The Reaction Pathway of miR-30c-5p Activates Lipopolysaccharide Promoting the Course of Traumatic and Hemorrhagic Shock Acute Lung Injury

Jianmin Li,1 Chanyuan Pan,1 Chao Tang,1 Wenwen Tan,1 Hui Liu,1 and Jing Guan2

1Department of Pulmonary and Critical Care Medicine, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan, China
2Department of Science and Education, The First Hospital of Changsha, Changsha, 410008 Hunan, China

Correspondence should be addressed to Jing Guan; guanjing@cssdyyz.org.cn

Received 17 January 2022; Revised 21 February 2022; Accepted 2 March 2022; Published 13 April 2022

Academic Editor: Yuvaraja Teekaraman

Copyright © 2022 Jianmin Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Acute lung injury (ALI) is an acute hypoxic respiratory failure caused by diffuse inflammatory injury in alveolar epithelial cells during severe infection, trauma, and shock. Among them, trauma/hemorrhagic shock (T/HS) is the main type of indirect lung injury. Despite a great number of clinical studies, indirect factor trauma/hemorrhagic shock to the function and the mechanism in acute lung injury is not clear yet. Therefore, it is still necessary to carry on relevant analysis in order to thoroughly explore its molecular and cellular mechanisms and the pathway of disease function. In our research, we aimed to identify potential pathogenic genes and do modular analysis by downloading disease-related gene expression profile data. And our dataset is from the NCBI-GEO database. Then, we used the ClusterProfiler R package, GO function, and KEGG pathway enrichment analysis to analyze the core module genes. In addition, we also identified key transcription factors and noncoding RNAs. Based on the high degree of interaction of potential pathogenic genes and their involved functions and pathways, we identified 17 dysfunction modules. Among them, up to 9 modules significantly regulate the response to bacterial-derived molecules, and the response to lipopolysaccharide and other related functional pathways that mediate disease development. In addition, miR-290, miR-30c-5p, miR-195-5p, and miR-1-3p-based ncRNA and Jun, Atf1, and Atf3-based transcription factors have a total of 80 transcription drivers for functional modules. In summary, this study confirmed that miR-30c-5p activates lipopolysaccharide response pathway to promote the pathogenesis of ALI induced by hemorrhagic shock. This result can be an important direction for further research on related deepening diseases such as acute respiratory distress syndrome (ARDS). It further provides a piece of scientific medical evidence for revealing the pathogenic principle and cure difficulty of acute lung injury and also provides important guidance for the design of therapeutic strategies and drug development.

