A characterization of regular tetrahedra in \mathbb{Z}^3

Eugen J. Ionascu

Department of Mathematics
Columbus State University
Columbus, GA 31907, US

Honorary Member of the
Romanian Institute of Mathematics “Simion Stoilow”

ionascu_eugen@colstate.edu

December 23rd, 2007

Abstract

In this note we characterize all regular tetrahedra whose vertices in \mathbb{R}^3 have integer coordinates. The main result is a consequence of the characterization of all equilateral triangles having integer coordinates ([3]). Previous work on this topic began in [4]. We will use this characterization to point out some corollaries. The number of such tetrahedra whose vertices are in the finite set $\{0, 1, 2, \ldots, n\}^3$, $n \in \mathbb{N}$, is related to the sequence A103158 in the Online Encyclopedia of Integer Sequences ([9]).

1 Introduction

In this paper we give a solution to the following system of Diophantine equations:

$$
\begin{align*}
(x_a - x_b)^2 + (y_a - y_b)^2 + (z_a - z_b)^2 &= (x_a - x_c)^2 + (y_a - y_c)^2 + (z_a - z_c)^2 \\
(x_a - x_b)^2 + (y_a - y_b)^2 + (z_a - z_b)^2 &= (x_a - x_d)^2 + (y_a - y_d)^2 + (z_a - z_d)^2 \\
(x_a - x_b)^2 + (y_a - y_b)^2 + (z_a - z_b)^2 &= (x_b - x_c)^2 + (y_b - y_c)^2 + (z_b - z_c)^2 \\
(x_a - x_b)^2 + (y_a - y_b)^2 + (z_a - z_b)^2 &= (x_b - x_d)^2 + (y_b - y_d)^2 + (z_b - z_d)^2 \\
(x_a - x_b)^2 + (y_a - y_b)^2 + (z_a - z_b)^2 &= (x_c - x_d)^2 + (y_c - y_d)^2 + (z_c - z_d)^2
\end{align*}
$$

where $x_a, y_a, z_a, x_b, y_b, z_b, x_c, y_c, z_c, x_d, y_d, z_d$ are in \mathbb{Z}. If $A(x_a, y_a, z_a), B(x_b, y_b, z_b), B(x_c, y_c, z_c)$, and $D(x_d, y_d, z_d)$ are considered in \mathbb{R}^3 the Diophantine system (1) represents exactly the condition that makes $ABCD$ a regular tetrahedron with vertices having integer coordinates. Clearly (1) is invariant under translations in \mathbb{R}^3 with vectors having integer coordinates.
coordinates. So, without loss in generality we are interested in the case, $A = O$, where O is the origin. Then for each of the faces OBC, OCD and OBD to be being equilateral triangles it is necessary and sufficient to solve for instance the following system:

$$\begin{array}{l}
x^2_b + y^2_b + z^2_b = x^2_c + y^2_c + z^2_c \\
x^2_b + y^2_b + z^2_b = (x_b - x_c)^2 + (y_b - y_c)^2 + (z_b - z_c)^2.
\end{array} \tag{2}$$

This problem was solved in [3]. We recall the following facts from [3] and [4]. Every equilateral triangle in \mathbb{R}^3 whose vertices have integer coordinates, after a translation that brings one of its vertices to the origin, must be contained in a plane of a normal vector (a, b, c) $(a, b, c \in \mathbb{Z})$ satisfying the Diophantine equation

$$a^2 + b^2 + c^2 = 3d^2 \tag{3}$$

with $d \in \mathbb{N}$. Moreover, a, b, c, and d can be chosen so that the sides of such a triangle have length of the form $d\sqrt{2(m^2 - mn + n^2)}$ with m and n integers. A more precise statement is the next parametrization of these triangles.

