A generalized model of island biodiversity

David A. Kessler and Nadav M. Shnerb

Department of Physics, Bar-Ilan University, Ramat-Gan IL52900, Israel

The dynamics of a local community of competing species with weak immigration from a static regional pool is studied. Implementing the generalized competitive Lotka-Volterra model with demographic noise, a rich dynamics structure with four qualitatively distinct phases is unfolded. When the overall interspecies competition is weak, the island species are a sample of the mainland species. For higher values of the competition parameter the system still admit an equilibrium community, but now some of the mainland species are absent on the island. Further increase in competition leads to an intermittent “chaotic” phase, where the dynamics is controlled by invadable combinations of species and the turnover rate is governed by the migration. Finally, the strong competition phase is glassy, dominated by uninvadable state and noise-induced transitions. Our model contains, as a spatial case, the celebrated neutral island theories of Wilson-MacArthur and Hubbell. Moreover, we show that slight deviations from perfect neutrality may lead to each of the phases, as the Hubbell point appears to be quadracritical.

PACS numbers: 87.10.Mn, 87.23.Cc, 64.60.Ht, 05.40.Ca

INTRODUCTION

Trying to characterize and quantify the factors that govern the dynamics of natural populations, community ecologists were often surprised by the large number of competing species that can be found in a relatively small area. Having in mind the Darwinian picture of natural selection and the survival of the fittest, one may expect that a few fittest species will dominate the community (perhaps with some sporadic presence of a few individuals of inferior species) as suggested by the competitive exclusion principle [1]. This is definitely not the case in many important communities, from tropical forests to coral reef to freshwater plankton. In fact, an understanding of the factors that allow the maintenance of biodiversity under selective dynamics is considered as one of the most important challenges for modern science [2].

One of the versions of the biodiversity puzzle has to do with a local community which is coupled by immigration to a regional pool. The simplest example for this scenario is the mainland-island system, where the mainland dynamics is assumed to be relatively slow so one can assume that the island is interacting with (i.e., receiving immigration from) a static pool on the mainland. This mainland-island model may describe any local community, provided that the length scale involved in biological interactions (e.g., competition) is much smaller than the migration scale [3].

In general, the dynamics of natural ecological communities is subject to substantial noise. Populations are exposed to environmental variations that affect their reproductive ability and death rate. This effect is, typically, quite strong [4][5]. Even under strictly fixed environmental conditions the stochasticity of the birth-death-migration process (demographic stochasticity) adds randomness to the dynamics. Under demographic noise, every finite population goes extinct eventually, so theories of community dynamics must include a stabilizing mechanism that makes these extinctions extremely rare (stable coexistence) or allow for a speciation process to maintain the species richness (unstable coexistence).

The mainland-island system incorporates features from both scenarios. On the one hand, in a local community there are at least a few extinction-prone low-abundance species. One the other hand, there are no absorbing states in the strict sense, as individuals of any species arrive at a fixed average rate from the mainland. Nevertheless, if the migration is relatively weak and the local population is not huge, some or perhaps all of the species may undergo temporary extinctions, leaving the island without this species until the next individual of this species arrives from the mainland and manages to reestablish. The statistics of these local extinction-recolonization events for birds in North America was recently analyzed by [6], below we will consider the relations between our model and their empirical results.

Community dynamics theories are usually classified along the line between niche and neutral. A niche theory assumes that every species that have a non-sporadic presence on the island has its own niche. For example, a few bird species each having a different beak size and (correspondingly) different diet may coexist on the island if the overlap between the niches is not too large. In the other extreme, in a perfectly neutral dynamics there is no niche partitioning at all, all species are using the same resources with the same efficiency, and the dynamics is governed solely by stochasticity. In between one can find a few "continuum models" [7][10] that were suggested in the last decade and incorporate elements of neutral dynamics with (usually weak) selective effects.

The simplest model for island dynamics is the generalized competitive Lotka-Volterra model (GCLV) with migration. This model is widely used in ecology and for other applications [11][13]. It turns out that the model
has a very rich structure. Our primary focus is on an individual based stochastic version of the model which incorporates demographic noise. We will see that the model, despite its simplicity, is very rich and exhibits a wide range of different behaviors. Our goal here is to exhibit this panoply of “phases” and understand their origins. A parallel study of the much more tractable deterministic version of the model will be a key tool in unraveling the dynamics.

In particular, we shall show below that the most celebrated models of island biogeography - the Wilson-MacArthur theory of island biogeography [14, 15] and Hubbell’s neutral theory of biodiversity [16, 17] are two special cases of this model. Following a few recent publications that emphasized some specific aspects of the dynamics [18, 19], we would like to show how the phase structure of the model is governed to a large extent by these two special limits. Finally, we will consider the relevance of this model to the empirical findings.

THE STOCHASTIC GCLV MODEL

In this section we introduce our model and set notation. Let us consider a regional pool of Q species on the mainland. Each individual of these species may immigrate to the island with a certain probability per unit time, and we denote the average rate at which individuals of the i-th species reach the island as λ_i.

