Ground state properties of the Holstein-Hubbard model

Tadahiro Miyao
Department of Mathematics, Hokkaido University,
Sapporo 060-0810, Japan
E-mail: miyao@math.sci.hokudai.ac.jp

Abstract

We study the ground state properties of the Holstein-Hubbard model on some bipartite lattices at half-filling; The ground state is proved to exhibit ferrimagnetism whenever the electron-phonon interaction is not so strong. In addition, the antiferromagnetic long range order is shown to exist in the ground state. In contrast to this, we prove the absence of the long range charge order.

1 Introduction and results

To explain ferromagnetism from the Hubbard model is known as a challenging problem. Since the discovery of the Nagaoka-Thouless ferromagnetism [15, 22], there have been significant developments in this field: The ground state of the Hubbard model on some bipartite lattices at half-filling is shown to exhibit ferrimagnetism by Lieb [7]; Mielke [8, 10, 11, 12] and Tasaki [19, 20, 21] constructed rigorous examples of ferromagnetic ground states in certain Hubbard models. However, the origin of ferromagnetism is still incompletely understood.

In the presence of electron-electron Coulomb and electron-phonon interaction, correlated electron systems provide an attractive field of study. The Holstein-Hubbard model is a simple model describing the interplay of electron-electron and electron-phonon interactions. Despite its importance, rigorous studies of magnetic properties of the Holstein-Hubbard model are rare; see, e.g. [2]. Recently, Miyao proved that the ground state of the
Holstein-Hubbard model on some bipartite lattices at half-filling is unique whenever the electron-phonon interaction is not so strong \[13\].

In the present paper, we prove that the unique ground state exhibits ferrimagnetism (Theorem 3) as an important consequence of \[13\]. As far as we know, this is a first rigorous example of ferrimagnetism in the Holstein-Hubbard model. The idea of our proof is to extend Lieb’s method in \[7\]. In addition, we prove the existence of antiferromagnetic long range order (Theorem 6) and absence of the long range charge order (Theorem 7) in the ground state.

The Hamiltonian of the Holstein–Hubbard model on a finite lattice \(\Lambda\) is given by

\[
H_{HH} = \sum_{x,y \in \Lambda} \sum_{\sigma \in \{\uparrow, \downarrow\}} t_{xy} c_{x\sigma}^* c_{y\sigma} + \sum_{x,y \in \Lambda} \frac{U_{xy}}{2} (n_x - 1)(n_y - 1)
\]
\[+ \sum_{x,y \in \Lambda} g_{xy} n_x (b_y^* + b_y) + \sum_{x \in \Lambda} \omega b_x^* b_x, \tag{1}\]

where \(c_{x\sigma}\) is the electron annihilation operator at site \(x\) and \(b_x\) is the phonon annihilation operator at site \(x\). These operators satisfy the following relations:

\[
\{c_{x\sigma}, c_{x'\sigma'}^*\} = \delta_{\sigma\sigma'} \delta_{xx'}, \quad [b_x, b_{x'}^*] = \delta_{xx'}, \tag{2}\]

where \(\delta_{xy}\) is the Kronecker delta. \(n_x\) is the fermionic number operator at site \(x \in \Lambda\) defined by \(n_x = \sum_{\sigma \in \{\uparrow, \downarrow\}} n_{x\sigma}\), \(n_{x\sigma} = c_{x\sigma}^* c_{x\sigma}\). \(t_{xy}\) is the hopping matrix element, \(U_{xy}\) is the energy of the Coulomb interaction, and \(g_{xy}\) is the strength of the electron-phonon interaction. We assume that \(\{g_{xy}\}, \{t_{xy}\}\) and \(\{U_{xy}\}\) are real symmetric \(|\Lambda| \times |\Lambda|\) matrices. The phonons are assumed to be dispersionless with energy \(\omega > 0\).

\(H_{HH}\) acts in the Hilbert space \(\mathcal{E} \otimes \mathfrak{P}\), where \(\mathcal{E} = \bigoplus_{n \geq 0} \Lambda^n (\ell^2(\Lambda) \otimes \ell^2(\Lambda))\), the fermionic Fock space and \(\mathfrak{P} = \bigoplus_{n \geq 0} \otimes_s^n \ell^2(\Lambda)\), bosonic Fock space. Here, \(\Lambda^n (\ell^2(\Lambda) \otimes \ell^2(\Lambda))\) indicates the \(n\)-fold antisymmetric tensor product of \(\ell^2(\Lambda) \otimes \ell^2(\Lambda)\), while \(\otimes_s^n \ell^2(\Lambda)\) indicates the \(n\)-fold symmetric tensor product.

\(H_{HH}\) is self-adjoint on \(\text{dom}(N_b)\) and bounded from below, where \(N_b = \sum_{x \in \Lambda} b_x^* b_x\) and \(\text{dom}(A)\) is the domain of the linear operator \(A\).

