Simulation Training in Hemodynamic Monitoring and Mechanical Ventilation: An Assessment of Physician’s Performance

Amarja A Havaldar1, Bhuvana Krishna2, Sriram Sampath3, Saravana K Paramasivam4

ABSTRACT

Background: Simulation is to imitate or replicate real-life scenarios in order to improve cognitive, diagnostic and therapeutic skills. An ideal model should be good enough to output realistic clinical scenarios and respond to interventions done by trainees in real time. Use of simulation-based training has been tried in various fields of medicine. The aim of our study was to prospectively evaluate the effectiveness of simulation model “CRITICA”™ (MEDUPLAY systems) in training critical care physicians.

Materials and methods: The advanced intensive care unit (ICU) simulator “CRITICA”™ (MEDUPLAY systems) was developed as a joint collaboration between the Indian Institute of Science, Bengaluru and St John’s Medical College, Bengaluru. Two-day workshop was conducted. Intensive didactic and case-based scenarios were simulated to formally teach principles of advanced ICU scenarios. The physicians were tested on clinical scenarios in hemodynamic monitoring and mechanical ventilation displayed on the simulator. Assessment of the analytical thinking and pattern recognition ability was carried out before and after the display of the scenarios. Pre- and posttest scores were collected.

Results: The postsimulation test scores were higher than pretest scores and were statistically significant in hemodynamic monitoring and mechanical ventilation module. [Hemodynamic monitoring pre- and posttest scores 4.41 (2.06) vs 5.23 (2.22) p < 0.001] [Mechanical ventilation pre- and posttest scores 4.2 (2.5) vs 7.5 (6.5–8.5) p < 0.001]. A greater increase in posttest scores was seen in the mechanical ventilation module as compared to hemodynamic monitoring. There was no effect of specialty or designation of a trainee on difference in pre- and posttest scores.

Conclusion: Simulator-based training in hemodynamic monitoring and mechanical ventilation was effective. Comparison of routine classroom teaching and simulator-based training needs to be evaluated prospectively.

Keywords: Hemodynamic monitoring, Mechanical ventilation, Simulation, Training.

Indian Journal of Critical Care Medicine (2020): 10.5005/jp-journals-10071-23458
The present ICU simulator has shown that teaching of advanced ventilator and hemodynamic monitoring is possible. It has helped the trainees in understanding the principles of mechanical ventilation and hemodynamic monitoring as shown by posttest scores. Trainees found this workshop as relevant and helpful and participated in future workshops. The present study has shown that the present ICU simulator can be used for teaching advanced critical care trainees in critical care specialties.

Table 1: Pre- and posttest evaluation of trainees

Variables	Hemodynamic module	Mechanical ventilation module	Pattern recognition questionnaire	Analytical thinking questionnaire
Pretest	4.41 (2.06)	5.23 (2.22)	1 (0–3)	2 (0–3.5)
Posttest	4.23 (2.62)	7.5 (6.5–8.5)	3 (0–5)	4 (2–5.5)
Paired t test/ Wilcoxon signed rank test	p < 0.001	z = 7.281, p < 0.001	z = 6.100, p < 0.001	z = 6.591, p < 0.001

Results

A total of 143 participants were evaluated. The presimulation test scores and postsimulation test scores were calculated.
were satisfied with the topics taught as suggested by feedback score analyzed by “Likert scale”. There was no effect of specialty and designation on scores of trainees, possible reason being, this method of teaching was new and there was no prior experience of simulator-based training in the cohort evaluated in this study.

Various studies have used static simulation for teaching cardiopulmonary resuscitation, difficult airway management, ECG, and echocardiography. These studies found that simulation-based learning was effective. It was also found to be useful in identification of medication-related errors.

Simulation of mechanical ventilation was used in one study. This was a comparison between computer-based and mannequin-based learning and it showed that mannequin-based learning has the advantage of improving skills in managing mechanical ventilation. In pediatric population, simulation of ARDS ventilation was found to be useful in improving time to effective interventions and behavioral skills. Similar study was done in pediatric population using the embedded simulation training program, which involved three phases of training and study was done over a period of 2 years. This study showed 6–12 months of learning curve in implementation of training program. Repeated exposure to simulation is more beneficial than single exposure. This is in contrary to our study in which only a single assessment was done and our study did not look at long-term impact of simulator-based training.

A meta-analysis comprising of 17 studies testing the use of simulator in various acute care settings, such as, emergency, trauma, operation room and ICU showed feasibility of simulation-based training in acute care settings, but there is lack of evidence on its effect on patient outcome.

As compared to previous studies, this simulator is a high fidelity model and one can simulate any scenario by altering resistance and compliance of the respiratory system. In the hemodynamic monitoring module, various types of shocks can be simulated. Previous studies have shown that teaching a particular task, such as, echocardiography, extracorporeal membrane oxygenation (ECMO), pneumonia, palliative care, ARDS and cardiac surgery by using simulator is possible. The advantage of the current simulation model is a single simulation model, which can help to understand cardiorespiratory pathophysiology and any cardiorespiratory derangement can be simulated but present simulator does not have difficult airway management module.

