On the future of astrostatistics: statistical foundations and statistical practice

Thomas J. Loredo

This paper summarizes a presentation for a panel discussion on “The Future of Astrostatistics” held at the Statistical Challenges in Modern Astronomy V conference at Pennsylvania State University in June 2011. I argue that the emerging needs of astrostatistics may both motivate and benefit from fundamental developments in statistics. I highlight some recent work within statistics on fundamental topics relevant to astrostatistical practice, including the Bayesian/frequentist debate (and ideas for a synthesis), multilevel models, and multiple testing. As an important direction for future work in statistics, I emphasize that astronomers need a statistical framework that explicitly supports unfolding chains of discovery, with acquisition, cataloging, and modeling of data not seen as isolated tasks, but rather as parts of an ongoing, integrated sequence of analyses, with information and uncertainty propagating forward and backward through the chain. A prototypical example is surveying of astronomical populations, where source detection, demographic modeling, and the design of survey instruments and strategies all interact.

The panel was moderated by Jogesh Babu; the other panelists were Eric Feigelson (on the past and future of astrostatistics), Jeffrey Scargle (on challenges and opportunities in astrostatistics), and David van Dyk (on massive datasets and complex models). I am indebted to Eric Feigelson for an edited transcript of my recorded remarks, on which this paper is based. I limited my subsequent editing to preserve the informality of the panel discussion setting.

Due to page limitations, the published version was abridged; it omits Fig. 1 and the associated text.

1 The Frequentist-Bayesian debate

The future of astrostatistics is linked to the future of statistics as a discipline. The emerging needs of astrostatistics may both motivate and benefit from fundamental developments in statistics. This is a two-way street.
Christopher Genovese told us earlier in the conference that, within statistics, the debate between frequentist and Bayesian approaches has largely faded from view. He noted that, although nontrivial philosophical and conceptual differences certainly exist, statisticians recognize that there are situations where each approach has an advantage, and both are used successfully.

My outsider view of contemporary statistics supports the assessment that debate about foundations has faded in recent years. But I do not see this as a positive development, and I disagree with any prescription that fundamentals should not be seriously discussed and researched. Issues at the foundations of statistics are not merely philosophical. Where one comes down on foundational issues has significant implications for statistical practice. I would urge statisticians to think more rather than less about the foundations of their discipline, and to consider doing so in closer partnership with the scientist consumers of their methods. Despite being an outsider to statistics, I take this position emboldened by being in good company from within the discipline, and by the seriousness of the topic. For I see statistics as a kind of theory of the scientific method—at least, that part of the scientific method that may be described with quantitative precision—giving all scientists a vested interest in the field’s development.

Prominent statisticians who have contributed enormously to statistical practice continue to embrace the struggle with the foundations and fundamentals of statistical inference. Bradley Efron (2010), whose work mostly adopts the frequentist approach, recently lamented the absence of attention to foundations:

Methodology by itself is an ultimately frustrating exercise. A little statistical philosophy goes a long way but we have had very little in the public forum these days.

In his 2004 American Statistical Association (ASA) Presidential Address (Efron 2005), he asserted:

The 250-year debate between Bayesians and frequentists is unusual among philosophical arguments in actually having important practical consequences. . . . Broadly speaking, Bayesian statistics dominated 19th Century statistical practice while the 20th Century was more frequentist. What’s going to happen in the 21st Century? . . . I strongly suspect that statistics is in for a burst of new theory and methodology, and that this burst will feature a combination of Bayesian and frequentist reasoning.

Efron sees empirical Bayes methods as a promising frequentist/Bayesian hybrid approach (Efron 2010; see the discussion accompanying his article for critical assessments); I will have more to say about this below.

To cite another example, in his 2005 ASA President’s Invited Address (Little 2006), Roderick Little wrote:

Pragmatists might argue that good statisticians can get sensible answers under Bayes or frequentist paradigms; indeed maybe two philosophies are better than one, since they provide more tools for the statistician’s toolkit. . . . I am discomforted by this “inferential schizophre-nia.” Since the Bayesian (B) and frequentist (F) philosophies can differ even on simple problems, at some point decisions seem needed as to which is right. I believe our credibility as statisticians is undermined when we cannot agree on the fundamentals of our subject.
Little, whose work has mostly adopted the Bayesian approach, has recently tried to work out principles for best practices, pulling strengths from each approach. Roughly speaking, his calibrated Bayes synthesis relies on Bayesian methods for inference under a model, but holds an important role for frequentist ideas in model assessment. He feels strongly that Bayesian methods are insufficiently taught to statisticians. But he also criticizes advocates of Bayesian methods for not sufficiently assessing their modeling assumptions.

