A Comprehensive Review and Perspective of Herbal Medicines in the Treatment of COVID-19

Afrasim Moin1, S. Meenakshi2, Syed Mohd Danish Rizvi1, Nanhi Nandini2, Talib Hussain3, Arshad Hussain4, G. S. Meghana2, M. Manohar2, P. Sathishbabu2 and D. V. Gowda2*

1Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, KSA.
2JSS Dental College and Hospital, JSS AHER, SS Nagar, Bannimantap, Mysuru-570015, Karnataka, India.
3Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, KSA.
4Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail, KSA.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

ABSTRACT

Background: An emergent COVID-19 outbreak originated in Wuhan City, in December 2019. The COVID-19 contamination has swiftly unfold from Wuhan to maximum different provinces and different 24 countries. WHO declared a public health emergency of global concern over this worldwide COVID-19 outbreak on 30th January 2020. Manifold research has been intensely initiated for immunization and drug development for COVID-19 till date no specific vaccine or approved drugs are accessible for COVID-19. Alternatively, therapy consists of supportive care and non-specific anti-viral, anti-malarial, and antibiotics are being tested as drugs for COVID-19.

*Corresponding author: E-mail: dvgowda@jssuni.edu.in;
Though, novel approaches could play a crucial role to combat mortality rate and patient recovery in the treatment of COVID-19.

Objective: To reveal the epidemiology, pathophysiology, and comparison of promising synthetic and natural drug targets to avert and cure of COVID-19.

Method: This article sets a brief understanding of the viral characteristics, its life cycle, infection to humans, and the pathophysiology of the disease. It also throws light on the currently used synthetic medicines. we have reviewed the effect of natural products to prevent or treat COVID-19 infection. Their mechanisms of action have been elaborately discussed. literature research was undertaken using PubMed, Google Scholar, Scopus, and WHO website. The different herbal products (extracts) and their moiety which are promising as anti-SARS-CoV-2 by direct inhibition of the virus replication or entry has also been discussed.

Results and Conclusion: In conclusion we have highlighted that natural therapeutics either alone or in combination could be used as alternative medicines to treat/prevent COVID-19 infection. Moreover, their structures may offer clues for the development of anti-SARS-CoV-2 drugs. The integration of nanocarriers for effectively delivering the conventional as well as the herbal drugs becomes a key point for their efficacy and safety.

Keywords: COVID-19; life cycle; epidemiology; pathophysiology; chinese system of medicine; nanocarriers.

1. INTRODUCTION

Coronavirus (CoVs) is a protein covered single-stranded RNA virus that is zoonotic and majorly targets the human respiratory system causing symptoms ranging from high body temperature, cold, cough, exhaustion, chills and breathing problems. The examination of the chest X-ray of the lungs of the infected person showed diffused infiltration with gridding shadow [1]. Previous out breaks of coronavirus included the Severe Acute Respiratory Syndrome (SARS)-CoV and Middle East Respiratory Syndrome (MERS)-CoV. In the latter half of December 2019, a cluster of patients reported pneumonia caused by an unidentified organism of animal origin in Wuhan city, China [2,3]. Based on the initial reports and estimated reproduction number range (1.4-6.4) the predicted onset potential CoVs was much higher than SARS-CoVs [4]. World Health Organization (WHO) named CoVs as COVID-19 on 11th February 2020.

WHO and a medical journal Lancet hosted by Johns Hopkins University [5], reported 2,006,523 infected cases with 1,28,886 confirmed deaths as of 15th April 2020. At the same time, 617,828 confirmed cases were reported from the United States (US) alone with 26,977 deaths. Besides, COVID-19 was found infecting population spread across 179 countries globally. Ten countries have shown confirmed cases>10,000 and while 32 nations have reported 1000-10,000 confirmed cases/million people. On 27th March the US surpassed China in terms of infected cases count [6].

Despite the progress in the field of drug development and immunization, COVID-19 lacks preventive vaccines and effective drug therapies due to the viral escape mutants. There is a need for the identification of effective anti-viral drugs and natural compounds for the preventing and curing of COVID-19. Also, clinical practice suggests Chinese herbal medicine as an alternative therapy[7]. Medicinal plants are now receiving more consideration than ever as they have the perspective of providing huge profits to society or undeniably to all mankind, particularly in the track of medicine. By decreasing the deadliness and the adverse influences of drugs at the same time, herbal treatment aids in increasing the calming value and biodiversity [8,9].

For the development of novel formulations, herbal medicines were not considered due to the absence of scientific explanation and handling complications. Scientific needs of herbal medicines such as pharmacokinetics, mechanism of action, dose, dosage form, etc. can be solved by modern phytopharmaceutical research and can be incorporated in novel drug delivery systems such as solid dispersions, solid lipid nanoparticles, nanoparticles, liposomes, micro-emulsions, etc. With enhanced efficacy, herbal drugs can be applied in an improved procedure by integrating them into contemporary dosage systems. By designing novel drug
delivery systems, this can be achieved for herbal constituents [10,11].

This review aims to present the pathogenesis, risk factors, transmission, life cycle and diagnosis of COVID-19, current treatment reports of synthetic drugs, traditional herbal medicine for the cure of COVID-19, identification of anti-COVID-19 moieties from herbal medicine, clinical trials of herbal medicine and possible dosage forms to target the disease.

2. SEARCH METHODOLOGY AND SELECTION CRITERIA

The identification of articles was accomplished using a systematic search in the PubMed (National Library of Medicine), MEDLINE (International Literature on Health Sciences), SciELO (Scientific Electronic Library Online), Lilacs (Latin American and Caribbean Literature on Health Sciences), PubMed, LitCovid, COVID-Evidence, Clinical Trials, and Science Direct. The relevant search strategy and keywords (such as "Novel coronavirus" or "COVID-19" or "SARS-CoV-2") were used to collect information on the novel coronavirus. Additional keywords (such as "natural products and COVID-19" or "Role of ACE-2 in SARS-CoV-2" or "COVID-19 and chinese medicines") were used to collect all useful information for this review. The search was carried out systematically for the screening of the related content as shown in Fig. 1. Initially, a total of 351 publications were retrieved from different databases and 82 articles were deleted due to duplication. The remaining articles have been carefully reviewed in order to determine the eligibility and methods used. 141 articles were referred for the present review work.

3. UNDERSTANDING PATHOGENESIS, RISK FACTORS AND DIAGNOSIS OF COVID-19

It was reported that COVID-19 is an acute respiratory infection, but the severity is characterized by substantial alveolar damage and a progressive respiratory failure with a case fatality rate of 4.65% (Fig. 1). The pathological features greatly resembled SARS and MERS upon obtaining the biopsy samples of the major end organs. Both lungs exhibited bilateral diffused alveolar damage accompanied by cellular fibromyxoid discharge, the formation of hyaline membrane, and desquamation of pneumocytes which indicated acute respiratory distress syndrome (ARDS). Also, inflammatory infiltrates dominated by the lymphocytes were present in the interstitium. Various cellular pathological transformations were visible in the intra-alveolar spaces characterized by symplasm, the cytoplasm was granular with prominent nucleoli.

![Fig. 1. Search methodology and selection criteria](image-url)
Liver biopsy indicated moderate infiltration of liver cells with fat associated with disturbed metabolism, signifying liver damage or injury which may be drug-induced or due to infection. Apart from the inflammatory infiltrates in the interstitium there was no major damage to the heart tissue. Upon analyzing the peripheral blood through cytometric analysis CD4 and CD8 T-cells count decreased with associated hyperactivity which was indicted by increased amounts of HLA-DR (CD4 3.47%) and CD38 (CD8 39.4%). Also, CD8 T-cells were discovered to accommodate cytotoxic granules in high concentrations where the cells were 64.2% granulysin positive, 31.6% perforin positive, and 30.5% double positive with granulysin and perforin. Furthermore, pro-inflammatory CCR6+ Th17 was enhanced in CD4 T-cells which was due to the overactivity of T-cells causing severe immune injury to the patient. Patients also demonstrated lymphopenia in common which may be a major factor in the severity of the disease and mortality rate[12].

Various cytokines and chemokines like Interleukin (IL) 7, 8, 9, 10, IL1-β, IL1RA, basic Granulocyte-macrophage colony-stimulating factor (GMCSF), Interferon (IF)γ, Fibroblast growth factor (FGF) 2, Granulocyte colony-stimulating factor (GCSF), etc. Showed increased serum levels COVID-19 patients. Serious cases admitted in the intensive care unit (ICU) also exhibited marked levels of pro-inflammatory cytokines like GCSF, IP10, TNFα, IL10, IL2, IL7, MCP1, and MIP1α which may be involved in the severity of the disease [13,14]. The higher Multisystem Organ Failure (MSOF) numberand d-dimer greater than 1 μg/mL increased the risk of mortality. A uni-variable analysis in the hospital setup demonstrated that the mortality was higher in a patient with heart disease and diabetes mellitus. Other factors such as elevated levels of procalcitonin, prothrombin time, creatinine, high sensitive cardiac troponin (hsCTn) 1, d-dimer, IL-6, lactate dehydrogenase, serum ferritin and Alanine transaminase (ALT), conditions such as lymphocytopenia, Age and leucocytosis also enhanced the mortality rate [15].

COVID-19 RNA detection method involves sampling from the respiratory tract or the throat swab and analysis by quantitative fluorescence polymerase chain reaction method (PCR). Other methods include the detection of the positive nucleic acid of COVID-19 by real-time PCR (RT-PCR) method by analyzing the sputum, throat swabs, and secretions of the respiratory tract. Also, the detection of flu antigens A, B, H7N type leads to early detection but has enhanced false-negative rate. New sequencing and electron microscopy techniques are deficient due to the lack of specific nucleic acid detection technology [16].

