Exposure to low levels of photocatalytic TiO₂ nanoparticles enhances seed germination and seedling growth of amaranth and cruciferous vegetables

Chi-Cheng Li1,2, Sian-Ming Jhou3,9, Yi-Chen Li3,9, Jhih-Wei Ciou3,9, You-Yen Lin4, Shih-Che Hung5,6, Jen-Hsiang Chang6, Jen-Che Chang7, Der-Shan Sun5,9, Ming-Lun Chou8 & Hsin-Hou Chang4,5

Titanium dioxide (TiO₂) is one of the most common compounds on Earth, and it is used in natural forms or engineered bulks or nanoparticles (NPs) with increasing rates. However, the effect of TiO₂ NPs on plants remains controversial. Previous studies demonstrated that TiO₂ NPs are toxic to plants, because the photocatalytic property of TiO₂ produces biohazardous reactive oxygen species. In contrast, another line of evidence suggested that TiO₂ NPs are beneficial to plant growth. To verify this argument, in this study, we used seed germination of amaranth and cruciferous vegetables as a model system. Intriguingly, our data suggested that the controversy was due to the dosage effect. The photocatalytic activity of TiO₂ NPs positively affected seed germination and growth through gibberellins in a plant-tolerable range (0.1 and 0.2 mg/cm²), whereas overdosing (1 mg/cm²) induced tissue damage. Given that plants are the foundations of the ecosystem; these findings are useful for agricultural application, sustainable development and maintenance of healthy environments.

Nanotechnology is an emerging technological advancement for the manipulation and synthesis of materials with a size range of 1–100 nm. Nanotechnology is a billion-dollar industry involving business and industrial investments that offer an array of tremendous applications1–2. Nanoparticles (NPs) (all abbreviations are available in the supplementary Table S1) can be categorized on the basis of their origin, such as natural, man-made, and engineered3. Environmental NPs have existed in nature from the beginning of Earth’s history and they are still found in the environment in the form of volcanic dust, lunar dust and mineral composites2. Meanwhile, thousands of tons of engineered NPs (ENPs) are produced annually, and they will inevitably be released into soil and waters and increase the load of ENPs in different environmental matrices, thereby attracting extensive attention on the potential impact of ENPs in the environment on aquatic and terrestrial organisms3–8. Once released in the environment, ENPs may contact or even enter plants, microorganisms and other organisms through the food chain. In particular, NPs have the potential to form highly reactive materials such as photocatalysts due to their highly reactive nature and large surface areas1.

Notably, among all NP categories, TiO₂ is major type of NP produced globally2. TiO₂ NPs are utilized in paint pigments, inks, papers, plastics and cosmetic sunscreens to provide protection against ultraviolet (UV) light2,9. In addition, natural and engineered TiO₂ NPs have shown their potentials in various antimicrobial and biomedical applications10–14.

1Department of Hematology and Oncology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan. 2Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan. 3Tzu-Chi Senior High School Affiliated With Tzu-Chi University, Hualien, Taiwan. 4Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan. 5Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan. 6Department and Graduate School of Computer Science, National Pingtung University, Pingtung, Taiwan. 7Stella Maris High School, Hualien, Taiwan. 8Department of Life Sciences, Tzu-Chi University, Hualien, Taiwan. 9These authors contributed equally: Sian-Ming Jhou, Yi-Chen Li and Jhih-Wei Ciou. *email: hhchang@mail.tcu.edu.tw
As a result, scientific communities have paid extensive attentions to the interactions of TiO₂ NPs with biological entities such as plants. Highly sensitive to environmental factors, plants are vital life forms of all ecosystems and play a significant role in trophic transfer and the maintenance of worldwide ecological balance. Therefore, the exposure of plants to natural NPs or ENPs above particular levels may be toxic. The contact, interaction, accumulation and toxicity of NPs in plant systems are a recently formed field of research. After decades of studies, however, our current knowledge is not sufficient to formulate a detailed model of NP behavior and their fate in the environment.

For example, researchers have reported contradictory results that involve positive, negative and inconsequential effects from plants being exposed to TiO₂ NPs. From a toxicity perspective, previous studies have suggested that photocatalytic materials, such as TiO₂ NPs, have negative impacts on terrestrial microorganisms and plants. For instance, the associations of TiO₂ NPs with the decrease of shoot biomass in wheat, delayed germination and root elongation in narbon bean (Vicia narbonensis L.) and Zea mays L., and DNA damage in Nicotiana tabacum have been reported. By contrast, treatments of TiO₂ NPs are associated with increases of light absorption and photosynthetic carbon reaction in spinach and maize and improvement of nitrogen photoreduction in soybeans and spinach. These positive responses of plants led to the suggestion of using TiO₂ NP as a nanofertilizer. However, the concept of nanofertilizer is mainly focused on the nutrient supplemental role of NPs, and whether the beneficial effect to plants contributes to the photocatalytic property of TiO₂ NP remains elusive.

