On the number of hinges defined by a point set in \mathbb{R}^2

M. Rudnev*

Abstract

This note strengthens, modulo log n factor, the Guth-Katz estimate for the number of pair-wise incidences of lines in \mathbb{R}^3, arising in the context of the plane Erdős distinct distance problem to a second moment bound. This enables one to show that the number of distinct types of three-point hinges, defined by a plane set of n points is $\gg n^2 \log^{-3} n$, where a hinge is identified by fixing two pair-wise distances in a point triple.

Given an n-point set $P \subset \mathbb{R}^2$, define a hinge as an equivalence class $h = [p, q, r]$ of $(p, q, r) \in P^3$, identified by a pair of two fixed distances $\|p - q\|, \|q - r\|$. Let $H = H(P)$ be the set of hinges and $r_H(h)$ the number of realisations of a hinge $h \in H(P)$, that is the number of triples (p, q, r) in the equivalence class h.

Define

$$E = E_H(P) := \sum_{h \in H} r_H^2(h).$$

Two triples (p, q, r) and (p', q', r') are in the same equivalence class if and only if simultaneously

$$\|p - q\| = \|p' - q'\|, \quad \|r - q\| = \|r' - q'\|. \quad (1)$$

Consider the Elekes-Sharir map (see [1], and [4] for some generalisations) $\phi : P^2 \to K(\mathbb{R}^3)$, acting as $(p, p') \rightarrow l_{pp'}$, where $K(\mathbb{R}^3)$ is the Klein quadric, the set of lines in $\mathbb{R}P^3$. Explicitly, in Plücker coordinates, with $p = (p_1, p_2)$, etc., one has

$$l_{pp'} = \left(\frac{p_2' - p_2}{2} : \frac{p_1 - p_1'}{2} : 1 : \frac{p_2' + p_2}{2} : \frac{p_1 + p_1'}{2} : \frac{\|p\|^2 - \|p'\|^2}{4}\right). \quad (2)$$

It is well known (2, and [4] for some generalisations) that the set of n^2 lines $L := \{l_{pp'}\}_{(p, p') \in P^2}$ has the property that just $O(n)$ may be concurrent, coplanar or lie in a regulus.

The hinge condition (1) holds if and only if simultaneously

$$l_{pp'} \cap l_{qq'} \neq \emptyset, \quad l_{rr'} \cap l_{qq'} \neq \emptyset.$$

It follows that, $\nu(l)$ denoting the number of other lines in L, meeting some $l \in L$,

$$E_H(P) \ll \sum_{l \in L} \nu^2(l).$$

This note uses the standard \ll, \gg, \sim notations to subsume absolute constants. All point/line sets involved are finite, of cardinality $|\cdot|$.

*Partially supported by the Leverhulme Trust Grant RPG–2017–371.
Theorem 1 One has $H(P) \ll n^4 \log^3 n$, hence $|H| \gg n^2 \log^{-3} n$, for any $P \subset \mathbb{R}^2$, with $|P| = n$.

The proof is an application of the Guth-Katz type incidence bound for lines in \mathbb{R}^3 from the celebrated paper [2], plus some of its more recent developments.

Theorem 2 (Guth-Katz) Let L be a set of lines in \mathbb{R}^3 with at most $O(n)$ lying in a plane or regulus. For $k \geq 2$, the number of points where at least k lines meet is

$$O\left(\frac{|L|^{3/2}}{k^2} + \frac{|L|n}{k^3} + \frac{|L|}{k}\right).$$

Theorem 2 implies that a typical line from n^2 lines $l_{pp'} \in L$ from [2] meets $O(n \log n)$ other lines. Theorem 1 extends this to a second moment bound: the average, over lines, of the square of the number of lines a line meets, is $O(n^2 \log^3 n)$, for the price of a $\log n$ factor.

Theorem 1 gives a positive answer (up to $\log n$) to the question asked by Iosevich. By taking $P = [1, \ldots, N] \times [1, \ldots, N]$, so $n = N^2$, it’s easy to see from [2] that a typical line in L meets $\sim n \log n$ lines, and no line meets more than $O(n \log n)$ other lines. So the estimate of Theorem 1 may be off by $\log n$, because $n = N^2$.

To establish Theorem 1 one uses two somewhat more elaborate variants of Theorem 2, as follows. The first one is a “bipartite” (with two line sets involved not necessarily disjoint) version for $k = O(1)$, which can be found in/extracted from, respectively, [6, 3, Proof of Theorem 12].

Theorem 3 Let L, L' be two sets of lines in \mathbb{R}^3 with at most $O(1)$ lines from either set being concurrent and at most $O(n)$ lying in a plane or regulus. Suppose, $|L'| \leq |L|$. The number of points where two distinct lines l, l', with $l \in L$, $l' \in L'$ meet is $O(\sqrt{|L|} \sqrt{|L'|} + n|L'|)$.

