Research article

Trichome diversity of the family Caryophyllaceae from Western Himalaya and their taxonomic implication

Satish Chandra1,2*, D.S. Rawat2, Smriti Raj Verma2 and Priyanka Uniyal3

1Department of Botany, Government Degree College Tiuni, Dehradun, 248199, Uttarakhand, India
2Department of Biological Sciences, C.B.S.H., G.B. Pant University of Agriculture & Technology Pantnagar-263 145, Uttarakhand, India
3Department of Botany, Tehri Campus - Hemwati Nandan Bahuguna Garhwal University, Srinagar Garhwal, 249001, Uttarakhand, India

*Corresponding Author: satishchandrasemwal07@gmail.com

Abstract: Information about trichomes diversity and distribution of the family Caryophyllaceae is rare and the present work is intended to fill this knowledge lacuna. In the present work 62 taxa belonging to 19 genera were studied. For the analysis of trichomes diversity and vestiture type, dried plant specimens were rehydrated with water. The final illustrations of trichomes were made by using camera lucida. Six types of trichomes viz., Unicellular eglandular, Unicellular glandular, Multicellular uniseriate glandular, Multicellular uniseriate eglandular, Multicellular eglandular bifurcate and Multicellular multiseriate eglandular trichomes reported in the studied taxa. Diversity of trichome and their distribution does not play any significant role in the taxonomic delimitation either generic or tribal level of the family Caryophyllaceae. Although, few closely allied species can be distinguished from each other either on the basis of the presence of trichomes or vestiture patterns.

Keywords: Arenaria - Silene - Stellaria - Taxonomy - Vestiture.

[Cite as: Chandra S, Rawat DS, Verma SR & Uniyal P (2019) Trichome diversity in the family Caryophyllaceae from Western Himalaya and their taxonomic implication. Tropical Plant Research 6(3): 397–407]

INTRODUCTION

Caryophyllaceae Juss. is known as pink family or carnation family, and ranked as 24th largest family of Angiosperms with 93 genera and 2395 species (Thorne & Reveal 2007). Though, number of species and genera of the family varies from different sources as: The plant list (2013) reported 88 genera with 2295 species and Mabberley (2017) reported 96 genera with 2500 species. The family is worldwide in distribution with exception in the wet tropics. Members of the family Caryophyllaceae often have distinctive swollen nodes; simple opposite leaves; dichasial cymes inflorescence or solitary flowers; flower usually actinomorphic; pentameric with distinct clawed petals; stamens obdiplostemonous, ten or lesser; ovary superior; placentaion free-central; and fruit capsule opening by teeth or valves (Bittrich 1993a, b).

On the basis of stipulate or exstipulate leaves, free or connate sepals, styles fused at base or free, the family is further subdivided by Bittrich (1993b) into three subfamilies Paronychioideae (tribe: Polycarpaceae, Paronichieae and Corrigioleae), Alsinoideae (tribe: Alsineae, Pycnophylleae, Geocarpeae, Habrosieae and Sclerantheae and Caryophylloideae (tribe: Caryophylleae, Drypideae and Sileneae). Harbaugh et al. (2010) proposed a new classification for tribes of the family on the basis of monophyly and abandoned traditional three subfamily classification of family. They proposed eleven tribes namely Corrigioleae, Paronichieae, Polycarpaceae, Sperguleae, Saginaeae, Sclerantheae, Arenarieae, Alsinieae, Erecomoneae, Caryophylleae, and Sileneae for the family.

Recently, some large genera (Arenaria, Minuartia, etc.) of the family have undergone splitting on the basis of molecular data. Dillenberger & Kadereit (2014) divided genus Minuartia s.l. into eleven genera i.e. Cherleria, Erecomone, Facchinia, McNillia, Minuartia s.s., Minuarietia, Mononeuria, Pseudocherleria, Rhodalsine, Sabulina and Triplateia on the basis of monophyly. New generic delimitation for Arenaria s.l. was
proposed by Harbaugh et al. (2010), Greenberg & Donoghue (2011), Dillenberger & Kadereit (2014), Sadeghian et al. (2015), and Pusalkar & Singh (2015). In the revised circumscription Arenaria s.l. is divided into five genera i.e. Eremogene, Odontostemma, Shivparvati, Himgiria, and Arenaria s.s.

Trichomes are epidermis originated cells found on the plant surface. There is amazing variability of trichomes in the form of variation in shape, size and structure. For the delimitation and differentiation of certain taxa variability of trichomes is used (Werker 2000). Information about trichomes diversity and distribution of the family is little known. Metcalfe & Chalk (1950) studied trichomes diversity in some species and genera of the family. Bittrich (1993b) compiled morphological characteristics of the family and also focused on trichome diversity of some species. Some other workers Solereder & Scott (1986), Cowie (1994), Shamsabad et al. (2013), Selvi et al. (2014), Bozchaloyi & Keshavarz (2014) tried to document trichome diversity of the family but their study either focused on several genera or particular subfamily. Thus, present work intends to illustrate trichomes diversity and distribution in the family Caryophyllaceae and evaluate the relevance of this information for the family’s taxonomy.

