Extension of Hall-symbols of crystallographic space groups to magnetic space groups

Javier González-Platas1, Nebil A. Katcho2 and Juan Rodríguez-Carvajal2

1Departamento de Física. Instituto Universitario de Estudios Avanzados en Física Atómica, Molecular y Fotónica (IUDEA). MALTA Consolider Team. Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez s/n, La Laguna, Tenerife, E-38204, Spain.

2Institut Laue-Langevin, Diffraction Group. 71 Avenue des Martyrs, CS 20156, 38042, Grenoble, Cedex 9, France

Abstract

The Hall-symbols for describing unambiguously the generators of space groups have been extended to describe whatever setting of the 1651 types of magnetic space groups (Shubnikov groups). A computer program called MHALL has been developed for parsing the Hall symbols, generate the full list of symmetry operators and identify the transformation to the standard setting.

Introduction

The international symbols for crystallographic space groups (CSG) are based in the Hermann-Mauguin (HM) symbols containing information about the Bravais lattice of the translation subgroup and the nature and orientation of the symmetry elements. However, as pointed out by S.R. Hall (Hall, 1981), there is no explicit information about the position of the origin determining partially the translational part of the symmetry operators. This has, consequently, an important drawback: the impossibility of generating the full set of symmetry operators from the symmetry elements appearing in the symbol, in the general case, coinciding with the lists of the International Tables for Crystallography (ITC). The computer programs, not using a database, doing that task have always some special code to handle special cases in order to generate strictly the same set of operators. The proposal by S.R. Hall (Hall, 1981) solves this problem in an elegant way allowing, at the same time, the possibility of describing reasonable arbitrary settings of CSG. The word “reasonable” is used here to emphasize the fact that the symmetry operators (with rotational part described by an integer matrix) may be very complicated (with rotational part described by a rational matrix) if a unit cell setting, for instance, is selected in which a three-fold axis is along an arbitrary [uvw] direction. However, even in these cases, the Hall-symbol, as treated in (S. R. Hall and R. W. Grosse-Kunstleve, 2010, hereafter referred as HG-K) can be written by using the standard symbols described below followed by a setting change included at the end of the symbol.

In this document, we propose to modify slightly the original Hall-symbols in order to extend them for describing magnetic space groups (MSG). For that, we had to change the original symbol “‘” to “‘‘”. The reason is that the prime symbol “‘” is reserved for the time reversal operator to be consistent with the currently used symbols in Belov-Neronova-Smirnova (BNS) and Opechowski-Guccione (OG) notations for MSG. Here we will not discuss the derivation of MSG or their relation with families of CSG that may be found in literature (see, for instance, D. Litvin, 2001); we shall be concentrated in the new proposed nomenclature aspects.

The aim of the Hall-symbols is to have an unambiguous descriptor of a CSG or MSG and not to substitute the HM, BNS or OG (or whatever new proposal that may be adopted) symbols used for a standard setting. Once we have a correspondence with the standard setting of CSG or MSG, an appropriate computer program can parse the symbols and generate the full set of symmetry operators. We have to keep in mind that two different Hall-symbols may represent the same space group type in a particular setting. This is
obvious by the fact that we can use different generators to obtain the same full representative operators of the group type.

New proposed Hall-symbols

This section summarises the notation described in HG-K, and the modifications we propose. The Hall-symbols try to describe a CSG or a MSG using a short set of generators. Each generator corresponds to a Seitz operator acting on atom positions or on magnetic moments. The action of the operator \(S = \{ R, \theta | t \} \) (where \(R \) is a proper or improper rotation matrix, \(t \) is a translation vector and \(\theta \) is an integer representing the time reversal operation) on the atom position \(r \) having a magnetic moment \(m \) is given by:

\[
r' = \{ R, \theta | t \} r = R r + t
\]

The corresponding magnetic moment (axial vector) is obtained as:

\[
m' = \{ R, \theta | t \} m = \theta \det(R) R m
\]

The integer \(\theta \) is equal to -1 if the operator is “primed” (combined with time reversal operator \(1' \)) and equal to 1 in the “non-primed” case; \(\det(R) \) stands for determinant of matrix \(R \). The Hall-symbol is the combination of a series of Seitz operators with a lattice symbol and the presence or not of a centre of symmetry at the origin. Each operator is constituted by a particular notation for the operator \(S \) that describes unambiguously the matrix \(R \), the value of \(\theta \) and the translation vector \(t \). The operator \(S \) may be represented as a Seitz matrix or in the extended form (see below) of Jones faithful notation. For instance, a Seitz matrix representing a primed two-fold screw rotation along the b-axis is given by:

\[
2_{1}^{\gamma} = \{ 2_{010}^{\gamma} | 0, 1/2, 0 \} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1/2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}
\]

Notice that we have no way to explicitly writing the time reversal operator within the matrix; only the knowledge of the presence of time reversal is used in applying effectively the equations (1) and (2). The same operator in Jones faithful notation (extended with 1 or -1 in the last position representing \(\theta \)) can be written as: \(-x, y + 1/2, -z, -1\), which is more compact than the full matrix. We will use this last representation instead of matrices hereafter.

The newly proposed Hall-symbols have the general form (compare to equation A1.4.2.4 in HG-K):

\[
L \left[N_1^{A_0} \right] \left[N_1^{A_0} \right] \cdots \left[N_1^{A_0} \right]_p \mathbf{V}
\]
conventional lattice centring, in such a case the explicit generators of the lattice must be provided within
the p provided operators. The operators related with the L symbols are described in Table 1.

Table 1: Lattice symbols L (similar to table A1.4.2.2. in HG-K)
The lattice symbol L implies the following generators in Jones’ faithful notation. The identity is always implied even if not provided, the time reversal operator is provided as the last item, the different generators are separated by “;”. In the general case, X, we have used the notation 1t = x(t1, y(t2, z(t3, 1) where t = (t1, t2, t3), with t rational numbers.

