Meta-analysis of trichostatin A treatment effects on mouse somatic cell nuclear transfer

ZHENHUA GUO¹, LEI LV², DI LIU³ and LIANGWANG⁴

Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150 086, People’s Republic of China

Received: 21 June 2018; Accepted: 26 October 2018

ABSTRACT

Improving somatic cell nuclear transfer (SCNT) efficiency is challenging, and trichostatin A (TSA) has been implemented to improve this technique, but it does not work for porcine and monkey SCNT. Thus, a meta-analysis was done to understand the relationship between TSA and mouse SCNT. Published articles were collected using PubMed and ScienceDirect from 2000 to 2018. Total 15 studies were included that suggest TSA can improve SCNT mouse blastocyst formation and live birth. Most TSA effects studied were on histone deacetylase (HDACs), hence the impacts of TSA on the cytoplasm, specifically cancer signaling pathways, endoplasmic reticulum, and HDACs localization were investigated. It is likely that TSA benefits mouse SCNT because the nucleus is easy to remove. Using fluorescent labeling to remove nuclei and TSA incorporation, SNCT may be improved for pig and monkey studies.

Key words: Blastocyst, Cloning, Nuclear transfer, Oocyte, Trichostatin A

RESULTS AND DISCUSSION

Our search yielded 15 studies from a total of 138 reports (Fig. 1). Table 2 lists descriptive details of every study (Kishigami et al. 2006, Kishigami et al. 2007, Li et al. 2008, Maalouf et al. 2009, Tsuji et al. 2009, Van Thuan et al. 2009, Bui et al. 2010, Costa-Borges et al. 2010, Dai et al. 2010, Ono et al. 2010, Hai et al. 2011, Kang and Roh 2011, Farifteh et al. 2014, Miyamoto et al. 2017, Qiu et al. 2017). TSA treatment can improve blastocyst rate remarkably [OR 2.01 (95% CI—1.79–2.26)] (Fig. 2). We established that control blastocysts formation was 32.84% (847/2,579), and variables reported within the dataset was settled by consultation with a third investigator.

Meta analysis: We assayed the effect of TSA on SCNT efficiency, specifically calculating blastocyst formation from embryonic cleavage and SCNT live births from embryonic transfer. We evaluated effect heterogeneity using Higgins statistic, ap-value, and an I^2 statistic (de la Cruz et al. 2017). Briefly, I^2 ranged from 0–100% and heterogeneity of 0–25% was low; 25–50% moderate; and > 50% indicated high heterogeneity (de la Cruz et al. 2017). A fixed effects model was used when I^2 was low or moderate. All of the data were calculated using Review Manager, Version 5.3 (Nordic Cochrane Centre, Cochrane Collaboration, Copenhagen). To address publication bias, 3 methods, viz. visual inspection of funnel plots, Egger’s test, and Begg’s test were used, generated using Stata 12.0 (Stata Corp, College Station, TX) and $P<0.05$ was considered to be statistically significant.

RESULTS AND DISCUSSION

Our search yielded 15 studies from a total of 138 reports (Fig. 1). Table 2 lists descriptive details of every study (Kishigami et al. 2006, Kishigami et al. 2007, Li et al. 2008, Maalouf et al. 2009, Tsuji et al. 2009, Van Thuan et al. 2009, Bui et al. 2010, Costa-Borges et al. 2010, Dai et al. 2010, Ono et al. 2010, Hai et al. 2011, Kang and Roh 2011, Farifteh et al. 2014, Miyamoto et al. 2017, Qiu et al. 2017). TSA treatment can improve blastocyst rate remarkably [OR 2.01 (95% CI—1.79–2.26)] (Fig. 2). We established that control blastocysts formation was 32.84% (847/2,579), and
Table 1. Inclusion and exclusion criteria

Inclusion	Exclusion
Species evaluated must include, but are not limited to, mice	Mice were not used
English literature	Non-English literature
TSA treatment of embryos but not limited to embryo treatment	No TSA treatment of embryos
Both donor cell and oocyte came from mice	Xenotransplantation
SCNT blastocyte formation data are available or SCNT birth data are available	Insufficient data

