Spinors and Supersymmetry

D.G.C. McKeon∗
T.N. Sherry†

∗University of Western Ontario
†National University of Ireland, Galway

Abstract. In this paper, we survey the nature of spinors and supersymmetry (SUSY) in various types of spaces. We treat two distinct types of spaces: flat spaces and spaces of constant (non-zero) curvature. The flat spaces we consider are either three or four dimensional of signatures 3 + 1, 4 + 0, 2 + 2 and 3 + 0. In each of these cases, SUSY generators anti-commute to yield the generators of translations in the non-compact flat spaces. The spaces of constant curvature we consider are two-dimensional: the surface of the sphere S_2 and the Anti-deSitter space AdS_2. S_2 is embedded in a 3 + 0 Euclidean space while AdS_2 is embedded in 2 + 1 Minkowski space. The SUSY generators in these cases anti-commute to yield the generators of the isometry groups ($SO(3)$ or $SO(2,1)$) of the space involved.

We also report on some recent developments in looking for superspace realizations of these SUSY algebras. We can report good progress in the 3 + 0 Euclidean and in the AdS_2 case, somewhat less in the S_2 case. In each of the compact cases, we can construct field multiplet models carrying invariance under the full SUSY algebra.

1 Flat Space SUSY Analysis

1.1 3 + 1 Dimensions

The analysis of spinors and supersymmetry (SUSY) in three dimensional Minkowski space is quite standard. (See for example ref. [1].) In a representation in which Dirac matrices are given by

\[\gamma^\mu = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & \vec{\sigma} \\ -\vec{\sigma} & 0 \end{array} \right] \]

and a charge conjugation matrix C is defined by

\[C^{-1} \gamma^\mu C = -\gamma^{\mu T}, \]

we have spinors

\[\Psi = \left(\begin{array}{c} \psi_\alpha \\ \chi_\dot{\alpha} \end{array} \right), \quad \Psi^\dagger \gamma^0 = \left(\chi_\alpha, \bar{\psi}_\dot{\alpha} \right) \]
and
\[\Psi_C \equiv C \bar{\Psi}^T = \left(\begin{array}{c} \chi^\alpha \\ \psi_\alpha \end{array} \right) \quad \bar{\Psi}_C = (\psi^\alpha, \chi_\alpha) \] (3b)

forming representations of the Lorentz group. The spinorial generator \(Q \) of the \(N = 1 \) extension of the Poincaré group is Majorana (ie, \(Q = Q_C = \left(\begin{array}{c} Q^\alpha \\ \bar{Q}^{\dot{\alpha}} \end{array} \right) \)) and satisfies the algebra
\[\{Q_\alpha, Q_\beta\} = 0 \] (4a)
\[\{Q_\alpha, \bar{Q}_{\dot{\beta}}\} = 2 \sigma^\mu_{\alpha\dot{\beta}} P_\mu. \] (4b)

The two spinorial generators of \(N = 2 \) SUSY extension of the Poincaré group are both Majorana (ie, \(Q_i = Q_C \) for \(i = 1, 2 \)) and satisfy the algebra
\[\{Q^i_\alpha, \bar{Q}_{\dot{\beta}}\} = 2 \delta^i_j \sigma_{\alpha\dot{\beta}} P_\mu \] (5a)
\[\{Q^i_\alpha, Q^j_\beta\} = \epsilon_{\alpha\beta} \epsilon^{ij} Z \] (5b)

incorporating a central charge \(Z \) which commutes with all the other generators of this algebra. A representation of this algebra can be found using Fermionic creation and annihilation operators
\[a_\alpha = \frac{1}{\sqrt{2}} \left(Q^1_\alpha + \epsilon_{\alpha\beta} Q^{2\dot{\beta}}_\beta \right), \quad b_\alpha = \frac{1}{\sqrt{2}} \left(Q^1_\alpha - \epsilon_{\alpha\beta} Q^{2\dot{\beta}}_\beta \right). \] (6)

From (5) it follows that
\[\{a_\alpha, a^{\dagger}_{\beta}\} = \delta_{\alpha\beta}(2M + Z) \] (7a)
\[\{b_\alpha, b^{\dagger}_{\beta}\} = \delta_{\alpha\beta}(2M - Z) \] (7b)

in a frame in which \(P_\mu = (M, \vec{0}) \). By (7b) we obtain the “BPS” bound
\[2M \geq Z. \] (8)

