Three terms of derivative free projection technique for solving nonlinear monotone equations

M M Mahdi¹ and M A K Shiker¹²
¹Department of Mathematics, College of Education for Pure Sciences, University of Babylon, Babil-Iraq.
E-mail: ¹mohmath44@gmail.com, ²mmttmhh@yahoo.com
²Corresponding Author.

Abstract. The derivative-free projection technique is one of the efficient methods for solving nonlinear monotone equations. In this study, three terms of the derivative-free projection method with a monotone line search technique is presented. This method based on extension of a conjugate gradient descent and a developed gradient projection method to solve the nonlinear system of monotone equations. The proposed method can be used for large scale equations due to limited memory requirement. We investigated the global convergence of the suggested approach without requiring differentiability and also the equation is Lipschitz continuous. The numerical results showed that the new algorithm is efficient and promised.

Keywords: Projection Algorithm, Monotone Equations, Nonlinear Systems and Line search method.

1. Introduction
We consider a derivative-free projection technique as the most effective line search methods to solve the following nonlinear system of equations:

\[F(x) = 0, \quad x \in \mathbb{R}^n, \] \tag{1.1}

s.t. \(F: \Omega \subset \mathbb{R}^n \rightarrow \mathbb{R}^n \) be continuous and nonlinear monotone function, \(\Omega \neq \emptyset \) closed convex, the monotonicity means

\[\langle F(x) - F(y), x - y \rangle \geq 0, \text{ for all } x, y \in \mathbb{R}^n. \]

The gradient projection techniques are efficient to find the solution of large scale unconstraint optimization due to their simplicity and limited memory. A lot of computation methods have been proposed to solve unconstraint nonlinear problems. For example, Newton method, quasi newton method and Levenberg-Marquardt type method [1, 2]. A good property of the derivative-free for solving the monotone equation is that competitive with conjugate gradient descent [3, 4]. In this work, we developed a derivative-free projection to three terms of a derivative-free with a monotone line search technique. Also, motivated by the idea of Liu [5], we construct a new projection method of three terms derivative-free for solving large scale systems of equations. The proposed approach used to solve a large scale systems of equations because it inherit nice properties of conjugate gradient descent such as the limited memory require and high efficient. The organized of this paper as: in section one we showed the conjugate gradient projection algorithm, in section two, we presented our algorithm with a new line search, in section three some lemma and global convergence are established and in section four we introduced the numerical experiments.

The conjugate gradient descent (CGD) is one of the important methods for solving unconstraint optimization problems and nonlinear equations. It is search direction as follows:
\[d_k = \begin{cases} -g_k & \text{if } k = 0, \\ -g_k - \beta_k d_{k-1} & \text{if } k \geq 1, \end{cases} \]

with \(g_k \) is a cost function at \(x \), \(\beta_k = \{ \beta_k^{H}, \eta_k \} \), here

\[\beta_k^{H} = \frac{1}{\gamma k_{1}y_{k-1} - \lambda k_{1}2y_{k-1}} \norm{y_{k-1}}^2 g_k \]

\[\eta_k = \frac{\norm{d_k} \min(\eta, \norm{g_k})}{\eta} \quad y_{k-1} = g_k - g_{k-1}, \quad t = 2, \lambda, \eta > 0. \]

Liu and Li [6] considered a conjugate gradient technique of Hager-Zhang [7] and suggested that the conjugate gradient descent method with \(t = 1 \) is high competitive than with \(t = 2 \). Also, Yan et al. [8] applied the spectral technique to analyze the conjugate gradient descent method and showed that the CGD method with \(t = 1 \) is best than with \(t = 2 \). In our method, we choose the parameter \(t = 1 \) in the proposed algorithm.

The projection operator is a mapping \(P_{\Omega}: \mathbb{R}^n \to \Omega \) for all \(x \), \(y \in \mathbb{R}^n \) holds that [9]

\[\| P_{\Omega}(x) - P_{\Omega}(y) \| \leq \| x - y \|, \tag{1.2} \]

where \(P_{\Omega}(x) = \arg\min\{\| x - y \| | y \in \Omega \} \).

