The association between individual perceptions of PM2.5 pollution and pulmonary function in Chinese middle-aged and elderly residents

CURRENT STATUS: UNDER REVIEW

Qi Chen
Jiangsu Provincial Center for Disease Control and Prevention

Jiayao Zhang
Jiangsu institute of parasitic disease

Yan Xu
Jiangsu Provincial Center for Disease Control and Prevention

Hong Sun
Jiangsu Provincial Center for Disease Control and Prevention

Zhen Ding
Jiangsu Provincial Center for Disease Control and Prevention

cqjscdc@126.com Corresponding Author

DOI:
10.21203/rs.2.16609/v2

SUBJECT AREAS
Health Policy

KEYWORDS
PM2.5; Risk perception; Elderly; Policy
Abstract
Background: PM2.5 pollution has become a major public health concern in urban China. Understanding the residents’ individual perceptions toward haze pollution is critical for policymaking and risk communication. However, the perceptions of middle-aged and elderly residents, who particularly vulnerable to haze pollution, are poorly understood. In this study, we aimed to explore their risk perception of haze pollution, and investigating the relationship between health status and pulmonary function parameters and risk perception.

Methods: A cross-sectional study of 400 randomly sampled individuals (aged 40 to 90 years) was conducted in Wuxi, a typical PM2.5-polluted city (daily average PM2.5 concentration was 52.73 μg/m3 between 2015-2017). Each participant’s demographic and health information, individual perception and pulmonary function outcomes were collected, and linear models were employed to explore the relationship between personal characteristics and pulmonary function parameters and perception factors.

Results: We found that the mean values for controllability (4.99 ± 2.78) and dread of self-risk (6.90 ± 2.45) were the lowest and the highest values, respectively, in our study. Education and average family income were positively related with all individual perception factors, while age was negatively associated. A history of respiratory disease was positively associated with all individual perception factors except controllability. Significant positive associations were observed between PEF (coefficients ranged from 0.18 to 0.22) and FEF75% (coefficients ranged from 0.18 to 0.29) with a variety of individual perception factors.

Conclusions: There was a lack of concern and knowledge, weak self-protection consciousness and a strong dread of PM2.5 pollution among the middle-aged and elderly residents in Wuxi. Their individual perceptions were associated with age, education levels, average family income, history of respiratory disease and pulmonary function indexes PEF and FEF75%. Our findings may help policymakers develop effective policies and communication strategies to mitigate the hazards of haze among older residents.

1. Introduction
Particulate air pollution is a severe global issue. The evidence of a link between mortality and particulate matter concentration have been established in more than 600 cities across the globe [1]. With rapid economic growth, energy consumption and air pollutant emissions have substantially increased in China [2]. Fine particulate matter with a diameter of <2.5 μm (PM\textsubscript{2.5}) pollution has become one of the most severe environmental problems, especially in highly industrialized urban areas of China [3]. Numerous studies have established that PM\textsubscript{2.5} pollution threatens human health in many ways; it increases the morbidity and mortality of respiratory and cardiovascular diseases, impairs humans’ pulmonary and cognitive function, and has adverse effects on mental health and well-being [4–6]. Although PM\textsubscript{2.5} is hazardous to the whole population, elderly people are especially vulnerable [7].

In addition to health impacts, large-scale PM\textsubscript{2.5} pollution in urban China has also led to some social problems. In the winter of 2018, many areas of China had haze pollution alerts and closed important expressway stations due to the serious smog [8]. In areas with high concentrations of PM\textsubscript{2.5}, PM\textsubscript{2.5} pollution-related diseases cause additional medical expenses, work time loss and GDP loss [9,10].

Because frequent haze pollution has led to a rise in Chinese public concern and has caused the potential risk of social unrest [11]. The Chinese government has thus far established a series of environmental regulations to control industrial and vehicular emissions, encourage clean energy and set up air pollution early warning systems and response plans for haze episodes [12–14].

According to the Chinese National Ambient Air Quality Standard, annual mean PM\textsubscript{2.5} concentration should be lower than 35 μg/m3 [15]. However, all the annual mean PM\textsubscript{2.5} concentrations of the 13 cities in Jiangsu province exceeded this standard during 2015-2017 [16]. Real-time PM\textsubscript{2.5} concentration has become the public information in recent years. However, some recent studies suggested that less than half Chinese urban residents check the air pollution index regularly, and their favorite ways to obtain haze-related information are television, internet and newspapers [11,17]. These findings indicate that it is important for the government utilize public medias to deliver
effective environmental education and risk communication to the local residents.

“Risk perception” is how people judge the magnitude and degree of risk with their intuition [18]. It is a very important and effective indicator of public concern about air pollution. Risk perception can guide individuals’ self-protective behaviors and help them respond to government work [19]. On the other hand, understanding the population’s risk perception can help the government engage in efficient risk communication to bridge the gap of risk perception between the experts and the public, and to create effective policies to protect public health and mitigate potential adverse socioeconomic impacts.

