A SUFFICIENT CONDITION FOR THE INSERTION OF A CONTRA-CONTINUOUS (BAIRE-ONE) FUNCTION

MAJID MIRMIRAN

Abstract. A sufficient condition for the insertion of a contra-continuous (resp. Baire-one) function between two comparable real-valued functions is given on the topological spaces that Λ-sets are open (resp. $G_{δ}$-sets).

1. Introduction

Results of Katětov [4], [5] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [1], are used in order to give a sufficient condition for the insertion of a contra-continuous (resp. Baire-one) function between two comparable real-valued functions on the topological spaces that Λ-sets [7] are open (resp. $G_{δ}$-sets).

A generalized class of closed sets was considered by Maki in 1986 [7]. He investigated the sets that can be represented as union of closed sets and called them V-sets. Complements of V-sets, i.e., sets that are intersection of open sets are called Λ-sets [7].

A real-valued function f defined on a topological space X is called contra-continuous [2] (resp. Baire-one) if the preimage of every open subset of \mathbb{R} is closed (resp. $F_{σ}$-set) in X.

If g and f are real-valued functions defined on a space X, we write $g \leq f$ in case $g(x) \leq f(x)$ for all x in X.

2. The main result

Before giving a sufficient condition for insertability of a contra-continuous (Baire-one) function, the necessary definitions and terminology are stated.

Definition. Let A be a subset of a topological space (X, τ). We define the subsets $A^{Λ}$ and A^{V} as follows: $A^{Λ} = \bigcap\{O : O \supseteq A, O \in (X, \tau)\}$ and $A^{V} = \bigcup\{F : F \subseteq A, F^{c} \in (X, \tau)\}$. In [3], [6], $A^{Λ}$ is called the kernel of A.

The following first two definitions are due to, or are modifications of, conditions considered in [4], [5].

2000 Mathematics Subject Classification. Primary 54C08, 54C10; Secondary 26A15, 54C30.

Key words and phrases. Contra-continuous function, Baire-one function, Λ-sets, Lower cut set.
Definition. If ρ is a binary relation in a set S then $\bar{\rho}$ is defined as follows: $x \bar{\rho} y$ if and only if $y \rho v$ implies $x \rho v$ and $u \rho x$ implies $u \rho y$ for any u and v in S.

Definition. A binary relation ρ in the power set $\mathcal{P}(X)$ of a topological space X is called a strong binary relation in $\mathcal{P}(X)$ in case ρ satisfies each of the following conditions:

1. If $A_1 \rho B_j$ for any $i \in \{1, \ldots, m\}$ and for any $j \in \{1, \ldots, n\}$, then there exists a set C in $\mathcal{P}(X)$ such that $A_i \rho C$ and $C \rho B_j$ for any $i \in \{1, \ldots, m\}$ and any $j \in \{1, \ldots, n\}$.
2. If $A \subseteq B$, then $A \bar{\rho} B$
3. If $A \rho B$, then $A^\Lambda \subseteq B$ and $A \subseteq B^\Lambda$.

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [1] as follows:

Definition. If f is a real-valued function defined on a space X and if $\{x \in X : f(x) < l\} \subseteq A(f, l) \subseteq \{x \in X : f(x) \leq l\}$ for a real number l, then $A(f, l)$ is a lower indefinite cut set in the domain of f at the level l.

We now give the following main result:

Theorem 1. Let g and f be real-valued functions on the topological space X, that Λ-sets in X are open (resp. G_δ-sets), with $g \leq f$. If there exists a strong binary relation ρ on the power set of X and if there exist lower indefinite cut sets $A(f, t)$ and $A(g, t)$ in the domain of f and g at the level t for each rational number t such that if $t_1 < t_2$ then $A(f, t_1) \rho A(g, t_2)$, then there exists a contra-continuous (resp. Baire-one) function h defined on X such that $g \leq h \leq f$.

Proof. Let g and f be real-valued functions defined on the X such that $g \leq f$. By hypothesis there exists a strong binary relation ρ on the power set of X and there exist lower indefinite cut sets $A(f, t)$ and $A(g, t)$ in the domain of f and g at the level t for each rational number t such that if $t_1 < t_2$ then $A(f, t_1) \rho A(g, t_2)$.

Define functions F and G mapping the rational numbers \mathbb{Q} into the power set of X by $F(t) = A(f, t)$ and $G(t) = A(g, t)$. If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then $F(t_1) \rho F(t_2)$, $G(t_1) \rho G(t_2)$, and $F(t_1) \rho G(t_2)$. By Lemmas 1 and 2 of [5] it follows that there exists a function H mapping \mathbb{Q} into the power set of X such that if t_1 and t_2 are any rational numbers with $t_1 < t_2$, then $F(t_1) \rho H(t_2)$, $H(t_1) \rho H(t_2)$ and $H(t_1) \rho G(t_2)$.

