Centrally Essential Endomorphism Rings of Abelian Groups

Lyubimtsev O.V.¹, Tuganbaev A.A.²

Key words: centrally essential ring, Abelian group, endomorphism ring.

Abstract. We study Abelian groups A with centrally essential endomorphism ring $\text{End} \ A$. If A is a such group which is either a torsion group or a non-reduced group, then the ring $\text{End} \ A$ is commutative. We give examples of Abelian torsion-free groups of finite rank with non-commutative centrally essential endomorphism rings.

MSC2010 database 16R99; 20K30

1 Introduction

All rings considered are associative rings with non-zero identity element. A ring R is said to be centrally essential if for any its non-zero element a, there exist two non-zero central elements $x, y \in R$ with $ax = y$. Centrally essential rings are studied, for example, in [9], [10], [11], [12], [13], [14], [15].

It is clear that any commutative ring is centrally essential. In addition, every centrally essential semiprime ring is commutative; see [9, Proposition 3.3]. Therefore, in the study of centrally essential rings, we are only interested in non-commutative non-semiprime centrally essential rings.

Examples of non-commutative group algebras over fields are given in [9]. For example, if Q_8 is the quaternion group of order 8, then its group algebra over the field of order 2 is a non-commutative centrally essential finite local ring of order 256. In addition, in [10], it is proved that the Grassmann algebra of three-dimensional vector space over the field of order 3 is a finite non-commutative centrally essential ring, as well. In [12], there is an example of a centrally essential ring whose factor ring with respect to its prime radical is not a PI ring.

In Theorem 1.2(3) of this paper, we give an example of an Abelian torsion-free group of finite rank with centrally essential non-commutative endomorphism

¹Nizhny Novgorod State University; email: oleg.lyubimcev@mail.ru.
²National Research University ‘MPEI’, Lomonosov Moscow State University; email: tuganbaev@gmail.com.
³It is clear that the ring R with center C is centrally essential if and only if the module R_C is an essential extension of the module C_C.
ring. In Example 3.9, we give additional examples of non-commutative centrally essential endomorphism rings of some Abelian torsion-free groups of infinite rank.

1.1. Remark. Let A be an Abelian group which is either torsion group, or non-reduced group and let the endomorphism ring $\text{End} A$ be centrally essential. In Section 2 of this paper, we prove that the ring $\text{End} A$ is commutative. Therefore, when studying Abelian groups with non-commutative centrally essential endomorphism rings, only reduced torsion-free groups and reduced mixed groups are of interest.

Let A be an Abelian torsion-free group with endomorphism ring $\text{End} A$ and let $\mathbb{Q} \text{End} A = \mathbb{Q} \otimes \text{End} A$ be the quasi-endomorphism ring4 of the group A. If the group A has no a non-trivial quasi-decomposition5 then it is called strongly indecomposable. The pseudo-socle $\text{PSoc} A$ of the group A is the pure subgroup of the group A generated by all its minimal pure fully invariant subgroups.

The main result of this paper is Theorem 1.2.

1.2. Theorem. Let A be a strongly indecomposable torsion-free Abelian group of finite rank, $\mathbb{Q} \text{End} A$ the quasi-endomorphism ring, and $A \neq \text{PSoc} A$.

1. If $\mathbb{Q} \text{End} A$ is a centrally essential ring, then the ring $\mathbb{Q} \text{End} A/\text{J}(\mathbb{Q} \text{End} A)$ is commutative and $C(\mathbb{Q} \text{End} A) \cap M \neq 0$ for every minimal right ideal M of $\mathbb{Q} \text{End} A$.

2. If the ring $\mathbb{Q} \text{End} A/\text{J}(\mathbb{Q} \text{End} A)$ is commutative, $\text{Soc}(\mathbb{Q} \text{End} A_{\mathbb{Q} \text{End} A}) = \text{Soc}(\mathbb{Q} \text{End} A_{C(\mathbb{Q} \text{End} A)})$ and $C(\mathbb{Q} \text{End} A) \cap M \neq 0$ for every minimal right ideal M of $\mathbb{Q} \text{End} A$, then $\mathbb{Q} \text{End} A$ is a centrally essential ring.

