Non-local Non-Abelian Gauge Theory: Conformal Invariance & β-function

Anish Ghoshal, Anupam Mazumdar, Nobuchika Okada, and Desmond Villalba

1INFN - Sezione Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133, Roma, Italy
2Van Swinderen Institute, University of Groningen, 9747 AG Groningen, The Netherlands
3Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487, USA
4Department of Chemistry and Physics, Drury University, Springfield, Mo 65802, USA

This paper focuses on extending our previous discussion of an Abelian U(1) gauge theory involving infinite derivatives to a non-Abelian SU(N) case. The renormalization group equation (RGEs) of the SU(N) gauge coupling is calculated and shown to reproduce the local theory β-function in the limit of the non-local scale \(M \to \infty \). Interestingly, the gauge coupling stops its running beyond the scale \(M \), approaching an asymptotically conformal theory.

INTRODUCTION

With no clinching evidence of new particles in physics Beyond the Standard Model (BSM) by any of the current searches at experiments world-wide, such as the Large Hadron Collider (LHC), an alternative philosophy for BSM could be the modification of the standard canonical kinetic terms through the introduction of infinite derivatives, instead of introducing new particles (new states). Motivated by string field theory [1–10], infinite derivative formulation is expressed in the form of an entire function [11] and the higher order derivatives are accompanied by a suppression by a scale \(M \), which we call the “non-local scale.” The choice of this derivative function does not appear to be unique, as long as it acts to suppress terms in the high energy regime.

We have previously considered a non-local Abelian U(1) gauge theory within this framework and have shown that the evolution of the gauge coupling becomes fixed or “UV-insensitive” in the energy regime well above the non-local scale \(M \) [12]. It was also shown that Higgs vacuum instability problem [13] is cured, leading to a stable Abelian Higgs theory. The theory is ghost-free [14] and predicts a unique scattering phenomenology leading to transmutation of energy scales which has its own cosmological and astrophysical implications [15]. The phenomenology of dark matter in this theory is also investigated in Ref. [16] and shown DM experiments can be a novel probe for the scale on non-locality. Strongly coupled regime of the theory was considered in Refs. [17, 18] in Higgs and Yang-Mills versions and it was found that the mass gap generated gets diluted due to non-local effects. On aspects of gravity, Ref. [19] showed that the most general quadratic curvature gravitational action (parity-invariant and torsion-free) with infinite covariant derivatives makes the gravitational sector free from the Weyl ghost and is devoid of any classical singularities, such as black hole [19, 20, 26] and cosmological singularities [31] [2]

In this paper, we extend the same idea involving infinite series of higher-order derivatives to a non-Abelian SU(N) gauge theory, investigate the gauge invariance, and compute the running of the SU(N) gauge coupling. Here too we expect that within this framework, the standard renormalization group equations (RGEs) should be reproduced in the local limit (\(M \to \infty \)).

NON-ABELIAN EXTENSION

For local non-Abelian SU(N) gauge theory, the Lagrangian includes the gauge boson kinetic term,

\[
\mathcal{L}_g = -\frac{1}{2} tr[F_{a\mu\nu} F_{a\mu\nu}] = -\frac{1}{4} F_{a\mu\nu} F_{a\mu\nu}.
\] (1)

The trace is over the SU(N) group indices and the field-strength tensor is given by

\[
F_{a\mu\nu} = \partial_{[\mu} A_{a\nu]} - g f^{abc} A_{a\mu} A_{b\nu} c, \tag{2}
\]

where the \(f^{abc} \) represents the group structure constant. For implementation of the non-local modification, we follow our approach in Ref. [12]. The gauge boson kinetic term is then described as

\[
\mathcal{L}_g = -\frac{1}{2} tr[F_{a\mu\nu} e^{-\frac{i}{2} M^2 A_{a\mu\nu}} + h.c., \tag{3}
\]

where the covariant derivative is given by \(D_{a\mu} = \partial_{\mu} - ig T^a A_{\mu} \). The fermionic part of the Lagrangian is given by the standard form as in Refs. [11, 12]:

\[
\mathcal{L} = \bar{\psi} e^{\frac{g^2}{2\mu^2} i\gamma^\mu D_{\mu}} \psi \tag{4}
\]

where \(D^2 = \eta_{\mu\nu} D^{\mu} D^{\nu} \) (\(\mu, \nu = 0, 1, 2, 3 \)), assuming all gauge and fermionic particles being massless.

