Abstract

In his 1930 paper \cite{7}, Kuratowski categorized planar graphs, proving that a finite graph Γ is planar if and only if it does not contain a subgraph that is homeomorphic to K_5, the complete graph on 5 vertices, or $K_{3,3}$, the complete bipartite graph on six vertices. This result is also attributed to Pontryagin \cite{6}. In their 2001 paper \cite{4}, Davis and Okun point out that the $K_{3,3}$ graph can be understood as the nerve of a right-angled Coxeter system and prove that this graph is not planar using results from ℓ^2-homology. In this paper, we employ a similar method using results from \cite{9} to prove K_5 is not planar.

1 Introduction

Let S be a finite set of generators. A Coxeter matrix on S is a symmetric $S \times S$ matrix $M = (m_{st})$ with entries in $\mathbb{N} \cup \{\infty\}$ such that each diagonal entry is 1 and each off diagonal entry is ≥ 2. The matrix M gives a presentation of an associated Coxeter group W:

$$W = \langle S \mid (st)^{m_{st}} = 1, \text{ for each pair } (s, t) \text{ with } m_{st} \neq \infty \rangle. \quad (1.1)$$

The pair (W, S) is called a Coxeter system. Denote by L the nerve of (W, S), L is a simplicial complex with vertex set S, the precise definition will be given in section 2. In several papers (e.g., \cite{1}, \cite{2}, and \cite{3}), M. Davis describes a construction which associates to any Coxeter system (W, S), a simplicial complex $\Sigma(W, S)$, or simply Σ when the Coxeter system is clear, on which W acts properly and cocompactly. The two salient features of Σ are that (1) it is contractible and (2) that it admits a cellulation under which the nerve of each vertex is L. It follows that if L is a triangulation of \mathbb{S}^{n-1}, Σ is an aspherical n-manifold. Hence, there is a variation of Singer’s Conjecture, originally regarding the (reduced) ℓ^2-homology of aspherical manifolds, for such Coxeter groups.

Singer’s Conjecture for Coxeter groups 1.1. Let (W, S) be a Coxeter group such that its nerve, L, is a triangulation of \mathbb{S}^{n-1}. Then $H_i(\Sigma_L) = 0$ for all $i \neq n/2$.

\section*{1 Introduction}

Let S be a finite set of generators. A Coxeter matrix on S is a symmetric $S \times S$ matrix $M = (m_{st})$ with entries in $\mathbb{N} \cup \{\infty\}$ such that each diagonal entry is 1 and each off diagonal entry is ≥ 2. The matrix M gives a presentation of an associated Coxeter group W:

$$W = \langle S \mid (st)^{m_{st}} = 1, \text{ for each pair } (s, t) \text{ with } m_{st} \neq \infty \rangle. \quad (1.1)$$

The pair (W, S) is called a Coxeter system. Denote by L the nerve of (W, S), L is a simplicial complex with vertex set S, the precise definition will be given in section 2. In several papers (e.g., \cite{1}, \cite{2}, and \cite{3}), M. Davis describes a construction which associates to any Coxeter system (W, S), a simplicial complex $\Sigma(W, S)$, or simply Σ when the Coxeter system is clear, on which W acts properly and cocompactly. The two salient features of Σ are that (1) it is contractible and (2) that it admits a cellulation under which the nerve of each vertex is L. It follows that if L is a triangulation of \mathbb{S}^{n-1}, Σ is an aspherical n-manifold. Hence, there is a variation of Singer’s Conjecture, originally regarding the (reduced) ℓ^2-homology of aspherical manifolds, for such Coxeter groups.

Singer’s Conjecture for Coxeter groups 1.1. Let (W, S) be a Coxeter group such that its nerve, L, is a triangulation of \mathbb{S}^{n-1}. Then $H_i(\Sigma_L) = 0$ for all $i \neq n/2$.

