β2 Integrin-dependent Tyrosine Phosphorylation of Paxillin in Human Neutrophils Treated with Tumor Necrosis Factor

Michele Fuortes, Wen-wen Jin, and Carl Nathan
Beatrice and Samuel A. Seaver Laboratory, Departments of Medicine and Cell Biology, Cornell University Medical College, New York 10021

Abstract. The focal adhesion protein paxillin undergoes tyrosine phosphorylation in response to signals mediated by integrins, neuropeptides and oncogene products, possibly via activation of the focal adhesion-associated kinase, p125\textsuperscript{FAK}. In the present work, tumor necrosis factor-α (TNF) stimulated tyrosine phosphorylation of paxillin in human neutrophils. Cell adhesion and participation of the β2 integrin CD18 were necessary, but not sufficient, for the response. Adherent neutrophils also tyrosine phosphorylated paxillin in response to phorbol ester, formylmethionyl-leucyl-phenylalanine and opsonized bacteria. In contrast, p125\textsuperscript{FAK} was constitutively tyrosine phosphorylated in a manner unaffected by adherence and/or TNF. Thus, cytokines and microbial products are among the stimuli that can induce the tyrosine phosphorylation of paxillin, and kinases other than p125\textsuperscript{FAK} may be responsible. This is the first identification of paxillin and p125\textsuperscript{FAK} in human cells and neutrophils, and one of the few identifications of a specific protein that undergoes tyrosine phosphorylation in response to any agonist in neutrophils or in response to TNF in any cell.

Survival of mammals depends on the ability of neutrophilic polymorphonuclear leukocytes (PMN)\(^1\) to adhere to endothelium, emigrate into infected tissue, form abscesses, and kill bacteria. Key aspects of these responses are modeled by plating PMN on matrix protein-coated surfaces and stimulating the secretion of oxidants and proteases with inflammatory polypeptides (18, 21, 22). Among effective stimuli, tumor necrosis factor-α (TNF) has been most intensively studied (15, 18, 22).

It remains unclear how TNF elicits pleiotropic responses via receptors that embody no known enzymatic function (29, 35). Tyrosine phosphorylation was recently recognized as a signal induced by TNF (1, 8, 37). The only distance in which TNF-induced tyrosine phosphorylation has been shown to be critical for function is in β2 integrin-dependent responses of TNF-treated PMN, namely, reorganization of their actin cytoskeleton and secretion of large amounts of hydrogen peroxide (8). Neither the tyrosine kinases nor their substrates involved in these responses have been characterized, beyond the localization of the most abundant tyrosine phosphoproteins to the region of the cells close to or in contact with the substrate (8). Indeed, only three tyrosine phosphoproteins have been identified in PMN treated with any stimulus: microtubule-associated protein-2 kinase or mitogen-activated protein kinase (MAP kinase) (11), \textit{rel} (6), and recently the tyrosine kinase p58\textsuperscript{fgr} (3). Likewise, only two tyrosine phosphoproteins have been identified in any cell treated with TNF: MAP kinase (34) and p58\textsuperscript{fgr} (3).

Here we study two leading candidates within focal adhesions for tyrosine kinase substrates involved in the adhesion-dependent, polypeptide-triggered secretory response of PMN. Paxillin is a 68-kD protein purified from chick embryonic fibroblasts (31) which binds to vinculin (9, 31), v-crk (4), and the SH3 domain of c-src (36), localizes in focal adhesions (31, 32), and undergoes tyrosine phosphorylation during adhesion of fibroblasts (5), microtubule stimulation of 3T3 cells (39), phagocytosis by macrophages (12), and embryonic development of chicken and rat (30). Focal adhesion kinase (p125\textsuperscript{FAK}) is a 125-kD tyrosine kinase and c-src substrate (28) that is phosphorylated on tyrosine in response to adhesion of fibroblasts and may in turn phosphorylate paxillin (16). The present experiments identified both paxillin and p125\textsuperscript{FAK} in human PMN. Paxillin but not p125\textsuperscript{FAK} underwent tyrosine phosphorylation in response to TNF, phorbol ester (PMA), formyl-methionyl-leucyl-phenylalanine (fMLP) and opsonized bacteria, but only in adherent

1. Abbreviations used in this paper: DHCB, dihydrochitocorinabo; ECL, enhanced chemiluminescence; fMLP, N-formyl-L-methionyl-L-leucyl-L-phenylalanine; KRPG, Krebs-Ringer phosphate buffer with glucose; LAD, leukocyte adhesion deficiency; MAP kinase, microtubule-associated protein-2 kinase or mitogen-activated protein kinase; PMA, phorbol myristate acetate; RT, room temperature; TNF, tumor necrosis factor-α.

