A Review of the Verbal Memory Profile of Individuals with Autism Spectrum Disorder

Abstract
Behavioral studies concerning the memory of individuals with Autism Spectrum Disorder (ASD) have yielded inconsistent results over the past few decades. Some have found impairment whereas others have reported an intact memory profile in ASD. Therefore, in the present review, we will examine the verbal memory profile of ASD. A systematic search has located 19 articles for review and analysis. It is suggested that ASDs mainly have an intact verbal recognition performance but impaired verbal recall ability. The conflicting memory performance found in ASD may probably be due to confounding factors, including differences in the experimental designs of research studies, the intellectual functioning levels of ASD and their developmental trajectories. In general, the memory processing of ASD is implicated by the frontal lobe function, and the memory problem is primarily caused by the poor utilization of organizational strategies during information encoding. A failure to encode the information properly will directly hinder their later retrieval performance. Finally, priorities for future research in the memory functions of ASD are suggested, and the need for more rigorous research paradigms is highlighted. With a more comprehensive understanding of the underlying mechanism of the memory functions of those with ASD, it is believed that better intervention programs can be developed to aid their memory deficits and to improve their daily-life performances.

Keywords
Autism spectrum disorder; Verbal memory; Recall and recognition; Task complexity; Chronological age; Functioning level

Introduction
ASD is a neuro-developmental disorder characterized by disturbance in communication and social interaction, restricted interests, and stereotyped behaviors [1]. Previous findings have attributed the cause of ASD both to genetic contribution and environmental influences [2,3]. Yet, with the advancement in neuro-imaging techniques, there is now an even greater insight into the neurobiology perspective and more evidence of the involvement of the neuro-developmental component in ASD [4,5]. The prevalence of ASD has been increasing during the past decades. A study has found that the number of diagnosed cases of ASD in the 2000s is double that of the prevalence rate as reported in the 1980s [6]. Apart from the genuine rise in the number of children with ASD, greater awareness and changes in the diagnostic criteria have contributed to an increase in the cases reported [7,8]. The current estimation of the rate of individuals with ASD has increased to 110 per 10,000 [9].

Autism Spectrum Disorder as a Frontal Disorder
Higher cortical functions have been reported to be impaired in the ASD population, yet their severity has varied. Whereas some individuals with ASD show severe impairments in general, others show isolated cognitive dysfunctions [10,11]. In recent years, three key common theories have been explored in an attempt to explain the brains and the behaviors of those with ASD. First, it is the theory of mind deficit [12]. Neuro-physiological studies and neuro-imaging have confirmed that children with ASD develop their theory of mind much more slowly than normal developing children and show less activation of the brain regions corresponding to their theory of mind [13-16]. Second, it is the theory of weak central coherence This theory suggests that individuals with ASD have a special information processing style rather than a deficit [10,17,18]. However, further investigations of the brain basis of central coherence are required to confirm this idea. Although these two theories together have explained many deficits and characteristics of ASD, the executive dysfunction theory might be the best one to account for ASD on its own. It has been suggested that ASD is a frontal disorder of the executive dysfunctions [19]. There are similarities in cognitive and behavioral presentations between individuals with ASD and individuals with frontal lesions. The abnormalities found in individuals with ASD, such as the lack of motivation to communicate, poor social interaction, and repetitive behaviors, are suggested to be related to the atypical functioning of the frontal lobe [20-22] for review.

Memory and Frontal Lobe
The frontal lobe is located in the anterior part of each cerebral hemisphere of the brain. It is the largest structure in the brain and it constitutes about one-third of the whole brain volume. The frontal lobe is thought to play a central role in the executive dysfunctions such as memory, planning, and organization capability [23-25]. In 1935, it was first suggested that the frontal cortex was involved in memory. A study on frontal-lobe–lesioned monkeys found that they perform well on...
immediate response but that they fail when delayed [26] and for
human beings with frontal injuries, they perform normally on
classic memory tests [27-28], but on examination with extend
neuropsychological memory assessments, the results show that
there is a close relation between the frontal lobe and memory
functions [25,26,29-31].

