Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Glycoproteome in silkworm *Bombyx mori* and alteration by BmCPV infection

Feifei Zhu\(^{a,b}\), Dong Li\(^{a}\), Dandan Song\(^{a}\), Shuqiao Hua\(^{b}\), Shangshang Ma\(^{a}\), Peng Li\(^{a}\), Xiaoyong Liu\(^{a}\), Qin Yao\(^{a}\), Keping Chen\(^{a,b,*}\)

\(^{a}\) Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China

\(^{b}\) School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China

ARTICLE INFO

Keywords:
- Silkworm
- *Bombyx mori*
- Glycoproteome
- O-glycans
- BmCPV

ABSTRACT

The biological functions of protein glycosylation have been increasingly recognized but not yet been very well understood, especially in lower organisms. Silkworm as a model lepidopteran insect and important economic insect, has been widely studied in life science, however, the current knowledge on the glycosylation status of its proteome is not satisfactory, and little is known about how pathogenic infections could affect the glycosylation status. This study performed large scale glycosite mapping for the silkworm *Bombyx mori* P50 strain, and quantitatively compared with that infected with the *Bombyx mori* cytoplasmic polyhodrosis virus (BmCPV). Some 400 glycoproteins were mapped in the silkworm, including N- and O-glycoproteins. Upon virus infection, the glycosylation levels of 41 N-glycopeptides were significantly changed, some of them belonging to transmembrane glycoproteins. The O-glycosylation profiles were also affected. In addition, 4 BmCPV-encoded viral proteins were found to be glycosylated for the first time, including polyhedrin, P101, VP3, and the NS protein. This study drafted a silkworm protein glycosylation map and underlined the potential impact of virus infection on glycosylation.

Significance: This study reveals the characteristics of the glycoproteome in the silkworm strain P50, and quantitatively compared with that infected by the virus BmCPV, which underlines the impact of virus infection on the alteration of protein glycosylation in invertebrate species. Our findings add to the knowledge of the post translational modifications of this model organism, and also uncovered for the first time the glycosylation status of the viral proteins expressed by BmCPV.

1. **Introduction**

Silkworm *Bombyx mori* is an economically important Lepidopteran insect. Since its genome revealed in 2004 [1], it has become an increasingly popular model organism for molecular biology [2]. However, compared to the current knowledge on the silkworm’s genome and transcriptome, we do not know much at the proteomic level, especially the status of post translational modifications (PTMs) of the proteome. Glycosylation, being one of the most common and diverse PTMs, has been widely acknowledged in vertebrates as an important indicator of their physiological or pathological state [3], however, very little is known about how glycosylation are altered in lower organisms, like during a pathogen invasion. Such investigations can provide clues to the interactions between glycosylation pathways, inflammatory responses and viral immune escape [4].

The initial steps of viral infections always involve the attachment of viral particles to the receptors on the host cell surface. An important class of the receptors is transmembrane glycoproteins, which play vital roles cell adhesion and receptor bindings [5]. Therefore, glycosylation patterns of the host cell, especially on the cell surface, can influence the interactions between an infecting virus and the host, and identifying such molecules are critical to the understanding of viral infection mechanisms and host immune responses. Once a virus enters the host cell, it hijacks the host’s cellular machinery for viral replication, altering numerous biological pathways of the cell, which is evidenced by changes in the expression levels of many genes, transcripts, and proteins. Although several studies have performed transcriptomic and proteomic comparisons on the silkworm upon virus infection, such as by the *Bombyx mori* cytoplasmic polyhedrosis virus (BmCPV) [6,7], whether the glycosylation profiles are affected have not been reported.

BmCPV is one of the earliest identified viruses infecting silkworms, and often results in significant economic loss to the sericulture industry. BmCPV is a double stranded RNA virus belonging to the *Cypovirus* genus, *Reoviridae* family. Its genome contains 10 discrete copackaged RNA segments [8], but only a few of them has been cloned and characterized so far [9,10]. The RNA genome is wrapped by 5 structural proteins,
namely VP1–5 [11]. The virus forms occlusion bodies in infected silkworm midgut, which is composed of the matrix protein polyhedrin that encloses many visions within the matrix [12].

