Pareto Optimal Solutions of the Fuzzy Bicriteria Sheet Metal Problem

Renu Tuli and Sunita Sharma

1Department of Mathematics, Amity School of Engineering and Technology, Bijwasan – 110061, New Delhi, India; renu.tuli@gmail.com
2Department of Mathematics, Kalindi College, Delhi University, Central Delhi – 110008, New Delhi, India; sunitasharmav78@gmail.com

Abstract

Objectives: An algorithm has been developed to find Pareto Optimal solutions of the fuzzy bicriteria sheet metal problem with pairwise nesting of designs. Methods and Statistical Analysis: The sheet metal problem has been solved by many workers, all of whom have considered the entities of cost and time as crisp numbers. However, in practical situations since cost and time are imprecise, the present work considers them as interval fuzzy numbers. Ordering between overlapping interval numbers is obtained by applying a fuzzy membership approach and a modified Hungarian algorithm is developed to obtain fuzzy Pareto Optimal solutions of the bicriteria problem. The newly developed algorithm is explained by a numerical example. Findings and Results: The set of both fuzzy Pareto optimal and other solutions obtained by applying the proposed algorithm, provide the Decision maker a lot of flexibility in making decisions. He can select the solution according to his priority. From amongst the fuzzy Pareto Optimal solutions obtained, he can select the solution which minimizes the cost or the solution which minimizes the time or take the middle path and select the solution which minimizes both cost and time as much as possible. Apart from the three fuzzy Pareto Optimal solutions, other solutions obtained by the proposed method can also be selected by the decision maker as per requirement and conditions. The problem being NP hard, it is very difficult and expensive to find fuzzy Pareto Optimal solutions of the bicriteria problem by analytical methods. The newly developed algorithm is not only easy to understand and implement but also gives good fuzzy Pareto optimal solutions. Improvements: The method can also be applied to costs and times being triangular and trapezoidal fuzzy numbers and it can be extended to nesting of up to three designs on a sheet.

Keywords: Interval Number, Nesting, Pareto Optimal, Sheet Metal

1. Introduction

Sheet metal is a very useful form of metal which is formed by mechanically flattening metal. This metal formation has high surface area to volume ratio. The usage of sheet metal spreads over manufacturing various automobile parts and home and office appliances. Sheet metal is sheared or cut into desired shapes with the use of machines and dies. The process of loading the sheet metal on a machine and cutting out pieces from the sheet metal with the help of dies is called blanking. The cut out pieces are used to make objects of daily use and the left out portion of sheet metal which cannot be used for any other purpose is called scrap. In order to fulfill a certain demand, the manufacturers are required to load sheet metal on the machine where the desired shape is punched. This procedure requires time for loading and processing the sheet and results in production of scrap. Profits can maximize only if these two quantities can be controlled. In recent times, manufacturers have adopted the process
of nesting, which combines various shapes thereby reducing the cost of scrap and total set up and processing time. It can be observed from Figures (1a), (1b) and (1c) that when two designs D_1 and D_2 are nested on a metal sheet, the amount of scrap reduces.

Figure (1a). showing Design D_1.

Figure (1b). showing Design D_2.

Figure (1c). showing nesting of Designs D_1 and D_2.

Numerous workers have solved the nesting problem by different techniques. In 1,2 have developed a pseudo polynomial dynamic programming algorithm to solve the sheet metal nesting problem.

In 3,4 have developed intelligent algorithms to give optimal nesting. In 5 have applied a compact neighborhood algorithm on large scale nesting and $^{6-9}$ have applied genetic algorithms to find optimal solutions of the nesting problem. All the workers have solved the sheet metal nesting problem with a single objective either to minimize the cost or total set up and processing time. In 10 were the first workers to have considered the bicriteria sheet metal nesting problem. They developed a heuristic method to find Pareto optimal solutions of the problem with the two criteria being minimization of scrap and total set up and processing time.

None of the above workers have considered cost and time as fuzzy numbers. However in real life situations the two entities of cost and time are not crisp but imprecise. To overcome this difficulty the present work considers the bicriteria problem with the two entities of cost and time as fuzzy interval numbers. In solving problems with fuzzy numbers one of the most difficult parts is to define a suitable ordering or ranking approach. Fuzzy numbers were first introduced by 11 and one of the frontrunners in defining ranking approach of interval fuzzy numbers 12, followed by $^{13-19}$ to name a few.

In the present work, ordering between overlapping interval numbers is obtained by applying a fuzzy membership approach and a modified Hungarian algorithm is developed to obtain Pareto Optimal solutions of the bicriteria problem. A constraint of the problem is that orders are nested at most in pairs. The problem being NP hard, it is very difficult and expensive to find Pareto Optimal solutions by analytical methods. The newly developed heuristic technique is not only easy to understand and implement but also gives good Pareto optimal solutions.

