Hydrodynamic gauge fixing and higher order hydrodynamic expansion

Jacopo De Nardis1,* and Benjamin Doyon2

1 Laboratoire de Physique Théorique et Modélisation, CNRS UMR 8089, CY Cergy Paris Université, 95302 Cergy-Pontoise Cedex, France
2 Department of Mathematics, King’s College London, Strand, WC2R 2LS London, United Kingdom

E-mail: jacopo.de-nardis@cyu.fr

Received 12 December 2022; revised 5 April 2023
Accepted for publication 28 April 2023
Published 22 May 2023

Abstract

Hydrodynamics is a powerful emergent theory for the large-scale behaviours in many-body systems, quantum or classical. It is a gradient series expansion, where different orders of spatial derivatives provide an effective description on different length scales. We report the first fully general derivation of third-order, or ‘dispersive’, terms in the hydrodynamic expansion. Our derivation is based on general principles of statistical mechanics, along with the assumption that the complete set of local and quasi-local conserved densities constitutes a good set of emergent degrees of freedom. We obtain fully general Kubo-like expressions for the associated hydrodynamic coefficients (also known as Burnett coefficients), and we determine their exact form in quantum integrable models, introducing in this way purely quantum higher-order terms into generalised hydrodynamics. We emphasise the importance of hydrodynamic gauge fixing at diffusive order, where we claim that it is parity-time-reversal, and not time-reversal, invariance that is at the source of Einstein’s relation, Onsager’s reciprocal relations, the Kubo formula and entropy production. At higher hydrodynamic orders we introduce a more general, nth order ‘symmetric’ gauge, which we show implies the validity of the higher-order hydrodynamic description.

Keywords: hydrodynamics, hydrodynamic expansion, dispersive hydrodynamic, integrable systems

* Author to whom any correspondence should be addressed.
1. Introduction and main results

Understanding the dynamics that emerge at large scales of space in time in many-body systems is one of the most fundamental problems of theoretical physics. Hydrodynamics is arguably a powerful framework for this purpose. In recent years it has been shown to apply to a wide variety of models, chaotic or integrable, deterministic or stochastic, relativistic or not [1–14]. In its most basic description, hydrodynamics is a dynamical theory for the time evolution of local physical observables, expressed as an expansion in derivatives with respect to space and time. The convergence of this expansion has been recently discussed in relativistic field theories [15], and, in quantum integrable models, the study of this expansion beyond first orders [16–32] is subject of current research [33–35]. Hydrodynamics purports that only a restricted set of observables is necessary to describe the emergent dynamics. According to fundamental principles of statistical mechanics and ‘ergodicity’, these emergent dynamical degrees of freedom are associated with the densities of extensive conserved quantities admitted by the system.

In this paper we focus on a general derivation of 3rd order hydrodynamic terms. Such terms are known in the one-dimensional hydrodynamic literature as dispersive terms.

In the literature on kinetic theory, 3rd order hydrodynamic equations are referred to as Burnett equations [36], see the book [37]. In kinetic theory of rarefied gases, such equations are typically obtained by a Chapman–Enskog expansion [38] from the Boltzmann equation. Usually, Burnett equations present linear instabilities [39, 40], and other types of expansions, from the Boltzmann equations, are possible, see in particular [41] and references therein; for the relativistic realm, see [42–45].
Despite a wide literature in kinetic theory, to our knowledge, there is little on the general theory of 3rd-order hydrodynamics in interacting many-body systems. In particular, a full and unambiguous derivation, from the microscopic dynamics, of Burnett coefficients does not appear to have been given. We mention only [46] for a numerical study of certain super-Burnett – 4th-order—coefficients in quantum spin chains; however the coefficients are not derived, simply adapted to spin chains from results in kinetic theory. A general theory is important, especially in view of the recent development of generalised hydrodynamics [17, 18], the hydrodynamics of integrable systems. This context makes it clear that hydrodynamics applies to a wide variety of underlying microscopic dynamics (classical and quantum gases, field theories, chains, etc), and that it is crucial to take the full set of conserved densities admitted by the model. A general theory that applies beyond the typically assumed set of conserved densities, the typical dispersion relations and the rarefied gases context of the Boltzmann equation, and that transcend the quantum and classical realms, would be helpful.

We adopt a method which, to our knowledge, has not been used in previous studies of higher-order hydrodynamics. Broadly following and extending the original work of Kubo [47], we use principles of statistical mechanics and linear response theory in order to derive the hydrodynamic equation, to 3rd order, in full generality: for a generic number of hydrodynamic modes, for generic dispersion relations (Galilean, relativistic, etc), and for a generic type of scaling (ballistic, diffusive, etc). Most importantly, this method allows us to derive expressions of all hydrodynamic coefficients in this general context, including all Burnett coefficients, directly in terms of correlation functions of the conserved modes and/or of their associated currents. We restrict to one dimension of space for simplicity, although there is no fundamental obstacle in generalising the theory developed here to higher dimensions.

Denoting by $q_i(x,t)$ the expectation values at spacetime point x,t of the local conserved densities $q_i(x,t)$ (labelled by i) admitted by the model (operators in the quantum case, functionals of the phase space in the classical case), then we define the hydrodynamic state at time t by means of a slowly-varying density matrix (in the quantum case) or probability density in the phase space (in the classical case); heuristically, this is

$$\text{hydrodynamic state at time } t = \text{local relaxation from } e^{-\int dx \beta'(x,t)q(x)}. \tag{1.1}$$

Here $\beta'(x,t)$ are local thermodynamic potentials and the Einstein convention of summation over repeated indices is implied from now on. From this, and establishing the relations between currents and densities after relaxation by using microscopic linear response theory, we derive the one-dimensional hydrodynamic equations up to third order in the gradient expansion, which take the general form

$$\partial_t q_i + A_i^j \partial_j q_i = \frac{1}{2} \partial_t \left(\mathcal{D}_i^j \partial_j q_i \right) \text{sgn}(t) + \frac{1}{2} \partial_i \left(\mathcal{W}_i^{(2)} k^k \partial_k q_i + \mathcal{W}_i^{(1,1)} j^j \partial_j q_i \partial_k q_k \right). \tag{1.2}$$

These are in fact of the form of continuity equations: indeed the flux Jacobian is of the form $A_i^j = \partial J_i / \partial q_j$, where $J_i = J_i(q)$ is the Eulerian current of charge q_i (the current in the stationary, entropy-maximised state that is characterised by the values q_i of the conserved densities).

We shall show that this higher-order hydrodynamic expansion emerges in many-body systems. All hydrodynamic coefficients, A_i^j, \mathcal{D}_i^j, $\mathcal{W}_i^{(2)} j^j$ and $\mathcal{W}_i^{(1,1)} j^j$ depend on the local conserved densities q_i’s. As far as we are aware, the coefficients $\mathcal{W}_i^{(2)} j^j$ and $\mathcal{W}_i^{(1,1)} j^j$ were not known before in full generality, and we will provide explicit, Kubo-like formulae for these, written in terms of space-time integrated correlation functions of densities and currents within stationary states (special cases of these are the known Burnett coefficients [37]). Moreover, we shall show how in some cases, as in a class of interacting integrable models and in free models, it is possible to choose a set of densities such that the equation reduces to the quasilinear form.
\[\partial_t q_i + A^i / \partial x^j q_j = \frac{1}{2} \partial_i \left(D^i / \partial x^j q_j \right) + \frac{1}{2} \partial_i \left(\mathcal{W}^{(2)} / \partial^2 x^j q_j \right). \] (1.3)

For hydrodynamic equations to correctly represent the large-scale behaviour of many-body systems, just writing the naive derivative expansion (1.2) is not sufficient. Two essential aspects to consider are (1) that the densities \(q_i \) of extensive conserved quantities are ambiguously defined, and this ambiguity must be lifted, and (2) that the general form of the derivative expansion is constrained by the underlying microscopic physics. In particular, the hydrodynamic coefficients must satisfy a number of relations, which are fundamental laws of many-body physics—it is in general not sufficient to simply use, for instance, the spacetime symmetries in order to constrain the form of the hydrodynamic coefficients. These fundamental laws guarantee that the correct physical behaviours arise from the emergent hydrodynamic equation.

For instance, one requires hyperbolicity of the Euler equation (the first-order expansion), the Onsager reciprocal relations for the diffusion coefficients, and non-negative entropy production at the diffusive scale—which imply irreversibility of the flow and stability of the hydrodynamic equations. It is important to correctly fix the conserved densities in a universal, model-independent fashion, and to uncover the universal constraints on hydrodynamic coefficients that imply these fundamental laws. We shall discuss how to choose conserved densities for the hydrodynamic equation in such a way that, under a natural definition of the total entropy, not only diffusive terms lead to entropy increase, but dispersive (third order) terms do not affect it.

We remark that in the kinetic theory of rarefied gas, the problem of the choice of conserved densities simply does not arise (or is somewhat hidden), as all quantities are defined in some physically sensible way using the phase-space density. However, in the present general setting, it is a crucial aspect.

In order to frame the problem, first recall that at the Euler order, it is reduced to determining the exact local currents \(J_i \) in homogeneous, stationary, clustering states: these are the maximal entropy states, Gibbs or generalised Gibbs ensembles, parametrised by the ensemble averages of conserved densities \(q_i \)'s. Indeed, at the Euler scale, the system is assumed to have locally maximised entropy (with respect to the available conservation laws). The function \(J_i(q) \) is the equation of state of the thermodynamics. In fact, it is expected that the Euler scale always exists for short-range interactions, independently of the specific structure of the microscopic model [48, 49].

At the diffusive order, the local maximisation principle does not hold anymore, and the average current receives higher-derivative corrections. The Kubo formula, obtained by a linear response argument, gives \(D_j^i \) in terms of spacetime-integrated stationary state correlation functions of currents. This presents a subtlety: the total conserved quantities under Hamiltonian evolution \(H \)

\[Q_i = \int dx q_i(x,t), \quad [H, Q_i] = 0, \] (1.4)

give the microscopic conserved densities \(q_i(x,t) \), satisfying the continuity equation \(\partial_t q_i(x,t) + \partial_j j_i(x,t) = 0 \), only up to spatial derivatives. Thus, there is a 'gauge ambiguity' at all length scales [34, 50], and the charge densities can always be redefined as

\[q_i(x) \rightarrow q_i(x) + \partial_i a_i^{(1)}(x) + \partial^2_i a_i^{(2)}(x) + \partial^3_i a_i^{(3)}(x) + \ldots. \] (1.5)

This ambiguity does not affect the Euler order but gives ambiguities from the diffusive order onwards. In [50, 51] it was proposed that PT symmetry fixes, in an essential way, the first functions \(a_i^{(1)} \), and that this gauge fixing extract the correct emergent degrees of freedom at the diffusive order. As we emphasise in the present paper, section 2, with this gauge fixing, basic principles of statistical mechanics guarantee that these hydrodynamic coefficients admit
the correct physics. In particular, the Onsager reciprocal relations hold, and entropy production is non-negative. This, we believe, is an important remark, especially in relation to some recent works investigating such aspects [52–55]. The diffusive order of hydrodynamics is sometimes broken: the Kubo formula may give infinity, implying that superdiffusion occurs instead of diffusion. This is typical in one dimension [56–61], although, in the restricted case of integrable models, the diffusive order exists except for special models [62, 63].

At the dispersive order, as far as we are aware, there is no general Kubo-like formula for the dispersive coefficients $W_{ij}^{(2)}$, $W_{ijk}^{(1,1)}$, and no general theory for fundamental laws they may obey. On the other hand the dispersive order of hydrodynamics is physically very relevant: for instance, we expect that dispersive hydrodynamics will describe in a universal fashion the dispersive shock waves observed in quasi-BEC [64–67], free-fermion models [33, 34, 68] and soliton gases [69]. In sections 3, 4 and appendix B, we obtain general, Kubo-like formulae for the dispersive hydrodynamic coefficients

$$W_{ij}^{(2)}$$, $$W_{ijk}^{(1,1)}$$.

We obtain them by an appropriate nonlinear response analysis, assuming that the microscopic model is Hamiltonian (quantum or classical).

The paper is organised as follows. In section 2 we discuss the PT gauge fixing and its general consequences at the diffusive level. In section 3 we explain the setup and express our main results for the dispersive coefficients. In section 4 we provide some general guidelines concerning the derivation of the main results: the evaluation of locally relaxed currents. We discuss in section 5 the general properties of the dispersive coefficients, in particular the choice of gauge $a_{ij}^{(2)}$, if it exists, for the resulting conserved densities to be the correct emergent degrees of freedom and the link with a notion of entropy production that is valid up to the dispersive order. We propose a gauge fixing procedure which we denote as symmetric gauge. In quantum integrable systems, this allows us to compute exactly the dispersive hydrodynamic coefficients, as we show (along with simple examples) in section 6. We conclude in section 7.

2. Diffusive hydrodynamics and PT gauge fixing

In this section, we review some basic notions related to hydrodynamics at the diffusive scale, as well as some results and concepts first introduced in [50, 51] which we believe are important to stress.

First, one should note that diffusion in many-body systems appears in two main different incarnations. On the one hand, one may look at the spatial spread of two-point, two-time correlation functions in some stationary state,

$$\langle q_i(x,t)q_j(0,0) \rangle^c = \langle q_i(x,t)q_j(0,0) \rangle - \langle q_i(x,t) \rangle \langle q_j(0,0) \rangle.$$

(2.1)

Under diffusive spreading, the variance $\int_{\mathbb{R}} dx x^2(q_i(x,t)q_j(0,0))^c$ grows linearly and we can define the coefficient of such a growth as the diffusion matrix times the covariance matrix $C_{ij} = \int_{\mathbb{R}} dx \langle q_i(x,t)q_i(0,0) \rangle^c$.

$$\mathcal{D}_{ij} \mathcal{C}_{ij} = \lim_{r \to \infty} r^{-1} \int_{\mathbb{R}} dx x^2(q_i(x,t)q_j(0,0))^c,$$

(2.2)

where we have neglected eventual ballistic components (see below). This is a consequence of hydrodynamic diffusion, and can be obtained by linear response on the diffusive hydrodynamic equation.
On the other hand, one may look at the response of each current under an externally applied field gradient. Understanding this requires a perturbative analysis of the microscopic dynamics under small applied forces, and therefore linear response analysis of the microscopic evolution equations. Looking at the linear response of various currents j_i (and again subtracting their eventual ballistic part) under the corresponding various forces F_i, one gets a matrix: the Onsager matrix,

$$L_{ij} = \left. \frac{\partial j_i}{\partial F_j} \right|_{F=0} \quad (2.3)$$

The general theory of diffusion is mainly characterised by four (related) important relations involving these quantities: the Einstein relation, Onsager reciprocal relations, the Kubo formula, and entropy production. Expressed in the general context of multiple conservation laws, these are as follows. First, the Einstein relation is the statement that the Onsager matrix is related to the diffusion matrix, by a factor of the static covariance matrix,

$$L_{ij} = D_{ik} C_{kj} \quad \text{(Einstein relation)} \quad (2.4)$$

Thus hydrodynamic diffusion, which describes large-scale dynamics, is determined by the response of currents to applied forces. Second, the Onsager reciprocal relations state that the Onsager matrix is symmetric:

$$L_{ij} = L_{ji} \quad \text{(Onsager reciprocal relations)} \quad (2.5)$$

This is surprising and says, in words, that the response of the ith current to the jth force is the same as that of the jth current to the ith force. Third, the Kubo formula, which makes Onsager reciprocal relations explicit, relates the Onsager matrix, and thus diffusion by the Einstein relation, to time-integrated total current correlations,

$$L_{ij} = \int_{-\infty}^{\infty} dt \int_{\mathbb{R}} dx \langle j_i(x,t), j_j(0,0) \rangle \quad \text{(Kubo formula)} \quad (2.6)$$

where the two-point correlation is symmetric, and in the quantum case given by the usual Kubo–Martin–Schwinger (KMS) product [70], see also appendix A. The Kubo formula is important, showing that the Onsager matrix is non-negative. This finally implies positive entropy production under the hydrodynamic equation. That is, the total entropy of the hydrodynamic state (1.1),

$$S = -\text{Tr} [\rho_{\text{hydro}} \log \rho_{\text{hydro}}] \quad \text{(2.7)}$$

can only increase by the formula

$$\frac{dS}{dt} = \int_{\mathbb{R}} dx \partial_\beta \beta^i L_{ij} \partial_\beta^j \geq 0 \quad \text{(entropy production)} \quad (2.8)$$

which makes diffusive hydrodynamics irreversible, see section 5.2.