P: x, y, z, 1	-P: -x, -y, -z, 1
A: x, y+1/2, z+1/2, 1	-A: -x, -y, -z, 1; x, y+1/2, z+1/2, 1
B: x+1/2, y, z+1/2, 1	-B: -x, -y, -z, 1; x+1/2, y, z+1/2, 1
C: x+1/2, y+1/2, z, 1	-C: -x, -y, -z, 1; x+1/2, y+1/2, z, 1
I: x+1/2, y+1/2, z+1/2, 1	-I: -x, -y, -z, 1; x+1/2, y+1/2, z+1/2, 1
R: x+2/3, y+1/3, z+1/3, 1; x+1/3, y+2/3, z+2/3, 1	-R: -x, -y, -z, 1; x+2/3, y+1/3, z+1/3, 1; x+1/3, y+2/3, z+2/3, 1
H: x+2/3, y+1/3, z, 1; x+1/3, y+2/3, z, 1	-H: -x, -y, -z, 1; x+2/3, y+1/3, z, 1; x+1/3, y+2/3, z, 1
F: x+1/2, y+1/2, z, 1; x, y+1/2, z+1/2, 1; x+1/2, y, z+1/2, 1	-F: -x, -y, -z, 1; x+1/2, y+1/2, z, 1; x, y+1/2, z+1/2, 1; x+1/2, y, z+1/2, 1
X: 1t1: 1t2...1tp	-X: -x, -y, -z, 1; 1t1: 1t2...1tp

The symbol N is 1, 2, 3, 4 or 6 for proper rotations and 1, 2, 3, 4 or 6 (or in text-only characters -1, -2, -3, -4 or -6) for improper rotations (the symbol -2 corresponds to mirror or glide planes depending on the associated translation). The symbol θ is “+” when the operator is associated with time reversal or it is absent otherwise. The symbol A indicates the direction of the rotation axis. The possible values of A are x, y, z, ^, " and *, for rotation axis along a, b, c, a-b (or alternatively b - c or c - a), a+b (or alternatively b + c or c + a) and a+b+c, respectively. The t translation symbols are 1, 2, 3, 4, 5, 6, a, b, c, n, u, v, w, d. They are described in Table A1.4.2.3 of HG-K. This table is reproduced below as Table 2. Even if not explicit in Table 2, the symbols of screw axes 42 and 63 (with translation of 1/2 along the axis A) are legal Hall symbols and may be written as 4c and 6c if they are oriented along the c-axis. These translations apply additively [e.g. ad signifies a (3/4, 1/4, 1/4) translation]. Notice that we can use, for anti-translations, a lattice symbol instead of two translation symbols. For instance, the following symbols are equivalent: 1brc = 1rac = 1rbc = 1rcb = 1rc = 1fr |

Examples of valid symbols for the [N14] generators are: 4^a, -2, 3r1, 1 ravw, 1 ad ; representing respectively the operators (in Seitz notation, see Glazer et al., 2014):

{4^a | 1, 0, 0}, {m1 | 1/2, 1/2, 1/2}, {3^+ | 1/2, 1/2, 1/2}, {1^+ | 1/2, 1/2, 1/2}, {1 | 1/2, 1/2, 1/2}
The change of basis operator V is optional and may be used as described in HG-K; however, we propose an alternative change of notation that is more clearly related to its purpose: a change of reference frame, involving the basis vectors and origin, to which refer the symmetry operators.

Table 2: Translation symbols t (same as table A1.4.2.3. in HG-K)

Alphabetical symbols (given in the first column) specify translations along a fixed direction. Numerical symbols (given in the third column) specify translations as a fraction of the rotation order $|N|$ and in the direction of the implied or explicitly defined axis. Putting several symbols together means the addition of the translation vectors corresponding to the given symbols.

Translation Symbol	Translation Vector	Subscript Symbol	Fractional Translation
a	$1/2, 0, 0$	1 in 3_1	$1/3$
b	$0, 1/2, 0$	2 in 3_2	$2/3$
c	$0, 0, 1/2$	1 in 4_1	$1/4$
n	$1/2, 1/2, 1/2$	3 in 4_3	$3/4$
u	$1/4, 0, 0$	1 in 6_1	$1/6$
v	$0, 1/4, 0$	2 in 6_2	$1/3$
w	$0, 0, 1/4$	4 in 6_4	$2/3$
d	$1/4, 1/4, 1/4$	5 in 6_5	$5/6$

Table 3: Operators $[N^A]$ (similar to table A1.4.2.4. in HG-K)

Jones faithful operators for proper rotations along the three principal unit-cell directions are given below. For improper rotations (-2, -3, -4 and -6) the symbols are identical except that all signs are reversed. The identity 1 (x,y,z) and inversion centre -1 ($-x,-y,-z$) are omitted because they do not depend on the axis. The same holds for time reversal.

Rotation Axis	A-symbol	Rotation order and Jones faithful symbol
a	x	$x, -y, -z$
b	y	$-x, y, -z$
c	z	$-x, -y, z$

Rotation Axis	A-symbol	Rotation order and Jones faithful symbol
a	x	$x, -y, -z$
b	y	x, y, z
c	z	y, x, z

Default axes from the positional order of operators

The superscripts indicating the direction of rotation axes may be suppressed by adopting the following rules (see section A1.4.2.3.1. in HG-K) for the symbol given in expression (3):
(i) The first rotation (or roto-inversion) axis direction is always along c.

(ii) The second rotation (if $|N|$ is 2) axis direction is along a if preceded by an $|N|$ of 2 or 4, it is along a-b if preceded by an $|N|$ of 3 or 6.

(iii) The third rotation (if $|N|$ is 3) has an axis direction of a + b + c.

This implies that in the major part of cases the symbol “^” is not needed. If we ignore these rules, the superscript of the provided operators should be explicitly written. The rotational part of $[N^A]$ operators ([N^A]) are given explicitly in Tables 3, 4 and 5.

Another additional convention is that anti-translations (1_1) should appear after the rotational operators and non-conventional lattice translations (1_x).

Table 4: Operators [N^A] (similar to table A1.4.2.5. in HG-K)

Jones faithful operators for proper two-fold rotations along the diagonal unit-cell directions.