Given that a proper understanding of individual perceptions of air pollution is critical for policymaking and risk communication, many studies have been conducted to explore the public's perception of air pollution in recent years. Previous studies have reported that a lower level of education and income might be associated with more dissatisfaction with respect to air pollution [20,21]. Qian and Kim et al. found that women and younger people are more sensitive to air pollution risks [17,22]. However, other studies have indicated that middle-aged and elderly people perceived greater risk and health threats associated with air pollution [23–25], and people with higher education and income levels tend to be more concerned about air pollution [26–28]. Moreover, individual perception could be influenced by health status, thermal sensations, and personal experiences with air pollution [19,29,30].

The majority of current studies have focused on the adult population; many of these studies included respondents who were younger and more educated than the average individual in the target population, potentially because older, uneducated people have fewer chances to participate in such studies and have greater difficulty in understanding questions [19,30,31]. Middle-aged and elderly residents are particularly vulnerable to air pollution [32,33]; therefore, it is crucial to understand their risk perceptions and develop targeted policy strategies to protect them. However, it might be inappropriate to generalize the conclusions of previous studies directly to middle-aged and elderly individuals because they are older, and many of them are less educated than younger individuals. Moreover, compared to young people, middle-aged and elderly individuals are more likely to have
cardiovascular and/or respiratory diseases and worse pulmonary function [34,35]. Those characteristics may largely affect their risk perceptions.

In light of these findings, we conducted our study among the middle-aged and elderly residents (age between 40 to 90 years old) from Wuxi, an important economic and industry center in the Yangtze River Delta region. The aims of this study are exploring middle-aged and elderly urban residents’ risk perception of haze pollution and determining the relationship between health status and pulmonary function parameters and risk perception.

2. Methods

2.1 Sample selection

This study was conducted in Wuxi, an important industry and economy center in the Yangtze River Delta region. According to the reported data, the mean concentration of PM$_{2.5}$ in Wuxi was 52.73 μg/m3 between 2015 and 2017, which was 5.27 times higher compare to the WHO air quality guideline’s stipulation (PM$_{2.5}$ not exceed 10 μg/m3 annual mean) [36].

We used a two-step sampling method in this study. First, one district and one county were randomly selected from 5 districts and 2 counties, respectively, in the city. Then, all communities in the district/county with over 10,000 residents served as the primary sample units based on probabilities proportional to population size (PPS). In the second step, one such community was randomly selected from both the chosen district and county, and 200 middle-aged and elderly residents (age between 40 to 90 years old, living at their present residence for more than three year before this study) from each community were in turn selected using a simple random sampling method (SRS). A table containing the IDs of all the residents who met the age criteria was built using SRS, and then a series of random numbers were generated to select one resident; the other 199 residents were selected by using equal interval numbers based on the starting resident ID. If the selected resident refuse to participate our survey, we will replace him/her with the resident of this selected ID add 1, until we successfully interviewed 200 residents in each area. Overall, 416 residents were approached, of whom 400
responded (response rate: 96.1%). Formula for estimating sample size is as follows:

where take $\alpha = 0.05$ as significance level, σ is the standard deviation,

$$\sigma = 2.5, \ \Delta = \frac{1}{10} \sigma = 0.25,$$

$$N = \frac{\frac{1.96^2 \cdot 2.5^2}{0.25^2} = 384.16 = 384}$$

In this study, we increased our sample size to 400.

All participants were interviewed face-to-face by a member of our research team, and the pulmonary function test was performed by trained specialists. A total of 400 residents from the two communities completed the questionnaire, 398 of which successfully underwent pulmonary function testing.

2.2 Questionnaire

The questionnaire was composed of two parts. The first part of the questionnaire surveyed demographic information and health status. For health status, we collected information about history of cardiovascular disease and history of respiratory disease. The participants with diagnosed hypertension, arrhythmia, coronary heart disease, myocardial infarction or any other cardiovascular disease that had been reported to be related to PM$_{2.5}$ pollution were defined as “have a history of cardiovascular disease”. Those with diagnosed asthma, chronic obstructive pulmonary disease, lung cancer, chronic respiratory inflammation or acute respiratory inflammation (occurring within one year) were defined as “have a history of respiratory disease”.

The second part consisted of eight questions that addressed individual perceptions of PM$_{2.5}$ pollution and its related health effects. It was designed based on the psychometric paradigm method [18], which uses scaled questions to measure individual preferences with respect to different risks [18,19]. The eight perception factors were concern, severity of air pollution, severity of health effects, knowledge, familiarity, dread of self-risk, dread of risk to others and controllability. Each question
measured perception levels by asking participants to provide a score ranging from 1 to 10 for each question (question design and definition of risk characteristics are shown in Supplemental Table 1). In this study, the total Cronbach’s alpha value was 0.88.