3. Let $n > 1$ be an odd positive integer. There exists a strongly indecomposable Abelian torsion-free group $A(n)$ of rank 2^n such that its endomorphism ring is a non-commutative centrally essential ring.

For convenience, we give some definitions and notation used in the paper. The necessary ring-theoretical information not listed in the paper can be found in \cite{17}. The necessary information on Abelian groups not listed in the paper can be found in \cite{6} and \cite{8}.

If R is a ring, then we denote by $C(R)$ and $J(R)$ the center and the Jacobson radical of the ring R, respectively. We use the additive form for Abelian groups. We denote by $\text{End} A$ the endomorphism ring of the Abelian group A. If $A = \bigoplus_{p \in P} A_p$ is a decomposition of the torsion Abelian group A into

4See 3.1 below.

5see 3.1 below.
the direct sum of p-components, then $\text{supp } A = \{p \in P \mid A_p \neq 0\}$. We use the following notation: \mathbb{Z}_{p^n} (resp., \mathbb{Z}_{p^n}) is the residue ring (resp., the additive group) modulo p^n; \mathbb{Q} (resp., \mathbb{Q}) is the ring (resp., the additive group) of rational numbers; \mathbb{Z}_{p^∞} is a quasi-cyclic Abelian group; \mathbb{Z}_p is the ring of p-adic integers. If A is an Abelian torsion-free group, then $\mathbb{Q}\text{End } A$ and $\text{PSoc } A$ are the quasi-endomorphism ring and the pseudo-socle of the group A, respectively.

A ring R is said to be local if the factor ring $R/J(R)$ is a division ring.

For a module M, the socle $\text{Soc } M$ is the sum of all simple submodules of M; if M does not contain a simple submodule, then $\text{Soc } M = 0$ by definition.

An Abelian group A is said to be divisible if $nA = A$ for any positive integer n. An Abelian group is said to be reduced if it does not contain a non-zero divisible subgroup and non-reduced, otherwise.

A subgroup B of the Abelian group A is said to be pure if the equation $nx = b \in B$, which has a solution in the group A, has a solution in B.

\section{Non-Reduced Abelian Groups with Centrally Essential Endomorphism Rings}

\textbf{2.1. Lemma.} Let A be a module and $A = \bigoplus_{i \in I} A_i$ a direct decomposition of the module A. The endomorphism ring $\text{End } A$ is centrally essential if and only if for every $i \in I$ the following conditions hold.

1) A_i is a fully invariant submodule in A;

2) the ring $\text{End } A_i$ is centrally essential.

\textbf{Proof.} Let $\text{End } A = E$ be a centrally essential ring. If condition 1) does not hold and A_i is not a fully invariant submodule for some $i \in I$, then there exists a subscript $j \in I$, $j \neq i$, such that $\text{Hom } (A_i, A_j) = e_j E e_i \neq 0$, where e_i and e_j are the projections from the module A onto the submodules A_i and A_j, respectively. In addition,

$$e_i \cdot e_j E e_i = 0 \neq e_j E e_i = e_j E e_i \cdot e_i,$$

i.e., the idempotent e_i is not central; this contradicts to \cite[Lemma 2.3]{[9]}.

If every A_i is a fully invariant submodule in A, $i \in I$, then $\text{End } A \cong \text{End } A_i \times \text{End } \overline{A}_i$, where \overline{A}_i is a complement direct summand of A_i. It is obvious that if $\text{End } A_i$ is not centrally essential ring, then and $\text{End } A$ is not a centrally essential ring.
If conditions 1) and 2) hold, then $\text{End} A \cong \prod_{i \in I} \text{End} A_i$ and each of the ring $\text{End} A_i$ is centrally essential. It is clear that the ring $\text{End} A$ is centrally essential, as well.

\[\square \]

2.2. Lemma. The endomorphism ring of a divisible Abelian group A is centrally essential if and only if either $A \cong Q$ or $A \cong \mathbb{Z}_{p^\infty}$.

