Research Article

The Cultivation of Political Identity Literacy in Ideological and Political Classroom Based on IOT and Knowledge Map

Lihong Yang1 and Yu Shi2

1Department of Marxism, Hebei Chemical & Pharmaceutical College, ShijiaZhuang, 050026 Hebei, China
2Hebei Academy of Fine Arts, Shijiazhuang, 050700 Hebei, China

Correspondence should be addressed to Yu Shi; sy@hbafa.edu.cn

Received 7 February 2022; Revised 3 March 2022; Accepted 5 March 2022; Published 5 April 2022

Academic Editor: Zhiguo Qu

Copyright © 2022 Lihong Yang and Yu Shi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

As “a comprehensive, activity based subject course with the fundamental task of establishing moral education and cultivating core socialist values, helping students to establish a correct political orientation, improve their core literacy in ideology and politics, and enhance their ability to understand and participate in society” [1], senior secondary ideology and politics has the characteristics of comprehensive content, leading moral education work in schools and practical implementation of the curriculum.

This requires teaching both the depth of learning and thinking and the temperature of classroom education. To this end, we try to activate students’ thinking with problem-based learning and to nurture people in the process of problem solving and interaction between teaching and learning, so that the depth of thinking and the temperature of emotion are fused together, pointing to the cultivation of students’ political identity literacy [2].

Deep learning in education is not deep learning in the sense of AI, but effective learning in the pedagogical sense; the main goal of deep learning is to improve people’s creative thinking and problem-solving abilities. The main strategies for deep learning in the pedagogical sense include research-based learning (or scientific inquiry), multidimensional representational learning, thoughtful learning by doing, and active learning. [3] In contrast to shallow learning, deep learning not only looks at lower-order thinking activities but also emphasises the development of higher-order thinking, such as “applying, analysing, evaluating, and creating.” With the goal of developing higher-order thinking and solving practical problems, learners actively and critically learn new knowledge and ideas, integrating them into their existing cognitive structures and being able to transfer existing knowledge to new contexts, using integrated knowledge as content [4].

This is a perceptual concept focusing on the classroom teaching of attitude-emotional values objectives. Its basic...
meanings include the temperature stems from students’ understanding of life, creating life situations close to the reality of students’ thoughts, grafting the bridge between life and knowledge, triggering the conflict of moral awareness of students’ thoughts and feelings, and consciously establishing the correct core values in the clarification of things. Nurturing comes from the teacher’s love for students, from the teacher’s inner world to love each child, so that the classroom becomes a field of cognitive-emotional interchange. Classroom teaching puts attitudinal and emotional values goals first, focuses on the guidance of human thoughts and values, and taps into the meaning behind knowledge [5].

In a comprehensive manner, a problem-based classroom that promotes the integration of learning depth and nurturing temperature has the following characteristics: Firstly, it emphasises attention to students’ “learning” [6]. The concept of teaching as a service to learning is established, with motivation of students with the improvement of their knowledge and application sound character inherently unites the cultivation of students sises the importance of learning needs and learning outcomes. Secondly, it empha-sises the importance of “cultivating moral character,” which inherently unites the cultivation of students’ sound character with the improvement of their knowledge and application skills, and the essence of human development lies in the cul-tivation of students’ disciplinary literacy and the implementa-tion of core socialist values [7]. Thirdly, we cultivate students’ awareness of problems. Problem-oriented, based on real problem solving, focusing on integrated learning, the depth of thinking and internalized emotional tempera-ture of learning should be generated and grow in the process of problem solving.

IoT is called the third wave of the world’s information industry after computers and the Internet [8]. It connects any object to each other or any object to the Internet through various sensors, radio frequency identification (RFID) devices, positioning devices, and other information sensing devices, in accordance with agreed protocols, for information exchange and communication to achieve intelligent identification, positioning, tracking, monitoring, and management of a network [9]. The development of Internet of Things technology promotes the change of human social life style, and it is also embedded in the process of ideological and political education. It will innovate the service function of network ideological and political education, promote the integration of resources and environment construction of network ideological and political education, and change the education mode and learning mode. Based on SDN and IoT technology, this paper designs a new multimedia classroom network architecture. Through the advantages of SDN and IoT, it can provide a new means to solve many problems encountered by teachers and students in the process of using multimedia classrooms [10].

2. Key Points of Knowledge Mapping Design for the Civic Studies Curriculum System

The application of the above integration principles, position-ing principles, implantation principles, and cross principles in the knowledge map design of the curriculum system of civil political science and the pilot of embedded teaching mode, is a basic and demonstration case [11].

