New superconducting phase of Bi$_2$Te$_3$ under pressure above 11 GPa

To cite this article: M. Einaga et al 2010 J. Phys.: Conf. Ser. 215 012036

View the article online for updates and enhancements.
New superconducting phase of Bi$_2$Te$_3$ under pressure above 11 GPa

M Einaga1, Y Tanabe1, A Nakayama2, A Ohmura3, F Ishikawa1,2
and Yuh Yamada2,3

1Graduate School of Science & Technology, Niigata University, Niigata 950-2181, Japan
2Center for Transdisciplinary Research, Niigata University, Niigata 950-2181, Japan
3Faculty of Science, Niigata University, Niigata 950-2181, Japan

E-mail: einaga.mari@phys.sc.niigata-u.ac.jp

Abstract. We have investigated the pressure dependence of superconducting transition temperature T_c of Bi$_2$Te$_3$ through electrical resistance measurement under high pressure up to 13 GPa. The value of zero-resistance critical-temperature $T_{c\text{zero}}$ is 2.7 K at 9.0 GPa. Pressurization up to 11 GPa reduces the $T_{c\text{zero}}$. However the pressurization at 13 GPa causes sudden enhancement of $T_{c\text{zero}}$, which is obtained to be 3.7 K. The onset temperature of superconducting transition $T_{c\text{onset}}$ shows the positive pressure dependence under pressure above 10 GPa. The value of $T_{c\text{onset}}$ is obtained to be 5.0 K at 13 GPa. The sharp increase of $T_{c\text{zero}}$ and the positive pressure dependence of $T_{c\text{onset}}$ suggest a presence of new superconducting phase.

1. Introduction
Bismuth telluride Bi$_2$Te$_3$ is a semiconductor with a band gap of 0.171 eV [1], containing a high density of state around the Fermi energy level. Therefore it shows a relatively low thermal conductivity. The fact of its being a thermoelectric material [2] is based on such transport properties.

On the other hand, it is expected that these characters cause its metallization and superconductivity under high pressure. Actually high-pressure transport-properties of Bi$_2$Te$_3$ had been investigated to find the superconductivity during the 1960’s and the 1970’s [1, 3-6]. The pressure dependence of superconducting transition temperature T_c was reported by Il’ina et al. [5]. The highest T_c was 4.3 K at 71 kbar, however, the zero resistances to characterize the superconducting transition were not observed in their experiments. We recently measured the temperature dependence of electrical resistance of Bi$_2$Te$_3$ under high pressure using a modified Bridgman anvil cell, which makes hydrostatic compression possible using the pressure medium [7, 8]. The value of T_c showing the zero resistance is obtained to be 2.8 K at the pressure of 10 GPa.

We are interested in the crystal structure of Bi$_2$Te$_3$ under high pressure and its phase diagram because the crystal structure dominates the transport properties. Bi$_2$Te$_3$ has a hexagonal structure with a space group $R\overline{3}m$ at room temperature and atmospheric pressure; the lattice parameters are $a_0 = 4.395$ Å and $c_0 = 30.44$ Å [9]. In addition, the presences of two high-pressure phases are confirmed by the x-ray diffraction at room temperature [10]. The structural phase transition from phase I to II, is observed at 8 GPa, which is accompanied by a significant decrease in the electrical resistance.
Moreover, the structural phase transitions from phase II to III is observed at 14 GPa and room temperature.

In this study, the electrical resistance of Bi$_2$Te$_3$ has been measured at low temperature under pressure up to 13 GPa. We discuss the pressure dependence of T_c.

2. Experiments

Polycrystalline Bi$_2$Te$_3$ (99.99 % pure, Kojundo Chemical Lab. Co., Ltd.) was used as the sample. According to the powder x-ray diffraction measurement, the lattice parameters were $a_0 = 4.385$ Å and $c_0 = 30.51$ Å, respectively [10]. The sample cut into a small piece with a dimension of $1.0 \times 0.30 \times 0.14$ mm3, was set in a Teflon capsule. The electrical resistance of sample set in the capsule was measured by four-probe method. The capsule was filled with a mixture of Fluorinert FC-77 and FC-70 (1:1 in volume), which is a pressure-transmitting medium to generate a quasi-hydrostatic condition. We used the modified Bridgman anvil cell for the electrical-resistance measurements under high pressure [7, 8]. The capsule was loaded into the Bridgman anvil cell. The pressure in the sample chamber was calibrated using the transition pressure of Bi at room temperature and the superconducting-transition temperature of Pb in the lower-temperature region. The cell loaded and clamped at room temperature, was cooled by 3He circulation-type Joule-Thomson 1 K cryogenic refrigerator with the Gifford-McMahon cycle cooler developed by IWATANI INDUSTRIAL GASES CORP. The temperature dependence of electrical resistance was measured in the temperature region between 0.9 and 300 K at each pressure.