\textbf{Proof.} Let $A = F(A) \bigoplus T(A)$, where $0 \neq F(A)$ is the torsion-free part and $0 \neq T(A)$ is the torsion part of the group A. Then $F(A)$ is not a fully invariant subgroup in A (see [6, Theorem 7.2.3]) and, by Lemma 2.1, the ring $\text{End} A$ is not centrally essential. Hypothetically $F(A)$ or $T(A)$ is a direct sum of \mathbb{Z}_{p^∞} or Q. Clearly, if the number of terms is > 1, the ring $\text{End} A$ has a noncentral idempotent which gives a contradiction.

\[\square \]

Let $A = \bigoplus_{p \in P} A_p$ be the decomposition of the torsion Abelian group A into the direct sum of its primary components. It follows from Lemma 2.1 that $\text{End} A$ is a centrally essential ring if and only if each of the ring $\text{End} A_p$ is centrally essential.

\[\square \]

2.3. Lemma. The endomorphism ring of a primary Abelian group A_p is centrally essential if and only if $A_p \cong \mathbb{Z}_{p^k}$ or $A_p \cong \mathbb{Z}_{p^\infty}$.

\textbf{Proof.} If the group A_p is not indecomposable, then it has a co-cyclic direct summand; see [6, Corollary 5.2.3]. By considering [6, Theorem 7.1.7, Example 1.3.2 and Theorem 7.2.3], this summand or summands complement to it are not fully invariant in A. Consequently, $A_p \cong \mathbb{Z}_{p^k}$ or $A_p \cong \mathbb{Z}_{p^\infty}$. The converse is obvious, since rings \mathbb{Z}_{p^k} and \mathbb{Z}_p are commutative.

\[\square \]

2.4. Theorem. Let $A = D(A) \bigoplus R(A)$ be a non-reduced Abelian group, where $0 \neq D(A)$ and $0 \neq R(A)$ are the divisible part and the reduced part of the group A, respectively. The endomorphism ring of the group A is centrally essential if and only if $A = D(A) \bigoplus R(A)$, where $R(A) = \bigoplus_{p \in P'} \mathbb{Z}_{p^k}$ and $D(A) \cong Q$ or $D(A) \cong \bigoplus_{p \in P''} \mathbb{Z}_{p^\infty}$; P', P'' are the subsets of different primes with $P' \cap P'' = \emptyset$.

\textbf{Proof.} Let $\text{End} A$ be a centrally essential ring. We verify that $D(A)$ and $R(A)$ are fully invariant subgroups in A. Indeed, it is well known that $\text{Hom} (D(A), R(A)) = 0$. Next, if $R(A)$ is a torsion-free group, then $\text{Hom} (R(A), D(A)) \neq 0$ (see [6, Theorem 7.2.3]); this contradicts to Lemma 2.1. It is also clear that $\text{Hom} (R(A), D(A)) \neq 0$ if $R(A)$, $D(A)$ are torsion groups and $\text{supp} R(A) \cap \text{supp} D(A) \neq \emptyset$. It follows from Lemma 2.3 that $R(A)$ is the direct sum of its cyclic p-components and it follows from Lemma 2.2 that $D(A) \cong Q$ or $D(A) \cong \bigoplus_{p \in P} \mathbb{Z}_{p^\infty}$.

The converse assertion directly follows from Lemmas 2.1, 2.2 and 2.3.

\[\square \]
2.5. Corollary. The endomorphism ring of a non-reduced Abelian group is centrally essential if and only if the ring is commutative.

Proof. Indeed, it follows from Theorem 2.4 that any centrally essential endomorphism ring of a non-reduced Abelian group is the direct product of rings whose components can be only the rings $\mathbb{Z}_{p^k}, \mathbb{Q}$ and $\hat{\mathbb{Z}}_p$. \qed

It follows from Corollary 2.5 that only reduced Abelian groups can have non-commutative centrally essential endomorphism rings.