MATERIALS AND METHODS

Plant material

Trichome diversity and distribution were studied in 62 taxa including 58 species and four varieties belonging to 19 genera during present work. Plant specimens of 46 taxa were collected from the Western Himalaya, India during the year July 2012 to 2016 and specimens deposited in the herbarium of Govind Ballabh Pant University of Agriculture and Technology Pantnagar, Uttarakhand, India (GBPUH). Most of the specimens were collected from Uttarakhand Himalaya. Remaining taxa studied from specimens housed in herbaria of Botanical Survey of India Northern Circle Dehradun (BSD), Hemvati Nandan Bahuguna Garhwal University Srinagar Garhwal (GUH), Forest Research Institute Dehradun (DD) and Kumaon University Nainital (KUH).

Light microscopy

For the analysis of trichomes diversity and vestiture type, dried plant specimens were rehydrated with water. Trichomes from stem were obtained through scraping. Other plant parts as leaves, bracts and floral parts were observed under the light microscope and freehand horizontal and longitudinal sections were made to study trichomes morphology. The final illustrations of trichomes were made by using camera lucida. About 5–6 specimens for each taxa and 3–5 plant parts for each specimens were studied to assess the trichome diversity and distribution.

Trichomes classification

Payne (1978), Prabhakar & Leelavathi (1989), Krak & Mraz (2008) and de Andrade et al. (2014) were followed for classification, identification and characterization of trichomes in the present work. The vestiture types were determined following Lawrence (1951) and Simpson (2010).

RESULTS

Trichomes diversity

Six types of trichomes were recorded in the studied taxa; (1) Unicellular eglandular trichomes, (2) Unicellular glandular trichomes, (3) Multicellular uniseriate glandular trichomes, (4) Multicellular uniseriate eglandular trichomes (5) Multicellular eglandular bifurcate trichomes and (6) Multicellular multiseriate eglandular trichomes (Fig. 1). Apart from above mentioned categories stellate trichomes are also reported in Stellaria vestita Kurz, Cerastium mollissimum Poir., Polycarpon loeflingiae (Wall. ex Wight & Arn.) Benth. & Hook.f. (Solereder & Scott 1986, Majumdar 1993). However, these species were not included in the present work.

On the basis of trichomes types, all the studied taxa (62 taxa) can be categorized into five groups. Stellaria depressa Em. Schmid, Spergula fallax (Lowe) E.H. Krause and Cerastium davuricum Fischer were completely glabrous and constitute the first group. Second group possess unicellular trichomes and represented by i.e. Drymaria cordata (L.) Willd. ex Schult. and Herniaia cachemiriana J. Gay. Drymaria cordata possess both unicellular eglandular and capitulate unicellular glandular trichomes, while Herniaia cachemiriana possess unicellular hairs on all plant parts except ovary. In the ovary of Herniaia cachemiriana multiseriate multicellular eglandular trichomes were found.

The third group of the plants contains strictly eglandular trichomes. This group further divided into two subgroups i.e. bifurcate eglandular trichomes and uniseriate multicellular eglandular trichome. Polycarpon prostratum (Forssk.) Asch. & Schweinf. possesses eglandular bifurcated trichomes and also possesses simple
multicellular uniseriate eglandular trichomes. The taxa *i.e.* *Silene baccifera* (L.) Roth, *S. caespitella* F. Williams, *S. kumaonensis* F. Williams, *S. moorcroftana* Wallich ex Benth., *S. nepalensis* Majumdar, *S. vulgaris* (Moench) Garcke, *Stellaria decumbens* var. *decumbens* Edgew., *S. decumbens* var. *polyantha* Edgew. & Hook.f., *S. congestiflora* H. Har., *S. himalayensis* Majumdar, *S. patens* D.Don, *S. semivestita* Edgew., *S. umbellata* Turcz., *S. uliginosa* Murray, *Thylacospernum caespitosum* (Cambess.) Schischk., *Cherleriopsis sp.*, *Drymaria villosa* Cham. & Schlecht., *Dianthus angulatus* Royle ex Benth., *D. barbatus* L., *D. chinensis* L., *Arenaria thangoensis* W.W. Sm., *Stellaria depauperata* Edgew., *Arenaria bhutanica* Majumdar & Babu, *Eremogone ferruginea* (Duthie ex F. Williams) Pusalkar & D.K. Singh, *E. curvifolia* Kar. & Kir., *E. kumaonensis*, *Shivparvatica ciliolata* var. *ciliolata* (Edgew.) Pusalkar & D.K. Singh, *S. ciliolata* var. *pendula* (Duthie ex F. Williams) Pusalkar & D.K. Singh, *Gypsophila cerastioides* D.Don, *Sagina saginoides* (L.) Karsten of this group possess only simple uniseriate multicellular eglandular trichomes. Only eglandular trichomes present on at least one plant part of this group.

The forth group of the plants bore only uniseriate multicellular glandular trichomes and represented by *Polycarpacea corymbosa* (L.) Lam. and *Spergularia rubra* (L.) J. & K. Presl. The fifth group include *Silene falconeriana* Royle ex Benth., *S. conoidea* L., *S. gangetriana* Pusalkar, D.K. Singh & Lakshmin., *S. indica* var. *indica* Roxb. ex Oth., *S. indica* var. *edgeworthii* (Bocquet) Y.J. Nasir., *S. incurvifolia* Kar. & Kir., *S. viscosa* (L.) Pers., *Stellaria aquatica* (L.) Scop., *S. media* (L.) Villars, *S. monosperma* var. *monosperma* D.Don, *S.
Among all species, only few leaf pairs respectively. In *Murray Thylacospermum caespitosum* (Moench) Garcke Cerastium d.* trichomes in different plant parts of studied taxa is shown in table 1. Different plant parts and different types of vestiture can also be used for categorization of taxa. The presence of eglandular trichomes at least at some plant parts. In *Thylacospermum caespitosum* trichomes were found only at abaxial surface of leaf, while in *Stellaria uliginosa* Murray, *S. umbellata* trichomes were found at abaxial surface of leaf toward leaf base and leaf base of upper few leaf pairs respectively. In *Polycarpaea corymbosa* trichomes found only upper parts of stem and pedicel. Among all species, only *Herniaia cachemiriana* had trichomes on the ovary surface, while in all other taxa ovary were glabrous.

