Functional characterisation of human synaptic genes expressed in the Drosophila brain

Citation for published version:
Zografos, L, Tang, J, Hesse, F, Wanker, EE, Li, KW, Smit, AB, Davies, RW & Armstrong, JD 2016, 'Functional characterisation of human synaptic genes expressed in the Drosophila brain' Biology Open, vol 5, no. 5, pp. 662-667., 10.1242/bio.016261

Digital Object Identifier (DOI):
10.1242/bio.016261

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Biology Open

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Author Queries

Journal: Biology Open
Manuscript: BIO016261

When reviewing your proofs, please keep in mind that the article has been edited to comply with the basic style requirements of the journal. The enclosed eProof is not to be regarded as an opportunity to alter, amend, or revise your paper; it is intended to be for correction purposes only.

Please check the FOLLOWING CAREFULLY:
1. Please pay particular attention to the editing of any text highlighted in red. Not all changes are highlighted in red and so the entire proof must be checked thoroughly.
2. Please check the title, affiliation details, abstract and keywords, as these can affect the search results for your article online.
3. Please check that authors’ names and corresponding e-mail addresses are correct.
4. Please carefully check all figures, legends, tables and equations (as relevant).

Supplementary data: If you have submitted supplementary data, please check that a link has been added before the references (this link only becomes active once the issue is published online) and that all supplementary data are cited in the text.
IMPORTANT: We do not edit or prepare proofs of supplementary data, so please check that your uploaded supplementary files are correct and complete. If you wish to make any changes to the content or style of your supplementary data, please provide replacement file(s).

Cover suggestions: If you have not already but would like to submit a cover suggestion(s) relating to your article, please email it to the editorial office. The images should be 23 cm (width) × 24 cm (height), with a minimum resolution of 150 ppi, and saved as TIFF or JPG at maximum quality, in RGB mode. Cover suggestions should be accompanied by a cover caption describing the image (up to 100 words). Authors are welcome to supply a mock-up of a potential cover, but original images will still be required.

Please answer the hyperlinked queries below. When you click on a query the PDF will display the corresponding place in the text where you can indicate any changes required, or provide feedback on the query.

AQ1 Please confirm author name is Li, K.W.
AQ2 Please provide the department name (if any) for affiliation 3 and postal codes for all affiliations.
AQ3 Please provide an affiliation for James Heward (Institute, City, Country).
AQ4 References Emes and Grant (2012) is not cited in the text.
AQ5 Please define error bars in Fig. 1A.
AQ6 As discussed by email, I have added a column to Table 1 for you to insert the FlyBase IDs for your submitted lines and text reflecting this in the Data availability section. Please edit these as you feel appropriate.
METHODS & TECHNIQUES

Functional characterisation of human synaptic genes expressed in the Drosophila brain

Lysimachos Zografos1,2, Joanne Tang1, Franziska Hesse3, Erich E. Wanker3, Ka Wan Li4, August B. Smit4, R. Wayne Davies1,5 and J. Douglas Armstrong1,5,*

ABSTRACT

Drosophila melanogaster is an established and versatile model organism. Here we describe and make available a collection of transgenic Drosophila strains expressing human synaptic genes. The collection can be used to study and characterise human synaptic genes and their interactions and as controls for mutant studies. It was generated in a way that allows the easy addition of new strains, as well as their combination. In order to highlight the potential value of the collection for the characterisation of human synaptic genes we also use two assays, investigating any gain-of-function motor and/or cognitive phenotypes in the strains in this collection. Using these assays we show that among the strains made there are both types of gain-of-function phenotypes investigated. As an example, we focus on the strain expressing human tyrosine protein kinase Fyn, email GTPase Rap1a and human Arc. Of the three, the first shows a cognitive gain-of-function phenotype while the second a motor gain-of-function phenotype. By contrast, Arc, which has no Drosophila ortholog, shows no gain-of-function phenotype.

