Balancing sub- and supra-salt strain in salt-influenced rifts:

Implications for extension estimates

Alexander J. Coleman*a*, Christopher A.-L. Jacksona and Oliver B. Duffyb

a Basins Research Group (BRG), Department of Earth Science and Engineering, Imperial College, Prince Consort Road, London, SW7 2BP, UK.
b Bureau of Economic Geology, The University of Texas at Austin, University Station, Box X, Austin, TX 78713-7508, USA.

*Corresponding Author: Alexander J. Coleman (a.coleman14@imperial.ac.uk)

Keywords: Salt-influenced rifting, strain balancing, normal faulting, Halten Terrace, extension estimates, fault-related folding

ABSTRACT

The structural style of salt-influenced rifts may differ from those formed in predominantly brittle crust. Salt can decouple sub- and supra-salt strain, causing sub-salt faults to be geometrically decoupled from, but kinematically coupled to and responsible for, supra-salt forced folding. Salt-influenced rifts thus contain more folds than their brittle counterparts, an observation often ignored in extension estimates. Fundamental to determining whether sub- and supra-salt structures are kinematically coherent, and the relative contributions of thin- (i.e. gravity-driven) and thick-skinned (i.e. whole-plate stretching) deformation to accommodating rift-related strain, is our ability to measure extension at both structural levels. We here use published physical models of
salt-influenced extension to show that line-length estimates yield more accurate values of sub- and supra-salt extension compared to fault-heave, before applying these methods to seismic data from the Halten Terrace, offshore Norway. We show that, given the abundance of ductile deformation in salt-influenced rifts, significant amounts of extension may be ignored, leading to the erroneous interpretations of thin-skinned, gravity-gliding. If a system is kinematically coherent, supra-salt structures can help predict the occurrence and kinematics of sub-salt faults that may be poorly imaged and otherwise poorly constrained.

1. Introduction

1.1. Structural styles in salt-influenced rifts

The structural style and evolution of rifts that contain rheological heterogeneities, such as relatively thick salt (e.g. Hodgson et al., 1992; Stewart et al., 1996; Stewart et al., 1997; Pascoe et al., 1999; Corfield and Sharp, 2000; Richardson et al., 2005; Kane et al., 2010; Duffy et al., 2013; Wilson et al., 2015; Jackson and Lewis, 2016), may significantly differ from those forming in predominantly ‘brittle’ crust (Fig. 1) (e.g. Gawthorpe and Leeder, 2000; Whipp et al., 2014; Duffy et al., 2015). During the early stages of basement-involved extension in salt-influenced rifts, salt may inhibit the upward propagation of sub-salt faults (Fig. 1b), mechanically decoupling them from, but being responsible for, associated forced folds in supra-salt strata (e.g. Stearns, 1978; Withjack et al., 1990; Maurin and Niviere, 1999; Duffy et al., 2013); such decoupling thus leads to differing structural styles or a geometric disparity, above and below the intra-stratal detachment (Jarrige, 1992). With increasing displacement, sub-salt faults may breach the folds and hard-link with overlying, supra- salt faults (Koyi and Petersen, 1993; Harvey and Stewart, 1998; Withjack and Callaway, 2000; Richardson et al., 2005; Kane et al., 2010). As extension continues, the degree
of vertical coupling increases and the geometric disparity between the fault populations decreases
between sub- and supra-salt strata (Pascoe et al., 1999; Dooley et al., 2003; Marsh et al., 2010).
Salt-influenced rifts therefore typically contain a greater degree of folding than those lacking an
intra-stratal detachment; the contribution of these folds in accommodating extensional strain,
especially within supra-salt strata, is often ignored.

Insert Figure 1

1.1. Kinematic coherence

Despite exhibiting different structural styles, sub- and supra-salt fault systems may form at the
same time and accommodate similar amounts of extension (‘kinematic coherence’ sensu Walsh
and Watterson, 1991) (Fig. 2). Field and seismic studies have shown that kinematic coherence can
be maintained between sub- and supra-salt fault systems over relatively long spatial \(10^1 – 10^3\) m;
(Walsh and Watterson, 1991; Childs et al., 1996; Giba et al., 2012; Long and Imber, 2012; Lewis
et al., 2013) and temporal scales (Walsh et al., 2003; Jackson and Larsen, 2009; Jackson and Lewis,
2016). The characteristics of such kinematically coherent systems are: (i) sub- and supra-salt
extension should balance (e.g. Richard, 1991; Stewart et al., 1996; Harvey and Stewart, 1998); (ii)
hard-linked faults may exist between the supra- and sub-salt units (e.g. Richard, 1991; Childs et
al., 1993; Koyi, 1993); (iii) individual fault displacement and timing are related to all others in the
array (Walsh and Watterson, 1991). Intra-stratal detachments can thus allow kinematic coherence
to be maintained between structures that, on first inspection, appear physically disconnected
(Gaullier et al., 1993; Childs et al., 1996; Stewart et al., 1996; Withjack and Callaway, 2000; Lewis
et al., 2013).

A key motivation for identifying whether sub- and supra salt deformation is kinematically
coherent is that once identified, it permits the use of supra-salt structures to constrain the timing
of sub-salt structures, as well as the mode (i.e. thick-skinned, whole-plate stretching vs. thin-skinned, independent gravity-gliding) and magnitude of crustal extension. Determining the mode of crustal extension has important tectono-stratigraphic implications, as the style, evolution and distribution of supra-salt faults and folds control the distribution and geometry of syn-kinematic depocentres (Gaullier et al., 1993; Stewart and Argent, 2000; Kane et al., 2010; Elliott et al., 2012; Duffy et al., 2013; Mannie et al., 2014a; Mannie et al., 2014b; Mannie et al., 2016). In addition, the stretching factor used in basin models for hydrocarbon exploration, is often measured in seismic section, by measuring the magnitude of crustal extension (Marrett and Allmendinger, 1992; Stewart and Coward, 1995; Morley, 1996; Walsh et al., 1996). As such, accurately constraining the amount, duration, and mode of crustal extension is critical for understanding heat flow and the timing of source rock maturation in sedimentary basins (e.g. McKenzie, 1978; Waples, 1998; Ritter et al., 2004; Van Wees et al., 2009).

Insert Figure 2

Fundamental to determining whether sub – and supra-salt fault systems balance is the ability to accurately measure sub- and supra-salt strains. Prior work has shown that sub-salt fault displacement does not always balance supra-salt fault displacement (Stewart and Coward, 1995; Stewart et al., 1996; Stewart et al., 1997; Stewart, 2007). Although only a few studies have studied strain partitioning below and above salt, we anticipate that the strain mismatch between sub- and supra-salt strain could be attributed to: (i) sub-seismic deformation (Kautz and Sclater, 1988; White, 1990), (ii) polyphase faulting (Stiros, 1991; Reston and McDermott, 2014; McDermott and Reston, 2015), (iii) footwall erosion, which can produce an apparent reduction in fault heave (Kusznir and Ziegler, 1992; Judge and Allmendinger, 2011), and (iv) inversion, which may reduce the displacement measured along a pre-kinematic horizon (Stewart and Coward, 1995; Stewart et
By understanding sub- and supra-salt strain, important information on the tectonic evolution of a salt-influenced rift can be determined, however, issues still remain regarding the reliability of strain estimates in rifts and along individual fault systems. Of particular interest here, is the hypothesis that this mismatch or strain discrepancy between sub- and supra salt strains can be partly attributed to ductile strain (folding); an aspect hitherto largely ignored in previous studies (e.g. Bishop et al., 1995; Stewart et al., 1996; Harvey and Stewart, 1998). Folding has been shown to accommodate significant proportions of extension, in addition to brittle faulting, with the relative proportions likely to vary between stratigraphic levels (Fig. 3) (Childs et al., 1996; Walsh et al., 1996; Dooley et al., 2003; Long and Imber, 2012). Here, we follow the definition of strain after Walsh et al. (1996) and define ‘ductile strain’ as a change in shape produced by structures too small to be seismically imaged or represented individually on a given map or cross section by a particular technique. ‘Brittle strains’ are defined as structural discontinuities that are resolvable given a particular data type, such as fault offsets imaged in seismic reflection data.

1.2. Aims

The aim of this paper is to determine the degree to which sub- and supra-salt fault and fold systems are kinematically coherent, and, in a broader sense, how ductile cover deformation influences extension estimates in salt-influenced rift basins. To achieve this, we first outline the definitions we will employ throughout the remainder of the paper (Table 1), before answering the following questions: (i) how does sub- and supra-salt structural style vary in salt-influenced rift basins?; (ii) does fault-heave (which considers faulting only) or line-length (which considers both faulting and folding) analysis produce more accurate estimates of sub- and supra-salt extension in salt-influenced rift basins?; and (iii) how does our method of measuring extension influence our
ability to determine the degree of kinematic coherence between sub- and supra-salt fault systems?

We use two techniques to answer these questions. First, we apply the fault-heave and line-length methods for estimating sub- and supra-salt extension to scaled physical models of salt-influenced extension presented by Withjack and Callaway (2000). These models simulate the sub- and supra-salt faulting and folding patterns, and in contrast to natural examples, the boundary conditions (e.g. the true extension and supra-salt rheology) are known, allowing application and assessment of the relative merits of the two methods for estimating extension in salt-influenced rifts. Second, we apply the same methods for estimating extension to a 3D seismic survey from the Halten Terrace, offshore Norway, to determine whether the supra-salt structural style is related to thick-skinned, whole-plate stretching or thin-skinned, independent, gravity-driven deformation. The Halten Terrace is covered by high-quality 3D and 2D seismic reflection data, which image three-dimensional structural style of the sub- and supra-salt fault arrays. In addition, abundant well data, tied to a regional stratigraphic framework, enables mapping of sub- and supra-salt strata to constrain the timing of structural development. Given that the salt in this location is relatively thin (c. 400 m) and immobile compared to other salt-influenced basins in the North Sea, diapirism is minimal and no allochthonous salt bodies are developed, thereby permitting the study of salt-influenced rift structures without significant structural overprinting. We show that sub- and supra-salt structural styles can be significantly different, and that line-length analysis, which explicitly considers folding as a key part of the extension-related strain, is more accurate than fault-heave summation in calculating extension estimates in salt-influenced rifts. We find that, despite sub- and supra-salt strata being extended by similar amounts and thus being kinematically coherent, supra-salt strata preferentially accommodate strain by folding, whereas sub-salt strata tend to fault. Our results highlight that kinematic coherence does not necessitate similar structural styles, and
fault arrays that are stratigraphically separated by salt should not be interpreted as being physically or kinematically isolated.

Insert Table 1

2. Dataset and Methods

Two datasets were used to estimate extension in salt-influenced rift basins: (i) a series of published dry sand and wet clay models of forced folds (Appendix A) (Withjack and Callaway, 2000), and (ii) a seismic reflection dataset from the Halten Terrace, offshore Norway. The physical models were chosen as they were explicitly designed to simulate the incremental and finite structural styles (e.g. faulting, forced folding) observed in salt-influenced rift basins, including the Halten Terrace. However, unlike in most natural examples, which are relatively old and/or inactive, the boundary conditions in the physical models (e.g. the system dimensions, total extension, extension rate, etc.) are known. Furthermore, we can estimate the magnitude of extension from the final models using different approaches, allowing any differences between the methods to be quantified and evaluated. A full description of the physical models is provided by Withjack and Callaway (2000); we provide only a brief summary of some of the key features (Table 2).