Table 1. Presence of trichomes on different plant parts of the studied taxa.

S.N.	Name of Taxa	Presence of Trichomes on different plant parts
1	*Arenaria bhutanica* Majumdar & Babu	✓ X X X ✓ X X X X X X X X X X X X X X X X X X X
2	*Arenaria neelherrensis* Wight & Arn.	✓ X X ✓ X
3	*Arenaria orbiculata* Royce ex Edgew. & Hook.f.	✓ ✓ X
4	*Arenaria serpyllifolia* L.	✓ ✓
5	*Arenaria thangoensis* W.W. Sm.	✓ ✓
6	*Cerastium cerastoides* (L.) Britton	✓ X X X X ✓ X X X X X X X X X X X X X X X X X X
7	*Cerastium davuricum* Fischer	✓ X X X X ✓ X X X X X X X X X X X X X X X X X X
8	*Cerastium fontanum* Baumg.	✓ ✓
9	*Cherleria* sp.	✓ X X ✓
10	*Dianthus angulatus* Royce ex Benth.	✓ X X ✓ X
11	*Dianthus barbatus* L.	✓ X
12	*Dianthus chinensis* L.	✓ X
13	*Drymaria cordata* (L.) Willd. ex Schult.	✓ X X X ✓
14	*Drymaria villosa* Cham. & Schlecht.	✓ ✓
15	*Eremogone curvifolia* (Majumdar) Pusalkar & D.K. Singh	✓ X X ✓
16	*Eremogone festucoides* (Benth.) Pusalkar & D.K. Singh	✓ ✓ X X ✓
17	*Eremogone ferruginea* (Duthie ex F.Williams) Pusalkar & D.K. Singh	✓ X X X X ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
18	*Eremogone kumaonensis* (Maxim.) Pusalkar & D.K. Singh	✓ X X X ✓
19	*Gypsophila cerastoides* D.Don	✓ ✓
20	*Herniaia cachemiriana* J. Gay	✓ ✓
21	*Lepyrodiclis holostoeides* (C. A. Meyer) Fenzl ex Fischer & C. A. Meyer	✓ ✓
22	*Odontostemma glandulosum* Benth. ex D.Don	✓ ✓
23	*Polycarpaea corymbosa* (L.) Lam.	✓ ✓ ✓ X X X ✓ X X X X X X X X X X X X X X X X X
24	*Polycarpon prostratum* (Forssk.) Asch. & Schweinf.	✓ ✓
25	*Sabulina kashmirica* (Edgew.) Dillenb. & Kaderiet	✓ X
26	*Sagina apetala* Ard.	✓ X X ✓ X
27	*Sagina saginoides* (L.) Karsten	✓ X ✓ X
28	*Shivparvatia ciliolata* (Edgew.) Pusalkar & D.K. Singh var. ciliolate (Edgew.)	✓ X ✓

www.tropicalplantresearch.com
Different types of vestiture depict relative length and pattern of trichome and hence can be used for further categorization of taxa. Different arrangements of trichomes on the stem surface were studied. In the plants under study, eight different types of vestitures were recorded viz. (1) Pubescent- more or less straight, short, soft, somewhat scattered, slender trichomes, (2) Puberulent- minutely pubescent with very short scattered trichomes, (3) Tomentose- plant parts covered with very dense interwoven trichomes, (4) Villous- long, soft, highly twisted trichomes, (5) Scabrous- rough trichomes, as of sandpaper, (6) Hirsute- long stiff trichomes, (7) Strigose- dense coarse, bent and flat trichomes often with bulbous base, and (8) Strigulose- minutely strigose.

Different types of vestiture depict relative length and pattern of trichome and hence can be used for further categorization of taxa. Different arrangements of trichomes on the stem surface were studied. In the plants under study, eight different types of vestitures were recorded viz. (1) Pubescent- more or less straight, short, soft, somewhat scattered, slender trichomes, (2) Puberulent- minutely pubescent with very short scattered trichomes, (3) Tomentose- plant parts covered with very dense interwoven trichomes, (4) Villous- long, soft, highly twisted trichomes, (5) Scabrous- rough trichomes, as of sandpaper, (6) Hirsute- long stiff trichomes, (7) Strigose- dense coarse, bent and flat trichomes often with bulbous base, and (8) Strigulose- minutely strigose.

