SINGULAR MEASURES ON THE LIMIT SET OF A KLEINIAN GROUP

WOOJIN JEON

Abstract. We consider a finitely generated torsion free Kleinian group H and a random walk on H with respect to a symmetric nondegenerate probability measure μ with finite support. When H is geometrically infinite without parabolics or when H is Gromov hyperbolic with parabolics, we prove that the Patterson-Sullivan measure is singular with respect to the harmonic measure coming from μ.

1. Introduction

Let H be a finitely generated Kleinian group, i.e., a discrete subgroup of $\text{PSL}(2, \mathbb{C})$. We assume that H has no elliptic elements. Since $\text{PSL}(2, \mathbb{C})$ is the group of orientation preserving isometries of the hyperbolic 3-space \mathbb{H}^3, we can consider the action of H on \mathbb{H}^3 which can be continuously extended to the ideal boundary S^2_∞ of \mathbb{H}^3. The limit set Λ_H of H is the set of limit points of an orbit $H \cdot o$ where $o \in \mathbb{H}^3$. This definition does not depend on the choice of o and Λ_H is contained in S^2_∞.

We consider two measures on Λ_H. One is the Patterson-Sullivan measure ρ_x based at $x \in \mathbb{H}^3$ and the other is the harmonic measure ν_H coming from a random walk on H. Given a probability measure μ on H and the corresponding random walk $\{Y_n\}$ on H, we can describe ν_H as follows. For $A \subset S^2_\infty$, $\nu_H(A)$ is the probability for $Y_n \cdot o$ to converge to a point in $A \subset S^2_\infty$. When H is a Fuchsian group i.e., a discrete subgroup of $\text{PSL}(2, \mathbb{R})$, H acts isometrically on \mathbb{H}^2 and Y. Guivarc’h and Y. Le Jan proved the following.

Theorem 1.1. (Y. Guivarc’h and Y. Le Jan [16]) Let H be a discrete subgroup of $\text{PSL}(2, \mathbb{R})$ such that \mathbb{H}^2/H is a noncompact surface with finite area. Let ν_H is the harmonic measure on S^1_∞ coming from a symmetric nondegenerate probability measure μ with finite support on H. Then ν_H is singular with respect to the Lebesgue measure on S^2_∞.

In this paper, we generalize Theorem 1.1 to Kleinian groups as follows.
Theorem 1.2. Suppose that H is a finitely generated Kleinian group such that

1. H is Gromov hyperbolic.
2. H is not convex-cocompact.
3. The orbit map $\tau_o : H \to \mathbb{H}^3$ sending h to $h \cdot o$ extends continuously to $\bar{\tau}_o : \partial H \to S_\infty^2$.

Here ∂H is the Gromov boundary of H. Let ν_H be the harmonic measure on Λ_H coming from a symmetric nondegenerate probability measure μ with finite support on H. Then ν_H is singular with respect to the Patterson-Sullivan measure on Λ_H.

We remark that when $\Lambda_H = S_\infty^2$, the Patterson-Sullivan measure ρ_o where o is the origin of the Poincaré ball model is equal to the Lebesgue measure $\text{Leb}_{S_\infty^2}$ on S_∞^2 up to constant multiple. Thus every Patterson-Sullivan measure ρ_x is equal to $\text{Leb}_{S_\infty^2}$ up to homothety. The continuous extension $\bar{\tau}_o$ of the orbit map τ_o for H is called the Cannon-Thurston map of H and its existence has been verified recently for surface Kleinian groups by [24]. The paper [25] dealt with the general case. For the proof of Theorem 1.2, we modify and extend the argument used in the proof of [3, Prop 5.4, Prop 5.5]. The assumption of the existence of the Cannon-Thurston map is crucial.

2. Preliminaries

2.1. Hyperbolic spaces. For $\delta \geq 0$, a geodesic metric space (X, d) is called δ-hyperbolic if for any geodesic triangle in X, each side of the triangle is contained in the δ-neighborhood of the union of the other two sides. We call a geodesic metric space a hyperbolic space (in the sense of Gromov) if it is δ-hyperbolic for some $\delta \geq 0$. A hyperbolic metric space (X, d) has a boundary at infinity ∂X called the Gromov boundary which can be defined as follows. We say a sequence $\{x_n\}$ in (X, d) converges to infinity if

$$\liminf_{i,j \to \infty} (x_i|y_j)_x = \infty$$

for some (hence every) basepoint x, where

$$(y|z)_x := \frac{1}{2}(d(x,y) + d(x,z) - d(y,z))$$

for $x, y, z \in X$. This product $(y|z)_x$ is called the Gromov product of y and z with respect to x and approximates within 2δ the distance from x to any geodesic $[y,z]$ joining y, z. Two sequences $\{x_n\}, \{y_n\} \subset X$ converging to infinity are said to be equivalent if

$$\liminf_{i,j \to \infty} (x_i|y_j)_x = \infty$$

for some $x \in X$. The Gromov boundary ∂X is defined as the set of the equivalence classes of sequences converging to infinity in X. This definition is independent of the choice of the base point $x \in X$. The Gromov product
can be extended to \(\partial X \). We can define a natural metric \(d_\epsilon(\cdot, \cdot) \) on \(\partial X \) such that \(C^{-1}e^{-\epsilon(g,h)} \leq d_\epsilon(p,q) \leq C e^{-\epsilon(g,h)} \), where \((p,q) \in \partial X \times \partial X \).

