FINITENESS CONDITIONS IN COVERS OF POINCARÉ DUALITY SPACES

JONATHAN A. HILLMAN

Abstract. A closed 4-manifold (or, more generally, a finite PD4-space) has a finitely dominated infinite regular covering space if and only if either its universal covering space is finitely dominated or it is finitely covered by the mapping torus of a self homotopy equivalence of a PD3-complex.

A space X is a Poincaré duality space if it has the homotopy type of a cell complex which satisfies Poincaré duality with local coefficients (with respect to some orientation character $w: \pi = \pi_1(X) \to \{\pm 1\}$). It is finite if the singular chain complex of the universal cover \tilde{X} is chain homotopy equivalent to a finite free $\mathbb{Z}[\pi]$-complex. (The PD-space X is homotopy equivalent to a Poincaré duality complex \iff it is finitely dominated $\iff \pi$ is finitely presentable. See [2].) Closed manifolds are finite PD-complexes. The more general notion arises naturally in connection with Poincaré duality groups [4], and in considering covering spaces of manifolds [11].

In this note we show that finiteness hypotheses in two theorems about covering spaces of PD-complexes may be relaxed. Theorem 5 extends a criterion of Stark to all Poincaré duality groups. The main result is Theorem 6, which characterizes finite PD4-spaces with finitely dominated infinite regular covering spaces.

1. SOME LEMMAS

Let X be a PD$_n$-space with fundamental group π. Let $\beta_i(X; \mathbb{Q}) = \dim_{\mathbb{Q}}H_i(X; \mathbb{Q})$ and $\beta_i^{(2)}(X) = \dim_{\mathbb{Q}\langle\pi\rangle}H_i(X; \mathbb{Q}\langle\pi\rangle)$ be the ith rational Betti number and ith L^2 Betti number of X, respectively.

Lemma 1. Let X be a PD$_n$-space with fundamental group π. Then $\sum \beta_i(X; \mathbb{Q}) < \infty$ and $\sum \beta_i^{(2)}(X) < \infty$. If X is finite then $\chi(X) = \Sigma(-1)^i\beta_i(X; \mathbb{Q}) = \Sigma(-1)^i\beta_i^{(2)}(X)$.

1991 Mathematics Subject Classification. 57P10.

Key words and phrases. 4-dimensional, finitely dominated, PD-group, PD-space.
Lemma 1 to the short exact sequences and Ext now apply the long exact sequence of modules which are free of (the same) finite rank as abelian groups. We the kernel of the projection from \mathbb{Z} a quotient of a finitely generated free G of the action of q finitely generated as an abelian group) for all Proof. Let $H/\mathbb{Z}[G]$ be a group and k be \mathbb{Z} or a field, and let A be a $k[G]$-module which is free of finite rank m as a k-module. Then $\text{Ext}^q_{k[G]}(A, k[G]) \cong (H^q(G; k[G]))^m$ for all q.

Proof. Let $(g\phi)(a) = g . \phi(g^{-1}a)$ for all $g \in G$ and $\phi \in \text{Hom}_k(A, k[G])$. Let $\{\alpha_i\}_{1 \leq i \leq m}$ be a basis for A as a free k-module, and define a map $f : \text{Hom}_k(A, k[G]) \to k[G]^m$ by $f(\phi) = (\phi(\alpha_1), \ldots, \phi(\alpha_m))$ for all $\phi \in \text{Hom}_k(A, k[G])$. Then f is an isomorphism of left $k[G]$-modules. The lemma now follows, since $\text{Ext}^q_{k[G]}(A, k[G]) \cong H^q(G; \text{Hom}_k(A, k[G]))$. (See Proposition III.2.2 of \cite{1}.)

Lemma 3. If $H^q(G; \mathbb{Z}[G])$ is 0 (respectively, finitely generated as an abelian group) for all $q \leq q_0$ and B is a $\mathbb{Z}[G]$-module which is finitely generated as an abelian group then $\text{Ext}^q_{\mathbb{Z}[G]}(B, \mathbb{Z}[G])$ is 0 (respectively, finitely generated as an abelian group) for all $q \leq q_0$.

