The supplementation effect of Red Dragon fruit’s skin extract on the fasting blood glucose and lipid profiles in male Wistar rats with diabetes mellitus and dyslipidemia

Stefani Marietta¹
AAG Budhiarta²
I Wayan Weta³

¹Biomedical Master Postgraduate Program, Faculty of Medicine Universitas Udayana, Bali, Indonesia
²Department of Internal Medicine, Faculty of Medicine Universitas Udayana, Bali, Indonesia
³Department of Clinical Nutrition, Faculty of Medicine Universitas Udayana, Bali, Indonesia

Abstract

Background. Flavonoids, saponins, tannins, phenols, and vitamin-C contained in the Red Dragon fruit’s skin have a positive impact on glycemic control and lipid oxidation. This study aimed to determine the effect of Red Dragon fruit’s skin extract on reducing the fasting blood glucose (FBG) and improving the lipid profile of Wistar rats with diabetes and dyslipidemia.

Methods. A randomized pre-test post-test control group experimental study was done on 22 male Wistar rats, aged 2-3 months that suffered from diabetes and dyslipidemia. Subjects were divided into the control group (given 2cc distilled water + 9 mg metformin) and the treatment group (given 160 mg red dragon fruit’s skin extract + 9 mg metformin) for 14 days. FBG and lipid profile measurements were done before and after the treatment. Data were analyzed using the compare mean test.

Results. There was no significant mean difference of FBG between groups before (p=0.414) and after treatment (p=0.125), total cholesterol between groups before (p = 0.572) and after treatment (p=0.361), triglycerides between groups before (p=0.073) and after treatment (p=0.111). There was a significant mean difference of HDL between groups before (p=0.003) and after treatment (p=0.047), LDL between groups before (p=0.006) and after treatment (p=0.043). Although there were significant mean differences in HDL and LDL between groups before and after treatment, the pre-post treatment of HDL and LDL mean differences showed no significant mean difference (p=0.328 and p=0.704 consecutively).

Conclusion. Red Dragon fruit’s skin extract treatment did not significantly reduce the mean FBG and lipid profile levels.

Keywords: Diabetes, Dyslipidemia, Cholesterol, Red Dragon fruit’s skin

Introduction

According to the International Diabetes Federation (IDF), there were 415 million adults between the ages of 20 and 79 who experienced diabetes mellitus (DM) in 2015.¹ In 2018, there were 8.5% of people who suffered from DM in Indonesia. This number increased from the
reduce the levels of free radicals that cause oxidative stress, thus increased insulin action by inhibiting protein kinase C. Vitamin E can treat dyslipidemia conditions in rats.

Another study showed that the Red Dragon fruit’s skin powder of Red Dragon fruit’s skin can improve the blood glucose levels. The unused skin part of the Red Dragon fruit extract is 3,413.79 mg/100g. Vitamin C can improve the function of pancreatic β cells and can prevent a decrease in the mass of pancreatic β cells. Vitamin C also plays a role in increasing the insulin secretion in DM patients. Vitamin C also plays a significant role in improving the condition of high total cholesterol and triglyceride levels.

Flavonoids contained in the Red Dragon fruit’s skin can prevent phosphodiesterase which caused an increased adenosine monophosphate (AMP) in pancreatic β cells, which can stimulate protein kinase A for the secretion of the insulin hormone. One type of flavonoid, quercetin, can balance blood glucose levels by inhibiting intestinal glucose absorption, increase the use of glucose in peripheral tissues, and increase insulin secretion from the pancreas. Flavonoids in Red Dragon fruit’s skin can increase the activity of the lipoprotein lipase enzyme and can inhibit HDL damage, thus it can improve dyslipidemia conditions. Phenolic compounds contained in Red Dragon fruit’s skin can prevent the LDL oxidation and can inhibit the cholesterol absorption in the intestine. In addition, phenol can also inhibit the activity of the HMG-CoA reductase enzyme. The saponin contained in the Red Dragon fruit’s skin can inhibit the reabsorption of bile acids by intestinal cells, thus bile acids can be excreted immediately with faeces. So that cholesterol in the blood will be converted by the liver into bile acids, and a decrease in blood cholesterol levels will occur.

