Relationship between TSH, T4, T3 and Prolactin in overweight and lean Sudanese PCOS Patients

Kamal Eldin Ahmed Abdelsalam*1 and Waleed Ibrahim2

*Correspondence Info:
Kamal Eldin Ahmed Abdelsalam
College of Applied Medical Sciences
Shaqra University, Shaqra, Saudi Arabia
E-mail: kamaleldin55@yahoo.com

Abstract

Objectives: to examine the role of PCOS in alteration of TSH, T4, T3 and prolactin as well as correlating the outcome to obesity.

Methods: One Hundred female patients with PCOS based on Rotterdam 2003 criteria. Together with fifty healthy volunteer females included as controls. Serum levels of Thyroid Stimulating Hormone (TSH), Thyroxine (T4), Triiodothyronine (T3) and prolactin were tested in the two groups. Body mass index (BMI) evaluated to be a part of the correlation.

Results: A significant increase was found in TSH and prolactin (P<0.05) along with a significant decrease in T4 in PCOS females matched against controls(P<0.05). Only lean patients showed significantly high T4 in contrast to controls(P<0.05). T4 showed insignificant difference between overweight patients and controls (P>0.05).

Conclusions: PCOS linked to hypothyroidism, and the latter may cause hyperprolactinemia in the same individual. Association of hyperprolactinemia and PCOS entails assessment of alternative causes of hyperprolactinemia, and this assessment should include thyroid function.

Keywords: Polycystic Ovary Syndrome, BMI, Thyroid Hormones, Prolactin

1. Introduction

Polycystic ovarian syndrome (PCOS), the major endocrinopathy of females in the reproductive age, has a prevalence of 2.2% to 26%[1],[2]. The central biochemical finding in PCOS is hyperandrogenism[1] and, females with PCOS routinely are found to have excess body fat together with showing a greater potential for developing metabolic syndrome[3]. Obesity has been recognized as a common finding in PCOS[4]. On top of that, central obesity is higher in PCOS women as opposed to controls[5]. Remarkably, serum androgens correlate with weight not only in PCOS, but also in those with simple obesity[6].

PCOS is believed to be a heterogeneous dysfunction of multifactorial etiology. It can also be linked to primary hypothyroidism in 6.3% of PCOS patients[7]. The measurement of Thyroid Stimulating Hormone (TSH) and Thyroxine (T4) levels confirms the diagnosis of primary hypothyroidism[8]. PCOS together with thyroid disorder create independent risks of ovarian malfunction as well as pregnancy associated problems[9]. Despite that the etiology of hypothyroidism and PCOS is entirely distinct, both of these entities have many features in common[10]. An abnormal thyroid concentrations could trigger alterations in ovulation and then menstruation[11]. Initial stages of thyroid malfunction can result in delicate modifications in ovulation as well as endometrial receptivity, which consequently may have drastic influence on fertility[9]. Moreover, thyroid hormone replacement therapy in hypothyroidism leads to steady regression of the ovarian cysts, which provides a causal bond between hypothyroidism and ovarian stimulation[12].

In general, measurements of prolactin with thyroid stimulating hormone have been regarded as
significant aspects of the assessment of women with infertility[13]. On the one hand, hyperprolactinemia and hypothyroidism are positively connected[14] and the link between hypothyroidism as a trigger that ends up causing hyperprolactinemia is well recognized[15]. On the other hand, there is no evidence of a pathophysiological connection between PCOS and hyperprolactinemia which signifies that the presentation of the latter in an individual with PCOS ought to be due to other pathology and should encourage etiological investigations[16].

The intent behind this study was to look into the link between PCOS, thyroid hormones and prolactin and consequently correlated them to body weight.

2. Materials and Methods

This was a cross-sectional study carried in Khartoum state, Sudan; between June 2013 and December 2014. The study included 100 female patients suffering from PCOS. The age of involved patients was 22 - 44 years (32.610 ± 5.696 years). Control group was consisted of 50 healthy volunteer females, whose mean ages were matched (30.140 ± 5.198 years). PCOS patients further divided into lean and overweight groups according to Body Mass Index (BMI). Informed consent was obtained from each participant. Pre-prepared questionnaire including data concerning patients and their PCOS information (such as age, family history, type of treatment, and BMI) was used following the protocol of the ethical committee of Omdurman Islamic University. Venous blood sample (10 ml) was obtained at 8:00-10:00 AM in the follicular phase of the menstrual cycle from antecubital vein from patients and controls by standard venipuncture technique without venous stasis in serum separator tube (SST). After 15 minutes, serum specimens were collected in plane container after centrifugation at 3000 rpm for 5 minutes. The serum stored frozen (-20°C) in a tightly sealed tube for only 2 weeks and then analyzed. Specimens should be allowed to come to room temperature and then mixed thoroughly by gentle inversion before assaying. Then thyroxine (T4), triiodothyronine (T3), thyrotropin (Thyroid Stimulating Hormone, TSH) concentrations, as well as the prolactin (PRL) were measured by automated Enzyme-Linked Immunosorbent Assay (ELISA) kit as described by Kazerouni et al[17] and Lennartsson et al[18]. Within the Division of Medical Laboratory, VRC Center, Khartoum, two levels of control material and analyses were performed by according to the manufacturer.