Insert Table 2

The physical models consist of three layers (Fig. 4) – a metal base that represents sub-salt strata, an overlying silicone gel polymer that represents the salt, and an upper layer of either homogeneous dry sand or wet clay, representing the sedimentary supra-salt. Localised cataclastic faulting was the primary deformation style in the dry sand models (models 7, 8 and 9); as is common in such dry sand models, ductile deformation, in the form of folding, was negligible. In contrast, distributed cataclasis and folding was the primary deformation mechanism in the wet clay models.
(Model 12); however, with increasing strain, deformation became more localised. During the experiment (see Withjack and Callaway, 2000, for a full description), a constant downward movement on a 45º dipping precut surface in the metal base simulated displacement along a single sub-salt fault. With increasing slip, the silicone gel (salt) and the pre-kinematic (= pre-extension) supra-salt were folded and then faulted, with subsiding areas being filled with sand or clay to simulate syn-extension deposition. After each experiment, the models were sliced to create a series of cross sections (Withjack and Callaway, 2000). We then measured the amount of extension in each cross section using two approaches: (i) fault-heave summation, and (ii) line-length, and then compared to the known values from Withjack and Callaway (2000), to evaluate their accuracy in salt-influenced rift basins (Fig. 4). Fault-heave summation uses measured fault heaves along a pre-kinematic horizon (Appendix D) and considers only brittle deformation (faulting) (e.g. Rouby et al., 1996). Line-length analysis, measures the total unfaulted length of the same pre-kinematic horizon, thus includes ductile (i.e. folding) and brittle strains. Errors for fault-heave summation and line-length were calculated by measuring sections multiple times, taking note of the minimum and maximum possible line-lengths and fault-heaves (see Appendix E for further details). Because very small-scale and thus non-visible deformation is not included, both methods provide a minimum estimate for extension (Marrett and Allmendinger, 1992; Burberry, 2015). This approach allows us to compare two commonly employed approaches for estimating extension and to see whether, in a kinematically coherent example (i.e. sub-salt = supra-salt extension), the extension approaches used can be applied to the Halten Terrace natural example and evaluated. If an additional extension episode has affected either the sub- or supra-salt strata, the measured amount of extension will be greater. For example, if additional, thin-skinned gravity-driven deformation, independent of whole-plate stretching has taken place, the extension will be greater in the supra-
salt compared to the sub-salt (Fig. 2 – unbalanced system). In contrast, if polyphase rifting has occurred, then the sub-salt extension will be larger than that of the supra-salt.

Insert Figure 4

The seismic reflection data set consists of a 3D seismic survey and a series of 2D seismic lines covering c. 3,200 km² of the Halten Terrace, offshore Norway (Fig. 5a-b), including the Midgard and Smørbukk-Heidrun segments and the Grinda Graben (structural terminology after Koch and Heum, 1995). The 3D and 2D seismic surveys are time-migrated and are zero-phase with European Polarity (Brown, 2001). They have a record length of 6,000 ms. Inline and crossline spacing is 12.5 m for the 3D survey. The estimated vertical seismic resolution is c. 30 m, based on a mean seismic frequency of c. 20 Hz and an average seismic velocity of c. 2,500 ms⁻¹, both of which were measured within the depth range of interest (Appendix B-C). Eight wells, each containing a suite of wireline logs (Appendix B), checkshots (Appendix C) and core-constrained formation tops, were tied to the seismic data. Seismic reflection data was then depth-converted using a checkshot-derived time-depth relationship (Appendix C). By tying the well and seismic data, we identified seven key age-constrained pre- to post-salt seismic horizons: these were mapped to establish the structural style for sub- and supra-salt strata (Fig. 6; Appendix B). We mapped >200 faults, which were categorised as sub-, supra-salt restricted or through-going. The study area is divided into three domains based on prominent along-strike changes in supra-salt fault strike: (i) northern domain – NE-SW striking, (ii) central domain – N-S striking, and (iii) southern domain – NE-SW striking (Fig. 7a-c). This allowed along-strike changes in structural style to be quantified. Finally, we calculated extension perpendicular to the fault strike in each domain using the fault-heave summation and line-length methods on the depth-converted seismic reflection data – the same approach as used for the physical models from Withjack and Callaway (2000). To validate our
Halten Terrace interpretation, we restored a seismic section from the Halten Terrace (Appendix F) by decompacting the overburden, untilting fault bocks back to horizontal, and unfolding horizons using flexural slip (see Rowan and Ratliff, 2012; Lingrey and Vidal-Royo, 2015, for a full review and details on structural restoration). Detailed information regarding all the datasets and methods are included in Appendix E.

Insert Figure 5-7

3. Estimating Extension in Sub- and Supra-salt Strata

The restoration methodology described above (and in more detail in Appendix E) has been applied to a series of physical models (models 7, 8, 9 and 12; Appendix A) published by Withjack and Callaway (2000). In each model, the initial length (l_0), final length (l_1), and the amount of extension is known (models 7, 8, 9 & 12; Table 3–6; Fig. 4) and can be compared with our measurements of extension. Based on the likely magnitude of measurement error associated with both the fault-heave and line-length methods, we anticipate an error of c. ± 1% for measured extension. We also note, in cases where fault-related folding is significant, fault-heave summation requires projection of the footwall and hangingwall cut-offs (Appendix D); this may introduce a further c. ± 1% measurement error for measured extension. This issue does not apply to the line-length method as no stratal projection is required (see Appendix E for further details on uncertainties and errors).

Dry sand supra-salt strata in models 7, 8 and 9 do not thin during extension and, as a result, line-length variations are negligible at the scale of observation. In contrast, wet clay supra-salt strata in Model 12 thinned during extension, thus unit line-length is not preserved. Models 7, 8 and 12 all contain supra-salt forced folds, whereas Model 9 does not: thus, by comparing extension estimates by the different methods in examples both with, and without, supra-salt folding, we can ascertain
228 the relative influence of folding on extension estimates in salt-influenced rifts. In all models, sub-salt strata are faulted rather than folded.

230 Insert Table 3-6

231 All models had an initial length \((l_0)\) of 330 mm, hence sub- and supra-salt strata had the same initial line lengths and have been deformed by similar amounts; extension at both levels should therefore balance. However, applying a fault-heave summation approach to models 7 and 8 produces a discrepancy in apparent extension between sub- and supra-salt strata, with the sub-salt experiencing greater extension than the supra-salt. In contrast, when the line-length approach is used, sub- and supra-salt extension broadly balance (discrepancy of <1%). Furthermore, different approaches may yield different results (Fig. 4). For example, in models 7 and 8 (Table 3-4), estimates of extension using line-length analysis are <50% larger than the fault-heave summation approach, and similar to the known values, suggesting that folding may accommodate up to 50% of the observable strain, similar to seismic-scale estimates by Walsh et al. (1996). In models lacking appreciable folding (Model 9; Table 5), line-length and fault-heave estimates produce similar extension values, and are comparable with known values. Where supra-salt strata are largely ductile (Model 12; Table 6), line-length is not preserved during extension, due to thinning related to stretching (Fig. 8), hence line-length and fault-heave summation underestimates the amount of extension compared to the known values. Some of this underestimated extension, or strain, is likely accommodated by non-visible or ‘cryptic’ deformation (Walsh et al., 1996; Butler and Paton, 2010; Burberry, 2015) e.g. sub-granular deformation, and layer-parallel slip (Fig. 8).

248 Insert Figure 8
4. **Geological Setting of the Halten Terrace**

Having evaluated the two approaches for estimating extension in salt-influenced rifts i.e. fault-heave summation and line-length, we can now apply these to a natural example, the Halten Terrace, offshore Norway. The Halten Terrace is part of a large (c. 10,500 km² area), Devonian-to-Tertiary extensional basin, located along the easternmost edge of the present Norwegian margin. It is separated from the Trøndelag Platform to the east and the Midgard Segment to the NE by the Bremstein Fault Complex, and from the deep Rås Basin in the west by the Klakk Fault Complex (Fig. 5a). The structural framework and geological evolution of the Halten Terrace and neighbouring areas are described in detail by Blystad (1995); and Bell et al. (2014); hence, in this section, we provide only a brief review of the key tectonic and stratigraphic events such as to provide the regional tectonostratigraphic and mechanostratigraphic context for our detailed study of sub- and supra-salt fault populations (Fig. 6).

4.1. **Pre-Late Triassic**

The mid-Norwegian continental margin was subject to three periods (Early to Mid Devonian, Carboniferous, and Late Permian to Early Triassic) of approximately E-W oriented extension before the deposition of a Triassic salt layer (Blystad, 1995; Marsh et al., 2010). Rifting led to the initial separation of Greenland from the western Norway, although the distribution and type of associated structures and stratigraphy are all poorly constrained due to poor sub-salt seismic imaging, a lack of deep (i.e. sub-salt) well penetrations, and younger halokinesis. On the Halten Terrace, the deepest wells terminate in Triassic strata, including a thick sequence (<1 km) of evaporites and shales, herein termed ‘salt’ (Jacobsen and van Veen, 1984). The salt was deposited in an intra-rift subaerial basin in an arid climate, which became isolated during a regional sea-level fall (Jacobsen and van Veen, 1984; Marsh et al., 2010).
4.2. Post-Late Triassic

During the latest Triassic–early Mid Jurassic, a <2 km thick, increasingly marine-influenced overburden was deposited atop the salt (Corfield et al., 2001; Svela, 2001; Ichaso et al., 2016). NW-SE oriented extension occurred in the late Mid Jurassic and continued into the Early Cretaceous, eventually leading to the opening of the NE Atlantic Ocean in the Tertiary (Blystad, 1995; Corfield and Sharp, 2000; Richardson et al., 2005; Faleide et al., 2008; Marsh et al., 2010).

Below the salt, deformation was localised in NE-SW striking fault zones and was predominantly brittle (Fig. 7). In contrast, above the salt, deformation was distributed in NE-SW trending broad, 10^3 - 10^4 m wide (ductile) folds with NE-SW striking supra-salt (brittle) normal faults detaching onto the underlying salt, forming supra-salt restricted graben e.g. the Grinda Graben (Withjack et al., 1990; Corfield and Sharp, 2000; Withjack and Callaway, 2000). It is these sub- and supra-salt structures that we focus on in this study.

5. Sub- and Supra-salt Structural Styles

The Top Sub-salt and Top Ror Formation seismic horizons are used to define the sub- and supra-salt structures of the Halten Terrace, respectively (Fig. 7a-b). An isochore of the Triassic Salt interval delineates the distribution and geometry of salt structures (Fig. 9). Based on changes in mean supra-salt fault strike, we split the sub- and supra-salt levels into the northern (NE-SW), central (N-S) and southern (NE-SW) domains; this sub-division allows us to relate sub- and supra-salt structural styles along strike. The key structures observed at sub- and supra-salt structural levels are described below. In all cases, the faults are extensional unless otherwise stated.

Insert Figure 9

5.1. Sub-salt
At sub-salt levels, the Halten Terrace is characterised by a series of NE-SW to N-S striking (Fig. 7) fault blocks that are more deeply buried to the west (Fig. 10). The northern domain is dominated by SE- and NW- dipping, dominantly NE-SW-striking sub-salt faults, with <1 km across-strike spacing (Fig. 7b). Horst-graben structures are common, with the mean westward dip of the Top Sub-salt being relatively steep (c. <7°). Fault throw ranges between 100 - 300 m in the east, and increases to c. 500 m in the west. Sub-salt faults do not breach the overlying salt (Fig. 10a).

In the central domain, sub-salt faults strike N-S to NE-SW, with <4 - 6 km across-strike spacing (Fig. 7b). Faults dominantly dip to the west (at c. 65°), and bound a series of fault blocks that downstep to the west, with a steep regional dip (<7°). Faults throw is greatest in the east (<600 m), with easternmost faults breaching the salt and supra-salt strata (Fig. 10b).

