An evaluation of treatment options for medial, midshaft, and distal clavicle fractures: a systematic review and meta-analysis

Christopher Vannabouathong, MSc a,*, Justin Chiu, BSc b, Rahil Patel, BSc b, Shreyas Sreeraman, BSc b, Elias Mohamed, BSc b, Mohit Bhandari, MD, FRCSC c, Kenneth Koval, MD d, Michael D. McKee, MD, FRCSC e

a OrthoEvidence, Burlington, ON, Canada
b Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
c Division of Orthopaedic Surgery, Department of Surgery, McMaster University, Hamilton, ON, Canada
d Department of Orthopaedic Surgery, Memorial Hospital, Gulfport, MS, USA
e Department of Orthopaedic Surgery, University of Arizona College of Medicine—Phoenix, Phoenix, AZ, USA

Background: The majority of clavicle fractures are midshaft injuries, although fractures of the distal or medial fragment also occur. The aim of this study was to review the current evidence on these injuries to help inform future treatment plans.

Methods: We searched for studies comparing interventions for medial, midshaft, or distal clavicle fractures; however, we did not identify any comparative studies on medial fractures and performed a secondary search on this topic. We conducted Bayesian network meta-analyses, although this was not feasible with studies on medial fractures and we described their results qualitatively.

Results: For midshaft fractures, we found statistically significant improvements in function and time to radiographic union with plating, an elastic stable intramedullary nail (ESIN), and the Sonoma CRx intramedullary nail over nonoperative treatments. Both plating and an ESIN also showed significantly lower risks of nonunion and malunion relative to nonoperative methods. For distal fractures, a locking plate (LP) with or without coracoclavicular (CC) suturing yielded significantly better outcomes over K-wires with or without tension bands, CC suturing alone, an LP with a CC screw, a hook plate, and a sling. For medial fractures, plating may result in more favorable functional and union-related outcomes, although implant irritation may occur. In addition, K-wires, tension bands, and a screw with sutures demonstrated success when plating was technically not feasible in a few cases, whereas treatment with a sling may result in reduced function and a higher risk of complications relative to surgery.

Conclusion: This study can provide guidance on the management of medial, midshaft, and distal clavicle fractures. The current evidence suggests that plating, an ESIN, and a CRx intramedullary nail are all good options for midshaft fractures; an LP with or without CC suturing should be preferred for distal fractures; and plating is also acceptable for medial fractures, provided that the patient is deemed suitable for surgery and has the adequate bone stock and sufficiently sized medial fragment necessary to implant the device. Patient preferences for certain outcomes should be considered, which may result in different treatment recommendations.

Clavicle fractures are common, comprising 2%-4% of all fractures.36 The majority are midshaft fractures; however, injuries to the distal or medial fragment also occur.64,110 Clavicle fractures mostly occur in male individuals younger than 30 years, with an increased incidence, regardless of sex, above age 70 years.36 Historically, nonoperative methods were used to treat these injuries, as they were seen to have low rates of nonunion.51,70,92 However, some studies have shown unsatisfactory results with such treatments, including pain, cosmetic complaints, and brachial plexus irritation.27,42 Recent studies have suggested that surgery shows certain benefits, such as a quicker return of function, increased patient satisfaction, and fewer complications.35,80,110 Given the expected increase in the population of higher-risk

https://doi.org/10.1016/j.jsesint.2020.01.010
2666-6383/© 2020 The Author(s). Published by Elsevier Inc. on behalf of American Shoulder and Elbow Surgeons. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
groups, identifying an optimal treatment plan will become of greater importance.52

Multiple interventions are available to treat clavicle fractures, and options can vary depending on the location of the injury (ie, medial, midshaft, or distal),28,47,62,80 Determining the best approach is a complex decision, as both patient-reported and clinical outcomes are important to consider. Past trials and reviews have compared different operative techniques with each other or compared surgery with nonoperative protocols28,31,32; however, there exist few reviews that have examined these specific interventions all at once.

The aim of this systematic review and meta-analysis was to compare management options for medial, midshaft, and distal clavicle fractures to help inform future treatment plans.

Methods

Literature search

We searched the Embase, MEDLINE, and Cochrane databases (Supplementary Appendix S1), from database inception to March 14, 2019. We also identified a recent review on distal fractures with similar methodology and eligibility criteria7 and performed an update of their search on March 15, 2019. After article screening, we did not identify any comparative studies on medial fractures; therefore, we performed another search (Supplementary Appendix S2) on April 9, 2019, for studies on this injury.

Eligibility criteria

Initially, we included studies that (1) were comparative, examining at least 2 treatments for medial, midshaft, or distal clavicle fractures; (2) had an experimental or observational study design; (3) focused on skeletally mature patients; and (4) were published in English. As stated earlier, after article screening, we did not identify any comparative studies on medial clavicle fractures. We performed another search for such studies using similar eligibility criteria, except that these studies were case series or case reports.

Article selection

Two reviewers screened titles, abstracts, and full-text articles, with discrepancies resolved through discussion.

Data extraction

We extracted study characteristics (ie, author, location, study length, and inclusion and exclusion criteria), patient characteristics (ie, age, sex, and fracture type), and outcome data (ie, patient-reported pain or function, time to union or return to work, and complications).

Statistical analysis

For midshaft and distal fractures, we conducted random-effects Bayesian network meta-analyses, with 95% credible intervals (CrIs). We calculated risk ratios for dichotomous variables and mean differences for continuous data. We represented heterogeneity as I^2 values and calculated the surface area under the cumulative ranking curve (SUCRA) values.53 We conducted analyses using the “gemtc” package in R (version 3.5.0 [2018]; R Foundation for Statistical Computing, Vienna, Austria). For medial fracture studies, we described their results qualitatively.
case reports, the age of patients ranged from 17 to 63 years, and among the remaining studies, the mean age ranged from 34 to 56 years. The patients were predominantly men, as the subjects of 5 of the 6 case reports were men and, across the remaining studies, the proportion of men ranged from 64% to 100%. The outcomes reported on were pain and function, radiographic union, return to prior activities, and various complications.

Outcomes

Midshaft fractures

Pain. No statistically significant differences in pain were found between treatments at any follow-up visit. In terms of effect estimates, plating was ranked highest at 4, 6, and 12 weeks whereas the ESIN was highest at 24, 52, and >52 weeks (Table IV, Supplementary Fig. S1).

Function. No statistically significant differences in function were found between treatments at ≤4 weeks, although plating was ranked highest (Table IV, Supplementary Fig. S2). For function at 6 weeks, both the ESIN and plating had significantly higher scores compared with the sling (Table IV; Fig. 4, a). At 12 weeks, scores were significantly higher with the CRx relative to the F8B (Table IV; Fig. 4, b). Function at 24 weeks was significantly lower with both the sling and F8B compared with the CRx, ESIN, and plating (Table IV; Fig. 4, c); the CRx also demonstrated significantly higher scores than the F8B-sling combination, IMP, and plating at this follow-up point. Both the CRx and plating showed significantly greater function than the sling at 52 weeks (Table IV; Fig. 4, d). At visits at >52 weeks, both the ESIN and plating showed significantly improved function relative to the sling (Table IV; Fig. 4, e).

