Heterozygosity for mutations in the ataxia telangiectasia gene is not a major cause of radiotherapy complications in breast cancer patients

M Shayeghi1, S Seal1, J Regan2, N Collins1, R Barfoot1, N Rahman1, A Ashton3, M Moohan4, R Wooster1, R Owen3, JM Bliss1, MR Stratton1 and J Yarnold2

1Section of Cancer Genetics and Molecular Carcinogenesis, Haddow Laboratories, Institute of Cancer Research, 15 Cotswold Rd, Sutton, Surrey SM2 5NG. UK. 2Academic Radiotherapy Unit. The Royal Marsden NHS Trust. Downs Rd. Sutton. Surrey SM2 5PT. UK. 3Gloucestershire Centre for Clinical Oncology, Cheltenham General Hospital. Sandford Rd, Cheltenham. Glos GL53 7AN UK. 4Clinical Trials & Statistics Unit. Section of Epidemiology. Institute of Cancer Research. 15. Cotswold Rd. Sutton. Surrey SM2 5NG. UK

Summary Of patients being treated by radiotherapy for cancer, a small proportion develop marked long-term radiation damage. It is believed that this is due, at least in part, to intrinsic individual differences in radiosensitivity, but the underlying mechanism is unknown. Individuals affected by the recessive disease ataxia telangiectasia (AT) exhibit extreme sensitivity to ionizing radiation. Cells from such individuals are also radiosensitive in in vitro assays, and cells from AT heterozygotes are reported to show in vitro radiosensitivity at an intermediate level between homozygotes and control subjects. In order to examine the possibility that a defect in the ATM gene may account for a proportion of radiotherapy complications, 41 breast cancer patients developing marked changes in breast appearance after radiotherapy and 39 control subjects who showed no clinically detectable reaction after radiotherapy were screened for mutations in the ATM gene. One out of 41 cases showing adverse reactions was heterozygous for a mutation (insertion A at NT 888) that is predicted to generate a truncated protein of 251 amino acids. No truncating mutations were detected in the control subjects. On the basis of this result, the estimated percentage (95% confidence interval) of AT heterozygous patients in radiosensitive cases was 2.4% (0.1–12.9%) and in control subjects (0–9.0%). We conclude that ATM gene defects are not the major cause of radiotherapy complications in women with breast cancer.

Keywords: ataxia telangiectasia; ATM; radiation sensitivity; breast cancer

For most solid tumours, curative radiotherapy involves delivering a dose schedule at the limits of normal tissue tolerance. Most side-effects lead to moderate functional impairment, but occasionally these are severe and even life-threatening (Maher Committee, 1995). The severity of normal tissue reactions after a given course of radiotherapy varies widely from one patient to another. Severe reactions can often in part be explained by radiotherapy technique or by predisposing factors such as prior surgery, chemotherapy or diabetes. Nevertheless, even after allowing for known factors, considerable variation still exists. The clearest evidence for this is the work of Turesson et al. (1989, 1990). They measured early and late manifestations of radiation skin damage under well-controlled conditions in breast cancer patients, some of whom have been followed up for over 10 years. A standard treatment protocol was found to produce very different degrees of telangiectasia, ranging from a barely detectable response to a severe reaction. Analysis of these clinical data by Tucker et al. (1992) has suggested that variation in tolerance between patients is determined by differences in individual intrinsic radiosensitivity, even among patients who show no clinical symptoms of recognized radiosensitive syndromes. An understanding of the basis of these interpatient differences could lead to significant improvement in treatment by the individualization of the radiotherapy prescription.

Ataxia telangiectasia (AT) is an autosomal recessive disorder that is characterized by cerebellar ataxia, ocuicutaneous telangiectasia and a predisposition to cancer (Boder and Sedgwick, 1958) Clinically, AT homozygotes exhibit marked hypersensitivity to ionizing radiations, and fibroblasts or lymphocytes from AT homozygotes are highly radiosensitive in various in vitro assays (Gotoff et al. 1967; Taylor et al. 1975; Weeks et al. 1991: Jorgensen and Shiloh, 1996). Although AT itself is a rare disease, it is estimated that approximately 1% of individuals in the general population are AT homozygotes (Easton. 1994; Nagasawa et al. 1987). A number of in vitro studies have suggested that cells from AT homozygotes may exhibit an intermediate level of radiosensitivity between AT homozygotes and controls (West et al. 1995). Moreover, cells from patients showing adverse normal tissue damage after radiotherapy have been shown to exhibit a degree of cellular radiosensitivity similar to that of AT homozygotes (Johansen et al. 1996). Taken together these findings have led to the hypothesis that heterozygosity for AT may account for some of the radiation complications observed in clinical practice.