Theorem 1.1. Let a, b, c, d be odd integers such that $a^2 + b^2 + c^2 = 3d^2$ and $\gcd(a, b, c) = 1$. Then for every $m, n \in \mathbb{Z}$ the points $P(u, v, w)$ and $Q(x, y, z)$ whose coordinates are given by

$$\begin{array}{ll}
u = m_u m - n_u n, & x = m_x m - n_x n, \\
v = m_m m - n_m n, & y = m_y m - n_y n, \\
w = m w m - n w n, & z = m_z m - n_z n,
\end{array} \tag{4}$$

with

$$\begin{array}{ll}
m_x = -\frac{1}{2}[db(3r + s) + ac(r - s)]/q, & n_x = -(rac + dbs)/q \\
m_y = \frac{1}{2}[da(3r + s) - bc(r - s)]/q, & n_y = (das - bcr)/q \\
m_z = (r - s)/2, & n_z = r
\end{array} \quad \text{and} \quad \begin{array}{ll}
m_u = -(rac + dbs)/q, & n_u = -\frac{1}{2}[db(s - 3r) + ac(r + s)]/q \\
m_v = (das - rbc)/q, & n_v = \frac{1}{2}[da(s - 3r) - bc(r + s)]/q \\
m_w = r, & n_w = (r + s)/2
\end{array} \tag{5}$$

where $q = a^2 + b^2$ and (r, s) is a suitable solution of $2q = s^2 + 3r^2$ that makes all the numbers in (5) integers, together with the origin $(O(0,0,0))$ forms an equilateral triangle in \mathbb{Z}^3 contained in the plane having equation

$$\mathcal{P}_{a,b,c} := \{(\alpha, \beta, \gamma) \in \mathbb{R} | a\alpha + b\beta + c\gamma = 0\}$$

and having sides-lengths equal to $d\sqrt{2(m^2 - mn + n^2)}$.

Conversely, there exists a choice of the integers r and s such that given an arbitrary equilateral triangle in \mathbb{R}^3 whose vertices, one at the origin and the other two having integer coordinates and contained in the plane $\mathcal{P}_{a,b,c}$, then there also exist integers m and n such that the two vertices not at the origin are given by (4) and (5).
In Figure 1 we are showing a few triangles that can be obtained, using (4), for various values of \(m \) and \(n \). Out of all these equilateral triangles only a few are faces of regular tetrahedra with integer coordinates. The restriction comes from the following characterization given as Proposition 5.3 in [4].

Proposition 1.1. A regular tetrahedron having side lengths \(l \) and with integer coordinates exists, if and only if \(l = m\sqrt{2} \) for some \(m \in \mathbb{N} \).

Given an \(m \in \mathbb{N} \), we are interested in finding a characterization of all such tetrahedra having side lengths equal to \(m\sqrt{2} \). Let us denote this class of objects by \(T_m \) and its subset of tetrahedra that have the origin as a vertex by \(T_0^m \). Obviously we have \(T_m = \bigcup_{v \in \mathbb{Z}^3} (T_0^m + v) \) but this union is not a partition. In what follows we will use the notation \(T := \bigcup_{m \in \mathbb{N}} (T_m) \).

This latter union is, on the other hand, a partition.

Next we are going to concentrate on \(T_0^m \). It turns out that \(T_0^m \) is numerous if \(m \) is divisible by many prime factors of the form \(6k + 1 \), \(k \in \mathbb{N} \), as one can see from the following.

First we recall Euler’s \(6k + 1 \) theorem (see [7], pp. 568 and [1], pp. 56).

Proposition 1.2. An integer \(t \) can be written as \(s^2 - sr + r^2 \) for some \(s, r \in \mathbb{Z} \) if and only if in the prime factorization of \(t \), 2 and the primes of the form \(6k - 1 \) appear to an even exponent.

The following result seems to be known but we could not find a reference for it.

Proposition 1.3. Given \(k = 3^\alpha (a^2)b \) where \(a \) does not contain any prime factors of the form \(6\ell + 1 \), \(b \) is the product of such primes, say \(b = p_1^{r_1} p_2^{r_2} \cdots p_j^{r_j} \), then the number of representations \(k = m^2 - mn + n^2 \), counting all possible pairs \((m, n) \) of integers that satisfy this equation, is equal to

\[
6(r_1 + 1)(r_2 + 1)\cdots (r_j + 1).
\]
For a proof of this proposition one can use arguments similar to those in the proof of Gauss’s Theorem about the number of representations of a number as sums of two squares of integers ([7]). In this case one has to replace Gaussian integers with Eisenstein integers, i.e. the ring of numbers of the form \(m + n\omega \), \(m, n \in \mathbb{Z} \), where \(\omega = \frac{-1+i\sqrt{3}}{2} \). Related to Proposition 1.3, we found a conjecture in a paper posted on the mathematics archives (see [6]). This article refers to the number of representations of a number as \(m^2 + mn + n^2 \) with \(m, n \in \mathbb{N} \).

