Anomalous acoustic phonons as the physical mechanism behind the adiabatic barocaloric effect on graphene

Ning Ma1,2 & Mario S. Reis3

A graphene sheet is able to either heat up or cool down due to a mechanical strain: this is the adiabatic barocaloric effect. In order to understand the physical mechanism behind this effect, we have explored the adiabatic temperature change of the graphene and, for this purpose, we considered two contributions to the total entropy: a lattice entropy (depending on the transversal, longitudinal and anomalous out-of-plane acoustic phonons) and a strain entropy. We found that the adiabatic barocaloric effect only depends on the strain energy and the anomalous acoustic phonons, without terms due to the transversal and longitudinal acoustic phonons.

Caloric effects have been attracting the attention of the scientific community for the past decades because of the broad appealing for application in thermal devices1. Across the years, the concept has been expanded beyond the magnetocaloric borders and, nowadays, as popular as the former, other caloric effects are in vogue, as such as the barocaloric and the electrocaloric effects2,3. These effects can work even better when are present into a single material and, for this case, it is named as multicaloric effect4.

On the other hand, it is known that a strain on graphene mimics a pseudo-magnetic field, as theoretically described in references5–7, and experimentally verified by Levy and co-workers8. In this direction, in a similar fashion as we have done in our previous contribution studying the isothermal barocaloric effect on graphene3, strain produce a pseudo-magnetic field that, on its turn, produces a caloric effect.

The goal of the present effort is thus to understand the physical mechanism behind the barocaloric effect on graphene and, to achieve this goal, we have considered two contributions to the total entropy: one from the lattice and other from the strain. The former has two contributions from the acoustic phonons with a linear dependency with the phonons wavenumber q and one contribution with a quadratic q^2-dependency. This anomaly is responsible to rule the barocaloric effect on graphene and this finding is further explored along the text.

Results

Lattice entropy. The lattice entropy for a single layer graphene depends on three acoustic phonon modes. For phonons, their interaction corresponds (in the classical picture), to anharmonic vibrations of the atoms in the lattice. However, these vibrations in solids are, in practice, always weak; or, to say, 'almost harmonic'. Therefore, to write these dependence, we start from the Helmholtz free energy of phonons in the harmonic approximation9–11:

$$F(T) = k_B T \sum_{j=1}^{3N\nu} \ln(1 - e^{-\omega_j/k_B T}) + \varepsilon_0,$$

In this form, the free energy can be regarded as a superposition of independent harmonic oscillators, or normal mode of vibrations. Specifically, the first term is the standard temperature dependent bosonic contribution, with the summation running over j up to the number of normal mode of vibration (i.e., the vibrational degrees of freedom) $3N\nu$, where N is the absolute number of crystallographic sub-lattices A and B in the lattice, $\nu = 2$ is the...
The ballistic thermal conductance of graphene has an anomalous behavior at low temperatures (below 100 K), with a $T^{5/2}$ dependence, while graphite has a $T^{3/2}$ dependence, carbon nanotubes have an expected linear temperature dependence and two-dimensional acoustic phonon gases have a T behavior\cite{11}. The reason for this unexpected behavior for graphene lies in one of the acoustic phonon modes of vibrations, that has a quadratic relationship with the frequency, instead of a linear dependency - as the other two modes. These relationships will thus be explored here in this section, with further consequences for the adiabatic temperature change due to a strain, i.e., the adiabatic barocaloric effect.

Let us consider therefore three acoustic phonon modes with phonon wave vector q ($|q| = q$), near the center of the Brillouin zone\cite{12,13}:

1. The transverse acoustic (TA) mode with $\omega = v_T q$;
2. The longitudinal acoustic (LA) mode with $\omega = v_L q$; and
3. The flexural out-of-plane acoustic (ZA) mode with $\omega = \alpha q^2$.

Above, $v_T = 13.6 \times 10^3$ m/s is the sound velocity of the transverse wave, $v_L = 21.3 \times 10^3$ m/s is the sound velocity of the longitudinal wave and $\alpha = 6.2 \times 10^{-5}$ m/s represents the coefficient of the quadratic phonons mode of vibration.

