Genetic and Environmental Determinants of Serum Lipids and Lipoproteins in French Canadian Families

Louis Pérusse, Jean-Pierre Després, Angelo Tremblay, Claude Leblanc, Jean Talbot, Claude Allard, and Claude Bouchard

The contribution of genetic and environmental factors to serum triglycerides (TG), total cholesterol (CHOL), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), and HDL-C/CHOL ratio were studied in 1630 subjects from 375 families of French descent by using a path analysis procedure. Familial correlations were computed in several pairs of biological relatives and relatives by adoption after adjustment for age and gender effects and after further adjustment for physical fitness, level of habitual physical activity, total body fat and fat distribution, diet, smoking, and alcohol consumption. The model of path analysis allowed the separation of transmissible variance (t²) into genetic (h²) and cultural (b²) components of inheritance. Under the most parsimonious solution and after adjustment for age, gender, and concomitants, the transmissible variance was entirely accounted for by genetic factors (t²=h²), with h² estimates of 0.52, 0.55, 0.60, 0.62, and 0.63 for TG, CHOL, LDL-C, HDL-C, and HDL-C/CHOL, respectively. These estimates were similar to those obtained after adjustment for age and gender effects only. The contribution of nontransmissible environmental factors ranged from 0.48 for TG to 0.37 for HDL-C/CHOL ratio. These results suggest that both genetic and environmental factors contribute to the variation in blood lipids and lipoproteins in this population and that nongenetic influences are not associated with cultural factors transmitted across generations. (Atherosclerosis 9:306–318, May/June 1989)

Coronary heart disease (CHD) is a major cause of death in industrialized societies. To better understand the etiology of this disease, several studies have addressed the issue of the relative contribution of genetic and environmental influences in the major risk factors of CHD. Among the risk factors of CHD, blood lipids and lipoproteins have been extensively studied because of their predominant role in the development of atherosclerosis.

Several family and twin studies have assessed the role of heredity in blood lipid and lipoprotein variation. In most studies, as reviewed recently by Namboodiri et al., significant correlations were observed in first-degree relatives (but not in spouses) for plasma lipid and lipoprotein levels, which suggests a stronger influence of genes than shared environment in the determination of these phenotypes. However, reported heritability estimates computed from twin data alone have been very heterogeneous, ranging from 0.34 to 0.92 for cholesterol. Other methods of analysis such as variance components analysis and path analysis have also been used to determine genetic and environmental influences on blood lipids. Although estimates of heritability obtained from path analysis are more homogeneous than those obtained from twin data alone, there is still considerable variation among studies, as shown by genetic effects ranging from 0.19 to 0.80 for triglycerides (TG), from 0.42 to 0.70 for total cholesterol (CHOL), from 0.40 to 0.68 for low density lipoprotein cholesterol (LDL-C), and from 0.36 to 0.52 for high density lipoprotein cholesterol (HDL-C).

Most of the studies published thus far have failed to provide adequate controls for environmental factors known to affect blood lipids and lipoproteins, which could partly explain the discrepancies observed among studies. In the present study, several relevant environmental and lifestyle variables such as level of habitual physical activity and physical fitness, total body fat and fat distribution, diet, smoking, and alcohol consumption were measured. The effects of these concomitants on serum TG, CHOL, LDL-C, and the HDL-C/CHOL ratio adjusted for age and gender were determined by regression analysis. Familial correlations adjusted for age and gender effects, as well as for age, gender, and the concomitants, were used to determine genetic and environmental sources of variation in lipids and lipoproteins by a path analysis procedure.

Methods

Population

The population of this study consisted of 1630 subjects from 375 families of French descent recruited through the
media to participate in a research program designed to study the genetic influences on many biological attributes. These families included a total of 903 children and 727 parents with a mean age (±SD) of 14.6±3.3 and 43.2±5.2 years, respectively. All these subjects were volunteers and gave their written consent to participate in this study, which was approved by the Medical Ethics Committee of Laval University. At the time of their visit to the laboratory, these subjects were examined by a physician, and those retained for this study were free from metabolic and cardiovascular disorders. From this sample, the following pairs of biological relatives and relatives by adoption were formed: spouses (maximum number of pairs = 348), parent-offspring (1222), biological siblings (363), dizygotic (DZ) twins (61), monozygotic (MZ) twins (62), first-degree cousins (90), uncle/aunt-nephew/niece (56), sibs by adoption (110), and foster parent-adopted child (309).

The socioeconomic status of the families was assessed using the Blishen and McRoberts Index. This index, based on the 1971 census data, used income and level of education to rank approximately 480 occupations. The socioeconomic status associated with these occupations ranged from 18.3 to 75.3, and the average rating for the population of this study is 54.1±0.7, which is comparable to the general French Canadian population.

Serum Lipid and Lipoprotein Determinations

Blood samples were obtained in the morning (about 8:00 AM) after a 12-hour overnight fast. Samples were collected in Vacutainer tubes (Becton Dickinson Labware, Lincoln Park, NJ) without anticoagulants and after clotting; serum was separated by centrifugation at 1500 g for 20 minutes. CHOL was determined with the commercial kit CHOD-PAP from Boehringer (Mannheim, West Germany), and the A-GENT kit of Abbott Laboratories (South Pasadena, CA) was used to measure TG. HDL-C was determined with the same method as for CHOL after separation of HDL from LDL and very low density lipoprotein (VLDL) fractions. LDL-C was estimated by using the Friedewald formula. Measurements of serum lipids with these procedures were found to be reliable.

Environmental Variables

Several variables reflecting the familiar environment, such as relative body weight, body fat distribution, physical fitness, cigarette smoking, alcohol consumption, diet, and level of habitual physical activity were considered in the analyses. Socioeconomic status was not found to be associated to any of the lipid or lipoprotein variables and, therefore, was not considered in the analyses. The body mass index (weight in kg/height in m²) was measured as an indicator of heaviness. Subcutaneous fat was determined by the sum of six skinfolds (biceps, triceps, medial calf, suprailiac, abdominal, and subscapular). The abdominal skinfold was used to estimate abdominal fat accumulation because it has been shown that this skinfold displays the highest association with serum TG and HDL-C levels in this population. The ratio of trunk (sum of subscapular, suprailiac, and abdominal skinfolds) to extremity (sum of biceps, triceps, and calf skinfolds) skinfolds was used as an indicator of body fat distribution.