1 For previous arguments related to non-singular solutions, see

2 For supersymmetric versions on non-locality in the matter section, see for instance, Refs. [21, 22].
The exponential term is introduced by the non-local modification and the Lagrangian includes an infinite series of higher dimensional operators that are all suppressed by the non-local scale M. As a result, their contribution can be largely ignored at energies lower than M. In other words, the conventional Lagrangian is reproduced in the limit of $M \to \infty$. We take the metric with $\eta = \text{diag}(+1,-1,-1,-1)$ to implement our procedure for UV completion upon the Wick rotation.

The gauge boson and ghost propagators have the following forms:

$$\Pi_\varphi(p^2) = \frac{i\eta_{\mu\nu} \delta^{ab} e^{-\frac{p^2}{2\Lambda^2}}}{p^2 + i\epsilon},$$

$$\Pi_{\text{ghost}}(p^2) = \frac{i\delta^{ab} e^{-\frac{p^2}{2\Lambda^2}}}{p^2 + i\epsilon},$$

in the Feynman-'t Hooft gauge $\xi = 1$. And the massless fermion propagator is given by [11]:

$$\Pi_\psi(p_E) = \frac{-i\delta_{E} e^{-\frac{p_E^2}{2\Lambda^2}}}{p_E^2 + i\epsilon}. \quad (8)$$

GAUGE COUPLING RUNNING

In Ref. [12], we have obtained the RGE for the gauge coupling in the Abelian U(1) gauge theory with one Dirac fermion having a unit U(1) charge:

$$\mu \frac{dg}{d\mu} = \frac{1}{16\pi^2} \left(\frac{4}{3}\right) g^3 e^{-2\frac{g^2}{\Lambda^2}}. \quad (9)$$

The standard result for the beta function is obtained in the local limit of $M \to \infty$. Interestingly, for the non-local U(1) theory is “UV-complete,” as the beta function is vanishing beyond the non-local scale. This behavior is opposed to the local U(1) theory where the running is asymptotically non-free. In the case of a non-Abelian theory, we expect a similar behavior, namely, the gauge coupling stops running beyond the non-local scale. The beta function for the non-Abelian gauge coupling incorporates the gauge and ghost field contributions; we break up the derivation of each contribution below for clarity.

NON-ABELIAN GAUGE FIELD PROPAGATOR

To find the massless non-Abelian gauge boson propagator, we follow the same gauge-fixing prescription as in Ref. [11], and the non-Abelian gauge and ghost Lagrangians are given by

$$\mathcal{L}_{\text{ghost}} = -\epsilon^a f(\Box) (\partial^\mu D^{ab}_\mu) e^b,$$ \quad \text{(5)}

and

$$\mathcal{L}_g = \frac{1}{2} A^a_\mu e^{-\frac{2}{3\Lambda^2} (\Box i\eta^{\mu\nu} - \partial^\mu \partial^\nu)} A^a_\nu + \frac{1}{2\xi} A^a_\mu (f(\Box))^2 \partial^\mu \partial^\nu A^a_\nu, \quad \text{(6)}$$

beta function for the non-Abelian gauge coupling.
It is convenient to introduce new parameters, $s : [0, \infty)$ and $\alpha : [0, 1]$, which are defined as $\alpha_1 + \alpha_2 = s$ and $\alpha = \alpha_1 s$ (which gives $\alpha_2 = s(1 - \alpha)$). In addition, we take the momentum shift $p \to p - \frac{\alpha e^{-\beta}}{s + 2\beta} q$ and then

$$
\Gamma_2 = -\frac{g^2 T(A) \delta^{ab} q^\mu q^\nu}{32\pi^2} \int p^2 dp^2 \int_0^1 \frac{d\alpha}{\alpha} \int_0^\infty s ds \bar{N}^{\mu\nu} \times e^{-((s + \beta) p^2 + \frac{2(1 - \alpha)(s + 2\beta)^2}{s + 2\beta} q^2)},
$$

(12)

where $\bar{N}^{\mu\nu}$ is given by

$$
\bar{N}^{\mu\nu} = [g^{\mu\rho} (A_q - p)^\rho + g^{\rho\nu} (2p + B_q) + g^{\mu\nu} (-p - C_q p)]
\times [\delta^\sigma (p - A_q) + g_{\rho\sigma} (-2p - B_q)^\nu + \delta^\nu (p + C_q p)],
$$

