Supplementary Information

Mapping Bioenergy Supply and Demand in Selected Least Developed Countries (LDCs): Exploratory Assessment of Modern Bioenergy’s Contribution to SDG 7

Dilip Khatiwada 1,* Pallav Purohit 2 and Emmanuel Ackom 3

1 Department of Energy Technology, School of Industrial Engineering and Management, KTH Royal Institute of Technology, Brinellvägen 68, 100 44 Stockholm, Sweden
2 Air Quality and Greenhouse Gases (AIR) Program, International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361, Laxenburg, Austria; purohit@iiasa.ac.at
3 Department of Technology, Management and Economics, UNEP DTU Partnership, UN City Campus, Denmark Technical University (DTU), Marmorvej 51, 2100 Copenhagen, Denmark; emac@dtu.dk
* Correspondence: Dilip.khatiwada@energy.kth.se; Tel.: +46-8790-7464

Figure S1. LDCs analyzed in the present study.
Figure S2. GDP growth rate in the selected LDCs. Source: [1].

Figure S3. Population and urbanization pattern in the selected LDCs; Note: primary y-axis shows the urban (U) population (%) while second axis presents total (T) population in million; Source: [2].
Figure 4. Electricity access from 1990 to 2016 in the world, South Asia, SSA and selected DCs; Source: [2].

Table S1. Total Primary Energy Supply (TPES) in LDCS by fuel source (in ktoe).

Items	Bangladesh	Lao-PDR	Nepal	Ethiopia	Malawi	Zambia						
By fuel source												
Coal	1984	4.9	1801	37.8	791	8.0	98.68	2.4	470	3.9		
Oil product (petroleum)	5829	14.4	930	19.5	2298	17.3	3678	8.7	280.07	6.8	1452	12.0
Natural gas	23071	56.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Biofuel and waste	9534	23.5	1619	34.0	9778	73.7	37215	87.7	3640	88.2	9106	75.4
hydropower electricity	90	0.2	415	8.7	398	3.0	1114	2.6	104.82	2.5	1049	8.7
Other (wind, solar, etc.)	16	0.04	0.0	0.0	0.0	1.0	84	0.2	0.1	0.0	0.0	
Total (ktoe)	40524	4765	13266	42448	4125.97	12077						

Source: [3][4][5] *Latest information is not available, but there is no significance change in the energy mix in Malawi [5].

Table S2. Land covered by agricultural and forest land (% of the country’s land area).

Country	Forest area (% of land area)	Agricultural land (% of land area)										
	1995	2000	2005	2010	2015	2016	1995	2000	2005	2010	2015	2016
Bangladesh	11.4	11.3	11.2	11.1	11	11	72	72.2	71.5	71	70.4	70.6
Lao-PDR	74	71.6	73.1	77.2	81.3	82.1	7.4	7.8	8.6	9.6	10.3	10.3
Nepal	30.5	27.2	25.4	25.4	25.4	29.3	29.3	29.3	28.8	28.7	28.7	
Ethiopia	14.4	13.7	13	12.3	12.5	12.5	30.5	30.7	33.6	35.7	36.3	
Malawi	39.6	37.8	36.1	34.3	33.4	33.2	45.4	50.2	54.9	60.3	61.4	
Zambia	69.9	68.8	67.7	66.5	65.4	65.2	28.9	30.3	30.6	31.5	32.1	32.1

Source: FAO-STAT [6].
Table S3. Targets and indicators for measuring SDG7.

Targets by 2030	Indicators
7.1: Ensure universal access to affordable, reliable and modern energy services	7.1.1: Access to electricity - measured as the share of people with electricity access at the household level
7.2: Increase the share of renewable energy in the energy mix	7.2.1: Renewable energy share in the total final energy consumption - measured as renewable energy as a share of final energy consumption
7.3: Double the rate of improvement in energy efficiency	7.3.1: Energy efficiency - it is energy intensity measured in terms of primary energy and GDP (kWh or MJ per 2011 int-US$)
7.A: Facilitate access to clean energy research and technology	7.A.1: Access and investments in clean energy - financial flows to developing countries to promote RE production
7.B: Expand modern and sustainable energy in developing countries	7.B.1: Expanding energy services for developing countries - investments in energy efficiency and foreign direct investment in sustainable energy infrastructures

Source: UN [7].