1. Introduction

Acute lung injury (ALI) is a clinically complex syndrome involving acute inflammation and microvascular injury and affecting pulmonary vascular and epithelial permeability leading to acute respiratory failure [1]. Among them, trauma/hemorrhagic shock (T/HS) is the main type of indirect lung injury, which drives the release of proinflammatory mediators into the mesenteric lymph (ML) and triggers a systemic inflammatory response and ultimately leads to acute lung injury [2]. The clinicopathological features often present with progressive hypoxemia and respiratory distress, and the deepening of the disease can lead to acute respiratory distress syndrome (ARDS) [1, 3]. At present, there are quite a few medical experts and scholars who have conducted in-depth research on the pathogenesis of T/HS acute lung injury. Recent studies have shown that mesenteric lymph is the main cause of lung injury after T/HS, and its cytokines induce apoptosis of lung endothelial cells and epithelial cells [4]. In addition, the dysregulated inflammation that occurs after severe injury in patients is also caused by intestinal-derived inflammatory mediators carried by the
mesenteric lymph. Among them, exosomes belong to extra-
cellular vesicles and serve as an endogenous mediator of
immune response, which is released into the mesenteric
lymph after T/HS to induce the production of proinflamma-
tory cytokines in macrophages and then participate in the
pathogenesis of acute lung injury. It also promotes posttrau-
matic immune dysfunction by mediating dendritic cell (DC)
dysfunction [5]. In an experiment to further explore the
pathogenic principle of exosomes, it was important for the
activation of macrophages by Toll-like receptor 4 (TLR4).
It is worth noting that the cytokines produced by exosome
induction can be reversed by TLR4-related pharmacological
inhibition [6]. This discovery is highly regarded by scientists
such as Sodhi, and the underlying pathogenesis of TLR4 is
officially stated. Activation of TLR4 after trauma leads to
increased endoplasmic reticulum stress in the intestinal epi-
thelial cells, apoptosis and release of circulating HMGB1,
and an increase in the severity of lung injury. Moreover,
the wild-type mice lacking TLR4 in intestinal epithelial cells
(AEC) did not produce acute lung injury and confirmed its
importance for disease development [7]. Interleukin-8 (IL-
8) is a potent neutrophil attractant and activator, and its
self-forming IL-8 antibody interacts with the FcyRIIa recep-
tor, which may affect diseases such as neutrophil apoptosis.
Mechanism [1]. Moreover, T/HS-induced intestinal and
intestinal-induced lung injury also involves complex pro-
cesses such as intraluminal digestive enzymes, unstirred
mucus layer, and systemic ischemia-reperfusion injury [8].
Part of the cause is mediated by a decrease in the level of sur-
factant protein-D and is associated with apoptosis in alveo-
lar epithelial cells. In terms of biological inhibitors, it was
found that the protein level of pulmonary surfactant
protein-D returned to normal after administration of activa-
tor IL-6, and IL-6 could be used as a prophylactic adjuvant
for shock recovery after shock [9]. Due to the serious harm
of the disease, the inhibition mechanism and treatment
strategy of T/HS acute lung injury have also been identified
by some biologists. Stimulation of the G protein-coupled cell
surface receptor A2B adenosine receptor prevents T/HS-
induced lung and muscle damage [10]. Tranexamic acid
(TXA) is a synthetic derivative of lysine that inhibits T/HS-
triggered bronchoalveolar fluid and serum interleukin-
6 and TNF-α excessive production, and enzymatic activity
of myeloperoxidase (MPO) in lung tissue. In addition,
TXA treatment partially attenuated the inactivation of the
poly ADP-ribose polymerase-1 (PARP1)/nuclear factor κB
(NF-κB) signaling pathway in the lungs after T/HS regula-
tion of abnormal lung inflammation [11]. FTY720 can be
used as a resuscitation treatment factor to limit T/HS-
induced multiple organ dysfunction syndromes (including
lung injury, red blood cell damage, and neutrophil perfu-
sion) and T/HS lymphocyte bioactivity [2]. Treatment with
CPSI-121 with pharmacological vagal nerve stimulation
(VNS) can prevent intestinal barrier failure and attenuate
the biological activity of mesenteric lymphocytes, and has
potential effects in preventing acute lung injury [12].

A series of basic experimental studies related to T/HS
acute lung injury have carefully analyzed the pathogenesis
and treatment models of the disease, but the disease develop-
ment situation is still grim, and comprehensive and in-depth
research is still needed to reveal the underlying disease
mechanism that has not yet been elucidated. This study
was based on the modular analysis of protein interactions
based on microarray expression profiles of T/HS lung injury
(experimental group) and T/SS nonlung injury (control
group). The resulting miR-30c-5p activates the lipopolysac-
charide response pathway to promote the progression of
acute lung injury in hemorrhagic shock. It has deepened
our understanding of the pathogenesis of T/HS acute lung
injury and helps to find biological targets and diagnostic
markers for acute lung injury susceptibility after T/HS. At
the same time, it is also beneficial to evaluate the risk of
acute lung injury and the prognosis of patients with lung
injury and also provide a theoretical basis and new strategy
for drug development of acute lung injury.

