Structural-dynamic models of aspirin isomers in the condensed state

M D Elkin¹, V V Smirnov¹, O M Alykova¹, A F Alykova², I N Zavestovskaya²

¹Astrakhan state university, Astrakhan, Russia
²National Research Nuclear University MEPhI Moscow Engineering Physics Institute, Moscow, Russia
E-mail: olga-alykova@mail.ru

Abstract. Structural-dynamic models of aspirin are proposed on the basis of non-empirical quantum calculations of geometrical and electronic structure. In this work, the parameters of the adiabatic potential are determined, and the interpretation of the vibrational states of the compound under study is proposed. Structural-dynamic models of its isomers are constructed, the signs of their spectral identification are revealed. The conformational structure of the molecules of the substance under study was analyzed. The choice of the method and the basis for calculating the fundamental vibration frequencies and band intensities in the IR and Raman spectra are substantiated. A method for estimating anharmonic vibrations using cubic and flat force constants is described. The article presents the results of a numerical experiment; the geometrical parameters of the molecules, such as the lengths of the valence bonds and the magnitudes of the angles between them, are determined. The frequencies of the vibrational states and the magnitudes of their integrated intensities are obtained. The interpretation of isomer vibrations is given and compared with the available experimental data. General regularities in the behavior of spectral bands of different isomers are shown. Frequencies that can be used to identify the isomer from the vibrational spectra of molecules are proposed. The calculation was carried out by the DFT/B3LYP density functional quantum method. It is shown that this method can be used to model the geometrical parameters of molecules and the electronic structure of various substituted benzoic acid. It allows to construct structural-dynamic models of the specified class of compounds on the basis of numerical calculations.

Keywords: aspirin, acetylsalicylic acid, benzoic acid, ortho substituted benzoic acid, isomers, vibrational spectra, IR spectra adiabatic potential, anharmonic displacement, hydrogen bond.

1. Introduction

Aspirin, acetylsalicylic acid is known in pharmacology as a compound with a wide range of applications in practical medicine. It can be attributed to ortho substituted benzoic acid, for which the construction of structural and dynamic models is the subject of a number of scientific publications [7-9,12]. Note that aspirin, like all representatives of the class of carboxylic acids in real conditions, forms dimers, which are characterized by a complex structure of bands in the high-frequency range of the vibrational spectrum. Their interpretation is still a subject of scientific discussions. This is especially true for dimers of benzoic and pyridinecarboxylic acids. In [2,4,6], a technique for analyzing the anharmonic shift of the carboxyl
fragment bands in monomers and dimers of carboxylic acids, based on quantum mechanical estimates of the adiabatic potential parameters of compounds, is proposed.

The purpose of this report is the construction of structural and dynamic models of possible aspirin isomers in the framework of this technique, the identification of signs of their spectral identification.

2. Mathematical model for estimating anharmonic vibrational states

To describe the anharmonic shift of vibrational states, we use the relation

\[E_v = v_s(n_s + 1/2) + \chi_{sr}(n_s + 1/2)(n_r + 1/2) \]

(1)

It is the solution of a model equation for the description of molecular oscillations in the framework of the second-order adiabatic perturbation theory [11].

\[2H^{(v)} = v_s(P_s^2 + (Q^s)^2) + \mu^{1/4}P_a\mu^{1/4}P_b\mu^{1/4} + \frac{1}{3}F_{sr}Q'Q'' + \frac{1}{12}F_{srut}Q'Q'Q'' . \]

(2)

The expressions for anharmonic constants \(\chi_{sr} \) are proposed in publications [2,4,6].

\[\chi_{ss} = \frac{1}{16}F_{ssss} - \frac{5}{48}(F_{ss})^2v_s + \frac{1}{32}(F_{ss})^2(\Omega(s,s;\pm r) - \Omega(s,s;r) - 12\Omega(r,r,r)(1 - \delta_{sr})) \]

(3)

\[\chi_{sr} = \frac{1}{16}F_{srss} - \frac{1}{8}(F_{ss})^2(\Omega(s,s;\pm r) + \Omega(s,s;r)(1 - \delta_{sr})) + \frac{3}{8}(F_{ss})^2(\Omega(s,s;\pm t) - \Omega(s,s;r) - 12\Omega(r,r,s)(1 - \delta_{sr})(1 - \delta_{rt})) + \frac{1}{2}L(s,s;r) \]

