O-15-labeled Water is the Best Myocardial Blood Flow Tracer for Precise MBF Quantification

Osamu Manabe, MD, PhD, Masanao Naya, MD, PhD, Tadao Aikawa, MD, PhD and Keiichiro Yoshinaga, MD, PhD, FACC, FASNC

Received: April 25, 2018/Revised manuscript received: May 12, 2018/Accepted: May 23, 2018 © The Japanese Society of Nuclear Cardiology 2018

Abstract

Oxygen-15-labeled water (\(^{15}\text{O-H}_2\text{O}\)) is used as a radiopharmaceutical tracer with positron emission tomography (PET). Its short radioactive half-life permits consecutive rest and stress imaging acquisition while requiring an on-site cyclotron near a PET imaging system. \(^{15}\text{O-H}_2\text{O}\) PET has the disadvantage of being less than ideal for visual assessment; however, its high extraction fraction allows for highly accurate quantification of myocardial blood flow (MBF). Therefore, \(^{15}\text{O-H}_2\text{O}\) is considered to be a gold standard for MBF quantification. This is one of the great advantages of \(^{15}\text{O-H}_2\text{O}\) PET over other PET myocardial perfusion imaging modalities. The purpose of this review is to provide the advantages and characteristics of \(^{15}\text{O-H}_2\text{O}\) PET.

Keywords: Cardiac PET, Extraction fraction, Flow reserve, Myocardial blood flow, O-15-labeled water

PET myocardial perfusion imaging (MPI) provides for accurate diagnosis and has prognostic value in patients with coronary artery disease (CAD). PET MPI also has significant advantages such as myocardial blood flow (MBF) estimation.

Oxygen-15-labeled water (\(^{15}\text{O-H}_2\text{O}\)) makes it possible to perform consecutive rest and stress data acquisition because of its short radioactive half-life (2.04 min). In addition, \(^{15}\text{O-H}_2\text{O}\) PET can provide accurate quantification of MBF due to its high extraction fraction, leading to its being widely considered a non-invasive gold standard test for MBF measurement. In this review, we will address the characteristics and advantages of \(^{15}\text{O-H}_2\text{O}\).

Advantages of \(^{15}\text{O-H}_2\text{O}\)

\(^{15}\text{O-H}_2\text{O}\) is metabolically inert and passes freely across cell membranes. It can therefore be distributed over vascular and extravascular spaces (1). Its distribution and clearance depend completely on the rate of blood flow. The tracer kinetics of \(^{15}\text{O-H}_2\text{O}\) show the linear relationship between myocardial perfusion and first-pass extraction (1). Therefore, \(^{15}\text{O-H}_2\text{O}\) is considered a standard for MBF measurement, remaining stable over a wide range of flow rates.

\(^{15}\text{O-H}_2\text{O}\) PET is used as a gold standard to estimate MBF and has been used as a standard against which to measure other newly developed MBF quantification tools such as PET tracers (2-4), single-photon emission computed tomography (SPECT) (5), cardiac magnetic resonance imaging (CMR) (6) and dynamic computed tomography (CT) (7).

Short physical half-life

The physical half-life of \(^{15}\text{O-H}_2\text{O}\) is 2.04 min, which allows serial rest and stress PET data acquisition (Fig. 1) (8). Using a current PET/CT scanner, the rest and stress clinical protocol can be completed within 30 minutes. This time frame is similar to that for Rubidium-82 (\(^{82}\text{Rb}\))-PET/MPI data acquisition and this protocol should be quite suitable in clinical settings.

doi: 10.17996/anc.18-00064

1) Osamu Manabe
Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan

2) Masanao Naya, Tadao Aikawa
Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan

3) Keiichiro Yoshinaga
Diagnostic and Therapeutic Nuclear Medicine, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
E-mail: yoshinaga.keiichiro@qst.go.jp
Fig. 1 Protocol of 15O-H_2O PET/CT scan. 15O-H_2O has a short half-life allowing for multiple and serial scans. To quantify stress MBF, 15O-H_2O should be injected when the myocardium reaches the hyperemia stage (2 to 3 min after the start of the pharmacological stimulation).

