Neutrophil-to-lymphocyte ratio as a prognostic indicator in head and neck cancer: A systematic review and meta-analysis

Tristan Tham MD1 | Yonatan Bardash BA1 | Saori Wendy Herman MLIS, AHIP2 | Peter David Costantino MD1

1 New York Head and Neck Institute, Hofstra Northwell School of Medicine, Northwell Health System, New York, New York
2 Hofstra Northwell School of Medicine, New York, New York

Correspondence
Tristan Tham, New York Head and Neck Institute, 130 East 77th Street, 10th Floor, New York, NY 10075.
Email: ttham@northwell.edu

Section Editor: David W. Eisele, MD

Abstract

Background: The purposes of this systematic review and meta-analysis were to investigate the relationship between the neutrophil-to-lymphocyte ratio (NLR) and prognosis in head and neck cancer.

Methods: A systematic review and meta-analysis were done to investigate the role of NLR in overall survival (OS), disease-specific survival (DSS), disease-free survival (DFS), and progression-free survival (PFS).

Results: For qualitative analysis, 33 cohorts with over 10,072 patients were included. For quantitative analysis, 15 studies were included with 5,562 patients. The pooled data demonstrated that an elevated NLR significantly predicted poorer OS and DSS.

Conclusion: An elevated pretreatment NLR is a prognostic marker for head and neck cancer. It represents a simple and easily obtained marker that could be used to stratify groups of high-risk patients who might benefit from adjuvant therapy.

Keywords
head and neck cancer, inflammatory markers, meta-analysis, neutrophil lymphocyte ratio (NLR), prognosis, systematic review

1 | INTRODUCTION

Head and neck cancer is one of the more common cancers worldwide,1 accounting for more than half a million new cases annually. The majority of head and neck cancers is of the squamous cell carcinoma histological subtype, and may be located in the anatomic compartments of the oral cavity, nasopharynx, oropharynx, hypopharynx, and larynx. Standard therapies of head and neck cancer may be surgical, radiotherapy or chemotherapy, or a combination thereof. The mode of treatment is largely determined by the characteristics of the presenting tumor, namely the stage, grade, and location. These in turn determine the prognosis of the tumor. The other known prognostic factors for head and neck cancer include performance status, smoking and alcohol history, and human papillomavirus infection.

Recently, there has been an interest in easily obtained inflammatory biomarkers that have the potential to predict the prognosis in patients with cancer. Such markers are hypothesized to reflect the underlying complex interplay between the systemic inflammatory responses with the tumor microenvironment.2–4 Markers, such as C-reactive protein (CRP), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio, and lymphocyte-to-monocyte ratio, have been described in the literature. Of these inflammatory markers, the NLR has been widely reported. The ostensible ability of the NLR to act as a prognostic tool has been demonstrated in several meta-analyses in different cancer sites.5–7

Despite the surfeit amount of studies published, the prognostic value of the NLR in patients with head and neck cancer remains unclear, and even controversial.8 There are several meta-analyses of the NLR in nasopharyngeal cancers.
only. To the best of our knowledge, this is the first meta-analysis investigating the prognostic role of NLR in head and neck cancer in all sites. Therefore, our purpose in this study was to consolidate the published literature in order to clarify the relationship between the pretreatment NLR and the prognosis of patients with cancer in all sites of the head and neck.

2 | MATERIALS AND METHODS

2.1 | Design

Our search was performed in accordance with the Cochrane Handbook of DTA Chapter on searching. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement guidelines to identify, screen, and describe the protocols used in this systematic review. Because our systematic review and meta-analysis were performed on observational studies, we also followed the Meta-analysis of Observational Studies in Epidemiology (MOOSE) checklist. Our search strategy was designed in collaboration with a librarian at the Hofstra Northwell School of Medicine (W.H.), and the systematic review was prospectively registered in an online systematic review database (Prospective Register of Systematic Reviews [PROSPERO] 2017:CRD42017059500).14

2.2 | Search strategy

Medline (via PubMed), EMBASE, and the Cochrane Library were searched on March 17, 2017. Scopus was searched on March 20, 2017. We searched all databases from their inception to the present with no restriction on language of publication. To gather additional literature, bibliographies were hand-searched and PubMed’s related articles search was performed on all included articles. Due to the large volume of results retrieved in Embase and Scopus, the publication type filters were used to exclude conference abstracts, letters, editorials, conference reviews, conference papers, and book chapters. Briefly, keywords used were variations of “inflammatory marker,” “neutrophil lymphocyte ratio,” “lymphocyte marker,” “cancer,” “neoplasm,” “squamous cell carcinoma,” and “head and neck cancer.” The full search strategy may be found in the Supporting Materials.

2.3 | Article selection

Articles were selected independently by 2 of the authors (T. T. and Y.B.) in 2 phases. In the first phase, we screened a list of titles and abstracts for full-text retrieval. During the first phase (title and abstract screening), our inclusion criteria was any study that reported a description of NLR in head and neck cancer, either in the title or abstract. If the content of the abstract was not clear, we selected the study for full-text review. Articles that passed the first phase of screening were selected for full-text retrieval and were assessed in a second phase of screening.