1.2 4 + 0 Dimensions

The situation in four dimensional Euclidean space is quite different. In this case
\[\gamma^\mu = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right], \quad \left(\begin{array}{cc} 0 & i \vec{\sigma} \\ -i \vec{\sigma} & 0 \end{array} \right) \] (9)

so that
\[\Psi = \left(\begin{array}{c} \psi_\alpha \\ \chi^{\dot{\alpha}} \end{array} \right) \quad \bar{\Psi} = \Psi^\dagger = \left(\bar{\psi}^{\dot{\alpha}}, -\bar{\chi}_\alpha \right) \] (10a)

and
\[\Psi_C = C \bar{\Psi}^T = \left(\begin{array}{c} -\bar{\psi}^{\dot{\alpha}} \\ \bar{\chi}_\alpha \end{array} \right) \quad \bar{\Psi}_C = (\psi_\alpha, \chi^{\dot{\alpha}}) \] (10b)
for representations of $SO(4) = SU(2) \times SU(2)$. The spinor ψ_α transforms under one SU(2) subgroup while $\chi^\dot{\alpha}$ transforms under the other SU(2) subgroup. It is also evident from (10) that as $(\bar{\Psi}_C)_C = -\Psi$, we cannot have Majorana spinors in $4+0$ dimensions. The simplest self conjugate SUSY algebra is now [2]

$$\{Q_a, R_b\} = i\sigma^\mu_{ab} P^\mu \quad \{Q_a, R_b\} = 0$$

(11a, b)

$$\{Q_a, \overline{Q}_b\} = \epsilon_{ab} Z \overline{Q} \overline{Q}$$

(11c, d)

or, equivalently, if we define

$$G = \begin{pmatrix} Q_a \\ R^\dot{a} \end{pmatrix} \Rightarrow S_{a1} = Q_a \\ S_{a2} = \overline{Q}_a$$

$$T_{\dot{a}1} = -R^\dot{a} \\ T_{\dot{a}2} = \overline{R}^\dot{a}$$

(12)

we obtain an equivalent algebra which displays an $SU(2)$ structure

$$\{S_{ai}, S_{bj}\} = \epsilon_{ab} \epsilon_{ij} Z \overline{Q} \overline{Q}$$

(13a)

$$\{T_{\dot{a}i}, T_{\dot{b}j}\} = \epsilon_{\dot{a}\dot{b}} \epsilon_{ij} Z \overline{R} \overline{R}$$

(13b)

$$\{S_{ai}, T_{\dot{b}j}\} = i\epsilon_{ij} \sigma^\mu_{ab} P^\mu.$$

(13c)

This is similar in form to (5) with the roles of Z and P^μ “reversed”. Thus the simplest SUSY extension of the ISO(4) group in $4+0$ dimensions is an $N = 2$ algebra. This algebra when rewritten in terms of Fermionic creation and annihilation operators becomes, in the frame where $P^\mu = (0, 0, 0, P)$,

$$\{A_a, A^\dagger_b\} = \delta_{ab} \left[1 + P \left(Z \overline{Q} \overline{Q} Z \overline{R} \overline{R} \right)^{-1/2} \right]$$

(14a)

$$\{B_a, B^\dagger_b\} = \delta_{ab} \left[1 - P \left(Z \overline{Q} \overline{Q} Z \overline{R} \overline{R} \right)^{-1/2} \right].$$

(14b)

We hence see that $P = \sqrt{P^\mu P_\mu}$ has an upper bound in $4+0$ dimensions if the Hilbert space is to be positive definite,

$$P \leq \left(Z \overline{Q} \overline{Q} Z \overline{R} \overline{R} \right)^{1/2}.$$

(15)

As in $3+1$ dimensions, saturating the bound eliminates one half of the states.