3 Proof of Theorem 1.2

3.1. Quasi-decompositions and strongly indecomposable groups.
Let A and B be two Abelian torsion-free groups. One says that A is quasi-contained in B if $nA \subseteq B$ for some positive integer n. If A is quasi-contained in B and B is quasi-contained in A (i.e., if $nA \subseteq B$ and $mB \subseteq A$ for some $n, m \in \mathbb{N}$), then one says that A is quasi-equal to B (we write $A \sim B$). A quasi-equality $A \sim \bigoplus_{i \in I} A_i$ is called a quasi-decomposition (or a quasi-direct decomposition) of the Abelian group A; these subgroups A_i are called quasi-summands of the group A. If the group A does not have non-trivial quasi-decompositions, then A is said to be strongly indecomposable. A ring $Q \otimes \text{End} A$ is called the quasi-endomorphism ring of the group A; we denote it by $Q \text{End} A$; see details in [8, Chapter I, §5]. We note that

$$Q \text{End} A = \{ \alpha \in \text{End}_Q(Q \otimes A) \mid (\exists n \in \mathbb{N})(na \in \text{End} A) \}.$$

It is well known (e.g., see [8, Proposition 5.2]) that the correspondence

$$A \sim e_1 A \bigoplus \ldots \bigoplus e_k A \rightarrow Q \text{End} A = Q \text{End} Ae_1 \bigoplus \ldots \bigoplus Q \text{End} Ae_k$$

between finite quasi-decompositions of the torsion-free group A and finite decompositions of the ring $Q \text{End} A$ in to a direct sum of left ideals, where $\{e_i \mid i = 1, \ldots, k\}$ is a complete orthogonal system of idempotents of the ring $Q \text{End} A$, is one-to-one.

3.2. Proposition. The endomorphism ring E of an Abelian torsion-free group A is centrally essential if and only if the quasi-endomorphism ring QE of A is centrally essential.

Proof. Let $0 \neq \hat{a} \in QE$. For some $n \in \mathbb{N}$, we have $n\hat{a} = a \in E$ and there exist $x, y \in C(E)$ with $ax = y \neq 0$. In this case, $\hat{a}\hat{x} = \hat{y}$, where $\hat{x} = x$, $\hat{y} = \frac{1}{n} \cdot y \in C(QE)$, i.e., QE is a centrally essential ring.

\hspace{1cm} \text{c.f. [8, Proposition 2.2]}
Conversely, for every $0 \neq a \in E$, there exist non-zero $\tilde{x}, \tilde{y} \in C(\mathbb{Q}E)$ with $a\tilde{x} = \tilde{y}$. In addition, there exist $n, m \in \mathbb{N}$ such that $n\tilde{x} \in C(E)$ and $m\tilde{y} \in C(E)$. Then $ax = y$, where $x = mn\tilde{x}, y = mn\tilde{y} \in C(E)$. □

Let $A = \bigoplus_{i=1}^{n} A_i = A'$ be a decomposition of the Abelian torsion-free group A of finite rank into a quasi-direct sum of strongly indecomposable groups (e.g., see [8, Theorem 5.5]). By considering Lemma 2.1 and Proposition 3.2, we obtain that the ring $\text{End } A$ is centrally essential if and only if all subgroups A_i are fully invariant in A', and every ring $\text{End } A_i$ is centrally essential. Therefore, the problem of describing Abelian torsion-free groups of finite rank with centrally essential endomorphism rings is reduced to the similar problem for strongly indecomposable groups.

3.3. Proposition. Let A be a strongly indecomposable Abelian group and $A = \text{PSoc } A$. The ring $\text{End } A$ is centrally essential if and only if $\text{End } A$ is a commutative ring.

Proof. If $A = \text{PSoc } A$, then $\text{End } A$ is a semiprime ring (e.g., see [8, Theorem 5.11]). It follows from [11, Proposition 3.3] that the ring $\text{End } A$ is commutative. The converse is obvious. □

3.4. Proposition. Let R be a local Artinian ring which is not a division ring and $C(R) = C$.

1. If R is a centrally essential ring, then the ring $R/J(R)$ is commutative and $C \cap M \neq 0$ for every minimal right ideal M.