Time to radiographic union. The sling demonstrated a significantly later time to radiographic union relative to the CRx, ESIN, plating, and IMP (Table IV; Fig. 5). In addition, the CRx showed a significantly earlier time to union than the F8B.
Authors, year	Location of study	Study design	Sample size	Treatments evaluated	Length of study follow-up	Age, yr	Male sex, %
Ahrens et al, 2017	United Kingdom	Randomized trial	302	Plate, Sling	9 mo	Mean, 36 ± 12	86
Andersen et al, 1987	Denmark	Randomized trial	61	FBB, Sling	3 mo	Median, 19 (range, 14-81)	88
Andrade-Silva et al, 2015	Brazil	Randomized trial	59	Plate	12 mo	Mean, 31 ± 12	85
Assobhi, 2011	Finland	Randomized trial	38	Plate	12 mo	Mean, 33 ± 6	89
Bhardwaj et al, 2018	India	Randomized trial	69	Plate, Sling	24 mo	Mean, 32	22
Calbiyik et al, 2017	Turkey	Randomized trial	75	CRx, Plate	12 mo	Mean, 42 ± 14	60
Chen et al, 2018	China	Randomized trial	54	Plate, ESIN	Mean, 15 mo	Mean, 39 ± 11	59
Chen et al, 2011	China	Randomized trial	60	ESIN, Sling	Mean, 15 mo	Mean, 39 ± 12	53
Chen et al, 2012	China	Observational	141	ESIN	24 mo	Mean, 34, (range, 20-59)	72
Chu et al, 2014	Taiwan	Observational	120	Plate, FBB	6 mo	Mean, 46 ± 17	63
Coppa et al, 2017	Italy	Observational	58	IMP, FBB	Mean, 47 mo	Mean, 40 ± 16	93
Eden et al, 2015	Germany	Observational	102	IMP, Plate	Mean, 41 ± 18	Mean, 38 ± 15	79
Ersen et al, 2015	Turkey	Randomized trial	60	FBB, Plate	Mean, 8 mo	Mean, 34 (range, 16-75)	79
Ferran et al, 2010	United Kingdom	Quasi-randomized	32	IMP, Plate	12 mo	Mean, 29 (range, 15-78)	83
Fu et al, 2012	Taiwan	Observational	103	IMP, Plate	Mean, 15 mo	Mean, 35 (range, 16-53)	87
Fuglesang et al, 2017	Norway	Randomized trial	123	Plate, ESIN	Mean, 12 mo	Mean, 35, (range, 16-59)	81
Hanselman et al, 2016	United States	Observational	157	Plate, IMP	Up to 5 yr	Mean, 36, (range, 16-57)	90
Jones et al, 2014	United Kingdom	Observational	57	Plate, ESIN	Mean, 30 mo	Mean, 27 ± 1	84
Judd et al, 2009	United States	Randomized trial	70	IMP, Plate	12 mo	Mean, 28 (range, 19-40)	93
Khorami et al, 2014	Iran	Randomized trial	87	Sling, FBB, Plate	6 mo	Mean, 32	77
King et al, 2019	Turkey	Randomized trial	87	CRx, Plate	15 mo	Mean, 32	71
Klewenko et al, 2011	United States	Observational	32	IMP, Plate	Mean, 8 mo	Mean, 35 (range, 16-56)	71
Kulshrestha et al, 2011	India	Observational	73	Plate, Sling	18 mo	Mean, 32 ± 6	96
Lechler et al, 2016	Germany	Observational	47	ESIN, Plate	Mean, 38 mo	Mean, 33 ± 6	86
Lee et al, 2008	Taiwan	Quasi-randomized	103	IMP, Plate	12 mo	Mean, 40 (range, 17-41)	89
Lee et al, 2007	Taiwan	Quasi-randomized	69	IMP, Plate	30 mo	Mean, 38	63
Liu et al, 2010	Taiwan	Observational	110	ESIN, Plate	Mean, 18 mo	Mean, 34 ± 14	63
McKee et al, 2007; Schemitsch et al, 2011	Canada	Randomized trial	132	Sling, Plate	12 mo	Mean, 34	69
Melean et al, 2015	Chile	Randomized trial	76	Sling, Plate	12 mo	Mean, 37 ± 11	86
Mirmatolooei, 2011	Iran	Randomized trial	60	Sling, Plate	12 mo	Mean, 35	10
Napora et al, 2018	United States	Observational	138	Sling, Plate	≥ 12 mo	Mean, 36	21

(continued on next page)
Time to return to work. The ESIN was ranked highest for the outcome of time to return to work, but we did not find any statistically significant differences between the ESIN, F8B, plating, and sling (Table IV, Supplementary Fig. S3).

Delayed union. For delayed union, none of the pair-wise comparisons in this analysis were statistically significant, but plating was ranked highest (Table IV, Supplementary Fig. S4).

Malunion. Plating demonstrated a significantly lower risk of mal-union compared with both the sling and F8B-sling combination, whereas the ESIN had a significantly lower risk relative to the F8B-sling combination only (Table IV, Fig. 6).

Nonunion. Both plating and the ESIN showed a significantly reduced risk of nonunion compared with the sling, F8B, and F8B-sling combination (Table IV, Fig. 7); plating was ranked highest. The IMP, sling alone, and F8B alone all had a significantly lower risk relative to the F8B-sling combination.

Refracture. We found no significant differences between the ESIN, IMP, plating, and sling for the incidence of refracture (Table IV, Supplementary Fig. S5).

Revision. There were no statistically significant differences between the ESIN, F8B, IMP, and plating in the risk of revision (Table IV, Supplementary Fig. S6).

Symptoms. In terms of persistent symptoms following treatment, no statistically significant differences were found between the CRx, ESIN, F8B, IMP, plating, and sling (Table IV, Supplementary Fig. S7).

Distal fractures

Function. We found no statistically significant results between interventions in functional scores at 3 months (Table V, Supplementary Fig. S8). CCSu was ranked highest, followed by the HP, CCSu-LP, LP, TB-KW, and finally, CCSc-LP.

For function at 6 months, we found no statistically significant, but plating was ranked highest (Table IV, Supplementary Fig. S4).
CCSu was again ranked highest, followed by CCSu-LP, the HP, CCSc-LP, and TB-KW.

For function at follow-up ≥ 1 year, we noted statistically significant findings between some of the pair-wise comparisons (Table V, Fig. 8). KW demonstrated significantly worse outcomes than CCSu, CCSu-LP, the HP, and the LP; the LP was also significantly better than TB-KW. The corresponding SUCRA values were 87% for the LP, 83% for CCSu-LP, 73% for CCSu, 45% for CCSc-LP, 43% for the HP, 32% for CCSu-KW, 31% for TB-KW, and 5% for KW.

Time to radiographic union. We did not find any significant differences in the time to radiographic union between treatments (Table V, Supplementary Fig. S9). CCSu-LP was ranked highest for this outcome, followed by CCSc-LP, TB-KW, the HP, KW, the LP, and finally, CCSu.

Hardware complications. There was 1 statistically significant comparison, demonstrating that KW resulted in a greater risk of hardware complications than the HP (Table V, Fig. 9). The corresponding SUCRA values were 73% for the HP, 60% for the LP, 60% for CCSu-LP, 53% for CCSu, 45% for TB-KW, and 10% for KW.

Nonunion. Both the LP and CCSu-LP had significantly lower risks of nonunion compared with each of the following: CCSc-LP, TB-KW, the HP, CCSu, and sling (Table V, Fig. 10). Only the LP showed a significantly lower risk of this event relative to KW. The LP and CCSu-LP had the highest SUCRA values, at 91% and 88%, respectively, followed by CCSu, CCSu-LP, the HP, and KW; both the LP and CCSu-LP had significantly lower risks compared with each of the following: CCSc-LP, TB-KW, the HP, CCSu, and sling, respectively.

Refracture. TB-KW demonstrated a significantly lower risk of refracture compared with CCSu, CCSu-LP, the HP, and KW; both the LP and KW had significantly lower risks compared with CCSu and the HP (Table V, Fig. 11). The SUCRA values were 94% for TB-KW, 77% for the LP, 65% for KW, 32% for CCSu-LP, 19% for CCSu, and 12% for the HP.
Revision. Regarding the risk of revision, CCSu-LP demonstrated a significantly lower risk than all other interventions included in the analysis (Table V, Fig. 12). The SUCRA values were 99% for CCSu-LP, 55% for CCSu, 52% for the HP, 46% for KW, 33% for TB-KW, and 14% for CCSc-LP.

Symptoms. In the analysis of persistent symptoms, CCSc-LP showed a significantly lower risk than CCSc-LP, CCSu, the HP, and TB-KW; CCSc-LP, the HP, and TB-KW each had a significantly lower risk compared with CCSu only (Table V, Fig. 13). The corresponding SUCRA values were 99% for CCSu-LP, 69% for the HP, 47% for TB-KW, 33% for CCSc-LP, and 0.3% for CCSu.

Medial fractures

Across all studies on patients with medial fractures, 85 patients were managed with a sling, 57 were treated with plating, 2 received TB, 1 was treated with KW, and 1 received a screw and suturing.

Pain. The visual analog scale (VAS) scores for pain on activity following nonoperative therapy in the study by Bartonicek et al. were 1 for 1 patient and 2 of 10 for the other patients at 18 and 13 months, respectively. Regarding plating, in the case reports by Li et al.89 and Smelt et al.,81 the patients reported no pain at 2 and 8 weeks, respectively, whereas the patient in the report by Teng and Liu,88 still had pain at 6 months, although a nonunion was also diagnosed in this patient. Low et al.75 showed an average VAS score for pain on activity of 0.75 at a mean follow-up of 3.3 years (range, 8 months to 10 years) for patients treated with plating, whereas Zheng et al.109 reported average scores of 3.4, 3, and 2.1 at 3, 6, and 12 months, respectively. The final VAS score was 0 for both patients who had TB in the study by Bartonicek et al. The patient treated with KW in the report by Bourghli and Fabre had no pain by 3 months. The patient treated with a screw and sutures had a VAS score of 0.75 at latest follow-up.

