Two-orbital model explains the higher transition temperature of the single-layer Hg-cuprate superconductor compared to that of the La-cuprate superconductor

Hirofumi Sakakibara1, Hidetomo Usui1, Kazuhiko Kuroki1,2, Ryotaro Arita2,4,5, and Hideo Aoki3,4

1Department of Applied Physics and Chemistry, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan

2Department of Applied Physics, The University of Tokyo, Hongo, Tokyo 113-8656, Japan

3JST, TRIP, Sankambo, Chiyoda, Tokyo 102-0075, Japan

4JST, CREST, Hongo, Tokyo 113-8656, Japan

(Dated: August 4, 2010)

In order to explore the reason why the single-layered cuprates, La$_{2-x}$(Sr/Ba)$_x$CuO$_4$ ($T_c \approx 40K$) and HgBa$_2$CuO$_{4+y}$ ($T_c \approx 90K$), have such a significant difference in T_c, we study a two-orbital model that incorporates the $d_{x^2-y^2}$ orbital on top of the $d_{x^2-y^2}$ orbital. It is found, with the fluctuation exchange approximation, that the $d_{x^2-y^2}$ orbital contribution to the Fermi surface, which is stronger in the La system, works against d-wave superconductivity, thereby dominating over the effect of the Fermi surface shape. The result resolves the long-standing contradiction between the theoretical results on Hubbard-type models and the experimental material dependence of T_c in the cuprates.

PACS numbers: 74.20.-z, 74.20.Bf, 74.72.-h

The physics of high-T_c superconductivity, despite its long history, harbors rich problems which are still open. Specifically, given the seminal discovery of the iron-based superconductors2, and their striking material dependence of T_c, it should be important as well as intriguing to have a fresh look at the cuprates, which still have the highest T_c to date, to understand their material dependence of the T_c. One of the basic problems is the significant difference in T_c within the single-layered materials, T_c of about 40K versus HgBa$_2$CuO$_{4+y}$ with a T_c of about 90K. Phenomenologically, it has been recognized that the materials with $T_c\sim 100K$ tend to have “round” Fermi surfaces, while the Fermi surface of the La system is closer to a square shape which implies a relatively better nesting3. 4.

Conventionally, the materials with a rounded Fermi surface have been modeled by a single-band model with a maximum T_c of about 40K versus HgBa$_2$CuO$_{4+y}$ with a T_c of about 90K. Phenomenologically, it has been recognized that the materials with $T_c\sim 100K$ tend to have “round” Fermi surfaces, while the Fermi surface of the La system is closer to a square shape which implies a relatively better nesting3. 4.

To resolve this discrepancy, here we consider a two-orbital model that explicitly incorporates the $d_{x^2-y^2}$ orbital on top of the $d_{x^2-y^2}$ orbital. The former component has in fact a significant contribution to the Fermi surface in the La system. We shall show that the key parameter that determines T_c is the energy level difference between the $d_{x^2-y^2}$ and d_{z^2} orbitals, i.e., the weaker the $d_{x^2-y^2}$ contribution to the Fermi surface, the better the d-wave superconductivity, where a weaker contribution of the $d_{x^2-y^2}$ results in a rounded Fermi surface (which in itself is not desirable for superconductivity), but it is the “single-orbital nature” that favors a higher T_c dominating over the effect of the Fermi surface shape for the La system.

