Calsequestrin undergoes dynamic polymerization with increasing calcium concentration by front-to-front dimerization and back-to-back packing, forming wire-shaped structures. A recent finding that point mutation R33Q leads to lethal catecholaminergic polymorphic ventricular tachycardia (CPVT) implies a crucial role for the N terminus. In this study, we demonstrate that this mutation resides in a highly conserved alternately charged residue cluster (DGKDR; cluster 1) in the N-terminal end of calsequestrin. We further show that this cluster configures itself as a ring system and that the dipolar arrangement within the cluster brings about a critical conformational flip of Lys31-Asp32 essential for dimer stabilization by formation of a H-bond network. We additionally show that Ca\(^{2+}\)-induced calsequestrin aggregation is nonlinear and reversible and can regain the native conformation by Ca\(^{2+}\) chelation with EGTA. This study suggests that cluster 1 works as a molecular switch providing new mechanistic insight into the functional effects of the R33Q mutation and its potential role in CPVT.

Cardiac muscle contraction is initiated by release of Ca\(^{2+}\) from the sarcoplasmic reticulum (SR).\(^1\) The reuptake of Ca\(^{2+}\) by the sarco/endorplasmic reticulum Ca\(^{2+}\)-ATPase pump into the SR results in muscle relaxation and restoration of the store (1). This reuptake is facilitated by buffering of Ca\(^{2+}\) inside the SR so that free [Ca\(^{2+}\)] is maintained at a low level, allowing sarco/endoplasmic reticulum Ca\(^{2+}\)-ATPase-mediated Ca\(^{2+}\) uptake against a gradient (2–4). Ca\(^{2+}\) buffering inside the SR lumen is accomplished mainly by a high capacity (40–50 Ca\(^{2+}\) ions/molecule), moderate affinity Ca\(^{2+}\)-binding protein called calsequestrin (CASQ2, the cardiac isoform) (5, 6). Because of CASQ2, the concentration of total stored Ca\(^{2+}\) can reach up to 20 mM, whereas free [Ca\(^{2+}\)] remains at ~1 mM (7). CASQ2 interacts with the ryanodine receptor via the junctional SR proteins triadin and junctin, keeping high concentrations of Ca\(^{2+}\) close to the site of release, and also modulates the gating behavior of the ryanodine receptor (8–13).

Electron microscopic studies indicate that CASQ2 molecules are packaged as long wires beneath the junctional face of the SR of cardiac myocytes (14, 15). Based on crystal structures, it has been suggested that CASQ2 undergoes polymerization first by front-to-front dimerization and that two such dimers establish back-to-back contact, making a tetramer (11, 16–18). In this way, a long chain of highly ordered linear polymer is expected to be formed as the Ca\(^{2+}\) concentration continues to increase, resembling the wire-shaped structures observed by electron microscopy. It has also been suggested that CASQ polymers can depolymerize when free [Ca\(^{2+}\)] is lowered, although the exact molecular mechanism fast enough to be physiologically relevant is not known (18–23). Each CASQ monomer is a mixed α-β protein composed of three domains formed by five β-strands sandwiched by four α-helices (11, 17). Each domain consists of a hydrophobic core with the acidic residues on the surface. This makes the surface electrostatic potential highly electronegative, and it can be neutralized only by cations (17).

The role of CASQ2 in Ca\(^{2+}\) release has gained further attention due to the finding that mutations in or absence of CASQ2 causes catecholaminergic polymorphic ventricular tachycardia (CPVT) in humans (13, 24–28). CPVT is a familial arrhythmogenic disorder characterized by episodes of syncope and sudden death primarily by exposure to emotional or physical stress in the absence of structural alterations of the heart. Both in vitro and in vivo studies have attempted to define the causative mechanism for the reported arrhythmia with limited success. Among the CPVT mutations, R33Q (corresponds to R14Q in the extended N-terminal arm, which is inserted into the partner monomer in the crystal structure. In this case, a
neutral residue, glutamine, replaces the completely conserved and strongly basic Arg³³ residue. Recent studies by Terentyev et al. (29) suggested that the R33Q mutation has lost the ability to inhibit ryanodine receptor-2, but other studies (16, 30, 31) showed that the R33Q mutation modifies its ability to sense Ca²⁺ and Ca²⁺-buffering capacity. However, the molecular basis of how the mutation affects CASQ2 polymerization is not understood.

Our hypothesis is that the charged amino acid clusters at the N terminus are important for front-to-front dimerization and that mutations which disrupt this charge pattern would impede CASQ2 polymerization. Therefore, the major goal of this study was to determine the role of charged clusters in the N-terminal region. We specifically studied how the CPVT mutation R33Q affects CASQ2 function/polymerization. We demonstrate that an alternately charged residue cluster works as a molecular switch and governs the bidirectional transition between CASQ2 monomer and dimer. Our study further shows that the CPVT mutation R33Q impairs Ca²⁺-CASQ2 interaction, leading to altered polymerization-depolymerization dynamics.

