FAITH’S PROBLEM ON \(R \)-PROJECTIVITY IS UNDECIDABLE

JAN TRLIFAJ

Abstract. In [7], Faith asked for what rings \(R \) does the Dual Baer Criterion hold in \(\text{Mod–} R \), that is, when does \(R \)-projectivity imply projectivity for all right \(R \)-modules? Such rings \(R \) were called right testing. Sandomierski proved that if \(R \) is right perfect, then \(R \) is right testing. Puninski et al. [1] have recently shown for a number of non-right perfect rings that they are not right testing, and noticed that [17] proved consistency with ZFC of the statement ‘each right testing ring is right perfect’ (the proof used Shelah’s uniformization).

Here, we prove the complementing consistency result: the existence of a right testing, but not right perfect ring is also consistent with ZFC (our proof uses Jensen-functions). Thus the answer to the Faith’s question above is undecidable in ZFC. We also provide examples of non-right perfect rings such that the Dual Baer Criterion holds for ‘small’ modules (where ‘small’ means countably generated, or \(\leq 2^{\aleph_0} \)-presented of projective dimension \(\leq 1 \)).

1. Introduction

The classic Baer Criterion for Injectivity [3] says that a (right \(R \)-) module \(M \) is injective, if and only if it is \(R \)-injective, that is, each homomorphism from any right ideal \(I \) of \(R \) into \(M \) extends to \(R \). This criterion is the key tool for classification of injective modules over particular rings.

A module \(M \) is called \(R \)-projective provided that each homomorphism from \(M \) into \(R/I \) where \(I \) is any right ideal, factors through the canonical projection \(\pi : R \to R/I \) [2, p.184]. One can formulate the Dual Baer Criterion as follows: a module \(M \) is projective, if and only if it is \(R \)-projective. The rings \(R \) such that this criterion holds true are called right testing, [1, Definition 2.2].

Dualizations are often possible over perfect rings. Indeed, Sandomierski proved that each right perfect ring is right testing [15]. The question of existence of non-right perfect right testing rings is much harder. Faith [7, p.175] says that “the characterization of all such rings is still an open problem” – we call it the Faith’s problem here.

Note that if \(R \) is not right perfect, then it is consistent with ZFC + GCH that \(R \) is not right testing. Indeed, as observed in [1, 17 Lemma 2.4] (or [16]) implies that there is a \(\kappa^+ \)-presented module \(N \) of projective dimension 1 such that \(\text{Ext}^1_R(N, I) = 0 \) for each right ideal \(I \) of \(R \) (and hence \(N \) is \(R \)-projective, but not projective) in the extension of ZFC satisfying GCH and Shelah’s Uniformization Principle UP\(\kappa \) for an uncountable cardinal \(\kappa \) such that \(\text{card}(R) < \kappa \) and \(\text{cf}(\kappa) = \aleph_0 \).

In particular, attempts [4] to prove the existence of non-right perfect testing rings in ZFC could not be successful.

Date: October 31, 2017.
2010 Mathematics Subject Classification. Primary: 16D40, 03E35. Secondary: 16E30, 16E50, 03E45, 18G05.
Key words and phrases. Baer Criterion, Jensen-functions, non-perfect rings, projective module, \(R \)-projective module.

Research supported by GAČR 17-23112S.
Moreover, in the extension of ZFC + GCH satisfying UP$_\kappa$ for all uncountable cardinals κ such that $\text{cf}(\kappa) = \aleph_0$ [6], all right testing rings are right perfect. So it is consistent with ZFC + GCH that all right testing rings are right perfect.

For many non-right perfect rings R, one can actually prove that R is not right testing in ZFC: this is the case for all commutative noetherian rings [10, Theorem 1], all semilocal right noetherian rings [1, Proposition 2.11], and all commutative domains (see Lemma 2.1 below).

