Deciphering Key Pharmacological Pathways of Qingdai Acting on Chronic Myeloid Leukemia Using a Network Pharmacology-Based Strategy

Qingdai, a traditional Chinese medicine (TCM) used for the treatment of chronic myeloid leukemia (CML) with good efficacy, has been used in China for decades. However, due to the complexity of traditional Chinese medicinal compounds, the pharmacological mechanism of Qingdai needs further research. In this study, we investigated the pharmacological mechanisms of Qingdai in the treatment of CML using network pharmacology approaches.

First, components in Qingdai that were selected by pharmacokinetic profiles and biological activity predicted putative targets based on a combination of 2D and 3D similarity measures with known ligands. Then, an interaction network of Qingdai putative targets and known therapeutic targets for the treatment of chronic myeloid leukemia was constructed. By calculating the 4 topological features (degree, betweenness, closeness, and coreness) of each node in the network, we identified the candidate Qingdai targets according to their network topological importance. The composite compounds of Qingdai and the corresponding candidate major targets were further validated by a molecular docking simulation.

Seven components in Qingdai were selected and 32 candidate Qingdai targets were identified; these were more frequently involved in cytokine-cytokine receptor interaction, cell cycle, p53 signaling pathway, MAPK signaling pathway, and immune system-related pathways, which all play important roles in the progression of CML. Finally, the molecular docking simulation showed that 23 pairs of chemical components and candidate Qingdai targets had effective binding.

This network-based pharmacology study suggests that Qingdai acts through the regulation of candidate targets to interfere with CML and thus regulates the occurrence and development of CML.

MeSH Keywords: Leukemia, Myelogenous, Chronic, BCR-ABL Positive • Medicine, Chinese Traditional • Molecular Mechanisms of Pharmacological Action • Protein Interaction Maps

Full-text PDF: https://www.medscimonit.com/abstract/index/idArt/908756
Background

Chronic myeloid leukemia (CML) is a clonal hematopoietic stem cell proliferation-induced myeloproliferative disease [1]. It has high heterogeneity and distinct molecular genetic features – the unique cytogenetic features of CML are Philadelphia chromosome t (9; 22) (q34; q11) – in which the c-ABL protooncogene on the long arm of chromosome 9 translocates to the BCR of the long arm of chromosome 22, forming an BCR-ABL fusion gene [2,3], and it has become an important topic of research. Imatinib mesylate and the newer BCR-ABL tyrosine kinase inhibitors are the standard therapy for CML [4], which greatly improves the survival of patients with chronic myeloid leukemia; however, drug resistance and adverse effects remain a problem [5]. Therefore, looking for new strategies to improve the treatment of chronic myeloid leukemia treatment has important clinical significance.

Chinese herbal medicine is a unique medicine used in Chinese medicine to prevent and treat diseases. With the development of medicine around the world, China’s ancient Chinese medicine system is receiving the attention of the world. However, it is the most important and difficult task for Chinese traditional medicine to elucidate the interaction between the complex chemical systems of traditional Chinese medicine and the complex systems of diseases and syndromes. Qingdai is prepared as clumps of dry powder, obtained by machining the leaves or stems of Strobilanthes cusia, Polygonum tinctorium Ait, and Isatis indigotica Fort (Pharmacopoeia of the People’s Republic of China, 2010). Qingdai is one herb in Qing Huang San, which has been recorded in the “Jing Yue Quan Shu,” “Shi Yi De Xiao Fang,” “Qi Xiao Liang Fang,” and so on, and is Professor Zhou Aixiang’s classical prescription of CML treatment [6]. As confirmed by research, indirubin, a component of Qingdai, is indeed effective in the treatment of chronic myeloid leukemia [7]. Dai et al. treated K562 cells with different concentrations of Qingdai compound (2.5, 5, 7.5, 10, and 20 ug/ml) and harvested them at 24 h, reporting that the Qingdai compound inhibited proliferation and promoted apoptosis in K562 cells. Then, the expression of bcr/abl and JWA was detected by semi-quantitative RT-PCR, and concentration-dependent decreases were found in bcr-ABL and JWA expression of K562 cells. It was proved that the Qingdai compound can partially promote the apoptosis of K562 cells by inhibiting the expression of bcr/abl and JWA in K562 cells [8]; however, its specific mechanism needs further study. Therefore, it is necessary to develop a novel strategy to understand the biological processes of the interactions among drugs, genes, and proteins at a systems level in order to discover the molecular mechanisms related to the therapeutic efficacy of TCM.

In recent years, with the continuous innovation and development of systems biology, network pharmacology and molecular docking provide feasible research strategies for exploring the intrinsic principles of effective intervention of traditional Chinese medicine (TCM) components and building multi-target precise treatment modes for TCM [9,10]. It has been successfully applied to the molecular network level understanding of the pharmacological mechanism of TCM. For example, in the treatment of diabetes mellitus, Huangqi and Huanglian showed the synergistic mechanism [11], and through these research strategies we demonstrated the important pharmacological mechanism of Yin huang Qing fei capsule in treating chronic bronchitis [12].

We based the present study on network pharmacology strategies to decipher the pharmacological mechanisms of Qingdai acting on CML. We offer a systems strategy: (1) We collected the chemical components of Qingdai and downloaded structure and screening index data; (2) We predicted putative targets of Qingdai and analyzed putative targets by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis; (3) We collected the known therapeutic targets of drugs in the treatment of CML; (4) We analyzed and investigated the network between putative targets of Qingdai and known therapeutic targets of CML, which provide a strategy for the further study of the pharmacological mechanism of Qingdai on CML; (5) We performed molecular docking between the molecular compounds of Qingdai and the major targets to validate our findings using a computer-aided drug design method. We expected to achieve our experimental goals with this series of experimental methods.

Material and Methods

The technical strategy of this research is shown in Figure 1.