Statistical Procedures

Serum lipid data were first adjusted for age and gender by a multiple regression equation \(Y = \text{age} + \text{gender} + (\text{age} \times \text{gender}) + \text{age}^2 \) applied separately in parents and children. Residual scores of age and sex were obtained by subtracting the scores predicted by the regression equation from the original ones. A stepwise multiple regression procedure was used to assess the contribution of environmental and lifestyle factors on age- and sex-adjusted lipid values. However, because of the problem of multicollinearity among the independent variables (covariates), we used a particular model of the SAS stepwise multiple regression procedure called the “maximum R² improvement technique.” This technique compares all possible combinations of independent variables at each step of the regression and, therefore, identifies the best one-variable model, the best two-variable model, and so forth. A statistic called the Cp statistic was used to choose the model that provided the best prediction. For a model with p independent variables, it has been recommended that the best model is the one in which Cp first approaches p. Residual scores of age, gender, and environmental variables retained by the stepwise regression were computed and normalized by taking the inverse normal transformation of the ranked residuals; these normalized phenotypic scores were used in the analysis. Correlations in the different pairs of relatives were computed and used in the model of path analysis described below.

Path Analysis

The path analysis BETA model described by Cloninger et al. was used to determine the contribution of genetic factors in serum lipid and lipoprotein variation. The model assumes that a quantitative trait P can be partitioned as: \(P = A + B + E \), where A and B denote additive genetic factors and cultural factors transmitted from parent to offspring, respectively, and E represents all other environmental factors that are not transmitted between generations. Transmission of cultural factors (cultural inheritance) may be learned or acquired when parents teach their children certain customs and preferences about diet, social environment, and other activities. Nontransmitted environmental factors (E) may be correlated within a generation because of shared environmental influences at
home or at school; this correlation (denoted as c) may be different for different classes of relatives, such as twins and singletons. The model is determined by the following path equations:

\[P = hA + bB + eE \]

\[A_0 = \frac{1}{2} A_f + \frac{1}{2} A_u + sS \]

\[B_0 = \beta B_f + \beta B_m + rR_f \]

Here, \(h, b \) and \(\beta \) are the path coefficients representing the correlation of genetic and cultural factors, respectively, in the development of the phenotype; \(S \) denotes the segregation from midparent genetic value; and \(R_f \) represents the fluctuation from parental cultural values.\(^5\) Equations 2 and 3 represent the transmission of genetic (A) and cultural (B) factors, respectively, from parents (\(F=father, M=mother \)) to offspring (o). The path coefficients from parents’ genic value \(A \) to child genic value \(A \) is taken as \(\frac{1}{2} \) because of biological considerations about the mechanism of diploid autosomal inheritance; \(\beta \) (\(\beta \)) represents the path coefficient from parents’ cultural value \(B \) to a child cultural value \(B \). In the version of the BETA model used, it was assumed that \(\beta = \beta_u = b \).\(^5\) The model allows for a correlation between phenotypes of mates (m) and between nontransmissible environment (E) of full siblings (c), DZ twins (\(c_{oz} \)), and MZ twins (\(c_{oz} \)). The complete BETA model has seven parameters (\(m, \beta, h, b, c, c_{oz}, c_{oz} \)) and one derived parameter (\(w \)) that represents the correlation between genetic and cultural factors that results from assortative mating. The phenotypic variance (\(V_p \)) is given by:

\[V_p = h^2 + b^2 + e^2 + 2whb = 1 \]

where total transmissible variance (\(t^2 \)) equals \(h^2 + b^2 + 2whb \) and the nontransmissible variance (\(e^2 \)) equals 1-\(t^2 \). A Fortran program called BETA\(^5\) was used to obtain the maximum likelihood estimates of the parameters from the observed correlations and to test linear constraints placed on the parameters. This program uses a subroutine program called MAXLIK\(^6\) to estimate the parameters by minimizing the differences between the correlations predicted by the BETA model and the observed correlations. The resulting statistic has an asymptotic \(\chi^2 \) distribution, with degrees of freedom equal to the number of observed correlations minus the number of estimated parameters; it provides a goodness-of-fit test of the model to the data.\(^5\) Testing of hypotheses involving linear constraints on the parameters are performed using the likelihood ratio test\(^5\) by taking the difference between \(\chi^2 \) values of constrained and unconstrained models. Degrees of freedom for the likelihood ratio test are given by the number of constraints.\(^6\)

Results

Descriptive statistics of serum lipids and lipoproteins of parents and children are presented in Tables 1 and 2, respectively. The results obtained in parents indicate a more favorable lipid profile in adult women than in adult men; men had higher levels of TG, CHOL, and LDL-C and lower levels of HDL-C than women (\(p<0.01 \)). The results in children indicate that girls have slightly higher concentrations of CHOL (\(p<0.01 \)) and LDL-C (\(p<0.05 \)) than boys, but the differences observed for TG, HDL-C, and the ratio HDL-C/CHOL were not significant.

The data in Tables 1 and 2 reveal that there is considerable variation in serum lipids depending on the age and gender of the subjects. As indicated in Table 3, these effects accounted for 9% to 26% of the variation in lipids and lipoproteins of parents, whereas the corresponding values for children (Table 4) ranged from 4% to 14%. These tables also present the standardized partial regression coefficients of the concomitants retained from the stepwise regression procedure as the best predictors of the age- and gender-adjusted lipid values. The percentage of variance in serum lipids and lipoproteins accounted for by the concomitants ranged from 1% to 16% in parents and from 2% to 5% in children. The variable that was found the most consistently associated with age- and gender-adjusted lipids and lipoproteins in both parents and children was abdominal fat.

The residual scores of age and gender, as well as residual scores of age, gender, and concomitants, computed and normalized as described in the Methods section, were used as phenotypes for the analyses. The differences between means and variances of theoster and

Table 1. Descriptive Statistics of Serum Lipids and Lipoproteins in Parents of the Study

Variable	Fathers (N=356)	Mothers (N=369)
Age (years)	44.2±5.1	42.2±5.0
Weight (kg)	75.4±11.3	59.2±9.1
Triglycerides (mg/dl)	150.1±91.0	97.7±49.0
Cholesterol (mg/dl)	228.5±40.7	210.3±38.8
LDL-C (mg/dl)	136.4±34.3	108.0±33.5
HDL-C (mg/dl)	46.7±12.0	60.3±15.9
HDL-C/CHOL	0.21±0.06	0.29±0.08

All values are means±SD. All means are significantly different (\(p<0.01 \)) between fathers and mothers.

