On the intersection graph of ideals of a commutative ring

F. HEYDARI
Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran
f-heydari@kiau.ac.ir

Abstract

Let R be a commutative ring and M be an R-module, and let $I(R)^*$ be the set of all non-trivial ideals of R. The M-intersection graph of ideals of R, denoted by $G_M(R)$, is a graph with the vertex set $I(R)^*$, and two distinct vertices I and J are adjacent if and only if $IM \cap JM \neq 0$. For every multiplication R-module M, the diameter and the girth of $G_M(R)$ are determined. Among other results, we prove that if M is a faithful R-module and the clique number of $G_M(R)$ is finite, then R is a semilocal ring. We denote the Z_n-intersection graph of ideals of the ring Z_m by $G_n(Z_m)$, where $n, m \geq 2$ are integers and Z_n is a Z_m-module. We determine the values of n and m for which $G_n(Z_m)$ is perfect. Furthermore, we derive a sufficient condition for $G_n(Z_m)$ to be weakly perfect.

1 Introduction

Let R be a commutative ring, and $I(R)^*$ be the set of all non-trivial ideals of R. There are many papers on assigning a graph to a ring R, for instance see [1–4]. Also the intersection graphs of some algebraic structures such as groups, rings and modules have been studied by several authors, see [3, 6, 8]. In [6], the intersection graph of ideals of R, denoted by $G(R)$, was introduced as the graph with vertices $I(R)^*$ and for distinct $I, J \in I(R)^*$, the vertices I and J are adjacent if and only if $I \cap J \neq 0$. Also in [3], the intersection graph of submodules of an R-module M, denoted by $G(M)$, is defined to be the graph whose vertices are the non-trivial submodules of M and two distinct vertices are adjacent if and only if they have non-zero intersection. In this paper, we generalize $G(R)$ to $G_M(R)$, the

*Keywords: Intersection graph, perfect graph, clique number, chromatic number, diameter, girth.
2010 Mathematics Subject Classification: 05C15, 05C17, 05C69, 13A99, 13C99.
M-intersection graph of ideals of R, where M is an R-module.

Throughout the paper, all rings are commutative with non-zero identity and all modules are unitary. A module is called a *uniform* module if the intersection of any two non-zero submodules is non-zero. An R-module M is said to be a *multiplication* module if every submodule of M is of the form IM, for some ideal I of R. The *annihilator* of M is denoted by $\text{ann}(M)$. The module M is called a *faithful* R-module if $\text{ann}(M) = 0$. By a non-trivial submodule of M, we mean a non-zero proper submodule of M. Also, $J(R)$ denotes the Jacobson radical of R and $\text{Nil}(R)$ denotes the ideal of all nilpotent elements of R. By $\text{Max}(R)$, we denote the set of all maximal ideals of R. A ring having only finitely many maximal ideals is said to be a *semilocal* ring. As usual, \mathbb{Z} and \mathbb{Z}_n will denote the integers and the integers modulo n, respectively.

A graph in which any two distinct vertices are adjacent is called a *complete graph*. We denote the complete graph on n vertices by K_n. A *null graph* is a graph containing no edges. Let G be a graph. The *complement* of G is denoted by \overline{G}. The set of vertices and the set of edges of G are denoted by $V(G)$ and $E(G)$, respectively. A subgraph H of G is said to be an *induced subgraph* of G if it has exactly the edges that appear in G over $V(H)$. Also, a subgraph H of G is called a *spanning subgraph* if $V(H) = V(G)$. Suppose that $x, y \in V(G)$. We denote by $\text{deg}(x)$ the degree of a vertex x in G. A *regular graph* is a graph where each vertex has the same degree. We recall that a *walk* between x and y is a sequence $x = v_0 - v_1 - \cdots - v_k = y$ of vertices of G such that for every i with $1 \leq i \leq k$, the vertices v_{i-1} and v_i are adjacent. A *path* between x and y is a walk between x and y without repeated vertices. We say that G is *connected* if there is a path between any two distinct vertices of G. For vertices x and y of G, let $d(x, y)$ be the length of a shortest path from x to y ($d(x, x) = 0$ and $d(x, y) = \infty$ if there is no path between x and y). The *diameter* of G, $\text{diam}(G)$, is the supremum of the set $\{d(x, y) : x$ and y are vertices of $G\}$. The *girth* of G, denoted by $\text{gr}(G)$, is the length of a shortest cycle in G ($\text{gr}(G) = \infty$ if G contains no cycles). A *clique* in G is a set of pairwise adjacent vertices and the number of vertices in the largest clique of G, denoted by $\omega(G)$, is called the *clique number* of G. The *chromatic number* of G, $\chi(G)$, is the minimal number of colors which can be assigned to the vertices of G in such a way that every two adjacent vertices have different colors. A graph G is *perfect* if for every induced subgraph H of G, $\chi(H) = \omega(H)$. Also, G is called *weakly perfect* if $\chi(G) = \omega(G)$.

