Data Augmentation via Mixed Class Interpolation using Cycle-Consistent Generative Adversarial Networks Applied to Cross-Domain Imagery

Hiroshi Sasaki1, Chris G. Willcocks1, Toby P. Breckon1,2

Department of \{1Computer Science | 2Engineering\}, Durham University, Durham, UK

Abstract—Machine learning driven object detection and classification within non-visible imagery has an important role in many fields such as night vision, all-weather surveillance and aviation security. However, such applications often suffer due to the limited quantity and variety of non-visible spectral domain imagery, where by contrast the high data availability in visible-band imagery readily enables contemporary deep learning driven detection and classification approaches. To address this problem, this paper proposes and evaluates a novel data augmentation approach that leverages the more readily available visible-band imagery via a generative domain transfer model. The model can synthesise large volumes of non-visible domain imagery by image translation from the visible image domain. Furthermore, we show that the generation of interpolated mixed class (non-visible domain) image examples via our novel Conditional CycleGAN Mixup Augmentation (C2GMA) methodology can lead to a significant improvement in the quality for non-visible domain classification tasks that otherwise suffer due to limited data availability. Focusing on classification within the Synthetic Aperture Radar (SAR) domain, our approach is evaluated on a variation of the Statoil/C-CORE Iceberg Classifier Challenge dataset and achieves 75.4\% accuracy, demonstrating a significant improvement when compared against traditional data augmentation strategies.

I. INTRODUCTION

The demand of automated pattern recognition, especially automatic object detection and classification in imagery, is continuously expanding. In computer vision, there are many applications utilising automatic pattern recognition, for example, optical character recognition \cite{1}, video surveillance \cite{2}, agricultural analysis from satellite imagery \cite{3}, and defect detection in factory automation \cite{4}. These functions are enabled by recent advances in machine learning, namely deep neural networks (DNN) \cite{5}. DNN have enabled hitherto unprecedented performance on various challenging computer vision tasks such as image classification, object detection, semantic segmentation and temporal video analysis.

This expansion, both in demand and performance, has led to the broader consideration of computer vision applications in imagery domains beyond the visible spectrum, i.e. non-visible images such as infrared (thermal) \cite{6}, synthetic aperture radar (SAR) \cite{7} and X-ray images \cite{8}. Imaging within the non-visible spectrum provides sensing capabilities ranging from all-weather visibility, object temperature, material characteristics and sub-surface/object transparency. Whilst DNN approaches have predominately been applied to visible domain imagery, they can be readily applied across the non-visible spectrum also. However, the primary challenge is now of broader data availability in these additional spectral imaging domains. Whilst contemporary DNN approaches generally perform well in domains with large amounts of data available, within the non-visible imaging domain data availability is often more limited and it can be difficult to collect enough image samples to provide sufficient variability and coverage of the target data distribution expected at inference (test, deployment) time. For example, SAR imagery is far less readily available and accessible due to both the lesser prevalence of this sensing technology and its associated costs. In addition, SAR imagery significantly differs from visible-band imagery because it results from active sensing by microwave radar backscatter projection, whilst visible images are captured passively according to the intensity of reflected scene illumination. Moreover, SAR imagery is significantly impacted by the choice of microwave bands in use and by the angle of microwave transmission. These variations from conventional imagery that preclude the direct applicability of commonplace transfer learning solutions, coupled with the lack of data availability, further inhibit inter-task applications with such diverse sensor imagery.

In order to address this issue of DNN model generalisation under such limited data availability, data augmentation...
methods such as geometric image transformation and pixel-wise intensity transformations are traditionally adopted. However, such methods tend to synthesise images which are highly biased to both the prior assumptions of this augmentation and the prior distribution of the already limited dataset in use. An alternative solution, more specific to object classification tasks, involves blending a pair of input images of different classes to smooth the classification decision boundary during the training [9]. This approach can be effective when there are few training examples (limited data availability), but remains highly sensitive to biases in the input samples. To overcome these issues, recent research into image synthesis and dataset augmentation has focused on stochastic generative models, which can create a variety of high-quality images [10]. In particular, image translation models are able to generate samples by mapping between image domains [11], whereas standard generative models synthesise images by transforming vectors of noise sampled from a simpler prior distribution. Image translation is particularly effective when there are few images in a desired domain and large quantities of data available in another indirectly related domain, such as in the context of a small amount of available SAR image data and the large amount of publicly available visible imaging data.