KEY WORDS: Drosophila melanogaster, Fruit fly, Human, Synaptic, Synapse, Synaptic proteome, Synaptopathy, Mental illness, Characterisation, Courtship, Climbing

INTRODUCTION

Integrative analysis of the neuronal synapse proteome has uncovered an evolutionarily conserved signalling complex that underpins the cognitive capabilities of the brain (Pocklington et al., 2006; Emes et al., 2008; Fernández et al., 2009; Bayés et al., 2011) and is highly enriched with proteins linked to human neurological disorders including schizophrenia, depression, as well as neurodegenerative diseases, such as Huntington’s, Alzheimer’s and Parkinson’s (Bayés et al., 2011; Grant, 2012). The synaptic proteome is highly dynamic (e.g. Dahlhaus et al., 2011), cell type specific (e.g. Hawrylycz et al., 2012) and intricately regulated (e.g. Coba et al., 2008, 2009). The high degree of complexity in the synaptic proteome combined with the highly polygenic nature of many brain disorders suggests systems biology approaches are likely to be the best route to unlock a new generation of neuroscience research and CNS drug development that society so urgently demands (Catalá-López et al., 2013). Yet these modelling type approaches also need fast, tractable in vivo models for validation.

More than 100 years after the discovery of the white gene in Drosophila melanogaster, the common fruit fly remains a key tool for the study of neuroscience and neurobiology. The fruit fly genome is well annotated and there is a vast genetic manipulation toolkit available. This allows interventions such as high throughput cloning (Bischof et al., 2013; Wang et al., 2012) and the precise insertion of transgenes in the genome (Groth et al., 2004; Venken and Bellen, 2007; Bischof et al., 2007; Markstein et al., 2008), the locally and temporally controlled expression of these genes using the Gal4/UAS system (Brand and Perrimon, 1993) and its derivatives such as Gal80T, which in turn allow detailed manipulation of behaviour on the neuronal level (McGuire et al., 2003). In addition to the genetic toolkit there is an array of fruit fly behavioural responses that are well characterised and can be used to measure the effects of genetic interventions on a wide range of neuronal processes from locomotor activity and sensory perception through to cognition (Nichols et al., 2012; Vang et al., 2012). Many of the long list of ground-breaking discoveries in these fields (Bellen et al., 2010) relate to highly conserved components of neuronal synapses (Emes et al., 2008).

Here we describe the development of a resource collection of transgenic fruit fly strains that, along with a proposed framework of assays, can be used to study and characterise human synaptic genes and their interactions. The collection consists of strains of transgenic fruit flies expressing selected human synaptic genes, whereas the framework for the study and characterisation of these genes is based on a proposed set of phenotypic screening methods in order to discover gain-of-function phenotypes from the expression of these genes. The screening methods assess a range of behavioural phenotypes from simple (locomotion) through to more complex (learning and memory). Although the coverage of the collection is far from comprehensive in terms of the synaptic proteome, the approach is easily replicable and extendable to include other variants or additional synaptic genes.

