Mate pair sequencing outperforms fluorescence in situ hybridization in the genomic characterization of multiple myeloma

James Smadbeck1, Jess F. Peterson2, Kathryn E. Pearce2, Beth A. Pitel2, Andrea Lebron Figueroa2, Michael Timm3, Dragan Jevremovic3, Min Shi3, A. Keith Stewart4, Esteban Braggio4, Daniel L. Riggs4, P. Leif Bergsagel4, George Vasmatzis1, Hutton M. Kearney2, Nicole L. Hoppman2, Rhett P. Ketterling2, Shaji Kumar5, S. Vincent Rajkumar5, Patricia T. Greipp2 and Linda B. Baughn2

Abstract

Fluorescence in situ hybridization (FISH) is currently the gold-standard assay to detect recurrent genomic abnormalities of prognostic significance in multiple myeloma (MM). Since most translocations in MM involve a position effect with heterogeneous breakpoints, we hypothesize that FISH has the potential to miss translocations involving these regions. We evaluated 70 bone marrow samples from patients with plasma cell dyscrasia by FISH and whole-genome mate-pair sequencing (MPseq). Thirty cases (42.9%) displayed at least one instance of discordance between FISH and MPseq for each primary and secondary abnormality evaluated. Nine cases had abnormalities detected by FISH that went undetected by MPseq including 6 tetraploid clones and three cases with missed copy number abnormalities. In contrast, 19 cases had abnormalities detected by MPseq that went undetected by FISH. Seventeen were MYC rearrangements and two were 17p deletions. MPseq identified 36 MYC abnormalities and 17 (50.0% of MYC abnormal group with FISH results) displayed a false negative FISH result. MPseq identified 10 cases (14.3%) with IgL rearrangements, a recent marker of poor outcome, and 10% with abnormalities in genes associated with lenalidomide response or resistance. In summary, MPseq was superior in the characterization of rearrangement complexity and identification of secondary abnormalities demonstrating increased clinical value compared to FISH.

Introduction

Multiple myeloma (MM) is a plasma cell neoplasm (PCN) representing the second most common hematopoietic malignancy and accounts for ~20% of all hematologic cancer related deaths in the United States1. During the last decade there have been remarkable improvements in the treatment of patients with MM that have resulted in increased survival, including immunomodulatory compounds, proteasome inhibitors, and immunotherapeutic approaches such as monoclonal antibodies2. Paralleling the advances in novel therapeutic strategies, characterization of the genomic complexities of MM have significantly improved with the implementation of next-generation sequencing (NGS), thus enabling the identification of novel single nucleotide variants (SNV), structural rearrangements and copy number abnormalities (CNA)3–11. Comprehensive genomic characterization studies such as the Multiple Myeloma Research Foundation (MMRF) CoMMpass Trial and other research studies are necessary for the discovery of novel variants of clinical significance that may lead to improved treatment approaches and prognostication strategies12,13.

In contrast to the use of genome-wide NGS strategies employed in the research/investigational trial setting,
most clinical genomics laboratories rely upon traditional cytogenetic methodologies such as conventional chromosome studies and fluorescence in situ hybridization (FISH) to characterize recurrent cytogenetic abnormalities of prognostic significance. High-risk cytogenetic abnormalities as defined by the Mayo Clinic mSMART 3.0 algorithm\(^\text{14}\) include t(4;14), t(14;16), t(14;20) translocations, 17p deletions and 1q gains, while standard-risk cytogenetic abnormalities include hyperdiploidy (gains of odd-numbered chromosomes), t(11;14) and t(6;14) translocations\(^\text{15,16}\). A limited number of laboratories evaluate for MYC and t(6;14) rearrangements, and detection of IGK and IgL rearrangements is not routinely performed in the clinical setting\(^\text{15}\). Although FISH assays have high sensitivity, are relatively inexpensive compared to NGS techniques and provide input for risk stratification\(^\text{17}\), several limitations exist. They allow for the interrogation of only the regions for which FISH probes are available and multiple FISH probes are needed in order to be comprehensive, with each probe requiring a resource-consuming validation. More importantly, FISH has the potential to miss cryptic abnormalities, including rearrangements that result in a position effect due to juxtaposition of enhancers near oncogenes\(^\text{18–22}\). Since many translocations identified in MM involve a position effect (i.e., IGH and MYC) with heterogeneous breakpoints\(^\text{10,23,24}\) and some CNAs may be cryptic, we hypothesize that some clinical FISH probes used in the characterization of PCNs have a high rate of false negative FISH results.

To test this hypothesis, we evaluated the performance of a genome wide mate-pair sequencing (MPseq) assay in comparison to FISH panel testing for MM. Since MPseq utilizes long input DNA (2–5 Kb) followed by circularization and fragmentation to the size of paired-end fragments (200–500 bp) that are sequenced at reduced depth, this assay is designed to detect structural rearrangements and CNAs throughout the genome resulting in a cost-effective strategy amenable to a clinical genomics laboratory. Furthermore, as MPseq has higher resolution than FISH and is not limited to specific genomic footprints for interrogation, this assay could provide an alternative technique to comprehensively detect structural rearrangements and CNAs in a single assay. Herein we describe the performance, along with the added clinical utility, of MPseq in 70 samples previously characterized by FISH to detect chromosome rearrangements and CNAs in patients with a PCN.

Methods

Patient samples

All samples were referred to the Mayo Clinic Genomics Laboratory as part of routine clinical testing and further evaluated by MPseq as part of a Mayo Clinic Institutional Review Board approved study. There were multiple sources of samples obtained either from fresh or frozen whole bone marrow (BM), or from fixed cell pellets (FCP) from an abnormal BM chromosome study. Some specimens had undergone plasma cell enrichment from fresh whole BM that was either flow sorted or subjected to CD138+ magnetic-enrichment from patients that had an abnormal plasma cell FISH result. Additional methodology, including conventional chromosome analysis and flow cytometry are included in supplemental data.

Fluorescence in situ hybridization

Plasma cell proliferative disorder FISH (PCPDF) of immunoglobulin (cIg)-stained positive PCs studies were performed as previously described\(^\text{23}\) using the following probes to detect primary and secondary MM abnormalities: monosomy 13 or 13q deletion (Abbott Molecular, Abbott Park, IL), monosomy 17 or TP53 deletion (Abbott Molecular), trisomy 3, 7, 9 or 15 (Abbott Molecular), 1q gain (in house, custom developed), MYC rearrangement (Abbott Molecular), IGH rearrangement (in house, custom developed), t(11;14) CCND1/IGH (Abbott Molecular), t(4;14)(p16.3;q32) FGFR3/IGH (Abbott Molecular), t(6;14)(p21;q32) CCND3/IGH (Abbott Molecular), t(14;16)(q32;q23) IGHI/MAF (Abbott Molecular), and t(14;20)(q32;q12) IGHI/MAFB (Abbott Molecular). The PCN FISH panel is indicated in supplemental Table 1 with footprints and probe source shown in supplemental Table 2.