![Fig. 2. Schematic representation of Pathophysiology of COVID-19](image-url)
4. TRANSMISSION AND LIFE CYCLE OF COVID-19

Research to find out the possible host reservoir or intermediate carriers for the probable infection was recognized as two species of snakes that could be the reservoir. However, to date no concluding evidence has been found other than birds and mammals [17,18]. COVID-19 viral genomic sequence analysis showed 88% similarity with earlier coronaviruses whose origin was a bat, that was responsible for severe acute respiratory syndromes (SARS) [19,20] indicating that mammals being the likely link between virus and humans. Reports also indicated that person-to-person spread is the most probable route for spreading COVID-19 infection. This is because it was observed among people who did not have any exposure to the wet animal market in Wuhan yet suffered from the infection [21,22]. Infection from Person-to-person spreads by direct contact or through droplets generated on coughing or sneezing from an infected subject or through fecal contamination (Fig. 2). A limited study was conducted on infected women however delivering babies through cesarean; the test confirmed no transmission from mother to child. However, no study was done to confirm for transmission occurring during vaginal birth.

SARS-CoV-2 belongs to the β genus, Nidovirales order of the Coronaviridae family. It is enveloped, with single (+) stranded RNA, with symmetric helical nucleocapsid [23]. The virus encysts twenty different proteins including four main structural proteins (S: spike; E: envelope; M: membrane; N: nucleocapsid) (Fig. 4), and several nonstructural proteins such as RNA-dependent RNA polymerase (RdRp), coronavirus main protease (3CLpro), and papain-like protease (PLpro) [24].

The binding of a receptor expressed by the host cell is the initial process of viral infection. This is followed by attachment and penetration into the host cell. Lung epithelial cells are the primary target for the virus. Human-to-human spread of COVID-19 occurs when the receptor-binding domain of virus spikes interacts with cellular receptors, here it is recognized as angiotensin-converting enzyme 2 (ACE2) receptor [25]. Importantly, the sequence of COVID-19 binding interaction is similar to that of SARS-CoV. Results strongly suggest that access to the individual patient cells is through to ACE2 receptor [20].

COVID-19 S-protein binds ACE2 cellular receptor resulting in a conformational change of S protein causing the viral envelope to fuse with the cell membrane followed by the release of RNA into the host cell. Now this released RNA is translated and replicate polyproteins such as PP1A and 1AB which are further cleaved into smaller viral proteinases. Polymerase enzyme cleaves the genome RNA to subgenomic mRNAs by the transcription process and further translation leads to the formation of viral proteins. The assembling of generated viral proteins and genome RNA into virions takes place within the endoplasmic reticulum and Golgi complex which then ejected out of the host cell via vesicles (Fig. 5) [18].
5. CURRENT TREATMENT REPORTS USING SYNTHETIC DRUGS

The current worldwide pandemic COVID-19 brought about by the SARS-CoV-2 infection has just dispensed unconquerable harm both to the human lives and worldwide economy.

COVID-19 infected patient is isolated followed by the administration of various antiviral and antibiotic regimens. No specific vaccines or antiviral drugs are treating this infection. The current treatment being adopted is broad-spectrum antiviral therapy that includes nucleoside analogs and HIV-protease inhibitors that could assuage virus infection until the specific antiviral becomes available [38]. The treatment protocol included 75 patients who were administrated existing antiviral drugs that included twice a day oral therapy of 500 mg lopinavir, 75 mg oseltamivir, 500 mg ritonavir along with intravenous administration of 0.25 g ganciclovir for 3–14 days [39]. Another study reported chloroquine and broad-spectrum antiviral remdesivir are extremely helpful in vitro control of COVID-19 infection. The existing antiviral drugs for human consumption have established safety data, hence they can be considered to treatment of this infection [40].
Table 1. Approaches for drug disclosure focusing on SARS-CoV-2

Approach	Method	Molecules targeted	Limitation
Repurposing of antiviral compounds	tracking antiviral compounds, its activities and estimate their effect on viral replication and packaging	interferon alpha, beta and gamma, ribavirin and chemical inhibitors of cyclophilin 8 have shown to exhibit anti viral effect [26].	lack specificity against SARS-CoV-2, have severe adverse effects [27,28].
High-throughput screening of compounds	Library screening methodology that constitute compounds targeting transcriptional machinery of various cell lines	Search from libraries involving ‘drug-likely’ chemical compounds having antiviral effects [29–33].	Could have immunosuppressive or cytotoxic effects at higher concentrations. The concentration could be more than EC 50 value to exhibit the pharmacological effect [34].
Inhibition of SARS-CoV-2 replication mediated by siRNA	Targeting novel agents resulting from genomic research and and pathophysiology of SARS-CoV-2	siRNA molecules which inhibits specific viral enzymes involved in viral duplication, attacking the host receptor ACE-2 [35].	Lack of specific drug delivery of these molecules paucity in siRNA-based therapy [36,37].

Another non-randomized small sample-sized clinical trial conducted using 600mg of hydroxychloroquine daily along with azithromycin based on the clinical condition was tested for the viral load using nasopharyngeal swabs with the negative controls. After 6 days of the treatment 6 patients showed no symptoms, while 22 and 8 patients had upper respiratory tract and lower respiratory tract infection suggesting its potential in the treatment of COVID-19. Also, hydroxychloroquine action was strengthened by azithromycin which resulted in the reduction or removal of viral load [41]. Furthermore, newer compounds are being developed. Clinical candidate EIDD-2801 has shown good therapeutic potential against seasonal and pandemic influenza virus infections that can be considered for the treatment of COVID-19 [42]. Along these lines, until more specific therapeutics become available, it is reasonable to consider more broad-spectrum antivirals such as Lopinavir/Ritonavir, RNA synthesis inhibitors, peptide (EK1) and Neuraminidase inhibitors. To develop pre-and post-exposure prophylaxis suitable animal models are needed to understand viral replication. Scientists are trying to develop a nonhuman primate model to study COVID-19 infection for evaluation of novel therapeutics and testing potential vaccines in addition to better understand virus-host interactions[14].

In SARS-CoV [43,44] and MERS-CoV [45] corticosteroids were made use to reduce the levels of cytokines however there is no evidence of reduced mortality upon the usage of corticosteroids [46] and are not suggested for systemic use in infected patients [46]. Earlier, for the treatment of influenza or SARS-CoV convalescent plasma therapy was used which reduced the viral load and mortality [47,48] and this is being applied for COVID-19 treatment in China [49]. Its safety and efficacy need to be carefully evaluated for its clinical use. Based on several authentic reports and findings, WHO also concluded that there no specific recommended medicine to date prevention and treatment COVID-19* [50].

Traditional Herbal Medicine (THM) or herbal medicines through Ayurveda or Siddha and Unani have been widely used to manage and treat infectious diseases from ages. These herbal medicines can also be an alternative therapy to synthetic drugs. Reports suggest that patients suffering from COVID-19 have been benefited from THM [51] by reducing the adverse events [52]. These reports suggest that THM can serve as valuable weapons in the armory against COVID-19.

6. KNOWLEDGE FROM SARS: PHARMACOLOGICAL ARBITRATIONS

The take home message from pervasiveness of SARS and MERS can be used to develop certain medicines for SARS-CoV-2 pollution [53]. As of
late antiviral drugs like oseltamivir, peramivir, zanamivir, ganciclovir, acyclovir and ribavirin are not proposed for COVI-19 treatment [54,55]. Also, major corticosteroid treatment, for instance, methylprednisolone isn’t recognized as a treatment decision for SARS-CoV-2 infected patients [56]. In such a circumstance, similarity of SARS-CoV and MERS disease to SARS-CoV-2 infection, a comprehension into the treatment decisions for SARS and MERS could drive us to gain knowledge on pharmaceutical agents with anti SARS-CoV-2 [57].

7. PARADIGM SHIFT IN THE TREATMENT OF COVID-19 BY TRADITIONAL HERBAL MEDICINE

Traditional Herbal Medicine (THM), is an ancient system of medicine that includes the Chinese system of medicine (CSM), the Indian system of medicine-Ayurveda, a Korean system of medicine-Kampo, Unani andhomeopathic system of medicine, (Table 1) [58]. In many practices, they may have certain short comings, but they are still an appreciable source of medicinal information. Lau et al, stated that, throughout the SARS outbreak, 1063 volunteers covering 926 hospital workers and 37 laboratory technicians employed in high-risk environments were on this herbal formulation- Sang Ju Yin plus Yu Ping Feng San and interestingly, in comparison to 0.4% of infection among the control group, nobody was infected. Moreover, the evidence stated that Sang Ju Yin plus Yu PingFeng San could potentially alter T cells to augment host protection capability[59,60]. But Liu and his colleagues established other sets of literature data suggesting no advantage of adjuvant treatment with herbal medicines observed in terms of mortality [61]. Owing to these outcomes, systematic clinical trials employing potential THM for the treatment of COVID-19 should be essentially conducted.

