The Piecewise Collocation Solution Of Second Kind
Fredholm Integral Equations By Using Quarter-Sweep Iteration

N. S. Mohamad and J. Sulaiman
1,2Mathematics with Economic Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia.

E-mail: norsyahidamohamad@yahoo.com

Abstract. In this paper, a piecewise collocation discretization scheme based on the piecewise constant approximation with the concept of quarter-sweep Jacobi (QSJ) iteration is discussed in solving the linear Fredholm integral equations of second kind. By considering the piecewise approximation equations, the generated linear system has been constructed with its large scale coefficient matrix. The purpose of this quarter-sweep iteration concept is to reduce the computational complexity of the linear system. For the purpose of comparison, the formulation and implementation of full-sweep Jacobi (FSJ), half-sweep Jacobi (HSJ) and QSJ iterative methods are also included. The results of these three proposed methods showed that the QSJ method is better than others Jacobi iteration family.

1. Introduction
In the recent studies, there are many authors that have chosen the Fredholm integral equations as their research study since the integral equations is quite famous among the mathematician. Nevertheless, the integral equations regularly been used in many fields and it particularly can be used in applied mathematics, science, engineering, geophysics, electricity, magnetism and kinetic theory [1]. Based on previous studies, there are three types of linear Fredholm integral equations which are the first kind, second kind and third kind [2-4]. These three types were introduced by a few authors but commonly, the second kind of integral equations is repeatedly used. The following is second kind Fredholm integral equations

\[U(t) + \lambda \int_{a}^{\phi} K(t, y)U(x)dx = g(t), \quad x \in [a, \phi] \] (1)

As mentioned from the previous paragraph, many researchers have pay attention to solve the Fredholm integral equation of second kind. Referring to equation (1), we discuss briefly about the integral equation of second kind. The function of \(U \) is the unknown function that will be determined in this study, while the function \(g \) is actually the given function [5-6]. Besides these two functions, the parameter of \(\lambda \) plays as a crucial rule in order to get the best accuracy of the solutions and it should be the non-zero values. In this study, the types of kernel need to be alert thoroughly as there are a few types of kernel that can be introduced in the numerical calculation. Based on equation (1), the kernel used in this paper is
a smooth kernel. Smooth kernel was introduced by Jacoby, (1968) which has eliminated the difficulty caused from the discontinuous line of the kernel itself [7].

According to a few studies there are several types of kernel such as Hankel type, weakly singular and potential kernel [8, 9, and 10]. Smooth kernel was introduced by Jacoby, (1968) which has eliminated the difficulty caused from the discontinuous line of its kernel itself.

We proposed the Quarter-Sweep piecewise collocation discretization scheme based on the Quarter-Sweep piecewise constant function for constructing the corresponding approximation equation. Next discussion of this paper is presented with an application of the collocation method that is going to be an approximation equation based on the combination of collocation with piecewise constant polynomial function. Means that, with the concept of the quarter-sweep Jacobi (QSJ) iteration may be used in solving the linear system which is generated from the discretization process over problem (1). It can be observed that the generated linear system has its coefficient matrix which is large scale and dense.

2. Derivative of quarter-sweep piecewise constant function.

This section will convey the explanation of which the quarter-sweep concept is used to construct the approximation equation of Fredholm integral of second kind by using the polynomial piecewise constant collocation method. We will briefly explain the general ideas of the implementation of quarter-sweep iteration concept later.
Figure 1. (a), (b) and (c) are the cell center finite grid of full, half and quarter-sweep cases respectively at N.

The limit of the interval is defined as $I = [a, \phi]$, $t \in I$ with the subinterval, N. Then we calculate the length of the subinterval with $h = \frac{\phi - a}{N}$. Also that, we define the quarter-sweep collocation node points as follows

$$t_{i-2} = a + (i - 2.0)h, \; i = 4,8,12,...,N$$

(2)

Figure 1 shows three cases on the finite network grid in which each type has its own characteristics. Referring to Figure 1(c), this finite grid can be categorized as the network of QuarterSweep cell-centred in which the node points of type \bullet will be used during the implementation of the Quarter-Sweep iteration. It means that only one quarter of all node points can be considered. In this study, the first step calculates the approximation value of $U_{(j-2)}$, $i = 4,8,12,...,N$ until the convergence test can be used while the remaining node points of different types will be calculated again by using direct method. In addition, this step is also similar with the half-sweep iteration process [11]. Besides that, the special behaviour of Quarter-Sweep is used to reduce the computational complexity and also to increase the speed up of convergence rate [12].