(4)

In relations (1) - (4) \(P_\alpha = L(\alpha;sr)Q' \cdot P_\alpha; L(\alpha;sr) \) – the constants of Coriolis, \(\nu_s \) – harmonic frequencies (in cm\(^{-1}\)); \(Q' \) – dimensionless normal vibrational coordinates linearly related to Cartesian atomic displacements; \(F_{sr} \) and \(F_{srut} \) – cubic and quartic force constants (parameters of adiabatic potential of a molecule), \(\Omega(s; \pm r; \pm t) = (\nu_s \pm \nu_r \pm \nu_t) \) – resonance functions, \(n_s \) – quantum numbers of the considered vibrational state.

The value of the anharmonic shift of a single band of fundamental oscillation is determined by the value of the anharmonic corrections \(\chi_{ss} = 2\chi_{ss} \) and \(\chi_{sr} = \chi_{sr}/2 \).

The set of fundamental oscillations of aspirin isomers presented in tables 1-5 can be divided into three groups: the oscillations of the benzene core (C\(_6\)H\(_4\)), vibrations of the carboxyl fragment and fragment COCH\(_3\), which replaces the hydrogen atom of the hydroxyl fragment of salicylic acid (Figure 1). The torsional vibrations of this fragment could not be described by the possibilities of the Gaussian technology [10], therefore, the anharmonic shift of the bands was estimated using the scaling procedure with parameters from the publication [3, 5].
3. Results and discussion
For the benzene fragment, the results of model calculations are presented in Table 1. They are completely consistent with those of the monograph [1] and the nonempirical quantum calculations presented in the publications [3,5]. We only note that the formation of a compound dimer affects only the intensity values of the bands in the IR and Raman spectra.

![Molecular Diagrams of Aspirin Isomers](image)

Figure 1. Molecular Diagrams of Aspirin Isomers.

The form of vibration	\(\nu_{\text{asc}}\)	\(\nu_{\text{st}}\)	Is 1A	Is 1B	Is 2A	Is 2B	IR_Dimers				
\(Q,\gamma,\beta\)	1610	1586	59	68	66	66	41 57	41 57	181 183	74 76	
\(Q,\gamma,\beta\)	1583	1566	4.1	8.5	8.7	8.1	26 16	26 16	0.6	4.8 107	92
\(\beta,\gamma\)	1500	1465	71	8.6	101	9.8	78 10	78 10	124 178	147 177	
\(\beta,\gamma\)	1448	1436	89	2.6	45	3.1	42 1.8	42 1.8	364 36	26 107	
\(Q,\beta\)	1290	1292	12	1	21	15	9.3 11	9.3 11	115 66	275 182	
\(\beta,\gamma\)	1259	1586	15	0.9	33	5.2	0.4 2.5	0.4 2.5	59 30	30 76	
\(\beta\)	1159	1149	98	35	24	16	251 31	251 31	267 539	265 112	
\(\beta,\gamma\)	1120	1116	91	2.5	71	6.4	55 0.4	55 0.4	24 45	12 151	
\(\gamma,\beta\)	1052	1079	11	1.4	3.2	0.5	109 16	109 16	50 17	136 75	
\(Q,\beta^*\)	-	1037	27	17	24	25	121 8.9	121 8.9	23 25	14 15	
\(\gamma\)	830	790	8.4	2.1	19	3.0	7.9 1.4	7.9 1.4	46 52	46 54	
\(\gamma,\beta,\gamma\)	735	746	8.7	7.4	24	18	8.1 9.6	8.1 9.6	3.4 33	39 17	
\(\gamma,\beta,\gamma\)	623	658	9.7	2.7	28	2.7	9.6 11	9.6 11	49 7.1	17 5.5	
\(\rho,\chi\)	729	761	85	0.1	66	6.6	69 0.1	69 0.1	119 129	122 131	
\(\chi\)	694	709	50	0.6	8.7	8.1	42 0.8	42 0.8	11 9.7	9.7 12	

The data presented in Table 2 confirm the conclusions made in [2] about the characteristics of fundamental vibrations of the carboxyl fragment.
Table 2. The interpretation of the fundamental vibrational states of carboxylic fragment in aspirin isomers

