Scientific Article

Effect of Favorable Pathologic Response After Neoadjuvant Radiation Therapy Alone in Soft-tissue Sarcoma

Russell F. Palm, MD, Casey L. Liveringhouse, MD, Ricardo J. Gonzalez, MD, Marilyn M. Bui, MD, Odion Binitie, MD, George Q. Yang, MD,1 and Arash O. Naghavi, MD, MS†,*

Department of Radiation Oncology, Moffitt Cancer Center, Tampa Florida

Received August 8, 2022; accepted September 19, 2022

Abstract

Purpose: Whether the therapeutic response of soft-tissue sarcoma to neoadjuvant treatment is predictive for clinical outcomes is unclear. Given the rarity of this disease and the confounding effects of chemotherapy, this study analyzes whether a favorable pathologic response (fPR) after neoadjuvant radiation therapy (RT) alone is associated with clinical benefits.

Methods and Materials: An institutional review board-approved retrospective review was conducted on a database of patients with primary soft-tissue sarcoma treated at our institution between 1987 and 2015 with neoadjuvant RT alone followed by surgical resection. Time-to-event outcomes estimated with a Kaplan−Meier analysis included overall survival, progression-free survival (PFS), locoregional control, and distant control (DC). Cox regression analyses were performed to determine prognostic variables associated with clinical outcomes.

Results: Of the overall cohort of 315 patients, 181 patients (57%) were included in the primary analysis with documented pathologic necrosis (PN) rates (mean: 59%) and a median follow up from diagnosis of 48 months (range, 4-170 months). The median neoadjuvant RT dose was 50 Gy (range, 40-60 Gy), and the majority of patients had negative surgical margins (79%). Only 35 patients (19%) achieved a fPR (PN ≥95%), which was associated with a higher R0 resection rate (94% vs. 75%; P = .013), a significant 5-year PFS benefit (74% vs. 43%; P = .014), and a nonsignificant 5-year DC benefit (76% vs. 62%; P = .12) compared with PN <95%. On multivariable analysis, fPR was an independent predictor for PFS (hazard ratio: 0.47; 95% confidence interval, 0.25-0.90; P = .022).

Conclusions: Achieving fPR with neoadjuvant RT alone is associated with a higher R0 resection rate and possible DC benefit, translating into a significant improvement in PFS. Further studies to improve pathologic response rates and prospectively validate this endpoint are warranted.

© 2022 The Author(s). Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

In soft-tissue sarcoma (STS), there is uncertainty regarding the clinical significance of pathologic necrosis (PN) after neoadjuvant therapy. Retrospective studies of patients treated with predominately neoadjuvant chemoradiation have demonstrated improvements in overall survival (OS) associated with increased PN,1-4 with another analysis showing improved freedom from distant...
metastases with PN ≥90%.6 Recently, a phase 2 trial of treatment escalation with NBTXR3 crystalline hafnium oxide demonstrated a statistically significant doubling in the primary endpoint of favorable pathologic response (fPR).6 In this study, fPR was defined as PN ≥95%, and associated with an improvement in the margin negative (R0) resection rate.6 Resection margins have, in turn, been associated with local control7 as well as distant recurrence and survival in large retrospective databases.8,9 Despite these findings, reports regarding tumor response to radiation therapy (RT) alone are limited, with a small retrospective analysis suggesting an improvement in 3-year distant recurrence-free survival. However, this result was not statistically significant.10

Nevertheless, the use of PN as a clinically meaningful surrogate is controversial, because other investigators have found no association between pathologic response and oncologic outcomes,11–15 even when stratified with the endpoints of PN ≥95%14–16 or ≥80%.17 However, these series were limited by smaller sample sizes and confounded by a number of patients receiving concurrent chemotherapy. A more recent retrospective study of 330 patients, with two-thirds of patients treated with neoadjuvant RT alone, demonstrated improvements in OS and disease-free survival associated with PN ≥95%.18 Treatment with neoadjuvant RT alone tends to be more easily tolerated than chemoradiation, and has been associated with a potential distant control (DC) benefit,10,19 suggesting a potential uncharacterized immunostimulatory quality that may affect oncologic outcomes. To this end, the aim of this single institution retrospective analysis was to assess the influence of fPR after neoadjuvant RT alone on R0 resection rates and patient outcomes.