Denoting by N_i the abundance of the i-th species on the island, the deterministic part of the dynamics satisfies

$$\dot{N}_i = \lambda_i + \alpha_i N_i - \frac{N_i}{K_i} \left(N_i + \sum_{j \neq i} d_{i,j} N_j \right). \quad (1)$$

Here α_i is the growth rate of the i-th species on the island, and K_i sets the carrying capacity of the i-th species in the absence of competition with other species. Interspecific interactions are expressed by the elements of the matrix $d_{i,j}$. Here we study a purely competitive system where all the $d_{i,j} \geq 0$.

As our goal is to identify the different phases of this model, not to fit it to a specific empirical system, we make a few simplifications. First, we assume (as in [20], for example) that all species have the same flux of immigrants from the mainland, $\lambda_i = \lambda$, the same linear growth rate that we scale to one ($\alpha_i = 1$) and the same carrying capacity K_i. We are interested here specifically in small values of λ, so that immigration primarily serves to “rescue” extinct species, but does not swamp the intrinsic competitive dynamics on the island. The interaction matrix takes the form $d_{i,j} = C c_{i,j}$, where C sets the overall strength of the interaction and the $c_{i,j}$s are normalized such that

$$\sum_{i \neq j} c_{i,j} = Q(Q - 1). \quad (2)$$

In other words, the average magnitude of a $c_{i,j}$ is unity. We consider here the case where the $c_{i,j}$s are chosen randomly from a distribution with unit mean and variance σ^2; the $c_{i,j}$ values are kept fixed throughout the process.

The current work considers the case of purely competitive community without symbiosis or food web features. Accordingly, we do consider here the case of interaction matrices with a modular or nested structure. As we shall show be, this structureless matrix provides a natural generalization of the Hubbell neutral theory [16]. For our simulations, the $c_{i,j}$ were chosen from a Gamma distribution with probability distribution function

$$P(c) = \frac{c^{\lambda - 1} \exp(-c/\sigma^2)}{\Gamma(1/\sigma^2)} \quad (3)$$

The final form of our GCLV model is then

$$\dot{N}_i = \lambda + N_i - \frac{N_i}{K_i} \left(N_i + C \sum_{j \neq i} c_{i,j} N_j \right). \quad (4)$$

For small immigration rate λ, extinctions and recolonizations play a crucial role in the dynamics. We treat this by constructing a stochastic individual based version of the model, so that demographic noise is explicitly included. The number of individuals in each species is an integer. At each time step, of duration Δ, a Poisson number of immigrants of each species, with mean $N_i \Delta$, is generated. A Poisson number of offspring of each species, with mean $N_i \Delta$, is generated as well. The N_i veteran inhabitants are subject to death, with the number of individuals of species i that expire drawn from a binomial distribution with parameters N_i and probability $\Delta \sum_j (d_{i,j} + C c_{i,j}) N_j$. Clearly, Δ needs to be chosen to be sufficiently small that this probability does not exceed unity. The number of individuals of species i after this process is then updated to reflect the new immigrants, offspring and deaths. On average, these changes are exactly those given by the deterministic model.

The stochastic model is specified by four parameters: K, λ, C and σ. In what follows we will focus our attention on the phases in the $\sigma - C$ plane, keeping K and the migration rate fixed. Once this behavior is understood it is straightforward to figure out at least the qualitative features of the dynamics for other values of migration and K. The different phases in the $\sigma - C$ plane are sketched in Figure 1. In the following we intend to discuss each phase in detail; before doing that, let us focus on two very interesting limits that correspond to the x and the y axes of Figure 1.

THE WILSON-MACARTHUR LINE, $C = 0$

When $C = 0$, species do not interact with each other and the dynamics of each species is logistic with carrying capacity K. Deterministically, an infinitesimally
Accordingly, the $C = 0$ limit of our model is neutral: any individual competes equally with any other individual and the strength of each pair competition is fixed and independent of species affiliation.

Without immigration, the deterministic GCLV supports, to the left of the Hubbell point, an egalitarian coexistence stable fixed point where all species are present on the island with the same abundance $K/(1 + (Q - 1)C)$, while above the Hubbell point the stable solution admits only one species with abundance K, all other species have zero abundance (the identity of the surviving species is determined by initial conditions). At the Hubbell point the deterministic dynamics supports a marginal manifold: every combination of N_j’s such that the total population is K is a solution of Eq. 4. The simplicity of the GCLV at the Hubbell point allows one to solve analytically for the species abundance distributions (SAD) even with demographic noise [24], environmental stochasticity [25], or a combination of demographic and environmental noise.
noise [27].

About 15 years ago, Hubbell [16] put forward his very influential neutral theory of biodiversity, suggesting that all species and all individuals are demographically equivalent and the only mechanism that drives the system is pure demographic noise and the (typically slow) rate in which new species are introduced. Hubbell’s model has two versions. In the metacommunity version speciation is the mechanism that leads to the introduction of a new species, while in the mainland-island version colonizers of new species arrive from the mainland (assuming large \(Q \)). Some patterns predicted by this neutral theory, and in particular the species abundance distribution (SAD) on the island, fit quite nicely those recorded in many empirical studies.

Off the Hubbell point the infinite degeneracy is lifted, but the analysis of the stochastic system is still relatively easy since every species may be analyzed independently, the effect of all individuals from other species may be encapsulated into a single parameter. This feature was exploited by [19] who manage to solve the (meta-community version) stochastic GCLV analytically along the \(\sigma = 0 \) line. As expected, below the Hubbell point the SAD shows a peak around the deterministic value \(K/(1 + (Q - 1)C) \), and the sharpness of this peak increases as \(C \) decreases.