In the next section, we introduce the M-intersection graph of ideals of R, denoted by $G_M(R)$, where R is a commutative ring and M is a non-zero R-module. It is shown that for every multiplication R-module M, $\text{diam}(G_M(R)) \in \{0, 1, 2, \infty\}$ and $\text{gr}(G_M(R)) \in \{3, \infty\}$.

2
Among other results, we prove that if M is a faithful R-module and $\omega(G_M(R))$ is finite, then $|\text{Max}(R)| \leq \omega(G_M(R)) + 1$ and $J(R) = \text{Nil}(R)$. In the last section, we consider the Z_n-intersection graph of ideals of Z_m, denoted by $G_n(Z_m)$, where $n, m \geq 2$ are integers and Z_n is a Z_m-module. We show that $G_n(Z_m)$ is a perfect graph if and only if n has at most four distinct prime divisors. Furthermore, we derive a sufficient condition for $G_n(Z_m)$ to be weakly perfect. As a corollary, it is shown that the intersection graph of ideals of Z_m is weakly perfect, for every integer $m \geq 2$.

2 The M-intersection graph of ideals of R

In this section, we introduce the M-intersection graph of ideals of R and study its basic properties.

Definition. Let R be a commutative ring and M be a non-zero R-module. The M-intersection graph of ideals of R, denoted by $G_M(R)$, is the graph with vertices $I(R)^*$ and two distinct vertices I and J are adjacent if and only if $IM \cap JM \neq 0$.

Clearly, if R is regarded as a module over itself, that is, $M = R$, then the M-intersection graph of ideals of R is exactly the same as the intersection graph of ideals of R. Also, if M and N are two isomorphic R-modules, then $G_M(R)$ is the same as $G_N(R)$.

Example 1. Let $R = Z_{12}$. Then we have the following graphs.

![Graphs](image)

Example 2. Let $n \geq 2$ be an integer. If $[m_1, m_2]$ is the least common multiple of two distinct integers $m_1, m_2 \geq 2$, then $m_1Z_n \cap m_2Z_n = m_1Z_n \cap m_2Z_n = [m_1, m_2]Z_n$. Thus m_1Z and m_2Z are adjacent in $G_{Z_n}(Z)$ if and only if n does not divide $[m_1, m_2]$.

3
Example 3. Let \(p \) be a prime number and \(n, m \) be two positive integers. If \(p^n \) divides \(m \), then \(m \mathbb{Z} \) is an isolated vertex of \(G_{\mathbb{Z}_{p^n}}(\mathbb{Z}) \). Therefore, since \(\mathbb{Z}_{p^n} \) is a uniform \(\mathbb{Z} \)-module, so \(G_{\mathbb{Z}_{p^n}}(\mathbb{Z}) \) is a disjoint union of an infinite complete graph and its complement. Also, \(\mathbb{Z}_{p^\infty} \) (the quasi-cyclic \(p \)-group), is a uniform \(\mathbb{Z} \)-module and \(\text{ann}(\mathbb{Z}_{p^\infty}) = 0 \). Hence \(G_{\mathbb{Z}_{p^\infty}}(\mathbb{Z}) \) is an infinite complete graph.

Remark 1. Obviously, if \(M \) is a faithful multiplication \(R \)-module, then \(G_M(R) \) is a complete graph if and only if \(M \) is a uniform \(R \)-module.

Remark 2. Let \(R \) be a commutative ring and let \(M \) be a non-zero \(R \)-module.

(1) If \(M \) is a faithful \(R \)-module, then \(G(R) \) is a spanning subgraph of \(G_M(R) \). To see this, suppose that \(I \) and \(J \) are adjacent vertices of \(G(R) \). Then \(I \cap J \neq 0 \) implies that \((I \cap J)M \neq 0 \) and so \(IM \cap JM \neq 0 \). Therefore \(I \) is adjacent to \(J \) in \(G_M(R) \).

(2) If \(M \) is a multiplication \(R \)-module, then \(G(M) \) is an induced subgraph of \(G_M(R) \). Note that for each non-trivial submodule \(N \) of \(M \), there is a non-trivial ideal \(I \) of \(R \), such that \(N = IM \) and so we can assign \(N \) to \(I \). Also, \(N = IM \) is adjacent to \(K = JM \) in \(G(M) \) if and only if \(IM \cap JM \neq 0 \), that is, if and only if \(I \) is adjacent to \(J \) in \(G_M(R) \).