Methods and Materials

Patients and treatment

After institutional review board approval, a retrospective institutional database of patients with a diagnosis of primary STS and treated with neoadjuvant RT, followed by surgical resection, between 1987 to 2015 was reviewed. Patients were staged according to the American Joint Committee on Cancer system, 8th edition. Neoadjuvant RT was recommended after multidisciplinary discussion with consideration of several factors, including risk of positive margin and anatomic location, tumor grade and size, and histopathologic subtype. The exclusion criteria included age <18 years, recurrent sarcoma, pathologically confirmed metastatic disease at the time of diagnosis, delivery of any neoadjuvant chemotherapy or concurrent chemoradiotherapy, uterine sarcoma, or any bone sarcomas derived from or involving the bone (eg, Ewing’s sarcoma, chondrosarcoma, or osteosarcoma). Thus, patients whose standard treatment required neoadjuvant chemotherapy were excluded.

From this cohort of 315 patients, a total of 181 patients had documented pathologic necrosis rates and were included in the final analysis with outcomes of surgical margin status, OS, progression-free survival (PFS), locoregional control (LRC), and DC. In addition, the entire cohort (n = 315) was analyzed to identify factors associated with outcomes that may be underpowered in the subset analyses. Although no patients in this study received neoadjuvant/concurrent chemotherapy before surgery, a subset analysis (n = 148) was performed excluding patients who also received chemotherapy after surgery (eg, adjuvant or postoperative chemotherapy) to account for potential confounding.

All patients underwent preoperative conventionally fractionated external beam RT alone, followed by wide local excision or limb-sparing resection, within 4 months of completing RT. Per institutional protocol, all sarcoma specimens were processed according to the standard practice of the College of American Pathologists20 with standardized grading between 3 specialty-trained sarcoma pathologists across the 30 years of the cohort. In brief, the treated tumor was sectioned by taking 1 full cross-sectional slab at its greatest cross-sectional area with tumor photograph documentation and mapping. Although PN is a component of grading, posttreatment necrosis cannot reliably be distinguished from pretreatment necrosis.21 Therefore, the term “pathologic necrosis” is commonly synonymous with “pathologic response” in this study, meant to depict the proportion of nonviable cancer cells, including necrosis, fibrotic/inflammatory changes, and hemorrhage by meticulous microscopic examination.

The pathologic necrosis/response was documented on the final pathologic report as the sum of all areas, excluding all viable cancer cells, divided by the total cross-sectional tumor. A fPR was defined as PN ≥95%.6,15,18 Only specimens that could be estimated accurately for overall pathologic response by our sarcoma pathologists were included in this cohort. Clinical data for this cohort included clinical tumor (T) stage, clinical nodal (N) stage, tumor grade, tumor location, histology, RT dose, patient age, and Karnofsky performance status (KPS) score.

Statistical analysis

OS, PFS, LRC, and DC were estimated using a Kaplan–Meier analysis, compared via a log-rank test. OS was calculated from the date of diagnosis to the date of last contact or death. PFS was calculated from the date of diagnosis to the first recurrence or death, censored at the date of the last follow up. LRC and DC were calculated from the date of treatment to the date of local or distant recurrence, respectively. Date of recurrence was recorded at the time of pathologic confirmation, if available.
However, a radiographic recurrence or progression was recorded if clinically documented.

The association between PN and surgical margin status was assessed with an independent-samples Kruskal–Wallis test, and the association of fPR with surgical margin status was assessed with a Pearson 2 test. Univariable and multivariable (Cox proportional hazards model) analyses were performed to determine prognostic variables in correlation with the clinical outcomes. The multivariable analysis included clinical T stage, grade, surgical margins, fPR, age (continuous), and KPS (≥ 80). For all analyses, the type I error was set at 0.05, and all tests were 2-sided. The statistical analysis was performed in SPSS, version 25.0 (IBM Corp.; Armonk, NY).

Results

A total of 315 patients were identified with stage I to III resected STS treated with definitive intent neoadjuvant RT, followed by surgery, and with a documented margin status (Table E1). In this cohort, R0 resection was associated with a significant 5-year LRC benefit (91% vs. 80%; $P = .018$).

