ON NODAL SEXTIC FIVEFOLD

IVAN CHELTSOV

Abstract. We prove the birational superrigidity and nonrationality of a hypersurface in \mathbb{P}^6 of degree 6 having at most isolated ordinary double points.

1. Introduction.

In many cases the only known way to prove the nonrationality of a Fano variety is to prove its birational rigidity. Many counterexamples to the Lüroth problem are obtained by proving the birational rigidity of Fano 3-folds (see [13]). Moreover, birational rigidity is the only known way to prove the nonrationality of an explicitly given Fano n-fold for $n > 3$.

Birational rigidity is proved in the following cases:

- for some smooth Fano 3-folds (see [13], [12], [14]);
- for many singular Fano 3-folds (see [20], [22], [11], [9], [8], [17]);
- for many smooth Fano n-folds (see [18], [23], [25], [2], [26], [27], [30], [10], [3], [4]), $n > 3$;
- for some singular Fano n-folds (see [20], [22], [28], [29], [4]), $n > 3$.

Let X be a hypersurface in \mathbb{P}^6 of degree 6 such that the only singularities of X are isolated ordinary double points. Then $-K_X \sim \mathcal{O}_{\mathbb{P}^6}(1)$, the variety X is a Fano 5-fold with \mathbb{Q}-factorial terminal singularities and $\text{rk} \text{Pic}(X) = 1$ (see [1]). In this paper we prove the following result.

Theorem 1. The hypersurface X is birationally superrigid.

In the smooth case the claim of Theorem 1 is proved in [2]. In fact, one can use Theorem 1 to construct explicit examples of nonrational singular hypersurfaces.

Example 2. The singularities of the hypersurface

$$x_0^2(x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 + x_6^2) = x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 + x_6^2 \subset \mathbb{P}^6 \cong \text{Proj}(\mathbb{C}[x_0, \ldots, x_6]).$$

consist of a single ordinary double point, which implies that it is nonrational by Theorem 1.

Example 3. Let X be a hypersurface

$$\sum_{i=0}^{2} a_i(x_0, \ldots, x_6)b_i(x_0, \ldots, x_6) = 0 \subset \mathbb{P}^6 \cong \text{Proj}(\mathbb{C}[x_0, \ldots, x_6]),$$

where a_i and b_i are general homogeneous polynomials of degree 3. Then X has 729 isolated ordinary double points. In particular, the hypersurface X is nonrational by Theorem 1.

It should be pointed out that the claim of Theorem 1 can be considered as a five-dimensional generalization of the birational rigidity of a \mathbb{Q}-factorial quartic 3-fold having isolated ordinary

1 All varieties are assumed to be projective, normal and defined over \mathbb{C}.

2 Let V be a Fano variety with terminal \mathbb{Q}-factorial singularities and $\text{rk} \text{Pic}(V) = 1$. Then V is called birationally rigid if it is not birational to the following varieties: a variety Y such that there is a morphism $\tau : Y \to Z$ whose general fiber has negative Kodaira dimension and $\dim(Y) \neq \dim(Z) \neq 0$; a Fano variety of Picard rank 1 having terminal \mathbb{Q}-factorial singularities that is not biregular to V. The variety V is called birationally superrigid if it is birationally rigid and $\text{Bir}(V) = \text{Aut}(V)$.

3 A priori the method of J.Kollár can be applied to construct explicit examples of nonrational Fano varieties, but a posteriori there is only one case of such explicit application (see [10], [7]).
double points (see [13, 20, 17]). The claim of Theorem 1 is relevant to [28] and [29], but one cannot use [28] and [29] to produce explicit examples of nonrational Fano hypersurfaces.

The author is very grateful to I.Aliev, A.Corti, M.Grinenko, V.Iskovskikh, J.Park, Yu.Prokhorov and V.Shokurov for fruitful conversations. The author would like to cordially thank the referee who pointed out the way how to strengthen the original claim of Lemma 11, which allowed to remove a redundant assumption in the original claim of Theorem 1.

2. The Noether–Fano–Iskovskikh inequality.

Let \(X \) be a Fano variety with terminal \(\mathbb{Q} \)-factorial singularities such that \(\text{rk} \text{Pic}(X) = 1 \), but the variety \(X \) is not birationally superrigid. Then the following result holds (see [5]):

Theorem 4. There is a linear system \(\mathcal{M} \) on the variety \(X \) whose base locus has codimension at least 2, and the singularities of the log pair \((X, \gamma \mathcal{M}) \) are not canonical, where \(\gamma \) is a positive rational number such that the equivalence \(K_X + \gamma \mathcal{M} \sim \mathbb{Q} 0 \) holds.

In the rest of the section we prove Theorem 4. Let \(\rho : X \dashrightarrow Y \) be a birational map such that the rational map \(\rho \) is not biregular and one of the following holds:
- the variety \(Y \) is a Fano variety with terminal \(\mathbb{Q} \)-factorial singularities such that the equality \(\text{rk} \text{Pic}(Y) = 1 \) holds (the Fano case);
- the variety \(Y \) is smooth, and there is a morphism \(\tau : Y \rightarrow Z \) whose general fiber has negative Kodaira dimension and \(\dim(Y) \neq \dim(Z) \neq 0 \) (the fibration case).

Let us consider a commutative diagram

\[
\begin{array}{ccc}
W & \xrightarrow{\alpha} & X \\
\downarrow{\beta} & & \downarrow{\rho} \\
Y & \xrightarrow{} & &
\end{array}
\]

such that \(W \) is smooth, \(\alpha \) and \(\beta \) are birational morphisms. In the Fano case let \(\mathcal{D} \) be the complete linear system \(|-rK_Y|\) for \(r \gg 0 \), in the fibration case let \(\mathcal{D} \) be the complete linear system \(|\tau^*(H)|\), where \(H \) is a very ample divisor on \(Z \). Let \(\mathcal{M} \) be a proper transform on the variety \(X \) of the linear system \(\mathcal{D} \). Now choose a positive rational number \(\gamma \) such that the equivalence \(K_X + \gamma \mathcal{M} \sim \mathbb{Q} 0 \) holds. Suppose that the singularities of the log pair \((X, \gamma \mathcal{M}) \) are not canonical. Let us show that this assumption leads to a contradiction.

