RESEARCH ARTICLE

Risk Factors for Nodal Metastasis in cN0 Papillary Thyroid Microcarcinoma

Li-Yang Zhang*, Zi-Wen Liu, Yue-Wu Liu, Wei-Sheng Gao, Chao-Ji Zheng

Abstract

Background: Despite the majority of papillary thyroid microcarcinoma (PTMC) patients having an excellent prognosis, cervical lymph node metastases are common. The purpose of this study was to investigate the incidence and the predictive risk factors for occult central compartment lymph node metastasis (CLNM) in PTMC patients.

Materials and Methods: 178 patients with clinically node-negative (cN0) PTMC undergoing prophylactic central compartment neck dissection in our hospital from January 2008 to Jun 2010 were enrolled. The relationship between CLNM and the clinical and pathological factors such as gender, age, tumor size, tumor number, tumor location, extracapsular spread (ECS), and coexistence of chronic lymphocytic thyroiditis was analyzed.

Results: Occult CLNM was observed in 41% (73/178) of PTMC patients. Multivariate analysis showed that male gender, tumor size (≥6mm) and ECS were independent variables predictive of CLNM in PTMC patients.

Conclusions: Male gender, tumor size (≥6mm) and ECS were risk factors of CLNM. We recommend a prophylactic central lymph node dissection (CLND) should be considered in PTMC patients with such risk factors.

Keywords: Papillary thyroid microcarcinoma - central lymph node dissection - central lymph node metastasis

Asian Pac J Cancer Prev, 16 (8), 3361-3363

Introduction

Papillary thyroid microcarcinoma (PTMC) is defined as a papillary thyroid carcinoma (PTC) with a lesion measuring 1 cm or less in maximal diameter according to the 2004 World Health Organization classification of thyroid tumors (DeLellis et al., 2004). It has been generally accepted that the majority of PTMC patients has an excellent prognosis. However, this view has been challenged with new researches reporting increased local recurrence rates (White et al., 2007) and reduced survival with regional LNM (Hughes et al., 2010). For PTMC, cervical lymph node metastases are common, with an incidence between 30% and 60% (Hay et al., 2008; He et al., 2012). Most surgeons agree with therapeutic cervical lymph node dissection in clinically node-positive PTC patients, however, prophylactic central neck lymphadenectomy in the treatment of cN0 PTMC is controversial (Mazzaferrri et al., 2009). The purpose of this study is to determine the predictive risk factors for LNM at presentation in PTMC. The outcome of the study could assist in making a more appropriate selection of patients for prophylactic neck dissection.

Materials and Methods

This retrospective cohort study was performed of a single institutional database of patients with histologically proven papillary thyroid carcinoma at Peking Union Medical College Hospital from January 2008 to Jun 2010. All patients underwent pre-operative examination by US to evaluate the size of tumor and the presence of LNM. All patients were diagnosed with PTMC pre-operatively by fine-needle aspiration biopsy or intra-operatively on frozen section. Patients with bilateral PTC underwent total thyroidectomy (TT) and bilateral prophylactic central lymph node dissection (CLND), while patients with unilateral PTC underwent TT or unilateral lobectomy plus isthmusectomy and ipsilateral CLND. Patients with PTC of >1cm, evident preoperative abnormal lymph nodes, distant metastasis or previous operation for PTC were excluded. Of the 919 patients treated surgically for PTC from January 2008 to Jun 2010, 178 patients satisfied inclusion criteria.

Patients were divided into two groups according to central compartment lymph node status. The relationship between CLNM and the clinical and pathological factors such as gender, age, tumor size, tumor number, tumor location, extracapsular spread (ECS), and coexistence of chronic lymphocytic thyroiditis was analyzed.

Statistical analysis was performed using SPSS17.0 software. Data were compared for statistical analysis using the chi-square tests or Fisher’s exact test to evaluate differences between qualitative variables, and using the Students t test to compare quantitative variables, multivariate logistic regression analysis was performed to identify the multivariate correlates of central compartment LNM, p<0.05 was considered significant.

