The pass-through effect of interest rate and asymmetric adjustment in Indonesia

Abstract. Using the data set for the sample period of January 1999 to December 2016, this paper aims to analyse the interest rate pass-through effect and the asymmetric behaviour of retail rates in Indonesia’s economy. By employing asymmetric threshold autoregressive (TAR) and momentum threshold autoregressive (MTAR) models, the deposit and lending rates were found to have an incomplete pass-through effect in response to the changes in the money market rates. Based on the empirical results, an asymmetric behaviour was discovered in the adjustment of the deposit and lending rates. The asymmetric error correction models further reflected that the deposit rate has a faster speed in the downward direction while the lending rate adjusts more rapidly in the upward direction.

Keywords: Interest Rate Pass-through; Credit: Deposit; Asymmetric Threshold Autoregressive Model (TAR); Momentum Threshold Autoregressive Model (MTAR); Indonesia

JEL Classification: E43; E52; C24

Acknowledgements: Financial support from University Malaysia Sarawak (UNIMAS) via Dana Principal Investigator research grant 03(DPI21)985/2013(04) is gratefully acknowledged.

DOI: https://doi.org/10.21003/ea.V166-12
1. Introduction
Since the 1980s, Indonesia has been viewed as one of the most important emerging economies in Southeast Asia that has experienced remarkable economic growth. The impressive speed of growth in Indonesia was brought on by the financial liberalisation reforms in 1983 which stabilised the macroeconomic conditions and increased non-oil exports significantly. Indonesia was said to be following the trail of the Asian Tiger economies during the 1990s and early 2000s. However, in mid-1997, Indonesia was critically affected by the 1997 Asian Financial Crisis which threw the country into economic turbulence and political turmoil. The booming economy was halted by the serious depreciation of the Rupiah against the US dollar and other currencies. During the reformation period, the Indonesian economy slowly recovered with the improved political conditions.

In May 1999, the Central Bank of Indonesia (hereafter - BI) decided to adopt inflation targeting and implemented a new central bank law called Act No. 23 of 1999. Pursuant to this law, the BI had the full independent authority to carry out its duties and was obligated to manage the schedule of loans and cooperation with the IMF, which ended in the year 2004. A new inflation targeting framework using the policy rate was adopted in July 2005 to replace the previous inflation targeting which used base money as the operational target. Under the framework of the new policy, the economic situation was evaluated before applying any changes in the policy rate in order to set the inflation rate on track with the established inflation target. During the 2010-2011 period, Indonesia was suffering as global commodity prices soared which had worsened the inflationary pressure in the country. At the time, the policy rate was the major instrument used by the BI to tame inflation.

Although the Indonesian economy has great growth potential, the country is still sensitive to the threat of economic crises. The downturn of the global macroeconomic condition in 2015-2016 had put the Indonesian economy and its banking industry into a challenging position. Indonesia was adversely affected by the depressed and weak growth of the global economy which consolidated with low commodity prices. The condition turned serious with the high uncertainty in financial markets brought by the increasing of the federal fund rate and the political transition in the major world economy. In spite of the sluggish growth and uncertainty, the Indonesian economy was resilient. In order to strengthen the stability of the financial system and the momentum of economic recovery, the BI had revised its monetary policy by gradually reducing the policy rate by 150 Basis points (1.5%) in 2016. By the end of 2016, the economic growth of Indonesia returned to the upward trend.

Reliable and effective monetary policies play an important role in the Indonesian economy in terms of achieving sustainable growth. In retrospect, to the history of Indonesian monetary policy, the interest rate channel has been thought of as the most important channel among its various monetary transmission mechanisms. The effectiveness of the policy rate in influencing the economy has become a major area of interest for policymakers. In recent years, questions regarding the symmetric effect of interest rates have also been raised by many policymakers as macroeconomic cycles are thought to have changed in the last decade. Thus, knowing the asymmetric behaviour of interest rates becomes crucial for policymakers in analysing the effectiveness and impact of the interest rate channel toward the economy.