Theorem 1. Let \(R \) be a commutative ring and let \(M \) be a faithful \(R \)-module. If \(G_M(R) \) is not connected, then \(M \) is a direct sum of two \(R \)-modules.

Proof. Suppose that \(C_1 \) and \(C_2 \) are two distinct components of \(G_M(R) \). Let \(I \in C_1 \) and \(J \in C_2 \). Since \(M \) is a faithful \(R \)-module, so \(IM \cap JM = 0 \) implies that \(I \not\subseteq J \) and \(J \not\subseteq I \). Now if \(I + J \neq R \), then \(I - I + J - J \) is a path between \(I \) and \(J \), a contradiction. Thus \(I + J = R \) and so \(M = IM \oplus JM \).

The next theorem shows that for every multiplication \(R \)-module \(M \), the diameter of \(G_M(R) \) has 4 possibilities.

Theorem 2. Let \(R \) be a commutative ring and \(M \) be a multiplication \(R \)-module. Then \(\text{diam}(G_M(R)) \in \{0, 1, 2, \infty\} \).

Proof. Assume that \(G_M(R) \) is a connected graph with at least two vertices. So \(M \) is a faithful module. If there is a non-trivial ideal \(I \) of \(R \) such that \(IM = M \), then \(I \) is
adjacent to all other vertices. Hence $\text{diam}(G_M(R)) \leq 2$. Otherwise, we claim that $G(M)$ is connected. Let N and K be two distinct vertices of $G(M)$. Since M is a multiplication module, so $N = IM$ and $K = JM$, for some non-trivial ideals I and J of R. Suppose that $I = I_1 - I_2 - \cdots - I_n = J$ is a path between I and J in $G_M(R)$. Therefore, $N = I_2M - \cdots - I_{n-1}M - K$ is a walk between N and K. Thus, we conclude that there is also a path between N and K in $G(M)$. The claim is proved. So by [3, Theorem 2.4], $\text{diam}(G(M)) \leq 2$. Now, suppose that I_1 and I_2 are two distinct vertices of $G_M(R)$. If $I_1M \cap I_2M = 0$, then I_1M and I_2M are two distinct vertices of $G(M)$. Hence there exists a non-trivial submodule N of M which is adjacent to both I_1M and I_2M in $G(M)$. Since M is a multiplication module, so $N = JM$, for some non-trivial ideal J of R. Thus J is adjacent to both I_1 and I_2 in $G_M(R)$. Therefore $\text{diam}(G_M(R)) \leq 2$.

\textbf{Theorem 3.} Let R be a commutative ring and M be a multiplication R-module. If $G_M(R)$ is a connected regular graph of finite degree, then $G_M(R)$ is a complete graph.

\textbf{Proof.} Suppose that $G_M(R)$ is a connected regular graph of finite degree. If $\text{ann}(M) \neq 0$, then $G_M(R) = K_1$. So assume that $\text{ann}(M) = 0$. We claim that M is an Artinian module. Suppose to the contrary that M is not an Artinian module. Then there is a descending chain $I_1M \supset I_2M \supset \cdots \supset I_nM \supset \cdots$ of submodules of M, where I_i’s are non-trivial ideals of R. This implies that $\text{deg}(I_1)$ is infinite, a contradiction. The claim is proved. Therefore M has at least one minimal submodule. To complete the proof, it suffices to show that M contains a unique minimal submodule. By contrary, suppose that N_1 and N_2 are two distinct minimal submodules of M. Hence $N_1 = I_1M$ and $N_2 = I_2M$, where I_1 and I_2 are two non-trivial ideals of R. Since $N_1 \cap N_2 = 0$, so I_1 and I_2 are not adjacent. By Theorem 2 there is a vertex J which is adjacent to both I_1 and I_2. So both I_1M and I_2M are contained in JM. Thus each vertex adjacent to I_1 is adjacent to J too. This implies that $\text{deg}(J) > \text{deg}(I_1)$, a contradiction.

Also, the following theorem shows that for every multiplication R-module M, the girth of $G_M(R)$ has 2 possibilities.

\textbf{Theorem 4.} Let R be a commutative ring and M be a multiplication R-module. Then $\text{gr}(G_M(R)) \in \{3, \infty\}$.