Preceding rotation symbol	Rotation symbol	Axis	Jones faithful symbol
N^a	2^a	b-c	-x, -z, -y
N^b	2^b	b+c	-x, z, y
N^c	2^c	a-c	-z, -y, -x
	2^d	a+c	z, -y, x
N^e	2^e	a-b	-y, -x, -z
	2^f	a+b	y, x, -z

Table 5: Operator 3* (similar to table A1.4.2.6. in HG-K)

Operator for proper three-fold rotation along the body diagonal unit-cell direction.

Rotation symbol	Axis	Jones faithful symbol
3*	a+b+c	z, x, y

New change of basis operator V

In HG-K, the authors extend the original shift of origin symbol to a complete change of basis; however, they use a vector form in which a symbol close to Jones faithful representation of symmetry operators is used to represent this time a change of basis. Symmetry operators are implicitly referred to a reference frame {O, a, b, c}, where O represents a point in 3D space and a, b, c are the basis vectors. In previous
forms of the Hall-symbol (see HG-K), the operator \(\mathbf{V} \) is represented in vectorial form \(\mathbf{V}=(v_1, v_2, v_3) \) with
\[v_i = r_{i1}X + r_{i2}Y + r_{i3}Z + t_i, \]
where \(r_{ij} \) and \(t_i \) are rational numbers. The operator can be written as a Seitz matrix as given in HG-K:

\[
\mathbf{V} = \begin{pmatrix}
 r_{11} & r_{12} & r_{13} & t_1 \\
 r_{21} & r_{22} & r_{23} & t_2 \\
 r_{31} & r_{32} & r_{33} & t_3 \\
 0 & 0 & 0 & 1
\end{pmatrix}
\] (4)

In case of a simple change of origin, \(r_{ij}=0 \) if \(i \neq j \) and \(r_{ii}=1 \), we conserve the same notation as proposed in (Hall, 1981) and HG-K, where the Hall-symbol finishes with an integer vector in parenthesis of the form \((n_1, n_2, n_3)\), meaning \(t_1=n_1/12, \ t_2=n_2/12 \) and \(t_3=n_3/12 \).

The meaning of the change of basis operator \(\mathbf{V} \) is the following: the new basis vectors \(\mathbf{a}', \mathbf{b}', \mathbf{c}' \) are obtained as:

\[
\begin{pmatrix}
 \mathbf{a}' \\
 \mathbf{b}' \\
 \mathbf{c}'
\end{pmatrix} =
\begin{pmatrix}
 \mathbf{a} \\
 \mathbf{b} \\
 \mathbf{c}
\end{pmatrix}
\begin{pmatrix}
 r_{11} & r_{21} & r_{31} \\
 r_{12} & r_{22} & r_{32} \\
 r_{13} & r_{23} & r_{33}
\end{pmatrix}
\] (5)

Notice that the 3×3 submatrix is transposed to that of \(\mathbf{V} \). The new origin \(\mathbf{O}' \) have coordinates \((t_1, t_2, t_3)\) with respect to the original \{\mathbf{O}, \mathbf{a}, \mathbf{b}, \mathbf{c}\} basis.

The symmetry operators provided in the Hall-symbol (generators) should be transformed, if the operator \(\mathbf{V} \) is provided, according to the equation:

\[
\mathbf{S}'_n = \mathbf{VSV}^{-1}
\] (6)

Where the new operators \(\mathbf{S}'_n \) are now implicitly referred to the basis \{\mathbf{O}', \mathbf{a}', \mathbf{b}', \mathbf{c}'\}.

We maintain the original convention for change of origin but, in order to be compatible with this form, we propose to use the colon “:” as separator between the first part of the symbol and \(\mathbf{V} \) to tell the parsing program that we use the new symbolic form for the \(\mathbf{V} \) operator. So the expression (3), in the general case of basis change, is written as:

\[
\mathbf{L}[N_{1}^{\alpha\beta}][N_{1}^{\alpha\gamma}]_{2}...[N_{1}^{\alpha\delta}]_{p} : r_{11}a + r_{12}b + r_{13}c, r_{21}a + r_{22}b + r_{23}c, r_{31}a + r_{32}b + r_{33}c; t_1, t_2, t_3
\] (7)

Notice the semicolon separating the “rotational” part of the matrix (4) from the coordinates of the new origin \((t_1, t_2, t_3)\).

Detailed examples

The header “ASCII” given in the examples below means that we use characters from the ASCII character set available in computers and coded with 1 byte (8 bits), so subscripts and superscripts are not used. Instead, the translation symbols are just juxtaposed to the rotational symbols. When using the text (ASCII) form of the Hall-symbols we use one or more spaces between symbols as in:
When writing Hall symbol in text-only mode the operator \([N^{A0}_1]\) should be written in the form:

\(N'At, NA't\) or \(NA't\) with the axis symbol preceding the translation part. Notice that the prime symbol commutes with the axis and translation symbols.

An example of legal Hall-symbol for a magnetic group is \(P\,6\,c\,2\,1\,t\) that in ASCII form is represented as

\[P\,6c\,-2\,1't\]

or

\[P\,6c\,-2\,1c'\]

The above Hall-symbol corresponds to the MSG \(P_c\,6_3\,cm\) (in BNS notation) in the standard setting. We can also use the symbol (see comment above about Table 2): \(P\,6\,3\,-2\,1't\) in which the traditional form of a screw axis 6 is explicitly given.

One can create a Hall-symbol without knowing to which MSG standard type corresponds. A computer program can identify the standard MSG type and calculate the change of basis to obtain the standard setting. For instance, a symbol like \(-P\,4n'\,1u'\) \((\bar{P}4_{1}1_{u})\) corresponds to the group \(P_C4_2/m\) \((P_C4_2/m)\) in a particular setting. To obtain the standard setting one has to apply the following basis change: \(-a/4-b/4, a/4-b, c;\,1/8,-1/8,0\).

Let us consider conventional settings of MSG as examples. MSG are usually divided in four types:

Type-1 MSG, also called colourless groups, are those having \(\theta=1\) for all operators. They are isomorphous to the 230 CSG. The BNS and OG symbols coincide in this case with the HM symbols of CSG. The Hall-symbols are the same as those of the CSG. Examples of the symbols can be found in Table A1.4.2.7 of HG-K.