RESULTS

Humanised strain collection

We selected, on the basis of being reported in multiple mammalian synaptic proteomic studies (see Materials and Methods), 30 human synaptic proteins all linked to human or rodent behaviour, synaptic plasticity and disease. These include key members of the postsynaptic proteome functional, structural and regulatory components (e.g. Dlg4, Fyn, Arc, CamK2b) as well as genes with known associations with neurodegenerative disease (tau). A complete list of the genes selected and is given in Table 1.
ID	Tag	Human gene	Full name	FlyBase ID	Gene ID	Sequence accession	CA	CL
L1	no	Ncam1	Neural cell adhesion molecule 1	XXX	4684	NM_000615.6	Normal	Normal
L2	no	Apoe	Apolipoprotein E	XXX	348	NM_000041.2	Normal	Normal
L3	no	Camk2a	Calcium/calmodulin-dependent protein kinase II alpha	XXX	815	NM_015981.3	Normal	Normal
L4	no	Nsf	N-ethylmaleimide-sensitive factor	XXX	4905	NM_006178.3	Normal	Normal
L5	no	Dlg4	Discs, large homolog 4 (Drosophila)	XXX	1742	NM_001365.3	Normal	Normal
L6	no	Ptn	Pleiotrophin	XXX	5764	NM_002825.5	Normal	Lower
L7	no	Mapk3	Mitogen-activated protein kinase 3	XXX	5595	NM_002746.2	Normal	Normal
L8	no	Cdk5	Cyclin-dependent kinase 5	XXX	1020	NM_004935.3	Normal	Normal
L9	no	Gnas	GNAS complex locus	XXX	2778	NM_000516.4	Normal	Lower
L10	no	Ghap	Glial fibrillary acidic protein	XXX	2670	NM_002055.4	Normal	Normal
L11	no	Gabra5	Gamma-aminobutyric acid (GABA) A receptor, alpha 5	XXX	2558	BC113422.1	Normal	Normal
L12	no	Gria2	Glutamate receptor, ionotropic, AMPA 2	XXX	2891	NM_000826.3	Normal	Normal
L13	no	Rap1a	RAP1A, member of RAS oncogene family	XXX	5906	NM_001010935.1	Lower	Normal
L14	no	Gap43	Growth associated	XXX	2596	NM_002045.3	Lower	CS
L15	no	Vdac1	Voltage-dependent anion channel 1	XXX	7416	NM_003374.2	Normal	Normal
L16	no	Fyn	FYN oncogene related to SRC, FGR, YES	XXX	2534	NM_002037.5	Normal	Lower
L17	no	Amph	Amphiphysin	XXX	273	NM_001635.3	Normal	Lower
L18	no	App	Amyloid beta (A4)	XXX	351	NM_000484.3	Normal	Normal
L19	no	Sod1	Superoxide dismutase 1, soluble	XXX	6647	NM_000454.4	Normal	Normal
L20	no	Mapt	Microtubule-associated protein tau	XXX	4137	NM_016834.4	Lower	CS
L21	no	Homer2	Homer homolog 2 (Drosophila)	XXX	9455	NM_004839.3	Normal	Normal
L22	no	Arc	Activity-regulated cytoskeleton-associated protein	XXX	23237	NM_015193.4	Normal	Normal
L23	no	Ppp1cc	Protein phosphatase 1, catalytic subunit, gamma isozyme	XXX	5501	NM_002710.3	Normal	Normal
L24	no	Nrgn	Neurogranin (protein kinase C substrate, RC3)	XXX	4900	NM_006176.2	Normal	Normal
L25	no	Bdnf	Brain-derived neurotrophic factor	XXX	627	BC029795.1	Normal	Normal
L26	no	Ywhae	Tyr 3-5 monooxygenase/Trp 5-monooxygenase activation protein, epsilon	XXX	7531	NM_006761.4	Normal	Normal
L27	no	Camk2b	Calcium/calmodulin-dependent protein kinase II beta	XXX	816	NM_001220.4	Normal	Normal
L28	no	Ppp3ca	Protein phosphatase 3, catalytic subunit, alpha isozyme	XXX	5530	NM_000944.4	Normal	Normal
L29	no	Baiap2	BAI1-associated protein 2	XXX	10458	BC014020.2	Normal	Normal

Continued
Phenotypic assay results

Each strain was visually checked for gross anatomical defects or severe behavioural defects (not shown). We then tested the collection using two common phenotypic assays. The first is a climbing (negative gravitaxis) assay to test for motor phenotypes through the loss of climbing ability and the second is a courtship learning assay for quantifying a more complex cognitive task. Each strain was crossed with a Gal4 driver appropriate for the assay. We used the pan-neuronal elav-Gal4 (Yao and White, 1994) for the climbing assay and the mushroom body (MB)-specific 30y-Gal4 for the courtship learning assay, since the MB is associated with courtship learning in *Drosophila* (McBride et al., 1999). We then assayed the first generation progeny of these crosses. Note that the type of line (3×HA tagged or non-tagged) tested was the one we had confirmed the transgene’s expression for and in the majority of cases that was the line expressing the 3×HA tagged version of the construct.