AN OVERVIEW OF THE DYNAMICS

We present in Fig. 2 sample runs of the system for \(K = 100, \lambda = 0.01, \sigma = 0.5, Q = 20 \), for varying \(C \). The abundance of each species is indicated by color. The horizontal axis is time, with snapshots of the system taken every \(t = 0.08/\lambda \). The vertical axis is species number, and runs from \(1 \) to \(Q = 20 \). It is clear that the system exhibits very different behavior as \(C \) is varied. One can identify four different generic behaviors, which we shall call “phases”. Very briefly, in the first, low \(C \), phase all \(Q \) species are present essentially all the time. In the second, some species are basically no longer present, supported only by the infrequent stochastic immigration of new individuals, while the rest have a more or less continuous existence, with occasional temporary extinctions. The third phase at yet higher \(C \) is the most complicated, with the system jumping from one state to another. These states would be stable in the absence of immigration, but a successful colonization by some specific species drives the system to a new quasi-stable state. In the last phase, the system spends a preponderance of time in some stable state. In the following, we will attempt to explicate in more detail the various features of each of these phases.

One way to quantify the different behaviors is via the “inverse participation ratio”, \(\text{IPR} \), defined as

\[
\text{IPR} = \frac{\left(\sum_{i=1}^{Q} \langle N_i \rangle^2 \right)^2}{\sum_{i=1}^{Q} \langle N_i \rangle^2}
\]

(5)

The angle brackets refer to an average over time. The IPR varies from \(1 \) to \(Q \). In the case where only one species is present, it takes the value unity, and if all species have equal abundance, its value is \(Q \). Thus, the IPR is a measure of how many different species are active in the system. It can differ enormously from the time average of the instantaneous number of species present. We show in Fig. 3 the IPR as a function of \(C \) for runs with the same parameters as in Fig. 2. We see that the IPR is not monotonic in \(C \). It initially decreases from \(Q \), reaches a minimum and then starts to increase. It then achieves a local maximum and then starts to decrease again. This change in behavior of the IPR is clearly reflective of the different patterns captured in Fig. 2. We shall elaborate on the behavior of the IPR as we investigate each phase.

PHASE I: THE HETEROGENEOUS COEXISTENCE PHASE

We start by considering the leftmost region of Fig. 1, the area where \(C \) is relatively small. Increasing \(C \) from zero, at a fixed value of \(\sigma \), corresponds to an increase of interspecific competition; for example, different species of birds that leave happily together, each having a different diet of worms, may start to interact with each other if the supply of worms is decreased and different species begin to consume the same resource. In such a case species-specific niches are “squeezed” towards each other, increasing the niche overlap.

Once the species start to compete, the heterogeneity of the \(c_{i,j} \)’s (as reflected in the parameter \(\sigma \)) implies that some species are impacted by the competition more than the others. As a result, the abundance \(N_i \) of the \(i \)th species is no longer \(K \) (as on the Wilson-MacArthur line \(C = 0 \)); instead, all abundances are reduced by a species-dependent amount and one gets a distribution of species abundance values. Still, as long as \(C \) is not too large, the deterministic dynamics of Eq. 4 supports a single attractive fixed point that corresponds to the case where all the \(Q \) species of the mainland are represented on the island. In this case, we can approximate the system by the \(\lambda = 0 \) system, since the small external flux does not qualitatively change the steady-state, which in any case has all species present. Eq. 4 with \(\lambda = 0 \) allows for an explicit stationary state solution,

\[
N_i = KB^{-1}1
\]

(6)

where \(1 \) stands for the length \(Q \) column vector consisting of all one’s, and \(B \) is the matrix

\[
B_{i,j} = \delta_{i,j} + C c_{i,j}.
\]

(7)
FIG. 2. Snapshots of the abundance for all species in the stochastic model for various levels of competition, C. Red is high abundance, dark blue low, as shown in the color bar at the right. $Q = 20$, $K = 100$, $\sigma = 0.5$, $\lambda = 0.01$. The time between snapshots is $\lambda t = 0.08$.

Figure 4 illustrates the process. For C small enough that coexistence fixed point solution is physical, such that all N_i are positive, there is a unique stable solution and all the Q mainland species will be present on the island. Their abundances decrease as a function of C, but no species goes extinct in the deterministic theory. As long as this remains true, for reasonably large K, one can more or less neglect the noise, given the stability of the fixed point solution. The species that have lower abundance are those who suffer more from the competition, and even if demographic noise drives a few of them to extinction, the effect on the rest of the network is minor and the system will restore itself by immigration. This situation is illustrated by the first panel of Fig. 2, the case $C = 0.05$, where there are no extinctions seen in the timeframe shown. Examined over a much longer period, there are indeed a few occasional extinctions of all the various species. The most extinction prone species, for example, was seen to go extinct a total of four times over a period of 24,000 snapshots.

