Abstract. Fatty liver disease (FLD) is characterized by accumulation of excess fat in the liver. The underlying molecular mechanism associated with the progression of the disease has been elusive. Hepatocellular demise due to increased oxidative stress resulting in an inflammatory response may be a key feature in FLD. Recent advances in molecular biology have led to an improved understanding of the molecular pathogenesis, suggesting a critical association between the PI3K/AKT/PTEN signaling pathway and FLD. In particular, PTEN has been associated with regulating the pathogenesis of hepatocyte degeneration. Given the function of mitochondria in reactive oxygen species (ROS) generation and the initiation of oxidative stress, the mitochondrial antioxidant network is of interest. It is vital to balance the activity of intracellular key molecules to maintain a healthy liver. Consequently, onset of FLD may be delayed using dietary protective agents that alter PTEN signaling and reduce ROS levels. The advancement of research on dietary regulation with a focus on modulatory roles in ROS generation and PTEN associated signaling is summarized in the current study, supporting further preventive and therapeutic exploration.

Contents

1. Introduction
2. ROS involvement in the pathogenesis of fatty liver disease
3. PTEN in the anti-oxidative machinery
4. Diet and hepatocyte protection
5. Conclusions

1. Introduction

The liver is an organ performing vital functions (1). Hepatic disorders can affect the physiological and biochemical functions of the body. Fatty liver disease (FLD) is the prevalent form of chronic liver diseases that constitutes a range of disorders, starting with steatosis progressing to advanced stages, such as steatohepatitis, liver cirrhosis and hepatocellular carcinoma (HCC) (2). The origin of FLD involves non-alcoholic (NA) FLD and alcoholic liver disease (ALD (Fig. 1). In both cases, a complex process may cause the fatty liver in response to a variety of oxidative stress conditions (3). NAFLD is characterized by accumulation of excess fats in the liver of individuals unrelated to alcohol consumption; it is a progressive disease leading to irreversible liver injury (4). Non-alcoholic steatohepatitis (NASH) is an advanced stage of NAFLD and alcoholic liver disease (ALD (Fig. 1). In both cases, a complex process may cause the fatty liver in response to a variety of oxidative stress conditions (3). NAFLD is characterized by accumulation of excess fats in the liver of individuals unrelated to alcohol consumption; it is a progressive disease leading to irreversible liver injury (4). Non-alcoholic steatohepatitis (NASH) is an advanced stage of NAFLD, characterized by hepatic steatosis, ballooning injury and non-bacterial inflammation with or without fibrosis (5). The pathogenesis of the progression from NAFLD to NASH coincides with metabolic disorders that cause hepatosteatosis, and further progression to steatohepatitis is due to additional cellular processes, including mitochondrial injury, excess oxidative stress and inflammation (6). Genomic instability is one stage of hepatic carcinogenesis (7). Growing evidence suggests a key function of oxidative stress caused by the generation of reactive oxygen species (ROS) in the progression of FLD (Fig. 1) (8,9). An additional influence in the progression from steatosis to steatohepatitis is the sensitization of hepatocytes to oxidative stress and cell apoptosis (10). As mitochondria serve a central role in the control of ROS generation and modulate the sensitivity to the cell apoptosis signaling pathway, mitochondrial function may be a key regulator in the development of steatohepatitis (11). Under normal conditions, living cells maintain a balance between ROS formation and quenching (12).
An increasing incidence and prevalence worldwide mean that NAFLD has developed into a serious public health problem (13). As the underlying mechanism of FLD remains elusive and no effective therapeutic treatment has been established to date. It is suggested that excess uptake of free fatty acids from food leads to an early pathogenesis (14). Exercise is a simple therapeutic intervention; however, it was determined to be insufficient to relief symptoms (15). Type 2 diabetes, hypertriglyceridemia and obesity are frequently associated with NAFLD and NASH, while alcoholic steatohepatitis (ASH) is associated with alcohol abuse (16). ASH and NASH are intermediate stages of FLD, which can develop into cirrhosis or HCC. PTEN, a tumor suppressor, has been valuable in elucidating the pathways that regulate carcinogenesis in FLD (13). Progression of a fatty liver is accelerated by regulation of the liver PTEN signaling pathway (17). As with certain of other liver diseases, FLD increases the risk of liver cancer with poor outcomes and limited therapeutic options (13). Hence, a highly specific and effective drug treatment for FLD is required. The current review focuses on oxidative stress that contributes to the limited therapeutic effects in the treatment of FLD.