2. If the ring $R/J(R)$ is commutative, $\text{Soc } (R_C) = \text{Soc } (R_R)$ and $C \cap M \neq 0$ for every minimal right ideal M, then R is a centrally essential ring.

Proof. 1. It is well known that if R is an Artinian ring, then $J(R)$ is a nilpotent ideal of some index k. We note that if M is a minimal right ideal of R, then $MJ(R) = 0$. Indeed, if $MJ(R) = M$, then $$M = MJ(R) = MJ^2(R) = \ldots = MJ^k(R) = 0.$$ Let R be a centrally essential ring. It follows from [10, Theorem 2] that the ring $R/J(R)$ is commutative.

We assume that $C \cap M = 0$ for some minimal right ideal M. By assumption, for $0 \neq a \in M$, there exist $x, y \in C(R)$ with $ax = y \neq 0$. Since $x \notin J(R)$ (otherwise, $ax = 0$), we have that x is invertible in R and $a = x^{-1}y \in C$, a contradiction.

2. Let $C \cap M \neq 0$ for every minimal right ideal M of R. We verify that $M \subseteq C$. Let $C \cap M = K$. By assumption, the ring $R/J(R)$ is commutative; therefore, we have $rs - sr \in J(R)$, for all $r, s \in R$. For every $k \in K$,
we have \(k(rs - sr) = 0 \). On the other hand, since \(k \in C \), we have that \((kr)s = ksr = s(kr)\) and \(kr \in C \). In addition, \(kr \in M \). Consequently, \(K \) is a right ideal. From the property that \(M \) is a minimal right ideal, we have that \(K = M \) or \(K = 0 \). However \(K \neq 0 \); therefore, \(K = M \) and \(M \subset C \). Therefore, \(\text{Soc}(R_C) = \text{Soc}(R_R) \subseteq C \). It follows from [10, Theorem 3] that \(R \) is a centrally essential ring. □

3.5. Example. We will find centrally essential endomorphism rings of strongly indecomposable Abelian torsion-free groups of rank 2 and 3.

If \(A \) is an strongly indecomposable group of rank 2, then the ring \(\text{End} A \) is commutative (e.g., see [1, Theorem 4.4.2]). Consequently, \(\text{End} A \) is a centrally essential ring. Let \(A \) be a strongly indecomposable group of rank 3. Then the algebra \(\mathbb{Q}\text{End} A \) is isomorphic to one of the following \(\mathbb{Q} \)-algebras ([1, Theorem 2]):

- \(K \cong \left\{ \begin{pmatrix} x & 0 & z \\ 0 & x & 0 \\ 0 & 0 & x \end{pmatrix} \mid x, z \in \mathbb{Q} \right\} \),
- \(R \cong \left\{ \begin{pmatrix} x & y & z \\ 0 & x & 0 \\ 0 & 0 & x \end{pmatrix} \mid x, y, z \in \mathbb{Q} \right\} \),
- \(S \cong \left\{ \begin{pmatrix} x & y & z \\ 0 & x & ky \\ 0 & 0 & x \end{pmatrix} \mid x, y, z \in \mathbb{Q}, 0 \neq k \in \mathbb{Q}, k = \text{const} \right\} \),
- \(T \cong \left\{ \begin{pmatrix} x & y & z \\ 0 & x & t \\ 0 & 0 & x \end{pmatrix} \mid x, y, z, t \in \mathbb{Q} \right\} \).

