Phenotypic Spectrum and Long-term Outcome in Children With Genetic Causes of Early-onset Epileptic Encephalopathy

Chunhui Hu
Department of Neurology, Children's Hospital of Fudan University

Deying Liu
Wuhan Children's hospital, Tongji Medical college, Huazhong University of Science & Technology

Tian Luo
Department of Neurology, Children's Hospital of Fudan University

Yi Wang (✉ yiwangshmuedu@126.com)
Department of Neurology, Children's Hospital of Fudan University

Zhisheng Liu
Wuhan Children's hospital, Tongji Medical college, Huazhong University of Science & Technology

Research Article

Keywords: Phenotypic spectrum, Long-term outcome, Genetic, EOEE, Therapy

DOI: https://doi.org/10.21203/rs.3.rs-257334/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background To explore the clinical phenotype and long-term outcome in children with genetic causes of early-onset epileptic encephalopathies.

Methods The clinical data of 118 children between 2010 and 2020 was obtained and analyzed. The whole exome sequencing and copy number variation studies in family were used to find pathogenic mutations. The confirmed mutations were verified by Sanger sequencing.

Results Among 118 patients, 39 patients were diagnosed with DS, 18 were WS, 3 were OS, 3 were EME, 2 were MMFSI, 1 was GLUT1 deficiency syndrome, 1 was Pyridoxine dependent epilepsy and 51 were non-symptomatic EOEEs. The initial EEG showed frequent multiple and multifocal sharp waves, spike waves, sharp slow waves or spike slow waves. In the later period, some transformed into infrequent discharging or normal EEG. 112 patients (112/118, 94.9%) showed normal brain MRI, and the remaining 6 had widened extracerebral space. In the later stage, 115 patients were re-examined with brain MRI 1 to 3 times, the widened gap became normal, only 2 had mild brain atrophy. After treatment, 42 patients (42/118, 35.6%) had seizure control. In EOEE-BS, 6 patients were found KCNQ2 mutations and the remaining mutations were SCN2A (n=2), STXBP1 (n=1). After treatment, only 2 patients had seizure control, 6 had uncontrolled seizures and 1 died. 7 patients with dyskinesia were found. 1 patient starting with a febrile convulsion was caused by HNRNPU mutation. SCN1A mutations were detected in 38 patients (38/118, 32.2%), representing the largest proportion. The second common mutations were KCNQ2 mutations in 9 patients. The third one was CDKL5 mutations in 8 patients. Genes associated with ion channel genes represented the largest proportion (66/118, 55.9%), sodium channel potassium channel and calcium channel respectively. In WS, we detected SCN3A, SCN2A, SCN8A, CACNA1H, DEPD5, MECP2, Dyn1C1H1, CDKL5, ALG11, CDC88C, GABAA1, IL1RAPL1, RNASEH2B, SLC19A3, STXBP1, QARS, COL4A2 mutations. In addition to common gene mutations, we reported rare possible pathogenic genes: CDC88C, IL1RAPL1, RNASEH2B and COL4A2 in WS. In non-syndromic genetic causes of EOEEs, we detected rare possible pathogenic genes: SETBP1, DPYD, CSNK2B and H3F3A. As for genetic modes, denovo heterozygous mutations account for the largest proportion (104/118, 88.1%). 3 patients with SMCA1 mutations response to KD add-on therapy. VPA added treatment showed good effects on KCN2B and PACS2 encephalopathy. LEV showed good effects on STXBP1, and OXC showed good effects on SCN8A encephalopathy.

Conclusion The clinical manifestations of EOEE are variable, including dyskinesia. EOEE-BS usually response poorly to AEDS therapy. Although some patients achieve seizure-free, there is no remarkable improvement in their development. EOEEs starting with a febrile convulsion may be a special phenotype of HNRNPU related neurodevelopmental syndrome, similar to DS. We report rare possible pathogenic genes: CDC88C, IL1RAPL1, RNASEH2B, COL4A2 in WS and detect rare possible pathogenic genes: SETBP1, DPYD, CSNK2B and H3F3A in non-syndromic genetic causes of EOEEs. Although genetic causes of EOEEs response poorly to AEDS treatment, we find that some gene mutation related EOEEs receive good effects on specific AEDS.

1. Introduction

Epilepsy is a disease of brain defined by at least two unprovoked (or reflex) seizures occurring > 24 h apart or one unprovoked (or reflex) seizure and a probability of further seizures similar to the general recurrence risk (at least 60%) after two unprovoked seizures, occurring over the next 10 years, or diagnosis of an epilepsy syndrome[1]. A certain cluster of epilepsy syndromes is grouped as “early-onset epileptic encephalopathies” including early myoclonic encephalopathy(EME), Ohtahara syndrome(OS), West syndrome(WS), Dravet syndrome(DS), malignant migrating focal seizures of infancy (MMFSI) and non-syndromic epileptic encephalopathy[2]. Early-onset epileptic encephalopathies (EOEEs) or early infantile epileptic encephalopathies (EIEEs) are one of the most devastating early onset epilepsies that contributes to a progressive decline of cerebral function. The onset age of seizure is within 6 months. Most patients with EOEEs show three main features: refractory seizures, severe electroencephalography (EEG) abnormalities, and developmental delay or intellectual disability[3]. The etiology of EOEEs is classified as infectious, immune, structural, metabolic, genetic and unknown factors. Genetic etiology has attracted more attention with lots of gene mutations having been identified. At least 20–30% of EOEEs are caused by a single gene variation[3]. In recent years, an increasing number of novel genes are being identified in EOEEs. Many genes related to EOEEs have been detected, such as SCN1A, SCN2A, SCN8A, STXBP1, CDKL5 and KCNQ2[5]. Many patients with genetic causes of EOEEs are sporadic, occurring in patients with no family history of seizures or epilepsy. Although genetic causes of EOEEs are increasingly being identified, there is considerable genetic heterogeneity as well as phenotypic heterogeneity. A relatively rare clinical symptom, dyskinesia, has been identified in EOEEs[6]. And some specific phenotype, genetic causes of EOEE with burst suppression (EOEE-BS), has also been characterized[7, 8]. However, the long-term outcome of genetic causes of EOEEs remains unknown. Hence, there is a need to develop a deeper understanding of the broader clinical spectrum, specific genotype-phenotype and long-term outcome of genetic causes of EOEEs. In this study we aimed to describe the clinical features and long-term outcome of genetic causes of EOEEs in a cohort of patients and followed for a period of up to ten years.

2. Materials And Methods

2.1. Patients

The retrospective study included children with genetic causes of EOEEs at the Department of Neurology, Children's Hospital of Fudan University.

The project ethics were approved by Ethic Committees of Children's Hospital of Fudan University.

All the experiment protocol for involving humans was in accordance to guidelines of national/international/institutional or Declaration of Helsinki. Informed consent was obtained from all subjects.

The inclusion criteria are as follows: (1) seizure within 6 months after birth, (2) frequent seizures, (3) developmental retardation, stagnation or regression.

The exclusion criteria are as follows: (1) perinatal brain injury, (2) metabolic disease, (3) intrauterine infection, (4) neonatal and infantile seizures caused by brain structural abnormalities. The clinical data of 470 affected patients between January 2010 and January 2020 was obtained.

2.2. Next generation sequencing and copy number variation studies
The peripheral blood samples of these children and their parents were collected. The whole exome sequencing and copy number variation studies in family were used to find pathogenic mutations.

The inclusion criteria of sequencing are as follows: (1) insertion or deletion mutations, (2) mutations in coding amino acids or termination codons, (3) mutations in splicing sites, (4) non-synonymous mutations may destroy protein function predicted by PolyPhen-2 HVAR.

The exclusion criteria of sequencing are as follows: (1) copy number variations, microdeletions or microduplications, (2) nucleotide variations in all normal controls, (3) synonymous mutations, (4) single nucleotide polymorphisms (SNPs) annotated in human gene mutation database (HGMD), thousand human genome database, PubMed database and UCSC database.

