CASTELNUOVO-MUMFORD REGULARITY FOR COMPLEXES AND WEAKLY KOSZUL MODULES

KOHJI YANAGAWA

Abstract. Let \(A \) be a noetherian AS regular Koszul quiver algebra (if \(A \) is commutative, it is essentially a polynomial ring), and \(\text{gr} \, A \) the category of finitely generated graded left \(A \)-modules. Following Jørgensen, we define the Castelnuovo-Mumford regularity \(\text{reg}(M^\bullet) \) of a complex \(M^\bullet \in D^b(\text{gr} \, A) \) in terms of the local cohomologies or the minimal projective resolution of \(M^\bullet \). Let \(A^! \) be the quadratic dual ring of \(A \). For the Koszul duality functor \(G : D^b(\text{gr} \, A) \rightarrow D^b(\text{gr} \, A^!) \), we have \(\text{reg}(M^\bullet) = \max \{ i \mid H^i(G(M^\bullet)) \neq 0 \} \). Using these concepts, we interpret results of Martinez-Villa and Zacharia concerning weakly Koszul modules (also called componentwise linear modules) over \(A^! \). As an application, refining a result of Herzog and Römer, we show that if \(J \) is a monomial ideal of an exterior algebra \(E = \bigwedge \langle y_1, \ldots, y_d \rangle \), \(d \geq 3 \), then the \((d-2)\text{nd}\) syzygy of \(E/J \) is weakly Koszul.

1. Introduction

Let \(S = K[x_1, \ldots, x_d] \) be a polynomial ring over a field \(K \). We regard \(S \) as a graded ring with \(\text{deg} \, x_i = 1 \) for all \(i \). The following is a well-known result.

Theorem 1.1 (c.f. [4]). Let \(M \) be a finitely generated graded \(S \)-module. For an integer \(r \), the following conditions are equivalent.

1. \(H^i_m(M)_j = 0 \) for all \(i, j \in \mathbb{Z} \) with \(i + j > r \).
2. The truncated module \(M_{\geq r} := \bigoplus_{i \geq r} M_i \) has an \(r \)-linear free resolution.

Here \(m := (x_1, \ldots, x_d) \) is the irrelevant ideal of \(S \), and \(H^i_m(M) \) is the \(i \)th local cohomology module.

If the conditions of Theorem 1.1 are satisfied, we say \(M \) is \(r \)-regular. For a sufficiently large \(r \), \(M \) is \(r \)-regular. We call \(\text{reg}(M) = \min \{ r \mid M \text{ is } r \text{-regular} \} \) the Castelnuovo-Mumford regularity of \(M \). This is a very important invariant in commutative algebra.

Let \(A \) be a noetherian AS regular Koszul quiver algebra with the graded Jacobson radical \(m := \bigoplus_{i \geq 1} A_i \). If \(A \) is commutative, \(A \) is essentially a polynomial ring. When \(A \) is connected (i.e., \(A_0 = K \)), it is the coordinate ring of a “noncommutative projective space” in noncommutative algebraic geometry. Let \(\text{gr} \, A \) be the category of finitely generated graded left \(A \)-modules and their degree preserving maps. (For a graded ring \(B \), \(\text{gr} \, B \) means the similar category for \(B \).) The local cohomology module \(H^i_m(M) \) of \(M \in \text{gr} \, A \) behaves pretty much like in the commutative case. For example, we have “Serre duality theorem” for the derived category \(D^b(\text{gr} \, A) \). See [10, 23] and Theorem 2.7 below. By virtue of this duality, we can show that Theorem 1.1 also holds for bounded complexes in \(\text{gr} \, A \).
Theorem 1.2. For a complex $M^\bullet \in D^b(\text{gr } A)$ and an integer r, the following conditions are equivalent.

1. $H^i_m(M^\bullet)_j = 0$ for all $i, j \in \mathbb{Z}$ with $i + j > r$.

2. The truncated complex $(M^\bullet)_{\geq r}$ has an r-linear projective resolution.

Here $(M^\bullet)_{\geq r}$ is the subcomplex of M^\bullet whose ith term is $(M^\bullet)_{\geq r-i}$.

For a sufficiently large r, the conditions of the above theorem are satisfied. The regularity $\text{reg}(M^\bullet)$ of M^\bullet is defined in the natural way. When A is connected, Jørgensen ([10]) has studied the regularity of complexes, and essentially proved the above result. See also [9, 15]. (Even in the case when A is a polynomial ring, it seems that nobody had considered Theorem 1.2 before [10].) But his motivation and treatment are slightly different from ours.

For $M^\bullet \in D^b(\text{gr } A)$, set $\mathcal{H}(M^\bullet)$ to be a complex such that $\mathcal{H}(M^\bullet)^i = H^i(M)$ for all i and the differential maps are zero. Then we have $\text{reg}(\mathcal{H}(M^\bullet)) \geq \text{reg}(M^\bullet)$. The difference $\text{reg}(\mathcal{H}(M^\bullet)) - \text{reg}(M^\bullet)$ is a theme of the last section of this paper.

Let $A^!$ be the quadratic dual ring of A. For example, if $S = K[x_1, \ldots, x_d]$ is a polynomial ring, then $S^!$ is an exterior algebra $E = \bigwedge \langle y_1, \ldots, y_d \rangle$. It is known that $A^!$ is always Koszul, finite dimensional, and selfinjective. The Koszul duality functors $\mathcal{F} : D^b(\text{gr } A^!) \to D^b(\text{gr } A)$ and $\mathcal{G} : D^b(\text{gr } A) \to D^b(\text{gr } A^!)$ give a category equivalence $D^b(\text{gr } A^!) \cong D^b(\text{gr } A)$ (see [2]). It is easy to check that

$$\text{reg}(M^\bullet) = \max \{ i \mid H^i(\mathcal{G}(M^\bullet)) \neq 0 \}$$

for $M^\bullet \in D^b(\text{gr } A)$.

Let $\text{gr } A^{\text{op}}$ be the category of finitely generated graded right A-modules. The above results on $\text{gr } A$ also hold for $\text{gr } A^{\text{op}}$. Moreover, we have

$$\text{reg}(\mathbf{R}\text{Hom}_A(M^\bullet, D^\bullet)) = -\min \{ i \mid H^i(\mathcal{G}(M^\bullet)) \neq 0 \}$$

for $M^\bullet \in D^b(\text{gr } A)$. Here D^\bullet is a balanced dualizing complex of A, which gives duality functors between $D^b(\text{gr } A)$ and $D^b(\text{gr } A^{\text{op}})$.

Let B be a noetherian Koszul algebra. For $M \in \text{gr } B$ and $i \in \mathbb{Z}$, $M_{(i)}$ denotes the submodule of M generated by the degree i component M_i of M. We say M is weakly Koszul if $M_{(i)}$ has a linear projective resolution for all i. This definition is different from the original one given in [13], but they are equivalent. (Weakly Koszul modules are also called “componentwise linear modules” by some commutative algebraists.) Martinez-Villa and Zacharia proved that if $N \in \text{gr } A^!$ then the ith syzygy $\Omega_i(N)$ of N is weakly Koszul for $i \gg 0$. For $N \in \text{gr } A^!$, set

$$\text{lpd}(N) := \min \{ i \in \mathbb{N} \mid \Omega_i(N) \text{ is weakly Koszul} \}.$$

Let $N \in \text{gr } A^!$ and $N' := \text{Hom}_{A^!}(N, A^!)$ be the dual of N. In Theorem 1.4 we show that N is weakly Koszul if and only if $\text{reg}(\mathcal{H} \circ \mathcal{F}^{\text{op}}(N')) = 0$, where $\mathcal{F}^{\text{op}} : D^b(\text{gr } A^{\text{op}}) \to D^b(\text{gr } A^{\text{op}})$ is the Koszul duality functor. (Since $\text{reg}(\mathcal{F}^{\text{op}}(N')) = 0$, we have $\text{reg}(\mathcal{H} \circ \mathcal{F}^{\text{op}}(N')) \geq 0$ in general.) Moreover, we have

$$\text{lpd}(N) = \text{reg}(\mathcal{H} \circ \mathcal{F}^{\text{op}}(N'))$$

(Corollary 1.7). As an application of this formula, we refine a result of Herzog and Römer on monomial ideals of an exterior algebra. Among other things, in
Proposition 4.15, we show that if \(J \) is a monomial ideal of an exterior algebra \(E = \bigwedge \langle y_1, \ldots, y_d \rangle \), \(d \geq 3 \), then \(\text{lpd}(E/J) \leq d - 2 \).

Finally, we remark that Herzog and Iyengar ([8]) studied the invariant \(\text{lpd} \) and related concepts over noetherian commutative (graded) local rings. Among other things, they proved that \(\text{lpd}(N) \) is always finite over some “nice” local rings (e.g., complete intersections whose associated graded rings are Koszul).

2. Preliminaries

Let \(K \) be a field. The ring \(A \) treated in this paper is a (not necessarily commutative) \(K \)-algebra with some nice properties. More precisely, \(A \) is a noetherian AS regular Koszul quiver algebra. If \(A \) is commutative, it is essentially a polynomial ring. But even in this case, most results in §4 and a few results in §3 are new. (In the polynomial ring case, many results in §3 were obtained in [3].) So one can read this paper assuming that \(A \) is a polynomial ring.

We sketch the definition and basic properties of graded quiver algebras here. See [3] for further information.

Let \(Q \) be a finite quiver. That is, \(Q = (Q_0, Q_1) \) is an oriented graph, where \(Q_0 \) is the set of vertices and \(Q_1 \) is the set of arrows. Here \(Q_0 \) and \(Q_1 \) are finite sets. The path algebra \(KQ \) is a positively graded algebra with grading given by the lengths of paths. We denote the graded Jacobson radical of \(KQ \) by \(J \). That is, \(J \) is the ideal generated by all arrows. If \(I \subset J^2 \) is a graded ideal, we say \(A = KQ/I \) is a graded quiver algebra. Of course, \(A = \bigoplus_{i \geq 0} A_i \) is a graded ring such that the degree \(i \) component \(A_i \) is a finite dimensional \(K \)-vector space for all \(i \). The subalgebra \(A_0 \) is a product of copies of the field \(K \), one copy for each element of \(Q_0 \). If \(A_0 = K \) (i.e., \(Q \) has only one vertex), we say \(A \) is connected. Let \(R = \bigoplus_{i \geq 0} R_i \) be a graded algebra with \(R_0 = K \) and \(\dim_K R_i =: n < \infty \). If \(R \) is generated by \(R_1 \) as a \(K \)-algebra, then it can be regarded as a graded quiver algebra over a quiver with one vertex and \(n \) loops. Let \(\mathfrak{m} := \bigoplus_{i \geq 1} A_i \) be the graded Jacobson radical of \(A \). Unless otherwise specified, we assume that \(A \) is left and right noetherian throughout this paper.

Let \(\text{Gr} A \) (resp. \(\text{Gr} A^{op} \)) be the category of graded left (resp. right) \(A \)-modules and their degree preserving \(A \)-homomorphisms. Note that the degree \(i \) component \(M_i \) of \(M \in \text{Gr} A \) (or \(M \in \text{Gr} A^{op} \)) is an \(A_0 \)-module for each \(i \). Let \(\text{gr} A \) (resp. \(\text{gr} A^{op} \)) be the full subcategory of \(\text{Gr} A \) (resp. \(\text{Gr} A^{op} \)) consisting of finitely generated modules. Since we assume that \(A \) is noetherian, \(\text{gr} A \) and \(\text{gr} A^{op} \) are abelian categories. In the sequel, we will define several concepts for \(\text{Gr} A \) and \(A \). But the corresponding concepts for \(\text{Gr} A^{op} \) and \(A^{op} \) can be defined in the same way.