The AT gene (ATM) has recently been isolated (Savitsky et al. 1995). It is a large gene spanning approximately 200 kb of genomic DNA with a transcript size of approximately 10 kb encoding a predicted protein of 3056 amino acids. The mutations thus far discovered are highly heterogeneous, and are distributed throughout the entire extent of the gene. The majority are null mutations resulting in premature termination of translation (Byrd et al. 1996; Gilad et al. 1996). In this study, we examined the
association between heterozygosity for ATM gene defects and the development of radiotherapy complications in breast cancer patients.

MATERIALS AND METHODS

Study population

Between January 1986 and July 1994, 915 patients were entered into a randomized trial comparing three fractionation regimens after breast-preserving surgery for early-stage operable breast cancer. All patients attended the Royal Marsden Hospital, Sutton, or the Gloucestershire Oncology Centre, Cheltenham. A total of 835/915 (91%) patients had baseline post-operative photographs of the breast. Against which later radiation-induced changes scored from photographs were compared on an annual basis. The clinical and treatment characteristics of these 835 patients are summarized in Table 1. At the time of assessment, 735 of these had at least one follow-up photograph and made up the study sample.

Radiotherapy

The duration of whole-breast radiotherapy was 5 weeks in all arms, involving five treatments a fortight for patients randomized to 13 fractions (3.0 Gy or 3.3 Gy per fraction) and five treatments per week for patients in the third arm (2.0 Gy per fraction). Patients were treated in a supine position and most patients were treated with 6-MV X-rays. The breast was encompassed by opposed tangential fields using 15–30° wedges as tissue compensators. Radiotherapy to the lymphatic pathways was included at the discretion of the clinician depending on disease stage and axillary surgery. An electron boost to the tumour bed of 14 Gy to the 90% isodose in seven daily fractions was given to all patients with cancer cells at the microscopic margins of resection. In patients with complete microscopic resection of the primary tumour, an option to randomize the boost (boost vs no boost) was offered with patient consent. A boost was otherwise given routinely.

Table 1 Treatment characteristics of 835 patients with post-operative baseline photographs

Radiotherapy to whole breast	50 Gy/25a	42.9 Gy/13a	39 Gy/13a	Totals
Radiotherapy to tumour bed (boost)	282	270	283	835
Boost (non-randomized)	123	123	129	375
Boost (randomized)	79	74	78	231
No boost (randomized)	80	73	76	229
Treatment to axilla				
None	83	88	68	239
Radiotherapy (RT)	78	68	83	229
Surgery	103	91	113	307
RT + surgery	18	23	19	60
Adjuvant systemic therapy				
None	84	93	90	267
Tamoxifen	181	156	181	518
Chemotherapy (CT)	10	11	9	30
Tamoxifen + CT	7	10	3	20

a) Fractions.

Definition and assessment of end points

The primary end point of the trial, which was used in this analysis, relates to normal tissue responses in the breast as assessed by serial photographs. Frontal photographs of both breasts were taken after primary surgery and repeated annually for 5 years. All photographs were reviewed by three independent observers (two clinicians and one senior nurse) blind to patient identity, fractionation allocation and year of follow-up. Inclusion of the contralateral breast at each time point made it possible to distinguish radiotherapy effects from other time-related changes, e.g. weight gain. Changes in breast appearance caused by radiotherapy were scored on a three-point graded scale (none/minimal, 0; moderate, 1; marked, 2) based on change in breast size and/or shape, usually shrinkage. Inter- and intra-observer variability were monitored by comparing scores between observers. All discrepancies between observers were re-evaluated. Intra-observer variability was evaluated by assessing the reproducibility of scores for each observer by reassessing a random sample of photographs. Degree of agreement between scores was assessed using a weighted kappa statistic.

