Growth of *in vitro* Oncidesa plantlets cultured under cold cathode fluorescent lamps with super-elevated CO$_2$ enrichment

Atsushi Norikane1, Jaime A. Teixeira da Silva1,2,* and Michio Tanaka1*

1 Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
2 Present address: PO Box 7, Miki-cho Post Office, Ikenobe 3011-2, Kagawa-ken 761-0799, Japan

Received: 7 June 2013; Accepted: 19 September 2013; Published: 27 September 2013

Citation: Norikane A, Teixeira da Silva JA, Tanaka M. 2013. Growth of *in vitro* Oncidesa plantlets cultured under cold cathode fluorescent lamps with super-elevated CO$_2$ enrichment. AoB PLANTS 5: plt044; doi:10.1093/aobpla/plt044

Abstract. As interest in how to increase biomass production through biotechnological means gains traction, focus is turning towards the use of photoautotrophic micropropagation under elevated levels of carbon dioxide (CO$_2$) to maximize plant growth and productivity. The effect of super-elevated CO$_2$ with cold cathode fluorescent lamps (CCFLs) on the photoautotrophic growth of *Oncidesa in vitro* has been studied using a gas-permeable film culture vessel, the ‘Vitron’. The growth of *Oncidesa* (formerly *Oncidesa* Gower Ramsey ‘U-1’) plantlets on Vacin and Went (VW) medium was stimulated by 10 000 μmol mol$^{-1}$ CO$_2$. In particular, increasing the photosynthetic photon flux density (PPFD) from 45 to 60 μmol m$^{-2}$ s$^{-1}$ under 10 000 μmol mol$^{-1}$ CO$_2$ in the growth chamber remarkably increased the number of leaves and roots, and shoot and root fresh and dry weights compared with plantlets under the same level of CO$_2$ under low PPFD (45 μmol m$^{-2}$ s$^{-1}$). However, there was a remarkable decrease in photosynthetic capacity, and chlorosis and browning of leaves. In stark contrast, plantlets grown on Kyoto medium at 10 000 μmol mol$^{-1}$ CO$_2$ under high PPFD had a higher photosynthetic rate than plantlets grown on VW medium, and no chlorosis or browning was observed. Furthermore, shoot growth was remarkably enhanced. Therefore, super-elevated CO$_2$ (10 000 μmol mol$^{-1}$) enrichment and growth under CCFLs can positively affect the efficiency and quality of commercial production of clonal *Oncidesa* plantlets.

Keywords: CCFL; *Oncidesa* (formerly *Oncidesa* Gower Ramsey ‘U-1’); photoautotrophic growth; single-leaf photosynthesis; super-elevated CO$_2$.

Introduction

The use of plant tissue culture as a way to increase plant biomass in a short span of time is an attractive application of biotechnology practised by many plant scientists. The ability to induce greater biomass by increasing the carbon dioxide (CO$_2$) concentration through photoautotrophic micropropagation—which has proven benefits in terms of productivity (Kozai *et al.* 2005)—has wide practical applications for ornamental and other horticultural crops.

Oncidium is an epiphytic and terrestrial orchid. This genus comprises about 400 species distributed mainly in tropical and subtropical South and Central America (Endress 1996). Many hybrid *Oncidium* have been produced, the most attractive having become commercially important as potted plants and cut flowers. Fast (1973) first reported that *Oncidium* plantlets could be induced...
by shoot tips, and several effective protocols for clonal propagation have been developed since then (Arditti 2008) and are now used for commercial micropropagation. However, relatively high production costs continue to hamper the expansion of hybrid Oncidium production since it may take almost one year for plantlets to reach the acclimatization stage. Since orchids such as Oncidium are inherently slow growers, there are considerable energy costs spent on controlling air temperature and lighting in the culture room. To overcome these limitations, despite costs spent on controlling air temperature and lighting in the culture room. To overcome these limitations, despite several studies existing on efficient multiplication and regeneration of Oncidium plantlets (e.g. Chen and Chang 2000; Chen et al. 2001; Jheng et al. 2006), it is also important to enhance the growth of plantlets regenerated in vitro.

