Milestones on Steroids and the Nervous System: 10 Years of Basic and Translational Research

G. C. Panzica*, J. Balthazart‡, C. A. Frye§, L. M. Garcia-Segura*, A. E. Herbison**, A. G. Mensah-Nyagan†, M. M. McCarthy†† and R. C. Melcangi§§

*Laboratory of Neuroendocrinology, Department of Anatomy, Pharmacology and Forensic Medicine, Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy.
†Neuroscience Institute Cavalieri-Ottolenghi (NICO), Orbassano (Torino), Italy.
‡University of Liège, GIGA Neuroscience, Research Group in Behavioral Neuroendocrinology, Liège, Belgium.
§Department Psychology, University at Albany, Albany, NY, USA.
¶Instituto Cajal, CSIC, Madrid, Spain.
**Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand.
††Equipe Stéroides, Neuromodulateurs et Neuropathologies, EA-4438 Université de Strasbourg, Strasbourg, France.
‡‡Departments of Physiology, School of Medicine, University of Maryland, Baltimore, MD, USA.
§§Department of Endocrinology, Pathophysiology and Applied Biology – Center of Excellence on Neurodegenerative Diseases, University of Milano, Milano, Italy.

During the last 10 years, the conference on ‘Steroids and Nervous System’ held in Torino (Italy) has been an important international point of discussion for scientists involved in this exciting and expanding research field. The present review aims to recapitulate the main topics that have been presented through the various meetings. Two broad areas have been explored: the impact of gonadal hormones on brain circuits and behaviour, as well as the mechanism of action of neuroactive steroids. Relationships among steroids, brain and behaviour, the sexual differentiation of the brain and the impact of gonadal hormones, the interactions of exogenous steroidal molecules (endocrine disrupters) with neural circuits and behaviour, and how gonadal steroids modulate the behaviour of gonadotrophin-releasing hormone neurones, have been the topics of several lectures and symposia during this series of meetings. At the same time, many contributions have been dedicated to the biosynthetic pathways, the physiopathological relevance of neurosteroids, the demonstration of the cellular localisation of different enzymes involved in neurosteroidogenesis, the mechanisms by which steroids may exert some of their effects, both the classical and nonclassical actions of different steroids, the role of neuroactive steroids on neurodegeneration, neuroprotection, and the response of the neural tissue to injury. In these 10 years, this field has significantly advanced and neuroactive steroids have emerged as new potential therapeutic tools to counteract neurodegenerative events.

Key words: neurosteroids, brain, peripheral nerve, sex difference, neuroprotection, GnRH, kisspeptin, behaviour.

doi: 10.1111/j.1365-2826.2011.02265.x
for the past 10 years (2001, 2003, 2005, 2007, 2009 and 2011) (Fig. 1) (http://www.dafml.unito.it/anatomy/panzica/neurosteroids/ABSTRACTBOOKS.htm).

The scope of the conference has been expanded from the behavioural effects of steroids in the brain to cover all forms of actions of steroids, the controls of steroid synthesis in the brain and in the peripheral nervous system (PNS), as well as the emerging translational models.

Steroids and behaviour at the Torino meeting

Glancing through the programmes of these six conferences summarising 10 years of research on steroids, one can identify a large number of symposia that were essentially or even exclusively dedicated to 'Steroids, Brain and Behaviour'. The topics that were covered in these symposia concern many aspects of the active research that took place in this field during the last decade. To list just a few, we had, over the years, the chance of attending symposia dedicated to behavioural effects of steroids, as well as the action of environmental oestrogens on behaviourally relevant neural circuits (2003) (1), on brain sexual differentiation (2005), on the importance of co-regulatory factors for steroid receptor action in the brain (2009) and on experimental murine models (2011).

Several round tables were also organised within the meetings, during which we discussed the action of endocrine disrupter action on behaviour and neuroendocrine system (2005, 2011), as well as that of steroid hormones on sexually dimorphic brain circuits (2007). It must be noted that, as impressive as they are, all these symposia only provide a partial view of the time and talks that were devoted to behaviour during the meeting on Steroids and the Nervous System. There were indeed many individual presentations on behaviour embedded in other symposia and these are far too numerous to be cited in the present review. Starting from 2003, each meeting had additionally a few (usually three) key-note speakers, and many of the key-note lectures concerned, at least in part, the mechanisms of behaviour. During the 2003 meeting, attention was focused on the modulation of astrocytes by oestradiol and the establishment of sex differences in the brain (2), as well as on the role of sex chromosomes in sexual differentiation of the brain (3). In 2005, speakers presented data on the rapid changes in the production and behavioural action of oestrogens (4), as well as on genetic models for the study of gonadal steroid dependent behaviours (5). In 2007, attention focused on the stress system in the human brain in depression and neurodegeneration (6). In 2009, one of the key-note lectures was on the intracellular signal transduction cascades mediating the behavioural effects of ovarian steroids (7).

Finally, in 2011, we had lectures on comparative and functional implications of neurosteroidogenesis (8), as well as on oestrogen-induced plasticity and cognitive function (9). All of the above was augmented by the large number of posters that were presented on themes related to the main talks and symposia, which very often were using behaviour as their dependent (or sometimes independent) variable.

Finally, in association with the 'Torino meeting', as it has often been colloquially named, a satellite 1-day symposium entirely dedicated to the endocrine control of behaviour was organised in 2009. It was named the 7th ICHBB to celebrate the synchronised 60th birthday of one of the organisers of both the Torino Steroid meeting (Gian Carlo Panzica) and of the former ICHBB (Jacques Balthazart). At a more scientific level, this 7th ICHBB also coincided with the 50th anniversary of the publication of the seminal paper of Phoenix et al. (10) universally recognised as the founding paper for the research analysing the endocrine controls of sexual differentiation of brain and behaviour.

With the exception of this satellite symposium, many of the talks and symposia referred to above were not exclusively dedicated to the analysis of behaviour. They also concerned other topics, such as the nonclassical effects of steroids or the effects of steroids on the sexual differentiation of the brain. However, in each case, they were behaviourally relevant in that either the changes in brain structure or function could contribute to explain behaviour or changes in
behaviour were the driving force leading to changes in the brain or in steroid synthesis.

Ten years of progress in understanding sexual differentiation of the brain

What we knew at the beginning of the 21st century

It has been a busy 10 years for the field of behavioural neuroendocrinology and the topic of sexual differentiation of the brain in particular. As we entered this century, we had a strong foundation of immutable facts about the physiological process of sexual differentiation of brain and behaviour: (i) hormones of gonadal origin are the pre-eminent determinants of sex differences in brain and behaviour; (ii) sex differences in levels of gonadal hormones during a sensitive period of brain development will organise the brain into a sex-specific phenotype; and (iii) sex differences in levels of gonadal hormones in adulthood will activate the previously determined sex-specific brain phenotype to drive sex-specific physiology and behaviour. These are the basic facts, although many details vary by species, by physiological or behavioural end-point, and by brain region. In many cases, the basic facts do not even apply. Nonetheless, the sturdy framework of the Organizational/Activational Hypothesis (10), which essentially codifies the three basic facts just enumerated, continues to provide a valuable backdrop against which it is possible to address all questions concerning the origins and significance of sex differences in the brain. Nothing is more valuable to scientific investigation than a dogma to be overthrown.

Dogma's overthrown

There have been several major challenges to the dogma in the past 10 years; some have indeed created a paradigm shift in our thinking, whereas others have offered refinements and qualifiers, notable exceptions or a more nuanced understanding. The biggest impact was the development of a mouse model that allowed the distinction between genetic (or chromosomal) sex, and gonadal sex. The generation of animals with an XX genotype and a male phenotype (i.e. testes) or an XY genotype and a female phenotype (i.e. ovaries), allowed Art Arnold and his collaborators to question for the first time whether all sex differences in the brain are determined by hormones (3, 11). Not surprisingly, the answer is mixed. Based on the current data available to date, it would appear that the sexual differentiation of endpoints that are directly relevant to reproduction (i.e. sexual behaviour and the control of gonadotrophin secretion and the brain areas that mediate them) are indeed subject to the classic hormonally-mediated sexual differentiation of the brain. However, sex differences in endpoints that involve cognition, emotion or sensory integration are often influenced by chromosomal sex, and sometimes markedly so. The next 10 years will no doubt further advance our knowledge on this front by using genetic models such as the steroidogenic factor 1 (Nr5a1) knockout mice that lack gonads (12), and by identifying specific X or Y genes and the associated mechanism of action.