Case–control selection

Cases were defined as all individuals developing marked changes (grade 2) at any time between 1 and 5 years post radiotherapy or moderate changes (grade 1) scored for at least 3 years as assessed by clinical photographs. We identified 56 patients in these categories, 41 of whom were available for study. Control subjects were defined as individuals with 'no tissue reaction' (grade 0) at the same time since radiotherapy as the case experienced a reaction. We identified 39 control patients, matched as closely as possible for the factors listed in Table 2. Written informed consent for genetic testing was obtained from all patients (who remained alive) in the study.

Mutation detection

DNAs were isolated from peripheral blood leucocytes. All the individuals were screened for mutations using conformation sensitive gel electrophoresis (CSGE) (Ganguly et al. 1993) of polymerase
Table 2 Clinical factors matched as closely as possible in 41 cases with moderate or marked radiation damage and 39 control subjects without detectable radiation damage

Radiotherapy fractionation schedule (50, 43, 39 Gy)	Radiotherapy breast boost (yes, no)	Year of scoring a normal tissue response (1–5 years)	Location of treating hospital (Sutton, Cheltenham)	Breast size (small, medium, large)	Radiotherapy field separation (± 1 cm)	Width of tangential radiotherapy field to breast (± 1 cm)	Thickness of lung incorporated in tangential fields (± 0.5 cm)	Auxiliary radiotherapy (yes, no)	Tamoxifen (yes, no)	Adjuvant chemotherapy (yes, no)	Timing of chemotherapy in relation to radiotherapy (concurrent, sequential)

(61x735) Table 2

The remainder of sequence variants was observed in both cases and control subjects and no substantial differences in heterozygote frequency (as ascertained from CSGE gels) between cases and control subjects were observed.

From these results the only sequence variant that is confidently predicted to alter ATM function is the heterozygous insertion of A at nucleotide 898 in exon 8.

DISCUSSION

A total of 80 patients (41 cases and 39 control subjects) selected from 735 evaluable women with early breast cancer randomized into a radiotherapy fractionation study were screened for mutations in ATM. One out of 41 cases showed a typical mutation that was predicted to generate a truncated protein (insertion A at nucleotide 898). This case had no other predisposing factors for radiation damage and developed marked breast shrinkage with moderate cutaneous telangiectasia following 39 Gy in 13 fractions (approximately equivalent to 46 Gy in 23 fractions of 2.0 Gy). No truncating mutations were detected in any of the 39 control subjects. It is likely that the mutational screening technique used will miss a minority of mutations, particularly of single base substitutions and large genomic rearrangements, and therefore the numbers reported may be underestimates. Nevertheless, the results suggest that ATM mutations are unlikely to account for a substantial proportion of patients with dose-limiting complications of radiotherapy (although a small contribution cannot be excluded).

These results are consistent with previous reports of three AT heterozygotes who had radiotherapy for breast cancer without unusual reactions (Ramsay et al. 1996; Fitzgerald et al. 1997) and 16 breast cancer cases showing radiotherapy complications in whom ATM mutations were not detected (Appleby et al. 1997).

From studies of relatives of AT patients, there is evidence that AT heterozygosity may be associated with an increased frequency of certain types of cancer, particularly breast carcinoma (Swift et al. 1987, 1991; Pippard et al. 1988). Additional evidence supporting this hypothesis has recently been obtained by genetic linkage analyses of families of AT cases using markers in the vicinity of ATM on chromosome 11q (Athma et al. 1996). However, direct examination by mutational screening of the ATM gene revealed mutations in 2401 women with breast cancer compared with 2/202 control subjects (Fitzgerald et al. 1997). Whereas these data do not exclude a role for ATM as a low-penetrance breast cancer susceptibility gene (Bishop and Hopper, 1997), they do not lend strong support either. Although the present study is not a formal test of this hypothesis because there is no matched control group and the numbers are small, detection of a single AT heterozygote in 80 breast cancer cases does not add further weight to the notion that ATM is a low-penetrance breast cancer susceptibility gene.