2. ROS involvement in the pathogenesis of fatty liver disease

Oxidative stress is considered as an imbalance between the generation of oxidants, such as ROS, and the activity of antioxidants, suggesting that the excess generation of free radicals and/or the modulation of antioxidant activity result in the accumulation of oxidative stress. Increased oxidative stress has harmful effects on cell functions that contribute to various diseases, including FLD (18). The imbalance in redox homeostasis is associated with the development of various tissue injuries, including brain, heart and bone (19). Cellular ROS increases via a certain pathways and mitochondrial damage. Mitochondria are the major intracellular site of oxygen consumption and are a source of ROS. Accordingly, alterations in mitochondrial function serve a significant role in the generation of ROS, which has been recognized to contribute to the development of ASH and NASH (11). Mitochondrial dysfunction is a contributor to ALD and this disease is linked to mitochondrial DNA fragmentation associated with active alcohol consumption (20). ROS are a group of oxygen-radical-containing molecules resulting from the metabolism of oxygen in the cells (21). Excessive concentrations of ROS result in macromolecular and genomic DNA damage, as well as cell death (22). In addition, elevated oxidative stress increases the risk of various cancer types (23). The formation of ROS during chronic inflammation is crucial to the progression of chronic liver diseases (24). ROS lead to a free radical chain-reaction in unsaturated fatty acids, a process called lipid peroxidation, generating toxic unsaturated aldehydes (25). The superoxide anion is the primary ROS generated in mitochondria and quenching of this compound is a critical step in preventing excessive oxidative stress. Additionally, ROS are physiologically important in signal transduction, cellular physiology, critical metabolic pathways and host defense (26,27).

ROS are abundant free radicals in nature, and ROS production and genomic stability are affected by lifestyle factors (28). Certain environment-associated lifestyle factors, including tobacco and alcohol consumption, ionizing radiation, infection, inflammation and the aging process, cause oxidative stress (29). High blood glucose and excessive insulin further cause elevated ROS production (30). Hyperglycemia exacerbates FLD by elevating apoptosis via generation of excessive ROS (31). In addition, obese patients have shown significantly higher serum levels oxidative stress compared with non-obese controls (32). Intensive aerobic and anaerobic exercise increases oxidative damage (33). Strenuous exercise disturbs the antioxidant equilibrium by increasing ROS levels. However, regular exercise upregulates endogenous antioxidant levels and reduces oxidative damage (34). As continued exposure to uncontrolled oxidative stress is an initiator of various chronic diseases and cancer, cells have developed a range of antioxidant strategies, including enzymatic and non-enzymatic antioxidants (35). Maintaining healthy ROS level is indispensable for the conservation of healthy cells and particularly in mitochondria a balance of antioxidants is necessary to avoid oxidative stress. Superoxide dismutases (SODs) have a strong antioxidant role characterized by scavenging ROS, through the reaction of superoxide to hydrogen peroxide (36). SODs are the primary defense against cellular damage by oxidative stress and the breakdown of mitochondrial superoxide is performed by manganese SOD (SOD2) (37). In addition to antioxidants, cells use distinct oxidative damage-repair mechanisms to eliminate DNA damage (38).

3. PTEN in the anti-oxidative machinery

ROS have been shown to modulate various physiological processes, including the regulation of growth factor signaling. One mechanism by which ROS exert cellular effects is through the regulation of target molecules, including PI3K/AKT/PTEN (39). The PI3K/AKT/PTEN signaling pathway protects against damaging effects originating from high levels of insulin (40). In addition, the PI3K/AKT/PTEN signaling pathway regulates factors involved in cell survival and proliferation (Fig. 2) (40). PTEN is a dual specificity phosphatase, processing lipids and proteins, and it is a member of the protein tyrosine phosphatase family of phosphatases (41,42). PTEN downregulates AKT activity through the conversion of phosphatidylinositol 3,4,5-triphosphate (PIP3) to phosphatidylinositol 4,5-bisphosphate (43). Cells lacking PTEN have higher levels of PIP3, a critical second messenger mediating signals from various growth factors, including insulin (44). PTEN is a tumor suppressor and is involved in oxidative stress and genomic damage induction (45). Inactivation of PTEN leads to prolonged AKT activation, increased mitochondrial respiration and increased ROS in mouse models (40). Downregulation, inhibition or deactivation of PTEN results in an increase of mitochondrial ATP production (46). Furthermore, PTEN is associated with the activation of the proteolytic cell apoptosis cascade through decreased activity of PI3K/AKT signaling (47).