In such a scenario one expects deviations from the Wilson-MacArthur formula. When the abundance of the species are different from each other, the chance of extinction e becomes species dependent, so once $C > 0$ the sojourn times will reflect a convolution of exponents with different timescales. When the community heterogeneity increases, the Wilson-MacArthur extinction-recolonization dynamics is most relevant for the smaller species, again with heterogeneous statistics of extinction.
THE MAY TRANSITION AND PHASE II: THE PARTIAL COEXISTENCE PHASE

As C increases even more, the deterministic dynamics (without immigration) no longer supports a steady state with all the Q mainland species coexisting. In the heterogeneous coexistence phase, as discussed above, the $\lambda = 0$ steady-state system admits a solution, Eq. (6), which is both feasible ($N_i > 0$) and stable (the real part of all the eigenvalues of the community matrix are negative). As follows from the work of May [28], the chance for the system to fulfill these requisites, for fixed heterogeneity σ, decreases exponentially with Q. In fact, for the GCLV in the coexistence phase, the main obstacle is feasibility [28]. Eq. (6) suggests that the solution will be feasible when the sum of all the rows of B^{-1} is positive. As the average sum of a row approaches zero with C, the chance to pick only positive values for N_i decreases exponentially with Q.

In Figure 4 one observes that, for the particular realization of the $c_{i,j}$ being simulated here, with $Q = 10$, the abundance of the weakest species reaches zero around $C = 0.28$. This point marks the transition from the heterogeneous coexistence phase to the partial coexistence phase. In this phase the island species richness, S, is smaller than the mainland richness Q, as some populations are not supported anymore on the island. Weak competitors (species that suffer from strong competition against others that do not suffer as much) are selected out.

This is the deterministic picture without migration. With migration, “exclusion” does not correspond to exactly zero density. Instead, above the May transition the deterministic density of these species is $O(\lambda)$. Since we assume that λ is small, demographic noise induces frequent extinction of these transient species. As opposed to the other, “semi-resident” species (the “semi-” prefix taking account of the possibility of a short-lived absence due to demographic fluctuations), the growth rate of a transient species immigrant is negative, rendering its average persistence times small, independent of K.

Technically speaking, the May transition takes place at a critical value of the competition parameter C_1, where the smallest N_i reaches zero. Above the transition one can define a reduced system, eliminating the row and column of B corresponding to the eliminated species. This reduced system does admit a solution where all the (remaining) species have positive abundance. This is clear, since at the exact value of C at which the next species vanishes, the remaining N_i’s constitute a solution of the reduced problem. In addition, the equation for the species with vanishing abundance (call it k) reads

$$0 = 1 - \frac{C}{K} \sum_{j \neq k} c_{k,j} N_j$$

(8)

The r.h.s. of this equation is just the growth rate of the kth species, so that for C smaller than the critical value, the growth rate of this species is positive, and for C above this value, it is negative. Thus, the kth species cannot invade for C’s slightly larger than the value at which that species disappears from the community.

In Fig. 5 we present the May line in the C-σ plane, showing the dependence of C_1 on σ. The data was obtained by calculating the May point for a set of 100 random $c_{i,j}$ matrices for a given σ, and averaging. We see that C_1 increases with decreasing σ, and appears to approach unity for $\sigma \to 0$. We shall return to this point later.

Increasing C in this manner in the partial coexistence phase, one obtains a nested hierarchy of solutions, each with less diversity, which are immune to invasion by any of the extinct species. As mentioned, this hierarchy is completely independent of the carrying capacity K. This prescription eventually breaks down. At some point, there is a “resurrection” of one of the eliminated species. This happens due to the fact that the species in question was strongly suppressed by another species. As C increases, this suppressor species is itself reduced in abundance, and so the suppressed species is able to stage a comeback. Thus there is a value of C at which this suppressed species is able to invade. At this point, it needs to be added back to the reduced system, since the small external flux will reintroduce it and it will then grow in
abundance. Increasing \(C \) further, things continue on in this fashion, losing and regaining species. The main characteristic of the partial exclusion phase, the distinction between semi-resident species that admit a finite population and \(O(\lambda) \) transients that cannot invade, still holds.

An example of the stochastic version of this partial coexistence phase can be seen in the second and third panels of Fig. [2]. For this realization of the \(c_{i,j} \), with \(Q = 20 \), the May transition point is at approximately \(C_1 \approx 0.169 \). We show in Fig. [6] the time averaged abundances of the species for an extended version of the run presented in the second panel of Fig. [2] with \(C = 0.25 \), past the May point. We see that the deterministic solution is essentially missing 3 species, \{4, 11, 16\}. The stochastic run shows that the overall structure of the abundance vs. species of the deterministic model is preserved. The smaller species are, as might be expected, more severely impacted by the demographic noise, to the benefit of the larger species, which do not have to suffer as much competition from these small species. As \(C \) increases, not only does the number of species in the deterministic solution decrease, but a significant fraction of these have very small abundances. The upshot is that the number of species in the stochastic simulation with significant abundance decreases significantly. This is reflected in the sharp fall of the IPR in this range of \(C \).

FIG. 5. The phase boundaries in the \(C, \sigma \) plane. The leftmost, red, line is the May line where the deterministic solution with all species present disappears. The next, solid black, line to the right is the simulationally determined line where the concave downward part of the species occupancy curve disappears, for the case \(K = 100, \lambda = 0.01 \). The dotted black line to the right of the solid black line is the same line for \(K = 200, \lambda = 0.01 \). The rightmost, blue, line marks the region where the system spends more than 20% of its time in a particular state, for \(K = 100, \lambda = 0.01 \). The May line was determined by averaging over 100 different realizations of the interaction matrix. The other lines result from averages over 10 or 20 matrices.