(13)

and $A = 1 + \frac{s + 2\beta}{s + 2\beta} B = 1 - \frac{2s + 2\beta}{s + 2\beta} C = 2 - \frac{s + 2\beta}{s + 2\beta}$. To find the corrections ΔZ_{Gauge}, we focus on the coefficient of terms only proportional to $q^\mu q^\nu$, which gives

$$
\Gamma_2 = -\frac{g^2 T(A) \delta^{ab} q^\mu q^\nu}{16\pi^2} \int p^2 dp^2 \int_0^1 \frac{d\alpha}{\alpha} \int_0^\infty s ds (A(C - B)
+ BC - 2B^2) \times e^{-((s + \beta) p^2 + [1 + O(q^2)]}.
$$

(14)

Here, $O(q^2)$ contains higher order momentum terms which are sub-leading and ignored:

$$
\Gamma_2^{\text{gauge}} \approx -\frac{g^2 T(A) \delta^{ab} q^\mu q^\nu}{16\pi^2} \int p^2 dp^2 \int_0^1 \frac{d\alpha}{\alpha} \int_0^\infty s ds \times (1 + 5\alpha - 5\alpha^2 e^{-((s + \beta) p^2)}
\approx -\frac{g^2 T(A) \delta^{ab} q^\mu q^\nu}{16\pi^2} \left(\frac{11}{6} \right) \int_0^{\Lambda^2} d^2 p \frac{e^{-2\beta p^2}}{p^2}.
$$

(15)

Employing the same procedure for the ghost contribution, we find

$$
\Gamma_2^{\text{ghost}} = -\frac{g^2 T(A) \delta^{ab} q^\mu q^\nu}{16\pi^2} \int p^2 dp^2 \int_0^1 \frac{d\alpha}{\alpha} \int_0^\infty s ds \times \left(p + \left(1 - \frac{\alpha s + \beta'}{s + 2\beta'} \right) q \right)^\mu \left(p - \frac{\alpha s + \beta'}{s + 2\beta'} \right)^\nu \times e^{-((s + \beta') p^2)} \left[1 + O(q^2) \right],
$$

(16)

where $\beta' = \beta / 2$ due to the ghost propagator’s exponential factor in (29). Again, picking up the $q^\mu q^\nu$ terms and ignoring the further sub-leading terms,

$$
\Gamma_2^{\text{ghost}} \approx -\frac{g^2 T(A) \delta^{ab} q^\mu q^\nu}{16\pi^2} \int p^2 dp^2 \int_0^1 \frac{d\alpha}{\alpha} \int_0^\infty s ds \times \left((1 - \alpha) s + \beta' \right) \left(\frac{(\alpha s + \beta')}{s + 2\beta'} \right) e^{-((s + \beta') p^2)}
\approx \frac{g^2 T(A) \delta^{ab} q^\mu q^\nu}{16\pi^2} \left(\frac{1}{6} \right) \int_0^{\Lambda^2} d^2 p \frac{e^{-\beta p^2}}{p^2}.
$$

(17)

Contributions from the fermion loops are the same as in Ref. [12] with the addition of the SU(N) group factor $T(R)$ for N_F fermions

$$
\Gamma_2^{\text{fermion}} \approx \frac{g^2 N_F T(R) \delta^{ab} q^\mu q^\nu}{16\pi^2} \left(\frac{4}{3} \right) \int_0^{\Lambda^2} d^2 p \frac{e^{-3\beta p^2}}{p^2}.
$$

(18)

Extracting all the relevant terms from (15) and (17),

$$
\Delta Z_{\text{gauge}} = \frac{g^2}{16\pi^2} \int_0^{\Lambda^2} \frac{dp^2}{p^2} \left\{ \left[-\frac{1}{6} T(A) + \frac{4}{3} N_F T(R) \right] e^{-2\beta p^2} + \frac{1}{6} e^{-3\beta p^2} T(A) \right\}.
$$

(19)

Figure 1. The SU(3) gauge coupling running with $N_F = 6$ & $N_F = 0$, shown in solid (dashed) black lines for the non-local (local) theories. Here, we have set $M = 10^5$ GeV.

Fermion Wavefunction Renormalization

Proceeding in a similar manner, lastly, the non-Abelian gauge contribution to the fermion wave function renormalization is

$$
\Delta Z_{\text{fermion}} = \frac{g^2 C(R)}{16\pi^2} \int_0^{\Lambda^2} \frac{dp^2}{p^2} e^{-2\beta p^2}.
$$

(20)

Non-Abelian Vertex Correction

Next we consider the corrections to the non-Abelian fermion-fermion-gauge vertex. They are evaluated in a similar fashion, with the main difference being external momentum is set to zero. We work in the Feynman-t’Hooft gauge, and find

$$
\Delta g = \frac{g^3}{16\pi^2} \int_0^{\Lambda^2} \frac{dp^2}{p^2} \left\{ \left(C_2(R) - \frac{1}{2} T(A) \right) e^{-\frac{3}{2} T(A)} \right\}.
$$

(21)
Having derived wave-function renormalization and vertex correction we proceed to investigate the β-function studies.