Remark 1 At a first glance, it appears that the Coulomb interaction term in (1) is not standard; however, our Coulomb interaction coincides with the

1 Let \(M = \{M_{xy}\}\) be a \(|\Lambda| \times |\Lambda|\) matrix. \(M\) is called a real symmetric matrix if \(M_{xy}\) is real and \(M_{xy} = M_{yx}\) for all \(x, y \in \Lambda\).
standard one when $\sum_{x \in \Lambda} U_{xy}$ is a constant independent of y; in this case, the Coulomb interaction in (1) becomes

$$\frac{1}{2} \sum_{x,y \in \Lambda} U_{xy}(n_x - 1)(n_y - 1) = \sum_{x \in \Lambda} U_{xx}n_x n_x + \frac{1}{2} \sum_{x \neq y} U_{xy}n_x n_y + \text{const.} \quad (3)$$

for every electron filling. A typical example satisfying the assumption about U_{xy} is the case where $U_{xy} = U_0 \delta_{xy}$, see also Remark 5.

We say that there is a bond between x and y if $t_{xy} \neq 0$. We impose the following conditions on Λ:

(A. 1) Λ is connected, namely, there is a connected path of bonds between every pair of sites.

(A. 2) Λ is bipartite, namely, Λ can be divided into two disjoint sites A and B such that $t_{xy} = 0$ whenever $x, y \in A$ or $x, y \in B$.

As to the electron-phonon interaction, we assume the following condition:

(A. 3) $\sum_{x \in \Lambda} g_{xy}$ is a constant independent of $y \in \Lambda$.

Remark 2

(i) A typical example satisfying (A. 3) is $g_{xy} = g_0 \delta_{xy}$, see also Remark 5.

(ii) Let us consider a linear chain of $2L$ atoms with periodic boundary conditions. We set $\Lambda = \{x_j\}_{j=1}^{2L}$. Assume that $|x_j - x_{j+1}|$ is constant for all j, where $x_{2L+1} = x_1$. If g_{xy} is a function of $|x - y|$, i.e., $g_{xy} = f(|x - y|)$, then (A. 3) is satisfied. Similarly, if Λ has a symmetric structure, like C$_{60}$ fullerene, then (A. 3) is fulfilled.

Let N_{el} be the electron number operator given by $N_{el} = \sum_{x \in \Lambda} n_x$. Trivially, we have $\text{spec}(N_{el}) = \{0, 1, \ldots, 2|\Lambda|\}$, where $\text{spec}(N_{el})$ indicates the spectrum of N_{el}. We can decompose the Hilbert space $\mathcal{E} \otimes \mathcal{P}$ as

$$\mathcal{E} \otimes \mathcal{P} = \bigoplus_{n=0}^{2|\Lambda|} \mathcal{E}_n \otimes \mathcal{P}, \quad (4)$$

where $\mathcal{E}_n = \wedge^n(\ell^2(\Lambda) \oplus \ell^2(\Lambda))$, the n-electron subspace. Of course, $\mathcal{E}_n = \ker(N_{el} - n)$. The number of electron is conserved, i.e., H_{HH} commutes with N_{el}. Hence, H_{HH} can be decomposed as

$$H_{HH} = \bigoplus_{n=0}^{2|\Lambda|} H_{HH,n}, \quad H_{HH,n} = H_{HH} \upharpoonright \mathcal{E}_n \otimes \mathcal{P}, \quad (5)$$

More precisely, for any $x, y \in \Lambda$, there exist x_1, \ldots, x_n such that $x_1 = x$, $x_n = y$ and $t_{x_1x_2}t_{x_2x_3} \cdots t_{x_{n-1}x_n} \neq 0$.

3
where $H_{\text{HH}} \mid \mathcal{E}_n \otimes \mathcal{P}$ is the restriction of H_{HH} on $\mathcal{E}_n \otimes \mathcal{P}$. Because we are interested in the half-filled case, we will study the Hamiltonian

$$H := H_{\text{HH}, n = |\Lambda|}. \tag{6}$$

Let $S_x^{(+)} = c_x^+ c_x^\dagger$ and let $S_x^{(-)} = (S_x^{(+)})^*$. The spin operators are defined by

$$S(3) = \frac{1}{2} \sum_{x \in \Lambda} (n_x^\uparrow - n_x^\downarrow), \quad S^{(+)} = \sum_{x \in \Lambda} S_x^{(+)}, \quad S^{(-)} = \sum_{x \in \Lambda} S_x^{(-)}. \tag{7}$$

The total spin operator is defined by

$$S_{\text{tot}}^2 = (S^{(3)})^2 + \frac{1}{2} S^{(+)} S^{(-)} + \frac{1}{2} S^{(-)} S^{(+)} \tag{8}$$

with eigenvalues $S(S + 1)$. Let φ be a vector in $\mathcal{E}_{n=|\Lambda|} \otimes \mathcal{P}$. If φ is an eigenvector of S_{tot}^2 with $S_{\text{tot}}^2 \varphi = S(S + 1) \varphi$, then we say that φ has total spin S. Main purpose in the present paper is to study the total spin S for the ground states.

To state our results, we introduce the effective Coulomb interaction by

$$U_{\text{eff}, xy} = U_{xy} - \frac{2}{\omega} \sum_{z \in \Lambda} g_{xz} g_{yz}. \tag{9}$$

Theorem 3 Assume that $|\Lambda|$ is even. Assume (A. 1) — (A. 3). Assume that $\{U_{\text{eff}, xy}\}$ is positive definite. Then the ground state of H has total spin $S = \frac{1}{2} ||\Lambda|| - |A|$ and is unique apart from the trivial $(2S + 1)$-degeneracy.