Over two decades, many studies have been conducted on photoautotrophic culture in various species, including Oncidium hybrids (He et al. 2003), which has several advantages over photomixotrophic culture: promotion of growth and photosynthesis, high survival percentage ex vitro, elimination of physiological and morphological disorders, and less microbial contamination (reviewed in Xiao et al. 2011). Under photoautotrophic culture, CO₂ is one of the most important factors directly affecting the growth and photosynthesis of plantlets because they should produce complex organic compounds from CO₂ as a carbon source using energy from light. Therefore, it is necessary for enhancing photoautotrophic growth to provide a sufficient optimal concentration of CO₂. Tanaka (1991) developed several film culture vessels that had high gas and light permeability. The photoautotrophic growth of several orchid plantlets was stimulated in film culture vessels (Norikane and Tanaka 2010), several studies existing on efficient multiplication and regeneration of Oncidium plantlets (e.g. Chen and Chang 2000; Chen et al. 2001; Jheng et al. 2006), it is also important to enhance the growth of plantlets regenerated in vitro.

The aim of the present study was to achieve more efficient and higher-quality commercial clonal orchid plantlets, in this case, an Oncidium hybrid (Oncidesa), by super-elevated CO₂ enrichment under CCFLs on two different media.

Methods

Plant materials

The explants used in this study were shoots with 2–3 leaves obtained from a mass of protocorm-like bodies of Oncidesa (formerly Oncidium Gower Ramsey ‘U-1’; Royal Horticultural Society (RHS) 2013) derived from shoot-tip culture. This is a sympodial orchid hybrid, thin-leaved and with a C₃ mode of photosynthesis (Hew and Yong 1997). Twenty-five shoots were cultured in each culture vessel for 3 months, and two culture vessels were used for each treatment.

Culture medium

Vacin and Went (VW) (Vacin and Went 1949) sugar-free liquid medium was used as the basal medium. To examine the effect of basal medium under super-elevated CO₂ enrichment, Kyoto (Tsukamoto et al. 1963) sugar-free
liquid medium was also used. VW and Kyoto media are two of the most commonly used media in orchid biotechnology (Teixeira da Silva et al. 2005). The pH of the media was adjusted to 5.3 with 1 N NaOH or HCl before autoclaving at 121 °C for 17 min.

Preparation of the ‘Vitron’ rockwool system
The film culture vessel ‘Vitron’ (122 mm × 122 mm × 140 mm) consists of a three-dimensional injection-moulded polypropylene frame covered by a heat-sealed OTP film (Otsuka Techno Co. Ltd, Tokushima, Japan) on all sides, except the top (Giang and Tanaka 2004). OTP is a multi-layer film consisting of three layers: the outer layer of TPX (4-methyl-1-pentane polymer) and the inner layer of CPP (a polypropylene) which are bonded together by a middle layer of polyolefin resins. The top seal film (OTP) is affixed to the top of the vessel after removing the paper backing to expose the adhesive. The medium substrate was rockwool (a 25 joined block, 5 × 5, of Grodan® Rockwool Multiblock™ AO 18/30, Grodania A/S, Denmark) with 180 mL of liquid medium. The rockwool was previously sterilized in a dry sterilizer (150 °C, 1 h), and placed in the ‘Vitron’. Then, sterilized liquid medium was poured evenly over the rockwool.

Culture conditions
The culture conditions were 25 ± 1 °C, a 16-h photoperiod, and a photosynthetic photon flux density (PPFD) of 45 and 60 µmol m⁻² s⁻¹ (R/B ratio: 80 % red (~660 nm) + 20 % blue (~450 nm), a conventional CCFL light unit; NK System, Osaka, Japan). CO₂ enrichment was 380 (ambient/control), 3000, 5000 or 10 000 µmol mol⁻¹. Experiments were conducted under each CO₂ concentration by placing the vessels in different transparent acrylic desiccation chambers (Fig. 1) in which the CO₂ concentration inside the chamber was controlled with an infrared CO₂ controller (ZEP 9, Fuji Electric Co., Ltd, Japan) and a CO₂ gas inlet line (Tanaka et al. 1992). CO₂ was injected into the chamber from a pure source through a solenoid valve and a micro-needle valve. To prevent air stratification inside the chambers, a tube axial DC fan was fitted to the centre of a false floor and a conventional CCFL light source was installed on the roof of the chamber (Fig. 1).