Not many people in Indonesia know the benefits of Red Dragon fruit’s skin for health. The unused skin part of the Red Dragon fruit turns out to has several nutrients that are better than the flesh of the fruit. Based on this, this study was conducted to assess the benefits of Red Dragon fruit’s skin as an alternative therapy to reduce the blood glucose levels and improve the lipid profiles.

Method

Study design and samples

A randomized pre-test post-test control group experimental study was done on 22 male Wistar rats (Rattus norvegicus), aged 2 to 3-months with a bodyweight of 180-200 grams. The sample size of 24 Wistar rats as the research subjects was calculated using the Pocock formula. Samples that meet the requirements were taken randomly and divided into two groups, namely the control group and the treatment group.

Preparation

Wistar rats were adapted for one week and then given standard feed (594 pellets) and a high cholesterol diet with a composition of duck...
egg yolk (5%) and lard (15%) for 30 days for the induction of dyslipidemia. Wistar rats that experienced dyslipidemia were defined as the Wistar rats with total cholesterol levels ≥ 200 mg/dL, then given a single dose injection of 13 mg/200 g body weight streptozotocin intraperitoneally. After 5-days of observation, all of the Wistar rats’ blood samples were taken as many as 1 ml from the medial canthus sinus orbitalis to assess the FBG, total cholesterol, LDL, HDL, and triglyceride levels before treatment (pre-test). Red dragon fruit’s skin extract is made using Red Dragon fruits obtained from the Dragon Fruit Garden in Badung, Bali.

Intervention

Each of the Wistar rat in the control group was given a placebo in the form of 2 ml distilled water and 9 mg metformin per day. At the same time, each of the Wistar rat in the treatment group was given a 160 mg dose of Red Dragon fruit’s skin extract and 9 mg metformin per day. The intervention was diluted with distilled water up to a volume of 2 ml and given using a gastric feeding tube once a day every morning for 14 days. After the treatment was completed, the Wistar rats fasted for 8-hours, and then the blood samples were taken in the morning to measure the post-test FBG, total cholesterol, LDL, HDL, and triglycerides levels.

Data analysis

A compare mean test using the paired T-test was performed to compare the pre-test and post-test data in each group. While the compare mean test between the treatment and control group was performed using the independent T-test. All procedures in the study have been approved by the Ethics Committee – Faculty of Medicine, Udayana University, with the ethical clearance number #1072/UN14.2.2.VII.14/LT/2020.

Results

There were two samples that did not meet the DM criteria from a total of 24 Wistar rats, one in the control group and one in the study group. Thus, the total subjects analyzed in this study were 11 samples in each group. From the descriptive data shown in Table 1, there was a consistently decreased mean of FBG, total cholesterol, LDL, and triglycerides levels in the post-test control and treatment groups compared to the pre-test results. The treatment group also had a lower post-test mean of FBG, total cholesterol, LDL, and triglycerides levels compared to the control group. There were also increased mean of HDL levels in the post-test results of both groups compared to the pre-test results.

The pre and post-test FBG mean comparison test as well as the mean comparison between groups were presented in Table 1. The results of the pre and post-test comparison test showed significant mean differences in the control (p < 0.001) and treatment groups (p < 0.001). But, the results of compare mean test between the two groups did not show a significant mean difference in both pre-test (p = 0.414) and post-test (p = 0.125).

Table 1. The compare mean results of FBG and lipid profile between the control and treatment groups pre-test and post-test

Variable	Group	Pre-test Mean±SD	Post-test Mean±SD	Δ(Pre-Post) Mean±SD	p**
Fasting blood glucose (mg/dL)	Control	174±26.9	106±12.9	-68±24.6	>0.001
	Treatment	174±26.9	106±12.9	-68±24.6	>0.001
Total cholesterol (mg/dL)	Control	213±10.3	186±13.8	-27±20.3	0.001
	Treatment	213±10.3	186±13.8	-27±20.3	0.001
High density lipoprotein (mg/dL)	Control	45±4.0	54±4.0	9±3.7	>0.001
	Treatment	45±4.0	54±4.0	9±3.7	>0.001
Low Density lipoprotein (mg/dL)	Control	152±4.5	188±10.0	36±11.1	>0.001
	Treatment	152±4.5	188±10.0	36±11.1	>0.001
Triglycerides (mg/dL)	Control	156±11.5	132±13.5	-24±14.5	<0.001
	Treatment	156±11.5	132±13.5	-24±14.5	<0.001

