Synthesis and Antimicrobial Activity of Some Novel N-Mannich Bases of Imidazole Phenylazetidin-2-one

Esther Rani V* and Kanderi Dileep Kumar

1Department of Chemistry, Sri Krishnadevaraya University, Anantapur, India
2Department of Microbiology, Sri Krishnadevaraya University, Anantapur, India

Abstract

The novel derivative of β-lactams of imidazole phenylazetidin-2-ones 7(a-h) are an important class of heterocycles, having potential biological importance due to their unique features. The process of converting imine (Schiff’s base) to azetidine (β-lactam) through an intermediate of monochloro acetyl chloride is an important synthetic method for preparation of azetidine-2-ones.

Keywords: Azetidin-2-one; Imidazole carboxaldehyde; Antimicrobial activity

Introduction

Azetidine-2-one (β-lactam) chemistry is of great importance because of the use of β-lactam derivatives as antibacterial agents. Since the discovery that the structure of penicillin contains a β-lactam function, a vast amount of effort has been devoted to producing other β-lactam antibiotics with a wider spectrum of activity and a greater resistance to enzymatic cleavage by β-lactamases. The synthesis of β-lactam antibiotics has occupied an important place in the field of medicinal and research pharmaceutical. The antibiotic activity of Azetidine-2-ones (β-lactam) possessing antiviral, antifungal activities, antithrombotic and cholesterol inhibition [1-4].

The various synthetic approaches to obtain heterocyclic 2-azetidinones have been reported [5-14]. In the present paper, we describe the synthesis of heterocycles comprising Azetidin-2-one of N-Mannich Bases of Imidazole phenylazetidin-2-ones which can be an attractive target to obtain a series of novel compounds with potentially wide range of biological activity such as cholesterol absorption inhibitors, enzyme inhibitors, anticancer, cytotoxic, antitubercular, antitumor and antimicrobial (Scheme 1).

Experimental Section

Instrumentation and chemicals

All the chemicals used in the present investigation were purchased from Sigma-Aldrich Chemicals company, Inc. USA. And used without further purification. Thin Layer Chromatography was performed on aluminium sheet of silica gel 60F254, E-Merk, Germany using iodine as visualizing agent. Melting points were determined in open capillary tubes on Mel-Temp apparatus and are uncorrected. Column chromatography was performed on silica gel with different solvent systems as eluents to afford the pure compound. The IR Spectra were recorded as KBr pellets on Perkin-Elmer 1000 units, instruments. All 1H and 13C-NMR spectra were recorded on a Varian XL-300 spectrometer operating at 400MHz for 1H -NMR and 75 MHz for 13C-NMR. The compounds were dissolved in DMSO-d 6 and Chemical shift were referenced to TMS (1H and 13C-NMR). Mass spectral data was recorded on FAB-MS instrument at 70ev with direct inlet system. Elemental analysis was recorded on a Carlo Erba 1108 elemental Analyzer, Central Drug Research Institute, Lucknow, India.

Microbial assay (Agar well diffusion method)

Nutrient agar (Bacto-beef extract 3 g; peptone 5 g; NaCl 5 g; and distilled water 1000 mL) was used for bacteria growth and Asthana and...
The antimicrobial activity of these newly synthesized 3-chloro-4-(1-(morpholinomethyl) / ((4-methylpiperazin-1-yl) methyl)-1H-imidazol-4-yl)-1-(4-substituted phenyl) azetidin-2-one 7(a-h) performed according to Agar well diffusion method is preferred to be used in this study since it was found to be better than the disc diffusion method suggested by Parekh et al. [15] and also recommended by the National Committee for Clinical Laboratory. The synthesized compounds were used at the concentration of 2 mg/mL DMSO as a solvent [16]. A standardized 1 to 2 x 10^7 cfu/mL 0.5 MC Farland standard was introduced onto the surface of a sterile agar plate and evenly distributed inoculums by using a sterile glass spreader. Simultaneously, 6 mm wells were cut from the plate using a sterile cork borer. 50 µl solution at a concentration of 2 mg/mL of the compounds was introduced into well and incubated at 37°C for 24 hrs, the inhibition zones were measured and compared with the control well containing only 1 mg/mL in DMSO of streptomycin as the standard. The antifungal assay of the compounds was carried out by agar well diffusion method as described by Magaldi et al. [17] 6 mm diameter open wells punched with a sterile cork borer on cultured plates with test organisms before incubated. The wells were filled with 50 µl solution at a concentration of 2 mg/mL of the compounds at 30°C. After 72 hours, the zones of inhibition were measured and compared with those of the control DMSO and the standard Fluconazole at a concentration of 1 mg/mL.