Stellaria monosperma var. *paniculata* and *S. monosperma* var. *monosperma*, *S. media*, *S. aquatica*, *Shivparvati ciliolata* var. *ciliolata*, and *Shivparvati ciliolata* var. *pendula* had tomentose vestiture. But, these were further differentiated on the basis of single line of trichomes, two lines of trichomes or diffused trichomes.
throughout the stem. *Stellaria monosperma* var. *paniculata* and *S. monosperma* var. *paniculata* both possess trichomes in one line; *Stellaria media* has two lines of trichomes or sometimes diffused, *Shivparvattia ciliolata* var. *ciliolata*, *Shivparvattia ciliolata* var. *pendula* has two lines of trichomes. *Arenaria orbiculata* Royle ex Edgew. & Hook.f. and *Stellaria aquatica* both possess two lines of trichomes, but in *Arenaria orbiculata* vestiture is scabrous, while in *Stellaria aquatica* vestiture is tomentose. *Shivparvattia glanduligera*, *Silene conoidea*, *S. falconeriana*, *S. nepalensis*, *Stellaria depauperata* and *Arenaria bhutanica* had pubescent vestiture. *Stellaria depauperata* and *Arenaria bhutanica* are distinguished due to presence of only one line of trichomes in *Arenaria bhutanica* and both one and two lines of trichomes are present in *Stellaria depauperata*. *Shivparvattia glanduligera* possess trichomes either in two lines or in diffused manner and hence separated from the rest of taxa. The species *Silene conoidea*, *S. falconeriana*, *S. nepalensis* and rest of the species possess trichomes in diffused manner. The presence of different types of vestiture in studied taxa is summarized in table 2. In figure 2, representatives of aforementioned eight categories are depicted.

Table 2. Trichome types and vestiture of studied plant taxa of the family Caryophyllaceae.

S.N.	Name of Taxa	Specimen Number	Trichome Type*	Vestiture Type
1	*Arenaria bhutanica* Majumdar & Babu	GBPUH823	E	Pubescent
2	*Arenaria neelgherrensis* Wight & Arn.	GBPUH810	E, G	Scabrous
3	*Arenaria orbiculata* Royle ex Edgew. & Hook.f.	GBPUH813	E	Scabrous
4	*Arenaria serpyllifolia* L.	GBPUH816	E, G	Scabrous
5	*Arenaria thangoenensis* W.W. Sm.	GBPUH826		Pubescent
6	*Cerastium cerastoides* (L.) Britton	BSDL03333	E, G	Tomentose
7	*Cerastium dawuricum* Fischer	BSDL9568	Glabrous	Glabrous
8	*Cerastium fontanum* Baumg.	GBPUH830	E, G	Hirsute
9	Chelertia sp.	GBPUH609	E	Puberulent
10	*Dianthus angulatus* Royle ex Benth.	BSDL10853	E	Puberulent
11	*Dianthus barbatus* L.	GBPUH759	E	Glabrous
12	*Dianthus chinensis* L.	GBPUH760	E	Glabrous
13	*Drymaria cordata* (L.) Willd. ex Schult.	GBPUH762	CG, UE	Scabrous
14	*Drymaria villosa* Cham. & Schlecht.	GBPUH745	E	Villous
15	*Eremogone curvifolia* (Majumdar) Pusalker & D.K. Singh	GBPUH819	E	Puberulent
16	*Eremogone festucoideas* (Benth.) Pusalker & D.K. Singh	GBPUH820	E, G	Tomentose
17	*Eremogone ferruginea* (Duthie ex F.Williams) Pusalker & D.K. Singh	DD5388	E	Strigose
18	*Eremogone kumaonensis* (Maxim.) Pusalker & D.K. Singh	GBPUH821	E	Tomentose
19	*Gypsophila cerastioides* D.Don	GBPUH757	E	Tomentose
20	*Herniaria cachemiriana* J. Gay	BSDL03341	MSE, UE	Hirsute
21	*Lepyrodiclis holostoeides* (C. A. Meyer) Fenzl ex Fischer & C. A. Meyer	BSDL7340	E, G	Tomentose
22	*Odontostemma glandulosum* Benth. ex D.Don	GBPUH825	E,G	Hirsute
23	*Polycarpacea corymbosa* (L.) Lam.	BSDL6786	E	Tomentose
24	*Polycarpon prostratum* (Forssk.) Asch. & Schweinf.	BSDL3208	BE, E	Tomentose
25	*Sabelina kashmirica* (Edgew.) Dillenb. & Kadereit	GBPUH806	Glabrous	Glabrous
26	*Sagina apetala* Ard.	GUH12807	E,G	Puberulent
27	*Sagina saginoides* (L.) Karsten	GBPUH766	E	Puberulent
28	*Shivparvattia ciliolata* (Edgew.) Pusalker & D.K. Singh	GBPUH807	E	Tomentose
29	*Shivparvattia ciliolata* var. *pendula* (Duthie ex F. Williams) Pusalker & D.K. Singh	GBPUH808	E	Tomentose
30	*Shivparvattia glanduligera* (Edgew.) Pusalker & D.K. Singh	GBPUH809	E,G	Pubescent
31	*Silene baccifera* (L.) Roth	GBPUH770	E	Strigose
32	*Silene caespitella* F. Williams	BSDL1012	E	Strigose
33	*Silene conoidea* L.	GBPUH772	E,G	Pubescent
34	*Silene falconeriana* Royle ex Benth.	GBPUH773	E,G	Pubescent
35	*Silene gangotriana* Pusalker, D.K.Singh & Lakshmin.	GBPUH774	E	Tomentose
36	*Silene incurvifolia* Kar. & Kir.	GBPUH777	E,G	Strigolose
37	*Silene indica* var. *edgeworthii* (Bocquet) Y.J. Nasir.	GBPUH780	E	Strigolose
38	*Silene indica* Roxb. ex Otth var. *indica*	GBPUH779	E,G	Tomentose
39. *Silene kumaonensis* F. Williams
BSD93913 E Tomentose
40. *Silene moorcroftiana* Wallich ex Benth.
BSD56258 E Strigose
41. *Silene nepalensis* Majumdar
GBPUH781 E Pubescent
42. *Silene songarica* (Fisch., C.A. Mey. & Ave-Lall.) Bocq
BSD103901 E Tomentose
43. *Silene viscosa* (L.) Pers.
BSD102127 E,G Tomentose
44. *Silene vulgaris* (Moench) Garcke
GBPUH785 E
45. *Spergula fallax* (Lowe) E.H. Krause
GBPUH765 Glabrous Glabrous
46. *Spergularia rubra* (L.) J. & K. Presl.
BSD13009 G Puberulent
47. *Stellaria aquatica* (L.) Scop.
BSD14901 E,G Tomentose
48. *Stellaria congestiflora* H. Hara
GBPUH704 E Villous
49. *Stellaria decumbens* Edgew. var. *decumbens* Edgew.
GBPUH787a E Strigulose
50. *Stellaria decumbens* Edgew. var. *polyantha* Edgew. & Hook.f.
GBPUH787b E Strigulose
51. *Stellaria depauperata* Edgew.
GBPUH749 E Pubescent
52. *Stellaria depressa* Em. Schmid
KUH1788 Glabrous Glabrous
53. *Stellaria himalayensis* Majumdar
GBPUH791 E Villous
54. *Stellaria media* (L.) Villars
GBPUH784 E,G Tomentose
55. *Stellaria monosperma* D.Don var. *monosperma*
GBPUH788 E,G Tomentose
56. *Stellaria monosperma* D.Don var. *paniculata* (Edgew.) Majumdar
GBPUH788 E,G Tomentose
57. *Stellaria patens* D.Don
GBPUH791 E Villous
58. *Stellaria semivestita* Edgew.
GBPUH796 E Villous
59. *Stellaria umbellata* Turcz.
GBPUH802 E Villous
60. *Stellaria uliginosa* Murray
GBPUH803 E Glabrous
61. *Stellaria webbiana* (Benth. ex G. Don) Edgew. & Hook. f.
GBPUH805 E,G Strigulose
62. *Thylacospermum caespitosum* (Cambess.) Schischk.
BSD101818 E Glabrous