Of the humanised lines tested, four showed a cognitive phenotype (lines expressing Fyn, Amph, Gnas and Ptn, all tested in the 3×HA tagged version line) and three showed a motor phenotype (lines expressing Rap1a, Gap43 and Mapt, all tested in the 3×HA tagged version line). Details are provided in Tables S1 and S2, respectively. Fig. 1 shows example results for the strains expressing Arc, Fyn and Rap1a. Of these genes, Arc has no known fruit fly ortholog, while Fyn and Rap1a have one-to-many ortholog relations with the Src64B and Roughened genes respectively. In mammals, all three genes have been implicated in plasticity and behaviour (Plath et al., 2006; Kojima et al., 1997; Morozov et al., 2003; Grant et al., 1992).

These results highlight three distinct potential outcomes of the search for gain-of-function phenotypes in the collection. Expression of Arc does not introduce any motor or cognitive phenotypes measurable with the assays used. An interpretation of the latter could be due to the lack of orthologues and by extension other interacting protein partners in the cellular context of *Drosophila*. Fyn and Rap1a introduce specific cognitive and motor gain-of-function phenotypes respectively.

DISCUSSION

We have produced a collection of fruit fly strains and made it available to the research community. The fruit fly lines in this resource allow the study of the function of human synaptic genes in the context of the *Drosophila* central nervous system. As an example of this type of application we tested strains in the collection and found gain-of-function phenotypes with a frequency ranging between 10% (motor) and 13.3% (cognitive). Interpretation of the gain-of-function phenotypes could help with the functional characterisation of these genes, starting from the *Drosophila* context. For those lacking a phenotype they present platforms upon which the effect of gene variants may be studied in the fly.

Other potential applications could extend to attempting to modulate the extent of these, or other, phenotypes by using small drug-like molecules. The latter is particularly useful for testing the effect of new candidate drugs on a human target or its allelic variants. Beyond the quantification and attempts to pharmaceutical modulation of phenotypes there are also other applications such as the proteomic identification of immunoprecipitated samples, in order to discover native proteins that interact with the trans-protein. This could be particularly useful in the case of strains used as disease models and the HA tagged versions could facilitate this.

Finally the design of the collection allows the study of binary interactions though genetic combination and screening. Based on the PhiC31 integrase insertion system we have used, in order to generate combinatorial models all one has to do is use two transgenic strains, one with a construct inserted in one landing site (e.g. attP40 on chromosome 2), including the lines made available here, and a second in another site (e.g. attP2 on chromosome 3), using the same process as here, along with simple genetic crosses. In addition to that, the wide availability of RNAi stocks (Dietzl et al., 2007) allows the silencing of the native ortholog genes, where these exist, for more refined downstream studies. The investigation of genetic interactions is very useful in order to dissect the mechanisms of actions in various disease models using an organism as versatile as *Drosophila*.

The fly strains described here are available from the Bloomington Stock Center at Indiana University (http://flystocks.bio.indiana.edu).