In the design process of professional curriculum system knowledge map, it is important to realize the comprehensive mastery of professional knowledge by integrating profes-sional knowledge, which is an important premise of design-ing knowledge map. Knowledge mapping is the integration of professional knowledge information [12]. Through learn-ing, the scattered knowledge points of different courses are classified together to form an overall system, so as to facili-tate the memory and application of knowledge. In this knowledge system, the knowledge core, knowledge point, knowledge unit, knowledge module, knowledge structure, and knowledge pedigree of different courses are clear at a glance, which is convenient for learners to master individual knowledge points or the whole knowledge system and clarify the core and focus of the course. Therefore, when designing knowledge map, the primary task is to sort out and integrate knowledge [13].

Under the premise of knowledge integration in profes-sional courses, the positioning of a large number of knowl-edge points, knowledge units, and knowledge modules, i.e., determining their respective roles, status, and the links between them, is an important step in the design of the knowledge map of the course system. This positioning includes not only the positioning of knowledge within the curriculum but also the positioning of a single course within the overall curriculum, based on the interactions between different courses. By observing the positioning of courses in the knowledge map of the curriculum system, professional learners can have a clear understanding of the position of the courses in their studies, and the relevance and permeability of the courses can help them to master their professional knowledge and stimulate their interest in learning [14].

This is because professional knowledge is made up of many small knowledge points, knowledge units, and knowl-edge modules, which are not independent but inextricably linked to each other, and this linkage leads to the emergence of cross-knowledge points and knowledge units and causes learners to repeat learning. This linkage leads to the emer-gence of cross-cutting knowledge points and knowledge units and causes fatigue and confusion for learners [15]. The design of a knowledge map of the curriculum therefore remedies this deficiency by highlighting the cross-cutting knowledge units and indicating in which specialist courses they are repeated, where they are located in different specialist courses, and how frequently they occur. Highlighting these cross-cutting units will help learners to clarify the links between knowledge, avoid the tedium and confusion caused by repetitive memorisation, effectively grasp the entire pro-fessional course knowledge system, and improve learning outcomes [16].

3. SDN and IoT Based Multimedia Classroom Network Architecture

3.1. Design Thinking. How to solve the above-mentioned problems in the use of multimedia classrooms is the primary
issue in the design of the new architecture. The design of the multimedia classroom network architecture based on SDN and IoT generally follows the guiding ideology of “easy management, centralized control, integration of resources, and easy maintenance,” which should not only solve the problems existing in the use of multimedia networks but also guarantee the stability, reliability, ease of use, and security of the network, as well as the scalability and service deployment capability of the network, in which scalability [17] and service deployment capability not only achieve intelligent control, remote management, remote maintenance, and security protection of media classroom equipment but also ensure the stable and reliable operation of multimedia classroom equipment [18].

3.2. General Structure. By discussing the advantages and design ideas of SDN and IoT-based multimedia classroom network architecture, the overall architecture of SDN and IoT-based multimedia classroom network is divided into 3 layers from low to high according to the classical architecture of SDN and combining the existing multimedia network elements, as shown in Figure 1.

OpenFlow-enabled switches and central control devices and all devices downlinked from the central control device. The devices under the central control include computers, projectors, cameras, amplifiers, speakers, microphones, and curtains. RFID system can be deployed in the multimedia classroom, and users can obtain the permission to use the multimedia classroom equipment after verifying their identity through RF card or they can obtain the permission to use the multimedia classroom equipment after scanning the QR code through mobile phone APP. Sensors are installed in controllable multimedia classroom equipment to obtain sensory information from multimedia classroom equipment such as projectors, motorised curtains, power amplifiers, and classroom front row lighting and audio [19]. The cameras allow managers to monitor multimedia classrooms in real time, and in the event of equipment failure, managers can deal with the observed problems remotely through the captured images. GPS (Global Positioning System) positioning and anti-theft alarm systems are installed for valuable equipment projectors.

The intelligent multimedia classroom Internet of Things, built using RFID, cameras, and sensors, can monitor the teaching site in real time and automatically monitor the status of multimedia classroom equipment and various technical indicators and parameters, thus achieving “fine management, real-time sensing, dynamic control, and intelligent processing” of multimedia classroom equipment, further enhancing the level of multimedia classroom equipment management and maintenance.

The OpenFlow-enabled controller is the core of this architecture. The SDN controller invokes the southbound interface and manages the OpenFlow switches at the network infrastructure layer through the OpenFlow protocol and can dynamically add, delete, and modify the flow table entries of the OpenFlow switches [20], thus changing the forwarding rules of the OpenFlow switches and realizing the centralized management of the down-connected central control devices. Centralised control of down-linked centralised control devices; at the same time, the controller can send the multimedia classroom equipment operation data and status parameters collected by the underlying IoT to specific application servers through the northbound interface to help manage and maintain staff monitor equipment and deal with equipment faults.

