Will Exercise Advice Be Sufficient for Treatment of Young Adults With Prehypertension and Hypertension? A Systematic Review and Meta-Analysis

Wilby Williamson, Charlie Foster, Hamish Reid, Paul Kelly, Adam James Lewandowski, Henry Boardman, Nia Roberts, David McCartney, Odaro Huckstep, Julia Newton, Helen Dawes, Stephen Gerry, Paul Leeson

Abstract—Previous studies report benefits of exercise for blood pressure control in middle age and older adults, but longer-term effectiveness in younger adults is not well established. We performed a systematic review and meta-analysis of published randomized control trials with meta-regression of potential effect modifiers. An information specialist completed a comprehensive search of available data sources, including studies published up to June 2015. Authors applied strict inclusion and exclusion criteria to screen 9524 titles. Eligible studies recruited younger adults with a cardiovascular risk factor (with at least 25% of cohort aged 18–40 years); the intervention had a defined physical activity strategy and reported blood pressure as primary or secondary outcome. Meta-analysis included 14 studies randomizing 3614 participants, mean age 42.2±6.3 (SD) years. At 3 to 6 months, exercise was associated with a reduction in systolic blood pressure of −4.40 mm Hg (95% confidence interval, −5.78 to −3.01) and in diastolic blood pressure of −4.17 mm Hg (95% confidence interval, −5.42 to −2.93). Intervention effect was not significantly influenced by baseline blood pressure, body weight, or subsequent weight loss. Observed intervention effect was lost after 12 months of follow-up with no reported benefit over control, mean difference in systolic blood pressure −1.02 mm Hg (95% confidence interval, −2.34 to 0.29), and in diastolic blood pressure −0.91 mm Hg (95% confidence interval, −1.85 to 0.02). Current exercise guidance provided to reduce blood pressure in younger adults is unlikely to benefit long-term cardiovascular risk. There is need for continued research to improve age-specific strategies and recommendations for hypertension prevention and management in young adults. (Hypertension. 2016;68:78-87. DOI: 10.1161/HYPERTENSIONAHA.116.07431.)

● Online Data Supplement

Key Words: cardiovascular disease ■ exercise ■ hypertension ■ lifestyle ■ meta-analysis

Population studies estimate 1 in 17 adults below the age of 40 years are hypertensive1 with higher prevalence in those with diabetes mellitus, obesity, familial predisposition, or prenatal and other early childhood factors.2–7 Hypertension in early life significantly increases the risk of stroke and cardiovascular disease before the age of 50 years.8–12 However, rates of diagnosis are consistently lower in younger adults and, even when identified, control is frequently suboptimal.5,12–14 This may relate to an acceptance of higher blood pressures because of a perceived lower 5-year cardiovascular risk, particularly for those in the prehypertensive range. This is despite epidemiological evidence of cumulative vascular protection and lower disease burden in later life after change in blood pressure and lifestyle during early adulthood.9,15–17 Together, these observations may explain why 1 in 5 strokes still occur in the below 55 years age group.18 To reduce burden of early stroke and cardiovascular disease, evidence-based guidance is required to improve hypertension prevention and management for young adult populations. Exploring heterogeneity in response pattern
to exercise and linking exercise response with hypertensive and cardiovascular phenotypes identifiable within younger subgroups may be of value in future studies and offer opportunity to deliver more personalized and targeted intervention strategies. Current guidelines recommend specialist review of young adults with elevated blood pressure because the risk of hypertension may be underestimated in the below 40 years age group. In the absence of significant end organ disease or secondary causes of elevated blood pressure, young adults below 40 years of age are encouraged to implement lifestyle changes, in particular regular exercise, as the first line for hypertension management. A limitation of this guidance is that it is based on data from physical activity trials in older populations with mean ages >50 years. There are many potential modifiers of intervention effect which are not consistent across age groups, including baseline physical activity, barriers to participation, and physiological training adaptations. Therefore, we performed a new systematic review and meta-analysis to evaluate the quality of the evidence base and effectiveness of exercise intervention to reduce blood pressure in younger adult populations.

Methods
Protocol registration: PROSPERO (www.crd.york.ac.uk/PROSPERO/) registration number CRD42014009604.