EXPERIMENTAL PROCEDURES

Multiple Alignment of Calsequestrin from Different Organisms—Protein-protein BLAST was performed using the NCBI Database (www.ncbi.nlm.nih.gov/BLAST) using the rat CASQ2 sequence as the template. Sequences from vertebrates with e-values <6 × e⁻¹⁰⁶ were selected. Multiple sequence alignment was performed with ClustalW 2.0.11 using the EMBL-EBI Database (www.ebi.ac.uk/clustalw) together with the skeletal CASQ (CASQ1) isoform of mouse and human and CASQ from Ciona intestinalis (sea squirt) and Caenorhabditis elegans. In mouse CASQ2, the first 19 residues act as a signal sequence, and thus, in the mature protein, the first amino acid starts from amino acid 20 of the immature protein.

Mutagenesis and Purification of Mutant CASQ2—Rat wild-type (WT) CASQ2 was cloned into the pET21a vector (Novagen) between NdeI and XhoI restriction sites. The CASQ2 proteins were subjected to proteolysis by L-1-tosyl-amido-2-phenylethyl chloromethyl ketone-treated trypsin (New England Biolabs) in 50 mM Tris-HCl (pH 8.0) at 25 °C. The reactions were performed in the absence and presence of various concentration of CaCl₂ (1–5 mM). Proteins were incubated in the reaction buffers for 20 min at 25 °C in a reaction volume of 200 μl before trypsin was added at a protease/CASQ2 ratio of 1:100 (w/w). The digestion was limited to 30 min, and the samples were quickly mixed with Laemmli sample buffer (Bio-Rad) and heated at 99 °C for 2 min. Equal amounts of protein from each sample were loaded and analyzed on a 12% SDS-polyacrylamide gel. The gels were stained with Coomassie Brilliant Blue R-250 staining solution (Bio-Rad), destained, and imaged.

Turbidimetric Measurements—Ca²⁺-induced aggregation of CASQ2 proteins was monitored in 50 mM Tris-HCl (pH 7.5) containing 20 mM NaCl by adding aliquots (2–10 μl) of CaCl₂ stock solutions (0.1–2M) to a solution of 2.5 μM CASQ2 at 25 ± 1 °C using a Genesyx spectrophotometer. Ca²⁺ chelator was not added; therefore, low levels of Ca²⁺ might be present at the starting point. After Ca²⁺ addition, protein samples were incubated to equilibrate for 5 min, and then absorbance was recorded at 350 and 600 nm. The absorbance of samples was corrected by subtracting the absorbance of buffer alone at the same calcium concentration. For experiments involving EGTA-mediated chelation, WT CASQ and cluster 1 mutants were treated with 8 mM CaCl₂ at 50% of CASQ2 protein from precipitation (i.e. EC₅₀ of Ca²⁺-induced aggregation) was calculated. 2–10 μl of each sample was centrifuged at 20,000 × g for 1 h, and the soluble fraction was estimated for protein concentration using Bradford reagent as described above. From the protein quantity, the percentage of Ca²⁺-induced precipitation of CASQ2 was calculated and plotted against Ca²⁺ concentration. The concentration of CaCl₂ at which 50% of CASQ2 protein had undergone precipitation (i.e. EC₅₀ of Ca²⁺-induced aggregation) was calculated. 2–10 μl of EGTA (0.1–0.5 M) was added to the aggregated solution aliquots and allowed to equilibrate for 5 min, and the percentage of protein still in precipitation was calculated as described above. The concentration of EGTA necessary to resolubilize 50% of CASQ2 protein from precipitation (i.e. EC₅₀ of EGTA-mediated resolubilization) was calculated.

Molecular Dynamics—The molecular dynamics studies were conducted (Schrödinger Inc., New York) to examine
the effect of charge alteration in cluster 1 of CASQ2 using the
crystal structures of the monomer form (Protein Data Bank
code 2VAF) and dimer form (code 1SIJ) of CASQ2. Generally,
the crystal structures have missing residues and lack hydrogen
atoms; therefore, the crystal structures were improved to cor-
correct such discrepancies using the Protein Preparation module
of the Schro¨dinger Suite and further manually verified employ-
ing the Builder module of Maestro. The corrected dimer struc-
ture was subjected to molecular dynamics simulation with the
OPLS2005 force field in the presence of the GB/SA continuum
water model. The dynamics simulations were carried out by
heating the system to 300 K with 10-ps equilibration time. The
production dynamics simulations were carried out for 500 ps
with a step size of 1.5 fs at 300 K. A shake algorithm was used to
constrain covalent bonds to hydrogen atoms. The five residues
(DGKDR) of chain A of the dimer were selected to define the
15-Å radius for total freedom for residue movement. The next
5-Å circular selections were used for harmonic constraints of
100 newtons and beyond that provided a frozen parameter. The
stable structure from dynamics was further subjected to global
minimization using the OPLS force field until the iteration
number reached 5000 or the energy difference between two
consecutive iterations became

\[\frac{\text{energy difference}}{\text{iteration}} \leq 0.05 \text{ kJ/mol}. \]

Cluster 1 mutants were generated using the Mutate command of the Builder mod-
ule of Maestro and were subjected to minimization as described
above for further structural analysis and interpretation.