Let \(\mathcal{B} \) be a proper transform on \(W \) of the linear system \(\mathcal{M} \). Then

\[
\sum_{i=1}^{k} a_i F_i \sim_{\mathbb{Q}} \alpha^*(K_X + \gamma \mathcal{M}) + \sum_{i=1}^{k} a_i F_i \sim_{\mathbb{Q}} K_W + \gamma \mathcal{B} \sim_{\mathbb{Q}} \beta^*(K_Y + \gamma \mathcal{D}) + \sum_{i=1}^{l} b_i G_i,
\]

where \(F_i \) is a \(\beta \)-exceptional divisor, \(G_i \) is an \(\alpha \)-exceptional divisor, \(a_i \) is a nonnegative rational number, and \(b_i \) is a positive rational number. Let \(n \) be a sufficiently big and sufficiently divisible natural number. Then

\[
h^0\left(\mathcal{O}_W \left(\sum_{j=1}^{k} n a_j F_j \right) \right) = h^0\left(\mathcal{O}_W \left(\beta^*(nK_Y + n\gamma \mathcal{D}) + \sum_{i=1}^{l} nb_i G_i \right) \right),
\]

but \(h^0(\mathcal{O}_W(\beta^*(nK_Y + n\gamma \mathcal{D}) + \sum_{i=1}^{l} nb_i G_i)) = 0 \) in the fibration case. Hence, the fibration case is impossible. In the Fano case the equality \(h^0(\mathcal{O}_W(\beta^*(nK_Y + n\gamma \mathcal{D}) + \sum_{i=1}^{l} nb_i G_i)) = 1 \) implies that \(\gamma = 1/r \). Thus, we have

\[
\sum_{i=1}^{k} a_i F_i \sim_{\mathbb{Q}} \sum_{i=1}^{l} b_i G_i,
\]

and it follows from Lemma 2.19 in [15] that \(\sum_{i=1}^{k} a_i F_i = \sum_{i=1}^{l} b_i G_i \), which implies that the singularities of the log pair \((X, \gamma \mathcal{M}) \) are terminal.
There is a rational number $\mu > \gamma$ such that both log pairs $(X, \mu\mathcal{M})$ and $(X, \mu\mathcal{B})$ have terminal singularities. Hence, we have

$$\alpha^*(K_X + \mu\mathcal{M}) + \sum_{i=1}^{k} a'_iF_i \sim_{\mathbb{Q}} K_W + \mu\mathcal{B} \sim_{\mathbb{Q}} \beta^*(K_Y + \mu\mathcal{D}) + \sum_{i=1}^{l} b'_iG_i,$$

where a'_i and b'_i are positive rational numbers. Let n be a sufficiently big and divisible natural number, and $\psi : W \rightarrow U$ be a map given by the linear system $|nK_W + n\mu\mathcal{B}|$. Then $\psi \circ \beta^{-1}$ is an isomorphism, because the divisor $n(K_Y + \mu\mathcal{D})$ is very ample, but the divisor $\sum_{i=1}^{l} nb'_iG_i$ is effective and β-exceptional. Similarly, we get $\psi \circ \alpha^{-1}$ is an isomorphism. Hence, the birational map ρ is an isomorphism, which is a contradiction. Thus, we proved Theorem 3.

3. The lemma of Corti.

Let X be a variety, O be an isolated ordinary double point on X, B_X be an effective \mathbb{Q}-Cartier divisor on the variety X, $\pi : W \rightarrow X$ be a blow up of O, E be a π-exceptional divisor, B_W be a proper transform of the divisor B_X on the variety W. Then the equivalence

$$\pi^*(B_X) \sim_{\mathbb{Q}} B_W + \text{mult}_O(B_X)E$$

holds, where $\text{mult}_O(B_X)$ is a non-negative rational number. Suppose that $\dim(X) \geq 3$ and the singularities of the log pair (X, B_X) are not canonical in the point O. Then elementary calculations imply $\text{mult}_O(B_X) > 1/2$. The following result is implied by Theorem 3.10 in [6].

Lemma 5. The inequality $\text{mult}_O(B_X) > 1$ holds.

In the rest of the section we prove Lemma 5. Suppose that $\text{mult}_O(B_X) \leq 1$. Let us show that this assumption leads to a contradiction. Replacing the divisor B_X by $(1 - \epsilon)B_X$ for some positive sufficiently small rational ϵ, we may assume that $\text{mult}_O(B_X) < 1$. Moreover, taking sufficiently general hyperplane sections of X, we may assume that $\dim(X) = 3$ due to Theorem 17.6 in [15].

Lemma 6. Let S be a surface $\mathbb{P}^1 \times \mathbb{P}^1$, and B_S be an effective divisor on S of bi-degree (a, b), where a and b are rational numbers in $(0, 1)$. Then the log pair (S, B_S) has log-terminal singularities.

Proof. Suppose that the singularities of (S, B_S) are not log-terminal. Then the locus of log canonical singularities $\text{LCS}(S, B_S)$ is not empty and consists of points of the surface S. Hence, the locus $\text{LCS}(S, F + B_S)$ is not connected, where F is a sufficiently general fiber of the projection of the surface S to \mathbb{P}^1. The later contradicts Theorem 17.4 in [15].

The inequality $\text{mult}_O(B_X) < 1$ and the equivalence

$$K_W + B_W \sim_{\mathbb{Q}} \pi^*(K_X + B_X) + (1 - \text{mult}_O(B_X))E,$$

imply that there is a proper irreducible subvariety $Z \subset E$ such that the log pair (W, B_W) is not canonical in the generic point of Z. Hence the singularities of the log pair $(E, B_W|_E)$ are not log terminal by Theorem 17.6 in [15], which is impossible by Lemma 6.

4. Main inequalities.

Let X be a variety, O be an isolated ordinary double point on X, \mathcal{M} be a linear system on the variety X having no base components, and $r = \dim(X) \geq 4$. Let $\pi : V \rightarrow X$ be a blow up of X at the point O, E be a π-exceptional divisor, and let B be a proper transform of the linear system \mathcal{M} on the variety V. Then the divisor E can be identified with a smooth quadric hypersurface in \mathbb{P}^r, and the equivalence

$$B \sim \pi^*(\mathcal{M}) - \text{mult}_O(\mathcal{M})E$$

holds for some natural number $\text{mult}_O(\mathcal{M})$. It should be pointed out that $\text{mult}_O(\mathcal{M})$ is different from the scheme-theoretic multiplicity of a general surface of \mathcal{M} in the point O.

