MTHFR A1298C gene polymorphism on stroke risk: an updated meta-analysis

Xiaobo Dong¹, Jun Wang²,†, Gesheng Wang¹*, Jiayue Wang¹, Lei Wang¹ and Yong Du¹

Abstract

Background: Previous studies have shown the effect of MTHFR A1298C gene polymorphism on stroke risk. But the results of published studies remained inconclusive and controversial. So we conducted a meta-analysis to accurately estimate the potential association between MTHFR A1298C gene polymorphism and stroke susceptibility.

Methods: A systematic literature search on Embase, Pubmed, Web of Science, Cochrane Library, China National Knowledge Infrastructure (CNKI) and WanFang electronic database identified 40 articles including 5725 cases and 8655 controls. Strength of association was evaluated by pooled odds ratio (OR), 95% confidence interval (CI) and p value. Funnel plots and Begger’s regression test were applied for testing the publication bias. Statistical analysis of all data was performed by Stata 12.0.

Results: The meta-analysis results indicated a significant relationship between MTHFR gene A1298C polymorphisms and stroke risk under the C allelic genetic model (OR = 1.19, 95%CI = 1.07–1.32, p = 0.001), dominant genetic model (OR = 1.19, 95%CI = 1.06–1.33, p = 0.004) and recessive genetic model (OR = 1.43, 95%CI = 1.15–1.77, p = 0.001). In subgroup analysis, we discovered obvious correlation in three genetic model of Asian, stroke type, adult by ethnicity, population, stroke type, source of control and case size. Additionally, in studies of control from hospital and case size equal 100, obvious correlation was also found in the three genetic model.

Conclusions: Our meta-analysis results indicated that there was evidence to support the correlation between MTHFR A1298C polymorphism and stroke susceptibility, especially in adults and ischemic stroke.

Keywords: MTHFR A1298C, Polymorphism, Stroke, Meta-analysis

Introduction

Stroke was a type of clinical syndrome caused by sudden neurological deficits after cerebral blood vessel rupture or occlusion. It had a very high rate of disability and was classified into ischemic stroke (IS) and hemorrhagic stroke (HS) [1, 2]. Genetic genes, high blood sugar, unhealthy lifestyles, high blood pressure, and hyperlipidemia were all high-risk factors for stroke, which similarly to high-risk factors for cardiovascular disease [3, 4].

Methylenetetrahydrofolate reductase (MTHFR) was a key enzyme that folic acid metabolizes in vivo. The activity of this enzyme can directly affect the plasma homocysteine content in the human body [5, 6]. C677T and A1298C were two common mutants in MTHFR. Their missense mutations resulted in the replacement of 677 base C with T and the substitution of A with C in 1298, which changed the amino acid structure of MTHFR and caused the decrease of MTHFR enzyme activity [7–10]. The homocysteine cannot be converted into the word methionine normally, which causes a significant increase in the homocysteine content in the blood, which increases the stroke susceptibility [11].

A meta-analysis study performed in 2013 firstly reported the association among MTHFR A1298C and...
stroke risk [12]. A meta-analysis study performed in 2014 reported the correlation between MTHFR A1298C polymorphism and adult stroke [13]. Although Kumar et al. [14] conducted a meta-analysis and indicated that genotyping of MTHFR gene A1298C polymorphism may be used as a predictor for the occurrence of ischemic stroke. However, just 20 articles were included in this study, and some articles published in Chinese journal were not included in the analysis. Incomplete article search may lead to unstable results. Later a meta-analysis study performed in 2018 reported the association among MTHFR A1298C polymorphism and IS risk [15]. In recent years, many studies [16–20] have reported the association among MTHFR A1298C polymorphism and stroke risk. But the results were still inconsistent. Therefore, the purpose of this meta-analysis was to investigate the relationship among MTHFR A1298C polymorphism and stroke risk by updating previous meta-analyses.

Materials and methods

Publication search

Search in electronic databases such as PubMed, Cochrane Library, Web of Science, Embase, CNKI and WanFang using following terms: ("methylene tetrahydrofolate reductase" OR "A1298C" OR "MTHFR") AND ("apoplexy" OR "stroke" OR "brain infarction" OR "cerebrovascular disorder") AND ("polymorphism" OR "variant" OR "mutation") until August 2019. To ensure the relevant studies are included, two investigators independently searched the relevant literature and manually checked some major articles and reviews.

Selection criteria

ALL selected studies complied with the inclusion criteria: (1) Full text can be searched in electronic databases; (2) Case-control studies on MTHFR A1298C and stroke susceptibility; (3) MTHFR A1298C genotype frequency can be provided. The main exclusion criteria include the following: (1) Repeat articles in other electronic databases (2) The design was not a case-control study; (3) Unpublished studies, meta-analysis and systematic reviews; (4) The genotype frequency of MTHFR A1298C was not provided. Referring to the systematic review and meta-analysis [PRISMA], we screened all retrieved documents and constructed an information flow chart using the final qualified data.