RESULTS

CPVT Mutation R33Q Resides in a Highly Conserved
Charged Cluster—Multiple alignment of the N-terminal
region of CASQ revealed that the N-terminal end of CASQ2
is highly conserved among various mammals (Fig. 1A). Of

![FIGURE 1. The N terminus of CASQ is highly conserved and involved in protein folding. A, multiple sequence alignment of the N terminus. Identical residues in the alignment are indicated by white letters in red boxes, similar residues are shown as gray letters in cyan boxes, and a blue frame indicates similarity across groups. The alternately charged residue clusters 1 (DGKDR) and 2 (EKNLK) are labeled. The CPVT-related residue Arg33 is located in cluster 1. The accession numbers for each sequence and the complete alignment are provided in the legend to supplemental Fig. S1. B, superposition of the monomer and dimer forms of CASQ2. One of the major structural differences can be seen in the N terminus. The loop formed by cluster 1 (DGKDR) is highlighted by a black rectangle. C, far-UV CD spectra of different N-terminal deletion mutants. Deletion mutants Δ10CASQ2 and Δ20CASQ2 failed to fold, but mutant Δ5CASQ2 could fold to a conformation equivalent to that of the WT protein. mdeg, millidegrees.

VOLUME 285 • NUMBER 22 • MAY 28, 2010

17190 JOURNAL OF BIOLOGICAL CHEMISTRY

R33Q Impairs Calsequestrin Polymerization Dynamics
R33Q Impairs Calsequestrin Polymerization Dynamics

The N-terminal End Is Required for Proper Folding of CASQ2—The major goal of this study was to determine the role of the extended N-terminal end in the proper folding of CASQ2. In addition, the presence of a CPVT mutant R33Q is also part of cluster 1. These two clusters were selected for further analysis by charge neutralization mutagenesis and biophysical-biochemical methods to validate the significance of the N-terminal end in protein folding and Ca2+-induced structural changes. The complete alignment is shown in supplemental Fig. S1.

The N-terminal Deletions and Point Mutants Listed in Table 1 Were Generated and Purified. However, We were not able to overexpress Δ15CASQ2, and this mutant could not be purified. We employed CD spectroscopy to investigate the molecular folding pattern. The shorter deletion Δ5CASQ2 showed CD spectra that overlapped with those of the WT CASQ2 protein. On the other hand, the spectra of mutants Δ10CASQ2 and Δ20CASQ2 showed that deletion of the N-terminal residues had a significant effect on the ellipticity/protein conformation. Deletion of the first 20 residues (Δ20CASQ2) had a drastic effect on protein folding, whereas mutant Δ10CASQ2 showed a modest reduction in ellipticity compared with WT CASQ2 (Fig. 1C). The spectra of the point mutants (R33Q, K31A-R33A, D29A-D32A, E39A, and K40A-K43A) closely resembled those of the WT CASQ2 protein, indicating that the point mutations do not affect protein folding at the single-molecule level (supplemental Fig. S2).

Table 1

Mutation	Primer sequence
R33QFP	5′-CAAGTGCTACCCCTTCTGAGAGA-3′
R33QRP	5′-CCCTCCGAGAACGCACTGACTGTTGAGA-3′
D29A-D32AFP	5′-CAGTTCCGAGAACGCACTGACTGTTGAGA-3′
D29A-D32ARP	5′-CTGAGGAACTGCTCTCCCAACACTGACTGTTGAGA-3′
K31A-R33AFP	5′-CAGTTCCGAGAACGCACTGACTGTTGAGA-3′
K31A-R33ARP	5′-CAGTTCCGAGAACGCACTGACTGTTGAGA-3′
E39AFP	5′-CAAGTGCTACCCCTTCTGAGAGA-3′
E39ARP	5′-CAAGTGCTACCCCTTCTGAGAGA-3′
K40A-K43AFP	5′-CAAGTGCTACCCCTTCTGAGAGA-3′
K40A-K43ARP	5′-CAAGTGCTACCCCTTCTGAGAGA-3′
Δ5CASQ2FP	5′-CAAGTGCTACCCCTTCTGAGAGA-3′
Δ5CASQ2RP	5′-CAAGTGCTACCCCTTCTGAGAGA-3′
Δ10CASQ2FP	5′-CAAGTGCTACCCCTTCTGAGAGA-3′
Δ15CASQ2FP	5′-CAAGTGCTACCCCTTCTGAGAGA-3′
Δ20CASQ2FP	5′-CAAGTGCTACCCCTTCTGAGAGA-3′
CASQRP	5′-CAAGTGCTACCCCTTCTGAGAGA-3′