MATERIALS AND METHODS

Human synaptic gene selection

We compiled a list of synaptic genes from proteomics pull-down experiments or co-immunoprecipitation using synaptic baits and annotated it for disease associations, synaptic plasticity and behaviour associations. The list was sourced from the Genes2Cognition database publicly available datasets (http://www.genes2cognition.org; Croning et al., 2009) as well as the SynSysNet dataset (von Eichborn et al., 2013). We prioritised genes on the basis of whether and how often they appear in the aforementioned lists, their synaptic specificity and whether they were associated to reported behaviours, plasticity processes or disease annotations. A closer inspection of the resulting dataset revealed that it was biased against some genes associated with neurodegenerative diseases so we added several of these.
Fig. 1. Results of the courtship learning and climbing assays, quantifying learning and memory and motor phenotypes, respectively, for selected strains in the collection. (A) Results of the courtship learning assay for the selected genotypes 30y-Gal4; UAS-Arc;+(Arc; N\text{trained} = 17, N\text{naive} = 18), 30y-Gal4; UAS-Fyn;+(Fyn; N\text{trained} = 17, N\text{naive} = 18), 30y-Gal4; UAS-Rap1a;+(Rap1a; N\text{trained} = 28, N\text{naive} = 27) and the respective driver and wild type cross 30y-Gal4;+ (Control; N\text{trained} = 23, N\text{naive} = 24). All strains exhibit courtship within a relatively normal range (not shown). All lines with the exception of Fyn show significant differences between the Courtship Index (CI) of the trained (empty bar) and naive (filled bar). This translates to the Fyn expressing flies having a significantly lower Learning Index (LI) compared to controls. ANOVA showed that the CI difference between trained and naive flies for Arc, Rap1a and control were significant (see Table S1 for P-values) while the CI difference between trained and naive flies for Fyn was not. Multiple testing showed that the LIs Fyn expressing flies were significantly lower than the control (*P=0.0359). Error bars show xxx.

(B) Results of the climbing assay for the following genotypes: elav-Gal4; UAS-Arc;+(Arc), elav-Gal4; UAS-Fyn;+(Fyn), elav-Gal4; UAS-Rap1a;+(Rap1a) and the respective driver and wild type cross elav-Gal4;+ (Control). N=50 (5 replicate vials of 10 flies each). For significance testing: ns, P>0.05; *P<0.05. Arc and Fyn show similar climbing abilities to the Control, whereas the Rap1a-expressing line shows a significant difference in the climbing score compared to the control. P-values are 0.0019, 0.0146 and 0.0210 for 7, 14 and 21 days, respectively (see also Table S2). Note how the Arc-expressing line in the figure, like most of the other strains (not shown) has no significant phenotype in the phenotypic assays.

Fly stocks, husbandry and maintenance
The fly stocks were fed on standard cornmeal medium maintained at 19°C. Experimental crosses were performed and the F1 progeny was maintained on the same medium at 25°C.

Plasmids, cloning and transformation
We used Gateway cloning system (Life Technologies) in order to maximise the efficiency of the pipeline. In addition to that we decided to transform the flies using the *Drosophila* PhiC31 system (Bischof et al., 2007; Markstein et al., 2008) with the attP40 insertion site stock. This allows us to (a) control for position effects in the expression of the gene and (b) in combination with a different landing site stock (e.g. attP2) leaves the potential for combinatorial models open. In order to satisfy the above combination we used the Gateway compatible plasmids by FlyC31 (http://www.flyc31.org/) (Bischof et al., 2007). These come in non-tagged (pUAsg) and a 3×HA C-terminal tagged (pUAsg-HA) versions. The sequences of the inserts were confirmed post-synthesis and also with a Polymerase Chain Reaction (PCR) and sequencing at the ‘Expression clone’ stage using forward and reverse primers recommended for the sequence of the FlyC31 plasmids (forward: GTGCAACTCTGAAATC-TGCCAAC, reverse: CCGCATATCGGAAACATCG). Transformation of the attP40 insertion site stocks was done by Genetic Services Inc (Cambridge, USA).

Western blot confirmation of expression
Fly heads were homogenized in RIPA buffer (Sigma-Aldrich, UK), centrifuged, and the supernatant was collected. Proteins were separated on SDS-PAGE gel and then transferred onto membrane using the iBlot® Transfer Stack, nitrocellulose (Life Technologies). Blocking in 5% skimmed milk was followed by overnight primary antibody incubation. The primary antibodies used were anti-HA (Roche) as well as, where available, primary antibodies against the native human genes. The primary antibody concentration used was 1 μg/ml for the protein specific antibodies (anti-Ncam1, UMAB83, Origene and anti-Nsf, ab16681, Abcam) and a 1:1000 dilution for the mouse anti-HA. Membranes were incubated with the secondary antibody (GE Healthcare) at a 1:5000 concentration for one hour, followed by signal detection using the Amersham ECL system (GE Healthcare). See Fig. S1 for a summary of the results.