Data extraction

Two researchers screened the retrieved studies by inclusion and exclusion standard. We selected following information from the included researches: first author, publication years, study country / region, type of stroke, study population, control group source, sample size (case and control) and genotype type. we evaluated each included study by Newcastle-Ottawa Scale (NOS) [21]. And we used Hardy-Weinberg-equilibrium (HWE) to assess the gene distribution in control group [22]. In order to ensure the accuracy of the information extracted from the research, the third researcher will review the accuracy of the information extracted by the first two researchers, and the three researchers will resolve the disputed results through negotiation.

Statistical analysis

Odds ratio (OR) and 95% confidence interval (CI) were calculated to estimate the relationship among MTHFR A1298C polymorphism and stroke susceptibility by different genetic comparison models: the C allele model (C and A), recessive model (CC and AA + CA) and dominant model (CC + CA and AA). Heterogeneities of different genetic comparison models was evaluated by the χ² based Q-statistic and I² [23, 24]. Significant Q statistic (p < 0.10) or I² > 50% indicates that there was heterogeneity between studies. The pooled OR was estimated by fixed effect model (Mantel–Haenszel) when no heterogeneity existed. Otherwise, the pooled OR was estimated by random effect model. To determine the possible causes of heterogeneity, ethnicity (African, Caucasian and Asian), study population (children and adults), type of stroke (ischemic and hemorrhagic), control source (based on population and Hospitals) and case group sample sizes (less than 100 and greater than or equal to 100) were analyzed in subgroups. In addition, sensitivity analysis was performed on different genetic comparison models to evaluate the effect of a single research on pooled OR. We used Egger test and funnel plots to evaluate the potential publication bias [25]. Stata 12.0 was used to perform statistical analysis of all genetic comparison models.

Results

Literature Search and Study Characteristics

Flowcharts of the detailed selection process were shown in Fig. 1. A total of 5475 publications were searched in several electronic databases. After carefully reading the research title, content and abstract, the two researchers excluded 1496 duplicate documents, 3851 irrelevant papers, and read the remaining 128 articles in full text. Finally, our meta-analysis included 40 case-control publications that met the inclusion criteria (involving 5725 cases and 8655 controls). Four of the control groups did not meet HWE balance (p < 0.05). In the 40 case-control studies, 22 were conducted among Asian populations, 16 were Caucasian, and 2 were African population. Thirty-one studies were based on adults. Other 9 studies were based on children. Ten studies were based on IS. Four studies based on HS and other...
studies based on both (MIXED). Four studies based on population (PB), 21 studies based on hospital (HB), other studies based on no report (NR) in this article. The sample group of 21 studies was less than 100, and the sample group of the other 19 studies was greater than or equal to 100. The main features of the study and the genotype distribution results of the HWE test were shown in Table 1.

Meta-analysis results

The meta-analysis included 14,380 participants (5725 cases and 8655 controls) in 40 case-control studies (Table 2). The meta-analysis results indicated the polymorphisms in *MTHFR* A1298C gene had significant association with stroke risk under the C allelic genetic model (OR = 1.19, 95%CI = 1.07–1.32, *p* = 0.001), dominant genetic model (OR = 1.19, 95%CI = 1.06–1.33, *p* = 0.004) and recessive genetic model (OR = 1.43, 95%CI = 1.15–1.77, *p* = 0.001).