Table S4. Access to electricity – Indicator 7.1.1 in the rural and urban population in LDCs, 2000–2016, selected years.

Country	Total % of total population	Urban % of total population	Rural % of total population						
	2000	2010	2016	2000	2010	2016	2000	2010	2016
Bangladesh	32	55	76	81.2	90.1	94	20.5	42.5	68.9
Lao-PDR	43	70	87	96	97	97	28.3	57.2	80.3
Nepal	28	67	91	84	93	95	18.8	61.8	85.2
Ethiopia	13	25	43	76.2	85	85.4	0.4	12.5	26.5
Malawi	5	9	11	28.7	34.7	42	1	3.5	4
Zambia	17	22	27	44.1	49.8	62	2.2	3.1	2.7

Source: UNCTAD [1].

Table S5. Status of SDG7 – Indicators: clean cooking (7.1.2), share of renewable energy (7.2.1) and primary energy intensity (7.3.1) in the LDCs (in 2016).

Country	Access to clean cooking (% of population)	RE (% of TFEC)	Primary energy intensity (MJ per 2011 USD-PPP)
Bangladesh	19	34	3.10
Lao-PDR	6	52	5.90
Nepal	29	79	8.10
Ethiopia	3	92	13.10
Malawi	2	79	4.20
Zambia	16	89	7.70

Source: World Bank [8].
Table S6. Trend in primary energy intensity in LDCs, 1990-2016, selected years.

Country	Primary energy intensity (MJ per 2011 USDPPP)						
	1990	1995	2000	2005	2010	2015	2016
Bangladesh	3.90	3.90	3.60	3.50	3.40	3.10	3.10
Lao-PDR	8.20	6.50	4.40	3.80	3.80	4.40	5.90
Nepal	10.80	9.70	9.30	8.90	8.00	7.40	8.10
Ethiopia	30.60	34.70	32.30	27.50	19.00	13.70	13.10
Malawi	9.10	8.00	6.60	6.40	4.80	4.20	4.20
Zambia	12.10	13.20	11.90	10.50	8.00	7.80	7.70

Source: World Bank [8].

Table S7. Projection of peak load (load capacity) and electricity generation in the LDCs.a,b

Year	Bangladesh	Lao-PDR	Nepal	Ethiopia	Malawi	Zambia
	MW	GWh	MW	GWh	MW	GWh
2015	9 036	52 193	1 056	5 212	1 292	6 335
2016	9 479	57 276	1 349	6 789	1 468	6 912
2017	10 958	62 678	1 608	8 188	1 644	7 490
2020	13 746	79 533	2 723	14 378	2 638	14 372
2025	20 056	118 288	4 395	24 057	4 519	17 415
2030	29 264	175 926	7 542	34 355	14 372	73 709

Authors’ compilation based on the results of projection.a Refer to Section 3.2 (future projection of electricity generation) for data sources and method of the projection; b GWh represents the total electricity generation whereas capacity (MW) represents peak load.

Table S8a. Production of major crops by country in 2017.

Crop	Country	Barley	Cassava	Jute	Maize	Millet	Potatoes	Rice, paddy	Seed cotton	Sugar cane	Sweet potatoes	Tobacco	Wheat	Total
Bangladesh		0.0	0.0	1.5	3.0	0.0	0.0	0.0	10.2	49.0	0.1	0.3	0.3	99.4
Lao-PDR		0.0	2.3	0.0	1.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.4
Nepal		0.0	0.0	2.3	0.3	2.7	5.2	0.0	0.0	3.2	0.0	0.0	0.0	15.6
Ethiopia		0.0	2.0	0.0	8.1	1.1	0.9	0.0	0.0	0.0	0.0	0.0	0.0	20.4
Malawi		0.0	5.0	0.0	3.5	0.0	1.2	0.1	0.0	0.0	0.0	0.0	0.0	18.4
Zambia		0.0	1.0	0.0	3.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.7

*unmanufactured; Source: FAO-STAT [6].