p analyzed by independent T-test; **p** analyzed by paired T-test

The compare mean tests for total cholesterol, LDL, HDL and triglycerides levels were also shown in Table 1. The results showed that there were significant mean differences between the pre and post-test of the total cholesterol levels in the control (p = 0.003) and treatment groups (p = 0.001), HDL levels in the control (p < 0.001) and treatment groups (p < 0.001), LDL levels in the control (p < 0.001) and treatment groups (p < 0.001), and triglycerides levels in the control (p = 0.002) and treatment groups (p < 0.001). The compare mean test results between the two groups showed that there was no significant mean difference in the total cholesterol between the two groups pre-test (p = 0.572) and post-test (p = 0.361), and triglycerides levels between the two groups pre-test (p = 0.073) and post-test (p = 0.111). There were significant mean difference in the LDL levels between the two groups pre-test (p = 0.003) and post-test (p = 0.047), and triglycerides levels between the two groups pre-test (p = 0.006) and post-test (p = 0.043). Although there were significant HDL and LDL levels mean difference in the two groups pre-test and post-test, the pre-post difference (Δ) of mean HDL and LDL levels between the two groups showed no significant
The compare mean test results of HDL and LDL levels between the two groups showed that there were significant differences between the treatment group and the control group at each of the pre-test and post-test, but there was no significant mean difference in the Δ pre-post between the treatment and control groups. The mean increase of HDL levels in the control group was higher (20.89%) than the mean increase in the treatment group (14.30%). The reduction of mean LDL levels in the control group was also higher compared to the treatment group.

These results were in contrast to the previous study conducted by Fatimah et al., (2018) which found that the administration of Red Dragon fruit’s skin extract of 160 mg/200g BW increased the HDL levels of rats with dyslipidemia by 64.6 mg/dL and decreased the LDL levels by 144.8 mg/dL. A previous study conducted by Fadlilah and Martha (2016) also found that that administration of Red Dragon fruit’s skin steeping increased the HDL levels of rats that had dyslipidemia in its blood by 25.2%.21

There were some limitations in this study. The treatment’s time range carried out in this study was only for 14-days, where the ideal treatment’s time range for a study to determine the changes in lipid profiles should be carried out for at least 3-months. The examination of blood glucose using the FBG levels did not represent the true blood sugar control. It is better to monitor blood glucose using the glycated albumin or HbA1c tests. Glycated albumin may reflect a longer blood glucose control up to 2-4 weeks earlier, while the HbA1c up to 3-months. HbA1c can provide a reflection of the blood glucose concentration from 3-months earlier. HbA1c examination is also not affected by food intake before the blood draw procedure. In this study, it was not certainly known which components of the active substances that cause improvements in FBG levels and lipid profiles. Due to the limitations of the extract's phytochemical examination facilities, it was only possible to determine the antioxidant ability.

Flavonoids, vitamin C, tannins, saponins, and fiber content in the Dragon Fruit’s skins made it possible to improve the lipid metabolism in this study. Flavonoids and vitamin C can increase the HDL levels by stimulating the activity of the enzyme Lechithin Cholesterol Acyl Transferase (LCAT). LCAT is an enzyme that converts free cholesterol into ester cholesterol.23 Cholesterol esters will form HDL by bonding with lipoprotein core particles. Tannins can reduce the cholesterol levels in the blood by inhibiting the fat absorption in the intestine and accelerating the elimination of cholesterol through feces.24 Saponins form a complex with cholesterol derived from the diet, which can reduce the blood triglyceride levels and inhibit the activity of the pancreatic lipase enzyme, so that the absorption of fat in the digestive tract is inhibited.25 The fiber content can bind with the
fatty acids, bile acids, and cholesterol in the digestive tract so that fat cannot be absorbed and moving to the large intestine to be excreted through faeces.26