Fixing a finite generating set \(S \) of \(H \), the word metric \(d_w(\cdot, \cdot) \) on \(H \) is defined by setting \(d_w(g,h) = |g^{-1}h|_S \) where \(|g|_S \) is the minimum of the number of elements of \(S \) whose product is \(g \). When we consider the right Cayley graph \(\Gamma_H \) of \(H \) with the length of every edge being 1, \(d_w(g,h) \) is the minimum of the lengths of paths joining \(g \) and \(h \) in \(\Gamma_H \). A finitely generated group \(H \) is called a \textit{hyperbolic group} if its Cayley graph \(\Gamma_H \) is hyperbolic with respect to the word metric for a finite generating set \(S \) of \(H \). We simply denote the word length of \(g \) as \(|g| \) by fixing a finite generating set. We denote the Gromov boundary of \(\Gamma_H \) by \(\partial H \). For basic properties of Gromov hyperbolic spaces, hyperbolic groups and their Gromov boundaries, we refer the reader to [15] [13] and [20].

2.2. Kleinian groups.

Let \(H \) be a finitely generated \textit{Kleinian group}. We assume that \(H \) has no elliptic elements. The \textit{limit set} \(\Lambda_H \) of \(H \) is the set of limit points of an orbit \(H \cdot o \) where \(o \in \mathbb{H}^3 \). The complementary open set \(\Omega_H = S^2_\infty \setminus \Lambda_H \) becomes the domain of discontinuity of the action of \(H \) and by Ahlfors’ finiteness theorem, \(\Omega_H/H \) consists of finitely many Riemann surfaces which are called as the \textit{conformal boundaries at infinity} of \(H \).

The \textit{convex hull} of \(H \) is defined to be the smallest convex set in \(\mathbb{H}^3 \) whose closure in \(\mathbb{H}^3 \cup S^2_\infty \) contains \(\Lambda_H \). The \textit{convex core} of \(H \) is the quotient of its convex hull by \(H \) itself. The Kleinian group \(H \) is called \textit{geometrically finite}(resp. \textit{convex cocompact}) if its convex core has finite volume(resp. if its convex core is compact). Every convex cocompact Kleinian group is a hyperbolic group by the Schwarz-Milnor lemma(See [5] for example). By Thurston’s uniformization theorem in [28], every geometrically infinite Kleinian group without parabolics has a convex cocompact representation which is faithful. Thus if \(H \) is geometrically infinite without parabolics, then it is hyperbolic.

If the orbit map \(\tau_o : H \to \mathbb{H}^3 \) sending \(h \to h \cdot o \) can be extended continuously to \(\tilde{\tau}_o : \partial H \to S^2_\infty \), we call \(\tilde{\tau}_o \) as the \textit{Cannon-Thurston map} of \(H \) following [9] [4] [22] [23] [24] [25] [27]. If \(H \) is convex cocompact, then \(\tau_o \) is a quasi-isometric embedding and we have a natural homeomorphism \(\tilde{\tau}_o \) from the Gromov boundary \(\partial H \) to the limit set \(\Lambda_H \). When \(H \) is a geometrically finite Kleinian group with parabolics, we still have a continuous extension of \(\tau_o \) from the Floyd boundary (See [12] [14]) of \(H \) to \(\Lambda_H \). If we further assume \(H \) is hyperbolic, then the Floyd boundary of \(H \) is equal to the Gromov boundary \(\partial H \) and a parabolic element \(h \) gives two points \(\{ h_\infty, h_{-\infty}\} \) in \(\partial H \) such that \(\tilde{\tau}_o(h_\infty) = \tilde{\tau}_o(h_{-\infty}) \) where \(\{ h_\infty, h_{-\infty}\} \) are the accumulation points of \(\{ h^i \mid i \in \mathbb{Z}\} \) in \(\Gamma_H \).

Now we consider the case when \(H \) is a geometrically infinite hyperbolic Kleinian group and we assume the Cannon-Thurston map \(\tilde{\tau}_o \) exists. In this case, we can find an exiting sequence of closed geodesics \(\{ c_n \} \) in \(\mathbb{H}^3/H \). The exiting property of \(\{ c_n \} \) gives a bi-infinite quasigeodesic \(l \) in \(\Gamma_H \) such that
the two endpoints of l are identified by $\hat{\tau}_o$. See [26] for details. We need the following lemma for the proof of Theorem 1.2.

