BMJ Open Vitamin B\textsubscript{12} deficiency and hyperhomocysteinaemia in outpatients with stroke or transient ischaemic attack: a cohort study at an academic medical centre

Shamon Ahmed,¹ Chrysi Bogiatzi, Daniel G Hackam,²,³,⁴ Angela C Rutledge,⁵,⁶ Luciano A Sposato,⁴,⁷,⁸ Alexander Khaw,⁴,⁷ Jennifer Mandzia,⁴,⁷ Mahmoud Reza Azarpazhoo,⁴,⁷ Vladimir Hachinski,⁴,⁷ J David Spence²,³,⁴,⁷,⁹

ABSTRACT

Objective We sought to assess the current magnitude of the opportunity for secondary stroke prevention with B vitamins.

Design A cohort study.

Setting The Urgent TIA (Transient Ischaemic Attack) Clinic at an academic medical centre.

Main outcome measures We assessed the prevalence of biochemical vitamin B\textsubscript{12} deficiency (B\textsubscript{12} Def, serum B\textsubscript{12} <156 pmol/L), hyperhomocysteinaemia (HHcy; plasma total homocysteine [tHcy] >14 pmol/L) and metabolic B\textsubscript{12} deficiency (MetB12Def, serum B\textsubscript{12} <258 pmol/L and HHcy) between 2002 and 2017, by age group and by stroke subtype.

Results Data were available in 4055 patients. B\textsubscript{12} Def was present in 8.2% of patients overall; it declined from 10.9% of patients referred before 2009 to 5.4% thereafter (p=0.0001). MetB\textsubscript{12} Def was present in 10.6% of patients, and HHcy was present in 19.1% of patients. Among the patients aged ≥80 years, MetB\textsubscript{12} Def was present in 18.1% and HHcy in 35%. Among the 3410 patients whose stroke subtype was determined, HHcy was present in 18.4% of patients: 23.3% of large artery atherosclerosis, 10.8% of other unusual aetiologies and 13.6% of undetermined subtypes (p<0.0001).

Conclusions Despite a decline in our referral area since 2009, B\textsubscript{12} Def, MetB\textsubscript{12} Def and HHcy remain common in patients with stroke/TIA. Because these conditions are easily treated and have serious consequences, all patients with stroke/TIA should have their serum B\textsubscript{12} and tHcy measured.

INTRODUCTION

There is a commonly held belief that “Homocysteine is dead.” This apparently has its origins in a widely quoted statement made by Dr Kaare Harald Bønaa in September 2005 at the European Society of Cardiology Congress in Stockholm.³ Indeed, this very phrase was cited by an official at the National Institute for Health and Care Excellence (NICE) in the UK as the reason that NICE recommends that measurement of plasma total homocysteine (tHcy) not be paid for with public funds (Professor David Smith, personal communication, 15 June 2018).

However, B vitamin therapy for lowering homocysteine to prevent stroke was...
resurrected by the China Stroke Primary Prevention Trial (CSPPT), in which folic acid reduced ischaemic stroke by 24% in primary prevention. In higher risk groups, the reduction of stroke was greater: among patients with low-density lipoprotein cholesterol >2 mmol/L, the reduction in ischaemic stroke was 36%, and in patients with tHcy >15 and low platelet counts it was 70%. Folic acid did not reduce the risk of haemorrhagic stroke. A recent meta-analysis indicated that B vitamin combinations and folic acid reduced the risk of stroke; the authors recommended folic acid for this purpose in countries where folate fortification does not exist.

Restricting the recommendation to folic acid is problematic, as in countries where folate fortification is in place, the main nutritional determinant of tHcy is deficiency of vitamin B₁₂. It has become apparent in the light of the CSPPT trial that in the early trials of B vitamins for stroke prevention, harm from cyanocobalamin among study participants with renal failure obscured the benefit among participants with good renal function. It is likely that instead of cyanocobalamin, we should be using methylcobalamin or oxocobalamin for stroke prevention.

An important opportunity for prevention of stroke and dementia is metabolic B₁₂ deficiency, which is often missed because most physicians do not realise that a serum total B₁₂, in the ‘normal’ range (~180–670 pmol/L) does not define adequacy of functional vitamin B₁₂. In order to assess B₁₂ function, it is necessary to measure holotranscobalamin, or measure one of the metabolites that become elevated in B₁₂ deficiency: methylmalonic acid (MMA) or tHcy. Although MMA is more specific, homocysteine can substitute for MMA in folate-replete persons (which in countries with folate fortification essentially applies to nearly all patients). The inflection point for serum B₁₂ at which both MMA and tHcy become elevated is 400 pmol/L, so within the normal range of serum B₁₂ there are many patients with metabolic B₁₂ deficiency.