Function. The 2 patients managed nonoperatively in the study by Bartonicek et al. had Disabilities of the Arm, Shoulder and Hand (DASH) scores of 27.1 at 18 months and 33.3 at 13 months. Among studies that examined plating, 1 case report found a DASH score of 23.33 at 8 weeks;49 whereas the average DASH and QuickDASH (short version of DASH questionnaire) scores at later follow-up assessments (approximately 1 year or later) ranged from 8.6 to 13.548,50,63,105 and from 0.66 to 0.8123,89 respectively.; The DASH scores of the 2 patients treated with TB were 25.8 (at 2 years) and 24.2 (at 18 months). The patient treated with a screw and sutures had a DASH score of 9 at latest follow-up.

Return to work or activities. Studies investigating plating reported that all patients returned to their preinjury level of work or activity following treatment.51,67,69,81,104 The patient treated with KW was able to return to work by 8 months.3 The patient treated with a screw and suturing also returned to the previous occupation and activity level.

Radiographic union. Regarding patients managed nonoperatively, Robinson et al.87 found a nonunion in 2 of 24 patients at the 24-week follow-up, and there were 4 nonunions and 1 malunion among the 55 patients investigated by Van Tongel et al.85, however, all 4 patients in the study of Singh et al.86 had a successfully united fracture. Most plating studies reported successful union among all patients,23,51,76,89,99,105,109 but there were 2 exceptions: The patient in the report by Teng and Liu88 experienced a nonunion at 6 months after plating, and a nonunion occurred in 1 of 9 patients in the study by Oe et al.81. The patient treated with KW had complete union by 3 months.2 The case treated with a screw and suturing had successful union as well.

Other complications. Bartonicek et al. reported 1 case of clavicle shortening in a patient treated nonoperatively. In the study by Frima et al. plating caused implant irritation in 8 of 15 patients, leading to implant removal in 7, and there was also 1 case of implant failure and deep infection that required revision surgery. The patient treated with a plate in the case report by Teng and Liu underwent revision for nonunion with a partial claviclectomy, and Zheng et al. encountered a redislocation of the sternoclavicular joint in 1 patient (of 12), but this occurred after plate removal. In contrast, other studies on plating revealed no complications or revisions following the procedure.23,51,69,105 Bartonicek et al. also reported slight hypertrophy of the medial clavicle in a patient managed with TB at the 2-year follow-up. No complications were reported in the case treated with a screw and suturing.

Discussion

Midshaft fractures

Operative interventions showed significant improvements over nonoperative methods in terms of early and long-term function,
Table IV
Effect estimates of all pair-wise comparisons for midshaft clavicle fractures

Outcome	Comparison	MD or RR [95% CI]
Pain score (0-100) at ≤4 wk	ESIN vs. F8B	MD, 0.61 [−1.17 to 12.77]
Pain score (0-100) at 6 wk	ESIN vs. plate	MD, 9.49 [−2.53 to 21.63]
Pain score (0-100) at 52 wk	ESIN vs. sling	MD, 0.76 [−18.80 to 4.32]
Plate vs. sling	MD, −0.72 [−21.51 to 18.99]	
F8B vs. plate	MD, 7.09 [−7.63 to 21.26]	
Plate vs. sling	MD, 0.13 [−4.99 to 10.90]	
ESIN vs. plate	MD, 5.60 [−20.91 to 9.60]	
ESIN vs. plate	MD, −1.46 [−16.74 to 13.55]	
ESIN vs. plate	MD, 4.14 [−5.03 to 13.16]	
Plate vs. sling	MD, 0.51 [−5.25 to 4.23]	
F8B vs. plate	MD, 0.11 [−4.19 to 5.22]	
Plate vs. sling	MD, 3.95 [−3.82 to 10.59]	
ESIN vs. plate	MD, 0.04 [−3.82 to 4.29]	
ESIN vs. plate	MD, 7.96 [−63.66 to 10.83]	
Plate vs. sling	MD, 2.00 [−1.11 to 14.07]	
Function score (0-100) at ≤4 wk	ESIN vs. F8B	MD, 5.40 [−23.72 to 43.99]
ESIN vs. plate	MD, 15.17 [−1.80 to 33.04]	
ESIN vs. plate	MD, −2.72 [−24.36 to 20.11]	
ESIN vs. plate	MD, −28.63 [−18.80 to 0.43]	
F8B vs. plate	MD, 9.70 [−44.04 to 63.45]	
F8B vs. plate	MD, −8.04 [−36.92 to 21.63]	
IM vs. plate	MD, −23.21 [−20.15 to 66.15]	
F8B vs. plate	MD, −7.18 [−67.07 to 26.30]	
Plate vs. plate	MD, 3.95 [−3.82 to 10.59]	
ESIN vs. plate	MD, 0.51 [−5.25 to 4.23]	
Plate vs. plate	MD, 0.04 [−3.82 to 4.29]	
ESIN vs. plate	MD, 7.96 [−63.66 to 10.83]	
Plate vs. plate	MD, 2.00 [−1.11 to 14.07]	
Function score (0-100) at >52 wk	ESIN vs. F8B	MD, 5.40 [−23.72 to 43.99]
ESIN vs. plate	MD, 15.17 [−1.80 to 33.04]	
ESIN vs. plate	MD, −2.72 [−24.36 to 20.11]	
ESIN vs. plate	MD, −28.63 [−18.80 to 0.43]	
F8B vs. plate	MD, 9.70 [−44.04 to 63.45]	
F8B vs. plate	MD, −8.04 [−36.92 to 21.63]	
IM vs. plate	MD, −23.21 [−20.15 to 66.15]	
F8B vs. plate	MD, −7.18 [−67.07 to 26.30]	
Plate vs. plate	MD, 3.95 [−3.82 to 10.59]	
ESIN vs. plate	MD, 0.51 [−5.25 to 4.23]	
Plate vs. plate	MD, 0.04 [−3.82 to 4.29]	
ESIN vs. plate	MD, 7.96 [−63.66 to 10.83]	
Plate vs. plate	MD, 2.00 [−1.11 to 14.07]	
Function score (0-100) at >52 wk	ESIN vs. F8B	MD, 5.40 [−23.72 to 43.99]
ESIN vs. plate	MD, 15.17 [−1.80 to 33.04]	
ESIN vs. plate	MD, −2.72 [−24.36 to 20.11]	
ESIN vs. plate	MD, −28.63 [−18.80 to 0.43]	
F8B vs. plate	MD, 9.70 [−44.04 to 63.45]	
F8B vs. plate	MD, −8.04 [−36.92 to 21.63]	
IM vs. plate	MD, −23.21 [−20.15 to 66.15]	
F8B vs. plate	MD, −7.18 [−67.07 to 26.30]	
Plate vs. plate	MD, 3.95 [−3.82 to 10.59]	
ESIN vs. plate	MD, 0.51 [−5.25 to 4.23]	
Plate vs. plate	MD, 0.04 [−3.82 to 4.29]	
ESIN vs. plate	MD, 7.96 [−63.66 to 10.83]	
Plate vs. plate	MD, 2.00 [−1.11 to 14.07]	

Table IV (continued)
Comparison of MD or RR [95% CI]

Outcome	Comparison	MD or RR [95% CI]

Function score (0-100) at 24 wk

ESIN vs. F8B	MD, 0.89 [−3.82 to 5.01]
F8B vs. plate	MD, 0.14 [−4.19 to 4.55]
ESIN vs. plate	MD, 0.95 [−1.07 to 2.24]
Plate vs. plate	MD, 0.03 [−2.12 to 2.69]
ESIN vs. plate	MD, 0.95 [−1.07 to 2.24]
Plate vs. plate	MD, 0.03 [−2.12 to 2.69]
ESIN vs. plate	MD, 0.95 [−1.07 to 2.24]
Plate vs. plate	MD, 0.03 [−2.12 to 2.69]

Function score (0-100) at 52 wk

ESIN vs. F8B	MD, 0.89 [−3.82 to 5.01]
F8B vs. plate	MD, 0.14 [−4.19 to 4.55]
ESIN vs. plate	MD, 0.95 [−1.07 to 2.24]
Plate vs. plate	MD, 0.03 [−2.12 to 2.69]
ESIN vs. plate	MD, 0.95 [−1.07 to 2.24]
Plate vs. plate	MD, 0.03 [−2.12 to 2.69]
ESIN vs. plate	MD, 0.95 [−1.07 to 2.24]
Plate vs. plate	MD, 0.03 [−2.12 to 2.69]