Let us start with a conventional calculation for the single-band Hubbard Hamiltonian, $H = \sum_{ij \sigma} t_{ij} c_{i \sigma}^\dagger c_{j \sigma} + U \sum_i n_{i \uparrow} n_{i \downarrow}$. Here we take the nearest-neighbor hopping $-t_1 \approx 0.4$ eV, see table I) to be the unit of energy, $U = 6$, the temperature $T = 0.03$, and the band filling $n = 0.85$ are fixed, while we vary $t_2 = -t_3$ with $t_2 > 0$. We then apply the fluctuation exchange approximation (FLEX)9, 10 to solve the linearized Eliashberg equation. T_c is the temperature at which the eigenvalue λ of the Eliashberg equation reaches unity, so λ at a fixed temperature can be used as a measure for the strength of the superconducting instability. We show in Fig.1 λ as a function of ($|t_2| + |t_3|)/|t_1|$ ($= 2|t_2|/|t_1|$ here), which just confirm that, within the single-band model, λ (hence T_c) monotonically decreases with increasing $|t_2|$ and $|t_3|$. A calculation with the dynamical cluster approximation (DCA) shows that a negative t_2 works destructively against d-wave superconductivity12, and a more realistic DCA calculation that considers the oxygen p_x orbitals for the La and Hg cuprates also indicates a similar tendency13. As mentioned above, this seems to contradict with the experimental results that the materials with larger t_2 and t_3 have actually higher T_c’s14.

TABLE I: Hopping integrals within the $d_{x^2-y^2}$ orbital for the single and two orbital models, and $\Delta E \equiv E_{d_{x^2-y^2}} - E_{d_{x^2-y^2}}$.

| $t_1 [\text{eV}]$ | $t_2 [\text{eV}]$ | $t_3 [\text{eV}]$ | $(|t_2| + |t_3|)/|t_1|$ | $\Delta E [\text{eV}]$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| $t_{1\text{La}}$ | -0.444 | -0.0874 | 0.37 | 0.14 |
| $t_{1\text{Hg}}$| -0.453 | 0.0932 | 0.35 | 0.37 |
| $t_{1\text{La}}$| -0.471 | 0.0847 | 0.35 | 0.14 |
| $t_{1\text{Hg}}$| -0.456 | 0.0932 | 0.35 | 0.14 |
| $t_{2\text{La}}$| -0.0337 | -0.0825 | 0.35 | 0.14 |
| $t_{2\text{Hg}}$| -0.0825 | -0.0734 | 0.35 | 0.14 |
| $t_{3\text{La}}$| -0.0825 | 0.0932 | 0.35 | 0.14 |
| $t_{3\text{Hg}}$| -0.0734 | 0.0932 | 0.35 | 0.14 |

The physics of high-T_c superconductivity, despite its long history, harbors rich problems which are still open. Specifically, given the seminal discovery of the iron-based superconductors2, and their striking material dependence of T_c, it should be important as well as intriguing to have a fresh look at the cuprates, which still have the highest T_c to date, to understand their material dependence of the T_c. One of the basic problems is the significant difference in T_c within the single-layered materials, T_c of about 40K versus HgBa$_2$CuO$_{4+y}$ with a T_c of about 90K. Phenomenologically, it has been recognized that the materials with $T_c\sim 100K$ tend to have “round” Fermi surfaces, while the Fermi surface of the La system is closer to a square shape which implies a relatively better nesting3. 4.
To resolve this, we now introduce the $d_{x^2-y^2}$ two-orbital model. For the La system, it has long been known that a band with a strong d_{z^2} character lies rather close to the Fermi energy\cite{[14],[15],[16]}. More recently, it has been discussed in Refs.\cite{[14],[15],[16]} that the shape of the Fermi surface is determined by the energy level of the “axial state” consisting of a mixture of Cu d_{z^2}-O p_z and Cu 4s orbitals, and that the strength of the d_{z^2} contribution causes the difference in the Fermi surface shape between the La and Hg systems. Namely, the d_{z^2} contribution is large in the La system making the Fermi surface closer to a square, while the contribution is small in the Hg system making the Fermi surface more rounded. In Fig.\ref{fig:2} we show the present, first-principles\cite{[18]} result for band structures in the two-orbital model for the La and Hg systems, obtained by constructing maximally localized Wannier orbitals\cite{[19]}. The lattice parameters adopted here are experimentally determined ones for the doped materials\cite{[20],[21]}. We can here confirm that in the La system the main band (usually considered to be the “$d_{x^2-y^2}$ band”) has in fact a strong d_{z^2} character on the Fermi surface near the N point, which corresponds to the wave vectors $(\pi, 0), (0, \pi)$ in the Brillouin zone of the square lattice. The d_{z^2} contribution is seen to “push up” the van Hove singularity (vHS) of the main band, resulting in a seemingly well nested (square shaped) Fermi surface. In the Hg system, on the other hand, the d_{z^2} band stays well away from E_F, and consequently the vHS is lowered, resulting in a rounded Fermi surface.