Calcium-induced Polymerization Is Impaired if the N-terminal Charged Cluster Is Altered—We employed CD spectroscopy, turbidimetric assay, and partial trypsinization to address how alteration of N-terminal charged clusters affects protein structure and function, including Ca2+-induced aggregation. First, Ca2+-induced aggregation of WT and mutant proteins was analyzed by CD spectroscopy. In the presence of 5 mM CaCl2, cluster 1 mutants R33Q, K31A-R33A, and D29A-D32A showed significantly different CD spectra with the least ellipticity, and the negative maxima around 208 nm were completely lost (Fig. 2B and supplemental Fig. S4). The CD spectral ellipticity for double mutant K40A-K43A in cluster 2 was intermediate; however, single mutant E39A in cluster 2 showed similar CD spectra compared with the WT protein (Fig. 2C) in the presence of CaCl2. After Ca2+-induced aggregation, the solution was subjected to chelation with EGTA. Interestingly, the WT protein regained its secondary structural content similar to its native conformation upon Ca2+ chelation by EGTA at ~3 mM; however, the R33Q mutant could not regain CD ellipticity comparable with the native conformation even up to ~5 mM EGTA (Fig. 2D). Point mutations E39A and K40A-K43A could regain their native conformation, but the K31A-R33A and D29A-D32A mutants failed to regain the native conformation upon Ca2+ chelation (supplemental Fig. S4).

The effect of N-terminal mutation on Ca2+-induced CASQ2 aggregation was further investigated by turbidimetry. As shown in Fig. 3 (A and B), the WT protein became aggregated very rapidly and reached the highest achievable aggregation with 2.5 and 3.0 mM CaCl2, as measured by absorbance at 350 and 600 nm, respectively. 50% precipitation was achieved with 2.42 mM CaCl2 (Fig. 3C). In contrast, the least amounts of Ca2+ required for maximum aggregation of R33Q, K31A-R33A, and D29A-D32A (at 350 and 600 nm) were found to be 6.2, 7.1, and 5.7 mM and 6.4, 7.4, and 6.1 mM, respectively. 50% precipitation (EC50) for R33Q, K31A-R33A, and D29A-D32A was achieved at the first 40 residues, 36 amino acids are strictly conserved. The degree of conservation of residues decreased when sequences from other vertebrates were included in alignment. When vertebrate CASQ2 sequences were aligned, we found two alternately charged residue clusters (cluster 1, amino acids 29–33 (DGKDR); and cluster 2, amino acids 39–43 (EKNLK)) in the N-terminal domain that are involved in CASQ dimerization by insertion into the partner molecule and domain swapping. However, cluster 1 at amino acids 29–33 is evolutionarily much more conserved than cluster 2 and is even present in the skeletal CASQ1 isofrom of mouse and man. It is also found in calsequestrin sequences of sea squirt and C. elegans. Interestingly, CPVT mutant R33Q is also part of cluster 1. These two clusters were selected for further analysis by charge neutralization mutagenesis and biophysical-biochemical methods to validate the significance of the N-terminal end in protein folding and Ca2+-induced structural changes. The complete alignment is shown in supplemental Fig. S1.

Calcium-induced Polymerization Is Impaired if the N-terminal Charged Cluster Is Altered—We employed CD spectroscopy, turbidimetric assay, and partial trypsinization to address how alteration of N-terminal charged clusters affects protein structure and function, including Ca2+-induced aggregation. First, Ca2+-induced aggregation of WT and mutant proteins was analyzed by CD spectroscopy. In the presence of 5 mM CaCl2, cluster 1 mutants R33Q, K31A-R33A, and D29A-D32A showed significantly different CD spectra with the least ellipticity, and the negative maxima around 208 nm were completely lost (Fig. 2B and supplemental Fig. S4). The CD spectral ellipticity for double mutant K40A-K43A in cluster 2 was intermediate; however, single mutant E39A in cluster 2 showed similar CD spectra compared with the WT protein (Fig. 2C) in the presence of CaCl2. After Ca2+-induced aggregation, the solution was subjected to chelation with EGTA. Interestingly, the WT protein regained its secondary structural content similar to its native conformation upon Ca2+ chelation by EGTA at ~3 mM; however, the R33Q mutant could not regain CD ellipticity comparable with the native conformation even up to ~5 mM EGTA (Fig. 2D). Point mutations E39A and K40A-K43A could regain their native conformation, but the K31A-R33A and D29A-D32A mutants failed to regain the native conformation upon Ca2+ chelation (supplemental Fig. S4).
higher Ca\(^{2+}\) concentrations of 5.3, 5.9, and 4.11 mM, respectively. A closer visual examination revealed that the aggregates formed by the WT protein were needle-shaped crystalline structures as observed by others, whereas the R33Q mutant produced flake-shaped irregular structures (33, 34). Similarly irregular aggregates were observed for K31A-R33A, D29A-D31A, Δ10CASQ2, and Δ20CASQ2, whereas other mutants formed aggregates like the WT protein. When CASQ aggregate was subjected to Ca\(^{2+}\) chelation by EGTA, the WT protein became solubilized with a very low concentration of EGTA, whereas the cluster 1 mutant proteins required higher EGTA for resolubilization (Fig. 3D and supplemental Fig. S5). The EC\(_{50}\) values of Ca\(^{2+}\)-induced aggregation and EGTA-mediated chelation are shown in Table 2.