Spence reported in 2009 that at age ≥80, 40% of patients referred for stroke prevention had tHcy ≥14, and in 2006 he reported that metabolic B₁₂ deficiency was present in 10% of patients with stroke/transient ischaemic attack (TIA) aged <50, 15% aged 50–70 and 30% above the age of 70. He routinely requests of referring doctors that serum B₁₂ and plasma lipids be measured before new and follow-up visits, and had noticed that more patients recently had been started on B₁₂ supplements before coming to clinic, after the family physician saw the serum B₁₂ level. It seemed that as a result of reporting such findings to the hundreds of family physicians of some 40,000 patients with stroke/TIA in our region over 40 years, detection and treatment of B₁₂ deficiency in our referral area may have increased.

In this study, we sought to assess the current magnitude of the opportunity for stroke prevention with B vitamins by determining the prevalence of hyperhomocysteinaemia (HHcy) and metabolic B₁₂ deficiency in patients with TIAs or minor strokes.

METHODS

Patient population

Data were obtained from outpatients with TIA or minor stroke referred to the Urgent TIA Clinic at University Hospital in London, Ontario, Canada. Data for 3410 patients referred between 2000 and 2012 were obtained from the database of a study on secular trends in stroke subtypes, data on an additional 1776 patients referred between 2012 and 2017 were obtained from the electronic medical records of the hospital during a 3-month visit by SA, undertaken within a Flexible and Enhanced Learning programme of the University of British Columbia Medical School. Because of the limited time available, data collected on patients referred since 2012 were restricted to age, sex and variables pertinent to the diagnosis of metabolic B₁₂ deficiency and HHcy: serum B₁₂, plasma tHcy and creatinine. Among the 3410 patients referred between 2000 and 2012, stroke subtypes had been assigned using the Subtypes of Ischaemic Stroke Classification System (SPARKLE) classification, which incorporates high carotid plaque burden in the large artery atherosclerosis subtype.

Blood tests and analyses

Serum B₁₂, EDTA tHcy and lithium heparin plasma creatinine were measured at the Department of Pathology and Laboratory Medicine of London Health Sciences Centre, London, Ontario, Canada.

Between 2000 and May 2004, serum B₁₂ levels were measured by immunoassay on a Siemens Centaur analyser (reference intervals [RIs]: normal 181–672 pmol/L, indeterminate 155–181 pmol/L, deficient <155 pmol/L). The analysis on this platform continued until January 2014, but in May 2004 the RIs changed to 200–672 pmol/L for normal, 156–200 pmol/L for indeterminate and <156 pmol/L for deficient. Serum B₁₂ was then measured by immunoassay on a Roche e602 with generation I of reagent (RIs: 156–698 pmol/L) until November 2015, and then on Roche e602 and E170 analysers with generation II of reagent (RIs: 145–569 pmol/L) beyond 2017.

Plasma tHcy was measured by high-pressure liquid chromatography (RI: ≤13.5 µmol/L) from 2000 until December 2001. It was then measured by immunoassay on a Siemens Immulite or Immulite 2000 (RI: 5.0–12.0 µmol/L) until May 2011. From May 2011 until February 2014, tHcy was measured by immunoassay on a Siemens Centaur (RI: 3.7–13.9 µmol/L), then using an ELISA from Immuno-Biological Laboratories (RIs: male 4.8–11.8 µmol/L, female 4.3–10.9 µmol/L) until December 2015, and then by immunoassay on an Abbott Architect (RIs: male 5.1–15.4 µmol/L, female 4.4–13.6 µmol/L) beyond 2017.

Plasma creatinine was measured by the Jaffe method on Beckman CX4, CX7 and LX20 analysers from 2000 until November 2008, and then by an enzymatic method on Roche P-Modules beyond 2017. The RIs throughout this entire time were 62–120 µmol/L for male 12 years to adult and 55–100 µmol/L for female 12 years to
Biochemical B_12 deficiency was defined as a serum $\text{B}_12 < 156 \text{pmol/L}$. Metabolic B_12 deficiency was defined, as recommended by Stabler et al, by a serum $\text{B}_12 < 258 \text{pmol/L}$ and $\text{tHcy} > 14 \mu\text{mol/L}$.