A documented pathologic necrosis rate was identified in 181 patients (57%) with a median follow up of 48 months from diagnosis (Table 1). The median age was 64 years (range, 25-89 years), patients were predominantly male (63%), and had a KPS score of ≥ 80 (94%; mean KPS: 93), tumor grade 2 to 3 (78%), and extremity tumor location (70%). The median clinical tumor size was 11 cm (range, 2-34 cm), and the preoperational median RT dose was 5000 cGy (range 4000-6000 cGy) with a median time from RT to surgery of 72 days (range: 38-129 days). The mean PN response for the cohort was 59% (range: 0%-100%), and fPR (PN ≥ 95%) was achieved in 35 patients (19%). A fPR was associated with a higher R0 resection rate (94% vs. 75%; $P = .013$) and extremity site (97% vs. 64%; $P = .008$) compared with a PN $< 95%$. A lower stratification point of PN > 90% was explored, and there was no association with 5-year DC (64% vs. 65%; $P = .87$) or PFS (53% vs. 47%; $P = .80$) in our cohort. There was no significant association between fPR and histologic grade ($P = .4$), and no significant difference in mean pathologic necrosis ($P = .20$) or fPR ($P = .24$) across grade for GI/G2/G3/GX with 39%/50%/64%/48% and 0.8%/17.2%/12.8%/5.2%, respectively. There was no association between achieving a fPR and days to surgery from RT (72 vs. 73 days; $P = .55$).

A fPR was associated with a statistically significant 5-year PFS benefit (74% vs. 43%; $P = .014$; Fig. 1A) and non-statistically significant improvements in 5-year LRC (94% vs. 85%; $P = .24$; Fig. 1B), DC (76% vs. 62%; $P = .12$; Fig. 1C), and OS (76% vs. 61%; $P = .27$; Fig. 1D) compared with PN <95%. A negative surgical margin, defined as no tumor on ink, was achieved in 143 patients (79%), and associated with a higher PN rate compared with R1 resection (75% vs. 45%; $P < .001$). R0 resection demonstrated a trend toward association with improved 5-year LRC (89% vs. 79%; $P = .14$). On multivariable analysis, fPR (hazard ratio: 0.47; 95% confidence interval, 0.25-0.90; $P = .022$) and high KPS score independently predicted for PFS (Table 2).

Although no patients received chemotherapy before surgery, a subset analysis of patients (n = 148) who also did not receive chemotherapy after surgery (eg, adjuvant/postoperative) continued to show an association between fPR and improved 5-year PFS (77% vs. 47%; $P = .043$).

Discussion

Neoadjuvant RT is increasingly used in the treatment of STS22 with advantages in tumor cytoreduction and capsule fibrosis,23 translating into lower positive margin resection rates,24,25 improved outcomes after marginal excisions,26 and decreased late toxicity, compared with postoperative treatment.27 We present the first data to show that achieving fPR with neoadjuvant RT alone is associated with a lower risk for positive margin resections, and demonstrated a 22% nonsignificant improvement in DC, translating into a significant 31% absolute PFS improvement. On multivariable analysis, fPR was the only variable associated with PFS (more than twice as likely to survive without disease recurrence), suggesting a significant mechanism independent of surgical margins, stage, or performance status.

The influence of tumor response after neoadjuvant RT alone has been unclear, because many studies that show an oncologic benefit of neoadjuvant treatment are confounded by systemic therapy, such as ifosfamide-based regimens, which are associated with improved PN and thought to drive the DC benefit.1,5 However, the widespread adoption of neoadjuvant chemotherapy has been limited by significant toxicity burden.28 and matched-pair analyses comparing neoadjuvant RT alone versus chemoradiation have demonstrated no difference in OS, local control, or DC with the addition of concurrent chemotherapy.29,30 To account for any confounding effects of chemotherapy in our study, a subset analysis of patients who did not receive any chemotherapy (eg, neoadjuvant, concurrent, or adjuvant) showed that achieving a fPR from RT alone was associated with a 30% improvement in 5-year PFS, suggesting the distant DC seen with fPR may be from other unknown mechanisms.