The rings \(K, R, S \) are commutative; consequently, they are centrally essential. The ring \(T \) is not commutative (in addition, \(\text{PSoc} A \) is of rank 1). We have

- \(J(T) = \left\{ \begin{pmatrix} 0 & y & z \\ 0 & 0 & t \\ 0 & 0 & 0 \end{pmatrix} \mid y, z, t \in \mathbb{Q} \right\} \),
- \(C(T) = \left\{ \begin{pmatrix} x & 0 & z \\ 0 & x & 0 \\ 0 & 0 & x \end{pmatrix} \mid x, z \in \mathbb{Q} \right\} \),
- \(M = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & t \\ 0 & 0 & 0 \end{pmatrix} \mid t \in \mathbb{Q} \right\} \),

where \(M \) is the minimal right ideal of \(T \). We note that the ring \(T/J(T) \) is commutative, but \(C(T) \cap M = 0 \). It follows from Proposition 3.4(1) that the
We denote by \(R \) the endomorphism ring of an Abelian torsion-free group of rank \(n \). It is known (e.g., see [10], Proposition 2.5.) that every \(\mathbb{Q} \)-algebra of dimension \(n \) can be realized as the quasi-endomorphism ring of an Abelian torsion-free group of rank \(n \). Therefore,

3.6. Example. Let \(V \) be a vector \(\mathbb{Q} \)-space with basis \(e_1, e_2, e_3 \) and let \(\Lambda(V) \) be the Grassmann algebra of the space \(V \); i.e., \(\Lambda(V) \) is an algebra with operation \(\wedge \), generators \(e_1, e_2, e_3 \) and defining relations

\[
e_i \wedge e_j + e_j \wedge e_i = 0 \quad \text{for all} \quad i, j = 1, 2, 3.
\]

Then \(\Lambda(V) \) is a \(\mathbb{Q} \)-algebra of dimension 8 with basis \(\{1, e_1, e_2, e_3, e_1 \wedge e_2, e_2 \wedge e_3, e_1 \wedge e_3, e_1 \wedge e_2 \wedge e_3\} \) and \(\Lambda(V) \) is a non-commutative centrally essential ring (see details in [10, Example 1]). We consider the regular representation of the algebra \(\Lambda(V) \). If \(x \in \Lambda(V) \),

\[
x = q_0 \cdot 1 + q_1 e_1 + q_2 e_2 + q_3 e_3 + q_1 e_1 \wedge e_2 + q_5 e_2 \wedge e_3 + q_6 e_1 \wedge e_3 + q_7 e_1 \wedge e_2 \wedge e_3,
\]

then the matrix \(A_x \in \text{Mat}_8(\mathbb{Q}) \) has the form

\[
\begin{pmatrix}
q_0 & q_1 & q_2 & q_3 & q_4 & q_5 & q_6 & q_7 \\
0 & q_0 & 0 & 0 & -q_2 & 0 & -q_3 & q_5 \\
0 & 0 & q_0 & 0 & q_1 & -q_3 & 0 & -q_6 \\
0 & 0 & 0 & q_0 & 0 & q_2 & q_1 & q_4 \\
0 & 0 & 0 & 0 & q_0 & 0 & 0 & q_3 \\
0 & 0 & 0 & 0 & 0 & q_0 & 0 & q_1 \\
0 & 0 & 0 & 0 & 0 & 0 & q_0 & -q_2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & q_0
\end{pmatrix}.
\]

We denote by \(R \) the corresponding subalgebra in \(\text{Mat}_8(\mathbb{Q}) \). It is clear that the radical \(J(R) \) consists of properly upper triangular matrices in \(R \) and \(A_x \in C(R) \) if and only if \(q_1 = q_2 = q_3 = 0 \). In addition, \(\text{Soc}(R_R) = \{A_x = (a_{ij}) \in R \mid a_{ij} = 0, i \neq 1, j \neq 8\} \) and \(\text{Soc}(R_C) = \{A_x = (a_{ij}) \in C(R) \mid a_{ii} = 0\} \). Since \(\text{Soc}(R_C) \neq \text{Soc}(R_R) \), the corresponding condition of Proposition 3.4(2) is not necessary. Therefore, we obtain the negative answer to [10, Open questions 4.5(2)].

3.7. The completion of the proof of Theorem 1.2.
1, 2. It is known that the ring \(\mathbb{Q}\text{End} A \) is a local Artinian ring (e.g., see [3, Corollary 5.3]). It remains to use Proposition 3.4.