The rest of the paper is organized as follows: Section 2 of the paper gives some definitions, in Section 3 mathematical formulation of the problem is discussed, in Section 4 the proposed algorithm is discussed, in Section 5 a numerical example is given in detail to explain the proposed algorithm and Section 6 is the conclusion followed by Acknowledgements and References.

2. Definitions

Definition 1: Interval numbers arithmetic

If $A = [a^L, a^R]$ and $B = [b^L, b^R]$ are two interval numbers then

(i) Center of $A = [a^L, a^R]$ is $A_c = (a^R + a^L)/2$
(ii) Width of $A = [a^L, a^R]$ is $A_w = (a^R - a^L)/2$.
(iii) $A + B = [a^L + b^L, a^R + b^R]$
(iv) $A - B = [a^L - b^R, a^R - b^L]$

Definition 2: Interval ordering

According to 12, $A \leq_{LR} B$ (Interval A is less than or equal to interval B) if $a^L \leq b^L$ and $a^R \leq b^R$ as shown in Figures (2a) and (2b).

Figure (2a). showing $A \leq_{LR} B$.

Figure (2b). showing $A \leq_{LR} B$.
However for intervals A and B satisfying $A^w > B^w$, $a^L \leq b^L$ and $a^R \geq b^R$ the above mentioned approach fails to define the ordering. In such a case the approach discussed by\(^{19}\) is considered. In this approach a fuzzy membership function $f(A, B)$ is defined as

$$f(A, B) = \begin{cases} 0, & a^L \leq b^L < b^R < a^R \\ \frac{(a^L - b^L)}{2(a^w - b^w)}, & a^L < b^L < a^R \\ 1, & a^L < b^L, b^R = a^R \end{cases}$$

$f(A, B) = 1$ implies $A \ll B$ [Figure (3a)] and $f(A, B) = 0$ implies $B \ll A$ [Figure (3b)].

For $a^L < b^L < b^R < a^R$, $f(A, B) = \frac{(b^L - a^L)}{2(a^w - b^w)}$ gives the degree of acceptability of $A \ll B$, if $0.5 < \frac{(b^L - a^L)}{2(a^w - b^w)} < 1$ then $A \ll B$ and if $0 < \frac{(b^L - a^L)}{2(a^w - b^w)} < 0.5$ then $B \ll A$. If $\frac{(b^L - a^L)}{2(a^w - b^w)} = 0.5$ then either $A \ll B$ or $B \ll A$ can be considered [Figure (3c)].

Figure (3a). showing $A \ll B$.

Figure (3b) showing $B \ll A$.

Figure (3c). showing $A \ll B$ with a degree of acceptability $f(A, B) = \frac{(b^L - a^L)}{2(a^w - b^w)}$.

Definition 3: Pareto optimal solutions

Bicriteria solutions (C_1, T_1) and (C_2, T_2) to minimize cost C and time T are said to be Pareto Optimal (Ignizio\(^{20}\); Steuer\(^{21}\)) if $C_1 \leq C_2$ and $T_1 \geq T_2$ with strict inequality holding in at least one of the two cases.

3. Mathematical Formulation of Problem

A sheet metal problem with n different designs of dies to be made is considered. The constraint is that no more than two orders can be nested on a sheet. The two objectives are to minimize the total cost of scrap and to minimize total set up and processing time of nesting and blanking. Two tables are formed, the first one showing the total cost of scrap and the second one showing the total set up and processing time in case of no nesting and nesting. Cost and time are taken as interval numbers.

Let $C_{ij} = [C^L_{ij}, C^R_{ij}]$ be the cost of scrap and $T_{ij} = [T^L_{ij}, T^R_{ij}]$ denote total set up and processing time in the blanking operation when designs $i (i=1,2,\ldots n)$ and $j (j=1,2,\ldots n)$ are nested; let C denote the total cost of scrap and T denote the total set up and processing time after nesting of designs, let x_i be the integer variable taking the values 1 or 0 according as allocation is made or not made to the cell (i, j) in the cost table.

The objective of the problem is to minimize

$$C = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij} C_{ij}$$
$$T = \sum_{j=1}^{n} \sum_{i=1}^{n} x_{ij} T_{ij}$$

Subject to the constraints

$x_i = 1$ or 0

$C_0 = C_p, T_0 = T_p$

$$\sum_{j=1}^{n} \sum_{i=1}^{n} x_{ij} \leq n$$

Constraint (5) ensures pairwise nesting of some or all designs.

