Deletion of a Single Amino Acid Residue from Different 4-Coumarate:CoA Ligases from Soybean Results in the Generation of New Substrate Specificities*

Christian Lindermayr, Judith Fliegmann, and Jürgen Ebel‡
From the Department Biologie I/Botanik, Ludwig-Maximilians Universität, Menzinger Str. 67, D-80638 München, Germany

Plant 4-coumarate:coenzyme A ligases, acyl-CoA ligases, peptide synthetases, and firefly luciferases are grouped in one family of AMP-binding proteins. These enzymes do not only use a common reaction mechanism for the activation of carboxylate substrates but are also very likely marked by a similar functional architecture. In soybean, four 4-coumarate:CoA ligases have been described that display different substrate utilization profiles. One of these (Gm4CL1) represented an isoform that was able to convert highly ring-substituted cinnamic acids. Using computer-based predictions of the conformation of Gm4CL1, a peptide motif was identified and experimentally verified to exert a critical influence on the selectivity toward differently ring-substituted cinnamate substrates. Furthermore, one unique amino acid residue present in the other isoenzymes of soybean was shown to be responsible for the incapability to accommodate highly substituted substrates. The deletion of this residue conferred the ability to activate sinapate and, in one case, also 3,4-dimethoxy cinnamate and was accompanied by a significantly better affinity for ferulate. The engineering of the substrate specificity of the critical enzymes that activate the common precursors of lignin is the activation of differently ring-substituted cinnamic acids. This reaction is catalyzed by 4-coumarate:CoA ligase (4CL, EC 6.2.1.12), an enzyme that employs a two-step reaction mechanism related to other adenylate-forming enzymes (1). This work was supported by the Deutsche Forschungsgemeinschaft (Grant Eb 62/11–3), the Fonds der Chemischen Industrie, and a fellowship of the state of Bavaria (to C. L.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. To whom correspondence should be addressed. Fax: 49-89-1782274; E-mail: j.ebel@botanik.biologie.uni-muenchen.de.

© 2003 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in U.S.A.
from *Arabidopsis* (2, 3, 15). Interestingly, the modification of highly conserved residues included in each of these boxes, which have been postulated to be essential for the enzymatic reaction, did not result in the total loss of activity but showed rather subtle changes of the kinetic parameters of the conversion of caffeate to the respective CoA ester (2). Putative substrate-binding domains within the amino acid sequence have been identified by domain-swapping approaches (15) and have been shown to include specificity-conferring residues that were predicted to be in direct contact with the ring substituent of the cinnamic acid substrate, ferrulate (3).

In our earlier report, we described the first cloned 4CL isoenzyme capable of converting sinapate to its thiol ester (8). We now aimed to pinpoint the major difference(s) in the structures of the soybean isozymes that are responsible for the different substrate specificities. In a first attempt, domain swapping between one isoform using a narrow substrate range and one isoform with a broad substrate range was used to confine the regions important for the binding of the acid substrate. Second, structural comparisons have been conducted using 4CL protein alignments in conjunction with crystal structures derived from enzymes utilizing similar enzymatic mechanisms. This allowed the deduction of regions or single amino acid residues with a suspected importance in the enzymatic reaction toward the cinnamic acid substrate. Site-directed mutagenesis was then used to generate modified proteins, which were assayed for altered substrate specificities.