3
Let S_1 and S_2 be general divisors in the linear system \mathcal{M}, and H_i be a general hyperplane section of X passing through O, where $i = 1, \ldots, r-2$. We can define $\text{mult}_O(S_i)$ and $\text{mult}_O(H_i)$ in the same way as we defined the number $\text{mult}_O(\mathcal{M})$. Let \hat{S}_i and \hat{H}_i be proper transforms on the variety V of the divisors S_i and H_i respectively. Then we can put

$$\text{mult}_O(S_1 \cdot S_2) = 2\text{mult}_O^2(S_i) + \sum_{P \in E} \text{mult}_P(\hat{S}_1 \cdot \hat{S}_2) \cdot \text{mult}_P(\hat{H}_1) \cdots \text{mult}_P(\hat{H}_{r-2}).$$

Remark 7. The inequality $\text{mult}_O(S_1 \cdot S_2) \geq 2\text{mult}_O^2(S_i) + \text{mult}_Z(\hat{S}_1 \cdot \hat{S}_2)$ holds for any irreducible subvariety $Z \subset E$ of codimension one.

Example 8. Let X be a hypersurface in \mathbb{P}^6 of degree 6 such that the singularities of the hypersurface X consist of a finite number of isolated ordinary double points, and let O be a singular point of the variety X. Then the groups $\text{Cl}(X)$ and $\text{Pic}(X)$ are generated by a hyperplane section H of the hypersurface X (see [1]), which implies that $S_i \sim nH$ for some natural number n. Moreover, the inequality $\text{mult}_O(S_1 \cdot S_2) \leq 6n^2$ holds.

Suppose that the singularities of the log pair $(X, \frac{1}{n}\mathcal{M})$ are not canonical in the point O, but they are canonical in a punctured neighborhood of the point O.

Lemma 9. Suppose that $\dim(X) \geq 6$. Then $\text{mult}_O(S_1 \cdot S_2) > 6n^2$.

Proof. We prove the inequality $\text{mult}_O(S_1 \cdot S_2) > 6n^2$ only when $\dim(X) = 6$, because the proof in the case $\dim(X) \geq 7$ is similar. So suppose that $\dim(X) = 6$. Then

$$K_V + \frac{1}{n}B \sim_\mathbb{Q} \pi^*(K_X + \frac{1}{n}\mathcal{M}) + \left(4 - \frac{\text{mult}_O(\mathcal{M})}{n}\right)E.$$

Put $\tilde{X} = \cap_{i=1}^3 H_i$ and $\tilde{\mathcal{M}} = \mathcal{M}|_X$. Then O is an isolated ordinary double point on \tilde{X}, and the singularities of the log pair $(\tilde{X}, \frac{1}{n}\tilde{\mathcal{M}})$ are not log canonical in the point O by Theorem 17.6 of the paper [15]. Let $\tilde{\pi} : \tilde{V} \to \tilde{X}$ be a blow up of the point O, and \tilde{E} be an exceptional divisor of the birational morphism $\tilde{\pi}$. Then the diagram

$$\begin{array}{ccc}
\tilde{V} & \xrightarrow{\tilde{\pi}} & V \\
\downarrow & & \downarrow \pi \\
\tilde{X} & \xleftarrow{\tilde{\pi}} & X
\end{array}$$

is commutative, where the 3-fold \tilde{V} is identified with a proper transform of the subvariety \tilde{X} on the variety V. In particular, we have $\tilde{E} = E \cap \tilde{V}$. The generality of H_i implies

$$\text{mult}_O(\tilde{\mathcal{M}}) = \text{mult}_O(\mathcal{M}),$$

and we may assume that $\text{mult}_O(\mathcal{M}) < 2n$, because otherwise $\text{mult}_O(S_1 \cdot S_2) > 6n^2$.

Let \mathcal{B} be a proper transform of \mathcal{M} on the variety V, and $\tilde{\mathcal{B}}$ be a proper transform of the linear system $\tilde{\mathcal{M}}$ on the 3-fold \tilde{V}. Then $\tilde{\mathcal{B}} = \mathcal{B}|_V$ and we have

$$K_V + \frac{1}{n}B + \left(\frac{\text{mult}_O(\mathcal{M})}{n} - 1\right)E + \hat{H}_1 + \hat{H}_2 + \hat{H}_3 \sim_\mathbb{Q} \tilde{\pi}^*(K_X + \frac{1}{n}\mathcal{M} + H_1 + H_2 + H_3)$$

and

$$K_{\tilde{V}} + \frac{1}{n}\tilde{\mathcal{B}} + \left(\frac{\text{mult}_O(\tilde{\mathcal{M}})}{n} - 1\right)\tilde{E} \sim_\mathbb{Q} \tilde{\pi}^*(K_{\tilde{X}} + \frac{1}{n}\tilde{\mathcal{M}}),$$

but $\text{mult}_O(\mathcal{M}) < 2n$ implies the existence of irreducible subvarieties $\Omega \subset E$ and $\tilde{\Omega} \subset \tilde{E}$ such that the singularities of the log pair $(V, \frac{1}{n}\mathcal{B} + (\text{mult}_O(\mathcal{M})/n - 1)\tilde{E})$ are not log canonical in the generic point of Ω, the singularities of the log pair $(\tilde{V}, \frac{1}{n}\tilde{\mathcal{B}} + (\text{mult}_O(\tilde{\mathcal{M}})/n - 1)\tilde{E})$ are not log canonical in the generic point of $\tilde{\Omega}$, and $\tilde{\Omega} \subset \Omega \cap \tilde{V}$. We have $\tilde{\Omega} = \Omega \cap \tilde{V}$ when $\dim(\tilde{\Omega}) > 0$, and we may assume that Ω and $\tilde{\Omega}$ have the greatest possible dimensions among all subvarieties.
Proof. We have mult by the Lefschetz theorem. Hence, the inequality \(\dim(\tilde{\Omega}) \leq \text{codimension} 3 \) that is contained in the smooth quadric hypersurface \(O \), which implies mult by Lemma 10.

