Iterating the Big-Pieces operator and larger sets

Jared Krandel | Raanan Schul

Department of Mathematics, Stony Brook University, Stony Brook, New York, USA

Correspondence
Raanan Schul, Department of Mathematics, Stony Brook University, Stony Brook, NY 11794-3651, USA.
Email: schul@math.sunysb.edu

Funding information
National Science Foundation, Grant/Award Number: DMS-1763973

Abstract
We show that if an Ahlfors–David regular set E of dimension k has Big Pieces of Big Pieces of Lipschitz Graphs (denoted usually by $BP(BP(LG))$), then $E \subset \tilde{E}$ where \tilde{E} is Ahlfors–David regular of dimension k and has Big Pieces of Lipschitz Graphs (denoted usually by $BP(LG)$). Our results are quantitative and, in fact, are proven in the setting of a metric space for any family of Ahlfors–David regular sets \mathcal{F} replacing LG. As an example corollary is the stability of the BP operator after two iterations. This was previously only known in the Euclidean setting for the case $\mathcal{F} = LG$ with substantially more complicated proofs.

MSC 2020
28A75, 30L99 (primary)

1 | INTRODUCTION

A closed set E (with more than one point) in a metric space \mathcal{X} is said to be k-Ahlfors–David regular if there is a constant $C > 1$ such that for all $r \in (0, \text{diam}(E))$ and $x \in E$ we have $C^{-1}r^k < \mathcal{H}^k(E \cap B(x, r)) < Cr^k$. For some given class \mathcal{F} of k-Ahlfors–David regular subsets (of a metric space \mathcal{X}), we define $BP(\mathcal{F})$ as follows: $F \in BP(\mathcal{F})$ if F is a k-Ahlfors–David regular set for which there exists a constant $\vartheta > 0$ such that for any $x \in F$ and $R > 0$, there is a set $G_{x,R} \in \mathcal{F}$ such that

$$\mathcal{H}^k(B(x, R) \cap F \cap G_{x,R}) \geq \vartheta \mathcal{H}^k(B(x, R) \cap F).$$

Conditions involving $BP(\mathcal{F})$ for various classes of sets \mathcal{F} play an important role in the theory of uniformly rectifiable sets in \mathbb{R}^n developed by David and Semmes (see, for example, [4, 6]). While the original motivation was the study of singular integral operators, the study of such conditions has taken on a life of its own.

© 2022 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.
In the context of singular integrals, the condition $BP(F)$ is important because it allows the uniform boundedness of a family of Singular Integral Operators given by convolution with “nice” kernels over sets in F to be transported to sets in $BP(F)$. In particular, one can define successively weaker conditions $BP_j(F)$ for all $j > 0$ which all imply boundedness given that the SIOs are bounded on F; the initial case David and Semmes considered [5] used Lipschitz graphs as the base class, that is, $E \in BP^1(LG)$. This raised a natural question: how do the collections $BP_j(LG)$ behave as j grows? It turned out that for $j \geq 2$ the collections $BP_j(LG)$ are all the same and their elements are called Uniformly Rectifiable sets. We refer the reader to [5, 6], specifically to [5, Proposition 2.2 on page 97] and [5, Theorem 2.29 on page 336]. For $n \in [k, 2d + 1)$ one also needs [1] to show that $BPBI$ implies $BP(BP(LG))$, but this is not where most of the work goes — the proofs by David and Semmes of that stability (for $j \geq 2$) are quite sophisticated and rely on a Euclidean ambient space.

There has recently been interest in other families F, in particular for the purpose of studying Parabolic Uniform Rectifiability. See, for example, the work in [2], where the questions about Uniform Rectifiability in the metric setting are discussed for this purpose. In fact, we refer to [2] for a great introduction on contemporary applications of the idea of Big Pieces.

An immediate corollary of the main result contained in this essay (Theorem 2.1) is that stabilization of the operator BP_j occurs in the setting of metric spaces for $j \geq 2$ as well. Our proof is both simple and direct.

A THEOREM

Theorem 2.1. Let F be a class of (closed) k–Ahlfors–David regular sets in a metric space \mathbb{X}. Let $E \subseteq \mathbb{X}$ be a k-Ahlfors–David regular set with $E \in BP(BP(F))$. Then there exists a set $F \subset \mathbb{X}$ such that

(i) $E \subseteq F$,
(ii) F is k-Ahlfors–David regular,
(iii) $F \in BP(F)$.

The constants in the conclusion are quantitative with dependance on the constants in the assumptions.