In this study, we performed large scale glycosylation site mapping on the silkworm strain P50, and quantitatively compared to that infected by BmCPV. The mapping strategy, which was first introduced by Zielinska et al. [13], uses high precision mass spectrometer for detection of a + 2.988 Da mass shift after enzymatic deamidation of the N-glycosylated asparagine residue in O\(^{18}\) water. Taking advantage of the greatly reduced glycosylation complexity due to removal of the N-glycans, we were also able to simultaneously map the O-glycosylates and their associated glycans by searching against an insect O-glycan panel. Additionally, the glycosylation profile of the virus-encoded proteins were obtained. Transmembrane glycoproteins and significantly regulated glycoproteins upon virus infection were marked, which provides clues for future investigation of the role of glycosylation during viral infection in invertebrate systems.

2. Experimental procedures

2.1. Silkworm breeding and viral administration

The silkworm P50 strain was obtained from the Institute of Life Sciences, Jiangsu University, and the BmCPV virus was graciously given by Prof. Chengxiang Hou at the Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang. The silkworm were reared on fresh mulberry leaves at 25 ± 1 °C and 70–90% relative humidity. On the first day of 5th instar, the silkworm was fed with 5 μL of BmCPV virion at 10\(^{8}\) polyhedra/mL in phosphate buffered saline (PBS), and the control larvae were fed with PBS. After 72 h, silkworms were harvested and residual mulberry leaves were removed from the gut and then preserved at −80 °C. Biological triplicates in each group were prepared for the following sample processing and analysis.

2.2. Protein extraction and digestion

To the silkworm sample, 1.5 mL SDT lysis buffer containing 4% SDS, 100 mM Tris/HCl, and 0.1 M DTT at pH 7.6 was added, and the sample was homogenized in a tissue lyser (Shanghai Jingxin Co., Shanghai, China) using three beating cycles at 120 Hz, 60 s at 4 °C. The solution was then sonicated in an ice bath for 10 min, boiled for 15 min, and then centrifuged at 14000g for 40 min. The supernatant was collected and the protein concentration was determined by Bradford analysis (ThermoFisher scientific) and stored at −80 °C for further use.

The protein extract was aliquoted to a tube containing 400 μg of total protein and was boiled for 5 min, cooled to room temperature, and then mixed with 200 μL of UA buffer (8 M urea, 150 mM Tris HCl, pH 8.0). The mixture was transferred to a 10 kD ultrafiltration tube (Merck Millipore) and centrifuged at 14,000g for 10 min. The samples were then desalted using Zip-Tip (Merck Millipore) protocol according to the manufacture’s protocol and ready for LC-MS analysis.

Additionally, the glycosylation profile of the virus-encoded proteins were obtained. Transmembrane glycoproteins and significantly regulated glycoproteins upon virus infection were marked, which provides clues for future investigation of the role of glycosylation during viral infection in invertebrate systems.

2.3. Glycopeptide enrichment, O\(^{18}\) deamidation, and LC-MS analysis

The digested peptides was transferred to a new 10 kD filter and mixed with 100 μL lectin mixture containing 2.5 mg/mL Con A, 2.5 mg/mL WGA, and 0.8 mg/mL RCA in buffer A (buffer A = 1 mM CaCl\(_2\), 1 mM MnCl\(_2\), 0.5 M NaCl in 20 mM Tris-HCl, pH 7.3). After gentle mixing at 600 rpm for 1 min, the mixture was incubated at room temperature for 1 h and then centrifuged at 14,000 g for 10 min. The samples were washed by 200 μL buffer A three times. Afterwards, 50 μL of 25 mM NH\(_4\)HCO\(_3\) in H\(_2\)\(^{18}\)O was added to precondition the filter and discarded by centrifugation. This step was repeated twice. The filter was placed in new collection tube and 40 μL PNGase F (500 units) in 25 mM NH\(_4\)HCO\(_3\) made in H\(_2\)\(^{18}\)O was added to the filter and the samples were incubated for 3 h at 37 °C. The deglycosylated (or deamidated) peptides were eluted by centrifugation and the filter was washed with 25 mM NH\(_4\)HCO\(_3\) in H\(_2\)\(^{18}\)O twice and the elution was combined. The samples were then desalted using a Zip-Tip (Merck Millipore) protocol according to the manufacture’s protocol and ready for LC-MS analysis.