Limited Proteolysis Shows That Mutations in Cluster 1 Affect CASQ Polymerization—CASQ2 becomes highly resistant to trypsin upon Ca\(^{2+}\) binding; therefore, we determined the behavior of cluster 1 mutants upon partial digestion with trypsin. Interestingly, the patterns of tryptic fragments generated from the R33Q, K31A-R33A, and D29A-D32A mutants were different from that of the WT protein even in the absence of Ca\(^{2+}\), but they resembled each other in being highly sensitive to trypsin digestion, unlike the WT protein (Fig. 4, A and B). The differences in the tryptic fragments are highlighted by arrows. R33Q and K31A-R33A did not gain resistance to trypsinization at 1 mM CaCl\(_2\), although D29A-D32A became mildly resistant. At 2 mM CaCl\(_2\), R33Q and K31A-R33A started to gain some resistance, and D29A-D32A became more protected. However, at high Ca\(^{2+}\) concentrations (5–10 mM), all three mutants became significantly protected from trypsin digestion.

Dynamic Dimerization Is Dependent on the Integrity of the Charge Pattern of Cluster 1—To further understand the role of cluster 1, we employed molecular dynamics simulation using three-dimensional coordinates of the CASQ2 structure. As shown in Fig. 1B, the highly conserved cluster 1 forms a loop. Further analysis revealed that the loop is stabilized by an intra-chain H-bond between CPVT Arg\(^{33}\) and Asp\(^{29}\), giving the cluster 1 a conformation of a ring system. The location of the ring system in the dimer is shown in Fig. 5A. Detailed structural
Cluster 1 mutants required higher EGTA concentrations to become resolubilized. For EGTA-mediated chelation, the WT protein and cluster 1 mutants were first aggregated with 8 mM CaCl\(_2\). The replot of aggregation—disaggregation of each of the cluster 1 mutants is shown in supplemental Fig. S5.

The N-terminal End Is Crucial for Protein Folding and Polymerization—It was suggested that the front-to-front dimer formation and stabilization may involve arm exchange and domain swapping involving the extended N-terminal end (16). Therefore, we investigated whether the extended N-terminal end is vital for CASQ2 folding. Interestingly, we found that N-terminal deletion mutants Δ10CASQ2 and Δ20CASQ2 cannot fold properly, indicating that the N-terminal end is required for correct folding of CASQ2. We predicted that the alternating charged clusters 1 (DGKDR) and 2 (EKNLK) might be involved in Ca\(^{2+}\)-induced polymerization. Results showing that Δ5CASQ2 can fold and polymerize like the WT protein and that Δ10CASQ2 disrupts the charge pattern of the cluster.

The N-terminal End Is Crucial for Protein Folding and Polymerization—It was suggested that the front-to-front dimer formation and stabilization may involve arm exchange and domain swapping involving the extended N-terminal end (16). Therefore, we investigated whether the extended N-terminal end is vital for CASQ2 folding. Interestingly, we found that N-terminal deletion mutants Δ10CASQ2 and Δ20CASQ2 cannot fold properly, indicating that the N-terminal end is required for correct folding of CASQ2. We predicted that the alternating charged clusters 1 (DGKDR) and 2 (EKNLK) might be involved in Ca\(^{2+}\)-induced polymerization. Results showing that Δ5CASQ2 can fold and polymerize like the WT protein and that Δ10CASQ2 disrupts the charge pattern of the cluster.

discussion

Structural studies suggested that, upon Ca\(^{2+}\) binding, CASQ2 undergoes linear polymerization first by front-to-front dimerization and then by back-to-back packaging, generating needle-shaped polymers (11, 19). Although it was suggested that Ca\(^{2+}\)-induced polymerization is nonlinear and might be reversible (17, 20, 35), the exact mechanism controlling the nonlinear polymerization-depolymerization in nanoseconds is not known. On the other hand, recent studies have indicated that the front-to-front dimer is the key step in overall CASQ2 function (16, 17). We hypothesized that the N-terminal end might be involved in dimer formation and stabilization. Therefore, the major goal of this study was to define the role of structural elements in the N-terminal end in dynamic polymerization. Our structural and computational studies revealed that the highly conserved alternately charged cluster (DGKDR) is the key for polymerization dynamics and that mutation R33Q disrupts the charge pattern of the cluster.