2 Main results

Let us begin by refining the argument used in the proof of Proposition 5.3 in [4]. That proposition referred to the following figure representing a regular tetrahedron whose vertices are given by the origin, \(P(x, y, z) \), \(Q(u, v, w) \) and \(R \):

![Figure 2: Regular tetrahedron](image)

By the characterization of equilateral triangles in Theorem 1.1 we may assume that the coordinates of \(P \) and \(Q \) are given by (4) and (5).

If \(E \) denotes the center of the face \(\triangle O P Q \). Then from Theorem 1.1 we know that

\[
\frac{\overrightarrow{ER}}{|ER|} = \frac{(a, b, c)}{\sqrt{a^2 + b^2 + c^2}} = \frac{1}{\sqrt{3d}}(a, b, c) \quad \text{for some} \quad a, b, c, d, m, n \in \mathbb{Z}, \ gcd(a, b, c) = 1, \ d \ \text{odd satisfying} \quad a^2 + b^2 + c^2 = 3d^2 \quad \text{and} \quad l = d \sqrt{2(m^2 - mn + n^2)}. \]

Let us denote \(m^2 - mn + n^2 \) by \(\zeta(m, n) \). The coordinates of \(E \) are \(\left(\frac{u+x}{3}, \frac{y+v}{3}, \frac{z+w}{3}\right) \).

From the Pythagorean theorem one can find easily that \(RE = l \sqrt{\frac{2}{3}} \). Since \(\overrightarrow{OR} = \overrightarrow{OE} + \overrightarrow{ER} \), the coordinates of \(R \) must be given by

\[
\left(\frac{u+x}{3} \pm l \sqrt{\frac{2}{3}} \sqrt{\frac{1}{3d}}, \frac{y+v}{3} \pm l \sqrt{\frac{2}{3}} \sqrt{\frac{1}{3d}}, \frac{z+w}{3} \pm l \sqrt{\frac{2}{3}} \sqrt{\frac{1}{3d}}\right)
\]
or
\[
\left(\frac{u + x}{3} \pm \frac{2a\sqrt{\zeta(m,n)}}{3}, \frac{y + v}{3} \pm \frac{2b\sqrt{\zeta(m,n)}}{3}, \frac{z + w}{3} \pm \frac{2c\sqrt{\zeta(m,n)}}{3} \right).
\]

Since these coordinates are assumed to be integers we see that \(\zeta(m,n)\) must be a perfect square, say \(k^2\), \(k \in \mathbb{N}\).

It is worth mentioning that this leads to the Diophantine equation
\[
m^2 - mn + n^2 = k^2
\]
whose positive solutions are known as Eisenstein triples, or Eisenstein numbers. A primitive solution of (6) is one for which \(\gcd(m,n) = 1\). These triples can be characterized in a similar way as the Pythagorean triples.

Theorem 2.1. Every primitive solution of the Diophantine equation (6) is in one of the two forms:
\[
m = v^2 - u^2, \quad n = 2uv - u^2 \quad \text{and} \quad k = u^2 - uv + v^2, \quad \text{with} \quad v > u, \quad \text{or}
\]
\[
m = 2uv - u^2, \quad n = 2uv - v^2 \quad \text{and} \quad k = u^2 - uv + v^2, \quad \text{with} \quad 2v > u > v/2,
\]
where \(u, v \in \mathbb{N}\), \(\gcd(u,v) = 1\), and \(u + v \not\equiv 0 \pmod{3}\). Conversely, every triple given by one of the alternatives in (7) is a primitive solution of (6).

We leave the proof of this theorem to the reader.