Search Strategy and Selection Criteria
We completed a systematic review in accordance with established methods for Cochrane reviews of physical activity interventions (Online-only Data Supplement S1). We adhered to the Cochrane Handbook for Intervention Reviews and PRISMA statement (Data Supplement S2). An information specialist (N.R.) searched the following databases: Cochrane Central Register of Controlled Trials, MEDLINE & MEDLINE In Process, EMBASE, CINAHL, AMED, PsycINFO, SPORTdiscus, OpenGrey, Science Citation Index & Conference Proceedings Citation Index-Science, ACM Digital Library, and IEEE Xplore Digital Library. Cochrane highly sensitive search was used to identify randomized controlled trials. No language or date restrictions were applied. Bibliographies of review articles and selected articles were examined for relevant trials. Literature searches completed up to June 2015. Full description of data sources and search summary are available in the online-only Data Supplement (Data Supplement S1; Table S1).

Study Selection and Data Extraction
We included studies with mean population age between 18 and 40 years or within 1 SD of this range to ensure at least 25% of the study population were <40 years of age. To be representative of young adults who may be provided advice to manage blood pressure, included studies were required to recruit participants with ≥1 cardiovascular risk factor, or family history of cardiometabolic risk. Risk factors included hypertension or prehypertension (systolic blood pressure ≥120 mm Hg or diastolic blood pressure ≥80 mm Hg), overweight (mean body mass index >25 kg/m²) but not severely obese (body mass index ≥35 kg/m²), diabetes mellitus, metabolic syndrome, dyslipidaemia, smoking, and alcohol consumption. The defined body mass index exclusion criteria were based on the understanding that severely obese populations have higher burden of comorbidities and potential functional barriers to exercise participation that makes them a unique target audience. Studies examined the effectiveness of interventions with defined exercise, physical activity or cardiovascualr fitness components. The comparator was a control group exposed to placebo, no or minimal intervention. Blood pressure was reported as a primary or secondary outcome after a minimum follow-up of 3 months. Studies were required to have >80% complete follow-up data analyzing the results by intention-to-treat or, if not applying intention-to-treat, ensuring <20% study attrition. Additional details on inclusion criteria provided in the online-only Data Supplement (Data Supplement S1).

Quality of included studies were summarized using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. Titles and abstracts were screened independently by paired authors (W.W., H.R., A.L., and P.K.). Two authors (W.W. and H.R.) independently reviewed full-text articles and extracted data. Study inclusion was agreed by consensus in discussion with other authors (C.F. and P.L.). Missing or ambiguous data were clarified with the corresponding author. We assessed risk of bias for studies that met inclusion criteria for meta-analysis using the Cochrane Risk of Bias Tool, which was expanded to include risk areas specific for physical activity and blood pressure interventions (Data Supplement S1).

Statistical Analysis
Studies were analyzed using mean and SD of outcomes expressed in the original papers. Clinic blood pressures, measured at rest, were reported across all studies and used as the outcome measures. We expressed effect size using the mean difference between the postintervention values of the randomized groups. If required, we imputed SDs from SEs and confidence intervals (CIs) using methods described in the Cochrane handbook. When studies investigated multiple interventions arms, intervention arms inclusive of exercise were included as individual intervention strata. Mean values were plotted with associated error bars using forest plots. Statistically significant results were identified as CIs excluding a null effect and P value of <0.05. Heterogeneity was assessed through examination of the forest plots and quantified using the F statistic. F statistics were graded according to Cochrane interpretation (>75% considerable/large heterogeneity). Reporting bias was assessed by plotting a funnel plot of intervention effect on blood pressure (Data Supplement S1).

We completed meta-analysis according to Cochrane methods, using RevMan version 5.2 statistical software. A random-effects model was the default to incorporate heterogeneity between studies, the inverse variance method was used to calculate the overall effect and SE. Planned subgroup analysis of included studies was completed according to the following covariants: (1) baseline blood pressure, (2) baseline weight, (3) delivery method, whether exercise was self-directed or supervised, (4) estimated contact time between participants and intervention, (5) target intensity of exercise, and (6) change in weight after intervention (Data Supplement S1).

Meta-regression analysis was performed using the Wilson (2010) SPSS macro using IBM SPSS Statistics for Windows, version 22.0. Meta-regression was performed using a random-effects model to examine whether study level covariates (potential effect modifiers) predict intervention effect on systolic and diastolic blood pressure between studies at 3 to 6 months follow-up. A priori the following factors where agreed for inclusion in the meta-regression model: (1) mean arterial blood pressure combining systolic and diastolic blood pressure, (2) estimated contact time between participants and intervention, (3) target exercise intensity during intervention, and (4) effect of intervention on weight loss calculated as the standard mean difference between intervention and control post intervention to allow comparison between studies reporting change in weight and body mass index (Figure S3a and S3b).