2.3 Pulmonary function test

Pulmonary function tests were conducted by trained specialists using a portable spirometer (MINATOTM AS-507, Japan), in accordance with the guidelines provided by the American Thoracic Society/European Respiratory Society (ATS/ERS). Pulmonary function parameters, including FVC (forced vital capacity, L), FEV1 (forced expiratory volume in the first second, L), PEF (peak expiratory flow, L/s), FEF25\% (forced expiratory flow at 25% of forced vital capacity, L/s) and FEF75\% (forced expiratory flow at 75% of forced vital capacity, L/s), were selected for statistical analysis.

2.4 Statistical models

Descriptive statistics were used to illustrate the sample characteristics, pulmonary function outcomes and individual perceptions of PM$_{2.5}$ pollution.

To examine the effects of individual perceptions of PM$_{2.5}$ pollution from demographic and health status variables, we constructed linear regression equation models. The model included each individual perception factor as a dependent variable. Age was divided into five groups: 41-50 years old = 1, 51-60 years old = 2, 61-70 years old = 3, 71-80 years old = 4, and 81-90 years old = 5. Education was divided into four groups: primary school and below = 1, middle school = 2, high school = 3, and college and above = 4. Income was divided into three ranges (CNY/year): <20 000 = 1, 20 000-35 000 = 2, and >35 000 = 3. Other binary variables included gender (male = 1, female = 2), history of cardiovascular disease (no = 0, yes = 1), and history of respiratory disease (no = 0, yes = 1).

Generalized linear models (GLMs) were used to explore the relationship between pulmonary function parameters and individual perception factors of PM$_{2.5}$. Considering pulmonary function (spirometric measures FEV1, FVC, etc.) accelerates the loss in function after 65 years of age, and age was reported as an important influencing factor of risk perception in previous studies [37]. We conducted
separate analyses for the middle-aged group (aged 41-65, N=195) and the elderly group (aged 66-90, N=203). Age in years, education, average family income and history of respiratory disease were included in all initial models, and stepwise regression was then used to add or remove variables. The variance inflation factor (VIF) of the models after stepwise regression selection were all < 5.

All statistical analyses were conducted using R software (version 3.3.1, R Foundation for Statistical Computing, http://cran.r-project.org/), and the GLM was fitted using the splines package. P-values <0.05 were considered significant.

3. Results

A total of 400 volunteer residents surveyed effectively, and 398 of these successfully underwent pulmonary function tests. The demographic characteristics and health status of the participants are summarized in Table 1. There were 49.8% females and 51.2% participants aged over 65 years. The majority of the participants’ education levels were below high school (70.8%), and only 30.0% of the participants had an average family income of over 35,000 CNY/year. Very few of the participants had ever used a household air purifier (4.8%). A total of 46.0% of the participants had a history of cardiovascular disease, and 17.0% had a history of respiratory disease.

Table 1 Sample description.

Characteristic	Groups	Distribution (n, %)
Age (years old)		
41-50		67 (16.8%)
51-60		79 (19.8%)
61-70		88 (22.0%)
71-80		81 (20.2%)
81-90		85 (21.2%)
Gender		
Male		201 (50.2%)
Female		199 (49.8%)
Education		
Primary school and below		139 (34.8%)
Middle school		144 (36.0%)
High school		80 (20.0%)
College and above		37 (9.2%)
Average family income (CNY/year)		
20 000		136 (34.0%)
20 000 – 35 000		144 (36.0%)
35 000		120 (30.0%)
Household air purifier use		
Yes		19 (4.8%)
No		381 (95.2%)
History of cardiovascular disease		
Yes		184 (46.0%)
No		216 (54.0%)
History of respiratory disease		
Yes		68 (17.0%)
No		332 (83.0%)

3.1 Pulmonary function outcomes
Descriptive statistics of the participants’ pulmonary function outcomes are provided in Supplemental Table 2. According to previous studies, pulmonary function (spirometric measures FEV1, FVC., etc.) declines with increasing age, and the loss in function will especially accelerate after 65 years of age [37,38]. Therefore, we calculated the pulmonary function outcomes of the participants aged 41-65 (middle-aged group) and of those aged 66-90 (elderly group) separately. The analysis showed that the pulmonary function outcomes of the middle-aged group were all significantly higher than those of the elderly group.

3.2 Individual perceptions

As seen in Table 2, the mean values of individual perception factors in the total sample of participants ranged from 4.99 to 6.90. Dread of self-risk scored highest, and controllability scored lowest in our study. In addition, we compared the differences in individual perception between the middle-aged group and the elderly group through an independent-sample t-test analysis. We found that the values of the individual perception factors of the middle-aged group were all significantly higher than those of the elderly group (indicated in Figure 1).