Table 2. Descriptive Statistics of Serum Lipids and Lipoproteins in Children of the Study

Variable	Boys (N=404)	Girls (N=419)
Age (years)	14.5±3.3	14.8±3.4*
Weight (kg)	50.2±14.9	46.7±10.9†
Triglycerides (mg/dl)	74.9±40.5	79.2±34.7
Cholesterol (mg/dl)	169.0±29.2	176.3±31.5‡
LDL-C (mg/dl)	90.7±22.8	85.6±26.2‡
HDL-C (mg/dl)	54.6±13.7	55.5±11.6*
HDL-C/CHOL	0.33±0.08	0.32±0.08*

All values are means±SD. *Means are not significantly different (\(p>0.05 \)) between fathers and mothers. †Means are significantly different (\(p<0.01 \)) between fathers and mothers. ‡Means are significantly different (\(p<0.05 \)) between fathers and mothers.

LDL-C=low density lipoprotein cholesterol, HDL-C=high density lipoprotein cholesterol, CHOL=total cholesterol.
Table 3: Effects of Age and Gender \((R^2 \times 100)\) on Serum Lipids and Lipoproteins and Standardized Partial Regression Coefficients for Concomitants Affecting Age- and Gender-adjusted Lipid Values in Parents

Concomitant variable	TG	CHOL	LDL-C	HDL-C	HDL-C/CHOL
Effects of age* and gender	13%	9%	19%	19%	26%
Activity level					
Working capacity	-0.29	0.10			
Body mass index	-0.21	-0.15			
Subcutaneous fat	0.13	0.12	0.22	-0.18	
Abdominal fat					
Trunk/extremity fat	0.14				
Total caloric intake					
Percent alcohol intake	0.12	-0.09	0.22	0.20	
Cigarette smoking	0.10	0.14	-0.21	-0.22	
\(R^2 \times 100\)	16%	1%	6%	13%	15%

*Computed from the regression \(Y = \text{age} + \text{gender} + (\text{age} \times \text{gender}) + \text{age}^2\).

\(\dagger p<0.01, \ddagger p<0.0001\).

Percentage of variance accounted for by the concomitants that were found as the best predictors of age- and gender-adjusted lipid values by stepwise multiple regression (see Methods for details). Only the significant coefficients are presented.

Abbreviations are explained in the legend for Table 2.

Table 4: Effects of Age and Gender \((R^2 \times 100)\) on Serum Lipids and Lipoproteins and Standardized Partial Regression Coefficients for Concomitants Affecting Age- and Gender-adjusted Lipid Values in Children

Concomitant variable	TG	CHOL	LDL-C	HDL-C	HDL-C/CHOL
Effects of age* and gender	6%	6%	4%	14%	5%
Activity level	-0.07	0.10			
Working capacity					
Body mass index	0.10				
Subcutaneous fat	-0.23	-0.27	0.19		
Abdominal fat	0.13	0.32	0.43	-0.11	-0.32
Trunk/extremity fat	-0.10	-0.12			
Total caloric intake	0.12				
Percent alcohol intake	-0.11	0.08			
Cigarette smoking	-0.09	0.09			
\(R^2 \times 100\)	5%	2%	5%	3%	4%

*Computed from the regression \(Y = \text{age} + \text{gender} + (\text{age} \times \text{gender}) + \text{age}^2\).

\(\dagger p<0.05, \ddagger p<0.01, \gg p<0.0001\).

Percentage of variance accounted for by the concomitants that were found as the best predictors of age- and gender-adjusted lipid values by stepwise multiple regression (see Methods for details). Only the significant coefficients are presented.

Abbreviations are explained in the legend for Table 2.

biological parents and of unrelated and biological sibs were tested for all the phenotypes. Whether data were adjusted for concomitants or not, no significant differences between means and variances were found between these groups of subjects (results not shown). Familial correlations of serum lipids and lipoproteins adjusted for age and gender and for age, gender, and concomitants were then computed. Because these two sets of correlations were similar, only the latter are presented in Table 5. The patterns of covariation indicate that relatives who share an increased fraction of their genes by descent tend to be more alike in their lipid profile, the monozygotic twins showing the highest correlations \((0.72 < r < 0.87)\). The low correlations generally observed in spouses, sibs by adoption, and foster parent-adopted child suggest that the familial environment shared by individuals living together does not contribute greatly to the familial aggregation observed in lipids and lipoproteins. These data support the hypothesis of an important contribution of biological inheritance in blood lipids and lipoproteins.

To test this hypothesis and quantify the contribution of genetic factors, these correlations, as well as those obtained on lipid values adjusted only for age and gender effects (results not shown), were used in the BETA model
of path analysis. The parameter estimates derived from the general model and from two constrained models are presented in Tables 6 to 10 for each lipid and lipoprotein variable. Except for TG (Table 6), the general model provided a good fit to the data for total cholesterol (Table 7), LDL-C (Table 8), HDL-C (Table 9), and HDL-C/CHOL ratio, whether data were adjusted for concomitants or not (0.99 ≤ χ² ≤ 5.60). Specific hypotheses of no genetic effect (h = 0) and no cultural inheritance (β = b = 0) were tested by using the likelihood ratio tests. The χ² values associated with these tests is presented in the last column of Tables 6 to 10 and reveals that the hypothesis of no genetic effect was rejected (9.03 ≤ χ² ≤ 37.49; p < 0.01), whereas the hypothesis of no cultural inheritance was accepted (0 ≤ χ² ≤ 3.01; p > 0.05) for all variables. These tables also present the parameter estimates obtained under the most parsimonious solution, which is the solution that could fit the data with the fewest parameters. When data adjusted for age, gender, and concomitants were considered, the results of the most parsimonious solutions indicated that a model including only two parameters (h and cωf) was sufficient to account for the variation in TG, LDL-C, HDL-C, and the HDL-C/CHOL ratio, while for CHOL, a three-parameters model (m, h, and cωf) was retained as the most parsimonious solution.