Deficiencies of PTEN have been shown to promote NASH development (48). A hepatocyte-specific deletion of the PTEN gene exhibited an age-dependent development of liver steatosis and HCC (49,50). In addition, animal models of PTEN haploinsufficiency exhibit hepatomegaly, increased liver lipogenic gene expression, including of peroxisome...
proliferator-activated receptor (PPAR) γ and hepatic lesions, symptoms that are analogous to NAFLD (51). PTEN deficiency in hepatocytes induces upregulation of PI3K/AKT signaling, following increased lipogenesis and decreased lipolysis (52). Consistently, PTEN knockout mice exhibit insulin hypersensitivity, constitutive lipogenesis and hepatomegaly (53). In humans, PTEN mutations have been described in association with insulin hypersensitivity and obesity (54). In patients with FLD, reduced expression of PTEN and upregulation of AKT have been observed in liver biopsies (55). In addition, patients with NASH have shown decreased expression of PTEN compared with healthy patients (56). A marked increase of PTEN in hepatocellular steatosis progresses the disease to steatohepatitis and fibrosis, and in certain cases HCC (57). A previous study described PTEN and obesity-associated disorders as risk factors for HCC (13).

4. Diet and hepatocyte protection

Various disease-protective factors have been suggested in epidemiological studies (58,59). Dietary choices have been indicated to serve a role in liver protection (Fig. 3). Particularly,
dietary choices that modify the PI3K/AKT/PTEN signaling pathway may prevent FLD or decrease the rate of disease progression (60). Certain plants and fruits are promising targets (61-67).

Curcumin, an active ingredient derived from the root of *Curcuma longa* used as culinary turmeric, exhibits therapeutic potential for the treatment of diabetes and various types of cancer (62). Curcumin has strong antioxidant and anti-inflammatory effects and exhibits liver protective properties in an animal model (61). This protection is mediated by the PI3K/AKT/PTEN signaling pathway (63). Shikonin is a natural compound extracted from the roots of *Lithospermum erythrorhizon* (64) that was shown to prevent hepatotoxicity by upregulation of the PI3K/AKT/PTEN signaling pathway in an animal model (65). Kaempferol is a flavonol present in several plants, including grapefruits and edible berries, which was shown to inhibit hepatocyte apoptosis and prevent acute liver failure in an animal study (66). Icariin is a prenylated flavonol glycoside from *Epimedium koreanum*, which downregulates PTEN expression following AKT overexpression in an animal model (67). An antihepatotoxic activity of Icariin has been demonstrated in carbon tetrachloride-induced hepatocytes (68). In addition, in an animal model, rosemary (*Rosmarinus officinalis* L.) was shown to have liver protection activity at various stages of liver damage (69). Certain to-date unknown components of rosemary inhibit PTEN expression in K562 myeloid cells (70) and rosemary promotes liver regeneration in an experimental injury model (69). In contrast, levels of PTEN are increased when treated with Ginsenoside, a class of natural steroid glycosides, which exhibit hepatoprotective effects against acute hepatotoxicity in mice (71). Furthermore, certain types of diet rich in fat or carbohydrates contribute to hepatocyte protection (72). Further exploration is required to establish whether the protective characteristics are associated with the PI3K/AKT/PTEN signaling pathway.