The N-terminal End Is Crucial for Protein Folding and Polymerization—It was suggested that the front-to-front dimer formation and stabilization may involve arm exchange and domain swapping involving the extended N-terminal end (16). Therefore, we investigated whether the extended N-terminal end is vital for CASQ2 folding. Interestingly, we found that N-terminal deletion mutants Δ10CASQ2 and Δ20CASQ2 cannot fold properly, indicating that the N-terminal end is required for correct folding of CASQ2. We predicted that the alternating charged clusters 1 (DGKDR) and 2 (EKNLK) might be involved in Ca\(^{2+}\)-induced polymerization. Results showing that Δ5CASQ2 can fold and polymerize like the WT protein and that Δ10CASQ2 disrupts the charge pattern of the cluster.

The N-terminal End Is Crucial for Protein Folding and Polymerization—It was suggested that the front-to-front dimer formation and stabilization may involve arm exchange and domain swapping involving the extended N-terminal end (16). Therefore, we investigated whether the extended N-terminal end is vital for CASQ2 folding. Interestingly, we found that N-terminal deletion mutants Δ10CASQ2 and Δ20CASQ2 cannot fold properly, indicating that the N-terminal end is required for correct folding of CASQ2. We predicted that the alternating charged clusters 1 (DGKDR) and 2 (EKNLK) might be involved in Ca\(^{2+}\)-induced polymerization. Results showing that Δ5CASQ2 can fold and polymerize like the WT protein and that Δ10CASQ2 disrupts the charge pattern of the cluster.

The N-terminal End Is Crucial for Protein Folding and Polymerization—It was suggested that the front-to-front dimer formation and stabilization may involve arm exchange and domain swapping involving the extended N-terminal end (16). Therefore, we investigated whether the extended N-terminal end is vital for CASQ2 folding. Interestingly, we found that N-terminal deletion mutants Δ10CASQ2 and Δ20CASQ2 cannot fold properly, indicating that the N-terminal end is required for correct folding of CASQ2. We predicted that the alternating charged clusters 1 (DGKDR) and 2 (EKNLK) might be involved in Ca\(^{2+}\)-induced polymerization. Results showing that Δ5CASQ2 can fold and polymerize like the WT protein and that Δ10CASQ2 disrupts the charge pattern of the cluster.

The N-terminal End Is Crucial for Protein Folding and Polymerization—It was suggested that the front-to-front dimer formation and stabilization may involve arm exchange and domain swapping involving the extended N-terminal end (16). Therefore, we investigated whether the extended N-terminal end is vital for CASQ2 folding. Interestingly, we found that N-terminal deletion mutants Δ10CASQ2 and Δ20CASQ2 cannot fold properly, indicating that the N-terminal end is required for correct folding of CASQ2. We predicted that the alternating charged clusters 1 (DGKDR) and 2 (EKNLK) might be involved in Ca\(^{2+}\)-induced polymerization. Results showing that Δ5CASQ2 can fold and polymerize like the WT protein and that Δ10CASQ2 disrupts the charge pattern of the cluster.

The N-terminal End Is Crucial for Protein Folding and Polymerization—It was suggested that the front-to-front dimer formation and stabilization may involve arm exchange and domain swapping involving the extended N-terminal end (16). Therefore, we investigated whether the extended N-terminal end is vital for CASQ2 folding. Interestingly, we found that N-terminal deletion mutants Δ10CASQ2 and Δ20CASQ2 cannot fold properly, indicating that the N-terminal end is required for correct folding of CASQ2. We predicted that the alternating charged clusters 1 (DGKDR) and 2 (EKNLK) might be involved in Ca\(^{2+}\)-induced polymerization. Results showing that Δ5CASQ2 can fold and polymerize like the WT protein and that Δ10CASQ2 disrupts the charge pattern of the cluster.

