Abstract

The Cachazo-Svrcek-Witten approach to perturbative gauge theory is extended to gauge theories with quarks and gluinos. All googly amplitudes with quark-antiquark pairs and gluinos are computed and shown to agree with the previously known results. The computations of the non-MHV or non-googly amplitudes are also briefly discussed, in particular the purely fermionic amplitude with 3 quark-antiquark pairs.

1 Introduction

Recently Witten [1] found a deep connection between the perturbative gauge theory and string theory in twistor space [2]. Based on this work, Cachazo,
Svrcek and Witten (CSW for short) reformulated the perturbative calculation of the scattering amplitudes in Yang-Mills theory by using the off shell MHV vertices [3]. The MHV vertices they used are the usual tree level MHV scattering amplitudes in gauge theory [4, 5], continued off shell in a particular fashion as given in [3]. (For references on perturbative calculations, see for example [6, 7, 8, 9, 10]. The 2 dimensional origin of the MHV amplitudes in gauge theory was first given in [11].) Some sample calculations were done in [3], sometimes with the help of symbolic manipulation. The correctness of the rules was partially verified by reproducing the known results for small number of gluons [6].

In two previous works [12, 13] (for recent works, see [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]), by following the new approach of [3], we have computed the generic gluon googly amplitudes and discussed briefly how the CSW approach can be extended to theories with fermions (see also [22]). In this paper we will present the full set of the CSW rules for gauge theories with quarks and antiquarks (fermions in the fundamental representation) and gluinos (in supersymmetric theory or fermions in the adjoint representation). Although the fermionic amplitudes at tree level can be obtained by supersymmetric Ward identities [33, 34, 6] we think it is still worthy to compute these amplitudes directly. Although the CSW rule can be partially understood from the twistor string theory [23], a full understanding of the CSW approach from the conventional field theory is not reached [28].

By using these CSW rules with fermions, we will compute the googly amplitudes with one and two quark-antiquark pairs. We will also compute the googly amplitudes with 2 gluinos. For all these amplitudes, we got results which are in agreement with the previously known results. We note that these googly amplitudes are simply the “complex conjugate” of the corresponding MHV amplitudes.

The amplitudes with more than two quark-antiquark pairs are no longer MHV or googly. Nevertheless these amplitudes can be simply computed by using the extended CSW rules. As an example we will analyze the purely fermionic amplitudes with 3 quark-antiquark pairs. There are only 2 different kinds of diagrams and the amplitude can be written down very simply. We conjecture that this will be the right result for the amplitude.

This paper is organized as follows. In section 2, we review the CSW rule for gauge theory without fermions. In section 3, we give the extended CSW rules for gauge theories with quarks and gluinos. Here we list all the MHV vertices with fermions. Some general relations between the number of
vertices and the number of external gluons are also given. These relations are particularly useful for analyzing diagrams with fewer number of external gluons with positive helicity. We will use them to draw the possible diagrams for the purely fermionic amplitudes with 3 quark-antiquark pairs. In section 4, we compute the googly amplitude with one quark-antiquark pair. There is only 1 external gluon with positive helicity and there can be an arbitrary number of gluons with negative helicity. In section 5, we compute the googly amplitude with 2 quark-antiquark pairs. In section 6, we compute the googly amplitude with 2 gluinos. The computation for the 4 gluino googly amplitude can also be done and the algebra is more or less the same as before. A technical and lengthy proof in section 4 is relegated to Appendix A.

2 Review of the CSW approach to perturbative gauge theory

First let us review the rules for calculating tree level gauge theory amplitudes as proposed in [3]. Here we follow the presentation given in [12, 13] closely. We will use the convention that all momenta are outgoing. By MHV (with gluinos only), we always mean an amplitude with precisely two gluons of negative helicity. If the two gluons of negative helicity are labelled as r, s (which may be any integers from 1 to n), the MHV vertices (or amplitudes) are given as follows:

$$V_n = \frac{\langle \lambda_r, \lambda_s \rangle^4}{\prod_{i=1}^{n} \langle \lambda_i, \lambda_{i+1} \rangle}.$$ \hfill (1)

For an on shell (massless) gluon, the momentum in bispinor basis is given as:

$$p_{a\dot{a}} = \sigma_a^\mu p_\mu = \lambda_a \tilde{\lambda}_{\dot{a}}.$$ \hfill (2)

For an off shell momentum, we can no longer define λ_a as above. The off-shell continuation given in [3] is to choose an arbitrary spinor $\tilde{\eta}^{\dot{a}}$ and then to define λ_a as follows:

$$\lambda_a = p_{a\dot{a}} \tilde{\eta}^{\dot{a}}.$$ \hfill (3)

For an on shell momentum p, we will use the notation λ_{pa} which is proportional to λ_a:

$$\lambda_{pa} \equiv p_{a\dot{a}} \tilde{\eta}^{\dot{a}} = \lambda_a \tilde{\lambda}_{\dot{a}} \tilde{\eta}^{\dot{a}} \equiv \lambda_a \phi_p.$$ \hfill (4)

As demonstrated in [3], it is consistent to use the same $\tilde{\eta}$ for all the off shell lines (or momenta). The final result is independent of $\tilde{\eta}$.
By using only MHV vertices, one can build a tree diagram by connecting MHV vertices with propagators. For the propagator of momentum \(p\), we assign a factor \(1/p^2\). Any possible diagram (involving only MHV vertices) will contribute to the amplitude. As proved in [3], a tree level amplitude with \(n_\text{\small -} \) external gluons of negative helicity must be obtained from an MHV tree diagram with \(n_\text{\small -} - 1\) vertices. Another relation was given in [12],

\[
n_\text{\small +} = \sum_i (i - 3) n_i + 1, \tag{5}
\]

when \(n_\text{\small +}\) is the number of the external gluons with positive helicity, and \(n_i\) is the number of the vertices with exactly \(i\) line. The other relation stated in the above is:

\[
n_\text{\small -} = \sum_i n_i + 1. \tag{6}
\]

From eq. (5) we can see that a tree level amplitude with \(n_\text{\small +}\) external gluons of positive helicity will have no contribution from any diagram containing an MHV vertex with more than \(n_\text{\small +} + 2\) lines (not necessarily all internal). For the googly amplitude we have \(n_\text{\small +} = 2\). Any contributing diagram will have exactly one MHV vertex with 4 lines. The rest MHV vertices are all with 3 lines.

For future use, let us recall 2 formulas presented in [12] about the off shell amplitude with \(n_\text{\small +} = 1\). When the first particle with momentum \(p_1\) is off shell and has positive helicity, the amplitude is

\[
V_n(1+, 2-, \cdots, n-) = \frac{p_1^2}{\phi_2 \phi_n} \frac{1}{[2, 3][3, 4] \cdots [n - 1, n]}. \tag{7}
\]

When it has negative helicity, the formula is

\[
V_n(1-, 2-, \cdots, r+, \cdots, n-) = \frac{\phi_1^4 p_1^2}{\phi_2 \phi_n} \frac{1}{[2, 3][3, 4] \cdots [n - 1, n]}. \tag{8}
\]

We stress the fact that the above off shell amplitudes are proportional to \(p_1^2\) and they vanish when \(p_1\) is also on shell \((p_1^2 = 0)\).

3 The fermionic MHV vertices

For gauge theory coupled with quark and antiquark, we can decompose an amplitude into partial amplitudes with definite color factors [9]. For simplicity we will assume that all quarks have different flavors. We will indicate
what should be changed if there are identical quark-antiquark pairs. Also we
will assume the gauge group to be $U(N)$ instead of $SU(N)$. For a connected
diagram with m pair of quark-antiquark, the color factor is

$$(T^{a_1} \cdots T^{a_{n+1}})_{i_1 i_2} \cdots (T^{a_m} \cdots T^{a_n})_{i_m i_1},$$

for a particular ordering of the quark-antiquarks and gluons \[35\]. The corre-
sponding partial amplitude is denoted as:

$$A(\Lambda^{h_1} q_1, g_1, \cdots, g_{n_1}, \bar{\Lambda}^{h_2} q_2, g_{n_1+1}, \cdots, g_{n_2}, \cdots, \bar{\Lambda}^{h_m} q_m, g_{n_m-1}, \cdots, g_n, \bar{\Lambda}^{h_1}).$$

(10)

For amplitudes with connected Feynman diagrams, the quark-antiquark color
indices (i, \bar{i}) must form a ring of length exactly m. There is no discon-
ected rings of shorter length, like in the color factor $(T^{\cdots})_{i_1 i_2} (T^{\cdots})_{i_2 i_3} (T^{\cdots})_{i_3 i_4} (T^{\cdots})_{i_4 i_1}$
This can be proved by induction with the number of pairs m.

The complete amplitude is obtained first by summing over all possible
partitions of n gluons into m parts and their permutations. Then there is
another summation over all possible permutations between quark-antiquark
pairs. If there are identical quark-antiquark pairs, we should do one more
summation over all possible permutation between identical antiquarks with a
minus sign if the permutation is odd. Of course, the summations of different
flavor identical quark-antiquark pairs should be done separately.

For a single quark-antiquark pair the color factor is $(T^{a_1} \cdots T^{a_n})_{i \bar{i}}$. The
partial amplitude is denoted as $A_{n+2}(\Lambda^{h} q, g_1, \cdots, g_{n}, \Lambda^{h} \bar{q}).$\[1\] It is represented
as in Fig. \[1\] We note that gluon lines are emitted only from one side of the
(connected) quark-antiquark line. We will stick to this rule also for multi-pair
of quark-antiquark diagrams.

There are 2 MHV vertices with quark-antiquarks, one for a single pair of
quark-antiquark and one for two quark-antiquark pairs which are shown in
Fig. \[2\] There is no MHV vertex for 3 or more pair of quark-antiquark. All
these (non-MHV) amplitudes should be computed from the above MHV ver-
tices by drawing all possible (connected) diagrams with only MHV vertices.

The explicit formulas for these MHV amplitudes are given as follows:

$$A(\Lambda^{+} q, g^{+}, \cdots, g^{-}, \cdots, g^{+}, \Lambda^{-}) = -\frac{\langle q, I \rangle \langle \bar{q}, I \rangle^3}{\langle q, 1 \rangle \langle q, 2 \rangle \cdots \langle n, \bar{q} \rangle \langle \bar{q}, q \rangle}.$$

(11)

\[1\] h denotes the helicity of the quark q. The helicity of the antiquark \bar{q} is $-h$ by helicity
conservation along the quark line.
Figure 1: The graphic representation for the single pair of quark-antiquark partial amplitude. Gluons are emitted from one side of the fermion line only.

