Continuous Data Assimilation Using General Interpolant Observables

Abderrahim Azouani · Eric Olson · Edriss S. Titi

Received: 11 April 2013 / Accepted: 28 September 2013 / Published online: 7 November 2013
© Springer Science+Business Media New York 2013

Abstract We present a new continuous data assimilation algorithm based on ideas that have been developed for designing finite-dimensional feedback controls for dissipative dynamical systems, in particular, in the context of the incompressible two-dimensional Navier–Stokes equations. These ideas are motivated by the fact that dissipative dynamical systems possess finite numbers of determining parameters (degrees of freedom) such as modes, nodes and local spatial averages which govern their long-term behavior. Therefore, our algorithm allows the use of any type of measurement data for which a general type of approximation interpolation operator exists. Under the assumption that the observational measurements are free of noise, our main result provides conditions, on the finite-dimensional spatial resolution of

Communicated by P. Newton.

A. Azouani
Freie Universität Berlin, Institute für Mathematik I, Arnimallee 7, Berlin, Germany
e-mail: azouani@math.fu-berlin.de

E. Olson (✉)
Department of Mathematics and Statistics, University of Nevada, Reno, NV 89557, USA
e-mail: ejolson@unr.edu

E.S. Tití
Department of Mathematics and Department of Mechanical and Aerospace Engineering,
University of California, Irvine, CA 92697–3875, USA
e-mail: ettiti@math.uci.edu

E.S. Tití
The Department of Computer Science and Applied Mathematics, Weizmann Institute of Science,
Rehovot 76100, Israel
e-mail: edriss.titi@weizmann.ac.il
the collected data, sufficient to guarantee that the approximating solution, obtained by our algorithm from the measurement data, converges to the unknown reference solution over time. Our algorithm is also applicable in the context of signal synchronization in which one can recover, asymptotically in time, the solution (signal) of the underlying dissipative system that is corresponding to a continuously transmitted partial data.

Keywords Determining modes · Volume elements and nodes · Continuous data assimilation · Two-dimensional Navier–Stokes equations · Signal synchronization

Mathematics Subject Classification 35Q30 · 93C20 · 37C50 · 76B75 · 34D06

1 Introduction

The goal of continuous data assimilation and signal synchronization is to use low spatial resolution observational measurements, obtained continuously in time, to accurately find the corresponding reference solution from which future predictions can be made. The motivating application of continuous data assimilation is weather prediction. The classical method of continuous data assimilation, see Daley (1991), is to insert observational measurements directly into a model as the latter is being integrated in time. We propose a new approach based on ideas from control theory, see Azouani and Titi (2013). A slightly similar approach in the context of stochastic differential equations, using the low Fourier modes as observables/measurements, appears in a recent work by Blömker et al. (2013). Rather than inserting the measurements directly into the model, i.e. into the nonlinear term, we introduce a feedback control term that forces the model toward the reference solution that is corresponding to the observations. This is motivated by the fact that it is often difficult to insert observational data into the model. For example, if the measured data is obtained as the values of the exact solutions at a discrete set of spatial nodal points, then it difficult to insert this data directly into the underlying equation, because it is not possible to obtain the exact values of the spatial derivatives. One should observe that in order to guarantee a unique corresponding reference solution one has to supply observational data with enough spatial resolution. This is the object of this paper.

While the classical method of continuous data assimilation is simple in concept, special care has to be taken concerning how the observations are inserted into a model in practice. For example, it is generally necessary to separate the fast and slow parts of a solution before inserting the observations into the model. The method proposed here does not require such a decomposition. Since the observations are not directly inserted into the model, we can rely on the dissipation already present in the dynamics to filter the observed data, i.e. the viscous term will suppress the “spill over” oscillations in the fine scales. The advantage of this approach is that it works for a general class of interpolant observables without modification.

Let $u(t)$ represent the state at time t of the dynamical system in which we are interested, and let $I_h(u(t))$ represent our observations of this system at a coarse spatial resolution of size h. Given observational measurements, $I_h(u(t))$, for $t \in [0, T]$, our
goal is to construct an increasingly accurate initial condition from which predictions of \(u(t) \), for \(t > T \), can be made. We do this by constructing an approximate solution \(v(t) \) that converges to \(u(t) \) over time.

Suppose the time evolution of \(u \) is governed by a given evolution equation of the form

\[
\frac{du}{dt} = F(u),
\]

where the initial data, \(u_0 \), is missing. Our algorithm for constructing \(v(t) \) from the observational measurements \(I_h(u(t)) \) for \(t \in [0, T] \) is given by

\[
\frac{dv}{dt} = F(v) - \mu I_h(v) + \mu I_h(u),
\]

\[
v(0) = v_0,
\]

where \(\mu \) is a positive relaxation parameter, which relaxes the coarse spatial scales of \(v \) toward those of the observed data, and \(v_0 \) is taken to be arbitrary. It is worth stressing that our algorithm is designed to work for general dissipative dynamical systems of the form (1). Such systems are known to have finitely many degrees of freedom in the form of determining parameters of the type \(I_h(u) \), see, for example, Cockburn et al. (1997), Foias et al. (2001), Foias and Prodi (1967), Foias and Temam (1982, 1984), Jones and Titi (1992, 1993), and references therein. The incompressible two-dimensional Navier–Stokes equations provide a concrete example of a dissipative dynamical system of this type.

Note that the equations used in numerical weather forecasting are compressible three-dimensional equations involving variable density and a velocity equation that is coupled to a whole set of state variables. Our approach assumes the global existence of the underlying model, and the estimates we provide use the available estimates for the globally existing solutions. Therefore, we will not be able to prove any theorems regarding even the three-dimensional Navier-Stokes equations using our techniques. Note, however, that Korn (2009) shows the three-dimensional Lagrangian-averaged Navier–Stokes–\(\alpha \) model of turbulence possesses a finite number of determining observations and uses this fact to obtain results about the classical method of data assimilation. Therefore, it should be possible to obtain results for the new method of data assimilation presented here for solutions governed by the three-dimensional Lagrangian-averaged Navier–Stokes–\(\alpha \) model. Similarly, the three-dimensional Leray–\(\alpha \) model (Cheskidov et al. 2005) and the three-dimensional primitive equations (Cao and Titi 2007) are other systems known to be globally well-posed to which our algorithm and analysis should apply. Although our analysis does not apply to complex systems in which there is no proof of global existence, it would still be interesting to numerically test our algorithm in more realistic cases. In particular, there is significantly more work to do before the data assimilation algorithm presented here can be applied to numerical weather forecasting.

To demonstrate our approach and data assimilation algorithm we consider the incompressible two-dimensional Navier–Stokes equations. These equations serve as a paradigm because they are amenable to mathematical analysis while at the same time possess nonlinear dynamical properties similar to the equations used in realistic
weather models. Thus, our study of data assimilation for the incompressible two-

dimensional Navier–Stokes equations should be viewed as a mathematical problem

motivated by real-world applications. With this in mind we suppose that the evolution

of \(u \) is governed by the two-dimensional Navier–Stokes system

\[
\frac{\partial u}{\partial t} - \nu \Delta u + (u \cdot \nabla) u + \nabla p = f, \tag{4}
\]

\[
\nabla \cdot u = 0, \tag{5}
\]

in the physical domain \(\Omega \), with either no-slip Dirichlet, or periodic, boundary con-
ditions with zero spatial average. Here \(u(x, t) \) represents velocity of the fluid at time \(t \) at position \(x \), \(\nu > 0 \) represents the kinematic viscosity, \(p(x, t) \) is the pressure and \(f(x, t) \) is a time dependent body force applied to the fluid.

In the case of no-slip Dirichlet boundary conditions we take \(u = 0 \) on \(\partial \Omega \). The
domain \(\Omega \) is an open, bounded and connected set in \(\mathbb{R}^2 \) with \(C^2 \) boundary, such

that \(\partial \Omega \) can be represented locally as the graph of a \(C^2 \) function. In the case of

periodic boundary conditions we require \(u \) and \(f \) to be \(L \)-periodic, in both \(x_1 \) and \(x_2 \) directions, with zero spatial averages over the fundamental periodic domain \(\Omega = [0, L]^2 \).

Continuous data assimilation, in the context of the incompressible two-dimensional

Navier–Stokes equations, was first studied by Browning et al. (1998), later by Hen-

shaw et al. (2003) and also by Olson and Titi (2003) and (2008), motivated by the

concept of a finite number of determining modes which was introduced for the first
time in Foias and Prodi (1967) (see also Foias et al. (2001), Olson and Titi (2003), and

references therein). These studies treated the case of periodic boundary conditions, where the observations of the velocity field were given by the low Fourier modes with wave numbers \(k \), such that \(|k| \leq 1/h\). Since the low modes essentially repre-

sent the large spatial scales of the solution, the classical data assimilation algorithm

works well for this type of observations. We treat more general observations of the

velocity field. Observations of vorticity or of the stream function should be treatable

using a similar analysis; however, observations of the pressure field pose additional
difficulties.

It is worth mentioning that the method of data assimilation studied here is consist-
tent with some of the signal synchronization algorithms. Most recently, a similar idea

has also been introduced in Foias et al. (2012) to show that the long-time dynamics of the two-dimensional Navier–Stokes equations can be imbedded in an infinite-di-

mensional dynamical system that is induced by an ordinary differential equations,

named determining form, which is governed by a globally Lipschitz vector field.

Let us denote by \(H^m(\Omega) \) the Sobolev space of index \(m \), and by \(\dot{H}^m(\Omega) \) its

subspace of functions with zero spatial averages. The method of constructing \(v \),
given by (2), allows the use of general interpolant observables, given by interpolants

\(I_h : H^1(\Omega) \to L^2(\Omega) \) (\(\dot{I}_h : \dot{H}^1(\Omega) \to \dot{L}^2(\Omega) \) in the periodic case) that are linear and

satisfy the following approximation property:

\[
\| \varphi - I_h(\varphi) \|^2_{L^2(\Omega)} \leq \gamma_0 h^2 \| \varphi \|^2_{H^1(\Omega)} \tag{6}
\]
for every \(\varphi \in H^1(\Omega) \). The orthogonal projection onto the low Fourier modes, with wave numbers \(k \) such that \(|k| \leq 1/h\), mentioned above, is an example of such interpolant observable. However, there are many other interpolant observables which satisfy (6). Note that \(\|\varphi - I_h(\varphi)\|_{L^2(\Omega)}^2 \to 0 \) as \(h \to 0 \). This implies our observational measurements are noise free. The case of stochastically noisy data will be studied in a future work (Bessaih et al. 2013).