4. Solution Procedure

The sheet metal problem with n different designs of dies is considered. Two symmetric tables are formed – the first one denoting total cost of scrap left after the blanking operation and the second one denoting the total set up and processing times when either designs $i (i=1,2,\ldots n)$ and $j (j=1,2,\ldots n)$ are pairwise nested or there is no nesting. The costs and durations are taken as interval fuzzy...
numbers. A modified Hungarian algorithm is developed and the ordering between intervals numbers is obtained as defined in Section 2.

Step 1: In the cost table with costs as interval numbers, select the smallest number in each row and subtract it from every other number. The selection of smallest interval number and subsequent subtraction are done by applying the ordering and subtraction formula as explained in Section 2.

Step 2: In the row reduced Cost table, select the smallest interval number in each column and subtract it from every other number in that column using the ordering used in Step 1.

Step 3: In the row reduced and column reduced cost table reduce each interval number to its center as defined in Section 2.

Step 4: Select the row having a single cell whose interval cost has center at 0 and make assignment in the corresponding cell(i, j).

Step 5: After making assignment in the cell (i, j) delete the ith row and column and jth row and column. This is because allocation in cell (i, j) implies that designs i and j have been nested. In case allocation is in cell (i, i) it implies no nesting. Delete the ith row and ith column.

Step 6: Repeat Steps 4 and 5 with all the rows and columns to obtain all the assignments.

Step 7: Find the total interval cost from the cost table and the corresponding interval time from the time table to get the 1st Pareto Optimal solution (C₁, T₁).

Step 8: To obtain the 2nd Pareto Optimal solution, the assignment table obtained in Step 4 is considered and the cell with next minimum (non-zero) cost is identified. The first assignment is made in this cell and thereafter assignments are made in the zero cost cells by applying Steps 5-7 to get the second Pareto optimal solution denoted by (C₂, T₂) with C₁ ≤ C₂ and T₁ ≤ T₂. In case the solution obtained is not Pareto Optimal then the cell with second next minimum (non-zero) cost is identified. Assignment is first made to this cell and then to the zero cost cells by applying Steps 5-7. In case there is a tie in the next minimum (non-zero) cost cells corresponding to different nestings of designs both the cells are considered one at a time with the remaining zero cost cells and of all the solutions obtained the Pareto optimal solutions are considered. In case there is a tie in the next minimum cost cells corresponding to the same nestings of designs then any one cell is chosen arbitrarily and the remaining 0 cost cells are considered for assignment. To obtain 3rd Pareto Optimal solution the third next minimum (non-zero) cost cell is selected in the assignment Table obtained in Step 4 and allocations are first made to that cell and then to the zero cost cells. The fourth and subsequent efficient solutions are obtained by proceeding exactly as in case of the third efficient solution by selecting the next higher minimum (non-zero) cost cell in the assignment Table obtained in Step 4. The process terminates when all cases are exhausted. The third and subsequent Pareto Optimal solutions obtained are denoted by (C₃, T₃), (C₄, T₄),... satisfying C₁ ≤ C₂ ≤ C₃ ≤ C₄... and T₁ ≥ T₂ ≥ T₃ ≥ T₄ ≥ ...

5. Numerical Example

Let there be 5 designs of dies. Table 1 shows the cost of scrap and Table 2 shows the total set up and processing times in case of no nesting and pairwise nesting of the designs of dies on the metal sheet. Both cost and time are interval fuzzy numbers.

Table 1. Denoting cost of scrap in case of no nesting and nesting

Design	D₁	D₂	D₃	D₄	D₅
D₁	[4 5]	[1 2]	[2 3]	[3 6]	[1 3]
D₂	[1 2]	[3 4]	[1 4]	[2 3]	[2 5]
D₃	[2 3]	[1 4]	[3 5]	[1 4]	[2 4]
D₄	[3 6]	[2 3]	[1 4]	[2 3]	[2 7]
D₅	[1 3]	[2 5]	[2 4]	[2 7]	[1 2]

Table 2. Denoting total set up and processing time in case of no nesting and nesting

Design	D₁	D₂	D₃	D₄	D₅
D₁	[1 2]	[3 4]	[3 5]	[4 7]	[5 8]
D₂	[3 4]	[2 3]	[3 4]	[2 5]	[3 6]
D₃	[3 5]	[3 4]	[2 4]	[3 4]	[1 2]
D₄	[4 7]	[2 5]	[3 4]	[1 2]	[2 4]
D₅	[5 8]	[3 6]	[1 2]	[2 4]	[2 3]

On applying Step 1 to Table 1 the row reduced Table 3 is obtained.