Our study has certain limitations. It was a single-center study. The trainee’s performance was tested after 2 days of training and it showed improvement in the performance. In practice, based on one clinical assessment, it is difficult to find out if trainee has achieved adequate level of competence in dealing with the complex real-life critical care scenarios. It was a 2-day workshop training and the majority of participants who attended were not from same institute; hence, repeat assessment of the trainee’s performance was not possible. As compared to previous studies, effect of stress and anxiety level was not tested and behavioral skills were not evaluated. We could not compare simulator-based training with classical method of training.

Conclusion

Present simulation model has shown to be beneficial in teaching advanced mechanical ventilation and hemodynamic monitoring to critical care physicians. Considering the complexity in managing critically ill patients as compared to other routine modalities of training, advantage of simulation-based training is that there is no harm to patients during training. Comparison of routine classroom teaching and simulator-based training needs to be evaluated prospectively.

Take Home Message

Simulator-based training in hemodynamic monitoring and mechanical ventilation is effective and it may help the trainees to learn different aspects of hemodynamic monitoring and mechanical ventilation without causing any harm to the patient.

Availability of Data and Materials

The datasets used and analyzed in the present study are available from the corresponding author upon request.

Author’s Contribution

Amarja Ashok Havaldar helped in designing the study, designing questionnaire data collection, analysis, and drafted the manuscript. Bhuvana Krishna helped in drafting the manuscript, Sriman Sampath helped in statistical analysis and drafting the manuscript, and Sarvana Kumar Paramasivam helped in designing questionnaire.

Acknowledgments

The author would like to thank Dr Pavan Sridharan and Dr Sreekanth Nayak who have designed the present simulator model.

References

1. Gerlach H, Toussaint S. Between prediction, education, and quality control: Simulation models in critical care. Crit Care 2007;11(4):146. DOI: 10.1186/cc5950.

2. Ye M, Brett S. Improving care by understanding the way we work: Human factors and behavioural science in the context of intensive care. Crit Care 2009;13(2):139. DOI: 10.1186/cc7787.

3. Good ML. Patient simulation training and advanced clinical skills. Med Educ 2003;37(s1):14–21. DOI: 10.1046/j.1365-2923.37.s1.x.
4. Fackler JC, Watts C, Grome A, Miller T, Crandall B, Pronovost P. Critical care physician cognitive task analysis: an exploratory study. Crit Care 2009;13(2):R33. DOI: 10.1186/cc7740.

5. Sanri E, Karacaday S, Emre Ergul SE, et al. The additional impact of simulation based medical training to traditional medical training alone in advanced cardiac life support: a scenario based evaluation. Signa vitae: Journal for Intensive care and Emergency Medicine 2018;14:68–72.

6. Smith HL, Menon DK. Teaching difficult airway management: is virtual reality real enough? Intensive Care Med 2005;30(4):504–505. DOI: 10.1007/s00134-005-2576-6.

7. Denadai R, Toledo AP, Bernades DM, Diniz FD, Eid FB, Lanfranchi LMMM, et al. Simulation-based ultrasound-guided central venous cannulation training program. Acta Cirurgica Brasileira 2014;29(2):132–144. DOI: 10.1590/S0102-86502014000200010.

8. Vignon P, Pegot B, Dalmay F, Jean-Michel V, Bocher S, L’her E, et al. Acceleration of the learning curve for mastering basic critical care echocardiography using computerized simulation. Intensive Care Med 2018;44(7):1097–1105. DOI: 10.1007/s00134-018-5248-z.

9. Ford DG, Seybert AL, Smithburger PL, Kobulinsky LR, Samosky JT, Kane-Gill SL. Impact of simulation-based learning on medication error rates in critically ill patients. Intensive Care Med 2010;36(9):1526–1531. DOI: 10.1007/s00134-010-1860-2.

10. Yee J, Fuenning C, George R, Hejal R, Haines N, Dunn D, et al. Mechanical ventilation boot camp: a simulation-based pilot study. Crit Care Res Pract 2016;2016:1–7. DOI: 10.1155/2016/4670672.

11. Saffaran S, Das A, Hardman JG, Yehya N, Bates DG. High-fidelity computational simulation to refine strategies for lung-protective ventilation in paediatric acute respiratory distress syndrome. Intensive Care Med 2019;14(7):1–3. DOI: 10.1007/s00134-019-05559-4.

12. Stocker M, Allen M, Pool N, De Costa K, Combes J, West N, et al. Impact of an embedded simulation team training programme in a paediatric intensive care unit: a prospective, single-centre, longitudinal study. Intensive Care Med 2012;38(1):99–104. DOI: 10.1007/s00134-011-2371-5.