The southern domain is characterised by NE-SW striking normal faults, with typical across-strike spacings of 5 – 10 km (Fig. 7b). Sub-salt faults bound a series of domino-style fault blocks and horst-graben structures and do not link upwards with supra-salt faults. Here, faults range in throw from 100 – 300 m, and typically dip westwards at c. 70°. The regional dip is relatively shallow compared to the northern and central domains, and with the exception of fault block crests, there is little relief at the Top Sub-salt level (Fig. 10c).

5.2. Salt

Triassic salt represents a major regional structural detachment (Fig. 9), thickening from (c. 100 – 200 m) in the east to >600 m in the west. Locally, substantial, abrupt changes in thickness and top salt geometry occur, typically in association with sub- and supra-salt structural styles. For example, salt is thickest in the immediate footwall of supra-salt faults (>200 m), and thinnest in the hangingwalls (<100 m) (Fig. 10), forming salt rollers. In the north and south, the salt is broadly isopachous with thicknesses of c. 200 – 500 m, and are not breached by hard-linked faults.
5.3. Supra-salt

The supra-salt strata (Fig. 7a) is deformed into a large (>18 km long by >15 km wide), NE-SW to N-S trending, southerly plunging, NW-facing, fold. Fold amplitude increases northwards (from 500 to 800 m), with the fold becoming bisected by the 40 km long, up to 5 km wide, and NE-SW-to N-S-trending Grinda Graben. Both the fold and the Grinda Graben overlie complex, sub-salt relief (Fig. 7b). Despite displaying broadly similar NE-SW to N-S structural trends, supra-salt strata are dominantly folded, whereas sub-salt strata are dominantly faulted.

In the northern domain, supra-salt faults strike N-S to NE-SW, are closely spaced (c. <1 – 3 km) across-strike. The faults are planar and dip steeply (c. 60 - 80°) westwards, and have up to 700 m of throw (Fig. 10a). The central domain is characterised by NNE-SSW striking faults that have a typical across-strike spacing of 2 – 7 km. Most faults dip steeply (c. 60 – 70°) westwards, and are planar – with increasing throw eastwards (from 120 – 400 m) (Fig. 10b). In the southern domain, faults strike NE-SW, with a c. 2 – 6 km across-strike spacing. However, towards the south, faults become more diffuse, becoming increasingly distributed into <2 km long segments. Faults are typically listric, and dip towards the west (c. 50 - 75°), with typical throws of <50 - 200 m (Fig. 10c).

Insert Figure 10

6. Balancing Sub- and Supra-salt Extension in the Halten Terrace

Having established the differences in structural style between the predominantly faulted sub-salt and folded and faulted supra-salt levels in the Halten Terrace, we now focus on the amount of extension measured at both structural levels to investigate whether fault-heave or line-length is the more effective technique for measuring extension in salt-influenced rifts, whether the sub- and
supra-salt structures are kinematically coherent, and if any thin-skinned, gravity-driven
deformation has taken place in the supra-salt strata, independent of thick-skinned, whole-plate
stretching.

Based on the likely measurement error associated with calculating extension on seismic
reflection profiles (see above and Appendix E), we anticipate a ± 6% cumulative uncertainty in
values of extension using fault-heave summation, and a ± 4% cumulative uncertainty associated
with line-length. Extension values derived from fault-heave summation have a greater uncertainty
than line-length (Fig. 7d-e), largely because of the projection of hangingwall and footwall cut-offs
(Appendix D) in geologically complex areas where larger degrees of extension are accommodated
by ductile strains (e.g. relay zones, near conjugate faults, within fault-related folds, etc; Walsh et
al., 1996). In addition, the degree of erosion, the choice of the pre-kinematic horizon and the cross
section to be measured will also affect the calculated extension (c. ± 1% for line-length, c. ± 2%
for fault-heave) (see Appendix E for details).

Below the salt, extension measured solely from fault-heaves increases northwards, being highest
in the northern and central domains (c. 20 - 30 %) where sub- and supra-salt faults are hard-linked
(through-going). Above the salt, extension generally decreases southwards from c. 20% to 10%
(Fig. 7d). Across all the domains, supra-salt extension (average = 17%) is slightly less than sub-
salt extension (average = 24%).

In contrast, if folding and faulting are considered together and the line-length approach is used
(Fig. 7e), extension ranges from c. 10 – 20% for sub- and supra-salt levels, with the average sub-
and supra-salt extension being 13% and 12%, respectively. In the central domain, sub- and supra-
salt extension is similar (c. 20%); this contrasts with the results yielded by the fault-heave
summation method, where extension at the sub-salt level (c. 30%) was significantly larger than the
supra-salt level (c. 16%) (cf. Figs 7d and 7e). This suggests that folding accommodates a significant amount of extension (e.g. Walsh and Watterson, 1991; Walsh et al., 1996; Long and Imber, 2012). More specifically, in the Halten Terrace, folding may accommodate for as much as half of the observable extension, a result similar to that obtained from the physical models (Table 3–4). In the northern and southern domains, supra-salt extension derived from line-length is significantly larger (c. <12% larger) than its sub-salt counterpart, similar to the fault-heave summation approach (Figs. 7d and e). Given that fault-heave summation only considers brittle deformation along faults, and is similar to a line-length approach, it is likely that there is minimal folding which would only be incorporated into line-length estimates. Furthermore, higher extension in the supra-salt strata relative to the sub-salt could be attributed to thin-skinned, gravity-driven deformation (e.g. Doré et al., 1997; Lundin and Doré, 1997; Welbon et al., 2007; Wilson et al., 2013), that is independent of thick-skinned, whole-plate stretching. If so, updip extension would need to be compensated by downdip shortening (e.g. salt-cored buckle folds) (Clausen and Korstgård, 1996; Stewart and Argent, 2000; Rowan et al., 2004; Brun and Fort, 2011). However, no such downdip shortening structures are observed, and so we suggest that it is more likely that sub-salt extension is underestimated in the northern and southern domains; sub-salt faults outboard of the study area (e.g. Fig. 5c shows a sub-salt fault outboard of the 3D survey) would balance the supra-salt extension, as shown in physical models (Fig. 7 in Withjack and Callaway, 2000) (Fig. 7e).

For a sub- and supra-salt fault-fold system to be considered kinematically coherent, total extension must be balanced, and the different levels must undergo deformation synchronously (Walsh and Watterson, 1991). However, it is often difficult to know when sub-salt faults were active. In most cases, this is related to: (i) low-quality, regional, 2D seismic reflection data, which
are unable to constrain the map-view geometry or displacement distribution along sub-salt faults, (ii) a lack of borehole data that cannot demonstrate the spatial variations in salt rheology and lithology, and their impact on the distribution and evolution of supra-salt structures, or (iii) a lack of hard-linkage between sub- and supra-salt faults, hence there are no growth packages to constrain sub-salt fault activity (Jackson and Lewis, 2016). Given that we interpret the fold overlying the sub-salt faults in Figure 5c and Figure 10a-b as a forced fold (sensu Stearns, 1978), and observe progressive onlapping by Upper Jurassic – Lower Cretaceous strata, we suggest that the sub-salt faults were active during the Late Jurassic – Early Cretaceous. Given that line-length extension across the domains is largely balanced (supra-salt average extension = 12%, sub-salt average extension = 13%), and that sub- and supra-salt deformation was coeval, we suggest the system is kinematically coherent and controlled principally by thick-skinned, whole-plate deformation. Kinematic coherence is also supported by our kinematic restoration (see Appendix F). Our conclusion is consistent with Richardson et al. (2005), who suggest that the salt was not thick enough to fully decouple sub- and supra-salt strata, implying deformation would be linked in time and space, and during the Late Jurassic and Early Cretaceous. An alternative although perhaps less likely interpretation is that sub- and supra-salt deformation occurred at markedly different times (i.e. sub-salt deformation = pre-Jurassic; supra-salt = Late Jurassic-to-Early Cretaceous), but were coincidentally associated with similar magnitudes of extension (Jackson and Lewis, 2016).

7. Discussion

Our analysis of physical models of salt-influenced rifts and a natural example from the Halten Terrace demonstrate that the choice of extension estimate approach (fault-heave summation vs. line-length) can significantly affect extension estimates in salt-influenced rifts and, subsequently,
our ability to determine whether sub- and supra-salt deformation is kinematically coherent. Furthermore, a reliance on fault-heave summation alone in folded supra-salt strata may lead to inaccurate estimates of the amount of extension and the mode of crustal extension. In this section, we discuss the wider implications of our study, with specific reference to: (i) sub- and supra-salt structural style variability and coupling; (ii) the role of folding and faulting in accommodating strain; and (iii) basin-scale estimates of rift-related extension and the identification of thin-skinned, independent gravity-driven deformation and thick-skinned, whole-plate stretching.

7.1. How does sub- and supra-salt structural style vary in salt-influenced rift basins?

Structural styles in rift basins are not always the same above and below salt, and can change through time (Harvey and Stewart, 1998; Richardson et al., 2005; Marsh et al., 2010). This is common because salt can decouple sub- and supra-salt deformation, often with faulting below the salt, and folding above the salt. At seismic-scale, supra-salt strata are largely folded, however, in nature, supra-salt units may host closely-spaced (10¹ - 10² m scale) faults with relatively low throw values (e.g. Withjack et al., 1990; Walsh et al., 1996; Patton et al., 1998; Sharp et al., 2000; Withjack and Callaway, 2000; Jackson et al., 2006; Botter et al., 2014). Prior studies have documented differences in structural style above and below salt, but have often considered each mechanostratigraphic unit independently, and sometimes related variations in fault strike, polarity and distribution to different modes of crustal extension (e.g. Coward and Stewart, 1995; Stewart et al., 1996; Stewart et al., 1997; Harvey and Stewart, 1998; Stewart and Clark, 1999; Marsh et al., 2010). Our results suggest that variations in sub- and supra-salt structural style does not mean deformation are independent of one-another. Instead, we propose that if extension at both levels is balanced, and folding is included, then it is likely that the deformation occurred synchronously.
(i.e. different structural styles above and below salt can arise from the same deformation phase and are related).

7.2. Does a fault-heave summation or line-length approach lead to more accurate extension estimates in salt-influenced rift basins?

If sub- and supra-salt fault systems are developed at different times and due to independent mechanisms, then the amount of extension in the sub- and supra-salt is also likely to differ. The majority of studies have used fault-heave to estimate the horizontal extension in a 2D profile (e.g. Gibbs, 1983; Ziegler, 1992; Wickham and Moeckel, 1997) and, although this may be reasonable when studying basins lacking folding (Morley, 1996), this approach can lead to different extension estimates in comparison to line-length methods. Given that folding is much more common in salt-influenced rifts than basins without salt (e.g. Corfield and Sharp, 2000; Kane et al., 2010; Jackson and Lewis, 2016), we have demonstrated here that it is essential to consider folding (ductile strain) when estimating extension in salt-influenced extensional systems (Childs et al., 1995; Stewart and Coward, 1995; Walsh et al., 1996; Withjack and Callaway, 2000; Long and Imber, 2010).

We prefer the line-length method to estimate extension in 2D sections in salt-influenced rifts as faulting and folding are considered, and the approach has been shown to give more accurate estimates of extension (and the stretching factor) than fault-heave summation. However, our results show that line-length should not be used if supra-salt strata undergo thickness variations related to stretching (e.g. Model 12 - Withjack and Callaway, 2000; Fig. 8). Stretching-related thickness variations are most likely to occur in overpressured, ductile shales, and can be determined from examination of seismic sections as well as in the field (e.g. boudinage, stretched clasts, foliation subparallel to bedding) (e.g. Morley and Guerin, 1996; Morley and Naghadeh, 2016). It should be noted that neither line-length nor fault-heave methods address factors such as internal shear and
differential compaction. In settings where such factors are deemed significant, a full structural
restoration, incorporating well data to constrain compositional and thus potential composition-
related variations in deformation process, is required for anything other than a first pass analysis.