7.1 COVID-19 Management through Clinical Trials of Herbal Medicines

Herbal traditional medicines have been utilized in China since the outbreak of the COVID-19 episode. Without a doubt, these customary medications showed promising results in 90% of the 214 patients treated [70]. Comparative promising outcomes were accounted for in Zhejiang Province – China. Chinese customary meds known as ShuFengJie Du and Lianhuaqingwen have been prescribed because of their showed adequacy against previous influenza A (H1N1) or SARS-CoV-1. A gathering of specialists from the Zhongnan Hospital of Wuhan University remembered the utilization of conventional prescriptions for the rules for the treatment and anticipation of COVID-19. A few strategies utilizing restorative plants were suggested for the counteraction of COVID-19. Additionally, to treat the sickness, the specialists suggested the utilization of various natural blends as indicated by the illness stage [71].

CSM is greatly appreciated by China in its fight to overcome and eliminate SARS-CoV-2. For instance, the Health Commission of china has authenticated in 26 capitals that, CSM must be employed along with allopathic drugs in the treatment. China’s National Health Commission on February 17, 2020, recounted 60,107 confirmed cases (85% of confirmed cases) were treated with CSM [72]. According to another clinical trial report on 1st March 2020, they were a total of 303 uncompleted clinical trials trying to assess the effectiveness and safety of

Table 2. Traditional medicinal system around the world
Tradition System of Medicine
A Chinese system of Medicine (CSM) [62]
Ayurveda [63] and Unani medicine [64]
Kampo (Japanese traditional medicine) [65]
Sasang constitutional medicine (SCM)
Traditional Korean medicine (TKM), [66]
Traditional Aboriginal medicine [67]
Traditional medicine in Africa [68]
Russian herbal medicine [69]
treatments on patients. Clinical trials on the use of CSM for therapy accounted for 16.5% (50/303 trials), while 4.6% (14/303 trials) studied the combined therapeutic effect of CSM with allopathic medicine. The self-prepared herbal formulations such as Xin Guan-1 Formula, Xin Guan-2 Formula, and Qing Yi-4 were examined which accounted for 7.3% (22/303 trials). Additionally, 4.6% (14/303) other trials were evaluated for commercially existing preparations such as Tan Re Qing Injection and LianHua Qing Wen Capsule are studied (Table 2). To date, 6 Guidelines editions of Diagnosis and Treatment for this decease have been published by NHC [16]. Depending on the phase of the disease and symptom diversity, THM has been recommended for the COVID-19 therapy from the fourth edition [73]. The latest edition states that the patients during the period of medical observation CSM are recommended with these Chinese herbal products as a preventative measure (14): Lian Hua Qing Wen Capsule, Huo Xiang Zheng Qi Shui, Shu Feng Jie Du Capsule and Jin Hua Qing Gan Granule. During the treatment period, Tan Re Qing Injection, Qing Fei Pai Du Tang, Xi Yan Ping Injection, Re Du Ning Injection, Xing Nao Jing Injection, Xue Bi Jing injection, and further Chinese herbal formulations should be selected [72]. Also, in a serious condition of the patients, Shen Mai Injection, Sheng Mai Injection, Shen Fu Injection, An Gong Niu Huang, and Pill Su He Xiang Pill have to be administered (Table 5). Luo, et al. after critical assessment of the frequency of usage in 23 provinces established that Astragalus membranaceus, Lonicerae Japonicae Flos, Glycyrrhiza euralensis, Rhizoma Atractylodis Macrocephalae, Saposhnikoviae et var. Fructus forsythia, Atractylodis Rhizoma, Radix platycodonis, Cortomium fortune J. Sm, and Agastachegousa were most often used Chinese herbs in the COVID-19 therapy [74]. Xu, et al., have reported that Yu Ping Feng and Astragalus membranaceus were employed in the 13 deterrence programs (in Beijing, Tianjin, et al.) for “reinforcing vital qi”, the terminology used in that is like enhancing host protection capacity. Scrophularianinpoensis and Ophiopogon japonicas were regularly used herbs for “nourishing yin” in northern China, while Atractylodis Rhizoma, Agastacheguousa along with other Chinese herbal medicine with “aromatic dehumidification” property was frequently employed in southern China [75] (Table 6). Up to 5th February 2020, 214 infected cases were treated by administering with Qing Fei Pai Du Tang in Shanxi, Hebei, and Heilongjiang Shaaani Provinces with success rate ≥ 90%. The signs and symptoms among the majority of cases (≥60%) were significantly improved, while the infection was stabilized among 30% of cases [76]. Later, 701 reported cases were administered with Qing Fei Pai Du Tang in ten provinces of China. At the end of the treatment 130 patients (18.5%) were cured. 51 patients (7.27%) with characteristic symptoms such as fever and cough were disappeared. 268 patients (38.2%) showed improvement and 212 patients (30.2%), condition was stabilized [62]. LianHua Qing Wen Capsule was retrospectively analyzed for its clinical effectiveness in the healing of confirmed and suspected cases by Yao, et al. and Lu, et al.. The results showed that the herbal formulation could noticeably relieve symptoms such as cough and fever prompting early recovery [77,78]. But there is no data on its safety and clinical effectiveness and the same needs to assessed. It was also noted that this preparation was not suggested by HNC’s Guideline [79]. Receptor ACE2 is the primary route for entering the body for SARS-CoV and SARS-CoV-2 [80]. Hypothetically, blockade of this ACE2 can prevent the infection of SARS-CoV-2. Molecular docking experiment by Chen and Du found that CSM derived compounds, made up of scutellarin, baicalin, nicotinamidedglyrrhizin, and hesperetin, could interact with ACE2 [81]. Hence, these compounds, as well as formulations containing these herbal actives, might potentially inhibit the infection of SARS-CoV-2.

8. IDENTIFICATION OF ANTI-COVID-19 MOIEITIES FROM HERBAL MEDICINE

Herbal medicines employed in CSM can be exploited as potential drug candidates for COVID-19 therapy. In the last few decades research has been done to identify therapeutic moieties having activity against various viruses and in particular the corona family. Additionally, the phytoconstituents responsible for the activity in the herbs were also studied (Table 3). Similarity in SARS-CoV and SARS-CoV-2, prompt us to study the potential use of natural herbs that have a positive therapeutic effect on SARS-CoV for their potential effects on SARS-CoV-2. The 3-chymotrypsin-like protease (3CLpro) is very much important for viral replication which indicates itself as a potential drug target for the drug development for SARS-CoV and SARS-CoV-2.
Table 3. Current status of clinical trials for COVID-19 management

Drug	No. Enrolled	NCT NO.	Phase	Study Design	Outcome	Status
-	400	NCT04292327	-	Observational and Retrospective	Morality, The time interval of Nucleic acid detection become negative	Active, Not yet recruiting
CSM Prescription	340	NCT04306497	-	Cohort	The relief rate of main symptoms. Virus antigen-negative conversion rate	Recruiting
CSM Prescription	50	NCT04323332	III	Non-Randomized	Length of hospital stay (days), Duration (days) of supplemental oxygenation, CT imaging changes	Not yet recruiting
T89	120	NCT04285190	-	Randomized	The degree of remission of symptoms of patients, including fatigue, nausea, vomiting, chest tightness, shortness of breath, etc.	Not yet recruiting
YinHuQingWenDecoction	300	NCT04278963	II,III	Randomized	Viral load curve has shown COVID-19 viral load reduction in specimen of upper respiratory tract	
Table 4. Traditional uses of the medicinal species and mixtures with possible anti-SARS-CoV-2 effects

S.No.	Herbal drug	Biological source and Family	Whole extract/Active Principle	Therapeutic target or IC 50 value (µg/ml)	Ref
	Chinese Rhubarb	The dried rhizome of *Rheum palmatum* Linn. and *R. Officinale* Baillon Family: Polygonaceae.	Water extract	13.76±0.03	[82]
	Houttuynia cordata	A perennial herb, member of the genus Houttuynia Family: Saururaceae	Water extract	NA	[83,84]
	litchi seeds	Family: Sapindaceae	Flavonoids	NA	[85]
	Isatis indigocarpa	A flowering plant, member of the genus *Isatis* Family: Brassicaceae	Beta-sitosterol (root extract)	IC50: 1210μM	[86]
	Sinigrin	Family: Brassicaceae	Sinigrin	IC50: 217μM	
	Indigo	Family: Asphodelaceae	Aloe-emodin	IC50: 50 μM	
	Aloe-emodin	Family: Asphodelaceae	4'-methoxy derivative of diteroiictyol, a flavanone.	IC50: 366 μM	
	Hesperetin	Naturally occurring flavanone-glycoside found in many citrus fruits.		IC50: 8.3 μM	
	Quercetin	A plant pigment, member of the genus *Quercus*	Flavanid	IC50: 73μM	[87]
	Epigallocatechingallate	A polyphenol found in tea, member of the genus *Gallocatechingallate*	Epigallocatechingallate	IC50: 73μM	
	Gallocatechingallate	A polyphenol found in tea, member of the genus *Gallocatechingallate*	Gallocatechingallate	IC50: 47 μM	
	Herbacetin	A flavonoid found in flaxseed, member of the genus *Herbacetin*	Flavonol	SARS 3CLpro activity	[88]
	Rhoifolin	Isolated product from plant *Rhus succedanea*	Rhoifolin		
	Pectolinarin	Isolated from plant *Cirsium isolate*	Pectolinarin		
	Herbacetin	Isolated from flaxseed hulls, member of the genus *Herbacetin*	Herbacetin		
	Isobavaschalcone	Chinese herbal formulation, member of the genus *Isobavaschalcone*			
	Quercetin	A glucoside, member of the genus *Quercetin*	Quercetin 3-β-D-glucoside		
	Helichrysetin	A glucoside, member of the genus *Helichrysetin*			
	Scutellarein	A flavone that can be found in *Scutellaria laterriflora*	Scutellarein		
	Myricetin	A flavonoid of polyphenolic compounds			
	Kang Du Bu Fei Tang	Chinese herbal formulation, member of the genus *Kang Du Bu Fei Tang*			
S.No.	Herbal drug	Biological source and Family	Whole extract/Active Principle	Therapeutic target or IC 50 value (µg/mL)	Ref
-------	-----------------------------	---	---	--	-----
1	*Sinomenium acutum*	Chinese herbal formulation	Whole extract as a component of Chinese herbal formulation	IC50: 198.6 µg/mL	
	Coriolus Versicolor	Polypore mushroom	Whole extract as a component of Chinese herbal formulation	IC50: 108.4 µg/mL	
	Ganoderma lucidum	Family: *Ganodermataceae*	Whole extract as a component of Chinese herbal formulation	IC50: 41.9 µg/mL	
2	*Panax ginseng*	Family: *Araliaceae*	Whole extract as a component of Chinese herbal formulation	Blocked SARS-CoV replication at therapeutic concentrations	
	Rauwolfia serpentina	Flower in the milkweed	Whole extract as a component of Chinese herbal formulation		
		Family: *Apocynaceae*			
3	*Lonicera japonica*	Family: *Caprifoliaceae*	Whole extract as a component of Chinese herbal formulation		
4	Emodin	Isolated from rhubarb	A component of Chinese herbal formulation		[92]
5	Baicalin	Flavone glycoside	A component of Chinese herbal formulation		[93]
6	Nicotianamine	It is synthesized by the enzyme nicotianamine synthase	A component of Chinese herbal formulation		[94]
7	Scutellarin	A Flavanoid found in *Scutellariabarbata* and *S. lateriflora*	A component of Chinese herbal formulation		[95]
8	*Veronica linearifolia*	No label identified	Whole extract as a component of Chinese herbal formulation	Blocked the interaction of ACE2 and SARS-CoV S-protein	[96]
9	Juglanin	A flavonol found in *Polygonum aviculare*	A component of Chinese herbal formulation		[97]