It is easy to see that all finitely generated R-projective modules are projective, that is, the Dual Baer Criterion holds for all finitely generated modules over any ring. So in order to find examples of R-projective modules which are not projective, one has to deal with infinitely generated modules. The task is quite complex in general: in Section 2, we will show that there exist non-right perfect rings such that the Dual Baer Criterion holds for all countably generated modules, or for all $\leq 2^{\aleph_0}$-presented modules of projective dimension ≤ 1.

Some questions related to the vanishing of Ext, such as the Whitehead problem, are known to be undecidable in ZFC, cf. [5]. In Section 3.3, we will prove that this is also true of the existence of non-right perfect right testing rings. To this purpose, we will employ Gödel’s Axiom of Constructibility $V = L$, or rather its combinatorial consequence, the existence of Jensen-functions (see [5, §VI.1] and [8, §18.2]). Our main result, Theorem 3.3 below, says that the existence of Jensen-functions implies that a particular subring of K^ω (where K is a field of cardinality $\leq 2^{\aleph_0}$) is testing, but not perfect.

For unexplained terminology, we refer the reader to [2], [5], [8] and [9].

2. R-PROJECTIVITY VERSUS PROJECTIVITY

It is easy to see that for each R-projective module M, each submodule $I \subseteq R^n$ and each $f \in \text{Hom}_R(M, R^n/N)$, there exists $g \in \text{Hom}_R(M, R^n)$ such that $f = \pi_N g$ where $\pi_N : R^n \to R^n/N$ is the projection (see e.g. [2, Proposition 16.12(2)]). In particular, all finitely generated R-projective modules are projective.

This not true of countably generated R-projective modules in general - for example, by the following lemma, the abelian group \mathbb{Q} is R-projective, but not projective:

Lemma 2.1. Let R be a commutative domain. Then each divisible module is R-projective. So R is testing, iff R is a field.

Proof. Assume R is testing and possesses a non-trivial ideal I. Let M be any divisible module. If $0 \neq \text{Hom}_R(M, R/I)$, then R/I contains a non-zero divisible submodule of the form J/I for an ideal $I \subseteq J \subseteq R$. Let $0 \neq r \in I$. The r-divisibility of J/I yields $Jr + I = J$, but $Jr \subseteq I$, a contradiction. So $\text{Hom}_R(M, R/I) = 0$, and M is projective. In particular, each injective module is projective, so R is a commutative QF-domain, hence a field.

However, there do exist rings such that all countably generated R-projective modules are projective. We will now examine one such class of rings that will be relevant for proving the independence result in Section 3.

Definition 2.2. Let K be a field, and R the unital K-subalgebra of K^ω generated by $K^{(\omega)}$. In other words, R is the subalgebra of K^ω consisting of all eventually constant sequences in K^ω.

For each $i < \omega$, we let e_i be the idempotent in K^ω whose ith component is 1 and all the other components are 0. Notice that $\{e_i \mid i < \omega\}$ is a set of pairwise orthogonal idempotents in R, so R is not perfect.

First, we note basic ring and module theoretic properties of this particular setting:
Lemma 2.3. Let R be as in Definition 2.2.

(1) R is a commutative von Neumann regular semiartinian ring of Loewy length 2, with $\text{Soc}(R) = \sum_{i < \omega} e_i R = K(\omega)$ and $R/\text{Soc}(R) \cong K$.

(2) If I is an ideal of R, then either $I = I_A = \sum_{i \in A} e_i R$ for a subset $A \subseteq \omega$ and I is semisimple and projective, or else $I = f R$ for an idempotent $f \in R$ such that f is eventually 1. In particular, R is hereditary.

(3) $\{e_i R \mid i < \omega\} \cup \{S\}$ is a representative set of all simple modules, where $S = R/\text{Soc}(R)$.

(4) Let $M \in \text{Mod-}R$. Then there are unique cardinals κ_i ($i < \omega$) and λ such that $M \cong S^{(\kappa)} \oplus N$, $\text{Soc}(N) \cong \bigoplus_{i < \omega}(e_i R)^{\kappa_i}$, and $N/\text{Soc}(N) \cong S^{(\lambda)}$.