Non-Local Non-Abelian Beta Function

Bringing these contributions together in the standard way we culminate with the beta function for the gauge couplings in the infinite derivative framework.

\[
\mu \frac{dg}{d\mu} = \frac{-g^3}{16\pi^2} \left\{ -\frac{1}{6} C_2(A) e^{-\beta g^2} - \left(\frac{11}{6} C_2(A) + \frac{4}{3} N_F T(R) + 2 C_2(R) \right) e^{-2\beta g^2} + 2 \left(C_2(R) + T(A) \right) e^{-3\beta g^2} \right\}. \tag{22}
\]

In the limit $M \to \infty (\beta \to 0)$ we recover the standard SU(N) RGE, which is what we expect in the infrared (IR) limit of the non-local theory:

\[
\mu \frac{dg}{d\mu} = \frac{-g^3}{16\pi^2} \left\{ \frac{11}{3} N - \frac{2}{3} N_F \right\}. \tag{23}
\]

In Fig. 1 we show the gauge coupling running of the non-local (local) non-Abelian SU(N) gauge theory represented by the solid (dashed) line, where we have set $N = 3$ and $N_F = 6$ & $N_F = 0$. Beyond the non-local scale that we set $M = 10^9$ GeV, the running becomes “conformally complete”, in the sense that the running becomes frozen. On the other hand, the standard gauge coupling running exhibits the usual asymptotic free behavior.

CONCLUSIONS AND DISCUSSIONS

The central attractive feature of our non-local extension of QFT is that the theory becomes scale free (scale invariant) at energies beyond the non-local scale M. In other words, the theory becomes conformal, and M signifies the UV-fixed point. The UV behaviour of the non-Abelian Higgs model is expected to be very similar to what we have discussed in the Abelian case. The RG evolution of the Higgs self-coupling freezes beyond M and the Higgs potential never develops any instability. Classically scale-invariant models are of immense interest in QFT. Usually the conformal symmetries are anomalous in QFT in four-dimensions except for a specific system such as N=4 supersymmetric Yang-Mills theory. We may classify scale-invariant theories as:

(i) Exact scale invariance is always maintained;
(ii) Scale invariance breaks only at the quantum level.

In infinite derivative non-Abelian gauge theory, we find a unique scenario where the theory does not possess the scale invariance in the IR, but theory becomes scale invariant in the UV whose scale is set by the non-local scale M. Thus, the symmetry breaking (to generate a scale) maybe considered as an artefact of only the low energy behaviour of the theory leading to the concept of scale-dependence, or in other words, the running of the coupling constants. This is very similar to the classical scale invariant theory with “soft” symmetry-breaking, which would not suffer from the naturalness issue arising from the UV sensitivity of scalar mass squared corrections. However, in non-local theory, the beta function is exponentially suppressed for $\mu > M$, so that energy M practically works as the conformal fixed point. This leads to scale invariance in the UV in spite of “quantum” interactions and the presence of “scale” in the IR, thereby denoting a “scale-insensitivity” of the tree-level action.

In the infinite derivative theory, the Higgs mass squared corrections are exponentially suppressed at the scale beyond M, and the non-local scale works as an effective cutoff for the corrections, $\Delta m_H^2 \sim M^2$. This means that the Higgs mass fine-tuning is reduced to M_{EW}^2 / M_{Planck}^2, with M_{Planck} being the Planck mass. Beyond the scale of non-locality to infinite energy, all the beta-functions are vanishing and all the couplings are approaching a fixed point, determined by the non-local scale (see Fig. 1). This means that no Landau-pole

In deriving the RGE, one may consider 1-loop corrections to the gauge boson self-interactions or 1-loop corrections to the gauge coupling of the ghost. Thanks to the gauge invariance, the RGE devised in this way is coincide with the one presented in this paper.

The RGE is described as $\delta g = \Delta g - g(\Delta Z_{\text{fermion}} + \frac{1}{2} \Delta Z_{\text{gauge}})$

Also see Ref. [12] for details of the procedure.