Although chemotherapy frequently induces lymphopenia and an immunosuppressed state, RT has documented immunostimulatory qualities with resulting abscopal and bystander effects.$^{31-33}$ In our series, achieving fPR resulted in a 22% relative improvement in DC, which may be related to the immunomodulatory effects of RT, as previously described in sarcoma.34,35 To this end, there has
	Total	Non-fPR	fPR	P			
N = 181							
Non-fPR n = 146 %							
fPR n = 35 %							
Age							
<50 y	42	23.2	33	22.6			
≥50 y	139	76.8	113	77.4			
Sex							
Female	67	37.0	51	34.9			
Male	114	63.0	95	65.1			
Histologic grade							
Grade 1	13	7.2	12	8.2			
Grade 2-3	141	77.9	111	76.0			
Grade unknown	27	14.9	23	15.8			
Tumor location							
Extremity	127	70.2	93	63.7			
Retroperitoneal	25	13.8	25	17.1			
Pelvis	11	6.1	10	6.8			
Thorax	4	2.2	4	2.7			
Head/neck	2	1.1	2	1.4			
Abdomen	12	6.6	12	8.2			
Histology type							
Chondrosarcoma, NOS	1	0.6	1	0.7			
Extraskeletal chondrosarcoma	1	0.6	1	0.7			
Dedifferentiated chondrosarcoma	3	1.6	3	2.1			
Myxoid chondrosarcoma	3	1.6	3	2.1			
Liposarcoma							
Dedifferentiated liposarcoma	14	7.7	14	9.6			
Liposarcoma, NOS	3	1.6	3	2.1			
Mixed liposarcoma	3	1.6	0	0.0			
Myxoid liposarcoma	11	6.1	6	4.1			
Pleomorphic liposarcoma	5	2.8	4	2.7			
Well differentiated liposarcoma	6	3.3	6	4.1			
Other							
Angiosarcoma	2	1.1	2	1.3			
Dermatofibrosarcoma, NOS	1	0.6	1	0.7			
Ewing sarcoma (extraskeletal)	2	1.1	1	0.7			
Fibrosarcoma, NOS	3	1.6	3	2.1			
Leiomyosarcoma, NOS	11	6.1	11	7.5			
Malignant hemangiopericytoma	4	2.2	4	2.7			
Malignant peripheral nerve sheath tumor	4	2.2	4	2.7			
Malignant solitary fibrous tumor	2	1.1	2	1.4			
Myxofibrosarcoma	16	8.9	15	10.3			
Osteosarcoma, NOS (extraskeletal)	1	0.6	1	0.7			
Table 1 (Continued)	Total	Non-fPR	fPR	P			
---------------------	-------	---------	-----	--			
	N = 181	n = 146	n = 35				
Rhabdomyosarcoma, NOS	2	1.1	2	1.3	0	0.0	
Synovial sarcoma	7	3.9	6	4.1	1	2.9	
Undifferentiated pleomorphic sarcoma/undifferentiated sarcoma	46	25.4	33	22.6	13	37.2	
Unclassified							
Myxoid sarcoma, NOS	2	1.1	1	0.7	1	2.9	
Sarcoma, NOS	13	7.2	9	6.2	4	11.3	
Spindle cell sarcoma, NOS	18	9.9	13	8.9	5	14.2	
Clinical T stage							
T1	12	6.6	10	6.8	2	5.7	.3
T2	63	34.8	46	31.3	17	48.6	
T3	58	32.0	47	32.0	11	31.4	
T4	40	22.1	36	24.5	4	11.4	
Unknown	8	4.4	7	4.8	1	2.9	
Clinical N stage							
0	178	98.3	143	97.3	35	100.0	.39
1	3	1.7	3	2.0	0	0.0	
SM status							
SM negative	143	79.0	110	74.8	33	94.3	.01
SM positive	38	21.0	36	24.5	2	5.7	
Karnofsky performance status score							
<80	9	5.0	5	3.4	4	11.4	.12
≥80	170	93.9	139	94.6	31	88.6	
Unknown	2	1.1	2	1.4	0	0.0	
Time to surgery							
Days, median (range)	72	38-129	73	38-129	72	58-105	.55
Radiation therapy dose							
Gy, median (range)	50	40-60	50	40-60	50	45-60	.46

fPR, favorable pathologic response (<95% pathologic necrosis); NOS, not otherwise specified; SM, surgical margin
been growing interest in integrating immunomodulatory agents with RT, with the hope of a synergistic immunogenic effect.\(^\text{36,37}\) Further understanding of the drivers behind the immunomodulatory effects of RT in sarcoma are required, appropriately selecting patients based on gene profiling\(^\text{38}\) and improved understanding of the influence of tumor-infiltrating lymphocytes.\(^\text{39}\)

Understanding the prognostic value of fPR in STS has been limited by the rarity of the disease, the PN stratification point used in previous experiences, and the heterogeneity in treatment regimens. Notably, PN $\geq 80\%$ has been shown to have no significant effect on oncologic outcomes in historical experiences with twice daily\(^\text{17}\) or daily\(^\text{40}\) neoadjuvant RT. Prior studies have shown that PN $\geq 90\%$ was associated with improved freedom from distant metastases,\(^\text{4}^\) but in our current study, achieving a 90% response had no association with 5-year DC (64% vs. 65%; $P = .87$) or PFS (53% vs. 47%; $P = .80$). In a small analysis of 25 patients, the use of a higher stratification point of PN $\geq 95\%$ after neoadjuvant RT alone showed an association with improved 3-year event-free survival at 100% versus 59%, but was underpowered to reach statistical significance.\(^\text{14}\)