Measurement of growth parameters
The number of leaves and roots, plant height, pseudobulb volume, root length, shoot, pseudobulb and root fresh weights, shoot, pseudobulb and root dry weights, pseudobulb formation frequency and the soil plant analysis development (SPAD) value of leaves of plantlets grown in vitro were recorded after 90 days. The pseudobulb formation frequency was calculated as a percentage of the plantlets that formed a pseudobulb. Pseudobulb volume (Vₚ) was calculated as an ellipsoid:

\[Vₚ = (2\pi/3)HBW \]

where H, B and W are pseudobulb height, breadth and width, respectively (Winkler et al. 2009). The SPAD value of leaves was measured with a chlorophyll meter (SPAD-502, Minolta Co., Ltd, Osaka, Japan) in the second leaf, counted from the top downward, of plantlets.

Measurement of photosynthesis
The photosynthetic light response curve and net photosynthetic rate were measured in the second leaf, counting from the top downwards, of plantlets, in which a pseudobulb was not formed, after culturing for 90 days. It was measured in at least five plants using a portable infrared gas analyser (LI-6400, Li-COR, Lincoln, NE, USA). For obtaining the photosynthetic light response curve, the photon flux density that was provided from a red LED light source built into the top of the leaf chamber was changed from 300 to 0 µmol m⁻² s⁻¹. The net photosynthetic rate was measured at 3000 µmol m⁻² s⁻¹ (saturating or near-saturating PPFD). The CO₂ concentration and temperature in the leaf chamber were adjusted to maintain 400 µmol mol⁻¹ and 25 °C, respectively. The relative humidity in the leaf chamber was kept as close to 65–70 % as possible. The air flow rate was 200 mL min⁻¹.
Statistical analysis
Means were separated by ANOVA and significant differences were assessed by Tukey’s multiple range test and a Student’s t-test at \(P = 0.05 \).

Results and Discussion
Elevated CO₂ increases the dry mass of plants (Mortensen 1987). Assimilate partitioning to the roots under elevated CO₂ has also been shown for a wide range of herbaceous species (Farrar and Williams 1991). Regarding the micropropagation of orchids, high CO₂ enrichment in Cymbidium (Tanaka et al. 1999; Teixeira da Silva et al. 2007) and Phalaenopsis (Norikane and Tanaka 2010) or super-elevated CO₂ enrichment in Mokara Yellow (Hew et al. 1995) and Cymbidium (Norikane et al. 2010) increased the dry weight, especially in roots, playing a role as a sink. In our present study, the enhanced root growth of plantlets in the ‘Vitron’ was also observed with an increase in CO₂ concentration from 380 (non-CO₂ enriched) to 10 000 \(\mu \text{mol mol}^{-1} \) under both low and high PPFD; the maximum number of roots, root length, and root fresh and dry weights were obtained when plantlets were grown under 10 000 \(\mu \text{mol mol}^{-1} \), regardless of PPFD level (Table 1). The enhanced root growth of in vitro plantlets as a result of super-elevated CO₂ enrichment might enhance ex vitro growth through the acquisition of essential resources that would increase the carbohydrate sink that would accumulate in the root and be utilized when these plantlets are transferred to the greenhouse. On the other hand, our study showed that an increase in CO₂ concentration remarkably increased plantlet root and shoot weights; maximum shoot fresh and dry weights were obtained when plantlets were grown under 10 000 \(\mu \text{mol mol}^{-1} \) CO₂ with low or high PPFD, respectively (Table 1). Plantlets grown at 10 000 \(\mu \text{mol mol}^{-1} \) CO₂ under both levels of PPFD also had larger and heavier in vitro-formed pseudobulbs than those at other CO₂-enrichment conditions, although the frequency of formation did not differ greatly (Table 1). It therefore seems that the plantlets had the heaviest shoot weight as a result of the accumulation of carbohydrates in the pseudobulb as a direct consequence of photosynthesis. Young plants of sympodial thin-leaved Oncidium usually produce a new shoot from an axillary bud at the second node under the pseudobulb (Tanaka et al. 1986), so, for the shoot to develop, the pseudobulb acts as a source of photosynthate (Hew and Ng 1996). Therefore, increasing pseudobulb weight and volume by super-elevated CO₂ enrichment influences the formation and rapid development of the new shoot.