Intriguingly, the deletion of one single amino acid residue from *Gm*4CL2 as well as from *Gm*4CL3, which is absent in wild-type *Gm*4CL1, resulted in the generation of new specificities and allowed the mutant enzymes to convert sinapate. The possibility of converting 4CL isoforms into sinapoyl-synthesizing enzymes may lead to valuable transgenic plants, where lignin production and composition may be customized by ing enzymes may lead to valuable transgenic plants, where lignin production and composition may be customized by "AMP-binding enzymes utilizing a common two-step activation mechanism for carboxylate substrates as diverse as fatty, acetate, amino, or cinnamic acids or chlorobenzene and luciferin (1, 13, 16, 21). PheA, the phenylalanine-activating subunit of gramicidin S synthetase 1 from *Bacillus brevis*, which employs the same reaction mechanism, has been crystallized in a ternary complex with the substrates AMP and phenylalanine (22). Luciferase from the firefly *Photinus pyralis*, another member of this enzyme family from which a structure is available, showed a structure similar to PheA, which allowed the presumptive assignment of the amino acid residues implicated in the binding of the substrates when compared with PheA (16). Since firefly luciferase and plant 4CLs share 31–33% identical amino acid residues, it was then possible to use the structure of the firefly luciferase as a template to model the hypothetical three-dimensional conformation of *Gm*4CL1. All these proteins fold into a larger N-terminal domain and a smaller C-terminal domain with the substrate-binding pocket being located near the transition of the N-terminal domain to the C-terminal domain. This putative substrate-binding region located to the central part of *Gm*4CL1.

We tested this prediction by using a domain-swapping approach exploiting the two soybean 4CL isoforms, *Gm*4CL1 and *Gm*4CL3, which showed the most diverse substrate specificities (8). Following the assembly of different hybrids from *Gm*4CL1 and *Gm*4CL3 cDNAs (Fig. 1A), the derived cDNAs were cloned into a bacterial expression vector (pQE30 or pQE31). Site-directed mutagenesis was used to generate modified proteins, which were assayed for altered substrate specificities. Site-specific Mutagenesis—The modification of single nucleotide residues was performed using proof-reading PCR according to Refs. 17 and 18. Briefly, for each mutation, a pair of oligonucleotides was synthesized including the desired alterations surrounding by at least eight nucleotides of the original sequence. The size of the primers was adjusted to yield a melting temperature of 72–77 °C by using the following formula:

\[
T_m = 81.5 + 0.41 \times GC
\]

(number of bases – sequence deviation (%)). For the amplification, 10 ng of column-purified plasmid DNA (Genomed, Bad Oeynhausen, Germany) was used in a total volume of 50 μl, including 1 μl of each primer, 200 μM dNTPs, and one unit of *Pfu* polymerase (Promega/Serva). In total, 10 cycles were conducted, consisting of 35 s at 94 °C, 45 s at 55 °C, and 12 min at 72 °C, preceded by a melting step at 94 °C for 2 min and followed by a final extension step at 72 °C for 10 min. Subsequently, the parental template DNA was digested with *Dpn*I (Promega/Serva), and the amplified plasmids were purified and transformed into *Escherichia coli* DH5α (19). The mutations were verified by sequencing.

Expression in *E. coli* and Enzyme Purification—Heterologous expression, enzymatic assays, and calculations of isoenzyme specificities were performed as described (8). Isolation of recombinant proteins was achieved by affinity dye chromatography combined with immobilized metal chelate affinity chromatography. Briefly, crude bacterial extracts were applied to reactive blue CL-6B (Sigma) in 50 mM Tris/HCl, pH 8, 14 mM 2-mercaptoethanol, and 30% (v/v) glycerol (buffer A). The column was washed with buffer A including 0.6 M NaCl, and proteins were eluted by addition of 2 M NaCl. The eluate was applied to nickel-nitrilotriacetic acid agarose (Qiagen), equilibrated previously in buffer A including 2 M NaCl. After washing (buffer A, 1 M NaCl, 10 mM imidazole), the bound proteins were eluted by raising the imidazole concentration to 200 mM.