© The Rockefeller University Press, 0021-9525/94/12/1477/7 $2.00

The Journal of Cell Biology, Volume 127, Number 5, December 1994 1477-1483 1477
PMN with available β2 integrins and an intact actin-based cytoskeleton.

Materials and Methods

PMN
PMN were isolated from heparinized blood of normal human donors and from a child with profound leukocyte adhesion deficiency (LAD) whose PMN responses were previously described (21), using a one-step, modified Ficoll-Hypaque gradient (Neutrophil Isolation Medium, Cardinal Associates, Santa Fe, NM) as described (22). Erythrocytes were lysed by hypotonic shock and PMN were resuspended in ice-cold Krebs-Ringer phosphate buffer with glucose (KRPG) (145 mM NaCl, 5.7 mM sodium phosphate, 4.86 mM KCl, 0.54 mM CaCl₂, 1.22 mM MgSO₄, 5.5 mM glucose, pH 7.35, mOsm 300–315). For adherent cells, PMN were plated at 4 × 10⁶/ml in 5 ml in 100-mm Primaria dishes (Falcon Labware, Becton-Dickinson & Co., Oxnard, CA) precoated with 3 ml FBS (Hyclone Systems, Logan, UT) prewarmed to 37°C. After 15 min, stimuli and/or inhibitors were added. Pure recombinant human TNF was a gift of Genentech, Inc. (South San Francisco, CA). PMN, mAb, and diphycytocytosin B (DHCB) were from Sigma Chemical Co. (St. Louis, MO). A clinical isolate of Listeria monocytogenes from New York Hospital was osmopositive by incubation in 20% normal human serum for 1 h on ice, washes in PBS, and stored at -70°C. At the indicated times, the dishes were placed on ice, the incubation medium was aspirated, and the residual cells were lysed in 125 μl of solubilization buffer (10 mM Tris-HCl, pH 7.4, 1% SDS, 1 mM sodium vanadate, 0.1 mM sodium molybdate, 1 mM sodium pyrophosphate, 1 mM NaF, 1 mM phenylmethylsulfonyl fluoride, 5 mM diisopropyl fluorophosphate, and 5 μg/ml each of pepstatin A, leupeptin, aprotinin, and chymostatin). The lysate was immediately boiled for 5 min and then stored at -80°C until further analysis. For suspended cells, 1 ml of the same suspension of PMN was incubated in FBS-coated polypropylene tubes and agitated at 100 cycles/min; this was necessary to prevent adhesion of the cells to the walls of the tube or to each other. At the indicated times, the tubes were centrifuged at 16,000 g for 10 s at room temperature (RT) and the cell pellets were washed in the same buffer without serum, blocked again in 20 mM Tris-HCl, pH 7.4, 5 mM dithiothreitol, and 1% BSA for 30 min at 4°C, and then pelleted again, washed in the same buffer without serum, and fixed with 1% paraformaldehyde in PBS for 10 min at RT. The supernatant was then replaced with 3.7% sucrose (Ficoll-Hypaque gradient, Neutrophil Isolation Medium, Cardinal Associates, Oxnard, CA) precoated with 3 ml FBS (Hyclone Systems, Logan, UT) and then for 4 h at RT with one of the following: mAb SE2 at 1.5 μg/ml; mAb 2A7, 1/100 dilution; anti-paxillin mAb, 1/1000 dilution; or mAb RC20, 1/2,000 dilution, all in blocking buffer. Membranes were washed in the same buffer without serum, blocked again in 20 mM Tris-HCl, pH 7.4, 137 mM NaCl, 0.1% Tween 20, 10% FBS for 30 min at RT, and incubated at RT for 45 min with HRP-conjugated IgG sheep anti-mouse IgG when appropriate (Amersham Corp., Arlington Heights, IL) in the same buffer. After further washing in the same buffer without serum, immunoblots were developed using an enhanced chemiluminescence (ECL) kit (Amersham Corp.). Where indicated the immunoblot films were subjected to densitometric analysis by scanning on a Mirror 800 transparency scanner (Mirror Technologies, Roseville, MN) and the resulting scan analyzed by computer with the NIH Image 1.52 software.