Function score (0-100) at >52 wk

ESIN vs. F8B	MD, 0.89 [−3.82 to 5.01]
F8B vs. plate	MD, 0.14 [−4.19 to 4.55]
ESIN vs. plate	MD, 0.95 [−1.07 to 2.24]
Plate vs. plate	MD, 0.03 [−2.12 to 2.69]
ESIN vs. plate	MD, 0.95 [−1.07 to 2.24]
Plate vs. plate	MD, 0.03 [−2.12 to 2.69]
ESIN vs. plate	MD, 0.95 [−1.07 to 2.24]
Plate vs. plate	MD, 0.03 [−2.12 to 2.69]

Time to radiographic union, wk

ESIN vs. F8B	MD, 0.89 [−3.82 to 5.01]
F8B vs. plate	MD, 0.14 [−4.19 to 4.55]
ESIN vs. plate	MD, 0.95 [−1.07 to 2.24]
Plate vs. plate	MD, 0.03 [−2.12 to 2.69]
ESIN vs. plate	MD, 0.95 [−1.07 to 2.24]
Plate vs. plate	MD, 0.03 [−2.12 to 2.69]
ESIN vs. plate	MD, 0.95 [−1.07 to 2.24]
Plate vs. plate	MD, 0.03 [−2.12 to 2.69]

(continued on next page)
Table IV (continued)

Outcome	Comparison	MD or RR [95% CrI]
Time to return to		
work, wk	ESIN vs. F8B	MD, 2.80 [-6.16 to 0.37]
	ESIN vs. plate	MD, -1.30 [-4.04 to 1.48]
	ESIN vs. sling	MD, -2.44 [-5.77 to 0.76]
	F8B vs. plate	MD, 1.49 [-1.04 to 3.90]
	F8B vs. sling	MD, 0.35 [-1.26 to 1.60]
	Plate vs. sling	MD, -1.14 [-3.10 to 0.71]
Delayed union		
	CRx vs. ESIN	RR, 1.21 [0.00 to 4.73]
	CRx vs. F8B	RR, 1.63 [0.00 to 1097]
	CRx vs. IMP	RR, 0.41 [0.00 to 270]
	CRx vs. plate	RR, 2.80 [0.02 to 523]
	CRx vs. sling	RR, 1.30 [0.01 to 408]
	ESIN vs. FBB	RR, 1.34 [0.03 to 183]
	ESIN vs. IMP	RR, 0.34 [0.00 to 50]
	ESIN vs. plate	RR, 2.32 [0.11 to 81]
	ESIN vs. sling	RR, 1.06 [0.06 to 22]
	F8B vs. IMP	RR, 0.25 [0.00 to 40]
	F8B vs. plate	RR, 1.77 [0.03 to 50]
	F8B vs. sling	RR, 0.81 [0.01 to 37]
	IMP vs. plate	RR, 6.82 [0.13 to 804]
	IMP vs. sling	RR, 3.11 [0.06 to 463]
	Plate vs. sling	RR, 0.46 [0.04 to 5.15]
	ESIN vs. sling +	RR, 0.11 [0.00 to 0.93]
	sling + F8B	RR, 5.40 [0.75 to 183]
	IMP vs. plate	RR, 2.08 [0.46 to 11]
	IMP vs. sling	RR, 0.54 [0.11 to 3.32]
	Plate vs. sling	RR, 0.26 [0.14 to 0.49]
	ESIN vs. FBB	RR, 0.26 [0.06 to 0.91]
	ESIN vs. FBB +	RR, 0.00 [0.00 to 0.13]
	sling + F8B	RR, 0.69 [0.20 to 2.18]
	ESIN vs. sling +	RR, 1.67 [0.89 to 3.39]
	sling + IMP	RR, 0.38 [0.19 to 0.79]
	F8B vs. sling +	RR, 0.00 [0.00 to 0.51]
	F8B vs. IMP	RR, 2.66 [0.63 to 13]
	F8B vs. plate	RR, 6.36 [2.18 to 24]
	F8B vs. sling	RR, 1.46 [0.46 to 5.78]
	IMP vs. FBB +	RR, 0.00 [0.00 to 0.18]
	sling + F8B	RR, 0.00 [0.00 to 0.08]
	Sling vs. FBB +	RR, 0.00 [0.00 to 0.34]
	sling + sling +	RR, 0.00 [-0.16 to 0.16]
	sling vs. IMP	RR, 1.73 [0.13 to 32]
	ESIN vs. plate	RR, 1.03 [0.23 to 5.87]
	ESIN vs. sling	RR, 2.77 [0.38 to 37]
	IMP vs. plate	RR, 0.59 [0.06 to 5.42]
	IMP vs. sling	RR, 1.60 [0.15 to 21]
	Plate vs. sling	RR, 2.69 [0.56 to 20]
Refracture		
	ESIN vs. FBB	RR, 3.16 [0.29 to 104]
	ESIN vs. IMP	RR, 0.17 [0.00 to 2.44]
	ESIN vs. plate	RR, 1.09 [0.37 to 3.35]
	ESIN vs. sling	RR, 0.83 [0.23 to 2.90]
	F8B vs. IMP	RR, 0.05 [0.00 to 1.60]
	F8B vs. plate	RR, 0.34 [0.01 to 3.86]
	F8B vs. sling	RR, 0.26 [0.01 to 3.07]
	IMP vs. plate	RR, 6.30 [0.61 to 189]
	IMP vs. sling	RR, 4.72 [0.40 to 144]
	Plate vs. sling	RR, 0.76 [0.38 to 1.37]
Symptoms		
	CRx vs. ESIN	RR, 0.32 [0.00 to 58]
	CRx vs. F8B	RR, 0.90 [0.00 to 245]
	CRx vs. IMP	RR, 0.86 [0.00 to 118]
	CRx vs. plate	RR, 0.43 [0.00 to 46]
	CRx vs. sling	RR, 2.04 [0.01 to 608]
	ESIN vs. FBB	RR, 2.80 [0.07 to 145]
	ESIN vs. IMP	RR, 2.09 [0.17 to 46]
	ESIN vs. plate	RR, 1.35 [0.13 to 14]

(continued on next page)

time to radiographic union, and reduction in certain complications. Specifically, plating, the ESIN, and the CRx consistently demonstrated more favorable function than nonoperative therapies over time; the IMP also showed greater function than nonoperative treatments from 6 weeks onward, but its effects were never statistically significant. Moreover, operative treatments demonstrated a significantly earlier time to radiographic union than the sling. Therefore, for patients who seek a quicker recovery, operating would be the best approach. Plating, the IMP, and the ESIN also showed lower risks of nonunion and malunion relative to nonoperative therapies, but only plating had a statistically significant effect compared with each nonoperative treatment. Of note, there were no data for the CRx to include in the analyses of nonunion and malunion. Though not statistically significant, our analysis also revealed that although plating was associated with an increase in ongoing symptoms, except compared with the ESIN, it also had the least risk of a delayed union and revision surgery. Plating showed significant improvements in the greatest number of comparisons across multiple outcomes, followed by the ESIN. The CRx also showed promise as a treatment; however, there is currently limited evidence on this method. Although the IMP similarly showed some statistically significant findings, its effects were not as impressive.

Prior reviews have also demonstrated that operative interventions show improvements over nonoperative treatments in terms of functional outcomes, time to union, and fewer complications, such as nonunion. Virtanen et al found that the results of surgery showed better function and a lower likelihood of delayed union and nonunion. Duan et al suggested that plating results in fewer complications and more satisfaction than use of a sling. More recently, Rehn et al found that nonoperatively treated patients had more nonunions but that operative intervention may improve the risk of minor complications.

In a review, Wang et al suggested that treatment with intramedullary (IM) implants, compared with plating and nonoperative treatment, is the optimal approach. However, they grouped all nonoperative therapies (ie, sling and F8B) and all the various IM devices (ie, IMP and ESIN), and these conclusions were based on nonunion and infection rates, which were higher with plating than with IM fixation but not statistically significant. Jiang et al conducted a network meta-analysis on function and also suggested that IM fixation resulted in more favorable outcomes, but they grouped treatments in a similar fashion to Wang et al (ie, any IM device) and only included studies that used the Constant-Murley score.