Table 2. Characteristics of studies included in the review

Study	Year	Mouse strain	Treat time (h)*	Medium
Kishigami 2006b	B6D2F1	A 6 + C 4	KSOM	
Kishigami 2007a	B6D2F1	A 6 + C 4	KSOM	
Li 2008	B6D2F1	O 2 + A 6	KSOM	
Tsuji 2009	C57BL/6xDBA	O 2 + A 6	KSOM	
Van Thuan 2009	B6D2F1	A 6 + C 4	KSOM	
Maalouf 2009	C57/CBA	A 6 + C 4	M16	
Biu 2010	B6D2F1	A 6 + C 4	KSOM	
Costa-Borges 2010	Hybrid	O (2–3) + A 6	KSOM	
Dai 2010	B6D2F1	O 2 + A 6 + C 2	CZB	
Ono 2010	B6D2F1	A 6 + C 3	KSOM	
Kang 2011	B6D2F1	A 6 + C 3	KSOM	
Hai 2011	B6D2F1	A 6 + C 4	MEM	
Farifteh 2014	B6D2F1	O 2 + A 6	KSOM	
Miyamoto 2017	B6D2F1	A 6 + C 2	KSOM	
Qiu 2017	Kunming	A 6 + C 4	KSOM	

*Treatment time for TSA within different media. O, oocyte culture medium; A, activation medium; and C, embryo culture medium.

TSA improved this (50.64% or 1,312/2,591). Moreover, TSA increased the number of births (Fig. 3) in control and TSA groups by 0.56% (14/2,500) and 3.59% (61/1,697), respectively. We did not find heterogeneity. Funnel plot data did not indicate publication bias (Fig. 4). Egger’s test P = 0.261, Begg’s test Pr>|z| = 0.213. TSA can improve mouse SCNT blastocyst formation and increase live births.

When histone modification changes in SCNT embryos were observed, studies of histone modification of normally fertilized embryos were undertaken. Histone modification includes methylation, acetylation, phosphorylation, ubiquitination, deacetylation, or ADP ribosylation (Shanmugam et al. 2018). Two enzymes are involved in the regulation of histone acetylation namely histone acetyltransferase (HATs) and histone deacetylase (HDACs). If cellular acetylation and deacetylation are unbalanced, cell proliferation and differentiation are abnormal, and gene expression changes.

Use of TSA on oocytes (Li et al. 2008, Dai et al. 2010) is controversial as TSA can change HDACs in nuclei (Li et al. 2011). When oocyte nuclei are removed, there appears to be no overall effect (Rao and Rao 2013). Therefore, we assessed how TSA affects the cytoplasm, specifically cancer signaling pathways, the ER and HDAC localization. TSA may modify p21 protein expression and prevent the formation of cell cycle two polymer and cyclin-dependent kinase, which can block the cell cycle and induce cell differentiation, contributing to cancer. TSA is also involved in glioblastoma and human nasopharyngeal carcinoma cell p53 pathways. The PI3K/Akt signalling pathway is also linked to TSA. Thus, embryos may be affected in a manner similar to tumor cells.

Studies suggest that TSA affects ER function (Li et al. 2017). SER exits in 2 forms in oocytes, viz. vacuoles and small tubular aggregates, and SER is a calcium storage reservoir (Sfontouris et al. 2018). Smooth ER aggregate (SERAs) is very common in oocytes and calcium ion fluctuation can cause ER stress (ERS). SCNT technology must activate the genome after nuclear transplantation, and
this causes calcium fluctuations.