Because tHcy is high in patients with renal failure, a second estimate of metabolic B_12 deficiency excluded patients with an estimated glomerular filtration rate (eGFR) $< 60 \text{mL/min per 1.73 m}^2$, computed by the Modification of Diet in Renal Disease (MDRD) equations.17

Involvement of patients and the public
There was no involvement of patients other than their data. The public were also not involved.

Statistical methods
Continuous variables were summarised by mean±SD and categorical variables by %. Differences in categorical variables were compared using χ^2; post-hoc differences were assessed by computing standardised residual scores for each cell. Continuous variables were assessed by analysis of variance. All tests were performed using SPSS V.25.

RESULTS
Data were available in 4282 patients with values for serum B_12 and tHcy. There were 218 patients who had unphysiologically high serum B_12 levels from 700 to 2661 pmol/L, indicating that they were probably taking B_12 supplements (other possibilities would include laboratory error or errors in data entry): 5.2% of patients before 2009 and 8.1% thereafter ($p=0.0001$). There were also nine patients whose serum B_12 was implausibly low (between 1 and 31 pmol/L, possibly due to laboratory error or errors in data entry). After excluding these patients there remained 4055 patients whose results are presented here.

A Consolidated Standards of Reporting Trials diagram is shown in online supplementary material. Analyses including the patients with serum $\text{B}_12 > 700 \text{pmol/L}$ are presented in online supplementar y eTable 1 and eTable 2; online supplementary eFigure 1 shows the distribution of serum B_12 and tHcy from 2002 to 2017. It is certain from the medication lists in the clinic notes that there were many patients with a serum $\text{B}_12 < 700 \text{pmol/L}$ who were also taking B_12 supplements, but data on B_12 supplementation were not collected, so those patients were included in the analyses. Folate supplementation of the grain supply was implemented in Canada in 1989, and we know from observation in the clinic that very few patients took folate supplements; a substantial proportion (~20%) do take a multivitamin tablet daily.

Biochemical B_12 deficiency was present in 8.2% of patients overall; it declined from 10.9% of patients referred before 2009 to 5.4% thereafter ($p=0.0001$). Metabolic B_12 deficiency was present in 10.6% of patients, and HHcy was present in 19.1% of patients. Among patients aged ≥80 years, metabolic B_12 deficiency was present in 18.1% and HHcy in 35%. Among the 3410 patients whose stroke subtype was determined, HHcy was present in 18.4% of patients: 23.3% of large artery atherosclerosis, 18.1% of cardioembolic, 16.3% of small vessel disease, 10.8% of other unusual aetiologies and 13.6% of undetermined subtypes ($p=0.0001$).

Figure 1 shows the distribution of serum B_12 and tHcy from 2002 to 2008 versus 2009–2017. The distributions were significantly different by a Kruskal-Wallis test ($p=0.0001$). Online supplementary data eFigure 1 shows the distribution of serum B_12 and tHcy in all the cases, including those with serum $\text{B}_12 > 700 \text{pmol/L}$.

Table 1 shows the characteristics of the patients by metabolic B_12 status. Patients with metabolic B_12 deficiency were significantly older, male and had smoked more tobacco.

Table 2 shows the prevalence of $\text{tHcy} \geq 14$ and of metabolic B_12 deficiency by age group.

Both increased significantly with age. At ages 70–80, 23.5% of patients had $\text{tHcy} \geq 14$, and at age ≥80 it was 35%.

Figure 2 shows the distribution of tHcy and serum B_12 by

Figure 1 Distribution of serum B_12 from 2002 to 2008 versus 2009–2017. (A) Distribution of serum B_12 from 2002 to 2008. (B) Distribution of serum B_12 from 2009 to 2017. Serum B_12 is shown for all patients referred to the Urgent TIA (transient ischaemic attack) Clinic with serum B_12 levels, including those without total homocysteine available. The distributions are significantly different by a Kruskal-Wallis test ($p=0.0001$).
quartiles of eGFR. It is clear that patients with impaired renal function have higher tHcy, so metabolic B₁₂ deficiency would not be appropriately defined in them by a tHcy ≥ 14. After excluding patients with eGFR < 60, metabolic B₁₂ deficiency was present in 9.2% of patients at ages 70–80, and at age ≥ 80 it was 12.3%. Figure 2 shows the serum B₁₂ and tHcy by age groups.