Distal fractures

We found that functional improvement at earlier visits may be best achieved with CCSu, although these results were not
statistically significant. At ≥ 1 year, functional scores were significantly worse with KW than with CCSu, CCSu-LP, the HP, and the LP, whereas functional scores with TB-KW were significantly worse than with the LP only. Of note, CCSu-LP was ranked third and second at 3 and 6 months, respectively, and there were no functional data for the LP at 6 months. No significant findings were observed for time to radiographic union, but CCSu-LP showed the earliest time to union and CCSu alone resulted in the longest time. The HP demonstrated the least risk of hardware problems, but this was only significant compared with KW, and the LP and CCSu-LP were ranked second and third, respectively, in this analysis. The risk of a nonunion was most favorable with the LP and CCSu-LP, whereas the sling and CCSu were ranked lowest for this outcome. The LP was ranked second, after TB-KW, for the risk of refracture, whereas CCSu and the HP were ranked lowest. For both the risk of reoperation and asymptomatic hardware, CCSu-LP was ranked highest with significantly lower risks than with all other interventions (there were no data for locked plating alone to include in these analyses); CCSu was ranked lowest and had a significantly higher risk of symptomatic hardware compared with all other treatments. Such results suggest that, for early and sustained functional improvement and limited complications, the LP with or without CCSu may provide the most optimal outcome. CCSu alone may not be a viable alternative as well, although CCSu alone appears to be associated with union-related issues and continued symptoms, and both CCSu alone and the HP may have a higher likelihood of refracture.

The network meta-analysis by Boonard et al7 on distal fractures included 11 studies and evaluated (1) coracoclavicular (CC) fixation, (2) an HP, (3) an LP, (4) TB, and (5) KW. Similarly to our analysis, the authors concluded that CC fixation and the LP were better than both the HP and TB for function and that the LP was associated with a lower risk of complications. Although we came to the same general conclusions, there were some differences in our methodology. First, Boonard et al did not consider some treatments as combination therapies, such as CC fixation with an LP and TB with KW. We considered each combination therapy a treatment node to ensure the effects were exclusively attributed to each unique therapy. Second, Boonard et al analyzed different functional measures separately (ie, Constant-Murley and UCLA scores) and did not evaluate function across different time points. We converted functional measures to a common scale and analyzed these data at 3 months, 6 months, and ≥ 1 year to determine differences occurred over time. Finally, Boonard et al evaluated the risk of any

Figure 4 Forest plot of function at 6 weeks (a), 12 weeks (b), 24 weeks (c), 52 weeks (d), and >52 weeks (e) for midshaft clavicle fractures. CI, credible interval; CRx, Sonoma CRx intramedullary nail; ESIN, elastic stable intramedullary nail; F8B, figure-of-8 bandage; F8B Sling, figure-of-8 bandage with sling; IMP, intramedullary pin.

Figure 5 Forest plot of time to radiographic union for midshaft clavicle fractures. CI, credible interval; CRx, Sonoma CRx intramedullary nail; ESIN, elastic stable intramedullary nail; F8B, figure-of-8 bandage; IMP, intramedullary pin.

Figure 6 Forest plot of malunion for midshaft clavicle fractures. CI, credible interval; ESIN, elastic stable intramedullary nail; F8B Sling, figure-of-8 bandage with sling; IMP, intramedullary pin.
complication, whereas we assessed specific complications to determine whether particular events were more—or less—likely following a particular treatment.

Medial fractures

Plating appears to be associated with better functional scores than both the sling and TB. In addition, plating, a screw and suturing, and KW were positively associated with a patient’s return to his or her previous occupation or activity level; however, the latter 2 treatments were limited to evidence from case reports. Surgical intervention also appears to lessen the risk of nonunion and malunion relative to nonoperative therapy. With plating, the most common complaint in a study was implant irritation, which led to subsequent implant removal, and there were also 2 cases that underwent revision; however, other studies reported no complications or revisions following plating. The authors of some studies indicated why they selected certain treatments, suggesting that they may have preferred another treatment under other circumstances. Bourghli and Fabre⁶ stated that they used KW instead of plating because the fracture was too severely comminuted. Low et al⁵ stated that they used KW instead of plating because the patient had poor bone stock. The patients treated nonoperatively in the study by Bartonicek et al⁵ were deemed unfit for surgery: Both patients were elderly, and 1 underwent a prior coronary bypass and the other was a heavy drinker. In other cases, the surgeon chose TB instead of plating because the medial fragment in these patients was too short and there was inadequate bone stock.

The evidence on medial fractures is very limited. Part of the reason for this may be its extremely low prevalence, representing <3% of clavicle fractures.⁴ Our review suggests that plating, given the proper indications, offers the best outcome; however, implant irritation can occur, which is usually resolved with implant removal. Other surgical procedures (ie, TB, KW, screws and suturing) seem to perform well too, but these options may only be preferred in situations in which plating is contraindicated, and the evidence on these treatments is limited to just a few case reports.

Strengths and limitations

Our review differentiated between clavicle fracture types (ie, midshaft, distal, and medial) as they are not the same injury. We conducted a comprehensive comparative analysis, for midshaft and distal fractures, of various interventions. We also examined numerous outcomes to best inform treatment decisions when weighing the risks and benefits of these therapies. We were very specific in our categorization of interventions, including combination therapies, so that our results were less likely to be confounded by variations in treatment techniques or characteristics.

Table V

Outcome	Comparison	MD or RR [95% CrI]
Function score	(0-100) at 3 mo	
CCSc-LP vs. CCSu	MD, −17.08 [−40.91 to 6.50]	
CCSc-LP vs. CCSu-LP	MD, −10.00 [−23.05 to 2.90]	
CCSc-LP vs. HP	MD, −12.03 [−31.93 to 8.05]	
CCSc-LP vs. LP	MD, −9.23 [−27.77 to 9.04]	
CCSc-LP vs. TB-KW	MD, −6.50 [−19.25 to 6.05]	
CCSu vs. CCSc-LP	MD, 7.04 [0.16 to 16.30]	
CCSu vs. HP	MD, 5.11 [−7.67 to 17.91]	
CCSu vs. LP	MD, 7.71 [−19.13 to 34.49]	
CCSu vs. TB-KW	MD, 11.50 [−7.62 to 30.75]	
CCSu-LP vs. HP	MD, −1.99 [−21.90 to 17.80]	
CCSu-LP vs. LP	MD, 0.66 [−12.30 to 13.56]	
CCSu-LP vs. TB-KW	MD, 4.39 [−9.25 to 18.02]	
HP vs. LP	MD, 2.65 [−20.93 to 26.38]	
HP vs. TB-KW	MD, 6.40 [−8.04 to 20.75]	
LP vs. TB-KW	MD, 3.72 [−15.07 to 22.30]	

Time to radiographic union, wk

Outcome	Comparison	MD or RR [95% CrI]
CCSc-LP vs. CCSu	MD, −13.90 [−27.49 to 16.69]	
CCSc-LP vs. CCSu-LP	MD, −13.09 [−26.05 to 13.08]	
CCSc-LP vs. HP	MD, 4.53 [−7.83 to 16.88]	
CCSc-LP vs. LP	MD, 6.99 [−1.64 to 22.58]	
CCSc-LP vs. TB-KW	MD, 4.92 [−13.41 to 3.41]	
CCSc-LP vs. KW	MD, 1.45 [−6.13 to 8.70]	
CCSc-LP vs. CCsu-LP	MD, 5.22 [−8.58 to 16.34]	
CCSc-LP vs. HP	MD, −1.37 [−8.69 to 6.01]	
CCSc-LP vs. LP	MD, 5.47 [−3.49 to 14.36]	
CCSc-LP vs. HP	MD, 3.60 [−12.00 to 5.57]	
CCSc-LP vs. CCsu-KW	MD, 2.13 [−10.47 to 14.45]	
CCSc-LP vs. CCsu-LP	MD, −4.42 [−11.57 to 2.44]	
CCSc-LP vs. HP	MD, 0.15 [−7.83 to 8.08]	
CCSc-LP vs. KW	MD, 6.91 [−2.65 to 16.58]	
CCSc-LP vs. LP	MD, 4.92 [−13.41 to 3.41]	
CCSc-LP vs. TB-KW	MD, 1.45 [−6.13 to 8.70]	
CCSc-LP vs. HP	MD, 5.22 [−8.58 to 16.34]	
CCSc-LP vs. HP	MD, 3.22 [−0.55 to 7.20]	
CCSc-LP vs. HP	MD, 9.98 [2.86 to 17.52]	
CCSc-LP vs. HP	MD, 4.52 [−1.05 to 10.10]	
CCSc-LP vs. LP	MD, 6.61 [−17.63 to 4.25]	
CCSc-LP vs. HP	MD, 1.99 [−12.37 to 8.52]	
CCSc-LP vs. KW	MD, 4.75 [−7.10 to 17.00]	
CCSc-LP vs. LP	MD, 7.03 [−16.11 to 19.00]	
CCSc-LP vs. TB-KW	MD, −0.72 [−11.64 to 10.23]	
CCSc-LP vs. KP	MD, 4.60 [−1.51 to 10.83]	
CCSc-LP vs. KW	MD, 11.36 [3.11 to 19.54]	
CCSc-LP vs. LP	MD, −0.44 [−6.61 to 5.56]	
CCSc-LP vs. TB-KW	MD, 5.89 [−0.19 to 11.97]	
CCSc-LP vs. LP	MD, 6.74 [0.58 to 13.06]	
CCSc-LP vs. HP	MD, −5.04 [−10.41 to 0.13]	
CCSc-LP vs. LP	MD, 11.40 [−0.13 to 24.50]	
CCSc-LP vs. HW	MD, 1.32 [−2.84 to 5.14]	
CCSc-LP vs. LP	MD, 11.80 [−20.02 to −3.95]	
CCSc-LP vs. HP	MD, −5.45 [−12.11 to 0.95]	
CCSc-LP vs. LP	MD, 6.36 [0.26 to 12.49]	
CCSc-LP vs. HW	MD, 7.57 [−27.61 to 12.10]	
CCSc-LP vs. LP	MD, 3.37 [−8.06 to 14.00]	
CCSc-LP vs. HP	MD, −3.75 [−20.40 to 12.78]	
CCSc-LP vs. KW	MD, −3.94 [−20.40 to 12.48]	
CCSc-LP vs. LP	MD, −4.43 [−2.45 to 12.27]	
CCSc-LP vs. TB-KW	MD, −3.34 [−15.76 to 9.01]	
CCSc-LP vs. CCsu-LP	MD, 10.93 [−8.75 to 31.22]	
CCSc-LP vs. HP	MD, 3.82 [−7.16 to 14.76]	
CCSc-LP vs. KW	MD, 3.61 [−15.39 to 22.66]	
CCSc-LP vs. LP	MD, 3.27 [−12.59 to 15.56]	
CCSc-LP vs. TB-KW	MD, 4.26 [−11.30 to 19.90]	
CCSc-LP vs. HP	MD, −7.09 [−23.77 to 9.37]	
CCSc-LP vs. KW	MD, −7.28 [−23.67 to 9.13]	
CCSc-LP vs. LP	MD, −7.86 [−28.23 to 9.75]	
CCSc-LP vs. TB-KW	MD, −6.67 [−18.90 to 5.60]	
HP vs. KW	MD, −0.16 [−15.58 to 15.25]	
HP vs. LP	MD, −0.52 [−11.23 to 6.73]	
HP vs. TB-KW	MD, 0.45 [−10.65 to 11.36]	
KW vs. LP	MD, −0.36 [−19.96 to 15.57]	
KW vs. TB-KW	MD, 0.61 [−10.44 to 11.35]	