Table S8b. Residue to grain ratio for major crops in the LDCs.

Crop	Type of residue	Residue to product ratio	Sources
Barley	Straw	1.3	[9][10]
Cassava	Stalk	0.88	[11][12]
Cotton	Husk	1.1	[13]
Jute	Stalk	2	[16][17]
Maize	Stalk + cobs	2.5	[18][14]
Millet	Straw	1.2	[13]
Potatoes	Root and Stubble residues	0.25	[19][20]
Rice, paddy	Straw + husk	1.8	[21][22][18][23]
Sugar beet	Residue	0.7	[15]
Sugar cane	Bagasse + leaves	0.4	[18][14]
Sweet potatoes	Residues	0.25	[20]
Tobacco, unmanufactured	Tobacco refuse	0.2	[24]
Wheat	Straw	1.6	[18][23]

Sustainability 2017, 9, x FOR PEER REVIEW 5 of 10
Table S9a. Technical potential of agricultural residues for bioelectricity.

Year	Gross agri-residues availability (Mt)	Biomass power potential (GW)										
	Bangladesh	Lao-PDR	Nepal	Ethiopia	Malawi	Zambia	Bangladesh	Lao-PDR	Nepal	Ethiopia	Malawi	Zambia
2002	75.9	4.9	14.9	12.7	7.8	4.0	9.0	0.6	1.8	1.5	0.9	0.5
2003	74.6	5.1	15.4	13.2	8.3	4.9	8.8	0.6	1.8	1.6	1.0	0.6
2004	73.3	5.3	16.0	13.7	8.8	5.8	8.7	0.6	1.9	1.6	1.1	0.7
2005	80.0	5.8	16.1	17.2	7.5	5.2	9.5	0.7	1.9	2.1	0.9	0.6
2006	81.6	6.2	16.0	17.9	12.0	6.5	9.7	0.7	1.9	2.1	1.4	0.8
2007	86.8	7.0	15.5	16.1	14.1	6.4	10.3	0.8	1.8	1.9	1.7	0.8
2008	94.5	8.6	16.9	17.3	13.1	6.0	11.2	1.0	2.0	2.1	1.6	0.7
2009	95.5	8.9	17.1	19.3	15.9	8.4	11.3	1.1	2.0	2.3	1.9	1.0
2010	99.8	8.9	16.5	22.0	15.4	10.6	11.8	1.1	2.0	2.6	1.8	1.3
2011	102.5	9.5	18.1	24.5	16.5	11.3	12.1	1.1	2.2	2.9	2.0	1.4
2012	102.9	10.5	19.8	26.1	18.0	11.9	12.2	1.2	2.4	3.1	2.1	1.4
2013	105.8	10.7	18.4	28.2	17.9	10.4	12.5	1.3	2.2	3.3	2.1	1.3
2014	107.8	13.0	19.6	31.0	18.0	12.1	12.7	1.5	2.3	3.7	2.1	1.4
2015	108.4	14.1	19.5	33.0	14.6	10.2	12.8	1.7	2.3	3.9	1.7	1.2
2016	106.3	14.4	20.1	32.6	13.5	11.0	12.6	1.7	2.4	3.8	1.6	1.3
2017	111.4	14.6	20.6	33.8	16.5	13.0	13.2	1.7	2.5	4.0	2.0	1.6
2018	116.5	14.8	21.1	35.2	18.1	13.4	13.8	1.8	2.5	4.2	2.2	1.6
2019	119.2	15.5	21.5	36.8	18.8	14.0	14.1	1.8	2.6	4.3	2.2	1.7
2020	121.9	16.2	21.8	38.4	19.4	14.6	14.4	1.9	2.6	4.5	2.3	1.8
2021	124.6	16.8	22.2	39.9	20.0	15.2	14.7	2.0	2.6	4.7	2.4	1.8
2022	127.3	17.5	22.5	41.5	20.6	15.8	15.0	2.1	2.7	4.9	2.5	1.9
2023	130.0	18.2	22.9	43.1	21.2	16.5	15.3	2.2	2.7	5.1	2.5	2.0
2024	132.7	18.9	23.3	44.7	21.8	17.1	15.7	2.2	2.8	5.3	2.6	2.1
2025	135.4	19.5	23.6	46.2	22.5	17.7	16.0	2.3	2.8	5.5	2.7	2.1
2026	138.1	20.2	24.0	47.8	23.1	18.3	16.3	2.4	2.9	5.6	2.7	2.2
2027	140.8	20.9	24.3	49.4	23.7	18.9	16.6	2.5	2.9	5.8	2.8	2.3
2028	143.5	21.6	24.7	50.9	24.3	19.5	16.9	2.6	2.9	6.0	2.9	2.3
2029	146.2	22.2	25.0	52.5	24.9	20.2	17.3	2.6	3.0	6.2	3.0	2.4
2030	148.9	22.9	25.4	54.1	25.5	20.8	17.6	2.7	3.0	6.4	3.0	2.5
Table S9b. Economic potential of agricultural residues for bioelectricity.