2. **Algorithm**

Given an initial point \(x_0 \) in iterative scheme for (1.1) generates a sequence \(\{ x_k \} \) by

\[x_{k+1} = x_k + \alpha_k d_k, \quad k \in \mathbb{N} \]

which a line search procedure employs the direction \(d_k \) to calculate step size \(\alpha_k \). Let \(z_k = x_k + \alpha_k d_k \) by monotonicity of \(F \), the hyperplane

\[H_k = \{ x \in \mathbb{R}^n | F(z_k)^T(x - z_k) = 0 \} \]

strictly separates \(x_k \) from the solution of the problem (1.1). Based on Solodov and Svaiter [10] advised that the other iteration point \(x_{k+1} \) is constructed by projecting \(x_k \) onto \(H_k \) that is \(x_{k+1} \) is determined by:

\[x_{k+1} = x_k - \frac{F(z_k)^T(x_k - z_k)}{\| F(z_k) \|^2} F(z_k). \tag{2.1} \]

We assume that \(F \) holds some assumptions as follows:

- **B1** The solution set of (1.1) is nonempty.
- **B2** The mapping \(F(x) \) is monotone and Lipschitz continuous i.e., \(\exists L > 0 \), such that

\[\| F(x) - F(y) \| \leq L \| x - y \|, \tag{2.2} \]

We propose the following new direction formula for nonlinear monotone equations (1.1)

\[d_{k+1} = \begin{cases} -\eta F_k + \beta_k^{NM} \lambda_k + \delta_k^m \beta_k & \text{if } k \geq 1, \\ -\beta_k & \text{if } k = 0, \end{cases} \tag{2.3} \]

where \(\tau = \rho \tau \), \(m \lambda, \lambda_k = x_k - x_{k-1}, \tau, m > 0, \quad y_k = F_k - F_{k-1}, \delta_k = \eta \frac{\lambda_k^m}{\lambda + \lambda_k^m} \).

\[\eta = \frac{\| F(z_k) \|^2}{\| F(z_k) \|^2}, \quad \beta = \frac{\| F(x_k) \|}{\| F(z_k) \|^2}, \quad \beta_k^{NM} = \frac{\rho k \tau}{\lambda^2 \tau}, \quad \beta_k = \frac{\lambda \tau m \tau}{\lambda^2 \tau} - \frac{\lambda \tau^2}{\lambda^2 \tau^2}, \tag{2.4} \]

\[\| x_{k+1} - x_k \| \leq \epsilon, \| y_{k} \| \leq \epsilon, \quad \text{break}. \tag{2.5} \]

where \(\delta_k = F(z_k)^T(x_k - z_k) \). Put \(k = k + 1 \), and return to (2).
3. Global Convergence of the New Method

3.1. Remark (i): We conclude that by definitions of τ and λ that
\[\lambda^T \tau = \lambda^T \gamma_{yk} + ma^T \lambda \geq m||\lambda||^2 \geq 0. \]
This inequality is based on the monotonicity of a mapping F, and always the divisors of β_k^{MO} and ϱ_k are greater than zero before the algorithm breaks.

The sufficiently descent property of Algorithm (2.1) is shown in the next lemma.

3.2. Lemma: Suppose $\{d_k\}$ is the sequence of the search direction, $\{f_k\}$ be generated by Algorithm (2.1). Then $\forall k \geq 0, \exists \epsilon > 0$ such that
\[F_k^T d_k \leq -\epsilon ||F_k||^2 \quad (3.1) \]
Proof: By the definition of τ and (2.2) we have
\[\lambda^T \tau \leq ||\lambda||^2 \]
\[\leq \lambda^T (r ||F_k - \bar{r}_{k-1}|| + m||\lambda||) \]
\[\leq (rL + m)||\lambda||^2, \]
so, we have
\[\epsilon_k \geq \frac{1}{rL + m}, \quad k \geq 1 \quad (3.2) \]