Data preparation

Active compounds of Qingdai

Composite compounds of Qingdai were obtained from TCMSP Database and Literature database. TCMSP (http://lubs.hkbu.edu.hk/LSP/tcmsp.php), updated in 2014-05-31 [13], which is based on the framework of systems pharmacology for herbal medicines, consists of all the 499 Chinese herbs registered in the Chinese pharmacopoeia with 29 384 ingredients and 12 important ADME-related properties are provided for drug screening and evaluation. Then, through literature mining to prevent omissions, we set the criteria of OB greater than 30%, DL greater than 0.18, and Caco-2 greater than -0.14. When they met these criteria, these components were used as candidate compounds for further analysis. We collected information on 7 compounds and obtained the name of the molecule and its chemical structure. We obtained the molecular Smiles
Known therapeutic targets of drugs in the treatment of chronic myelocytic leukemia

The known therapeutic targets of drugs in the treatment of chronic myeloid leukemia were obtained in 3 ways: PubMed (https://pubmed.ncbi.nlm.nih.gov/, 2017-7-31), DrugBank20 (http://www.drugbank.ca/, version 5.0.10, released 2017-11-14), and the Online Mendelian Inheritance in Man (OMIM) database (http://www.omim.org/, released on 2017-12-20) [14]. In the PubMed database, “chronic myeloid leukemia” was retrieved, and the restriction was "gene" and "Homo sapiens." We verified the accuracy of the genes by consulting the literature related to these genes. In total, 252 known therapeutic targets were obtained.
of CML were chosen. In DrugBank, in order to improve accuracy, only the drugs that are approved by the Food and Drug Administration (FDA) and whose targets are human genes/proteins were selected, then we chose 265 targets for treating CML. In addition, when searching the OMIM database for “chronic myeloid leukemia” as a keyword, we collected 274 known therapeutic targets. After combining the data from these 3 databases and removing the duplicates, a total of 729 known targets for CML treatment were used for the next analysis. Supplementary Table 1 provides detailed information on these known therapeutic targets. We converted different types of ID proteins to UniProt IDs. To elucidate the signaling pathways involved in known therapeutic targets of CML, we used DAVID (Database Visualization and Integrated Discovery software, http://david.abcc.ncifcrf.gov version 6.7) and KEGG (Kyoto Encyclopedia of Genes and Genomes database, EGG, http://www.genome.jp/kegg/, updated on April 18, 2016) to perform enrichment pathways. The top 10 significant pathway terms were pathways in cancer, MAPK signaling pathway, natural killer cell-mediated cytotoxicity, Jak-STAT signaling pathway, cytokine-cytokine receptor interaction, chronic myeloid leukemia, prostate cancer, focal adhesion, ErbB signaling pathway, and neurotrophin signaling pathway.

Prediction of targets of Qingdai

Obtaining the target of Qingdai through experiments requires a great deal of manpower, material, and financial resources. To accurately predict the targets of bioactive molecules based on a combination of 2D and 3D similarity measures with known ligands, we used the web server Swiss Target Prediction (http://www.swisstargetprediction.ch/) to predict the putative targets of the active compounds of Qingdai. Predictions can be carried out in 5 different organisms, and mapping predictions by homology within and between different species is enabled for close paralogs and orthologs [15]. The “smiles” formats of 7 active compounds were imported into Swiss Target Prediction to predict their putative targets of action. It is noteworthy that the predicted putative target is limited to Homo sapiens, and to improve the reliability of predictions goal, only a high probability of target selected. A total of 112 therapeutic putative targets were obtained. All putative targets obtained were sent to Therapeutic Target Database (TTD) (http://bidd.nus.edu.sg/group/cjttd/, 2015-09-10), Comparative Toxicogenomics Database (CTD) (http://ctdbase.org/, 2017-12-05), and PharmGKB (https://www.pharmgkb.org/) to determine whether these putative targets have some connection to CML. To further understand the putative target of Qingdai, GO enrichment analysis and KEGG pathways analysis were performed.

Network construction

Three types of visual networks were built:
1) The compound-target network (C-T network) is an interaction network using the active compounds of Qingdai and its corresponding putative targets.
2) The target-pathway network (T-P network) is composed of the putative targets and corresponding pathways.
3) The target-target network (T-T network) was built using the relationship between the putative targets of Qingdai and known therapeutic targets of the CML.

Cytoscape 3.5.1 (http://www.cytoscape.org/) is an open software application for visualizing, integrating, modeling, and analyzing interactive networks. All the networks were built using it.

Analysis of the target-target network (Qingdai putative target-known therapeutic targets of the CML network).

Li et al. [16] suggested that “If the degree of a node is more than 2 times the median degree of all the nodes in a network, the node may function as a big hub.” The topological features of the target-target network are analyzed by several important topological properties, such as “degree” [17], “betweenness” [17], “closeness” [17], and “coreness” (an iterative process in which nodes are removed from the network with minimal connection order) [18]. The larger a protein’s degree/node betweenness/closeness centrality, the more important that protein is in the PPI network [19]. Subsequently, the targets were screened for topological importance. Then, the major hubs were screened. The DAVID webserver was used to perform KEGG pathway enrichment analysis of the main targets.

Molecular docking simulation

We used computer molecular docking simulation techniques to verify the credibility of the study. SystemsDOCK (http://systemsdock.unit.oist.jp/) was used for molecular docking [20]. SystemsDock is a web server for network pharmacology-based prediction and analysis that permits docking simulation and molecular pathway mapping for comprehensive characterization of ligand selectivity and interpretation of ligand action on a complex molecular network. All the compound- and 3D structures of Qingdai were directly downloaded from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/, 2017-11-26), and we obtained the 3D structures of target genes from Uniprot (http://www.uniprot.org/, 2017-11) and PDB databases (http://www.rcsb.org/pdb/home/home.do). Docking scores were used to assess the binding affinities of compounds to the respective candidate target.
HYPOTHESIS

Results

Active compounds in Qingdai

A single Chinese medicine contains a large number of compounds, so it is helpful to identify these active compounds by means of network pharmacological virtual screening. A total of 53 compounds in Qingdai were obtained. Then, 3 ADME (absorption, distribution, metabolism, and excretion)-related models, including OB, DL, and Caco-2, were used to screen most of the active compounds from Qingdai. Finally, we selected 7 compounds from Qingdai (Table 1), and after text mining, found that most of these compounds possess potent pharmacological activities, such as indirubin, the main active and characteristic compound in Qingdai. Research shows that indirubin and its derivatives can be used to treat chronic myelogenous leukemia by potently inhibiting the Signal Transducer and Activator of Transcription 5 (Stat5) protein in CML cells [21], and indirubin and its derivatives could have anti-angiogenic activity [22]. Studies on Qingdai have shown anti-tumor and anti-inflammatory effects [23]. Quindoline can cause cell cycle arrest, resulting in inhibition of cell proliferation and causing cell apoptosis [24]. Bisindigotin was found to dose-dependently inhibit TCDD-induced ethoxyresorufin O-demethylase (EROD) activity to achieve an anti-tumor effect [25]. Isoidingdigo can mediate the cell proliferation pathway to promote apoptosis [26,27]. Beta-sitosterol could inhibit the growth of bacteria and was found to be anti-inflammatory [28]. Indirubin and Indigotin were determined to be the quality markers of Qingdai in the Chinese Pharmacopoeia (The State Pharmacopoeia Commission of China, 2015).