If we estimate in the two-orbital model the ratio $|t_2|/|t_1|$ within the $d_{x^2-y^2}$ orbitals, we get 0.35 for the La system against 0.41 for Hg (table I), which are rather close to each other. This sharply contrasts with the situation in which the model is constrained into a single band. There, the Wannier orbital has mainly $d_{x^2-y^2}$ character, but has “tails” with a d_{z^2} character especially for the La system. Then the ratio $|t_2|/|t_1|$ in the single-orbital model reduces to 0.14 for La against 0.37 for Hg (table I), which is just the conventional view mentioned in the introductory part. From this, we can confirm that it is the d_{z^2} contribution that makes the Fermi surface in the La system square shaped, while the “intrinsic” Fermi surface of the high T_c cuprate family is, as in the Hg system, rounded.

Now we come to the superconductivity in the two-orbital model. For the electron-electron interactions, it is widely accepted that the intraorbital U is $7-10t$ (with $t \sim 0.45\text{eV}$) for the cuprates, so we take $U = 3.0\text{eV}$. The Hund’s coupling J (= pair-hopping interaction J') is typically $\sim 0.1U$, so here we take $J = J' = 0.3\text{eV}$, which gives the interorbital $U' = U - 2J = 2.4\text{eV}$. The temperature is fixed at $k_BT = 0.01\text{eV}$. As for the band filling (number of electrons/site), we concentrate on the total $n = 2.85$, for which the main band has 0.85. Here we apply the multiorbital FLEX, as described e.g. in ref.\cite{[22]}, for the three-dimensional lattice taking $32 \times 32 \times 4$ k-point meshes and 1024 Matsubara frequencies. We first focus on the La system, and investigate how the d_{z^2} orbital affects superconductivity. Namely, while the on-site energy difference, $\Delta E \equiv E_{d_{x^2-y^2}} - E_{d_{z^2}}$, between the two orbitals is $\Delta E \approx 0.9\text{eV}$ for La$_2$CuO$_4$ (table I), we vary the value to probe how the Eliashberg eigenvalue λ for d-wave superconductivity behaves. The result in Fig.\ref{fig:4} shows that λ is small for the original value of ΔE, but rapidly increases with ΔE, until it saturates for sufficiently large ΔE. Hence the superconductivity turns out to be enhanced as the d_{z^2} band moves away from the main band. Note that this occurs despite the Fermi surface becoming more rounded with larger ΔE, namely, the effect of the orbital character (smaller d_{z^2} contribution) dominates over the Fermi surface shape effect. Conversely, the strong d_{z^2} orbital character in the Fermi surface around the $(\pi, 0), (0, \pi)$ works destructively against d-wave superconductivity. Physically, the reason for this may be explained as follows. First, although the La system has a better nested Fermi surface, we find that the strength of the antiferromagnetic spin fluctuations (the spin susceptibility obtained in FLEX) in La is only as

\begin{figure}[h]
\centering
\includegraphics[width=0.4\textwidth]{fig1}
\caption{FLEX result for the eigenvalue, λ, of the Eliashberg equation for the single-band Hubbard model plotted as a function of $(|t_2| + |t_3|)/|t_1|$, where we take $t_2 = -t_3 > 0$ for $U = 6|t_1|, T = 0.03|t_1|$, and the band filling $n = 0.85$. Fermi surfaces are displayed for two cases (indicated by arrows).}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.4\textwidth]{fig2}
\caption{The band structure in the two ($d_{x^2-y^2}$-d_{z^2}) orbital model for La$_2$CuO$_4$ (left) and HgBa$_2$CuO$_4$ (right). The top (middle) panels depict the strength of the $d_{x^2-y^2}$ (d_{z^2}) characters with thickened lines, while the bottom panels the Fermi surfaces (for a total band filling $n = 2.85$). The inset shows the band structure of the three-orbital model (see text) for La system, where the the 4s character is indicated.}
\end{figure}
large as that for Hg. This is intuitively understandable, since the two electrons on nearest-neighbor sites are less constrained to have antiparallel spins in order to gain kinetic energy when two orbitals are active as in La. Secondly, d-wave pairing has a rough tendency for higher \(T_c \) in bands that are nearly half filled, whereas the \(d_{z^2} \) orbital here is nearly fully filled.