Sanger sequencing was performed on verifying mutations. PolyPhen-2 analysis was carried out to predict variant effects. All patients were followed up for 1 year to 10 years.

3. Results

3.1 Patients’ demographics and clinical features

118 patients diagnosed with genetic causes of EOEEs were analyzed excluding 10 patients with copy number variations. The gene mutation rate was 27.2% (128/470). Among 118 patients, 62 (62/118, 52.5%) were males, 56 (56/118, 47.5%) were females. The seizure onset age ranged from 1 day to 6 months (3.5 ± 1.5 months). Their parents were not close relatives, and these children were not related except patients 73 and 74.

39 patients (39/118, 33.1%) were diagnosed with DS, 18 (18/118, 15.3%) were WS, 3 (3/118, 2.5%) were OS, 3 (3/118, 2.5%) were EME, 2 (2/118, 1.7%) were MMFSI, 1 (3/118, 0.8%) was GLUT1 deficiency syndrome, 1 (1/118, 0.8%) was Pyridoxine dependent epilepsy, 51 (51/118, 43.3%) were non-symptomatic EOEEs. The initial EEG showed frequent multiple and multifocal sharp waves, spike waves, sharp slow waves or spike slow waves. In the later period, some transformed into infrequent discharging or normal EEG. 112 patients (112/118, 94.9%) showed normal brain MRI, and the remaining 6 had widened extracerebral space. In the later stage, 115 patients were re-examined with brain MRI 1 to 3 times, the widened gap became normal, only 2 had mild brain atrophy. After treatment, 42 patients (42/118, 35.6%) had seizure control. 16 patients (16/118, 13.6%) had seizure control for more than 1 year, 3 (3/118, 2.5%) had seizure control for more than 2 years, 9 patients had seizure control for more than 3 years (9/118, 7.6%), 8 had seizure control for more than 4 years (8/118, 6.8%), 4 had seizure control for more than 5 years (4/118, 3.4%), 2 had seizure control for more than 6 years (2/118, 1.7%). 2 patients died from SE (2/118, 1.7%). At the final follow-up, those patients remained seizure-free but no remarkable improvement in their development. 38 patients diagnosed with DS caused by SCN1A are not listed in Table 1 because their clinical features are easily identified. All remaining 80 patients’ features were summarized in Table 1.
P	Gene	Current age, Sex	Seizure onset age	Seizure semiology	Other Phenotype	Development retardation	Epilepsy syndrome	EEG	MRI	AEDS tried	Effective AEDS	Seiz out	
1	SCN2A	10y, F	3d	FS, GTCS, T	No	Severe	EOEE	Frequent	N	B6	No	Unc	
2	SCN2A	10y, F	5m	FS, GTCS, T, SE	No	Severe	EOEE	BS	N	TPM	No	Unc	
3	SCN2A	5y, M	4m	S	No	Severe	WS	BS	N	VPA	MP	Cor	
4	SCN3A	8y, M	6m	S	No	Severe	WS	H	N	VPA	P	Cor	
5	SCN8A	10y, M	6m	S	No	Severe	WS	H	N	ACTH	ACTH	Cor	
6	SCN8A	3y, M	6m	FS, T, S	No	Severe	EOEE	Frequent	WG	LEV	OXC	Cor	
7	SCN8A	3y, F	6m	T, FS	No	Severe	EOEE	Frequent	N	LEV	No	Unc	
P	Gene	Current age, Sex	Seizure onset age	Seizure semiology	Other Phenotype	Development retardation	Epilepsy syndrome	EEG	MRI	AEDS tried	Effective AEDS	Seizure outcome	
---	------	-----------------	------------------	------------------	----------------	------------------------	------------------	-----	-----	------------	----------------	-----------------	
8	SCN8A	5y, F	6m	S, FS, T, AA	No	Severe	EOEE	Frequent	N	ACTH	No	Unc	
9	SCN8A	2y, M	6m	FS	No	Severe	EOEE	Infrequent	N	PB	OXC	Cor	
10	KCNQ2	6m, M	6d	GTCS, SE	No	Severe	EOEE	Frequent, Low voltage, BS	N	B6	No	Died at 6	
11	KCNQ2	4y, M	1d	T, FS, S	No	Severe	OS	Frequent, BS	N	LEV	No	Unc	
12	KCNQ2	4y, F	1d	FS, T	No	Severe	EOEE	BS	N	TPM	No	Unc	
13	KCNQ2	6y, M	3m	T, GTCS	No	Severe	EOEE	Frequent	N	TPM	No	Unc	
14	KCNQ2	7y, M	3d	FS, S, GTCS	No	Severe	EOEE	BS	N	B6	TPM	Cor	
P	Gene	Current age, Sex	Seizure onset age	Seizure semiology	Other Phenotype	Development retardation	Epilepsy syndrome	EEG	MRI	AEDS tried	Effective AEDS	Seiz out	
---	------	-----------------	------------------	------------------	-----------------	-----------------------	-------------------	-----	-----	------------	--------------	---------	
15	KCNQ2	5y, M	1d	FS, T, GTCS	No	Severe	EOEE	BS	N	B6	No	Unc	
16	KCNQ2	2y, M	10d	FS, T, GTCS	No	Severe	EOEE	Frequent	N	B6	PB	Cor	
17	KCNQ2	2y, M	3d	FS, T, GTCS	No	Severe	EOEE	Frequent	N	B6	PB	Frer	
18	KCNQ2	2y, M	4d	FS, T, GTCS	No	Severe	OS	BS	N	B6	No	Unc	
19	KCNQ3	2y, M	6m	S, FS, T, GTCS	No	Severe	WS	H	N	VPA	No	Unc	
20	KCTD7	10y, M	5m	M, FS, T	No	Severe	EOEE	Frequent	N	LEV	VPA	Cor	
P	Gene	Current age, Sex	Seizure onset age	Seizure semiology	Other Phenotype	Development retardation	Epilepsy syndrome	EEG	MRI	AEDS tried	Effective AEDS	Seiz out	
----	--------	------------------	-------------------	-------------------	----------------	------------------------	-------------------	-----	-----	------------	----------------	----------	
21	KCNB1	10y, F	6m	FS, T	No	Severe	EOEE	Frequent	N	P	P	Cor	
										VPA	VPA	Frei	
22	KCNB1	4y, M	6m	FS, T	No	Severe	EOEE	Frequent	N	LEV	LEV	Cor	
										VPA	VPA	Frei	
23	KCNT1	4y, F	1.5m	FS, T	No	Severe	MMFSI	Frequent	N	PB	No	Unc	
24	KCNT1	2y, M	3d	FS, T	No	Severe	MMFSI	Frequent	N	B6	No	Unc	
25	HCN1	8y, M	6m	FS, T	No	Severe	EOEE	Frequent	N	OXC	VPA	Cor	
										NZP		Frei	
26	CACNB4	6y, F	1m	FS, T	No	Severe	EOEE	Frequent	N	B6	OXC	Cor	
										PB		Frei	
27	CACNA1H	6y, M	6m	S	No	Severe	WS	H	N	MP	VPA	No	
												Unc	
								Frequent	N	VPA			
										TPM			
										OXC			
										LTG			
										KD			
P	Gene	Current age, Sex	Seizure onset age	Seizure semiology	Other Phenotype	Development retardation	Epilepsy syndrome	EEG	MRI	AEDS tried	Effective AEDS	Seiz out	
---	------	-----------------	------------------	------------------	----------------	------------------------	------------------	-----	-----	-------------	---------------	----------	
28	CACNA1E	2y, M	20d	FS,T, GTCS	No	Severe →	EOEE	Frequent	N	OXC	VPA	Cor	
29	CDKL5	8y, F	3m	FS,T, GTCS, S	No	Severe →	WS	H	N	VPA	No	Unc	
30	CDKL5	8y, F	2m	FS,T, S	No	Severe →	EOEE	Frequent	N	VPA	TPM	Unc	
31	CDKL5	8y, F	2m	FS,T, S	No	Severe →	EOEE	Frequent	N	VPA	TPM	Unc	
32	CDKL5	6y, F	1m	FS,T, S	No	Severe →	EOEE	Frequent	N	VPA	TPM	Unc	
33	CDKL5	8y, F	2m	FS,T, GTCS	Chorea	Severe →	EOEE	Frequent	N	VPA	TPM	Unc	
P	Gene	Current age, Sex	Seizure onset age	Seizure semiology	Other Phenotype	Development retardation	Epilepsy syndrome	EEG	MRI	AEDS tried	Effective AEDS	Seiz out	
----	--------	-----------------	-------------------	-------------------	-----------------	------------------------	------------------	-----	-----	------------	----------------	----------	