Proof. (1) Clearly, R is commutative, and if $r \in R$, then all non-zero components of r are invertible in K, so there exists $s \in R$ with $rsr = r$, i.e., R is von Neumann regular.

For each $i < \omega$, $e_i R = e_i K$ is a simple projective module, whence $J = \sum_{i < \omega} e_i R \subseteq \text{Soc}(R)$. Moreover, $R/J \cong K$ is a simple non-projective module. So R is semisimple of Loewy length 2, and $J = \text{Soc}(R)$ is a maximal ideal of R.

(2) If $I \subseteq \text{Soc}(R)$, then I is a direct summand in the semisimple projective module $\text{Soc}(R)$. Since the simple projective modules $\{e_i R \mid i < \omega\}$ are pairwise non-isomorphic, $I \cong I_A = \sum_{i \in A} e_i R$, and hence $I = I_A$, for a subset $A \subseteq \omega$.

If $I \not\subseteq \text{Soc}(R)$, then there is an idempotent $e \in I \setminus \text{Soc}(R)$ and $e R + \text{Soc}(R) = R$. Note that e is eventually 1, so in particular, $e R \supseteq \sum_{i \in B} e_i R$ where $B \subseteq \omega$ is the (cofinite) set of all indices i such that the ith component of e is 1. Then $I = e R \oplus (\sum_{i \in B} e_i R \cap I)$. The latter direct summand equals I_A for a (finite) subset $A \subseteq \omega \setminus B$, and $I = f R$ for the idempotent $f = e + \sum_{i \in A} e_i$.

In either case, I is projective, hence R is hereditary.

(3) By part (2), the maximal spectrum $m\text{Spec}(R) = \{I_\omega\} \cup \{(1 - e_i) R \mid i < \omega\}$. The \sum-injectivity of all simple modules follows from part (1) and [9] Proposition 6.18. The simple module S is not projective because I_ω is not finitely generated.

(4) These (unique) cardinals are determined as follows: κ is the dimension of the S-homogenous component of M, and κ_i the dimension of its $e_i R$-homogenous component ($i < \omega$). The semisimple module $M = M/\text{Soc}(M) \cong N/\text{Soc}(N)$ is isomorphic to a direct sum of copies of the unique non-projective simple module S; λ is the (S-) dimension of M.

The final claim follows from the fact that $P = (\text{Soc}(R^{(\mu)}) + I)/I$ is a direct sum of projective simple modules, while $R^{(\mu)}/(\text{Soc}(R^{(\mu)}) + I)$ a direct sum of copies of S, so $\{0, P, N\}$ is the socle sequence of N.

Next we turn to R-projectivity:

Lemma 2.4. Let R be as in Definition 2.2.

(1) A module M is R-projective, if it is projective w.r.t. the projection $\pi : R \to R/\text{Soc}(R)$.

(2) The class of all R-projective modules is closed under submodules. If $M \in \text{Mod-}R$ is R-projective, then all countably generated submodules of M are projective. In particular, the Dual Baer Criterion holds for all countably generated modules.
Proof. (1) First, note that by part (2) of Lemma 2.3, the only ideals I such that R/I is not projective, are of the form $I = IA$ where A is an infinite subset of ω (and hence $I \subseteq \text{Soc}(R) = L_\omega$). So it suffices to prove that if M is projective w.r.t. the projection $\pi : R \rightarrow R/\text{Soc}(R)$, then it is projective w.r.t. all the projections $\pi_{IA} : R \rightarrow R/IA$ such that $A \subseteq \omega$ is infinite.

Let $f \in \text{Hom}_R(M, R/IA)$. If $\text{Im}(f) \subseteq \text{Soc}(R)/IA$, then there exists a homomorphism $h \in \text{Hom}_R(\text{Soc}(R)/IA, \text{Soc}(R))$ such that $\pi_{IA}h = \text{id}$, whence $g = hf$ yields a factorization of f through π_{IA}. Otherwise, let $\rho : R/IA \rightarrow R/\text{Soc}(R)$ be the projection. By assumption, there is $g \in \text{Hom}_R(M, R)$ such that $\rho f = \pi g$. So $\rho(f - \pi_{IA} g) = 0$, and $\text{Im}(f - \pi_{IA} g) \subseteq \text{Soc}(R)/IA$. Then $f - \pi_{IA} g$ factorizes through π_{IA} by the above, and so does f.

