Quantum coherence is one of the primary non-classical features of quantum systems. While protocols such as the Leggett-Garg inequality (LGI) and quantum tomography can be used to test for the existence of quantum coherence and dynamics in a given system, unambiguously detecting inherent “quantumness” still faces serious obstacles in terms of experimental feasibility and efficiency, particularly in complex systems. Here we introduce two “quantum witnesses” to efficiently verify quantum coherence and dynamics in the time domain, without the expense and burden of non-invasive measurements or full tomographic processes. Using several physical examples, including quantum transport in solid-state nanostructures and in biological organisms, we show that these quantum witnesses are robust and have a much finer resolution in their detection window than the LGI has. These robust quantum indicators may assist in reducing the experimental overhead in unambiguously verifying quantum coherence in complex systems.
In this work, we introduce two quantum witnesses to verify quantum coherence and dynamics in the time domain, both of which have various advantages and disadvantages. Both are efficient in the sense that there is no need to perform noninvasive measurements or to use quantum tomography, dramatically reducing the overhead and complexity of unambiguous experimental verification of quantum phenomena.

We apply these quantum witnesses to five examples: (1) electron-pair tunnelling in a Cooperpair box and coherent evolution of single-transmon qubit, (2) charge transport through double quantum dots, (3) non-equilibrium energy transfer in a photosynthetic pigment-protein complex, (4) vacuum Rabi oscillation in lossy cavities, and (5) coherent rotations of photonic qubits. Furthermore, as we will illustrate in these examples, our quantum witnesses possess a finer detection resolution than the LGI.

Both witnesses, which we will introduce shortly, involve the following steps: (Figure 1a) first, we prepare the system in a known product state with its environment (or reservoir, here we use both terms interchangeably) $\rho_{SR}(0)$. We then let $\rho_{SR}(0)$ evolve for a period of time t_0 to reach the state $\rho_{SR}(t_0)$ (during which time one hopes the state has acquired significant coherence due to its internal dynamics). The second step is to implement a quantum witness using a “correlation check” between the state $\rho_{SR}(t_0)$ and its state at another later time $t = t_0 + \rho_{SR}(t)$ (see Figure 1b). The goal of this correlation check is to investigate non-classical properties in these two-time state-state correlations (see Figure 1c). If the state $\rho_{SR}(t_0)$ can be detected then by our quantum witness as having quantum properties, this implies that either the system state $\rho_S(t_0) = \text{Tr}_R(\rho_{SR}(t_0))$ possesses significant quantum coherence or that the state $\rho_{SR}(t_0)$ is an entangled system-bath state.

Results

In order to find a signature of quantum dynamics we start by seeking characteristic features of classical dynamics or states. All separable mixtures of system-reservoir states, with no coherent components, which we call classical states, obey the following relation for their two-time correlations:
\[\langle Q_m(t)Q_n(t) \rangle_Q = p_n(t_0)\Omega_{mn}(t_0). \]

(1)

See Methods for the proof. Succinctly put, equation (1) implies it is possible to define all future behavior based on only the system's instantaneous expectation values \(p_n(t_0) \). However, most quantum correlation functions also obey this relation under certain measurement conditions. For example, a correlation function constructed from two-time projective measurements has this form as the measurement at \(t_0 \) destroys the coherence in the state at that time. Here \(Q_i \) is an observable which measures if the system is in the state \(i \). This state is assumed to have a classical meaning (e.g., localized charge state, etc) and the observable is normalized so that its expectation value is directly equal to the probability of observing the system in that state \(\langle Q_i \rangle = p_i \). The propagator \(\Omega_{mn}(t_0) \) is the probability of measuring the system in state \(m \) at time \(t \) given that it was in the state \(n \) at time \(t_0 \) (and which in principle depends on the state of the reservoir, so can include classical non-Markovian correlations, see Methods). Several other recent tests of quantumness \(^{19,24-27}\) rely on imposing Markovianity on \(\Omega_{mn}(t, t_0) \). In our first witness we avoid taking that approach so that we can still distinguish quantum from classical non-Markovian dynamics. However we will use it in our second witness.