Note: BE= Bifurcate Eglandular; CG= Capitate Glandular; E= Uniseriate Multicellular Eglandular; G= Uniseriate Multicellular Glandular; MSE= Multiseriate Eglandular, UE= Unicellular Eglandular.

Figure 2. Different types of vestiture: A, Pubescent (*Silene conoidea*); B, Puberulent (*Eremogone curvifolia*); C, Tomentose (*Stellaria monosperma* var. *monosperma*); D, Villous (*Stellaria patens*); E, Scabrous (*Drymaria cordata*); F, Hirsute (*Herniaria cachemiriana*); G, Strigose (*Silene baccifera*); H, Strigulose (*Stellaria webbiana*).

DISCUSSION

Some of the investigated species had peculiar trichome morphology which can be used to distinguish them from the rest of the allied species. Moreover, trichome morphology and distribution do not play any significant
role in separation of genera. *Herniaria cachemiriana* has long unicellular stiff eglandular trichomes on different plant parts and multisieriate multicellular egladular trichomes on the ovary. Metcalfe & Chalk (1950) also mentioned unicellular trichomes in *Herniaria, Paronychia, Anychia* and *Siphonochila* genus. Multisieriate trichomes are also reported from *Achyronichia* spp., *Cerastium* spp., *Pollichia* spp., *Polycarpaea* spp., *Polytetalum* spp., *Krauseola* spp. and *Stipulicida* spp. (Bittrich 1993b). But the species of *Cerastium, Polycarpaea* and *Polycarpa* studied in the present work does not contain multisieriate trichomes. *Drymaria cordata* is characterized by presence of unicellular capitate glandular trichomes on stem, pedicel and sepal abaxial surface. Metcalfe & Chalk (1950) and Keshavarzi & Bozchaloyi (2014) also reported similar type of unicellular sessile capitate glandular trichomes in *Viscaria* spp. and *Silene pizza* Schischk. *Polycarpon prostratum* possesses multicellular eglandular bifurcate trichomes and same type of trichomes also known in *Pollichia campestris* Aiton (Solereder & Scott 1986). Solereder & Scott (1986) reported eglandular trichomes containing two or more arms in *Cerastium dicrotrichum* Fenzl ex Rohrb., *Polycarpaea* spp. including *P. teneriffae* Lam. and *Stipulicida* spp.

Unisieriate multicellular eglandular or glandular trichomes are present in the *Silene, Stellaria, Arenaria, Odontostemma, Cherleria, Dianthus, Drymaria, Eremogone, Gypsophila, Lepyridichis, Polycarpaea, Sagina, Shivparvatiar, Spergularia* and *Thylacosperum* possess. Similar unisieriate glandular or eglandular trichomes are also reported from *Acanthophyllum* spp., *Stellaria* spp., *Agrostemma* spp. (Shamsabad et al. 2013, Keshavarzi & Bozchaloyi 2014, Selvi et al. 2014). Keshavarzi & Bozchaloyi (2014) examined some taxa of subfamily Alisoideae and found simple eglandular unisieriate trichomes in most of the taxa. Genera of subfamily Alisoideae included in the present study are *Stellaria, Arenaria, Odontostemma, Cherleria, Eremogone, Lepyridichis, Sagina, Shivparvatiar* and *Thylacosperum* which show similar morphology of trichomes as reported by Keshavarzi & Bozchaloyi (2014) in the subfamily.