Antibacterial assay

The antibacterial activity of 3-chloro-4-(1-(morpholinomethyl) / ((4-methylpiperazin-1-yl) methyl)-1H-imidazol-4-yl)-1-(4-substituted phenyl) azetidin-2-one 7(a-h) were screened against the *Staphylococcus*...
 aureus (MTCC-3160) and Bacillus subtilis (MTCC-441) (gram +ve) and Escherichia coli (MTCC-1652) and Pseudomonas aeruginosa (MTCC-467) (gram -ve) organisms. Here Streptomycin is tested as reference compound to compare the activity.

Antifungal assay

Antifungal activity of 3-chloro-4-(1- (morpholinomethyl) / ((4-methylperazin-1-yl) methyl)-1H-imidazol-4-yl)-1-(4-substituted phenyl) azetidin-2-one 7a-h were screened against Aspergillus niger (MTCC-282) and Penicillium rubrum, our isolate. Here Fluconazole is tested as reference compound to compare the activity. The anti-bacterial and anti-fungal activity of 7a-h were shown in the Table 1.

Synthesis of N-((1H-imidazol-4-yl) methylene) 4-substituted aniline 3a-d:
The aniline (0.93g, 0.01 mol) (2a) and 4-imidazole carboxaldehyde (0.67g, 0.007 mol) (1) were dissolved in absolute alcohol, to this drops of glacial acetic acid is added then heated on a steam bath for 4-5 hours at 100°C. After standing for 24 hours at room temperature. The organic layer the solution was dried over anhydrous sodium sulfate. After the evaporation of the solvent, the residue was purified by column chromatography (60-120 mesh silica gel, eluent: 10% EtoAc pet ether). Finally, the product compound N-(1H-imidazol-4-yl) methylene aniline (3a) which was recrystallized from warm absolute alcohol. Yield 72% with 0.85g, m p 154-156°C.

The similar procedure was adopted to synthesize 3(b-d) (3b-1.02g with 72%, 3c-1.25g with 68% and 3d-1.08g with 66%) by condensing Schiffs bases 3(b-d) (3b-0.61 g, 3c-0.70 g and 3d-0.60 g) with monochloro acetyl chloride (0.67 g, 0.006 mol) (4) respectively.

Synthesis of 3-chloro-4-(1H-imidazol-4-yl)-1-(4-substituted phenyl) azetidin-2-one 5a-d:
The imine (Schiff’s base) (0.51g, 0.003 mol) (3a) was placed in 50 mL round bottom flask equipped with a magnetic paller at nitrogen atmosphere, followed by addition of monochloro acetyl chloride (0.67g, 0.006 mol) (4) and triethyl amine (0.5g, 0.006 mol) and water 20 mL was stirred to obtained a clear solution. To this solution, Formaldehyde (0.05 mol, 15 mL) and DMF (10ml) were added in ice cold condition and stirred for 2 hours in an ice bath and left over night at room temperature. The progress of the reaction was monitored by Thin Layer Chromatography using cyclohexane and ethylacetate (7:3) solvent mixture as a mobile phase. At the end of the reaction dichloromethane (30ml) was added to the mixture followed by neutralization with 50 ml of 1N NaOH solution, after neutralization the mixture was extracted with CHCl3 (3x25 mL). The combined extract was dried on anhydrous Na2SO4. After filtration, the solvent was removed with rota evaporator. The residue was purified by column chromatography, using 60-120 mesh silica and CHCl3 solvent was used as an eluent. Finally the product 3-chloro-4-(1-(morpholinomethyl)-1H-imidazol-4-yl)-1-phenylazetidin-2-one (7a) was purified from aqueous dimethyl formamide. Yield 70% with 0.47g, m p 162-164°C.

The similar procedure was adopted to synthesize 7(b-d) by condensing 5(b-d) (5b-0.56g, 5c-0.65g and 5d-0.58g) with morpholine (0.5 g, 0.006 mol) (6a) respectively.

