Potential Sabotage of Host Cell Physiology by Apicomplexan Parasites for Their Survival Benefits

Shalini Chakraborty, Sonti Roy, Hiral Uday Mistry, Shweta Murthy, Neena George, Vasundhra Bhandari* and Paresh Sharma†

National Institute of Animal Biotechnology (NIAB-DBT), Hyderabad, India

Plasmodium, Toxoplasma, Cryptosporidium, Babesia, and Theileria are the major apicomplexan parasites affecting humans or animals worldwide. These pathogens represent an excellent example of host manipulators who can overthrow host signaling pathways for their survival. They infect different types of host cells and take charge of the host machinery to gain nutrients and prevent itself from host attack. The mechanisms by which these pathogens modulate the host signaling pathways are well studied for Plasmodium, Toxoplasma, Cryptosporidium, and Theileria, except for limited studies on Babesia. Theileria is a unique pathogen taking into account the way it modulates host cell transformation, resulting in its clonal expansion. These parasites majorly modulate similar host signaling pathways, however, the disease outcome and effect is different among them. In this review, we discuss the approaches of these apicomplexan to manipulate the host–parasite clearance pathways during infection, invasion, survival, and egress.

Keywords: Plasmodium, Toxoplasma, Theileria, Babesia, Cryptosporidium, host signaling pathways

INTRODUCTION

The Apicomplexan parasites represent a major class of pathogens with a wide host range. They have emerged as one of the most successful intracellular parasites, which efficiently modulate the host for their survival benefits. In this review, we focus on the potential sabotage mechanisms adopted by the five well-studied pathogens of human and veterinary importance: Plasmodium falciparum (malaria), Babesia bovis (babesiosis), Theileria annulata (theileriosis), Toxoplasma gondii (toxoplasmosis), and Cryptosporidium parvum (cryptosporidiosis). These parasites are morphologically similar; however, variations exist in the context of host range, mode of infection, invasion, and replication inside the host (Table 1).

Beginning with transmission, P. falciparum, T. annulata, and B. bovis are vector borne; however, C. parvum and T. gondii do not require a vector and the host is infected by oocyst-ingestion (Table 1). T. annulata solely infects animals impacting their health and causing huge economic loss, whereas other parasites have broader host preference range. P. falciparum and T. gondii infections affect human health and cause mortality worldwide. On the other hand, B. bovis and C. parvum are comparatively less pathogenic with fewer reported cases of mortality and morbidity.

In this review, we epitomize the major blueprint of the pathways targeted by these parasites to sabotage the host defense mechanism for their survival and consequent disease progression.
TABLE 1 | A generalized comparative account among Theileria, Plasmodium, Babesia, Toxoplasma, and Cryptosporidium parasites.

Cells infected	Theileria	Plasmodium	Babesia	Toxoplasma	Cryptosporidium
Lymphocytes and RBC	Yes	Yes	Yes	No	Yes
Dense granules	No	Yes	Yes	No	Yes
Parasitophorous vacuole (PV)	No	Yes	No	No	Yes
Apicoplast	No	Yes	Yes	No	Yes
Host	Tick	Mosquito	Tick	No	No
Invasion process	Zippering	Gliding	No	Yes	Yes
Conoid structure	Tick	Mosquito	No	No	No
Vector	T. annulata	P. falciparum, P. vivax	T. gondii	P. knowlesi	C. parvum
Major species	T. parva, T. equi, T. orientalis	P. ovale, Plasmodium berghei, P. knowlesi, P. malariae	B. bigemina, Babesia bovis, B. major, B. divergens, B. microti	Toxoplasma gondii	Cryptosporidium parvum, C. hominis, C. canis, C. felis, C. meleagridis, C. mumps
Pathogenic stage	Schizont	Schizont	Schizont	No	No
Zoonotic	Yes	No except P. knowlesi	Yes	Yes	Yes

Plasmodium: THE MALARIA PARASITE

Plasmodium falciparum is considered the most lethal among the *Plasmodium* species, as it accounts for serious illness and high mortality (1–5). Two hundred fourteen million new cases of malaria are reported worldwide with a 35% mortality rate reported for children below 5 years of age (6).

Malaria transmission cycle starts with the female *Anopheles* feeding on a mammalian host. Thereafter, *Plasmodium* smartly exploits host cell machinery in numerous ways discussed hereafter to complete its life cycle (7–9). The sporozoites harbored in the salivary gland enter the host blood stream and pass on to the hepatic sinusoid (10–12). The presence of antihistamines and immunomodulators in the salivary gland secretion protects *Plasmodium* from the initial host immune response (10, 11, 13). The endothelial cell lining the liver sinusoid, guarded by kupffer cells (liver macrophages) prevents sporozoite entry into the hepatocytes (12, 14, 15). The circumsporozoite protein (CSP) of the parasite interacts with LRP-1 (low-density lipoprotein receptor-related protein) present on the kupffer cells thereby upregulating cAMP. Thereafter, cAMP mediates EPAC (exchange protein activated by cAMP) inhibition of reactive oxygen species (ROS) production ultimately suppressing the macrophage defense (15–17) (Figure 1). Simultaneously, the expression of TNFα, IL-6, and monocyte chemoattractant protein-1 (MCP-1) is downregulated and there is an increased production of anti-inflammatory IL-10 cytokine (15). The sporozoite also downregulates expression of kupffer cells MHC-1 and IL-12 to overturn their antigen presenting ability and ease infiltration of sporozoites into hepatocytes (15, 17). All these events result in the successful invasion.

Furthermore, the role of calcium (Ca++) in activating various parasite proteins involved in the process of invasion, egress, motility, and cell cycle regulation has been observed (18–21). In *Plasmodium*, endoplasmic reticulum and acidocalcisomes are the major Ca++ reservoirs which are also observed in *Toxoplasma*. The activation of protein kinase G (PKG) by an unknown parasitic signal during invasion or egress releases Ca++ from the parasite endoplasmic reticulum mediated by cyclic guanosine monophosphate (cGMP) (20). Furthermore, phosphoinositide phospholipase C (PI-PLC) is activated by cGMP-dependent PKG which results in hydrolysis of phosphatidylinostitol 4, 5-bisphosphate (PIP2) to diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). The translocation of IP3 on to the ER surface causes efflux of Ca++ to the cytoplasm by the formation of IP3-Ca++ channel (20, 22) (Figure 1). The increase in the cytoplasmic Ca++ levels activates various calcium-dependent proteases and kinases, like calcium-dependent protein kinases (PfCDPK), double C2 domain protein (PfDOC2) which induce the secretion of microneme and rhoptry proteins for cell adherence and invasion (20, 23, 24).

The hepatocyte invasion of the sporozoites occurs via Ca++-mediated activation and secretion of microneme proteins, CSP and thrombospondin-related adhesion protein (TRAP) such as Trap-like protein (TLP) (12, 15, 25) (Figure 1). The CSP secreted to the apex in association with actin covers the surface of the sporozoites and its glycosyl phosphatidyl inositol (GPI) anchored C terminus helps in the invasion of sporozoites (12, 26, 27). PfTRAP (TLP) protein interaction with actomyosin motor complex helps in gliding movement of the parasite (15, 25, 28).

The transcellular migration by sporozoites is mediated by the secretion of perforin protein SPECT or perforin like protein1 (PiPLP1), which is also demonstrated to be important in cell traversal, to perforate the hepatocytes (12, 29). Hepatocytic growth factor (HGF) is released by the perforated hepatocyte (30, 31), which activates c-MET receptor tyrosine kinase (c-MET RTK) on them resulting in the activation of tyrosine residues at the cytoplasmic domain of the c-MET receptor (32, 33). This recruits phosphoinositide 3-kinase (PI3-K) which phosphorylates and sequesters proapoptotic proteins of the BCL-2 family (Bad, Bim, PUMA) through AKT (32–35). AKT, which activates anti-apoptotic proteins (BCl-2, BCL-XL, A1), inhibits Bax on the outer mitochondrial membrane and hinders the permeabilization of the mitochondrial membrane and the subsequent release of proapoptotic signaling molecule such as cytochrome-c (Cyt-c) and eventually blocks apoptosis (Figure 2) (12, 27, 32, 33).

Once the parasite has already invaded the hepatocyte, host cell apoptosis block is independent of the PI3-K pathway. It seems that the direct intervention of parasite proteins is necessary for...
modulating the host survival signal (36). One such example is hypoxia mediated by host-dependent HIF-α through AMPK activation which promotes proliferation and parasite survival in the liver (37). The role of the autophagy marker Atg8 on *P. falciparum* might suggest the parasite’s involving degradative functions, but it instead majorly contributes toward biogenic process (38, 39). After the exoerythrocytic merogony, they trigger apoptosis, although this does not seem to occur by activating the caspase-dependent pathway nor via the expression of phosphatidylserine (36, 40). However, a serine-repeated antigen (ERA), a cysteine protease identified in *Plasmodium berghei*, is upregulated and is reported to be playing a role in parasite-induced cell death, parasitophorous vacuole (PV) disruption and merozoite formation at the time of exoerythrocytic merozoite egress (12). It suggests that the parasite secretory proteins are mediators of host cell apoptosis in the late liver stage. Among seven calcium-dependent protein kinases (CDPK1–7) known in *Plasmodium*, inhibition of PfCDPK5 leads to schizont stage arrest (20).

Erythrocyte invasion of *Plasmodium* occurs in two stages. First, the interaction of merozoite with the erythrocyte causes host cytoskeletal distortion with the help of high Ca²⁺ level, increasing the contact area between the two favoring merozoite entry and the alignment of its apical pole (14, 19, 20). The role of calcineurin (CnA, CnB) has been implicated in merozoite attachment to erythrocytes, which when knocked down results in impaired invasion (20, 41). Furthermore, DOC2 activation induces microsome secretion of erythrocyte binding antigen (EBA175) and AMA1 (microneme apical antigen1), which are involved in the attachment (20, 42) (Figure 1). At the second stage of invasion, AMA1, in association with RON2 (rhoptry neck protein), binds to the erythrocyte ligand resulting in the formation of tight junction via TRAP (43). It has also been observed that the localization of formin at the apical pole nucleates the parasite F-actin with its FH2 domain and helps in parasite motility (44). The forward propulsion of the actin-myosin filament helps in the invasion of merozoite and encapsulation into the PV in the host cytoplasm (14, 45–47).

