Conflict of interest declaration

There are no conflicts of interest.

Acknowledgments

This study was approved by the ethics committee of Leiden University Medical Center (C2017/090). The authors wish to thank Mr. A.J. van der Wal, data manager, for his contribution to the database.

ARTICLE HISTORY

Received 5 November 2020; accepted 14 February 2021

Appendix A.

Table A1. Baseline characteristics of the study population.

Characteristics	n	%
Age (years)	73.3	
Gender	68	82.9
Functional performance Baseline		
ADL Score		
Functional performance Follow-up		
ADL Score		
Mortality Follow-up		
12 months		
6 patients	8.7	
12 months	14.6	

Appendix B.

Table B1. Functional performance outcomes of the study population.

Outcomes	n	%
Functional performance Baseline		
ADL Score		
Functional performance Follow-up		
ADL Score		
Mortality Follow-up		
12 months		
6 patients	8.7	
12 months	14.6	

Appendix C.

Table C1. Mortality outcomes of the study population.

Outcomes	n	%
Mortality Follow-up		
12 months		
6 patients	8.7	
12 months	14.6	

Appendix D.

Table D1. Functional performance outcomes of the study population.

Outcomes	n	%
Functional performance Baseline		
ADL Score		
Functional performance Follow-up		
ADL Score		
Mortality Follow-up		
12 months		
6 patients	8.7	
12 months	14.6	

References

1. Mehta P, Donnelly D, Wilkins E, et al. Endovascular aortic repair for abdominal aortic aneurysms: a meta-analysis. The Lancet. 2014;384(9952):1711-1721.

2. De-Abreu JA, van der Graaf Y, van Lieshout EM, et al. Endovascular repair of infrarenal abdominal aortic aneurysms with fenestrated endografts: a systematic review and meta-analysis. Eur J Vasc Endovasc Surg. 2014;47(5):582-592.

3. Dake MD, Faries PL, Diethrich EB, et al. Initial results of the我院血管内治疗的临床应用。2021, Vol. 28(6) 852 –859

© The Author(s) 2021

Endovascular aortic repair (EVAR) is well established in clinical practice for treating abdominal aortic aneurysms (AAA) located below the visceral arteries.1,2 Because of low immediate morbidity and mortality rates compared with open surgical repair (OSR), EVAR is often the procedure of choice.3,4 In recent years, endovascular techniques for aortic repair have developed extensively. Fenestrated EVAR (FEVAR) and branched EVAR (BEVAR) allow for endovascular treatment of complex aortic aneurysms,
comprising segments of the entire aortoiliac tract, including the arch. These techniques have greatly expanded treatment options. Patients with complex aortic aneurysms who are considered too frail for OSR because of (cardiopulmonary) comorbidities, decreased physical performance or other factors increasing the risk of adverse outcomes, can now also be operated using a less invasive endovascular approach. These extensive EVAR procedures have a higher morbidity and mortality risk than conventional infrarenal EVAR. Thirty-day mortality rates ranging from 3.4% up to 8.6% have been reported in complex EVAR, compared with an average of 1.2% in conventional EVAR.\(^5\)\(^-\)\(^9\)

Besides morbidity and mortality, patients undergoing complex EVAR are at risk of decline in functional performance. Living independently of care and maintaining quality of life are highly valued outcomes, especially in older patients.\(^10\)\(^-\)\(^12\) While high technical success rates are commonly reported, evidence on functional performance after complex EVAR is scarce.\(^13\)\(^,\)\(^14\) Information on postoperative functional performance is important in order to properly inform patients about the consequences of treatment. We evaluated the functional outcome of patients undergoing complex EVAR in a tertiary referral center. To our knowledge, this study is the only study that examined functional performance after complex EVAR, using a prospectively maintained database.