An important distinction between $N = 2$ SUSY in Minkowski space and $N = 2$ SUSY in Euclidean space can now be drawn. In $3+1$ space the central charge provides a lower bound on the magnitude of the momentum, of the mass associated with the state. The lower bound can be zero; there is no inconsistency in considering zero central charge. In $4+0$ space on the other hand, the central charge provides an upper bound on the magnitude of the momentum. Such an upper bound on a positive definite quantity $\sqrt{P^\mu P_\mu}$ cannot be zero; the case of a zero central charge can only lead to all states having zero momentum yielding a trivial theory. We conclude that in $4+0$ space we must include a central charge.
A similar upper bound on momentum arises when one has extended SUSY in 4 + 0 dimensions with algebra [3]

\[
\{Q_{ai}, \overline{Q}_{bj}\} = \epsilon_{ab}Z^Q_{ij} \tag{16a}
\]

\[
\{R_{ai}, \overline{R}_{bj}\} = \epsilon_{ab}Z^R_{ij} \tag{16b}
\]

\[
\{Q_{ai}, \overline{R}_{bj}\} = i\sigma^m_{ab} \epsilon_{ij} P^\mu. \tag{16c}
\]

Just as \(N = 2 \) super Yang-Mills theory in 3 + 1 dimensions can be obtained by dimensional reduction of the \(N = 1 \) gauge theory in 5 + 1 dimensions, so also the supersymmetric gauge model of Zumino in 4 + 0 dimensions can be generated; it has the action

\[
S = \int d^4x E \left[-\frac{1}{4} F^2_{\mu\nu}(A) + \frac{1}{2} (D_\mu A)^2 - \frac{1}{2} (D_\mu B)^2 - \frac{i}{2} (\psi^\dagger \gamma^\nu \overleftrightarrow{D} \psi) + ig\psi^\dagger (A - B \gamma_5) \psi + \frac{1}{2} g^2 (A \times B)^2 \right]. \tag{17}
\]

One simply drops dependence on one space variable and the time variable in the 5 + 1 dimensional model and has the corresponding components of the vector field identified with the scalar fields \(A \) and \(B \). Explicit calculation [4] shows that the \(\beta \)-function in this model is the same as that in \(N = 2 \) gauge theory in 3 + 1 dimensions despite the peculiar kinetic terms in (16) for the scalars \(A \) and \(B \).

A model with extended SUSY invariance in 4 + 0 dimensions can be obtained by dimensional reduction of \(N = 1 \) gauge theory in 9 + 1 dimensions. It is expected that the \(\beta \)-function in this model vanishes, just as it does for \(N = 4 \) gauge theory in 3 + 1 dimensions, thereby ensuring that conformal invariance is unbroken.

The \(SU(2) \) structure of (12) allows one to define a Harmonic superspace in conjunction with 4 + 0 dimensions [5]. This allows for off-shell realization of this symmetry in these models.

We also note that in 4 + 0 dimensions, one can define a model which is (a) Hermitian (b) gauge invariant under an axial \(U(1) \) gauge transformation (c) anomaly free. Its action is

\[
S = \int d^4x E \left(\frac{1}{4} F^\mu_{\nu}(A) F^\nu_{\mu}(A) + \Psi^\dagger_C (\not{p} + A \gamma_5) \Psi + \Psi^\dagger (\not{p} - A \gamma_5) \Psi_C \right). \tag{18}
\]

No analogue of this model can be defined in 3 + 1 dimensions.

The usual form of the actions considered in 4dE are

\[
L^{(1)} = \frac{1}{4} F^\mu_{\nu}(A) F^\nu_{\mu}(A) + \Psi^\dagger (\not{p} + A \gamma_5) \Psi \tag{19a}
\]

or

\[
L^{(2)} = \frac{1}{4} F^\mu_{\nu}(A) F^\nu_{\mu}(A) + \Psi^\dagger (\not{p} + i A \gamma_5) \Psi. \tag{19b}
\]

The former Lagrangian is non-Hermitian while the latter does not have a compact axial gauge invariance.
1.3 2 + 2 Dimensions

In 2 + 2 dimensions, spinors can be both Majorana and Weyl [6]. Spinors take the form

\[\Psi = \begin{pmatrix} \phi_a \\ \chi^\alpha \end{pmatrix}, \quad \overline{\Psi} = \left(i \epsilon^{ab} \phi_b, i \epsilon_{ab} \chi^b \right) \]

(20a, b)

\[\Psi_C = \begin{pmatrix} \overline{\phi}_a \\ \overline{\chi}^\alpha \end{pmatrix}, \quad \overline{\Psi}_C = \left(\phi^a, \chi_{\dot{\alpha}} \right) \]

and the two simplest SUSY algebras are

\[\{q_a, r^\dot{b}\} = 2 (\sigma_\mu)_{ab} P^\mu \]

(no central charge)

(21a)

and

\[\{Q, \overline{Q}\} = 2 \gamma^\mu P_\mu + Z + Z_5 \overline{\gamma}_5 \]

(21b)

for Majorana and Dirac spinorial generators \(Q = \begin{pmatrix} q_a \\ r^\dot{a} \end{pmatrix} \) respectively. In [6] it is shown that both of these algebras can be rewritten in terms of Fermionic creation and annihilation operators that generate a Hilbert space with negative norm states; this is taken to indicate that SUSY is incompatible with a 2 + 2 dimensional space.