Note: IC50: Inhibitory Concentration 50%
S.No.	Herbal drug	Biological source and Family	Whole extract/Active Principle	Therapeutic target or IC 50 value (µg/ml)	Ref
1	Saikosaponins	A flavonoid from Bupleurum falcatum Family: Apiaceae	A component of Chinese herbal formulation		
	Glycyrrhizin	A sweet-tasting constituent from glychraizaglabra Family: Fabaceae	A component of Chinese herbal formulation		[98]
	Toona sinensis Roem	Family: Meliaceae	A component of Chinese herbal formulation		[99]
	Lonicera japonicae Flos, Family: Caprifoliaceae	Whole extract as a component of Chinese herbal formulation	Inhibit SARS-CoV-2		[100]
	Scutellariae radix	Is a root Family: Lamiaceae	Whole extract as a component of Chinese herbal formulation		
	Fructus Forsythia, Dried fruit of Forsythia suspense Family: Oleaceae	Whole extract as a component of Chinese herbal formulation			
	Indirubin	A constituent of the Chinese herbal medicine “Qing-Dai,”	A component of Chinese herbal formulation	Strong antiviral and Immunomodulatory effects Anti-HCoV-229E activity.	[101]
	Lycoris radiate	Is a plant in the amaryllis Family: Amaryllidaceae	Whole extract as a component of Chinese herbal formulation		[102]
	Artemisia annua	Family: Asteraceae	Whole extract as a component of Chinese herbal formulation		
	Pyrrosia lingua	Family: Polypodiaceae	Whole extract as a component of Chinese herbal formulation		
	Lindera aggregate	Family: Lauraceae	Whole extract as a component of Chinese herbal formulation		
	Calophyllum blanco	Family: Caryophyllaceae	Whole extract as a component of Chinese herbal formulation		
The coronavirus encodes more than a dozen proteins, some of which are essential to viral entry and replication. Among these proteins, the most well-studied are papain-like protease (PLpro), 3C-like protease (3CLpro) and spike protein. These proteins make attractive targets for drug development.

The entrance of the SARS-CoV-2 genome into the host cells happens because of the SARS-CoV-2 spike protein binding to receptors [103]. By utilizing phylogenetic examination and basic site of ACE 2 structure, various animals, for example, feline, pigeon, and sheep were anticipated to be transmitters for SARS-CoV-2 [104]. Hoffmann et al. exhibited that the ACE2 receptor is utilized by SARS-CoV-2 to enter human cells [105].

Studies have indicated that TMPRSS2 inhibitors may be a promising alternative against SARS-CoV-2. TMPRSS2 is a transmembrane serine protease that separates both ACE2 and the S protein. Ortega et al. [106] used silico approaches suggested association between changes in SARS-CoV-2 Spike protein and ACE2 receptor. They displayed similarities of SARS-CoV-2 spike protein towards human ACE2 in comparison to that of the Bat-CoV spike and ACE2. This assessment concluded that the ACE2 receptor may be the key "connect" used by SARS-CoV-2 to contaminate people. Chen et al. [107] confirmed that notwithstanding the way that SARS-CoV and SARS-CoV-2 RBD of spike glycoprotein had 72% of essential similarities, SARS-CoV-2 RBD indicated higher correspondence with ACE2. ACE2 inhibitors are thought to alter RBD restricting site and thus block SARS-CoV-2 disease. Additionally, Wrapp et al. [108] found that the SARS-CoV-2 spike demonstrated a higher affection to ACE2 than SARS-CoV. Adedeji et al. [109] indicated that early blocking of SARS-CoV with ACE2 inhibitors was one of the segments used by SARS drugs. It has been showed up in three progressing assessments on COVID-19 that hypertension and diabetes mellitus triggers the danger of COVID-19 infection, inspite of utilizing ACE2 inhibitors. ACE2 inhibitors, angiotensin II type-I receptor blockers, and ibuprofen lead to ACE2 upregulation which legitimizes the urgent need to utilize as well as distinguish elective ACE2 blockers. Along these lines, therapeutic plants could be considered as alternative medicine to exhibit anti SARS-CoV-2.

Fig. 6. Mechanism of anti SARS cov2 from natural products
SARS-CoV-2 related proteins are areas of interest as targets for antiviral drugs. SARS-CoV helicase still forms the target of novel antiviral medications. 64 regular particles from 15 therapeutic plant species were assessed with respect to their inhibitory movement of SARS-CoV helicase. Myricetin and scutellarein (Fig. 1) fundamentally suppressed the SARS-CoV helicase movement. At 10 µM, myricetin (IC50 = 2.71 ± 0.19 µM) and scutellarein (IC50 = 0.86 ± 0.48 µM) had the option to hinder 90% of the ATPase movement of the SARS-CoV helicase. Appropriately, Myricetin and scutellarein were recommended to be promising alternative for anti SARS drugs [110].

9.1 Supression of TMPRSS2 by Natural Products

Recently, Hoffmann et al. [105] reported that SARS-CoV-2 could also utilize TMPRSS2 for binding to S protein. TMPRSS2 is a transmembrane serine protease that cleaves both ACE2 and the S protein. After the association between the S spike protein (SARS-CoV-2) and the ACE2 (host cell), the complex is severed by the TMPRSS2 to encourage viral passage [111]. Matsuyama et al. [112] found that a significant TMPRSS2 articulation in cells makes them vulnerable to SARS-CoV-2. Researchers have reported that the use of TMPRSS2 inhibitors could be a treatment alternative against SARS-CoV-2.

Since SARS-CoV-2 viral entry is dependent ACE2 receptor, the latter should be attached to the TMPRSS, alternatives to suppress the TMPRSS2 expression in human cells could represent a promising therapeutic or preventive approach [113]. It has been demonstrated that kaempferol had the option to inactivate TMPRSS2 articulation by 49.14 and 79.48% at 5 and 15 µM, (Da et al., 2019). Moreover,
sulforaphane (an isothiocyanate) was found to inhibit TMPRSS2 articulation via translocation of the Nrf2 (atomic factor (erythroid-inferred 2)-like 2) [114]. Mamouni et al. (2018) found that flavonoids including luteolin, quercetin, and kaempferol inhibited TMPRSS2 articulation (Fig. 8). In spite of positive and synergistic effects attributed to the three flavonoids, at low concentrations, the efficacy and safety of these compounds in COVID-19 patients is still unclear [115].

9.2 Natural Products Targeting the Papain-Like Proteinase (Plpro)

Plpro is one of the nonstructural proteins within the SARS-CoV-2 genome. Also, Plpro has been discovered to be an antagonist of the host’s natural protection. Plpro was shown to focus on the interferon creation by obstructing the IRF3 phosphorylation, dimerization, and atomic movement and NF-κBsignalling pathways (by forestalling IκBα debasement) [116]. These impacts were appeared to happen in Toll-like receptor 3 and retinoic acid-inducible gene 1 pathways. Studies shown that SARS-CoV-2 Plpro represses the TLR7 pathway by means of inactivation of TRAF3/6-TBK1-IRF3/NF-κB/AP1 signalling pathways (Fig. 9) [117].

Recently, Arya et al. (2020) screened FDA-affirmed drugs for their in silico inhibitory capability of Plpro. They showed that sixteen FDA-endorsed drugs (Biltricide, Cinacalcet, Procainamide, Terbinafine, Pethidine, Labelatalol, Tetrahydrozoline, Ticlopidine, Ethoheptazine, Levamisole, Amitriptyline, Naphazoline, Formoterol, Benzylpenicillin, Chloroquine, and Chlorothiazide) displayed significant affinity to SARS-CoV-2 proposing their conceivable adequacy as hostile to SARS-CoV-2 [118]. Some of the compounds which exhibits anti Plpro effect has also been identified (Fig. 9).