Discoveries more in the realm of refinements to the theory are found in the characterisation of genetically modified mice in which aromatase, androgen receptor or either isoform of the oestrogen receptor (ER) is either globally or locally and conditionally ablated. We have learned that, in the rodent, the long held dominance of oestradiol as the masculinising hormone needs to make some room for androgens as important contributors to the natural process (13–18), and that ERα versus ERβ expression in a particular brain region mediates different responses (19–21). Our views of the effects of oestrogens have been further refined as well. First, steroid receptors are no longer mere transcription factors that mediate gene expression in a slow stately and direct manner but, instead, can act rapidly at the membrane and integrate signal transduction pathways across a wide range of avenues (22, 23). Second, we now know oestradiol is more than just a gonadal hormone; it is also synthesised locally and rapidly and on demand, so much so that its resemblance to a neurotransmitter has been noted (24). Rapid membrane-mediated effects of oestradiol have been confirmed to contribute to the process of sexual differentiation of brain and behaviour (25), although what role local steroidogenesis plays in the process is not yet clear.

Advances made

The distinction between the active processes of masculinisation and defeminisation of the male brain has long puzzled behavioural neuroendocrinologists, and the last decade has seen several advances along this front. Characterisation of null mutant mice suggests that the β isof orm of the oestrogen receptor is central to defeminisation (26), although how this is so is not clear. During the 2011 meeting, a symposium was dedicated to the role of ERβ in adult brain function (27). The surprising discovery that the final common pathway mediating masculinisation of sex behaviour in the rat involves the prostaglandin, PGE2, also included the observation that prostaglandin-mediated masculinisation does not influence defeminisation, and provided a unique tool for parsing out these separate processes in the same animal (28, 29). Lastly, feminisation of brain development has always been the poor cousin to the more tractable process of masculinisation, although recent findings (30, 31) have revealed a previously unappreciated second sensitive period in which elevated oestradiol feminises the brain. This period is approximately 1 week to 10 days later than masculinisation in the rodent, and elucidating the origins, sites of action and mechanisms of action of oestradiol during this later period will be an important topic in the coming years.

Future directions

Currently, we are at the beginning stages of several important new developments in the study of sex differences in the brain; some mechanistic and others theoretical. On the mechanistic front, it is apparent that the enduring organisational effects of steroids on the brain likely involve some sort of epigenetic changes to the genome. These include changes to the chromatin (32, 33) and DNA (34–36), although how these changes are integrated, maintained or perhaps
Brain and behaviour, targets for the endocrine disrupters

The concept that exogenous substances may interfere with the normal development of brain and behaviour is not new, and it is at the basis of a large number of experimental studies. For example, many studies on the sexual differentiation of rodent preoptic-hypothalamic circuits were conducted by using more powerful synthetic oestrogens such as diethylstilbesterol (38) or ethynylestradiol (39). However, it is apparent that these substances, as well as many others that are able to bind oestrogen or androgen receptors, are not limited to the laboratory use but, as a result of their large-scale use in pharmaceutical or other industries, they are also widely present in the environment. In addition, some molecules of natural origin, such as phytoestrogens produced by a large number of plants and normally present in the animal and human food, may also interact with gonadal hormone receptors.

These substances were collectively named ‘endocrine disrupters’ or endocrine disrupting chemicals (EDCs), a term that was coined early in the 1990s. In early studies (40), EDCs were defined as molecules that may disrupt the development of the endocrine system. In addition, the effects of exposure to EDCs during development are often permanent. A large consensus on this idea came from the Endocrine Society, which released a scientific statement outlining mechanisms and effects of EDCs (41). Even if neuroendocrinology was specifically mentioned, for many years, the study of EDCs involved almost exclusively the toxicological aspects, whereas the neuroendocrine and behavioural implications of precocious exposure to EDCs were less investigated.

From the first Torino meeting in 2001, the issue of the neuroendocrine and behavioural effects of EDCs emerged as one of the main topics of the conference. Indeed, on that occasion, data were presented with respect to the effects of phytoestrogens contained in foods that may disrupt the development of the endocrine system. In addition, the effects of exposure to EDCs during development are often permanent. A large consensus on this idea came from the Endocrine Society, which released a scientific statement outlining mechanisms and effects of EDCs (41). Even if neuroendocrinology was specifically mentioned, for many years, the study of EDCs involved almost exclusively the toxicological aspects, whereas the neuroendocrine and behavioural implications of precocious exposure to EDCs were less investigated.

During the third meeting, data on the rapid influence of oestrogens on the excitability of adult rat hippocampal neurons were presented (59–61). These findings have led researchers to postulate the existence of so-called membrane or nongenomic oestrogen effects. EDCs able to bind oestrogen receptors (xenoestrogens) also act rapidly in the adult brain. For example, the oestradiol-induced enhancement of the long-term potentiation in CA1 upon tetanic stimulation was considerably suppressed by the co-perfusion with bisphenol A, although the perfusion of bisphenol A alone did not alter the long-term potentiation-induction (62). On the other hand, diethylstilbestrol enhanced the long-term potentiation by an almost identical magnitude to that obtained by oestradiol. EDCs can reach the brain via the blood circulation and by crossing the blood–brain barriers.

A symposium on the cerebral effects of xenoestrogens was again organised during the fourth meeting. This symposium included studies on the effects of bisphenol A on the modulation of long-term depression and spinogenesis in the hippocampus (63), on the expression of oestrogen receptor (64), and on the development of the rodent (65) and avian brain (66).

During the fifth meeting, endocrine disruptors were considered among the wide family of steroid receptors coactivators (67), in particular those modulating the expression of sexually dimorphic social and emotional behaviours (68). Finally, during the last meeting, whose proceedings are collected in this special issue of the Journal of Neuroendocrinology, a round table on endocrine disrupter action on behaviour and neuroendocrine system was organised (69).

In summary, during these 10 years, we observed an increasing interest in the field of EDCs, mainly related to the potentially adverse effects on the sexual differentiation of brain and behaviour. Some important facts emerged in this field:

- sexual behaviour and neural circuits related to its control are more sensitive endpoints than others currently used in toxicological studies (70, 71);
- neuropeptides and enzymes are major targets for the action of EDCs in the vertebrate brain (72);
- among different peptidergic systems kisspeptin in rodents (73–77), vasotocin in birds (48, 78, 79), as well as the enzyme aromatase in fishes (80–82), or the enzyme NO-synthase in rodents (83, 84), appear to be the most sensitive to low levels of EDCs during early development;
- alterations of these circuits may induce profound effects on sexual behaviour (85), puberty (74), reproductive physiology (86) and feeding behaviour (87);
- neural circuits can be altered also at synaptic levels, for example, in the hippocampus (63, 88–90), and have profound effects on learning and memory (91);
- the putative mechanisms of action needs to be more thoroughly explored (69) but, in addition to EDCs binding to ste-
roid or thyroid hormone receptors, they include the aryl hydrocarbon receptor, its interactions with ERα, the activation of the P450 cytochromes, which are involved in the metabolism of most steroid hormones, the peroxisome proliferator-activated receptor γ and retinoid receptors important in adipose tissue.

Synthesis of neurosteroids

In the research area on steroids and nervous system, the three last decades were significantly marked by a major finding that revealed that neurones and glial cells have the ability to synthesise bioactive steroids, also called neurosteroids (92). This important discovery stemmed from a series of pioneer works showing the persistence of substantial amounts of pregnenolone, dehydroepiandrosterone and their sulfated derivatives in the rodent brain after adrenalectomy or gonadectomy (93, 94). However, consolidation of the concept of neurosteroids required several investigations performed in different animal species (92, 95–97).

Subsequent to its creation, the International Meeting on Steroids and the Nervous System has steadily contributed through various symposia and plenary lectures to the elucidation of biosynthetic pathways and mechanisms of action of neurosteroids. For example, the first meeting (2001) was launched with a symposium that provided key data on neurosteroid biosynthesis in mammalian and non-mammalian vertebrates (98, 99). The second meeting allowed fruitful discussion from talks on neurosteroid metabolism in the human brain (100) or neurosteroid production in the retina (101). During the third meeting (2005), a satellite symposium made it possible to discuss the neuroprotective effects of steroids locally produced by the spinal cord and PNS (102). In addition, a symposium of the main meeting discussed the role of steroidogenic acute regulatory protein and peripheral benzodiazepine receptors in neurosteroid biosynthesis (103, 104). Novel technological tools allowing high-sensitive dosage of neurosteroids were presented in a satellite symposium of the fourth meeting (105). To review and update the current knowledge on neurosteroid synthesis and functions, the opening lecture of the sixth meeting was dedicated to a comparative and functional analysis of neurosteroidogenesis (8), and a satellite symposium focused on neuroactive steroids in the human brain (106).

