Magnetic nanoadsorbents for micropollutant removal in real water treatment: a review

Ackmez Mudhoo1 · Mika Sillanpää2,3

Received: 9 March 2021 / Accepted: 18 July 2021 / Published online: 29 July 2021
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Abstract
Pure water will become a golden resource in the context of the rising pollution, climate change and the recycling economy, calling for advanced purification methods such as the use of nanostructured adsorbents. However, coming up with an ideal nanoadsorbent for micropollutant removal is a real challenge because nanoadsorbents, which demonstrate very good performances at laboratory scale, do not necessarily have suitable properties in full-scale water purification and wastewater treatment systems. Here, magnetic nanoadsorbents appear promising because they can be easily separated from the slurry phase into a denser sludge phase by applying a magnetic field. Yet, there are only few examples of large-scale use of magnetic adsorbents for water purification and wastewater treatment. Here, we review magnetic nanoadsorbents for the removal of micropollutants, and we explain the integration of magnetic separation in the existing treatment plants. We found that the use of magnetic nanoadsorbents is an effective option in water treatment, but lacks maturity in full-scale water treatment facilities. The concentrations of magnetic nanoadsorbents in final effluents can be controlled by using magnetic separation, thus minimizing the ecotoxicological impact. Academia and the water industry should better collaborate to integrate magnetic separation in full-scale water purification and wastewater treatment plants.

Keywords
Magnetic nanoadsorbents · Water purification · Wastewater treatment · Magnetic separation

Introduction

Water is needed for umpteen day-to-day domestic, commercial and industrial activities. Yet, over the years, pollution of water has kept increasing to such an extent where matters have worsened into water stress and water scarcity conditions in many regions of the world. The release of untreated wastewater poses two major global ecological problems. One which encompasses the entire set of the potential damaging and irreversible impacts on the different components of the food web and ecosystems (Tijani et al. 2016; Arslan et al. 2017; Shao et al. 2019; Xu et al. 2019; Gautam and Anbumani 2020; Varjani and Sudha 2020; Rogowska et al. 2020; Golovko et al. 2020). Second, a much useful resource, which is in the form of untreated wastewater, is lost. This poses additional stress on rural and urban clean water supply chains. As a consequence, to sustain development within a circular economy, more clean water has to be tapped from the existing freshwater reserves to meet growing water demands. Circular economy is a resource recovery strategy which has been recently used in brine (saline wastewater) treatment as well (Panagopoulos and Haralambous 2020a, b). There is hence an absolute need to capture untreated wastewaters as much as possible to then treat them using the best-in-class treatment systems for eventually meeting all sanitary norms, effluent discharge standards and regulations.

During the last two decades, there has been a growing thrust in harnessing nanoscience and nanotechnology for designing myriad nanostructured materials which can potentially serve as more effective adsorbents for water purification and wastewater treatment (Santhosh et al.
High adsorption and removal capacities

Chemical stability, thermal stability and adequate selectivity

High recovery rate of spent adsorbents, regeneration and recyclability

Adequate tunability of porosity

Scope for modification of surface chemistry by specific types of functionalization

High mechanical strength, structural integrity and shape recovery potential

Self-healing (Perera and Ayres 2020) and self-cleaning properties (Shen et al. 2019; Xiong et al. 2020)

(viii) Amenability for being produced in bulk through green synthetic routes

(ix) Ability for being integrated in large-scale water/wastewater treatment processes

(x) Low-cost bulk production and regeneration

An ideal nanoadsorbent would competitively solve a reasonable part of the core technical, economic and secondary pollution issues related to existing conventional water purification and wastewater treatment methods and conventional adsorbents. For example, a novel iron oxide–hydrotalcite modified with dodecylsulfate and β-cyclodextrin magnetic adsorbent gave maximum adsorption capacities significantly superior to those reported for certain activated carbon-type and activated char adsorbents in the removal of phenol (216.08 mg g⁻¹) and p-cresol (272.48 mg g⁻¹) present in pulp and paper industry wastewater (Balbino et al. 2020). The latter maximum adsorption capacities are higher than the following ones: 144.93 mg g⁻¹ for phenol by activated carbon (Zhang et al. 2016a), 129.24 mg g⁻¹ for p-cresol by composite alginate beads–MnO₂ activated carbon (Shim et al. 2019), and 32.77 mg g⁻¹ for p-cresol by coconut shell-activated char (Zhu and Kolar 2014). More recently, the maximum removal capacity of Pb²⁺ and methylene blue on novel MoO₃ nanobelts was 684.93 and 1408 mg g⁻¹, respectively, while that of Au³⁺ and methylene blue on novel MoS₂ nanoarrays was 1280.2 and 768 mg g⁻¹, respectively (Zhou et al. 2022). MoO₃ nanobelts and MoS₂ nanoarrays could be easily synthesized, were high scalable, had good chemical stability, gave high repeatability, and these characteristics made them promising candidates for wastewater treatment (Zhou et al. 2022).

Accordingly, more research efforts have been deployed in formulating green schemes for the synthesis of novel nanoadsorbents which could compete with activated carbon. Nanoadsorbents have relatively very large specific surface areas (Mashile et al. 2020; He et al. 2021), and their surface chemistry and functionality can be engineered to augment their adsorption capacities in comparison with conventional and commercially used adsorbents (Vikrant and Kim 2019). Nanoadsorbents used for scavenging micropollutants are capable of exhibiting higher adsorption capacities (Wadhawan et al. 2020), strong reactivity (Lu et al. 2016), and specific affinity toward the targeted micropollutants (Zhang et al. 2016b). These nanomaterials can also have multiple active sorption sites and tunable porosity (El-sayed 2020). One specific class of nanoadsorbents is magnetic nanoadsorbents (Mahamadi 2019; Franzreb 2020; Vicente-Martínez et al. 2020; He et al. 2021; Jiang et al. 2021; Peralta et al. 2021; Mohammadi et al. 2021; Nithya et al. 2021; Álvarez-Manzaneda et al. 2021; Plohl et al. 2021). According to a recent review, research on the preparation and use of magnetic adsorbents has been progressing fast, and has yielded...
more than eightfold rise in the number of publications in the period from 2010 to 2020 (Reshadi et al. 2020). In this review, we discuss a few research and development perspectives with respect to the potential use of novel high-performance magnetic nanoadsorbents for micropollutant removal and the integration of magnetic separation in the existing water purification and wastewater treatment plants (Fig. 1).

Magnetic nanoadsorbents

Magnetic nanoadsorbents are emerging as significantly effective functional materials with exceptional micropollutant sequestration capabilities and fast adsorption kinetics at the laboratory scale (Abdel Maksoud et al. 2020; D’Cruz et al. 2020; Hu et al. 2020; Mittal et al. 2020; Ahmad et al. 2020a; Wang et al. 2020b, d; Jafari et al. 2020; Keykhaee et al. 2020; Icten and Ozer 2021; Xin et al. 2021). Magnetic nanoadsorbents are generally characterized with high specific surface areas (e.g., 1188 m2 g$^{-1}$ for magnetic coal-based activated carbon (Liu et al. 2021)), high pore volumes (Gupta et al. 2017; Yeap et al. 2017; Masunga et al. 2019; Li et al. 2020; Azam et al. 2020; Pan et al. 2021), robust structures (Lingamdinne et al. 2019a), and extensively interconnected porous networks (Tan et al. 2020; Fan et al. 2021) which collectively promote ultrahigh adsorption capacities for micropollutants.

Besides the redox activity and surface charge properties (Abdel Maksoud et al. 2020), low-cost synthesis and non-toxicity (Leone et al. 2018), high selectivity (Song et al. 2018; Asadi et al. 2020; Nisola et al. 2020; Wang et al. 2020c, 2021; He et al. 2021; Luan et al. 2021), binding specificity (Vishnu and Dhandapani 2021), and excellent reversibility (D’Cruz et al. 2020; Hu et al. 2020; Li et al. 2020; Ahmad et al. 2020b; Vu and Wu 2020; Wang et al. 2020c; Nkinahamira et al. 2020; Tabatabaiee Bafrooeie et al. 2021), a key feature of magnetic nanoadsorbents is that they can be separated in situ from adsorption-remediated waters in the form of a magnetic nanoadsorbent(s)–adsorbate(s) sludge by applying a strong enough magnetic field (Ambashta and Sillanpää 2010; Zaidi et al. 2014; Simeonidis et al. 2015; Moharramzadeh and Baghdadi 2016; Wanna et al. 2016; Tripathy et al. 2017; Mirshahrghassemi et al. 2017; Yeap et al. 2017; Augusto et al. 2019; Kheshti et al. 2019a; Mashile et al. 2020; Bríao et al. 2020; Balbino et al. 2020).

The opportunity to separate the micropollutant(s)-loaded spent magnetic nanoadsorbents from the purified water/wastewater to produce clean water is an enormous prospect for Research and Development in the area of water science and technology. The latter concepts motivate the following discussions which are focused on the potential of using

![Fig. 1 Conceptual representation of the use of magnetic nanoadsorbents and integration of magnetic separation in existing wastewater treatment facilities for micropollutant removal. This concept is envisioned in three major phases. First, the effluent from the secondary treatment stage is treated with selected magnetic nanoadsorbent. This phase will be an advanced treatment. Second, the treated effluent from the advanced treatment phase is processed in an integrated magnetic separation system, where the micropollutant-laden magnetic nanoadsorbents are decoupled from the purified wastewater. Third, the purified water and micropollutant-loaded magnetic nanoadsorbents are separated in two different streams for further use and processing. The micropollutant-loaded magnetic nanoadsorbents are then regenerated. Created with BioRender.com.](image-url)
magnetic nanoadsorbents effectively in full-scale water purification and wastewater treatment systems, and on the prospect of integrating magnetic separation in such systems to recuperate spent magnetic nanoadsorbents. Magnetic separation has some attractive advantages in comparison with the conventional processes. These merits are broadly related to: (i) the possibility of carrying out an integrated one-step capture and purification of specific species, (ii) the processing of high throughputs, and (iii) the low energy requirements and associated costs entailed by semi-continuous or continuous processes ran at relatively low pressure (Schwaminger et al. 2019).

The use of magnetic nanoadsorbents and the integration of magnetic separation for water purification and wastewater treatment can be envisaged at the tertiary effluent treatment level whereby effluent from the upstream secondary treatment units is polished through selective adsorptive sequestration of the target micropollutants. Yet, the mode of seeding of magnetic nanoadsorbents and the incorporation of magnetic separation at other possible points/locations within the wastewater treatment plants will surely require more investigation, scenario formulation and system analysis. This is because each wastewater treatment plant has its own sets of specific processes and type of wastewaters.

Ecotoxicity assessments of the sludge and purified water after the magnetic separation should also be part of an overall environmental safety-environmental impact monitoring plan. Based on the results obtained thereof, there can be the scope to reengineer the synthesis of magnetic nanoadsorbents into more benign schemes. Pristine magnetic nanoadsorbents can be functionalized with diverse moieties to bring out their favorable adsorption characteristics (Augusto et al. 2019; Manyangadze et al. 2020; Wu et al. 2020; Dai et al. 2020; Nnadozie and Ajibade 2020; Safari et al. 2020; Bi et al. 2021; You et al. 2021; Aryee et al. 2021), and also increase their stability relative to oxidation with improved selectivity for one specific metal ion (Wadhawan et al. 2020). However, functionalized magnetic nanoadsorbents can be very expensive, and this economic feature limits their use in water purification and wastewater treatment processes at the industrial scale (Augusto et al. 2019).

Developments with magnetic nanoadsorbents and magnetic separation

In this section, the discussions are focused on the examination of magnetic nanoadsorbents at laboratory scale, pilot-type magnetic separation systems and their respective configuration, inventions and patents for magnetic separator systems, magnetic separation processes in large-scale water purification, and finally on the related gaps and research and development opportunities.