It is a simple matter to account for the presence of ballistic transport in addition to diffusive behaviours; this translates into a different definition of the Onsager matrix (2.3), and the Kubo formula (2.6), where the ballistic part is subtracted out, see in particular the next section 3.

These important relations have been derived at various levels of generality and in various models. However, questions still arise regarding their domain of validity [52–55]. What properties must a many-body system possess for this general theory to hold? It is often believed that time reversal invariance is required; however, Onsager reciprocal relations have been observed in systems without time-reversal invariance [52].

We claim that time-reversal invariance is not necessary for the Einstein relation, Onsager reciprocal relations, the Kubo formula and positive entropy production. Instead, all relations
follow solely from general principles of statistical mechanics, along with the condition that the system admits PT-symmetry. The presence of PT-symmetry in a model means that there exists a choice of conserved densities \(q_i(x,t) \) and an involution \(\sigma \) of the algebra of observables, such that \(\sigma \) flips space and time but otherwise preserves all conserved densities,

\[
\sigma(q_i(x,t)) = q_i(-x,-t) \quad \text{(PT-symmetry)}.
\]

(2.9)

(Note that as a consequence of the conservation laws, PT-symmetry also preserves all currents, \(\sigma(j_i(x,t)) = j_i(-x,-t) \); it also preserves all maximal entropy states). That is, see explicitly equations (3.8) and (3.9),

\[
\text{PT-symmetry } \Rightarrow \quad \text{Einstein relation, Onsager reciprocal relations, Kubo formula, entropy production.} \quad (2.10)
\]

We believe this important statement has not been fully appreciated in the literature. As indeed mentioned around equation (1.5), local conservation laws \(\partial_t q_i + \partial_x j_i = 0 \) are invariant under the re-definitions, or gauge transformation, namely at diffusive order we are free to redefine the densities and their currents as

\[
q_i \mapsto q_i + \partial_x a_i^{(1)}, \quad j_i \mapsto j_i - \partial_t a_i^{(1)}.
\]

(2.11)

As shown in [50] and recalled in section 5, PT-symmetry fully fixes the conserved densities and currents up to terms that involve two derivatives (that is, \(a_i^{(1)} \) must be a total derivative with respect to space, or to any of the ‘times’ admitted by the model). A different choice of gauge in general not only breaks the general relations above but leads to incoherent hydrodynamic equations. Without the PT-symmetric choice of gauge, generically, the resulting hydrodynamic equations do not admit positive entropy growth, invalidating the use of hydrodynamics.

Below, we assume throughout that PT symmetry holds, equation (2.9).

3. Dispersive hydrodynamics: setup and main results

In this section, we express our main results about the dispersive-order hydrodynamic equations.

We consider a (one-dimensional) Hamiltonian system, quantum or classical, with (homogeneous) Hamiltonian \(H \) and which admits a certain number of conserved quantities with associated local conservation laws, equation (1.4). The hydrodynamic variables are the values of the conserved densities \(q_i(x,t) \) at spacetime point \(x,t \). To each such set of values we can associate generalised inverse temperatures \(\beta^{i} (x,t) \) by using averages in homogeneous, stationary maximal entropy states, which are of Gibbs form:

\[
\beta^{i} \leftrightarrow q_i : \frac{1}{Z} \text{Tr}(e^{-\beta^{i} Q} q_i) = q_i.
\]

(3.1)

When considering the hydrodynamic equation including the diffusive (and higher) orders, it is not true that the local state at \(x,t \) is a maximal entropy state. Thus the \(\beta^{i} (x,t)'s \), for given values of \(x \) and \(t \), do not describe the physical local state at \(x,t \), but are just a way of parametrising the average local densities. Nevertheless, the (abstract) stationary state described by \(\beta^{i} (x,t)'s \) can be used not only to describe the local averages, but also the hydrodynamic coefficients as functions of \(x,t \).

In such states, we thus consider one-point averages and connected two- and three-point correlation functions for local observables \(a(x,t), b(y,s), \ldots \), which are denoted by

\[
(a) = \frac{1}{Z} \text{Tr}(e^{-\beta^{i} Q} a), \quad (a(x,t), b(y,s)), \quad (a(x,t), b(y,s), c(z,u))
\]

(3.2)
(clearly \((q_i) = q_i\)). These are symmetric under the exchange of the fields. See appendix A for the explicit definitions, which in the quantum case involves the Kubo–Mori–Bogoliubov (KMB) inner product and its three-point generalisation. All hydrodynamic coefficients at \((x, t)\) are evaluated in terms of connected correlation functions evaluated in the state \(e^{-\beta (x,t) Q_0}\) corresponding to the local values of the \(q_i(x, t)\)’s (thus are functions of the \(q_i(x, t)\)’s).

We start by defining the standard static covariance matrices (or susceptibility matrices)
\[
C_{ij} = \langle Q_i, q_j \rangle = -\frac{\partial (q_i)}{\partial \beta^j}, \quad B_{ij} = \langle J_i, q_j \rangle = -\frac{\partial (J_i)}{\partial \beta^j}, \tag{3.3}
\]
the 3rd order covariance is
\[
C_{ijk} = \langle Q_i, Q_j, q_k \rangle = \frac{\partial^2 (q_i)}{\partial \beta^j \partial \beta^k}, \tag{3.4}
\]
and the flux Jacobian is
\[
A_{ij} = B_{ij} C^{jk} = \frac{\partial (J_i)}{\partial (q_j)}. \tag{3.5}
\]

Here and below, we use the upper-index shorthand for the inverse \(C\) matrix
\[
C_i^j C^{jk} = \delta^i_k, \tag{3.6}
\]
as well as Einstein’s notation of implied summation over repeated upper and lower indices.

We will show in section 4 and appendix B that, by evaluating the form of the currents as functions of the densities after local relaxation using microscopic nonlinear response theory, the hydrodynamic expansion of the current leads to the following expression for the currents \(j_i(x, t)\) of the hydrodynamic variables \(q_i(x, t)\) at point \(x\)
\[
j_i = \langle j_i \rangle - \frac{1}{2} L_{ij}^{(1)} \partial^k q_k \operatorname{sgn}(t) + \frac{1}{2} L_{ij}^{(2)} \partial^k \beta^j + \frac{1}{2} L_{ij}^{(1,1)} \partial \beta^j \partial \beta^k. \tag{3.7}
\]

Note how the diffusive part of the current has a factor \(\operatorname{sgn}(t)\). This characterises the time direction in which evolution is taken: expression (3.7) is to be put within the conservation law giving the hydrodynamic equation, which is assumed to evolve from its initial condition at time 0. The hydrodynamic current takes different forms for a microscopic evolution towards positive times (\(\operatorname{sgn}(t) = 1\)) and towards negative times (\(\operatorname{sgn}(t) = -1\)), because in both cases, entropy should increase. This is a sign of irreversibility.

The diffusive Onsager matrix derived from the hydrodynamic expansion reads in full generality as
\[
L_{ij}^{(1)} = \lim_{t \to \infty} 2 \int_{-\infty}^{\infty} dy \left[\langle j_i(y, t), q_j \rangle - A_{ij}^{(1)}(q_k(y, t), q_j) \right]. \tag{3.8}
\]

Here and below, when no arguments appear, the observable is evaluated at \((0, 0)\). Expression (3.8), in general, is neither symmetric nor positive definite, and does not satisfy Einstein’s relation. By imposing PT symmetry, it can be recast into the standard Kubo-like formula
\[
\mathcal{L}_{ij}^{(1)} = \int_{-\infty}^{\infty} ds \left(J_i(s), j_j \right)^C, \tag{3.9}
\]
where \(J_i(s) = \int dy j_i(y, s)\) and the superscript \(^C\) indicates that the infinite time limit of the correlator is subtracted out:
\[
\left(J_i(s), j_j \right)^C = \langle J_i(s), j_j \rangle - \lim_{t \to \infty} \langle J_i(t), j_j \rangle = \langle J_i(s), j_j \rangle - A_{ij}^C(Q_k, j_j). \tag{3.10}
\]

where hydrodynamic projection has been used in the last equality. Now expression (3.9) is symmetric, and can be shown to be positive semi-definite.
At the dispersive order, we have the two following higher-order coefficients

\[
\mathcal{L}_{ik}^{(2)} = \left[-\int \text{d}x \, x^2 (j_i(x,t) - A_i^L q_i(x,t), q_k(0,0)) \right]_{\rho}
\]

\[
\mathcal{L}_{ilm}^{(1,1)} = \left[\int \int \text{d}x \text{d}y (j_i(0,t) - A_i^L q_i(0,t), q_l(x,0) q_m(y,0)) \right]_{\rho}. \tag{3.11}
\]

The symbol \([\cdot]_{\rho}\) means that one should only retain the coefficient of order \(O(\rho^3) = O(1)\) in an asymptotic expansion in integer powers of \(t\) at large \(t\). Assuming that the asymptotic expansion has a finite number of positive powers, this can be written explicitly as limits with subtractions of the positive powers by solving the recursive system

\[
[f(t)]_{\rho} = \lim_{|t| \to \infty} f_n(t) / \rho^n, \quad f_n(t) = f(t) - \rho^{n+1} [f(s)]_{\rho^{n+1}}, \tag{3.12}
\]

starting with \(f_{n+1}(t) = f(t)\) if \(f(t) = O(t^n)\). In fact, in general, the asymptotic expansion may be different as \(t \to \infty\) and \(t \to -\infty\); we account for this by keeping factors of \(\text{sgn}(t)\) in \([f(t)]_{\rho}\). As we will see, the expressions within the square brackets above have integer-power asymptotic expansion; for \(\mathcal{L}_{ik}^{(2)}\), the expression is \(O(t)\), and for \(\mathcal{L}_{ilm}^{(1,1)}\), it is \(O(t^2)\), and we may also write

\[
\mathcal{L}_{ij}^{(1)} \text{sgn}(t) = 2 \int \text{d}y \{j_i(y,t), q_j - A_i^L q_k(y,t), q_j\} \bigg|_{\rho}. \tag{3.13}
\]

Equation (1.2) is obtained from the above (higher-order) Onsager matrices by setting:

\[
\mathcal{Q}_i^j = \mathcal{L}_{ik}^{(1)} \mathcal{C}^{kj}, \quad \mathcal{W}_i^{(2)} j^k = \mathcal{L}_{ik}^{(2)} \mathcal{C}^{kj}, \quad \mathcal{W}_i^{(1,1)} j^k = -(\mathcal{L}_{ilm}^{(1,1)} + \mathcal{W}_{ik}^{(1)} \mathcal{C}_{lm}^{j} \mathcal{C}^{kj} \mathcal{C}^{mk}). \tag{3.14}
\]

Equations (1.2), (3.11) and (3.14) are our main results. Further, two related results are as follows.

First, the equation (1.2) also implies equations for the evolution of the two or higher point functions. For two-point functions in space-time stationary states, we apply hydrodynamic linear response theory by taking the functional derivative \(\delta / \delta \beta(t,0,0)\) on the hydrodynamic average, and the homogeneous limit. We find for the Fourier transform \(S_{qq}(k,t) = \int \text{d}x e^{ikx} (q(x,t), q(0,0))\):

\[
S_{qq}(k,t) = \exp \left[A_i k + \frac{1}{2} \mathcal{Q}_i^j (ik)^2 |t| + \frac{1}{2} \mathcal{W}_i^{(2)} (ik)^3 \right] \mathcal{C}. \tag{3.15}
\]

For higher-point functions, one should generalise the Euler-scale hydrodynamic projection theory to higher derivative orders, and also consider potential long-range correlations [71]; we hope to come back to this in future work.

Second, we shall then show in section 5 that the imposition of a 2nd order symmetric gauge guarantees positive entropy increase for equation (1.2) and a simpler definition of the hydrodynamic coefficients

\[
\mathcal{L}_{ik}^{(2)} = \mathcal{L}_{ik}^{(2)} = \lim_{t \to 0} \left[-\int \text{d}x \, x^2 (j_i(x,t) - A_i^L q_i(x,t), q_k(0,0)) \right]
\]

\[
\mathcal{L}_{ilm}^{(1,1)} = \mathcal{L}_{ilm}^{(1,1)} = \lim_{t \to 0} \left[\int \int \text{d}x \text{d}y (j_i(0,t) - A_i^L q_i(0,t), q_l(x,0) q_m(y,0)) \right]. \tag{3.16}
\]

Note how the extraction of the \(O(\rho^3)\) coefficient in a large-time expansion has been replaced by the simple limit \(t \to 0\) (the limit can be taken from above or from below, giving the same result by PT symmetry). The 2nd order symmetric gauge may or may not exist; this will depend on the details of the model under study. We will show that it exists for the free fermion model, and provide indications that it does also for the hard-rod model.
4. Hydrodynamic expansion

We now explain the main steps in the derivation of the dispersive terms in the results equations (3.7), (3.11) and (3.14), from which the hydrodynamic expansion (1.2) follows by the continuity equations. We do this using microscopic response theory, as introduced in [51], which allows us to correctly describe the local relaxation necessary for the emergence of the hydrodynamic equation. All technical calculations are reported in appendix B.

The technique relies on the ansatz that the relation between the average currents j_i and densities q_i, within the nth-order hydrodynamic approximation, can be obtained as the relation that arises for such quantities in the large-time limit, from a density matrix ρ_{hydro} of the form

$$\rho_{\text{hydro}} = \exp \left[- \int dx \sum_i \beta^i(x) q_i(x) \right] / Z, \quad (4.1)$$

expanded to nth order in derivatives of the potentials $\beta^i(x)$. When trying to evaluate the large-time limit of the currents and densities after doing the expansion in derivatives of potentials, order by order, one obtains divergences; this is because the true large-time limit is non-perturbative in potential derivatives. Thus the large-time asymptotic expansion of these quantities has growing terms. However, we will show that the expression of large-time currents in terms of large-time densities and their spatial derivatives, has a finite and well-defined large-time limit: all growing terms cancel. This fact was already known up to the 2nd order, and here we show it at the 3rd order of derivatives in the potentials. The resulting expression of currents as functions of densities and their spatial derivatives is therefore valid at the timescale when ‘partial’ relaxation has occurred (mesoscopic timescale). Indeed, it is natural to define the timescale when partial relaxation has occurred as the timescale controlled by the vanishing terms in the large-time asymptotic expansion of currents and densities, as these are expected to be of microscopic origin. The resulting expression for the currents is then the correct one to use in the hydrodynamic expansion, as microscopic scales are much smaller than the timescale associated with the hydrodynamic evolution; this expression expresses the local relaxation that occurs within ‘fluid cells’.

Note that the finiteness of the currents when written in terms of densities and their spatial derivatives at large times, at the third order of the derivative expansion, is a nontrivial statement; this is one of the main technical achievements of this paper.

For the argument, it is sufficient to consider ρ_{hydro} to be at time $t = 0$, and to evaluate currents and densities at the point $x = 0$.