(continued on next page)
Table V (continued)

Outcome	Comparison	MD or RR [95% CrI]	
Nonunion			
Hardware complications	CSEC-LP vs. CCSc-LP	RR, 1.00 [0.00 to 11.14]	
	CCSc-LP vs. LP	RR, 1.43 [0.00 to 57.06]	
	CCSc-LP vs. KW	RR, 2.03 [0.02 to 207]	
	CPSC-LP vs. TB-KW	RR, 0.73 [0.00 to 145]	
	CPSC-LP vs. HP	RR, 1.40 [0.04 to 59]	
	CPSC-LP vs. KW	RR, 0.07 [0.00 to 7.77]	
	CPSC-LP vs. LP	RR, 1.03 [0.03 to 39]	
	CPSC-LP vs. TB-KW	RR, 0.50 [0.01 to 43]	
	HP vs. KW	RR, 0.05 [0.00 to 0.93]	
	HP vs. LP	RR, 0.72 [0.02 to 29]	
	HP vs. TB-KW	RR, 0.35 [0.05 to 3.71]	
	KW vs. LP	RR, 1.4 [0.13 to 1510]	
	KW vs. TB-KW	RR, 0.59 [0.04 to 179]	
	LP vs. TB-KW	RR, 0.49 [0.01 to 41]	
	CCSc-LP vs. CCSc-LP*	RR, 0.76 [0.01 to 68]	
	CCSc-LP vs. CPSC-LP*	RR, 0.00 [0.00 to 0.97]	
	CCSc-LP vs. HP	RR, 2.05 [0.03 to 156]	
	CCSc-LP vs. KW	RR, 4.06 [0.03 to 608]	
	LP vs. CPSC-LP*	RR, 0.00 [0.00 to 0.51]	
	CPSC-LP vs. TB-KW	RR, 0.84 [0.02 to 44]	
	CPSC-LP vs. KW	RR, 5.26 [0.35 to 120]	
	CPSC-LP vs. LP	RR, 0.00 [0.00 to 0.14]	
	CPSC-LP vs. CPSC-LP*	RR, 0.00 [0.00 to 0.90]	
	CPSC-LP vs. HP	RR, 2.66 [0.04 to 15]	
	CPSC-LP vs. KW	RR, 5.26 [0.35 to 120]	
	CPSC-LP vs. LP	RR, 0.00 [0.00 to 0.14]	
	CPSC-LP vs. TB-KW*	RR, 0.00 [0.00 to 0.77]	
	HP vs. KW	RR, 1.95 [0.19 to 26]	
	LP vs. HP	RR, 0.00 [0.00 to 0.09]	
	HP vs. TB-KW	RR, 0.42 [0.06 to 10]	
	LP vs. KW	RR, 0.00 [0.00 to 0.93]	
	KW vs. TB-KW	RR, 0.21 [0.01 to 4.48]	
	LP vs. TB-KW*	RR, 0.00 [0.00 to 0.19]	
	CCSc-LP vs. CPSC-LP*	RR, 2.44 [0.08 to 144]	
	CCSc-LP vs. HP	RR, 0.76 [0.13 to 4.10]	
	KW vs. CCSc-LP*	RR, 0.00 [0.00 to 0.85]	
	HP vs. CPSC-LP*	RR, 0.00 [0.00 to 0.52]	
	CPSC-LP vs. TB-KW*	RR, 0.00 [0.00 to 0.10]	
	CPSC-LP vs. HP	RR, 0.00 [0.00 to 0.52]	
	CPSC-LP vs. KW	RR, 0.00 [0.00 to 0.00]	
	CPSC-LP vs. LP	RR, 0.00 [0.00 to 0.93]	
	TB-KW vs. CPSC-LP*	RR, 0.00 [0.00 to 0.00]	
	KW vs. HP	RR, 0.00 [0.00 to 0.52]	
	TP-KW vs. HP	RR, 0.00 [0.00 to 0.34]	
	TKW vs. KW	RR, 0.00 [0.00 to 0.00]	
	TKW vs. LP	RR, 0.00 [0.00 to 9.55 \times 10^3]	
	TB-KW vs. KW	RR, 0.00 [0.00 to 0.38]	
	TB-KW vs. LP	RR, 0.00 [0.00 to 1.07 \times 10^3]	
	Revision		
	CCSc-LP vs. CPSC-LP*	RR, 0.07 [0.00 to 40]	
	CCSc-LP vs. CCSc-LP*	RR, 0.00 [0.00 to 0.01]	
	CCSc-LP vs. KW	RR, 0.08 [0.00 to 25]	
	KW vs. CPSC-LP	RR, 0.11 [0.00 to 116]	
	TB-KW vs. CCSc-LP	RR, 0.31 [0.01 to 13]	
	CCSc-LP vs. CPSC-LP*	RR, 0.00 [0.00 to 0.45]	
	CCSc-LP vs. HP	RR, 0.85 [0.04 to 14]	
	CCSc-LP vs. KW	RR, 0.64 [0.00 to 91]	
	CCSc-LP vs. TB-KW	RR, 0.23 [0.00 to 38]	
	CCSc-LP vs. HP	RR, 0.00 [0.00 to 0.28]	
	CCSc-LP vs. KW	RR, 0.00 [0.00 to 0.28]	
	CCSc-LP vs. TKW	RR, 0.00 [0.00 to 0.00]	
	HP vs. TP-KW	RR, 0.00 [0.00 to 0.05]	
	HP vs. KW	RR, 0.76 [0.01 to 25]	
	HP vs. TB-KW	RR, 0.28 [0.00 to 21]	
	KW vs. TB-KW	RR, 0.36 [0.00 to 130]	
	CPSC-LP vs. CCSc-LP*	RR, 0.00 [0.00 to 0.18]	
	CPSC-LP vs. CPSC-LP*	RR, 0.00 [0.00 to 0.01]	
	CPSC-LP vs. HP	RR, 4.26 [0.12 to 198]	
	CPSC-LP vs. KW	RR, 1.80 [0.10 to 39]	
	CPSC-LP vs. CPSC-LP*	RR, 0.00 [0.00 to 0.00]	
	HP vs. CCSc-LP	RR, 0.00 [0.00 to 0.03]	

Table V (continued)

Outcome	Comparison	MD or RR [95% CrI]
Symptoms		
Hardware complications	TB-KW vs. CCSc-LP*	RR, 0.00 [0.00 to 0.08]
	CCSc-LP vs. HP	RR, 0.00 [0.00 to 0.07]
	CCSc-LP vs. TB-KW	RR, 0.00 [0.00 to 0.03]
	HP vs. TB-KW	RR, 0.42 [0.05 to 3.32]

MD, mean difference; RR, risk ratio; CI, credible interval; CSEC, coracoclavicular screw fixation; LP, locking plate; CCSc, coracoclavicular suturing; HP, hook plate; TB, tension band; KW, K-wires.