3. In [10, Proposition 2.5.], it is proved that the Grassmann algebra \(\Lambda(V) \) over a field \(F \) of characteristic 0 or \(p \neq 2 \) is a centrally essential ring if and only if the dimension of the space \(V \) is odd. We set \(F = \mathbb{Q} \). It is known (e.g., see [10]) that every \(\mathbb{Q} \)-algebra of dimension \(n \) can be realized as the quasi-endomorphism ring of an Abelian torsion-free group of rank \(n \). Therefore,
by considering Example 3.6 and Proposition 3.2, we obtain the required property.

Under conditions of Theorem 1.2, if the rank of the group A is square-free, then the ring $\mathbb{Q}\text{End}A/J(\mathbb{Q}\text{End}A)$ is commutative [1, Lemma 4.2.1].

By considering Proposition 3.2, we obtain

3.8. Corollary. Let A be a strongly indecomposable Abelian torsion-free group of finite rank, $A \neq \text{PSoc} A$ and the rank of the group A is square-free.

1. If the endomorphism ring $\text{End} A$ of the group A is centrally essential, then $C(\mathbb{Q}\text{End} A) \cap M \neq 0$ for every minimal right ideal M of $\mathbb{Q}\text{End} A$.

2. If $\text{Soc}(\mathbb{Q}\text{End} A) = \text{Soc}(\mathbb{Q}\text{End} AC(\mathbb{Q}\text{End} A))$ and $C(\mathbb{Q}\text{End} A) \cap M \neq 0$ for every minimal right ideal M of $\mathbb{Q}\text{End} A$, then $\text{End} A$ is a centrally essential ring.

3.9. Example. Let $R = \mathbb{Z}[x, y]$ be the polynomial ring in two variables x and y. We use the construction described in [7, Proposition 7]. We consider the ring

$$ T(R) = \left\{ \begin{pmatrix} f & d_1(f) & g \\ 0 & f & d_2(f) \\ 0 & 0 & f \end{pmatrix} \mid f, g \in \mathbb{Z}[x, y] \right\}, $$

where d_1, d_2 are two derivations of the ring $\mathbb{Z}[x, y]$, $d_1 = \frac{\partial}{\partial x}$, $d_2 = \frac{\partial}{\partial y}$. Then $T(R)$ is a non-commutative ring with $J(R) = e_{13}R \subseteq C(T(R))$, where e_{13} is the matrix unit; see [7, Corollary 8]. If $0 \neq a \in T(R) \setminus C(T(R))$, then $0 \neq ae_{13} \in C(T(R))$. Therefore, $T(R)$ is a centrally essential ring. Since $T(R)$ is a countable ring with reduced torsion-free additive group, it follows from the familiar Corner theorem (e.g., see [8, Theorem 29.2]) that for the ring $T(R)$, there exist \mathfrak{M} of Abelian groups A_i such that $\text{End} A_i \cong T(R)$ and $\text{Hom}(A_i, A_j) = 0$ for all $i \neq j$, where \mathfrak{M} is an arbitrary preset cardinal number; see [3], [2]. We note that the endomorphism ring of the direct sum of such groups is a non-commutative centrally essential ring, as well.

4 Remarks and Open Questions

4.1. Open question. Is it true that there exist strongly indecomposable Abelian torsion-free groups of rank < 8 whose endomorphism rings are non-commutative centrally essential rings?

4.2. Open question. An Abelian group is said to be super-decomposable if it does not have non-zero indecomposable direct summands. Is it true that there
exist a super-decomposable Abelian group with non-commutative centrally essential endomorphism ring?

4.3. **Open question.** Is it true that the endomorphism ring of the direct sum of all the groups $A(n)$ from Theorem 1.2(3) is a non-commutative centrally essential ring with polynomial identity?

4.4. **Open question.** Is it true that there exists an Abelian group A with centrally essential endomorphism ring $\text{End} A$ which is not a ring with polynomial identity?