The term general interpolant observable and its associated interpolant operator \(I_h \) should be distinguished from the observation operators used in data assimilation. The former perform a classical interpolation of the state vector between resolutions, while the latter map general observables that are related to the state vector by an operator or a functional from the space of observations to the space of the state vector. In the present context an operator that maps pressure observations to the velocity space would be an example of an observation operator but not of an interpolant. Such observation operators will not be considered here.

One physically relevant example of an interpolant which satisfies condition (6) are the volume elements studied in Jones and Titi (1992) and (1993) (see also Foias and Titi (1991)). In this case

\[
I_h(\varphi)(x) = \sum_{j=1}^{N} \bar{\varphi}_j \left(\chi_{Q_j}(x) - \frac{h^2}{L^2} \right),
\]

where \(\bar{\varphi}_j = \frac{1}{h^2} \int_{Q_j} \varphi(x) \, dx \), and the domain \(\Omega = [0, L]^2 \), for the periodic boundary conditions case, has been divided into \(N \) equal squares \(Q_j \), with sides \(h = L/\sqrt{N} \). Volume elements generalize to any domain \(\Omega \) on which the Bramble–Hilbert lemma holds. An elementary discussion of this lemma in the context of finite element methods appears in Brenner and Scott (2007).

In addition, we also consider interpolant observables given by linear interpolants \(I_h : H^2(\Omega) \to L^2(\Omega) \), that satisfy the following approximation property:

\[
\|\varphi - I_h(\varphi)\|_{L^2(\Omega)}^2 \leq \gamma_1 h^2 \|\varphi\|_{H^1(\Omega)}^2 + \gamma_2 h^4 \|\varphi\|_{H^2(\Omega)}^2,
\]

for every \(\varphi \in H^2(\Omega) \). An example of this type of interpolant is given by measurements at a discrete set of nodal points in \(\Omega \). Specifically, let \(h > 0 \) be given, and let \(\Omega = \bigcup_{j=1}^{N_h} Q_j \), where \(Q_j \) are disjoint subsets such that \(\text{diam} Q_j \leq h \), for \(j = 1, 2, \ldots, N_h \), and let \(x_j \in Q_j \) be arbitrary points. Then set, for example,

\[
I_h(\varphi)(x) = \sum_{k=1}^{N_h} \varphi(x_k) \chi_{Q_j}(x),
\]

in the no-slip Dirichlet boundary conditions case. However, in the case of periodic boundary conditions we divide, as before, the domain \(\Omega = [0, L]^2 \) into \(N \) identical cubes, \(\{Q_j\}_{j=1}^{N} \), with sides \(h = L/\sqrt{N} \), and take the interpolant operator that is induced by the nodal values, \(I_h : H^2(\Omega) \to L^2(\Omega) \), to be

\[
I_h(\varphi)(x) = \sum_{k=1}^{N_h} \varphi(x_k) \left(\chi_{Q_j}(x) - \frac{h^2}{L^2} \right).
\]
Notice that, by construction, the spatial average of $I_h(\varphi)$, given in (8), is zero. Following ideas in Jones and Titi (1993) (see also Foias and Temam (1984)) we will show in Appendix A that the interpolant operators, $I_h(\varphi)$, defined by (8), satisfy the approximation property (7). Further details concerning smooth interpolant observables and operators that satisfy (7), which are induced by nodal values, are included in Appendix A. These smoother observables, and their analytic properties, are needed for the study of a similar data assimilation algorithm with stochastic noisy data (Bessaih et al. 2013).

Our paper is organized as follows. First, we recall the functional setting of the two-dimensional Navier–Stokes equations necessary for our analysis and then use this setting to formulate our new method of continuous data assimilation. After this we proceed to the task of finding conditions on h and μ under which the approximate solution obtained by this algorithm converges to the reference solution over time. From a physical point of view, the spatial resolution h of the observational measurements is difficult and costly to change, whereas the relaxation parameter μ is an easily changed mathematical constant. Our main results, therefore, focus on finding bounds on h for which there exists a μ that guarantees the success of our algorithm. We also prove a number of propositions that provide estimates on μ. Section 3 treats the case of smooth, bounded domains with no-slip Dirichlet boundary conditions, while Sect. 4 treats the case of periodic boundary conditions. Our main results may be stated as follows:

Theorem 1 Let Ω be an open, bounded and connected set in \mathbb{R}^2 with C^2 boundary, and let u be a solution to (4)–(5) with no-slip Dirichlet boundary conditions. Assume that I_h satisfies (6), with h small enough such that

$$1/h^2 \geq c_1 \lambda_1 G^2,$$

where c_1 is a constant given in (36). Then there exists $\mu > 0$, given explicitly in Proposition 1, such that $\|v - u\|_{L^2(\Omega)} \to 0$ exponentially, as $t \to \infty$.

Here G denotes the Grashof number

$$G = \frac{1}{v^2 \lambda_1} \limsup_{t \to \infty} \|f(t)\|_{L^2}$$

where λ_1 is the smallest eigenvalue of the Stokes operator subject to homogeneous Dirichlet boundary conditions. Let us remark, again, that the constant c_1 depends only on γ_0, given in (6), and the shape, but not the size, of the domain Ω. In particular, c_1 is given by (36) where the constant c is chosen so the bound (16) on the nonlinear term holds. Moreover, μ may be chosen equal to $5c^2G^2v\lambda_1$ as indicated in Proposition 1, below.

Results similar to Theorem 1 hold when I_h satisfies (7), however, we omit the proof of this result in the case of no-slip Dirichlet boundary conditions and instead proceed directly to the case of periodic boundary conditions where sharper estimates may be obtained. In particular, we prove
Theorem 2 Let \(\Omega = [0, L]^2 \) and let \(u \) be a solution to (4)–(5) with periodic boundary conditions. Let \(I_h \) satisfy either (6) or (7), with \(h \) small enough such that

\[
1/h^2 \geq c_2\lambda_1 G(1 + \log(1 + G)),
\]

where \(c_2 \) is a constant given in (39). Then there exists \(\mu > 0 \), given explicitly in Proposition 2, such that \(\|v - u\|_{H^1(\Omega)} \to 0 \) exponentially, as \(t \to \infty \).

Let us remark that \(c_2 \) depends only on \(\gamma_0 \) in the case \(I_h \) satisfies (6) and only on \(\gamma_1, \gamma_2 \) in the case that \(I_h \) satisfies (7). Also, \(\mu \) may be chosen as \(3c_2\nu\lambda_1 G(1 + \log(1 + G))/c_0. \) In particular, \(\mu \) is given in Proposition 2 and the constant \(c_2 \) is defined in (39) as an increasing function of \(c_0 \) and \(c \), where \(c_0 \) is the constant appearing in either (24) or (25) and \(c \) is chosen large enough so that the bounds in both (22) and (37) hold.

Note that the estimate on the length scale \(h \) in Theorem 2 can be compared to previous results reported in Olson and Titi (2003). Let \(\tilde{v}(t) \) be the approximate solution obtained by the method of continuous data assimilation introduced in Olson and Titi (2003) for the interpolant observable \(I_h(u) \) given by projection onto the Fourier modes with wave numbers \(|k| < 1/h \). In Olson and Titi (2003) it was shown that, for small values of \(h \), such that \(1/h^2 \sim \lambda_1 G \), \(\|u(t) - \tilde{v}(t)\|_{H^1(\Omega)} \to 0 \) exponentially fast, as \(t \to \infty \). Up to a logarithmic correction term, Theorem 2 states similar estimates on \(h \) for the new algorithm which covers a much wider class of interpolant observables.

Section 5 of this paper discusses numerical simulations, which are in progress, related works, and closes with a few concluding remarks. We supplement this paper with Appendix A in which we introduce smooth interpolant operators that are induced by nodal values and which satisfy inequality (7).

2 Preliminaries

This section reviews the functional setting of the two-dimensional Navier–Stokes equations with no-slip and periodic boundary conditions, recalls some facts that will be used in the remainder of the paper and then gives an explicit formulation of our new method for continuous data assimilation in this context. Following Constantin and Foias (1988), Foias et al. (2001), Robinson (2001) and Temam (1983), we begin by defining a suitable domain \(\Omega \) and space \(\mathcal{V} \) of smooth functions which satisfy each type of boundary conditions.

No-slip Dirichlet Boundary Conditions Let \(\Omega \) be an open, bounded and connected domain with \(C^2 \) boundary. Define \(\mathcal{V} \) to be set of all \(C^\infty \) vector fields from \(\Omega \) to \(\mathbb{R}^2 \) that are divergence free and compactly supported.

Periodic Boundary Conditions Let \(\Omega = [0, L]^2 \) for some fixed \(L > 0 \). Define \(\mathcal{V} \) to be the set of all \(L \)-periodic trigonometric polynomials from \(\mathbb{R}^2 \) to \(\mathbb{R}^2 \) that are divergence free and have zero averages.

Given \(\mathcal{V} \) corresponding to either type of boundary conditions let \(H \) be the closure of \(\mathcal{V} \) in \(L^2(\Omega; \mathbb{R}^2) \) and \(V \) be the closure of \(\mathcal{V} \) in \(H^1(\Omega; \mathbb{R}^2) \). The spaces \(H \) and \(V \)
are Hilbert spaces with inner products

\[(u, v) = \int_{\Omega} u(x) \cdot v(x) \, dx \quad \text{and} \quad ((u, v)) = \sum_{i,j=1}^{2} \int_{\Omega} \frac{\partial u_i}{\partial x_j} \frac{\partial v_i}{\partial x_j} \, dx,\]

respectively. Denote the norms of \(H\) and \(V\) by

\[|u| = \sqrt{(u, u)} \quad \text{and} \quad \|u\| = \sqrt{(u, u)},\]

and the dual of \(V\) by \(V^*\) with the pairing \(\langle u, v \rangle\) where \(u \in V^*\) and \(v \in V\).

Define the Leray projector \(P_{\sigma}\) as the orthogonal projection from \(L^2(\Omega; R^2)\) onto \(H\), and define the Stokes operator \(A : V \rightarrow V^*\), and the bilinear term \(B : V \times V \rightarrow V^*\) to be the continuous extensions of the operators given by

\[Au = -P_{\sigma} \Delta u \quad \text{and} \quad B(u, v) = P_{\sigma} (u \cdot \nabla v),\]

respectively, for any smooth solenoidal vector fields \(u\) and \(v\) in \(V\).