1
For details on ℓ^2-homology theory, see [3], [4] and [5]. Conjecture 1.1 holds for elementary reasons in dimensions 1 and 2. In [4], Davis and Okun prove that if Conjecture 1.1 holds for right-angled Coxeter systems in dimension n, then it also holds in dimension $n + 1$. (Here, right-angled means generators either commute, or have no relation). They also prove directly that Conjecture 1.1 holds for right-angled systems in dimension 3, and thus also in dimension 4. This result also follows from work by Lott and Lück ([8]) and Thurston ([10]) regarding Haken Manifolds. In [9], the author proves that Conjecture 1.1 holds for arbitrary Coxeter systems with nerve S^2.

Also in [4], Davis and Okun use their low dimensional results to prove the following generalization of Conjecture 1.1.

Lemma 1.2. (Lemma 9.2.3, [4]) Suppose (W, S) is a right-angled Coxeter system with nerve L, a flag triangulation of S^2. Let A be a full subcomplex of L. Then

$$H_i(W \Sigma_A) = 0 \text{ for } i > 1.$$

Here, Σ_A is the Davis complex associated with the Coxeter system (W_A, A^0), where W_A is the subgroup of W generated by vertices in A, with nerve A. It is a subcomplex of Σ.

Lemma 1.2 is the key to what Davis and Okun call “a complicated proof of the classical fact that $K_{3,3}$ is not planar,” (See section 11.4.1, [4]). We outline that argument in Section 3. The purpose of this paper is to employ a similar argument to prove that K_5 is not planar.

The key step for us is proving a result analogous to Lemma 1.2 but for subcomplexes of arbitrary Coxeter systems.

Main Theorem. (See Theorem 4.5) Let (W, S) be a Coxeter system with nerve L, a triangulation of S^2. Let A be full subcomplex of L with right-angled complement. Then

$$H_i(W \Sigma_A) = 0 \text{ for } i > 1.$$

Here A having a “right-angled complement” means that for generators s and t, the Coxeter relation $m_{st} \neq 2$ nor ∞ implies that the vertices corresponding to s and t are both in A. From the Main Theorem, it follows that K_5 is not planar.

2 The Davis complex

Let (W, S) be a Coxeter system. Given a subset U of S, define W_U to be the subgroup of W generated by the elements of U. A subset T of S is spherical if W_T is a finite subgroup of W. In this case, we will also say that the subgroup W_T is spherical. Denote by S the poset of spherical subsets of S, partially ordered by inclusion. Given a subset V of S, let $S_{\geq V} := \{ T \in S | V \subseteq T \}$. Similar definitions exist for $<, >, \leq$. For any $w \in W$ and $T \in S$, we call the coset wW_T a spherical coset. The poset of all spherical cosets we will denote by WS.

2
Let $K = \lvert S \rvert$, the geometric realization of the poset S. It is a finite simplicial complex. Denote by $\Sigma(W, S)$, or simply Σ when the system is clear, the geometric realization of the poset WS. This is the Davis complex. The natural action of W on WS induces a simplicial action of W on Σ which is proper and cocompact. K includes naturally into Σ via the map induced by $T \to WT$. So we view K as a subcomplex of Σ, and note that K is a strict fundamental domain for the action of W on Σ.

The poset $S_{>0}$ is an abstract simplicial complex. This simply means that if $T \in S_{>0}$ and T' is a nonempty subset of T, then $T' \in S_{>0}$. Denote this simplicial complex by L and call it the nerve of (W, S). The vertex set of L is S and a non-empty subset of vertices T spans a simplex of L if and only if T is spherical.

Define a labeling on the edges of L by the map $m : \text{Edge}(L) \to \{2, 3, \ldots\}$, where $\{s, t\} \mapsto m_{st}$. This labeling accomplishes two things: (1) the Coxeter system (W, S) can be recovered (up to isomorphism) from L and (2) the 1-skeleton of L inherits a natural piecewise spherical structure in which the edge $\{s, t\}$ has length $\pi - \pi/m_{st}$. L is then a metric flag simplicial complex (see Definition [2, I.7.1]). This means that any finite set of vertices, which are pairwise connected by edges, spans a simplex of L if and only if it is possible to find some spherical simplex with the given edge lengths. In other words, L is “metrically determined by its 1-skeleton.”