Based on the harmonic approximation, in the similar fashion as for the 3D case\cite{10}, graphene has $A/(2\pi)^2 q$ -vectors (i.e. vibrational modes) per unit area in the reciprocal space (where A is the sample area). In practice, number of crystalografic sites is very large and the reciprocal space is considered as a continuum. Thus, the sum over j is replaced by an integral over q: \[\sum_j \rightarrow \int dq \equiv \frac{A}{(2\pi)^2} \int d^2q = \frac{A}{(2\pi)^2} \int 2\pi q dq,\]

using a single integral as a concise notation. It should be stressed that when we actually come to a definite quadrature in q-space, we must include the weight factor $A/(2\pi)^2$. Further considering the aforementioned dispersion relations for the three acoustic phonon modes $\omega(q)$, we obtain:

\[\sum_j \rightarrow \int \frac{A}{2\pi} \left(\frac{\omega}{v_T^2} + \frac{\omega}{v_L^2} + \frac{1}{2\alpha} \right) d\omega.\] \[\text{(3)}\]

From this result, it is easy to change the summation of equation 1 to an integral, that reads as:

\[F(T) = e_0 + \frac{Ak_T}{2\pi} \left(\frac{1}{v_T^2} + \frac{1}{v_L^2} \right) \int_0^\infty \ln\left(1 - e^{-\hbar\omega/k_BT}\right) \omega d\omega + \frac{Ak_T}{2\pi} \int_0^\infty \ln\left(1 - e^{\hbar\omega/k_BT}\right) d\omega,\]

and, due to its rapid convergence for small k_BT values, it can be taken from 0 to ∞. After a change of variables of the kind $z = \hbar\omega/k_BT$, the final result for the free energy is:

\[F(T) = e_0 - \frac{3k_T^2 T^2}{4\pi h^2} \left(\frac{1}{v_T^2} + \frac{1}{v_L^2} \right) \Gamma(3)\zeta(3) - \frac{k_T^2 T^2}{2\pi h} \frac{1}{2\alpha} \Gamma(3)\zeta(3) + \frac{\pi^2}{12h\alpha},\] \[\text{(4)}\]

where $\Gamma(\ldots)$ and $\zeta(\ldots)$ are, respectively, the Gamma and Riemann Zeta functions.

The entropy can be derived from $S = -\partial F/\partial T$ and therefore the lattice entropy per graphene area $S_{la}(T)$ reads as:

\[S_{la}(T) = k_B \theta \left(\frac{3k_T^2 T^2}{4\pi h^2} \left(\frac{1}{v_T^2} + \frac{1}{v_L^2} \right) \Gamma(3)\zeta(3) + \frac{\pi^2}{12h\alpha} \right.\] \[\text{(5)}\]

It is worth to note that the linear term on the temperature depends on the α term, i.e., on the anomalous out-of-plane acoustic quadratic mode; while the quadratic temperature term depends on the linear transverse (TA) and longitudinal acoustic (LA) modes. These dependencies have further implications on the adiabatic barocaloric effect of this material.

Strain entropy. The present subsection deals with the strain entropy per graphene area $S_s(T, B)$, that, in other words, is a consequence of a pseudo-magnetic field due to strain\cite{5,6}. It has been described in our previous work\cite{3} and reads as:

\[S_s(T, B) = S_s(T) + S_{osc}(T, B),\] \[\text{(6)}\]
\[S_b(T) = N_0 k_b \frac{2\pi^2 k_b T}{3e_F} \]

is the strain-independent term, \(\epsilon_F^\circ = \hbar v_F/\sqrt{\pi N_e} \) is the zero-strain Fermi energy, \(N_e = 10^{16} \text{ m}^{-2} \) is the density of charge carriers and \(v_F = 10^6 \text{ m/s} \) is the Fermi velocity. The strain-dependent term oscillates as a function of the reciprocal pseudo-magnetic field \(1/B_s \) and it has been comprehensively described recently. It reads as:

\[S_{st}(T, B_s) = N_0 k_B \sum_{\eta} \sum_{k=1}^{\infty} \frac{1}{m} \cos(\pi k m) T(x_k) \]

where

\[m = \frac{N_0 \phi_0}{|\eta B_s|} \]

\(\phi_0 = \pi \hbar/e = 2.06 \times 10^{-15} \text{Tm}^2 \) is the magnetic flux quantum and \(\eta = \pm 1 \) is the valley index and is associated to the Dirac points \((K_+, K_-)\) in the first Brillouin zone. The thermal dependence of the strain entropy is contained in the function:

\[T(x_k) = \frac{x_k L(x_k)}{\sinh x_k} \text{, where } L(x_k) = \coth(x_k) - \frac{1}{x_k} \]

is the Langevin function. Above,

\[x_k = kx = k \frac{m x_k^2 }{N_0} \frac{\epsilon_F \hbar k_b T}{\hbar^2 v_F^2} \text{, where } \epsilon_F = \hbar v_F \sqrt{\frac{T B_s}{\hbar^2 v_F}} + \pi N_0 \]

is the strain-dependent Fermi level and \(\tau \approx 1.7 \mu_s \). Note that both \(m \) and \(x \) are dimensionless.