3. Results and discussion

We have been succeeded to pressurize up to 13 GPa using the Bridgman anvil cell. Figure 1 shows the pressure dependence of electrical resistivity ρ obtained under pressure up to 13 GPa and at room temperature. The value of ρ decreases with increasing the pressure. The ρ vs. P curve has two inflection points at around 2 and 8 GPa, respectively. The change in slope observed at around 2 GPa is probably associated with the electrical topological transition (ETT) [10, 11]. The rapid decrease of value of ρ, which is occurred at around 8 GPa, indicates the structural phase transition from phase I to II [10].

The temperature dependences of ρ were obtained in the pressure range from 9.0 to 13 GPa as shown in Fig. 2. The T vs. ρ curves in the main figure and insert are displayed in the following regions: 0.9 K $< T < 10$ K for the main and 0.9 K $< T < 300$ K for the insert, respectively. The insert shows that each ρ vs. T curve exhibits metallic behavior. The main figure indicates that pressurization from 9 to 13 GPa causes the zero resistance state, which is one of the proofs of superconductivity. We determine the zero-resistance critical-temperature T_c^{zero} and the onset temperature of superconducting transition T_c^{onset} here. At 9.0 or 10 GPa, there is little difference between T_c^{zero} and T_c^{onset}. The difference is less than 0.3 K. Pressurization beyond 11 GPa however broadens the difference, $T_c^{onset} - T_c^{zero}$. In particular, the transition process observed at 13 GPa takes place at higher T_c^{onset} and T_c^{zero}.

Figure 3 shows the pressure dependence of T_c^{onset} and T_c^{zero}. The pressure dependence of T_c^{onset} is different from that of T_c^{zero} at the pressures above 10 GPa. A continuous increase of T_c^{onset} is observed in the region between 10 and 13 GPa. The value...
of $T_c^{\text{onset}} = 5.0$ K observed at 13 GPa is the highest temperature in all of the reports on T_c of Bi$_2$Te$_3$ [5, 10]. The value of T_c^{zero}, decreases with increasing pressure in the region between 9 and 11 GPa, which turn to the increase at 12 GPa. In addition the pressurization at 13 GPa causes sudden enhancement of T_c^{zero}, which is 3.7 K.

The high-pressure x-ray diffraction study indicates that Bi$_2$Te$_3$ shows the phase II under pressures above 8 GPa and at room temperature [10]. Taking the previous study into account, it is reasonable to suppose that the negative pressure dependence in the value of T_c^{zero} observed under pressure up to 11 GPa is caused by phase II. The sharp increase of T_c^{zero} and the positive pressure dependence of T_c^{onset} suggest a presence of new superconducting phase. It seems that the mixture of phase II and the new phase is present in the pressure region between 10 and 13 GPa. We suppose that the new phase corresponds to the phase III, which is present at the pressures above 14 GPa and at room temperature. In conclusion, we found the new superconducting phase of Bi$_2$Te$_3$ with $T_c^{\text{onset}} = 5.0$ K at 13 GPa. In addition it was clarified that the value of T_c observed in phase II decrease with increasing the pressure.

Figure 2. Temperature dependence of electrical resistivity at the pressures from 9.0 to 13 GPa. The main figure and insert show the resistivity in the following temperature regions: 0.9 K $< T < 10$ K for the main and 0.9 K $< T < 300$ K for the insert, respectively.

Figure 3. Pressure dependences of T_c^{onset} and T_c^{zero} of Bi$_2$Te$_3$. Closed and open circles indicate T_c^{onset} and T_c^{zero}, respectively.

Acknowledgements
This research was partially supported by Grant-in-Aids for Science Research on Priority Areas: ‘Novel State of Matter Induced by Frustration’ No. 20046006, and ‘New Materials Science Using Regulated Nano Space-Strategy in Ubiquitous Elements’, No. 20045003, from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

References
[1] Li C-Y, Ruoff A L and Spencer C W 1961 *J. Appl. Phys.* 32 1733
[2] Goldsmid H J 1964 *Thermoelectric Refrigeration* (London: Temple Press Books) p 114
[3] Itskevich E S, Popova S V and Atabaeva E Y 1964 *Sov. Phys.-Dokl.* 8 1086
[4] Atabaeva E Y, Itskevich E S, Mashkov S A, Popova S V and Vereshchagin L F 1968 *Sov. Phys.-Solid State* 10 43
[5] Il’ina M A and Itskevich E S 1972 *Sov. Phys.-Solid State* 13 2098
[6] Vereshchagin L F, Atabaeva E Y and Bendeliani N A 1972 *Sov. Phys.-Solid State* 13 2051
[7] Nakanishi T, Takeshita N and Môri N 2002 *Rev. Sci. Instrum.* 73 1828
[8] Ishikawa F, Fukuda K, Sekiya S, Kaeriyama A, Yamada Y and Matsushita A 2007 J. Phys. Soc. Jpn. 76 92

[9] Feutelais Y, Legendre B, Rodier N and Agafonov V 1993 Mat. Res. Bull. 28 591

[10] Nakayama A, Einaga M, Tanabe Y, Nakano S, Ishikawa F and Yamada Y 2009 High Pressure Research 29 245

[11] Jacobsen M K, Kumar R S, Cornelius A L, Sinoeiken S V and Nicol M F 2007 AIP Conf. Proc. 955 171