Despite these contradictory results, Ti and TiO₂ are common and naturally occur in soil and volcanic ash. Soil covering European surfaces contains an average 0.02–5.5% of TiO₂ and rocks in the USA contain approximately 1% of TiO₂. Theoretically, plants on Earth should have evolved to adapt to the existence of TiO₂ in soil. Therefore, whether and how TiO₂ NP may influence plant growth should be determined. In this study, we used the seed germination and growth of vegetables, Amaranthus mangostanus, Brassica napus and Brassica rapa chinensis, as model systems. We found low dosages of TiO₂ NPs (0.1 and 0.2 mg/cm²) -induced enhancing effect, while treatments with a high dose (1 mg/cm²) displayed suppressive effect on seed germination and growth. The potential mechanism, applications and relationships with the photocatalytic properties are discussed.

Materials and methods

Chemicals and NPs. Chemicals such as N-acetylcysteine (NAC) were purchased from Sigma-Aldrich (St. Louis, MO, USA). UV light-responsive pure TiO₂ NPs (Degussa P25; Evonik, Germany) were used as previously described. The crystal structure of P25 TiO₂ was a mixture of 75% anatase and 25% rutile TiO₂. The purity was at least 99.5% TiO₂ and primary particle size was 21 nm ± 10 nm, with a specific surface area of 50 ± 15 m²/g. Carbon-containing TiO₂ NPs [TiO₂(C)] were prepared using a sol–gel method. The powders were subjected to calcination at 200 °C, and named C200; the detailed preparation of C200 has been reported elsewhere. Despite these contradictory results, Ti and TiO₂ are common and naturally occur in soil and volcanic ash. Soil covering European surfaces contains an average 0.02–5.5% of TiO₂ and rocks in the USA contain approximately 1% of TiO₂. Theoretically, plants on Earth should have evolved to adapt to the existence of TiO₂ in soil. Therefore, whether and how TiO₂ NP may influence plant growth should be determined. In this study, we used the seed germination and growth of vegetables, Amaranthus mangostanus, Brassica napus and Brassica rapa chinensis, as model systems. We found low dosages of TiO₂ NPs (0.1 and 0.2 mg/cm²) -induced enhancing effect, while treatments with a high dose (1 mg/cm²) displayed suppressive effect on seed germination and growth. The potential mechanism, applications and relationships with the photocatalytic properties are discussed.

Seeds, soil and flowerpots. Seeds of vegetable A. mangostanus, B. napus and B. rapa chinensis were purchased from Sinon (TaiChung, Taiwan). All seeds used this study were stored in an electronic dehumidifying dry cabinet (Taiwan Drytech, Taipei, Taiwan) with humidity < 40% before use, and then utilize as fresh as possible. Soil mixtures for cultivation and plastic flowerpots (diameter of 10 cm) were obtained from Green Orchids (Taipei, Taiwan). All experimental procedures are complied with national guidelines.

Analysis of seed germination and seedling growth. To analyze the seed germination and seedling growth of A. mangostanus, B. napus and B. rapa chinensis, the soil surfaces of the pots were added without or with different amounts of NPs (0.1, 0.2 or 1 mg/cm²). Each flowerpot was seeded with 10–90 seeds depending on the experimental requirement. To avoid washing away the soil-surface TiO₂, the plants were placed in a tray and absorb water (without TiO₂) via capillary action through the holes in the bottom of the pot. After daily sunlight illumination and water supplements for 1 week, the germination rate and root and shoot length of the seedlings were examined and quantified. In cotton substrate experiments, sterile absorbent cotton (Taiwan Cotton, Taipei, Taiwan) was placed in sterile plastic cell culture dishes (diameter of 10 cm) with daily water supply to maintain the moisture. In experiments using antioxidant NAC, 100 µL of 1 mM NAC was added to each pot per day for 7 days. In experiments with visible light illumination, pots were illuminated by visible light (1 × 10⁴ lx) using light-emitting diode (LED) lamps (Philips Taiwan, Taipei, Taiwan) for 10 h/day for 7 days; at the same time, UV cut-off filters (400 nm; Edmund Optics, Barrington, NJ, USA) were used to prevent the illumination of small fractions with UV wavelength. A light meter (model LX-102; Lutron Electronic Enterprises, Taiwan) was used to examine the illumination density.

Detection of plant hormone gibberellins (gibberelic acids; GAs). One week old seedlings of A. mangostanus treated with or without TiO₂ NPs and the antioxidant NAC were harvested. The samples were freshly prepared before enzyme-linked immunosorbent assay (ELISA) examinations. GA extraction and purification prior to immunoassay were conducted according to previous reports. The homogenized samples were extracted in 80% cold (v/v) aqueous methanol solution overnight at 4 °C (with 10 mg/L butylated hydroxytoluene to prevent oxidation). The supernatants were collected after centrifugation at 10,000×g (4 °C) for 20 min to remove the insoluble debris. The crude extract was passed through a 0.45 µm filter (Merck Millipore, Billerica,
MA, USA). A 400-μl aliquot of the filtrate was dried under vacuum using a SpeedVac vacuum concentrators (Thermo Fisher Scientific, Waltham, MA, USA). The extraction residues were dissolved, diluted in phosphate-buffered saline (PBS) (0.01 M, pH 9.2), and adjusted to pH 8.5. The levels of GAs were detected using an ELISA kit purchased from MyBioSource (San Diego, CA, USA).