Table 3. Row reduced cost table

Design →	D₁	D₂	D₃	D₄	D₅
D₁	[2 4]	[-1 1]	[0 2]	[1 5]	[-1 2]
D₂	[-1 1]	[1 3]	[-1 3]	[0 2]	[0 4]
D₃	[-2 2]	[-3 3]	[-1 4]	[-3 3]	[-2 3]
D₄	[-1 5]	[-2 2]	[-3 3]	[-2 2]	[-2 6]
D₅	[-1 2]	[0 4]	[0 3]	[0 6]	[-1 1]

On applying Step 2 on Table 3 the column reduced Table 4 is obtained.

Table 4. Column reduced cost table

Design →	D₁	D₂	D₃	D₄	D₅
D₁	[1 5]	[-2 2]	[-3 5]	[-2 8]	[-2 3]
D₂	[-2 2]	[0 4]	[-4 6]	[-3 5]	[-1 5]
D₃	[-3 3]	[-4 4]	[-4 7]	[-6 6]	[-3 4]
D₄	[-2 6]	[-3 3]	[-6 6]	[-5 5]	[-3 7]
D₅	[-2 3]	[-1 5]	[-3 6]	[-3 9]	[-2 2]

On applying Step 3 to Table 3 all the interval costs reduced to their centers are shown in Table 5.

Table 5. Interval costs in terms of their centers

Design →	D₁	D₂	D₃	D₄	D₅
D₁	3	0	1	3	0.5
D₂	0	2	1	1	0
D₃	0	0	1.5	0	0.5
D₄	2	0	0	0	2
D₅	0.5	2	1.5	3	0

5.1 First Pareto Optimal Solution

In Table 5 by applying Step 4 it is observed that Row 1 has single 0 cost cell. The cell in Row 1- Column 2 with 0 corresponding to nesting of designs D₁ and D₂ is selected and assignment is made to that cell. Thereafter the rows and columns showing scrap costs for designs D₁ and D₂ are deleted to obtain Table 6.

Table 6. Rows and columns corresponding to D₁ and D₂ deleted

Design ↓	D₁	D₂	D₃	D₄	D₅
D₁	1.5	0	0.5		
D₂	0	0	2		
D₃	1.5	3	0		

In Table 6 it is observed that Row 3 has a single 0 cost cell corresponding to the nesting of designs D₃ and D₄. Assignment is made to the Row 3- Column 4 cell and the rows and columns corresponding to designs D₃ and D₄ are deleted to obtain Table 7.

Table 7. Rows and columns corresponding to D₃ and D₄ deleted

Design ↓	D₁	D₂	D₃	D₄	D₅
D₁	0	2	1	0	0
D₂	0	1.5	0	0	2

From Table 7 it is observed that assignment is made to Row 5- Column 5 corresponding to Design 5 which cannot be nested. The assignments in first Pareto Optimal solution are nesting of D₁ and D₂, nesting of designs D₃ and D₄ and no nesting of design D₅. From the cost Table 1 the total cost of scrap C₁₁ + C₁₄ + C₁₂ = [3 8] and from Table 2 the total setup and processing time T₁ = [3 4] + [3 4] + [2 3] = [8 11]. The first Pareto Optimal solution obtained is (C₁, T₁) = ([3 8], [8 11]).

5.2 Second Pareto Optimal Solution

To obtain the second Pareto Optimal solution, Table 5 is considered. The next minimum (non-zero) cost is 0.5 at Row 1- Column 5, Row 5- Column 1 and Row 3- Column 5. Since Row 1- Column 5, and Row 5- Column 1 correspond to the same nesting of designs D₁ and D₅, so the cell in Row 1- Column 5 is considered among the two and the cells in Row 1- Column 5 and Row 3- Column 5 are considered one by one in sections 5.2.1 and 5.2.2.
5.2.1
In table 5 the cell in Row 1- Column 5 with 0.5 corresponding to nesting of designs D_1 and D_5 is selected and assignment is made to that cell. Thereafter the rows and columns showing scrap costs for designs D_1 and D_5 are deleted to obtain Table 8.

Table 8. Rows and columns corresponding to D_1 and D_5 deleted

Design \rightarrow	D_1	D_2	D_3	D_4	D_5
D_1	2	1	1	0	0
D_2	0	1.5	0	0	0
D_3	0	0	0	0	0

In Table 8 it is observed that Column 3 has a single 0 cost cell corresponding to the nesting of designs D_4 and D_3. Assignment is made to the Row 4- Column 3 cell and the rows and columns corresponding to designs D_4 and D_3 are deleted to obtain Table 9.