The deamidated peptides were loaded onto an Acclaim PepMap100 sample concentrating column (100 μm × 2 cm, Thermo Scientific) and then separated by an C18 capillary column (75 μm × 10 cm, 3 μm). Buffer A contained 0.1% formic acid in water and buffer B was 0.1% formic acid in 84% acetonitrile. The peptide sample was separated at a flow rate of 250 nL/min using a 2 h gradient. MS analysis was performed on a LTQ-Orbitrap Velos mass spectrometer (Thermo Fisher). After each full scan, top ten intense precursor ions were isolated and fragmented using HCD at an isolation window of 2 m/z and normalized collision energy of 30 eV.

2.4. Data analysis

LC-MS raw data were directed processed by Peaks Studio software (Bioinformatics Solutions Inc.) for identification of proteins and post translational modifications as described previously [14]. Briefly, Silkworm reference proteome (Uniport ID UP000005204) was used as the protein database, and the parameters used for database searching was: 10 ppm as parent mass tolerance, 0.1 Da as fragment mass tolerance, 2 missed cleavages for tryptic digestion, carbamidomethyl as the fixed modification, methionine oxidation, protein N-terminal acetylation, and asparagine deamidation (+2.988 Da) as the variable modifications. For post translational modifications (PTMs), a series of O-glycan compositions (Table S1) were set as the variable modifications to the threonine or serine residues. A maximum of 5 PTMs were allowed per peptide. The results were further filtered using the following parameters: de novo average localized score ≥ 50%, unique peptide ≥ 2, PTM Ascore ≥ 20, and false discover rate ≤ 1%. For quantitative analysis, Perseus software [15] was used for further data processing and visualization. Briefly, the raw intensities obtained by Peaks software were transformed using natural log, and those had at least two valid intensities among the triplicate in at least one group (control or infected) were retained, and the remaining missing values were replaced with normal distribution (width = 0.3; downshift = 2.6). Student’s t-test was performed to obtain statistically different (p < .05) (glyco) peptides between the groups. Gene ontology enrichment was performed using the ShinyGo webserver [16]. Transmembrane topology was predicted using the Phobius web server [17].

3. Results and discussion

3.1. Viral glycoprotein expression in the BmCPV-infected P50 group

Viral glycoproteins play important roles in virus attachment, penetration and uncoating, and serve as a protective shield from the host immune systems [18,19]. Alteration of the glycans on the virus particle can alter the virulence and change the host range [20–22]. Therefore, profiling the glycosylation of virus-encoded proteins are necessary to the functional characterization the protein as well as to the understanding of the mechanisms of viral infection. The glycosylation status of BmCPV viral proteins have not been explored to date. In this study, effective viral propagation in the silkworm was confirmed by
expression of the viral proteins in the host body. In the total glyco-
proteome of the virus-infected silkworm, 4 N-glycoproteins were found to
be BmCPV-encoded, whereas no O-glycosylation was detected (Table 1). These viral glycoproteins were not found in the control P50
group.

Polycrithid, encoded by the genome segment 10 of the BmCPV virus
and organized in octameric or dodecameric forms [23], is the major
matrix protein surrounding the virus envelope and protects the virions
against long term harsh environments. Polycrithid has typical mole-
cular weight of 27–31 kDa, but no significant sequence similarities were
found between the polycrithids derived from the CPVs of different host
species [9,24,25]. While baculovirus polycrithid has been found with
glycosylation potential [23], there has been controversy on whether the
cytopivirus polycrithid is glycosylated or not. It has been previously
suggested to be glycosylated based on positive color-reactions with
acid-Schiff reagent [11], however, molecular cloning of this protein
showed that polycrithid does not contain a transmembrane signal
peptides which guide peptide glycosylation [9]. In this study, glycosite
mapping showed that BmCPV polycrithid is N-glycosylated at the single
site N77, confirming that it is a glycoprotein, and it is speculated that
the sugar coating could further enhance the stability and protection of
the virion. Another glycoprotein P101, which is a 101 kDa protein
encoded by the genome segment 5, was identified with a single glyco-
sylation site at N684, although this protein was predicted with three
possible N-glycosylation sites based on motif analysis [26]. The other
two viral glycoproteins were VP3, a capping protein [8], which was
glycosylated at N801 and the non-structural (NS) protein, which was
mapped with three glycosylation sites at N69, N48, and N138. The
functions of these viral proteins have not been clarified or experimen-
tally validated so far, and even less is known about what their glyco-
sylation does for these proteins during virus infections. Therefore, it
would be of great interest to investigate these glycosylated viral pro-
teins and their roles during virus infection.

