RBFOX3 Promotes Gastric Cancer Growth and Progression by Activating HTERT Signaling

Chen Luo 1,2,3†, Xiaojian Zhu 1,2,3†, Qilin Luo 1, Fanqin Bu 1,2,3, Chao Huang 1,2,3, Jingfeng Zhu 1,2,3, Jiefeng Zhao 1,2,3, Wenjun Zhang 1,2,3, Kang Lin 1,2,3, Cegui Hu 2,3, Zeng Zong 1,3, Hongliang Luo 1,3, Jun Huang 1 and Zhengming Zhu 1*

† These authors have contributed equally to this work

1 Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China, 2 Department of Clinical Medical, Jiangxi Medical College of Nanchang University, Nanchang, China, 3 Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China

Tumor invasion, metastasis, and recrudescence remain a considerable challenge in the treatment of gastric cancer (GC). Herein we first identified that RNA binding protein fox-1 homolog 3 (RBFOX3) was markedly overexpressed in GC tissues and negatively linked to the survival rate of GC patients. RBFOX3 promoted cell division and cell cycle progression in vitro and in vivo. Furthermore, RBFOX3 increased the cell invasion and migration ability. The suppression of GC cell multiplication and invasion, caused by silencing of RBFOX3, was rescued by HTERT overexpression. Additionally, RBFOX3 augmented the resistance of GC cells to 5-fluorouracil by repressing RBFOX3. Mechanistically, the exogenous up-regulation of RBFOX3 triggered promoter activity and HTERT expression, thereby enhancing the division and the development of GC cells. Further co-immunoprecipitation tests revealed that RBFOX3 bound to AP-2β to modulate HTERT expression. In conclusion, our study indicates that a high expression of RBFOX3 promotes GC progression and development and predicts worse prognosis. Collectively, these results indicate that the RBFOX3/AP-2β/HTERT signaling pathway can be therapeutically targeted to prevent and treat GC recurrence and metastasis.

Keywords: RBFOX3, HTERT, gastric cancer, promoter-binding protein, cancer biomarker

INTRODUCTION

Gastric cancer (GC) is the third leading cause of cancer deaths worldwide and the most common gastrointestinal malignancy in East Asia and Latin America (1). China has seen a rise in the cases of GC, which has been attributed to lifestyle and dietary changes (2). Despite that the diagnosis and the treatment of GC have made remarkable progress, GC prognosis remains poor, with a low 5-year survival rate, due to disease recurrence and high metastasis rate (3). The pathogenesis of GC is highly complex and poorly understood. Genetic factors, Helicobacter pylori infection, unhealthy eating habits, and smoking are all involved in the development of GC (4). Owing to the complexity of the abdominal microenvironment, GC recurrence is relatively high, and further treatment does not effectively improve the patients’ quality of life. Thus, investigating the molecular mechanisms of GC tumorigenesis and progression is imperative to develop more effective prevention and treatment options.

RNA binding protein fox-1 homolog 3 (RBFOX3) is a member of Fox1 family which can be encoded by the Rbfox3 gene on chromosome 17 and encodes 15 exons (5). In mammals,
this family of splicing factors consists of three members. RBFOX1 is abnormally increased in the heart, neural tissues, and skeletal muscles. RBFOX2 exhibits a broader expression pattern, occurring in embryos, neurons, and muscles. However, RBFOX3 is expressed in neurons under physiological conditions (6, 7). RBFOX3 regulates brain-specific pre-mRNA splicing choices by binding to RNA penta/hexa nucleotide UGCAUG motif (8). Furthermore, it also interacts with the polypyrimidine tract-binding protein-associated splicing factor (PSF) (9), which increases the RBFOX3 binding target UGCAUG motif (10). However, recent studies suggest that RBFOX3 modulates various pathological processes. Evidence suggested that neuronal nuclei (NeuN) is a product of RBFOX3, which can serve as a marker in post-mitotic neurons (11). Moreover, previous studies have shown that RBFOX3 could bind to DNA (12, 13). RBFOX3 has also been reported to control the biogenesis of some miRNAs, such as primary-miRNAs (pri-miRNAs), that lack a UGCAUG motif (14). We hypothesized that, in addition to its splicing functions, RBFOX3 regulates various biochemical processes that are poorly understood. Here we find that RBFOX3 promotes GC by regulating HTERT expression. We find that RBFOX3 is significantly up-regulated in GC and that it correlates with poor survival. Functional analyses revealed that RBFOX3 enhances GC growth, metastasis, and chemoresistance. Mechanistic studies demonstrated that RBFOX3 overexpression elevates HTERT expression, promoting GC progression. Moreover, our data indicate that RBFOX3 binds to AP-2β to promote HTERT expression. Taken together, our findings highlight the RBFOX3/HTERT signaling axis as a new therapeutic target for the treatment of GC.

### MATERIALS AND METHODS

#### Clinical Samples
In total, 178 paired human GC tissues and adjacent non-tumor tissues were collected from the Second Affiliated Hospital of Nanchang University. The samples had been biobanked between August 2017 and December 2019, and 92 were from males and 86 were from females. Adjacent, matched non-cancer tissues were collected >5 cm away from the edge of the cancerous foci. This research was approved by the Ethics Committee of the Second Affiliated Hospital of Nanchang University.

#### Cell Lines and Antibodies
Five human GC cell lines (MGC-803, MKN45, AGS, SGC-7901, and BGC-823) and normal gastric epithelial cell line (GES-1) were purchased from the American Type Culture Collection. All cells were authenticated via short tandem repeat profiling by the Cell Bank and cultured in RPMI-1640 medium (Corning, 10-040-CVR), supplemented with 10% fetal bovine serum (Sigma, 12103C), in a humidified incubator at 37°C, 5% CO2. Rabbit anti-RBFOX3 (Abcam, ab177487) was used at 1:1,000 for Western blot and 1:3,000 for immunohistochemistry (IHC). Rabbit anti-HTERT (Abcam, ab183105) was used at 1:1,000 for Western blot and 1:100 for IHC. Mouse anti-E-cadherin (Abcam, ab1416) was used at 1:50 for Western blot, rabbit anti-β-catenin (Abcam, Ab32572) was used at 1:5,000 for Western blot, and rabbit anti-IgG (Abcam, ab2410) and rabbit anti-GAPDH (Abcam, ab9485) were used at 1:2,500 for Western blot.