Recall that a simplicial complex L is flag if every nonempty, finite set of vertices that are pairwise connected by edges spans a simplex of L. Thus, it is clear that any flag simplicial complex can correspond to the nerve of a right-angled Coxeter system. For the purpose of this paper, we will say that labeled (with integers ≥ 2) simplicial complexes are metric flag if they correspond to the labeled nerve of some Coxeter system. We then treat vertices of metric flag simplicial complexes as generators of a corresponding Coxeter system. Moreover, for a metric flag simplicial complex L, we write Σ_L to denote the associated Davis complex.

A cellulation of Σ by Coxeter cells. Σ has a coarser cell structure: its cellulation by “Coxeter cells.” (References include [2] and [4] for the features of this. The cellulation is summarized by [2] Proposition 7.3.4. We point out that under this cellulation the link of each vertex is L. It follows that if L is a triangulation of S^{n-1}, then Σ is a topological n-manifold.

Full subcomplexes. Suppose A is a full subcomplex of L. Then A is the nerve for the subgroup generated by the vertex set of A. We will denote this subgroup by W_A. (This notation is natural since the vertex set of A corresponds to a subset of the generating set S.) Let S_A denote the poset of the spherical subsets of W_A and let Σ_A denote the Davis complex associated to (W_A, A^0). The inclusion $W_A \hookrightarrow W_L$ induces an inclusion of posets $W_A S_A \hookrightarrow W_L S_L$ and thus an inclusion of Σ_A as a subcomplex of Σ_L. Note that W_A acts on Σ_A and that if $w \in W_L \setminus W_A$, then Σ_A and $w\Sigma_A$ are disjoint copies of Σ_A. Denote by
Let L be a metric flag simplicial complex, and let A be a full subcomplex of L. The following notation will be used throughout.

\begin{align*}
 h_i(L) &:= \mathcal{H}_i(\Sigma L) \quad (3.1) \\
 h_i(A) &:= \mathcal{H}_i(W_L \Sigma A) \quad (3.2) \\
 \beta_i(A) &:= \dim_{W_L}(h_i(A)). \quad (3.3)
\end{align*}

Here $\dim_{W_L}(h_i(A))$ is the von Neumann dimension of the Hilbert W_L-module $W_L \Sigma A$ and $\beta_i(A)$ is the ith ℓ^2-Betti number of $W_L \Sigma A$. The notation in 3.2 and 3.3 will not lead to confusion since $\dim_{W_L}(W_L \Sigma A) = \dim_{W_A}(\Sigma A)$. (See [4] and [5]).

0-dimensional homology. Let ΣA be the Davis complex constructed from a Coxeter system with nerve A, so W_A acts geometrically on ΣA. The reduced ℓ^2-homology groups of ΣA can be identified with the subspace of harmonic i-cycles (see [3] or [4]). That is, $x \in h_i(A)$ is an i-cycle and i-cocycle. 0-dimensional cocycles of ΣA must be constant on all vertices of ΣA. It follows that if W_A is infinite, and therefore the 0-skeleton of ΣA is infinite, $\beta_0(A) = 0$.

Singer Conjecture in dimensions 1 and 2. As mentioned in Section 1, Conjecture 1.1 is true in dimensions 1 and 2. Indeed, let L be S^0 or S^1, the nerve of a Coxeter system (W, S). Then W is infinite and so, as stated above, $\beta_0(L) = 0$. Poincaré duality then implies that the top-dimensional ℓ^2-Betti numbers are also 0.

