Selection of energy-technological modes of submerged-arc welding with silicomanganese slag for parts of mining equipment

N A Kozyrev, A A Usoltsev, R E Kryukov, A R Mikhno and V Ya Tsellermayer
Siberian State Industrial University, 42 Kirova str., Novokuznetsk, 654007, Russia
E-mail: kozyrev_na@mtsp.sibsiu.ru

Abstract. The paper presents studies of the influence of energy-technological modes of welding on the physical and mechanical properties of welded joints obtained by submerged-arc welding, with the use of slag from silicomanganese production for parts of mining equipment. To study the welding and technological properties, we used a welding flux of 0.45-2.5 mm fraction based on a silicomanganese slag with a chemical composition, wt. %: 0.42 FeO, 16.22 MnO, 29.00 CaO, 41.34 SiO₂, 6.53 Al₂O₃, 1.33 MgO, 0.24 S, 0.022 P, 0.008 ZnO, 0.031 C, 0.31 F, 0.15 TiO₂, 0.025 Cr₂O₃. Automatic welding of 09G2S low-alloy steel under this flux was carried out by Sv-08GA wire. Various welding modes were investigated to ensure the required penetration depth and the absence of external defects (pores, cracks, cavities). Based on the data obtained, the dependences of the influence of the parameters of the welding mode on the mechanical properties of welded samples are plotted. It is shown that changes in the parameters of the current strength, welding speed and voltage can affect the physical and mechanical properties of the weld, as well as the transition of sulfur and hydrogen into the weld.

1. Introduction
At present, welding fluxes made on the basis of manganese oxides such as AN-348A, AN-67, AN-39S are widely used in the Russian Federation [1-3]. At SibSIU a number of works on the use of silicomanganese slag as analogues of such welding fluxes has been carried out [4-10]. In this case, welding modes have a significant effect on the quality indicators of the weld. The purpose of this work is to study the effect of energy-technological modes of submerged-arc welding with the use of silicomanganese slag on the physical and mechanical properties of the welded seam obtained by automatic welding with wire Sv-08GA of low-alloy steel 09G2S.

To study the welding and technological properties, a welding flux was manufactured based on a slag produced by silicomanganese with a chemical composition, wt. %: 0.42 FeO, 16.22 MnO, 29.00 CaO, 41.34 SiO₂, 6.53 Al₂O₃, 1.33 MgO, 0.24 S, 0.022 P, 0.008 ZnO, 0.031 C, 0.31 F, 0.15 TiO₂, 0.025 Cr₂O₃. Previous studies [11] showed that for these fluxes, the most acceptable is the use of fraction 0.45-2.5mm. The research used the equipment of the Scientific and Production Center “Welding Processes and Technologies” and the Center for Collective Use “Materials Science” of Siberian State Industrial University.
2. **Research methods**

Samples for studies of macro- and microstructure, hardness, wear resistance were prepared according to the technique including cutting out samples on KKS 315L cut-off machine, grinding on 3D725 surface grinder, polishing on FROMMIA 835 SE polishing machine.

Welding of specimens of steel 09G2S 20 mm thick was carried out by butt welding without cutting edges with Sv-08GA welding wire using ASAW-1250 welding tractor and the manufactured flux. For comparison, the plates were welded with AN-348 submerged arc. The scheme of cutting samples from welded plates is shown in figure 1.

Figure 1. Schematic diagram of cutting out test specimens: 1 – macrosections; 2 – microsections; 3 – hardness; 4 – wear resistance; 5 – determination of hydrogen content

The used flux was dried in the thermal electric furnace for 2 hours at a temperature of 300 °C. Before the surfacing process, the metal plates were cleaned with an angle grinder. Preservation agents, dirt, rust and oxide films were removed from the metal surface. After welding, the surface of the weld metal and the slag crust on the side adjacent to the weld were examined by the visual method and the chemical composition was determined. The chemical composition of slag crusts and fluxes was determined by the X-ray fluorescence method on XRF-1800 spectrometer. The chemical composition of the welds was determined by the atomic emission method on DFS-71 spectrometer. Chemical composition of a number of weld metal samples was determined by chemical methods: for carbon content according to GOST 12344-2003, sulfur according to GOST 12345-2001 and phosphorus according to GOST 12347-77.