Putative targets of Qingdai

For Qingdai, through putative target prediction for the 7 compounds, a total of 112 targets were obtained. Cyclin-dependent kinases (CDKs) are involved in regulating both cell cycle and transcription. Indirubin inhibits CDK activity by K562 cell cycle arrest and promotes apoptosis [29,30]. With Quindoline, through prediction, MAPKs (mitogen-activated protein kinase) and CLks were obtained. MAPKs play key roles in many cell proliferation-related signaling pathways [31]. Research by Ahmed K found in cancer cells that CLks control the supply of full-length, functional mRNAs coding for a variety of proteins essential for cell growth and survival. Thus, inhibition of CLks might become a novel anticancer strategy, leading to a selective depletion of cancer-related proteins after turnover [17]. Beta-sitosterol has antioxidant activity in a complex system [32]. Interestingly, 28 of the 112 putative target genes are common targets for one or more of these compounds, indicating that these components may be acting on some of the same biological processes or pathways, which reflects a synergistic effect between the individual components of TCM.

The C-T network was constructed to visualize and explain the complex relationship between the active compounds of Qingdai and its putative targets (Figure 2).

GO enrichment and KEGG pathway analysis of the putative targets

The GO and KEGG enrichment analysis were used to comment on the 112 putative targets of Qingdai. As shown in the results of the enrichment, a total of 433 GO enrichment results were obtained, including biological process (BP) (310 terms), molecular function (MF) (86 terms), and cellular component (CC) (38 terms). We set the level of statistical significance at P<0.05. Then, the top 10 significantly enriched terms were selected in the BP, MF, and CC categories listed in Figure 3. GO enrichment analysis showed that Qingdai can inhibit protein kinase phosphorylation and protein kinase to inhibit cell proliferation, block the cell signaling pathway to inhibit cell proliferation, and promote apoptosis. In addition, chemokines inhibit tumor growth and development by activating immunocompetent cytotoxic cells or inhibiting tumor-associated angiogenesis. In addition, Qingdai can be organized by cell division cycle of proliferation to inhibit cell proliferation or cell mitosis. In addition, it acts on GPCRs, which are closely related to biological behaviors such as the proliferation, invasion, and metastasis of tumors, involving the classical signal pathways such as ERK/MAPK [33]. In recent years, studies have shown that it can serve as a new target for anti-tumor drugs [34]. It is possible that the role of Qingdai on CML is through these molecular mechanisms.

The putative targets of active compounds were mapped onto the 26 KEGG pathways (Figure 4). The neuroactive ligand-receptor interaction pathway showed the highest number of target connections (count=13), and cytokine-cytokine receptor interaction with 12 targets, pathways in cancer with 11, and included the focal adhesion, cell cycle, chemokine signaling pathway, MAPK signaling pathway, and p53 signaling pathway, respectively. These pathways have well-established roles in the inhibition of tumor cell growth and differentiation and promote tumor cell apoptosis. In addition, there are numerous signaling pathways involved in immunity and inflammation, such as Toll-like receptor signaling pathways, T cell receptor signaling pathway, and Fc epsilon RI signaling pathway. These pathways play an important role in the infection caused by chronic myeloid leukemia. These pathways of the targets show that Qingdai has a therapeutic effect for a variety of malignant tumors, endocrine disease, and inflammatory diseases. Details are provided in Table 2.
No	Name	Structure	OB (%)	DL	Caco-2
MOL011100	Bisindigotin	![Bisindigotin](image)	41.66	0.39	0.90
MOL011332	Quindoline	![Quindoline](image)	54.57	0.22	1.52
MOL011335	Isoindigo	![Isoindigo](image)	94.30	0.26	0.79
MOL001781	Indigotin	![Indigotin](image)	38.20	0.26	0.83
MOL001810	Qingdainone	![Qingdainone](image)	45.28	0.89	1.19
MOL002309	Indirubin	![Indirubin](image)	48.59	0.26	1.26
MOL000358	Beta-sitosterol	![Beta-sitosterol](image)	36.91	0.75	1.32

OB – oral bioavailability; DL – druglikeness; Caco-2 – Caco-2 permeability.
Pharmacological mechanisms of Qingdai acting on chronic myeloid leukemia

The link between traditional Chinese medicine and disease is complex. To illustrate the basic relationship between them, the T-T network was performed for analysis. T-T network consisted of 571 nodes and 10,169 edges. The major hubs in the hub interaction network were determined by calculating 4 features: “degree,” “node betweenness,” “closeness”, and “K value”. There were 195 major hubs, including 32 Qingdai targets (Table 3) and 168 known therapeutic targets of chronic myeloid leukemia. Interestingly, there were 11 targets that were common to both that were screened. Then, a network of major hubs based on their direct interactions was constructed (Figure 5).

To further decipher the pharmacological mechanism by which Qingdai affects CML, pathway enrichment analysis was performed using the KEGG pathway database. We found that the major hubs were significantly related to various physiological processes, mainly concentrated in 5 annotation clusters, including epidermal growth factor receptor signaling pathways for cell growth, proliferation, differentiation and metabolism, malignant pathways, immune and inflammation-related pathways, and others.
Figure 3. GO enrichment analysis of the putative targets of Qingdai. The top 10 significantly enriched terms in CC, BP, and MF categories. Cellular component (A), Biological process (B), Molecular function (C).

Figure 4. The network of putative targets of Qingdai and 26 KEGG pathways.
and angiogenesis-related pathways. Chronic myeloid leukemia is a malignant proliferative disease of bone marrow hematopoietic cells and is closely related with ErbB receptor overexpression [35]. ErbB receptor signaling regulates cell proliferation, migration, differentiation, apoptosis, and cell migration through Akt, MAPK, and many other pathways. In many forms of malignancy in organs such as the breasts, ovaries, brain, and prostate gland [36], members of the ErbB family, as well as some of their ligands, are often overexpressed, amplified, or mutated, making them an important therapeutic target [37]. Immune and inflammatory signaling pathways include the Toll-like receptor signaling pathway, T cell receptor signaling pathway, B cell receptor signaling pathway, and Fc epsilon RI signaling pathway. TLR activation has been described to play a role in other leukemias, such as chronic lymphocytic leukemia [38]. T cell receptor (TCR) activation can promote many signal transduction cascades and ultimately determine cell fate by regulating cytokine production, cell survival, proliferation, and differentiation [39]. Regulatory T (Treg) cells can weaken anti-tumor immune responses, which could serve as a promising immuno-therapeutic approach for tumors [40]. The Fc epsilon RI receptor induces multiple signaling pathways that control the secretion of allergic mediators and induction of cytokine gene transcription, resulting in secretion of various molecules: IL-4, IL-5, IL-6, IL-10, IL-13, INF-γ (interferon-γ), and TNF-α (tumor necrosis factor alpha) [41]. We provide detailed information of the 20 most meaningful enrichment pathways in Table 4.

