Continuous Linear Operators On Infinite Quasi-Sobolev Spaces ℓ^m_∞

Jawad Kadhim K. Al-Delfi

Department of Mathematics, College of Science, Mustansiriyah University, Iraq

E-mail: jawadalelfi@uomustansiriyah.edu.iq
or
E-mail: Jawadalelfi@gmail.com

Abstract. In this study, the concept of infinite quasi-Sobolev spaces ℓ^m_∞, where $m \in \mathbb{R}$, is considered. These spaces have been proved as quasi-Banach spaces, as well as Banach spaces, while they neither Hilbert spaces nor quasi-Hilbert spaces. Some kinds of linear operators such as continuous, bounded, closed and completely continuous for operators which map ℓ^m_∞ or ℓ^m_1 into ℓ^m_∞ are discussed.

Key Words: Quasi-Banach space, quasi-Hilbert space, quasi-Sobolev space, closed operator, completely continuous operator

1. Introduction and Preliminaries

Quasi-normed space $(U, \| \cdot \|)$ or simply U is a real vector space with a quasi-norm $\| \cdot \|$, which is a positive definite, absolutely homogeneous functional such that there is a constant $K \in [1, \infty)$, $\| u + v \| \leq K (\| u \| + \| v \|)$ for all $u, v \in U$.

Also, a function $\| \cdot \|$ be a norm $\| \cdot \|$ if $K = 1$, thus it is a generalization of a norm function.

Definitely, a quasi-normed space U is metrizable, thus the concept of completeness is correct, and it is called a quasi-Banach space [1, 2].

Related to a quasi-normed space U, is an inner product space if and only if the following equation is hold:

$$\| v + w \|^2 + \| v - w \|^2 = 2 \| v \|^2 + 2 \| w \|^2, \quad \forall v, w, \in V$$ (1)

If the equality:

$$\| v + w \|^2 - \| v - w \|^2 = 8 \| \tau (v, w) \|^2 + \| \tau (w, v) \|^2, \quad \forall v, w, \in U$$ (2)

is satisfied, then U is said to be a quasi-inner product, where $\tau (v, w)$ and $\tau (w, v)$ are Gateaux derivatives, A Gateaux derivative of $\| \cdot \|$, $\tau (v, w)$ at $v \in U$ in the direction $w \in U$ is defined as:

$$\tau (v, w) = \frac{\| v \|^2}{2} \left(\lim_{h \to +0} \frac{\| v + hw \|^2 - \| v \|^2}{h} + \lim_{h \to -0} \frac{\| v + hw \|^2 - \| v \|^2}{h} \right)$$ (3)
where $h \in \mathbb{R}$. Similarly, $\tau(w, v)$ at $w \in U$ in the direction v is defined. If U is a quasi-Banach space, then it is called a quasi-Hilbert space [3].

In [4], a sequence $\{2^{k\sigma}\}, k \in \mathbb{N}$ used to define a space $\ell_p^\sigma(A)$, where A is a set of sequences, $1 \leq p < \infty, \sigma$ is a real number.

In [5,6], we have been used a set of all monotonically increasing eigen values $\{\lambda_k\} \subset \mathbb{R}^+$ such that $\lim_{K \to \infty} \lambda_k = +\infty$, of an operator which was defined on Sobolev spaces to construct quasi-Sobolev spaces ℓ_p^m, where $0 < p < \infty$ and $m \in \mathbb{R}$ which are defined as:

$$\ell_p^m = \{ v = \{v_k\} : \sum_{k=1}^{\infty} \lambda_k^m |v_k|^p < +\infty \}.$$

Also, a sequence $\{\lambda_k\}$ was used to define some types of operators on these spaces.

In this study, we devote transference above ideology using $\{\lambda_k\}$ to construct sequence space ℓ_∞^m and to define continuous operators on these spaces. For every $m \in \mathbb{R}$, ℓ_∞^m is called an infinite quasi-Sobolev space and is defined as:

$$\ell_\infty^m = \{ v = \{v_k\} : \sup_k \lambda_k^m |v_k| < +\infty \}.$$

When $m = 0$ then $\ell_\infty^0 = \ell_p^0$, $0 < p \leq \infty$.

Theorem 1.1 [5, 6]. Sequence spaces ℓ_p^m, $0 < p < \infty$, are quasi-Banach spaces, and they are Banach spaces only when $1 \leq p < \infty$.