The N-terminal End Is Crucial for Protein Folding and Polymerization—It was suggested that the front-to-front dimer formation and stabilization may involve arm exchange and domain swapping involving the extended N-terminal end (16). Therefore, we investigated whether the extended N-terminal end is vital for CASQ2 folding. Interestingly, we found that N-terminal deletion mutants Δ10CASQ2 and Δ20CASQ2 cannot fold properly, indicating that the N-terminal end is required for correct folding of CASQ2. We predicted that the alternating charged clusters 1 (DGKDR) and 2 (EKNLK) might be involved in Ca\(^{2+}\)-induced polymerization. Results showing that Δ5CASQ2 can fold and polymerize like the WT protein and that Δ10CASQ2 disrupts the charge pattern of the cluster.
Recent studies using a knock-in mouse model for R33Q suggested that mutation might affect protein stability and that a decrease in CASQ protein expression itself can contribute to the CPVT disease phenotype (28, 30, 36). This and other studies showed that the mutant protein is more susceptible to proteolysis (30, 31). Our study further confirmed this finding, and our data show that R33Q fails to polymerize at low Ca\(^{2+}\) concentration (1 mM) when the WT protein has already reached lower order oligomeric states. In addition, we have demonstrated that mutations in cluster 1 make the proteins highly susceptible to trypsin digestion in the absence of Ca\(^{2+}\) and that mutants fail to gain resistance to trypsin digestion at 1 mM CaCl\(_2\).

Results from the turbidimetric experiment indicate that the R33Q, K31A-R33A, and D29A-D32A mutants do not aggregate at low Ca\(^{2+}\) concentrations of 1 and 2 mM but undergo a significant level of aggregation at ~5 mM Ca\(^{2+}\), additionally supporting our proteolysis data. However, at high Ca\(^{2+}\) concentrations, R33Q does not exhibit needle-shaped crystalline structure as seen for the WT protein and appears to be formed by random aggregation rather than a properly oriented linear polymer (33, 34). The random aggregation could be promoted by the neutralization of surface charges by Ca\(^{2+}\).

Cluster 1 Charged Residues Are Essential for Ca\(^{2+}\)-induced Aggregation of CASQ2 and Resolubilization—One of the most interesting findings of this study is that, following Ca\(^{2+}\)-induced aggregation, the WT protein can be resolubilized to the native conformation upon EGTA-mediated Ca\(^{2+}\) chelation. Our findings further support the proposal of Park et al. (17) that CASQ2 polymerization is reversible and that polymers can depolymerize when [Ca\(^{2+}\)] falls below a critical level. Ca\(^{2+}\) chelation with EGTA, which has a much higher affinity for Ca\(^{2+}\) compared with CASQ2, compels CASQ2 polymers to undergo depolymerization by giving off Ca\(^{2+}\). This mimics the physiological condition that occurs in the myocyte during Ca\(^{2+}\)-induced Ca\(^{2+}\) release; CASQ2 can release a portion of the bound Ca\(^{2+}\) without undergoing depolymerization because polymerization and Ca\(^{2+}\) concentration are non-
Cluster 1 Works as a Molecular Switch, and the R33Q Mutation Disrupts the Formation of a Ring System—The molecular dynamics and structural studies suggest that cluster 1, which is conserved from C. elegans to human, is the key to dimerization. This cluster works as a molecular switch and configures into a ring system stabilized by a H-bond between Asp29 and Arg33. Gly30 is useful as a spacer and accounts for the DGKDR ring system being large enough to maintain the critical conformational flip of Lys31-Asp32 and therefore might be conserved although not directly involved in dipolar interactions. The conformational flip may be catalyzed by Ca\(^{2+}\) and controlled by Arg33, which is assisted by the dynamicity of companion residues in the ring system. The dipoles from alternately charged residues might sense [Ca\(^{2+}\)]. Being positively charged, Lys31 will be repelled by Ca\(^{2+}\), and being negatively charged, Asp32 will be attracted to Ca\(^{2+}\), which seems to regulate the flip of Lys31-Asp32 and the formation of a H-bond network (Fig. 6B), stabilizing the dimer conformation. Again, the rotational flexibility of the ring system backbone is high, allowing a flip of \(-180^\circ\). This is why the mutant molecule loses the property of Ca\(^{2+}\)-induced polymerization when the charge pattern in the cluster is altered. Moreover, introduction of a glutamate residue in place of Arg33 reduces the backbone flexibility, and the ring system is not stabilized because the hydrogen bond between amino acids 29 and 33 cannot be formed. This disrupts the ring system, which is necessary for the critical flip of Lys31-Asp32, leading to impairment of Ca\(^{2+}\)-induced dynamics. The above interpretation is further supported by potential energy determination using energy minimization. The cluster 1 mutants have higher potential energy compared with the WT protein (Table 2), suggesting that mutant dimers are less stable. During polymerization, dimer formation is the key step; therefore, if the dimer is less stable, its ability to form a properly oriented polymer and to undergo rapid depolymerization is significantly reduced. This concurs with the proposal that Ca\(^{2+}\) regulation by calsequestrin involves interplay among protein folding, Ca\(^{2+}\) binding, and calsequestrin polymerization-depolymerization (16, 17).