For the single pair of quark-antiquark, and for 2 quark-antiquark pairs:

$$A(\Lambda_q^-, g_1^+, \cdots, g_l^-, \cdots, g_n^+, \Lambda_{\bar{q}}^+) = \frac{\langle q, I \rangle^3 \langle \bar{q}, I \rangle}{\langle q, 1 \rangle \langle 1, 2 \rangle \cdots \langle n, \bar{q} \rangle \langle \bar{q}, q \rangle}.$$ \hspace{1cm} (12)

for the single pair of quark-antiquark, and for 2 quark-antiquark pairs:

$$V(\Lambda_{q_1}^{h_1}, q_1, \cdots, g_{n_1}, \Lambda_{q_2}^{-h_2}, g_{n_1+1}, \cdots, g_n, \Lambda_{\bar{q}_1}^{-h_1})$$

$$= A_0(h_1, h_2) \frac{\langle q_1, q_2 \rangle}{\langle q_1, 1 \rangle \langle 1, 2 \rangle \cdots \langle n_1, q_2 \rangle} \times \frac{\langle q_2, \bar{q}_1 \rangle}{\langle q_2, n_1+1 \rangle \cdots \langle n, \bar{q}_1 \rangle},$$ \hspace{1cm} (13)

where $A_0(h_1, h_2)$ is given as follows:

$$A_0(+, +) = \frac{\langle q_1, q_2 \rangle^2}{\langle q_1, q_1 \rangle \langle q_2, q_2 \rangle}, \quad A_0(+, -) = -\frac{\langle q_1, q_2 \rangle^2}{\langle q_1, q_1 \rangle \langle q_2, q_2 \rangle},$$ \hspace{1cm} (14)

$$A_0(-, +) = -\frac{\langle q_1, q_2 \rangle^2}{\langle q_1, q_1 \rangle \langle q_2, q_2 \rangle}, \quad A_0(-, -) = \frac{\langle q_1, q_2 \rangle^2}{\langle q_1, q_1 \rangle \langle q_2, q_2 \rangle}.$$ \hspace{1cm} (15)

All these MHV amplitudes are given in terms of the “holomorphic” spinors of the external (on-shell) momenta. So we can use the same off shell continuation given in [3] which we recalled in section 2. By including these fermionic MHV vertices, we can extend the CSW rule of perturbative gauge theory to gauge theories with quarks and antiquarks. The propagator for both gluon and fermion (quark or antiquark) internal lines is just $1/p^2$, as explained in
The only peculiarity with fermions is that helicity is conserved along a fermion line. Because we assume that all quarks have different flavor, the flowing of arrows must follow the directions given exactly in Fig. 2. Let us assume that in an MHV diagram, there are n_i purely gluonic MHV vertices with i-lines, n_i^{2f} single pair of quark-antiquark MHV vertices with $(i+2)$-lines (counting also the 2 fermion lines, so actually only i gluon lines), and n_i^{4f} 2 pairs of quark-antiquark MHV vertices with $(i+4)$-lines (counting also the 4 fermion lines, so actually only i gluon lines). For a connected diagram with $2m$ quark-antiquark pairs, the number of positive helicity gluon n_+ and the number of negative helicity gluon n_- are given as follows:

$$n_- = \sum_{i \geq 3} n_i + \sum_{i \geq 1} n_i^{2f} + \sum_{i \geq 0} n_i^{4f} - (m - 1),$$

$$n_+ = \sum_{i \geq 3} (i - 3) n_i + \sum_{i \geq 1} (i - 1) n_i^{2f} + \sum_{i \geq 0} (i + 1) n_i^{4f} - (m - 1).$$

For googly amplitude with $m = 1$ and $n_+ = 1$, we have

$$n_4 + n_2^{2f} + n_0^{4f} = 1,$$

and $n_{i>4} = n_{i>2}^{2f} = n_{i>0}^{4f} = 0$. So there is either a single 4 line gluon MHV vertex, or a 4 line single pair of quark-antiquark MHV vertex, or a 4 line double pair of quark-antiquark MHV vertex (which is not possible because we have only 2 external fermion lines). See Figs. 8 and 9. We will use this result in section 4.

Eqs. (16) and (17) are quite powerful for analyzing the possible diagrams. These relations are particularly useful for analyzing diagrams with fewer
number of external gluons with positive helicity. For the purely fermionic amplitudes with 3 quark-antiquark pairs, we found that there are only 2 different kinds of diagrams as shown in Fig. 3. By using the extended CSW rules, the partial amplitude can be written down very simply as follows:

\[
A_6^{CSW}(\Lambda_{q_1}, \Lambda_{q_2}, \Lambda_{\bar{q}_1}, \Lambda_{\bar{q}_2}, \Lambda_{q_3}, \Lambda_{\bar{q}_3}) = \sum_{i=1}^{3} A_i + \sum_{i=1}^{3} \tilde{A}_i, \tag{19}
\]

where

\[
A_i = -\frac{\langle q_i, (\bar{q}_{i+1} q_i) \rangle^3 \langle \bar{q}_{i+1}, (\bar{q}_{i+1} q_i) \rangle}{\langle \bar{q}_{i+1}, q_{i+1} \rangle} \frac{1}{\langle \bar{q}_{i+1}, q_{i+1} \rangle^2} \frac{\langle q_{i+2}, \bar{q}_{i+2} \rangle^2}{\langle q_{i+1}, q_{i+2} \rangle^2} \frac{1}{\langle q_{i+1}, q_{i+2} \rangle^2} \frac{1}{(p_{q_i} + p_{\bar{q}_i})^2} \langle q_i, (\bar{q}_{i+1} q_i) \rangle^2 \langle \bar{q}_{i+1}, q_{i+2} \rangle \langle q_{i+2}, \bar{q}_{i+2} \rangle \langle \bar{q}_{i+1}, q_{i+2} \rangle \langle q_{i+2}, \bar{q}_{i+2} \rangle \langle \bar{q}_{i+1}, q_{i+2} \rangle \langle \bar{q}_{i+1}, q_{i+2} \rangle, \tag{20}
\]

and

\[
\tilde{A}_i = -\frac{\langle q_i, (\bar{q}_{i+1} q_i) \rangle^2}{\langle \bar{q}_{i+1}, q_{i+1} \rangle} \frac{1}{\langle \bar{q}_{i+1}, q_{i+1} \rangle} \frac{1}{\langle p_{q_i} + p_{\bar{q}_i} + p_{q_{i+1}} \rangle^2} \langle q_i, (\bar{q}_{i+1} q_i) \rangle^2 \langle \bar{q}_{i+1}, q_{i+1} \rangle \langle q_{i+1}, \bar{q}_{i+1} \rangle \langle \bar{q}_{i+1}, q_{i+1} \rangle \langle q_{i+1}, \bar{q}_{i+1} \rangle \langle \bar{q}_{i+1}, q_{i+1} \rangle, \tag{21}
\]
\[
\frac{\langle q_{i+1}; q_{i+2} \rangle^2}{\langle (q_{i+2}^2 q_{i+2}), q_{i+1} \rangle \langle (q_{i+2}^2 q_{i+2}), q_{i+1} \rangle},
\]
for one set of quark helicities. Here the expression \(\langle (ij), k \rangle \) is defined as \(\langle \lambda_{p_i + p_j}, \lambda_k \rangle \), and the indices are understood mod 3. We mention that the six-quark amplitude had been computed before in [31]. For other quark helicities and the proof that the above amplitudes indeed agree with the standard field theory results by using the Feynman rules, we refer to [32].

For supersymmetric theories, there are also gluinos, the super partners of the gluons. Because the gluinos are in the same adjoint representation as the gluons, the color decomposition for amplitudes with both gluons and gluinos would be the same as for purely gluon amplitudes. Compared with gauge theory with quark-antiquarks, there is no difference between gluino and its antiparticle. So we should include also diagrams with gluon lines emitted from both sides of the gluino lines.

The gluino MHV amplitudes can be obtained by using the recursive relation in [5] or by using the supersymmetric Ward identity [33, 34, 6] and are recalled here. The MHV vertex with two gluinos \((r < s)\) is:

\[
V_n(g_1, \cdots, g_t^-, \cdots, \Lambda_r^-, \cdots, \Lambda_s^+, \cdots, g_n) = \frac{\langle t, r \rangle^3 \langle t, s \rangle}{\prod_{i=1}^{n} \langle i, i+1 \rangle}, \tag{22}
\]

where all gluons except one (denoted as \(g_t\)) have positive helicity and the gluinos are denoted as \(\Lambda_{r,s}\) with their helicities. As we noted earlier, the helicities along a fermion line must be conserved. The other case when the positive helicity gluino is in front of the negative helicity gluino can be obtained from the above formula by cyclic permutation. One should only note that there is an extra \(- \) sign when we change the order of two fermions because of Fermi statistics. So we have:

\[
V_n(g_1^+, \cdots, g_t^-, \cdots, \Lambda_s^+, \cdots, \Lambda_r^-, \cdots, g_n^+) = -\frac{\langle t, r \rangle^3 \langle t, s \rangle}{\prod_{i=1}^{n} \langle i, i+1 \rangle}, \tag{23}
\]
for \(s < r\) [22]. From the above two equations, we see that the position of the negative helicity gluon is immaterial.

The MHV vertices with 4 gluinos is:

\[
V_n(g_1, \cdots, \Lambda_p^-, \cdots, \Lambda_q^-, \cdots, \Lambda_r^+, \cdots, \Lambda_s^+, \cdots, g_n) = -\frac{\langle r, s \rangle^3 \langle p, q \rangle}{\prod_{i=1}^{n} \langle i, i+1 \rangle}, \tag{24}
\]
where all gluons have positive helicity. We note that the above formula is
antisymmetric when we exchange two gluinos with the same helicity.

We propose that one can use the above MHV vertices to calculate all the
tree-level (partial) amplitudes by extending the CSW approach to gauge theory with quarks and gluinos. We use the same off shell continuation given in [3]. In the following three sections we will test these rules by calculating all the googy amplitudes with quarks and gluinos. As one can see from the intermediate steps of our computations, we obtained quite explicit formulas for some off shell amplitudes. It would be interesting to explore the connection of these amplitudes with the non-MHV vertices introduced in [28].

4 The googy amplitudes with one quark-antiquark pair

In this section we will compute the googy amplitude with one quark-antiquark pair which we reported briefly in [13]. We will present here the full details of the computations. The other cases with 2 quark-antiquark pairs and the supersymmetric case with gluinos, will be discussed in the next two sections. In this section we will prove the following formulas for the googy amplitudes (only the I-th gluon has positive helicity):

$$A(\Lambda^+_q, g_1^- \cdots g_{n-1}^- \cdots g_n^-, \Lambda^-_{\bar{q}}) = \frac{[q, I]^3[\bar{q}, I]}{[q_1][1, 2] \cdots [n, \bar{q}][\bar{q}, q]!}, \quad (25)$$

$$A(\Lambda^-_q, g_1^+ \cdots g_{n-1}^+ \cdots g_n^+, \Lambda^+_{\bar{q}}) = -\frac{[q, I][\bar{q}, I]^3}{[q_1][1, 2] \cdots [n, \bar{q}][\bar{q}, q]!}. \quad (26)$$

In order to compute the above googy amplitudes, we first calculate the amplitudes with one quark-antiquark pair when all gluons have negative helicity and only one particle is off-shell. This amplitude would vanish when all particles are on shell. So we expect that it is proportional to p^2 (p is the momentum of the only off-shell particle). As one case see from eq. (17), for $n_+ = 0$ and $m = 1$, only n_3 and n_2^f could be non-vanishing. So all the contributing diagrams are composed with 3-line MHV vertices only.

To start, let us begin with $n_- = 1$. When all the 3 particles are off shell, the MHV amplitude with one quark-antiquark pair can be written as:

$$A(\Lambda^+_q, g_1^-, \Lambda^-_{\bar{q}}) = \frac{\langle 1, \bar{q} \rangle^2}{\langle q, \bar{q} \rangle} = \langle q, 1 \rangle = \langle 1, q \rangle = \langle \bar{q}, q \rangle, \quad (27)$$

10
Figure 4: The decomposition for the off shell amplitude with one quark-antiquark pair when the gluons are all with positive helicities and the quark is off-shell.

\[A(\Lambda^-_q, g_1^-, \Lambda^+_q) = \frac{\langle 1, \bar{q} \rangle^2}{\langle q, \bar{q} \rangle} = -\langle q, 1 \rangle = -\langle 1, \bar{q} \rangle = -\langle \bar{q}, q \rangle. \quad (28) \]

The amplitude \(A(\Lambda^+_q, g_1^-, \cdots, g_n^-, \Lambda^-_q) \) when \(\Lambda_q \) is off shell and has positive helicity, is given as follows:

\[A(\Lambda^+_q, g_1^-, \cdots, g_n^-, \Lambda^-_q) = \frac{p^2_q}{\phi_1 [1, 2][2, 3] \cdots [n - 1, n][n, \bar{q}]} \cdot (29) \]

As in [12], we will prove this formula by mathematical induction with the number of gluons \(n = n_{-} \).

When \(n = 1 \), from momentum conservation, we have

\[\lambda_q + \lambda_{1}\phi_1 + \lambda_q\phi_{\bar{q}} = 0, \quad (30) \]

and so

\[A(\Lambda^+_q, g_1^-, \Lambda^-_q) = \frac{\langle 1, \bar{q} \rangle}{\phi_1} = \frac{p^2_q}{\phi_1 [1, \bar{q}]} \cdot (31) \]

This shows that eq. (29) is true for \(n = 1 \). Now we assume that it is valid for all \(k < n \). We will show that it is also valid for \(k = n \).

