Dynamical Supersymmetry Breaking without Messenger Gauge Interactions

T. Hotta, Izawa K.-I. and T. Yanagida

Department of Physics, University of Tokyo
Bunkyo-ku, Tokyo 113, Japan

January 29, 2022

Abstract

We investigate low-energy models of supersymmetry (SUSY) breaking by means of vector-like gauge theories for dynamical SUSY breaking. It is not necessary to introduce messenger gauge interactions utilized so far to mediate the SUSY breaking to the standard-model sector, which reduces complication in the model building. We also consider various other ways of SUSY-breaking transmission.
1 Introduction

Supersymmetry (SUSY) is a plausible candidate as an origin of the hierarchy between the weak scale and higher scales, say the grand unification (GUT) and/or the gravitational scales. It must be broken at low energy so that the observed particles do not have their superpartners with the same masses. We consider dynamical SUSY breaking (DSB) as the mechanism of SUSY breaking at low energy since DSB gives a complete solution to the hierarchy problem — it can induce a very tiny scale compared with the gravitational scale without any fine-tunings of parameters in the theory. In particular, low-energy models of DSB (so-called visible sector models) are attractive also in that they can give a natural solution to the flavor changing neutral current (FCNC) problem through the mass degeneracy of the squarks and sleptons [1].

There are two methods to mediate the low-energy SUSY breaking in the DSB sector to the SUSY standard-model sector. One is to identify a global symmetry in the DSB sector as gauge groups in the standard model. This approach, however, has difficulty that the SU(3) gauge coupling constant tends to blow up at too low an energy scale. The other is to introduce a messenger sector which couples to the both sectors.

The phenomenological models with low-energy DSB proposed so far [1] share the common structures: DSB is realized in chiral gauge theories and SUSY-breaking effects are mediated to the SUSY standard-model sector by an additional messenger gauge interaction which is introduced only for that purpose. The additional gauge interaction is needed since the DSB and the standard-model sectors are both chiral.

In this paper we investigate a model with a vector-like gauge theory as the SUSY-breaking sector. We adopt vector-like models of DSB proposed recently in Ref.[2]. We see that it is not necessary to introduce the messenger gauge interaction, whose coupling threatens to blow up. Note that this may largely reduce complication in the model building. We also consider various other ways of SUSY-breaking transmission.

2 The SUSY-Breaking Sector

Let us consider a SUSY SU(2) gauge theory with four doublet chiral superfields Q_i and six singlet ones $Z^{ij} = -Z^{ji}$. Here i and j denote the flavor indices ($i, j = 1, \cdots, 4$). Without a superpotential, this model has a flavor SU(4)$_F$ symmetry.

The tree-level superpotential of the model [2] is given by

$$W_{\text{tree}} = \lambda_{ij}^{kl} Z^{ij} Q_k Q_l,$$

where λ_{ij}^{kl} denote generic coupling constants with $\lambda_{ij}^{kl} = -\lambda_{ji}^{kl} = -\lambda_{ij}^{lk}$. SUSY remains unbroken perturbatively in this model.

[1] We note that this is easily realized in the SP(N) vector-like gauge theories of DSB proposed in Ref.[2], since the anomaly-free condition for the standard-model gauge interactions is manifestly satisfied without introducing additional fields.
The exact effective superpotential of the model, which takes into account the full non-perturbative effects, may be written in terms of gauge-invariant low-energy degrees of freedom

\[V_{ij} = -V_{ji} \sim Q_i Q_j \]

as follows:

\[W_{\text{eff}} = X (\text{Pf} V_{ij} - \Lambda^4) + \lambda^{kl}_{ij} V_{kl}, \]

where \(X \) is an additional chiral superfield, \(\text{Pf} V_{ij} \) denotes the Pfaffian of the antisymmetric matrix \(V_{ij} \), and \(\Lambda \) is a dynamical scale of the SU(2) gauge interaction. This is none other than a superpotential of the O’Raifeartaigh type. Namely, this effective superpotential yields conditions for SUSY vacua

\[\text{Pf} V_{ij} = \Lambda^4, \quad \lambda^{kl}_{ij} V_{kl} = 0, \]

which are incompatible as long as \(\Lambda \neq 0 \). Therefore we conclude that SUSY is dynamically broken in this model [2].