Materials and Methods

Study Design and Setting

A single-center retrospective cohort study was performed, using data from a prospectively maintained secure computerized database of consecutive patients who underwent complex EVAR in the Leiden University Medical Center, a tertiary referral center (LUMC, The Netherlands). Patients were included since the introduction of complex EVAR in this hospital in July 2013, until September 2020. The database was approved by the LUMC Medical Ethics Committee (METC). Any information not provided by this database was subtracted from patients’ medical records. As in the standard care pathway, all patients were seen at 6 weeks, 6 months, and 12 months post-surgery and yearly after that for outpatient-based follow-up. Additional appointments were made if deemed necessary. Computed tomography angiography, duplex ultrasonography, and abdominal X-ray were used in follow-up. Given the retrospective character of the current study, the METC waived the necessity for informed consent.

As of May 2017, all patients scheduled for complex EVAR were referred to the LUMC geriatric department to undergo a comprehensive geriatric assessment. No selection based on patient demographics was made. This included (Instrumental) Activities of Daily Living Scores ((I)ADL), the 6-item Cognitive Impairment Test (6-CIT), and a Mini Nutritional Assessment (MNA). If the patient gave informed consent for follow-up, they were included in the Triage of Elderly Needing Treatment (TENT) study (ID number: NL53575.058.15).\(^15\) For these patients, geriatric scores were gathered again at 12 months postsurgery, by phone. In the current study, (I)ADL-scores were used to examine functional performance at 12 months.

Patients and Procedures

Complex EVAR was defined as endovascular aortic surgery that entailed correction of an aneurysm including the visceral segment, with or without thoracic involvement. Baseline characteristics were described by demographics, living status, aneurysm characteristics, comorbidities, risk factors, and exercise tolerance by the estimated metabolic equivalent of task (MET) score.\(^16\) (I)ADL-scores were measured by the Katz Index of Independence in Activities of Daily Living (Katz ADL) and the Lawton Instrumental Activities of Daily Living Scale (Lawton IADL).\(^17\)\(^,\)\(^18\) The Katz ADL measures the (in)dependency of patients with regard to 6 daily life activities: bathing, getting dressed, toileting, transfers, continence, and feeding. For each activity, patients can score 0 (fully independent) to 2 (dependent). Patients are categorized on a hierarchic 0 to 12 scale, with 0 being independent and 12 being fully dependent in all 6 activities. The Lawton IADL measures the (in)dependency of patients with regard to 8 more complex activities: using the phone, shopping, preparing food, housekeeping, doing laundry, mode of transportation, responsibility for personal medication, and handling finances. Patients are categorized on a 0 to 24 scale, scoring 0 (fully independent) to 3 (not capable/has never performed) per category. The 6-CIT and MNA were used to examine cognitive impairment (score >7) and malnutrition risk (score <11), respectively.\(^19\)\(^-\)\(^21\) Both the Katz ADL and Lawton IADL are of sufficient validity when conducted by phone.\(^22\)\(^,\)\(^23\)

Outcomes

Adverse outcome measures for the total patient group were postoperative discharge to a nursing home and mortality at 12 months post-surgery. Clinical outcomes were: 30-day mortality, length of hospital stay, and major surgical complications defined as complications with a Clavien-Dindo score of III-IV.\(^24\)

For the 23 complex EVAR patients included in the TENT-study, the additional adverse outcome was the incidence of functional decline at 12 months post-surgery. This was defined as an increase of at least 2 points on the Katz ADL and/or Lawton IADL scale. This entails the patient becoming (more) dependent in at least one category and is
in line with definitions of functional decline used in other fields.25–27

Statistical Methods
Baseline characteristics were expressed by number of patients and percentages, or as mean with the standard deviation (SD) in case of normal distribution. In case of skewed distribution, characteristics were presented as median with the interquartile range (Q1, Q3). Patients who did give informed consent for geriatric follow-up were compared with patients who did not consent, based on baseline characteristics. The independent \(t \) test was used for continuous normally distributed data, chi-square test for categorical data, and the Mann-Whitney \(U \) test for skewed data. All analyses were made using IBM SPSS Statistics version 26.