Type-2 MSG, also called paramagnetic groups, are those having two set of operators. The first set is the same as those of Type-1 groups and in the second set the operators have \(\theta=-1\) combined with all operators of the first set. Their number is also 230 and the BNS and OG symbols are those of the corresponding CSG followed by the time reversal operator. The Hall-symbols are obtained from the Hall-symbols of Type-1 groups by putting the time reversal operator as the last generator.

Examples:

BNS/OG symbol	BNS/OG Compact	Hall symbol	Hall ASCII
\(P\,4_2\,21'\)	\(P\,4\,1\,2\,1\,2\)	\(P\,4_{12}\,121\)'	\(P\,4_{abw}\,2\,m\,1\)'
\(P\,4_2\,mm\,cm\)	\(P\,4\,2/m\,m\,c\,1\)'	\(P\,4_2/mm\,c\,1\)'	\(P\,4_{21}\)'

The full set of operators for the first group \((P\,4_2\,21')\) can be obtained by the generators: \(-y+1/2, x+1/2, z+1/4, 1 (4_{abw});\) \(x+1/2, -y+1/2, -z+3/4, 1 (2_{ma});\) \(x, y, z, -1 (1')\)
The full set of operators for the second group ($P_{4_1} / m m c1'$) can be obtained by the generators: $-x, -y, -z, 1 (-1); -y, x, z+1/2, 1 (4_c); x, -y, -z, 1 (2);$ $x, y, z, -1 (1')$

Type-3 MSG, also called type-1 black and white (BW1) groups, are those having the same lattice as that of the paramagnetic group, but half of operators are associated with time reversal. Their number is 674 and the BNS and OG symbols are the same.

Examples:

BNS/OG symbol	ASCII	Compact	Hall symbol	Hall ASCII
$Pc'cn'$	$Pc'cn'$	$Pc'cn'$	$\begin{array}{l}P2_{ab}2'_{ac} \end{array}$	$P_{2ab'}2_{ac'}$
$P6_22$	$P6_22$	$P6_22$	$P6_2(001)$	$P6_2c'(001)$

The full set of operators for the first group ($Pc'cn'$) can be obtained by the generators: $-x+1/2, -y+1/2, z,-1 (2_{ab'}); x+1/2, -y,-z+1/2,-1 (2_{ac'});$ $-x, -y, z, 1 (-1)$

The full set of operators for the second group ($P6_22$) can be obtained by the generators: $x-y, x, z+1/3,-1 (6_2'); -y, x,-z+2/3,-1 (2c');$. Notice that the second operator without taking into account the change of origin would have the form: $-y, x,-z+1/2,-1$ according to the rule (ii) and Table 4.

Type-4 MSG, also called type-2 black and white (BW2) groups, are those containing anti-translations: lattice translations associated with time reversal. Of course, these anti-translations are not lattice vectors. Their number is 517 and the BNS and OG symbols are different. Here we have conserved the columns concerning the ASCII representations of the BNS and OG in compact form.

Examples:

BNS symbol	OG symbol	BNS ASCII	OG ASCII	Hall symbol	Hall ASCII
F_sdd2	P_1nn2	F_{Sdd2}	P_{Inn2}	$F2\bar{2}_{d}1'_n$	$F_{2}2_{d}1'_n$
$Pc'bcn$	$C_{m'}cm$	P_{Cbcn}	$C_{Pm'}cm$	$\begin{array}{l}P2_{n}\bar{2}_{c}1'_c \end{array}$	$-P_{2n}2_{ab}1'C$
$Pc'6cm$	$P_{2c}6'm'm$	P_{c6_3cm}	$P_{2c6'}m'm$	$P6_{c}\bar{2}_{1}r$	$P_{6c}2_{1}c'$
$F_s d\bar{3}$	$F_p n\bar{3}$	F_{Sd-3}	P_{Fn-3}	$\begin{array}{l}F2_{uv}3_{w}1'_n \end{array}$	$-F_{2uv}2_{vw}3_{1n'}$

The full set of operators for the first group (F_sdd2) can be obtained by the generators: $-x, -y, z, 1 (2);$ $-x+1/4, y+1/4, z+1/4, 1 (\bar{2}_d); x+1/2, y+1/2, z+1/2, -1 (\bar{1}_n);$ and the F-centring translations $x, y+1/2, z+1/2, 1; x+1/2, y, z+1/2, 1$ and $x+1/2, y+1/2, z, 1$.
The full set of operators for the second group (\(P_c\) \(bcn\)) can be obtained by the generators: \(-x+1/2, -y+1/2, z+1/2, 1 \left(2,_{\nu}\right)\); \(x+1/2,-y+1/2,-z, 1 \left(2,_{ab}\right)\); \(-x, -y, -z, 1 \left(1,_{\nu}\right)\); \(x+1/2, y+1/2, z, 1 \left(1,_{c}\right)\).

The full set of operators for the third group (\(P_6\) \(6cm\)) can be obtained by the generators: \(-x+y, x, z+1/2, 1 \left(6,_{c}\right)\); \(x, y, z, 1 \left(2\right)\); \(x, y, z+1/2, -1 \left(1,_{c}\right)\).

The full set of operators for the fourth group (\(F_3d\) \(3\)) can be obtained by the generators: \(-x+1/4,-y+1/4,z, 1 \left(2,_{uv}\right)\); \(x,-y+1/4,-z+1/4, 1 \left(2,_{uv}\right)\); \(z,x,y, 1 \left(3\right)\) along \(a+b+c\), the star symbol in \(3^*\) is not needed according to the rule \((iii)\) and Table 5), the centre of symmetry \(-x,-y,-z, 1\) and the \(F\)-centring translations.

We provide in the Appendix-I all the standard MSG that are listed together with the Hall-symbols. The newly proposed International symbols (to be discussed in the Commission for Magnetic Structures of the IUCr) for the standard settings are also in the list.

A console program for calculating symmetry operators from Hall-symbols

We have developed a console program (MHALL) that is able to interpret Hall-symbols as described in this document. The program is based in the new version of the CRYSFML library (Gonzalez-Platas et al., 2020) handling general space groups (crystallographic, magnetic and superspace groups). The source code of the library as well as the program is written in the Fortran-2008 standard. The program asks for a Hall-symbol (or a set of generators in Jones faithful notation) as input and produces the full list of operators as well as the corresponding geometric symmetry element symbols (international notation) and the transformation to the standard setting as defined in (Stokes et al., 2013). The geometric symmetry element symbols are only provided for not too much involved settings. Two examples of running the program from a Windows console are provided in the Appendix-II. The installation of the program and examples are provided in the supplementary document (Supp-2).