This study was carried out to examine the effectiveness of the interest rate channel in Indonesia by analysing the pass-through effect of the policy rate toward the deposit and lending rates. Based on the consideration that the BI offered retail interest rates in foreign currency, a global interest rate pass-through process. In the study of monetary policy have led to a proliferation of research that analyses the monetary transmission mechanism (for example, Cetorelli and Goldberg, 2012; Gunji and Yuan, 2010; Puah et al., 2008; Puah et al., 2015). Recent trends in the study of monetary policy have led to a proliferation of research that analyses the monetary transmission mechanism (for example, Cetorelli and Goldberg, 2012; Gunji and Yuan, 2010; Puah et al., 2008; Puah et al., 2015).

2. Literature Review
Money is a fundamental property of a country in altering and influencing economic performance. Investigating the effectiveness of monetary policy is still a continuing concern to economists with a large volume of studies carried out over the past few decades for example (Leong et al., 2010; Puah and Jayaraman, 2007; Tang et al., 2013). Recent trends in the study of monetary policy have led to a proliferation of research that analyses the monetary transmission mechanism (for example, Cetorelli and Goldberg, 2012; Gunji and Yuan, 2010; Puah et al., 2008; Puah et al., 2015).
and Yuksell and Ozcan (2013) demonstrated that the interest rate is symmetrical in adjustment. Liu et al. (2008) pointed out that there is no significant asymmetric behaviour found in the interest rate pass-through. This view is in line with the conclusion made by Yuksell and Ozcan (2013) who showed supportive evidence on symmetric adjustment.

Numerous studies have been conducted to investigate and compare the asymmetrical interest rate pass-through across countries and mixed results were obtained. For instance, Wang and Lee (2009), Panagopoulosa et al. (2010) and Karagiannis et al. (2011) illustrated that the findings of asymmetric adjustment are rather mixed in terms of countries. They believed that the level of bank competition, development and liberalisation are the reasons that cause asymmetric adjustment in the pass-through process. However, Apergis and Cooray (2015) drew the opposite conclusion that change in financial structure across countries played only a minor role in determining asymmetric adjustment. Ahmad et al. (2013) pointed out that asymmetric behaviour existed in the adjustment of deposit, lending and mortgage rates while there is no evidence of asymmetric adjustment in the time rate.

3. Description of Data and Methodology

In order to investigate the pass-through effect of the policy rate to bank retail interest rates in Indonesia, monthly time series data sets consisting of deposit rate (DR), lending rate (LR), money market rate (MMR) and the U.S. federal fund rate (FED) are used. All the data were obtained from the database of CEIC, International Financial Statistics, as well as relevant statistical publications by the Central Bank of Indonesia. The data span a sampling period between 1999: M1 to 2016: M12.

Figure 1 depicts the trend in the monthly deposit rate, lending rate, money market rate, as well as the U.S. federal funds rate employed in this study. From the graph, it appears that all variables exhibit nonlinear movement. In addition, they seem to be cointegrated as they are moving in tandem over the sample period of study. Moreover, for the most part, the time deposit rate is slightly higher than the money market rate, while there is a spread between the lending rate and the money market rate.

Usually, cointegration tests are used to detect co-movement between the variables. One such commonly adopted test is the residual-based test for cointegration advocated by Engle and Granger (1987). The above test was used in estimating the long-run relationship among DR, MMR and FED. This approach involved two stages. In the first stage, we regressed R1 on MMR and FED with a constant as follows and obtained the residuals:

\[R_t = d_0 + d_1 MMR_t + d_2 FED_t + \mu_t, \quad (1) \]

where \(R_t = DR_t \) or \(LR_t \), and the residual term is denoted by \(\mu_t \). If the variables are cointegrated, \(\mu_t \) will be stationary. Hence, the second stage examines the stationarity of the estimated residuals \(\hat{\mu}_t \) using the principle of the Dickey-Fuller (DF) test:

\[\Delta \hat{\mu}_t = \rho \hat{\mu}_{t-1} + \epsilon_t, \quad (2) \]

where \(\Delta \) is the first-difference operator and \(\epsilon_t \) is the white-noise disturbance. If \(\rho \), the coefficient of the lagged-one residuals term, \(\hat{\mu}_{t-1} \) is bounded within -2 and 0 (-2 < \(\rho \) < 0), the null hypothesis of no cointegration can be rejected. That means, variables \(DR_t \), \(MMR_t \) and \(FED_t \) are cointegrated. Otherwise, there is no evidence of cointegration.