It has been suggested that the frontal cortex plays a central
role in organizing memory [32-34]. This is crucial in facilitating
memory encoding and retrieval, especially when there is a
large amount of information to remember. The behavioral
data of patients with frontal lobe dysfunctions or lesions have
future implicated the role of the frontal lobe in selecting and
initialing an organizational strategy to enhance the encoding of
ew information and retrieval [35-38]. In addition, in Positron
Emission Tomography (PET) studies, the encoding and retrieval
of verbal information have led to prefrontal activation in which
encoding has been more dependent on the left prefrontal cortex
[39,40]. The regional cerebral blood flow in the frontal regions
was found to be correlated with the rate of encoding [41]. The
faster the rate of encoding, the larger the amount of blood flows
to the frontal regions when it consumes more energy. One study
has also suggested that when the encoding materials require self-
organization, the activation of the dorsal–lateral prefrontal cortex
would even be greater [42]. In other words, when the materials
are presented in a random order, the effort to rearrange them
into categories based on their semantic relations requires the
involvement of the prefrontal cortex. When individuals lose the
ability to self-organize the presented materials, it may result
in poor memory performance. Some studies have found that
memory encoding deficits would lead to retrieval deficits [43,44].
If the information is not learnt in an effective way, there will be
greater interference and memory loss during the process.

Role of Frontal Lobe Function Implicated in Memory
Processing of ASD

There is increasing evidence of the involvement of the
frontal lobe in the memory processing of ASD. The results
of neuropsychological testing on individuals with ASD are
suggestive with regard to the frontal-lobe-related memory
deficits. Individuals with ASD are reported to adopt less effective
strategies to facilitate memory encoding and retrieval than
normal developing individuals. There is evidence to support
that ASD individuals have reduced neural connectivity and
information processing deficits when utilizing cognitive strategies
for the efficient encoding of information [45]. With a failure to
initiate organizing strategies, ASD individuals would learn new
materials inefficiently and show a greater impairment when the
complexity of the materials increases [46,47]. They cannot use
category information to aid their recall [48]. Various studies have
also shown that ASD individuals utilize a different organization
and processing of memory from normal developing individuals
[49,50]. These memory performances found in individuals with
ASD are parallel to individuals with dysfunctional or damaged
frontal lobes.

Memory in Autism

Memories being commonly known as the ability to store, retain
and recall information and experience, is related to everything
in our lives. We are constantly making decisions and basing our
actions are based them. Over the past few decades, the memory
performance of ASD individuals has been widely investigated.
However, the results are inconsistent across different studies.
Verbal memory is a broad term which commonly refers to the
memory of language in its various forms. It is typically assessed
by neuropsychological tests that measure the memory of a list of
words, sentences or even a comprehensive story. To mention a
few, the California Verbal Learning Test (CVLT) [51], the Hong
Kong List Learning Test (HKLLT) [52,53], the Rey Auditory
Verbal Learning Test [54,55], the Hopkins Verbal Learning Test -
Revised (HVLT-R) [56] and the Children Auditory Verbal
Learning Test [57] are widely used verbal memory tests. There
have been numerous studies which investigate the verbal
memory functions of individuals with autism over the past
years, but the results have been inconclusive. It may therefore
be beneficial to review the previous articles to enhance our
understanding of verbal memory functions in ASD individuals.
With a closer examination of each of the studies, it may be
possible to ascertain the reasons which lead to the different
results and hence provide more clues for further studies.
Interventions and special services may develop accordingly to
assist them to perform better in their daily lives.

Method

The articles for examination were identified through a
comprehensive literature search from various academic search
engines, namely, PsycINFO, MEDLINE, and Embase. Six-hundred-
and-twenty-seven articles resulted from this search [174 from
PsycINFO;277 from MEDLINE; and 176 from Embase]. These
articles were identified by key words searches by combining
terms of verbal memory, verbal recall, verbal learning, verbal
recognition, autism, autistic, and Asperger syndrome. Studies
on individuals with comorbid ASDs and other developmental
disorders were excluded from the analysis. Only empirical
studies with measures of verbal memory performance of ASD
were selected. In addition, studies are required to include age
and verbal ability matched control as reference to ensure a fair
comparison with the verbal-performance ASD. Finally, 19 studies
were chosen and included for analysis (Figure 1).