* Statistically significant.

A disadvantage of our study is that it includes mostly low-quality studies; however, this is reflective of the current state of the evidence and highlights the need for more high-quality trials. Moreover, because of the limited data, the precision around the effect estimates was very low, and the inclusion of additional evidence in the future may impact the results. In addition, for medial fractures, we found no studies directly comparing treatments, meaning that our conclusions were based on case series and case reports and we could not compare these treatments via a meta-analysis. Another consideration is that fracture characteristics (pattern, stability, amount of displacement, and so on) can play a role in treatment decisions; thus, these data may not be applicable to every patient who sustains a clavicle fracture. The availability of preference for some of these interventions in certain geographic regions can also influence the applicability of our results. For example, none of the studies evaluating the ESIN for midshaft fractures were conducted in North America. Hence, it is difficult to determine whether the ESIN would be a viable option for North American patients, as their physical characteristics and behaviors may be different from those of patients from other countries; North American surgeons may see less promising results with the ESIN in their patients. Finally, we only included articles published in English and therefore may have missed studies published in other languages.

Conclusion

This study provides evidence to inform treatment decisions for midshaft, distal, and medial clavicle fractures; however, additional high-quality evidence would be impactful. More specifically, future studies should be large (ie, greater sample sizes), multicenter randomized trials. The current evidence suggests that surgery with plating, surgery with an ESIN, and surgery with a CRx are all good options for midshaft fractures; an LP with or without CC suturing should be preferred for distal fractures; and plating is also acceptable for medial fractures, provided that the patient is deemed suitable for surgery and has

![Figure 8 Forest plot of function at ≥1 year for distal clavicle fractures. CI, credible interval; CSEC, coracoclavicular suturing; ESIN, coracoclavicular screw fixation; LP, locking plate; KW, K-wires.](image-url)
Figure 9 Forest plot of hardware complications for distal clavicle fractures. CI, credible interval; CCSu, coracoclavicular suture; LP, locking plate; HP, hook plate; KW, K-wires; TB, tension band.

Figure 10 Forest plot of nonunion for distal clavicle fractures. CI, credible interval; CCSu, coracoclavicular suture; LP, locking plate; HP, hook plate; KW, K-wires; TB, tension band.

Figure 11 Forest plot of refracture for distal clavicle fractures. CI, credible interval; CCSu, coracoclavicular suture; LP, locking plate; HP, hook plate; KW, K-wires; TB, tension band.

Figure 12 Forest plot of revision for distal clavicle fractures. CI, credible interval; CCSu, coracoclavicular suture; LP, locking plate; HP, hook plate; KW, K-wires; TB, tension band.

Figure 13 Forest plot of symptoms for distal clavicle fractures. CI, credible interval; CCSu, coracoclavicular suture; CCSc, coracoclavicular screw fixation; LP, locking plate; HP, hook plate; TB, tension band; KW, K-wires.

the adequate bone stock and sufficiently sized medial fragment necessary to implant the device. Patient preferences for certain outcomes should be considered, which may result in different treatment recommendations.

Disclaimer

This study was funded by a research grant from Acumed. Christopher Vannabouathong is an employee of OrthoEvidence, which received the grant. Mohit Bhandari receives consulting fees from Acumed. Michael D. McKee receives royalties from Stryker

The other authors, their immediate families, and any research foundations with which they are affiliated have not received any financial payments or other benefits from any commercial entity related to the subject of this article.

Supplementary Data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jseint.2020.01.010.

References

1. Ahrens PM, Garlick NL, Barber J, Tims EM. The clavicle trial: a multicenter randomized controlled trial comparing operative with nonoperative treatment of displaced midshaft clavicle fractures. J Bone Joint Surg Am 2017;99:1345–54. https://doi.org/10.2106/JBJS.16.01112.
2. Andersen K, Jensen PG, Lauritzen J. Treatment of clavicular fractures. Figure-of-eight bandage versus a simple sling. Acta Orthop Scand 1987;58:71–4.
3. Andrade-Silva FB, Kojima KE, Joeris A, Santos Silva J, Mattar R, Single, superradiolocated reconstruction plate compared with flexible intramedullary nailing for midshaft clavicular fractures: a prospective, randomized controlled trial. J Bone Joint Surg Am 2015;97:620–6. https://doi.org/10.2106/JBJS.N.00497.
4. Assobhi JE. Reconstruction plate versus minimal invasive retrograde titanium elastic nail fixation for displaced midclavicular fractures. J Orthop Traumatol 2011;12:185–92. https://doi.org/10.1021/s10195-011-0158-7.
5. Bartonieck J, Fric V, Pacovsky V. Displaced fractures of the medial end of the clavicle: report of five cases. J Orthop Trauma 2010;24:e31–5. https://doi.org/10.1097/BOT.0b013e3181aa5005.
6. Bhardwaj A, Sharma G, Patil A, Rahate V. Comparison of plate osteosynthesis versus non-operative management for mid-shaft clavicle fractures—a prospective study. Injury 2018;49:1104–7. https://doi.org/10.1016/
j.injury.2018.04.012.
7. Boonard M, Sumanont S, Arirachakaran A, Sikarinkul E, Ratanapongpean P, Kanchanawat W, et al. Fixation method for treatment of unstable distal clavicle fracture: systematic review and network meta-analysis. Eur J Orthop Surg Traumatol 2018;28:1065–78. https://doi.org/10.1007/s00590-018-2187-x.
8. Bourghil A, Fabre A. Proximal end clavicle fracture from a parachute jumping injury. Orthop Traumatol Surg Res 2012;98:238–41. https://doi.org/10.1016/
Jotts.2011.09.021.
9. Calbiyik M, Ipek D, Taskoparan M. Prospective randomized study comparing results of fixation for clavicular shaft fractures with intramedullary nail or locking compression plate. Int Orthop 2017;41:173–9. https://doi.org/10.1007/s00264-016-3192-5.
10. Chen CY, Yang SW, Lin KY, Lin KC, Tarng YW, Renn JH, et al. Comparison of single coracoclavicular suture fixation and hook plate for the treatment of acute unstable distal clavicle fractures. J Orthop Surg Res 2014;9:42. https://doi.org/10.1186/1749-799x-9-42.
11. Chen L, Chen H, Nisar M, Chen H, Pan J, Peng L, et al. A retrospective comparison of minimally invasive percutaneous plate osteosynthesis (MIPPO) and minimally invasive percutaneous titanium elastic nail osteosynthesis (MIP-TENO) for midshaft clavicle fracture. Int J Clin Exp Med 2018;11:870–6.
12. Chen QY, Kou DQ, Cheng XJ, Zhang W, Wang W, Lin ZQ, et al. Intramedullary nailing of clavicular midshaft fractures in adults using titanium elastic nail. Chin J Traumatol 2011;14:269–76.
13. Chen Y-F, Wei H-F, Zhang C, Zeng B-F, Zhang C-Q, Yue J-F, et al. Retrospective comparison of titanium elastic nail (TEN) and reconstruction plate repair of displaced midshaft clavicular fractures. J Shoulder Elbow Surg 2012;21:495–501. https://doi.org/10.1016/j.jse.2011.03.007.
14. Chu JY, Yeh KT, Lee RP, Yu TC, Chen IH, Peng CH, et al. Open reduction and internal fixation with plating is beneficial in the early recovery stage for displaced midclavicular fractures in patients aged 30-65 years old. Tzu Chi Med J 2018;30:242–6. https://doi.org/10.4103/tcmj.tcmj_45_18.
26. Hanselman AE, Murphy TR, Bal GK, McDonough EB. Operative cost comparison for midshaft clavicle fractures: a randomized controlled trial. J Shoulder Elbow Surg 2015;24:1008–15. https://doi.org/10.1016/j.jse.2015.01.018.

27. Ersen A, Atalar AC, Birisik F, Saglam Y, Demirhan M. Comparison of simple arm sling and figure of eight clavicular bandage for midshaft clavicular fractures: a randomized controlled trial. Bone J Joint Surg 2015;97-B:1562–3. https://doi.org/10.1016/j.bjoc.2015.01.018.