3.2. Characteristics of the P50 silkworm N-glycoproteome

A total of 762 N-glycopeptides belonging to 389 N-glycoproteins
were identified in the P50 control and BmCPV-infected groups (Table
S2), revealing a high level of glycosylation in this lepidopteran insect.
More than 95% of the mapped glycoproteins were within 200 kDa, and
a significant portion of them were closely reside within 10–100 kDa
(Fig. 1a). The N-glycoproteins were predominantly singly or doubly
glycosylated, although 14 of them were mapped with more than 5
glycosites per protein (Fig. 1b). Fig. 1c showed that all the 762 iden-
tified glycosylation site has the consensus sequence N-X-T/S, demon-
strating the highly conserved motif required for N-glycosylation.
Among the 389 identified N-glycoproteins, 118 were predicted to be
transmembrane glycoproteins (Table S3), which can be interesting
candidates to explore as potential cell surface receptors to outside pa-
thogens. The total glycoproteins identified in the silkworm were ana-
lized by gene ontology (GO) enrichment in the category of biological
process, indicating that the silkworm glycoproteome mainly involve in
metabolic processes, cell adhesion, and proteolysis processes (Fig. 1d).

Table 1 lists the top 20 most abundant N-glycoproteins in the P50
silkworm. The silkworm storage protein is the most abundant glyco-
protein in the P50 silkworm. It plays important roles in insect

Protein ID	Protein names	M.W. (kDa)	N-glycosites
B8YCR2	Polycrithid	28.5	N77
C6K2M9	NS Protein	44.3	N69,N48,N138
C7EWL8	P101	101.0	N684
D3JWE7	VP3	120.0	N801

metamorphosis and development, and may involve in the innate im-
mune response to pathogens [27,28]. Previous study indicated that it is
a glycoprotein [29], but the specific sites were not known. In this study,
the storage protein is mapped with three N-glycosites at N208, N519,
and N598. The second most abundant silkworm N-glycoprotein is a
putative cuticle protein glycosylated at N66. Although many insect
cuticle proteins were found to be glycosylated [30], the functions of
these modifications are not yet clear. The protein containing the highest
number of glycosite was H9JRT0, with 10 N-glycosites, and was the
eight most abundant N-glycoprotein. However, it has not been char-
acterized at the protein level. As Table 2 shows, a lot of the glyco-
proteins are “uncharacterized”, thus continued effort are needed to in-
vigate their structures and functions, including their glycosylation
status.

3.3. Quantitative comparison of the N-glycoproteomes between control and
BmCPV-infected P50 strains

To understand how protein glycosylation status is affected by viral
infection, the total glycoproteomes in the P50 control and BmCPV-inf-
ected groups were analyzed and compared. For reliable quantitative
comparison between the glycoproteomes, the data were further filtered
retaining those detected at least twice in the triplicate in at least one
group. This yields 489 glycopeptides belonging to 287 glycoproteins
(Table S4), which were then used for quantitative comparison between
the control and BmCPV-infected group. The glycopeptide intensities
within each group are highly replicable (Fig. 2a), as demonstrated by
low discrepancy in intensity between the replicates. Majority of the
glycopeptide intensities in the replicates were within 10% from each
other.