Expanding the density matrix, we write

$$\rho_{\text{ini}} = \exp \left[- \int dx \sum_i \beta^i(x) = \rho_{\text{ini}} \right] / Z. \quad (4.2)$$

Here and below, for convenience, we denote $f = f(0)$, $\partial f = \partial_x f(x)|_{x=0}$, $\partial_x^2 f = \partial_x^2 f(x)|_{x=0}$. Notice that the potentials $\beta^i(x)$ are not the same as the $\bar{\beta}^i(x)$ in (3.1); the $\beta^i(x)$ are formal potentials associated values of conserved densities q_i (here, obtained in the large-time limit). In contrast, the $\bar{\beta}^i$ are the initial values of the potentials used to study the relaxation process. The two sets of potentials are related to each other via a derivative expansion, $\beta^i = \bar{\beta}^i + O(\partial^2 \bar{\beta})$.

The relaxation process is studied by expanding (4.2), evaluating the currents and densities order by order, and taking the large time limit of their (microscopic) time evolution.

In the following, we shall lighten the notation by discarding indices. We use $\langle \cdot \rangle$ for the expectation value in the state $Z^{-1} e^{-\beta Q}$, and likewise $\langle \cdot \rangle$ and $\langle \cdot, \cdot \rangle$ are the appropriate
connected, KMB-type correlators (see appendix A) in that state. With this, we define the integrated correlators
\[U^{(n)} = - \int \text{d}y^n(q(0,t),q(y,0)), \quad U^{(n,m)} = \int \text{d}y^n z^m(q(0,t),q(y,0),q(z,0)) \]
and
\[V^{(n)} = - \int \text{d}y^n(j(0,t),q(y,0)), \quad V^{(n,m)} = \int \text{d}y^n z^m(j(0,t),q(y,0),q(z,0)). \]
We are interested in \(\bar{\rho}(0,t) = Z^{-1} \text{Tr}(\rho_{\text{hydro}}(0,t)) \) with the state \((4.2) \). The expansion takes the form
\[
\hat{j}(0,t) = \langle \hat{j} \rangle + V^{(1)} \bar{\rho} \beta + \frac{1}{2} V^{(2)} \bar{\rho}^2 \beta + \frac{1}{2} V^{(1,1)} (\partial \beta, \partial \beta), \\
\hat{q}(0,t) = \langle q \rangle + U^{(1)} \bar{\rho} \beta + \frac{1}{2} U^{(2)} \bar{\rho}^2 \beta + \frac{1}{2} U^{(1,1)} (\partial \beta, \partial \beta), \\
\bar{\partial} \hat{q}(0,t) = U^{(0)} \bar{\rho} \beta + U^{(1)} \bar{\rho}^2 \beta + U^{(1,0)} (\partial \beta, \partial \beta), \\
\bar{\partial}^2 \hat{q}(0,t) = U^{(0)} \bar{\rho}^2 \beta + U^{(0,0)} (\partial \beta, \partial \beta). \tag{4.5}
\]
Here, we use the notation \((\partial \beta, \partial \beta)\) to denote contraction respect to different indices: \(\langle \ldots \rangle (\partial \beta, \partial \beta) \equiv \sum_{n,m} \langle \ldots \rangle \partial^n \beta \partial^m \beta,\) to be contrasted with \((\ldots) \partial^2 \beta \equiv \sum_{n,m} \partial^n \beta \partial^m \beta,\) etc. We also used the symmetry \(U^{(1,0)}_{jk} = U^{(0,1)}_{kj}.\) The remaining non-contracted index is the same on the right- and left-hand sides.

The relaxation process is described by expressing the values of the currents in the first line of \((4.5)\) as functions of the hydrodynamic variables \((3.1)\) and their spatial derivatives, i.e.
\[q_i \equiv \hat{q}_i(0,t), \quad \partial q_i \equiv \bar{\partial} \hat{q}_i(0,t), \quad \partial^2 q_i \equiv \bar{\partial}^2 \hat{q}_i(0,t). \tag{4.6} \]
As explained, this step is fundamental in order to obtain finite results at the mesoscopic timescale. We simply expand the integrated correlators as asymptotic series in large \(t\), taking care of re-expressing all integrated correlators as functions of \(\bar{\beta}'\)s instead of \(\beta'\)s, the former defined via \((3.1)\). Again, quite remarkably, under the assumption that asymptotic expansions of integrated correlators at large times take integer powers, in the large (mesoscopic) time limit the currents \(\hat{j}_i = j_i(0,t)\) become finite expressions of \(q_i, \partial q_i, \partial^2 q_i\) (all positive-power, time-divergent terms cancel). The computations are reported in appendix B, giving our main results. It would be interesting to extend these ideas to situations where large-time asymptotic expansions take non-integer powers (giving superdiffusion and related phenomena).

5. Gauge fixing

As mentioned in the introduction, a full specification of the 3rd-order hydrodynamics requires an appropriate gauge fixing, namely a precise choice of the hydrodynamic densities \(q_i(x)\), see equation \((1.5)\). In this section, we introduce the symmetric gauge. This is done for a quantum theory, but we expect a similar concept to exist also for classical theories. We propose that the symmetric gauge, if it exists, is the correct gauge. We justify this statement by showing that hydrodynamics constructed under the symmetric gauge has a positive increase of the space-integrated local entropy of the hydrodynamic state (more precisely, the 3rd-order term in the hydrodynamic equation does not affect the entropy, thus the entropy increase from the diffusive term, if it is present, still is dominant and positive).

Recall that as we are looking at higher orders in the hydrodynamic derivative expansion, the assumption that the system has locally maximised entropy, and therefore is locally described by
a Gibbs state, is not valid anymore. Hence, the notion of local entropy cannot simply be taken as the von Neumann entropy of the local Gibbs state. We here introduce an appropriate and natural definition of local entropy; the result that the total entropy may only increase (implying irreversibility of the flow) justifies why this definition is useful.

We emphasise that, for any given system, there is no a priori guarantee that the symmetric gauge, or any gauge that implies irreversibility (and therefore stability) of the hydrodynamic flow, should exist. That is, there may not be local conserved densities that satisfy the conditions of the symmetric gauge. If the gauge does not exist, one may argue that the 3rd-order hydrodynamic is simply not a valid description of the large-scale physics, and additional degrees of freedom, beyond the conserved densities \(q_i(x) \), must be introduced to characterise the state at a given time. We shall see that in some cases there must exist a space of local densities under the symmetric gauge.

5.1. The symmetric gauge

Let us consider the eigenstates \(\{|e\rangle\}_e \) of the (homogenous) Hamiltonian \(H \), which also diagonalises the total momentum operator \(K \), with momentum and energy eigenvalues \(k_e, \varepsilon_e \). We consider the matrix elements of the charge densities at a given position \(x = 0 \), written as \(\langle e|q_i(0)|e'\rangle \). By translation invariance,

\[
\langle e|q_i(x)|e'\rangle = e^{ik_i(x) - k_i(x)} \langle e|q_i(0)|e'\rangle,
\]

and, as we consider the system of infinite size and on continuous space, the total momentum \(k_e \) takes all values in \(\mathbb{R} \). Notice that the eigenstate parametrisation \(\{e\} \) may be fully characterised by different quantities beyond energy \(\varepsilon_e \) and momentum \(k_e \), as the latter can, in principle, be highly degenerate. Under the choice of such a parametrisation, we then define charges \(q_i \) in the \(n \)th \textit{order symmetric gauge} such that their matrix elements do not depend on the momentum difference up to corrections of order \((k_{e'} - k_e)^{n+1} \), i.e.

\[
\frac{\partial^n}{\partial (k_{e'} - k_e)^n} \langle e|q_i(0)|e'\rangle \Big|_{k_{e'} - k_e = 0} = 0 \quad \forall \ell \leq n.
\]

Here \(\partial / \partial (k_{e'} - k_e) = \frac{1}{2} (\partial / \partial k_{e'} + \partial / \partial k_e) \), and all other parameters in the choice of parametrisation of the state \(|e\rangle \) are kept fixed under differentiation.

This gauge may always be formally achieved by using the \(n \)th order gauge shifts (see equation (1.5))

\[
q_i(x) \mapsto \tilde{q}_i(x) = q_i(x) + \sum_{\ell=1}^n \partial^n \alpha_i^{(\ell)}(x).
\]

Indeed, we may choose the \(\alpha_i^{(\ell)}(x) \) to cancel the momentum-difference dependence of the matrix elements up to corrections of order \(O((k_e - k_{e'})^{n+1}) \),

\[
\langle e|\tilde{q}_i(0)|e'\rangle = \langle e|q_i(0)|e'\rangle + \sum_{\ell=1}^n [i(k_{e'} - k_e)]^\ell \langle e|\alpha_i^{(\ell)}(0)|e'\rangle,
\]

by choosing appropriately their matrix elements for \(k_e \approx k_{e'} \). In fact, this can be expressed quite explicitly using the centre-of-mass operator \(X \) conjugate to the total momentum \([X,K] = i, \) which acts as

\[
X|e\rangle = -i \frac{\partial}{\partial k_e} |e\rangle.
\]
The operators \(\tilde{a}_i^{(\ell)} \) can be constructed recursively as multiple anticommutators with the centre of mass operator \(X \), by cancelling the leading power of \(k_\pi - k_\epsilon \) at each step. We define \(q_i^{(\ell)} = q_i^{(\ell-1)} + \partial_i q_i^{(\ell)} \) with \(q_i^{(0)} = q_i \) and \(q_i^{(n)} = \tilde{q}_i \), and we have

\[
a_i^{(\ell)}(0) = -\frac{1}{2\pi^2} \langle X, \ldots, [X, q_i^{(\ell-1)}(0)] \rangle. \tag{5.6}
\]

In fact, by the recursive procedure, one can see that this equality is required, at each step, only for matrix elements at equal momenta \(k_\pi = k_\epsilon \).

For example, imposing the second-order symmetric gauge reads as

\[
\langle e | \tilde{q}_i(0) | e' \rangle = \langle e | q_i(0) | e' \rangle + i(k_\pi - k_\epsilon) \langle e | a_i^{(1)}(0) | e' \rangle - (k_\pi - k_\epsilon)^2 \langle e | a_i^{(2)}(0) | e' \rangle, \tag{5.7}
\]

where

\[
\langle e | a_i^{(1)} | e' \rangle = i \frac{\partial}{\partial(k_\pi - k_\epsilon)} \langle e | q_i | e' \rangle, \tag{5.8}
\]

and

\[
\langle e | a_i^{(2)} | e' \rangle = \frac{\partial^2}{\partial(k_\pi - k_\epsilon)^2} \langle e | q_i + \partial_i q_i^{(1)} | e' \rangle
= \frac{\partial^2}{\partial(k_\pi - k_\epsilon)^2} \langle e | q_i | e' \rangle - \frac{\partial^2}{\partial(k_\pi - k_\epsilon)^2} (k_\pi - k_\epsilon) \frac{\partial}{\partial(k_\pi - k_\epsilon)} \langle e | q_i | e' \rangle. \tag{5.9}
\]

We refer to as fully symmetric gauge the case where all functions \(a_i^{(\ell)} \) are fixed for all \(\ell > 0 \), and matrix elements of charge densities do not depend at all on the total momentum difference, namely the \(n = \infty \) order in equation (5.4).

Two caveats are in order about this formal construction. First, the operator \(X \) is not uniquely determined by \([X, K] = i\). Only relation (5.5) fixes it. Thus the choice of \(X \) is related to the choice of parametrisation \(\{e\} \) of the eigenstates \(e \) for the extra quantum numbers not fixed by the total momentum and energy. Second, in general, there is no guarantee that the multiple anticommutator expression (5.6) gives a local operator \(\tilde{q}_i \). Yet, the locality of the densities is (presumably) important for the hydrodynamic equation to make sense. For instance, in a system of \(N \) particles with positions \(\hat{x}_i \) and momenta \(\hat{p}_i \), the total momentum operator is \(K = \sum_i \hat{p}_i \), and a natural choice is \(X = N^{-1} \sum_i \hat{x}_i \); but the anticommutators of \(X \) with local observables are not generically local. Perhaps one may find an appropriate choice of \(X \) (thus of eigenstates parametrisation) for the result to be local. More likely, the condition (5.6) is only satisfied for \(k_\pi \approx k_\epsilon \), and the matrix elements beyond this neighbourhood are fixed by requiring locality. In order to argue that it should be possible to keep locality after gauge fixing, recall that locality is assessed by considering the commutators (here, we concentrate on diagonal matrix elements for simplicity of the discussion)

\[
\langle e | [q_i(x), q_j(0)] | e' \rangle = 2 \text{Im} \sum_{e''} e^{i(k_\pi - k_\epsilon) x} \langle e | q_i | e'' \rangle \langle e'' | q_j | e' \rangle \tag{5.10}
\]

and requiring the vanishing of this commutator at large enough distances. Thus, if the charges \(q_i \) after being gauged remain local, all such commutators should decay at large \(x \). The formally-written sum over \(e'' \) includes an integral over the continuous values of \(k_\pi \), and a typical mechanism for the vanishing of commutators is to perform a contour deformation of this integral, towards imaginary directions, up to the positions of singularities of the matrix elements or the integration measure. The imaginary part of the closest such position determines the exponent in the (expected) exponential decay. This mechanism suggests that it is the analytic structure...
of the matrix element of \(\langle e | q | e' \rangle \) away from \(k_e = k_{e'} \), that determines the locality of \(q_i \), hence generically, we should expect that it is possible to modify form factors in a neighbourhood of \(k_e = k_{e'} \) without affecting the locality of the densities \(q_i(x) \).

We remark that the PT gauge choice we discussed earlier is a weaker condition than the symmetric gauge, but the modification by the gauge functions \(a_i^{(\ell)} \), as constructed above, does not affect the PT symmetry of the charge densities. Thus, all conclusions that follow from PT symmetry are unchanged. Indeed, as shown in [50, appendix C2] PT gauge fixing is unique up to a shift \(\partial_x z(x) \), where \(z(x) \) is a PT antisymmetric operator. As \(\sigma(X) = -X \), any shift functions \(a_i^{(\ell)} \) constructed by equation (5.6) has PT-parity equal to \((-1)^\ell\), i.e. \(\sigma(a_i^{(\ell)}(x)) = (-1)^\ell a_i^{(\ell)}(-x) \), hence it does not affect PT-symmetry of \(q_i \). Notice moreover that for every \(\ell \) odd, all diagonal matrix elements must vanish, \(\langle e | a_i^{(\ell)} | e \rangle = 0 \), and thus \(a_i^{(\ell)} \) must be a total, either space of time, derivative.

For a consistent hydrodynamic theory at diffusive (2nd) order, PT symmetry is sufficient, as we have argued above (and see [50]). At dispersive (3rd) order, as we now argue, the 2nd order symmetric gauge is enough. In fact, it implies that integrated correlators appearing in \(\langle J \rangle \) are all polynomial functions in \(t \) (with in general different polynomials for the expansion as \(t \to \pm \infty \) as per time-reversal symmetry / anti-symmetry), and in particular

\[
\mathcal{G}^{(2)} = \mathcal{G}_0^{(2)}, \quad \mathcal{G}^{(1,1)} = \mathcal{G}_0^{(1,1)},
\]

(5.11)

where the coefficients on the right-hand side are obtained by computing the integrated correlators directly at time \(t = 0^+ \). This, as we show in section 5.2, guarantees a positive entropy increase.