Disadvantages of 15O-H_2O

15O-H_2O requires an on-site cyclotron for tracer production, similar to the case with 15N-ammonia (15N-NH_3) PET. 15O-H_2O is therefore available in a limited number of PET centers around the world.

An exercise imaging protocol is not feasible due to the short physical half-life.

15O-H_2O is suboptimal for visual assessment given its low myocardial accumulation and the low myocardial-to-background count ratio. However, a group at Vrije Universiteit in Amsterdam introduced a method for generating a parametric perfusible tissue index, which is defined as the ratio between water-perfusable and anatomic tissue fractions and is used as a marker of myocardial viability in images from a single 15O-H_2O PET/CT scan (9). This approach may add some clinical value to 15O-H_2O PET/CT.

The average positron range, which is a potential limit for achievable PET spatial resolution, of 15O is 4.14 mm, which is longer than that for 13F (1.03 mm) or 15N (2.53 mm) but shorter than that for 82Rb (8.60 mm) (10).

15O-H_2O is not approved by the US Food and Drug Administration (FDA) and Japanese Ministry of Health, Labour, and Welfare for clinical use, and its use is limited to clinical practice, primarily for measuring MBF in research settings.

Protocol of a 15O-H_2O PET scan

Similar to the case for other PET MPIs, the standard protocol is rest and pharmacological stress data acquisition. Subjects should be instructed to abstain from caffeine-containing products for at least 24 h prior to the PET study for the pharmacological stress test (11). Currently, pharmacological stress agents using PET MPI include adenosine, adenosine triphosphate (ATP), dipyridamole, or regadenoson. At first, a transmission scan for PET or a low-dose CT scan at free breathing for PET/CT are obtained for attenuation and scatter correction. 15O-H_2O (around 1480 MBq for PET and 740 MBq for PET/CT) is slowly administered intravenously with simultaneous 5 to 10 min list mode data acquisition at rest scan. Due to the short physical half-life of 15O-H_2O, the stress study can be performed immediately after rest data acquisi-
tion. In our institution, pharmacological stress is induced by an intravenous injection of ATP (140 to 160 μg/kg/min) at 3 min before the emission scan to achieve maximal hyperemia. Once the effects of ATP are evident, 15O-H_2O (a similar amount to that for the rest scan) is injected for stress data acquisition, followed by dynamic imaging for the same list mode data acquisition at rest. Slow infusion (100 to 120 sec) provides the perfusible tissue fraction values to obtain regional MBF (12) even in the 3-dimension (3D) data acquisition mode (13).

The total-body effective dose of radiation for a typical 3D 15O-H_2O protocol was less than 3 mSv during PET/CT (14). In our institution, the total radiation dose from sequential rest and stress imaging is estimated to be about 3.0 mSv (less than 0.1 mSv for the scout, 0.7 mSv for the attenuation correction CT, and 1.1 mSv for each 15O-H_2O PET scan / 500 MBq injection) (13).

Quantification of MBF and myocardial flow reserve (MFR)

PET/CT requires manual registration in coronal, sagittal, and transaxial views for accurate attenuation correction. Rest and stress PET/CT images are visually aligned for proper registration, and attention must be paid to ensure that the left ventricular myocardial activity on PET does not overlap with the lung parenchyma on CT (14). MBF derived from 15O-H_2O PET was correlated closely with direct measurements of MBF in an open-chest dog model and concomitantly administered radiolabeled microsphere (15). Both rest and hyperemic MBF derived from 15O-H_2O PET showed reliable reproducibility in normal control individuals (16). Even the 3D data acquisition MBF and MFR derived from 15O-H_2O PET/CT can also be reliably reproduced in CAD patients (13).