Denote the domain of \(A\) by \(\mathcal{D}(A) = \{u \in V : Au \in H\}\). The linear operator \(A\) is self-adjoint and positive definite with compact inverse \(A^{-1} : H \rightarrow H\). Thus, there exists a complete orthonormal set of eigenfunctions \(w_i\) in \(H\) such that \(Aw_i = \lambda_i w_i\) where \(0 < \lambda_i \leq \lambda_{i+1}\) for \(i \in \mathbb{N}\). Writing \(\lambda_1\) as the smallest eigenvalue of \(A\) we have the following Poincaré inequalities:

\[\begin{align*}
\text{if } u \in V & \text{ then } \lambda_1 |u|^2 \leq \|u\|^2, \\
\text{if } u \in \mathcal{D}(A) & \text{ then } \lambda_1 \|u\|^2 \leq |Au|^2.
\end{align*}\]

Note that for \(u \in H\), \(|u| = \|u\|_{L^2(\Omega)}\) and for \(u \in V\) the Poincaré inequality implies \(\|u\|\) is equivalent to \(\|u\|_{H^1(\Omega)}\).

The bilinear term \(B\) has the algebraic property that

\[\langle B(u, v), w \rangle = -\langle B(u, w), v \rangle,\]

for \(u, v, w \in V\), and consequently the orthogonality property that

\[\langle B(u, w), w \rangle = 0.\]

Here the pairing \(\langle \cdot, \cdot \rangle\) denotes the dual action of \(V^*\) on \(V\). Details may be found, e.g., in Constantin and Foias (1988), Foias et al. (2001), Robinson (2001) and Temam (1983).

In the case of periodic boundary conditions the bilinear term possesses the additional orthogonality property

\[\langle B(w, w), Aw \rangle = 0, \quad \text{for every } w \in \mathcal{D}(A);\]

and consequently one has

\[\langle B(u, w), Aw \rangle + \langle B(w, u), Aw \rangle = -\langle B(w, w), Au \rangle.\]
Note that the bilinear term satisfies a number of inequalities which hold for either no-slip or periodic boundary conditions. These are
\[|\langle B(u,v),w \rangle| \leq c |u|^{1/2} ||u||^{1/2} ||v||^{1/2} ||w||^{1/2}, \]
(16)
for every \(u,v,w \in V \),
\[|\langle B(u,v),w \rangle| \leq c |u|^{1/2} ||u||^{1/2} ||v||^{1/2} |Av|^{1/2} |w| \]
(17)
for every \(u \in V \), \(v \in D(A) \) and \(w \in H \), and
\[|\langle B(u,v),w \rangle| \leq c |u|^{1/2} |Au|^{1/2} ||v|| |w|, \]
(18)
for every \(u \in D(A) \) and \(v,w \in V \), where \(c \) is a dimensionless constant depending only on the shape, but not the size, of \(\Omega \). These inequalities may be obtained from the Hölder’s inequality, the Sobolev inequalities and Ladyzhenskaya’s inequality, see, e.g., Constantin and Foias (1988), Foias et al. (2001), Robinson (2001) and Temam (1983).

We write the incompressible two-dimensional Navier–Stokes equations with the above notation in functional form as
\[\frac{du}{dt} + vAu + B(u,u) = f \]
(19)
with initial condition \(u(0) = u_0 \). We have assumed \(f \in H \) so that \(P_{\sigma} f = f \). As shown in Constantin and Foias (1988), Foias et al. (2001), Robinson (2001) and Temam (1983) these equations are well-posed; and possess a compact finite-dimensional global attractor, when \(f \) is time-independent. Specifically, we have

Theorem 3 (Existence and Uniqueness of Strong Solutions) Suppose \(u_0 \in V \) and \(f \in L^{\infty}((0, \infty), H) \). Then the initial value problem (19) has a unique solution that satisfies
\[u \in C([0, T]; V) \cap L^2((0, T); D(A)) \quad \text{and} \quad \frac{du}{dt} \in L^2((0, T); H), \]
for any \(T > 0 \).

We now give bounds on solutions \(u \) of (19) that will be used in our later analysis. With the exception of inequality (22) due to Dascaliuc et al. (2010) these estimates appear in any the references listed above.

Theorem 4 Fix \(T > 0 \), and let \(G \) be the Grashof number given in (9). Suppose that \(u \) is the solution of (19), corresponding to the initial value \(u_0 \), then there exists a time \(t_0 \), which depends on \(u_0 \), such that for all \(t \geq t_0 \) we have
\[|u(t)|^2 \leq 2 \nu^2 G^2 \quad \text{and} \quad \int_t^{t+T} \|u(\tau)\|^2 d\tau \leq 2(1 + T \nu \lambda_1) \nu G^2. \]
(20)
In the case of periodic boundary conditions we also have
\[
\|u(t)\|^2 \leq 2\nu^2\lambda_1 G^2, \quad \int_t^{t+T} |Au(\tau)|^2 \, d\tau \leq 2(1 + T\nu\lambda_1)\nu\lambda_1 G^2; \tag{21}
\]
furthermore, if \(f \in H\) is time-independent then
\[
|Au(t)|^2 \leq c\nu^2\lambda_1^2(1 + G)^4. \tag{22}
\]

We now write the continuous data assimilation equations (2) for the incompressible two-dimensional Navier–Stokes equations. Let \(u\) be a strong solution of (4)–(5), or equivalently (19), as given by Theorem 3, and let \(I_h\) be an interpolation operator satisfying (24) or (25). Suppose that \(u\) is to be recovered from the observational measurements \(I_h(u(t))\) that have been continuously recorded for times \(t\) in \([0, T]\). Then, the approximating solution \(v\) with initial condition \(v_0 \in V\), chosen arbitrarily, shall be given by
\[
\frac{\partial v}{\partial t} - \nu\Delta v + (v \cdot \nabla)v + \nabla q = f + \mu(I_h(u) - I_h(v)),
\]
\[
\nabla \cdot v = 0,
\]
on the interval \([0, T]\). Observe that in the periodic setting we demand, through construction, that the spatial average of \(I_h(\varphi)\) is zero, for every \(\varphi\) in the relevant domain of \(I_h\). This is done for technical reason in order to guarantee that the spatial average of \(v\) is preserved, and hence can be chosen to be constant zero. Using the above functional setting the above system is equivalent to
\[
\frac{dv}{dt} + \nu Av + B(v, v) = f + \mu P_{\sigma}(I_h(u) - I_h(v)), \tag{23}
\]
on the interval \([0, T]\). Furthermore, inequalities (6) and (7) imply
\[
|P_{\sigma}(w - I_h(w))|^2 \leq |w - I_h(w)|^2 \leq c_0 h^2\|w\|^2, \tag{24}
\]
for every \(w \in V\), where \(c_0 = \gamma_0\), and, respectively,
\[
|P_{\sigma}(w - I_h(w))|^2 \leq |w - I_h(w)|^2 \leq \frac{1}{2}c_0 h^2\|w\|^2 + \frac{1}{4}c_0^2 h^4|Aw|^2, \tag{25}
\]
for every \(w \in D(A)\), where \(c_0\) depends only on \(\gamma_1\) and \(\gamma_2\).

If we knew \(u_0\) exactly, then we could take \(v_0 = u_0\) and the resulting solution \(v\) would be identical to \(u\) for all time; this is due to the uniqueness of the solutions of (23) (see Theorem 5, below). However, if we knew \(u_0\) exactly, there would be no need for continuous data assimilation in the first place and one could integrate (19) directly with the initial value \(u_0\). Intuitively speaking it makes sense to take \(v_0 = P_{\sigma} I_h(u(0))\), which is the initial observation of the solution \(u\). However, \(v_0\) chosen in this way may not be an element of \(V\). The main point of the data assimilation method given in (23) is to avoid the difficulties which come from the direct insertion of observational measurements into the approximate solution. A choice for \(v_0\) in agreement with this
philosophy is \(v_0 = 0 \). In fact, our results to hold equally well when \(v_0 \) is chosen to be any element of \(V \). In either case we obtain an approximating solution \(v \) constructed using only the observations of the solution \(I_h(u) \) and the known values of \(v \) and \(f \).

We now show the data assimilation equations (23) are well-posed. When \(I_h \) satisfies (24) we show well-posedness for both no-slip Dirichlet and periodic boundary conditions. When \(I_h \) satisfies (25) we will deal here, for simplicity, with only the case of periodic boundary conditions.

Theorem 5 Suppose \(I_h \) satisfies (24) and \(\mu c_0 h^2 \leq \nu \), where \(c_0 \) is the constant appearing in (24). Then the continuous data assimilation equations (23) possess unique strong solutions that satisfy

\[
v \in C([0, T]; V) \cap L^2((0, T); D(A)) \quad \text{and} \quad \frac{dv}{dt} \in L^2((0, T); H),
\]

for any \(T > 0 \). Furthermore, this solution depends continuously on the initial data \(v_0 \) in the \(V \) norm.

Proof Define \(g = f + \mu P_\sigma I_h(u) \). Theorem 3 implies \(u \in C([0, T]; V) \). Consequently

\[
|P_\sigma I_h(u)| \leq |u - I_h(u)| + |u| \leq (c_0^{1/2} h + \lambda_1^{-1/2})\|u\|
\]

implies that \(P_\sigma I_h(u) \in C([0, T]; H) \). Hence \(g \in C([0, T]; H) \). This means that there is a constant \(M \) such that \(|g|^2 < M \) for every \(t \in [0, T] \).

We now show the existence of solutions \(v \) to (23) using the Galerkin method. The proof follows the same ideas as the proof of Theorem 3. Let \(P_n \) be the \(n \)th Galerkin projector and \(v^n \) be the solution to the finite-dimensional Galerkin truncation

\[
\begin{aligned}
\frac{d v^n}{dt} + \nu A v^n + P_n B(v^n, v^n) &= P_n g - \mu P_n I_h(v^n), \\
v^n(0) &= P_n v_0.
\end{aligned}
\]

(27)

First, we observe that (27) is a finite system of ODEs, which has short time existence and uniqueness. We focus on the maximal interval of existence, \([0, T_n]\), and show uniform bounds for \(v^n \), which are independent of \(n \). This in turn will imply the global existence for (27). Thus, our aim is to find bounds on \(v^n \) which are uniform in \(n \). This will then show global existence of solutions to (23).