Plasmodium invasion entails increased erythrocyte membrane permeability in order to gain nutrients from the extracellular fluid for its survival (45, 48) and further, utilizes the NF-κB-dependent pathway to inhibit host cell apoptosis (49). Following the invasion, the parasite secretes proteins essential for survival, cell adhesion, and pathogenicity. These are transported from the cytosol to the plasma membrane through vesicular transport. The interplay of protein export elements (PEXEL) and *Plasmodium* translocon of exported proteins (PTEX), cause the
Figure 2 | Overall survival mechanism used by the Apicomplexan parasites in different host cells. Toxoplasma and Cryptosporidium bind to the surface receptor of host cells through the ligands such as EGF, TNF-α, and parasitic surface proteins such as circumsporozoite protein (CSP). After invasion into the host cells such as enterocytes, macrophages, hepatocytes, etc., the parasite modify the host signaling pathway such as TRADD, NF-κB, PKB/AKT resulting in production and upregulation of anti-apoptotic proteins such as Bcl-2, Bcl-xl, and anti-inflammatory cytokines such as IL-10 thereby stopping cytochrome-c (Cyt-c), TNF-alpha-related-apoptosis-inducing ligand (TRAIL) and BAD, BAX production, and ensuring its survival in the host. Plasmodium parasite mainly modifies host PKB/AKT signaling pathway causing upregulation of anti-apoptotic protein and downregulation of pro-apoptotic proteins such as BAD/BAX. Theileria schizont proliferates uncontrollably within the host macrophages and lymphocytes. Right after invasion, it upregulates anti-apoptotic proteins such as c-FLIP, IAPs, Bcl-2, Bcl-XL, and proto-oncogenic proteins such as C-myc, antiapoptotic genes such as C-FLIP, Bcl-2, and matrix metallo-protein (MMP9) by majorly targeting host signaling pathways such as NF-κB, JNK/AKT, JAK/STAT, phosphoinositide 3-kinase (PI3-K)/MAPK, and TGF-β2. The regulation of these host signaling pathways causes continuous survival and proliferations of the parasite infected cells which are also common in some cases.

The influx of Ca^{2+} from the extracellular fluid activates CaMK (Ca^{2+}/calmodulin dependent kinase) via calcium-dependent calmodulin, which phosphorylates host cytoskeletal substrates also resulting in a rapid influx of Ca^{2+}. This Ca^{2+} activates and releases host calpain, which causes lysis and dissolution of host cytoskeleton facilitating parasite release (55, 56). The modulation of host survival signaling by Plasmodium allows them to successfully establish a specific environment where they can proliferate and differentiate leading to pathogenesis.

Despite substantial progress in the malaria research, restraining the disease still remains a challenge. P. falciparum parasites owing to their multiple forms/stages, antigenic polymorphisms and AT-rich genome have further impended the problem. Current chemotherapy is based on using artemisinin and artemisinin-based combination therapies (ACTs), however, reports of drug resistance have already emerged. An effective vaccine should be the ultimate goal for long-term control of the disease. To date only...
the RTS, S/AS01 vaccine, targeting the CSP 178 of *P. falciparum* has reached phase three trials, but has not shown much efficacy (57). There are still many gaps in the understanding of the invasion process of *P. falciparum*, such as which molecules signal the release of Ca2+, which leads to adherence and invasion by activating many pathways. These pathways playing role in Ca2+ release can be targeted for identifying the novel antigens for developing future vaccines and therapeutics.

Babesia: MALARIA LIKE PARASITE

Babesiosis is a hemolytic disease prevalent in tropical and sub-tropical parts of the world with a broad host range. *B. microti* and *B. divergens* infect humans and have emerged as a public health concern predominantly in the United States and Europe, respectively (58). Human cases of babesiosis have surfaced recently in Asian countries, including India and Korea (59). *B. bovis* and *B. bigemina* both infect cattle but, however, higher morbidity and mortality are associated with *B. bovis* resulting in a huge economic loss (60). There are very limited studies investigating the parasite and its host interactions as compared to the other apicomplexan parasites. Owing to the striking similarity between Babesia and *Plasmodium* (61), the disease pathogenesis is considered to be similar to malaria during infection in cattle (60).

Babesia multiplies in the host erythrocyte in a similar fashion to *Plasmodium*, and they are transovarially transmitted in the vector except for *B. microti* (Table 1) (62). The life cycle of the parasite begins with tick feeding on host blood and simultaneously releasing sporozoites into the host bloodstream (63). Invasion occurs in a similar fashion as observed for *Plasmodium, Toxoplasma*, and Cryptosporidium via gliding mechanism using microneme and rhoptry secretions (61, 64). Parasite loosely attaches to the surface of the host RBC by its surface GPI anchored proteins and within the apical secretory organelles. Variant erythrocyte surface antigen 1 (VESA1), a heterodimeric protein of *Babesia* is known to play role in cytoadherence to the host erythrocyte surface (62, 65). After entry of the sporozoites into the red blood cells, they divide by binary fission and produce merozoites. Erythrocyte lysis further allows each merozoite to invade a new RBC and successive merogonies follow (62, 64, 66, 67). Merozoites interact with the RBC surface receptors and play a major role in invasion.

In *Babesia*, the role of Ca2+ has been primarily described in invasion and egress mechanism of the parasite, however, the modulation of the host signaling pathways are not thoroughly understood. In *B. bovis*, Ca2+-dependent protein kinase inhibitor showed growth limiting effects (68), though, in *B. divergens*, it impacted egress of the merozoites from erythrocytes (69, 70). Since there is no PV formation in *Babesia*, less Ca2+ is released during egress as compared to *P. falciparum* parasites (Table 2) (70, 71).

Transovarial transmissions in tick vector and straight entry of sporozoites into erythrocytes are some key features, which make *Babesia* parasites distinct from *Plasmodium* or *Theileria* parasites. Few studies to understand the mechanism of disease pathogenesis during *Babesia* infections have been published. Also, the mechanism of entry and transmission of the parasites are poorly defined. It will be important to investigate the parasite invasion and evasion strategies along with parasite vector interactions for identifying key genes that might play an important role in immune evasion or disease pathogenesis.

Theileria: A LIVESTOCK PATHOSTMG

Theileria annulata and *T. parva* cause tropical theileriosis and east coast fever, respectively, in ruminants predominantly in cattle causing enormous economic loss to the livestock industry (106, 107). Tick vector transmits the parasite upon feeding on animal through the saliva (108–110). After entering the blood stream, it infects WBC of different lineage, *T. parva* infects B cells and T cells whereas *T. annulata* infects B cells and cells of monocyte lineage. The sporozoites, i.e., the infective stage of the parasite passively invade the host cell by zippering mechanism, which is unlike other apicomplexan discussed in which a tight continuous junction is formed between the host cell surface and the parasite sporozoites (108). In addition, the role of MHC class I molecule (Figure 1) (111), intrasporozoite Ca2+ and protein kinases of host and parasite and the G-protein linked signaling has been shown in invasion (75, 112). After entry into the host cell, parasite rhoptries and its microsphere discharges dissolve the enveloping PV membrane (108), and move to the host cell cytoplasm rather than to PV in comparison to other apicomplexan parasites and provides it with an advantage of escaping lysosomal degradation (Table 1). Additional advantage of staying in the host cytoplasm allows the parasite to modulate several signaling pathways, such as TGF-β, JNK, PI3-K, NF-κB, src kinase, and casein kinase 2 (CK2) (80, 100, 113–115).

Theileria transforms their host cell into a cell with a cancerous phenotype by modulating several host cell kinases and activating transcription factors (116). Several studies have been done to identify parasite protein instigating epigenetic changes that may lead to successful transformation. *T. annulata* protein, TaPIN (secretory prolyl isomerase Pin) has been reported to promote transformation by degrading FBW7, a host ubiquitin ligase via stabilizing c-JUN (117). p104 and TaSP are surface proteins which have been reported to be phosphorylated in a host cell cycle-dependent manner and might be involved in transformation (118). Two more proteins are TashAT group of protein, which contains AT hook DNA-binding motif and nuclear localization signal and found to be localized in host nucleus (119). SuAT1, a parasite gene, contains AT hook DNA-binding polypeptide and predicted signal peptide, PEST motifs and nuclear localization signals, which may interact with the host cell and play a role in transformation (120). Studies to identify epigenetics changes are scarce, only one study has shown the role of oncomiR mir155 in repressing DET1 protein (involve in c-Jun ubiquitination) and stabilizing c-Jun (121). The parasite schizont hijacks the host mitotic assembly resulting in its clonal expansion (122–124).

Theileria transformed cells can be reversed, unlike tumor cells upon treatment with BW720c (122). The transformation occurs by modulating several signaling pathways which ultimately inhibits apoptosis, increases proliferation, and encourages metastasis (116). NF-κB is constitutively expressed in *Theileria* infected cells, which in turn upregulates many anti-apoptotic proteins, such as c-FLIP, IAPs, Bcl-2, and Bcl-XL, and induces Gadd45β that blocks the pro-JNKK2-mediated apoptotic JNK pathway. NF-κB...
TABLE 2 | A number of host signaling pathways modulated by *Theileria*, *Plasmodium*, *Babesia*, *Toxoplasma*, and *Cryptosporidium* during its invasion, survival, expansion, and egress in the host cell.

