Haematotoxic effects of methanolic extract of *Boswellia sacra* oleo gum resin (frankincence) in rats

AbdulRahman A I Alyahya¹, **Mohammed Asad**¹, **Syed Mohammed Basheeruddin Asdaq**², **Yahya Mohzari**³, **Ahmed Alrashed**⁴, **Hamdan Najib Alajami**⁵, **Awad Othman Aljohani**⁵, **Abdullah Ali Al Mushtawi**⁵, **AssilNajib Alajmi**⁶ and **Hanan Nageeb Alajmi**⁶

¹Department of Clinical Laboratory Science, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
²Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh, Saudi Arabia
³Clinical pharmacy department, King Saud Medical City, Riyadh, Saudi Arabia
⁴Pharmaceutical services administration, Inpatient Department, main hospital, KFMC, Riyadh, Saudi Arabia
⁵Pharmaceutical Services Administration, King Saud Medical City, Ministry of Health, Riyadh, Saudi Arabia
⁶Pharmaceutical Services Administration, Health Oasis Hospital, Riyadh, Saudi Arabia

Abstract

In several parts of the world, *Boswellia sacra* Fluck. is one of the most commonly used herbs for the treatment of arthritis. Its usage should be validated in light of recent findings of haematotoxicity. This study was aimed to determine the effect of chronic administration of standardized methanolic extract of frankincense on blood cell count in experimental animals. Using high-performance liquid chromatography, the active constituents of *B. sacra* extract; boswellic acids were analyzed. The effect of three different doses of the extract (250, 500, and 1000 mg/kg) on different blood cells and associated parameters was investigated. The behavior, food, and water consumption of the rats were recorded. Boswellic acids were present in varying amounts with α-boswellic acid and β-boswellic acid present in more amounts compared to other boswellic acids in the extract. All three doses tested had no effect on the animals’ behavior, food

Corresponding author:
Syed Mohammed Basheeruddin Asdaq, Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, PO Box: 71666, Dariyah, Riyadh 13713, Saudi Arabia.
Emails: sasdaq@mcst.edu.sa; sasdaq@gmail.com

Creative Commons Non-Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
consumption, or weight gain. The administration of a low (500 mg/kg) and high (1000 mg/kg) dose of the extract resulted in a non-dose dependent reduction in MCH ($p < 0.01$ and $p < 0.05$, respectively), but no other blood parameters were significantly affected. The $B. sacra$ extract produces hypochromic normocytic anemia in rats at higher doses of 500 and 1000 mg/kg and this effect was not dose-dependent.

Keywords
Blood toxicity, boswellic acid, cell counts, haematopoietic system

Introduction

Haematotoxicity is one of the serious adverse effects produced by several drugs. The haematopoietic system is susceptible to drug toxicity due to its characteristic rapid rate of cell renewal and differentiation. Haematotoxicity is manifested as abnormal blood cell counts and/or abnormal function of blood cells. The abnormal blood cell function may be due to either increased destruction of blood cells or due to insufficient production.1

$Boswellia$ species ($Burseraceae$) are herbal medicine that is widely used worldwide. $Boswellia serrata$ Roxb. ex Colebr. (Indian frankincense), $Boswellia sacra$ Fluck. (Omani frankincense), and $Boswellia carterii$ Birdw (Sudani frankincense)2 are most widely used and they have been evaluated for various pharmacological activities. Boswellic acid is attributed to several pharmacological properties of boswellia species.3 The oleo gum resin of $Boswellia sacra$ (called $Omani Lubban$) and $Boswellia carterii$ (called $Sudani Lubban$) are used as household medicines in many middle eastern and Afro-Arabian countries. The $Omani Lubban$ is believed traditionally to be of good quality compared to the $Sudani Lubban$. In folklore, $Boswellia$ is used in different forms ranging from smoke that is obtained by burning it to different types of extract. The water extract4 is used as an antibacterial agent while raw frankincense is used as aromatherapy by burning it to obtain essence in some Arabian countries.5 Apart from this, frankincense is also chewed for its flavor and the essential oils obtained from this resin are reported to causes diuresis.6 Other uses of oleo gum resin include treatment of painful menstruation, wounds, inflammation, and gingivitis.2 In a previous study,7 the water extract of $B. sacra$ oleo gum resin showed aggravation of gastric ulcers, suggesting toxicity, while the boswellic acid-rich methanolic extract showed no toxicity on the liver, kidney, or reproductive systems.8,9 Continuing our efforts to determine the toxicity of $Boswellia sacra$ oleo gum resin, the present study determines the effect of 28 days of administration of standardized boswellia oleo gum resin extract on the haematopoietic system in experimental rats.