\textbf{Proof.} Suppose that $I_1 - I_2 - \cdots - I_n - I_1$ is a cycle of length n in $G_M(R)$. If $n = 3$, we are done. Thus assume that $n \geq 4$. Since $I_1M \cap I_2M \neq 0$ and M is a multiplication
module, we have $I_1M \cap I_2M = JM$, where J is a non-zero ideal of R. If J is a proper ideal of R and $J \neq I_1, I_2$, then $I_1 - J - I_2 - I_1$ is a triangle in $G_M(R)$. Otherwise, we conclude that $I_1M \subseteq I_2M$ or $I_2M \subseteq I_1M$. Similarly, we can assume that $I_iM \subseteq I_{i+1}M$ or $I_{i+1}M \subseteq I_iM$, for every i, $1 < i < n$. Without loss of generality suppose that $I_1M \subseteq I_2M$.

Now, if $I_2M \subseteq I_3M$, then $I_1 - I_2 - I_3 - I_1$ is a cycle of length 3 in $G_M(R)$. Therefore assume that $I_3M \subseteq I_2M$. Since $I_3M \subseteq I_4M$ or $I_4M \subseteq I_3M$, so $I_2 - I_3 - I_4 - I_2$ is a triangle in $G_M(R)$. Hence if $G_M(R)$ contains a cycle, then $gr(G_M(R)) = 3$.

Lemma 1. Let R be a commutative ring and M be a non-zero R-module. If I is an isolated vertex of $G_M(R)$, then the following hold:

1. I is a maximal ideal of R or $I \subseteq \text{ann}(M)$.
2. If $I \not\subseteq \text{ann}(M)$, then $I = Ra$, for every $a \in I \setminus \text{ann}(M)$.

Proof. (1) There is a maximal ideal m of R such that $I \subseteq m$. Assume that $I \neq m$. Then we have $IM = IM \cap mM = 0$, since I is an isolated vertex. So $I \subseteq \text{ann}(M)$.

(2) Suppose that $a \in I \setminus \text{ann}(M)$ and $I \neq Ra$. Since I is an isolated vertex, we have $RaM = IM \cap RaM = 0$ and so $a \in \text{ann}(M)$, a contradiction. Thus $I = Ra$.

Theorem 5. Let R be a commutative ring and M be a faithful R-module. If $G_M(R)$ is a null graph, then it has at most two vertices and R is isomorphic to one of the following rings:

1. $F_1 \times F_2$, where F_1 and F_2 are fields;
2. $F[x]/(x^2)$, where F is a field;
3. L, where L is a coefficient ring of characteristic p^2, for some prime number p.

Proof. By Lemma 1, every non-trivial ideal of R is maximal and so by [10, Theorem 1.1], R cannot have more than two different non-trivial ideals. Thus $G_M(R)$ has at most two vertices. Also, by [11, Theorem 4], R is isomorphic to one of the mentioned rings.

In the next theorem we show that if M is a faithful R-module and $\omega(G_M(R)) < \infty$, then R is a semilocal ring.
Theorem 6. Let R be a commutative ring and M be a faithful R-module. If $\omega(G_M(R))$ is finite then $|\text{Max}(R)| \leq \omega(G_M(R)) + 1$ and $J(R) = \text{Nil}(R)$.

Proof. First we prove that $|\text{Max}(R)| \leq \omega(G_M(R)) + 1$. Let $\omega = \omega(G_M(R))$. By contradiction, assume that $m_1, \ldots, m_{\omega+2}$ are distinct maximal ideals of R. We know that $m_1 \cdot m_i \neq 0$, for every i, $1 \leq i \leq \omega + 1$. Otherwise, $m_1 \cdot m_j = 0$, for some j, $1 \leq j \leq \omega + 1$. So $m_1 \cdot m_j \subseteq m_{j+1}$ and hence by Prime Avoidance Theorem [5, Proposition 1.11], we have $m_t \subseteq m_{j+1}$, for some $t, 1 \leq t \leq j$, which is impossible. This implies that $\{m_1, m_1m_2, \ldots, m_1 \cdots m_{\omega+1}\}$ is a clique in $G_M(R)$, a contradiction. Thus $|\text{Max}(R)| \leq \omega + 1$.