In principle, one could use Eq. (1) to construct a quantum witness of the form:

\[W_{QQ} = \left| \langle Q_m(t)Q_n(t) \rangle_Q - p_n(t_0)\Omega_{mn}(t, t_0) \right|. \]

(2)

Where a non-zero result \(W_{QQ} > 0 \), implies the state at \(t_0 \) can be considered as quantum in that it contains quantum coherence which affects its future evolution. However, as mentioned above, most quantum correlation functions also obey equation (1), which will give \(W_{QQ} = 0 \). Is it ever possible to observe a non-zero \(W_{QQ} \)? In some cases coherence, or “amplitude”, sensitive correlation functions are encountered in quantum optics \(^{28}\) and in linear-response theory \(^{29}\). However, these are typically extracted from spectral functions in the steady state, or put in a symmetrized form, in which case any effect on the correlation function from the initial state coherence may be lost. In all the examples we consider in this work this witness \(W_{QQ} \) cannot be directly measured, as the initial coherence is of course destroyed by the first (projective) measurement. Fortunately, \(W_{QQ} \) via Eq. (1), gives us a way to develop a more generally applicable and valid witness.

Witness 1. Our first practical witness (which is the main result of this work) can be derived from Eq. (1) by including normalization. Noting that all classical system-reservoir states obey,

\[\langle Q_m(t) \rangle = \sum_{n=1}^{d} p_n(t_0)\Omega_{mn}(t, t_0), \]

(3)

where \(d \) is the number of states \(n \) in, or dimensionality of, the system state space, we define our first quantum witness as

\[W_Q = \left| \langle Q_m(t) \rangle - \sum_{n} p_n(t_0)\Omega_{mn}(t, t_0) \right|. \]

(4)

If \(W_Q > 0 \), we can define the state at \(t_0 \) as quantum. Compared with the witness \(W_{QQ} \) and the tests of the LGI, \(W_Q \) can always be directly measured, and ideal non-invasive measurements are not necessary. In experimental realizations, measuring the population-related quantities, or expectation values, \(\langle Q_m(t) \rangle \) and \(\{ p_n(t_0) \} \), is generally more feasible than constructing full correlation functions, particularly in systems which rely on destructive (e.g., fluorescence) measurements. Where correlation functions can be measured with projective measurements, the second term can of course be replaced with \(\sum_n p_n(t_0)\Omega_{mn}(t, t_0) = \sum_n \langle Q_m(t)Q_n(t_0) \rangle \). However, determining all the propagators \(\Omega_{mn}(t, t_0) \) with which to construct the witness requires, in principle, that we can prepare the system in each one of its states exactly (or, alternatively if correlation functions constructed from projective measurements are available, it requires that we measure every possible cross-correlation \(\sum_n \langle Q_m(t)Q_n(t_0) \rangle \)). In the former case (where we use state preparation) we trade-off the need to do non-invasive state measurement with the need to perform ideal state preparation. In complex systems it may be difficult to prepare the system in each one of its states to construct these propagators, and in some cases we may not even have knowledge of the full state-space of the system.

Importantly, this problem can be easily overcome by noticing that the individual terms in the sum in Eq. (4) are always positive. Thus when constructing the sum we can stop as soon as the witness is violated by this partial summation (i.e., when the terms in the summation together are larger than \(\langle Q_m(t) \rangle \)), reducing the experimental overhead substantially (see Figure 4 for a practical example, where we show it is sufficient to include just one term in the sum of Eq. (4)).