Results
Results of Search
We screened 9524 titles and abstracts reviewing 786 full-text articles (Figure 1). We identified 14 randomized control trials (RCTs) with 20 exercise intervention arms for inclusion,
published between 1985 and 2015 (Table 1; Table S2). The RCTs randomized 3614 participants with a recognized cardiovascular risk factor, mean age 42.2 years (SD, 6.3). Over 75% of participants were white and only 35% were female (Table 1). The studies recruited prehypertensive and stage 1 hypertensive participants. The majority of stage 1 hypertensives were not medicated at time of intervention, 1 study included participants that continued with antihypertensive prescription (n=15).

Excluded studies, with explanation of exclusion listed in the online-only Data Supplement (Table S3). The major reason for study exclusion was age of population outside inclusion criteria (n=323; Figure 1). One hundred fifty-eight of these studies reported blood pressure as a primary outcome, of these, 73 studies excluded participants <35 years of age. None of the excluded cardiovascular studies performed subgroup analysis separating intervention effects by age. Other common explanations for study exclusion included non-RCT design or lack of true exercise control arms (n=181), or study objectives focused on acute or short-term exercise response, primarily in healthy participants (n=51).

Description of Included Studies
The majority of participants received a combined behavioral intervention with a defined physical activity strategy (Table S2). Eighteen intervention exercise arms targeted increase in moderate to vigorous physical activity, 12 intervention arms delivered structured, supervised aerobic exercise programs in gym and group environments with intensity defined by baseline exercise testing. Seven trial intervention arms promoted self-directed increase in physical activity supported by regular group and individual counseling sessions. Behavioral counseling was delivered by multidisciplinary professional groups. Contact time with the intervention in the first 3 months ranged from 5 to 48 hours, average 25 hours. The average in the first 3 months for studies reporting 3- to 6-month outcome was 30 hours (Table S2). The minimum follow-up for inclusion in the present systematic review was 3 months, 10 studies report 3 to 6 months of follow-up data (15 intervention arms, n=2716). Five studies complete follow-up at 3 months and 6 studies report follow-up after 12 months (8 intervention arms, n=3023, Table S2).
Risk of Bias and Quality Assessment

The funnel plot of intervention effect on systolic blood pressure was symmetrical about the mean effect size line, suggesting there was no particular study publication bias (Figure S1). Overall quality of the included RCTs using the GRADE approach suggests moderate quality data (Figure S2). In total, 9 studies are downgraded secondary to study design and outcome reporting being unclear or at risk of bias with limited reporting of participant allocation methods and lack of clarification of blinding during outcome assessment. A significant limitation of the included studies was the lack of reference to published study protocols that adhere to the template for intervention description and replication.31 Only the Trials of Hypertension Prevention (TOHP) and ProActive UK studies consistently reference published study protocols (Data Supplement S3; Table S2).

Table 1. Baseline Description of Study Populations Participating in RCTs Included in Meta-Analysis

Study	Mean Age (SD)	Age Range, Y	Female, %	Weight, kg (SD)	BMI, kg/m²	Intervention Group, BP mm Hg	Control Group, BP mm Hg
Duncan, 1985	30.4 (.)	21–37	0	86.4 (14)	27	146.3 (5.9)	94.3 (4)
Stamler, 1989	37 (3.5)	30–44	13	84.3 (11)	27	122.2 (6.7)	82.4 (2.8)
Blumenthal, 1991	45.2 (7.8)	29–59	38	82 (13)	27	141 (9)	96 (6)
Blumenthal, 1991	45.2 (7.8)	29–59	42	81 (15)	27	143 (10)	95 (5)
Stevens 1993	42.8 (6.1)	30–54	32	89.7 (13)	29.5	124.3 (8.4)	83.7 (2.6)
Whelton 1997	43.6 (6.2)	30–54	31	93.6 (14.2)		127.4 (6.5)	86 (1.9)
Whelton 1997	43.4 (6.1)	30–54	37	93.4 (14.1)		127.6 (6.1)	86 (1.9)
Blumenthal 2000	46.6 (8.8)	>29	54	95.4 (14.5)	32.8	138.1 (15.4)	93.6 (7.3)
Blumenthal 2000	48.5 (8.9)	>29	62	93.3 (17.7)	32.1	142.7 (10.4)	93.2 (5.2)
Tsai 2002	41 (8.6)	20–60	45.2			23.6	134.3 (12.2)
Esposito 2003	34.6 (5)	20–46	100	94.5 (9.3)	34.8	124 (8.5)	85 (4.7)
Olson 2006	38 (6)	24–44	30	38 (6)	27.6	119 (7.7)	67 (7.7)
Kinmonth 2008	40.6 (6)	20–50	62	78.6 (15.6)	27.7	122.6 (12.6)	77.9 (9.0)
Kinmonth 2008	40.6 (6)	20–50	62	79.9 (18)	27.8	124.2 (13.0)	79.1 (10.6)
Marquez-Celedonio 2009	43.2 (7.8)	30–55	.	78.1 (15)	31.2	133.0 (4.4)	87.6 (2.84)
Knoepfli-Lenzin 2010 Football	37 (4)	20–45	0	82.1 (8.7)	26	134 (7.0)	87 (4.0)
Knoepfli-Lenzin 2010 Running	36 (5)	20–45	0	87.3 (9.4)	26	136 (9.0)	87 (5.0)
Edwards 2011	45.9 (10.4)	25–65	50		30.1	140.6 (9.8)	89.8 (11.2)
Edwards 2011	45.9 (10.4)	25–65	50		31.2	139.9 (10.5)	85.1 (10)
Krustrup 2012	46 (7.3)	31–54	0	97.8 (13.6)	30	151 (10)	92 (7)

