Conceptual framework for the formation of the integrated intelligent transport system in Ukraine

Abstract. Introduction. The research is dedicated to the conceptual framework of the integrated intelligent transport system (ITS) formation in Ukraine. The author presents different approaches and technologies in the field of the functional structure of the integrated intelligent transport system optimisation and describes the influence of the integrated ITS creation on political, economic and social situation in Ukraine. Purpose. To develop a conceptual framework of the integrated intelligent transport system as a balanced synergetic factor of the transport sector development in Ukraine. Methods. In order to achieve the goal set in the article, the appropriate methods have been used based on the systemic approach, artificial intelligence, management theory and decision-making theory. The system analysis was used to define the scientific task. Results. The study related to the development of the conceptual framework for the formation of the integrated intelligent transport system has made it possible to introduce approaches and technologies in the field of ITS functional structure optimisation and determine its principal components. The functional structure of the proposed integrated intelligent transport system includes implementation of a modern methodology of mathematical transport modelling, which provides an objective, comprehensive and advanced approach to planning and solving problems of the transport industry of Ukraine. Conclusions. The global experience and the results of the implementation of ITS are invaluable. The creation of the integrated ITS in Ukraine should provide not only solutions to specific problems, but also improve the efficiency of the transport system in general. The proposed conceptual framework for the formation of the integrated intelligent transport system in Ukraine may be useful for government authorities, transport enterprises and consumers of transport services.

Keywords: Country’s Competitiveness; Intelligent Transport System; Transport Infrastructure; Transport Flows; Management Structure

JEL Classification: F20; L86; L90; O10; R41

DOI: http://dx.doi.org/10.21003/ea.V158-07

1. Introduction

The objective growth of traffic intensity, its load on the infrastructure, its impact on the environment, as well as the implementation of modern information systems in transport and infrastructure facilities, require proper management of the transport processes. The current use of intelligent transport systems is an effective innovative approach that can ensure an increase in the competitiveness of Ukraine both in the domestic and international markets. The creation of the integrated intelligent transport system requires the application of a comprehensive approach which should include the mechanism of state management, the relevant road infrastructure and an intelligent information system to manage the transport system. ITS should be created as a unified centralised system of the Ukrainian transport system management, rather than the complex of local management systems. Its creation, development and integration into the existing local transport systems, as well as the standard design solutions based on the use of advanced foreign technologies, should be viewed as an important stage of the implementation of the integrated ITS. This approach will allow avoiding mistakes in the design of the intelligent system, optimising terms and expenditures for its creation, change the existing principle of local informatization for each mode of transport.
ECONOMICS AND MANAGEMENT OF NATIONAL ECONOMY

4. Results

Informatization of industrial, economic and social processes is developing rapidly, which allows for asserting the information revolution. The transport sector, where one of the principal innovative directions is creation and implementation of intelligent transport systems, does not stay aside from it.

Today, modern technologies are used to improve the transport network based on intelligent transport systems (ITS). The rapid developments of computer devices and related applications have significantly influenced the price of such commodities making them more accessible.

The kinds of intelligent transport systems can be divided into applications for online travel planning, vehicle navigation systems, digital road maps, automatic traffic information. Essentially, any combination of technology and transport can be considered as «smart», hence the possibilities of ITS applications are practically unlimited.

ITS represents the largest and most diverse group. It covers a wide range of information, traffic, navigation, automotive systems, as well as insurance and monitoring systems of vehicle / driver (telematics) and thousands of other systems which use data to create «smart» solutions in the field of transport. This category includes the majority of transport «applications», which are available in modern smartphones. ITS ensure great economic benefits. ITS users have many advantages: time savings in route design (including congestion), fuel economy, operative interference during the transportation, etc.

An important feature of intelligent transport systems, whereby they can be attributed to a particular area of research is the existence of logical and mathematical tools based on the system approach to transport management.

By using ITS, the following tasks can be solved:

- implementation of electronic payment systems for transport services (toll roads);
- remote control and supervision during the transportation of hazardous and valuable cargos;
- driving control and rest periods of drivers and restraints of violations of the set mode;
- transport safety of transport means (TM) on a voyage;
- systems (groups) management of TM, e. g. vehicles for operative services, road maintenance and public utilities, freight and passenger transport companies, taxi companies, etc.;
- formation of optimal (rational) routes of TM determining their destination points and travelling time;
- optimal traffic management;
- provision of information related to users of transport services (drivers and passengers);
- reaction to emergencies;
- ability to track the location of stolen vehicles;
- use of ITS data to solve tasks related to law enforcement.