We now focus on how the lattice structure affects \(\Delta E \) and hence superconductivity. This is motivated by the fact that \(\Delta E \) should be controlled by the ligand field, hence by the height, \(h_O \), of the apical oxygen above the CuO\(_2\) plane. To single out this effect, let us examine the two-orbital model for which we increase \(h_O \) from its original value 2.41Å with other lattice parameters fixed. In Fig.4(a), which plots the eigenvalue of the Eliashberg equation as a function of \(h_O \), we can see that \(\lambda \) monotonically increases with the height. As seen from the inset of Fig.4(b), \(\Delta E \) is positively correlated with \(h_O \) as expected, and Fig.4(b) confirms that the increase in \(\lambda \) is due to the increase in \(\Delta E \). In these figures, we have also plotted the values corresponding to the Hg system obtained with the actual lattice structure. We find here is indeed consistent with Maekawa’s plot, where a positive correlation is observed. Since a higher \(T_c \) hole level (i.e., a lower \(z \) electron level) is likely to lower \(E_{\Delta z^2} \), the positive correlation between \(\Delta E \) and \(T_c \) found here is indeed consistent with Maekawa’s plot. It can be considered that in La cuprates, a considerable portion of the doped holes go into the apical oxygen \(p_z \), and this effect is effectively taken into account in our model. A more detailed study on these issues is now under way, and will be discussed in a separate publication.

Finally, let us discuss the effect of Cu 4s orbital, which is the main component of the “axial state” discussed in Refs.4,17. In the present two-orbital model the 4s orbital is effectively incorporated in both of the \(d_{z^2-y^2} \) and \(d_{z^2} \) orbitals, i.e., the Wannier orbitals have tails that have the 4s character. In order to make the examination more direct, we now consider a three-orbital model that explicitly considers the 4s orbital. The band dispersion for the La system shown in the inset of Fig.2 shows that the 4s band lies well (≈7 eV) above the Fermi level. Nonetheless, the 4s orbital gives an important contribution to the Fermi surface in that the ratio \([|t_2|+|t_3|]/|t_1|\) within the \(d_{z^2-y^2} \) sector in the three-orbital model takes a much smaller value of 0.10, which should imply that it is the path \(d_{z^2-y^2} \rightarrow 4s \rightarrow d_{z^2-y^2} \) that gives the effectively large \(t_2 \), \(t_3 \), and hence the round Fermi surface, as pointed out previously4,17. In this context, it is worth mentioning that the path \(d_{z^2-y^2} \rightarrow 4s \rightarrow d_{z^2-y^2} \) also contributes to \(t_2 \), \(t_3 \), but has an opposite sign to the 4s contribution because the \(d_{z^2} \) level lies below \(d_{z^2-y^2} \), while 4s above \(d_{z^2-y^2} \). So the two contributions to the main band cancel with each other, where the cancellation should be strong when the energy of the \(d_{z^2} \) orbital is high as in La.

