Venous pseudoaneurysm of the great saphenous vein stump as late complication of flush saphenofemoral ligation and stripping

Maurizio Domanin, MD,a,b Riccardo Miloro, MD,a Silvia Romagnoli, MD,b and Aldo Basellini, MD,b Milan, Italy

ABSTRACT

Guidelines now recommend endovenous thermal ablation over open treatment of saphenous incompetence, but flush saphenofemoral ligation and stripping remain relevant when appropriately applied and expertly executed. Complications are rare but could be severe, needing further surgical correction. We report a unique case of a late venous pseudoaneurysm of the great saphenous vein stump after flush saphenofemoral ligation and stripping, successfully treated with surgical sac excision. We highlight the importance of continuous follow-up for patients previously submitted to open venous surgery. (J Vasc Surg Cases and Innovative Techniques 2018;4:63-6.)

Varicose veins of the lower limbs are part of the spectrum of chronic venous disease and affect a range between 5% and 30% of the adult population.1 Although minimally invasive techniques are gaining spreading diffusion, saphenectomy is still the most performed surgical procedure in the rest of the world, in particular in countries with limited health resources available.

Many guidelines now recommend endovenous ablative therapies over open treatment of saphenous incompetence, considering the shorter recovery time and reduced pain and morbidity. Nevertheless, flush saphenofemoral ligation (FSFL) and stripping of the great saphenous vein (GSV) remain relevant when appropriately applied and expertly executed. Acute complications of open surgery have been described extensively in the literature,2–5 whereas late complications have not been widely reported, apart from recurrences.2–4

We report a rare case of late venous pseudoaneurysm (VPA) of the GSV stump that occurred about 3 years after FSFL and stripping. It was successfully treated with new ligature and surgical sac excision. Signed informed consent for publication was obtained.

CASE REPORT

A 48-year-old woman presented to our emergency department with a left inguinal mass. At admission, the symptoms were pain and a sensation of burning and heaviness in the groin that increased at the end of the day and was exacerbated by the standing position. Clinical conditions had progressively worsened in the last 3 months. She had been referred by her practitioner to the general surgeon; a crural hernia was suspected. The colleague ruled out this diagnosis with a clinical and ultrasound examination and immediately sent the patient to our attention.

She had a silent clinical history with the exception of bilateral chronic venous disease (Clinical, Etiology, Anatomy, and Pathophysiology clinical class 2) treated at our institution by a senior surgeon (A.B.) skilled in venous surgery with FSFL and invaginated stripping of the GSV on the right side in 2012 and on the left in 2013.

According to our protocol, FSFL was performed in both interventions with a double ligature, one close to the saphenofemoral junction (SFJ) with absorbable 3-0 polyglyactin 910 tie (Vicryl; Ethicon, Somerville, NJ) and the second with 2-0 coated braided polyester nonabsorbable tie (Ti-Cron; Covidien, Dublin, Ireland) 1 cm above the stump. The patient was then submitted regularly to clinical follow-up and to sclerotherapy of residual small-diameter veins and telangiectasias for aesthetic concerns by the same surgeon.

At clinical examination in the upright position, the patient presented with a 5.0-cm bluish tender bulge on the inguinal surgical scar of the prior intervention, flattened when pressed. The result of the cough impulse test was positive, with a palpable thrill evoked at the SFJ by Valsalva maneuver. She was immediately submitted to venous Doppler ultrasound (DUS) examination, which confirmed the presence of a saccular VPA of the GSV stump with a diameter of 48 × 30 × 50 mm (Fig 1, a) that spontaneously refilled after Valsalva maneuver (Fig 1, b and c) and a communication door of 18 mm. No incompetence of the iliac-femoral vein was observed at DUS above the SFJ. The presence of arteriovenous fistula was excluded by means of DUS examination.

The next day, the patient was submitted to surgery under local anesthesia and sedation, through an oblique groin incision of 7 cm at the inguinal fold, to obtain full exposure of the VPA and the common femoral vein. The VPA sac was carefully isolated to avoid unwanted hemorrhage (Fig 2, a). A 4.0-cm segment of the common femoral vein was also surgically exposed.
After the isolation of the VPA was completed, the remnant of the previous tie became visible (Fig 2, a). The origin of the VPA was closed by means of a new nonabsorbable 2-0 tie (Ti-Cron) performed through a Mixter-O’Shaughnessy 8-inch forceps (Fig 2, b and c) and completed with a 3-0 nonabsorbable running suture (Prolene [Ethicon]; Fig 3, a and b) to prevent further recurrences. The VPA, at this point flat, was opened and finally excised (Fig 3, c).

The patient was discharged with antithrombotic prophylaxis (nadroparin calcium, 3800 anti-Xa IU), and compression stockings (20-30 mm Hg) were prescribed for 20 days after surgery. She fully resumed her usual activities after 5 days. Neither additional complications nor recurrences were observed at 4 years of follow-up.

