Genospecies of *Borrelia burgdorferi* sensu lato detected in 16 mammal species and questing ticks from northern Europe

Atle Mysterud\(^1,2\), Vetle M. Stigum\(^1\), Ryanne I. Jaarsma\(^3\) & Hein Sprong\(^3\)

Lyme borreliosis is the most common vector-borne zoonosis in the northern hemisphere, and the pathogens causing Lyme borreliosis have distinct, incompletely described transmission cycles involving multiple host groups. The mammal community in Fennoscandia differs from continental Europe, and we have limited data on potential competent and incompetent hosts of the different genospecies of *Borrelia burgdorferi* sensu lato (sl) at the northern distribution ranges where Lyme borreliosis is emerging. We used qPCR to determine presence of *B. burgdorferi* sl in tissue samples (ear) from 16 mammalian species and questing ticks from Norway, and we sequenced the 5S–23S rDNA intergenic spacer region to determine genospecies from 1449 qPCR-positive isolates obtaining 423 sequences. All infections coming from small rodents and shrews were linked to the genospecies *B. afzelii*, while *B. burgdorferi* sensu stricto (ss) was only found in red squirrels (*Sciurus vulgaris*). Red squirrels were also infected with *B. afzelii* and *B. garinii*. There was no evidence of *B. burgdorferi* sl infection in *moose* (*Alces alces*), red deer (*Cervus elaphus*) or roe deer (*Capreolus capreolus*), confirming the role of cervids as incompetent hosts. In infected questing ticks in the two western counties, *B. afzelii* (67% and 75%) dominated over *B. garinii* (27% and 21%) and with only a few recorded *B. burgdorferi* ss and *B. valaisiana*. *B. burgdorferi* ss were more common in adult ticks than in nymphs, consistent with a reservoir in squirrels. Our study identifies potential competent hosts for the different genospecies, which is key to understand transmission cycles at high latitudes of Europe.

Understanding the transmission cycles of pathogens circulating in ecosystems is challenging for multi-host systems\(^1\). A competent host is defined as a host with the ability to transmit parasites or pathogens such that they effectively infect another host or vector\(^2\). The numerical balance between competent (or transmission/reservoir) hosts versus incompetent hosts is key to determine the disease hazard, as formulated in the biodiversity buffers disease or dilution hypothesis\(^3\)–\(^5\). What constitutes an incompetent or competent host differs across pathogens. An important step to understand disease hazard is hence to determine for a given pathogen which hosts are competent and incompetent in different ecosystems. Among the more complicated enzootic transmission cycles are the ones linked to the generalist ticks of the Ixodidae family in the northern hemisphere\(^6\)–\(^8\). These generalist ticks transmit a range of pathogens among which the genospecies forming the *Borrelia burgdorferi* sensu lato (sl) complex causing Lyme borreliosis are the most common and widespread.

The general pattern of the transmission cycle of *B. burgdorferi* sl is well-known both in North America, Asia and Europe\(^6\)–\(^9\). The number of nymphs infected with *B. burgdorferi* sl depends on how many tick larvae get their first blood meal on an infected small vertebrate host\(^10\). Co-feeding transmission is less important for this group of pathogens, though considerable more for other pathogens like tick-borne encephalitis virus\(^11\). However, beyond this commonality, there is much specificity in terms of dominating hosts both across and within continents\(^12\). The *B. burgdorferi* sensu stricto (ss) pathogen probably migrated from Europe to North America some 60000 years ago\(^13\) and this genospecies dominates in North America and evolved into strains infecting birds and small

1Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, NO-0316, Oslo, Norway. 2Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium. 3Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands. Correspondence and requests for materials should be addressed to A.M. (email: atle.mysterud@ibv.uio.no)
mammals. In Europe, the main pathogenic genospecies to humans are *B. afzelii* linked mainly to small rodents, and the *B. garinii* linked mainly to birds, while *B. burgdorferi* ss is less common and has been linked to red squirrels (*Sciurus vulgaris*) in Switzerland\(^{14}\), France\(^5\) and gray squirrels (*Sciurus carolinensis*) in the UK\(^{16}\). However, the competent hosts of the genospecies are partly overlapping and not fully described. Evidence is accumulating that the different genospecies cause different clinical symptoms in humans\(^{17–21}\). It is therefore important to understand the transmission dynamics of each of the different genospecies in different regions.