Before generating a linear system, the concept of quarter-sweep iteration needs to be imposed for constructing approximation function. By utilizing the quarter-sweep iteration concept and referring to Figure 1 (c), we introduce the general form of quarter-sweep constant functions as follows [13].

$$T_{i-2}(t_{j-2}) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}, \; j = 4,8,12,...,N$$

(3)

Referring to equation (3), we proposed the quarter-sweep piecewise constant approximation equation being given as

$$U(t) \approx \sum_{j=4}^{N} U_{j-2} T_{j-2}(t) \text{ where } U_{j-2} = U(t_{j-2}), \; i = 4,8,12,...,N$$

(4)
As provided in Eq. (6), the problem (1) will be replaced with polynomial basis function and formed the piecewise approximate function as below

\[U(t) + \dot{\lambda} \int a^b K(t,x) \sum_{j=4}^{N-4} U_{j-2} T_{j-2} dx = g(t) \] \hspace{1cm} (5)

Again, we need to improvise the equation (5) by rewriting this equation into other simple form as follows

\[U(t) + \dot{\lambda} \sum_{j=4}^{N-4} U_j \int_a^b K(t,x) T_{j-2}(x) dx = g(t) \] \hspace{1cm} (6)

By taking account of all entire collocation points of quarter-sweep case, \(t = t_{i-2} \), the collocation point of the quarter-sweep \(i = 4, 8, 12, \ldots, N \), we can generate the following equation

\[U_j + \dot{\lambda} \sum_{j=4}^{N-4} U_j \int_a^b K(s_{i-2}, x) T_{j-2}(x) dx = g_{i-2} \ , \ i = 4, 8, 12, \ldots, N \] \hspace{1cm} (7)

where,

\[K_{i-2, j-2} = \int_a^b K(t_{i-2}, x) T_j(x) dx, \]

By considering the approximation equation (7), the linear system has successfully formed by discretizing the Fredholm integral equation of second kind by using the collocation method of a polynomial piecewise constant. As a result, we can construct the following linear system based on the quarter-sweep collocation node points being given by

\[ZU = G \] \hspace{1cm} (8)

where

\[Z = \begin{bmatrix} Z_{2,2} & Z_{6,2} & Z_{10,2} & \cdots & Z_{N-2,2} \\ Z_{2,6} & Z_{6,6} & Z_{10,6} & \cdots & Z_{N-2,6} \\ Z_{2,10} & Z_{6,10} & Z_{10,10} & \cdots & Z_{N-2,10} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ Z_{N, n-2} & Z_{N,n-2} & Z_{N,n-2} & \cdots & Z_{N-2,N} \end{bmatrix}, \]

\[U = \begin{bmatrix} U_2 \\ U_6 \\ U_10 \\ \cdots \\ U_{N-2} \end{bmatrix}, \]

\[G = \begin{bmatrix} G_2 \\ G_6 \\ G_{10} \\ \cdots \\ G_{N-2} \end{bmatrix}, \]

\[Z_{i,j} = \begin{cases} 1 - \lambda K_{i,j}, & i = j \\ -\lambda K_{i,j}, & i \neq j \end{cases} \text{ For } i = 2, 6, 10, \ldots, N - 2 \]

Clearly it can be said that the coefficient matrix \(X \), \(Z \) has form of large-scale and dense matrix.
3. Formulation of Jacobi Iteration Family

The Jacobi iterative family is selected in this paper to solve the linear system (8) generated by discretizing problem (1). The Jacobi family has been used to make the comparative analysis based on its own families which is the half-sweep Jacobi (HSJ) and quarter-sweep Jacobi (QSJ) iterative methods. While the full-sweep Jacobi (FSJ) method acts as a control method in this study.

Based on the findings of previous studies [14], it can be related that, its results more accurate compared to the other methods. This Jacobi’s approach has been imposed to the symmetric matrices. In fact, it can be also used for the no symmetrical matrices [15].