Unisieriate multicellular eglandular and glandular trichomes present in all species of *Silene* understudy. Yildiz & Minareci (2008), Kilic (2009), Sahreen et al. (2010), Khan et al. (2013), Bagci & Bicer (2015) have also reported similar type of trichomes in different *Silene* species. All *Stellaria* species understudy possess unisieriate multicellular eglandular or eglandular trichomes which correspond well with the results of Bozchaloyi & Keshavarzi (2014) who reported similar type of trichomes in different *Stellaria* species. During the present study unisieriate multicellular eglandular and eglandular trichomes were found in *Cerastium fontanum* and *C. cerastioides*. Arcus et al. (2012) have also reported similar trichomes in *Cerastium bulgaricum* Uechtr., *C. tomentosum* L., *C. brachypetalum* Desp. ex Pers. and *C. glomeratum* Thuill. *Gypsophila cerastioides* possess only unisieriate multicellular eglandular trichomes but unisieriate multicellular glandular trichomes also were found in *G. lepidioides* Boiss. (Ozdemit et al. 2010).

In the most of the genera understudy unisieriate multicellular trichomes with the glandular cell at apex along with unisieriate eglandular trichomes were found. Species of *Silene, Shivparvatiar, Stellaria, Cerastium, Odontostemma, Eremogone, Arenaria, Lepyridichis* and *Sagina* studied during present study possess both unisieriate glandular and eglandular trichomes. Metcalfe & Chalk (1950) mentioned presence of unisieriate multicellular trichomes with glandular cell at apex in the species of *Dysphania* (*D. myrificiophala* Benth.), *Habrosia, Silene, Spergula, Spargularia* and *Loeflingia*. Al-Saadi & Al-Taie (2014) reported presence of unisieriate multicellular glandular and eglandular trichomes in different *Minuartia* species. Some completely glabrous species *Stellaria depressa, Spergula fallax* and *Cerastium davuricum* reported during present work *Corrigiola* sp., and *Telephium imperati* L. also show similar pattern (https://www.infoflora.ch/fr/flore/339-telephium-imperati.html, https://florabase.dpaw.wa.gov.au/browse/profile/22402).

In Caryophyllaceae, trichome presence and diversity can be used for delimitation of certain species *i.e.* Spergula fallax can be distinguished from morphologically similar *Spergularia rubra* due to having fully glabrous plant body. *Drymaria villosa* has strictly long multicellular unisieriate eglandular trichomes while its allied species *D. cordata* has unicellular glandular and eglandular trichomes. *S. incurvifolia* possess both multicellular unisieriate glandular and multicellular unisieriate eglandular trichomes while allied *S. incurvifolia* due to the presence of only multicellular unisieriate eglandular trichomes. Thus, *Silene moorcroftiana* can also be distinguished from *Silene kumaonensis* can also be distinguished from closely related *S. indica* by presence of only multicellular unisieriate eglandular trichomes, while both multicellular unisieriate glandular and multicellular unisieriate eglandular trichomes are found in *S. indica*. *Shivparvatiat ciliolata* can be distinguished from *S. glanduligera* due to presence of only multicellular unisierate eglandular trichomes, while *S. glanduligera* possess both multicellular unisieriate glandular and multicellular unisieriate eglandular trichomes. *Eremogone kumaonensis* and *E. festucoides* can also be distinguished by due to...
presence of trichomes. *E. kumaonensis* contains multicellular uniseriate eglandular hairs and in *E. festucoides* both multicellular uniseriate glandular and multicellular uniseriate eglandular hairs present. *Sagina apetala* and *S. saginoides* also show same pattern. In *S. saginoides* only multicellular uniseriate eglandular trichomes are found, while both multicellular uniseriate glandular and multicellular uniseriate eglandular trichomes are found in *S. apetala*. Vestiture type can also be used to differentiate closely allied *Stellaria congestiflora* and *S. decumbens*. *Stellaria congestiflora* has villous vestiture while *S. decumbens* has strigulose vestiture. Similarly, *Silene indica* var. *indica* and *S. indica* var. *edgeworthii* can also be distinguished due to presence of tomentose vestiture in first and strigulose vestiture in later. Closely allied *Arenaria serpulifolia* and *A. neelgherrensis* can be distinguished on the basis of hairy leaf surface and sepal in first and glabrous leaf surface and sepal in the second. *Shiparvaita ciliolata* var. *ciliolata* and *Shiparvaita ciliolata* var. *pendula* also differ due glabrous leaf surface in the first variety and hairy leaf surface in second variety.

Trichome diversity and distribution in some angiosperm family as Asteraceae (Krack & Mraz 2008, Angulo & Dematteis 2014, de Andrade Wagner et al. 2014), Brassicaceae (Abdel 2005, Beilstein 2006), Cucurbitaceae (Ali & Al-Hemaid 2011) Ranunculaceae (Hoot 1991), and some genera as Colquhounia (Hu et al. 2012), Teucrium (Navarro & El Oualidi 1999) of Lamiaceae has taxonomic significance and can be used for delimitation of tribes, genera, sections and series. But in the family Caryophyllaceae trichomes diversity and distribution does not have such significance.