Perception factors	Total (N=400)	Age: 41-65 (N=195)	Age: 66-90 (N=205)
Concern	5.65 ± 2.82	6.10 ± 2.58	5.23 ± 2.98
Severity of air pollution	5.87 ± 2.29	6.42 ± 2.08	5.34 ± 2.35
Severity of health effects	6.75 ± 2.44	7.21 ± 2.16	6.31 ± 2.60
Knowledge	6.55 ± 2.47	7.10 ± 2.22	6.03 ± 2.58
Familiarity	6.57 ± 2.43	7.01 ± 2.16	6.16 ± 2.60
Dread of self-risk	6.90 ± 2.45	7.32 ± 2.16	6.49 ± 2.64
Dread of risk to others	6.89 ± 2.43	7.30 ± 2.13	6.51 ± 2.63
Controllability	4.99 ± 2.78	5.39 ± 2.72	4.61 ± 2.79
Figure 1 Comparisons of individual perception factors of PM$_{2.5}$ pollution between the middle-aged and elderly groups (**$P < 0.01$, ***$P < 0.001$).

3.3 Factors influencing individual perceptions of PM$_{2.5}$ analysis

To reveal the influencing factors, we employed regression models to analyze the effects of demographic and health status variables on individual perceptions of PM$_{2.5}$ pollution (Table 3). We found that *education* (coefficients ranging from 0.45 to 0.94) and *average family income* (coefficients ranging from 0.39 to 0.72) were positively associated with all individual perception factors; in addition, *age* (coefficients ranged from -0.41 to -0.28) was negatively associated with all individual perception factors. *History of respiratory disease* (coefficients ranging from 0.84 to 1.47) was positively associated with all individual perception factors except *controllability*. No significant correlation was found between *history of cardiovascular disease* and *gender* and any individual perception factor of PM$_{2.5}$.

Table 3 Regression analysis of influencing factors on individual perception of PM$_{2.5}$ among middle-aged and elderly residents (N=398)a.

	Concern	Severity of air pollution	Severity of health effects	Knowledge	Familiarity
Age	-0.28**	-0.40**	-0.35**	-0.41**	-0.32
Gender	-0.35	0.09	-0.36	-0.40	-0.24
Education	0.90**	0.54**	0.85**	0.93**	0.86*
Average family income	0.53**	0.39**	0.72**	0.48**	0.55*
History of cardiovascular disease	-0.42	-0.01	0.03	-0.27	-0.18
History of respiratory disease	0.84*	1.06**	1.33**	1.09**	1.17*

a: **$P < 0.01$, *$P < 0.05$.

3.4 Associations between pulmonary function outcomes and individual perception of PM$_{2.5}$

We analyzed the associations between pulmonary function outcomes and individual
perceptions, with separate analyses conducted for the middle-aged group (aged 41-65, N=195) and the elderly group (aged 66-90, N=203).

As shown in Table 4, we observed significant positive associations of PEF with dread of self-risk (coefficient = 0.20, \(P < 0.05 \)) and dread of risk to others (coefficient = 0.22, \(P < 0.05 \)), and we observed positive associations of FEF\(_{75\%}\) with severity of health effects (coefficient = 0.20, \(P < 0.05 \)), familiarity (coefficient = 0.18, \(P < 0.05 \)), dread of self-risk (coefficient = 0.24, \(P < 0.01 \)) and dread of risk to others (coefficient = 0.26, \(P < 0.01 \)) among the middle-aged residents. No significant correlation was found between other pulmonary function indexes and individual perception factors.

Similar associations were observed among the elderly residents (Table 5). We observed significant positive associations of FEF\(_{75\%}\) with knowledge (coefficient = 0.25, \(P < 0.05 \)), familiarity (coefficient = 0.28, \(P < 0.05 \)), dread of self-risk (coefficient = 0.29, \(P < 0.05 \)) and dread of risk to others (coefficient = 0.23, \(P < 0.05 \)). Furthermore, we also found that FEV\(_1\) and FVC were positively associated with familiarity.

We also performed power calculation, when significant level \(\alpha \) was 0.05, our power was 98.2\% to 100\%.

Table 4 Regression analysis of pulmonary function outcomes on individual perception of PM\(_{2.5}\) among residents aged 41-65 (N=195)\(^a\).

	Severity of air pollution	Severity of health effects	Knowledge	Familiarity	Dread of self-risk
PEF, L/s	0.18*	-	0.14	0.16	0.20*
FEF\(_{25\%}\), L/s	-	-0.22	-	-0.23	-0.20
FEF\(_{75\%}\), L/s	0.14	0.20*	0.16	0.18*	0.24**

\(^a\): **\(P < 0.01\), *\(P < 0.05\).
- : removed by stepwise regression selection.
All initial models included age, education, average family income and history of respiratory disease, and then underwent stepwise regression selection.