1.1. Methods of BMI estimation

The BMI calculates a value indicative of the fat content of the body by dividing the body weight by the square of body height following the method adopted by Ibrahim et al[2]. The BMI categories as follow:

Underweight is less than 18.5, normal weight is 18.5 - 24.9, overweight is 25 - 29.9, and overweight is 30 or higher.

1.2. Statistical analyses

All data was analyzed using the Statistical Package for Social Sciences (SPSS) software computer program version 11.0 (SPSS, Chicago, IL). Data were expressed as mean ± standard deviation (SD) following analyzes using student t-test, which was performed for comparison between control and patient groups. A value of P < 0.05 was considered significant.

2. Result

As in table 1, comparing to control, results of PCOS patients showed a significant increase in TSH and prolactin and significant reduction in T4. Serum T3 registered insignificant rising in PCOS females when compared to controls.

Table 1: Comparison of results between PCOS and control group:

	Control	PCOS	P value
TSH (mIU/L)	2.69±0.5682	6.35±1.226	<0.001
T3 (ng/dL)	1.10±0.2013	1.45±0.3936	>0.05
T4 (µg/mL)	8.42±0.8236	6.35±1.226	<0.01
PRL (ng/ml)	11.00±5.683	21.27±6.328	<0.001

The results were expressed in Mean±SD; PRL= prolactin; PCOS=polycystic ovary syndrome

The PCOS females were classified according to BMI into two groups: overweight patients and lean patients. TSH levels increased significantly in overweight and lean PCOS females when compared to control females. PCOS T4 level of lean patients was decreased significantly when compared to control group. PRL levels showed significant changes between control and overweight PCOS, also significant changes between control and lean PCOS as well as between overweight PCOS and lean PCOS groups.
hyperprolactinemia could be an expression. Severe prolonged hypothyroidism in lean PCOS patients and hyperprolactinemia in context of clinical, hormonal ultrasound features of PCOS. Furthermore, at present, there is no proof of a pathophysiological connection between the above two entities. Likewise, Filho et al.[26] stated that hyperprolactinemia is not a laboratory manifestation of PCOS. Conversely, Grubb et al.[27] stated that hypothyroidism predisposes to hyperprolactinemia.

The classification of PCOS into two groups of overweight and lean patients (according to BMI), unveiled significant lower level of T4 among lean compared to overweight PCOS patients (p < 0.05), at the same time as T4 level in overweight PCOS patients displayed no significant difference as opposed to controls. Additionally, we found significant high TSH level in both groups versus control (p > 0.05). This suggests the diagnosis of primary hypothyroidism in lean PCOS patients and subclinical hypothyroidism in overweight PCOS patients. Silva[28] stated that body composition and thyroid hormones are considered closely linked given that the thyroid hormones are known to take part in the regulation of basal metabolism and thermogenesis as well as playing a significant role in lipid metabolism. Dahiya et al.[29] confirmed that PCOS individuals with BMI of 30 .14±3 .24 are significantly lower in fT4 in comparison to control. But then, to our knowledge, nobody has compared the level of T4 between lean and overweight PCOS patients. Diamanti-Kandarakis[30] believed that no matter what the degree of obesity, women with PCOS usually tend to have central (abdominal) distribution of body fat. Basing on Iuhas et al.[31], obese women with PCOS have no greater buildup of visceral fat distinct from weight/age-matched controls. Ortega et al.[32] pointed out that Thyroid hormone receptor (TR) gene expressions were significantly higher in subcutaneous when equated with omental fat depot from obese women but not in non-obese subjects. Moreover, Zandieh-Doulabi et al.[33] noticed a relationship between hypothyroidism and increased TR mRNA and thus protein expression. Consequently, low T4 in lean PCOS patients could be stemming from high level of TR in abdominal fat.

Prolactin level was significantly high in overweight PCOS patients as opposed to lean patients.