Host factor	Parasite	Mechanism	Benefit to parasite	Reference	
Cytoskeletal Remodeling	*Theileria*	Actin rearrangement through ERM proteins	Helps in cell motility and dissemination	Baumgartner et al. (72)	
	Plasmodium	Parasite formin-mediated F-actin nucleation	Key event for parasite motility/invasion of erythrocytes.	Baum et al. (44)	
	Toxoplasma	Via F-actin and Arp2/3 recruitment.	Parasite motility and entry.	Gonzalez et al. (73)	
	Cryptosporidium	Activating Arp2/3 via c-src kinase and phosphoinositide 3-Kinase (PI3-K).	Parasite entry	Chen et al. (74)	
Ca²⁺ Signaling	*Theileria*	Intrasporozoite calcium	Favors internalization	Shaw (75)	
	Plasmodium	Mobilization of intracellular Ca²⁺	Helps invasion	Gao et al. (42)	
	Toxoplasma	Mobilization of extra/intracellular Ca²⁺	Microneme secretion required for cell motility	Lourido and Moreno (21)	
	Cryptosporidium	PKCa depended on leaky tight junctions	Favors invasion	Hashim et al. (76)	
	Babesia	Mechanism unknown	Parasite entry and egress	Mossaad et al. (70)	
Survival or Apoptosis	NF-κB	*Theileria*	Direct activation through IKK recruitment	Helps survival	Heussler et al. (77)
		Plasmodium	Activated by infected erythrocyte	Helps survival by upregulating anti-apoptotic pathway	Tripathi et al. (49)
		Toxoplasma	Activated either by host or parasite IKK	Helps survival	Molestinia and Sinai (78)
		Cryptosporidium	Parasite-induced activation	Helps survival	Chen et al. (79)
	PI3-K	*Theileria*	Activated via TGF-β2 receptor	Promotes survival via inhibiting host apoptosis	Haidar et al. (93)
		Plasmodium	Activated via c-Met receptor tyrosine kinase receptor in hepatocytes	Helps survival	Rodrigues et al. (33)
		Toxoplasma	Activated via Gα-PCR (Protein Coupled Receptor)	Promotes survival via inhibiting host apoptosis	Kim (81)
		Cryptosporidium	Recruitment of PI3-K by sporozoite attachment	Helps in invasie	Chen et al. (74)
JAK/STAT	*Theileria*	Activated via Granulocyte-macrophage colony-stimulating factor (GM-CSF) autocrine signaling	Promotes proliferation via enhancing host c-myc levels	Deussage et al. (82)	
		Toxoplasma	Prolong phosphorylated state of STAT3/6.	Promotes survival via limiting IL12 and IFNγ signaling.	Lailiberté and Carruthers (83)
		Cryptosporidium	STAT1 inactivation by T. gondii inhibitor of STAT1 (TgI ST)	Promotes survival via preventing IFNγ signaling.	Olias et al. (84)
			Inhibited via STAT1 α depletion	Promotes survival via inhibition of NO production	Lean et al. (85)
p53	*Theileria*	Sequestration of p53 and degradation	Aids survival	Haller et al. (88)	
		Plasmodium	Mdm2-mediated p53 inhibition	Promotes liver stage infection	Kaushansky et al. (87)
		Toxoplasma	GRA16-mediated p53 regulation	Benefits the parasite by altering p53 levels.	Bougdour et al. (88)
MAP Kinase Pathway	JNK	*Theileria*	Activated via grb2 association with TGF-β2	Promotes survival and metastasis.	Lizardia (93)
		Toxoplasma	JNK is inhibited	Escaping JNK-mediated apoptosis	Kim (81)
		Cryptosporidium	JNK is inhibited	Escaping JNK-mediated apoptosis	Liu et al. (90)
	p38 MAPK	*Toxoplasma*	IFN-γ signaling-mediated production of iNOS is inhibited.	Facilitates survival	Brumlík et al. (91)
		Cryptosporidium	Induces NETosis	Killing of parasite	Muñoz-Caro et al. (92)
	ERK1/2	*Toxoplasma*	Activated via TgERK7	Ensures survival and reinfection	Li et al. (93)
		Cryptosporidium	Parasite-induced NETosis	Favors killing of parasite	Muñoz-Caro et al. (92)
Autophagy	*Theileria*	Inhibits	Promotes survival	Duszenko et al. (94)	
		Plasmodium	AKT-activated mammalian target of rapamycin inhibits autophagy	Promotes liver stage infection	Kaushansky et al. (97)
		Toxoplasma	Via EGFR/AKT pathway	Helps parasite bypass autophagy	Muniz-Feliciano et al. (95)
Cellular Metabolic Stress	Reactive oxygen species (ROS)	*Theileria*	Activates NF-κB and PI3-K signalling pathways	Promoting survival	Metheni et al. (96)
		Plasmodium	ROS accumulation in RBCs	Inhibit parasite growth	Uysen et al. (17)
		Toxoplasma	Alters ROS levels by downregulating nox4 and inhibiting p38	Promotes survival	Trecek et al. (97)
		Cryptosporidium	Scavenges ROS by parasite peroxidase	Promotes survival	Hong et al. (98)
		Babesia	Scavenges ROS by parasite peroxidase	Promotes survival	Bosch et al. (99)

(Continued)
is activated by recruitment and phosphorylation of IKK signalosome α and β subunits, which further phosphorylates inhibitory κB (iκB) setting NF-κB free to translocate to the nucleus (125). Infected cells release a plethora of cytokines and growth factors that activate TGF-β receptor (I and II) and TNF-α receptor (126). TGF-β2 activates smad2/3 and subsequently smad4, which over-expresses COX-2 resulting in increased levels of prostaglandins and downregulates PKIG, a potent inhibitor of PKA pathway. Simultaneously, TGF-β2 is accounted for parasite motility and invasiveness by activating Rho–ROCK kinase and recruiting an adaptor protein growth factor receptor-bound protein 2 (Grb2) to TGF-R1 receptor. The signaling descends by Grb2, activating downstream PI3-K/akt and JNK pathway (80, 127). Activator protein 1 (AP1), a JNK activated transcription factor drives B cell integration cluster (BIC) transcription upregulating miRNA 155 which inhibits DET1 resulting in accumulation of c-Jun and increased proliferation (89, 121, 128–131). B-1 a bovine analog which inhibits DET1 resulting in accumulation of c-Jun and integration cluster (BIC) transcription upregulating miRNA 155 protein 1 (AP1), a JNK activated transcription factor drives B cell development (82, 127). Activator of p53 are suppressed majorly by NF-κB and CK2 (82, 140, 141). CK2 also dampens TNF/Fas-mediated apoptosis and accelerates iκB degradation augmenting NF-κB activation. Activation of JAK/STAT pathway via GM-CSF auto-crime loop enhances c-myc expression, whereas phosphorylation by CK2 stabilizes this potent oncogene primarily upregulated in *Theileria* infected cells (82, 115).

The proliferation of infected cells is followed by evasion and metastasis, which involves cytoskeleton alteration. TNF-α binding to its receptor recruits TNF receptor-associated factor 2 (TRAF2), which may either activates NF-κB or a mitogen-activated protein kinase, MAP4K4 (134). MAP4K4 bifurcates into JNK activation and CK2 (82, 115). CK2 and PKC-mediated Ca2+ influx, finally activating calpain which proteolyse host cytoskeleton.

CYTOLYSIS AND EGRESS

Host factor	Parasite	Mechanism	Benefit to parasite	Reference
NOS	Theileria	Upregulation of iNOS by NF-κB	Promotes survival via NO-mediated inhibition of Fas apoptosis	Durnani et al. (100)
Plasmodium	Theileria	Infection-mediated upregulation of iNOS	Parasite clearance	Chiwakata et al. (101)
Toxoplasma	Theileria	TgMAPK1-mediated NO reduction	Promotes survival	Brumlík et al. (91)
Babesia	Theileria	Inhibition of IFN-γ-mediated NO upregulation	Promote survival	Lean et al. (85)
Hypoxia	Theileria	IFNγ-mediated upregulation	Parasite growth arrest	Goff et al. (102)

Page 7

Table 2 (Continued)

Host factor	Parasite	Mechanism	Benefit to parasite	Reference
Plasmodium	Hypoxia	HIF-induced AMPK activation	Enhances survival	Metheni et al. (103)
Toxoplasma	Hypoxia	Protects HIF1α degradation and enhanced HK2 expression	Promotes development of exoerythrocytic forms (EEF) and increases iron uptake	Ng et al. (37)
Babesia	Toxoplasma	PKC-mediated Ca2+ influx, finally activating calpain which proteolyse host cytoskeleton.	Parasite egression	Chandramohanadas et al. (105)
Plasmodium	Toxoplasma and Plasmodium	PKC-mediated Ca2+ influx, finally activating calpain which proteolyse host cytoskeleton.	Parasite egression	Milholland et al. (56)

Parasite Mechanism	Benefit to parasite	Reference	
Plasmodium	TgMAPK1-mediated NO reduction	Promotes survival	Brumlík et al. (91)
Babesia	Inhibition of IFN-γ-mediated NO upregulation	Promote survival	Lean et al. (85)
Hypoxia	IFNγ-mediated upregulation	Parasite growth arrest	Goff et al. (102)
Plasmodium	HIF-induced AMPK activation	Enhances survival	Metheni et al. (103)
Toxoplasma	Protects HIF1α degradation and enhanced HK2 expression	Promotes development of exoerythrocytic forms (EEF) and increases iron uptake	Ng et al. (37)

Figure 2

- *Theileria* modulates the host P13-K/akt pathway to be regulated by granulocyte-macrophage colony-stimulating factor (GM-CSF), depending on an autocrine loop and, hence, sharing a major role in cell proliferation (134, 135). Phosphorylation of the AKT protein by class I P13-K facilitates the release of Rb bound E2F transcription factor, activating MDM2 (E3 protein ubiquitin ligase and negative regulator of p53 tumor suppressor gene) directly or through mammalian target of rapamycin (mTOR). AKT-mediated inhibition of several proapoptotic genes (bad, foxo) and GSK–3β help the infected cells to combat the stress-induced mitochondrial-mediated apoptosis and to maintain elevated c-Myc levels, respectively (Table 2; Figure 2) (136). Hypoxia-inducing factor (HIF-1α) is activated by mTOR pathway and by constitutive NF-κB and API production (137). Increased levels of ROS during infection and HIF-1 expression induce the Warburg effect allowing the parasite to establish uncontrolled proliferation (96, 103, 138, 139). P13-K/akt pathway, therefore, plays a very important role in survival and proliferation as well as in metastasis of *Theileria*. PTEN, an inhibitor of the PI3-K/AKT pathway and activator of p53 are suppressed majorly by NF-κB and CK2 (82, 140, 141). CK2 also dampens TNF/Fas-mediated apoptosis and accelerates iκB degradation augmenting NF-κB activation. Activation of JAK/STAT pathway via GM-CSF auto-crime loop enhances c-myc expression, whereas phosphorylation by CK2 stabilizes this potent oncogene primarily upregulated in *Theileria* infected cells (82, 115).

- The proliferation of infected cells is followed by evasion and metastasis, which involves cytoskeleton alteration. TNF-α binding to its receptor recruits TNF receptor-associated factor 2 (TRAF2), which may either activates NF-κB or a mitogen-activated protein kinase, MAP4K4 (134). MAP4K4 bifurcates into JNK activation and CK2 (82, 115). CK2 also dampens TNF/Fas-mediated apoptosis and accelerates iκB degradation augmenting NF-κB activation. Activation of JAK/STAT pathway via GM-CSF auto-crime loop enhances c-myc expression, whereas phosphorylation by CK2 stabilizes this potent oncogene primarily upregulated in *Theileria* infected cells (82, 115).