Materials and methods

Animals

Inbred Sprague-Dawley rats with a weight range from 175 to 198 g were used. Rats were maintained under controlled temperature and humidity and were provided
with water *ad libitum* and commercially available rat feed. Institutional ethical committee approval (SU/COAMS/EC/53/2019) was obtained to carry out this study.

Preparation and standardization of the extract

B. sacra oleo gum resin available locally purchased and identified through a departmental voucher specimen (SU/CAMS/3/2018). Since this oleo gum resin was imported from Oman, it was difficult to determine the date and collection. As a result, the extract was standardized to ensure that the most active chemical constituents, boswellic acids, were present. The extract was prepared after powdering it. The powdered sample was extracted with methanol in a Soxhlet extractor, and the resulting extract was dried with a rotavapor after solvent recovery. The yield of the extract was 15.23% (w/w).

Boswellic acid quantification

The concentration of boswellic acid of the extract was estimated by high-performance liquid chromatography (HPLC). Methanol was used as a solvent for dissolving extract and standard chemicals. Both boswellic acid (α + β) and acetyl-boswellic acid (α + β) was detected at 210 nm whereas 11-keto-β-boswellic acid and acetyl-11-keto-β-boswellic acid was found at 247 nm.

Drug administration

All experimental animals used in this study were distributed into four groups (*n* = 6) and received respective treatment by oral route at a specific time once a day for 28 days. Vehicle (sodium carboxymethyl cellulose 1% w/v; 1 ml/kg) was administered to group I while the second to the fourth group were administered with *Boswellia* extract suspension at 250, 500, or 1000 mg/kg respectively. Changes in behavior, weight, and consumption of food and water were noted every day throughout the treatment period. After 28-day treatment, blood was withdrawn and used for estimation of several parameters. The blood cell count was done manually because the shape of rat’s blood cells are different from human blood cells and the automated cell counters may not give accurate results.

The following blood profile parameters were determined; hemoglobin level, total leucocyte count, differential leucocyte count, platelet count, total erythrocyte count, packed cell volume (PCV), mean corpuscular volume (MCV), mean cellular hemoglobin (MCH), and mean corpuscular haemoglobin concentration (MCHC).

The PCV was calculated using the formula

\[\text{PCV} \% = \frac{\text{Volume of packed cell}}{\text{Total volume}} \times 100 \]

The MCH was calculated using the formula

\[\text{MCH (pg)} = \frac{\text{Total hemoglobin (g \%)}}{\text{RBC count (cells/mm³)}} \times 10 \]
The MCV was calculated using the formula

$$MCV\ (fl) = \frac{PCV \times 10}{RBC\ count\ (cells/mm^3)}$$

The MCHC was calculated using the formula

$$MCHC\ (%) = \frac{Total\ hemoglobin\ (g\ %) \times 100}{PCV}$$

Statistics

The results are shown as mean ± SEM. Comparison of groups was done using analysis of variance followed by Tukey’s test to determine statistical significance. Graphpad Instat software was used to perform the statistical analysis.

Results

Chemical constituents

The total boswellic acids in the extract was 38.93%. The extract had different amounts of various boswellic acids (Table 1).