Next, let us introduce the notation \(\Omega(k) := \{(m,n) \in \mathbb{Z}^2: \zeta(m,n) = k^2\}\). If the primes dividing \(k\) are all of the form \(p \equiv 2 \pmod{3}\) then we have simply
\[
\Omega(k) = \{(k,0), (k,k), (0,k), (-k,0), (-k,-k), (0,-k)\}
\]
but in general this set can be a much larger as one can see from Proposition 1.3. For instance if \(k = 7\) then one can check the nontrivial representation \(49 = \zeta(8,3)\). For each solution \((m,n) \in \Omega(k)\), in general, one can find eleven more by applying the following transformations:
\[(m,n) \overset{\tau_1}{\rightarrow} (m-n,m), \quad (m,n) \overset{\tau_2}{\rightarrow} (m,n-m), \quad \text{then their permutations} \quad (m,n) \overset{\tau_3}{\rightarrow} (n,m), \quad (m,n) \overset{\tau_4}{\rightarrow} (m-n,m), \quad \text{and finally the reflections into the origin of all the above maps} \quad (m,n) \overset{\tau_5}{\rightarrow} (-m,-n), \quad (m,n) \overset{\tau_6}{\rightarrow} (n-m,-m), \quad (m,n) \overset{\tau_7}{\rightarrow} (-m,-m-n), \quad (m,n) \overset{\tau_8}{\rightarrow} (-m,-n-m), \quad (m,n) \overset{\tau_9}{\rightarrow} (n-m,n).
\]

Hence, the coordinates of \(R\) depend on \((m,n) \in \Omega(k)\) and two possible choices of signs:
\[
R = \left(\begin{array}{ccc}
\frac{(m_x + m_u)m}{3} & \frac{(m_y + m_v)m}{3} & \frac{(m_z + m_w)m}{3} \\
\frac{-(n_x + n_u)n}{3} & \frac{-(n_y + n_v)n}{3} & \frac{-(n_z + n_w)n}{3} \\
\pm 2ak & \pm 2bk & \pm 2ck
\end{array} \right), \quad (m,n) \in \Omega(k).
\]

We would like to show that for every primitive solution of the equation (3), every \(k \in \mathbb{N}\), and every \((m,n) \in \Omega(k)\) one has either integer coordinates in (8) or can choose the signs in
order to accomplish this. A primitive solution of (3) is a solution that satisfies the conditions \(\gcd(a, b, c) = 1 \). We begin with a few lemmas.

Lemma 2.1. Every primitive solution \((a, b, c, d)\) of (3) must satisfy

(i) \(a \equiv \pm 1 \pmod{6} \), \(b \equiv \pm 1 \pmod{6} \) and \(c \equiv \pm 1 \pmod{6} \),

(ii) \(a^2 + b^2 \equiv 2 \pmod{6} \).

Proof. One can see that all numbers \(a, b, c \) and \(d \) must be odd since \(\gcd(a, b, c) = 1 \). Then an odd perfect square is congruent to only 1 or 3 modulo 6. By way of contradiction if we have for instance \(a \equiv 3 \pmod{6} \) then 3 divides \(a^2 = 3d^2 - (b^2 + c^2) \). This implies that 3 divides \(b^2 + c^2 \) which is possible only if 3 divides \(b \) and \(c \). Therefore that would contradict the assumption \(\gcd(a, b, c) = 1 \). Hence, (i) is shown and (ii) is just a simple consequence of (i).

Let us observe that (ii) in Lemma 2.1 implies in particular that \(q = a^2 + b^2 \) is coprime with 3.

Lemma 2.2. Let \(k \in \mathbb{N} \) and \((m, n) \in \Omega(k)\).

(a) Then \(m \) and \(n \) must satisfy \(k \equiv \pm(m + n) \pmod{3} \).

(b) If \(k \equiv 0 \pmod{3} \) then \(m \equiv n \equiv 0 \pmod{3} \).

Proof. (a) This part follows immediately from the identities

\[
k^2 \equiv 4k^2 = 4m^2 - 4mn + 4n^2 = 3m^2 + (2m - n)^2 \equiv (2m - n)^2 \equiv (m + n)^2 \pmod{3}.
\]

(b) For the second part let us observe that if \(k \equiv 0 \pmod{3} \) then by part (a) we must have \(m = 3t - n \) for some \(t \in \mathbb{Z} \). This in turn gives \(9k^2 = k^2 = m^2 - mn + n^2 = 3(3t^3 - 3nt + n^2) \) which shows that 3 divides \(3t^3 - 3nt + n^2 \). So, finally \(n \) must be divisible by 3 and then so is \(m \).

\[
\text{Figure 3: All regular tetrahedra in } T_1^0
\]

Lemma 2.3. Let \(q = a^2 + b^2 \) with \((a, b, c, d)\) a primitive solution of (3) and \(r, s \in \mathbb{Z} \) a solution of the equation \(2q = s^2 + 3r^2 \). Then \(1 \equiv a^2 \equiv b^2 \equiv c^2 \equiv s^2 \pmod{3} \).
\textbf{Proof.} Since \(2c^2 = 6d^2 - 2q \equiv -s^2 - 3r^2 \equiv -s^2 \pmod{3}\) then we have \(2c^2 \equiv 2s^2 \pmod{3}\) which together with Lemma 2.1 gives the desired conclusion. \qed