2. Materials and Methods

In the field of immunology, as an important pathogen-
related molecular model, it is important to fully understand
the toxicity of lipopolysaccharide drugs for effective innate
and adaptive immune responses [13]. In this regard, this
study also integrated recent reports on the inhibition and
treatment of acute lung injury mediated by lipopolysaccha-
ride, both the forsythiaside A (FA) and the acyloxyacyl
hydrolase (AOAH) were shown to have an important pro-
tective effect on acute lung injury. It improves lung inflam-
lation by interfering with the LPS-TLR4-MyD88-NF-κB
signaling pathway and inhibiting the biological activity of
alveolar macrophages [14, 15]. The drug liraglutide has been
shown to have anti-inflammatory and immunomodulatory
effects by inhibiting the NLRP3 inflammasome pathway to
alleviate the condition [16]. In addition, many clinical trials
have shown that early fluid resuscitation can improve the
prognosis of lung injury and reduce the mortality of patients
with septic shock. After treatment, it shows effective circula-
ting blood volume and tissue perfusion pressure, improves
microcirculation disorder, and increases oxygen partial pres-
sure and oxygenation index [17].

2.1. Data Resources. GEO Database (Gene Expression Omni-
bus) is an internationally recognized public repository of
sequential datasets. We collected microarray expression pro-
files of traumatic hemorrhagic shock (T/HS) model mice,
named GSE6332. The data set includes three samples of
traumatic/hemorrhagic shock (T/HS) acute lung injury and
three samples of traumatic pseudoshock (T/SS) nonlung
injury. We then downloaded protein-protein interaction
data from the STRING V10 database to construct differen-
tially related PPIs [18].

2.2. Differentially Expressed Genes. The differentially
expressed genes (DEGs) was analyzed by the limma package
[19–21]. The control probe and the probe with low expres-
sion were filtered out by quantile normalization. Then, the
DEGs in the dataset were identified by default parameters.

2.3. High Interaction Module Characterizes the Disequilibrium
Mechanisms of T/HS Acute Lung Injury. First, we construct a
protein-protein interaction network (PPIs) based on the STING database to observe the high degree of gene interaction and use the ClusterONE [22], a plug-in in the Cytoscape [23] for modularization. These highly interactive modules contain potential pathogenic genes of T/HS acute lung injury, which can best characterize the disorder mechanism and development process of the disease.

2.4. Enrichment Analysis. The enrichment analysis was used to explore the potential mechanism of T/HS acute lung injury. In addition, the clusterProfiler [24] was performed to enrich and analyze the GO function and KEGG pathway, respectively, and set \(P \) value < 0.01 to screen for significant functions and pathways.

2.5. Regulatory TFs and ncRNAs. We scientifically predicted and tested the role of TFs and ncRNAs in T/HS acute lung injury dysfunction module. Regulatory TFs and ncRNAs were defined as significantly affected module genes in the proliferation and metastasis of T/HS acute lung injury cells. \(P \) value < 0.01 was the screening thresholds.

3. Result

3.1. Screening for Potential Pathogenic Molecules in T/HS Acute Lung Injury. Biologists conducted many researches on the T/HS ALI and comprehensively summarized a large part of scientific research results in the GEO database. For molecular changes in the course of T/HS acute lung injury, the differentially expressed genes (DEGs) between the experimental and control groups of T/HS ALI were analyzed to obtain a potential disease gene that may cause T/HS acute lung injury. The results showed that we had a total of 1254 differential genes (Table S1). These differential genes have potential effects on the development of T/HS acute lung injury and need further analysis to support it.

3.2. Identify T/HS Acute Lung Injury Functional Modules. The interrelationship between differential genes can be observed through a protein interaction network. Then, based on the modular analysis method, these genes clustered expression in PPIs. The clustering of T/HS acute lung injury genes into modules is beneficial to observe the complex interactions among these genes from expression behavior. Finally, we identified 17 T/HS acute lung injury dysfunction modules (Figure 1). The modular analysis of 17 oral tumor height interaction modules, the outer circle of different color dot groups represents the genes of 17 different modules.

3.3. High-Level Interaction Module to Characterize Potential Dysfunction of T/HS Acute Lung Injury. GO and KEGG pathway analyses were performed on 17 modules, 28,920 BP terms, 2680 CC terms, and 4520 MF terms and 1354 KEGG pathways were obtained (Table S2, Figures 2(a), 2(b)). These functions were found to focus on biological processes such as the reaction to lipopolysaccharide, the reaction to bacterial-
derived molecules, the reaction to metal ions, and the reaction with ruthenium-containing compounds. The enrichment results of the KEGG reflect that the disease-differentiated genes are enriched in amino acid-related pathways such as arginine biosynthesis and phenylalanine metabolism. The high-count results showed that the genes in module 9 significantly regulated the response of the bacterial-derived molecules and the lipopolysaccharide reaction pathway.

