Association Between IL-23 and Coronary Arterial Lesions in Children with Kawasaki Disease

Ya Su
Children's Hospital of Chongqing Medical University

Siqi Feng
Chongqing Medical University Affiliated Children's Hospital

Ruixi Liu
Chongqing Medical University Affiliated Children's Hospital

Qijian Yi (✉ qjyi@hospital.cqmu.edu.cn)
Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorder

Keywords: Kawasaki disease (KD), Interleukin-23(IL-23), Pro-inflammatory, Coronary arterial lesion,

Posted Date: October 11th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-955195/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

The pathogenesis of coronary artery lesions (CALs) in KD patients has been thought of as an unknown stimulus that triggers an inflammatory cascade with activation of the immune system. However, interleukin-23 (IL-23) is supposed as a key cytokine in inflammatory and autoimmunity diseases. The role of IL-23 in the pathogenesis of CALs has not been fully elucidated. This study explored the relationship between the serum IL-23 levels and CALs in patients with KD. We collected blood specimens from 90 children with KD before intravenous immunoglobulin (IVIG) therapy. Levels of IL-23, IL-6, IL-17A, IL-10, MCP-1 and VEGF were measured in 190 cases, including 4 groups: KD with CALs (n = 46), KD without CALs (n = 44), febrile control group, (FC, n = 40) and normal control group, (NC, n = 60). Clinical parameters were tested in all subjects. IL-23 was significantly elevated in the KD group compared with the febrile and normal control groups, especially increased in the KD patients with CALs. Serum levels of IL-23 in KD patients were positively associated with WBC, CRP, IL-6, IL-17A, IL-10, MCP-1, and VEGF in children with KD. In conclusion, IL-23 may be involved in the pro-inflammatory process and the pathogenesis of CALs in KD patients.

1. Introduction

Kawasaki disease (KD) is a self-limited autoimmune systemic vasculitis disease predominantly in children under 5 years [1]. Its most serious complication is coronary arteritis lesions (CALs) or aneurysms that may cause ischemia, myocardial infarction, and sudden cardiac death [2]. Although the pathogenesis of CALs in KD patients has not been fully elucidated, an unknown stimulus triggers an inflammatory cascade with activation of the immune system is thought to be a cause of the disease [3]. There are increased inflammatory cytokines (IL-6, IL-17A, IL-10, and tumor necrosis factor (TNF) -a) and dysregulations of T-cells that CD8+ T cells decrease and CD4+ T cells increase, which involved in the acute and subacute phase of KD [4–6].

Interleukin-23(IL-23) is a recently discovered cytokine of the IL-12 family and a heterodimeric protein composed of an IL-23-specific p19 subunit and a p40 subunit shared with IL-12. IL-23 is mainly produced by activated macrophages and dendritic cells [7–8]. IL-23 is supposed as a key cytokine in inflammatory and autoimmunity diseases such as atherosclerosis, rheumatoid arthritis (RA), and asthma [9–10], which promotes Th17 cell differentiation and activation to produce inflammatory factors(IL-6, IL-17, TNF-α, and GM-CSF). Moreover, IL-23 can produce IL-1, TNF-α, and IL-23 itself through activating inflammatory macrophages[11–12]. However, whether IL-23 involve in the pathogenesis of KD is still unclear. Thus, we examined serum IL-23 levels and the correlation with other inflammatory cytokines (IL-6, IL-17A, IL-10, MCP-1, and VEGF) to explore whether IL-23 has a role in developing CALs in KD patients.

2. Materials And Method

2.1. Subjects recruitment.
All patients diagnosed with KD were from the Children’s Hospital of Chongqing Medical University, Chongqing, China. A total of 90 KD patients (48 males and 42 females, 2.55±1.72 years old) were enrolled in the study, all of whom met the Japanese Kawasaki Disease Research Committee’s clinical diagnostic criteria for KD [13]. 60 healthy children (32 males and 28 females, 2.19±2.22 years old) as the normal control group (NC) and 40 children with an acute febrile infectious disease (20 males and 20 females, 2.84±1.63 years old) as the febrile control group (FC).

KD patients were divided into 2 groups based on the presence or absence of CALs: KD with CALs (n=46) and KD without CALs (n=44). CALs were defined by having an actual internal diameter of 3 mm or more in a child under 5 years; 4 mm or more in a child 5 years or older, or if the internal diameter of the segment was at least 1.5 times greater than that of an adjacent segment according to examination by echocardiography [14]. Echocardiography was obtained before administering intravenous immunoglobulin (IVIG) or within 2 weeks of the onset. We collected blood specimens from KD patients before IVIG therapy within 1 week after symptom onset. Serum was stored at -80°C for future analysis.