DISCUSSION

The widespread use of endovenous techniques is gradually replacing open surgery for varicose vein treatment in the United States and Europe. Nowadays, saphenectomy is considered a second choice, to be proposed only in case of contraindications to other techniques.6-8 Nevertheless, in many countries, the lines are still not well defined, and FSFL with saphenectomy is still largely performed or even remains the most common treatment.9-12 Notwithstanding the advantages of endoobliterative techniques related to faster recovery, the outcomes of surgery are similar.13-15 Acute complications occurring after FSFL, with or without vein stripping, are usually minor; wound
infections, hematomas, and lymphocele are the most frequent. Recurrences and lymphatic damage are the most common late complications. To our knowledge, the development of a late VPA after FSFL and saphenectomy is a rare event that has never been previously reported in the literature. On the contrary, some case reports have described the occurrence of VPAs after endovascular treatment, usually originating from an arteriovenous fistula between the GSV and arterial collaterals along its course. VPA after endovenous treatment required open surgical correction or repaired spontaneously.

The underlying cause of our VPA remains unclear. FSFL with disconnection of all the tributaries at the groin is a fairly standardized technique proposed by several authors in various textbooks of vascular surgery. It has been described as a single ligation, a double ligation with absorbable or nonabsorbable tie, or transfixion of the SFJ with a running monofilament nonabsorbable suture and a second distal tie on the saphenous stump. The technique has then been improved over the years, mainly to prevent recurrences from neoangiogenesis. Primarily for these purposes, Frings et al have recommended an additional suture of the endothelium stump with a monofilament suture or a two-layer running monofilament suture.

The first hypothesis could be related to tardive failure of the second coated braided polyester tie added to the expected reabsorption of the polyglactin 910 tie. Otherwise, the nonabsorbable tie could have slowly slipped from its original location at the SFJ as a result of the necrosis of the stump region given by the same knot.

DUS is the “gold standard” diagnostic method for noninvasive diagnosis of VPA to rule out. With high confidence, alternative hypotheses, such as recurrence, cavernoma, and arteriovenous fistula. In fact, in the case presented here, DUS clearly showed a “cul-de-sac” imaging without evidence of any efferent vessel or abnormal Doppler spectral trace. We would also like to highlight that clinical conditions worsened gradually and belatedly, 3 years later and not immediately after open surgery.

Now, in light of preventing the occurrence of new VPAs, we always perform a double ligation with a 3-0 polypropylene proximal continuous suture together with a second free 3-0 nonabsorbable safety tie at the distal end of the GSV stump.

CONCLUSIONS
Although FSFL with saphenectomy is still one of the most commonly used techniques for varicose vein treatment all over the world, with millions of open surgical treatments performed during the last 50 years, we present an unusual late complication. The cause remains uncertain, despite a technically correct ligation of the SFJ during the primary intervention.

We want to emphasize the importance of listening to the medical history, focusing on clinical and ultrasound examination, which together could lead to an unpredictable diagnosis. Continuous follow-up should be mandatory also after open surgery of varicose veins.

Acknowledgment to Fulvia Domanin for original drawings.
REFERENCES

1. Beebe-Dimmer JL, Pfeifer JR, Engle JS, Schottendon D. The epidemiology of chronic venous insufficiency and varicose veins. Ann Epidemiol. 2005;15:175-84.

2. Milligan JP, Coget JM. Complications of superficial venous surgery of the legs: thigh hematomas and abscess. Phlebolgie 1993;46:583-90.

3. Critchley G, Hanada A, Maw A, Harvey A, Harvey MR, Corbett CR. Complications of varicose vein surgery. Ann R Coll Surg Engl 1997;79:105-10.

4. Defty C, Eardley N, Taylor M, Jones DR, Mason PF. A comparison of the complication rates following unilateral and bilateral varicose vein surgery. Eur J Vasc Endovasc Surg 2008;35:745-9.

5. Mallick R, Raju A, Campbell C, Carlton R, Wright D, Boswell K, et al. Treatment patterns and outcomes in patients with varicose veins. Am Health Drug Benefits 2016;9:455-65.

6. Gloviczki P, Cornerota AJ, Dalsing MC, Eklof BC, Gillespie DL, Gloviczki ML, et al. The care of patients with varicose veins and associated chronic venous diseases: clinical practice guidelines of the Society for Vascular Surgery and the American Venous Forum. J Vasc Surg 2011;53:425-48S.

7. National Institute for Health and Care Excellence. Varicose veins: diagnosis and management. Clinical guideline [CG168]. London: NICE. 2013.

8. Wittens C, Davies AH, Baekgaard N, Broholm R, Cavezzi A, Chastanet S, et al. Management of chronic venous disease: clinical practice guidelines of the European Society for Vascular Surgery (ESVS). Eur J Vasc Endovasc Surg 2015;49: 678-737.

9. Die 20 häufigsten Operationen bei Frauen (OPS-Schlüssel 5). Available at: https://www.destatis.de/DE/ZahlenFakten/GesellschaftStaat/Gesundheit/Krankenhaeuser/Tabellen/DRGOperationenWeiblich.html. Accessed June 1, 2017.