Year	Net agri-residues availability (Mt)	Biomass power potential (GW)										
	Bangladesh	Laos	Nepal	Ethiopia	Malawi	Zambia	Bangladesh	Lao-PDR	Nepal	Ethiopia	Malawi	Zambia
2002	15.2	1.0	3.0	2.5	1.6	0.8	1.8	0.1	0.4	0.3	0.2	0.1
2003	14.9	1.0	3.1	2.6	1.7	1.0	1.8	0.1	0.4	0.3	0.2	0.1
2004	14.7	1.1	3.2	2.7	1.8	1.2	1.7	0.1	0.4	0.3	0.2	0.1
2005	16.0	1.2	3.2	3.4	1.5	1.0	1.9	0.1	0.4	0.4	0.2	0.1
2006	16.3	1.2	3.2	3.6	2.4	1.3	1.9	0.1	0.4	0.4	0.3	0.2
2007	17.4	1.4	3.1	3.2	2.8	1.3	2.1	0.2	0.4	0.4	0.3	0.2
2008	18.9	1.7	3.4	3.5	2.6	1.2	2.2	0.2	0.4	0.4	0.3	0.1
2009	19.1	1.8	3.4	3.9	3.2	1.7	2.3	0.2	0.4	0.5	0.4	0.2
2010	20.0	1.8	3.3	4.4	3.1	2.1	2.4	0.2	0.4	0.5	0.4	0.3
2011	20.5	1.9	3.6	4.9	3.3	2.3	2.4	0.2	0.4	0.6	0.4	0.3
2012	20.6	2.1	4.0	5.2	3.6	2.3	2.4	0.2	0.5	0.6	0.4	0.3
2013	21.2	2.1	3.7	5.6	3.6	2.1	2.5	0.3	0.4	0.7	0.4	0.3
2014	21.6	2.6	3.9	6.2	3.6	2.4	2.5	0.3	0.5	0.7	0.4	0.3
2015	21.7	2.8	3.9	6.6	2.9	2.0	2.6	0.3	0.5	0.8	0.3	0.2
2016	21.3	2.9	4.0	6.5	2.7	2.2	2.5	0.3	0.5	0.8	0.3	0.3
2017	22.3	2.9	4.1	6.8	3.3	2.6	2.6	0.3	0.5	0.8	0.4	0.4
2018	23.3	3.0	4.2	7.0	3.6	2.7	2.8	0.4	0.5	0.8	0.4	0.3
2019	23.8	3.1	4.3	7.4	3.8	2.8	2.8	0.4	0.5	0.9	0.4	0.3
2020	24.4	3.2	4.4	7.7	3.9	2.9	2.9	0.4	0.5	0.9	0.5	0.4
2021	24.9	3.4	4.4	8.0	4.0	3.0	2.9	0.4	0.5	0.9	0.5	0.4
2022	25.5	3.5	4.5	8.3	4.1	3.2	3.0	0.4	0.5	1.0	0.5	0.4
2023	26.0	3.6	4.6	8.6	4.2	3.3	3.1	0.4	0.5	1.0	0.5	0.4
2024	26.5	3.8	4.7	8.9	4.4	3.4	3.1	0.4	0.6	1.1	0.5	0.4
2025	27.1	3.9	4.7	9.2	4.5	3.5	3.2	0.5	0.6	1.1	0.5	0.4
2026	27.6	4.0	4.8	9.6	4.6	3.7	3.3	0.5	0.6	1.1	0.5	0.4
2027	28.2	4.2	4.9	9.9	4.7	3.8	3.3	0.5	0.6	1.2	0.6	0.5
2028	28.7	4.3	4.9	10.2	4.9	3.9	3.4	0.5	0.6	1.2	0.6	0.5
2029	29.2	4.4	5.0	10.5	5.0	4.0	3.5	0.5	0.6	1.2	0.6	0.5
2030	29.8	4.6	5.1	10.8	5.1	4.2	3.5	0.5	0.6	1.3	0.6	0.5
Table S9c. Technical and economic potential of agricultural residues for bioelectricity.