From the most parsimonious solutions presented in Tables 6 to 10, the components of phenotypic variance were computed (see Equation 4). Because of the absence of cultural inheritance, we can see from Equation 4 that the transmissible variance was entirely accounted for by
Table 7. Parameter Estimates and χ^2 Statistics Obtained from Fitting General BETA Model and Constrained Models to Serum Cholesterol

Cholesterol adjusted for age and gender effects	m	β	h	b	c	c_{Q2}	c_{Q2}	Chi-square (df) goodness-of-fit	Chi-square (df) contrast
General model	.13 (.04)	.70*	.62 (.06)	.27 (.07)	.10 (.07)	.20 (.15)	.59 (.07)	0.99 (2)	
No genetic effect (h=0)	.13 (.04)	.61 (.11)	0	.60 (.06)	.03 (.09)	.19 (.16)	.79 (.17)	18.27 (3)†	17.28 (1)†
No cultural inheritance ($\beta=b=0$)	.13 (.04)	0	.71 (.02)	0	.17 (.06)	.26 (.16)	.57 (.08)	2.76 (4)	1.79 (2)
Most parsimonious‡ ($\beta=b=c=c_{Q2}=0$)	.12 (.04)	0	.74 (.02)	0	0	0	.52 (.09)	6.89 (6)	5.90 (4)

Cholesterol adjusted for concomitants in addition to age and gender	m	β	h	b	c	c_{Q2}	c_{Q2}	Chi-square (df) goodness-of-fit	Chi-square (df) contrast
General model	.14 (.04)	.70*	.60 (.06)	.26 (.07)	.11 (.07)	.19 (.15)	.60 (.07)	1.27 (2)	
No genetic effect (h=0)	.14 (.04)	.60 (.11)	0	.60 (.06)	.05 (.09)	.20 (.16)	.81 (.17)	17.15 (3)†	15.88 (1)†
No cultural inheritance ($\beta=b=0$)	.14 (.04)	0	.71 (.02)	0	.19 (.06)	.26 (.16)	.57 (.08)	3.40 (4)	2.13 (2)
Most parsimonious‡ ($\beta=b=c=c_{Q2}=0$)	.13 (.04)	0	.74 (.02)	0	0	0	.53 (.09)	8.17 (6)	6.90 (4)

Values in parentheses are SE. *Fixed at the upper limit permitted by the model. †p≤0.01. ‡The most parsimonious solution is the one that fits the data with the fewest parameters.

Table 8. Parameter Estimates and χ^2 Statistics Obtained from Fitting General BETA Model and Constrained Models to Serum Low Density Lipoprotein Cholesterol

LDL-C adjusted for age and gender effects	m	β	h	b	c	c_{Q2}	c_{Q2}	χ^2 (df) goodness-of-fit	χ^2 (df) contrast
General model	.11 (.04)	.00 (.00)	.72 (.03)	.21 (.08)	.19 (.07)	.40 (.14)	.69 (.02)	3.59 (2)	
No genetic effect (h=0)	.11 (.04)	.70*	0	.54 (.02)	.01 (.05)	.22 (.11)	.74 (.04)	30.20 (3)†	26.61 (1)†
No cultural inheritance ($\beta=b=0$)	.11 (.04)	0	.72 (.03)	0	.17 (.06)	.37 (.15)	.63 (.07)	3.59 (4)	0
Most parsimonious‡ ($m=\beta=b+c=c_{Q2}=0$)	0	0	.78 (.02)	0	0	0	.53 (.09)	11.93 (7)	8.34 (5)

LDL-C adjusted for concomitants in addition to age and gender	m	β	h	b	c	c_{Q2}	c_{Q2}	χ^2 (df) goodness-of-fit	χ^2 (df) contrast
General model	.10 (.04)	.00 (.00)	.71 (.03)	.21 (.06)	.20 (.07)	.32 (.17)	.67 (.01)	2.71 (2)	
No genetic effect (h=0)	.11 (.04)	.64 (.12)	0	.55 (.06)	.05 (.09)	.21 (.14)	.80 (.15)	30.56 (3)†	27.85 (1)†
No cultural inheritance ($\beta=b=0$)	.11 (.04)	0	.71 (.03)	0	.19 (.06)	.29 (.16)	.61 (.07)	2.71 (4)	0
Most parsimonious‡ ($m=\beta=b+c=c_{Q2}=0$)	0	0	.77 (.02)	0	0	0	.52 (.09)	10.43 (7)	7.72 (5)

Values in parentheses are SE. *Fixed at the upper limit permitted by the model. †p≤0.01. ‡The most parsimonious solution is the one that fits the data with the fewest parameters.

Genetic factors ($t^2=\text{h}^2$) and that $V_s=m\text{h}^2+\epsilon^2$. The fraction of phenotypic variance accounted for by genetic factors (h^2) or biological inheritance is shown in Figure 1 for data adjusted for age and gender and for data adjusted for age, gender, and concomitants. Estimates of heritability ranged from 52% for TG to 63% for the HDL-C/CHOL ratio after adjustment for age, gender, and concomitants (dashed bars). Therefore, the fraction of the phenotypic variance accounted for by nontransmissible environmental factors (1-\text{h}^2, where \text{t}^2=\text{h}^2) ranged from 37% (HDL-C/CHOL) to 48% (TG). The results also indicate that data adjusted only for age and gender effects tend to give lower estimates of heritability for TG, HDL-C, and HDL-C/CHOL ratio, while these estimates remained unchanged for CHOL and LDL-C.