Let us argue for equation (5.11): First, let us notice the important fact that matrix elements of densities and currents indeed satisfy the continuity equation

\[
\left(\varepsilon_e - \varepsilon_{e'} \right) \langle e | q_i(0) | e' \rangle = (k_e - k_e') \langle e | j_i(0) | e' \rangle,
\]

(5.12)

therefore, modulo a zero density of states, the matrix elements of the charge densities \(q_i \), between states with zero momentum difference \((k_e - k_{e'}) = 0\) are zero unless their energy difference is also zero \((\varepsilon_e - \varepsilon_{e'}) = 0\). We then insert a resolution of identity \(\sum_{e'} | e' \rangle \langle e' | \) in the computation of one of the correlation functions appearing in (4.5)

\[
[X^{(2)}]_{ik} = \sum_{e} \sum_{e'} \rho_{e,e'} \delta(k_e - k_{e'}) e^{-i(\varepsilon_e - \varepsilon_{e'})} \langle e | q_i | e' \rangle \langle e' | j_k | e' \rangle.
\]

(5.13)

The measure \(\rho_{e,e'} \) is the KMS density of states obtained after integration over the imaginary time. In the 2nd order symmetric gauge, the derivative of momenta can not act on the matrix elements, as they do not depend on \(k_e - k_{e'} \), therefore it can only act on the measure \(\rho_{e,e'} \) or the energy phase \(e^{-i(\varepsilon_e - \varepsilon_{e'})} \), but keeping the constraint that then the sum over \(e' \) only involves states with zero energy difference \(\varepsilon_e - \varepsilon_{e'} = 0 \). We conclude that the correlator must be a polynomial in \(t \). One can then easily repeat the same argument for the integrated correlators \(U^{(2)} \), as well as \(U^{(1,1)} \) and \(U^{(1,1)} \).

In quantum integrable models, it is known how to define matrix elements between stationary states, defined by quasiparticle densities, and their excitations, defined by particle-hole shifts [50, 72–74]. There, every charge density \(q_i(0) \) acts on a quasiparticle state specified by its density \(\rho_0 \) of quasiparticles, in the following manner

\[
q_i(0) | \rho_0 \rangle = \sum_{e'} F_{e'}^{(q_i)} | \rho_0, e' \rangle,
\]

(5.14)
where $F_{\mu}^{(q_{i})}$ are usually called finite-density form factors and the excitations ϵ' are typically in the form of particle-hole, (ph), namely a set of h_i, the holes, are replaced by a new set p_i, the particles, in the finite-density thermodynamic state $|\rho_\theta\rangle$ (characterised by dressed momentum and energy $k(\theta), \epsilon(\theta)$ and particle filling $n(\theta)$) and the summation over states become a sum over particle-hole contributions

$$
\sum_{e'} = \sum_{m=1}^{\infty} \frac{1}{(m!)^2} \left[\prod_{i=1}^{m} \int \frac{dp_i}{2\pi} k'(p_i)(1-n(p_i)) \int \frac{dh_i}{2\pi} k'(h_i)n(h_i) \right]. \tag{5.15}
$$

The only non-zero measure set of states with zero momentum and energy with finite matrix elements are in the one and two-particle hole sectors. Indeed we have, for states differing by one particle-hole excitation, energy and momentum difference reads

$$
1\text{ph} \quad \epsilon(p) = \epsilon(h), \quad k(p) - k(h), \tag{5.16}
$$

and zero momentum implies directly zero energy. For two particle holes instead, energy and momentum difference reads

$$
2\text{ph} \quad \epsilon(p_1) + \epsilon(p_2) = \epsilon(h_1) + \epsilon(h_2), \quad k(p_1) + k(p_2) = k(h_1) + k(h_2). \tag{5.17}
$$

Here clearly zero momentum difference does not directly imply zero energy difference, but there exist a non-zero measure set of states where energy also is zero, namely those states where the difference $p_1 - h_1$ and $p_2 - h_2$ (or equivalently $p_1 - h_2$ and $p_2 - h_1$) are sent to zero. These states are known to have diverging terms in their matrix elements that compensate their zeros at small momentum (giving this way to finite matrix elements with zero momentum and energy). Their contribution contains the diffusive parts of the integrated correlation function [50, 75, 76]. At higher particle-hole numbers there is no such divergence at zero energy and momentum (modulo a zero density of states) and therefore form factors with zero momentum are strictly zero. Moreover, by imposing a nth symmetric gauge, they are zero up to $O((k_n - k_m)^{n+1})$ corrections, and therefore they can be neglected in the calculation of any correlation function of the type as in (4.5)

$$
\int dy y^n(q_i(y,t),o), \tag{5.18}
$$

(with a generic operator o) and their higher points generalisation. This statement leads to the computation of the coefficient (6.16), which is reported in section D.

Finally a comment on the existence of the symmetric gauge at order larger than 1 (the first order is simply PT symmetry as specified above). It is clear that in any model where the centre of mass operator X can be written we can gauge its densities as in (5.6). This is doable in any model on the continuum, where momentum can always be defined. For models on the lattice or generically with broken translational symmetry we cannot prove the existence of such a gauge, even if it could be effectively possible to introduce a quasi-conserved momentum operator or a non-local one (as is the case in interacting quantum integrable models).

5.2. Entropy production

The increase, over hydrodynamic times, of the total entropy, provides a measure of the validity of the hydrodynamic equation. Indeed, the total entropy, evaluated as the sum over all hydrodynamic fluid cells of each cell’s entropy, can only increase, as the information that the state contains, as seen as a set of separate fluid cells, can only decrease. This is irreversibility of the hydrodynamic flow. Intuitively, a negative entropy increase would signify that information from microscopic (neglected) degrees of freedom is coming up to the hydrodynamic state,
in validating its use. This is why choosing the appropriate gauge for the densities \(q_i(x) \) (that is, the appropriate total-derivative terms, see (1.5)) is fundamental to describing the state properly at the hydrodynamic scale. Only those sets of densities (not necessarily unique) that guarantee positive entropy increase are valid for a correct hydrodynamic description.

This however brings the question of the correct definition of the total entropy of fluid cells. At the Euler scale, this is straightforward, as each fluid cell is assumed to have maximised entropy, with \(\beta'(x,t) \) describing the local Lagrange parameters. The von Neumann entropy of each maximal-entropy state is the natural candidate, and the correct one, giving zero entropy increase at the Euler scale. At the diffusive scale, the states in fluid cells are not maximal entropy states, as expectations of local observables admit first-derivative corrections. Nevertheless, it turns out that the same (naive) definition of the local entropy—the von Neumann entropy associated to \(\beta'(x,t) \)’s—also correctly gives entropy increase.

At the third order, however, this would be too naive. In this subsection, we explain what the correct definition is, which in principle should be valid at all orders; why it reproduces the naive one at diffusive order; and why, in the symmetric gauge, the third-order (dispersive) contribution to the entropy increase vanishes, thus guaranteeing (with entropy increase from the diffusive order) the correct behaviour.

Consider the time-slice at time \(t \). The state is described by the local density averages \(q_i(x,t) : x \in \mathbb{R} \). By the map (3.1), it is equivalently described by \(\beta'(x,t) : x \in \mathbb{R} \). But also, the state may be described by the following density matrix on time slice \(t \):

\[
\rho_{\text{hydro}}(t) = Z^{-1} \exp \left[-\int dx \beta'(x,t) q_i(x,t) \right], \quad q_i(x,t) = \langle q_i(x,t) \rangle_{\rho_{\text{hydro}}}. \tag{5.19}
\]

The expansion in the 2nd equation of (4.5), at \(t = 0 \) (and with \(\bar{q}(0,t) \) replaced by \(q(0,0) \) on the left-hand side), provides the relation between \(q_i(0,0) \), and \(\langle q_j \rangle \) (the generalised Gibbs ensemble (GGE) average of \(q_j \) in the state described by \(\beta'(0,0) \)’s) and the derivatives \(\partial \beta'(0,0) \), \(\partial^2 \beta'(0,0) \). This expansion can be inverted, and, translating to arbitrary points \(x,t \), in this way one determines the \(\beta'(x,t) \)’s in (5.19) in terms of \(q_i(x,t) \)’s and their spatial derivatives. The state (5.19) is thus an effective description of the time-slice \(t \) up to the appropriate derivative order (here: the dispersive order). Our proposal is simply that the von Neumann entropy of this state is in fact the correct total hydrodynamic entropy,

\[
S_{\text{hydro}}(t) = -\text{Tr}[\rho_{\text{hydro}}(t) \log \rho_{\text{hydro}}(t)]. \tag{5.20}
\]

We show that his can only increase under hydrodynamic time evolution, up to, including, the dispersive order. We first note that a direct calculation gives

\[
\dot{S}_{\text{hydro}}(t) = \int dx \beta'(x,t) \left(\dot{q}_i(x,t) - \langle q_i(x,t) \rangle_{\rho_{\text{hydro}}} \right)
= \int dx \partial \beta'(x,t) \left(j_i(x,t) - \langle j_i(x,t) \rangle_{\rho_{\text{hydro}}} \right). \tag{5.21}
\]

The hydrodynamic current \(j_i(x,t) \) is given by (3.7) (at \(t > 0 \) as we are looking for entropy increase towards positive times). The local ‘current deformation’ \(\langle j_i(x,t) \rangle_{\rho} \) is obtained, at \((0,0) \), from the 1st equation in (4.5) again evaluated at \(t = 0 \) (and with \(\dot{j}_j(0,t) \) replaced by \(\langle j_j(0,t) \rangle_{\rho} \) on the left-hand side); and at other points \((x,t) \) simply by translation. Every quantity should be re-written in terms of \(q_i(x,t) \), equivalently \(\beta'(x,t) \).
Let us denote the quantities defined in (4.3) and (4.4) at \(t = 0 \) using the subscript \(\bullet_0 \). By PT symmetry (see also (B.28)) one immediately obtains
\[
[U^{(1)}_0]_{ij} = 0, \quad [V^{(1)}_0]_{ij} = 0. \tag{5.22}
\]
The first equation simplifies the transformation from \(\beta' \) to \(\tilde{\beta}' \), obtained using the 2nd equation in (4.5):
\[
\beta' = \beta' - \frac{1}{2} C'' \left[U^{(2)}_0 \right]_{ij} \partial^2 \beta' - \frac{1}{2} C'' \left[U^{(1)}_0 \right]_{ik} \partial \beta' \partial \beta'. \tag{5.23}
\]
The second equation in (5.22) simplifies the expression for the current deformation,
\[
\langle \hat{h} \rangle_{\bullet_{0\text{vac}}} = \langle \hat{h}_0 \rangle + \frac{1}{2} \left[V^{(2)}_0 \right]_{ij} \partial^2 \beta' + \frac{1}{2} \left[V^{(1)}_0 \right]_{ik} \partial \beta' \partial \beta'. \tag{5.24}
\]
Putting everything together, we then finally obtain the following total entropy increase:
\[
\dot{S} = \dot{S}_{\text{diff}} + \frac{1}{2} \int \partial \beta' \left[\left(\Sigma^{(2)} - \Sigma^{(2)}_0 \right) \beta' \right]_{ij} \partial \beta' + \left(\Sigma^{(1)} - \Sigma^{(1)}_0 \right)_{ik} \partial \beta' \partial \beta', \tag{5.25}
\]
where, with subscript \(\bullet_0 \), we have the 3rd order coefficients computed directly at \(t = 0 \), see equation (3.16). The entropy increase generated by diffusive terms is given as usual by
\[
\dot{S}_{\text{diff}} = \frac{1}{2} \int \partial \beta' \left[\left(\Sigma^{(1)} - \Sigma^{(1)}_0 \right)_{ij} \partial \beta' \right] = \frac{1}{2} \int \partial \beta' \left[\Sigma^{(1)}_{ij} \right] \partial \beta'. \tag{5.26}
\]
We note that at the dispersive order, we do not expect integrated correlators to show discontinuities at \(t = 0 \); the limits \(t \to 0^\pm \) agree and thus the definitions of \(\Sigma^{(2)}_0 \) and \(\Sigma^{(1)}_0 \) in (3.16) make sense. Therefore, in the symmetric gauge, where the polynomial form implies that the \(O(\hat{p}) \) terms are given by the evaluation at \(t = 0^+ \), see (5.11), we indeed have the equalities (3.16), and therefore the vanishing of the dispersive entropy-increase term in (5.25). In the absence of symmetric gauged densities, the integral in equation (5.25) is nonzero; as this integral does not have a specific sign, in this case the entropy increase due to dispersive terms (3rd order in spatial derivatives) may take both positive and negative values. Making the dispersive contribution zero is the only way which, in combination with positive semi-definiteness of the Onsager matrix \(\Sigma^{(1)} \) (which follows from PT symmetry), guarantees positive entropy production, hence the stability of the dispersive hydrodynamic equation. This is achieved in particular if the set of local densities \(q_i(x) \) is chosen such that the integrated correlators determining the currents at 2nd order in derivatives, are polynomial functions in \(t \), implying that condition (5.11) holds. This is indeed true under the 2nd order symmetric gauge.

We stress that the continuity of correlators \(\Sigma^{(2)} \) and \(\Sigma^{(1)} \) at \(t = 0 \), is not shared by the diffusive order correlators: even if the integrated correlators \([V^{(1)}]_{ij} \) are polynomial in \(t \), the term of order \(O(\hat{p}) \) is antisymmetric under time reversal, hence is proportional to \(\text{sgn}(t) \) and the limit \(t \to 0^\pm \) disagree. Also, the time-0 integrated correlator, \([V^{(1)}_0]_{ij} \), is exactly 0, see equation (5.22), by PT symmetry. Hence, the correlator \([V^{(1)}]_{ij} \) (and the same for \([U^{(1)}]_{ij} \)) is discontinuous
\[
\lim_{t \to 0^+} [V^{(1)}]_{ij} \neq [V^{(1)}_0]_{ij} = 0. \tag{5.27}
\]
Therefore, given that \(\Sigma^{(1)} = \lim_{t \to 0^+} [V^{(1)}] - AU^{(1)} \), we have \(\Sigma^{(1)} - \Sigma^{(1)}_0 = \Sigma^{(1)} \neq 0 \) and diffusion still leads to finite, yet positive, entropy increase, also under symmetric gauge.
6. Examples of dispersive hydrodynamics in integrable models

In this section, we provide some examples of applications of our hydrodynamic theory, in particular for certain integrable systems.

6.1. Free fermions gas

We here consider the hydrodynamic description of a fermionic model (with fermionic number conservation) on the continuum space given by the generic Hamiltonian

$$H = \int \frac{dk}{2\pi} \varepsilon(k) c_k^\dagger c_k,$$

(6.1)

with dispersion velocity \(v(k) = \partial_k \varepsilon(k)\), and with fermionic creation/annihilation operators

$$\{c_i, c_j^\dagger\} = \delta_{i,j}, \quad \{c_i, c_j\} = 0,$$

$$c_i = \int \frac{dk}{2\pi} e^{ik} c_k,$$

$$c_i^\dagger = \int \frac{dk}{2\pi} e^{-ik} c_k^\dagger.$$

(6.2)

The densities of charges can be defined using the well-known Wigner function description \([77–79]\), namely

$$q_i(0) = \int dy \int \frac{dk}{2\pi} \hat{h}_i(k) e^{iyk} c_y^\dagger c_{-y/2} c_{y/2} = \int \frac{dk_1}{2\pi} \frac{dk_2}{2\pi} \hat{h}_i((k_1 + k_2)/2) c_{k_1}^\dagger c_{k_2},$$

(6.3)

with \(\hat{h}_i(k)\) the single-particle eigenvalue of the charge \(Q_i = \int dx \hat{h}_i(x)\) (this definition can be directly extended to systems on a lattice, provided \(\int dy\) is replaced by \(\sum_{y\in\mathbb{Z}}\) [80]). The definition of the charges (6.3), with the shift in \(y\) symmetric between the two fermionic operators, respect the fully symmetric gauge, as the matrix elements are not functions of \(k_1 - k_2\) at all orders in \(k_1 - k_2\).