#### Streptavidin–Agarose Pull Down Assay
HTERT promoter binding proteins were analyzed by streptavidin–agarose pull-down assays. Nuclear proteins

### FIGURE 1

High RBFOX3 protein expression predicted a dismal prognosis of gastric cancer (GC) patients. (A) RBFOX3 DNA digested fragment expression was examined via agarose gel electrophoresis in SGC-7901 and MGC-803 cells. (B) RT-qPCR was conducted in GC tissue samples (n = 47) and the corresponding precancerous tissue samples (n = 47) to determine RBFOX3 mRNA expression. (C) Representative images showing the immune-histochemical findings of RBFOX3 in normal gastric mucosa and GC tissues (n = 89). (D) The expression of RBFOX3 protein in 37 human GC tissues and the adjacent tissues as detected by Western blot analysis. (E) The protein expression level of RBFOX3 in normal gastric epithelial cells (GES-1) compared with GC cell lines (MKN45, AGS, SGC-7901, MGC-803, and BGC-823). (F,G) Kaplan–Meier survival analysis of the overall survival and the disease-free survival in the two groups designated by low and high expression of RBFOX3 in patients with GC.
were extracted from GC cells and 1 mg was incubated with 10 μg of biotinylated double-stranded DNA probes (Sigma-Aldrich) related to −351 to −149 of the region of HTERT promoter. After adding 100 μl streptavidin–agarose beads (Sigma-Aldrich), the cells were pulled down by centrifuging at 500 g at 4°C for 10 min.

**Spectrometry Assay**

Using mass spectrometry assay, HTERT promoter-binding proteins were analyzed. Then, the binding proteins were separated by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and observed by silver staining (Beyotime, P0015A). After reduction and alkylation, the bands of interest were digested with MS-grade trypsin solution (Promega, CAS9002-07-7). We used mass spectrometry to identify the digested peptides. The identities of the proteins were detected by software.

**Transient Transfection**

Cell transfection was conducted by the use of Lipofectamine 3000 (Invitrogen CA, USA). PcDNA3.1-RBFOX3 and pcDNA3.1-AP-2β plasmids and shRBFOX3 (5′-CAAATCGGGGGTTGCCAA-3′ and 5′-ACCGTGACCTGCTCAAAT-3′) and siAP-2β (5′-GCAGUCCAAUGACAUUUGATT-3′) were purchased from GenePharma (Shanghai, China).

**Chromatin Immunoprecipitation Assay**

The cells were fixed with 1% formaldehyde and then cross-linking quenched with 100 μl of 1.375 M glycine/ml of cell culture media. Then, these were sonicated on ice to shear DNA into 200–900-bp fragments (setting parameters of the ultrasound machine: 30% power, turn on 2 s, interval 3 s, 4 min). A third of the cell lysate was used as DNA input control, a third was used for immunoprecipitation with anti-RBFOX3 antibodies, and a third was subjected to non-immune rabbit IgG (Cell Signaling Technology, 3900S). The DNA fragments were purified on spin columns (Qiagen, 31014) and used to amplify a 227-bp segment of the HTERT promoter region using the following primers: Fwd: 5′-TGGCCTTCCCCAGGGCCCTTC-3′, Rvs: 5′-TGAGGACGGGAGGGTGTC-3′.

**Lentiviral Construction and Cell Transfection**

Overexpressing RBFOX3 and U6-sh-RBFOX3-EGFP-IRES-puromycin were designed and synthesized by Genechem, Shanghai, China. We then selected stable clones after 2 weeks by treating the cells with 0.7–5 μg/ml puromycin. After clonal expansion, we quantified the RBFOX3 expression by RT-qPCR and Western blotting. Cell transfection was conducted by the use of Lipofectamine 3000 (Invitrogen CA, USA). Silencing efficiency was analyzed by RT-qPCR and Western blotting.

**Table 1**

| Characteristics | RBFOX3 expression | p-value |
|-----------------|-------------------|---------|
|                 | Low group (N = 89) | High group (N = 89) |
| Age (y)         |                   |         |
| < 60            | 36                | 33      |
| ≥ 60            | 53                | 56      |
| Gender          |                   |         |
| Male            | 42                | 50      |
| Female          | 47                | 39      |
| Diameter (cm)   |                   |         |
| < 5             | 50                | 61      |
| ≥ 5             | 39                | 28      |
| Location        |                   |         |
| Proximal        | 24                | 24      |
| Middle          | 21                | 27      |
| Distal          | 44                | 38      |
| Differentiation |                   |         |
| Poor            | 23                | 41      |
| Moderately      | 29                | 19      |
| Highly          | 37                | 29      |
| Lauren type     |                   |         |
| Intestinal      | 71                | 74      |
| Diffuse or mixed | 18             | 15      |
| AJCC clinical stage |               |         |
| I               | 49                | 37      |
| II + III        | 40                | 62      |
| Drinking alcohol|                   |         |
| No              | 20                | 12      |
| Yes             | 69                | 77      |
| Smoking         |                   |         |
| No              | 18                | 15      |
| Yes             | 71                | 74      |
| TNM stage       |                   |         |
| I + II          | 50                | 31      |
| III + IV        | 39                | 58      |
| Lymphatic metastasis |           |         |
| N0 + N1         | 44                | 38      |
| N2              | 25                | 26      |
| N3              | 20                | 25      |

*p < 0.05, **p < 0.01.*

**Colony Formation and 5-Ethynyl-20-Deoxyuridine Assays**

Colony formation assays were performed as we previously described (15). The transfected GC cells were seeded in six-well plates at a density of 1 × 10^5 cells/well. A total of 100 μl of 10 μM prewarmed Edu was added into each well and cultured for 2 h. After adding 4% paraformaldehyde for 15 min, 50 μl of 2 mg/ml glycine solution was decolorized for 5 min. The cells were permeabilized...
TABLE 2 | Univariate and multivariate regression analyses of parameters associated with prognosis of GC patients.