28. Ferran NA, Hodgson P, Vannet N, Williams R, Evans RO. Locked intramedullary fixation versus plate and non-operative treatment for displaced midshaft clavicular fractures. J Shoulder Elbow Surg 2011;20:1114–7. https://doi.org/10.1016/j.jse.2011.03.022.

29. Hsu K-H, Tzeng Y-H, Chang M-C, Chiang C-C. Comparing the coracoclavicular ligament reconstruction techniques for displaced midshaft clavicle fractures: a prospective cohort study. J Shoulder Elbow Surg 2015;25:9–18. https://doi.org/10.1016/j.jse.2014.09.016.

30. Hulsmans MH, van Heijl M, Houwert RM, Burger BJ, Verleisdonk EJM, Veeger DJ, et al. Surgical fixation of unstable clavicular fractures in 62 elderly patients: Knowles pin versus plate. Orthop Traumatol 2014;6:271–9. https://doi.org/10.1016/j.ott.2014.07.004.

31. Khorami M, Fakour M, Mokarrami H, Arti HR, Nasab AM, Shahrivar F. The effectiveness of a flexible locked intramedullary nail and an anatomically contoured locked plate to treat clavicle shaft fractures: a 1-year randomized controlled trial. J Bone Joint Surg Am 2010;92:628–34. https://doi.org/10.2106/JBJS.06060.

32. Klein SM, Badman BL, Keating CJ, Devinsky DS, Frankie MA, Mighell MA. Results of surgical treatment for unstable distal clavicular fractures. J Shoulder Elbow Surg 2010;19:1049–55. https://doi.org/10.1016/j.jse.2009.11.056.

33. Klewenno CP, Jawa A, Wells JH, O’Brien TG, Higgins LD, Harris MB, et al. Mid-shaft clavicular fractures: comparison of intramedullary pin and plate fixation. J Shoulder Elbow Surg 2011;20:1114–7. https://doi.org/10.1016/j.jse.2011.03.022.

34. Kulshrestha V, Roy T, Audige L. Operative versus nonoperative management of displaced midshaft clavicle fractures: a prospective cohort study. J Orthop Trauma 2011;25:31–8. https://doi.org/10.1097/BOT.0b013e3181d8290e.

35. Lazarides S, Zafiropoulos G. Conservative treatment of fractures at the middle third of the clavicle: the relevance of shortening and clinical outcome. J Shoulder Elbow Surg 2006;15:181–4. https://doi.org/10.1016/j.jse.2005.08.007.

36. Lechler P, Sturm S, Boeske CK, Bockmann B, Schwarting T, Ruchholtz S, et al. Surgical complications following ESIN for clavicular mid-shaft fractures do not limit functional or patient-perceived outcome. Injury 2016;47:899–903. https://doi.org/10.1016/j.injury.2015.11.025.

37. Lee YS, Huang HL, Lo TY, Hsieh YF, Huang CR. Surgical treatment of mid-clavicular fractures: a prospective study of Knowles pinning and plate fixation. J Orthop Surg 2008;16:541–5. https://doi.org/10.1016/j.jos.2007.06.057.

38. Lee YS, Lin MJ, Tseng YC, Chen KC, Hsu KY, Wei JD. Comparison of the efficacy of hook plate versus tension band wire in the treatment of unstable fractures of the distal clavicle. Int Orthop 2009;33:146–52. https://doi.org/10.1007/s00264-008-0789-6.

39. Lee YS, Lin CC, Huang CR, Chen CN, Liao WY. Operative treatment of mid-clavicular fractures in 62 elderly patients: Knowles pin versus plate. Pediatr Orthop 2007;30:955–69. https://doi.org/10.1097/BPO.0b013e32803c4728.

40. Leu TH, Ho WP, Wong PK, Chuang TY, Wong CC. Clavicular hook plate: a better implant choice for fixation of unstable distal clavicle fractures? J Exp Clin Med 2012;4:270–4. https://doi.org/10.1016/j.jecm.2012.09.002.

41. Liu YJ, Chen D, Zhang Y, Xue X. A new technique for medial- and lateral-committed clavicular fractures. Injury 2019;69:EE2–7. https://doi.org/10.1016/j.injury.2019.02.002.

42. Liu HH, Chang CH, Chia WT, Chen CH, Tang YW, Wong CY. Comparison of plates versus intramedullary nailing for fixation of displaced midshaft clavicular fractures. J Trauma 2010;69:EE2–7. https://doi.org/10.1097/TA.0b013e3181e0d381.

43. Low AK, Duckworth DG, Bokor DJ. Operative outcome of displaced medial-end clavicle fractures adults. J Shoulder Elbow Surg 2008;17:751–4. https://doi.org/10.1016/j.jse.2008.01.019.

44. Martel L. Recent changes in demographic trends in Canada Government of Canada Statistics Canada. https://www150.statcan.gc.ca/t1/tbl1/en/f01/01477447.cfm?Lang=F 2015:10. https://doi.org/10.1016/j.ejotra.2015.07.024.

45. McKee MD, Kreder HJ, Mandel S, McCormack R, Reindl R, Pugh DM, et al. Nonoperative treatment compared with plate fixation of displaced midshaft clavicular fractures: a multicenter, randomized clinical trial. J Bone Joint Surg Am 2007;89:9–10. https://doi.org/10.2106/JBJS.F.00720.

46. McKee BC, Whelan DB, Schemitsch EH, McKee MD. Operative versus nonoperative care of displaced midclavicular fractures: a meta-analysis of randomized clinical trials. J Bone Joint Surg Am 2012;94:675–84. https://doi.org/10.2106/JBJS.J.01364.

47. Melean PA, Zuniga A, Marsalli M, Fritts CA, Cook ER, Alhazzani W, et al. Approaches to interpreting and choosing the best treatments in network meta-analyses. Syst Rev 2017;6:79. https://doi.org/10.1186/s13063-017-0437-z.

48. Melean PA, Zuniga A, Marsalli M, Fritts CA, Cook ER, Alhazzani W, et al. Approaches to interpreting and choosing the best treatments in network meta-analyses. Syst Rev 2017;6:79. https://doi.org/10.1186/s13063-017-0437-z.

49. McKee MD, Kreder HJ, Mandel S, McCormack R, Reindl R, Pugh DM, et al. Nonoperative treatment compared with plate fixation of displaced midshaft clavicular fractures: a multicenter, randomized clinical trial. J Bone Joint Surg Am 2007;89:9–10. https://doi.org/10.2106/JBJS.F.00720.

50. McKee BC, Whelan DB, Schemitsch EH, McKee MD. Operative versus nonoperative care of displaced midclavicular fractures: a meta-analysis of randomized clinical trials. J Bone Joint Surg Am 2012;94:675–84. https://doi.org/10.2106/JBJS.J.01364.

51. Melean PA, Zuniga A, Marsalli M, Fritts CA, Cook ER, Alhazzani W, et al. Approaches to interpreting and choosing the best treatments in network meta-analyses. Syst Rev 2017;6:79. https://doi.org/10.1186/s13063-017-0437-z.
Xiong J, Chen JH, Dang Y, Zhang DY, Fu ZG, Zhang PX. Treatment of unstable distal clavicle fractures (Neer type II): a comparison of three internal fixation methods. J Int Med Res 2018;46:4678–83. https://doi.org/10.1177/030006051878824.

Yan HW, Li L, Wang RC, Yang Y, Xie Y, Tang J, et al. Clinical efficacies of coracoclavicular ligament reconstruction using suture anchor versus hook plate in the treatment of distal clavicle fracture. Orthop Traumatol Surg Res 2017;103:1287–93. https://doi.org/10.1016/j.otsr.2017.07.006.

Zehir S, Zehir R, Şahin E, Çalboyık M. Comparison of novel intramedullary nailing with mini-invasive plating in surgical fixation of displaced midshaft clavicle fractures. Arch Orthop Trauma Surg 2015;135:339–44. https://doi.org/10.1007/s00402-014-2142-1.

Zheng Y, Yuan XH, Yin YH, Wang WB, Fu QS, Pang QJ. T-plate fixation for unstable proximal clavicula fractures. Acta Orthop Traumatol Turc 2018;52:464–8. https://doi.org/10.1016/j.aott.2018.11.005.

Zlowodzki M, Zelle BA, Cole PA, Jeray K, McKee MD. Treatment of acute midshaft clavicle fractures: systematic review of 2144 fractures: on behalf of the Evidence-Based Orthopaedic Trauma Working Group. J Orthop Trauma 2005;19:504–7. https://doi.org/10.1097/01.bot.0000172287.44278.ef.