Proof. Let T be the \mathbb{Z}-torsion submodule of B, and let H be the kernel of the action of G on T. Then T is a finite $\mathbb{Z}[G/H]$-module, and so is a quotient of a finitely generated free $\mathbb{Z}[G/H]$-module A. Let A_1 be the kernel of the projection from A to T. Clearly A and A_1 are $\mathbb{Z}[G]$-modules which are free of (the same) finite rank as abelian groups. We now apply the long exact sequence of $\text{Ext}^*_{\mathbb{Z}[G]}(-, \mathbb{Z}[G])$ together with Lemma 1 to the short exact sequences

$$0 \to A_1 \to A \to T \to 0$$

and

$$0 \to T \to B \to B/T \to 0.$$
2. Virtual Poincaré duality groups

Stark has shown that a finitely presentable group G of finite virtual cohomological dimension is a virtual Poincaré duality group if and only if it is the fundamental group of a closed PL manifold M whose universal cover \tilde{M} is homotopy finite [13]. The main step in showing the sufficiency of the latter condition involves showing first that G is of type vFP, and is established in [14]. If G_1 is an FP subgroup of finite index in G then $B = K(G_1, 1)$ is finitely dominated. Hence on applying the Gottlieb-Quinn Theorem to the fibration $\tilde{M} \to M_1 \to B$ of the associated covering space M_1 it follows that \tilde{M} and B are Poincaré duality complexes. In particular, G_1 is a Poincaré duality group.

There are however Poincaré duality groups in every dimension $n \geq 4$ which are not finitely presentable. We shall give an analogue of Stark’s sufficiency result for such groups, using an algebraic criterion instead of the Gottlieb-Quinn Theorem. In the next two results we shall assume that M is a PD_n-space with fundamental group π, M_ν is the covering space associated to a normal subgroup ν of π, $G = \pi/\nu$ and k is \mathbb{Z} or a field.

Lemma 4. Suppose that $H_p(M_\nu; k)$ is finitely generated for all $p \leq [n/2]$. Then $H_p(M_\nu; k)$ is finitely generated for all p if and only if $H^q(G; k[G])$ is finitely generated as a k-module for $q \leq [(n - 1)/2]$, and then $H^q(G; k[G])$ is finitely generated as a k-module for all q. If $H^s(G; k[G]) = 0$ for $s < q$ then $H_{n-s}(M_\nu; k) = 0$ for $s < q$ and $H_{n-q}(M_\nu; k) \cong H^q(G; k[G])$.

Proof. Let $E_{pq}^2 = Ext_{k[G]}^q(H_p(M; k[G]), k[G]) \Rightarrow H^{p+q}(M; k[G])$ be the Universal Coefficient spectral sequence for the equivariant cohomology of M. Then $E_{pq}^2 = Ext_{k[G]}^q(H_p(M_\nu; k), k[G])$, while $H^{p+q}(M; k[G]) \cong H_{n-p-q}(M_\nu; k)$, by Poincaré duality for M.

If $H^q(G; k[G])$ is finitely generated for $q \leq [(n - 1)/2]$ then E_{2q}^p is finitely generated for all $p + q \leq [(n - 1)/2]$, by Lemmas 2 and 3. Hence $H_p(M_\nu; k)$ is finitely generated for all $p \geq n - [(n - 1)/2]$, and hence for all p. Conversely, if this holds and $H^s(G; k[G])$ is finitely generated for $s < q$ then E_{pq}^2 is finitely generated for all $p \geq 0$, $r \geq 2$ and $s < q$. Since $H^q(M; k[G]) \cong H_{n-q}(M_\nu; k)$ is finitely generated as a k-module it follows that $H^q(G; k[G])$ is finitely generated as a k-module. Hence $H^q(G; k[G])$ is finitely generated for all q.

The final assertion is an immediate consequence of duality and the universal coefficient spectral sequence. \square
Theorem 5. If $H_p(M, k)$ is finitely generated for all p then G is FP_∞ over k and $H^s(G; k[G]) \neq 0$ for some $s \leq n$. If moreover $k = \mathbb{Z}$ and $v.c.d.G < \infty$ then G is virtually a PD_r-group, for some $r \leq n$.

Proof. Let $C_*(\tilde{M})$ be the equivariant chain complex of the universal covering space \tilde{M}. Since M is a PD_n-space $C_*(\tilde{M})$ is chain homotopy equivalent to a finite projective $\mathbb{Z}[\pi]$-complex. Hence $C_*(M, k) = k[G] \otimes_{\mathbb{Z}[\pi]} C_*(\tilde{M})$ is chain homotopy equivalent to a finite projective $k[G]$-complex. The arguments of [14] apply equally well with coefficients k a field (instead of \mathbb{Z}), and thus the hypotheses of Lemma 4 imply that G is FP_∞ over k.