It should be noted that the creation of individual systems to solve each of the stated problems leads to irrational consumption of time and costs because of the duplication of similar elements of such systems. In the modern context, the main problem of efficient organisation of transport process in major cities of Ukraine and suburban areas of the road network with intensive traffic lies in the optimisation of use of limited public resources, i. e. the transport network capacity.

In order to solve this problem, it is expedient to create an integrated intelligent transport system (IITS). IITS presents the system of integration of modern information and communication technologies and automation facilities into the transport infrastructure, transport vehicles and users, which is relevant to the enhancement of safety and efficiency of the transport process in the country and the improvement of comfort for drivers and transport users. In other words, this is an information system which combines the existing systems in the transport sector.

In particular, there is a number of projects implemented with regard to the intellectualisation of transport, introduced within the UARoads project which monitors the status of national roads [1]. Using GPS location data and the gyroscopic sensor of a smartphone which responds to vibrations, the UARoads application evaluates the quality of road surface. Unfortunately, this information is purely informative, but it can be transferred to competent authorities for further planning of the quality improvement of road surface.

The following example is the State Border Guard Service of Ukraine, which uses the interactive map of checkpoints on Ukraine's border. At present, it is possible to get information on the border checkpoints loading level online and view the state of accumulation of vehicles through surveillance cameras in real time.

Ukraine has joined the development of the concept for transport system management known as «Mobility-as-a-Service» (MaaS) [10]. The basic idea of MaaS is to provide mobility to services due to which users will be able to choose the transport services of various service providers by using one interface to compare the fees charged while using taxis, buses, airplanes, as well as the cost of car rental services, etc.

It should be noted that a synergistic effect can be obtained by attracting investments both in the transport infrastructure and the information systems of traffic flows management. This approach is the cornerstone of IITS.

Electronic traffic control systems with interactive road signs have already been introduced in the EU member states. Currently, the EU is also working on the implementation of eCall, a comprehensive electronic emergency call system, by which information on a traffic accident is automatically transferred to the emergency service centre via a special device in a vehicle [10].

Intelligent transport is an essential element of the «smart city». The development of the «smart city» can be applicable to many sectors of city management: its transport, «electronic government», energy, health care, construction and public life. Innovations that save and optimise resources can be introduced in each of these areas. Table 1 presents approaches and technologies in the field of optimisation of a number of transport tasks.

In order to solve traffic problems in Ukraine the aforementioned measures should be introduced and improved by using the global experience on travelling demand management, reducing the load on the transport infrastructure where it is needed.

No	Demand management measures	Examples of use
1.1	Organisation of paid parking spaces in the downtown	Helsinki, Stockholm, Moscow, St. Petersburg (pilot project 08/2015)
1.2	Entry fee into the downtown	Stockholm (2008); London (2003)
1.3	System of short-term car renting / system of shared use of personal vehicles	Cities of Germany (2014); Moscow (2015)
1.4	Additional taxes for vehicle owners / registration fee	Singapore
1.5	Organisation of the streets system with a quiet traffic / consistent spaces with pedestrian priority	Cities of Germany
2.1	Development of the public transport system based on the principle of the public transport priority over the private transport in the traffic organisation	European cities, Bogota (2000)
2.2	Development of the main public rail transport	Cities of Germany (S-Bahn; tram lines); Helsinki
2.3	Intelligent transport systems; elements of the «smart city»	Barcelona; Australia; Canada
2.4	The system of public bike rent	Copenhagen (1995); Paris (2007); Moscow (2013); St. Petersburg (2014)
2.5	Development of the system of transport interchange hubs	Cities of Germany
2.6	Creation of a comfortable pedestrian communication system in the downtown	Copenhagen; Paris (La Défense downtown)
2.7	Introduction of a unified hourly payment system for travel by all modes of transport	Berlin; Copenhagen, Prague
2.8	Increasing of public transport accessibility and quality of passenger servicing	European cities

Source: Based at data from http://ertico.com

Katerna, O. / Economic Annals-XII (2016), 158(3-4(2)), 31-34
Therefore, the above studies on the implementation of certain activities and information systems in the transport sector activity of different countries allow us to form the Functional management structure of Integrated Intelligent Transport Systems shown in Figure 1.