34	CDKL5	5y, F	6m	S, M, FS	Chorea	Severe	EOEE	Frequent	WG	VPA	KD	Cor	
										TPM		Frer	
35	CDKL5	4y, F	6m	GTCS, T, S, FS	No	Severe	EOEE	Frequent	N	ACTH	KD	Cor	
										P		Frer	
36	CDKL5	4y, F	1m	GTCS, T, S, FS	No	Severe	EOEE	Frequent	N	ACTH	KD	Cor	
										P		Frer	
37	PCDH19	10y, F	5m	FS, GTCS, T	No	Severe	EOEE	Frequent	N	VPA	No	Unc	
										LEV		Unc	
38	PCDH19	7y, F	5m	FS, T, GTCS, M	No	Severe	DS	Infrequent	N	VPA	No	Unc	
										TPM		Unc	
39	PCDH19	8y, F	6m	FS, T, GTCS	No	Severe	EOEE	Frequent	N	OXC	No	Unc	
										VPA		Unc	
P	Gene	Current age, Sex	Seizure onset age	Seizure semiology	Other Phenotype	Development retardation	Epilepsy syndrome	EEG	MRI	AEDS tried	Effective AEDS	Seiz out	
----	------	------------------	-------------------	------------------	----------------	------------------------	-------------------	-----	-----	------------	-----------------	---------	
40	PCDH19	4y, F	5m	FS, T, GTCS	No	Severe → Severe	EOEE	Frequent → Infrequent	N	OXC	No	Unc	
41	SLC2A1	8y, M	2d	FS, T, GTCS	Dystonia	Severe → Infrequent	GLUT1	Frequent → Infrequent	N	VPA	KD	Cor	Fre
42	STXB1	2y, M	1m	FS, T, GTCS	Dystonia	Severe → Infrequent	EOEE	Frequent → Infrequent	N	PB	LEV	Cor	Fre
43	STXB1	2y, M	2m	S, T, FS, GTCS	Dystonia	Severe → Infrequent	WS	H → Arachnoid Cysts	Frequent → Infrequent	B6	No	Unc	
44	STXB1	7y, M	1m	T, FS, S, GTCS	No	Severe → Frequent	BS	N	PB	VPA	Cor	Fre	
45	SETBP1	9y, M	6m	T, FS, GTCS	No	Severe → Infrequent	EOEE	Frequent → Infrequent	N	PB	VPA	Cor	Fre
46	ARHGEF9	8y, M	4m	T, FS, GTCS	No	Severe → Infrequent	EOEE	Frequent → Infrequent	N	LEV	OXC	Cor	Fre
P	Gene	Current age, Sex	Seizure onset age	Seizure semionlogy	Other Phenotype	Development retardation	Epilepsy syndrome	EEG	MRI	AEDS tried	Effective AEDS	Seiz out	
----	--------	------------------	-------------------	--------------------	-----------------	-----------------------	-------------------	-----	-----	------------	----------------	----------	
47	GABRG2	8y, M	5m	T, FS, GTCS	No	Severe	EOEE	Frequent	N	PB	LEV	VPA	
						→ Moderate		→ Infrequent	N				
48	GABAA1	3y, M	4m	S	No	Severe	WS	H	N	ACTH	TPM	Cor	
						→ Moderate		→ Frequent	N	P	VGB	Frer	
								→ Infrequent	N				
49	GABRA2	2y, M	6m	T, FS	No	Severe	EOEE	Frequent	N	LEV	LEV	Cor	
						→ Severe		→ Infrequent	N	VPA	VPA	Frer	
50	DEPDC5	5y, M	1m	S, FS	No	Severe	EOEE	Frequent	N	LEV	TPM	Unc	
						→ Severe		→ Infrequent	N	P	OXC	Freer	
51	MECP2	8y, F	2m	S, FS, T	No	Severe	WS	H	N	P	VPA	Cor	
						→ Severe		→ Frequent	N	VPA	TPM	Freer	
								→ Infrequent	N	CZP	TPM		
52	GRIN3B	10y, M	6m	FS, T, GTCS	No	Severe	EOEE	Frequent	N	PB	OXC	Cor	
						→ Moderate		→ Infrequent	N	OXC	VPA	Freer	
										VPA	TPM		
53	GRIA4	3y, M	6m	FS, T, GTCS	Ataxia	Severe	EOEE	Frequent	N	PB	VPA	Cor	
						→ Moderate		→ Infrequent	N	VPA	TPM	Freer	
54	DYNC1H1	5y, M	2m	S, FS, T	No	Severe	WS	Frequent	N	ACTH	No	Unc	
						→ Severe		→ Frequent	N	P	VPA		
											CZP		
											TPM		
P	Gene	Current age, Sex	Seizure onset age	Seizure semiology	Other Phenotype	Development retardation	Epilepsy syndrome	EEG	MRI	AEDs tried	Effective AEDs	Seiz. outcome	
---	--------	------------------	-------------------	-------------------	-----------------	------------------------	------------------	-----	-----	------------	----------------	-------------	
55	ALDH7A1	5y, F	2d	FS,T, GTCS	No	Severe	Severe	N		B6	Cor	Free	
						→ Moderate	No						
							Infrequent						
							No						
56	DPYD	5y, F	2m	FS,T, GTCS	No	Severe	EOEE	N		PB	No	Unc	
							Frequent						
							N						
57	ALG11	2y, F	3m	S,FS,T	No	Severe	WS	H	N	ACTH	No	Unc	
							Frequent						
							N						
58	CCDC88C	2y, F	3m	S,FS,T	No	Severe	WS	H	N	ACTH	No	Unc	
							Frequent						
							N						
59	CSNK2B	2y, F	2m	FS,T, GTCS	No	Severe	EOEE	Frequent	WG	LEV	No	Cor	
							Infrequent					Free	
							No						
60	CSNK2B	3y, M	3m	FS,T, GTCS	No	Severe	EOEE	Frequent	N	LEV	No	Cor	
							Infrequent					Free	
							No						
61	IL1RAPL1	3y, M	6m	S,FS,T	No	Severe	WS	H	N	ACTH	KD	Cor	
							Frequent						
							N						
P	Gene	Current age, Sex	Seizure onset age	Seizure semiology	Other Phenotype	Development retardation	Epilepsy syndrome	EEG	MRI	AEDS tried	Effective AEDS	Seiz out	
----	--------	------------------	-------------------	------------------	----------------	------------------------	------------------	-----	-----	------------	----------------	----------	
62	IQSEC2	2y, M	6m	S,FS,T	No	Severe	WS	H	N	ACTH	No	Unc	
										P			
										TPM			
										KD			
										VGB			
63	PACS2	5y, M	10d	FS,T	Special face	Severe	EOEE	Frequent	N	B6	VPA	Cor	
										VPA		Freer	
										VPA		Freer	
64	PACS2	2y, F	1m	FS,T	Special face	Microcephaly	EOEE	Frequent	N	B6	VPA	Cor	
										VPA		Freer	
										VPA		Freer	
65	PACS2	2y, F	1m	FS,T	Special face	Severe	EOEE	Frequent	N	B6	VPA	Cor	
										VPA		Freer	
										VPA		Freer	
66	PIGA	6y, M	6m	FS,T, SE	No	Severe	EOEE	Frequent	N	LEV	KD	Cor	
										VPA		Freer	
										TPM		Freer	
										KD		Freer	
67	QARS	3y, F	2m	FS,T,S	No	Severe	WS	H	N	ACTH	No	Unc	
										P			
										TPM			
										KD			
68	RNASEH2B	3y, F	4m	FS,T,S	No	Severe	WS	H	N	ACTH	No	Unc	
										P			
										TPM			
										VPA			
										KD			
69	SMC1A	4y, F	6m	FS, Cluster Seizures	No	Severe	EOEE	Frequent	N	LEV	KD	Cor	
										OXC		Freer	
										KD		Freer	
70	SMC1A	2y, F	2.5m	FS, Cluster seizures	No	Moderate	EOEE	H	N	LEV, TPM, PB, VPC	KD	Cor	
										OXC		Freer	
71	SMC1A	1.5y, F	3m	FS, Cluster seizures	No	Moderate	EOEE	Frequent	N	LEV	KD	Cor	
										OXC		Freer	
P	Gene	Current age, Sex	Seizure onset age	Seizure semiology	Other Phenotype	Development retardation	Epilepsy syndrome	EEG	MRI	AEDS tried	Effective AEDS	Seiz out	
----	--------	------------------	-------------------	------------------	----------------	------------------------	-------------------	-----	-----	------------	----------------	----------	
72	TBC1D24	15y, F	6m	M, FS,T, EPC	Dystonia	Severe	EME	Frequent	N	LEV	No	Unc	
73	TBC1D24	8y, F	3m	M, EPC	No	Severe	EME	Frequent	N	LEV	No	Unc	
74	TBC1D24	5y, M	3m	M, EPC	No	Severe	EME	Frequent	N	LEV	No	Unc	
75	WWOX	5y, M	6m	FS,T	No	Severe	EOEE	Frequent	N	PB	NZP	Cor Fre	
76	COL4A2	2y, M	3m	S	No	Severe	WS	H	N	ACTH	ACTH	Cor Fre	
77	PTEN	5y, F	6m	S,FS	No	Severe	WS	H	N	MP	No	Unc	
78	H3F3A	2y, M	2m	FS,T	No	Severe	EOEE	Frequent	WG	BP	LEV	Cor Fre	
79	CHD2	11y, M	6m	FS,T, GTCS, M	No	Severe	EOEE	Frequent	N	BP	No	Unc	
Table 3.3: Phenotype and Treatment Details