Remark 1.2 [3]. Not all spaces ℓ_p^m, where $0 < p < \infty$, are quasi-Hilbert spaces, such as, ℓ_1^m, ℓ_2^m, while ℓ_4^m be a quasi-Hilbert space, where a functional $\tau(v, w)$ in ℓ_p^m defines as:

$$\tau(v, w) = \sum_{k=1}^{\infty} \lambda_k^{mp} |v_k|^p (\text{sng } v_k) w_k, \forall v \in \ell_p^m / \{0\},$$

$$\text{sng } v_k = \begin{cases} 1, & v_k > 0 \\ 0, & v_k = 0 \\ -1, & v_k < 0 \end{cases}. $$

A linear operator $T: U \to V$ where U and V are normed spaces. If domain of T, $D(T) = U$, then T is continuous if $\lim_{K \to \infty} \lim_{K' \to \infty} \| Tu_k - Tu \| = 0$ whenever a sequence $\{u_k\}$ converges to u in U; bounded if there exists a constant $M > 0$, $\| Tu \| \leq M \cdot \| u \|$; and completely continuous if for every bounded sequence $\{u_k\}$ in U, $\| Tu_k \|$ has a convergent subsequence in V. A linear operator T is closed if for every sequence $\{u_k\}$ in $D(T)$ converges to u and $\| Tu_k \|$ converges to y it holds u in $D(T)$ and $Tu = y$ [7, 8].

Lemma 1.3[7]. Let U and V are normed spaces.

1. Any subset of a Banach space is closed if and only if it is complete.

2. A linear operator $T: U \to V$ is continuous if and only if it is bounded.

Theorem 1.4 [7]. Let U and V are Banach spaces. A linear operator defined on U into V is continuous if and only if it is closed.
In the second section of this work, a proof of an infinite quasi-Sobolev spaces ℓ_∞^m, for every $m \in \mathbb{R}$ as quasi-Banach space is confirmed, while it is not a quasi-Hilbert space and a relationship between ℓ_1^m and ℓ_∞^m is presented, while in the third section, a linear operator which is defined on ℓ_∞^m or ℓ_1^m, is proved as continuous, imply it is closed. Also, continuity of an operator is insufficient to be completely continuous operator.

2. An Infinite Quasi- Sobolev Spaces

In this part, we review Banach, Hilbert, quasi-Banach and quasi-Hilbert space for a sequence space ℓ_∞^m, with given the relationship between ℓ_1^m and ℓ_∞^m.

Theorem 2.1. For every $m \in \mathbb{R}$, an infinite quasi-Sobolev space ℓ_∞^m is a quasi-Banach space with a function $\|u\|_q = \sup_k \lambda_k^m |u_k|$.

Proof.
A positive definite property and an absolute homogeneous property are obvious. Since,

$$\|u + v\|_q \leq \sup_k \lambda_k^m |u_k + v_k| \leq \sup_k \lambda_k^m |u_k| + \sup_k \lambda_k^m |v_k|$$

where $K=1$, then the triangle inequality is satisfied.

To prove the completeness of ℓ_∞^m. Consider $\{u_r\}, r \in \mathbb{N}$ is a fundamental sequence in ℓ_∞^m. Then, its coordinate sequences $u_k^r, k \in \mathbb{N}$ are fundamental sequences, and converge to u_k^e according to completeness of \mathbb{R}. Let $u = \{u_r\}$ we have $\|u - u\|_q \rightarrow 0$. This implies that $\{u_r\} \rightarrow u$, and this is the desired result.

Theorem 2.2. Let U is a quasi-inner product space, then:

1. it is an inner product space if and only if the equation (1) holds.
2. it is an inner-product space if and only if the following equivalence holds:
 $$q\|v + w\| = q\|v - w\| \leftrightarrow \tau(v, w) = 0, \forall u, v \in U$$

Proof.
proof (1) is coming from Theorem 1.7 and Proposition 2.8 in [3], where a quasi-norm function : $q\|\cdot\|^2 = <v, v>, \forall v \in U$.

proof (2) is very technical and proceeds in a same way into version in a normed space[9].

Remark 2.3. Since ℓ_2^m is a Hilbert space, for every $m \in \mathbb{R}$ [3], then the equation (2) and the equivalence (4) are satisfied, where $\tau(v, w) = <v, w>$, $\forall v, w \in \ell_2^m$. But, ℓ_4^m is not a Hilbert space, indeed,

suppose $u, v\in\ell_4^1$, where $v = \{v_k\} = \{1,1,1,0, \ldots \}$, $w = \{w_k\} = \{1,1,-1,0, \ldots \}$, and $\{\lambda_k\} = \{k\}, k \in \mathbb{N}$. Since $\tau(v, w) = 0$, and $1.48 \equiv q\|v + w\|
eq q\|v - w\| \equiv 1.36$, then the equivalence (4) is not satisfied.