Drug targets reported to be involved in CML pathogenesis for the treatment of CML are involved in cell cycle, growth inhibition, MAPK, ErBb, transforming growth factor beta, and p53 signaling pathways. Interestingly, the 32 Qingdai putative targets included in the major hubs of the T-T network were also

Table 2. The 26 KEGG pathways associated with the putative targets of Qingdai.

Term	Count	P-value
hsa04914: Progesterone-mediated oocyte maturation	10	2.93E-07
hsa04080: Neuroactive ligand-receptor interaction	13	1.57E-05
hsa04115: p53 signaling pathway	7	8.78E-05
hsa04060: Cytokine-cytokine receptor interaction	12	1.03E-04
hsa04110: Cell cycle	8	3.91E-04
hsa04510: Focal adhesion	9	0.001437085
hsa05210: Colorectal cancer	6	0.002152457
hsa05200: Pathways in cancer	11	0.002692876
hsa04062: Chemokine signaling pathway	8	0.004097191
hsa04621: NOD-like receptor signaling pathway	5	0.004583166
hsa04620: Toll-like receptor signaling pathway	6	0.004793465
hsa05120: Epithelial cell signaling in Helicobacter pylori infection	5	0.006372769
hsa04622: RIG-I-like receptor signaling pathway	5	0.00742055
hsa05212: Pancreatic cancer	5	0.007793627
hsa04664: Fc epsilon RI signaling pathway	5	0.010293413
hsa04722: Neurotrophin signaling pathway	6	0.011255823
hsa04020: Calcium signaling pathway	7	0.012206329
hsa05215: Prostate cancer	5	0.016120746
hsa04912: GnRH signaling pathway	5	0.022181176
hsa04010: MAPK signaling pathway	8	0.026015669
hsa04660: T cell receptor signaling pathway	5	0.030365615
hsa05214: Glioma	4	0.03155056
hsa04114: Oocyte meiosis	5	0.032190665
hsa05218: Melanoma	4	0.042714992
hsa04012: ErbB signaling pathway	4	0.040141341
hsa04930: Type II diabetes mellitus	3	0.034045303

© Med Sci Monit, 2018; 24: 5668-5688

Li H. et al.: Deciphering key pharmacological pathways...
Table 3. The 32 major targets information of Qingdai.

ID	Target	Uniprot ID	Gene name	PDB ID
MT-1	Mitogen-activated protein kinase 8	P45983	MAPK8	IUKH
MT-2	Estrogen receptor	P03372	ESR1	A52
MT-3	Mitogen-activated protein kinase 14	Q16539	MAPK14	A9U
MT-4	Cyclin-dependent kinase 2	P24941	CDK2	AQ1
MT-5	Vascular endothelial growth factor receptor 2	P35968	KDR	VR2
MT-6	Cyclin-dependent kinase 4	P11802	CDK4	W96
MT-7	Androgen receptor	P10275	AR	E3G
MT-8	Prothrombin	P00734	F2	A2C
MT-9	Cyclin-dependent kinase 1	P06493	CDK1	Y72
MT-10	Glycogen synthase kinase-3 beta	P49841	GSK3B	GNG
MT-11	Platelet-derived growth factor receptor beta	P09619	PDGFRB	Q5
MT-12	Mitogen-activated protein kinase 9	P45984	MAPK9	E7O
MT-13	G2/mitotic-specific cyclin-B1	P14635	CCNB1	289R
MT-14	Mitogen-activated protein kinase 11	Q15759	MAPK11	GC8
MT-15	Receptor-type tyrosine-protein kinase FLT3	P36888	FLT3	R1B
MT-16	Cyclin-dependent kinase 6	Q00534	CDK6	B17
MT-17	Vascular endothelial growth factor receptor 1	P17948	FLT1	FFT
MT-18	Toll-like receptor 9	Q9NR96	TLR9	WPB
MT-19	Cyclin-dependent-like kinase 5	Q00535	CDK5	H4L
MT-20	C-C chemokine receptor type 5	P51681	CCR5	MBS
MT-21	Alpha-synuclein	P37840	SNCA	26M
MT-22	Low-density lipoprotein receptor	P01130	LDLR	UJ
MT-23	Estrogen receptor beta	Q92731	ESR2	L2J
MT-24	Glycogen synthase kinase-3 alpha	P49840	GSK3A	DFM
MT-25	Aromatase	P11511	CYP19A1	EQM
MT-26	Platelet-derived growth factor receptor alpha	P16234	PDGFA	GRN
MT-27	Mitogen-activated protein kinase 10	P53779	MAPK10	JK
MT-28	C-C chemokine receptor type 2	P41597	CCR2	T1A
MT-29	Cyclin-dependent kinase 3	Q00526	CDK3	LFN
MT-30	Microtubule-associated protein tau	P10636	MAPT	ON9
MT-31	ATP-binding cassette sub-family G member 2	Q9UNQ0	ABCG2	NJ3
MT-32	Vascular endothelial growth factor receptor 3	P35916	FLT4	BSJ
included in these pathways. In addition, 32 putative targets were involved in immune and inflammation-related pathways, such as Toll-like receptor, NOD-like receptor, RIG-I-like receptor, and Fc epsilon RI T cell receptor signaling pathway.

To further explore the molecular mechanism of action of Qingdai on CML, we reviewed the literature on the role of Qingdai putative targets in these pathways. Qingdainone, bisindigo, isoindigo, and indirubin all have target enrichment in the MAPK signaling pathway (MAPK14, MAPT, PDGFRα, PDGFRβ,

Figure 5. The network of 195 major hubs based on their direct interactions, consisting of 195 nodes and 5943 edges. Nodes represent proteins. Colored nodes are query proteins and first shell of interactors. White nodes are second shell of interactors. Empty nodes are proteins of unknown 3D structure. Filled nodes have some 3D structure known or predicted. Edges represent protein-protein associations and line thickness indicates the strength of data support.
CD Kang et al. showed that the inhibition of ERK/MAPK induced apoptosis in K562 cells [42]. PDGFRA/B are oncogenes involving tyrosine kinases [43]. Aberrant activity of PTK (protein tyrosine kinases) has been implicated in the stimulation of cancer growth and progression, the induction of drug resistance, tumor neovascularization, tissue invasion, extravasation, and the formation of metastases [44]. We speculate that isoindigo in Qingdai inhibits CML by acting on PDGFRA/B. In the ErbB pathway, GSK3B plays a pivotal role in preserving quiescent HSCs, which has now opened new therapeutic avenues for understanding leukemic stem cell function [45]. Through the cytokine-cytokine receptor interaction, cytokines act on the immune system and hematopoietic system and play an important regulatory role in cell–cell interactions, cell proliferation, differentiation, and effector functions [46]. The p53 protein network regulates important mechanisms in DNA damage repair, cell cycle regulation/checkpoints, and cell senescence and apoptosis, as demonstrated by its ability to positively regulate the expression of various pro-apoptotic genes [47]. In addition, research shows that p53 can stably induce CML cell apoptosis [48]. Cyclin-dependent kinases (CDKS) are a family of serine/threonine kinases that have been firmly established as key regulators of transcription processes underlying coordinated cell cycle entry and sequential progression in nearly all types of proliferative cells [49]. Infection with CML has important secondary symptoms. Enrichment pathways of Qingdai putative targets involve immune and inflammatory pathways, which activate the patient’s own immune system and enhance the defence against sources of external infection, such as phagocytosis of immune cells, which plays an essential role in host defence mechanisms by enveloping and destroying infectious pathogens [41].