With such leading lights harping on the need to examine fundamentals, why is there so little of what one might call “foundational self-examination” in statistics? Andrew Gelman (2010), in a discussion of the empirical Bayes synthesis of Efron (2010), presents three meta-principles of statistics, among them one shedding a bit of light on this question:

My second meta-principle of statistics is the methodological attribution problem, which is that the many useful contributions of a good statistical consultant, or collaborator, will often be attributed to the statistician’s methods or philosophy rather than to the artful efforts of the statistician himself or herself. The result is that each of us tends to come away from a collaboration or consulting experience with the warm feeling that our methods really work, and that they represent how scientists really think. In stating this, I am not trying to espouse some sort of empty pluralism. . . . I think we all have to be careful about attributing too much from our collaborators’ and clients’ satisfaction with our methods.

The meta-principle speaks to the absence of reflection on foundations: truly talented statisticians adopting different approaches get good work done; the approach they adopt seems not to matter. But Gelman’s comment about “empty pluralism” is important. Satisfaction with the current “inferential schizophrenia” in statistics is not justified by past successes. Brilliant analysts can rely on on unarticulated intuition, but the rest of us need sound principles, if only they can be uncovered. (We can also benefit from collaboration, but that’s another topic!)

Susie Bayarri and James Berger provide concrete examples of methodological advances coming from foundational research in their survey, “The Interplay of Bayesian and Frequentist Analysis” (Bayarri & Berger 2004). They argue that “the debate is far from over and, indeed, should continue, since there are fundamental philosophical and pedagogical issues at stake,” with significant implications for practice. They review research that combines frequentist and Bayesian ideas resulting in new directions for statistical practice, including work on frequentist performance of Bayesian procedures, predictive assessment of models, conditional frequentist testing, and so forth. To highlight just one area with practical consequences: Conditional frequentist testing is an alternative to traditional hypothesis testing with p-values (astronomers’ “significance levels”) that I have found to be appealing to astronomers I work with, because it does what they thought their p-values were doing. It also happens to be closely related to model comparison with Bayes factors, and so serves as a natural bridge between Bayesian and frequentist thinking. Bayarri and Berger also discuss areas where the two approaches seem to fundamentally disagree, such as multiple testing, sequential analysis, and finite population sampling. These topics are important for a variety of astronomical problems, arguing again that work on fundamentals will have practical consequences for astronomers.
The ISBA Bulletin from the International Society for Bayesian Analysis, available at http://bayesian.org/ is a good source for occasional informal interchanges on these issues. In a recent issue, ISBA President Michael Jordan polled a number of leading statisticians (including some whose work is largely frequentist) on what they thought were the principal open problems in Bayesian statistics (Jordan 2011). They noted that Bayesian and frequentist methods can differ considerably on how to address model selection, model misspecification, and model validation. Computation is often seen as difficult; approximate Bayesian computation (ABC) methods, as described to us by Chad Schafer at this conference, may be an important emerging approach. The relationships between frequentist and Bayesian methods need to be elucidated, such as connections between empirical Bayes and the bootstrap and false discovery rate (FDR) control. Choice of priors continues to be an important issue. Concern was expressed about nonparametric and semiparametric inference where it presently seems safer and easier to use frequentist rather than Bayesian methods; this was discussed by Christopher Genovese earlier in the conference. In all of these areas, clarifying foundations will directly affect practice. And many of them are clearly relevant to current and emerging astrostatistics problems.

2 Multilevel models and multiple testing

Let me elaborate on one item in Jordan’s list as an example of where some struggle at the Bayes/frequentist divide by statisticians and astronomers together might pay dividends: the role of multilevel modeling (empirical or hierarchical Bayes) in multiple testing, where FDR control has become the standard frequentist technique. Statistical research in this area is important for addressing challenges being raised by the astronomy data deluge described earlier in this panel discussion by David van Dyk. The deluge coming from synoptic surveys does not just provide astronomers more data than we are used to; it also provides a different kind of data: collections of modest-sized datasets (such as sparse, irregularly-sampled light curves) for vast numbers of related objects. Astronomers need methods that can accurately and optimally accumulate information, not only within the dataset for a particular object, but also across a population of related objects.

This problem is not unique to astronomy. It is arising in many disciplines, motivating much current statistics research. This research was the main theme of a recent article by Bradley Efron entitled “The future of indirect evidence” in the excellent cross-disciplinary journal *Statistical Science* (Efron 2010). Whereas conventional statistical methods accumulate information about an object or process by repeated observations of the same object or process, new data modalities require the ability to pool information across ensembles of related objects or processes—“indirect evidence.” Efron advocates empirical Bayes methods as a promising paradigm for using indirect evidence, and false discovery rate control for the class of problems where the goal is separation of a large ensemble of related observations into dis-
coveries and “nulls.” Efron’s paper was published with discussion; none of the discussants liked FDR, and neither do I. For astronomers, a catalog is not just a report of final classifications of candidate sources. Rather, it is a starting point for further analysis and discovery, perhaps the most common goal being estimating population distributions. Catalogs produced by FDR control are ill-suited to this.