Suppose that \(\dim(\tilde{\Omega}) = 0 \). Then \(\tilde{\Omega} = \Omega \cap \tilde{V} \).

Let \(\Delta \) be an effective divisor on the variety \(X \) passing through the point \(O \) and \(\hat{\Delta} \) be its proper transform on the variety \(V \). Suppose that the divisor \(\Delta \) does not contain irreducible components of the cycle \(S_1 \cdot S_2 \), and the divisor \(\hat{\Delta} \) does not contain irreducible components of the cycle \(\hat{S}_1 \cdot \hat{S}_2 \). Then we can put

\[
\text{mult}_O(S_1 \cdot S_2 \cdot \Delta) = 2\text{mult}_O^2(S_i)\text{mult}_O(\Delta) + \sum_{P \in E} \text{mult}_P(\hat{S}_1 \cdot \hat{S}_2 \cdot \hat{\Delta})\text{mult}_P(\hat{H}_1) \cdots \text{mult}_P(\hat{H}_{r-3}),
\]

which implies \(\text{mult}_O(\hat{S}_1 \cdot \hat{S}_2 \cdot \hat{\Delta}) = \text{mult}_O(S_1|_{\Delta} \cdot S_2|_{\Delta}) \) in the case when the point \(O \) is an isolated ordinary double point on the divisor \(\Delta \).

Lemma 10. Suppose that \(\dim(X) = 4 \). Then there is a line \(\Lambda \subset E \subset \mathbb{P}^4 \) such that the strict inequality \(\text{mult}_O(S_1 \cdot S_2 \cdot \Delta) > 6n^2 \) holds if \(\Lambda \subset \hat{\Delta} \), and \(O \) is an ordinary double point on \(\Delta \).

Proof. We have \(\text{mult}_O(M) > n \) by Lemma 5, but

\[
K_V + \frac{1}{n} \mathcal{B} \sim_{\mathbb{Q}} \pi^*(K_X + \frac{1}{n} \mathcal{M}) + \left(2 - \frac{\text{mult}_O(M)}{n} \right) E.
\]

Suppose that \(O \) is an ordinary double point on \(\Delta \). Put \(\bar{S}_i = S_i|_{\Delta} \) and \(\bar{M} = M|_{\Delta} \). Then the log pair \((\Delta, \frac{1}{n} \bar{M}) \) is not log canonical in the point \(O \) by Theorem 17.6 in [15].

Let \(\tilde{\pi} : \Delta \to \Delta \) be a blow up of \(O \), and \(\tilde{E} \) is a \(\tilde{\pi} \)-exceptional divisor. Then the diagram

\[
\begin{array}{ccc}
\tilde{\Delta} & \xrightarrow{\tilde{\pi}} & \tilde{V} \\
\downarrow \pi & & \downarrow \pi \\
\Delta & \xrightarrow{\pi} & X
\end{array}
\]

is commutative, where we can identify \(\tilde{\Delta} \) with \(\hat{\Delta} \), and \(\tilde{E} = E \cap \tilde{\Delta} \) can be considered as a nonsingular quadric hypersurface in \(\mathbb{P}^3 \). The inequality \(\text{mult}_O(\bar{M}) \geq 2n \) gives

\[
\text{mult}_O(S_1 \cdot S_2 \cdot \Delta) = \text{mult}_O(\tilde{S}_1 \cdot \tilde{S}_2) \geq 8n^2,
\]

hence, we may assume that \(\text{mult}_O(\bar{M}) < 2n \).

Let \(\bar{M} \) be a proper transform of the linear system \(\bar{M} \) on \(\tilde{\Delta} \). Then \(\text{mult}_O(\bar{M}) < 2n \) implies the existence of an irreducible subvariety \(\Xi \subset \tilde{E} \) such that the singularities of the log pair

\[
\left(\tilde{\Delta}, \frac{1}{n} \bar{M} + (\text{mult}_O(\bar{M})/n - 1) \bar{E} \right).
\]
are not log canonical in the generic point of Ξ.

Suppose that Ξ is a curve. Let \hat{S}_i be a proper transform of S_i on $\hat{\Delta}$. Then
$$\text{mult}_O(\hat{S}_1 \cdot \hat{S}_2) \geq 2 \text{mult}_O(\mathcal{M})^2 + \text{mult}_\Xi(\hat{S}_1 \cdot \hat{S}_2),$$
but Theorem 3.1 of [B] applied to the log pair $(\hat{\Delta}, \frac{1}{n}\hat{\mathcal{M}} + (\text{mult}_O(\mathcal{M})/n - 1)\hat{E})$ in the generic point of Ξ implies that the inequality
$$\text{mult}_\Xi(\hat{S}_1 \cdot \hat{S}_2) > 4(2n^2 - n\text{mult}_O(\hat{\mathcal{M}}))$$
holds. Hence, the inequalities
$$\text{mult}_O(\hat{S}_1 \cdot \hat{S}_2) > 2 \text{mult}_O^2(\mathcal{M}) + 4(2n^2 - n\text{mult}_O(\mathcal{M})) \geq 6n^2$$
hold. Thus, we may assume that Ξ is a point.

Suppose that the divisor Δ is a sufficiently general hyperplane section of X passing through the point O. Then applying Theorem 17.4 of [I] to the log pair $(\hat{\Delta}, \frac{1}{n}\hat{\mathcal{M}} + (\text{mult}_O(\mathcal{M})/n - 1)\hat{E})$ and the morphism $\hat{\pi}$ we see that one of the following holds:
- the singularities of the log pair $(V, \frac{1}{n}B + (\text{mult}_O(\mathcal{M})/n - 1)E)$ are not log canonical in the generic point of some surface that is contained in the divisor E;
- there is a line $\Lambda \subset E \subset \mathbb{P}^4$ such that the singularities of $(V, \frac{1}{n}B + (\text{mult}_O(\mathcal{M})/n - 1)E)$ are not log canonical in the generic point of line Λ and $\Xi = \Lambda \cap \hat{\Delta}$.