By taking inner product (3.1) with F_k, and from (3.2) we get
\[F_k^T d_k = -\epsilon_k ||F_k||^2 + \beta_k^{MO} \lambda_k F_k^T + \bar{\sigma} F_k^T \]
\[= \left(\frac{-1}{rL + m} \right) ||F_k||^2 + \frac{F_k^T \tau F_k^T + \lambda F_k^T}{(\lambda^T \tau)^2} \]
\[F_k^T d_k \leq \left(\frac{-1}{rL + m} + \frac{1}{l + \lambda y} \right) ||F_k||^2 + \frac{F_k^T \tau F_k^T + \lambda F_k^T}{(\lambda^T \tau)^2} \]
Let $= (\lambda^T \tau)/\sqrt{2} F_k^T$, $b = \sqrt{2} (F_k^T \lambda) \tau$.

And from $\epsilon, b \leq \frac{1}{2} (\epsilon^2 + b^2)$, we get
\[F_k^T d_k \leq \left(\frac{-1}{rL + m} + \frac{1}{l + \lambda y} \right) ||F_k||^2 + \frac{1}{2} ||F_k||^2. \]
For $k=0$, $F_0^T d_0 = -||F_0||^2$
Thus (3.1) holds.

Now, the next lemma shows that the line search of the proposed algorithms is well-defined.

3.3. Lemma: Let assumptions (B1,B2) satisfied, then there exists a step size α_k holds the line search (2.4) $\forall k \geq 0$.
Proof: Suppose that $\exists k_0 > 0$, k_0 scalar for which (2.4) is not true for all positive integer i such that:
\[-F(x_{k0} + \psi d_{k0}, d_{k0}) < \eta \gamma \psi ||d_{k0}||^2, \]
by the Lipschitz continuity of F, set $i \rightarrow \infty$, then
\[-F(x_{k0}, d_{k0}) < 0. \quad (3.3) \]
And from (3.1) we have
\[-F(x_{k0})^T d_{k0} \geq 0. \quad (3.4) \]
This means a contradiction between (3.3) and (3.4), this implies that (2.4) is well-defined.

3.4. Lemma: Let assumptions (B1, B2) holds. The sequence $\{x_k, z_k\}$ be generated by algorithm (2.1), then for any \bar{x} is a solution of (1.1) the following relation is satisfied
\[||x_{k+1} - \bar{x}||^2 \leq ||x_k - \bar{x}||^2 - \gamma^2 \eta^2 ||x_k - z_k||^4. \quad (3.5) \]
Proof: By the monotonicity of F, we get
\[(F(z_k) - F(\bar{x}), z_k - \bar{x}) \geq 0. \]
Then
\begin{equation}
(F(\bar{z}_k) - F(\bar{x}), \bar{x} - \bar{z}_k) \geq -i(F(\bar{z}_k) - F(\bar{x}), \bar{z}_k - \bar{x}_k),
\end{equation}
from the definition of z_k and (2.4)
\begin{equation}
(F(\bar{z}_k), \bar{x} - \bar{z}_k) \geq -i(F(\bar{z}_k), \bar{z}_k - \bar{x}_k)
= \bar{z}_k^\top \gamma |d_k|^2 \geq 0.
\end{equation}
From (2.1) we have
\begin{align*}
\|x_{k+1} - \bar{x}\|^2 &= \|P[\bar{x} - \delta F(z_k)] - P[\bar{x}]\|^2 \\
&\leq \|x_k - \delta F(z_k) - \bar{x}\|^2 \\
&\leq \|x_k - \bar{x}\|^2 - 2\delta \|F(z_k)^T(x_k - \bar{x})\| + \delta^2 \|F(z_k)\|^2 \\
&\leq \|x_k - x\|^2 - F(z_k)^T(z_k - \bar{x}_k) \|F(z_k)\|^2 \\
&\leq \|x_k - \bar{x}\|^2 - \eta_2 \gamma^2 \|x_k - \bar{x}\|^4 \\
&\leq \|x_k - x\|^2 - \eta_2 \gamma^2 \|x_k - z_k\|^4,
\end{align*}
where the last three inequalities are followed from (1.2), (3.6) and (2.4) respectively.