Analogous to our results, another retrospective analysis of 30 patients after neoadjuvant RT alone showed a nonstatistically significant 37% improvement in 3-year distant recurrence-free survival with an fPR, as well as no differences if stratified at PN 80%.\(^\text{10}\) Although the statistical power in these experiences was limited by smaller numbers, a larger report of 113 patients treated with chemoradiation with a mesna, adriamycin, ifosfamide, and dacarbazine regimen and a split course RT to 4400 cGy achieved a median PN of 90%, but found no difference in oncologic outcomes at 5 years, likely driven by the excellent outcomes in the PN $< 95\%$ cohort (5-year LRC and OS $\geq 85\%$).\(^\text{15}\)

Local control in STS remains imperative, because recurrences have been associated with poor survival.\(^\text{41,42}\) Historically, surgical margin status in STS (reviewed by Harati and Lehnhardt\(^\text{43}\)) has been associated with improved locoregional control, survival,\(^\text{44,45}\) and metastasis-free survival.\(^\text{47}\) The effect of surgical margins in our comprehensive cohort ($n = 315$) was consistent with the results of these previous studies, showing that a margin-negative resection offers an 11% LRC benefit after preoperative RT alone. Our study is underpowered to show a significant LRC association with fPR, but a

Figure 1 Kaplan–Meier survival analyses comparing time to event for patients achieving favorable pathologic response ($\geq 95\%$ pathologic necrosis) versus those not achieving favorable pathologic response ($< 95\%$ pathologic necrosis), showing A, progression-free survival, B, locoregional control, C, distant control, and D, overall survival.
A profound improvement in R0 resection rates (19%) contributed to improved LRC and potentially DC.

Finally, significant heterogeneity exists in PN rates between histologic phenotypes. Myxoid liposarcoma has been shown to be particularly radiosensitive with increased rates of PN after neoadjuvant treatment.\(^{14,48}\) This is consistent with our findings, where fPR had a higher proportion of myxoid liposarcoma (14% vs. 4%) than PN <95%. Teasing out the biologic susceptibilities between histologies may be critical in future investigations, because there is now growing evidence of heterogenous radiation sensitivities\(^{49}\) and benefits (eg, STRASS trial)\(^{50}\) within STS.

The limitations of this study include its retrospective nature, and the relatively low incidence of fPR poses difficulty in achieving statistical significance, particularly for modest benefits in LRC and DC. Our institutional practice is for our sarcoma-specialized pathologist to evaluate the specimens for pathologic response, but unfortunately, this not always possible. As a retrospective study, accounting for biases that may have influenced the missing pathologic response data in this study (eg, inadequate processing or documentation) is difficult. Classically, the presence of tumor necrosis is a component of STS grading; however, the pretreatment overall necrosis is difficult to estimate based on biopsy testing alone, potentially confounding the final pathologic response. With a higher baseline necrosis/grade, we would expect a higher pathologic response, which we see from grade 1 versus 2 versus 3 (39% vs. 50% vs. 64%) in this cohort, but the ability to achieve a fPR >95% was lower for grade 3 versus 2 (12.8% vs. 17%). This suggests that higher initial necrosis in grade 3 tumors may affect their average pathologic response, but achieving a 95% response threshold is unlikely affected because the remaining viable tissue may be innately radioresistant/hypoxic.

Conclusions

Achieving an fPR (pathologic necrosis ≥95%) with neoadjuvant RT alone is associated with an improved R0