In the second phase, we screened full text articles using predetermined inclusion/exclusion criteria. Disagreements were resolved via consensus. For the second phase of the screening (full text retrieval), the following inclusion and exclusion criteria were applied. Inclusion criteria: (1) the article reports on prognostic impact of peripheral blood NLR in head and neck cancer and associated subsites; (2) the NLR was treated as a categorical variable; (3) the NLR was collected before treatment; (4) the NLR hazard ratio (HR)/risk ratio (RR) for overall survival (OS), disease-specific survival (DSS), with or without disease-free survival (DFS), with or without progression-free survival (PFS); (5) there is 95% confidence interval (CI) for survival statistic, with or without the P value; (6) is available as full text publication; (7) is in the English language; and (8) is a clinical trial, cohort, or case control. Exclusion criteria: (1) case report, conference proceeding, letters, or reviews/meta analyses; (2) thyroid and endocrine tumors; (3) animal studies; (4) laboratory studies; (5) duplicate literature and duplicate data; when multiple reports describing the same population were published, only the most recent or complete report was included; (6) metastatic cancers only; and (7) incomplete data (no NLR HR for OS/DSS). Studies with incomplete data (for example, studies that included Kaplan-Meier curves only, or without HR with 95% CI), were not excluded initially. In these cases, we contacted the corresponding authors in attempt to obtain their original data.

The PRISMA flow chart of the systematic review can be found in Figure 1. An initial search done using the search strategy (Supporting Materials) obtained an initial 900 results. De-duplication was then performed, which reduced the number of results to 500. The first phase of screening was performed next on the titles and abstracts, which reduced the number of results to 65. The agreement was good for the first phase with a kappa of 0.7. The second phase of screening resulted in the exclusion of a further 33 results. The agreement was very good for the second phase of screening with a kappa of 0.85. Thus, a total of 32 studies (33 cohorts) remained for quality assessment (Supporting Materials).

2.4 | Controlling for methodological heterogeneity

During quality assessment, we discovered there was significant methodological heterogeneity in the 32 initially selected articles. There was a wide range of NLR cutoffs as well as inconsistent methodologies of obtaining the cutoffs. The NLR cutoff range for OS and DSS was 1.92 to 5.56 and 1.9
to 5, respectively, with cutoffs unavailable from 2 studies. The NLR cutoffs were obtained from receiver operating characteristic (ROC) curve analysis or training sets in 15 studies, based on previous literature in 5 studies, median value in 5 studies, and percentile in 3 studies, and not mentioned in 4 studies.

In order to decrease the methodological heterogeneity of our dataset, we decided to only include studies that had (a) reported NLR cutoff and (b) NLR cutoff derived from ROC curve analysis or equivalent statistical method. To control for the wide range of NLR cutoffs, we performed further stratified analyses by excluding studies in the extreme 12.5% or 25% tails of the cutoff distribution (keeping the central 75% or 50% of studies for pooled analysis). Thus, we were able to perform quantitative analysis in 11 studies for OS, 5 studies for DSS, and 3 studies for PFS. There were insufficient studies of methodological similarity in DFS/recurrence-free survival (RFS) in order to perform a pooled quantitative analysis. The list of excluded articles with the reasons for exclusion may be found in the Supporting Materials.

2.5 Data extraction

Data forms were developed a priori as recorded in the PROSPERO registry. Two authors (T.T. and Y.B.) jointly
reviewed all of the full text articles together for the data extraction process. If there were disagreements about data points, a third author (P.C.) was consulted to adjudicate and resolve the disagreement. The following data points were collected: first author’s name; year of publication; country (region) of the population studied; sample size; age; sex; demographic data; follow-up period; tumor data, including histology, stage, grade and metastasis; survival data HR/RR OS, DSS, RFS, DFS, and/or PFS, with the associated 95% CI P value; survival data reported with univariate or multivariate analysis; cutoff value used to define “elevated NLR”; method of obtaining the cutoff value; and subgroup and covariate information.

For the analysis of the relationship between NLR and clinicopathological parameters, HR/RR and 95% CI were combined as the effective value. If several estimates of NLR HR for OS/DSS were reported in the same article, we chose the most powerful one (multivariate analysis was superior to univariate analysis, and the latter one weighted over unadjusted Kaplan-Meier analysis). If the method of NLR cutoff was by done by dividing the continuous NLR data into percentile cutoffs, the highest NLR percentile cutoff was chosen for data extraction. We attempted contacting authors if the information in their article was not sufficiently detailed to be extracted, such as details on adjusted regression analysis, information on NLR cutoff, or the method of obtaining the cutoff.48–50 If the HR for OS was reported as an HR of a patient with NLR below a specific cutoff experiencing the endpoint of death (vs HR of a patient with NLR above a specific cutoff experiencing the endpoint of death), we took the reciprocal of the reported HR in order to make it comparable with the other studies.50,69,72,74

2.6 | Statistical analysis

The logarithm of the HR with SE was used as the primary summary statistic. To obtain the log(HR) and SE, the HR with 95% CI was extracted directly from the studies. Additional calculation to obtain the HR was required if the study reported the reciprocal of the HR. Estimates of log(HR) were weighted and pooled using the generic inverse-variance.11 Because of anticipated heterogeneity, a more conservative approach applying the random effects model (the DerSimonian and Laird method) was chosen for all analyses. Forest plots were constructed for all outcomes displaying the random-effects model of the summary effect measure and 95% CI. Heterogeneity was assessed using Cochrane’s Q and Higgins’s I². Cochrane’s Q P value of < .1 and I² > 50% were considered as markers of significant heterogeneity. For survival statistics that showed heterogeneity, we additionally report the 95% prediction interval. The 95% prediction interval takes into account heterogeneity and is the statistic of choice when interpreting pooled results that show heterogeneity.79,80 All analyses was done using the RevMan version 5.3 analysis software (Cochrane Collaboration, Copenhagen, Denmark)81 and Meta Essentials (ERASMUS Research Institute, Rotterdam, Netherlands).82 All statistical tests were 2-sided, and a P value of < .05 was considered statistically significant. No correction was made for multiple testing.