The program is currently available at: https://code.ill.fr/scientific-software/crysml/-/blob/master/BinariesDistributions/Windows/MHall.zip

Conclusions

The extension of the Hall symbols to MSG has been straightforward to implement from the already existing definitions with a minimal change in one axis symbol. The use of the list of standard Hall symbols for the 1651 MSG allows generating, in a faster and compact way, the full list of symmetry operators of these groups. A further extension of Hall symbols is projected for general superspace groups (crystallographic and magnetic) just adding the modulation vectors followed by the phase symbols, commonly used in the current symbols, indicating the translation component for each generator in the additional dimensions.

One of us, N.A.K., acknowledges the financial support by the FILL2030 initiative, a European Union project within the European Commission’s Horizon 2020 Research and Innovation program under grant agreement N°731096.
References

FILL2030: http://www.fill2030.eu/ and https://cordis.europa.eu/project/id/731096

Glazer. A.M., Aroyo M.I. & Authier A. (2014). Acta Cryst. A70, 300–302

González-Platas, J., Katcho N.A. & Rodriguez-Carvajal, J., (2020), CrysfML08: a modern Fortran library for Crystallography. (Unpublished)

Hall, S.R. Acta Cryst. (1981). A37, 517-525

Hall, S. R. & Grosse-Kunstleve, R. W. in International Tables for Crystallography (2010). Vol. B, Appendix 1.4.2, pp. 122–134.

Litvin, D.B. (2013). Magnetic Space Group Types, IUCr e-book. https://www.iucr.org/publ/978-0-9553602-2-0.

Rodriguez-Carvajal, J., González-Platas, J., Roisnel, T., Katcho, N.A., Frontera, C., Chapon, L.C. & Baltuano O. (2020). FullProf Suite: https://www.ill.eu/sites/fullprof .

Stokes, H. T., Hatch D. M., & Campbell, B. J. (2013). ISO-MAG, ISOTROPY Software Suite, iso.byu.edu: https://stokes.byu.edu/iso/isotropy.php
Appendix I

List of the standard setting Hall symbols for the 1651 MSG and their correspondence with the conventional BNS and OG symbols. The provided symbols are ordered as in (Litvin, D.B., 2013, *Magnetic Space Group Types*, IUCr e-book). The new ordering, proposed by some member of the Commission for Magnetic Structures of the IUCr, is also provided.

Litvin Number	BNS Number	BNS Symbol	OG Symbol	INT Symbol	INT Number	IUCr Symbol
1	1.1	P1	P1	1	P1	
1	1.2	P1'	P1'	2	P1'	
1	1.3	P1'	P1'	P1'	P1'	
1	2.4	P2	P2	4	P2	
1	2.5	P2'	P2'	5	P2'	
1	2.6	P2'	P2'	6	P2'	
1	2.7	P2'	P2'	P2'	P2'	
1	3.1	P2	P2	8	P2	
1	3.2	P2'	P2'	9	P2'	
1	3.3	P2'	P2'	10	P2'	
1	3.4	P2'	P2'	P2'	P2'	
1	3.5	P2'	P2'	P2'	P2'	
1	3.6	P2'	P2'	12	P2'	
1	3.7	P2'	P2'	13	P2'	
1	3.8	P2'	P2'	14	P2'	
1	3.9	P2'	P2'	15	P2'	
1	3.10	P2'	P2'	16	P2'	
1	3.11	P2'	P2'	17	P2'	
1	3.12	P2'	P2'	18	P2'	
1	3.13	P2'	P2'	19	P2'	
1	3.14	P2'	P2'	20	P2'	
1	3.15	P2'	P2'	21	P2'	
1	3.16	P2'	P2'	22	P2'	
1	3.17	P2'	P2'	23	P2'	
1	3.18	P2'	P2'	24	P2'	
1	3.19	P2'	P2'	25	P2'	
1	3.20	P2'	P2'	26	P2'	
1	3.21	P2'	P2'	27	P2'	
1	3.22	P2'	P2'	28	P2'	
1	3.23	P2'	P2'	29	P2'	
1	3.24	P2'	P2'	30	P2'	
1	3.25	P2'	P2'	31	P2'	
1	3.26	P2'	P2'	32	P2'	
1	3.27	P2'	P2'	33	P2'	
1	3.28	P2'	P2'	34	P2'	
1	3.29	P2'	P2'	35	P2'	
1	3.30	P2'	P2'	36	P2'	
1	3.31	P2'	P2'	37	P2'	
1	3.32	P2'	P2'	38	P2'	
1	3.33	P2'	P2'	39	P2'	
1	3.34	P2'	P2'	40	P2'	
1	3.35	P2'	P2'	41	P2'	
1	3.36	P2'	P2'	42	P2'	
1	3.37	P2'	P2'	43	P2'	
1	3.38	P2'	P2'	44	P2'	
1	3.39	P2'	P2'	45	P2'	
1	3.40	P2'	P2'	46	P2'	
1	3.41	P2'	P2'	47	P2'	
1	3.42	P2'	P2'	48	P2'	
1	3.43	P2'	P2'	49	P2'	
1	3.44	P2'	P2'	50	P2'	
1	3.45	P2'	P2'	51	P2'	
1	3.46	P2'	P2'	52	P2'	
1	3.47	P2'	P2'	53	P2'	
1	3.48	P2'	P2'	54	P2'	
1	3.49	P2'	P2'	55	P2'	
1	3.50	P2'	P2'	56	P2'	
1	3.51	P2'	P2'	57	P2'	
1	3.52	P2'	P2'	58	P2'	
1	3.53	P2'	P2'	59	P2'	
1	3.54	P2'	P2'	60	P2'	
1	3.55	P2'	P2'	61	P2'	
1	3.56	P2'	P2'	62	P2'	
1	3.57	P2'	P2'	63	P2'	
1	3.58	P2'	P2'	64	P2'	
1	3.59	P2'	P2'	65	P2'	
1	3.60	P2'	P2'	66	P2'	
1	3.61	P2'	P2'	67	P2'	
1	3.62	P2'	P2'	68	P2'	
1	3.63	P2'	P2'	69	P2'	
1	3.64	P2'	P2'	70	P2'	
Value	Description					
-------	-------------					
85.139	P_4'3'2'2					
95.797	P_4'3'2'2					
799	P_4'3'2'2					
4cw 2c'						
84.140	P_c4_3'2'2					
93.978	P_c4_3'2'2					
800	P_c4_3'2'2					
4cw 2c 1'C						
95.141	P_C4_3'2'2					
95.678	P_C4_3'2'2					
801	P_C4_3'2'2					
4cw 2c 1'C						
95.142	P_I4_3'2'2					
98.780	P_I4_3'2'2					
802	P_I4_3'2'2					
4cw 2c 1'I						
96.144	P_I4_3'2'2					
96.180	P_I4_3'2'2					
803	P_I4_3'2'2					
4nw 2abw						
96.145	P_I4_3'2'2					
96.380	P_I4_3'2'2					
805	P_I4_3'2'2					
4nw 2abw						
96.146	P_I4_3'2'2					
96.480	P_I4_3'2'2					
806	P_I4_3'2'2					
4nw 2abw'						
96.148	P_I4_3'2'2					
97.480	P_I4_3'2'2					
807	P_I4_3'2'2					
4nw 2abw'						
96.149	P_I4_3'2'2					
97.580	P_I4_3'2'2					
808	P_I4_3'2'2					
4nw 2abw'						
96.150	P_I4_3'2'2					
98.280	P_I4_3'2'2					
811	P_I4_3'2'2					
40bw 2bw'						
96.151	P_I4_3'2'2					
98.380	P_I4_3'2'2					
812	P_I4_3'2'2					
40bw 2bw'						
96.152	P_I4_3'2'2					
98.480	P_I4_3'2'2					
813	P_I4_3'2'2					
40bw 2bw'						
96.153	P_I4_3'2'2					
98.580	P_I4_3'2'2					
814	P_I4_3'2'2					
40bw 2bw'						
96.154	P_I4_3'2'2					
98.680	P_I4_3'2'2					
815	P_I4_3'2'2					
40bw 2bw'						
96.155	P_I4_3'2'2					
98.780	P_I4_3'2'2					
816	P_I4_3'2'2					
40bw 2bw'						
96.156	P_I4_3'2'2					
98.880	P_I4_3'2'2					
817	P_I4_3'2'2					
40bw 2bw'						
96.157	P_I4_3'2'2					
99.180	P_I4_3'2'2					
818	P_I4_3'2'2					
40bw 2bw'						
96.158	P_I4_3'2'2					
99.280	P_I4_3'2'2					
819	P_I4_3'2'2					
40bw 2bw'						
96.159	P_I4_3'2'2					
99.380	P_I4_3'2'2					
820	P_I4_3'2'2					
40bw 2bw'						
96.160	P_I4_3'2'2					
99.480	P_I4_3'2'2					
821	P_I4_3'2'2					
40bw 2bw'						
96.161	P_I4_3'2'2					
99.580	P_I4_3'2'2					
822	P_I4_3'2'2					
40bw 2bw'						

