Adverse Reactions Due to the Bacillus Calmette-Guerin Vaccine: Twenty Tunisian Cases

Khadija Sellami, Meriem Amouri, Sana Kmiha¹, Emna Bahloul, Hajer Aloulou¹, Lamia Sfaihi¹, R Guirat¹, Madiha Mseddi, T Kamoun, Mongia Hachicha¹, Hamida Turki

Abstract

Background: Bacillus Calmette-Guerin (BCG) vaccine is a widely used vaccine. Management of local BCG complications differs between clinicians, and the optimal approach remains unclear. Aims: We aim to describe the epidemiological, clinical and therapeutic aspects of the BCG vaccine side effects in Sfax. Patients and Methods: This was a retrospective study of all the cases of BCG vaccine adverse reactions recorded in the Dermatology and Paediatrics Departments of Hedi Chaker University Hospital of Sfax over a period of 10 years (2005–2015). Results: Twenty cases of BCG adverse reactions were notified during the study period. Actually, 80% of the patients presented local adverse reactions. The outcome was good in all the followed patients. The rate of disseminated BCG disease was 20%. Biological tests of immunity showed a primary immunodeficiency in three cases, whereas the outcome was fatal in two cases. Conclusion: BCG vaccine adverse reactions range from mild to severe. However, the management of benign local reactions remains unclear. Disseminated BCG disease must alert clinicians to the possibility of a primary immunodeficiency.

Key Words: Adverse reactions, bacillus Calmette-Guerin vaccine, tuberculosis

Introduction

Bacillus Calmette–Guerin (BCG) is a live attenuated Mycobacterium bovis used as a vaccine against tuberculosis (TB). The type of vaccine administered in our country is M. bovis (French [Pasteur] strain 1173-P2). Specific complications of BCG vaccine are rare.[¹] They are often characterised by mild local reactions including lymphadenitis, abscesses, ulceration, and injection site reactions. Their management is still unclear.[²] Serious disseminated forms rarely occur, mainly in immunocompromised children.[³] These complications, however, require intensive therapy. Through this series, we aim to describe the epidemiological, clinical, and therapeutic aspects of the BCG vaccine side effects in Sfax (eastern centre of Tunisia).

Patients and Methods

We conducted a retrospective study of all cases of the BCG vaccine adverse reactions recorded in our

Dermatology and Paediatrics Departments over a period of 10 years (2005–2015). Inclusion criteria were clinical findings consistent with BCG adverse reactions and/or histopathological features (necrotising granulomas). We collected data about the clinical presentation, laboratory tests, management, and outcome.

Results

Our series included twenty children aged between 7 days and 7 years with an average age of 12.3 months. Boys were more affected than girls with a sex ratio of 1.8:1. Most of them were healthy except for three children (Dandy–Walker syndrome, cerebrovascular thrombosis, and major histocompatibility complex [MHC] class II...
deficiency). BCG vaccine complications appeared on an average 9.8 months after the vaccination.

Sixteen children (80%) presented local adverse reactions. Ten of them had lymphadenitis involving left axillary nodes [Figure 1]. Two had swelling of the left pectoral region [Figure 2]. One patient had nuchal nodes, another one had only BCG site reaction, and two patients had aberrant localisation of BCG-induced disease with swelling of the left thigh [Figure 3]. Moreover, fistulisation occurred in six patients. Watch-and-wait attitude was followed in nine cases. Antibiotics and/or local treatment were used in four cases. These measures took care of the problems. Actually, none of the lesions was aspirated (using a needle and a syringe). Surgery was conducted in two cases of nonfistulised lesions. It helped make the diagnosis as pathological examination showed necrotising granulomas. Anti-TB therapy was administered to patient 16 who had MHC class II deficiency [Table 1].

Four children (20%) had disseminated BCG disease [Table 2] with lymphadenopathies, bone, haematological, and/or skin involvement [Figure 4]; fever; and impaired general condition. Bacteriological samples were negative, and probabilistic antibiotics were inefficient. Histology performed in four cases supported the diagnosis of BCG vaccine side effects by showing tuberculoid granuloma with necrosis in three cases. Biological tests of immunity (performed in three cases) showed primary immunodeficiency: chronic septic granulomatosis, severe combined immunodeficiency (SCID), or defect in the Interleukin-12/Interferon-γ axis. Management consisted of anti-TB therapy. Two of the children died after a septic shock and multi-visceral failure.