| Characteristics                  | Subset | Univariate analysis | Multivariate analysis |
|----------------------------------|--------|---------------------|-----------------------|
|                                  |        | p-value             | HR (95% CI)           | p-value             | HR (95% CI)           |
| Age                              | < 60/≥ 60 | 0.137       | 1.354 (0.968–1.994)  | –                   | –                     |
| Gender                           | Male/female | 0.741       | 0.931 (0.338–1.833)  | –                   | –                     |
| Diameter                         | < 5 cm/≥ 5 cm | 0.630       | 1.338 (0.634–2.567)  | –                   | –                     |
| Location                         | Proximal/Middle/Distal | 0.224       | 1.016 (0.512–2.016)  | –                   | –                     |
| Drinking alcohol                 | No/Yes | 0.318       | 2.446 (1.145–5.345)  | –                   | –                     |
| Smoking                          | No/Yes | 0.377       | 8.474 (1.223–52.031) | –                   | –                     |
| Lauren                           | Intestinal/Diffuse or mixed | 0.914       | 0.527 (0.361–1.158)  | –                   | –                     |
| Lymphatic metastasis             | N0 + N1/N2 + N3 | 0.506       | 0.716 (0.434–1.098)  | –                   | –                     |
| Differentiation                  | Poor + Moderately/Highly | 0.014*     | 1.204 (0.432–1.943)  | 0.062              | 1.341 (1.015–2.578)  |
| Ajcc clinical stage              | I + II/III | 0.001**    | 2.179 (1.588–3.493)  | 0.129              | 4.083 (0.549–10.240) |
| TNM stage                        | I + II/III + IV | 0.002**    | 3.118 (2.090–5.567)  | 0.006**            | 2.118 (0.837–4.651)  |
| RBFOX3                           | High/Low | 0.001**     | 3.521 (2.084–4.747)  | 0.001**            | 2.670 (1.471–3.917)  |

*p < 0.05, **p < 0.01.

FIGURE 2 | RBFOX3 promoted gastric cancer (GC) cell multiplication and cell cycle progression in vitro. (A,D) RBFOX3 overexpression increased the propagative viability of cells as well as the formation of colonies in SGC-7901 cells. (B,E) RBFOX3 silencing decreased the viability of cells as well as the capacity of formation of colonies in MGC-803 cells. (C,F) Overexpression of HTERT reverted the repression of viability of cells and colony formation moderated by the silencing of RBFOX3 in MGC-803 cells. (G,H) Flow cytometric analyses of the cell cycle of the indicated GC cells transfected with Vector/RBFOX3 and sh-NC/shRB-1/shRB-2. *p < 0.05, **p < 0.01.

with 0.3% Trix-100 PBS for 10 min, followed by Apollo and Hoechst staining. Finally, they were examined by confocal microscopy.

**Wound Healing and Transwell Assays**
The transfected GC cells were seeded in six-well plates and then imaged 0 and 24 h later to monitor migration. These experiments
RBFOX3's Role in GC

FIGURE 3 | RBFOX3 promoted the migration and the invasion of GC cells in vitro. (A–C) The wound healing assay was performed to investigate the horizontal migration of cells following RBFOX3 overexpression or silencing in SGC-7901 (left panel) and MGC-803 cells (middle panel). Overexpression of HTERT abolished the inhibitory effects of RBFOX3 silencing on cell viability and formation of colonies in MGC-803 cells (right panel). (D–F) Results of the vertical migration and the invasion capacities of cells following RBFOX3 overexpression or silencing in SGC-7901 (left panel) and MGC-803 (middle panel) cells. (G,H) Western blotting results showing the protein expression of metastasis-related proteins following RBFOX3 overexpression or silencing in SGC-7901 and MGC-803 cells. *p < 0.05, **p < 0.01, ***p < 0.001.

were performed as independent triplicates. Transwell assays were used in BD BioCoat matrigel invasion chambers (BD, 354480). The invading cells in five randomly selected fields of view were observed under the microscope.

Western Blot

The collected cells were prepared using complete Lysis-M reagent (Roche, 4719956001) and RIPA lysis buffer (Beyotime, P0013B). Protein concentration was detected by the bicinchoninic acid assay (ThermoFisher Scientific, 23,221–23,230). The protein was separated by using 8–10% SDS-PAGE and 0.45-µm PVDF membranes, with antibody staining, and analyzed.

Real-Time PCR

Total RNA was done using TRIZOL reagent (Invitrogen, 15596-026) as per the manufacturer's instructions. cDNA synthesis was carried out using ReverTra Ace qPCR RT kit (Toyobo, FSQ-201C). RT-qPCR was done using a SYBR Green PCR kit (Toyobo, KGA1339-1) on a Bio-Rad CFX96 machine. The results were analyzed by using the 2ΔΔCT method. These experiments were done as independent triplicates. All the primers were designed by GeneCopoeia.

Co-immunoprecipitation Assay

The cells in each group were collected with the indicated antibodies and then added with 50 µl of agarose-conjugated protein-A/G beads (Merck Millipore, YB36403ES03) at 4°C overnight. Using PBS 1× washing with ice, the loading buffer was added into the beads and heated at 4°C for 5 min. Finally, they were examined by Western blot.

In vivo Tumor Growth Assay

The nude mice (6–8 weeks old) were purchased from Shanghai Laboratory Animal Co., Ltd. The SGC-7901 cells expressing luciferase reporter (pcDNA3.1-luciferase) were stably transfected with shRBFOX3 and pLVTHM. Next, about 1×10^6 of SGC-7901 cells (mixed beforehand with Matrigel, 1:1) were carefully injected into the subrenal capsule. The IVIS system (Caliper Life Sciences) was used to detect tumor growth and metastases. After 6 weeks, the mice were sacrificed and the tumors were collected for analyses.