Plasma cell enrichment

BM cells (20 × 10^6) were lysed in ACK lysis buffer for 5 min. This was followed by 2 wash steps in PBS (lyse-wash procedure) and the cell pellet was re-suspended in 3% BSA/PBS. 10 × 10^6 cells were then incubated for 15 min with the following antibodies: CD19-PerCP 5.5 (clone SJ25C1, BD Biosciences), CD38-APC (clone REA671, Miltenyi Biotec), CD45-BB515 (clone HI30, BD Biosciences), CD56-PE-Cy7 (clone NCAM16.2, BD Biosciences), CD138-BV421 (clone MI15, BD Biosciences), CD45-BB515 (clone HI30, BD Biosciences), CD38-APC (clone REA671, Miltenyi Biotec), and CD319-PE (clone REA150, Miltenyi Biotec). The specimen was centrifuged and re-suspended in 1.5 mL of PBS. Sorting was performed on BD FACSMelody cell sorter (BD Biosciences, San Jose, CA). Sorting streams were defined for each case separately, using gates to include CD138-positive, CD319-positive, CD38-bright, CD56-positive and/or CD45-negative plasma cells, and separate them from normal plasma cells. A minimum of 2 × 10^5 cells were collected, with the purity of at least 95%, verified by Kaluza software (Beckman Coulter Life Sciences, Indianapolis, IN). In some cases, plasma cells were separated by positive selection using CD138-coated magnetic beads (MACS; Miltenyi Biotec, CA) in a RoboSep system (STEMCELL Technology, Canada) as described in Jang et al.\(^\text{26}\).
DNA extraction and library preparation

DNA extraction and mate pair library preparation methods have been previously described18,27,28. Briefly, DNA was isolated using either the Qiagen Puregene extraction kit (for samples < 2 mL), Autopure LS Automated high quality DNA extraction (for samples > 2 mL) or the QIAmp Tissue kit for fixed cell pellet samples. DNA was processed using the Illumina Nextera Mate Pair library preparation kit and sequenced on the Illumina HiSeq 2500 in rapid run mode as described in Aypar, library preparation kit and sequenced on the Illumina DNA was processed using the Illumina Nextera Mate Pair or the QIAmp Tissue kit for mated high quality DNA extraction (for samples > 2 mL) extraction kit (for samples < 2 mL), Autopure LS Auto reads and paired end sequencing.

Structural variant bioinformatics pipeline and visualization

The sequencing data was analyzed for the detection of structural variants (SVs), which are large genomic changes (>30Kb) that involve breakpoint junctions and/or CNAs. The sequencing data was mapped to the reference genome (GRCh38) using BIMA29 and the output was analyzed using SVAtools. This set of algorithms can detect and report the breakpoint locations of both junctions and CNAs at high resolution and accuracy (Schematic in supplemental Fig. 1)18,27,28. Junctions and CNVs were graphically illustrated using genome, junction and region plots as previously described18,27,30.

Results

Patient characteristics

A total of 70 cases referred to the Mayo Clinic Genomics Laboratory for routine clinical PCN FISH testing were selected for further evaluation by MPseq (Tables 1, 2 and supplemental Table 3). Criteria for inclusion included the type of primary cytogenetic abnormality to ensure representation of each recurring rearrangement and sample source to evaluate various methods of sample attainment, including PC enrichment (Tables 1, 2). The median age was 66 years (range 42–88) demonstrating male predominance with a 1.3:1 (M:F) ratio. Fifty-seven cases (81.4%) had either a diagnosis of MM (N = 35) or a reason for referral (RFR) of MM or PCN indicated at the time of clinical testing (N = 22) (Tables 1, 2). Of thirty-five cases with complete clinical data, 13 (37.1%) were newly diagnosed (ND) and 22 (62.9%) had relapsed and/or refractory disease (RR).

MM abnormalities identified by FISH

Recurrent primary MM cytogenetic abnormalities identified by FISH in samples 1–65 were t(11;14) (21.4%), t(4;14) (11.4%), t(14;16) (5.7%), t(14;20) (5.7%), t(6;14) (2.9%), and hyperdiploidy (45.7%) either without an IGH rearrangement (32.9%) or with an IGH rearrangement that did not involve CCND1, FGFR3, MAF, MAFB or CCND3 (12.9%) (Tables 1, 2). Five samples (cases 66–70) had undefined primary abnormalities including one case of tetraploidy with a relative 1q gain, one case with monosomies 13 and 14, two cases with monosomy 15 by FISH and a single case with normal FISH results in a patient with a diagnosis of amyloidosis (Tables 1, 2). Conventional chromosome studies were performed on 42 (60.0%) cases and an abnormal PC clone was identified in 33.3% of the cases with chromosome studies performed (Supplemental Table 3).

We have previously determined tumor content requirements for MPseq requiring 10% tumor for the detection of structural rearrangements and 25% tumor for the detection of CNAs18. Since variable and sometimes low clonal PC percentages can be identified in the BM aspirates of patients with NDMM31, we performed two enrichment strategies for samples with low PCs including magnetic enrichment or flow sorting. For some samples, no enrichment was performed. Thirty-nine (55.7%) samples with a median 23.0% PCs were subjected to either flow sorting (N = 24) or CD138 + magnetic bead for PC enrichment (N = 15). For the remaining 31 samples (44.3%) with a median 58% PC, no PC enrichment was performed.

Identification of recurrent, primary cytogenetic abnormalities using MPseq

To determine the accuracy of MPseq in comparison to our PCN FISH panel (Supplemental Table 1) in the detection of recurrent, primary MM abnormalities (IGH rearrangement and/or hyperdiploidy), we analyzed DNA extracted from either a fixed cell pellet (FCP) from a chromosome study (n = 8), from fresh (n = 18) or frozen (n = 5) BM aspirates or from fresh BM specimens that had been flow sorted (n = 24) or subjected to CD138 + magnetic enrichment (n = 15) (Supplemental Fig. 1, Tables 1, 2). For samples 1–65, MPseq confirmed the primary abnormality identified by FISH in each case demonstrating 100% concordance between both assays for the classification of recurrent, primary cytogenetic abnormalities (Fig. 1). For those cases without evidence of a recurrent, primary abnormality (samples 66–69), MPseq did not identify tetraploidy in case 66 and monosomy 15 in case 68–69, but identified monosomies 13 and 14 in case 67 and confirmed no recurrent abnormality in case 70 with normal FISH results. As a negative control, no recurrent primary MM abnormalities (MM specific IGH rearrangements and/or hyperdiploidy with gains of odd numbered chromosomes) were identified by MPseq in a previously described cohort of 88 patients with a reason for referral of acute myeloid leukemia (data not shown)18.

