Counterpoint: Postprandial Glucose Levels Are Not a Clinically Important Treatment Target

The recently published randomized controlled Nateglinide And Valsartan in Impaired Glucose Tolerance Outcomes Research (NAVIGATOR) study evaluated the effect of nateglinide in people with impaired glucose tolerance (IGT) who also had cardiovascular disease (CVD) or CVD risk factors (1). After a median of five years, there was no effect on either incident diabetes or CVD. In five studies (2–6) in which the development of diabetes in subjects with IGT was delayed by lifestyle intervention or drugs, the beneficial effect was postulated to be mainly due to decreasing insulin resistance with resulting less demands on β-cell insulin secretion. On the other hand, subjects with IGT in an older small study treated with tolbutamide (a first-generation sulfonylurea agent) (7) or in the more recent Study To Prevent Non-insulin-Dependent Diabetes Mellitus (STOP-NIDDM) given acarbose (8), there was significantly less incident diabetes than in their control groups. (The STOP-NIDDM study, however, has been severely criticized [9].) Neither tolbutamide nor acarbose are thought to primarily affect insulin resistance. It is very possible, of course, that all of these drugs were simply masking the development of diabetes by treating hyperglycemia (10). If so, nateglinide was unable to accomplish this.

The rationale for the CVD end point in the NAVIGATOR study might have been that glucose levels after a glucose challenge, extending all the way down into the midnormal range, are associated with CVD (11). It is important to point out that in many articles postprandial glucose is used mistakenly to describe glucose levels after the nonphysiologic large amount of glucose ingested for the oral glucose tolerance test. In the only study I could find in which CVD events were related to postprandial glucose concentrations, i.e., after meals, these levels were more predictive than fasting plasma glucose (FPG) concentrations in a bivariate analysis (12). In a multivariate analysis, only the value after lunch remained significant. Since nateglinide has a more profound effect on postprandial glucose concentrations than on fasting ones in people with diabetes, it was chosen to test the hypothesis that lowering postprandial glucose levels might have a beneficial effect on people at risk for CVD and the development of diabetes. That it did not might not be too surprising because day-to-day glucose levels in people with IGT on weight maintaining diets (35 kcal/kg) were not increased (13–15). On the other hand, the perhaps problematic STOP-NIDDM study showed that acarbose was associated with decreased incidents of CVD and hypertension (16).

However, in contrast with people with IGT, postprandial glucose concentrations are certainly increased in diabetic patients. There is much speculation that specifically targeting these levels might be beneficial for both the microvascular and macrovascular complications of diabetes (17). Brownlee (18) laid out an intricate theoretical framework of how postprandial hyperglycemia might cause the whole gamut of diabetic complications. This involves increasing glucose concentrations causing oxidative stress reflected in altered mitochondrial function, which causes inhibition of glyceraldehyde phosphate dehydrogenase. This, in turn, leads to increased activity of four biochemical pathways associated with the complications of diabetes, i.e., the polyol, hexosamine, protein kinase C, and advanced glycation end product pathways. Could this be the mechanism whereby the rise in postprandial glucose concentrations leads to diabetic complications? Let’s examine the evidence for this intriguing hypothesis.

In vitro incubations of various tissues and cell lines with increasing concentrations of glucose lead to products that reflect oxidative stress (19). One study (20) did show that mitochondrial function in biopsies from the muscle of diabetic subjects was impaired while three other studies (21–23) could not confirm this finding.

Increased variability of daily glycemia is often taken as a surrogate measure for higher postprandial glucose excursions (24). Yet retinopathy was unrelated to this variability, although it remained related to mean glycemia (25). Urinary excretion of free 8-iso-PGF$_{2α}$ is postulated to reflect oxidative stress, and its excretion is inhibited by vitamin E, an antioxidant (26). One study did find that glucose variability, measured by the mean amplitude of glycemic excursions, was positively correlated with urinary free 8-iso-PGF$_{2α}$ (27), but this could not be confirmed in two other studies (28,29). Rather, urinary free 8-iso-PGF$_{2α}$ levels were increased in diabetic patients and lowered by improved diabetic control (26).