Diagnostic value of CAD validated by clinical standard measurements

MFR derived by 15O-H_2O was inversely correlated with percent coronary stenosis in patients with CAD (17). Danad et al. reported that quantitative MBF measurements acquired through 15O-H_2O PET provided high diagnostic performance in 330 patients with CAD (18). Previous studies validating the usefulness of MBF measurements used quantitative coronary angiography (CAG) as a diagnostic standard. However, recently fractional flow reserve (FFR) measurement has become an important diagnostic parameter to determine the indication for coronary revascularization. This approach is the so-called physiology-based PCI (19). The study by Danad et al. evaluated the diagnostic accuracy of stress MBF and MFR with 15O-H_2O PET based on a cut-off FFR value of 0.80. The main point of this study is to validate the clinical utility of 15O-H_2O PET MBF measurement under the current standard of patient management approach in patients with CAD.
Data associated with this PET tracer is unique. In addition, the study by Danad et al. showed the diagnostic cut-off value of MFR as 2.5. Another possible cut-off value of MFR from a cardiac event prediction point of view was 2.0 with 82Rb and 13N-NH$_3$. Compared to these two PET MPI tracers, 15O-H$_2$O has a higher cut-off value. This may be due to the high extraction fraction of 15O-H$_2$O and may contribute to easier separation between physiologically abnormal population and a new significant population of patients with known or suspected CAD.

Microvascular dysfunction associated with coronary risk factors

Estimated MFR is influenced not only by coronary stenosis severity but also by coronary risk factors. Yoshinaga et al. reported that MFR in remote (no coronary stenosis) segments in patients with CAD was significantly lower than that in age-matched normal subjects (20). Risk factors such as diabetes, smoking, hypertension and dyslipidemia showed a lower MFR even in regions without severe coronary stenosis (21-23) (Fig. 2).

Conclusion

What makes 15O-H$_2$O PET attractive is its ability to accurately quantify MBF based on its high extraction fraction. A short physical half-life makes it possible to perform a short stress and rest data acquisition protocol and contributes to lowering radiation exposure. Although the availability of 15O-H$_2$O is limited, we hope this excellent MBF measurement modality will be more widely available and will contribute to CAD patient management in the near future.

Table 1 Characteristics of 15O-water

Parameter	
Production	cyclotron
Half-life (min)	2.04
Positron range (mm)	4.14
Scan duration (rest and stress) (min)	30
Effective dose (mSv/MBq)	0.0011
Extraction fraction (%)	100
Uptake mechanism	freely diffusible

Fig. 2 Representative case of coronary artery disease.

A woman in her 40s with type 1 diabetes mellitus was examined to rule out asymptomatic cardiovascular disease (CVD). 99mTc-tetrofosmin SPECT images at stress show the perfusion decrease in the mid to apical anterior and septal wall, which is improved at rest, indicating moderate ischemia in the left anterior descending artery (LAD) territory. Invasive CAG showed LAD coronary occlusion. 15O-H$_2$O PET/CT reveals a decrease in myocardial blood flow (MBF) at stress and myocardial flow reserve (MFR) in the whole myocardium, including the LAD territory due to the microcirculatory disorder.
Acknowledgments

We thank Eriko Suzuki, MT, and Natsue Ito, MT, for their support in preparing this manuscript. The authors thank Mariko Yamasaki, MA for her administrative assistance. This manuscript has been reviewed by a North American English-language professional editor, Ms. Holly Beanlands. The authors also thank Ms. Holly Beanlands for critical reading of the manuscript.

Sources of funding

None.

Conflicts of interest

None of the authors has any conflict of interest.

Reprint requests and correspondence:
Keiichiro Yoshinaga, MD, PhD, FACC, FASNC
Director, Diagnostic and Therapeutic Nuclear Medicine,
National Institutes for Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
E-mail: yoshinaga.keiichiro@qst.go.jp