Magnetic nanoadsorbents at laboratory scale

Empirical investigations reported in the literature provide interesting scientific insights into the significantly diverse aspects of the adsorption dynamics of different adsorbate–magnetic nanoadsorbent combinations (Sivashankar et al. 2014; Mehta et al. 2015; Tamjidi et al. 2019; Kumar et al. 2020; Hassan et al. 2020; Mashkoor and Nasar 2020; Bharti et al. 2020; You et al. 2021). For example, doping Ag ions onto Fe₃O₄ nanoparticles had decreased particle sizes, but enhanced the magnetic characteristics of the as-prepared nanocomposites (Najafpoor et al. 2020). The Ag-magnetic nanoparticles had considerably higher efficacy for disinfecting effluent and in advanced treatment through an increased removal of chemical oxygen demand as well (Najafpoor et al. 2020). The switching from magnetic nanoparticles to Ag-loaded magnetic nanoparticles led to a 0.06 increase in total coliforms, fecal coliforms, and heterotrophic bacteria log reductions, and a 6.16% rise in the removal of chemical oxygen demand (Najafpoor et al. 2020).

In another study, a Fe³⁺-stabilized magnetic polydopamine composite (specific surface area=32.7 m² g⁻¹ and total pore volume =0.1943 cm³ g⁻¹) demonstrated excellent adsorption capability for methylene blue in single adsorbate aqueous solutions (maximum adsorption capacity=608.8 mg g⁻¹) for pH ranging 3–10 and at 45 °C (Chen et al. 2020). Encouragingly, the nanocomposite could selectively capture methylene blue from mixed dye aqueous systems (methylene blue/methyl orange, methylene blue/carmine, and methylene blue/Rhodamine B) and complex aqueous solutions having ionic strengths as high as 0.5 mol L⁻¹ sodium chloride as well (Chen et al. 2020). The enhanced and selective adsorption of methylene blue occurred as a result of the synergistic effects of multiple mechanisms (Chen et al. 2020). In the case of the methylene blue/methyl orange mixed dye system, the faster and selective uptake of methylene blue was attributed to the strong electrostatic interactions between the negatively charged adsorbent and the cationic methylene blue molecules (Chen et al. 2020). In the case of methylene blue/Rhodamine B, the poor adsorption of Rhodamine B was set on account of mainly steric hindrance generated by the longer lateral alkyl chain connected to the N⁺ center, which in turn considerably weakened π–π stacking interactions and electrostatic attractions between Fe₃O₄/polydopamine-Fe³⁺ and the Rhodamine B molecules (Chen et al. 2020). Besides maintaining a four-cycle adsorption–desorption adsorptive efficiency greater than 80% of its initial uptake performance for methylene blue in simulated textile effluent, the nanocomposite could yield a superior adsorption performance than commercial powder-activated carbon in column adsorption setup (Chen et al. 2020).
The application of magnetite particles for treating real wastewater samples was investigated, and the variation of removal performances was assessed for samples withdrawn from three different points of a wastewater treatment facility (Castelo-Grande et al. 2021). Results, in general, indicated that magnetite particles had a very good behavior with regard to reduction in detergents and chemical oxygen demand, whereas removals of total nitrogen and phosphates, and those of most heavy metals examined (which included chromium, zinc, lead, copper and cobalt), were high to moderate (Castelo-Grande et al. 2021). The type of wastewater varied significantly among the sampling points in terms of the phosphates, total nitrogen, chemical oxygen demand, and detergents’ concentrations. Interestingly, the results provided preliminary insights which wastewater treatment plant managers may consider when selecting which contaminants to remove using magnetite-based adsorption, and when choosing an optimal point for integrating magnetic seeding in the overall plant process operations (Castelo-Grande et al. 2021).

Some recent high-performance supermagnetic nanoadsorbents examined for scavenging heavy metals and/or organic micropollutants are Fe$^{3+}$-stabilized magnetic polydopamine composite (Chen et al. 2020), comb polymer-functionalized magnetic nanoparticles (Liu et al. 2020a), magnetic porous NiLa-layered double oxides (Vu and Wu 2020), magnetic β-cyclodextrin polymer (Hu et al. 2020; Nkinahamira et al. 2020), magnetic activated carbon-Fe$_3$O$_4$ (D’Cruz et al. 2020), cyanopropylsilane-functionalized TiO$_2$ magnetic nanoparticles (Mousavi et al. 2019), magnetic graphene oxide modified by β-cyclodextrin (Wang et al. 2020a), hexadecyltrimethylammonium bromide-surface-functionalized magnetic UiO-66@UiO-67 composite adsorbent (Li et al. 2020), magnetic core-shell MnFe$_2$O$_4$@TiO$_2$ nanoparticles loaded on reduced graphene oxide (Chang et al. 2021), magnetic graphene oxide decorated with persimmon tannins (Gao et al. 2019), magnetic montmorillonite nanocomposite (Fatimah et al. 2021), magnetic Fe$_3$O$_4$ nanocubes coated by SiO$_2$ and TiO$_2$ (Khalaf et al. 2019), ferrihydrite-loaded magnetic sugar cane bagasse charcoal adsorbent (Xin et al. 2021), ethylenediamine-functionalized magnetic graphene oxide for arsenic(III) removal from aqueous solutions (Tabatabaiee Bafrooe et al. 2021), and last but not least MnFe$_2$O$_4$/multiwalled carbon nanotubes (Zhao et al. 2021b). The list of recent magnetic nanoadsorbents is very long indeed. Hence, there is a vast body of findings in the literature reporting excellent micropollutant adsorption performances of different magnetic nanoadsorbents exhibiting high adsorption capacities, very fast adsorption kinetics, selectivity and good reusability (Table 1) (Xu et al. 2017; Yang et al. 2017a, 2019; Ul-Islam et al. 2017; Surendhiran et al. 2017; Ma et al. 2018; Biehl et al. 2018; Wang et al. 2018; Chen et al. 2018; Yao et al. 2019; Chavan et al. 2019; Sarkar et al. 2019; Fu et al. 2021; Li et al. 2021a).

Many reviews have discussed the adsorption performances of many magnetic nanoadsorbents under different experimental conditions using aqueous solutions containing one or more micropollutant(s). Reviews have also been performed on the synthetic methods of magnetic nanoadsorbents and chemical reagents/reactants used, the functionalization and surface chemistry modifications of pristine magnetic nanoparticles, regeneration methods and reusability of magnetic nanoadsorbents, and the concerns around the commercialization of industry-ready magnetic separation equipment.

Although promising findings have been extensively compiled based on laboratory-scale investigations with magnetic nanoadsorbents in recent reviews with regard to excellent adsorption capacities, rapid adsorption kinetics, good selectivity and recyclability (Sivashankar et al. 2014; Mehta et al. 2015; Tamjidi et al. 2019; Kumar et al. 2020; Hassan et al. 2020; Mashkoor and Nasar 2020; Bharti et al. 2020; You et al. 2021; Faraji et al. 2021; Jain et al. 2021), there are still a number of hurdles which tend to retard the use of magnetic nanoadsorbents at the commercial scale for water purification and wastewater treatment systems. These limitations are related to their mechanical properties, chemical stability, scale-up and optimization of synthetic processes, possible downstream toxicity levels, and efficacy of regeneration methods and reusability (You et al. 2021). In addition, the estimation of the costs involved in the scaling-up of synthetic schemes for magnetic nanoadsorbents’ production and the development of customized magnetic separation systems is challenging.

Magnetic nanoadsorbents have been observed to lose their adsorptive capacity after multiple reuse cycles (Meng et al. 2018; Wanjeri et al. 2018; Aliannejadi et al. 2019; Ma et al. 2019; Baig et al. 2020; Masjedi et al. 2020; Rezaei et al. 2020; Peralta et al. 2021). For example, ibuprofen uptake by an as-prepared hybrid silica-based magnetic nanoadsorbent experienced a drastic 42% decline in the second cycle, implying that the regeneration reagent used (ethanol) had not extracted all of the ibuprofen adsorbed in the previous adsorption step (Peralta et al. 2021). Naphthalene removal efficiency by a highly branched dendrimeric magnetic nanoadsorbent decreased in the last use cycles to reach 54% by the tenth cycle (Aliannejadi et al. 2019). Fe$^{3+}$ removal efficiency by a magnetic core-shell Fe$_3$O$_4$@mSiO$_2$-NH$_2$ adsorbent was reduced by about 8% after cycle 1, followed by a decrease of less than 2.5% in the next three cycles (Meng et al. 2018). The removal efficiency of Cr$^{6+}$ ions by a corn straw-derived porous carbon adsorbent from aqueous solutions was 91.57% at the end of a first adsorption–desorption cycle, and remained above 70.65% after three cycles (Ma et al. 2019). However, Cr$^{6+}$ ion removal
Adsorbent	Micropollutant	Highlights of adsorption behavior	References
Magnetic CrFe$_2$O$_4$ nanocomposite prepared sonochemically using a nonionic surfactant	Mo$^{6+}$	Thermodynamic data indicated that adsorption of Mo$^{6+}$ ions was spontaneous and endothermic The adsorbent could be regenerated through the desorption of more than 98% of Mo$^{6+}$ with 1.0 mol L$^{-1}$ sodium hydroxide	Gamal et al. (2021)
Magnetic nanocomposite Co-multiwalled carbon nanotubes	Methylene blue	Maximum adsorption capacity = 324.34 mg g$^{-1}$ Adsorption was endothermic and followed pseudo-second-order kinetic model	Çalışlı (2021)
Fe$_3$O$_4$-MnO$_2$-EDTA composite	Cu$^{2+}$ ions from binary or ternary metal adsorbate system	As-synthesized adsorbents yielded high Cu$^{2+}$ selective adsorption (both in binary and ternary systems) In comparison with Fe$_3$O$_4$-MnO$_2$, the magnetic Fe$_3$O$_4$-MnO$_2$-EDTA nanoparticles resulted in rapid magnetic separation with high selectivity for Cu$^{2+}$	Chen and Xie (2020)
Magnetic CoFe$_2$O$_4$/graphene oxide adsorbents	Methylene blue, methyl orange and Rhodamine B	Adsorption of organic dyes for CoFe$_2$O$_4$/graphene oxide composite mainly attributable to contribution of graphene oxide Superior adsorption capacity q_e (max) for methylene blue and Rhodamine B at 355.9 mg g$^{-1}$ and 284.9 mg g$^{-1}$, respectively (Langmuir adsorption model). Selective adsorption with order of adsorption capacity as follows: Methylene blue > Rhodamine B > methyl orange	Chang et al. (2020)
Hydroxypropyl-β- cyclodextrin-polyurethane/graphene oxide magnetic nanoconjugates	Cr$^{6+}$ and Pb$^{2+}$	Adsorption capacity of adsorbents for Cr$^{6+}$ and Pb$^{2+}$ at 987 mg g$^{-1}$ and 1399 mg g$^{-1}$, respectively, and adsorption followed pseudo-second-order kinetics Reusability of adsorbent makes it a promising candidate for Pb$^{2+}$ removal from aqueous solutions This magnetic composite was endowed with a high adsorption performance and good reusability for heavy metal ions	Nasiri and Alizadeh (2021)
Magnetic molecular imprint polymer networks synthesized from vinyl-functionalized magnetic nanoparticles	Antibiotics (ciprofloxacin and erythromycin)	Networks exhibited high binding capacity toward erythromycin and ciprofloxacin at 70 mg g$^{-1}$ and 32 mg g$^{-1}$, respectively. Networks were recyclable and retained their binding capacity after 4 cycles Results demonstrated that the networks developed had high binding capacity, selectivity and recyclability The networks can be utilized both for monitoring and removal of hazardous antibiotic pollutants potentially present in different samples and food products	Kuhn et al. (2020)
Adsorbent	Micropollutant	Highlights of adsorption behavior	
--	----------------	--	
Phospho-amide-functionalized magnetic nanoparticles	Uranium	High maximum adsorption capacity for pH 4–8 with maximum adsorption achieved at pH 6. Higher than 90% uranium extraction was recorded during adsorption studies conducted using drinking water, tap water and seawater. When comparing adsorption capacity across different matrices, the adsorbent showed a maximum uptake of uranium at pH 6. Inferences were made in the study as follows: high adsorption capacity, low cost, less equilibration time, easy separation from matrix and non-toxicity of the adsorbent constitute some key merits sought when envisioning the process at an industrial scale.	
Magnetic tubular carbon nanofibers	Cu²⁺	Maximum adsorption capacity of nanofibers for Cu²⁺ = 375.93 mg g⁻¹. Porous morphology, large surface area and tubular structure of the nanofibers contributed to the rapid and highest adsorption of Cu²⁺ ions. Langmuir adsorption isotherm model best described adsorption data. The nanofibers developed have exhibited excellent regenerability when treated with EDTA.	
Magnesium–zinc ferrites	Cr⁶⁺ and Ni²⁺	Mg₀·⁴Zn₀·⁶Fe₂O₄ was observed to be the most effective adsorbent for removing Ni²⁺ (93.2%). Adjustment of magnesium content to an optimal value can enhance mixed ferrites’ ability to remove heavy metals from aqueous solutions. Mg₀·³⁴Zn₀·⁶⁶Fe₂O₄, Zn₀·⁶⁶Fe₂O₄ and Fe₂O₄ yielded best adsorption capacity for Cr⁶⁺ ([30.49 mg g⁻¹]; [19.44 mg g⁻¹]; [14.44 mg g⁻¹], respectively). Maximum adsorption capacity for Hg²⁺ was 0.8 mg g⁻¹. Hg²⁺ and Ag⁺ was observed to be the most effective adsorbent for removing Mg²⁺ (95.2%). Good adsorption selectivity (100% selective adsorption of Hg²⁺ in the presence of Ni²⁺, Zn²⁺ and Mg²⁺). Excellent regeneration characteristics, and reuse repeatedly over four use cycles.	
Sulfur-functionalized polyaminoamine dendrimer/magnetic Fe₃O₄ hybrid materials	Hg²⁺ and Ag⁺	Maximum adsorption capacity for Hg²⁺ and Ag⁺ was 1.29 mmol g⁻¹ and 1.29 mmol g⁻¹, respectively. Good adsorption selectivity (100% selective adsorption of Hg²⁺ in the presence of Ni²⁺, Zn²⁺ and Mg²⁺). Excellent regeneration characteristics, and reuse repeatedly over four use cycles.	
efficiency declined to 52.39% in the fourth adsorption–desorption cycle (Ma et al. 2019). Hence, it becomes significantly relevant to reinstate, and if required to significantly reengineer possibly through functionalization (Sahoo and Hota 2018; Manyangadze et al. 2020; Peralta et al. 2020, 2021), the physical and chemical characteristics of the magnetic nanoadsorbents to sustain their effective reuse. Thus, regeneration potential, regeneration method and recovery efficiency for reuse are three critical factors, among others, which will guide the selection of a magnetic nanoadsorbent for a specific industrial-scale water purification and wastewater treatment process. These aspects are particularly crucial from the economic dimension given the high costs which can be involved (Neha et al. 2021).