Metallographic studies of polished microsections were carried out using OLYMPUS GX-51 optical microscope in a bright field in the magnification range from × 100 to × 1000. The microstructure was revealed by etching the samples in the solution of 4% HNO₃ in ethyl alcohol. The grain size was determined in accordance with GOST 5639-82 at × 100 magnification. Investigation of samples of the deposited layer for the presence of nonmetallic inclusions was carried out in accordance with GOST 1778-70. The polished surface was examined at a magnification of × 100 using a LaboMet-1I metallographic microscope. Macrosections with the size of 20 × 55 × 14 mm were made from the cut samples. The hardness of the samples under study was measured by the Brinell method using an ultrasonic hardness tester USIT-3 in accordance with the requirements of GOST 9012-59.

3. **Results and discussion**

Various welding modes were investigated to ensure the required penetration depth and the absence of external defects (pores, cracks, cavities). The welding modes of the samples were selected by the method of planning experiment 3 (3-1), mode 0 was taken as the basis: current I = 700A, voltage U = 28V, welding rate v = 30 cm/min [12-14]. The investigated modes are presented in table 1.
Table 1. Modes of welding samples.

Experiment No.	Current strength, A	Voltage, V	Welding rate, cm/min	Heat input, J/cm
0	700	28	30	42000
1	600	28	30	36000
2	600	30	32	33750
3	600	32	30	38400
4	650	28	32	34125
5	650	30	30	39000
6	650	32	28	44571
7	700	28	30	45000
8	700	30	28	42000

The chemical composition of the investigated welded samples and the parameters of hydrogen concentration are given in table 2.

Table 2. Chemical composition of welds.

Sample No.	C	Si	Mn	Cr	Ni	Cu	Ti	Mo	Al	S	P	N, cm³/100g
0	0.11	0.41	1.16	0.05	0.31	0.15	0.002	0.10	0.009	0.014	0.014	1.1
1	0.07	0.48	1.24	0.05	0.43	0.16	0.001	0.14	0.012	0.013	0.016	1.2
2	0.08	0.54	1.38	0.06	0.28	0.17	0.003	0.08	0.018	0.014	0.014	1.1
3	0.08	0.51	1.31	0.06	0.32	0.15	0.001	0.10	0.014	0.014	0.013	1.4
4	0.08	0.49	1.20	0.05	0.45	0.17	0.002	0.16	0.013	0.011	0.015	1.1
5	0.07	0.50	1.26	0.05	0.43	0.17	0.003	0.14	0.002	0.012	0.018	1.1
6	0.07	0.49	1.25	0.05	0.40	0.16	0.002	0.13	orc.	0.012	0.015	1.0
7	0.09	0.50	1.23	0.04	0.41	0.13	0.001	0.14	0.014	0.011	0.011	1.3
8	0.09	0.50	1.31	0.06	0.31	0.17	0.001	0.09	0.019	0.014	0.013	1.0
9	0.07	0.53	1.27	0.05	0.37	0.15	0.002	0.12	0.010	0.015	0.016	0.9

The mechanical properties of the samples under study are presented in table 3.

Table 3. Mechanical properties of welded joints.

Experiment No.	Tensile strength, σv, N/mm²	Conditional yield stress, σt, N/mm²	Relative extension, δ, %	KCV +20°C	KCV -20°C
0	576	482	21	68*	22.3*
				63-75**	20-26**
1	563	470	21	59.6	20.3
				49-81	15-31
2	582	481	22	64.3	20.6
				60-69	17-25
3	560	430	21	66.3	32
				52-77	25-35
4	570	459	21	59.33	30
				56-62	27-32
5	570	466	22	67.3	32
				59-73	31-33
6	563	462	21	59.3	29.6
				53-65	27-34
7	572	456	21	70.6	30.6
				63-85	27-33
8	570	464	21	58.3	29.3
Table 1. Comparison of KCV impact toughness for the welds made with different fluxes.