Remark 2.4. An infinite quasi-Sobolev space ℓ_∞^m, $m \in \mathbb{R}$ neither Hilbert space nor quasi-Hilbert space, since equations (1) and (2) are not satisfied, as shown in the following example:
Example 2.5. Suppose \(\{ v_k \}, \{ w_k \} \in \ell^0_{\infty} \), where \(\{ v_k \} = \left\{ \frac{1}{2^k}, \frac{3}{2^k}, \ldots, 1 - \frac{1}{2^k}, \ldots \right\} \), \(\{ w_k \} = \left\{ 0, \frac{1}{2^k}, \frac{2}{2^k}, \ldots, 1 - \frac{1}{2^{k-1}}, \ldots \right\} \), then from the equation (3), it is easy to show that \(\tau(v, w) = \tau(w, v) = 1 \). Thus, the right hand of the equation (2) equals 16, while the left hand equals 15.9961, where \(q \| v + w \| = 2 \) and \(q \| v - w \| = 0.25 \). Therefore, \(\ell^\infty \) is not a quasi-inner product space. Also, it is not an inner-product space, since the left hand of equation (1) equals 4.0625, while the right hand of it equals 4.

Theorem 2.6. For every \(m \in \mathbb{R} \), \(\ell^m_1 \subset \ell^m_{\infty} \) and \(q \| u \| \leq q \| u \| \leq \| u \| \).

Proof. Let \(u = \{ u_k \} \in \ell^m_1 \), then \(\sum_{k=1}^{\infty} \lambda_k^m \| u_k \| < +\infty \). Since, \(\forall k \in \mathbb{N} \) we have: \(\lambda_k^m \| u_k \| < \sum_{k=1}^{\infty} \lambda_k^m \| u_k \| , m \in \mathbb{R} \). This implies that \(\sup_k \lambda_k^m \| u_k \| < +\infty \), hence \(\{ u_k \} \in \ell^m_{\infty} \), so \(\ell^m_1 \subset \ell^m_{\infty} \).

And, \(q \| u \| \leq \sup_k \lambda_k^m \| u_k \| = \sup_k \lambda_k^m \| u_k \| \leq \| u \| \).

3. Continuous Linear Operators

In this section, we use equivalence of boundedness and continuity for linear operators on Banach spaces. Let \(\{ \lambda_k \} \subset \mathbb{R}^+ \) is a monotonically increasing sequence such that \(\lim_{K \rightarrow \infty} \lambda_k = +\infty \).

Theorem 3.1. An operator \(T : \ell^m_{\infty} \rightarrow \ell^m_{\infty} \), \(m \in \mathbb{R} \) such that \(Tu = \lambda_k^{-1} u_k \), \(k \in \mathbb{N} \) is a continuous linear operator.

Proof. It is clear that \(T \) is well-defined, since to each element in domain of \(T \), we have an unique element in codomain of \(T \). Obviously, Linearity of \(T \), since \(T(\alpha u + \beta w) = \alpha \lambda_k^{-1} u_k + \beta \lambda_k^{-1} w_k = \alpha Tu + \beta Tw, \forall \alpha, \beta \in \mathbb{R} \) and \(\forall u, v \in \ell^m_{\infty} \).

Now, let a sequence \(u = \{ u_k \} \) converges to \(u^* = \{ u_k^* \} \) in \(\ell^m_{\infty} \), that is, \(\lim_{k \rightarrow \infty} \| u - u^* \| = \lim_{k \rightarrow \infty} \sup \lambda_k^m \| u_k - u_k^* \| = 0 \) then we have

\[\| Tu - Tu^* \| = \sup_k \lambda_k^m \| \lambda_k^{-1} u_k - \lambda_k^{-1} u_k^* \| = \lambda_k^{-1} \| u_k - u_k^* \| \leq \sup_k \lambda_k^{-1} \| u - u^* \| , \forall k \in \mathbb{N}. \]

Putting \(\gamma = \sup_k \lambda_k^{-1} \) then \(\| Tu - Tu^* \| \leq \gamma \| u - u^* \| . \) Taking limit to the sides, we get \(\lim_{k \rightarrow \infty} \| Tu - Tu^* \| = 0 \). Since \(u \) is an arbitrary element in \(\ell^m_{\infty} \) then \(T \) is continuous.

Corollary 3.2. A linear operator \(T \) which maps \(\ell^m_{\infty} \) into \(\ell^m_{\infty} \) such that \(Tu = \lambda_k^{-1} u_k \) is closed.

Proof of this corollary comes from Theorem 1.4 and Theorem 3.1.
Theorem 3.3. A continuous linear operator $T: \ell_1^m \to \ell_\infty^m$ such that $Tu = \lambda_k^{-1}u_k$, is completely continuous.

Proof.