Now, we prove that $J(R) = \text{Nil}(R)$. By contrary, suppose that $a \in J(R) \setminus \text{Nil}(R)$. Since $Ra^t M \cap Ra^j M \neq 0$, for every $i, j, i < j$ and $\omega(G_M(R))$ is finite, we conclude that $Ra^t = Ra^s$, for some integers $t < s$. Hence $a^t(1 - ra^{s-t}) = 0$, for some $r \in R$. Since $a \in J(R)$, so $1 - ra^{s-t}$ is a unit. This yields that $a^t = 0$, a contradiction. The proof is complete. \Box

3 The \mathbb{Z}_n-intersection graph of ideals of \mathbb{Z}_m

Let $n, m \geq 2$ be two integers and \mathbb{Z}_n be a \mathbb{Z}_m-module. In this section we study the \mathbb{Z}_n-intersection graph of ideals of the ring \mathbb{Z}_m. Also, we generalize some results given in [9]. For abbreviation, we denote $G_{\mathbb{Z}_n} (\mathbb{Z}_m)$ by $G_n(\mathbb{Z}_m)$. Clearly, \mathbb{Z}_n is a \mathbb{Z}_m-module if and only if n divides m.

Throughout this section, without loss of generality, we assume that $m = p_1^{\alpha_1} \cdots p_s^{\alpha_s}$ and $n = p_1^{\beta_1} \cdots p_s^{\beta_s}$, where p_i's are distinct primes, α_i's are positive integers, β_i's are non-negative integers, and $0 \leq \beta_i \leq \alpha_i$ for $i = 1, \ldots, s$. Let $S = \{1, \ldots, s\}$ and $S' = \{i \in S : \beta_i \neq 0\}$. The cardinality of S' is denoted by s'. For two integers a and b, we write $a \mid b$ ($a \nmid b$) if a divides b (a does not divide b).

First we have the following remarks.

Remark 3. It is easy to see that $I(\mathbb{Z}_m) = \{d\mathbb{Z}_m : d \text{ divides } m\}$ and $|I(\mathbb{Z}_m)^*| = \prod_{i=1}^{s}(\alpha_i + 1) - 2$. Let \mathbb{Z}_n be a \mathbb{Z}_m-module. If $n \mid d$, then $d\mathbb{Z}_m$ is an isolated vertex of $G_n(\mathbb{Z}_m)$. Obviously, $d_1\mathbb{Z}_m$ and $d_2\mathbb{Z}_m$ are adjacent if and only if $n \nmid [d_1, d_2]$. This implies that $G_n(\mathbb{Z}_m)$ is a subgraph of $G(\mathbb{Z}_m)$.

Remark 4. Let \mathbb{Z}_n be a \mathbb{Z}_m-module and $d = p_1^{\gamma_1} \cdots p_s^{\gamma_s}(\neq 1, m)$ be a divisor of m. We set $D_d = \{i \in S : r_i < \beta_i\}$. Clearly, $D_d \subseteq S'$. Suppose that W is a clique of $G_n(\mathbb{Z}_m)$.
Then $\Gamma_W = \{ D_d : d\mathbb{Z}_m \in W \}$ is an intersecting family of subsets of S'. (A family of sets is intersecting if any two of its sets have a non-empty intersection.) Also, if Γ is an intersecting family of subsets of S' and $W_\Gamma = \{ d\mathbb{Z}_m : d \neq 1, m, d|m, D_d \in \Gamma \}$ is non-empty, then W_Γ is a clique of $G_n(\mathbb{Z}_m)$. (If D is a non-empty subset of S' and $\Gamma = \{ D \}$, then we will denote W_Γ by W_D.) Thus we have

$$\omega(G_n(\mathbb{Z}_m)) = \max \{ |W_\Gamma| : \Gamma \text{ is an intersecting family of subsets of } S' \}.$$

Now, we provide a lower bound for the clique number of $G_n(\mathbb{Z}_m)$.

Theorem 7. Let \mathbb{Z}_n be a \mathbb{Z}_m-module. Then

$$\omega(G_n(\mathbb{Z}_m)) \geq \max \left\{ \beta_j \prod_{i \neq j} (\alpha_i + 1) - 1 : \beta_j \neq 0 \right\}.$$

Proof. Suppose that $\beta_j \neq 0$. With the notations of the previous remark, let $\Gamma = \{ D \subseteq S' : j \in D \}$. Then Γ is an intersecting family of subsets of S' and so W_Γ is a clique of $G_n(\mathbb{Z}_m)$. Clearly, $|W_\Gamma| = \beta_j \prod_{i \neq j} (\alpha_i + 1) - 1$. Therefore $\omega(G_n(\mathbb{Z}_m)) \geq \beta_j \prod_{i \neq j} (\alpha_i + 1) - 1$ and hence the result holds. \square

Clearly, if $n = p_1^{\beta_1}$ ($\beta_1 > 1$), then equality holds in the previous theorem. Also, if n has only two distinct prime divisors, that is, $s' = 2$, then again equality holds. So the lower bound is sharp.