7.3. How does the choice of restoration method influence our ability to determine the
degree of coherence?

Being able to accurately constrain the amount of extension in sub- and supra-salt strata is
important as it strongly influences how we interpret the processes driving deformation, helping
distinguish, for example, deformation related to thick-skinned, whole-plate stretching, or thin-
skinned, gravity-driven extension (gliding). Being able to determine the processes that have driven
deformation is critical for obtaining a sound understanding of basin evolution (fault patterns,
deformation rate, basin physiography), predicting the occurrence and activity of sub-salt faults and
supra-salt syn-rift sediment architecture and distribution. To even begin to determine the degree of
kinematic coherence between sub- and supra-salt faults, we need to be able to accurately estimate
extension. In salt-influenced rifts, we have shown that line-length is a more accurate approach
compared to fault-heave. Previous interpretations of the Halten Terrace have suggested that the
occurrence of supra-salt restricted fault blocks, detaching onto the salt and the position of pre-
kinematic horizons above a regional level (from regional 2D seismic lines) are a result of thin-
skinned, gravity-driven deformation (Welbon et al., 2007). However, by using the line-length
approach in this study, we propose that thick-skinned, whole-plate stretching is the process driving
deformation, corroborating interpretations by Pascoe et al. (1999) and Withjack et al. (1990).

Structural restorations (e.g. Lingrey and Vidal-Royo, 2015) and not simply line-length estimates
would be required to fully assess kinematic coherence across the Halten Terrace. However, when
comparing the results of a full restoration (Appendix F) with those arising from a line-length
approach, we find the result remains the same i.e. sub- and supra-salt deformation is still balanced, and kinematically coherent. Furthermore, line-length is appropriate for assessing kinematic coherence in relatively simple scenarios with moderate strain where bed-length preservation is a reasonable assumption (Dahlstrom, 1969; Ramsay and Huber, 1987; Rowan and Ratliff, 2012; Lingrey and Vidal-Royo, 2015). Where strain is very high and line-lengths are severely altered with complex tectonic histories, or significant out-of-plane deformation has occurred, this simple approach for estimating kinematic coherence may not be appropriate e.g. above diapir crests of the Texas Gulf Coast (Rowan and Kligfield, 1989; Brewer et al., 1993) and the Southern North Sea (Owen and Taylor, 1983), across rotated fault blocks of the Kwanza Basin (Rouby et al., 1993) and within halite-rich units of the Levant Basin (Cartwright et al., 2012).

In kinematically coherent salt-influenced rifts, where sub-salt imaging may be poor, supra-salt line-length extension estimates could be used to constrain thick-skinned, sub-salt extension, as both levels are likely related to the same sequence of deformation events. Furthermore, supra-salt structures could be used to constrain the likely occurrence and timing of activity of sub-salt structures, and infer potential sub-salt reservoir compartmentalisation (e.g. Montgomery and Moore, 1997; Uphoff, 2005). In addition, by calculating the timing and amount of extension in the supra-salt strata, and hence the sub-salt strata, stretching factors can be calculated and the basement heat flow may be modelled (see Van Wees et al., 2009 for a review of basement heat flow estimates derived from stretching factors).
8. Conclusions

We have used a series of published dry sand and wet clay models of forced folds from Withjack and Callaway (2000), and a high-quality seismic dataset across the Halten Terrace, offshore Norway to show:

1. Structural styles above and below the salt may exhibit largely different structural styles, albeit in the physical models or in the Halten Terrace, offshore Norway. Thick-skinned, localised brittle faulting is dominant below the salt, while ductile flow occurs within the overlying salt. Thick- and thin-skinned, brittle faulting and ductile folding is present within the supra-salt strata.

2. When estimating extension in physical models, we show that line-length is more accurate than fault-heave summation. This is largely attributed to a failure to include ductile strain (folding) in fault-heave approaches, which is very common in salt-influenced rifts.

3. A failure to include folding, especially in salt-influenced rifts, may lead to erroneous extension values, and may incorrectly suggest excess thin-skinned, gravity-gliding independent of thick-skinned deformation. Furthermore, extension estimates, will significantly affect the stretching factor utilised in basin models to predict basement heat flow and the timing of source rock maturity.

4. The findings highlight that extension above and below the salt is largely similar in the Halten Terrace despite different structural styles, indicative of kinematic coherence between sub- and supra-salt structures; deformation at both levels likely occurred synchronously, during the Mid Jurassic – Early Cretaceous rift phase.
5. When a system has similar amounts of extension above and below the salt, the supra-salt structural style can be used to constrain the occurrence of sub-salt structures and estimate the timing of thick-skinned extension that may otherwise be poorly constrained.

Acknowledgements

We would like to thank Schlumberger for the provision of the Petrel software licenses to Imperial College London. In addition, Midland Valley are thanked for the Move software. The Norwegian Petroleum Directorate (NPD), Statoil and PGS are thanked for the provision of data. We extend our thanks to Gavin Elliott for Figure 1b, and to the Basins Research Group, especially, Thomas B. Phillips, for their comments on earlier versions of this manuscript. Michael R. Hudec and Tim P. Dooley are also thanked for their in-depth discussions regarding estimating extension in salt provinces. We thank editor Ian Alsop, as well as Oskar Vidal-Royo and Peter Betts for constructive reviews that greatly improved this manuscript.

References

Bell, R. E., Jackson, C. A. L., Elliott, G. M., Gawthorpe, R. L., Sharp, I. R., and Michelsen, L., 2014, Insights into the development of major rift-related unconformities from geologically constrained subsidence modelling: Halten Terrace, offshore mid Norway: Basin Research, v. 26, no. 1, p. 203-224.

Bishop, D. J., Buchanan, P. G., and Bishop, C. J., 1995, Gravity-driven thin-skinned extension above Zechstein Group evaporites in the western central North Sea: an application of computer-aided section restoration techniques: Marine and Petroleum Geology, v. 12, no. 2, p. 115-135.

Blystad, P., 1995, Structural Elements of the Norwegian Continental Shelf: The Norwegian Sea Region, Norwegian Petroleum Directorate.

Botter, C., Cardozo, N., Hardy, S., Lecomte, I., and Escalona, A., 2014, From mechanical modeling to seismic imaging of faults: A synthetic workflow to study the impact of faults on seismic: Marine and Petroleum Geology, v. 57, p. 187-207.

Brewer, R. C., and Groshong Jr, R. H., 1993, Restoration of cross sections above intrusive salt domes: AAPG Bulletin, v. 77, no. 10, p. 1769-1780.

Brown, A. R., 2001, Calibrate yourself to your data! A vital first step in seismic interpretation: Geophysical Prospecting, v. 49, no. 6, p. 729-733.

Brun, J.-P., and Fort, X., 2011, Salt tectonics at passive margins: Geology versus models: Marine and Petroleum Geology, v. 28, no. 6, p. 1123-1145.

Burberry, C. M., 2015, Spatial and temporal variation in penetrative strain during compression: Insights from analog models: Lithosphere, v. 7, no. 6, p. 611-624.
Ichaso, A. A., Dalrymple, R. W., and Martinius, A. W., 2016, Basin analysis and sequence stratigraphy of the syn
Hodgson, N., Farnsworth, J., and Fraser, A., 1992, Salt
Harvey, M.
Gibbs, A. D., 1983, Balanced cross
Gawthorpe, R. L., and Leeder, M. R., 2000, Tectono
Gaullier, V., Brun, J. P., Gue´rin, G., and Lecanu, H., 1993, Raft tectonics: the effects of residual topography below a
Butler, R., and Paton, D., 2010, Evaluating lateral compaction in deepwater fold and thrust belts: How much are we
missing from “nature’s sandbox”: GSA Today, v. 20, no. 3, p. 4-10.
Cartwright, J., Jackson, M., Dooley, T., and Higgins, S., 2012, Strain partitioning in gravity-driven shortening of a
thick, multi-layered evaporite sequence: Geological Society, London, Special Publications, v. 363, no. 1, p.
449-470.
Childs, C., Easton, S. J., Vendeville, B. C., Jackson, M. P. A., Lin, S. T., Walsh, J. J., and Watterson, J., 1993, Kinematic
analysis of faults in a physical model of growth faulting above a viscous salt analogue: Tectonophysics, v.
228, no. 3-4, p. 313-329.
Childs, C., Nicol, A., Walsh, J. J., and Watterson, J., 1996, Growth of vertically segmented normal faults: Journal of
Structural Geology, v. 18, no. 12, p. 1389-1397.
Childs, C., Watterson, J., and Walsh, J. J., 1995, Fault overlap zones within developing normal fault systems: Journal
of the Geological Society, v. 152, no. 3, p. 535-549.
Clausen, O. R., and Korstgård, J., 1998, Influence of salt on the structural evolution of the Channel Basin: Geological
Society, London, Special Publications, v. 133, no. 1, p. 241-266.
Harvey, M. J., and Stewart, S. A., 1998, Influence of salt on the structural evolution of the Channel Basin: Geological
Society, London, Special Publications, v. 133, no. 1, p. 241-266.
Hodgson, N., Farnsworth, J., and Fraser, A., 1992, Salt-related tectonics, sedimentation and hydrocarbon plays in the
Central Graben, North Sea, UKCS: Geological Society, London, Special Publications, v. 67, no. 1, p. 31-63.
Ichaso, A. A., Dalrymple, R. W., and Martinius, A. W., 2016, Basin analysis and sequence stratigraphy of the synrift
Tilje Formation (Lower Jurassic), Halten terrace giant oil and gas fields, offshore mid-Norway: AAPG Bulletin, v. 100, no. 8, p. 1329-1375.
Jackson, C.-L., and Larsen, E., 2009, Temporal and spatial development of a gravity-driven normal fault array: Middle–Upper Jurassic, South Viking Graben, northern North Sea: Journal of Structural Geology, v. 31, no. 4, p. 388-402.

Jackson, C. A. L., Gawthorpe, R. L., and Sharp, I. R., 2006, Style and sequence of deformation during extensional fault-propagation folding: examples from the Hammam Faraun and El-Qaa fault blocks, Suez Rift, Egypt: Journal of Structural Geology, v. 28, no. 3, p. 519-535.

Jackson, C. A. L., and Lewis, M. M., 2016, Structural style and evolution of a salt-influenced rift basin margin; the impact of variations in salt composition and the role of polyphase extension: Basin Research, v. 28, no. 1, p. 81-102.

Jacobsen, V. W., and van Veen, P., 1984, The Triassic offshore Norway north of 62 N, Petroleum geology of the north European margin, Springer, p. 317-327.

Jarrige, J.-J., 1992, Variation in extensional fault geometry related to heterogeneities within basement and sedimentary sequences: Tectonophysics, v. 215, no. 1, p. 161-166.

Judge, P. A., and Allmendinger, R. W., 2011, Assessing uncertainties in balanced cross sections: Journal of Structural Geology, v. 33, no. 4, p. 458-467.

Kane, K. E., Jackson, C. A. L., and Larsen, E., 2010, Normal fault growth and fault-related folding in a salt-influenced rift basin: South Viking Graben, offshore Norway: Journal of Structural Geology, v. 32, no. 4, p. 490-506.