Discussion

Performance on Verbal Recognition

The performance on verbal recognition is considered to be
more consistent. Most of the reviewed studies have reported that
verbal recognition of ASD is intact [58-61]. When ASD individuals
were provided with a new list of words to recognize and then
asked whether the items have been previously presented or not,
their performance on correct identification was comparable with
the normal developing individuals. ASD individuals were able to
achieve a performance comparable to that of normal developing
individuals even in a delayed recognition condition [45,58,60]. It
is suggested that ASD individuals were able to consolidate and
store the information which is mediated by the temporal lobes
[62]. In addition, there is evidence which shows that ASD
individuals commit similar levels of conservative response bias when compared with normal developing individuals in verbal recognition tasks. This indicates that both normal developing individuals and ASDs have a tendency to favor “no” responses and this suggests that both groups are using similar decision criteria on verbal recognition. In other words, they use similar verbal recognition strategies [60]. However, ASDs have also been reported to commit more false alarm errors, and this indicates that they are more susceptible to interference from irrelevant information [63].

Performance on Verbal Recall

Regarding the performance of ASDs on verbal recall, previous literatures have reported inconsistent results. Nevertheless, it is believed that there are some degrees of impairments in general. A number of reviewed studies have reported that ASD individuals were impaired in verbal recall tasks [45-46,48,58-60,63-65]. ASDs showed worse performance on free recall, and the severity of impairment increased from single word recall to sentence recall and then to story recall. However, there were no differences between the performance of immediate free recall and long-delayed recall [45,61]. It is suggested that individuals with ASD were able to maintain the information stored once they have encoded it accordingly. On the other hand, individuals with ASD, but not the normal developing individuals, have shown improvement from free to cued recall. When they were provided with external support during the retrieval of information, they were able to achieve better performances [58,61]. It gives concrete evidence to support the Task Support Hypothesis (TSH) [65].

Problems of Encoding and Retrieval

Verbal memory deficits in ASDs may be caused by the impairments in encoding and retrieval of information as the majority of studies have suggested. They have given evidence to support that there is reduced neural connectivity and information processing deficits in utilizing cognitive strategies for the efficient encoding of information in ASD individuals [45]. With a failure to initiate proper organizing strategies, ASD would not be able to learn new materials efficiently and hence show a greater impairment when the complexity of materials increased [46,47]. It seems that ASDs fail to categorize the information to aid their recall [48]. Studies have also shown that ASDs utilize an organization and processing of memory which is different from normal developing individuals [49,50]. Therefore, more studies will have to be done to achieve a deeper understanding of its underlying mechanism.

In addition to encoding problems, ASDs suffer from difficulty in retrieving information. Several studies have shown that ASDs who were impaired in the free recall of words or stories were able to perform as well as normal developing individuals when given cues or recognition choices [45,58]. This provided concrete evidence that ASD individuals have difficulties in retrieving information. Research with a more vigorous paradigm design will provide more concrete evidence for these claims.

Confounding Factors

The inconsistent findings in verbal memory functions of an individual with ASD may also be attributed to the following confounding factors.

Experimental Design: Task complexity would greatly affect the results obtained in different research studies. For example, simple tasks, such as digit span and letter or word recall, would not impair the performance of ASDs [58,66,67]. These studies may not therefore be able to find impairment on verbal memory in individuals with ASD when compared with normal developing individuals. In addition, some studies have reported an intact verbal memory performance in ASD individuals because they have employed shorter task with stimuli restricted to simple common words [49]. However, these studies may have overestimated the verbal memory ability of ASDs.

Developmental Trajectories: The chronological age of the ASDs is another factor which contributes to the inconsistent findings on their verbal memory performance. Evidence has shown that the verbal memory impairment is more severe in the younger ASD population. Simple tasks, such as letter or number
recall, have been reported to show impairment in ASDs with a mean age of 6.5 [46] whereas it has been reported as intact in teenage and adult samples [58,67]. A study which included both adults with ASD and children/adolescents with ASD also reported that children/adolescents with ASD react more slowly when they give the correct responses in different tasks which examine verbal memory performance [67]. It is suggested that this may be due to the plasticity of the developing brain in children/adolescents with ASD when they adjust to and accommodate their inborn memory deficits. Therefore, children/adolescents with ASD may have a profounder impairment in verbal memory functions than their adult counterparts.