2.2. Measurement of serum IL-23, IL-6, IL-17A, IL-10, MCP-1, VEGF levels and clinical parameters

Serum IL-23, IL-6, IL-17A, IL-10, MCP-1, VEGF levels were detected by enzyme-linked immunosorbent assay (ELISA) according to the manufacturer’s instructions (RayBiotech, USA). Various clinical parameters from all subjects were also tested, including White blood cells (WBC), red blood cells (RBC), hemoglobin (HB), Platelet (PLT), C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), and procalcitonin (PCT). The Ethics Committee of Children’s Hospital of Chongqing Medical University approved our study. Informed consent was obtained from the guardians of each child.

2.3. Statistical analysis

All data are expressed as number and percentage (n, %) or mean ± standard deviation (SD). One-way ANOVA and 2-tailed unpaired t-test were used to analyze the statistical significance of concentrations of cytokines. Correlation between two groups was tested by Pearson’s correlation analysis. A two-tailed p-value of <0.05 was considered significant. SPSS version 18 software (SPSS Inc., Chicago, IL, USA) was used for all statistical analyses.

3. Results

3.1. Serum IL-23 levels were higher in KD patients than that in normal children and acute febrile infectious patients.

The serum samples analyzed in this study are the same samples analyzed in the previous report [15]. It shows that no statistically significant differences in age and gender among three groups: the KD patients group, the normal control group (NC), and the febrile control group (FC) [15]. The detected serum IL-23 levels ranged from 0.4 to 2507.3 pg/ml. As shown in Fig. 1, serum IL-23 levels in the KD groups (446.9
pg/ml [58.0, 2507.3]) were significantly elevated compared with the FC(388.9 pg/ml [1.9, 1039.8]) and NC(187.2 pg/ml [0.4, 820.1]) (p = 0.017).

3.2. Serum IL-23 levels were higher in KD patients with CALs than that in KD patients without CALs.

As shown in Fig. 2, Serum IL-23 levels were significant higher in the KD with CALs (KD-CALs) group (596.8 pg/ml [103.6, 2507.3]) than that in KD without CALs (KD-NCALs) group (319.2 pg/ml [58.0, 1159.1]) (p<0.05).

3.3. The relationship between IL-23 and clinic characteristics and inflammatory factors.

Our previous report has showed that levels of HB and RBC markedly decreased, and levels of WBC, PLT, CRP, ESR and PCT were significantly elevated in the KD group than those in NC and FC groups. Moreover, IL-6, IL-17A, IL-10, MCP-1 and VEGF were markedly increased in the KD group compared with the NC and FC groups (p<0.05)[15]. In this study, we further compare the relationship between IL-23 and clinic characteristics(WBC, RBC, HB, PLT, CRP, ESR and PCT), and inflammatory factors(IL-6, IL-17A, IL-10, MCP-1 and VEGF). We find IL-23 were positively correlated with WBC, CRP, IL-17A, IL-10, IL-6, MCP-1 and VEGF levels in patient with KD (r = 0.381, p = 0.026; r = 0.383, p = 0.012; r =0.301, p = 0.033; r = 0.282, p = 0.047; r =0.426, p= 0.017; r =0.340, p =0.018, r =0.394, p =0.019, respectively) (Table 1).
Table 1
Compare relationship between IL-23 and clinic characteristics and inflammatory factors.

IL-23	\(r \)	\(p \)
WBC\((10^3/\text{uL})\)	0.381	0.026*
HB (g/dL)	0.145	0.311
PLT \((10^3/\text{uL})\)	-0.021	0.890
RBC\((10^6/\text{mm}^3)\)	-0.028	0.853
PCT	0.184	0.291
CRP\((\text{mg/dL})\)	0.383	0.012*
ESR\((\text{mm/h})\)	-0.190	0.183
IL-6\((\text{pg/ml})\)	0.426	0.017*
IL-17A\((\text{pg/ml})\)	0.301	0.033*
IL-10\((\text{pg/ml})\)	0.282	0.047*
MCP-1\((\text{pg/ml})\)	0.340	0.018*
VEGF\((\text{pg/ml})\)	0.394	0.019*

Abbreviations: KD, Kawasaki disease; WBC, white blood cells counts; RBC, red blood cells counts; PLT, Platelet; HB, Hemoglobin; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; PCT, procalcitonin; MCP-1, monocyte chemoattractant protein-1; VEGF, vascular endothelial growth factor.