Results
Patient Characteristics
A total of 82 consecutive patients who underwent complex EVAR were included. Figure 1 shows a flowchart of patient inclusion. Table 1 shows the baseline characteristics of these patients; 68 (82.9%) were male, with a mean age of 73.3 years (SD=6.3). Mean aneurysm size was 65.1 mm (SD=11.1) and 17 patients (20.7%) had undergone previous aortic repair surgery (open or endovascular). Most patients (n=77, 93.9%) were hospitalized from home. Three patients (3.7%) were living in a nursing home, 1 patient (1.2%) lived in a homeless shelter and 1 patient (1.2%) had an unknown living situation at admission. The median ADL baseline score was 0.0 (IQR=0.0, 0.0) and the median IADL score was 1.0 (IQR=0.0, 3.75). Aneurysms were treated using FEVAR (59.8%), BEVAR (25.6%), FBEVAR (11.0%, using a graft with fenestrations and branches) and Arch-FEVAR (3.7%).

Care Dependency at Discharge
Figure 2 shows the living status at admission and the destination of discharge after hospital stay. At discharge, 60 patients (73.2%) were able to return to their preadmission living status, either with or without (additional) home care. Fifteen patients (18.3%) admitted from home, were discharged to a rehabilitation center, which was intended to be temporary. One patient (1.2%) previously living in a nursing home was discharged to a rehabilitation center. It is unknown whether this patient was more care dependent at discharge. No complex EVAR patients were newly admitted to a nursing home postsurgery.

Functional Performance
Twenty-three out of the 55 complex EVAR patients referred for geriatric assessment gave informed consent for follow-up and were included in the TENT-study for a functional performance analysis (Figure 1).

There was no significant difference between the baseline geriatric scores of patients that did give informed consent for follow-up and patients who did not give consent. Patients who did give informed consent were significantly older compared with patients who did not consent to follow-up (75.6 vs 71.8, \(p=0.027 \)). Baseline geriatric scores of the 23
patients included in follow-up are depicted in Table 2. The median preoperative ADL score of these 23 patients was 0.0 (IQR=0.0, 1.0). The median preoperative IADL-score was 1.0 (IQR=0.0, 4.0). The MNA showed that 3 patients (13.0%) were at risk for malnutrition. Cognitive impairment, measured by the 6-CIT, was present in 1 out of 23 patients (4.3%). Functional outcomes are depicted in Figure 3. At 12 months, 5 patients presented with functional decline (21.7%), 3 patients with IADL decline only, and 2 patients with IADL as well as ADL decline. ADL decline was mainly caused by the need for assistance in bathing and getting dressed (n=2). IADL decline was mostly caused by needing assistance in shopping (n=3). Mortality at 12 months was 17.4% (n=4). This means that 39.1% of the patients in the care pathway suffered an adverse outcome at 12 months postsurgery.

Medical records of the 5 patients who presented (I)ADL decline were searched for postoperative adverse events that could have caused their functional decline. In 1 patient, a preexistent cognitive disorder worsened during follow-up. No potential function-limiting major complications were registered for this patient. In 2 patients, major complications following complex EVAR were reported: spinal ischemia (n=1) and arterial occlusion of the lower limb (n=1). For 2 patients, no adverse events were registered during follow-up, while no function-limiting major complications of complex EVAR were registered to have occurred.

Table 1. Patient Characteristics at Baseline.

Variable (Unit)	Total Patient Group (n=82)
Age (years), mean (SD)	73.3 (6.3)
Male, n (%)	68 (82.9)
BMI (kg/m²), mean (SD)	26.7 (3.6)
Aneurysm size (mm), mean (SD)	65.1 (11.1)
Procedure type, n (%)	
FEVAR	49 (59.8)
BEVAR	21 (25.6)
FBEVAR	9 (11.0)
Arch-FEVAR	3 (3.7)
ASA score ≥ 3, n (%)	48 (58.5)
Comorbidities, n (%)	
Cardiac	53 (64.6)
Pulmonary	27 (32.9)
eGFR < 60 mL/min/1.73m², n (%)	33 (40.2)
CVA/TIA	20 (24.4)
Peripheral vascular disease	16 (19.5)
Diabetes mellitus type 2	11 (13.4)
Malignancy	
Active	3 (3.7)
Cured	20 (24.4)
Other comorbidities	26 (31.7)
Risk factors, n (%)	
Currently smoking	25 (30.5)
Hypercholesterolemia	26 (31.7)
Hypertension	59 (72.0)
Previous aortic repair, n (%)	17 (20.7)
Low tolerance of exercise (MET 1–4), n (%)	12 (14.6)
Living status, n (%)	
Home	77 (93.9)
Nursing home	3 (3.7)
Other/unknown	2 (2.4)
Baseline (I)ADL scores	n=40
ADL, median (IQR)	0.0 (0.0, 0.0)
IADL, median (IQR)	1.0 (0.0, 3.75)