Isomer	Monomer	Dimer								
	νг	νм	IR	Ram	νг	νм	IR	Ram		
	Q_{C=O}	β_{OH,Q_{C=O},Q_{CC},β}	γ_{OCO}	β_{OH}	Q_{C=O}	γ_{OH}				
Is 1A	1781	1721	408	42	1728	1671	1071	1676	1621	206
Is 1B	1777	1717	358	38	1732	1675	916	1677	1622	177
Is 2A	1805	1744	339	56	1752	1694	977	1706	1649	270
Is 2B	1820	1758	208	39	1764	1705	849	1719	1663	256

Note. Oscillation (vibration) frequency in cm^{-1}, intensity in IR – km/mol, in Raman – Å^4/eam

Let’s consider the anharmonic shifts of the bands of valent vibrations of the carboxyl fragment OH bonds in aspirin dimers. The comparison of the results of model calculations in the anharmonic approximation of the theory of molecular vibrations, presented in table 3 for dimers of a number of carboxylic acids, gives grounds to talk about the characteristic of the bands of these oscillations in the frequency of form and intensity. It should be borne in mind that the proximity of the calculated values of the harmonic frequencies of valence bond oscillations OH and OH in dimers of carbonic acids can lead to a redistribution of intensities. This fact is illustrated by table 4, as a result of the capabilities of the numerical methods of Gaussian technology, if the energy gap between the vibrational states is less than 10 cm^{-1}. Note that by choosing the basis you can bypass this problem [2].

Table 5 gives a theoretical interpretation of the stretching (valent) vibrations of the OOSH\textsubscript{3} fragment of aspirin isomers. The bands, interpreted as deformation oscillations of this fragment, have, according to model calculations, low intensity in the IR and Raman spectra and are not of interest for problems of spectral identification. The manifestation of the oscillations of the methyl group (CH\textsubscript{3}) in the IR and Raman spectra is well known [1].

To identify dimers, the intensity of the IR bands in the range of 1600-1100 cm-1 can be used (Table 1). For monomers, bands in the range below 1200 cm-1 are used.
Table 3. Interpretation of the valent vibrations of OH bonds of the carboxyl fragment of aspirin

Compound	Monomer	Dimer						
	(ν_r, ν_s)	(IR, Ram)						
FA	3735, 3549	49, 78	3239, 3091	2930, 3239	3128, 2988	2776, 189		
AA	3759, 3571	51, 102	3223, 3076	2906, 3122	3116, 2977	2746, 417		
BA	3777, 3577	99, 137	3192, 3048	2955, 4639	3088, 2951	2728, 1070		
SA	3757, 3569	76, 159	3199, 3054	2890, 4793	3096, 2958	2722, 1107		
Is 1A	3749, 3562	73, 143	3197	3052 *	4998	3099	2961	-
Is 1B	3755, 3565	78, 149	3223, 3076	3128, 2987	-	1119		
Is 2A	3777, 3587	90, 150	3214, 3067	3116, 2977	-	1134		
Is 2B	3777, 3587	90, 152	3213, 3067	3115, 2975	-	1120		

Note. Designation: FA, AA, BA, SA - formic, acetic, benzoic, salicylic acids, respectively.

Table 4. Interpretation of the valence vibrations of CH bonds of the benzene backbone of aspirin

ν_r	ν_s	Is 1A	Is 1B	Is 2A	Is 2B				
		IR	Ram	IR	Ram	IR	Ram		
Monomers									
3270	3120	7.2	58	6.3	120	7.6	56	5.5	117
3219	3072	4.1	115	8.0	18	1.4	99	1.2	100
3203	3056	12	163	5.6	121	15	187	9.6	16
3184	3039	5.3	81	11	156	4.8	81	14	185
Dimers									
3262	3112	14	136	0.2	196	14	131	0.3	184
3224	3077	17	193	224	198	2.5	188	4.8	190
3191 *	3046	71	388	74	357	161	417	167	394
3173	3030	7.3	186	11	193	7.6	189	9.1	192

Table 5. Interpretation of the valence vibrations of the acetyl fragment of aspirin

ν_r	ν_s	IR	Ram	IR	Ram	IR	Ram				
Monomer	Dimer										
1821	1759	203	22	496	27	1216	1181	169	32	954	8.9
1838	1776	341	39	669	61	1202	1167	127	39	464	4.1
1822	1759	271	11	579	21	1214	1180	307	3.7	1012	9.1
1842	1778	447	47	749	57	1191	1156	425	17	857	19