Comparison of MPseq to FISH for detection of recurrent, secondary abnormalities

For each primary and secondary abnormality that was identified by either MPseq or FISH, 40 cases (57.1%)
Site	Sex	Age (years)	Dx or RFR	ND RR	% PC	Light chain	Sample type	Primary abnormality (FISH)
MCL	M	77	MM*	U	83	Kappa	FCP	nuclcMYC/BLAP1,TP53x1,CCND1-XT(x1),IGH/XT(x1)
MAYO	F	65	MM	ND	23	Lambda	Sort	nuclTP73x1,1q23x1(MYCl2,MYC)x1,MYC/3MYClx1,CCND1-XT(x1),IGH/XT(x1)
F	70	POV*	U	19		Kappa	Sort	nuclcMYC/BLAP1,TP53x1,CCND1-XT(x1),IGH/XT(x1)
MAYO	M	71	MM	ND	37	Lambda	Sort	nuclcMYC/BLAP1,TP53x1,CCND1-XT(x1),IGH/XT(x1)
MCL	M	69	MM*	U	50	Lambda	Sort	nuclcMYC/BLAP1,TP53x1,CCND1-XT(x1),IGH/XT(x1)
MAYO	M	68	MM	RR		Lambda	Sort	nuclcMYC/BLAP1,TP53x1,CCND1-XT(x1),IGH/XT(x1)
MAYO	F	83	MM	ND	37	Kappa	Sort	nuclcMYC/BLAP1,TP53x1,CCND1-XT(x1),IGH/XT(x1)
MCL	M	61	MM*	U	73	Kappa	Fresh	nuclcMYC/BLAP1,TP53x1,CCND1-XT(x1),IGH/XT(x1)
MAYO	M	69	MM	ND	65	Fresh	Fresh	nuclcMYC/BLAP1,TP53x1,CCND1-XT(x1),IGH/XT(x1)
MAYO	M	77	MM*	U	68	Kappa	Fresh	nuclcMYC/BLAP1,TP53x1,CCND1-XT(x1),IGH/XT(x1)
MCL	M	77	MM	ND	50	Lambda	Sort	nuclcMYC/BLAP1,TP53x1,CCND1-XT(x1),IGH/XT(x1)
MAYO	F	89	AL	ND	5	Lambda	CD138+	nuclcMYC/BLAP1,TP53x1,CCND1-XT(x1),IGH/XT(x1)
MAYO	F	63	POCPD	U	5	Lambda	CD138+	nuclcMYC/BLAP1,TP53x1,CCND1-XT(x1),IGH/XT(x1)
MAYO	F	54	MM	ND	47	CD138+	CD138+	nuclcMYC/BLAP1,TP53x1,CCND1-XT(x1),IGH/XT(x1)
MAYO	F	67	IgA gammapathy*	U	40	Lambda	CD138+	nuclcMYC/BLAP1,TP53x1,CCND1-XT(x1),IGH/XT(x1)
MAYO	M	75	MM	RR	13	Kappa	Sort	nuclcMYC/BLAP1,TP53x1,CCND1-XT(x1),IGH/XT(x1)
MAYO	M	73	MM*	U	34	Lambda	Sort	nuclcMYC/BLAP1,TP53x1,CCND1-XT(x1),IGH/XT(x1)
MCL	M	68	Monoclonal gammapathy*	U	20	Lambda	Sort	nuclcMYC/BLAP1,TP53x1,CCND1-XT(x1),IGH/XT(x1)
MAYO	M	72	PLC	U	70	Kappa	Fresh	nuclcMYC/BLAP1,TP53x1,CCND1-XT(x1),IGH/XT(x1)
MAYO	F	42	MM	RR	11	Kappa	Fresh	nuclcMYC/BLAP1,TP53x1,CCND1-XT(x1),IGH/XT(x1)
MAYO	M	57	MM	RR	41	Kappa	Fresh	nuclcMYC/BLAP1,TP53x1,CCND1-XT(x1),IGH/XT(x1)
MCL	M	78	MM	RR	77	Lambda	Frozen	nuclcMYC/BLAP1,TP53x1,CCND1-XT(x1),IGH/XT(x1)
MAYO	M	68	MM	ND	22	Lambda	CD138+	nuclcMYC/BLAP1,TP53x1,CCND1-XT(x1),IGH/XT(x1)
MAYO	F	40	MM	ND	50	Lambda	CD138+	nuclcMYC/BLAP1,TP53x1,CCND1-XT(x1),IGH/XT(x1)
MAYO	F	67	MM	ND	60	CD138+	CD138+	nuclcMYC/BLAP1,TP53x1,CCND1-XT(x1),IGH/XT(x1)
MAYO	M	75	MM	U	27	Kappa	FCP	nuclcMYC/BLAP1,TP53x1,CCND1-XT(x1),IGH/XT(x1)
MCL	M	88	MM*	U	56	Lambda	CD138+	nuclcMYC/BLAP1,TP53x1,CCND1-XT(x1),IGH/XT(x1)
MAYO	F	65	R/O MM*	U	63	Lambda	CD138+	nuclcMYC/BLAP1,TP53x1,CCND1-XT(x1),IGH/XT(x1)
MAYO	F	74	MM	ND	5	Kappa	Fresh	nuclcMYC/BLAP1,TP53x1,CCND1-XT(x1),IGH/XT(x1)
Site	Sex	Age (years)	Dx or RR*	ND RR	% PC	Light chain Sample type	Primary abnormality (FISH)	FISH performed on
------	-----	-------------	----------	-------	------	-----------------------	---------------------------	---------------------
32	M	74	MM*	U	N/A	N/A	FCP	6/14
33	M	51	R/O, MA, hypercalcemia, renal failure	U	N/A	N/A	FCP	6/14
34	F	58	MM*	33	MCL	M 51 R/O MM, hypercalcemia, renal failure	FCP	Hyper + IGH sep
35	F	34	MM*	34	MCL	F 58 MM a U 21 Kappa FCP Hyper IGH sep	FCP	Hyper + IGH sep
36	MAYO	82	MM	R	7	Lambda	Sort	Hyper + IGH sep
37	MAYO	61	MM	R	27	Kappa	Sort	Hyper + IGH sep
38	MAYO	58	MM	R	11	Lambda	Sort	Hyper + IGH sep
39	MAYO	64	MM	U	20	Lambda	Sort	Hyper + IGH sep
40	MAYO	60	MM	U	81	Lambda	Sort	Hyper + IGH sep
41	MAYO	60	MM	U	98	Lambda	Sort	Hyper + IGH sep
42	MAYO	70	MM	R	19	Lambda	Sort	Hyper + IGH sep
43	MAYO	56	PCPO	U	4	Indeterminate	Sort	Hyper + IGH sep
44	MAYO	57	MM	RR	12	Kappa	Sort	Hyper + IGH sep
45	MAYO	75	M	U	14	Lambda	Sort	Hyper + IGH sep
46	MAYO	66	M	ND	19	Lambda	Sort	Hyper + IGH sep
47	MAYO	72	M	ND	10	Lambda	Sort	Hyper + IGH sep
48	MAYO	67	Lambda	U	10	Lambda	Sort	Hyper + IGH sep
49	MAYO	71	Lambda	U	33	Lambda	Sort	Hyper + IGH sep
50	MAYO	64	Lambda	U	2	Lambda	FCP	Hyper + IGH sep
51	MAYO	49	MM	RR	84	Lambda	FCP	Hyper + IGH sep
52	MAYO	75	PCPO	U	73	Lambda	FCP	Hyper + IGH sep
53	MAYO	66	MM	U	52	Lambda	FCP	Hyper + IGH sep
54	MAYO	61	MM	U	52	Lambda	FCP	Hyper + IGH sep
55	MAYO	57	Solitary plasmacytoma	U	99	Lambda	FCP	Hyper + IGH sep
56	MAYO	56	MM	U	34	Lambda	FCP	Hyper + IGH sep
57	MAYO	61	Lambda	U	55	Lambda	FCP	Hyper + IGH sep
58	MAYO	59	MM	RR	79	Indeterminate	FCP	Hyper + IGH sep
59	MAYO	74	MM	RR	60	Lambda	FCP	Hyper + IGH sep
60	MAYO	53	MM	ND	90	Lambda	FCP	Hyper + IGH sep
61	MAYO	61	MM	RR	25	Lambda	FCP	Hyper + IGH sep
62	MAYO	48	MM	RR	75	Lambda	FCP	Hyper + IGH sep
63	MAYO	49	MM	RR	5	Lambda	FCP	Hyper + IGH sep
64	MAYO	48	MM	RR	70	Lambda	FCP	Hyper + IGH sep
65	MAYO	66	MM	RR	25	Lambda	FCP	Hyper + IGH sep
66	MAYO	70	Lambda	U	39	Lambda	FCP	Hyper + IGH sep
67	MAYO	74	Gammopathy	U	36	Lambda	Sort	Monosomy 13/14
displayed concordance between FISH and MPseq. Thirty cases (42.9%) displayed at least one instance of discordance between FISH and MPseq (Figs. 1, 2a). Nine of these 30 discordant cases had abnormalities detected by FISH that went undetected by MPseq (Figs. 1, 2a, “FISH advantage”). Of these nine cases, six had a tetraploid clone that was not detectable by MPseq and in three cases MPseq failed to detect CNAs that were identified by FISH (trisomy 3, trisomy 9 and 1q gain). In six cases, FISH identified a CNA involving chromosome 15 that was not confirmed by MPseq. These abnormalities included monosomy 15 identified by FISH without evidence of monosomy 15 by MPseq (cases 26, 47, 68, 69), or one (case 34) or two (case 52) copies of chromosomes 15 identified by FISH in cases with trisomy 15 identified by MPseq (Figs. 1, 2a). In contrast, 19 of the 30 discordant cases had abnormalities detected by MPseq that went undetected by FISH (Figs. 1, 2a, “MPseq advantage”). Of these 19 cases, 17 were MYC rearrangements and two were 17p deletions (cases 4 and 21), including a 17p translocation involving the TPS3 gene in one case (Figs. 1, 2a).