It is known that under this gauge, in free fermionic theories, can allow for a hydrodynamic expansion at all orders, as shown in [33, 34]. However we can limit ourselves to a 2–nd order symmetric gauge (higher orders will not affect the hydrodynamic equation up to dispersive order) and in section C, we shall show how hydrodynamic expansion gives the following expression for the 3rd order hydrodynamic coefficients, on a generic state specified by the occupation function \(n(k)\)

$$Q^{(2)}_i = \frac{1}{12} \int \frac{dk}{2\pi} v''(k)n(k)(1 - n(k))\hat{h}_i(k)\hat{h}_i(k), \quad L_i^{(1,1)} = -\mathcal{W}_i^{(2)} \mathbf{C}',$$

(6.4)

with

$$\mathbf{C}_i = \int \frac{dk}{2\pi} n(k)(1 - n(k))\hat{h}_i(k)\hat{h}_i(k), \quad \mathcal{W}_i^{(2)} = \frac{1}{12} \int \frac{dk}{2\pi} v''(k)\hat{h}_i(k)\hat{h}_i(k).$$

(6.5)

Therefore, the hydrodynamic expansion leads to the same well-known hydrodynamic equation for the expectation value \(n(k, x, t)\) of the occupation (Wigner) function

$$\dot{n}(k, x, t) = \int dy e^{iyk} c_{x+y/2}^\dagger c_{x-y/2},$$

(6.6)

that reads as

$$\partial_t n(k, x, t) = -v(k)\partial_x n(k, x, t) + \frac{v''(k)}{24} \partial_x^3 n(k, x, t),$$

(6.7)

in full accord with previous derivations [80–82].
6.2. Gauge ambiguity and free fermions vs interacting systems

Free fermions systems satisfy the condition (5.11), namely zero entropy increasing, for all choices of gauges, as their charge densities are quadratic in fermionic operators, namely all their charge densities are characterised by zero entropy increase (this is true at diffusive scale, where $\mathcal{L}^{(1)} = 0$ for free theories, no matter what gauge is chosen to fix the functions $a_i^{(1)}(x)$ [83]). The choice of the fully symmetric gauge, therefore, is merely convenient, and it does not affect the validity of the hydrodynamic description, see section E for additional details, however it does affect the form of the hydrodynamic equations. In particular, a different choice of densities leads to a non-symmetric $\mathcal{L}^{(2)}$ matrix and the violation of relation (6.13). We denote by q_i the densities in the (2nd-order) symmetric gauge and by \hat{q}_i a set of (still PT invariant) charges not in the symmetric gauge. The two are related by a shift $\hat{q}_i = q_i - \partial^2 a^{(2)}$. When describing the hydrodynamic state with the hydrodynamic variables $q_i = \text{Tr}[\rho e^{-\beta a_i}] / Z$, our result of (3.7) for symmetric gauged densities gives

$$\partial_t q_i = AC \partial \hat{\beta} - \frac{1}{2} \partial_t (\mathcal{L}^{(2)} \partial^2 \hat{\beta}),$$

(6.8)

while using the charges $\tilde{q} = q - \partial^2 a^{(2)}$ we have a different hydrodynamic equation indeed

$$\partial_t \tilde{q}_i = AC \partial \tilde{\beta} - \frac{1}{2} \partial_t \left(\frac{1}{2} \tilde{\mathcal{L}}^{(2)} \partial^2 \tilde{\beta} + \frac{1}{2} \tilde{\mathcal{L}}^{(1,1)}(\partial \tilde{\beta}, \partial \tilde{\beta}) \right).$$

(6.9)

The fact that different choices of charge densities lead to different hydrodynamic equations here is resolved by noticing that equation (6.9) is merely the evolution of the expectation value $\langle \tilde{q} \rangle = \langle q - \partial^2 a^{(2)} \rangle = q_i - \partial^2 a^{(2)}$ in the hydrodynamic states evolving under (6.8). Indeed the evolution of this latter is given by

$$\partial_t \tilde{q}_i = AC \partial \tilde{\beta} + A \partial_t (\partial^2 (a^{(2)})) - \frac{1}{2} \partial_t (\mathcal{L}^{(2)} \partial^2 \hat{\beta})$$

$$= AC \partial \tilde{\beta} - \frac{1}{2} \partial_t \left(\frac{1}{2} \tilde{\mathcal{L}}^{(2)} \partial^2 \tilde{\beta} + \frac{1}{2} \tilde{\mathcal{L}}^{(1,1)}(\partial \tilde{\beta}, \partial \tilde{\beta}) \right),$$

(6.10)

where we used that in the second term on the right-hand side of equation (6.9) we can change $\tilde{\beta} \to \beta$ at this hydrodynamic order, and where the extra terms are generated by the term $\partial^2 (a^{(2)})$, and they read

$$\tilde{\mathcal{L}}^{(2)} = \mathcal{L}^{(2)} - A \frac{\delta^2 (a)}{\delta \beta^2},$$

(6.11)

$$\tilde{\mathcal{L}}^{(1,1)} = -A \frac{\delta (a)}{\delta \beta \delta \beta}.$$

(6.12)

Therefore the two different hydrodynamics are consistent, and there is no privileged choice for the gauge functions $a_i^{(2)}$ in free fermionic systems.

The same argument would instead fail in a generic interacting model due to the finite diffusive terms, i.e. with finite Onsager matrix $\mathcal{L}^{(1)}$ in the expression of the current (3.7). In generic interacting models indeed gauge must be properly fixed, and the hydrodynamic equations for densities in different gauges would be inconsistent with each other, as only the proper choice of charge densities, i.e. the set that guarantees positive entropy increase, can be used to construct stable hydrodynamic theories.
6.3. Interacting quantum integrable system

In quantum integrable models, where in past years the theory of generalised hydrodynamics have been extensively developed for Euler and diffusive hydrodynamic, see for example [17–32, 84–86], the 2nd order symmetric gauge also guarantees a relation between the three-point coefficients and the two-point ones, see appendix D,

$$\mathcal{L}^{(1,1)} = -\mathcal{W}^{(2)} C^{'},$$

(6.13)

which implies the hydrodynamic equation for charges in such gauge,

$$\partial_t q_i + A_i^{\alpha} \partial_{\alpha} q_i = \frac{1}{2} \partial_i \left(\mathcal{D}_i^{\alpha} \partial_{\alpha} q_i \right) + \frac{1}{2} \partial_i \left(\mathcal{W}^{(2)}_{ij} \partial_j^2 q_i \right),$$

(6.14)

with hydrodynamic coefficients that can be analytically computed. In such models, indeed hydrodynamic variables can be related to a density of quasiparticles of hydrodynamic variables can be related to a density of quasiparticles with hydrodynamic coefficients that can be analytically computed. In such models, indeed hydrodynamic variables can be related to a density of quasiparticles \(\rho(\theta) \)

$$q_i(x,t) = \int d\theta \rho(\theta;x,t) h_i(\theta) \quad \forall i,$$

(6.15)

where \(h_i(\theta) \) is the one-particle eigenvalue of the total charge \(Q \). The relation involves the momentum \(k(\theta) \), energy \(\varepsilon(\theta) \), filling \(n(\theta) = 2\pi \rho(\theta)/k'(\theta) \), scattering shift \(T(\theta - \theta') \) and effective velocity \(v^\text{eff}(\theta) = \varepsilon'(\theta)/k'(\theta) \), as it is the case for interacting and free integrable models. The coefficients, still under second-order symmetric gauge, are then expressed as operators in the space of functions of \(\theta \in \mathbb{R} \), and the dispersive terms turn out to be a simple generalisation of the free fermionic ones of equation (6.5), reading as

$$\mathcal{W}^{(2)} = (1 - nT)^{-1} \left[\frac{k'(\theta)^2 v^\text{eff}(\theta) - k'^{\prime\prime\prime}(\theta) v^\text{eff}(\theta)}{12(k'(\theta))^4} \right] (1 - nT),$$

(6.16)

analogously to the other (known) coefficients

$$A = (1 - nT)^{-1,\text{eff}} (1 - nT), \quad C = (1 - nT)^{-1} \rho(1 - nT) - 1, \quad D = (1 - nT)^{-1} \rho(1 - nT) - 1,$$

(6.17)

giving the 3rd order generalised hydrodynamic equation for the density \(\rho(\theta;x,t) \) is

$$\partial_t \rho + \partial_i (v^\text{eff} \rho) = \frac{1}{2} \partial_i (\mathcal{D}_i \partial_{\alpha} \rho) + \frac{1}{2} \partial_i (\mathcal{W}^{(2)}_{ij} \partial_j^2 \rho),$$

(6.18)

and with the diffusion kernel \(\mathcal{D} \) already been derived in previous works and reported for example in [50].

6.4. Dispersive hydrodynamics of the hard rods gas

A gas made of hard rods particles with fixed length \(a \) represents the simplest implementation of an integrable model, with a constant microscopic scattering shift defined as \(T = -a^2/2\pi \), and a well-defined hydrodynamic limit [87], well discussed in these past years [88, 89]. In particular, as shown in [87], in such a classical system on a ring of size \(L \), with total density of rods \(\tilde{\rho} \), is possible to express the two-point correlator of the density of particles \(n(v,x,t) = L^{-1} \sum_i \delta(x-x_i) \delta(v-v_i) \), with velocity \(v, v' \), at all orders in \(k \) on a stationary state

$$S_{v,v'}(k,t) = \int dx e^{i k x} \langle n(v,x,t), n(v',0,t) \rangle \quad S(k,t) = e^{i \mathcal{W}(k)} C(k),$$

(6.19)

which can then be expanded at low momentum, analogously to our result of equation (3.15), as

$$S(k,t) = \exp \left[i k A \mathcal{T} - \frac{k^2}{2} \mathcal{D}[\mathcal{T}] - \frac{1}{2} i \mathcal{W}^{(2)} k^4 \right] C,$$

(6.20)
with the convective matrix
\[[A](v,v') = \frac{1}{1 - a\bar{\rho}}\delta(v-v')v + \frac{\bar{\rho}a}{(1 - a\bar{\rho})^2}vh(v) - \frac{\bar{\rho}a}{1 - a\bar{\rho}}v'h(v), \] (6.21)
the diffusion kernel
\[[D](v,v') = \frac{\bar{\rho}a^2}{1 - a\bar{\rho}}(\delta(v-v')r(v) - |v - v'|h(v)), \] (6.22)
and the dispersive one
\[[W]^2(v,v') = \frac{1}{12} \left(\frac{a^3\bar{\rho}}{1 - a\bar{\rho}}\Phi(v-v') - \frac{a^3\bar{\rho}}{1 - a\bar{\rho}}h(v)v' - \frac{a^3\bar{\rho}(2 - a\bar{\rho})}{1 - a\bar{\rho}}h(v)v' \right). \] (6.23)
These coefficients cannot be obtained directly from our equation (6.16). In this model the dressed Kubo formula, in terms of spatially integrated correlation functions in stationary states. We have shown that a proper gauge choice is necessary to fix the hydrodynamic charge densities, the symmetric gauge at 2nd order, in order to guarantee positive entropy production and

7. Conclusions

We have reported an extensive and complete derivation of third-order terms of the hydrodynamic gradient expansion. The new hydrodynamic coefficients are expressed as generalised Kubo formula, in terms of spatially integrated correlation functions in stationary states. We have shown that a proper gauge choice is necessary to fix the hydrodynamic charge densities, the symmetric gauge at 2nd order, in order to guarantee positive entropy production and
therefore the validity of the hydrodynamic theory. We have shown how under the proper gauge the newly introduced hydrodynamic terms can be computed in the case of quantum integrable models, extending this way the theory of generalised hydrodynamics to include dispersive terms.

Many questions are now in sight: first, we expect that numerous studies shall be devoted to computing the newly derived dispersive terms in quantum integrable systems, where some work will be also necessary to obtain the charge densities in the second-order symmetric gauge. Such dispersive terms are expected to be relevant in regimes of low temperatures and large gradients, and for example could provide a microscopic derivation of the quantum pressure in the Bose gas and of quantum hydrodynamic terms beyond linear Luttinger liquids [92], i.e. beyond Euler spreading of quantum correlations [29] (although some instabilities are present, see for example [39, 93, 94] whose impact in one-dimensional hydrodynamics remain to be clarified). Then further studies shall focus on the quantum–classical correspondence of the hydrodynamic terms. As we have shown, the quantum and the classical third-order coefficients differ, at least when looking at the classical gas of hard rods, as opposed to the ballistic and diffusive terms, which instead take a universal form for both quantum and classical theories (where, at diffusive order, quantum / classical-ness is encoded only within the free energy function). In the near future, we aim to analyze more specifically the origin of such discrepancy and the type of semi-classical limits necessary to derive dispersive hydrodynamic terms for classical integrable theories from their quantum ones.

Some of the problems found in Burnett equations from kinetic theory, such as instabilities [39, 40] and the propagation of signal in relativistic models [42–45], although not presenting conceptual difficulties (as the gradient expansion is only valid when gradients are small, and only describes long-time effects well within the light cone), may similarly present practical difficulties, and must also be addressed.

Finally, we have also emphasised how PT symmetry is important at the diffusive order, but not sufficient at the dispersive one. In this context, it is worth mentioning that one of the most important lines of current research in emergent large-scale behaviours is the extension of hydrodynamic theories to active systems. There, the breaking of PT symmetry, manifested by non-reciprocity, plays a crucial role [95, 96], and the general ideas we have developed may help to establish guiding principles for active-systems hydrodynamics.

Data availability statement

there are no data The data that support the findings of this study are available upon reasonable request from the authors.

Acknowledgment

We acknowledge discussions with H Spohn, F Essler, B Bertini, M Fagotti, and J Durning, who contributed at the early stages of the project. We thank referee A for providing relevant references to Burnett hydrodynamics. Some of his work was performed at Aspen Center for Physics, which is supported by National Science Foundation Grant PHY-1607611 and at Galileo Galilei Institute during the scientific program ‘Randomness, Integrability, and Universality’. The work of J D N has been partially funded by the ERC Starting Grant 101042293 (HEPIQ). The work of B D was supported by the Engineering and Physical Sciences Research Council (EPSRC) under Grants EP/W000458/1 and EP/W010194/1.
Appendix A. Kubo–Mori–Bogoliubov inner product and its generalisations

We are interested in correlation functions
\[\langle a_1 a_2 \ldots \rangle = \frac{\text{Tr}(e^{-\beta Q} a_1 a_2 \ldots)}{\text{Tr}e^{-\beta Q}}, \]
(A.1)
and in particular in connected correlation functions \(\langle a, b, \ldots \rangle^c \); note that \(\langle a, b, \ldots \rangle^c = \langle a - \langle a \rangle, b - \langle b \rangle, \ldots \rangle \) for the two- and three-point connected correlation functions.

In classical models, correlation functions (where Tr is replaced by the ensemble average) have the property of being invariant under permutations of the observables. In quantum models, this symmetry is broken, because observables are operators, and do not necessarily commute with each other.

The quantities that arise from perturbation theory in classical models are indeed such correlation functions. However, in the quantum case this is not so. Instead, correlations where operators are integrated over imaginary time are involved. In particular, with \(\hbar = 1 \), it is the standard ‘KMB inner product’ that arises, which takes the form
\[(a, b)_{\text{KMB}} = \int_0^1 d\tau \langle a^\tau b \rangle, \]
(A.2)
where \(a^\tau = e^{\tau\beta Q} a e^{-\tau\beta Q} \). At the third order, it is a 3rd order ‘KMB correlation function’, which takes the form
\[(a, b, c)_{\text{KMB}} = \frac{1}{2} \int_0^1 d\tau \int_0^\tau d\tau' \left[\langle a^\tau b^{\tau'} c \rangle + \langle b^{\tau'} a^{\tau'} c \rangle \right]. \]
(A.3)
Again, we are interested in the connected versions \((a, b)_{\text{KMB}}^c \) and \((a, b, c)_{\text{KMB}}^c \), defined as above but in terms of connected correlation functions. In order to account for both classical and quantum models simultaneously, we will simply define
\[(a, \ldots) = \begin{cases} (a, \ldots)^c & \text{(classical)} \\ (a, \ldots)_{\text{KMB}}^c & \text{(quantum)} \end{cases}. \]
(A.4)

It turns out that these expressions are now fully symmetric, including in the quantum case:
\[(a, b) = (b, a), \quad (a, b, c) = (b, c, a), \quad (a, b, c) = (b, a, c), \]
(A.5)
(the latter two equalities are two actions of the symmetric group \(S_3 \) which generate the whole group, so are sufficient to show that the expression is fully symmetric). Symmetry of the KMB two-point function is well known, and the last equality in (A.5) is immediate. Hence, let us prove the second equality in (A.5). We only consider the first term in (A.3), as this will imply a similar result for the second term:
\[\int_0^1 d\tau \int_0^\tau d\tau' \langle a^\tau b^{\tau'} c \rangle = \int_0^1 d\tau \int_0^\tau d\tau' \langle b^{\tau'} c^{\tau'} a \rangle, \]
where in the first equality we employed the KMS relation [97].