RESULTS

Domain Swapping—The plant 4CLs belong to a family of AMP-binding enzymes utilizing a common two-step activation mechanism for carboxylate substrates as diverse as fatty, acetate, amino, or cinnamic acids or chlorobenzene and luciferin (1, 13, 16, 21). PheA, the phenylalanine-activating subunit of gramicidin S synthetase 1 from *Bacillus brevis*, which employs the same reaction mechanism, has been crystallized in a ternary complex with the substrates AMP and phenylalanine (22). Luciferase from the firefly *Photinus pyralis*, another member of this enzyme family from which a structure is available, showed a structure similar to PheA, which allowed the presumptive assignment of the amino acid residues implicated in the binding of the substrates when compared with PheA (16). Since firefly luciferase and plant 4CLs share 31–33% identical amino acid residues, it was then possible to use the structure of the firefly luciferase as a template to model the hypothetical three-dimensional conformation of *Gm*4CL1. All these proteins fold into a larger N-terminal domain and a smaller C-terminal domain with the substrate-binding pocket being located near the transition of the N-terminal domain to the C-terminal domain. This putative substrate-binding region located to the central part of *Gm*4CL1.

We tested this prediction by using a domain-swapping approach exploiting the two soybean 4CL isoforms, *Gm*4CL1 and *Gm*4CL3, which showed the most diverse substrate specificities (8). Following the assembly of different hybrids from *Gm*4CL1 and *Gm*4CL3 cDNAs (Fig. 1A), the derived cDNAs were cloned into a bacterial expression vector (pQE30 or pQE31). As summarized in Fig. 1B, nine chimeric proteins have been generated, from which five were shown to be inactive. The hybrid proteins H1 and H5, which each contained the highly conserved C-terminal domain of the other form, showed no differences in substrate specificities (Table I), excluding an impact of this protein region on the utilization of the cinnamic acid substrate. The replacement of the central region of *Gm*4CL1 with the respective portion of *Gm*4CL3 (H3, H4) resulted in a significant alteration of the substrate specificity. The hybrid proteins H3 and H4 accepted only the same restricted substrate range of cinnamic acid substrates as isofrom 3 (Table I). The failure to generate active hybrid proteins in the reverse combination of isoforms 1 and 3 (H7, H8) may have been due to the N-terminal extension present in *Gm*4CL3 as opposed to *Gm*4CL1, which may have resulted in a structural perturbation that was not tolerated by an isofrom 1-type enzyme. The hybrid forms H2 and H6, which were merged in the middle of the central region, as well as H9, which contained only the central part of *Gm*4CL1 in the backbone of *Gm*4CL3, all yielded inactive enzymes despite a positive expression of all of these recombinant proteins (Fig. 1C).

Alanine Scanning—The involvement of the central domain of 4CL in the recognition of cinnamic acid substrates was surveyed in more detail. The sequential superposition of the central protein regions of PheA, which have been shown to build
part of the active site cavity, in the first step to luciferase and then to a computer-generated model of Gm4CL1, led to the selection of a protein region of 4CL presumably involved in the binding of the cinnamic acid substrate (Gm4CL1), in the region, which was shown to build the phenylalanine-binding pocket in PheA (22).

According to the designation of functional side chain residues, as identified by the alanine-scanning mutagenesis, this part of the putative binding pocket showed only a moderate influence on the selectivity for differently substituted cinnamic acids (Fig. 2B). Furthermore, Gm4CL1 represents the only isoform that is able to activate sinapate and 3,4-DMC. We therefore tested the impact of the valine deletion by engineering it into the two other isoforms (Gm4CL2 and 3) of soybean, which have been shown to display intermediate and narrow substrate utilization ranges, respectively (8). The mutant enzymes were indeed able to convert sinapate, although the affinities were shown to be rather low (K_m values of 1208 and 323 μM, respectively, Table II) when compared with Gm4CL1 (K_m value of 4.7 μM). Gm4CL2dVal345 did not show any further significant alteration of the catalytic efficiency, in contrast to Gm4CL3dVal345. The latter mutant form did not only gain the capacity to convert sinapate but also the capacity to utilize the artificial substrate 3,4-DMC, showing a slightly better relative conversion rate in comparison with sinapate. Moreover, the efficiency of activating ferulic acid was greatly enhanced compared with the wild-type 4CL3 enzyme (Table II). In the case of Gm4CL3, the deletion of one single residue resulted in a considerable alteration of the functionality of the isoenzyme, albeit accompanied by a decrease of the efficiency for 4-coumarate, the highly preferred substrate of the wild-type isoform, as well as for caffeate.