Mean values presented with SD. Sex distribution presented as percentage of females included. Missing or unreported values represented as (.). BMI indicates body mass index, kg/m²; BP, blood pressure; RCTs, randomized control trials; and TOHP, Trials of Hypertension Prevention.
Participant Compliance With Intervention and Effect on Cardiovascular Fitness and Weight

The majority of studies reported >80% participant compliance with intervention at 3 to 6 months, recorded as attendance at supervised classes and group meetings, or achievement of behavioral targets, such as self-reported minutes of activity. However, compliance with behavioral targets dropped to an estimated 40% beyond 12 months.

Eight intervention arms deliver exercise in combination with weight management, 4 of these interventions report a significant reduction in weight loss compared with control at 3 to 6 months (Figure S3a). Dietary assessment was undertaken using self-report diaries during periods of 1 to 7 days. The majority of studies use diary cards as aids to behavior change as opposed to assessing compliance, only 3 studies report the change in dietary intake. Mean cardiovascular fitness was reported from 14 intervention arms, the median increase was 12% improvement in peak exercise capacity (range, 3%–30%).

Intervention Effect on Blood Pressure

Forest plots for mean differences in systolic and diastolic blood pressure after 3 to 6 months of intervention are presented in Figure 2 (Figure S4a and S4b). Mean difference in systolic blood pressure was $-4.40 \text{ mm Hg (95\% CI, -5.78 to -3.01)}$ and $-4.17 \text{ mm Hg (95\% CI, -5.42 to -2.93)}$ for diastolic blood pressure when intervention was compared with control.

There are no significant differences between intervention and control group blood pressures when followed up at, or beyond, 12 months (Figure 2; Data Supplement S5a and S5b). Mean difference in systolic blood pressure $-1.02 \text{ mm Hg (95\% CI, -2.34 to 0.29)}$ and mean difference in diastolic blood pressure was $-0.91 \text{ mm Hg (95\% CI, -1.85 to 0.02)}$.

Subgroup Analysis

F statistic identified moderate to considerable heterogeneity across the studies (56%–72%) at 3 to 6 months of follow-up. Subgroup analysis did not provide a consistent explanation for

![Figure 2](image-url)
heterogeneity between studies for both systolic and diastolic blood pressure. χ^2 statistic reduced to <45% for systolic blood pressure when analysis was restricted to hypertensive groups, with >4 kg weight loss, a weight loss threshold identified from subgroup analysis (Table 2). Reduction in diastolic blood pressure was significantly greater when comparing supervised (−5.43 mm Hg [95% CI, −6.89 to −3.17]) versus self-directed exercise (−2.61 mm Hg [95% CI, −5.77 to −0.55]) and diastolic BP, −4.77 mm Hg, [95% CI, −6.54 to −2.99] versus −2.95 mm Hg [95% CI, −4.76 to −1.13]). There were no significant differences in intervention effect when baseline systolic BP ≥ 140 mm Hg and Diastolic <90 mm Hg (Table 2). Baseline mean arterial blood pressure were significantly associated with reduction in systolic blood pressure. The a priori model did not provide significant explanation for variance in systolic blood pressure (Table 3).

Meta-Regression

The a priori meta-regression model explained 50% of variance in intervention effect on systolic blood pressure. Increased intensity of exercise and hours of contact with the intervention were significantly associated with reduction in systolic blood pressure (Table 3). Baseline mean arterial blood pressure and standard mean difference in weight loss (Figure S3a) between exercise and control groups post intervention were not significant predictors of mean reduction in systolic blood pressure. The a priori model did not provide significant explanation for variance in diastolic blood pressure response.