Ticks are expanding their geographical distribution in northern Europe\(^{22,23}\), and Lyme disease incidence is documented to increase in both Norway\(^{24,25}\) and Finland\(^{26}\). The community of mammals in Fennoscandia is different from continental Europe. This is due to both the colder climate and the post-glacial colonization routes both from south and from northeast via the landbridge towards Russia\(^{27}\). We have limited data on the pattern of genospecies transmission hosts in these northern ecosystems. We here determined presence of different genospecies in questing ticks as a basis to understand the hazard of each genospecies known to cause different clinical manifestations.

Results

Infection of *B. burgdorferi* sl was found in all rodent and shrew species except in the single house mouse (*Mus musculus*) found (Table 1). With the exception of red squirrels, all sequences of the IGs in rodents and shrews were consistent with infections of *B. afzelii*. In 17 red squirrels, we found high infection rates of *B. burgdorferi* sl (88%), of which 9 sequences yielded four *B. afzelii*, two *B. garinii* and three *B. burgdorferi* ss. Infection of *B. burgdorferi* sl was also found in red fox (*Vulpes vulpes*) and badger (*Meles meles*), but not in the single hare (*Lepus timidus*) included. Attempts to determine the genospecies in red fox and badger were unsuccessful. No infection of *B. burgdorferi* sl was found in 111 moose, 28 roe deer or 141 red deer (Table 1). In the eastern region, the infection levels were higher in squirrels (*Z* = 4.060, *P* < 0.001) and lower in the Eurasian pygmy shrew (*Sorex minutus*) (*Z* = −2.922, *P* = 0.003) compared to the common shrew (*S. araneus*), the latter had similar infection levels as the bank vole (*Myodes glareolus*) (*Z* = 0.206, *P* = 0.837) and the wood mouse (*Apodemus sylvaticus*) (*Z* = 0.184, *P* = 0.854).

In questing nymphal ticks with infection of *B. burgdorferi* sl (Table 2), the genospecies *B. afzelii* dominated both in the Sogn & Fjordane (66.7%) and Møre & Romsdal (75.2%) county in the western region, with *B. garinii* being common in both Sogn & Fjordane (26.5%) and Møre & Romsdal (21.0%), while *B. valaisiana* was less commonly found (Sogn & Fjordane: 6.1%, Møre & Romsdal: 3.8%). Sample sizes for the eastern region was low, and yielded only *B. afzelii* in nymphs (n = 8). The same main geographic pattern in terms of genospecies distribution was found in adult male and female ticks. The exception was *B. burgdorferi* ss that were found in 6 adult ticks and

Common name	Latin name	Region	n	B. burgdorferi sl	Number of IGS sequences				
				Neg	Pos	Prev	B. afzelii	B. garinii	B. burgdorferi ss
Yellow-necked mouse	Apodemus flavicollis	SF	19	18	1	0.05			
Wood mouse	Apodemus sylvaticus	SF	76	68	8	0.11			
Field mouse	Microrts agrestis	SF	41	30	11	0.27	6		
House mouse	Mus musculus	SF	1	1	0	0			
Bank vole	Myodes glareolus	SF	64	56	8	0.13	1		
Water shrew	Neomys fodiens	SF	15	14	1	0.07			
Common shrew	Sorex araneus	SF	554	519	35	0.06	12		
Taiga shrew	Sorex isodon	SF	157	154	3	0.02	1		
Eurasian pygmy shrew	Sorex minutus	SF	55	55	0	0			
		East	53	51	2	0.04			
Red fox	Vulpes vulpes	East	17	15	2	0.88	4	2	3
Red squirrel	Sciurus vulgaris	East	14	1	0	0			
Badger	Meles meles	East	1	5	1	0.17			
Hare	Lepus timidus	East	1	1	0	0			
Roe deer	Capreolus capreolus	SF	126	126	0	0			
Red deer	Cervus elaphus	South	15	15	0	0			
Moose	Alces alces	South	111	111	0	0			

Table 1. The sample sizes (n) and infection prevalence levels in mammals collected from eastern, southern and western Norway. Neg/Pos: negative/positive for *B. burgdorferi* sl. Prev: prevalence. SF: Sogn and Fjordane county. East: Østfold and Akershus county. South: Telemark and Vestfold county. Locations are given in Fig. 1.
one nymphal tick overall, and a logistic regression confirmed a higher frequency of *B. burgdorferi* ss in adults than nymphs compared to *B. afzelii* (*Z* = −2.071, *P* = 0.044).