Immunohistochemistry
PMN (10⁵ cells/ml) were plated on FBS-coated 13-mm diam glass coverslips in 12-well plates containing prewarmed reaction mixture. After 15 min to allow the cells to contact the coverslips, TNF (250 ng/ml) was added or cells were left untreated. After incubation for the indicated times at 37°C in air, the medium was gently aspirated and cells fixed with 1% paraformaldehyde in cacodylate buffer, pH 7.4 (75 mM sodium cacodylate, 0.72% sucrose), for 10 min at RT. The supernatant was then replaced with 3.7% formaldehyde in PBS for 10 min at RT. Cells were then washed with PBS and permeabilized with 0.05% Triton X-100 in PBS for 4 min at RT. Fixed cells were incubated with blocking buffer (PBS + 10% calf serum) for 1 h at RT and then for 1 h at 37°C with a 1/100 dilution rabbit anti-phosphotyrosine antibody and 1/100 dilution of mouse anti-vinculin in blocking buffer. Coverslips were then washed three times in PBS and incubated for 45 min at 37°C with rhodamine-conjugated goat IgG Fab′ anti-rabbit IgG (γ and light chain) and fluorescein-conjugated goat IgG F(ab')2 anti-mouse IgG (γ and light chain) antibodies (Tago Laboratories, Burlingame, CA) in blocking buffer. Coverslips were washed twice in PBS and once in distilled water, inverted, and mounted in 90% glycerol in water on a glass slide.

Results
Phosphotyrosine-containing Proteins Coexist with Vinculin
Double staining established that the majority of immuno-reactive phosphoprotein was not only confined near the adherent surface of PMN plated on FBS-coated glass (8) but was specifically localized in focal adhesions, as judged by its colocalization with vinculin in finger-like structures (Fig. 1).

Identification of Paxillin and p125FAK in Human PMN and Assessment of Their Tyrosine Phosphorylation in Response to TNF
By immunoblot with anti-phosphotyrosine, the most readily detectable proteins to undergo tyrosine phosphorylation in adherent, TNF-treated PMN have apparent Mr ranging from 65,000 to 150,000 (8), spanning the sizes of focal adhesion proteins paxillin and p125FAK. To determine if paxillin and p125FAK are present in PMN as tyrosine phosphoproteins, PMN adherent to FBS-coated plates or in suspension were stimulated with TNF for 60 min and their lysates immunoprecipitated with anti-paxillin and anti-p125FAK mAbs. Immunoprecipitates were divided in two equal portions and...
immunoblotted with anti-phosphotyrosine and either anti-paxillin or anti-p125 FAK mAbs. Paxillin was detected as a broad band of apparent molecular mass ~70 kD in a reducing SDS-PAGE immunoblot, as in other cells and species (5). Paxillin underwent tyrosine phosphorylation only in PMN that were both stimulated with TNF and allowed to adhere (Fig. 2 A). As little as 10 ng/ml TNF was effective (not shown). In contrast, while p125 FAK was detected in PMN and found to be tyrosine phosphorylated, its level of tyrosine phosphorylation was unaffected by adherence and/or TNF (Fig. 2 B). Blots probed with anti-paxillin mAb or anti-p125 FAK mAb showed that the same amounts of the test proteins were immunoprecipitated in each sample whether or not the cells were adherent or stimulated (not shown).

**Figure 1.** Colocalization of phosphotyrosine-containing proteins with vinculin. PMN were plated on FBS-coated glass coverslips and 15 min later treated with TNF (250 ng/ml). After 45 min the medium (KRPG) was aspirated and cells fixed, permeabilized, and stained with mouse anti-vinculin and rabbit anti-phosphotyrosine antibodies. Secondary antibodies were (A) fluorescein-conjugated sheep anti-mouse, reporting vinculin, and (B) rhodamine-conjugated sheep anti-rabbit, reporting phosphotyrosine. Bar, 10 μM.