P	Gene	Current Age, Sex	Seizure Onset Age	Seizure Semiology	Other Phenotype	Development Retardation	Epilepsy Syndrome	EEG	MRI	AEDS Tried	Effective AEDs	Seiz out	
80	HNRNPU	6y, M	6m	FS, T, GTCS, AA	No	Moderate	EOE	Infrequent	N	BP	VPA	VPA	Cor

3.2 EOEES with dyskinesia

In our study, children with EOEES with dyskinesia had various clinical phenotypes. The common phenotypes were OS and non-syndromic EOEES. 7 patients with early EEG persistent BS from 1 day to 1 month, 1 of which was accompanied by double hemisphere intermittent low voltage. The persistent BS disappeared at 2 to 3 months. For the other 2 patients caused by SCN2A mutations, EEG was temporary BS during sleep at 4 months and 5 months, and disappeared at 7 months. After performing genetic tests, 6 patients were found KCNQ2 mutations and the remaining mutations were SCN2A (n = 2), STXBP1 (n = 1). After treatment, only 2 patients had seizure control, 6 had uncontrolled seizures and 1 had died from SE at 6 months.

3.3 EOEES limited to females with cluster seizures

Three patients with heterozygous de novo mutations in SMC1A gene were reviewed. All patients were females with moderate to severe developmental impairment. None of them had a clinical diagnosis of Cornelia de Lange syndrome. All three patients had prominent clinical features of cluster seizures. All the nonsense mutations were predicted damaging SMC1A protein by PolyPhen-2 HVAR. All the patients were treated with multiple antiepileptic drugs but their seizures remained refractory. When initiated with ketogenic diet, they became seizure free within 3 to 4 weeks.

3.4 EOEES starting with a febrile convulsion

The typical clinical features of DS is that the onset of a febrile convulsion often within 1-year-old, which is characterized by repeated generalized or hemiclonic seizures. Except for DS, we found another type of EOEES starting with a febrile convulsion caused by HNRNPU mutation. The index patient was a 6 years boy, being a first-born child from full term pregnancy and natural birth. Both the pregnancy and delivery history of this boy were unremarkable. In his family history, there was no similar disease. Developmental milestone showed moderate developmental retardation. She began having a febrile convolution at 6 months of age, which occurred 5 times a day. Video EEG showed slow activity in the background and sharp slow waves in the left occipital and posterior temporal regions during the interictal period. A febrile convulsion occurred once in half a year on average. At the age of 4 years, he began to suffer seizures without any inducing factors. EEG showed a large number of multifocal sharp waves, spike waves, and spike slow waves. The effect of BP and LEV was poor, and the epileptic seizure was reduced associated with VPA. At the final follow-up, she remained seizure-free for 2 years with LEV and VPA treatment but no remarkable improvement in his development.

3.5 Genetic analysis

38 Patients diagnosed with DS caused by SCN1A are not listed in Table 1 because their clinical features are easily identified. SCN1A mutations were detected in these 38 patients (38/118, 32.2%), representing the largest proportion, including 27 missense, 7 frameshift and 4 nonsense mutations. Our other findings suggested that genetic causes of EOEES involve pathogenic mutations (54 missense, 11 frameshift, 12 nonsense, 3 splicing mutations) (Fig. 1). All 80 patients’ genetic findings were summarized in Table 2. All 80 patients’ genetic findings were summarized in Table 2. We identified different specific types of EOEES. The identified genes were summarized in Table 3. SCN1A mutations were detected in 38 patients, representing the largest proportion (38/118, 32.2%). The second common mutations were KCNQ2 mutations, detected in 9 patients. The third one was CDKL5 mutations, identified in 8 patients. Genes associated with ionic channels represented the largest proportion (66/118, 55.9%), sodium channel potassium channel and calcium channel respectively. The number of identified genes were summarized in Table 4.
Table 2
Summary of the genetic findings in our 80 patients