Level of Functioning: Various studies have found that low-functioning ASD individuals [Lo–AUT] perform worse than high-functioning ASD individuals (Hi–AUT) in verbal memory performance [63]. Most of the studies did not classify their ASDs into Hi–AUT and Lo–AUT, and therefore they blurred the real situation. There should be an association between the level of functioning and the verbal memory functions, i.e., the higher the intelligent quotient of the ASD, the better the verbal memory performance. In addition, two studies administered the same test; the group of children with ASD achieving a lower Verbal IQ showed impairment whereas the other one showed intact verbal memory performance [58,61]. Therefore, it is suggested that the level of functioning would also be a possible confounding factor in the inconsistent results on verbal memory performance of ASDs (Table 1).

Conclusion
In the present article, we discovered that previous research studies have focused on Hi–AUT in which Lo–AUT individuals were rare. Several studies have combined Hi–AUT and Lo–AUT for analysis but there were no comparisons between them. Although some studies have preliminarily shown uneven memory abilities across the spectrum [58,61,63], there is still an urgent need to implement more studies on Lo–AUT and to compare their performance with Hi–AUT in order to have a more comprehensive understanding of the verbal memory profile across the spectrum.

Table 1: Selected research articles for review.

Reference	Groups	Sample Size	Age (Years)	Matched Criteria	Measures of Verbal Memory	Impairments found in Autistic Sample
Williams DL et al.	Normal (Adult)	25	26.8	Age, FSIQ, VIQ, & PIQ	N-Back Letter Task	No
[67]	Normal (Children)	44	12.4	Wechsler Memory Scale		
	Hi–AUT (Adult)	31	26.6		- Letter Number	No
	Hi–AUT (Children)	24	11.8	WRAML		
Bowler DM et al.	Normal High–AUT	21	16	Age, VIQ, Mother Language	RAVLT	No
[69]	21	19				
Whitehouse AJO et	Normal ASD	20	8.3	Verbal Mental Age & Reading Ability	Recall Task with Print Word Stimuli	No
al. [70]	20	10.9				
Tyson K et al.	Normal Optimal–AUT	34	13.9	Age, Gender, &N-VIQ	CVLT-2nd Edition II/#CVLT–Children’s Version	Yes
[71]	High–AUT	34	12.8			
	44	13.9				
Andersen PM et al.	Normal ADHD	50	11.6	Age & VIQ	WISC- IV	Yes
[72]	High–AUT	79	11.6		- Letter Number Sequencing Test	
	- with ADHD	16	12.2	HVLT-R		
	- without ADHD	22	11.9	- Acquisition		
				- Recall		
Geurts HM & Vissers	Normal High–AUT	23	63.7	Age, Gender, &DART-IQ	RAVLT	No
ME [73]	23	63.6				
Williams, DL et al.	Normal High – AUT	38	12.2	Age, VIQ, PIQ, FSIQ, & SES	WISC-III	No
[74]	38	11.7			- Digit Span	
					WRAML	No
				- Number/ Letter		
				- Sentence memory		
				- Story recall		
				Verbal learning		No
Jones CRG et al.	Normal ASD	55	15.5	Age, VIQ, PIQ, & FSIQ	Children’s Auditory Verbal Learning Test -2 (CAVLT – 2)	Yes
[59]	94	15.5			- Immediate Memory Span	No
					- Delayed Recall	No
					- Recognition Accuracy	No

Citation: Nicolson Yat-Fan SIU, Jacqueline Jiaying LE (2015) A Review of the Verbal Memory Profile of Individuals with Autism Spectrum Disorder. J Psychol Clin Psychiatry 2(1):00050. DOI: 10.15406/jpcpy.2015.02.00050
A Review of the Verbal Memory Profile of Individuals with Autism Spectrum Disorder

