Identifying Ca2+-Binding Sites in Proteins by Liquid Chromatography-Mass Spectrometry Using Ca2+-Directed Dissociations\cite{1}

Azadeh Jamalian†‡§‡‡, Evert-Jan Sneekes†‡‡, Hans Wienk¶, Lennard J. M. Dekker‡, Paul J. A. Ruttink‖, Mario Ursem§, Theo M. Luider‡, and Peter C. Burgers‡**

Here we describe a new method to identify calcium-binding sites in proteins using high-resolution liquid chromatography-mass spectrometry in concert with calcium-directed collision-induced dissociations. Our method does not require any modifications to the liquid chromatography-mass spectrometry apparatus, uses standard digestion protocols, and can be applied to existing high-resolution MS data files. In contrast to NMR, our method is applicable to very small amounts of complex protein mixtures (femtomole level). Calcium-bound peptides can be identified using three criteria: (1) the calculated exact mass of the calcium containing peptide; (2) specific dissociations of the calcium-containing peptide from threonine and serine residues; and (3) the very similar retention times of the calcium-containing peptide and the free peptide. *Molecular & Cellular Proteomics* 13: 10.1074/mcp.M114.038182, 3177–3183, 2014.

Calcium-dependent protein interactions mostly organized in protein networks are responsible for the regulation of cell cycle progression, cell growth, differentiation, secretion, and cytoskeletal organization (1–3). As many of these proteins are linked to various pathological conditions, they are clinically important. The speed at which calcium can have an interplay between various cellular components is impressive and comes notably detectable in neurological processes and in muscle contraction. Calcium binding sites in proteins can be determined by NMR spectroscopy (4, 5). For example, by such NMR measurements, the Ca2+-binding sites of the tellurite-resistance protein TerD from *Klebsiella pneumoniae* were found to be formed in part by a highly conserved motif of 13 residues specified by the sequence GDN(R/L)TG(E/A)GDGDDE (4).

Although NMR is the gold standard to study calcium binding in proteins, this approach has several drawbacks. For instance, protein size is limited (<30 kDa) and proteins should be pure and isotopically labeled. In addition, although the information content is high, NMR is relatively insensitive compared with other techniques such as MS and fluorescence spectroscopy, and relatively large quantities of material (typically 0.5 ml at 0.5–1.0 mM in biological samples) are needed, although efforts are devoted to improve sensitivity in NMR, such as stripe line NMR (6).

In bottom-up proteomics, proteolytic peptides, generated by enzymatic digestion of complex protein mixtures, are sequenced by MS-based methods (MS/MS (7, 8)) using collision-induced dissociations. Because of the even higher complexity of these peptide mixtures, liquid chromatography (LC)1 is used to separate the peptides prior to sequencing. In such an LC-MS/MS procedure, many peptides can be identified belonging to the same protein. It has been stated (9) that by this procedure more peptides are analyzed than strictly necessary for identification purposes, but it can equally well be argued that such large coverages enable more reliable protein identifications; moreover, these larger coverages allow the detection of post-translational modifications, including specific calcium complexation as described here.

Considering the need of identifying calcium-bound proteins in complex biological samples at low concentrations, we set out to develop a novel method for detecting Ca2+-binding sites in proteins based on LC-MS.

EXPERIMENTAL PROCEDURES

All peptide samples were prepared as 0.01 M in water. The matrix-assisted laser desorption/ionization (MALDI) matrix α-cyano-4-hydroxycinnamic acid (CHCA) was prepared as 0.01 M in acetonitrile/water, 50:50 (v/v). Following the procedure of Ruttink et al. (10), the ethanolamine and ethanolamine-d\textsubscript{4} solution was mixed with the metal formate or metal acetate solution and with the matrix solution in a

1 The abbreviations used are: LC, liquid chromatography; MALDI, matrix-assisted laser desorption/ionization; CID, collision-induced dissociation; ESI, electrospray ionization.
Identifying Ca$^{2+}$-Binding Sites in Proteins

RESULTS

During a mass spectrometric quality assessment (by high-resolution matrix-assisted laser desorption/ionization-Fourier transform-ion cyclotron resonance-mass spectrometry, MALDI-FTICR-MS) of synthetic 15-mer peptides derived from the onco-neural protein HuD, we noticed (19) that certain peptide motifs such as TNYDEA displayed an extraordinary large affinity toward Ca$^{2+}$ as could be distinguished by high-resolution MS (supplemental Fig. S1). This was evident from intense peaks corresponding to [P - H + Ca]$^+$, present at 37.9470 Da higher than that for the protonated peptide [P + H]$^+$ as opposed to the usually found lesser intense peaks 37.9559 Da higher for the K$^+$ adducts corresponding to [P + K]$^+$. The mass difference, 8.9 mDa is easily detected on an FTICR instrument with a resolution of 100,000 (full width at the half height, FWHH). After purification of the peptide by preparative LC, the calcium-containing peptide was still present (supplemental Fig. S1B) attesting to the strong binding of calcium.