2.7 | Publication bias

To assess publication bias, Begg’s funnel plot and Egger’s bias indicator tests were used, if appropriate. If publication bias was detected, the influence of bias on the overall effect was assessed by Duval’s “Trim and fill” method.83 A Fail-safe N measure was also calculated with the methods described by Rosenthal.84 Due to the small number of studies reporting DSS and PFS, the funnel plots are presented with the omission of advanced publication bias tests. This is because publication bias tests have been described to be underpowered with <10 studies.85 Tests for publication bias were performed by Meta-Essentials (ERASMUS Research Institute, Rotterdam, Netherlands).82

3 | RESULTS

3.1 | Study characteristics

A total of 15 studies published between 2013 and 2016 were included in our meta-analysis, with sample sizes ranging from 104 to 1895 patients.18,65–78 The characteristics of the included studies are summarized in Table 1.18,65–78 Nine studies were from China, 2 from Japan, 1 each from Korea, India, Italy, and Austria. Of 15 studies, only 1 was a prospective cohort study. The rest of the studies were retrospective studies. With regard to the survival outcomes reported, 11 reported OS, 5 reported DSS, and 3 reported PFS. The NLR cutoffs were obtained from ROC curve analysis or equivalent means in all studies.

3.2 | Neutrophil-to-lymphocyte ratio and overall survival in head and neck cancer

Data from 11 studies were synthesized in the meta-analysis for NLR and OS in patients with head and neck cancer (Table 2).18,65–74 An elevated NLR value was found to be significantly associated with poorer OS with HR of 1.51 (95% CI 1.32-1.73; P < .001). The test for heterogeneity showed an I² value of 0%, P = .68, which represented no detectable heterogeneity. The forest plot and corresponding funnel plot are represented in Figure 2.18,65–74

Begg’s funnel plot for HR of OS indicated that there was evidence of publication bias, with fewer negative small studies reporting negative results than would be expected.
Therefore, we further performed Duval’s “trim and fill” analysis of OS data. It was estimated that an additional 4 studies remain unpublished. The filled meta-analysis for the effect of NLR in OS upheld our pooled results (adjusted HR 1.41; 95% CI 1.25-1.58; P < .001). A classic Failsafe N value was also calculated that showed that an additional 82 negative studies are needed to invalidate the current results. Last, we performed a sensitivity analysis on the dataset and the pooled results were not significantly changed (Supporting Materials).

Table 1 Summary of included studies

Author	Year	Country	Study design	Site	Follow-up (months)	Age (years)	Total no.	Stage I+II, no.	Stage III+IV, no.	Treatment modality	Outcomes
Bobdey65	2016	India	RCS OC	Mean (22)	Mean (50)	471	124	347	N/A	Surgery, RT, CT	OS
Chen66	2016	China	PC OC	Not specified	Not specified	402	177	225		Surgery, RT, CT	OS
Fu67	2016	China	RCS L	Not specified	Median (60)	420	0	420		Surgery, RT, CT	OS, DSS
Sun68	2016	China	RCS NP	Median (50)	Median (46)	251	46	205	RT, CT	OS, PFS	
Kano69	2016	Japan	RCS OP, HP	Median (61.2)	Median (61)	285	63	222	RT, CT	OS	
Kawakita18	2016	Japan	RCS SG	Median (39.6)	Median (64)	140	N/A	N/A	Surgery, RT, CT	OS, PFS	
Kim70	2016	Korea	RCS OP, HP, OC, L	Median (39)	Median (58)	104	0	104	RT, CT	OS, PFS	
Tu71	2015	China	RCS L	Median (51) mean (54)	Median (59)	141	80	61	Surgery	OS, RFS	
Turri-Zanoni72	2016	Italy	RCS PS	Median (39) mean (51.1)	Median (65) mean (61.6)	215	N/A	N/A	Surgery, RT, CT	OS, RFS	
Wang73	2016	China	RCS L	N/A	Mean (60.6)	120	39	81	Surgery, RT, CT	OS, RFS	
Li74	2016	China	RCS NP	Median (45)	Median (45)	409	77	332	RT, CT	OS	
An75	2010	China	RCS NP	Median (62)	Mean (47)	363	95	268	RT, CT	DSS	
Chang76	2013	China	RCS NP	Not specified	Not specified	1895	766	1129	RT, CT	DSS	
Li77	2016	China	rPC NP	Not specified	Not specified	249	32	217	RT, CT	DSS	
Perisanidis78	2013	Austria	RCS OC	Median (44.4)	Not specified	97	0	97	Surgery, RT, CT	DSS	

| Abbreviations: CT, chemotherapy; DSS, disease-specific survival; HP, hypopharynx; L, larynx; N/A, not available; NP, nasopharynx; OC, lip and oral cavity; OP, oropharynx; OS, overall survival; PC, prospective cohort; PFS, progression-free survival; PS, paranasal sinus; RCS, retrospective cohort study; RFS, recurrence-free survival; rPC, retrospectively collected data on prospective cohort; RT, radiotherapy; SG, salivary gland. |
| Categorical descriptions given for the types of treatments given to the patients. |
| Data on breakdown not described in the article. |
| TNM classification used. |

3.3 Neutrophil-to-lymphocyte ratio and disease-specific survival in head and neck cancer

Data from 5 studies were synthesized in the meta-analysis for NLR and DSS in patients with head and neck cancer...
An elevated NLR value was found to be significantly associated with poorer DSS with HR of 1.50 (95% CI 1.23-1.83; \(P < .001 \)). The test for heterogeneity showed an \(I^2 \) value of 27\%, \(P = .24 \), which did not represent heterogeneity of results. The forest plot and corresponding funnel plot are represented in Figure 3.67,75–78 The NLR cutoffs for DSS ranged from 1.9 to 3.73. After exclusion of NLR cutoffs in the extreme 25\% tails, the DSS cutoff range was 2.50 to 2.59, and the pooled HR for DSS was 1.39 (95% CI 1.20-1.62; \(P < .001 \)) with no detectable heterogeneity (\(I^2 = 0\% \); \(P = .58 \)).