Table 5 Regression analysis of pulmonary function outcomes on individual perception of PM\(_{2.5}\) among residents aged 66-90 (N=203)\(^a\).
	Severity of air pollution	Severity of health effects	Knowledge	Familiarity	Dread
\(FEV_1, \text{L} \)	-	-	-	0.65*	-
\(FVC, \text{L} \)	-	-	-	0.55*	-
\(\text{FEF}_{75\%}, \text{L/s} \)	-	0.21	0.25*	0.28*	0.29*

\(^a \): **\(P < 0.01 \), *\(P < 0.05 \).
- : removed by stepwise regression selection.

All initial models included age, education, average family income and history of respiratory disease, and then underwent stepwise regression selection.

4. Discussion

In this study, we explored middle-aged and elderly urban residents’ risk perception of haze pollution and found their health status and pulmonary function parameters were associated with their risk perceptions.

Our study found that the mean values for self-reported controllability and concern were the lowest in our study, and the mean values for dread (dread of self-risk and dread of risk to others) were the highest in our study. These results are consistent with those of previous studies. For example, Liu et al. reported that only 42.50% of the respondents in Shanghai, Wuhan and Nanchang paid attention to air pollution-related indicators, and Lan et al. reported that only 14.6% of respondents in Nanchang checked the air pollution index regularly [39,40]. Meanwhile, 78.8% of the respondents in Ningbo felt dread toward the possible aggravation of the haze, and 83% of respondents in Nanchang worry about the potential adverse impact on their respiratory system caused by a high level of air pollution [17,40]. Despite the dread of haze pollution, less than 5% participants in our study had ever used air purifiers to improve indoor air quality; this ratio is much lower than that reported among younger residents in Nanjing (15.2% air purifier use) [19]. This may be due to the low levels of self-perceived controllability in our study; in other words, the residents do not believe that they can effectively reduce the health risks associated with haze by engaging in self-protective behaviors.

Previous studies have indicated that individual perceptions of air pollution could be influenced by many factors, such as age [41,42], gender [43], education level [44], family income [45], individual
experiences [19], and health symptoms [30]. Supporting the previous findings, we found that education and average family income were positively associated and age was negatively associated with all individual perception factors. History of respiratory disease was positively associated with all individual perception factors except controllability in our study. However, although cardiovascular injury is one of the most important health hazards of air pollution, no significant correlation was found between history of cardiovascular disease and any individual perception factor of PM$_{2.5}$. This result indicates that the residents with cardiovascular disease may not identify haze pollution as a health threat to their disease and did not pay more attention to it than the healthy group did. A good knowledge of health risk associated with haze will promote self-protective behaviors [19]. Therefore, it will be important to deliver haze pollution related risk and self-protective education among those with cardiovascular disease. A similar situation was found by Liu et al., in which only 21.2% of the respondents considered heart problems a health consequence of air pollution [39]. Nevertheless, as indicated by the self-reported perceived knowledge level (mean score: 6.55 ± 2.47), Wuxi’s middle-aged and elderly residents believe that they have adequate haze-related knowledge. Taken together, these results may reveal a potential obstacle in current air pollution-related health education: there is a gap between residents’ self-perceived knowledge level and their actual level, which may cause insufficient self-protective behavior among vulnerable groups and incorrect risk perceptions.

Therefore, we suggest that government managers develop targeted health education strategies and risk communication messages for vulnerable groups, especially for residents with cardiovascular diseases.

Considering that both pulmonary function outcomes and individual perceptions could be influenced by age, we found that they were significantly different between the middle-aged and elderly groups (shown in Supplemental Table 2 and Figure 1). We analyzed the associations between pulmonary function outcomes and individual perceptions separately among the middle-aged group (aged 41-65, N=195) and the elderly group (aged 66-90, N=203). It is very interesting that we observed that better pulmonary function outcomes were related to higher self-perceived levels of severity of health effects, knowledge, familiarity, dread of self-risk and dread of risk to others in both middle-aged and
elderly groups. These results indicated that residents with worse pulmonary function might lack knowledge of the hazards of PM$_{2.5}$ pollution and did not consider PM$_{2.5}$ pollution as a severe health threat. As reported in a previous study, lower knowledge and dread levels may result in less self-protection behaviors during haze pollution [19], and less self-protection may further worsen pulmonary function. These results emphasized the importance of environmental education and risk communication among the residents with worse pulmonary function. In this study, we found that FEF$_{75\%}$ was associated with familiarity, dread of self-risk and dread of risk to others in both the middle-aged and elderly groups. This result indicated that FEF$_{75\%}$ might be considered an indicator for hospital-based health educators to use to identify those more likely to need to be educated to improve their knowledge and those who need to relieve their anxiety toward the potential health risk caused by PM$_{2.5}$. The above findings suggested that policymakers should consider residents’ health status when making health education and risk communication strategies for the targeted groups.