DISCUSSION

The soybean 4-coumarate:CoA ligase 1 (1) (Gm4CL1) DNA (8) represents a valuable tool for investigations on the active site of a plant 4CL isoform, which is capable of converting the highly ring-substituted cinnamic acids, sinapate and 3,4-DMC, to the respective CoA thioesters. The aim of our present study was to elucidate the critical difference, inherited by Gm4CL1, that allows this enzyme to accommodate a great range of dif-
ferently substituted substrates. The analyses were provoked and facilitated by the availability of two other soybean 4CL cDNAs, coding for Gm4CL2 and Gm4CL3, which are distinguished from Gm4CL1 by an intermediate and narrow substrate utilization range, respectively (8). By successively pinpointing one region of the primary sequence of the enzyme contributing to the active site, a single amino acid residue was identified that, in Gm4CL2 and Gm4CL3, prohibited the conversion of the highly substituted substrates.

One further important prerequisite for the design of our

TABLE I

Substrate Specificities of Chimeric 4CL Enzymes Generated by Domain Swaps between Gm4CL1 and Gm4CL3
The recombinant 4CLs were expressed in E. coli, and specific enzyme activities were determined as described previously (8). The cinnamic acid substrates were used at the following concentrations in the assays: cinnamate, 2 mM; 4-coumarate, caffeate, sinapate, and 3,4-DMC, 0.5 mM; ferulate, 0.1 mM.
4CL1

Cinnamate
4-Coumarate
Caffeate
Sinapate
Ferulate
3,4-DMC

Fig. 2. Alanine-scanning mutagenesis of Gm4CL1. A, partial amino acid alignment of soybean (Glycine max, Gm) and A. thaliana (At) 4CL isoforms 1, 2, and 3, respectively, in comparison with PheA, the phenylalanine-activating subunit of gramicidin S synthetase 1 from B. brevis. The denoted numbering is according to each single polypeptide, as found in the databases. B, enzyme activity profiles of different recombinant Gm4CL1 proteins generated by site-directed mutagenesis in the protein regions depicted in panel A in comparison with the wild-type (wt) enzyme activity of Gm4CL1 (4CL1/wt). The recombinant proteins were expressed in E. coli, and the specific activities were measured in crude extracts as described previously by using 2 mM cinnamate or 0.5 mM of all other cinnamic acid substrates, respectively (8). The conversion rates for the cinnamic acids, as catalyzed by the recombinant proteins, are each depicted in the order cinnamate, 4-coumarate, caffeate, sinapate, and 3,4-DMC (left to right), respectively, and are denoted by different shading of the columns. C, detection of the single-residue mutant proteins and wild-type Gm4CL1 generated in E. coli by Western blotting, performed as described in the legend for Fig. 1. The relative molecular masses of protein standards are shown on the left.
experiments was structural information describing proteins executing similar enzymatic reactions. 4CLs belong to the superfamily of AMP-binding enzymes, which also includes PheA, the adenylation domain of gramicidin S synthetase, and the firefly luciferase (13, 16, 22). The structures of these proteins have been determined, in the case of PheA even as a ternary complex in the presence of the substrates AMP and phenylalanine (16, 22). Based on the amino acid sequence alignments used in the aforementioned publication (3), particular exceptional of the loss of 3,4-DMC activation by the mutation P285A (Fig. 2A). This artificial substrate contains an O-methyl group in para-position, which may bear a steric hindrance in preventing a productive enzyme-substrate complex in the modified substrate groove. Although the participation of the tripeptide in substrate binding cannot be firmly deduced without the elucidation of the real structure of a 4CL in the presence of the acid substrate, our data clearly support the computational model of Gm4CL1, which places this peptide at one end of the substrate-binding pocket. The different ring substitutions of the cinnamic acids implicate different spatial requirements for the substrates, which may or may not fit into the groove built by this stretch of amino acid residues, depending on their respective side chains. This conclusion was corroborated by the recent description of a substrate specificity-conferring amino acid in 4CL2 from Arabidopsis (3). The position Met293 of At4CL2, which was speculated to correspond to Thr278 of PheA, was shown to influence the spatial arrangement of the substrate-binding pocket in such a way that only the exchange with a smaller residue allowed the utilization of ferulate (3). Regardless of minor displacements of the PheA amino acid sequence in relation to different plant 4CL protein alignments used in the aforementioned publication (3), published recently elsewhere (15), or presented in our study (Fig. 2A), the accumulated results indicate that in silico biology can be applied to approach the questions posed in these studies. According to the alignment of Fig. 2A, the second selected region of Gm4CL1 (positions 331 to 348) corresponds to a small amino acid motif of PheA, which includes residues contributing
to the fixation of both substrates (phenylalanine and AMP) by both main chain carbonyl oxygens (Ala222, Gly224, Ile330) as well as side chain interactions (Asn321, Tyr323, Thr326, Glu327) (22). The importance of this central part of the polypeptide chain of Gm4CL1 is reflected by the loss of activity observed for 9 out of 13 single mutant enzymes (Fig. 2B). Interestingly, the exchange at Q334A did not result in a total loss of activity despite the importance of the respective functionally analogous residue Asn221 of PhoA. Here, the side chain was proposed to interact both with the exocyclic nitrogen of adenine as well as with N1 of the purine ring through a well ordered water molecule (22). Moreover, the substrate specificity of the mutant Q334A displayed a reversal of the pattern when compared with that of the wild-type Gm4CL1 enzyme: caffeate and sinapate were preferably converted, in contrast to coumarate, ferulate, and 3,4-DMC. This result could indicate a major influence on cinnamic acid substrate discrimination rather than on AMP binding.