3.4 Neutrophil-to-lymphocyte ratio and disease-free survival/recurrence-free survival and progression-free survival in head and neck cancer

There were insufficient studies of methodological similarity in DFS/RFS in order to perform a pooled quantitative analysis. There were 3 eligible studies reporting PFS but the results showed significant statistical heterogeneity (\(I^2 = 63\% \); \(P = .07 \)), therefore, the pooled result was not interpreted (Supporting Materials).

4 DISCUSSION

This meta-analysis aimed to examine the relationship among NLR and OS, DSS, DFS/RFS, and PFS in head and neck cancer. The initial studies selected from the screening process had significant methodological heterogeneity. After a further round of exclusion, 15 studies of similar methodological design remained for meta-analyses.

The pooled data demonstrated that an elevated pretreatment NLR significantly predicted poorer OS (HR 1.51; 95% CI 1.23-1.83; \(P < .001 \)), DSS (HR 1.50; 95% CI 1.23-1.83) of patients with head and neck cancer. Of note, there was no detectable heterogeneity in OS (\(I^2 = 0\% \); \(P = .58 \)) or DSS (\(I^2 = 27\% \); \(P = .24 \)). There were insufficient studies of methodological similarity to pool DFS/RFS data. We were able to pool the results of 3 studies for PFS, however, because the statistical heterogeneity was high (\(I^2 = 63\% \); \(P = .07 \)), the pooled result is not reported.

Table 2 Summary of neutrophil-to-lymphocyte ratio endpoint data

Author	NLR cutoff	Method of obtaining cutoff	HR (95% CI)	\(P \) value	Type of analysis
OS					
Bobdey65	2.38	ROC curve analysis using same dataset	1.392 (1.045-1.855)	.024	M
Chen66	3.66	Generated through training set using X-tile program based on \(P \) values	1.94 (1.16-3.27)	.012	M
Fu67	2.59	ROC curve analyses using training dataset	1.31 (1-1.71)	.046	M
Sun68	2.6	ROC curve analysis using same dataset	1.87 (0.89-3.95)	.99	M
Kane69	1.92	ROC curve analysis using same dataset	1.348 (0.831-2.183)a	.228	M
Kawakita18	2.5	ROC curve analysis using same dataset	1.8 (1.05-3.08)	.032	M
Kim70	3	ROC curve analysis using same dataset	1.52 (0.97-2.58)	.156	M
Tu71	2.17	ROC curve analysis using same dataset	2.177 (1.208-3.924)	.010	M
Turri-Zanoni72	5.56	ROC curve analysis using same dataset	2.17 (1.04-4.55)a	.08	M
Wang73	2.79	ROC curve analysis using same dataset	1.994 (1.089-3.649)	.025	U
Li74	2.48	ROC curve analysis using same dataset	1.15 (0.683-1.938)	.598	M
DSS					
Fu67	2.59	ROC curve analyses using training dataset	1.42 (1.06-1.91)	.018	M
An75	3.73	ROC curve analysis using same dataset	1.74 (1.15-2.62)	.008	M
Chang76	2.5	ROC curve analysis using same dataset	1.351 (1.128-1.618)	.001	M
Li77	2.5	ROC curve analysis using same dataset	1.939 (1.004-3.761)	.049	M
Perisanidis78	1.9	ROC curve analysis using same dataset	10.37 (1.28-84.06)	.0290	M
PFS					
Sun68	2.6	ROC curve analysis using same dataset	2.01 (1.23-3.29)	.005	M
Kawakita18	2.5	ROC curve analysis using same dataset	1 (0.63-1.59)	.994	M
Kim70	3	ROC curve analysis using same dataset	1.12 (0.97-1.47)	.156	M

Abbreviations: CI, confidence interval; DSS, disease-free survival; HR, hazard ratio; M, multivariate; OS, overall survival; PFS, progression-free survival; ROC, receiver operator characteristic; U, univariate.

\(a \)The reciprocal of the reported value was used to be able to compare against other studies.
In order to investigate the effect of the wide range of NLR cutoffs, we also performed additional stratified analyses by excluding studies that used NLR cutoffs in either the extreme 12.5% or 25% of the NLR cutoff distribution (therefore, the central 75% and 50% of cutoffs remained for analysis). For the OS analysis, the resultant NLR cutoff ranges were much narrower after excluding cutoff values at the extreme 12.5% or 25%, at ranges of 2.17 to 3 and 2.38 to

FIGURE 2 A. Neutrophil-to-lymphocyte ratio (NLR) and overall survival (OS) in head and neck cancer. Forest plot meta-analysis of the association between elevated NLR above the cutoff and OS in head and neck cancer. Each study is shown by the last name of the first author, and the hazard ratio (HR) with 95% confidence interval (CI). The summary HR and 95% CI is also shown (according to random effect estimations). B. The NLR and OS in head and neck cancer. The funnel plot of the studies included in the meta-analysis [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Stratified analysis