For \(n \in \mathbb{Z} \) and \(M \in \text{Gr} A \), set \(M_{\geq n} := \bigoplus_{i \geq n} M_i \) to be a submodule of \(M \), and \(M_{\leq n} := \bigoplus_{i \leq n} M_i \) to be a graded \(K \)-vector space. The \(n \)th shift \(M(n) \) of \(M \) is defined by \(M(n)_i = M_{n+i} \). Set \(\sigma(M) := \sup \{ i \mid M_i \neq 0 \} \) and \(\iota(M) := \inf \{ i \mid M_i \neq 0 \} \). If \(M = 0 \), we set \(\sigma(M) = -\infty \) and \(\iota(M) = +\infty \). Note that if \(M \in \text{gr} A \) then \(\iota(M) > -\infty \). For a complex \(M^* \) in \(\text{Gr} A \), set

\[
\sigma(M^*) := \sup \{ \sigma(H^i(M^*)) + i \mid i \in \mathbb{Z} \}
\]

and

\[
\iota(M^*) := \inf \{ \iota(H^i(M^*)) + i \mid i \in \mathbb{Z} \}.
\]
For \(v \in Q_0 \), we have the idempotent \(e_v \) associated with \(v \). Note that \(1 = \sum_{v \in Q_0} e_v \). Set \(P_v := A e_v \) and \(v P := e_v A \). Then we have \(A A = \bigoplus_{v \in Q_0} P_v \) and \(A A = \bigoplus_{v \in Q_0} (v P) \). Each \(P_v \) and \(v P \) are indecomposable projectives. Conversely, any indecomposable projective in \(Gr A \) (resp. \(Gr A^{\text{op}} \)) is isomorphic to \(P_v \) (resp. \(v P \)) for some \(v \in Q_0 \) up to degree shifting. Set \(K_v := P_v/(m P_v) \) and \(\nu K := P_v/(v P m) \). Each \(K_v \) and \(\nu K \) are simple. Conversely, any simple object in \(Gr A \) (resp. \(Gr A^{\text{op}} \)) is isomorphic to \(K_v \) (resp. \(\nu K \)) for some \(v \in Q_0 \) up to degree shifting.

We say a graded left (or right) \(A \)-module \(M \) is \textit{locally finite} if \(\dim_K M_i < \infty \) for all \(i \). If \(M \in \text{gr} A \), then it is locally finite. Let \(I f A \) (resp. \(I f A^{\text{op}} \)) be the full subcategory of \(Gr A \) (resp. \(Gr A^{\text{op}} \)) consisting of locally finite modules.

Let \(C^b(Gr A) \) be the category of bounded cochain complexes in \(Gr A \), and \(D^b(Gr A) \) its derived category. We have similar categories for \(Gr A^{\text{op}} \), \(I f A \), \(I f A^{\text{op}} \), \text{gr} \(A \), and \(\text{gr} A^{\text{op}} \). For a complex \(M^\bullet \) and an integer \(p \), let \(M^\bullet[p] \) be the \(p \)-th translation of \(M^\bullet \). That is, \(M^\bullet[p] \) is a complex with \(M^i[p] = M^{i+p} \). Since \(D^b(\text{gr} A) \cong D^b_{\text{gr} A}(Gr A) \cong D^b_{\text{gr} A}(lf A) \), we freely identify these categories. A module \(M \) can be regarded as a complex \(\cdots \rightarrow 0 \rightarrow M \rightarrow 0 \rightarrow \cdots \) with \(M \) at the 0-th term. We can regard \(Gr A \) as a full subcategory of \(C^b(Gr A) \) and \(D^b(Gr A) \) in this way.

For \(M, N \in Gr A \), set \(\text{Hom}_{Gr A}(M, N) := \bigoplus_{i \in \mathbb{Z}} \text{Hom}_{Gr A}(M, N(i)) \) to be a graded \(K \)-vector space with \(\text{Hom}_{Gr A}(M, N)_i = \text{Hom}_{Gr A}(M, N(i)) \). Similarly, we can also define \(\text{Hom}^\bullet_{Gr A}(M^\bullet, N^\bullet) \), \(\text{RHom}_{Gr A}(M^\bullet, N^\bullet) \), and \(\text{Ext}^i_{Gr A}(M^\bullet, N^\bullet) \) for \(M^\bullet, N^\bullet \in D^b(Gr A) \).

If \(V \) is a \(K \)-vector space, \(V^\bullet \) denotes the dual vector space \(\text{Hom}_K(V, K) \). For \(M \in \text{Gr} A \) (resp. \(M \in \text{Gr} A^{\text{op}} \)), \(M^\vee := \bigoplus_{i \in \mathbb{Z}} (M_i)^* \) has a graded \textit{right} (resp. \textit{left}) \(A \)-module structure given by \((fa)(x) = f(ax) \) (resp. \((af)(x) = f(xa) \)) and \((M^\vee)_i = (M_{-i})^* \). If \(M \in I f A \), then \(M^\vee \in I f A^{\text{op}} \) and \(M^\vee \cong M \). In other words, \((\ -)^\vee \) gives exact duality functors between \(I f A \) and \(I f A^{\text{op}} \), which can be extended to duality functors between \(C^b(I f A) \) and \(C^b(I f A^{\text{op}}) \), or between \(D^b(I f A) \) and \(D^b(I f A^{\text{op}}) \). In this paper, when we say \(W \) is an \(A-A \) bimodule, we always assume that \((aw)a' = a(wa') \) for all \(w \in W \) and \(a, a' \in A \). If \(W \) is a graded \(A-A \) bimodule, then so is \(W^\vee \).

It is easy to see that \(I_v := (v P)^\vee \) (resp. \(I_v := (P_v)^\vee \)) is injective in \(Gr A \) (resp. \(Gr A^{\text{op}} \)). Moreover, \(I_v \) and \(I_v \) are graded injective hulls of \(K_v \) and \(\nu K \) respectively. In particular, the \(A-A \) bimodule \(A^\vee \) is injective both in \(Gr A \) and in \(Gr A^{\text{op}} \).

Let \(W \) be a graded \(A-A \) bimodule. For \(M \in Gr A \), we can regard \(\text{Hom}_{Gr A}(M, W) \) as a graded \textit{right} \(A \)-module by \((fa)(x) = f(xa) \). We can also define \(\text{RHom}_{Gr A}(M^\bullet, W) \in D^b(Gr A^{\text{op}}) \) and \(\text{Ext}^i_{Gr A^0}(M^\bullet, W) \in Gr A^{\text{op}} \) for \(M^\bullet \in D^b(Gr A) \) in this way. Similarly, for \(M^\bullet \in D^b(Gr A^{\text{op}}) \), we can make \(\text{RHom}_{Gr A^0}(M^\bullet, W) \) and \(\text{Ext}^i_{Gr A^{\text{op}}}(M^\bullet, W) \) (bounded complex of) graded left \(A \)-modules. For \(M \in Gr A \), we can regard \(\text{Hom}_{Gr A}(W, M) \) as a graded \textit{left} \(A \)-module by \((af)(x) = f(xa) \).
For the functor $\text{Hom}_A(-, W)$, we mainly consider the case when $W = A$ or $W = A^\vee$. But, we have $\text{Hom}_A(-, A^\vee) \cong (-)^\vee$. To see this, note that

$$(M^\vee)_i = \text{Hom}_K(M_{-i}, K) = \bigoplus_{v \in Q_0} \text{Hom}_K(e_v M_{-i}, K)$$

$$\cong \bigoplus_{v \in Q_0} \text{Hom}_K(e_v M_{-i}, K_v)$$

$$\cong \text{Hom}_{A_0}(M_{-i}, A_0).$$

Via the identification $(A^\vee)_0 \cong (A_0)^* \cong A_0$, $f \in (M^\vee)_i \cong \text{Hom}_{A_0}(M_{-i}, A_0)$ gives a morphism $f^\prime : M_{\geq -i} \to A^\vee(i)$ in Gr A. Since $\text{Hom}_{\text{Gr} A}(M/M_{\geq -i}, A^\vee(i)) = 0$ and A^\vee is injective, the short exact sequence $0 \to M_{\geq -i} \to M \to M/M_{\geq -i} \to 0$ induces a unique extension $f^\prime^\vee : M \to A^\vee(i)$ of f^\prime. From this correspondence, we have $\text{Hom}_A(M, A^\vee) \cong M^\vee$.

Let P^\bullet be a right bounded complex in gr A such that each P^i is projective. We say P^\bullet is minimal if $d(P^i) \subset \mathfrak{m} P^{i+1}$ for all i. Here d is the differential map. Any complex $M^\bullet \in C^b(\text{gr} A)$ has a minimal projective resolution, that is, we have a minimal complex P^\bullet of projective objects and a graded quasi-isomorphism $P^\bullet \to M^\bullet$. A minimal projective resolution of M^\bullet is unique up to isomorphism. We denote a graded module A/\mathfrak{m} by A_0. Set $\beta^{i,j}(M^\bullet) := \dim_K \text{Ext}^{-i}_A(M^\bullet, A_0)_{-j}$. Let P^\bullet be a minimal projective resolution of M^\bullet, and $P^i := \bigoplus_{l=1}^m T_{i,l}$ an indecomposable decomposition. Then we have

$$\beta^{i,j}(M^\bullet) = \# \{ l \mid T_{i,l}(j) \cong P_v \text{ for some } v \}.$$

We can also define $\beta^{i,j}(M^\bullet)$ as the dimension of $\text{Tor}_A^i(A_0, M^\bullet)_j$. This definition must be much more familiar to commutative algebraists. Note that $\beta^{i,j}(-)$ is an invariant of isomorphism classes of the derived category $D^b(\text{gr} A)$. Note that these facts on minimal projective resolutions also hold over any noetherian graded algebra.

Definition 2.1. Let A be a (not necessarily noetherian) graded quiver algebra. We say A is **Artin-Schelter regular** (AS-regular, for short), if

- A has finite global dimension d.
- $\text{Ext}_A^i(K_v, A) = \text{Ext}_A^i(K_v, A) = 0$ for all $i \neq d$ and all $v \in Q_0$.
- There are a permutation δ on Q_0 and an integer n_v for each $v \in Q_0$ such that $\text{Ext}_A^d(K_v, A) \cong \delta(v) K(n_v)$ (equivalently, $\text{Ext}_A^{d}(\nu K, A) \cong K_{\delta^{-1}(v)}(n_v)$) for all v.

Remark 2.2. The AS regularity is a very important concept in non-commutative algebraic geometry. In the original definition, it is assumed that an AS regular algebra A is connected and there is a positive real number γ such that $\dim_K A_n < n^\gamma$ for $n \gg 0$, while some authors do not require the latter condition. We also remark that Martinez-Villa and coworkers called rings satisfying the conditions of Definition 2.1 **generalized Auslander regular algebras** in [6, 11].
Definition 2.3. For an integer \(l \in \mathbb{Z} \), we say \(M^\bullet \in \text{gr} \ A \) has an \(l \)-linear (projective) resolution, if
\[
\beta^i,j(M^\bullet) \neq 0 \Rightarrow i + j = l.
\]
If \(M^\bullet \) has an \(l \)-linear resolution for some \(l \), we say \(M^\bullet \) has a linear resolution.

Definition 2.4. We say \(A \) is Koszul, if the graded left \(A \)-module \(A_0 \) has a linear resolution.

In the definition of the Koszul property, we can regard \(A_0 \) as a right \(A \)-module. (We get the equivalent definition.) That is, \(A \) is Koszul if and only if any simple graded left (or, right) \(A \)-module has a linear resolution.