Note that with this witness we do not distinguish between just system-coherence or quantum correlations (entanglement) between

![Figure 2](image-url)
system and bath/reservoir (see Methods). In addition, if there are classical correlations between system and reservoir, i.e., classical non-Markovian effects, then some additional experimental overhead is needed to eliminate this from giving a “false positive”. If this overhead is ignored this represents a “loop-hole” in this witness, and in some situations may be an obstacle for its unambiguous application. We will discuss this explicitly later with an example of a photosynthetic light-harvesting complex where the system and reservoir are strongly correlated both classically and quantum mechanically.

Witness 2. For our second witness we impose the extra condition that \(\Omega_{mn}(t, 0) = \Omega_{mn}(t', 0) \) for \(t - t_0 = t' - t'_0 = \tau \), for any time interval \(\tau \). This assumption restricts us to a widely-studied subset of quantum processes where the system-bath/reservoir interaction is Markovian. We will show that, under the assumption that our system lies within this subset, quantum properties can be identified without needing to explicitly measure propagators (i.e., neither exact state initialization or non-invasive measurements are required). The trade-off in this case is that the witness cannot distinguish certain types of classical dynamics (e.g., classical non-Markovian), from quantum properties of the system. Still, this witness exceeds the tests proposed in earlier works under the same constraints which still required either non-invasive measurements or state preparation.

This subset of quantum processes can be described as having weak coupling between system and reservoir so that system-reservoir state is always a product state, and the bath/reservoir state does not evolve in time, i.e., \(p_B(t) = p_B(0) \). A large number of systems exist in this regime, with well-developed models such as the master equation under the Born approximation operating within this class (see, e.g., [30–32]). For such cases, we can extend the first witness so that we replace the need to prepare the system state with that of need to repeatedly measure expectation values (not correlation functions) a number of times that scales linearly with system size. To show this, we consider an extension of Eq. (3) involving a system of \(d \) linear equations represented in matrix multiplication form as follows:

\[
P_j \Omega_{mj} = Q_{mj}
\]

where the \(d \times d \) matrix \(P_j \) has elements \([P_j]_{kn} = p_{kj}(t_0, \{t\}) \), and \(\Omega_{mj} \) and \(Q_{mj} \) are \(d \times 1 \) column vectors with elements \([\Omega_{mj}]_{nk} = \Omega_{mnj}(t) \) and \([Q_{mj}]_{nk} = (Q_{mnj}(t_0)) \), respectively. Here, \(t_0, \{t\} \) and \(t_0, \{t\} \) constitute the \(j \)th nontrivial time-domain set \(T_j \). For an arbitrary pair of time-domain sets, say \(T_j \) and \(T_j' \), we impose an additional condition (not used in the earlier witnesses) that their propagators should be identical for all classical systems (within the subset described above): \(\Omega_{mj} = \Omega_{mj}' \). If the system and its environment are classically-correlated, i.e., they are not in a product state, this assumption does not hold. Any comparison between \(\Omega_{mj} \) and \(\Omega_{mj}' \) can be considered as a quantum witness for this subset, such as the vector-element comparison:

\[
W_{\Omega_{mj}} := \left| \det\left(\Omega_{mj}' \right) \det(P_j) - \det\left(\Omega_{mj} \right) \det(P_j) \right|.
\]

If \(W_{\Omega_{mj}} > 0 \), and under the assumptions described earlier, we can again assume that some of the (set) of initial states are quantum. Since measuring \(W_{\Omega_{mj}} \) requires the information about state populations only and can be performed with invasive observations, implementing \(W_{\Omega_{mj}} \) can be more practical than implementing \(W_{QQ}(2) \) and \(W_{Q} \).

Examples. To illustrate the effectiveness of our witnesses we now present five example systems where they could be applied. For each example we choose which ever witness is more appropriate, given the properties of that system.

Rabi oscillations in superconducting qubits. The oscillations of state populations are commonly thought of as a signature of quantum dynamics. The measurement of these kind of oscillations...
is widely employed for many experiments. The observation of such oscillations alone, however, is not definitive evidence for the existence of quantum coherent dynamics and can even be misleading by the solutions of classical autonomous rate equations, e.g., Ref. 33,34.