Radiotherapy-induced breast shrinkage and distortion changes in a proportion of women after radiotherapy are progressive, permanent and of clinical relevance to the patient. They are also clearly related to radiotherapy dose. In the clinical trial from which these patients are drawn, a 10% difference in randomized dose (42.9 Gy in 13 fractions vs 39 Gy in 13 fractions) was associated with roughly a twofold difference in the chance of breast shrinkage (Owen et al. 1994). It has been shown in this study that testing for AT heterozygosity does not appear to offer a worthwhile approach for the identification of the radiosensitive subgroup of breast cancer patients and the search for the genetic loci responsible should continue.

British Journal of Cancer (1998) 78(7), 922–927 © Cancer Research Campaign 1998
Table 3: Oligonucleotide primers for amplification of individual ATM exons

Exon	Nucleotide sequence (5’–3’)	Size (bp)	Nucleotide sequence (5’–3’)
2	TGGCCCTTTTTTTTAGTGCC	310	TGGCTATTACGCTGAGATGCAGA
4	CTTTACCAGGATGTGGCCT	371	ATCTGCAATGACGCGCTTAA
6	ATGCTTCATATGCTGCTGGT	365	ATGCCAATTATCATTGCAAGG
8	GGCCTTCTAACGCCGTGATGC	303	AAAAAAATACAACTGAGCTAGGG
10	AGTGTGTCGTCGCTGATGTC	345	AAAGTGCAGTACCATGATGTGAGG
12	CTGCCCATGGCCTTCAAAA	469	TTTGACGAGCGACTACATGGGATTC
14	AGGTCAACGGATCATCAAATG	479	TAAAGAGAACATCAATCTTATCCT
16	GGTTGTCCTTTAACGCGTCATG	342	CCAAGGAGCGTGATGTTGAGG
18	TCAAGTGCGGAGAGGAAGAGGC	248	TGGTTGAGAGACCATCCTTATTCT
20	GAGCTTCTTCATTTCTGC	306	TTTGTTGAGAGACCATCCTTATTCT
22	AGGTCAACGGATCATCAAATG	339	AAATGACCATGGCTGAGGATTC
24	TTTCATCATGGGCTTCTCATG	238	TAAAGAGAACATCAATCTTATCCT
26	GTGTATGATATTTCAGCTG	396	TTAATCTATCATTACATCCAGG
28	CCAAGCAGTATGGAAGCAGTGA	344	TAAATCTATCATTACATCCAGG
30	AACGATTTTGATTTGAGG	452	TGGTGACGAGCTAAGCTTACATCG
31	ATAGCTGAACAAAAGGACCTC	487	TGGACTACCTCTCCACCTCATCG
32	TCTCCAAACGGTTACGTTAGTAT	525	TGGACTACCTCTCCACCTCATCG
33	TCCACAGAGCTCAGAATACAGC	249	TCCCAAAATATCTTCTTCTAAAA
34	CCAAAATGTTGCTCTAGCCT	203	TATGTTGCAGCGATGGACTG
36	TTGACATGAGTGTGGTACAGC	234	GGCACATCCGCCCTATGTGAA
37	ATGTATTATGCTCTTACCTGA	315	TGAACGCTCTACACTGTACATCT
42	CAGTTCAAGCTGTTGGTTGTTG	350	TTAACCAAGCTGAGTACCACAGC
43	GGAGCCTAGATGGTTGATGTC	345	TCTGCTGCTGTTAAGGATCCAC
44	CTGCATTGTTTCTGTATGAC	270	CAGTTGATGTTTAAAGGATGGA
46	TTGGTCCTTTGATGAACTTAT	238	TCCAGAAAAGAAAGCCGCTAGCA
48	ATTTCCGCAAAAACCTCTCTCTT	227	GTAAACAAAGGAGACTCATGCTT
50	GCGATCATGCAGGGTTTCTG	500	CTCAGGCTCTGTTCTGTTTTTAAA
52	GGTAGTCTGTGCTTTTCTTATT	362	TGGCTAATTCAGCGGTCTTAT
55	GGAGCAGGTTGCTAGCCAGT	344	TAAACAGCTTGTTAGGATCAGG
57	GTTTCCTCTGGATAAAAACCCC	401	TACAGGACTGTGGTGACATCAAG
59	CACCTAGTGTTGAAAGAGGAGC	320	TCTACTTCATTTAAGGGAGGAT
65	TCCCCCATGACTACATGATG	324	GCAAGCTTAAAGGGCTTCTGGG
66	CAAGGCTTCTTTTTAATCTCATC	309	TGGCAAGGTATTTAAAAGAGGCG

© Cancer Research Campaign 1998 British Journal of Cancer (1998) 78(7), 922–927
Table 4 Summary of the AT sequence variants detected. Numbering is according to the cDNA sequence deposited in Genbank as U33841. Intronic variants are described as the number of nucleotides from the nearest exonic base in the cDNA sequence.