Table 3 shows the prevalence of tHcy and metabolic B₁₂ deficiency by stroke subtypes. Post-hoc tests for differences are shown in online supplementary material.

Both were significantly more prevalent in patients with large artery disease and cardioembolic stroke, and less prevalent in patients with other rare causes or undetermined causes of stroke. Among the 3410 patients whose stroke subtype was determined, HHcy was present in 18.4% of patients; this differed significantly by stroke subtype: 23.3% of large artery atherosclerosis, 18.1% of cardioembolic, 16.3% of small vessel disease, 10.8% of other unusual aetiologies and 13.6% of undetermined subtypes (p = 0.0001) (figure 3).

Table 4 shows the baseline characteristics by stroke subtype.

Figure 4A shows the serum B₁₂ levels by year, and figure 4B shows the number of patients with serum B₁₂ > 700 pmol/L by year. It appears that after the 2009 report, B₁₂ supplementation became more common in our referral area. Before 2009, serum B₁₂ (mean±SD) was 293.65±135.74 pmol/L; after 2009 it was 356.57±129.18 pmol/L (p = 0.001).

DISCUSSION

We found that despite evidence of probable increasing B₁₂ supplementation in the community, metabolic B₁₂
deficiency and HHcy remain common among patients referred for TIA or minor stroke.

The shift to higher serum B_{12} levels over time is unlikely to be due to reasons other than B_{12} supplementation. The high end of the reference range of 698 pmol/L represents the 95th percentile for all patients, including those who received supplements; plasma levels above 700 pmol/L are unlikely to be physiological, and are therefore probably due to supplementation. Figure 4B shows that the percentage of patients with a serum $B_{12} > 700$ pmol/L increased after 2014 from ~5% of patients to 17.5%; this is very unlikely to be due to anything other than supplements. As the principal dietary source of B_{12} is meat, changes to a healthier lifestyle would not account for increases in serum B_{12}. It appears therefore that an increase in awareness and treatment of B_{12} deficiency since 2009 in our referral area has resulted in a decline in recent years in the prevalence of metabolic B_{12} deficiency and HHcy among patients referred with stroke or TIA. This is supported by the decline in HHcy since the 2009 report from this clinic population (from 40% of patients aged >80 to 35%) and the decline in the prevalence of HHcy since the 2006 report (from 30% of patients aged ≥71 to 15.9% aged ≥80). Nevertheless, B_{12} deficiency and HHcy remain common in this patient population.

Including some patients who probably received B_{12} supplementation in the analyses probably resulted in an underestimate of the prevalence of metabolic B_{12} deficiency and HHcy that would be observed among patients with stroke/TIA, absent supplementation.

HHcy and low eGFR were more common in patients with large artery disease, who were older than patients with other stroke subtypes. Plasma tHcy has previously been reported to be associated with carotid total plaque area. Renal function declines with age, and tHcy levels increase with age.

We found that despite probable increases in B_{12} supplementation in our community, HHcy and metabolic deficiency are still common in patients with stroke, particularly in older patients. These findings are important on several counts. As discussed above, B vitamins to lower tHcy reduce the risk of stroke. Besides increasing the risk of stroke by raising tHcy, B_{12} deficiency also causes neuropathy, myelopathy and dementia. Cognitive decline is common in patients with stroke, and treating B_{12} deficiency and HHcy can prevent dementia.

In a recent meta-analysis, patients with higher blood levels of B_{12}, B_{6} and folate had a reduced risk of developing atrial fibrillation, a known risk factor for cardioembolic strokes. Falls in the elderly, an important cause of disability, are probably also increased by loss of position sense with B_{12} deficiency.

Figure 2 Plasma total homocysteine (tHcy) and serum B_{12} by quartiles of estimated glomerular filtration rate (eGFR). (A) tHcy was clearly elevated with impaired renal function. (B) Serum B_{12} was not significantly affected by renal impairment.