Endothelial dysfunction is an early manifestation of atherosclerosis (30). Endothelial function, measured by flow-mediated dilation, decreased in people with diabetes after eating in association with rising postprandial glucose levels but did not change in healthy subjects who have much less of a postprandial rise (31). Artificially raising glucose concentrations with intravenous glucose also decreased flow-mediated dilation and increased oxidative stress, as reflected in increased plasma nitrotyrosine, in both healthy subjects and type 2 diabetic patients (32). Both of these responses to intravenous glucose were blocked by an infusion of vitamin C, also an antioxidant, in healthy subjects but not in those with diabetes (33).

Carotid artery intima-medial thickening (CIMT) reflects coronary artery disease (34). In a cross-sectional study, CIMT correlated with the postprandial rise in glucose concentrations (35). In a prospective study, CIMT did not change in patients treated for three years with voglibose, an α-glucosidase inhibitor, compared with a 0.1 mm increase in those given a placebo with a significant difference between the two groups (36). In another prospective study in drug-naïve patients, there was a small but significant 0.03 mm decrease in CIMT over 1 year in a large number of patients treated with...
replaginide but no change in those treated with glyburide (37).

In terms of clinical events, a meta-analysis evaluated seven randomized, placebo-controlled acarbose studies carried out between 1987 and 1999. The primary outcome measure was the time to develop a CVD event. There was a significant 2% reduction over a 2-year period in the percent of type 2 diabetic patients treated with acarbose who suffered a CVD event (38). These patients also had significant reductions in A1C and FPG levels as well as postprandial glucose levels. On the other hand, documented significant lowering of postprandial glucose levels in the recent Hyperglycemia and Its Effect After Acute Myocardial Infarction on Cardiovascular Outcomes in Patients With Type 2 Diabetes Mellitus (HEART2D) study by premeal lispro insulin in diabetic patients with a recent acute myocardial infarction did not decrease the recurrence of a CVD event compared with basal NPH or glargine insulin, which significantly lowered FPG concentrations (39). There was no difference in A1C levels between the two groups during this study.

How do these data serve to influence our clinical approach to postprandial hyperglycaemia? The most important determinant of the postprandial glucose concentration is the prepandial level. Furthermore, the increment over the prepandial level is similar regardless of the prepandial value (40–42). Therefore, postprandial hyperglycaemia is best treated by lowering prepandial glycaemia. Since randomized controlled intervention studies have clearly demonstrated that keeping A1C levels below 7.0% is beneficial for the microvascular complications of diabetes (43–45) (although perhaps not for the macrovascular ones [46–48]), that should be our primary goal. Once prepandial glucose targets are attained and if A1C levels are ≥7.0%, then and only then would specifically targeting postprandial glycaemia be appropriate. If prepandial glucose values are reached and A1C levels are <7.0%, current clinical evidence is not strong enough to expose these patients to the increased risk of hypoglycaemia by aggressively targeting postprandial glycaemia.

MAYER B. DAVIDSON, MD

From Charles Drew University, Los Angeles, California.
Corresponding author: Mayer B. Davidson, mayerdavidson@cdrewu.edu.
DOI: 10.2337/dc10-0712

© 2010 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/for details.

Acknowledgments — No potential conflicts of interest relevant to this article were reported.

References

1. NAVIGATOR Study Group, McMurray JJ, Holman RR, Haffner SM, Bethel MA, Holzhauser B, Hua TA, Baskakov Y, Boellell M, Buse JB, Buckley BM, Chacra AR, Chiang FT, Charbonnel B, Chow CC, Davies MJ, Deedwania P, Diem P, Einhorn D, Fonseca V, Fulcher GR, Gaciong Z, Gaztañide S, Giles T, Horton E, Ikкова H, Jeness T, Kahn SE, Krum H, Laakso M, Leiter LA, Levitt NS, Mareev V, Martinez F, Masson C, Mazzone T, Meaney E, Nesto R, Pan C, Prager R, Raptis SA, Rutter GE, Sandstroem H, Schaper F, Scheen A, Schmitz O, Sinay I, Soska V, Stender S, Tamás G, Tognoni G, Tuomilehto J, Villamal AS, Vozár J, Califf RM. Effect of nateglinide on the incidence of diabetes and cardiovascular events. N Engl J Med 2010;362:1477–1490

2. Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, Keinänen-Kiukaanniemi S, Laakso M, Lahtiaranta A, Rastas M, Salminen V, Uusitupa M. Finnish Diabetes Prevention Study Group. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001;344:1343–1350

3. Knoller WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM, Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002;346:393–403

4. Knoller WC, Hamman RF, Edelstein SL, Barrett-Connor E, Ehrmann DA, Walker EA, Fowler SE, Nathan DM, Kahn SE, Diabetes Prevention Program Research Group. Prevention of type 2 diabetes with rosiglitazone in the Diabetes Prevention Program. Diabetes 2005;54:1150–1156

5. Ramachandran A, Snehalatha C, Mary S, Mukesh B, Bhaskar AD, Vijay V, Indian Diabetes Prevention Programme (IDPP). The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia 2006;49:289–297

6. DREAM (Diabetes REDuction Assessment with ramipril and rosiglitazone Medication) Trial Investigators, Gerstein HC, Yusuf S, Bosch J, Pogue J, Sheridan P, Dincag N, Hanefeld M, Hoogwerf B, Laakso M, Mohan V, Shaw J, Zinman B, Holman RR. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet 2006;368:1096–1105

7. Sartor G, Scherstén B, Carlström S, Melander A, Nordén A, Persson G. Ten-year follow-up of subjects with impaired glucose tolerance: prevention of diabetes by tolbutamide and diet regulation. Diabetes 1980;29:41–49

8. Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. STOP-NIDDM Trial Research Group. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet 2002;359:2072–2077

9. Kaiser T, Sawicki PT, STOP-IDDM Trial Research Group. Acarbose for prevention of diabetes, hypertension and cardiovascular events? A critical analysis of the STOP-NIDDM data. Diabetologia 2004;47:575–580

10. Buchanan TA. (How) can we prevent type 2 diabetes? Diabetes 2007;56:1502–1507

11. Bonora E, Muggeo M. Postprandial blood glucose as a risk factor for cardiovascular disease in type II diabetes: the epidemiological evidence. Diabetologia 2001;44:2107–2114

12. Cavalet F, Petrelli A, Traversa M, Bonomo K, Fiora E, Coni M, Anfossi G, Costa G, Trovati M. Postprandial blood glucose is a stronger predictor of cardiovascular events than fasting blood glucose in type 2 diabetes mellitus, particularly in women: lessons from the San Luigi Gonzaga Diabetes Study. J Clin Endocrinol Metab 2006;91:813–819

13. Reaven GM, Olefsky J, Farquhar JW. Does hyperglycaemia or hyperinsulinaemia characterize the patient with chemical diabetes? Lancet 1972;1:1247–1249

14. Golay A, Chen YD, Reaven GM. Effect of differences in glucose tolerance on insulin’s ability to regulate carbohydrate and free fatty acid metabolism in obese individuals. J Clin Endocrinol Metab 1986;62:1081–1088

15. Reaven GM, Shen Y-DI, Hollenbeck CB, Sheehy WH, Ostrega D, Polonsky KS. Plasma insulin, C-peptide, and proinsulin concentrations in obese and nonobese individuals with varying degrees of glucose tolerance. J Clin Endocrinol Metab 1993;76:44–48

16. Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. STOP-NIDDM Trial Research Group. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance; the STOP-NIDDM trial. JAMA 2003;290:486–494

17. Ceriello A, Hanefeld M, Leiter L, Monnier L, Moses A, Owens D, Tajima N, Tuom-
News on postprandial hyperglycemia

1. Hirsch IB, Brownlee M. Should minimal blood glucose variability become the gold standard of glycemic control? J Diabetes Complications 2005;19:178–181

2. Mogensen M, Sahlin K, Fernström M, Glenborg D, Vind BF, Beck-Nielsen H, Højlund K. Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 2007;56:1592–1599