3.5. Remark (ii): By (3.5) we have
\begin{equation}
\eta_2 \gamma^2 \|x_k - z_k\|^4 \leq \|x_k - \bar{x}\|^2 - \|x_{k+1} - \bar{x}\|^2.
\end{equation}
It's not difficult to show that
\begin{equation}
\sum_{k=0}^{\infty} \eta_2 \gamma^2 \|x_k - z_k\|^4 \leq \|x_0 - \bar{x}\|^2 < +\infty.
\end{equation}
Which means that
\begin{equation}
\lim_{k \to \infty} \|x_k - z_k\| = 0.
\end{equation}

3.6. Theorem: Let assumptions (B1,B2) satisfied and the sequence $\{F_k\}$ be determined by algorithm (2.1), then
\begin{equation}
\lim inf_{k \to \infty} \|F_k\| = 0
\end{equation}
\textbf{Proof:} Assume that (3.8) is not hold. Let a constant $M > 0$ satisfies
\begin{equation}
\|F_k\| > M, \quad \forall k \geq 0.
\end{equation}
It follows from the definition of τ and (2.2) that
\begin{equation}
\|\tau_{k-1}\| \leq r \|F_k - F_{k-1}\| + m \lambda \leq (rL + m)\|\lambda\|.
\end{equation}
From remark (i) and the definition of β_k^{MO}, we get
\begin{align*}
\|\beta_k^{MO}\| &\leq \frac{r \|\lambda\| \|F_k\|}{\lambda \|F_k\|} + \frac{\|\tau\|^2 \|F_k\| \|\lambda\|}{\lambda^2 \|F_k\|^2} \\
&\leq \frac{m \|\lambda\|}{(rL + m)\|\lambda\|} \|F_k\| + \frac{(rL + m)^2 \|\lambda\|^2 \|F_k\|}{m\|\lambda\|} \\
&\leq \frac{m \|\lambda\|}{(rL + m)\|\lambda\|} \|F_k\| + \frac{(rL + m)^2 \|\lambda\|^2 \|F_k\|}{m\|\lambda\|}.
\end{align*}
By remark (i), we have
\begin{equation}
\|d_k\| \leq \frac{1}{m} \|F_k\| + \|\beta_k^{MO}\| \|\lambda\| + \|\delta\| \|\beta\|
\end{equation}
\begin{align*}
&\leq \left(1 + rL + r \frac{L^2}{m} \right) \|F_k\| + \frac{2rL}{m} \|\beta_k^{MO}\| \|\lambda\| + \frac{\|F(z_k)\|}{L + \lambda \gamma (1 + \|F(z_k)\|^2)} \|F_k\|.
\end{align*}
\[
\mathbf{V} = V \| F_k \| + \left(V + \frac{1}{L + \lambda \gamma (1 + \| F(z_k) \|^2)} \right) \| F_k \|
\]

where \(V = 1 + \frac{r^2 L + r m}{m^2} + \frac{r^2 L + r m}{m^2} \).

It follows from (2.4) that
\[
-\mathbf{r}(\mathbf{x}_k + \psi^{-1} \mathbf{a}_k d_k)^T d_k < \nu \gamma \psi^{-1} \mathbf{a}_k \| d_k \|^2,
\]

where \(\mathbf{z}_k = \mathbf{x}_k + \psi^{-1} \mathbf{a}_k d_k \).

From (3.1) and (3.2) we have
\[
\mathbf{z}_k = \mathbf{x}_k + \psi^{-1} \mathbf{a}_k d_k.
\]

From (3.11) and (3.10) we have
\[
\mathbf{a}_k \| d_k \| \geq \frac{c \| \mathbf{r}_k \|^2}{(L + \eta \gamma) \| d_k \|}.
\]

So, by (3.5) and the definition of \(\mathbf{z}_k \), we get
\[
\lim_{k \to \infty} \mathbf{a}_k \| d_k \| = 0.
\]

This implies a contradiction with (3.11), so, the assumption does not satisfied, and (3.8) holds.