Stratified analysis	Cohorts, no.	NLR cutoff range	Random effects model	Heterogeneity		
			HR (95% CI)	P valueb	I² (%)	P valuec
Overall pooled OS	11	1.92-5.56	1.51 (1.32-1.73)	< .001	0 .68	
Extreme 12.5% of cutoffs	8	2.17-3	1.47 (1.27-1.71)	< .001	0 .62	
Extreme 25% of cutoffs	6	2.38-2.79	1.42 (1.21-1.68)	< .001	0 .63	
Overall pooled DSS	5	1.9-3.73	1.50 (1.23-1.83)	< .001	27 .24	
Extreme 25% of cutoffs	3	2.50-2.59	1.39 (1.20-1.62)	< .001	0 .58	

Abbreviations: CI, confidence interval; DSS, disease-specific survival; HR, hazard ratio; I², Higgin’s test for heterogeneity; NLR, neutrophil-to-lymphocyte ratio; OS, overall survival.

aForest plot and list of studies included in each subgroup may be found in the Supporting materials.

bP value of random effects model for pooled HR.
cP value of Cochrane Q test for heterogeneity.
Both stratified results upheld the overall pooled results for OS with no detectable heterogeneity ($I^2 = 0\%$). Similarly, in the DSS analysis, we excluded studies with cutoffs in the extreme 25\%, and the resultant range of NLR cutoffs was much narrower (range 2.50–2.59). The stratified DSS result upheld the overall DSS result, with a decrease in heterogeneity ($I^2 = 0\%$ from $I^2 = 27\%$).

The above findings suggest that a dichotomized cutoff for NLR that is generated through population-specific or ROC methods could be used to guide clinical stratification and decision making with regard to outcomes for OS or DSS in head and neck cancer. To the best of our knowledge, this is the first meta-analysis reporting the relationship between elevated pretreatment NLR and outcomes in head and neck cancer. A recent search on the clinicaltrials.gov database has also shown that there are several prospective clinical trials investigating NLR in head and neck cancer that are already underway (NCT02211677).

Recently, novel prognostic systems have been developed incorporating NLR, such as the combination of NLR and platelet counts in hypopharyngeal cancer, or histopathological staging and NLR in oral cancer. Other inflammatory...
markers and systems, such as the platelet-to-lymphocyte ratio,72 lymphocyte-to-monocyte ratio,69 and Glasgow Prognostic Score93 have also received interest as prognostic indicators in head and neck cancer. It remains to be seen which of these markers, or combination thereof, is the superior option for clinical use as a prognostic biomarker.

There are several weaknesses in our study that we acknowledge. First, there was a wide range of NLR cutoff values for the included studies. However, we accounted for this by excluding studies with NLR cutoffs in the extreme tails of the cutoff distribution in an additional stratified analysis. The resultant cutoffs for OS and DSS were much narrower after exclusion of the extreme tails. The results of the stratified analysis corroborated the results of the overall pooled results for OS and DSS.

Another limitation to our study is that most of the studies included were also retrospective in nature, with only 1 true prospective study. Furthermore, because of a lack of individual patient data in many of the studies, we were unable to perform meta-analyses of individual patient data. Another limitation of this article is the publication bias detected for OS, as there were significantly more articles published that reported a poorer OS for higher NLR. However, the adjusted trim and fill analysis did not change the original conclusion. Last, the primary endpoint chosen for inclusion of studies was OS/DSS; therefore, DFS and PFS data were drawn from studies that reported OS/DSS as an endpoint.

The advantages of our study were the high amount of studies included, agreement of our results with the existing literature in other cancers, and significance using the random effects model. The effect of NLR on OS was also stable after literature in other cancers, and significance using the random effects model. The effect of NLR on OS was also stable after

REFERENCES

[1] Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

[2] Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–99.

[3] O’callaghan DS, O’donnell D, O’connell F, O’ Byrne KJ. The role of inflammation in the pathogenesis of non-small cell lung cancer. J Thorac Oncol. 2010;5(12):2024–36.

[4] Aggarwal BB, Vijayalekshmi R, Sung B. Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res. 2009;15(2):425–30.

[5] Templeton AJ, McNamara MG, Seruga B, et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J Natl Cancer Inst. 2014;106(6):dju124.

[6] Wei Y, Jiang Y-Z, Qian W-H. Prognostic role of NLR in urinary cancers: a meta-analysis. PLoS One. 2014;9(3):e92079.

[7] Xiao W-K, Chen D, Li S-Q, et al. Prognostic significance of neutrophil-lymphocyte ratio in hepatocellular carcinoma: a meta-analysis. BMC Cancer. 2014;14(1):117.

[8] Bakshi SS. Letter to the editor regarding neutrophil-to-lymphocyte ratio in laryngeal squamous cell carcinoma. Head Neck. 2017;39(3):614.

[9] Su L, Zhang M, Zhang W, Cai C, Hong J. Pretreatment hematologic markers as prognostic factors in patients with nasopharyngeal carcinoma: A systematic review and meta-analysis. Medicine. 2017;96(11).

[10] Yu B, Li Z, Zheng Q, et al. Prognostic value of neutrophil to lymphocyte ratio in patients with nasopharyngeal carcinoma: A meta-analysis. Biomedical Research. 2017;28(3).

[11] Macaskill P, Gatsonis C, Deeks J, Harbord R, Takwoingi Y. Cochrane handbook for systematic reviews of diagnostic test accuracy. Version 09 0 London: The Cochrane Collaboration. 2010.

[12] Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.

[13] Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. JAMA. 2000;283(15):2008–12.

[14] Neutrophil-lymphocyte ratio as a predictor of prognosis in head and neck cancer: a systematic review and meta-analysis. PROSPERO 2017:CRD42017059500 [Internet]. 2017. Available from: http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42017059500.

[15] Farhan-Alanie OM, McMahon J, McMillan DC. Systemic inflammatory response and survival in patients undergoing curative resection of oral squamous cell carcinoma. Br J Oral Maxillofac Surg. 2015;53(2):126–31.