In ethnic subgroup analysis, *MTHFR* A1298C polymorphism was obviously correlated with increased risk of stroke under three genetic models of Asian population (C vs A: OR = 1.18, 95%CI = 1.07–1.32, *p* = 0.002; CC + CA vs AA: OR = 1.19, 95%CI = 1.06–1.34, *p* = 0.008; CC vs CA + AA: OR = 1.48, 95%CI = 1.16–1.89, *p* = 0.002). There was no obvious association among *MTHFR* A1298C polymorphism and children stroke risk. Stratified analysis by stroke type found that *MTHFR* A1298C polymorphism was obviously correlated with increased stroke risk in the three genetic models of ischemic stroke (C vs A: OR = 1.22, 95%CI = 1.09–1.37, *p* = 0.002; CC + CA vs AA: OR = 1.24, 95%CI = 1.09–1.42, *p* = 0.002; CC vs CA + AA: OR = 1.38, 95%CI = 1.12–1.69, *p* = 0.002). In the control source stratification, three control genetic models from hospitals found an obvious correlation among the *MTHFR* A1298C polymorphism and increased stroke risk (C vs A: OR = 1.24, 95%CI = 1.08–1.42, *p* = 0.002; CC + CA vs AA: OR = 1.23, 95%CI = 1.06–1.44, *p* = 0.008; CC vs CA + AA: OR = 1.54, 95%CI = 1.28–1.86, *p* = 0.007). Finally, we stratified the case group according to whether the sample size was greater than or equal to 100. The study discovered that *MTHFR* A1298C polymorphism was obviously correlated with increased stroke risk under the three genetic models with a sample size of 100 or more (C vs A: OR =
Author	Year	Country	Type	Population	Source of control	Sample size	NOS score	HWE	
Akar et al	2001	Turkey	IS	Children	NR	46 68	13 27	6 53 39	31 32 5 94 42 7 0.399
Lin et al	2004	China	IS	Adults	HB	68 50	50 16 2 116 20	35 15 0	85 15 8 0.212
Linnebank et al	2005	Germany	IS	Adults	PB	159 159	80 65 14 225 93	73 64	22 210 108 8 0.196
Sun et al	2005	China	IS	Adults	NR	97 94	55 40 2 150 44	60 31 3	151 37 8 0.676
Komitopoulou et al	2006	Greece	IS	Children	HB	89 103	35 45 9 115 63	50 40	13 140 66 7 0.272
Sazci et al	2006	Turkey	IS	Adults	NR	92 259	36 37 19 109 75	130 108	21 368 150 8 0.828
Sazci et al	2006	Turkey	HS	Adults	NR	28 259	16 9 3 41 15	130 108	21 368 150 8 0.828
Dikmen et al	2006	Turkey	IS	Adults	NR	154 55	59 79 16 197 111	19 33	3 71 39 7 0.021
Dikmen et al	2006	Turkey	HS	Adults	NR	49 55	19 23 7 61 37	19 33	3 71 39 7 0.021
Zhang et al	2007	China	IS	Adults	NR	100 100	56 40 4 152 48	64 33	3 161 39 8 0.609
Sirachainan et al	2008	Thailand	IS	Children	HB	44 164	22 19 3 63 25	82 69	13 233 95 6 0.774
Biswas et al	2009	India	IS	Children	NR	58 58	38 14 6 90 26	50 7 1	107 9 8 0.232
Morita et al	2009	America	IS	Children	PB	23 90	17 6 0 40 6	41 36	13 118 62 6 0.278
Sawula et al	2009	Poland	IS	Adults	HB	128 59	53 57 18 163 93	26 22	11 74 44 7 0.119
Almawi et al	2009	Bahrain	MIXED	Adults	HB	118 120	50 38 30 138 98	54 60	6 168 72 6 0.037
Biswas et al	2009	India	IS	Adults	HB	120 120	80 31 9 191 49	90 24	6 204 36 7 0.018
Chen et al	2010	China	IS	Adults	HB	470 495	354 109 7 817 123	387 105	3 879 111 7 0.146
Han et al	2010	Korea	IS	Adults	HB	264 234	179 80 5 438 90	182 51	1 415 53 8 0.193
Giusti et al	2010	Italy	IS	Adults	HB	501 1211	248 197 56 693 309	572 529	110 1673 749 7 0.434
Hultdin et al	2011	Sweden	IS	Adults	NR	314 767	135 142 37 412 216	328 346	93 1002 532 7 0.905
Hultdin et al	2011	Sweden	HS	Adults	NR	59 767	29 29 1 87 31	328 346	93 1002 532 7 0.905
Arsene et al	2011	Bahrain	IS	Adults	HB	67 60	30 28 9 88 46	25 27	8 77 43 7 0.868
Zhang et al	2012	China	IS	Adults	HB	67 71	38 29 0 105 29	57 14	0 128 14 7 0.357
Xu et al	2012	China	MIXED	Adults	HB	70 50	7 41 22 55 85	12 30	8 54 46 8 0.142
Zhang et al	2012	China	IS	Adults	HB	40 40	27 12 1 66 14	33 7 0	73 7 8 0.544
Fekih-Mrissa et al	2013	Tunisia	IS	Adults	HB	84 100	58 15 11 131 37	93 7	0 193 7 7 0.717
Gelfand et al	2013	America	IS	Children	PB	13 84	4 7 2 15 11	39 41	4 119 49 8 0.097
Zhou et al	2014	China	IS	Adults	HB	542 654	333 174 35 840 244	448 182	24 1078 230 8 0.308
Balcerzyk et al	2015	Poland	IS	Children	NR	88 111	51 30 7 132 44	53 47	11 153 69 7 0.902
Lv et al	2015	China	IS	Adults	NR	199 241	31 97 71 159 239	71 110	60 252 230 8 0.186
Wei et al	2015	Malaysia	IS	Adults	NR	297 297	184 95 18 463 131	186 104	7 476 118 6 0.085
Author	Year	Country	Type	Population	Source of control	Sample size case	Sample size control	NOS	HWE
-----------------	------	---------	------	------------	-------------------	------------------	---------------------	-----	-----
Kamberi et al	2016	Albania	IS	Adults	PB	39 102	18 20 1 56 22 54 44 4 152	52 8 0.171	
Herak et al	2017	Croatia	IS	Children	HB	73 100	34 33 6 101 45 52 39 9 143	57 8 0.667	
Wang et al	2017	China	MIXED	Adults	NR	225 169	130 85 10 345 105 99 65 5 263	75 6 0.139	
Zhao et al	2017	China	IS	Adults	HB	130 100	98 32 0 228 32 68 32 0 168	32 8 0.057	
Hu et al	2017	China	IS	Adults	HB	181 169	106 67 8 279 83 99 65 5 263	75 8 0.139	
Abidi et al	2018	Morocco	HS	Adults	HB	113 323	64 46 3 174 52 186 120 17 492	154 8 0.678	
Hashemi et al	2019	Iran	IS	Adults	NR	106 157	72 31 3 175 37 120 32 5 272	42 8 0.131	
Xiong et al	2019	China	MIXED	Adults	HB	92 140	64 24 4 152 32 90 44 6 224	56 8 0.833	
Mazdeh et al	2020	Iran	IS	Children	HB	318 400	170 121 27 461 175 235 147 18 617	183 8 0.406	
1.16, 95%CI = 1.05–1.28, \(p = 0.003; \) CC + CA vs AA: OR = 1.14, 95%CI = 1.02–1.28, \(p = 0.020; \) CC vs CA + AA: OR = 1.46, 95%CI = 1.12–1.88, \(p = 0.004 \) (Fig. 2).