From the high-resolution MS/MS spectra (supplemental Fig. S2), it became also evident that when a threonine (T) is present, the [P - H + Ca]$^+$ loses 44.0262 Da, corresponding to loss of acetaldehyde, whereas at the same collision energy the [P + K]$^+$ ions do not show any such loss. When more T residues are present, sequential losses of CH$_3$CHO are observed. Such acetaldehyde loss is also observed as sequential fragmentation from intense product ions, such as from the b-type aspartic acid product ions. When a serine (S) is present, loss of 30.0106, corresponding to loss of CH$_3$O, is observed. Such losses are also observed in electrospray ionization (supplemental Fig. S2B) showing that the calcium-containing peptide is also detectable under ESI conditions. T and S (and also tyrosine, Y) residues, which are present together with the acidic amino acid residues aspartic acid (D) and glutamic acid (E) in the 15-mer peptides studied in Ref. 16, all contain hydroxyl functionalities, and we proposed previously (19) that Ca$^{2+}$ attached to a carboxylic functionality can induce a proton transfer from T or S to an amide bond (which then becomes protonated), leaving a deprotonated T or S residue that upon collisional activation loses CH$_3$CHO or CH$_2$O, respectively. Even for a small model ion-molecule system, i.e. HCOO$^-•••$Ca$^{2+}$•••(H)OCH$_2$CH$_2$NH$_2$ (which contains a carboxylic functionality, an S hydroxyl group, and an amine group) proton transfer from O to N within the ethanol amine moiety to produce the complexed zwitterion HCOO$^-•••$Ca$^{2+}$•••(H)OCH$_2$CH$_2$NH$_2$ (which contains a carboxylic functionality, an S hydroxyl group, and an amine group) proceeds smoothly and without an energy barrier (supplemental Figs. S3 - S9 and supplemental text). That such a facile proton transfer takes place is evident from the observed intense loss of NH$_3$ from the starting complex HCOO$^-•••$Ca$^{2+}$•••(H)OCH$_2$CH$_2$NH$_2$, see supplemental Fig. S9. Thus, the OH group of ethanolamine acts as a proton donor whereas the NH$_2$ group is the proton acceptor. The above losses of acetaldehyde and formaldehyde are also observed after collisional activation of deprotonated peptides, that is, [P - H]$^+$ (20). We observed that motifs that contain a D and/or E in the vicinity of T and/or S and/or Y show a particularly strong calcium affinity.

Fragmentation efficiency curves were obtained on a MALDI-FTICR mass spectrometer for the reference peptide GGGGDEG, bound to various mono-, di-, and trivalent metal ions and the rates of dissociation were compared with that for the reference protonated peptide; the results are shown in Fig. 1. The y axis shows the product/precursor ion intensity (×100) and the x axis shows the collision energy in the center-of-mass framework. The monovalent metal ions are attached to the singly det-
protonated peptide, and the trivalent metal ion to the doubly deprotonated peptide.

To discuss our methodology for establishing calcium-binding sites in proteins, we designed the following strategy. All examples involve LC-MS/MS experiments on complex protein mixtures. First, a control example is discussed were the calcium-binding site is known, the protein calcyclin. The MS/MS spectrum of the calcium-containing peptide as measured in an LC-MS/MS run from a tryptic digest of trophoblasts cells in pre-eclamptic placenta is shown in Fig. 2 and will be discussed below. Next, an example is discussed that was retrieved from archive material present in our laboratory. This concerns existing LC-MS/MS runs recently published (17) on the developing chicken cardiovascular system for three Hamburger–Hamilton stages (HH26, HH30/31, and HH36) and the three accompanying heart tissue structures, namely great arteries, ventricles, and outflow tract. The MS/MS spectrum of the calcium-containing peptide GYSFVTVAER is given in Fig. 3. A final example concerns a protein (HuD) that is not known to bind calcium. From the retrieved LC-MS/MS run, we could identify one peptide that contained calcium, The MS/MS spectrum of the calcium-containing peptide, together with that of the doubly protonated peptide, is shown in Fig. 4.