See Refs. [20, 71] for UV-fixed points in supersymmetric context.

\footnote{The idea of scale invariance in context to Higgs naturalness issue was proposed long time ago [2, 22], it has recently received great attention with respect to UV-complete framework to address the hierarchy problem [73, 74, 75, 76, 85, 86].}
exists in the theory.

We end our discussion with the speculation that the non-local extension of gauge field theories may allow us to provide a unified framework of Conformal Invariance without having to encounter with Landau poles, and thus paves a theoretical pathway for theories being perturbatively stable and valid to infinite energy. However, the details are beyond the scope of the current investigation, and we will take this issue up explicitly in a future publication.

Appendix A: NL Non-Abelian Faddeev-Popov Procedure

Focusing solely on the kinetic term of the non-abelian gauge field, the partition function in the Euclidean space is given by

\[Z(J) = \int DA^a \int D\alpha^a \delta(G^a(x)) \det \left(\frac{\delta G^a(x)}{\delta \alpha^a} \right) \times e^{-\frac{1}{4} F^{\alpha\mu\nu} e^{-\frac{\alpha}{2M^2} F_{\mu\nu}}}, \]

(24)

where \(G^a(x) = f(\Box) \partial^\mu A_\mu^a(x) - w^a(x) \) and \(G^a(x) \) transforms as \(G^a(x) \to f(\Box) \partial^\mu A_\mu^a(x) + D_\mu^a \alpha^\mu(x) \) under a SU(N) gauge transformation. Because the function \(Z(J) \) is independent of \(w^a(x) \) we introduce the arbitrary functional dependent on \(w^a(x) \) and employ the usual gauge fixing procedure to arrive at

\[Z(J) \propto \int Dw \int DA \delta(G(x)) \det \left(f(\Box) \partial^\mu D^a_{\mu\nu} \delta^I(x - y) \right) e^{-\frac{1}{4} F^{\alpha\mu\nu} e^{-\frac{\alpha}{2M^2} F_{\mu\nu}} - \frac{1}{4} w^2}. \]

Using the familiar relation between a functional determinant and a path integral over complex Grassmann variables, we obtain the lagrangians given in Eqs. (5) and (6).

Appendix B: Renormalizability and BRST Invariance

Power Counting

In conventional quantum field theories, the kinetic terms of gauge fields contain up to two derivatives. In momentum space this means that the propagators behave as \(k^{-2} \). In four dimensions each momentum loop provides a \(k^4 \) factor in any quantum loop integral. The superficial degree of divergence of a Feynman diagram in the local theory is therefore given by

\[D = \text{no. of factors of internal momentum in the numerator} - \text{no. of factors in the denominator} = 4L - 2I + 2V, \]

where \(L \) is the number of loops, \(V \) is the number of vertices, and \(I \) is the number of internal propagators.

When one has exponential factors in the loops, vertices and propagators, an exponential suppression will always be dominant over a polynomial growth. Therefore, we see that as long as these exponential factors come with a negative power, the integrals should be manifestly convergent. In the counting of the superficial degree of divergence in the infinite derivative theory, we note that each propagator comes with an exponential suppression, (see Eq. (7) and Ref. [12]) and each vertex also comes with an exponential suppression. Thus, the power of exponential suppression factor should be:

\[E = -V - I. \]

(26)

By using the topological relation:

\[V = I + 1 - L, \]

(27)

we have

\[E = 1 - 2V - L. \]

(28)

BRST Invariance

Next we discuss the convergence in the complete BRST-invariant infinite-derivative gauge theory action. The conclusion is exactly the same. The quantized action action is of the form:

\[S_{\text{total, quantized}} = S_g + S_{\text{Gauge-Fixing}} + S_{\text{ghost}} \]

\[= \int d^4x \left(-\frac{1}{4} F_{\mu\nu}^a e^{-\frac{\alpha}{2M^2} (F_{\mu\nu}^a)^2} + \frac{\bar{\epsilon}}{2}(B^a)^2 + B^a \partial^\mu A_\mu^a + \bar{\epsilon}^a (\partial^\mu e^{-\frac{\alpha}{2M^2} D_{\mu}^a}) e^c \right). \]