Begin by taking inner products of (27) with \(v^n \) to obtain

\[
\frac{1}{2} \frac{d}{dt} |v^n|^2 + \nu \|v^n\|^2 = (g, v^n) - \mu \left(I_h(v^n), v^n \right)
\]

\[
= (g, v^n) + \mu \left(v^n - I_h(v^n), v^n \right) - \mu |v^n|^2
\]

\[
\leq \frac{1}{2\mu} |g|^2 + \frac{\mu}{2} |v^n|^2 + \frac{\mu}{2} \|P_\sigma (v^n - I_h(v^n))\|^2 + \frac{\mu}{2} |v^n|^2 - \mu |v^n|^2
\]

\[
\leq \frac{1}{2\mu} |g|^2 + \frac{\mu c_0 h^2}{2} \|v^n\|^2,
\]
where we used (24) in the above estimates. By hypothesis, the size of the cube, \(h \), is chosen to be small enough such that \(\mu c_0 h^2 \leq \nu \). Therefore,
\[
\frac{d}{dt} |v^n|^2 + \nu |v^n|^2 \leq \frac{1}{\mu} |g|^2,
\]
and consequently
\[
\frac{d}{dt} |v^n|^2 + \nu \lambda_1 |v^n|^2 \leq \frac{1}{\mu} M, \quad \text{for every } t \in [0, T_n).
\]
(28)

Multiplying (29) by \(e^{\nu \lambda_1 t} \) and integrating yields
\[
|v^n(t)|^2 \leq |v_0|^2 e^{-\nu \lambda_1 t} + \frac{M}{\mu \nu \lambda_1} \left(1 - e^{-\nu \lambda_1 t} \right) \leq \rho_H^2, \quad \text{for every } t \in [0, T_n),
\]
where
\[
\rho_H^2 = |v_0|^2 + \frac{M}{\mu \nu \lambda_1}.
\]
As this bound holds uniformly in \(n \) for \(T_n \) arbitrarily large, we have global existence on the interval \([0, T]\), for all \(T \geq 0 \). Now, integrating (28) yields
\[
|v^n(t)|^2 - |v_0|^2 + \nu \int_0^t \|v^n\|^2 \leq \frac{t}{\mu} M.
\]
It follows that
\[
\int_0^t \|v^n(\tau)\| d\tau \leq \sigma_V^2, \quad \text{for every } t \in [0, T],
\]
where
\[
\sigma_V^2 = \frac{1}{\nu} |v_0|^2 + \frac{T}{\mu \nu} M.
\]

Now, take inner products of (27) with \(A v^n \) to obtain
\[
\frac{1}{2} \frac{d}{dt} \|v^n\|^2 + \nu |A v^n|^2 + \langle B(v^n, v^n), A v^n \rangle = \langle g, A v^n \rangle - \mu \langle I_h(v^n), A v^n \rangle.
\]
Inequality (17) implies
\[
\left| \langle B(v^n, v^n), A v^n \rangle \right| \leq c |v^n|^{1/2} \|v^n\| |A v^n|^{3/2}
\leq \frac{1}{4} \left(\frac{6^4}{\nu^{3/4}} c |v^n|^{1/2} \|v^n\| \right)^4 + \frac{3}{4} \left(\frac{6^{3/4}}{\nu^{3/4}} |A v^n|^{3/2} \right)^{4/3}
\leq \frac{54 c^4}{\nu^3} |v^n|^2 \|v^n\|^4 + \frac{v}{8} |A v^n|^2.
\]
Furthermore,
\[
\left| \langle g, A v^n \rangle \right| \leq |g| |A v^n| \leq \frac{2}{\nu} |g|^2 + \frac{v}{8} |A v^n|^2
\]
and by (24) along with the assumption that $\mu c_0 h^2 \leq \nu$ we obtain
\[
-\mu (I_h(v^n), Av^n) = \mu (v^n - I_h(v^n), Av^n) - \mu \|v^n\|^2 \\
\leq \frac{\mu^2}{\nu} |P_\sigma(v^n - I_h(v^n))|^2 + \frac{\nu}{4} |Av^n|^2 - \mu \|v^n\|^2 \\
\leq \frac{\mu^2 c_0 h^2}{\nu} \|v^n\|^2 + \frac{\nu}{4} |Av^n|^2 - \mu \|v^n\|^2 \leq \frac{\nu}{4} |Av^n|^2.
\]
Therefore,
\[
\frac{d}{dt} \|v^n\|^2 + \nu |Av^n|^2 \leq \frac{108 c_4^4}{\nu^3} \|v^n\|^2 \|v^n\|^4 + \frac{4}{\nu} |g|^2,
\]
and consequently
\[
\frac{d}{dt} \|v^n\|^2 - \frac{108 c_4^4}{\nu^3} \|v^n\|^2 \|v^n\|^4 \leq \frac{4}{\nu} |g|^2 \leq \frac{4}{\nu} M,
\]
for every $t \in [0, T]$. Define
\[
\psi^n(t) = \exp \left\{ -\frac{108 c_4^4}{\nu^3} \int_0^t |v^n|^2 \|v^n\|^2 \right\}.
\]
Since
\[
\int_0^t |v^n|^2 \|v^n\|^2 \leq \rho_H^2 \int_0^t \|v^n\|^2 \leq \rho_H^2 \sigma_V^2 < \infty,
\]
we have $\psi^n(t) > 0$ for every $t \in [0, T]$. Multiplying (29) by $\psi^n(t)$ and integrating yields
\[
\|v^n(t)\|^2 \leq \frac{1}{\psi^n(T)} \left\{ \|v_0\|^2 + \frac{4}{\nu} M \int_0^t \psi^n(s) \, ds \right\} \leq \rho_V^2,
\]
for all $t \in [0, T]$, where
\[
\rho_V^2 = \frac{1}{\psi^n(T)} \left\{ \|v_0\|^2 + \frac{4T}{\nu} M \right\}.
\]
Now, integrating (31) yields
\[
\|v^n(t)\|^2 - \|v_0\|^2 + \nu \int_0^t |Av^n|^2 \leq \frac{108 c_4^4}{\nu^3} \int_0^t \left(|v^n|^2 \|v^n\|^4 + \frac{4}{\nu} |g|^2 \right) \leq \sigma_{D(A)}^2,
\]
for every $t \in [0, T]$, where
\[
\sigma_{D(A)}^2 = \frac{108 c_4^4 T}{\nu^3} \left\{ \rho_H^2 \rho_V^4 + \frac{4}{\nu} M \right\}.
\]
The bounds ρ_V and $\sigma_{D(A)}$ are uniform in n. Uniform bounds on $|dv/dt|$ then proceed in exactly the same way as for the two-dimensional Navier–Stokes equations.
Since the estimates on the Galerkin solutions are uniform in \(n \), Aubin’s compactness theorem (Aubin 1963) allows one to extract subsequences in such a way that the limit \(v \) satisfies (23) and (26).

Next, we show that such solutions are unique and depend continuously on the initial data. Let \(v_1 \) and \(v_2 \) be two solutions for (23) both satisfying the conditions in (26). Choose \(K \) large enough such that \(\| v_1 \|^2 \leq K \) and \(\| v_2 \|^2 \leq K \) for almost every \(t \in [0, T] \). Let \(\delta = v_1 - v_2 \). Then \(\delta \) satisfies

\[
\frac{d\delta}{dt} + vA\delta + B(v_1, \delta) + B(\delta, v_2) = -\mu P_{\sigma} I_h(\delta).
\]

Taking inner product with \(A\delta \) yields

\[
\frac{1}{2} \frac{d}{dt} \|\delta\|^2 + v|A\delta|^2 + (B(v_1, \delta), A\delta) + (B(\delta, v_2), A\delta) = -\mu (I_h(\delta), A\delta).
\]

Here we used the fact that

\[
\frac{1}{2} \frac{d}{dt} \|\delta\|^2 = \left(\frac{d\delta}{dt}, A\delta \right),
\]

which can be justified by Lemma 1.2 in Chap. 3 of Temam (2001) or Theorem 7.2 in Robinson (2001) which is due to Lions and Magenes (1972). Estimate the right-hand side of this equation as in (30) to obtain

\[
-\mu (I_h(\delta), A\delta) \leq \frac{\mu^2 c_0 h^2}{2\nu} \|\delta\|^2 + \frac{v}{2} |A\delta|^2 - \mu \|\delta\|^2 \leq \frac{v}{2} |A\delta|^2.
\]

Here we have again used (24) and the hypothesis that \(\mu c_0 h^2 \leq \nu \). It follows that

\[
\frac{1}{2} \frac{d}{dt} \|\delta\|^2 + \frac{v}{2} |A\delta|^2 \leq \left| (B(v_1, \delta), A\delta) \right| + \left| (B(\delta, v_2), A\delta) \right|.
\]

(34)

The proof of uniqueness and continuity now proceeds as for the incompressible two-dimensional Navier–Stokes equations. In particular, estimate the nonlinear terms on the right-hand side of (34) using (17) and (18) as

\[
\left| (B(v_1, \delta), A\delta) \right| \leq c |v_1|^{1/2} ||v_1||^{1/2} \|\delta\|^{1/2} |A\delta|^{3/2} \leq \frac{27 c^4 K^2}{4 \nu^3 \lambda_1} \|\delta\|^2 + \frac{v}{4} |A\delta|^2,
\]

and

\[
\left| (B(\delta, v_2), A\delta) \right| \leq c |\delta|^{1/2} \|v_2\| \|A\delta\|^{3/2} \leq \frac{27 c^4 K^2}{4 \nu^3 \lambda_1} \|\delta\|^2 + \frac{v}{4} |A\delta|^2.
\]

Therefore,

\[
\frac{d}{dt} \|\delta\|^2 \leq \frac{27 c^4 K^2}{2 \nu^3 \lambda_1} \|\delta\|^2, \quad \text{for all } t \in [0, T].
\]
Integrating yields
\[\|\delta(t)\|^2 \leq \|\delta_0\|^2 \exp \left\{ \frac{27c^4K^2}{2v^3\lambda_1} t \right\}. \]

Thus, the solutions \(v \) to (23), which satisfy (26), also satisfy \(v \in C([0, T], V) \), and depend continuously on the initial data in the \(V \) norm. \(\square \)

Theorem 6 In the case of periodic boundary conditions suppose that \(I_h \) satisfies (25), and \(\mu c_0 h^2 \leq \nu \), where \(c_0 \) is the constant appearing in (25). Then the continuous data assimilation equations (23) possess unique strong solutions that satisfy (26), for any \(T > 0 \). Furthermore, this solution is in \(C([0, T], V) \) and depends continuously on the initial data \(v_0 \) in the \(V \) norm.