FIG. 6. The time averaged abundance (open circles) vs. species number for an extended run of the second panel of Fig. [2]. \(C = 0.25, N = 20, K = 100, \sigma = 0.5, \lambda = 0.01 \). Also shown is the deterministic time-independent solution (filled squares). The lines are shown just to guide the eye.

PHASE III: THE “CHAOTIC” PHASE

At some point, \(C_2 \), the partial exclusion picture breaks down. This is clear from an examination of the fourth and fifth panels of Fig. [2]. There is no longer a fixed set of “resident” species which are always present in large numbers. Instead, there is a constant turnover in the set of species present. This is reflected in the rise seen in the IPR in Fig. [3] for \(C \gtrsim 0.45 \). Another way to see the same point is to examine what we will term the “occupancy” of each species, the fraction of time that it is present on the island. In Fig. [7] we show the occupancy for the (extensions of) the runs in Fig. [2]. We see that for \(C = 0.25 \), in the partial coexistence phase, there is a set of seven species with relatively high occupancy. These give the overall curve for \(C = 0.25 \) a concave downward form at high rank order. The number of high occupancy species drops to three at \(C = 0.45 \), and at \(C = 0.65 \) the concave downward part of the curve has disappeared and the entire curve is convex upward. Thus, beyond the rise in the IPR, another sign of the end of the partial coexistence phase is the disappearance of the concave downward part of the occupancy curve. We will adopt this as our operational criterion for the location of the phase boundary. It turns out that this is a more robust measure than the IPR curve, since the latter requires very long runs to measure accurately and the existence of a local maximum is partially masked by intrinsic small scale oscillations in the IPR curve due to the discrete nature of the problem. In practice, what we do is construct the straight line curve connecting the first and last points of the occupancy curve. If any point in the right half of the occupancy curve lies above this line, the value of \(C \) is
assigned to the partial coexistence phase. In Fig. 4 we show the phase boundary measured in this manner. We find that the partial coexistence phase becomes narrower as σ decreases, and disappears below some value of σ.

It is hard to identify a single clear criterion from the deterministic model that controls the transition out of the partial coexistence phase to this “chaotic” phase. In some cases the system has no stable stationary solution for a range of C, in which case we have clearly the partial coexistence phase. In other cases, there are one or more stable stationary solutions, but with small basins of attraction such that generic initial conditions do not flow to them. In the stochastic model, the transition as measured according to our operational definition clearly depends on the carrying capacity K. Increasing K moves the start of the “chaotic” phase to larger C, as can be seen in Fig. 4.

The stochastic system in the “chaotic” phase shows a very interesting behavior that differs substantially from the predictions of the deterministic equations. Instead of smooth orbits the system appears to visit a state for a relatively long time, leave it and enters into a period of mess, gets stuck again into another state for some period and so on. An example of this can be seen in Fig. 4 where the deterministic behavior in the left panel stands is sharp contrast to that of the stochastic system with K = 100 in the right panel.

To clarify the behavior of the stochastic system, we have implemented a snapshot quenching technique, where we attempt to filter out the less interesting small fluctuations within a given basin of attraction while preserving the major qualitative regime shifts between different basins. Taking the state of the stochastic system at a certain time t, we have used it as an initial condition for the deterministic dynamics of Eq. 4 with λ = 0, and integrate numerically this system until it relaxed to a steady state. (Very rarely, the system relaxes to a more complicated dynamical state, which we characterize by its species content.) This state supports, typically, only a few species, where all others are absent either because of the initial conditions (note that the demographic noise leads to local extinctions) or because of the selection pressure in the deterministic dynamics. This snapshot quenching procedure indicates the species composition of the local attractor at t. Repeating this procedure at t + Δt, the quenching may relax to the same configuration (if the system remains in the basin of attraction of the same attractor) or to another configuration. Figure 5 shows the results of the quenching procedure for the same stochastic dynamics depicted in the right panel of Fig. 8.

The dramatic difference between the deterministic and the stochastic dynamics in this phase has to do with local extinctions. Under demographic noise a species with a deterministic orbit that takes it close enough to zero abundance may go extinct, and once this happens, it goes out of the game until the next immigrant from this species arrives from the mainland and manages to establish. With small values of λ, this quasi-stable state persists for relatively long times, many species are absent from the competition so the effective number of species is smaller and the system can find a steady state, as if it was in the competitive exclusion phase.

However, unlike the local minima in a glassy energy landscape, here every local attractor is unstable to invasion by at least one of the Q species on the mainland. The dwell time distribution for an invadable state is exponential, with the mean dwell time inversely proportional to the migration rate λ (at least for not too small K). This relationship is seen clearly in Figure 10 where the mean dwell time is plotted against 1/λ for a particular invadable state. Accordingly, the stability of a local attractor is determined by two factors. One is the number of potential invaders, and the other is the low-density growth rate(s) of the invader(s).