Taken together, all of the data provided by renowned experts in symposia and proceedings of the International Meeting on Steroids and the Nervous System have significantly contributed to clarify the biosynthetic pathways and physiopathological relevance of neurosteroids. Currently, a consensual definition of neurosteroids considers these molecules as endogenous steroidal compounds synthesised in neurones or glial cells of the CNS and PNS. To qualify as a neurosteroid, the candidate steroidal molecule must persist in substantial amounts in the nervous system after removal of the peripheral or traditional steroidogenic glands, such as the adrenals and gonads. The demonstration of neurosteroid biosynthesis requires the localisation in nerve cells of the translocator protein 18 kDa, the steroidogenic acute regulatory protein and active steroidogenic key enzymes, such as cytochrome P450 side chain cleavage, 3β-hydroxysteroid dehydrogenase, cytochrome P450c17, 5α-reductase, 3α-hydroxysteroid oxido-reductase, 17β-hydroxysteroid dehydrogenase and aromatase (92, 95–97, 107, 108).

Finally, it should be noted that endogenous neurosteroids act as paracrine or autocrine factors, regulating the activity of classical nuclear steroid receptors or membrane receptors, including G protein-coupled receptors (109, 110), GABA A and T-type calcium channels (111–114) or NMDA (115, 116), P2X (117) and sigma receptors (118, 119).

Neuroendocrine control of reproduction by steroids

Another area of research that has featured strongly at the Torino meetings over the last 10 years has been that of how gonadal steroids modulate the gonadotrophin-releasing hormone (GnRH) neurones that control fertility. Since 2001, much has changed in this field and this has been reflected in the Torino presentations. First, the techniques used by GnRH neurone investigators have changed considerably. This has been driven primarily by the use of genetic manipulations in mice that have greatly facilitated the investigation of the GnRH neurone and its network. As reflected in the 2001 meeting, the mainstay approaches of the field at that time were in situ hybridisation for GnRH mRNA, one of the few direct indices of GnRH neurones at the turn of the century (120), and the use of the immortalised embryonic GT1 cell lines that synthesise GnRH (121). By 2011, a range of sophisticated transgenic and cell- or receptor-specific gene mutation approaches were being used to establish the electrical properties, gene expression profiles and in vivo significance of GnRH neurone-selective receptor manipulations.

The second major change in this field has been the discovery of kisspeptin. Initially discovered in humans in 2003 (122, 123), GnRH neurone investigators rapidly took up the challenge of deciphering how kisspeptin regulates fertility and this topic has been present at meetings since 2007 (124–126).

The key gonadal steroid-GnRH neurone milestones at Torino meetings over the last 10 years are summarised below.

Understanding rapid gonadal actions of steroid on GnRH neurones

The meeting has witnessed the gradual unfolding of how oestrogens, androgens and progesterone derivatives exert rapid, sometimes direct, actions upon GnRH neurones. At the 2001 meeting, the role of allopregnanolone on GABAA receptors has been discussed. This was followed at the next meeting in 2003 by descriptions of how oestradiol rapidly activates specific intracellular signalling cascades in GnRH neurones, including calcium dynamics. These actions were mediated directly by ERα expressed by GnRH neurones, as well as indirectly through GABAA receptors (129, 130). This line of work was brought up to date at the most recent meeting in 2011 where studies detailing the complex, dose-dependent direct- and indirect-effects of oestradiol (131, 132) and androgen metabolites (133, 134) on GnRH neurone electrical activity were presented. Although the issue of the physiological relevance of
rapid actions of steroids remains unknown (135), it is clear that progesterone and androgen derivatives, as well as oestradiol itself, can exert rapid actions on mammalian GnRH neurones both directly, and indirectly through GABA and glutamatergic inputs to these cells.

Examining the role of glial cells and growth factors in the steroid regulation of GnRH neurones

The importance of astrocytic growth factors such as transforming growth factor-β and basic fibroblast growth factor on the functioning of GT1 cells (121) was elucidated during the 2001 meeting. This was expanded in 2003 to document the role that oestradiol played in regulating the glial production of these growth factors (136). At the same meeting, the key roles for IGF-1 interactions with oestradiol in modulating adrenergic tone within the GnRH neuronal network in vivo were illustrated (137). This was to be expanded further in the 2007 meeting by showing that oestradiol acts on membrane ERs on glial cells to promote progesterone synthesis, which, in turn, impacts on the ability of GnRH neurones to exhibit the preovulatory surge (138). Alongside many other talks at the Torino meeting on steroid hormone-growth factor interactions, these studies have provided the impetus for considering the potentially important impact of glial cells on GnRH neurone functioning. The lack of good tools to dissect the roles of specific groups or regional locations of glia in vivo appears to remain a significant problem for understanding the roles of these cells beyond their normal ‘neuronal support roles’.

Defining the mechanisms of oestrogen positive and negative feedback

Talks presented in 2001 meeting focused upon the roles of gonadal steroids in regulating GnRH gene transcription using in situ hybridisation (120) and GnRH transgenics (139), respectively. This topic moved a considerable step forward with the data presented at the 2003 meeting detailing the effects of ovariectomy and oestrogen replacement upon GnRH neurone firing rates and the potential ion channels underlying these actions (140). It would not, however, be until the 2011 meeting that the data on single cell reverse transcriptase-polymerase chain reaction allowed a definition of the precise ion channel subunits modulated by oestradiol in GnRH neurones (141, 142). The GnRH neurone firing studies in 2003 were complemented by studies showing the effects of different steroid regimens upon pulsatile GnRH secretion from hypothalamic explants (143). Although from different species, this highlighted the continuing puzzle as to why the effects of ovariectomy and oestradiol replacement on GnRH neurone firing rates and GnRH secretion are so dissimilar. The 2007 meeting was presented with a series of genetic and ER-specific ligand studies (144, 145) that defined the mechanism and types of ERs involved in the positive feedback mechanisms in mice and rats. These studies concluded that oestradiol acted on ERα-expressing neurones in the rostral hypothalamus to activate GnRH neurones, evoking the GnRH surge (124). Other studies presented at that meeting highlighted the oestrogen-sensitivity of kisspeptin neurones (125). By the time of the 2011 meeting, the promise of the oestradiol-sensitive kisspeptin neurones within the GnRH neuronal network had been fulfilled, with three studies (126, 146, 147) detailing their now established key importance in different oestrogen feedback mechanisms.

Over the last 10 years, the Torino meeting has provided one focus meeting for promoting the understanding of how gonadal steroids modulate the behaviour of GnRH neurones. This is a large subject with too many active investigators to accommodate at the Torino meeting at one time. Nevertheless, those outside the field have been treated to a consistently high-quality overview of progress in the subject, whereas GnRH neurones aficionados have had the luxury of discussing science in the delightful mid-winter setting of Torino.

Interactions with classical and nonclassical steroid receptors

Over the years at the International Meeting on Steroids and the Nervous System, there has been much work presented on the mechanisms by which steroids may exert some of their effects. Nuclear steroid receptors (nSRs) were discovered over 50 years ago for oestrogen and were followed by discovery of specific nSRs for progestins and androgens (148). These classic nSRs are intracellular, are activated by the binding of steroids, and serve as transcription factors. Our discussions of oestrogen action in the brain via nSRs has included actions via the originally discovered ERα and its traditional role in reproduction, as well as how these actions have effects in other brain regions (e.g. the hippocampus) to influence processes relevant for ageing and related functions (149). Various effects, from form to function, of the more recently discovered ERβ have been discussed (27, 150), with an emphasis on integrated actions via ERα and ERβ (5). A role for progesterin receptors in reproduction, as well as their effects as neural integrators of hormonal and environment actions, has been proposed (151, 152). How actions at progestin receptors may occur through steroid activation or involve other ligands, such as dopamine, is intriguing (153). We have also discussed the role of androgen receptors in sexual differentiation, and other processes, along with how there may be actions of androgens via other nSRs, including ERβ, as well as actions apart from nSRs (15, 16, 154–158).

More recently, it has been demonstrated that steroids bound to nSR complexes, bind hormone response elements, and have actions through co-activators, resulting in changes in their rates of transcription and translation. The importance of co-regulatory factors to influence nSRs action has been discussed (159). How the actions of steroids in the brain via sNRs can also involve coactivators, which modulate hormone-dependent gene expression in the brain and reproductive behaviour in rodents (67) and galliforms (159), and co-repressors, such as chromatin-binding factor mediation of the epigenetic organisation of sex differences in the brain (160), has been the topic of recent symposia. Thus, as evidence has emerged regarding the actions of steroids via sNRs, these topics have been of ongoing interest and discussion.

This classical ‘genomic’ mechanism of the actions of steroids, involving the transcription of DNA and synthesis of proteins, can
elicited a biological response within 10 min, hours or days. In addition to classical actions via nSRs, there has been an ongoing dialogue about nontraditional actions of steroids. Nonclassical actions of steroids can occur much more rapidly (<10 min, and even in seconds) than actions at nSRs, in the absence of nSRs, and in the presence of inhibitors of transcription and/or translation. Nonclassical, rapid actions of steroids, often referred to as "nongenomic" actions of steroids, have been extensively studied over the past few decades, as demonstrated for all the major classes of steroids, and are now well-recognized. Rapid, nonclassical actions of oestrogens, progestogens and androgens, as well as their role in various hormone-sensitive functions, have been ongoing topics of discourse (4, 69, 89, 161, 162).