**Role of Integrins**

PMN from a patient with profound β2 integrin deficiency failed to tyrosine phosphorylate paxillin in response to TNF (Fig. 3). In normal PMN, paxillin phosphorylation in response to TNF was completely abolished by pretreatment with anti-CD18 mAb, both intact and as the F(ab′)2 fragment. Normal mouse IgG and a mAb binding to another abundant surface molecule (FcR) had no effect (Fig. 4).

**Kinetics of TNF-induced, Adhesion-dependent Tyrosine Phosphorylation of Paxillin**

Tyrosine phosphorylation of paxillin was first detected 15 min after stimulation of adherent PMN with TNF, peaked at 30 min and lasted at least 60 min. Again, tyrosine phosphorylation was dependent on adhesion to the serum-coated surface (Fig. 5). A blot of aliquots of the same immunopre-

**Figure 2.** Effect of TNF and cell adherence on tyrosine phosphorylation of paxillin. PMN were plated on FBS-coated dishes (lanes marked A) or kept in suspension in FBS-coated tubes (lanes marked S) and stimulated with TNF (250 ng/ml) or left untreated for 60 min. Cell lysates (25 μg) were immunoprecipitated with anti-paxillin mAb and separated by reducing SDS-PAGE, transferred to a nitrocellulose membrane and probed with anti-phosphotyrosine mAb followed by ECL detection, using HRP-conjugated sheep anti-mouse IgG antibody. (B) Effect of TNF stimulation on tyrosine phosphorylation of p125 FAK in adherent and suspended PMN. PMN were prepared as in A. Cell lysates (25 μg) were immunoprecipitated with anti-p125 FAK mAb, separated by reducing SDS-PAGE, transferred to nitrocellulose and probed with anti-phosphotyrosine mAb, followed by ECL detection using HRP-conjugated sheep anti-mouse IgG antibody. The expected migrations of paxillin and p125 FAK are indicated, along with molecular mass markers in kD. IgG heavy chain from the immunoprecipitating antibodies was also detected by the HRP-conjugated sheep anti-mouse IgG secondary antibody.

**Figure 3.** Lack of paxillin phosphorylation in PMN from a patient with LAD. PMN were isolated from a normal donor, a child with LAD, and the patient’s unaffected mother. PMN were plated on FBS-coated plates and stimulated with TNF (250 ng/ml) or left untreated for 60 min. Cell lysates (80 μg except C of the LAD patient, 20 μg) were immunoprecipitated with anti-paxillin mAb. Proteins were separated by nonreducing SDS-PAGE, transferred to nitrocellulose, and probed with HRP-conjugated anti-phosphotyrosine mAb followed by ECL detection. Molecular mass marker is indicated in kD.
Figure 4. Block of paxillin phosphorylation by anti-CD18 antibodies. PMN were isolated and incubated at 4°C for 30 min with intact anti-CD18 mAb IB4 or its F(ab')2 fragments, or as controls, normal mouse IgG or mAb 3G8 directed against Fc receptor. PMN were plated on FBS-coated plates and stimulated with TNF (250 ng/ml) or left untreated for 60 min. Cell lysates (125 μg) were immunoprecipitated with anti-paxillin mAb. Proteins were separated by nonreducing SDS-PAGE, transferred to nitrocellulose, and probed with HRP-conjugated anti-phosphotyrosine mAb followed by ECL detection. Molecular mass markers are indicated in kD.

Figure 5. Time course of TNF-stimulated tyrosine phosphorylation of paxillin. PMN were plated on FBS-coated plates (A) or kept in suspension (S) and stimulated with TNF (250 ng/ml) or left untreated for the indicated times. Cell lysates (300 μg) were immunoprecipitated with anti-paxillin mAb. Proteins were separated by nonreducing SDS-PAGE, transferred to nitrocellulose and probed with HRP-conjugated anti-phosphotyrosine mAb followed by ECL detection. Molecular mass marker is indicated in kD.