Remark 4

(i) In general, the positive definitness of $\{U_{\text{eff}, xy}\}$ implies that the electron-phonon interaction is not so strong. To see this, consider the case where $U_{xy} = U_0 \delta_{xy}$ and $g_{xy} = g_0 \delta_{xy}$. In this case, H becomes the standard Holstein-Hubbard model. $\{U_{\text{eff}, xy}\}$ is positive definite if and only if $|g_0| < \sqrt{\omega U_0/2}$, namely, the electron-phonon interaction is not so strong.

(ii) Theorem 3 claims that Lieb’s ferrimagnetism (Theorem 10) is stable whenever the electron-phonon interaction is not so strong.

(iii) Recently, Nagaoka’s theorem in the Hubbard model is extended to the Holstein-Hubbard model [14]. Theorem 3 is consistent with this result.

A matrix $\{M_{xy}\}$ will be called positive definite if $\sum_{x,y \in \Lambda} \xi_x \xi_y M_{xy} > 0$ (strict inequality) holds for all $\{\xi_x\}_{x \in \Lambda} \in \mathbb{C}^{||\Lambda||} \setminus \{0\}$.
Remark 5 Let \mathcal{P} be a Bravais lattice with the set of primitive vectors $\{a_1, \ldots, a_d\}$ ($d = 2, 3$). If Λ is a subset of \mathcal{P}, then the positive definiteness of $\{U_{xy}\}$ can be expressed as follows: Let $\{b_1, \ldots, b_d\}$ be the set of primitive vectors of the reciprocal lattice of \mathcal{P}, i.e., $a_i \cdot b_j = 2\pi\delta_{ij}$. We set $\Lambda = \left\{ \sum_{j=1}^{d} n_j a_j \mid n_j = -L + 1, \ldots, L \right\}$ and $\Lambda^* = \left\{ \sum_{j=1}^{d} \ell_j b_j / L \mid \ell_j = -L + 1, \ldots, L \right\}$. Suppose that g_{xy} and U_{xy} are given by

$$g_{xy} = \frac{1}{L^d} \sum_{k \in \Lambda^*} G(k) e^{i k \cdot (x-y)}, \quad U_{xy} = \frac{1}{L^d} \sum_{k \in \Lambda^*} U(k) e^{i k \cdot (x-y)},$$

(10)

where $G(k)$ and $U(k)$ are real-valued continuous functions on $T_d = \left\{ \sum_{j=1}^{d} \theta_j b_j \mid 1 \leq \theta_j \leq 1 \right\}$ with $G(-k) = G(k)$ and $U(-k) = U(k)$. Since $\sum_{x \in \Lambda} g_{xy} = G(0)$ for all $y \in \Lambda$, (A. 3) is satisfied. In this case, we obtain

$$U_{\text{eff},xy} = \frac{1}{L^d} \sum_{k \in \Lambda^*} \left\{ U(k) - \frac{2}{\omega} G(k)^2 \right\} e^{i k \cdot (x-y)}.$$

(11)

If $U(k) > \frac{2}{\omega} G(k)^2$ for all $k \in T_d$, then $U_{\text{eff},xy}$ is positive definite for all $L \in \mathbb{N}$. It is noteworthy that this condition is uniform in the size. ♦

Let

$$\hat{S}_0^{(+)}, \quad \hat{S}_{Q}^{(+)}, \quad \hat{S}_{Q}^{(+)} = |\Lambda|^{-1/2} \sum_{x \in \Lambda} \gamma(x) S_{x}^{(+)},$$

(12)

where $\gamma(x) = 1$ if $x \in A$, $\gamma(x) = -1$ if $x \in B$. The correlation functions are given by

$$m(k) = \left\langle \hat{S}_k^{(+)}(\hat{S}_k^{(+)})^* \right\rangle$$

(13)

for $k = 0$ or Q, where $\langle \cdot \rangle$ is the ground state expectation.

Theorem 6 Assume that $|\Lambda|$ is even. Assume (A. 1)—(A. 3). Assume that $\{U_{\text{eff},xy}\}$ is positive definite. If $||A| - |B|| = \text{const.} |\Lambda|$, then

$$m(Q) \geq m(0) = O(|\Lambda|).$$

(14)

Thus, the antiferromagnetic and ferrimagnetic long range order coexist in the ground state.
Finally, we present a theorem on the charge susceptibility. Suppose that that \(\Lambda, g_{xy} \) and \(U_{xy} \) are given in Remark 5. Let \(q_x = n_x - 1 \). The charge susceptibility (at \(\beta = \infty \)) with the wave vector \(k \) is given by

\[
\chi_k = \langle \hat{q}_k (H - E)^{-1} \hat{q}_{-k} \rangle, \tag{15}
\]

where \(\hat{q}_k = L^{-d/2} \sum_{x \in \Lambda} e^{-ik \cdot x} q_x \) and \(E \) is the ground state energy of \(H \).

Theorem 7 Assume that \(|\Lambda|\) is even. Assume that \(\{ U_{\text{eff},xy} \} \) is positive semidefinite\(^4\), that is, \(U(k) \geq \frac{2}{\omega} G(k)^2 \) for all \(k \in T_d \). Then we have

\[
\chi(k) \leq \frac{1}{U_{\text{eff}}(k)}, \tag{16}
\]

where \(U_{\text{eff}}(k) = U(k) - \frac{2}{\omega} G(k)^2 \). Thus, if there exists a constant \(c_0 > 0 \) such that \(U_{\text{eff}}(k) \geq c_0 \) for all \(k \in T_d \), then there is no long range charge order.