- The proliferation of infected cells is followed by evasion and metastasis, which involves cytoskeleton alteration. TNF-α binding to its receptor recruits TNF receptor-associated factor 2 (TRAF2), which may either activates NF-κB or a mitogen-activated protein kinase, MAP4K4 (134). MAP4K4 bifurcates into JNK activation and CK2 (82, 115). CK2 also dampens TNF/Fas-mediated apoptosis and accelerates iκB degradation augmenting NF-κB activation. Activation of JAK/STAT pathway via GM-CSF auto-crime loop enhances c-myc expression, whereas phosphorylation by CK2 stabilizes this potent oncogene primarily upregulated in *Theileria* infected cells (82, 115).

- The proliferation of infected cells is followed by evasion and metastasis, which involves cytoskeleton alteration. TNF-α binding to its receptor recruits TNF receptor-associated factor 2 (TRAF2), which may either activates NF-κB or a mitogen-activated protein kinase, MAP4K4 (134). MAP4K4 bifurcates into JNK activation and CK2 (82, 115). CK2 also dampens TNF/Fas-mediated apoptosis and accelerates iκB degradation augmenting NF-κB activation. Activation of JAK/STAT pathway via GM-CSF auto-crime loop enhances c-myc expression, whereas phosphorylation by CK2 stabilizes this potent oncogene primarily upregulated in *Theileria* infected cells (82, 115).

- The proliferation of infected cells is followed by evasion and metastasis, which involves cytoskeleton alteration. TNF-α binding to its receptor recruits TNF receptor-associated factor 2 (TRAF2), which may either activates NF-κB or a mitogen-activated protein kinase, MAP4K4 (134). MAP4K4 bifurcates into JNK activation and CK2 (82, 115). CK2 also dampens TNF/Fas-mediated apoptosis and accelerates iκB degradation augmenting NF-κB activation. Activation of JAK/STAT pathway via GM-CSF auto-crime loop enhances c-myc expression, whereas phosphorylation by CK2 stabilizes this potent oncogene primarily upregulated in *Theileria* infected cells (82, 115).

- The proliferation of infected cells is followed by evasion and metastasis, which involves cytoskeleton alteration. TNF-α binding to its receptor recruits TNF receptor-associated factor 2 (TRAF2), which may either activates NF-κB or a mitogen-activated protein kinase, MAP4K4 (134). MAP4K4 bifurcates into JNK activation and CK2 (82, 115). CK2 also dampens TNF/Fas-mediated apoptosis and accelerates iκB degradation augmenting NF-κB activation. Activation of JAK/STAT pathway via GM-CSF auto-crime loop enhances c-myc expression, whereas phosphorylation by CK2 stabilizes this potent oncogene primarily upregulated in *Theileria* infected cells (82, 115).

- The proliferation of infected cells is followed by evasion and metastasis, which involves cytoskeleton alteration. TNF-α binding to its receptor recruits TNF receptor-associated factor 2 (TRAF2), which may either activates NF-κB or a mitogen-activated protein kinase, MAP4K4 (134). MAP4K4 bifurcates into JNK activation and CK2 (82, 115). CK2 also dampens TNF/Fas-mediated apoptosis and accelerates iκB degradation augmenting NF-κB activation. Activation of JAK/STAT pathway via GM-CSF auto-crime loop enhances c-myc expression, whereas phosphorylation by CK2 stabilizes this potent oncogene primarily upregulated in *Theileria* infected cells (82, 115).
drug currently being used for the treatment of theileriosis, and acaricide, used for controlling the tick vector, has hampered the control of the disease. In this post genomic era with the availability of advanced genomic and proteomic tools, better studies are needed to dissect the pathways modulated by *Theileria* in detail and select new targets for the development of second-generation drugs and vaccines for disease control.

ENTERIC AND ZOONOTIC APICOMPLEXAN PATHOGEN

Toxoplasma

Toxoplasmosis, caused by *Toxoplasma gondii*, is one of the most well-studied zoonoses (142). *Toxoplasma* appears to be one of the most feared apicomplexan parasites due to a considerable number of congenital transmission incidents and subsequent fetal damage in animals and humans (143, 144). It also causes neurologic deficits (145) and chorioretinitis (146). The life cycle of the parasite circulates between definitive (feline) and intermediate hosts (mammals/birds, etc.). Sexual phase occurs in the small intestine of the feline host from which the oocysts/tissue cysts are excreted along with the feces and ingested by the intermediate host through multiple routes. The oocysts release sporozoites, which invade the intestinal lining. On the other hand, tissue cysts release bradyzoites which differentiate into tachyzoites (147–149). The tachyzoites further replicate in the host and may again differentiate into bradyzoites in the brain, liver, and muscle tissue forming cysts (147, 150, 151). This inter-conversion between tachyzoites and bradyzoites appears essential to the life cycle and infective potential of the parasite (Table 1) (152).

Host–parasite interactions are mostly via secreted parasite proteins from their rhoptries, micronemes, and dense granules, which help parasite in cell invasion, survival, and egress. Invasion by *T. gondii* involves gliding mobility prompted by an actin- myosin motor based complex (153) and interrelated signaling cascades as well. The parasite attaches loosely with the host cell surface via GPI-linked proteins, surface antigens (SAGs), SAG-related sequences (SRSs), and SAG unrelated surface antigens (SUSAs) (154, 155). After the secretion of *Toxoplasma* microneme adhesion proteins (MICs) into the host, there is an increased activity of Calcium/Calmodulin (Ca/CAM)-dependent processes leading to the secretion of Phospholipases (sPLA2 and PLA2) (Figure 1). *T. gondii* calcium-dependent protein kinases1 (TgCDPK1) has been reported to be involved in microneme secretion and can thereby regulate cell motility which is essential for invasion (156). sPLA2 secretion causes the release of microneme proteins MIC3/MIC2, which induces Ca\(^{2+}\) release from host ER via Protein Kinase C-Insitol 1,4,5 triphosphate (PKC–IP3) pathway. cPLA2 activated by parasite MAPK causes membrane fluidification by hydrolyzing host membrane phospholipids (157). Therefore, Ca\(^{2+}\)signaling induce a lot of complex cascades facilitating parasite invasion (Figure 1; Table 2). Apicomplexan have been reported to have several Ca\(^{2+}\)/H\(^{+}\) exchangers, which help in invasion (21).

Toxoplasma invades via gliding movement, which results in actin remodeling by F-actin ring formation at the point of entry with the subsequent recruitment of Arp2/3 complex (Figure 1) (73, 158). Parasite rhoptries are secreted followed by microneme secretion, which consists of RON and traditional rhoptries proteins (ROP). RON2 and AMA1 associate together to form a tight junction between the host and the parasite referred to as moving junction (MJ) facilitating the formation of PV (159–161). Sporozoites also invade using paralogs of AMA1 and RON2 conveniently named as sporAAMA1 and sporORON2 (162). Traditional rhoptry proteins such as Rop 17, Rop 18 (kinase), and Rop 5 (pseudokinase) reside on the PV membrane inhibiting the accumulation of immunity-related GTPases (IRGs). This complex also has a dense granule protein, namely GRA 7 which has a definite impact on IRG turnover (163, 164).

Once inside the host cell, the parasite thrives on host nutrients by expressing various parasite transporters, enzymes, and following complex cascades (165). *T. gondii* inhibits apoptosis and dodges autophagy by manipulating PI3-K pathway, the immediate downstream effector protein kinase B (PKB/Akt), JAK/STATs, mTOR, NF-k\(\beta\), ERK1/2, C-myc, and microRNAs to promote its survival (165, 166). The parasite avoids lysosomal degradation by cleverly maintaining the non-fusogenic nature of the PV. Studies suggest that *T. gondii* micronemal proteins (MICs) with epidermal growth factor (EGF) domains activate Epidermal Growth Factor Receptor (EGFR) on endothelial, retinal cells, and microglia keeping the parasite protected in the vacuole (95). It has been reported that the parasite causes mTOR activation in an infected host cell even in the absence of phosphorylation of 4E-BP1 and S6K1 (167). Later, a study confirmed the role of mTORC1 and C2 in host cell invasion and persistence of infection (168).

Toxoplasma gondii disrupts host apoptotic pathways primarily by affecting the release of Cyt-c and thereby preventing activation of caspase 3 (166). The parasite modulates the host NF-k\(\beta\) pathway in line with *Theileria* causing increased expression of anti-apoptotic genes, although, there is also a role of *Toxoplasma* IKK (TgIKK) in maintaining the NF-k\(\beta\) response which declines after the initial activation by the host IKK (78). A dense granule protein GRA 15 also activates this pathway via TNF receptor-associated factor 6 (TRAF6) thereby inducing the release of pro-inflammatory cytokines (169). Rop 16, on the other hand, might be playing a role in inhibiting cytokine synthesis by host macrophages (170). Hence, opposed the effect of two of these factors determines macrophage polarization in the host (171). *Toxoplasma* polymorphic effectors determine macrophage polarization and intestinal inflammation (171) *Toxoplasma* inhibits the proapoptotic genes (BCL-2, Bad, caspase-9) by modulating the host–PI3-K pathway. It also hinders apoptosis by downregulating phosphorylated c-Jun N-terminal kinase levels (81). AKT/PKB pathway is upregulated, which serves the parasite by inhibiting forkhead transcription factor (FKHR1) resulting in decreased levels of proapoptotic factors, such as Bim and Fasl (172). Infected cells also display increased expression of anti-apoptotic proteins, such as BCL-2, BFL1, BCL-XI, BCL-W, and MCI-I, and reduced expression of proapoptotic factors Bad and Bak (Figure 2).

Toxoplasma ERK-7 (TgERK7) protein has been recently demonstrated to play an important role in the intracellular proliferation of the parasite in the host (93). *T. gondii* also protects itself from host interferon-\(\gamma\) (IFN-\(\gamma\))-mediated pathway by
obstructing the expression of IFN-γ activated genes. *T. gondii* inhibitor of STAT1 (TgIST) has been shown to bind to activated STAT1 in the host cell membrane and recruits host Mi2/NURD complex which keeps the STAT1 in inactivated stage thereby preventing pro-inflammatory gene expression (84, 173). Elevated Ca\(^{2+}\) during *T. gondii* infection activates the protein kinase C cascade which further activates COX-2 resulting in increased prostaglandin E2 (PGE2) levels helping in the resolution of inflammation (174). Furthermore, a dual role of TGF-β during infection by inducing or suppressing the immune system has been reported (175).