[16] Haddad CR, Guo L, Clarke S, et al. Neutrophil-to-lymphocyte ratio in head and neck cancer. J Med Imaging Radiat Oncol. 2015;59(4):514–9.
Kara M, Uysal S, Altinisik U, et al. The pre-treatment neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and red cell distribution width predict prognosis in patients with laryngeal carcinoma. *Eur Arch Otorhinolaryngol.* 2017;274(1):535–42.

Kawakita D, Tada Y, Imanishi Y, et al. Impact of hematological inflammatory markers on clinical outcome in patients with salivary duct carcinoma: A multinational study in Japan. *Onco-target.* 2017;8(1):1083–91.

Rassouli A, Saliba J, Castano R, Hier M, Zeitouni AG. Systemic inflammatory markers as independent prognosticators of head and neck squamous cell carcinoma. *Head Neck.* 2015;37(1):103–10.

Koestler DC, Usset JL, Christensen BC, et al. DNA methylation-derived neutrophil-to-lymphocyte ratio: an epigenetic tool to explore cancer inflammation and outcomes. *Cancer Epidemiology and Prevention Biomarkers.* 2016;25(5):1489–97.

Park H-C, Kim M-Y, Kim C-H. C-reactive protein/albumin ratio as prognostic score in oral squamous cell carcinoma. *Journal of the Korean Association of Oral and Maxillofacial Surgeries.* 2016;42(5):243–50.

Acharya S, Rai P, Hallikeri K, Anehosur V, Kale J. Preoperative platelet lymphocyte ratio is superior to neutrophil lymphocyte ratio to be used as predictive marker for lymph node metastasis in oral squamous cell carcinoma. *J Investig Clin Dent.* 2016.

Chen S, Guo J, Feng C, et al. The preoperative platelet-lymphocyte ratio versus neutrophil-lymphocyte ratio: which is better as a prognostic factor in oral squamous cell carcinoma? *Ther Adv Med Oncol.* 2016;8(3):160–7.

Duzlu M, Karamert R, Tutar H, et al. Neutrophil-lymphocyte ratio findings and larynx carcinoma: a preliminary study in Turkey. *Asian Pacific journal of cancer prevention: APJCP.* 2014;16(1):351–4.

Grimm M, Rieth J, Hoeft S, et al. Standardized pretreatment inflammatory laboratory markers and calculated ratios in patients with oral squamous cell carcinoma. *Eur Arch Otorhinolaryngol.* 2016;273(10):3371–84.

Jiang R, Zou X, Hu W, et al. The elevated pretreatment platelet-to-lymphocyte ratio predicts poor outcome in nasopharyngeal carcinoma patients. *Tumor Biology.* 2015;36(10):7775–87.

Karpathiou G, Giroult J-B, Forest F, et al. Clinical and Histo logic Predictive Factors of Response to Induction Chemotherapy in Head and Neck Squamous Cell Carcinoma. *Am J Clin Pathol.* 2016;145(6):849–57.

Kum RO, Ozcan M, Baklaci D, et al. Elevated neutrophil-to-lymphocyte ratio in squamous cell carcinoma of larynx compared to benign and precancerous laryngeal lesions. *Asian Pac J Cancer Prev.* 2014;15(17):7351–5.

Li A-C, Xiao W-W, Wang L, et al. Risk factors and prediction-score model for distant metastasis in nasopharyngeal carcinoma treated with intensity-modulated radiotherapy. *Tumor Biology.* 2015;36(11):8349–57.

Maruyama Y, Inoue K, Mori K, et al. Neutrophil-lymphocyte ratio and platelet-lymphocyte ratio as predictors of wound healing failure in head and neck reconstruction. *Acta Otolaryngol.* 2017;137(1):106–10.

Millrud CR, Mansson Kvarnhammer A, Uddman R, et al. The activation pattern of blood leukocytes in head and neck squamous cell carcinoma is correlated to survival. *PLoS One.* 2012;7(12):e51120.

Nakashima H, Matsouka Y, Yoshida R, et al. Pre-treatment neutrophil to lymphocyte ratio predicts the chemoradiotherapy outcome and survival in patients with oral squamous cell carcinoma: a retrospective study. *BMC Cancer.* 2016;16(1):41.

Ozturk K, Akyildiz NS, Uslu M, Gode S, Uluoz U. The effect of preoperative neutrophil, platelet and lymphocyte counts on local recurrence and survival in early-stage tongue cancer. *Eur Arch Otorhinolaryngol.* 2016;273(12):4425–9.

Suzuki R, Takagi T, Hikichi T, et al. Derived neutrophil/lymphocyte ratio predicts gemcitabine therapy outcome in unresectable pancreatic cancer. *Onco Lett.* 2016;11(5):3441–5.

Salim DK, Mutlu H, Eryilmaz MK, et al. Neutrophil to lymphocyte ratio is an independent prognostic factor in patients with recurrent or metastatic head and neck squamous cell cancer. *Mol Clin Oncol.* 2015;3(4):839–42.

Trellakis S, Bruderek K, Dumitru CA, et al. Polymorphonuclear granulocytes in human head and neck cancer: enhanced inflammatory activity, modulation by cancer cells and expansion in advanced disease. *Int J Cancer.* 2011;129(9):2183–93.

Valero C, Pardo L, Lopez M, et al. Pretreatment count of peripheral neutrophils, monocytes, and lymphocytes as independent prognostic factor in patients with head and neck cancer. *Head Neck.* 2017;39(2):219–26.

Young CA, Murray LJ, Karakaya E, et al. The prognostic role of the neutrophil-to-lymphocyte ratio in oropharyngeal carcinoma treated with chemoradiotherapy. *Clinical Medicine Insights Oncology.* 2014;8:81.