Let us impose a flavor \(\text{SP}(4)_F \) symmetry on the above model to make our analysis simpler, where we adopt the notation \(\text{SP}(4)_F \subset \text{SU}(4)_F \). Then the effective superpotential can be written as

\[W_{\text{eff}} = X (V^2 + V_a V_a - \Lambda^4) + \lambda_Z V Z + \lambda a V^a, \]

where \(V \) and \(Z \) are singlets and \(V_a \) and \(Z^a \) are five-dimensional representations of \(\text{SP}(4)_F \), respectively, in \(V_{ij} \) and \(Z_{ij} \), which constitute six-dimensional representations of \(\text{SU}(4)_F \). Here \(a = 1, \ldots, 5 \) and \(\lambda_Z \) and \(\lambda \) denote coupling constants which are taken to be positive.

When the coupling \(\lambda_Z \) is small, the effective superpotential \(W_{\text{eff}} \) implies that we obtain the following vacuum expectation values:

\[\langle V \rangle \simeq \Lambda^2, \quad \langle V_a \rangle \simeq 0. \]

Then the low-energy effective superpotential may be approximated by

\[W_{\text{eff}} \simeq \lambda_Z \Lambda^2 Z. \]

On the other hand, the effective Kähler potential is expected to take a form

\[K = ZZ^* - \frac{\eta}{4 \Lambda^2} \lambda_Z^4 (ZZ^*)^2 + \cdots, \]

where \(\eta \) is a real constant of order one.

Then the effective potential of the scalar \(Z \) (with the same notation as the superfield) is given by

\[V_{\text{eff}} \simeq \lambda_Z^2 \Lambda^4 (1 + \frac{\eta}{\Lambda^2} \lambda_Z^4 ZZ^* + \cdots). \]

When \(\eta > 0 \), this leads to \(\langle Z \rangle = 0 \). Otherwise, we suspect that \(\langle Z \rangle \) is of order \(\lambda_Z \Lambda \) since the effective potential is expected to be lifted in the region far from the origin \((Z = 0) \), as is the case for the O’Raifeartaigh model [3]. In any event, the DSB scale is given by \(F_Z \simeq \lambda_Z \Lambda^2 \), where \(F_Z \) denotes the \(F \) component of the superfield \(Z \), and the mass \(m_Z \) of the scalar \(Z \) is seen to be of order \(\sqrt{\eta} \lambda_Z^3 \Lambda \) except for the potential massless \(R \)-axion.

We henceforth assume \(\eta > 0 \) for definiteness.

\[\text{The fields } Z^a \text{ and } V_a \text{ form massive multiplets with mass of order } \lambda \Lambda \text{ and they are integrated out.} \]
3 The Messenger Sector

The messenger sector consists of chiral superfields $Y, d, \bar{d}, l, \bar{l}$, which are all singlets under the strong SU(2) and the global SP(4)$_F$. Y is also a singlet under the standard-model gauge group. As for d, \bar{l} and \bar{d}, l we tentatively assume that they transform as the down quark, the anti-lepton doublet and their antiparticles, respectively. The interactions between the DSB and the messenger sectors are described by a superpotential

$$W_{\text{int}} = \frac{\lambda_Y}{2} \varepsilon_{\alpha\beta} (Q_1^\alpha Q_2^\beta + Q_3^\alpha Q_4^\beta) Y - \frac{f}{3} Y^3 + (k_1 \bar{d}d + k_2 \bar{l}l) Y,$$

where α and β denote SU(2) gauge indices and the couplings λ_Y, f, k_1 and k_2 are taken to be positive. In the following, we set $k \equiv k_1 = k_2$ for simplicity, which approximately holds in SUSY-GUT’s.