Electron microscopy. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) examinations of TiO2 treated seedlings and TiO2 NPs were performed using a Hitachi H-7500 TEM (Hitachi, Tokyo, Japan) and Hitachi S-4700 SEM (Hitachi)13,15,19,32,40, respectively. The seedlings were pre-fixed with 2.5% glutaraldehyde in 0.1 M phosphate buffer (pH 7.3) for 1 h. The seedling samples were washed with 0.1 M PBS twice at a 10-min interval. The samples were post-fixed with 1% osmium for 1 h and washed with 5% sucrose. The seedling samples were dehydrated in a graded ethanol-acetone series, embedded in Spurr’s resin (Electron Microscopy Sciences, Hatfield, PA, USA), and sliced using a Ultracut-R ultramicrotome (Leica, Wetzlar, Germany). The seedling tissue sections were finally immobilized on single-well copper grids for TEM analysis.

Statistical analysis. All results were calculated from data obtained from three independent experiments. Analysis of variance (ANOVA) was used to assess the statistical significance of differences results. The significance of the data was examined using one-way ANOVA, followed by the post hoc Bonferroni-corrected t test. A probability of type 1 error (α = 0.05) was recognized as the threshold for statistical significance. The statistical tests were carried out, and graphed using Microsoft Excel (Microsoft Taiwan, Taipei, Taiwan) and SigmaPlot (Systat Software, Point Richmond, CA, USA) software as previously described41.

Results

TiO2 NPs markedly enhanced the seed germination and seedling growth of *A. mangostanus*. *Amaranthus* is a cosmopolitan genus with species cultivated as leaf vegetables *A. mangostanus* was used in this study because of its small seeds, fast growth rate and potential application in agriculture. Under UV irradiation, the photocatalytic activity of anatase TiO2 nanoparticles (NPs) releases reactive oxygen species (ROS) and enables TiO2 NPs to serve as biocides12,13,19,32,40. Prior to the experiments, we hypothesized that the addition of TiO2 NPs may exert a negative impact on the seed germination and growth of *A. mangostanus*. Intriguingly, we found that supplementation of TiO2 NPs on the soil markedly enhanced the seed germination rate of *A. mangostanus* in all three dosages within 1 week (Fig. 1A–D, representative images; Fig. 1E, TiO2 untreated vs. TiO2 treated groups, *P* < 0.05).

The high shoot length in the TiO2 groups (Fig. 1A vs. Fig. 1B,C), suggested that TiO2 NPs may also increase the growth rate of the seedlings. Further quantitative analyses of the length of shoot and root of seedlings revealed that TiO2 NPs markedly enhanced the shoot and root growth of the seedlings in low-dose treatments (Fig. 2A,B,
Figure 2. Soil TiO2 NP levels affected the seedling growth of *Amaranthus mangostanus*. Analyses of root (A) and shoot (B) length of 1-week-old *Amaranthus mangostanus* seedlings. Root–shoot 2D graphs of the seedling without (C) and with different doses of TiO2 NP treatments (D–F), and an overlay (G) are shown. The regression lines of untreated groups were indicated (C,G). The shoothi roothi population (upper-right quadrant) of seedlings in each condition was quantified (H). The vertical and horizontal dotted lines in (C–F) are the mean values of root length and shoot length of the untreated control groups (C), respectively. \(*P < 0.05, \; \dagger\dagger P < 0.01, \; P < 0.05, \; ***P < 0.001 \) vs. 0 mg/cm\(^2\) TiO2 untreated groups; ##\; P < 0.01, ###\; P < 0.001 vs. respective 0.2 mg/cm\(^2\) TiO2 groups. n = 90 (3 independent experiments; each experiment with 30 seeds) (A,B). n = 30 (3 independent experiments; each experiment with 10 seeds) (C–G). n = 3 (3 independent experiments; each experiment with 30 seeds) (H).
control, 0 mg/cm² group). When we applied the aforementioned dotted lines (averaged shoot and root length of normal) to the TiO₂ NP-treated conditions, the 2D graphs revealed that two low-dose groups showed a higher percentage of shoot vs. root population (67 and 57% in Fig. 2D,E, respectively), whereas the high dose group showed a lower percentage of shoot vs. root population (4%, Fig. 2F). These results were in agreement with the shoot and root length analyses (Fig. 2A,B). Notably, when we overlaid these 2D graphs (Fig. 2C–F), we found that the shoot vs. root population in the TiO₂ groups was almost exclusively located at the upper area above the regression line of the normal control (Fig. 2G), suggesting that the growth enhancement effect was primarily mediated through the induction of shoot growth. Consistently, quantitative analyses further indicated that the shoot vs. root populations were markedly increased in the two low-dose (Fig. 2H, 0 vs. 0.1 and 0.2 mg/cm² groups; †P < 0.05) TiO₂ groups, whereas the shoot vs. root populations were markedly suppressed in the high-dose TiO₂ groups, when compared with untreated controls (Fig. 2H, 0 vs. 1 mg/cm² groups; **P < 0.01).