1.4 3 + 0 Dimensions

In three dimensional Euclidean space, the simplest SUSY algebra is [7,8]

\[\{Q, \overline{Q}\} = \tilde{\sigma} \cdot \tilde{p} + Z \]

(22)

where \(Q \) is a two component Dirac spinorial generator, \(\tilde{\sigma} \) is a set of Pauli matrices and \(Z \) is a central charge operator. Forming a superspace with coordinates \((x^\mu, \zeta, \theta_i\) and \(\theta^i \)) allows one to make the identifications

\[Q_i = \frac{\partial}{\partial \theta_i^\dagger} - \frac{i}{2} \left(\tilde{\sigma} \cdot \tilde{\nabla} \theta\right)_i - \frac{i}{2} \left(\theta \frac{\partial}{\partial \zeta}\right)_i \]

(23a)

\[P_\mu = -i \frac{\partial}{\partial x^\mu}, \quad Z = -i \frac{\partial}{\partial \zeta}. \]

(23b, c)

This makes it possible to formulate supersymmetric models in 3+0 dimensions which are analogous to both the Wess-Zumino and \(N = 1 \) gauge models in 3 + 1 dimensions. A similar analysis can be applied to \(N = 2 \) supersymmetric models in 2 + 1 dimensions. Dimensional reduction can be used to establish a relationship between supersymmetric models in 3 + 1 dimensions and three dimensional supersymmetric models.

We note that just in (8) and (15), in 2 + 1 dimensions the central charge in extended SUSY models provides a lower bound for the momentum, while in 3 + 0 dimensions, it provides an upper bound.

An analysis of supersymmetry in five dimensions [7] reveals that much as in four dimensions, no time dimensions implies an upper bound on momentum; one time dimension implies a lower bound on momentum and two time dimensions implies that for all momentum, negative norm states occur.

2 Constant Curvature Space SUSY Analysis

2.1 S_2

The simplest SUSY algebra [9] associated with the two dimensional surface of a sphere embedded in three dimensions is

$$\{Q_i, Q_j\} = 0, \quad \{Q_i, Q^*_j\} = Z\delta_{ij} - 2\vec{\sigma}_{ij} \cdot \vec{P}$$

$$[J^a, Q] = -\frac{1}{2}\sigma^a Q,$$ \hspace{1em} $$[J^a, J^b] = i\epsilon^{abc} J^c, \quad [Z, Q] = -Q$$

(Note that Z is no longer a “central charge” as it does not commute with Q.) To examine representations of this superalgebra, we define a state $|I\rangle$ such that

$$J^2|I\rangle = j(j+1)|I\rangle, \quad J_3|I\rangle = m|I\rangle.$$

$$Z|I\rangle = \zeta|I\rangle, \quad Q|I\rangle = 0.$$ \hspace{1em} (25)

Now if $|i\rangle = Q^*_1|I\rangle$ and $|F\rangle = Q^*_1 Q^*_2|I\rangle$, we find that $<1|1\rangle = (\zeta + 2m), \quad <2|2\rangle = \zeta - 2m, \quad <F|F\rangle = (\zeta - 2j)(\zeta + 2j + 2)$, showing that a positive definite Hilbert space occurs if $\zeta \geq 2j$. \hspace{1em} (26)

A model invariant under transformations generated by the SUSY algebra of (22) is

$$S = \int dA \left\{ \frac{1}{2} \Psi^\dagger (\sigma \cdot L + x) \Psi - \Phi^* \left(L^2 + x(1-x) \right) \Phi - \frac{1}{4} F^* F \right\} + \lambda_N \left(2(1-2x)\Phi^* \Phi - (F^* \Phi + F \Phi^*) - \Psi^\dagger \Psi \right)^N. \hspace{1em} (27)$$

The off mass shell transformations are

$$\delta \Phi = \xi^\dagger \Psi, \quad \delta \Psi = 2(\sigma \cdot L + 1 - u) \Phi \xi - F \xi, \quad \delta F = -2 \xi^\dagger (\sigma \cdot L + x) \Psi \hspace{1em} (28a-c)$$

$$\delta_Z \Phi = [2(1-2x)\Phi - F], \quad \delta_Z \Psi = [1 + 2\sigma \cdot L] \Psi, \quad \delta_Z F = -4 \left[L^2 + x(1-x) \right] \Phi + 2xF. \hspace{1em} (28d-f)$$

The symmetries of (28d-f) are in fact new symmetries.