Abbreviations: AAA, abdominal aortic aneurysm; ACS, acute coronary syndrome; ADL, activities of daily living; ASA, American Society of Anesthesiologists classification; BEVAR, branched endovascular aortic repair; BMI, body mass index; COPD, chronic obstructive pulmonary disease; CVA, cerebrovascular accident; eGFR, estimated glomerular filtration rate; FEVAR, fenestrated endovascular aortic repair; IADL, instrumental activities of daily living; IQR, interquartile range (Q1, Q3); MET, metabolic equivalent of task; MI, myocardial infarction; TIA, transient ischemic attack.

Perioperative outcomes are depicted in Table 3. Twenty-four complications with a Clavien-Dindo score of III-IV were registered, which meant that surgical, laparoscopic, or radiological intervention was necessary or a life-threatening complication took place during hospital stay. These 24 complications occurred in 19 patients (23.2%), including 2 out of the 5 patients who presented functional decline. Median length of hospital stay was 7.0 days (IQR=4.5, 12.5). Median length of follow-up was 21.5 months (IQR=4.1, 42.9). Complications that occurred during follow-up are presented in Table 4. Complications were detected in 33 patients (40.2%); the most common complication was aneurysm sac enlargement (n=19, 23.2%). In 11 patients (13.4%), 17 surgical reinterventions were necessary for complications during follow-up, including 1 out of the 5 patients that suffered functional decline. In addition, 12 patients (14.6%) needed endoleak repair.

Mortality

Mortality numbers are depicted in Table 4. Within 30 days postsurgery, 6 patients (7.3%) died. These patients were treated by FEVAR (n=3), arch-FEVAR (n=2), and BEVAR (n=1). Five deaths were procedure related and occurred in the hospital: intraoperative type A dissection (n=1), pneumonia (n=1), respiratory failure (n=2), and renal failure (n=1). Mortality within 12 months was 14.6% (12 patients). Total mortality during a median follow-up of 21.5 months (IQR=4.1, 42.9) was 22.0% (18 patients), of which 7 deaths (38.9%) were surgery or aneurysm related.

Discussion

No patients were discharged to a nursing home and mortality rates were 7.3% and 14.6% at 30 days and 12 months, respectively, for the total patient group. Major adverse
events occurred in 23.2% of patients. Patients included in the TENT-study suffered functional decline at 12 months postsurgery in 21.7% (n=5) and 12-month mortality was 17.4%.

The value of these results is difficult to interpret because of the lack of data on functional performance after complex EVAR. We can however compare these results with functional performance after conventional EVAR and OSR. Rectenwald et al28 showed that 79.5% of patients who underwent OSR for a thoracoabdominal aneurysm was discharged to home or a rehabilitation facility (91.5% in our study), whereas 20.5% (0% in our study) was newly discharged to a nursing home. Arko et al29 reported that 21% of EVAR patients and 25% of OSR patients were not able to shop/travel at the same level prior to surgery at 6-month follow-up. In addition, 4% of OSR patients lost the ability to independently bathe/eat at the same level compared with presurgery.29 These results approximate the 21.7% of patients with functional decline at 12 months in our patient cohort. Williamson et al30 studied patients who underwent OSR for an infrarenal aneurysm, and reported a decrease in 33% of patients in their functional abilities, including transportation and shopping at a mean follow-up of 34 months. Blommaart et al31 showed that 46.2% of patients acutely hospitalized for internal medicine was either deceased of functionally declined 12 months later. For patients considered frail, this percentage was 67.0%.

