S., Weinstock, G., Wilson, R., Gibbs, R., Kent, W., Miller, W., and Haussler, D. (2005). Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. *Genome Research*, 15, 1034–1050.

Stenson, P. D. et al. (2014). The human gene mutation database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. *Hum. Genet.*, 133, 1–9.

Stratton, M. R., Campbell, P. J., and Futreal, P. A. (2009). The cancer genome. *Nature*, 458(7239), 719.

The 1000 Genomes Project Consortium (2012). An integrated map of genetic variation from 1,092 human genomes. *Nature*, 491, 56–65.

Weinhold, N., Jacoben, A., Schultz, N., Sander, C., and Lee, W. (2014). Genome-wide analysis of noncoding regulatory mutations in cancer. *Nature Genetics*, 46(11), 1160–1165.

Weinstein, J. N. et al. (2013). The cancer genome. *Nature genetics*, 45(10), 1113–1120.

Wong, W., Kim, D., Carter, H., Dickhans, M., Ryan, M., and Karchin, R. (2011). CHASM and SNVBox: toolkit for detecting biologically important single nucleotide mutations in cancer. *Bioinformatics*, 27.

Zhang, J., Baran, J., Cross, A., Guberman, I. M., Haider, S., Hou, J., Liang, Y., Rivkin, E., Wang, J., Whitty, B., et al. (2011). International cancer genome consortium data portal – a one-stop shop for cancer genomics data. *Database*, 2011.