Before constructing the formulation of Jacobi iteration family, let the coefficient matrix of Z be decomposed as

$$Z = D + C + V \quad (9)$$

Where matrices D, S, and V are represent the diagonal matrix, lower matrix and upper matrix respectively, the Based on work done by [15], general scheme formulation of the Jacobi iterative family can be

$$U^{(p+1)} = D^{-1}(G - (C + V))U^p \quad (10)$$

According the algorithm 1, the equation (10), and iteration has explained the implementation of Jacobi iterative family

Algorithm: Jacobi method

Step 1. Set $U_i^{(0)} \leftarrow 0, \varepsilon \leftarrow 10^{-10}$

Step 2. Calculate $U^{(p+1)}$ using

$$U^{(p+1)} = D^{-1}(G - (C + V))U^p$$

Step 3. Check the convergence test, $|U_i^{(p+1)} - U_i| \leq \varepsilon = 10^{-10}$. If yes, go to step (4). Otherwise go back to step (2).

Step 4. Display the output.

4. Computational Experiments

There are three examples that have been considered to test the efficiency of Jacobi iteration family by using the quarter-sweep approximation equation. These numerical results have been highlighted on the number of iterations (W), execution time (s) and maximum abs. error. For the numerical approximations, implementation of these proposed iterative methods has considered with several different values of the size grids such as

Example 1

The following equation is Fredholm integral equation.

$$\text{(11)}$$

The exact solution of the Eq. (11) is

$$\text{(12)}$$
Example 2[16]
The following equation is Fredholm integral equation.

\[(13) \]

The exact solution of the Eq. (13) can be stated as

\[U(x) = e^{3x} \]

(14)

Example 3[17]
The following equation is Fredholm integral equation.

\[(15) \]

The exact solution of the Eq. (15) is

\[(16) \]

Table 1: The iteration number, execution times and Max. Abs. Error for the three examples.

EX.	NUMBER OF ITERATIONS (V)	TIME (Second)(s)	Max. Abs.Error						
	M	FSJ	HSJ	QSJ					
512	41	41	41	16.26	4.15	1.06	3.768065E-07	1.506235E-06	1.165411E-05
1024	41	41	41	64.23	16.16	4.04	9.430797E-08	3.768065E-07	2.912254E-06
2048	41	41	41	257.31	64.56	16.27	2.366581E-08	9.430797E-08	7.279782E-07
4096	41	41	41	1027.51	258.01	64.93	6.003098E-09	2.366586E-08	1.820591E-07
8192	41	41	41	4115.2	1032.24	259.73	1.589771E-09	6.003393E-09	4.559860E-08
512	24	24	24	1.34	0.36	0.13	1.909286e-05	7.673838E-05	3.044531E-04
1024	24	24	24	5.16	1.33	0.37	4.751341e-06	1.905449E-05	7.632094E-04
2048	24	24	24	20.42	5.09	1.31	1.185067e-06	4.746657E-06	1.910585E-04
4096	24	24	24	81.58	20.19	5.08	2.959520e-07	1.184533E-06	4.779645E-05
8192	24	24	24	326.15	80.68	20.16	7.407930E-08	2.958990E-07	1.195311E-05
512	35	35	34	2.01	0.55	0.18	1.410000E-06	5.651453E-06	1.165411E-05
1024	35	35	35	7.81	2.08	0.58	3.527496e-07	1.411660E-06	2.922540E-06
2048	35	35	35	31.11	8.17	2.09	8.817297e-08	3.528010E-07	7.279782E-07
4096	35	35	35	124.27	32.51	8.15	2.205607E-08	8.822509E-08	1.820591E-07
8192	35	35	35	496.83	129.9	32.54	5.551774E-09	2.210289E-08	4.559860E-08
Table 2. The reduction percentage of the comparison between the Half-sweep Jacobi (HSJ) and Quarter-sweep Jacobi (QSJ)

EXAMPLE	METHODS	NUMBER OF ITERATION (%)	EXECUTION TIME (%)
1	HSJ	0	74.47-74.91
	QSJ	0	93.48-93.71
2	HSJ	0	73.13-75.26
	QSJ	0	90.29-93.77
3	HSJ	0	72.63-73.85
	QSJ	2.86	91.04-93.45

Based on Table 1, there are no differences in term of the number of iteration between (HSJ) and (QSJ) iterative methods. Moreover it can be seen in Table 2 in which it showed that the reduction percentage is 0%. But the (QSJ) of example three shows the very small reduction of number iterations which is only 2.89%. Meanwhile, the execution time for all the examples showed with the big reduction of percentage. The percentages for the three examples of (HSJ) are 74.47%-74.91%, 73.13%-75.26%, 72.63%-73.85% respectively. While the reduction percentage for (QSJ) are 93.48%-93.71%, 90.29%-93.77%, 91.04%-93.45% respectively.