If $v.c.d.G < \infty$ we may assume without loss of generality that $c.d.G < \infty$, and so G is FP. Since $H_q(M, \mathbb{Z})$ is finitely generated for all q the groups $H^s(G; \mathbb{Z}[G])$ are all finitely generated, and since $H_0(M, \mathbb{Z}) = \mathbb{Z}$ we must have $H^s(G; \mathbb{Z}[G]) \neq 0$ for some $s \leq n$, by Lemma 4. Then G is a PD_g-group, by Theorem 3 of [7].

A finitely generated group G is a weak PD_r-group if $H^r(G; \mathbb{Z}[G]) \cong \mathbb{Z}$ and $H^q(G; \mathbb{Z}[G]) = 0$ for $q \neq r$. Theorem 5 complements the main result of [11], in which it is shown that if the $\mathbb{Z}[^2\nu]$-chain complex $C_*(\tilde{M}) = C_*(\tilde{M})|_{\nu}$ has finite $[n/2]$-skeleton and G is a weak PD_g-group then M is a PD_{n-r}-space.

For each $n \geq 2$ and $k \geq \binom{n+1}{2}$ there are weak PD_k-groups which act freely and cocompactly on $S^{2n-1} \times \mathbb{R}^k$, but which are not virtually torsion-free [8]. Thus if $r \geq 6$ weak PD_r-groups need not be virtual PD_r-groups, and so the other conditions in Theorem 5 do not imply that $v.c.d.G < \infty$, in general. Weak PD_1-groups have two ends, and so are virtually \mathbb{Z}, while FP_2 weak PD_2-groups are virtual PD_2-groups [1]. Little is known about the intermediate cases $r = 3, 4$ or 5. In particular, it is not known whether a group G of type FP_∞ such that $H^3(G; \mathbb{Z}[G]) \cong \mathbb{Z}$ must be a virtual PD_3-group. (The fact that local homology manifolds which are homology 2-spheres are standard may be some slight evidence for this being true.)

Stark’s argument for realization in the finitely presentable case can be adapted to show that any virtual PD_n-group acts freely on a 1-connected homotopy finite complex, with quotient a PD_m-space for some $m \geq n$. However finite presentability is needed in order to obtain a free cocompact action on a 1-connected complex. A natural converse to Theorem 5 (analogous to Stark’s realization result) might be that every virtual PD group G acts freely and cocompactly on some connected manifold X with $H_q(X; \mathbb{Z})$ finitely generated for all q. It would suffice to show that $G \cong \pi/\nu$ where π is a finitely presentable
generated. For there is a closed PL manifold M with $\pi_1(M) \cong \pi$ and \bar{M} homotopy finite, by Stark’s result. The quotient group G acts freely and cocompactly on M_ν, and a spectral sequence argument shows that $H_*(M_\nu; \mathbb{Z})$ is finitely generated.

3. FINITELY DOMINATED COVERING SPACES

Let M be a PD_4-space with fundamental group π, and suppose that M has a finitely dominated infinite regular covering space M_ν. Then $\nu = \pi_1(M_\nu)$ is finitely presentable and π/ν has one or two ends. In [9] we showed that if π/ν has two ends then M is the mapping torus of a self homotopy equivalence of a PD_3-complex, while if π/ν has one end and ν is FP_3 then either the universal covering space \bar{M} is contractible or homotopy equivalent to S^2. We shall show here that the hypothesis that ν be FP_3 is redundant if M is a closed 4-manifold, or more generally if M is a finite PD_4-space.

The results from [9] used in the next theorem were originally formulated in terms of PD_4-complexes. The arguments given in [9] apply equally well to PD_4-spaces, since they need only the L^2-Euler characteristic formula of Lemma 1 above.

Theorem 6. Let M be a finite PD_4-space with fundamental group π, and let ν be an infinite normal subgroup of π such that $G = \pi/\nu$ has one end and the associated covering space M_ν is finitely dominated. Then G is of type FP_∞ and M is aspherical.

Proof. Let k be \mathbb{Z} or a field. Then G is of type FP_∞ and $H^q(G; k[G])$ is finitely generated as a k-module for all q, by Lemma 4 and Theorem 5. Moreover $Ext^q_{k[G]}(H_p(M_\nu; k), k[\pi]) = 0$ for $q \leq 1$ and all p, since G has one end, and so $H_q(M_\nu; k) = 0$ for $q \geq 3$. In particular, $H^2(G; \mathbb{Z}[G]) \cong H_2(M_\nu; \mathbb{Z})$ is torsion-free, and so is a free abelian group of finite rank.