Increased detection rate of MYC rearrangements by MPseq

From 70 total cases, we identified 36 cases (51.4%) that displayed a MYC rearrangement by MPseq (Fig. 1). Of these 36 cases, 34 had FISH data evaluating the MYC locus. Seventeen cases (50.0% of MYC abnormal group with FISH results) displayed a false negative MYC FISH result where a MYC rearrangement was identified by MPseq, but was negative by FISH (Fig. 1). The most common partner gene/enhancer segment identified were IGH (n = 7), FAM46C (n = 5), IGK (n = 4), NSMCE2 (n = 4), TXNDC5 (n = 4) and IGL (n = 4) (Table 3). Of the 36 MYC rearrangements, multiple mechanisms resulting in positioning of MYC near enhancer sequences including small insertions, inversions, simple, balanced or complex translocations were identified (Table 3). The most common method of rearrangement identified in 15 cases included a small insertion of enhancer sequences near the MYC gene or, alternately, the insertion of MYC near enhancer sequences. These insertions typically involve the duplication of genetic material of similar size at both the source location and the insertion location, whereby the source DNA is inserted between flanking duplications at the insertion location32 (Fig. 2b). Thirteen of these 15 insertion cases co-occurred with hyperdiploidy (hyperdiploidy only or hyperdiploidy with IGH separation) and two of these cases were identified by FISH studies. Of the 17 MYC cases that were missed by FISH, 11 represented these small insertions (Table 3).

Detection of additional genomic alterations by MPseq that are not evaluated by FISH

We next evaluated for the presence of rearrangements involving non-recurrent IGH MM partners (excluding
CCND1, FGFR3, MAF, MAFB or CCND3) and the IGK and IGL loci by MPSeq. There were 19 additional IGH rearrangements identified in 18 cases (25.7% of cohort) with partner chromosomes at 8q24.21 (MYC) (n = 7) as the only recurrent rearrangement (Table 4, Fig. 3). Of the nine cases classified as “hyperdiploidy with IGH separation”, an IGH partner was identified in six cases, while the other three cases had a loss within the IGH locus. Two cases (cases 50 and 54) classified as hyperdiploidy without an IGH rearrangement to one of the common partner chromosomes had the “small insertion” type of MYC/IGH rearrangement (Tables 3, 4, Fig. 3). There were three cases with a CCND1 rearrangement to a locus other than IGH (IGK/CCND1 in case 43, IGL/CCND1 in case 4 and BRINP3/CCND1 in case 57) that had additional copies of CCND1 observed by FISH in case 4 and 43. FISH for CCND1 was not performed in case 57 and in case 4, the signal pattern for CCND1 was scored as amplification (Table 4, Figs. 1, 3).

There were five cases with IGK rearrangements (7.1% of cohort) mainly with partner chromosome 8q24.21 (MYC) (n = 4) and a single case with partner chromosome at 11q13.3 (CCND1) (Table 4, Fig. 3). In addition, 10 cases (14.3% of cohort) had IGL rearrangements with partner chromosomes at 8q24.21 (MYC) (n = 4), 11q13.3 (CCND1) (n = 1), 8q24.22 (ST3GAL1/NDRG1), 3q26.2 (MECOM) (n = 1) and 17q25.1 (GRB2) (n = 1) (Table 4, Fig. 3). Of these 15 cases with either an IGK or IGL rearrangement, 12 (80.0%) co-occurred with hyperdiploidy (hyperdiploidy only or hyperdiploidy with IGH separation).

We explored alterations in additional genes contributing to dysregulation of multiple pathways such as WNT or NF-kB signaling including genes CYLD at 16q12.1, BIRC2 and BIRC3 at 11q22.2, NFKB1 at 4q24, NFKB2 at 10q24.32, TRAF2 at 9q34.3, TRAF3 at 14q32.32 and MAP3K14/NIK at 17q21.31 or other tumor suppressor genes such as CDKN2C (p18) at 1p32.3 or TENT5C/FAM46C at 1p12 (33,34) (Table 5, Fig. 3). Twenty-five cases

Table 2 Patient characteristics	Total (N = 70)
Characteristic	N (%)
Sex	
Male	40 (57.1)
Female	30 (42.9)
Age	
Median	66 years
Range	42–88 years
40–49	4 (5.7)
50–59	14 (20.0)
60–69	26 (37.1)
70–79	21 (30.0)
80–89	5 (7.1)
Diagnosis or RFR	
MM, PCN diagnosis or RFR	57 (81.4)
Amyloidosis	3 (4.3)
Plasma cell leukemia	2 (2.9)
Plasma cell proliferative disorder	3 (4.3)
Other	5 (7.1)
Site	
Mayo Clinic-local	37 (52.9)
Mayo Clinic Laboratories-outside	33 (47.1)
PC percentage (N = 68)	
Median	35.5%
Range	4–99%
4–19	19 (27.9)
20–39	19 (27.9)
40–59	11 (16.2)
60–79	12 (17.6)
80–99	7 (10.3)
Sample type	
No enrichment	31 (44.3)
Fixed cell pellet (FCP)	8 (11.4)
Fresh sample	18 (25.7)
Frozen sample	5 (7.1)
Enrichment	39 (55.7)
Flow sorting	24 (34.3)
CD138+ magnetic	15 (21.4)
Light chain	
Kappa	46 (65.7)
Lambda	20 (28.6)
Indeterminate or unknown	4 (5.7)
Primary cytogenetic abnormality	
t(11;14)	15 (21.4)
t(4;14)	8 (11.4)
t(14;16)	4 (5.7)
t(14;20)	4 (5.7)
t(6;14)	2 (2.9)
Hyperdiploid only	23 (32.9)
Hyperdiploid with an unknown IGH rearrangement	9 (12.9)
Tetraploid without primary abnormality	1 (1.4)
Monosomy 13/14 alone	1 (1.4)
Monosomy 15 alone	2 (2.9)
Normal	1 (1.4)

Table 2 continued
Characteristic
Conventional chromosome study
Not performed
Performed
Normal or loss of Y
Abnormal with PC abnormalities
Abnormal with non-PC abnormalities

Patient characteristics of the 70 patients within the cohort evaluated
had an alteration in *TENT5C/FAM46C* with 6 cases with translocations (five of these to *MYC*) and 19 cases had a heterozygous deletion of *TENT5C/FAM46C* ranging in size from 3.4 Mb to 120 Mb. Nineteen cases (27.1%) had alterations ranging in size from 3.4 Mb to 120 Mb. Nineteen cases had a heterozygous deletion of *CDKN2C* and/or *FAF1*. Fourteen were heterozygous deletions involving *CDKN2C* ranging in size from 587 Kb to 120 Mb, four cases had focal biallelic *CDKN2C* and *FAF1* deletions (Supplemental Fig. 2A, case #5) and one case had a heterozygous 655 Kb *FAF1* deletion without a *CDKN2C* deletion (Table 5, Fig. 3). Ten cases had deletions of *TRAF3* with 5 as heterozygous deletions and five as biallelic deletions (Supplemental Fig. 2B, case #62) and a single case had a 92.9 Kb heterozygous deletion of *TRAF2* (Table 5, Fig. 3). Twenty-eight cases had deletions of *CYLD* (40% of cohort) with 24 cases having heterozygous deletions ranging in size from 634 Kb to 90.3 Mb with the majority representing large 16q deletions and four cases will smaller biallelic deletions (Table 5, Fig. 3, Supplemental Fig. 2C, case #40). Additional alterations in *MAP3K14* were observed in four cases (three as heterozygous deletions and one as a 735 Kb gain), heterozygous deletion of *NFKB1* in seven cases, heterozygous deletion of *NFKB2* in 6 cases and a heterozygous and homozygous *BIRC2* and *BIRC3* deletions in two separate cases (Table 5, Fig. 3).