13. Armenia S, Thangamathesvaran L, Caine A, King N, Kunac A, Merchant A. The role of high-fidelity team-based simulation in acute care settings: a systematic review. Surg J 2018;4(3):e136–e151. DOI: 10.1055/s-0038-1667315.

14. Di Nardo M, David P, Stoppa F, Lorusso R, Raponi M, Amodeo A, et al. The introduction of a high-fidelity simulation program for training pediatric critical care personnel reduces the times to manage extracorporeal membrane oxygenation emergencies and improves teamwork. J Thorac Dis 2018;10(6):3409. DOI: 10.21037/jtd.2018.05.77.

15. Saka G, Kreke JE, Schaefer AJ, Chang CC, Roberts MS, Angus DC, et al. Use of dynamic microsimulation to predict disease progression in patients with pneumonia-related sepsis. Crit Care 2007;11(3):R65. DOI: 10.1186/cc5942.

16. Randall D, Garburt D, Barnard M. Using simulation as a learning experience in clinical teams to learn about palliative and end-of-life care: a literature review. Death Stud 2018;42(3):172–183. DOI: 10.1080/07481187.2017.1334006.

17. Garrouste-Orgeas M, Tabah A, Vesin A, Philippart F, Kpodji A, Bruel C, et al. The ETHICA study (part II): simulation study of determinants and variability of ICU physician decisions in patients aged 80 or over. Intensive Care Med 2013;39(9):1574–1583. DOI: 10.1007/s00134-013-2977-x.

18. Abrahamsson SD, Canzian S, Brunet F. Using simulation for training and to change protocol during the outbreak of severe acute respiratory syndrome. Crit Care 2005;10(1):R3. DOI: 10.1186/cc3916.

19. Bruppacher HR, Alam SK, LeBlanc VR, Latter D, Naik VN, Savoldelli GL, et al. Simulation-based training improves physicians’ performance in patient care in high-stakes clinical setting of cardiac surgery. Anesthesiology: J Am Soc Anesthesiolog 2010;112(4):985–992. DOI: 10.1097/ALN.0b013e3181d3e31c.

20. Hunziker S, Laschinger L, Portmann-Schwarz S, Semmer NK, Tschan F, Marsch S. Perceived stress and team performance during a simulated resuscitation. Intensive Care Med 2011;37(9):1473–1479. DOI: 10.1007/s00134-011-2277-2.
Table A1: Questionnaire for evaluating feedback from the physicians

Question	1	2	3	4	5
1. How satisfied were you with the workshop?					
2. How relevant and helpful do you think it was for your daily practice?					
3. How satisfied were you with the logistics? [Time given for each station]					
4. How satisfied were you with lectures and workstations?					
Day 1 (fundamentals of mechanical ventilator)					
5. How satisfied were you with lectures and workstations?					
Day 2 [hemodynamic monitoring]					

Question no. 1, 3, 6, 8 are pattern recognition

Question no 2, 4, 5, 7, 9 are analytical questions

Fig. A1: Questionnaire for mechanical ventilation
Simulation Training in Critical Care

Advanced Simulation Training in Critical Care (ASTriCC)
PRE-TEST HEMODYNAMIC MONITORING - DAY -2-

1. Interpretation of fluid status P

2. How you are going to resuscitate the patient A
 ABG: PH - 7.25 / HCO₃ - 18 / PCO₂ - 35 / Lactate - 3.6

3. a. Interpretation of Echo A
 b. What additional test you would like to do

4. Interpretation of arterial line P

5. Patient’s ABG repeated, what is your next plan of action?
 ABG: PH - 7.2 / HCO₃ - 15 / PCO₂ - 38 / Lactate - 4 A

6. Which strategy you will use to improve patient’s condition? A

7. Day 4 on ventilator support, Patient planned for extubation, repeat ECHO, USG was done, what is your plan? A

Question no. 2, 3, 5, 6, 7 are analytical thinking type

Question no. 1, 4 are pattern recognition type

Fig. A2: Questionnaire for hemodynamic monitoring

Table A2: Change in mechanical ventilation module scores in specialty and designation

Specialty	Designation	Students	Total
Intensivist	3.5	3.42	3.47
Nonintensivist	4.42	3.75	4.28
Total	3.69	3.46	3.62

Table A3: Change in hemodynamic monitoring module scores in specialty and designation

Specialty	Designation	Students	Total
Intensivist	0.026	0.91	0.46
Nonintensivist	0.42	-1.87	0.089
Total	0.104	0.8	0.42

Table A4: Change in pattern recognition scores in specialty and designation

Specialty	Designation	Students	Total
Intensivist	0.84	0.77	0.81
Nonintensivist	1.38	0.75	1.19
Total	0.91	0.76	0.86

Table A5: Change in analytical thinking scores in specialty and designation

Specialty	Designation	Students	Total
Intensivist	0.98	1.18	1.05
Nonintensivist	2.22	0.75	1.76
Total	1.13	1.14	1.13