![Fig. 9. Natural compounds as inhibitors of PLpro.](image-url)
9.2.1 PLpro inhibitory impacts of cinnamic amides

Song et al. (2014) concluded that six cinnamic amides (N-trans-Feruloyloctopamine, N-trans-Coumaroyltiramine, N-trans-Caffeoyltiramine, Terrestrimine, N-trans-Feruloyltiramine, and Terrestriamide) removed from Tribulus terrestris L had affinity to SARS-CoVPLpro in a dose dependent manner. PLpro inhibitory IC50 of these mixes were discovered to be 15.8–70.1 µM. Terrestrimine [(E)- N-(1-hydroxy-2-(4-hydroxyphenyl)-2-oxoethyl)-3-(4-hydroxy-3-methoxyphenyl) acrylamide] indicated antagonistic action of SARS-CoVPLpro with an IC50 of 15.8 ± 0.6 µM. The presence of a polar substituent (ketone or liquor) on the methylene gatherings (C8’and C7’) was indicated to exhibit inhibitory action [119].

9.2.2 Anti PLpro activity of Flavonoids From Cullen corylifolium (L.) Medik

Cullen corylifolium (L.) Medik. Seeds extracted from ethanol, indicated a significant inhibitory activity of SARS-CoVPLpro with an IC50 of 15 µg/ml. Besides, six flavonoids present in the concentrate (Bavachinin, neobavaisoflavone, isobavachalcone, 40 – O-methylbavachalcone, psoralidin, and corylifol A) supressed SARS-CoVPLpro action in a dose dependent manner with IC50 assessed to be 4.2–38.4 µM. The most elevated inhibitory impact was applied by psoralidin (IC50 = 4.2 ± 1.0 µM) and isobavachalcone (IC50 = 7.3 ± 0.8 µM) [120].

Five new geranylated flavonones, tomentinA, tomentin B, tomentin C, tomentin D, tomentin E from the ethanolic concentrate of Paulownia tomentosa (Thunb.) Steud. organic products as were also promising as demonstrated by Cho et al. [121] brought about critical restraint of SARS-CoVPLpro in a dose dependent manner with IC50 of 5.0 and 14.4 µM. Tomentin E displayed the most noteworthy inhibitory impact with an IC50 of 5.0 ± 0.06 µM. It has been discovered that atoms with 3,4-dihydro-2H-pyran moiety had higher hindrance.

10. NATURAL PRODUCTS TARGETING THE CHYMOTRYPSIN-LIKE PROTEASE [3CL(PRO)]

3CL(pro) forms a part of 16 nonstructural proteins of the SARS-CoV-2. 3CL(pro) is considered a potential therapeutic target for anti-COVID-19 drugs [122] as it contributes towards SARS-CoV-2 replication process. Some of the natural compounds also exhibited anti 3CL(pro) effect (Fig. 10).

![Fig. 10. Anti SARS-CoV-3CL(pro) mediators from natural products](image-url)
10.1 Inhibitory Potential of Alkylated Chalcones as anti SARS-CoV-3CL(pro)

Inhibitory potential toward of alkylated chalcones and coumarins extracted from Angelica keiskei (Miq.) Koidz was explored utilizing a fluorescence resonance energy transfer (FRET) method. Except for coumarins, alkylated chalcones showed promising inhibitory impacts in a dose dependent pattern. IC50 ran from 11.4 ± 1.4 to 129.8 ± 10.3 µM. Also, xanthoangelol E (Figure 5) was discovered to be the most powerful SARS-CoV-3CL(pro) inhibitor. Motor investigations demonstrated that both alkylated chalcones were serious inhibitors. Since xanthoangelol E was additionally found to hinder SARS-CoV-PLpro it could be a promising competitor in the remedial methodology against COVID-19[123].

10.1.1 Inhibitory potential of Phlorotannins From Ecklonia cava (Algae) as anti SARS-CoV-3CL(pro)

From ethanolic concentrate from earthy colored Alga Ecklonia cava nine phlorotannins were isolated by Park et al. [124]. These phlorotannins were investigated for their inhibitory impacts towards SARS-CoV-3CL(pro) via without cell based assay. Eight phlorotannins (triphloretolAn, eckol, dioxinodehydroeckol, 2-phloreoekol, 7-phloreoekol, fucodiphloreoethol G, dieckol, and phlorofucofuroeckol A) were demonstrated to be serious inhibitors of SARS-CoV-3CL(pro) in a dose dependent manner. IC50 went from 2.7 ± 0.6 (dieckol) to 164.7 ± 10.8 µM (triphloretol A). Besides, six phlorotannins (dioxinodehydroeckol, 2-phloreoekol, 7-phloreoekol, fucodiphloreoethol G, dieckol, and phlorofucofuroeckol A) brought about a critical micromolar dose dependent portion inhibition of SARS-CoV-3CL(pro) cis-cleavage action. It was further supported by Molecular docking studies which showcased that dieckol had the most reduced restricting vitality (11.51 kcal/mol) towards SARS-CoV-3CL(pro). Dieckol was appeared to frame solid H bonds to the reactant dyad (Cys145 and His41). The bioavailability of phlorotannins with respect to their utilization is as yet a considerable constraint to approve their convenience. [125]. Also, their configuration with assorted variety of basic linkages and the distinctive auxiliary and conformational isomers for a similar sub-atomic weight, and the absence of clear connection between their structure and bioactivity might be another restriction to their clinical use [55].

10.1.2 Inhibitory potential of Tanshinones From Salvia miltiorrhiza Bunge as anti SARS-CoV-3CL(pro)

The inhibitory capability of Salvia miltiorrhiza Bunge towards SARS-CoV-3CL(pro) was evaluated by Park O. K. et al. (2012). It was concluded that ethanolic extract Salvia miltiorrhiza Bunge (30 µg/ml) could cause 60% hindrance of SARS-CoV-3CL(pro). Moreover, they exhibited that six tanshinones of the plant (lipophilic portion) caused hindrance of SARS-CoV-3CL(pro) in a percentage though not in a time dependent manner. IC50 was assessed at 14.4–89.1 µM. Dihydrotanshionine I showed the most significant inhibitory impact with an IC50 of 14.4 ± 0.7 µM. With respect to the dynamic system of SARS-CoV-3CL(pro) hindrance, Salvia miltiorrhiza Bunge tanshinones were discovered to be noncompetitive inhibitors [126].

10.1.3 Inhibitory potential of Biflavonoids From Torreyanucifera (L.) Siebold & Zucc. as anti SARS-CoV-3CL(pro)

Ethanol concentrate of Torreyanucifera (L.) Siebold and Zucc. leaves revealed four biflavonoids (amentoflavone, bilobetin, ginkgetin, and sciadopitysin) and were assessed for their anti SARS-CoV-3CL(pro) by utilizing a FRET strategy. All biflavonoids displayed a marked inhibitory impact of SARS-CoV-3CL(pro) with IC50 of 8.3–72.3 µM. The mechanism of action was because of eight diterpenoids disconnected from the T. nucifera extract (IC50: 49.6–283.5 µM). Amento flavone showed most significant inhibitory activity with least IC50 (8.3 ± 1.2 µM). Additionally, its inhibitory potential was a higher priority than that of apigenin (IC50 = 280.8 ± 21.4 µM), quercetin (IC50 = 23.8 ± 1.9 µM) and luteolin (IC50 = 20.0 ± 2.2 µM). Atomic docking exhibited that amento flavone indicated a decent liking with SARS-CoV-3CL(pro) and framed solid hydrogen bonds. An apigenin moiety at position C-30 of flavones was recommended to be liable for a superior inhibitory impact [127].

11. POSSIBLE DOSAGE FORMS TO TARGET COVID-19

The action of herbal medicines relies on the complete utility of the variability of dynamic components, as all the elements offer synergists action and therefore improve the healing rate [128]. Every function plays an essential role which is related to each other that possesses the
insoluble character which is resulting in lesser bioavailability and increases systematic approval necessitating repetitive administration or higher dose, which lets the drug be a minor candidate for the use of treatment [129]. Nano-dosage forms (Polymeric Nanoparticles) are developed in Phyto-formulation research that includes Liposome, Solid Liquid Nanoparticles (SLNs), Proliposomes which have several advantages for herbal drugs that are the improvement of bioavailability and solubility, improvement of pharmacological action, safeguarding from venomousness, improving tissue macrophages dissemination, improvement of constancy, increased physical-chemical stability there preventing easy degradation and sustained delivery, etc. [130]. For improving the activity and overpowering issues that are connected with plant medicines, Nano drug delivery systems (NDDSs) of natural drugs have a great potential in future drug therapy. In the traditional medicine system, integration of the nano-carries as an NDDS that is essential to conflict more chronic diseases such as cancer, asthma, diabetes, and so on [131].