Example 4. Let $m = n = p_1^2 p_2^2 p_3^2$, where p_1, p_2, p_3 are distinct primes. Thus $S' = S = \{1, 2, 3\}$ and $G_n(\mathbb{Z}_m) = G(\mathbb{Z}_m)$. It is easy to see that $|W_{\{1\}}| = |W_{\{2\}}| = |W_{\{3\}}| = 2$ and $|W_{\{1,2\}}| = |W_{\{1,3\}}| = |W_{\{2,3\}}| = 4$. Also, $|W_{\{1,2,3\}}| = 7$. Let $\Gamma_j = \{ D \subseteq S' : j \in D \}$, for $j = 1, 2, 3$. Hence $|W_{\Gamma_j}| = 17$, for $j = 1, 2, 3$. If $\Gamma = \{ \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \}$, then $|W_\Gamma| = 19$. Therefore $\omega(G(\mathbb{Z}_m)) = 19$.

By the strong perfect graph theorem, we determine the values of n and m for which $G_n(\mathbb{Z}_m)$ is a perfect graph.

Theorem A. (The Strong Perfect Graph Theorem [7]) A finite graph G is perfect if and only if neither G nor \overline{G} contains an induced odd cycle of length at least 5.

Theorem 8. Let \mathbb{Z}_n be a \mathbb{Z}_m-module. Then $G_n(\mathbb{Z}_m)$ is perfect if and only if n has at most four distinct prime divisors.
Proof. First suppose that \(s' \geq 5 \) and \(n = p_1^{\beta_1} \cdots p_{s'}^{\beta_{s'}} \), where \(p_i \)'s are distinct primes and \(\beta_i \)'s are positive integers. Let \(D_1 = \{p_1, p_5\} \), \(D_2 = \{p_1, p_2\} \), \(D_3 = \{p_2, p_3\} \), \(D_4 = \{p_3, p_4\} \), and \(D_5 = \{p_4, p_5\} \). Now, assume that \(d_i \mathbb{Z}_m \in W_{D_i} \), for \(i = 1, \ldots, 5 \). Hence \(d_1 \mathbb{Z}_m - d_2 \mathbb{Z}_m - d_3 \mathbb{Z}_m - d_4 \mathbb{Z}_m - d_5 \mathbb{Z}_m - d_1 \mathbb{Z}_m \) is an induced cycle of length 5 in \(G_n(\mathbb{Z}_m) \). So by Theorem \(A \), \(G_n(\mathbb{Z}_m) \) is not a perfect graph.

Conversely, suppose that \(G_n(\mathbb{Z}_m) \) is not a perfect graph. Then by Theorem \(A \) we have the following cases:

Case 1. \(d_1 \mathbb{Z}_m - d_2 \mathbb{Z}_m - d_3 \mathbb{Z}_m - d_4 \mathbb{Z}_m - d_5 \mathbb{Z}_m \) is an induced cycle of length 5 in \(G_n(\mathbb{Z}_m) \). Let \(D_i = D_{d_i} \), for \(i = 1, \ldots, 5 \). So \(D_5 \cap D_1 \not= \emptyset \) and \(D_i \cap D_{i+1} \not= \emptyset \), for \(i = 1, \ldots, 4 \). Let \(p_5 \in D_5 \cap D_1 \) and \(p_i \in D_i \cap D_{i+1} \), for \(i = 1, \ldots, 4 \). Clearly, \(p_1, \ldots, p_5 \) are distinct and thus \(s' \geq 5 \).

Case 2. \(d_1 \mathbb{Z}_m - d_2 \mathbb{Z}_m - d_3 \mathbb{Z}_m - d_4 \mathbb{Z}_m - d_5 \mathbb{Z}_m - d_6 \mathbb{Z}_m \) is an induced path of length 5 in \(G_n(\mathbb{Z}_m) \). Let \(D_i = D_{d_i} \), for \(i = 1, \ldots, 6 \). So \(D_i \cap D_{i+1} \not= \emptyset \), for \(i = 1, \ldots, 5 \). Let \(p_i \in D_i \cap D_{i+1} \), for \(i = 1, \ldots, 5 \). Clearly, \(p_1, \ldots, p_5 \) are distinct and hence \(s' \geq 5 \).

Case 3. There is an induced cycle of length 5 in \(G_n(\mathbb{Z}_m) \). So \(G_n(\mathbb{Z}_m) \) contains an induced cycle of length 5 and by Case 1, we are done.