Corollary 2.2. Let F be a class of closed k–Ahlfors–David regular sets in a metric space \mathbb{X}. For any $j > 2$, and any constants $\theta_1, \ldots, \theta_j > 0$ defining $BP_j(F)$, there are $\theta'_1, \theta'_2 > 0$ such that the family $BP(BP(F))$ defined using θ'_1, θ'_2 is equal to $BP_j(F)$ defined using $\theta_1, \ldots, \theta_j$.

Proof of Corollary 2.2. Let $E \in BP^3(F)$. Then for any $x \in E$ and $R < \text{diam}(E)$ we have a set $E'_{x,R} \in BP^2(F)$ such that $H^k(B(x, R) \cap E) \leq H^k(B(x, R) \cap E \cap E'_{x,R})$. By Theorem 2.1, there is a set $F'_{x,R} \in BP(F)$ so that $F'_{x,R} \supset E'_{x,R}$. Clearly $H^k(B(x, R) \cap E) \leq H^k(B(x, R) \cap E \cap F_{x,R})$. We have shown $E \in BP^2(F)$. This gives for any $j \geq 3$ that $BP_j(F) = BP^{j-1}(F)$, and so we are done by induction. □

Proof of Theorem 2.1 for the case diam $E < \infty$. We suppose that diam $E < \infty$. In order to construct the set F, we first fix a dyadic cube decomposition of E denoted by $\Delta = \Delta(E)$ with root cube $\text{root}(\Delta) = Q_0 = E$. By construction, for each cube $Q \in \Delta$ there exists a point $c(Q) \in Q$ which we call the center of Q satisfying

$$\text{dist}(B(c(Q), c_1 \text{ diam } Q), E \setminus Q) \geq c_2 \text{ diam } Q.$$

(2.1)
for some constants \(c_1, c_2 > 0 \) (see, for example, [3]). From now on, define \(B_{c(Q)} = B(c(Q), c_1 \text{diam}(Q)) \). We construct the set \(F \) desired in the theorem inductively. At stage 0, use the fact that \(E \in \text{BP}(\text{BP}(F)) \) to find a closed set \(F_{Q_0} \in \text{BP}(F) \) such that \(F_{Q_0} \subseteq B_{c(Q_0)} \) and

\[
\mathcal{H}^k(B_{c(Q_0)} \cap E \cap F_{Q_0}) \gtrsim_{\delta_1, c_1, c_2} \mathcal{H}^k(B_{c(Q_0)} \cap E) \gtrsim_{c_1, c_2} \text{diam}(Q_0)^k.
\]

We define

\[
F_0 = F_{Q_0}.
\]

We continue the construction by defining a dyadic decomposition \(Q_1 \) of the set \(E \setminus F_{Q_0} \). Indeed, since \(F_{Q_0} \) is closed, \(E \setminus F_{Q_0} \) is relatively open in \(E \) and for any \(x \in E \setminus F_{Q_0} \), there exists some dyadic cube \(Q \ni x \) of maximal diameter such that \(\text{dist}(Q, F_{Q_0}) > \text{diam} Q \). We call the disjoint family of all such maximal cubes \(Q_1 \), so that we have

\[
E \setminus F_{Q_0} = \bigcup_{Q \in Q_1} Q.
\]

We now give stage 1 of the construction of \(F \). For each \(Q \in Q_1 \), again find a closed set \(F_Q \in \text{BP}(F) \) such that

\[
\mathcal{H}^k(B_{c(Q)} \cap E \cap F_Q) \gtrsim_{\delta_1, \epsilon_1, \epsilon_2} \mathcal{H}^k(Q).
\]

(2.2)

We define

\[
F_1 = F_{Q_0} \cup \bigcup_{Q \in Q_1} F_Q.
\]

Continue the construction inductively. Given the construction completed up to stage \(m \), we define the set \(Q_{m+1} \) to be the collection of dyadic cubes with maximal diameter contained in \(E \setminus F_m \) such that \(Q \in Q_{m+1} \) satisfies

\[
\text{dist}(Q, F_m) > \text{diam}(Q). \tag{2.3}
\]

\(Q_{m+1} \) is a disjoint decomposition of \(E \setminus F_m \) so that

\[
E \setminus F_m = \bigcup_{Q \in Q_{m+1}} Q. \tag{2.4}
\]

Given such a \(Q \), let \(F_Q \in \text{BP}(F) \) with \(F_Q \subseteq B_{c(Q)} \) be such that (2.2) holds and define

\[
F_{m+1} = F_m \cup \bigcup_{Q \in Q_{m+1}} F_Q = F_{Q_0} \cup \bigcup_{Q \in Q_1} F_Q \cup \cdots \cup \bigcup_{Q \in Q_{m+1}} F_Q. \tag{2.5}
\]