In Cymbidium, an increase in PPFD (using CCFLs) under 10 000 \(\mu \text{mol mol}^{-1} \) CO₂ enrichment further enhanced

| Table 1. Effects of CO₂ concentration and PPFD on the in vitro growth of Oncidium plantlets under CCFL. Chlorophyll content in the second leaf, counted from the top downwards, of the plantlets. Different letters within a column indicate significant differences at \(P \leq 0.05 \) by Tukey’s multiple range test. n = 50. Non-CO₂ enrichment. |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
PPFD (mmol m⁻² s⁻¹)	CO₂ concentration (mmol mol⁻¹)	No. of leaves	No. of roots	Plant height (cm)	Pseudobulb volume (cm³)	Root length (cm)	Fresh weight (mg)	Dry weight (mg)	Pseudobulb formation frequency (%)	Chlorophyll content (SPAD value)
45	Ambient	6.36	5.86	1.56	5.7	5.7	293.1	36.0	8.1	16.8
3000	6.45	5.86	1.56	5.7	5.7	293.1	36.0	8.1	16.8	
5000	7.18	6.86	1.56	5.7	5.7	293.1	36.0	8.1	16.8	
10 000	3000	7.18	6.86	1.56	5.7	5.7	293.1	36.0	8.1	16.8
	5000	7.18	6.86	1.56	5.7	5.7	293.1	36.0	8.1	16.8
	10 000	7.18	6.86	1.56	5.7	5.7	293.1	36.0	8.1	16.8
the in vitro growth of both shoots and roots (Norikane et al. 2010). A similar trend was observed in Oncidesa plantlets in the present study; the number of leaves and roots, and shoot and root fresh and dry weights of the plantlets grown at 10 000 μmol mol⁻¹ CO₂ under high PPFD increased remarkably, although plant height, root length, and pseudobulb volume, fresh and dry weights and formation frequency did not differ between both PPFD levels under 10 000 μmol mol⁻¹ CO₂ (Table 1). Thus, we concluded that super-elevated CO₂ enrichment (10 000 μmol mol⁻¹ in the ‘Vitron’) with high PPFD (provided by CCFLs) also has a positive effect on the growth of both shoots and roots in Oncidesa.

High CO₂ and super-elevated CO₂ enrichment tend to cause foliar symptoms such as chlorosis, necrosis or bleaching in several plant species (Mortensen 1987; Wheeler et al. 1993; Mackowiak and Wheeler 1996; Sicher 2008; Croonenborghs et al. 2009). Leaf yellowing is attributed to photoinhibition, nutrient deficiency, premature senescence and other causes (Cook et al. 1998; Sicher 1998, 2008). Norikane et al. (2010) also indicated that chlorosis could be observed in Cymbidium plantlets grown at 10 000 μmol mol⁻¹ CO₂ under high PPFD in all leaf tips except for new leaves; furthermore, the leaf tips of these plantlets withered and died after transferring them to the greenhouse for acclimatization and growth ex vitro. In the present study, Oncidesa plantlets at 10 000 μmol mol⁻¹ CO₂ under high PPFD showed remarkably enhanced growth and reduced chlorophyll content (SPAD value) compared with plantlets at the same CO₂ concentration under low PPFD (Table 1), and severe chlorosis in the whole leaf blade and browning in part of the leaf blade were observed from a late stage of culture, although no such symptoms were observed in plantlets grown at 10 000 μmol mol⁻¹ CO₂ under low PPFD, nor at 3000 and 5000 μmol mol⁻¹ CO₂ under both PPFDs (Fig. 2). This may negatively affect the ex vitro growth of plantlets that were cultured at 10 000 μmol mol⁻¹ CO₂ under high PPFD.

C₃ plants growing in long-term elevated CO₂ showed a decline in photosynthetic capacity (Gunderson and Wullschleger 1994; Sage 1994; Drake et al. 1997), which may reduce plant growth. Our previous study on super-elevated CO₂ enrichment in vitro indicated that Cymbidium...
plantlets grown at 10,000 μmol mol⁻¹ CO₂ under high PPFD showed decreased photosynthetic capacity and total Rubisco activity tended to decline, possible factors explaining the decreasing photosynthetic capacity (Norikane et al. 2010). In the present study the net photosynthetic rate of single leaves of Oncidesa was measured at saturating or near-saturating PPFD (200–300 μmol m⁻² s⁻¹) at the end of the culture period. At low PPFD, even in plantlets grown at 10,000 μmol mol⁻¹ CO₂, a decrease in the net photosynthetic rate of single leaves did not occur, while at high PPFD, plantlets grown at the same high level of CO₂ showed a significant decrease (Fig. 3). The latter value was similar to that of plantlets grown at non-CO₂ enrichment under high PPFD, in which almost no growth and browning of leaves were observed. This reduction may be due to damage of the photosynthetic apparatus rather than the photosynthetic acclimation response to elevated CO₂ (Sage 1994) because browning was observed in plantlets’ leaves (Fig. 2). This might also negatively impact the ex vitro growth of plantlets cultured at 10,000 μmol mol⁻¹ CO₂ under high PPFD. Therefore, super-elevated CO₂ enrichment as a method to improve the culture of Oncidesa in vitro must be further refined for it to be effective.