Lemma 2.1. Let H be a finitely generated Kleinian group with \mathbb{H}^3/H not being convex cocompact and such that H is Gromov hyperbolic. We assume that the Cannon-Thurston map $\hat{\tau}_o : \partial H \to S^2_\infty$ exists. Then there exists $\{h_n\} \subset H$ such that for any constant $D > 0$, $|h_n| - Dd_{H^3}(o, h_n \cdot o) \to \infty$.

Proof. We fix a finite generating set S of H. If H has a parabolic element g, then we can just take h_n as g^n. If not, then H is geometrically infinite and there exists a bi-infinite quasigeodesic l in Γ_H joining two points p, q in ∂H such that $\hat{\tau}_o(p) = \hat{\tau}_o(q)$. We represent l as a bi-infinite sequence of vertices in Γ_H

$$\{\cdots g_{-n}, g_{-(n-1)}, \cdots, \text{id}, \cdots, g_n, g_{n+1}, \cdots\}$$

such that $|g^{-1}_i g_{i+1}| = 1$. Then since $\hat{\tau}_o(p) = \hat{\tau}_o(q)$ and $\hat{\tau}_o$ is a continuous extension of τ_o, we have $(g_{-n} \cdot o) | g_n \cdot o) \to \infty$. If $\tau_o|_l$ is a quasi-isometric embedding then by the Morse-Mostow lemma (see [5] for example), the image of $\tau_o|_l$ is contained in a uniform neighborhood of a bi-infinite geodesic in Γ_H. Since $(g_{-n} \cdot o) | g_n \cdot o) \to \infty$, this is not possible and thus $\tau_o|_l$ cannot be a quasi-isometric embedding. We note that $d_{H^3}(g, h) \leq C|g^{-1}h|$ by the triangle inequality where $C := \max_{s \in S} d_{H^3}(o, s \cdot o)$. We can also see the following. There exists a sequence of integers $i(n)$ and $j(i) > i$ such that for any $D > 0$, $|g_{-i(n)}^{-1}g_{j(i)}| - Dd_{H^3}(g_i \cdot o, g_j \cdot o) \to \infty$ as $n \to \infty$. We take h_n as $g_{i(n)}^{-1} g_{j(i)}$.

\square

2.3. **Poisson boundary.** Let μ be a probability measure on a group H.

- μ is called *nondegenerate* if the support of μ generates H as a semi-group.
- μ is called *symmetric* if $\mu(A) = \mu(A^{-1})$ where $A \subset H$ and A^{-1} is the set of the inverses of elements of A.

The word length $|h|$ of an element h in H is with respect to a fixed finite generating set of H. The *first moment* of (H, μ) is defined to be \(\sum_{h \in H} |h| \mu(h) \).

The *entropy* of (H, μ) is \(\lim_{n \to \infty} - \sum_{h \in H} \mu(h) \log \mu(h) \). When μ has a finite support, both of its entropy and its first moment are finite.

The *random walk* on H with respect to μ is a Markov chain $\{Y_n\}$ with the transition probabilities given by $p_{h_1, h_2} = \mu(h_1^{-1} h_2)$. We denote $\{Y_n\}$ by Y. A random walk Y can also be described as a sequence of independent random variables $\{Z_n\}$ with values in the probability space (H, μ) such that $Y_n = Z_0 Z_1 \cdots Z_n$. When $Y_0 = \text{id}$, the random walk starts from the identity element id of H. We regard $Z = \{Z_n\}$ as an element of the product probability space $(H^\mathbb{N}, \mu^\mathbb{N})$ and Y as an element of the Kolmogorov representation space $(H^\mathbb{N}, \mathbb{P}_{\text{id}})$ where

$$\mathbb{P}_{\text{id}}(\{Y_n\} | Y_0 = \text{id}, Y_1 = h_1, Y_2 = h_2, \cdots, Y_n = h_n) = p_{\text{id}, h_1, h_2, \cdots, h_{n-1}, h_n}$$
and $\mathbb{P}_{id}(\{Y_n\}|Y_0 \neq id)$ is defined to be zero. We denote \mathbb{P}_{id} by \mathbb{P}.

The time shift operator T acts on $(H^\mathbb{N}, \mathbb{P})$ by $(TY)_n = Y_{n+1}$ and defines an equivalence relation \sim by saying $Y \sim Y'$ if and only if there exist positive integers k, k' such that $T^kY = T^{k'}Y'$.

Definition 2.2. The Poisson boundary of H with respect to μ is the quotient space of $(H^\mathbb{N}, \mathbb{P})$ by the smallest measurable equivalence relation generated by the equivalence relation \sim.

The smallest measurable equivalence relation generated by \sim is called as the measurable envelope [31]. When H is a hyperbolic group, we can consider the hitting measure ν of a random walk Y on ∂H and the Poisson boundary of H can be identified with $(\partial H, \nu)$ by [17, 18]. More precisely, it can be shown that $\{Y_n\}$ converges to a point in ∂H for almost every sample path $\{Y_n\}$ and $\nu(A)$ can be defined as the probability for a sample path $\{Y_n\}$ converges to a point in $A \subset \partial H$. Thus ν can also be called as the law of Y_∞. When H is a hyperbolic Kleinian group, H acts on \mathbb{H}^3 and we can consider the law of $Y_\infty \cdot o$ if $\{Y_n \cdot o\}$ converges to a point in S^2_∞ for almost every sample path $\{Y_n\}$. In fact, the law of $Y_\infty \cdot o$ is the push forward of ν by $\hat{\tau}_o$ by the following Theorem 2.3 which summarizes [21, Corollary 6.2].