Statistical Analysis

Data are presented as mean ± SD of three independent experiments. SPSS 11.0 software was used for processing of the statistical data. P < 0.05 was considered as statistically significant.

RESULTS

RBFOX3 Is Overexpressed in GC Tissues and Positively Correlates With Tumor Progression

To identify the abnormally expressed RBFOX3 in GC tissues, RBFOX3 DNA digestion products were first identified by agarose gel electrophoresis. The DNA digestion products were
RBFOX3's Role in GC

then stably expressed in GC cells (Figure 1A). The RT-qPCR assay revealed that RBFOX3 was consistently elevated in GC tissues ($p < 0.001$, Figure 1B). The IHC analyses of 89 GC tissues and non-tumor tissues showed higher RBFOX3 staining in the GC tissues relative to controls ($p < 0.01$, Figure 1C). Similar observations were obtained in a Western blot assay performed on 37 frozen GC tissues and non-tumor tissues ($p < 0.05$, Figure 1D). The Western blot analysis of cell lines revealed that RBFOX3 was down-regulated in GES-1 cells relative to the GC cells (Figure 1E). Next, we evaluated the relationship between the RBFOX3 level and the clinicopathological features of GC (Table 1). This analysis indicated that the high level of RBFOX3 was associated with tumor differentiation ($p = 0.017$), AJCC clinical stage ($p = 0.015$), and TNM stage ($p = 0.004$). A Kaplan–Meier survival analysis revealed significantly lower overall survival (OS) and disease-free survival (DFS) rates in patients with high tumor RBFOX3 levels relative to those expressing low RBFOX3 levels (Figures 1F,G). The univariate and multivariate Cox regression analyses also showed that advanced TNM stage and high RBFOX3 expression significantly correlated with unfavorable OS and DFS. Taken together, these results showed that a high level of RBFOX3 is associated with poor prognosis, indicating that RBFOX3 could be an independent prognostic marker in GC (hazard ratio = 2.670; 95% CI, 1.471–3.917; $p = 0.001$; Table 2).

RBFOX3 Promotes GC Cell Proliferation and Cell Cycle Progression in vitro

To explore the function of RBFOX3 in GC cell growth, RBFOX3 was stably overexpressed in SGC-7901 cells and stably silenced in MGC-803 cells. The results showed that the up-regulation of RBFOX3 markedly increased SGC-7901 cell viability and colony formation ($p < 0.05$, Figures 2A,D). RBFOX3 silencing effectively suppressed the MGC-803 cell viability and colony formation ($p < 0.05$, Figures 2B,E). Interestingly, the effect of RBFOX3 knockdown was reversed by HTERT overexpression in MGC-803 cells ($p < 0.05$, Figures 2C,F). Flow cytometry revealed that RBFOX3 silencing remarkably arrested MGC-803 cell cycle at the G1 phase ($p < 0.05$, Figure 2H). RBFOX3 overexpression in SGC-7901 cells had similar results ($p < 0.05$, Figure 2G). Taken together, these results indicate that RBFOX3 increases the proliferation of GC cell in vitro.
RBFOX3 Regulates GC Cell Migration and Invasion in vitro

Previous studies have reported that the HTERT signaling pathway plays an important role in cell migration and invasion (16–18). Therefore, we used wound healing and transwell invasion assays to explore the role of RBFOX3 on GC cell migration and invasion. The results showed that up-regulated RBFOX3 enhanced SGC-7901 cell migration and invasion. Conversely, RBFOX3 silencing suppressed MGC-803 cell migration \((p < 0.05, \text{Figures 3A, B, D, E})\). Moreover, HTERT overexpression in RBFOX3-silenced MGC-803 cells leads to higher migration and invasion abilities \((p < 0.05, \text{Figures 3C, F})\). To elucidate the factors driving RBFOX3-mediated metastasis, we evaluated the expression of some oncogenes and tumor suppressors in RBFOX3 knockdown (sh-RB and MGC-803) and overexpression (RBFOX3 and SGC-7901) contexts. Moreover, E-cadherin, an important protein involved in tumor metastasis, was downregulated, while \(\beta\)-catenin was markedly elevated upon RBFOX3 overexpression (SGC-7901 cells) \((p < 0.05, \text{Figure 3G})\), suggesting that perturbation in the expression of these proteins may be associated with RBFOX3 and mediate GC processes. An opposite effect was also observed upon RBFOX3 silencing (sh-RB and MGC-803) \((p < 0.05, \text{Figure 3H})\).

Although 5-fluorouracil (5-Fu) is commonly used to treat GC, it is associated with negative side effects (19). We hypothesized that, given the effect of RBFOX3 on GC growth and proliferation, its knockdown might enhance GC sensitivity to 5-Fu. We observed that 5-Fu inhibited GC cell viability and colony formation in a dose-dependent manner. Additionally, these effects were significantly stronger in the background of RBFOX3 silencing \((p < 0.05, \text{Figure 4A})\). Next, we first generated MGC-803 stably expressing RBFOX3 shRNA (shRB-1 and shRB-2) or the negative control (sh-NC). We found that the cell viability of RBFOX3 knockdown cells treated with 5-Fu was significantly lower relative to that of mock knockdown cells treated with 5-Fu \((p < 0.05, \text{Figure 4B})\). Moreover, RBFOX3 expression decreased after adding 5-Fu \((p < 0.05, \text{Figure 4C})\). This suggested that RBFOX3 regulated GC cell sensitivity to 5-Fu. However, their specific mechanism needs further research to fully reveal how RBFOX3 regulates sensitivity to 5-Fu.

RBFOX3 Binds to the HTERT Promoter in GC Cells

Previous studies have identified regulatory factors associated with the HTERT promoter in lung and liver tumors using
RBFOX3's Role in GC

FIGURE 6 | RBFOX3 promotes gastric cancer multiplication and invasion by up-regulating HTERT expression. (A) The silencing of HTERT (shHTERT-1) repressed the up-regulation of HTERT expression in SGC-7901-RBFOX3 cells. (B) Overexpression of HTERT (pcDNA3.1-HTERT) attenuated the HTERT expression in MGC-803-shRB cells. (C–H) Colony formation, Edu, and invasion assays showing that the knockdown or the overexpression of ectopic HTERT significantly rescues the RBFOX3-overexpressed or RBFOX3-silenced cell division and invasion observed in SGC-7901 and MGC-803 cells. *p < 0.05, **p < 0.01.