After perusing literature and present work trichome types of 33 genera belonging to all eleven tribes of the family analysed and summarized in table 3. Interestingly, glabrous plants present in all tribes of the family. Further, it is concluded that trichome diversity and distribution does not play any significant role in the taxonomic delimitation neither generic nor tribal level of the family. Although, few closely allied species can be distinguished from each other either on the basis of presence of trichomes or vestiture pattern.

S.N.	Tribe	Genera studied	Trichomes
1.	Scleranthae	Cherleria	Uniseriate multicellular eglandular and glandular trichomes
2.	Saginae	*Sagina* and *Habrosia*	Uniseriate multicellular eglandular and glandular trichomes
3.	Spergulae	*Spergula* and *Spergularia*	Uniseriate multicellular eglandular trichomes
4.	Polycarpeae	*Drymaria*, *Polycarpacea*, *Polycarpon*,	Uniseriate multicellular glandular and E glandular
		Loeflingia, *Achyronchia*, *Stipulicida*	
	Exceptions	*Drymaria cordata*	Capitate glandular
		Polycarpon prostratum, *Polycarpacea* sp.	
		Stipulicida sp.	
		Krouseola sp.	
		Achyronchia sp.	
		Polycarpon loeflingiae	
		Krouseola sp. and *Achyronchia* sp.	
5.	Paronychieae	*Herniaria*, *Paronychia*, *Siphonynchia* and	Unicellular eglandular trichomes
		Pollichia	
	Exception	*Pollichia compesiris*	
		Herniaria cachemiriana	
6.	Corrigioleae	*Corrigiola* and *Telephium*	
7.	Alsincae	*Cerastium*, *Lepyrodictis*, *Odontostemma*,	uniseriate multicellular eglandular and glandular trichomes
		Shiparavatia and *Stellaria*	
	Exceptions	*Stellaria vestita* and *Cerastium mollissimum*	Stellate eglandular bifurcate
		Cerastium dicrotrichum	
8.	Arenarieae	*Arenaria*	
9.	Eremogoneae	*Eremogone* and *Thylacosphermum*	
10.	Sileneae	*Agrostemma*, *Silene* and *Viscaria*	
	Exceptions	*Viscaria* sp. and *Silene propinqua*	
11.	Caryophyllae	*Acanthophyllum*, *Dianthus*, *Gypsophila* and	Uniseriate multicellular eglandular and glandular trichomes
		Vaccaria	
ACKNOWLEDGEMENTS

Authors are thankful to Herbarium curator of Botanical Survey of India Northern Circle Dehradun (BSD), Forest Research Institute Dehradun (DD), H.N.B. Garhwal University Srinagar Garhwal (GUH), Kumaon University Nainital (KUH) and Wildlife Institute of India Dehradun for providing access to their herbaria and libraries. Authors also extend thanks to the anonymous reviewers for their suggestions and critical comments.