In order to evaluate the stability of this meta-analysis, the sensitivity analysis of this study excluded each included study one by one to compare the difference between the pooled OR before and after exclusion. The results of this analysis were very stable (Fig. 3). We used Begg’s funnel plot to estimate publication bias and found no publication in the three genetic models (C vs A: \(p = 0.742; \) CC + CA vs AA: \(p = 0.825; \) CC vs CA + AA: \(p = 0.138 \)) (Fig. 4).

Discussion

In recent years, there have been many studies on MTHFR A1298C polymorphism and stroke susceptibility [17, 19, 26–50]. In 2001, Akar et al. firstly found no association among MTHFR A1298C polymorphism and the ischemic stroke risk in Turkish children [51]. In 2004, the study by Lin et al. focused on adult ischemic stroke in China and found that the CC genotype and C allele frequency had no obvious difference between the cases and controls [52]. Biswas et al. [53] found that MTHFR 1298 A > C showed significant alleles and genotypes associated with disease phenotypes in the Indian child population. With increasing research among MTHFR A1298C polymorphism and stroke susceptibility, Lv et al. [12] performed a meta-analysis of MTHFR gene A1298C and stroke. In this meta-analysis, 13 studies with 1974 cases and 2660 controls were extracted to assess the potential correlation. Overall analysis indicated that MTHFR A1298C was significantly associated with the stroke risk only in the heterozygote comparison and in the dominant model. Zhang constructed a meta-analysis of MTHFR A1298C polymorphism and stroke risk in adults [13]. 15 researches with 2361 cases and 2653 controls were included in final meta-analysis. Comprehensive analysis results showed that the polymorphism of MTHFR gene A1298C was significantly correlated with adult stroke in allelic model, dominant, additive and recessive models. Because the two meta-analyses came from different populations and sample sizes are different, these studies have shown inconsistent results. Since 2014, there have been another 25 studies on MTHFR gene A1298C polymorphism and stroke. Therefore, we upgraded a meta-analysis of MTHFR gene A1298C polymorphism and stroke susceptibility.

This meta-analysis resolved the correlation among MTHFR A1298C polymorphism and stroke susceptibility. The comprehensive data of the study showed that MTHFR A1298C polymorphism was a probable risk factor for stroke in dominant model (CC + CA vs AA), recessive model (CC vs CA + AA) and allele model (C vs A). In stratified analysis based on race, study population, population, and source of control, the results showed consistent results. Comprehensive analysis results showed that the polymorphism of MTHFR gene A1298C was significantly correlated with stroke susceptibility in Chinese population, and the correlation was stronger in adults than in children. Therefore, the results of this meta-analysis provide new insights into the association between MTHFR A1298C polymorphism and stroke susceptibility.