*For correspondence: Liyangzhang25@hotmail.com

General Surgery Department, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
Results

178 patients were included in this study among whom 141 were female and 37 were male with a mean age of 46 years. Patients characteristics were shown in Table 1. Median tumor size was 7mm, with 95 tumors (53.4%) ≤6mm and 83 tumors (46.6%) ≥6mm in diameter. Multifocal PTMC was present in 58 cases (32.6%) and extracapsular spread (ECS) was found in 20 cases (11.2%), 42 cases (23.6%) had chronic lymphocytic thyroiditis. The number of patients found to have involved central neck lymph nodes on final pathology was 73 of 178 (41%). The clinical and pathological characteristics of patients are summarized between LNM positive group and LNM negative group in Table 2. Male gender, tumor size (≥6mm), multifocality and ECS were significantly related to central compartment of LNM (p<0.05). There were no significant differences in the age and other tumor pathologic characteristics. A multivariate analysis was performed to determine whether these parameters were independently correlated with central compartment LNM. Male gender, tumor size (≥6mm) and ECS turned out to be independently predictive factors for central compartment LNM (Table 3).

Discussion

The incidence of PTMC has been increasing within recent 5 years with the extensive use of thyroid ultrasonography in routine physical examination (Palazzo FF et al., 2006). Although it has been accepted that patients with PTMC have a good prognosis (C.I. Lundgren, et al., 2006), cervical lymph node metastases are common, with an incidence between 30% and 60%. However, the sensitivity for detecting central LNM in PTC patients using sonography is poor. Choi et al reported that the sensitivity of ultrasound for detecting central LNM is only 40% even when the nodes are ≥5mm (Choi et al., 2010). Unfortunately, most of central lymph node metastases are <5mm (Vergez et al., 2010). We observed approximately 40% of patients who underwent central neck dissection had lymph node involvement despite of negative preoperative physical examination and ultrasonography in our study.

Although some studies showed that central LNM did not affect survival, more and more researches reported regional LNM was associated with increased local recurrence rates and reduced survival. Current investigations show there are two different varieties of PTMC, tumors with benign biological and clinical courses and those aggressive tumors in terms of lymph node and distant metastasis (Lin et al., 1997; Roti et al., 2006). These aggressive tumors have some characteristics such as larger tumor size, multifocality, extrathyroid invasion and so on. It would be beneficial to identify the subset of patients with PTMC who have aggressive pathological features so that a full treatment protocol could be provided. The aim of this study is to examine the risk factors predictive of subclinical central LNM in patients with PTMC who underwent prophylactic CLND, so we can select aggressive PTMC patients from conventional PTMC patients at diagnosis.

Although women have been shown to be more susceptible to PTC than men, male gender has previously

| Table 1. Characteristics of Patients with Papillary Thyroid Microcarcinoma |
|---|---|
| Gender | Total(%) |
| Male | 37 (20.8) |
| Female | 141 (79.2) |
| Age | |
| <45 | 99 (55.6) |
| ≥45 | 79 (44.4) |
| Tumor size | |
| <6mm | 95 (53.4) |
| ≥6mm | 83 (46.6) |
| Multifocality | |
| Unifocal | 120 (67.4) |
| Multifocal | 58 (32.6) |
| Tumor bilaterality | |
| unilateral | 123 (69.1) |
| bilateral | 55 (30.9) |
| ECS | |
| Present | 20 (11.2) |
| Absent | 158 (88.8) |
| Chronic lymphocytic thyroiditis | |
| Present | 42 (23.6) |
| Absent | 136 (76.4) |
| Central compartment LNM | |
| Present | 73 (41.0) |
| Absent | 105 (59.0) |
| Median nodes removed | 6 |
| Median positive nodes | 1 |