Discussion

The BCG vaccine was first used in humans in 1921. In countries where TB is endemic like ours, it is recommended for newborns as soon as possible after birth, without booster dose. It protects against pulmonary and extrapulmonary TB. Following the intradermal injection, a granulomatous reaction occurs

Figure 1: Local adverse reaction: Fistulised suppurative left axillary lymphadenitis

Figure 2: Local adverse reaction: Swelling of the left pectoral region

Figure 3: Local adverse reaction: Swelling of the left thigh on the injection site

Figure 4: Maculopapular rash in a child with disseminated bacillus Calmette–Guerin disease
at the site of inoculation as an expected immunologic response to the *Mycobacterium*. The systemic spread of BCG is possible, but true symptoms of TB infection are rare. Adverse reactions to BCG vaccine are seen in 1–10% of vaccinees but seem to be underreported. They are usually seen within the first 6 months of vaccination but can occur even 12 months later. A late onset has been reported in five of our patients and reached 7 years in patient 2. Some authors suggested an association between the occurrence of adverse reactions and the type of the injected strain or the type of prepared. Compared to weak strains, strong strains, which have a higher immunogenicity, are more likely to cause adverse reactions. Other factors, such as the dose of the vaccine, the administration technique, and the underlying immunodeficiency, may also increase their frequency. In a Saudi study collecting 145 cases of BCG lymphadenitis, the authors advised to administer the BCG vaccine later after birth as younger children are commonly affected. However, the risk of contamination with *Mycobacterium* in endemic countries limits delaying of the vaccination.

Local adverse reactions include lymphadenitis (mostly involving ipsilateral axillary nodes like in our series, rarely supraclavicular, nuchal, or cervical), abscesses, ulceration, and persistent injection-site reactions. The diagnosis is clinical. The involvement of the thigh in patients 4 and 9 is uncommon. This may be due to an injection error: by injecting the BCG vaccine into the thigh muscle or by using the same needle when injecting the BCG vaccine and the vitamin K (administered at the same time). A nonsuppurative lymphadenitis may be considered part of the normal course of the BCG vaccination, with a spontaneous resolution within few weeks or months. However, the management of suppurative lymphadenitis still remains controversial. Even if conservative management may be sufficient in some cases, the efficiency of anti-TB therapy is uncertain. Patients with lymphadenitis abscess may need needle aspiration. Local instillation of isoniazid could also shorten the recovery time in these cases. Surgical excision is not recommended as a first-line approach but may be needed after an aspiration failure. Cytohistopathological diagnosis

Table 1: Data of patients with local Bacillus Calmette-Guerin adverse reactions

Patients	Gender	Age	Clinical presentation	Management	Outcome
Patient 1	Male	1 year	Two nuchal nodes	Watch and wait	Complete resolution after 2 months
Patient 2	Male	7 year	BCG site reaction	Antibiotics and local care	Complete resolution after 3 months
Patient 3	Female	7 day	Isolated left axillary node, secondarily ulcerated	Antibiotics and local care	Complete resolution after 7 months
Patient 4	Female	16 month	Swelling of the left thigh	Surgery	Good
Patient 5	Male	3 year	Isolated left axillary node	Surgery	Good
Patient 6	Male	2 month	Isolated left axillary node, secondarily ulcerated	Local care	Complete resolution after 3 months
Patient 7	Male	6 month	Nonulcerated left axillary node	Watch and wait	Unknown
Patient 8	Male	2 month	Fistulised left axillary node	Watch and wait	Unknown
Patient 9	Male	5 month	Ulcerated swelling of the left thigh	Watch and wait	Unknown
Patient 10	Female	6 month	Fistulised left axillary node	Watch and wait	Unknown
Patient 11	Male	6 month	Nonulcerated left axillary node	Watch and wait	Unknown
Patient 12	Male	6 month	Fistulised swelling of the left pectoral region	Local care	Local improvement after 15 days
Patient 13	Male	10 month	Nonfistulised swelling of the left pectoral region	Watch and wait	Unknown
Patient 14	Female	14 month	Nonulcerated left axillary node	Watch and wait	Complete resolution after 2 months
Patient 15	Male	2 month	Nonulcerated left axillary node	Watch and wait	Unknown
Patient 16	Female	5 month	Nonulcerated left axillary node	Anti-TB therapy	Unknown

BCG: Bacillus Calmette-Guerin, TB: Tuberculosis

Table 2: Data of patients with disseminated Bacillus Calmette-Guerin disease cases

Patients	Gender	Age	Clinical presentation	ID disorder
Patient 17	Male	10 month	Recurrent diffuse supplicative lymphadenitis	Chronic septic granulomatosis
Patient 18	Female	15 month	Multifocal BCG arthritis	Severe combined ID
Patient 19	Male	4 month	Recurrent diffuse supplicative lymphadenitis	Defect in the IL-12/IFNγ axis
Patient 20	Female	5 month	Cutaneous and haematological BCG disease	Nonspecified ID

ID: Immunodeficiency, BCG: Bacillus Calmette-Guerin, IL: Interleukin, IFNγ: Interferon gamma
(after aspiration or surgery) is based on the presence of necrotising or non-necrotising granulomas, positive culture for acid- and alcohol-fast bacilli, and/or positive polymerase chain reaction assay.\cite{13,14}

Systemic complications of the BCG vaccine are rare. Actually, their frequency varies across studies from 1% to 17\%.

Osteitis and osteomyelitis had generally good prognosis and resolved without sequelae.\cite{2} However, disseminated BCG infections are life-threatening complications and often seen in children with primary immunodeficiency, especially SCID. Bernatowska et al suggested diagnostic criteria for disseminated BCG infection in persons with primary immunodeficiency.\cite{15} No guidelines on the treatment for disseminated BCG disease are available. Anti-TB therapies are always useful and were prescribed in all our patients. Treatment of immunodeficiency must always be considered. Mortality rates range from 25% to >70% across studies\cite{15,16} (50% in our series).