Remark 8 Theorems 6 and 7 suggest that coexistence of the ferrimagnetic and charge long range orders would be impossible. For instance, consider the model on the Lieb lattice with \(U_{xy} = U_0 \delta_{xy} \) and \(g_{xy} = g_0 \delta_{xy} \). Suppose that \(|g_0| < \sqrt{\omega U_0/2} \). By Theorem 6, we have

\[
\chi(k) \leq (U_0 - 2g_0^2/\omega)^{-1}, \tag{17}
\]

which implies the absence of the long range charge order. On the other hand, Theorem 6 claims the coexistence of the ferrimagnetic and antiferromagnetic long range orders.

\[\Diamond\]

2 Proofs

2.1 Preliminaries: An extension of Lieb’s theorem

We denote the spectrum of \(S^{(3)} \) by \(\text{spec}(S^{(3)}) \). Remark that \(\text{spec}(S^{(3)}) = \{-|\Lambda|/2, -|\Lambda|/2 + 1, \ldots, |\Lambda|/2\} \). For each \(M \in \text{spec}(S^{(3)}) \), we set

\[
\mathcal{H}_M := (\mathcal{E}_{n=|\Lambda|} \otimes \mathcal{P}) \cap \ker (S^{(3)} - M). \tag{18}
\]

We call \(\mathcal{H}_M \) the \(S^{(3)} = M \) subspace.

The following theorem is a basic input in the present paper.

\(^4\) A matrix \(\{ M_{xy} \} \) will be called positive semidefinite if, for all \(\{ \xi_x \}_{x \in \Lambda} \in \mathbb{C}^{|\Lambda|}, \sum_{x,y \in \Lambda} \xi_x \xi_y M_{xy} \geq 0 \) holds.
Theorem 9 \cite{13} Assume that $|\Lambda|$ is even. Assume (A. 1)–(A. 3). Assume that $\{U_{\text{eff},xy}\}$ is positive definite. For each $M \in \{-|\Lambda|/2, -|\Lambda|/2 + 1, \ldots, |\Lambda|/2\}$, the ground state of H is unique in each $S^{(3)} = M$ subspace. Let φ_M be the unique ground state of H in the $S^{(3)} = M$ subspace. Then the following holds:

$$
\langle \varphi_M | S_x^+ S_y^- | \varphi_M \rangle \begin{cases} > 0 & \text{if } x, y \in A \text{ or } x, y \in B \\ < 0 & \text{otherwise} \end{cases} \quad (19)
$$

From Theorem 9, we can derive an extension of Lieb’s theorem \cite{7}. Let H_H be the extended Hubbard model defined by

$$
H_\text{H} = \sum_{x,y \in \Lambda} \sum_{\sigma \in \{\uparrow, \downarrow\}} t_{xy} c_{x\sigma}^* c_{y\sigma} + \sum_{x,y \in \Lambda} \frac{U_{xy}}{2} (n_x - 1)(n_y - 1). \quad (20)
$$

Theorem 10 Assume that $|\Lambda|$ is even. Assume (A. 1)–(A. 3). Assume that $\{U_{xy}\}$ is positive definite. Then the ground state of H_H has total spin $S = \frac{1}{2}|B| - |A|$ and is unique apart from the trivial $(2S + 1)$-degeneracy.

Proof. We provide a sketch of the proof only. We apply Lieb’s argument in \cite{7}.

Since $S^{(3)}$ and S^2_tot are conserved, we work in the $S^{(3)} = 0$ subspace. By putting $g_{xy} = 0$ in Theorem 9 we know that the ground state of H_H in the $S^{(3)} = 0$ subspace is unique. For each $U_0 \geq 0$, let $H_\text{H}(U_0) = H_\text{H} + \sum_{x \in \Lambda} U_0(n_x - 1)^2$. Since $\{U_{xy}\}$ is positive definite, so is $\{U_{xy} + 2U_0 \delta_{xy}\}$. Thus, the ground state of $H_\text{H}(U_0)$ in the $S^{(3)} = 0$ subspace is unique for all $U_0 \geq 0$. By the continuity, the value of S of the ground state of $H_\text{H}(U_0)$ in the $S^{(3)} = 0$ subspace is independent of U_0.

Let $P = \prod_{x \in \Lambda} (n_x^\uparrow - n_x^\downarrow)^2$. Then it is known that

$$
\| \{ \mathcal{W} U_0 H_\text{H}(U_0) \mathcal{W}^{-1} - h \} P \| \rightarrow 0 \quad \text{as } U_0 \rightarrow \infty, \quad (21)
$$

where h is the antiferromagnetic Heisenberg model defined by

$$
h = \sum_{x,y \in \Lambda} J_{xy}(S_x \cdot S_y - \frac{1}{4}) \quad (22)
$$

with $J_{xy} = 2t_{xy}^2$ and \mathcal{W} is the Schrieffer-Wolff transformation. By Marshall-Lieb-Mattis theorem \cite{6}, the ground state of hP is unique and this state has total spin $S = \frac{1}{2}|A| - |B|$. Since the ground state of $\mathcal{W} U_0 H_\text{H}(U_0) \mathcal{W}^{-1}$ converges to that of hP, the value S of the ground state of $H_\text{H}(U_0)$ must be identical to that of hP. \hfill \Box
2.2 Proof of Theorem 3

In this proof, we work in the $S^{(3)} = 0$ subspace, because $S^{(3)}$ and S_{tot}^2 are conserved. Because the boson operators are unbounded, the proof has to be addressed carefully.