3. Boushel R, Gnaiger E, Schjerling P, Skovbro M, Kraunsoe R, Della F. Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia 2007;50:790–796

4. Weber C, Schnell O. The assessment of glycemic variability and its impact on diabetes-related complications: an overview. Diabetes Technol Ther 2009;11:623–633

5. Kilpatrick ES, Rigby AS, Atkin SL. The effect of glucose variability on the risk of microvascular complications in type 1 diabetes. Diabetes Care 2006;29:1486–1490

6. Davi G, Ciabattoni G, Consoli A, Mezzetti A, Falco A, Santarone S, Pennese E, Vitali-colonna E, Bucciarelli T, Costantini F, Capanni F, Patrono C. In vivo formation of 8-iso-prostaglandin F2alpha and platelet activation in diabetes mellitus: effects of improved metabolic control and vitamin E supplementation. Circulation 1999;99:224–229

7. Monnier L, Colette C, Dunseath GJ, Marfella R, Moriello MA, Thorpe JE, Testa R, Boemi M, Giugliano D. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes 2008;57:1349–1354

8. O’Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wollson SK Jr. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N Engl J Med 1999;340:14–22

9. Esposito K, Ciottola M, Carleo D, Schisano B, Sardelli L, Di Tommaso D, Misso L, Saccomanno F, Cerrillo A, Giugliano D. Post-meal glucose peaks at home associate with carotid intima-media thickness in type 2 diabetes. J Clin Endocrinol Metab 2008;93:1345–1350

10. Yamazaki Y, Katakami N, Hayashi-Okano R, Matsuhisa M, Kajimoto Y, Kosugi K, Hori M. alpha-Glucosidase inhibitor reduces the progression of carotid intima-media thickness. Diabetes Res Clin Pract 2005;67:204–210

11. Esposito K, Giugliano D, Nappo F, Marfella R, Campanian Postprandial Hyperglycemia Study Group. Regression of carotid atherosclerosis by control of post-prandial hyperglycemia in type 2 diabetes. Circulation 2004;110:214–219

12. Hanefeld M, Cagatay M, Petrowitsch T, Neuser D, Petzinna D, Rupp M. Acarbose decreases the risk for myocardial infarction in type 2 diabetic patients: meta-analysis of seven long-term studies. Eur Heart J 2004;25:10–16

13. Cusi K, Cunningham GR, Comstock JP. Safety and efficacy of normalizing fasting glucose with bedtime NPH insulin alone in NIDDM. Diabetes Care 1995;18:843–851

14. Monnier L, Colette C, Dunseath GJ, Owens DR. The loss of postprandial glycemic control precedes stepwise deterioration of fasting with worsening diabetes. Diabetes Care 2007;30:263–269

15. Bonomo K, De Salvo A, Fiora E, Mularoni E, Massucco P, Poy P, Pomoero A, Cavalot F, Anfossi G, Trovati M. Evaluation of a simple policy for pre- and post-prandial blood glucose self-monitoring in people with type 2 diabetes not on insulin. Diabetes Res Clin Pract 2010;87:246–251

16. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract 1995;28:103–117

17. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:837–853

18. Action to Control Cardiovascular Risk in Diabetes Study Group, Gerstein HC, Miller ME, Byington RP, Golf DC Jr, Biggar JT, Buse JB, Cushman WC, Genuith S, Ismail-Beigi F, Grimm RH Jr, Probstfield JL, Simons-Morton DG, Friedewald WT. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008;358:2545–2559

19. ADVANCE Collaborative Group, Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M, Marre M, Cooper M, Glasziou P, Grobbee D, Hamet P, Harrap S, Heller S, Liu L, Mancia G, Mogensen CE, Pan C, Poulter N, Rodgers A, Williams B, Bompoin S, de Galan BE, Joshi R, Truvert F. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008;358:2560–2572

20. Duckworth W, Abarria C, Moritz T, Reda D, Emanuellu N, Reaven PD, Zieve FJ, Marks J, Davis SN, Hayward R, Warren SR, Goldman S, Maccara M, Vitek ME, Henderson WG, Huang GD, VADT Investigators. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med 2009;360:129–139