(2) The closure of the class of all R-projective modules under submodules follows from part (1) and from the injectivity of $S = R/\text{Soc}(R)$ (see part (3) of Lemma 2.3). So it only remains to prove that each countably generated R-projective module is projective. However, as remarked above, for any ring R, each finitely generated R-projective module is projective. Since R is hereditary and von Neumann regular, [17, Lemma 3.4] applies and gives that also all countably generated R-projective modules are projective.

We finish this section by presenting two more classes of non-right perfect rings over which small modules satisfy the Dual Baer Criterion.

In both cases, the rings will be von Neumann regular and right self-injective. Apart from classic facts about these rings from [9, §10], we will also need the following easy observation (valid for any right self-injective ring R, see [1, Proposition 2.6]): a module M is R-projective, iff $\text{Ext}^1_R(M, I) = 0$ for each right ideal I of R.

Example 2.5. Let R be a right self-injective von Neumann regular ring such that R has primitive factors artinian, but R is not artinian (e.g., let R be an infinite direct product of skew-fields). Then all R-projective modules are non-singular, and the Dual Baer Criterion holds for all countably generated modules.

For the first claim, let M be R-projective and assume there is an essential right ideal $I \subsetneq R$ such that R/I embeds into M. Let J be a maximal right ideal containing I. By [9, Proposition 6.18], the simple module R/J is injective, so the projection $\rho : R/I \rightarrow R/J$ extends to some $f \in \text{Hom}_R(M, R/J)$. The R-projectivity of M yields $g \in \text{Hom}_R(M, R)$ such that $f = \pi g$ where $\pi : R \rightarrow R/J$ is the projection. Then g restricts to a non-zero homomorphism from R/I into the non-singular module R, a contradiction. Thus, M is non-singular.

For the second claim, we recall from [11, Example 6.8], that for von Neumann regular right self-injective rings, non-singular modules coincide with the (flat) Mittag-Leffler ones. However, each countably generated flat Mittag-Leffler module (over any ring) is projective, see e.g. [8, Corollary 3.19]. Thus each countably generated R-projective module is projective.

Example 2.6. Let R be a von Neumann regular right self-injective ring which is purely infinite in the sense of [9, Definition on p.116]. That is, there exists no central idempotent $0 \neq e \in R$ such that the ring eRe is directly finite (where a ring R is directly finite in case $xy = 1$ implies $yx = 1$ for all $x, y \in R$.)

For example, the endomorphism ring of any infinite dimensional right vector space over a skew-field has this property, see [9, p. 116].

We claim that the Dual Baer Criterion holds for all $\leq 2^{\aleph_0}$-presented modules M of projective dimension ≤ 1. Indeed, assume that such module M is R-projective. By [9, Theorem 10.19], R contains a right ideal J which is a free module of rank 2^{\aleph_0}. If the projective dimension of M equals 1, then there is a non-split presentation
0 → K → L → M → 0 where K and L are free of rank ≤ 2^\aleph_0. Thus Ext_B^1(M, J) ≠ 0, in contradiction with the R-projectivity of M. This shows that M is projective.

In particular, if the global dimension of R is 2, and all right ideals of R are ≤ 2^\aleph_0-presented (which is the case when R is the endomorphism ring of a vector space of dimension \aleph_0 over a field of cardinality ≤ 2^\aleph_0 under CH - see [13]), then the Dual Baer Criterion holds for all ideals of R.

Remark 2.7. As mentioned in the Introduction, for any non-right perfect ring R, Shelah’s Uniformization Principle UP (κ) (for an uncountable cardinal κ such that card(R) < κ and cl(κ) = ℵ_0) and GCH imply the existence of a κ⁺-presented R-projective module N of projective dimension equal to 1.