In general, the studies that assess the changing metabolic parameters require a long intervention time. Previous studies by Weta et al., on obese young women with a low ratio of n-6:n-3 fatty acids intervention for 12 weeks, found that there was a significant inhibition of increased FBG, and significantly decreased triglycerides and liver steatosis.27,28 The insignificant results in this study could be caused by several reasons. First, the intervention time range was too short (only 2-weeks). Second, the effect of the intervention was dominated by metformin as the preferred therapy for DM, thus the combination treatment’s effect with Red Dragon fruit’s skin extract was not clear. Third, it was possible that the dose of the Red Dragon fruit’s skin extract used in this study was less than optimal. Considering these limitations, further research is needed to clarify the effect of Red Dragon fruit’s skin extract.

Conclusion

Red Dragon fruit’s skin extract treatment did not significantly reduce the mean FBG and lipid profile levels.

Acknowledgment

No acknowledgment

References

1. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature Reviews Endocrinology. 2018;14(2):88-98. DOI: 10.1038/nrendo.2017.151
2. Kemenkes RI. Laporan Nasional Riskesdas 2018. Jakarta: Kemenkes RI. 2018:154-66.
3. Ginsberg HN, Elam MB, Lovato LC, et al. Effects of combination lipid therapy in type 2 diabetes mellitus. New England Journal of Medicine. 2010;362(17):1563-74. DOI: 10.1056/NEJMoa1001282
4. Rabbani N, Godfrey L, Xue M, et al. Glycation of LDL by methylglyoxal increases arterial atherogenicity: a possible contributor to increased risk of cardiovascular disease in diabetes. Diabetes. 2011;60(7):1973-80. DOI: 10.2337/db11-0085
5. Eryilmaz Y, Konavankaya T, Tokgozoqlu L. Diabetic dyslipidemia. Goztepe Tip Dergisi. 2010;25(1):4-12.
6. Wang SY, Hsieh MC, Tu ST, et al. New frontiers in the treatment of diabetic dyslipidemia. The Review of Diabetic Studies. 2013;10(2-3):204-12. DOI: 10.1900/RDS.2013.10.204
7. Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Journal of the American College of Cardiology. J Am Coll Cardiol. 2014;63(25 Pt B):2889-934. DOI: 10.1016/j.jacc.2013.11.002
8. Ward NC, Pang J, Ryan JDM, et al. Nutraceuticals in the management of patients with statin-associated muscle symptoms, with a note on real-world experience. Clinical cardiology. 2018;41(1):159-65. DOI: 10.1002/clc.22862
9. Watuguly TW, Uniarti A, Nindatu M. Aplikasi ekstrak kulit buah Naga Merah (Hylocereus polyrhizus) pada nata de coco dalam menurunkan kadar kolesterol total, LDL, dan meningkatkan HDL pada mencit (Mus musculus). Jurnal Profesi Medika. 2019;13(1):26-34. DOI: 10.33533/jpm.v13i1.691
10. Hernawati, Setiawan NA, Shintawati R, et al. The role of red dragon fruit peel (Hylocereus polyrhizus) to improvement blood lipid levels of hyperlipidaemia male mice. Journal of Physics: Conference Series. 2018;1013(1):012167. DOI: 10.1088/1742-6596/1013/1/012167
11. Manning PJ, Sutherland WHF, Walker RJ, et al. Effect of high-dose vitamin E on insulin resistance and associated parameters in overweight subjects. Diabetes Care. 2004;27(9):2116-71. DOI: 10.2337/diacare.27.9.2166
12. Dakhale GN, Chaudhari HV, Shrivastava M. Supplementation of vitamin C reduces blood glucose and improves glycosylated hemoglobin in type 2 diabetes mellitus: a randomized, double-blind study. Adv Pharmacol Sci. 2011;2011:195271. DOI: 10.1155/2011/195271
13. Heryani R. Pengaruh ekstrak buah naga merah terhadap profil lipid darah tikus putih hiperlipidemia. Jurnal Ipteks Terapan. 2016;10(1):1-17. DOI: 10.22216/jit.2016.v10i1.372
14. Gilman AG. Goodman & Gilman dasar farmakologi terapi. 10th Ed. Jakarta: Penerbit Buku Kedokteran EGC. 2012.
15. Eid HM, Haddad PS. The antidiabetic potential of quercetin: underlying mechanisms. Current Medicinal Chemistry. 2017;24(4):355-64. DOI: 10.2174/0929867323666160909153707
16. Astarci CA, Noor Z. Pengaruh pare dan lidah buaya terhadap kadar trigliserida darah tikus diinduksi statin. Jurnal Profesi Medika. 2019;13(1):26-34. DOI: 10.33533/jpm.v13i1.691
17. Hanani, E. Analisis fitokimia. Jakarta: ECG. 2015
18. Yanti EP. Efek pemberian ekstrak biji dan ekstrak daun pepaya terhadap kadar kolesterol total dan trigliserida tikus putih jantan yang diberi diet tinggi lemak. Hang Tuah Medical Journal. 2017;15(1):41-52. DOI: 10.30694/hmj.v15i1.13