Detection of calcium-binding sites in peptides or proteins of an enzymatic peptide digest obtained from a complex protein mixture can be achieved by tracing the above calcium-directed dissociations in their MS/MS spectra. This approach would appear particularly appealing because mass spectrometers are routinely coupled to LC systems, enabling identification of large numbers of proteins in complex mixtures. To this end, we defined the following three criteria for high resolution LC-MS data:

1. Deconvoluted to singly charged peptides, a mass signal should be present at 37.9470 Da higher than that of the protonated peptide, compared with 37.9559 Da for the potassium-containing species;

2. Deconvoluted to singly charged peptides, fragments of these peptide species should lose 44 Da if threonine is present or 30 Da if serine is present;

3. The calcium bound and free peptide peaks should be present most preferentially at very similar retention times (we observed that in most cases the retention time was not significantly influenced by calcium coordination on reverse phase C18 columns).
DISCUSSION

In the mass spectrometer, a particular peptide ion is induced to dissociate by energization using, for example, collisions with a noble gas. Because larger peptide ions have more vibrational degrees of freedom, they require more internal energy to decompose compared with smaller peptide ions, although the dissociating bond may be similar in strength in both cases. Hence, modern mass spectrometers have a feature by which the collision energy is automatically increased as the ion gets larger, thereby allowing for automatic unattended measurements. Because calcium-containing peptides have similar masses as the peptides that do not contain calcium, the automatically chosen collision energies will also be similar. Hence, we need to establish whether the peptide ion without calcium and the calcium-containing peptide ions fragment at the same rate. If not, the optimum collision energy needed to dissociate the calcium-containing peptide ion would have to be evaluated in a separate experiment, leading to a more complicated experimental setup. To ascertain such effects, fragmentation efficiency curves were obtained on our MALDI-FTICR mass spectrometer for a reference peptide GGGDEG bound to various mono-, di-, and
trivalent metal ions, and the rates of dissociation were compared with that for the reference protonated peptide; see Fig. 1. From these high-resolution fragmentation efficiency curves, it can be concluded that the [P₁ - H + Ca]⁺ ions fragment at a much faster rate than the [P₁ + K]⁺ ions but at a rate similar to the [P₁ + H]⁺ ions. This is a significant finding for two reasons: (1) Any interference of [P₁ - H + Ca]⁺ ions by [P₁ + K]⁺ ions is not seen because [P₁ + K]⁺ ions do not dissociate at these internal energies; (2) it is not necessary to vary the collision energy to observe the calcium-directed fragmentations and this observation results in a significant simplification of the experimental approach. It is not necessary to manually adjust the collision energy by an a priori unknown amount. Perhaps more importantly, because no adjustment of the mass spectrometer is required, our method can be applied to existing, dormant high-resolution MS data files; see below. In addition, it was found that the [P₁ + H]⁺ ions do not eliminate CH₃CHO from the T residue, and so there will be no interference from any other [P₂ + H]⁺ ions co-eluting with and having the same exact mass as [P₁ - H + Ca]⁺. The results presented in Fig. 1 also indicate that if other row 4 metals need to be detected attached to a peptide, for example Zn²⁺, the collision energy needs to be reduced significantly.

First, as a control experiment, a pure calcium-bound protein with known calcium-binding sites (calycin) was investigated as a test case of our approach. Calycin (S100-A6), a member of the S100 family of Ca²⁺-binding proteins that are highly homologous to acidic calcium-binding proteins containing two EF-hand motifs. Calycin is elevated in trophoblasts cells in pre-eclamptic placenta (21, 22). Pre-eclampsia is a disease with high protein concentrations in urine and high blood pressure, resulting in a high mortality and morbidity in pregnant women. From the LC-MS run, we could, using criteria 1 and 2, trace one known (20) calcium-containing sequence in calycin, (R)EGDKHTLSK(K). The partial MS/MS spectrum of this peptide with Ca²⁺ is given in Fig. 2, and it can be seen that losses of one and two water molecules occur but also loss of CH₃CHO from [P + Ca]²⁺ and from the [P + Ca - H₂O]²⁺ product ion, showing that calcium is present in this domain. This sequence was previously confirmed by x-ray crystallography (23) to be one of the calcium-binding sites of calycin (SGREGDKHTLSKKE). This demonstrates that the novel LC-MS/MS method is capable of identifying calcium-binding sites from available data files. The concentration of the calycin sample was 1 pmol/μL, and for this concentration, the calcium-binding peptide could easily be detected from the resulting LC-MS/MS collision-induced dissociation (CID) spectra.