(29)
where ξ is the gauge-fixing parameter, B is the auxiliary field, and c and \bar{c} are the ghost and anti-ghost fields, respectively. The BRST transformations for non-Ableian gauge theories express a residual symmetry of the effective action which remains after the original gauge invariance has been broken by the addition of the gauge-fixing and ghost action terms. In our theory, we introduce the following BRST transformations:

$$\delta_{\text{BRST}}(A^\mu)^a = (D_\mu^c)^a c^c \delta \lambda, \quad \delta_{\text{BRST}} c^a = \frac{1}{2} g f^{abc} a^b \delta \lambda, \quad \delta_{\text{BRST}} \bar{c}^a = (\delta \lambda) e^{\bar{a}}_\mu B^a, \quad \delta_{\text{BRST}} B^a = 0,$$

where $\delta \lambda$ is an infinitesimal anti-commuting constant parameter. We show the BRST-invariance of $S_{\text{total, quantized}}$ (following Refs. [37, 39]): the BRST transformation of the gauge field is just a gauge transformation of A_μ generated by $e_a \delta \lambda$. Therefore, any gauge-invariant functionals of $F_{\mu \nu}$, like the first term in Eq. (29) gives

$$\delta_{\text{BRST}}(\frac{1}{2} (F_{\mu \nu}^a e^{\bar{a}}_\mu (F_{\mu \nu})^a)) = 0.$$

The second term in Eq. (29) gives $\delta_{\text{BRST}}(\frac{1}{2} (B^a)^2) = 0$ from Eq. (33). For the third term in Eq. (29), the transformation of A_μ^a cancels the transformation of c in the last term, due to Eqs. (30) (31) & (32) leaving us with

$$\delta_{\text{BRST}}(D_{\mu}^c \bar{c}) = D_{\mu}^c \delta \bar{c} + g f_{abc} A_{\mu}^b c^c,$$

which is equal to 0, using the Jacobi identity (see Ref. [38]). The transformation of c^σ is nilpotent,

$$\delta_{\text{BRST}}(\partial_{\mu} c^a c^b) = 0,$$

while the transformation of A_μ^a is also nilpotent,

$$\delta_{\text{BRST}}((D_{\mu}^a c)^a c^b) = 0.$$

Hence, the action in Eq. (29) is BRST-invariant. Noting the fact that the only part of the ghost action which varies under the BRST transformations is that of the anti-ghost (\bar{c}_a), the central idea behind our proof of BRST-invariance is that we have chosen the BRST variation of the anti-ghost (\bar{c}_a) (see Eqs. (32)) to cancel the variation of the gauge-fixing term.

Next we proceed in the same manner as in Ref. [39] and introduce BRST-invariant couplings of the ghosts and gauge bosons to external fields K_μ (anti-commuting) and L_σ (commuting), so that the effective action \tilde{S} is

$$\tilde{S} = S_{\text{total, quantized}} + K_\mu D_{\mu}^a c + L_\sigma f^{abc} c^a c^b,$$

which is also BRST-invariant.

Let us now compute the superficial degree of divergence for the BRST-invariant action. To proceed, we introduce the following notations:

- n_G is the number of anti-ghost-gauge boson-ghost vertices,
- n_K is the number of K-gauge boson-ghost vertices,
- n_L is the number of L-ghost-ghost vertices,
- I_A is the number of internal gauge boson propagators,
- I_G is the number of internal ghost propagators,
- E_c is the number of external ghosts,
- $E_{\bar{c}}$ is the number of external anti-ghosts.

By counting the exponential contributions of the propagators and the vertex factors, as discussed earlier, we can now obtain the superficial degree of divergence, which is given by

$$E = -n_A - I_A.$$

By using the following topological relation,

$$L = 1 + I_A + I_G - n_A - n_G - n_K - n_L,$$

we obtain

$$E = 1 - L + I_G - n_G - n_K - n_L - 2n_A.$$

Employing the momentum conservation law for ghost and anti-ghost lines,

$$2I_G - 2n_G = 2n_L + n_K - E_{c} - E_{\bar{c}},$$

we obtain

$$E = 1 - L - \frac{1}{2} (n_K + E_c + E_{\bar{c}}) - 2n_A.$$

It is clear that the degree of divergence reduces as n_K, E_c and $E_{\bar{c}}$ increase. Thus, one may conclude the most divergent diagrams are those for which $n_K = E_c = E_{\bar{c}} = 0$, i.e., the diagrams whose external lines are all gauge bosons. In this case, the degree of divergence is given by $E = 1 - 2n_A - L$. Since n_A is an integer, $E < 0$, namely, the corresponding loop amplitudes $(L \geq 1)$ are superficially convergent. Here, we have utilized power-counting-in-exponentials to understand the degree of divergence. In the local QFT limit of $M \rightarrow \infty$, all the exponential suppression factors disappear, and we will obtain divergences according to power-counting-in-polynomials as usual in the standard QFT. We justify our procedure in the way that by taking $M \rightarrow \infty$, our results should reproduce the local theory results.
Acknowledgments

Authors thank Marco Frasca & Alberto Salvio for useful comments. This work is supported in part by the United States Department of Energy grant DE-SC0012447 (N.O. and D.V.). AM’s research is financially supported by Netherlands Organisation for Scientific Research (NWO) grant number 680-91-11.