In order to see how these definitions apply to perturbation theory, let us consider an expansion of the stationary state under small perturbations. We may use the general relation
\[e^{A + \lambda B} = e^A + e^A \int_0^1 d\tau e^{-\tau A} \lambda B e^{\tau A} + e^A \int_0^1 d\tau e^{-\tau A} \lambda B \int_0^\tau d\tau' e^{(\tau - \tau') A} \lambda B e^{\tau' A} + O(\lambda^3). \]
(A.7)
Let us apply this to expand the following (un-normalized) density matrix in powers of the derivatives β^k and $\beta^k r^r$, which is relevant to the hydrodynamic expansion:

$$\rho = \exp \left(- \int dx \left(\beta^k + \beta^k r^r x + \frac{\beta^k r^r x^2}{2} \right) q_k(x) \right).$$ \hspace{1cm} (A.8)

Denoting $\rho_{\text{GGE}} = e^{-\beta q_k}$, we obtain

$$\rho = \rho_{\text{GGE}} \left(1 - \int_0^1 dt \int dx \beta^k q_k(x) + \int_0^1 dt \int dx \int dy \beta^k q_k(x) q_k(y) \right)$$

$$+ \frac{1}{2} \int_0^1 dt \int dx x^2 \beta^k r^r q_k(x).$$ \hspace{1cm} (A.9)

Taking into consideration the expansion of $\text{Tr}(\rho)$ as well, expectation values are expanded as

$$\langle o \rangle = \langle o \rangle_{\text{GGE}} - \beta^k \int dx \int_0^1 d\tau \langle q_k(x) \rangle + \frac{1}{2} \beta^k r^r \int dx \int_0^1 d\tau \int dy \beta^k q_k(x) q_k(y)$$

$$+ \beta^k r^r \int dx \int_0^1 d\tau \int dy \beta^k q_k(x) q_k(y).$$ \hspace{1cm} (A.10)

By using the symmetry under exchange of indices $k \leftrightarrow l$ on the last line, this indeed is written in terms of the two- and three-point KMB connected correlation functions,

$$\langle o \rangle = \langle o \rangle_{\text{GGE}} - \beta^k \int dx \langle q_k(x) \rangle + \frac{1}{2} \beta^k r^r \int dx \langle q_k(x) \rangle$$

$$+ \frac{1}{2} \beta^k r^r \int dx \int dy \langle q_k(x) q_k(y) \rangle.$$ \hspace{1cm} (A.11)

Appendix B. Hydrodynamic expansion calculations

Let us denote as in the main text

$$U^{(n)} = - \int dy y^n(q(0,t),q(y,0)), \quad U^{(n,m)} = \int dy y^n z^m(q(0,t),q(y,0),q(z,0)), \hspace{1cm} (B.1)$$

and

$$V^{(n)} = - \int dy y^n(j(0,t),q(y,0)), \quad V^{(n,m)} = \int dy y^n z^m(j(0,t),q(y,0),q(z,0)). \hspace{1cm} (B.2)$$

along with

$$U_0^{(n)} = [U^{(n)}]_\rho, \quad U_0^{(n,m)} = [U^{(n,m)}]_\rho, \quad V_0^{(n)} = [V^{(n)}]_\rho, \quad V_0^{(n,m)} = [V^{(n,m)}]_\rho, \hspace{1cm} (B.3)$$

i.e. their correspondent $O(\beta^k) = O(1)$ terms in their large τ expansion. Recall that these are evaluated in a homogeneous, stationary state characterised by potentials β^k, or equivalently by the densities $\langle q_k \rangle$. Moreover, we shall use all the known Euler and diffusive hydrodynamic coefficients in this state: the convective matrix or flux Jacobian A (3.5), susceptibility matrix C (3.3), and diffusion matrix D (3.14), (3.9). We also use C', A', D' as $C'_{ij} = -\partial_{q_i} C_{ij}$ (equation (3.4), fully symmetric) and $(A')^i_{jk} = \partial_{q_j} A^i_{jk}$ (symmetric in j,k), $(D')^i_{jk} = \partial_{q_j} D^i_{jk}$.

We will also sometimes use $B'_{jk} = -\partial_{q_j} B_{ij}$ (symmetric in j,k, see (3.3) for the B matrix). We note that, using $B = AC$,

$$B' = A'(C + C) + AC', \hspace{1cm} \text{ (B.4)}$$

which we will use to simplify the form of some equations.
We have from (4.5), and noting that \(U^{(0)} = -\mathcal{C}, \ U^{(0,0)} = \mathcal{C}' \) (here and below, expressions are valid up to, including, 2nd derivatives),
\[
\begin{align*}
\bar{j} &= (j) + V^{(1)} \partial \beta + \frac{1}{2} V^{(2)} \partial^2 \beta + \frac{1}{2} V^{(1,1)} (\partial \beta, \partial \beta) \\
q &= (q) + U^{(1)} \partial \beta + \frac{1}{2} U^{(2)} \partial^2 \beta + \frac{1}{2} U^{(1,1)} (\partial \beta, \partial \beta) \\
\partial q &= - \mathcal{C} \partial \beta + U^{(1)} \partial^2 \beta + U^{(1,0)} (\partial \beta, \partial \beta) \\
\partial^2 q &= - \mathcal{C} \partial^2 \beta + \mathcal{C}' (\partial \beta, \partial \beta).
\end{align*}
\] (B.5)

As mentioned in the main text, to have a self-consistent hydrodynamic equation, we now must express the value of the currents in the first line of (B.5) as functions of the hydrodynamic variables \(q \), rather than the \(q \equiv (q) \). The relation between the two sets of densities can be inverted as follows:
\[
(q) = q - U^{(1)} \partial \beta - \frac{1}{2} U^{(2)} \partial^2 \beta - \frac{1}{2} U^{(1,1)} (\partial \beta, \partial \beta).
\] (B.6)

Notice how for now, we are keeping \(U^{(1)}, U^{(2)} \) and \(U^{(1,1)} \) evaluated at \(q \), not \(q = \bar{q} \). Later in the computation, we will evaluate these at \(q \) (that is, integrated correlation functions as per their basic definition, but in the state characterised by \(\bar{q} \) instead of \(q \)), which we will denote \(U^{(1)}, U^{(2)} \) and \(U^{(1,1)} \). Using (B.6), the first term, \((j)\), in the expression for \(\bar{j} \) in (B.5), is written in terms of \(q \) as follows
\[
\bar{j} = (\bar{j}) - \bar{A} U^{(1)} \bar{\partial} \beta - \frac{1}{2} \bar{A} U^{(2)} \bar{\partial}^2 \beta - \frac{1}{2} \bar{A} U^{(1,1)} (\bar{\partial} \beta, \bar{\partial} \beta) + \frac{1}{2} \bar{A}' (U^{(1)} \bar{\partial} \beta, U^{(1)} \bar{\partial} \beta)
\] (B.7)

where \((\bar{j}) = (j)_{\bar{q}} \) is the current average in the state characterised by \(\bar{q} \), and \(\bar{A} = \partial (\bar{j}) / \partial \bar{q} \) is the flux Jacobian in that state. The last term in (B.7) comes from the 2nd order term in the Taylor expansion of \((j)_{q+\delta} \) in \(\delta = -U^{(1)} \partial \beta + \) higher derivatives. We then obtain the following expression for the current
\[
\bar{j} = (\bar{j}) + (V^{(1)} - \bar{A} U^{(1)}) (\partial \beta + \frac{1}{2} (V^{(2)} - \bar{A} U^{(2)}) (\partial \beta + \frac{1}{2} (V^{(1,1)} - \bar{A} U^{(1,1)}) (\partial \beta, \partial \beta) + \frac{1}{2} \bar{A}' (U^{(1)} \partial \beta, U^{(1)} \partial \beta)
\] (B.8)

where in the second step we have re-expanded all \(\bar{A} \) and \(\bar{A}' \) about the state \(q \) using \(\bar{A} = A + A' U^{(1)} \partial \beta + \) higher derivatives and \(\bar{A}' = A' + A'' \partial \beta + \) higher derivatives.

We shall show that hydrodynamic calculations give (see section B.1), in general, up to vanishing terms in time \(o(1) \),
\[
U^{(1)} = A \mathcal{C} t, \quad U^{(2)} = -A^2 \mathcal{C} t^2 - \mathcal{D} \mathcal{C} |t| + U^{(2)}_0,
\] (B.9)
\[
U^{(1,0)} = -B', t
\] (B.10)

and
\[
V^{(1)} = A^2 \mathcal{C} t + \frac{1}{2} \mathcal{D} \mathcal{C} \text{ sgn}(t), \quad V^{(2)} = -A^3 \mathcal{C} t^2 - (A \mathcal{D} + \mathcal{D} A) \mathcal{C} |t| + V^{(2)}_0,
\] (B.11)
which also allows writing $\mathcal{L}^{(1)}$, defined in (3.8) as $\mathcal{L}^{(1)} = \left[2(V - AU)\right]_{r=\infty}$, in the form

$$\mathcal{L}^{(1)} = \mathcal{D}C,$$ \hspace{1cm} (B.12)

the Einstein relation (2.4). Note that $U_0^{(2)}$, $V_0^{(2)}$ are independent of t and not determined by the Euler and diffusive scales (the above expansions define them). From this, we find in particular

$$V^{(2)} - AU^{(2)} = -\mathcal{D}AC|t| + \mathcal{L}^{(2)},$$ \hspace{1cm} (B.13)

where we used $\mathcal{L}^{(2)} = V_0^{(2)} - AU_0^{(2)}$ from (3.11). Further, we have (see section B.1)

$$V^{(1,0)} - AU^{(1,0)} = A'(AC,C)t + \frac{1}{2}(D'(C,C) + \mathcal{D}C') \text{ sgn}(t),$$ \hspace{1cm} (B.14)

and

$$V^{(1,1)} - AU^{(1,1)} = A'(AC,C)t^2 + \frac{1}{2}D'(C,C)(1 + P)|t| + \mathcal{D}B'|t| + \mathcal{L}^{(1,1)},$$ \hspace{1cm} (B.15)

where P is the permutation $P_{ij} = \delta_i^j \delta_j^k$ and we used $\mathcal{L}^{(1,1)} = V_0^{(1,1)} - AU_0^{(1,1)}$, again from (3.11).

We insert these into (B.8) to obtain

$$\bar{j} = (\bar{j}) + \frac{1}{2}\mathcal{L}^{(1)} \partial \beta \text{ sgn}(t) + \frac{1}{2}(\mathcal{D}AC|t| + \mathcal{L}^{(2)}) \partial^2 \beta + \frac{1}{2}(D'(C,C)|t| + \mathcal{D}B'|t| + \mathcal{L}^{(1,1)})(\partial \beta, \partial \beta).$$ \hspace{1cm} (B.16)

Notice how the t^2 terms have already been cancelled. We now invert the last two equations in (B.5); we denote by $\bar{\beta}$ the potentials associated to the state characterised by $q = \bar{q}$. We have:

$$-C \partial \beta = \partial q - ACt \partial^2 \beta + B'(t \partial \beta, \partial \beta)$$

$$-C \partial^2 \beta = \partial^2 q - C'(\partial \beta, \partial \beta).$$ \hspace{1cm} (B.17)

We insert this into (B.16) using $\mathcal{L}^{(1)} = \mathcal{D}C$, together with the expression of the diffusion constant as a function of the q, i.e. $D = D - D'(U^{(1)} \partial \beta) = D - D'AC \partial \beta$, to finally obtain an equation where remarkably, all divergences in time t do simplify,

$$\bar{j} = (\bar{j}) - \frac{1}{2}D \partial q \text{ sgn}(t) + \frac{1}{2}(\mathcal{L}^{(2)} \partial^2 \beta + \frac{1}{2} \mathcal{L}^{(1,1)}(\partial \beta, \partial \beta),$$ \hspace{1cm} (B.18)

and which can be rewritten in terms of the derivative of the hydrodynamic variables $q = \bar{q}$, using $\partial^2 q = C'(\partial \beta, \partial \beta) - C \partial^2 \beta$,

$$\bar{j} = (\bar{j}) - \frac{1}{2}D \partial q \text{ sgn}(t) - \frac{1}{2} \mathcal{L}^{(2)} C^{-1} \partial^2 q + \frac{1}{2}(\mathcal{L}^{(1,1)} + \mathcal{L}^{(2)} C^{-1} C')(C^{-1} \partial q, C^{-1} \partial q),$$ \hspace{1cm} (B.19)

giving equation (1.2) with coefficients defined as in equation (3.14). We stress how it has been important to express all hydrodynamic matrices in terms of q in the first derivative order (that is, \mathcal{D} instead of D), while in the second order it is sufficient to keep the hydrodynamic matrices as functions of $(q) = q + O(\partial_q)$, as corrections are of higher derivative order, hence neglected.

B.1. Large time expansion of the integrated correlators

We here shall derive (B.9)–(B.15). For this purpose, we start with the fundamental expressions of correlation functions of charge-charge and charge-current at the hydrodynamic Euler and
diffusive scales, which follow directly from the hydrodynamic equation up to the diffusive scale, and hydrodynamic linear response:

\[S_{qq}(k, t) = \int dx e^{ikx} \langle q(0, t), q(x, 0) \rangle = \exp \left[-ikAt - \frac{k^2}{2} \mathcal{D}[t] \right] C(k) \]

(B.20)

and

\[S_{qq}(k, t) = \int dx e^{ikx} \langle j(0, t), q(x, 0) \rangle = \left(A - \text{sgn}(t) \frac{i k}{2} \mathcal{D} \right) \exp \left[-ikAt - \frac{k^2}{2} \mathcal{D}[t] \right] C(k). \]

(B.21)

We also define the three-point functions

\[S_{qqq}(k, t) = \int dxdy e^{ikx} \langle q(0, t), q(x, 0), q(y, 0) \rangle, \]

(B.22)

\[S_{qqq}(k, t) = \int dxdy e^{ikx} \langle j(0, t), q(x, 0), q(y, 0) \rangle. \]

(B.23)

Space-integrated correlators are assumed to be of the form \(a_0 t^p + a_{n-1} t^{n-1} \text{sgn}(t) + \ldots + a_0 \text{sgn}(t)^p + o(1) \) \((t \to \infty)\), and the above expressions are assumed to provide the correct first two leading, positive powers of \(t \), that is \(a_0 \) and \(a_{n-1} \).

The quantity \(C(k) \), above, characterises the initial condition of the hydrodynamic equation for the correlator \(\langle q(0, t), q(x, 0) \rangle \). In general, it takes the form \(C(k) = C + C_1 ik \text{sgn}(t) + C_2 (ik)^2/2 + \ldots \).

Let us denote \(\ell = \partial / \partial (ik) \). Using the general formula

\[\partial^X / \partial \ell e^{-X} = \partial X / \partial \ell + \frac{1}{2} \left[X, \partial X / \partial \ell \right] + \ldots, \]

(B.24)

and denoting \(E(k, t) = \exp \left[-ikAt - \frac{k^2}{2} \mathcal{D}[t] \right] \), we note that

\[E'(k, t) = (-A + i k \mathcal{D}[t]) E(k, t) + \frac{1}{2} \left[-ikAt - \frac{k^2}{2} \mathcal{D}[t], -A + i k \mathcal{D}[t] \right] E(k, t) + \ldots \]

(B.25)

\[= (-A + i k \mathcal{D}[t]) E(k, t) + O(k^2). \]

Therefore,

\[U^{(1)} = -S'_{qq}(0, t) = ACt - C_1 \text{sgn}(t) + o(1) \]

(B.26)

\[U^{(2)} = -S''_{qq}(0, t) = -A^2 C^2 t - \mathcal{D}C[t] + 2ACt + U_0^{(2)} + o(1). \]

(B.27)

Note that the existence (finiteness) of \(U_0^{(2)} \) in (B.27) is part of our assumption about the asymptotic expansion at large \(t \).