Discussion

This is the first systematic review to apply age criteria to evaluate the RCT evidence base to promote exercise to prevent and manage hypertension in younger adults. In the short-term (3–6 months), exercise and physical activity interventions are beneficial, with between 4 and 5 mm Hg

Group	Intervention Arms	n	Systolic BP, mmHg	Diastolic BP, mmHg
Overall intervention effect ≤6 months of follow-up	15	2716	−4.40 (−5.78, −3.01)	−4.17 (−5.42, −2.93)
Intervention effect ≥12 months	8	3023	−1.02 (−2.34, 0.29)	−0.91 (−1.85, 0.02)
Baseline weight <90 kg	7	815	−3.0 (−6.04, 0.05)	−3.88 (−6.13, −1.63)
Baseline weight ≥90 kg	5	1806	−4.23 (−5.49, −2.98)	−3.69 (−5.09, −2.30)
Baseline systolic BP <140 mm Hg and Diastolic <90 mm Hg	7	2370	−4.41 (−6.06, −2.77)	−3.87 (−5.33, −2.41)
Baseline systolic BP ≥140 mm Hg and or Diastolic ≥90 mm Hg	8	346	−4.35 (−7.26, −1.44)	−4.55 (−6.91, −2.19)
Aerobic supervised exercise (follow-up ≤6 months)	11	475	−5.40 (−8.08, −2.72)	−5.43 (−7.58, −3.28)
Self-directed physical activity (follow-up ≤6 months)	3	2199	−3.81 (−4.52, −3.09)	−2.64 (−3.20, −2.08)
Weight loss >4 kg	6	1586	−5.03 (−6.89, −3.17)	−4.77 (−6.54, −2.99)
Weight loss <4 kg	6	1236	−2.61 (−5.77, 0.55)	−2.95 (−4.76, −1.13)
Moderate exercise intensity (≤60%)	5	2265	−3.40 (−4.59, −2.21)	−2.58 (−3.13, −2.03)
Moderate to vigorous intensity (>60%)	10	451	−6.19 (−8.64, −3.73)	−5.92 (−8.09, −3.76)
Contact time <60 h	9	806	−2.83 (−5.33, −0.34)	−3.91 (−6.33, −1.49)
Contact time, ≥60 h	6	1910	−5.61 (−7.55, −3.67)	−4.57 (−6.22, −2.92)

Results at 3- to 6-month follow-up used unless otherwise stated. Mean differences are pooled estimates from meta-analysis with 95% confidence intervals. χ^2 values reported as measure of heterogeneity. Z scores with associated P values reported as test for overall effect.
Table 3. Meta-Regression Model Comparing Effect of Study Level Covariates on Post Intervention Systolic (1) and Diastolic (2) Blood Pressure (mm Hg) Compared With Control

Variable	Model 1. Systolic Blood Pressure	Model 2. Diastolic Blood Pressure
	β±SE 95% CI Z (P)	β±SE 95% CI Z (P)
MABP, mmHg	0.3161±0.1625 −0.0230, 0.6346 1.95 (0.052)	−0.0255±0.1966 −0.4108, 0.3599 −0.13 (0.897)
Hours of contact	−0.0718±0.0336 −0.1376, −0.0060 −2.14 (0.032)	0.0192±0.0404 −0.0601, 0.0985 0.47 (0.635)
Exercise intensity	−0.1458±0.0601 −0.2636, −0.0281 −2.43 (0.015)	−0.1275±0.0724 −0.2695, 0.0144 −1.76 (0.078)
Weight loss	−0.9610±1.6473 −4.1897, 2.2677 −0.58 (0.560)	2.1510±1.9962 −1.7615, 6.0635 1.08 (0.281)

Model statistics for systolic blood pressure R²=0.50, Q=16.4, df=4.0, P=0.0025. Model statistics for diastolic blood pressure R²=0.23, Q=4.95, df=4.0, P=0.293. CI indicates confidence intervals; MABP, mean arterial blood pressure at baseline, mmHg; and Z(p), z-score and P value.