Table 9. Rows and columns corresponding to D_4 and D_3 deleted

Design \rightarrow	D_1	D_2	D_3	D_4	D_5
D_1	3	0	3	0	0
D_2	0	2	1	0	0
D_3	2	0	0	0	0

In Table 10, the 0 in cell Row 1-column 2 is considered and allocation is made to the cell. The allocation corresponds to nesting of designs D_1 and D_2. Row and column corresponding to designs D_1 and D_2 are deleted to obtain Table 11.

Table 10. Rows and columns corresponding to D_3 and D_5 deleted

Design \rightarrow	D_1	D_2	D_3	D_4	D_5
D_1	3	0	3	0	0
D_2	0	2	1	0	0
D_3	2	0	0	0	0

5.2.2
In Table 5 the cell in Row 3 - Column 5 with 0.5 corresponding to nesting of designs D_1 and D_3 is selected and assignment is made to that cell. Thereafter the rows and columns showing scrap costs for designs D_1 and D_3 are deleted to obtain Table 10.

From Table 11 it is observed that assignment is made to Row 4- Column 4 corresponding to Design 4 which cannot be nested. The assignments in the next solution are nesting of D_1 and D_3, nesting of D_4 and D_5 and no nesting of D_2. From the Cost Table 1 the total cost of scrap $C_2 = [1 2] + [2 4] + [2 3] = [5 9]$ and from Table 2 the total set up and processing time $T_2 = [3 4] + [1 2] + [1 2] = [5 8]$. On comparing with the Ist Pareto optimal solution $(C_1, T_1) = ([3 8], [8 11])$ it is observed that $[3 8] \leq [5 9]$ and $[5 8] \leq [7 13]$. Hence $(C_2, T_2) = ([5 9], [5 8])$ is a Pareto Optimal solution.

5.3 Third Pareto Optimal Solution
The cells with next higher minimum (non-zero) cost, which is 1, are considered. These cells are in Row 1- Column 3, Row 2 - Column 3 and Row 2 - Column 4. Since the three cells correspond to different nestings of designs so they are considered one by one in Sections 5.3.1, 5.3.2 and 5.3.3.
5.3.1
In Table 5 the cell in Row 1- Column3 with 1 corresponding to nesting of designs D₁ and D₃ is selected and assignment is made to that cell. Thereafter the rows and columns showing scrap costs for designs D₁ and D₃ are deleted to obtain Table 12.

Table 12. Rows and columns corresponding to designs D₁ and D₃ are deleted

Design →	D₁	D₂	D₃	D₄	D₅
D₁	2	1	2		
D₂	0	0	2		
D₃	2	3			

From Table 12 it is observed that assignment is made to Row 5- Column 5 corresponding to Design 5 which cannot be nested. Row and column corresponding to D₅ are deleted to obtain Table 13.

Table 13. Rows and columns corresponding to design D₅ are deleted

Design →	D₁	D₂	D₃	D₄	D₅
D₁	3	0	0		
D₂	0.5	2			
D₃	0	0			
D₄	0.5	0			

In Table 13 there are two possible assignments, one to the 0 in Row 4- Column 2 corresponding to nesting of designs D₂ and D₃ and the other to the 0 in Row 4- Column 4 corresponding to nesting of design D₄. Since nesting always reduces the scrap cost so assignment is made to the 0 in Row 4- Column 2 corresponding to nesting of designs D₂ and D₃. The assignments obtained give nesting of designs D₁ and D₃, nesting of D₂ and D₄ and no nesting of D₅.

From the Cost Table 1 the total cost of scrap \(C₃₅ = 2 + 3 + 1 + 2 = 6 \) and from Table 2 the total set up and processing time \(T₃₅ = 2 + 3 + 2 = 7 \). Hence \((C₃₅, T₃₅) \) is not a Pareto Optimal solution.

5.3.2
In Table 5 the cell in Row 2- Column 3 with 1 corresponding to nesting of designs D₂ and D₃ is selected and assignment is made to that cell. Thereafter the rows and columns showing scrap costs for designs D₂ and D₃ are deleted to obtain Table 14.

Table 14. Rows and columns corresponding to designs D₂ and D₃ are deleted

Design →	D₁	D₂	D₃	D₄	D₅
D₁	3				
D₂	0				
D₃	2	0			
D₄	0.5	2			

From Table 14 it is observed that assignment is made to Row 4- Column 4 corresponding to Design 4 which cannot be nested. Row and column corresponding to D₄ are deleted to obtain Table 15.