| Year | Bangladesh | Lao-PDR | Nepal | Ethiopia | Malawi | Zambia | Bangladesh | Lao-PDR | Nepal | Ethiopia | Malawi | Zambia |
|------|------------|---------|-------|----------|--------|--------|------------|---------|-------|----------|--------|--------|--------|
| 2002 | 62.2 | 4.0 | 12.1 | 10.4 | 6.3 | 3.1 | 12.4 | 0.8 | 2.4 | 2.1 | 1.3 | 0.6 |
| 2003 | 61.1 | 4.2 | 12.6 | 10.7 | 6.7 | 3.8 | 12.2 | 0.9 | 2.5 | 2.1 | 1.3 | 0.8 |
| 2004 | 60.0 | 4.3 | 13.0 | 11.1 | 7.1 | 4.6 | 12.0 | 0.9 | 2.6 | 2.2 | 1.4 | 0.9 |
| 2005 | 65.6 | 4.7 | 13.1 | 14.0 | 6.0 | 4.1 | 13.1 | 0.9 | 2.6 | 2.8 | 1.2 | 0.8 |
| 2006 | 67.0 | 5.1 | 13.1 | 14.6 | 9.7 | 5.1 | 13.4 | 1.0 | 2.6 | 2.9 | 1.9 | 1.0 |
| 2007 | 71.3 | 5.8 | 12.6 | 13.2 | 11.5 | 5.1 | 14.3 | 1.2 | 2.5 | 2.6 | 2.3 | 1.0 |
| 2008 | 77.7 | 7.1 | 13.7 | 14.1 | 10.6 | 4.8 | 15.5 | 1.4 | 2.7 | 2.8 | 2.1 | 1.0 |
| 2009 | 78.5 | 7.3 | 13.9 | 15.8 | 12.9 | 6.7 | 15.7 | 1.5 | 2.8 | 3.2 | 2.6 | 1.3 |
| 2010 | 82.1 | 7.3 | 13.4 | 17.9 | 12.5 | 8.4 | 16.4 | 1.5 | 2.7 | 3.6 | 2.5 | 1.7 |
| 2011 | 84.4 | 7.7 | 14.8 | 20.0 | 13.4 | 9.1 | 16.9 | 1.5 | 3.0 | 4.0 | 2.7 | 1.8 |
| 2012 | 84.7 | 8.6 | 16.1 | 21.4 | 14.7 | 9.5 | 16.9 | 1.7 | 3.2 | 4.3 | 2.9 | 1.9 |
| 2013 | 87.1 | 8.8 | 15.0 | 23.2 | 14.6 | 8.3 | 17.4 | 1.8 | 3.0 | 4.6 | 2.9 | 1.7 |
| 2014 | 88.8 | 10.6 | 16.0 | 25.5 | 14.6 | 9.6 | 17.8 | 2.1 | 3.2 | 5.1 | 2.9 | 1.9 |