4. Numerical Experiments

Numerical results are used to assess the efficiency of the new approach (MOH3). We compare it with three famous algorithms:

(GC) which is introduced by Yan et al. [8].
(HS) which is introduced by Liu and Li [6].
(SP) which is introduced by Awwal et al. [11].

The parameter of suggested algorithm set as follows: \(\gamma = 3.8, \psi = 0.7, m = 0.5, r = 0.001 \) and \(L = 0.5 \). The parameter of the other methods comes from [0, 6, 11]. All Algorithms are terminated whenever \(\| F_k \| \leq 1 \times 10^{-6} \). The total number of iteration exceeds 500000. Our computations were carried using MATLAB R2014a and run PC with 4GH, CPU2.30- Windows8 operation system. We test the performance of the algorithm (2.1) with different initial starting points [12] and various dimensions. Similar is [13, 14], we check the test problem when the variables number \(n=5000, 10000, \ldots \) with the following starting points

\[
\begin{align*}
\mathbf{x}_0 &= (10 \cdot 10, \ldots, 10)^T, \quad \mathbf{x}_1 = (-10, -10, \ldots, -10)^T, \quad \mathbf{x}_2 = (1, 1, \ldots, 1)^T, \quad \mathbf{x}_3 = (-1, -1, \ldots, -1)^T, \\
\mathbf{x}_4 &= (1, 2, 1, \ldots, 1)^T, \quad \mathbf{x}_5 = (0.1, 0.1, \ldots, 0.1)^T, \quad \mathbf{x}_6 = (1, 2, 1, \ldots, 1)^T, \quad \mathbf{x}_7 = (1, 1, 1, \ldots, 1)^T.
\end{align*}
\]

We compare the suggested method with the other method for number of iteration (NI), number of function evaluations (NF) and CPU time (CPU). From the tables (4.1, 4.2) it's clear to show that the MOH3 is better than the other methods.
Table 4.1: Numerical results

P.	Dim.	S.P.	MOH3	GC	HS	SP				
			N_v	N_f						
			N_v	N_f						
100	20000	x_0	27	93	419	2546	121	244	56	114
100	20000	x_1	27	93	419	2546	121	244	56	114
100	20000	x_2	25	84	63	193	112	226	52	106
100	20000	x_3	26	87	63	193	112	226	52	106
100	20000	x_4	14	44	21	44	118	303	33	68
100	20000	x_5	19	59	28	58	95	192	44	90
100	20000	x_6	25	83	47	126	86	200	50	102
100	20000	x_7	25	83	47	126	78	189	50	102
	50000	x_0	36	150	419	2546	121	244	56	114
	50000	x_1	31	121	392	2430	41	84	21	44
	50000	x_2	34	133	63	193	112	226	52	106
	50000	x_3	28	112	61	242	33	68	18	38
	50000	x_4	22	90	21	44	120	321	33	68
	50000	x_5	32	122	28	58	95	192	44	90
	50000	x_6	35	132	47	126	91	209	50	102
	50000	x_7	35	132	47	126	91	209	50	102
	10000	x_0	50	244	108	418	62	127	99	273
	10000	x_1	81	388	261	1340	90	183	124	333
	10000	x_2	51	248	65	194	55	113	90	250
	10000	x_3	63	303	90	273	76	155	104	282
	10000	x_4	59	284	66	175	68	139	91	247
	10000	x_5	65	312	70	183	72	147	92	248
	10000	x_6	58	280	67	182	66	157	95	259
	10000	x_7	58	280	67	182	65	156	95	259
Table 4.1: Numerical results - continued