Evaluation for loss of function alterations of genes that have been associated with lenalidomide response or resistance (*CRBN, IKZF1, and IKZF3*) identified 10.0% of the cohort had either a *CRBN, IKZF1* and *IKZF3* gene alteration (Table 5, Fig. 3, Supplemental Fig. 2D, case

MM Rearrangements	11.14	14.14	14.16	14.20	8.14	Hyper+IGH sep	Hyper	Other	Total abnormalities
T(11;14), CCND1/IGH									17
T(4;14)(p16.3;q32) FGFR3/IGH									4
T(14;16)(q22;q13) IGH/MAF									4
T(14;25)(q22;q12) IGH/MAFB									4
T(14)(q11.2;12) CCND3/IGH									4
MYC rearrangement									4

MM Copy Number Variants

Hyper	Trisomy 11, 11, 16, 17, 15, 17	Trisomy 3, D3Z1	Trisomy 4, D4Z1	Trisomy 8, D8Z1	Trisomy 11 or extra	Trisomy 17, D17Z1	Trisomy 19, D19Z1	Trisomy 17, TPS13/D17Z1	Trisomy 19, TPS13/D17Z1	Trisomy 13 R81/LAMP1	Trisomy 19 R81/LAMP1	Trisomy 19, R16/LAMP1						
	36	28	47	40	40	27	28	27	27	4	4	4	4	4	4	4	4	4

Concordance

MPseq=FISH	Discordance	MPseq advantage	Chromosome 15 polymorphism	FISH advantage	Sample type
40	30	30	30	30	Plasma cells
4	4	4	4	4	ND or RR
1	1	1	1	1	Risk stratification FISH
1	1	1	1	1	Risk stratification MPseq

Fig. 1 Concordance between MPseq and FISH. In bold indicates primary cytogenetic abnormalities. Cytogenetic risk applied to all cases: H: high and S:standard. ND: Newly diagnosed, RR: relapsed/refractory. For case 33, there was no FISH for MYC BAP, but detection of t(8;14) and t(6;14) was achieved using chromosome studies and CCND3/IGH rearrangement confirmed by FISH. For case 37, there was a history of trisomies 9,11,15, and IGH separation in an older sample. For cases 61 and 65 there was evidence of hyperdiploidy by FISH in older samples. Highlighted in yellow is a single case with a difference in cytogenetic risk between MPseq and FISH.
Specifically, five cases had a heterozygous deletion of \textit{CRBN} ranging in size from 457 Kb to 130.5 Mb including case #58 that had both a 7.1 Mb deletion encompassing \textit{CRBN} and a 223 Kb \textit{IKZF1} duplication with insertion of \textit{IKZF1} into 10q25.2. Two cases had a heterozygous deletion that included \textit{IKZF3} (9.1 Mb and 45.7 Mb).

\section*{Discussion}
Most clinical laboratories employ FISH analysis of CD138 enriched plasma cells as the preferred methodology in order to identify recurrent primary and secondary genomic abnormalities of prognostic and therapeutic significance in patients with PCNs. The majority of these laboratories utilize only a limited FISH panel with many focusing on high risk abnormalities defined by the revised International Staging System (R-ISS) including 1q gain, t(4;14), t(14;16) or 17p deletion. Some laboratories have incorporated the use of chromosomal microarray analysis in the detection of CNAs such as hyperdiploidy, 17p deletions and 1q gains, however microarray studies are unable to identify balanced structural rearrangements necessitating the use of other methodologies in the detection of IGH rearrangements. It has also become increasingly apparent that some FISH probes, such as those targeting \textit{MYC} rearrangements, display evidence of false negative results. In addition, FISH panels for PCNs are variable between individual laboratories, provide a limited view of the whole genome and may not always reflect genomic complexity. Given that multiple research studies and investigational trials have used NGS based techniques to identify CNAs, SNVs along with structural rearrangements, we sought to explore the feasibility of employing an NGS technique in the detection of CNAs and structural rearrangements as a FISH replacement assay within a clinical genomics laboratory.

We describe the performance and added utility of a whole genome NGS based strategy, MPseq, in comparison to the current gold standard FISH approach in the evaluation of patients with PCNs. While MPseq and FISH displayed equal performance in the ability to classify the presence or absence of a recurrent, primary cytogenetic subtype (i.e. hyperdiploidy or specific IGH

\begin{table}[h]
\centering
\begin{tabular}{|l|l|}
\hline
\textbf{Discordance Summary} & \textbf{Total} \\
\hline
FISH advantage (detected by FISH, but not MPseq) only & 7 \\
MPseq missed tetraploidy & 5 \\
MPseq missed 1q gain & 1 \\
MPseq missed trisomy 9 & 1 \\
\hline
FISH and MPseq advantage & 2 \\
FISH missed \textit{MYC}, MPseq missed trisomy 3 & 1 \\
FISH missed \textit{MYC}, MPseq missed tetraploidy & 1 \\
\hline
MPseq advantage (detected by MPseq, but not FISH) only & 15 \\
FISH missed \textit{MYC} & 13 \\
FISH missed \textit{TP53} & 2 \\
\hline
MPseq advantage and poly 15 & 2 \\
FISH missed \textit{MYC} & 2 \\
\hline
Polymorphism 15 only & 4 \\
\hline
\end{tabular}
\end{table}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{discordance_summary}
\caption{Discordance summary and \textit{MYC} breakpoint locations. \textbf{a} Total number of cases with evidence of MPseq advantage, FISH advantage and polymorphism of chromosome 15. \textbf{b} The location of breakpoints in the \textit{MYC} locus across all cases are depicted as vertical lines (black if the \textit{MYC} alteration was detected by FISH, light gray if it was not tested by FISH, and red if it was undetected by FISH). In cases where multiple breakpoints were found in the \textit{MYC} locus, the lines are connected by an arc. The locations of the \textit{MYC} BAP probes used for FISH detection are shown at the top (5' in red, 3' in green) and gene locations are shown in the middle (forward strand in light blue, reverse strand in pink).}
\end{figure}
Case	FISH	Type	Junction	Chr Partner	Pos partner	Pos MYC	MYC Loc	Gene Pair	Primary
2	Complex	2	11	26066896	127732671	E	AWO3		
			17	47142366	127755273				
3	Balanced	1	2	88839370	127770919	R	IGK		
5	Complex	1	6	7913150	12780114	L	TXNDC5		
6	Balanced	2	11	25654318	126537887	E	AWO3		
			2	25075426	127775090				
9	Balanced	1	14	105662404	12654184	L	IGH		
16	Tandem Dup	1	8	97622416	12775097	R	MTDN		
17	Balanced	1	4	63788054	12894292	R	TECRL		
18	Tandem Dup	1	8	125269897	12776035	R	NSMCE2		
19	Small Insertion	2	2	7926621	12832003	E	ANO3		
			6	7964555	12823918				
20	Complex	1	14	105577910	128067445	R	IGH		
			8	128296726	127966701	R	CSMO3		
21	Complex	2	8	115196922	128311995	L	IGK		
22	Translocation	1	22	22896777	129213302	R	TECRL		
			2	9760385	128244496	R	MTDN		
23	Small Insertion	2	8	97631703	128238180	R	IGH		
28	Translocation	1	2	172598535	128346028	R	PDK1		
29	Inversion	1	8	125294077	127764738	R	NSMCE2		
30	Balanced	1	1	117855602	127910156	R	FAM46C		
33	Translocation	1	14	105650372	127085983	L	IGK		
34	Small Insertion	2	1	117748520	128192712	R	FAM46C		
			20	40219155	128324443	R	MAFB		
35	Small Insertion	2	22	23049204	128265796	R	IGK		
			22	22897987	128381540	R	IGK		
37	Complex	1	8	125349863	12829942	R	NSMCE2		
40	Translocation	1	14	105620039	127325949	L	IGK		
41	Translocation	1	2	97966421	128329062	R	IGK		
42	Translocation	1	14	105729139	128354686	L	IGK		
45	Small Insertion	1	22	22914490	127742293	R	IGK		
46	Small Insertion	2	6	7913135	128320871	R	TXNDC5		
			6	7984873	128234759	R			
49	Translocation	1	2	88806363	127710025	R	IGK		
50	Small Insertion	2	6	7983613	127815314	E	IGK		
			6	7837483	127704213	R			
51	Amplification	1	8	125363400	127405538	L	NSMCE2		
52	Small Insertion	3	3	46308943	127790484	E	CCR3		
			3	46331780	127735500	R			
54	Small Insertion	2	14	105654852	127737562	E	IGK		
55	Small Insertion	2	22	23019052	12764055	E	IGK		
			22	22912000	12807000	R			
56	Small Insertion	2	1	117615769	12796692	R	FAM46C		
58	Small Insertion	2	1	117651083	12830858	E	IGK		
61	Small Insertion	1	1	117653222	128307014	R	FAM46C		
62	Small Insertion	1	2	73143438	128285026	R	FCHSD2		