The structure of these newly synthesized compounds 7a-d were established by IR, 1H-NMR, 13C-NMR, mass data and elemental analysis.

3-chloro-(1-(morpholinomethyl)-1H-imidazol-4-yl)-1-phenylazetidin-2-one (7a) The product was synthesized according to general procedure 5.3 to afford the target compound as a white solid with 0.47% (68%) and m p 162-164°C.

IR (KBr 4000-400 cm⁻¹): 3062 (stretching of Ar-H), 2940 and 2895 (CH₃ of aliphatic-CH), 1690 (C=O of azetidinone), 1560 (C-N), 1478-1421 (C-H of aromatic), 1381 (C-N), 1061 (C-Cl), 737 (C-H of aliphatic-CH), 696 (C-H of aromatic), 563 (N-H of amide) cm⁻¹.

Table 1: Anti-bacterial and anti-fungal activity of 3-chloro-4-(1-(morpholinomethyl) / ((4- methylperazin-1-yl) methyl)-1H-imidazol-4-yl)-1-(4-substituted phenyl) azetidin-2-one 7(a-h).
C18H19Cl2N3O2. Anal. Found (Calcd) C, 56.85 (56.05); H, 5.04 (4.54); N, 11.05 (10.45).

The product was synthesized according to general procedure to afford the target compound as a yellow solid with 0.54g (70%) and m p 154-156°C. Further analysis.

IR (KBr 4000-400 cm⁻¹): δ PPM. 3052 (stretching of Ar-H), 1690 (C=O of azetidinone), 1556 (C-N), 1475-1371 (bending vibrations of imidazole ring), 1112 (C-O) and 718 cm⁻¹ (C-Cl).

1H-NMR (400 MHz, DMSO-d₆): δ PPM. 2.50 (t, 4H, (CH₂) of morpholine ring J = 7.1Hz), 3.65 (t, 4H, (CH₂) of morpholine ring J = 7.1Hz), 3.93 (m, 1H, CH of azetidine ring), 4.69 (d, 1H, CH of azetidine ring J = 7.1Hz), 4.80 (s, 2H of CH₂), 5.38 (d, 1H, CH of azetidine ring J = 7.1Hz), 6.88 (s, 1H, CH of imidazole ring), 7.27-7.40 (m, 5H of phenyl ring) and 7.83 (s, 1H of imidazole ring).

13C-NMR (75 MHz, DMSO-d₆): δ PPM. 137.2, 118.8, 137.8, 40.9, 68.5, 199.4, 54.3, 139.2, 128.1, 128.8, 126.0, 128.8, 128.1, 76.1, 53.6, 66.4, 53.6 and 66.4 corresponding to C1 to C18 respectively. MS 423.03 for C18H19Cl2N3O2.

The structure of these newly synthesized compounds of 3-chloro-4-(1-(4-methylpiperazin-1-y1) methyl)-1H-imidazol-4-yl) azetidin-2-one was established by IR, 1H-NMR, 13C-NMR, mass data and elemental analysis.

2.4. Synthesis of 3 – chloro - 4 - (1-((4-methylpiperazin-1-yl) methyl) -1H- imidazol-4-yl) - 1 - (4-substituted phenyl) azetidin-2-one (7c-h):

A mixture of (0.49 g, 0.002 mol) 3 - chloro - 4 - (1H - imidazol - 4 - yl) - 1 -phenylazetidin - 2 - one (5a), N-methylpiperazine (0.6 g, 0.006 mol) (6b) and water 20 mL was stirred to obtain a clear solution. To this solution, Formaldehyde (0.05 mol, 15 mL) and DME (10mL) were added in ice cold condition and stirred for 2 hours in an ice bath and left over night at room temperature. The progress of the reaction was monitored by Thin Layer Chromatography using cyclohexane and ethylacetate (7:3) solvent mixture as a mobile phase. At the end of the reaction dichloromethane (30ml) was added to the mixture followed by neutralization with 50ml of 1N NaOH solution, after neutralization the mixture was extracted with CHCl₃ (3x25 mL). The combined extract was dried on anhydrous Na₂SO₄. After filtration, the solvent was removed with rota evaporator. The residue was purified by column chromatography, using 60-120 mesh silica and CHCl₃ solvent was used as an eluent. Finally the product 3-chloro-4-(1-((4-methylpiperazin-1-yl) methyl) - 1H – imidazol – 4 - yl) – 1 -phenylazetidin-2-one (7e) was purificed from aqueous dimethyl formamide. Yield 68% with 0.48g, m p 142-144°C.