Our proof is an extension of Lieb’s argument in [7]. For each $\theta \in [1, \infty)$, let H_θ be the Hamiltonian H with ω replaced by $\theta \omega$. Of course, $H_{\theta=1} = H$.

Lemma 11 The ground state of H_θ in the $S^{(3)} = 0$ subspace is unique for all $\theta \geq 1$.

Proof. By Theorem 9, it suffices to show that $\{U_{xy} - \frac{2}{\theta \omega} \sum_{z \in \Lambda} g_{xz} g_{yz}\}_{x,y}$ is positive definite for all $\theta \geq 1$.

First, we claim that the matrix $\{\frac{2}{\omega} \sum_{z \in \Lambda} g_{xz} g_{yz}\}_{x,y}$ is positive semidefinite. To see this, let

$$M_{xy} = \frac{2}{\omega} \sum_{z \in \Lambda} g_{xz} g_{yz}. \quad (23)$$

Clearly,

$$\sum_{x,y \in \Lambda} \xi_x \xi_y M_{xy} = \frac{2}{\omega} \sum_{z \in \Lambda} \left| \sum_{x \in \Lambda} \xi_x g_{zx} \right|^2 \geq 0 \quad (24)$$

for all $\{\xi_x\} \in \mathbb{C}^{\Lambda}$. Hence, $\{M_{xy}\}$ is positive semidefinite.

Since $\{U_{\text{eff},xy}\}$ is positive definite, we have $\sum_{x,y \in \Lambda} \xi_x \xi_y U_{\text{eff},xy} > 0$ for all $\{\xi_x\}_{x \in \Lambda} \in \mathbb{C}^{\Lambda} \setminus \{0\}$. Therefore, we obtain

$$\sum_{x,y \in \Lambda} \xi_x \xi_y (U_{xy} - \theta^{-1} M_{xy}) = \sum_{x,y \in \Lambda} \xi_x \xi_y U_{\text{eff},xy} + (1 - \theta^{-1}) \sum_{z,y \in \Lambda} \xi_x \xi_y M_{xy} > 0 \quad (25)$$

for all $\{\xi_x\}_{x \in \Lambda} \in \mathbb{C}^{\Lambda} \setminus \{0\}$. Accordingly, $\{U_{xy} - \theta^{-1} M_{xy}\}$ is positive definite for all $\theta \geq 1$. □

The Lang-Firsov transformation [5] is defined by e^L with

$$L = (\theta \omega)^{-1} \sum_{x,y \in \Lambda} g_{xy} n_x (b^*_y - b_y). \quad (26)$$
Set $H'_\theta = e^{L} H_\theta e^{-L}$. We have

$$H'_\theta = \sum_{x,y \in \Lambda} \sum_{\sigma} t_{xy} e^{i \Phi_{xy}} c_{x\sigma} c_{y\sigma} + \theta \omega N_b +$$

$$+ \sum_{x,y \in \Lambda} \left(U_{xy} - \frac{2}{\theta \omega} \sum_{z \in \Lambda} g_{xz} g_{yz} \right) (n_x - 1)(n_y - 1), \quad (27)$$

where $\Phi_{xy} = -i(\theta \omega)^{-1} \sum_{z \in \Lambda} (g_{xz} - g_{yz})(b^*_z - b_z)$.

We rewrite H'_θ as $H'_\theta = H_H + \Delta_\theta + \theta \omega N_b$, where

$$\Delta_\theta = \sum_{x,y \in \Lambda} \sum_{\sigma \in \{\uparrow, \downarrow\}} t_{xy} (e^{i \Phi_{xy}} - 1) c_{x\sigma}^* c_{y\sigma} - \sum_{x,y \in \Lambda} \theta^{-1} M_{xy} (n_x - 1)(n_y - 1), \quad (28)$$

where M_{xy} is given by (23)

Lemma 12 Let $K_\theta = H_H + \theta \omega N_b$. We have

$$\| \Delta_\theta (K_\theta - z)^{-1} \| \leq C \theta^{-1} \left(1 + \frac{1 + |z|}{|\text{Im} z|} \right) \quad (29)$$

for all $z \in \mathbb{C} \setminus \mathbb{R}$, where C is a positive constant independent of θ and z.

Proof. Let

$$T = \sum_{x,y \in \Lambda} \sum_{\sigma \in \{\uparrow, \downarrow\}} t_{xy} (e^{i \Phi_{xy}} - 1) c_{x\sigma}^* c_{y\sigma}. \quad (30)$$

Since $\|(e^{i A} - 1) \phi\| \leq \|A \phi\|$ for any self-adjoint operator A, we have

$$\|T \phi\| \leq C_1 \sum_{x,y \in \Lambda} \| \Phi_{xy} \phi \|, \quad \phi \in \text{dom}(N_b) \quad (31)$$

where C_1 is independent of θ. Using the well-known bounds 5: $\|b_x \phi\| \leq \|(N_b + 1) \phi\|$ and $\|b_x^* \phi\| \leq \|(N_b + 1) \phi\|$, we have

$$\|\Phi_{xy} \phi\| \leq C_2 \theta^{-1} \|(N_b + 1) \phi\|, \quad (34)$$

5 Proof of the bounds. Observe that

$$\|b_x \phi\|^2 = \langle \phi | b_x^* b_x \phi \rangle \leq \langle \phi | N_b \phi \rangle \leq \|N_b \phi\|^2. \quad (32)$$