Proof The proof is similar to the proof of Theorem 5 but makes use of the identity (14) to obtain estimates on \(\|v\| \) and \(\int_0^t |Av|^2 \) directly. \(\square \)

The algorithm given by (23) for constructing the approximate solution \(v \) contains two parameters \(h \) and \(\mu \). The first parameter \(h \) has dimensions of length and corresponds to the resolution of the observational measurements represented by \(I_h(u) \). Smaller values of \(h \) correspond to spatially more accurate resolved measurements. The relaxation parameter \(\mu \) controls the rate at which the approximating solution \(v \) is forced toward the observable part of the reference solution \(u \). Larger values of \(\mu \) cause \(I_h(v) \) to faster track \(I_h(u) \). It is the parameter \(\mu \) which distinguishes (23) from the previous methods of continuous data assimilation studied in Browning et al. (1998), Henshaw et al. (2003), Olson and Titi (2003) and (2008).

The condition that \(\mu c_0 h^2 \leq \nu \), given in Theorem 5, places a restriction on the size of \(\mu h^2 \) compared to the viscosity \(\nu \), sufficient to ensure the data assimilation equations are well-posed. This restriction is due to the fact that the the interpolant operator \(\mu I_h \) might generate large gradients and spatial oscillations (“spill over” to the fine scales) that need to be controlled (suppressed) by the viscosity term. Notice that in the case when \(I_h = P_{mh} \), where \(P_{mh} \) is the orthogonal projection onto the linear subspace spanned by the Fourier modes with wave numbers \(|k| \leq m_h = \frac{1}{h} \), such oscillations are not generated, since \(-(\mu I_h(v), v) = -\mu \|P_{mh}v\|^2 \) and \(-(\mu I_h(v), Av) = -\mu \|P_{mh}v\|^2 \). Consequently, there is no restriction on \(\mu h^2 \) and \(\mu \) can be taken arbitrary large. In the limit when \(\mu \to \infty \) one obtains exactly the same algorithm introduced in Olson and Titi (2003) (see also Hayden et al. (2011)). In particular, one has \(P_{mh}v = P_{mh}u \), and all that one needs to do is to solve for \(q = (I - P_{mh})v \), for which an explicit evolution equation is presented in Olson and Titi (2003).

Next, we give further conditions on \(h \) and \(\mu \) which guarantee that the difference between the approximating solution \(v \) and the reference solution \(u \) converges to zero as \(t \to \infty \).

3 No-slip Dirichlet Boundary Conditions Case

In this section we prove Theorem 1. We first recall the following generalized Gronwall inequality proved in Jones and Titi (1992) (see also Foias et al. (2001)).
Lemma 1 (Uniform Gronwall Inequality) Let $T > 0$ be fixed. Suppose

$$\frac{dY}{dt} + \alpha(t)Y \leq 0, \quad \limsup_{t \to \infty} \int_t^{t+T} \alpha(s) \, ds \geq \gamma > 0.$$

Then $Y(t) \to 0$ exponentially, as $t \to \infty$.

We now state and prove a lemma leading to our main result.

Proposition 1 Let Ω be an open, bounded and connected set in \mathbb{R}^2 with C^2 boundary, and let u be a solution of the incompressible two-dimensional Navier–Stokes equations (19) on Ω with no-slip Dirichlet boundary conditions. Let v be the approximating solution given by (23). Then $|u - v| \to 0$, as $t \to \infty$, provided $\mu c_0 h^2 \leq \nu$ and $\mu \geq 5 c_2 G^2 \nu \lambda_1$.

Proof Consider the time evolution of $w = u - v$. Since

$$B(u, u) - B(v, v) = B(u, w) + B(w, u) - B(w, w)$$

and

$$I_h(u) - I_h(v) = I_h(w),$$

subtracting (23) from (19) yields

$$\frac{dw}{dt} + Aw + B(u, w) + B(w, u) - B(w, w) = -\mu P_{\sigma} I_h(w). \quad (35)$$

Taking the inner product of (35) with w, and using again (24), we obtain

$$\frac{1}{2} \frac{d}{dt} |w|^2 + v \|w\|^2 + (B(w, u), w) = -\mu (I_h(w), w)$$

$$= \mu (w - I_h(w), w) - \mu |w|^2$$

$$\leq \frac{\mu}{2} |P_{\sigma}(w - I_h(w))|^2 + \frac{\mu}{2} |w|^2 - \mu |w|^2$$

$$\leq \frac{\mu c_0 h^2}{2} \|w\|^2 - \mu \|w\|^2 \leq \frac{v}{2} \|w\|^2 - \frac{\mu}{2} |w|^2.$$

Since (16) implies

$$|B(w, u), w) \leq c \|u\| \|w\|^2 \leq \frac{c^2}{2v} \|u\|^2 |w|^2 + \frac{\nu}{2} \|w\|^2,$$

we obtain

$$\frac{d}{dt} |w|^2 + \left(\mu - \frac{c^2}{\nu} \|u\|^2 \right) |w|^2 \leq 0.$$
Denote

\[\alpha(t) = \mu - \frac{c^2}{\nu} \|u\|^2. \]

Taking \(T = (\nu \lambda_1)^{-1} \) in Theorem 4 we have for \(t \geq t_0 \) that

\[\int_t^{t+T} \|v\|^2 \leq 2(1 + T \nu \lambda_1)vG^2 = 4vG^2. \]

Thus

\[\limsup_{t \to \infty} \int_t^{t+T} \alpha(s) \, ds \geq \frac{\mu}{\nu \lambda_1} - 4c^2G^2 \geq c^2G^2 > 0, \]

and by Lemma 1 it follows that \(|w| \to 0 \), exponentially, as \(t \to \infty \). \(\Box \)

Proof of Theorem 1 The hypotheses of Proposition 1 require that

\[\mu c_0 h^2 \leq \nu \quad \text{and} \quad \mu \geq 5c^2G^2\nu \lambda_1. \]

Therefore

\[\frac{1}{h^2} \geq \frac{\mu c_0}{v} \geq c_1 G^2 \lambda_1 \]

where \(c_1 = 5c_0c^2 \). \(\Box \)

4 Periodic Boundary Conditions Case

In this section we prove Theorem 2. We begin with an elementary inequality which will be referred to in the sequel.

Lemma 2 Let \(\phi(r) = r - \beta(1 + \log r) \) where \(\beta > 0 \). Then

\[\min\{\phi(r) : r \geq 1\} \geq -\beta \log \beta. \]

Proof Note first that

\[\phi(1) = 1 - \beta \quad \text{and} \quad \lim_{r \to \infty} \phi(r) = \infty. \]

The derivative \(\phi'(r) = 1 - \beta/r \) is zero if and only if \(r = \beta \). Therefore

\[\min\{\phi(r) : r \geq 1\} = \begin{cases} 1 - \beta & \text{if } 0 < \beta \leq 1 \\ -\beta \log \beta & \text{if } 1 < \beta. \end{cases} \]

Observe that over the interval \(0 < \beta \leq 1 \) we have \(1 - \beta \geq -\beta \log \beta \), which concludes our proof. \(\Box \)

We now state and prove a lemma leading to the proof of Theorem 2.
Proposition 2 Let $\Omega = [0, L]^2$, for some fixed $L > 0$. Let u be a solution of the incompressible two-dimensional Navier–Stokes equations (19) on Ω equipped with periodic boundary conditions. Let v be the approximating solution given by (23), where I_h satisfies (24). Then $\|u - v\| \to 0$, as $t \to \infty$, provided $\mu c_0 h^2 \leq \nu$ and

$$\mu \geq 3\nu \lambda_1 \left(2c \log 2c^{3/2} + 4c \log(1 + G) \right).$$

Proof The proof makes use of the orthogonality properties (14) and (15) along with the Brézis–Gallouet inequality (Brézis and Gallouet 1980) which may be written as

$$\|u\|_{L^\infty(\Omega)} \leq c\|u\| \left\{ 1 + \log \frac{|A u|^2}{\lambda_1 \|u\|^2} \right\}, \quad (37)$$

which will allow us to obtain sharper estimates than for the case of no-slip boundary conditions (see also Titi (1987) for similar, and other, logarithmic estimates for the nonlinear term of the NSE).

Take the inner product of (35) with Aw and use the orthogonality relations (14) and (15) to obtain

$$\frac{1}{2} \frac{d\|w\|^2}{dt} + v|Aw|^2 = (B(w, w), Au) - \mu(I_h(w), Aw).$$

Using (37) and the hypothesis $\mu c_0 h^2 \leq \nu$ we have

$$| (B(w, w), Au) | \leq c\|w\|^2 \left\{ 1 + \log \frac{|A w|^2}{\lambda_1 \|w\|^2} \right\} |Au|,$$

and thanks to (24) as in (30) we have

$$-\mu(I_h(w), Aw) \leq \frac{\mu^2 c_0 h^2}{2\nu} \|w\|^2 + \frac{\nu}{2} |Aw|^2 - \mu \|w\|^2 \leq \frac{\nu}{2} |Aw|^2 - \frac{\mu}{2} \|w\|^2.$$

Therefore,

$$\frac{d\|w\|^2}{dt} + v|Aw|^2 \leq \left(2c|Au| \left\{ 1 + \log \frac{|A w|^2}{\lambda_1 \|w\|^2} \right\} - \mu \right)\|w\|^2,$$

or

$$\frac{d\|w\|^2}{dt} + \left(v\lambda_1 \frac{|A w|^2}{\lambda_1 \|w\|^2} - 2c|Au| \left\{ 1 + \log \frac{|A w|^2}{\lambda_1 \|w\|^2} \right\} + \mu \right)\|w\|^2 \leq 0.$$

Now setting

$$\beta = \frac{2c|Au|}{\nu \lambda_1} \quad \text{and} \quad r = \frac{|A w|^2}{\lambda_1 \|w\|^2}$$

in Lemma 2, and noting that $r \geq 1$, by Poincaré’s inequality (11), we obtain

$$\frac{d\|w\|^2}{dt} + \left\{ \mu - 2c|Au| \log \frac{2c|Au|}{\nu \lambda_1} \right\} \|w\|^2 \leq 0.$$
By (22) we estimate
\[2c \log \frac{2c|Au|}{\nu \lambda_1} \leq c_3 + c_4 \log(1 + G) =: J, \tag{38} \]
where \(c_3 = 2c \log 2c^{3/2} \) and \(c_4 = 4c \). It follows that
\[\frac{d\|w\|^2}{dt} + \{\mu - J|Au|\}\|w\|^2 \leq 0, \]
and by virtue of Young’s inequality we have
\[\frac{d\|w\|^2}{dt} + \frac{1}{2} \left\{ \mu - \frac{J^2}{\mu} |Au|^2 \right\} \|w\|^2 \leq 0. \]
Denote
\[\alpha(t) = \frac{1}{2} \left\{ \mu - \frac{J^2}{\mu} |Au(t)|^2 \right\}. \]
Taking \(T = (\nu \lambda_1)^{-1} \) in Theorem 4 we have for \(t \geq t_0 \) that
\[\int_t^{t+T} \|Au\|^2 \leq 2(1 + T \nu \lambda_1) \nu \lambda_1 G^2 = 4 \nu \lambda_1 G^2. \]
By hypothesis \(\mu \geq 3 \nu \lambda_1 J G \). Thus,
\[\limsup_{t \to \infty} \int_t^{t+T} \alpha(s) \, ds \geq \frac{\mu}{2 \nu \lambda_1} - \frac{2 \nu \lambda_1 J^2 G^2}{\mu} \geq \frac{5}{6} J G > 0, \]
and consequently \(\|w\| \to 0 \) exponentially, as \(t \to \infty \). \hfill \Box

Proposition 3 Let \(\Omega = [0, L]^2 \), for some fixed \(L > 0 \). Let \(u \) be a solution of the incompressible two-dimensional Navier–Stokes equations (19) on \(\Omega \), equipped with periodic boundary conditions. Let \(v \) be the approximating solution given by (23) where \(I_h \) satisfies (25). Then \(\|u - v\| \to 0 \), as \(t \to \infty \), provided \(\mu c_0 h^2 \leq \nu \) and \(\mu \geq 3 \nu \lambda_1 (2c \log 2c^{3/2} + 8c \log(1 + G)) G \).