[Rest of the table continues with similar entries]
1609	223.107	Pm-3n	223.4.1609	Pm-3n
1610	223.108	Pm-3'n	223.5.1610	Pm-3'n
1611	223.109	Pm-3'n	229.8.1645	Pm-3'n
1612	224.110	Pm-3m	224.1.1611	Pm-3m
1613	224.111	Pm-3m	224.2.1612	Pm-3m
1614	224.112	Pm-3m	224.3.1613	Pm-3m
1615	224.113	Pm-3m	224.4.1614	Pm-3m
1616	224.114	Pm-3m	224.5.1615	Pm-3m
1617	224.115	Pm-3m	229.7.1644	Pm-3m
1618	225.116	Pm-3m	225.1.1618	Pm-3m
1619	225.117	Pm-3m	225.2.1619	Pm-3m
1620	225.118	Pm-3m	225.3.1620	Pm-3m
1621	225.119	Pm-3m	225.4.1621	Pm-3m
1622	226.120	Pm-3m	226.1.1623	Pm-3m
1623	226.121	Pm-3m	226.2.1624	Pm-3m
1624	226.122	Pm-3m	226.3.1625	Pm-3m
1625	226.123	Pm-3m	226.4.1626	Pm-3m
1626	226.124	Pm-3m	226.5.1627	Pm-3m
1627	226.125	Pm-3m	226.6.1628	Pm-3m
1628	226.126	Pm-3m	226.7.1629	Pm-3m
1629	226.127	Pm-3m	227.1.1600	Pm-3m
1630	227.128	Pd-3m	227.1.1628	Pd-3m
1631	227.129	Pd-3m	227.2.1629	Pd-3m
1632	227.130	Pd-3m	227.3.1630	Pd-3m
1633	227.131	Pd-3m	227.4.1631	Pd-3m
1634	227.132	Pd-3m	227.5.1632	Pd-3m
1635	227.133	Pd-3m	227.6.1636	Pd-3m
1636	227.134	Pd-3m	227.7.1637	Pd-3m
1637	227.135	Pd-3m	227.8.1638	Pd-3m
1638	227.136	Pd-3m	227.9.1639	Pd-3m
1639	228.137	Pd-3m	228.1.1636	Pd-3m
1640	228.138	Pd-3m	228.2.1637	Pd-3m
1641	228.139	Pd-3m	228.3.1638	Pd-3m
1642	228.140	Pd-3m	228.4.1641	Pd-3m
1643	228.141	Pd-3m	228.5.1642	Pd-3m
1644	228.142	Pd-3m	228.6.1643	Pd-3m
1645	228.143	Pd-3m	228.7.1644	Pd-3m
1646	228.144	Pd-3m	228.8.1645	Pd-3m
1647	229.145	Pd-3d	230.1.1647	Pd-3d
1648	229.146	Pd-3d	230.2.1648	Pd-3d
1649	229.147	Pd-3d	230.3.1649	Pd-3d
1650	229.148	Pd-3d	230.4.1650	Pd-3d
1651	229.149	Pd-3d	230.5.1651	Pd-3d
Appendix II
Procedure for installing and running the program MHALL

The program MHALL is distributed within the file MHall.zip. It contains the executable program MHall.exe for Windows (64 bits) and MHall.x for Linux. For working with the program, the following steps should be respected (this is for Windows, for Linux is similar):

1: Extract the files of MHall.zip in the directory of your choice
2: Open a Windows terminal (using cmd.exe) and go to the previous directory.
3: Type MHall in the terminal followed by the <Enter> key.
4: Introduce the Hall symbol of your choice (or a set of generators in Jones faithful notation separated by semicolons)
5: Type the <Enter> key
6: For exiting the program you should enter a void Hall symbol.