A heat map was constructed to compare the identified glycopeptides
in the two groups (Fig. S1), which showed that majority of the N-gly-
copeptides had a similar profile between the control and the virus-in-
fected groups. Statistically significant (p < .05) glycopeptides between
the two groups were shown in Fig. 2c and d. A total of 14 glycopeptides
were significantly downregulated in the virus-infected group, and an-
other 27 glycopeptides significantly upregulated. Among them, 9 were
predicted transmembrane proteins (Table S3). These 41 differentially
regulated glycoproteins were categorized in metabolic processes, cell
adhesion as well as in response to stimulus (Fig. 2b), indicating a
change of molecular interactions by the virus infection. There have
been evidences that pathogens can hijack host’s glycosylation system to
manipulate immune responses to the advantage of the pathogen [4].
Thus, the changes in the glycosylation level can modulate cellular and
molecular functions, which is likely for the purpose of increasing the
host susceptibility to the infection. Again, a lot glycoproteins were
uncharacterized, and further investigations on these proteins may be
necessary and insightful for understanding the molecular mechanisms
during the virus infection.

Among the 14 downregulated glycopeptides, the signal sequence
receptor (SSR, Q2F5L0) showed the most significant difference (p = 2.5 × 10^-5) (Fig. 2c). SSR is an integral, glycosylated protein of
the rough ER membrane and mediates the translocation of a peptide
across the ER membrane [31]. The significant downregulation of SSR
indicates that BmCPV infection may induce ER stress and influence the
glycosylation level of SSR as a part of the ER stress response.

The significantly upregulated glycopeptides include several enzyme
classes such as oxidases and peptidases, and several other proteins in-
cluding DNA supercoiling factor, serpin, and integrin beta (Fig. 2d).
Among these, integrin beta are a family of evolutionarily conserved
transmembrane glycoproteins that mediate bidirectional transmem-
brane signaling and cell to cell interactions, and are important in many
physiological and pathological processes [32]. Previous studies showed
that silkworm integrin beta interacts with the BmCPV virion, and that
silencing integrin beta gene could inhibit viral infection to the silkworm
[33]. Our data showed that integrin beta was upregulated during
Fig. 1. Characteristics of the silkworm N-glycoproteome. (a) Molecular weight distribution of silkworm N-glycoproteins in the P50 strain, (b) distribution of the number of N-glycoproteins having a particular number of N-glycosites, (c) sequence motif analysis centered on the N-glycosylation site, and (d) top10 enriched GO terms in biological processes (p < .05) for the 389 total glycoproteins identified in silkworm.

Table 2

Protein ID	Protein names	M.W. (kDa)	N-glycosites	Gene names
H9JHM9	Silkworm storage protein	82.8	N208, N519, N598	sp3
C0H6L5	Putative cuticle protein	12.6	N66	BmorCPR24
H9J9M0	Chitin-binding type-2 domain-containing protein	61.4	N244, N296, N274, N300	101,740,647
H9J8C7	Uncharacterized protein	16.4	N51, N67	
H9J9M1	Uncharacterized protein	65.3	N330	
H9J1A5	SERPIN domain-containing protein	44.4	N23, N140, N334	
H9JK1	Uncharacterized protein	58.0	N93	
H9JRT0	Uncharacterized protein	425.7	N43, N959, N1164, N1385, N2105, N2374, N2688, N2745, N2866, N3597,	101,736,296
H9JWX6	Collagen IV NC1 domain-containing protein	178.1	N16, N220	
H9JIA9	Uncharacterized protein	22.2	N80	
H9JGP9	Transferrin	71.7	N318	
G9FL14	DNA supercoiling factor	38.0	N177	LOC92759
Q9XV0	Phenoloxidase-activating enzyme	48.0	N239, N334	PPAE
H9JRS9	SEA domain-containing protein	40.5	N225, N138	
H9JS1	Uncharacterized protein	78.9	N130, N315, N591	
H9JTG9	Aldo-keto reductase AKR2E4	34.4	N161	akr2e
H9JR1	Uncharacterized protein	81.1	N170, N345, N463, N534	
H9JBT3	Uncharacterized protein	23.8	N111	
H9JIX5	Uncharacterized protein	57.1	N43, N237	
H9JXY5	Uncharacterized protein	44.7	N202, N317	101,741,915

* Based on the average intensity of its most abundant N-glycopeptides.
BmCPV infection, indicating its potential role as a cell adhesion receptor facilitating viral propagation. Sepin, a glycosylated serine protease inhibitor, was previously found significantly upregulated in the bacteria-infected fat body of the silkworm [34], similar to what we observed in the silkworm upon viral infection in this study.