4.5. A ring is said to be **right distributive** (resp., **right uniserial**) if the lattice its right ideals is distributive (resp., is a chain). If the endomorphism ring $\text{End} A$ of the group A of finite rank is right uniserial, then $\text{End} A$ is an invariant principal right ideal domain; see [5, Proposition 3.4]. Therefore, if A is an Abelian torsion-free group of finite rank and $\text{End} A$ is a centrally essential right uniserial ring, then $\text{End} A$ is commutative ([11, Proposition 2.8]). In addition, it is known that every right distributive local ring is right uniserial. Consequently, every centrally essential right distributive quasi-endomorphism ring of an Abelian torsion-free group of finite rank is commutative. We note that there exist non-commutative uniserial Artinian centrally essential rings; see [13].

In connection to 4.5, we formulate open questions 4.6 and 4.7.

4.6. **Open question.** Is it true that there exist Abelian torsion-free groups of finite rank whose endomorphism rings are non-commutative right distributive centrally essential rings?

4.7. **Open question.** Is it true that there exist Abelian groups whose endomorphism rings are non-commutative right distributive (or right uniserial) centrally essential rings?

References

[1] Cherednikova A.V. Rings of quasi-endomorphisms of strongly indecomposable torsion-free Abelian groups of rank 3// Math. Notes. – Vol. 63, no. 5. – 1998. – P. 670–678.

[2] Corner A.L.S., Göbel R. Prescribing endomorphism algebras, a unified treatment// Proc. London Math. Soc. – Vol. 50, no. 3. – 1985. – P. 447–479.

A ring is said to be invariant if all its one-sided ideals are ideals.
[3] Dugas M., Göbel R. Every cotorsion-free algebra is an endomorphism algebra// Math. Z. – Vol. 181. – 1982. – P. 451–470.

[4] Faticoni T. Direct Sum Decompositions of Torsion-Free Finite Rank Groups// Taylor&Francis Group, 2007.

[5] Faticoni T. On the lattice of right ideals of the endomorphism ring of an Abelian group// Bull. Aust. Math. Soc. – Vol. 38, no. 2. – 1988. – P. 273–291.

[6] Fuchs L. Abelian groups// Springer Monographs in Mathematics, 2015.

[7] Jelisiejew J. On commutativity of ideal extensions// Comm. Algebra. – Vol. 44, no. 5. – 2016. – P. 1931–1940.

[8] Krylov P.A., Mikhailov A.V., Tuganbaev A.A. Endomorphism rings of Abelian groups// Dordrecht/Boston/London, Springer Netherlands (Kluwer), 2003.

[9] Markov V.T., Tuganbaev A.A. Centrally essential group algebras// J. Algebra. – 2018. – Vol. 512, no. 15. – P. 109–118.

[10] Markov V.T., Tuganbaev A.A. Centrally essential rings// Discrete Math. Appl. – 2019. – Vol. 29, no. 3. – P. 189–194.

[11] Markov V.T., Tuganbaev A.A. Rings essential over their centers// Comm. Algebra. – 2019. – Vol. 47, no. 4. – P. 1642–1649.

[12] Markov V.T., Tuganbaev A.A. Rings with Polynomial Identity and Centrally Essential Rings// Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry. – 2019. – https://doi.org/10.1007/s13366-019-00447-w.

[13] Markov V.T., Tuganbaev A.A. Uniserial Artinian Centrally Essential Rings// Beitr. Algebra Geometrie / Contributions to Algebra and Geometry. – 2019. https://doi.org/10.1007/s13366-019-00463-w.

[14] Markov V.T., Tuganbaev A.A. Uniserial Noetherian Centrally Essential Rings// Comm. Algebra. – 2019. – https://doi.org/10.1080/00927872.2019.1635607.

[15] Markov V.T., Tuganbaev A.A. Constructions of Centrally Essential Rings// Comm. Algebra. – 2019. – https://doi.org/10.1080/00927872.2019.1635611.
[16] Pierce R.S., Vinsonhaler C. Realizing central division algebras// Pacific J. Math. – 1983. – Vol. 109, no. 1. – P. 165–177.

[17] Rowen L.H. Ring Theory I. – Academic Press, New York, 1988.