Case 4. \(d_1 \mathbb{Z}_m - d_2 \mathbb{Z}_m - d_3 \mathbb{Z}_m - d_4 \mathbb{Z}_m - d_5 \mathbb{Z}_m - d_6 \mathbb{Z}_m \) is an induced path of length 5 in \(G_n(\mathbb{Z}_m) \). Since \(D_{d_i} \cap D_{d_j} \not= \emptyset \), \(D_{d_i} \cap D_{d_j} \not= \emptyset \) and \(D_{d_3} \cap D_{d_4} = \emptyset \), we may assume that \(\{p_1, p_2\} \subseteq D_{d_1} \), where \(p_1 \in D_{d_3} \) and \(p_2 \in D_{d_4} \), for some distinct \(p_1, p_2 \in S' \). Similarly, we find that \(\{p_3, p_4\} \subseteq D_{d_2} \), for some distinct \(p_3, p_4 \in S' \setminus \{p_1, p_2\} \) and also \(|D_{d_3}| \geq 2 \). Now, since \(D_{d_3} \cap D_{d_2} = \emptyset \) and \(p_2 \not\in D_{d_3} \), we deduce that \(s' \geq 5 \). \(\square \)

Corollary 1. The graph \(G(\mathbb{Z}_m) \) is perfect if and only if \(m \) has at most four distinct prime divisors.

In the next theorem, we derive a sufficient condition for \(G_n(\mathbb{Z}_m) \) to be weakly perfect.

Theorem 9. Let \(\mathbb{Z}_m \) be a \(\mathbb{Z}_m \)-module. If \(\alpha_i \leq 2\beta_i - 1 \) for each \(i \in S' \), then \(G_n(\mathbb{Z}_m) \) is weakly perfect.

Proof. Let \(D \) be a non-empty subset of \(S' \) and \(\overline{D} = S' \setminus D \). As we mentioned in Remark 4 if \(W_{D} \) is non-empty, then \(W_{D} \) is a clique of \(G_n(\mathbb{Z}_m) \). Also, the vertices of \(W_{S'} \) (if \(S' \not= \emptyset \)) are adjacent to all non-isolated vertices. Suppose that \(D_1 \) and \(D_2 \) are two non-empty subsets of \(S' \) and \(D_1 \subseteq D_2 \). Since \(\alpha_i \leq 2\beta_i - 1 \) for each \(i \in S' \), so \(\Pi_{i \in D_1 \setminus D'_1} (\alpha_i - \beta_i + 1) \leq \Pi_{i \in D_1 \setminus D_1} (\alpha_i - \beta_i + 1) \leq \Pi_{i \in D_2 \setminus D_1} (\beta_i) \leq \Pi_{i \in D_1 \setminus D_1} (\alpha_i - \beta_i + 1) \leq \Pi_{i \in D_2 \setminus D_1} (\alpha_i - \beta_i + 1) \) and hence \(|W_{D_1}| \leq |W_{D_2}| \).
Let Γ be an intersecting family of subsets of S' and $\omega(G_n(Z_m)) = |W_\Gamma|$. Let $D \subseteq S'$. We show that $D \in \Gamma$ or $\overline{D} \in \Gamma$. Assume that $D \notin \Gamma$. So there is $D_1 \in \Gamma$ such that $D \cap D_1 = \emptyset$. Thus $D_1 \subseteq \overline{D}$ and hence $\overline{D} \in \Gamma$. We claim that $|W_\overline{D}| \leq |W_D|$, for each $D \in \Gamma$. Suppose to the contrary, $D \in \Gamma$ and $|W_\overline{D}| > |W_D|$. If $A \in \Gamma$ and $A \subseteq D$, then $\overline{D} \subseteq \overline{A}$. So we have $|W_A| \leq |W_D| < |W_\overline{D}| \leq |W_D|$. Let $\Phi = \Gamma \cup \{A: A \in \Gamma, A \subseteq D\} \{A \in \Gamma: A \subseteq D\}$. Then Φ is an intersecting family of subsets of S' and $|W_\Gamma| < |W_\Phi|$, a contradiction. The claim is proved.

Now, we show that $G_n(Z_m)$ has a proper $|W_\Gamma|$-vertex coloring. First we color all vertices of W_Γ with different colors. Next we color each family W_D of vertices out of W_Γ with colors of vertices of $W_\overline{D}$. Note that if $D \notin \Gamma$, then $\overline{D} \in \Gamma$ and $|W_D| \leq |W_\overline{D}|$. Suppose that $d_1 Z_m$ and $d_2 Z_m$ are two adjacent vertices of $G_n(Z_m)$. Thus $D_{d_1} \cap D_{d_2} \neq \emptyset$. Without loss of generality, one can assume $D_{d_1} \neq D_{d_2}$. So we deduce that $\overline{D}_{d_1} \neq \overline{D}_{d_2}$ and $D_{d_1} \neq \overline{D}_{d_2}$. Therefore, $d_1 Z_m$ and $d_2 Z_m$ have different colors. Thus $\chi(G_n(Z_m)) \leq |W_\Gamma|$ and hence $\omega(G_n(Z_m)) = \chi(G_n(Z_m)) = |W_\Gamma|$. \square

As an immediate consequence of the previous theorem, we have the next result.