| Table 2. Relationship of Clinical and Histopathologic Factors for Central CLNM |
|---|---|---|---|
| Nodal status in Central Compartment | P value |
| N+(n=73) | N-(n=105) |
| Gender | |
| Male | 22 | 15 |
| Female | 51 | 90 |
| Age | 0.297 |
| <45 | 44 | 55 |
| ≥45 | 29 | 50 |
| Tumor size | 0.002 |
| <6mm | 29 | 66 |
| ≥6mm | 44 | 39 |
| Multifocality | 0.002 |
| Unifocal | 40 | 80 |
| Multifocal | 33 | 25 |
| Tumor bilaterality | 0.143 |
| unilateral | 46 | 77 |
| bilateral | 27 | 28 |
| ECS | 0.005 |
| Present | 14 | 6 |
| Absent | 59 | 99 |
| Chronic lymphocytic thyroiditis | 0.099 |
| Present | 13 | 29 |
| Absent | 60 | 76 |

Table 3. Multivariate Logistic Regression for Central Compartment LNM of PTMC

Variables	B	p value	OR	95% CI of Exp
Sex	-2.011	0.001	0.134	0.045-0.395
Size	1.888	0.002	6.606	2.043-21.363
Number	0.644	0.189	1.904	0.728-4.982
ECS	-1.673	0.008	0.188	0.055-0.641
Constant	2.612	0.025	13.62	

*CI=confidence interval; OR=odds ratio; PTMC=papillary thyroid microcarcinoma; SE=standard error
been suggested as important indicator for LNM in previous reports (Yang et al., 2014). In this study, the CLNM positive rate of males was 59.5%, which, in multivariate analysis, was independently predictive of central compartment LNM (p=0.000).

Generally, central LNM is associated with a larger tumor size. Tumor size (>7 or 8 mm) has been reported as a predictive factor of subclinical LNM in PTMC patients (Park et al., 2014; Adolfo Pisanu et al., 2014). Our study confirmed that patients with a tumor size =6 mm had a significantly increased risk for central LNM compared to patients with a tumor size <6 mm (54% vs 24%, p<0.001, OR 6.606). Therefore, tumor size can help in the selection of aggressive PTMC patients.

Studies have shown multifocal PTC may be related to clonal selection from a preneoplastic field and spread throughout the thyroid gland (Jovanovic et al., 2010; Mazeh et al., 2011), which may be linked to central compartment LNM (Zhao et al., 2013). Kim et al. (2013) also demonstrated that multifocality is an independent predictive factor for central LNM. In our study, 32.6% of PTMC patients was found multifocality, and 45.2% of them had central LNM, which, in univariate analysis, was significantly higher than unifocal (p=0.002). This was similar to the results of prior studies, which reported PTMC multifocality was found in 20% to 40% of PTMC patients, 40% to 70% of whom had LNM (Mercante et al., 2009; Connor et al., 2011; Dunki-Jacobs et al., 2012). However, in multivariate analysis, there was no significant difference in the rate of CLNM between unifocal and multifocal group (p=0.189).

ECs is traditionally considered to have predictive value for central compartment LNM. Yang et al. (2014) reported tumoral infiltration of thyroid capsule was found in 12.7% of PTC, 78.4% of whom had LNM. Our study showed ECS was found 11.2% of PTMC, 70% of whom had LNM, which was significantly higher than ECS absent group (p=0.005). In multivariate analysis, ECS was an independently risk factor of central compartment LNM (p=0.000).

In conclusion, LNM was common in cN0 PTMC patients and may be predicted by clinical features such as male gender, larger tumor size and ECS. Our findings may help to guide clinicians in the selection of candidates suitable for CLND. Prophylactic CLND may be recommended for these aggressive PTMC patients.

References

Adolfo Pisanu, Alessandra Saba, Mauro Podda, et al (2014). Nodal metastasis and recurrence in papillary thyroid microcarcinoma. Endocrine, [Epub ahead of print].

Choi YJ, Yun JS, Kook SH, et al (2010). Clinical and imaging assessment of cervical lymph node metastasis in papillary thyroid carcinomas. World J Surg, 34, 1494-9.