To ensure that the *B. garinii* classification based on sequencing of 5S–23S rDNA intergenic spacer region (IGS) from positive samples was correct and not included *B. bavariensis* (see Methods), we also ran another genetic marker, namely *pepX*, on the 83 positive samples for *B. garinii*, of which 51 yielded successful sequences. We confirmed *B. garinii* in 49 of the 51 samples, while two cases (one red squirrel in Akershus, one tick nymph in Sogn & Fjordane) came out as *B. afzelii*, likely due to infection with both *B. garinii* and *B. afzelii* (see Discussion).

Figure 1. A map of southern Norway with origin of samples of mammal tissue and questing ticks. The ’roe deer & mammal east’ site include red fox, badger, hare and red squirrel in addition to small rodents and shrews, while ’small mammals west’ includes small rodents and shrews (Table 1).
Table 2. An overview of *B. burgdorferi* s.l genospecies in infected questing *I. ricinus* ticks in % (n) based on the IGS sequences from Sogn & Fjordane (SF), Møre & Romsdal (MR) and Akershus/Ostfold (east) counties of Norway. n-tot = total number of questing ticks; n-pos = number of *B. burgdorferi* s.l-positive ticks; n-seq = number of positive samples that was successfully sequenced.

Life stage	Region	n-tot	n-pos	n-seq	B. afzelii	B. garinii	B. burgdorferi s.s	B. valaisiana
Nymphs	SF	4857	567	147	66.7% (98)	26.5% (39)	0.7% (1)	6.1% (9)
	MR	1771	245	105	75.2% (79)	21.0% (22)	0	5.8% (4)
	East	872	99	8	100% (8)	0	0	0
Adult males	SF	626	74	15	66.7% (10)	20.0% (3)	6.7% (1)	6.7% (1)
	MR	264	35	16	81.3% (13)	12.5% (2)	6.3% (1)	0
	East	109	16	0			0	
Adult females	SF	624	91	35	65.7% (23)	20.0% (7)	5.7% (2)	8.6% (3)
	MR	223	34	17	70.6% (12)	23.5% (4)	0	5.9% (1)
	East	91	22	10	40.0% (4)	40.0% (4)	20.0% (2)	0

Discussion

Determining the competence of vertebrate hosts to pathogens is one of several keys necessary to estimation of disease hazard. A competent host is defined by the ability to be a source of infection to ticks4,28. A competent host must be fed on by infected ticks and take up a critical number of the pathogen, and it must allow the pathogen to multiply and to pass on to new ticks29. Hence, establishing infection is necessary, but on its own does not prove amplification of a pathogen in a host or transmission to a vector. In some cases, DNA from *B. burgdorferi* s.l can be found without evidence of amplification or transmission to vector ticks29, and PCR cannot separate live and dead pathogen DNA. Several other technical issues, such as the sensitivity and specificity of the PCR, tissue tropisms of the pathogen and timing of host collection can also impede the identification of competent hosts. Although the absence of infection can confirm a vertebrate as an incompetent host, lack of pathogen detection and dead pathogen DNA. Several other technical issues, such as the sensitivity and specificity of the PCR, tissue tropisms of the pathogen and timing of host collection can also impede the identification of competent hosts.

A new potential competent host of *B. afzelii*. Due to its medical importance and relevance of determining disease hazard, there are a huge number of studies reporting frequency of genospecies of *B. burgdorferi* s.l in Europe. The dominating genospecies in questing ticks is the genospecies *B. afzelii* almost universally across continental Europe30, while *B. garinii* dominates in the UK31. Our estimates of 75% and 67% *B. afzelii* in the two western counties are close to previous estimates from Norway both in south with 62%32, 86% in east and south33, and 68% further north of the western study site reported here34. This main picture was also found in Sweden35. The *B. garinii* is typically the second most common genospecies mainly linked to birds36,37. Our estimated prevalence in *B. burgdorferi* s.l infected ticks of 21% and 26% *B. garinii* in the two western counties are also close to previous estimates of 23.4% *B. garinii* in south34, 12% in east and south35 and 20.8% in west36 of Norway. Further, as reported in these studies, we also found a low prevalence of the bird-borne, but less pathogenic, *B. valaisiana.*