3.4. TF and ncRNA Driving T/HS Acute Lung Injury Progression. Transcriptional and posttranscriptional regulation of genes has long been recognized as a key regulator of disease development and progression, while transcription factors and ncRNAs are regulators of common expression and function. Although the regulation of TF and ncRNA on T/HS acute lung injury metastasis has been valued by many biologists. Thus, we performed a pivotal analysis targeted to core functional modules to explore key transcriptional regulators in the regulation of T/HS ALI. A total of four ncRNAs involved four ncRNA-module regulatory pairs (Table S3) and 132 TFs involved 75 TF-module regulatory pairs (Table S4). The above results were introduced into the Cytoscape to display the regulate network (Figures 3(a) and 3(b)). We then analyzed the number of pivoted
regulate modules, and ncRNA (miR-290, miR-30c-5p, miR-195-5p and miR-1-3p, etc.) and TF (Jun, Ar and Atf1, etc.) were most regulated. These TFs and ncRNAs may regulate the pathogenesis of T/HS ALI by mediating dysfunctional module genes of T/HS acute lung injury.

4. Discussion

Acute lung injury (ALI) caused by traumatic hemorrhagic shock (T/HS) is recognized as a complex clinical acute respiratory syndrome. The measures taken by clinical medicine are still in the early stage of defense, and it is difficult to cope with sudden infections in surgical treatment. Although medical scientists have explored the etiology of T/HS acute lung injury in various aspects, the underlying pathogenesis is still unclear. Based on this, this study explores the process of disease formation through a comprehensive and in-depth analysis of the dysfunction module of T/HS acute lung injury. At the module level, we note that the highly interactive dysfunction module is mainly involved in the reaction of

Figure 3: The regular network. (a) The regulation of ncRNA pivot regulators on dysfunction modules. The blue circle represents the module. The purple circle represents the ncRNA of the regulatory module. (b) The regulation of the TF pivot regulator on dysfunction modules. The blue circle represents the module. The yellow circle represents the transcription factor of the regulatory module. The size of the circle represents the number of modules that are regulated. The larger the circle, the more the number of controls.
mediates apoptosis, in bronchial epithelial cells of chronic diseases such as pneumonia [25]. For further investigation of pulmonary infection, [14, 17], Gram-negative bacterial outer membrane lipopolysaccharide (LPS) under the action of the most significant infection, during human inhalation, the dose will be affected dependently causing fever, chills, and bronchoconstriction [26]. It acts as an inflammatory infectious agent mediating pulmonary endothelial barrier dysfunction with reversible cellular deformation and endothelial gap formation [27]. At the molecular level, microRNAs (miRNAs) regulate gene expression during transcription, posttranscription, and inflammatory responses [28]. However, the function in T/HS acute lung injury was unknown. This study is based on hyper-geometric testing to identify key miRNAs that regulate core functional modules. Finally, four miRNAs that significantly regulate the progression of T/HS acute lung injury diseases, such as miR-195-5p, miR-30c-5p, miR-1-3p, and miR-290, were obtained. MiR-195-5p is targeted by FGFR1, which mediates apoptosis, in bronchial epithelial cells of chronic obstructive pulmonary disease.

5. Conclusion

Our study explores the process of disease formation through a comprehensive and in-depth analysis of the dysfunction module of T/HS acute lung injury. At the module level, we note that the highly interactive dysfunction module is mainly involved in the reaction of ruthenium-containing compounds, the reaction to corticosteroids, the reaction to organophosphates, the reaction to glucocorticoids, and other inorganic salts and organic compounds.

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Supplementary Materials

Supplementary 1. Table S1: differential expression of genes in different samples.

Supplementary 2. Table S2: functional and signaling pathway enrichment results of module gene involvement.