As a first example of the application of our witnesses we apply the hierarchy (6) to a two-level system composed of the two lowest-energy states in a single-Cooper-pair box35–37, Figure 2a. We can take $n = 1, m = 2$, for example together with the designation $T_j\{\tau_{0|k}\} = (k + j - 1)\tau_0 \cdot \tau_{1|k} = (k + j - 1)\tau_0 + \tau|k = 1, 2\}$ for $j = 1, 2$, Figure 2b illustrates that the quantum witness W_{Q1} detects the presence of quantumness in the Cooper-pair tunneling. Since only information about state populations is required, this witness is easy to apply in practice with simple invasive measurements and can be readily applied to the existing experiments in the time domain36,37 without any additional experimental overhead.

One can also consider an application of our witnesses to single- and multiple-transmon qubits coupled to transmission lines in circuit quantum electrodynamics38,39, where qubit-state measurements are performed by monitoring the transmission through the microwave cavity39. For the simplest case of one-qubit rotation, the coherent evolution is driven by the Hamiltonian38

$$H = \hbar \Omega |1\rangle\langle 1| + \varepsilon(t)|0\rangle\langle 0| + |1\rangle\langle 1|, \quad (7)$$

where $\varepsilon(t)$ is the microwave pulse to induce transitions between qubit states $|0\rangle$ and $|1\rangle$ with an energy difference $\hbar \Omega$. Through properly choosing the pulse $\varepsilon(t)$, a reliable single-qubit gate, e.g., the Hadamard transformation (H), can be created. Here, we use the quantum-process-tomography-based optimal control theory38 to design the microwave pulse for such a gate (\mathcal{E}_H) with a process fidelity of about 94%. We use the first witness W_{Q1} in the form:

$$W_Q = \left| \langle 0 (E_{2H}) \rangle - \sum_{n=0}^{1} p_n \langle \mathcal{E}_H \rangle \Omega_0 \langle \mathcal{E}_H \rangle \right|. \quad (8)$$

to show that the process \mathcal{E}_H creates coherent rotations. When setting the input state as $|0\rangle$, the value of our witness is about $W_{Q}\approx 0.45$, which certifies the quantumness of \mathcal{E}_H.

Quantum transport in quantum dots. Experimentally distinguishing quantum from classical transport through nanostructure remains a critical challenge in studying transport phenomena and designing quantum electronic devices. As mentioned in the introduction, using time-domain methods to verify quantum coherence, such as by testing the Leggett-Garg inequality, can be very demanding. We illustrate here how our witnesses are valid in a non-equilibrium transport situation by modelling single-electron transport through double quantum dots (Figure 3a). Compared with the time periods identified by the Leggett-Garg-type approach35, the quantum witnesses W_Q (Figure 3b) and W_{Qmax} (Figure 3c) can detect a much larger quantum coherence window. For W_{Qmax}, we employ the settings $T_j\{\tau_{0|j}\} = [k + c'(j - 1)]\tau_0 \cdot \tau_{1|k} = [k + c'(j - 1)]\tau_0 + \tau|k = 1, 2, 3\}$ for $j = 1, 2$. Here c' is large such that the whole system is stationary in T_2.

Energy transfer in a light-harvesting complex. As an example of the effect of strong interactions with a bath we use a model from biophysics; energy transport in the Fenna–Matthews–Olson (FMO)
pigment-protein complex, where there is thought to be significant system-bath entanglement and coherence\(^1\). As mentioned earlier, this example enables to discuss the issue of whether classical-correlations between system and bath can cause a violation of our first witness \(W_Q\) (the second witness is not valid in this regime).