Yilmaz B, Şengül E, Gül A, et al. Neutrophil–lymphocyte ratio as a prognostic factor in laryngeal carcinoma. *Indian Journal of Otolaryngology and Head & Neck Surgery.* 1–5.

Donskov F. Immunomonitoring and prognostic relevance of neutrophils in clinical trials. *Semin Cancer Biol.* 2013;23(3):200–7.

Sideras K, Kwekkeboom J. Cancer inflammation and inflammatory biomarkers: can neutrophil, lymphocyte, and platelet counts represent the complexity of the immune system? *Transpl Int.* 2014;27(1):28–31.

Wu F, Wu L, Zhu L. Neutrophil to lymphocyte ratio in peripheral blood: a novel independent prognostic factor in patients with head and neck squamous cell carcinoma. *Zhonghua zhong yi za zhi [Chinese journal of oncology].* 2017;39(1):29.

Zhao G, Hu Y, Liu R, et al. Clinical significance of the preoperative neutrophil lymphocyte ratio in the evaluation of the prognosis of laryngeal carcinoma. *Zhonghua er bi yan hou tou jing kai fai za zhi [Chinese journal of otorhinolaryngology head and neck surgery].* 2016;51(2):112–6.

Ahn HK, Hwang IC, Lee JS, et al. Neutrophil-lymphocyte ratio predicts survival in terminal cancer patients. *J Palliat Med.* 2016;19(4):437–41.

Chua W, Clarke SJ, Charles KA. Systemic inflammation and prediction of chemotherapy outcomes in patients receiving docetaxel for advanced cancer. *Support Care Cancer.* 2012;20(8):1869–74.
[46] Jin Y, Ye X, He C, Zhang B, Zhang Y. Pretreatment neutrophil-to-lymphocyte ratio as predictor of survival for patients with metastatic nasopharyngeal carcinoma. Head Neck. 2015;37(1):69–75.

[47] Chen C, Sun P, Dai Q-s, et al. The Glasgow Prognostic Score predicts poor survival in cisplatin-based treated patients with metastatic nasopharyngeal carcinoma. PLoS One. 2014;9(11):e112581.

[48] Ikekuchi M. Glasgow prognostic score and neutrophil-lymphocyte ratio are good prognostic indicators after radical neck dissection for advanced squamous cell carcinoma in the hypopharynx. Langenbecks Arch Surg. 2016;401(6):861–6.

[49] Ong HS, Gokavarapu S, Wang LZ, Tian Z, Zhang CP. Low Pretreatment Lymphocyte-Monocyte Ratio and High Platelet-Lymphocyte Ratio Indicate Poor Cancer Outcome in Early Tongue Cancer. J Oral Maxillofac Surg. 2017;75(8):1762–74.

[50] Selzer E, Grah A, Heiduschka G, Korneg K, Thurnher D. Primary radiotherapy or postoperative radiotherapy in patients with head and neck cancer: Comparative analysis of inflammation-based prognostic scoring systems. Strahlenther Onkol. 2015;191(6):486–94.

[51] Nakahira M, Sugawara M, Matsumura S, et al. Prognostic role of the combination of platelet count and neutrophil-lymphocyte ratio in patients with hypopharyngeal squamous cell carcinoma. Eur Arch Otorhinolaryngol. 2016;273(11):3863–7.

[52] Lee C-C, Huang C-Y, Lin Y-S, et al. Prognostic Performance of a New Staging Category to Improve Determination of Disease-Specific Survival in Nonmetastatic Oral Cancer. JAMA Otolaryngology–Head & Neck Surgery. 2017.

[53] Charles KA, Harris BD, Haddad CR, et al. Systemic inflammation is an independent predictive marker of clinical outcomes in mucosal squamous cell carcinoma of the head and neck in oropharyngeal and non-oropharyngeal patients. BMC Cancer. 2016;16:124.

[54] Chua MLK, Tan SH, Kusumawidjaja G, et al. Neutrophil-to-lymphocyte ratio as a prognostic marker in locally advanced nasopharyngeal carcinoma: A pooled analysis of two randomised controlled trials. Eur J Cancer. 2016;67:119–29.

[55] Fang HY, Huang XY, Chien HT, et al. Refining the role of preoperative C-reactive protein by neutrophil/lymphocyte ratio in oral cavity squamous cell carcinoma. Laryngoscope. 2013;123(11):2690–9.

[56] He JR, Shen GP, Ren ZF, et al. Pretreatment levels of peripheral neutrophils and lymphocytes as independent prognostic factors in patients with nasopharyngeal carcinoma. Head Neck. 2012;34(12):1769–76.

[57] Moon H, Roh JI, Lee SW, et al. Prognostic value of nutritional and hematologic markers in head and neck squamous cell carcinoma treated by chemoradiotherapy. Radiother Oncol. 2016;118(2):330–4.

[58] Rachidi S, Wallace K, Wrangle JM, et al. Neutrophil-to-lymphocyte ratio and overall survival in all sites of head and neck squamous cell carcinoma. Head Neck. 2016;38 Suppl 1:E1068–74.

[59] Rosculet N, Zhou XC, Ha P, et al. Neutrophil-to-lymphocyte ratio: Prognostic indicator for head and neck squamous cell carcinoma. Head Neck. 2017.

[60] Song Y, Liu H, Gao L, et al. Preoperative neutrophil-to-lymphocyte ratio as prognostic predictor for hypopharyngeal squamous cell carcinoma after radical resections. J Craniofac Surg. 2015;26(2):e137–40.