Supplementary 3. Table S3: the ncRNA-pivot that regulates modular genes.

Supplementary 4. Table S4: the TF-pivot that regulates modular genes.

References

[1] T. C. Allen and A. Kurdowska, “Interleukin 8 and acute lung injury,” Archives of Pathology & Laboratory Medicine, vol. 138, no. 2, pp. 266–269, 2014.

[2] J. A. Bonitz, J. Y. Son, B. Chandler et al., “A sphingosine-1 phosphate agonist (FTY720) limits trauma/hemorrhagic shock-induced multiple organ dysfunction syndrome,” Shock, vol. 42, no. 5, pp. 448–455, 2014.

[3] R. S. Nanchal and J. D. Truwit, “Recent advances in understanding and treating acute respiratory distress syndrome,” Recent advances in understanding and treating acute respiratory distress syndrome, vol. 7, p. 1, 2018.

[4] Q. Lu, D. Z. Xu, M. T. Davidson, G. Hasko, and E. A. Deitch, “Hemorrhagic shock induces endothelial cell apoptosis, which is mediated by factors contained in mesenteric lymph,” Critical Care Medicine, vol. 32, no. 12, pp. 2464–2470, 2004.

[5] M. Kojima, T. W. Costantini, B. P. Eliceiri, T. W. Chan, A. Baird, and R. Coimbra, “Gut epithelial cell-derived exosomes trigger posttrauma immune dysfunction,” Journal of Trauma and Acute Care Surgery, vol. 84, no. 2, pp. 257–264, 2018.

[6] M. Kojima, J. A. Gimenes-Junior, T. W. Chan et al., “Exosomes in postshear mesenteric lymph are key mediators of acute lung injury triggering the macrophage activation via Toll-like receptor 4,” The FASEB Journal, vol. 32, no. 1, pp. 97–110, 2018.

[7] C. P. Sodhi, H. Jia, Y. Yamaguchi et al., “Intestinal epithelial TLR-4 activation is required for the development of acute lung injury after hemorrhagic shock/hemorrhagic shock via the release of HMGB1 from the gut,” Journal of Immunology, vol. 194, no. 10, pp. 4931–4939, 2015.

[8] J. E. Fishman, S. U. Sheth, G. Levy et al., “Intraluminal nonbacterial intestinal components control gut and lung injury after trauma hemorrhagic shock,” Annals of Surgery, vol. 260, no. 6, pp. 1112–1120, 2014.

[9] S. Thacker, A. Moran, M. Lionakis et al., “Restoration of lung surfactant protein D by IL-6 protects against secondary pneumonia following hemorrhagic shock,” The Journal of Infection, vol. 68, no. 3, pp. 231–241, 2014.

[10] B. Koscos, A. Trepakov, B. Csoka et al., “Stimulation of A2B adenosine receptors protects against trauma-hemorrhagic shock-induced lung injury,” Purinergic Signal, vol. 9, no. 3, pp. 427–432, 2013.

[11] Y. Teng, C. Feng, Y. Liu, H. Jin, Y. Gao, and T. Li, “Anti-inflammatory effect of tranexamic acid against trauma-hemorrhagic shock-induced acute lung injury in rats,” Experimental Animals, vol. 67, no. 3, pp. 313–320, 2018.

[12] S. Langness, T. W. Costantini, K. Morishita, B. P. Eliceiri, and R. Coimbra, “Modulating the biologic activity of mesenteric lymph after traumatic shock decreases systemic inflammation and end organ injury,” PLoS One, vol. 11, no. 12, article e0168322, 2016.

[13] S. Bulow, L. Zeller, M. Werner et al., “Bactericidal/permeability-increasing protein is an enhancer of bacterial lipoprotein recognition,” Frontiers in Immunology, vol. 9, article 2768, 2018.

[14] B. Zou, W. Jiang, H. Han et al., “Acyloxyacyl hydrolase promotes the resolution of lipopolysaccharide-induced acute lung injury,” PLoS Pathogens, vol. 13, no. 6, article e1006436, 2017.