5. Conclusion
In this study, the quarter-sweep scheme collocation based on the polynomial piecewise constant had been used to construct the quarter-sweep piecewise constant approximations equations. This approximation equation has been used to form a linear system with a dense coefficient matrix from discretizing the linear Fredholm integral equation. This linear system has been solved by using Jacobi iteration family. By observing the numerical results, the execution time has shown big significant difference between (HSJ) and (QSJ) iterative methods. Whereas, the number of iterations has shown no any difference. Again, the accuracy for the all examples are consistent between the Jacobi iterative families. Overall, we can conclude that the best method can be nominated is the quarter-sweep Jacobi mainly on the execution time.

6. References
[1] Rahbar S and Hashemizadeh E 2008 A computational approach to Fredholm integral equation of second kind Proc. World Congress Engineering 2
[2] Yilma B and Cetin Y 2017 Numerical solutions of the Fredholm integral equations of the second type New Trend in Maths. Sci’s. 5 pp 284–92
[3] Shulaia D 1997 On one Fredholm integral equation of third kind. Georgian Mathematical J. 4 pp 461–76
[4] Hoshan N A 2013 Solution of Fredholm integral equation of the first kind involving some dual integral equations Appl. Mathematical Sci’s 7 pp 3847–52
[5] Zemyan S M 2012 Fredholm integral equations of the second kind (general Kernel) The Classical Theory of Integral Equations chapter 2 pp 31–84
[6] Waphare B B 2015 Generalized fractional Hankel type transformation Carib. J. Sci. Techl. 3 pp 855–863
[7] Jacoby J J 1968 Numerical integration of linear integral equations with weakly discontinuous
Kernels ed Williams C (Oregon: Oregon State University) pp 9–14

[8] Biazar J and Asadi M A 2015 RBFs for integral equations with a weakly singular kernel Am. J. Appl. Maths. 3(6): pp 250–255

[9] Abdou A M and El-Bary A A 2001 Fredholm-volterra integral equation with potential kernel Appl. Maths. Comp. 26 pp 321–330

[10] Muthuvalu M S and Sulaiman J 2010 Quarter-sweep iterative method for second kind linear Fredholm integral J. Sci. Maths. 2 pp 67–77

[11] Muthuvalu M S and Sulaiman J 2008 Numerical solutions of second linear Fredholm integral using Half-sweep Geometric mean method Int. Symp. Info. Tech.

[12] Muthuvalu M S and Sulaiman J 2011 Numerical solution of second kind of Fredholm integral equations using QSGS iterative method with high-order newton codes quadrature schemes Malaysian J. Maths. Sci. 5 pp 85–100

[13] Mohamad N S and Sulaiman J 2013 The piecewise Polynomial collocation method for the solution of Fredholm equation of second kind by using SOR iteration, American Ins. Phy. Conf. Series (2013)020036

[14] Demmel J and Veselic K 1992 Jacobi method is more accurate than QR Soc. Ind. Appl. Maths 13 pp 1204–45

[15] HarpinderKaur and KhushpreetKaur 2012 Convergence of Jacobi and Gauss-seidel method and error reduction factor J. Maths. 2 pp 20–23

[16] Avazzadeh Z, M Heydari and G B Loghmani 2010 Numerical solution of Fredholm integral equations of second kind by using integral mean value theory Appl. Math. Model. 35 pp 2374–84

[17] Paradin N and Gholomtar Sh 2010 Numerical solution of the linear Fredholm integral equation of the second kind J. Maths Ext. 5 pp 31–9

Acknowledgement
The authors would like to thank the administration of Universiti Malaysia Sabah (UMS) for funding this research partially under the fundamental research Grant Scheme (GUG0222- 1/2018).