Once successfully invaded, the system leaves the local attractor and wanders around until it finds another local attractor. One may think about the local attractor as an abstract network, where each local attractor is a node and two attractors are connected by a link if the system may jump directly from one of them to the other. This network is seen to have an interesting structure. Figure 11 shows the statistics of number of visits per local attractor, which is very wide and suggests a (cut-off) power law. There are a relatively few number of hub states which are visited in a significant fraction of the transitions, with a large number of states that are visited relatively infrequently. For example, for C = 0.75, the most frequently visited state is the invadable state {6, 14}, which was visited 1351 times out of 37, 543 transitions. The next most
FIG. 8. Snapshots of the abundance for all species. Red is high abundance, dark blue low. $Q = 20$, $K = 100$, $C = 0.675$, $\sigma = 0.5$, $\lambda = 0.001$. Left: The deterministic model, with time between snapshots of $\lambda t = 0.016$. Right: The stochastic model, with time between snapshots of $\lambda t = 0.128$. This larger period was chosen in order to exhibit the wide variety of states generated by the stochastic model.

FIG. 9. Snapshots of species composition of the local attractor, as obtained from the right panel of Fig. 8 by the snapshot quenching technique. The power-law distribution of numbers of visits suggests an interesting transition network, with a very heterogeneous structure. Quantifying the degree distribution of the emerging network we have found that is quite close to be scale-free. It shows a power-law decay of the probability of a node to have k links, $P(k)$, with a small exponent (≈ 1.1), in the case demonstrated in Figure 12 superimposed on a slow exponential cutoff.

FIG. 10. The average lifetime of the invadable state with species $\{15, 18, 20\}$ for the $Q = 20$, $C = 0.675$ system simulated in Fig. 4, as a function of $1/\lambda$, showing that the lifetime is inversely proportional to λ. The dotted curve is a straight line to help guide the eye.

visited states had 1231, 907, and 732 visits, respectively. Actually, for $C = 0.75$ there are three stable invadable states. The stable state $\{1, 3, 15, 18, 20\}$ however was only visited twice, and each time lasted only 1 snapshot. The other two stable states were not visited at all. Thus, these stable states, for the value of $K = 100$ we are studying, are dynamically irrelevant. We shall return to this point later when we discuss the phase at higher C where various stable states do play a significant role.

The power-law distribution of numbers of visits suggests an interesting transition network, with a very heterogeneous structure. Quantifying the degree distribution of the emerging network we have found that is quite close to be scale-free. It shows a power-law decay of the
transitions between the 3729 states encountered in a long run.

FIG. 11. Probability distribution for the number of visits to the various invadable metastable states in a run of total duration \(\lambda t = 2 \cdot 10^5\), with snapshots taken each \(\lambda t = 0.08\) for a total of \(2.5 \cdot 10^5\) snapshots. Data is shown for \(C = 0.75\) and \(0.85\). For \(C = 0.75\), a total of 598 different states where visited, out of a total of 2045 states. \(N = 20, K = 100, \lambda = 0.01\). Also shown is is the power-law \(P(x) \sim x^{-1.1}\), which is a good description of the distribution for all but the most visited states.

FIG. 12. Distribution of the in- and out- degrees for the transitions between the 3729 states encountered in a long run, \(N = 40, C = 0.4, K = 100, \lambda = 0.01\).

STRONG COMPETITION AND PHASE IV: THE GLASS-LIKE PHASE

We have already mentioned that above \(C_2\), nonstationary attractors can coexist with one or more stable stationary states. However these stationary states had small basins of attraction in addition to containing species with small abundances. Thus, in the stochastic dynamics they were visited infrequently and had short lifetimes (at least for \(K\)’s less than \(10^4\) or so) and so their dynamical relevance was marginal. This situation changes qualitatively beyond some larger value of \(C, C_3\). Thus, for example, for our standard instance of a \(Q = 20, \sigma = 1/2\) \(c_{i,j}\) matrix, the stable state \(\{3, 4, 6\}\) appears above \(C = 0.836\) and the stable state \(\{2, 16\}\) appears above \(C = 0.877\). The deterministic solution reveals that the smallest abundance in the former state at \(C = 0.9\) is \(0.28K\) and in the latter state, \(0.80K\). For \(K = 100\), then, they are fairly robust to demographic noise and have correspondingly long lifetimes. These lifetimes are controlled by \(K\) and only weakly impacted by decreasing \(\lambda\). Due to the small number of species represented in these states, they also are visited relatively frequently. As \(C\) increases further, the depth of the various stable solutions increases nonuniformly, and one state eventually dominates. We operationally define the onset of this fourth phase as the value of \(C\) in which the system dwells in a single state for over 20% of the time. The last phase boundary is illustrated in Fig. 5.

ENCOUNTER AT THE HUDBELL POINT

As indicated in Figure 5, the transition lines between the various phases appear to meet at the Hubbell point. Clearly, for any fixed \(C < 1\) the deterministic model supports full coexistence when \(\sigma \to 0\), implying that the May line must hit the Hubbell point. Similarly, for fixed \(C > 1\) and vanishingly small \(\sigma\) every solution with one species of abundance \(K\) is uninvadable, so the line separating the “chaotic” phase from the glass-like phase also has to reach to the Hubbell point. Clearly, it is difficult to implement our operational procedures for determining the phase boundaries in the vicinity of the Hubble point, due to the weak stability of the attractive manifolds in this region, which the noise will smear out. However, Fig. 5 indicates the merging of the May line and that separating the partial coexistence and the “chaotic” phases moves to smaller \(\sigma\) for increasing \(K\). If the latter boundary indeed extends down to \(\sigma = 0\) for larger enough \(K\), it must also hit the Hubbell point.