Consider a simple hypothetical example. Suppose an astronomer observes 100 candidate source locations (say, in a search for counterparts in a new waveband), 30% of which have emission; the fraction of emitting sources is unknown to the astronomer (and one of the targets of study). Each observation is noisy and the sources are not strong, so not all emitting sources will be securely detected. A common goal is to present the community with a catalog of detected sources which subsequently will be analyzed for various scientific purposes. In astronomy we traditionally set a threshold for catalog membership, chosen to control the family-wise error rate (FWER) for a set of tests of the null hypothesis that no emission is present—we pick a small critical p-value that makes us confident that there are no false sources in our catalog. The virtue of this approach is that the final catalog is essentially pure and can be studied in simple ways. The left panel of Figure 1 illustrates this, with 100 simulated observations where the 30 sources have fluxes corresponding to a signal-to-noise ratio SNR = 2.2. The plotted points show the p-values in rank order (effectively a cumulative histogram on its side). To control the FWER at 20% (say), the p-value threshold is set to $0.2/100 = 0.002$. The red ‘X’ symbols show the source detections that pass this threshold (i.e., that fall below a horizontal line at $p = 0.002$); only 10 of the 30 sources are detected, but there are no false discoveries.

The motivation for FDR control is that FWER control probably throws out many real sources (it certainly does here). The Benjamini-Hochberg (BH) method for FDR control relaxes the acceptance criterion to be less conservative, in a way that adapts to the evidence in the data. To motivate it, the red line shows the expected p-value vs.
rank if only noise were present (so rank = 100 \times p\text{-value}). Note that the observed
\(p\text{-value} \) distribution drops well below the line; there is an excess of small values
corresponding to observations of real sources. The dip is an indication that the null
hypothesis (all observations are from noise) is not relevant; we should be able to
somehow use the actually observed sample of \(p\text{-values} \) to set a threshold. The BH
method does this by tilting the null line by an amount determined by the target
FDR (to the dashed purple line), establishing a threshold at its intersection with
the observed \(p\text{-value} \) distribution; Miller et al. (2001) introduced this remarkably
clever yet simple technique to astronomers. The blue crosses show the additional
discoveries that result from using BH to target an expected FDR of 20%. Now 25
sources are detected, 4 of which are false detections of noise. Were the data real
instead of simulated (with known ground truth), we would guess that 20 of the 25
“discoveries” are real sources, given the targeted FDR.

The problem is that the false discoveries pile up at the low \(p\text{-values} \). For this
simulation, the SNR was the same for all sources, but in realistic settings the SNR
will be lower for dim sources than for bright ones, so the low \(p\text{-values} \) will tend to
come from dim sources. Applying the BH method to this situation will give progress-
ively greater pollution at dimmer fluxes. Simply knowing that you have controlled
the FDR at some specified level for the whole catalog does not help you accurately
infer the run of \(\log N - \log S \) (log source counts \textit{vs.} log flux, i.e., the number-size dis-
tribution) or other interesting population-level quantities from the catalog. So FDR
control addresses a particular question in an almost miraculously beautiful way—
nonparametrically, adaptively, and robustly—but it does not provide results that let
astronomers answer further, related questions we want to address with the data.

The right panel of Figure 1 shows results from a Bayesian multilevel model ap-
proach that attempts a soft (probabilistic) classification. It calculates a joint distri-
bution for the classification of each object (real source or noise) and the fraction, \(f \),
of the 100 observations that are true sources (the calculation uses a flat prior on \(f \)).
The plotted points show the marginal probability, \(p_1 \), that each observation belongs
to the class of sources with nonzero emission. The inset shows the marginal poste-
rior density for \(f \). It peaks at \(\hat{f} = 0.32 \), near the true value of 30%. The calculation
can accurately estimate the fraction without specifying which specific observations
are of actual sources. Many observations are very probably sources or nulls (\(p_1 \approx 1 \)
or 0), but there is a significant middle group with ambiguous classifications. In this
group, we cannot be sure any particular observation is a real source; but we can be
sure that there are several real ones among those candidates, and this lets us estimate
\(f \) accurately. This kind of calculation can be used to construct reliable \(\log N - \log S \)
curves and to make other inferences without requiring hard thresholding (though
various practicalities will likely require some low threshold in most applications).
The method is not without danger; e.g., setting the “upper level” prior (here, on \(f \))
needs some care in more complex settings (e.g., Scott & Berger 2006).