In the case when the singularities of the log pair $(V, \frac{1}{n}B + (\text{mult}_O(\mathcal{M})/n - 1)E)$ are not log canonical in the generic point of some surface contained in E, the previous arguments implies the inequality $\text{mult}_O(\hat{S}_1 \cdot \hat{S}_2) > 6n^2$. Thus, we may assume that there is a line $\Lambda \subset E \subset \mathbb{P}^4$ such that $\Xi = \Lambda \cap \hat{\Delta}$ and the singularities of the log pair $(V, \frac{1}{n}B + (\text{mult}_O(\mathcal{M})/n - 1)E)$ are not log canonical in the generic point of the curve Λ. It should be pointed out that the line Λ does not depend on the choice of the divisor Δ. Therefore, we may assume that the divisor Δ is chosen under the additional assumption $\Lambda \subset \Delta$, where we identified Δ with $\hat{\Delta}$.

The singularities of the log pair $(\hat{\Delta}, \frac{1}{n}\hat{\mathcal{M}} + (\text{mult}_O(\mathcal{M})/n - 1)\hat{E})$ are not log canonical in the generic point of Λ by Theorem 17.6 in [I], because the boundary $\frac{1}{n}B + (\text{mult}_O(\mathcal{M})/n - 1)E$ is effective due to the inequality $\text{mult}_O(\mathcal{M}) > n$. Hence, we can apply Theorem 3.1 of [B] to the log pair $(\hat{\Delta}, \frac{1}{n}\hat{\mathcal{M}} + (\text{mult}_O(\mathcal{M})/n - 1)\hat{E})$ in the generic point of Λ to obtain the inequalities
$$\text{mult}_O(\hat{S}_1 \cdot \hat{S}_2) > 2 \text{mult}_O^2(\hat{\mathcal{M}}) + 4(2n^2 - n\text{mult}_O(\hat{\mathcal{M}})) \geq 6n^2,$$
which conclude the proof. □

Finally, let us prove the following result.

Lemma 11. Suppose that $\dim(X) = 5$ Then $\text{mult}_O(S_1 \cdot S_2) > 6n^2$.

Proof. Put $\tilde{X} = H_1 \cap H_2$ and $\tilde{\mathcal{M}} = \mathcal{M}|_{\tilde{X}}$. Then O is an isolated ordinary double point on \tilde{X}, and the singularities of the log pair $(\tilde{X}, \frac{1}{n}\tilde{\mathcal{M}})$ are not log canonical in the point O by Theorem 17.6 of the paper [I]. Let $\tilde{\pi} : \tilde{V} \to \tilde{X}$ be a blow up of the point O, and \tilde{E} be an exceptional divisor of the morphism $\tilde{\pi}$. Then we can identify \tilde{V} with a proper transform of \tilde{X} on \tilde{V}. We have
$$\text{mult}_O(S_1 \cdot S_2) \geq 2 \text{mult}_O^2(\tilde{\mathcal{M}}) > 6n^2$$
in the case when $\text{mult}_O(\mathcal{M}) \geq 2n$. Hence, we may assume that $\text{mult}_O(\mathcal{M}) < 2n$.

Let $\tilde{\mathcal{B}}$ be a proper transform of the linear system \mathcal{M} on \tilde{V}. Then $\mathcal{B} = \mathcal{B}|_{\mathcal{V}}$ and we have
$$K_{\mathcal{V}} + \frac{1}{n}B + \left(\frac{\text{mult}_O(\mathcal{M})}{n} - 1\right)E + \tilde{H}_1 + \tilde{H}_2 \sim_{\tilde{Q}} \tilde{\pi}^*(K_{\tilde{X}} + \frac{1}{n}\tilde{\mathcal{M}} + H_1 + H_2),$$
but $K_{\mathcal{V}} + \frac{1}{n}B + (\text{mult}_O(\mathcal{M})/n - 1)\tilde{E} \sim_{\tilde{Q}} \tilde{\pi}^*(K_{\tilde{X}} + \frac{1}{n}\tilde{\mathcal{M}})$. Therefore, there are proper irreducible subvarieties $\Omega \subset E$ and $\tilde{\Omega} \subset \tilde{E}$ such that $\tilde{\Omega} \subset \Omega \cap \tilde{V}$ and the following holds:
- the log pair $(\mathcal{V}, \frac{1}{n}\mathcal{B} + (\text{mult}_O(\mathcal{M})/n - 1)\mathcal{E})$ is not log canonical in Ω;
- the log pair $(\tilde{\mathcal{V}}, \frac{1}{n}\tilde{\mathcal{B}} + (\text{mult}_O(\mathcal{M})/n - 1)\tilde{E})$ is not log canonical in $\tilde{\Omega}$.
We may assume that Ω and $\tilde{\Omega}$ have the greatest possible dimensions among all subvarieties having such properties. Therefore, we have $\tilde{\Omega} = \Omega \cap \tilde{V}$ in the case when $\dim(\tilde{\Omega}) \geq 1$.

Suppose that $\dim(\Omega) \geq 1$ holds. Then $\dim(\tilde{\Omega}) = 3$ and we can apply Theorem 3.10 of [6] to the log pair $(\tilde{V}, \frac{1}{n} \tilde{B} + (\text{mult}_O(\mathcal{M})/n - 1)E)$ in the generic point of Ω. Therefore, we have

$$\text{mult}_O(\hat{S}_1 \cdot \hat{S}_2) > 4(2n^2 - n\text{mult}(\mathcal{M})),$$

which implies that the inequalities

$$\text{mult}_O(S_1 \cdot S_2) \geq 2\text{mult}_O^2(\mathcal{M}) + \text{mult}_O(\hat{S}_1 \cdot \hat{S}_2) > 6n^2$$

hold. Therefore, we may assume that $\dim(\tilde{\Omega}) = 0$.

Applying Theorem 17.4 of [15] to $(\tilde{V}, \frac{1}{n} \tilde{B} + (\text{mult}_O(\mathcal{M})/n - 1)E)$ and $\tilde{\pi}$ we see that the locus

$$LCS\left(\tilde{V}, \frac{1}{n} \tilde{B} + (\text{mult}_O(\mathcal{M})/n - 1)\tilde{E}\right)$$

consists of a single point $\tilde{\Omega}$ in the neighborhood of the divisor \tilde{E}. Hence, the subvariety $\tilde{\Omega}$ is a plane in \mathbb{P}^5. In fact, the subvariety Ω can not be a plane\(^4\). Let us prove the latter by using the arguments of the original proof of Lemma 5 (see Theorem 3.10 in [4]).