The theory of Hubbell, assuming strict neutrality of all species in the community, was criticized for this unrealistic assumption. In particular, it was stressed that any deviation from a strict neutrality must lead to a fixation of the system by the fittest species [30, 31]. As we see here, the situation is more complicated. \(C = 1, \sigma = 0\) is apparently a quadracritical point, with slight deviations from perfect neutrality yielding different results, depending on the ratio between \(C\) and \(\sigma\). When superimposed on the effect of noise (and, in particular, of demographic stochasticity that allows for the quasi-absorbing states) the phase diagram may be very rich.

One particular example is the distribution of persistence (colonization to extinction) times of species (as opposed to states, which are characterized by a given set of
extant species). Figure 13 shows this distribution slightly above the Hubbell point, i.e., for $C = 1$, $\sigma = 0.0156$. We see that the distribution of species lifetimes is quite wide. Indeed, Figure 13 suggests a power-law distribution with an exponent close to 2, which resembles the findings of [6].

![Figure 13](image-url)

DISCUSSION AND CONCLUDING REMARKS

The mainland-island system, considered herein, is one of the main models of spatial ecology. It played an important role in the empirical assessment of the two leading pictures of neutral dynamics, the Wilson-MacArthur model (in which all species are equivalent, i.e., admit the same extinction/recolonization rates) and the Hubbell neutral biodiversity model (where all individuals are demographically equivalent). In particular the success of Hubbell in explaining the species abundance distribution in tropical forests, which is the main achievement of the neutral theory of biodiversity, depends entirely on the spatial features of the model, i.e., on the mainland-island structure. The species abundance distribution of the well-mixed model does not fit the empirical data.

In light of this, the rich structure of the mainland-island competitive Lotka-Volterra system that revealed itself in this study appears to be very interesting. Clearly, the perfect neutrality of Wilson-MacArthur and Hubbell models depends on unrealistic fine tuning of the system parameters, so one would like to figure out what happens when this assumption is relaxed. It turns out that the answer of this question is quite subtle, in particular for the Hubbell point. Slight deviations from the perfectly neutral scenario may lead to absolutely different dynamical behaviors, and the role of noise close to the transition is crucial.

Our work opens up a few interesting questions about the dynamics of local and global communities. First, one would like to characterize the dynamics of empirical communities as belonging to one of the four qualitative phases considered above. With databases like the North-American Breeding Birds survey, giving the yearly community composition in thousands of locations along about 45 years, this task may be achievable. Once the dynamics of a local community is understood, the overall species turnover rates in a system of local patches connected by migration (a metapopulation) may be investigated both theoretically and by an analysis of field data. One possibility that emerges from our study is that, in such a metacommunity of chaotic or glassy patches, the time to extinction of an extinction-prone species will be so large that it will reach the evolutionary scale (the speciation time) and thus the biodiversity puzzle will be solved.

Two technical points also merit some discussion. First, although the noise introduced into the model is purely demographic, i.e., it scales with the square root of the population size, the abundance fluctuations are much larger, as clearly seen in Figure 2. The reason is that the demographic noise is superimposed on the nonlinear effects of the deterministic dynamics. This phenomenon is in agreement with many recent studies [31–33], showing that the noise in empirical systems is clearly stronger than demographic. Moreover, at least for large K one should expect that the large abundance semi-resident species are less affected by the noise than the rare species, such that the scaling of abundance fluctuations with N_i will be stronger than the square root of N_i but weaker than N_i; this is indeed the case in some empirical systems [34].

A second issue, somehow connected to the first, is the effect of “real” environmental noise, i.e., time dependent fluctuations of the model parameters. Environmental stochasticity is usually considered as a destabilizing factor, increasing species turnover rate and the amplitude of abundance fluctuations, but it may also stabilize a $c_{i,j}$ independent equal abundance fixed point due to the storage effect [34]. We hope to address this issue in subsequent publication.

Finally, we believe that the classification presented here, although only semi-qualitative at present, is very important to the understanding of community dynamics in general. In most cases the data analyzed by researchers reflect the local species richness rather than the state of a regional pool, but is interpreted as a fairly honest sample of the global community, assuming, more or less, that the system is either in the heterogeneous coexistence or in the partial coexistence phase. Such an interpretation may be misleading. In particular, in the chaotic and in the glassy phase sudden drastic variations in the structure of the community reflect the intrinsic dynamics of the system and, in contrast to a very common interpretation, are not evidence for exogenous factors that induce
a catastrophic shift. As the concerns about the impact of anthropogenic changes rise, it is imperative to take this possibility into account.