In order to compute the amplitude with \(n \) gluons we use the diagram decomposition as shown in Fig. 4. By using the assumed result for less
number of gluons and also eq. (7), we have

\[
A(\Lambda_q^+, g^-_1, \cdots, g^-_n, \Lambda^-_q) = \sum_{i=1}^n \frac{p_i^2}{\phi_1 \phi_i [1, 2] \cdots [i-1, i]} \times \frac{1}{p_i^2} \times \frac{k^2}{\phi_{i+1}} \times \frac{1}{[i+1, i+2] \cdots [n-1, n][n, q]},
\]

(32)

where

\[
p = \sum_{l=1}^i p_l, \quad \lambda_p = \sum_{l=1}^i \lambda_l \phi_l, \]

(33)

\[
k = \sum_{l=i+1}^{n+1} p_l, \quad \lambda_k = \sum_{l=i+1}^{n+1} \lambda_l \phi_l, \]

(34)

and the index \(n + 1\) (whenever it appears) refers to the antiquark \(\Lambda_q\). We note that the degenerate cases for \(i = 1\) and \(i = n\) are also included correctly in the above sum over \(i\).

By using eq. (27), we have

\[
A(\Lambda_q^+, g^-_1, \cdots, g^-_n, \Lambda^-_q) = \frac{1}{\phi_1 [1, 2][2, 3] \cdots [n-1, n][n, q]} \times \sum_{i=1}^n \frac{[i, i+1]}{\phi_i \phi_{i+1}} \langle \lambda_p, \lambda_k \rangle.
\]

(35)

By using the following identity,

\[
\sum_{i=2}^{n-1} \frac{[i, i+1]}{\phi_i \phi_{i+1}} \langle \lambda_{p_2+\cdots+p_i}, \lambda_{p_{i+1}+\cdots+p_n} \rangle = (p_2 + p_3 + \cdots + p_n)^2,
\]

(36)

given in [12], we have

\[
\sum_{i=1}^n \frac{[i, i+1]}{\phi_i \phi_{i+1}} \langle \lambda_p, \lambda_k \rangle = (p_1 + \cdots + p_n + p_q)^2 = p_q^2.
\]

(37)

By using this result in eq. (35), we have

\[
A(\Lambda_q^+, g^-_1, \cdots, g^-_n, \Lambda^-_q) = \frac{p_q^2}{\phi_1 [1, 2][2, 3] \cdots [n-1, n][n, q]},
\]

(38)
which is the result of eq. (29) for \(n + 1 \) gluons. This completes the proof of eq. (29).

By using the same method, one can obtain the following result:

\[
A(\Lambda_q^-, g_1^-, \cdots, g_n^-, \Lambda_q^+) = -\frac{p_q^2}{\phi_1} \frac{1}{[1, 2][2, 3] \cdots [n-1, n][n, \bar{q}]},
\]

(39)

when the quark \(\Lambda_q \) is off shell and has negative helicity.

When the anti-quark \(\Lambda_{\bar{q}} \) is off shell, one can similarly obtain the following results:

\[
A(\Lambda_q^+, g_1^-, \cdots, g_n^-, \Lambda_{\bar{q}}) = \frac{p_q^2}{\phi_n} \frac{1}{[q, 1][1, 2][2, 3] \cdots [n-1, n]},
\]

(40)

\[
A(\Lambda_q^-, g_1^-, \cdots, g_n^-, \Lambda_q^+) = -\frac{p_q^2}{\phi_n} \frac{1}{[q, 1][1, 2][2, 3] \cdots [n-1, n]}.
\]

(41)

When the off shell particle is one of the gluons \(g_i \), the results are:

\[
A(\Lambda_q^+, g_1^-, \cdots, g_n^-, \Lambda_{\bar{q}}) = \frac{p_q^2}{\phi_{i-1}\phi_{i+1}} \frac{\phi_q^2}{\phi_{i-1}\phi_{i+1}} \frac{1}{[q, 1][1, 2] \cdots [i-2, i-1][i+1, i+2] \cdots [n, \bar{q}][q, q]},
\]

(42)

\[
A(\Lambda_q^-, g_1^-, \cdots, g_n^-, \Lambda_q^+) = -\frac{p_q^2}{\phi_{i-1}\phi_{i+1}} \frac{\phi_q^2}{\phi_{i-1}\phi_{i+1}} \frac{1}{[q, 1][1, 2] \cdots [i-2, i-1][i+1, i+2] \cdots [n, \bar{q}][q, q]}.
\]

(43)

Here the index 0 (whenever it appears) refers to the quark \(\Lambda_q \).

The proof of eq. (42) and eq. (43) is similar. Here we present the proof of eq. (42) only. As we did earlier in the proof of eq. (29), we will again use mathematical induction with the number of gluons \(n \).

To start with, it is easy to check that eq. (42) is true for \(n = 1 \). By assuming that it is true for all \(k < n \), we will prove that it is also true for \(k = n \).

Because only \(g_i \) is off-shell, one can classify all contributing diagrams according to the (3-line) MHV vertices attached to \(g_i \). There are 3 kinds of diagrams, shown in Fig. 5, Fig. 6 and Fig. 7 respectively. By using the assumed result for all less multi-particle amplitudes and eq. (7), we can
compute the contributions from these diagrams. The contribution from Fig. 5 is

\[A^1 = \sum_{j=0}^{i-2} \frac{\phi_q^3 \phi_{\bar{q}}}{\phi_j \phi_{i+1}} \frac{1}{[q, 1] \cdots [j-1, j] [i+1, i+2] \cdots [n, \bar{q}] [\bar{q}, q]} \times \frac{1}{\phi_{j+1} \phi_{i-1}} \frac{1}{[j+1, j+2] \cdots [i-2, i-1]} \times \langle \lambda_{\bar{p}}, \lambda_k \rangle
\times \langle \lambda_{\bar{p}}, \lambda_k \rangle \]

where

\[\lambda_{\bar{p}} = \sum_{l=0}^{j} \lambda_l \phi_l + \sum_{l=i+1}^{n+1} \lambda_l \phi_l, \quad \lambda_k = \sum_{l=j+1}^{i-1} \lambda_l \phi_l. \]

(45)

The contribution from Fig. 6 can be calculated similarly as above and the result is:

\[A^2 = \sum_{j=i+1}^{n} \frac{1}{\phi_{i+1} \phi_j} \frac{1}{[i+1, i+2] \cdots [j-1, j]} \frac{\phi_q^3 \phi_{\bar{q}}}{\phi_{i-1} \phi_{j+1}} \times \frac{1}{[q, 1] \cdots [i-2, i-1] [j+1, j+2] \cdots [n, \bar{q}] [\bar{q}, q]} \langle \lambda_{\bar{p}}, \lambda_k \rangle \]

Figure 5: This diagram is characterized with \(g_i \) attaching to a 3-gluon MHV vertex. \(g_{i-1} \)’s are disconnected from the fermion line by this vertex.
Figure 6: The same kind diagram as in Fig. 5. Here it is g_{i+1}'s which are disconnected from the fermion line by the 3-gluon MHV vertex.

Figure 7: In this diagram, g_i is directly attached to the fermion line.

\[
\begin{align*}
\mathcal{L}_f &= \frac{1}{[q, 1][1, 2] \cdots [i - 2, i - 1][i + 1, i + 2] \cdots [n, \bar{q}][\bar{q}, q]} \\
& \times \frac{\phi_q^3 \phi_{\bar{q}}}{\phi_{i-1} \phi_{i+1}} \sum_{j=i+1}^{n} [j, j + 1] \langle \lambda_{\tilde{p}}, \lambda_{\tilde{k}} \rangle,
\end{align*}
\]

where

\[
\begin{align*}
\lambda_{\tilde{p}} &= \sum_{l=i+1}^{j} \lambda_l \phi_l, & \lambda_{\tilde{k}} &= \sum_{l=0}^{i-1} \lambda_l \phi_l + \sum_{l=j+1}^{n+1} \lambda_l \phi_l.
\end{align*}
\]

The last contribution from Fig. 7 can be calculated by using eq. (29) and
eq. (40) and we have:

\[A^3 = \frac{1}{\phi_{q_{i-1}}[q,1] \cdots [i-2,i-1]} \times \frac{1}{\phi_{q_{i+1}}[i+1,i+2] \cdots [n+1,\bar{q}]} \times \langle \lambda_{\bar{p}}, \lambda_{\bar{k}} \rangle \]

\[= \frac{1}{[q,1][1,2] \cdots [i-2,i-1][i+1,i+2] \cdots [n,\bar{q}][\bar{q},q]} \times \phi_{q}^{3}q_{q} \times \phi_{q_{i-1}} \phi_{q_{i+1}} \phi_{q_{q}} \times \phi_{q}^{3}q_{q} \times \phi_{q_{i}} \phi_{q_{i+1}} \phi_{q_{q}} \times \langle \lambda_{\bar{p}}, \lambda_{\bar{k}} \rangle \cdot \langle \lambda_{\bar{p}}, \lambda_{\bar{k}} \rangle \cdot \langle \lambda_{\bar{p}}, \lambda_{\bar{k}} \rangle, \]

(48)

where

\[\lambda_{\bar{p}} = \sum_{l=i+1}^{n+1} \lambda_{l} \phi_{l}, \quad \lambda_{\bar{k}} = \sum_{l=0}^{i-1} \lambda_{l} \phi_{l}. \]

(49)

By combing all these three contributions together and using the following result:

\[\sum_{j=0}^{i-2} \frac{[j,j+1]}{\phi_{j} \phi_{j+1}} \langle \lambda_{\bar{p}}, \lambda_{\bar{k}} \rangle + \frac{[\bar{q},q]}{\phi_{q} \phi_{q}} \times \phi_{q}^{3}q_{q} \times \phi_{q}^{3}q_{q} \times \phi_{q_{i}} \phi_{q_{i+1}} \phi_{q_{q}} \times \langle \lambda_{\bar{p}}, \lambda_{\bar{k}} \rangle = p_{t}^{2}. \]

(50)

from eq. (36), we have

\[A(\Lambda_{q}^{+}, g_{1}^{-}, \cdots, g_{n}^{-}, \Lambda_{q}^{+}) = \sum_{s=1}^{3} A^{s} \]

\[= \frac{\phi_{q}^{3}q_{q}}{\phi_{i-1} \phi_{i+1}} \times \frac{p_{t}^{2}}{[q,1][1,2] \cdots [i-2,i-1][i+1,i+2] \cdots [n,\bar{q}][\bar{q},q]}. \]

(51)

This ends the proof of eq. (42).

Now we begin to compute the googly amplitudes with one quark-antiquark pair. As we noted in section 3, for googly amplitude, there is only one 4-particle MHV vertex in any contributing diagram. The rest vertices are 3-particle MHV vertices. So we can classify all contributing diagrams according to this 4-particle MHV vertex. Form the 4-particle MHV vertex with one quark-antiquark pair, there are 2 kinds of diagrams. One kind of diagrams is shown Fig. [S] where the only positive helicity gluon \(g_{I} \) is in the left blob connected to the 4-particle vertex. The other kind of diagrams (which is not shown) can be obtained from Fig. [S] by interchanging the two gluon
Figure 8: One kind of diagrams from the 4-particle MHV vertex with one quark-antiquark pair.

lines connected to the 4-particle MHV vertex. The contributions from these two kinds of diagrams are:

\[
A^1 = \frac{\phi_q^2 \phi_f^4}{[q, 1][1, 2] \cdots [n-1, n][n, \bar{q}]} \sum_{i=0}^{I-1} \sum_{j=l}^{n-1} \sum_{k=j+1}^{n} \frac{[i, i+1]}{\phi_i \phi_{i+1}} \frac{[j, j+1]}{\phi_j \phi_{j+1}} \times \frac{[k, k+1]}{\phi_k \phi_{k+1}} \frac{1}{\langle V_1, V_2 \rangle \langle V_2, V_3 \rangle \langle V_3, V_4 \rangle \langle V_4, V_1 \rangle},
\]

(52)

and

\[
A^2 = \frac{\phi_q^2 \phi_f^4}{[q, 1][1, 2] \cdots [n-1, n][n, \bar{q}]} \sum_{i=0}^{I-2} \sum_{j=i+1}^{I-1} \sum_{k=l}^{I-1} \frac{[i, i+1]}{\phi_i \phi_{i+1}} \frac{[j, j+1]}{\phi_j \phi_{j+1}} \times \frac{[k, k+1]}{\phi_k \phi_{k+1}} \frac{1}{\langle V_1, V_2 \rangle \langle V_2, V_3 \rangle \langle V_3, V_4 \rangle \langle V_4, V_1 \rangle},
\]

(53)

respectively. Here

\[
V_1 = \sum_{s=0}^{i} \lambda_s \phi_s, \quad V_2 = \sum_{s=i+1}^{j} \lambda_s \phi_s,
\]

(54)
\[V_3 = \sum_{s=j+1}^{k} \lambda_s \phi_s, \quad V_4 = \sum_{s=k+1}^{n+1} \lambda_s \phi_s. \] (55)

The sum of \(A_1 \) and \(A_2 \) can be written as follows:
\[
A_1 + A_2 = \frac{\phi_3^2 \phi_1^4}{[q, 1][1, 2]\cdots[n-1, n][n, \bar{q}]} \sum_{i=0}^{I-1} \sum_{k=\max\{I, i+2\}}^{n} \sum_{j=i+1}^{k-1} \frac{[i, i + 1]}{\phi_i \phi_{i+1}} \\
\times \frac{[j, j + 1]}{\phi_j \phi_{j+1}} \frac{[k, k + 1]}{\phi_k \phi_{k+1}} \frac{\langle V_1, V_p \rangle \langle V_4, V_p \rangle}{\langle V_1, V_2 \rangle \langle V_2, V_3 \rangle \langle V_3, V_4 \rangle \langle V_4, V_1 \rangle}, \] (56)

where \(p \) in eq. (56) is the index \((p = 2, 3)\) which doesn’t include \(\lambda_I \phi_I \) as defined in eqs. (54) and (55).