It is occasionally mentioned that media developed for photomixotrophic culture are not suitable for the photoautotrophic growth and development of plants in vitro (Kozai et al. 1988; Yang et al. 1995). Norikane et al.
(2010) also demonstrated that Cymbidium plantlets on Hyponex-based Kyoto medium, which uses compound fertilizer for plant cultivation, had a higher photosynthetic capacity at 10 000 μmol mol⁻¹ CO₂ under high PPFD than plantlets grown on modified VW medium developed for photomixotrophic culture of orchids; no symptoms such as chlorosis were observed and growth was remarkably enhanced. This was also observed in our present study. The growth of plantlets on Kyoto medium under 10 000 μmol mol⁻¹ CO₂ at high PPFD was enhanced relative to plantlets grown on VW medium; in particular, plant height, and shoot fresh and dry weights increased remarkably, although the number of leaves, root dry weight, pseudobulb formation frequency, volume, and fresh and dry weights did not differ, and the number of roots was slightly fewer (Table 2). Furthermore, the net photosynthetic rate (Fig. 4) and the SPAD value of these plantlets were higher (Table 2) and no chlorosis and browning were observed in all leaf blades (Fig. 5). Similar to a previous study on super-elevated CO₂ (Norikane et al. 2010), our results also indicate that negative responses such as a decrease in photosynthetic capacity, chlorosis and browning, which were observed in plantlets grown at 10 000 μmol mol⁻¹ CO₂ under high PPFD, can be improved by altering medium components. Media composition and the nature of the carbon source strongly affect Cymbidium organogenic outcome (Teixeira da Silva et al. 2006, 2007).

Conclusions

We have shown in this study that super-elevated CO₂ (10 000 μmol mol⁻¹) under high PPFD emitted by CCFLs enhanced the photoautotrophic growth of Oncidesa plantlets in the ‘Vitron’, although the upper ‘threshold limit’ would be 5000 μmol mol⁻¹ CO₂ enrichment under high PPFD before a negative impact on photosynthesis would occur. This would help to maximize the productivity and quality of Oncidesa plantlets cultured in vitro. In addition, CCFLs have several advantages over existing lighting systems used for plant tissue culture (Tanaka et al. 2009). In particular, CCFLs emit much less heat through their unique properties, allowing plants or cultures (culture vessels) to be placed very close to the light source,
making more efficient use of the culture room and intensifying the efficiency of CO₂ enrichment. Our results indicate that there is great hope for using super-elevated CO₂ enrichment under CCFLs for more efficient and high-quality commercial production of clonal orchid plantlets, which is a key objective of orchid biotechnology (Hossain et al. 2013; Teixeira da Silva 2013).

Contributions by the Authors
All authors have made a substantial contribution to the manuscript and the research presented. M.T. and A.N. co-designed the experiment. M.T. and J.A.T.d.S. oversaw the experimental execution. A.N. conducted all research. A.N. and J.A.T.d.S. drafted the paper and made all edits for the revisions. All authors have seen and agreed to the submitted manuscript.

Conflicts of Interest Statement
None declared.