By including all 82 consecutive patients that underwent complex EVAR, it was attempted to present an unselected “real-world” patient group, commensurate with patients seen in a daily clinical practice. The 30-day mortality rate found in the current study (7.3%) is higher compared with the mortality rate found by Van Calster et al32 (4.9%) and lower compared with the 30-day mortality rates mentioned by Oderich et al6 (8.2%) and Tran et al7 (8.6%). The difference with Van Calster et al32 could be explained by different procedures being included. A relatively low percentage of patients was treated for extensive aneurysms using BEVAR (9.2% vs. 25.6% in our study) and no patients were treated using Arch-FEVAR (3.7% in the current study). The use of differing definitions of “complex” EVAR should be kept in mind when interpreting results in the available literature.

This study has several limitations. The number of patients that could be included in the (I)ADL analysis (n=23) is small. However, to our knowledge, this study is the only study that examined functional performance after complex EVAR, using a prospectively maintained database.33 Another limitation is formed by potential confounders for functional decline during follow-up, such as adverse events not related to the complex EVAR procedure and aging. Although a fixed (I)ADL decline per year of aging is not established in the available literature, we cannot ignore that with increasing age, functional performance declines.34,35 By confining follow-up to 12 months, we attempted to limit the influence of aging as a confounding factor. Possible confounding adverse events were reported descriptively for the functionally declined patients. Surprisingly, some patients improved in function (Figure 3). Given the fact that patients electively treated for aortic aneurysms are usually asymptomatic prior to surgery, this is remarkable. One explanation could be that follow-up (I)ADL scores were self-reported, which could lead to an overestimation bias.36,37

Table 2. Geriatric Scores and Functional Performance of Patients Included in the TENT-study (n=23).

Geriatric Domain	Scores
ADL, median (IQR)	0.0 (0.0, 1.0)
IADL, median (IQR)	1.0 (0.0, 4.0)
Cognitive impaired (6-CIT>7), n (%)	1 (4.3)
At risk for malnutrition (MNA<11), n (%)	3 (13.0)

Patients with functional decline at 12 mo, n (%):
- Total: 5 (21.7)
- IADL decline only: 3 (13.0)
- IADL and ADL decline: 2 (8.7)
- Deceased: 4 (17.4)

Abbreviations: 6-CIT: 6-item Cognitive Impairment Test; ADL, activities of daily living; IADL, instrumental activities of daily living; IQR, interquartile range (Q1, Q3); MNA, Mini Nutritional Assessment; TENT, Triage of Elderly Needing Treatment.
It could also be that with treatment of the aneurysm other function-limiting conditions, such as claudication caused by iliac stenosis, improved. In addition, medication use, nutrition, or postoperative home care might have been optimized during hospital stay. This was not further examined in the current study.

When comparing functional performance after conventional EVAR, OSR, and hospitalized older patients in other fields, complex EVAR results are promising. Even more so considering the general frailty of complex EVAR patients, which makes this group often not suitable for OSR. However, for some patients, the prospect of losing independence or not being able to return home after surgery is unacceptable and can be reason to renounce treatment. Therefore, multidisciplinary efforts should be directed toward preventing postoperative functional decline and care dependency.

Conclusions

The results found in this study give insight in functional performance after complex EVAR. No patients were newly discharged to a nursing home and functional performance results at 12 months are promising. To our knowledge, this is the only study examining functional performance after complex EVAR, by providing data from a prospectively maintained database. Future multidisciplinary research should focus on determining which patients are most prone to deterioration in function, to support treatment decisions and to optimize patient selection, so that efforts can be directed toward preventing postoperative functional decline.
Table 4. Mortality and Complications During Follow-up.