In view of Eqs.(6) and (7), the full effective superpotential of the DSB and messenger sectors is obtained as

$$W_{\text{eff}} \simeq \lambda_Z \Lambda^2 Z + \lambda_Y \Lambda^2 Y - \frac{f}{3} Y^3 + k(\bar{d}d + \bar{l}l) Y,$$

where we have used

$$V \sim \frac{1}{2} \varepsilon_{\alpha\beta} (Q_1^\alpha Q_2^\beta + Q_3^\alpha Q_4^\beta).$$

The Kähler potential of Z and Y is expected to have the following form:

$$K = ZZ^* + YY^* - \frac{\eta}{4\Lambda^2} |\lambda_Z Z + \lambda_Y Y|^4 - \frac{\delta}{\Lambda^2} \frac{f^2}{16\pi^2} |\lambda_Z Z + \lambda_Y Y|^2 |Y Y^* + \cdots|,$$

where δ is a real constant of order one. We notice that non-anomalous R and discrete symmetries with the coupling f as an external field may be utilized to see that there are no trilinear terms such as $\bar{Z}YY^*$ in the above Kähler potential. As we will see below, we obtain vanishing F component of Y, $\langle F_Y \rangle = 0$, in a limit $f \to 0$. In that case, the SUSY breaking is not transmitted to the standard-model sector by means of the singlet Y.

Typical Feynman diagrams generating f-dependent corrections to the Kähler potential in Eq. (13) are shown in Fig. 4.

We obtain an effective potential from Eqs.(11) and (13)

$$V_{\text{eff}} \simeq \lambda_Z^2 \Lambda^4 + |\lambda_Y \Lambda^2 - fY^2 + k(\bar{d}d + \bar{l}l)|^2 + |kdY|^2 + |k\bar{l}Y|^2 + |k\bar{l}Y|^2 + |k\bar{l}Y|^2 + |kY|^2 + \eta \lambda_Z^6 \Lambda^2 Z Z^* + \eta \lambda_Z^5 \lambda_Y \Lambda^2 (Z Y^* + Z^* Y) + \eta \lambda_Z^4 \lambda_Y^2 \Lambda^2 Y Y^* + \delta \frac{f^2}{16\pi^2} \lambda_Z^2 \Lambda^2 Y Y^*,$$

where we have taken into account only the leading corrections in the coupling λ_Y.

We restrict ourselves to the vacua with $\langle d \rangle = \langle \bar{d} \rangle = \langle l \rangle = \langle \bar{l} \rangle = 0$ in the following consideration since, otherwise, the standard-model gauge group would be broken by their

3The R charges of Q, Z, Y, f read 0, 2, 2, −4, respectively. The discrete symmetry amounts to a transformation $Q \to iQ, Z \to -Z, Y \to -Y, f \to -f$. 4
vacuum expectation values. Notice that the above vacua is realized when the coupling k is large enough. Then the potential Eq.(14) yields a vacuum given by

$$
\langle F_Y \rangle \simeq \langle \lambda_Y \Lambda^2 - fY^2 \rangle \simeq \frac{\delta f^2}{16\pi^2} \frac{\lambda_Y^2}{2f} \Lambda^2, \quad \langle Y^2 \rangle \simeq \frac{\lambda_Y}{f} \Lambda^2.
$$

The messenger quarks and leptons have masses $m_{d,l}$ of order Λ in this vacuum:

$$
m_{d,l} \simeq k \langle Y \rangle = k \sqrt{\lambda_Y} \Lambda.
$$

Since $\langle F_Y \rangle$ and $\langle Y \rangle$ are non-vanishing, the SUSY breaking is mediated to the standard-model sector as seen in the next section.

4 The Standard-Model Sector

The standard-model gauginos obtain their masses from radiative corrections through loops of the messenger quarks and leptons [1]:

$$
m_{\tilde{g}_i} \simeq \frac{g_i^2}{16\pi^2} k^2 \langle Y \rangle \frac{\langle F_Y \rangle}{m_{d,l}^2} \simeq \frac{\alpha_i}{4\pi} \frac{\langle F_Y \rangle}{\langle Y \rangle} \simeq \frac{\alpha_i}{4\pi} \delta \frac{f^2}{16\pi^2} \frac{\lambda_Y^2}{2f} \Lambda,
$$

where $\alpha_i = g_i^2/4\pi$ denote the standard-model gauge couplings.

The masses of the squarks and sleptons are given by [3]

$$
\tilde{m}^2 \simeq 2(C_3 m_{\text{gluino}}^2 + C_2 m_{\text{wino}}^2 + \frac{3}{5} C_1 m_{\tilde{bino}}^2),
$$

where $C_3 = 0$ or $4/3$ and $C_2 = 0$ or $3/4$, whose non-vanishing values are the quadratic Casimir invariants for the fundamental representations of SU(3)$_C$ and SU(2)$_L$, respectively, and C_1 denotes the corresponding hypercharges squared. Namely, the squarks and sleptons have the masses of the same order as the gaugino masses. Notice here that the squarks and sleptons with the same quantum numbers of the standard-model gauge group degenerate in mass, which leads to the suppression of FCNC as noted in the Introduction.