For any x in X, let $h(x) = \inf\{t \in \mathbb{Q} : x \in H(t)\}$.

We first verify that $g \leq h \leq f$: If x is in $H(t)$ then x is in $G(t')$ for any $t' > t$; since x in $G(t') = A(g, t')$ implies that $g(x) \leq t'$, it follows that $g(x) \leq t$. Hence $g \leq h$. If x is not in $H(t)$, then x is not in $F(t')$ for any $t' > t$; since x is not in $F(t') = A(f, t')$ implies that $f(x) > t'$, it follows that $f(x) \geq t$. Hence $h \leq f.$
Also, for any rational numbers \(t_1 \) and \(t_2 \) with \(t_1 < t_2 \), we have \(h^{-1}(t_1, t_2) = H(t_2)^V \setminus H(t_1)^A \). Hence \(h^{-1}(t_1, t_2) \) is closed (resp. \(F_\sigma \)-set) in \(X \), i.e., \(h \) is a contra-continuous (resp. Baire-one) function on \(X \). \(\square \)

The above proof used the technique of Theorem 1 of [4].

3. Applications

Definition. A real-valued function \(f \) defined on a space \(X \) is called upper semi-contra-continuous (resp. lower semi-contra-continuous) if \(f^{-1}(-\infty, t) \) (resp. \(f^{-1}(t, +\infty) \)) is closed for any real number \(t \).

Definition. A real-valued function \(f \) defined on a space \(X \) is called upper semi-Baire-one (resp. lower semi-Baire-one) if \(f^{-1}(-\infty, t) \) (resp. \(f^{-1}(t, +\infty) \)) is \(F_\sigma \)-set for any real number \(t \).

The abbreviations \(usc \), \(lsc \), \(uscc \), \(lsc \), \(usB_1 \) and \(lsB_1 \) are used for upper semicontinuous, lower semicontinuous, upper contra-continuous, lower contra-continuous, upper semi-contra-continuous, upper semi-Baire-one, and lower semi-Baire-one, respectively.

Corollary 1. Let \(g \) and \(f \) be real-valued functions defined on a space \(X \), that \(\Lambda \)-sets in \(X \) are open, such that \(f \) is \(lsc \), \(g \) is \(uscc \), and \(g \leq f \). If \(X \) is a extremally disconnected space, then there exists a contra-continuous function \(h \) defined on \(X \) such that \(g \leq h \leq f \).

Proof. Let \(g \) be \(uscc \), let \(f \) be \(lsc \), and \(g \leq f \). If a binary relation \(\rho \) is defined by \(A \rho B \) in case \(A^\Lambda \subseteq B^V \), and if \(X \) is a extremally disconnected space then \(\rho \) is a strong binary relation in the power set of \(X \). For each \(t \) in \(\mathbb{Q} \), let \(A(f, t) \) and \(A(g, t) \) be any lower indefinite cut sets for \(f \) and \(g \) respectively. If \(t_1 \) and \(t_2 \) are any elements of \(\mathbb{Q} \) with \(t_1 < t_2 \), then

\[
A(f, t_1) \subseteq \{ x \in X : f(x) \leq t_1 \} \subseteq \{ x \in X : g(x) < t_2 \} \subseteq A(g, t_2);
\]

since \(\{ x \in X : f(x) \leq t_1 \} \) is open and since \(\{ x \in X : g(x) < t_2 \} \) is closed, it follows that \(A(f, t_1)^A \subseteq A(g, t_2)^V \). Hence \(t_1 < t_2 \) implies that \(A(f, t_1) \rho A(g, t_2) \). The proof follows from Theorem 1. \(\square \)

Corollary 2. Let \(g \) and \(f \) be real-valued functions defined on a space \(X \), that \(\Lambda \)-sets in \(X \) are open, such that \(f \) is \(lsc \), \(g \) is \(uscc \), and \(f \leq g \). If \(X \) is a normal space, then there exists a contra-continuous \(h \) defined on \(X \) such that \(f \leq h \leq g \).

Proof. Let \(f \) be \(lsc \), \(g \) be \(uscc \), and \(f \leq g \). A binary relation \(\rho \) is defined by \(A \rho B \) in case \(A^\Lambda \subseteq F \subseteq F^\Lambda \subseteq B^V \) for some closed set \(F \) in \(X \). If \(X \) is normal, then \(\rho \) is a strong binary relation in the power set of \(X \). If \(t_1 \) and \(t_2 \) are any elements of \(\mathbb{Q} \) with \(t_1 < t_2 \), then

\[
A(g, t_1) = \{ x \in X : g(x) < t_1 \} \subseteq \{ x \in X : f(x) \leq t_2 \} = A(f, t_2);
\]