Study	Normal	Hi–AUT	Lo–AUT	ASD	Non-affected Siblings	Age-matched	Gender	Verbal Learning Task	Immediate Recall	10-mins Delay Recall	30-mins Delay Recall	Recognition Test	Note: for children with an age of 17 or below.			
Sumiyoshi C et al. [48]	Normal	15	29.7						The Hong Kong List Learning Test	Yes	Yes	Yes	Yes	Yes	CVLT–Children’s Version	No
Cheung MC, et al. [63]	Normal	22	10.0				Age, Gender, & Hand- edness									
	Hi-AUT	22	10.5													
	Lo-AUT	16	10.3													
Phelan HL et al. [61]	Normal	15	12.4				Age, FSMIQ, VIQ & PIQ									
	Hi-AUT	15	13.0													
Lind SE & Bowler DM [60]	Normal	50	9.1				Age, Verbal Ability									
	ASD	53	9.3													
Gabig CS [46]	Normal	10	6.7				Age									
	Hi-AUT	15	6.5													
Whitehouse AJO et al. [66]	Normal	20	8.3				Age, FSMIQ, VIQ & PIQ									
	Age Comparison	20	10.9													
	Ability Comparison	20	10.9													
Toichi M & Kamio Y [49]	Normal	24	20.8				Age, FSMIQ, VIQ & PIQ									
	ASD	24	20.4													
Toichi M & Kamio Y [50]	Normal	25	20.2				Age, FSMIQ, VIQ & PIQ									
	ASD	25	20.3													
Bennetto L et al. [58]	Clinical Control	19	16.0				Age, Gender, Hand- edness, SES, FSMIQ, VIQ, & PIQ									
	Hi–AUT	19	15.2													
Bowler DM et al. [65]	Normal	16	33.3				Age & VIQ									
	AS	16	31.2													
Minshew NJ [45]	Normal	33	21.0				Age, Gender, Race, SES &FSIQ									
	High–AUT	21	20.7													

Note:
- High-AUT: High-functioning Autism; Low-AUT: Low-functioning Autism; AS: Asperger Syndrome; ASD: Autism Spectrum Disorder; ADHD: Attention Deficit Hyperactive Disorder; DART-IQ: Dutch adult reading test IQ; VIQ: Verbal IQ; N-VIQ: Non-verbal IQ; PIQ: Performance IQ; FSIQ: Full scale IQ; SES: Socio-economic status; CVLT: California Verbal Learning Test; HVLT-R: Hopkins Verbal Learning Test – Revised; RAVLT: Rey Auditory Verbal Learning Test; WRAML: Wide Range Assessment of Memory and Learning; WISC: Wechsler Intelligence Scale for Children

Ideally, studies including both neuropsychological assessments and brain measures would potentially be able to identify the underlying mechanism leading to the memory deficit in ASDs. Added to that, most of the studies presented used either teenage or adult samples; more study need to be done on children to keep track of the developmental changes in ASDs. Longitudinal studies of memory functions in ASDs would shed light on the developmental factors that may contribute to the impaired verbal memory performance in ASD. Memory development in normal individuals follows a well-documented trajectory [68] and ASD as a neuro-developmental disorder, it is suggested the delayed or abnormal memory development of ASDs in their early years may have cumulative consequences as they are growing up. More evidence is therefore required before a valid conclusion can be drawn. Finally, it has been suggested that ASD individuals are less efficient in initialing cognitive strategies to organize information. One study has reported an increase in performance from a recall of random word list to a categorized word list for ASDs. However, their performance nevertheless remained worse than that of normal developing individuals [48]. Further research with more

Citation: Nicolson Yat-Fan SIU, Jacqueline Jiaying LE (2015) A Review of the Verbal Memory Profile of Individuals with Autism Spectrum Disorder. J Psychol Clin Psychiatry 2(1): 00050. DOI: 10.15406/jpcpy.2015.02.00050
vigorous experimental designs is required to support the claim, and we intend to devise interventions and measures to overcome the incapability of ASD individuals to initiate organization strategies. This will advance our theoretical understanding as well as yield practical value in enhancing the memory functioning of individuals with ASD and in improving their learning and academic performance.