Table 2: Pooled ORs and 95%CIs of the association between MTHFR A1298C polymorphism and stroke

Total and subgroups	Studies	CC + CA vs AA	CC vs CA + AA	C VS A								
	OR	95%CI	\(I^2 \)	\(P \)	OR	95%CI	\(I^2 \)	\(P \)	OR	95%CI	\(I^2 \)	\(P \)
Total	40	1.19 1.06–1.33	51.8%	<0.001	1.43 1.15–1.77	40.6%	<0.006	1.19 1.07–1.32	61.1%	<0.001		
Ethnicity												
Asian	22	1.28 1.17–1.47	40.9%	0.025	1.84 1.49–2.27	0.0%	0.057	1.29 1.16–1.44	36.8%	0.044		
Caucasian	16	0.99 0.85–1.17	29.2%	0.131	1.10 0.81–1.50	44.0%	0.031	1.01 0.88–1.16	48.0%	0.017		
African	2	2.38 0.43–13.19	91.6%	0.001	3.31 0.04–276.07	87.8%	0.004	2.63 0.33–20.97	95.2%	<0.001		
Population												
Child	9	1.20 0.85–1.69	58.9%	0.013	1.25 0.79–2.00	29.0%	0.187	1.15 0.86–1.54	66.1%	0.003		
Adult	31	1.19 1.06–1.34	51.1%	0.001	1.48 1.16–1.89	45.0%	0.005	1.18 1.07–1.32	60.9%	<0.001		
Stroke type												
IS	32	1.24 1.09–1.42	56.6%	<0.001	1.38 1.12–1.69	28.4%	0.076	1.22 1.09–1.37	63.0%	<0.001		
HS	4	0.89 0.67–1.18	0.0%	0.811	0.79 0.23–2.65	64.5%	0.037	0.88 0.70–1.10	0.0%	0.494		
MIXED	4	1.09 0.77–1.56	36.8%	<0.001	2.39 1.09–5.22	55.9%	0.078	1.27 0.91–1.78	60.2%	0.057		
Source of control												
HB	21	1.23 1.06–1.44	51.4%	0.011	1.54 1.28–1.86	40.9%	0.033	1.24 1.08–1.42	60.7%	<0.001		
PB	4	0.88 0.47–1.62	52.7%	0.003	0.61 0.33–1.11	39.5%	0.175	0.86 0.49–1.50	68.8%	0.022		
NR	15	1.19 0.98–1.44	57.9%	0.068	1.38 1.12–1.70	37.4%	0.071	1.18 1.01–1.39	59.2%	0.002		
Case size												
<100	21	1.28 1.00–1.65	61.3%	<0.001	1.36 0.92–2.01	36.9%	0.050	1.25 1.00–1.57	69.8%	<0.001		
\(\geq 100 \)	19	1.14 1.02–1.28	36.8%	0.055	1.46 1.12–1.88	47.5%	0.013	1.16 1.05–1.28	46.8%	0.013		
stroke type, source of controls population and sample size of cases, a significant association was discovered among MTHFR A1298C polymorphism and stroke in three genetic models of Asians. In Caucasian and African, MTHFR A1298C polymorphism was not significantly correlated with stroke. In stratified analysis according to study population, it was discovered that MTHFR A1298C polymorphism was obviously correlated with stroke in adults. But the correlation between MTHFR A1298C polymorphism and stroke in children lacked corresponding evidence. In stratified analysis of stroke
Fig. 4 Beggs's funnel plot for publication bias analysis. a is the model of CC + CA VS TT; b is the model of CC VS CA + AA; c is the model of C VS A.
types, the association among MTHFR A1298C polymorphism and stroke was found only in ischemic stroke. The stratified analysis of source of the control group showed that there was obvious correlation among MTHFR A1298C polymorphism and stroke in hospital study. The stratified analysis of the sample size showed that the correlation among MTHFR A1298C polymorphism and stroke was found only when the number of samples in the case group was greater than or equal to 100. The above analysis showed that the source of control group and the sample size of case group may be the influencing factors of the correlation study among MTHFR A1298C polymorphism and stroke. This was undiscovered in early meta-analysis. Although Kumar et al. [14] conducted a meta-analysis on association between A1298C polymorphism and risk of ischemic stroke. However, just 20 articles were included in this study, and some articles published in Chinese journal were not included in the analysis. The biological mechanism of the association between A1298C and stroke has not been confirmed. Study [54] indicated that MTHFR gene can encode MTHFR enzyme, which plays a key role in regulating cellular homocysteine (Hcy) and folate metabolism by catalyzing the conversion of 5,10-methylpentylenetetrahydrofolate to 5-methyltetrahydrofolate, and elevated homocysteine level in blood circulation is considered as an independent risk factor for cerebral, coronary and peripheral atherosclerosis [55].