ZnO NPs markedly enhanced the seed germination and seedling growth of A. mangostanus. TiO₂ NP is a UV-responsive photocatalyst. To investigate whether the addition of other photocatalytic NPs to the soil is still sufficient to achieve similar effects, ZnO NP, another photocatalytic material, was employed. Following the same approaches in TiO₂ experiments, we found that supplemention of ZnO NPs to the soil also markedly increased the seed germination rate and growth of A. mangostanus (Fig. 3A–D, representative images; Fig. 1E, TiO₂ untreated vs TiO₂ treated groups, *P < 0.05). In addition, root and shoot length analyses revealed that ZnO NPs markedly increased the growth of both root and shoot of the seedlings (Fig. 4A,B, 0 vs. 0.2 mg/cm² groups; root analyses, †P < 0.05; shoot analyses, ††P < 0.01), but suppressed seedling growth at high dose treatments (Fig. 4A,B, 0 vs. 1 mg/cm² groups; root and shoot analyses, **P < 0.01). Shoot–root 2D graphs also revealed that ZnO NP treatments markedly enhanced the shoot vs. root populations of the two low-dose groups (Fig. 4H, 0 vs. 0.1 and 0.2 mg/cm² groups; †P < 0.05), but suppressed the shoot vs. root population in the high-dose group (Fig. 4H, 0 vs. 1 mg/cm² groups; *P < 0.05). The shoot vs. root population in the ZnO groups was exclusively located at the upper region above the regression line of normal control (Fig. 4G), suggesting that the growth enhancement effect was primarily mediated through the induction of shoot growth.

TiO₂ NPs markedly enhanced the seed germination and seedling growth of A. mangostanus on sterilized cotton in Petri dishes. As mentioned earlier, TiO₂ NP elicits photocatalytic property and can be used as a bactericidal agent when exposed to solar UV light. Soil microbiota has been demonstrated to play a critical role in plant survival and growth. The antibacterial property of photocatalytic NPs has been suggested to influence plant growth. To investigate whether the aforementioned property of TiO₂ NP on the enhancement of seed germination and growth is mediated through sterilization of soil bacteria, sterilized cotton and Petri dishes were employed as culture substrates. Following the same approach, we found that TiO₂
NP exerted enhancing property on the seed germination and growth of *A. mangostanus* on sterilized substrates (Fig. 5A representative images, Fig. 5B, germination rate, 0 vs. 0.1, 0.2 and 1 mg/cm² groups; *P < 0.05; Fig. 5C, seedling shoot growth, 0 vs. 0.1 and 0.2 mg/cm² groups; *P < 0.05), with the typical preferential enhancement of shoot growth (Figs. 5D–H, 2D graphs; 5H, shoot to root population mainly located at the upper region above the regression line). Because sterilized-cotton substrates preserved the positive effect of TiO2-NPs, these results suggested that the plant enhancing property was not mediated through the antibacterial property of TiO2 NP.
The seedlings grown on cotton had a relatively smaller size than the seedlings grown in soil, possibly because cotton lacks critical nutrients found in soil (Fig. 2A, B vs. Fig. 5C).

NPs without photocatalytic activity cannot exert the enhancing effect on *A. mangostanus* seeds. A previous report suggested that NPs may have direct enhancing property (with or without inducing photocatalytic reaction) on the stimulation of plant growth.\(^{50-52}\) Four NPs, namely 5 nm ND (5ND-NP),
100 nm ND (100ND-NP), single-walled CNT NP (CNT-NP) and silicon dioxide NP (SiO2-NP), were employed to investigate whether those non-photocatalytic NPs are sufficient to enhance seed germination and growth. Compared with TiO2 NP, these four types of NPs did not exert considerable enhancing effects on the seed germination (Fig. 6A–D). To further investigate the involvement of photocatalytic property, we employed two visible light responsive photocatalysts, carbon-containing TiO2 NP [TiO2(C)] and platinum-containing TiO2 NP [TiO2(Pt)]13,15,18,19,33, and was compared their performance with the pure TiO2 NP (UV-responsive photocatalysts). Under UV irradiation, pure TiO2, TiO2(C) and TiO2(Pt) NPs all exert photocatalytic property (Fig. 6E,F; untreated vs. TiO2-treated groups, **P<0.01, ***P<0.001 vs. 0 mg/cm² TiO2 untreated groups. n = 3 (3 independent experiments; each experiment with 30 seeds).

Figure 6. Photocatalysis is essential for TiO2 NP-mediated enhancement of seed germination. The germination rates of Amaranthus mangostanus seeds grown on soil with supplements of 5 nm nanodiamond (ND) (A), 100 nm ND (B), carbon nanoparticle (NP) (C), SiO2 NP (D), visible light-responsive photocatalysts TiO2 (E,G) and TiO2(Pt) (E,H) under daily sunlight (A–F) or visible light (G,H) illumination were compared with pure TiO2 (UV-responsive photocatalyst) and then quantified. **P<0.01, ***P<0.001 vs. 0 mg/cm² TiO2 untreated groups. n = 3 (3 independent experiments; each experiment with 30 seeds).
pure TiO₂ NP cannot. In this study, we found that pure TiO₂, TiO₂(C), and TiO₂(Pt) NPs all exerted seedling enhancing property under sunlight (Fig. 6E,F; containing UV), whereas only TiO₂(C) and TiO₂(Pt) NPs but not pure TiO₂ exerted enhancing property under visible light illumination (Fig. 6G,H; untreated vs. TiO₂-treated groups, **P < 0.01). These results suggested that the photocatalysis reaction is essential for the aforementioned NPs to stimulate seed germination.