Discussion

This study was undertaken to quantify the contribution of genetic factors to serum lipid and lipoprotein variation in a French Canadian population after adjustment for several relevant concomitants by use of a path analysis.
Table 9. Parameter Estimates and χ^2 Statistics Obtained from Fitting General BETA Model and Constrained Models to Serum High Density Lipoprotein Cholesterol

	m	β	h	b	c	α	α_2	χ^2 (df)	goodnessof-fit	χ^2 (df)	contrast
HDL-C adjusted for age and gender effects											
General model	.16 (.04)	.70	.71 (.05)	.06 (.31)	.21 (.08)	.11 (.17)	.77 (.05)	3.12 (2)			
No genetic effect (h=0)	.16 (.04)	.56 (.02)	0	.60 (.02)	.12 (.06)	.14 (.14)	1.0*	33.47 (3)*	30.35 (1)*		
No cultural inheritance ($\beta=b=0$)	.18 (.04)	0	.71 (.02)	0	.22 (.06)	.11 (.17)	.75 (.04)	3.13 (4)	0.01 (2)		
Most parsimonious‡ ($\beta=b=c=\alpha=0$)	.15 (.04)	0	.75 (.02)	0	0	0	.74 (.05)	8.33 (6)	5.21 (4)		
HDL-C adjusted for concomitants in addition to age and gender											
General model	.08 (.04)	.00 (.00)	.73 (.03)	.00 (23.3)	.22 (.10)	0*	.73 (.27)	2.75 (2)			
No genetic effect (h=0)	.09 (.04)	.56 (.02)	0	.61 (.02)	.13 (.06)	.00 (.12)	1.0*	37.82 (3)*	34.87 (1)*		
No cultural inheritance ($\beta=b=0$)	.08 (.04)	0	.73 (.03)	0	.22 (.07)	.00 (.19)	.73 (.05)	2.75 (4)	0		
Most parsimonious‡ ($m=\beta=b=c=\alpha=0$)	0	0	.79 (.02)	0	0	0	.69 (.06)	9.04 (7)	6.29 (5)		

Values in parentheses are SE.
*Fixed at the upper (or lower) limit permitted by the model. †$p<0.01$. ‡The most parsimonious solution is the one that fits the data with the fewest parameters.

Table 10. Parameter Estimates and χ^2 Statistics Obtained from Fitting General BETA Model and Constrained Models to High Density Lipoprotein Cholesterol/LDL-Cholesterol Ratio

	m	β	h	b	c	α	α_2	χ^2 (df)	goodnessof-fit	χ^2 (df)	contrast
HDL-C/CHOL adjusted for age and gender effects											
General model	.14 (.04)	.70*	.72 (.03)	.00 (.19)	.18 (.06)	.28 (.16)	.69 (.06)	5.60 (2)			
No genetic effect (h=0)	.15 (.04)	.70*	0	.53 (.02)	.02 (.06)	.17 (.11)	.78 (.04)	39.90 (3)*	34.20 (1)*		
No cultural inheritance ($\beta=b=0$)	.14 (.04)	0	.72 (.03)	0	.18 (.06)	.28 (.16)	.69 (.06)	5.60 (4)	0		
Most parsimonious‡ ($\beta=b=c=\alpha=0$)	.13 (.04)	0	.75 (.02)	0	0	0	.66 (.06)	9.95 (6)	4.35 (4)		
HDL-C/CHOL adjusted for concomitants in addition to age and gender											
General model	.09 (.04)	.00 (.00)	.74 (.02)	.15 (.00)	.20 (.07)	.18 (.20)	.66 (.06)	5.53 (2)			
No genetic effect (h=0)	.09 (.04)	.70*	0	.54 (.02)	.02 (.05)	.09 (.12)	.76 (.04)	43.02 (3)*	37.49 (3)*		
No cultural inheritance ($\beta=b=0$)	.09 (.04)	0	.74 (.03)	0	.19 (.07)	.17 (.18)	.83 (.07)	5.53 (4)	0		
Most parsimonious‡ ($m=\beta=b=c=\alpha=0$)	0	0	.80 (.02)	0	0	0	.54 (.09)	11.09 (7)	5.56 (5)		

Values in parentheses are SE.
*Fixed at the upper limit permitted by the model. †$p<0.01$. ‡The most parsimonious solution is the one that fits the data with the fewest parameters.
corrected for age and gender effects and found that estimates of heritability were not much altered. These results should not be interpreted as an indication that the concomitants for which we adjusted do not affect lipid data, but rather as an indication that a substantial fraction of the variation attributable to these concomitants was already accounted for by prior adjustment for age and gender effects. Indeed, significant effects of age and gender have already been reported for most of the concomitant variables measured in the population of this study.45,46,60 Furthermore, when unadjusted data were regressed on concomitants (results not shown), the percent of variation accounted for by the concomitants ranged from 2% to 25% in parents and from 3% to 9% in children.

A consistent finding in most of the studies published thus far is the small contribution of the cultural component of inheritance, which was found to account for about 10% or less of the phenotypic variation. However, unlike the results reported in other studies, the cultural component of inheritance was negligible in the present study, as the hypothesis of no cultural inheritance ($B=b=0$) could not be rejected for any of the lipid measurements (see Tables 6 to 10). These data indicate that environmental factors affecting blood lipids and lipoproteins are not transmitted from parents to offspring. These nontransmissible environmental factors accounted for about 40% to 50% of the phenotypic variance. Therefore, despite the strong influence of heredity, the nongenetic factors are still important determinants of interindividual differences in blood lipids and lipoproteins.

Common familial environment and random environmental factors specific to each individual may contribute to this nontransmissible environmental component of phenotypic variation. However, the data obtained under the most parsimonious solutions revealed that shared environmental influences do not contribute significantly to the resemblance observed in regular sibs ($C_0=0$) and in dizygotic twins ($C_{12}=0$). This finding suggests that environmental factors shared by siblings (except MZ twins) living together have only limited impact on the serum lipid and lipoprotein variation of this population and that environmental factors specific to each individual and not common to siblings living together may be more important. This finding can also be interpreted as evidence that a component of the familial environment specific to the monozygotic twins may influence blood lipid and lipoprotein levels.

It is important to consider the contribution of environmental factors to variation in blood lipids and lipoproteins in the development of strategies aimed at the reduction of cardiovascular disease in populations, because modifications of the lipid profile may be achieved by appropriate manipulation of the environment. This is an important issue if we consider that the average serum cholesterol level of the adult population of this study is over 200 mg/dl and that the Canadian consensus conference on cholesterol recommended that public health programs directed at the reduction of cholesterol should consider a population mean of 190 mg/dl as the long-term goal. Several studies have already shown that variables like exercise,61 diet,62 body fat and fat distribution,44,63,64 and cigarette smoking65 were associated with variations in blood lipids, suggesting that changes in some characteristics of lifestyle may contribute to lower serum cholesterol levels in this French Canadian population and may, consequently, reduce the risk of coronary heart disease.