In the methods section we impose a classical condition based on an assumption of a class of classical states. States which violate this assumption possess coherences (either in the internal system degrees of freedom, or in the system-bath degrees of freedom, i.e., entanglement). However, to prevent classical correlations between system and bath from causing a false positive, the propagators \(\Omega_m(t, t_0)\) in our witness (4), which we construct by preparing the system in one (or more) of its states, must also capture the classical correlations between system and reservoir present at time \(t_0\). In the other examples we discuss in this work, this is trivial since the system and bath are always in a product state. However, in systems like the FMO complex we discuss here, this is not the case. Thus to account for these correlations when constructing \(\Omega_m(t, t_0)\) in a general case we must do the following: prepare the system-bath product state at \(t = 0\), evolve to time \(t_0\), and perform a measurement on the system to project it, without preserving coherence, onto one of it states \(\alpha\). We then evolve again, retaining the post-measurement system-bath state, and deduce the propagator by measuring the occupation of the state \(\alpha\) at final time \(t\). If we can do ideal projective (non-coherence preserving) measurements this accounts for the classical system-bath correlation loophole (as long as we can consistently prepare the \(t = 0\) separable system-bath state). If we are doing destructive or invasive measurements then we must be able to re-prepare the destroyed system state, at time \(t_0\), on a time scale faster than the bath/environment dynamics. Since there is no need for measurements on superpositions of basis states, this procedure can be performed without quantum tomography.

We illustrate this with the FMO complex, a seven-site structure used by certain types of bacteria to transfer excitations from a light-harvesting antenna to a reaction center. It has been the focus of a great deal of attention due to experimental observation of apparent “quantum coherent oscillations” at both 77 K and room temperature. To fully capture the non-Markovian and non-perturbative system-bath interactions of this complex system we employ the

Hierarchical equations of motion\(^7\), an exact model (given a bath with a Drude spectral density) valid for both strong system-bath coupling and long-bath memory time. We use the parameters used by Ishizaki and Fleming in Refs. 7, 8, and in Figure 4 we show how this model is detected as quantum by our witness \(W_Q\), even at room temperature. We also show, in Figure 4c and 4d, how only partial information about the terms in propagator is needed to find a detection at small times, thus reducing the experimental overhead. In constructing the propagator terms for the sum in Eq. (4) in this case we discard all coherence terms in the physical density matrix but retain the state of the bath, as in\(^8\). In this way we account for the state of the bath at time \(t_0\), as discussed above. However, accounting for the classical correlations with the reservoir seems beyond the capability of current experiments. We also point out that the full witness detects coherence on timescales greater than \(t_0 = 0.3\) ps at 77 K, which is a much larger detection window than the Leggett-Garg inequality (0.035 ps) for the same parameters\(^8\).

Vacuum Rabi oscillation in a lossy cavity. We now consider a Rydberg atom placed in a single-mode cavity which is in resonance with an atomic transition frequency, \(w_0\), for an adjacent pair of circular Rydberg states\(^9\) \(|\phi\rangle\) and \(|\psi\rangle\). Let us consider the case when the cavity field are initially prepared in the excited state \(|\phi\rangle\) and the vacuum state \(|0\rangle_p\), respectively (denoted by \(|1\rangle = |\phi\rangle |0\rangle_p\). In this case, the atom-field state becomes \(|2\rangle = |\psi\rangle |1\rangle_p\) due to spontaneous emission and then periodically oscillates between the states \(|\phi\rangle |0\rangle_p\) and \(|\psi\rangle |1\rangle_p\) at the vacuum Rabi frequency \(w_R\). If the field irreversibly decays due to photon loss out of the cavity, the atom-field stochastically evolves to \(|3\rangle = |\psi\rangle |0\rangle_p\) from \(|2\rangle\). Summarizing the above, the time evolution of the atom-field state \(\rho\) can be described by the following master equation\(^6\)

\[
\frac{d}{dt} \rho = -\frac{i}{\hbar} [H_{IC}, \rho] - \frac{\kappa}{2} (\hat{a}^\dagger \hat{a} \rho + \rho \hat{a}^\dagger \hat{a}) + \kappa \hat{a} \rho \hat{a}^\dagger
\]

where \(H_{IC} = \hbar \Omega_k (\hat{a} \sigma_+ + \hat{a}^\dagger \sigma_-)\) is the interaction Hamiltonian of the system. Here \(\kappa = w_0 \langle Q\rangle\), and \(Q\) is the quality factor of the cavity.