Kautz, S. A., and Sclater, J. G., 1988, Internal deformation in clay models of extension by block faulting: Tectonics, v. 7, no. 4, p. 823-832.

Koch, J.-O., and Heum, O., 1995, Exploration trends of the Halten Terrace: Norwegian Petroleum Society Special Publications, v. 4, p. 235-251.

Koyi, H., 1993, The effect of basement faulting on diapirism: Journal of Petroleum Geology, v. 16, no. 3, p. 285-312.

Koyi, H., and Petersen, K., 1993, Influence of basement faults on the development of salt structures in the Danish Basin: Marine and Petroleum Geology, v. 10, no. 2, p. 82-94.

Kusznir, N., and Ziegler, P., 1992, The mechanics of continental extension and sedimentary basin formation: a simple-shear/pure-shear flexural cantilever model: Tectonophysics, v. 215, no. 1, p. 117-131.

Lewis, M. M., Jackson, C. A. L., and Gawthorpe, R. L., 2013, Salt-influenced normal fault growth and forced folding: The Stavanger Fault System, North Sea: Journal of Structural Geology, v. 54, p. 156-173.

Lingrey, S., and Vidal-Royo, O., 2015, Evaluating the quality of bed length and area balance in 2D structural restorations: Interpretation, v. 3, no. 4, p. SAA133-SAA160.

Long, J., and Imber, J., 2010, Geometrically coherent continuous deformation in the volume surrounding a seismically imaged normal fault-array: Journal of Structural Geology, v. 32, no. 2, p. 222-234.

Long, J. J., and Imber, J., 2012, Strain compatibility and fault linkage in relay zones on normal faults: Journal of Structural Geology, v. 36, p. 16-26.

Lundin, E., and Doré, A., 1997, A tectonic model for the Norwegian passive margin with implications for the NE Atlantic: Early Cretaceous to break-up: Journal of the Geological Society, v. 154, no. 3, p. 545-550.

Mannie, A. S., Jackson, C. A.-L., and Hampson, G. J., 2014a, Shallow-marine reservoir development in extensional diapir-collapse minibasins: An integrated subsurface case study from the Upper Jurassic of the Cod terrace, Norwegian North Sea: AAPG Bulletin, v. 98, no. 10, p. 2019-2055.

Mannie, A. S., Jackson, C. A.-L., Hampson, G. J., and Fraser, A. J., 2016, Tectonic controls on the spatial distribution and stratigraphic architecture of a net-transgressive shallow-marine synrift succession in a salt-influenced rift basin: Middle to Upper Jurassic, Norwegian Central North Sea: Journal of the Geological Society, p. jgs2016-2033.

Mannie, A. S., Jackson, C. A. L., and Hampson, G. J., 2014b, Structural controls on the stratigraphic architecture of net-transgressive shallow-marine strata in a salt-influenced rift basin: Middle-to-Upper Jurassic Egersund Basin, Norwegian North Sea: Basin Research, v. 26, no. 5, p. 675-700.

Marrett, R., and Allmendinger, R. W., 1992, Amount of extension on" small" faults: An example from the Viking graben: Geology, v. 20, no. 1, p. 47-50.

Marsh, N., Imber, J., Holdsworth, R., Brockbank, P., and Ringrose, P., 2010, The structural evolution of the Halten Terrace, offshore Mid-Norway: extensional fault growth and strain localisation in a multi-layer brittle–ductile system: Basin Research, v. 22, no. 2, p. 195-214.

Maurin, J. C., and Niviere, B., 1999, Extensional forced folding and decollement of the pre-rift series along the Rhine graben and their influence on the geometry of the syn-rift sequences: Geological Society, London, Special Publications, v. 169, no. 1, p. 73-86.

McDermott, K., and Reston, T., 2015, To see, or not to see? Rifled margin extension: Geology, v. 43, no. 11, p. 967-970.
McKenzie, D., 1978, Some remarks on the development of sedimentary basins: Earth and Planetary science letters, v. 40, no. 1, p. 25-32.

Montgomery, S. L., and Moore, D., 1997, Subsalt play, Gulf of Mexico: a review: AAPG bulletin, v. 81, no. 6, p. 871-896.

Morley, C., 1996, Discussion of potential errors in fault heave methods for extension estimates in rifts, with particular reference to fractal fault populations and inherited fabrics: Geological Society, London, Special Publications, v. 99, no. 1, p. 117-134.

Morley, C., and Guerin, G., 1996, Comparison of gravity-driven deformation styles and behavior associated with mobile shales and salt: Tectonics, v. 15, no. 6, p. 1154-1170.

Morley, C. K., and Naghadeh, D. H., 2016, Tectonic compaction shortening in toe region of isolated listric normal fault, North Taranaki Basin, New Zealand: Basin Research, p. n/a-n/a.

Owen, P., and Taylor, N., 1983, A salt pillow structure in the southern North Sea: Seismic expressions of structural styles: AAPG Studies in geology series, no. 15.

Pascoe, R., Hooper, R., Storhaug, K., and Harper, H., Evolution of extensional styles at the southern termination of the Nordland Ridge, Mid-Norway: a response to variations in coupling above Triassic salt, in Proceedings Geological Society, London, Petroleum Geology Conference series 1999, Volume 5, Geological Society of London, p. 83-90.

Patton, T. L., Logan, J. M., and Friedman, M., 1998, Experimentally generated normal faults in single-layer and multilayer limestone specimens at confining pressure: Tectonophysics, v. 295, no. 1, p. 53-77.

Ramsay, J. G., and Huber, M. I., 1987, The techniques of modern structural geology, Academic press.

Reston, T., and McDermott, K., 2014, An assessment of the cause of the ‘extension discrepancy’ with reference to the west Galicia margin: Basin Research, v. 26, no. 1, p. 135-153.

Richard, P., 1991, Experiments on faulting in a two-layer cover sequence overlying a reactivated basement fault with oblique-slip: Journal of Structural Geology, v. 13, no. 4, p. 459-469.

Richardson, N. J., Underhill, J. R., and Lewis, G., 2005, The role of evaporite mobility in modifying subsidence patterns during normal fault growth and linkage, Halten Terrace, Mid-Norway: Basin Research, v. 17, no. 2, p. 203-223.

Ritter, U., Zielinski, G. W., Weiss, H. M., Zielinski, R. L. B., and Sættem, J., 2004, Heat flow in the Voring Basin, Mid-Norwegian Shelf: Petroleum Geoscience, v. 10, no. 4, p. 353-365.

Rouby, D., Cobbold, P. R., Szatmari, P., Demercian, S., Coelho, D., and Rici, J. A., 1993, Least-squares palinspastic restoration of regions of normal faulting—application to the Campos basin (Brazil): Tectonophysics, v. 221, no. 3, p. 439-452.

Rouby, D., Fossen, H., and Cobbold, P. R., 1996, Extension, displacement, and block rotation in the larger Gullfaks area, northern North Sea: determined from map view restoration: AAPG bulletin, v. 80, no. 6, p. 875-889.

Rowan, M. G., and Kligfield, R., 1989, Cross section restoration and balancing as aid to seismic interpretation in extensional terranes: AAPG bulletin, v. 73, no. 8, p. 955-966.

Rowan, M. G., Peel, F. J., and Vendeville, B. C., 2004, Gravity-driven fold belts on passive margins.

Rowan, M. G., and Ratliff, R. A., 2012, Cross-section restoration of salt-related deformation: Best practices and potential pitfalls: Journal of Structural Geology, v. 41, p. 24-37.

Sharp, I., Gawthorpe, R., Armstrong, B., and Underhill, J., 2000, Propagation history and passive rotation of mesoscale normal faults: implications for synrift stratigraphic development: Basin Research, v. 12, no. 3-4, p. 285-305.

Stearns, D. W., 1978, Faulting and forced folding in the Rocky Mountains foreland: Geological Society of America Memoirs, v. 151, p. 1-38.

Stewart, S., 2007, Salt tectonics in the North Sea Basin: a structural style template for seismic interpreters: SPECIAL PUBLICATION- GEOLOGICAL SOCIETY OF LONDON, v. 272, p. 361.

Stewart, S., and Argent, J., 2000, Relationship between polarity of extensional fault arrays and presence of detachments: Journal of Structural Geology, v. 22, no. 6, p. 693-711.

Stewart, S. A., and Clark, J. A., 1999, Impact of salt on the structure of the Central North Sea hydrocarbon fairways: Geological Society, London, Petroleum Geology Conference Series, v. 5, p. 179-200.

Stewart, S. A., and Coward, M. P., 1995, Synthesis of salt tectonics in the southern North Sea, UK: Marine and Petroleum Geology, v. 12, no. 5, p. 457-475.

Stewart, S. A., Harvey, M. J., Otto, S. C., and Weston, P. J., 1996, Influence of salt on fault geometry: examples from the UK salt basins: Geological Society, London, Special Publications, v. 100, no. 1, p. 175-202.

Stewart, S. A., Ruffell, A. H., and Harvey, M. J., 1997, Relationship between basement-linked and gravity-driven fault systems in the UKCS salt basins: Marine and Petroleum Geology, v. 14, no. 5, p. 581-604.
Stiros, S., 1991, Heat flow and thermal structure of the Aegean Sea and the Southern Balkans, Terrestrial Heat Flow and the Lithosphere Structure, Springer, p. 395-416.

Svela, K. E., 2001, Sedimentary facies in the fluvial-dominated Åre formation as seen in the Åre 1 member in the heidrun field, in Ole, J. M., and Tom, D., eds., Norwegian Petroleum Society Special Publications, Volume 10, Elsevier, p. 87-102.

Uphoff, T. L., 2005, Subsalt (pre-Jurassic) exploration play in the northern Lusitanian basin of Portugal: AAPG bulletin, v. 89, no. 6, p. 699-714.

Van Wees, J. D., van Bergen, F., David, P., Nepveu, M., Beekman, F., Cloetingh, S., and Bonté, D., 2009, Probabilistic tectonic heat flow modeling for basin maturation: Assessment method and applications: Marine and Petroleum Geology, v. 26, no. 4, p. 536-551.

Walsh, J., Bailey, W., Childs, C., Nicol, A., and Bonson, C., 2003, Formation of segmented normal faults: a 3-D perspective: Journal of Structural Geology, v. 25, no. 8, p. 1251-1262.

Walsh, J. J., and Watterson, J., 1991, Geometric and kinematic coherence and scale effects in normal fault systems: Geological Society, London, Special Publications, v. 56, no. 1, p. 193-203.

Walsh, J. J., Watterson, J., Childs, C., and Nicol, A., 1996, Ductile strain effects in the analysis of seismic interpretations of normal fault systems: Geological Society, London, Special Publications, v. 99, no. 1, p. 27-40.

Waples, D. W., 1998, Basin modelling: how well have we done?: Geological Society, London, Special Publications, v. 141, no. 1, p. 1-14.

Welbon, A. I. F., Brockbank, P. J., Brunsden, D., and Olsen, T. S., 2007, Characterizing and producing from reservoirs in landslides: challenges and opportunities: Geological Society, London, Special Publications, v. 292, no. 1, p. 49-74.

Whipp, P., Jackson, C., Gawthorpe, R., Dreyer, T., and Quinn, D., 2014, Normal fault array evolution above a reactivated rift fabric; a subsurface example from the northern Horda Platform, Norwegian North Sea: Basin Research, v. 26, no. 4, p. 523-549.

White, N., 1990, Does the uniform stretching model work in the North Sea: Tectonic evolution of the North Sea rifts, p. 217-240.

Wickham, J., and Moeckel, G., 1997, Restoration of structural cross-sections: Journal of Structural Geology, v. 19, no. 7, p. 975-986.