Published by: Indoscholar Publishing Services (www.indoscholar.com)
19. Heriansyah T. Pengaruh berbagai durasi pemberian diet tinggi lemak terhadap profil lipid tikus putih (Rattus norvegicus strain Wistar) jantan. *Jurnal Kedokteran Syiah Kuala*. 2013;13(3):144-50. Available at: http://jurnal.unsyiah.ac.id/JKS/article/view/3282

20. Chang CLT, Lin Y, Bartolome AP, *et al.* Herbal therapies for type 2 diabetes mellitus: chemistry, biology, and potential application of selected plants and compounds. *Evidence-Based Complementary and Alternative Medicine*. 2013;2013:378657. DOI: 10.1155/2013/378657

21. Hastuti EP. Pengaruh pemberian ekstrak etanol kulit buah Naga Merah (Hylocereus polyrhizus) terhadap kadar glukosa darah dan histopatologi pankreas tikus yang diinduksi aloskan. Universitas Setia Budi Surakarta. 2010.

22. Fatimah S. Aktivitas ekstrak etanol kulit buah Naga Merah (Hylocereus polyrhizus) terhadap kadar HDL dan LDL pada tikus putih jantan Galur Wistar. Universitas Setia Budi Surakarta. 2018.

23. Faadlilah N, Ardiastra M. Efek pemberian seduhan kulit buah Naga Merah (Hylocereus polyrhizus) terhadap kadar HDL dan LDL pada tikus putih jantan Galur Wistar. Universitas Setia Budi Surakarta. 2018.

24. Umardin, Susanti R, Yuniasutti A. Efektivitas ekstrak tanin seledri terhadap profil lipid tikus putih hiperkolesterolemia. *Unnes J Life Sci*. 2012;1(2):78-85. Available at: https://journal.unnes.ac.id/siu/index.php/UnnesJLifeSci/article/view/991

25. Vinarova L, Vinarov Z, Damyanova B, *et al.* Mechanisms of cholesterol and saturated fatty acid lowering by Quillaja saponaria extract, studied by in vitro digestion model. *Food Funct*. 2015;6(4):1319-30. DOI: 10.1039/c4fo01059k

26. Kusumastuty I. Sari buah Markisa Ungu mencegah peningkatan MDA serum tikus dengan diet aterogenik. *Indonesian Journal of Human Nutrition*. 2014;1(1):50-6. Available at: https://ijhn.ub.ac.id/index.php/ijhn/article/view/100

27. Weta IW, Sutirtayasa IWP, Subawa AAN, *et al.* Supplementation 2000mg and 1000mg linoleic acid and alfa linolenic acid delayed perdiabetic state in Balinese young obese women: a randomised clinical trial. *Bali Medical Journal*. 2017;6(3):S55-60. DOI:10.15562/bmj.v6i3.721

28. Weta IW, Mahadewa TGB, Sutirtayasa WP, *et al.* Supplementation with 2:1 ratio Of N-6:N-3 polyunsaturated fatty acid improves liver steatosis and serum cytokine levels in young obese Balinese women: a randomized clinical trial. *Asian J Pharm Clin Res*. 2017;10(12):74-79. DOI: 10.22159/ajpcr.2017.v10i12.20851