An important question is which receptors mediate nongenomic actions? Several physiologically relevant membrane-associated proteins have been identified on plasma membranes, suggesting the existence of specific membrane steroid receptors (22, 23, 163–165). However, identities of some of these membrane targets remain controversial. Neurotransmitter receptors have been focal of the nongenomic signalling activity of steroids. The most widely studied (and discussed) neurotransmitter targets for the actions of steroids have been through GABA receptors (166–173). However, actions of steroids through glutamate (120, 174), dopamine (175), adrenergic (137, 176, 177), opiate (178) and sigma (179) receptors have been investigated and discussed at this meeting.

Some nontraditional effects of steroids may be downstream of actions at membrane targets. The intracellular signal transduction cascades, which mediate some behavioural effects of ovarian steroids, have been discussed (137, 176). Some effects of steroids, such as progestagens, may be mediated in part through adenyl cyclase, G-proteins, protein kinase A, phospholipase C and/or protein kinase C pathways (180, 181). Other effects of oestrogen may be mediated through mitogen-activated protein kinase signalling, mitochondrial processes, or other intracellular pathways (182). Extensive discussions of traditional and novel effects and mechanisms of steroids have taken place during the meetings organised in Torino. There have also been perspectives of how actions through classic nSR signalling may integrate with the rapid membrane actions of steroids, as well as their downstream effectors (183, 184). The discourse to date about classic and nontraditional actions of steroids has been productive and will likely continue to expand the field in a substantive manner to elucidate new perspective regarding modulatory effects of steroid signalling.

Neuroactive steroids as neuroprotective agents: translational research

The role of neuroactive steroids on neurodegeneration, neuroprotection and the response of the neural tissue to injury has been a fundamental topic in the International Meeting on Steroids and Nervous System since its first meeting in 2001. Subsequently, this field has significantly advanced and neuroactive steroids have emerged as new potential therapeutic tools to counteract neurodegenerative events.

Oestriadiol and neuroprotection

By the time of the first Torino meeting extensive experimental evidence indicated that oestradiol is neuroprotective (126). However, a turning point was the publication of the results of the Women’s Health Initiative clinical trial on the effects of hormonal therapy in women (185, 186). The results of their studies showed an increased risk of dementia and stroke in women over 65 years of age who received conjugated equine oestrogens plus medroxyprogesterone acetate compared to women who received placebo. This finding was in contradiction with the evidence obtained in animal models of neurodegenerative diseases. Therefore, new studies conducted in recent years have addressed the possible causes of this discrepancy. In particular, the age at which hormones were administered relative to the perimenopausal transition has emerged as a critical issue. Observational studies and randomised clinical studies suggest that early initiation of hormone therapy may provide cognitive benefits, particularly to verbal memory and other hippocampus-mediated functions (187). In addition, new basic studies have shown that the neuroprotective activity of oestradiol depends on the duration of ovarian hormone deprivation (188) and is affected by age-associated modifications in the levels of other molecules, such as insulin-like growth factor-I (189).

Progesterone and other neurosteroids

Another neuroactive steroid whose neuroprotective activity has been frequently discussed in Torino meetings is progesterone. The neuroprotective activity of progesterone and its metabolites dihydropregesterone and tetrahydroprogesterone has been characterised in the last decade (190–192). Progesterone and its metabolites promote remyelination in the central nervous system (CNS) (193, 194) and the PNS (195–197). Furthermore, progesterone attenuates clinical severity, demyelination, neuronal dysfunction and axonal damage in experimental autoimmune encephalomyelitis, a well-established experimental model of multiple sclerosis (198–201) and in diabetic neuropathy (202). Progesterone is also protective after traumatic brain injury in animals (192). In addition, clinical trials have indicated a reduction in the mortality and an improvement of functional outcomes after traumatic brain injury in patients treated with progesterone (203).

The neuroprotective action of other neuroactive steroids has also been assessed during the last decade. Among these is allopregnanolone, whose cerebral levels are decreased in an experimental model of Niemann-Pick type C disease. The neonatal administration of allopregnanolone results in a delay of the onset of neurological symptoms, and a doubling the lifespan of the animals (204). Other studies have demonstrated the efficacy of treatment with dehydroepiandrosterone after spinal cord injury (205) and in diabetic neuropathy (206). Neuroactive steroids are also important endogenous modulators of mood and have therapeutic potential for the treatment of depression and anxiety disorders. Novel therapeutic strategies might either be based on synthetic derivatives of endogenous 3α-reduced neuroactive steroids or on the modulation of neurosteroidogenic activity (207). Pregnenolone and dehydroepiandrosterone
are also promising candidates for the treatment of schizophrenia (208, 209). Better performance on executive tasks is associated with increased plasma levels of dehydroepiandrosterone in schizophrenic patients (209) and clinical trials have demonstrated that pregnenolone is able to decrease negative symptoms and extrapyramidal side effects and to improve verbal memory, attention and working memory performance in these patients (208).

Alternatives to treatment with neuroactive steroids have been also explored in recent years. These include synthetic receptor modulators, such as selective oestrogen modulators. Some selective oestrogen modulators have been shown to be neuroprotective and anti-inflammatory agents in experimental animal models of central neurodegeneration (210). Another alternative therapeutic strategy might be the use of pharmacological agents that increase the synthesis of endogenous neuroactive steroids within the nervous system (211). With this perspective, ligands of translocator protein (TSPO, previously known as peripheral benzodiazepine receptor) (104) may represent an interesting option (212–214). TSPO is mainly present in the mitochondrial outer membrane, where it promotes, in cooperation with steroidogenic acute regulatory protein, the translocation of cholesterol to the inner mitochondrial membrane. The mitochondrial translocation of cholesterol is a limiting step in steroidogenesis because it allows the transformation of cholesterol into pregnenolone. Observations have shown that treatment with ligands of TSPO (e.g. Ro5-4864) exerts neuroprotective effects in the aged PNS (215), in the peripheral nerve during diabetes (216) and in the CNS after neuronal injury (217). A similar approach has been obtained with a ligand of liver X receptors. Indeed, treatment of diabetic animals with a synthetic ligand of these receptors (i.e. GW3965) results in an increase of neuroactive steroidogenesis in the sciatic nerve, which is associated with neuroprotective effects (218).

Perspectives for the future

During the last decade, several studies have shown that pathological events have an important impact on neuroactive steroid levels in nervous tissues. Changes in steroid biosynthesis or in neurosteroid levels in the brain, spinal cord or peripheral nerves have been detected under different pathological conditions, including experimental models of diabetes (219–221), hereditary peripheral neuropathy (219), peripheral nerve injury (222), spinal cord injury (223, 224), multiple sclerosis (225, 226), autism (227) and Parkinson’s disease (228, 229). Neuroactive steroid levels are also modified in nervous tissues. Changes in neurosteroid biosynthesis or in neurosteroid levels in the human brain under pathological conditions, including Alzheimer’s disease, Parkinson’s disease, multiple sclerosis and hepatic encephalopathy (97, 230–235). To develop adequate therapeutic tools based on neuroactive steroids (212–214), it would be necessary to increase our knowledge on the specific regional and temporal changes that occur in neurosteroid levels in the human brain at different phases of neurodegenerative diseases and during affective disorders. In addition, it would be also necessary to determine the implications of such changes for the manifestation and outcome of the pathological condition.

Another important issue is that different pathologies of the CNS and PNS show sex differences in their incidence, symptomatology and/or neurodegenerative outcome (236). Interestingly, the levels of neuroactive steroids in the CNS and PNS under pathological conditions also show sex differences (219, 221, 224–226, 237, 238). In addition, the nervous system of males and females show different responses to neuroactive steroids. Therefore, it would be important to explore in detail the interaction of sex with neurosteroid levels and actions of neurosteroids to develop adequate sex-specific neuroprotective strategies.

Acknowledgements

We want to acknowledge the institutions and private companies that supported the organisation of the 6th International meeting on Steroids and Nervous System. In particular, we would like to acknowledge the financial support of the University of Milano. The International Brain Research Organization (IBRO), the International Neuroendocrine Federation (INF), the Italian Society for Neuroscience (SINS) and the Italian Group of Neuromorphology (GISN) generously supported fellowships for young researchers attending the meeting. A few private Italian companies supported our meeting: DBA, Nikon and Rekordata. Finally, we want to thank Wiley-Blackwell and all the staff of the Journal of Neuroendocrinology involved in this special issue. For part of the researches summarised in this paper, the financial support of Fondazione San Paolo (Neuroscience Project) to G.C.P. and R.C.M., Fondazione Cavalieri-Ottolenghi to G.C.P., Fondazione Italiana Sclerosi Multipla (2010/2013) to R.C.M., and Association T’Toine (Normandie, France) to A.G.M.–N. are gratefully acknowledged. Information about this series of conferences is available at a dedicated website (http://www.dafml.unito.it/anatomy/panzica/neurosteroids/index.html) where the extended abstracts of all the meetings are available for download.