Discussion

The evaluation of the barocaloric effect under adiabatic condition requires the total entropy to be written as a function of the strain and lattice entropies. Thus:

\[S_{tot}(T, B_s) = S_b(T) + S_{st}(T, B_s) \]

where these two terms were presented, respectively, on equations 5 and 6. It is a different situation from our previous contribution on reference, in which the isothermal barocaloric effect was discussed. For that case, the field-independent contribution to the total entropy, i.e., the lattice term, has been canceled when the isothermal entropy change was calculated. This is the reason the lattice term has not been explicitly considered in reference.

However, numerical evaluation of those terms on equation 5, for \(T \leq 100 \), clearly shows that the quadratic term on temperature is much smaller than the linear one: at 1 K (100 K) it is three (one) order of magnitude smaller. As a consequence, the linear modes of phonon vibrations have no effects for the lattice entropy in comparison to the anomalous quadratic mode. Thus, the total entropy can thus be written as:

\[S_{tot}(T, B_s) = N_0 k_b \frac{2\pi^2 k_b T}{3e_F} + k_b \frac{\pi T B_s}{12 \hbar c} + S_{st}(T, B_s) \]

A simple numerical comparison of the first and second terms above shows that the second term, related to the lattice entropy, is three orders of magnitude bigger and therefore we can disregard the first term. The final total entropy we must use to obtain the adiabatic temperature change due to strain is therefore:

\[S_{tot}(T, B_s) = k_b \frac{\pi T B_s}{12 \hbar c} + N_0 k_b \sum_{\eta} \sum_{k=1}^{\infty} \frac{1}{m} \cos(\pi k m) T(x_k) \]

Note there is one term exclusively dependent on parameters related to the lattice \((\alpha)\); and other term exclusively dependent on parameters related to the strain energy \((B_s)\).

In order to obtain the adiabatic temperature change, let us consider a \(S_{st}(T, B_s) \) diagram, with two entropy curves: one with and other without pseudo-magnetic field \(B_s \), i.e., strain. The adiabatic temperature change is a measurement of the ‘distance’ (in units of Kelvin), between these two curves, for a constant value of entropy. In other words, the condition:

\[S_{tot}(T_{00}, 0) = S_{tot}(T_{B_s}, B_s) \]

applies, where \(T_{00} \) and \(T_{B_s} \) are, respectively, the temperature of the graphene under zero and non-zero pseudo-magnetic field, i.e., under zero- and finite strain. From this condition, the final temperature of the body \(T_{B_s} \) after the strain can be written; and the adiabatic temperature change \(\Delta T(T_{00}, B_s) \) = \(T_{B_s} \) - \(T_{00} \) formally found. This last quantity is the amount of temperature the material changes (either cooling or heating), due to the strain.
This is one way to measure the barocaloric effect. The other way is considering the isothermal entropy change
\[\Delta S(T, B_s) = S_s(T, B_s) - S_s(T, 0) \]
and has already been discussed3.

Our interest is therefore to find \(T(T, B_s) \), i.e., the final temperature of the graphene sheet after a certain strain,
starting from a given initial temperature \(T_0 \). The adiabatic condition (equation 15), after some standard calcula-
tion, provides the inverse function \(T(T, B_s) \), that reads as:

\[
T = T_0 + \left(\frac{N_0 \hbar c}{e^2} \right) \sum_{\eta} \sum_{k=1}^{\infty} \frac{\cos(\pi k \eta)}{\sinh(\pi \eta)} \frac{L(kx_B)}{\sinh(kx_B)}.
\]

where \(x_B = x(T_B) \). It is worth to note that it is not possible to invert this equation to obtain \(T(T, B_s) \) and therefore it must be found self-consistently, for a given \(T_0 \). Once \(T_b \) has been found numerically from the above equation, it is possible to obtain the final result: the adiabatic temperature change \(\Delta = -T_b - T_0 \). This result is pre-
sented on Fig. 1, for several values of temperature, from 1 K up to 100 K.