*Antrodia camphorata* is a common mushroom found and used in Asia that protects against liver injury through reducing mitochondrial ROS (73). The active ingredient Genistein inhibits ROS production by enhancing SOD activities in an animal model (74). Genistein protects hepatocytes against toxicity due to creating a resistance to oxidative stress (75). Lycopene, an antioxidant found in red fruits such as tomatoes, inhibits hepatocyte apoptosis by reducing ROS levels and inhibiting mitochondrial dysfunction, and may have the ability to prevent FLD (76). It has been suggested that dietary intake of copper chloride and/or copper sulphate stabilizes SOD activity in an animal model, indicating a potential therapeutic benefit for FLD (77). Expression of SOD is associated with PPAR activity (78). The grape antioxidant resveratrol and its analogs increase SOD mRNA and protein expression levels *in vitro* (79). Furthermore, increased expression of SOD2 has been detected after administration of grape juice to an animal model (80). Commercially available grape juice reduces oxidative damage in the liver of experimental rats (81). Stevioside from Stevia leaves, a natural sweetener, increases the expression of various SODs, including SOD2, in mice experiments (82). The antioxidant potential of stevia extracts from Stevia leaves has been reported in an experimental liver damage model (83). Butyrate, a short-chain fatty acid which can be prepared from various vegetables, increases the expression of SODs (84), protecting mice from an early development of NAFLD (85). Blueberry juice protects liver function by reducing mitochondrial oxidative stress through elevating SOD and suppressing ROS activity in an animal model (86). Supplementation of antioxidants may protect...
hepatocytes from oxidative damage. Antioxidant vitamins, including C and E, have also presented hepatocyte protective effects in an animal toxicity model (87). Enhanced protection of liver membranes has been described for animals fed with a coenzyme Q10 (88). Consumption of vitamin E has been linked to regeneration of SODs in an animal model (89). In addition, a long-term diet rich in polyunsaturated fatty acid (PUFA) and/or docosahexaenoic acid (DHA) leads to lower oxidative damage to proteins. DHA supplementation has been suggested as a preventive approach for patients with ALD based on findings of an animal model (90). *Perilla frutescens* is a source of PUFA, with high levels present compared with other edible plants, and PUFA can be converted to DHA in the animal liver (91).

It is suggested that SODs, as well as dietary antioxidants, may offer hepatocyte protection against the progression of FLD (Fig. 3). However, the association between nutrient consumption and hepatocyte protection is complex and requires further investigation. In addition, the complexity of the human diet makes it challenging to examine distinctive effects. As presented, certain food or dietary components provide hepatocyte protection through signaling pathway modifications via modulation of specific activities. Furthermore, the microbiome has been described as a hallmark of various liver diseases (92). It has been reported that probiotics, including *Lactobacillus*, restores gut microbiota and alleviates liver injury in animal models (93). The proportion of *Bacteroides* has been described as markedly higher in patients with liver fibrosis compared with healthy controls, which influences NAFLD progression (94). Furthermore, probiotic administration has been associated with improved levels of liver markers of hepatic inflammation in patients with NAFLD (95). Accordingly, modulation of the gut microbiome presents a new therapeutic target in NAFLD treatment due to the distinct changes in the composition of gut microbiota. In the future, dietary approaches restoring gut microbiota may emerge as a therapy fields for FLD.

5. Conclusions

The development FLD and co-morbidities have severe effects on the liver and associated functions. There are no approved therapies for the treatment of FLDs. Therapeutic progress is limited by the poor understanding of the initiating steps of fat accumulation in the liver. Accordingly, potential endogenous modulators of the pathogenesis may provide tools for therapeutic intervention. Any conceivable therapeutic strategy should build on the observation that there are changes in key processes required for the cellular function. Therefore, properties of food ingredients may have certain hepatocyte protective potentials, which are facilitated through reduction of ROS production. To maintain normal cellular function, cells are required to escape excessive oxidative stress. This represents a rational basis for the development of dietary treatments for FLD. However, despite the various experimental observations using food ingredients, the precise mechanisms remain elusive and are therefore not suitable for clinical use. Additional mechanistic studies are required to understand detailed molecular mechanisms and to clarify if certain dietary intake is associated with improved hepatocyte survival.

Liver steatosis is associated with mitochondrial dysfunction and excessive mitochondrial ROS production. Although mitochondria are key in the maintenance of cell functions, they are also the main source of ROS. The dual function of ROS, as apoptosis triggers and performers in cell survival signaling, may determine the role of mitochondrial function in disease progression. An instrumental role of PTEN in hepatic carcinogenesis has been suggested for obese patients highlighting potential antioxidant involvement. It is imperative to exploit benefits from treatment in combination with chemical and medical modulators associated with the function of ROS and PTEN. Long-term clinical studies are further required to clarify distinct effects in the management of FLD to address therapeutic potential.

In conclusion, ROS and PTEN are involved in a pathogenesis of FLD and certain diets associated with PTEN signaling may contribute to disease prevention or progression through hepatocyte protection from apoptosis induced by oxidative stress.