[1] E. Witten, “Noncommutative Geometry and String Field Theory,” Nucl.Phys., vol. B268, p. 253, 1986.
[2] V. A. Kostelecky and S. Samuel, “On a Nonperturbative Vacuum for the Open Bosonic String,” Nucl.Phys., vol. B336, p. 263, 1990.
[3] V. A. Kostelecky and S. Samuel, “The Static Tachyon Potential in the Open Bosonic String Theory,” Phys.Lett., vol. B207, p. 169, 1988.
[4] P. G. Freund and M. Olson, “NONARCHIMEDEAN STRINGS,” Phys.Lett., vol. B199, p. 186, 1987.
[5] P. G. Freund and E. Witten, “ADELIC STRING AMPLITUDES,” Phys.Lett., vol. B199, p. 191, 1987.
[6] L. Brekke, P. G. Freund, M. Olson, and E. Witten, “Nonarchimedean String Dynamics,” Nucl.Phys., vol. B302, p. 365, 1988.
[7] P. H. Frampton and Y. Okada, “Effective Scalar Field Theory of P-adic String,” Phys.Rev., vol. D37, pp. 3077–3079, 1988.
[8] A. A. Tseytlin, Phys. Lett. B 363, 223 (1995)
[9] T. Biswas, M. Grisaru, and W. Siegel, “Linear Regge trajectories from worldsheet lattice parton field theory,” Nucl.Phys., vol. B708, pp. 317–344, 2005.
[10] W. Siegel, “Stringy gravity at short distances,” hep-th/0309093.
[11] T. Biswas and N. Okada, Nucl. Phys. B 898, 113 (2015) doi:10.1016/j.nuclphysb.2015.06.023 [arXiv:1407.3331 [hep-ph]].
[12] A. Ghoshal, A. Mazumdar, N. Okada and D. Vidalba, Phys. Rev. D 97, no. 7, 076011 (2018) doi:10.1103/PhysRevD.97.076011 [arXiv:1709.09222 [hep-th]].
[13] C. Patrignani et al. [Particle Data Group], Chin. Phys. C 40, no. 10, 100001 (2016).
[14] L. Buoninfante, G. Lambiase and A. Mazumdar, arXiv:1805.03559 [hep-th].
[15] L. Buoninfante, A. Ghoshal, G. Lambiase and A. Mazumdar, arXiv:1812.01441 [hep-th].
[16] A. Ghoshal, Int. J. Mod. Phys. A 34, no.24, 1951030 (2019) doi:10.1142/S0217751X19510306 [arXiv:1812.02314 [hep-ph]].
[17] M. Frasca and A. Ghoshal, [arXiv:2011.10586 [hep-th]].
[18] M. Frasca and A. Ghoshal, [arXiv:2102.10665 [hep-th]].
[19] T. Biswas, E. Gerwick, T. Koivisto and A. Mazumdar, “Towards singularity and ghost free theories of gravity,” Phys. Rev. Lett. 108, 031101 (2012) doi:10.1103/PhysRevLett.108.031101 [arXiv:1110.5249 [gr-qc]].
[20] T. Biswas, A. Conroy, A. S. Koshelev and A. Mazumdar, “Generalized ghost-free quadratic curvature gravity,” Class. Quant. Grav. 31, 015022 (2014) Erratum: [Class. Quant. Grav. 31, 159501 (2014)] doi:10.1088/0264-9381/31/1/015022, 10.1088/0264-9381/31/15/159501 [arXiv:1308.2319 [hep-th]].
[21] V. P. Frolov, A. Zelnikov and T. de Paula Netto, “Spherical collapse of small masses in the ghost-free gravity,” JHEP 1506, 107 (2015) doi:10.1007/JHEP06(2015)107 [arXiv:1504.00412 [hep-th]].
[22] V. P. Frolov and A. Zelnikov, “Head-on collision of ultrarelativistic particles in ghost-free theories of gravity,” Phys. Rev. D 93, no. 6, 064048 (2016) doi:10.1103/PhysRevD.93.064048 [arXiv:1509.03336 [hep-th]].
[23] A. Koshelev, J. Marto and A. Mazumdar, “Towards non-singular metric solution in infinite derivative gravity,” arXiv:1803.00309 [gr-qc].