Figure 9: One kind of diagrams from the 4-gluon MHV vertex. Here the only positive helicity gluon \(g_I \) is in the far left blob.

From the 4-gluon MHV vertex, there are 3 kinds of diagrams depending on the position of the only positive helicity gluon \(g_I \). One kind of diagrams is shown in Fig. 9 where the gluon \(g_I \) is in the left blob connected to the 4-gluon MHV vertex. The other 2 kinds of diagrams (which are not shown here) are the same diagrams but with the gluon \(g_I \) staying middle blob or in the right blob. The contributions from these diagrams are:
\[
\sum_{t=3}^{5} A_t = \frac{\phi_3^3 \phi_q \phi_4^4}{[q, 1][1, 2]\cdots[n-1, n][n, \bar{q}][\bar{q}, q]} \sum_{i=0}^{I-1} \sum_{t=\max\{I, i+3\}}^{n} \sum_{j=i+1}^{l-2} \sum_{k=j+1}^{l-1} \frac{[j, j + 1]}{\phi_i \phi_{i+1}} \\
\times \frac{[k, k + 1]}{\phi_j \phi_{j+1}} \frac{[i, i + 1]}{\phi_k \phi_{k+1}}. \]
By using this identity, we have:

\[\frac{[j, j + 1]}{\phi_j \phi_{j+1}} \times \frac{[k, k + 1]}{\phi_k \phi_{k+1}} \times \frac{[l, l + 1]}{\phi_l \phi_{l+1}} \left(\langle \tilde{V}_r, \tilde{V}_s \rangle^4 \right), \]

where

\[\tilde{V}_1 = \sum_{s=0}^{i} \lambda_s \phi_s + \sum_{s=i+1}^{n+1} \lambda_s \phi_s, \quad \tilde{V}_2 = \sum_{s=i+1}^{j} \lambda_s \phi_s, \]

\[\tilde{V}_3 = \sum_{s=j+1}^{k} \lambda_s \phi_s, \quad \tilde{V}_4 = \sum_{s=k+1}^{l} \lambda_s \phi_s, \]

and \(r \) and \(s \) in eq. (57) are the two indexes \((r = 2, 3, s = 3, 4, r \neq s)\) which satisfy that neither \(\tilde{V}_r \) nor \(\tilde{V}_s \) includes \(\lambda_I \phi_I \) as defined in eqs. (58) and (59).

By combining all these contributions, the googly amplitude is

\[A(\Lambda_q^+, g_1^+, \cdots, g_l^+, \cdots, g_n^-, \Lambda_q^-) = \sum_{i=1}^{5} A^i. \]

In Appendix A, we will prove the following identity:

\[\left[\begin{array}{c} \bar{q}, q \\ \bar{q}, q \\ \bar{q}, q \end{array} \right] \sum_{i=0}^{l-1} \sum_{k=\max\{I, i+2\}}^{n} \sum_{j=i+1}^{k-1} \frac{[i, i + 1]}{\phi_i \phi_{i+1}} \frac{[j, j + 1]}{\phi_j \phi_{j+1}} \frac{[k, k + 1]}{\phi_k \phi_{k+1}} \]

\[\times \left(\frac{\langle \tilde{V}_r, \tilde{V}_s \rangle^4}{\langle \tilde{V}_1, \tilde{V}_2 \rangle \langle \tilde{V}_2, \tilde{V}_3 \rangle \langle \tilde{V}_3, \tilde{V}_4 \rangle \langle \tilde{V}_4, \tilde{V}_1 \rangle} \right) \]

\[+ \sum_{i=1}^{l-1} \sum_{j=\max\{I, i+3\}}^{n} \sum_{k=\max\{I, j+1\}}^{l-2} \sum_{m=\max\{I, i+4\}}^{k-1} \frac{[i, i + 1]}{\phi_i \phi_{i+1}} \frac{[j, j + 1]}{\phi_j \phi_{j+1}} \frac{[k, k + 1]}{\phi_k \phi_{k+1}} \]

\[\times \frac{[l, l + 1]}{\phi_l \phi_{l+1}} \left(\frac{\langle \tilde{V}_r, \tilde{V}_s \rangle^4}{\langle \tilde{V}_1, \tilde{V}_2 \rangle \langle \tilde{V}_2, \tilde{V}_3 \rangle \langle \tilde{V}_3, \tilde{V}_4 \rangle \langle \tilde{V}_4, \tilde{V}_1 \rangle} \right) \]

\[= \frac{[q, I]^3[\bar{q}, I]}{\phi_q^3 \phi_{\bar{q}}}. \]

By using this identity, we have:

\[A(\Lambda_q^+, g_1^+, \cdots, g_l^+, \cdots, g_n^-, \Lambda_q^-) = \frac{[q, I]^3[\bar{q}, I]}{[q_1][1, 2] \cdots [n, q][\bar{q}, \bar{q}]}, \]

which is the expected result for the googly amplitude and it is in agreement with the result obtained by other methods [6].

The calculation for \(A(\Lambda_q^-, g_1^+, \cdots, g_l^-, \cdots, g_n^+, \Lambda_q^-) \) is similar and the result is eq. (62).
5 The 4 quark-anti-quark googly amplitude

In this section we will compute the googly amplitude with two quark-antiquark pairs. Here all the gluons have negative helicity. The googly amplitudes we want to reproduce are given as follows:

\[A(\Lambda_{q_1}^{l_1}, l_1, \cdots, l_k, \Lambda_{\bar{q}_2}^{-l_2}, \Lambda_{q_2}^{-h_2}, m_1, \cdots, m_{n-k}, \Lambda_{\bar{q}_1}^{-h_1}) = A_0'(h_1, h_2) \frac{[q_1, \bar{q}_2]}{[q_1, l_1][l_1, l_2] \cdots [l_k, \bar{q}_2]} \frac{[\bar{q}_2, \bar{q}_1]}{[q_2, m_1][m_1, m_2] \cdots [m_{n-k}, \bar{q}_1]}, \]

(63)

where

\[A_0'(+, +) = \frac{[q_1, q_2]^2}{[q_1, q_1][q_2, q_2]}, \quad A_0'(+, -) = -\frac{[q_1, \bar{q}_2]^2}{[q_1, \bar{q}_1][q_2, q_2]}, \]

(64)

\[A_0'(-, +) = -\frac{[\bar{q}_1, q_2]^2}{[q_1, q_1][q_2, q_2]}, \quad A_0'(-, -) = \frac{[\bar{q}_1, q_2]^2}{[q_1, q_1][q_2, q_2]}. \]

(65)

As discussed in section 3, in all of the diagrams which contribute to the googly amplitudes there is just one MHV vertices with 4 lines. All other vertices are with 3 lines as in the case for the amplitudes with gluons only \[12, 13\]. So we can classify all contributing diagrams by using this unique 4-particle MHV vertex.

First we have one kind of diagrams from the 4-gluon MHV vertex as shown in Fig. 10. Here the two gluons connected to the fermion lines have positive helicity. This contribution is:

\[A^1 = -F_0 \sum_{n_1=0}^{k-2} \sum_{n_2=n_1+1}^{k-1} \sum_{n_3=n_2+1}^{k} \sum_{n_4=0}^{n-k} \bar{F}^1(n_1, \cdots, n_4) \]

\[\times \left\langle V_2^1, V_3^1 \right\rangle^3 \]

\[\left\langle V_1^1, V_2^1 \right\rangle \left\langle V_3^1, V_4^1 \right\rangle \left\langle V_1^1, V_4^1 \right\rangle, \]

(66)

where the index \(l_0 (l_{k+1}, m_0, m_{n-k+1}) \) refers to \(q_1 (\bar{q}_2, q_2, \bar{q}_1) \) and \(F_0 \) is defined as

\[F_0 = \phi_{q_1}^3 \phi_{\bar{q}_1}^3 \phi_{q_2} \phi_{\bar{q}_2} \frac{1}{[q_1, q_1]} \frac{1}{[\bar{q}_2, q_2]} \prod_{i=0}^{k} \frac{1}{[l_i, l_{i+1}]} \prod_{j=0}^{n-k} \frac{1}{[m_j, m_{j+1}]}. \]

(67)

The other quantities appearing in eq. (66) are defined as follows:

\[\bar{F}^1(n_1, \cdots, n_4) = \prod_{i=1}^{3} \frac{[l_{n_i}, l_{n_i+1}][m_{n_4}, m_{n_4+1}]}{\phi_{l_{n_i}} \phi_{l_{n_i+1}} \phi_{m_{n_4}} \phi_{m_{n_4+1}}}, \]

(68)
Figure 10: One kind of diagrams from the 4-gluon MHV vertex. The two gluons connected to the fermion lines have positive helicity. This gives contribution A_1. Two more kinds of the same type of diagrams are obtained by permutating 4 internal gluon lines which give contributions A_2, A_3.

and

$$V_1^1 = \sum_{s=1}^{n_1} \lambda_t \phi_{ts} + \sum_{s=n_4+1}^{n-k} \lambda_m \phi_{ms} + \lambda_{q_1} \phi_{q_1} + \lambda_{\bar{q}_1} \phi_{\bar{q}_1},$$ \hspace{1cm} (69)$$

$$V_2^1 = \sum_{s=n_1+1}^{n_2} \lambda_t \phi_{ts},$$ \hspace{1cm} (70)$$

$$V_3^1 = \sum_{s=n_2+1}^{n_3} \lambda_t \phi_{ts},$$ \hspace{1cm} (71)$$

$$V_4^1 = \sum_{s=n_3+1}^{k} \lambda_t \phi_{ts} + \sum_{s=1}^{n_4} \lambda_m \phi_{ms} + \lambda_{q_2} \phi_{q_2} + \lambda_{\bar{q}_2} \phi_{\bar{q}_2}.$$ \hspace{1cm} (72)$$