There are many spent magnetic nanoadsorbent regeneration methods among which the chemical method appears to be popular (Meng et al. 2018; Campos et al. 2019; Gagliano et al. 2020; Sahoo et al. 2020; Bakhshi Nejad and Mohammadi 2020; Biata et al. 2020; Jain et al. 2021; Peralta et al. 2021). Other adsorbent regeneration methods are thermal (Aguedal et al. 2019), supercritical extraction (Momina et al. 2018), microbial regeneration (Momina et al. 2018), solvent extraction (Dutta et al. 2019), and microwave and ultraviolet irradiation (Sun et al. 2017). Accordingly, the utilization of regenerated magnetic nanoadsorbents can have an impact on the efficiency of the water purification and wastewater treatment processes where they are put to use. This is because the quality of the exhausted nanoadsorbent regeneration process is influenced by pH (Momina et al. 2018; Wen et al. 2020), molecular structure of adsorbate (Gagliano et al. 2020), functional groups present (Meng et al. 2018), temperature (Aguedal et al. 2019; Jiang et al. 2019) and surface charge (Meng et al. 2018). Thus, an optimization of the regeneration method for a specific exhausted magnetic nanoadsorbent becomes necessary. Such an optimization will be vital for ensuring a maximum possible stability, selectivity and improved adsorption efficiency of the regenerated magnetic nanoadsorbent during its next set of multiple adsorptive interactions with the target micropollutant(s).

Pilot-scale magnetic separation systems

As compared to the number of laboratory-scale studies which have examined the performance of magnetically separable adsorbents, there are relatively fewer studies which have reported the pilot-scale behaviors of novel magnetic adsorbents utilized in micropollutant removal. The following discussions revisit some salient aspects of these studies, and highlight a number of favorable findings and system-specific limitations. For example, an open-gradient magnetic separator consisting of identical electromagnets operating as the capture elements was designed, optimized, and experimentally examined for water purification under turbulent water
flow regimes (Belounis et al. 2015). The optimization was based on the assessment of capture efficiencies of different separator configurations, and took into consideration the following parameters: capture element sizing, particle radius, particle mass density, particle magnetic permeability, channel diameter, water mass density and water dynamic viscosity, and average flow velocity (Belounis et al. 2015).

Recently, a laboratory-scale magnetic separator (μ-Jones) simulating large-scale wet magnetic separator systems was designed to demonstrate that magnetic extraction of vivianite from sludge was achievable (Prot et al. 2019). A number of interesting findings were reported in the latter work, and they demonstrated proof-of-concept of magnetic separation to some reasonable extent. Among the results obtained, magnetic separation was able to concentrate vivianite by a factor 2–3 and could also decrease organic content from 40 to 20% (Prot et al. 2019). Besides allowing recovery of total phosphorus as vivianite, implementation of magnetic separation at wastewater treatment plants could decrease the amount of waste sludge, and also augment its heating value by lowering its mineral content (Prot et al. 2019). Encouragingly, preliminary cost analysis indicate that these advantages (particularly the projected decrease in waste sludge volume) are in balance with putting into place a magnetic separator when the associated investment and operation costs are accounted for (Prot et al. 2019).

In a study which dealt with the removal and recovery of dissolved phosphate from wastewater in a pilot-scale system using ZnFeZr@Fe3O4/SiO2 adsorbent with magnetic harvesting, some operational limitations were observed (Drenkova-Tuhtan et al. 2017). Thus, besides the favorable removal performance observed on the whole in the pilot-scale tests (viz. an effective 50-time upscaling of the proposed technology by remediating 1.5 m3 wastewater in twenty cycles), some of the limitations were:

1. A decline in adsorption efficiency because of a consistent loss of adsorbent particles as cycle 10 was reached,
2. The high-gradient magnetic separation was confronted with discontinuous operation because of the need to effect regular flushing, which in turn induced the dilution of particle concentrate, and
3. Desorption efficiency varied more than in the laboratory-scale tests, possibly because of the higher mass of adsorbent particles per unit volume of desorption solution, which led to incomplete regeneration of the adsorbent in some cycles (Drenkova-Tuhtan et al. 2017).

An accurate estimation of running costs was not workable at that stage of the process development (Drenkova-Tuhtan et al. 2017). However, the pilot-scale findings pointed toward the principal operating costs being those for the replacement of lost or exhausted adsorbent particles, followed by those for energy and chemicals consumption (Drenkova-Tuhtan et al. 2017).

A preliminary assessment of a pilot-scale magnetic separator demonstrated that magnetizable clays could be effectively used for the treatment of textile dyeing wastewater on magnetic drum separators (Salinas et al. 2018). The magnetic drum separator had a rotating drum (external diameter=20 cm, depth=12.5 cm, and with an arrangement of fifty neodymium magnets of 5 × 2 × 0.5 cm on its inner side) mounted on a cylindrical plastic container by a metal shaft (Salinas et al. 2018). The magnetic clay was separated from the drum by a plastic blade and recuperated in a plastic container (Salinas et al. 2018). With the magnetic drum separator operated at a flow rate of 0.08 L min⁻¹, 62% dye removal could be obtained, and the outlet effluent dye concentration was 92 ppm for a 10 min residence time on the separator (Salinas et al. 2018). In another study, the separation efficiency for magnetic hydrogel adsorbing Cr(VI) was more than 97% throughout the twenty cycles of treatment in an industrial wastewater treatment prototype (Tang et al. 2014). The prototype had a 5-L magnetic separation unit comprising an electromagnetic system at the bottom for generating a magnetic field of strength ~200 mT (Tang et al. 2014). This unit generated a magnetic field that had zigzag pathways for maximizing the magnetic hydrogel’s capture (Tang et al. 2014).

In a recent insightful work which highlights the merits of cooperative magnetophoresis, an in-line, wastewater-cooled electromagnetic collection system has been developed (Hutchins and Downey 2020). This new system could produce collections at very high efficiencies consistently more than 98% (with a magnetic core of 200 wires (Core I)) when paired with magnetite nanoparticles because of the intimate contact induced when placing the coil directly in the copper(II)-containing wastewater flow (Hutchins and Downey 2020). The water cooling feature of the electromagnetic collection system enabled the onset of a much more powerful magnetic field that, in turn, tends to allow the use of pipes with larger diameters and accommodate flows at higher fluid velocities (Hutchins and Downey 2020). The latter are two important requisites for an effective industrial-scale application of a magnetic separation system. Interestingly, flows of up to 8.1 L min⁻¹ with up to 80 gram-particles could produce the target benchmark collection efficiency of 98% (Hutchins and Downey 2020). However, the decrease in collection efficiencies for particles of greater masses was attributed to the excess build-up of particles on the core wires, and at a specific point in this fluid-velocity-dependent build-up, the fluid drag force becomes greater than the magnetophoretic force, and the magnetite particles are carried into the flow (Hutchins and Downey 2020).

Recently, an innovative, scalable and optimized permanent magnetic nanoparticle recovery apparatus (called
“MagNERD” having a maximum fluid volume of 1110 mL has been developed (Powell et al. 2020). This device was examined using experimental investigations and computational fluid dynamics modeling approaches for its performance in separating, capturing and reusing superparamagnetic \(\text{Fe}_3\text{O}_4 \) nanoparticles from treated water in-line for continuous flows (Powell et al. 2020). Results indicated that the efficiency of the novel MagNERD system in recovering the magnetic nanoadsorbents was dependent on the configuration of the device and hydraulic flow conditions, and magnetic nanoadsorbents uptake (Powell et al. 2020). The MagNERD system had successfully removed more than 94% of As-bound \(\text{Fe}_3\text{O}_4 \), after mixing simulated drinking water consisting of arsenic with the magnetic nanoadsorbents used (Powell et al. 2020). In addition, this device was able in removing \(\text{Fe}_3\text{O}_4 \) in nanopowder form for as high as more than 95% at elevated concentrations of 500 ppm at 1 L min\(^{-1}\), and from different types of water (e.g., brackish water and ultrapure water) (Powell et al. 2020).

Magnetic separator inventions and patents

There are also some patents which describe interesting magnetic separator inventions having different geometries and different operating principles for prospective applications in water purification and wastewater treatment (Lombardi and Morley 2017; Liu et al. 2020b, WATER ONLINE 2008). One of these inventions reports the design of devices and development of procedures for undertaking in-line water treatment through the application of strong magnetic fields, which in turn exert an influence on corrosion, separation of toxins, suppressing of bacteria and bio-fouling, and prevention or considerable decrease in mineral scaling arising from fluid flow in or around the components in the equipment (Lombardi and Morley 2017).

There have been commercial applications of magnetic seeding for the treatment of drinking water with (e.g., ‘Comag’ process) and without (e.g., ‘Sirofloc’ technology) magnetic separation (Cort 2008, 2010). Interestingly, there is also an invention which is a ‘hybrid’ treatment system combining magnetic separation with activated sludge treatment designed to remove dissolved aqueous pollutants from a wide range of contaminated waters (municipal wastewaters, industrial wastewaters, combined sewer overflows, potable waters, any other waters containing dissolved inorganic or organic contaminants) (Cort 2009). In another example, the invention is particularly relevant for high flow water treatment applications which have to be efficient and simple; and for specific operational requirements, this invention can also combine vortex separation with magnetic separation to improve magnetic seed material cleaning and lower solids load on the final magnetic collector system (Cort 2007).

Magnetic separation in large-scale water purification

We have also come across a few full-scale case studies which have reported the application of magnetic separation in water purification. For example, a high-gradient magnetic separation system equipped with superconducting magnet (3 T, 0.68 m long and 0.4 m bore NbTi solenoid) was designed to purify paper mill wastewater continuously (Nishijima and Takeda 2006). The main features and performances to be achieved by this magnetic separation system were: (1) reducing the chemical oxygen demand of the purified effluent to less than 40 ppm and to be recyclable, and (2) processing wastewater flows above 2000 tons on a daily basis (Nishijima and Takeda 2006). In another example, one supermagnetic separation system was used by the Shandong New Dragon Energy Limited Liability Company (design treatment capacity = 34,000 m\(^3\) day\(^{-1}\)) in March 2010 for treating underground mine water (Zhang et al. 2020).