Figure 6. Proportion of paxillin undergoing tyrosine phosphorylation. (A) PMN were plated on FBS-coated dishes and stimulated with TNF (T) (250 ng/ml) or left untreated (control, C) for the indicated times. Cell lysates (350 μg) were immunoprecipitated with anti-phosphotyrosine polyclonal Ab. The supernatants were immunoprecipitated again with anti-paxillin mAb. Different amounts (as indicated) of the total immunoprecipitated paxillin were loaded in each lane. The samples were subjected to nonreducing SDS-PAGE and the separated proteins transferred to nitrocellulose and probed with anti-paxillin followed by ECL detection. Molecular mass marker is indicated in kD. (B). The bands present in the immunoblot from A were subjected to densitometry and the density (relative units) plotted against the fraction of total immunoprecipitated paxillin loaded in each lane. The regression function (r^2 = 0.993) from the anti-paxillin immunoprecipitates (○) was used to calculate the amount of paxillin present in the anti-phosphotyrosine immunoprecipitates (●).

Estimation of the Fraction of Paxillin Undergoing Tyrosine Phosphorylation
PMN on FBS-coated plates were stimulated with TNF for 30 or 60 min or left untreated for the same times. Lysates...
Paxillin Undergoes a Posttranslational Modification Different from Tyrosine Phosphorylation

In the same experiments, paxillin immunoprecipitates depleted of tyrosine-phosphorylated paxillin from control or TNF-stimulated cells were also analyzed. Immunoblots with anti-paxillin (Fig. 7) showed that the apparent molecular weight of the non-tyrosine phosphorylated paxillin increased from 51 kD (on nonreducing SDS-PAGE) in untreated cells to 58 kD in TNF-stimulated cells after 30 min and to 63 kD after 60 min of stimulation. This demonstrated the occurrence of a time-dependent, TNF-induced posttranslational modification(s) of paxillin different from tyrosine phosphorylation.

Role of the Actin-based Cytoskeleton

Dihydroyctochalasin B blocks the barbed end of actin filaments and inhibits both spreading and the respiratory burst in TNF-stimulated PMN (18, 22). Accordingly, adherent PMN were stimulated with TNF in the presence or absence of DHCB or left untreated for different lengths of time. Cells were lysed and samples immunoprecipitated with anti-paxillin mAb. Equal aliquots of the immunoprecipitates were blotted with anti-paxillin or anti-phosphotyrosine mAbs. DHCB blocked completely the tyrosine phosphorylation of paxillin after 45 min of TNF stimulation. After 60 min only a very small amount of tyrosine phosphorylation was present, a marked reduction compared to cells treated with TNF but not with DHCB. Immunoblot of the same samples with anti-paxillin showed that similar amounts were immunoprecipitated in all cases (Fig. 8).

Response to Other Stimuli

Phorbol ester, a potent activator of protein kinase C, formylmethionyl-leucyl-phenylalanine, a chemotactic peptide released from Escherichia coli, and serum-coated Listeria monocytogenes all caused PMN to tyrosine phosphorylate paxillin. Although PMA stimulated less tyrosine phosphorylation of paxillin than TNF, PMA caused a greater upshift in paxillin's apparent molecular mass (Fig. 9).

Discussion

Tyrosine phosphorylation is essential for human PMN adherent to model biological surfaces to reorganize their cytoskeleton and undergo a large-scale respiratory burst (8). This work demonstrates that most tyrosine phosphoproteins in TNF-stimulated PMN are confined to focal adhesions, that the focal adhesion protein paxillin is present in human PMN, and that the tyrosine phosphorylation of paxillin is induced by a cytokine and microbial products, provided that the cells can adhere, utilize β2 integrins, and reorganize actin filaments. Densitometric analysis of the immunoblots (Fig. 6B) showed that the immunoblot ECL reaction was linear with respect to the logarithm of cell protein in the range of interest (2–20% of total non-tyrosine phosphorylated cellular paxillin). The regression function from the anti-paxillin immunoprecipitates was used to calculate the amount of paxillin present in the anti-phosphotyrosine immunoprecipitates. By this analysis, 2% of total cellular paxillin was tyrosine phosphorylated after 30 min and 4.5% was tyrosine phosphorylated after 1 h of treatment of adherent PMN with TNF. The efficacy of anti-phosphotyrosine and anti-paxillin immunoprecipitation was confirmed by the absence of tyrosine-phosphorylated paxillin in the paxillin immunoprecipitates and by the absence of tyrosine phosphorylated proteins and paxillin in the final supernatants (not shown).
tin. This is one of the few specific identifications of a protein to undergo tyrosine phosphorylation in response to any agonist in PMN or in response to TNF in any cell.