The controller is generally made up of a management component and a policy component. The management component is the core of the controller and is responsible for the management of OpenFlow at the infrastructure layer and is the basis for the implementation of the policy components. The management component is mainly composed of four modules: OpenFlow switch management module, user authentication module, flow table management module, and policy issuance module. The policy components are various modules developed by the network manager according to different business requirements [21].

All application services related to multimedia classrooms, such as fault repair platform, teaching management platform, remote on-demand, security monitoring, and examination patrol, are sent to the corresponding application servers by the OpenFlow controller through calls to the northbound interface (API interface). To better serve teaching and learning, the application layer can be integrated with various business platforms using a cloud computing platform, with various platforms collaborating and cooperating with each other to support teaching and learning activities.

4. A Case Study of Teaching That Integrates Parenting Temperature

The purpose of promoting perceptual identity deep learning in the construction and reflection of unit knowledge system is to reflect on the construction of learning process, on the premise that students are willing to accept the content they are learning. Therefore, we emphasize the importance of prereading in citizenship research, let students read specific
units in textbooks completely, let them determine the core concepts and core knowledge of the unit according to the knowledge system of the unit, and build their own knowledge framework or thinking map according to the internal logical relationship between knowledge shown in Figure 2. Take the lesson on “income and distribution” as an example, students previewed the whole unit before class and identified two main lines: firstly, the distribution of personal income: the distribution system—principles of distribution; secondly, the distribution of state income: finance—taxes—taxation.

Emotion driven “noncognitive learning” strengthens deeper learning, in which students experience the emotion embedded in the content. In classroom teaching, we rely on typical cases in life, create problem situations close to students’ life according to students’ existing knowledge and moral and emotional perception, and guide students to feel political identity and consciously accept reasoning in the process of exploring situations from their own life experience, as shown in Figure 3.

Discerning identity in the critical understanding of hot-spot dialogue deep learning focuses on the critical understanding of knowledge learning, allowing students to generate corresponding emotions in critical understanding. In practice, we encourage students to question the hotspots of social life that interest them, so that questioning becomes a basic habit of learning, so that they can propose opposite debates or discussions, so that they can engage in open-ended collisions of ideas and discern their political standpoint, and thus achieve political identity. Take the lesson on “state finance” as an example, the teacher set the topic: do you think the distribution policy should be more in favour of the government or enterprises or individuals and held an open debate around the topic. During the debate, students not only gained a deeper understanding of revenue, expenditure, and the role of finance but also appreciated the reasoning behind a moderate distribution policy.

As shown in Figure 4, students’ inner emotions are triggered when solving practical problems. On the basis of understanding and critical questioning, students can comprehensively summarize their knowledge, but they are still at the level of understandable identity. They need to internalize their political identity when transferring and applying knowledge. Through classroom training courses, we let students internalize their political identity in the process of solving problems.

Take the example of “finance and its role,” where the teacher guides students to use their knowledge of the role of finance in China to explore why the budget was increased during the two sessions, although no specific economic growth targets were proposed, to stabilise employment and protect people’s livelihoods. The teacher presents a series of initiatives taken by the central government since the outbreak of the epidemic, as well as the large-scale fiscal and stimulus plans announced at the two sessions. In the process of transferring and applying knowledge about the role of finance, students internalize their recognition of China’s fiscal policy and their confidence in the advantages of the socialist system from the perspective of national macrocontrol.

Organic integration leads to the integrated application of knowledge in inquiry activities, which in turn becomes the point of origin of certain emotions, which leave important information for the learning outcome, i.e., behavioural identity. Here, we use Bloom’s definition of the goal of
“creativity,” which refers to the integrated use of knowledge materials, the design and formation of new work, the development of new knowledge materials, or the derivation of new formulas, etc. As a comprehensive, activity based subject course, civic studies places greater emphasis on integrated practical activities at the end of the course, in which students apply their knowledge, analyse and understand topical social issues, actively participate in social life, and achieve behavioural identity in practice, thus internalising and externalising the knowledge as shown in Figure 5.

As shown in Figure 6, at the end of the lesson “distribution by work is the main body, and various forms of distribution coexist,” the teacher designed an after-school question: what is the direction of your future career choice? Explain why. What can you do now? In this way, the abstract theory is connected with students’ life practice and guides them to identify with China’s distribution system in practice.

The teaching exploration of civil politics course integrates the learning depth and educational temperature, so that the learning process is not only a process of reconstructing knowledge and exploring problems but also a process of internalizing emotions, attitudes, and values. The cultivation of political identity is a long-term process. The design and implementation of actionable objectives, such as measurement and evaluation, remains to be explored.
5. Conclusion

The SDN and IoT-based multimedia network architecture is designed based on years of network management and maintenance, constantly summarising the needs of multimedia maintenance staff and multimedia classroom teachers and absorbing the advantages of SDN and IoT. This network architecture combines SDN and IoT to solve a series of problems that arise in the use of existing multimedia classrooms. It not only reduces the workload of management and maintenance staff but also improves the efficiency and effectiveness of multimedia classroom equipment maintenance, the intelligence of multimedia network and equipment control, as well as the flexibility and responsiveness in dealing with teaching failures. This network architecture improves the classroom teaching environment, better supports teachers’ teaching and students’ learning, and enhances teaching quality.