* A \(p \) value of < 0.05.

4. Discussion

IL-23, a recent member of the IL-12 family, is supposed as a key cytokine in inflammatory and autoimmunity diseases. The aim of this study was to determine the role of IL-23 in the pathogenesis of KD and investigate the correlation between IL-23 and CALs in KD patients. Our study established that (1) serum IL-23 levels increased in KD patients, compared with the normal control group and the febrile control group, and even more (2) serum IL-23 levels increased in the KD with CALs group compared with the KD without CALs group. Moreover, (3) IL-23 was positively correlated with WBC, CRP, IL-6, IL-17A, IL-10, MCP-1, and VEGF in KD patients.
IL-23 is produced mainly by activated dendritic cells and macrophages, which is supposed as a key cytokine in inflammatory and autoimmunity diseases such as atherosclerosis, asthma, and rheumatoid arthritis (RA)[7-10]. However, few studies have examined the role of IL-23 in the pathogenesis of KD. Our research shows that serum IL-23 levels in KD patients were higher than those in normal children and febrile infectious patients, indicating that IL-23 may involve vasculitis in the acute phase of KD. Moreover, serum IL-23 levels increased in the KD patients with CALs compared with the KD patients without CALs, which suggested that IL-23 may have an effect on the development of CALs in KD.

T-helper type 17 (Th17) cells have been reported to regulate inflammation in the acute phase of KD[16-17]. Th17 cells can produce inflammatory cytokines, including IL-17, IL-6, and TNF-α, and lead to autoimmunity and tissue damage. IL-17 has pro-inflammatory properties to regulate tissue inflammation and acts on a broad range of cell types to induce the expression of various cytokines (such as IL-6, TNF-α, and IL-8), metalloproteinases, and chemokines [18-19]. Many previous studies have shown that IL-17 levels were significantly elevated in children with acute Kawasaki disease[16,20]. Recently, some studies have demonstrated that IL-23 can promote Th17 cell differentiation and activation to produce IL-17, IL-6, IL-22, TNF-α, and GM-CSF[11]. We got very similar results in this research where IL-23 levels were positively correlated with IL-17 and IL-6 levels. These results indicated that the IL-23/IL-17 axis might be implicated in the pathogenesis of KD.

IL-10 is an immunomodulatory cytokine with anti-inflammatory and immunosuppressive properties, which inhibits the production of inflammatory cytokines (such as IL-1β, IL-6, and TNF-α) and is implicated in the pathogenesis of inflammatory and autoimmune diseases[21-23]. IL-10 has been reported to be involved in the pathogenesis of KD. The adeno-associated virus (AAV) -mediated induction of IL-10 prevents vascular inflammation, fibrosis, and lethality in a murine model of KD[24-25]. Some research shows that IL-23 can enhance IL-10 production, consistent with our results that IL-23 levels were positively correlated with IL-10 levels[26-27]. Therefore, we speculate that IL-23 may have an effect on inducing the expression of IL-10 in the acute phase of KD.

This research found that serum IL-23 levels were positively associated with WBC, CRP, MCP-1, and VEGF levels in KD patients. MCP-1 is a new member of the CC-chemokine family that activates and attracts the monocytes, which has been confirmed to be positively associated with the development of KD[28-30]. There is almost no research on the relationship between IL-23 and MCP-1. Our study showed that serum IL-23 levels positively correlated with MCP-1 in KD patients so that IL-23 may promote the expression of MCP-1 and may promote vascular inflammation during the acute phase of KD can be speculated. Inflammation predictors of inflammation include WBC and CRP. High levels of CRP serve as an independent risk factor for predicting giant aneurysms in KD[31]. Furthermore, VEGF, a potent pro-angiogenic protein, can increase vascular permeability and endothelial cell proliferation, which is considered a predictor of CAL in acute KD [32-35]. Moreover, IL-23 could promote VEGF production in mammary cancer and human colorectal carcinoma [36-37]. Our study showed that serum IL-23 levels were positively correlated with CRP, WBC, and VEGF. Therefore, it can be speculated that IL-23 may
promote the production of VEGF and the formation of the CAL by promoting the pro-inflammatory process in KD patients.