The enhancing property is associated with ROS-induced down-regulation of the growth hormone gibberellins.

To further investigate whether such an enhancing effect on seed germination is mediated through photocatalysis produced ROS, antioxidant NAC treatment was employed. We found that NAC treatment markedly reversed TiO₂—induced enhancement of seed germination (Fig. 7A experiment outline; Fig. 7B, TiO₂-untreated vs. TiO₂-treated groups, #P < 0.05; NAC-untreated vs. NAC-treated groups, *P < 0.05). ROS can regulate levels of plant growth hormone gibberellins (GAs) and GAs stimulate shoot growth. Given that ROS (Fig. 7B) and shoot growth (Figs. 2, 4) are two phenomena associated with TiO₂ NP-enhanced seed germination and growth, we hypothesized that GA may be involved in growth regulation in this model. In agreement with our suggestion, the analysis results revealed that the suppression effect of NAC was associated with the suppression of TiO₂-induced elicitation of GAs in the seedlings (Fig. 7C, TiO₂-untreated vs. TiO₂-treated groups, #P < 0.05; NAC-untreated vs. NAC-treated groups, *P < 0.05).

The enhancing property of TiO₂ NPs can also be applied to 2 other plants B. napus and B. rapa chinensis. To investigate whether the seedling enhancing property of TiO₂ NPs can also be applied to other plants, seeds of two cruciferous vegetables B. napus and B. rapa chinensis were employed. Here we found that such an enhancing effect of TiO₂ NP could indeed be applied to B. napus (Fig. 8A, representative images; Fig. 8B, germination rate, TiO₂-untreated vs. TiO₂-treated groups, *P < 0.05; Fig. 8C, seedling shoot growth, TiO₂-untreated vs. TiO₂-treated groups, ††P < 0.01; Figs. 8D–F, 2D graphs) and B. rapa chinensis (Fig. 9A, representative images; Fig. 9B, germination rate, TiO₂-untreated vs. TiO₂-treated groups, *P < 0.05; Fig. 9C, seed-
ling shoot growth, TiO₂-untreated vs. TiO₂-treated groups + + P < 0.01; Figs. 9D–F, 2D graphs), with its featured shoot-preferential enhancement (Figs. 8C,9C, TiO₂-untreated vs. TiO₂-treated groups, †† P < 0.01).

High—dose TiO₂ NP—induced tissue damage of seedlings. Although high dose treatments of TiO₂ NPs exert enhancing properties on seed germination (Fig. 1), the seedling growth was also markedly suppressed (Fig. 2). Using TEM, we found that high dose treatments of TiO₂ NPs induced considerable tissue damage on the outer layer of seedling samples (Fig. 10A,B, vs. Fig. 10C,D: representative images of normal vs. 1 mg/cm² TiO₂ untreated groups. n = 3 (3 independent experiments; each experiment with 30 seeds) (B). n = 90 (3 independent experiments; each experiment with 30 seeds) (C). n = 30 (3 independent experiments; each experiment with 10 seeds) (D-F). (A) Pot diameter: 10 cm; scale bar: 1 cm.

Discussion
TiO₂ NPs-mediated negative impacts on plants have been reported in various studies. By contrast, TiO₂ NPs have also been shown to enhance plant growth, whether TiO₂ NP-mediated photocatalysis is involved remains uncertain. The controversy has confused researchers for years. In this present study, our data suggested that such controversial properties of TiO₂ NPs on plant growth were likely due to the dosage effect of TiO₂ NPs; low dose (0.1, 0.2 mg/cm²) was beneficial, while high dose (1 mg/cm²) was harmful (Figs. 1–2). Such positive effect primarily involves TiO₂ NP-mediated enhancement of germination rate and seedling growth (Figs. 1–2). Intriguingly, similar effect also observed in the ZnO treatments (Figs. 3–4). Because illumination was essential to
enhance seed germination and seedling growth (Fig. 6), these results collectively suggest that the photocatalysis reaction is critical in for the photocatalytic NP-mediated enhancement. Evidences revealed that TiO$_2$ displayed higher photocatalytic activities compared to ZnO under UV illumination57,58. Consequently, it is reasonable to observe an obvious suppressive effect on the seed germination in the high dose (1 mg/cm2) TiO$_2$-treatments (Fig. 1E, $^\dagger P<0.05$; 0.2 mg/cm2 vs. 1 mg/cm2 groups), as compared to the high dose (1 mg/cm2) ZnO-treatments (Fig. 3E, no obvious suppression 0.2 mg/cm2 vs. 1 mg/cm2 groups).

Previous studies have suggested that the small-size of natural NPs enable the positive impact on the plants59. However, here we found that treatments of TiO$_2$ NPs are not sufficient to conduct such enhancement unless illumination with proper wavelength was provided [Fig. 6A–F vs. Fig. 6G,H, TiO$_2$ groups; 6G and 6H, TiO$_2$ vs. TiO$_2$(C) and TiO$_2$(Pt) groups]. This suggested that the treatment of NPs alone is insufficient to stimulate seed germination and growth, and the induction of photocatalysis is essential. The treatments of antioxidant NAC could reverse TiO$_2$ NP-mediated enhancement (Fig. 7B), further indicating the involvement of photocatalysis-produced ROS is involved. The enhancing effect of TiO$_2$ NPs and the suppressive effect of NAC on seed germination are associated with increased and suppressed GA levels, respectively (Fig. 7C), which further suggests the involvement of ROS in GA regulation.