The commonness of *B. afzelii* in ticks is linked to the high abundance and spread of small mammals, which is its main reservoir. As commonly reported, the bank vole and the wood mouse are dominant hosts of larvae and have often high infection levels with *B. afzelii*. Wood mice and yellow-necked mice are also considered to be important hosts of *B. burgdorferi* s.l in urban environments40. As we reported earlier41, the common shrew is abundant and important in feeding tick larvae in Norway, as also found in Scotland42. Based on this study, we can add the taiga shrew (*S. isodon*) to the list of potential competent hosts for *B. afzelii* in Europe. The taiga shrew has larval tick loads similar to the common shrew (own unpublished data), but prevalence of *B. burgdorferi* s.l was lower (Table 1). This is a rare species in Norway and Red Listed as 'data deficient'. However, the species is common in Finland43 and further east in Russia. Therefore, the host species involved in transmission may differ in the north relative to continental Europe. There is also a high level of endemism in the Mediterranean small mammals44, suggesting that species involved in circulation of *B. afzelii* differs with latitude.

Medium-sized hosts infections. Squirrels are sufficiently large in size to be commonly bitten by nymphal ticks14,16, which is required to obtain infections of *B. burgdorferi* s.l8. Their movements on the ground make them regularly exposed to ticks. We indeed found a high infection prevalence in red squirrels. Interestingly, we found infection of three genospecies in red squirrels: *B. afzelii*, *B. burgdorferi* ss, and *B. garinii*. Squirrels seem to regularly be infected by several genospecies of *B. burgdorferi* s.l. In Switzerland, a mixture of *B. afzelii* and *B. burgdorferi* ss was found in red squirrels14. In France, prevalence of 18.9% *B. burgdorferi* s.s., 11.9% *B. afzelii*, and 3.5% *B. garinii* was found in red squirrels15. All four genospecies (*B. afzelii*, *B. burgdorferi* ss, *B. garinii*, *B. valaisiana*) that occur in the United Kingdom were detected in gray squirrels, and the commonly bird-associated *B. garinii* was most common in the gray squirrels16. Our few reports of *B. burgdorferi* ss in questing ticks, and mostly in adult ticks, are consistent with a reservoir like squirrels typically having nymphs attached and which are less abundant than small mammals. Another study at the west coast of Norway also found *B. burgdorferi* ss more commonly in adult than nymphal ticks16.
Infection with several genospecies seem common in medium-sized mammals. More *B. burgdorferi* sl genospecies were found in Siberian chipmunks (*Tamias sibiricus*) than in the native bank vole. We only retrieved one hare and it was without infection, but infection of both *B. afzelii* and *B. burgdorferi* ss in hare was documented in south Norway. Hares were also infected with *B. garinii* in Sweden. We also documented infection in badger and red fox, but prevalence was low (Table 1). Infection of *B. burgdorferi* sl has previously been found in red fox, and badger was reported infected with both *B. afzelii* and *B. valaisiana*. Medium-sized mammals may hence potentially play roles for transmission of multiple genospecies. Hedgehogs are also important for circulation of *B. bavariensis* and that this genospecies have not been found in Norway may be due to the low population numbers of hedgehogs.

Amplification and the challenge of co-infections. A quite high proportion of our positive *B. burgdorferi* sl samples did not amplify (Tables 1 and 2), which is a requirement in our approach for determining genospecies. The sequencing success decreases with increasing Ct values (i.e., the number of PCR cycles before getting a positive signal). However, only 0.35% (6 of our 865 samples) had Ct values above 40. We cannot identify the cause of lack of amplification with certainty. The most straightforward explanation is that our qPCR-based assay is more sensitive than the conventional PCR. It is also possible that infections with multiple *B. burgdorferi* sl genospecies can play a role. Indeed, typing using the pepX marker of our *B. garinii*-positive samples based on IGS (see Methods) came up with two *B. afzelii* (one in a red squirrel and one in a tick nymph). As *B. garinii* and *B. afzelii* are readily separated by both methods, this is indicative of co-infection. The aim of our study was not to quantify extent of co-infections, but these kind of co-infections may cause detection bias if amplification success by PCR differs between genospecies, or when *B. burgdorferi* sl genospecies have differences in tissue tropism. That we in the small sample of squirrels identified all 3 genospecies using IGS alone would suggest this was not a strong bias. It is therefore likely a robust result that only *B. afzelii* was detected in smaller mammals with a much larger sample size, and that this was not due to failure of *B. burgdorferi* ss to amplify. Multiple infections in medium-sized hosts may provide a platform for genetic re-arrangements between genospecies, becoming a potential ‘melting-pot’.