Literature Cited
Arditti J. 2008. Micropropagation of orchids. 2nd edn. Malden, USA: Blackwell Publishing Ltd.
Chen JT, Chang WC. 2000. Efficient plant regeneration through somatic embryogenesis from callus cultures of Oncidium (Orchidaceae). Plant Science 160:87–93.
Chen YH, Chang YS, Chen WH. 2001. Tissue culture advances for mass propagation of Oncidium mericlones. Report of the Taiwan Sugar Research Institute 173:67–76.
Cook AC, Tissue DT, Roberts SW, Oechel WC. 1998. Effects of long-term elevated CO₂ from natural CO₂ springs on Nardus stricta: photosynthesis, biochemistry, growth and phenology. Plant, Cell and Environment 21:417–425.
Croonenborghs S, Ceusters J, Londers E, De Proft MP. 2009. Effects of elevated CO₂ on growth and morphological characteristics of ornamental bromeliads. Scientia Horticulturae 121:192–198.
Ding Y, He S, Teixeira da Silva JA, Li G, Tanaka M. 2010. Effects of a new light source (cold cathode fluorescent lamps) on the growth of tree pea plantlets in vitro. Scientia Horticulturae 125:167–169.
Drake BG, González Meler MA, Long SP. 1997. More efficient plants: a consequence of rising atmospheric CO₂? Annual Review of Plant Physiology and Plant Molecular Biology 48:609–639.
Endress PK. 1996. Diversity and evolutionary biology of tropical flowers. Cambridge, UK: Cambridge University Press.
Farrar JF, Williams ML. 1991. The effects of increased atmospheric carbon dioxide and temperature on carbon partitioning, source – sink relations and respiration. Plant, Cell and Environment 14:819–830.
Fast G. 1973. The propagation of Oncidium papilio by shoot tip culture and a discussion of some nutrient media. Orchidee 24:240–246.
Giang TT, Tanaka M. 2004. Photoautotrophic micropropagation of Epidendrum (Orchidaceae) using disposable, gas permeable film vessel. Propagation of Ornamental Plants 4:41–47.
Gouk SS, Yang JWH, Hew CS. 1997. Effects of super-elevated CO₂ on the growth and carboxylating enzymes in an epiphytic CAM orchid plantlet. Journal of Plant Physiology 151:129–136.
Gunderson CA, Wullschleger SD. 1994. Photosynthetic acclimation in trees to rising atmospheric CO₂: a broader perspective. Photosynthesis Research 39:369–388.
He S, Liu Z, Yang Q, Zhang Q, Tanaka M. 2003. Inoculation of in vitro shoots of Oncidium in film culture vessels under open condition and CO₂ enrichment condition. Journal of Beijing Forestry University 25:49–53.
Hew CS, Ng CKY. 1996. Changes in mineral and carbohydrate content in pseudobulbs of the C₃ epiphytic orchid hybrid Oncidium Goldiana at different growth stages. Lindleyana 11:125 – 134.
Hew CS, Yong JWH. 1997. The physiology of tropical orchids in relation to the industry. Singapore: World Scientific Publishing Co. Pte. Ltd.
Hew CS, Hin SE, Yong JWH, Gouk SS, Tanaka M. 1995. In vitro CO₂ enrichment of CAM orchid plantlets. Journal of Horticultural Sciences 70:721–736.
Hossain MM, Kant R, Van PT, Winarto B, Zeng S-J, Teixeira da Silva JA. 2013. The application of biotechnology to orchids. Critical Reviews in Plant Sciences 32:69–139.
Jheng FY, Do YY, Liah YW, Chung JP, Huang PL. 2006. Enhancement of growth and regeneration efficiency from embryogenic callus cultures of Oncidium ‘Gower Ramsey’ by adjusting carbohydrate sources. Plant Science 170:1133–1140.
Kozai T, Kubota C, Watanabe I. 1988. Effects of basal medium composition on the growth of carnation plantlets in auto- and mixotrophic tissue culture. Acta Horticulturae 230:159–166.
Kozai T, Afreen F, Zobayed SMA. 2005. Photoautotrophic (sugar-free medium) micropropagation as a new micropropagation and transplant production system. Berlin: Springer, 316.
Mackowiak CL, Wheeler RM. 1996. Growth and stomatal behavior of hydroponically cultured potato (Solanum tuberosum L.) at elevated and super-elevated CO₂. Journal of Plant Physiology 149:205–210.
Mortensen LM. 1987. Review: CO₂ enrichment in greenhouses. Crop responses. Scientia Horticulturae 33:1–25.
Norikane A, Tanaka M. 2010. The growth response of Phalaenopsis plantlets cultured under cold cathode fluorescent lamps (CCFL) and high CO₂ enrichment. Propagation of Ornamental Plants 10:67–74.
Norikane A, Takamura T, Morakuma M, Tanaka M. 2010. In vitro growth and single-leaf photosynthetic response of Cymbidium plantlets to super-elevated CO₂ under cold cathode fluorescent lamps. Plant Cell Reports 29:273–283.
Royal Horticultural Society. 2013. http://apps.rhs.org.uk/horticultural database/orchidregister/orchidresults.asp.
Sage RF. 1994. Acclimation of photosynthesis to increasing atmospheric CO₂: the gas exchange perspective. Photosynthesis Research 39:351–368.
Sicher RC. 1998. Yellowing and photosynthetic decline of barley primary leaves in response to atmospheric CO₂ enrichment. Physiologia Plantarum 103:193–200.
Sicher RC. 2008. Effects of CO₂ enrichment on soluble amino acids and organic acids in barley primary leaves as a function of age, photo-period and chlorosis. Plant Science 174:576–582.
Tanaka M. 1991. Disposable film culture vessels. In: Bojaj YPS, ed. Biotechnology in agriculture and forestry, Vol. 17, high-tech and micropropagation I. Berlin: Springer, 212–228.
Tanaka M, Yamada S, Goi M. 1986. Morphological observation on vegetative growth and flower bud formation in Oncidium Boissiense. *Scientia Horticulturae* 28:133–146.