The main limitation of our study is the relatively small number of recruited patients and lack of comparison between before and after treatment with IVIG of KD patients. Absence of more pro-inflammatory cytokines (TNF-α, IL-1β, INF-γ, and TGF-β) measurement at the same time.

In conclusion, our study demonstrated that serum IL-23 levels increased in the KD patients, notably KD patients with CALs. Moreover, serum IL-17A, IL-10, IL-6, MCP-1, and VEGF levels were positively correlated with IL-23 in the acute phase of KD. The results of this study indicate that IL-23 might play an pro-inflammatory role in the response of vasculitis in KD. Additional research is needed to further clarify the mechanism of IL-23 in the pathogenesis of KD vasculitis.

Declarations

Acknowledgments This work was supported by National Natural Science Foundation of China under Grant: No.81500273.

Compliance with ethical standards

Conflict of interest All authors have no actual or potential conflicts of interest with other people or organizations with 3 years of initiating the work presented here.

Ethical approval The study protocol was approved by the Ethics Committee of Children's Hospital of Chongqing Medicine University, and written informed consent forms were obtained from the parents of all subjects.

References

1. Kawasaki T, Kosaki F, Okawa S, Shigematsu I, Yanagawa H. A new infantile acute febrile mucocutaneous lymph node syndrome (MLNS) prevailing in Japan. Pediatrics. 1974;54(3):271–6.
2. Kato H, Koike S, Yamamoto M, Ito Y, Yano E. Coronary aneurysms in infants and young children with acute febrile mucocutaneous lymph node syndrome. J Pediatr. 1975;86(6):892–8.
3. Rowley AH, Shulman ST. Pathogenesis and management of Kawasaki disease. Expert Rev Anti Infect Ther. 2010;8(2):197–203.
4. Burns JC, Glodé MP. Kawasaki syndrome. Lancet. 2004;364(9433):533–44.
5. Guo MM, Tseng WN, Ko CH, Pan HM, Hsieh KS, Kuo HC. Th17- and Treg-related cytokine and mRNA expression are associated with acute and resolving Kawasaki disease. Allergy. 2015;70(3):310–8.
6. Cummings C, McCarthy P, van Hoff J, Porter G Jr. Kawasaki disease associated with reactive hemophagocytic lymphohistiocytosis. Pediatr Infect Dis J. 2008;27(12):1116–8.
7. Rasmussen TK, Andersen T, Hvid M, et al. Increased interleukin 21 (IL-21) and IL-23 are associated with increased disease activity and with radiographic status in patients with early rheumatoid arthritis. J Rheumatol. 2010;37(10):2014–20.
8. Hillyer P, Larché MJ, Bowman EP, et al. Investigating the role of the interleukin-23/-17A axis in rheumatoid arthritis. Rheumatology. 2009;48(12):1581–9.
9. Croxford AL, Kulig P, Becher B. IL-12-and IL-23 in health and disease. Cytokine Growth Factor Rev. 2014;25(4):415–21.
10. David A, Saitta S, De Caridi G, et al. Different serum levels of interleukin-23 in patients affected by peripheral arterial disease. Vascular. 2014;22(6):471–2.
11. Costa VS, Mattana TC, da Silva ME. Unregulated IL-23/IL-17 immune response in autoimmune diseases. Diabetes Res Clin Pract. 2010;88(3):222–6.
12. Duvallet E, Semerano L, Assier E, Falgarone G, Boissier MC. Interleukin-23: a key cytokine in inflammatory diseases. Ann Med. 2011;43(7):503–11.
13. JCS Joint Working Group. Guidelines for diagnosis and management of cardiovascular sequelae in Kawasaki disease (JCS 2008). Circ J. 2010;74:1989–2020.
14. Japan Kawasaki Disease Research Committee. Report of subcommittee on standardization of diagnostic criteria and reporting of coronary artery lesions in Kawasaki disease. Tokyo: Ministry of Health and Welfare; 1984.
15. Su Y, Feng S, Luo L, Liu R, Yi Q. Association between IL-35 and coronary arterial lesions in children with Kawasaki disease. Clin Exp Med. 2019;19(1):87–92.
16. Jia S, Li C, Wang G, Yang J, Zu Y. The T helper type 17/regulatory T cell imbalance in patients with acute Kawasaki disease. Clin Exp Immunol. 2010;162(1):131–7.
17. Guo MM, Tseng WN, Ko CH, Pan HM, Hsieh KS, Kuo HC. Th17- and Treg-related cytokine and mRNA expression are associated with acute and resolving Kawasaki disease. Allergy. 2015;70(3):310–8.
18. Laan M, Cui ZH, Hoshino H, et al. Neutrophil recruitment by human IL-17 via C-X-C chemokine release in the airways. J Immunol. 1999;162(4):2347–52.
19. Afzali B, Mitchell P, Lechler RI, John S, Lombardi G. Translational mini-review series on Th17 cells: induction of interleukin-17 production by regulatory T cells. Clin Exp Immunol. 2010;159(2):120–30.
20. Sohn MH, Noh SY, Chang W, Shin KM, Kim DS. Circulating interleukin 17 is increased in the acute stage of Kawasaki disease. Scand J Rheumatol. 2003;32(6):364–6.
21. Lalani I, Bhol K, Ahmed AR. Interleukin-10: biology, role in inflammation and autoimmunity. Ann Allergy Asthma Immunol. 1997;79(6):469–83.
22. Saraiva M, Vieira P, O'Garra A. Biology and therapeutic potential of interleukin-10. J Exp Med. 2020;217(1):e20190418.
23. Ng TH, Britton GJ, Hill EV, Verhagen J, Burton BR, Wraith DC. Regulation of adaptive immunity; the role of interleukin-10. Front Immunol. 2013;4:129.
24. Kim DS, Lee HK, Noh GW, Lee SI, Lee KY. Increased serum interleukin-10 level in Kawasaki disease. Yonsei Med J. 1996;37(2):125–30.