Exon (E)/Intron (I)	Location	AA change	No. of heterozygotes out of the 41 cases	No. of heterozygotes out of the 39 controls
I2	160–5 insT	None	1	0
I3	A 201 G	Val 3 Val	15	21
E4	C 335 G	Ser 48 Cys	3	1
E8	898 insA	Stop at codon 251	1	0
E6	C 924 T	Val 244 Val	1	1
I13	T 2068–56 G	None	1	1
I13	G 2068–39 T	None	0	1
I15	G 2438–80 A	None	1	0
E18	T 2761 C	Phe 857 Leu	1	1
I19	3027+28 insA	None	0	1
I21	T 3267–80 C	None	12	16
E23	C 3350 G	Pro 1053 Arg	4	4
I23	3473–13 delT	None	6	5
E27	G 4108 A	Gly 1306 Arg	1	0
I37	T 5668–8 C	None	5	6
E38	G 5746 A	Asp 1852 Asn	2	2
E40	T 5962 C	Ala 1930 Ala	0	1
E40	G 6010 C	Val 1940 Leu	3	1
E47	6997–57 insATT	None	12	19
E49	G 7251 A	Ala 2353 Ala	0	1
E51	G 7572 A	Arg 2460 His	0	1
E52	C 7710 T	Ala 2506 Ala	0	1
E59	G 8683 T	Arg 2830 His	0	1
I62	A 9039–60 G	None	10	17
E64	C 9389 G	None (3’ untranslated)	0	1

ACKNOWLEDGEMENTS

We would like to thank women with breast cancer who participated in this study for their support and encouragement. The work was supported by a Radiation Protection Research Programme Grant (A3.8/RXX 43) from the Department of Health and by the Cancer Research Campaign. We would also like to acknowledge the help of Mr S. Ebbs and Dr John Peacock.

REFERENCES

Appleby JM, Barber JBP, Levine E, Varley JM, Taylor AMR, Stankovic T, Heughway J, Warren C, and Scott D (1997) Absence of mutations in the ATM gene in breast cancer patients with severe responses to radiotherapy. Br J Cancer 76: 1546–1549

Ahmna P, Rappaport R, and Swift M (1996) Molecular genotypeing shows that ataxia telangiectasia heterozygotes are predisposed to breast cancer. Cancer Genet Cytogenet 92: 130–134

Bishop DT and Hopper J (1997) AT-tributable risks? Nature Genet 15/3: 226

Borer E and Sedwick RP (1958) Ataxia telangiectasia: a familial syndrome of progressive cerebellar ataxia, ocularcuniculatus telangiectasia and frequent pulmonary infection. Pediatrics 21: 526–534

Byrd PJ, McConvile CM, Cooper P, Parkhill J, Stankovic T, McGuire GM, Thick JA, and Taylor MR (1996) Mutations revealed by sequencing the 5’ half of the gene for the ataxia telangiectasia. Hum Mol Genet 5: 145–149

Easton DF (1994) Cancer risks in AT heterozygotes. Int J Radiat Biol 66 (suppl. 6): S177–182

FitzGerald MG, Bean JM, Hedge SR, Ursal H, MacDonald DJ, Hardin DF, Finkelstein DM, Isselbacher KJ, and Haber DA (1997) Heterozygous ATM mutations do not contribute to early onset of breast cancer. Nature Genet 15: 307–310

Ganguly A, Rock MJ, and Procop DJ (1993) Conformation-sensitive gel electrophoresis for rapid detection of single-base differences in double-stranded PCR products and DNA fragments. Proc Natl Acad Sci USA 90: 10325–10329