During infection, TRAF6 is activated by the parasite dense granule protein GRA7 which leads to unusually increased levels of ROS in the cells (97). Increased levels of ROS, few cytokines and growth factors, causes elevated HIF-1 levels via dampening prolyl hydroxylase domain containing protein 2 (PHD-2) levels downstream to Type I TGFβ receptor signaling. Influencing the levels of such a crucial host factor as PHD-2 is pivotal for the maintenance of a secure haunt of the parasite (176). A host kinase-HK2 also activates HIF-1 expression resulting in glycolytic flux and Warburg effect, as identified by siRNA screening (104). A microarray-based study reveals that increased HIF-1 level in infected cells lead to activation of EGR1 and AP1 which play roles in inducing resistance against drugs and proliferation, respectively (177, 178). The parasite also seizes the IFN-γ-induced iNOS production by *T. gondii* expressed MAP kinase (TgMAPK1), which reduces NO production by p38 MAPK (91). But on the other hand, a dense granule protein GRA24 also plays a role in maintaining p38α autophosphorylation, forming a complex, which consequently activates EGR1 and cFOS which induce the release of MCP-1 and IL-12, which can keep the parasite load in check (179).

Toxoplasma also modulates p53 levels for its own benefit by GRA16, another parasite dense granule protein which binds to two host enzymes-HAUSP and PP2A phosphatase in the host nucleus (88). *T. gondii* reportedly alters dopaminergic and GABA-ergic signaling due to elevated levels of mi-RNA132 which might be the underlying cause for the neuronal abnormalities often found associated with the infection (180). The parasite utilizes GABA to partially satisfy its carbon requirements and also in egress (181). Once it has successfully established infection, egress mainly occurs via GPCR-coupled signaling pathway similar to *Plasmodium*. TgCDPK1 and TgCDPK3 activated by Ca\(^{2+}\) influx have been reported to play a role in egress. Studies suggest that a parasite pore forming protein TgPLP1 might be responsible for making the PV perforated to make egress easier (182). Recently, cGMP-dependent PKG has been identified to play an important role in controlling egression (156).

As it appears from the above discussion, the cunning parasite can steer a staggering number of host signaling pathways in direction of its own purpose. However, despite the fact that very specific knowledge is available about particular such proteins, it is not clear how they affect host gene expression since such nucleus targeted proteins do not really resemble host transcription factors neither can they bind to the host cell DNA (164). Interestingly, not all of these secreted proteins benefit the parasite. Some actually trigger the host immune system to call up its guards. Now, how might the parasite strike a balance to sustain infection or how might we use such kind of knowledge to limit infection still remains to be worked out.

Cryptosporidium

Cryptosporidium commonly causes gastrointestinal diseases worldwide, which albeit minimally invasive in the immunocompetent host (both human and animals) can be deadly in immunosuppressed patients (183, 184). *C. parvum* with a broad host range and zoonoses is considered a more important pathogen in comparison to *C. hominis*, which only infects humans. The disease prevalence ranges from 1 to 37% in countries such as Africa, Asia, Australia, South America, and Central America (185, 186).

Its life cycle comprises of a sexual and an asexual stage, which takes place in a single host (187). Similar to *Toxoplasma*, *Cryptosporidium* infection occurs by ingestion of oocysts through contaminated water followed by excystation and release of sporozoites. These zoites then invades the enterocytes by gliding movement (Table 1, Figure 1) (188). *Cryptosporidium* form an intracellular but extra cytoplasmic PV wherein they get developed into spherical trophozoites (184,189). Invasion of host epithelial cells occurs *via* aggregating the host actin and actin binding protein, villin at the site of parasite attachment and further inducing host tyrosine kinase signaling cascades (189, 190).

Reports of numerous *C. parvum* proteins have been implicated in attachment, invasion, and intracellular development (191, 192). p30, a galactose-N-acetylgalactosamine (Gal/GalNAc) lectin parasite protein has been identified which forms an adhesion complex along with gp40 and gp900 (193). Furthermore, the cryptosporidial binding leads to the formation of sphingolipid-enriched membrane microdomains which attracts Gal/GalNAc epitope containing glycoproteins on the host membrane parasite interface, activating PI3-K (192). The PI3-K cascade successively activates Cdc42, N-WASP, and Arp2/3 (actin-related protein 2/3) resulting in the formation of actin plaque (74, 124, 194). The parasite recruited src tyrosine kinase subsequently phosphorylates cortactin stimulating the polymerization and rearrangement of the actin cortex in the cell periphery through activation of Arp2/3 complex proteins (Figure 1) (74, 195). Increase in local cell volume by accumulation of host aquaporin AQP1 and Na+/Glucose co-transporter also aid in efficient membrane protrusions (196). Few studies have also shown the role of host calpain in remodeling host cytoskeleton which is essential during parasite invasion (197).

Ca\(^{2+}\)-ATPase located at the *Cryptosporidium* sporozoites api-cal and perinuclear regions helps it in fulfilling its Ca\(^{2+}\) requirement during the invasion (193). *Cryptosporidium* also possesses 7 CDPKs, which has a role in invasive and regulatory processes similar to *Plasmodium* and *Toxoplasma*. *Cryptosporidium* invasion is promoted by a Ca\(^{2+}\)-dependent PKC signaling pathway, which disrupts the cell–cell junction. PKC causes downstream activation of PKCα which has been associated with tight junctional leakiness in renal epithelial cells (76, 193, 198). *Cryptosporidium* embodies a novel Ca\(^{2+}\)-activated nucleoside diphosphatase (apyrase, Capp), which interfere with extracellular nucleotide and modulates inflammatory pathways delaying the response against parasite clearance (199). The trophozoite
stage of the parasite inhibits apoptosis; however, schizont- and merozoite-affected cells are handled by host apoptosis through Fas/FasL signaling (200, 201).

Cryptosporidium activates NF-κB pathway by inducing IL-8 secretion and acting synergistically with AP1 and IL-6 (79) (Figure 2; Table 2). It has also been reported to play a role in activating other survival signals, e.g., over expression of antiapoptotic proteins (bcl-2, IAP, survivin) and inhibition of proapoptotic proteins (bax) (77, 202). Myc, an oncogenic protein plays a role in positive regulation of parasite survival, whereas PTEN, an inhibitor of PI3-K, negatively regulates the anti-apoptotic protein (90). Also, microarray analysis revealed that TNF-superfamily receptor osteoprotegerin (OPG) is upregulated in infected host intestinal mucosa by microarray. The overexpression of OPG helps in evading host defense by inhibiting TNF-alpha-related-apoptosis-inducing ligand (TRAIL)-mediated apoptosis and supporting the parasite to complete its life cycle (184, 203). The host tries to control the propagation of *Cryptosporidium* by enhancing Th1 response characterized by the production of IFNγ and IL-12. The parasite, too, in turn, erodes the JAK/STAT-mediated IFNγ signaling by depletion of STAT1-α (85, 204). TNF-α and TGF-β play roles in providing the host protective immunity and healing effect against the infection (85, 205, 206). Again, increased mucin levels in the host by COX-2-mediated PGE2 protects the host (183), ERK1/2 and p38 MAPK pathway also assist the host cells to destroy the parasite by inducing NETosis (Formation of the neutrophil extracellular trap) (92).

Absence of Apicoplast in *C. parvum* parasites and complications in their *in vitro* propagation has posed problems for researchers involved in drug or vaccine development. Despite many efforts by *Cryptosporidium* to modulate the host signaling pathways, the parasite loses the battle against the host. At present, only one drug (nitazoxanide) with limited efficacy is approved for treatment of Cryptosporidiosis. Further studies are needed to better understand the egress mechanism of *Cryptosporidium* (74). Susceptibility to the parasite has shown to be linked with the immune status of the host. Understanding the host–parasite interaction will be critical in designing new tools for effective control of the disease.

FINAL CONCLUSION

A substantial amount of research has been done to gain insights into pathways by which these parasites modulate and undermine the host defense, yet gaps in knowledge still prevail and many questions remain unanswered. In this review, we have attempted to include all the major work carried out in this field. Advancement in gene editing technologies and whole genome sequencing of these pathogens lead us to better understand the manipulation strategies used by the parasites. Emerging problems of either drug resistance or unavailability of an effective vaccine against some of the parasites make the precise comprehension of the sabotage techniques employed by the parasites a primary requisite in order to curb the morbidity rate.

As discussed above, it is apparent that few of the host defense pathways targeted by these parasites to survive and proliferate in the host cell are common among the mentioned pathogens. Host cell invasion by *Plasmodium, Babesia, Toxoplasma,* and *Cryptosporidium* occur via gliding movement, whereas in *Theileria* an overall different process known as zipper takes place. *Plasmodium, Toxoplasma,* and *Cryptosporidium* reside and replicate inside the PV in the host, however, *Theileria* and *Babesia* survives in the host cytoplasm. *Theileria* clearly takes an advantage of staying in the host cytoplasm by modulating numerous pathways, though any such information about *Babesia* has to be still investigated. Several pathways are modulated by majority of these parasites such as host cytoskeleton remodeling, Ca++ modulated signaling pathways, and apoptotic pathways which helps in their survival. In the review, we have discussed the cross talks happening between the parasite and the host and observed that the multifaceted nature of the parasite gives them an upper hand over the host.

Future studies focusing on

(i) Exploring the parasite proteins and their role in host–parasite interface interaction will provide in-depth understanding of the invasion process. These targets can be further utilized to develop vaccine or drugs.

(ii) What are the alteration in the host cell that leads to the nutrient acquisition after invasion and the host factors contributing to parasite replication?

(iii) Studies are also required to develop inhibitors against known molecules/pathways, which help the in intracellular survival of parasite in the host cell.

Therefore, targeting the common pathways playing crucial role in all parasites survival and dissemination may be a good approach to understand disease pathogenesis and controlling the disease.

In order to deal with these cunning pathogens, we need all the necessary information to be able to target important molecules for a vaccine or drug development. However, a considerable amount of research and thorough screening of presently available literature is still required to better understand how these parasites exploit their hosts for their own survival. Apicomplexan parasites infecting human beings such as *Plasmodium* is hugely funded and globally studied; however, so is not the case when it comes to parasites such as *Babesia* and *Theileria,* which are of veterinary importance. Therefore, for more in-depth understanding of these pathogens, tenacious research is expected which would only be possible through the combined efforts of researchers and support from funding agencies on a global range.

AUTHOR CONTRIBUTIONS

All authors mentioned have made a significant effort and contributed intellectually to the work and approved it for publication.