Climbing assay
The climbing assay was performed with progeny of a c155 (elav-Gal4) cross, expressing the transgene pan-neuronally. Flies were tested at the same time of day to exclude circadian rhythm effects. Ten replicate vials, containing 10 flies each, were simultaneously dropped on bench from the same height using an in-house designed apparatus. The whole process is recorded on High Definition video. Using the video we identify the frame of the moment of impact and extract the frame located 5 s later. The vials in the
frames are then separated in four equal segments and the number of flies in each segment was counted. For each replicate vial a climbing score (CS) is calculated as a weighted average of these segment counts, with weights assigned as \(w_s = s \) (where segment \(s = 1, 2, \ldots \)). For this experiment we used four segments. This weighting represents rewarding the innate climbing behaviour. The climbing score is averaged for groups of replicate vials. The groups of replicate CS values we compared for significant differences using one-way ANOVA. The significance cut-off was a \(P \)-value <0.05.

Courtship learning assay

Courtship behaviour of the fruit flies is a vigorous pursuit of the male after a female stimulated by the female pheromones (Tompkins and Hall, 1981). As the behaviour is innate, even the virgin males are able to perform. However, a virgin male courting a previously mated female is usually rejected and learns to suppress further courtship towards other females (Tompkins et al., 1983). Thus testing the courtship behaviour tests learning and memory abilities as well. The protocol for courtship conditioning started with leaving 7 days old virgin males for 30 min in the courting chamber without the female (rest phase). Next the mated female was introduced into the chamber with the male for 30 min (learning phase). After that time, male and female were separated by the divider for another 30 min (rest phase) and then the male associative memory was tested for 6 min. The test phase was recorded with the use of a digital camera in 23-25°C and 30-32% humidity. Scoring was done blind and performed with the use of FlyAnnotate v1.0 (developed by James Heward). The various behaviours connected to courtship like orientation, pursuit, wing vibration, genital licking and attempted copulation (O’Dell, 2003) were scored as courtship by pressing a relevant key on the keyboard. The courtship index (CI) was calculated by dividing the number of frames (time) scored as courtship by the total number of frames (time) of the movie (Tompkins et al., 1983; O’Dell, 2003). Scores of 0 were discarded as invalid. Having the CI of trained and naïve flies, it was possible to calculate the learning (performance) index (LI) (Kamyshev et al., 1999): LI=[(Cl naïve – Cl uninstructed)/Cl uninstructed]×100. ANOVA was performed to check whether the CI of both trained and naïve was significantly different. Multiple testing was performed to see if the LI of the trained and the naïve flies was significantly different (Kamyshev et al., 1999). The significance cut-off was a \(P \)-value <0.05.

Acknowledgements

The authors would like to thank the members of the SynSys consortium (http://www.synsys.eu) for facilitating the data and material exchange and the collaboration.

Competing interests

L.Z., R.W.D. and J.D.A. declare competing financial interests. L.Z., R.W.D. and J.D.A. are all shareholders in businesses that exploit humanised Drosophila for drug discovery. However, the conflict is indirect as none of the strains described here are currently being used.

Author contributions

R.W.D. and J.D.A. conceived the experiments, L.Z., A.B.S., K.W.L. and R.W.D. and J.D.A. designed the experiments, L.Z. and J.T. performed the experiments, L.Z. analysed the data, L.Z.A.B.S. and J.D.A. wrote the paper.

Funding

L.Z., R.W.D., J.D.A., A.B.S. and K.W.L. and E.E.W. were funded in part by The European Commission (EU HEALTH-2009-242167 ‘SynSys’ project).
SUMMARY: This report describes a resource collection of Drosophila melanogaster strains expressing human synaptic genes and methods that can be applied in order to investigate the genes’ function.