Table 2: Comparison of PCOS results between overweight and lean patients:

Control	TSH (mIU/L)	T3 (ng/dL)	T4 (µg/mL)	PRL (ng/ml)
overweight PCOS	2.698±0.5682	1.100±0.2013	8.421±0.8236	11.000±5.683
Lean PCOS	6.254±1.497	1.525±0.4672	6.689±1.117	24.098±5.009

The results was expressed in Mean±SD; PRL= prolactin; PCOS=polycystic ovary syndrome; a=comparison between control and overweight; b= comparison between control and lean; c=comparison between overweight and lean.

3. Discussion

Polycystic ovary syndrome (PCOS), a common endocrinopathy of women of reproductive age, is associated with the early appearance of multiple risk factors for cardiovascular disease, such as abdominal obesity[19].

The present study revealed significantly high TSH level in PCOS patients in contrast to controls (p < 0.001). Based on Garber et al.[20], this indicates the diagnosis of hypothyroidism in PCOS patients. This outcome was in keeping with Janssen et al.[21] who documented a high mean level of TSH in PCOS patients. Besides this, hypothyroidism could be the reason behind PCOS in those patients. Muderris et al.[22] stated that severe prolonged hypothyroidism contributes to bigger ovarian size and/or cyst formation, and additionally, restoration of serum hormone levels owing to accomplishment of euthyroidism, induces a reduction in ovarian size, resolve of ovarian cysts together with reversal of the polycystic ovary syndrome-like characteristics. At the same time, the study was consistent with Ghosh et al.[23] who, in intending to analyze the part of hypothyroidism in the causation of PCOS, proposed that hypothyroidism resulted in reducing of sex hormone binding globulin level and increment of testosterone level.

Concurrently, the present study revealed a significantly lower T4 level in PCOS patients as compared to controls (P < 0.01). However, Janssen et al.[21] identified normal thyroid hormone levels in subjects with PCOS. As outlined by Carvalho et al and Schussler[24],[25], alterations in transporter proteins give rise to altered levels of total T4 irrespective of thyroid status. Based on this consideration, this low T4 cannot be explained by isolated thyroid abnormality.

The additional finding in this study when comparing PCOS group with control was significant high prolactin level in PCOS patients (p < 0.001). Most likely, there is no causative relationship between PCOS and hyperprolactinemia, and the reason behind this hyperprolactinemia could be hypothyroidism. Those results were close to that report of Robin et al.[16], who stated that in clinical practice, it is not uncommon to discover hyperprolactinemia in context of clinical, hormonal ultrasound features of PCOS. Furthermore, at present, there is no proof of a pathophysiological connection between the above two entities. Likewise, Filho et al.[26] stated that hyperprolactinemia is not a laboratory manifestation of PCOS. Conversely, Grubb et al.[27] stated that hypothyroidism predisposes to hyperprolactinemia.

The classification of PCOS into two groups of overweight and lean patients (according to BMI), unveiled significant lower level of T4 among lean compared to overweight PCOS patients (p < 0.05), at the same time as T4 level in overweight PCOS patients displayed no significant difference as opposed to controls. Additionally, we found significant high TSH level in both groups versus control (p > 0.05). This suggests the diagnosis of primary hypothyroidism in lean PCOS patients and subclinical hypothyroidism in overweight PCOS patients. Silva[28] stated that body composition and thyroid hormones are considered closely linked given that the thyroid hormones are known to take part in the regulation of basal metabolism and thermogenesis as well as playing a significant role in lipid metabolism. Dahiya et al.[29] confirmed that PCOS individuals with BMI of 30 .14±3 .24 are significantly lower in fT4 in comparison to control. But then, to our knowledge, nobody has compared the level of T4 between lean and overweight PCOS patients. Diamanti-Kandarakis[30] believed that no matter what the degree of obesity, women with PCOS usually tend to have central (abdominal) distribution of body fat. Basing on Iuhas et al.[31], obese women with PCOS have no greater buildup of visceral fat distinct from weight/age-matched controls. Ortega et al.[32] pointed out that Thyroid hormone receptor (TR) gene expressions were significantly higher in subcutaneous when equated with omental fat depot from obese women but not in non-obese subjects. Moreover, Zandieh-Doulabi et al.[33] noticed a relationship between hypothyroidism and increased TR mRNA and thus protein expression. Consequently, low T4 in lean PCOS patients could be stemming from high level of TR in abdominal fat.

Prolactin level was significantly high in overweight PCOS patients as opposed to lean patients.