In another investigation, a high-gradient magnetic separation (employing a 6-T cryo-cooled Nb-Ti superconducting magnet) was used to remove impurities from the condenser water (containing mostly hematite and maghemite) in a thermal power plant (Lee et al. 2011). In the test runs, the condenser water turbidity was decreased up to 99.6%, and more of the iron oxides could be scavenged at higher magnetic field strengths (1-6T) (Lee et al. 2011). Back in 1978, a report (EPA600/2-78/209, and under the Contract No. 68-03-2218) described the preliminary on-site stage testing of magnetic separation for seeded water treatment involving magnetite (Allen 1978). The investigations were conducted with a SALA high-gradient magnetic separator pilot unit on combined sewer overflows and raw sewage at SALA Magnetics, Inc. in Cambridge, Massachusetts, and at on-site places in the Boston area (Allen 1978). Although the on-site findings reported did not match those recorded with uniform batch samples in house, they were still good enough in demonstrating that high-gradient magnetic filtration was effective on fresh combined sewer overflows and raw sewage (Allen 1978). In addition, the on-site results indicated that the magnetic filtration-based treatment system could easily adapt to flow rate conditions and dynamic solids loading usually observed with storm water and integrated wet and dry treatment systems (Allen 1978).

A water treatment system in a thermal power plant was equipped with a high-gradient magnetic separation system utilizing a solenoidal superconducting magnet (model number JMTD-10T100E3, bore diameter=10 cm, height=46 cm) and magnetite for enhancing the efficiency of operations (Shibatani et al. 2016). The flow velocity was 0.6 ms\(^{-1}\) and the magnetic flux density applied was 2.0 T. In the high-gradient magnetic separation investigations which could be run at high-pressure and high-temperature, a reduction in
the separation rate and an increase in pressure loss had been warded off, and the total amount of captured scale had augmented by reason of an appropriate filter design (Shibatani et al. 2016). The standard deviation of magnetite capture rate was 3.4 when the filter material was galvanized iron (16.3 g of magnetite captured in this case), whereas the capture rate was significantly higher at 29 when the filter material used was stainless steel 430 (11.2 g of magnetite captured) (Shibatani et al. 2016). At 10 ppm of magnetite, blockage of the magnetic filters occurred. In the former magnetic filter design, the starting separation rate was 89% which remained quasi-constant for the first 10 minutes, but then decreased to 64% over the next 10 minutes (Shibatani et al. 2016). For this same filter system, pressure loss gradually rose from 9.5 to 10.5 kPa and remained practically constant after 15 minutes. Based on the findings, the galvanized iron magnetic filter system (with a diameter of 51 mm) was thence deemed convenient for extended continuous operation for scale removal in the feed-water system of the plant (Shibatani et al. 2016).

Gaps and development openings

Based on our analysis of the literature so far, we infer there is reasonable ground for developing a large-scale (industrial) usage of magnetic nanoadsorbents for water purification and wastewater treatment together with the incorporation of magnetic separation operating downstream for recovering the spent magnetic nanoadsorbents (Lee et al. 2011; Liu et al. 2013; Simeonidis et al. 2015; Roy et al. 2017; Mirshahghassemi et al. 2017; Lompe et al. 2018; Lingamdinne et al. 2019b, a; Augusto et al. 2019; Huang et al. 2019; Prot et al. 2019; Cui et al. 2020; Ghernaout and Elboughdiri 2020; Abdel Maksoud et al. 2020; Kheshti et al. 2020; Powell et al. 2020; Salehin et al. 2020; Khan et al. 2020; Hussen Shadi et al. 2020; Acosta et al. 2020; Rais et al. 2021; Leonel et al. 2021).

Yet, there appears to be a major lacuna in the development and implementation of a mature combined magnetic nanoadsorbent-based adsorption–magnetic separation in water purification and wastewater treatment processes that are intended to operate at high capacity and under continuous flows at the industrial scale (Augusto et al. 2019; Powell et al. 2020). This gap gives way to substantial hope for more research and development and progress in the area of water science and water treatment technology using magnetic nanoadsorbents and magnetic separation downstream the unit operations housing the magnetic nanoadsorbents-based adsorption processes.

Three major interconnected components will require substantial research and development efforts toward the potential integration of magnetic nanoadsorbents’ use and magnetic separation in real-scale/industrial-scale water and wastewater depuration systems. These are:

1. Maximizing the capture of untreated wastewaters and channeling them to the large-scale water and wastewater treatment facilities
2. Selecting *intelligent* magnetic nanoadsorbent(s) for industrial application
3. System modeling, simulation and process optimization of real water/wastewater remediation systems using magnetic nanoadsorbents and magnetic separation

Further research and development can generate more *real-world* investigations of pilot-scale ‘*intelligent*’ magnetic nanoadsorbent(s)-based adsorption system for their system design and optimization on a case-to-case basis. A case-to-case basis approach seems much plausible because the research and development investigations will need to consider the existing water purification and wastewater treatment processes, and then factor in the significant variabilities that can occur in physicochemical and biological characteristics of contaminated waters (e.g., groundwaters (Subba Rao et al. 2017; Yetiş et al. 2019; Ferrer et al. 2020; Gnanachandrasamy et al. 2020) and drinking water (Navab-Daneshmand et al. 2018; Kumar et al. 2019; Jehan et al. 2019)) and wastewaters (e.g., landfill leachates (Augusto et al. 2019) and complex textile wastewaters containing dyes (Bhatia et al. 2017; Huang et al. 2020)) being treated. The findings can then be used to formulate appropriate engineering project opportunities that enable the use magnetic nanoadsorbents and integration of magnetic separation in existing water purification and wastewater treatment units. Hence, we equally envision that innovative magnetic nanoadsorbent-based adsorption units and magnetic separation systems are retrofitted in the existing tertiary (de Andrade et al. 2018), or quaternary water/wastewater treatment units (Gawel 2015).

The word ‘*intelligent*’ has been used above to bring in the notion of a system using magnetic nanoadsorbents which can adequately self-modulate their properties and adsorption performances in response to external biological, chemical and/or physical stimuli normally encountered in real contaminated waters/wastewaters. The ‘*intelligent sensing*’ can be a response of the intelligent magnetic nanoadsorbent toward a single stimulus or more. The stimuli can be:

(i) Physical such as exposure to variations in light intensity (Xu et al. 2020), temperature (Ebadollahzadeh and Zabihi 2020; Li et al. 2021b), magnetic field strength (Flores López et al. 2018) and hydrodynamic mechanical shear forces which can get onset during continuous turbulently mixed reactor-type
(Xie et al. 2017; Jun et al. 2020) or bed-type adsorption processes (Niksefat Abatari et al. 2017);

(ii) Chemical because of fluctuations in pH (Reguyal and Sarmah 2018), variations in ionic strength (Zhang et al. 2019), and due to variable concentrations of competing/coexisting species such as ammonium (Mazloomi and Jalali 2017), phosphate, sulfate, nitrate (Tuuitijärvi et al. 2012; Rashid et al. 2017), multiple organic pollutants, e.g., dyes, pharmaceuticals and agrochemicals (Hlongwane et al. 2019), natural organic matter such as humic substances (Reguyal and Sarmah 2018; He et al. 2018), and alkali and alkali-earth metal ions (e.g., K⁺, Mg²⁺, Ca²⁺) (Quiroga-Flores et al. 2020), transition (e.g., Co²⁺, Cd²⁺, Ni²⁺) metal ions (Quiroga-Flores et al. 2020) and/or ions with a radioactive character (e.g., Sr²⁺ (Vivas et al. 2020), Cs⁺ (Işık et al. 2021) or uranyl ion (UO₂²⁺) (Yang et al. 2017b)); and

(iii) Microbiological due to potential interactions of magnetic nanoadsorbents with a multitude of microorganisms to form microbial aggregates which in turn can protect them (Tang et al. 2018).

Though relatively novel, there are already such intelligent magnetic materials which have been examined for their adsorption performance in water and wastewater remediation (Yu et al. 2020; Ciğeroğlu et al. 2021; Lionel et al. 2021; Yang et al. 2021). Therefore, we think it is opportune to borrow insights from these repositories of scientific data to design and scale-up intelligent magnetic nanoadsorbents-based adsorption units for application in full-scale water purification and wastewater treatment systems. These units will have to be stable, robust and adequately effective in producing final effluents which comply with the prevailing effluent discharge limits and regulatory standards of the target micropolllutants.

System modeling, numerical simulation, and process optimization (Liu et al. 2019; Powell et al. 2020) will be integral components in the design of these units. This is because a balance will need to be constantly maintained amidst the interplay of the key process and design parameters. Some of these main parameters/features are: particle size of magnetic nanoadsorbents (Hutchins and Downey 2020), the geometry and configuration of the adsorption units, the dispersion or immobilization of magnetic nanoadsorbents, the spatial distribution of magnetic nanoadsorbents within the adsorption unit(s), the tendency for magnetic nanoadsorbents to aggregate or get leached, the susceptibility of magnetic nanoadsorbents to be biodegraded by indigenous or survivor microbes, and the overall adsorption behavior of magnetic nanoadsorbents in real water purification and wastewater treatment conditions. Controlling and minimizing agglomeration and precipitation of magnetic nanoadsorbents are important as well.

Moreover, the production of magnetic nanoadsorbents at the kilogram scale (and hopefully at the ton scale) under optimized operating conditions will have to be established as mature processes (Cheong and Moh 2018; Lorignon et al. 2020). In addition, it will be critical to ensure that the magnetic nanoadsorbents being produced in bulk have preserved enough of those outstanding properties and are effective in delivering those adsorption performances observed at laboratory scale for the target micropolllutant(s). These requirements, when fulfilled, can assist in paving the way to the commercial use of magnetic nanoadsorbents in full-scale water purification and wastewater treatment facilities.

In addition, the development of optimized high-gradient magnetic separators (Kakihara et al. 2004; Baik et al. 2013; Simeonidis et al. 2015; Tripathy et al. 2017; Mirshahghassemi et al. 2017; Han et al. 2017; Ebeler et al. 2018; Kheshti et al. 2019a, 2020; Powell et al. 2020) occupies a core segment of the research and development efforts needed to mature the use of magnetic nanoadsorbents for application in water purification and wastewater treatment at the industrial scale. It is critical to design energy-efficient magnetic separation systems which respond favorably to the energy requirements of retrofitting such systems in the water purification and wastewater treatment industry.

The design of the magnetic separator system will have to be properly tuned for the following parameters on a case-to-case basis as well: its optimal geometry in relation to aqueous stream flow patterns (Kheshti et al. 2019b), potential flocculation and coagulation behaviors (Lv et al. 2019, 2021; Sun et al. 2021), flow paths (Kakihara et al. 2004; Tang et al. 2014) and effects of turbulences and variable fluid shear forces; concentrations and mass loading of magnetic nanoadsorbents (Powell et al. 2020); the magnetic field strength distributions, flow velocity profiles and liquid streamlines being developed during the magnetic separation; the exposure intensity; effects of any residual magnetization arising from presence of mechanical components (Powell et al. 2020); colloidal stability and magnetic separability (Hutchins and Downey 2020); and residence time distributions with or without effluent recirculation.

Research directions

Based on the findings of this review, we are of the mind the above points carry reasonable weight for warranting comprehensive pilot-scale and in situ experimentation, and system design and optimization of magnetic nanoadsorbent-based adsorption units and magnetic separation systems for enabling their integration in existing full-scale water purification and wastewater treatment facilities. Retrofitting existing
water treatment facilities with optimized magnetic nanoadsorbent-based adsorption units and magnetic separation systems can potentially yield higher purification efficiencies. In addition, the recovery of micropollutant-saturated magnetic nanoadsorbents can be achieved at potentially higher capture efficiencies. In addition, by optimizing the operational parameter and design settings of the magnetic separation systems, the residual concentration of magnetic nanoadsorbents in the final-treated effluent can be brought to a safe minimum, and possibly to trace levels. Accordingly, we identify the following key research avenues:

- Active involvement and contribution of interdisciplinary expertise, namely from physics, materials science and engineering, environmental chemistry, chemical process design and engineering, control system engineering, toxicology, environmental economics, and plausibly policy making as well for materializing the commercial production and use of magnetic nanoadsorbents.