reductions in blood pressure. This is a larger effect than reported from a recent review reporting results from older adult groups and prehypertension groups. This may be explained by selection criteria, we excluded normotensive cohorts with no cardiovascular risk factors. Alternatively, the result may suggest that younger adults may be more responsive to exercise as an intervention to lower blood pressure. There were also comparable benefits in blood pressure reduction for both prehypertension and hypertension groups, which have not been observed previously in older adult groups. Transition to early adulthood may be an important life stage to target cardiovascular risk reduction. It is identified as a period where at risk groups present with hypertension. In addition, adverse cardiovascular risk profiles in early adulthood are predictive of future morbidity. Transition to early adulthood is identified as a period of decline in physical activity, with low fitness in early adulthood predictive of cardiometabolic dysfunction in middle age. In contrast, maintained or increased cardiovascular fitness in younger adults can change cardiovascular risk trajectory. However, a dominant finding is that we have not observed any sustained effects in blood pressure reduction from studies reporting outcomes after 12 months. This is the first review in the blood pressure literature to explore the sustained effects of exercise intervention and the first to exclude studies with <3 months follow-up, which may have previously contributed to overestimation of effect. Our reported findings are similar to patterns observed in the general physical activity literature with a longitudinal decline in compliance with maintaining physical activity. The current evidence supports the need to build more detailed physical activity recommendations for hypertension management in younger adult populations.

Current guidelines recommend review of adults below 40 years of age with elevated blood pressure for exclusion of secondary causes of hypertension. The age inclusion criteria for this review were defined to align with this practice. However, a major limitation is the paucity of studies recruiting younger adults. Hypertension in younger adults is complicated by high rates of underdiagnosis and, when identified, suboptimal treatment. These deficiencies may reflect broader misconception that younger age is sufficiently protective against cardiovascular risk. This pattern is reflected in this review with an observed age bias for study recruitment in favor of older adults. The majority of excluded trials recruit cohorts >50 years of age. In addition, >46% of studies reporting blood pressure as a primary outcome excluded participants below 35 years of age.

Improved risk evaluation and interpretation of the benefits of blood pressure reduction may facilitate discussion on how to reform hypertension management for younger adults. An example is clinical interpretation of the reported 4 to 5 mm Hg reduction in blood pressure, if this was sustained in a younger adult cohort with prehypertension, the estimated 5-year incidence of hypertension would reduce from 1 in 5 to 1 in 10. This interpretation may be more beneficial than prediction of 10-year risk of cardiovascular events, which is difficult in younger adults. However, long-term benefits on cardiovascular end points can be estimated; a sustained 2 mmHg reduction in blood pressure could translate to 7% to 10% reduction in stroke and ischemic cardiovascular event. The major challenge is how to achieve sustained effect. In this review, intervention effect dropped to 1 mmHg by 12 months with no significant difference compared with control.

To provide a platform to improve future intervention design, we present an evaluation of study level characteristics that predict intervention effect at 3 to 6 months. With regard to intervention strategy and delivery, both supervised and self-directed exercise achieve reduction in blood pressure, although effect was greater with supervised exercise. This may reflect a dose effect; supervised exercise was associated with increased exercise participation in the short-term. This group also achieved higher exercise intensity and increased cardiovascular fitness. However, higher volumes of planned contact time between participant and intervention, irrespective of intensity, or self-directed exercise were also associated with greater reduction in blood pressure at 3 to 6 months. Explanation for the subgroup analyses may relate to distinctions between physiological and behavioral influences of intervention. The exposure to higher exercise intensity may drive a mechanism for change in blood pressure distinct from low-level activity. Self-directed and lower intensity exercise had relatively lower effects on diastolic blood pressure, which is consistent with previous observations that blood pressure responses differ with intervention strategy.

The finding that contact time, independent of intensity is associated with a positive influence on systolic blood pressure may support a beneficial effect of increased frequency
of low to moderate activity. However, interpretation is limited without objective and repeated measures of physical activity behavior, which was not reported in studies with 3 to 6 months of outcomes. Alternatively, planned contact, inclusive of telephone and remote contact may be a stimulus for sustained behavior. Unfortunately, the pattern across studies is that as contact is withdrawn intervention effect declines. This is despite several studies implementing recommended behavior strategies, such as promotion of participant self-efficacy, activity planning, self-monitoring, and participant feedback. Participant motivation and self-efficacy are of particular relevance as, despite the low attrition rates, the included studies report decline in scheduled attendance and compliance with intervention targets from >80% at 3 to 6 months to 40% at 18 months. There are currently no strategies that effectively address the challenge of promoting sustained long-term physical activity behavioral change. A promising approach is a personalized intervention supported by device-assisted behavioral change and flexible communication strategies to better sustain effective intervention. The use of wearable activity monitors and physical activity tracking applications on mobile devices can provide objective measures of behavior, facilitate self-monitoring, and allow real-time feedback. However, the resource demands of maintaining high contact time and technology supported behavior change may be a barrier to clinical translation. Economic evaluation of effective interventions with reference to delivery cost and process evaluation of strategies to sustain participant engagement, motivation, and compliance may help to drive innovation and overcome these barriers.