Let \tilde{X} be a general hyperplane section of X passing through O that is locally given as

$$xy +zt = 0 \subset \mathbb{C}^5 \cong \text{Spec}(\mathbb{C}[x,y,z,t,u])$$

in the neighborhood of O, which is given by $x = y = z = t = u = 0$. Then \tilde{X} has non-isolated singularities, but we can apply the previous arguments to \tilde{X}. Namely, let \tilde{V} be a proper transform of the variety \tilde{X} on V, and $\tilde{\pi} : \tilde{V} \to \tilde{X}$ be the induced birational morphism. Then

$$K_{\tilde{V}} + \frac{1}{n} \tilde{B} + (\text{mult}_O(\mathcal{M})/n - 2)\tilde{E} \sim_{\text{Q}} \tilde{\pi}^*(K_{\tilde{X}} + \frac{1}{n} \mathcal{M}|_{\tilde{X}}),$$

where $\tilde{B} = B|_{\tilde{V}}$, and \tilde{E} is the exceptional divisor of $\tilde{\pi}$, which is a cone over $\mathbb{P}^1 \times \mathbb{P}^1$.

Let \tilde{S}_x and \tilde{S}_y be irreducible reduced Weil divisors on the variety \tilde{X} that are given by the equations $x = t = 0$ and $y = t = 0$ respectively. Then \tilde{S}_x and \tilde{S}_y are not Q-Cartier divisors, but the divisor $\tilde{S}_x + \tilde{S}_y$ is Cartier and given by the equation $t = 0$. Moreover, the equivalence

$$K_{\tilde{V}} + \frac{1}{n} \tilde{B} + (\text{mult}_O(\mathcal{M})/n - 1)\tilde{E} + \tilde{H}_x + \tilde{H}_y \sim_{\text{Q}} \tilde{\pi}^*(K_{\tilde{X}} + \frac{1}{n} \mathcal{M}|_{\tilde{X}} + \tilde{S}_x + \tilde{S}_y),$$

holds, where \tilde{H}_x and \tilde{H}_y are proper transforms of \tilde{S}_x and \tilde{S}_y on the variety \tilde{V}. Then

$$\text{LCS}\left(\tilde{V}, \frac{1}{n} \tilde{B} + (\text{mult}_O(\mathcal{M})/n - 1)\tilde{E}\right) = \tilde{\Omega},$$

where $\tilde{\Omega} = \Omega|_{\tilde{V}}$, because we can apply the previous arguments to $(\tilde{X}, \frac{1}{n} \mathcal{M}|_{\tilde{X}} + \tilde{S}_x + \tilde{S}_y)$ due to the generality in the choice of \tilde{X}. Note, that $\tilde{\Omega}$ is a line on the quadric cone $\tilde{E} \subset \mathbb{P}^4$.

There are natural ways to desingularize \tilde{X} and \tilde{V}. Indeed, consider a commutative diagram

where we have the following notations:

\(^4\)The referee pointed out to the author that the subvariety Ω can not be a plane. We follow the arguments of the referee to conclude the proof of Lemma 5.
• \(\tilde{\phi} \) is a blow up of the ideal sheaf of the curve \(x = y = z = t = 0 \);
• \(\tilde{\alpha}_x \) and \(\tilde{\alpha}_y \) are blow ups of the ideal sheaves of \(\tilde{S}_x \) and \(\tilde{S}_y \) respectively;
• \(\tilde{\beta}_x \) and \(\tilde{\beta}_y \) are blow ups of the exceptional surfaces of \(\tilde{\alpha}_x \) and \(\tilde{\alpha}_y \) respectively;
• \(\tilde{\xi}, \tilde{\beta}_x, \tilde{\beta}_y \) are blow ups of the fibers of \(\phi, \tilde{\alpha}_x, \tilde{\alpha}_y \) over the point \(O \) respectively;
• \(\tilde{\psi} \) is a blow up of the ideal sheaf of the proper transform of \(x = y = z = t = 0 \);
• \(\tilde{\gamma}_x \) and \(\tilde{\gamma}_y \) are blow ups of the ideal sheaves of \(\tilde{H}_x \) and \(\tilde{H}_y \) respectively;
• \(\tilde{\delta}_x \) and \(\tilde{\delta}_y \) are blow ups of the exceptional surfaces of \(\tilde{\gamma}_x \) and \(\tilde{\gamma}_y \) respectively.

The varieties \(\tilde{W}, \tilde{W}_x, \tilde{W}_y, \tilde{U}, \tilde{U}_x, \tilde{U}_y \) are smooth by construction. Moreover, the birational morphisms \(\tilde{\alpha}_x, \tilde{\alpha}_y, \tilde{\gamma}_x, \tilde{\gamma}_y \) are small\(^5\), and \(\pi \circ \tilde{\psi} = \tilde{\phi} \circ \tilde{\xi} \). Let \(\tilde{F} \) be the \(\tilde{\xi} \)-exceptional divisor. Then

\[
\tilde{F} \cong \mathbb{P}\left(\mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(1) \right),
\]

where \(\mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(1) \) is a hyperplane section of the quadric \(\mathbb{P}^1 \times \mathbb{P}^1 \) with respect to the natural embedding into \(\mathbb{P}^3 \). The induced morphism \(\tilde{\xi}|_{\tilde{F}} \) is the natural projection to \(\mathbb{P}^1 \times \mathbb{P}^1 \), the induced morphisms \(\tilde{\eta}_x \circ \tilde{\delta}_x|_{\tilde{F}} \) and \(\tilde{\eta}_y \circ \tilde{\delta}_y|_{\tilde{F}} \) are projections to \(\mathbb{P}^1 \), the morphisms \(\tilde{\delta}_x|_{\tilde{F}} \) and \(\tilde{\delta}_y|_{\tilde{F}} \) are contractions of the exceptional section of \(\tilde{F} \) to curves, and \(\tilde{\psi}|_{\tilde{F}} \) is the contraction of the exceptional section of the surface \(\tilde{F} \) to the vertex of the cone \(\tilde{E} \), where \(\tilde{E} = \tilde{\psi}(\tilde{F}) \).