Lemma 2.5. If \(A \) is noetherian, AS-regular, Koszul, and has global dimension \(d \), then \(\text{Ext}^d_A(K_v,A) \cong \delta(v)K(d) \) and \(\text{Ext}^d_{A^e}(vK,A) \cong K_{\delta^{-1}(v)}(d) \) for all \(v \). Here \(\delta \) is the permutation of \(Q_0 \) given in Definition 2.1.

Proof. Since \(A \) is Koszul, \(P^{-d} \) of a minimal projective resolution \(P^\bullet : 0 \to P^{-d} \to \cdots \to P^0 \to 0 \) of \(K_v \) is generated by its degree \(d \)-part (more precisely, \(P^{-d} = P_{\delta(v)}(-d) \)).

In the rest of this paper, \(A \) is always a noetherian AS-regular Koszul quiver algebra of global dimension \(d \).

Example 2.6. (1) A polynomial ring \(K[x_1,\ldots,x_d] \) is clearly a noetherian AS-regular Koszul (quiver) algebra of global dimension \(d \). Conversely, if a regular noetherian graded algebra is connected and commutative, it is a polynomial ring.

(2) Let \(K\langle x_1,\ldots,x_d \rangle \) be the free associative algebra, and \((q_{i,j})\) a \(d \times d \) matrix with entries in \(K \) satisfying \(q_{i,j}q_{j,i} = q_{i,i} = 1 \) for all \(i,j \). Then the quotient ring \(A = K\langle x_1,\ldots,x_n \rangle/\langle x_jx_i - q_{i,j}x_ix_j \mid 1 \leq i,j \leq d \rangle \) is a noetherian AS-regular Koszul algebra with global dimension \(d \). This fact must be well-known to specialists, but we will sketch a proof here for the reader’s convenience. Since \(x_1,\ldots,x_d \in A_1 \) form a regular normalizing sequence with the quotient ring \(K = A/(x_1,\ldots,x_d) \), \(A \) is a noetherian ring with a balanced dualizing complex by \cite{[15]} Lemma 7.3]. It is not difficult to construct a minimal free resolution of the module \(K = A/\mathfrak{m} \), which is a “\(q \)-analog” of the Koszul complex of a polynomial ring \(K[x_1,\ldots,x_d] \). So \(A \) is Koszul and has global dimension \(d \). Since \(A \) has finite global dimension and admits a balanced dualizing complex, it is AS-regular (c.f. \cite{[15]} Remark 3.6 (3)).

Artin, Tate and Van den Bergh (\cite{[1]}) classified connected AS regular algebras of global dimension 3. (Their definition of AS regularity is stronger than ours. See Remark 2.2.) All of the algebras they listed are noetherian (\cite{[1]} Theroem 8.1)). But some are Koszul and some are not.

(3) A preprojective algebra is an important example of non-connected AS regular algebras. See \cite{[16]} and the references cited there for the definition of this algebra and further information. The preprojective algebra \(A \) of a finite quiver \(Q \) is a graded quiver algebra over the inverse completion \(\overline{Q} \) of \(Q \). If the quiver \(Q \) is connected (of course, it does not mean \(A \) is connected), then \(A \) is (almost) always an AS regular algebra of global dimension 2, but it is not Koszul in some cases, and not noetherian
in many cases. Let G be the bipartite graph of Q in the sense of [6, §3]. If G is Euclidean, then A is a noetherian AS-regular Koszul algebra of global dimension 2.

For $M \in \text{Gr} A$, set

$$\Gamma_m(M) = \lim_{\to} \text{Hom}_A(A/m^n, M) = \{ x \in M \mid A_n x = 0 \text{ for } n \gg 0 \} \in \text{Gr} A.$$

Then $\Gamma_m(\cdot)$ gives a left exact functor from $\text{Gr} A$ to itself. So we have a right derived functor $R\Gamma_m : D^b(\text{Gr} A) \to D^b(\text{Gr} A)$. For $M^\bullet \in D^b(\text{Gr} A)$, $H^i_m(M^\bullet)$ denotes the i^{th} cohomology of $R\Gamma_m(M^\bullet)$, and we call it the i^{th} local cohomology of M^\bullet. It is easy to see that $H^i_m(M^\bullet) = \lim Ext_A^i(A/m^n, M^\bullet)$. Similarly, we can define $R\Gamma_m^{\text{op}} : D^b(\text{Gr} A^{\text{op}}) \to D^b(\text{Gr} A^{\text{op}})$ and $H^i_m^{\text{op}} : D^b(\text{Gr} A^{\text{op}}) \to \text{Gr} A^{\text{op}}$ in the same way.

Let $I \in \text{Gr} A$ be an indecomposable injective. Then $\Gamma_m(I) \neq 0$, if and only if $I \cong I_v(n)$ for some $v \in Q_0$ and $n \in \mathbb{Z}$, if and only if $\Gamma_m(I) = I$. Similarly, $\text{Hom}_A(A_0, I) \neq 0$ if and only if $I \cong I_v(n)$ for some $v \in Q_0$ and $n \in \mathbb{Z}$. In this case, $\text{Hom}_A(A_0, I) = K_v(n)$. The same is true for an indecomposable injective $I \in \text{Gr} A^{\text{op}}$.

Let I^\bullet be a minimal injective resolution of A in $\text{Gr} A$. Since A is AS regular, $I^d = 0$ for all $i > d$, $\Gamma_m(I^i) = 0$ for all $i < d$, and $\Gamma_m(I^d) = A^\vee(d)$. Hence $R\Gamma_m(A) \cong A^\vee(d)[-d]$ in $D^b(\text{gr} A)$. By the same argument as [23, Proposition 4.4], we also have $R\Gamma_m(A) \cong A^\vee(d)[-d]$ in $D^b(\text{gr} A^{\text{op}})$. It does not mean that $H^i_m(A) \cong A^\vee(d)$ as A-A bimodules. But there is an A-A bimodule L such that $L \otimes_A H^i_m(A) \cong A^\vee(d)$ as A-A bimodules. The underlying additive group of L is A, but the bimodule structure is given by $A \times L \times A \ni (a, l, b) \mapsto \phi(a)lb \in A = L$ for A (a fixed) K-algebra automorphism ϕ of A. In particular, $L \cong A$ as left A-modules and as right A-modules (separately). Note that $\phi(e_v) = e_{\delta(v)}$ for all $v \in Q_0$, where δ is the permutation on Q_0 appeared in Definition 2.1. If A is commutative, then ϕ is the identity map.

We give a new A-A bimodule structure L' to the additive group A by $A \times L' \times A \ni (a, l, b) \mapsto a \phi(b) \in A = L'$. Then $L' \cong \text{Hom}_A(L, A)$. Set $D^\bullet := L'(-d)[d]$. Note that D^\bullet belongs both $D^b(\text{gr} A)$ and $D^b(\text{gr} A^{\text{op}})$. We have $H_i^m(D^\bullet) = H^i_{m}^{\text{op}}(D^\bullet) = 0$ for all $i \neq 0$ and $H^0_m(D^\bullet) = H_0^{\text{op}}(D^\bullet) = A^\vee$ as A-A bimodules by the same argument as [23, §4]. Thus (an injective resolution of) D^\bullet is a balanced dualizing complex of A in the sense of [23] (the paper only concerns connect rings, but the definition can be generalized in the obvious way).

Easy computation shows that $\text{Hom}_A(P_v, L') \cong \delta^{-1}(v)P$ and $\text{Hom}_{A^{\text{op}}}(P_v, L') \cong P_{\delta(v)}$ for all $v \in Q_0$. Since $R\text{Hom}_A(M^\bullet, D^\bullet)$ (resp. $R\text{Hom}_{A^{\text{op}}}(M^\bullet, D^\bullet)$) for $M^\bullet \in \text{gr} A$ (resp. $M^\bullet \in \text{gr} A^{\text{op}}$) can be computed by a projective resolution of M^\bullet, $R\text{Hom}_A(\cdot, D^\bullet)$ and $R\text{Hom}_{A^{\text{op}}}(\cdot, D^\bullet)$ give duality functors between $D^b(\text{gr} A)$ and $D^b(\text{gr} A^{\text{op}})$. (Of course, we can also prove this by the same argument as [23, Proposition 3.4].)

Theorem 2.7 (Yekutieli [23, Theorem 4.18], Martinez-Villa [11, Proposition 4.6]). For $M^\bullet \in D^b(\text{gr} A)$, we have

$$R\Gamma_m(M^\bullet)^\vee \cong R\text{Hom}_A(M^\bullet, D^\bullet).$$
In particular,

\[(H^i_m(M^*))_j^* \cong \text{Ext}^{-i}_m(M^*, D^*_{-j}).\]

Proof. The above result was proved by Yekutieli in the connected case. (In some sense, Martinez-Villa proved a more general result than ours, but he did not concern complexes.) But, the proof of [23, Theorem 4.18] only uses formal properties such as \(A\) is noetherian, \(\text{RHom} \cong (\text{RHom}_{\text{op}}(\text{RHom}_{\text{op}}(\text{RHom}_{\text{op}}(-, D^*)), D^*) \cong \text{Id},\) and \(\text{RHom}_{\text{op}}(\text{RHom}_{\text{op}}(\text{RHom}_{\text{op}}(-, D^*)), D^*) \cong A^\vee.\) So the proof also works in our case.

\[\Box\]

Definition 2.8 (Jorgensen, [10]). For \(M^* \in D^b(\text{gr} A)\), we say

\[\text{reg}(M^*) := \sigma(H^i_\text{max}(M^*)) = \sup \{i + j \mid H^i_\text{max}(M^*)_j \neq 0\}\]

is the *Castelnuovo-Mumford regularity* of \(M^*\).

By Theorem 2.7 and the fact that \(\text{RHom}(M^*, D^*) \in D^b(\text{gr} A^\text{op})\), we have \(\text{reg}(M^*) < \infty\) for all \(M^* \in D^b(\text{gr} A)\).

Theorem 2.9 (Jorgensen, [10]). If \(M^* \in C^b(\text{gr} A)\), then

\[(2.1) \quad \text{reg}(M^*) = \max \{i + j \mid \beta^{i,j}(M^*) \neq 0\}.\]

When \(A\) is a polynomial ring and \(M^*\) is a module, the above theorem is a fundamental result obtained by Eisenbud and Goto [4]. In the non-commutative case, under the assumption that \(A\) is connected but not necessarily regular, this has been proved by Jorgensen [10, Corollary 2.8]. (If \(A\) is not regular, we have \(\text{reg}(A) > 0\) in many cases. So one has to assume that \(\text{reg} A = 0\) there.) In our case (i.e., \(A\) is AS-regular), we have a much simpler proof. So we will give it here. This proof is also different from one given in [4].

Proof. Set \(Q^* := \text{Hom}^*(P^*, L'(−d)[d])\). Here \(P^*\) is a minimal projective resolution of \(M^*\), and \(L'(−d)[d]\) is the \(A\)-\(A\) bimodule given in the construction of the dualizing complex \(D^*\). Recall that \(\text{Hom}^A(P_v, L') \cong \delta^{-1(v)}P\) for all \(v \in Q_0\). Let \(s\) be the right hand side of (2.1), and \(l\) the minimal integer with the property that \(\beta^{s,l}(M^*) \neq 0\). Then \(l(Q^{−d−l}) = l − s + d,\) and \((Q^{−d−l+1})_k = 0\) (Note that \(\beta^{l−1,m}(M^*) = 0\) for all \(m \geq s − l + 1\)). Since \(Q^*\) is a minimal complex, we have

\[0 \neq H^{−d−l}(Q^*)_{−s−d} = \text{Ext}^{−d−l}_A(M^*, D^*)_{−s−d} = (H^{d+l}_m(M^*)_{−t+s−d})^*.\]

Thus \(\text{reg}(M^*) \geq \max \{i + j \mid \beta^{i,j}(M^*) \neq 0\}\).