If we choose R to be the endomorphism ring of a vector space of dimension < ℵω over a field of cardinality < ℵω, then we can take the minimal choice, κ = ℵω, so the module N above can be chosen ℵ^ω⁺-presented. Example 2.6 gives a lower bound for the possible size of N: it has to be > 2^\aleph_0-presented.

3. The consistency of existence of non-perfect testing rings

In this section, we return to the setting of Definition 2.2 so K will denote a field, and R the subalgebra of K^ω consisting of all eventually constant sequences in K^ω. In order to prove that it is consistent with ZFC that R is testing, we will employ the notion of Jensen-functions, cf. [12] and [8, §18.2].

Definition 3.1. Let κ be a regular uncountable cardinal.

1. A subset C ⊆ κ is called a club provided that C is closed in κ (i.e., sup(D) ∈ C for each subset D ⊆ C such that sup(D) < κ) and C is unbounded (i.e., sup(C) = κ). Equivalently, there exists a strictly increasing continuous function f : κ → κ whose image is C.

2. A subset E ⊆ κ is stationary provided that E ∩ C ≠ ∅ for each club C ⊆ κ.

3. Let A be a set of cardinality ≤ κ. An increasing continuous chain, \{A_\alpha | \alpha < \kappa\}, consisting of subsets of A of cardinality < κ such that A_0 = 0 and A = \bigcup_{\alpha < \kappa} A_\alpha, is called a κ-filtra tion of the set A.

4. Let E be a stationary subset of κ. Let A and B be sets of cardinality ≤ κ. Let \{A_\alpha | \alpha < \kappa\} and \{B_\alpha | \alpha < \kappa\} be κ-filtrations of A and B, respectively. For each \alpha < \kappa, let c_\alpha : A_\alpha → B_\alpha be a map. Then \{c_\alpha | \alpha < \kappa\} are called Jensen-functions provided that for each map c : A → B, the set E(c) = \{\alpha ∈ E | c ↾ A_\alpha = c_\alpha\} is stationary in κ.

Jensen [12] proved the following (cf. [8, Theorem 18.9]):

Theorem 3.2. Assume Gödel’s Axiom of Constructibility (V = L). Let κ be a regular infinite cardinal, E ⊆ κ a stationary subset of κ, and A and B sets of cardinality ≤ κ. Let \{A_\alpha | \alpha < \kappa\} and \{B_\alpha | \alpha < \kappa\} be κ-filtrations of A and B, respectively. Then there exist Jensen-functions \{c_\alpha | \alpha < \kappa\}.

Now, we can prove our main result:

Theorem 3.3. Assume V = L. Let K be a field of cardinality ≤ 2^\omega. Then all R-projective modules are projective.

Proof. Let M be an R-projective module. By induction on the minimal number of generators, κ, of M, we will prove that M is projective. For κ ≤ ℵ_0, we appeal to part (2) of Lemma 2.4 and for κ a singular cardinal, we apply [17, Corollary 3.11].

Assume κ is a regular uncountable cardinal. Let G = \{m_\alpha | \alpha < \kappa\} be a minimal set of R-generators of M. For each \alpha < \kappa, let G_\alpha = \{m_\beta | \beta < \alpha\}. Let M_\alpha be the submodule of M generated by G_\alpha. Then M = (M_\alpha | \alpha < \kappa) is a κ-filtra tion of the module M. Possibly skipping some terms of M, we can w.l.o.g. assume that M
has the following property for each $\alpha < \kappa$: if M_β/M_α is not R-projective for some $\alpha < \beta < \kappa$, then also $M_{\alpha+1}/M_\alpha$ is not R-projective. Let E be the set of all $\alpha < \kappa$ such that $M_{\alpha+1}/M_\alpha$ is not R-projective.