A superspace representation of the algebra of (22) is provided by

$$Q = (\sigma \cdot \tau + \zeta) \frac{\partial}{\partial \theta^i} - \left(\frac{\partial}{\partial \zeta} - \sigma \cdot \nabla \right) \theta \hspace{1em} (29a)$$

$$Q^\dagger = \frac{\partial}{\partial \theta^i} (\sigma \cdot \tau + \zeta) + \theta^i \left(\frac{\partial}{\partial \zeta} - \sigma \cdot \nabla \right) \hspace{1em} (29b)$$

$$J^a = -i(r \times \nabla)^a + \frac{1}{2} \left(\theta^a \sigma^a \frac{\partial}{\partial \theta^i} + \frac{\partial}{\partial \theta} \sigma^a \theta \right) \hspace{1em} (29c)$$

$$Z = -\theta^i \frac{\partial}{\partial \theta^i} + \theta \frac{\partial}{\partial \theta}. \hspace{1em} (29d)$$
We note that under a supersymmetry transformation generated by (29)

\[
\delta r^a = \epsilon^\dagger \sigma^a \theta + \theta^\dagger \sigma^a \epsilon \\
\delta \theta = \vec{\sigma} \cdot \vec{\epsilon} + \zeta \epsilon.
\]

Furthermore, we see that

\[
\left[Q, \vec{r}^2 - \zeta^2 - 2\theta^\dagger \theta \right] = 0 \\
\left[Q, \theta^\dagger \frac{\partial}{\partial \theta} + \theta \frac{\partial}{\partial \vec{\theta}} + \vec{r} \cdot \vec{\nabla} + \zeta \frac{\partial}{\partial \zeta} \right] = 0.
\]

Currently we are attempting to formulate the model of (25) in terms of superfields using the superspace realizations (29) of the generators and (31a,b).

2.2 AdS$_2$

On AdS$_2$ we have the algebra

\[
[J_{ab}, J_{cd}] = \eta_{ac} J_{bd} - \eta_{bc} J_{ad} + \eta_{bd} J_{ac} - \eta_{cd} J_{ab} \\
\{Q, \tilde{Q}\} = 2\Sigma^{ab} J_{ab} \quad (\tilde{Q} = Q \gamma_2) \\
\{J_{ab}, Q\} = -\Sigma_{ab} Q
\]

\((Q\text{ is Majorana, } \eta_{ab} = \text{diag}(+,-,+), \gamma_a \gamma_b = -\eta_{ab} - i\epsilon^{abc} \gamma_c, \Sigma_{ab} = \frac{1}{4} \left[\gamma_a, \gamma_b \right].)\) This algebra can be realized by

\[
J_{ab} = \frac{\partial}{\partial \theta} \Sigma_{ab} \theta - (x_a \partial_b - x_b \partial_a) \\
Q = \gamma^a \partial_a \theta + \gamma^a x_a \frac{\partial}{\partial \theta} \\
\tilde{Q} = -\tilde{\theta} \gamma^a \partial_a + \frac{\partial}{\partial \theta} \gamma^a x_a
\]

where \(\theta\) is a two component Grassmann Majorana spinor. We also define

\[
D = -\gamma^a \partial_a \theta + \gamma^a x_a \frac{\partial}{\partial \theta} \\
\tilde{D} = \tilde{\theta} \gamma^a \partial_a + \frac{\partial}{\partial \theta} \gamma^a x_a.
\]

We note that

\[
\left[Q_i, x^a \partial_a + \theta_j \frac{\partial}{\partial \theta_j} \right] = 0 \\
\left[Q_i, x^a x_a - \tilde{\theta} \right] = 0.
\]

Applying the condition

\[
\Delta \Phi = \omega \Phi
\]
so that if

$$\Phi = \phi + \tilde{\lambda}\theta + F\tilde{\theta}\theta$$

then we have $(x \cdot \partial - \omega)\phi = (x \cdot \partial + 1 - \omega)\lambda = (x \cdot \partial + 2 - \omega)F = 0$.

