CHOW GROUPS AND EQUIVARIANT GEOMETRY

RAHBAR VIRK

Introduction. Throughout, ‘variety’ will mean ‘separated scheme of finite type over Spec(\(\mathbb{C}\))’. A G-variety will mean a variety endowed with the action of a linear algebraic group G. The existence of functorial mixed Hodge structures on the rational cohomology, Borel-Moore homology, equivariant cohomology, etc., of a variety will be freely used (see [D]). For homology (Borel-Moore, equivariant, etc.), \(H_*\) will be called pure if each \(H_i\) is a pure Hodge structure of weight \(-i\).

Theorem 1. Let X be a variety on which a linear algebraic group acts with finitely many orbits. If the (Borel-Moore) homology \(H_*(X; \mathbb{Q})\) is pure (for instance, if X is rationally smooth and complete), then the cycle class map

\[CH_*(X)_{\mathbb{Q}} \xrightarrow{\sim} H_*(X; \mathbb{Q}), \]

from rational Chow groups to homology, is a degree doubling isomorphism.

This extends a result of Fulton-MacPherson-Sottile-Sturmfels [FMSS] from solvable groups to arbitrary linear algebraic groups. The price paid is that while most of the results of [FMSS] hold integrally, we deal exclusively with rational coefficients. Our arguments are quite different from those in [FMSS]. In particular, Theorem 1 is deduced from statements in the equivariant context.

For a G-variety X, write \(A^G_*(X)_{\mathbb{Q}}\) for its rational equivariant Chow groups. Let \(H^G_*(X; \mathbb{Q})\) denote the G-equivariant (Borel-Moore) homology of X, and let \(W_*\) be the weight filtration on \(H^G_*(X; \mathbb{Q})\).

Theorem 2. Let G be a linear algebraic group acting on a variety X. Assume X admits finitely many orbits. Then the cycle class map

\[A^G_i(X)_{\mathbb{Q}} \xrightarrow{\sim} W_{-2i}H^G_{2i}(X; \mathbb{Q}) \]

is an isomorphism for each \(i \in \mathbb{Z}\).

This is established by mimicking B. Totaro’s arguments from [T1]. Combined with Lemma 7, it yields the equivariant analogue of Theorem 1.

Corollary 3. Let G be a linear algebraic group acting on a variety X. Assume X admits finitely many orbits, and that \(H^G_*(X; \mathbb{Q})\) is pure. Then the cycle class map

\[A^G_*(X)_{\mathbb{Q}} \xrightarrow{\sim} H^G_*(X; \mathbb{Q}) \]

is a degree doubling isomorphism.

Now Theorem 1 follows via restriction from the equivariant to the non-equivariant context, using a result of M. Brion (Lemma 4).

Acknowledgments: This note is the meandering offspring of a joint project with W. Soergel and M. Wendt. I am grateful to them for our continuing discussions.
Proofs

Preliminaries. Let X be a G-variety. Write $\bar{H}^G_*(X; \mathbb{Q}(j))$ for the equivariant motivic cohomology of X (with ‘coefficients’ in $\mathbb{Q}(j)$). Write $\bar{H}^G_*(X; \mathbb{Q}(j))$ for the equivariant motivic (Borel-Moore) homology of X. In terms of the higher equivariant Chow groups $A^G_p(X, k)$ of [EG]:

$$\bar{H}^G_i(X; \mathbb{Q}(j)) = A^G_{i-j}(X, i-2j) \otimes \mathbb{Q}.$$

In particular, $\bar{H}^G_{2i}(X; \mathbb{Q}(i)) = A^G_i(X) \otimes \mathbb{Q}$. It will be notationally convenient to set $A^G_{-2i} = \bar{H}^G_{2i}(\text{Spec}(\mathbb{C}); \mathbb{Q}(i))$.

Given a group morphism $H \to G$, there is a restriction map $A^G_* \to A^H_*$. There are analogous restriction maps for motivic homology.

Lemma 4. If G is connected, then restriction induces an isomorphism:

$$\mathbb{Q} \otimes_{A^G_*} A^G_i(X) \otimes \mathbb{Q} \cong CH_*(X) \otimes \mathbb{Q}.$$

Proof. If G is reductive, then this is [B, Corollary 6.7(i)]. In general, if $U \subseteq G$ is the unipotent radical, then G/U is reductive, and restriction yields an isomorphism $A^G_{G/U} \cong A^G_G$. Similarly for motivic homology (see [T2, Lemma 2.18]).

There is a natural map $\bar{H}^G_{2i}(X; \mathbb{Q}(j)) \to W_{-2j}H^G_{2i}(X; \mathbb{Q})$. See [T1, §4] for a cogent explanation of this. The map

$$\bar{H}^G_{2i}(X; \mathbb{Q}(i)) = A^G_i(X) \otimes \mathbb{Q} \to \bar{H}^G_{2i}(X; \mathbb{Q})$$

is the cycle class map.

Weak property. A G-variety X satisfies the weak property if the cycle class map

$$\bar{H}^G_{2i}(X; \mathbb{Q}(i)) = A^G_i(X) \otimes \mathbb{Q} \to W_{-2i}H^G_{2i}(X; \mathbb{Q})$$

is an isomorphism for each $i \in \mathbb{Z}$.