| 2015 | 89.3 | 11.5 | 15.9 | 27.2 | 11.8 | 8.1 | 17.9 | 2.3 | 3.2 | 5.4 | 2.4 | 1.6 |
| 2016 | 87.5 | 11.7 | 16.3 | 26.8 | 10.9 | 8.7 | 17.5 | 2.3 | 3.3 | 5.4 | 2.2 | 1.7 |
| 2017 | 91.8 | 11.9 | 16.8 | 27.8 | 13.4 | 10.3 | 18.4 | 2.4 | 3.4 | 5.6 | 2.7 | 2.1 |
| 2018 | 96.0 | 12.1 | 17.2 | 29.0 | 14.8 | 10.7 | 19.2 | 2.4 | 3.4 | 5.8 | 3.0 | 2.1 |
| 2019 | 98.2 | 12.6 | 17.5 | 30.3 | 15.3 | 11.2 | 19.6 | 2.5 | 3.5 | 6.1 | 3.1 | 2.2 |
| 2020 | 100.5 | 13.2 | 17.8 | 31.6 | 15.8 | 11.7 | 20.1 | 2.6 | 3.6 | 6.3 | 3.2 | 2.3 |
| 2021 | 102.7 | 13.7 | 18.1 | 32.9 | 16.3 | 12.2 | 20.5 | 2.7 | 3.6 | 6.6 | 3.3 | 2.4 |
| 2022 | 105.0 | 14.3 | 18.3 | 34.2 | 16.8 | 12.7 | 21.0 | 2.9 | 3.7 | 6.8 | 3.4 | 2.5 |
| 2023 | 107.2 | 14.8 | 18.6 | 35.5 | 17.3 | 13.2 | 21.4 | 3.0 | 3.7 | 7.1 | 3.5 | 2.6 |
| 2024 | 109.5 | 15.4 | 18.9 | 36.8 | 17.8 | 13.6 | 21.9 | 3.1 | 3.8 | 7.4 | 3.6 | 2.7 |
| 2025 | 111.7 | 15.9 | 19.2 | 38.1 | 18.3 | 14.1 | 22.3 | 3.2 | 3.8 | 7.6 | 3.7 | 2.8 |
| 2026 | 113.9 | 16.5 | 19.5 | 39.4 | 18.8 | 14.6 | 22.8 | 3.3 | 3.9 | 7.9 | 3.8 | 2.9 |
| 2027 | 116.2 | 17.0 | 19.8 | 40.7 | 19.3 | 15.1 | 23.2 | 3.4 | 4.0 | 8.1 | 3.9 | 3.0 |
| 2028 | 118.4 | 17.5 | 20.1 | 42.0 | 19.8 | 15.6 | 23.7 | 3.5 | 4.0 | 8.4 | 4.0 | 3.1 |
| 2029 | 120.7 | 18.1 | 20.4 | 43.3 | 20.3 | 16.1 | 24.1 | 3.6 | 4.1 | 8.7 | 4.1 | 3.2 |
| 2030 | 122.9 | 18.6 | 20.7 | 44.6 | 20.8 | 16.6 | 24.6 | 3.7 | 4.1 | 8.9 | 4.2 | 3.3 |
References