25. Nakamura J, Watanabe S, Kimura H, et al. Adeno-associated Virus Vector-mediated Interleukin-10 Induction Prevents Vascular Inflammation in a Murine Model of Kawasaki Disease. Sci Rep. 2018;8(1):7601.

26. de Paus RA, van de Wetering D, van Dissel JT, van de Vosse E. IL-23 and IL-12 responses in activated human T cells retrovirally transduced with IL-23 receptor variants. Mol Immunol. 2008;45(15):3889–95.

27. Nie W, Yu T, Sang Y, Gao X. Tumor-promoting effect of IL-23 in mammary cancer mediated by infiltration of M2 macrophages and neutrophils in tumor microenvironment. Biochem Biophys Res Commun. 2017;482(4):1400–6.

28. Leonard EJ, Yoshimura T. Human monocyte chemoattractant protein-1 (MCP-1). Immunol Today. 1990;11(3):97–101.

29. Matsushima K, Larsen CG, DuBois GC, Oppenheim JJ. Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line. J Exp Med. 1989;169(4):1485–90.

30. Terai M, Jibiki T, Harada A, et al. Dramatic decrease of circulating levels of monocyte chemoattractant protein-1 in Kawasaki disease after gamma globulin treatment. J Leukoc Biol. 1999;65(5):566–72.

31. Koyanagi H, Nakamura Y, Yanagawa H. Lower level of serum potassium and higher level of C-reactive protein as an independent risk factor for giant aneurysms in Kawasaki disease. Acta Paediatr. 1998;87(1):32–6.

32. Connolly DT, Heuvelman DM, Nelson R, et al. Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J Clin Invest. 1989;84(5):1470–8.

33. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev. 2004;25(4):581–611.

34. Ohno T, Yuge T, Kariyazono H, et al. Serum hepatocyte growth factor combined with vascular endothelial growth factor as a predictive indicator for the occurrence of coronary artery lesions in Kawasaki disease. Eur J Pediatr. 2002;161(2):105–11.

35. Hamamichi Y, Ichida F, Yu X, et al. Neutrophils and mononuclear cells express vascular endothelial growth factor in acute Kawasaki disease: its possible role in progression of coronary artery lesions. Pediatr Res. 2001;49(1):74–80.

36. Ljujic B, Radosavljevic G, Jovanovic I, et al. Elevated serum level of IL-23 correlates with expression of VEGF in human colorectal carcinoma. Arch Med Res. 2010;41(3):182–9.

37. Nie W, Yu T, Sang Y, Gao X. Tumor-promoting effect of IL-23 in mammary cancer mediated by infiltration of M2 macrophages and neutrophils in tumor microenvironment. Biochem Biophys Res Commun. 2017;482(4):1400–6.
Comparisons of serum IL-23 levels among KD, FC and NC groups.
Figure 2

Comparisons of serum IL-23 levels between the KD with CALs group and KD without CALs group.