P	Gene	Base change	Amino acid change	Predicted effect on protein	Zygosity	Inheritance
1	SCN2A	c.5635A>G	p.M1879V	Missense	Heterozygous	De novo
2	SCN2A	c.4384delT	p.F1462Sfs	Frameshift	Heterozygous	De novo
3	SCN2A	c.1159G>A	p.E387K	Missense	Heterozygous	De novo
4	SCN2A	c.716C>A	p.A239A	Missense	Heterozygous	De novo
5	SCN8A	c.641G>A	p.G214D	Missense	Heterozygous	De novo
6	SCN8A	c.2942G>C	p.S981T	Missense	Heterozygous	De novo
7	SCN8A	c.2879T>A	p.V960A	Missense	Heterozygous	De novo
8	SCN8A	c.641G>A	p.G214D	Missense	Heterozygous	De novo
9	SCN8A	c.5498A>T	p.A1833V	Missense	Heterozygous	De novo
10	SCN8A	c.14G>T	p.5S>X	Nonsense	Heterozygous	De novo
11	KCNQ2	c.629G>A	p.A210H	Missense	Heterozygous	De novo
12	KCNQ2	c.740C>T	p.S247L	Missense	Heterozygous	De novo
13	KCNQ2	c.821C>T	p.T274M	Missense	Heterozygous	De novo
14	KCNQ2	c.1678C>T	p.A560T	Missense	Heterozygous	De novo
15	KCNQ2	c.821C>T	p.T274M	Missense	Heterozygous	De novo
16	KCNQ2	c.649A>C	p.T217P	Missense	Heterozygous	De novo
17	KCNQ2	c.1179del	p.Leu394T	Frameshift	Heterozygous	De novo
18	KCNQ2	c.2048_2051dup	p.C685AfsT181	Frameshift	Heterozygous	De novo
19	KCNQ3	c.1231A>T	p.L411T	Nonsense	Heterozygous	De novo
20	KCTD7	c.334C>G, c.686A>T	p.A112G, p.A229V	Missense, Compound	Father, Mother	De novo
21	KCNB1	c.916C>T	p.A306C	Missense	Heterozygous	De novo
22	KCNB1	c.635C>A	p.P212H	Missense	Heterozygous	De novo
23	KCNT1	c.1421G>A	p.A474H	Missense	Heterozygous	De novo
24	KCNT1	c.1420C>T	p.A474C	Missense	Heterozygous	De novo
25	HCN1	c.1679G>A	p.R560H	Missense	Heterozygous	De novo
26	CACNB4	c.668C>T	p.T223M	Missense	Heterozygous	De novo
27	CACNA1H	c.2491G>A	p.V831M	Missense	Heterozygous	De novo
28	CACNA1E	c.2767C>T	p.H923T	Missense	Heterozygous	De novo
29	CDKL5	c.1326_1327insA	p.443N>Kfs	Frameshift	Heterozygous	De novo
30	CDKL5	c.1794_1795insA	p.332N>Kfs	Frameshift	Heterozygous	De novo
31	CDKL5	IVS9-1G>	Splice	Splicing	Heterozygous	De novo
32	CDKL5	c.2774_c.2775>delTG	p.925M>lfs	Frameshift	Heterozygous	De novo
33	CDKL5	c.1245_c.1246>delAG	p.T415Tfs	Frameshift	Heterozygous	De novo
34	CDKL5	c.1700C>T	p.T567M	Missense	Heterozygous	De novo
35	CDKL5	c.238C>T	p.R80C	Missense	Heterozygous	De novo
36	CDKL5	c.428T>A	p.I143A	Missense	Heterozygous	De novo
37	PCDH19	c.471C>G	p.A157G	Missense	Heterozygous	De novo
38	PCDH19	c.2341delA	p.I781fs	Frameshift	Heterozygous	De novo
39	PCDH19	c.2113C>T	p.A705T	Nonsense	Heterozygous	De novo
P	Gene	Base change	Amino acid change	Predicted effect on protein	Zygosity	Inheritance
---	------------	---	-------------------	----------------------------	-----------	-------------
40	PCDH19	c.798C > G	p.A266G	Missense	Heterozygous	De novo
41	SLC2A1	c.1278 + 30_1278 + 31insATTTCTCACC				
42	STXBP1	c.69_c.70insA	p.L24Lfs	Frameshift	Heterozygous	De novo
43	STXB1	c.364C>T	p.A122T	Nonsense	Heterozygous	De novo
44	STXBP1	c.364C>T	p.122R > X	Nonsense	Heterozygous	De novo
45	SETBP1	c.2339C>G	PS780T	Nonsense	Heterozygous	De novo
46	STXBP1	c.69_c.70insA				
47	GABRG2	c.929C>T	p.T310I	Missense	Heterozygous	De novo
48	GABAEE	c.779C > T				
49	GABRA2	c.995C > T				
50	DEPDC5	c.280-1G > A				
51	MECP2	c.158G > T	p.G53V	Missense	Heterozygous	De novo
52	GRIN3B	c.1829G > A	p.A610H	Missense	Heterozygous	De novo
53	GRIA4	c.1378A>G	p.I460V	Missense	Heterozygous	De novo
54	DYN1H1	c.1682A > G	p.G561G	Missense	Heterozygous	De novo
55	ALDH7A1	c.961G > A				
56	DPYD	c.1774C > T	p.R592W	Missense	Compound	Father
57	ALG11	c.1192G > A	p.G398L	Missense	Compound	Mother
58	CCDC88C	c.5635C>T	p.R1879W	Missense	Compound	Father
59	CSNK2B	c.508_509del	p.V170Af	Frameshift	Heterozygous	De novo
60	CSNK2B	c.142C > T	p.G48T	Nonsense	Heterozygous	De novo
61	IL1RAP1	c.2062G > C	p.G688G	Missense	Heterozygous	De novo
62	IQSEC2	c.2776C > T	p.A926T	Nonsense	Heterozygous	De novo
63	PACS2	c.625G > A	p.G209L	Missense	Heterozygous	De novo
64	PACS2	c.625G > A	p.G209L	Missense	Heterozygous	De novo
65	PACS2	c.625G > A	p.G209L	Missense	Heterozygous	De novo
66	PIGA	c.241C > T	p.A81C	Missense	Hemizygous	De novo
67	QARS	c.1852G > A	p.A618A	Missense	Compound	Mother
68	RNASEH2B	c.629G > A	p.A210H	Missense	Compound	Mother
69	SM1A	c.1495C>T	p.A499T	Nonsense	Heterozygous	De novo
70	SM1A	c.1489C>T	p.G497T	Nonsense	Heterozygous	De novo
71	SM1A	c.3463C > T	p.G1155T	Nonsense	Heterozygous	De novo
72	TBC1D24	c.1571G > C	p.A524P	Missense	Compound	Mother
73	TBC1D24	c.1207G > T	p.V403L	Missense	Compound	Father
P	Gene	Base change	Amino acid change	Predicted effect on protein	Zygosity	Inheritance
----	-----------	-------------	-------------------	-----------------------------	-------------	-------------
74	TBC1D24	c.1207G > T	p.V403L	Missense	Compound	Father
		c.1499C > T	p.A500V	Missense	Heterozygous	Mother
75	WWOX	c.468G > T	p.A156S	Missense	homozygosis	De novo
76	COL4A2	c.1148C > T	p.P383L	Missense	Heterozygous	De novo
77	PTEN	c.1034T > C	p.L345P	Missense	Heterozygous	De novo
78	H3F3A	c.377A > G	p.G126A	Missense	Heterozygous	De novo
79	CHD2	c.4909C > T	p.A1637T	Nonsense	Heterozygous	De novo
80	HNRNU	c.1341C > T	p.V448Cfs	Frameshift	Heterozygous	De novo

Table 3

Summary of the identified genes in specific EOEEs

Specific classifications of EOEE	Associated gene
Dravet syndrome	SCN1A
Ohtahara syndrome	KCNQ2, STXBP1
West syndrome	SCN3A, SCN2A, SCN8A, CACNA1H, DEPDC5, MECP2, DYNC1H1, CDKL5, ALG11, CCDC88C, GABA1, IL1RAPL1, RNASEH2B, SLC19A3, STXBP1, QARS, COL4A2
Early myoclonic epileptic encephalopathy	TBC1D24
GLUT1 deficiency syndrome	SLC2A1
Malignant migrating focal seizures of infancy	KCNT1
EOEE-BS	KCNQ2:STXBP1:SCN2A:PIGA
EOEEs with dyskinesia	STXBP1, CDKL5, SLC2A1
EOEEs limited to females with cluster seizures	SMC1A
EOEEs starting with febrile convulsion	SCN1A,PCDH19:HNRNU
Table 4
Summary of the number of identified genes in EOEEs