It is noted that the edcsyde oxidase and another glycoprotein (H9IU10) both contain two glycopeptides that were downregulated. However, another interesting observation is that while the glycopeptide (N181) of SSR was downregulated, its glycopeptide at N126 was upregulated. The results indicate that while viral infection affects the level of protein glycosylation, it may or may not influence in the same way. Therefore, to evaluate or compare the profiles of multiply glycosylated proteins, it is necessary to locate individual glycopeptides instead of the protein as a whole, because each glycosylation site might change independently from the rest of the glycosylation sites upon perturbation or stimuli.

3.4. O-glycan profiles of the control and BmCPV-infected P50 silkworms

Unlike N-glycosylation, O-glycosylation sites do not have a consensus sequence, and deglycosylation could not be achieved by a universal enzyme currently. Due to the high diversity of O-glycosylation and its close association with various pathological and physiological states, the ability to reveal the O-glycans and their attached sites, especially in a large scale, becomes very demanding. In this study, due to the deamination process that removes the N-glycans from the peptide, the workload for database searching was greatly reduced, which makes it possible to perform large scale O-glycosylation mapping at the same time during N-glycosite mapping.

The O-glycosylation mapping results for the P50 control and virus-infected groups were shown in Table 3. Only those identified at least twice in the triplicate were retained for comparison purposes. A total of 13 O-glycoproteins were mapped in the P50 and its BmCPV-infected strains. The most frequently occurred O-glycans were fucose (F) and HexNAc (N), followed by Hex1HexNAc2 (H1N2), HexNAc2 (N2), and Hex1HexNAc3 (N3). A lot of the O-glycoproteins are also N-glycosylated (Table 3). A protein coverage map with its supporting peptides for this unknown but interesting protein was shown in Fig. S2, demonstrating a reliable glycosite mapping of this protein.

Myosin regulatory light chain (RLC), an important structural element of myosin, is critical to cell movement and muscle contractions. RLC is a well-known phosphoprotein and its dynamic phosphorylation state is tissue-specific and case-specific [35,36]. However, it has not been reported to be glycosylated before. In this study, silkworm RLC was found to be O-fucosylated at S104, S121 or S124, depending on whether the silkworm was infected with the virus or not. The silkworm larval cuticle protein LCP-17 was found to be N-glycosylated at NS2 and
N97 in both groups but only O-glycosylated in the control group at site S104 (Table 3). On the other hand, the silkworm storage protein (H9JHM9) and the uncharacterized proteins H9JRT0, H9JTYS, H9J9M0, H9JTA0, and H9J609 were not detected with O-glycosylation in the control, but were found with O-glycosylation in the virus-infected group. The glycosylation profiles of the proteins H9JXG1, H9J9M1 and H9J6Y6, all of which are uncharacterized proteins, remained unchanged after virus infection.

Previously, we have characterized the glycoproteome for two other silkworm strains, 306 and NB. By comparing to the current study, it was noticed that the arylphorin protein, a type of the storage proteins, was O-glycosylated in the 306 and NB strains [14], however, it was not being modified by O-glycosylation in the P50 strain, neither in the control nor BmCPV-infected groups. The silkworm storage protein (H9JHM9), myosin regulatory light chain 2 (Q1HPS0), and several other uncharacterized proteins (H9JRT0, H9JXG1, H9J9M0) were found to be O-glycosylated in all P50, 306 and NB strains, although the glycosylation site and glycan profiles were somewhat different (Table S5). The changes in glycosylation states, together with other molecular differences such as genetic mutations, may contribute to the different responses these strains develop to virus invasions.

It has been well established that alteration of glycosylation is closely associated with changes in physiological and pathological states. Our previous study also showed that baculovirus resistant and susceptible silkworm strains were differentially glycosylated [14]. Combining the results from this study, which showed that viral infection altered protein glycosylation in the silkworm, the relationships between host glycosylation and virus/microbe infection can be intertwined: 1) host glycosylation changes lead to infection and inflammation, 2) infection and inflammation lead to host glycosylation changes, which leads to molecular and cellular functional differences.