Taking this into consideration, we exploit the potential of image translation as a dataset augmentation strategy and develop a new image translation model, adopted from Cycle-Consistent Generative Adversarial Networks (CycleGAN) [11]. In particular, we modify CycleGAN by manipulating class conditional information and generating class-interpolated images (Figure 1), as described in detail in Section III. The experiments supporting our method, within the context of SAR object classification, are presented in Section IV with subsequent conclusions presented in Section V.

II. RELATED WORK

Many data augmentation approaches within a computer vision context have been proposed and can mainly be divided into two sub-types: unsupervised and supervised [12].

A. Unsupervised Data Augmentation

An unsupervised approach aims to increase the quantity of training imagery via a set of fixed geometric and pixel-wise image processing operations to transform an existing dataset image (e.g. flipping, rotation, cropping, adding noise, etc. [12]).

Mixup [9] is a recent approach that blends pairs of randomly chosen training images using randomly weighted blending rates to avoid overfitting. In addition, [13] [14] [15] [16] have shown the effectiveness of partially masking image sub-regions to force generalisation during model training. Instead of zero masking, replacing these regions with a region of the same size from another training set image also provides an improvement in performance [17].

B. Supervised Data Augmentation

Unsupervised methods are also beneficial to constrain training set overfitting. However, the trained models are often unable to accurately model patterns or trends that appear within test data distribution that are infrequent within the training data distribution. This is further hindered by the fact that the broader augmented training dataset represents a data distribution is created by geometric and pixel-wise operations over this original training data distribution within which such patterns are similarly limited. In order to overcome this issue, several approaches that instead generate full new images from the latent space of a trained DNN model were proposed [18] [19] [10].

Manifold Mixup [18] is a modification of Mixup. This interpolates not only input images and their associated output labels but also latent information within the hidden layers. This attempts to increases the novelty of data samples generated by latent information level processing. Meanwhile, data augmentation via diversification of image style was proposed [19]. Utilising a style transfer network [20], a DNN trained to transfer the style from one image to another while preserving its semantic contents, they additionally augmented their training data via image style randomisation.

Generative Adversarial Networks (GAN) [10] have significantly impacted data augmentation within DNN training. A GAN is a generative DNN architecture, designed to have a generator and a discriminator component that compete against each other during its training process. The generator is trained to map randomised values to real data examples produced by the discriminator. The objective function is defined as:

\[
\min_{G} \max_{D} V(D,G) = \mathbb{E}_{x \sim p_{\text{data}}(x)} \left[\log D(x) \right] + \\
\mathbb{E}_{z \sim p_{z}(z)} \left[\log(1 - D(G(z))) \right]
\]

where \(G \) and \(D \) are the generator and discriminator respectively, \(x \) is input data and \(z \) is random noise. As a result of training the generator within this GAN architecture, it is hence optimised to create realistic, yet artificial data that is statistically similar (drawn from the same distribution) to the real data. In order to apply GAN to Convolutional Neural Networks approaches that specifically target convolutional feature extraction from images, the variant of GAN called Deep Convolutional GAN (DCGAN) [21] was proposed. A basic (vanilla) DCGAN generates images based on whether they are determined as real or not by the discriminator without any other constraints and hence does not have the ability to output class dependent images. A Conditional GAN (cGAN) [22] was proposed to modify the GAN architecture to take account of classes by adding class labels into the inputs of the generator and discriminator. The objective function (1) is modified as:

\[
\min_{G} \max_{D} V(D,G) = \mathbb{E}_{x \sim p_{\text{data}}(x)} \left[\log D(x|y) \right] + \\
\mathbb{E}_{z \sim p_{z}(z)} \left[\log(1 - D(G(z|y))) \right]
\]
where y is the category label given in the objective function. Moreover, another GAN variant, called Auxiliary Classifier GAN (ACGAN) [23], implemented classification in addition to generative modeling. This architecture trains its network to minimise the distance of between both the real and fake data examples and the actual and predicted category labels. While such conditional information was initially implemented as a concatenation of the input and output of the networks, the methods applying embedded features of the condition to the factors of the normalisation layers of the generator networks were proposed [24] [25]. The normalisation layers in such methods are called the conditional normalisation layers and the generators are modified as $G(z, e(y))$, where e is the embedding function. These extensions to the GAN concept have illustrated strong improvement in the quality of the generated images. Furthermore, the effectiveness of embedding condition labels not only to the generator but also to the discriminator was illustrated [26]. This discriminator, which is called the projection discriminator, is implemented with an inner product of the original discriminator outputs and the embedded vectors of the labels as the outputs.

A large corpus of images from other related domains can also be potentially useful for increasing training data in some cases. Generating new images by transferring from another domain image set, which is called image translation, has the possibility of expanding the distribution of training data such that it is closer to that of real images rather than generative models that simply generate instances from random latent vectors. CycleGAN [11] is one of the expansions of GAN specified in image translation. In this method, G and D are trained to transfer from source images $x_s \in X_s$ to target images $x_t \in X_t$. Not only a lateral transform G, it learns bilateral transform paths $G_t(x_s), G_s(x_t)$. In addition, this adopts a new loss measure named a cycle-consistency loss $L_{cyc}(G_s, G_t)$, which is represented as:

$$L_{cyc}(G_s, G_t) = \mathbb{E}_{x_s \in X_s} [\|G_s(G_t(x_s)) - x_s\|_1] + \mathbb{E}_{x_t \in X_t} [\|G_t(G_s(x_t)) - x_t\|_1]$$ (3)

In total, the full objective function is:

$$\min_{G_s, G_t} \max_{D_s, D_t} V(D_s, G_s) + V(D_t, G_t) + \lambda_{cyc} L_{cyc}(G_s, G_t)$$ (4)

where λ_{cyc} is a cycle-consistency loss weight.

The method proposed in this paper adopts CycleGAN and cGAN with the conditional normalisation layers and the projection discriminator in combination, namely the conditional CycleGAN approach. In addition, we apply a Mixup-like approach to the image generation procedure of our conditional CycleGAN model as another novel approach.

III. METHODOLOGY

The proposed method assumes a source domain dataset $(x^i_s, y^i_s) \in X^N_s$ and a target domain dataset $(x^j_t, y^j_t) \in X^M_t$ which consist of N and $M(\ll N)$ samples respectively. x^i_s and x^j_t are the images themselves and y^i_s and y^j_t are class labels. The types of classes are common in both domains.
\(\lambda_s \) and \(\lambda_t \) are source domain and target domain weights, respectively. \(\lambda_{gp} \) is a weight of the gradient penalty. That is, we balance the corresponding generator and discriminator functions with the cycle-consistency losses for both the source and target domains accordingly.

B. Data Augmentation

After training, the trained model resulting from this approach is leveraged for the following two types of data augmentation.

1) **Standard Generative Augmentation:** As a simple way to synthesise new class-conditioned images with domain transfer, the images and class labels in the source domain dataset \(\{(x_s^i, y_s^i)\} \in X_s^N \) are input to the model. As a result, \(N \) samples \(\{(G_t(x_s^i, e_s(y_s^i)), y_s^i)\} \) are synthesised. The new fake samples are combined to the original dataset as \(X_t^M \cup \{(G_t(x_s^i, e_s(y_s^i)), y_s^i)\} \), where we denote this method Conditional CycleGAN Augmentation (C2GA).