Category	Number (Percentage)
Total deaths during follow-up, n (% of patients)	
Operative deaths (<30 days)	18 (22.0)
In-hospital	6 (7.3)
Within 1 year	5 (6.1)
Causes of death, n (% of deaths)	
Aneurysm/complex EVAR-related deaths	7 (38.9)
Non-aneurysm related deaths	5 (27.8)
Undefined relation	6 (33.3)
Complications during follow-up, n (%)	
Arterial thrombosis	2 (2.4)
Stent-graft infection	2 (2.4)
Graft migration	1 (1.2)
Aneurysm sac enlargement	19 (23.2)
Stent fracture	3 (3.7)
Aneurysm rupture	0 (0.0)
Other	15 (18.3)
Number of reinterventions, n	29
Patients requiring one or more surgical	11 (13.4)
reinterventions, n (%)	
Patients requiring endoleak treatment, n (%)	12 (14.6)

Abbreviation: EVAR, endovascular aortic repair.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iDs

Yara van Holstein https://orcid.org/0000-0002-6882-639X
Joost R. van der Vorst https://orcid.org/0000-0002-0669-4272

References

1. Criado FJ. EVAR at 20: the unfolding of a revolution: new technique that changed everything. J Endovasc Ther. 2010;17:789–796.
2. Parodi JC, Palmaz JC, Barone HD. Transfemoral intraluminal graft implantation for abdominal aortic aneurysms. Ann Vasc Surg. 1991;5:491–499.
3. Chaikof EL, Dalman RL, Eskandari MK, et al. The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J Vasc Surg. 2018;67:2–77.
4. Wanhainen A, Verzini F, Van Herzeel I, et al. Editor’s Choice—European Society for Vascular Surgery (ESVS) 2019 Clinical Practice Guidelines on the management of abdominal aorto-iliac artery aneurysms. Eur J Vasc Endovasc Surg. 2019;57:8–93. doi:10.1016/j.ejvs.2018.09.020
5. Kansagra K, Kang J, Taon MC, et al. Advanced endografting techniques: snorkels, chimneys, periscopes, fenestrations, and branched endografts. Cardiovasc Diagn Ther. 2018;8:S175–S183. doi:10.21037/cdt.2017.08.17
6. Oderich GS, Ribeiro M, Reis de Souza L, et al. Endovascular repair of thoracoabdominal aortic aneurysms using fenestrated and branched endografts. J Thorac Cardiovasc Surg. 2017;153:S32–S41. doi:10.1016/j.jtcvs.2016.10.008
7. Tran K, Lee AM, McFarland GE, et al. Complex endovascular aneurysm repair is associated with higher perioperative mortality but not late mortality compared with infrarenal endovascular aneurysm repair among octogenarians. J Vasc Surg. 2019;69:327–333.
8. Ultee KHJ, Zettervall SL, Soden PA, et al. Perioperative outcome of endovascular repair for complex abdominal aortic aneurysms. J Vasc Surg. 2017;65:1567–1575.
9. Yin K, Locham SS, Schermerhorn ML, et al. Trends of 30-day mortality and morbidities in endovascular repair of intact abdominal aortic aneurysm during the last decade. J Vasc Surg. 2019;69:64–73.
10. Solomon MJ, Pager CK, Keshava A, et al. What do patients want? Patient preferences and surrogate decision making in the treatment of colorectal cancer. Dis Colon Rectum. 2003;46:1351–1357.
11. Urbach DR. Measuring quality of life after surgery. Surg Innov. 2005;12:161–165.
12. Stegman ME, Festen S, Brandenbarg D, et al. Using the Outcome Prioritization Tool (OPT) to assess the preferences of older patients in clinical decision-making: a review. Maturitas. 2019;128:49–52.
13. EVAR Trial Participants. Endovascular aneurysm repair and outcome in patients unfit for open repair of abdominal aortic aneurysm (EVAR trial 2): randomised controlled trial. Lancet. 2005;365:2187–2192.
14. Kayssi A, DeBord Smith A, Roche-Nagle G, et al. Health-related quality-of-life outcomes after open versus endovascular abdominal aortic aneurysm repair. J Vasc Surg. 2015;62:491–498.
15. Van Holstein Y, van Deudekom FJ, Trompet S, et al. Design and rationale of a routine clinical care pathway and prospective cohort study in older patients needing intensive treatment. BMC Geriatr. 2021;21(1):29.
16. Fletcher GF, Ades PA, Kligfield P, et al. Exercise standards for testing and training: a scientific statement from the American Heart Association. Circulation. 2013;128:873–934.
17. Katz S, Ford AB, Moskowitz RW, et al. Studies of illness in the aged. The index of ADL: a standardized measure of biological and psychosocial function. JAMA. 1963;185:914–919.
18. Lawton MP, Brody EM. Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist. 1969;9:179–186.
19. Katzman R, Fuld P, Peck A, et al. Validation of a short Orientation-Memory-Concentration Test of cognitive impairment. Am J Psychiatry. 1983;140:734–739.
20. Brooke P, Bullock R. Validation of a 6 item cognitive impairment test with a view to primary care usage. Int J Geriatr Psychiatry. 1999;14:936–940.
21. Guigoz Y, Vellas B, Garry PJ. Assessing the nutritional status of the elderly: the Mini Nutritional Assessment as part of the geriatric evaluation. Nutr Rev. 1996;54:59–65.
22. Ciesla JR, Shi L, Stoskopf CH, et al. Reliability of Katz’s Activities of Daily Living Scale when used in telephone interviews. Eval Health Prof. 1993;16:190–203.
23. Dauphinot V, Boublay N, Moutet C, et al. Comparison of Instrumental Activities of Daily Living assessment by face-to-face or telephone interviews: a randomized, crossover study. *Alzheimers Res Ther*. 2020;12:24.