We will also take advantage of a (quite powerful) generalisation of the Guth-Katz incidence bound, due to Sharir and Solomon [5].

Theorem 4 Let P be a set of points and L a set of lines in \mathbb{R}^3, with at most $O(n)$ lines lying in a plane. Suppose, L is contained in a zero set of a polynomial of degree d. The number $I(P, L)$ of incidences between P and L satisfies the bound

$$I(P, L) \ll |P|^{1/2} |L|^{1/2} d^{1/2} + |P|^{2/3} d^{2/3} n^{1/3} + |P| + |L|.$$

Note that any set of lines L can be included into a zero set of a polynomial of degree $O(\sqrt{|L|})$. This gives the “generic” case of the latter bound, implicit in the Guth-Katz paper [2].

1The regulus constraint matters only in the case $k = 2$.

2Two lines $(a : b : 1 : c : -d : -ac + bd)$ and $(a' : b' : 1 : c' : -d' : -a'c' + b'd')$ in Plücker coordinates meet iff $ac' - bd' + a'c - b'd = ac - bd + a'c' - b'd'$, with a, b, c, d half-integers $O(N)$, and after rearranging and changing variables one sees that for a typical (a, b, c, d), the number of quadruples (a', b', c', d') satisfying the latter equation is roughly the number of quadruples of natural numbers $n_1/n_2 = n_3/n_4$, with $n_i = O(N)$, which is known and easily seen to be $\sim N^2 \log N$.

Proof. [Proof of Theorem 1] Partition, for dyadic \(k = 2, 4, 8, \ldots, \leq n \) the set \(P \) of pair-wise intersections of lines in \(L \) into sets \(P_k \), consisting of intersection points where some number of lines in the interval \([k, 2k)\) lines meet.

Theorem 2, with \(|L| = n^2\), \(k \leq n \) yields
\[
|P_k| \ll \frac{n^3}{k^2}. \tag{3}
\]

Given \(k \), for dyadic \(t = 2, 4, \ldots, \ll \frac{n^2}{k} \), let \(L_{k,t} \) be the set of \(t \)-rich lines, relative to points \(P_k \), that is the set of lines in \(L \), supporting some number of points in \(P_k \) in the interval \([t, 2t)\).

Thus each line \(l \in L \) can belong to \(O(\log n) \) sets \(L_{k,t} \). If \(l \) supports \(\nu(l) \) line intersections altogether, then partitioning these intersections by sets \(P_k \), with \(t_k \) intersection points lying in \(P_k \), yields
\[
\nu^2(l) \ll \log n \sum_k (kt_k)^2.
\]

It follows that Theorem 1 can be violated only if there is some pair \((k, t)\), such that
\[
|L_{k,t}| (kt)^2 \gg C n^4, \tag{4}
\]
for a sufficiently large \(C \).

Since trivially \(|L_{k,t}| \leq n^2\), (4) may possibly take place only for \(kt \geq n\sqrt{C} \).

Let us show that (4) cannot hold.

First, consider separately the case \(k = O(1) \) by applying Theorem 3 to \(L \) and \(L' = L_{k,t} \). It follows that
\[
t|L_{k,t}| \ll n^2 \sqrt{|L_{k,t}|} + n|L_{k,t}|.
\]
If the second term in the latter inequality dominates, then \(t = O(n) \), and since \(k = O(1) \), (4) cannot hold. If the first term dominates, then
\[
|L_{k,t}| \ll n^4/t^2,
\]
and once again (4) cannot hold.

From now on we may assume that \(k \) is sufficiently large, relative to absolute constants, hidden in the \(\ll, \gg \) symbols.

Restrict \(P_k \) to only its points supported on lines in \(L_{k,t} \). Apply the generic case of Theorem 4, that is setting \(d = \sqrt{|L_{k,t}|} \), to estimate the number of incidences \(I(P_k, L_{k,t}) \):
\[
t|L_{k,t}| \leq |P_k|^{1/2} |L_{k,t}|^{3/4} + n^{1/3} |P_k|^{2/3} |L_{k,t}|^{1/3} + |P_k|, \tag{5}
\]
There are three cases to consider.

Case (i). Suppose \(t|L_{k,t}| \ll |P_k|^{1/2} |L_{k,t}|^{3/4} \). It follows that
\[
|L_{k,t}| (kt)^2 \ll \frac{|P_k|^2}{t^4} (kt)^2 \ll \frac{n^6}{(kt)^2} \leq n^4,
\]
using (3) and that implicit in (4), \(kt \geq n \). Thus (4) does not hold in Case (i).
Case (ii). Now suppose the third term in (5) dominates, namely
\[|L_{k,t}| \ll \frac{|P_k|}{t}. \] (6)
Hence, using (3),
\[|L_{k,t}|(kt)^2 \ll n^3 t, \]
therefore (4) may possibly be true for \(t \gg Cn \) only.