Q_{cc} (1219 [12])

Q_{cc}	Q_{CC}										
1238	1202	640	29	457	129	938	913	27	2.1	46	6.1
1246	1212	508	32	585	137	937	912	29	2.5	65	5.8
1239	1203	313	48	570	127	938	913	34	1.5	46	5.1
1252	1215	369	37	676	147	936	911	36	2.7	66	5.3
According to the results of optimization of the geometry of the conformational models of aspirin (Fig. 1), the distance between the oxygen atoms of the carboxylic fragment and the fragment OCOCH₃ exceeds the value 2.5 Å. For the hydrogen atoms of the methyl group and the oxygen atoms of the carboxyl fragment, the distance is more than 3.1 Å. The effect of intramolecular interaction on the position of the bands of the fragment OCOCH₃ can be neglected, as evidenced by the data in Table 5.

4. Conclusion
The conducted numerical experiment for monomers and dimers of acetyl salicylic acid allows us to state that the manifestation of fundamental vibrations of the carboxyl fragment in the monomers and dimers of the compound has the same character as in various ortho-substituted ones of benzoic acid. The effect of the carboxyl fragment on the character of the substituent bands in the ortho position of the benzene backbone is determined by the interatomic distance between the atoms of the carboxyl fragment.

References
[1] Sverdlov L.M., Kovner M.A., Krajnov E.P. Vibrational spectra of multiatomic molecules. (Moscow: A science) 1970, 550 with.
[2] M.D. Elkin, L.M. Babkov Accounting for the anharmonic shift of bands in the model predictions of the vibrational spectra of the dimers with hydrogen bond. 2011 News Sarat.state UN-TA. Physics Series. № 11. Vol.1. P.20-25.
[3] M.D. Elkin, O.M. Alykova, V.V. Smirnov, G.P. Stefanova The methods of optical physics as a mean of the objects' molecular structure identification (on the base of the research of dophrane and adrenaline molecules) 2017. Journal of Physics: Conference Series. Vol. 784. P. 012050 DOI 10.1088/1742-6596/784/1/012050
[4] M.D. Elkin, V.F. Pulin, A.B. Osin Mathematical's Aspens of model in molecular modelling // Bulletin Saratov State University.-2010 . V. 4(49).36 - 39.
[5] M.D. Elkin, V.V. Smirnov, O.M. Alykova, G.P. Stefanova, I.N. Zavestovskaya, A.F. Alykova, A.V. Rybakov Structurally-dynamic models of substituted benzoic acids 2019 Journal of Physics: Conference Series. Vol. 1189, No. 1. P. 1-8 DOI 10.1088/1742-6596/1189/1/012030
[6] E.A. Erman, M.D. El'kin, E.A. Dzhalmuhambetova Model estimates of anharmonic shift of bands in vibrational spectra of dimers of carboxylic acids 2010 Caspian journal. Management and high technologies. № 4 (12). P. 53-58.
[7] I.G. Binev, B.A. Stamboiyeka, Y.I. Binev The infrared spectra and structure of acetlsalicylic acid (aspirin). 1996 J. Mol. Structure. V.378. N 4 p.189-197.
[8] M. Boszar, M.J. Vojcik, K. Szczeponek, D. Jamroz, A. Zieba, B. Kawalek Theoretical modeling of infrared spectra of aspirin and its deuterated derivative 2003 Chem Phys. V.286. N.1. p.63-79.
[9] A.A. Bunaian, H.Y. Abool-Enein, S. Flischin FT-IR spectrophotometric analysis of acetylsalicylic acid and its pharmaceutical formulations. 2006 Canadian Journal of analytical Sciences and spectroscopy. V.51 p.253-259.
[10] Gaussian 03. Revision B.3. / M.J.Frish [et.al]. (Pittsburgh PA.: Gaussian Inc.) 2003.
[11] Hoy A.R., Mills I.M., G.Strey. Anharmonic force constants calculation. J. Mol. Phys. 21, N.6 (1972 1265-1290.
[12] G Mohr, C.L. Spencer, M. Hippen inexpensive Raman spectroscopy for undergraduate and graduate experiments 2010 American chemical Society. V.87. N.3. p. 326-329.