[1] G. Hardin et al., “The competitive exclusion principle,” Science 131, 1292–1297 (1960).
[2] Elizabeth Pennisi, “What determines species diversity?” Science 309, 90 (2005).
[3] Richard O. Bierregaard, “The theory of island biogeography four decades later,” Ecology 91, 2806–2807 (2010).
[4] Lev S Tsimring, “Noise in biology,” Reports on Progress in Physics 77, 026601 (2014).
[5] Russell Lande, Steinar Engen, and Bernt-Erik Saether, Stochastic population dynamics in ecology and conservation (Oxford University Press, 2003).
[6] Enrico Bertuzzo, Samir Suweis, Lorenzo Mari, Aron Maritan, Ignacio Rodríguez-Iturbe, and Andrea Rinaldo, “Spatial effects on species persistence and implications for biodiversity,” Proceedings of the National Academy of Sciences 108, 4346–4351 (2011).
[7] O. Allouche and R. Kadmon, “A general framework for neutral models of community dynamics,” Ecol. Lett. 12, 1287–1297 (2009).
[8] Dominique Gravel, Charles D. Canham, Marilou Beaudet, and Christian Messier, “Reconciling niche and neutrality: the continuum hypothesis,” Ecology Letters 9, 399–409 (2006).
[9] Ryan A. Chisholm and Stephen W. Pacala, “Niche and neutral models predict asymptotically equivalent species abundance distributions in high-diversity ecological communities,” Proceedings of the National Academy of Sciences 107, 15821–15825 (2010).
[10] Tommaso Zillio and Richard Condit, “The impact of neutrality, niche differentiation and species input on diversity and abundance distributions,” Oikos 116, 931–940 (2007).
[11] David Tilman, “The importance of the mechanisms of interspecific competition,” American Naturalist 130, 769–774 (1987).
[12] Simone Pigolotti, Cristóbal López, and Emilio Hernández-García, “Species clustering in competitive lotka-volterra models,” Physical Review Letters 98, 258101 (2007).
[13] Hugo Fort, “Statistical mechanics ideas and techniques applied to selected problems in ecology,” Entropy 15, 5237–5276 (2013).
[14] Robert Helmer MacArthur, The theory of island biogeography, Vol. 1 (Princeton University Press, 1967).
[15] Jonathan B Losos and Robert E Ricklefs, The theory of island biogeography revisited (Princeton University Press, 2009).
[16] S. P. Hubbell, The unified neutral theory of biodiversity and biogeography (Princeton University Press, 2001).
[17] James Rosindell, Stephen P. Hubbell, and Rampal S. Etienne, “The unified neutral theory of biodiversity and biogeography at age ten,” Trends in Ecology & Evolution 26, 340–348 (2011).
[18] Charles K Fisher and Pankaj Mehta, “Niche and neutral theories correspond to distinct ecological phases,” arXiv preprint arXiv:1308.2969 (2013).
[19] Simone Pigolotti and Massimo Cencini, “Species abundance: from neutral to niche-stabilized communities,” arXiv preprint arXiv:1304.6226 (2013).
[20] Graham Bell, “The distribution of abundance in neutral communities,” American Naturalist 155, 606–617 (2000).
[21] David A. Kessler, “Epidemic size in the sis model of endemic infections,” J. Applied Probability 45, 757–778 (2008).
[22] Yossi Ben-Zion and Nadav M. Shnerb, “Coherence, conservation and patch-occupancy analysis,” Oikos 121, 985–998 (2012).
[23] David A Kessler and Nadav M Shnerb, “Extinction rates for fluctuation-induced metastabilities: A real-space WKB approach,” Journal of Statistical Physics 127, 861–886 (2007).
[24] Peter Chesson, “Mechanisms of maintenance of species diversity,” Annual Review of Ecology and Systematics 31, 343–366 (2000).
[25] I. Volkov, J. R. Banavar, S. P. Hubbell, and A. Mari- tan, “Neutral theory and relative species abundance in ecology,” Nature 424, 1035–7 (2003).
[26] Ofer Malcai, Ofer Biham, Peter Richmond, and Sorin Solomon, “Theoretical analysis and simulations of the generalized Lotka-Volterra model,” Physical Review E 66, 031102 (2002).
[27] David A Kessler and Nadav M Shnerb, “Neutral-like abundance distributions in the presence of selection in a continuous fitness landscape,” Journal of Theoretical Biology 345, 1–11 (2014).
[28] Robert M. May, “Will a large complex system be stable?” Nature 238, 413–414 (1972).
[29] Ian D Rozdilsky and Lewi Stone, “Complexity can enhance stability in competitive systems,” Ecology Letters 4, 397–400 (2001).
[30] Shu-Rong Zhou and Da-Yong Zhang, “A nearly neutral model of biodiversity,” Ecology 89, 248–258 (2008).
[31] Michael Kalyuzhny, Yishai Schreiber, Rachel Chocron, Curtis H. Flather, Ronen Kadmon, David A. Kessler, and Nadav M. Shnerb, “Temporal fluctuation scaling in populations and communities,” Ecology 95, 1701–1709 (2014).
[32] Ryan A Chisholm, Richard Condit, K Abd Rahman, Patrick J Baker, Sarayudh Bunyavejchewin, Yu-Yun Chen, George Chuyong, HS Dattaraja, Stuart Davies, and Corneille EN et al. Ewango, “Temporal variability of forest communities: empirical estimates of population change in 4000 tree species,” Ecology Letters 17, 855–865 (2014).
[33] Michael Kalyuzhny, Efrat Seri, Rachel Chocron, Curtis H. Flather, Ronen Kadmon, and Nadav M. Shnerb, “Niche vs. neutrality - a dynamical analysis,” (2014), American Naturalist (in press).
[34] Peter Chesson, “Multispecies competition in variable environments,” Theoretical population biology 45, 227–276 (1994).