We may assume that M_ν is not acyclic and G is not virtually a PD_2-group, by Theorem 3.9 of [9]. Therefore $H^2(G; k[G]) = 0$ for all k, by the main result of [11]. Hence $H_2(M_\nu; \mathbb{F}_p) = 0$ for all primes p, so $H_1(M_\nu; \mathbb{Z})$ is torsion-free and nonzero. Therefore $H^s(G; \mathbb{Z}[G]) = H_{4-s}(M_\nu; \mathbb{Z}) = 0$ for $s < 3$ and $H^3(G; \mathbb{Z}[G]) \cong H_1(M_\nu; \mathbb{Z}) = \nu/\nu'$ is a nontrivial finitely generated abelian group. Therefore $\nu/\nu' \cong H^3(G; \mathbb{Z}[G]) \cong \mathbb{Z} [7].$

Thus we may assume that M_ν is an homology circle. Let $\tilde{G} = \pi/\nu'$ and let $t \in \tilde{G}$ represent a generator of the infinite cyclic group ν/ν'. Let M'_ν be the covering space associated to the subgroup ν'. Since M_ν is finitely dominated a Wang sequence argument shows that $H_q(M'_\nu; k)$
is a finitely generated \(k[t, t^{-1}] \)-module on which \(t - 1 \) acts invertibly, for all \(q > 0 \). Then \(H^q(M'_\nu; \mathbb{F}_p) \) is finitely generated for all primes \(p \) and all \(q > 0 \). Now \(H^*(G; k[G]) = 0 \) for all \(k \) and all \(s < 4 \), by a Lyndon-Hochschild-Serre spectral sequence argument. Therefore \(H^q(M'_\nu; \mathbb{F}_p) = 0 \) for all primes \(p \) and all \(q > 0 \), by Lemma 4. Nontrivial finitely generated \(\mathbb{Z}[t, t^{-1}] \)-modules have nontrivial finite quotients, and so we may conclude that \(M'_\nu \) is acyclic.

Since \(M \) is a \(PD_4 \)-space \(C_*(\tilde{M}) \) is chain homotopy equivalent to a finite projective \(\mathbb{Z}[\pi] \)-complex \(C_* \). Thus \(D_* = \mathbb{Z} \otimes_{\mathbb{Z}[\pi']} C_* \) is a finite projective \(\mathbb{Z}[\tilde{G}] \)-complex, and is a resolution of \(\mathbb{Z} \). Therefore \(\tilde{G} \) is a \(PD_4 \)-group. (In particular, we see again that \(G = \tilde{G}/(\nu/\nu') \) is \(FP_\infty \).)

Since \(\nu/\nu' \) is a torsion-free abelian normal subgroup of \(\tilde{G} \) the group ring \(\mathbb{Z}[\tilde{G}] \) has a flat extension \(R \), obtained by localising with respect to the nonzero elements of \(\mathbb{Z}[t, t^{-1}] \), such that \(R \otimes_{\mathbb{Z}[\tilde{G}]} \mathbb{Z} = 0 \). (See page 23 of [9] and the references there.) Hence \(R \otimes_{\mathbb{Z}[\tilde{G}]} D_* \) is a contractible complex of finitely generated projective \(R \)-modules.

We may in fact assume that \(C_* \) is a finite free \(\mathbb{Z}[\pi] \)-space, since \(M \) is a finite \(PD_4 \)-complex. It follows that \(\chi(M) = \chi(R \otimes_{\mathbb{Z}[\tilde{G}]} D_*) = 0 \). Since \(\nu \) is an infinite \(FP_2 \) normal subgroup of \(\pi \) and \(\pi/\nu \) has one end \(\beta_1^{(2)}(\pi) = 0 \) and \(H^s(\pi; \mathbb{Z}[\pi]) = 0 \) for \(s \leq 2 \). Therefore \(M \) is aspherical, by Corollary 3.5.2 of [9].

With this result we may now reformulate Theorem 3.9 of [9] as follows.