The proposed functional structure of the integrated intelligent transport system provides an introduction of the elements of transport imitation modelling. In this case, a transport model is a mathematical computer model of transport, which is a combination of databases on the transport infrastructure and the geo-platform.

The expected results of the creation of the integrated ITS in Ukraine may be:

- the development of the procedures to improve the efficiency and operation of the transport system, as well as a regulatory framework for the regulation of transport;
- the creation of inquiry and communication of the transport sector management;
- the creation of a mechanism of information delivery to government authorities and other interested persons about the operation of the transport sector;
- the improvement of the transport network and reduction of the negative impact of vehicles on the environment.

Further on, we will examine the impact of goals of the integrated ITS creation on the needs of the society and the...
The creation of the advanced model of ITS, which can be minimised by the step-funding that requires sufficient volumes of investments within the frame of each of the development stages. The main drawback of the transport sector of Ukraine is the absence of a legal basis for the construction of ITS and standardisation in the field of interaction between executive authorities. It is possible to minimise legal risks due to the formation of the legal environment, the methodological complex in order to create ITS, as well as the creation of conditions for coordination of interaction between different executive authorities. The absence of an elaborated strategy and the existence of the differing views related to the development of ITS are referred to the scientific and technical risks. Thus, a synergistic effect can be obtained both by attracting investments in the transport infrastructure and providing proper information systems of traffic flows management. This approach is cornerstone of integrated intelligent transportation systems.

Further researches should be aimed at the creation of the state strategy for the development of the integrated intelligent transport systems in Ukraine and the development of a relevant control mechanism.

5. Conclusions

The international experience and the results of the implementation of ITS are invaluable. At present, this refers to more sophisticated information systems designed to control the transport complex. Therefore, the integrated ITS are actual. The creation of the integrated ITS in Ukraine not only provides solutions to certain problems related to ITS but also improves the efficiency of the transport system of the country in general.

The current crisis phenomena in Ukraine negatively affect the development of the country’s integrated ITS, which is primarily caused by the emergence of risks. The underfunding is a major financial risk associated with the introduction of the advanced model of ITS, which can be minimised by the step-funding that requires sufficient volumes of investments within the frame of each of the development stages. The main drawback of the transport sector of Ukraine is the absence of a legal basis for the construction of ITS and standardisation in the field of interaction between executive authorities. It is possible to minimise legal risks due to the formation of the legal environment, the methodological complex in order to create ITS, as well as the creation of conditions for coordination of interaction between different executive authorities. The absence of an elaborated strategy and the existence of the differing views related to the development of ITS are referred to the scientific and technical risks. Thus, a synergistic effect can be obtained both by attracting investments in the transport infrastructure and providing proper information systems of traffic flows management. This approach is cornerstone of integrated intelligent transportation systems.

Further researches should be aimed at the creation of the state strategy for the development of the integrated intelligent transport systems in Ukraine and the development of a relevant control mechanism.

ECONOMICS AND MANAGEMENT OF NATIONAL ECONOMY

Table 2: Impact of the integrated ITS creation on the political, economic and social situation in Ukraine

Goal	Impact on political situation	Impact on economic situation	Impact on social situation
Enhancement of efficiency of the transport sector of the country	Improvement of international economic relations, increase in transit flows, improvement of the investment climate of the country	Enhancement of efficiency of the economy in general	Growth in prosperity of people due to the enhancement of efficiency of the economy
Enhancement of Safety	Improvement of the country image, operational control of violations of law	Reduction of loss of labour forces, decrease in treatment expenses	Decrease in the number of victims of road accidents, reduction of losses which occur because of violations of law, traffic delays
Improvement of the environmental factor	Sustainable development and protection of the environment, rational exploitation of natural resources in the country	Reduction of loss of labour forces, decrease in treatment expenses	Improvement of living conditions, reduction of disease incidence
Ease of use	Improvement of foreign economic relations, comprehensive control of all processes in the transport sector	Growth in demand for vehicles, travel, and transportation, decrease in time consumption required for transport processes	Reduction of loss of time and energy of road transport users for journeys and transportation, growth in satisfaction with transport services