Table 3 Stroke subtypes, hyperhomocysteinaemia and metabolic B_{12} deficiency, n (%)

Stroke subtype	Large artery disease	Cardioembolic	Small vessel disease	Other rare or unusual aetiologies	Undetermined	P value
tHcy > 14*	256 (23.3)†	238 (18.1)	57 (16.3)	21 (10.8)†	72 (13.6)†	0.0001
Biochemical B_{12} deficiency‡	111 (10.1)	104 (7.9)	28 (8.5)	23 (11.3)	45 (8.5)	0.27
Metabolic B_{12} deficiency§	139 (12.7)†	121 (9.2)	31 (8.8)	11 (5.4)†	44 (8.1)	0.002
Metabolic B_{12} deficiency 2¶	49 (10.9)	48 (6.8)	11 (6.2)	4 (4.3)	15 (5.2)†	0.001

Stroke subtypes were as defined among 3466 of the cases in a previous study. *tHcy, plasma total homocysteine µmol/L. †Statistically significant difference from other categories in post-hoc testing. ‡Serum $B_{12} < 156$ pmol/L. §Serum $B_{12} < 258$ and pmol/L and tHcy > 14 µmol/L. ¶Excluding patients with estimated glomerular filtration rate <60.
It also seems likely that patients in other regions and patients with more severe strokes may have a greater prevalence of both these conditions. In the Newcastle 85+ study, the lowest quartile of plasma B12 was <170 pmol/L, with tHcy 19.9 (95% CI 16.3 to 24.6); that is, 25% of UK patients whose age in 2006 was 85 years had metabolic B12 deficiency. B12 deficiency is very common in India, in part because of a high prevalence of vegetarianism. Even in adolescents, B12 deficiency was reported in 32% of study participants in the Haryana region.24 In Pakistan 58.3% of patients with ischaemic stroke were reported to have HHcy defined as tHcy >15 µmol/L25; in China the prevalence of tHcy >30 µmol/L among patients with hypertension was 16.7%.26 It would therefore be important to assess the prevalence of HHcy and metabolic B12 deficiency in other stroke populations. It would also be very important to assess serum B12 and tHcy in patients with cognitive impairment.20 27 28

CONCLUSION

Despite a probable increase in B12 supplementation in our referral area in recent years, metabolic B12 deficiency and metabolic B12 deficiency in other stroke populations. It would also be very important to assess serum B12 and tHcy in patients with cognitive impairment.

Figure 3 Plasma tHcy by age group and frequency of hyperhomocysteenia by stroke subtype. (A) tHcy clearly increases with age (ANOVA p=0.0001). (B) Stroke subtypes are shown for patients referred between 2002 and 2012; hyperhomocysteenia differed significantly by stroke subtype (χ^2 p=0.0001). ANOVA, analysis of variance; CE, cardioembolic; LAA, large artery atherosclerosis; Other, other unusual aetiologies; SVD, small vessel disease; tHcy, total homocysteine; UE, undetermined aetiology.

| Table 4 Baseline characteristics by stroke subtype for cases with serum B12 <700 pmol/L |
|---------------------------------|----------------|----------------|----------------|----------------|----------------|
| Continuous variables, mean±SD (ANOVA) | Large artery | Cardioembolic | Small vessel | Other unusual | Undetermined |
| Age (years) | 70.08±10.93 | 62.23±15.96 | 65.94±13.11 | 53.32±14.39 | 64.02±14.84 | 0.0001 |
| Systolic pressure (mm Hg) | 143.82±20.81 | 135.40±19.41 | 157.52±24.37 | 140.67±20.69 | 142.70±21.13 | 0.0001 |
| Diastolic pressure (mm Hg) | 80.26±12.44 | 79.16±12.34 | 86.48±14.54 | 81.77±12.74 | 81.15±11.16 | 0.001 |
| Total cholesterol (mmol/L) | 4.71±1.21 | 4.74±1.12 | 4.93±1.20 | 5.04±1.20 | 4.96±1.18 | 0.003 |
| Triglycerides (mmol/L) | 1.94±1.30 | 1.69±1.16 | 2.03±1.78 | 1.87±0.94 | 1.85±1.14 | 0.001 |
| HDL cholesterol (mmol/L) | 1.28±0.40 | 1.35±0.43 | 1.34±0.44 | 1.29±0.39 | 1.37±0.42 | 0.009 |
| LDL cholesterol (mmol/L) | 2.60±1.04 | 2.64±0.95 | 2.71±0.98 | 2.89±1.07 | 2.79±1.01 | 0.019 |
| Smoking (pack-years) | 25.29±23.34 | 17.62±19.89 | 21.03±22.16 | 11.06±16.28 | 16.16±17.07 | 0.0001 |
| Serum B12 (pmol/L) | 298.44±129.85 | 300.47±125.20 | 294.10±122.67 | 291.95±122.63 | 302.71±132.71 | 0.785 |
| tHcy (µmol/L) | 11.96±5.34 | 10.91±5.25 | 11.04±4.71 | 9.20±4.14 | 10.28±4.91 | 0.0001 |
| Plasma creatinine (µ mol/L) | 94.29±32.21 | 82.72±34.31 | 88.00±52.04 | 79.12±20.25 | 83.92±41.67 | 0.0001 |
| eGFR | 68.04±20.77 | 76.78±21.28 | 73.70±21.67 | 80.05±22.07 | 76.84±23.90 | 0.0001 |
| Categorical value, n (%) | * | | | | | |
| Male | 668 (62.2)* | 571 (44.3)* | 158 (48.0) | 77 (38.1)* | 238 (46.2)* | 0.0001 |