Table 15. Rows and columns corresponding to design D₄ are deleted

Design →	D₁	D₂	D₃	D₄	D₅
D₁				3	0.5
D₂					
D₃					
D₄					
D₅	0.5				

In Table 15 it is observed that assignment is made to Row 5- Column 5 corresponding to Design 5 which cannot be nested. The assignments obtained are nesting of D₁ and D₃, no nesting of D₂ and D₄ and no nesting of D₅. From the Cost Table 1 the total cost of scrap \(C₄₅ = 1 + 2 + 2 = 5 \) and from Table 2 the total set up and processing time \(T₄₅ = 2 + 3 + 2 = 7 \). On comparing \((C₄₅, T₄₅) = (5, 7) \) with the Ist Pareto Optimal solution \((C₁₅, T₁₅) = (3, 8) \) it is observed that \((C₄₅, T₄₅) \) is not a Pareto Optimal solution.
observed that \([4 \ 9] \leq [5 \ 9] \text{ and } [5 \ 8] \leq [7 \ 13]\). Since \(C_1 \leq C_2\) \text{ and } \(T_2 \leq T_1\), the solution \((C_1^*, T_1^*) = ([4 \ 9], [6 \ 9])\) is a Pareto Optimal solution.

5.3.3

In Table 5 the cell in Row 2- Column4 with 1 corresponding to nesting of designs \(D_2\) and \(D_4\) is selected and assignment is made to that cell. Thereafter the rows and columns showing scrap costs for designs \(D_2\) and \(D_3\) are deleted to obtain Table 16.

Table 16. Rows and columns corresponding to designs \(D_2\) and \(D_4\) are deleted

Design	\(D_1\)	\(D_2\)	\(D_3\)	\(D_4\)	\(D_5\)
\(D_1\)	3	1	0.5		
\(D_2\)	0	1.5	0.5		
\(D_3\)	0.5	1.5	0		

From Table 16 it is observed that assignment can be made to Row 3- Column 1 corresponding to the nesting of designs \(D_3\) and \(D_1\). Rows and columns corresponding to designs \(D_3\) and \(D_1\) are deleted to obtain Table 17.

Table 17. Rows and columns corresponding to designs \(D_3\) and \(D_1\) are deleted

Design \(\downarrow\)	\(D_1\)	\(D_2\)	\(D_3\)	\(D_4\)	\(D_5\)
\(D_1\)					
\(D_2\)					
\(D_3\)					
\(D_4\)					
\(D_5\)					0

From Table 17 it is observed that assignment can be made to Row 5- Column 5 corresponding to Design 5 which cannot be nested. The assignments obtained are nesting of \(D_2\) and \(D_4\), nesting of \(D_1\) and \(D_3\) and no nesting of \(D_5\). From the cost Table 1 the total cost of scrap \(C_s\) \([2 \ 3] + [2 \ 3] + [1 \ 2] = [5 \ 8] \) and from Table 2 the total set up and processing time \(T_s = [2 \ 5] + [3 \ 5] + [2 \ 3] = [7 \ 13]\). On comparing \((C_5^*, T_5^*) = ([5 \ 8], [713])\) with the 1st Pareto optimal solution \((C_1^*, T_1^*) = ([3 \ 8], [8 \ 11])\) it is observed that \([3 \ 8] \leq [5 \ 8] \text{ and } [8 \ 11] \leq [7 \ 13]\). So \((C_5^*, T_5^*)\) is not Pareto Optimal solution.

On proceeding similarly by selecting the cell with the next minimum (non-zero) number together with 0 cost cells it is observed that no more new Pareto optimal solutions can be obtained.

The results obtained are summarized in Table 18.