Gilad S, Khosravi R, Shaked D, Uziel T, Ziv Y, Savitsky K, Rothman G, Smith S, Chessa L, Jorgensen TJ, Harnik R, Frydman M, Sanal O, Portnoi Z, Goldwrdc Z, Jaspers NGJ, Gani RA, Lenor G, Lavin MF, Tsutsui K, Wegner RD, Shihol Y and Bardhira A (1996) Predominance of null mutations in ataxia telangiectasia. Hum Mol Genet 5: 433–439

Gooff SP, Amimoki6 E and Lieber EJ (1967) Ataxia telangiectasia neoplasia, untoward response to x-radiation and hereditary sclerosis. Am J Dis Child 114: 617–627

Johansen J, Bentzen SM and Overgaard J (1996) Relationship between the in vitro radiosensitivity of skin fibroblasts and the expression of subcutaneous fibrosis, telangiectasia, and skin erythema after radiotherapy. Radiother Oncol 40: 101–109

Jorgensen TJ and Shihol Y (1996) The ATM gene and the radiobiology of ataxia telangiectasia. Int J Radiat Biol 69: 527–537

Mather Committee (1995) Management of Adverse Effects Following Breast Radiotherapy. London: Royal College of Radiologists

Nagassa H, Klaenmer KH, Shihol Y and Little JB (1987) Detection of ataxia telangiectasia heterozygous cell lines by post-irradiation cumulative labelling index: measurements with coded samples. Cancer Res 47: 398–402

Owen JR, Yardom JR, Bliss JM, Ebbs SR, Regan J, Harrington G and Atson A (1996) RT fractionation sensitivity: proposals for a UK national trial. Radiother Oncol Suppl 1: 572

Piperd EC, Hall AH, Barker DJP, and Bridges BA (1988) Cancer in homoygotes and heterozygotes of ataxia telangiectasia and xeroderma pigmentosum in Britain. Cancer Res 48: 2929–2932

Ramsey J, Birrell G, Lavin M (1996) Breast cancer and radiotherapy in ataxia telangiectasia heterozygote. Lancet 347: 1627

Savitsky K, Bar-Shira A, Gilad S, Rothman G, Ziv Y, Vanagale T, Tangle DA, Smith S, Uziel D, Ski P, Ashkenazi M, Pecker I, Frydman M, Harnik R, Panajjili SR, Simmons A, Cines GA, Sarlet G, Gani RA, Chessa L, Sanal O, Lavin MF, Jaspers NGJ, Taylor AMR, Arlett CF, Miki T, Weissman SM, Lovett M, Collins FS and Shihol Y (1995) A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268: 1749–1753

Swift M, Reimann PJ, Morrell D and Chase CL (1987) Breast and other cancers in families with ataxia telangiectasia. New Engl J Med 316: 1289–1294

Swift M, Morrell D, Massey RB and Chase CL (1991) Incidence of cancer in 161 families affected by ataxia telangiectasia. New Engl J Med 325: 1831–1836
Taylor AM, Harnden DG, Arlett CF, Harcourt SA, Lehmann AR, Stevens S and Bridges BA (1975) Ataxia telangiectasia: a human mutation with abnormal radiation sensitivity. *Nature* **256**:5534: 427–429

Tucker SL, Turesson I and Thames HD (1992) Evidence for individual differences in the radiosensitivity of human skin. *Eur J Cancer* **A**: 1283–1291

Turesson I (1989) The progression rate of late radiation effects in normal tissue and its impact on dose–response relationships. *Radiotherapy* **15**: 217–226

Turesson I (1990) Individual variation and dose dependency in the progression rate of skin telangiectasia. *Int J Radiat Oncol Biol Phys* **19**: 1569–1574

Weeks DE, Paterson MC, Lange K, Andrais B, Davies RC, Yoder F and Gatti RA (1991) Assessment of chronic radiosensitivity as an in vitro assay for identification of ataxia telangiectasia. *Radiat Res* **128**: 90–99

West CM, Elyan SA, Berry P, Cowan R and Scott D (1995) A comparison of the radiosensitivity of lymphocytes from normal donors, cancer patients, individuals with ataxia telangiectasia (AT) and AT heterozygotes. *Int J Radiat Biol* **68**: 197–203