However, the presence of a significant component of biologic inheritance affecting blood lipids and lipoproteins is also an indication that genetic factors are involved in the development of coronary heart disease. Under the model of analysis used in this study, the genetic effect is assumed to be polygenic, i.e., caused by the contribution of several genes with small additive effects on the phenotype. Although single gene defects, like mutations in the LDL receptor gene causing familial hypercholesterolemia,66,67 may have a major effect on lipid and lipoprotein levels, the frequency of these genes is small and, therefore, they account for only a small fraction of individual differences in the population at large. The characterization of the genes involved in this polygenic variation has already been undertaken68 and genetic polymorphisms for the apolipoprotein (apo) Eb69-72 and apo B73-74 genes, as well as for the apo A-I/C-III/A-IV gene cluster,74,75 have already been shown to be associated with some of the genetic variability in lipids and lipoproteins. This is particularly the case for CHOL, as polymorphisms at only three loci (apo A-IV, apo B, and apo E) were found to account for almost 50% of the genetic variation.68

It is important to keep in mind that the relative contribution of genetic and environmental factors in determining blood lipids and lipoproteins may not be the same from one population to another. Indeed, each population has its own genetic background, which combines with a particular set of environmental factors at the time of measurement to determine the distribution of the major risk factors in the population. The particular genetic background of the French Canadians is of special interest for genetic studies. With the use of genealogic records, it has been estimated that this population evolved from about 10,000 founders who emigrated from France between the years 1608 and 1783 and that, until recently, little crossbreeding took place between French Canadians and other ethnic
groups in Canada. This indicates the relative genetic homogeneity of the French Canadian population compared to other populations in which the genetics of blood lipids and lipoproteins have been studied. Another factor that must be considered when attempts are made to compare estimates of heritability between populations is the time dependence of these estimates. The cross-sectional nature of most of the genetic studies implies that the estimates of the components of the phenotypic variance are time dependent. Indeed, the genetic effect measured in a given phenotype may vary with age because of different sets of genes involved in the determination of this phenotype at different periods of life or simply because of differential responses to environmental agents with age or fluctuations in lifestyle and environmental conditions with time.

Another assumption of the model of path analysis that we used is that genetic and environmental factors combine additively to account for the phenotypic variance. It is important to keep in mind that this assumption of no genotype-environment interaction may not be valid for blood lipids and lipoproteins. Recent data from our laboratory have shown that changes induced in some blood lipid and lipoprotein variables after chronic overfeeding77 and exercise training78 were significantly associated with the genotype of the individual, implying that there were genetically high responders and low responders to a given set of environmental conditions. As a matter of fact, this genotype-environment effect appears to be ubiquitous for traits associated with cardiovascular disease.79,80 The presence of this genotype-environment interaction suggests that there may be genes other than the structural genes responsible for the response of blood lipid and lipoprotein phenotypes to modifications in behaviors or in environmental conditions and that these genes may be involved in determining someone's risk of developing coronary heart disease.

In summary, the results of this study show that genetic factors account for about 50% to 60% of the variation in serum lipids and lipoproteins. The adjustment for several relevant covariates, after prior adjustment for age and gender, did not change these estimates of genetic variance. No significant cultural inheritance was found, which suggests that environmental influences affecting blood lipids and lipoproteins are not transmitted from one generation to another. These results suggest that genetic factors and nonfamilial environmental influences are both major determinants of serum lipids and lipoproteins in this population.

Acknowledgments
We thank Germain Theriault, Jean-Pierre Savoie, Suzanne Leduc, and Monique Chagnon, as well as other colleagues and technicians from the Physical Activity Sciences Laboratory who were involved in the data collection of this study. The authors also thank Renee Gaunin for his valuable assistance in the determination of blood lipids and lipoproteins.

References
1. Rao DC, Elston RC, Kuller LH, Folsom AR, Carter C, Hewitt R. Genetic epidemiology of coronary heart disease. Past, present and future. Progress in clinical and biological research, vol 147. New York: Alan R. Liss Inc., 1984:1–7
2. Garrison JR, Castelli WP, Folsom AR, et al. The association of total cholesterol, triglycerides and plasma lipoprotein cholesterol levels in first degree relatives and spouse pairs. Am J Epidemiol 1979;110:313–326
3. Chase GA, Kwiterovich PO, Bochitic PD. The Columbia Population Study. II. Familial aggregation of plasma cholesterol and triglycerides. Johns Hopkins Med J 1979;145:150–156
4. Bouguet C, Demirjian A, Mongeau E. Sibling correlations and genetic estimates for selected blood variables in French Canadian children. Hum Genet 1980;54:259–263
5. Bucher KP, Schrott H, Clarke WR, Lear MJ. The McMaster cholesterol family study: familial aggregation of blood lipids and relationship of lipid levels with age, sex and homone use. J Chronic Dis 1982;35:375–384
6. Namboodiri KK, Green PP, Kaplan EB, et al. The Collaborative lipid research clinics program family study. IV. Familial associations of plasma lipids and lipoproteins. Am J Epidemiol 1984;119:971–990
7. Osborn RH, Adlersberg D, DeGeorge FY, Wang C. Serum lipids, heredity and environment: A study of adult twins. Am J Med 1989;69:45–59
8. Gedda L, Poggi D. Sulla regolazione genetica del colesterolo ematico. Uno studio su 50 coppie gemelle MZ e 50 coppie DZ. Acta Genet Med Geminol 1965:9:135–154
9. Meyer K. Serum cholesterol and heredity. A twin study. Acta Med Scand 1962;172:401–404
10. Jensen J, Blankenhorn D, Chin HP, Sturgeon P, Nara AG. Serum lipids and serum uric acid in human twins. J Lipid Res 1965;6:193–205
11. Piiksainen J, Jakkunen J, Kulonen J. Serum cholesterol in Finnish twins. Am J Hum Genet 1986;18:115–126
12. Rinkkinen BM, Boyle JA, Galle M, Grieg W, Buchanan WW. Study of serum lipids levels in twins. Cardiovasco Res 1968;2:148–156
13. Kang KW, Taylor GE, Greaves JH, Stalley HL, Christian JC. Genetic variability of human plasma and erythrocyte lipids. J Lipid Res 1971;12:585–590
14. Heilberg A. The heritability of serum lipoprotein and lipid concentrations. A twin study. Clin Genet 1974;8:307–316
15. Christain JC, Folsom AR, Hulley SB, et al. Genetics of plasma cholesterol and triglycerides: a study of adult male twins. Acta Genet Med Geminol 1976;25:143–153
16. Weinberg R, Avet LN, Gardner J, Estimation of the heritability of serum lipids. Clin Genet 1976;9:566–569
17. Hewitt D, Miller J, Breckenridge C, Little JA, Kukla A. A twin study on the heritability of lipoprotein fractions. Acta Genet Med Geminol 1976;25:133–153
18. Folsom AR, Garrison RJ, Falsutz R, et al. The NHLBI twin study of cardiovascular disease risk factors: Methodology and summary of results. Am J Epidemiol 1977;106:284–295
19. Miller J, Christain JC, Hewitt D. Plasma lipids variability in the Toronto twin register. Acta Genet Med Geminol 1980;29:302–309
20. Andersen GE, Petersen MBV, Povey M. Genetics of serum lipids and lipoproteins. A study of twins at birth and 3–5 years of age. Acta Pediatr Scand 1982;71:605–608
21. Whitfield JB, Martin NG. Plasma lipids in twins. Environmental and genetic influences. Atherosclerosis 1983;48:265–277
22. Berg K. Twin studies of coronary heart disease and its risk factors. Acta Genet Med Geminol 1984;33:349–361
23. Austin MA, King MC, Bawol RD, Hulley SB, Friedman GD. Risk factors for coronary heart disease in adult female twins. Genetic heritability and shared environmental influences. Am J Epidemiol 1987;125:308–318
24. Kusel T, Kesanlaml A, Vuorio M, Mattilnena TA, Kaskanpvo M. Heritability and high density lipoprotein and lipoprotein lipase and hepatic lipase activity. Atherosclerosis 1987;7:421–425
25. Sing OF, Orr JD. Analysis of genetic and environmental sources of variation in serum cholesterol in Tecumseh,
HEREDITY AND BLOOD LIPIDS