IJBR (2015) 6 (02) www.ssjournals.com
as well as to controls. This finding agreed with Shibli-Rahhal and Schlechte[34] who described an association between prolactin and obesity. On top of that, Greenman et al[35] stated that weight loss was seen in 70% of prolactinomas patients and in 90% of who normalized their prolactin. Yet, one should bear in mind that this hyperprolactinemia developed in the context of PCOS and hypothyroidism.

In conclusion, the data suggest that hypothyroidism related to PCOS, and this hypothyroidism could result in hyperprolactinemia in the same patients. These imply that patients with hyperprolactinemia and PCOS should be evaluated for causes of hyperprolactinemia, and this evaluation should include thyroid function. Equally, Degree of obesity in PCOS patients could be a key factor that influences thyroid hormones level.

More studies should be carried to reveal the precise relationship of obesity, hypothyroidism and hyperprolactinemia in the context of PCOS.

References
[1] Roe AH, Dokras A. The Diagnosis of Polycystic Ovary Syndrome in Adolescents. Reviews in Obstetrics and Gynecology. 2011; 4(2):45-51.
[2] Ibrahim, W. AbdelSalam. KEA. Levels of FSH, LH, SHBG, Total Testosterone, and LH/FSH ratio in Sudanese patients with polycystic ovary syndrome in relation to body mass index. International Journal of Current Research. 2015; 7(1):11919-22.
[3] Elting MW, Korsen TJ, Bezemner PD, Schoemaker J. Prevalence of diabetes mellitus, hypertension and cardiac complaints in a follow-up study of a Dutch PCOS population. Human reproduction (Oxford, England). 2001; 16(3):556-60.
[4] Cascella T, Palomba S, De Sio I, Manguso F, Giallauria F, De Simone B, et al. Visceral fat is associated with cardiovascular risk in women with polycystic ovary syndrome. Human reproduction (Oxford, England). 2008; 23(1):153-9.
[5] Douchi T, Ijuin H, Nakamura S, Oki T, Yamamoto S, Nagata Y. Body fat distribution in women with polycystic ovary syndrome. Obstetrics and gynecology. 1995; 86(4 Pt 1):516-9.
[6] Taponen S, Martikainen H, Jarvelin MR, Laitinen I, Pousta A, Hartikainen AL, et al. Hormonal profile of women with self-reported symptoms of oligomenorrhea and/or hirsutism: Northern Finland birth cohort 1966 study. The Journal of clinical endocrinology and metabolism. 2003; 88(1):141-7.
[7] Vilar L, Freitas MC, Naves LA, Casulari LA, Azevedo M, Montenegro R, Jr., et al. Diagnosis and management of hyperprolactinemia: results of a Brazilian multicenter study with 1234 patients. Journal of endocrinological investigation 2008; 31(5):436-44.
[8] McDermott MT. In the clinic. Hypothyroidism. Annals of internal medicine 2009; 151(11):Itc61.
[9] Sinha U, Sinharay K, Saha S, Longkumer TA, Baul SN, Pal SK. Thyroid disorders in polycystic ovarian syndrome subjects: A tertiary hospital based cross-sectional study from Eastern India. Indian Journal of Endocrinology and Metabolism. 2013; 17(2):304-9.
[10] Singla R, Gupta Y, Khemani M, Aggarwal S. Thyroid disorders and polycystic ovary syndrome: An emerging relationship. Indian Journal of Endocrinology and Metabolism. 2015; 19(1):25-9.
[11] Krasas GE. Thyroid disease and female reproduction. Fertility and sterility. 2000; 74(6):1063-70.
[12] Dharmshaktu P, Kutiyal A, Dhanwal D. Vanishing large ovarian cyst with thyroxine therapy. Endocrinology, Diabetes & Metabolism Case Reports. 2013; 2013:130050.
[13] Cramer DW, Sluss PM, Powers RD, McShane P, Ginsburgs ES, Hornstein MD, et al. Serum prolactin and TSH in an in vitro fertilization population: is there a link between fertilization and thyroid function? Journal of assisted reproduction and genetics. 2003; 20(6):210-5.
[14] Sharma N, Ballarsingh S, Kaushik GG. Biochemical association of hyperprolactinemia with hypothyroidism in infertile women. Clinical laboratory. 2012; 58(7-8):805-10.
[15] Serri O, Chik CL, Ur E, Ezzat S. Diagnosis and management of hyperprolactinemia. Canadian Medical Association Journal. 2003; 169(6):575-81.
[16] Robin G, Catteau-Onard S, Young J, Dewailly D. [Physiopathological link between polycystic ovary syndrome and hyperprolactinemia: myth or reality?]. Gynecologie, obstetrique & fertilite. 2011; 39(3):141-5.
[17] Kazerouni F, Amirrasouli H. Performance characteristics of three automated immunoassays for thyroid hormones. Caspian journal of internal medicine. 2012; 3(2):400-104.
[18] Lennartsson AK, Billig H, Jonsdottir IH. Burnout is associated with elevated prolactin
levels in men but not in women. *Journal of psychosomatic research.* 2014; 76(5):380-3.