FUNDING

The work was supported by an extramural grant (BT/PR11979/AAQ/1/608/2014) funded by Department of Biotechnology, India and National Institute of Animal Biotechnology (NIAB-DBT).
REFERENCES

1. Boussarouque A, Fall B, Madamet M, Camara C, Benoit N, Fall M, et al. Emergence of mutations in the K13 Propeller Gene of Plasmodium falciparum isolates from Dakar, Senegal, in 2013–2014. *Antimicrob Agents Chemother* (2015) 60:624–7. doi:10.1128/aac.01346-15

2. Cui L, Rosenthal PJ, Rathod PK, Ndiaye D, Mbarakawu S. Antimalarial drug resistance: literature review and activities and findings of the ICERM network. *Am J Trop Med Hyg* (2015) 93:57–68. doi:10.4269/ajtmh.15-0007

3. Huang B, Deng C, Yang T, Xue L, Wang Q, Huang S, et al. Polymorphisms of the artemisinin resistant marker (K13) in Plasmodium falciparum parasite populations of Grande Comore Island 10 years after artemisinin combination therapy. *Parasit Vectors* (2015) 8:634. doi:10.1186/s13071-015-1253-z

4. Issozumi R, Uemura H, Kimata I, Ichinoise Y, Logodi J, Omar AH, et al. Novel mutations in K13 propeller gene of artemisinin-resistant Plasmodium falciparum. *EMBRYO* (2015) 21:490–2. doi:10.3201/eid2103.140898

5. Sharma RK, Thakor HG, Saha KB, Sonal GS, Dharuwal AC, Singh N. Malaria situation in India with special reference to tribal areas. *Indian J Med Res* (2015) 141:537–45. doi:10.4103/0971-5916.159510

6. World Health Organization. (WHO fact sheet: world malaria report; 9 December 2015). *World Health* (2015) 24:10–13.

7. Mota MM, Rodriguez A. Migration through host cells: the first steps of *Plasmodium* sporozoites in the mammalian host. *Cell Microbiol* (2004) 6:1113–8. doi:10.1111/j.1462-5822.2004.00460.x

8. Walker DM, Oghummi S, Gupta G, McGwire BS, Drew ME, Satoskar AR. Mechanisms of cellular invasion by intracellular parasites. *Cell Mol Life Sci* (2014) 71:1245–63. doi:10.1007/s00018-013-1491-1

9. Silva LS, Silva-Filho JL, Caruso-Neves C, Pinheiro AAS. New Concepts in Indian malarial parasite to cross the liver sinusoidal cell layer. *Parasitol Res* (2005) 97:517–24. doi:10.1007/s00436-004-1145-0

10. Baldacci P, Ménard R. The elusive malaria sporozoite in the mammalian host. *Mol Microbiol* (2004) 54:298–306. doi:10.1111/j.1462-5822.2004.04275.x

11. Ishino T, Yano K, Chinuei Y, Yuda M. Cell-passage activity is required for the malarial parasite to cross the liver sinusoidal cell layer. *PLoS Biol* (2004) 2:e4. doi:10.1371/journal.pbio.0020004

12. Garcia JE, Puentes A, Patarroyo ME. Developmental biology of sporozoite-host interactions in Plasmodium falciparum malaria: implications for vaccine design. *Cln Microbiol Rev* (2006) 19:686–707. doi:10.1128/cmr.00063-05

13. Dhar R, Kumar N. Role of mosquito salivary glands. *Curr Sci* (2003) 85:1308–13.

14. Dhangadamihi G, Kar SK, Ranjit M. The survival strategies of malaria parasites in the red blood cell and host cell polymorphisms. *Malar Res Treat* (2014) 2014:1–12. doi:10.1155/2014/869401

15. Zheng H, Tan Z, Xu W. Immune evasion strategies of pre-erythrocytic malaria parasites. *Exp Parasitol* (2014) 132:1–8. doi:10.1016/j.exppara.2014.06.015

16. Mota MM, Hafalla JCR, Rodriguez A. Migration through host cells acti-...
parasite-erythrocyte moving junction during invasion. Cell Host Microbe (2008) 3:188–98. doi:10.1016/j.chom.2008.02.006

45. Cowman AF, Crabb BS. Invasion of red blood cells by malaria parasites. Cell (2006) 124:755–66. doi:10.1016/j.cell.2006.02.006

47. Koch M, Baum J. The mechanics of malaria parasite invasion of the human erythrocyte – towards a reassessment of the host cell contribution. Cell Microbiol (2016) 18:319–29. doi:10.1111/cmi.12557

48. Gazarini ML, Thomas AP, Pozzan T, Garcia CRS. Calcium signaling in a low calcium environment. J Cell Biol (2003) 161:103–10. doi:10.1083/jcb.200212130

49. Tripathi AK, Sha W, Shulava V, Stins MF, Sullivan DJ. Plasmodium falciparum-infected erythrocytes induce NF-kappaB regulated inflammatory pathways in human cerebral endothelium. Blood (2009) 114:4243–52. doi:10.1182/blood-2009-06-226415

50. Cooke BM, Lingelbach K, Bannister LH, Tilley L. Protein trafficking in Plasmodium falciparum-infected red blood cells. Trends Parasitol (2004) 20:581–9. doi:10.1016/j.pt.2004.09.008

51. Marti M. Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science (2004) 306:1930–3. doi:10.1126/science.1012452

52. Boddey JA, Moritz RL, Simpson RJ, Cowman AF. Role of the Plasmodium export element in trafficking parasite proteins to the infected erythrocyte. Traffic (2009) 10:285–99. doi:10.1111/j.1600-0858.2008.00864.x

53. Heusler VT, Stanyer RR. Cellular and molecular interactions between the apicomplexan parasites Plasmodium and Theileria and their host cells. Parasite (2008) 15:211–8. doi:10.1051/parasite:2008153211

54. Lee MCS, Fidock DA. Arresting malaria parasite egress from infected red blood cells. Nat Rev Microbiol (2008) 6:170–8. doi:10.1038/nrmicro1803-161

55. Millhorn MG, Chandramohanadas R, Pizzarro A, Wehr A, Shi H, Darling C, et al. The malaria parasite progressively dismantles the host erythrocyte cytoskeleton for efficient egress. Mol Cell Proteomics (2011) 10:M111.010678. doi:10.1074/mcp.M111.010678

56. Millhorn MG, Mishra S, Dupont CD, Love MS, Patel B, Shilling D, et al. A host GPCR signaling network required for the cytolysis of infected cells facilitates release of apicomplexan parasites. Cell Host Microbe (2013) 13:15–28. doi:10.1016/j.chom.2012.12.001

57. Gosling R, von Seidlein L. The future of the RTS,S/AS01 malaria vaccine: an overview. Trends Parasitol (2004) 20:157–60. doi:10.1016/s0962-8889(04)00004-x

58. Leiby DA. Transfusion-transmitted Babesia microti. Clin Microbiol Rev (2011) 24:14–28. doi:10.1128/cmr.00022-10

59. Marathe A, Tripathi J, Handa V, Date V. Human babesiosis – a case report. Indian J Med Microbiol (2009) 27:245–8. doi:10.1007/s12088-009-0048-3

60. Cooke BM, Mohandas N, Cowman AF, Coppel RL. Cellular adhesive phenomena in apicomplexan parasites of red blood cells. Adv Parasitol (2010) 71:261–327. doi:10.1016/s0065-308X(10)07002-9

61. Chauvin A, Moreau E, Bonnet S, Plantard O, Malandrin L. Theileria parva sporozoite entry into bovine lymphocytes induces both parasite and host cell signal transduction processes. Exp Parasitol (1996) 84:244–54. doi:10.1006/expr.1996.4112

62. Hashim A, Mulcagy H, Bourke B, Clyne M. Interaction of Cryptosporidium hominis and Cryptosporidium parvum with primary human and bovine intestinal cells. Infect Immun (2005) 73:591–8. doi:10.1128/iai.73.2.591-598.2005

63. Heusler VT, Kienzli P, Rottensberg S. Inhibition of apoptosis by intracellular protozoan parasites. Int J Parasitol (2001) 31:1166–76. doi:10.1016/s0020-7519(01)00271-5

64. Laliberté J, Carruthers VB. Host cell manipulation by the human pathogen Toxoplasma gondii. Vet Parasitol (2001) 101:261–74. doi:10.1016/s0304-4018(01)00571-4

65. Saine D, Leblond A, Smuts K, Stuyver V, Leys D. Theileria parva sporozoite entry into bovine lymphocytes involves actin polymerization in the host cell. Cell Microbiol (2009) 11:529–72. doi:10.1111/j.1462-5822.2008.01043.x

66. Chauvin A, Moreau E, Bonnet S, Plantard O, Malandrin L. Theileria parva sporozoite entry into bovine lymphocytes induces both parasite and host cell signal transduction processes. Exp Parasitol (1996) 84:244–54. doi:10.1006/expr.1996.4112

67. Kaushansky A, Ye AS, Austin LS, Mikolajczak SA, Vaughan AM, Camargo N, et al. TLR-2–dependent gene expression. J Infect Dis (2005) 192:2119–26. doi:10.1086/429344

68. Leiby DA. Transfusion-transmitted Babesia microti. Clin Microbiol Rev (2011) 24:14–28. doi:10.1128/cmr.00022-10

69. Okubo K, Wilawan P, Bork S, Okamura M, Yokoyama N, Igarashi I. Calcium ions are involved in erythrocyte invasion by equine Babesia parasites. Parasitol Res (2006) 103:333–9. doi:10.1007/s00436-006-00043-6

70. Mousaad E, Asada M, Nakatani D, Inoue N, Yokoyama N, Kaneko O, et al. Calcium ions are involved in egress of Babesia bovis merozoites from bovine erythrocytes. J Vet Med Sci (2015) 77:53–8. doi:10.1292/jvms.14-0391

71. Bargieri D, Lallal V, Tardieux I, Menard R. Host cell invasion by apicomplexans: what do we know? Trends Parasitol (2012) 28:131–5. doi:10.1016/j.pt.2012.01.005