Acknowledgements

Not applicable.

Funding

This work was supported by JSPS KAKENHI (grant no. JP18K17964) and the Nara Women's College in Japan.

Availability of data and materials

Not applicable.

Authors' contributions

YI and SM have contributed to the conception and design of the study. YI, MM, YN, AT, YK and SM participated in drafting and revising the article. All authors approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Protzer U, Maini MK and Knolle PA: Living in the liver: Hepatic infections. Nat Rev Immunol 12: 201-213, 2012.
2. Liu A, Galooosian A, Kaswala D, Li AA, Gadiparthi C, Cholankeril G, Kim D and Ahmed A: Nonalcoholic fatty liver disease: Epidemiology, liver transplantation trends and outcomes, and risk of recurrent disease in the graft. J Clin Transl Hepatol 6: 420-424, 2018.
3. Sundaram V and Morgan TR: Will studies in nonalcoholic steatohepatitis help manage alcoholic steatohepatitis? Clin Liver Dis 23: 157-165, 2019.
26. Banoth B and Cassel SL: Mitochondria in innate immune signaling. Transf Res 202: 52-68, 2018.

27. Mena S, Ortega A and Estrela JM: Oxidative stress in environmental-induced carcinogenesis. Mutat Res 674: 36-44, 2009.

28. Venza I, Visalli M, Oteri R, Teti D and Venza M: Combined effects of cigarette smoking and alcohol consumption on antioxidant/oxidant balance in age-related macular degeneration. Aging Clin Exp Res 24: 530-536, 2012.

29. Rains JL and Jain SK: Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med 50: 567-575, 2011.

30. Zhu W, Liu Q, Wang Y and Wang Z: The anthocyanin cyanidin-3-O-β-glucoside, a flavonoid, increases hepatic glutathione synthesis and protects hepatocytes against reactive oxygen species during hyperglycemia: Involvement of a CAMP-PKA-dependent signaling pathway. Free Radic Biol Med 137: 314-327, 2017.

31. Roh HT, Cho SY and So WY: Obesity promotes oxidative stress and exacerbates blood-brain barrier disruption after high-intensity exercise. J Sport Health Sci 6: 225-230, 2017.

32. He F, Li J, Liu Z, Chuang CC, Yang W and Zuo L: Redox mechanism of reactive oxygen species in exercise. Front Physiol 7: 486, 2016.

33. Smith Sonneborn J: Alternative strategy for Alzheimer's disease: Stress response triggers. Int J Alzheimer's Dis 2012: 684283, 2012.

34. Farombi EO, Shyntum YY and Emerole GO: Influence of chloroquine treatment and Plasmodium falciparum malaria infection on some enzymatic and non-enzymatic antioxidant defense indices in humans. Drug Chem Toxicol 26: 59-71, 2003.

35. Johnson F and Guigli K: Cancer cells and reactive oxygen species: and their impact upon human health. Mol Aspects Med 26: 340-352, 2005.

36. Smith MR, Fernandes J, Go YM and Jones DP: Redox dynamics of manganese as a mitochondrial life-death switch. Biochem Biophys Res Commun 378: 309-318, 2009.

37. Turgeon MO, Perry JS and Poulougiannis G: DNA damage repair, and cancer metabolism. Front Oncol 8: 15, 2018.

38. Nakanishi A, Wada Y, Kitagishi Y and Matsuda S: Link between PI3K/AKT/PTEN pathway and NOX protein diseases. Aging Cell 13: 203-211, 2014.

39. Bankoglu EE, Tschopp O, Schmitt J, Burkard P, Jahn D, Geier A and Stopfer H: Role of PTEN in oxidative stress and DNA damage in the liver of Whole-Body Pten Haplodeficient Mice. PLoS One 11: e0166956, 2016.

40. Liu J, Yu X, He L, Cheng T, Zhou J, Cheng C, Chen Z, Cheng G, Qu Z and Zhou W: The protein phosphatase activity of PTEN is essential for regulating neural stem cell differentiation. Mol Brain 8: 26, 2015.

41. Oganesian A, Poot M, Daum G, Coats SA, Wright MB, Seifert RA and Bowen-Pope DF: Protein tyrosine phosphatase RQ is a phophatidylinositol phosphatase that can regulate cell survival and proliferation. Proc Natl Acad Sci USA 100: 7563-7568, 2003.