12. FUTURE PERSPECTIVES AND CONCLUSION

Globally, numerous herbal medicines of Indian, China, Western and Arabic origin are marketed. These medicines with unique insights carry the experience of thousands of years in Preventing, controlling the prevalence of wide-ranging diseases, and enhancing the immunity of the body. The crucial key in COVID-19 treatment is early intervention to curtail disease progression, shorten the course of the disease and improve the cure rate thereby decreasing the overall mortality rate using herbal medicine. The main reason behind the effectiveness of these herbal medicines is not only to prevent the virus growth but also to regulate and enhance one’s immune system of the body that alters the various inflammatory responses there by promoting the early repair of the body. More in-depth research needs to be done on CSM that have definite curative effects to understand their mechanism of action for enhanced effective utilization in the treatment of the disease. Recently, some studies have been conducted on these aspects of herbal medications against COVID-19 [132-135]. The herbal drugs have several drawbacks such as poor bioavailability, instability, low solubility, low oral absorption, and unpredictable toxicity. Growth of herbal therapies in several institutes that have been carried out at basic and clinical trial levels. Further research should be directed for developing the concept of herbal nanoparticles for COVID-19 delivery in suitable animal models for studying the entire viral life cycle.

CONSENT

It’s not applicable.

ETHICAL APPROVAL

It’s not applicable.

ACKNOWLEDGMENTS

The authors express heartfelt gratitude towards the JSS College of Pharmacy, JSS Dental college and Hospital, JSSAHER Mysuru, and College of Pharmacy, University of Hail for providing all the obligatory facilities in the course of this work.

CONFLICT OF INTEREST

The authors assert no conflict of interest.

REFERENCES

1. Adhikari SP, Meng S, Wu YJ, Mao YP, Ye RX, Wang QZ, Sun C, Sylvia S, Rozelle S, Raat H, Zhou H. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review. Infectious Diseases of Poverty. 2020 Dec;9(1):1-2.
2. Bogoch II, Watts A, Thomas-Bachli A, Huber C, Kraemer MU, Khan K. Pneumonia of Unknown Etiology in Wuhan, China: Potential for International Spread Via travel. Journal of travel medicine. 2020 Mar;27(2):taaa008.
3. Lu H, Stratton OW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan, China: the mystery and the miracle. Journal of medical virology. 2020 Apr;92(4):401-2.
4. Cao Z, Zhang Q, Lu X, Pfeiffer D, Jia Z, Song H, Zeng DD. Estimating the effective reproduction number of the 2019-nCoV in China. MedRxiv. 2020 Jan 1.
5. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y,
Zhao Y. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. Jama. 2020 Mar 17;323(11):1061-9.

6. Paiatal B, Das K, Parida SK. Inter nation social lockdown versus medical care against COVID-19, a mild environmental insight with special reference to India. Science of the total environment. 2020 Apr 23:138914.

7. Ren JL, Zhang AH, Wang XJ. Traditional Chinese medicine for COVID-19 treatment. Pharmacological research. 2020 May;155:104743.

8. Zhang X, Kong W, Wang X, Zhang J, Liu L, Wang W, Liu Y, Wang X, Zhang H, Deng Q. Genetic diversity analysis of 34 fig varieties (Ficus carica L.) based on ISSR molecular marker. Genetic Resources and Crop Evolution. 2020 Feb 10:1-9.

9. Li R, Li Q, Ji Q. Molecular targeted study in tumors: From western medicine to active ingredients of traditional Chinese medicine. Biomedicine & Pharmacotherapy. 2020 Jan 1;121:109624.

10. Bonifácio BV, da Silva PB, dos Santos Ramos MA, Negri KM, Bauab TM, Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: a review. International Journal of Nanomedicine. 2014;9:1.

11. Yang XX, Li CM, Huang CZ. Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection. Nanoscale. 2016;8(5):3040-8.

12. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, Tai Y. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet. Respiratory Medicine. 2020 Apr 1;8(4):420-2.

13. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020 Feb 15;395(10223):497-506.

14. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. Journal of autoimmunity. 2020 May 1;109:102433.

15. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The lancet. 2020 Mar 28;395(10229):1054-62.

16. Jin YH, Cai L, Cheng ZS, Cheng H, Deng T, Fan YP, Fang C, Huang D, Huang LQ, Huang Q, Han Y. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Military Medical Research. 2020 Dec;7(1):1-23.

17. Bassetti M, Vena A, Giacobbe DR. The novel Chinese coronavirus (2019-nCoV) infections: Challenges for fighting the storm.

18. Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research. 2020 Jul 1;24:91-8.

19. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. Journal of Virology. 2020 Mar 17;94(7).

20. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet. 2020 Feb 22;395(10224):565-74.

21. Wu P, Hao X, Lau EH, Wong JY, Leung KS, Wu JT, Cowling BJ, Leung GM. Real-time tentative assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, as at 22 January 2020. Eurosurveillance. 2020 Jan 23;25(3):2000044.

22. Carlos WG, Dela Cruz CS, Cao B, Pasnick S, Jamil S. Novel Wuhan (2019-nCoV) Coronavirus. Am J Respir Crit Care Med. 2020;P7-8.

23. Pal M, Berhanu G, Desalegn C, Kandi V. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): an update. Cureus. 2020 Mar;12(3).

24. Chellapandi P, Saranya S. Genomics insights of SARS-CoV-2 (COVID-19) into target-based drug discovery. Medicinal Chemistry Research. 2020 Jul 31:1-5.

25. Jaimes JA, Millet JK, Stout AE, André NM, Whittaker GR. A tale of two viruses: the distinct spike glycoproteins of feline coronaviruses. Viruses. 2020 Jan;12(1):83.

26. Saxena A. Drug targets for COVID-19
therapeutics: Ongoing global efforts. Journal of biosciences. 2020 Dec;45(1):1-24.
27. Al Ghamdi M, Alghamdi KM, Ghandooara Y, Alzahranii A, Salah F, Alsulami A, Bawayan MF, Vaidya D, Perl TM, Sood G. Treatment outcomes for patients with Middle Eastern Respiratory Syndrome Coronavirus (MERS CoV) infection at a coronavirus referral center in the Kingdom of Saudi Arabia. BMC infectious diseases. 2016 Dec;16(1):1-7.
28. Schoot TS, Kerckhoffs AP, Hilbrands LB, Van Marum RJ. Immunosuppressive drugs and COVID-19: A review. Frontiers in pharmacology. 2020 Aug 28;11:1333.
29. Lu L, Liu Q, Zhu Y, Chan KH, Qin L, Li Y, Wang Q, Chan JF, Du L, Yu F, Ma C. Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor. Nature communications. 2014 Jan 28;5(1):1-2.
30. Kindrachuk J, Ork B, Hart BJ, Mazur S, Holbrook MR, Frieman MB, Traynor D, Johnson RF, Dyall J, Kuhn JH, Olinger GG. Antiviral potential of ERK/MAPK and PI3K/AKT/mTOR signaling modulation for Middle East respiratory syndrome coronavirus infection as identified by temporal kinome analysis. Antimicrobial agents and chemotherapy. 2015 Feb 1;59(2):1088-99.
31. Dyall J, Coleman CM, Hart BJ, Venkataraman T, Holbrook MR, Kindrachuk J, Johnson RF, Olinger GG, Jahrling PB, Laidlaw M, Johansen LM. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrobial Agents and Chemotherapy. 2014 Aug 1;58(8):4855-93.
32. De Wilde AH, Jochmans D, Posthuma CC, Zevenhoven-Dobbe JC, Van Nieuwkoop S, Bestebroer TM, Van Den Hoogen BG, Neyts J, Snijder EJ. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrobial Agents and Chemotherapy. 2014 Aug 1;58(8):4875-84.
33. Biswas A, Bhattacharjee U, Chakrabarti AK, Tewari DN, Banu H, Dutta S. Emergence of Novel Coronavirus and COVID-19: whether to stay or die out?: Critical reviews in microbiology. 2020 Mar 3;46(2):182-93.
34. Saxena A. Drug targets for COVID-19 therapeutics: Ongoing global efforts. Journal of biosciences. 2020 Dec;45(1):1-24.
35. Hasan A, Paray BA, Hussain A, Qadir FA, Attar F, Aziz FM, Sharifi M, Derakhshankhah H, Rasti B, Mehrabi M, Shahpasand K. A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin. Journal of Biomolecular Structure and Dynamics. 2020 Apr 21:1-9.
36. Li CC, Wang XJ, Wang HC. Repurposing host-based therapeutics to control coronavirus and influenza virus. Drug discovery today. 2019 Mar 1;24(3):726-36.
37. Sohrab SS, El-Kafrawy SA, Mirza Z, Kamal MA, Azhar EI. Design and delivery of therapeutic siRNAs: application to MERS-coronavirus. Current pharmaceutical design. 2018 Jan 1;24(1):62-77.
38. Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Bioscience trends. 2020 Feb 29:14(1):69-71.
39. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P. A novel coronavirus from patients with pneumonia in China, 2019. New England journal of medicine. 2020 Jan 24.
40. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell research. 2020 Mar;30(3):269-71.
41. Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, Doudier B, Courjon J örée Giordano V, Vieira VE, Hervè Tissot Dupont, St é phane Honor e, Philippe Colson, Eric Chabriere, Bernard La Scola, Jean-Marc Rolain, Philippe Brouqui, Didier Raoult, Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;56(1):105949.
42. Toots M, Yoon JJ, Cox RM, Hart M, Sticher ZM, Makhsoos N, Plesker R, Barrena AH, Reddy PG, Mitchell DG, Shean RC. Characterization of orally efficacious influenza drug with high resistance barrier in ferrets and human airway epithelia. Science translational medicine. 2019 Oct 23;11(515).
43. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine
44. Zhang X, Alekseev K, Jung K, Vlasova A, Hadya N, Saif LJ. Cytokine responses in porcine respiratory coronavirus-infected pigs treated with corticosteroids as a model for severe acute respiratory syndrome. Journal of virology. 2008 May 1;82(9):4420-8.