The other 2 similar contributions are:

$$A^2 = -F_0 \sum_{n_1=0}^{k-1} \sum_{n_2=n_1+1}^{k} \sum_{n_3=0}^{n-k-1} \sum_{n_4=n_3+1}^{n-k} \tilde{F}^2(n_1, \ldots, n_4) \times \frac{\langle V_2^2, V_4^2 \rangle^4}{\langle V_1^2, V_2^2 \rangle \langle V_2^2, V_3^2 \rangle \langle V_3^2, V_4^2 \rangle \langle V_4^2, V_1^2 \rangle},$$ \hspace{1cm} (73)$$
\[A^3 = -F_0 \sum_{n_1=0}^{k} \sum_{n_2=0}^{n-k-2} \sum_{n_3=n_2+1}^{n-k} \sum_{n_4=n_3+1}^{n-k} \tilde{F}^3(n_1, \ldots, n_4) \times \frac{\langle V^3_3, V^3_4 \rangle}{\langle V^3_1, V^3_2 \rangle \langle V^3_2, V^3_3 \rangle \langle V^3_3, V^3_4 \rangle \langle V^3_4, V^3_1 \rangle}. \]

where

\[\tilde{F}^2(n_1, \ldots, n_4) = \prod_{i=1}^{2} \frac{[l_{n_1}, l_{n_1+1}]}{\phi_{l_{n_1}} \phi_{l_{n_1}+1}} \prod_{j=3}^{4} \frac{[m_{n_j}, m_{n_j+1}]}{\phi_{m_{n_j}} \phi_{m_{n_j}+1}}, \]

\[\tilde{F}^3(n_1, \ldots, n_4) = \prod_{j=2}^{4} \frac{[l_{n_1}, l_{n_1+1}]}{\phi_{l_{n_1}} \phi_{l_{n_1}+1}} \prod_{j=2}^{4} \frac{[m_{n_j}, m_{n_j+1}]}{\phi_{m_{n_j}} \phi_{m_{n_j}+1}}, \]

and

\[V^2_1 = \sum_{s=1}^{n_1} \lambda_s \phi_s + \sum_{s=n_1+1}^{n-k} \lambda_m \phi_m + \lambda_q \phi_q + \lambda_{\bar{q}} \phi_{\bar{q}}, \]

\[V^2_2 = \sum_{s=n_1+1}^{n_2} \lambda_s \phi_s, \]

\[V^2_3 = \sum_{s=n_2+1}^{n_3} \lambda_s \phi_s + \sum_{s=1}^{n_3} \lambda_m \phi_m + \lambda_q \phi_q + \lambda_{\bar{q}} \phi_{\bar{q}}, \]

\[V^2_4 = \sum_{s=n_3+1}^{n_4} \lambda_m \phi_m, \]

\[V^3_1 = \sum_{s=1}^{n_1} \lambda_s \phi_s + \sum_{s=n_1+1}^{n-k} \lambda_m \phi_m + \lambda_q \phi_q + \lambda_{\bar{q}} \phi_{\bar{q}}, \]

\[V^3_2 = \sum_{s=n_1+1}^{n_2} \lambda_s \phi_s + \sum_{s=1}^{n_2} \lambda_m \phi_m + \lambda_q \phi_q + \lambda_{\bar{q}} \phi_{\bar{q}}, \]

\[V^3_3 = \sum_{s=n_2+1}^{n_3} \lambda_s \phi_s, \]

\[V^3_4 = \sum_{s=n_3+1}^{n-k} \lambda_s \phi_s. \]

The second group of contributions are from the diagrams with the 4-particle MHV vertex having one quark-antiquark pair. An example is shown in Fig. 11. Its contribution \(A^4 \) is given as follows:

\[A^4 = F_0 \sum_{n_1=0}^{k-1} \sum_{n_2=n_1+1}^{k} \sum_{n_3=0}^{n-k} \tilde{F}^4(n_1, n_2, n_3) \times \frac{\langle V^4_2, V^4_3 \rangle^2 \langle V^4_3, V^4_4 \rangle}{\langle V^4_1, V^4_2 \rangle \langle V^4_2, V^4_3 \rangle \langle V^4_3, V^4_4 \rangle \langle V^4_4, V^4_1 \rangle}. \]
Figure 11: One kind of diagrams from the 4-particle MHV vertex with one quark-antiquark pair. This gives contribution A^4. There are 3 more kinds of the same type of diagrams which give contributions A^5, A^6, A^7.

where

$$F^4(n_1, n_2, n_3) = \prod_{i=1}^{2} \left[\frac{l_{n_i} l_{n_i+1}}{\phi_{l_{n_i}} \phi_{l_{n_i}+1} \phi_{m_{n_3}} \phi_{m_{n_3}+1} \phi_{q_2} \phi_{\bar{q}_2}} \right],$$

and

$$V_1^4 = \sum_{s=1}^{n_1} \lambda_{l_s} \phi_{l_s} + \sum_{s=n_3+1}^{n-k} \lambda_{m_s} \phi_{m_s} + \lambda_{q_1} \phi_{q_1} + \lambda_{\bar{q}_1} \phi_{\bar{q}_1},$$

$$V_2^4 = \sum_{s=n_1+1}^{n_2} \lambda_{l_s} \phi_{l_s},$$

$$V_3^4 = \sum_{s=n_2+1}^{n} \lambda_{l_s} \phi_{l_s} + \lambda_{q_2} \phi_{q_2},$$

$$V_4^4 = \sum_{s=1}^{n_3} \lambda_{m_s} \phi_{m_s} + \lambda_{q_2} \phi_{q_2}.$$

There are 3 more kinds of the same type of diagrams which give contributions A^5, A^6, A^7:

$$A^5 = F_0 \sum_{n_1=0}^{k} \sum_{n_2=0}^{n-k-1} \sum_{n_3=n_2+1}^{n-k} \frac{F^5(n_1, n_2, n_3)}{\langle V_1^5, V_2^5 \rangle \langle V_2^5, V_3^5 \rangle \langle V_3^5, V_1^5 \rangle} \langle V_2^5, V_4^5 \rangle^3$$

23
\[A^6 = F_0 \sum_{n_1=0}^{k-1} \sum_{n_2=n_1+1}^{k} \sum_{n_3=0}^{n-k} \tilde{F}^6(n_1, n_2, n_3) \frac{-\langle V_2^6, V_4^6 \rangle}{\langle V_2^6 \rangle \langle V_3^6 \rangle \langle V_4^6 \rangle \langle V_1^6 \rangle}, \]
\[A^7 = F_0 \sum_{n_1=0}^{k} \sum_{n_2=0}^{n-k} \sum_{n_3=n_2+1}^{n-k} \tilde{F}^7(n_1, n_2, n_3) \frac{-\langle V_1^7, V_3^7 \rangle (V_3^7 - V_7^2)^2}{\langle V_1^7 \rangle \langle V_2^7 \rangle \langle V_3^7 \rangle \langle V_1^7 \rangle}, \]

where

\[\tilde{F}^5(n_1, n_2, n_3) = \sum_{\phi_{l_1}, \phi_{l_1+1}} \prod_{j=2}^{3} [m_{n_j}, m_{n_j+1}] \phi_{q_2} \phi_{q_2}, \]
\[\tilde{F}^6(n_1, n_2, n_3) = \sum_{\phi_{l_1}, \phi_{l_1+1}} \prod_{i=1}^{2} [m_{n_i}, m_{n_i+1}] \phi_{q_1} \phi_{q_1}, \]
\[\tilde{F}^7(n_1, n_2, n_3) = \sum_{\phi_{l_1}, \phi_{l_1+1}} \prod_{j=2}^{3} [m_{n_j}, m_{n_j+1}] \phi_{q_1} \phi_{q_1}, \]

and

\[V_1^5 = \sum_{s=1}^{n_1} \lambda_s \phi_s + \sum_{s=n_1+1}^{n-k} \lambda_{ms} \phi_{ms} + \lambda_{q1} \phi_{q1} + \lambda_{q1} \phi_{q1}, \]
\[V_2^5 = \sum_{s=n_1+1}^{k} \lambda_s \phi_s + \lambda_{q2} \phi_{q2}, \]
\[V_3^5 = \sum_{s=1}^{n_2} \lambda_{ms} \phi_{ms}, \]
\[V_4^5 = \sum_{s=n_2+1}^{n_3} \lambda_{ms} \phi_{ms}, \]
\[V_1^6 = \sum_{s=1}^{n_1} \lambda_s \phi_s + \lambda_{q1} \phi_{q1}, \]
\[V_2^6 = \sum_{s=n_1+1}^{n_2} \lambda_s \phi_s, \]
\[V_3^6 = \sum_{s=n_2+1}^{k} \lambda_s \phi_s + \sum_{s=1}^{n_3} \lambda_{ms} \phi_{ms} + \lambda_{q2} \phi_{q2} + \lambda_{q2} \phi_{q2}, \]
\[V_4^6 = \sum_{s=n_3+1}^{n-k} \lambda_{ms} \phi_{ms} + \lambda_{q1} \phi_{q1}, \]
\[V_1^7 = \sum_{s=1}^{n_1} \lambda_s \phi_s + \lambda_{q1} \phi_{q1}, \]
\[V_2^7 = \sum_{s=n_1+1}^{k} \lambda_{l_s} \phi_{l_s} + \sum_{s=1}^{n_2} \lambda_{m_s} \phi_{m_s} + \lambda_{q_2} \phi_{q_2} + \lambda_{\bar{q}_2} \phi_{\bar{q}_2}, \]
\[V_3^7 = \sum_{s=n_2+1}^{n_3} \lambda_{m_s} \phi_{m_s}, \]
\[V_4^7 = \sum_{s=n_3+1}^{n-k} \lambda_{m_s} \phi_{m_s} + \lambda_{q_1} \phi_{q_1}. \]

\[\langle V_8^1, V_8^2 \rangle \langle V_8^3, V_8^4 \rangle, \]
\[\langle V_8^2, V_8^4 \rangle, \]
\[\langle V_8^1, V_8^3 \rangle \]

Figure 12: The only kind of contributing diagrams from the 4-fermion MHV vertex. This gives the last contribution \(A^8 \).

The last contribution comes from the only kind of contributing diagrams from the 4-fermion MHV vertex as shown in Fig. 12. This contribution is:

\[A^8 = F_0 \sum_{n_1=0}^{k} \sum_{n_2=0}^{n-k} \tilde{F}^8(n_1, n_2) \frac{(V_2^8, V_4^8)}{(V_1^8, V_2^8)(V_3^8, V_4^8)}, \]

where

\[\tilde{F}^8(n_1, n_2) = \frac{[l_{n_1}, l_{n_1+1}] [m_{n_2}, m_{n_2+1}] [q_1, q_1] [q_2, \bar{q}_2]}{\phi_{l_{n_1}} \phi_{l_{n_1+1}} \phi_{m_{n_2}} \phi_{m_{n_2+1}} \phi_{q_1} \phi_{q_1} \phi_{q_2} \phi_{\bar{q}_2}}, \]
and

\begin{align}
V_1^8 &= \sum_{s=1}^{n_1} \lambda_{l_s} \phi_{l_s} + \lambda_{q_1} \phi_{q_1}, \\
V_2^8 &= \sum_{s=n_1+1}^{n_2} \lambda_{i_s} \phi_{i_s} + \lambda_{q_2} \phi_{q_2}, \\
V_3^8 &= \sum_{s=1}^{n_3} \lambda_{m_s} \phi_{m_s} + \lambda_{q_2} \phi_{q_2}, \\
V_4^8 &= \sum_{s=n_2+1}^{n-k} \lambda_{m_s} \phi_{m_s} + \lambda_{q_1} \phi_{q_1}.
\end{align}

By summing over all these contributions and using the same method for proving identities as in Appendix A, we have:

\begin{align}
\sum_{i=1}^8 A_i &= \frac{[q_1, q_2]^2}{[q_1, q_1][q_2, q_2]} \frac{[q_1, \bar{q}_2]}{[q_1, l_1][l_1, l_2] \cdots [l_k, \bar{q}_2]} \\
&\times \frac{[q_2, \bar{q}_1]}{[q_2, m_1][m_1, m_2] \cdots [m_{n-k}, \bar{q}_1]}.
\end{align}

This is the correct result for the googly amplitude with two quark-antiquark pairs and \(n \) gluons.

6 The gluino googly amplitudes

In this last section we will compute the googly amplitudes with gluinos. As in the case without fermions [12], we first calculate the off shell amplitudes with all gluons having negative helicity. From eq. (17) with \(n_+ = 0 \) and \(m = 1 \), only \(n_3 \) and \(n_1^2 \) could be non-vanishing. So all contributing diagrams compose of 3-line MHV vertices. Again we will find that these off shell amplitudes are proportional to \(p_i^2 \) (\(p_i \) is the off-shell momentum) and they vanish when \(p_i \) is also on shell (\(p_i^2 = 0 \)). We note that the vanishing for the 4-particle on-shell amplitudes were also obtained in [22] and the googly amplitudes with 5 particles are also computed.