Pérusse et al. 317

Michigan, IV. Separation of polygenes from common environment effects. Am J Hum Genet 1978;30:491–504

26. Moll PP, Pownner R, Sing CF. Analysis of genetic and environmental influences of variation in serum cholesterol in Tecumseh, Michigan. V. Variance components estimated from pedigrees. Am Hum Genet 1979;42:343–354

27. Boehnke M, Moll PP, Lange K, Weidman WH, Kottke BA. Univariate and bivariate analyses of cholesterol and triglyceride levels in pedigrees. Am J Hum Genet 1986;32:775–792

28. Iselius L. Analysis of family resemblance for lipids and lipoproteins. Clin Genet 1979;15:300–306

29. Rao DC, Laskarzewski PW, Morrison JA, et al. The Cincinnati Lipid Research Clinic Family Study: Cultural and biological determinants of lipids and lipoprotein concentrations. Am J Hum Genet 1982;34:688–903

30. Rao DC, Williams WR, McGuire M, et al. Cultural and biological inheritance of plasma lipids. Am J Phys Anthropol 1983;62:33–49

31. Dahlem G, Ericson C, Defaire U, Iselius L, Lundman T. Genetic and environmental determinants of cholesterol and HDL-cholesterol concentrations in blood. Int J Epidemiol 1983;12:92–95

32. De Colleto GMD, Klieger H, Magathees JR. Genetic and environmental determinants of 17 serum biochemical traits in Brazilian twins. Acta Genet Gemelol 1983;32:22–29

33. Iselius L, Carlson LA, Morton NE, Effendic S, Lindsten J. Luft R. Genetic and environmental determinants for lipoprotein concentrations in blood. Acta Med Scand 1985;271:161–170

34. McGuire M, Rao DC, Iselius L, Russel JM. Resolution of genetic and cultural inheritance in twin families by path analysis: application to HDL-cholesterol. Am J Hum Genet 1985;37:599–614

35. Friedlander Y, Kark JD, Stein Y. Heterogeneity in multifactorial inheritance of plasma lipids and lipoproteins in ethnically diverse families in Jerusalem. Genet Epidemiol 1986;3:95–112

36. McGuire M. Bivariate path analysis of plasma lipids. Hum Heredity 1983;33:145–152

37. McGuire M, Rao DC, Reich T, Laskarzewski P, Glueck CJ, Russel JM. The Cincinnati Lipid Research Clinic Family Study. Bivariate path analyses of lipoprotein concentrations. Genet Epidemiol 1983;2:117–125

38. Blashen BR, McRoberts HA. A revised socioeconomic index for occupations in Canada. Can Rev Sociol Anthropol 1976;13:71–79

39. Blashen BR. Social class and opportunity in Canada. Can Rev Sociol Anthropol 1970;7:110–127

40. Leclerc S, Bouchard C, Talbot J, Gauvin R, Allard A. Association between serum high-density lipoprotein cholesterol and body composition in adult men. Int J Obesity 1983;7:555–561

41. Burstein M, Scholnick HR, Martin R. Rapid method for the isolation of lipoprotein from human serum by precipitation with polyvinyl. J Lipid Res 1970;11:583–585

42. Lopez-Virella MF, Stone P, Ellis S, Colwell JA. Cholesterol determination in high-density lipoproteins separated by three different methods. Clin Chem 1977;23:682–684

43. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972;18:499–502

44. Després JP, Allard C, Tremblay A, Talbot J, Bouchard C. Evidence for a regional component of body fatness in the association with serum lipids in men and women. Metabolism 1986;34:967–973

45. Bouchard C, Savard R, Després JP, Tremblay A, Leblanc C. Body composition in adopted and biological siblings. Hum Biol 1985;57:61–75

46. Bouchard C, Lortie G, Simonneau JA, Leblanc C, Thériault G, Tremblay A. Submaximal power output in adopted and biological siblings. Hum Biol 1984;11:303–309

47. Tremblay A, Sévigny J, Leblanc C, Bouchard C. The reproducibility of a three-day dietary record. Nutr Ress 1983;3:819–830

48. Bouchard C, Tremblay A, Leblanc C. A method to assess energy expenditure in children and adults. Am J Clin Nutr 1983;37:461–467

49. SAS User's Guide. Statistics, version 5 ed. Cary, North Carolina: SAS Institute Inc., 1985:763–774

50. Mallows CL. Some comments on Cp, Technometrics 1973;15:661–675

51. Rao DC, McGuire M, Wette R, Glueck CJ. Path analysis in genetic epidemiology. In; Chakravarti A, ed. Human population genetics: The Pittsburgh Symposium. New York: Van Nostrand Re, 1984:35–81