The TiO$_2$ NP-mediated photocatalytic reaction produces strong reducing and oxidizing electrons and electron-vacancy holes12. These electrons and holes can react with atmospheric water and oxygen (H$_2$O and O$_2$) to yield reactive oxygen species (ROS), such as hydroxyl radicals ($^\bullet$OH), superoxide anions (O$_2^-$), and hydrogen peroxide (H$_2$O$_2$), products are extremely reactive when in contact with organic compounds12. Treatments of

Figure 9. TiO$_2$ NP-mediated enhancement on the seed germination and growth of soil can also be applied to *Brassica rapa chinensis*. Analyses of image (A), seed germination rate (B) and root and shoot length (C) of 1-week-old *Brassica rapa chinensis* seedlings. Root–shoot 2D graphs of the seedlings without (D) and with TiO$_2$ NP treatments (E), and an overlay (F) are shown. The vertical and horizontal dotted lines in (D,E) are the mean values of root length and shoot length of the untreated control groups (D), respectively. $^\dagger P<0.05$, $^\dagger P<0.05$ vs. 0 mg/cm2 TiO$_2$ untreated groups. n = 3 (3 independent experiments; each experiment with 30 seeds) (B), n = 90 (3 independent experiments; each experiment with 30 seeds) (C). n = 30 (3 independent experiments; each experiment with 10 seeds) (D–F). (A) Pot diameter: 10 cm; scale bar: 1 cm.
TiO$_2$ NP is a feasible model to observe the impacts of exogenous ROS, as the effect of exogenous ROS on seed germination have not yet been extensively studied. A detailed mechanism of plant physiologies regulated by endogenously produced ROS has been reported. ROS were shown to regulate seed germination60. Meanwhile, plant hormones such as GAs are sensitively regulated by ROS61. ROS also regulate GA levels61. GAs are key regulators of plant growth and development in both normal and stressed conditions$^{58–63}$. Endogenous ROS accumulation is important in breaking seed dormancy, and stimulating seed germination53, a process that involves GA signaling61. ROS produced by nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidases promote GA biosynthesis in embryos, in which GA enhances NADPH oxidases and ROS levels in aleurone cells to induce α-amylase64. Therefore, as the reciprocal regulations of GA and ROS involve positive regulation in seed germination53,61,64, and increased GA levels can overcome photocatalytic NP-derived oxidative stress65, reasonably observed the TiO$_2$ photocatalysis-mediated ROS-dependent enhancement of seed germination (Figs. 6, 7). Despite this observation, exogenous ROS produced by photocatalytic NPs are generally associated with an impression of biocides, with negative impacts on lifeforms8,12,66. The finding that environmental ROS can actively participate in the delicate regulation of the plant physiologies surprised us and may imply ancient environment–plant interplay, particularly because these photocatalytic NPs have existed on Earth as natural NPs for hundreds of millions of years.

TiO$_2$ NPs are not only present in forms of ENPs, but also naturally; for example, naturally formed soil and rock on the earth contain various levels of TiO$_2$ with a range of 0.1 to ~1.5% of total weight$^{28–31}$. Some volcanic ash, rock (basalt) and andisol samples were shown to contain high TiO$_2$ levels with over 2% of total weight67,68. Volcanic ash exerts good fertilization property to enhance plant growth69; besides the ability to function as a supplement of essential and rare elements, our observation suggested that the TiO$_2$ content may partly contribute to the enhancement of plant growth. This hypothesis and relevant mechanism are worthy of further investigation.

Our data revealed that the supplements of photocatalytic TiO$_2$ and ZnO NPs in the soil induced growth of both shoot and root parts of the seedlings, in which the shoot growth was more pronounced than root growth (Figs. 2, 4). GAs are known to enhance shoot growth83, so supplements of photocatalytic TiO$_2$ NPs somehow enhanced the GA levels (Fig. 7C). The shoots will grow into leaves, and which are the major parts used by consumers of these leafy vegetables. The supplementation of photocatalytic NPs could be a novel approach to enhance the growth of agricultural plants with economic value. In addition, new technological advancements such as green synthesis have shown great potentials of ENPs in sustainable agriculture7,10,11,70. However, the use of these photocatalytic NPs must be controlled in a proper level. As the data revealed in this study (Figs. 2, 4), the photocatalytic NPs played a dual role in seed growth. Given that excessive ROS can be detrimental, once the level of NPs is higher than an acceptable range, the plant-growth enhancing effect will turn into a toxic effect (Figs. 2, 4). Accordingly, overuse of the photocatalytic NPs on plant fertilization should be avoided to prevent plant toxicity and increased the environmental burden. As ENPs are produced with increasing amount worldwide, the
environmental photocatalytic NP levels have become a critical factor for the survival of natural and agricultural plants. For sustainable development and environmental health, monitoring of the accumulation and turnover rates of photocatalytic NPs in the soil is critical.