REFERENCES

Abdel KK (2005) Morphological studies on trichomes of Brassicaceae in Egypt and taxonomic significance. Acta Botanica Croatica 64(1): 57–73.
Ali MA & Al-Hemaid FM (2011) Taxonomic significance of trichomes micromorphology in Cucurbits. Saudi Journal of Biological Sciences 18(1): 87–92.
Al-Saadi SAMS & Al-Taie S (2014) Taxonomic significance of anatomical characters in some species of Minuartia L. (Caryophyllaceae). Global Journal of Biology, Agriculture and Health Sciences 3(4):138–146.
Angulo MB & Dematteis M (2014) Floral microcharacters in Lessingianthus (Vernonieae, Asteraceae) and their taxonomic implications. Plant Systematics and Evolution 300(8): 1925–1940.
Arcus MG, Lilios E, Doroftei & Doicescu D (2012) The histological analysis of the species Cerastium tomentosum (Caryophyllaceae). Annals of RSCB 17(1): 350–354.
Bagci Y & Bicer H (2015) Analysis of anatomical and morphological characters of the Silene cappadocica Boiss. & Heldr. and Silene spergulifolia Bieb. (Caryophyllaceae) species. Scientific Papers. Series B, Horticulture 61: 293–302.
Beilstein MAIA, Al-Shehbaz & Kellog EA (2006) Brassicaceae phylogeny and trichome evolution. American Journal of Botany 93(4): 607–619.
Bittrich V (1993 a) Introduction to Centrospermae. In: Kubitzki K, Rohwer JG & Bittrich V (eds) The families and genera of vascular plants. Volume 2, Magnoliid, Hamamelid, and Caryophyllid families. Germany, Springer Science, pp. 13–19.
Bittrich V (1993 b) Introduction to Centrospermae. In: Kubitzki K, Rohwer JG & Bittrich V (eds) The families and genera of vascular plants. Volume 2, Magnoliid, Hamamelid, and Caryophyllid families. Germany, Springer Science, pp. 206–236.
Bozchaloyi SE & Keshavarz M (2014) Micro- and macromorphological study of Stellaria (Caryophyllaceae) and its closest relatives in Iran. Phytologia Balcanica 20(2): 179–197.
Cowie ID (1994) Three new species, a new name and notes on Australian Polycarpaea (Caryophyllaceae). Nuytsia 9(3): 319–332.
de Andrade Wagner MBFP, Loeuille CM, Siniscalchi GF, Melo-de-Pinna & Pirani JR (2014) Diversity of non-glandular trichomes in subtribe Lynchnophorinae (Asteraceae: Vernonieae) and taxonomic implications. Plant Systematics and Evolution 300(5): 1219–1233.
Dillenberger MS & Kadereit JW (2014) Maximum polyphyly: Multiple origins and delimitation with plesiomorphic characters require a new circumscription of Minuartia (Caryophyllaceae). Taxon 63(1): 64–88.
Greenberg AK & Donoghue MJ (2011) Molecular systematics and character evolution in Caryophyllaceae. Taxon 60(6): 1637–1652.
Harbaugh DT, Nepokroeff M, Rabeler RK, McNeill J, Zimmer EA & Wagner WL (2010) A new lineage-based tribal classification of the family Caryophyllaceae. The International Journal of Biological Sciences 171(2): 185–198.
Hoot SB (1991) Phylogeny of the Ranunculaceae based on epidermal microcharacters and macromorphology. Systematic Botany 16(4): 741–755.
Hu GX, Balangcod T, & Xiang CL (2012) Trichome micromorphology of the Chinese-Himalayan genus Colquhounia (Lamiaceae), with emphasis on taxonomic implications. Biologia 67(5): 867–874.
Keshavarzi M & Bozchaloyi SE (2014) Leaf and stem comparative anatomical analysis of three genera of Alsinioideae (Caryophyllaceae). Iranian Journal of Botany 20(1): 71–79.
Khan G, Zhang F, Gao Q, Mashwani Z, Rehman K, Khan MA & Chen S (2013) Trichomes diversity in the tropical flora of Pakistan. Journal of Medicinal Plants Research 7(22): 1587–1592.
Kiril S (2009) Anatomical and pollen characters in the Genus Silene L. (Caryophyllaceae) from Turkey. Botany Research Journal 2(2-4): 34–44.
Krak K & Mraz P (2008) Trichomes in the tribe Lactuceae (Asteraceae) - taxonomic implications. Biologia 63(5): 616–
Lawrence GHM (1951) *Taxonomy of vascular plants*. Macmillan, New York, 823 p.
Mabberley DJ (2017) *Mabberley’s plant-book: a portable dictionary of plants, their classifications, and uses*. Cambridge, Cambridge University Press, 1102 p.
Majumdar NC (1993) Caryophyllaceae. In: Sharma BD & Balakrishnan NP (eds) *Flora of India*. Volume 2. Calcutta, Botanical Survey of India. pp. 503–595.
Metcalfe CR & Chalk L (1950) Caryophyllaceae. In: Metcalfe CR & Chalk L (eds) *Anatomy of the Dicotyledons*. Volume 1. London, Oxford University Press, pp.147–152.
Navarro T & Oualidi JEl (1999) Trichome morphology in *Teucrium* L. (Labiatae). A taxonomic review. *Anales del Jardín Botánico de Madrid* 57(2): 277–297.
Ozdemir C, Ozkan M & Kandemir A (2010) The morphological and anatomical properties of *Gypsophila lepidioides* Boiss (Caryophyllaceae) endemic to Turkey. *The International Research Journal of Plant Science* 1(4): 69–74.
Payne WW (1978) A glossary of plant hair terminology. *Brittonia* 30(2): 239–255.
Prabhakar M & Leelavathi P (1989) Structure, delimitation, nomenclature and classification of plant trichomes. *Asian Journal of Plant Science* (1): 49–66.
Pusalkar PK & Singh DK (2015) Taxonomic rearrangement of *Arenaria* (Caryophyllaceae) in Indian Western Himalaya. *Journal of Japanese Botany* 90(2): 77–91.
Sadeghian S, Zarre S, Rabeler RK & Heubl G (2015) Molecular phylogenetic analysis of *Arenaria* (Caryophyllaceae: tribe Arenarieae) and its allies inferred from nuclear DNA internal transcribed spacer and plastid DNA rps16 sequences. *The Botanical Journal of the Linnean Society* 178(4): 648–669.
Sahreen S, Khan MA, Khan MR & Khan RA (2010) Leaf epidermal anatomy of the genus *Silene* (Caryophyllaceae) from Pakistan. *Biological Diversity and Conservation* 3(1): 93–102.
Selvi S, Guner O & Akcicek E (2014) Anatomical, micromorphological and ecological studies on the genus *Agrostemma* L. (Caryophyllaceae) growing in Turkey. *Biological Diversity and Conservation* 7(1): 61–67.
Shamsabad MM, Ejtehadi H, Vaezi J & Memariani F (2013) Anatomical and pollen characters in *Acanthophyllum* Ca Mey. (Caryophyllaceae) from northeast of Iran. *The Iranian Journal of Botany* 19(1): 107–118.
Simpson MG (2010) *Plant Systematics, 2nd edition*. Amsterdam, Elsevier, 740 p.
Solereder H & Scott DH (1986) *Systematic anatomy of the dicotyledons: a handbook for laboratories of pure and applied botany*. Volume 2. New Delhi. Ajay book service, 666 p.
The Plant List (2013) *Version 1.1 Published on the Internet*. Available from: http://www.theplantlist.org/ (accessed 22 June 2019).
Thorne RF & Reveal JL (2007) An updated classification of class Magnoliopsida (“Angiosperm”). *The Botanical Review* 73: 67–182.
Werker E (2000) Trichome diversity and development. *Advances in Botanical Research* 31: 1–35.
Yildiz K & Minareci E (2008) Morphological, anatomical, palynological and cytological investigation on *Silene urvillei* Schott. (Caryophyllaceae). *Journal of Applied Biological Sciences* 2(2): 41–46.