2) **Inter-class Generative Augmentation:** Furthermore, we propose an additional, novel approach to generate more varied class-conditioned images. This method synthesises inter-class interpolated samples (as previously introduced with Figure 1) following a similar concept to the earlier, non-synthesis based Mixup concept [9]. However, unlike the standard generative approach (Section III-B1), a pair of images and labels are used as an input \((x_s^i, y_s^i), (x_t^j, y_t^j) \in X_s^N \). Subsequently, a tuple of a mixed image, label, and embedded feature vector \((\tilde{x}_s^k, \tilde{y}_s^k, \tilde{e}_s^k)\) is defined by:

\[
\begin{align*}
\tilde{x}_s^k &= x_s^i * \lambda + x_t^j * (1 - \lambda) \\
\tilde{y}_s^k &= y_s^i * \lambda + y_t^j * (1 - \lambda) \\
\tilde{e}_s^k &= e_s(y_t^j) * \lambda + e_s(y_s^i) * (1 - \lambda)
\end{align*}
\]

where \(\lambda \in [0, 1] \) is the mixup ratio, and \(\lambda \sim \text{Beta}(\alpha, \alpha) \) from the beta distribution Beta, in which \(\alpha \) is constantly set as in [9]. As a result, the mixed pair \((\tilde{x}_s^k, \tilde{y}_s^k)\) to be input to the generator and discriminator is defined, where:

\[
(\tilde{x}_s^k, \tilde{y}_s^k) = (G_t(x_s^k, e_s^k), \tilde{y}_s^k)
\]

Consequently, the generated images are combined with the training dataset, as in the standard method. We denote this method as Conditional CycleGAN Mixup Augmentation (C2GMA).

IV. Experiments

The method is evaluated in the context of the ships/icebergs SAR classification task using the Statoil/C-CORE Iceberg Classifier Challenge dataset [30]. Results are compared between classification models trained with and without existing dataset augmentation approaches in addition to our proposed CycleGAN driven C2GA (Section III-B1) and CC2GMA (Section III-B2) approaches.

![SAR ships/icebergs images divided into three groups based on difficulty of discrimination by distance, angle, object size, etc.](image)

Fig. 3: SAR ships/icebergs images divided into three groups based on difficulty of discrimination by distance, angle, object size, etc.

A. Dataset

The Statoil/C-CORE Iceberg Classifier Challenge dataset [30] is a collection of satellite SAR images of ships and icebergs, each with \(75 \times 75 \) pixels. The dataset comprises of a training set with images labelled as either a ship or an iceberg, along with a set of unlabelled test images. Here we use only the labelled training data in our experiments (we split this labelled data into different groups for evaluation, discussed subsequently). Each sample in the data is represented by 2-channel floating-point images according to the two different channels of microwave echoes: HH and HV. The values in HH channel are the intensity of the horizontal echoes of the horizontal transmitted microwave, whereas the HV channel is the intensity of the vertical echoes of same transmitted microwave.

A challenge of assessing the generalisation performance, given a dataset sampled from a single distribution, is that it does not reflect the case where the distribution of data under the expected testing conditions differs from the distribution of data sampled for training. Therefore, we split the dataset into three groups of discriminable classes, from which the images are sampled at different ratios between training and testing. We initially combine the two channels into one channel:

\[
I(x, y) = \sqrt{I_{HH}(x, y)^2 + I_{HV}(x, y)^2}
\]

where \(I(x, y) \), \(I_{HH}(x, y) \), and \(I_{HV}(x, y) \) are the pixel value of the combined image, the HH image, and the HV image at \((x, y)\) respectively. The dataset is then subdivided into three groups by hand for each class: (a) easily discriminable sets, (b) moderately discriminable sets, and (c) difficult cases (Figure 3).