These studies also identify p125FAK in human PMN. Due to the common localization of p125FAK and paxillin in focal adhesions (28, 31), their concomitant phosphorylation (5, 25, 39), and the ability of immunoprecipitated p125FAK to tyrosine phosphorylate purified paxillin in vitro (33), it has been suggested that tyrosine phosphorylation of paxillin may result from the activation of p125FAK (39). However, in the present work, p125FAK did not change its tyrosine phosphorylation state in response to stimulation with TNF. Since tyrosine phosphorylation of p125FAK is generally considered one of the few specific identifications of a protein to undergo tyrosine phosphorylation in response to any agonist in neutrophils or in response to TNF in any cell. However, this finding directs attention to the role of p125FAK in the common localization of p125FAK and paxillin in focal adhesions (28, 31), their concomitant phosphorylation (5, 25, 39), and the ability of immunoprecipitated p125FAK to tyrosine phosphorylate purified paxillin in vitro (33). It has been suggested that tyrosine phosphorylation of paxillin may result from the activation of p125FAK (39). However, in the present work, p125FAK did not change its tyrosine phosphorylation state in response to stimulation with TNF. Since tyrosine phosphorylation of p125FAK is generally considered one of the few specific identifications of a protein to undergo tyrosine phosphorylation in response to any agonist in neutrophils or in response to TNF in any cell.

The role of paxillin in any cell remains to be established. The present work suggests that tyrosine phosphorylation of paxillin by a kinase which is probably distinct from p125FAK may help regulate the dramatic changes in cell shape and secretory behavior with which PMN respond to a major inflammatory mediator, TNF, and to microbes and their products. Paxillin is well positioned to play a key role in these processes, given its localization in focal adhesions and its ability to interact with tyrosine kinases like p125FAK (31), src (10), Csk (27), and lyn (19). "Adaptor" proteins like crk (4), and structural proteins like vinculin (31). Indeed, paxillin now appears to be a point of convergence within focal adhesions for the actions of cytokines and microbial products (this study), neuropeptides (39), oncogenes (20), and integrins (5).

We thank T. Parsons, B. Fendly (Genentech, Inc.), S. Wright, and J. Unkeless for gifts of invaluable reagents; Nancy Kernan (Memorial Sloan-Kettering Cancer Center, New York) for access to PMN of the patient with LAD; and A. Ding for critical comments. This work was supported by National Institutes of Health grant CA 45218.

Received for publication 29 July 1994 and in revised form 8 September 1994.

References

1. Akimaru, K., T. Utsumi, E. F. Sato, J. Klostergaard, M. Inoue, and K. Utsumi. 1992. Role of tyrosyl phosphorylation in neutrophil priming by tumor necrosis factor-alpha and granulocyte colony stimulating factor. Arch. Biochem. Biophys. 298:703–709.

2. Asahi, M., T. Taniguchi, E. Hashimoto, T. Inazu, H. Maeda, and H. Yamamura. 1993. Activation of protein-tyrosine kinase p72syk with concanavalin A in polymorphonuclear neutrophils. J. Biol. Chem. 268:23334–23338.

3. Berton, G., L. Fumagalli, C. Laudanna, and C. Sorio. 1994. β Integrin-dependent protein tyrosine phosphorylation and activation of the FGR protein tyrosine kinase in human neutrophils. J. Cell Biol. 126:1111–1121.

4. Birge, R. B., J. E. Fajardo, C. Reichman, S. E. Shoelson, Z. Songyang, L. C. Cantley, and H. Hanafusa. 1993. Identification and characterization of a high-affinity interaction between v-Crk and tyrosine-phosphorylated paxillin in CT10-transformed fibroblasts. Mol. Cell. Biol. 13:4648–4656.
5. Burridge, K., C. E. Turner, and L. H. Romer. 1992. Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly. *J. Cell Biol.* 119:893–903.