Notice that the database magnetic_data.txt, by Stokes & Campbell, is provided with the program. If you have already this database in another directory, you may define the environment variable CRYSFML_DB pointing to the directory where magnetic_data.txt is.

The program may be run also by entering the input information in the command line (do not forget to put the information within double quotes). For instance, we can run the program and redirect the standard output to the file output.txt:

MyPrompt> MHall "x,-y,z+1/4,-1;-x,-y,-z,1;x+1/2,y+1/2,z,1" > output.txt
MyPrompt> MHall "-P 2yw' -1'n" >> output.txt

This allows the preparation of a batch file for testing many examples at the fly. The standard output is sent to output.txt

Examples without entering the input in the command line

First example: MSG P\textsubscript{C\textsubscript{4}}\textsubscript{2/m} using a strange setting (Hall symbol -P 4n' 1u') followed by a change of basis putting back the operators in the standard setting.

MHall: Testing Hall symbols

Op-Dimension: 4
Space-Dimension: 3
Multiplicity: 16
MagType: 4, Black-White: 2
NumOps: 8
Centred: 2
Num. Centring translation: 0
Num. Anti-translations: 1
Crystal system: Tetragonal
Crystallographic Point group: 4/m
Laue class: 4/m
Space Group number: 84
Shubnikov Group number: 717
Hall symbol: -P 4n' 1u' : -a/4-b/4,a/4-b/4,c;-1/8,-1/8,0
Shubnikov Group BNS-symbol: P_C4_2/m
Shubnikov Group BNS-label : 84.57
Shubnikov Group OG-symbol: P_P4_2/m
Magnetic Point Group: 4/m1'
To Standard Shubnikov Group: a,b,c;0,0,0
Generators List:
y+1/2,x+1/2,z+1/2,
1;x+1/2,y+1/2,z,
1;x,y,z,1
Centre_coord: [0 0 0]
Anti-Centre_coord: [1/4 1/4 0]

Anti-translations:
[1/2 1/2 0]

Complete list of symmetry operators and symmetry symbols
===
SymmOp 1: x,y,z,1 Symbol: 1
SymmOp 2: -x,-y,z,1 Symbol: 2 0,0,z
SymmOp 3: y,x,z+1/2,1 Symbol: 4+ (0,0,1/2) 0,0,z
SymmOp 4: y,-x,z+1/2,1 Symbol: 4 0,0,1/2 0,0,z
SymmOp 5: -y+1/2,x+1/2,z+1/2,-1 Symbol: 4' (0,0,1/2) 0,1/2,z
SymmOp 6: x+1/2,y+1/2,z,-1 Symbol: t' (1/2,1/2,0)
SymmOp 7: y+1/2,-x+1/2,z+1/2,-1 Symbol: 4' (0,0,1/2) 1/2,0,z
SymmOp 8: -x+1/2,-y+1/2,z,-1 Symbol: 2' 1/4,1/4,0,z
SymmOp 9: -x,-y,z,1 Symbol: -1 0,0,0
SymmOp 10: x,y,-z,1 Symbol: m x,y,0
SymmOp 11: y,-x,-z+1/2,1 Symbol: -4+ 0,0,0; 0,0,1/4
SymmOp 12: -y,x,-z+1/2,1 Symbol: -4 0,0,0; 0,0,1/4
SymmOp 13: y+1/2,-x+1/2,-z+1/2,-1 Symbol: -4' 1/2,0,0; 1/2,0,1/4
SymmOp 14: -x+1/2,-y+1/2,-z+1/2,-1 Symbol: -1' 1/4,1/4,0
SymmOp 15: -y+1/2,x+1/2,-z+1/2,-1 Symbol: -4 0,1/2,0; 0,1/2,1/4
SymmOp 16: x+1/2,y+1/2,-z,-1 Symbol: n' (1/2,1/2,0) x,y,0

=> Total CPU_TIME for this calculation: 0.406 seconds

Second example: MSG P4' in a non-conventional setting (Hall symbol X 4' 1u) corresponding to the use a supercell 4a, 4b, c of the standard setting. Notice the high number of lattice centring vectors.

MHall: Testing Hall symbols

=> Enter the magnetic Hall symbol or a list of generators in Jones’ faithful notation: X 4' 1u

=> Obtained generators: -y,x,z,-1;x+1/4,y,z,1

General Space Group

Op-Dimension: 4
Space-Dimension: 3
Multiplicity: 64
MagType: 3, Black-White:1
NumOps: 4
Centred: 1
Num. Centring translation: 15
Num. Anti-translations: 0
Crystal system: Tetragonal
Crystallographic Point group: 4
Laue class: 4/m
Space Group number: 75
Shubnikov Group number: 663
Hall symbol: X 4' 1u
Shubnikov Group BNS-symbol: P4'
Shubnikov Group BNS-label: 75.3
Shubnikov Group OG-symbol: P4'
Magnetic Point Group: 4'
To Standard Shubnikov Group: a/4, b/4, c; 0, 0, 0

Generators List:
- y, x, z, -1; x+1/4, y, z, 1

Centre_coord: none!