Theorem 2.3. (Karlsson and Margulis [21]) Let H be a countable group isometrically acting on a uniformly convex, complete metric space (X, d) which is nonpositively curved in the sense of Busemann. Let μ be a probability measure on H with $\sum_{h \in H} d(o, h \cdot o) \mu(h) < \infty$. Let ∂X be the ideal boundary of X consisting of asymptotic classes of geodesic rays. Then

- Almost every sample path $\{Z_n\}$ in $H^\mathbb{N}$ with respect to $\mu^\mathbb{N}$ converges to a geodesic ray in X.

Thus we have a map $\xi : (H^\mathbb{N}, \mu^\mathbb{N}) \to \partial X$ and we give ∂X the push-forward measure $\xi_* (\mu^\mathbb{N})$ so that ξ is measurable.

- $(\partial X, \xi_* (\mu^\mathbb{N}))$ becomes the Poisson boundary of (H, μ) if the lattice counting function is subexponential, i.e., if

$$\# \{h \in H | d(o, h \cdot o) < r\} \leq e^{Cr}$$

for some constant $C > 0$.

A similar form of Theorem 2.3 was also mentioned in Remark 3 following [18, Theorem 7.7]. It is known that the lattice counting function is subexponential for a large class of discrete subgroups of the isometry groups of Cartan-Hadamard manifolds. In particular, for pinched negatively curved case, it is proven in [34, Theorem 3.6.1]. Thus every Kleinian group has a subexponential lattice counting function. Moreover, since we are assuming H is finitely generated, we have $d_{\mathbb{H}^3}(o, h \cdot o) \leq D \cdot |h|$ by the triangle inequality.

Therefore we can apply Theorem 2.3 to a Kleinian group H acting on \mathbb{H}^3. We assume μ is a symmetric, nondegenerate probability measure on H with
Lemma 2.4. \(\alpha(0) = \) convergent or divergent.

Hence it becomes an \(H \), \(\mu \) Poisson boundary of \((H, \mu)\) and thus \(\tau_\mu : (\partial H, \nu) \to (S^2_\infty, \nu_H) \) is a measurable isomorphism.

2.4. Conformal density. For \(x \in \mathbb{H}^3 \), the Busemann function \(b_{x, \eta}(\cdot) \) at \(\eta \) with \(b_{x, \eta}(x) = 0 \) can be defined by choosing a geodesic ray \(\alpha(t) \) from \(\alpha(0) = x \in \mathbb{H}^3 \) toward \(\eta \in S^2_\infty \) as follows.

\[
b_{x, \eta}(y) = \lim_{t \to \infty} (d_{\mathbb{H}^3}(y, \alpha(t)) - d_{\mathbb{H}^3}(x, \alpha(t)))
\]

Lemma 2.4. ([29] Lemma 3.2.1) Consider the Poincaré ball model \(\{ x \in \mathbb{R}^3 : |x| < 1 \} \) of \(\mathbb{H}^3 \) where \(|x| \) is the usual Euclidean norm of \(x \). Then

\[
e^{b_{x, \eta}(y)} = \frac{P(x, \eta)}{P(y, \eta)}
\]

where \(P(x, \eta) \) is the Poisson kernel \((1 - |x|^2)/(|x - \eta|^2) \). Thus \(b_{x, \eta}(y) \) is a continuous function of \(x, y \in \mathbb{H}^3 \) and \(\eta \in S^2_\infty \).

Fixing \(x, y \) in \(\mathbb{H}^3 \), the Poincaré series for \(H \) is

\[
g_s(x, y) = \sum_{h \in H} e^{-s d_{\mathbb{H}^3}(x, h \cdot y)}
\]

The critical exponent \(\delta_H \) of \(H \) is defined as

\[
\delta_H = \limsup_{r \to \infty} \frac{1}{r} \log(\#\{ h \in H | d^3_{\mathbb{H}}(o, h \cdot o) \leq r \})
\]

Equivalently, \(\delta_H \) is the infimum of the set of \(s \) such that \(g_s(x, y) \) is finite. We call \(H \) is divergent if \(g_s(x, y) \) diverges at \(s = \delta_H \). Otherwise \(H \) is called convergent. These definitions are independent of the choices of \(x, y \in \mathbb{H}^3 \).