To the best of our knowledge, this is the first study to specifically explore risk perception among Chinese middle-aged and elderly residents, who were generally defined as the vulnerable group to PM$_{2.5}$ pollution. We first identified the relationships between the residents’ disease history and pulmonary function outcomes with their individual risk perceptions. We discussed several policy implications in the sections of discussion in this article, and our results may help government managers make target policy strategies.

Our study also has some limitations. First, as a cross-sectional study, the pulmonary function tests were performed on the same day as the questionnaires, and we observed that the residents’ pulmonary function outcomes was associated with their individual perceptions. Although a previous study has reported that higher levels of risk perceptions may help residents take additional protective actions [19]. However, in this study, we are not sure about whether higher levels of risk perceptions helped with older residents’ pulmonary function outcomes. Second, our study participants were sampled based on communities, those with severe respiratory and cardiovascular disease may not sufficiently included in our survey. In future studies, more participants sampled from both
communities and hospitals are needed.

Despite these limitations, our study provides a reference for government managers about the associations between disease history and pulmonary function with risk perceptions among Chinese middle-aged and elderly urban residents for the first time and lays the foundation for subsequent researchers.

5. Conclusions

Our study suggests that middle-aged and elderly residents may lack concern and knowledge about air pollution, have no confidence in mitigating PM$_{2.5}$-related health risks by self-protective behaviors, and dread of the hazards of PM$_{2.5}$. Their individual perceptions are associated with age, education levels, average family income, history of respiratory disease and their pulmonary function outcomes. Our findings may help government managers ascertain sensitive groups and make targeted strategies to conduct correct environmental education, strengthen risk communication, relieve dread feelings and encourage self-protective behaviors among middle-aged and elderly residents. Further studies are needed in the future.

List Of Abbreviations
PM$_{2.5}$, fine particulate matter with a diameter of <2.5 μm; PPS, probabilities proportional to population size; SRS, simple random sampling method; FVC: forced vital capacity; FEV$_1$, forced expiratory volume in the first second; PEF, peak expiratory flow; FEF$_{25\%}$, forced expiratory flow at 25% of forced vital capacity; FEF$_{75\%}$, forced expiratory flow at 75% of forced vital capacity; GLMs, generalized linear models.

Declarations

Ethics approval and consent to participate
The study protocol was approved by the Ethics Commission of Jiangsu Provincial Center for Disease Control and Prevention; all study participants provided written informed consent.

Consent for publication
Not applicable.
Availability of data and materials

The data that support the findings of this study are available from Jiangsu Provincial Commission of Health and Family Planning; however, restrictions apply regarding the availability of these data, which were used under a license for the current study, and the data are not publicly available. However, data are available from the authors upon reasonable request and with permission of the Jiangsu Provincial Commission of Health and Family Planning.

Competing interests

The authors declare that they have no competing interests.

Funding

This study was supported by funds from the Key Talent Project for Medical Young Scholars of Jiangsu Province [grant numbers QNRC2016551] and Jiangsu social development project [grant numbers BE2018745].

Authors’ contributions

QC contributed to the study design, data procurement, interpretation of the results and drafting of the article. JZ was involved in the collection of the data. ZD, HS and YX took part in the study design, supervision of the research, data procurement and results interpretation. All authors read and gave their approval for publication.

Acknowledgements

Not applicable.

References

1 Liu C, Chen R, Sera F, et al. Ambient Particulate Air Pollution and Daily Mortality in 652 Cities. N Engl J Med 2019;381:705–15. doi:10.1056/NEJMoa1817364

2 Zhu Y, Huang L, Li J, et al. Sources of particulate matter in China: Insights from source apportionment studies published in 1987-2017. Environ Int 2018;115:343–57. doi:10.1016/j.envint.2018.03.037

3 Zhang Y, Cai J, Wang S, et al. Review of receptor-based source apportionment research of fine particulate matter and its challenges in China. Sci Total Environ 2017;586:917–29.
Yang Y, Ruan Z, Wang X, et al. Short-term and long-term exposures to fine particulate matter constituents and health: A systematic review and meta-analysis. *Environ Pollut* 2019;247:874–82. doi:10.1016/j.envpol.2018.12.060

Buoli M, Grassi S, Caldiroli A, et al. Is there a link between air pollution and mental disorders? *Environ Int* 2018;118:154–68. doi:10.1016/j.envint.2018.05.044

Ailshire JA, Crimmins EM. Fine particulate matter air pollution and cognitive function among older US adults. *Am J Epidemiol* 2014;180:359–66. doi:10.1093/aje/kwu155

Chen R, Yin P, Meng X, et al. Fine Particulate Air Pollution and Daily Mortality. A Nationwide Analysis in 272 Chinese Cities. *Am J Respir Crit Care Med* 2017;196:73–81. doi:10.1164/rccm.201609-1862OC

Cheng, Z., Liang S. For the first time this winter, Heilongjiang province has upgraded part of its high-speed closure to an orange alert for smog (in Chinese). 2018.http://zgly.xinhuanet.com/2018-12/13/c_%0A1123844712.htm (accessed 6 Aug 2019).