For \(a = b = c = 1\), we have 8 elements in \(T^0_1\) as shown in Figure 3, one for each triangular face of a cuboctahedron (Archimedean solid \(A_1\) or also known as a truncated cube):

The number of tetrahedra in \(T^0_m\) in general depends on \(m\). For instance, if \(m = 3\) then we calculated that \(|T^0_3| = 40\). Let us denote by \(TO(m)\) the cardinality of \(T^0_m\).

In general, the faces of an element in \(T^0_m\) must have normal vectors that satisfy (3). But these equations can be very different and one has to go search far enough to find such an example. For instance, the tetrahedron \(OABC\) where \(A = (376, -841, 2265), B = (-1005, -2116, 701), C = (1411, -1965, 356)\) has the four faces with normal vectors

\[
\begin{align*}
(-187, 113, 73), & \quad \text{satisfying } 187^2 + 113^2 + 73^2 = 3(133^2), \\
(-343, -253, -37), & \quad \text{satisfying } 343^2 + 253^2 + 37^2 = 3(247^2), \\
(19, 41, 151), & \quad \text{satisfying } 19^2 + 41^2 + 151^2 = 3(91)^2 \text{ and} \\
(391, -2461, 1661), & \quad \text{satisfying } 391^2 + 2461^2 + 1661^2 = 3(1729)^2.
\end{align*}
\]

\textbf{Theorem 2.2.} Every tetrahedron in \(T^0_q\) can be obtained by taking as one of its faces an equilateral triangle having the origin as a vertex and the other two vertices given by (4) and (5) with \(a, b, c\) and \(d\) odd integers satisfying (3) with \(d\) a divisor of \(\ell\), and then completing it with the fourth vertex as in (8) for some \((m, n) \in \Omega(\ell/d)\).

Conversely, if we let \(a, b, c\) and \(d\) be a primitive solution of (3), let \(k \in \mathbb{N}\) and \((m, n) \in \Omega(k)\), then the coordinates of the point \(R\) in (8) are

(a) all integers, if \(k \equiv 0 \pmod{3}\) regardless of the choice of signs or
(b) integers, precisely for only one choice of the signs if \(k \not\equiv 0 \pmod{3}\).

\textbf{Proof.} The first part of the theorem follows from the arguments at the beginning of this section. For the second part, the case in which \(k\) is a multiple of 3 follows from Lemma 2.2.

Let us look into a situation in which \(k \not\equiv 0 \pmod{3}\). First we are going to analyze the third coordinate of \(R\). Since (5) gives \(m_z + m_w = \frac{r-s}{2} + r = \frac{3r-s}{2}\) and \(n_z + n_w = \frac{3r+s}{2}\) we see that

\[2[(m_z + m_w)m - (n_z + n_w)n] \equiv -s(m + n) \equiv ck \pmod{3}, \quad (9)\]

which by Lemma 2.2 and Lemma 2.1 give that

\[-s(m + n) \equiv ck \equiv k(s + c) \equiv 0 \pmod{3}\]

only for one choice of signs. So, the last coordinate of \(R\) satisfies the statement of our theorem in part (b). If the coordinates of \(R\) are \((x_R, y_R, z_R)\) we must have \(x_R^2 + y_R^2 + z_R^2 = \ell^2\). So, it is enough to analyze just one other coordinate of \(R\). From (5) we obtain that

\[2q(m_z + m_w) = -db(3r + s) - ac(r - s) - 2(rac + dbs) \equiv acs \pmod{3}, \text{ and } 2q(n_z + n_w) = -2(rac + dbs) - db(s - 3r) - ac(r + s) \equiv -acs \pmod{3}. \]

Therefore,

\[2q[(m_z + m_w)m - (n_z + n_w)n] \equiv acs(m + n) \equiv qak \pmod{3}.\]
But \(q \equiv -1 \pmod{3} \) by Lemma 2.1, and so

\[
2q[(m_x + m_u)m - (n_x + n_u)n \pm 2ak] \equiv a(cs(m + n) \mp k) \pmod{3}.
\]