Each of the groups is partitioned into training and testing splits and subsampled at different ratios, where specifically we distort the distribution of the training sets to simulate further imbalance and mismatch between the training distribution and
In order to augment the training datasets using our proposed method, we use the satellite visible image dataset named DOTA [31], which is a collection of commercial satellite images containing many objects such as vehicles annotated with bounding boxes and class labels. We use visible and SAR image pairs with SAR images originating from the Statoil/C-CORE Iceberg Classifier Challenge dataset [30] and visible images from the DOTA [31] dataset. Due to the lack of iceberg visible images within either dataset, we pair iceberg SAR images from the Statoil/C-CORE Iceberg Classifier Challenge dataset [30] with representative non-ship images from the DOTA [31] dataset, for which purposes we use visible images of vehicles. Despite this obvious semantic mismatch in the secondary pairing, our image translation model specifically synthesises images conforming to the true distribution of the SAR iceberg images as enforced by the discriminator criteria of the loss function (9).

Initially, visible object images are extracted from the visible dataset using the annotations. Each extracted image is resized in the same way as the SAR image, and its rotations adjusted accordingly. The backgrounds are set to black, which prevents including surrounding objects, which would be undesirable (Figure 4). Such images are eliminated based on distances from the median of the whole images in each class. These distances are measured in the latent spaces trained by a Variational Autoencoder [32] on individual classes. Using the encoder, all of the images are embedded on a lower dimensional manifold, following an approximate normal distribution, and the distances of each sample \(d(x_i^c) \) are calculated:

\[
d(x_i^c) = \sqrt{(f_e(x_i^c) - \mathcal{M}^c)^T S^c(f_e(x_i^c) - \mathcal{M}^c)} \quad (17)
\]

\[
S^c = \mathbb{E}[(f_e(x_i^c) - \mathcal{M}^c)(f_e(x_i^c) - \mathcal{M}^c)^T] \quad (18)
\]

where \(x_i^c \) is the \(i \)-th input sample of class \(c \), \(f_e \) is the encoder, and \(\mathcal{M}^c \) is the median of the encoded features in class \(c \). \(S^c \) is a normalisation factor for each dimension of the feature vectors in class \(c \). Half of the shorter distance samples are selected for each class, subsampling 14,034 visible ship images and 13,063 visible vehicles, resulting in clearer data and higher-quality annotations for use as our source domain.

B. Training Domain Transfer Model

Domain transfer models, as described in Section III-A, are trained using the SAR images for each training split, where 1,500 ships and 1,500 vehicles images are subsampled from the visible images, prepared as previously outlined. The network architecture used in this experiment is shown in Figure 6 which follows a standard residual generative network, and the discriminator function uses Spectral Normalization on the convolutional layers. The network training parameters are: \(\lambda_s = \lambda_t = 10.0 \), \(\lambda_{cyc} = 1.0 \), \(\lambda_{gp} = 0.01 \), batch size \(B = 32 \), and number of critics = 2, 187,500 training iterations and optimised with Adam [33] (initial learning rate \(\eta = 0.0001 \), \(\beta_1 = 0.5 \), \(\beta_2 = 0.999 \)).

![Fig. 4: Visible images from [31] (domain transfer source).](image)

![Fig. 5: Poor quality visible images illustrating blurring and some multiple objects (which we eliminate).](image)

![Fig. 6: Our network architecture:- Conditional Batch Normalisation layers are applied to every convolutional layer within the Generator whilst Instance Normalisation layers and Spectral Normalization are applied to every convolutional layer within the Discriminator.](image)
Fig. 7: Examples of the generated SAR images (Train #1): (a) and (b) are the individual class images. (c) are the inter-class images sorted by the class labels from ship to iceberg.

C. Data Augmentation
Fake SAR images are synthesised using the visible images as the input of the transfer model, as discussed in the previous section. This results in 3,000 generated SAR images, where examples of these generated images are shown in Figure 7. Additionally, we plot the real SAR images and fake SAR images using t-SNE [34] (Figure 8) to show how the different distributions interrelate. This plot shows that the fake SAR images are well-distributed around the real SAR images.