42. Carnero A and Paramio JM: The PTEN/PI3K/AKT pathway in tumorigenesis, cancer mouse models. Front Oncol 4: 252, 2014.

43. Chen CY, Chen J, He L and Stiles BL: PTEN: Tumor suppressor and metabolic regulator. Front Endocrinol (Lausanne) 9: 338, 2018.

44. Kitagishi Y and Matsuda S: Redox regulation of tumor suppressor PTEN in cancer and aging (Review). Int J Mol Med 31: 511-513, 2013.

45. Liu Y, Yan J, Sun C, Li G, Li S, Zhang L, Di C, Gan L, Wang Y, Zhou R, et al: Ameliorating mitochondrial dysfunction restores carbon ion-induced cognitive deficits via co-activation of NRF2 and PINK1 signaling pathway. Redox Biol 17: 143-157, 2018.

46. Liu Y, Cao Y, Sun S, Zhu J, Gao S, Pang J, Zhu D and Sun Z: Transforming growth factor-beta upregulation triggers pulmonary artery smooth muscle cell proliferation and apoptosis imbalance in rats with hypoxic pulmonary hypertension via the PTEN/AKT pathways. Int J Biochem Cell Biol 61: 141-154, 2015.

47. Liu X, Liao R, Hanley K, van derVoort H, Dong W, King SM, Clark C, Wei X, Varliki NK, Alderson N, Chu C, et al: Dual Shp2 and Pten deficiencies promote Non-alcoholic Steatohepatitis and genesis of liver tumor-initiating cells. Cell Rep 17: 2979-2993, 2016.

48. Piguet AC, Saran U, Simonil C, Keller I, Terracciano L, Rechen H, and Dufour JF: Regular exercise decreases liver tumor development in hepatocyte-specific PTEN-deficient mice independently of steatosis. J Hepatol 62: 1296-1303, 2015.

49. Gao M and Liu D: CIRSR/Pcass-based Pten knock-out and Sleeping Beauty Transposon-mediated Nras knock-in induce hepatocellular carcinoma and hepatic lipid accumulation in mice. Cancer Biol Ther 18: 505-512, 2017.

50. Eritja N, Arjó G, Santacana M, Gatuss I, Ramirez-Núñez O, Arcal L, Serrano JCE, Pamplona R, Dolcet X, Piñol C, et al: Oral intake of genetically engineered birth-control-Primordial mitochondrion ameliorates hepatomegaly and hepatic steatosis in PTEN haploinsufficient mice. Biochem Biophys Acta 1862: 526-535, 2016.
Caspase-mediated anti-apoptotic effect of ginsenoside Rg5, an inhibitor of αβ signaling. Clin Exp Immunol 193: 369-376, 2018.

72. Sarady JK, Zuckerman BS, Bilban M, Wagner O, Usheva A, Liu F, Hedgboge E, Zamora R, Choi AM and Otterbein LE: Carbon monoxide protection against endotoxin shock involves mitochondrial redox signals on iNOS in the lung and liver. FASEB J 18: 854-856, 2004.

73. Huo Y, Win S, Than TA, Yin S, Ye M, Hu K and Kaplowitz N: Antich points against acute liver injury through disruption of the interaction of c-Jun-N-terminal kinase with mitochondrial. Antioxid Redox Signal 26: 207-220, 2017.

74. Yuan Q, Guan T, Huang M, Li L, Li Y, Cheng H, Jin H and Yu D: Neuroprotection by the soy isolavone, genistein, via inhibition of mitochondria-dependent apoptosis pathways and reactive oxygen induced-NF-κB activation in a cerebral ischemia mouse model. Neurochem Int 60: 759-767, 2012.

75. Ren T, Mou Y, Li Z, Zhang PHL, Zhang DY, Zhang L and Cui MJ: Genistein protection against acetylcholinesterase-induced liver injury via its potential impact on the activation of UDP-glucuronosyltransferase and antioxidant enzymes. Food Chem Toxicol 55: 172-181, 2013.

76. Stice CP, Xia H and Wang XD: Tomato lycopenne prevention of alcoholic fatty liver disease and hepatocellular carcinoma development. Chronic Dis Transl Med 4: 211-224, 2018.