The most conspicuous difference of the central part of the polypeptide chain between Gm4CL1 and all other known plant 4CL proteins was the absence of a conserved valine residue between the positions Pro343 and Leu344 of Gm4CL1 (Fig. 2A and data not shown). We substantiated the important contribution of this amino acid to the substrate specificity by engineering its absence into two other 4CL isoforms of soybean that were known to accept only a subset of the ring-substituted cinnamic acids as substrates (8). The single amino acid deletions had a profound impact on the range of accommodated substrates, generating new substrate specificities for Gm4CL2 and Gm4CL3 (Table II). The mutation of ligase 3, which efficiently converted only 4-coumarate and caffeate, to a form that not only accepted two additional substrates (sinapate and 3,4-DMC) but also showed a drastic improvement of the affinity for another (ferulate), illustrated the relevance of this amino acid for substrate discrimination. Computer-based modeling suggested that the deletion of the single valine residue caused a displacement of the respective peptide loop of Gm4CL3 and concomitantly resulted in a steric rearrangement of the orientation of the neighboring leucine side chain. Interestingly, the exchange at L344A of Gm4CL1 resulted in the total loss of enzyme activity (Fig. 2B). Furthermore, recent evidence indicated the participation of additional neighboring regions of the polypeptide chain, which allowed the mutant Arabidopsis enzymes to convert ferulate (3, 15). Taken together, these findings suggest that spatial restrictions of the binding groove rather than specific interactions between the substrate and amino acid residues of the polypeptide chain may be decisive in determining the substrate specificity of distinct 4CL isoenzymes.

In summary, the comparison of enzymatically highly divergent isoforms of 4CL from soybean enabled the prediction of functionally important amino acid residues. Active mutant enzymes with single amino acid exchanges revealed some of the structural principles responsible for the ability to utilize differently substituted cinnamic acids to a different extent. The principles detected for 4CL isoforms from soybean as well as from other sources (2, 3) help to understand the catalytic action of this important enzyme of the general phenylpropanoid pathway of plants. They could be useful also for the design of novel 4CL specificities. For example, the manipulation of the lignin composition of trees used for paper production is an economically important trait since a higher content of syringyl monolignols improves the commercial lignin degradation. Although recent discoveries concerning alternative pathways for the synthesis of monolignols provide interesting targets for genetically modified crop plants (22–25), the utilization of 4CL to preferentially activate a range of cinnamic acid substrates leading to highly substituted lignin building units may also constitute a valuable tool.