A second example concerns a published proteomics study (17) by us a few years ago on the developing chicken cardiovascular system for three Hamburger–Hamilton stages (HH26, HH30/31, and HH36) and the three accompanying heart tissue structures, namely great arteries, ventricles, and outflow tract. In this study, a combination of one-dimensional gel separation, nanoLC separation, and MS was used. A protein abundantly formed in the ventricles at the late HH36 stage was α-cardiac actin, and it is known that actin filaments are severed and capped by gelsolin in a Ca²⁺-dependent manner. From the retrieved LC-MS run, using criteria 1 and 2, we traced a sequence in α-cardiac actin, viz. GYSFVTAAER that contains calcium. The MS/MS spectrum of this peptide + Ca²⁺ is given in Fig. 3, and it can be seen that this spectrum is dominated by loss of CH₃CHO from a T residue, showing that calcium is present in this peptide. Loss of an additional acetaldehyde molecule is detected from the second T residue.

A third example of an LC-MS calcium-binding site determination is provided by the analysis of a tryptic digest of the HuD protein, leading to a mixture of 23 peptides corresponding to 73% coverage. HuD belongs to a family of neuronal RNA-binding proteins that contain two N-terminal RNA-binding domains linked by a stringer to a third RNA-binding domain (24). The HuD proteins are highly homologous to the Drosophila protein Elav that is critical for the nervous development of the fly. Although its exact function is unknown, HuD is critical for the normal development of the mammalian nervous system during embryogenesis and it might also be involved in synaptic remodeling (25). In addition, the Elav family is involved in oncogenesis (26). Postacquisition MS analysis revealed two peptides that, according to criteria 1 and 3, are likely to bind calcium. These are the tryptic fragments NCPSPMQTGATTDDSK (N36-K51) and ITGQSLGYGFVN-Y- IDPK (I88-K104). These calcium-containing fragments [P + Ca]²⁺ are present at 1% of the [P + 2H]²⁺ intensity (no extra calcium was added in these experiments). In Fig. 4B, the MS/MS spectrum of the [P + 2H]²⁺ of the fragment ITGQSLGYGFVNY- IDPK is given. An extended series of b- and y-ions are seen, with the most intense peak for b₁₁⁻ corresponding to the aspartic acid side chain cleavage (19, 27). No loss of acetaldehyde could be detected from the parent ion or from any of its product ions. In contrast, for [P + Ca]²⁺ (Fig. 4A), the only backbone fragment corresponds to the aspartic cleavage product b₁₁⁻ ions, m/z 834.4 (also present as b₁₁⁻ at m/z 1667.7). As can be seen from Fig. 4C, loss of acetaldehyde can be observed from the parent ion for [P + Ca]²⁺ as well as from its b₁₁⁻ ion (The CID spectra in Figs 4A and 4B were obtained from a standard automated run at the same collision energies). The fulfillment of criteria 1, 2, and 3 demonstrates that the peptide ITGQSLGYGFVNY- IDPK corresponding to site 88–104 in the HuD protein contains calcium. Similar experiments revealed losses of CH₃CHO from the [P + Ca]²⁺ ion from NCPSPMQTGATTDDSK.

The function of the calcium that adhered specifically to the HuD protein is unknown. We are currently investigating if, for this protein, calcium binding is changed in tumors. The three examples show that it is possible to identify yet unknown and known calcium-binding domains in proteins using existing high-resolution MS data files.
In cases where digestion with trypsin leads to a weak signal or to no signal for a peptide, calcium binding may not be detected. This could be the case with the sequence GFGVFTMNEDAAACASNLGYR, which in our LC-MS run was triggered only once and is thus formed in a minor amount. This peptide contains the fragment TNYDE, which in theory could bind calcium, but this free peptide is detected at a relatively low level, precluding the detection of the corresponding calcium-containing analog.