Type of boswellic acid	Amount (%w/w)
Total boswellic acid	38.93
11-Keto-β-boswellic acid	6.91
Acetyl-11-keto-β-boswellic acid	1.78
Boswellic acid (α + β)	20.96
Acetyl-boswellic acid (α + β)	9.28

Behavior, food consumption, water consumption, weight, and blood parameters

Administration of *Boswellia* extract neither affects the food nor water consumption in animals and did not cause a significant weight change. There was no noticeable change in the behavior of the animals such as grooming, movement, etc., after administration of the extract. The administration of *Boswellia sacra* oleo gum resin did not affect most of the blood parameters studied. However, the MCH was significantly reduced by medium (500 mg/kg) and high dose (1000 mg/kg) of the extract and this decrease was not dose-dependent ($p < 0.01$ and $p < 0.05$ respectively). Important parameters such as RBC count, hemoglobin levels, platelet count, and differential leukocyte and total leukocyte count were not changed significantly by chronic administration of the extract (Table 2).
The current study determined the effect of *B. sacra* on a number of haematological parameters to detect all possible changes in the blood. This study is a part of large toxicological studies being undertaken to determine the safety of *B. sacra* on different organs and systems. As previously mentioned, this herb is considered safe and is used both traditionally and scientifically to treat a number of diseases and disorders, but its toxicity has not been thoroughly investigated. The extract is reported to scavenge oxygen free radicals in several studies\(^1\),\(^2\),\(^3\) and we had reported earlier that it may protect testes against the endogenous free radicals through an increase in the expression of antioxidant proteins in the body. Hence, the markers of oxidative stress in the blood were not determined.\(^9\)

The oleo gum resin of *B. sacra* oleo is used in different forms that include chewing and consumption of its raw form, smoke inhaled from burning it, as volatile oil extracted from it, and also as water extract obtained after soaking it overnight to name few forms.\(^6\) The methanol was used as an extraction solvent in this study because it can extract both polar and nonpolar constituents and thus help in determining the overall action of *B. sacra* on the blood. Furthermore, several studies have stated that boswellic acids are primarily responsible for most of the biological activities of Boswellia, except the extract’s ulcer-promoting property due to volatile constituents.\(^7\) Methanol is an excellent solvent for extracting volatile constituents, boswellic acids, and other polar and non-polar components.

The PCV measures cellular volume in the blood, while the MCV analyses cellular size and is used to diagnose diseases that affect cells (example- megaloblastic

Table 2. Effect on blood constituents.

Parameter	Control
Hb (g/dl)	14.25 ± 0.35
	14.6 ± 0.46
	13.175 ± 0.78
	14.325 ± 0.30
RBC (million/mm\(^3\))	7.92 ± 0.31
	7.27 ± 0.40
	7.65 ± 0.50
	7.57 ± 0.26
PCV (%)	42.25 ± 1.42
	43.3 ± 1.12
	38.60 ± 2.47
	39.70 ± 0.75
MCV (fl)	51.42 ± 2.18
	54.17 ± 1.66
	50.95 ± 1.68
	54.42 ± 1.43
MCH (pg)	19.37 ± 4.41
	19.72 ± 0.29
	17.87 ± 0.10**
	17.97 ± 0.39*
MCHC (%)	34.42 ± 0.64
	33.12 ± 0.66
	32.70 ± 0.79
	34.55 ± 0.29
WBC (no/cu mm)	8700 ± 344.00
	9750 ± 306.87
	10,400 ± 1627.90
	10,200 ± 990.79
DC (N/L/M/E)	4.75 ± 1.38
	4.75 ± 0.85
	4.50 ± 0.65
	8.00 ± 2.80
N (%)	90.50 ± 1.85
	88.50 ± 0.29
	90.00 ± 0.41
	82.00 ± 3.6
L (%)	1.50 ± 0.29
	1.25 ± 0.48
	1.75 ± 0.25
	2 ± 0.41
M (%)	2.00 ± 0.41
	2.50 ± 1.26
	2.75 ± 1.03
	4.25 ± 1.97
E (%)	379.50 ± 13.82
	474.00 ± 63.63
	452.00 ± 32.63
	484.20 ± 26.89

All values are mean ± SEM, n = 6.
*\(^{1,2}\)p < 0.05. **\(^{3}\)p < 0.01 compared to control.