Consider a family of measures \(\{ \rho^s_x \} \) defined by

\[
\rho^s_x = \frac{1}{g_s(y, y)} \sum_{h \in H} e^{-s d_{\mathbb{H}^3}(x, h \cdot y)} \delta_{h \cdot y}
\]

where \(\delta_{h \cdot y} \) is the Dirac measure at \(h \cdot y \). Then we can find a sequence \(\{ s_i \} \) with \(s_i \to \delta_H^* \) such that \(\rho^s_x \) weakly converges to a finite measure \(\rho_x \) on the compact space \(\mathbb{H}^3 \cup S^2_\infty \). When \(H \) is divergent, \(\rho_x \) has its support on the limit set \(\Lambda_H \). Since \(\{ \rho_x \} \) satisfies

\[
\frac{d \rho_x}{d \rho_y}(\eta) = e^{-\delta_H b_{x, \eta}(y)}, \ h^* \rho_x = \rho_{h^{-1} \cdot x}
\]

it becomes an \(H \)-invariant conformal density of dimension \(\delta_H \). Here the pull-back measure \(h^* \rho_x \) is defined by setting \((h^* \rho_x)(A) := \rho_x(h \cdot A) \) for \(A \subset \Lambda_H \). Even when \(H \) is convergent, we still can construct a conformal density by increasing the Dirac mass on each orbit point suitably [30, 32] and we denote a resulting conformal density also by \(\rho_x \). We call \(\rho_x \) as the Patterson-Sullivan measure with base point \(x \in \mathbb{H}^3 \) in either case of \(H \) being convergent or divergent.
As an application of the Tameness theorem (see section 9 in [6] and [11, Prop. 3.9]), a Kleinian group H is divergent if and only if either H is geometrically finite or $\Lambda_H = S_\infty^2$. When $\Lambda_H = S_\infty^2$, ρ_x is equal to $\text{Leb}_{S_\infty^2}$ up to homothety and the diagonal action of H on $S_\infty^2 \times S_\infty^2 \setminus \Delta$ is ergodic with respect to $\text{Leb}_{S_\infty^2} \otimes \text{Leb}_{S_\infty^2}$. Here Δ means the diagonal set.

2.5. Harmonic Density. The Green function on a group H with a probability measure μ is defined by

$$G(g, h) = \sum_{n=0}^{\infty} \mu^n(g^{-1} h)$$

where μ^n is the n-th convolution power of μ. Then $F(g, h) = G(g, h)/G(h, h)$ is the probability that there exists $n \in \mathbb{N}$ such that $gY_n = h$. The Green metric d_G is defined by

$$d_G(g, h) = -\log F(g, h)$$

If H is a hyperbolic group and if μ is finitely supported nondegenerate symmetric probability measure on H, then d_G is a left invariant hyperbolic metric quasi-isometric to the word metric on H by [3, Corollary 1.2].

The Martin kernel $K : H \times H \rightarrow \mathbb{R}$ is defined by

$$K(g, h) = \frac{F(g, h)}{F(id, h)}$$

There exist constants $\{C_g\}$ such that for all $h \in H$, $K(g, h) \leq C_g$ for each $g \in H$. Let $H \cup \partial_M H$ be the metric completion of H with respect to the metric d_M defined by

$$d_M(h_1, h_2) = \sum_{h \in H} D_h \frac{|K(h, h_1) - K(h, h_2)| + |\delta_{h, h_1} - \delta_{h, h_2}|}{C_h + 1}$$

where $\{D_h\}$ is chosen so that $\sum_{h \in H} D_h < \infty$. $\delta_{h, g}$ is the Kronecker delta.

Then it can be shown that $H \cup \partial_M H$ is in fact a compactification of H and the Martin kernel can be continuously extended to $H \times (H \cup \partial_M H)$. We call $\partial_M H$ as the Martin boundary of H. When H is a hyperbolic group, $\partial_M H$ is homeomorphic to the Gromov boundary of H. For this, see [2, 19] or [3, Corollary 1.8].

A positive function u on H is called harmonic if $u(h) = \sum_{g \in H} \mu(h^{-1} g)u(g)$ for all $h \in H$ and the Martin representation theorem says for any harmonic function u on H, there exists a measure ν_u on $\partial_M H$ such that

$$u(h) = \int_{\partial_M H} K(h, \xi) d\nu_u(\xi)$$

When we take u as a constant function $u \equiv 1$, the support of ν_u with the measure $\nu_u = \nu_1$ becomes the Poisson boundary of H. It is known that almost every sample path $\{Y_n\}$ converges to a point on $\partial_M H$. Thus for
a hyperbolic group H, we can identify ν with ν_1. We have the following change of variable formula.

$$
\frac{d(h^*\nu)}{d\nu}(\xi) = K(h^{-1}, \xi)
$$

For a hyperbolic group H, we can define the Busemann function on H with respect to the Green metric d_G by

$$
b_G^{\text{id,}\xi}(h) = \sup_{\{h_n\}} \limsup_{n \to \infty} (d_G(h_n, \text{id}) - d_G(h_n, h))
$$

where \sup is taken over all sequences $\{h_n\}$ converging to ξ. If we choose $\{h_n\}$ along a quasigeodesic ray toward ξ in Γ_H, then we can just take the usual limit as $h_n \to \xi$ to define $b_G^{\text{id,}\xi}(h)$. By the definition of the Martin kernel, we get

$$
\frac{d(h^*\nu)}{d\nu}(\xi) = e^{b_G^{\text{id,}\xi}(h^{-1})}
$$

We have the same formula for the push-forward measure ν_H on S^2_∞ which was used in the proof of [3, Prop. 5.5]