77. Robinett NG, Peterson RL and Culotta VC: Eukaryotic copper-only superoxide dismutases (SODs): A new class of SOD enzymes and SOD-like protein domains. J Biol Chem 293: 9626-9633, 2018.

78. Desjardins F, Sekkali B, Verreth W, Pelat M, De Keyzer D, Mertens A, Smith G, Herregods MC, Holvoet P and Balligand JL: Rosuvastatin increases vascular endothelial PPARα expression and corrects blood pressure variability in obese model. Exp Physiol 104: 128-137, 2019.

79. Chatterjee A, Ronghe A, Padhye SB, Spade DA, Bhat NK and Bhat HK: Antioxidant activities of novel resveratrol analogs in breast cancer. J Biochem Mol Toxicol: 32, 2018 doi: 10.1002/jbt.21925.

80. Ribeiro CCD, Silva RM, Campanholo VMLP, Ribeiro DA, Ribeiro Paiot AP and Fonsones NM: Effects of grape juice in superoxide dismutase and catalse in colorectal cancer. Carcinogenesis 39: 2839-2844, 2018.

81. Rodrigues AD, Scheffel TB, Scola G, Dos Santos MT, Fank B, Dani C, Vanderlinde R, Henriquez JA, Coitinho AS and Salvador M: Purple grape juices prevent pentylenetrazol-induced oxidative damage in the liver and serum of Wistar rats. Nutr Res 33: 120-125, 2013.

82. Geeraert B, Crombé F, Hulmans M, Benhabilets N, Geuns JM and Holvoet P: Stevioside inhibits atherosclerosis by improving insulin signaling and antioxidant defense in obese insulin-resistant mice. Int J Obes (Lond) 34: 569-577, 2010.

83. Moselhy SS, Ghoneim MA and Khan JA: In vitro and in vivo evaluation of antimicrobial and antioxidant potential of stevioside extract. Afr J Tradit Complement Altern Med 13: 18-21, 2016.

84. Ma N, Abaker JA, Bilal MS, Dai H and Shen X: Sodium butyrate improves antioxidant stability in sub-acute ruminal acidosis in dairy goats. BMC Vet Res 14: 275, 2018.

85. Jin CJ, Engstler AJ, Sellmann C, Ziegenhardt D, Landmann M, Kanuri G, Lounis H, Schröder M, Vetter W and Bergheim I: Sodium butyrate protects mice from the development of alcoholic fatty liver disease and hepatocellular carcinoma development. Chronic Dis Transl Med 4: 211-224, 2018.
90. Aliche-Djoudi F, Podechard N, Collin A, Chevanne M, Provost E, Poul M, Le Hégarat L, Catheline D, Legrand P, Dimanche-Boitrel MT, Lagadic-Gossmann D and Sergent O: A role for lipid rafts in the protection afforded by docosahexaenoic acid against ethanol toxicity in primary rat hepatocytes. Food Chem Toxicol 60: 286-296, 2013.

91. Ide T, Kobayashi H, Ashakumary L, Rouyer IA, Takahashi Y, Aoyama T, Hashimoto T and Mizugaki M: Comparative effects of perilla and fish oils on the activity and gene expression of fatty acid oxidation enzymes in rat liver. Biochim Biophys Acta 1485: 23-35, 2000.

92. Manley S and Ding W: Role of farnesoid X receptor and bile acids in alcoholic liver disease. Acta Pharm Sin B 5: 158-167, 2015.

93. Forsyth CB, Farhadi A, Jakate SM, Tang Y, Shaikh M and Keshavarzian A: Lactobacillus GG treatment ameliorates alcohol-induced intestinal oxidative stress, gut leakiness, and liver injury in a rat model of alcoholic steatohepatitis. Alcohol 43: 163-172, 2009.

94. Bastian WP, Hasan I, Lesmana CRA, Rinaldi I and Gani RA: Gut microbiota profiles in nonalcoholic fatty liver disease and its possible impact on disease progression evaluated with transient elastography: Lesson learnt from 60 cases. Case Rep Gastroenterol 13: 125-133, 2019.

95. Sharpton SR, Maraj B, Harding-Theobald E, Vittinghoff E and Terrault NA: Gut microbiome-targeted therapies in nonalcoholic fatty liver disease: A systematic review, meta-analysis, and meta-regression. Am J Clin Nutr 110: 139-149, 2019.