We first show that, by PT symmetry, we must have \(C_1 = 0 \). Indeed, by (B.26),

\[2C_1 = \int dx \langle (q(x, t), q) - (q(x, -t), q) \rangle = \int_{-t}^{t} ds \left[\int dx \partial_t q(x, s), q \right] - 2ACt \]

\[= \int_{-t}^{t} ds \left[\int dx \partial_t q(x, s), q - AC \right] \]

\[= \int_{-t}^{t} ds \left[\int dx \partial_t q(x, s), q - AC \right] \]

\[= \int_{-t}^{t} ds \left[AC - AC \right] \]

\[= 0. \]

(B.28)
such a simple response formalism because of the long-range hydrodynamic correlations that

Note also that, for general positions in space-time, three-point functions cannot be obtained by

This equation also to represent the hydrodynamic limit of negative-time evolution from

correlations with the third observable at later times.

ables are taken at equal time in the stationary state (at time 0), where no such long-range correlations exist; therefore perturbations of the initial clustering state correctly describe space-time correlations with the third observable at later times.

In the following, we will assume that evolution is towards positive times, \(t > 0 \). It is simple to re-insert the factor \(\text{sgn}(t) \), which occurs in conjunction with the diffusion matrix and its derivatives. Denoting \((qq) := (q(x,t),q(y,0)) \), we obtain

and by further differentiating and using \(\mathcal{D}'(\partial_q (qq)) = \mathcal{D}'P((qq),\partial_q q) \) in order to have the right order of implicit indices (where we recall that \(P \) is the permutation \(P_{ij} = \delta_i^j \delta_i^j \)), for \((qqq) := (q(x,t),q(y,0),q(z,0)) \) and \((qqq)_i := (q(x,t),q(y,0),q(z,0)) \)

We are interested in the steady state, so we obtain

\[
0 = \partial_q(qqq) - A'(\partial_q + \partial_z)(qqq) - A(\partial_q + \partial_z)(qqq) \\
- \frac{1}{2} \mathcal{D}'(\partial_q + \partial_z)(qqq) = \frac{1}{2} \mathcal{D}'(\partial_q + \partial_z)(qqq). \\
\] (B.36)
We may now set $x = 0$, and we define
\[
S_{qqq}(k, k', t) = \int dydz \, e^{i(k + ik')\cdot z} (q(0, t), q(y, 0), q(z, 0)).
\] (B.37)

This satisfies
\[
0 = \partial_t S_{qqq} + (ik + ik') A' (S_{qqq}(k, t), S_{qqq}(k', t)) + (ik + ik') A S_{qqq}
+ (k + k') k' \frac{1}{2} \mathcal{D}' (S_{qqq}(k, t), S_{qqq}(k', t))
+ (k + k')^2 \frac{1}{2} \mathcal{D}' S_{qqq}.
\] (B.38)

We may solve this order by order in k, k' to get the various hydrodynamic orders. For now we just want up to order k, k'. At order 1, we have $S_{qqq}(0, 0, t) = C'$ (that is, the equation above says that it is constant, and we evaluate the constant by definition of the C' tensor). The next order, $O(k, k')$, has the form $(a_1 ik + b_1 ik') t + (a_0 ik + b_0 ik') \text{sgn}(t) + o(1)$ by our assumption on the large-t asymptotic form, and the solution for a_1, b_1 is purely ballistic:
\[
S_{qqq}(k, k', t) = C' - (ik + ik') B' t + (a_0 ik + b_0 ik') \text{sgn}(t) + O(k^2, k'^2).
\] (B.39)

where we used (B.4). Note by our assumption, the result is meaningful for the first two powers of t, so for t and t^0 at the order $O(k, k')$, the t^0 therefore having coefficient 0. Therefore
\[
U^{(1, 0)} = \frac{\partial S_{qqq}(k, 0, t)}{\partial k} \bigg|_{k=0} = -B' t + a_0 \text{sgn}(t) + o(1).
\] (B.40)

By using PT symmetry, we show that $a_0 = 0$ (much like our proof that $C_1 = 0$ above):
\[
2a_0 = \int dydz \, y((q(0, t), q(y, 0), q(z, 0)) - (q(0, -t), q(y, 0), q(z, 0))) + 2B' t
= \int_{-t}^{t} ds \left[\int dydz \, y(\partial_s q(0, s), q(y, 0), q(z, 0)) + B' \right]
= \int_{-t}^{t} ds \left[-\int dydz \, (j(0, s), q(y, 0), q(z, 0)) + B' \right]
= \int_{-t}^{t} ds \left[-B' + B' \right]
= 0.
\] (B.41)

Therefore we conclude
\[
U^{(1, 0)} = -B' t + o(1),
\] (B.42)

which yields (B.10).

We can similarly evaluate (jqq) by differentiating $j - \frac{1}{2} \mathcal{D} \partial_q$ in an inhomogeneous state. This is already done above: it is what’s in the big parenthesis on the right-hand side of (B.35).

Taking this in a homogeneous state,
\[
(jqq) = A' (jqj), (jqj)_z) + A(qqq) - \frac{1}{2} \mathcal{D}' (jqj), \partial_s (jqj)
- \frac{1}{2} \mathcal{D}' (\partial_s (jqj), (jqj)_z) - \frac{1}{2} \mathcal{D} \partial_s (jqj).
\] (B.43)
For the purpose of the derivation, we need $V(1,1) - A U(1,1)$, so we evaluate

\[
(jqg) - A(qqg) = A'(qqg) - \frac{1}{2} \partial^2 \partial(qqg),
\]

which gives us

\[
A'(qqg) = \frac{1}{2} \partial^2 \partial(qqg),
\]

With this, in order to go to order 2 in k,k', we only need the q-correlators to order 1 in k,k', which we already have. We get

\[
S_{qq}(k,k',t) - AS_{qq}(k,k',t)
\]

= $A'(S_{qq}(k,k',t)) - \frac{1}{2} \partial^2 \partial(S_{qq}(k,k',t))$

\[= \frac{1}{2} \partial^2 \partial(ikS_{qq}(k,k',t)) - \frac{1}{2} \partial(ik + ik')S_{qq}(k,k',t),
\]

and we are looking for $V(1,0) - AU(1,0) = \partial^2 \partial(ik)\partial(ik')|_{k=k'=0}$ and $V(1,1) - AU(1,1) = \partial^2 \partial(ik)\partial(ik')|_{k=k'=0}$. Therefore, we finally obtain

\[
V(1,0) - AU(1,0) = -A'(U(1), C) - \frac{1}{2} \partial^2 \partial(C, C) - \frac{1}{2} \partial^2 \partial(C', C),
\]

and

\[
V(1,1) - AU(1,1) = A'(U(1), U(1)) + \frac{1}{2} \partial^2 \partial(U(1), C) + \frac{1}{2} \partial^2 \partial(C, U(1)) + \partial^2 \partial U(1) + O(1),
\]

which demonstrates (B.15).

Appendix C. Hydrodynamic coefficients in the free fermions theory

We here explicitly compute the hydrodynamic coefficients in the free fermionic theory introduced in section 6.1. We start with the computation of the two-point functions on a stationary state is given by momentum occupation function $n(k)$

\[
[\langle f \rangle_{k_{i}}] = -\int d\tau \int d\epsilon^{2} (q_{k}, \tau, q_{l}(t))
\]

\[= -\int \frac{1}{2\pi} n(k_{1})(1 - n(k_{2})) \int d\epsilon^{2} \int d\tau e^{-i(k_{1} - k_{2})} e^{i(w(k_{2}) - w(k_{1}))} e^{i(\epsilon(k_{2}) - \epsilon(k_{1}))}
\]

\[\times h_{l}(k_{1} + k_{2})/2 h_{l}(k_{1} + k_{2})/2,
\]

\[= \int d\tau e^{-i(k_{1} - k_{2})} e^{i(w(k_{2}) - w(k_{1}))}
\]

\[\times h_{l}(k_{1} + k_{2})/2 h_{l}(k_{1} + k_{2})/2
\]

\[\frac{\epsilon(k_{1}) - \epsilon(k_{2})}{k_{1} - k_{2}} e^{i(\epsilon(k_{2}) - \epsilon(k_{1}))}.
\]

The KMS imaginary time integration gives

\[
\int_{\tau} e^{i(w_{k_{2}} - w(k_{1}))} = \frac{1}{1 - \frac{w(k_{2})}{w(k_{1})}} = G_{1}(k_{1}, k_{2}),
\]

where the function $w(k) = \beta t h_{1}(k) = \log(1/n(k) - 1)$ characterises the stationary state with occupation $n(k)$. Therefore, neglecting the term where derivatives act on the energy phases (which gives the terms of order r^{2} in the correlator (B.9), (B.11)) and using $A_{ij} = \int dk v(k) h_{i}(k) h_{j}(k)$ and $\sum_{i} h_{i}(k) h_{i}(k') = \delta(k - k')$ we obtain

30
\[L^{(2)} = \left[\int dk_1dk_2 \frac{1}{2\pi} \delta'''(k_1 - k_2)n(k_1)(1 - n(k_2))G^{[1]}(k_1, k_2) \right. \\
\left. \times h_\nu((k_1 + k_2)/2)h_\nu((k_1 + k_2)/2) \varepsilon(k_1) - \varepsilon(k_2) \right] \\
- \int dk_1dk_2 \frac{1}{2\pi} \delta'''(k_1 - k_2)n(k_1)(1 - n(k_2))G^{[1]}(k_1, k_2) \\
\times h_\nu((k_1 + k_2)/2)h_\nu((k_1 + k_2)/2)\nu((k_1 + k_2)/2) \right]. \] (C.4)

Since the measure of integration \(n(k_1)(1 - n(k_2))G^{[1]}(k_1, k_2) \) is symmetric under exchange of \(k_1 \) and \(k_2 \), the only term surviving the difference is when the derivative acts on the velocity part, in both terms, therefore, using

\[\frac{(\varepsilon(k_1) - \varepsilon(k_2))}{k_1 - k_2} - \nu((k_1 + k_2)/2) = \frac{1}{6}(6\varepsilon''' - 1)\varepsilon''(k_1 - k_2)^2 + \ldots. \] (C.5)

We finally obtain

\[L^{(2)} = \int \frac{dk}{2\pi} n(k)(1 - n(k)) h_\nu(k)h_\nu(k) \left[\frac{1}{12} \nu'''(k) \right]. \] (C.6)

Notice the importance of having form factors \(h_\nu \) which are functions only of \(k_1 + k_2 \) up to possible deviations of orders \((k_1 - k_2)^3 \), namely, even if in this computation here we have chosen charge densities in the fully symmetric gauge, the result only depends on imposing 1st and 2nd order gauge.

We then move to the computation of the three-point function. We first rewrite it as follows

\[U^{(1,1)}_{\mu\nu} = \int dxdy(q_\mu(t), q_\nu(x), q_\nu(y)) + (k \leftrightarrow l), \] (C.7)

\[\left[q^{(1,1)}_{\mu\nu} \right]_{kl} = \int dxdy(q_\mu(t), q_\nu(x), q_\nu(y)) + (k \leftrightarrow l), \] (C.8)

where we also have used symmetry under exchanges of all indices. We then decompose it as

\[U_{\alpha\beta} = (2\pi)^{-5} \int d\tau d\tau' \int dxdy \int_{k_1, k_2, k_3, k_4, k_5} e^{i\xi(k_1 - k_2)}e^{-i\xi(k_3 - k_4)}e^{i\xi(k_4 - k_5)} \\
\times h_\nu((k_1 + k_2)/2)h_\nu((k_3 + k_4)/2)h_\nu((k_5 + k_6)/2)c_{k_1}c_{k_2}c_{k_3}c_{k_4}c_{k_5}c_{k_6} \\
\times e^{-r'(w(k_1) - w(k_2))}e^{-r'(w(k_3) - w(k_4))}e^{-r'(w(k_4) - w(k_5))}e^{i\xi(k_2 - k_3)} \\
= (2\pi)^{-3} \int d\tau d\tau' \int dxdy \int_{k_1, k_2, k_3} n(k_1)(1 - n(k_2))n(k_3)e^{i\xi(k_1 - k_2)}e^{-i\xi(k_2 - k_3)}e^{i\xi(k_3 - k_4)} \\
\times h_\nu((k_1 + k_2)/2)h_\nu((k_3 + k_1)/2)h_\nu((k_2 + k_3)/2) \\
\times e^{-r'(w(k_1) - w(k_2))}e^{-r'(w(k_3) - w(k_1))}e^{-r'(w(k_2) - w(k_3))} \\
\times e^{-\xi(k_1 - k_2)}e^{-\xi(k_2 - k_3)}e^{-\xi(k_3 - k_4)}h_\nu((k_1 + k_2)/2)h_\nu((k_2 + k_3)/2)h_\nu((k_3 + k_1)/2). \quad (C.9)\]
\[\int e^{-\tau(w(k_1) - w(k_2))} e^{-\tau'(w(k_3) - w(k_4))} = \frac{1 - e^{i(t_2 - t_3)}}{w(k_3) - w(k_4)}, \]
\[\int e^{-\tau(w(k_1) - w(k_2))} e^{-\tau'(w(k_2) - w(k_3))} = \frac{1 - e^{i(t_1 - t_3)}}{w(k_3) - w(k_4)}. \]

(C.10)

(C.11)

We are here interested in the limits of coinciding momenta as
\[
\lim_{k_1 \to k_2} \frac{1 - e^{i(t_1 - t_3)}}{w(k_3) - w(k_4)} = -\frac{\partial G^{(1)}(k_1, k_2)}{\partial w(k_1)},
\]

(C.12)

\[
\lim_{k_1 \to k_2} \frac{1 - e^{i(t_1 - t_3)}}{w(k_3) - w(k_4)} = -\frac{\partial G^{(1)}(k_1, k_2)}{\partial w(k_2)},
\]

(C.13)

given that integration over spaces is such as
\[
\int dx dy e^{-i\sigma(k_1 - k_2)} = -(2\pi)^2 \delta'(k_3 - k_1) \delta'(k_2 - k_3),
\]

(C.14)

\[
\int dx dy e^{-i\sigma(k_1 - k_2)} = -(2\pi)^2 \delta'(k_2 - k_3) \delta'(k_3 - k_1).
\]

(C.15)

As before for the case of 2 point functions, since we have \(\frac{e^{i(k_1 - k_2)} - e^{i(k_1 - k_2)/2)}}{k_1 - k_2} = (k_1 - k_2)^2 e^{i\sigma}/24 + \ldots\) the derivative of the second delta function can only act on the first delta to produce a second order derivative in momentum, all other terms contribute to zero when taking the difference \(V^{(1,1)} - U^{(1,1)}\), giving therefore
\[
\mathcal{L}^{(1,1)} = -\int \frac{dk}{2\pi} n(k)(1 - n(k))(2n(k) - 1)\hbar(k)\hbar'(k) \left[\frac{1}{12} v''(k) \right] \hbar(k),
\]

(C.16)

where we have
\[
n(k)(1 - n(k))(2n(k) - 1)\hbar(k) = \frac{\delta(n(1 - n))}{\delta\beta x},
\]

(C.17)

which yields equation (6.4).

Appendix D. Hydrodynamic coefficients in interacting quantum integrable models under symmetric gauge

Under the symmetric gauge, the computation of \(\mathcal{L}^{(2)}\) in the interacting case follows the free fermion case directly, see section C.