Strong property. A G-variety X satisfies the strong property if it satisfies the weak property and the map

$$\bar{H}^G_{2i+1}(X; \mathbb{Q}(i)) \to \text{gr}^W_{-2i}H^G_{2i+1}(X; \mathbb{Q})$$

is surjective for each $i \in \mathbb{Z}$. Here gr^W_* denotes the associated graded with respect to the weight filtration W_*.

Lemma 5. Let G be a linear algebraic group, and let $K \subseteq G$ be a closed subgroup. Then G/K satisfies the strong property (as a G-variety).

Proof. The map $A^G_{G/K} \otimes \mathbb{Q} \cong H^G_*(G/K; \mathbb{Q})$ is a degree doubling isomorphism (see [T2, Theorem 2.14]).

Lemma 6. Let X be a G-variety, $Z \subseteq X$ a G-stable closed subvariety, and $U = X - Z$ the open complement. If U satisfies the strong property and Z the weak, then X satisfies the weak property.
Proof. We have a morphism of long exact sequences:

\[
\begin{align*}
\tilde{H}^G_{2i+1}(U; \mathbb{Q}(i)) \rightarrow \tilde{H}^G_{2i}(Z; \mathbb{Q}(i)) \rightarrow \tilde{H}^G_{2i}(X; \mathbb{Q}(i)) \rightarrow \tilde{H}^G_{2i}(U; \mathbb{Q}(i)) \rightarrow 0 \\
\text{gr}_2^W H^G_{2i+1}(U) \rightarrow W_{-2i} \tilde{H}^G_{2i}(Z) \rightarrow W_{-2i} \tilde{H}^G_{2i}(X) \rightarrow W_{-2i} \tilde{H}^G_{2i}(U) \rightarrow 0
\end{align*}
\]

where ‘\mathbb{Q}’ has been omitted from the notation in the bottom row due to typesetting considerations. The first vertical map is surjective (strong property for U). The second and fourth vertical maps are isomorphisms by the weak property for Z and U respectively. So the third vertical map must also be an isomorphism. \hfill \square

Proof of Theorem 2. Combine Lemma 5 and Lemma 6.

Proof of Corollary 3. Combine Theorem 2 with the following observation.

Lemma 7. Let X be a variety on which a linear algebraic group G acts with finitely many orbits. Then the (Borel-Moore) homology $H_*(X; \mathbb{Q})$ is a successive extension of Hodge structures of type (n, n).

Proof. We may assume $X = G/K$, where $K \subset G$ is a closed subgroup. Now $H^*(G/K; \mathbb{Q})$ is the K-equivariant cohomology of G. Consider the usual simplicial variety computing this (see [D, §6]). Filtering by skeleta yields a spectral sequence whose E_1 entries are of the form $H^q(K^{	imes p} \times G; \mathbb{Q})$ [D, Proposition 8.3.5]. Now recall that the cohomology of a linear algebraic group is of type (n, n) [D, §9.1]. \hfill \square

Proof of Theorem 1. We may assume that G is connected. Let H^G_* denote the equivariant cohomology ring of a point. Purity and Lemma 7 imply that $H_*(X; \mathbb{Q})$ is concentrated in even degrees. Purity also implies that the natural map

\[
\mathbb{Q} \otimes_{H^G_*} H^G_*(X; \mathbb{Q}) \xrightarrow{\sim} H_*(X; \mathbb{Q})
\]

is an isomorphism. Further, the cycle class map $A^G_*(X) \mathbb{Q} \xrightarrow{\sim} H^G_*(X; \mathbb{Q})$ is an isomorphism by Corollary 3, since purity of $H_*(X; \mathbb{Q})$ implies purity of $H^G_*(X; \mathbb{Q})$. Thus, combined with Lemma 4, we obtain a commutative diagram:

\[
\begin{array}{c}
A^G_*(X) \mathbb{Q} \rightarrow \mathbb{Q} \otimes_{A^G_*} A^G_*(X) \mathbb{Q} \xrightarrow{\sim} CH_*(X) \mathbb{Q} \\
\quad \downarrow \quad \downarrow \\
H^G_*(X; \mathbb{Q}) \rightarrow \mathbb{Q} \otimes_{H^G_*} H^G_*(X; \mathbb{Q}) \xrightarrow{\sim} H_*(X; \mathbb{Q})
\end{array}
\]

Consequently, $CH_*(X) \mathbb{Q} \xrightarrow{\sim} H_*(X; \mathbb{Q})$ is an isomorphism.

References

[B] M. Brion, *Equivariant Chow groups for torus actions*, Transformation Groups 2 (1997), 225-267.

[D] P. Deligne, *Théorie de Hodge III*, Publ. IHÉS 44 (1974), 5-77.

[EG] D. Edidin, W. Graham, *Equivariant intersection theory*, Invent. Math. 131 (1998), 595-634.

[FMSS] W. Fulton, R. MacPherson, F. Sottile, B. Sturmfels, *Intersection theory on spherical varieties*, J. Alg. Geom. 4 (1995), 181-193.

[T1] B. Totaro, *Chow groups, Chow cohomology, and linear varieties*, Forum of Math., Sigma 2 (2014), e17.

[T2] B. Totaro, *Group cohomology and Algebraic Cycles*, Cambridge Tracts in Math. 204 (2014).

E-mail address: rsvirik@gmail.com

The Appalachians