Proof The proof is the same as the proof of Proposition 2, except that we use (25), so that the estimate for \(-\mu(I_h(w), Aw) \) has to be modified as
\[
-\mu(I_h(w), Aw) \leq \frac{\mu^2 c_0 h^2}{2 \nu} \|w\|^2 + \frac{\mu^2 c_0^2 h^4}{4 \nu} |Aw|^2 + \frac{\nu}{4} |Aw|^2 - \mu \|w\|^2 \\
\leq \frac{\nu}{2} |Aw|^2 - \frac{\mu}{2} \|w\|^2.
\]
Then, the rest of the proof follows without change. \hfill \Box

Proof of Theorem 2 The hypotheses of Propositions 2 or 3 require that
\[\mu c_0 h^2 \leq \nu \quad \text{and} \quad \mu \geq 3 \nu \lambda_1 J G. \]
Therefore,

\[\frac{1}{h^2} \geq \frac{\mu c_0}{v} \geq c_2 \lambda_1 G \left(1 + \log(1 + G) \right), \]

(39)

where \(c_2 = 3 \max\{c_3, c_4\} \).

\[\square \]

5 Conclusions

As shown in this paper, the algorithm given by (2), for constructing \(v(t) \) from the observations \(I_h(u(t)) \), yields an approximation for \(u(t) \) such that

\[\| u(t) - v(t) \|_{L^2(\Omega)} \to 0 \text{ exponentially, as } t \to \infty, \]

(40)

provided the observations have fine enough spatial resolution. This result has the following consequence. To accurately predict \(u(t) \) for time \(T \) into the future it is sufficient to have observational data \(I_h(u(t)) \) accumulated over an interval of time linearly proportional to \(T \) in the immediate past.

In particular, suppose it is desired to predict \(u(t) \) with accuracy \(\epsilon > 0 \) on the interval \([t_1, t_1 + T^*]\), where \(t_1 \) is the present time and \(T^* > 0 \) determines how far into the future to make the prediction. Let \(h \) be small enough and \(\mu \) large enough so that Theorem 1 implies (40). Thus, there is \(\alpha > 0 \) and a constant \(C > 0 \) such that

\[\| u(t) - v(t) \|_{L^2(\Omega)} \leq C e^{-\alpha t} \text{ for all } t \geq 0. \]

Now use \(v(t_1) \) as the initial condition from which to make a future prediction.

Let \(w \) be a solution to (19) with initial condition \(w(t_1) = v(t_1) \). Known results on continuous dependence on initial conditions, see, for example, Constantin and Foias (1988), Hayden et al. (2011), Robinson (2001) or Temam (1983), imply that there is \(\beta > 0 \) such that

\[\| w(t) - u(t) \|_{L^2(\Omega)} \leq \| w(t_1) - u(t_1) \|_{L^2(\Omega)} e^{\beta(t-t_1)} \text{ for } t \geq t_1. \]

Therefore

\[\| w(t) - u(t) \| \leq C e^{-(\alpha t_1 + \beta T)} < \epsilon \text{ for } t \in [t_1, t_1 + T] \]

provided \(\alpha t_1 \geq \beta T + \ln(C/\epsilon) \). Thus \(w(t) \) predicts \(u(t) \) with accuracy \(\epsilon \) on the interval \([t_1, t_1 + T]\).

Work is currently under way to numerically test Theorem 2 in the case of determining finite volume elements and nodes. A particular focus is how to tune the parameter \(\mu \). If \(\mu \) is very large, then the effects of “spill over” into the fine scales may become significant, whereas if \(\mu \) is small, then convergence of the approximate solution may be slow or not happen at all. Preliminary numerical simulations performed by Gesho (2013) for the two-dimensional incompressible Navier–Stokes equations confirm that the continuous data assimilation algorithm given by (2) works directly, without additional filtering, for observational measurements at
a discrete set of nodal points, where \(I_h \) is given by (8). Although our analytical estimates are comparable to previous results on data assimilation using Fourier modes, as with those results, sharper analysis appears to be required for sharp bounds on \(h \). In particular, as with previous computational work (cf. Hayden et al. 2011; Olson and Titi 2003 and 2008) the approximating solution \(v(t) \) converges to the reference solution \(u(t) \) under much less stringent conditions than required by our theory.

The main advantage of introducing a control term that forces the approximate solution toward the reference solution is that we can rely on the viscous dissipation, already present in the dynamics, to filter the observational data (that is, to suppress the spatial oscillations, i.e. the “spill over” into the fine scales, which are generated by the coarse-mesh stabilizing term \(\mu I_h(v) \)). In addition to working for a general class of interpolant observables this technique also allows processing of observational data which contains stochastic noise. In particular, the same algorithm can be used to obtain an approximation \(v(t) \) that converges (in some sense) to the reference solution \(u(t) \), to within an error of the order of \(\mu \) times the variance of the noise in the measurements. This work (Bessaih et al. 2013) is in progress.

Acknowledgements The work of A.A. is supported in part by the DFG grants SFB-910 and SFB-947. E.S.T. is thankful to the kind hospitality of the Freie Universität Berlin, where this work was initiated. E.S.T. also acknowledges the partial support of the Alexander von Humboldt Stiftung Foundation, the Minerva Stiftung Foundation, and the National Science Foundation grants DMS-1009950, DMS-1109640 and DMS-1109645. We would also like to thank the anonymous referees for their careful reading and constructive comments.

Appendix A: Estimates for Nodal Interpolants

This appendix contains inequalities and estimates for interpolant operators that will be used for observables obtained from nodal measurements of the velocity field.

Consider a function \(u \in H^2_{\text{per}}(\Omega) \), where \(\Omega = [0, L]^2 \) is a basic domain of periodicity. Let \(\sqrt{N} \) be a positive integer and partition \(\Omega \) into \(N \) squares with sides of length \(h = L / \sqrt{N} \). Let \(\mathcal{J} = \{1, 2, \ldots, \sqrt{N}\}^2 \) and for each \(\alpha \in \mathcal{J} \) define the semi-open square

\[
Q_\alpha = \left(jh, (j+1)h \right) \times \left(kh, (k+1)h \right), \quad \text{where} \quad \alpha = (i, j) \in \mathcal{J}.
\]

Moreover, for \(\varphi \in L^1(\Omega) \) we denote

\[
\langle \varphi \rangle = \frac{1}{L^2} \int_{\Omega} \varphi(x) \, dx.
\]

Fix nodal points \(x_\alpha \in Q_\alpha \), and suppose we are given the nodal values \(u(x_\alpha) \), for every \(\alpha \in \mathcal{J} \). Based on these nodal values, we define two interpolant operators, \(I_h \) and \(\tilde{I}_h \), which we will show that they satisfy the approximation estimate (7). Specifically, define

\[
I_h(u)(x) = \sum_{\alpha \in \mathcal{J}} u(x_\alpha) \psi_\alpha(x),
\]

where \(\psi_\alpha \) are interpolants defined as

\[
\psi_\alpha(x) = \begin{cases}
1 & \text{if } x \in Q_\alpha \\
0 & \text{otherwise}
\end{cases}
\]

and

\[
\tilde{I}_h(u)(x) = \sum_{\alpha \in \mathcal{J}} u(x_\alpha) \tilde{\psi}_\alpha(x),
\]

where \(\tilde{\psi}_\alpha \) are smoothed versions of \(\psi_\alpha \).
\[I_h(u)(x) = \mathcal{I}_h(u)(x) - \{ \mathcal{I}_h(u) \} = \sum_{\alpha \in J} u(x_{\alpha})(\psi_\alpha(x) - \langle \psi_\alpha \rangle), \]

(42)

where

\[\psi_\alpha(x) = \sum_{(j,k) \in \mathbb{Z}^2} \chi_{Q_\alpha}(x_1 + jL, x_2 + kL), \]

is the \(L\)-periodic characteristic function of the semi-open square \(Q_\alpha\). Next, we define

\[\tilde{\mathcal{I}}_h(u)(x) = \sum_{\alpha \in J} u(x_{\alpha}) \tilde{\psi}_\alpha(x), \]

(43)

and

\[\tilde{I}_h(u)(x) = \tilde{\mathcal{I}}_h(u)(x) - \{ \tilde{\mathcal{I}}_h(u) \} = \sum_{\alpha \in J} u(x_{\alpha})(\tilde{\psi}_\alpha(x) - \langle \tilde{\psi}_\alpha \rangle), \]

(44)

where

\[\tilde{\psi}_\alpha(x) = (\rho_\epsilon * \psi_\alpha)(x) \]

is a mollified version of \(\psi_\alpha\) by the mollifier \(\rho_\epsilon(x) = \epsilon^{-2} \rho(x/\epsilon)\). Here we take

\[\rho(\xi) = \begin{cases}
K_0 \exp \left(\frac{1}{1 - |\xi|^2} \right) & \text{for } |\xi| < 1 \\
0 & \text{for } |\xi| \geq 1,
\end{cases} \]

and

\[(K_0)^{-1} = \int_{|\xi| < 1} \exp \left(\frac{1}{1 - |\xi|^2} \right) \, d\xi. \]

The mollification parameter \(\epsilon\) will be chosen \(\epsilon = \frac{h}{10}\).