Using NMR spectroscopy, we studied the calcium-binding site of one of our model compounds, GTNYDEG, in solution (supplemental Fig. S10). TOCSY and NOESY spectra were used to assign protons of the peptide GTNYDEG in presence of calcium formate. The formate proton is evident at 8.4 ppm. Near the T methyl signal, an unidentified methyl group is present. Another group of unidentified protons is visible around 3.5–4.0 ppm. The addition of calcium formate causes spectral changes. Major shifts to lower chemical shifts occur for G7-H, G7-QA, D5-H, and E6-QG suggest that calcium binds to the C terminus, to D5, and the E6 side chain. Minor changes to higher chemical shifts are found for T2-H, T2-HA, T2-HB (and also the N3-side chain HD21) and so the T residue is influenced by coordination. The observation that Ca$^{2+}$ binds to D, in addition to binding to the C terminus, and that the T is part of the coordination is in agreement with the findings from MS, namely that Ca$^{2+}$ binds to D and is able, in the mass spectrometer, to expel a proton from the T residue.

CONCLUSION

We have shown that specific calcium-binding sites (motifs) in peptides and proteins can be identified from LC-MS/MS data obtained from complex protein samples. Tracking the calcium-binding peptide part in the calcium-bound proteins according to the proposed criteria (also applicable in Selective reaction monitoring (SRM) techniques) can lead to more selective and sensitive detection of calcium-bound proteins in complex matrices as well as to the determination of the calcium-binding site in the protein.

The approach is applicable to existing high-resolution MS data files. However, the method is dependent on sensitivity, especially when low abundant proteins are concerned or when the proteolytic peptides are not present at sufficient level in the digested material (the recovery for enzymatic digestion is rarely 100%). We have found that in such cases, a peak for a calcium-containing peptide may well be present, but the peak is not sufficiently intense to trigger the recording of an MS/MS spectrum. In such cases, the LC run has to be repeated but now with an appropriate inclusion mass list. Alternatively, sensitivity may be enhanced by changing, for example, the elution conditions of the nano liquid chromatography materials was one of his great achievements. † Deceased. The authors fondly remember Mario Ursem as a passionate person and friend interested in research and in the researchers themselves. In particular, the exploration and discovery of new chromatography materials was one of his great achievements. ‡‡ Both authors have contributed equally to this work.

REFERENCES

1. Clapham, D. E. (2007) Calcium signaling. Cell 131, 1047–1058
2. Carafoli, E. (2002) Calcium signaling: A tale for all seasons. Proc. Natl. Acad. Sci. U.S.A. 99, 1115–1122
3. Yao, R., Davidson, D. D., Lopez-Beltran, A., MacLennan, G. T., Montironi, R., and Cheng, L. (2007) The S100 proteins for screening and prognostic grading of bladder cancer. Histol. Histopathol. 22, 1029–1032
4. Pan, Y. R., Lou, Y. C., Seven, A. B., Rizzo, J., and Chen, C. (2011) NMR structure and calcium-binding properties of the tellurite resistance protein TerD from Klebsiella pneumoniae. J. Mol. Biol. 405, 1188–1201
5. Bryce, D. L. (2010) Calcium binding environments probed by Ca-43 NMR spectroscopy. Dalton Trans. 39, 8593–8602
6. Bart, J., Janssen, J. W., van Bentum, P. J., Kentgens, A. P., and Gardeniers, J. G. (2009) Optimization of stripline-based microfluidic chips for high-resolution NMR. J. Magn. Reson. 201, 173–185
7. Yates, J. R., Ruse, C. I., and Nokorchevsky, A. (2009) Proteomics by mass spectrometry: Approaches, advances, and applications. Annu. Rev. Biomed. Eng. 11, 49–79
8. Walsh, G. M., Rogalski, J. C., Klockenbusch, C., and Kast, J. (2010) Mass spectrometry-based proteomics in biomedical research: Emerging technologies and future strategies. Expert Rev. Mol. Med. 12, 1–28
9. McDonal, L. Robertson, D. H., Hurst, J. L., and Beynon, R. J. (2005) Positional proteomics: Selective recovery and analysis of N-terminal proteolytic peptides. Nat. Methods 2, 955–957
10. Ruttink, P. J., Dekker, L. J., Luider, T. M., and Burgers, P. C. (2012) Complexation of divalent metal ions with diols in the presence of anion auxiliary ligands: Zinc-induced oxidation of ethylene glycol to glycolaldehyde by consecutive hydride ion and proton shifts. J. Mass Spectrom. 47, 869–874
11. Suckau, D., Resemann, A., Schuenerben, M., Hufnagel, P., Franzen, J., and Helle, A. (2003) A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics. Anal. Bioanal. Chem. 376, 952–965
12. van Kampen, J. J., Burgers, P. C., de Groot, R., Gruters, R. A., and Luider, T. M. (2011) Biomedical application of MALDI mass spectrometry for small-molecule analysis. Mass Spectrom. Rev. 30, 101–120
13. Laskin, J., and Futrell, J. H. (2003) Collisional activation of peptide ions in FT-ICR mass spectrometry. Mass Spectrom. Rev. 22, 158–181
14. Frisch, M. J. T., G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. Jr., A., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Gonzalez, C., Chaban, S., Dabo, M. C., Scrocco, R., Raghavachari, K., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., and Pople, J. A. (2004)