Finally, set

\[
F = \bigcup_{m=0}^{\infty} F_m. \tag{2.6}
\]
and define $Q = \cup_m Q_m$. Now that we have constructed the set F, we note two of its simple properties. First, given any $Q \neq Q' \in Q$, equality (2.3) implies

$$\text{dist}(F_Q, F_{Q'}) > \min\{\text{diam}(Q), \text{diam}(Q')\}. \tag{2.7}$$

Second,

$$\lim F \subseteq E \cup \bigcup_{m=0}^{\infty} F_m,$$

where $\lim F$ denotes the set of limit points of F. Indeed, suppose $x \in \lim F$ with $x_j \to x$, $x_j \in F_{Q_j}$. If the set $\{Q_j\}$ is finite, then (2.7) implies that the sequence F_{Q_j} is eventually constant, say $F_{Q_j} \to F_{Q_i}$, meaning $x \in F_{Q_i}$ since F_{Q_i} is closed. If instead $\{Q_j\}$ is infinite, then consider a subsequence $x_{k_j} \to x$ such that $Q_{k_j} \neq Q_{k_i}$ for any i, j. The fact that x_{k_j} converges combined with (2.7) and then implies $Q_j \to 0$. Since $\text{dist}(F_{Q_j}, E) \leq \text{diam} Q_j$, we have $\text{dist}(x, E) = 0$ which implies $x \in E$. (In particular, we will soon see that this implies $\mathcal{H}^k(\lim F \setminus \cup_m F_m) = 0$.)

We begin with proving claim (i). Notice that for any $N \in \mathbb{N}$,

$$\mathcal{H}^k(E \setminus F) \leq \mathcal{H}^k\left(E \setminus \bigcup_{m=0}^{\infty} F_m\right) \leq \mathcal{H}^k(E \setminus F_N)$$

because the sets F_m are increasing. Letting $0 < c_0 < 1$ be the constant implicit in inequality (2.2), we can write

$$\mathcal{H}^k(E \setminus F_N) = \mathcal{H}^k\left(E \setminus F_{N-1} \setminus \bigcup_{Q \in Q_N} F_Q\right) = \mathcal{H}^k\left(\bigcup_{Q \in Q_N} Q \setminus \bigcup_{Q \in Q_N} F_Q\right)$$

$$= \sum_{Q \in Q_N} \mathcal{H}^k(Q \setminus F_Q) \leq (1 - c_0) \sum_{Q \in Q_N} \mathcal{H}^k(Q) = (1 - c_0) \mathcal{H}^k(E \setminus F_{N-1}),$$

where we used the fact that $F_Q \cap F_{Q'} = \emptyset$ for $Q, Q' \in Q_N$. Since this holds for any N, we can iterate this inequality to get

$$\mathcal{H}^k(E \setminus F_N) \leq (1 - c_0)^N \mathcal{H}^k(E)$$

from which we conclude $\mathcal{H}^k(E \setminus F) = 0$. To finish the proof of (i), let $x \in E$ be arbitrary. Since E is Ahlfors–David regular, for any $R > 0$, $\mathcal{H}^k(B(x, R)) > 0$ so that $F \cap B(x, r) \neq \emptyset$. This means that x is a limit point of F, implying $x \in F$ because F is closed.

We now prove (ii). Fix any point $x \in F$ and some $R < \text{diam} F$. If $x \in F \setminus \cup_m F_m$, then we can find a particular F_Q with $\text{dist}(x, F_Q) < \frac{R}{100}$ and $\text{dist}(x, F_Q) = \text{dist}(x, z)$ for $z \in F_Q$. Then, we have $B(z, R/2) \subseteq B(x, R) \subseteq B(z, 2R)$, and substitute the first ball or final ball for $B(x, R)$ in the proofs of lower and upper regularity, respectively. Hence, we can assume $x \in \cup_m F_m$. By definition, there exists $Q_m \in Q_m$ such that $x \in F_{Q_m}$ for some $m \in \mathbb{N}$. Write

$$\mathcal{H}^k(B(x, R) \cap F) = \sum_{F_Q \cap B(x, R) \neq \emptyset, \text{diam } Q > 10R} \mathcal{H}^k(B(x, R) \cap F_Q) + \sum_{F_Q \cap B(x, R) \neq \emptyset, \text{diam } Q \leq 10R} \mathcal{H}^k(B(x, R) \cap F_Q). \tag{2.8}$$
We will first show that F is upper regular. Let Q_I be the collection of cubes summed over in the first term of (2.8). By (2.7), we have that for any $Q, Q' \in Q_I$, $\text{dist}(F_Q, F_{Q'}) > 10R$. This means that Q_I has at most one element. Given such a Q, choose $y \in B(x, R) \cap F_Q$ and write

$$H^k(B(x, R) \cap F_Q) \leq H^k(F_Q \cap B(y, 2R)) \lesssim R^k$$

using the fact that F_Q is itself k-Ahlfors–David regular. This proves that the first sum in (2.8) has the appropriate upper bound. Let Q_{II} be the collection of cubes summed over in the second term of (2.8). Since $\text{diam}(Q) < 10R$, any $Q \in Q_{II}$ satisfies $Q \subseteq B(x, 20R)$. We first prove a lemma.