However, the standard model of cointegration tests assumes a linear relationship and a symmetric adjustment in cointegrated variables. This might lead to a misspecification if, in actual fact, the variables exhibit an asymmetric relationship. In this respect, Enders and Siklos (2001) introduced the threshold autoregressive (TAR) and momentum threshold autoregressive (MTAR) models to estimate the asymmetrical co-integrating relationship. According to Enders and Siklos (2001), to test for the existence of asymmetric cointegration, Equation (2) can be re-written as:

\[\Delta \hat{\mu}_t = I_1 \rho \hat{\mu}_{t-1} + (1 - I_1) \rho_2 \hat{\mu}_{t-1} + \epsilon_t \quad (3) \]

where \(I_1 \) is the indicator variable:

\[I_1 = \begin{cases} 1 & \text{if} \quad \hat{\mu}_{t-1} \geq \tau \\ 0 & \text{if} \quad \hat{\mu}_{t-1} < \tau \end{cases} \quad (4) \]

Based on Equation (4), \(\rho_1 \) will be the adjustment value if \(\hat{\mu}_{t-1} \) is greater or equal to the threshold value \(\tau \), while \(\rho_2 \) is the adjustment value when \(\hat{\mu}_{t-1} \) is less than the threshold value.

When serial correlation occurs in the adjustment process, Equation (3) can be corrected by means of the Augmented Dickey-Fuller principle:

\[\Delta \hat{\mu}_t = I_1 \rho_1 \hat{\mu}_{t-1} + (1 - I_1) \rho_2 \hat{\mu}_{t-1} + \sum_{i=1}^{p} \gamma_i \Delta \hat{\mu}_{t-i} + \epsilon_t \quad (5) \]

Enders and Siklos (2001) further suggested replacing \(\hat{\mu}_{t-1} \) with \(\Delta \hat{\mu}_{t-1} \) which represents the momentum of the interest rate adjustment. The resulting MTAR model is generated below:

\[\Delta \hat{\mu}_t = M \rho_1 \hat{\mu}_{t-1} + (1 - M) \rho_2 \hat{\mu}_{t-1} + \sum_{i=1}^{p} \gamma_i \Delta \hat{\mu}_{t-i} + \epsilon_t \quad (6) \]

The indicator variables in Equation (6) are:

\[\gamma_i \]

\[\gamma_i \]

Fig. 1: Graph of monthly deposit rate, lending rate, money market rate and U.S. Federal funds rate (percent)

Source: Census and Economic Information Center (CEIC)
\[M_t = \begin{cases} 1 & \text{if } \Delta \mu_{t-1} \geq \tau \\ 0 & \text{if } \Delta \mu_{t-1} < \tau \end{cases} \]

(7)

Based on the indicator rules in Equation (7), when \(\Delta \mu_{t} \) is greater or equal to the threshold value, \(\rho_1 \) will be the adjustment value in the MTAR model, while \(\Delta \mu_{t-1} \) is smaller than the threshold value, \(\rho_2 \) is the adjustment value in the TAR model.

In addition, the Chan (1993) method is adopted in this study with the aim to determine the threshold value and minimum value of the squared terms of residual errors for the TAR and MTAR models. On the other hand, the Akaike Information Criterion (AIC) is used for the optimal lag length \(\rho \) for the TAR and MTAR models.