On the other hand, if \(H^{d+l}_m(M^*)_{−t+s−d} = 0\), we have that \(\beta^{i−t−l}(M^*) \neq 0\) for some \(i \geq r\) by an argument similar to the above. Hence \(\text{reg}(M^*) \leq \max \{i + j \mid \beta^{i,j}(M^*) \neq 0\}\), and we are done.

For \(M^* \in D^b(\text{gr} A)\), set \(\mathcal{H}(M^*)\) to be the complex such that \(\mathcal{H}(M^*)^i = H^i(M)\) for all \(i\) and all differential maps are zero.

Lemma 2.10. We have \(\beta^{i,j}(\mathcal{H}(M^*)) \geq \beta^{i,j}(M^*)\) for all \(M^* \in D^b(\text{gr} A)\) and all \(i, j \in \mathbb{Z}\). In particular, \(\text{reg}(\mathcal{H}(M^*)) \geq \text{reg}(M^*)\).

The difference between \(\text{reg}(M^*)\) and \(\text{reg}(\mathcal{H}(M^*))\) can be arbitrary large. In the last section, we will study the relation between this difference and a work of Martinez-Villa and Zacharia [13].
Proof. The assertion easily follows from the spectral sequence
\[E_2^{p,q} = \text{Ext}_q^p(H^{-q}(N^*), A_0) \longrightarrow \text{Ext}_q^{p+q}(N^*, A_0). \]
\[\square \]

For a complex \(M^* \in C^b(\text{gr} \ A) \) and an integer \(r \), \((M^*)_\geq r \) denotes the subcomplex of \(M^* \) whose \(i \)-th term is \((M^*)_i \geq (r-i) \). Even if \(M^* \cong N^* \) in \(D^b(\text{gr} \ A) \), we have \((M^*)_\geq r \neq (N^*)_\geq r \) in general.

In the module case, the following is a well-known property of Castelnuovo-Mumford regularity.

Proposition 2.11. Let \(M^* \in C^b(\text{gr} \ A) \). Then \((M^*)_\geq r \) has an \(r \)-linear resolution if and only if \(r \geq \text{reg}(M^*) \).

To prove the proposition, we need the following lemma.

Lemma 2.12. For a module \(M \in \text{gr} \ A \) with \(\dim_K M < \infty \), we have \(H^0_m(M) = M \) and \(H^1_m(M) = 0 \) for all \(i \neq 0 \). In particular, \(\text{reg}(M) = \sigma(M) \) in this case.

Proof. If \(P^* \) is a minimal projective resolution of \(M^* \) in \(A_0 \), then \(I^* := (P^*)^* \) is a minimal injective resolution of \(M^* \). Since each indecomposable summand of \(I^* \) is isomorphic to \(I_v(n) \) for some \(v \in Q_0 \) and \(n \in \mathbb{Z} \), we have \(\Gamma_m(I^*) = I^* \).

Proof of Proposition 2.11. For a complex \(T^* \in D^b(\text{gr} \ A) \), it is easy to see that \(\iota(T^*) = \min \{ i + j \mid \beta_i^j(T^*) \neq 0 \} \). In particular, \(\iota(T^*) \leq \text{reg}(T^*) \). Hence \(T^* \) has an \(i \)-linear projective resolution if and only if \(\iota(T^*) = \text{reg}(T^*) = l \).

Consider the short exact sequence of complexes
\[0 \rightarrow (M^*)_\geq r \rightarrow M^* \rightarrow M^*/(M^*)_\geq r \rightarrow 0, \]
and set \(N^* := M^*/(M^*)_\geq r \). Note that \(\dim_K H^i(N) < \infty \) for all \(i \). By Lemmas 2.12 and 2.10, we have
\[r > \sigma(N^*) = \max \{ \text{reg}(H^i(N^*)) + i \mid i \in \mathbb{Z} \} = \text{reg}(H(N^*)) \geq \text{reg}(N^*). \]
By the long exact sequence of \(\text{Ext}^*_A(_ , A_0) \) induced by (2.2), we have
\[r \leq \iota((M^*)_\geq r) \leq \text{reg}((M^*)_\geq r) \leq \max \{ \text{reg}(N^*) + 1, \text{reg}(M^*) \} \leq \max \{ r, \text{reg}(M^*) \}. \]
Moreover, if \(r < \text{reg}(M^*) \) then we have \(\text{reg}(N^*) + 1 < \text{reg}(M^*) \) and \(\text{reg}((M^*)_\geq r) = \text{reg}(M^*) > r \). Hence \((M^*)_\geq r \) has an \(r \)-linear resolution if and only if \(r \geq \text{reg}(M^*) \).

The following is one of the most basic results on Castelnuovo-Mumford regularity (see [4]). Jørgensen [5] proved the same result for \(M \in \text{gr} \ A \).

Let \(S = K[x_1, \ldots, x_d] \) be a polynomial ring. If \(M \in \text{gr} \ S \) satisfies \(H^0_m(M)_{\geq r+1} = 0 \) and \(H^i_m(M)_{r+1-i} = 0 \) for all \(i \geq 1 \), then \(r \geq \text{reg}(M) \) (i.e., \(H^i_m(M)_{\geq r+1-i} = 0 \) for all \(i \geq 1 \)).

The similar result also holds for \(M^* \in D^b(\text{gr} \ A) \). Since a minor adaptation of the proof of [4, Theorem 2.4] also works for complexes, we leave the proof to the reader.
Proposition 2.13. If \(M^\bullet \in D^b(\text{gr} A) \) with \(t := \max\{ i \mid H^i(M^\bullet) \neq 0 \} \) satisfies

- \(H^i_m(M^\bullet)_{\geq r+1-i} = 0 \) for all \(i \leq t \)
- \(H^i_m(M^\bullet)_{r+1-i} = 0 \) for all \(i > t \),

then \(r \geq \text{reg}(M^\bullet) \) (i.e., \(H^i_m(M^\bullet)_{\geq r+1-i} = 0 \) for all \(i > t \)).

3. Koszul duality

In this section, we study the relation between the Castelnuovo-Mumford regularity of complexes and the Koszul duality. For precise information of this duality, see [2, §2]. There, the symbol \(A \) (resp. \(A^! \)) basically means a finite dimensional (resp. noetherian) Koszul algebra. This convention is opposite to ours. So the reader should be careful.

Recall that \(A = KQ/I \) is a graded quiver algebra over a finite quiver \(Q \). Let \(Q^\text{op} \) be the opposite quiver of \(Q \). That is, \(Q_0^\text{op} = Q_0 \) and there is a bijection from \(Q_1 \) to \(Q_1^\text{op} \) which sends an arrow \(\alpha : v \to u \) in \(Q_1 \) to the arrow \(\alpha^\text{op} : u \to v \) in \(Q_1^\text{op} \).

Consider the bilinear form \(\langle -,- \rangle : (KQ)_2 \times (KQ^\text{op})_2 \to K \) defined by

\[
\langle \alpha\beta, \gamma\delta^\text{op} \rangle = \begin{cases}
1 & \text{if } \alpha = \delta \text{ and } \beta = \gamma, \\
0 & \text{otherwise}
\end{cases}
\]

for all \(\alpha, \beta, \gamma, \delta \in Q_1 \). Let \(I^\perp \subset KQ^\text{op} \) be the ideal generated by

\[\{ y \in (KQ^\text{op})_2 \mid \langle x, y \rangle = 0 \text{ for all } x \in I_2 \}. \]

We say \(KQ^\text{op}/I^\perp \) is the quadratic dual ring of \(A \), and denote it by \(A^! \). Clearly, \((A^!)_0 = A_0 \). Since \(A \) is Koszul, so is \(A^! \) and \((A^!)_1 \cong A_1 \). Since \(A \) is AS regular, \(A^! \) is a finite dimensional selfinjective algebra with \(A = \bigoplus_{i=0}^d A_i \) by [12, Theorem 5.1]. If \(A \) is a polynomial ring, then \(A^! \) is the exterior algebra \(\bigwedge (A_1)^* \).

Since \(A^! \) is selfinjective, \(D_{A^!} := \text{Hom}_{A^!}(-, A^!) \) and \(D_{(A^!)^\text{op}} := \text{Hom}_{A^!}(-, A^!)^\text{op} \) give exact duality functors between \(\text{gr } A^! \) and \(\text{gr } (A^!)^\text{op} \). They induce duality functors between \(D^b(\text{gr } A^!) \) and \(D^b(\text{gr } (A^!)^\text{op}) \), which are also denoted by \(D_{A^!} \) and \(D_{(A^!)^\text{op}} \). It is easy to see that \(D_{A^!}(N) \cong \text{Hom}_K(N, K)(-d) \).

We say a complex \(F^\bullet \in C(\text{gr } A^!) \) is a projective (resp. injective) resolution of a complex \(N^\bullet \in C^b(\text{gr } A^!) \), if each term \(F^i \) is projective (= injective), \(F^\bullet \) is right (resp. left) bounded, and there is a graded quasi isomorphism \(F^\bullet \to N^\bullet \) (resp. \(N^\bullet \to F^\bullet \)). We say a projective (or, injective) resolution \(F^\bullet \in C^b(\text{gr } A^!) \) is minimal if \(d^i(F^i) \subset nF^{i+1} \) for all \(i \), where \(n \) is the graded Jacobson radical of \(A^! \). (The usual definition of a minimal injective resolution is different from the above one. But they coincide in our case.) A bounded complex \(N^\bullet \in C^b(\text{gr } A^!) \) has a minimal projective resolution and a minimal injective resolution, and they are unique up to isomorphism. If \(F^\bullet \) is a minimal projective (resp. injective) resolution of \(N^\bullet \) then \(D_{A^!}(F^\bullet) \) is a minimal injective (resp. projective) resolution of \(D_{A^!}(N^\bullet) \).

For \(N^\bullet \in D^b(\text{gr } A^!) \), set

\[
\mu^{i,j}(N^\bullet) := \dim_K \text{Ext}^i_{A^!}(A_0, N^\bullet)_j.
\]
Then $\mu^{i,j}(N^\bullet)$ measures the size of a minimal injective resolution of N^\bullet. More precisely, if F^\bullet is a minimal injective resolution of N^\bullet, and $F^i := \bigoplus_{l=1}^m T^{i,l}$ is an indecomposable decomposition, then we have

$$
\mu^{i,j}(N^\bullet) = \# \{ l \mid \text{soc}(T^{i,l}) = (T^{i,l})_j \} \quad = \# \{ l \mid T^{i,l}(j) \text{ is isomorphic to a direct summand of } A^l(d) \}.
$$

Let V be a finitely generated left A_0-module. Then $\text{Hom}_{A_0}(A^1, V)$ is a graded left A^1-module with $(af)(a') = f(a'a)$ and $\text{Hom}_{A_0}(A^1, V)_i = \text{Hom}_{A_0}((A^1)_i, V)$. Since A^1 is selfinjective, we have $\text{Hom}_{A_0}(A^1, A_0) \cong A^1(d)$. Hence $\text{Hom}_{A_0}(A^1, V)$ is a projective (and injective) left A^1-module for all V. If V has degree i (e.g., $V = M_i$ for some $M \in \text{gr} A$), then we set $\text{Hom}_{A_0}(A^1, V)_j = \text{Hom}_{A_0}(A^1_{j-i}, V)$.