[61] Wong BY, Stafford ND, Green VL, Greenman J. Prognostic value of the neutrophil-to-lymphocyte ratio in patients with laryngeal squamous cell carcinoma. Head Neck. 2016;38 Suppl 1:E1903–8.

[62] Zeng Y-C, Chi F, Xing R, et al. Pre-treatment neutrophil-to-lymphocyte ratio predicts prognosis in patients with locoregionally advanced laryngeal carcinoma treated with chemoradiotherapy. Jpn J Clin Oncol. 2016;46(2):126–31.

[63] Ma H, Lin Y, Wang L, et al. Primary lymphoepithelioma-like carcinoma of the salivary gland: sixty-nine cases with long-term follow-up. Head Neck. 2014;36(9):1305–12.

[64] Tsai YD, Wang CP, Chen CY, et al. Pretreatment circulating monocyte count associated with poor prognosis in patients with oral cavity cancer. Head Neck. 2014;36(7):947–53.

[65] Bobdey S, Ganesh B, Mishra P, Jain A. Role of Monocyte Count and Neutrophil-to-Lymphocyte Ratio in Survival of Oral Cancer Patients. International archives of otorhinolaryngology. 2017;21(01):21–7.

[66] Chen F, Lin L, Yan L, et al. Preoperative Neutrophil-to-Lymphocyte Ratio Predicts the Prognosis of Oral Squamous Cell Carcinoma: A Large-Sample Prospective Study. J Oral Maxillofac Surg. 2016.

[67] Fu Y, Liu W, OuYang D, Yang A, Zhang Q. Preoperative neutrophil-to-lymphocyte ratio predicts long-term survival in patients undergoing total laryngectomy with advanced laryngeal squamous cell carcinoma: a single-center retrospective study. Medicine. 2016;95(6).

[68] Sun W, Zhang L, Luo M, et al. Pretreatment hematologic markers as prognostic factors in patients with nasopharyngeal carcinoma: Neutrophil-lymphocyte ratio and platelet-lymphocyte ratio. Head Neck. 2016;38 Suppl 1:E1332–40.

[69] Kano S, Homma A, Hatakayama H, et al. Pretreatment lymphocyte-to-monocyte ratio as an independent prognostic factor for head and neck cancer. Head Neck. 2017;39(2):247–53.

[70] Kim IS, Park SG, Kim H, Choi YJ, Seol YM. Prognostic value of posttreatment neutrophil–lymphocyte ratio in head and neck squamous cell carcinoma treated by chemoradiotherapy. Auris Nasus Larynx. 2017;44(2):199–204.

[71] Tu X-P, Qiu Q-H, Chen L-S, et al. Preoperative neutrophil-to-lymphocyte ratio is an independent prognostic marker in patients with laryngeal squamous cell carcinoma. BMC Cancer. 2015;15(1):743.

[72] Turri-Zanoni M, Salzano G, Lambertoni A, et al. Prognostic value of pretreatment peripheral blood markers in paranasal sinus cancer: Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratio. Head Neck. 2016.

[73] Wang J, Wang S, Song X, et al. The prognostic value of systemic and local inflammation in patients with laryngeal squamous cell carcinoma. Onco Targets Ther. 2016;9:7177.

[74] Li J-P, Chen S-L, Liu X-M, et al. A Novel Inflammation-Based Stage (I Stage) Predicts Overall Survival of Patients with Nasopharyngeal Carcinoma. Int J Mol Sci. 2016;17(11):1900.
An X, Ding P-R, Wang F-H, Jiang W-Q, Li Y-H. Elevated neutrophil to lymphocyte ratio predicts poor prognosis in nasopharyngeal carcinoma. *Tumor Biology.* 2011;32(2):317–24.

Chang H, Gao J, Xu B, et al. Haemoglobin, neutrophil to lymphocyte ratio and platelet count improve prognosis prediction of the TNM staging system in nasopharyngeal carcinoma: development and validation in 3237 patients from a single institution. *Clin Oncol.* 2013;25(11):639–46.

Li XH, Chang H, Xu BQ, et al. An inflammatory biomarker-based nomogram to predict prognosis of patients with nasopharyngeal carcinoma: an analysis of a prospective study. *Cancer medicine.* 2017;6(1):310–9.

Perisanidis C, Kornek G, Pöschl PW, et al. High neutrophil-to-lymphocyte ratio is an independent marker of poor disease-specific survival in patients with oral cancer. *Med Oncol.* 2013;30(1):334.

Riley RD, Higgins JP, Deeks JJ. Interpretation of random effects meta-analyses. *BMJ.* 2011;342:d549.

Chiolero A, Santschi V, Burnand B, Platt RW, Paradis G. Meta-analyses: with confidence or prediction intervals? *Eur J Epidemiol.* 2012;27(10):823–5.

Review Manager (RevMan) [Computer program]. Version 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014.

Van Rhee, H.J., Suurmond, R., & Hak, T. User manual for Meta-Essentials: Workbooks for meta-analysis (Version 1.0) Rotterdam, The Netherlands: Erasmus Research Institute of Management. 2015. Retrieved from www.erim.eur.nl/research-support/meta-essentials.

Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. *Biometrics.* 2000;56(2):455–63.

Rosenthal R. The file drawer problem and tolerance for null results. *Psychol Bull.* 1979;86(3):638.

Sterne JA, Sutton AJ, Ioannidis JP, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. *BMJ.* 2011;343:d4002.

Cuellar C, Moncada S. The role of nitric oxide in cancer. *Clin Cancer Res.* 1999;5(7):1879–83.

Goodman SN, Roy BM, Kornbluth S, et al. The role of PARP in cell survival and tumorigenesis. *Cancer Res.* 2003;63(20):6918–21.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article.