6. Druker, B. J., M. Neumann, K. Okuda, B. R. J. Franza, and J. D. Griffin. 1994. *Rel* is rapidly tyrosine-phosphorylated following granulocyte-colony stimulating factor treatment of human neutrophils. *J. Biol. Chem.* 269:5387–5390.

7. Fendly, B. M., M. Winget, R. M. Hutzikar, M. T. Lipari, M. A. Napier, and A. Ullrich. 1990. Characterization of murine monoclonal antibodies reactive to either the human epidermal growth factor receptor or HER2/neu gene product. *Cancer Res.* 50:1550–1558.

8. Fuortes et al. 1994. Tyrosine phosphorylation in neutrophils treated with tumor necrosis factor. *J. Cell Biol.* 120:777–784.

9. Gilmore, A. P., P. Jackson, G. T. Waites, and D. R. Critchley. 1992. Fuzz-in of the actin cytoskeleton in human neutrophils. *Exp. Cell Res.* 208:2401–2408.

10. Gomez-Cambronero, J., C. K. Huang, C. T. Gomez, W. H. Waterman, E. L. Becker, and R. I. Shalafi. 1992. Granulocyte-macrophage colony-stimulating factor-induced protein tyrosine phosphorylation of microtubule-associated protein kinase in human neutrophils. *Proc. Natl. Acad. Sci. USA.* 89:7551–7555.

11. Greenberg, S., P. Chang, and S. C. Silverstein. 1994. Tyrosine phosphorylation of the y subunit of Fc receptors, p72y, and paxillin during Fc receptor-mediated phagocytosis in macrophages. *J. Biol. Chem.* 269:3897–3902.

12. Huang, M. M., L. Lifpert, M. Cunningham, J. S. Brugge, M. H. Ginsberg, and S. J. Shattil. 1993. Adhesive ligand binding to integrin a5b3 stimulates tyrosine phosphorylation of novel protein substrates before phosphorylation of pp125FAK. *J. Cell Biol.* 122:473–483.

13. Kanner, S. B., A. B. Reynolds, R. R. Vines, and J. T. Parsons. 1990. Monoclonal antibodies to individual tyrosine-phosphorylated protein substrates of oncogene-encoded tyrosine kinases. *Proc. Natl. Acad. Sci. USA.* 87:3325–3332.

14. Klebanoff, S. J., M. A. Vadis, J. M. Harlan, L. H. Sparks, J. R. Gamble, J. M. Agosti, and A. M. Waltersdorff. 1986. Stimulation of neutrophils by tumor necrosis factor. *J. Immunol.* 136:4220–4225.

15. Kornberg, L., H. S. Earp, J. T. Parsons, M. Schaller, and R. L. Juliano. 1990. A tumor necrosis factor-induced degradation in adherent human neutrophils is dependent on CD11b/CD18-integrin-triggered oscillations of cytosolic free Ca2+. *Proc. Natl. Acad. Sci. USA.* 87:9472–9476.

16. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature (Lond.)* 227:680–685.

17. Laudanna, C., S. Miron, G. Berton, and F. Rossi. 1990. Tumor necrosis factor-alpha/cachectin activates the O2•−-generating system of human neutrophils independently of the hydrolysis of phosphoinositides and the release of arachidonic acid. *Biochem. Biophys. Res. Commun.* 166:308–315.

18. Minoguchi, K., H. Kihara, H. Nishikata, M. M. Hanawy, and R. P. Siragian. 1994. Src family tyrosine kinase Lyn binds several proteins including paxillin in rat basophilic leukemia cells. *Mol. Immunol.* 31:519–529.

19. Mueller, S. C., Y. Yeh, and W. T. Chen. 1992. Tyrosine phosphorylation of membrane proteins mediates cellular invasion by transformed cells. *J. Cell Biol.* 119:1309–1325.

20. Nathan, C., and E. Sanchez. 1990. Tumor necrosis factor and CD11/CD18 (β2) integrins act synergistically to lower cAMP in human neutrophils. *J. Cell Biol.* 111:2171–2181.

21. Nathan, C. F. 1987. Neutrophil activation on biological surfaces. Massive secretion of hydrogen peroxide in response to products of macrophages and lymphocytes. *J. Clin. Invest.* 80:1550–1560.

22. Nathan, C. F. 1989. Respiratory burst in adherent human neutrophils: triggering by colony-stimulating factors CSF-GM and CSF-G. *Blood.* 73:301–306.