On the other hand, by the commutation relation $[b_x, b_x^*] = 1$, we have

$$\|b_x^* \phi\|^2 = \|\phi\|^2 + \|b_x \phi\|^2 \leq \|\phi\|^2 + \|N_b \phi\|^2. \quad (33)$$

Since $\|N_b \phi\| \leq \|(N_b + 1) \phi\|$ and $\|\phi\|^2 + \|N_b \phi\|^2 \leq \|(N_b + 1) \phi\|^2$, we obtain the desired bounds.
where C_2 is a positive constant independent of θ. Combining (31) and (34), we have

$$
\|T\phi\| \leq C_3 \theta^{-1} \|(N_b + 1)\phi\|, \quad (35)
$$

where C_3 is a positive constant independent of θ.

Since

$$
N_b = (\omega \theta)^{-1} \{ (K_\theta - z) - (H_H - z) \}, \quad (36)
$$

we have

$$
\|(N_b + 1)\phi\| \leq (\theta \omega)^{-1} \{ \|(K_\theta - z)\phi\| + (\|H_H\| + 1 + |z|)\|\phi\| \}. \quad (37)
$$

Hence,

$$
\|T\phi\| \leq C_3 \omega^{-1} \theta^{-2} \{ \|(K_\theta - z)\phi\| + (\|H_H\| + 1 + |z|)\|\phi\| \}. \quad (38)
$$

Because $\|\sum_{x,y \in \Lambda} \theta^{-1} M_{xy} (n_x - 1)(n_y - 1)\| \leq C_4 \theta^{-1}$ with C_4, a positive constant independent of θ, we have

$$
\|\Delta_\theta \phi\| \leq \theta^{-1} C \left\{ \|(K_\theta - z)\phi\| + (\|H_H\| + 1 + |z|)\|\phi\| \right\}. \quad (39)
$$

Using $\|(K_\theta - z)^{-1}\| \leq |\Im z|^{-1}$, we obtain the desired bound. \Box

Lemma 13 For all $z \in \mathbb{C} \backslash \mathbb{R}$, we have

$$
\lim_{\theta \to \infty} \|(H_H - z)^{-1} \otimes P_\Omega - (H_\theta' - z)^{-1}\| = 0, \quad (40)
$$

where $P_\Omega = |\Omega\rangle \langle \Omega|$ with Ω, the bosonic Fock vacuum.

Proof. By Lemma 12 and the fact $\|(H_\theta' - z)^{-1}\| \leq |\Im z|^{-1}$, we have

$$
\|(H_\theta' - z)^{-1} - (K_\theta - z)^{-1}\| = \|(H_\theta' - z)^{-1} \Delta_\theta(K_\theta - z)^{-1}\|
\leq C \theta^{-1} |\Im z|^{-1} \left(1 + \frac{1 + |z|}{|\Im z|} \right) \to 0 \quad (41)
$$

as $\theta \to \infty$ for every $z \in \mathbb{C} \backslash \mathbb{R}$.

On the other hand, we obtain that

$$
\|(K_\theta - z)^{-1} - (H_H - z)^{-1} \otimes P_\Omega\| \to 0 \quad (42)
$$
as \(\theta \to \infty \). To see this, we decompose the \(S^{(3)} = 0 \) subspace as

\[
\mathcal{H}_{M=0} = \bigoplus_{n=0}^{\infty} \mathcal{K}_n, \quad \mathcal{K}_n = \mathcal{H}_{M=0} \cap \ker(N_b - n).
\]

(43)

\(\mathcal{K}_n \) is called the \(n \) phonon subspace. Corresponding to (43), we have

\[
\mathcal{K}_\theta = \bigoplus_{n=0}^{\infty} \left(H_H + \theta \omega n \right),
\]

(44)

which implies

\[
(K_\theta - z)^{-1} = \bigoplus_{n=0}^{\infty} (H_H + \theta \omega n - z)^{-1}
\]

(45)

for all \(z \in \mathbb{C} \setminus \mathbb{R} \). Let \(e \) be the lowest energy of \(H_H \) in the \(S^{(3)} = 0 \) subspace. If \(\theta \) is large enough such that \(e + \theta \omega - |\text{Re} z| > 0 \), we obtain

\[
\| (H_H + \theta \omega N_b - z)^{-1} \| \leq (e + \theta \omega - |\text{Re} z|)^{-1}
\]

(46)

for all \(n \geq 1 \). Therefore,

\[
\| (K_\theta - z)^{-1} - (H_H - z)^{-1} \otimes P_\Omega \| = \sup_{n \geq 1} \| (H_H + \theta \omega n - z)^{-1} \|
\]

\[
\leq (e + \theta \omega - |\text{Re} z|)^{-1} \to 0
\]

(47)

as \(\theta \to \infty \) for \(z \in \mathbb{C} \setminus \mathbb{R} \).