Why TSA is effective for mouse SNCT but not for porcine or monkey SCNT is of interest (Guo et al. 2018, Liu et al. 2018). Likely, the removal of mouse oocyte nuclei are easier than for other species; they are easily visualized using differential interference contrast (DIC) microscopy. For pig and monkey studies, the nuclear position is difficult to estimate. Thus, nuclear removal significantly reduces the cytoplasm. With the greater cytoplasmic loss, cloning efficiency is reduced. Thus, we assessed porcine hand clones and focused on nuclear/oocyte factors, the ER, and spindle wire. Other studies reported that proximity to the nucleus, the size of the spindle wire, and nuclear factor concentration (Ryu et al. 2017). SERa are more distributed near the nucleus (Itoi et al. 2016), and excessive cytoplasmic removal near the nucleus will reduce ER content.
TSA can increase mouse SCNT efficiency if fluorescent labeling is used to remove nuclei. This finding may be applied to porcine and monkey SCNT.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China (Grant number 31671289). We would like to thank LetPub for providing linguistic assistance during the preparation of this manuscript.

REFERENCES

Bui H T, Wakayama S, Kishigami S, Park K K, Kim J H, Thuan N V and Wakayama T. 2010. Effect of trichostatin A on chromatin remodeling, histone modifications, DNA replication, and transcriptional activity in cloned mouse embryos. *Biology of Reproduction* 83(3): 454–63.

Costa-Borges N, Santalo J and Ibanez E. 2010. Comparison between the effects of valproic acid and trichostatin A on the in vitro development, blastocyst quality, and full-term development of mouse somatic cell nuclear transfer embryos. *Cellular Reprogramming* 12(4): 437–46.

Dai X, Hao J, Hou X J, Hai T, Fan Y, Yu Y, Jouneau A, Wang L and Zhou Q. 2010. Somatic nucleus reprogramming is significantly improved by m-carboxyoxycinnamic acid bishydroxamide, a histone deacetylase inhibitor. *Journal of Biological Chemistry* 285(40): 31002–10.

de la Cruz M L, Conrado I, Nault A, Perez A, Dominguez L and Alvarez J. 2017. Vaccination as a control strategy against Salmonella infection in pigs: A systematic review and meta-analysis of the literature. *Research in Veterinary Science* 114: 86–94.

Farifteh F, Salehi M, Bandehpour M, Nariman M, Ghafari Novin M, Hosseini T, Nematollahi S, Noroozian M, Keshavarzi S and Hosseini A. 2014. Histone modification of embryonic stem cells produced by somatic cell nuclear transfer and fertilized blastocysts. *Cell Journal* 15(4): 316–23.

Guo Z, Lv L, Liu D and Fu B. 2018. Effects of trichostatin A on pig SCNT blastocyst formation rate and cell number: A meta-analysis. *Research in Veterinary Science* 117: 161–66.

Hai T, Hao J, Wang L, Jouneau A and Zhou Q. 2011. Pluripotency maintenance in mouse somatic cell nuclear transfer embryos and its improvement by treatment with the histone deacetylase inhibitor TSA. *Cellular Reprogramming* 13(1): 47–56.

Itoi F, Asano Y, Shimizu M, Honma H and Murata Y. 2016. Embryological outcomes in cycles with human oocytes containing large tubular smooth endoplasmic reticulum clusters after conventional in vitro fertilization. *Gynecological Endocrinology* 32(4): 315–18.

Kang H and Roh S. 2011. Extended exposure to trichostatin A after activation alters the expression of genes important for early development in nuclear transfer murine embryos. *Journal of Veterinary Medical Science* 73(5): 623–31.

Kishigami S, Bui H T, Wakayama S, Tokunaga K, Van Thuan N, Hikichi T, Mizutani E, Ohta H, Suetsugu R, Sata T and Wakayama T. 2007. Successful mouse cloning of an outbred strain by trichostatin A treatment after somatic nuclear transfer. *Journal of Reproduction and Development* 53(1): 165–70.

Kishigami S, Mizutani E, Ohta H, Hikichi T, Thuan N V, Wakayama S, Bui H T and Wakayama T. 2006. Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. *Biochemical and Biophysical Research Communications* 340(1): 183–89.