Flux Type	Sulfur Content (wt%)	Phosphorus Content (wt%)	KCV @20°C (J/m²)	KCV @-20°C (J/m²)
AN-348A flux	553	440	22	53-67
(Comparison sample)	543	368	25	52-58

* - average values; ** - minimum and maximum values.

Figure 2. Dependence of KCV impact toughness on the sulfur content in the weld.

Figure 3. Dependence of KCV impact toughness on the phosphorus content in the weld.
Figure 4. Dependence of impact toughness KCV on welding current.

Figure 5. Dependence of ultimate resistance and yield strength on welding stress.

Brinell hardness (HB) of the welded samples under study was measured according to the scheme shown in figure 6. The measurement results are shown in table 4.

Figure 6. Scheme for hardness measuring of welded samples.

Table 4. Hardness measurements of welded samples, HB.

Experiment No.	Base metal, points	Weld seam, points
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	
0	176 160 181 168 178 194 169 186 184 179 185 174 191 186 186 192 174 168 178	
1	196 200 172 193 194 186 191 205 204 169 161 191 188 147 193 215 230 220 196	
2	162 189 179 185 172 206 197 206 214 210 202 188 199 220 246 237 229 237 235	
3	192 235 180 196 234 181 208 189 187 172 235 211 270 247 230 238 209 187 214	
As it can be seen from figures 7-9, the hardness values depend on the welding modes.

Figure 7. Dependence of HB hardness on changes in current strength.

Figure 8. Dependence of HB hardness on stress change.
4. Conclusion

The paper presents studies of the influence of energy-technological modes of welding on the physical and mechanical properties of welds obtained by submerged-arc welding, made on the basis of silicomanganese production slag for parts of mining and metallurgical equipment. Automatic welding of 09G2S low-alloy steel under this flux was carried out by Sv-08GA wire. Various welding modes were investigated to ensure the required penetration depth and the absence of external defects (pores, cracks, cavities). It is shown that a change in the parameters of the current strength, welding speed and voltage can affect the physicomechanical properties of the weld, as well as the transition of sulfur and hydrogen into the weld.

References

[1] Potapov N N, Konischev B P and Kurlanov S A 1989 Welding Consumables for Arc Welding (Moscow: Mashinostroyenyie) p 544
[2] Podgaetsky V V, Podgaetsky V V and Rabkin D M 1954 Fluxes for Automatic and Semi-automatic Welding (Kiev) p 56
[3] Kozyrev N A, Kryukov R E et al 2015 Processing of Materials: Modern Problems and Solutions (Tomsk) pp 90–95
[4] Kozyrev N A, Kryukov R E et al 2016 IOP Conference Series: MSE 125 012034
[5] Kozyrev N A, Kryukov R E et al 2016 IOP Conf. Series: MSE 150 012032
[6] Kozyrev N A and Kryukov R E 2017 Innovations in the Fuel and Energy Complex and Mechanical Engineering (Kemerovo) pp 134–139
[7] Kozyrev N A, Kryukov R E et al 2017 Bulletin of Scientific, Technical and Economic Information 5(1409) 85–89
[8] Kryukov R E, Kozyrev N A et al 2017 Steel in Translation 47(7) 440–444
[9] Kryukov R E, Kozyrev N A et al 2017 IOP Conf. Series: MSE 253 012007
[10] Kryukov N E, Kozyreva O E et al 2017 Welding Production 5 42–48
[11] Adler Yu P 1971 Planning an Experiment in the Search for Optimal Conditions (Moscow: Nauka) p 383
[12] Sovetov B Ya 2001 Modeling of Systems (Moscow: Vyishaya Shkola) p 343
[13] Wentzel E S 2004 Operations Research: Objectives, Principles, Methodology (Moscow: Bustard) p 208