Conclusion

In summary, we found that the photocatalytic activity of TiO₂ NPs positively affected seed germination and growth through gibberellins in a plant-tolerable range (0.1 and 0.2 mg/cm²), whereas overdosing (1 mg/cm²) induced tissue damage. This positive effect of TiO₂ NPs involved photocatalysis-elicited ROS and GA regulation; as treatments of antioxidant NAC can suppress both TiO₂-mediated enhancements on enhance the seed germination and seedling growth and TiO₂-mediated up-regulation of GA levels. Accordingly, supplementation of photocatalytic NPs could be a theoretically feasible approach in the development of sustainable plant-growth enhancing agents. On the other hand, as treatments of high doses of photocatalytic NPs can strongly suppress the seedling growth, photocatalytic NPs can also be used as herbicides. Because these photocatalytic NPs have dual (low dose: enhancing; high dose: suppressing) roles, future studies focused on the maintenance of these NPs in a desired level in the soil could be important for sustainable development and environmental health.

Data availability

The datasets generated and analyzed during the current study are not publicly available due to potential patent filing after the report, but are available from the corresponding author on reasonable request.

Received: 6 July 2022; Accepted: 26 October 2022
Published online: 29 October 2022

References

1. Weissig, V., Pettinger, T. K. & Murdock, N. Nanopharmaceuticals (part 1): Products on the market. *Int. J. Nanomed.* 9, 4357–4373. https://doi.org/10.2147/IJN.S46900 (2014).
2. Yadav, T., Mungray, A. A. & Mungray, A. K. Fabricated nanoparticles: Current status and potential phytotoxic threats. *Rev. Environ. Contam. Toxicol.* 230, 83–110. https://doi.org/10.1007/978-3-319-04411-8_4 (2014).
3. Smita, S. et al. Nanoparticles in the environment: Assessment using the causal diagram approach. *Environ. Health* 11(Suppl 1), SI3. https://doi.org/10.1186/1476-069X-11-S1-SI3 (2012).
4. Nowack, B. & Bucheli, T. D. Occurrence, behavior and effects of nanoparticles in the environment. *Environ. Pollut.* 150, 5–22. https://doi.org/10.1016/j.envpol.2007.06.006 (2007).
5. Wagner, S., Gondikas, A., Neubauer, E., Hofmann, T. & von der Kammer, F. Spot the difference: Engineered and natural nanoparticles in the environment—release, behavior and fate. *Angew. Chem. Int. Ed. Engl.* 53, 12398–12419. https://doi.org/10.1002/anie.201405050 (2014).
6. Afsheen, S. et al. Synthesis and characterization of metal sulphide nanoparticles to investigate the effect of nanoparticles on germination of soybean and wheat seeds. *Mater. Chem. Phys.* 252, 123216 (2020).
7. Rafique, M. et al. Plant-mediated green synthesis of zinc oxide nanoparticles from *Syzgium Cumini* for seed germination and wastewater purification. *Int. J. Environ. Anal. Chem.* 102, 1–16 (2020).
8. Budhani, S., Egboluche, N. P., Arslan, Z., Yu, H. & Deng, H. Phytotoxic effect of silver nanoparticles on seed germination and growth of terrestrial plants. *J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Res.* 37, 330–355. https://doi.org/10.1080/10590560.2019.1676600 (2019).
9. Wang, F. et al. Nanoparticles in the environment—release, behavior and fate. *Environ. Health* 11(Suppl 1), S13. https://doi.org/10.1186/1476-069X-11-S1-S13 (2012).
10. Nguyen, N. T. T. et al. Recent advances on botanical biosynthesis of nanoparticles for catalytic, water treatment and agricultural applications: A review. *Sci. Total Environ.* 827, 154160. https://doi.org/10.1016/j.scitotenv.2022.154160 (2022).
11. Nguyen, N. T. T. et al. Formation, antimicrobial activity and biomedical performance of plant-based nanoparticles: A review. *Environ. Chem. Lett.* 20, 2531–2571. https://doi.org/10.1007/s10311-022-01425-w (2022).
12. Liou, J. W. & Chang, H. H. Bactericidal effects and mechanisms of visible-light-responsive titanium dioxide photocatalysts on pathogenic bacteria. *Arch. Immunol. Ther. Exp.* 60, 267–275. https://doi.org/10.1007/s00005-012-0178-4 (2012).
13. Tseng, Y. H. et al. Antibacterial performance of nanoscaled visible-light-responsive platinum-containing titania photocatalyst in vitro and in vivo. *Biophys. Acta* 1830, 3787–3795. https://doi.org/10.1016/j.bbagen.2013.03.022 (2013).
14. Liou, J. W. et al. Visible light responsive photocatalyst induces progressive and apical-terminus preferential damages on *Escherichia coli* surfaces. *PLoS ONE* 6, e19982. https://doi.org/10.1371/journal.pone.0019982 (2011).
15. Chen, Y. L. et al. The use of nanoscale visible light-responsive photocatalyst TiO₂-Pt for the elimination of soil-borne pathogens. *PLoS ONE* 7, e31212. https://doi.org/10.1371/journal.pone.0031212 (2012).
16. Wong, M. S., Sun, D. S. & Chang, H. H. Bactericidal performance of visible-light-responsive titania photocatalyst with silver nanostructures. *PLoS ONE* 5, e10394. https://doi.org/10.1371/journal.pone.0010394 (2010).
17. Wang, M. S. et al. Visible-light-induced bactericidal activity of a nitrogen-doped titanium photocatalyst against human pathogens. *Appl. Environ. Microbiol.* 72, 6111–6116 (2006).
18. Kau, J. H. et al. Role of visible light-activated photocatalyst on the reduction of anthrax spore-induced mortality in mice. *PLoS ONE* 4, e4167 (2009).
19. Cheng, C. L. et al. The effects of the bacterial interaction with visible-light-responsive titania photocatalyst on the bactericidal performance. *J. Biomed. Sci.* 16, 7. https://doi.org/10.1186/1423-127-16-7 (2009).
20. Wang, M. S., Sun, M. T., Sun, D. S. & Chang, H. H. Visible-light-responsive antibacterial property of boron-doped titania films. *Catalysts* 10, 1349. https://doi.org/10.3390/catal10111349 (2020).
21. Du, W. W. et al. TiO₂ and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. *J. Environ. Monit.* 13, 822–828. https://doi.org/10.1039/c1em00611d (2011).
22. Castiglione, M. R., Giorgetti, L., Geri, C. & Cremonini, R. The effects of nano-TiO₂ on seed germination, development and mitosis of root tip cells of *Vicia narbonensis* L. and *Zea mays* L. *J. Nanopart. Res.* 13, 2423–2444 (2011).
23. Ghosh, M., Bandyopadhyay, M. & Mukherjee, A. Genotoxicity of titanium dioxide (TiO₂) nanoparticles at two trophic levels: plant and human lymphocytes. *Chemosphere* 81, 1253–1262. https://doi.org/10.1016/j.chemosphere.2010.09.022 (2010).
24. Yang, F. et al. The improvement of spinach growth by nano-anatase TiO₂ treatment is related to nitrogen photoreduction. *Bio. Trace Elem. Res.* 119, 77–88. https://doi.org/10.1007/s12011-007-0046-4 (2007).
25. Gao, F. et al. Mechanism of nano-anatase TiO₂ on promoting photosynthetic carbon reaction of spinach: Inducing complex of rubisco-rubisco activase. *Bio. Trace Elem. Res.* 111, 239–253. https://doi.org/10.1385/BTER:111:1:239 (2006).
65. Iftikhar, A. et al. Effect of gibberellic acid on growth, photosynthesis and antioxidant defense system of wheat under zinc oxide nanoparticle stress. *Environ. Pollut.* **254**, 113109. https://doi.org/10.1016/j.envpol.2019.113109 (2019).
66. Rajagopal, G., Maruthamuthu, S., Mohanan, S. & Palaniswamy, N. Biocidal effects of photocatalytic semiconductor TiO2. *Coll. Surf. B BioInterfaces* **51**, 107–111. https://doi.org/10.1016/j.colsurfb.2006.06.003 (2006).
67. Guard, F. J. *Geology and Magma Emplacement at Halwell Quarry and Castle Rock, Lyttelton Volcano, Banks Peninsula*. Unpublished PhD Thesis thesis, University of Canterbury (1999).
68. Griggs, A. B. & Swanson, D. A. *Geological Survey Bulletin* Vol. 1413, 1–45 (US Government Printing Office, 1976).
69. Lansing, J. S. et al. *Geological Survey Bulletin* Vol. 1413, 1–45 (US Government Printing Office, 1976).
70. Singh, R. P., Handa, R. & Manchanda, G. Nanoparticles in sustainable agriculture: An emerging opportunity. *J. Control Release* **329**, 1234–1248. https://doi.org/10.1016/j.jconrel.2020.10.051 (2021).