Improvement in intervention design and delivery may also benefit from more transparency and disclosure of the specific methods and content of delivered communication strategies. There were often only brief summaries available, which described the professional team, if communication training was provided to the team, and broad categorical descriptors of intervention themes discussed with participants. In the current review, several studies focused communication strategies around weight loss, promoting exercise as a mechanism for weight loss. However, an interesting observation from the review which may help to guide the evolution of future studies is the patterns of intervention effect associated with weight loss. Previous review identified that weight loss >4 kg was required to achieve significant blood pressure reduction. However, in our review, short-term benefits of exercise on blood pressure were seen even in those who did not achieve this degree of weight loss. This observation is supported by weight loss not being a significant effect modifier in the regression model. The positive message is that in the short-term, exercise is beneficial for blood pressure reduction independent of pre- or postintervention weight. Distinguishing between the independent benefits of exercise and weight loss may facilitate effective communication and participant engagement strategies, especially when participants may be motivated by different health and well-being goals.

Limitations
Major limitations are the paucity of research studies recruiting younger adult or performing subgroup analysis defined by age. Included studies did not present results by age preventing analysis of effect in early adulthood. Evaluation of the available literature base would be strengthened by meta-analysis of individual participant data, but this was outside the scope of the review. The results would be strengthened by using ambulatory blood pressure, only 3 studies reported ambulatory blood pressure in addition to clinic blood pressure. Identification of effective intervention components is limited by several study level factors, including lack of objective measurement and tracking of physical activity behavior, limited description of content and delivery of communication strategies, and lack of disclosure of effectiveness of intermediate intervention process outputs such as strategies to maintain participant engagement and compliance. In the majority of studies, there is also risk of bias in relation to participant allocation concealment and blinding of outcome assessors, with methods not discussed or unclear, which may risk overestimation of intervention effectiveness. However, overall the quality of included studies were moderate and funnel plots suggest no evidence of reporting bias, though caution in interpretation is required because of the small number of studies.

Perspectives
This review raises concern that current clinical practice to promote lifestyle and exercise intervention risks suboptimal management of young adult hypertension. Although it has been pragmatic to assume that exercise will improve blood pressure in young adults, the available evidence suggests current intervention strategies do not maintain long-term benefit. Discussion with young adult patient and public groups highlight that lifestyle interventions remain an attractive alternative to starting potential lifelong prescriptions for blood pressure. However, short-term reduction in blood pressure reported in this review involved multiple contacts over time and delivery of targeted exercise prescription. These strategies generally required supervised exercise interventions, which are expensive and currently not widely supported. A major challenge for the clinical research community is to design and evaluate interventions which target sustained increase in physical activity behavior, accommodate potential for titration of exercise prescription, and deliver improvement in the cost per quality adjusted life year. Translation of research findings into clinical practice may be improved by study design incorporating comparative adaptiveness evaluations and exploring interactive effects with prescription medication. Going forward there seems to be a need for strategic overhaul of the approaches implemented in the prevention and management of young adult blood pressure.

Sources of Funding
The review was supported through a Wellcome Trust Clinical Research Training Fellowship (W. Williamson, Grant Reference 105741/Z/14/Z), P. Leeson, C. Foster, and A. James Lewandowski are supported by the British Heart Foundation (BHF), Oxford BHF Centre for Research Excellence and the Oxford National Institute of Health Research (NIHR) Biomedical Research Centre. H. Reid is supported by the NIHR (UK) Academic Clinical Fellowship program.

Disclosures
None.
References

1. Scarborough P, Bhatnagar P, Wickramasinghe K, Smolina K, Mitchell C. Coronary heart disease statistics 2010 edition. Br Heart J. 2010;116-150.

2. Nguyen QC, Tabor JW, Entzel PP, Lau Y, Suchindran C, Hussey JM, Halpem CT, Harris KM, Whitel EA. Discordance in national estimates of hypertension among young adults. Epidemiology. 2011;22:532-541.

3. Cump C, Winkleby MA, Sundquist K, Sundquist J. Risk of hypertension among young adults who were born preterm: a Swedish national study of 636,000 births. Am J Epidemiol. 2011;173:797-803. doi: 10.1093/aje/kwq440.

4. de Jong F, Monuteaux MC, van Elburg RM, Gillman MW, Belfort MB. Systematic review and meta-analysis of preterm birth and later systolic blood pressure. Hypertension. 2012;59:226-234. doi: 10.1161/HYPERTENSIONAHA.111.181784.

5. Gooding HC, McGinty S, Richmond TK, Gillman MW, Field AE. Hypertension awareness and control among young adults in the national longitudinal study of adolescent health. J Gen Intern Med. 2014;29:1098-1104. doi: 10.1007/s11606-014-2809-x.