The subvariety \(\tilde{\Omega} \) is a line on the quadric cone \(\tilde{E} \subset \mathbb{P}^4 \) that does not pass through the vertex of the quadric cone \(\tilde{E} \), but \((\tilde{H}_x + \tilde{H}_y) \cdot \tilde{\Omega} = 1 \). We may assume that \(\tilde{H}_x \cdot \tilde{\Omega} = 0 \) and \(\tilde{H}_y \cdot \tilde{\Omega} = 1 \).

Let \(\tilde{D}_x \) and \(\tilde{D}_y \) be the proper transforms of \(\tilde{H}_x \) and \(\tilde{H}_y \) on \(\tilde{U}_y \) respectively, and \(\tilde{\Gamma} \) be the proper transform of \(\tilde{\Omega} \) on the variety \(\tilde{U}_y \). Then \(\tilde{D}_x \cdot \tilde{\Gamma} = 0 \) and \(\tilde{D}_y \cdot \tilde{\Gamma} = 1 \). Moreover, we have

\[
K_{\tilde{U}_y} + \frac{1}{n} \tilde{D} + (\text{mult}_O(\mathcal{M})/n - 1) \tilde{G} + \tilde{D}_x + \tilde{D}_y \sim_{\tilde{\mathbb{Q}}} (\tilde{\pi} \circ \tilde{\gamma}_y)^* \left(K_X + \frac{1}{n} M|_X + \tilde{S}_x + \tilde{S}_y \right),
\]

where \(\tilde{D} \) and \(\tilde{G} \) are proper transforms of the linear system \(\tilde{B} \) and exceptional divisor \(\tilde{E} \) on the variety \(\tilde{U}_y \). The morphism \(\tilde{\eta}_y \) contracts the divisor \(\tilde{G} \), but the morphism \(\tilde{\eta}_y|_{\tilde{G}} \) is a \(\mathbb{P}^2 \)-bundle.

Let \(\tilde{Y} \) be a general fiber of \(\tilde{\eta}_y|_{\tilde{G}} \). Then \(\tilde{Y} \cap \tilde{D}_x \) is a line in \(\tilde{Y} \cong \mathbb{P}^2 \), the intersection \(\tilde{\Gamma} \cap \tilde{Y} \) is a point that is not contained in \(\tilde{Y} \cap \tilde{D}_x \), and \(\tilde{Y} \cap \tilde{D}_y = \emptyset \). Therefore, in the neighborhood of the fiber \(Y \) of the morphism \(\tilde{\eta}_y \) the locus of log canonical singularities

\[
\text{LCS}\left(\tilde{U}_y, \frac{1}{n} \tilde{D} + (\text{mult}_O(\mathcal{M})/n - 1) \tilde{G} + \tilde{D}_x + \tilde{D}_y \right)
\]

consists of \(\tilde{\Gamma} \) and \(\tilde{D}_x \), which contradicts Theorem 17.4 in [15], because \(\tilde{\Gamma} \cap \tilde{D}_x = \emptyset \). \quad \square

5. The proof of Theorem 1

Let \(X \) be a hypersurface in \(\mathbb{P}^6 \) of degree 6 having at most isolated ordinary double points, which is not birationally superrigid. Let us show that this assumption leads to a contradiction.

It follows from Theorem 1 that there is a linear system \(\mathcal{M} \) on the hypersurface \(X \) that does not have fixed components such that the singularities of the log pair \((X, \frac{1}{m} \mathcal{M}) \) are not canonical, where \(m \) is a natural number such that the rational equivalence \(\mathcal{M} \sim -mK_X \) holds.

Let \(Z \) be a proper irreducible subvariety of \(X \) such that the log pair \((X, \frac{1}{m} \mathcal{M}) \) is not canonical in the generic point of \(Z \), and \(Z \) has maximal dimension among the subvarieties of \(X \) with such property. Then \(\dim(Z) \leq 1 \) by Theorem 2 in [21].

Suppose that either \(\dim(Z) \neq 0 \) or \(Z \) is a smooth point of the hypersurface \(X \). Let \(P \) be any sufficiently general point of \(Z \), and \(V \) be a sufficiently general hyperplane section of \(X \) passing through the point \(P \), and \(\mathcal{B} = \mathcal{M}|_V \). Then \(V \) is a smooth hypersurface in \(\mathbb{P}^5 \) of degree 6, and the singularities of \((V, \frac{1}{m} \mathcal{B}) \) are not canonical in \(P \) by Theorem 16.7 of [15]. Let \(S_1 \) and \(S_2 \) be sufficiently general divisors in \(\mathcal{B} \), and \(F = S_1 \cdot S_2 \). Then

\[
\dim\{ O \in F \mid \text{mult}_O(F) > m \} \leq 1
\]

A birational morphism is called small if it does not contract any divisor.
by Proposition 5 in [27]. Let \(Y \) be a sufficiently general hyperplane section of \(V \) passing through the point \(P \), and \(\mathcal{P} = B|_Y \). Then \(Y \) is a smooth hypersurface in \(\mathbb{P}^4 \) of degree 6, and
\[
\dim \{ O \in F \cap Y \mid \text{mult}_O(F|_Y) > m \} \leq 0
\]
by Proposition 4.5 in [10]. On the other hand, the singularities of the log pair \((Y, \frac{1}{m}\mathcal{P}) \) are not log canonical in \(P \) by Theorem 17.6 of [15]. Let \(\eta : \mathbb{P}^4 \dasharrow \mathbb{P}^2 \) be a general projection. Then
\[
\eta(P) \in \text{LCS}(\mathbb{P}^2, \frac{1}{4m^2}\eta_*[F|_Y])
\]
by Theorem 1.1 in [10]. Moreover, it follows from the inequality [12] and Proposition 4.7 in [10] that the singularities of the log pair \((\mathbb{P}^2, \frac{1}{4m^2}\eta_*[F|_Y]) \) are log terminal in a punctured neighborhood of the point \(\eta(P) \). Hence, the locus LCS(\(\mathbb{P}^2, L + \frac{1}{4m^2}\eta_*[F|_Y] \)) is not connected for a sufficiently general line \(L \subset \mathbb{P}^2 \), which is impossible by Theorem 17.4 of [15], because
\[
K_{\mathbb{P}^2} + L + \frac{1}{4m^2}\eta_*[F|_Y] \sim Q - \frac{1}{2}L.
\]
Therefore, we proved that \(Z \) is a singular point of \(X \). Let \(\pi : U \to X \) be a blow up of the point \(Z \), and \(E \) be a \(\pi \)-exceptional divisor. Then \(\text{mult}_Z(\mathcal{M}) > m \) by Lemma [5] but
\[
K_U + \frac{1}{m}\mathcal{H} \sim Q \pi^*(K_X + \frac{1}{m}\mathcal{M}) + \left(3 - \frac{1}{m}\text{mult}_Z(\mathcal{M}) \right)E,
\]
where \(\mathcal{H} \) is a proper transform of \(\mathcal{M} \) on \(U \). Let \(M_1 \) and \(M_2 \) be sufficiently general divisors in the linear system \(\mathcal{M} \). Then the inequality
\[
\text{mult}_Z(M_1 \cdot M_2) > 6m^2
\]
holds by Lemma [11]. Hence, we have
\[
6m^2 = M_1 \cdot M_2 \cdot H_1 \cdot H_2 \cdot H_3 \geq \text{mult}_Z(M_1 \cdot M_2) > 6m^2,
\]
where \(H_i \) is a sufficiently general hyperplane section of the hypersurface \(X \) that passes through the point \(Z \). The obtained contradiction proves Theorem [1].

