Exclusion Statistics of Composite Fermions

Piotr Sitko

Institute of Physics, Wrocław University of Technology,
Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.

Abstract

The exclusion statistics parameter of composite fermions is determined as an odd number ($\alpha = 3, 5, ...$). The statistics of composite fermion excitations at $\nu = \frac{n}{2pn+1}$ is rederived as $\alpha_{qe}^{CF} = 1 + \frac{2p}{2pn+1}$, $\alpha_{qh}^{CF} = 1 - \frac{2p}{2pn+1}$. The duality $\frac{1}{\alpha_{qe}(n,2p)} = \alpha_{qh}(n+1, 2p)$ is found. The distribution function for $\alpha = 3$ is obtained.

Introduction

The exclusion statistics was proposed by Haldane [1] as generalization of Pauli exclusion principle. The idea of Haldane is to define the change in the available particle space when particles are added to the system (or removed):

$$\Delta d_i = - \sum_j \alpha_{ij} \Delta N_j .$$

(1)

The generalization of the Haldane exclusion statistics was proposed by Wu [2] and others [3, 4]. The idea of generalization is to divide the available particle space for smaller cells (let us say with k states). The number of many-particle states is given by:

$$\prod_i \left(d_{N_i} + N_i - 1 \right)$$

$$\prod_i \left(d_{N_i} + N_i - 1 \right)$$

(2)
where \(d_{N_i} = k - \alpha(N_i - 1), \alpha = \alpha_{ii}. \)

Johnson and Canright used the spherical geometry to find the statistics of Laughlin quasiparticles [6]. Analyzing numerical results they found the number of many-particle states of quasiholes (of the Laughlin \(1/m \) state, \(m – \text{odd number} \)):

\[
\binom{N_e + N_{qh}}{N_{qh}} \tag{3}
\]

where \(N_{qh} \) is the number of quasiholes, \(2S + 1 = m(N_e - 1) + 1 - N_{qh}, 2S \) is the number of flux quanta piercing the sphere. According to the definition (2) \(\alpha_{qh} = \frac{1}{m} \) [6]. The corresponding statistics parameter of Laughlin quasielectrons is \(\alpha_{qe} = 2 - \frac{1}{m} \). Here, we perform similar analysis in order to determine the exclusion statistics of composite fermions.

Composite fermions

The exact diagonalization results for the sphere can be interpreted in terms of composite fermions [7] if the effective field \(2S^* = 2S - 2p(N_e - 1) \) is introduced. The composite fermion approach predicts the same angular momentum shell for quasiparticles [6], however, the main role play composite fermions (the number of composite fermions equals the number of electrons \(N_{CF} = N_e \)). The Eq. (3) is:

\[
\binom{2S^* + 1}{N_{qh}} \tag{4}
\]

and equals

\[
\binom{N_{CF} + 2S - m(N_{CF} - 1)}{N_{CF}} = \binom{2S + 1 + (1 - m)(N_{CF} - 1)}{N_{CF}}. \tag{5}
\]

According to the definition (2) the statistics parameter of composite fermions \(\alpha_{CF} = m \) (odd number \(\alpha_{CF} = 3, 5, ... \), for \(\alpha = 1 \) one has fermions).

Wu et al. [2] found the distribution function of \(\alpha \)-particles. The duality between \(\alpha \)-particles of \(\alpha = 1/m \) (holes) and \(\alpha = m \) was noticed by Nayak and Wilczek [3]. Our analysis reflects the duality between Laughlin quasiholes and composite fermions.

The distribution function is given by the set of equations [4]:

\[
n_i = \frac{1}{w + \alpha} \tag{6}
\]

\[
w^{\alpha}(1 + w)^{1-\alpha} = \xi \tag{7}
\]
\[\xi = e^{\frac{\alpha}{1+2p}}. \]

For example, for \(\alpha = 3 \) the solution is

\[w = \frac{1}{s_+ + s_- - \frac{2}{3}} \]

where

\[s_\pm = \left[\frac{1}{2\xi} + \frac{1}{27} \pm \sqrt{\frac{1}{\xi} \left(\frac{1}{\xi} + \frac{1}{27} \right)} \right]^\frac{1}{3}. \]

It is interesting to consider also the composite fermion excitations. Let us consider the filling \(\nu = \frac{n}{2p+1} \), then one gets \(n \) filled shells (in the field \(2S^* = 2S - 2p(N_e - 1) \) the degeneration of the \(n \)-th effective shell is \(2S^* + 2n - 1 \)). When one creates \(N_{qe} \) quasielectrons (of the state \(\nu = \frac{n}{2p+1} \)) in the \((n+1)\)-th level, the number of many-particle states is

\[\binom{2S_{qe} + 2n + 1}{N_{qe}} \]

and

\[2S_{qe} = -\frac{2p}{1+2pn} N_{qe} + \frac{2S - 2pn^2 + 2p}{1+2pn}. \]

If quasiholes are present in the \(n \)-th level then

\[\binom{2S_{qh}^* + 2n - 1}{N_{qh}} \]

and

\[2S_{qh}^* = \frac{2p}{1+2pn} N_{qh} + \frac{2S - 2pn^2 + 2p}{1+2pn}. \]

Hence, according to the definition (2)

\[\alpha_{qe} = 1 + \frac{2p}{1+2pn}, \]

\[\alpha_{qh} = 1 - \frac{2p}{1+2pn} \]

as was first obtained in Ref. [8]. For \(n = 1 \) one gets the Laughlin states \(\frac{1}{m} = \frac{1}{2p+1} \). One can notice the duality between quasielectrons of the state \(\frac{n}{2p+1} \) and quasiholes of the state \(\frac{n+1}{2p(n+1)+1} \):

\[\frac{1}{\alpha_{qe}(n, 2p)} = \alpha_{qh}(n + 1, 2p). \]

For example, consider quasielectrons at 1/3 and quasiholes at 2/5.
Conclusions

It is found that composite fermions can be described within the generalized exclusion statistics as particles with statistics parameter α being an odd number. Also, the exclusion statistics of composite fermion excitations is rederived as $\alpha_{qe} = 1 + \frac{2p}{1+2p}$, $\alpha_{qh} = 1 - \frac{2p}{1+2p}$. The duality $\frac{1}{\alpha_{qe}(n,2p)} = \alpha_{qh}(n + 1, 2p)$ is found.

This work was supported by KBN grant No. 2 P03B 111 18.

References

References

[1] F. D. M. Haldane, Phys. Rev. Lett. 67 (1991) 937
[2] Y-S. Wu, Phys. Rev. Lett. 73 (1994) 922
[3] C. Nayak, F. Wilczek, Phys. Rev. Lett. 73 (1994) 2740
[4] A. K. Rajagopal, Phys. Rev. Lett. 74 (1995) 1048
[5] A. Dasniéres de Veigy, S. Ouvry, Phys. Rev. Lett. 72 (1994) 600
[6] M. D. Johnson, G. S. Canright, Phys. Rev. B 49 (1994) 2947
[7] X. M. Chen, J. J. Quinn, Solid State Commun. 92 (1994) 865
[8] S. B. Isakov, G. S. Canright, M. D. Johnson, Phys. Rev. B 55 (1997) 6727