since \(\{ x \in X : g(x) < t_1 \} \) is closed and since \(\{ x \in X : f(x) \leq t_2 \} \) is open and \(X \) is normal, it follows that \(A(g, t_1) \rho A(f, t_2) \). The proof follows from Theorem 1. \(\square \)
Corollary 3. Let \(g \) and \(f \) be real-valued functions defined on a space \(X \), that \(\Lambda \)-sets in \(X \) are \(G_\delta \)-sets, such that \(f \) is \(h \)-Baire-one function. If, for each pair of disjoint \(G_\delta \)-sets \(F_0, F_1 \), there are two \(F_\sigma \)-sets \(F_0 \) and \(F_1 \) such that \(F_0 \subseteq F_0 \), \(G_1 \subseteq F_1 \) and \(F_0 \cap F_1 = \emptyset \), then there exists a \(\Lambda \)-set such that \(g \leq h \leq f \).

Proof. Let \(f \) be \(h \)-Baire-one function. If a binary relation \(\rho \) is defined by \(A \rho B \) in case \(A \subseteq B \), then by hypothesis \(\rho \) is a strong binary relation in the power set of \(X \). If \(t_1 \) and \(t_2 \) are any elements of \(\mathbb{Q} \) with \(t_1 < t_2 \), then

\[
A(f, t_1) \subseteq \{ x \in X : f(x) \leq t_1 \} \subseteq \{ x \in X : g(x) < t_2 \} \subseteq A(g, t_2);
\]

since \(\{ x \in X : f(x) \leq t_1 \} \) is \(G_\delta \)-set and \(\{ x \in X : g(x) < t_2 \} \) is \(F_\sigma \)-set, it follows that \(A(f, t_1) \subseteq A(g, t_2) \). Hence \(t_1 < t_2 \) implies that \(A(f, t_1) \rho A(g, t_2) \). The proof follows from Theorem 1.

Corollary 4. Let \(g \) and \(f \) be real-valued functions defined on a space \(X \), that \(\Lambda \)-sets in \(X \) are \(G_\delta \)-sets, such that \(f \) is \(h \)-Baire-one function. If, for each pair of disjoint \(F_\sigma \)-sets \(F_0, F_1 \), there are two \(G_\delta \)-sets \(G_0 \) and \(G_1 \) such that \(F_0 \subseteq G_0 \), \(G_1 \subseteq F_1 \) and \(G_0 \cap G_1 = \emptyset \), then there exists a \(\Lambda \)-set such that \(f \leq h \leq g \).

Proof. Let \(f \) be \(h \)-Baire-one function. If a binary relation \(\rho \) is defined by \(A \rho B \) in case \(A \subseteq B \), then by hypothesis \(\rho \) is a strong binary relation in the power set of \(X \). If \(t_1 \) and \(t_2 \) are any elements of \(\mathbb{Q} \) with \(t_1 < t_2 \), then

\[
A(g, t_1) = \{ x \in X : g(x) < t_1 \} \subseteq \{ x \in X : f(x) \leq t_2 \} = A(f, t_2);
\]

since \(\{ x \in X : g(x) < t_1 \} \) is a \(F_\sigma \)-set and \(\{ x \in X : f(x) \leq t_2 \} \) is a \(G_\delta \)-set, by hypothesis it follows that \(A(g, t_1) \rho A(f, t_2) \). The proof follows from Theorem 1.

Remark 1 ([4], [5]). If \(g \) and \(f \) be real-valued functions defined on a normal space \(X \) such that \(f \) is \(h \)-Baire-one function. If a binary relation \(\rho \) is defined by \(A \rho B \) in case \(A \subseteq B \), then by hypothesis \(\rho \) is a strong binary relation, is also a necessary condition for the stated insertion property.

References

[1] F. Brooks, Indefinite cut sets for real functions, Amer. Math. Monthly, 78(1971), 1007–1010.
[2] J. Dontchev, Contra-continuous functions and strongly S-closed space, Internat. J. Math. Math. Sci., 19(2) (1996), 303–310.
[3] J. Dontchev, and H. Maki, On sg-closed sets and semi-λ-closed sets, Questions Answers Gen. Topology, 15(2)(1997), 259–266.

[4] M. Katětov, On real-valued functions in topological spaces, Fund. Math., 38(1951), 85–91.

[5] M. Katětov, Correction to, “On real-valued functions in topological spaces”, Fund. Math., 40(1953), 203–205.

[6] S.N. Maheshwari and R. Prasad, On $R_{O\lambda}$-spaces, Portugal. Math., 34(1975), 213–217.

[7] H. Maki, Generalized Λ-sets and the associated closure operator, The special Issue in commemoration of Prof. Kazuada Ikeda’s Retirement, (1986), 139–146.

[8] M.H. Stone, Boundedness properties in function-lattices, Canad. J. Math., 1(1949), 176–189.

Department of Mathematics, University of Isfahan, Isfahan 81744, Iran.

E-mail address: mirmir@sci.ui.ac.ir