MAPK9, MAPK11, MAPK8, and MAPK10). CD Kang et al. showed that the inhibition of ERK/MAPK induced apoptosis in K562 cells [42]. PDGFRA/B are oncogenes involving tyrosine kinases [43]. Aberrant activity of PTK (protein tyrosine kinases) has been implicated in the stimulation of cancer growth and progression, the induction of drug resistance, tumor neovascularization, tissue invasion, extravasation, and the formation of metastases [44]. We speculate that isoindigo in Qingdai inhibits CML by acting on PDGFRA/B. In the ErbB pathway, GSK3B plays a pivotal role in preserving quiescent HSCs, which has now opened new therapeutic avenues for understanding leukemic stem cell function [45]. Through the cytokine-cytokine receptor interaction, cytokines act on the immune system and hematopoietic system and play an important regulatory role in cell–cell interactions, cell proliferation, differentiation, and effector functions [46]. The p53 protein network regulates important mechanisms in DNA damage repair, cell cycle regulation/checkpoints, and cell senescence and apoptosis, as demonstrated by its ability to positively regulate the expression of various pro-apoptotic genes [47]. In addition, research shows that p53 can stably induce CML cell apoptosis [48]. Cyclin-dependent kinases (CDKS) are a family of serine/threonine kinases that have been firmly established as key regulators of transcription processes underlying coordinated cell cycle entry and sequential progression in nearly all types of proliferative cells [49]. Infection with CML has important secondary symptoms. Enrichment pathways of Qingdai putative targets involve immune and inflammatory pathways, which activate the patient’s own immune system and enhance the defence against sources of external infection, such as phagocytosis of immune cells, which plays an essential role in host defence mechanisms by enveloping and destroying infectious pathogens [41].

In addition, some of the putative targets have a special role in CML. The FMS-like tyrosine kinase 3 (FLT3) gene encodes a class III receptor tyrosine kinase (RTK) that plays important roles in the proliferation, differentiation, and survival of hematopoietic stem and progenitor cells (HSPCs), and FLT3 is frequently mutated and overexpressed in hematologic malignancies [50].

Table 4. The Top 20 enrichment pathways of 195 major hubs.

Term	Count	Value
hsa05200: Pathways in cancer	70	2.22E-41
hsa04010: MAPK signaling pathway	34	5.88E-12
hsa05220: Chronic myeloid leukemia	29	9.85E-24
hsa04062: Chemokine signaling pathway	28	1.71E-11
hsa04510: Focal adhesion	28	9.51E-11
hsa05215: Prostate cancer	27	5.69E-19
hsa04722: Neurotrophin signaling pathway	27	4.59E-15
hsa04012: ErbB signaling pathway	26	4.46E-18
hsa04060: Cytokine-cytokine receptor interaction	26	5.61E-07
hsa05210: Colorectal cancer	23	4.84E-15
hsa05221: Acute myeloid leukemia	22	1.16E-17
hsa04620: Toll-like receptor signaling pathway	22	2.94E-12
hsa04660: T cell receptor signaling pathway	22	1.16E-11
hsa04650: Natural killer cell mediated cytotoxicity	22	7.02E-10
hsa04630: Jak-STAT signaling pathway	22	1.23E-08
hsa05212: Pancreatic cancer	20	3.49E-13
hsa04664: Fc epsilon RI signaling pathway	19	1.82E-11
hsa04910: Insulin signaling pathway	19	1.88E-07
hsa05214: Glioma	18	4.43E-12
hsa04110: Cell cycle	18	3.16E-07
The AGM130 compound is derived from indirubin, which is known as a CDK inhibitor. Research shows that the AGM130 compound efficiently decreased the viability of CML-derived K562 cells, which suggests that AGM130 is a strong candidate for treating Imatinib-resistant CML [51]. In addition, patients with ABCG2 diplotypes might be at higher risk for the rapid and severe development of CML and have a weaker response to treatments with imatinib [52]. We hypothesize that it binds to ABCG2 to enhance the efficacy and reduce the risk of imatinib resistance.

On this basis, the major putative targets of Qingdai that are significantly associated with these biological processes and pathways might play a role in the treatment of CML.

Molecular docking validation

Molecular docking is a rapid method to predict the binding force between traditional Chinese medicine components and the target. It is based on the docking of the ligand and the acceptor's spatial structure. SystemsDock applies AutoDock VINA [53] to perform docking simulation based on the characterized binding interaction and molecular properties [19]. DocK-IN utilizes a machine learning algorithm (Random Forest) together with a series of characterized binding interactions and test compound molecular properties, usually ranging from 0 to 10 (from weak to strong binding) allowing a straightforward indication of binding strength [20]. The 7 compounds of Qingdai and the corresponding candidate major targets were further validated by a molecular docking simulation. As a result, 23 pairs of components of Qingdai and candidate targets had strong binding efficiencies. Detailed information about the results of molecular docking are described in Supplementary Table 2. These findings require further experimental verification.

Discussion

In the application of traditional Chinese medicine treatment of CML, Qingdai is given high priority for selection, and has been frequently used in TCM prescriptions. *In vitro* experiments clearly demonstrated that Qingdai has the ability to inhibit K562 cell proliferation and promote its apoptosis. We used modern network pharmacology and molecular docking technology to explain the effective substance basis and multi-targeting effect of Qingdai treatment of CML. The study of traditional Chinese medicine theory and value is based on the scientific methodology of systematic medicine and has the significance of integrating innovation. In our research, we screened 7 Qingdai active compounds and, from a total of 112 predicted targets of active compounds, obtained 32 major targets of Qingdai for treatment of chronic myeloid leukemia, and enriched 15 signaling pathways related to the treatment of CML. Then, we verified the results of our study by molecular docking. The present study shows the following:

1) By predicting the targets of 7 compounds in Qingdai, we constructed a C-T network and performed GO analysis and KEGG analysis of the putative targets to provide clues to the pharmacology research of Qingdai.