For $M^\bullet \in C^b(\text{gr} A)$, let $G(M^\bullet) := \text{Hom}_{A_0}(A^1, M^\bullet) \in C^b(\text{gr} A)$ be the total complex of the double complex with $G(M^\bullet)^{i,j} = \text{Hom}_{A_0}(A^1, M^j_i)$ whose vertical and horizontal differentials d' and d'' are defined by

$$
d'(f)(x) = \sum_{\alpha \in Q_1} \alpha f(\alpha^{op} x), \quad d''(f)(x) = \partial M^\bullet(f(x))
$$

for $f \in \text{Hom}_{A_0}(A^1, M^j_i)$ and $x \in A^1$. The gradings of $G(M^\bullet)$ is given by

$$
G(M^\bullet)^p_q := \bigoplus_{p=i+j, q=-l-j} \text{Hom}_{A_0}((A^1)_l, M^j_i).
$$

Each term of $G(M^\bullet)$ is injective. For a module $M \in \text{gr} A$, $G(M)$ is a minimal complex. Thus we have

$$
\mu^{i,j}(G(M)) = \begin{cases}
\dim_K M_i & \text{if } i + j = 0, \\
0 & \text{otherwise}.
\end{cases}
$$

Similarly, for a complex $N^\bullet \in C^b(\text{gr} A)$, we can define a new complex $F(N^\bullet) := A \otimes_A N^\bullet \in C^b(\text{gr} A)$ as the total complex of the double complex with $F(N^\bullet)^{i,j} = A \otimes_A N^j_i$ whose vertical and horizontal differentials d' and d'' are defined by

$$
d'(a \otimes x) = \sum_{\alpha \in Q_1} a\alpha \otimes \alpha^{op} x, \quad d''(a \otimes x) = a \otimes \partial_N^\bullet(x)
$$

for $a \otimes x \in A \otimes_A N^l_i$. The gradings of $F(N^\bullet)$ is given by

$$
F(N^\bullet)^p_q := \bigoplus_{p=i+j, q=-l-j} A_l \otimes_A N^j_i.
$$

Clearly, each term of $F(N^\bullet)$ is a projective A-module. For a module $N \in \text{gr} A_1$, $F(N)$ is a minimal complex. Hence we have

$$
\beta^{i,j}(F(N)) = \begin{cases}
\dim_K N_i & \text{if } i + j = 0, \\
0 & \text{otherwise}.
\end{cases}
$$

It is well-known that the operations F and G define functors $F : D^b(\text{gr} A^1) \to D^b(\text{gr} A)$ and $G : D^b(\text{gr} A) \to D^b(\text{gr} A^1)$, and they give an equivalence $D^b(\text{gr} A) \cong D^b(\text{gr} A^1)$ of triangulated categories. This equivalence is called the Koszul duality.
When A is a polynomial ring, this equivalence is called *Bernstein-Gelfand-Gelfand correspondence*. See, for example, [3].

Note that $(A^{\text{op}})^{1} \cong (A')^{\text{op}}$. We have the functors $\mathcal{F}^{\text{op}} : D^{b}(\text{gr}(A'))^{\text{op}} \to D^{b}(\text{gr} A^{\text{op}})$ and $\mathcal{G}^{\text{op}} : D^{b}(\text{gr} A^{\text{op}}) \to D^{b}(\text{gr}(A')^{\text{op}})$ giving $D^{b}(\text{gr} A^{\text{op}}) \cong D^{b}(\text{gr}(A')^{\text{op}})$.

Proposition 3.1 (c.f. [3 Proposition 2.3]). *In the above situation, we have\[\beta^{i,j}(M^{*}) = \dim_{K} H^{i+j}(\mathcal{G}(M^{*}))_{-j} \] and \[\mu^{i,j}(N^{*}) = \dim_{K} H^{i+j}(\mathcal{F}(N^{*}))_{-j}. \]

Proof. While the assertion follows from Proposition 3.4 below, we give a direct proof here. We have\[
\Ext_{A^{\text{op}}}^{i}(A_{0}, N^{*})_{j} \cong \text{Hom}_{D^{b}(\text{gr} A^{\text{op}})}(A_{0}, N^{*}[i][j]) \\
\cong \text{Hom}_{D^{b}(\text{gr} A^{\text{op}})}(\mathcal{F}(A_{0}), \mathcal{F}(N^{*}[i])(j)) \\
\cong \text{Hom}_{D^{b}(\text{gr} A^{\text{op}})}(A, \mathcal{F}(N^{*})(i+j)(-j)) \\
\cong H^{i+j}(\mathcal{F}(N^{*}))_{-j}.
\]

Since $\mu^{i,j}(N^{*}) = \dim_{K} \Ext_{A^{\text{op}}}^{i}(A_{0}, N^{*})_{j}$, the second equation of the proposition follows. We can prove the first equation by a similar argument. But in this time we use the contravariant functor $D_{A'} \circ \mathcal{G} : D^{b}(\text{gr} A) \to D^{b}(\text{gr}(A')^{\text{op}})$ and the fact that $D_{A'} \circ \mathcal{G}(A_{0}) \cong D_{A'}(A'(d)) \cong A'(-d)$. \(\square\)

Corollary 3.2. $\text{reg}(M^{*}) = \max\{i \mid H^{i}(\mathcal{G}(M^{*})) \neq 0\}$.

Proof. Follows Theorem 2.9 and Proposition 3.1. \(\square\)

Recall that $D_{A} := \mathbf{R}\text{Hom}_{A}(\mathcal{A}, \mathcal{A})$ is a duality functor from $D^{b}(\text{gr} A)$ to $D^{b}(\text{gr} A^{\text{op}})$.

Proposition 3.3. $\text{reg}(D_{A}(M^{*})) = -\min\{i \mid H^{i}(\mathcal{G}(M^{*})) \neq 0\}$.

Proof. Let L' be the A-A bimodule given in the construction of the dualizing complex \mathcal{D}^{*}. Note that $D_{A}(M^{*}) \cong \text{Hom}_{A}^{*}(P^{*}, L'(-d)[d]) =: Q^{*}$ for a projective resolution P^{*} of M^{*}. Since $D_{A}(P_{j}) = \delta_{-j(0)}P(-d)[d]$, Q^{*} is a complex of projectives. And Q^{*} is a minimal complex if and only if P^{*} is. Hence $\beta^{i-d,-j+d}(D_{A}(M^{*})) = \beta^{i,j}(M^{*})$. Therefore, the assertion follows from Proposition 3.1. \(\square\)

We can refine Proposition 3.1 using the notion of *linear strands* of projective (or injective) resolutions, which was introduced by Eisenbud et. al. (See [3 §3].) First, we will generalize this notion to our rings. Let B be a noetherian Koszul algebra (e.g. $B = A$ or A') with the graded Jacobson radical \mathfrak{m}, and P^{*} a *minimal* projective resolution of a bounded complex $M^{*} \in D^{b}(\text{gr} B)$. Consider the decomposition $P^{i} := \bigoplus_{j \in \mathbb{Z}} P^{i,j}$ such that any indecomposable summand of $P^{i,j}$ is isomorphic to a summand of $B(-j)$. For an integer l, we define the l-*linear strand* $\text{proj. lin}_{l}(M^{*})$ of a projective resolution of M^{*} as follows: The term $\text{proj. lin}_{l}(M^{*})^{i}$ of cohomological degree i is $P^{i,l-i}$ and the differential $P^{i,l-i} \to P^{i+1,l-i-1}$ is the corresponding component of the differential $P^{i} \to P^{i+1}$ of P^{*}. So the differential of $\text{proj. lin}_{l}(M^{*})$ is represented by a matrix whose entries are elements in A_{i}. Set $\text{proj. lin}(M^{*}) := \bigoplus_{l \in \mathbb{Z}} \text{proj. lin}_{l}(M^{*})$. It is obvious that $\beta^{i,j}(M^{*}) = \beta^{i,j}(\text{proj. lin}(M^{*}))$ for all i, j.

Using spectral sequence argument, we can construct \(\text{proj} \cdot \text{lin}(M^\bullet) \) from a (not necessarily minimal) projective resolution \(Q^\bullet \) of \(M^\bullet \). Consider the \(m \)-adic filtration \(Q^\bullet = F_0Q^\bullet \supset F_1Q^\bullet \supset \cdots \) of \(Q^\bullet \) with \(F_pQ^i = m^pQ^i \) and the associated spectral sequence \(\{ E_r^* \}, d_r \). The associated graded object \(\text{gr}_M := \bigoplus_{p \geq 0} m^pM/m^{p+1}M \) of \(M \in \text{gr} B \) is a module over \(\text{gr}_M B = \bigoplus_{p \geq 0} m^p/m^{p+1}B \). Since \(m^pM \) is a graded submodule of \(M \), we can make \(\text{gr}_M M \) a graded module using the original grading of \(M \) (so \(\text{gr}_M M_i \) is not \(m^pM/m^{p+1}M \) here). Under the identification \(\text{gr}_M B \) with \(B \), we have \(\text{gr}_M M \cong M \) in general. But if each indecomposable summand \(N \) of \(M \) is generated by \(N_i(N) \) then \(\text{gr}_M M \cong M \). Since \(Q^t \) is a projective \(B \)-module, \(Q_0^t := \bigoplus_{p+q=t} E_0^{p,q} = \bigoplus_{p \geq 0} m^pQ^t/m^{p+1}Q^t = \text{gr}_M Q^t \) is isomorphic to \(Q^t \). The maps \(d_0^{p,q} : E_0^{p,q} \to E_0^{p,q+1} \) make \(Q_0^t \) a cochain complex of projective \(\text{gr}_M B \)-modules. Consider the decomposition \(Q^t = P^t \oplus C^t \), where \(P^t \) is minimal and \(C^t \) is exact. (We always have such a decomposition.) If we identify \(Q^t_0 \) with \(Q^t = P^t \oplus C^t \), the differential \(d_0 \) of \(Q^t_0 \) is given by \((0, d_{C^t}) \). Hence we have \(Q_1^t = \bigoplus_{p+q=t} E_1^{p,q} \cong P^t \).

The maps \(d_1^{p,q} : E_1^{p,q} = m^pP^t/m^{p+1}P^t \to E_1^{p,q+1} = m^{p+1}P^{t+1}/m^{p+2}P^{t+1} \) make \(Q_1^t \) a cochain complex of projective \(\text{gr}_M B(\cong B) \)-modules whose differential is the “linear component” of the differential \(d_{P^t} \) of \(P^t \). Thus the complex \((Q_1^t, d_1) \) is isomorphic to \(\text{proj} \cdot \text{lin}(M^\bullet) \).

Since \(A^i \) is selfinjective, we can consider the linear strands of an injective resolution. More precisely, starting from a minimal injective resolution of \(N^\bullet \in D^b(\text{gr} A^i) \), we can construct its \(l \)-linear strand \(\text{inj} \cdot \text{lin}(N^\bullet) \) in a similar way. Here, if \(I^i \) is the cohomological degree \(i \)th term of \(\text{inj} \cdot \text{lin}(N^\bullet) \), then the socle of \(I^i \) coincides with \((I^i)_{t-i} \). In other words, any indecomposable summand of \(I^i \) is isomorphic to a summand of \(A^i(i = l + d) \). Set \(\text{inj} \cdot \text{lin}(N^\bullet) = \bigoplus_{l \in \mathbb{Z}} \text{inj} \cdot \text{lin}(N^\bullet) \). This complex can also be constructed using spectral sequences.

We have that \(D_{A^i} \cdot (\text{inj} \cdot \text{lin}(N^\bullet)) \cong \text{proj} \cdot \text{lin}(D_{A^i} \cdot (N^\bullet)) \) and \(D_{A^i} \cdot (\text{proj} \cdot \text{lin}(N^\bullet)) \cong \text{inj} \cdot \text{lin}(D_{A^i} \cdot (N^\bullet)) \).