We now apply FLEX to the three-orbital model varying \(\Delta E = E_{z^2-y^2} - E_{z^2} \) as in the two-orbital model, where we fix the on-site energy difference \(E_{4s} - E_{z^2} \) at its original value. We have chosen this because a similar three-orbital model constructed for Hg (not shown) shows that the on-site energy difference between the 4s and \(d_{z^2-y^2} \) orbitals is smaller than in the La system by about 1eV, so in the Hg system, both of \(E_{z^2-y^2} - E_{z^2} \) and \(E_{4s} - E_{z^2-y^2} \) are smaller by about 1eV, which means that the \(d_{z^2} \) and 4s levels shift roughly in parallel relative to \(d_{z^2-y^2} \). It can be seen in Fig.3 that the \(\Delta E \) dependence of \(\lambda \) in the three-orbital model resembles that of the two-orbital model in the realistic \(\Delta E \) range. (When \(\Delta E \) becomes unrealistically large, i.e., when 4s level is

![Fig. 3](image-url)
FIG. 3: The eigenvalue, \(\lambda \), of the Eliashberg equation for d-wave superconductivity is plotted against \(\Delta E = E_{z^2-y^2} - E_{z^2} \) for the two-orbital (red circles) or three-orbital (purple triangles) models for La\(_2\)CuO\(_4\). Corresponding eigenvalues for HgBa\(_2\)CuO\(_4\) are also indicated.

![Fig. 4](image-url)
FIG. 4: The eigenvalue of the Eliashberg equation \(\lambda \) (red circles) when \(h_O \) (a) or \(\Delta E \) (b) is varied hypothetically in the lattice structure of La\(_2\)CuO\(_4\). Blue diamond indicates the eigenvalue of HgBa\(_2\)CuO\(_4\). Inset (b) shows the relation between \(h_O \) and \(\Delta E \).
too close to the Fermi level, the Fermi surface becomes too deformed for superconductivity to be retained.) We have also calculated the eigenvalue for the Hg system in the three-orbital model, and obtained a value very similar to that obtained in the two-orbital model, as plotted in Fig.3. If we summarize the three-orbital results, while the 4s orbital has an important effect on the shape of the Fermi surface, this can be effectively included in the $d_{x^2-y^2}$ and d_{z^2} Wannier orbitals in the two-orbital model as far as the FLEX studies are concerned. This contrasts with the case of the d_{z^2} orbital, which, if effectively included in the $d_{x^2-y^2}$ Wannier orbital to construct a single-orbital model, would result in a different result. This conclusion is natural, since the energy difference (≈ 1 eV) between $d_{x^2-y^2}$ and d_{z^2} orbitals in the La system is smaller than the electron-electron interaction, which is why the d_{z^2} orbital has to be explicitly considered in a many-body analysis, while the energy difference (≈ 7 eV) between $d_{x^2-y^2}$ and 4s orbitals is much larger than the electron-electron interaction, so that the 4s orbital can effectively be integrated out before the many-body analysis. So the message here is that the two-orbital ($d_{x^2-y^2}$+d_{z^2}) model suffices to discuss the material dependence of the T_c in the cuprates. Whether the effect of the d_{z^2} orbital can be further incorporated in the on-site U or off-site V values (i.e., material-dependent interaction values) in an effective, single-band model is a future problem.

To summarize, we have introduced a two-orbital model to understand the material dependence of T_c in the cuprates. We have shown that the key parameter is the energy difference between the $d_{x^2-y^2}$ and d_{z^2} orbitals, where the smaller the contribution of the d_{z^2} orbital, the better for d-wave superconductivity, with the orbital-character effect superseding the effect of the Fermi surface shape. It is intriguing to note that the two high T_c families, cuprates and iron pnictides, exhibit material dependence of T_c that, according to the present study and Ref. [27], owes to the material dependent multiorbital band structures.

In the present view, the Hg cuprate is “ideal” in that the d_{z^2} band lies far below the Fermi level. Nevertheless, there is still room for improvement: as mentioned in the outset, within single-orbital systems higher T_c can be obtained for smaller t_2 and t_3. It may be difficult to make t_2 and t_3 smaller in the cuprates, since they are intrinsically large as far as the Cu 4s orbital is effective. Conversely, we can predict that materials with an isolated single band that has smaller t_2 and t_3 should accommodate even higher T_c than the Hg cuprate, provided that the electron interaction is similar to those in the cuprates.