This meta-analysis has several limitations. Our results show the genetic differences in ethnic differences and stroke risk, but the study only includes Asian, Caucasian and African populations, and there are few studies in African populations, and there are no corresponding studies for other ethnic populations. The occurrence of stroke is often caused by the interaction of genetic factors and environmental factors. This study is only conducted from the perspective of genetics without the influence of environmental exposure. In previous studies, especially in meta-analysis, the data was still insufficient. We have checked as many articles as possible, but many studies have omitted data, such as control sources and genetic testing methods.

In conclusion, we found obvious correlation among MTHFR A1298C and stroke risk in Asians, adults and ischemic strokes. However, for the Caucasian, African, children and hemorrhagic stroke, the risk of MTHFR A1298C could not be confirmed because of the relatively limited sample size. In addition, sample size of case group and source of control group would also have an impact on the results in the stratified analysis of this study. Therefore, in future research, we can explore more about the correlation among MTHFR A1298C and stroke in other races (except for Asian population), children, and hemorrhagic stroke.

Acknowledgements
We appreciate all the families and individuals who collaborated on this research.

Ethical Statement
Not applicable.

Authors’ contributions
Manuscript writing, editing and review were conducted by XD and GW. JW participated in the articles search; LW and YD performed data analysis and evaluation the quality of the selected studies. The author(s) read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Declarations
Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1. The Third department of Encephalopathy, Dongfang Hospital Beijing University of Chinese Medicine, No. 6, Area 1, Fangxing Garden Fangzhuang, Fengtai District, Beijing 100078, China. 2. Department of Neurology, Chinese PLA General Hospital, Beijing 100039, China.

Received: 14 April 2021 Accepted: 30 May 2021

Published online: 25 September 2021

References
1. Francis J, Raghunathan S, Khanna P. The role of genetics in stroke. Postgrad Med J. 2007;83(983):590–5.
2. Malik R, Dhigams M. Challenges and opportunities in stroke genetics. Cardiovasc Res. 2018;114(9):1226–40.
3. Bogiatzi C, Hackam DG, McLeod AJ, Spence JD. Secular trends in ischemic stroke subtypes and stroke risk factors. Stroke. 2014;45(11):3208–13.
4. Guzik A, Bushnell C. Stroke Epidemiology and Risk Factor Management. Continuum (Minneapolis, Minn). 2017;23(1, Cerebrovascular Disease):15–39.
5. Bagley PJ, Selhub J. A common mutation in the methylenetetrahydrofolate reductase gene is associated with an accumulation of formylated tetrahydrofolates in red blood cells. Proc Natl Acad Sci U S A. 1998;95(22):13217–20.
6. Stankova J, Lawrance AK, Rozen R. Methylenetetrahydrofolate reductase (MTHFR): a novel target for cancer therapy. Curr Pharm Des. 2008;14(11):1143–50.
7. Perales Dávila J, Martínez de Villarreal LE, Trina Saldaña H, Saldívar Rodríguez D, Barrera Saldaña H, Rojas Martínez a, et al. [folic acid levels, homocysteine and polymorphism of methylenetetrahydrofolate reductase enzyme (MTHFR) in patients with pre-eclampsia and eclampsia]. Ginecologia y Obstetricia de Mexico. 2001;69:6–11.
8. Pramukarso DT, Faradj SM, Sari S, Hadisaputro S. Association between methylenetetrahydrofolate reductase (MTHFR) polymorphism and carotid intima media thickness progression in post ischemic stroke patient. Ann Transl Med. 2015;3(21):324.
9. Song Y, Li B, Wang C, Wang P, Gao X, Liu G. Association between 5,10-Methylenetetrahydrofolate Reductase C677T gene polymorphism and risk of ischemic stroke: a Meta-analysis. J Stroke Cerebrovasc Dis. 2016;25(3):679–87.
10. Toffoli G, De Mattia E. Pharmacogenetic relevance of MTHFR polymorphisms. Pharmacogenomics. 2008;9(9):1195–206.
11. Zhao M, Wang X, He M, Qin X, Tang G, Hua Y, et al. Homocysteine and stroke risk: modifying effect of Methylenetetrahydrofolate Reductase C677T polymorphism and folic acid intervention. Stroke. 2017;48(3):1183–90.

12. Lv Q, Lu J, Wu W, Sun H, Zhang J. Association of the methylenetetrahydrofolate reductase gene A1298C polymorphism with stroke risk based on a meta-analysis. Genet. Molecular Res. 2013;12(4):8682–94.

13. Zhang MJ, Hu ZC, Yin YW, Li BH, Liu Y, Liao SQ, et al. A meta-analysis of the relationship between MTHFR gene A1298C polymorphism and the risk of adult stroke. Cerebrovascular Diseases (Basel, Switzerland). 2014;38(6):425–32.