We relabel the off shell particle to be the first particle. The helicity of this off-shell particle can be 1/2, −1/2 (the gluino) or −1 (the gluon). The
corresponding off shell amplitudes are:

\[A_n(\Lambda_1^+, g_2^-, \cdots, \Lambda_s^-, \cdots, g_n^-) = \frac{\phi_s}{\phi_2 \phi_n} \frac{p_1^2}{\prod_{i=2}^{n-1} [i, i+1]}, \]

(116)

\[A_n(\Lambda_1^-, g_2^-, \cdots, \Lambda_r^+, \cdots, g_n^-) = -\frac{\phi_r^3}{\phi_2 \phi_n} \frac{p_1^2}{\prod_{i=2}^{n-1} [i, i+1]}, \]

(117)

and

\[A_n(g_1^-, \cdots, \Lambda_1^+, \cdots, \Lambda_s^-, \cdots, g_n^-) = \frac{\phi_r^3 \phi_s}{\phi_2 \phi_n} \frac{p_1^2}{\prod_{i=2}^{n-1} [i, i+1]}, \]

(118)

respectively. The proof of the above formulas is quite similar to the proof for eqs. (7) and (8) given in [12]. We will not repeat the proof here.

Figure 13: The decomposition for the googly amplitude with fermions when \(1 \leq i \leq r - 1, r \leq j \leq s - 1, s \leq k < l \leq n \).

Now we begin to calculate the googly amplitudes. First we consider the googly amplitudes with 2 gluinos: \(A_n(\Lambda_1^+, g_2^-, \cdots, \Lambda_r^-, \cdots, g_n^-) \). We will consider the case for \(1 < r < s \neq n \) only. The rest cases are similar. As we proved in section 3, there is only one vertex with 4 lines. So we can again use the same organization of all the contributing diagrams as in the computation of googly amplitude with one quark-antiquark pair in section 4.
Figure 14: The decomposition for the googly amplitude with fermions when
$1 \leq i \leq r - 1, r \leq j < k \leq s - 1, s \leq l \leq n$.

All contributing diagrams are shown in the figures from Fig. 13 to Fig. 18.
The various contributions corresponding to the Fig. 13, Fig. 14, Fig. 15, Fig. 16, Fig. 17 and Fig. 18 are

$$A_1^n = \prod_{s=1}^n [s, s+1] \frac{r-1}{\prod_{i=1}^{i=r-1} \sum_{j=r}^{j=k} \sum_{l=k+1}^{l=s} \sum_{k=r}^{k} \phi_i \phi_{i+1} \phi_k \phi_{k+1}} \phi_{j+1} \phi_{j+1} [k, k+1] \phi_{l+1} \phi_{l+1} [l, l+1] \langle V_1, V_2 \rangle \langle V_2, V_3 \rangle \langle V_3, V_4 \rangle \langle V_4, V_1 \rangle.$$ (119)

$$A_2^n = \prod_{s=1}^n [s, s+1] \frac{r-2}{\prod_{i=1}^{i=r-2} \sum_{j=r}^{j=k+1} \sum_{l=s}^{l=s} \sum_{k=r}^{k} \phi_i \phi_{i+1} \phi_k \phi_{k+1}} \phi_{j+1} \phi_{j+1} [k, k+1] \phi_{l+1} \phi_{l+1} [l, l+1] \langle V_3, V_2 \rangle^2 \langle V_2, V_3 \rangle \langle V_4, V_1 \rangle \langle V_1, V_2 \rangle \langle V_3, V_4 \rangle \langle V_4, V_1 \rangle.$$ (120)

$$A_3^n = \prod_{s=1}^n [s, s+1] \frac{r-2}{\prod_{i=1}^{i=r-2} \sum_{j=r}^{j=i+1} \sum_{k=r}^{k} \sum_{l=s}^{l=s} \sum_{k=r}^{k} \phi_i \phi_{i+1} \phi_k \phi_{k+1}} \phi_{j+1} \phi_{j+1} [k, k+1] \phi_{l+1} \phi_{l+1} [l, l+1] \langle V_3, V_2 \rangle^2 \langle V_2, V_3 \rangle \langle V_4, V_1 \rangle \langle V_1, V_2 \rangle \langle V_3, V_4 \rangle \langle V_4, V_1 \rangle.$$ (121)
Figure 15: The decomposition for the googly amplitude with fermions when
$1 \leq i < j \leq r - 1$, $r \leq k \leq s - 1$, $s \leq l \leq n$.

\[
A^4_n = \frac{\phi^3_1 \phi_r \phi^4_s}{\prod_{s=1}^{n}[s, s + 1]} \sum_{i=r}^{s-1} \sum_{j=s}^{k-1} \sum_{k+1}^{l+1} \sum_{l+1}^{n} [i, i + 1] [k, k + 1] \frac{\phi_i \phi_l + 1}{\phi_k \phi_k + 1} \\
\times \frac{[j, j + 1] [l, l + 1]}{\phi_j \phi_{j+1} \phi_l \phi_{l+1}} \langle V_3, V_4 \rangle^3 \langle V_1, V_2 \rangle \langle V_2, V_3 \rangle \langle V_3, V_4 \rangle \langle V_4, V_1 \rangle, \quad (122)
\]

\[
A^5_n = \frac{\phi^3_1 \phi_r \phi^4_s}{\prod_{s=1}^{n}[s, s + 1]} \sum_{i=r}^{s-2} \sum_{j=i+1}^{s-1} \sum_{k=s+1}^{s+1} \sum_{l+1}^{n} [i, i + 1] [k, k + 1] \frac{\phi_i \phi_{i+1}}{\phi_k \phi_{k+1}} \\
\times \frac{[j, j + 1] [l, l + 1]}{\phi_j \phi_{j+1} \phi_l \phi_{l+1}} \langle V_2, V_4 \rangle^4 \langle V_1, V_2 \rangle \langle V_2, V_3 \rangle \langle V_3, V_4 \rangle \langle V_4, V_1 \rangle, \quad (123)
\]

and

\[
A^6_n = \frac{\phi^3_1 \phi_r \phi^4_s}{\prod_{s=1}^{n}[s, s + 1]} \sum_{i=r}^{s-3} \sum_{j=i+1}^{s-1} \sum_{k=j+1}^{s+1} \sum_{l+1}^{n} [i, i + 1] [k, k + 1] \frac{\phi_i \phi_{i+1}}{\phi_k \phi_{k+1}} \\
\times \frac{[j, j + 1] [l, l + 1]}{\phi_j \phi_{j+1} \phi_l \phi_{l+1}} \langle V_2, V_3 \rangle^3 \langle V_1, V_2 \rangle \langle V_3, V_4 \rangle \langle V_4, V_1 \rangle, \quad (124)
\]
Figure 16: The decomposition for the googly amplitude with fermions when \(r \leq i \leq s - 1, s \leq j < k < l \leq n \).

where

\[
V_1 = \sum_{s=l+1}^{n+i} \lambda_s \phi_s, \quad V_2 = \sum_{s=i+1}^{j} \lambda_s \phi_s, \quad (125)
\]

\[
V_3 = \sum_{s=j+1}^{k} \lambda_s \phi_s, \quad V_4 = \sum_{s=k+1}^{l} \lambda_s \phi_s, \quad (126)
\]

The sum of \(A_n^{1,2,3} \) can be written as

\[
A_n^1 + A_n^2 + A_n^3 = \frac{\phi_1^3 \phi_{i+1} \phi_{k+1} \phi_{j+1} \phi_{l+1}}{\prod_{s=1}^{n}[s, s + 1]} \sum_{i=1}^{r-1} \sum_{l=\max\{s, i\}}^{n} \sum_{j=i+1}^{l-1} \sum_{k=j+1}^{l-1} \left[i, i + 1 \right] \left[k, k + 1 \right] \left[j, j + 1 \right] \left[l, l + 1 \right] \times \langle i, i+1 \rangle \langle k, k+1 \rangle \langle j, j+1 \rangle \langle l, l+1 \rangle \times \langle V_2, V_b \rangle^3 \langle V_a, V_1 \rangle \langle V_1, V_2 \rangle \langle V_2, V_3 \rangle \langle V_3, V_4 \rangle \langle V_4, V_1 \rangle, \quad (127)
\]

\footnote{Here and in the following, the summation like \(\sum_{s=l+1}^{n+i} \) is understood as \(\sum_{s=l+1}^{n+i} + \sum_{s=1}^{i} \).}
where a is an index ($a = 3, 4$) which satisfies the condition that V_a includes neither $\lambda_r \phi_r$ nor $\lambda_s \phi_s$ as defined in eqs. (125) and (126), and b is an index ($b = 2, 3, b < a$) which satisfies the condition that V_b includes $\Lambda_s \phi_s$ as defined in eqs. (125) and (126).

The sum of $A_n^{4,5,6}$ can be similarly organized and we have:

$$A_n^4 + A_n^5 + A_n^6 = \frac{\phi_3^3 \phi_4^4 \prod_{s=1}^n [s, s+1]}{\prod_{s=1}^n [s, s+1]} \sum_{i=r}^{s-1} \sum_{l=\max\{s, i+3\}}^{n} \sum_{j=i+1}^{l-2} \sum_{k=j+1}^{l-1} \times \frac{[i, i+1][k, k+1][j, j+1][l, l+1]}{\phi_i \phi_{i+1} \phi_k \phi_{k+1} \phi_j \phi_{j+1} \phi_l \phi_{l+1}} \times \langle V_p, V_q \rangle \langle V_1, V_2 \rangle \langle V_2, V_3 \rangle \langle V_3, V_4 \rangle \langle V_4, V_1 \rangle,$$

(128)

where p and q are the two indexes ($p = 2, 3, q = 3, 4, p \neq q$) which satisfy that neither V_p nor V_q includes $\lambda_r \phi_r$ as defined in eqs. (125) and (126).

In order to obtain the correct result for the googly amplitude, all we need is to prove the following identity:

$$\sum_{i=1}^{r-1} \sum_{l=\max\{s, i+3\}}^{n} \sum_{j=i+1}^{l-2} \sum_{k=j+1}^{l-1} \frac{[i, i+1][j, j+1]}{\phi_i \phi_{i+1} \phi_j \phi_{j+1}}$$
Figure 18: The decomposition for the googly amplitude with fermions when
\(r \leq i < j < k \leq s - 1, s < l \leq n \).

\[
\begin{align*}
&\times \frac{[k, k + 1]}{\phi_k \phi_{k+1}} \frac{[l, l + 1]}{\phi_l \phi_{l+1}} \frac{-\langle V_a, V_b \rangle^3 \langle V_a, V_1 \rangle}{\langle V_1, V_2 \rangle \langle V_2, V_3 \rangle \langle V_3, V_4 \rangle \langle V_4, V_1 \rangle} \\
&+ \sum_{i=r}^{s-1} \sum_{t=\max\{s, i+3\}}^{n} \sum_{j=i+1}^{l-2} \sum_{k=j+1}^{l-1} \frac{[i, i + 1]}{\phi_i \phi_{i+1}} \frac{[j, j + 1]}{\phi_j \phi_{j+1}} \\
&\times \frac{[k, k + 1]}{\phi_k \phi_{k+1}} \frac{[l, l + 1]}{\phi_l \phi_{l+1}} \frac{\langle V_p, V_q \rangle^4}{\langle V_1, V_2 \rangle \langle V_2, V_3 \rangle \langle V_3, V_4 \rangle \langle V_4, V_1 \rangle} \\
&= \frac{[s, 1]^3 [s, r]}{\phi_s \phi_1 \phi_r}. \quad (129)
\end{align*}
\]

This is indeed the case and one can prove it by using the same method used in [12, 13] and appendix A. We will not give the proof here.

By using this identity, we have:

\[
A_n = \sum_{i=1}^{6} A_i^n = [s, 1]^3 [s, r]/(\prod_{i=1}^{n} [i, i + 1]), \quad (130)
\]

which is the right result for the googly amplitude with 2 gluinos.