Lemma 2.5. Let H be a Kleinian group which is hyperbolic and let ν_H be the push-forward measure $\hat{\tau}_o(\nu)$ on S^2_∞ as before. Then

$$
\frac{d(h^*\nu_H)}{d\nu_H}(\hat{\tau}_o(\xi)) = e^{b_G^{\text{id,}\xi}(h^{-1})}
$$

where $\xi \in \partial H$ and $(h^*\nu_H)(A) = \nu_H(h \cdot A)$ for $A \subset S^2_\infty$ for any ν_H-measurable set $A \subset S^2_\infty$.

Now we apply [19, Theorem 3.3] to the Cayley graph of the hyperbolic group H. Since the Gromov boundary ∂H itself is the conical limit set of H, we can see that the diagonal action of H on $\partial H \times \partial H \setminus \Delta$ with respect to the measure class of $\nu \otimes \nu$ is ergodic.

Lemma 2.6. Let H be a Kleinian group which is hyperbolic. Let μ be a symmetric nondegenerate probability measure on H with finite support. Then the diagonal action of H on $S^2_\infty \times S^2_\infty \setminus \Delta$ is ergodic with respect to $\nu_H \otimes \nu_H$.

Proof. We know $(\partial H, \nu)$ and (S^2_∞, ν_H) are measurably isomorphic by the equivariant map $\hat{\tau}_o$ by Theorem 2.3. □

3. Singularity of measures on Λ_H

In this section, we prove Theorem 1.2. Recall that for $\eta_1, \eta_2 \in S^2_\infty$, the Busemann cocycle $B_o(\eta_1, \eta_2)$ is defined as $b_{o,\eta_1}(y) + b_{o,\eta_2}(y)$ where y is any point in the bi-infinite geodesic l joining η_1 and η_2. Geometrically $B_o(\eta_1, \eta_2)$ is the length of the geodesic subsegment of l contained in the intersection of the horoballs passing through o and centered at η_1, η_2. Thus it is nonnegative for any $(\eta_1, \eta_2) \in S^2_\infty \times S^2_\infty \setminus \Delta$ and it is zero if and only if o is contained in l.

Assume, seeking a contradiction, J is a H-invariant measure although it may not be an ergodic measure with respect to the H-action. We define the measure ρ_o on $S^2_\infty \times S^2_\infty \setminus \Delta$ by
$$d\rho_o(\eta_1, \eta_2) = e^{2\delta_H B_o(\eta_1, \eta_2)}d\rho_o(\eta_1)d\rho_o(\eta_2)$$
Then ρ_o is a H-invariant measure.

Thus we have for $\bar{\nu}_H$ the measure ν_H on $S^2_\infty \times S^2_\infty \setminus \Delta$ as
$$d\bar{\nu}_H(\tilde{o}_\xi_1, \tilde{o}_\xi_2) = e^{2(\xi_1, \xi_2)_G}d\nu_H(\tilde{o}_\xi_1)d\nu_H(\tilde{o}_\xi_2)$$
Then $\bar{\nu}_H$ is invariant under the action of H by \[2] Prop. 2.2. Furthermore it is an ergodic measure by Corollary \[2,6] Now we suppose ν_H is equivalent to ρ_o and we claim that the Radon-Nikodym derivative $d\rho_o/d\nu_H$ is ν_H-essentially upper and lower bounded by positive constants.

Proof of the claim: We have a ν_H-integrable function J and a $\bar{\nu}_H$-measurable function \tilde{J} defined by $d\nu_H = Jd\rho_o$ and $d\bar{\nu}_H = \tilde{J}d\rho_o$. Since \tilde{J} is positive almost everywhere, there exists a constant $C > 0$ such that the set $A := \{(\eta_1, \eta_2) \in S^2_\infty \times S^2_\infty \setminus \Delta| \tilde{J}(\eta_1, \eta_2) \leq C\}$ has positive ν_H-measure.