Some suitable supersymmetric actions are

$$S_1 = \int d^3x d^2\theta \delta \left(x^2 - \tilde{\theta}\theta - a^2\right) \Phi(\tilde{D}D + \rho)\Phi$$

$$S_2 = \int d^3x d^2\theta \delta \left(x^2 - \tilde{\theta}\theta - a^2\right) \left(\tilde{D}\Phi D\Phi + \rho\Phi^2\right)$$

$$S_3 = \int d^3x d^2\theta \delta \left(x^2 - \tilde{\theta}\theta - a^2\right) \left(\Phi\tilde{Q}Q\Phi + \rho\Phi^2\right)$$

$$S_4 = \int d^3x d^2\theta \delta \left(x^2 - \tilde{\theta}\theta - a^2\right) \left(\tilde{Q}\Phi Q\Phi + \rho\Phi^2\right).$$

In component form, for example, (38a) reduces to

$$S_1 = \int d^3x \left\{ \delta \left(x^2 - a^2\right) \left[F(-2x^2F + 2(\rho - 1)\phi) + 1 \right. \right.$$

$$+ \frac{1}{2x^2}\phi \left(L^{ab} L_{ab} + 2\omega(1 + \omega)\right)\phi - \tilde{\lambda} \left(\Sigma^{ab} L_{ab} - \frac{3 - \rho}{2}\right)\lambda \right.$$

$$\left.+ \delta' \left(x^2 - a^2\right) \left[2\phi \left(x^2F + \left(\frac{\rho}{2} - \omega\right)\phi\right)\right]\right\}. \quad (39)$$

Other supersymmetric actions on AdS_2 can be devised in component form; for example

$$S = \int d^2x \left\{ \tilde{\Psi} \left(\Sigma^{ab} L_{ab} + \chi\right)\Phi + \Phi \left(\frac{1}{2}L^{ab} L_{ab} + \chi(1 + \chi)\right)\Phi \right.$$

$$- FF] + \lambda_N \left[(1 + 2x)\Phi\Phi + \tilde{\Psi}\Psi + 2\Phi F\right]^N \right\} \quad (40)$$

possesses the invariance

$$\delta\Psi = \left[\left(\Sigma^{ab} L_{ab} - (1 + x)\right)\Phi - F\right] \xi \quad (41a)$$

$$\delta\Phi = \tilde{\xi}\Psi, \quad \delta F = - \tilde{\xi} \left(\Sigma^{ab} L_{ab} + \chi\right)\Psi. \quad (41b,c)$$

The relation between the models of (38) and (40) is not apparent.

The role of ζ in (29) is not at all clear. However, it is necessary to introduce ζ in order for Q to be the “square root” of the non-Abelian operator J^a.

ACKNOWLEDGEMENTS

NSERC, Enterprise Ireland–International Collaboration Fund 2001 and NUI Galway Millenium Fund 2000 provided financial support. We would like to thank Ochanomizu University for their generous hospitality in organizing a most pleasant workshop. R. and D. MacKenzie had helpful suggestions.
REFERENCES

1. D. Balin and A. Love, “Supersymmetric Gauge Field Theory and String Theory”, IOP Publishing, Bristol 1994.
2. D.G.C. McKeon and T.N. Sherry, Ann. of Phys. 288 (2001) 2.
3. D.G.C. McKeon and T.N. Sherry, Ann. of Phys. 285 (2000) 221.
4. R. Clarkson and D.G.C. McKeon, Can. J. Phys. (to be published).
5. D.G.C. McKeon, Can. J. Phys. (in press).
6. F.T. Brandt, D.G.C. McKeon and T.N. Sherry, Mod. Phys. Lett. A 15 (2000) 1349.
7. D.G.C. McKeon, Nucl. Phys. B591 (2000) 591.
8. D.G.C. McKeon and T.N. Sherry, UWO/NUIG report (2001).
9. D.G.C. McKeon and T.N. Sherry, UWO/NUIG report (2001).
10. D.G.C. McKeon and T.N. Sherry, UWO/NUIG report (2001).