We now proceed to consider phenomenological constraints on the parameters in the potential Eq.(14).

First, the gluino mass should be $(10^2 - 10^3)$ GeV to maintain the weak scale of order 10^2 GeV. This is because growth of the gluino mass increases the stop mass (see Eq.(18)) and the large stop mass raises the Higgs masses which determine the weak scale. Thus we demand

$$
m_{\text{gluino}} \simeq \frac{\alpha_3}{4\pi} \delta \frac{f^2}{16\pi^2} \frac{\lambda_Y^2}{2f} \Lambda \simeq (10^2 - 10^3) \text{ GeV}.
$$
Second, the gravitino mass \(m_{3/2} \) should be less than about 1 GeV to keep the mass degeneracy of the squarks and sleptons explaining the required suppression of FCNC \[4\] :

\[
m_{3/2} \simeq \frac{\langle F_Z \rangle}{\sqrt{3M}} \simeq \frac{\lambda_Z \Lambda^2}{\sqrt{3M}} \lesssim 1 \text{ GeV},
\]

(20)

where \(M \) is the gravitational scale, that is, \(M \simeq 2 \times 10^{18} \text{ GeV} \).

In terms of the parameters, \(\lambda_Z \simeq f \simeq 1 \), for instance, we get

\[
\lambda_Y^2 \Lambda \simeq (10^6 - 10^7) \text{ GeV}
\]

(21)

from Eq. (19). By means of Eq. (20), this gives

\[
\lambda_Y \gtrsim 10^{-2}, \quad \Lambda \lesssim 10^9 \text{ GeV}.
\]

(22)

For \(\lambda_Y \lesssim 1 \) we get

\[
10^{-2} \lesssim \lambda_Y \lesssim 1, \quad 10^6 \text{ GeV} \lesssim \Lambda \lesssim 10^9 \text{ GeV}.
\]

(23)

The gravitino mass is given by

\[
m_{3/2} \simeq 1 \text{ keV} - 1 \text{ GeV}.
\]

(24)

In the case of \(m_{3/2} = (1 - 100) \text{ keV} \), the reheating temperature \(T_R \) after inflation should be very low as \(T_R \lesssim 10^2 \text{ GeV} \) to avoid the overclosure of the universe \[5\]. Thus, we must invoke a late-time baryogenesis like in the Affleck-Dine mechanism \[6\].

5 Conclusion

In this final section, we deal with a few remaining aspects of our model.

First we consider the Polonyi problem on the singlet \(Z \). The mass of \(Z \) is given by

\[
m_Z \simeq \sqrt{\eta} \lambda_Z^3 \Lambda \simeq (10^6 - 10^9) \text{ GeV}.
\]

(25)

This shows that the singlet causes no cosmological problem \[7\].

Second we argue a naturalness problem in the messenger sector. The relevant superpotential is given by

\[
W = \lambda_Z (QQ) Z + \lambda_Y (QQ) Y - \frac{f}{3} Y^3 + (k_1 \bar{d} d + k_2 \bar{l} l) Y,
\]

(26)

where \((QQ) \) denotes the right-hand side in Eq. (12). We can consistently impose U(1) \(_R \) symmetry\[\text{\footnote{We assume that there exists an additional sector to set the cosmological constant vanishing. Then the squarks and sleptons in the SUSY standard model acquire soft SUSY-breaking masses of order \(m_{3/2} \) due to supergravity effects.\[5\]}}\) with the charges of \(Q_i, Y, Z, d, d, l, l \) as \(2/3 \). However, this \(R \) symmetry allows

\[
\text{\footnote{This \(R \) symmetry is anomalous and there is no light \(R \)-axion.}}
\]
additional terms such as $f_Z Z^3$. In order for our SUSY-breaking vacuum to be (meta)stable, the coupling f_Z should be extremely small.