14. Kumar A, Sharma R, Misra S, Nath M, Kumar P. Relationship between methylenetetrahydrofolate reductase (MTHFR) gene (A1298C) polymorphism with the risk of stroke: a systematic review and meta-analysis. Neurol. Res. 2020;42(1):19–33.

15. Sarecka-Hujar B, Kopyta I, Skrzypek M. Is the 1298A>C polymorphism in the Methylenetetrahydrofolate Reductase gene (MTHFR) gene polymorphism in pediatric stroke—case-control and family-based study. J Cerebrovasc Dis. 2020;29(1):138–45.

16. Abdol O, Haisam M, Nahli H, El Azhari A, Hilmi S, Barakat A. Methylenetetrahydrofolate Reductase Gene Polymorphisms (C677T and A1298C) and hemorrhagic stroke in Moroccan patients. J Stroke Cerebrovasc Dis. 2018;27(7):1837–43.

17. Hashemi SM, Ramroodi N, Amiri Fard H, Talebian S, Haghighi Rohani M, et al. Association of the methylenetetrahydrofolate reductase polymorphism with ischemic stroke in the eastern Chinese Han population. Genet Mol Res. 2015;14(2):4161–5.

18. Nazdek M, Khaeza M, Omran MD, Noroozi R, Komali A, Karimi M, et al. Association between methylene tetrahydrofolate reductase (MTHFR) gene polymorphism and ischemic stroke susceptibility in Albanians from the republic of Macedonia. Open Access Macedonian J Med Sci. 2016;4(4):556–64.

19. Lv QQ, Lu J, Sun H, Zhang JS. Association of methylenetetrahydrofolate reductase (MTHFR) gene polymorphism with ischemic stroke in the eastern Chinese Han population. J Cerebrovasc Dis. 2018;27(7):1837–43.

20. Liu H, Hu Y. [Hardy-Weinberg equilibrium in genetic epidemiology]. Zhong nan da xue xue bao Yi yi xue ban. 2010;35(1):90–3.

21. Higgins JP, Thompson Sc. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002;21(11):1539–58.

22. Zintzaras E, Lau J. Synthesis of genetic association studies for pertinent gene-disease associations requires appropriate methodological and statistical approaches. (B89–4356 (Print)).

23. Irwig L, Macaskill P, Berry G, Glasziou P. Bias in meta-analysis detected by a simple, graphical test. Graphical test is itself biased. BMJ (Clinical research and practice). 1994;308(6930):1049–51.

24. Zintzaras E, Lau J. Synthesis of genetic association studies for pertinent gene-disease associations requires appropriate methodological and statistical approaches. (B89–4356 (Print)).

25. Han IB, Kim OJ, Ahn JY, Oh D, Hong SP, Huh R, et al. Association of methylenetetrahydrofolate reductase (MTHFR 677C>T and 1298A>C) polymorphisms and haplotypes with silent brain infarction and homocysteine levels in a Korean population. Yonsei Med J. 2010;51(2):253–60.

26. Hultdin J, Van Gulpen B, Winkvist A, Hallmans G, Weinehall L, Stengbäjr M, et al. Prospective study of first stroke in relation to plasma homocysteine and MTHFR 677C>T and 1298A>C genotypes and haplotypes - evidence for an association with hemorrhagic stroke. Clin Chem Lab Med. 2011;49(9):1555–62.

27. Komitopoulou A, Platokouki H, Kapsimali Z, Pergantou H, Adamtziki E, et al. Associations between MTHFR, MTR and MTRR gene polymorphisms and silent brain infarctions among Malay patients with ischemic stroke. J Stroke Cerebrovasc Dis. 2015;24(9):1527–32.

28. Sawula W, Banecka-Majkutewicz Z, Kadziński L, Jakóbkiewicz-Banecka J, Węgrzyń G, Nika W, et al. Homocysteine level and metabolism in ischemic stroke in the population of northern Poland. Clin Biochem. 2009;42(6):442–7.

29. Sazci A, Ergul E, Tuncer N, Akpinar G, Kara I. Methylenetetrahydrofolate reductase gene polymorphisms are associated with ischemic and hemorrhagic stroke: dual effect of MTHFR polymorphisms C677T and A1298C. Brain Res Bull. 2007;71(1–3):45–50.

30. Wei LK, Au A, Menon S, Gan SH, Griffiths LR. Clinical relevance of MTHFR, eNOS, ACE, and ApoE gene polymorphisms and serum vitamin profile among Malay patients with ischemic stroke. J Cerebrovasc Dis. 2015;24(9):17–25.