It is the first Tunisian series which exclusively reports adverse reactions due to the BCG vaccine. In 2006, Hajlaoui et al registered 12 cases of BCG-specific reactions among 38 Tunisian cases of cutaneous TB over a period of 12 years.\cite{17} Using our hospital study, we are unable to provide an accurate estimate of the overall complication rate associated with the BCG vaccination. However, they seem to be increasing in recent years.

Conclusion

The BCG vaccine complications should be suspected in any BCG vaccine with skin lesions that might have a systemic infection dissemination or antibiotic resistance. Therefore, prompt diagnosis and management are needed, especially in disseminated forms, to avoid serious outcomes. In such situations, clinicians must be aware of the possibility of a primary immunodeficiency, especially SCID. It would be helpful to gather data about the vaccine adverse events, particularly the BCG vaccine, in national or international registries for a better analysis and consequent suitable actions.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

What is new?

We report an uncommon site of BCG adverse reactions involving the thigh. This may be due to an injection error. It is the first Tunisian series which exclusively reports adverse reactions due to the BCG vaccine.

References

1. Antaya RJ, Gardner ES, Bettencourt MS, Daines M, Denise Y, Uthaisangsook S, et al. Cutaneous complications of BCG vaccination in infants with immune disorders: Two cases and a review of the literature. Pediatr Dermatol 2001;18:205-9.

2. Venkataramanan A, Yusuff M, Liebeschuetz S, Riddell A, Prendergast AJ. Management and outcome of Bacille Calmette-Guérin vaccine adverse reactions. Vaccine 2015;33:5470-4.

3. Conti F, Lugo-Reyes SO, Blancas Galicia L, He J, Aksu G, Borges de Oliveira E Jr., et al. Mycobacterial disease in patients with chronic granulomatous disease: A retrospective analysis of 71 cases. J Allergy Clin Immunol 2016;138:241-8.e3.

4. The vaccination schedule. Ministry of Health. Republic of Tunisia. July, 2014.

5. Teo SS, Smeulders N, Shingadia DV. BCG vaccine-associated suppurative lymphadenitis. Vaccine 2005;23:2676-9.

6. Milstien JB, Gibson JJ. Quality control of BCG vaccine by WHO: A review of factors that may influence vaccine effectiveness and safety. Bull World Health Organ 1990;68:93-108.

7. Norouzi S, Aghamohammadi A, Mamishi S, Rosenzweig SD, Rezaei N. Bacillus Calmette-Guérin (BCG) complications associated with primary immunodeficiency diseases. J Infect 2012;64:543-54.

8. Bolger T, O’Connell M, Menon A, Butler K. Complications associated with the Bacille Calmette-Guérin vaccination in Ireland. Arch Dis Child 2006;91:594-7.

9. Riordan A, Cole T, Broomfield C. Fifteen-minute consultation: Bacillus Calmette-Guérin abscess and lymphadenitis. Arch Dis Child Educ Pract Ed 2014;99:87-9.

10. Bukhari E, Alzahrani M, Alsubaie S, Alrabiaah A, Alzamil F. Bacillus Calmette-Guerin lymphadenitis: A 6-year experience in two Saudi hospitals. Indian J Pathol Microbiol 2012;55:202-5.

11. Cuello-García CA, Pérez-Gaziola G, Jiménez Gutiérrez C. Treating BCG-induced disease in children. Cochrane Database Syst Rev 2013;1:CD008300.

12. Mahmoudi S, Khaheshi S, Pourakbari B, Aghamohammadi A, Keshavarz Valian S, Bahador A, et al. Adverse reactions to Mycobacterium bovis bacille Calmette-Guérin vaccination against tuberculosis in Iranian children. Clin Exp Vaccine Res 2015;4:195-9.

13. Sataynarayana S, Mathur AD, Verma Y, Pradhan S, Bhandari MK. Needle aspiration as a diagnostic tool and therapeutic modality in suppurative lymphadenitis following Bacillus Calmette Guerin vaccination. J Assoc Physicians India 2002;50:788-91.

14. Su WJ, Huang CY, Huang CY, Perng RP. Utility of PCR assays for rapid diagnosis of BCG infection in children. Int J Tuberc Lung Dis 2001;5:380-4.

15. Bernatowska EA, Wolska-Kusnierz B, Pac M, Kurendo-Deptuch M, Zwolska Z, Casanova JL, et al. Disseminated Bacillus Calmette-Guérin infection and immunodeficiency. Emerg Infect Dis 2007;13:799-801.

16. Talbot EA, Perkins MD, Silva SF, Frothingham R. Disseminated Bacille Calmette-Guérin disease after vaccination: Case report and review. Clin Infect Dis 1997;24:1139-46.

17. Hajlaoui K, Fazaa B, Zermani R, Zeglaoui F, El Fekib N, Ezzine N, et al. Cutaneous tuberculosis. A review of 38 cases. Tunis Med 2006;84:537-41.