For each case where a secondary alteration involving MYC was found, the relevant genomic information is provided for the junction(s). The case number is the case number. The FISH column indicates whether or not the MYC FISH test detected the secondary alteration (dark gray—detected by both FISH, light gray—detected by MPseq but not tested by FISH and red—detected by MPseq only). The type column is the type of alteration involved with MYC classified as either a balanced event, a tandem duplication, a translocation, an inversion, part of an amplification, part of a small insertion motif, a complex event, or ND where it was not possible to definitively classify the alteration. The Junction column is the number of junctions involved directly in the alteration, either 1 or 2. The Chr Partner and Pos Partner columns are the chromosome and position location (GRCh38) of the partner breakpoints that are part of alteration. The Pos MYC and MYC Loc columns give the position of the breakpoint in the MYC locus and whether the alteration is to the left, right, or encompassing (L, R, or E) the MYC gene, respectively. The Gene Pair column is the gene that is found at or near the partner breakpoint location. The Primary column is the primary alteration for the case.
Table 4 IGH, IGK, and IGL partner genes.

Case	IGH partner chromosome	Putative gene target	Primary abnormality
5	1q24.3	BATF	11;14
6	19p13.2	TYK2	11;14
8	11q14.1	RAB39	11;14
9	1p33.3	PTPRU	11;14
10	20q11.21	COMMD7	11;14
11	22q13.1	POLR2F	11;14
15	2p24.3	MYCN	11;14
20	8q24.21	MYC	4;14
30	5p15.33	TERT	14;20
33	8q24.21	MYC	6;14
34	7q22.1	Unknown	Hyper + IGH sep
36	Xq32.33	MTMR1	Hyper + IGH sep
37	14q24.3	DPF3	Hyper + IGH sep
40	8q24.21	MYC	Hyper + IGH sep
49	9p13.2	Pax5	Hyper + IGH sep
50	8q24.21	MYC	Hyper + IGH sep
54	8q24.21	MYC	Hyper

Case	IGK partner chromosome	Putative gene target	Primary abnormality
3	8q24.21	MYC	11;14
41	8q24.21	MYC	Hyper + IGH sep
43	11q13.3	CCND1	Hyper
46	8q24.21	MYC	Hyper
58	8q24.21	MYC	Hyper

Case	IGL partner chromosome	Putative gene target	Primary abnormality
4	11q13.3	CCND1	11;14
22	8q24.21	MYC	4;14
35	8q24.21	MYC	Hyper + IGH sep
39	3q26.2	MECOM	Hyper + IGH sep
45	8q24.21	MYC	Hyper
50	17q25.1	GRB2	Hyper
55	8q24.21	MYC	Hyper
56	8q24.22	ST3GAL1/NDRG1	Hyper
61	8q24.22	ST3GAL1/NDRG1	Hyper
63	8q24.22	ST3GAL1/NDRG1	Hyper

Partner genes associated with IGH, IGK, and IGL showing cytogenetic location and putative target genes. Hyper: Hyperdiploidy only. Hyper+IGH sep: Hyperdiploidy with IGH separation

rerrangement), MPseq was superior compared to FISH in the characterization of rearrangement complexity, identification of secondary abnormalities, resolution of atypical FISH results and identification of novel abnormalities of prognostic significance not targeted by traditional FISH panels. Many samples chosen for this study had a high plasma cell burden (median 36% PCs) and ~33% of cases were obtained from fresh or frozen samples that did not require enrichment.

An advantage to using a whole genome NGS technique like MPseq is the ability to identify rearrangements using an unbiased approach. Other laboratories have developed and validated NGS methodologies utilizing target-enrichment approaches for PCNs allowing a custom target pull down of limited genomic regions. While these targeted approaches have reduced cost and simplified analysis workflows, a genome wide approach utilizing long-insert whole genome sequencing employed by the MMRF CoMMpass Study in their Seq-FISH analysis has demonstrated improved sensitivity with similar specificity in relation to clinical FISH testing. Although MPseq is similar to Seq-FISH with regard to a whole genome sequencing approach, a significant limitation to the current MPseq strategy is the inability to identify SNVs. This limitation can be resolved with deeper and faster sequencing, coupled with reduced sequencing costs. An integrated genomic analysis incorporating structural variation, CNAs, and SNVs together may lead to enhanced prognostication. Of practical consideration is the ~two-fold increased cost and “turn-around-time” of reporting of clinical grade testing for MPseq compared to a comprehensive FISH panel; although we anticipate over time the cost and time of reporting for NGS approaches will continue to be reduced.

Another limitation to the use of MPseq is the inability to identify rearrangements in highly repetitive regions of the genome containing constitutive heterochromatin such as those involving telomeres, centromeres, and in regions near the centromeres of chromosomes 1, 9, and 16 and in the Y chromosome. This limitation may be reflected by the inability of MPseq to identify apparent trisomies in 2 cases (cases 5 and 42) with evidence of hyperdiploidy. Case 5 displayed a gain of a structurally abnormal chromosome 3 by conventional chromosome studies. Since the centromere regions that are targeted by the FISH probes are not covered by MPseq, it is unclear whether a small gain or presence of a polymorphism of these regions are present without evidence of a bona fide trisomy or whether the trisomy was present at a subclonal level below the limit of detection by MPseq (<25% for CNAs). Polymorphisms of the acrocentric chromosome 15 have also been reported and are observed in FISH analysis of PCNs in our laboratory (data not shown). Discrepancies involving chromosome 15 are present in 6 of 70 cases in this study demonstrated by either a monosomy 15 FISH result with normal chromosome 15 s by MPseq or either a normal or monosomy 15 FISH result with trisomy 15 by...
MPseq. Since MPseq does not rely on detection of only the centromere region like FISH, analysis of copy number changes throughout the whole chromosome can be useful to interpret the presence or absence of a trisomy. On the other hand, any missed hyperdiploid cases may be of less relevance as hyperdiploidy can be detected by FISH. Risk stratification can be performed with FISH, and abnormal karyotypes may not be missed. Abnormal karyotypes should be tested by both FISH and MPseq.