Acknowledgements
The authors are grateful to the Core Facility Center, Tzu Chi University for the help on electron microscopy and confocal microscopy analyses. The authors also wish to thank the Experimental Program of Natural Science and Technology of Tzu-Chi Senior High School Affiliated with Tzu-Chi University for the collaboration on the science education. Funding: This work is supported by research funding from Ministry of Science and Technology, Taiwan (105-2514-S-320-001-MY3, 105-2923-B-320-001-MY3, 107-2311-B-320-002 -MY3, 111-2320-B-320-006-MY3 to HHC), and Tzu-Chi Medical Foundation (TCRD111-043 to HHC and CCL; TCMMP104-06, TCMMP108-04; TCMMP 111-01 and TC-NHRI105 to HHC and DSS). The funders have no role in the study design, in data collection, analysis and interpretation, in writing the report, and in the decision to submit the article for publication.

Author contributions
H.H.C. conceived and designed the experiments. C.C.L., H.M.C., Y.C.L., C.W.C., Y.Y.L., S.C.H., J.H.C., J.C.C., D.S.S. and M.L.C. performed the experiments. C.C.L., H.M.C., Y.C.L., C.W.C. and H.H.C. analyzed the data. H.H.C. wrote the main manuscript text. H.H.C. and C.C.L. received funding support for the project.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-23179-9.

Correspondence and requests for materials should be addressed to H.-H.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022