Received 11 November 2011, revised 29 November 2011, accepted 29 November 2011

References

1. Panzica GC, Ottinger MA. Action of environmental estrogens on neural circuits and behavior (Special Issue). _Brain Res Bull_ 2005; 65: 185–273.
2. McCarthy MM, Todd BJ, Amateau SK. Estradiol modulation of astrocytes and the establishment of sex differences in the brain. _Ann NY Acad Sci_ 2003; 1007: 283–297.
3. Arnold AP, Rissman EF, De Vries GJ. Two perspectives on the origin of sex differences in the brain. _Ann NY Acad Sci_ 2003; 1007: 176–188.
4. Balthazart J, Cornil CA, Haziaux M, Charlier TD, Bailleien M, Bail GF. Rapid changes in production and behavioral action of estrogens. _Neuroscience_ 2006; 138: 783–791.
5. Kudwa AE, Michopoulos V, Gatewood JD, Rissman EF. Roles of estrogen receptors alpha and beta in differentiation of mouse sexual behavior. _Neuroscience_ 2006; 138: 921–928.
6. Bao AM, Meynen G, Swaab DF. The stress system in depression and neurodegeneration: focus on the human hypothalamus. _Brain Res Rev_ 2008; 57: 531–553.
7. Todd BJ, Merhi ZO, Shu J, Etgen AM, Neal-Perry GS. Hypothalamic insulin-like growth factor-I receptors are necessary for hormone-dependent luteinizing hormone surges: implications for female reproductive aging. _Endocrinology_ 2010; 151: 1356–1366.
8. Schlenger BA, Remage-Healey L. Neurosteroidogenesis: insights from studies of songbirds. _J Neuroendocrinol_ 2011; 24: 16–21.
Milestones on steroids and the nervous system

9 Henderson VW, Brinton RD. Menopause and mitochondria: windows into estrogen effects on Alzheimer’s disease risk and therapy. Prog Brain Res 2010; 182: 77–96.

10 Phoenix CH, Goy RW, Geralli AA, Young WC. Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology 1959; 65: 369–382.

11 Arnold AP, Chen X. What does the ‘four core genotypes’ mouse model tell us about sex differences in the brain and other tissues? Front Neuroendocrinol 2009; 30: 1–9.

12 Budefeld T, Tobet SA, Majdic G. Steroidogenic factor 1 and the central nervous system. J Neuroendocrinol 2011; 24: 225–235.

13 Pierman S, Sica M, Allieri F, Viglietti-Panzica C, Panzica GC, Bakker J. Activational effects of estradiol and dihydrotestosterone on social recognition and the arginine-vasopressin immunoreactive system in male mice lacking a functional aromatase gene. Horm Behav 2008; 54: 98–106.

14 Plumari I, Viglietti-Panzica C, Allieri F, Honda S, Harada N, Ablil P, Baltazar J, Panzica GC. Changes in the arginine-vasopressin immunoreactive systems in male mice lacking a functional aromatase gene. J Neuroendocrinol 2002; 14: 971–978.

15 Bodo C. A role for the androgen receptor in the sexual differentiation of the olfactory system in mice. Brain Res Rev 2008; 57: 321–331.

16 Martini M, Di Sante G, Collado P, Pinos H, Guillamon A, Panzica GC. Androgen receptors are required for full masculinization of nitric oxide synthase system in rat limbic-hypothalamic region. Horm Behav 2008; 54: 557–564.

17 Panzica GC, Allieri F, Bo E, Collado P, Bakker J, Viglietti-Panzica C. Androgens and development of the BST parvocellular vasopressin system. Trab Inst Cajal 2009; LXXIX: 78–79.

18 Ahmed El, Zehr JL, Schulz KM, Lorenz BH, DonCarlos LL, Sisk CL. Activational effects of estradiol and dihydrotestosterone on social recognition and the arginine-vasopressin immunoreactive system in male mice lacking a functional aromatase gene. J Neuroendocrinol 2002; 14: 971–978.

19 Bodo C. A role for the androgen receptor in the sexual differentiation of the olfactory system in mice. Brain Res Rev 2008; 57: 321–331.

20 Juntti SA, Tollkühn J, Wu MV, Fraser EJ, Soderborg T, Tan S, Honda S, Harada N, Shah NM. The androgen receptor governs the execution, but not programming, of male sexual and territorial behaviors. Neuron 2010; 66: 260–272.

21 Ogawa S, Chester AE, Hewitt SC, Walker VR, Gustafsson JA, Smithies O, Korach KS, Pfaff DW. Abolition of male sexual behaviors in mice lacking estrogen receptors alpha and beta (aERKO). Proc Natl Acad Sci USA 2000; 97: 14737–14741.

22 Kelly MJ, Qiu J, Ronnekleiv OK. Estrogen modulation of G-protein-coupled receptor activation of potassium channels in the central nervous system. Ann NY Acad Sci 2003; 1007: 6–16.

23 Kelly MJ, Ronnekleiv OK. Membrane-initiated estrogen signaling in hypothalamic neurons. Mol Cell Endocrinol 2008; 290: 14–23.

24 Baltazar J, Ball GF. Is brain estradiol a hormone or a neurotransmitter? Trends Neurosci 2006; 29: 241–249.

25 Schwarz JM, Liang SL, Thompson SM, McCarthy MM. Estradiol induces hypothalamic dendritic spines by enhancing glutamate release: a mechanism for organizational sex differences. Neuron 2006; 58: 584–598.

26 Kudwa AE, Bodo C, Gustafsson JA, Rissman EF. A previously uncharacterized role for estrogen receptor beta: dememinization of male brain and behavior. Proc Natl Acad Sci USA 2005; 102: 4608–4612.

27 Handa RJ, Ogawa S, Wang JM, Herisson AE. Roles for estrogen receptor beta in adult brain function. J Neuroendocrinol 2011; 24: 160–173.

28 Amateau SK, McCarthy MM. Induction of PGE2 by estradiol mediates developmental masculinization of sex behavior. Nat Neurosci 2004; 7: 643–650.

29 Todd BJ, Schwarz JM, McCarthy MM. Prostaglandin-E2: a point of divergence in estradiol-mediated sexual differentiation. Horm Behav 2005; 48: 512–521.

30 Bakker J, Honda S, Harada N, Baltazar J. The aromatase knockout (ArKO) mouse provides new evidence that estrogens are required for the development of the female brain. Ann NY Acad Sci 2003; 1007: 251–262.

31 Bakker J, Baum MJ. Role for estradiol in female-typical brain and behavioral sexual differentiation. Front Neuroendocrinol 2008; 29: 1–16.

32 Matsuda KI, Mori H, Nugent BM, Pfaff DW, McCarthy MM, Kawata M. Histone deacetylation during brain development is essential for permanent masculinization of sexual behavior. Endocrinology 2011; 152: 2760–2767.

33 Tsai HW, Grant PA, Rissman EF. Sex differences in histone modifications in the neonatal mouse brain. Epigenetics 2009; 4: 47–53.

34 McCarthy MM, Auger AP, Bale TL, De Vries GJ, Dunn GA, Forger NG, Murray EK, Nugent BM, Schwarz JM, Wilson ME. The epigenetics of sex differences in the brain. J Neurosci 2009; 29: 12815–12823.

35 Nugent BM, Schwarz JM, McCarthy MM. Hormonally mediated epigenetic changes to steroid receptors in the developing brain: implications for sexual differentiation. Horm Behav 2011; 59: 338–344.

36 Schwarz JM, Nugent BM, McCarthy MM. Developmental and hormone-induced epigenetic changes to estrogen and progesterone receptor genes in brain are dynamic across the life span. Endocrinology 2010; 151: 4871–4881.

37 De Vries GJ. Minireview: sex differences in adult and developing brains: compensation, compensation, compensation. Endocrinology 2004; 145: 1063–1068.

38 Döhler KD, Hines M, Coquelin A, Davis FC, Shryne JE, Gorski RA. Pre- and postnatal influence of diethylstilboestrol on differentiation of the sexually dimorphic nucleus in the preoptic area of the female rat brain. Neuroenocrinology Lett 1982; 4: 361–365.

39 Bogic L, Gerlach JL, McEwen BS. The ontogeny of sex differences in estrogen-induced progesterone receptors in rat brain. Endocrinology 1988; 122: 2735–2741.