Connor MP, Wells D, Schmalbach CE (2011). Variables predictive of bilateral occult papillary microcarcinoma following total thyroidectomy. Otolaryngol Head Neck Surg, 144, 210-5.

DeLellis RA, Lloyd RV, Heitz PU, et al (2004). Pathology and genetics of tumors of endocrine organs, in World Health Organization classification of tumors. (IARC Press, Lyon): 64-6.

Dunki-Jacobs E, Grannan K, McDonough S, et al (2012). Clinically unsuspected papillary microcarcinomas of the thyroid: a common finding with favorable biology? Am J Surg, 203, 140-4.

Hughes DT, White ML, Miller BS, et al (2010). Influence of prophylactic central lymph node dissection on postoperative thyroglobulin levels and radioiodine treatment in papillary thyroid cancer. Surgery, 148, 1100-6.

Hay ID, Hutchinson M E, Gonzalez-Losada T, et al (2008). Papillary thyroid microcarcinoma: a study of 900 cases observed in a 60-year period. Surgery, 144, 980-7.

He Q, Zhuang D, Zheng L, et al (2012). The surgical management of papillary thyroid microcarcinoma: a 162-month single-center experience of 273 cases. Am Surg, 78, 1215-8.

Jovanovic L, Delahunt B, McIver B, et al (2010). Distinct genetic changes characterise multifocality and diverse histological subtypes in papillary thyroid carcinoma. Pathology, 42, 524-33.

Kim, K.-E., Kim, E.-K., Yoon, J.H. et al. (2013). Preoperative prediction of central lymph node metastasis in thyroid papillary microcarcinoma using clinicopathologic and sonographic features. World J Surg, 37, 385-9.

Lin KD, Lin JD, Huang MJ, et al (1997). Clinical presentations and predictive variables of thyroid microcarcinoma with distant metastasis. Int Surg, 82, 378-81.

Lundgren CI, Hall P, Dickman PW, Zedenius J (2006). Clinically significant prognostic factors for differentiated thyroid carcinoma: a population-based, nested case-control study. Cancer, 106, 524-31.

Mercante G, Frasoldati A, Pedroni C, et al (2009). Prognostic factors affecting neck lymph node recurrence and distant metastasis in papillary microcarcinoma of the thyroid: results of a study in 445 patients. Thyroid, 19, 707-16.

Mazzaferrri EL, Doherty GM, Steward DL (2009). The pros and cons of prophylactic central compartment lymph node dissection for papillary thyroid carcinoma. Thyroid, 19, 683-9.

Mazeh H, Samet Y, Hochstein D, et al (2011). Multifocality in well differentiated thyroid carcinomas calls for total thyroidectomy. Am J Surg, 201, 770-5.

Palazzo FF, Gosnell J, Savio R, et al (2006). Lymphadenectomy for papillary thyroid cancer: changes in practice over four decades[J]. European J Surg Oncol, 32, 340-4.

Park JP, Roh JL, Lee JH, et al (2014). Risk factors for central neck lymph node metastasis of clinically noninvasive, node-negative papillary thyroid microcarcinoma. Am J Surg, 208, 412-8.

Roth E, Rossi R, Trasforini G, et al (2006). Clinical and histological characteristics of papillary thyroid microcarcinoma: results of a retrospective study in 243 patients. J Clin Endocrinol Metab, 91, 2171-8.

Verze S, Sarini J, Percodani J, et al. (2010). Lymph node management in clinically node-negative patients with papillary thyroid carcinoma. Eur J Surg Oncol, 36, 777-82.

White ML, Gauger PG, Doherty GM (2007). Central lymph nodedissection in differentiatied thyroid cancer. World J Surg, 31, 895-904.

Yang Y, Chen C, Chen Z, et al (2014). Prediction of central compartment lymph node metastasis in papillary thyroid microcarcinoma. Clin Endocrinol, 81, 282-8.

Zhao Q, Ming J, Liu C, et al (2013). Multifocality and total thyroidectomy. World J Surg, 37, 910-916.