We claim that E is not stationary in κ. If our claim is true, then there is a club C in κ such that $C \cap E = \emptyset$. Let $f : \kappa \to \kappa$ be a strictly increasing continuous function whose image is C. Then $M_{f(\alpha+1)}/M_{f(\alpha)}$ is R-projective for each $\alpha < \kappa$. By the inductive premise, $M_{f(\alpha+1)}/M_f(\alpha)$ is projective for all $\alpha < \kappa$, whence M is projective, too.

Assume our claim is not true. We will make use of Theorem 52 in the following setting. We let $A = G$ and $B = R$. The relevant κ-filtration of A will be $(G_\alpha : \alpha < \kappa)$. For B, we consider any κ-filtration $(R_\alpha : \alpha < \kappa)$ of the additive group $(R, +)$ consisting of subgroups of $(R, +)$ (which exists since card(K) $\leq \aleph_1$ implies card(R) $\leq \aleph_1 < \kappa$; if card(K) is countable, the filtration can even be taken constant $= R$). By Theorem 3.2 there exist Jensen-functions $c_\alpha : G_\alpha \to R_\alpha (\alpha < \kappa)$ such that for each function $c : G \to R$, the set $E(c) = \{ \alpha \in E \mid c_\alpha = c \upharpoonright G_\alpha \}$ is stationary in κ.

By induction on $\alpha < \kappa$, we will define a sequence $(g_\alpha : \alpha < \kappa)$ such that $g_\alpha \in \text{Hom}_R(M_\alpha, S)$ as follows: $g_0 = 0$; if $\alpha < \kappa$ and g_α is defined, we distinguish two cases:

1. $\alpha \in E$, and there exist $h_{\alpha+1} \in \text{Hom}_R(M_{\alpha+1}, S)$ and $y_{\alpha+1} \in \text{Hom}_R(M_{\alpha+1}, R)$, such that $h_{\alpha+1} \upharpoonright M_\alpha = g_\alpha$, $h_{\alpha+1} = \pi y_{\alpha+1}$ and $y_{\alpha+1} \upharpoonright G_\alpha = c_\alpha$. In this case we define $g_{\alpha+1} = h_{\alpha+1} + f_{\alpha+1} \rho_{\alpha+1}$, where $f_{\alpha+1} : M_{\alpha+1} \to M_{\alpha+1}/M_\alpha$ is the projection and $f_{\alpha+1} \in \text{Hom}_R(M_{\alpha+1}/M_\alpha, S)$ is chosen so that it does not factorize through π (such $f_{\alpha+1}$ exists because $\alpha \in E$ by part (1) of Lemma 2.4). Note that $g_{\alpha+1} \upharpoonright M_\alpha = h_{\alpha+1} \upharpoonright M_\alpha = g_\alpha$.

2. If α is a limit ordinal, we let $g_\alpha = \bigcup_{\beta < \alpha} g_\beta$. Finally, we define $g = \bigcup_{\alpha < \kappa} g_\alpha$. We will prove that g does not factorize through π. This will contradict the R-projectivity of M, and prove our claim.

Assume there is $x \in \text{Hom}_R(M, R)$ such that $g = \pi x$. Then the set of all $\alpha < \kappa$ such that $x \upharpoonright G_\alpha$ maps into R_α is closed and unbounded in κ, so it contains some element $\alpha \in E(x \upharpoonright G)$. For such α, we have $g_{\alpha+1} = \pi x \upharpoonright M_{\alpha+1}$ and $x \upharpoonright G_\alpha = c_\alpha$, so α is in case (1) (this is witnessed by taking $h_{\alpha+1} = g_{\alpha+1}$ and $y_{\alpha+1} = x \upharpoonright M_{\alpha+1}$).