40 Colborn T, vom Saal FS, Soto AM. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect 1993; 101: 378–384.

41 Bern HA, Blair P, Brassieur S, Colborn T, Cunha GR, Davis WS, Wohler KD, Fox G, Fry M, Gray E, Green B, Hines M, Kubiak T, McLaughlan J, Myers JP, Peterson RE, Rejinders PJH, Soto AM, Van Der Kraak G, vom Saal FS, Whitten P. Statement from the work session on chemically-induced alterations in sexual development: the wildlife/human connection. In: Colborn T, Clement C, eds. Chemically-Induced Alterations in Sexual and Functional Development: The Wildlife/Human Connection. Princeton, NJ: Princeton Scientific Publishing Co., Inc, 1992: 1–8.

42 Lephart ED, West TW, Weber KS, Rhees RW, Setchell KDR, Adlercreutz H, Lund TD. Neurobehavioral effects of dietary soy phytoestrogens. Environ Res Rev 2001; 37: 25–37.

43 Lephart ED, Adlercreutz H, Lund TD. Dietary soy phytoestrogens on brain structure and aromatase in Long-Evans rats. Neuroreport 2001; 12: 3451–3455.

44 Lephart ED, West TW, Weber KS, Rhee RW, Setchell KDR, Adlercreutz H, Lund TD. Neurobehavioral effects of dietary soy phytoestrogens. Neurotoxicol Teratol 2002; 24: 5–16.

45 McLaughlan JA, Guillette LJ Jr, Iuchi T, Toscano WA Jr. Environmental Hormones: The Scientific Basis of Endocrine Disruption. New York, NY: NYAS, 2001.

46 Bauer R, Colborn T, Palanza P, Parmigiani S, Vom Saal FS. Endocrine disruptors. Environ Health Perspect (Special Issue) 2002; 110(Suppl. 3): 335–449.
47 Alò R, Facciolo RM, Madeso M, Giussi G, Carelli A, Canonaco M. Effects of the xenoestrogen bisphenol A in diencephalic regions of the teleost fish *Coris julis* occur preferentially via distinct somatostatin receptor subtypes. *Brain Res Bull* 2005; **65**: 267–273.

48 Viglietti-Panzica C, Montoncello B, Mura E, Pessatti M, Panzica GC. Organizational effects of diethylstilbestrol on brain vasotocin and sexual behavior in male quail. *Brain Res Bull* 2005; **65**: 225–233.

49 Panzica GC, Mura E, Pessatti M, Viglietti Panzica C. Early embryonic administration of xenoestrogens alters vasotocin system and male sexual behavior of the Japanese quail. *Domest Anim Endocrinol* 2005; **29**: 436–445.

50 Ottinger MA, Wu JM, Hazelton JL, Abdelnabi MA, Thompson N, Quinn ML, Donoghue D, Schenck F, Ruscio M, Beavers J, Jaber M. Assessing the consequences of the pesticide methoxychlor: xenoestrogenic and behavioral measures as indicators of biological impact of an estrogenic environmental chemical. *Brain Res Bull* 2005, **65**: 199–210.

51 Halldin K, Axelsson J, Brunstrom B. Effects of endocrine modulators on sexual differentiation and reproductive function in male Japanese quail. *Brain Res Bull* 2005; **65**: 211–218.

52 Laviola G, Gioiosa L, Adriani W, Palanza P. d-Amphetamine-related reinforcing effects are reduced in mice exposed prenatally to estrogenic endocrine disruptors. *Brain Res Bull* 2005; **65**: 235–240.

53 Della Seta D, Minder I, Dessi-Fulgheri F, Farabollini F. Bisphenol-A exposure during pregnancy and lactation affects maternal behavior in rats. *Brain Res Bull* 2005; **65**: 255–260.

54 Perrini S, Belioni V, Setta DD, Farabollini F, Gianelli G, Dessi-Fulgheri F. Early exposure to a low dose of bisphenol A affects socio-sexual behavior of juvenile female rats. *Brain Res Bull* 2005; **65**: 261–266.

55 Razzoli M, Valsecchi P, Palanza P. Chronic exposure to low doses bisphenol A interferes with pair-bonding and exploration in female Mongolian gerbils. *Brain Res Bull* 2005; **65**: 249–254.

56 Mussi P, Ciana P, Raviscioni M, Villa R, Regondi S, Agradi E, Maggi A, Lorenzo DD. Activation of brain estrogen receptors in mice lactating from mothers exposed to DDT. *Brain Res Bull* 2005; **65**: 241–247.

57 Bu L-H, Lephart ED. Effects of dietary phytoestrogens on core body temperature during the estrous cycle and pregnancy. *Brain Res Bull* 2005; **65**: 219–223.

58 Lephart ED, Setchell KDR, Lund TD. Phytoestrogens: hormonal action and brain plasticity. *Brain Res Bull* 2005; **65**: 193–198.

59 Mukai H, Takata N, Ishii HT, Tanabe N, Hojo Y, Furukawa A, Kimoto T, Kawato S. Hippocampal synthesis of estrogens and androgens which are paracrine modulators of synaptic plasticity: synaptocrinology. *Neuroscience* 2006; **138**: 757–764.

60 Gu Q, Korach KS, Moss RL. Rapid action of 17beta-estradiol on kainate-induced currents in hippocampal neurons lacking intracellular estrogen receptors. *Endocrinology* 1999; **140**: 660–666.

61 Shibuya K, Takata N, Hojo Y, Furukawa A, Yasumatsu N, Kimoto T, Enami T, Suzuki K, Ishii N, Ishii H, Mukai H, Takahashi T, Hattori TA, Kawato S. Hippocampal cytchrome P450s synthesize brain neurosteroids which are paracrine neuromodulators of synaptic signal transduction. *Biochim Biophys Acta* 2003; **1619**: 301–316.

62 Kawato S. Endocrine disrupters as disrupters of brain function: a neurosteroid viewpoint. *Environ Sci* 2004; **11**: 1–14.

63 Ogüe-Ikeda M, Tanabe N, Mukai H, Hojo Y, Murakami G, Tsurugizawa T, Takata N, Kimoto T, Kawato S. Rapid modulation of synaptic plasticity by estrogens as well as endocrine disrupters in hippocampal neurons. *Brain Res Rev* 2006; **57**: 363–375.

64 Di Lorenzo D, Rando G, Ciana P, Maggi A. Molecular imaging, an innovative methodology for whole-body profiling of endocrine disrupter action. *Toxicol Sci* 2008; **106**: 304–311.

65 Patasaul HB, Polston EK. Influence of endocrine active compounds on the developing rodent brain. *Brain Res Rev* 2008; **57**: 352–362.

66 Ottinger MA, Lavoie E, Thompson N, Barton A, Whitehouse K, Abdelnabi M, Quinn MJ Jr, Panzica GC, Viglietti-Panzica C. Neuroendocrine and behavioral effects of embryonic exposure to endocrine disrupting chemicals in birds. *Brain Res Rev* 2008; **57**: 376–385.

67 Tetel MJ. Modulation of steroid action in the central and peripheral nervous systems by nuclear receptor coactivators. *Psychoneuroendocrinology* 2009; **34(Suppl. 2)**: 9–19.

68 Palanza P, Gioiosa L, vom Saal FS, Parmigiani S. Effects of developmental exposure to bisphenol A on brain and behavior in mice. *Environ Res* 2008; **108**: 150–157.

69 Frye CA, Bo E, Calamandrei G, Calza L, Dessi-Fulgheri F, Fernandez M, Fusani L, Kah O, Kota M, Le Page Y, Patsaul HB, Venerosi A, Wojtowicz AK, Panzica GC. Endocrine disruptors: a review of some sources, effects, and mechanisms of actions on behavior and neuroendocrine systems. *J Neuroendocrinol* 2011; **24**: 144–159.

70 Panzica GC, Viglietti-Panzica C, Mura E, Quinn MJ Jr, Palanza P, Ottinger MA. Effects of xenoestrogens on the differentiation of behaviorally relevant neural circuits. *Front Neuroendocrinol* 2007; **28**: 179–200.

71 Panzica GC, Mura E, Miceli D, Martini M, Gotti S, Viglietti Panzica C. Effects of xenoestrogens on the differentiation of behaviorally-relevant neural circuits in higher vertebrates. In: Vaudry H, Roubos E, Coast GM, Vallarino M, eds. *Trends in Comparative Endocrinology and Neurobiology*. New York, NY: New York Academy of Sciences, 2009: 271–278.

72 Panzica GC, Bo E, Martini MA, Miceli D, Mura E, Viglietti-Panzica C, Gotti S. Neuropeptides and enzymes are targets for the action of endocrine disrupting chemicals in the vertebrate brain. *J Toxicol Environ Health B Crit Rev* 2011; **14**: 449–472.

73 Bateman HL, Patsaul HB. Disrupted female reproductive physiology following neonatal exposure to phytoestrogens or estrogen specific ligands is associated with decreased GnRH activation and kisspeptin fiber density in the hypothalamus. *Neurotoxicology* 2008; **29**: 988–997.