We now use our second witness to detect the vacuum-Rabi oscillation between the atom and cavity field states. Here we choose the time-domain set as \(T_j = \{0 \leq t_j \leq t_0\}\) for \(j = 0, 1, 2\) for \(j_0 = 0, 1\) and \(T_{j_0} = \{0 \leq t_j \leq t_0\}\) for \(j = 0, 1\). Figure 5 shows the value of the witness for vacuum-Rabi oscillations in a high-Q cavity. Using the experimental parameters from\(^9\), where \(2\Omega_k > \Omega_0 / Q\), the damped coherent oscillations of the atom-cavity state are detected as quantum by our second witness. In comparison, for a low-Q cavity, where \(2\Omega_k < \Omega_0 / Q\)
\[H_{ap}(\theta) = \frac{1}{\sqrt{2}} \left[(i - \cos(2\theta)) |H\rangle \langle H| + (i + \cos(2\theta)) |V\rangle \langle V| + \sin(2\theta) (|H\rangle \langle V| + |V\rangle \langle H|) \right] \]

As a concrete example, one can set a HWP at \(\pi/8 \) to create a photonic Hadamard gate \(H(\pi/8) \).

To detect the coherent rotations created by \(R(\phi, 0) = Q_{ap}(0)H_{ap}(\phi) \), we use the first quantum witness to probe the coherence between states \(|H\rangle \) and \(|V\rangle \). While the witness is originally constructed in the time domain, it can be rephrased in terms of the settings \((\phi, 0)\). Assuming that both the wave plates are perfect and there is no photon loss in the birefringent crystals of the wave plates, we have the following correspondences:

\[\langle Q_m(\phi, 0) \rangle = \text{tr} \left[|m\rangle \langle m| R(\phi, 0) \rho_0 R^\dagger(\phi, 0) \right], \]

and

\[\Omega_{mn}(\phi, 0) = | \langle m| R(\phi, 0) \langle n\rangle |^2, \]

where \(\rho_0 \) is some initial state created by \(R \). Here \(m = H \) and \(n = V \) denote the different measurement basis for the horizontal and vertical polarizations. In this example, we set the initial state as \(\rho_0 = R^\ast(\phi, 0) |m\rangle \langle m| R(\phi, 0) \) and then the witness becomes

\[W_\theta = \left| 1 - \frac{1}{16} [10 + 2 \cos(4\theta) + 2 \cos(4\theta - 8\phi)] + \cos(8\theta - 8\phi) + \cos(8\phi) \right|. \]

Figure 6 shows this quantum witness for different prepared states \(\rho_0 \) as a function of the angles \(\theta \) and \(\phi \).

The usual approach to strictly probe the coherent superposition of states \(|H\rangle \) and \(|V\rangle \) is via quantum state tomography\(^9\). Compared to such tomographic measurements on single qubit states, which require three local measurement settings, only one setting of a local measurement is now sufficient to implement our first witness.

Discussion

In summary, we have formulated a set of quantum witnesses that allow the efficient detection of quantum coherence, without the restriction of non-invasive measurements. Compared to some of the existing methods, such as the Leggett-Garg inequality or employing general quantum tomography, our approach can drastically reduce the overhead and complexity of unambiguous experimental detection of quantum phenomena, and has a larger detection window. As illustrated by the five physical examples, these witnesses are robust and can be readily used to explore the presence of quantum coherence in a wide-range of complex systems, e.g., transport in nano-structures, biological systems, and perhaps even large-arrays of qubits used in adiabatic quantum computing\(^1\). After this paper went to press, we became aware of this preprint\(^2\), which has related results.