Li X, Kato Y, Tsuji Y and Tsunoda Y. 2008. The effects of trichostatin A on mRNA expression of chromatin structure-, DNA methylation-, and development-related genes in cloned mouse blastocysts. *Cloning and Stem Cells* 10(1): 133–42.

Li Z, Liu Y, Dai X, Zhou Q, Liu X, Li Z and Chen X. 2017. TSA protects H9c2 cells against thapsigargin-induced apoptosis related to endoplasmic reticulum stress-mediated mitochondrial injury. *Saudi Pharmaceutical Journal* 25(4): 595–600.

Li Z, Yao Y, Y Z, D J, W Y and W G. 2011. Different reprogramming ability of fibroblast and cumulus cells after treated with trichostatin A for nuclear transfer. *Indian Journal of Animal Sciences* 81(4): 382–87.

Liu Z, Cai Y, Wang Y, Nie Y, Zhang C, Xu Y, Zhang X, Lu Y, Wang Z, Poo M and Sun Q. 2018. Cloning of Macaque Monkeys by Somatic Cell Nuclear Transfer. *Cell* 172(4): 881–87.

Maalouf W E, Liu Z, Brochard V, Renard J P, Debeu P, Beaujean N and Zink D. 2009. Trichostatin A treatment of cloned mouse embryos improves constitutive heterochromatin remodeling as well as developmental potential to term. *BMC Developmental Biology* 9: 11.

Miyamoto K, Tajima Y, Yoshida K, Oikawa M, Azuma R, Allen G E, Tsujikawa T, Tsukaguchi T, Bradshaw C R, Jullien J, Yamagata K, Matsumoto K, Anzai M, Imai H, Gurdon J B and Yamada M. 2017. Reprogramming towards totipotency is greatly facilitated by synergistic effects of small molecules. *Biology Open* 6(4): 415–24.

Ono T, Li C, Mizutani E, Terashita Y, Yamagata K and Wakayama T. 2010. Inhibition of class Ib histone deacetylase significantly improves cloning efficiency in mice. *Biology of Reproduction* 83(6): 929–37.

Qiu X, You H, Xiao X, Li N and Li Y. 2017. Effects of Trichostatin A and PXD101 on the in vitro development of mouse somatic cell nuclear transfer embryos. *Cellular Reprogramming* 19(1): 1–9.

Rao B S and Rao V H. 2013. Development of nuclear transfer goat embryos derived from in vitro matured oocytes as recipient cytoplasm and blastomeres, fetal fibroblasts and cumulus cells as nuclear donors. *Indian Journal of Animal Sciences* 83(8): 779.

Ryu Y H, Kenny A, Gim Y, Sne M and Macdonald P M. 2017. Multiple cis-acting signals, some weak by necessity, collectively direct robust transport of oskar mRNA to the oocyte. *Journal of Cell Science* 130(18): 3060–71.

Sfountouris I A, Lainas G T, Lainas T G, Faros E, Banti M, Kardara K, Anagnostopoulou K, Kontos H, Petsas G K and Kolibianakis E M. 2018. Complex chromosomal aberrations in a fetus originating from oocytes with smooth endoplasmic reticulum (SER) aggregates. *Systems Biology in Reproductive Medicine* 64(4): 283–90.

Shanmugam M K, Arfuso F, Arumugam S, Chinnathambi A, Jinsong B, Warrier S, Wang L Z, Kumar A P, Ahn K S, Sethi G and Lakshmanan M. 2018. Role of novel histone modifications in cancer. *OncoTarget* 9(13): 11414–26.

Tsuji Y, Kato Y and Tsunoda Y. 2009. The developmental potential of mouse somatic cell nuclear-transferred oocytes treated with trichostatin A and 5-aza-2’-deoxycytidine. *Zygote* 17(2): 109–15.

Van Thuan N, Bui H T, Kim J H, Hikichi T, Wakayama S, Kishigami S, Mizutani E and Wakayama T. 2009. The histone deacetylase inhibitor scriptaid enhances nascent mRNA production and rescues full-term development in cloned inbred mice. *Reproduction* 138(2): 309–17.