72. Saccomanni G, Siracusa MC, Bressler M, Filippin R. Epithelial cell turnover during infection by Toxoplasma gondii. Parasite (2009) 16:145–50. doi:10.1051/parasite/2009024
protein that targets the host cell nucleus and alters gene expression. *Cell Host Microbe* (2013) 13:489–500. doi:10.1016/j.chom.2013.03.002
99. Bosch SS, Kronenberger T, Meissner KA, Zimbres FM, Stegehake D, Izui M. Rotavirus infection activates NF-kB and stimulates in vitro translation. *Exp Parasitol* (2013) 6:e00462. doi:10.1128/mbio.00462-15
100. Shaw MK. Cell invasion by *Theileria* sporozoites. *Trends Parasitol* (2003) 19:2–6. doi:10.1016/S1471-4922(02)00015-6
101. Shiels B, Langley G, Weir W, Pain A, McKellar S, Dobabela D. Alteration of host cell phenotype by *Theileria annulata* and *Theileria parva*: mining for manipulators in the parasite genomes. *Int J Parasitol* (2006) 36:9–21. doi:10.1016/j.ijpara.2005.09.002
102. Mans BJ, Pienaar R, Latif AA. A review of *Theileria* diagnostics and epidemiology. *Int J Parasitol* (2015) 4:104–18. doi:10.1016/j.ijpapar.2014.12.006
103. Shaw MK, Tilney LG, Musoke AJ. The entry of *Theileria parva* sporozoites into bovine lymphocytes: evidence for MHC class I involvement. *J Cell Biol* (1991) 113:87–101. doi:10.1083/jcb.113.1.87
104. Shiels B, Langley G, Weir W, Pain A, McKellar S, Dobabela D. The biology of *Theileria* sporozoites facilitates bovine escape from infected cells. *Cell Microbiol* (2000) 2:91–9. doi:10.1046/j.1462-5822.2000.00045.x
105. Dobabela DAE, Fernandez PC, Heusser VT. *Theileria parva*: taking control of host cell proliferation and survival mechanisms. *Cell Microbiol* (2009) 11:4–14. doi:10.1111/j.1462-5822.2008.00967.x
106. De Smaele E, Zazzeroni F, Papa S, Nguyen DU, Jin R, Jones J, et al. Induction of EGFR prevents autophagy in *Theileria parva*-transformed bovine leukocytes have cancer hallmarks. *Trends Parasitol* (2015) 31:36–14. doi:10.1016/j.pt.2015.04.001
107. Ishida F, Shimizu T, Iriyama T, Morishita T, Hara K, Nakamura H. Phosphoproteome analysis of *Theileria parva*-transformed bovine cells reveals the presence of a MAPK signaling pathway. *PLoS Pathog* (2010) 6:e1000194. doi:10.1371/journal.ppat.1000197
108. Ishida F, Shimizu T, Iriyama T, Morishita T, Hara K, Nakamura H. Phosphoproteome analysis of *Theileria parva*-transformed bovine cells reveals the presence of a MAPK signaling pathway. *PLoS Pathog* (2010) 6:e1000194. doi:10.1371/journal.ppat.1000197
109. Shiels B, Langley G, Weir W, Pain A, McKellar S, Dobabela D. Alteration of host cell phenotype by *Theileria annulata* and *Theileria parva*: mining for manipulators in the parasite genomes. *Int J Parasitol* (2006) 36:9–21. doi:10.1016/j.ijpara.2005.09.002
110. Mans BJ, Pienaar R, Latif AA. A review of *Theileria* diagnostics and epidemiology. *Int J Parasitol* (2015) 4:104–18. doi:10.1016/j.ijpapar.2014.12.006
111. Shaw MK, Tilney LG, Musoke AJ. The entry of *Theileria parva* sporozoites into bovine lymphocytes: evidence for MHC class I involvement. *J Cell Biol* (1991) 113:87–101. doi:10.1083/jcb.113.1.87
112. Shaw MK. The same but different: the biology of *Theileria* sporozoites facilitates bovine escape from infected cells. *Cell Microbiol* (2000) 2:91–9. doi:10.1046/j.1462-5822.2000.00045.x
113. Dobabela DAE, Küenzi P. The strategies of the *Theileria* parasite: a new twist in host-pathogen interactions. *Curr Opin Immunol* (2004) 16:524–30. doi:10.1016/j.coi.2004.05.009
114. Deusse F, Hilaly S, Baumgartner M, Blumen B, Welting D, Langley G. c-Myc activation by *Theileria* parasites promotes survival of infected B-lymphocytes. *Oncogene* (2005) 24:1073–83. doi:10.1038/sj.onc.1208314
115. Tretina K, Gotta HT, Mann DJ, Silva JC. *Theileria*-transformed bovine leukocytes have cancer hallmarks. *Trends Parasitol* (2015) 31:36–14. doi:10.1016/j.pt.2015.04.001
116. Mersolair J, Perichon M, DeBarry JD, Viloutreix BO, Chulah J, Lopez T, et al. *Theileria* parasites secrete a prolyl isomerase to maintain host leukocyte transformation. *Nature* (2015) 520:378–82. doi:10.1038/nature14044
117. Wiens O, Xia D, von Schubert C, Wastling JM, Dobbelaere DAE, Heussler VT, et al. Cell cycle-dependent phosphorylation of *Theileria annulata* schizont surface proteins. *PLoS One* (2014) 9:e103821. doi:10.1371/journal.pone.0103821
118. Swan DG, Stern R, McKellar S, Phillips K, Oura CA, Karagenc TL, et al. Characterisation of a cluster of genes encoding *Theileria annulata* AT hook DNA-binding proteins and evidence for localisation to the host cell nucleus. *J Cell Sci* (2001) 114:2747–54.
119. Shiels BR, McKellar S, Katzer F, Lyons K, Kinnaird J, Ward C, et al. A *Theileria annulata* DNA binding protein localized to the host cell nucleus alters the phenotype of a bovine macrophage cell line. *Eukaryot Cell* (2004) 3:495–505. doi:10.1128/ec.3.2.495-505.2004
120. Mersolair J, Pineau S, Medjkane S, Perichon M, Yin Q, Flemington E, et al. Oncomir addiction is generated by a miR-155 feedback loop in *Theileria*-transformed leukocytes. *PLoS Pathog* (2013) 9:e1003222. doi:10.1371/journal.ppat.1003222
121. Chaussepied M, Janski N, Baumgartner M, Lizundia R, Jensen K, Weir W, et al. Induction of EGFR prevents autophagy in *Theileria parva*-transformed bovine leukocytes have cancer hallmarks. *Trends Parasitol* (2015) 31:36–14. doi:10.1016/j.pt.2015.04.001
122. Dobabela D, Heussler V. Transformation of leukocytes by *Theileria parva* and *T. annulata*. *Annu Rev Microbiol* (1999) 53:3–14. doi:10.1146/annurev.micro.53.1.1
123. Ahmed JS, Schnittert L, Mehhorn H. Review: *Theileria* schizonts induce fundamental alterations in their host cells. *Parasitol Res* (1999) 85:527–38. doi:10.1007/s004360050592
124. Fréal K, Soldati-Favre D. Role of the parasite and host cytoskeleton in apicomplexan parasitism. *Cell Host Microbe* (2009) 5:562–11. doi:10.1016/j.chom.2009.05.013
125. De Smael E, Zazzeroni F, Papa S, Nguyen DU, Jin R, Jones J, et al. Induction of gadd45beta by NF-kappaB downregulates pro-apoptotic JNK signalling. *Nature* (2001) 414:308–13. doi:10.1038/35104560
126. Chaussepied M, Janski N, Baumgartner M, Lizundia R, Jensen K, Weir W, et al. TGF-b2 induction regulates invasiveness of *Theileria*-transformed leukocytes and disease susceptibility. *PLoS Pathog* (2010) 6:e1001197. doi:10.1371/journal.ppat.1001197
127. Haidar M, Echelbi N, Ding Y, Kamau E, Langley G. Transforming growth factor b2 promotes transcription of COX2 and EP4, leading to a prostaglandin E2-driven autostimulatory loop that enhances virulence of *Theileria annulata*-transformed macrophages. *Infect Immun* (2015) 83:1869–80. doi:10.1128/iai.02975-14
128. Botteron C, Dobabela D. AP-1 and ATF-2 are constitutively activated via the JNK pathway in *Theileria parva*-transformed T-cells. *Biochem Biophys Res Commun* (1999) 264:418–21. doi:10.1006/bbrc.1998.6835
Dubey JP. Advances in the life cycle of Toxoplasma gondii. Int J Parasitol (1998) 28:1019–24. doi:10.1016/S0020-7519(98)00223-X

Dubey JP. Comparative infectivity of oocysts and bradyzoites of Toxoplasma gondii for intermediate (mice) and definitive (cats) hosts. Vet Parasitol (2006) 140:69–75. doi:10.1016/j.vetpar.2006.03.018

Sibley LD. Intracellular parasite invasion strategies. Science (2004) 304:248–53. doi:10.1126/science.1094717

Pollard AM, Onatolu KN, Hiller L, Haladar K, Knoll LJ. Highly polymorphic family of glycosylphosphatidylinositol-anchored surface antigens with evidence of developmental regulation in Toxoplasma gondii. Infect Immun (2007) 76:103–10. doi:10.1128/iai.01170-07

Blader II, Saej JP. Communication between Toxoplasma gondii and its host: impact on parasite growth, development, immune evasion, and virulence. APMS (2009) 117:458–76. doi:10.1111/j.1600-0463.2009.02453.x

Lourido S, Tang K, Sibley LD. Distinct signalling pathways control Toxoplasma egress and host-cell invasion. EMBO J (2012) 31:4524–34. doi:10.1038/emboj.2012.299

Bonhomme A, Bouchot A, Pezzella N, Gomez J, Le Moal H, Pinon JM. Signalling during the invasion of host cells by Toxoplasma gondii. FEMS Microbiol Rev (1999) 23:551–69. doi:10.1111/j.1574-6976.1999.tb00221.x

Heintzelman MB. Gliding motility in apicomplexan parasites. Semin Cell Dev Biol (2015) 46:135–42. doi:10.1016/j.semcdb.2015.09.020

Alexander DL, Mital J, Ward GE, Bradley P, Boothroyd JC. Identification of the moving junction complex of Toxoplasma gondii: a collaboration between distinct secretory organelles. PLoS Pathog (2005) 1:e17. doi:10.1371/journal.ppat.0010017

Straub KW, Cheng SJ, Sohn CS, Bradley PI. Novel components of the apicomplexan moving junction reveal conserved and coccidia-restricted elements. Cell Microbiol (2009) 11:590–603. doi:10.1111/j.1462-5822.2008.00276.x

Lamarque M, Besteiro S, Papoin J, Roques M, Vulliez-Le Normand B, Morlon-Guyot J, et al. The RON2-AMA1 interaction is a critical step in moving junction-dependent invasion by apicomplexan parasites. PLoS Pathog (2011) 7:e1001276. doi:10.1371/journal.ppat.1001276

Poukchanska A, Fritz HM, Tonkin ML, Treeck M, Boulanger MJ, Boothroyd JC. Toxoplasma gondii sporozoites invade host cells using two novel paralogues of RON2 and AMA1. PLoS One (2013) 8:e70637. doi:10.1371/journal.pone.0070637

Etheridge RD, Alaganan A, Tang K, Lou HJ, Turk BE, Sibley LD. The Toxoplasma pseudokinase ROP5 forms complexes with ROP18 and ROP17 kinases that synergize to control acute virulence in mice. Cell Host Microbe (2014) 15:537–50. doi:10.1016/j.chom.2014.04.002

Hakimi M-A, Olais P, Sibley LD. Toxoplasma effectors targeting host signalling and transcription. Clin Microbiol Rev (2017) 30:615–45. doi:10.1128/CMR.00005-17

Blader II, Koshy AA. Toxoplasma gondii development of its replicative niche: in its host cell and beyond. Eukaryot Cell (2013) 12:965–76. doi:10.1128/EC.00081-14

Hwang I-Y, Quan JH, Ahn M-H, Hassan Ahmed HA, Cha G-H, Shin D-W, et al. Toxoplasma gondii infection inhibits the mitochondrial apoptosis through induction of Bcl-2 and HSP70. Parasitol Res (2010) 107:1313–21. doi:10.1007/s00438-010-999-3

Yang W, Weiss LM, Orlofsky A. Intracellular parasitism with Toxoplasma gondii stimulates mammalian-target-of-rapamycin-dependent host cell growth despite impaired signalling to S6K1 and 4E-BP1. Cell Microbiol (2009) 11:983–1000. doi:10.1111/j.1462-5822.2009.01305.x

Yang W. Modulation of Host Cell mTOR Signaling by Toxoplasma gondii. New York: Yeshiva University, ProQuest Dissertations Publishing (2010). 3385052 p.