31. Zhou BS, Bu GY, Li M, Chang BG, Zhou YP. Tagging SNPs in the MTHFR gene and risk of ischemic stroke in a Chinese population. Int J Mol Sci. 2014;15(5):8931–40.

32. Chen F, Feng Q, Zhang H. Study on correlation between the MTHFR A1298C polymorphisms and ischemic cerebrovascular disease. Chin J Prac Neurological Diseases. 2010;15(1):8–14.

33. Hu Y, Hou L, Ji F, Pan H. The analysis of polymorphism relationship of MTHFR gene and ischemic stroke in Jiamusi. Heilongjiang Med Pharm. 2017;40(1):89–91.

34. Wang C, Yu L, Ji F, Lei L. Analysis of the frequency of MTHFR gene polymorphism in stroke patients in eastern Heilongjiang. Heilongjiang Med Sci. 2017;40(4):48–50.

35. Xiong X, Tan X, Feng Y, Yang Z, Li R, Tian X. Single nucleotide polymorphisms of MTHFR and MTRR67 genes in stroke patients of Tujia nationality and their relationship with serum homocysteine levels. Shandong Pharmaceutical. 2019;59(09):19–22.

36. Xu Q, Study on the correlation between TCMI syndrome differentiation of stroke and MTHFR polymorphism [master]: Hubei University of Chinese Medicine; 2012.

37. Zhang L, Bo S, Zhang J, Nan G. Correlation between N_5,N_(10)-methylenetetrahydrofolate reductase (MTHFR) A1298C gene mutation and young ischemic stroke. Jilin Medicine 2007(07):877–878.

38. Zhang J, Guo X, Bi Q. Correlation between polymorphism of methylenetetrahydrofolate reductase gene and plasma homocysteine level and acute ischemic stroke in youth. Chin Stroke J. 2012;7(04):271–7.

39. Zhao J, Zhang D, Wang H. Study on the relationship between polymorphism of methylenetetrahydrofolate reductase gene and ischemic stroke. Laboratory Med Clin. 2017;14(13):1847–50.

40. Gelfand AA, Croen LA, Torres AR, Wu WY. Genetic risk factors for perinatal arterial ischemic stroke. Pediatr Neurol. 2013;48(1):36–41.

41. Akar N, Akar E, Ozel D, Dedia G, Sipahi T. Common mutations at the MTHFR gene in patients with acute stroke. J Stroke Cerebrovasc Dis. 2009;18(5):407–8.

42. Balcerzyk A, Nieriem P, Kopyta I, Emich-Widera E, Pilara E, Pienczkowicz-Jedrzejowicz K, et al. Methylenetetrahydrofolate reductase gene A1298C polymorphism in pediatric stroke—case-control and family-based study. J Stroke Cerebrovasc Dis. 2015;24(1):161–5.

43. Biswas A, Ranjan R, Meena A, Akhter MS, Yadav BK, Munisamy M, et al. Homocysteine levels, polymorphisms and the risk of ischemic stroke in young Asian Indians. J Stroke Cerebrovasc Dis. 2009;18(2):103–10.

44. Coen Herak D, Leniczek Klzsa J, Radić Antolic M, Horvat I, Djuvanovic V, Zeković Topić R, et al. Association of Polymorphisms in coagulation factor genes and enzymes of Homocysteine metabolism with arterial ischemic stroke in children. Clin Appl Thrombosis/Thromostasis. 2017;23(8):1042–51.

45. Dilkmen M, Ozbalik Bal D, Gunes HV, Degirmenci I, Bal C, Ozdemir G, et al. Acute stroke in relation to homocysteine and methylenetetrahydrofolate reductase gene polymorphisms. Acta Neurol Scand. 2006;113(5):307–14.

46. Fekih-Missa N, Mraid M, Kla S, Mansour M, Nolid B, Griti N, et al. Methylenetetrahydrofolate reductase gene polymorphisms (C677T and A1298C) polymorphisms, hyperhomocysteinaemia, and ischemic stroke in Tunisian patients. J Stroke Cerebrovasc Dis. 2013;22(4):465–9.

47. Giusti B, Saracini C, Boll P, Mag A, Martinelli I, Peyvandi F, et al. Early-onset ischaemic stroke: analysis of 58 polymorphisms in 17 genes involved in methionine metabolism. Thromb Haemost. 2010;104(2):231–42.
54. Toyoda K, Uwatoko T, Shimada T, et al. Recurrent small-artery disease in hyperhomocysteinemia: widowers' stroke syndrome? Intern Med Tokyo Jpn. 2004;43(9):869–72.

55. Ueland PM, Refsum H. Plasma homocysteine, a risk factor for vascular disease: plasma levels in health, disease, and drug therapy. J Lab Clin Med. 1989;114(5):473–501.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.