2) We constructed the Qingdai putative target-known therapeutic targets of the CML network, suggesting that Qingdai may affect the disease-related pathways of chronic myeloid leukemia by regulating its candidate targets, such as the cytokine-cytokine receptor interaction, cell cycle, p53 signaling pathway, MAPK signaling pathway, and immune system-related pathways.

3) According to the molecular docking simulation, 23 pairs of components of Qingdai and corresponding putative targets had strong binding efficiencies.

Conclusions

Network pharmacology for the study of complex mechanisms of Chinese medicine intervention disease provides new ideas and new methods. This research explored the molecular mechanism of the effects of Qingdai on CML based on these ideas. Our study was based on bioinformatics analysis and computer simulation analysis. Further clinical application assessments and experimental validations for these predicted results are required.
Supplementary Tables

Supplementary Table 1. known therapeutic targets of CML

Gene	Acronym										
ESR1	MLL	IMD21	QACR	SLC2	LY75	SFRP1	PTK2B	TP53	HRX	MME	IMD21
BCR	HRX	MMEM	ACRB	SLC22A	ARHGAP26	DDIT3					
BCR	HRX	MMEM	ACRB	SLC22A	ARHGAP26	DDIT3					
ABCB1	CBL2	NEP	CLCN2	CDA	MIR199B	MECOM	PTC247				
MTHFR	NSL	CMT2T	IL17A	NTSE	ST8SIA4	SRSF1	STAT5B				
TNF	CLLS5	SCAI2	ADRB1	DCTD	ATG4B	CDKN1C	AICDA				
TGFBI	ET1V6	CHIC2	VDR	1KBG	SPREAD2	GATA2	CDK9				
AKT1	TEL	BTL	MLP	PRKCA	OSBP2	NOTC2	PMP22				
GSTM1	TACG	CHERM	IMPDH1	DXR4	PTEN	ADIPOR1					
CTNNB1	KARS2	RAP1GDS1	CNRM2	IMPDH2	P2RX5	IL32	IKZF1				
KRAS	RASK2	TCS1	BCHE	PB1	MKNK2	MIR223	TET2				
TFIIH	NS2	STS2	UREC	NTSC2	UBASH2	IL4	MTHF1				
NFKB1	CFC2	DKA2	MPP12	ENPP1	MIR30	ARRB1	NFKB1				
BRC1	RALD	DKB4	NS5B	PRKCD	ATP5F1	PAX5	ERCC5				
MMP9	CMTS	PBMT1	ADRB2	M54A1	KIR2DL5B	WS1	DAPK1				
STAT3	PTPN11	CMM9	PTAFR	HCK	GAS2	CIP2A	POU2F1				
ABL1	PTP2C	UFR1	HRH1	CDK2	FAM27E5	KIF1	SPI1				
PTGS2	SHP2	SWS7	NS5A	MAP2K1	ETNK1	MIR31	SLCC2A1				
CDKN2A	NS1	STS5	ADR2A	MAP2K2	MIR1301	BIN1	SEP9				
IL1B	JML1	SIS2	S100	MAP3K1	ST8SIA6	SET					
MYC	METCD5	ACSL6	CHDL	1FNAR2	LOC107126288	JUP					
GSTP1	CLLS2	FACL6	DRR2	POLA1	LOC107126281	REL					
CXLB	D13S52	AC52	DRR1	SLCC2A3	MIR50	HOX5	PTCH1				
LEP	DBM	IFR1	HTR2A	PARP1	MIR2278	CRKL					
TERT	FLVCR2	MAR	OPRM1	PARP2	MIR4701	CSF3R					
BCL2	C14orf58	GRAF	PDE4B	PARP3	ABL	SLCC1B3					
IFNG	CCT	PDGFR	PANX1	CD22	GF1R	MTHF1					
MTOR	P1HH	IBG4	CYP3A	SPC							
XRCC1	EPV	IMF1	CASR	POLE2	EPHA2	EHTM2					
FAS	SERPNA1	PENTT	KCND	POLE3	ICK	CDC6					
CCND1	N1	KOGS	HTR7	POLE4	YES1	ADIPOR2					
BIRC5	AAT	NSD1	ORM2	PNP	KIT	PER3					
GSK3B	TCLI1	ARA267	SLC6A2	C3	FYN	KIR2DS2					
MAPK14	TML1	STO	SMDP1	C4A	BTK	EPHB4					
ATM	TCLI1A	SOTOS1	HTR1A	C4B	N4A3	MEF2C					
HMGBI	MYL	DEK	MAP2	AOX1	EPHA5	HES1					

HYPOTHESIS

This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Gene	Gene	Gene	Gene	Gene	Gene
CYP1A1	CREBBP	D6S231E	PHD	DNMT1	FGR
NOTCH1	CBP	CTEPH1	CA2	SLC01A2	FRK
KDR	RST1	HLA-B	NRI12	HSD11B1	HSPB8
NFE2L2	MYH11	SPDA1	POMC	ALB	ZAK
HLA-G	AAT4	HLA-DPB1	CALM1	RARA	PPAT
CASP3	FAA4	TREM2	YAS5	RARB	CYPA4
ABCG2	FUS	MYB	TAT	1KBK	CYPA2
EZH2	TLS	ALL2	SLC16A2	TXNRD1	CYP1B1
CDKN1B	ALS6	MSLM7	TFO1	MAPP3	FMO3
JUN	ETM4	DEL7q	GNHR	MAPK1	RET
ERCC2	CFBF	CD7DEq	KCNQ2	CDKN1A	NTPK1
TNFSF10	PEBP2B	NCF1	KCNQ3	HDAC1	CSF1R
RHOA	DI4A	PRSS2	HTR3A	PML	DDR1
WT1	NMR1	TRY2	GRIA1	ADA	CYP3A7
PDCD1	CYBA	SCLL	GNBI	CD38	CYP2C9
LGALS3	NF1	NSD3	MRD42	CD19	CYP2D6
CYP3A5	VRNF	WHSC11	CTRC	RXRA	CYP2C19
CD274	WSS	SLC20A2	CLCR	RXRG	PTGS1
KCHN2	NFNS	MLVAR	IMD22	1GFPB3	SLCL2A2
LCN2	ERBB2	GVR2	TPOR	PSGS	ABCA3
AURKA	NGL	IBGC1	MPLV	CSF2RA	CYP2C8
RUNX1	NEU	NBN	THCYT2	IL3RA	UGT1A1
LEP8	HIR2	NBS1	TAL1	SDC2	GSTA1
HSP90AA1	MSF	THCYT3	TCL5	PRG2	MGST2
NPM1	MSF1	LALL	SCL	EPOR	FLT3
RANBP8	NAP8	NAP8	BCL10D	GPRC5A	NAP10A
BCL2L1	SH3GL1	ALL3	IMD37	NROB1	RPL3
MCL1	EEN	TAL2	GFI1	ALDH1A2	TEK
MLX1	LYL1	GCL2	GZMDS	TNFR5	NFKB1
PLK1	CEBPA	CHD5SKM	SCN2	LCN1	FGR2
PTPN22	CEBP	NUP214	RBM15	OBP2A	FGR3
XIAP	BCL3	D9S46E	GADD45	NAP5	FGR45
BCL2L11	BAX	CAN	OTT	PDK4	LCK
DPP4	TAM	CAIN	IGF2	CYP26A1	SRC
AKAP12	MST	AF10	CD32	HDGS5	ABCB11
PDGFRB	CBFA2	ALL1	PBX1	ATP1A1	FGR3B
MIR155	AML1	MBL2	CAKUHD	DGUOK	CIR1
TWIST1	CHM	MBL1	MBL1	ITGAL1	C1Q7
CBL	PHL	MBP1	ABLL1	TOP2A	C1Q8
STAT5A	ALL	MBL2D	ARG	PDLA1	C1QC
BMI1	HMOX1	MBPD	NGF2	CBR1	LG1RA
HSPA4	HMOX1D	LMO1	FLCR1	AKR1A1	C1S
TGm2	NCF4	RBTN1	AXPC1	AKR1	FGR1A
NFKBIA	P40PHOX	RHOM1	PCARP	NQO1	FGR2A
5682 indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System] [ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica] [Chemical Abstracts/CAS]					