Glycosylation modification is highly dynamic and can be affected by many cellular factors and processes. During BmCPV infection, the silkworm’s cellular machinery was hijacked and many biological pathways were altered, including the glycosylation pathway. In this study, the total glycoproteome in the silkworm P50, including the N- and O-glycosylation status was uncovered. Some 400 N- and O-glycoproteins were confidently mapped, including 118 transmembrane glycoproteins, indicating a rich, complex and yet much unknown glycoproteome. Quantitative comparison showed that the glycosylation levels of about 40 proteins, including the transmembrane glycoproteins signal sequence receptor and integrin beta, were significantly changed after the virus infection. These glycoproteins are therefore of particular interest to study the relation between glycosylation level, inflammatory responses, and the virus immune escape. Additionally, four proteins encoded by the BmCPV genome were mapped with N-glycosylation, revealing for the first time the glycosylation status of the BmCPV-encoded viral proteins.

Declaration of Competing Interest

None.

Acknowledgement

This work was supported by the National Natural Science Foundation of China (31702186, 31861143051 and 31872425), and China Postdoctoral Science Foundation (2016M601725).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jprot.2020.103802.

References

[1] Q. Xia, Z. Zhou, C. Lu, D. Cheng, F. Dai, B. Li, P. Zhao, X. Zha, T. Cheng, C. Chai, et al., A draft sequence for the genome of the domesticated silkworm (bombyx mori), Science 306 (5703) (2004) 1937-1940.
[2] X. Meng, F. Zhu, K. Chen, Silkworm: a promising model organism in life science, J. Insect Sci. (2017) 17(5).
[3] C. Reily, T.J. Stewart, M.B. Renfrow, J. Novak, Glycosylation in health and disease, Nat. Rev. Nephrol. 15 (6) (2019) 346–366.
[4] L.S. Kreisman, B.A. Cobb, Inflection, inflammation and host carbohydrates: a glycoevolution hypothesis, Glyobiology 22 (8) (2012) 1019–1030.
[5] A. Varki, Biological roles of glycans, Glyobiology 27 (1) (2016) 3–49.
[6] K. Gao, X.Y. Deng, M.K. Shang, G.X. Qin, C.X. Hou, X.J. Guo, Itraq-based quantitative proteomic analysis of midgut in silkworm infected with bombyx mori cytoplasmic polyhedrosis virus, J. Proteomics 152 (2017) 300–311.
[7] A. Kollipoulou, F. Van Nieuwerburgh, D.J. Stravopodis, D. Deforce, L. Swevers, G. Smagghe, Transcriptome analysis of bombyx mori larval midgut during persistent and pathogenic cytoplasmic polyhedrosis virus infection, PLoS One 10 (3) (2015) e0121447.
[8] P. Mertens, The dna viruses, Virus Res. 101 (1) (2004) 3–13.
[9] M. Arella, C. Lavallée, S. Belloncik, Y. Furuichi, Molecular cloning and characterization of cytoplasmic polyhedrosis virus polyhedrin and a viable deletion mutant gene, J. Virol. 62 (1) (1988) 211.
[10] A. Varki, Biological roles of glycans, Glyobiology 27 (1) (2016) 3–49.
[11] K. Gao, X.Y. Deng, M.K. Shang, G.X. Qin, C.X. Hou, X.J. Guo, Itraq-based quantitative proteomic analysis of midgut in silkworm infected with bombyx mori cytoplasmic polyhedrosis virus, J. Proteomics 152 (2017) 300–311.
[12] A. Kollipoulou, F. Van Nieuwerburgh, D.J. Stravopodis, D. Deforce, L. Swevers, G. Smagghe, Transcriptome analysis of bombyx mori larval midgut during persistent and pathogenic cytoplasmic polyhedrosis virus infection, PLoS One 10 (3) (2015) e0121447.
[13] P. Mertens, The dna viruses, Virus Res. 101 (1) (2004) 3–13.
[14] M. Arella, C. Lavallée, S. Belloncik, Y. Furuichi, Molecular cloning and characterization of cytoplasmic polyhedrosis virus polyhedrin and a viable deletion mutant gene, J. Virol. 62 (1) (1988) 211.