In the presence of asymmetrical adjustment, Enders and Siklos (2001) further proposed that the estimation of asymmetric error correction models are estimated to capture the short-run and long-run dynamic between the variables of interest. In our case, the models are specified as:

\[\Delta R_t = \theta_0 + \sum_{i=1}^{p} \theta_{1i} \Delta R_{t-i} + \sum_{i=1}^{q} \phi_{2i} \Delta MMR_{t-i} + \sum_{i=1}^{s} \phi_{3i} \Delta FED_{t-i} + \Delta^+ + \Delta^- + \epsilon_t, \]

(8)

\[\Delta MMR = \phi_0 + \sum_{i=1}^{p} \phi_{1i} \Delta R_{t-i} + \sum_{i=1}^{q} \phi_{2i} \Delta MMR_{t-i} + \sum_{i=1}^{s} \phi_{3i} \Delta FED_{t-i} + \Delta^+ + \Delta^- + \epsilon_t, \]

(9)

\[\Delta FED = \phi_0 + \sum_{i=1}^{p} \phi_{1i} \Delta R_{t-i} + \sum_{i=1}^{q} \phi_{2i} \Delta MMR_{t-i} + \sum_{i=1}^{s} \phi_{3i} \Delta FED_{t-i} + \Delta^+ + \Delta^- + \epsilon_t, \]

(10)

where \(R = DR \text{ or } LR \). The formulation of error correction terms are different for the TAR and MTAR specifications. Referring to Equations (3) and (4), the TAR specification of the error correction terms is defined as below:

\[Z^+ = \rho_1 M_t \hat{\mu}_{t-1}, \]

(11)

\[Z^- = \rho_2 (1 - M_t) \hat{\mu}_{t-1}. \]

(12)

While referring to Equations (6) and (7), the MTAR specification of the error correction terms is given as:

\[Z^+ = \rho_1 M_t \hat{\mu}_{t-1}, \]

(13)

\[Z^- = \rho_2 (1 - M_t) \hat{\mu}_{t-1}. \]

(14)

4. Empirical Findings

As time series data are used in this study, a prior determination of the stationary properties of the variables is needed in order to proceed to the cointegration test. The Augmented Dickey-Fuller (ADF, Dickey and Fuller, 1981) unit root test and the Kwiatkowski et al. (KPSS, 1992) stationary test are adopted to determine the stationary processes of the time series data employed in this study. From the results\(^1\), we can conclude that at 5% significance level the policy rate and retail interest rates are all integrated in the level form but they become stationary after first-differencing.

The long-run parameter estimations of the deposit rate and the lending rate models toward the money market rate and the U.S. federal funds rate in Indonesia are revealed in Table 1.

Parameter	\(d_0 \)	\(d_1 \)	\(d_2 \)
DR model	2.405***	0.902***	0.090
LR model	9.543***	0.586***	0.365**

Notes: Asterisks (***) indicate statistically significant at 1% level. The long-run estimation is based on the following formula: \(R = d_0 + d_1 MMR + d_2 FED \) et, where \(R \) stands for retail rates.

Source: Own calculations

The estimated \(d_1 \) is regarded as the fixed mark-up of the retail interest rates. Meanwhile, \(d_2 \) is the degree of the pass-through effect of the money market rate while \(d_2 \) represents the impact of the U.S. federal funds rate on Indonesian retail interest rates. The statistical significance of both \(d_1 \) and \(d_2 \) indicates that the money market rate and the U.S. federal funds rate do have an impact on the lending rate, but for the DR model, \(d_1 \) is statistically insignificant. It can be seen from the results that an incomplete pass-through effect is found in both retail interest rates as parameter \(d_1 \) for both retail interest rates is less than 1. This finding indicates that the cost of adjustment for the money market rate is not fully and immediately passed-through to the retail interest rates.