Methods

Proof of equation (1). The quantum two-time state-state correlation \(\langle Q_m(t)Q_n(t') \rangle_0 \) is defined by\(^11\):

\[\langle Q_m(t)Q_n(t') \rangle_0 = \text{tr}_S \{ \rho_{gs}(t)Q_m(t)Q_n(t') \} \]

where \(\rho_{gs}(t) \) is the system-reservoir state and \(\rho_{gs}(t') \) is the reservoir state at time \(t' \) (which in principle depends on the measurement result \(Q_m \) if the system and reservoir are classically correlated, i.e., are separable but in a mixture of product states). Then we have

\[\rho_{gs}(t)Q_n(t) = p_{n}(t) \rho_{gs}(t) Q_n(t) R(t) \]

where \(p_{n}(t) \) is the probability of measuring the system state \(n \) at time \(t \) for the classical mixture \(\rho_{gs}(t) \), and \(R(t) \) is the reservoir state at time \(t \) (which in principle depends on the measurement result \(Q_m \) if the system and reservoir are classically correlated, i.e., are separable but in a mixture of product states). Then we have

\[\langle Q_m(t)Q_n(t) \rangle_0 = p_{n}(t) \text{tr}_S \{ U(t) \rho_{gs}(t) R(t) U(t')^\dagger \} \]

The term describing the system’s evolution \(\text{tr}_S \{ U(t) \rho_{gs}(t) R(t) U(t')^\dagger \} \) can be described by the operator-sum representation\(^11\):

\[\text{tr}_S \{ U(t) \rho_{gs}(t) R(t) U(t')^\dagger \} \]

where \(E_j(t) = \sum_k \sqrt{p_k(t)} |E_k(t)\rangle \langle E_k(t)| \). The the reservoir state is assumed to be \(R(t) = \sum_k p_k(t) |E_k(t)\rangle \langle E_k(t)| \). Hence the correlation \(\langle Q_m(t)Q_n(t) \rangle_0 \) for the system-reservoir classical mixture at the time \(t = t' \) is

\[\langle Q_m(t)Q_n(t) \rangle_0 = p_{n}(t) \text{tr}_S \{ Q_m(t)Q_n(t) R(t) U(t')^\dagger \} \]

The Hierarchy model was originally developed by Taniumaru and Kubo\(^4\), and has been applied extensively to light-harvesting complexes\(^3\). We will not give a full description here, but will just summarize the main equation and parameters. It is always assumed that at \(t = 0 \) the system and bath are separable \(\rho(0) = \rho_S(0) \otimes \rho_B(0) \), and that the bath is in a thermal equilibrium state \(\rho_B(0) = e^{-\beta H_B}/\text{Tr} \left[e^{-\beta H_B} \right], \beta = 1/k_B T \). The bath is assumed to have a Drude spectral density

\[J_0(\Omega) = \frac{2\gamma_j}{\Omega + \Omega_j^2}, \]

where \(\gamma_j \) is the “Drude decay constant” and each site \(j \) is assumed to have its own independent bath. In addition, \(\gamma_j \) is the reorganisation energy, and is proportional to the system-bath coupling strength. The correlation function for the bath is then given by,

\[C_j = \sum_{m,n} \epsilon_{jm} \exp \left[-\mu_{jm} t \right] \]

where \(\mu_{jm} = \gamma_j \) and \(\epsilon_{jm} = 2m \epsilon_B \beta \) when \(m \geq 1 \). The coefficients are

\[\epsilon_{jm} = \gamma_j \cdot \frac{\cos \left(\frac{\mu_{jm}}{\mu_{jm}^2} \right) - i}{\mu_{jm}^2} \]

and

\[\epsilon_{jm} = \frac{4\gamma_j}{\beta} \cdot \frac{\mu_{jm}}{\mu_{jm}^2 - \gamma_j^2} \]