Let $z_{\alpha+1} = x \upharpoonright M_{\alpha+1} - y_{\alpha+1}$. Then $z_{\alpha+1} \upharpoonright G_\alpha = x \upharpoonright G_\alpha - y_{\alpha+1} \upharpoonright G_\alpha = c_\alpha - c_\alpha = 0$. So there exists $u_{\alpha+1} \in \text{Hom}_R(M_{\alpha+1}/M_\alpha, R)$ such that $z_{\alpha+1} = u_{\alpha+1} \rho_{\alpha+1}$. Moreover,

$$\pi u_{\alpha+1} \rho_{\alpha+1} + \pi z_{\alpha+1} = \pi u_{\alpha+1} = \pi x \upharpoonright M_{\alpha+1} - \pi y_{\alpha+1} = g_{\alpha+1} - h_{\alpha+1} = f_{\alpha+1} \rho_{\alpha+1}.$$

Since $\rho_{\alpha+1}$ is surjective, we conclude that $\pi u_{\alpha+1} = f_{\alpha+1}$, in contradiction with our choice of the homomorphism $f_{\alpha+1}$. \qed

Corollary 3.4. Let K be a field of cardinality $\leq 2^\omega$. Then the statement ‘R is a testing ring’ is independent of ZFC + GCH. Hence Faith’s problem is undecidable in ZFC + GCH.

Proof. Assume UP$_\kappa$ for some κ such that card(R) $< \kappa$ and cf(κ) = \aleph_0. Then R is not testing by [17] Lemma 2.4 (see also [1] Theorem 2.7]).

Assume $V = L$. Then R is testing by Theorems 5.2 and 5.3. \qed

Acknowledgement: I owe my thanks to Gena Puninski for drawing my attention to Faith’s problem, and for sharing his manuscript [14] (later incorporated in [1]). I deeply regret Gena’s sudden departure in April 2017.
References

[1] H. Alhilali, Y. Ibrahim, G. Puninski, M. Yousif, When R is a testing module for projectivity?, J. Algebra 484 (2017), 198 – 206.
[2] F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, 2nd ed., GTM 13, Springer, New York 1992.
[3] R. Baer, Abelian groups that are direct summands of every containing abelian group, Bull. Amer. Math. Soc. 46 (1940), 800 – 806.
[4] H. Q. Dinh, C. J. Holston, D. V. Huynh, Quasi-projective modules over prime hereditary noetherian V-rings are projective or injective, J. Algebra 360 (2012), 87 – 91.
[5] P. C. Eklof, A. H. Mekler, Almost Free Modules, 2nd ed., North Holland Math. Library, Elsevier, Amsterdam 2002.
[6] P. C. Eklof, S. Shelah, On Whitehead modules, J. Algebra 142 (1991), 492–510.
[7] C. Faith, Algebra II. Ring Theory, GMW 191, Springer-Verlag, Berlin 1976.
[8] R. Göbel, J. Trlifaj, Approximations and Endomorphism Algebras of Modules, GEM 41, W. de Gruyter, Berlin 2012.
[9] K. R. Goodearl, Von Neumann Regular Rings, 2nd ed., Krieger Publ. Co., Malabar 1991.
[10] R. M. Hamsher, Commutative noetherian rings over which every module has a maximal submodule, Proc. Amer. Math. Soc. 17 (1966), 1471-1472.
[11] D. Herbera, J. Trlifaj, Almost free modules and Mittag-Leffler conditions, Adv. Math. 229 (2012), 3436 – 3467.
[12] R. Jensen, The fine structure of the constructible hierarchy, Ann. Math. Logic 4 (1972), 229–308.
[13] B. Osofsky, Homological Dimensions of Modules, CBMS 12, AMS, Providence 1973.
[14] G. Puninski, When R is a testing module for projectivity?, manuscript.
[15] F. Sandomierski, Relative Injectivity and Projectivity, PhD thesis, Penn State University, 1964.
[16] J. Trlifaj, Non-perfect rings and a theorem of Eklof and Shelah, Comment. Math. Univ. Carolinae 32 (1991), 27 – 32.
[17] J. Trlifaj, Whitehead test modules, Trans. Amer. Math. Soc. 348 (1996), 1521 – 1554.

Charles University, Faculty of Mathematics and Physics, Department of Algebra, Sokolovská 83, 186 75 Prague 8, Czech Republic
E-mail address: trlifaj@karlin.mff.cuni.cz