Wilson, P., Elliott, G. M., Gawthorpe, R. L., Jackson, C. A.-L., Michelsen, L., and Sharp, I. R., 2013, Geometry and segmentation of an evaporite-detached normal fault array: 3D seismic analysis of the southern Bremstein Fault Complex, offshore mid-Norway: Journal of Structural Geology, v. 51, p. 74-91.

Wilson, P., Elliott, G. M., Gawthorpe, R. L., Jackson, C. A., Michelsen, L., and Sharp, I. R., 2015, Lateral variation in structural style along an evaporite-influenced rift fault system in the Halten Terrace, Norway: Influence of basement structure and evaporite facies: Journal of Structural Geology, v. 79, p. 110-123.

Withjack, M. O., and Callaway, S., 2000, Active normal faulting beneath a salt layer: an experimental study of deformation patterns in the cover sequence: AAPG bulletin, v. 84, no. 5, p. 627-651.

Withjack, M. O., Olson, J., and Peterson, E., 1990, Experimental models of extensional forced folds (1): Aapg Bulletin, v. 74, no. 7, p. 1038-1054.

Ziegler, P., 1992, North Sea rift system: Tectonophysics, v. 208, no. 1, p. 55-75.
Figure 1 – Comparison of (a) non-salt influenced rifts (modified from Gawthorpe and Leeder, 2000), and (b) salt-influenced rift systems, documenting the large variation and increased complexity in structural style laterally and vertically associated with salt.
Figure 2 – End-member models documenting differing degrees of sub-salt and supra-salt extension. Balanced systems have undergone similar amounts of extension (e) at similar times (i.e. kinematically coherent), however, the supra- and sub-salt structural style may be largely different. In an unbalanced system supra- and sub-salt deformation is independent of one another.
Figure 3 – Matrix documenting the sub- and supra-salt structure style variability, under similar amounts of extension (e). In all cases, the amount of extension in the sub-salt ($e_{\text{sub-salt}}$) and supra-salt ($e_{\text{supra-salt}}$) strata is the same.
Figure 4 – A dry sand model of a forced fold (Model 7) from Withjack and Callaway (2000) overlying a sub-salt fault. The salt is shown in red, while the black horizon is a marker bed within the pre-kinematic supra-salt strata. The initial length (l_0) of the model is measured using a fault-heave summation and line-length approach, and compared to the known initial width to evaluate the accuracy of both methods. The sub-salt extension is comparable for fault-heave and line-length estimates, however, for the supra-salt, fault-heave predicts a greater initial width than line-length (shaded zone), and does not match the sub-salt. Vertical exaggeration is 1. Further details on the methodology are described in Appendix E.
Figure 5 – (a) Major tectonic elements offshore Norway (modified from Elliott et al., 2012). The study area is shown in red. A regional section (A-A’) is shown in black. KFC – Klakk Fault Complex, BFC – Bremstein Fault Complex. (b) BCU depth-structure map with 50 m contour intervals. Figure 10a-c seismic profiles are shown in black. Well 6407/2-1, used for the seismic-well tie in Appendix B, is also shown. (c) An uninterpreted and interpreted regional 2D seismic line through the Halten Terrace documenting the 3D seismic extent and regional structural style. See Figure 6 for the colours used in the seismic section. The 2D seismic line has not been used for calculating extension in Figure 7.
Figure 6 – Tectonostratigraphic chart for the Halten Terrace (modified from Marsh et al., 2010). Key interpreted seismic horizons discussed in this paper are shown, alongside the mechnostratigraphy. Colours representing the stratigraphy are used in Figure 5, 7 and 10.
Figure 7 – Depth structure maps and interpreted fault traces for the (a) Top Ror – supra-salt, and (b) Top Sub-salt horizons. (c) Fault strike rose diagrams from north to south in the supra- and sub- salt strata. Black arrows and coloured circumference show the mean strike and circular variance, respectively. (d) Fault-heave and (e) line-length derived extension along the fault system. The approximate positions of the seismic sections in Figure 10 are also shown.
Figure 8 – Model 12 from Withjack and Callaway (2000) showing thickness changes related to stretching and a schematic of non-visible deformation (‘diffuse deformation’). Vertical exaggeration is 1.
Figure 9 – Depth structure map for the Top Sub-salt horizon with a 50 m contour interval. The isochore (true vertical thickness) for the salt interval is overlain on the Top Sub-salt structure map as colours. Areas of purple represent thick salt, while red represents thin salt. The position of seismic sections in Figure 10 are also shown.
Figure 10 – Three uninterpreted (top) and interpreted (bottom) 2D seismic reflection profiles in the (a) north, (b) centre and (c) south of the 3D seismic volume. All sections have been depth converted using the time-depth relationship in Appendix C. The location of the sections is shown in Figure 5, and Figure 10. The colours on the interpreted sections are shown in Figure 6. Vertical exaggeration is 2.5. These sections have been used to document the structural style and were not used to calculate extension in Figure 7.
Figure 10 – Three uninterpreted (top) and interpreted (bottom) 2D seismic reflection profiles in the (a) north, (b) centre and (c) south of the 3D seismic volume. All sections have been depth converted using the time-depth relationship in Appendix C. The location of the sections is shown in Figure 5, and Figure 10. The colours on the interpreted sections are shown in Figure 6. Vertical exaggeration is 2.5. These sections have been used to document the structural style and were not used to calculate extension in Figure 7.
Figure 10 – Three uninterpreted (top) and interpreted (bottom) 2D seismic reflection profiles in the (a) north, (b) centre and (c) south of the 3D seismic volume. All sections have been depth converted using the time-depth relationship in Appendix C. The location of the sections is shown in Figure 5, and Figure 10. The colours on the interpreted sections are shown in Figure 6. Vertical exaggeration is 2.5. These sections have been used to document the structural style and were not used to calculate extension in Figure 7.
Term	Definition
Ductile strain	A change in shape produced by structures which are too small to be imaged individually by a particular technique and/or too small to be represented individually on a given cross-section or map, albeit in a physical model or seismic data (Walsh and Watterson, 1996).
Brittle strain	Discontinuities that can be imaged by a particular technique on a given cross-section or map e.g. a fault, albeit in a physical model or seismic (Walsh and Watterson, 1996).
Thin-skinned	Deformation that is restricted to the detachment and its overburden. It is typically driven by gravity (e.g. Brun and Fort, 2011), although it may occur during stretching of the entire crust or rifting (see ‘thick-skinned’).
Thick-skinned	Deformation involving sub- and supra-salt stratigraphy, and the salt layer itself, driven by whole-plate stretching or rifting.
Supra-salt	Rock units overlying and deformation occurring above the salt. Synonymous with the terms ‘cover’ and ‘overburden’.
Sub-salt	Rock units underlying and deformation occurring below the salt. Synonymous with ‘acoustic basement’.
Decoupling	Sub- and supra-salt strata deform differently producing a variety of structural styles (e.g. Withjack et al., 1990; Jarrige, 1992).
Kinematic coherence	The timing and rates of displacement at each point on all faults in an array are largely synchronous. Not all points on all fault surfaces will be active throughout the life of the array, but the time of fault initiation and death, and growth rate, are fixed in relation to the overall growth history of the array (Walsh and Watterson, 1991). Individual faults within the array need not be physically connected.
Geometric coherence	Displacements on faults may aggregate to produce a displacement distribution resembling a single fault (Walsh and Watterson, 1991; Childs et al., 1995).
Soft-linked fault(s)	Faults surfaces which, at the scale of observation, appear physically disconnected, but between which mechanical and geometrical continuity is achieved by ductile strain in the intervening rock volume (Walsh and Watterson, 1991).
Hard-linked fault(s)	Fault surfaces that are, at the scale of observation, physically connected (Walsh and Watterson, 1991).

Table 1 – Summary of fault nomenclature used in this study.
Model name	Supra-salt strata	Initial supra-salt thickness (mm)	Initial salt thickness (mm)	Initial length, l_0 (mm)	Final length, l_1 (mm)
Model 7	Dry sand	10.0	30.0	330.0	360.0
Model 8	Dry sand	10.0	30.0	330.0	360.0
Model 9	Dry sand	10.0	30.0	330.0	360.0
Model 12	Wet clay	10.0	30.0	330.0	360.0

Table 2 – Description of models from Withjack and Callaway (2000). All models are shown in Appendix A.
Model name	Restoration method	Extension, e (mm)	Extension, E (%)	Sub- or supra- salt
7 – Stage 1	Fault-heave	1.0	0.3	Supra-salt
7 – Stage 2	Fault-heave	3.0	0.8	Supra-salt
7 – Stage 3	Fault-heave	12.0	3.3	Supra-salt
7 – Stage 1	Fault-heave	4.0	1.2	Sub-salt
7 – Stage 2	Fault-heave	18.0	5.3	Sub-salt
7 – Stage 3	Fault-heave	34.0	9.9	Sub-salt
7 – Stage 1	Line-length	3.0	0.9	Supra-salt
7 – Stage 2	Line-length	20.0	5.9	Supra-salt
7 – Stage 3	Line-length	34.0	9.9	Supra-salt
7 – Stage 1	Line-length	4.0	1.2	Sub-salt
7 – Stage 2	Line-length	18.0	5.3	Sub-salt
7 – Stage 3	Line-length	34.0	9.9	Sub-salt
7 – Stage 1	Known values	3.8	1.2	Both
7 – Stage 2	Known values	17.2	5.2	Both
7 – Stage 3	Known values	29.7	9.0	Both

Table 3 – A comparison of measured extension using the line-length and fault-heave methods with the known values for Model 7 from Withjack and Callaway (2000). The amount of extension (e) is the difference between the final and initial length of the model \((e = l_f - l_i)\). The percentage of extension \((E)\) is the ratio of the amount of extension to the initial length \((E = e/l_i)\).
Model name	Restoration method	Extension, e (mm)	Extension, E (%)	Sub- or supra-salt
8 – Stage 1	Fault-heave	3.0	0.9	Supra-salt
8 – Stage 2	Fault-heave	2.0	0.5	Supra-salt
8 – Stage 3	Fault-heave	6.0	1.6	Supra-salt
8 – Stage 1	Fault-heave	1.0	0.3	Sub-salt
8 – Stage 2	Fault-heave	19.0	5.5	Sub-salt
8 – Stage 3	Fault-heave	31.0	9.0	Sub-salt
8 – Stage 1	Line-length	5.0	1.5	Supra-salt
8 – Stage 2	Line-length	18.0	5.2	Supra-salt
8 – Stage 3	Line-length	31.0	9.0	Supra-salt
8 – Stage 1	Line-length	1.0	0.3	Sub-salt
8 – Stage 2	Line-length	19.0	5.5	Sub-salt
8 – Stage 3	Line-length	31.0	9.0	Sub-salt
8 – Stage 1	Line-length	6.7	2.0	Both
8 – Stage 2	Known values	20.7	6.3	Both
8 – Stage 3	Known values	29.7	9.0	Both