Table 2	Multivariable Cox proportional hazards analyses evaluating clinical and pathologic variables associated with overall survival and PFS			
Variable	Overall survival	P-value	PFS	P-value
cT stage				
1 ref	ref	ref	ref	ref
2	1.4 (0.4-4.7)	.6	1.0 (0.4-2.7)	1
3	1.7 (0.5-5.9)	.4	1.7 (0.7-4.4)	.3
4	1.5 (0.5-5.4)	.5	1.0 (0.4-2.7)	1
X	1.6 (0.3-8.0)	.6	1.0 (0.3-3.9)	1
Grade				
1 ref	ref	ref	ref	ref
2	1.4 (0.3-8.1)	.7	1.3 (0.4-4.8)	.7
3	3.4 (0.8-14.5)	1	2.6 (0.9-7.3)	.07
Unknown	1.9 (0.4-8.9)	.4	1.5 (0.5-4.6)	.5
Surgical margin				
Negative	ref	ref	ref	ref
Positive	1.3 (0.7-2.3)	.4	1.4 (0.8-2.3)	.19
FAVORABLE PATHOLOGIC RESPONSE				
<95%	ref	ref	ref	ref
≥95%	0.7 (0.3-1.4)	.3	0.47 (0.3-0.9)	.022
Patient age	1.00 (0.99-1.02)	.8	1.0 (0.98-1.01)	.77
Karnofsky performance status score				
<80	ref	ref	ref	ref
≥80	0.4 (0.2-0.98)	.045	0.44 (0.2-1.0)	.046
Unknown	0.8 (0.1-7.4)	.8	0.41 (0.05-3.8)	.44

PFS, progression-free survival; ref, reference
resection rate, as well as a relative DC benefit, leading to a profound PFS benefit on multivariable analysis. Prospective studies are required to validate this endpoint, and determine the mechanisms responsible for the potential benefit in disease control.

Supplementary materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.ador.2022.101086.