24. Dindo D, Demartines N, Clavien P. Classification of surgical complications. A new proposal with evaluation in a cohort of 6336 patients and results of a survey. *Ann Surg*. 2004;240:205–213.

25. Lawrence VA, Hazuda HP, Cornell JE, et al. Functional independence after major abdominal surgery in the elderly. *J Am Coll Surg*. 2004;199:762–772.

26. Hoogerduijn JG, de Rooij SE, Grobbee DE, et al. Predicting functional decline in older patients undergoing cardiac surgery. *Age Ageing*. 2014;43:218–221.

27. Govers AC, Buurman BM, Jue P, et al. Functional decline of older patients 1 year after cardiothoracic surgery followed by intensive care admission: a prospective longitudinal cohort study. *Age Ageing*. 2014;43:575–580.

28. Rectenwald JE, Huber TS, Martin TD, et al. Functional outcome after thoracoabdominal aortic aneurysm repair. *J Vasc Surg*. 2002;35:640–647.

29. Arko FR, Hill BB, Reeves TR, et al. Early and late functional outcome assessments following endovascular and open aneurysm repair. *J Endovasc Ther*. 2003;10:2–9.

30. Williamson WK, Nicolloff AD, Taylor LM Jr, et al. Functional outcome after open repair of abdominal aortic aneurysm. *J Vasc Surg*. 2001;33:913–920.

31. Blomaard LC, Lucke JA, de Gelder J, et al. The APOP screener and clinical outcomes in older hospitalised internal medicine patients. *Neth J Med*. 2020;78:25–33.

32. Van Calster K, Bianchini A, Elias F, et al. Risk factors for early and late mortality after fenestrated and branched endovascular repair of complex aneurysms. *J Vasc Surg*. 2019;69:1342–1355.

33. Kärkkäinen JM, Sandri GA, Tenorio ER, et al. Prospective assessment of health-related quality of life after endovascular repair of pararenal and thoracoabdominal aortic aneurysms using fenestrated-branched endografts. *J Vasc Surg*. 2019;69:1356–1366. doi:10.1016/j.jvs.2018.07.060

34. Brown RT, Diaz-Ramirez LG, Boscardin WJ, et al. Functional impairment and decline in middle age: a cohort study. *Ann Intern Med*. 2017;167:761–768.

35. Hayase D, Mosenteen D, Thimmaiah D, et al. Age-related changes in activities of daily living ability. *Aust Occup Ther J*. 2004;51:192–198.

36. Schaller A, Rudolf K, Dejonghe L, et al. Influencing factors on the overestimation of self-reported physical activity: a cross-sectional analysis of low back pain patients and healthy controls. *Biomed Res Int*. 2016;2016:1497213. doi:10.1155/2016/1497213

37. Janevic MR, McLaughlin SJ, Connell CM. Overestimation of physical activity among a nationally representative sample of underactive individuals with diabetes. *Med Care*. 2012;50:441–445.