To establish whether RBFOX3 interacts with the HTERT promoter in GC as well, we used 5′-biotinylated HTERT promoter probes and streptavidin–agarose beads to pull down cytoplasmic proteins bound to the HTERT promoter. We then used RBFOX3 antibody to detect the location of RBFOX3 in the cytoplasmic protein/DNA complex by Western blot. RBFOX3 bound to the HTERT promoter probe in GC cells (MKN45, AGS, SGC-7901, MGC-803, and BGC-823) (Figure 5A, upper panel). All the GC cell lines express high levels of RBFOX3 (Figure 5A, lower panel). We used chromatin immunoprecipitation (ChIP) assay to analyze the relationship between RBFOX3 and HTERT. The results showed that RBFOX3 bound to the HTERT promoter in GC cells (Figure 5B). We designed three different 5′-biotinylated HTERT promoter fragments to explore the binding site of RBFOX3 on the HTERT promoter (Figure 5C). The results of this test indicated that the −371 to −305 (5′-C GCTGACCACCGTTCTAGGCGGCACCCGCCCT CTTGGGGCCCTCGGTGACCCGCCTGC-3′) region of the HTERT promoter is critical to the binding of RBFOX3. To investigate whether RBFOX3 regulates HTERT expression, we constructed plasmids with overexpressed RBFOX3, and shRBFOX3. The Western blot result revealed that up-regulated RBFOX3 increased HTERT expression, while down-regulated RBFOX3 inhibited HTERT expression in GC cells (p < 0.05, Figures 5D,E). HTERT siRNA silencing did not significantly affect RBFOX3 expression (Figures 5F,G). Next, we investigated how elevated RBFOX3 and HTERT expression in GC tissues (n = 52) affects the clinical outcomes. We observed that RBFOX3 expression was positively correlated with HTERT in GC tissues (Figures 5H,I). These results were consistent with those shown in Figures 5D–G. To investigate the relationship between RBFOX3 and HTERT, we restored RBFOX3 expression in lentivirus-stabilized RBFOX3 knockdown in SGC-7901 cells. The results showed that RBFOX3 overexpression restored RBFOX3 and HTERT expression (p < 0.05, Figure 6A). Similar results were obtained in MGC-803 cells with stably silenced RBFOX3 expression (p < 0.05, Figure 6B). Additionally, RBFOX3 overexpression restored cell proliferation, viability, and invasion capacity (p < 0.05, Figures 6C–H). These findings altogether confirm that RBFOX3 regulates HTERT expression.

RBFOX3 Interacts With AP-2β to Regulate HTERT Expression

This study investigated whether RBFOX3 bound to the HTERT promoter interacted with other transcription factors. Previous studies showed that the HTERT promoter-binding proteins include KLF4 (21), RFPL3 (22), CPSF4 (23), and AP-2β (17). To test this possibility, we performed a Co-IP pull-down experiment and, using a RBFOX3-specific antibody, observed that RBFOX3 bound to AP-2β (Figures 7A,B). Interestingly, we found that AP-2β bound to the HTERT promoter (Figure 7C). A co-immunofluorescence analysis of GC cells revealed that RBFOX3 and AP-2β were primarily localized in the nucleus and co-localized (Figure 7D). Additionally, we found that AP-2β increased the ability of RBFOX3 binding to the HTERT promoter (Figures 7E,F). Conversely, AP-2β knockdown weakened this binding even in the context of RBFOX3 overexpression (SGC-7901 cells) (Figures 7F,G). A luciferase reporter analysis showed that the up-regulation of AP-2β enhanced the activity of the HTERT promoter, while the down-regulation of AP-2β inhibited the activity of the HTERT promoter (Figure 7G). To investigate...
FIGURE 7 | RBFOX3 interacted with AP-2β and modulated the expression of HTERT. (A, B) We transfected SGC-7901 cells with RBFOX3 overexpression or empty vector. CoIP analysis was used to detect the interaction between RBFOX3 and AP-2β. (C) We performed the chromatin immunoprecipitation (ChIP) assays using the antibody against AP-2β. We separated the PCR products of the HTERT promoter (−378 to −157) on 2% agarose gels. (D) We cultured the SGC-7901 as well as the MGC-803 cells grown on chamber slides for 24 h and examined the subcellular localization and the co-localization of RBFOX3 with AP-2β via confocal microscopy analysis. (E) We performed the ChIP assays using the HTERT promoter primers and the respective RBFOX3 antibodies in SGC-7901 cells transfected with RBFOX3, RBFOX3, and siAP-2β, AP-2β, AP-2β, and shRBFOX3, respectively. (F) The expression of HTERT in SGC-7901 cells transfected with RBFOX3, RBFOX3, and siAP-2β, AP-2β, AP-2β, and shRBFOX3, respectively. (G) Relative HTERT promoter activity in SGC-7901 cells transfected with RBFOX3, RBFOX3, and siAP-2β, AP-2β, AP-2β, and shRBFOX3, respectively. *p < 0.05, **p < 0.01.

the influence of AP-2β on HTERT, we performed Western blot analysis and found that AP-2β overexpression enhanced HTERT expression. Conversely, AP-2β knockdown suppressed HTERT expression (Figure 7F) as well as abolished the inhibition of AP-2β knockdown on the invasion of GC cells. Conversely, AP-2β overexpression partially rescued the inhibition of GC invasion caused by the RBFOX3 knockdown (Figure 7H). These findings suggest that RBFOX3 bound to AP-2β and then regulated the HTERT expression in GC cells.