Gene function	Mutated gene	Corresponding total cases
Sodium channel	SCN1A, SCN2A, SCN3A, SCN8A	38, 3, 1, 5
Potassium channel	KCNQ2, KCNQ3, KCTD7, KCNB1, KCNT1, HCN1	9, 1, 1, 2, 2, 1
Calcium channel	CACNB4, CACNA1H, CACNA1E	1, 1, 1
Cyclin-dependent kinase-like	CDKL5	8
Protocadherin	PCDH19	4
Solute carrier family	SLC2A1	1
Syntaxin-binding protein	STXB1P1	3
SET binding protein	SETBP1	1
CDC42 guanine nucleotide exchange factor	ARHGEF9	1
Gamma-aminobutyric acid receptor	GABRG2, GABA1A, GABRA2	1, 1, 1
DEP domain containing 5, GATOR1 subcomplex subunit	DEPDC5	1
Methyl-CpG binding protein	MECP2	1
Glutamate ionotropic receptor	GRIN3B, GRIA4	1, 1
Dynein cytoplasmic 1 heavy chain	DYNC1H1	1
Aldehyde dehydrogenase 7 family member	ALDH7A1	1
Dihydropyrimidine dehydrogenase	DPYD	1
ALG11 alpha-1,2-mannosyltransferase	ALG11	1
Coiled-coil domain containing	CCDC88C	1
Casein kinase 2	CSNK2B	2
Interleukin 1 receptor accessory protein like	IL1RAPL1	1
IQ motif and Sec7 domain ArfGEF	IQSEC2	1
Phosphofurin acidic cluster sorting protein	PACS2	3
Phosphatidylinositol glycan anchor biosynthesis class	PIGA	1
Glutaminyl-tRNA synthetase	QARS	1
Ribonuclease H2 subunit	RNASEH2B	1
Structural maintenance of chromosomes	SMC1A	3
TBC1 domain family member	TBC1D24	3
WW domain containing oxidoreductase	WWOX	1
Collagen type IV chain	COL4A2	1
Phosphatase and tensin homolog	PTEN	1
H3.3 histone	H3F3A	1
Chromodomain helicase DNA binding protein	CHD2	1
Heterogeneous nuclear ribonucleoprotein	HNRNPU	1

3.7 Genetic causes of EOEEs with a good therapeutic effect

In general, the effect of KD is sure on the treatment of genetic causes of EOEEs. 3 patients with SMC1A mutations response to KD add-on therapy. VPA added treatment showed a good effect on KCNB1 (n = 2) and PACS2 (n = 3) encephalopathy. LEV added treatment showed a good effect on STXBP1 (n = 2) encephalopathy. OXC added treatment showed a good effect on SCN8A (n = 2) encephalopathy.

4. Discussion

We report a series of individuals with genetic causes of EOEEs, delineating the phenotypic spectrum and long-term outcome. In the unknown causes of EOEEs, detection of the gene mutation rate was 27.2% (128/470). In the genetic causes of EOEEs, the non-symptomatic EOEEs represent the largest proportion, which is 43.3% (51/118). We find the initial EEG of most patients showing frequent multiple and multifocal discharging. With seizure controlled, EEG discharging
gradually decreases. But only a minority of patients' EEG transform into infrequent discharging or normal EEG. Despite performing several brain MRI, there is no significant change in the later brain MRI. In the long outcome, we find the seizure control rate in the genetic causes of EOEEs is 35.6% (42/118). The death rate is 1.7% (2/118). And we don't find sudden unexpected death in the genetic causes of EOEEs. Although some patients achieve seizure-free, there is no remarkable improvement in their development.

BS is a common EEG phenomenon in EOEEs, which usually occurs during OS sleep and wakefulness, EME sleep period. There are two different types of BS patterns, namely early BS and late BS[7, 9]. As for the definition of early BS and late BS, it is not very clear at present. Yoshitomi thought that it should be divided according to the age of one month[9]. It is believed that the appearance in the early infancy is related to asymmetric BS pattern, but the appearance in late infancy is related to symmetric BS characteristics. This study did find that BS is not only found in OS, but also in other non-syndromic EOEE. This study provides an in-depth understanding of the genetic factors of EOEE-BS and explains the important role of genetic factors in addition to common causes such as cortical malformations. In this study, pathogenic mutations were identified, accounting for 7.6% (9/118). This study found that the largest genetic subgroup of EOEE-BS is the subgroup with KCNQ2 mutations, accounting for 66.7% (6/9). These 9 patients in this group had various types of seizures. The treatment effect and prognosis were poor. For the early onset of persistent tonic, spasm seizures and other types of intractable seizures, seizures with early BS performance may suggest the possibility of KCNQ2 pathogenic mutations. However, EOEE-BS is highly heterogeneous in terms of genetic etiology. Except for the largest genetic KCNQ2 subgroup, the second is SCNA2 subgroup. For these 2 patients in this study, EEG was temporarily suppressed during sleep at 4 months and 5 months, and disappeared at 7 months. The reason for transient BS in SCNA2 subgroup is unknown, which may be related to the immaturity of the central nervous system or gene mutation leading to brain dysfunction at this stage. 1 patient of STXBP1 subgroup was found in the third genetic subgroup. EOEE related to STXBP1 gene mutation has been mostly reported, and the common phenotype is OS. Mutations in the STXBP1 gene can cause abnormal neurotransmitter release, and cause brain stem cell apoptosis and dysfunction, change the excitability of neurons, and cause seizures[10]. This study find that EOEE-BS usually respond poorly to AEDs.

Symptoms of dyskinesia include dystonia, chorea, paroxysmal dyskinesia, Parkinson's syndrome, ataxia, tremor and so on. At first, EOEEs with dyskinesia were focused on by Guerinii[11], who first reported ARX gene mutation associated with dyskinesia. And then STXBP1, FOXG1, CDKL5related dyskinesia were gradually reported[12–14]. Kobayashi reported 11 cases of infantile dyskinesia associated with EOEE. 9 cases were definitely diagnosed with epilepsy syndrome including WS[6]. In this study, 7 cases of EOEEs with dyskinesia were found. The onset age of dyskinesia ranged from 1 month to 1 year. 3 patients were diagnosed as epilepsy syndrome, namely WS, GLUT1 deficiency syndrome, EME. In this study, the main clinical symptoms of dyskinesia were dystonia, chorea and ataxia. Genetic mutations included CDKL5, SLC2A1, STXBP1, TBC1D24 and GRIA4. Our findings indicate 4 patients with dystonia received a good effect with Baclofen. 1 patient of STXBP1 encephalopathy with dystonia showed good response with LEV. This study find that with the control of epileptic seizures, the symptoms of dyskinesia in a few patients were also relieved.

SMC1A mutations can cause early onset epilepsy only in females with cluster seizures. At present, a spectrum of SMC1A gene have been related with Cornelia de Lange syndrome (CdLS), SMC1A-related encephalopathy only with female patients, colorectal carcinomas, bladder cancer and leukemia[15–22]. Consistent with previous clinical reports, our 3 patients have moderate to severe neurological impairment and epilepsy. The seizures usually start in infancy. The presence of cluster seizures is an obvious characteristic. Although a majority of variants have also been found pathogenic, there is no clear relationship between severity of clinical phenotype and mutation types of truncation and missense variants[23]. However, the therapy strategy is still challenging. Among them, most patients show drug-resistant. All our 3 patients became seizure-free when KD was used as add-on therapy. There is evidence to show a relationship between SMC1A-mutated CdLS cell lines and oxidative stress[24]. KD in children with refractory epilepsy has also been demonstrated to improve mitochondrial function and decrease oxidative stress[25, 26]. Therefore, we speculate that KD add-on therapy reduces seizures by down-regulating the level of oxidative stress when combined with AEDS.

HNRNPU locating at chromosome 1, encodes heteronuclear ribonucleoprotein u. It is expressed in adult brain, heart, kidney and liver, especially in cerebellum. Firstly, it was reported related to 1q43-q44 deletion syndrome[27]. Later, a variety of clinical phenotypes related to HNRNPU mutation were reported, mainly including early-onset epilepsy with severe mental retardation, WS, EOEE, Lennox Gastaut syndrome and craniofacial deformity[28–30]. Durkin thought that HNRNPU gene mutation related disease is more likely to be a kind of neurodevelopmental syndrome[30]. Durkin reported 21 cases of children, of which 3 cases were onset with febrile convulsion. Combined with 1 case in this study, we think that EOEEs onset with febrile convulsion is a special phenotype of HNRNPU related neurodevelopmental syndrome, similar to DS.