Because \(c^2 \equiv 1 \pmod{3} \), we can multiply the above relation by \(c \) to get

\[
2qc[(m_x + m_u)m - (n_x + n_u)n \pm 2ak] \equiv -a[-s(m + n) \pm ck] \pmod{3},
\]

which shows, based on (9), that \((m_x + m_u)m - (n_x + n_u)n \pm 2ak\) is divisible by 3 if and only if \(z_R \) is an integer. Hence we have proved the last part of Theorem 2.2. \(\square \)

The next figure shows how our tetrahedra look if we start from equilateral triangles as bases contained in a plane and this is as expected according to Theorem 2.2.

\[\text{Figure 4: Regular tetrahedra in the case } k \not\equiv 0 \pmod{3}\]

Remark: The alternating behavior that can be observed in Figure 4 follows from Theorem 2.2 part (b). Indeed, we can start with an equilateral triangle contained in a plane \(\mathcal{P} \) which is one of the tiles and the generator of a regular triangular tessellation. By Theorem 2.2 part (b) each such tile from this tessellation is the face of a regular tetrahedron in \(T \) that is located in one and only one of the sides of \(\mathcal{P} \). We denote the two half spaces by \(\mathcal{P}_+ \) and \(\mathcal{P}_- \). Let us take one such tetrahedron, say in \(\mathcal{P}_+ \), and translate this tetrahedron such that the fourth vertex, \(R \), becomes the origin. The other vertices give rise to three vertices of integer coordinates in \(\mathcal{P}_- \) that are each the fourth vertex \(R' \) for three other tetrahedra living in \(\mathcal{P}_- \) as in Figure 4. This type of translation can be repeated with one of the tetrahedra in \(\mathcal{P}_- \) and one obtains the alternating tetrahedra as Figure 4.

Proposition 2.1. For a regular tetrahedra in \(T_m \) each face lies in a plane with a normal vector \(n_i = (a_i, b_i, c_i) \in \mathbb{Z}^3, i = 1, 2, 3, 4, \) which satisfy

\[
a_i^2 + b_i^2 + c_i^2 = 3d_i^2, \quad d_i \text{ an odd integer dividing } m, 1 \leq i \leq 4
\]

\[
a_i a_j + b_i b_j + c_i c_j + d_i d_j = 0, \quad 1 \leq i < j \leq 4
\]

(10)
Proof. We are going to refer to the Figure 2. Let E be the center of the face OPQ, F be the center of the face RPQ, G the midpoint of the side PQ, and H the center of the tetrahedron $ORPQ$ (O being the origin). Since $O, R, E, F, G,$ and H are all coplanar, and F and E are the intersections of the medians on each corresponding face we have $\frac{RF}{RG} = \frac{2}{3}$ and $\frac{EG}{EO} = \frac{1}{2}$. By Menelaus’s theorem $\frac{HO}{HF} \cdot \frac{RF}{RG} \cdot \frac{EG}{EO} = 1$. This gives $\frac{HO}{HF} = 3$ and from here we have $\frac{HO}{HR} = \frac{3}{4} \cdot \frac{\sqrt{3}}{3} \ell = \frac{\sqrt{3}}{8} \ell$. Using the law of cosines in the triangle ORH gives:

$$OR^2 = 2HR^2 - 2HR^2 \cos \frac{\ell}{OH R}$$

which gives

$$\cos \frac{\ell}{OH R} = -\frac{1}{3}. \quad (11)$$

So, if the normal exterior unit vectors of the faces RPQ and OPQ are, say $\frac{(a_1, b_1, c_1)}{\sqrt{3d_1}}$ and $\frac{(a_2, b_2, c_2)}{\sqrt{3d_2}}$, using (11) gives $a_1a_2 + b_1b_2 + c_1c_2 + d_1d_2 = 0$. The rest of the identities follow similarly or from what we have mentioned so far.

Remark: If we consider the matrix

$$MT := \frac{1}{2} \begin{bmatrix} \frac{a_1}{d_1} & \frac{b_1}{d_1} & \frac{c_1}{d_1} & 1 \\ \frac{a_2}{d_2} & \frac{b_2}{d_2} & \frac{c_2}{d_2} & 1 \\ \frac{a_3}{d_3} & \frac{b_3}{d_3} & \frac{c_3}{d_3} & 1 \\ \frac{a_4}{d_4} & \frac{b_4}{d_4} & \frac{c_4}{d_4} & 1 \end{bmatrix} \quad (12)$$

the restrictions in (10) can be reformulated in terms of MT by requiring it to be orthogonal, i.e. $MT(MT)^t = (MT)^tMT = I$. It is known that the set of orthogonal matrices form a group. We also want to point out that in (10) only two of the exterior normal vectors n_i are essential. The other two can be computed from the given ones.