Table 18. Solutions obtained by applying the newly developed algorithm

Sl. No	Cells selected for assignment	Nesting of designs	Solution	Pareto Optimal solution
1	All the 0 cost cells of table 5	Nesting of \(D_1\) and \(D_2\), nesting of \(D_3\) and \(D_4\) and no nesting of \(D_5\)	\((C_1^*, T_1^*) = ([3 \ 8], [8 \ 11])\)	1\(^{st}\) Pareto optimal solution
2	Cell at Row 1 – Column 5 with cost 0.5 and all the 0 cost cells of table 5	Solution not possible		
3	Cell at Row 3 – Column 5 with cost 0.5 and all the 0 cost cells of table 5	Nesting of \(D_1\) and \(D_2\), nesting of \(D_3\) and \(D_5\) and no nesting of \(D_4\)	\((C_2^*, T_2^*) = ([5 \ 9], [5 \ 8])\)	3\(^{rd}\) Pareto Optimal solution
4	Cell at Row 1 – Column 3 with cost 1 and all the 0 cost cells of table 5	Nesting of \(D_1\) and \(D_3\), nesting of \(D_1\) and \(D_4\) and no nesting of \(D_5\)	\((C_3^*, T_3^*) = ([5 \ 8], [7 \ 13])\)	Not Pareto optimal
5	Cell at Row 2 – Column 3 with cost 1 and all the 0 cost cells of table 5	nesting of \(D_1\) and \(D_3\), no nesting of \(D_1\) and no nesting of \(D_4\)	\((C_4^*, T_4^*) = ([4 \ 9], [6 \ 9])\)	2\(^{nd}\) Pareto Optimal solution
6	Cell at Row 2 – Column 4 with cost 1 and all the 0 cost cells of table 5	nesting of \(D_1\) and \(D_4\), nesting of \(D_1\) and \(D_5\) and no nesting of \(D_4\)	\((C_5^*, T_5^*) = ([5 \ 8], [7 \ 13])\)	Not Pareto Optimal
It can be seen that all solutions obtained are not Pareto Optimal and in some cases solution is not obtained. The set of solutions obtained, both Pareto optimal and other, provide the Decision maker a lot of flexibility in making decisions. He can select the solution according to his requirement. For example if his primary objective is to minimize the cost he will select the 1st Pareto Optimal solution and do nesting of designs D_1 and D_2, nesting of designs D_3 and D_4 and no nesting of design D_5; if his primary objective is to minimize the total setup and processing time he will select the 3rd Pareto Optimal solution, same as (C_3, T_3).

	Cell at Row 3 –Column 3 with cost 1.5 and all the 0 cost cells of table 5	nesting of D_1 and D_2, no nesting of D_3, no nesting of D_4 and no nesting of D_5	$(C_6, T_6) = ([7 12], [8 13])$	Not Pareto Optimal
8	Cell at Row 5 –Column 3 with cost 1.5 and all the 0 cost cells of table 5	nesting of D_1 and D_2, nesting of D_3 and D_4 and no nesting of D_5	$(C_7, T_7) = ([5 9], [5 8])$	3rd Pareto Optimal solution, same as (C_3, T_3)
9	Cell at Row 2 –Column 5 with cost 2 and all the 0 cost cells of table 5	nesting of D_1 and D_2, nesting of D_3 and D_4 and no nesting of D_5	$(C_8, T_8) = ([6 11], [7 13])$	Not Pareto Optimal
10	Cell at Row 2 –Column 2 with cost 2 and all the 0 cost cells of table 5	nesting of D_1 and D_2, no nesting of D_3 and no nesting of D_5	$(C_9, T_9) = ([5 12], [9 14])$	Not Pareto Optimal
11	Cell at Row 4 –Column 1 with cost 2 and all the 0 cost cells of table 5	nesting of D_1 and D_2, nesting of D_3 and D_4 and no nesting of D_5	$(C_{10}, T_{10}) = ([5 12], [9 14])$	Not Pareto Optimal
12	Cell at Row 4 –Column 5 with cost 2 and all the 0 cost cells of table 5	Solution not possible	---	---
13	Cell at Row 4 –Column 1 with cost 2 and all the 0 cost cells of table 5	nesting of D_1 and D_2, nesting of D_3 and D_4 and no nesting of D_5	$(C_{11}, T_{11}) = ([6 11], [7 13])$	Not Pareto Optimal
14	Cell at Row 1 –Column 1 with cost 3 and all the 0 cost cells of table 5	Solution not possible	---	---
15	Cell at Row 1 –Column 4 with cost 3 and all the 0 cost cells of table 5	nesting of D_1 and D_2, nesting of D_3 and D_4 and no nesting of D_5	$(C_{12}, T_{12}) = ([5 12], [9 14])$	Not Pareto Optimal
16	Cell at Row 5 –Column 4 with cost 3 and all the 0 cost cells of table 5	Solution not possible	---	---

It can be seen that all solutions obtained are not Pareto Optimal and in some cases solution is not obtained. The set of solutions obtained, both Pareto optimal and other, provide the Decision maker a lot of flexibility in making decisions. He can select the solution according to his requirement. For example if his primary objective is to minimize the cost he will select the 1st Pareto Optimal solution and do nesting of designs D_1 and D_2, nesting of designs D_3 and D_4 and no nesting of design D_5; if his primary objective is to minimize the total setup and processing time he will select the 3rd Pareto Optimal solution, same as (C_3, T_3).