References

1. Manabe O, Kikuchi T, Scholte AJHA, et al. Radiopharmaceutical tracers for cardiac imaging. J Nucl Cardiol 2017. [Epub ahead of print]
2. Hiroshima Y, Manabe O, Naya M, et al. Quantification of myocardial blood flow with 13C-hydroxyephedrine dynamic PET: comparison with 15O-H$_2$O PET. J Nucl Cardiol 2017. [Epub ahead of print]
3. Mori Y, Manabe O, Naya M, et al. Improved spillover correction model to quantify myocardial blood flow by 13C-acetate PET: comparison with 15O-H$_2$O PET. Ann Nucl Med 2015; 29: 15-20.
4. Yoshinaga K, Manabe O, Katoh C, et al. Quantitative analysis of coronary endothelial function with generator-produced 82Rb PET: comparison with 15O-labelled water PET. Eur J Nucl Med Mol Imaging 2010; 37: 2243-41.
5. Tsukamoto T, Ito Y, Noriyasu K, et al. Quantitative assessment of regional myocardial flow reserve using tc-99m-sestamibi imaging. Circ J 2005; 69: 188-93.
6. Tomiyama Y, Manabe O, Oyama-Manabe N, et al. Quantification of myocardial blood flow with dynamic perfusion 3.0 Tesla MRI: Validation with 15O-water PET. J Magn Reson Imaging 2015; 42: 754-62.
7. Kikuchi Y, Oyama-Manabe N, Naya M, et al. Quantification of myocardial blood flow using dynamic 320-row multidetector CT as compared with 15O-H$_2$O PET. Eur Radiol 2014; 24: 1547-56.
8. Yoshinaga K, Manabe O, Tamaki N. Absolute quantification of myocardial blood flow. J Nucl Cardiol 2018; 25: 635-51.
9. Harms HJ, de Haan S, Knaapen P, et al. Parametric images of myocardial viability using a single 15O-H$_2$O PET/CT scan. J Nucl Med 2011; 52: 745-9.
10. Maddahi J, Packard RR. Cardiac PET perfusion tracers: current status and future directions. Semin Nucl Med 2014; 44: 333-43.
11. Powles KE, Hessain RC, Ruddy TD. Practicing safe SPECT: caffeine abstinence in nuclear myocardial perfusion imaging. J Nucl Cardiol 2008; 15: 709-18.
12. Iida H, Takahashi A, Tamura Y, et al. Myocardial blood flow: comparison of oxygen-15-water bolus injection, slow infusion and oxygen-15-carbon dioxide slow inhalation. J Nucl Med 1995; 36: 78-85.
13. Manabe O, Naya M, Aikawa T, et al. PET/CT scanning with 3D acquisition is feasible for quantifying myocardial blood flow when diagnosing coronary artery disease. EJNMMI Res 2017; 7: 52.
14. Stabin MG. Radiopharmaceuticals for nuclear cardiology: radiation dosimetry, uncertainties, and risk. J Nucl Med 2008; 49: 1555-63.
15. Bergmann SR, Herrero P, Markham J, et al. Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography. J Am Coll Cardiol 1989; 14: 639-52.
16. Kaufmann PA, Gneecchi-Ruscone T, Yap JT, et al. Assessment of the reproducibility of baseline and hyperemic myocardial blood flow measurements with 15O-labeled water and PET. J Nucl Med 1999; 40: 1848-56.
17. Uren NG, Crake T, Lefroy DC, et al. Reduced coronary vasodilator function in infarcted and normal myocardium after myocardial infarction. N Engl J Med 1994; 331: 222-7.
18. Danad I, Uusitalo V, Kero T, et al. Quantitative assessment of myocardial perfusion in the detection of significant coronary artery disease: cutoff values and diagnostic accuracy of quantitative $[^{15}O]H_2O$ PET imaging. J Am Coll Cardiol 2014; 64: 1464-75.
19. Tonino PA, De Bruyne B, Pijls NH, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 2009; 360: 213-24.
20. Yoshinaga K, Katoh C, Noriyasu K, et al. Reduction of coronary flow reserve in areas with and without ischemia on stress perfusion imaging in patients with coronary artery disease: a study using oxygen 15-labeled water PET. J Nucl Cardiol 2003; 10: 275-83.
21. Tsukamoto T, Morita K, Naya M, et al. Myocardial flow reserve is influenced by both coronary artery stenosis severity and coronary risk factors in patients with suspected coronary artery disease. Eur J Nucl Med Mol Imaging 2006; 33: 1150-6.
22. Rimoldi O, Rosen SD, Camici PG. The blunting of coronary flow reserve in hypertension with left ventricular hypertrophy is transmural and correlates with systolic blood pressure. J Hypertens 2014; 32: 2465-71; discussion 2471.
23. Pitkänen OP, Nuutila P, Raitakari OT, et al. Coronary flow reserve in young men with familial combined hyperlipidemia. Circulation 1999; 99: 1678-84.