Rosowski EE, Lu D, Julien L, Rodda L, Gaiser RA, Jensen KDC, et al. Strain-specific activation of the NF-κB pathway by GRA15, a novel Toxoplasma gondii dense granule protein. J Exp Med (2011) 208:195–212. doi:10.1084/jem.20100717

Butcher BA, Fox BA, Rommerlein LM, Kim SG, Maurer KJ, Yarovsky F, et al. Toxoplasma gondii rhoptry kinase ROP16 activates STAT3 and STAT6 resulting in cytokine inhibition and arginase-1-dependent growth control. PLoS Pathog (2011) 7:e1002236. doi:10.1371/journal.ppat.1002236

Jensen KDC, Wang Y, Wojno EDT, Shastri A, Hu K, Cornel L, et al. Toxoplasma polymorphic effectors determine macrophage polarization and
intestinal inflammation. Cell Host Microbe (2011) 9:472–83. doi:10.1016/j.chom.2011.04.015

172. Kojima SR, Thomas A, Greenberg ME. Cellular survival: a play in three Akts. Genes Dev (1999) 13:2905–27. doi:10.1101/gad.13.22.2905

173. Gay G, Braun L, Brenier-Pinchart M-P, Voltaire J, Josserand V, Bertini R-L, et al. Toxoplasma gondii TgSST-10 co-opt hosts chrotamin repressors dampening STAT1-dependent gene regulation and IFN-γ-mediated host defenses. J Exp Med (2016) 213:1779–98. doi:10.1084/jem.20160340

174. Peng BW, Lin JY, Zhang T. Toxoplasma gondii induces prostaglandin E2 synthesis in macrophages via signal pathways for calcium-dependent arachidonic acid production and PKC-dependent induction of cyclooxygenase-2. Parasitol Res (2008) 102:1043–50. doi:10.1007/s00436-007-0783-4

175. Zare-Bidaki M, Assar S, Hakimi H, Abdollahi SH, Nosratabadi R, Kennedy D, et al. TGF-β in toxoplasmosis: friend or foe? Cytokine (2016) 86:29–35. doi:10.1016/j.cyto.2016.07.002

176. Wiley M, Sweeney KR, Chan DA, Brown KM, McMurtrey C, Howard EW, et al. Toxoplasma gondii activates hypoxia-inducible factor (HIF) by stabilizing the HIF-1α subunit via type I activin-like receptor kinase receptor signaling. J Biol Chem (2010) 285:26852–60. doi:10.1074/jbc.M110.147041

177. Blader IJ, Manger ID, Boothroyd JC. Microarray analysis reveals previously unknown changes in Toxoplasma gondii-infected human cells. J Biol Chem (2001) 276:24223–31. doi:10.1074/jbc.M100931200

178. Spear W, Chan D, Coppens I, Johnson RS, Giaccia A, Blader IJ. The host cell transcription factor hypoxia-inducible factor 1 is required for Toxoplasma gondii growth and survival at physiological oxygen levels. Cell Microbiol (2006) 8:339–52. doi:10.1111/j.1462-5822.2005.00628.x

179. Braun I, Brenier-Pinchart M-P, Yovel M, Curt-Varesano A, Curt-Bertini R-L, Hussain T, et al. A Toxoplasma dense granule protein, GRA24, modulates the early immune response to infection by promoting a direct and sustained host p38 MAPK activation. J Exp Med (2013) 210:2071–86. doi:10.1084/jem.20130103

180. Xiao J, Li Y, Prandovszky E, Karuppasounder SS, Talbot CC, Dawson VL, et al. MicroRNA-132 dysregulation in Toxoplasma gondii infection has implications for dopamine signaling pathway. Neuroscience (2014) 268:128–38. doi:10.1016/j.neuroscience.2014.03.015

181. Brooks JM, Carrillo GL, Su J, Lindsay DS, Fox MA, Blader IJ. Toxoplasma gondii infections alter GABAergic synapses and signaling in the central nervous system. Mbio (2015) 6:e01428–15. doi:10.1128/mbio.01428-15

182. Roiko MS, Carruthers VB. New roles for perforins and proteases in infection strategies of intestinal parasite pathogens. Cell Microbiol (2009) 11:1444–52. doi:10.1111/j.1462-5822.2009.01357.x

183. Laurent F, McCole D, Eckmann L, Kagnoff MF. Pathogenesis of Cryptosporidium parvum infection. Microbes Infect (1999) 1:141–8. doi:10.1016/s1266-4597(99)00005-7

184. Di Genova BM, Tonelli RR. Infection strategies of intestinal parasite pathogens and host cell responses. Front Microbiol (2016) 7:256. doi:10.3389/fmicb.2016.00256

185. Medema G, Teunis P, Blokker M, Deere D, Charles P, Loret J-F, et al. Identification of invasion proteins of Cryptosporidium parvum. World J Microbiol Biotechnol (2015) 31:1923–34. doi:10.1007/s11274-015-1936-9

186. Lendner M, Daugschies A. Cryptosporidium infections: molecular advances. Parasitology (2014) 141:1511–32. doi:10.1017/s0031182414000237

187. Varughese EA, Kasper S, Annekem EM, Yadav JS. SHP-2 mediates Cryptosporidium parvum infectivity in human intestinal epithelial cells. PLoS One (2010) 15:e0142219. doi:10.1371/journal.pone.0142219

188. Chen X-M, Huang BQ, Splinter PL, Cao H, Zhu G, McNiven MA, et al. Cryptosporidium parvum infection of biliary epithelia requires host cell tyrosine phosphorylation of cortactin via c-Src. Gastroenterology (2003) 125:216–28. doi:10.1016/s0016-5085(03)00662-0

189. Chen X-M, O’Hara SP, Huang BQ, Splinter PL, Nelson JB, La Russo NF. Localized glucose and water influx facilitates Cryptosporidium parvum cellular invasion by means of modulation of host-cell membrane protrusion. Proc Natl Acad Sci U S A (2005) 102:6338–43. doi:10.1073/pnas.0408563102

190. Perez-Cordova G, Nie W, Schmidt D, Tripi S, Feng H. Involvement of host calpain in the invasion of Cryptosporidium parvum. Microbes Infect (2011) 13:103–7. doi:10.1016/j.micinf.2010.10.007

191. Keyloun KR, Reid MC, Choi R, Song Y, Fox AMW, Hillesland HK, et al. The gatekeeper residue and beyond: homologous calcium-dependent kinases as drug development targets for veterinary Apicomplexa parasites. Parasitology (2014) 141:1499–509. doi:10.1017/s0031182414000857

192. Manque PA, Woehlbier U, Lara AM, Tenjo F, Alves JM, Buck GA. Identification and characterization of a novel calcium-activated apyrase from Cryptosporidium parasites and its potential role in pathogenesis. PLoS One (2012) 7:e31030. doi:10.1371/journal.pone.0031030

193. Schaumburg F, Hippe D, Vutova P, Lüder CGK, Der CGK. Pro- and anti-apoptotic activities of protozoan parasites pro-and anti-apoptotic activities of protozoan parasites. Parasitology (2006) 132:69–85. doi:10.1017/s0031182406008764

194. Chen XM, Gores GI, Paya CV, La Russo NF. Cryptosporidium parvum induces apoptosis in biliary epithelium by a Fas/Fas ligand-dependent mechanism. Am J Physiol (1999) 277:G599–608.

195. Liu J, Enomoto S, Lancot CA, Abrahamsen MS, Rutherford MS. Inhibition of apoptosis in Cryptosporidium parvum-infected intestinal epithelial cells is dependent on survivin. Infect Immun (2008) 76(8):3784–92. doi:10.1128/IAI.00308-08

196. Castellanos-Gonzalez A, Yancey LS, Wang H, Pantenburg B, Liscum KR, Lewis DE, et al. Identification of invasion of biliary epithelia requires host cell tyrosine phosphorylation of cortactin via c-Src. Gastroenterology (2003) 125:216–28. doi:10.1016/s0016-5085(03)00662-0

197. Lewis DE, et al. MicroRNA-132 dysregulation in Toxoplasma gondii-infected intestinal epithelial cells. Parasitology (2008) 135:1043–50. doi:10.1016/s0031-1824(08)00007-6

198. Forney JR, DeWald DB, Yang S, Speer CA, Healey MC. A role for host phosphoinositide 3-kinase and cytoskeletal remodeling during Cryptosporidium parvum infection. Infect Immun (1999) 67:844–52.

199. O’Hara SP, Small AJ, Chen XM, Larusso NF. Host cell actin remodeling in response to Cryptosporidium. Subcell Biochem (2008) 47:92–100. doi:10.1007/978-0-387-78267-6_7

200. Yao L, Yin J, Zhang X, Liu Q, Li J, Chen L, et al. Cryptosporidium parvum: identification of a new surface adhesion protein on sporozoite and oocyst by screening of a phage-display cDNA library. Exp Parasitol (2007) 115:333–8. doi:10.1016/j.exppara.2006.09.018

Copyright © 2017 Chakraborty, Roy, Misty, Murthy, George, Bhandari and Sharma. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.