By (41) and (42), we obtain (40). \(\square \)

Lemma 14 Let \(E_0(\theta) \) and \(E_1(\theta) \) be the ground state energy and the first excited energy of \(H_\theta \) in the \(S^{(3)} = 0 \) subspace, respectively. In addition, let \(E_0 \) and \(E_1 \) be the ground state energy and the first excited energy of \(H_H \) in the \(S^{(3)} = 0 \) subspace, respectively.

(i) \(E_0(\theta) \) converges to \(E_0 \), and \(E_1(\theta) \) converges to \(E_1 \) as \(\theta \to \infty \), respectively.

(ii) \(E_0(\theta) \) and \(E_1(\theta) \) are continuous in \(\theta \).

Proof. (i) follows from Lemma 13.

(ii) Note that dom(\(H_\theta \)) = dom(\(N_b \)) for all \(\theta \). In addition, \(H_\theta \phi \) is a vector-valued analytic function of \(\theta \) for all \(\phi \in \text{dom}(N_b) \). Thus, \(H_\theta \) is an analytic family of type (A) \cite{17} in a neighborhood of \([1, \infty) \subset \mathbb{C} \). By \cite{17} Theorem XII. 13, \(E_0(\theta) \) and \(E_1(\theta) \) are analytic, in particular, continuous in \(\theta \). \(\square \)
Lemma 15 Set $\delta := \inf_{\theta \geq 1} |E_1(\theta) - E_0(\theta)|$. We have $\delta > 0$.

Proof. We claim that $E_0(\theta) \neq E_1(\theta)$ for all $\theta \geq 1$. Indeed, assume that there exists a $\theta_0 \geq 1$ such that $E_0(\theta_0) = E_1(\theta_0)$. Then the uniqueness of the ground states is broken at $\theta = \theta_0$, which contradicts with Lemma 11. Because $E_1 - E_0 > 0$, we get $\delta > 0$ by Lemma 14. □

Let ψ_θ be the ground state of H'_θ and let ψ be the ground state of H_H in the $S^{(3)} = 0$ subspace. Remark that these are unique ground states of H'_θ and H_H by Lemma 11.

Lemma 16 Let S_θ be the total spin of ψ_θ: $S_{\text{tot}}^2 \psi_\theta = S_\theta(S_\theta + 1) \psi_\theta$. The value of S_θ is independent of $\theta \geq 1$.

Proof. First, we claim that ψ_θ is continuous in θ, namely,

$$\lim_{\theta' \to \theta} \|\psi_\theta - \psi_{\theta'}\| = 0. \quad (48)$$

Indeed, since $H_\theta \phi$ is continuous in θ for all $\phi \in \text{dom}(N_h)$, $(H_\theta - z)^{-1} \phi$ is continuous in θ for all $\phi \in \text{dom}(N_h)$ by [16, Theorem VIII 25]. Here, we used the fact that $\text{dom}(H_\theta) = \text{dom}(N_h)$ for all $\theta \geq 1$. Thus, applying [16, Theorem VIII 24], we conclude (48).

Since S_{tot}^2 is bounded, we have

$$\left| S_\theta(S_\theta + 1) - S_{\theta'}(S_{\theta'} + 1) \right| \leq \left\| S_{\text{tot}}^2 \psi_\theta - S_{\text{tot}}^2 \psi_{\theta'} \right\|$$

$$\leq \left\| S_{\text{tot}}^2 (\psi_\theta - \psi_{\theta'}) \right\|$$

$$\leq \left\| S_{\text{tot}}^2 \right\| \|\psi_\theta - \psi_{\theta'}\| \to 0 \quad (49)$$

as $\theta \to \theta'$. Thus, S_θ is continuous in θ. On the other hand, because S_θ takes discrete values, it must be independent of $\theta \geq 1$. □

Completion of proof of Theorem 3

First, we remark the following formula:

$$|\psi_\theta \rangle \langle \psi_\theta| = \frac{i}{2\pi} \oint_{|E - E_0| = \delta/2} (H'_\theta - E)^{-1} dE \quad \text{for all } \theta \geq 1, \quad (50)$$

$$|\psi \rangle \langle \psi| \otimes P_N = \frac{i}{2\pi} \oint_{|E - E_0| = \delta/2} (H_H - E)^{-1} \otimes P_N dE, \quad (51)$$
where \(\delta \) is given in Lemma 15. By (40), (50) and (51), we have \(\| \psi_\theta - \psi \otimes \Omega \| \to 0 \) as \(\theta \to \infty \). Recall that the value of \(S \) of \(\psi_\theta \) must be independent of \(\theta \) by Lemma 16. Since the ground state \(\psi \otimes \Omega \) has spin \(S = \frac{1}{2} |B| - |A| \) by Theorem 10, so does \(\psi_\theta \) due to the continuity. To see this, suppose that \(\psi_\theta \) has total spin \(S' \) for all \(\theta \geq 1 \). By Lemma 16, \(S' \) is independent of \(\theta \). We have
\[
|S(S + 1) - S'(S' + 1)| \leq \| S_{tot}^2(\psi_\theta - \psi \otimes \Omega) \| \\
\leq \| S_{tot}^2\| \| \psi_\theta - \psi \otimes \Omega \| \\
\to 0
\]
(52)
as \(\theta \to \infty \). Hence, \(S' = S \). \(\square \)