[19] Vryonidou A, Papatheodorou A, Tavridou A, Terzi T, Loi V, Vatalas IA, *et al.* Association of hyperandrogenemic and metabolic phenotype with carotid intima-media thickness in young women with polycystic ovary syndrome. *The Journal of clinical endocrinology and metabolism.* 2005; 90(5):2740-6.

[20] Garber JR, Cobin RH, Gharib H, Hennessey JV, Klein I, Mechanick JI, *et al.* Clinical practice guidelines for hypothyroidism in adults: cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. *Endocrine Practice.* 2012; 18(6):988-1028.

[21] Janssen OE, Mehlmauer N, Hahn S, Offner AH, Gartner R. High prevalence of autoimmune thyroiditis in patients with polycystic ovary syndrome. *European journal of endocrinology* 2004; 150(3):363-9.

[22] Muderris, II, Boztosun A, Oner G, Bayram F. Effect of thyroid hormone replacement therapy on ovarian volume and androgen hormones in patients with untreated primary hypothyroidism. *Annals of Saudi medicine.* 2011; 31(2):145-51.

[23] Ghosh S, Kabir SN, Pakrashi A, Chatterjee S, Chakravarty B. Subclinical hypothyroidism: a determinant of polycystic ovary syndrome. *Hormone research.* 1993; 39(1-2):61-6.

[24] Carvalho GA, Perez CL, Ward LS. The clinical use of thyroid function tests. *Arquivos brasileiros de endocrinologia e metabolologia.* 2013; 57(3):193-204.

[25] Schussler GC. The thyroxine-binding proteins. *Thyroid.* 2000; 10(2):141-9.

[26] Filho RB, Domingues L, Naves L, Ferraz E, Alves A, Casulari LA. Polycystic ovary syndrome and hyperprolactinemia are distinct entities. *Gynecological endocrinology: the official journal of the International Society of Gynecological Endocrinology.* 2007; 23(5):267-72.

[27] Grubb MR, Chakeres D, Malarkey WB. Patients with primary hypothyroidism presenting as prolactinomas. *The American journal of medicine.* 1987; 83(4):765-9.

[28] Silva JE. Thermogenic mechanisms and their hormonal regulation. *Physiological reviews.* 2006; 86(2):435-64.

[29] Dahiya K, Sachdeva A, Singh V, Dahiya P, Singh R, Dhankhar R, *et al.* Reproductive Hormone and Thyroid Hormone Profile in Polycystic Ovarian Syndrome. *Webmedcentral Endocrinology* 2012;3 (6): WMC 003455.

[30] Diamanti-Kandarakis E. Role of obesity and adiposity in polycystic ovary syndrome. *International journal of obesity* (2005). 2007; 31 Suppl 2:S8-13; discussion S31-2.

[31] Iuhas C-I, Costin N, Niță C, Mihu D. Body Fat Distribution in Women with Polycystic Ovary Syndrome. *Romanian Journal of Diabetes Nutrition and Metabolic Diseases.* 2013; 20(2):107-15.

[32] Ortega FJ, Moreno-Navarrete JM, Ribas V, Esteve E, Rodriguez-Hermosa JI, Ruiz B, *et al.* Subcutaneous Fat Shows Higher Thyroid Hormone Receptor-α1 Gene Expression Than Omental Fat. *Obesity.* 2009; 17(12):2134-41.

[33] Zandieh-Doulabi B, Platvoet-terSchiphorst M, Kalsbeek A, Wiersinga WM, Bakker O. Hyper and hypothyroidism change the expression and diurnal variation of thyroid hormone receptor isoforms in rat liver without major changes in their zonal distribution. *Molecular and cellular endocrinology.* 2004; 219(1-2):69-75.

[34] Shibli-Rahhal A, Schlechte J. The effects of hyperprolactinemia on bone and fat. *Pituitary.* 2009; 12(2):96-104.

[35] Greenman Y, Tordjman K, Stern N. Increased body weight associated with prolactin secreting pituitary adenomas: weight loss with normalization of prolactin levels. *Clinical endocrinology.* 1998; 48(5):547-53.