Proposition 3.4 (c.f. [3] Corollary 3.6). For \(M^\bullet \in D^b(\text{gr} A) \) and \(N^\bullet \in D^b(\text{gr} A^i) \), we have

\[
\text{proj} \cdot \text{lin}(\mathcal{F}(N^\bullet)) = \mathcal{F}(\mathcal{H}(N^\bullet)) \quad \text{and} \quad \text{inj} \cdot \text{lin}(\mathcal{G}(M^\bullet)) = \mathcal{G}(\mathcal{H}(M^\bullet)).
\]

More precisely,

\[
\text{proj} \cdot \text{lin}(\mathcal{F}(N^\bullet)) = \mathcal{F}(\mathcal{H}^1(N^\bullet))[-l] \quad \text{and} \quad \text{inj} \cdot \text{lin}(\mathcal{G}(M^\bullet)) = \mathcal{G}(\mathcal{H}^1(M^\bullet))[-l].
\]

Proof. Set \(Q^\bullet = \mathcal{F}(N^\bullet) \). Note that \(Q^\bullet \) is a (non minimal) complex of projective modules. We use the above spectral sequence argument (and the notation there). Then the differential \(d_0^t : Q_0^t \cong \mathcal{F}^t(N^\bullet) \to Q_0^{t+1} \cong \mathcal{F}^{t+1}(N^\bullet) \) is given by \(\pm \partial_{N^\bullet} \). Thus

\[
Q_1^t \cong \bigoplus_{t=i+j} A \otimes_{A^i} H^i(N^\bullet)_j = \bigoplus_{t=i+j} \mathcal{F}^j(H^i(N^\bullet)),
\]

and the differential of \(Q_1^t \) is induced by that of \(\mathcal{F}(N^i) \). Hence we can easily check that \(Q_1^t \), which can be identified with \(\text{proj} \cdot \text{lin}(\mathcal{F}(N^\bullet)) \), is isomorphic to \(\mathcal{F}(\mathcal{H}(N^\bullet)) \cong \bigoplus_{l \in \mathbb{Z}} \mathcal{F}(\mathcal{H}^l(N^\bullet))[-l] \). We can prove the statement for \(\text{inj} \cdot \text{lin}(\mathcal{G}(M^\bullet)) \) in the same way. □
4. Weakly Koszul Modules

Let B be a noetherian Koszul algebra (e.g. $B = A$ or A^1) with the graded Jacobson radical m. For $M \in \text{gr} B$ and an integer i, $M_{(i)}$ denotes the submodule of M generated by its degree i component M_i.

Proposition 4.1. In the above situation, the following are equivalent.

(1) $M_{(i)}$ has a linear projective resolution for all i.

(2) $H^i(\text{proj. lin}(M)) = 0$ for all $i \neq 0$.

(3) All indecomposable summands of $\text{gr}_m M$ have linear resolutions as $B(\cong \text{gr}_m B)$-modules.

Proof. This result was proved in [20, Proposition 4.9] under the assumption that B is a polynomial ring. (Römer also proved this for a commutative Koszul algebra. See [18, Theorem 3.2.8].) In this proof, only the Koszul property of a polynomial ring is essential, and the proof also works in our case. But, to refer this, the reader should be careful with the following points.

(a) In [20], the grading of $\text{gr}_m M$ is given by a different way. There, $(\text{gr}_m M)_i = m^i M/m^{i+1} M$. It is easy to see that $\text{gr}_m M$ has a linear resolution in this grading if and only if the condition (3) of the proposition is satisfied in our grading.

(b) In the proof of [20, Proposition 4.9], the regularity $\text{reg}(N)$ of $N \in \text{gr} B$ is an important tool. Unless B is AS regular, one cannot define $\text{reg}(N)$ using the local cohomologies of N. But if we set $\text{reg}(N) := \sup \{i + j \mid \beta^{i,j}(N) \neq 0\}$, then everything works well. It is not clear whether $\text{reg}(N) < \infty$ for all $N \in \text{gr} B$ (c.f. [10]). But modules appearing in the argument similar to the proof of [20, Proposition 4.9] have finite regularities.

(c) In the proof of [20 Proposition 4.9], a few basic properties of the Castelnuovo-Mumford regularity (over a polynomial ring) are used. But $\text{reg}(N)$ of $N \in \text{gr} B$ also has these properties, if we define $\text{reg}(N)$ as (b). For example, if $N \in \text{gr} B$ satisfies $\dim_K N < \infty$, then $\text{reg}(N) = \sigma(N)$. This can be proved by induction on $\dim_K N$. Using the short exact sequence $0 \to N_{> r} \to N \to N/N_{> r} \to 0$, we can also prove that $N_{> r}$ has an r linear resolution if and only if $r \geq \text{reg}(N)$ (see also Proposition 2.11).

(d) For the implication $(2) \Rightarrow (3)$, [20] refers another paper. But this implication can be proved by spectral sequence argument, since $\text{proj. lin}(M)$ can be constructed using a spectral sequence as we have seen in the previous section. □

Definition 4.2 ([5, 13]). In the above situation, we say $M \in \text{gr} B$ is weakly Koszul, if it satisfies the equivalent conditions of Proposition 4.1.

Remark 4.3. (1) If $M \in \text{gr} B$ has a linear resolution, then it is weakly Koszul.

(2) The notion of weakly Koszul modules was first introduced by Green and Martinez-Villa [5]. But they used the name “strongly quasi Koszul modules”. Weakly Koszul modules are also called “componentwise linear modules” by some commutative algebraists (see [7]).
Theorem 4.4. Let $0 \neq N \in \text{gr } A^1$ and set $N' := D_{A^1}(N)$. Then the following are equivalent.

(1) N is weakly Koszul.

(2) $H^i(F^{\text{op}}(N'))$ has a $(-i)$-linear projective resolution for all i.

(3) $\text{reg}(H \circ F^{\text{op}}(N')) = 0$.

(4) $\text{reg}(H \circ F^{\text{op}}(N')) \leq 0$.

Proof. Since $\iota(H \circ F^{\text{op}}(N')) \geq 0$ (i.e., $\iota(H^i(F^{\text{op}}(N'))) \geq -i$ for all i), the equivalence among (2), (3) and (4) follows from Proposition 2.11. So it suffices to prove (1) \iff (4). Since $D_{(A')^{\text{op}}}(\text{inj. lin}(N')) \cong \text{proj. lin}(N)$, N is weakly Koszul if and only if $H^i(\text{inj. lin}(N')) = 0$ for all $i > 0$. By Proposition 3.4, we have

$$\text{inj. lin}(N') = \text{inj. lin}(G^{\text{op}} \circ F^{\text{op}}(N')) = G^{\text{op}} \circ H \circ F^{\text{op}}(N').$$

Therefore, by Corollary 3.2, $H^i(\text{inj. lin}(N')) = 0$ for all $i > 0$ if and only if the condition (4) holds. \hfill \square

Remark 4.5. Martinez-Villa and Zacharia proved that if N is weakly Koszul then there is a filtration

$$U_0 \subset U_1 \subset \cdots \subset U_p = N$$

such that U_{i+1}/U_i has a linear resolution for each i (see [13, pp. 676–677]). We can interpret this fact using Theorem 4.4 in our case.

Let $N \in \text{gr } A^1$ be a weakly Koszul module. Set $N' := D_{A^1}(N)$ and $T^\bullet := F^{\text{op}}(N')$. Assume that N does not have a linear resolution. Then $H^i(T^\bullet) \neq 0$ for several i. Set $n = \min\{i \mid H^i(T^\bullet) \neq 0\}$. Consider the truncation

$$\sigma_{\geq n}T^\bullet : \cdots \longrightarrow 0 \longrightarrow \text{im } d^n \longrightarrow T^{n+1} \longrightarrow T^{n+2} \longrightarrow \cdots$$

of T^\bullet. Then we have $H^i(T^\bullet) = H^i(\sigma_{\geq n}T^\bullet)$ for all $i > n$ and $H^i(\sigma_{\geq n}T^\bullet) = 0$ for all $i \leq n$. We have a triangle

$$(4.1) \quad H^n(T^\bullet)[-n] \longrightarrow T^\bullet \longrightarrow \sigma_{\geq n}T^\bullet \longrightarrow H^n(T^\bullet)[-n + 1].$$

By Theorem 4.4, $H^n(T^\bullet)[-n]$ has a 0-linear resolution. On the other hand,

$$0 = \text{reg}(H(\sigma_{\geq n}T^\bullet)) \geq \text{reg}(\sigma_{\geq n}T^\bullet) \geq \iota(\sigma_{\geq n}T^\bullet) \geq 0.$$

Hence $\sigma_{\geq n}T^\bullet$ also has a 0-linear resolution. Therefore, both $D_{(A')^{\text{op}}} \circ G^{\text{op}}(\sigma_{\geq n}T^\bullet)$ and $D_{(A')^{\text{op}}} \circ G^{\text{op}}(H^n(T^\bullet)[-n])$ are acyclic complexes (that is, the ith cohomology vanishes for all $i \neq 0$). Set

$$U := H^0(D_{(A')^{\text{op}}} \circ G^{\text{op}}(\sigma_{\geq n}T^\bullet)) \quad \text{and} \quad V := H^0(D_{(A')^{\text{op}}} \circ G^{\text{op}}(H^n(T^\bullet)[-n])).$$

Since $N = D_{(A')^{\text{op}}} \circ G^{\text{op}}(T^\bullet)$, the triangle (4.1) induces a short exact sequence

$$0 \longrightarrow U \longrightarrow N \longrightarrow V \longrightarrow 0 \text{ in gr } A^1.$$

It is easy to see that V has a linear resolution. Since $H \circ F^{\text{op}} \circ D_{A^1}(U) = H(\sigma_{\geq n}T^\bullet)$, U is weakly Koszul by Theorem 4.4. Repeating this procedure, we can get the expected filtration.

Let $N \in \text{gr } A^1$ and $\cdots \longrightarrow f_2 \longrightarrow P^{-1} \longrightarrow f_1 \longrightarrow P^0 \longrightarrow f_0 \longrightarrow N \longrightarrow 0$ its minimal projective resolution. For $i \geq 1$, we call $\Omega_i(N) := \ker(f_{i-1})$ the ith syzygy of N. Note that $\Omega_i(N) = \text{im}(f_i) = \text{coker}(f_{i+1})$.

By the original definition of a weakly Koszul module given in \[5\] [13], if \(N \in \text{gr} \ A^i \) is weakly Koszul then so is \(\Omega_i(N) \) for all \(i \geq 1 \).

Definition 4.6 (Herzog-Römer, [18]). For \(0 \neq N \in \text{gr} \ A^1 \), set
\[
\text{lpd}(N) := \inf \{ i \in \mathbb{N} | \Omega_i(N) \text{ is weakly Koszul} \},
\]
and call it the linear part dominates of \(N \).

Since \(A \simeq (A^1)^{\infty} \) is a noetherian ring of finite global dimension, \(\text{lpd}(N) \) is finite for all \(N \in \text{gr} \ A^1 \) by [13 Theorem 4.5].