As we did in section, we can similarly calculate the googly amplitudes
with 4-gluinos (all gluons then have negative helicity) and the result is:

\[
A(g_1^-, \ldots, \Lambda_r^+, \ldots, \Lambda_s^+, \ldots, \Lambda_p^-, \ldots, \Lambda_q^-, \ldots, g_n^-) = \frac{[p, q]^3[r, s]}{\prod_{i=1}^{n}[i, i+1]},
\]

(131)
as expected. We will not present any details here.

Acknowledgments

We would like to thank Zhe Chang, Bin Chen, Han-Ying Guo, Miao Li, Jian-Xin Lu, Jian-Ping Ma, Ke Wu and Yong-Shi Wu for discussions. Jun-Bao Wu would like to thank Qiang Li for help on drawing the figures. Chuan-Jie Zhu would like to thank Jian-Xin Lu and the hospitality at the Interdisciplinary Center for Theoretical Study, University of Science and Technology of China where part of this work was done.

Appendix A: The proof of eq. (61)

In this appendix, we will prove eq. (61). As in \cite{12,13}, we can use an \(SL(2, \mathbb{C}) \) transformation and a rescaling of \(\tilde{\eta} \) to choose \(\tilde{\eta}^1 = 0 \) and \(\tilde{\eta}^2 = 1 \). We then do a rescaling of \(\tilde{\lambda}_i \) by \(\tilde{\lambda}_2 \), i.e. by defining \(\varphi_i = \frac{\tilde{\lambda}_i}{\lambda_{2i}} \), and also do a rescaling of \(\lambda_{ia} \) by \(1/\tilde{\lambda}_2 \). After using these redefinitions, Eq. (61) becomes:

\[
F_f(\varphi_i) \equiv (\varphi_q - \varphi_q) \sum_{i=0}^{I-1} \sum_{k=\text{max}\{I,i+2\}}^{n} \sum_{j=i+1}^{k-1} \frac{(\varphi_i - \varphi_{i+1})(\varphi_j - \varphi_{j+1})}{-\langle V_1, V_p \rangle \langle V_4, V_p \rangle^3} \times \frac{\langle V_1, V_2 \rangle \langle V_3, V_4 \rangle}{\langle V_4, V_1 \rangle} \times \frac{\langle \tilde{V}_r, \tilde{V}_s \rangle^4}{\langle \tilde{V}_1, \tilde{V}_2 \rangle \langle \tilde{V}_3, \tilde{V}_4 \rangle} = (\varphi_q - \varphi_I)^3(\varphi_q - \varphi_I),
\]

(132)

where

\[
V_1 = \sum_{s=0}^{i} \lambda_s, \quad V_2 = \sum_{s=i+1}^{j} \lambda_s,
\]

(133)
\[V_3 = \sum_{s=j+1}^{k} \lambda_s, \quad V_4 = \sum_{s=k+1}^{n+1} \lambda_s, \quad (134) \]
\[\tilde{V}_1 = \sum_{s=0}^{i} \lambda_s + \sum_{s=l+1}^{n+1} \lambda_s, \quad \tilde{V}_2 = \sum_{s=i+1}^{j} \lambda_s, \quad (135) \]
\[\tilde{V}_3 = \sum_{s=j+1}^{k} \lambda_s, \quad \tilde{V}_4 = \sum_{s=k+1}^{l} \lambda_s, \quad (136) \]

There are also two constraints:
\[\sum_{i=1}^{4} V_i = \sum_{i=1}^{4} \tilde{V}_i = \sum_{l=0}^{n+1} \lambda_l = 0, \quad (137) \]
\[\sum_{l=0}^{n+1} \lambda_i \varphi_i = 0, \quad (138) \]

from momentum conservation.

From eq. (137) and eq. (138) we can solve \(\lambda_0 \) and \(\lambda_I \) in terms of the rest \(\lambda_i \) and all \(\varphi_j \)'s as:
\[\lambda_0 = - \sum_{1 \leq j \leq n+1, j \neq I} \frac{\varphi_j - \varphi_I}{\varphi_0 - \varphi_I} \lambda_j, \quad (139) \]
\[\lambda_r = \sum_{1 \leq j \leq n+1, j \neq I} \frac{\varphi_j - \varphi_0}{\varphi_0 - \varphi_I} \lambda_j. \quad (140) \]

By using this solution, we can consider \(F_f(\varphi_i) \) as a function of \(\lambda_j \) (\(1 \leq j \leq n+1, j \neq I \)) and all \(\varphi_j \)'s (\(0 \leq j \leq n+1 \)).

To prove eq. (132), we first prove that \(F_f(\varphi_i) \) is independent of \(\varphi_j \) for \(1 \leq j \leq n, j \neq I \) and \(F_f(\varphi_i) \) depends on \(\varphi_{n+1} \) linearly by analyzing the pole terms.

First we will show that when \(\varphi_s \rightarrow \infty (1 \leq s \leq n, s \neq I) \) the pole terms are vanishing in \(F_f(\varphi) \) and when \(\varphi_{n+1} \rightarrow \infty, F_f(\varphi) \) will grow as \(\varphi_{n+1} \) at most.

When \(\varphi_s \rightarrow \infty (1 \leq s \leq n, s \neq I) \), \(\lambda_1 \) and \(\lambda_I \) will grow as \(\varphi_s \), and other \(\lambda_i \)'s don't depend on \(\varphi_s \). One can easily find that the pole terms in the second sum in eq. (132),
\[\sum_{i=0}^{l-1} \sum_{l=\max\{l,i+3\}}^{n} \sum_{j=i+1}^{l-2} \sum_{k=j+1}^{l-1} (\varphi_i - \varphi_{i+1})(\varphi_j - \varphi_{j+1})(\varphi_k - \varphi_{k+1})(\varphi_l - \varphi_{l+1}) \]
\[
\frac{\langle \tilde{V}_r, \tilde{V}_s \rangle^4}{\langle V_1, V_2 \rangle \langle V_2, V_3 \rangle \langle V_3, V_4 \rangle \langle V_4, V_1 \rangle},
\]
(141)

are vanishing as in [12, 13].

As to the terms in the first sum in eq. (132), it is easy to see that \(V_1\) and \(V_q\) \((q = 2, 3, q \neq p)\) will grow as \(\varphi_s\).

If none of the \(V_i\)’s \((i = 1, \ldots, 4)\) includes only the term \(\lambda_s\), the factor \(F(i, j, k) \equiv (\varphi_q - \varphi_q)(\varphi_i - \varphi_{i+1})(\varphi_j - \varphi_{j+1})(\varphi_k - \varphi_{k+1})\) grows as \(\varphi_s\) at most, \(\langle V_1, V_p \rangle \langle V_4, V_p \rangle^3\) grow as \(\varphi_s\) at most, and \(\langle V_1, V_2 \rangle \langle V_2, V_3 \rangle \langle V_3, V_4 \rangle \langle V_4, V_1 \rangle\) grows as \(\varphi_s^3\) at least. So the pole terms are vanishing.

The other case is when one of the \(V_i\)’s includes only the term \(\lambda_s\) (this \(i\) must be \(p\)), then \(F(i, j, k)\) grows as \(\varphi_s^2\) at most, \(\langle V_1, V_p \rangle \langle V_4, V_p \rangle^3\) is independent of \(\varphi_s\), and \(\langle V_1, V_2 \rangle \langle V_2, V_3 \rangle \langle V_3, V_4 \rangle \langle V_4, V_1 \rangle\) grows as \(\varphi_s^2\) at least. So no terms will tend to infinity.

So when \(\varphi_s \to \infty \quad (1 \leq s \leq n, s \neq I)\) the pole terms are vanishing.

When \(\varphi_{n+1} \to \infty\), \(\lambda_1\) and \(\lambda_I\) will grow as \(\varphi_{n+1}\), and other \(\lambda_i\)’s don’t depend on \(\varphi_{n+1}\). One can find that the pole terms in eq. (141), are still vanishing.

As to the terms in the first sum in eq. (132), it is easy to see that \(V_1\) and \(V_q\) \((q = 2, 3, q \neq p)\) will grow as \(\varphi_{n+1}\).

If none of the \(V_i\)’s \((i = 1, \ldots, 4)\) includes only the term \(\varphi_{n+1}\), the factor \(F(i, j, k)\) grows as \(\varphi_{n+1}\) at most, \(\langle V_1, V_p \rangle \langle V_4, V_p \rangle^3\) grow as \(\varphi_{n+1}\) at most, and \(\langle V_1, V_2 \rangle \langle V_2, V_3 \rangle \langle V_3, V_4 \rangle \langle V_4, V_1 \rangle\) grows as \(\varphi_{n+1}^3\) at least. So the pole terms are vanishing.

The other case is when one of the \(V_i\)’s includes only the term \(\varphi_{n+1}\) (this \(i\) must be \(4\)), then \(F(i, j, k)\) grows as \(\varphi_{n+1}^2\) at most, \(\langle V_1, V_p \rangle \langle V_4, V_p \rangle^3\) grows as \(\varphi_{n+1}\) at most, and \(\langle V_1, V_2 \rangle \langle V_2, V_3 \rangle \langle V_3, V_4 \rangle \langle V_4, V_1 \rangle\) grows as \(\varphi_{n+1}^2\) at least. So every term grows as \(\varphi_{n+1}\) at most.

So when \(\varphi_{n+1} \to \infty\), \(F_i(\varphi)\) will grow as \(\varphi_{n+1}\) at most.

Now we will show that the finite poles terms will vanishing.

There are pole terms if any factor of \(\langle V_1, V_2 \rangle \langle V_2, V_3 \rangle \langle V_3, V_4 \rangle \langle V_4, V_1 \rangle\) is vanishing or any factor of \(\langle V_1, V_2 \rangle \langle V_2, V_3 \rangle \langle V_3, V_4 \rangle \langle V_4, V_1 \rangle\) is vanishing. Let us consider first the vanishing of \(\langle V_1, V_2 \rangle\). We denote this set of \(V_1\) and \(V_2\) as \(v_1\) and \(v_2\):

\[
v_1 = \lambda_0 + \cdots + \lambda_{n_1}, \quad v_2 = \lambda_{n_1+1} + \cdots + \lambda_{n_2}.
\]
(142)

If \(n_2 < I\), then every individual term will not tend to infinity. So we turn to consider the case when \(n_1 < I \leq n_2\). As one can see from Fig. 19 that there are contributions from summing over \(k\) and fixing \(i = n_1\) and \(j = n_2\).
Figure 19: Contributing diagrams from the vanishing of $\langle V_1, V_2 \rangle$. The other 2 contributing diagrams from the vanishing of $\langle V_3, V_4 \rangle$ or $\langle V_4, V_1 \rangle$ are similar and are not shown.

The residues (ignoring an overall factor $(\varphi_q - \varphi_q)(\varphi_{n_1} - \varphi_{n_1+1})(\varphi_{n_2} - \varphi_{n_2+1}))$ for these pole terms are:

$$C_1 = \sum_{k=n_2+1}^{n} (\varphi_k - \varphi_{k+1}) \frac{-\langle V_3, V_4 \rangle^2 \langle V_3, v_1 \rangle}{\langle v_2, V_3 \rangle \langle V_4, v_1 \rangle}. \quad (143)$$

Because $\langle v_1, v_2 \rangle = 0$, v_1 and v_2 are linearly dependent, we can assume that $v_i = \alpha_i v_0$, $i = 1, 2$, for some α_i and v_0.