References

1. American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorder. (4th ed). Text Rev, Washington, USA.
2. Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, et al. (1995) Autism as a strongly genetic disorder: evidence from a British twin study. Psychological Medicine 25(1): 63-77.
3. Newschaffer CJ, Fallin D, Lee NL (2002) Heritable and nonheritable risk factors for Autism Spectrum Disorder. Epidemiol Rev 24(2): 137-153.
4. Verhoeven JS, Cock PD, Lagae L, Sunaert S (2010) Neuroimaging of autism. Neuroradiology 52(1): 3-14.
5. Matson JL, Kozlowski AM (2011) The increasing prevalence of autism spectrum disorder. Research in Autism Spectrum Disorders 5(1): 418-425.
6. Newschaffer CJ, Croen LA, Daniels J, Giarelli E, Grether JK, et al. (2007) The epidemiology of autism spectrum disorders. Annu Rev Public Health 28: 235-258.
7. Matson JL, Kozlowski AM (2011) The increasing prevalence of autism spectrum disorder. Research in Autism Spectrum Disorders 5(1): 418-425.
8. Wing L, Potter D (2002) The epidemiology of autistic spectrum disorders; is the prevalence rising? Ment Retard Dev Disabil Res Rev 8(3): 151-161.
9. Kogan MD, Blumberg SJ, Schieve LA, Boyle CA, Perrin JM, et al. (2009) Prevalence of parent-reported diagnosis of Autism Spectrum Disorder among children in the US, 2007. Pediatrics 124(5): 1395-1403.
10. Happe F (1999) Autism: cognitive deficit or cognitive style? Trends Cogn Sci 3(6): 216-222.
11. O'Connor N, Hermelin B (1989) The memory structure of autistic idiot-savant monomnes. Br J Psychol 80: 97-111.
12. Baron-Cohen S, Leslie AM, Frith U (1985) Does the autistic child have a 'theory of mind'? Cognition 21(1): 37-46.
13. Castelli F, Firth C, Happe F, Frith U (2002) Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes. Brain 125(Pt 8): 1839-1849.
14. Frith U, Frith CD (2003) Development and neurophysiology of mentalizing. Philos Trans R Soc Lond B Biol Sci 358(1431): 459-473.
15. Gallagher HL, Frith CD (2003) Functional imaging of 'theory of mind'. Trends Cogn Sci 7(2): 77-83.
16. Happe F, Ehlers S, Fletcher P, Frith U, Johansson M, et al. (1996) 'Theory of mind' in the brain. Evidence from a PET scan study of Asperger syndrome. Neuropeport 8(1): 197-201.
17. Mottron L, Peretz I, Menard E (2000) Local and global processing of music in highfunctioning persons with autism: beyond central coherence? Journal of Child Psychology & Psychiatry 41(8): 1057-1065.
18. Plaisted K (2001) Reduced generalization in autism: an alternative to weak central coherence. In The Development of Autism: Perspectives from Theory and Research. In: Burack JA et al. (Eds.), Erlbaum, USA, pp. 149-169.
19. Damasio AR, Maurer RG (1978) Neurological model for childhood autism. Arch Neurol 35(12): 777-786.
20. Hill EL (2004) Executive dysfunction in autism. Trends Cogn Sci 8(1): 26-32.
21. Pennington BF, Ozonoff S (1996) Executive functions and developmental psychopathology. J Child Psychol Psychiatry 37(1): 51-87.
22. Sergeant JA, Geurts H, Oosterlaan J (2002) How specific is a deficit of executive functioning for attention-deficit/hyperactivity disorder? Behav Brain Res 130: 3-28.
23. Miller EK (1999) The prefrontal cortex: complex neural properties for complex behavior. Neuron 22(1): 15-17.
24. Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24: 167-202.
25. Stuss DT, Benson DF (1984) Neuropsychological studies of the frontal lobes. Psychol Bull 95(1): 3-28.
26. Moscovitch M, Winocur G (1995) Frontal lobes, memory, and aging. Ann NY Acad Sci 769: 119-150.
27. Benson DF, Stuss DT, Naeser MA, Weir WS, Kaplan EF, et al. (1981) The long term effects of prefrontal leucotomy. an overview of neuropsychologic residuasl. J Clin Neuropsychol 3(1): 13-32.
28. Pigott S, Mõller B (1993) Memory for different aspects of complex visual scenes after unilateral temporal – or frontal – lobe resection. Neuropsychologia 31(1): 1-15.
29. Fuster JM (1995) Memory in the Cerebral Cortex. MIT Press, Cambridge, UK.
30. Goldman-Rakic PS (1995) Anatomical and functional circuits in prefrontal cortex of nonhuman primates: Relevance to epilepsy. In: Jasper HH (Eds.), Epilepsy and the functional anatomy of the frontal lobe. Raven Press, New York, USA, pp. 51-62.
31. Mõller B, Petrides M, Smith MI (1985) Frontal lobes and the temporal organization of memory. Hum Neurobiol 4(3): 137-142.
32. Benson DF (1993) Prefrontal abilities. Behav Neuro 16(2): 75-81.
33. Fuster JM (1990) Prefrontal cortex and the bridging of temporal gaps in the perception-action cycle. Ann NY Acad Sci 608: 318-329.
34. Petrides M (1995) Impairments on non spatial self-ordered and externally ordered working memory tasks after lesions of the mid-dorsal part of the lateral frontal cortex in the monkey. J Neurosci 15(1 pt 1): 359-375.
35. Alexander MP, Stuss DT, Fansabedian N (2003) California Verbal Learning Test: Performance by patients with focal frontal and non-frontal lesions. Brain 126(Pt6): 1493-1503.
36. Gershberg FB, Shimamura AP (1995) Impaired use of organizational strategies in free recall following frontal lobe damage. Neuropsychologia 33(10): 1305-1333.
37. Stuss DT, Alexander MP (2005) Does damage to the frontal lobes produce impairment in memory? Current Directions in Psychological Science 14(2): 84-88.
38. Stuss DT, Alexander MP, Palumbo CL, Buckle L, Sayer L, et al. (1994)
Organizational strategies of patients with unilateral or bilateral frontal lobe injury in word list learning tasks. Neuropsychology 8(3): 355-373.