As the money market rate and retail interest rates may exhibit an asymmetric adjustment in interest rate pass-through, the TAR and MTAR tests were carried out in this study. In order to avoid biased results caused by the offset of the money market rate or misplaced of exogenous variables, the relationship between retail interest rates and the money market rate is examined separately. Table 2 provides summary results for the TAR and MTAR tests. The results show that cointegration exists in both the DR and LR models where the null hypothesis of no cointegration is rejected by the significance of \(\phi \). Since cointegration vectors are found in the money market rate and retail interest rates, we analyse whether the cointegration adjustments are symmetric or asymmetric. Based on the results, the null hypothesis of symmetric adjustment is rejected at the 5% significance level in the DR and LR models. Thus, there is statistical evidence of an asymmetric adjustment in the deposit and lending rates with respect to monetary policy.

With the preliminary results, an asymmetric error correction model was constructed to capture the short-run and long-run dynamic of the interest rates. Table 3 displayed the results of the asymmetric error correction model with

Test	Model	\(\tau \)	\(\rho_1 \)	\(\rho_2 \)	\(F(p_2 = p_3) \)	\(\phi(p_2 = p_3 = 0) \)
TAR	DR	-0.986	-0.242	-0.657	12.727**	9.042**
	LR	-1.031	-0.077	-0.388	12.262**	11.951**
MTAR	DR	-0.552	-0.188	-0.777	20.114**	27.631**
	LR	-0.200	-0.036	-0.286	9.225**	10.947**

Notes: \(\tau \) represents threshold value. Asterisks (**) indicate statistically significant at 5% levels. The critical value of \(\phi \) and \(F \) is obtained from [1].

Source: Own calculations

1 It is recommended to use AIC and Schwartz Information Criterion (SIC) for lag selection. Liew (2004) showed that the success rate of AIC is consistently higher than SIC in picking up the correct autoregressive lag length when sample size ranges from 30 to 240. In this study, we have 216 observations.

2 To conserve space, the unit root tests results are not reported here. However, the results can be obtained from the authors upon request.

The error correction terms for \(\Delta DR \) revealed that the deposit rate has upward rigidity where the adjustment of the deposit rate responds faster when it is above the threshold. However, contrary to the deposit rate, the error correction terms for \(\Delta LR \) showed downward rigidity in the lending rate. It means that the
References

1. Ahmad, A. H., Aziz, N., & Rumnun, S. (2013). Interest rate pass-through in the UK: Has the transmission mechanism changed during the financial crisis? *Economic Issues*, 18(1), 17-38. Retrieved from http://www.economicissues.org.uk/Files/2013/113Ahmad.pdf

2. Apergis, N., & Cooray, A. (2015). Asymmetric interest rate pass-through in the U.S., the U.K. and Australia: New evidence from selected individual banks. *Journal of Macroeconomics*, 45, 29-58. Retrieved from http://www.jstor.org/stable/41951853

3. Betancourt, R., Vargas, H., & Rodriguez, N. (2008). Interest rate pass-through in Colombia: A micro-banking perspective. *Journal of Macroeconomics*, 45, 29-58.

4. Borstel, J. V., Eickmeier, S., & Krippner, L. (2016). Monetary policy stabilisation, changes in the banking system and interest rate pass-through: The Czech Republic 1999-2006. *Cuadernos de Economía*, 131(1), 17-38. Retrieved from http://www.economicissues.org.uk/Files/2013/113Ahmad.pdf

5. Bruna, K. (2008). Monetary policy stabilisation, changes in the banking system and interest rate pass-through: The Czech Republic 1999-2006. *Post-Communist Economies*, 20(4), 413-429. doi: https://doi.org/10.1080/14631370802444575

Table 3: Coefficients of Asymmetrical Error Correction Models - DR Model

ECM	Z’	Z’	PF_D	PF_f	PF_f	F(4)	LM	F	
TAR-Specification	ΔDR	-0.113***	-0.089***	29.205***	9.567***	2.616*	0.108	0.070	26.380***
	ΔMMR	0.249*	0.691***	4.104***	4.144***	4.925**	0.692	2.000	7.944***
	ΔFED	-0.035	0.018	11.949***	1.599	15.265***	0.6498	0.121	4.826***