Lemma 2.3. Let $Q \in Q$, and let $D(Q)$ be the descendants of Q in Q. Then

$$H^k \left(\bigcup_{Q' \in D(Q)} F_{Q'} \right) = \sum_{Q' \in D(Q)} H^k(F_{Q'}) \lesssim c_1, c_2 \ H^k(Q).$$

Proof of Lemma 2.3. Suppose for simple notation that $Q = Q_0$. Using the regularity of each F_Q, we have

$$H^k \left(\bigcup_{Q \in D(Q_0)} F_Q \right) = \sum_{m=0}^{\infty} \sum_{Q \in D(Q_0) \cap Q_m} H^k(F_Q) \leq C \sum_{m=0}^{\infty} \sum_{Q \in D(Q_0) \cap Q_m} H^k(Q).$$

In analogy to (2.4), $Q_0 \setminus F_{m-1} = \bigcup_{Q \in D(Q_0) \cap Q_m} Q$ holds so that

$$\sum_{Q \in D(Q_0) \cap Q_m} H^k(Q) = H^k(Q_0 \setminus F_{m-1}) = H^k \left(Q_0 \setminus F_{m-2} \setminus \bigcup_{Q \in D(Q_0) \cap Q_{m-1}} F_Q \right)$$

$$= H^k \left(\bigcup_{Q \in D(Q_0) \cap Q_{m-1}} Q \setminus \bigcup_{Q \in D(Q_0) \cap Q_{m-1}} F_Q \right),$$

$$\leq \sum_{Q \in D(Q_0) \cap Q_{m-1}} H^k(Q \setminus F_Q)$$

$$\leq (1 - c_0) \sum_{Q \in D(Q_0) \cap Q_{m-1}} H^k(Q)$$

where c_0 was defined as the implicit constant in (2.2). Iterating this inequality, we find

$$H^k \left(\bigcup_{Q \in D(Q_0)} F_Q \right) \leq C \sum_{m=0}^{\infty} (1 - c_0)^m H^k(Q_0) \lesssim c_0 \ H^k(Q_0).$$

Using this lemma, we can write

$$\sum_{F_Q \cap B(x, R) \neq \emptyset} H^k(B(x, R) \cap F_Q) \leq \sum_{Q \text{ maximal}} \sum_{Q' \in D(Q)} H^k(F_{Q'}) \lesssim \sum_{Q \text{ maximal}} H^k(Q).$$

$$\leq H^k(E \cap B(x, 20R)) \lesssim R^k.$$
This proves the desired bound for the second sum in (2.8), proving the upper regularity of \(F \). Now we show that \(F \) is lower regular. If \(R < 100 \text{diam } Q_m \), then the claim follows immediately from the lower regularity of \(F_Q \). If \(100 \text{diam } Q_m \leq R < \text{diam } F \), then since \(F_Q \cap Q_m \neq \emptyset \), there exists \(z \in Q \) (and thus, \(z \in E \)) with \(B(x, R) \supseteq B(z, R/2) \) and
\[
\mathcal{H}^k(B(x, R) \cap F) \geq \mathcal{H}^k(B(z, R/2) \cap E) \geq R^k
\]
using the fact that \(E \subseteq F \). This completes the proof of lower regularity, hence of (ii) as well.