74 Bellingham M, Fowler PA, Amezaga MR, Rhind SM, Cotinot C, Mandon-Pepin B, Sharpe RM, Evans NP. Exposure to a complex cocktail of environmental endocrine-disrupting compounds disturbs the kisspeptin/GPR54 system in ovine hypothalamus and pituitary gland. *Environ Health Perspect* 2009; **117**: 1565–1562.

75 Dickerson SM, Cunningham SL, Patsaul HB, Woller MJ, Gore AC. Endocrine disruption of brain sexual differentiation by developmental PCB exposure. *Endocrinology* 2011; **152**: 581–594.

76 Miceli D, Bo E, Palanza P, Franceschini I, Panzica GC. Effects of bisphenol-A (BPA) in the hypothalamic nuclei that control puberty, reproduction and sexual behavior in a murine model. *Trab Inst Odial* 2011; **83**: 194–195.

77 Patsaul HB, Todd KL, Mickens JA, Adewale HB. Impact of neonatal exposure to the ERalpha agonist PPT, bisphenol-A or phytoestrogens on hypothalamic kisspeptin fiber density in male and female rats. *Neurotoxicology* 2009; **30**: 350–357.

78 Mura E, Barale C, Quinn MJ Jr, Panzica GC, Ottinger MA, Viglietti Panzica C. Organizational effects of DDE on brain vasotocin system in male Japanese quail. *Neurotoxicology* 2009; **30**: 479–484.

79 Viglietti-Panzica C, Mura E, Panzica GC. Effects of early embryonic exposure to genistein on male copulatory behavior and vasotocin system of Japanese quail. *Horm Behav* 2007; **51**: 355–363.

80 Cheshenko K, Pakdel F, Segner H, Kah O, Eggen RI. Interference of endocrine disrupting chemicals with aromatase CYP19 expression or activity, and consequences for reproduction of teleost fish. *Gen Comp Endocrinol* 2008; **155**: 31–42.

81 Le Page Y, Scholze M, Kah O, Pakdel F. Assessment of xenoestrogens using three distinct estrogen receptors and the zebrafish brain aroma-
tase gene in a highly responsive glial cell system. Environ Health Perspect 2006; 114: 752–758.

82 Le Page Y, Vosges M, Servili A, Brion F, Kah O. Neuroendocrine effects of endocrine disruptors in teleost fish. J Toxicol Environ Health B Crit Rev 2011; 14: 370–386.

83 Curras-Collazo MC. Nitric oxide signaling as a common target of organohalogens and other neuroendocrine disruptors. J Toxicol Environ Health B Crit Rev 2011; 14: 495–536.

84 Martini M, Miceli D, Gotti S, Vigglietti-Panzica C, Fissore E, Paliana P, Panzica GC. Effects of perinatal administration of bisphenol A on the neuronal nitric oxide synthase expressing system in the hypothalamus and limbic system of CD1 mice. J Neuroendocrinol 2010; 22: 1004–1012.

85 Vom Saal FS. Bisphenol a eliminates brain and behavior sex dimorphisms in mice; how low can you go? Endocrinology 2006; 147: 3679–3680.

86 Tena-Sempere M. Kisspeptin/GPR54 as a potential target for endocrine disruption of reproductive development and function. Int J Androl 2010; 33: 360–368.

87 Decherf S, Demeneix BA. The obesogen hypothesis: a shift of focus from the periphery to the hypothalamus. J Toxicol Environ Health B Crit Rev 2011; 14: 423–448.

88 MacLusky NJ, Hajsza T, Leranth C. The environmental estrogen bisphenol-A inhibits estradiol-induced hippocampal synaptogenesis. Environ Health Perspect 2005; 113: 675–679.

89 MacLusky NJ, Hajsza T, Prange-Kiel J, Leranth C. Androgen modulation of hippocampal synaptic plasticity. Neuroscience 2006; 138: 957–965.

90 Hajsza T, Leranth C. Bisphenol A interferes with synaptic remodeling. Front Neuroendocrinol 2010; 31: 519–530.

91 Xu XH, Zhang J, Wang YM, Ye YP, Luo QQ. Perinatal exposure to bisphenol-A impairings learning-by-memory by concomitant down-regulation of N-methyl-D-aspartate receptors of hippocampus in male offspring mice. Horm Behav 2010; 58: 326–333.

92 Baulieu EE, Robel P, Schumacher M. Neurosteroids. A New Regulatory Function in the Nervous System. Totowa, NJ: Humana Press, 1999.

93 Corpechot C, Robel P, Axelsson M, Sjovall J, Baulieu EE. Characterization and measurement of dehydroepiandrosterone sulfate in rat brain. Proc Natl Acad Sci USA 1981; 78: 4704–4707.

94 Corpechot C, Syngueralis M, Talha S, Axelsson M, Sjovall J, Vilhko R, Baulieu EE, Robel P. Pregnenolone and its sulfate ester in the rat brain. Brain Res 1983; 270: 119–125.

95 Compagnone NA, Mellon SH. Neurosteroids: biosynthesis and function of these novel neuropeuropeptides. Front Neuroendocrinol 2000; 21: 1–56.

96 Mensah-Nyagan AG, Do-Rego JL, Beaujean D, Luu-The V, Pelletier G, Vaudry H. Neurosteroids: expression of steroidogenic enzymes and regulation of steroid biosynthesis in the central nervous system. Pharmacol Rev 1999; 51: 63–81.

97 Schumacher M, Weill-Engerer S, Liere P, Robert F, Franklin RJ, Garcia-Segura LM, Lambert JJ, Mayo W, Melcangi RC, Parducz A, Suter U, Carilli C, Baulieu EE, Akwa Y. Steroid hormones and neurosteroids in normal and pathological aging of the nervous system. Proc Neurobiol 2003; 71: 3–29.

98 Mellon SH, Griffin LD, Compagnone NA. Biosynthesis and action of neurosteroids. Brain Res Rev 2001; 37: 3–12.

99 Mensah-Nyagan AG, Beaujean D, Luu-The V, Pelletier G, Vaudry H. Anatomical and biochemical evidence for the synthesis of unconjugated and sulfated neurosteroids in amphibians. Brain Res Rev 2001; 37: 13–24.

100 Stoffel-Wagner B. Neurosteroid biosynthesis in the human brain and its clinical implications. Ann NY Acad Sci 2003; 1007: 64–78.

101 Guarneri P, Cascio C, Russo D, D’Agostino S, Drago G, Galizzi G, De Leo G, Piccoli F, Guarneri M, Guarneri R. Neurosteroids in the retina: neurodegenerative and neuroprotective agents in retinal degeneration. Ann NY Acad Sci 2003; 1007: 117–128.

102 Melcangi RC, Mensah-Nyagan AG. Neuroprotective effects of neuroactive steroids in the spinal cord and peripheral nerves. J Mol Neurosci 2006; 28: 1–102.

103 Lavaque E, Sierra A, Azoitia I, Garcia-Segura LM. Steroidogenic acute regulatory protein in the brain. Neuroscience 2006; 138: 741–747.

104 Papadopoulos V, Lecaru L, Brown RC, Han Z, Yao ZX. Peripheral-type benzodiazepine receptor in neurosteroid biosynthesis, neuropathology and neurological disorders. Neuroscience 2006; 138: 749–756.

105 Melcangi RC, Mensah-Nyagan AG. Neurosteroids: Measurements and pathophysiological relevance. Neurochem Int 2008; 52: 503–620.

106 Melcangi RC, Garcia-Segura LM, Panzica GC. Neurosteroids: focus on human brain. Neuroscience 2011; 191: 1–158.

107 Melcangi RC, Garcia-Segura LM, Mensah-Nyagan AG. Neuroactive steroids: state of the art and new perspectives. Cell Mol Life Sci 2008; 65: 777–797.

108 Schaeffer V, Meyer L, Patte-Mensch C, Mensah-Nyagan AG. Progress in dorsal root ganglion neurosteroidogenic activity: basic evidence and pathophysiological correlation. Prog Neurobiol 2010; 92: 33–41.

109 Zhu Y, Rice CD, Pang Y, Pace M, Thomas P. Cloning, expression, and characterization of a membrane progesterin receptor and evidence it is an intermediary in meiotic maturation of fish oocytes. Proc Natl Acad Sci USA 2003; 100: 2231–2236.

110 Zhu Y, Bond J, Thomas P. Identification, classification, and partial characterization of genes in humans and other vertebrates homologous to a fish membrane progesterin receptor. Proc Natl Acad Sci USA 2003; 100: 2237–2242.

111 Belelli D, Lambert JJ. Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat Rev Neurosci 2005; 6: 565–575.

112 Hosie AM, Wilkins ME, da Silva HM, Smart TG. Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature 2006; 444: 486–489.

113 Majewska MD. Neurosteroids: endogenous bimodal modulators of the GABAA receptor. Mechanism of action and physiological significance. Prog Neurobiol 1992; 38: 379–395.