Deregulation of RBFOX3 Suppresses Tumor Growth in GC Orthotopic Xenografts

To evaluate whether RBFOX3 has oncogenic functions, we established GC orthotopic mouse xenografts using SGC-7901 cells carrying a luciferase reporter and stably overexpressing RBFOX3, as well as MGC-803 cells carrying the luciferase reporter and stable knock-down of RBFOX3. As controls, we used vector groups and sh-NC groups, respectively. The cells were inoculated in the renal capsule of the mouse (eight mice per group). Tumor growth was monitored using IVIS. At 6 weeks into the experiment, we observed that RBFOX3 knockdown resulted in significantly smaller tumors, while RBFOX3 overexpression resulted in tumors that were significantly bigger than the controls (Figures 8A, D). An analysis of tumor size revealed that RBFOX3 up-regulation significantly promoted tumor volume and weight (Figures 8B, C). However, the knock-down of RBFOX3 produced opposite effects (Figures 8E, F). These findings show that the down-regulation of RBFOX3 may suppress tumor progression in vivo.

DISCUSSION

Limitless self-renewal is a hallmark of cancer (24). Telomere maintenance and telomerase activation have been reported to
FIGURE 8 | Dysregulation of RBFOX3-suppressed cell multiplication in gastric cancer (GC) orthotopic xenografts. Stable transfection of the SGC-7901 and MGC-803 cells with pcDNA3.1-RBFOX3 plasmid or empty plasmid (Vector) and RBFOX3 shRNA or negative control vector (sh-NC), respectively. Next, we subcutaneously injected the transfected GC cells into nude mice, and xenograft tumor growth was determined for 25 days. (A–C) IVIS representative images showing the tumor size (A), growth curves of tumor volumes (B), and tumor weight (C) in RBFOX3 overexpressed arm vs. control arm. (D–F) IVIS representative images showing the tumor size (D), growth curves of tumor volumes (E), and tumor weight (F) in shRB-1 arm vs. controls. n = 8, *p < 0.05, **p < 0.01.

promote the proliferation of cancer cell (25). The transcriptional regulation of HTERT is believed to modulate telomerase activation in human cancers. Particularly, HTERT maintains telomere length, thereby overcoming senescence and hence modulating cancer development (26, 27). HTERT is up-regulated in various tumors, and it influences tumor development via genetic and epigenetic mechanisms such as HTERT promoter mutations, HTERT amplifications, HTERT promoter methylation, and HTERT structural variation (28, 29). HTERT is the catalytic subunit of telomerase which plays crucial roles in the cells’ unlimited replication (29–31). Recent findings have implicated HTERT in various human diseases, including cancer (17, 30, 32). Recently, HTERT is often maladjusted, which is considered as a cancer hallmark and a potential therapeutic target (30, 31, 33). The differentially expressed tumor-specific cytokines bind to the HTERT promoter to promote HTERT expression and the development of cancer (32, 34). Interestingly, we found that RBFOX3 is markedly up-regulated in GC tissues and cell lines and functions as an oncogene. Our data showed that patients expressing high RBFOX3 levels exhibit significantly shorter OS and DFS. Furthermore, the univariate and multivariate analyses showed that a high RBFOX3 expression may independently predict poor GC prognosis.

Next, we investigated the significance of high RBFOX3 expression in GC. A functional analysis revealed that RBFOX3 overexpression promoted GC cell proliferation and metastasis. However, the effects of RBFOX3 overexpression on GC cells are suppressed by RBFOX3 silencing. We also established that RBFOX3 influenced GC cell sensitivity to 5-Fu. It has been reported that RBFOX3 can bind to the region of the HTERT promoter, thereby regulating HTERT signaling (17, 33). Interestingly, we find that the inhibitory effects of RBFOX3 knockdown in GC proliferation and invasion were rescued by HTERT overexpression.

Next, we investigate whether RBFOX3 also bound to the region of the HTERT promoter in GC cells. We performed biotin–streptavidin–agarose pull-down and proteomics analysis, which revealed that RBFOX3 functioned as a novel HTERT promoter-binding protein in GC cells. Importantly, we found that RBFOX3 could bind to the region of the HTERT promoter in GC cells and activate it. Additionally, our data showed that RBFOX3 could regulate the HTERT expression at the transcriptional level. Further analysis demonstrated that RBFOX3 was up-regulated in primary human GC cells. To further investigate the mechanism of RBFOX3 regulation of HTERT, we constructed RBFOX3 stably overexpressing plasmids.
and RBFOX3 stable knockdown in GC cells using a lentivirus carrying shRNA. A Western blot analysis revealed that RBFOX3 overexpression elevated the HTERT protein levels in GC cells, while its silencing inhibited HTERT expression at the translational level in GC cells. Furthermore, we explored the impact of elevated RBFOX3 on HTERT in GC clinical outcomes. The results showed that RBFOX3 correlated with HTERT expression in GC tissues relative to matching paracancerous tissues. RBFOX3 and HTERT were correlated with advanced disease and could be a poor prognosis in GC patients.

To further verify the effects of RBFOX3 in HTERT, we restored RBFOX3 expression in stably silenced GC cell lines. This restored RBFOX3 and HTERT expression in SGC-7901 and MGC-803 cells. However, HTERT silencing did not alter the RBFOX3 levels; it restored cell proliferation and invasion. These results revealed that RBFOX3 regulated the HTERT expression.

Finally, we observed that RBFOX3 binds to AP-2β to promote the expression of HTERT and confirmed, through ChIP assay, that AP-2β bound to the HTERT promoter. AP-2β overexpression enhanced RBFOX3 binding to the HTERT promoter. Conversely, the down-regulation of AP-2β inhibited RBFOX3 binding to the HTERT promoter, with the RBFOX3 overexpressing in SGC-7901 cells. The luciferase reporter assay revealed that AP-2β overexpression increased the activity of the HTERT promoter, an effect that was inhibited following AP-2β knockdown. In further tests, we found that AP-2β up-regulated HTERT, while AP-2β knockdown down-regulated the HTERT expression. The MTS assay analysis revealed that the knockdown of AP-2β inhibited the RBFOX3 overexpression-mediated GC cell growth. Moreover, AP-2β overexpression partially rescued the inhibitory effects of RBFOX3 knockdown growth. These data altogether showed that RBFOX3 regulated HTERT expression and GC cell growth through binding to AP-2β.