10. Ebner H, Stillo F, Lanza G, Mangialardi N, Agus GB, Apperti M, et al. Linee guida flebo-inflogiche SIF-SICVE 2016 della Società Italiana di Flebologia e della Società Italiana di Chirurgia Vascolare ed Endovascolare. Minerva Cardioangiol 2016;64(Suppl 2):1-80.

11. Satokawa H, Yamaki T, Iwata H, Sakata M, Sugano N, Nishibe T, et al. Treatment of primary varicose veins in Japan: Japanese Vein Study XVII. Ann Vasc Dis 2016;9:180-7.

12. Sarma N. Guidelines and recommendation on surgery for venous incompetence and leg ulcer. Indian Dermatol Online J 2014;5:390-5.

13. Rasmussen LH, Bjorn L, Lawaetz M, Blemings A, Lawaetz B, Eklof B. Randomized trial comparing endovenous laser ablation of the great saphenous vein with high ligation and stripping in patients with varicose veins: short-term results. J Vasc Surg 2007;46:308-15.

14. Peralta J, Rautio T, Biancari F, Ohtonen P, Wilik H, Heikkinen T, et al. Radiofrequency endovenous obliteration versus stripping of the long saphenous vein in the management of primary varicose veins: 3-year outcome of a randomized study. Ann Vasc Surg 2005;19:669-72.

15. Darwood RJ, Theivacumar N, Dellagrammaticas D, Mavor AJ, Gough MJ. Randomized clinical trial comparing endovenous laser ablation with surgery for the treatment of primary great saphenous varicose veins. Br J Surg 2008;95:294-301.

16. Pittaluga P, Chastanet S. Lymphatic complications after varicose veins surgery: risk factors and how to avoid them. Phlebologie 2012;27(Suppl 1):139-42.

17. Theivacumar NS, Gough MJ. Arterio-venous fistula following endovenous laser ablation for varicose veins. Eur J Vasc Endovasc Surg 2009;38:234-6.

18. Eidson JL 3rd, Shepherd LG, Bush RL. Aneurysmal dilatation of the great saphenous vein stump after endovenous laser ablation. J Vasc Surg 2008;48:1037-9.

19. Rudarakanachana N, Berland TL, Chasin C, Sadek M, Kabnick LS. Arteriovenous fistula after endovenous ablation for varicose veins. J Vasc Surg 2012;55:1492-4.

20. Brumberg RS, Davis C. Ruptured common femoral vein pseudoaneurysm from a common femoral arteriovenous fistula presenting as lower extremity steal after radio-frequency ablation of the great saphenous vein. J Vasc Surg Venous Lymphat Disord 2017;5:571-4.

21. Rose SS. Surgical techniques in the treatment of varicose veins. In: Greenhalgh RM, editor. Vascular surgical techniques. London: Butterworths. 1984. p. 247-54.

22. Agrifoglio G. The surgical treatment of varicose veins: a method practised in Italy. In: Hobbs JT, editor. Surgery of the veins. New York: Grune & Stratton. 1985. p. 148-55.

23. Tibbs DJ. Treatment of varicose veins and other manifestations of superficial vein incompetence. In: Tibbs DJ, Sabiston DC, Davies MG, Mortimer PS, Scurr JH, editors. Varicose veins. venous disorders, and lymphatic problems in the lower limbs. Oxford: Oxford University Press. 1997. p. 423-56.

24. Hands L. Thompson M. Venous surgery. flush ligation of sapheno-femoral junction. In: Hands L, Thompson M, editors. Vascular surgery. 2nd ed. Oxford: Oxford University Press. 2015. p. 377-9.

25. Iafrati MD, O’Donnell TF. Varicose veins: surgical treatment. In: Cronenwett JL, Johnston W, editors. Rutherford’s vascular surgery. 8th ed. Philadelphia: Elsevier; 2014. p. 869-84.

26. Winterborn RJ, Earnshaw JJ. Crosseotomy and great saphenous vein stripping. J Cardiovasc Surg 2006;47:199-33.

27. Perrin M. Chirurgie à ciel ouvert de l’artère fémorale et du veau superfi ciel. Principes. Techniques. Résultats. Encycl Méd Chir 2007;43:161-B.

28. Frings N, Frings AC, Tran P, Schubert R. Reduction of neo-reflux at the sapheno-femoral junction by extensive crossectomy. Phlebologie 2010;6:325-8.

29. Delfrate R, Bricchi M, Franceschi C, Goldoni M. Multiple ligation of the proximal greater saphenous varicose vein in the CHIVA treatment of primary varicose veins. Veins Lymphatics 2014;3:1919-24.

30. De Maeseneer MG, Vandenbroeck CP, Hendriks JM, Lauwers PR, Van Schil PE. Accuracy of duplex evaluation one year after varicose vein surgery to predict recurrence at the sapheno-femoral junction after five years. Eur J Vasc Endovasc Surg 2005;29:308-12.

Submitted Sep 8, 2017; accepted Nov 13, 2017.