Acknowledgments—We thank K. Hahlbrock (Koln, Germany) for providing the P. crispum 4CL antiserum and A. Mithofer for critically reading the manuscript and valuable discussions.

REFERENCES

1. Knobloch, K.-H., and Hahlbrock, K. (1975) Eur. J. Biochem. 52, 311–320
2. Stuible, H.-P., Buttnzer, D., Ehlting, J., Hahlbrock, K., and Kombrink, E. (2000) FEBS Lett. 467, 117–122
3. Stuible, H.-P., and Kombrink, E. (2001) J. Biol. Chem. 276, 26893–26897
4. Douglas, C. J., Hoffmann, H., Schulz, W., and Hahlbrock, K. (1987) EMBO J. 6, 1189–1195
5. Becker-André, M., Schulze-Lefert, P., and Hahlbrock, K. (1991) J. Biol. Chem. 266, 8551–8559
6. Zhang, X. H., and Chiang, V. L. (1997) Plant Physiol. 113, 65–74
7. Uhlmann, A., and Ebel, J. (1993) Plant Physiol. 102, 1147–1156
8. Lindermayr, C., Möllers, B., Pfeilmeier, J., Uhlmann, A., Lotzspeich, F., Meimberg, H., and Ebel, J. (2002) Eur. J. Biochem. 269, 1354–1365
9. Lee, D., and Douglas, C. J. (1996) Plant Physiol. 112, 193–205
10. Hu, W.-J., Kawaoa, A., Tsai, C.-J., Lung, J., Osakabe, K., Ebihara, H., and Chiang, V. L. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 5407–5412
11. Allen, S. M., Pri-Hadas, A., Theilmann, D. A., Ellis, B. E., and Douglas, C. J. (1998) Plant Physiol. 116, 743–754
12. Ehlting, J., Buttnzer, D., Wang, Q., Douglas, C. J., Soosisch I. E., and Kombrink, E. (1999) Plant J. 19, 9–20
13. Babbitt, P. C., Kenyon, G. L., Martin, B. M., Charest, H., Slyvestre, M., Scholten, J. D., Chang, K.-H., Liang, P.-H., and Dunaway-Mariano, D. (1992) Biochemistry 31, 5594–5604
14. Hofman, P., Bucher, P., Falque, L., and Bairoch, A. (1999) Nucleic Acids Res. 27, 215–219
15. Ehlting, J., Shin, J. J. K., and Douglas, C. J. (2001) Plant J. 27, 455–465
16. Conti, E., Franks, N. P., and Brick, P. (1996) Structure 4, 287–298
17. Nelson, M., and McClelland, M. (1992) Methods Enzymol. 219, 269–273
18. Papworth, C., Braman, J., and Wright, D. A. (1996) Methods Enzymol. 219, 269–273
19. Haasch, D. (1989) J. Mol. Biol. 5, 587–589
20. Bagg, H., Kuhn, D. N., and Hahlbrock, K. (1981) J. Biol. Chem. 256, 10061–10065
21. Fulda, M., Heinz, E., and Walter, F. P. (1994) Mol. Gen. Genet. 242, 241–249
22. Conti, E., Schelchhaus, T., Marahiel, M. A., and Brick, P. (1997) EMBO J. 16, 4174–4183
23. Humphreys, J. M., Hemm, M. R., and Chapelle, C. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 10045–10050
24. Li, L., Popko, J. L., Umezawa, T., and Chiang, V. L. (2000) J. Biol. Chem. 275, 6537–6545
25. Guo, D., Chen, F., Inoue, K., Blount, J. W., and Dixon, R. A. (2001) Plant Cell 13, 73–88