This article contains supplemental Figs. S1 to S10 and supplemental Information.
15. Becke, A. D. (1993) Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652

16. Lee, C. Y., W., and Parr, R. G. (1998) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789

17. Bon, E., Steegers, R., Steegers, E. A., Ursem, N., Charif, H., Burgers, P. C., Luider, T. M., and Dekker, L. J. (2010) Proteomic analyses of the developing chicken cardiovascular system. J. Proteome Res. 9, 268–274

18. VanDuijn, M. M., Dekker, L. J., Zeneyedpour, L., Smitt, P. A., and Luider, T. M. (2010) Immune responses are characterized by specific shared immunoglobulin peptides that can be detected by proteomic techniques. J. Biol. Chem. 285, 29247–29253

19. Jobst, K. J., Terlouw, J. K., Luider, T. M., and Burgers, P. C. (2008) On the interaction of peptides with calcium ions as studied by matrix-assisted laser desorption/ionization Fourier transform mass spectrometry: Towards peptide fishing using metal ion baits. Anal. Chim. Acta 627, 136–147

20. Boontheung, P., Alewood, P. F., Brinkworth, C. S., Bowie, J. H., Wabnitz, P. A., and Tyler, M. J. (2002) Negative ion electrospray mass spectra of caerulein peptides: an aid to structural determination. Rapid Commun. Mass Spectrom. 16, 281–286

21. Guzel, C., Ursem, N. T., Dekker, L. J., Derkx, P., Joore, J., van Dijk, E., Ligtvoet, G., Steegers, E. A., and Luider, T. M. (2011) Multiple reaction monitoring assay for pre-eclampsia related calcyclin peptides in formalin fixed paraffin embedded placenta. J. Proteome Res. 10, 3274–3282

22. Schol, P. B. B., Guzel, C., Steegers, E. A. P., de Krijger, R. R., and Luider, T. M. (2014) Trophoblast calcyclin is elevated in placental tissue from patients with early pre-eclampsia. Preg. Hyper.: An Int. J. Women’s Card. Health 4, 7–10

23. Otterbein, L. R., Kordowska, J., Witte-Hoffmann, C., Wang, C. L., and Dominguez, R. (2002) Crystal structures of S100A6 in the Ca(2+)-free and Ca(2+)-bound states: the calcium sensor mechanism of S100 proteins revealed at atomic resolution. Structure 10, 557–567

24. Szabo, A., Dalmau, J., Manley, G., Rosenfeld, M., Wong, E., Henson, J., Posner, J. B., and Fumeaux, H. M. (1991) HuD, a paraneoplastic encephalomyelitis antigen, contains RNA-binding domains and is homologous to Elav and Sex- lethal. Cell 67, 325–333

25. Deschenes-Furry, J., Perrone-Bizzozero, N., and Jasmin, B. J. (2006) The RNA-binding protein HuD: A regulator of neuronal differentiation, maintenance and plasticity. BioEssays 28, 822–833

26. Filippova, N., Yang, X., Wang, Y., Gillespie, G. Y., Langford, C., King, P. H., Wheeler, C., and Nabors, L. B. (2011) The RNA-binding protein HuR promotes glioma growth and treatment resistance. Mol. Cancer Res. 9, 648–659

27. Rozman, M. (2007) Aspartic acid side chain effect—experimental and theoretical insight. J. Am. Soc. Mass Spectrom. 18, 121–127