The core of this effort is the adiabatic temperature change due to strain, that only exists because of the second
term of equation 16, that, on its turn, is ruled by the anomalous acoustic phonons mode of vibration by means of
the parameter \(\alpha \). Thus, further attention must be given to this parameter. Positive values of \(\alpha \) reveal that should
exist critical points at which \(\omega \) is near a local minimum and the sound velocity vanishes. Moreover, it largely
depends on the local second derivative of \(\omega \) with respect to the \(q \), i.e., \(\alpha = (1/2)(\partial^2 \omega / \partial q^2) \); therein \(\omega \) band could
be derived from numerical simulation, experiment, and other methods16–18. On the other side, the \(\alpha \)-term has
been pointed out to be related to the bending rigidity, the atomic density, and so forth19, which would pave some
possible ways to modulate the \(\alpha \)-dependence physical effects. As discussed above, the existence of ZA modes
leads to some interesting phenomena on graphene, including the barocaloric effect.

Also remarkable are the quantum oscillations; a clear indication that the Landau Levels exist for this system
and, consequently, the pseudo-magnetic field. These oscillations are notorious for lower values of temperature
(c.a. 10 K). It is worth to note that the adiabatic barocaloric effect is either positive or negative depending on the
value of pseudo-magnetic field \(B_s \). In other words, for a certain value of strain energy, the graphene sheet heats
up; and for other values of strain energy, the material cools down. It is a consequence of the oscillatory adiabatic
barocaloric effect: a truly unique quantum effect, ruled by the anomalous quadratic phonons mode of vibration.

Conclusion

The adiabatic temperature change is one way to obtain the caloric effect and it is obtained after a change on an
external parameter as magnetic or electric fields, pressure and even rotation of the material. Graphene, on its
turn, has the marvelous property to produce a local pseudo-magnetic field as a consequence of strain - and this
pseudo-magnetic field can be as large as 300 Tesla8. This pseudo-magnetic field is therefore the excitation for the
barocaloric effect; and the present effort describes the physical mechanisms that govern the effect.

Figure 1. Adiabatic temperature change as a function of the inverse pseudo-magnetic field. This caloric effect,
as well as the oscillations, emerge due to the strain on the graphene sheet and the physical mechanism behind
this phenomena is the anomalous quadratic modes of vibration. The first curve represents the BCE at
10 K. The strain is given in Tesla, due to the pseudo-magnetic field; however, the strain energy \(\tau = 9.788 \times 10^{-5} \) eV/T. The inverse pseudo-magnetic field shown above can be expressed in terms of the
reciprocal energy (eV^{-1}), after a simple multiplication of that scale by 1/\(\tau \).
In order to obtain the adiabatic temperature change, the total entropy of the graphene was written, including the lattice and the strain terms. The lattice entropy contains two terms: one linear with the temperature and dependent on the anomalous quadratic phonon mode; and other term quadratic with the temperature and dependent on the linear transverse and longitudinal phonon modes. The temperature-quadratic term, for $T \lesssim 100$, is much smaller than the linear term and has been disregarded. As a consequence, the adiabatic barocaloric effect, is completely ruled by the existence of the anomalous out-of-plane phonon mode, leading therefore to a unique and interesting caloric effect on graphene. It is also possible to cite oscillatory effect, in which the graphene is able to increase or decrease its temperature due to the strain energy.

Methods
Caloric effects can be seen from an adiabatic temperature change or an isothermal entropy change. The isothermal entropy change, i.e., the isothermal barocaloric effect was computed previously on reference 3, and to achieve that result only the field-dependent terms to the total entropy were needed, since field-independent terms are canceled upon evaluation of the entropy change due to a field change. Considering equation 12:

$$S_{\text{tot}}(T, B) = S_{\text{ad}}(T) + S_{\text{st}}(T, B),$$

(17)

it is possible to write the isothermal entropy change:

$$\Delta S_{\text{tot}}(T, \Delta B) = \{S_{\text{ad}}(T) + S_{\text{st}}(T, B)\} - \{S_{\text{ad}}(T) + S_{\text{st}}(T, 0)\}$$

(18)

$$= S_{\text{st}}(T, B) - S_{\text{st}}(T, 0),$$

(19)

that, in fact, does not depend on the lattice term.