Wu R, Dai H, Geng Y, et al. Economic Impacts from PM2.5 Pollution-Related Health Effects: A Case Study in Shanghai. *Environ Sci Technol* 2017;51:5035–42. doi:10.1021/acs.est.7b00026

Xie Y, Dai H, Dong H, et al. Economic Impacts from PM2.5 Pollution-Related Health Effects in China: A Provincial-Level Analysis. *Environ Sci Technol* 2016;50:4836–43. doi:10.1021/acs.est.5b05576

Liu X, Zhu H, Hu Y, et al. Public’s Health Risk Awareness on Urban Air Pollution in Chinese Megacities: The Cases of Shanghai, Wuhan and Nanchang. *Int J Environ Res Public Health* 2016;13:845. doi:10.3390/ijerph13090845

Yu M, Zhu Y, Lin C-J, et al. Effects of air pollution control measures on air quality improvement in Guangzhou, China. *J Environ Manage* 2019;244:127–37. doi:10.1016/j.jenvman.2019.05.046

Zhang Y, Bo X, Zhao Y, et al. Benefits of current and future policies on emissions of China’s coal-fired power sector indicated by continuous emission monitoring. *Environ Pollut* 2019;251:415–24. doi:10.1016/j.envpol.2019.05.021
Wang J, Niu T, Wang R. Research and Application of an Air Quality Early Warning System Based on a Modified Least Squares Support Vector Machine and a Cloud Model. *Int J Environ Res Public Health* 2017;14. doi:10.3390/ijerph14030249

You M. Addition of PM 2.5 into the national ambient air quality standards of China and the contribution to air pollution control: the case study of Wuhan, China. *ScientificWorldJournal* 2014;2014:768405. doi:10.1155/2014/768405

Zhang J, Chen Q, Wang Q, *et al.* The acute health effects of ozone and PM2.5 on daily cardiovascular disease mortality: A multi-center time series study in China. *Ecotoxicol Environ Saf* 2019;174:218–23. doi:10.1016/j.ecoenv.2019.02.085

Qian X, Xu G, Li L, *et al.* Knowledge and perceptions of air pollution in Ningbo, China. *BMC Public Health* 2016;16:1138. doi:10.1186/s12889-016-3788-0

Slovic P. Perception of risk. *Science* 1987;236:280–5. doi:10.1126/science.3563507

Ban J, Zhou L, Zhang Y, *et al.* The health policy implications of individual adaptive behavior responses to smog pollution in urban China. *Environ Int* 2017;106:144–52. doi:10.1016/j.envint.2017.06.010

Deguen S, Padilla M, Padilla C, *et al.* Do Individual and Neighborhood Characteristics Influence Perceived Air Quality? *Int J Environ Res Public Health* 2017;14. doi:10.3390/ijerph14121559

Geelen LMJ, Souren AFMM, Jans HWA, *et al.* Air Pollution from Industry and Traffic: Perceived Risk and Affect in the Moerdijk Region, The Netherlands. *Hum Ecol Risk Assess An Int J* 2013;19:1644–63. doi:10.1080/10807039.2012.749068

Kim M, Yi O, Kim H. The role of differences in individual and community attributes in perceived air quality. *Sci Total Environ* 2012;425:20–6. doi:10.1016/j.scitotenv.2012.03.016

Shi X, He F. The environmental pollution perception of residents in coal mining areas: a case study in the Hancheng mine area, Shaanxi Province, China. *Environ Manage* 2012;50:505–13. doi:10.1007/s00267-012-9920-8

Williams ID, McCrae IS. Road traffic nuisance in residential and commercial areas. *Sci Total Environ* 1995;169:75–82. http://www.ncbi.nlm.nih.gov/pubmed/7544024
25 Forsberg B, Stjernberg N, Wall S. People can detect poor air quality well below guideline concentrations: a prevalence study of annoyance reactions and air pollution from traffic. *Occun Environ Med* 1997;**54**:44–8. doi:10.1136/oem.54.1.44

26 Egondi T, Kyobutungi C, Ng N, *et al.* Community perceptions of air pollution and related health risks in Nairobi slums. *Int J Environ Res Public Health* 2013;**10**:4851–68. doi:10.3390/ijerph10104851

27 Jacquemin B, Sunyer J, Forsberg B, *et al.* Annoyance due to air pollution in Europe. *Int J Epidemiol* 2007;**36**:809–20. doi:10.1093/ije/dym042