Source: Compiled by the author

References (in language original)

1. Halkov, A. R., Yevsieieva, O. P., Baranov, O. V., & Baranov, V. Y. (2014). Intelligent Transport Systems in Ukraine. Vslvnk NTU «КПІ» (Herald Of NTU «КПІ»), 1052(9), 106-112 (in Ukr).
2. Tsyhan, R. M., & Kravchenko, A. A. (2013). Methodological approaches to the management of transport infrastructure in Ukraine. Efektyvna Ekonomika (Effective Economics), 90. Retrieved from http://www.economy.nayka.com.ua/?op=1&z=2381 (in Ukr).
3. Komarov, V. V., & Garagan, S. A. (2012). Intelligent transport systems the task of telematics and intelligent transport systems. T-Comm - Telekommunikacii i transport (T-Comm - Telecommunications and Transport), 4, 34-38. Retrieved from http://cyberleninka.ru/article/n/intellektualnye-zadachi-telematicheskikh-transportnyh-sistem-i-intellektualnaya-transportnaya-sistema (in Rus.)
4. Russell, J. (2012). Intelligent transportation system VSD.
5. Sussman, J. S. (2005). Perspectives on Intelligent Transportation Systems (ITS). Springer.
6. Chowdhury, M. A., & Sadek A. W. (2003). Fundamentals of Intelligent Transportation Systems Planning. Artech House.
7. Mogre. R. Intelligent Transportation Systems: A Private Organizations Perspective / R. Mogre. – LAP Lambert Acad. Publ., 2010. – 156 p.
8. Roess, R. P., Prassas E. S., & McShane W. R. (2010). Traffic Engineering Process Hall. 3.
9. Ghosh, S., & Lee, T. S. (2010). Intelligent Transportation Systems: Smart and Green Infrastructure Design. CRC Press.
10. Payne, S., & Hobbs, D. (2015). Key Performance Indicators for Intelligent Transport Systems. AECOM.

Received 20.01.2016

References (in language original)

1. Інтелектуальні транспортні системи в Україні / А. Р. Баранов, О. П. Євсєєва, О. В. Баранов, В. Ю. Баранов // Вісник НТУ «ХПІ». Серія: Автомобільна та тракторобудування. — Х.: НТУ «ХПІ», 2014. — № 9 (1052). — С. 106–112.
2. Циган Р. М., Кравченко А. А. Методологічні підходи до управління транспортною інфраструктурою в Україні [Електронний ресурс] / Ефективна економіка — 2013. — № 10. — Режим доступу : http://www.economy.nayka.com.ua/?op=1&z=2381
3. Косаров В. В., Баранов С. А. Інтелектуальні завдання телематичних транспортних систем і інтелектуальна транспортна система. T-Comm — Telekommunikacii i Transport [Електронний ресурс]. — 2012. — № 4. — Режим доступу : http://cyberleninka.ru/article/n/intellektualnye-zadachi-telematicheskikh-transportnyh-sistem-i-intellektualnaya-transportnaya-sistema
4. Russell J. Intelligent transportation system / J. Russell. — VSD, 2012. — 110 p.
5. Sussman J. S. Perspectives on Intelligent Transportation Systems (ITS) / J. S. Sussman. — Springer, 2005. — 229 p.
6. Chowdhury M. A., Sadek A. W. Fundamentals of Intelligent Transportation Systems Planning / M. A. Chowdhury, A. W. Sadek. — Artech House, 2003. — 210 p.
7. Mogre. R. Intelligent Transportation Systems: A Private Organizations Perspective / R. Mogre. – LAP Lambert Acad. Publ., 2010. — 156 p.
8. Roess R. P., Prassas E. S., McShane W. R. Traffic Engineering Process Hall. 3.
9. Ghosh S., Lee T. S. Intelligent Transportation Systems: Smart and Green Infrastructure Design. — CRC Press.
10. Payne S., Hobbs D. Key Performance Indicators for Intelligent Transport Systems / S. Payne, D. Hobbs. — Bristol, AECOM, 2015. — 185 p.