Statisticians themselves are not uniformly enthusiastic about FDR control. Gel-
man (2010) wrote: “To me, the false discovery rate is the latest flavor-of-the-month
attempt to make the Bayesian omelette without breaking the Bayesian eggs... it can
work fine if the implicit prior is ok... but I really don’t like it as an underlying
Fig. 2 Diagram of a discovery chain whereby exoplanets are found from periodic Doppler shifts in the spectra of the host stars. Progress in detection and characterization of individual planets leads to studies of exoplanet populations, and improved design of the observational experiments and spectral analysis procedures.

principle.” The frequentist literature on multiple testing itself recognizes that FDR control may not address the science questions of interest in a particular study. It includes alternatives to FDR control, such as estimation of confidence bounds on the source fraction advocated by Meinshausen & Rice (2006) for some applications. Tighter interaction between astronomers and statisticians is needed to work out how frequentist and Bayesian approaches to multiple testing might interact to produce tools meeting astronomers’ needs. For example, can we simultaneously have the robustness offered by BH FDR control and the soft thresholding offered by Bayesian multilevel models, enabling a variety of subsequent scientific analyses using the source detection results?

3 Statistical analysis and the chain of discovery

Frequentist methods tend to frame a data analysis task as a monolithic decision, as if addressing that one decision were the sole goal of data taking. Indeed, this is made explicit in the decision-theoretic formulation of frequentist estimation and testing. But astronomers are seldom seeking to produce a single terminal decision from their data. Instead our observing and cataloging and modeling are all just steps in what one might call unfolding chains of discovery. An astronomical problem is often first tackled with sequential experimentation and exploration, starting a chain of discovery leading from study of individual objects to study of populations. Figure 2 diagrams an example of such a chain for extrasolar planet science using radial velocity data, where planets orbiting other stars are detected from time-dependent Doppler shifts of the spectra of their host stars. Each of the black arrows represents a complicated data analysis problem, converting spectral data into radial velocity curves, modeling these curves to detect planets (as Philip Gregory described at this meeting), and inferring properties of exoplanet populations from the individual planetary measurements. But effective analysis, and even effective data acquisition, requires knowledge from the later steps, so a feedback loop is established. We need a broad statistical approach that facilitates building such chains (and loops) of discovery.

This notion of a discovery chain is related to the type of problem studied in the branch of statistics known as sequential analysis. A pioneer of this area, Herman Chernoff, has an intriguing perspective on its relevance to the scientific process...
more generally (the following quote is from an interview with Chernoff reported in Bather 1996):

I became interested in the notion of experimental design in a much broader context, namely: what’s the nature of scientific inference and how do people do science? The thought was not all that unique that it is a sequential procedure. . . . Although I regard myself as a non-Bayesian, I feel in sequential problems it is rather dangerous to play around with non-Bayesian procedures. . . . Optimality is, of course, implicit in the Bayesian approach.

An important direction for future fundamental work in statistics would be explicit recognition that most scientific data analysis tasks are just steps in an ongoing sequence of analyses—an unfolding chain of discovery. Efron’s “indirect evidence” is a special case of this, where one seeks a framework that can integrate inference about individuals with inference about populations. Given Chernoff’s remarks, it is perhaps not surprising that Bayesian ideas are playing an important role in working out how to use indirect evidence, via empirical and hierarchical Bayes methods. I suspect the future of statistics will involve a more thorough integration of Bayesian ideas into statistical practice, if only to enable development of even more elaborate discovery chains. I anticipate that statistical challenges in modern astronomy will be both drivers and beneficiaries of such developments.

References

Bather, J. (1996) A Conversation with Herman Chernoff, *Statist. Science*, 11, 335–350
Bayarri, M. J. & Berger, J. O. (2004) The interplay of Bayesian and frequentist analysis, *Statist. Science*, 19, 58–80
Efron, B. (2005) Bayesians, frequentists, and scientists, *J. Am. Stat. Assoc.*, 100, 1–5
Efron, B. (2010) The future of indirect evidence, *Statistical Science*, 25, 145–157
Gelman, A. (2010) Bayesian statistics then and now (discussion of Efron’s “The future of indirect evidence”), *Statistical Science*, 25, 162–165
Jordan, M. (2011) What are the open problems in Bayesian statistics?, *The ISBA Bulletin*, 11(1), 1–4
Little, R. (2006) Calibrated Bayes: a Bayes/frequentist roadmap, *Amer. Statist.*, 60, 213–223
Meinshausen, N. & Rice, J. (2006) Estimating the proportion of false null hypotheses among a large number of independently tested hypotheses, *Annals Statistics*, 34, 373–393
Miller, C. J., Genovese, C., Nichol, R. C., et al. (2001) Controlling the False-Discovery Rate in astrophysical data analysis, *Astron. J.*, 122, 3492-3505
Scott, J. G. & Berger, J. O. (2006) An exploration of aspects of Bayesian multiple testing, *J. Statist. Plann. Inference*, 136, 21442162.