1. UNCTAD Statistical tables on the least developed countries (LDCs) - 2018; 2018;
2. World Bank “World Bank Open Data - Statistics” Available online: https://data.worldbank.org (accessed on Sep 24, 2019).
3. IEA “IEA Statistics” IEA - International Energy Agency. Available online: https://www.iea.org/statistics (accessed on Sep 24, 2019).
4. Ministry of Energy and Mines Lao PDR Energy Statistics 2018; 2018;
5. John; Gondwe, K.;; Sebitosi, A. Ben Energy supply in Malawi: Options and issues. J. Energy South. Africa 2015, 26, 19–32.
6. FAO-STAT “Food and Agriculture Organization of the United Nations” Available online: https://data.worldbank.org/indicator/NV.AGR.TOTL.ZS?locations=BD-LA-NP-ET-MW-ZM (accessed on Sep 24, 2019).
7. UN, 2015 (United Nations) About the Sustainable Development Goals - United Nations Sustainable Development Available online: https://www.un.org/sustainabledevelopment/sustainable-development-goals/ (accessed on Sep 24, 2019).
8. World Bank “Tracking SDG7 - The Energy Progress Report” Available online: https://trackingsdg7.esmap.org/countries (accessed on Oct 15, 2019).
9. Scarlat, N.; Martinov, M.; Dallemend, J.-F. Assessment of the availability of agricultural crop residues in the European Union: Potential and limitations for bioenergy use. Waste Manag. 2010, 30, 1889–1897.
10. Ericsson, K.; Nilsson, L.J. Assessment of the potential biomass supply in Europe using a resource-focused approach. Biomass and Bioenergy 2006, 30, 1–15.
11. Duku, M.H.; Gu, S.; Hagan, E. Ben A comprehensive review of biomass resources and biofuels potential in Ghana. Renew. Sustain. Energy Rev. 2011, 15, 404–415.
12. Zalengera, C.; Blanchard, R.E.; Eames, P.C.; Juma, A.M.; Chitawo, M.L.; Gondwe, K.T. Overview of the Malawi energy situation and A PESTLE analysis for sustainable development of renewable energy. Renew. Sustain. Energy Rev. 2014, 38, 335–347.
13. Hiloidhari, M.; Das, D.; Baruah, D.C. Bioenergy potential from crop residue biomass in India. Renew. Sustain. Energy Rev. 2014, 32, 504–512.
14. Purohit, P., Fischer, G. Second-generation Biofuel Potential in India: Sustainability and Cost Considerations. UNEP Riso Centre on Energy, Climate and Sustainable Development, Copenhagen, Denmark; 2014;
15. Jekayinfa, S.O.; Scholz, V. Potential Availability of Energetically Usable Crop Residues in Nigeria. Energy Sources, Part A Recover. Util. Environ. Eff. 2009, 31, 687–697.
16. Asadullah, M.; Anisur Rahman, M.; Mohsin Ali, M.; Abdul Motin, M.; Borhanus Sultan, M.; Robiul Alam, M.; Sahedur Rahman, M. Jute stick pyrolysis for bio-oil production in fluidized bed reactor. Bioresour. Technol. 2008, 99, 44–50.
17. Purohit, P.; Dhar, S. Biofuel Roadmap for India; 2015; ISBN 9788793130661.
18. Ravindranath, N.H.; Somashekar, H.I.; Nagaraja, M.S.; Sudha, P.; Sangeetha, G.; Bhattacharya, S.C.; Abdul Salam, P. Assessment of sustainable non-plantation biomass resources potential for energy in India. Biomass and Bioenergy 2005, 29, 178–190.
19. Torma, S.; Višček, J.; Lošák, T.; Kužel, S.; Martensson, A. Residual plant nutrients in crop residues – an important resource. Acta Agric. Scand. Sect. B — Soil Plant Sci. 2018, 68, 358–366.
20. Lal, R. World crop residues production and implications of its use as a biofuel. Environ. Int. 2005, 31, 575–84.
21. Koopmans, A., Koppejan, J., 1997. Agricultural and Forest Residues – Generation, Utilization and Availability. Regional Consultation on Modern Applications of Biomass Energy, 6–10 January 1997, Kuala Lumpur, Malaysia.
22. Panoutsou, C., Labalette, F., 2006. Cereals straw for bioenergy and competitive uses. In: European Commission (Ed.), Proceedings of the Cereals Straw Resources for Bioenergy in the European Union, Pamplona, Pamplona, 18–19 October. 2006.
23. Purohit, P.; Dhar, S. Lignocellulosic biofuels in India: Current perspectives, potential issues and future prospects. AIMS Energy 2018, 6, 453–486.
24. Tévécia Ronzon, S.P. et al. JRC Report (ELI). DataM – Biomass estimates (v3): a new database to quantify
biomass availability in the European Union; 2015;

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).