We proceed by putting the set \(L_{k,t} \) in a zero set \(Z \) of a polynomial of degree \(d \ll \sqrt{|P_k|} \), so \(P_k \subset Z \), considering incidences between the set of lines \(L \) and \(P_k \) (recall that \(P_k \) has been restricted to points lying on lines in \(L_{k,t} \)). Let us partition \(L \) into \(L^\perp \) and \(L^\parallel \), where members of \(L^\perp \) do not lie in \(Z \), while those of \(L^\parallel \) do.

By Bezout theorem one has
\[k|P_k| \leq I(P_k, L) \ll n^2 d + I(P_k, L^\parallel). \] (7)
If the first term in the estimate dominates, then by the estimate on \(d \) and (6) one gets
\[t \ll \frac{n^4}{k^2 |P_k|} \ll \frac{n^4}{k^2 t |L_{k,t}|}, \]
and therefore (4) cannot hold.

Otherwise assume
\[n^2 d \ll I(P_k, L^\parallel). \] (8)

To bound \(I(P_k, L^\parallel) \) we use Theorem (4). This, since \(k \) is sufficiently large, yields
\[I(P_k, L^\parallel) \ll |P_k|^{1/2} d^{1/2} n + |P_k|^{2/3} d^{2/3} n^{1/3} + n^2. \] (9)
If the first term in the latter estimate dominates, then by (8) \(d \ll |P_k|/n^2 \), and hence, from (7), \(k|P_k| \ll |P_k| \). This is a contradiction, for \(k \) is meant to be sufficiently large.

If the third term dominates, then \(|P_k| \ll \frac{n^2}{k^3} \) and from (6)
\[L_{k,t}(kt)^2 \ll n^2 (kt) \leq n^4, \] (10)
since clearly \(kt \leq n^2 \).

Thus it remains to consider the dominance of the second term in estimate (9). If so, we would have
\[k|P_k|, n^2 d \ll |P_k|^{2/3} d^{2/3} n^{1/3}. \]
From the second inequality
\[d^{1/3} \ll n^{-5/3} |P_k|^{2/3}, \]
so
\[k|P_k| \ll n^{-3} |P_k|^2, \]
thus \(|P_k| \gg n^3 k \), which contradicts (3). Thus (4) does not hold in Case (ii).
Case (iii). The term $n^{1/3}|P_k|^{2/3}|L_{k,t}|^{1/3}$ dominates estimate (5), that is

$$|L_{k,t}| \ll |P_k|n^{1/2}t^{-3/2} \ll \frac{n^{7/2}}{k^2t^{3/2}}.$$ \hspace{1cm} (11)

Thus (11) can possibly hold only if $t \gg C^2 n$.

We repeat the analysis from Case (ii), now with $d \ll |P_k|^{1/2}n^{1/4}t^{-3/4}$. Returning to (7), if the first term in the right-hand side dominates we have

$$k|P_k| \ll n^{2}d \ll |P_k|^{1/2}n^{9/4}t^{-3/4}.$$

Hence

$$|P_k|^{2/3} \ll n^{3}t^{-1}k^{-4/3}, \quad t|L_{k,t}|^{2/3} \ll n^{10/3}t^{-1}k^{-4/3},$$

the latter by (5). Thus

$$|L_{k,t}|(kt)^{2} \ll \frac{n^{5}}{t} \leq n^{4},$$

given that $t \geq n$.

The rest of the analysis repeats what has already been done in Case (ii) apropos of relations (7)–(9). The only change is that dominance of the term n^2 in estimate (9) would mean, once again, $|P_k| \ll \frac{n^2}{k^2}$, and thus by (11), instead of estimate (10) one has

$$|L_{k,t}|(kt)^{2} \ll n^{5/2}(kt)t^{-1/2} \leq n^{4},$$

since $t \geq n$ and $kt \leq n^2$.

Thus (11) cannot hold in Case (iii) either, which concludes the proof of Theorem 1. \hfill \Box

References

[1] G. Elekes, M. Sharir, Incidences in three dimensions and distinct distances in the plane, Combin. Probab. Comput. 20(4): 571–608, 2011.

[2] L. Guth, N. H. Katz, On the Erdős distinct distances problem in the plane, Ann. of Math. (2) 181(1): 155–190, 2015.

[3] M. Rudnev, On the number of incidences between points and planes in three dimensions, Combinatorica 38(1): 219–254, 2018.

[4] M. Rudnev, J. M. Selig, On the use of the Klein quadric for geometric incidence problems in two dimensions, SIAM J. Discrete Math. 30(2): 934–954, 2016.

[5] M. Sharir, N. Solomon, Incidences between points and lines on two- and three-dimensional varieties, Discrete Comput. Geom. 59(1): 88–130, 2018.

[6] F. de Zeeuw, A short proof of Rudnev’s point-plane incidence bound, [arXiv:1612.02719v1 [math.CO]] 8 Dec 2016.