The similar procedure was adopted to synthesize 7(f-h) by condensing 5(b-d) (5b-0.56 g, 5c-0.65 g and 5d-0.58 g) with N-methylpiperazine (0.6 g, 0.006 mol) (6b) respectively.

The structure of these newly synthesized compounds of 7(e-h) were established by IR, 1H-NMR, 13C-NMR, mass data and elemental analysis.

3-chloro-4-(1-((4-methylpiperazin-1-yl) methyl) – 1H – imidazol – 4 - yl) – 1 -phenylazetidin-2-one (7e) was synthesized according to general procedure 5 to afford the target compound as a white solid with 0.48g (68%) and m p 142-144°C.

IR (KBr 4000-400 cm⁻¹): 3052 (stretching of Ar-H), 2920 and 2859 (CH of aliphatic-CH), 1690 (C=O of azetidine), 1556 (C-N), 1475-1371 (bending vibrations of imidazole ring), 1112 (C-O) and 718 cm⁻¹ (C-Cl).

1H-NMR (400 MHz, DMSO-d₆): δ PPM. 2.50 (t, 4H, (CH₂) of morpholine ring J = 7.1Hz), 3.65 (t, 4H, (CH₂) of morpholine ring J = 7.1Hz), 3.93 (m, 1H, CH of azetidine ring), 4.69 (d, 1H, CH of azetidine ring J = 7.1Hz), 4.80 (s, 2H of CH₂), 5.39 (d, 1H, CH of azetidine ring J = 7.1Hz), 6.88 (s, 1H, CH of imidazole ring), 7.18-7.32 (m, 4H of bromo phenyl ring) and 7.83 (s, 1H of imidazole ring).

13C-NMR (75 MHz, DMSO-d₆): δ PPM. 137.2, 118.8, 137.8, 40.9, 68.5, 199.4, 54.3, 139.2, 128.1, 128.8, 126.0, 128.8, 128.1, 76.1, 53.6, 66.4, 53.6 and 66.4 corresponding to C1 to C18 respectively. MS 423.03 for C18H19Cl2N3O2.

The product was synthesized according to general procedure 5 to afford the target compound as a yellow solid with 0.54g (70%) and m p 154-156°C.
3-chloro-1-(4-chlorophenyl)-4-(1-(4-methylpiperazin-1-yl)methyl)-1H-imidazol-4-yl) azetidin-2-one (7f) The product was synthesized according to general procedure 5.3 to afford the target compound as a yellow solid with 0.51 g (66%) and m p 147-149°C.

The compound as a yellow solid with 0.51g (66%) and m p 147-149°C. The product was synthesized according to general procedure 5.3 to afford the target compound as a yellow solid with 0.51 g (66%) and m p 147-149°C.

IR (KBr 4000–400 cm−1): 3055 (stretching of Ar-H), 2931 and 2884 (stretching of CH, CH2 and CH3), 1698, 1677 and 1651 (C=O of azetidinone), 1542, 1475–1366 (bending vibrations of imidazole ring), 1110 (C–O) and 714 cm−1 (C–Cl).

3H-NMR (400 MHz, DMSO-d6): δ ppm 2.26 (s, 3H, N-CH3), 2.35 (m, 8H of methylpiperazin ring), 3.93 (m, 1H, CH of azetidine ring), 4.69 (d, 1H, CH of azetidine ring J = 7.1Hz), 4.80 (s, 2H of CH2), 5.39 (d, 1H, CH of azetidine ring J = 7.1Hz), 6.88 (s, 1H, CH of imidazole ring), 7.42–7.45 (m, 4H of chloro phenyl ring) and 7.83 (s, 1H of imidazole ring).

13C-NMR (75 MHz, DMSO-d6): δ ppm 39.0, 52.6, 57.3, 46.6 corresponding to C1 to C19 respectively. MS 392.12 for C19H22Cl2N4O. Anal. Found (Calcd) C, 58.02 (57.22); H, 5.64 (5.14); N, 14.24 (13.64).

4. The product was synthesized according to general procedure 5.3 to afford the target compound as a yellow solid with 0.56 g (65%) and m p 141–142°C.