An interesting question here is whether or not every two vectors (a, b, c) and (a', b', c') which satisfy the conditions

$$a^2 + b^2 + c^2 = 3d^2, \quad a'^2 + b'^2 + c'^2 = 3d'^2, \quad aa' + bb' + cc' + dd' = 0 \quad (13)$$

for some $d, d' \in \mathbb{Z}$, corresponds to a tetrahedron in T containing two faces normal to the given vectors. It turns out that the answer is a positive one and the proof of it follows from Theorem 4 in [4].

Another corollary of Theorem 2.2 about solutions of a particular case of the Diophantine system (13) is given next.

Corollary 2.1. For every odd integer $d > 1$, the Diophantine system

$$a^2 + b^2 + c^2 = 3d^2, \quad a'^2 + b'^2 + c'^2 = 3d'^2, \quad aa' + bb' + cc' = -d^2 \quad (14)$$

always has nontrivial solutions (one trivial solution is $a = b = c = d$ and $a' = b' = -d, c = d$.)

Proof. We have shown in [4] that the Diophantine equation $a^2 + b^2 + c^2 = 3d^2$ always has nontrivial solutions. We then take $m = n = 1$ in Theorem 1.1 to obtain an equilateral
triangle contained in the plane of normal vector \((a, b, c)\). By Theorem 2.2, case \(k = 1\), we can complete this equilateral triangle to a regular tetrahedron in \(T\). Taking the normals to the new faces will give four normals and say \((\hat{a}, \hat{b}, \hat{c})\) is one of them. Let us assume that \(gcd(\hat{a}, \hat{b}, \hat{c}) = 1\). We know that there is a \(d\) such that \(\hat{a}^2 + \hat{b}^2 + \hat{c}^2 = 3d^2\). The side length of this tetrahedron is, by our choice of \(m\) and \(n\), equal to \(d\sqrt{2}\). Therefore, from Theorem 1.1 applied to the plane normal to \((\hat{a}, \hat{b}, \hat{c})\), we get that \(d\sqrt{2} = d\sqrt{2}(u^2 - uv + v^2)\) for some \(u, v \in \mathbb{Z}\), which implies that \(\hat{d}\) divides \(d\). Hence we can adjust \((\hat{a}, \hat{b}, \hat{c})\), if necessary, by a multiplicative factor in order to satisfy (14).

\[
\]

References

[1] R. Guy, *Unsolved Problems in Number Theory*, Springer-Verlag, 2004.

[2] E. Grosswald, *Representations of Integers as Sums of Squares*, Springer Verlag, 1985.

[3] R. Chandler and E. J. Ionascu, *A characterization of all equilateral triangles in \(\mathbb{Z}^3\)*, arXiv:0710.0708v1, submitted December 2007.

[4] E. J. Ionascu, *A parametrization of equilateral triangles having integer coordinates*, Journal of Integer Sequences, 10, (2007), Article 07.6.7

[5] E. J. Ionascu, *Counting all equilateral triangles in \(\{0, 1, ..., n\}^3\)*, to appear in Acta Mathematica Universitatis Comenianae

[6] U. P. Nair, *Elementary results on the binary quadratic form \(a^2 + ab + b^2\)*, arXiv:0408107v1

[7] K. Rosen, *Elementary Number Theory*, Fifth Edition, Addison Wesley, 2004

[8] C. J. Moreno and S.S. Wagstaff, JR. *Sums of squares*, Chapman & Hall/CRC, 2006.

[9] Neil J. A. Sloane, *The On-Line Encyclopedia of Integer Sequences*, 2005, published electronically at http://www.research.att.com/~njas/sequences/.

2000 Mathematics Subject Classification: Primary 11A67; Secondary 11D09, 11D04, 11R99, 11B99, 51N20.

Keywords: Diophantine equations, regular tetrahedra, equilateral triangles, integers, parametrization, characterization.

(Concerned with sequence A102698.)