52. Donner A. The use of correlation and regression in analysis of family resemblance. Am J Epidemiol 1979;110:335–342

53. Cloninger CR, Rice J, Reich T. Multifactorial inheritance with cultural transmission and assortative mating. II. A general model of combined polygenic and cultural inheritance. Am J Hum Genet 1979;31:176–198

54. Rice J. GENLIB: A library of computer programs for the genetic analysis of family data. St. Louis: Washington University, 1981

55. Kaplan EB, Eliston RC. A subroutine package for maximum likelihood estimation (MAXLIK). Mimeo Series, No. 823. University of North Carolina, Chapel Hill: Institute of Statistics, 1972

56. Rice JC, Cloninger CR, Reich T. Multifactorial inheritance with cultural transmission and assortative mating. I. Description and basic properties of the unitary models. Am J Hum Genet 1978;30:618–643

57. Kendall MG, Stuart A. The advance theory of statistics, vol 2. Inference and relationship, 3rd ed. New York: Hafnor, 1973:234–272

58. Singh CF, Boerwinkle EA. Genetic architecture of inter-individual variability in apolipoprotein, lipoprotein and lipid phenotypes. In: Weatherall D, ed. Molecular approaches to human polygenic diseases. Ciba Foundation Symposium 130. Chichester: John Wily & Sons, 1985:99–122

59. Iselius L. Genetic epidemiology of common diseases in humans. In: Wof BS, Eisen EJ, Goodman MM, Namkoong G, eds. Proceedings of the Second International Conference on Quantitative Genetics. Sunderland: Sinauer Associates, Inc., 1988:341–352

60. Pérusse L, Bouchard C, Leblanc C, Tremblay A. Energy intake and physical fitness in children and adults of both sexes. Nutr Res 1984;4:303–370

61. Haskell WL. Exercise-induced changes in plasma lipids and lipoproteins. Prev Med 1984;13:23–36

62. Blackburn MD, Diet and atherosclerosis: Epidemiologic evidence and public health implications. Prev Med 1983;12:2–10

63. Baumgartner RM, Roche AF, Chumlea WC, Siemengog RM, Glueck CJ. Fatness and fat patterns: associations with plasma lipids and blood pressures in adults, 18 to 57 years of age. Am J Epidemiol 1987;126:614–629

64. Després JP, Tremblay A, Pérusse L, Leblanc C, Bouchard C. Abdominal adipose tissue and serum HDL-cholesterol: association independent from obesity and serum triglyceride concentration. Int J Obes 1986:11:1–13

65. Freedman DS, Srinivasan SR, Shear CL, et al. Cigarette smoking initiation and longitudinal changes in serum lipids and lipoproteins in early adulthood: The Bogalusa Heart Study. Am J Epidemiol 1986;124:207–219

66. Hobbs HH, Brown MS, Russell DW, Davignon J, Goldstein JL. Deletion in the gene for the low-density lipoprotein receptor in a majority of French Canadians with familial hypercholesterolemia. N Engl J Med 1987;317:734–737

67. Goldstein JL, Brown MS. The LDL receptor locus and the genetics of familial hypercholesterolemia. Annu Rev Genet 1979;13:259–289

68. Segal P, Rifkind BM, Schull WJ. Genetic factors in lipoprotein variation. Epidemio Rev 1982;4:137–160
69. Sing CF, Davignon J. Role of the apolipoprotein E polymorphism in determining normal plasma lipid and lipoprotein variation. Am J Hum Genet 1985;37:268–265
70. Robertson FW, Cumming AM. Effects of apoprotein E polymorphism on serum lipoprotein concentration. Arteriosclerosis 1985;5:283–292
71. Utermann G. Apolipoprotein E polymorphism in health and disease. Am Heart J 1987;113:433–440
72. Boerwinkle E, Vlavianos S, Welsh D, Steinmetz J, Hanash SM, Sting CF. The use of measured genotype information in the analysis of quantitative phenotypes in man. II. The role of the apolipoprotein E polymorphism in determining levels, variability, and covariance of cholesterol, batalipoprotein, and triglycerides in a sample of unrelated individuals. Am J Med Genet 1987;27:567–582
73. Talmud PJ, Barri N, Keesling AM, et al. Apolipoprotein B gene variants are involved in the determination of serum cholesterol levels: A study in normo- and hyperlipidaemic individuals. Atherosclerosis 1987;67:81–89
74. Humphries SE, Talmud PJ, Keesling AM. Use of DNA polymorphisms of the apolipoprotein genes to study the role of genetic variation in the determination of serum lipid levels. In: Weatherall D, ed. Molecular approaches to human polygenic disease. Ciba Foundation Symposium 130. Chichester: John Wiley & Sons, 1987:129–145
75. Orvad JM, Schaeffer EJ, Salem D, et al. Apolipoprotein A-I gene polymorphism associated with premature coronary artery disease and familial hyperalphalipoproteinemia. N Engl J Med 1986;314:871–877
76. Laberge C. Prospectus for genetic studies in the French Canadians, with preliminary data on blood groups and consanguinity. Bull Johns Hopkins Hosp 1966;118:52–68
77. Despres JP, Poehlman ET, Tremblay A, et al. Genotype-influenced changes in serum HDL cholesterol after short-term overfeeding in man: association with plasma insulin and triglyceride levels. Metabolism 1987;36:363–368
78. Despres JP, Moorjani S, Tremblay A, et al. Heredity and changes in plasma lipids and lipoproteins following short-term exercise-training in man. Arteriosclerosis 1988;8:402–409
79. Bouchard C. Genetics of aerobic power and capacity. In: Matila RM, Bouchard C, eds. Sport and human genetics. Champaign: Human Kinetics, 1986:59–68
80. Bouchard C. Genetics of body fat, energy expenditure and adipose tissue metabolism. In: Berry EM, Biondini SH, Eliahou HE, Shahn E, eds. Recent advances in obesity research: V. London: John Libby, 1987:16–25
81. Bouchard C, Perusse L. Heredity and body fat. Annu Rev Nutr 1988;8:259–277
82. Bouchard C, Tremblay A, Després JP, et al. Sensitivity to overfeeding: The Québec experiment with identical twins. Prog Food Nutr Sci 1988;12:43–72

Index Terms: genetics • lipids • lipoproteins • path analysis