Since ν_H is ergodic, there exists $h \in H$ such that $(h\eta_1, h\eta_2) \in A$ for ν_H-almost every (η_1, η_2). Since ρ_o is also H-invariant, we have $\tilde{J}(\eta_1, \eta_2) = \tilde{J}(h\eta_1, h\eta_2)$ and thus A has the full $\tilde{\nu}_H$-measure. When $\eta_i = \tilde{o}_\xi_i$ for $i = 1, 2$, we have
$$\tilde{J}(\eta_1, \eta_2) = J(\eta_1)J(\eta_2)\frac{e^{2(\xi_1, \xi_2)_G}}{e^{2\delta_H B_o(\eta_1, \eta_2)}}$$
Thus we have for $\tilde{\nu}_H$-almost every (η_1, η_2),
$$C^{-1}\frac{e^{2\delta_H B_o(\eta_1, \eta_2)}}{e^{2(\xi_1, \xi_2)_G}} \leq J(\eta_1)J(\eta_2) \leq C\frac{e^{2\delta_H B_o(\eta_1, \eta_2)}}{e^{2(\xi_1, \xi_2)_G}}$$
Assume, seeking a contradiction, J is unbounded in $B_s \cap \Lambda_H \subset S^2_\infty$ where B_s is a small spherical open ball in S^2_∞. We choose another small spherical open ball B_s' far from B_s so that for all $(\eta, \eta') \in B_s \times B_s'$, $D^{-1} < e^{B_o(\eta, \eta')} < D$ for some constant $D > 0$. Since \tilde{o}_ξ is a continuous map, the distance in ∂H from the open set $\tilde{o}_\xi^{-1}(B_s')$ to the open set $\tilde{o}_\xi^{-1}(B_s)$ has a positive lower bound. If we let $\tilde{o}_\xi = \eta$ and $\tilde{o}_\xi' = \eta'$, this means $(\xi'|\xi)_G$ has an upper bound and the same is true for $(\xi'|\xi)_G$ from this, we get that $J(\eta)J(\eta')$ is positively upper and lower bounded for $\tilde{\nu}_H$-almost all $(\eta, \eta') \in B_s \times B_s'$. But there is a constant $D_1 > 0$ such that $B := \{\eta' \in B_s'|D_1^{-1} \leq J(\eta') \leq D_1\}$ has a positive measure so that $B_s \times B$ has a positive $\tilde{\nu}_H$-measure. Since J is unbounded on B_s, $J(\eta)J(\eta')$ cannot be essentially bounded in $B_s \times B$. This is a contradiction and we have proved our original claim.

Now we recall the change of variable formulas for conformal and harmonic measures.
$$\frac{d(h^s\rho_o)}{d\rho_o}(\eta) = e^{\delta_H b_o, s(h^{-1}.o)}$$
$$\frac{d(h^s\nu_H)}{d\nu_H}(\tilde{o}_\xi(\xi)) = e^{G_i, s(h^{-1})}$$
Since the density of ρ_o with respect to ν_H is uniformly bounded away from zero, there exists $C_1 > 0$
\[|\text{ess sup}_{\eta \in \Lambda_H} \delta_H b_{o,\eta}(h^{-1} \cdot o) - \text{ess sup}_{\xi \in \partial H} b_{id,\xi}^G(h^{-1})| < C_1 \]
By [3, Lemma 2.5], there exists a constant $C_2 > 0$ such that
\[|d_G(id, h^{-1}) - \text{ess sup}_{\xi \in \partial H} b_{id,\xi}^G(h^{-1})| < C_2 \]
Here we can replace ‘esssup’ by ‘sup’ because every open set in ∂H has a positive ν-measure and $b_{id,\xi}^G(h^{-1})$ is a continuous function with respect to ξ by Lemma 2.4. We also have
\[\sup_{\eta \in \Lambda_H} b_{o,\eta}(h^{-1} \cdot o) \leq d_{\mathbb{H}^3}(o, h^{-1} \cdot o) \]
by the triangle inequality. Therefore there exist C_3 (which may not be a positive number) such that for all $h \in H$,
\[\delta_H d_{\mathbb{H}^3}(o, h^{-1} \cdot o) - d_G(id, h^{-1}) > C_3 \]
But by Lemma 2.1 there exists a sequence $\{h_n\} \subset H$ such that $|h_n^{-1}| - \delta_H d_{\mathbb{H}^3}(o, h_n^{-1} \cdot o)$ goes to infinity. Since the word metric is quasi-isometric to the Green metric, we have a contradiction. □

Note that even in the case of $\Lambda_H = S^2_{\infty}$, Theorem 1.2 is not a direct consequence of [3, Prop. 4.5]. In fact, [3, Prop. 4.5] is using [3, Prop. 4.4] which is valid for the case that τ_o is a quasi-isometry and $\hat{\tau}_o$ is the natural homeomorphism between ∂H and S^2_{∞}. For the case that τ_o is not a quasi-isometry, we need to assume the existence of the continuous boundary extension $\hat{\tau}_o$ of τ_o.