2.3 Proof of Theorem 6

We follow [18]. By Theorem 9, we obtain that
\[
m(0) = |\Lambda|^{-1} \sum_{x,y} \langle S_x^+ S_y^- \rangle \\
\leq |\Lambda|^{-1} \sum_{x,y} \gamma(x) \gamma(y) \langle S_x^+ S_y^- \rangle \\
= m(Q).
\]
Since \(m(0) = O(\Lambda) \) by Theorem 3, we conclude the assertions in Theorem 6. \(\square \)

2.4 Proof of Theorem 7

We provide a sketch only. We apply Kubo-Kishi argument [4], which originates from [1], see also [3]. For each \(h = \{ h_x \}_{x \in \Lambda} \in \mathbb{R}^\Lambda \), let \(H'(h) \) be the Hamiltonian \(H'_{y=1} \) with \(U_{eff} = \frac{1}{2} \sum_{x,y \in \Lambda} U_{eff,xy}(n_{x\uparrow} - n_{x\downarrow})(n_{y\uparrow} - n_{y\downarrow}) \) replaced by \(U_{eff}(h) = \frac{1}{2} \sum_{x,y \in \Lambda} U_{eff,xy}(n_{x\uparrow} - n_{x\downarrow} + h_x)(n_{y\uparrow} - n_{y\downarrow} + h_y) \). Clearly, we have \(H'(0) = H'_{y=1} \). We denote by \(\mathcal{H} \) the \(S(3) = 0 \) subspace. Let \(Z_\beta(h) = \text{Tr}_\mathcal{H}[e^{-\beta H'(h)}] \). Then we can show that \(Z_\beta(h) \leq Z_\beta(0) \), see [13] for details. This implies \(E(0) \leq E(h) \), where \(E(h) \) is the ground state energy of \(H'(h) \) in the \(S(3) = 0 \) subspace. Thus, we get \(d^2E(\lambda h)/d\lambda^2|_{\lambda=0} \leq 0 \), which implies Theorem 7. \(\square \)

Acknowledgments. This work was partially supported by KAKENHI (20554421) and KAKENHI (16H03942).
References

[1] F. J. Dyson, E. H. Lieb, B. Simon, Phase transitions in quantum spin systems with isotropic and nonisotropic interactions. J. Stat. Phys. 18, 335-383 (1978)

[2] J. K. Freericks, E. H. Lieb, Ground state of a general electron-phonon Hamiltonian is a spin singlet. Phys. Rev. B 51 (1995), 2812-2821.

[3] T. Kennedy, E.H. Lieb, B. S. Shastry, Existence of Neel order in some spin-1/2 Heisenberg antiferromagnets. J. Stat. Phys. 53, 1019-1030 (1988)

[4] K. Kubo, T. Kishi, Rigorous bounds on the susceptibilities of the Hubbard model. Phys. Rev. B 41, 4866-4868 (1990)

[5] I. G. Lang, Y. A. Firsov, Firsov, Kinetic theory of semiconductors with low mobility. Sov. Phys. JETP 16, 1301 (1963)

[6] E. H. Lieb, D. C. Mattis, Ordering energy levels of interacting spin systems. J. Math. Phys. 3, 749-751 (1962)

[7] E. H. Lieb, Two theorems on the Hubbard model. Phys. Rev. Lett. 62, 1201-1204 (1989)

[8] W. Marshall, Antiferromagnetism, Proc. Roy. Soc. (London) A232, 48-68 (1955)

[9] A. Mielke, Ferromagnetic ground states for the Hubbard model on line graphs, J. Phys. A 24, L73 (1991)

[10] A. Mielke, Ferromagnetism in the Hubbard model on line graphs and further considerations. J. Phys. A 24, 3311(1991)

[11] A. Mielke, Exact ground states for the Hubbard model on the Kagome lattice. J. Phys. A 25, 4335 (1992)

[12] A. Mielke, Ferromagnetism in the Hubbard model and Hund’s rule. Phys. Lett. A 174, 443-448 (1993)

[13] T. Miyao, Rigorous results concerning the Holstein-Hubbard model. Annales Henri Poincaré, 18, 193-232, (2017).

[14] T. Miyao, Nagaoka’s theorem, in the Holstein-Hubbard model. Online First, Annales Henri Poincaré, arXiv:1611.08659.
[15] Y. Nagaoka, Ferromagnetism in a Narrow, Almost Half-Filled s Band. Phys. Rev. 147, 392-405 (1966)

[16] M. Reed, B. Simon, Methods of Modern Mathematical Physics I: Functional Analysis, Academic Press, New York, 1980.

[17] M. Reed, B. Simon, Methods of Modern Mathematical Physics IV: Analysis of Operators Academic Press, New York, 1978.

[18] S. Q. Shen, A. M. Qiu, G. S. Tian, Ferrimagnetic long-range order of the Hubbard model. Phys. Rev. Lett. 72, 1280-1282 (1994)

[19] H. Tasaki, Ferromagnetism in the Hubbard models with degenerate single-electron ground states. Phys. Rev. Lett. 69, 1608-1611 (1992)

[20] H. Tasaki, Ferromagnetism in Hubbard Models. Phys. Rev. Lett. 75, 4678-4681 (1995)

[21] H. Tasaki, Ferromagnetism in the Hubbard Model: A Constructive Approach. Comm. Math. Phys. 242, 445-472 (2003)

[22] D. J. Thouless, Exchange in solid 3He and the Heisenberg Hamiltonian. Proc. Phys. Soc. London 86, 893-904 (1965)