Observe that \(\langle I_h \rangle = \langle \tilde{I}_h \rangle = 0\), and that \(\tilde{\mathcal{I}}_h(x)\) and \(\tilde{I}_h(x)\) are \(C^\infty\) periodic functions.

We now state as Proposition 4 the estimate that was proved by Jones and Titi as inequality (6.2) in Jones and Titi (1993).

Proposition 4 Let \(Q\) be a square with sides of length \(\ell > 0\), and \(\varphi \in H^2(Q)\). Then for every \(x, y \in Q\) one has

\[\left| \varphi(x) - \varphi(y) \right| \leq 2 \left(4 \left\| \nabla \varphi \right\|_{L^2(Q)}^2 + \ell^2 \left\| \frac{\partial^2 \varphi}{\partial x_1 \partial x_2} \right\|_{L^2(Q)}^2 \right)^{1/2}. \]

We now use Proposition 4 to obtain estimate (7) concerning the accuracy of the interpolant operators \(\mathcal{I}_h\) and \(I_h\). Namely, we have

Proposition 5 Suppose \(u \in H^2_{\text{per}}(\Omega)\), and let \(\mathcal{I}_h(u)\) and \(I_h(u)\) be as in (41) and (42), respectively. Then
(i) \[\| u - \mathcal{I}_h(u) \|_{L^2(\Omega)} \leq 4h \| \nabla u \|_{L^2(\Omega)} + 2h^2 \| \frac{\partial^2 u}{\partial x_1 \partial x_2} \|_{L^2(\Omega)}. \]

(ii) \[\| (u - \langle u \rangle) - \mathcal{I}_h(u) \|_{L^2(\Omega)} \leq 8h \| \nabla u \|_{L^2(\Omega)} + 4h^2 \| \frac{\partial^2 u}{\partial x_1 \partial x_2} \|_{L^2(\Omega)}. \]

Moreover, if \(\langle u \rangle = 0 \), then there exists a constant \(c > 0 \) such that we can replace the term \(\| \frac{\partial^2 u}{\partial x_1 \partial x_2} \|_{L^2(\Omega)} \), in the above estimates, by \(c \| \Delta u \|_{L^2(\Omega)} \).

Proof First observe that

\[\sum_{\alpha \in J} \psi_{\alpha}(x) = 1 \quad \text{for every } x \in \mathbb{R}^2. \]

Therefore,

\[\| u - \mathcal{I}_h(u) \|_{L^2(\Omega)}^2 = \int_{\Omega} \left| u(x) - \sum_{\alpha \in J} u(x_{\alpha}) \psi_{\alpha}(x) \right|^2 \, dx \]

\[= \int_{\Omega} \left| \sum_{\alpha \in J} (u(x) - u(x_{\alpha})) \psi_{\alpha}(x) \right|^2 \, dx \]

\[= \int_{\Omega} \sum_{\alpha, \beta \in J} (u(x) - u(x_{\alpha})) \cdot (u(x) - u(x_{\beta})) \psi_{\alpha}(x) \psi_{\beta}(x) \, dx. \]

Since

\[\psi_{\alpha}(x) \psi_{\beta}(x) = \begin{cases} 0 & \text{if } \alpha \neq \beta \\ \psi_{\alpha}(x) & \text{if } \alpha = \beta, \end{cases} \]

the above gives

\[\| u - \mathcal{I}_h(u) \|_{L^2(\Omega)}^2 = \int_{\Omega} \sum_{\alpha \in J} |u(x) - u(x_{\alpha})|^2 \psi_{\alpha}^2(x) \, dx. \]

Applying Proposition 4 to the square \(Q_{\alpha} \) we obtain

\[|u(x) - u(x_{\alpha})|^2 \leq 4 \left(4 \| \nabla u \|_{L^2(Q_{\alpha})}^2 + h^2 \| \frac{\partial^2 u}{\partial x_1 \partial x_2} \|_{L^2(Q_{\alpha})}^2 \right), \quad \text{for every } x \in Q_{\alpha}. \]

Hence

\[\| u - \mathcal{I}_h(u) \|_{L^2(\Omega)}^2 \leq \sum_{\alpha \in J} 4h^2 \left(4 \| \nabla u \|_{L^2(Q_{\alpha})}^2 + h^2 \| \frac{\partial^2 u}{\partial x_1 \partial x_2} \|_{L^2(Q_{\alpha})}^2 \right) \]

\[\leq 16h^2 \| \nabla u \|_{L^2(\Omega)}^2 + 4h^4 \| \frac{\partial^2 u}{\partial x_1 \partial x_2} \|_{L^2(\Omega)}^2; \]

which proves (i).
Next, we focus on proving (ii). By virtue of the Cauchy–Schwarz inequality we observe that
\[\| \langle u \rangle - \langle I_h(u) \rangle \|_{L^2(\Omega)} \leq \| u - I_h(u) \|_{L^2(\Omega)}. \]
Therefore, (ii) follows from combining the triangle inequality together with the above observation, (41), (42), and part (i).

Finally, we recall the fact that for \(\langle u \rangle = 0 \) one has \(\| u \|_{H^2(\Omega)} \leq c \| \Delta u \|_{L^2(\Omega)} \), which concludes the proof. □

We now provide similar estimates for the \(C^\infty \) periodic interpolants \(\tilde{I}_h \) and \(\tilde{I}h \). In order to do this we make the assumptions that \(N \geq 9 \) and \(\epsilon = h/10 \). Define
\[\tilde{Q}_\alpha = \left((j - 1)h, (j + 2)h \right) \times \left((k - 1)h, (k + 2)h \right), \quad \text{where } \alpha = (k, j) \in J. \]

Since \(\epsilon < h/2 \) we obtain
\[U_\alpha = Q_\alpha + B(0, \epsilon) = \{ x + y : x \in Q_\alpha \text{ and } |y| < \epsilon \} \subseteq \tilde{Q}_\alpha, \quad \text{for } \alpha \in J, \]
and
\[C_\alpha = U_\alpha \setminus \bigcup_{\beta \neq \alpha} U_\beta \neq \emptyset, \quad \text{for } \alpha \in J. \]

The following two propositions now follow immediately from the definition of \(\tilde{\psi}_\alpha \) and the fact that \(\epsilon = h/10 \).

Proposition 6 The functions \(\tilde{\psi}_\alpha \), for \(\alpha \in J \), form a smooth partition of unity satisfying
(i) \(0 \leq \tilde{\psi}_\alpha(x) \leq 1 \), and \(\text{supp}(\tilde{\psi}_\alpha) \subseteq (U_\alpha + (LZ)^2) \),
(ii) \(\tilde{\psi}_\alpha(x) = 1 \), for all \(x \in (C_\alpha + (LZ)^2) \), and \(\sum_{\alpha \in J} \tilde{\psi}_\alpha(x) = 1 \), for all \(x \in \mathbb{R}^2 \),
(iii) \(\| \tilde{\psi}_\alpha \|_2 = (\frac{h}{2})^2 \) and \(\frac{h}{2} \leq \| \tilde{\psi}_\alpha \|_{L^2(\Omega)} \leq \frac{5}{3} h \),
(iv) \(\text{supp}(\nabla \tilde{\psi}_\alpha) \subseteq ((U_\alpha \setminus C_\alpha) + LZ^2) \),
(v) \(|\nabla \tilde{\psi}_\alpha(x)| \leq c h^{-1} \), and \(\frac{|\partial^2 \tilde{\psi}_\alpha(x)|}{\partial x_i \partial x_j} \leq c h^{-2} \), for all \(x \in \mathbb{R}^2 \),
(vi) \(\| \nabla \tilde{\psi}_\alpha \|_{L^2(\Omega)} \leq c \).

Proposition 7 Let \(K = \{-1, 0, 1\}^2 \). The functions \(\tilde{\psi}_\alpha \) are nearly orthogonal in the following sense:
(i) \(\int_{\Omega} \tilde{\psi}_\alpha(x) \tilde{\psi}_\beta(x) \, dx = \int_{\Omega} (\nabla \tilde{\psi}_\alpha(x)) \cdot (\nabla \tilde{\psi}_\beta(x)) \, dx \leq 0 \) for all \(\alpha, \beta \in J \) with \(\beta - \alpha \notin K \),
(ii) \(|\int_{\Omega} \tilde{\psi}_\alpha(x) \tilde{\psi}_\beta(x) \, dx| \leq (h + 2\epsilon)^2 = \frac{36}{25} h^2 \), for all \(\alpha, \beta \in J \) with \(\beta - \alpha \in K \),
(iii) \(|\int_{\Omega} (\nabla \tilde{\psi}_\alpha(x)) \cdot (\nabla \tilde{\psi}_\beta(x)) \, dx| \leq c \), for all \(\alpha, \beta \in J \) with \(\beta - \alpha \in K \).

We are now ready to prove estimates concerning the accuracy of the interpolant operators \(\tilde{I}_h \) and \(\tilde{I}h \) that are the analog to those of Proposition 5.
Proposition 8 Suppose $u \in H^2_{\text{per}}(\Omega)$, and let $\tilde{I}_h(u)$ and $\tilde{I}_h(u)$ be as in (43) and (44), respectively. Then there exists a constant $c > 0$ such that

(i) $\|u - \tilde{I}_h(u)\|_{L^2(\Omega)} \leq c(h \|
abla u\|_{L^2(\Omega)} + h^2 \|\frac{\partial^2 u}{\partial x_1 \partial x_2}\|_{L^2(\Omega)}).$

(ii) $\|(u - (u)) - \tilde{I}_h(u)\|_{L^2(\Omega)} \leq c(h \|
abla u\|_{L^2(\Omega)} + h^2 \|\frac{\partial^2 u}{\partial x_1 \partial x_2}\|_{L^2(\Omega)}).$

(iii) $\|
abla \tilde{I}_h(u)\|_{L^2(\Omega)} = \|
abla \tilde{I}_h(u)\|_{L^2(\Omega)} \leq c(\|
abla u\|_{L^2(\Omega)} + h^2 \|\frac{\partial^2 u}{\partial x_1 \partial x_2}\|_{L^2(\Omega)}).$

(iv) $\|
abla (u - \tilde{I}_h(u))\|_{L^2(\Omega)} = \|
abla (u - \tilde{I}_h(u))\|_{L^2(\Omega)} \leq c(\|
abla u\|_{L^2(\Omega)} + h^2 \|\frac{\partial^2 u}{\partial x_1 \partial x_2}\|_{L^2(\Omega)}).$

Moreover, if $\langle u \rangle = 0$, then there exists a constant $c > 0$ such that we can replace the term $\|\frac{\partial^2 u}{\partial x_1 \partial x_2}\|_{L^2(\Omega)}$, in the above estimates, by $c\|\Delta u\|_{L^2(\Omega)}$.