Dim.	S.P	MOH3	GC	HS	SP				
10000	x_0	61	247	21094	209916	2344	11705	133	268
10000	x_1	68	276	20987	208704	2386	11804	133	268
10000	x_2	66	268	21084	209805	2498	12442	133	268
10000	x_3	67	272	21067	209609	2377	11912	133	268
10000	x_4	67	272	21075	209709	2534	12640	133	268
10000	x_5	67	272	21076	209719	2529	12634	133	268
10000	x_6	67	272	21082	209786	2509	12550	133	268
10000	x_7	66	268	21077	209728	2444	12208	133	268
5000	x_0	25	97	301	1550	128	258	59	120
5000	x_1	26	99	550	3263	133	268	61	124
5000	x_2	24	87	95	350	117	236	54	110
5000	x_3	24	79	174	788	123	248	57	116
5000	x_4	25	96	125	500	121	244	56	114
5000	x_5	25	89	122	486	120	242	55	112
5000	x_6	27	102	112	435	119	240	55	112
5000	x_7	24	93	112	435	119	240	55	112
50000	x_0	15550	31145	44711	90690	129477	258956	118747	237496
50000	x_1	789	1960	471	2844	71	144	36	74
50000	x_2	15528	31058	44380	88766	129445	258892	118732	237466
50000	x_3	647	1553	48	192	54	110	49	60
50000	x_4	896	1794	2565	5132	7490	14982	3190	6382
50000	x_5	15234	30470	43530	87062	126968	253938	117676	235354
50000	x_6	15330	30662	43775	87552	128794	257609	117633	235268
50000	x_7	15330	30662	43775	87552	128634	257289	117632	235266
Table 4.2: Numerical results (CPU time)

P.	Dim.	S. P	MOH3	CPU time	GC	HS	SP
20000	2000	0.5642	16.59375	2.89062	0.50000		
20000	2000	1.1094	16.46875	2.35937	0.39062		
20000	2000	1.0937	0.84375	1.60937	0.32812		
20000	2000	0.9687	0.92187	1.43750	0.35937		
20000	2000	0.5468	0.21873	1.81250	0.23437		
20000	2000	0.5937	0.25000	1.42187	0.29687		
20000	2000	1.0000	0.65625	1.14062	0.37500		
20000	2000	1.1094	0.59375	0.98437	0.28125		
50000	5000	0.5781	16.37500	2.79687	0.48437		
50000	5000	0.4062	15.32812	0.82812	0.14062		
50000	5000	0.4843	0.95312	2.39062	0.35937		
50000	5000	0.3125	1.07812	0.64062	0.12500		
50000	5000	0.3437	0.23437	2.35937	0.23437		
50000	5000	0.4843	0.26562	2.06250	0.29687		
50000	5000	0.5156	0.60937	2.20312	0.20312		
50000	5000	0.4843	0.60937	2.15625	0.32812		
50000	5000	2.1189	494.59375	286.39062	394.71875		
50000	5000	2.3528	452.89062	345.68750	439.18750		
50000	5000	1.8631	336.79687	242.79687	319.79687		
50000	5000	2.0645	396.03125	297.95312	376.59375		
50000	5000	1.8710	341.31250	255.04687	327.46875		
50000	5000	1.8355	331.34375	246.32812	313.59375		
50000	5000	783.84375	144.21875	103.96875	137.81250		
50000	5000	781.85937	144.04687	109.07812	181.32812		
10000	1000	0.1406	0.34375	0.65620	0.20312		
10000	1000	0.2500	1.43750	0.93750	0.25000		
10000	1000	0.1562	0.20312	0.57812	0.15625		
10000	1000	0.1875	0.32812	0.20312	0.17187		
10000	1000	0.1562	0.17187	0.34375	0.15625		
10000	1000	0.1875	0.23437	0.26562	0.17187		
10000	1000	0.1718	0.18750	0.20312	0.18750		
10000	1000	0.1093	0.25000	0.31250	0.20312		
Table 4.2: Numerical results (CPU time) - continued