References

1. Eller FC, Rosen G, Eckardt J, et al. Treatment-induced pathologic necrosis: A predictor of local recurrence and survival in patients receiving neoadjuvant therapy for high-grade extremity soft tissue sarcomas. *J Clin Oncol*. 2001;19:3203-3209.
2. Huth JF, Mirra JJ, Eller FR. Assessment of in vivo response to preoperative chemotherapy and radiation therapy as a predictor of survival in patients with soft-tissue sarcoma. *Am J Clin Oncol*. 1985;8:497-503.
3. Donahue TR, Kattan MW, Nelson SD, Tap WD, Eller FR, Eller FC. Evaluation of neoadjuvant therapy and histopathologic response in primary, high-grade retroperitoneal sarcomas using the sarcoma nomogram. *Cancer*. 2010;116:3883-3891.
4. Vaynруб M, Taheri N, Ahlmann ER, et al. Prognostic value of necrosis after neoadjuvant therapy for soft tissue sarcoma. *J Surg Oncol*. 2015;111:152-157.
5. MacDermdd DM, Miller LL, Peabody TD, et al. Primary tumor necrosis predicts distant control in locally advanced soft-tissue sarcomas after preoperative concurrent chemoradiotherapy. *Int J Radiat Oncol Biol Phys*. 2010;76:1147-1153.
6. Bonvalot S, Rutkowski PL, Thariat J, et al. NBTXR3, a radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcomas after preoperative chemoradiotherapy. *Eur J Cancer*. 2012;48:3275-3283.
7. Trovik CS. Scandinavian Sarcoma Group Project. Local recurrence of soft tissue sarcoma. A Scandinavian Sarcoma Group Project. *Acta Orthop Scand Suppl*. 1972:1-31.
8. Pisters PW, Leung DH, Woodruff J, Shi W, Brennan MF. Analysis of prognostic factors in 1041 patients with localized soft tissue sarcomas of the extremities. *J Clin Oncol*. 1996;14:1679-1689.
9. Stojadinovic A, Leung DHY, Hoos A, Jaques DP, Lewis JJ, Brennan MF. Analysis of the prognostic significance of microscopic margins in 2084 localized primary adult soft tissue sarcomas. *Ann Surg*. 2002;235:424-434.
10. Shah D, Borys D, Martinez SR, et al. Complete pathologic response to neoadjuvant radiotherapy is predictive of oncological outcome in patients with soft tissue sarcoma. *Anticancer Res*. 2012;32:3911-3915.
11. Tsagozis P, Brosjo O, Skorpil M. Preoperative radiotherapy of soft-tissue sarcoma: Surgical and radiologic parameters associated with local control and survival. *Clin Sarcoma Res*. 2018;8:19.
12. Cates JMM. Histologic response to neoadjuvant therapy is not predictive of favorable outcomes in high-grade pleomorphic soft tissue sarcoma. *Am J Surg Pathol*. 2019;43:564-572.
13. DeLaney TF, Sprio JJ, Suit HD, et al. Neoadjuvant chemotherapy and radiotherapy for large extremity soft-tissue sarcomas. *Int J Radiat Oncol Biol Phys*. 2003;56:1117-1127.
14. Caner RJ, Martinez SR, Tamurian RM, et al. Radiographic and histologic response to neoadjuvant radiotherapy in patients with soft tissue sarcoma. *Ann Surg Oncol*. 2010;17:2578-2584.
15. Mullen JT, Hornick FJ, Harmon DC, et al. Prognostic significance of treatment-induced pathologic necrosis in extremity and truncal soft tissue sarcoma after neoadjuvant chemoradiotherapy. *Cancer*. 2014;120:3676-3682.
16. Bedi M, King DM, Shivalokti M, et al. Prognostic variables in patients with primary soft tissue sarcoma of the extremity and trunk treated with neoadjuvant radiotherapy or neoadjuvant sequential chemoradiotherapy. *Radiat Oncol*. 2013;8:60.
17. Willett CG, Schiller AL, Suit HD, Mankin HJ, Rosenberg A. The histologic response of soft tissue sarcoma to radiotherapy. *Cancer*. 1987;60:1500-1504.
18. Bonvalot S, Wunder J, Gronchi A, et al. Complete pathologic response to neoadjuvant treatment is associated with better survival outcomes in patients with soft tissue sarcoma: Results of a retrospective multicenter study. *Eur J Surg Oncol*. 2021;47:2166-2172.
19. Sampath S, Schultheiss TE, Hitchcock YJ, Randall RL, Shrieve DC, Wong JYC. Preoperative versus postoperative radiotherapy in soft-tissue sarcoma: Multi-institutional analysis of 821 patients. *Int J Radiat Oncol Biol Phys*. 2011;81:498-505.
20. Wei S, Bui M. Chapter 49: Soft tissue. In: Zhai J, ed. *Grossing, staging, and reporting. An integrated manual of modern surgical pathology*, Northfield, IL: College of American Pathologists; 2021:249-253.
21. Wardelmann E, Haas RL, Bovée JVMG, et al. Evaluation of response after neoadjuvant treatment in soft tissue sarcomas; the European Organization for Research and Treatment of Cancer-Soft Tissue and Bone Sarcoma Group (EORTC-STBSG) recommendations for pathological examination and reporting. *Eur J Cancer*. 2016;53:84-95.
22. Lazarev S, McGee H, Moshier E, Ru M, Demicco EG, Gupta V. Preoperative vs postoperative radiation therapy in localized soft tissue sarcoma: Nationwide patterns of care and trends in utilization. *Pract Radiat Oncol*. 2017;7:e507-e516.
23. Grabelius F, Podleska LE, Sheu SY, et al. Neoadjuvant treatment improves capsular integrity and the width of the fibrous capsule of high-grade soft-tissue sarcomas. *Eur J Surg Oncol*. 2013;39:61-67.
24. Gingrich AA, Bateni SB, Monjaiez AM, et al. Neoadjuvant radiotherapy is associated with R0 resection and improved survival for patients with extremity soft tissue sarcoma undergoing surgery: A National Cancer Database analysis. *Ann Surg Oncol*. 2017;24:3252-3263.