It can also cause co-infection of genotypes of *B. burgdorferi* sl in ticks already at the nymphal stage.

Cervids as incompetent hosts. A controversial issue is the extent to which biodiversity dilutes disease in general, and how important incompetent hosts are for Lyme borreliosis hazard. Several lines of evidence have been used to infer that cervids most likely are incompetent hosts in the enzootic cycle of *B. burgdorferi* sl. Commonly, ticks engorged on cervids are used as evidence. However, ticks removed from cervids often contain a low level of infection with *B. burgdorferi* sl, which may be due to a number of different mechanisms. In our sizeable sample, the complete lack of detection suggest using ear skin infections are likely better in substantiating that cervids are incompetent hosts than using ticks feeding on cervids. The absence of infection are evidence that cervids can play a role. Indeed, typing using the pepX marker of our *B. garinii*-positive samples based on IGS (see Methods) came up with two *B. afzelii* (one in a red squirrel and one in a tick nymph). As *B. garinii* and *B. afzelii* are readily separated by both methods, this is indicative of co-infection. The aim of our study was not to quantify extent of co-infections, but these kind of co-infections may cause detection bias if amplification success by PCR differs between genospecies, or when *B. burgdorferi* sl genospecies have differences in tissue tropism. That we in the small sample of squirrels identified all 3 genospecies using IGS alone would suggest this was not a strong bias. It is therefore likely a robust result that only *B. afzelii* was detected in smaller mammals with a much larger sample size, and that this was not due to failure of *B. burgdorferi* ss to amplify. Multiple infections in medium-sized hosts may provide a platform for genetic re-arrangements between genospecies, becoming a potential ‘melting-pot’.

It can also cause co-infection of genotypes of *B. burgdorferi* sl in ticks already at the nymphal stage.

Material and Methods

Study areas. The study areas are spread across the southern part of Norway (Fig. 1). The western coast has a warmer and rainier climate compared to eastern areas of Norway. The location of samples and the main habitat types are given in Fig. 1. A more detailed description of the main habitat types can be found in ref. 24.

Small mammal trapping. Small mammals were captured in spring and fall during 2014–16 in Vestby municipality, Akershus county and 2013–16 in Forde and Askvoll municipalities, Sogn & Fjordane county, Norway. Small mammals captured were sacrificed (cervical dislocation) and transferred to an individual zip-lock plastic bag, marked with station number, trap number and date. All bags were stored in a freezer for later observation. The temporal and regional variation in tick load and infection prevalence of *B. burgdorferi* sl will be presented elsewhere (own unpublished results).

Medium and large sized mammals. We used different methods to sample as many different species of mammals as possible. In Vestby municipality in Akershus county and surrounding areas, we sampled road-kills of roe deer, badger, fox, red squirrels and hare from spring 2016. Ears from red deer and moose were sampled in connection with ongoing surveillance for Chronic Wasting Disease fall 2016. For these data, hunters provided full heads to the Norwegian Food Safety Authority, which removed an ear that was then frozen and later transported to CEES, University of Oslo. We obtained further red squirrels from hunting (August 2016).

Ethics statement. Permissions to capture rodents and shrews and hunt red squirrels outside of hunting season were given by the Norwegian Environment Agency. Small mammals captured were sacrificed on site (see above). The licence by Norwegian Environment Agency is the only requirement to conform to the Norwegian laws and regulations.
Questing ticks. Questing ticks were sampled regularly along 34 transects in the Sogn & Fjordane county and along 42 transects and 10 other plots in Møre & Romsdal county, western Norway.16,57. The temporal and regional variation in prevalence of B. burgdorferi sl in questing nymphs has been presented elsewhere.13,58. The questing ticks were all identified to I. ricinus based on morphology.