Let G be a closed subset in ℓ_∞^m and $\{u_k\}$ be any bounded sequence in G, then $\{u_k\}$ has $\{u_{k_s}\}$ as a convergent subsequence in ℓ_∞^m. Since G is complete by Lemma 1.3, then $\{u_k\}$ converges to an element $u^* = \{u_k^*\}$ in G. Thus, $\{u_{k_s}\}$ converges to u^* in G, that is, $\lim_{k_s \to \infty} \| u_{k_s} - u^* \| = 0$.

Now, since T is continuous, so

$$\lim_{k_s \to \infty} \| Tu_{k_s} - Tu^* \| = \lim_{k \to \infty} \| \lambda_k^{-1}u_{k_s} - \lambda_k u_k^* \| = 0 \text{ as } k_s \to \infty,$$

that is, $Tu_{k_s} \to Tu^*$. Thus, $\{Tu_{k_s}\}$ contains a subsequence converges to Tu^*. Hence, T is completely continuous.

Theorem 3.4. A linear operator $T: \ell_1^1 \to \ell_\infty^m$, $Tu = \lambda_k^{-1}u_k$, $\forall u = \{u_k\} \in \ell_1^1$, $m \in \mathbb{R}$ is completely continuous.

Proof.

Since, $\forall k \in \mathbb{N}, \forall u = \{u_k\} \in \ell_1^1$ we have $\lambda_k^{-1}|u_k| < \sum \lambda_k^{-1}|u_k|$, then that

$$\| Tu \|_{\ell_\infty^m} = \sup_k \lambda_k^{-1}|u_k| \leq \sup_k \lambda_k^{-1} \sum \lambda_k^{-1}|u_k| \leq M. \| u \|_{\ell_1^m}, \text{ where } M > 0.$$

T is bounded, and it is continuous.

Similarly to Theorem 3.3, an operator T is completely continuous, where $\{Tu_k\}$ contains a subsequence converges in $\ell_\infty^m \forall \{u_k\} \in \ell_1^m$, $m \in \mathbb{R}$.

Remark 3.5. Every completely continuous operator is continuous, since discontinuity of an operator T which is defined on ℓ_1^1 or ℓ_∞^m into ℓ_∞^m would imply existence a sequence $\{u_k\}$ such that $\|u_k\| \leq 1$ and $\| Tu_k \| \to \infty$ and this implies that T is not completely continuous. Conversely, may be not true, as shown in the following example:

Example 3.6. Consider a linear operator $T: \ell_\infty^1 \to \ell_\infty^1$, $Tu = u$. Suppose $\{u_k\}$ such that $u_k = 2e_k$ is any bounded sequence in ℓ_∞ where $\{e_k\}$ is a sequence of all zeroes except in the k-th spot where there appears 1 and $\|e_k\| = 1$, then, for any $k \neq r$,

$$\| Tu_k - Tu_r \| = 2\| e_k - e_r \| = 2.$$

Hence, T is continuous, and also it is closed. But this operator is not completely continuous, because, any subsequence of $\{Tu_k\}$ is not converge.

4. Acknowledgements

The author would like to express thanks to College of Science-Musyansiriyah University for supporting this work. Special thanks to unknown referees for their careful reading and helpful comments.
5. References

[1] Kalton N 2003 Quasi-Banach Spaces, Handbook of the Geometry of Banach Spaces, Elsaver Science Publishers, Amsterdam etc., Vol. 2, 1099 -1130.

[2] Bergh J and Lofstrom J 1976 Interpolation Spaces. An Introduction, Berlin–Heidelberg–New York, Springer-Verlag.

[3] Al-Delfi J K 2017 Quasi-Inner Product Spaces of Quasi-Sobolev Spaces and Their Completeness, Ibn Al-Haitham Journal for Pure and Applied science,1806; DOI:10.30526/2017, IHSCICONF, Iraq-Baghdad.

[4] Triebel H 1978 Interpolation Theory, Function Spaces, Differential Operators, Amsterdam, North-Holland.

[5] Al-Delfi J K 2013 The Laplace’ quasi-operator in quasi-Sobolev spaces, Bulletin of Samara State University Series of “Mathematics. Mechanics. Physics”, Issue 2 (31), pp.13-16.

[6] Al-Delfi J K 2013 Quasi-Sobolev Spaces ℓpn, Bulletin of South Ural State University, Series of “Mathematics. Mechanics . Physics”, 5, 1, pp. 107–109.

[7] Maddox I J 1988 Elements of Functional Analysis, Cambridge University Press, New Delhi, India.

[8] Taylor A 1980 Introduction to Functional Analysis, Springer-Verlag.

[9] Milicic P.M 1998 On the Quasi-Inner Product Spaces, Mat. Bilten, Skopje, Macedonia, 22 (XLVIII), 19-30.