Third we comment on the μ-problem. Let us consider an interaction $hY\bar{H}H$ as a direct source for the μ-term $\mu\bar{H}H$ in the superpotential:

$$\mu = h\langle Y \rangle. \quad (27)$$

Then we also obtain a soft mass term $B\bar{H}H$ in the potential with

$$B = h\langle F_Y \rangle. \quad (28)$$

Together with Eq.(17), these yield

$$\mu m_{\text{gluino}} \approx \frac{\alpha_3}{4\pi} B, \quad (29)$$

which implies that the value B is too large. Thus we should give up the direct generation of the μ-term. When we obtain an appropriate μ-term by some way or others [1], the $\text{SU}(2)_L \times \text{U}(1)_Y$ breaking may be induced by radiative corrections.

We note that even the messenger singlet Y may be unnecessary if an appropriate mass terms for the messenger quarks and leptons d, \bar{d}, l, \bar{l} are generated like the μ-term. Then the SUSY breaking may be mediated by introducing a messenger gauge interaction for the messenger quarks and leptons as well as Q_i.

Finally we comment on hidden sector models of DSB with vector-like gauge theories. Since SUSY-breaking is communicated by gravity in hidden sector models, we need to introduce no messenger sector (no fields such as $Y, d, \bar{d}, l, \bar{l}$), which enables us to respect naturalness thoroughly. Sizable gaugino masses stem from terms of the form $(Z/M)W_\alpha W^\alpha$, which is compatible with $\text{U}(1)_R$-charge assignments of Z and (QQ) as zero and two, respectively. Then we get an effective superpotential

$$W_{\text{eff}} = \lambda Z \Lambda^2 Z (1 + O\left(\frac{Z}{M}\right)). \quad (30)$$

We expect a SUSY-breaking local minimum at $|Z/M| \ll 1$ for the effective potential corresponding to Eq.(30) in supergravity [8] in view of section 2. When $\Lambda \approx 10^{11}$ GeV and $\lambda_Z \approx 1$, the gravitino mass turns out to be $m_{3/2} \approx 10^9$ GeV (see Eq.(24)), which characterizes the SUSY-breaking scale in the standard-model sector. Note that $m_Z \approx 10^{11}$ GeV in this case so that the singlet Z causes no cosmological problem. However, in contrast to the visible sector models, the FCNC problem is not automatically resolved in the hidden sector models.

6This may be natural in the sense of 't Hooft under a symmetry which imposes $\lambda_Y = f_Z = 0$. The fact that $\lambda_Y \gg |f_Z|$ may originate from the charge difference between the two terms $\lambda_Y(QQ)Y$ and $f_Z Z^3$.
References

[1] M. Dine and A.E. Nelson, hep-ph/9303230, Phys. Rev. D48, 1277 (1993);
M. Dine, A.E. Nelson and Y. Shirman, hep-ph/9408384, Phys. Rev. D51, 1362 (1995);
M. Dine, A.E. Nelson, Y. Nir and Y. Shirman, hep-ph/9507378, Phys. Rev. D53, 2658 (1996);
T. Gherghetta, G. Jungman and E. Poppitz, hep-ph/9511317;
G. Dvali, G.F. Giudice and A. Pomarol, hep-ph/9603238.

[2] Izawa K.-I. and T. Yanagida, hep-th/9602180, Prog. Theor. Phys. 95, 829 (1996);
K. Intriligator and S. Thomas, hep-th/9603158.

[3] For example, M. Dine, W. Fischler and D. Nemeschansky, Phys. Lett. B136, 169 (1984).

[4] F. Gabbiani and A. Masiero, Nucl. Phys. B322, 235 (1989);
J.S. Hagelin, S. Kelley and T. Tanaka, Nucl. Phys. B415, 293 (1994).

[5] T. Moroi, H. Murayama and M. Yamaguchi, Phys. Lett. B303, 289 (1993).

[6] I. Affleck and M. Dine, Nucl. Phys. B249, 361 (1985).

[7] M. Kawasaki, T. Moroi and T. Yanagida, hep-ph/9509399, Phys. Lett. B370, 52 (1996).

[8] Izawa K.-I. and T. Yanagida, hep-ph/9507441, Prog. Theor. Phys. 94, 1105 (1995);
See also A.E. Nelson, hep-ph/9511350, Phys. Lett. B369, 277 (1996).
Figure caption

Fig.1: Typical Feynman diagrams generating f-dependent corrections to the Kähler potential.