45. Faure E, Poissy J, Goffard A, Fournier C, Kipnis E, Titecat M, Bortolotti P, Martinez L, Dubucquoi S, Dessein R, Gosset P. Distinct immune response in two MERS-CoV-infected patients: can we go from bench to bedside?. PloS one. 2014 Feb 14;9(2):e88716.

46. Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. The Lancet. 2020 Feb 15;395(10223):473-5.

47. Stockman LJ, Bellamy R, Garner P. SARS: systematic review of treatment effects. PLoS med. 2006 Sep 12;3(9):e343.

48. Hung IF, To KK, Lee CK, Lee KL, Yan WW, Chan K, Chan WM, Ngai CW, Law KI, Chow FL, Liu R. Hyperimmune IV immunoglobulin treatment: a multicenter double-blind randomized controlled trial for patients with severe 2009 influenza A (H1N1) infection. Chest. 2013 Aug 1;144(2):464-73.

49. Zhang L, Liu Y. Potential interventions for novel coronavirus in China: A systematic review. Journal of Medical Virology. 2020 May;92(5):479-90.

50. Luo H, Tang QL, Shang YX, Liang SB, Yang M, Robinson N, Liu JP. Can Chinese medicine be used for prevention of coronavirus disease 2019 (COVID-19)? A review of historical classics, research evidence and current prevention programs. Chinese journal of integrative medicine. 2020 Apr;26(4):243-50.

51. Tong X, Li A, Zhang Z, Duan J, Chen X, Hua C, Zhao D, Xu Y, Shi X, Li P, Tian X. TCM treatment of infectious atypical pneumonia--a report of 16 cases. Journal of traditional Chinese medicine= Chung i tsa chih ying wen pan. 2004 Dec 1;24(4):266-9.

52. Liu X, Zhang M, He L, Li Y. Chinese herbs combined with Western medicine for severe acute respiratory syndrome (SARS). Cochrane Database of Systematic Reviews. 2012(10).

53. Zumla A, Chan JF, Azhar EI, Hui DS, Yuen KY. Coronavirus—drug discovery and therapeutic options. Nature reviews Drug discovery. 2016 May;15(5):327-47.

54. Wang MS, Thakur M, Peng MS, Jiang Y, Frantz LA, Li M, Zhang JJ, Wang S, Peters J, Otecko NO, Suwannapoom C. 863 genomes reveal the origin and domestication of chicken. Cell research. 2020 Aug;30(8):693-701.

55. Li H, Wang YM, Xu JY, Cao B. Potential antiviral therapeutics for 2019 Novel Coronavirus. Zhonghua jie he he hu xi zhi= Zhonghua jiehe he huxi zazhi= Chinese journal of tuberculosis and respiratory diseases. 2020 Feb 5;43:E002.

56. Veronese N, Demurtas J, Yang L, Tonelli R, Barbagallo M, Lopalco P, Lagolio E, Celotto S, Pizzol D, Zou L, Tully MA. Use of corticosteroids in coronavirus disease 2019 pneumonia: a systematic review of the literature. Frontiers in medicine. 2020 Apr 24;7:170.

57. Graham RL, Donaldson EF, Baric RS. A decade after SARS: strategies for controlling emerging coronaviruses. Nature Reviews Microbiology. 2013 Dec;11(12):836-48.

58. Yuan H, Ma Q, Ye L, Piao G. The traditional medicine and modern medicine from natural products. Molecules. 2016 May;21(5):559.

59. Poon PM, Wong CK, Fung KP, Fong CY, Wong EL, Lau JT, Leung PC, Tsui SK, Wan DC, Waye MM, Au SW. Immunomodulatory effects of a traditional Chinese medicine with potential antiviral activity: a self-control study. The American Journal of Chinese Medicine. 2006;34(01):13-21.

60. Lau TF, Leung PC, Wong EL, Fong C, Cheng KF, Zhang SC, Lam CW, Wong V, Choy KM, Ko WM. Using herbal medicine as a means of prevention experience during the SARS crisis. The American Journal of Chinese Medicine. 2005;33(03):345-56.

61. Liu X, Zhang M, He L, Li Y. Chinese herbs combined with Western medicine for severe acute respiratory syndrome (SARS). Cochrane Database of Systematic Reviews. 2012(10).

62. Hong-Zhi DU, Xiao-Ying HO, Yu-Huan MI, Huang BS, Da-Hui LI. Traditional Chinese Medicine: an effective treatment for 2019 novel coronavirus pneumonia (NCP).
Chinese Journal of Natural Medicines. 2020 Mar;1;18(3):206-10.

63. Patwardhan B. Bridging Ayurveda with evidence-based scientific approaches in medicine. EPMA Journal. 2014 Dec;5(1):1-7.

64. Govindasamy C, Kannan R. Pharmacognosy of mangrove plants in the system of unani medicine. Asian Pacific Journal of Tropical Disease. 2012 Jan 1;2:S38-41.

65. Okamoto H, Iyo M, Ueda K, Han C, Hirasaki Y, Namiki T. Yokukan-san: a review of the evidence for use of this Kampo herbal formula in dementia and psychiatric conditions. Neuropsychiatric Disease and Treatment. 2014;10:1727.

66. Yoon DW, Lee SK, Yi H, Hong JH, Soichiro M, Lee SW, Kim JY, Shin C. Total nasal resistance among Sasang constitutional types: a population-based study in Korea. BMC Complementary and Alternative Medicine. 2013 Dec;13(1):1-6.

67. Wintola OA, Afolayan AJ. The antibacterial, phytochemicals and antioxidants evaluation of the root extracts of Hydnora africana Thunb. used as antidyserteric in Eastern Cape Province, South Africa. BMC Complementary and Alternative Medicine. 2015 Dec;15(1):1-2.

68. Kim JY, Noble D. Recent progress and prospects in Sasang constitutional medicine: a traditional type of physiome-based treatment. Progress in Biophysics and Molecular Biology. 2014 Sep 1;116(1):76-80.

69. [Shikov AN, Pozharitskaya ON, Makarov VG, Wagner H, Verpoorte R, Heinrich M. Medicinal plants of the Russian Pharmacopoeia; their history and applications. Journal of Ethnopharmacology. 2014 Jul 3;154(3):481-536.

70. Yang Y, Islam MS, Wang J, Li Y, Chen X. Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): a review and perspective. International Journal of Biological Sciences. 2020;16(10):1708.

71. Benarba B, Pandiella A. Medicinal plants as sources of active molecules against COVID-19. Frontiers in Pharmacology. 2020;11.

72. Yang Y, Islam MS, Wang J, Li Y, Chen X. Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): a review and perspective. International journal of biological sciences. 2020;16(10):1708.

73. Adhikari SP, Meng S, Wu YJ, Mao YP, Ye RX, Wang ZQ, Sun C, Sylvia S, Rozelle S, Raat H, Zhou H. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review. Infectious diseases of poverty. 2020 Dec;9(1):1-2.

74. Luo H, Tang QL, Shang YX, Liang SB, Yang M, Robinson N, Liu JP. Can Chinese medicine be used for prevention of coronavirus disease 2019 (COVID-19)? A review of historical classics, research evidence and current prevention programs. Chinese journal of integrative medicine. 2020 Apr;26(4):243-50.

75. Xu X, Zhang Y, Li X, Li XX. Analysis on prevention plan of corona virus disease-19 (COVID-19) by traditional Chinese medicine in various regions. Chinese Traditional and Herbal Drugs. 2020;51(4):1-8.

76. Zhao J, Tian SS, Yang J, Liu JF, Zhang WD. Investigating mechanism of Qing-Fei-Pai-Du-Tang for treatment of COVID-19 by network pharmacology. Chinese Traditional and Herbal Drugs. 2020 Feb 28;51(4).

77. Lv R, Wang W, Med XL-JTC, 2020 undefined. Treatment of suspected new coronavirus pneumonia with Chinese medicine Lianhua Qingwen Clinical observation of 63 suspected cases 2020: 1–5.

78. Yao KT, Liu MY, Li X, Huang JH, Cai HB. Retrospective clinical analysis on treatment of novel coronavirus-infected pneumonia with traditional Chinese medicine Lianhua Qingwen, Chin J Exp Tradit Med Form. 2020;2020:1-7.

79. Han YY, Zhao MR, Shi Y, Song ZH, Zhou SP, He Y. Application of integrative medicine protocols in treatment of coronavirus disease 2019. Chin. Trad. Herbal Drugs. 2020:878-82.

80. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si H. R.,et.al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270-3.

81. Ng AW, Poon SL, Huang MN, Lim JQ, Boot A, Yu W, Suzuki Y, Thangaraju S, Ng CC, Tan P, Pang ST. Aristolochic acids and their derivatives are widely implicated
in liver cancers in Taiwan and throughout Asia. Science Translational Medicine. 2017 Oct 18;9(412).

82. Luo W, Su X, Gong S, Qin Y, Liu W, Li J, Yu H, Xu Q. Anti-SARS coronavirus 3C-like protease effects of Rheum palmatum L. extracts. Bioscience trends. 2009 Aug 1;3(4).

83. Lau KM, Lee KM, Koon CM, Cheung CS, Lau CP, Ho HM, Lee MY, Au SW, Cheng CH, Bik-San Lau C, Tsui SK. Immunomodulatory and anti-SARS activities of Houttuynia cordata. Journal of Ethnopharmacology. 2008 Jun 19;118(1):79-85.