This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Supplementary Table 2. Molecular docking between the 7 compounds of Qingdai and the corresponding candidate major targets.

Compounds and targets	Protein-ligand interactions of the docking pose	Score
Qingdainone, MAPK9	MAPK9	4.306
Qingdainone, MAPK10	MAPK10	4.684
Qingdainone, MAPK11	MAPK11	4.435
Compounds and targets

Compounds and targets	Protein-ligand interactions of the docking pose	Score
Qingdainone, MAPK11	![Image](image1.png)	4.844
Bisindigotin, MAPK9	![Image](image2.png)	4.053
Bisindigotin, MAPK10	![Image](image3.png)	3.562
Bisindigotin, MAPK11	![Image](image4.png)	3.787
Bisindigotin, MAPK14	![Image](image5.png)	4.039
Bisindigotin, F2	![Image](image6.png)	4.598
Compounds and targets	Protein-ligand interactions of the docking pose	Score
-----------------------	---	-------
Isoindigo, FLT4	![Isoindigo, FLT4](image)	7.117
Isoindigo, PDGFRB	![Isoindigo, PDGFRB](image)	5.516
Isoindigo, FLT3	![Isoindigo, FLT3](image)	7.780
Indigotin, CDK1	![Indigotin, CDK1](image)	6.860
Indirubin, CDK1	![Indirubin, CDK1](image)	2.633
Indirubin, CDK4	![Indirubin, CDK4](image)	2.051
Compounds and targets	Protein-ligand interactions of the docking pose	Score
---------------------------------------	---	-------
Indirubin, CDK2	![Indirubin, CDK2](image)	2.583
Indirubin, FLT3	![Indirubin, FLT3](image)	3.217
Indirubin, GSK3B	![Indirubin, GSK3B](image)	1.963
Beta-sitosterol, AR	![Beta-sitosterol, AR](image)	8.365
Beta-sitosterol, CYP19A1	![Beta-sitosterol, CYP19A1](image)	8.335
Compounds and targets

Protein-ligand interactions of the docking pose	Score
Beta-sitosterol, LDLR	4.981
Beta-sitosterol, ESR1	8.372
Beta-sitosterol, ESR2	8.321

References:

1. Sawyers CL: Chronic myeloid leukemia. N Engl J, 1999; 340: 1330–40
2. Rowley JD: Letter: A new consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and Giemsa staining. Nature, 1973; 243: 290–93
3. Kidan, N, Khamaisie H, Ruimi N et al: Ectopic expression of Snail and Twist in Ph+ leukemia cells upregulates CD44 expression and alters their differentiation potential. J Cancer, 2017; 8: 3952–68
4. Osorio S, Escudero-Vilaplana V, Gómez-Centurión I et al: Inadequate response to imatinib treatment in chronic myeloid leukemia due to a drug interaction with phenytoin. J Oncol Pharm Pract, 2017 [Epub ahead of print]
5. Huang R, Liu H, Chen Y et al: EPSP regulates proliferation, apoptosis and chemosensitivity in BCR-ABL positive cells via the BCR-ABL/PI3K/AKT/mTOR pathway. Oncol Rep, 2018; 39: 119–28
6. Liu C, Liu Y, Zhou C et al: [Analysis of mechanism of indigo naturalis in treating chronic myelocytic leukemia based on three-dimensional model of protein-protein interaction network-molecular docking technique – in vitro experiment.] Chinese Journal of Experimental Traditional Medical Formulae, 2017; 23: 206–11 [in Chinese]
7. Gaboriaud-Kolar N, Myrantiopoulos V, Vougogiannopoulou K et al: Natural-based indirubins display potent cytotoxicity toward wild-type and T315I-resistant leukemia cell lines. J Nat Prod, 2016; 79: 2464–71
8. Dai HP, Shen Q, Zhou JW et al*: Influence of Qingdai compound on expression of bcr/abl and JWA in K562 cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2005; 13: 809–11 [in Chinese]
9. Hopkins AL: Network pharmacology: The next paradigm in drug discovery. Nat Chem Biol, 2008; 4: 682–90
10. Liang X, Li H, Li S: A novel network pharmacology approach to analyse traditional herbal formulæ: The Liu-Wei-Di-Huang pill as a case study. Mol Biosyst, 2014; 10: 1014–22
11. Yue SJ, Liu J, Feng WW et al: System pharmacology-based dissection of the synergistic mechanism of Huangqi and Huanglian for diabetes mellitus. Front Pharmacol, 2017; 8: 694
12. Yu GH, Zhang YQ, Ren WQ et al: Network pharmacology-based identification of key pharmacological pathways of Yin-Qing-Fei capsule acting on chronic bronchitis. Int J Chron Obstruct Pulmon Dis, 2016; 12: 85–94
13. Ru JL, Li P, Wang JN et al: TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J Cheminform, 2014; 6: 13
14. Wishart DS, Knox C, Guo AC et al: DrugBank: A knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res, 2008; 36: 901–6
15. David G, Aurelien G, Matthias W et al: SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Res, 2014; 42: 32–38
16. Li S, Zhang ZQ, Wu LJ et al: Understanding ZHENG in traditional Chinese medicine in the context of neuro-endocrine-immune network. IET Syst Biol, 2007; 1: 51–60