Discussion

The current study determined the effect of *B. sacra* on a number of haematological parameters to detect all possible changes in the blood. This study is a part of large toxicological studies being undertaken to determine the safety of *B. sacra* on different organs and systems. As previously mentioned, this herb is considered safe and is used both traditionally and scientifically to treat a number of diseases and disorders, but its toxicity has not been thoroughly investigated. The extract is reported to scavenge oxygen free radicals in several studies\(^1\),\(^2\),\(^3\) and we had reported earlier that it may protect testes against the endogenous free radicals through an increase in the expression of antioxidant proteins in the body. Hence, the markers of oxidative stress in the blood were not determined.\(^9\)

The oleo gum resin of *B. sacra* oleo is used in different forms that include chewing and consumption of its raw form, smoke inhaled from burning it, as volatile oil extracted from it, and also as water extract obtained after soaking it overnight to name few forms.\(^6\) The methanol was used as an extraction solvent in this study because it can extract both polar and nonpolar constituents and thus help in determining the overall action of *B. sacra* on the blood. Furthermore, several studies have stated that boswellic acids are primarily responsible for most of the biological activities of Boswellia, except the extract’s ulcer-promoting property due to volatile constituents.\(^7\) Methanol is an excellent solvent for extracting volatile constituents, boswellic acids, and other polar and non-polar components.

The PCV measures cellular volume in the blood, while the MCV analyses cellular size and is used to diagnose diseases that affect cells (example- megaloblastic...
anemia). The RBCs’ status is determined using the MHC and MCHC. They are hypochromic when the MCH is abnormally low, and hyperchromic when the MCH is abnormally high. While boswellia extract treatment reduced MCH, it had no effect on total hemoglobin concentration. This means that some RBCs have less hemoglobin than others. Hypochromic normocytic anemia may have been caused by the boswellia. The effect on MCH was not dose-dependent.

Conclusions
The findings of this study contradict our previous research on the protection of oral boswellia administration up to 1000 mg/kg. At doses of 500 and 1000 mg/kg, a decrease in MCH indicated hypochromic normocytic anemia, suggesting that the extract may not be safe to use. However, we would like to emphasize that this is preliminary research, and studies on the long-term effects of boswellia must be performed by administering the extract for three months or by performing a chronic toxicity analysis after 9 months of the administration. Besides that, the effect of other extracts, such as water extract (without boswellic acids), could reveal the constituent(s) responsible for the MCH decrease.

Acknowledgements
The authors are grateful to the Deanship of Scientific Research, Shaqra University for financial support. The authors are also thankful to AlMaarefa University, Riyadh for providing support to do this research.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The authors would like to thank the Research Center at King Fahd Medical City, Riyadh, for their financial support provided for the manuscript.

ORCID iD
Syed Mohammed Basheeruddin Asdaq https://orcid.org/0000-0003-1533-9667

References
1. Pendota SC, Yakubu MT, Grierson DS, et al. Effect of administration of aqueous extract of hippobromus pauciflorus leaves in male wistar rats. African J Tradit Complement Altern Med 2010; 7(1): 40–46.
2. Al-Yasiry ARM and Kiczorowska B. Frankincense – therapeutic properties. Postepy Hig Med Dosw 2016; 70: 380–391.
3. Hussain H, Al-Harrasi A, Al-Rawahi A, et al. Chemistry and biology of essential oils of genus boswellia. *Evid Based Complement Altern Med* 2013; 2013: 140509.

4. Sadhasivam S, Palanivel S and Ghosh S. Synergistic antimicrobial activity of Boswellia serrata Roxb. ex Colebr. (Burseraceae) essential oil with various azoles against pathogens associated with skin, scalp and nail infections. *Lett Appl Microbiol* 2016; 63(6): 495–501.

5. Ghazanfar SA and Fisher M (eds.). *Vegetation of the Arabian Peninsula*. The Netherlands: Springer, 1998.

6. Khan I, Samson SE and Grover AK. Antioxidant supplements and gastrointestinal diseases: a critical appraisal. *Med Princ Pract* 2017; 26(3): 201–217.

7. Asad M and Alhomoud M. Proliferogenic effect of water extract of Boswellia sacra oleo gum resin in rats. *Pharm Biol* 2016; 54(2): 225–230.

8. Al-Yahya ARAI, Asad M, Sadaby A, et al. Repeat oral dose safety study of standardized methanolic extract of Boswellia sacra oleo gum resin in rats. *Saudi J Biol Sci* 2020; 27(1): 117–123.