- It will be a significant research and development challenge to tailor make optimized and economic magnetic nanoadsorbents’ regeneration routes when planning their use in large-scale water purification and wastewater treatment systems. Thus, defining the finite frequency at which the regenerated magnetic nanoadsorbents can be economically replaced in a process becomes important.

- It is of the utmost importance to keep on demonstrating the ‘proof-of-concept’ of yet more innovative magnetic separation systems capable of treating high flow rates continuously and in-line in existing full-scale water purification and wastewater treatment facilities on a case-to-case basis.

- The lifecycle environmental impacts of the use of magnetic nanoadsorbents and magnetic separation systems in large-scale water purification and wastewater treatment systems have to be comprehensively elucidated.

- More collaboration of key industry partners and the research community will be equally crucial in research and development activities related to the design and pilot-scale testing of effective magnetic separation system in the existing water treatment facilities.

Conclusion

Demonstration of the aforementioned ‘proof-of-concept’ can hopefully help in dispelling doubts and reducing risk-related reluctance (Kiparsky et al. 2016; Trapp et al. 2017; Sherman et al. 2020) of the water treatment industry toward retrofitting of the existing installations. Accordingly, stronger ‘university-utility’ collaborations (Brown et al. 2020) have to be developed for harnessing the potential of selected ‘super’ magnetic nanoadsorbents in large-scale water purification and wastewater treatment systems. We look forward to a mature utilization of magnetic nanoadsorbents for target micropollutant removal coupled with a viable integration of magnetic separation in the existing full-scale water purification and wastewater treatment facilities gradually becoming a “disruptive innovation” (Si and Chen 2020) in the water treatment sector.

Acknowledgements The contents of this article have been cross-checked for similarity in the Turnitin software multiple times. Figure 1 was created with BioRender.com, and exported under the paid plan having Receipt #2116-9809.

Author contributions: AM involved in conceptualization, data curation, writing—original draft, review & editing and revision. MS involved in review of original draft & editing and revision

Funding This work received no funding.

Declarations

Conflict of interest The authors declare no conflict of interest.

References

Abdel Maksoud MIA, Elgaraby AM, Farrell C et al (2020) Insight on water remediation application using magnetic nanomaterials and biosorbents. Coord Chem Rev 403:213096. https://doi.org/10.1016/j.ccr.2019.213096

Acosta L, Galeano-Caro D, Medina OE et al (2020) Nano-intermediate of magnetite nanoparticles supported on activated carbon from spent coffee grounds for treatment of wastewater from oil industry and energy production. Processes 9:63. https://doi.org/10.3390/pr9010063

Aguedal H, Iddou A, Aziz A et al (2019) Effect of thermal regeneration of diatomite adsorbent on its efficacy for removal of dye from water. Int J Environ Sci Technol 16:113–124. https://doi.org/10.1007/s13762-018-1647-5

Ahmad M, Wang J, Xu J et al (2020) Novel synthetic method for magnetic sulphonated tubular trap for efficient mercury removal from wastewater. J Colloid Interface Sci 565:523–535. https://doi.org/10.1016/j.jcis.2020.01.024

Ahmad M, Wang J, Xu J et al (2020) Magnetic tubular carbon nanofibers as efficient Cu(II) ion adsorbent from wastewater. J Clean Prod 252:119825. https://doi.org/10.1016/j.jclepro.2019.119825

Aliannejadi S, Hassanli AH, Panahi HA, Borghesi SM (2019) Fabrication and characterization of high-branched recyclable PAMAM dendrimer polymers on the modified magnetic nanoparticles for removing naphthalene from aqueous solutions. Microchem J 145:767–777. https://doi.org/10.1016/j.microc.2018.11.043

Allen DM (1978) Treatment of combined sewer overflows by high gradient magnetic separation. On-site testing with mobile pilot plant trailer. U.S. Environmental Protection Agency, Washington, D.C., EPA/600/2-78/209. https://crispub.epa.gov/si/si_public_record_Report.cfm?Lab=ORD&dirEntryID=49771 and https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=9100SR4K.TXT. (accessed 12 February 2021)

Alvarez PJJ, Chan CK, Elimelech M et al (2018) Emerging opportunities for nanotechnology to enhance water security. Nat Nanotechnol 13:634–641. https://doi.org/10.1038/s41565-018-0203-2
Álvarez-Manzaneda I, Guerrero F, Cruz-Pizarro L et al (2021) Magnetic particles as new adsorbents for the reduction of phosphate inputs from a wastewater treatment plant to a Mediterranean Ramsar wetland (Southern Spain). Chemosphere 270:128640. https://doi.org/10.1016/j.chemosphere.2020.128640

Ambashta RD, Sillanpää M (2010) Water purification using magnetic assistance: A review. J Hazard Mater 180:38–49. https://doi.org/10.1016/j.jhazmat.2010.04.105

Arslan M, Ullah I, Müller JA et al (2017) Organic Micropollutants in International Publishing, Cham, pp 65–99

Bharti MK, Gupta S, Chalia S et al (2020) Potential of magnetic nanoparticles in removal of heavy metals from contaminated water: mini review. J Supercond Nov Magn 33:3651–3665. https://doi.org/10.1007/s10948-020-05657-1

Bi R, Li F, Chao J et al (2021) Magnetic solid-phase extraction for speciation of mercury based on thiol and thiouether-functionalized magnetic covalent organic frameworks nanocomposite synthesized at room temperature. J Chromatogr A 1635:461712. https://doi.org/10.1016/j.chroma.2020.461712

Biata NR, Jakavula S, Mashile GP et al (2020) Recovery of gold(III) and iridium(IV) using magnetic layered double hydroxide (Fe₃O₄/Mg-Al-LDH) nanocomposite: equilibrium studies and application to real samples. Hydrometallurgy 197:105447. https://doi.org/10.1016/j.hydromet.2020.105447

Biehl P, von der Lühe M, Schacher FH (2018) Reversible adsorption of methylene blue as cationic model cargo onto polywittlerionic magnetic nanoparticles. Macromol Rapid Commun 39:1800017. https://doi.org/10.1002/marc.201800017

Borjí H, Ayoub GM, Al-Hindi M et al (2020) Nanotechnology to remove polychlorinated biphenyls and polycyclic aromatic hydrocarbons from water: a review. Environ Chem Lett 18:729–746. https://doi.org/10.1007/s10311-020-00979-x

Brown M, Karimova F, Love N et al (2020) University–utility partnerships: Best practices for water innovation and collaboration. Water Environ Res 92:314–319. https://doi.org/10.1002/wer.1252

Calmiti MH (2021) Magnetic nanocomposite cobalt-multiwall carbon nanotube and adsorption kinetics of methylene blue using an ultrasonic batch. Int J Envion Sci Technol 18:723–740. https://doi.org/10.1007/s13762-020-02855-1

Campos AFC, de Oliveira HAL, da Silva FN et al (2019) Core-shell bimagnetic nanoadsorbents for hexavalent chromium removal from aqueous solutions. J Hazard Mater 362:82–91. https://doi.org/10.1016/j.jhazmat.2018.09.008

Carvalho APA, Conte-Junior CA (2021) Recent advances on nanomaterials to COVID-19 management: a systematic review on antiviral/virucidal agents and mechanisms of SARS-CoV-2 inhibition/inactivation. Glob Challenges. https://doi.org/10.1002/gch2.202000115

Castelo-Grande T, Augusto PA, Rico J et al (2021) Magnetic water treatment in a wastewater treatment plant: Part I - sorption and magnetic particles. J Environ Manage 281:111872. https://doi.org/10.1016/j.jenvman.2020.111872

Cavuoso-glà FC, Bayazit SS, Secula MS, Cagnon B (2021) Magnetic carbon composites as regenerable and fully recoverable adsorbents: Performance on the removal of antibiotic agent metformin hydrochloride. Chem Eng Res Des 168:443–452. https://doi.org/10.1016/j.ched.2021.01.034

Chang S, Zhang Q, Lu Y et al (2020) High-efficiency and selective adsorption of organic pollutants by magnetic CoFe₂O₄/graphene oxide adsorbents: Experimental and molecular dynamics simulation study. Sep Purif Technol 238:116400. https://doi.org/10.1016/j.seppur.2019.116400

Chang L, Pu Y, Jing P et al (2021) Magnetic core-shell MnFe₂O₄@TiO₂ nanoparticles decorated on reduced graphene oxide as a novel adsorbent for the removal of ciprofloxacin and Cu(II) from water. Appl Surf Sci 541:148400. https://doi.org/10.1016/j.apsusc.2020.148400

Chavan VD, Kothavale VP, Sahoo SC et al (2019) Adsorption and kinetic behavior of Cu(II) ions from aqueous solution on DMSA functionalized magnetic nanoparticles. Phys B Condens Matter 571:273–279. https://doi.org/10.1016/j.physb.2019.07.026

Chen S, Xie F (2020) Selective adsorption of Copper (II) ions in mixed solution by Fe₃O₄-MnO₂-EDTA magnetic nanoparticles. Appl Surf Sci 507:145090. https://doi.org/10.1016/j.apsusc.2019.145090
Chen R, Wang P, Li M et al (2018) Removal of Cr(VI) by magnetic Fe/C crosslinked nanoparticle for water purification: rapid contaminant removal property and mechanism of action. Water Sci Technol 78:2171–2182. https://doi.org/10.2166/wst.2018.497

Chen B, Cao Y, Zhao H et al (2020) A novel Fe3+-stabilized magnetic polydopamine composite for enhanced selective adsorption and separation of Methylene blue from complex wastewater. J Hazard Mater 392:122623. https://doi.org/10.1016/j.jhazmat.2020.122623

Cheong VF, Moh PY (2018) Recent advancement in metal–organic framework: synthesis, activation, functionalization, and bulk production. Mater Sci Technol 34:1025–1045. https://doi.org/10.1080/02670836.2018.1468653

Ciğeroğlu Z, Küçükyıldız G, Erim B, Alp E (2021) Easy preparation of magnetic nanoparticles-rGO-chitosan composite beads: Optimization study on cefixime removal based on RSM and ANN by using genetic algorithm approach. J Mol Struct 1224:129182. https://doi.org/10.1016/j.molstruc.2020.129182

D’Cruz B, Madkour M, Amin MO, Al-Heitani E (2020) Efficient and recoverable magnetic AC-Fe3O4 nanocomposite for rapid removal of promazine from wastewater. Mater Chem Phys 392:122263. https://doi.org/10.1016/j.matchemphys.2020.122263

Dutra T, Kim T, Vellingiri K et al (2019) Recycling and regeneration of carbonaceous and porous materials through thermal or solvent treatment. Chem Eng J 364:514–529. https://doi.org/10.1016/j.cej.2019.01.049

Ebabdollahzadeh H, Zabihi M (2020) Competitive adsorption of methylene blue and Pb (II) ions on the nano-magnetic activated carbon and alumina. Mater Chem Phys 248:122693. https://doi.org/10.1016/j.matchemphys.2020.122693

Ebeler M, Pilgram F, Wolz K et al (2018) Magnetic separation on a new level: characterization and performance prediction of a cGMP compliant “rotor-stator” high-gradient magnetic separator. Bio-technol J 13:1700448. https://doi.org/10.1002/biot.201700448

El-sayed MEA (2020) Nonaosorbents for water and wastewater remediation. Sci Total Environ 739:139903. https://doi.org/10.1016/j.scitotenv.2020.139903

Fan S, Qu Y, Yao L et al (2021) MOF-derived cluster-shaped magnetic nanocomposite with hierarchical pores as an efficient and regenerative adsorbent for chlorotetracycline removal. J Colloid Interface Sci 586:433–444. https://doi.org/10.1016/j.jcis.2020.10.107

Faraji M, Shirani M, Rashidi-Nodeh H (2021) The recent advances in magnetic sorbents and their applications. TrAC Trends Anal Chem 141:116302. https://doi.org/10.1016/j.trac.2021.116302

Fatimah I, Citradewi PW, Fadillah G et al (2021) Enhanced performance of magnetic montmorillonite nanocomposite as adsorbent for Cu(II) by hydrothermal synthesis. J Environ Chem Eng 9:104968. https://doi.org/10.1016/j.jece.2020.104968