After detecting abnormalities by MPseq, we performed FISH to confirm any detected abnormality. Results from MPseq were compared with FISH results to determine if any abnormalities were missed by MPseq. Of the 30 discordant cases, 19 cases had abnormalities detected by MPseq that were missed by FISH. In 5 cases, the 1q gain did not appear to be subclonal, however this sample was extracted from unsorted bone marrow with 20% clonal plasma cells, which may have contributed to this missed abnormality. Subclonal CNAs and cases with low tumor load have a risk of being missed by MPseq, a risk that also exists when performing FISH.

Approximately 66% of MYC rearrangements were found in 35% of NDMM with MYC rearrangements have been found in association with disease progression (1, 11, 43). Approximately 66% of MYC rearrangements have been found in association with non-lg partners resulting in juxtaposition to enhancer regions.
Table 5 Abnormalities of additional genes of clinical significance

Case	CYLD	Location	Breakpoints	Size (bp)	Primary
1	HD	16p13.3–16q24.3	0–90338345	90338345	11,14
2	HD	16q11.2–16q24.3	64654000–90338000	43884000	11,14
4	HD	16q11.2–16q24.3	64654000–90338000	43884000	11,14
6	HD	16q11.2–16q24.3	64654000–90338000	43884000	11,14
8	HD	16q11.2–16q24.3	64654000–90338000	43884000	11,14
9	HD	16q11.2–16q24.3	50093000–89129000	39036000	11,14
15	HD	16q11.2–16q24.3	46454000–90338000	43884000	11,14
24	BD	16q12.1–16q12.1	50232040–50913020	680980	14,16
25	HD	16q12.1–16q24.3	46454000–90338000	43884000	14,16
28	HD	16q12.1–16q24.3	46454000–90338000	43884000	14,20
29	HD	16q12.1–16q24.3	46454000–90338000	43884000	14,20
30	HD	16q12.1–16q24.3	46454000–90338000	43884000	14,20
33	BD	16q12.1–16q12.1	50777028–50812200	35172	6,14
35	HD	16q12.1–16q24.3	46454000–90338000	43884000	Hyper + KH sep
37	HD	16q12.1–16q24.3	46454000–90338000	43884000	Hyper + KH sep
40	BD	16q12.1–16q12.2	50376741–52630633	2254092	Hyper + KH sep
41	HD	16q12.1–16q24.3	46454000–90338000	43884000	Hyper + KH sep
42	HD	16q12.1–16q12.1	50193000–50827000	634000	Hyper + KH sep
44	HD	16q12.1–16q24.3	46454000–90338000	43884000	Hyper
48	HD	16q12.1–16q12.2	50123000–55838000	571500	Hyper
49	BD	16q12.1–16q12.1	50290162–51082053	791891	Hyper
50	HD	16q12.1–16q24.3	46454000–90338000	43884000	Hyper
52	HD	16q12.1–16q24.3	46454000–90338000	43884000	Hyper
54	HD	16q12.1–16q24.3	46454000–90338000	43884000	Hyper
61	HD	16q12.1–16q24.3	46454000–90338000	43884000	Hyper
63	HD	16q12.1–16q24.3	46454000–90338000	43884000	Hyper
66	HD	16q12.1–16q24.3	46454000–90338000	43884000	Tetraploid
67	HD	16p13.3–16q24.3	0–90338345	90338345	Monosomy 13/14

Table 5 Abnormalities of additional genes of clinical significance (continued)

Case	BIRC2 and BIRC3	Location	Breakpoints	Size (bp)	Primary
6	HD	11q14.1–11q22.3	79621665–108999346	29377681	11,14
21	BD	11q22.1–11q22.2	101044665–102389301	1344636	4,14

Table 5 Abnormalities of additional genes of clinical significance (continued)

Case	TENT5C/FAM46C	Location	Breakpoints	Size (bp)	Primary
5	HD	1p22.3–1p12	87833886–119707445	31873559	11,14
6	HD	1p36.33–1p12	1–119990000	119989999	11,14
9	HD	1p35.3–1p12	29234000–119991000	90757000	11,14
15	HD	1p32.3–1p12	51107000–119761000	68654000	11,14
21	HD	1p31.1–1p12	77992000–119733000	41741000	4,14
23	HD	1p34.2–1p12	42342000–121700000	79358000	4,14
24	HD	1p13.3–1p12	110882000–120028000	9146000	14,16
28	HD	1p32.1–1p12	58536000–119985000	61449000	14,20
29	HD	1p31.1–1p12	75850000–118934000	43084000	14,20
30	Translocation to MYC	1p12	117855602	N/A	14,20
32	HD	1p31.1–1p12	70540000–119991000	49487000	6,14
33	HD	1p36.33–1p12	1–119982000	119981999	6,14
34	Translocation to MYC and MAFB	1p12	117611301,117746520	N/A	Hyper + KGH sep
Table 5 continued

Case	TENT5C/FAM46C Location	Breakpoints	Size (bp)	Primary
35	HD 1p33–1p12	49064000–119989000	70925000	Hyper + IGH sep
37	HD 1p22.2–1p12	89819000–118483000	28664000	Hyper + IGH sep
40	HD 1p13.1–1p12	116616000–119990000	3374000	Hyper + IGH sep
53	HD 1p31.1–1p12	77694018–119983000	42288982	Hyper
56	Translocation to MYC 1p12	117615759;117851083	N/A	Hyper
58	Translocation to IL16 1p12	117592488;117745524	N/A	Hyper
60	HD 1p22.1–1p12	92935000–119981000	27046000	Hyper
61	Translocation to MYC 1p12	117653222;117665080	N/A	Hyper
64	HD 1p31.3–1p12	67860000–118597000	50737000	Hyper
66	HD 1p36.33–1p12	1–119990000	119989999	Tetraploid
67	HD 1p36.33–1p12	1–119991000	119990999	Monosomy 13/14

Case	CDKN2C and FAF1 Location	Breakpoints	Size (bp)	Primary
5	BD 1p32.3–1p32.3	50884258–51012825	128567	11;14
6	HD 1p36.33–1p12	1–119990000	119989999	11;14
9	HD 1p35.3–1p12	29234000–119991000	90757000	11;14
10	HD 1p32.3–1p32.3	50402893–50989867	586974	11;14
15	BD 1p32.3–1p32.3	50599579–51016763	507184	11;14
21	HD 1p32.2–1p31.1	50276000–73879000	23603000	4;14
22	BD 1p32.3–1p32.3	50924750–50971658	46908	4;14
23	HD 1p34.2–1p12	42342000–12170000	7938000	4;14
24	HD FAF1 only 1p33–1p32.3	49951000–50606000	655000	14;16
33	HD 1p36.33–1p12	1–119982000	119981999	6;14
34	HD 1p32.3–1p12	50750000–117611000	66861000	Hyper + IGH sep
35	HD 1p33–1p12	49064000–119989000	70925000	Hyper + IGH sep
40	HD 1p33–1p13.3	49723000–109237000	59514000	Hyper + IGH sep
51	HD 1p33–1p31.3	50018770–65125485	15106715	Hyper
52	BD 1p32.3–1p32.3	50925212–51007221	82009	Hyper
58	HD 1p32.3–1p32.3	50467681–107513627	5704946	Hyper
60	BD 1p36.33–1p12	1–119990000	119989999	Tetraploid
67	HD 1p36.33–1p12	1–119991000	119990999	Monosomy 13/14

Case	MAP3K14 Location	Breakpoints	Size (bp)	Primary
2	HD 17q21.31–17q21.32	44943000–47142000	2199000	11;14
36	HD 17q21.31–17q21.31	44583000–45982000	1399000	Hyper + IGH sep
44	HD 17p13.3–17q21.31	1–45734287	45734286	Hyper
45	Gain 17q21.31–17q21.31	45191000–45926000	735000	Hyper