Table 4 – A comparison of measured extension using the line-length and fault-heave methods with the known values for Model 8 from Withjack and Callaway (2000). The amount of extension (e) is the difference between the final and initial length of the model (e = l_f - l_i). The percentage of extension (E) is the ratio of the amount of extension to the initial length (E = e/l_i).
Model name	Restoration method	Extension, e (mm)	Extension, E (%)	Sub- or supra- salt
9 – Stage 1	Fault-heave	10.0	2.9	Supra-salt
9 – Stage 2	Fault-heave	18.0	5.3	Supra-salt
9 – Stage 3	Fault-heave	36.0	10.6	Supra-salt
9 – Stage 1	Fault-heave	11.0	3.3	Sub-salt
9 – Stage 2	Fault-heave	17.0	5.0	Sub-salt
9 – Stage 3	Fault-heave	35.0	10.3	Sub-salt
9 – Stage 1	Line-length	10.0	2.9	Supra-salt
9 – Stage 2	Line-length	19.0	5.6	Supra-salt
9 – Stage 3	Line-length	36.0	10.6	Supra-salt
9 – Stage 1	Line-length	11.0	3.3	Sub-salt
9 – Stage 2	Line-length	17.0	5.0	Sub-salt
9 – Stage 3	Line-length	35.0	10.3	Sub-salt
9 – Stage 1	Line-length	8.7	2.6	Both
9 – Stage 2	Known values	14.3	4.3	Both
9 – Stage 3	Known values	29.7	9.0	Both

Table 5 – A comparison of measured extension using the line-length and fault-heave methods with the known values for Model 9 from Withjack and Callaway (2000). The amount of extension (e) is the difference between the final and initial length of the model (e = l₁ − l₀). The percentage of extension (E) is the ratio of the amount of extension to the initial length (E = e/l₀).
Model name	Restoration method	Extension, e (mm)	Extension, E (%)	Sub- or supra-salt
12 – Stage 1	Fault-heave	11.0	3.1	Supra-salt
12 – Stage 2	Fault-heave	18.0	5.1	Supra-salt
12 – Stage 3	Fault-heave	24.0	6.8	Supra-salt
12 – Stage 1	Fault-heave	20.0	5.8	Sub-salt
12 – Stage 2	Fault-heave	26.0	7.6	Sub-salt
12 – Stage 3	Fault-heave	33.0	9.6	Sub-salt
12 – Stage 1	Line-length	5.0	1.4	Supra-salt
12 – Stage 2	Line-length	3.0	0.8	Supra-salt
12 – Stage 3	Line-length	8.0	2.2	Supra-salt
12 – Stage 1	Line-length	20.0	5.8	Sub-salt
12 – Stage 2	Line-length	26.0	7.6	Sub-salt
12 – Stage 3	Line-length	33.0	9.6	Sub-salt
12 – Stage 1	Line-length	18.8	5.7	Both
12 – Stage 2	Known values	24.5	7.4	Both
12 – Stage 3		29.7	9.0	Both

Table 6 – A comparison of measured extension using the line-length and fault-heave methods with the known values for Model 12 from Withjack and Callaway (2000). The amount of extension (e) is the difference between the final and initial length of the model (e = l₂ − l₀). The percentage of extension (E) is the ratio of the amount of extension to the initial length (E = e/l₀).
Appendix A – Models 7 and 8 from Withjack and Callaway (2000). Vertical exaggeration is 1.
Appendix A continued – Models 9 and 12 from Withjack and Callaway (2000). Vertical exaggeration is 1.
Appendix B

Synthetic seismogram generated for well 6407/2-1 showing the correlation of the Jurassic and Cretaceous stratigraphy to the seismic section. The measured average velocity and the average seismic frequency for each interval are shown and used to calculate vertical resolution with depth. See Figure 5 for the well location. Some horizons have been omitted from the main text and figures 5 and 10 due to the close vertical spacing between the Jurassic strata, see Appendix E for further details.
Appendix C – Time-depth relationship (black dashed line) derived from Halten Terrace checkshots (grey circles). The average vertical seismic resolution (red solid line) was calculated using the frequency and velocity.
Appendix D – Schematic diagram illustrating the projection of hangingwall and footwall cut-offs in section.
Appendix E

1. **Halten Terrace detailed methods**

1.1 Seismic dataset

The 3D seismic survey covers an area of c. 3250 km² of the Halten Terrace, offshore Norway. The dataset is time-migrated, zero phase and European Polarity (Brown, 2001), with a vertical sampling rate of 4 ms TWT and a record length of 6000 ms. Inline and crossline spacing is 12.5m. Vertical resolution ranges from c. 13m at <1 km utilising a central frequency of c. 40 Hz with a velocity of c. 2000 ms⁻¹, to c. 67 m utilising a central frequency of c. 20 Hz with a velocity of c. 4000 ms⁻¹ at 4km (Appendix B - C).

1.2 Horizon mapping

8 wells, containing a suite of wireline logs, checkshots and core-constrained formation tops, were tied to the seismic data to constrain 13 seismic surfaces, two within the Triassic interval, six within the Jurassic and five in the Cretaceous – Tertiary intervals. Given the close vertical spacing between Jurassic horizons (Appendix B) and our focus on the Triassic – Early Cretaceous interval, not all horizons are shown in the main text or in the restoration (Appendix F). None of the wells penetrated below the uppermost Triassic, hence seismic facies analysis was used to interpret the Top Salt and Top Sub-salt (i.e. Base Salt), similar to prior studies (Marsh et al., 2010; Richardson et al., 2005; Stewart et al., 1996). The salt is typically chaotic, of low amplitude, and primarily discontinuous, except at its top and base. Parallel, continuous reflections with moderate-high amplitudes characterise the strata above the salt. We refer to the units above the salt as ‘supra-salt’.

1.3 Fault mapping

Faults, tiplines and branchlines were mapped across the seismic volume using breaks and displacement in seismic reflections. Each fault segment was categorised into those that are restricted to the (i) supra-salt and (ii) sub-salt intervals, and those involving (iii) sub- and supra-salt stratigraphy. The study area was then divided into three domains based upon the dominant fault strike in the supra-salt strata: (i) northern – NE-SW striking (Fig. 10a), (ii) central – N-S striking (Fig. 10b), and (iii) southern – NE-SW striking (Fig. 10c).

1.4 Depth conversion

Velocities for the depth conversion are derived from checkshot data from 8 wells throughout the eastern Halten Terrace (Appendix C). Checkshots covered a depth range from near the sea bed to the uppermost Triassic. No wells penetrated into salt, so a velocity of 4000 ms⁻¹ was assumed, which is less than typical velocities used for halite (4500 ms⁻¹), as mud interbeds are common (Wilson et al., 2013; Wilson et al., 2015). The sub-salt strata were also assumed to be 4000 ms⁻¹. The velocities used for depth conversion (Appendix B-C) are similar to those derived potential field modelling and refraction data (Breivik et al., 2009; Breivik et al., 2011), and well-derived velocity studies (Storvoll et al., 2005). Errors associated with the velocity errors are discussed in sections 2.2. and 2.3.
2. Measuring extension in sections

2.1 Fault-heave summation

Horizontal extension (e) was calculated for two pre-kinematic horizons, one above and one below the salt. Fault heave was measured perpendicular to the dominant fault strike, and summed to give a total fault heave along the horizon of interest between horizon cut-offs. Cut-offs were defined using an extrapolated line that follows the regional trend of the chosen horizon prior to folding (Appendix D) (Wilson et al., 2013), removing the effect of fault-parallel folding (Walsh et al., 1996). By measuring the present-day width of the section (l₁), the pre-extension initial width can be calculated (l₀ = l₁ – e). The percentage of extension of the pre-extension width (E) was calculated using a ratio of total fault heave (horizontal extension, e) to the pre-extension width i.e. \(E = \frac{e}{l_0} \). This method only considers brittle deformation, and does not require a velocity model as all deformation is assumed to horizontal. However, when projecting the horizon cut-offs, velocity models will slightly affect the heave estimate. No extension-related thickness variations are assumed, and line-length is preserved during extension.

For the physical models (Appendix A) from Withjack and Callaway (2000), the Top Sub-salt and the black marker bed within the supra-salt strata were used to estimate extension. Sensitivity testing was then undertaken to investigate the measurement error associated with fault-heave summation along pre-kinematic horizons in the physical models. In all cases, we found that the measurement error was not significant (c. ± 1%), and the error associated with cut-off projection (Appendix D) was also not significant (c. ± 1%). The value of extension between pre-kinematic horizons was minimal (c. ± 1%).

For the Halten Terrace, the Top Ror Formation and Top Sub-salt horizons (Fig. 6) were used to estimate extension, and the discrepancy between the two was quantified (Fig. 7). Here, fault heave was measured was measured perpendicular to the dominant fault strike every 500 m along-strike, and summed to give a total fault heave along the horizon of interest. Similarly to the physical models, sensitivity testing was undertaken along the pre-kinematic horizons in seismic sections to investigate the uncertainty associated with measurement in section. We found that measured extension varied by c. ± 4%, and was very dependent on the projection of and final position of cut-offs (Appendix D), which is in turn dependent on the velocity model, and the complexity of faulting and folding (e.g. Judge and Allmendinger, 2011). Repeat measurements of the same horizon were undertaken to determine the measurement precision under the same velocity model etc., and varied by c. ± 2%. We also note that the value of extension changes between pre-kinematic horizons, but it was not significant (c. ± 2%).

2.2 Line-length

Horizontal extension was calculated for two pre-kinematic horizons (Fig. 6), one above and one below the salt on a series of sections. The initial, pre-extension width (l₀) of a unit was measured by unfolding the horizon of interest and summed to give a total, perpendicular to the fault strike every 1000 m. The present-day, post-extension width (l₁) was then measured along the same section. The amount of extension (e) was calculated by subtracting the pre-extension width from the final, post-extension width i.e. \(e = l_1 - l_0 \). The percentage of extension of the pre-extension width (E) was calculated using a ratio of the total horizontal extension to the pre-extension width i.e. \(E = \frac{e}{l_0} \). The line-length method considers brittle (faulting) and ductile
(folding) deformation when estimating the initial length. No extension-related thickness variations are assumed, and line-length is preserved during extension.

For the physical models (Appendix A) from Withjack and Callaway (2000), the Top Sub-salt and the black marker bed within the supra-salt strata was used to estimate extension (Fig. 4). Given the measurement error associated with line-length in section, we undertook sensitivity testing to assess the degree of variability of extension values. We found that the amount of extension is not significantly affected by measurement (c. ± 1%). The value of measured extension also does not typically vary between horizons (c. ± 1%)

For the Halten Terrace, the Top Ror Formation and Top Sub-salt horizons were used to estimate extension (Fig. 6), and the discrepancy between the two was quantified (Fig. 7). In this case, a velocity model (Appendix C) is required as vertical and horizontal components of deformation are considered. Sensitivity testing was undertaken using a range of sub-salt velocities (c. 3 – 5 km/s), where well checkshots were not available, the percentage of extension (E) is not significantly affected (± 2%); given sub-salt strata is predominantly faulted, the effect of fold amplitude on extension is negligible. To assess the likely measurement error associated with line-lengths in the Halten Terrace seismic sections, we measured the same pre-kinematic horizon several times; we found that extension values were not significantly impacted by measurement variations (c. ± 1%). We also compared extension estimates from several supra-salt pre-kinematic horizons, and found that although extension estimates did change, line-length derived extension values did not change significantly (c. ± 2%). In addition, decompaction using shale vs. sand compaction curves (Sclater and Christie, 1980) may lead to variations of extension (c. ± 1%) as the horizon line-length changes.

2.3 Line-length vs. fault-heave errors

We found that extension estimates derived from fault-heave are less precise and less accurate compared to a line-length approach when taking into account measurement issues in both physical models and seismic. Decreased precision and accuracy associated with the fault-heave method may be largely attributed with the difficulty of projecting cut-offs (Appendix D) in areas where extension is accommodated as complex folding as well as faulting. Although beyond the scope of this study, this would be exacerbated between the same seismic data in time vs. depth given the cut-offs may be projected differently. In contrast, line-length requires no such projection (except when accounting for significant footwall erosion), and instead, assumes the line-length remains unchanged during extension. Furthermore, there are fewer opportunities for the interpreter to make errors in a line-length approach relative to fault-heave summation.