6. Turner R, Holman R. Hypertension in Diabetes Study (HDS): I. Prevalence of hypertension in newly presenting type 2 diabetic patients and the association with risk factors for cardiovascular and diabetic complications. J Hypertens. 1993;11:309-317.

7. Davis EF, Lewandowski AJ, Aye C, Williamson W, Boardman H, Huang C, et al. The Clinical and Ischemic Heart disease in young adults born preterm: a population-based Swedish cohort study. Eur J Epidemiol. 2014;29:253-260. doi: 10.1007/s10654-014-9892-5.

8. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R; Prospective Epidemiology Study Team. Blood pressure, non-insulin dependent diabetes and all causes of death in 636,000 births. BJM Open. 2015:5.e008136. doi: 10.1136/bmjopen-2015-008136.

9. Ueda P, Cnattingius S, Stephansson O, Ingelsson E, Ludvigsson JF, Bonamy AK. Cerebrovascular and ischemic heart disease in young adults: Coronary Artery Risk Development in Young Adults study. Circulation. 2014;130:10-17. doi: 10.1161/CIR.0000000000000839.

10. Johnson HM, Thorpe CT, Bartels CM, Schumacher JR, Palta M, Pandhi N, Sheehy AM, Smith MA. Antihypertensive medication initiation among young adults who were born preterm: a Swedish national study of 636,000 births. Ann Intern Med. 2012;59:226-234. doi: 10.1161/HJH.0000000000000008.

11. Johnson HM, Thorpe CT, Bartels CM, Schumacher JR, Palta M, Pandhi N, Sheehy AM, Smith MA. Antihypertensive medication initiation among young adults with regular primary care use. J Hypertens. 2014;32:65-74. doi: 10.1097/HJH.0000000000000008.

12. Johnson HM, Thorpe CT, Bartels CM, Schumacher JR, Palta M, Pandhi N, Sheehy AM, Smith MA. Utiel-Diahgrosis hypertension among young adults with regular primary care use. J Gen Intern Med. 2014;29:723-731. doi: 10.1007/s11606-014-2790-4.

13. Egan BM, Zhao Y, Axon RN. US trends in prevalence, awareness, treatment, and control of hypertension, 1988-2008. JAMA. 2010;303:2043-2050. doi: 10.1001/jama.2010.650.

14. Gray G, Lee IM, Seso HD, Battu GD. Blood pressure in early adulthood, hypertension in middle age, and future cardiovascular disease mortality: HAHS (Harvard Alumni Health Study). J Am Coll Cardiol. 2011;58:2396-2403. doi: 10.1016/j.jacc.2011.07.045.

15. Spring B, Moller AC, Chabanglo LA, Siddique J, Roehrig M, Davighi ML, Palta JF, Reis JP, Sidney S, Liu K. Healthy lifestyle change and subclinical atherosclerosis in young adults: Coronary Artery Risk Development in Young Adults (CARDIA) study. Circulation. 2014;130:10-17. doi: 10.1161/CIRCULATIONAHA.113.055445.

16. Allen NB, Siddique J, Wilkins JT, Shay C, Lewis CE, Goff DC, Jacobs DR Jr, Liu K, Lloyd-Jones D. Blood pressure trajectories in early adulthood and subclinical atherosclerosis in middle age. JAMA. 2014;311:490-497. doi: 10.1001/jama.2013.285122.

17. Kissela BM, Khoury JC, Alwell K, Moomaj CJ, Woo D, Adeoye OV, Flaherty ML, Khatri P, Ferioli S, De Los Rios La Rosa F, Broderick JP, Kleindorfer DO. Age at stroke: temporal trends in stroke incidence in a large, biracial population. Neurology. 2012;79:1781-1787. doi: 10.1212/WNL.0b013e318270401d.

18. NICE. Hypertension - Clinical Management of Primary Hypertension in Adults. Manchester, United Kingdom: NICE; 2011.
What Is New?

• An age defined review of randomized trials, with long-term follow-up, designed to assess effectiveness of exercise intervention for blood pressure reduction in younger adults.

What is Relevant?

• Exercise intervention is beneficial for young adults in the short-term at 3 to 6 months but has no sustained effect at, or beyond, 12 months.

Novelty and Significance

Efficacy of intervention at 3 to 6 months was dependent on intensity of exercise and contact time with intervention teams.

Summary

Current recommendations for lifestyle and exercise interventions risk undertreating younger adults. There is a need for review of practice and development of affordable interventions that deliver appropriate dose of exercise and sustained behavior change.