D. Evaluation on Object Classification Task
Evaluation of the classifier performance uses a simple Alexnet classification architecture [35], where the classifier performance is compared under the following conditions:
- **BL**: Only using the original training data [30]
- **ROT**: BL + rotated 90, 180, and 270 degrees
- **MIXUP**: Mixup ($\alpha = 0.2$) [9]
- **C2GA**: (Ours) BL + C2GA (Section III-B1)
- **C2GMA**: (Ours) BL + C2GMA ($\alpha = 0.2$, Section III-B2)

The trained classifiers are trained with the three training datasets, as denoted in Table 1, where the hyperparameters are optimised with the Stochastic Gradient Descent algorithm ($\eta = 0.02$, number of epochs $= 200$, $B = 512$). Performance is assessed via the testing dataset also outlined in Table 1, using statistical accuracy (A), precision (P), recall (R) and F1-score (F1) (Table II).

Quantitative results are shown in Table II, with individual per-class performance for ships and iceberg classification shown in confusion matrices shown in Figure 9. Overall results demonstrate our proposed C2GA and C2GMA data augmentation approaches significantly outperform the other approaches (BL, ROT, and MIXUP). Furthermore, C2GMA shows additional performance improvement over C2GA. Overall, it is shown that generating new images using our approach can increase underrepresented training data appropriately (C2GA/C2GMA, Table II), and additional synthesising inter-class images again provides significant improvements for classification performance (C2GMA, Table II).

V. CONCLUSION
This paper proposes and evaluates two CycleGAN enabled data augmentation approaches, Conditional Cycle...
GAN Augmentation (C2GA) and Conditional CycleGAN Mixup Augmentation (C2GMA), to address the challenge of effective data augmentation for cross-domain imagery where non-visible domain imagery availability may be limited. In addition, we show that the generation of interpolated mixed class (non-visible domain) image examples via our novel C2GMA methodology can lead to a significant improvement in the quality for non-visible domain classification tasks that otherwise suffer due to limited data availability. Focusing on classification within the synthetic aperture radar domain, our approach is evaluated on a variation of the Statoil/C-CORE Iceberg Classifier Challenge dataset and achieves 75.4% accuracy, demonstrating a significant improvement when compared against traditional data augmentation strategies. Future work will consider DNN architecture modifications to enable it to generate higher quality images for improved results and application to other non-visible band imaging domains.

References

1. R. G. Casey and E. Lecolinet, “A survey of methods and strategies in character segmentation,” IEEE transactions on pattern analysis and machine intelligence, vol. 18, no. 7, pp. 690–706, 1996.
2. W. Hu, T. Tan, L. Wang, and S. Maybank, “A survey on visual surveillance of object motion and behaviors,” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 34, no. 3, pp. 334–352, 2004.
3. A. Vibhute and S. K. Bodhe, “Applications of image processing in agriculture: a survey,” Intl. Journal of Computer Applications, vol. 52, no. 2, 2012.
4. S.-H. Huang and Y.-C. Pan, “Automated visual inspection in the semiconductor industry: A survey,” Computers in industry, vol. 66, pp. 1–10, 2015.
5. I. G. Goodfellow, Y. Bengio, and A. C. Courville, “Deep learning,” Nature, vol. 521, pp. 436–444, 2015.
6. M. E. Kundegorski, S. Akçay, G. P. de La Garanderie, and T. P. Breckon, “Real-time classification of vehicles by type within infrared imagery,” in Proc. Optics and Photonics for Counterterrorism, Crime Fighting, and Defence XII, 2016.
7. S. Chen, H. Wang, F. Xu, and Y.-Q. Jin, “Target classification using...
Fig. 9: Per-class performance (confusion matrices) of our approaches (C2GA/C2GMA) against prior work in the field.
[31] G.-S. Xia, X. Bai, J. Ding, Z. Zhu, S. Belongie, J. Luo, M. Datcu, M. Pelillo, and L. Zhang, “Dota: A large-scale dataset for object detection in aerial images,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2018.

[32] Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and L. Carin, “Variational autoencoder for deep learning of images, labels and captions,” in Advances in Neural Information Processing Systems 29, 2016.

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc. 3rd Intl. Conf. on Learning Representations, 2015.

[34] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[35] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in Neural Information Processing Systems 25, 2012.