References

[1] I. Agol, Tameness of hyperbolic 3-manifolds, preprint, arXiv:math.GT/0405568 (2004)
[2] A. Ancona, Théorie du potentiel sur les graphes et les variétés, École d’été de Probabilités de Saint-Flour XVIII-1988, Lecture Notes in Math. 1427, Springer (1990), 1-112.
[3] S. Blachère, P. Haïssinsky and P. Mathieu, Harmonic measures versus quasisymmetric measures for hyperbolic groups, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), 683-721.
[4] B. H. Bowditch, The Cannon-Thurston map for punctured surface groups, Math. Z. 255 (2007), 35-76.
[5] M. R. Bridson, A. Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319 (1999) Springer-Verlag, Berlin.
[6] D. Canary, Ends of hyperbolic 3-manifolds, Journal of Amer. Math. Soc., Vol 6. no. 1 (1993), 1-35.
[7] A. J. Casson, S. A. Bleiler, Automorphisms of surfaces after Nielsen and Thurston, London Math. Soc. Student Texts. 9. (1988).
[8] D. Calegari and D. Gabai, Shrinking and the taming of hyperbolic 3-manifolds, J. Amer. Math. Soc. 19 (2006), no.2, 385-446.
SINGULAR MEASURES ON THE LIMIT SET OF A KLEINIAN GROUP

[9] J. Cannon and W. P. Thurston, Group invariant Peano Curves, Geometry and Topology 11 (2007), 1315-1356.
[10] M. Coornaert, Mesures de Patterson-Sullivan sur le bord d’un espace hyperbolique au sens de Gromov, Pac. J. Math. 159, no. 2 (1993), 241-270.
[11] M. Culler, P. Shalen, Paradoxical decompositions, 2-generators Kleinian groups, and volumes of hyperbolic 3-manifolds, J. Amer. Math. Soc 5 (1992), no. 2, 231-288.
[12] W. Floyd, Group completions and limit sets of Kleinian groups. Invent. Math. 57 (1980), 205-218.
[13] E. Ghys and P. de la Harpe, editors. Sur les Groups Hyperbolique d’après Mikhael Gromov, vol. 83 of Progress in Mathematics. Birkhäuser, (1990).
[14] V. Gerasimov, Floyd maps for relatively hyperbolic groups, GAFA 22 (2012), 1-39.
[15] M. Gromov, Hyperbolic groups, In S. M. Gersten, editor, Essays in group theory, volume 8 of MSRI publications (1987), 75-263. Springer-Verlag.
[16] Y. Guivarch and Y. Le Jan, Sur l’enroulement du flot géodésique, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), 645-648.
[17] V. A. Kaimanovich, Poisson boundaries of hyperbolic groups, C. R. Acad. Sci. Paris Sér. I Math. 318 (1994), 59-64.
[18] V. A. Kaimanovich, The Poisson formula for groups with hyperbolic properties, Ann. of Math. 152 (2000), 659-692.
[19] V. A. Kaimanovich, Ergodicity of harmonic invariant measures for the geodesic flow on hyperbolic spaces, Journal für die reine und angewandte Mathematik 455 (1994), 57-104.
[20] I. Kapovich and N. Benakli, Boundaries of hyperbolic groups, In Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), volume 296 of Contemp. Math., 39-93. Amer. Math. Soc., (2002) Providence, RI.
[21] A. Karlsson and G. A. Margulis, A multiplicative ergodic theorem and nonpositively curved spaces, Commun. Math. Phy. 208 (1999), 107-123.
[22] C. McMullen, Local connectivity, Kleinian groups and geodesics on the blow-up of the torus, Invent. math. 97 (2000), 95-127.
[23] Y. N. Minsky, On rigidity, limit sets and end invariants of hyperbolic 3-manifolds, J. Amer. Math. Soc. 7 (1994), 539-588.
[24] M. Mj, Cannon-Thurston map for Surface groups, preprint, arXiv:math.GT/0511041 (2006). To appear in Ann. of Math.
[25] M. Mj, Cannon-Thurston maps for Kleinian groups, preprint, arXiv:1002.0996
[26] M. Mj, Ending laminations and Cannon-Thurston maps, arXiv:math 0701725 (2007), To appear in Geometric and Functional analysis.
[27] M. Mj, Cannon-Thurston maps for pared manifolds of bounded geometry, Geometry and Topology 13 (2009), 189-245.
[28] J. Morgan, On Thurston’s uniformization theorem for three dimensional manifolds, The Smith Conjecture, Academic Press (1984), 37-125.
[29] P. J. Nicholls, The ergodic theory of discrete groups, London Math. Soc. Lecture Note Series 143 (1989), Cambridge Univ. Press.
[30] S. J. Patterson, The limit set of a fuchsian group, Acta math. 136 (1976), 241-273.
[31] V. A. Rokhlin, On the fundamental ideas of measure theory, Amer. Math. Soc. Trans. 71 (1962).
[32] D. Sullivan, The density at infinity of a discrete group of hyperbolic motions, Publ. math. IHES 50 (1979), 171-202.
[33] W. P. Thurston, The geometry and topology of 3-manifolds, Lecture note (1980), available on http://library.msri.org/nonmsri/gt3m/
[34] C. Yue, The ergodic theory of discrete isometry groups on manifolds of variable negative curvature, Trans. Amer. Math. Soc. Volume 348, no.12 (1996), 4965-5005.
Woojin Jeon
School of Mathematics
KIAS, Hoegiro 87, Dongdaemun-gu
Seoul, 130-722, Korea
jwoojin@kias.re.kr