DNA extraction. Tissue samples from mammals were derived from the ears, sometimes with surrounding skin for the smallest shriveled species. The DNA was extracted with Qiagen blood and tissue kit according to the manufactures recommendations. To easier prepare a high number of samples that later could be extracted, we froze the samples after the overnight incubation with ATL buffer and proteinase K. A total of 94 samples were extracted at the time, leaving two spaces empty for controls. The DNA was stored at −80°C till later use.

qPCR protocol. The extracted DNA were screened for B. burgdorferi sl by realtime PCR (qPCR) in a duplex29 (with A. phagocytophilum, not reported here), at CEES, UiO as in previous work30,31, following Allender et al.32. We used the forward primer CGAGTCTTTAAGGCGGTATTAGT, the reverse primer GCTTCAGCCGTGCGCATAATAG and the probe [6FAM]AGATGATGATAGCCGGAACGAGTG[TAMRA] to target the 235 rRNA gene of B. burgdorferi with the fluorescent colour FAM. qPCR reactions were done with a total volume of 10 µl, using 1 µl of DNA and 9 µl of mastermix. A 96 well plate was filled with 94 samples, one positive control and one negative control. A two step program was used on LightCycler 96. Starting with pre incubation of 600 s of 95°C followed by 50 cycles of two step amplification with 15 s of 95°C and 60 s of 60°C.

Sequencing of 5S–23S rDNA intergenic spacer region (IGS) from positive samples. The DNA from the samples that came up positive from the qPCR, were amplified by conventional PCR, targeting the 5S-23S ribosomal RNA intergenic spacer region (IGS) from positive samples. The cluster analyses were performed in Bionumerics 7.4 (Applied Math, Belgium) as described previously62.

Sequencing of pepX of B. garinii positive samples. As it is not always simple to discriminate between B. bavariensis and B. garinii based on IGS data, the nested PCR pepX was done for confirmation following Margos et al.63.

We used the forward primer pepXF362 (5′-ACAGAGACTTAAGGCTGAC-3′) and reverse primer pepXR1172 (5′-GGTCTAATGTCATTGTTTTC-3′) for the initial PCR, and added 1 µl of this product to the nested PCR. The nested primers are the forward primer pepXF449 (5′-TATTTCAACCTGTGAATCC-3′) and reverse primer pepXR1115 (5′-GCTGGCTGAAAGAGGATTGG-3′).

A total of 10 µl of the nested product was analyzed using the QIAxcel DNA High Resolution Kit on the QIAxcel Advanced System (Qiagen, Hilden, Germany 2018), and samples with a clear band were sent to sequencing by the firm BaseClear. The chromatographs of the sequences were visually inspected and the primers sites were trimmed in Bionumerics. Our sequences were used to identify the B. burgdorferi sl genospecies by comparison to sequences of known genospecies from GenBank (See Supplementary Table 1). The cluster analyses were performed in Bionumerics 7.4 (Applied Math, Belgium) as described previously62.

Statistical analysis. We used logistic regression in R vs. 3.4.4 to analyse variation in prevalence of B. burgdorferi sl with mammal species as a factor. However, the presence of species was not balanced across counties, so that we cannot run a full model. For the most common small mammals, we were mainly interested in comparing infection levels relative to medium-sized mammals. Due to the issue of perfect separation for some species (no positives in cervids), we initially applied a one-step-estimator (maxit = 1), but failed to get convergence. We therefore ended up with an analysis restricted to the eastern region and including rodents and shrews, except water shrew due to low sample size. For questing ticks, we ran a logistic regression to test if genospecies B. afzelii and B. burgdorferi ss in questing ticks was found equally often in nymphs or adults (males and females combined) and with county included as a 3-level factor variable.

Data Availability All data are reported in Tables 1 and 2 within the paper. Sequences obtained in this study are in GenBank with accession numbers MK108437 to MK108914.

References
1. Buhnerkempe, M. G. et al. Eight challenges in modelling disease ecology in multi-host, multi-agent systems. Epidemics 10, 26–30 (2015).
2. Martin, L. B., Burgan, S. C. & Gervasi, S. S. Host competence: An organismal trait to integrate immunology and epidemiology. icb 56, 1225–1237 (2016).
3. Keesing, F. et al. Hosts as ecological traps for the vector of Lyme disease. Proc R Soc Lond Ser B 276, 3911–3919 (2009).
4. LoGiudice, K. et al. Impact of host community composition on Lyme disease risk. Ecol 89, 2841–2849 (2008).
5. LoGiudice, K., Ostfeld, R. S., Schmidt, K. A. & Keesing, F. The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk. Proc Natl Acad Sci USA 100, 567–571 (2003).
6. Radolf, J. D., Caimano, M. J., Stevenson, B. & Hu, L. T. Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. *Nature Rev Microbiol* 10, 87–99 (2012).