These responsible genes and their functions are mainly classified as: genes responsible for ion channels, genes responsible for the synapsis, neurotransmitters, and receptors, genes responsible for signal transduction, genes regulating DNA and RNA, genes responsible for the organelles and cell membrane, genes responsible for the development and growth of the neurons[31]. In this study, we find the ion channel gene mutations are the most common, representing the largest proportion (66/118, 55.9%). Among them, sodium channel gene mutations represent the largest proportion (47/66, 71.2%). In WS, we detect SCN3A, SCN2A, SCN8A, CACNA1H, DEPDC5, MECPC2, DYNCH1H1, CDKL5, ALG11, CCDC88C, GABA<A1, IL1RAPL1, RNASEH2B, SLC19A3, STXBP1, RARS2, COL4A2 mutations. In addition to common gene mutations, we report rare possible pathogenic genes: CCDC88C, IL1RAPL1, RNASEH2B and COL4A2 in WS. In non-syndromic genetic causes of EOEEs, we detect rare possible pathogenic genes: SETBP1, DPDY, CNK28 and H3F3A. As for genetic modes, denovo heterozygous mutations account for the largest proportion, 88.1% (104/118). Among these types of mutations, missense mutations represent the largest proportion, 68.6%(81/118). As expected, some of the genes are included in more than one group of the classification, as they have multiple functions.

Generally, genetic causes of EOEEs response poorly to AEDS treatment. However, we find that some gene mutation related EOEEs receive a good effect on specific AEDS. Besides the effect of KD is sure on the treatment of SMC1A encephalopathy. We also find that VPA added treatment shows a good effect on KCNB1 and PACS2 encephalopathy, LEV added treatment shows a good effect on STXBP1 encephalopathy, OXC added treatment shows a good effect on SCN8A encephalopathy.
VPA is a broad-spectrum antiepileptic drug, which exerts its anticonvulsant effect through a variety of mechanisms. VPA promotes the synthesis and release of gamma aminobutyric acid (GABA) through presynaptic and postsynaptic mechanisms, thereby increasing GABA mediated inhibition\cite{32,33}. VPA can regulate the expression of endoplasmic reticulum stress proteins (GRP78, GRP94 and calreticulin). It proves that VPA can inhibit excessive endoplasmic reticulum stress, reduce neuronal apoptosis and play a neuroprotective role in acute epileptic seizures\cite{34–36}. VPA can also regulate the level of intracellular Ca$^{2+}$ by increasing the expression of endoplasmic reticulum stress protein, improve the calcium binding ability of endoplasmic reticulum, and enable cells to adapt to the cellular stress caused by the imbalance of intracellular Ca$^{2+}$ homeostasis\cite{36}. PACS2 plays an important role in controlling endoplasmic reticulum (ER) - mitochondrial communication, including the connection between mitochondria and ER and the homeostasis of ER. PACS2 is necessary for effective Ca$^{2+}$ transfer between endoplasmic reticulum and mitochondria, while GRP78 is involved in Ca$^{2+}$ transport from endoplasmic reticulum to mitochondria\cite{37–39}. Both of them play an important role in maintaining endoplasmic reticulum mitochondrial Ca$^{2+}$ homeostasis. Therefore, we speculate that VPA may not only increase the concentration of GABA neurotransmitter and inhibit the voltage-gated Na$^{+}$ channel, but also play a role by enhancing Akt phosphorylation, inhibiting endoplasmic reticulum stress and regulating intracellular Ca$^{2+}$ level in children with PACS2 encephalopathy.

Certainly, knowing the pathophysiology of the underlying gene defect will help to pave the way for possible future individualized treatments. The limitations of our study are the small number of rare genes. Further research should include a larger cohort to validate our observations. We will continue to study and explore the detailed mechanism between rare gene mutation and seizure outcome.

5. Conclusion

We describe the clinical features and long-term outcome of genetic causes of EOEEs. The clinical manifestations of EOEE are variable, including dyskinesia. EOEE-BS usually responds poorly to AEDS therapy. Although some patients achieve seizure-free, there is no remarkable improvement in their development. EOEEs starting with febrile convulsion may be a special phenotype of HNRNPU related neurodevelopmental syndrome, similar to DS. We find the ion channel gene mutations are the most common. We report rare possible pathogenic genes: CCDC88C, IL1RAPL1, RNASEH2B and COL4A2 in WS and detect rare possible pathogenic genes: SETBP1, DPYD, CSNK2B and H3F3A in non-syndromic genetic causes of EOEEs. Although genetic causes of EOEEs response poorly to AEDS treatment, we find that some gene mutation related EOEEs receive good effects on specific AEDS.

Abbreviations

\begin{itemize}
\item P=Patient; \ y=Year/Years; \ d=Day; \ m=Month/Months; \ F=Female; \ M=Male; \ FS=focal seizures; \ GTCS=generalized tonic-clonic seizures; \ T=Tonic seizures; \ SE=Status epilepticus; \ S=Spasm; \ AA=Atypical absence; \ M=Myoclonic; \ EPC= Epilepsia partialis continua
\item N=Normal; \ AH=Atypical hypsarrhythmia; \ H=Hypsarrhythmia; \ Frequent=Frequent multiple and multifocal sharp waves, spike waves, sharp slow waves or spike slow waves; \ Infrequent=Infrequent sharp waves, spike waves, sharp slow waves or spike slow waves; \ BS=Burst suppression; \ LEV=levetiracetam; \ TPM=topiramate; \ VPA=valproate; \ LTG=lamotrigine; \ OXC=oxcarbazepine; \ KD=Ketogenic diet; \ PB=Phenobarbital; \ VNS=Vagus nerve stimulation; \ P=Prednisone; \ LCM=Lacosamide; \ MP=Methylprednisolone; \ CZP=Clonazepam; \ B6=Vitamin B6; \ NZP=Nitrazepam; \ VGB=Vigabatrin; \ QD=Quinidine; \ CLB=Clobazam; \ BAL=Baclofen; \ WG=Widen gap in extracerebral space.
\end{itemize}

Declarations

Acknowledgement

We appreciate all the patients and their guardians participating in this study. And I express my heartfelt gratitude for the hard work of all team members.

Ethics approval and consent to participate

The project ethics were approved by Ethic Committees of Children’s Hospital of Fudan University. All the experiment protocol for involving humans was in accordance to guidelines of national/international/institutional or Declaration of Helsinki.

Authors’ contributions

Chunhui Hu wrote the main manuscript text. Deying Liu and Tian Luo prepared figures and tables. Zhisheng Liu drafted the manuscript. Yi Wang revised the manuscript. All authors reviewed the manuscript.

Funding

The project was supported by Shanghai Municipal Science and Technology Major Project (Grant No. 2017SHZDZX01).

Availability of data and materials

The data that support the findings of this study are available from the authors upon reasonable request. The results/data/figures in this manuscript have not been published elsewhere, nor are they under consideration by another publisher.

Consent for publication

Written informed consent was obtained from all the patient’s parent for the publication.
None of all authors have any disclosures to make in relation to this manuscript.