Post-hoc testing for continuous variables is shown in online supplementary material.

*Statistically significant difference from other categories in post-hoc testing.

ANOVA, analysis of variance; eGFR, estimated glomerular filtration rate; HDL, high-density lipoprotein; LDL, low-density lipoprotein; tHcy, plasma total homocysteine.
HHcy remain common in patients with TIA or stroke. As these conditions have serious consequences and are easily treated, serum B₁₂ and tHcy should be measured in all patients with ischaemic stroke.

Author affiliations
1University of British Columbia Medical School, Vancouver, British Columbia, Canada
2Department of Clinical Pharmacology, Department of Medicine, Western University, London, Ontario, Canada
3Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada
4Dementia and Heart Disease Lab, Western University, London, Ontario, Canada
5Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
6University Hospital, London, Ontario, Canada
7Division of Neurology, Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
8Division of Neurology, Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
9Deptartment of Epidemiology and Biostatistics, Western University, London, Ontario, Canada
10Western University, London, Ontario, Canada
11University of British Columbia Medical School, Vancouver, British Columbia, Canada

Contributors JDS conceived of the study. CB collected the data on patients referred before 2012 and assigned the stroke subtypes under the supervision of DGH and JDS, and SA collected the data from the patients referred after 2012, during a 3-month elective rotation. Statistical analyses were performed by SA and JDS, and ACR supervised the measurements of total homocysteine and B₁₂ and provided information on the methods. SA wrote the first draft; all authors contributed to revisions of the manuscript. JDS wrote revisions based on comments from the other authors and completed the final draft of the manuscript. The other authors (DGH, LAS, AK, JM, MRA and VH) also cared for the patients, ordered the laboratory tests and obtained approval for the study from the University Ethics Committee. The corresponding author accepts full responsibility for the work and/ or the conduct of the study, had access to the data, and controlled the decision to publish, that all listed authors meet the authorship criteria and that no others meeting the criteria have been omitted.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Disclaimer JDS affirms that the manuscript is an honest, accurate and transparent account of the study being reported; that no important aspects of the study have been omitted; and that there are no discrepancies from the study as originally planned.

Competing interests After this paper was written, JDS became a consultant to Orphan Technologies, a company that makes a truncated human cystathionine beta synthase for treatment of classical homocystinuria.

Patient consent for publication Not required.

Ethics approval The study was approved by the University of Western Ontario Human Subjects Research Ethics Board (project ID number 111558).

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement Data may be shared if permission is first obtained from the University of Western Ontario Health Sciences Ethics Review Board.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