9. Alyahya ARAI and Asad M. Repeated 28-DAY oral dose study on Boswellia sacra oleo gum resin extract for testicular toxicity in rats. *J Ethnopharmacol* 2020; 258: 112890.

10. Mahdian D, Abbaszadeh-Goudarzi K, Raoofi A, et al. Effect of Boswellia species on the metabolic syndrome: a review. *Iran J Basic Med Sci* 2020; 23(11): 1374–1381.

11. Pandey RS, Singh BK and Tripathi YB. Extract of gum resins of Boswellia serrata L. Inhibits lipopolysaccharide induced nitric oxide production in rat macrophages along with hypolipidemic property. *Indian J Exp Biol* 2005; 43(6): 509–516.

12. Matsumoto K, Ochiai T, Sekita K, et al. [Application of an automatic blood cell counter, MICROX, to experimental animals. II. Leukocyte differential count in rabbits, rats, and mice]. *Jikken Dobutsu* 1983; 32(3): 115–122.

13. Kakel SJ. The evaluation of traditional and automatic Coulter method in estimation of haematological parameters in adult rats. *Beni-Suef Univ J Basic Appl Sci* 2013; 2(1): 31–35.

14. Victor Hoffbrand A and Steensma DP. *Hoffbrand’s essential haematology*. 8th ed. Hoboken, New Jersey, USA: Wiley. https://www.wiley.com/en-us/Hoffbrand%27s%20Essential%20Haematology%20%2C%208th%20Edition-p-9781119495901 (accessed 16 November 2020).

Author biographies

AbdulRahman A I Alyahya has PhD in Genetics. He is working as Associate Professor in the department of Clinical Laboratory Science, College of Applied Medical Sciences, Shaqra University, Saudi Arabia. He has published number of research articles in the area of natural products, pharmacological sciences and molecular biology.

Mohammed Asad received his PhD in Pharmacology from JIPMER, India. He is associated with the department of Clinical Laboratory Science, College of Applied Medical Sciences, Shaqra University, Saudi Arabia for the last 10 years. He has published large number of research articles in reputed journals in the areas of experimental pharmacology and epidemiological studies.
Syed Mohammed Basheeruddin Asdaq obtained his PhD from RGUHS, India in Pharmacology. He is currently working as Associate Professor as well as director of research center of AlMaarefa University, Riyadh, Saudi Arabia. He is credited with more than 100 research publications in the areas of natural products, herb-drug interaction, general health science domain, epidemiological and cohort studies.

Yahya Mohzari is Pharm.D graduate from AlMaarefa University Riyadh, Saudi Arabia. He is working as clinical Pharmacist at King Saud Medical City, Riyadh and pursuing his residency diploma simultaneously. He has participated in number of research studies involving clinical trials, case studies, case series and hospital related issues.

Ahmed Alrashed has a Pharm.D degree. He is employed as clinical Pharmacist in the inpatient department of Pharmaceutical services administration, Inpatient Department, King Fahad Medical City, Riyadh, Saudi Arabia. He is associated in number of research projects as an active member and published research articles involving clinical trials and medical errors.

Hamdan Najib Alajami is a Pharm.D graduate. He is working as Clinical Pharmacist at King Saud Medical City, Riyadh, Saudi Arabia. He is associated with number of research groups to participate and publish research in the area of health sciences.

Awad Othman Aljohani has done his Pharm.D degree from a reputed organisation. Currently he is working as pharmacist in King Saud Medical City, Riyadh, Saudi Arabia. He has joined numerous research groups to determine medical errors, case series, case analysis and cohort studies.

Abdullah Ali Al Mushtawi has a Pharm.D degree. He is serving as Pharmacist at King Saud Medical City, Riyadh, Saudi Arabia. He has participated in number of research projects on clinical trials.

Assil Najib Alajmi obtained her Pharm.D degree from one of the reputed organisation. She is working in Pharmaceutical service administration department of Health Oasis Hospital of Riyadh. She has associated herself in number health science research projects.

Hanan Nageeb Alajmi received her Pharm.D degree from one of the accredited organisation. She is part of the pharmaceutical services administration team of health oasis hospital, Riyadh, Saudi Arabia. She has research interest in the area of health science discipline especially related to disease management.