Finally, we prove (iii). Fix \(x \in F_Q \) and \(R > 0 \) as in the proof of (ii). Fix a constant \(\alpha > 10 \) to be chosen later. If \(R < \alpha \text{diam } Q_m \), then since \(F_Q \in \text{BP}(F) \), there exists \(G_{x,R} \in F \) such that
\[
\mathcal{H}^k(B(x, R) \cap F_{Q_m} \cap G_{x,R}) \geq \delta_2 \mathcal{H}^k(B(x, R) \cap F_{Q_m}) \geq C' \alpha^k R^k \mathcal{H}^k(B(x, R) \cap F), \tag{2.9}
\]
where \(C' \) is the regularity constant for \(F_{Q_m} \) and \(C'' \) is the regularity constant for \(F \). Now, suppose that \(\alpha \text{diam } Q_m \leq R < \text{diam } F \). Since \(x \in F_Q \), there exists a chain of cubes \(Q_i \in Q_i \), \(0 \leq i \leq m \) such that
\[
Q_m \subseteq Q_{m-1} \subseteq \ldots \subseteq Q_1 \subseteq Q_0.
\]
Next, notice that for any choice of \(\alpha > 10 \), there exists a smallest cube \(Q_j \) in the above chain such that \(R < \alpha \text{diam } Q_j \) since for all admissible \(R, R < 10 \text{diam } Q_0 \). Choose the constant \(\alpha \) such that for any \(y \in E \setminus F_i \), the cube \(Q_{i+1} \ni y \) satisfies
\[
\text{dist}(Q_{i+1}, F_{Q_i}) < \frac{\alpha}{10} \text{diam } Q_{i+1}. \tag{2.10}
\]
In general, \(\alpha \) will depend on the constants used in the construction of \(\Delta \), as it may be the case that all of the children of the cube \(Q_i \) are small relative to \(Q_i \) with bounds given in terms of these constants. With such an \(\alpha \) chosen, let \(Q_j \) be the smallest cube in the above chain for \(x \) such that \(R < \alpha \text{diam } Q_j \). This means that \(R \geq \alpha \text{diam } Q_{j+1} \) so that \((2.10) \) implies that there exists \(y \in F_{Q_j} \) such that \(B(y, R/2) \subseteq B(x, R) \). We can now repeat the argument of \((2.9) \) with \(Q_j \) in place of \(Q_m \) to finish the proof. This completes the proof of Theorem 2.1 for the case \(\text{diam } E < \infty \).

Before we turn to the case \(\text{diam } E = \infty \), we need the following lemma. It says, roughly, that finite diameter subsets of \(E \) can be made regular by extending them slightly. This extension also preserves the \(\text{BP}(F) \) property.

Lemma 2.4. Let \(E \subseteq X \) be a \(k \)-Ahlfors–David regular set and suppose that \(G \subseteq E \) satisfies \(\text{diam } G = D < \infty \). For any \(A \geq 1 \), there exists a set \(\tilde{G} \subseteq E \) such that
\[
\begin{align*}
(i) & \quad G \subseteq \tilde{G} \subseteq B(G, \frac{3D}{A}) \cap E = \{ x \in E : d(x, G) < \frac{3D}{A} \}, \\
(ii) & \quad \tilde{G} \text{ is } k\text{-Ahlfors–David regular with constant } C(k, C_E, A).
\end{align*}
\]
Furthermore, if \(E \in \text{BP}(F) \) with constant \(\vartheta_E \) for some class of \(k \)-Ahlfors–David regular sets, then \(\tilde{G} \in \text{BP}(F) \) with constant \(\vartheta(k, \vartheta_E, A) \).

Proof of Lemma 2.4. We define an “interior” of the set \(G \subseteq E \) by
\[
I_A(G) = \left\{ x \in G : d(x, E \setminus G) \geq \frac{D}{A} \right\}.
\]
The corresponding “boundary” is then
\[G \setminus I_A(G) = \left\{ x \in G : d(x, E \setminus G) < \frac{D}{A} \right\}. \]

We will construct the set \(\tilde{G} \) inductively. In the first stage, we will take a maximal net of appropriate size inside \(G \setminus I_A(G) \) and add in balls around each net point to \(G \). In the second step, we consider a smaller “boundary” of this new set and repeat the above process with a finer net and smaller balls. If we continue this process indefinitely while adding balls of exponentially decreasing radii, we get the desired set by taking a closure. We now give this construction explicitly.

Let \(G_0 = G \) and let \(X_1 \) be a maximal \(\frac{D}{A} \)-net for the set \(G \setminus I_A(G) \subseteq E \). Define
\[G_1 = G \cup \bigcup_{x \in X_1} B\left(x, \frac{2D}{A}\right) \cap E. \]

Given the set \(G_n \), we define \(X_{n+1} \) to be a maximal \(4^{-n} \frac{D}{A} \)-net for \(G_n \setminus I_{4^n A}(G_n) \) and we let
\[G_{n+1} = G_n \cup \bigcup_{x \in X_{n+1}} B\left(x, 4^{-n} \frac{2D}{A}\right) \cap E. \]

Finally, define
\[\tilde{G} = \bigcup_{n=0}^{\infty} G_n. \]

We will now show that \(\tilde{G} \) satisfies the desired properties in the statement of the lemma.