Using this result and $v_1 + v_2 + V_3 + V_4 = 0$, we have

$$C_1 = \frac{(\alpha_1 + \alpha_2)^2}{\alpha_2} \sum_{k=n_2+1}^{n} (\varphi_k - \varphi_{k+1}) \langle v_0, V_3 \rangle. \quad (144)$$

Similar pole terms can also be obtained from the vanishing of the factor $\langle V_3, V_4 \rangle$ by setting $V_3 = v_2$ and $V_4 = -(v_1 + v_2)$. This gives the following contribution:

$$C_2 = \sum_{i=0}^{n_1-1} (\varphi_i - \varphi_{i+1}) \frac{\langle V_2, -(v_1 - v_2) \rangle^3}{\langle V_2, v_2 \rangle \langle -(v_1 + v_2), V_1 \rangle}$$

$$= \frac{(\alpha_1 + \alpha_2)^2}{\alpha_2} \sum_{i=0}^{n_1-1} (\varphi_i - \varphi_{i+1}) \langle v_0, V_1 \rangle. \quad (145)$$

36
The contribution obtained from the vanishing of the factor \(\langle V_4, V_1 \rangle \) by setting \(V_1 = v_1 \) and \(V_4 = -(v_1 + v_2) \) is:

\[
C_3 = \frac{(\alpha_1 + \alpha_2)^2}{\alpha_2} \sum_{j=n_1+1}^{n_2-1} (\varphi_j - \varphi_{j+1}) \langle v_0, V_1 \rangle. \tag{146}
\]

Using the same algebraic manipulation as given in [12, 13], one finds that \(C_1 + C_2 + C_3 = 0 \).

Now we consider the case when \(\langle \tilde{V}_1, \tilde{V}_2 \rangle \) vanishing. We denote this set of \(\tilde{V}_1 \) and \(\tilde{V}_2 \) as \(\tilde{v}_1 \) and \(\tilde{v}_2 \):

\[
\tilde{v}_1 = \lambda_{n_3+1} + \cdots + \lambda_n + \lambda_{\tilde{q}} + \lambda_q + \lambda_1 + \cdots + \lambda_{n_1}, \tag{147}
\]
\[
\tilde{v}_2 = \lambda_{n_1+1} + \cdots + \lambda_{n_2}. \tag{148}
\]

We consider the case for \(n_1 + 1 \leq I \leq n_2 \), the case for \(n_2 + 1 \leq I \leq n_3 \) can be treated similarly. The rest cases are more easier as in [13].

![Figure 20: Contributing diagrams from the vanishing of \(\langle \tilde{V}_1, \tilde{V}_2 \rangle \).](image)

The residues corresponding to Fig. 20 from the vanishing of \(\langle \tilde{V}_1, \tilde{V}_2 \rangle \) is:

\[
\tilde{C}_1 = \sum_{k=n_2+1}^{n_3-1} (\varphi_k - \varphi_{k+1}) \frac{\langle \tilde{V}_3, -\tilde{v}_1 - \tilde{v}_2 - \tilde{V}_3 \rangle^3}{\langle \tilde{v}_2, \tilde{V}_3 \rangle\langle -\tilde{v}_1 - \tilde{v}_2 - \tilde{V}_3, v_1 \rangle}
\]
by omitting an overall factor \((\varphi_{n_3} - \varphi_{n_{3+1}})(\varphi_{n_1} - \varphi_{n_{1+1}})(\varphi_{n_2} - \varphi_{n_{2+1}})\). The other contributions from the vanishing of the various factors \(\langle \tilde{V}_4, \tilde{V}_1 \rangle\) (2 contributions depending on the position of the positive helicity gluon \(g_I\)), \(\langle \tilde{V}_3, \tilde{V}_4 \rangle\), \(\langle \tilde{V}_2, \tilde{V}_3 \rangle\). We will not show the diagrams here. Their respective contributions are:

\[
\tilde{C}_2 = \frac{(\alpha_1 + \alpha_2)^3}{\alpha_1 \alpha_2} \sum_{j=1}^{n_2-1} (\varphi_j - \varphi_{j+1}) \langle \tilde{v}_0, \tilde{V}_2 \rangle, \tag{150}
\]

\[
\tilde{C}_3 = \frac{(\alpha_1 + \alpha_2)^3}{\alpha_1 \alpha_2} \sum_{j=n_1+1}^{l-1} (\varphi_j - \varphi_{j+1}) \langle \tilde{v}_0, \tilde{V}_2 \rangle, \tag{151}
\]

\[
\tilde{C}_4 = \frac{(\alpha_1 + \alpha_2)^3}{\alpha_1 \alpha_2} \sum_{i=1}^{n_1-1} (\varphi_i - \varphi_{i+1}) \langle \tilde{v}_0, \tilde{V}_1 \rangle, \tag{152}
\]

\[
\tilde{C}_5 = \frac{(\alpha_1 + \alpha_2)^3}{\alpha_1 \alpha_2} \sum_{l=n_3+1}^{n} (\varphi_l - \varphi_{l+1}) \langle \tilde{v}_0, \tilde{V}_1 \rangle, \tag{153}
\]

by omitting the same overall factor as in eq. (149). The last contribution is from the vanishing of the factor \(\langle V_2, V_3 \rangle\) as shown in Fig. 21. Its contribution is:

\[
\tilde{C}_6 = \frac{(\alpha_1 + \alpha_2)^3}{\alpha_1 \alpha_2} \langle \varphi_q - \varphi_q \rangle \frac{-(-\tilde{v}_1 - \tilde{v}_2, \tilde{V}_4)^2(-\tilde{v}_1 - \tilde{v}_2, \tilde{v}_1 - \tilde{V}_4)}{(\tilde{v}_1 - \tilde{V}_4, \tilde{v}_2)(\tilde{V}_4, \tilde{v}_1 - \tilde{V}_4)}
\]

\[
= \frac{(\alpha_1 + \alpha_2)^3}{\alpha_1 \alpha_2} (\varphi_q - \varphi_q) \langle \tilde{v}_0, \tilde{V}_4 \rangle. \tag{154}
\]
By using all the above results, we have:

\[\sum_{i=1}^{6} \tilde{C}_i = 0. \]

(155)

This shows that there is no finite pole terms.

Summarizing the above results from analyzing all the pole terms, we conclude that

\[F_f(\varphi) = a_1 \varphi_{n+1} + a_2, \]

(156)

where \(a_1 \) and \(a_2 \) are functions of \(\varphi_0, \varphi_I \) and \(\lambda_s, 1 \leq s \leq n+1, s \leq I \). Then we can fixed \(a_1 \) and \(a_2 \) by a special set of \(\varphi_s, 1 \leq s \leq n+1, s \leq I \).

We can make a convenient choice such as: \(\varphi_2 = \cdots = \varphi_{s-1} = x, \varphi_{s+1} = \cdots = \varphi_{n+1} = y \). After doing some algebras as in \([12, 13]\), we have

\[F_f(\varphi) = (\varphi_q - \varphi_I)^3(y - \varphi_I). \]

(157)

Since \(y \) can take any value, we must have:

\[a_1 = (\varphi_q - \varphi_I)^3, \quad a_2 = -\varphi_I(\varphi_q - \varphi_I)^3, \]

(158)

and so \(F_f(\varphi) = (\varphi_q - \varphi_I)^3(\varphi_q - \varphi_I) \). This ends our proof of eq. (61).

References

[1] E. Witten, “Perturbative Gauge Theory As A String Theory In Twistor
Space,” [hep-th/0312171].

[2] R. Penrose, “Twistor Algebra,” J. Math. Phys. 8 (1967) 345; “The
Central Programme of Twistor Theory,” Chaos, Solitons, and Fractal,
10 (1999) 581.

[3] F. Cachazo, P. Svrcek and E. Witten, “MHV Vertices and Tree Am-
plitudes In Gauge Theory,” [hep-th/0403047].

[4] S. Parke and T. Taylor, “An Amplitude For N Gluon Scattering,”
Phys. Rev. Lett. 56 (1986) 2459.

[5] F. A. Behrends and W. T. Giele, “Recursive Calculations For Processes
With N Gluons,” Nucl. Phys. B306 (1988) 759.
[6] M. L. Mangano and S. Parke, “Multiparton Amplitudes in Gauge Theories,” Phys. Rept. 200 (1991) 30.

[7] Z. Bern, “String-Based Perturbative Methods for Gauge Theories,” TASI Lectures, 1992, [hep-ph/9304249]

[8] L. Dixon, “Calculating Scattering Amplitudes Efficiently,” TASI Lectures, 1995, [hep-ph/9601359]

[9] Z. Bern, L. Dixon, and D. Kosower, “Progress In One-Loop QCD Calculations,” [hep-ph/9602280], Ann. Rev. Nucl. Part. Sci. 36 (1996) 109.

[10] C. Anastasiou, Z. Bern, L. Dixon, and D. Kosower, “Planar Amplitudes In Maximally Supersymmetric Yang-Mills Theory,” [hep-th/0309040]

Z. Bern, A. De Freitas, and L. Dixon, “Two Loop Helicity Amplitudes For Quark Gluon Scattering In QCD and Gluino Gluon Scattering In Supersymmetric Yang-Mills Theory,” JHEP 0306:028 (2003), [hep-ph/0304168]

[11] V. P. Nair, “A Current Algebra for Some Gauge Theory Amplitudes,” Phys. Lett. B214 (1988) 215–218.

[12] Chuan-Jie Zhu, “The Googly Amplitudes in Gauge theory,” [hep-th/0403115]

[13] Jun-Bao Wu and Chuan-Jie Zhu, “MHV Vertices and Scattering Amplitudes in Gauge Theory,” [hep-th/0406085]

[14] R. Roiban, M. Spradlin, and A. Volovich, “A Googly Amplitude From The B Model In Twistor Space,” J. High Energy Phys. 0404 (2004) 012, [hep-th/0402016]; R. Roiban and A. Volovich, “All Googly Amplitudes From The B Model In Twistor Space,” [hep-th/0402121]

[15] R. Roiban, M. Spradlin, and A. Volovich, “On the Tree-Level S-Matrix of Yang-Mills Theory ,” [hep-th/0403190]

[16] N. Berkovits, “An Alternative String Theory in Twistor Space for N=4 Super-Yang-Mills,” [hep-th/0402045]

[17] N. Berkovits and L. Motl, “Cubic Twistorial String Field Theory,” J. High Energy Phys. 0404 (2004) 056, [hep-th/0403187]
[18] M. Aganagic and C. Vafa, “Mirror Symmetry and Supermanifolds,” hep-th/0403192.

[19] E. Witten, “Parity Invariance For Strings In Twistor Space,” hep-th/0403199.

[20] A. Neitzke and C. Vafa, “N = 2 Strings and the Twistorial Calabi-Yau,” hep-th/0402128.

[21] N. Nekrasov, H. Ooguri and C. Vafa, “S-duality and Topological Strings,” hep-th/0403167.

[22] G. Georgiou and V. V. Khoze, “Tree Amplitudes in Gauge Theory as Scalar MHV Diagrams,” hep-th/0404072.

[23] Sergei Gukov, Lubos Motl and Andrew Neitzke, “Equivalence of twistor prescriptions for super Yang-Mills,” hep-th/0404085.

[24] Warren Siegel, “Untwisting the twistor superstring,” hep-th/0405255.

[25] S. Giombi, R. Ricci, D. Robles-Llana and D. Trancanelli, “A Note on Twistor Gravity Amplitudes,” hep-th/0405086.

[26] Alexander D. Popov and Christian Saemann, “On Supertwistors, the Penrose-Ward Transform and N=4 super Yang-Mills Theory,” hep-th/0405123.

[27] Nathan Berkovits and Edward Witten, “Conformal Supergravity in Twistor-String Theory,” hep-th/0406051.

[28] I. Bena, Z. Bern and D. A. Kosower, “Twistor-Space Recursive Formulation of Gauge-Theory Amplitudes,” hep-th/0406133.

[29] D. A. Kosower, “Next-to-Maximal Helicity Violating Amplitudes in Gauge Theory,” hep-th/0406175.

[30] F. Cachazo, P. Svrcek and E. Witten, “Twistor Space Structure of One-Loop Amplitudes in Gauge Theory,” hep-th/0406177.

[31] J. F. Gunion and Z. Kunszt, “Six-Quark Subprocesses in QCD,” Phys. Lett. B176 (1986) 163.
[32] Xun Su and Jun-Bao Wu, “Six-Quark Amplitudes from Fermionic MHV Vertices,” to appear.

[33] M. T. Grisaru, H. N. Pendleton and P. van Nieuwenhuizen, “Supergravity and the S Matrix,” Phys. Rev. D15 (1977) 996.

[34] M. T. Grisaru and H. N. Pendleton, “Some Properties of Scattering Amplitudes in Supersymmetric Theories,” Nucl. Phys. B214 (1977) 81.

[35] M. Mangano, “The Color Structure of Gluon Emission,” Nucl. Phys. B309 (1988) 461.