39. Grasby PM, Frith CD, Friston KJ, Bench C, Frackowiak RS, et al. (1993) Functional mapping of brain areas implicated in auditory-verbal memory function. Brain 116(Pt 1): 1-20.

40. Fletcher PC, Frith CD, Grasby PM, Shallice T, Frackowiak RSJ, Dolan RJ (1995) Brian systems for encoding and retrieval of auditory-verbal memory: An in vivo study in humans. Brain 118(Pt 2): 401-416.

41. Klingberg T, Roland PE (1998) Right prefrontal activation during encoding, but not during retrieval, in a non-verbal paired-associates task. Cerebral Cortex 8(1): 73-79.

42. Fletcher PC, Shallice T, Dolan RJ (1998) The functional roles of prefrontal cortex in episodic memory: Encoding. Brain 121: 1239-1249.

43. Freedman M, Cermak LS (1986) Semantic encoding deficits in frontal lobe disease and amnesia. Brain Cogn 5(1): 108-114.

44. Kojima S, Kojima M, Goldman-Rakic PS (1982) Operant behavioral analysis of memory loss in monkeys with prefrontal lesions. Brain Res 248(1): 51-59.

45. Minshew NJ, Goldstein G (1993) Is autism an amnesic disorder? Evidence from the California Verbal Learning Test. Neuropsychology 7(2): 209-216.

46. Gabig CS (2008) Verbal working memory and story retelling in school-age children with autism. Lang Speech Hear Serv Sch 39(4): 498-511.

47. Minshew NJ, Goldstein G (2001) The pattern of intact and impaired memory functions in autism. J Child Psychol Psychiatry 42(8): 1095-1101.

48. Sumiyoshi C, Kawakubo Y, Suga M, Sumiyoshi T, Kasai K (2011) Impaired ability to organize information in individuals with autism spectrum disorders and their siblings. Neurosci Res 69(3): 252-257.

49. Toichi M, Kamio Y (2001) Verbal association for simple common words in high-functioning autism. J Autism Dev Disord 31(5): 1101-1110.

50. Toichi M, Kamio Y (2003) Long-term memory in high-functioning autism: Controversy on episodic memory in autism reconsidered. J Autism Dev Disord 33(2): 151-161.