Proof In what follows we will use some of the properties stated in Propositions 6 and 7.

$$\|u - \tilde{I}_h(u)\|_{L^2(\Omega)}^2 = \int_{\Omega} \left| u(x) - \sum_{\alpha \in J} u(x_\alpha) \tilde{\psi}_\alpha(x) \right|^2 \text{d}x$$

$$= \int_{\Omega} \left| \sum_{\alpha \in J} (u(x) - u(x_\alpha)) \tilde{\psi}_\alpha(x) \right|^2 \text{d}x$$

$$= \int_{\Omega} \sum_{\alpha, \beta \in J} (u(x) - u(x_\alpha)) \cdot (u(x) - u(x_\beta)) \tilde{\psi}_\alpha(x) \tilde{\psi}_\beta(x) \text{d}x.$$
Applying Proposition 4 to each of the squares \tilde{Q}_α, for $\alpha \in \mathcal{J}$, the above implies
\[
\|u - \tilde{I}_h(u)\|_{L^2(\Omega)}^2 \leq 9 \sum_{\alpha \in \mathcal{J}} 36h^2 \left(4\|\nabla u\|_{L^2(\tilde{Q}_\alpha)}^2 + h^2 \left\| \frac{\partial^2 u}{\partial x_1 \partial x_2} \right\|^2_{L^2(\tilde{Q}_\alpha)} \right)
\]
\[
= 81 \sum_{\alpha \in \mathcal{J}} 36h^2 \left(4\|\nabla u\|_{L^2(Q_\alpha)}^2 + h^2 \left\| \frac{\partial^2 u}{\partial x_1 \partial x_2} \right\|^2_{L^2(Q_\alpha)} \right)
\]
\[
= \gamma_1 h^2 \|\nabla u\|_{L^2(\Omega)}^2 + \gamma_2 h^4 \left\| \frac{\partial u}{\partial x_1 \partial x_2} \right\|_{L^2(\Omega)}^2,
\]
where $\gamma_1 = 11664$ and $\gamma_2 = 2916$. By this we conclude (i).

The proof of (ii) follows from (i) by following the same lines as the proof of part (ii) of Proposition 5.

Next, we focus on the proof of (iii). To this end we implement some of the steps used in the proof of part (i), above, and the properties stated in Proposition 6.

\[
\left\| \nabla \tilde{\nabla}_h(u) \right\|_{L^2(\Omega)}^2 = \left\| \sum_{\alpha \in \mathcal{J}} u(x_\alpha) \nabla \tilde{\psi}_\alpha(\cdot) \right\|_{L^2(\Omega)}^2
\]
\[
= \left\| \sum_{\alpha \in \mathcal{J}} u(x_\alpha) \nabla \tilde{\psi}_\alpha(\cdot) - u(\cdot) \nabla \left(\sum_{\alpha \in \mathcal{J}} \tilde{\psi}_\alpha(\cdot) \right) \right\|_{L^2(\Omega)}^2
\]
\[
= \left\| \sum_{\alpha \in \mathcal{J}} (u(x_\alpha) - u(\cdot)) \nabla \tilde{\psi}_\alpha(\cdot) \right\|_{L^2(\tilde{Q}_\alpha)}^2
\]
\[
\leq c \sum_{\alpha \in \mathcal{J}} \| (u(x_\alpha) - u(\cdot)) \nabla \tilde{\psi}_\alpha(\cdot) \|_{L^2(\tilde{Q}_\alpha)}^2
\]
\[
\leq \frac{c}{h^2} \sum_{\alpha \in \mathcal{J}} \| (u(x_\alpha) - u(\cdot)) \|_{L^2(\tilde{Q}_\alpha)}^2.
\]
Applying Proposition 4 to each of the squares \tilde{Q}_α, for $\alpha \in \mathcal{J}$, in the above estimate to obtain
\[
\left\| \nabla \tilde{\nabla}_h(u) \right\|_{L^2(\Omega)}^2 \leq c \left(\sum_{\alpha \in \mathcal{J}} \|\nabla u\|_{L^2(\tilde{Q}_\alpha)}^2 + h^2 \sum_{\alpha \in \mathcal{J}} \left\| \frac{\partial^2 u}{\partial x_1 \partial x_2} \right\|^2_{L^2(\tilde{Q}_\alpha)} \right)
\]
\[
\leq 9c \left(\sum_{\alpha \in \mathcal{J}} \|\nabla u\|_{L^2(Q_\alpha)}^2 + h^2 \sum_{\alpha \in \mathcal{J}} \left\| \frac{\partial^2 u}{\partial x_1 \partial x_2} \right\|^2_{L^2(Q_\alpha)} \right)
\]
\[
= c \left(\|\nabla u\|_{L^2(\Omega)}^2 + h^2 \left\| \frac{\partial^2 u}{\partial x_1 \partial x_2} \right\|_{L^2(\Omega)}^2 \right),
\]
which concludes the proof of point (iii).

Point (iv) is an obvious consequence of (iii). The rest of the proof is similar to Proposition 5. \[\square\]
References

Aubin, J.P.: Un théorème de compacité. C.R. Acad. Sci. Paris Sér. I Math. 256, 5042–5044 (1963)
Azuani, A., Titi, E.S.: Feedback control of nonlinear dissipative systems by finite determining parameters—a reaction-diffusion paradigm (2013). arXiv:1301.6992
Bessaih, H., Olson, E., Titi, E.S.: Continuous data assimilation of stochastically noisy data. In preparation (2013)
Blömker, D., Law, K.J.H., Stuart, A.M., Zygalakis, K.C.: Accuracy and stability of the continuous-times 3DVAR filter for the Navier–Stokes equations. Nonlinearity 26, 2193–2219 (2013)
Brenner, S.C., Scott, R.: The Mathematical Theory of Finite Element Methods. Springer, Berlin (2007)
Brézis, H., Gallouet, T.: Nonlinear Schrödinger evolution equations. Nonlinear Anal. 4(4), 677–681 (1980)
Browning, G.L., Henshaw, W.D., Kreiss, H.O.: A numerical investigation of the interaction between the large and small scales of the two-dimensional incompressible Navier–Stokes equations. Research Report LA-UR-98-1712, Los Alamos National Laboratory, (1998)
Cao, C., Titi, E.S.: Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Ann. Math. 166(1), 245–267 (2007)
Cheskidov, A., Holm, D.D., Olson, E., Titi, E.S.: On a Leray-alpha model of turbulence. Proc. R. Soc. Lond., Ser. A Math. Phys. Eng. Sci. 461(2055), 629–649 (2005)
Cockburn, B., Jones, D.A., Titi, E.S.: Estimating of asymptotic degrees of freedom for nonlinear dissipative systems. Math. Comput. 66(219), 1073–1087 (1997)
Constantin, P., Foias, C.: Navier–Stokes Equations. University of Chicago Press, Chicago (1988)
Daley, R.: Atmospheric Data Analysis. Cambridge Atmospheric and Space Science Series. Cambridge University Press, Cambridge (1991)
Dascaliuc, R., Foias, C., Jolly, M.S.: Estimates on enstrophy, palinstrophy, and invariant measures for 2-D turbulence. J. Differ. Equ. 248, 792–819 (2010)
Foias, C., Prodi, G.: Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension 2. Rend. Semin. Mat. Univ. Padova 39, 1–34 (1967)
Foias, C., Temam, R.: Sur la détermination d’un écoulement fluide par des observations discrètes. C. R. Acad. Sci. Paris Sér. I Math. 295(3), 239–241 (1982). The continuation in 295(9), 523–525 (1982)
Foias, C., Temam, R.: Determination of the solutions of the Navier–Stokes equations by a set of nodal values. Math. Comput. 43(167), 117–133 (1984)
Foias, C., Titi, E.S.: Determining nodes, finite difference schemes and inertial manifolds. Nonlinearity 4(1), 135–153 (1991)
Foias, C., Manley, O., Rosa, R., Temam, R.: Navier–Stokes Equations and Turbulence. Encyclopedia of Mathematics and Its Applications, vol. 83. Cambridge University Press, Cambridge (2001)
Foias, C., Jolly, M., Kravchenko, R., Titi, E.S.: A determining form for the 2D Navier-Stokes equations—the Fourier modes case. J. Math. Phys. 53, 115623 (2012)
Gesbo, M.: A numerical study of continuous data assimilation using nodal points in space for the two-dimensional Navier–Stokes equations. Masters Thesis, University of Nevada, Department of Mathematics and Statistics (2013)
Hayden, K., Olson, E., Titi, E.S.: Discrete data assimilation in the Lorenz and 2d Navier–Stokes equations. Physica D: Nonlinear Phenom. 240(18), 1416–1425 (2011)
Henshaw, W.D., Kreiss, H.O., Yström, J.: Numerical experiments on the interaction between the large and small-scale motions of the Navier–Stokes equations. Multiscale Model. Simul. 1(1), 119–149 (2003)
Jones, D.A., Titi, E.S.: Determining finite volume elements for the 2D Navier–Stokes equations. Physica D 60, 165–174 (1992)
Jones, D.A., Titi, E.S.: Upper bounds on the number of determining modes, nodes and volume elements for the Navier–Stokes equations. Indiana Univ. Math. J. 42(3), 875–887 (1993)
Korn, P.: Data assimilation for the Navier–Stokes–α equations. Physica D 238, 1957–1974 (2009)
Lions, J.L., Magenes, E.: Nonhomogeneous Boundary Value Problems. Springer, Berlin (1972)
Olson, E., Titi, E.S.: Determining modes for continuous data assimilation in 2D turbulence. J. Stat. Phys. 113(5–6), 799–840 (2003)
Olson, E., Titi, E.S.: Determining modes and Grashof number in 2D turbulence. Theor. Comput. Fluid Dyn. 22(5), 327–339 (2008)
Robinson, J.: In: Infinite-Dimensional Dynamical Systems. Cambridge Texts in Applied Mathematics (2001)
Temam, R.: Navier–Stokes Equations and Nonlinear Functional Analysis. CBMS Regional Conference Series, vol. 41. SIAM, Philadelphia (1983)

Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis, revised edn. AMS/Chelsea, New York (2001)

Titi, E.S.: On a criterion for locating stable stationary solutions to the Navier–Stokes equations. Nonlinear Anal. Theory Methods Appl. 11, 1085–1102 (1987)