Under these assumptions, the Hierarchy equations of motion are given by.
\[\dot{\hat{\rho}}_n = -\left(i\hbar \sum_{j=1}^{K} \sum_{m=0}^{N_c} n_{jm} \hat{\rho}_m - \sum_{j=1}^{K} \sum_{m=0}^{N_c} Q_j \hat{\rho}_m \right) - i \sum_{j=1}^{K} \sum_{m=0}^{N_c} n_{jm} C_m \left(\hat{\rho}_m Q_j - \hat{Q}_j \hat{\rho}_m \right) . \]

The operator \(\hat{Q}_j \) is the projector on the site \(j \), and for FMO there are seven sites, thus \(N = 7 \). The Liouvillian \(\mathcal{L} \) describes the Hamiltonian evolution of the FMO complex. The label \(n \) is a set of non-negative integers uniquely specifying each equation: \(n = (n_1, n_2, \ldots, n_K) = \{ (n_1, n_2, \ldots, n_K) \ldots (n_K, n_1, \ldots, n_{K-1}) \ldots (n_{K-1}, n_K, \ldots, n_1) \} \). The density matrix labelled by \(n = 0 = \{ 0, 0, \ldots, 0 \} \) refers to the system density matrix, and all others are non-negative density matrices, termed "auxiliary density matrices". The density matrices in the equation labelled by \(n' \) indicate that this density matrix is the one defined by increasing or decreasing the integer in the label \(n \), at the position defined by \(j \) and \(m \), by 1.

The hierarchy equations must be truncated, which is typically done by truncating the largest total number of terms in a label \(\mathcal{N} = \sum_{j} n_{jm} \). This value is termed the tier of the hierarchy. The choice of \(\mathcal{N} \) should be determined by checking the convergence of the system dynamics. Here we also use the "Isibashi-Tanimura boundary condition":

\[\mathcal{L}_{\mathcal{T}, \mathcal{B}C} = -\sum_{j=1}^{K} \sum_{m=0}^{N_c} C_m \left(\hat{Q}_j \hat{Q}_j \hat{\rho}_m - \hat{\rho}_m \hat{Q}_j \hat{Q}_j \right) . \]

This can be summed analytically, which for \(K = 0 \) gives:

\[\sum_{j=1}^{K} \sum_{m=0}^{N_c} C_m \frac{4 \beta_j}{\hbar \beta_j} \left(1 - \beta_j \hbar/\beta_j^2 \right) \beta_j/2 . \]

Acknowledgement

We are grateful to Y. Ota and C. Emary for helpful comments. C.-M.L. acknowledges the partial support from the National Science Council, Taiwan, under Grant No. NSC 101-2121-M-006-16MY3, No. NSC 101-2738-M-006-005, and No. NSC 103-2911-I-006-301, and the National Center for Theoretical Sciences (south). Y.-N.C. is partially supported by the National Science Council, Taiwan, under Grant No. NSC 101-2121-M-006-003-MY3. This research was, in part, supported by the Ministry of Education, Taiwan. The Aim for the Top University Project to the National Cheng Kung University. F.N. acknowledges partial support from the Army Research Office, JSPS-FRBR Contract No. 09-02-92114, Grant-in-Aid for Scientific Research (S), MEXT Kakenhi on Quantum Cybernetics, and Funding Program for Innovative R&D on S&T (FIRST).
Author contributions
C.-M.L. devised the basic model. C.-M.L., N.L. and Y.-N.C. established the final framework. C.-M.L. and N.L. performed calculations and wrote the paper. G.-Y.C. attended the discussions. F.N. supervised the project and wrote the paper.

Additional information
Competing financial interests: The authors declare no competing financial interests.

License: This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

How to cite this article: Li, C., Lambert, N., Chen, Y., Chen, G. & Nori, F. Witnessing Quantum Coherence: from solid-state to biological systems. Sci. Rep. 2, 885; DOI:10.1038/srep00885 (2012).