We begin by proving (i). The maximal distance of a point \(x \in \tilde{G} \) from \(G \) is just given by the sum of the radii of the balls added in each step:
\[d(x, G) \leq 2D \sum_{n=0}^{\infty} 4^{-n} = \frac{8}{3} D < \frac{3D}{A}. \]

We now prove (ii). First, we observe that since \(\tilde{G} \subseteq E \), we immediately have, for all \(x \in \tilde{G}, R > 0 \),
\[H^k(B(x, R) \cap \tilde{G}) \leq H^k(B(x, R) \cap E) \leq C_E R^k. \]

Hence, \(\tilde{G} \) is upper \(k \)-Ahlfors–David regular with constant \(C_E \). We will now show that \(\tilde{G} \) is lower regular. In order to do so, we will first prove that there exists a constant \(0 < c < 1 \) dependent only on \(A \) such that
\[\forall x \in \tilde{G}, \forall R, 0 < R < \text{diam} \tilde{G}, \exists y \in E \text{ such that } B(y, cR) \cap E \subseteq B(x, R) \cap \tilde{G}. \quad (2.11) \]

We note that (ii) will follow from this since for any relevant pair \((x, R) \), we get the existence of \(y \in E \) such that
\[H^k(B(x, R) \cap \tilde{G}) \geq H^k(B(y, cR) \cap E) \geq \frac{c^k R^k}{C_E}. \]
by the lower regularity of \(E \). We now prove (2.11). We begin by using the constant \(c' = \frac{1}{10^{4^4} \cdot A} \) (we will only need to decrease it by a factor of \(\frac{1}{2} \) at the end of the proof). Let \(x \in \tilde{G} \) and assume \(x \in G_m \) for some \(m \). There exists some minimal \(n \) such that \(x \in I_{4^m A}(G_n) \) because \(x \in G_m \setminus I_{4^m A}(G_m) \) implies \(x \in I_{4^{m+1} A}(G_{m+1}) \) by the triangle inequality. Indeed, let \(t \in X_{m+1} \) be a nearest net point to \(x \) and let \(z \in E \setminus G_{m+1} \). We can calculate

\[
d(x, z) \geq d(t, z) - d(t, x) \geq \frac{4^{-m} 2D}{A} - \frac{4^{-m} D}{A} = \frac{4^{-m} D}{A} > \frac{4^{-m-1} D}{A}.
\]

Therefore, \(d(x, E \setminus G_{m+1}) > \frac{4^{-m-1} D}{A} \) so that \(x \in I_{4^{m+1} A}(G_{m+1}) \). Suppose first that \(n \leq 4 \). In this case, we will take \(y = x \), and we must show the inclusion of the balls given in (2.11) for any admissible value of \(R \). For \(0 < R \leq \frac{4^{-4} D}{A} \), note that \(x \in I_{4^4 A}(G_4) \) implies

\[
d(x, E \setminus \tilde{G}) \geq d(x, E \setminus G_4) > \frac{D}{4^4 A}.
\]

so that \(B(x, R) \cap \tilde{G} = B(x, R) \cap E \). If instead \(\frac{4^{-4} D}{A} < R < \text{diam} \tilde{G} < D + \frac{6D}{A} < 10D \),

\[
c'R = \frac{R}{10 \cdot 4^4 \cdot A} < \frac{10D}{10 \cdot 4^4 \cdot A} = \frac{4^{-4} D}{A}.
\]

Which shows that

\[
B(x, c'R) \cap E \subseteq B\left(x, \frac{4^{-n} D}{A}\right) \cap E = B\left(x, \frac{4^{-n} D}{A}\right) \cap \tilde{G}
\]

by (2.12). Now, suppose \(n > 4 \). This means \(x \in I_{4^n A}(G_n) \setminus I_{4^{n-1} A}(G_{n-1}) \). Hence, if \(R < \frac{4^{-n} D}{A} \), then we can take \(y = x \) and note that \(B(x, R) \cap \tilde{G} = B(x, R) \cap E \) in analogy to (2.12). Now, suppose \(\frac{4^{-m} D}{A} \leq R < \frac{4^{-m+1} D}{A} \) for \(0 \leq m \leq n - 3 \). There exist net points \(x_p \in X_p \) for \(m + 3 \leq p \leq n \) such that

\[
d(x, x_p) \leq \frac{4^{-n} 2D}{A},
\]

\[
d(x_{p+1}, x_p) \leq \frac{4^{-p} 2D}{A}.
\]

Hence, the triangle inequality implies

\[
d(x, x_{m+3}) \leq \frac{2D}{A} \sum_{p=m+2}^{n} 4^{-p} \leq \frac{2D}{A} \left(4^{-m-2} \cdot 2\right) = \frac{4^{-m-1} D}{A}.
\]

(2.13)