We wish to acknowledge Y. Nohara for the assistance in the band calculation of the Hg system. R.A. acknowledges X. Yang and O.K. Andersen for fruitful discussions. The numerical calculations were performed at the Supercomputer Center, ISSP, University of Tokyo. This study has been supported by Grants-in-Aid for Scientific Research from MEXT of Japan and from JSPS. H.U. acknowledges support from JSPS.

[1] corresponding author: kuroki@vivace.e-one.uec.ac.jp
[2] Y. Kamihara et al., J. Am. Chem. Soc. 130, 3296 (2008).
[3] C.-H. Lee et al., J. Phys. Soc. Jpn. 77, 083704 (2008).
[4] E. Pavarini et al., Phys. Rev. Lett. 87, 047003 (2001).
[5] K. Tanaka et al., Phys. Rev. B 70, 092503 (2004).
[6] T. Moriya and K. Ueda, J. Phys. Soc. Jpn. 63, 1871 (1994).
[7] C.T. Shih et al., Phys. Rev. Lett. 92, 227002 (2004).
[8] P. Prelovšek and A. Ramšak, Phys. Rev. B 72, 012510 (2005).
[9] For a review, see D.J. Scalapino, Handbook of High Temperature Superconductivity, Chapter 13, Eds. J.R. Schrieffer and J.S. Brooks (Springer, New York, 2007).
[10] N.E. Bickers et al., Phys. Rev. Lett. 62, 961 (1989).
[11] T. Dahm and L. Tewordt, Phys. Rev. Lett. 74, 793 (1995).
[12] Th. Maier et al., Phys. Rev. Lett. 85, 1524 (2000).
[13] P.R.C. Kent et al., Phys. Rev. B 78, 035102 (2008).
[14] K. Shiraiishi et al., Solid State Commun. 66, 629 (1988).
[15] H. Kamimura and M. Eto, J. Phys. Soc. Jpn. 59, 3053 (1990); M. Eto and H. Kamimura, J. Phys. Soc. Jpn. 60, 2311 (1991).
[16] A.J. Freeman and J. Yu, Physica B 150, 50 (1988).
[17] O.K. Andersen et al., J. Phys. Chem. Solids 56, 1573 (1995).
[18] S. Baroni et al., http://www.pwscf.org/. Here we take the exchange correlation functional introduced by J. P. Perdew et al.[Phys. Rev. B 54, 16533 (1996)], and the wave functions are expanded by plane waves up to a cutoff energy of 60 Ry with 20³ k-point meshes.
[19] N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997); I. Souza, N. Marzari and D. Vanderbilt, Phys. Rev. B 65, 035109 (2001). The Wannier functions are generated by the code developed by A. A. Mostofi et al., (http://www.wannier.org/).
[20] J.D. Jorgensen et al., Phys. Rev. Lett. 58, 1024 (1987).
[21] J.L. Wagner et al., Physica C 210, 447 (1993).
[22] The conclusion of the present study is not sensitive to the choice of the interaction values. For instance, if we raise the interactions to $U = 4.5$eV ($\sim 10t$) and $J = 0.45$eV, the eigenvalue of the Eliashberg equation for the two-orbital model discussed in Fig.3 is only slightly modified to $\lambda = 0.29$ for La and 0.72 for Hg.
[23] K. Yada and H. Kontani, J. Phys. Soc. Jpn. 74, 2161 (2005).
[24] Note that, while ΔE is varied “by hand” in the Hamiltonian in Fig.4 ΔE in Fig.4 is made to vary with $\hbar \Omega$ of the hypothetical lattice structure.
[25] Y. Ohta, T. Tohyama, and S. Maekawa, Phys. Rev. B 43, 2968 (1991).
[26] When the d_{z^2} level rises above the $d_{x^2-y^2}$, it can play a role similar to 4s as shown in P. Hansmann et al., Phys. Rev. Lett. 103, 016401 (2009).
[27] K. Kuroki et al., Phys. Rev. B 79, 224511 (2009).