Calculated errors for estimate extension associated with each method in the physical models and the Halten Terrace, offshore Norway.

Source of error	Extension error in Withjack & Callaway models	
	Line-length	Fault-heave
Measurement error	± 1%	± 1%
Cut-off projection	N/A	± 1%
Choice of horizon	± 1%	± 1%
Cumulative error	± 2%	± 3%
Source of error

Source of error	Extension error in Halten Terrace	
	Line-length	Fault-heave
Measurement error	± 1%	± 2%
Cut-off projection	N/A	± 4%
Choice of horizon	± 1%	± 2%
Velocity model	± 2%	Included in cut-off
Decompaction	± 1%	N/A
Cumulative error	± 5%	± 8%

2.4 Oblique fault strikes relative to transport direction

In the hypothetical case where heave is measured on faults striking obliquely to the transport direction, heave may be overestimated. To estimate the potential errors, we explore the following scenario.

For a fault dipping at 70°, similar to the Halten Terrace faults, with a maximum throw of 100 m, heave can be calculated as ~36 m. As the section becomes more oblique, the dip of the fault will change. Our estimates show a difference between sub- and supra-salt average strikes as <10° (Fig. 7), and no greater than 30°. Hence, when measuring heave at different values of obliquity, the heave varies as follows:

Obliquity	Calculated heave	Difference	Overestimation error
None	36 m	0 m	N/A
10°	37 m	1 m	2.7%
20°	39 m	2 m	5.6%
30°	42 m	6 m	16.7%

If the discrepancy between all of the sub- and supra-salt faults is < 30°, then heave may have been overestimated by 16% of the calculated extension value i.e. 0.16 x extension. As the sections used to calculate extension are perpendicular to the largest, dominant fault strike, the overestimate of heave is only likely on the relatively small faults, which are unlikely to significantly affect our results, and especially compared to the cumulative errors in the prior section.

3. Structural restoration of the Halten Terrace

To validate our interpretation of the seismic horizons in the Halten Terrace, we undertake structural restoration, following the procedure outlined in Lingrey and Vidal-Royo (2015) and Rowan and Ratliff (2012) using Midland Valley’s Move software (Appendix F). We chose a line of section oriented perpendicular to the regional strike of major faults and folds, and the major transport direction. We interpreted regional horizons (Fig. 5) and assigned lithological information, based upon local well information, to each stratigraphic interval and then sequentially decompressed the supra-salt overburden using compaction curves from the North Sea (Sclater and Christie, 1980). When appropriate we restored supra-salt fault blocks using rigid body rotation, making the uppermost layers subparallel to the sub-horizontal datum. Rotation was followed by unfolding of the layers using inclined shear; the shear angle was
chosen via trial and error, by finding the angle that provides the least variations in the area and layer shape. The shear inclination is typically antithetic to the fault dip, and chosen angles range between 60 and 75°, and may vary between fault blocks. When fault blocks are translated and gathered, areas of mismatch are aligned as such that the area of the gap is roughly equal to the area of overlap (after Lingrey and Vidal-Royo, 2015). These gaps will either lead to an underestimate the extension if no overlap occurs, or an overestimate if the overlap is too great. Once the basins have been translated and unfolded, the next layer is decompacted. The process is repeated until the supra-salt layers have been successively restored. Given the close vertical spacing within the relatively thin Jurassic interval (Appendix B), some horizons have been omitted from the restoration.

The movement of sub-salt faults is poorly constrained, however, the hard-linked fault joining the sub-salt and supra-salt strata is used to infer the movement of the sub-salt. By removing the throw along the hard-linked fault at the supra-salt level, the throw at the sub-salt level is also removed. To calculate the remaining position of the sub-salt faults, the sub-salt blocks undergo rigid body rotation (as with the supra-salt) and are translated. The area of the salt is maintained throughout the restoration as the salt is relatively immobile in the Halten Terrace, although in reality salt likely flows in and out of the section. Once the supra-salt units have been reconstructed to the Mid Jurassic (and the Intra Åre Fm is restored to sub-horizontal), the sub-salt fault blocks are unfolded using inclined shear.

The line-length variation between the present-day and restored section is minimal (< 2%). We find that once the sub-salt is fully restored, the sub-salt line-length is very similar (~ 660m difference) to that of the supra-salt (Intra Åre Fm) i.e. sub- and supra-salt extension is balanced, indicative of kinematic coherence.

Supra-salt values for extension derived from line-length may vary dependent on decompaction in the restoration procedure described above (± 1% between shale and sand decompaction trends; Section 2.3). Decompaction also strongly influences the in-section area of the units throughout the restoration process, leading to < 60% area variations between the deformed, present-day state vs. the restored state.

A table compiling the linear strain stretch values for the Top Ror, Intra Åre and Top Sub-salt horizons prior in its deformed state (prior to restoration) and restored (following decompaction, rigid block translation, and unfolding) is presented below:

Horizon	Deformed line-length (m)	Restored line-length (m)	Stretch (1 + Δ)
Top Ror	21800	21170	0.989
Intra Åre	20810	21170	0.983
Top Sub-salt	21390	21830	0.980

To assess the quality of our block restoration and area balance, we followed the method of Lingrey and Vidal-Royo (2015). We compared the overlaps/gaps in the restoration following rigid block translation and decompaction of the overburden, to calculate the area mismatch i.e. the ratio of the “Decompacted area” with the “Net area of the gaps/overlaps”. The results are presented below:
Horizon	Decompacted area (m²)	Net area of gaps/overlaps (m²)	Areal mismatch (%)
Top Ror	2.21 x 10⁷	3.50 x 10⁵	0.49
Intra Åre	2.84 x 10⁷	6.62 x 10⁵	1.27
Top Sub-salt	7.29 x 10⁷	1.18 x 10⁶	1.62

Lingrey and Vidal-Royo (2015) suggest that good restorations should have areal mismatch values below 5%; when mismatch errors exceed 5%, the balance is considered poor and either the deformed state interpretation needs modification, different unfolding parameters/techniques need to be tried, or a geologic reason for the discrepancy needs to be offered. Our values, which are typically < 2% suggest that our interpretation is valid and can be considered balanced.

4. References cited in Appendix E

Breivik, A. J., Faleide, J. I., Mjelde, R., and Flueh, E. R., 2009, Magma productivity and early seafloor spreading rate correlation on the northern Vøring Margin, Norway—constraints on mantle melting: Tectonophysics, v. 468, no. 1, p. 206-223.

Breivik, A. J., Mjelde, R., Raum, T., Faleide, J. I., Murai, Y., and Flueh, E. R., 2011, Crustal structure beneath the Trøndelag Platform and adjacent areas of the mid-Norwegian margin, as derived from wide-angle seismic and potential field data: Norwegian Journal of Geology, v. 90, p. 141-161.

Brown, A. R., 2001, Calibrate yourself to your data! A vital first step in seismic interpretation: Geophysical Prospecting, v. 49, no. 6, p. 729-733.

Judge, P. A., and Allmendinger, R. W., 2011, Assessing uncertainties in balanced cross sections: Journal of Structural Geology, v. 33, no. 4, p. 458-467.

Lingrey, S., and Vidal-Royo, O., 2015, Evaluating the quality of bed length and area balance in 2D structural restorations: Interpretation, v. 3, no. 4, p. SAA133-SAA160.

Marsh, N., Imber, J., Holdsworth, R., Brockbank, P., and Ringrose, P., 2010, The structural evolution of the Halten Terrace, offshore Mid-Norway: extensional fault growth and strain localisation in a multi-layer brittle–ductile system: Basin Research, v. 22, no. 2, p. 195-214.

Richardson, N. J., Underhill, J. R., and Lewis, G., 2005, The role of evaporite mobility in modifying subsidence patterns during normal fault growth and linkage, Halten Terrace, Mid-Norway: Basin Research, v. 17, no. 2, p. 203-223.

Rowan, M. G., and Ratliff, R. A., 2012, Cross-section restoration of salt-related deformation: Best practices and potential pitfalls: Journal of Structural Geology, v. 41, p. 24-37.

Sclater, J. G., and Christie, P., 1980, Continental stretching; an explanation of the post-Mid-Cretaceous subsidence of the central North Sea basin: Journal of Geophysical Research, v. 85, no. B7, p. 3711-3739.

Stewart, S. A., Harvey, M. J., Otto, S. C., and Weston, P. J., 1996, Influence of salt on fault geometry: examples from the UK salt basins: Geological Society, London, Special Publications, v. 100, no. 1, p. 175-202.
Storvoll, V., Bjørlykke, K., and Mondol, N. H., 2005, Velocity-depth trends in Mesozoic and Cenozoic sediments from the Norwegian Shelf: AAPG bulletin, v. 89, no. 3, p. 359-381.

Walsh, J. J., Watterson, J., Childs, C., and Nicol, A., 1996, Ductile strain effects in the analysis of seismic interpretations of normal fault systems: Geological Society, London, Special Publications, v. 99, no. 1, p. 27-40.

Wilson, P., Elliott, G. M., Gawthorpe, R. L., Jackson, C. A., Michelsen, L., and Sharp, I. R., 2015, Lateral variation in structural style along an evaporite-influenced rift fault system in the Halten Terrace, Norway: Influence of basement structure and evaporite facies: Journal of Structural Geology, v. 79, p. 110-123.

Wilson, P., Elliott, G. M., Gawthorpe, R. L., Jackson, C. A.-L., Michelsen, L., and Sharp, I. R., 2013, Geometry and segmentation of an evaporite-detached normal fault array: 3D seismic analysis of the southern Bremstein Fault Complex, offshore mid-Norway: Journal of Structural Geology, v. 51, p. 74-91.

Withjack, M. O., and Callaway, S., 2000, Active normal faulting beneath a salt layer: an experimental study of deformation patterns in the cover sequence: AAPG bulletin, v. 84, no. 5, p. 627-651.
Appendix F - Structural restoration for the Halten Terrace. (a) Uninterpreted 2D seismic reflection profile trending NW-SE through the 3D seismic volume. The location of the section is shown atop the BCU depth structure map. (b) Interpreted section used in Midland Valley's Move software for the structural restoration. (c) Restoration for the Kai SST horizon. (d) Restoration for the Base Tertiary horizon. The overburden has been decompacted, and the fault blocks have undergone rigid body rotation and translation to near horizontal. The horizon to be restored was then unfolded to horizontal using flexural slip. Sub-salt faults were not active during the Late Cretaceous - Tertiary. A constant area for the salt is assumed. For a full description of the structural restoration procedure, see Appendix E. The colours on the interpreted section are shown in Figure 5. All sections have been depth converted using the time-depth relationship in Appendix C.
Appendix F continued - Structural restoration for the Halten Terrace. (e) Restoration for the Kvitnos, (f) BCU, (g) Top Melke and (h) Top Ror horizons. The overburden has been decompacted, and the fault blocks have undergone rigid body rotation and translation to near horizontal. The horizon to be restored was then unfolded to horizontal using flexural slip. When the supra-salt faults are restored, the hard-linked fault (directly connecting the sub- and supra-salt strata) was backstripped, reconstructing fault activity to the east. The remaining sub-salt fault activity is poorly constrained so a constant area for the salt is assumed, however, our analysis shows the sub- and supra-salt faults are kinematically coherent hence are active at similar times. For a full description of the structural restoration procedure, see Appendix E. The position of future faults are shown as dashed lines. Line-length was measured on the restored section versus the original interpretation (Appendix E). Colours shown in Figure 5. All sections have been depth converted using the time-depth relationship in Appendix C.