Although RBFOX3 is an antigen of the neuronal marker antibody NeuN (35), it has been implicated in GC. Recent studies indicate that RBFOX3 regulates various physiological processes apart from being an alternative splicing factor (17, 36). It binds DNA and regulates microRNA transcription (12, 14). However, its role in mammalian development and homeostasis has remained unclear. RBFOX3 possesses an RNA recognition motif-type RNA binding domain which enables it to regulate splicing events by binding the (U)GCAUG sequence on RNA (14, 37). Here we find that RBFOX3 can regulate the expression of HTERT through binding to the HTERT promoter in GC cells. However, the role of RBFOX3 in the processes of RNA binding is not clear.

In summary, we reveal that RBFOX3 can function as an oncogene to promote GC cell proliferation, migration, and invasion. Furthermore, we have shown that RBFOX3 also activates HTERT signaling through AP-2β in GC cells. Thus, our study provides a novel thought in the regulation of HTERT in the progress of GC, and RBFOX3 is a novel therapeutic target against GC.

**DATA AVAILABILITY STATEMENT**

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation, to any qualified researcher.

**ETHICS STATEMENT**

The studies involving human participants were reviewed and approved by Medical Research Ethics Committee of the Second Affiliated Hospital of Nanchang University. The patients/participants provided their written informed consent to participate in this study. The animal study was reviewed and approved by Medical Research Ethics Committee of the Second Affiliated Hospital of Nanchang University. Written informed consent was obtained from the owners for the participation of their animals in this study. Written informed consent was obtained from the individual(s) for the publication of any potentially identifiable images or data included in this article.

**AUTHOR CONTRIBUTIONS**

ZZh, CL, and XZ: project design and conception. CL, XZ, QL, FB, CHua, KL, JZhu, WZ, ZZo, HL, JH, CHu, and JZha: performed the research and data collection. XZ, CL, and FB: data statistical and analysis. XZ and CL: drafted the manuscript. All authors read and approved the final version of the manuscript.

**FUNDING**

The research was supported by the National Natural Science Foundation of China (81560389, 81860433, 81960436, and 81560396), the Natural Science Foundation of Jiangxi Province (20181BBG70015 and 2018BBG70019), the Natural Science Youth Foundation of Jiangxi Province (20192BAB215036), the Foundation for Fostering Young Scholar of Nanchang University (PY201822), the Project of Jiangxi Provincial Innovation fund for graduate students (YC2019-B014), and the General Science and Technology Program of Jiangxi Health and Family Planning Commission (20171068 and 20204359).

**REFERENCES**

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. Cancer J Clin. (2019) 69:7–34. doi: 10.3322/caac.21551
2. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. Cancer J Clin. (2016) 66:115–32. doi: 10.3322/caac.21338
3. Thrift AP, El-Serag HB. Burden of gastric Cancer. Clin Gastroenterol Hepatol. (2020) 18:534–42. doi: 10.1016/j.cgh.2019.07.045
4. Finke J, Engelhardt R. Chemotherapy for advanced gastric cancer. Dig Surg. (1994) 11:118–20. doi: 10.1159/000172235
5. Cowboy JG. Developmental regulation of RNA processing by Rbfox proteins. Wiley Interdiscip Rev RNA. (2017) 8:1398. doi: 10.1002/wrna.1398
Luo et al. RBFOX3’s Role in GC

6. Yeo GW, Coufal NG, Liang TY, Peng GE, Fu X, Gage FH. An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nat Struct Mol Biol. (2009) 16:130–7. doi: 10.1038/nsmb.1545

7. Gallagher TL, Arrirbe JA, Geurts PA, Exner CTR, McDonald KL, Dib KK, et al. Rbfox-regulated alternative splicing is critical for zebrafish cardiac and skeletal muscle functions. (2005) 359:251–61. doi: 10.1016/j.ydbio.2011.08.025

8. Dredge BK, Jensen KB. NeuN/Rbfox3 nuclear and cytoplasmic isoforms differentially regulate alternative splicing and nonsense-mediated decay of Rbfox2. PLoS ONE. (2011) 6:e21585. doi: 10.1371/journal.pone.0021585

9. Kim KK, Kim YC, Adelstein RS, Kawamoto S. Fox-3 and PSF interact to activate neural cell-specific alternative splicing. Nucleic Acids Res. (2011) 39:3064–78. doi: 10.1093/nar/gkq1221

10. Lee Y, Ruo DC. Mechanisms and regulation of alternative Pre-mRNA splicing. Annu Rev Biochem. (2015) 84:291–323. doi: 10.1146/annurev-biochem-060614-034316

11. Kim KK, Adelstein RS, Kawamoto S. Identification of neuronal nuclei (NeuN) as Fox-3, a new member of the Fox-1 gene family of splicing factors. J Biol Chem. (2009) 284:31052–10. doi: 10.1074/jbc.M109.052969

12. Mullen RJ, Buck CR, Smith AM. NeuN, a neuronal specific nuclear protein in vertebrates. Development. (1992) 116:201–11.

13. Preissl S, Fang R, Huang H, Zhao Y, Raviram R, Gorkin DU, et al. Single-nucleus analysis of accessible chromatin in developing mouse forebrain reveals cell-type-specific transcriptional regulation. Nat Neurosci. (2018) 21:432–9. doi: 10.1038/s41593-018-0079-z

14. Kim KK, Yang Y, Zhu J, Adelstein RS, Kawamoto S. RBFOX3 controls the biogenesis of a subset of microRNAs. Nat Struct Mol Biol. (2014) 21:901–10. doi: 10.1038/nsmb.2892

15. Zhu X, Luo C, Lin K, Bu F, Ye F, Huang C, et al. Overexpression of DJ-1 enhances colorectal cancer cell proliferation through the cyclin-D1/MDM2-p53 signaling pathway. Biosci Trends. (2020) 14:83–95. doi: 10.5832/bst.2019.01272