28 Seo M-G, Barrett LF. BEING EMOTIONAL DURING DECISION MAKING-GOOD OR BAD? AN EMPIRICAL INVESTIGATION. *Acad Manage J* 2007;**50**:923–40. http://www.ncbi.nlm.nih.gov/pubmed/18449361

29 Piro FN, Madsen C, Naess O, *et al.* A comparison of self reported air pollution problems and GIS-modeled levels of air pollution in people with and without chronic diseases. *Environ Health* 2008;**7**:9. doi:10.1186/1476-069X-7-9

30 Pantavou K, Lykoudis S, Psiloglou B. Air quality perception of pedestrians in an urban outdoor Mediterranean environment: A field survey approach. *Sci Total Environ* 2017;**574**:663–70. doi:10.1016/j.scitotenv.2016.09.090

31 Pu S, Shao Z, Fang M, *et al.* Spatial distribution of the public’s risk perception for air pollution: A nationwide study in China. *Sci Total Environ* 2019;**655**:454–62. doi:10.1016/j.scitotenv.2018.11.232

32 Chen C, Xu D, He MZ, *et al.* Fine Particle Constituents and Mortality: A Time-Series Study in Beijing, China. *Environ Sci Technol* 2018;**52**:11378–86. doi:10.1021/acs.est.8b00424

33 Amsalu E, Wang T, Li H, *et al.* Acute effects of fine particulate matter (PM2.5) on hospital admissions for cardiovascular disease in Beijing, China: a time-series study. *Environ Health* 2019;**18**:70. doi:10.1186/s12940-019-0506-2

34 Chatterji S, Byles J, Cutler D, *et al.* Health, functioning, and disability in older adults--present status and future implications. *Lancet (London, England)* 2015;**385**:563–75. doi:10.1016/S0140-6736(14)61462-8

35 Hankinson JL, Odencrantz JR, Fedan KB. Spirometric reference values from a sample of the
general U.S. population. *Am J Respir Crit Care Med* 1999;**159**:179–87.
doi:10.1164/ajrccm.159.1.9712108

36 Zhang J, Chen Q, Wang Q, et al. The acute health effects of ozone and PM2.5 on daily cardiovascular disease mortality: A multi-center time series study in China. *Ecotoxicol Environ Saf* 2019;**174**:218–23. doi:10.1016/j.ecoenv.2019.02.085

37 Fowler RW, Pluck RA, Hetzel MR. Maximal expiratory flow-volume curves in Londoners aged 60 years and over. *Thorax* 1987;**42**:173–82. doi:10.1136/thx.42.3.173

38 Roman MA, Rossiter HB, Casaburi R. Exercise, ageing and the lung. *Eur Respir J* 2016;**48**:1471–86. doi:10.1183/13993003.00347-2016

39 Liu X, Zhu H, Hu Y, et al. Public’s Health Risk Awareness on Urban Air Pollution in Chinese Megacities: The Cases of Shanghai, Wuhan and Nanchang. *Int J Environ Res Public Health* 2016;**13**. doi:10.3390/ijerph13090845

40 Lan G, Yuan Z, Maddock JE, et al. Public perception of air pollution and health effects in Nanchang, China. *Air Qual Atmos Heal* 2016;**9**:951–9. doi:10.1007/s11869-016-0397-0

41 Brody SD, Peck BM, Highfield WE. Examining localized patterns of air quality perception in Texas: a spatial and statistical analysis. *Risk Anal* 2004;**24**:1561–74. doi:10.1111/j.0272-4332.2004.00550.x

42 van Thriel C, Kiesswetter E, Schäper M, et al. Odor annoyance of environmental chemicals: sensory and cognitive influences. *J Toxicol Environ Health A* 2008;**71**:776–85.
doi:10.1080/15287390801985596

43 Huang L, Li J, He R, et al. Quantitative Analysis of Health Risk Perception, Exposure Levels, and Willingness to Pay/Accept of PM2.5 during the 2014 Nanjing Youth Olympic Games. *Environ Sci Technol* 2018;**52**:13824–33. doi:10.1021/acs.est.8b01634

44 Kohlhuber M, Mielck A, Weiland SK, et al. Social inequality in perceived environmental exposures in relation to housing conditions in Germany. *Environ Res* 2006;**101**:246–55.
doi:10.1016/j.envres.2005.09.008

45 Oglesby L, Künzli N, Monn C, et al. Validity of annoyance scores for estimation of long term air

20
pollution exposure in epidemiologic studies: the Swiss Study on Air Pollution and Lung Diseases in Adults (SAPALDIA). Am J Epidemiol 2000;152:75–83. doi:10.1093/aje/152.1.75

Figures

![Individual perceptions of PM2.5 pollution](image)

Figure 1

PM2.5, Risk perception, Elderly, Policy

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.
suptables.docx