The product was synthesized according to general procedure 5.3 to afford the target compound as a yellow solid with 0.56 g (65%) and m p 141–142°C.

5. Buttero PD, Molteni G, Pilati T (2003) Nitrilimine cycloaddition to 4-(pyrazol-4-yl)carbonyl-2-azetidinone and 4-(pyrazol-4-yl)carbonyl-2-azetidinone. Tetrahedron Letter 44: 1425-1427.

6. Guner V, Yildirir S, Ozcelik B, Abbasoglu U (2000) Synthesis and antimicrobial activity of some Schiff bases derived from 4-aminobenzoic acid. Tetrahedron 56: 1085–1091.

7. Singh VP, Saxsena KK, Bhai SK, Kumar AJ (2010) Global PharmaTech 2: 42.

8. Veinberg G, V. Esther Rani thanks to U G C – S A P and U G C – B S R, New Delhi for financial assistance. They are also thankful to I I C T Hyderabad and CDRI Lucknow for spectral and analytical data.

9. Naute AS, Khedekar PB, Bhusari KP (2008) QSAR studies on 4-thiazolidinones as potential elastase inhibitors. J Tetrahedron 54: 6263-6281.

10. Benito S, Pedro A (2004) ß-Lactams as Versatile Synthetic Intermediates for the Preparation of Heterocycles of Biological Interest. Current medicinal Chemistry 1: 1921-1949.

11. Georg GI (1993) The Organic Chemistry of ß-lactams, VCH: New York.

12. Geor G (1985) Penicillin resistance: the chemistry of ß-lactamase inhibition. Acc Chem Res 18: 97–104.

13. Wang Y, Zhang H, Huang W, Kong J, Zhou J, et al. (2009) 2-Azetidinone derivatives: design, synthesis and evaluation of cholesterol absorption inhibitors. Eur J Med Chem 44: 1058-1069.

14. Parekh J, Inamdhar P, Nair R, Baluja S, Chanda S (2005) Synthesis and antibacterial activity of some Schiff bases derived from 4-aminobenzoic acid. Journal of the Serbian Chemical Society 70: 1155-1158.

References
1. Wallace OB, Lauwers KS, Jones SA, Dodge JA (2003) Tetrahydroquinoline-based selective estrogen receptor modulators (SERMs). Bioorg Med Chem Lett 13: 1907-1910.

2. Benito S, Pedro A (2004) ß-Lactams as Versatile Synthetic Intermediates for the Preparation of Heterocycles of Biological Interest. Current medicinal Chemistry 1: 1921-1949.

3. Georg GI (1993) The Organic Chemistry of ß-lactams, VCH: New York.

4. Knowles JR (1985) Penicillin resistance: the chemistry of ß-lactamase inhibition. Acc Chem Res 18: 97–104.

5. Buttero PD, Molteni G, Pilati T (2003) Nitrilimine cycloaddition to 4-(pyrazol-4-yl)carbonyl-2-azetidinone and 4-(pyrazol-4-yl)carbonyl-2-azetidinone. Tetrahedron Letter 44: 1425-1427.

6. Guner V, Yildirir S, Ozcelik B, Abbasoglu U (2000) Synthesis and antimicrobial activity of 4-diaryl-2-azidinones. Farmaco 55: 147-150.

7. Singh VP, Saxsena KK, Bhai SK, Kumar AJ (2010) Global PharmaTech 2: 42.
Citation: Rani VE, Kumar KD (2015) Synthesis and Antimicrobial Activity of Some Novel N-Mannich Bases of Imidazole Phenylazetidin-2-one. Med chem 5: 154-159. doi:10.4172/2161-0444.1000258

16. Deepak Wadhwa, Varun Arora, Khalid Hussain, Pragi Arora (2014) α-Tosyloxyacetophenones: As a precursor in ultrasonic assisted multicomponent, diastereoselective synthesis of trans-2,3-dihydrofuro[3,2-c] coumarins using [BMIm]OH and their antimicrobial evaluation. Journal of Chemical and Pharmaceutical Research 6: 655-661.

17. Magaldi S, Mata-Essayag S, Hartung de Capriles C, Perez C, Colella MT, et al. (2004) Well diffusion for antifungal susceptibility testing. Int J Infect Dis 8: 39-45.