Corollary 2. The graph $G(Z_m)$ is weakly perfect, for every integer $m \geq 2$.

In the case that $\alpha_i = 2\beta_i - 1$ for each $i \in S'$, we determine the exact value of $\chi(G_n(Z_m))$. It is exactly the lower bound obtained in the Theorem [7].

Theorem 10. Let Z_m be a Z_m-module. If $\alpha_i = 2\beta_i - 1$ for each $i \in S'$, then $\omega(G_n(Z_m)) = \chi(G_n(Z_m)) = 2^{s'-1} \prod_{i \in S'} \beta_i \prod_{i \in S \setminus S'} (\alpha_i + 1) - 1$.

Proof. Let $D \neq \emptyset$ be a proper subset of S'. Then $|W_D| = \prod_{i \in D} \beta_i \prod_{i \notin D} (\alpha_i - \beta_i + 1) = \prod_{i \in S'} \beta_i \prod_{i \in S \setminus S'} (\alpha_i + 1)$ and hence $|W_D| = |W_\overline{D}|$. Also, the vertices of W_S' (if $W_S' \neq \emptyset$) are adjacent to all non-isolated vertices and $|W_S'| = \prod_{i \in S'} \beta_i \prod_{i \in S \setminus S'} (\alpha_i + 1) - 1$. Clearly if Γ is an intersecting family of subsets of S', then $|\Gamma| \leq 2^{s'-1}$. Moreover, if $\beta_j \neq 0$ and $\Gamma_j = \{D \subseteq S': j \in D\}$, then $|\Gamma_j| = 2^{s'-1}$. Thus by Theorem [9] $\omega(G_n(Z_m)) = \chi(G_n(Z_m)) = |W_{\Gamma_j}| = 2^{s'-1} \prod_{i \in S'} \beta_i \prod_{i \in S \setminus S'} (\alpha_i + 1) - 1$. \square

Corollary 3. Let $m = p_1 \cdots p_s$, where p_i's are distinct primes. Then $\omega(G(Z_m)) = \chi(G(Z_m)) = 2^{s-1} - 1$.

We close this article by the following problem.
Problem. Let \mathbb{Z}_n be a \mathbb{Z}_m-module. Then is it true that $G_n(\mathbb{Z}_m)$ is a weakly perfect graph?

References

[1] S. Akbari, F. Heydari, The regular graph of a noncommutative ring, *Bull. Aust. Math. Soc.*, 89 (2014), 132–140.

[2] S. Akbari, S. Khojasteh, Commutative rings whose cozero-divisor graphs are unicyclic or of bounded degree, *Comm. Algebra*, 42 (2014), 1594–1605.

[3] S. Akbari, H. A. Tavallaee, S. Khalashi Ghezelahmad, Intersection graph of submodules of a module, *J. Algebra Appl.*, 11 (2012), Article No. 1250019.

[4] D. F. Anderson, A. Badawi, The total graph of a commutative ring, *J. Algebra*, 320 (2008), 2706–2719.

[5] M. F. Atiyah, I. G. Macdonald, *Introduction to Commutative Algebra*, Addison-Wesley Publishing Company, 1969.

[6] I. Chakrabarty, S. Ghosh, T. K. Mukherjee, M. K. Sen, Intersection graphs of ideals of rings, *Discrete Math.*, 309 (2009), 5381–5392.

[7] M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas, The strong perfect graph theorem, *Ann. Math.*, 164 (2006), 51–229.

[8] B. Csákány, G. Pollák, The graph of subgroups of a finite group, *Czechoslovak Math. J.*, 19 (1969), 241–247.

[9] R. Nikandish, M. J. Nikmehr, The intersection graph of ideals of \mathbb{Z}_n is weakly perfect, *Utilitas Mathematica*, to appear.

[10] F. I. Perticani, Commutative rings in which every proper ideal is maximal, *Fund. Math.*, 71 (1971), 193–198.

[11] J. Reineke, Commutative rings in which every proper ideal is maximal, *Fund. Math.*, 97 (1977), 229–231.