114 Pathirathna S, Brinmellow BC, Jagodic MM, Krishnan K, Jiang X, Zorumski CF, Mennerick S, Covey DF, Todorovic SM, Jevtovic-Todorovic V. New evidence that both T-type calcium channels and GABAA channels are responsible for the potent peripheral angesis effects of Salpachino-reduced neuroactive steroids. Pain 2005; 114: 429–443.

115 Bowilby MR. Pregnenolone sulfate potentiation of N-methyl-D-aspartate receptor channels in hippocampal neurons. Mol Pharmacol 1993; 43: 813–819.

116 Wu FS, Gibbs TT, Farb DH. Pregnenolone sulfate: a positive allosteric modulator at the N-methyl-D-aspartate receptor. Mol Pharmacol 1991; 40: 333–336.

117 De Roo M, Rodeau JL, Schlichter R. Dehydroepiandrosterone potentiates native ionotropic ATP receptors containing the P2X2 subunit in rat sensory neurones. J Physiol 2003; 552: 59–71.

118 Maurice T, Greigore C, Esplarregues J. Neuroactive steroids actions at the neuropeptidomulatory sigma1 (sigma1) receptor: biochemical and physiological evidences, consequences in neuroprotection. Pharmacol Biochem Behav 2006; 84: 581–597.

119 Monnet FP, Mahe V, Robel P, Baulieu EE. Neurosteroids, via sigma receptors, modulate the [1H]norepinephrine release evoked by N-methyl-D-aspartate in the rat hippocampus. Proc Natl Acad Sci USA 1995; 92: 3774–3778.
Melcangi RC, Cavarretta I, Magnagni V, Martini L, Galbiati M. Interactions between growth factors and steroids in the control of LHRH-secreting neurons. Brain Res Rev 2001; 37: 235–248.

de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the Kiss1-derived peptide receptor GPR54. Proc Natl Acad Sci USA 2003; 100: 10972–10976.

Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS Jr, Herbison AE. Rapid actions of oestrogen on gonadotropin-releasing hormone neurons. Brain Res Rev 2001; 37: 235–234. 19.

Smith JT. Kisspeptin signalling in the brain: steroid regulation in the rostral periventricular area of the third ventricle (RP3V). Brain Res Rev 2008; 57: 277–287.

Abraham IM, Han SK, Todman MG, Korach KS, Herbison AE. Estrogen receptor beta mediates rapid estrogen actions on gonadotropin-releasing hormone neurons by the progesterone derivative allopregnanolone in the mouse. Endocrinology 2001; 142: 4448–4453.

Sim JA, Skinner MJ, Herbison AE. Direct regulation of postnatal GnRH neurons by the progestervine derivative allopregnanolone in the mouse. Endocrinology 2001; 142: 4448–4453.

Abraham IM, Han SK, Todman MG, Korach KS, Herbison AE. Estrogen receptor beta mediates rapid estrogen actions on gonadotropin-releasing hormone neurons in vivo. J Neurosci 2003; 23: 5771–5777.

Romano N, Lee K, Abraham IM, Jasoni CL, Herbison AE. Nonclassical estrogen modulation of presynaptic GABA terminals modulates calcium dynamics in gonadotropin-releasing hormone neurons. Endocrinology 2008; 149: 5335–5344.

Moenter SM, Chu Z. Rapid non-genomic effects of oestradiol on GnRH neurons. J Neuroendocrinol 2011; 24: 117–121.

Chu Z, Andrade J, Shupnik MA, Moenter SM. Differential regulation of gonadotropin-releasing hormone neuron activity and membrane properties by acutely applied estradiol: dependence on dose and estrogen receptor subtype. J Neurosci 2009; 29: 5616–5627.

Oberlander JG, Porter DM, Penati CA, Henderson LP. Anabolic androgenic steroid abuse: multiple mechanisms of regulation of gabaergic synapses in neuroendocrine control regions of the rodent forebrain. J Neuroendocrinol 2011; 24: 202–214.

Penati CA, Davis MC, Porter DM, Henderson LP. Altered GABAAR receptor-mediated synaptic transmission disrupts the firing of gonadotropin-releasing hormone neurons in male mice under conditions that mimic steroid abuse. J Neurosci 2010; 30: 6497–6506.

Herbison AE. Rapid actions of oestrogen on gonadotropin-releasing hormone neurons; from fantasy to physiology? J Physiol 2009; 587: 5025–5030.

Galbiati M, Sareddi S, Melcangi RC. Steroid hormones and growth factors act in an integrated manner at the levels of hypothalamic astrocytes: a role in the neuroendocrine control of reproduction. Ann NY Acad Sci 2003; 1007: 162–168.

Oberlander JG, Porter DM, Penati CA, Henderson LP. Anabolic androgenic steroid abuse: multiple mechanisms of regulation of gabaergic synapses in neuroendocrine control regions of the rodent forebrain. J Neuroendocrinol 2011; 24: 202–214.

Penati CA, Davis MC, Porter DM, Henderson LP. Altered GABAA receptor-mediated synaptic transmission disrupts the firing of gonadotropin-releasing hormone neurons in male mice under conditions that mimic steroid abuse. J Neurosci 2010; 30: 6497–6506.

Herbison AE. Rapid actions of oestrogen on gonadotropin-releasing hormone neurons; from fantasy to physiology? J Physiol 2009; 587: 5025–5030.

Galbiati M, Sareddi S, Melcangi RC. Steroid hormones and growth factors act in an integrated manner at the levels of hypothalamic astrocytes: a role in the neuroendocrine control of reproduction. Ann NY Acad Sci 2003; 1007: 162–168.

Eugen AM. Ovarian steroid and growth factor regulation of female reproductive function involves modifications of hypothalamic alpha 1-adrenoceptor signaling. Ann NY Acad Sci 2003; 1007: 153–161.
Keller F. Interactions between neuroactive steroids and reelin haploinsufficiency in Purkinje cell survival. *Neurobiol Dis* 2009; 36: 103–115.

Melcangi RC, Caruso D, Levandis G, Abbiati F, Armentero MT, Blandini F. Modifications of neuroactive steroid levels in an experimental model of nigrostriatal degeneration: potential relevance to the pathophysiology of Parkinson's disease. *J Mol Neurosci* 2011; doi: 10.1007/s12031-11-9570y.

Al Sweidi S, Sanchez MG, Bourque M, Morissette M, DiLuze D, Di Paolo T. Oestrogen receptors and signalling pathways: implications for neuroprotective effects of sex steroids in parkinson’s disease. *J Neuroendocrinol* 2011; 24: 48–61.

Ahboucha S, Pomer-Layrargues G, Mamer O, Butterworth RF. Increased levels of pregnenolone and its neuroactive metabolite allopregnanolone in autopsied brain tissue from cirrhotic patients who died in hepatic coma. *Neurochem Int* 2006; 49: 372–378.

Luchetti S, Bossers K, Van de Bilt S, Agrapart V, Morales RR, Frajese GV, Swaab DF. Neurosteroid biosynthetic pathways changes in prefrontal cortex in Alzheimer’s disease. *Neurobiol Aging* 2011; 32: 1964–1976.

Luchetti S, Bossers K, Frajese GV, Swaab DF. Neurosteroid biosynthetic pathway changes in substantia nigra and caudate nucleus in Parkinson’s disease. *Brain Pathol* 2010; 20: 945–951.

Luchetti S, Huitinga I, Swaab DF. Neurosteroid and GABA-A receptor alterations in Alzheimer’s disease, Parkinson’s disease and multiple sclerosis. *Neuroscience* 2011; 191: 6–21.

Luchetti S, Bossers K, Van de Bilt S, Agrapart V, Morales RR, Frajese GV, Swaab DF. Neurosteroid biosynthetic pathways changes in prefrontal cortex in Alzheimer’s disease. *Neurobiol Aging* 2011; 32: 1964–1976.

Well-Engerer S, David JP, Saizdovitch V, Liere P, Eychenne B, Pianos A, Schumacher M, Delacourte A, Baulieu EE, Akwa Y. Neurosteroid quantification in human brain regions: comparison between Alzheimer’s and non-demented patients. *J Clin Endocrinol Metab* 2002; 87: 5138–5143.

Luchetti S, Garcia-Segura LM. Sex-specific therapeutic strategies based on neuroactive steroids: in search for innovative tools for neuroprotection. *Horm Behav* 2010; 57: 2–11.

Caruso D, Scurati S, Roglio I, Nobbio L, Schenone A, Melcangi RC. Neuroactive steroid levels in a transgenic rat model of CMT1A Neuropathy. *J Mol Neurosci* 2008; 34: 249–253.

Di Michele F, Lekkefere D, Passi A, Bernardi G, Benavides J, Romeo E. Increased neurosteroid synthesis after brain and spinal cord injury in rats. *Neurosci Lett* 2000; 284: 65–68.