In this case, we choose \(y = x_{m+3} \). We calculate

\[
B(y, c'R) = B\left(x_{m+3}, \frac{R}{10 \cdot 4^4 \cdot A}\right) \subseteq B\left(x_{m+3}, \frac{4^{-(m+3)} D}{10A^2}\right) \subseteq B\left(x, \frac{4^{-m} D}{A}\right) \subseteq B(x, R)
\]
using (2.13) and the fact that $4^{-m} \frac{D}{A} \leq R < 4^{-m+1} \frac{D}{A}$. In the case when $\frac{D}{A} < R < 10D$, choose $y = x_3$, the nearest net point in X_3 and observe that

$$B(y, c'R) = B\left(x_3, \frac{R}{10 \cdot 4^i \cdot A}\right) \subseteq B\left(x_{m+3}, 4^{-4} \frac{D}{A}\right) \subseteq B\left(x, \frac{D}{A}\right) \subseteq B(x, R)$$

again using (2.13). This proves (2.11) for all $x \in G_n$ for some n. If $x \notin G_n$ for all n, then given any admissible $R > 0$, there is a net point $t \in X_N$ for arbitrarily large N such that $d(x, t) < \frac{R}{4}$ so that $B(t, \frac{R}{2}) \subseteq B(x, R)$ and, applying (2.11) to $B(t, \frac{R}{2})$, we get a point $y \in B(t, \frac{R}{2})$ such that $B(y, c'R) \subseteq B(t, \frac{R}{2}) \subseteq B(x, R)$. Take $c = \frac{c'}{2}$ and $B(y, cR) \subseteq B(x, R)$ so that (2.11) holds with $c = \frac{1}{20 \cdot 4^i \cdot A}$.

Proof that $\tilde{G} \in \text{BP}(F)$. This follows from (2.11). Indeed, for any admissible pair (x, R), choose y as given by (2.11). Applying the BP(F) condition for E in the ball $B(y, cR)$ gives a set $H_{y,cR} \subseteq F$ such that

$$H^k(B(x, R) \cap \tilde{G} \cap H_{y,cR}) \geq H^k(B(y, cR) \cap E \cap H_{y,cR}) \geq A, \theta_E, k \cdot R^k \geq C \cdot H^k(B(x, R) \cap \tilde{G}).$$

This concludes the proof of the lemma. \hfill \Box

Proof of Theorem 2.1 for the case $\text{diam } E = \infty$. Fix $x_0 \in E$. Let $A > 1$ and, for $n \geq 0$, set

$$B_n = B(x_0, A^n),$$

where the constant A is sufficiently large in terms of C_E, k, and θ_E, the BP constant. Let E_n be the Ahlfors–David regular extension of the set $E \cap B_n$ with constant A in Lemma 2.4 replaced with 100 so that $E_n \subseteq B(E \cap B_n, A^n)$, E_n satisfies the hypotheses of the finite diameter case of the theorem, so apply the theorem to get a regular set $F_n \in \text{BP}(F)$ satisfying

$$E_n \subseteq F_n \subseteq B\left(x_0, \frac{5A^n}{4}\right).$$

In order to ensure bounded overlap, we then define $\tilde{F}_0 = F_0$ and \tilde{F}_n for $n \geq 1$ to be the regular extension of $F_n \setminus \frac{1}{2}B_{n-1}$ given by the lemma with constant A there replaced by $100A$ here. By construction, $\tilde{F}_n \subseteq B(F_n, A^{n-1})$ so that $\tilde{F}_n \cap \frac{1}{4}B_{n-1} = \emptyset$ and $\tilde{F}_n \subseteq B(x_0, 2A^n)$. We also have $\tilde{F}_n \in \text{BP}(F)$ with constant $\tilde{\theta}_F$ independent of n. We now define

$$F = \bigcup_{n=0}^{\infty} \tilde{F}_n$$

and claim that F satisfies conditions (i)–(iii).

Proof of (i). By definition, $E \cap (B_n \setminus \frac{1}{2}B_{n-1}) \subseteq \tilde{F}_n$ so $E = \bigcup_{n=0}^{\infty} E \cap (B_n \setminus \frac{1}{2}B_{n-1}) \subseteq F$.

Proof of (ii). For any n, \tilde{F}_n is regular with some constant $C_F(A, C_E, k)$ independent of n. Lower regularity of F with constant C_F follows immediately, so we only need to show that F is upper regular. Let $x \in \tilde{F}_n$ for some n. Observe that, for $j \geq 2$

$$d(x, F_{n+j}) \geq d\left(F_n, \frac{1}{4}B_{n+j-1}\right) \geq \frac{1}{4} A^{n+j-1} - 2A^n > A^{n+j-2},$$

and claim that F satisfies conditions (i)–(iii).
provided that we choose A sufficiently large. Hence, if $R \leq A^{n-2}$, then $B(x, R) \cap \tilde{F}_j = \emptyset$ for $|n - j| \geq 2$. In this case,