84. Fung KP, Leung PC, Tsui KW, Wan CC, Wong KB, Waye MY, Au WN, Wong CK, Lam WK, Lau BS. Immunomodulatory activities of the herbal formula Kwan Du Bu Fei Dang in healthy subjects: a randomised, double-blind, placebo-controlled study. Hong Kong Medical Journal. 2011 Feb;17:41-3.

85. Jo S, Kim S, Shin DH, Kim MS. Inhibition of SARS-CoV-3 3CL protease by flavonoids. Journal of Enzyme Inhibition and Medicinal Chemistry. 2020 Jan 1;35(1):145-51.

86. Lin CW, Tsai FJ, Tsai CH, Lai CC, Wan L, Ho TY, Hsieh CC, Chao PD. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral research. 2005 Oct 1;68(1):36-42.

87. Nguyen TT, Woo HJ, Kang HK, Kim YM, Kim DW, Ahn SA, Xia Y, Kim D. Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnology Letters. 2012 May;34(5):831-38.

88. Jo S, Kim S, Shin DH, Kim MS. Inhibition of SARS-CoV 3CL protease by flavonoids. Journal of Enzyme Inhibition and Medicinal Chemistry. 2020 Jan 1;35(1):145-51.

89. Jo S, Kim H, Kim S, Shin DH, Kim MS. Characteristics of flavonoids as potent MERSCoV 3C-like protease inhibitors. Chemical biology & drug design. 2019 Dec;94(6):2023-30.

90. Yu MS, Lee J, Lee JM, Kim Y, Chin YW, Jee JG, Keum YS, Jeong YJ. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsp13. Bioorganic & medicinal chemistry letters. 2012 Jun 15;22(12):4049-54.

91. Wu CY, Jan JT, Ma SH, Kuo CJ, Juan HF, Cheng YS, Hsu HH, Huang HC, Wu D, Brik A, Liang FS. Small molecules targeting severe acute respiratory syndrome human coronavirus. Proceedings of the National Academy of Sciences. 2004 Jul 6;101(27):10012-7.

92. Ho TY, Wu SL, Chen JC, Li CC, Hsiang CY. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral research. 2007 May 1;74(2):92-101.

93. Deng YF, Aluko RE, Jin Q, Zhang Y, Yuan LJ. Inhibitory activities of baicalin against renin and angiotensin-converting enzyme. Pharmaceutical biology. 2012 Apr 1;50(4):401-6.

94. Takahashi S, Yoshiya T, Yoshizawa-Kumagaye K, Sugiyama T. Nicotiamine is a novel angiotensin-converting enzyme 2 inhibitor in soybean. Biomedical Research. 2015 Jun 1;36(3):219-24.

95. Wang W, Ma X, Han J, Zhou M, Ren H, Pan Q, Zheng C, Zheng Q. Neuroprotective effect of scutellarin on ischemic cerebral injury by down-regulating the expression of angiotensin-converting enzyme and AT1 receptor. PloS one. 2016 Jan 5;11(1):e0146197.

96. Yi L, Li Z, Yuan K, Qu X, Chen J, Wang G, Zhang H, Luo H, Zhu L, Jiang P, Chen L. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. Journal of Virology. 2004 Oct 15;78(20):11334-9.

97. Cheng PW, Ng LT, Chiang LC, Lin CC. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clinical and Experimental Pharmacology and Physiology. 2006 Jul;33(7):612-6.

98. Pilcher H. Liquorice may tackle SARS. Nature. 2003 Jun 13.

99. Chen CJ, Michaelis M, Hsu HK, Tsai CC, Yang KD, Wu YC, Cinatl Jr J, Doerr HW. Toona sinensis Roem tender leaf extract inhibits SARS coronavirus replication. Journal of ethnomedical. 2008 Oct 30;120(1):108-11.

100. Schwarz S, Sauter D, Wang K, Zhang R, Sun B, Kanioti A, Bilia AR, Efferth T, Schwarz W. Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta medica. 2014 Feb;80(02-03):177.

101. Chan MC, Chan RW, Mok KP, Mak NK, Wong RN. Indirubin-3'-oxime as an antiviral and immunomodulatory agent in treatment of severe human influenza virus
infection. 香港醫學雜誌. 2018.
102. Chang FR, Yen CT, Ei-Shazly M, Lin WH, Yen MH, Lin KH, Wu YC. Anti-human coronavirus (anti-HCoV) triterpenoids from the leaves of Euphorbia neriifolia. Natural product communications. 2012 Nov;7(11):1934578X1200701103.
103. Sigrist CJ, Bridge A, Le Mercier P. A potential role for integrins in host cell entry by SARS-CoV-2. Antiviral research. 2020 May;177:104759.
104. Qiu Y, Zhao YB, Wang Q, Li JY, Zhou ZJ, Liao CH, Ge XY. Predicting the angiotensin converting enzyme 2 (ACE2) utilizing capability as the receptor of SARS-CoV-2. Microbes and infection. 2020 May;122(4-5):221-5.
105. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020 Apr 16;181(2):271-80.
106. Ortega JT, Serrano ML, Pujol FH, Rangel HR. Role of changes in SARS-CoV-2 spike protein in the interaction with the human ACE2 receptor: An in silico analysis. EXCLI journal. 2020;19:410.
107. Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV. Biochemical and biophysical research communications. 2020 Apr 23:525(1):135-40.
108. Hwang SS, Lim J, Yu Z, Kong P, Sefik E, Xu H, Harman CC, Kim LK, Lee GR, Li HB, Flavell RA. mRNA destabilization by BTG1 and BTG2 maintains T cell quiescence. Science. 2020 Mar 13;367(6483):1255.
109. Adedeji AO, Severson W, Jonsson C, Singh K, Weiss SR, Sarafianos SG. Novel inhibitors of severe acute respiratory syndrome coronavirus entry that act by three distinct mechanisms. Journal of Virology. 2013 Jul 15;87(14):8017-28.
110. Yu MS, Lee J, Lee JM, Kim Y, Chin YW, Jee JG, Keum YS, Jeong YJ. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nSP13. Bioorganic & Medicinal Chemistry Letters. 2012 Jun 15;22(12):4049-54.
111. Rabi FA, Al Zoubi MS, Kasasbeh GA, Salameh DM, Al-Nasser AD. SARS-CoV-2 and coronavirus disease 2019: what we know so far. Pathogens. 2020 Mar;9(3):231.
112. Matsuyama S, Nao N, Shirako K, Kawase M, Saito S, Takayama I, Nagata N, Sekizuka T, Katoh H, Kato F, Sakata M. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proceedings of the National Academy of Sciences. 2020 Mar 31;117(13):7001-3.
113. Schlagenhauf P, Grobusch MP, Maier JD, Gautret P. Repurposing antimalarials and other drugs for COVID-19. Travel medicine and infectious disease. 2020 Mar;34:101658.
114. Meyer M, Jaspers I. Respiratory protease/antiprotease balance determines susceptibility to viral infection and can be modified by nutritional antioxidants. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2015 Jun 15;308(12):L1189-201.
115. Mamouni K, Zhang S, Li X, Chen Y, Yang Y, Kim J, Bartlett MG, Coleman IM, Nelson PS, Kucuk O, Wu D. A novel flavonoid composition targets androgen receptor signaling and inhibits prostate cancer growth in preclinical models. Neoplasia. 2018 Aug 1;20(8):789-99.
116. Jiang S, Hillyer C, Du L. Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. Trends in immunology. 2020 May 1;41(5):355-9.
117. Yuan L, Chen Z, Song S, Wang S, Tian C, Xing G, Chen X, Xiao ZX, He F, Zhang L. p53 degradation by a coronavirus papain-like protease suppresses type I interferon signaling. Journal of Biological Chemistry. 2015 Jan 30;290(5):3172-82.
118. Arya R, Das A, Prashar V, Kumar M. Potential inhibitors against papain-like protease of novel coronavirus (COVID-19) from FDA approved drugs. 2019. Travel Medicine and Infectious Disease. 2020;34:101658.
119. Song J, Zhang F, Tang S, Liu X, Gao Y, Lu P, Wang Y, Yang H. A module analysis approach to investigate molecular mechanism of TCM formula: a trial on Shu-feng-jie-du formula. Evidence-Based Complementary and Alternative Medicine. 2013 Oct;2013.
120. Kim DW, Seo KH, Curtis-Long MJ, Oh KY, Oh JW, Cho JK, Lee KH, Park KH. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. Journal of enzyme inhibition and medicinal chemistry. 2014 Feb 1;29(1):59-63.
121. Cho JK, Curtis-Long MJ, Lee KH, Kim DW, Ryu HW, Yuk HJ, Park KH. Geranylated flavonoids displaying SARS-CoV papain-
like protease inhibition from the fruits of Paulownia tomentosa. Bioorganic & medicinal chemistry. 2013 Jun 1;21(11):3051-7.

122. Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020 Apr 24;368(6489):409-12.

123. Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020 Apr 24;368(6489):409-12.

124. Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020 Apr 24;368(6489):409-12.

125. Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020 Apr 24;368(6489):409-12.

126. Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020 Apr 24;368(6489):409-12.

127. Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020 Apr 24;368(6489):409-12.

128. Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020 Apr 24;368(6489):409-12.

129. Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020 Apr 24;368(6489):409-12.

130. Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020 Apr 24;368(6489):409-12.

131. Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020 Apr 24;368(6489):409-12.

132. Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020 Apr 24;368(6489):409-12.

133. Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020 Apr 24;368(6489):409-12.

134. Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020 Apr 24;368(6489):409-12.

135. Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020 Apr 24;368(6489):409-12.