6. Conclusion

The algorithm developed in this paper provides a heuristic technique to find Pareto Optimal solution of the fuzzy bicriteria sheet metal problem. The set of Pareto Optimal solutions obtained provides flexibility to the DM and he can select the solution according to his priority. The method can also be applied to costs and times being triangular and trapezoidal fuzzy numbers. By considering a proper ranking approach the triangular and trapezoidal fuzzy numbers can be converted to crisp numbers and thereafter the newly developed algorithm can be applied to get Pareto Optimal solutions. The heuristic technique
developed is very easy to understand and implement and can thus be applied extensively in the fuzzy nesting problem. In the present work the nesting is considered to be at most in pairs. However this can be also extended to nesting of up to three designs on a sheet.

7. Acknowledgement

The authors thank Honorable Dr. Ashok Kumar Chauhan, President and Prof. Rekha Agarwal, Director, Amity School of Engineering and Technology, New Delhi for providing facilities to carry out this work.

8. References

1. Herrman JW, Delalio DR. Evaluating Sheet Metal Nesting Decisions. Technical Research report, T.R. 98-8. United States: University of Maryland; 1998.
2. Herrman JW, Delalio DR. Algorithms for sheet metal nesting. IEEE Transactions on Robotics and Automation. 2001; 17(2):183–90. Crossref
3. Prasad YKDV, Somasundaram S, Rao KP. A sliding algorithm for optimal nesting or arbitrarily shaped sheet metal blanks. International Journal of Production Research. 1995; 33(6):1505–20. Crossref
4. Zoran D, Moidrag M. Intelligent Nesting System. Yugoslav Journal of Operations Research. 2003; 13(2):229–43. Crossref
5. Cheng SK, Rao KP. Large-scale nesting of irregular patterns using compact neighborhood algorithm. Journal of Materials Processing Technology. 2000; 103:135–40. Crossref
6. Babu AR, Babu NR. A generic approach for nesting of 2-D parts in 2-D sheets using genetic and heuristic algorithms. Computer-Aided Design. 2001; 33:879–91. Crossref
7. Tay FEH, Chong TY, Lee FC. Pattern nesting on irregular shaped stock using Genetic Algorithms. Engineering Applications of Artificial Intelligence. 2002; 15:551–8. Crossref
8. Sakaguchi T, Ohtani H, Shimizu Y. Genetic Algorithm Based Nesting Method with Considering Schedule for Sheet Metal Processing. Transactions of the Institute of Systems, control and Information Engineering. 2015; 28(3):99–106. Crossref
9. Reddy GHK. Genetic Algorithm Based 2D Nesting of Sheet Metal Parts. International Research Journal of Engineering and Technology. 2016; 3(6):1367–75.
10. Chauhan SK, Tuli R, Singh PK. A Heuristic Technique to find Pareto Optimal Solutions of the Bicriteria Sheet Metal problem. International Journal of Advances in Engineering Sciences. 2014; 4(4):27–34.
11. Zadeh LA. Fuzzy Sets. Information and Control. 1965; 8:338–53. Crossref
12. Moore RE. Methods and Application of Interval Analysis. Philadelphia: SIAM; 1979. Crossref
13. Ishibuchi H, Tanaka H. Multi-objective Programming in Optimization of the Interval Objective Function. European Journal of Operational Research. 1990; 48:219–25. Crossref
14. Okada S, Gen M. Order Relation between Intervals and its Application to Shortest Path Problem. Computers and Industrial Engineering. 1993; 25:147–50. Crossref
15. Kundu S. Min-transitivity of Fuzzy Leftness Relationship and its application to Decision Making. Fuzzy sets and systems. 1997; 86:357–67. Crossref
16. Sengupta A, Pal TK. On Comparing Interval Numbers. European Journal of Operational Research. 2000; 127:28–43. Crossref
17. Hu BQ, Wang S. A Novel Approach in Uncertain Programming Part I: New Arithmetic and Order Relation for Interval Numbers. Journal of Industrial and Management Optimization. 2006; 2(4):351–71 Crossref
18. Mahato SK, Bhunia AK. Interval-arithmetic-Oriented Interval Computing Technique for Global Optimization. Applied Mathematics Research Express. 2006; 1–19. Crossref
19. Tuli R, Sharma S. A Fuzzy Membership Approach to obtain Efficient Solutions of the Interval Valued Bicriteria Shortest Path Problem. Turkish journal of fuzzy system. 2015; 6(1):1–16
20. Ignizio JP. Linear Programming in Single- and Multiple-Objective Systems. Prentice Hall, Englewood Cliffs: N.J. 07632. 1982. p. 374–6.
21. Steuer RE. Multiple Criteria Optimization: Theory, Computation, and Application. New York: Wiley; 1986. p. 138–59.