Ferrer N, Folch A, Masó G et al (2020) What are the main factors influencing the presence of faecal bacteria pollution in groundwater systems in developing countries? J Contam Hydrol 228:103556. https://doi.org/10.1016/j.jconhyd.2020.103556

Flores López SL, Moreno Virgen MR, Hernández Montoya V et al (2018) Effect of an external magnetic field applied in batch adsorption systems: Removal of dyes and heavy metals in binary solutions. J Mol Liq 269:450–460. https://doi.org/10.1016/j.molliq.2018.08.063

Franzreb M (2020) New classes of selective separations exploiting magnetic adsorbents. Curr Opin Colloid Interface Sci 46:65–76. https://doi.org/10.1016/j.cocis.2020.03.012

Fu H, He H, Zhu R et al (2021) Phosphate modified magnetite @ ferrihydrite as an magnetic adsorbent for Cd(II) removal from water, soil, and sediment. Sci Total Environ 764:142846. https://doi.org/10.1016/j.scitotenv.2020.142846

Gagliano E, Sgroi M, Falciglia PP et al (2020) Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: Role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration. Water Res 171:115381. https://doi.org/10.1016/j.watres.2019.115381

Ganapathy R, Rizk SE, El-Hefny NE (2021) The adsorptive removal of Mo(VI) from aqueous solution by a synthetic magnetic chromium ferrite nanocomposite using a nonionic surfactant. J Alloys Compd 853:157039. https://doi.org/10.1016/j.jallcom.2020.157039

Gao M, Wang Z, Yang C et al (2019) Novel magnetic graphene oxide decorated with persimmon tannins for efficient adsorption of malachite green from aqueous solutions. Colloids Surfaces A Physicochem Eng Asp 566:48–57. https://doi.org/10.1016/j.colsurfa.2019.01.016

Gautam K, Anbumani S (2020) Ecotoxicological effects of organic micro-pollutants on the environment. In: Current Developments in Biotechnology and Bioengineering. Elsevier, pp 481–501

Gawel E (2015) Fighting micropollutants: comparing the leizpig and the swiss model of funding quarternary wastewater treatment. GAIA - Ecol Perspect Sci Soc 24:254–260. https://doi.org/10.1007/s10361-014-0311-1
Ghernaout D, Rehrl A-L, Köhler S, Ahrens L (2020) Organic micropollutants in water and sediment from Lake Mälaren. Sweden. Chemosphere 258:127293. https://doi.org/10.1016/j.chemosphere.2020.127293

Gupta N, Pant P, Gupta C et al (2017) Engineered magnetic nanoparticles as efficient sorbents for wastewater treatment: a review. Mater Res Innov. https://doi.org/10.14328/2017.1334846

Han J, Xiao J, Qin W et al (2017) Copper recovery from yulong complex copper oxide ore by flotation and magnetic separation. JOM 69:1563–1569. https://doi.org/10.1007/s11837-017-2383-x

Hassan M, Naidu R, Du J et al (2020) Critical review of magnetic biosorbents: their preparation, application, and regeneration for wastewater treatment. Sci Total Environ 702:134893. https://doi.org/10.1016/j.scitotenv.2020.134893

He S, Li Y, Weng L et al (2018) Competitive adsorption of Cd2+, Pb2+ and Ni2+ onto Fe3+-modified argillaceous limestone: Influence of pH, ionic strength and natural organic matters. Sci Total Environ 637–638:69–78. https://doi.org/10.1016/j.scitotenv.2018.04.300

He H, Meng X, Yue Q et al (2021) Thiol-ene click chemistry synthesis of a novel magnetic mesoporous silica/chitosan composite for selective Hg(II) capture and high catalytic activity of spent Hg(II) adsorbent. Chem Eng J 405:126743. https://doi.org/10.1016/j.cej.2020.126743

Hlongwane GN, Sekoai PT, Meyyappan M, Moothi K (2019) Simultaneous removal of pollutants from water using nanoparticles: A shift from single pollutant control to multiple pollutant control. Sci Total Environ 656:808–833. https://doi.org/10.1016/j.scitotenv.2018.11.257

Hu X, Hu Y, Xu G et al (2020) Green synthesis of a magnetic β-cyclodextrin polymer for rapid removal of organic micropollutants and heavy metals from dyeing wastewater. Environ Res 180:108796. https://doi.org/10.1016/j.envres.2019.108796

Huang D, Wu J, Wang L et al (2019) Novel insight into adsorption and co-adsorption of heavy metal ions and an organic pollutant by magnetic graphene nanomaterials in water. Chem Eng J 358:1399–1409. https://doi.org/10.1016/j.cej.2018.10.138

Huang X, Wan Y, Shi B et al (2020) Characterization and application of poly-ferric-titanium-silicate-sulfate in disperse and reactive dye wastewaters treatment. Chemosphere 249:126129. https://doi.org/10.1016/j.chemosphere.2020.126129

Hussen Shadi AM, Kamaruddin MA, Niza NM et al (2020) Efficient treatment of raw leachate using magnetic ore iron oxide nanoparticles Fe3O4 as nanoadsorbents. J Water Process Eng 38:101637. https://doi.org/10.1016/j.jwpe.2020.101637

Hutchins DL, Downey JP (2020) Effective detection of magnetite nanoparticles within an industrial-scale pipeline reactor. Sep Sci Technol 55:2822–2829. https://doi.org/10.1080/01496395.2019.1646762

Icten O, Özer D (2021) Magnetite doped metal–organic framework nanocomposites: an efficient adsorbent for removal of bisphenol-A pollutant. New J Chem 45:2157–2166. https://doi.org/10.1039/D0NJ05622G

Işık B, Kurtoğlu AE, Gürdağ G, Keçeli G (2021) Radioactive cesium ion removal from wastewater using polymer metal oxide composites. J Hazard Mater 403:123652. https://doi.org/10.1016/j.jhazmat.2020.123652

Jafari Z, Avargani VM, Rahimi MR, Mosleh S (2020) Magnetic nanoparticle-embedded nitrogen-doped carbon nanotube/porous carbon hybrid derived from a metal-organic framework as a highly efficient adsorbent for selective removal of Pb(II) ions from aqueous solution. J Mol Liq 318:113987. https://doi.org/10.1016/j.molliq.2020.113987

Jain M, Mudhoo A, Ramasamy DL et al (2020) Adsorption, degradation, and mineralization of emerging pollutants (pharmaceuticals and agrochemicals) by nanostructures: a comprehensive review. Environ Sci Pollut Res 27:34862–34905. https://doi.org/10.1007/s11356-020-09635-x

Jain A, Kumar S, Agarwal S, Khan S (2021) Water purification via novel nano-adsorbents and their regeneration strategies. Process Safety Environ Protection 152:441–454. https://doi.org/10.1016/j.psep.2021.06.031

Jehan S, Khan S, Khattak SA et al (2019) Hydrochemical properties of drinking water and their sources apportionment of pollution in Bajaur agency, Pakistan. Measurement 139:249–257. https://doi.org/10.1016/j.measurement.2019.02.090

Jiang J, Zhang Q, Zhan X, Chen F (2019) A multifunctional gelatin-based aerogel with superior pollutants adsorption, oil/water separation and photocatalytic properties. Chem Eng J 358:1539–1551. https://doi.org/10.1016/j.cej.2018.10.144

Jiang R, Zhe H-Y, Fu Y-Q et al (2021) Magnetic NiFe2O4/modified carbonized cellulose biosorbent with enhanced adsorption property and rapid separation. Carbohydr Polym 252:117158. https://doi.org/10.1016/j.carbpol.2020.117158

Jun B-M, Kim S, Rho H et al (2020) Ultrasound-assisted Ti3C2Tx MXene adsorption of dyes: Removal performance and mechanism analyses via dynamic light scattering. Chemosphere 254:126827. https://doi.org/10.1016/j.chemosphere.2020.126827

Kakihara Y, Fukunishi T, Takeda S et al (2004) Superconducting High Magnetic Field and Magnetic Separation for Purification of Wastewater From Paper Factory. IEEE Trans Applied Supercond 14:1565–1567. https://doi.org/10.1109/TASC.2004.830709

Keykhaee M, Razaghi M, Dalvand A et al (2020) Magnetic carnosine-based metal-organic framework nanoparticles: fabrication, characterization and application as arsenic adsorbent. J Environ Heal Sci Eng 18:1163–1174. https://doi.org/10.1007/s40201-020-00535-6

Khalaf MM, Al-Amer K, Abd El-lateef HM (2019) Magnetic Fe3O4 nanocubes coated by SiO2 and TiO2 layers as nanocomposites for Cr(VI) up taking from wastewater. Ceram Int 45:23548–23560. https://doi.org/10.1016/j.ceramint.2019.08.064

Khan FSA, Mubarak NK, Khalid M et al (2020) Magnetic nanoadsorbents’ potential route for heavy metals removal—a review. Environ Sci Pollut Res 27:24342–24356. https://doi.org/10.1007/s11356-020-08711-6

Kheshti Z, Azodi Ghajar K, Altaee A, Kheshti MR (2019) High-Gradient Magnetic Separator (HGMS) combined with adsorption for nitrate removal from aqueous solution. Sep Purif Technol 212:650–659. https://doi.org/10.1016/j.seppur.2018.11.080

Kheshti Z, Hassanajili S, Ghajar KA (2019) Study and optimization of a high-gradient magnetic separator using flat and lattice plates. IEEE Trans Magn 55:1–8. https://doi.org/10.1109/TMAG.2018.2883624

Kheshti Z, Ghajar KA, Moreno-Atanasio R et al (2020) Investigating the high gradient magnetic separator function for highly efficient adsorption of lead salt onto magnetic mesoporous silica microspheres and adsorbent recycling. Chem Eng Process - Process Intensif 148:107770. https://doi.org/10.1016/j.cep.2019.107770

Kiparsky M, Thompson BH, Binz C et al (2016) Barriers to innovation in urban wastewater utilities: attitudes of managers in
of heavy metal ions from water. Mater Chem Phys 249:122917. https://doi.org/10.1016/j.matchemphys.2020.122917

Masunga N, Mmelesi OK, Kefeni KK, Mamba BB (2019) Recent advances in copper ferrite nanoparticles and nanocomposites synthesis, magnetic properties and application in water treatment: Review. J Environ Chem Eng 7:103179. https://doi.org/10.1016/j.jece.2019.103179

Mazloomi F, Jalali M (2017) Adsorption of ammonium from simulated wastewater by montmorillonite nanoclay and natural vermiculite: experimental study and simulation. Environ Monit Assess 189:415. https://doi.org/10.1007/s10661-017-6080-6

Mehta D, Mazumdar S, Singh SK (2015) Magnetic adsorbents for the treatment of water/wastewater—A review. J Water Process Eng 7:244–265. https://doi.org/10.1016/j.jwpe.2015.07.001

Meng C, Zhikun W, Qiang L et al (2018) Preparation of amino-functionalized Fe3O4@mSiO2 core-shell magnetic nanoparticles and their application for aqueous Fe3+ removal. J Hazard Mater 341:198–206. https://doi.org/10.1016/j.jhazmat.2017.07.062

Mirshahghassemi S, Ebnre AD, Cai B, Lead JR (2017) Application of high gradient magnetic separation for oil remediation using polymer-coated magnetic nanoparticles. Sep Purif Technol 179:328–334. https://doi.org/10.1016/j.seppur.2017.01.067

Mittal H, Babu R, Dabbawala AA, Alhassan SM (2020) Low-temperature synthesis of magnetic carbonaceous materials coated with nanosilica for rapid adsorption of methylene blue. ACS Omega 5:6100–6112. https://doi.org/10.1021/acs.omega.0c00093

Mohammadi Z, Kelishami AR, Ashrafi A (2021) Application of Ni0.5Zn0.5Fe2O4 magnetic nanoparticles for diclofenac adsorption: isotherm, kinetic and thermodynamic investigation. Water Sci Technol 83:1265–1277. https://doi.org/10.2166/wst.2021.049

Mohammed N, Grishkewich N, Tam KC (2018) Cellulose nanomaterials: promising sustainable nanomaterials for application in water/wastewater treatment processes. Environ Sci Nano 5:623–658. https://doi.org/10.1039/C7EN01029F