References

[1] F. Call, G. Lyubeznik, *A simple proof of Grothendieck’s theorem on the parafactoriality of local rings*, Contemp. Math. **159** (1994), 15–18.

[2] I. Cheltsov, *On smooth quintic 4-fold*, Mat. Sbornik **191** (2000), 139–162.

[3] I. Cheltsov, *Nonrationality of a four-dimensional smooth complete intersection of a quadric and a quartic not containing a plane*, Mat. Sbornik **194** (2003), 95–116.

[4] I. Cheltsov, *Birationally superrigid cyclic triple spaces*, Izv. Math. **68** (2004), 157–208.

[5] A. Corti, *Factorizing birational maps of threefolds after Sarkisov*, J. Alg. Geometry **4** (1995), 223–254.

[6] A. Corti, *Singularities of linear systems and 3-fold birational geometry*, L.M.S. Lecture Note Series **281** (2000), 259–312.

[7] A. Corti, J. Kollár, K. Smith *Rational and nearly rational varieties*, Cambridge University Press, 2003.

[8] A. Corti, M. Mella, *Birational geometry of terminal quartic 3-folds I*, Amer. J. Math. **126** (2004), 739–761.

[9] A. Corti, A. Pukhlikov, M. Reid, *Fano 3-fold hypersurfaces*, L.M.S. Lecture Note Series **281** (2000), 175–258.

[10] T. deFernex, L. Ein, M. Mustata, *Bounds for log canonical thresholds with applications to birational rigidity*, Math. Res. Letters **10** (2003), 219–236.

[11] M. Grinenko, *Birational automorphisms of a three-dimensional dual quadric with the simplest singularity*, Mat. Sbornik **189** (1998), 101–118.

[12] V. Iskovskikh, *Birational automorphisms of three-dimensional algebraic varieties*, J. Soviet Math. **13** (1980), 815–868.

[13] V. Iskovskikh, Yu. Manin, *Three-dimensional quartics and counterexamples to the Lüroth problem*, Mat. Sbornik **86** (1971), 140–166.

[14] V. Iskovskikh, A. Pukhlikov, *Birational automorphisms of multidimensional algebraic manifolds*, J. Math. Sci. **82** (1996), 3528–3613.

[15] J. Kollár et al., *Flips and abundance for algebraic threefolds* Astérisque **211** (1992).

[16] J. Kollár, *Rational curves on algebraic varieties* (Springer-Verlag, Berlin 1996).
[17] M. Mella, *Birational geometry of quartic 3-folds II: the importance of being \mathbb{Q}-factorial*, Math. Ann. 330 (2004), 107–126.

[18] A. Pukhlikov, *Birational isomorphisms of four-dimensional quintics*, Invent. Math. 87 (1987), 303–329.

[19] A. Pukhlikov, *Birational automorphisms of a double space and a double quartic*, Izv. Akad. Nauk SSSR 52 (1988), 229–239.

[20] A. Pukhlikov, *Birational automorphisms of a three-dimensional quartic with a simple singularity*, Mat. Sbornik 177 (1988), 472–496.

[21] A. Pukhlikov, *Notes on theorem of V.A.Iskovskikh and Yu.I.Manin about 3-fold quartic*, Proceedings of Steklov Institute 208 (1995), 278–289.

[22] A. Pukhlikov, *Birational automorphisms of double spaces with singularities*, J. Math. Sci. 85 (1997), 2128–2141.

[23] A. Pukhlikov, *Birational automorphisms of Fano hypersurfaces*, Invent. Math. 134 (1998), 401–426.

[24] A. Pukhlikov, *Essentials of the method of maximal singularities*, L.M.S. Lecture Note Series 281 (2000), 73–100.

[25] A. Pukhlikov, *Birationally rigid Fano double hypersurfaces*, Sbornik: Mathematics, 191 6 (2000), 883–908.

[26] A. Pukhlikov, *Birationally rigid Fano complete intersections*, J. Reine Angew. Math. 541 (2001), 55–79.

[27] A. Pukhlikov, *Birationally rigid Fano hypersurfaces*, Izv. Math. 66 (2002), no. 6, 1243–1269.

[28] A. Pukhlikov, *Birationally rigid Fano hypersurfaces with isolated singularities*, Sb. Math. 193 (2002), 445–471.

[29] A. Pukhlikov, *Birationally rigid singular Fano hypersurfaces*, J. Math. Sci. 115 (2003), 2428–2436.

[30] A. Pukhlikov, *Birationally rigid iterated Fano double covers*, Izv. Math. 67 3 (2003), 555–596.

Steklov Institute of Mathematics
8 Gubkin street, Moscow 117966
Russia
cheltsov@yahoo.com

School of Mathematics
The University of Edinburgh
Kings Buildings, Mayfield Road
Edinburgh EH9 3JZ, UK
icheltsov@ed.ac.uk