Theorem 4.7. Let \(N \in \text{gr} \ A^1 \) and set \(N' := D_{A^1}(N) \). Then we have
\[
\text{lpd}(N) = \text{reg}(H \circ \mathcal{F}^{\text{op}}(N')) = \max \{ \text{reg}(H^i(\mathcal{F}^{\text{op}}(N'))) + i | i \in \mathbb{Z} \}.
\]

Proof. Note that \(P^* := D_{(A^1)^{\text{op}}} \circ \mathcal{G}^{\text{op}} \circ \mathcal{F}^{\text{op}}(N') \) is a projective resolution of \(N \), and \(Q^* := D_{(A^1)^{\text{op}}} \circ \mathcal{G}^{\text{op}} \circ \mathcal{F}^{\text{op}}(N')_i \) is the truncation \(\cdots \to P^{-i-1} \to P^{-i} \to 0 \to \cdots \) of \(P^* \) for each \(i \geq 1 \). Hence we have \(H^j(Q^*) = 0 \) for all \(j \neq -i \) and there is a projective module \(P \) such that \(H^{-i}(Q^*) \cong \Omega_i(N) \oplus P \). Since \(P \) is weakly Koszul, \(\Omega_i(N) \) is weakly Koszul if and only if so is \(Q := H^{-i}(Q^*) \). We have
\[
\text{proj.\,lin}(Q)[i] \cong D_{(A^1)^{\text{op}}} \circ \mathcal{G}^{\text{op}} \circ H(\mathcal{F}^{\text{op}}(N')_i).
\]

By Theorem 4.4, \(Q \) is weakly Koszul if and only if \(H(\mathcal{F}^{\text{op}}(N')_i) \) has an \(i \)-linear resolution, that is, \(H^j(\mathcal{F}^{\text{op}}(N')_i) \) has an \((i-j)\)-linear resolution for all \(j \). But there is some \(L \in \text{gr} \ (A^1)^{\text{op}} \) such that \(L = L_{i-j} \) and \(H^j(\mathcal{F}^{\text{op}}(N')_i) \cong H^j(\mathcal{F}^{\text{op}}(N')_{i-j}) \). Note that \(L \) has an \((i-j)\)-linear resolution. Therefore, \(H^j(\mathcal{F}^{\text{op}}(N')_i) \) has an \((i-j)\)-linear resolution if and only if so does \(H^j(\mathcal{F}^{\text{op}}(N')_{i-j}) \). Summing up the above facts, we have that \(\Omega_i(N) \) is weakly Koszul if and only if \((H \circ \mathcal{F}^{\text{op}}(N'))_i \) has an \(i \)-linear resolution. By Proposition 2.11, the last condition is equivalent to the condition that \(i \geq \text{reg}(H \circ \mathcal{F}^{\text{op}}(N')) \).

Remark 4.8. Assume that \(A \) is noetherian, Koszul, and has finite global dimension, but not necessarily AS regular. Then \(A^1 \) is a finite dimensional Koszul algebra, but not necessarily selfinjective. Even in this case, \(\mathcal{G}(M^*) \) for \(M^* \in D^b(\text{gr} \ A) \) is a complex of injective \(A^1 \)-modules, and the results in §3 and Theorem 4.7 also hold. But now we should set \(\text{reg}(M^*) := \sup \{ i + j | \beta_{i,j}(M^*) \neq 0 \} \) for \(M^* \in D^b(\text{gr} \ A) \) (local cohomology is not helpful to define the regularity). Since \(A \) is noetherian and has finite global dimension, we have \(\text{reg}(M^*) < \infty \) for all \(M^* \). In particular, we have \(\text{lpd}(N) < \infty \) for all \(N \in \text{gr} \ A^1 \) (if \(A \) is right noetherian) as proved in [13 Theorem 4.5].

If \(\text{lpd}(N) \geq 1 \) for some \(N \in \text{gr} \ A^1 \), then \(\sup \{ \text{lpd}(T) | T \in \text{gr} \ A^1 \} = \infty \). In fact, if \(\Omega_{-i}(N) \) is the \(i \)-th cosyzygy of \(N \) (since \(A^1 \) is selfinjective, we can consider cosyzygies), then \(\text{lpd}(\Omega_{-i}(N)) > i \). But Herzog and Römer proved that if \(J \) is a monomial ideal of an exterior algebra \(E = \Lambda \langle y_1, \ldots, y_d \rangle \) then \(\text{lpd}(E/J) \leq d - 1 \) (c.f. [13 §3.3]). We will refine their results using Theorem 4.7.

In the sequel, we regard the polynomial ring \(S = K[x_1, \ldots, x_d] \), \(d \geq 1 \), as an \(\mathbb{N}^d \)-graded ring with \(\deg x_i = (0, \ldots, 0, 1, 0, \ldots, 0) \) where 1 is at the \(i \)-th position.
Similarly, the exterior algebra \(E = S^d = \wedge \langle y_1, \ldots, y_d \rangle \) is also an \(\mathbb{N}^d \)-graded ring. Let \(\ast \text{Gr} S \) be the category of \(\mathbb{Z}^d \)-graded \(S \)-modules and their degree preserving \(S \)-homomorphisms, and \(\ast \text{gr} S \) its full subcategory consisting of finitely generated modules. We have a similar category \(\ast \text{gr} E \) for \(E \). For \(S \)-modules and graded \(E \)-modules, we do not have to distinguish left modules from right modules. Since \(\mathbb{Z}^d \)-graded modules can be regarded as \(\mathbb{Z} \)-graded modules in the natural way, we can discuss \(\text{reg}(M^\bullet) \) for \(M^\bullet \in D^b(\ast \text{gr} S) \) and \(\text{lpd}(N) \) for \(N \in \ast \text{gr} E \).

Note that \(D_E(-) = \bigoplus_{a \in \mathbb{Z}^d} \text{Hom}_{\ast \text{gr} E}(-, E(a)) \) gives an exact duality functor from \(\ast \text{gr} E \) to itself. Sometimes, we simply denote \(D_E(N) \) by \(N' \). Set \(1 := (1, 1, \ldots, 1) \in \mathbb{Z}^d \). Then \(D_S^\bullet := S(1)[d] \in D^b(\ast \text{gr} S) \) is a \(\mathbb{Z}^d \)-graded normalized dualizing complex and \(D_S(-) := \mathcal{R} \text{Hom}_S(-, D_S^\bullet) = \bigoplus_{a \in \mathbb{Z}^d} \mathcal{R} \text{Hom}_{\ast \text{gr} S}(-, D_S^\bullet(a)) \) gives a duality functor from \(D^b(\ast \text{gr} S) \) to itself. As shown in [21, Theorem 4.1], we have the \(\mathbb{Z}^d \)-graded Koszul duality functors \(F^\star \) and \(G^\star \) giving an equivalence \(D^b(\ast \text{gr} S) \cong D^b(\ast \text{gr} E) \). These functors are defined in the same way as in the \(\mathbb{Z} \)-graded case.

For \(a = (a_1, \ldots, a_d) \in \mathbb{Z}^d \), set \(\text{supp}(a) := \{ i \mid a_i > 0 \} \subset [d] := \{ 1, \ldots, d \} \). We say \(a \in \mathbb{Z}^d \) is squarefree if \(a_i = 0, 1 \) for all \(i \in [d] \). When \(a \in \mathbb{Z}^d \) is squarefree, we sometimes identify \(a \) with \(\text{supp}(a) \). For example, if \(F \subset [d] \), then \(S(-F) \) means the free module \(S(-a) \), where \(a \in \mathbb{N}^d \) is the squarefree vector with \(\text{supp}(a) = F \).

Definition 4.9 ([20]). We say \(M \in \ast \text{gr} S \) is squarefree, if \(M \) has a presentation of the form
\[
\bigoplus_{F \subset [d]} S(-F)^{n_F} \to \bigoplus_{F \subset [d]} S(-F)^{m_F} \to M \to 0
\]
for some \(m_F, n_F \in \mathbb{N} \).

The above definition seems different from the original one given in [20], but they coincide. Stanley-Reisner rings (that is, the quotient rings of \(S \) by squarefree monomial ideals) and many modules related to them are squarefree. Here we summarize basic properties of squarefree modules. See [20, 21] for further information. Let \(\text{Sq}(S) \) be the full subcategory of \(\ast \text{gr} S \) consisting of squarefree modules. Then \(\text{Sq}(S) \) is closed under kernels, cokernels, and extensions in \(\ast \text{gr} S \). Thus \(\text{Sq}(S) \) is an abelian category. Moreover, we have \(D^b(\text{Sq}(S)) \cong D^b_{\text{Sq}(S)}(\ast \text{Gr} S) \). If \(M \) is squarefree, then each term in a \(\mathbb{Z}^d \)-graded minimal free resolution of \(M \) is of the form \(\bigoplus_{F \subset [d]} S(-F)^{n_F} \). Hence we have \(\text{reg}(M) \leq d \). Moreover, \(\text{reg}(M) = d \) if and only if \(M \) has a summand which is isomorphic to \(S(-1) \).

Definition 4.10 (Römer [16]). We say \(N \in \ast \text{gr} E \) is squarefree, if \(N = \bigoplus_{F \subset [d]} N_F \) (i.e., if \(a \in \mathbb{Z}^d \) is not squarefree, then \(N_a = 0 \)).

A monomial ideal of \(E \) is always a squarefree \(E \)-module. Let \(\text{Sq}(E) \) be the full subcategory of \(\ast \text{gr} E \) consisting of squarefree modules. Then \(\text{Sq}(E) \) is an abelian category with \(D^b(\text{Sq}(E)) \cong D^b_{\text{Sq}(E)}(\ast \text{gr} E) \). If \(N \) is a squarefree \(E \)-module, then so is \(D_E(N) \). That is, \(D_E \) gives an exact duality functor from \(\text{Sq}(E) \) to itself. We have functors \(S : \text{Sq}(E) \to \text{Sq}(S) \) and \(E : \text{Sq}(S) \to \text{Sq}(E) \) giving an equivalence \(\text{Sq}(S) \cong \text{Sq}(E) \). Here \(S(N)_F = N_F \) for \(N \in \text{Sq}(E) \) and \(F \subset [d] \), and the multiplication
map \(\mathcal{S}(N)_F \ni z \mapsto x_i z \in \mathcal{S}(N)_{F \cup \{i\}} \) for \(i \not\in F \) is given by \(\mathcal{S}(N)_F = N_F \ni z \mapsto (-1)^{\alpha(i,F)} y_i z \in N_{F \cup \{i\}} = \mathcal{S}(N)_{F \cup \{i\}} \), where \(\alpha(i,F) = \# \{ j \in F \mid j < i \} \). See [16, 21] for detail. Since a free module \(E(a) \) is not squarefree unless \(a = 0 \), the syzygies of a squarefree \(E \)-module are not squarefree.

Proposition 4.11 (Herzog-Römer, [18 Corollary 3.3.5]). If \(N \) is a squarefree \(E \)-module (e.g., \(N = E/J \) for a monomial ideal \(J \)), then we have \(\text{lpd}(N) \leq d - 1 \).

This result easily follows from Theorem 4.7 and the fact that \(H^i(\mathcal{F}^*(N'))(-1) \) is a squarefree \(S \)-module for all \(i \) and \(H^i(\mathcal{F}^*(N')) = 0 \) unless \(0 \leq i \leq d \). (Recall the remark on the regularity of squarefree modules given before Definition 4.10 and note that \(M := H^d(\mathcal{F}^*(N'))(-1) \) is generated by \(M_0 \).

We also remark that [18 Corollary 3.3.5] just states that \(\text{lpd}(N) \leq d \). But their argument actually proves that \(\text{lpd}(N) \leq d - 1 \). In fact, they showed that

\[
\text{lpd}(N) \leq \text{proj. dim}_S S(N).
\]

But, if \(\text{proj. dim}_S S(N) = d \) then \(S(N) \) has a summand which is isomorphic to \(K = S/(x_1, \ldots, x_d) \) and hence \(N \) has a summand which is isomorphic to \(K = E/(y_1, \ldots, y_d) \). But \(K \in \text{Sq}(E) \) has a linear resolution and irrelevant to \(\text{lpd}(N) \).

To refine Proposition 4.11 we need further properties of squarefree modules.