Moharramzadeh S, Baghdadi M (2016) In situ sludge magnetic impregnation (ISSMI) as an efficient technology for enhancement of sludge sedimentation: Removal of methylene blue using nitric acid treated graphene oxide as a test process. J Environ Chem Eng 4:2090–2102. https://doi.org/10.1016/j.jece.2016.03.039

Momina Shahadat M, Isamil S (2018) Regeneration performance of clay-based adsorbents for the removal of industrial dyes: a review. RSC Adv. 8:24571–24587

Mousavi SV, Bozorgian A, Mokhthari N et al (2019) A novel cyanopropylsilane-functionalized titanium oxide magnetic nanoparticle for the adsorption of nickel and lead ions from industrial wastewater: Equilibrium, kinetic and thermodynamic studies. Microchem J 145:914–920. https://doi.org/10.1016/j.microc.2018.11.048

Najafpoor A, Norouzian-Ostad R, Alidadi H et al (2020) Effect of magnetic nanoparticles and silver-loaded magnetic nanoparticles on advanced wastewater treatment and disinfection. J Mol Liq 303:112640. https://doi.org/10.1016/j.molliq.2020.112640

Nasiri S, Alizadeh N (2021) Hydroxypropyl-β-cyclodextrin-polyurethane/graphene oxide magnetic nanoconjugates as effective adsorbent for chromium and lead ions. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2021.117731

Navab-Daneshmand T, Friedrich MND, Gächter M et al (2018) Escherichia coli contamination across Multiple environmental compartments (Soil, Hands, Drinking Water, and Handwashing Water) in urban harare: correlations and risk factors. Am J Trop Med Hyg 98:803–813. https://doi.org/10.4269/ajtmh.17-0521

Neha R, Aditya S, Jayaraman RS et al (2021) Nano-adsorbents an effective candidate for removal of toxic pharmaceutical compounds from aqueous environment: A critical review on emerging trends. Chemosphere 272:129852. https://doi.org/10.1016/j.chemosphere.2021.129852

Niksefat Abatari M, Sarmasti Emami MR, Jahanshahi M, Shahavi MH (2017) Superporous pellicular κ-Carrageenan–Nickel composite beads; morphological, physical and hydrodynamics evaluation for expanded bed adsorption application. Chem Eng Res Des 125:291–305. https://doi.org/10.1016/j.cherd.2017.07.012

Nishijima S, Takeda S (2006) Superconducting high gradient magnetic separation for purification of wastewater from paper factory. IEEE Trans Appl Supercond 16:1142–1145. https://doi.org/10.1109/TASC.2006.871346

Nisola GM, Parolini KJ, Cho MK et al (2020) Covalently decorated crown ethers on magnetic graphene oxides as bi-functional adsorbents with tailorable ion recognition properties for selective metal ion capture in water. Chem Eng J 389:123421. https://doi.org/10.1016/j.cej.2019.123421

Nithya R, Thirunavukkarasu A, Sathyab A, Sivashankar R (2021) Magnetic materials and magnetic separation of dyes from aqueous solutions: a review. Environ Chem Lett 19:1275–1294. https://doi.org/10.1007/s10311-020-01149-9

Nkinahamira F, Alsbaee A, Zeng Q et al (2020) Selective and fast recovery of rare earth elements from industrial wastewater by porous β-cyclodextrin and magnetic β-cyclodextrin polymers. Water Res 181:115857. https://doi.org/10.1016/j.watres.2020.115857

Panagopoulos A, Haralambous K-J (2020) Minimal liquid discharge (MLD) and zero liquid discharge (ZLD) strategies for wastewater management and resource recovery – Analysis, challenges and prospects. J Environ Chem Eng 8:104418. https://doi.org/10.1016/j.jece.2020.104418

Panagopoulos A, Haralambous K-J (2020) Environmental impacts of desalination and brine treatment - Challenges and mitigation measures. Mar Pollut Bull 161:111773. https://doi.org/10.1016/j.marpolbul.2020.111773

Peralta ME, Ocampo S, Funes IG et al (2020) Nanomaterials with tailored magnetic properties as adsorbents of organic pollutants from wastewaters. Inorgans 8:24. https://doi.org/10.3390/inorgans8040024

Peralta ME, Mártire DO, Moreno MS et al (2021) Versatile nanoadsorbents based on magnetic mesostructured silica nanoparticles with tailored surface properties for organic pollutants removal. J Environ Chem Eng 9:104841. https://doi.org/10.1016/j.jece.2020.104841

Perera MM, Ayres N (2020) Dynamic covalent bonds in self-healing, shape memory, and controllable stiffness hydrogels. Polym Chem 11:1410–1423. https://doi.org/10.1039/C9PY01694E

Plohl O, Simončič M, Kolar K et al (2021) Magnetic nanostructures functionalized with a derived lysine coating applied to simultaneously remove heavy metal pollutants from environmental systems. Sci Technol Adv Mater 22:55–71. https://doi.org/10.1080/14686996.2020.1865114

Powell CD, Atkinson AJ, Ma Y et al (2020) Magnetic nanoparticle recovery device (MagNERD) enables application of iron oxide nanoparticles for water treatment. J Nanoparticle Res 22:48. https://doi.org/10.1007/s11051-020-4770-4

Prot T, Nguyen VH, Wilfert P et al (2019) Magnetic separation and characterization of vivianite from digested sewage sludge. Sep Purif Technol 224:564–579. https://doi.org/10.1016/j.seppur.2019.05.057
Quiroga-Flores R, Noshad A, Wallenberg R, Önby L (2020) Adsorption of cadmium by a high-capacity adsorbent composed of silicate-titanate nanotubes embedded in hydrogel chitosan beads. Environ Technol 41:3043–3054. https://doi.org/10.1080/0959330.2019.1596167

Rais S, Islam A, Ahmad I et al (2021) Preparation of a new magnetic ion-imprinted polymer and optimization using Box-Behnken design for selective removal and determination of Cu(II) in food and wastewater samples. Food Chem 334:127563. https://doi.org/10.1016/j.foodchem.2020.127563

Rashid M, Price NT, Gracia Pinilla MÁ, O’Shea KE (2017) Toxicity of 10 organic micropollutants and their mixture: implications for aquatic risk assessment. Sci Total Environ 666:1273–1282. https://doi.org/10.1016/j.scitotenv.2019.02.047

Shen Y, Zhu C, Song S et al (2019) Defect-abundant covalent triazine frameworks as sunlight-driven self-cleaning adsorbents for volatile aromatic pollutants in water. Environ Sci Technol 53:9091–9101. https://doi.org/10.1021/acs.est.9b02222

Sherman L, Cantor A, Milman A, Kiparsky M (2020) Examining the complex relationship between innovation and regulation through a survey of wastewater utility managers. J Environ Manage 260:110025. https://doi.org/10.1016/j.jenvman.2019.110025

Shibatani S, Nakanishi M, Mizuno N et al (2016) Study on magnetic separation device for scale removal from feed-water in thermal power plant. IEEE Trans Appl Supercond 26:1–4. https://doi.org/10.1109/TASC.2016.252343

Shim J, Kumar M, Goswami R et al (2019) Removal of p-cresol and tylosin from water using a novel composite of alginate, recycled MnO2 and activated carbon. J Hazard Mater 364:419–428. https://doi.org/10.1016/j.jhazmat.2018.09.065

Si S, Chen H (2020) A literature review of disruptive innovation: What it is, how it works and where it goes. J Eng Technol Manag 56:101568. https://doi.org/10.1016/j.jengtecman.2020.101568

Siddique SM, Tahoon MA, Alsaiari NS et al (2020) Application of functionalized nanomaterials as effective adsorbents for the removal of heavy metals from wastewater: a review. Curr Anal Chem 17:4–22. https://doi.org/10.2174/1573411016999200719231712

Simeonidis K, Kaprara E, Samaras T et al (2015) Optimizing magnetic nanoparticles for drinking water technology: the case of Cr(VI). Sci Total Environ 535:61–68. https://doi.org/10.1016/j.scitotenv.2015.04.033

Singh A, Chaudhary S, Dehiya BS (2021) Fast removal of heavy metals from water and soil samples using magnetic Fe3O4 nanoparticles. Environ Sci Pollut Res 28:3942–3952. https://doi.org/10.1007/s11356-020-10737-9

Sajal P, Vats BG, Yadav A, Pulhani V (2020) Efficient extraction of uranium from environmental samples using phosphoramid functionalized magnetic nanoparticles; Understanding adsorption and binding mechanisms. J Hazard Mater 384:121353. https://doi.org/10.1016/j.jhazmat.2019.121353

Sivashankar R, Sathyab AB, Vasantharaju K, Sivasubramanian V (2014) Magnetic composite an environmental super absorbent for dye sequestration – A review. Environ Nanotechnol Monit Manag 260:110025. https://doi.org/10.1016/j.jenvman.2019.110025

Soares SF, Fernandes T, Trindade T, Daniel-da-Silva AL (2020) Recent advances on magnetic biosorbents and their applications for water treatment. Environ Chem Lett 18:151–164. https://doi.org/10.1007/s11356-019-00931-8

Song Y, Lu M, Huang B et al (2018) Decoration of defective MoS2 nanosheets with Fe3O4 nanoparticles as superior magnetic adsorbent for highly selective and efficient mercury ions (Hg2+) removal. J Alloys Compd 737:113–121. https://doi.org/10.1016/j.jallcom.2017.12.087

Subba Rao N, Marghaide D, Dinakar A et al (2017) Geochemical characteristics and controlling factors of chemical composition of groundwater in a part of Guntur district, Andhra Pradesh, India. Environ Earth Sci 76:747. https://doi.org/10.1007/s12665-017-7093-8

Sun Y, Zhang B, Zheng T, Wang P (2017) Regeneration of activated carbon saturated with chloramphenicol by microwave and ultraviolet irradiation. Chem Eng J 320:264–270. https://doi.org/10.1016/j.cej.2017.03.007
Sun Y, Yu Y, Zheng X et al (2021) Magnetic flocculation of Cu(II) wastewater by chitosan-based magnetic composite flocculants with recyclable properties. Carbohydr Polym 261:117891. https://doi.org/10.1016/j.carbpol.2021.117891

Surendhiran D, Sirajunnisa A, Tamilselvam K (2017) Silver–magnetic nanocomposites for water purification. Environ Chem Lett 15:367–386. https://doi.org/10.1007/s10311-017-0635-1

Tabatabaiee Babrooe AA, Moniri E, Ahmad Panahi H et al (2021) Ethylendiamine functionalized magnetic graphene oxide (Fe3O4@GO-EDA) as an efficient adsorbent in Arsenic(III) decontamination from aqueous solution. Res Chem Interface 17:1397–1428. https://doi.org/10.1007/s11164-020-04368-5

Tanjidi S, Esmaeili H, Kamyab Moghadas B (2019) Application of magnetic adsorbents for removal of heavy metals from wastewaters: a review study. Mater Res Express 6:102004. https://doi.org/10.1088/2053-1591/ab3f3b

Tan Z, Gao M, Dai J et al (2020) Magnetic Interconnected macroporous imprinted foams for selective recognition and adsorptive removal of phenolic pollution from water. Fibers Polym 21:762–774. https://doi.org/10.1007/s12221-020-8695-4

Tang SCN, Yan DYS, Lo IMC (2014) Sustainable wastewater treatment using microsized magnetic hydrogel with magnetic separation technology. Ind Eng Chem Res 53:15718–15724. https://doi.org/10.1021/ie505212h

Tang J, Wu Y, Esquivel-Elizondo S et al (2018) How microbial aggregates protect against nanoparticle toxicity. Trends Biotechnol 36:1171–1182. https://doi.org/10.1016/j.tibtech.2018.06.009

Tatarcuk T, Myśliw M, Lapchuk J et al (2021) Magnesium-zinc ferrites as magnetic adsorbents for Cr(VI) and Ni(II) ions removal: Cation distribution and antistructure modeling. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.129414

Tijani JO, Fatoba OO, Babajide PO, Petrik LF (2016) Pharmaceuticals, endocrine disruptors, personal care products, nanomaterials and perflourinated pollutants: a review. Environ Chem 14:27–49

Trapp JH, Kerber H, Schramm E (2017) Implementation and diffusion of innovative water infrastructures: obstacles, stakeholder networks and strategic opportunities for utilities. Environ Earth Sci 76:154. https://doi.org/10.1007/s12665-017-6461-8