On the other hand, for the adiabatic temperature change, i.e., the adiabatic barocaloric effect, the central issue of the present effort, the field-independent term to the total entropy (the lattice entropy), plays a key role. In order to understand the mechanism, let us consider a simple spin-lattice system: an application of a magnetic field aligns the spins, decreasing its magnetic entropy. To maintain the total entropy constant, the lattice entropy must increase; and thus the consequence is an increasing of the temperature of the system. For this case, the adiabatic condition shall be applied (equation 15):

$$S_{\text{ad}}(T_0, 0) = S_{\text{ad}}(T_B, B),$$

(20)

and, from this, the adiabatic temperature change $\Delta T = T_B - T_0$ can be obtained (either analytically or numerically, depending on the system).

References
1. Fähler, S. et al. Caloric effects in ferroic materials: new concepts for cooling. Advanced Engineering Materials 14, 10–19 (2012).
2. Reis, M. & Soriano, S. Electrocaloric effect on graphenes. Applied Physics Letters 102, 112903 (2013).
3. Ma, N. & Reis, M. S. Barocaloric effect on graphene. Scientific Reports 7, 13257 (2017).
4. Vopson, M. M. Multicaloric effect: An outlook. Physical B: Condensed Matter 513, 103–105 (2017).
5. Castro Neto, A., Guinea, F., Peres, N., Novoselov, K. & Geim, A. The electronic properties of graphene. Reviews of Modern Physics 81, 109 (2009).
6. Guinea, F., Katsnelson, M. & Geim, A. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nature Physics 6, 30 (2010).
7. Guinea, F., Geim, A., Katsnelson, M. & Novoselov, K. Generating quantizing pseudomagnetic fields by bending graphene ribbons. Physical Review B 81, 035408 (2010).
8. Levy, N. et al. Strain-induced pseudo–magnetic fields greater than 300 tesla in graphene nanobubbles. Science 329, 544–547 (2010).
9. Callaway, J. Quantum Theory of the Solid State. (Academic Press, New York and London, 1974).
10. Landau, L. & Lifshitz, E. Volume 5 of Course of Theoretical Physics. (Academic Press Inc., New York, 1980).
11. Reis, M. Fundamentals of magnetism (Elsevier, 2013).
12. Mingo, N. & Broido, D. Carbon nanotube ballistic thermal conductance and its limits. Physical Review Letters 95, 096105 (2005).
13. Nika, D., Pokatilov, E., Askerov, A. & Balandin, A. Phonon thermal conduction in graphene: Role of umklapp and edge roughness scattering. Physical Review B 79, 155413 (2009).
14. Paixao, L., Alisultanov, Z. & Reis, M. Oscillating adiabatic temperature change of 2d diamagnetic materials. Journal of Magnetism and Magnetic Materials 368, 374–378 (2014).
15. De Oliveira, N. & Von Ranke, P. Theoretical aspects of the magnetocaloric effect. Physics Reports 489, 89–159 (2010).
16. Maultzsch, J., Reich, S., Thomsen, C., Requardt, H. & Ordejón, P. Phonon dispersion in graphite. Physical Review Letters 92, 075501 (2004).
17. Mohr, M. et al. Phonon dispersion of graphite by inelastic x-ray scattering. Physical Review B 76, 035439 (2007).
18. Sánchez-Portal, D., Artacho, E., Soler, J., Rubio, A. & Ordejón, P. Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Physical Review B 59, 12678–12688 (1999).
19. Ramírez, R., Chacón, E. & Herrero, C. Anharmonic effects in the optical and acoustic bending modes of graphene. Physical Review B 93, 235419 (2016).

Acknowledgements
MSR acknowledges FAPERJ, CAPES and CNPq (Brazil) for funding the research projects. MSR belongs to the INCT of Refrigeração e Termofísica, funding by CNPq by grant number 465448/2014-3. NM acknowledges Educational and Teaching Reform Projects of Taiyuan University of Technology (Grant No. SD18200010).

Author Contributions
N.M. and M.S.R. developed the theoretical calculations presented along the work on a cooperative basis. N.M. and M.S.R. wrote together the manuscript text.
Additional Information

Competing Interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019