Orbihedral Euler Characteristic. ΣL is a geometric W-complex. So there are only finite number of W-orbits of cells in ΣL, and the order of each cell stabilizer is finite. The *orbihedral Euler characteristic* of $\Sigma L/W = K$, denoted $\chi^\text{orb}(\Sigma L/W)$, is the rational number defined by

\[\chi^\text{orb}(\Sigma L/W) = \chi^\text{orb}(K) = \sum_{\sigma} (-1)^{\dim \sigma} \frac{1}{|W_\sigma|}, \quad (3.4) \]

where the summation is over the simplices of K and $|W_\sigma|$ denotes the order of the stabilizer in W of σ. Then, if the dimension of L is $n-1$, a standard argument (see [5]) proves Atiyah’s formula:

\[\chi^\text{orb}(K) = \sum_{i=0}^{n} (-1)^i \beta_i(L). \quad (3.5) \]
Joints. If \(L = L_1 \ast L_2 \), the join of \(L_1 \) and \(L_2 \), where each edge connecting a vertex of \(L_1 \) with a vertex of \(L_2 \) is labeled 2, we write \(L = L_1 \ast_2 L_2 \) and then \(W_L = W_{L_1} \times W_{L_2} \) and \(\Sigma_L = \Sigma_{L_1} \times \Sigma_{L_2} \). We may then use Künneth formula to calculate the (reduced) \(\ell^2 \)-homology of \(\Sigma_L \), and the following equation from [4, Lemma 7.2.4] extends to our situation:

\[
\beta_k(L_1 \ast L_2) = \sum_{i+j=k} \beta_i(L_1) \beta_j(L_2). \tag{3.6}
\]

If \(L = P \ast_2 L_2 \), where \(P \) is one point, then we call \(L \) a right-angled cone. \(\Sigma_P = [-1,1] \), so there are no 1-cycles, and so \(\beta_1 = (P) = 0 \). But, \(\chi^{\text{orb}}(\Sigma_P/W_P) = 1/2 \) so by equation 3.5, \(\beta_0(P) = 1/2 \). Thus, in reference to the right-angled cone \(L \), equation 3.6 implies that

\[
\beta_i(L) = \frac{1}{2} \beta_i(L_2) \tag{3.7}
\]

The \(K_{3,3} \) case. Along with Lemma 1.2, the above gives us enough to prove that \(K_{3,3} \) is not planar. Indeed, let \(P_3 \) denote 3 disjoint points. Then \(K_{3,3} = P_3 \ast_2 P_3 \) is the nerve of a right-angled Coxeter system. Since \(W_{K_{3,3}} \) is infinite, so \(\beta_0(K_{3,3}) = 0 \), and equations 3.4 and 3.5 give us that \(\beta_1(P_3) = 1/2 \). It then follows from equation 3.6 that \(\beta_2(K_{3,3}) = 1/4 \). Thus, if \(K_{3,3} \) were a planar graph, it could be embedded as a full-subcomplex of a flag triangulation of \(S^2 \), where each edge is labeled 2. This triangulation of \(S^2 \) corresponds to the nerve of a right-angled Coxeter system. But this contradicts Lemma 1.2. For details on this proof see [4, Sections 8, 9 and 11].

4 The \(K_5 \) Graph

Let \(K_5 \) denote the complete graph on 5 vertices. The right-angled methods above cannot be applied to \(K_5 \) because, if the edges are labeled with 2’s, then \(K_5 \) cannot be embedded as a full subcomplex of a metric flag triangulation of \(S^2 \). However, \(K_5 \) is metric flag if the edges are labeled with 3’s. For if \(r, s \) and \(t \) are generators of a Coxeter system such that \(m_{rs} = m_{st} = m_{rt} = 3 \), then \(\{r,s,t\} \) is not a spherical subset and this set does not span a 2-simplex in the nerve of the corresponding Coxeter system. This simple observation leads to the following definition.

Definition 4.1. We say a full subcomplex \(A \) of a metric flag simplicial complex \(L \) has a right-angled complement if the label on all edges not in \(A \) is 2.