Tripathy SK, Singh V, Rama Murthy Y et al (2017) Influence of process parameters of dry high intensity magnetic separators on separation of hematite. Int J Miner Process 160:16–31. https://doi.org/10.1016/j.minpro.2017.01.007

Tušťářová T, Repo E, Vahala R et al (2012) Effect of Competing anions on arsenate adsorption onto magnetite nanoparticles. Chinese J Chem Eng 20:505–514. https://doi.org/10.1016/S1004-9541(11)60212-7

Ul-Islam M, Ullah MW, Khan S et al (2017) Current advancements of magnetic nanoparticles in adsorption and degradation of organic pollutants. Environ Sci Pollut Res 24:12713–12722. https://doi.org/10.1007/s11356-017-8765-3

Valenzuela EF, Menezes HC, Cardeal ZL (2020) Passive and grab sampling methods to assess pesticide residues in water. A review. Environ Chem Lett 18:1019–1048. https://doi.org/10.1007/s10311-020-00998-8

Varjani S, Sudha MC (2020) Occurrence and human health risk of micro-pollutants—A special focus on endocrine disruptor chemicals. In: Current Developments in Biotechnology and Bioengineering. Elsevier, pp 23–39

Vicente-Martínez Y, Caravaca M, Soto-Meca A (2020) Total removal of Hg(II) from wastewater using magnetic nanoparticles coated with nanometric Ag and functionalized with sodium 2-mercaptobenzothiazole sulfonate. Environ Chem Lett 18:975–981. https://doi.org/10.1007/s10311-020-00987-x

Vikrant K, Kim K-H (2019) Nanomaterials for the adsorptive treatment of Hg(II) ions from water. Chem Eng J 358:264–282. https://doi.org/10.1016/j.cej.2018.10.022

Villaseñor MJ, Rios Á (2018) Nanomaterials for water cleaning and desalination, energy production, disinfection, agriculture and green chemistry. Environ Chem Lett 16:11–34. https://doi.org/10.1007/s10311-017-0656-9

Vishnu D, Dhandapani B (2021) Evaluation of column studies using Cynodon dactylon plant-mediated amino-grouped silica-layered magnetic nanoadsorbent to remove noxious hexavalent chromium metal ions. IET Nanobiotechnology nb2.12029. doi: https://doi.org/10.1049/ntb.12029

Vivas EL, Lee S, Cho K (2020) Brushite-infused polycrylonitrile nanofiber adsorbent for strontium removal from water. J Environ Manage 270:110837. https://doi.org/10.1016/j.jenvman.2020.110837

Vu CT, Wu T (2020) Magnetic porous NiAl-Layered double oxides (LDOs) with improved phosphate adsorption and antibacterial activity for treatment of secondary effluent. Water Res 175:115679. https://doi.org/10.1016/j.watres.2020.115679

Wadhanaw S, Jain A, Nayyar J, Mehta SK (2020) Role of nanomaterials as adsorbents in heavy metal ion removal from wastewater: a review. J Water Process Eng 33:101038. https://doi.org/10.1016/j.jwpe.2019.101038

Wang W, Xu Z, Zhang X et al (2018) Rapid and efficient removal of organic micropollutants from environmental water using a magnetic nanoparticles-attached fluoro-graphene-based sorbent. Chem Eng J 343:63–68. https://doi.org/10.1016/j.cej.2018.02.101

Wang G, Luo Q, Dai J, Deng N (2020) Adsorption of dichromate ions from aqueous solution onto magnetic graphene oxide modified by β-cyclodextrin. Environ Sci Pollut Res 27:30778–30788. https://doi.org/10.1007/s11356-020-09389-6

Wang J, Tong X, Chen Y et al (2020) Enhanced removal of Cr(III) in high salt organic wastewater by EDTA modified magnetic mesoporous silica. Microporous Mesoporous Mater 303:110262. https://doi.org/10.1016/j.micromeso.2020.110262

Wang Z, Zhang J, Wu Q et al (2020) Magnetic supramolecular polymer: Ultrahigh and highly selective Pb(II) capture from aqueous solution and battery wastewater. Chemosphere 248:126042. https://doi.org/10.1016/j.chemosphere.2020.126042

Wang Z, Zhao D, Wu C et al (2020) Magnetic metal organic frameworks/graphene oxide adsorbent for the removal of U(VI) from aqueous solution. Appl Radiat Isot 162:109160. https://doi.org/10.1016/j.apradiso.2020.109160

Wang J, Zhang G, Qiao S, Zhou J (2021) Magnetic Fe3O4 iron oxide-coated diatomite as a highly efficient adsorbent for recovering phosphorus from water. Chem Eng J 412:128696. https://doi.org/10.1016/j.cej.2021.128696

Wanjeri VWO, Sheppard CJ, Prinsloo ARE et al (2018) Isotherm and kinetic investigations on the adsorption of organophosphorus pesticides on graphene oxide based silica coated magnetic nanoparticles functionalized with 2-phenylethylamine. J Environ Chem Eng 6:1333–1346. https://doi.org/10.1016/j.jece.2018.01.064

Wanna Y, Chindaduang A, Tommaru N et al (2016) Efficiency of SPIONs functionalized with polyethylene glycol bistamine for heavy metal removal. J Magn Magn Mater 414:32–37. https://doi.org/10.1016/j.jmmm.2016.04.064

WATER ONLINE (2008) Magnetic separator for industrial waste-water treatment. https://www.wateronline.com/doc/magnetic-separator-for-industrial-waste-water-0001, (accessed 12 February 2021)

Wen L, Zhang Y, Liu C, Tang Y (2020) All-Biomass Double Network Gel: Highly Efficient Removal of Pb2+ and Cd2+ in Wastewater and Utilization of Spent Adsorbents. J Polym Environ 28:2669–2680. https://doi.org/10.1007/s10924-020-01806-8

Wu Y, Zhou Q, Yuan Y et al (2020) Enrichment and sensitive determination of phthalate esters in environmental water samples: A novel approach of MSPE-HPLC based on PAMAM.
dendrimers-functionalized magnetic-nanoparticles. Talanta 206:120213. https://doi.org/10.1016/j.talanta.2019.120213
Xie X, Deng R, Pang Y et al (2017) Adsorption of copper(II) by sulfur microcarbons. Chem Eng J 314:434–442. https://doi.org/10.1016/j.cej.2016.11.163
Xin Y, Gu P, Long H et al (2021) Fabrication of ferrihydrate-loaded magnetic sugar cane bagasse charcoal adsorbent for the adsorptive removal of selenite from aqueous solution. Colloids Surfaces A Physicochem Eng Asp 614:126131. https://doi.org/10.1016/j.colsurfa.2020.126131
Xiong Y, Xu L, Jin C, Sun Q (2020) Cellulose hydrogel functionalized with polysiloxane for water treatment. Sci Total Environ 704:135298. https://doi.org/10.1016/j.scitotenv.2019.135298
Xu M, Han X, Hua D (2017) Polyoxime-functionalized magnetic nanoparticles for uranium adsorption with high selectivity over vanadium. J Mater Chem A 5:12278–12284. https://doi.org/10.1039/C7TA02684F
Xu S, Zhou S, Xing L et al (2019) Fate of organic micropollutants and their biological effects in a drinking water source treated by a field-scale constructed wetland. Sci Total Environ 682:756–764. https://doi.org/10.1016/j.scitotenv.2019.05.151
Xu W, Gao M, Yin X et al (2020) Photo-stimulated “turn-on/off” molecularly imprinted polymers based on magnetic mesoporous silicon surface for efficient detection of sulfamerazine. J Sep Sci 43:2550–2557. https://doi.org/10.1002/jssc.202000043
Yang H, Zhang H, Peng J et al (2017) Smart magnetic ionic liquid-based Pickering emulsions stabilized by amphiphilic Fe3O4 nanoparticles: Highly efficient extraction systems for water purification. J Colloid Interface Sci 485:213–222. https://doi.org/10.1016/j.jcis.2016.09.023
Yang S, Qian J, Kuang L, Hua D (2017) Ion-imprinted mesoporous silica for selective removal of uranium from highly acidic and radioactive effluent. ACS Appl Mater Interfaces 9:29337–29344. https://doi.org/10.1021/acsami.7b09419
Yang H, Zhang J, Liu Y et al (2019) Rapid removal of anionic dye from water by poly(ionic liquid)-modified magnetic nanoparticles. J Mol Liq 284:383–392. https://doi.org/10.1016/j.molliq.2019.04.029
Yang W, Hu W, Zhang J et al (2021) Tannic acid/Fe3+ functionalized magnetic graphene oxide nanocomposite with high loading of silver nanoparticles as ultra-efficient catalyst and disinfectant for wastewater treatment. Chem Eng J 405:126629. https://doi.org/10.1016/j.cej.2020.126629
Yao Z, Jiao W, Shao F et al (2019) Fabrication and characterization of amphiphilic magnetic water purification materials for efficient PPCPs removal. Chem Eng J 360:511–518. https://doi.org/10.1016/j.cej.2018.12.016
Yeap SP, Lim J, Ooi BS, Ahmad AL (2017) Agglomeration, colloidal stability, and magnetic separation of magnetic nanoparticles: collective influences on environmental engineering applications. J Nanoparticle Res 19:368. https://doi.org/10.1007/s11051-017-4065-6
Yetiş R, Atasoy AD, Demir Yetiş A, Yeşilçakan Mİ (2019) Hydrogeochemical characteristics and quality assessment of groundwater in Balıklıgöl Basin, Sanliurfa, Turkey. Environ Earth Sci 78:331. https://doi.org/10.1007/s12665-019-8330-0
You J, Wang L, Zhao Y, Bao W (2021) A review of amino-functionalized magnetic nanoparticles for water treatment: Features and prospects. J Clean Prod 281:124668. https://doi.org/10.1016/j.jclepro.2020.124668
Yu C-X, Wang K-Z, Li X-J et al (2020) Highly efficient and facile removal of Pb2+ from water by using a negatively charged azoxy-functionalized metal-organic framework. Cryst Growth Des 20:5251–5260. https://doi.org/10.1021/acs.cgd.0c00437
Zaidi NS, Sohaili J, Muda K, Sillanpää M (2014) Magnetic field application and its potential in water and wastewater treatment systems. Sep Purif Rev 43:206–240. https://doi.org/10.1007/1016432213.794148
Zhang D, Hua P, Liu W (2016) Behavior of phenol adsorption on thermal modified activated carbon. Chinese J Chem Eng 24:446–452. https://doi.org/10.1016/j.cjche.2015.11.022
Zhang Y, Wu B, Xu H et al (2016) Nanomaterials-enabled water and wastewater treatment. NanoImpact 3–4:22–39. https://doi.org/10.1016/j.impact.2016.09.004
Zhang Y, Zhu C, Liu F et al (2019) Effects of ionic strength on removal of toxic pollutants from aqueous media with multifarious adsorbents: a review. Sci Total Environ 646:265–279. https://doi.org/10.1016/j.scitotenv.2018.07.279
Zhang S, Wang H, He X et al (2020) Research progress, problems and prospects of mine water treatment technology and resource utilization in China. Crit Rev Environ Sci Technol 50:331–383. https://doi.org/10.1080/10643389.2019.1629798
Zhao R, Zheng H, Zhong Z et al (2021) Efficient removal of diclofenac from surface water by the functionalized multilayer magnetic adsorbent: Kinetics and mechanism. Sci Total Environ 760:144307. https://doi.org/10.1016/j.scitotenv.2020.144307
Zhao W, Tian Y, Chu X et al (2021) Preparation and characteristics of a magnetic carbon nanotube adsorbent: Its efficient adsorption and recoverable performances. Sep Purif Technol 257:117917. https://doi.org/10.1016/j.seppur.2020.117917
Zhou W, Deng J, Qin Z et al (2022) Construction of MoS2 nanoarrays and MoO3 nanobelts: Two efficient adsorbents for removal of Pb(II), Au(III) and Methylene Blue. J Environ Sci 111:38–50. https://doi.org/10.1016/j.jes.2021.02.031
Zhu Y, Kolar P (2014) Adsorptive removal of p-cresol using coconut shell-activated charcoal. J Environ Chem Eng 2:5251–5260. https://doi.org/10.1016/j.jcheeng.2013.11.022
Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.