23. Nathan, C. F., S. Srinimal C. Farber, E. Sanchez, L. Kabbash, A. Asch, and S. D. Wright. 1989. Cytokine-induced respiratory burst of human neutrophils: dependence on extracellular matrix proteins and CD11/CD18 integrins. *J. Cell Biol.* 109:1341–1349.

24. Richter, J., S. J. Ng, I. Olsson, and T. Andersson. 1990. Colony-stimulating factor treatment of human neutrophils. *J. Biol. Chem.* 259:704–710.

25. Richter et al. 1992. pp125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. *Proc. Natl. Acad. Sci. USA.* 89:5192–5196.

26. Richter, J., S. M. Machleidt, and M. Kronke. 1992. Mechanisms of tumor necrosis factor action. *Semin. Oncol.* 2:16–24.

27. Richter, C. E. 1991. Paclinix is a major phosphotyrosine-containing protein during embryonic development. *J. Cell Biol.* 115:201–207.

28. Richter, C. E., J. I. Glenney, and K. Burridge. 1990. Paclinix: a new vinculin-binding protein present in focal adhesions. *J. Cell Biol.* 111:1059–1068.

29. Saile, H., A. Hata, M. Okada, H. Nakagawa, and H. Hanafusa. 1994. Analysis of the binding of the Src homology 2 domain of Csk to tyrosine-phosphorylated proteins in the suppression and mitotic activation of c-src. *Proc. Natl. Acad. Sci. USA.* 91:3984–3988.

30. Schaller, M. D., C. A. Borgman, B. S. Cobb, R. R. Vines, A. B. Reynolds, and J. T. Parsons. 1992. pp125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. *Proc. Natl. Acad. Sci. USA.* 89:5192–5196.

31. Schutte, S., T. Machleidt, and M. Kronke. 1992. Mechanisms of tumor necrosis factor action. *Semin. Oncol.* 2:16–24.

32. Schutte, S., T. Machleidt, and M. Kronke. 1992. Mechanisms of tumor necrosis factor action. *Semin. Oncol.* 2:16–24.

33. Turner, C. E., M. D. Schaller, and J. T. Parsons. 1993. Tyrosine phosphorylation of the focal adhesion kinase pp125FAK during development: relation to paclinix. *J. Cell Sci.* 105:637–645.

34. Vezina, L., P. Schwengen, W. Li, J. Schlessinger, and J. Vilcek. 1993. Tumor necrosis factor-induced activation and increased tyrosine phosphorylation of mitogen-activated protein (MAP) kinase in human fibroblasts. *J. Biol. Chem.* 268:18994–18999.

35. Vilcek, J., and T. H. Lee. 1991. Tumor necrosis factor. New insights into the molecular mechanisms of its multiple actions. *J. Biol. Chem.* 266:7313–7316.

36. Weng, Z., J. A. Taylor, C. E. Turner, J. S. Brugge, and C. Seidel Dugan. 1993. Detection of src homology 3-binding proteins, including paclinix, in normal and v-src-transformed Balb/c 3T3 cells. *J. Biol. Chem.* 268:14956–14963.

37. Yuo, A., S. Kitagawa, E. Azuma, Y. Natori, A. Togawa, M. Saito, and F. Takaku. 1993. Tyrosine phosphorylation and intracellular alkalinization are early events in human neutrophils stimulated by tumor necrosis factor, granulocyte-macrophage colony-stimulating factor, and granulocyte colony-stimulating factor. *Biochim. Biophys. Acta.* 1156:397–203.

38. Zachary, I., J. Sinnett-Smith, E. Rozengurt. 1992. Bombesin, vasopressin, and endothelin stimulation of tyrosine phosphorylation in Swiss 3T3 cells. Identification of a novel tyrosine kinase as a major substrate. *J. Biol. Chem.* 267:19031–19034.

39. Zachary, I., J. Sinnett-Smith, C. E. Turner, and E. Rozengurt. 1993. Bombesin, vasopressin, and endothelin rapidly stimulate tyrosine phosphorylation of the focal adhesion-associated protein paclinix in Swiss 3T3 cells. *J. Biol. Chem.* 268:22060–22065.