P.	Dim.	S.P	CPU time			
			MOH3	GC	HS	SP
			0.17187	80.87500	12.76562	0.62500
			0.10937	79.59375	12.84375	0.35937
			0.14062	80.92187	20.25000	0.37500
			0.10937	79.78125	23.26562	0.43750
			0.09375	80.65625	24.42187	0.35937
			0.10937	79.14062	12.0312	0.35937
			0.10937	81.15625	12.23437	0.35937
			0.07812	80.25000	11.59375	0.32812
			0.76562	12.10937	3.53125	2.85937
			0.62500	24.17187	3.53125	2.03125
			0.57812	2.54687	3.04687	1.57812
			0.53125	6.29687	3.28125	1.53125
			0.67187	3.96875	3.01562	1.23437
			0.56250	3.62500	3.43750	1.04687
			0.73437	3.39062	3.62500	1.01562
			0.68750	3.57812	3.07812	0.90625
			151.26562	392.12500	1651.3750	15330.6875
			8.32812	16.64062	1.07812	4.82812
			148.37500	367.04687	1682.4375	15549.17187
			6.62500	0.70312	0.70312	3.82812
			8.39062	20.78125	97.00001	418.82812
			147.18750	362.89062	1624.6094	15450.40625
			148.45312	357.81250	1672.00001	15450.40625
			150.73437	359.92187	1676.07812	15431.67187

5. Conclusions

We have suggested a new class of three terms of derivative-free projection technique for solving unconstrained optimization. The suggested approach is appropriate for large scale equations, because it has a nice property which is the low memory requirement. The global convergence of our method is established. The numerical results showed that our method is efficient and working better than the three other algorithms that the new algorithm is compared with.

6. References

[1] Cheng W Y and Li D H 2010 Spectral scaling BFGS method, J. Optim. Theor. Appl. 146 305–319.
[2] Li Q N and Li D H 2011 A class of derivative-free methods for large-scale nonlinear monotone equations, *IMA J. Numer. Anal.* 31 1625–1635.

[3] Amini K, Shiker M A K and Kimiae M 2016 A line search trust-region algorithm with nonmonotone adaptive radius for a system of nonlinear equations, *4 OR- Journal of operation research* 14 (2) 133-152.

[4] Hashim K H, Dreeb, N K, Dwail, H H, Mahdi M M, Wasi H A, Shiker M A K and Hussein H A 2019 A new line search method to solve the nonlinear systems of monotone equations, *Journal of Engineering and Applied Sciences*, 14 10080-10086.

[5] Liu J K 2016 Derivative-free spectral PRP projection method for solving nonlinear monotone equations with convex constraints, *Math Numer Sin.*, 38 113–24[in Chinese].

[6] Liu J K and Li S J 2015 Spectral DY-type projection method for nonlinear monotone systems of equations, *JCM.*, 4 341–354.

[7] Hager W W and Zhang H 2005 A new conjugate gradient method with guaranteed descent and an efficient line search, *SIAM J. Optim.* 16 170–92.

[8] Yan Q R, Peng X Z and Li D H 2010 A globally convergent derivative-free method for solving large-scale nonlinear monotone equations, *J. Comput. Appl. Math.*, 234 649-657.

[9] Shiker M A K and Amini K 2018 A new projection-based algorithm for solving a large scale nonlinear system of monotone equations, *Croatian operational research review*, 9 63-73.

[10] Solodov M V and Svaiter B F 1999 A globally convergent inexact Newton method for systems of monotone equations, in: M. Fukushima, L. Qi (Eds.), Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, *Kluwer Academic Publishers*, 355-369.

[11] Awwal A M, Kumam P, Abubakar A B and Wakili A 2018 A projection Hestenes-Stiefel like method for monotone nonlinear equations with convex constraints, *Thai Journal of Mathematics*, 16 181-199.

[12] Shiker M A K and Sahib Z 2018 A modified technique for solving unconstrained optimization, *J. Eng. Applied Sci.*, 13 9667-9671.

[13] Dreeb N K, Hashim K H, Mahdi M M, Wasi H A, Dwail H H, Shiker M A K and Hussein H A 2019 Solving a large-scale nonlinear system of monotone equations by using a projection technique, *Journal of Engineering and Applied Sciences*, 14 10102-10108.

[14] Hassan Z A H and Shiker M A K 2018 Using of generalized baye’s theorem to evaluate the reliability of aircraft systems. Journal of Engineering and Applied Sciences, Special Issue 13, 10797–10801.