The above form factors give the following exact expansion
\[
U^{(2)} = \hat{t} U^{(2)}_{1ph(1)} + tU^{(2)}_{2ph} + U^{(2)}_{1ph(2)},
\]

(D.1)

\[
V^{(2)} = \hat{t} V^{(2)}_{1ph(1)} + tV^{(2)}_{2ph} + V^{(2)}_{1ph(2)},
\]

(D.2)

Namely for each correlator, there are two contributions, one of order \(\hat{t}^2\) and one of order \(t^0\) coming from the one particle-hole contributions, and one from the two particle-hole contributions, and nothing else. The terms with 2ph give the diffusive terms, namely all terms in the expansion of the integrated correlator, see equations (B.11) and (B.15) which are proportional to the diffusion matrix \(\mathcal{D}\). We therefore here focus on the one particle-hole contributions.
Denoting with \(F(q_i)(p, h) \) the one particle-hole form factors of the density \(q_i(\theta) \), we have the two correlators entering

\[
[U_{1ph}^{(2)}]_{ki} = \int_{p,h} k'(p) \rho(h)(1-n(p)) G^{[1]}(p, h) F(q_i)(p, h) F(q_j)(p, h) \delta'''(k(p) - k(h)), \quad (D.3)
\]

\[
[V_{1ph}^{(2)}]_{ki} = \int_{p,h} k'(p) \rho(h)(1-n(p)) G^{[1]}(p, h) \varepsilon(p) - \varepsilon(h) \\
\times F''(q_i)(p, h) F''(q_j)(p, h) \delta''(k(p) - k(h)), \quad (D.4)
\]

and where we introduced the KMS imaginary time integration

\[
\int_{\tau} e^{\tau(p, h) - \tau(h, p)} = G^{[1]}(p, h), \quad (D.6)
\]

Working in the 2nd order symmetric gauge imposes that one particle-hole form factors cannot depend on momentum difference \(k(p) - k(h) \) up to deviations \(O((k(p) - k(h))^3) \). Knowing the well-established relation between form factors and single-particle eigenvalues \(h_i(h) \) of charge density \(q \),

\[
F(q_i)(h, h) = h_i^{\text{th}}(h), \quad h_i^{\text{th}} = (1 - Tn)^{-1} h_i, \quad (D.7)
\]

and using that momentum \(k(\theta) \) is a monotonous function in \(\theta \), this implies

\[
F(q_i)(p, h) = h_i^{\text{th}} ((p + h)/2) + O((k(p) - k(h))^3). \quad (D.8)
\]

Therefore, using \(\mathcal{A}_i = (h_i, (1 - nT)^{-1} e^{\text{eff}}(1 - nT), h_j) \), \(h_i^{\text{th}} = (1 - Tn)^{-1} h_i \) and \(\sum_i h_i(\theta) h_i(\theta') = \delta(\theta - \theta') \), we finally obtain

\[
\mathcal{L}^{(2)} = \int_{p,h} k'(p) \rho(h)(1-n(p)) G^{[1]}(p, h) h_i^{\text{th}} ((p + h)/2) h_j^{\text{th}} ((p + h)/2) \\
\times \delta''(k(p) - k(h)) \left[\varepsilon(p) - \varepsilon(h) \right] - e^{\text{eff}}((h + p)/2) + O((k(p) - k(h))^3) \right]. \quad (D.9)
\]

Choosing \(p = h + \varepsilon \) we can integrate over \(\delta \) and the derivative must act on the parenthesis, which is indeed of order \(\varepsilon^2 \)

\[
\left[\frac{\varepsilon(p) - \varepsilon(h)}{k(p) - k(h)} - e^{\text{eff}}((h + p)/2) \right] = e^2 \frac{\varepsilon''''(h) k'(h) - \varepsilon'(h) k'''(h)}{24(k'(h))^2} + \ldots \quad (D.10)
\]

We obtain then, using \(\delta''''(k(p) - k(h)) = \delta''''(ek'(h)) \) and \(\varepsilon''(\theta) = e^{\text{eff}}(\theta) k'(\theta) \)

\[
\mathcal{L}^{(2)} = \int_{\theta} \rho(\theta)(1-n(\theta)) h_i^{\text{th}}(\theta) h_j^{\text{th}}(\theta) k'(\theta) e^{\text{eff}}(\theta) k'''(\theta) e'(\theta) \frac{k''(\theta) e''(\theta) - k'''(\theta) e'(\theta)}{12(k'(\theta))^4}, \quad (D.11)
\]

where we used that \(G^{[1]}(h, h) = 1 \). The computation of the three-point function follows analogously, as in the free fermions case, see section C.

Appendix E. The centre of mass operator and the symmetric gauge in free fermions

The free fermionic charges reported in equation (6.3)

\[
q_i(0) = \int \frac{dk}{2\pi} h_i(k) e^{i(k \gamma)} c^\dagger c_i = \int \frac{dk_1}{2\pi} \frac{dk_2}{2\pi} h_i((k_1 + k_2)/2) c^\dagger_{k_1} c_{k_2}, \quad (E.1)
\]
are directly expressed in the fully symmetric gauge, as their matrix elements $h((k_1 + k_2)/2)$ are only functions of the sum of the two momenta. In general, one could choose any charge with the following expression

$$\tilde{q} = \int \frac{dk_1}{2\pi} \frac{dk_2}{2\pi} \tilde{h}(k_2, k_1) c_{k_1}^\dagger c_{k_2},$$

(E.2)

with a generic matrix element, function of the two momenta $h(k_2, k_1)$. The centre of mass operator X necessary to introduce the gauge shifts is given in free fermion theories by

$$X = - \int dx x c_i^\dagger c_i = - \int \frac{dk_1}{2\pi} \frac{dk_2}{2\pi} i\tilde{\sigma}^i (k_1 - k_2) c_{k_1}^\dagger c_{k_2}.$$

(E.3)

We can consider the matrix element of first gauge shift $a_i^{(1)} = \frac{i}{4} \{X, \tilde{q}\}$ between the thermodynamic state $\langle n \rangle$ with filling $n(k)$ and its one particle-hole excitation $\langle n, \{ h, p \} \rangle$ with momenta p and h: by explicit computation we obtain

$$\langle n| \tilde{q} X | n, \{ h, p \} \rangle = - \int \frac{dk_1}{2\pi} \frac{dk_2}{2\pi} \tilde{h}(q, k) \tilde{\sigma}^i (k_1 - k_2) \langle n| c_{k_1}^\dagger c_i c_{k_2}^\dagger c_q | n, \{ h, p \} \rangle$$

$$= i\partial_p a_i^{(1)} \tilde{h}(p, h).$$

(E.4)

Therefore we conclude that the new charge density, after the shift $\tilde{q} \rightarrow \tilde{q} + \partial_p a_i^{(1)}$, has its matrix elements given by

$$\tilde{h}(k_2, k_1) \rightarrow \tilde{h}(k_2, k_1) - (k_2 - k_1) \partial_{k_2-k_1} \tilde{h}(k_2, k_1).$$

(E.5)

The higher order relations, necessary to cancel $k_2 - k_1$ dependence at higher orders, then follows from repeating a similar argument with higher powers of the operator X.

References

[1] Landau L D 2013 Fluid Mechanics: Landau and Lifshitz: Course of Theoretical Physics vol 6 (Oxford: Pergamon)

[2] Rangamani M 2009 Gravity and hydrodynamics: lectures on the fluid-gravity correspondence Class. Quantum Grav. 26 224003

[3] de Boer J, Heller M P and Pinzani-Fokeeva N 2015 Effective actions for relativistic fluids from holography J. High Energy Phys. JHEP08(2015)086

[4] Lucas A 2015 Hydrodynamic transport in strongly coupled disordered quantum field theories New J. Phys. 17 113007

[5] Lucas A and Fong K C 2018 Hydrodynamics of electrons in graphene J. Phys.: Condens. Matter 30 053001

[6] Ku M J H et al 2020 Imaging viscous flow of the Dirac fluid in graphene Nature 583 537–41

[7] Schemmer M, Bouchoule I, Doyon B and Dubail J 2019 Generalized hydrodynamics on an atom chip Phys. Rev. Lett. 122 090601

[8] Malvania N, Zhang Y, Le Y, Dubail J, Rigol M and Weiss D S 2020 Generalized hydrodynamics in strongly interacting 1d bosonic gases (arXiv:2009.06651)

[9] Möller F, Li C, Mazets I, Stimming H-P, Zhou T, Zhu Z, Chen X and Schmiedmayer J 2020 Extension of the generalized hydrodynamics to dimensional crossover regime (arXiv:2006.08577)

[10] Scheie A, Sherman N E, Dupont M, Nagler S E, Stone M B, Granroth G E, Moore J E and Tennant D A 2020 Detection of Kardar-Parisi-Zhang hydrodynamics in a quantum heisenberg spin-1/2 chain (arXiv:2009.13535)

[11] Granet E, Bertiin B and Essler F H L 2022 Duality between weak and strong interactions in quantum gases Phys. Rev. Lett. 128 021604

[12] Crossley M, Glorioso P and Liu H 2017 Effective field theory of dissipative fluids J. High Energy Phys. JHEP09(2017)095

[13] Dubovsky S, Hui L, Nicolas A and Son D T 2012 Effective field theory for hydrodynamics: thermodynamics and the derivative expansion Phys. Rev. D 85 085029
[14] Pappalardi S, Foini L and Kurchan J 2022 Quantum bounds and fluctuation-dissipation relations SciPost Phys. 12 130
[15] Grozdanov S, Kovtun P K, Starinets A O and Tadić P 2019 Convergence of the gradient expansion in hydrodynamics Phys. Rev. Lett. 122 251601
[16] Scaffidi T, Nandi N, Schmidt B, Mackenzie A P and Moore J E 2017 Hydrodynamic electron flow and hall viscosity Phys. Rev. Lett. 118 226601
[17] Castro-Alvaredo O A, Doyon B and Yoshimura T 2016 Emergent hydrodynamics in integrable quantum systems out of equilibrium Phys. Rev. X 6 041065
[18] Bertini B, Collura M, De Nardis J and Fagotti M 2016 Transport in out-of-equilibrium xxz chains: exact profiles of charges and currents Phys. Rev. Lett. 117 207201
[19] Doyon B and Yoshimura T 2017 A note on generalized hydrodynamics: inhomogeneous fields and other concepts SciPost Phys. 2 014
[20] Bastianello A, De Luca A, Doyon B and De Nardis J 2020 Thermalization of a trapped one-dimensional Bose gas via diffusion Phys. Rev. Lett. 125 240604
[21] Bulchandani V B, Vasseur R, Karrasch C and Moore J E 2017 Solvable hydrodynamics of quantum integrable systems Phys. Rev. Lett. 119 220604
[22] Friedman A J, Gopalakrishnan S and Vasseur R 2020 Diffusive hydrodynamics from integrability breaking Phys. Rev. B 101 180302
[23] Lopez-Piqueres J, Ware B, Gopalakrishnan S and Vasseur R 2020 Hydrodynamics of non-integrable systems from relaxation-time approximation (arXiv:2005.13546)
[24] Gopalakrishnan S, Vasseur R and Ware B 2019 Anomalous relaxation and the high-temperature structure factor of XXZ spin chains Proc. Natl Acad. Sci. 116 16250–5
[25] Fava M, Ware B, Gopalakrishnan S, Vasseur R and Parameswaran S A 2020 Spin crossovers and superdiffusion in the one-dimensional Hubbard model Phys. Rev. B 102 115121
[26] Ilievski E and De Nardis J 2019 Ballistic transport in the one-dimensional Hubbard model: the hydrodynamic approach Phys. Rev. B 96 085118
[27] De Nardis J, Gopalakrishnan S, Ilievski E and Vasseur R 2020 Superdiffusion from emergent classical solitons in quantum spin chains Phys. Rev. Lett. 125 070601
[28] De Nardis J, Medenjak M, Karrasch C and Ilievski E 2020 Univeralities classes of spin transport in one-dimensional isotropic magnets: the onset of logarithmic anomalies Phys. Rev. Lett. 124 210605
[29] Ruggiero P, Calabrese P, Doyon B and Dubail J 2020 Quantum generalized hydrodynamics Phys. Rev. Lett. 124 140603
[30] Bulchandani V B, Cao X and Moore J E 2019 Kinetic theory of quantum and classical Toda lattices J. Phys. A: Math. Theor. 52 33LT01
[31] Doyon B and Spohn H 2017 Drude weight for the Lieb-Liniger Bose gas SciPost Phys. 3 039
[32] Doyon B and Spohn H 2017 Dynamics of hard rods with initial domain wall state J. Stat. Mech. 073210
[33] Fagotti M 2017 Higher-order generalized hydrodynamics in one dimension: the noninteracting test Phys. Rev. B 96 220302
[34] Fagotti M 2020 Locally quasi-stationary states in noninteracting spin chains SciPost Phys. 8 048
[35] Bertini B, Essler F H L and Granet E 2022 Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy and generalized hydrodynamics Phys. Rev. Lett. 128 190601
[36] Burnett D 1935 The distribution of velocities in a slightly non-uniform gas Proc. London Math. Soc. 32–39 385–430
[37] Gaspard P 1998 Chaos, Scattering and Statistical Mechanics (Cambridge: Cambridge University Press)
[38] Chapman S and Cowling T G 1970 Cambridge Mathematical Library: The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases (Cambridge: Cambridge University Press)
[39] Uribe F J, Velasco R M and García-Colín L S 2000 Bobylev’s instability Phys. Rev. E 62 5835–8
[40] Brito C V and Denicol G S 2022 Linear causality and stability of third-order relativistic dissipative fluid dynamics Phys. Rev. D 105 096026
[41] Struchtrup H 2004 Stable transport equations for rarefied gases at high orders in the Knudsen number Phys. Fluids 16 3921–34
[42] Israel W and Stewart J 1979 Transient relativistic thermodynamics and kinetic theory Ann. Phys., NY 118 341–72
Nardis J D and Panfil M 2015 Density form factors of the 1D Bose gas for finite entropy states *J. Stat. Mech.* p.02019

Granet E and Essler F H L 2020 A systematic 1/c-expansion of form factor sums for dynamical correlations in the Lieb-Liniger model *SciPost Phys.* 9 82

Nardis J D, Doyon B, Medenjak M and Panfil M 2021 Correlation functions and transport coefficients in generalised hydrodynamics (arXiv:2104.04462)

Cubero A C and Panfil M 2020 Generalized hydrodynamics regime from the thermodynamic bootstrap program *SciPost Phys.* 8 4

Wigner E 1932 On the quantum correction for thermodynamic equilibrium *Phys. Rev.* 40 749–59

Moyal JE 1949 Quantum mechanics as a statistical theory *Math. Proc. Camb. Phil. Soc.* 45 99–124

Nardis J D and Panfil M 2015 Density form factors of the 1D Bose gas for finite entropy states *J. Stat. Mech.* p.02019

Sharan P 1979 Star-product representation of path integrals *Phys. Rev.* D 20 414–8

Price T and Lamacraft A 2015 Quantum hydrodynamics in one dimension beyond the Luttinger liquid (arXiv:1509.08332)

Bobylev A V 1995 Quasistationary hydrodynamics for the boltzmann equation *J. Stat. Phys.* 80 1063–83

Wagner D, Palermo A and Ambrus V E 2022 Inverse-renolds-dominance approach to transient fluid dynamics *Phys. Rev.* D 106 016013

You Z, Baskaran A and Marchetti M C 2020 Nonreciprocity as a generic route to traveling states *Proc. Natl Acad. Sci.* 117 19767–72

Fruchart M, Hanai R, Littlewood P B and Vitelli V 2021 Non-reciprocal phase transitions *Nature* 592 363–9

Bratteli O and Robinson D 1997 *Operator Algebras and Quantum Statistical Mechanics 2: Equilibrium States Models in Quantum Statistical Mechanics (Operator Algebras and Quantum Statistical Mechanics)* (Berlin: Springer)