25. Robinson MH, Ball AB, Schofield J, Fisher C, Harmer CL, Thomas JM. Preoperative radiotherapy for initially inoperable extremity soft tissue sarcomas. *Clim Oncol (B Coll Radiol)*. 1992;4:36-43.
26. Daqan R, Indelicato DJ, McGee L, et al. The significance of a marginal excision after preoperative radiation therapy for soft tissue sarcoma of the extremity. *Cancer*. 2012;118:3199-3207.
27. O’Sullivan B, Davis AM, Turcotte R, et al. Preoperative versus postoperative radiotherapy in soft-tissue sarcoma of the limbs: A randomised trial. *Lancet*. 2002;359:2235-2241.
28. Kraybill WG, Harris J, Sprio JJ, et al. Phase II study of neoadjuvant chemotherapy and radiation therapy in the management of high-risk, high-grade, soft tissue sarcomas of the extremities and body wall: Radiation Therapy Oncology Group Trial 9514. *J Clin Oncol*. 2006;24:619-625.
29. Greto D, Loi M, Terziani F, et al. A matched cohort study of radio-chemotherapy versus radiotherapy alone in soft tissue sarcoma patients. *Radiol Med*. 2019;124:301-308.
30. Hazell SZ, Hu C, Alcorn SR, et al. Neoadjuvant chemoradiation compared with neoadjuvant radiation alone in the management of high-grade soft tissue extremity sarcomas. *Adv Radiat Oncol*. 2020;5:231-237.
31. Lhuillier C, Rudqvist NP, Elemento O, Formenti SC, Demaria S. Radiation therapy and anti-tumor immunity: Exposing immunogenic mutations to the immune system. * Genome Med*. 2019;11:40.
32. Portella L, Scala S. Ionizing radiation effects on the tumor microenvironment. *Semin Oncol*. 2019;46:254-260.
33. Menon H, Chen D, Ramapriyan R, et al. Influence of low-dose radiation on abscopal responses in patients receiving high-dose radiation and immunotherapy. *J Immunother Cancer*. 2019;7:237.
34. Orton A, Wright J, Buchmann L, Randall L, Hitchcock YJ. A case of complete abscopal response in high-grade pleiomorphic sarcoma treated with radiotherapy alone. *Cureus*. 2016;8:e821.
35. Brenneman RJ, Sharifai N, Fischer-Valuck B, et al. Abscopal effect following proton beam radiotherapy in a patient with inoperable metastatic retroperitoneal sarcoma. *Front Oncol*. 2019;9.
36. Mowery YM, Ballman KV, Riedel RF, et al. SU2C-SARC032: A phase II randomized controlled trial of neoadjuvant pembrolizumab with radiotherapy and adjuvant pembrolizumab for high-risk soft tissue sarcoma. *J Clin Oncol*. 2018;36:TPS11588.
37. le Guevelou J, Debaigt C, Saada-Bouzid E, et al. Phase II study of concomitant radiotherapy with atezolizumab in oligometastatic soft tissue sarcomas: STEREOSARC trial protocol. *BMJ Open*. 2020;10:e038391.
38. Merry E, Thway K, Jones RL, Huang PH. Predictive and prognostic transcriptomic biomarkers in soft tissue sarcomas. *NPJ Precis Oncol*. 2021;5:17.
39. Mullinax JE, Hall M, Beatty M, et al. Expanded tumor-infiltrating lymphocytes from soft tissue sarcoma have tumor-specific function. *J Immunother*. 2021;44:63-70.
40. Hew L, Kandel R, Davis A, O’Sullivan B, Catton C, Bell R. Histological necrosis in soft tissue sarcoma following preoperative irradiation. *J Surg Oncol*. 1994;57:111-114.
41. Eibler FC, Rosen G, Nelson SD, et al. High-grade extremity soft tissue sarcomas: Factors predictive of local recurrence and its effect on morbidity and mortality. *Ann Surg*. 2003;237:218-226.
42. Gronchi A, Lo Vallo S, Colomba C, et al. Extremity soft tissue sarcoma in a series of patients treated at a single institution: Local control directly impacts survival. *Ann Surg*. 2010;251:506-511.
43. Harati K, Lehnhardt M. The changing paradigm of resection margins in sarcoma resection. *Innov Surg Sci*. 2017;2:165-170.
44. Gronchi A, Casali PG, Mariani L, et al. Status of surgical margins and prognosis in adult soft tissue sarcomas of the extremities: A series of patients treated at a single institution. *J Clin Oncol*. 2005;23:96-104.
45. Bonvalot S, Levy A, Terrier P, et al. Primary extremity soft tissue sarcomas: Does local control impact survival? *Ann Surg Oncol*. 2017;24:194-201.
46. Zagars GK, Ballo MT, Pisters PWT, et al. Prognostic factors for patients with localized soft-tissue sarcoma treated with conservation surgery and radiation therapy: An analysis of 1225 patients. *Cancer*. 2003;97:2530-2543.
47. Harati K, Goertz O, Pieper A, et al. Soft tissue sarcomas of the extremities: Surgical margins can be close as long as the resected tumor has no ink on it. *Oncoologist*. 2017;22:1400-1410.
48. de Vreeze RSA, de Jong D, Haas RL, Stewart F, van Coevorden F. Effectiveness of radiotherapy in myxoid sarcomas is associated with a dense vascular pattern. *Int J Radiat Oncol Biol Phys*. 2008;72:1480-1487.
49. Yang G, Yuan Z, Ahmed K, et al. Genomic identification of sarcoma radiosensitivity and the clinical implications for radiation dose personalization. *Transl Oncol*. 2021;14:101165.
50. Bonvalot S, Gronchi A, Le Pechoux C, et al. STRASS (EORTC 62092): A phase III randomized study of preoperative radiotherapy plus surgery versus surgery alone for patients with retroperitoneal sarcoma. *J Clin Oncol*. 2019;37:11001.