Centring translations:
- [1/4 0 0]
- [1/2 0 0]
- [3/4 0 0]
- [0 1/4 0]
- [1/4 3/4 0]
- [1/2 1/4 0]
- [1/2 1/2 0]
- [3/4 1/4 0]
- [3/4 3/4 0]
- [1/2 1/4 0]
- [1/2 1/2 0]

Complete list of symmetry operators and symmetry symbols

SymmOp	Symmetry Operation	Symbol
1	x, y, z, 1	1
2	-x, -y, z, 1	2 0, 0, z
3	-y, x, z, -1	4' 0, 0, z
4	y, -x, z, -1	4' -0, 0, z
5	x+1/4, y, z, 1	t (1/4, 0, 0)
6	-x+1/4, -y, z, 1	2 1/8, 0, z
7	y+1/4, x, z, -1	4' 1/8, 1/8, z
8	y+1/4, -x, z, -1	4' 1/8, -1/8, z
9	x+1/2, y, z, 1	t (1/2, 0, 0)
10	-x+1/2, -y, z, 1	2 1/4, 0, z
11	-y+1/2, x, z, -1	4' 1/4, 1/4, z
12	y+1/2, -x, z, -1	4' 1/4, -1/4, z
13	x+3/4, y, z, 1	t (3/4, 0, 0)
14	-x+3/4, -y, z, 1	2 3/8, 0, z
15	-y+3/4, x, z, -1	4' 3/8, 3/8, z
16	y+3/4, -x, z, -1	4' -3/8, 3/8, z
17	x, y+3/4, z, 1	t (0, 3/4, 0)
18	-x, -y+3/4, z, 1	2 0, 3/8, z
19	-y, x+3/4, z, -1	4' -3/8, 3/8, z
20	y, -x+3/4, z, -1	4' 3/8, 3/8, z
21	x, y+1/4, z, 1	t (0, 1/4, 0)
22	-x, -y+1/4, z, 1	2 0, 1/8, z
23	-y, x+1/4, z, -1	4' -1/8, 1/8, z
24	y, -x+1/4, z, -1	4' -1/8, 1/8, z
25	x+1/4, y+3/4, z, 1	t (1/4, 3/4, 0)
26	-x+1/4, -y+3/4, z, 1	2 1/8, 3/8, z
27	-y+1/4, x+3/4, z, -1	4' -1/4, 1/2, z
28	y+1/4, -x+3/4, z, -1	4' 1/2, 1/4, z
29	x, y+1/2, z, 1	t (0, 1/2, 0)
30	-x, -y+1/2, z, 1	2 0, 1/4, z
31	-y, x+1/2, z, -1	4' -1/4, 1/4, z
32	y, -x+1/2, z, -1	4' 1/4, 1/4, z
33	x+3/4, y+3/4, z, 1	t (3/4, 3/4, 0)
34	-x+3/4, -y+3/4, z, 1	2 3/8, 3/8, z
35	-y+3/4, x+3/4, z, -1	4' 0, 3/4, z
36	y+3/4, -x+3/4, z, -1	4' 3/4, 0, z
37	x+1/4, y+1/4, z, 1	t (1/4, 1/4, 0)
38	-x+1/4, -y+1/4, z, 1	2 1/8, 1/8, z
SymmOp 39: \(-y+1/4,x+1/4,z,-1\) Symbol: 4'+ 0,1/4,z
SymmOp 40: \(y+1/4,-x+1/4,z,-1\) Symbol: 4' - 1/4,0,z
SymmOp 41: \(x+3/4,y+1/4,z,1\) Symbol: t (3/4,1/4,0)
SymmOp 42: \(-x+3/4,-y+1/4,z,1\) Symbol: 2 3/8,1/8,z
SymmOp 43: \(-y+3/4,x+1/4,z,-1\) Symbol: 4'+ 1/4,1/2,z
SymmOp 44: \(y+3/4,-x+1/4,z,-1\) Symbol: 4'- 1/2,-1/4,z
SymmOp 45: \(x+1/2,y+3/4,z,1\) Symbol: t (1/2,3/4,0)
SymmOp 46: \(-x+1/2,-y+3/4,z,1\) Symbol: 2 1/4,3/8,z
SymmOp 47: \(-y+1/2,x+3/4,z,-1\) Symbol: 4'+ -1/8,5/8,z
SymmOp 48: \(y+1/2,-x+3/4,z,-1\) Symbol: 4' - 5/8,1/8,z
SymmOp 49: \(x+1/4,y+1/2,z,1\) Symbol: t (1/4,1,2,0)
SymmOp 50: \(-x+1/4,-y+1/2,z,1\) Symbol: 2 1/8,1/4,z
SymmOp 51: \(-y+1/4,x+1/2,z,-1\) Symbol: 4'- -1/8,3/8,z
SymmOp 52: \(y+1/4,-x+1/2,z,-1\) Symbol: 4' - 3/8,1/8,z
SymmOp 53: \(x+3/4,y+1/2,z,1\) Symbol: t (3/4,1/2,0)
SymmOp 54: \(-x+3/4,-y+1/2,z,1\) Symbol: 2 3/8,1/4,z
SymmOp 55: \(-y+3/4,x+1/2,z,-1\) Symbol: 4'+ 1/8,5/8,z
SymmOp 56: \(y+3/4,-x+1/2,z,-1\) Symbol: 4' - 5/8,-1/8,z
SymmOp 57: \(x+1/2,y+1/4,z,1\) Symbol: t (1/2,1,4,0)
SymmOp 58: \(-x+1/2,-y+1/4,z,1\) Symbol: 2 1/4,1/8,z
SymmOp 59: \(-y+1/2,x+1/4,z,-1\) Symbol: 4'+ 1/8,3/8,z
SymmOp 60: \(y+1/2,-x+1/4,z,-1\) Symbol: 4'- 3/8,-1/8,z
SymmOp 61: \(x+1/2,y+1/2,z,1\) Symbol: t (1/2,1/2,0)
SymmOp 62: \(-x+1/2,-y+1/2,z,1\) Symbol: 2 1/4,1/4,z
SymmOp 63: \(-y+1/2,x+1/2,z,-1\) Symbol: 4'+ -1/2,0,z
SymmOp 64: \(y+1/2,-x+1/2,z,-1\) Symbol: 4'- 1/2,0,z

-> Total CPU_TIME for this calculation: 0.391 seconds