51. Delis DC, Kramer JH, Kaplan E, Ober BA (1987) California Verbal Learning Test. Psychological Corporation, New York, USA.

52. Chan AS, Kwok, I (1999) Hong Kong List Learning Test: Manual and preliminary norm. Hong Kong: Department of Psychology, The Chinese University of Hong Kong, China.

53. Chan AS (2006) Hong Kong List Learning Test (2nd ed.). Hong Kong: Department of Psychology and Clinical Psychology Centre, The Chinese University of Hong Kong, China.

54. Rey A (1964) L’examen clinique en psychologie The clinical examination in psychology. PressesUniversitaires de France, Paris, France.

55. Taylor EM (1959) Psychological appraisal of children with cerebral deficits. Harvard University Press, Cambridge, UK.

56. Brandt J, Benedict RHB (2001) Hopkins verbal learning test—revised: professional manual. Lutz, FL: Psychological Assessment Resources.

57. Talley JL (1993) Children’s auditory verbal learning test-2(CAVLT-2). Odessa, FL: Psychological Assessment Resources.

58. Benetto L, Pennington BF, Rogers SJ (1996) Intact and impaired memory functions in autism. Child Development 67(4): 1816-1835.

59. Jones CR, Happe F, Pickles A, Marsden AJ, Tregay J, et al. (2011) ‘Everyday memory’ impairments in autism spectrum disorders. J Autism Dev Disord 41(4): 455-464.

60. Lind SE, Bowler DM (2009) Recognition memory, self-other source memory, and theory-of-mind in children with autism spectrum disorder. El Autism Dev Disord 39(9): 1231-1239.

61. Phelan HL, Filliter JH, Johnson SA (2011) Brief report: memory performance on the California verbal learning test - children’s version in Autism spectrum disorder. J Autism Dev Disord 41(4): 518-523.

62. Rumsey JM, Hamburger SD (1988) Neuropsychological findings in high-functioning men with infantile autism, residual state. J Clin Exp Neuropsychol 10(2): 201-211.

63. Cheung M-C, Chan AS, Sze SL, Leung WW, To CY (2010) Verbal memory deficits in relation to organization strategy in high- and low-functioning autistic children. Research in Autism Spectrum Disorder 4(4): 764-771.

64. Alloway TP, Rajendran G, Archibald LMD (2009) Working memory in children with developmental disorders. Journal of Learning Disabilities 42(4): 372-382.

65. Bowler DM, Matthews NJ, Gardiner JM (1997) Asperger’s syndrome and memory: Similarity to autism but not amnesia. Neuropsychologia 35(1): 65-70.

66. Whitehouse AJ, Maybery MT, Durkin K (2006) Inner speech impairments in autism. J Child Psychol Psychiatry 47(8): 857-865.

67. Williams DL, Goldstein G, Carpenter PA, Minshew NJ (2005) Verbal and Spatial Working Memory in Autism. J Autism Dev Disord 35(6): 747-755.

68. Gowen N (1998) The development of memory in childhood. Psychology Press, Hove, England.

69. Bowler DM, Limoeges E, Mottron L (2009) Different verbal learning strategies in autism spectrum disorder: evidence from the Rey Auditory Verbal Learning Test. J Autism Dev Disord 39(6): 910-915.

70. Whitehouse AJ, Maybery MT, Durkin K (2007) Evidence against poor semantic encoding in individuals with autism. Autism 11(3): 241-254.

71. Tyson K, Kelley E, Fein D, Orinstein A, Troyer E, et al. (2014) Language and verbal memory in individuals with a history of Autism Spectrum Disorders who have achieved optimal outcomes. J Autism Dev Disord 44(3): 648-663.

72. Andersen PN, Hovik KJ, Skogli EW, Egeland J, Oie M (2013) Symptoms of ADHD in children with high-functioning Autism are related to impaired verbal working memory and verbal delayed recall. PLOS ONE 8(5): e64842.

73. Geurts HM, Vissers ME (2012) Elderly with Autism: Executive functions and memory. J Autism Dev Disord 42(5): 665-675.

74. Williams DL, Goldstein, G, Minshew NJ (2006) The Profile of Memory Function in Children with Autism. Neuropsychology 20(1): 21-29.