REFERENCES
1. Wood S. NORVIT: B6 and folic acid combination may increase stroke, Mi risk. 2005 https://www.medscape.com/viewarticle/787832
2. Qin X, Li J, Spence JD, et al. Folic acid therapy reduces the first stroke risk associated with hypercholesterolemia among hypertensive patients. Stroke 2018;47:2805–12.
3. Kong X, Huang X, Zhao M, et al. Platelet count affects efficacy of folic acid in preventing first stroke. J Am Coll Cardiol 2018;71:2136–46.
4. Jenkins DJA, Spence JD, Giovannucci EL, et al. Supplemental vitamins and minerals for CVD prevention and treatment. J Am Coll Cardiol 2018;71:2570–84.
5. Quinlivan EP, McPartlin J, McNutly H, et al. Importance of both folic acid and vitamin B12 in reduction of risk of vascular disease. Lancet 2002;359:227–8.
6. Robertson J, Iemolo F, Stabler SP, et al. Vitamin B12, homocysteine and carotid plaque in the era of folic acid fortification of enriched cereal grain products. CMAJ 2005;172:1569–73.
7. Spence JD, Yi Q, Hankey GJ. B vitamins in stroke prevention: time to reconsider. Lancet Neurol 2017;16:750–60.
8. Spence JD. Metabolic vitamin B12 deficiency: a missed opportunity to prevent dementia and stroke. Nutr Res 2016;36:109–16.
9. Jacques PF, Selhub J, Bostom AG, et al. The effect of folic acid fortification on plasma folate and total homocysteine concentrations. N Engl J Med 1999;340:1449–54.
10. Vogiatzoglou A, Oulhaj A, Smith AD, et al. Determinants of plasma methylnalonic acid in a large population: implications for assessment of vitamin B12 status. Clin Chem 2009;55:2198–206.
11. Bang H, Mazumdar M, Spence D. Tutorial in biostatistics: analyzing associations between total plasma homocysteine and B vitamins using optimal categorization and segmented regression. Neuroepidemiology 2006;27:186–200.
12. Spence D. Mechanisms of thrombogenesis in atrial fibrillation. Lancet 2009;373:1006–7.
13. Spence JD. Nutrition and stroke prevention. *Stroke* 2006;37:2430–5.
14. Bogiatzi C, Hackam DG, McLeod AI, *et al*. Secular trends in ischemic stroke subtypes and stroke risk factors. *Stroke* 2014;45:3208–13.
15. Bogiatzi C, Wannarong T, McLeod AI, *et al*. SPARKLE (Subtypes of Ischaemic Stroke Classification System), incorporating measurement of carotid plaque burden: a new validated tool for the classification of ischemic stroke subtypes. *Neuroepidemiology* 2014;42:243–51.
16. Stabler SP, Lindenbaum J, Allen RH. The use of homocysteine and other metabolites in the specific diagnosis of vitamin B-12 deficiency. *J Nutr* 1996;126(4 Suppl):1266S–72.
17. Levey AS, Stevens LA, Schmid CH, *et al*. A new equation to estimate glomerular filtration rate. *Ann Intern Med* 2009;150:604–12.
18. Spence JD, Malinow MR, Barnett PA, *et al*. Plasma homocyst(e)ine concentration, but not MTHFR genotype, is associated with variation in carotid plaque area. *Stroke* 1999;30:969–73.
19. Spence JD, Hegele RA. Noninvasive phenotypes of atherosclerosis: similar windows but different views. *Stroke* 2004;35:649–53.
20. Smith AD, Smith SM, de Jager CA, *et al*. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. *PLoS One* 2010;5:e12244.
21. Smith AD, Refsum H, Bottiglieri T, *et al*. Homocysteine and Dementia: An International Consensus Statement. *J Alzheimers Dis* 2018;62:561–70.
22. Smith AD, Warren MJ, Refsum H. Vitamin B12, Eskin NMA, ed. *Advances in food and nutrition research new research and developments of water-soluble vitamins*. Cambridge, MA: Elsevier, Inc, 2018:217–79.
23. Kubota Y, Alonso A, Heckbert SR, *et al*. Homocysteine and incident atrial fibrillation: the atherosclerosis risk in communities study and the multi-ethnic study of atherosclerosis. *Heart Lung Circ* 2018:30122–7.
24. Chakraborty S, Chopra M, Mani K, *et al*. Prevalence of vitamin B12 deficiency in healthy Indian school-going adolescents from rural and urban localities and its relationship with various anthropometric indices: a cross-sectional study. *J Hum Nutr Diet* 2018:31:513–22.
25. Sadiq M, Alam MT, Kanpurwala MA, *et al*. Frequency of hyperhomocysteinaemia in ischaemic stroke patients of Karachi. *J Pak Med Assoc* 2014;64:1063–6.
26. Wang CY, Chen ZW, Zhang T, *et al*. Elevated plasma homocysteine level is associated with ischemic stroke in Chinese hypertensive patients. *Eur J Intern Med* 2014;25:538–44.
27. Vogiatzoglou A, Refsum H, Johnston C, *et al*. Vitamin B12 status and rate of brain volume loss in community-dwelling elderly. *Neurology* 2008;71:826–32.
28. Smith AD, Refsum H. Homocysteine, B vitamins, and cognitive impairment. *Annu Rev Nutr* 2016;36:211–39.