References

1. Fisher RS, Acevedo C, Arzimanoglou A, et al. ILAE Official Report: A practical clinical definition of epilepsy. Epilepsia. 2014, 55 (4): 475–482.
2. Gürsoy S, Ergal D. Diagnostic Approach to Genetic Causes of Early-Onset Epileptic Encephalopathy. Journal of Child Neurology. 2015, 31 (4): 523–532.
3. Hwang S-K, Kwon S. Early-onset epileptic encephalopathies and the diagnostic approach to underlying causes. Korean Journal of Pediatrics. 2015, 58 (11): 407–14.
4. Allen NM, Conroy J, Shahwan A, et al. Unexplained early onset epileptic encephalopathy: Exome screening and phenotype expansion. Epilepsia. 2016, 57 (1): e12-e17.
5. Zhang Q, Li J, Zhao Y, et al. Gene mutation analysis of 175 Chinese patients with early-onset epileptic encephalopathy. Clinical Genetics. 2017, 91 (5): 717–724.
6. Kobayashi Y, Tohyama J, Kato M, et al. High prevalence of genetic alterations in early-onset epileptic encephalopathies associated with infantile movement disorders. Brain and Development. 2016, 38 (3): 285–292.
7. Olson HE, Kelly M, LaCoursiere CM, et al. Genetics and genotype-phenotype correlations in early onset epileptic encephalopathy with burst suppression. Annals of Neurology. 2017, 81 (3): 419–429.
8. Lee S, Kim SH, Kim B, et al. Genetic diagnosis and clinical characteristics by etiological classification in early-onset epileptic encephalopathy with burst suppression pattern. Epilepsy Research. 2020, 163: 106323.
9. Yoshimoto S, Imai K, Koshimizu E, Miyatake S. Different types of suppression-burst patterns in patients with epilepsy of infancy with migrating focal seizures (EIMFS). Seizure. 2019, 65: 118–123.
10. McGaughey A, Howell KB, Cross JH, et al. The genetic landscape of the epileptic encephalopathies of infancy and childhood. Lancet Neurol. 2016, 15(3): 304–16.
11. Guerini R, Moro F, Kato M, et al. Expansion of the first PolyA tract of ARX causes infantile spasms and status dystonicus. Neurology. 2007, 69(5): 427–33.
12. Deprez L, Weckhuysen S, Holm gren P, et al. Clinical spectrum of early-onset epileptic encephalopathies associated with STXBP1 mutations. Neurology. 2010, 75(13): 1159–65.
13. Milh M, Villeneuve N, Chouchane M, et al. STXBP1-related encephalopathy presenting as infantile spasms and generalized tremor in three patients. Epilepsia. 2011, 52(10): 1820–7.
14. Renzo Guerini, Pappini E. Epilepsy in Rett syndrome, and CDKL5- and FOXG1-gene-related encephalopathies. Epilepsia. 2012, 53(12): 2067–78.
15. Wengen TL, Chow P, Randle SC, et al. Novel findings of left ventricular non-compaction cardiomyopathy, microform cleft lip and poor vision in patient with SMC1A-associated Cornelia de Lange syndrome. Am J Med Genet A. 2017, 173 (2): 414–420.
16. Symonds JD, Joss S, Metcalfe KA, et al. Heterozygous truncation mutations of the SMC1Agene cause a severe early onset epilepsy with cluster seizures in females: Detailed phenotyping of 10 new cases. Epilepsia. 2017, 58 (4): 565–575.
17. Huisman S, Mulder PA, Redeker E, et al. Phenotypes and genotypes in individuals with SMC1A variants. Am J Med Genet A. 2017, 173 (8): 2108–2125.
18. Ballas-Martinez C, Sagrera A, Carrillo-de-Santa-Pau E, et al. Recurrent inactivation of STAG2 in bladder cancer is not associated with aneuploidy. Nat Genet. 2013, 45 (12): 1464–9.
19. Sarogni P, Palumbo O, Servadio A, et al. Overexpression of the cohesin-core subunit SMC1A contributes to colorectal cancer development. J Exp Clin Cancer Res. 2019, 38 (1): 108.
20. Thol F, Bollin R, Gehlhaar M, et al. Mutations in the cohesin complex in acute myeloid leukemia clinical and prognostic implications. Blood. 2014, 123 (6): 914–20.
21. Musio A. The multiple facets of the SMC1A gene. Gene. 2020, 743 144612.
22. Jansen S, Kleefstra T, Willemsen MH, et al. De novo loss-of-function mutations in X-linked SMC1A cause severe ID and therapy-resistant epilepsy in females: expanding the phenotypic spectrum. Clin Genet. 2016, 90 (5): 413–419.
23. Oguni H, Nishikawa A, Sato Y, et al. A missense variant of SMC1A causes periodic pharmaco-resistant cluster seizures similar to PCDH19-related epilepsy. Epilepsia Res. 2019, 155 106149.
24. Cukrov D, Newman TAC, Leask M, et al. Antioxidant treatment ameliorates phenotypic features of SMC1A-mutated Cornelia de Lange syndrome in vitro and in vivo. Hum Mol Genet. 2018, 27 (17): 3002–3011.
25. Pinto A, Bonucci A, Maggi E, et al. Anti-Oxidant and Anti-Infl ammatory Activity of Ketogenic Diet: New Perspectives for Neuroprotection in Alzheimer’s Disease. Antioxidants (Basel). 2018, 7 (5): 63.
26. Lima PA, Sampaio LPdB, Damasceno NRT. Ketogenic diet in epileptic children: impact on lipoproteins and oxidative stress. Nutritional Neuroscience. 2015, 18 (8): 337–344.
27. Thierry G, Bénétou C, Pichon O, et al. High-resolution array CGH defines critical regions and candidate genes for microcephaly, abnormalities of the corpus callosum, and seizure phenotypes in patients with microdeletions of 1q43q44. Hum Genet. 2012, 131(1): 145–56.
28. Leduc MS, Chao H-T, Qu C, et al. Clinical and molecular characterization of de novo loss of function variants in HNRNPU. American Journal of Medical Genetics Part A. 2017, 173 (10): 2680–2689.
29. Bramswig NC, Lüdecke H-J, Hamdan FF, et al. Heterozygous HNRNU variants cause early onset epilepsy and severe intellectual disability. Human Genetics. 2017, 136 (7): 821–834.
30. Durkin A, Albaba S, Fry AE, et al. Clinical findings of 21 previously unreported probands with HNRNU related syndrome and comprehensive literature review. American Journal of Medical Genetics Part A. 2020, 182 (7): 1637–1654.
31. Nashabat M, Qahtani XSA, Almakdob S, et al. The landscape of early infantile epileptic encephalopathy in a consanguineous population. Seizure. 2019, 69: 154–172.
32. Johannessen CU, SI J. Valproate past, present, and future. CNS Drug Rev. 2003, 9(2): 199–216.
33. Romoli M, Mazzucchetti P, D’Alonzo R, et al. Valproic Acid and Epilepsy From Molecular Mechanisms to Clinical Evidences. Curr Neuropharmacol. 2019, 17(10): 926–946.
34. Bown CD, Wang JF, Chen B, et al. Regulation of ER stress proteins by valproate therapeutic implications. Bipolar Disord. 2002, 4(2): 145–51.
35. Li Z, Wu F, Zhang X, et al. Valproate Attenuates Endoplasmic Reticulum Stress-Induced Apoptosis in SH-SY5Y Cells via the AKT/GSK3β Signaling Pathway. International Journal of Molecular Sciences. 2017, 18 (2): 315.
36. Fu J, Peng L, Wang W, et al. Sodium Valproate Reduces Neuronal Apoptosis in Acute Pentylenetetrazole-Induced Seizures via Inhibiting ER Stress. Neurochemical Research. 2019, 44 (11): 2517–2526.
37. Simmen T, Aslan JE, Blagoveshchenskaya AD, et al. PACS-2 controls endoplasmic reticulum–mitochondria communication and Bid-mediated apoptosis. The EMBO Journal. 2005, 24 (4): 717–729.
38. Thomas G, Aslan JE, Thomas L, et al. Caught in the act – protein adaptation and the expanding roles of the PACS proteins in tissue homeostasis and disease. Journal of Cell Science. 2017, 130 (11): 1865–1876.
39. Veeresh P, Kaur H, Sarmah D, et al. Endoplasmic reticulum–mitochondria crosstalk: from junction to function across neurological disorders. Annals of the New York Academy of Sciences. 2019, 1457 (1): 41–60.