7. Franke, J., Hildebrandt, A. & Dorn, W. Exploring gaps in our knowledge on Lyme borreliosis spirochaetes-updates on complex heterogeneity, ecology, and pathogenicity. *Ticks Tick Borne Dis* 4, 11–25 (2013).

8. Coipan, E. C. & Sdrolias, M. *In Ecology and prevention of Lyme disease* (eds Brats, M. A. H., Van Wieren, S. E., Tauben, W. & Sprod, H.) 41–61 (Wageningen Academic Publishers, Wageningen, 2016).

9. Kurtenbach, K. et al. Fundamental processes in the evolutionary ecology of Lyme borreliosis. *Nat Rev Microbe* 4, 660–669 (2006).

10. Ostfeld, R. S., Canham, C. D., Oggenfuss, K., Winchcombe, R. J. & Keesing, F. Climate, deer, rodents, and acorns as determinants of variation in Lyme disease risk. *Plos Biol* 4, 1058–1068 (2006).

11. Randolph, S. E., Gern, L. & Nuttall, P. A. Co-feeding ticks: epidemiological significance for tick-borne pathogen transmission. *Parasitol Today* 22, 472–479 (1996).

12. Kilpatrick, A. M. et al. Lyme disease: ecology in a changing world: consensus, uncertainty and critical gaps for improving control. *Phil Trans R Soc London Ser B* 372, 20160117 (2017).

13. Walter, K. S., Carpi, G., Caccone, A. & Diuk-Wasser, M. A. Genomic insights into the ancient spread of Lyme disease across North America. *Nature. Ecol Ecol Evol* 1, 1569–1576 (2017).

14. Humair, P. F. & Gern, L. Relationship between *Borrelia burgdorferi* sensu lato species, red squirrels (*Sciurus vulgaris*) and *Ixodes ricinus* in enzootic areas in Switzerland. *Acta Tropica* 69, 213–227 (1998).

15. Pisanu, B. et al. High prevalence of *Borrelia burgdorferi* s.l. in the European red squirrel *Sciurus vulgaris* in France. *Ticks Tick Borne Dis* 5, 1–6 (2014).

16. Millins, C. et al. An invasive mammal (the gray squirrel, *Sciurus carolinensis*) commonly hosts diverse and atypical genotypes of the zoonotic pathogen *Borrelia burgdorferi* sensu lato. *Appl Environ Microbiol* 81, 4236–4245 (2015).

17. Jahfari, S. et al. Enzootic origins for clinical manifestations of Lyme borreliosis. *Infect Genet Evol* 49, 48–54 (2017).

18. Jungnick, S. et al. *Borrelia burgdorferi* sensu stricto and *Borrelia afzelii*: Population structure and differential pathogenicity. *Int J Med Microbiol* 305, 673–681 (2015).

19. Logar, M. et al. Comparison of Erythema migrans caused by *Borrelia afzelii* and *Borrelia garinii*. *Infection* 32, 15–19 (2004).

20. Stanev, G. & Reiter, M. The expanding Lyme Borrelia complex – clinical significance of genomic species? *Clin Microbiol Infect* 17, 487–493 (2011).

21. Hanincová, K. et al. Multilocus sequence typing and multivalutal alignment in range of *Ixodes ricinus* at its northern distribution limit. *Parasite Vector* 4, 84 (2011).

22. Jaenson, T. G. T. & Lindgren, E. The range of *Ixodes ricinus* and the risk of contracting Lyme borreliosis will increase northwards when the vegetation period becomes longer. *Ticks Tick Borne Dis* 2, 44–49 (2011).

23. Mysterud, A. et al. Contrasting emergence of Lyme disease across ecosystems. *Nature Comm* 7, Article 11882 (2016).

24. Sajanti, E. et al. Lyme Borreliosis in Finland, 1995–2014. *Acta Zool Fenn* 181, 91–101 (Wageningen Academic Publishers, Wageningen, 2016).