17. El-Hady AK, Abdel-Halim MB, Abadi AH, Engel M: Development of selective Cik1 and –4 inhibitors for cellular depletion of cancer-relevant proteins. J Med Chem, 2017; 60: 5377–91

18. Wuchty S, Almaas E: Evolutionary cores of domain co-occurrence networks. BMC Evol Biol, 2005; 5: 24

19. Wang Y, Liu Z, Li C et al: Drug target prediction based on the herbs components: The study on the multtarget pharmacological mechanism of Qishenkeli acting on the coronary heart disease. Evid Based Complement Alternat Med, 2012; 2012: 698531

20. Hsin KY, Matsuoka Y, Aaai Y et al: SystemsDock: A web server for network pharmacology-based prediction and analysis. Nucleic Acids Res, 2016; 44: 507–13

21. Tittikina NK, Nana F, Fontany S et al: Antibacterial activity and cytotoxicity of Pterocarpus erinaceus Poir extracts, fractions and isolated compounds. J Ethnopharmacol, 2018; 212: 200–7

22. Nam S, Scuto A, Yang F et al: Indirubin derivatives induce apoptosis of chronic myelogenous leukemia cells involving inhibition of Stats signaling. Mol Oncol, 2012; 6: 276–83

23. Ye HZ, Huang H, Huang JF et al: Establishment and application of UPLC fingerprint for indigo naturalis. Fu Jian Fen Xi Ci Shi, 2016; 25: 6–13

24. Zhang Y, Zhang DY, Cao J et al: Interaction of Quindoline derivative with telomeric repeat – containing RNA induces telomeric DNA-damage response in cancer cells through inhibition of telomeric repeat factor. Biochim Biophys Acta, 2017; 1861: 3246–56

25. Wei XY, Leung CY, Wong CK et al: Bisindigotin, a TCDD Antagonist from the Chinese Medicinal Herb Isatis indigotica. J Nat Prod, 2005; 68: 427–29

26. Mathieu S, Fadoua B, Samir M et al: Synthesis and antiproliferative activities of diversely substituted glycosyl-isoindigo derivatives. Eur J Med Chem, 2006; 41: 89–100

27. Nishimui S, Yamamoto N, Kodo R et al: Antagonistic and agonistic effects of indigoids on the transformation of an aryl hydrocarbon receptor. Arch Biochem Biophys, 2008; 470: 187–99

28. Alex D, Lam IK, Lin Z, Lee SM: Indirubin shows anti-angiogenic activity in an in vivo zebrafish model and in an vitro HUVEC model. J Ethnopharmacol, 2010; 131: 242–47

29. Zhen Y, Sørensen V, Jin Y et al: Indirubin-30-monoxime inhibits autophosphorylation of FGFR1 and stimulates ERK1/2 activity via p38 MAPK. Oncogene, 2010; 131: 242–47

30. Suzuki R: The emerging picture of mast cell activation: The complex regulatory network of high-affinity receptor for immunoglobulin E signaling. Biol Pharm Bull, 2017; 40: 1828–32

31. Zhang J, Zhao A, Sun L et al: Selective surface marker and miRNA profiles of CD34+ blast-derived microvesicles in chronic myelogenous leukemia. Oncol Lett, 2017; 14: 1866–74

32. Holbro T, Civenni G, Hynes NE: The Erbb receptors and their role in cancer progression. Exp Cell Res, 2003; 284: 99–110

33. Xu YJ, Wang S, Liang QM: The Relation between G protein-coupled receptor and the cell death of cancer. J Med Chem, 2017; 60: 5377–91

34. Chen LY, Yang Y, An S et al: [Cross-talk of GPCRs and RTKs and its effects on oncotherapy.] Chinese Pharmacological Bulletin, 2017; 33: 454–60 [in Chinese]

35. L’Allemain G: HER-ErbB family of receptors and their ligands: Mechanisms of activation, signals and deregulation in cancer. Bull Cancer, 2003; 90: 179–85

36. Lin Y, Zhang L, Cai AX et al: Effective posttransplant antibiotic immunity is associated with TLR-stimulating nucleic acid-immunglobulin complexes in humans. J Clin Invest, 2011; 121: 1574–84

37. Xiliang C: Biochemistry. People’s Medical Publishing House, China; 2010; 60: 507–13

38. Zuo Y, Zhu RT, Feng LX et al: [Antioxidant activities of diversely substituted glycosyl-isoindigo derivatives. Eur J Med Chem, 2006; 41: 89–100]

39. Klener P, Klener P: ABL1, SRC and other non-receptor protein tyrosine kinases as new targets for specific anticancer therapy. Klin Onkol, 2010; 23: 203–9

40. He G, Yang X, Wang G et al: Cdk7 is required for activity-dependent neuroplasticity of activation, signals and deregulation in cancer. Bull Cancer, 2003; 90: 179–85

41. Yang JG, Wang LL, Ma DC: Effects of vascular endothelial growth factors and their receptors on megakaryocytes and platelets and related diseases. Br J Haematol, 2018; 180(3): 312–34

42. Smiles WI, Camera DM: The guardian of the genome p53 regulates exercise-induced mitochondrial plasticity beyond organellar biogenesis. Acta Physiol (Oxf), 2018; 222(3)

43. Cheng Y, Hao Y, Zhang A et al: Persistent STAT5-mediated ROS production and involvement of aberrant p53 apoptotic signaling in the resistance of chronic myeloid leukemia to imatinib. Int J Mol Med, 2018; 41: 455–63

44. Saponaro C, Maffia M, Di Renzo N, Coluccia AM: Is going for cure in CML targeting aberrant glycogen synthase kinase 3β? Curr Drug Targets, 2017; 18: 396–404

45. Saponaro C, Maffia M, Di Renzo N, Coluccia AM: Is going for cure in CML targeting aberrant glycogen synthase kinase 3β? Curr Drug Targets, 2017; 18: 396–404

46. Yang JG, Wang LL, Ma DC: Effects of vascular endothelial growth factors and their receptors on megakaryocytes and platelets and related diseases. Br J Haematol, 2018; 180(3): 312–34

47. Smiles WI, Camera DM: The guardian of the genome p53 regulates exercise-induced mitochondrial plasticity beyond organellar biogenesis. Acta Physiol (Oxf), 2018; 222(3)