Tanaka M, Nagae S, Fukai S, Goi M. 1992. Growth of tissue cultured Spathiphyllum on rockwool in a novel film culture vessel under high CO2. *Acta Horticulturae* 314:139–146.

Tanaka M, Yoneyama M, Minami T, Naguchi K. 1993. Micropropagation of Phalaenopsis by using synthetic seeds in film culture vessels. In: *Proceedings of the 14th World Orchid Conference*. Glasgow: HMSO, 180–187.

Tanaka M, Yap DCH, Ng CKY, Hew CS. 1999. The physiology of Cymbidium plantlets cultured in vitro under conditions of high carbon dioxide and low photosynthetic photon flux density. *Journal of Horticultural Science and Biotechnology* 74:632–638.

Tanaka M, Norikane A, Watanabe T. 2009. Cold cathode fluorescent lamps (CCFL): revolutionary light source for plant micropropagation. *Biotechnology and Biotechnology Equipment* 23:1497–1503.

Teixeira da Silva JA. 2013. Orchids: advances in tissue culture, genetics, phytochemistry and transgenic biotechnology. *Fioriculture and Ornamental Biotechnology* 7:1 – 52.

Teixeira da Silva JA, Yarn T, Fukai S, Noyak N, Tanaka M. 2005. Establishment of optimum nutrient media for in vitro propagation of Cymbidium Sw. (Orchidaceae) using protocorm-like body segments. *Propagatiion of Ornamental Plants* 5:129–136.

Teixeira da Silva JA, Chan MT, Sonjaya, Chai ML, Tanaka M. 2006. Priming abiotic factors for optimal hybrid Cymbidium (Orchidaceae) PLB and callus induction, plantlet formation, and their subsequent cytogenetic stability analysis. *Scientia Horticulturae* 109:368–378.

Teixeira da Silva JA, Giang DTT, Chan MT, Sanjaya Norikane A, Chai ML, Chico Ruiz J, Penno S, Granström T, Tanaka M. 2007. The influence of different carbon sources, photohetero-, photoauto- and photomixotrophic conditions on protocorm-like body organogenesis and callus formation in thin cell layer culture of hybrid Cymbidium (Orchidaceae). *Orchid Science and Biotechnology* 1:15–23.

Tsukamoto Y, Kano K, Katsuura T. 1963. Instant media for orchid seed germination. *American Orchid Society Bulletin* 32:354–355.

Vacin EF, Went FW. 1949. Some pH changes in nutrient solutions. *Botanical Gazette* 110:605–613.

Wang Z, Li G, He S, Teixeira da Silva JA, Tanaka M. 2011. Effect of cold cathode fluorescent lamps on growth of Gerbera jamesonii plantlets in vitro. *Scientia Horticulturae* 130:482 – 484.

Wheeler RM, Mackowiak CL, Siegriest LM, Sager JC. 1993. Supraoptimal carbon dioxide effects on growth of soybean [Glycine max (L.) Merr.]. *Journal of Plant Physiology* 142:173–178.

Winkler M, Hulber K, Peter H. 2009. Population dynamics of epiphytic orchids in a metapopulation context. *Annals of Botany* 104:995 – 1004.

Xiao Y, Niu G, Kozai T. 2011. Development and application of photoautotrophic micropropagation plant system. *Plant Cell, Tissue and Organ Culture* 105:149 – 158.

Yang CS, Kozai T, Jeong BR. 1995. Ionic composition and strength of culture medium affect photoautotrophic growth, transpiration and net photosynthetic rates of strawberry plantlets in vitro. *Acta Horticulturae* 393:219–226.