[24] F. S. Gama, J. R. Nascimento, A. Y. Petrov and P. J. Porfírio, Phys. Rev. D 96, no.10, 105009 (2017) doi:10.1103/PhysRevD.96.105009 [arXiv:1710.02043 [hep-th]].
[25] F. S. Gama, J. R. Nascimento and A. Y. Petrov, Phys. Rev. D 101, no.10, 105018 (2020) doi:10.1103/PhysRevD.101.105018 [arXiv:2004.09299 [hep-th]].
[26] A. S. Koshelev and A. Mazumdar, “Do massive compact objects without event horizon exist in infinite derivative gravity?,” Phys. Rev. D 96, no. 8, 084069 (2017) doi:10.1103/PhysRevD.96.084069 [arXiv:1707.00273 [gr-qc]].
[27] L. Buoninfante, A. S. Koshelev, G. Lambiase and A. Mazumdar, “Classical properties of non-local, ghost-and singularity-free gravity,” arXiv:1802.00399 [gr-qc].
[28] A. S. Cornell, G. Harmensen, G. Lambiase and A. Mazumdar, “Rotating metric in Non-Singular Infinite Derivative Theories of Gravity,” arXiv:1710.02162 [gr-qc].
[29] L. Buoninfante, A. S. Koshelev, G. Lambiase, J. Marto and A. Mazumdar, "Conformally-flat, non-singular static metric in infinite derivative gravity," arXiv:1804.08195 [gr-qc].
[30] L. Buoninfante, G. Harmensen, S. Maheshwari and A. Mazumdar, "Non-singular metric for an electrically charged point-source in ghost-free infinite derivative gravity," arXiv:1804.09624 [gr-qc].
[31] T. Biswas, A. Mazumdar and W. Siegel, “Bouncing universes in string-inspired gravity,” JCAP 0603, 009 (2006) doi:10.1088/1475-7516/2006/03/009 [hep-th/0508194].
[32] T. Biswas, R. Brandenberger, A. Mazumdar and W. Siegel, “Non-perturbative Gravity, Hagedorn Bounce and CMB,” JCAP 0712, 011 (2007) doi:10.1088/1475-7516/2007/12/011 [hep-th/0610274].
[33] T. Biswas, T. Koivisto and A. Mazumdar, “Towards a resolution of the cosmological singularity in non-local higher derivative theories of gravity,” JCAP 1011, 008 (2010) doi:10.1088/1475-7516/2010/11/008 [arXiv:1005.0590 [hep-th]].
[34] T. Biswas, A. S. Koshelev, A. Mazumdar and S. Y. Vernov, “Stable bounce and inflation in non-local higher derivative cosmology,” JCAP 1208, 024 (2012) doi:10.1088/1475-7516/2012/08/024 [arXiv:1206.6374 [astro-ph.CO]].
[35] A. S. Koshelev and S. Y. Vernov, “On bouncing solutions in non-local gravity,” Phys. Part. Nucl. 43, 666 (2012) doi:10.1134/S106377961205019X [arXiv:1202.1289 [hep-th]].
[122] J. Barbon and J. Espinosa, Phys. Rev. D 79, 081302 (2009) [arXiv:0903.0355 [hep-ph]].
[123] F. Bezrukov, A. Magnin, M. Shaposhnikov and S. Sibiryakov, JHEP 01, 016 (2011) [arXiv:1008.5157 [hep-ph]].
[124] J. M. Cornwall, D. N. Levin and G. Tiktopoulos, Phys. Rev. D 10, 1145 (1974)
[125] M. Shaposhnikov and A. Shkerin, Phys. Lett. B 783, 253-262 (2018) [arXiv:1803.08907 [hep-th]].
[126] M. Shaposhnikov and A. Shkerin, JHEP 10, 024 (2018) [arXiv:1804.06376 [hep-th]].
[127] S. Mooij, M. Shaposhnikov and T. Voumard, Phys. Rev. D 99, no.8, 085013 (2019) [arXiv:1812.07946 [hep-th]].
[128] M. Shaposhnikov and K. Shimada, Phys. Rev. D 99, no.10, 103528 (2019) [arXiv:1812.08706 [hep-ph]].