25. Marsot, M. et al. *Tick-borne encephalitis virus*, *Borrelia burgdorferi*, *Neuroborreliosis* and *Neuroborreliosis* in enzootic areas in Switzerland. *Parasite Vector* 9, 387 (2016).

26. Hofmeester, T. R. et al. Cascading effects of predator activity on tick-borne disease risk, *Proc R Soc Lond Ser B* 284 (2017).

27. Hofmeester, T. R. et al. Few vertebrate species dominate the *Borrelia burgdorferi* s.l. life cycle. *Environ Res Lett* 11, 043001 (2016).

28. Kjelland, V., Stuen, S., Skarpaas, T. & Sletten, A. Prevalence and genotypes of *Borrelia burgdorferi* sensu lato infection in *Ixodes ricinus* ticks in southern Norway. *Scand J Infect Dis* 42, 579–588 (2010).

29. Kjelland, V. et al. *Tick-borne encephalitis virus*, *Borrelia burgdorferi sensu lato*, *Borrelia miyamotoi*, *Anaplasma phagocytophilum* and *Candidatus Neoehrlichia mikurensis* in *Ixodes ricinus* ticks collected from recreational islands in southern Norway. *Ticks Tick Borne Dis* 9, 1098–1102 (2018).

30. Tveten, A. K. Prevalence of *Borrelia burgdorferi sensu stricto*, *Borrelia afzelii*, *Borrelia garinii*, and *Borrelia valassiana* in *Ixodes ricinus* ticks from the northwest of Norway. *Scand J Infect Dis* 45, 681–687 (2013).

31. Jaenson, T. G. T. et al. Risk indicators for the tick *Ixodes ricinus* and *Borrelia burgdorferi sensu lato* in Sweden. *Med Vet Entomol* 23, 226–237 (2009).

32. Heylen, D. et al. Ecology and prevention of Lyme borreliosis. (eds Marieta, A. H. B., Van Wieren, S. E., Tauben, W. & Sprod, H.) 91–101 (Wageningen Academic Publishers, Wageningen, 2016).

33. Heylen, D. et al. Pathogen communities of songbird-derived ticks in Europe’s low countries. *Parasite Vector* 10, 497 (2017).

34. Gryczynska, A., Gortat, T. & Kowalec, M. Urban rodent reservoirs of *Borrelia burgdorferi* s.l. *Appl Environ Microbiol* 77, 5716–5721 (2011).

35. Kjelland, V. et al. *Borrelia burgdorferi* sensu lato detected in skin of Norwegian mountain hares (*Lepus timidus*). *Acta Tropica* 132, 104–110 (2014).

36. Sorensen, D. et al. *Tick-borne encephalitis virus*, *Borrelia burgdorferi*, *Neuroborreliosis* and *Neuroborreliosis* in enzootic areas in Switzerland. *Parasite Vector* 9, 284 (2016).

37. Kullberg, P. et al. Few vertebrate species dominate the *Borrelia burgdorferi* s.l. life cycle. *Environ Res Lett* 11, 043001 (2016).

38. Bown, K. J. et al. The common shrew (*Sorex araneus*): a neglected host of tick-borne infections? *Vector-Borne Zoonot* 11, 947–953 (2011).

39. Hanski, I. & Kaikusalo, A. Distribution and habitat selection of shrews in Finland. *Ann Zool Fenn* 33, 339–348 (1989).

40. Bilton, D. T. et al. Mediterranean Europe as an area of endemism for small mammals rather than a source for northwards postglacial colonization. *Proc R Soc Lond Ser B* 265, 1219 (1998).

41. Marsot, M. et al. *Tick-borne encephalitis virus*, *Borrelia burgdorferi*, *Neuroborreliosis* and *Neuroborreliosis* in enzootic areas in Switzerland. *Parasite Vector* 9, 207–208 (2008).

42. Skuballa, J. et al. Occurrence of different *Borrelia burgdorferi sensu lato* genospecies including *B. afzelii*, *B. bavariensis*, and *B. spielmani* in hedgehogs (*Erinaceus europaeus*) in Europe. *Ticks Tick Borne Dis* 3, 8–13 (2012).
Institutional affiliations.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Competing Interests: The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019