The following two Lemmas will be used in the set-up and proof of our Main theorem.

Lemma 4.2. Let \(L \) be a metric flag simplicial complex, \(A \subseteq L \) a full subcomplex with a right-angled complement. Let \(B \) be a full subcomplex of \(L \) such that \(A \subseteq B \) and let \(v \in B - A \) be a vertex. Then \(B_v \), the link of \(v \) in \(B \), is a full subcomplex of \(L \).
Proof. Let T be a subset of vertices contained in B_v and the vertex set of a simplex σ of L. Then T defines a spherical subset of the corresponding Coxeter system. Since the of T are in B_v, v commutes with each vertex of T. Thus $T \cup \{v\}$ is a spherical subset and therefore σ is in B_v. \hfill \Box

Lemma 4.3. Let L be a metric flag triangulation of S^1, let A be a full subcomplex of L. Then $\beta_i(A) = 0$ for $i > 1$.

Proof. Consider the long exact sequence of the pair $(\Sigma_L, W \Sigma_A)$:

$$0 \rightarrow h_2(A) \rightarrow h_2(L) \rightarrow h(L, A) \rightarrow ...$$

Since Conjecture 1.1 is true in dimension 2, $h_2(L) = 0$ and exactness implies the result. \hfill \Box

For convenience, we restate the relevant result from [9] needed to prove K_5 is non-planar.

Theorem 4.4. (See Corollary 4.4, [9]) Let L be a metric flag triangulation of S^2. Then

$$h_i(L) = 0 \text{ for all } i$$

We are now ready to prove our main theorem, analogous to Lemma 4.2.

Theorem 4.5. Let L be a metric flag triangulation of S^2, $A \subseteq L$ a full subcomplex with right-angled complement. Then

$$\beta_i(A) = 0 \text{ for } i > 1$$

Proof. Let B be a full subcomplex of L such that $A \subseteq B \subseteq L$. We induct on the number of vertices of $L - B$, the case $L = B$ given by Theorem 4.4. Assume $h_i(B) = 0$ for $i > 1$. Let v be a vertex of $B - A$ and set $B' = B - v$. Then $B = B' \cup C_2 B_v$ where B_v (by Lemma 4.3) and B' are full subcomplexes. We have the following Mayer-Vietoris Sequence:

$$\ldots \rightarrow h_i(B_v) \rightarrow h_i(B') \oplus h_i(C_2 B_v) \rightarrow h_i(B) \rightarrow \ldots$$

B_v is a full subcomplex of L_v, the link of v in L, a metric flag triangulation of S^1. So Lemma 4.3 implies $h_i(B_v) = 0$, for $i > 1$. Thus, by equation 3.7 $h_i(C_2 B_v) = 0$ for $i > 1$. It follows from exactness that $h_i(B') = 0$. \hfill \Box

The above Theorem can be restated as follows, cf. [4] Theorem 11.4.1.

Theorem 4.6. Let A be a metric flag complex of dimension ≤ 2. Suppose A is planar (that is, it can be embedded as a subcomplex of the 2-sphere). Then

$$\beta_2(A) = 0.$$
Proof. By Mayer-Vietoris, we may assume A is connected. Suppose A is piecewise linearly embedded in S^2. By introducing a new vertex in the interior of each complementary region, and coning off the boundary of each region labeling each new edge with 2, we obtain a metric flag triangulation of S^2 in which every edge not in A is labeled 2, that is, A has a right-angled complement. The result follows from the proof of Theorem 4.6.

We are now ready to prove K_5 is not planar.

Corollary 4.7. K_5 is not planar.

Proof. Label each edge of K_5 with 3, and thus K_5 is a metric flag complex. In this case, $\chi^{orb}(K_5) = \frac{1}{6}$. Then Atiyah’s formula, equation 3.5 and the fact that $\beta_0(K_5) = 0$ imply that $\beta_2(K_5) > 0$, contradicting Theorem 4.6.