If \(M^* \in D^b(\text{Sq}(S)) \), then \(\text{Ext}^i_S(M^*, D^*_S) \) is squarefree for all \(i \). Hence \(D^*_S \) gives a duality functor on \(D^b(\text{Sq}(S)) \). On the other hand, \(A := S \circ D_E \circ \mathcal{E} \) is an exact duality functor on \(\text{Sq}(S) \) and it induces a duality functor on \(D^b(\text{Sq}(S)) \). Miller [24 Corollary 4.21] and Römer [17 Corollary 3.7] proved that \(\text{reg}(A(M)) = \text{proj. dim}_S M \) for all \(M \in \text{Sq}(S) \). I generalized this equation to a complex \(M^* \in D^b(\text{Sq}(S)) \) in [22 Corollary 2.10].

Lemma 4.12. Let \(N \in \text{Sq}(E) \) and set \(N' := D_E(N) \). Then we have

\[
\text{reg}(H^i(\mathcal{F}^*(N'))) = -\text{depth}_S(\text{Ext}^{d-i}_S(S(N'), S))
\]

and

\[
\text{lpd}(N) = \max \{ i - \text{depth}_S(\text{Ext}^{d-i}_S(S(N'), S)) \mid 0 \leq i \leq d \}.
\]

Here we set the depth of the 0 module to be \(+\infty \).

If \(M := \text{Ext}^{d-i}_S(S(N'), S) \neq 0 \), then \(\text{depth}_S M \leq \text{dim}_S M \leq i \). Therefore all members in the set of the right side of (4.3) are non-negative or \(-\infty \).

Proof. By Theorem 4.7, 4.3 follows from (4.2). So it suffices to show (4.2). By [21 Proposition 4.3], we have \(\mathcal{F}^*(N') \cong (A \circ D_S \circ S(N'))(1) \). The degree shifting “(1)” does not occur in [21 Proposition 4.3]. But \(E \) is a negatively graded ring there, and we need the degree shifting in the present convention.) Since \(A \) is exact, we have

\[
H^i(\mathcal{F}^*(N')) \cong H^i(A \circ D_S \circ S(N'))(1) \cong A(H^{-i}(D_S \circ S(N')))(1) \\
= A(\text{Ext}^{-i}_S(S(N'), D^*_S))(1).
\]

Recall that \(\text{reg}(A(M)) = \text{proj. dim}_S M \) for \(M \in \text{Sq}(S) \). On the other hand, since \(M \) is finitely generated, the underlying module of \(\text{Ext}^{-i}(M, D^*_S) \) is isomorphic to
Ext_{S}^{d-i}(M, S)$. So (4.12) follows from these facts and the Auslander-Buchsbaum formula.

\begin{proof}

Corollary 4.13. For $N \in \text{Sq}(E)$, N is weakly Koszul (over E) if and only if $S(N)$ is weakly Koszul (over S).

In [17, Corollary 1.3], it was proved that N has a linear resolution if and only if so does $S(N)$. Corollary 4.13 also follows from this fact and (the squarefree module version of) [7, Proposition 1.5].

Proof. We say $M \in \text{gr} S$ is sequentially Cohen-Macaulay, if for each i Ext_{S}^{i}(M, S)$ is either the zero module or a Cohen-Macaulay module of dimension $d - i$ (c.f. [19, III. Theorem 2.11]). By Lemma 4.12, N is weakly Koszul if and only if $S(N')$ $(\equiv A \circ S(N))$ is sequentially Cohen-Macaulay. By [17, Theorem 4.5], the latter condition holds if and only if $S(N)$ is weakly Koszul.

Many examples of squarefree monomial ideals of S which are weakly Koszul (dually, Stanley-Reisner rings which are sequentially Cohen-Macaulay) are known. So we can obtain many weakly Koszul monomial ideals of E using Corollary 4.13.

Proposition 4.14. For an integer i with $1 \leq i \leq d - 1$, there is a squarefree E-module N such that $\text{lpd} N = \text{proj. dim}_S S(N) = i$. In particular, the inequality of Proposition 4.11 is optimal.

Proof. Let M be the \mathbb{Z}^d-graded ith syzygy of $K = S/\mathfrak{m}$. Note that M is squarefree. We can easily check that $N := D_{E} \circ E(M) \in \text{Sq}(E)$ satisfies the expected condition. In fact, $\text{proj. dim}_S S(N) = \text{proj. dim}_S A(M) = \text{reg} M = i$. On the other hand, since Ext_{S}^{d-1}(S(N'), S) = Ext_{S}^{d-i}(M, S) = K, Ext_{S}^{j}(S(N'), S) = 0$ for all $j \neq d - i$, and depth_{S}(\text{Hom}_{S}(S(N'), S)) = d - i + 1$, we have $\text{lpd} N = i$.

The above result also says that the inequality $\text{lpd}(N) \leq \text{proj. dim}_S S(N)$ of [18, Corollary 3.3.5] is also optimal. But for a monomial ideal $J \subset E$, the situation is different.

Proposition 4.15. If $d \geq 3$, then we have $\text{lpd}(E/J) \leq d - 2$ for a monomial ideal J of E.

Proof. If $d = 3$, then easy computation shows that any squarefree monomial ideal $I \subset S$ is weakly Koszul. Hence J is weakly Koszul by Corollary 4.13. So we may assume that $d \geq 4$.

Note that $A \circ S(E/J)$ is isomorphic to a squarefree monomial ideal of S. We denote it by I. By Lemma 4.12, it suffices to show that depth_{S}(\text{Hom}_{S}(I, S)) \geq 2$ and depth_{S}(\text{Ext}_{S}^{1}(I, S)) \geq 1. Recall that $\text{Hom}_{S}(I, S)$ satisfies Serre’s condition (S_2), hence its depth is at least 2. Since Ext_{S}^{1}(I, S) \approx \text{Ext}_{S}^{2}(S/I, S)$, it suffices to prove that depth_{S}(\text{Ext}_{S}^{2}(S/I, S)) \geq 1.

If $\text{ht}(I) > 2$, then we have $\text{Ext}_{S}^{2}(S/I, S) = 0$. If $\text{ht}(I) = 2$, then $\text{Ext}_{S}^{2}(S/I, S)$ satisfies (S_2) as an S/I-module and depth_{S} Ext_{S}^{2}(S/I, S) \geq \min\{2, \dim(S/I)\} \geq 2$. So we may assume that $\text{ht}(I) = 1$. If the heights of all associated primes of I are 1, then I is a principal ideal and $\text{Ext}_{S}^{2}(S/I, S) = 0$ for all $i \neq 1$. So we
may assume that I has an prime of larger height. Then we have ideals I_1 and I_2 of S such that $I = I_1 \cap I_2$ and the heights of any associated prime of I_1 (resp. I_2) is 1 (at least 2). Since I is a radical ideal, we have $\text{ht}(I_1 + I_2) \geq 3$. Hence $\text{Ext}_S^2(S/(I_1+I_2),S) = 0$ and $\text{Ext}_S^3(S/(I_1+I_2),S)$ is either the zero module or satisfies (S_2) as an $S/(I_1+I_2)$-module. In particular, if $\text{Ext}_S^2(S/(I_1+I_2),S) \neq 0$ (equivalently, if $\dim(S/(I_1+I_2)) = d-3$) then $\text{depth}_S(\text{Ext}_S^3(S/(I_1+I_2),S)) \geq \min\{2, d-3\} \geq 1$. Note that $\text{depth}_S(\text{Ext}_S^2(S/I_2,S)) \geq 2$. From the short exact sequence
\[0 \to S/I \to S/I_1 \oplus S/I_2 \to S/(I_1 + I_2) \to 0 \]
and the above argument, we have the exact sequence
\[(4.4) \quad 0 \to \text{Ext}_S^2(S/I_2,S) \to \text{Ext}_S^2(S/I,S) \to \text{Ext}_S^3(S/(I_1 + I_2),S). \]
We have $\text{depth}_S(\text{Ext}_S^2(S/I,S)) \geq 1$ by (4.3), since the modules beside this module have positive depth.

ACKNOWLEDGMENTS

This research started during my stay at Instituto de Matemáticas de la UNAM (Morelia, Mexico) in the summer of 2004. I am grateful to JSPS and CONACYT for financial support, and the institute for warm hospitality. Special thanks are due to Professor Robert Martinez-Villa for stimulating discussion and encouragement. I also thank Professor Izuru Mori for valuable information on AS regular algebras.

REFERENCES

[1] M. Artin, J. Tate, and M. Van den Bergh, Some algebras associated to automorphisms of elliptic curves, in: The Grothendieck Festschrift, Vol. I, 33–85, Progr. Math., 86, Birkhauser Boston, Boston, MA, 1990.

[2] A. Beilinson, V. Ginzburg and W. Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), 473–527.

[3] D. Eisenbud, G. Fløystad and F.-O. Schreyer, Sheaf cohomology and free resolutions over exterior algebra, Trans. Amer. Math. Soc. 355 (2003), 4397-4426.

[4] D. Eisenbud and S. Goto, Linear free resolutions and minimal multiplicity, J. Algebra 88 (1984), 89–133.

[5] E.L. Green, R. Martinez-Villa, Koszul and Yoneda algebras, in: Representation Theory of Algebras (Cocoyoc, 1994), CMS Conf. Proc., Vol. 18, Amer. Math. Soc., 1996, pp. 247–297.

[6] J.Y. Guo, R. Martinez-Villa, and M. Takane, Koszul generalized Auslander regular algebras, in: Algebras and modules, II (Geiranger, 1996), CMS Conf. Proc., 24, Amer. Math. Soc., 1998, pp. 263–283.

[7] J. Herzog and T. Hibi, Componentwise linear ideals, Nagoya Math. J. 153 (1999), 141–153.

[8] J. Herzog and S. Iyengar, Koszul modules, to appear in J. Pure Appl. Algebra.

[9] P. Jørgensen, Non-commutative Castelnuovo-Mumford regularity, Math. Proc. Cambridge Philos. Soc. 125 (1999) 203-221.

[10] P. Jørgensen, Linear free resolutions over non-commutative algebras, Compos. Math. 140 (2004), 1053–1058.

[11] R. Martinez-Villa, Serre duality for generalized Auslander regular algebras, In: Trends in the representation theory of finite-dimensional algebras (Seattle, WA, 1997), Contemp. Math., 229, Amer. Math. Soc., 1998, pp. 237–263.

[12] R. Martinez-Villa, Graded, selfinjective, and Koszul algebras. J. Algebra 215 (1999), 34–72.
[13] R. Martinez-Villa and D. Zacharia, Approximations with modules having linear resolutions, J. Algebra 266 (2003), 671–697.
[14] E. Miller, The Alexander duality functors and local duality with monomial support, J. Algebra 231 (2000), 180–234.
[15] I. Mori, Rationality of the Poincare series for Koszul algebras, J. Algebra 276 (2004), 602–624.
[16] T. Römer, Generalized Alexander duality and applications, Osaka J. Math. 38 (2001), 469–485.
[17] T. Römer, Cohen-Macaulayness and squarefree modules, Manuscripta Math., 104 (2001), 39–48.
[18] T. Römer, On minimal graded free resolutions, Thesis, University of Essen, 2001.
[19] R. Stanley, Combinatorics and commutative algebra, 2nd ed. Birkhäuser 1996.
[20] K. Yanagawa, Alexander duality for Stanley-Reisner rings and squarefree \(\mathbb{N}^n \)-graded modules, J. Algebra 225 (2000), 630–645.
[21] K. Yanagawa, Derived category of squarefree modules and local cohomology with monomial ideal support, J. Math. Soc. Japan 56 (2004) 289–308.
[22] K. Yanagawa, BGG correspondence and Römer’s theorem of an exterior algebra, to appear in Algebras and Representation Theory. \([\text{math.AC/0402406}]\)
[23] A. Yekutieli, Dualizing complexes over noncommutative graded algebras, J. Algebra 153 (1992), 41–84.

Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

E-mail address: yanagawa@math.sci.osaka-u.ac.jp