16. Maggisano V, Celano M, Lombardo GE, Lepore SM, Sponziello M, Rosignolo F, et al. Silencing of hTERT blocks growth and migration of anaplastic thyroid cancer cells. Mol Cell Endocrinol. (2017) 448:34–40. doi: 10.1016/j.mce.2017.03.007

17. Liu T, Li W, Lu W, Chen M, Luo M, Zhang C, et al. RBFOX3 promotes tumor growth and progression via hTERT signaling and predicts a poor prognosis in hepatocellular carcinoma. Theranostics. (2017) 7:3138–54. doi: 10.7150/thno.19506

18. Hu C, Ni Z, Li B, Yong X, Yang X, Zhang J, et al. hTERT promotes the invasion of gastric cancer cells by enhancing FOX3a ubiquitination and subsequent ITGB1 upregulation. Gut. (2017) 66:31–42. doi: 10.1136/gutjnl-2015-309322

19. Lorenzen S, Pauligk C, Homann N, Schmalenberg H, Jäger E, Al-Batran SE. Feasibility of perioperative chemotherapy with infusional 5-FU, leucovorin, and oxaliplatin with (FLOT) or without (FLO) docetaxel in elderly patients with locally advanced esophagealgastric cancer. Br J Cancer. (2013) 108:519–26. doi: 10.1038/bjc.2012.588

20. Kim Y, Kim JO, Park K, Won M, Kim KE, Kim KK. Transforming growth factor-β-induced RBFOX3 inhibition promotes epithelial-mesenchymal transition of lung cancer cells. Mol Cells. (2016) 39:625–30. doi: 10.14348/molcells.2016.0150

21. Hsieh M, Chen Y, Chen Y, Lee Y, Lu J, Chien C, et al. PARPi controls KLF4-mediated telomerase expression in stem cells and cancer cells. Nucleic Acids Res. (2017) 45:10492–503. doi: 10.1093/nar/gkw583

22. Lin C, Qin Y, Zhang H, Gao M, Wang Y. EGFR upregulates RPL3 and hTERT via the MEK signaling pathway in non-small cell lung cancer cells. Oncol Rep. (2018) 40:29–38. doi: 10.3892/or.2018.6417

23. Chen W, Qin L, Wang S, Li M, Shi D, Tian Y, et al. CPSF4 activates telomerase reverse transcriptase and predicts poor prognosis in human lung adenocarcinomas. Mol Oncol. (2014) 8:704–16. doi: 10.1016/j.molonc.2014.02.001

24. Zhang H, Li S. Molecular mechanisms for survival regulation of chronic myeloid leukemia stem cells. Protein Cell. (2013) 4:816–96. doi: 10.1007/s13238-013-1115-0

25. Temime-Smadi N, Guittat L, Wener T, Bayart E, Douarre C, Gomez D, et al. Topoisomerase IIα is required for normal proliferation and telomere stability in alternative lengthening of telomeres. EMBO J. (2008) 27:1513–24. doi: 10.1038/emboj.2008.74

26. Jafri MA, Ansari SA, Alqahtani MH, Shay JW. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med. (2016) 8:69. doi: 10.1186/s13037-016-0324-x

27. de Vitis M, Berardinelli F, Sgura A. Telomere length maintenance in cancer: an update. J Biomed Sci. (2018) 25:432–9. doi: 10.1038/s41593-018-0079-3

28. Ludlow AT, Slusher AL, Sayed ME. Insights into telomerase/hTERT alternative splicing regulation using bioinformatics and network analysis in cancer. Cancers. (2019) 11:666. doi: 10.3390/cancers11050666

29. Leão R, Apolónio JD, Lee D, Figueiredo A, Tabori U, Castelo-Branco P. Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: clinical impacts in cancer. J Biomed Sci. (2018) 25:22. doi: 10.1186/s12929-018-0422-8

30. Zhao X, Zheng F, Li Y, Hao J, Tang Z, Tian C, et al. BPTF promotes hepatocellular carcinoma growth by modulating hTERT signaling and cancer stem cell traits. Redox Biol. (2019) 20:427–41. doi: 10.1016/j.redox.2018.10.018

31. Sayed ME, Yuan L, Robin JD, Batten K, Dahlson N, et al. NOVA1 directs PTBP1 to hTERT pre-mRNA and promotes telomerase activity in cancer cells. Oncogene. (2019) 38:2937–52. doi: 10.1038/s41388-018-0639-8

32. Yan T, Ooi WF, Qamra A, Cheung A, Ma D, Sundaram GM, et al. HoxC5 and miR-615-3p target newly evolved genomic regions to repress hTERT and inhibit tumorigenesis. Nat Commun. (2018) 9:100. doi: 10.1038/s41467-017-02601-1

33. Choi MJ, Cho KH, Lee S, Bae YJ, Jeong KI, Rha SY, et al. hTERT mediates norepinephrine-induced Slug expression and ovarian cancer aggressiveness. Oncogene. (2015) 34:3402–12. doi: 10.1038/onc.2014.270

34. Song JH, Kang H, Luévano LA, Gokhale V, Wu K, Pandey R, et al. Small-molecule-targeting hairpin loop of hTERT promoter G-Quadruplex induces cancer cell death. Cell Chem Biol. (2019) 26:1110–21. doi: 10.1016/j.chembiol.2019.04.009

35. Duan W, Zhang YP, Hou Z, Huang C, Zhu H, Zhang CQ, et al. Novel insights into NeuN from neuronal marker to splicing regulator. Mol Neurobiol. (2016) 53:1637–47. doi: 10.1007/s12035-015-9122-5

36. Tang Y, Sun X, Huang L, Liu X, Qin G, Wang L, et al. Melatonin inhibits MLL-rearranged leukemia via RBFOX3/hTERT and NF-kB/COX-2 signaling pathways. Cancer Lett. (2019) 443:167–78. doi: 10.1016/j.canlet.2018.11.037

37. Kim KK, Nam J, Mukosyama Y, Kawamoto S. Rbfox3-regulated alternative splicing of Numb promotes neuronal differentiation during development. J Cell Biol. (2013) 200:443–58. doi: 10.1083/jcb.201206146

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.