$$\mathcal{H}^k(B(x, R) \cap F) = \sum_{j=-1}^{1} \mathcal{H}^k(B(x, R) \cap \tilde{F}_{n+j}) \lesssim_{C_F} R^k$$

independent of n because F_{n+j} is regular with constant independent of n. Now, suppose $A^j < R \leq A^{j+1}$ for $j \geq n - 2$. We can write

$$\mathcal{H}^k(B(x, R) \cap F) = \sum_{i=0}^{j+2} \mathcal{H}^k(B(x, R) \cap \tilde{F}_i) \leq \sum_{i=0}^{j+2} \mathcal{H}^k(\tilde{F}_i) \leq \tilde{C}_F \sum_{i=0}^{j+2} \text{diam}(\tilde{F}_i)^k$$

$$\leq \tilde{C}_F \sum_{i=0}^{j+2} (4A)^{ik} \leq 2\tilde{C}_F (4A)^{(j+2)k} \leq (4A)^{2k+1} \tilde{C}_F (4R)^k.$$

This proves upper regularity and finishes the proof of (ii). From now on, let $C_F = C_F(C_E, A, k)$ be the regularity constant for F.

Proof of (iii) Let $x \in \tilde{F}_n$ and $R > 0$. Suppose first that $0 < R \leq A^{n+2}$. Because $F_n \in \text{BP}(F)$ by the lemma with constant $\tilde{\theta}_F(\theta_E, A, k)$ independent of n, we get the existence of a set $G_{x,R} \in F$ such that

$$\mathcal{H}^k(B(x, R) \cap F \cap G_{x,R}) \geq \mathcal{H}^k(B(x, R) \cap \tilde{F}_n \cap G_{x,R}) \geq_{\delta_F, A} \mathcal{H}^k(B(x, R) \cap \tilde{F}_n)$$

$$\geq_{C_F} R^k \geq_{C_F} \mathcal{H}^k(B(x, R) \cap F).$$

using the fact that \tilde{F}_n is regular. Now, suppose $A^j < R \leq A^{j+1}$ for $j \geq n + 2$. Because $x \in \tilde{F}_n$, $\frac{1}{4} A^{n-1} \leq d(x, x_0) \leq 2A^n$ so that

$$\tilde{F}_{j-2} \subseteq B(x_0, 2A^{j-2}) \subseteq B(x, 2A^{j-2} + 2A^n) \subseteq B(x, A^{j-1}) \subseteq B(x, R).$$

Using the above containment and the fact that $\tilde{F}_{j-2} \in \text{BP}(F)$, there exists a set $G_{x,R} \in F$ with both $G_{x,R} \subseteq B(x, R)$ and

$$\mathcal{H}^k(G_{x,R} \cap \tilde{F}_{j-2}) \geq_{\delta_F} \text{diam}(\tilde{F}_{j-2})^k \geq A^{(j-2)k} \geq_{A,k} R^k.$$

Hence, we have $\mathcal{H}^k(B(x, R) \cap G_{x,R} \cap F) \geq_{\delta_F, A,k} R^k \geq_{C_F} \mathcal{H}^k(B(x, R) \cap F)$ as desired. □

ACKNOWLEDGEMENTS

The second author would like to thank Jonas Azzam for pointing out earlier work of David and Semmes.

R. Schul was partially supported by the National Science Foundation under Grants No. DMS-1763973.

JOURNAL INFORMATION

The *Bulletin of the London Mathematical Society* is wholly owned and managed by the London Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission.
All surplus income from its publishing programme is used to support mathematicians and mathematics research in the form of research grants, conference grants, prizes, initiatives for early career researchers and the promotion of mathematics.

REFERENCES
1. J. Azzam and R. Schul, Hard Sard: quantitative implicit function and extension theorems for Lipschitz maps, Geom. Funct. Anal. 22 (2012), no. 5, 1062–1123.
2. S. Bortz, J. Hoffman, S. Hofmann, J. L. L. Garcia, and K. Nyström, Coronizations and big pieces in metric spaces, arXiv:2008.11544, 2020.
3. M. Christ, A $T(b)$ theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), no. 2, 601–628.
4. G. David, Wavelets and singular integrals on curves and surfaces, Lecture Notes in Mathematics, vol. 1465, Springer, Berlin, 1991.
5. G. David and S. Semmes, Singular integrals and rectifiable sets in \mathbb{R}^n: beyond Lipschitz graphs, Astérisque 193 (1991), no. 193, p. 9.
6. G. David and S. Semmes, Analysis of and on uniformly rectifiable sets, Mathematical Surveys and Monographs, vol. 38, American Mathematical Society, Providence, RI, 1993.