To be physiologically relevant, the dynamic changes in CASQ2 polymerization-depolymerization should occur in the nano-microsecond range. This can be facilitated only by the presence of a molecular switch that allows swift transition between protein conformations in a calcium-dependent manner. This type of conformational change is facilitated by structural motifs, and these motifs often operate as switches to regulate biological events dynamically in the nanosecond range (38–41).

Conclusions—The observations made in this study show that the extended N-terminal end in general and the alternately charged residue cluster in particular are key for the Ca\(^{2+}\)-induced aggregation and function of CASQ2. The results also show that CASQ2 polymerization is reversible and nonlinear. This fits well with the recent proposal that Ca\(^{2+}\) buffering inside the SR and Ca\(^{2+}\) release are nonlinear (35). In addition, our results demonstrate that the R33Q mutation disrupts the alternating charge pattern of the N-terminal DGKDR ring system and weakens the ability of CASQ2 to undergo dynamic polymerization-depolymerization. On the basis of these find-
R33Q Impairs Calsequestrin Polymerization Dynamics

ings, we propose that, under increased physiological demands, the R33Q mutant fails to undergo the dynamic conformational interconversions necessary to cope with increased Ca2+ handling and that this, along with decreased protein levels, could contribute to CPVT.

Acknowledgments—We thank Barbara Heck for editorial assistance. N. C. B. thanks Professor Rita Bernhardt for mentorship in protein engineering.

REFERENCES

1. Bers, D. M. (1997) Basic Res. Cardiol. 92, Suppl. 1, 1–10
2. MacLennan, D. H., Campbell, K. P., and Reithmeier, R. A. F. (1983) in Calcium and Cell Function (Cheung, W. Y., ed) Vol. IV, pp. 151–173, Academic Press, Inc., New York
3. Restrepo, J. G., Weiss, J. N., and Karma, A. (2008) Biophys. J. 95, 3767–3789
4. Shannon, T. R., Wang, F., Puglisi, J., Weber, C., and Bers, D. M. (2004) Biophys. J. 87, 3351–3371
5. Shipsky, I. R., Ohnishi, M., Carpenter, M. R., and Reithmeier, R. A. (1987) Biochemistry 26, 6539–6544
6. MacLennan, D. H., and Wong, P. T. (1971) Proc. Natl. Acad. Sci. U.S.A. 68, 1231–1235
7. Beard, N. A., Laver, D. R., and Dulhunty, A. F. (2004) Biophys. J. 85, 33–69
8. Knollmann, B. C. (2009) Biochem. J. 413, 291–303
9. Kalyanasundaram, A., Bal, N. C., Franzini-Armstrong, C., Knollmann, B. C., and Periasamy, M. (2010) J. Biol. Chem. 285, 3076–3083
10. Maurer, A., Tanaka, M., Ozawa, T., and Fleischer, S. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 4036–4040
11. Williams, R. W., and Beeler, T. J. (1986) J. Gen. Physiol. 87, 1288–1301
12. Pape, P. C., Fe´nelon, K., Lamboley, C. R., and Stachura, D. (2007) Circ. Res. 103, 298–306
13. Liu, N., and Priori, S. G. (2008) Circ. Res. 101, 1151–1158
14. Royer, L., and Ríos, E. (2009) J. Mol. Cell. Car- diol. 34, 897–918
15. Restrepo, J. G., Weiss, J. N., and Karma, A. (2008) Biophys. J. 95, 2037–2048
16. Royer, L., Varsányi, M., and Priori, S. G. (2006) Biophys. J. 91, 1288–1301
17. MacLennan, D. H., Abu-Abed, M., and Kang, C. (2002) J. Mol. Cell. Cardi-
18. Park, H., Wu, S., Dunker, A. K., and Kang, C. H. (1998) Biochemistry 37, 319–367
19. Fill, M. (2008) J. Gen. Physiol. 131, 325–334
20. Pape, P. C., Fénelon, K., Lamboley, C. R., and Stachura, D. (2007) J. Physiol. 581, 319–367
21. Bonsor, D. A., Heech, O., Vankemmelbeke, M., Sharma, A., Krachler, A. M., Housden, N. G., Lilly, K. I., James, R., Moore, G. R., and Kleanthous, C. (2009) EMBO J. 28, 2846–2857
22. Chakrapani, S., and Auerbach, A. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 87–92
23. Ma, J., and Karplus, M. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 11905–11910
24. Mishra, P., Soccolich, M., Wall, M. A., Graves, J., Wang, Z., and Ranga- nathan, R. (2007) Cell 131, 80–92
25. Gouet, P., COURcelle, E., Stuart, D. I., and Métoz, F. (1999) Bioinformatics 15, 305–308

17196 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 285•NUMBER 22•MAY 28, 2010