Corollary. A finite \(PD_4 \)-space \(M \) has a finitely dominated infinite regular covering space if and only if either \(M \) is aspherical, or \(\tilde{M} \simeq S^2 \), or \(M \) has a 2-fold cover which is homotopy equivalent to the mapping torus of a self-homotopy equivalence of a \(PD_3 \)-complex. If \(M \) has a finitely dominated regular covering space and is not aspherical it is a \(PD_4 \)-complex.

Proof. Only the final sentence needs any comment. If \(\tilde{M} \simeq S^2 \) then \(\pi_1(M) \) is virtually a \(PD_2 \)-group and so is finitely presentable. This is also clear if \(M \) has a 2-fold cover which is the mapping torus of a self-homotopy equivalence of a \(PD_3 \)-complex. Thus in each case \(M \) is a \(PD_4 \)-complex.

There are \(PD_n \) groups of type \(FF \) which are not finitely presentable, for each \(n \geq 4 [5] \). The corresponding \(K(G, 1) \) spaces are aspherical finite \(PD_n \)-spaces which are not \(PD_n \)-complexes.

The hypothesis that \(M \) be finite is used only in the final paragraph of the proof of Theorem 6, in the appeal to Corollary 3.5.2 of [9] and
in the calculation of $\chi(M)$. (If we assumed instead that $v.c.d.G < \infty$ then we could use multiplicativity of the Euler characteristic to show that $\chi(M) = 0$.)

A more substantial issue is that the argument for Theorem 6 does not appear to extend to the case when ν is an ascendant subgroup of π, as considered in [10] (where the FP_3 condition is also used). Is there an argument along the following lines? Let C_\ast be a finite projective $\mathbb{Z}[\pi]$-complex with $H_0(C_\ast) \cong \mathbb{Z}$ and $H_1(C_\ast) = 0$. Show that $\text{Hom}_{\mathbb{Z}[\pi]}(H_2(C_\ast), \mathbb{Z}[\pi]) = 0$ if $[\pi : \nu] = \infty$ and $C_\ast|_\nu$ is chain homotopy equivalent to a finite projective $\mathbb{Z}[\nu]$-complex. If so, the proofs of Theorem 3.9 of [9] and Theorem 6 of [10] would apply, without needing to assume that ν is FP_3 or that M is finite.
References

[1] Bowditch, B.H. Planar groups and the Seifert conjecture, J. Reine u. Angew. Math. 576 (2004), 11–62.
[2] Browder, W. Poincaré spaces, their normal fibrations and surgery, Invent. Math. 17 (1971), 191–202.
[3] Brown, K.S. A homological criterion for finiteness, Commentarii Math. Helvetici 50 (1975), 129-135.
[4] Brown, K.S. Cohomology of Groups, Graduate Texts in Mathematics 87, Springer-Verlag, Berlin - Heidelberg - New York (1982).
[5] Davis, M. The cohomology of a Coxeter group with group ring coefficients, Duke Math. J. 91 (1998), 397–314.
[6] Eckmann, B. Projective and Hilbert modules over groups, and finitely dominated spaces, Comment. Math. Helvetici 71 (1996), 453–462.
[7] Farrell, F.T. Poincaré duality and groups of type FP, Comment. Math. Helvetici 50 (1975), 187–195.
[8] Farrell, F.T. and Stark, C.W. Cocompact spherical-Euclidean spaceform groups of infinite VCD, Bull. London Math. Soc. 25 (1993), 189–192.
[9] Hillman, J.A. Four-Manifolds, Geometries and Knots, GT Monograph vol. 5, Geometry and Topology Publications, University of Warwick (2002). Revision (2007).
Latest revision: see [http://www.maths.usyd.edu.au/u/jonh/].
[10] Hillman, J.A. Finitely dominated covering spaces of 3- and 4-manifolds, J. Austral. Math. Soc. 84 (2008), 99–108.
[11] Hillman, J.A. and Kochloukova, D.H. Finiteness conditions and PD_r-group covers of PD_n-complexes, Math. Z. 256 (2007), 45–56.
[12] Lück, W. L^2-Invariants: Theory and Applications to Geometry and K-Theory, Ergebnisse 3. Folge, Bd 44, Springer-Verlag, Berlin – Heidelberg – New York (2002).
[13] Stark, C.W. A characterization of virtual Poincaré duality groups, Michigan J. Math. 42 (1995), 99–102.
[14] Stark, C.W. Resolutions modeled on ternary trees, Pacific J. Math. 173 (1996), 557–569.

School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia
E-mail address: joh@maths.usyd.edu.au