Table 4: Coefficients of Asymmetrical Error Correction Models - LR model

ECM	Z’	Z’	PF_D	PF_f	PF_f	F(4)	LM	F	
TAR-Specification	ΔLR	-0.026**	-0.069***	5.829**	3.689**	6.926***	5.651	0.957	19.503***
	ΔMMR	-0.031	0.551***	2.792*	10.490***	9.385***	1.226	0.386	7.123***
	ΔFED	0.055*	0.093***	11.117***	4.351**	8.136***	0.405	0.057	6.074***

Notes: Z’ and Z’ are the asymmetric error correction terms. PF_D, PF_f and PF_f are the partial F-statistics for lagged values of change in the deposit rate, money market rate and federal fund rate, respectively. F(4) is the Box-Pierce Q-statistic and LM is the Breush-Godfrey LM test. F-statistics are the overall F-statistics for the respective error correction models. Probability values are reported in brackets. (*), (**) and (***) indicate statistically significant at 10%, 5% and 1% levels, respectively.

Source: Own calculations

lending rate has a larger response toward the rise of the money market rate and the federal funds rate than the decline in the money market rate and the federal funds rate. From the empirical results, the federal funds rate is found to be weakly exogenous to the deposit rate. The partial F-statistics indicated that both the deposit rate and the lending rate do have a bi-directional Granger-causality toward the money market rate. As for the federal funds rate, a bi-directional Granger-causality was found in the lending rate while only the uni-directional Granger-causality was discovered in the deposit rate.

5. Conclusion

This study has extended the understanding of the interest rate pass-through in Indonesia and identified the evidence of asymmetric behaviour in the banking system. The asymmetric threshold cointegration tests, TAR and MTAR, proposed by Enders and Siklos (2001), as well as asymmetric error correction models, are employed in this study. In order to examine the interest rate pass-through of the money market rate to the banking retail interest rates and the impact of foreign interest rates, monthly data of the money market rate, the U.S. federal funds rate, deposit rates and lending rates covering the period from 1999: M1 to 2016: M12 are obtained.

Despite having an incomplete pass-through process, our findings indicate that the money market rate has a significant impact on deposit and lending rates. The degree of pass-through is stronger on the deposit rate compared to the lending rate. This finding is consistent with the observation of Bruna (2008) who pointed out that deposit rate reacts quicker than the lending rate to the change of the money market rate. The work of Tai et al. (2012) and Tang et al. (2015) also reported that the deposit rate has a higher degree of pass-through than the lending rate. Our results further show that the U.S. federal funds rate is found to have an impact on the lending rate but not on the deposit rate.

In the analysis of asymmetric threshold cointegration, the deposit and lending rates are found to have a long-run relationship with the money market rate. From the results, we uncover that the adjustments of interest rate toward the path of long-run equilibrium are asymmetric in behaviour. This finding corroborates the ideas of Wang and Thi (2010) Karagiannis et al. (2011) and Ahmad et al. (2013) who suggest that there is an asymmetric adjustment in the pass-through process.

In addition, the deposit rate in Indonesia is found to have upward rigidity, where the deposit rate responds sluggishly to an increase in the money market rate but faster when the money market rate decreases. This finding is similar to those described by Chong (2010) and Holmes et al. (2015). On the other hand, the lending rate in Indonesia is found to have downward rigidity and adjusted faster in an upward direction. This finding is in tandem with the work of Payne and Waters (2008). The evidence from this study suggests that aggregate demand can be more effectively influenced by the deposit rate, as it adjusted faster than lending rate to the change of money market rate. Moreover, when implementing monetary policy, monetary authorities need to be aware of the asymmetric behaviour in interest rates, as this may affect the efficiency of the policy.
Dear Colleagues!

The Economic Annals-XXI Journal is indexed in Scopus.

Publishing your articles in the Economic Annals-XXI Journal is your advance in the international research space and prospect of career development!

«Improving research results through analytical power» (Scopus)

http://osokin.info/ea/