Blood Cancer Journal
Case NFKB1 or NFKB2 Location Breakpoints Size (bp) Primary

Case	NFKB1 or NFKB2	Location	Breakpoints	Size (bp)	Primary
6	HD NFKB1	4q13.2–4q26	65930271–115942883	50012612	11;14
23	HD NFKB1	4p14–4q35.2	36402000–189875000	153473000	4;14
33	HD NFKB1	4p16.3–4q35.2	1–190214555	190214554	6;14
34	HD NFKB2	10q24.1–10q26.3	9705000–133797422	36792422	Hyper + IGH sep
40	HD NFKB1	4p16.3–4q35.2	1–190214555	190214554	Hyper + IGH sep
44	HD NFKB1	4q13.3–4q31.3	73221000–150520000	77299000	Hyper
46	HD NFKB2	10q24.32–10q24.33	101899000–103362000	1463000	Hyper
47	HD NFKB2	10q24.32–10q25.1	102399071–104266176	1867105	Hyper
51	HD NFKB1	4p16.3–4q35.2	1–190214555	190214554	Hyper
65	HD NFKB2	10q24.32–10q25.1	102399071–104266176	1867105	Hyper
66	HD NFKB1	4p16.3–4q35.2	1–190214555	190214554	Hyper
66	HD NFKB2	10q24.32–10q24.33	101899000–103362000	1463000	Hyper
57	HD NFKB1	4p16.3–4q35.2	1–190214555	190214554	Hyper

Abnormalities of genes of known clinical significance in MM
Large gains of chromosome material are not indicated

HD heterozygous deletion, **BD** biallelic deletion indicated in bold, cytogenetic band and location in GRCh38

Case TRAF2 or TRAF3 Location Breakpoints Size (bp) Primary

Case	TRAF2 or TRAF3	Location	Breakpoints	Size (bp)	Primary
8	HD TRAF3	1q22.3–1q32.33	56254000–104990000	48736000	11;14
23	HD TRAF3	1q11.2–1q32.33	19958000–105864169	85906169	4;14
32	BD TRAF3	1q32.32–1q32.32	102754161–102809688	55527	6;14
37	HD TRAF3	1q24.3–1q32.33	77344000–105590563	28246563	Hyper + IGH sep
44	HD TRAF3	1q21.1–1q32.33	39707000–107043718	67336718	Hyper
47	HD TRAF3	1q32.32–1q32.32	102845410–102902550	57140	Hyper
52	BD TRAF3	1q32.32–1q32.32	102722216–102790013	67797	Hyper
60	BD TRAF3	1q32.32–1q32.32	102741220–10288391	14171	Hyper
62	BD TRAF3	1q32.31–1q32.32	102680377–102913538	233181	Hyper
67	BD TRAF3	1q32.32–1q32.32	102841855–102878463	36608	Monosomy 13/14
67	HD TRAF2	9q34.3–9q34.3	136828276–136921241	92965	Monosomy 13/14

Case # CRBN or IKZF1 or IKZF3 Location Breakpoints Size (bp) Primary

Case #	CRBN or IKZF1 or IKZF3	Location	Breakpoints	Size (bp)	Primary
8	HD IKZF3	17q12–17q21.31	35371000–44480000	9109000	11;14
17	HD CRBN	3p26.3–3p26.2	2738159–3194829	456670	4;14
22	HD CRBN	3p26.3–3q22.1	1–130531000	130530999	4;14
28	HD CRBN	3p26.3–3p25.2	1–12659000	12658999	14;20
41	HD CRBN	3p26.3–3p24.1	1–28213000	28212999	Hyper + IGH sep
44	HD IKZF3	17p13.3–17q21.31	1–45734287	45734286	Hyper
58	HD CRBN	3p26.3–3p26.1	1–7110000	7109999	Hyper
58	IKZF1 Gain + insertion to 10q25.2	17p12.2	50207542–50430511	222969	Hyper

Abnormalities of genes of known clinical significance in MM

HD heterozygous deletion, BD biallelic deletion indicated in bold, cytogenetic band and location in GRCh38
sequences promoting aberrant MYC gene expression, which may be targeted by BRD4 inhibitors in MM. Identification of MYC rearrangements using a break-apart probe strategy resulted in a 50.0% false negative rate in our patient cohort. Whether these false negative insertion cases have the same prognostic implication as other MYC rearrangements remains unknown.

Two cases had deletions of the TP53 gene region that were not identified by FISH. For cases 4 and 21, MPseq identified a deletion of TP53 (5.6 Mb in case 4, 2.7 Mb in case 21). Interestingly, for case 21, MPseq also identified a translocation involving TP53 (to 4q32.1). Both cases were scored as having two copies of TP53 by FISH and represent false negative results due to the location of the deletion in relation to the FISH footprint in case 4 and the TP53 translocation in combination with the deletion in case 21. Although these cases had missed high risk abnormalities, the mSMART risk did not change since those cases also had additional high risk abnormalities [1q gain for cases 4 and t(4;14) for case 21]. For case 4, a separate NGS assay analyzing SNVs identified a pathogenic TP53 mutation [Chr17:GRCh37:g.7577111 G>T; NM_001126113.2 (TP53):c.827 C>A; p.Ala276Asp] located in the DNA-binding domain and in vitro functional data predicts that this variant results in non-functional p53 protein. TP53 mutations in combination with 17p deletions are associated with double hit MM with reduced overall, progression-free and relapse-free survival. Therefore, this missed TP53 deletion fails to identify the presence of a likely double hit MM in patient 4. The combination of a rearrangement and deletion also likely represents a double hit MM abnormality in case 21.

The CCND1/IGH dual color, dual fusion probe set is used to identify CCND1/IGH rearrangements. However, three copies of CCND1 in the absence of IGH fusion can indicate trisomy 11 or non-IGH CCND1 rearrangements. MPseq identified three CCND1 rearrangements including case 4 (IGL/CCND1), case 43 (IGK/CCND1) described more fully in Peterson, et al, and case 57 (BRINP3/CCND1). FISH also identified amplification of CCND1 in case 4, three copies of CCND1 in case 43 and a normal signal pattern for CCND1 in case 57. The CCND1 rearrangement identified in case 57 was a complex translocation between 1q31.1 and 11q13.3 consisting of four junctions and deletions of ~100 kb at both ends. Through this complex event, CCND1 is brought into close proximity to the 3’ end of BRINP3, while the balancing set of junctions brings the 5’ end of BRINP3 near 11q24.3. Additionally, the derivative chromosome containing CCND1 has been copied. Overall this would result in three copies of CCND1, two of which have been translocated near the 3’ end of BRINP3. This case demonstrates how MPseq is able to determine complex rearrangements involving important genes without prior knowledge of the junction partner location.

Although immunoglobulin lambda rearrangements have been recently reported in association with poor prognosis, light chain rearrangements are typically not evaluated in the diagnostic work up of MM in most clinical genomics laboratories. Using MPseq data, we identify 10 cases (14.3% of entire cohort) with IGL rearrangements and five of these cases with standard risk cytogenetic results. IGL rearrangements and other focal deletions of clinical significance are typically not evaluated by FISH. Given the high rate of false-negative MYC rearrangements and inability to appreciate all abnormalities of clinical significance, we demonstrate that MPseq has increased clinical value compared to FISH in characterizing genomic abnormalities in PCs.
50. Chng, W. J. et al. Clinical significance of TP53 mutation in myeloma. Leukemia. 21, 582–584 (2007).
51. Walker, B. A. et al. A high-risk, Double-Hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia. 33, 159–70, (2019).

52. Peterson, J. F. et al. Whole genome mate-pair sequencing of plasma cell neoplasm as a novel diagnostic strategy: a case of unrecognized t (2; 11) structural variation. Clin. Lymphoma, Myeloma Leuk. 19, 598–602 (2019).