Data Availability

The dataset used in this paper is available from the corresponding author upon request.

Conflicts of Interest

The authors declared that they have no conflicts of interest regarding this work.

References

[1] T. P. Nichols and A. Stornaiuolo, "Assembling "digital literacies": contingent pasts, possible futures," Media and Communication, vol. 7, no. 2, pp. 14–24, 2019.
[2] R. S. de Roock and M. Baildon, "MySkillsFuture for students, STEM learning, and the design of neoliberal citizenship in Singapore," Cognition and Instruction, vol. 37, no. 3, pp. 285–305, 2019.
[3] B. Habib, "Pedagogical content knowledge for global environmental politics," International Studies Perspectives, vol. 19, no. 3, pp. 218–234, 2018.
[4] K. Zhang, "Research on key influencing factors of university students' digital competence in blended teaching," Contemporary Educational Researches Journal, vol. 11, no. 4, pp. 210–224, 2021.
[5] S. Moinuddin, Mapping digital political economy in India, Digital Shutdowns and Social Media, Springer, Cham, 2021.
[6] P. Allass and S. Wiebe, "Re-imagining education policy and practice in the digital era," Journal of the Canadian Association for Curriculum Studies, vol. 15, no. 2, pp. 48–63, 2017.
[7] F. Yao and A. Zhang, "Integration of education management and mental health in psychological crisis intervention in colleges and universities," ASP Transactions on Psychology and Education, vol. 1, no. 1, pp. 31–38, 2021.
[8] S. Jethani, "Mediating the body: technology, politics and epistemologies of self," Communication, Politics & Culture, vol. 47, no. 3, pp. 34–43, 2015.
[9] F. Yan and H. Shi, "Application of social networks data mining in strengthening college ideological environment," in 2021 5th International Conference on Electronics, Communication and Aerospace Technology (ICECA), pp. 786–789, Coimbatore, India, 2021.
[10] M. Kassab and M. Mazzara, "Towards designing smart learning environments with IoT," in International Workshop on Software Engineering Aspects of Continuous Development and New Paradigms of Software Production and Deployment, pp. 152–166, Springer, Cham, 2019.
[11] I. Calzada, "Algorithmic nations’: seeing like a city-regional and techno-political conceptual assemblage," Regional Studies, Regional Science, vol. 5, no. 1, pp. 267–289, 2018.
[12] C. Parvulescu, "The political and economic intervention of non-fiction money literacy film in the Post-2008 era," Canadian Journal of Film Studies, vol. 30, no. 1, pp. 49–71, 2021.
[13] A. N. Markham, "Critical pedagogy as a response to datafication," Qualitative Inquiry, vol. 25, no. 8, pp. 754–760, 2019.
[14] J. Turow and N. Couldry, "Media as data extraction: towards a new map of a transformed communications field," Journal of Communication, vol. 68, no. 2, pp. 415–423, 2018.
[15] M. Graham, I. Hjorth, and V. Lehdonvirta, "Digital labour and development: impacts of global digital labour platforms and the gig economy on worker livelihoods," Transfer: European Review of Labour and Research, vol. 23, no. 2, pp. 135–162, 2017.
[16] L. Castañeda and N. Selwyn, "More than tools? Making sense of the ongoing digitizations of higher education," International Journal of Educational Technology in Higher Education, vol. 15, no. 1, pp. 1–10, 2018.
[17] B. García-Orosa, P. Gamallo, P. Martín-Rodilla, and R. Martínez-Castaño, "Hybrid intelligence strategies for identifying, classifying and analyzing political bots," Social Sciences, vol. 10, no. 10, p. 357, 2021.
[18] D. Maillard, "The obsolescence of man in the digital society," International Journal for Applied Information Management, vol. 1, no. 3, pp. 99–124, 2021.
[19] Z. H. A. N. G. Zhengwan, Z. H. A. N. G. Chunjong, L. I. Hongbing, and X. I. E. Tao, "Multipath transmission selection algorithm based on immune connectivity model," Journal of Computer Applications, vol. 40, no. 12, p. 3571, 2020.
[20] A. Verma, Y. Kumar, and R. Kohli, "Study of AI techniques in quality educations: challenges and recent progress," SN Computer Science, vol. 2, no. 4, pp. 1–7, 2021.
[21] T. Valtonen, M. Tedre, K. Mäkitalo, and H. Vartiainen, "Media literacy education in the age of machine learning," Journal of Media Literacy Education, vol. 11, no. 2, pp. 20–36, 2019.