Unconventional Nickel Nitride Enriched with Nitrogen Vacancies as a High-Efficiency Electro catalyst for Hydrogen Evolution

Liu, Bin; He, Bin; Peng, Hui-Qing; Zhao, Yufei; Cheng, Junye; Xia, Jing; Shen, Jianhua; Ng, Tsz-Wai; Meng, Xiangmin; Lee, Chun-Sing; Zhang, Wenjun

Published in:
Advanced Science

Published: 01/08/2018

Document Version:
Final Published version, also known as Publisher's PDF, Publisher's Final version or Version of Record

License:
CC BY

Publication record in CityU Scholars:
Go to record

Published version (DOI):
10.1002/advs.201800406

Publication details:
Liu, B., He, B., Peng, H-Q., Zhao, Y., Cheng, J., Xia, J., Shen, J., Ng, T-W., Meng, X., Lee, C-S., & Zhang, W. (2018). Unconventional Nickel Nitride Enriched with Nitrogen Vacancies as a High-Efficiency Electro catalyst for Hydrogen Evolution. Advanced Science, 5(8), Article 1800406. Advance online publication. https://doi.org/10.1002/advs.201800406

Citing this paper
Please note that where the full-text provided on CityU Scholars is the Post-print version (also known as Accepted Author Manuscript, Peer-reviewed or Author Final version), it may differ from the Final Published version. When citing, ensure that you check and use the publisher's definitive version for pagination and other details.

General rights
Copyright for the publications made accessible via the CityU Scholars portal is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Users may not further distribute the material or use it for any profit-making activity or commercial gain.

Publisher permission
Permission for previously published items are in accordance with publisher's copyright policies sourced from the SHERPA RoMEO database. Links to full text versions (either Published or Post-print) are only available if corresponding publishers allow open access.

Take down policy
Contact lbscholars@cityu.edu.hk if you believe that this document breaches copyright and provide us with details. We will remove access to the work immediately and investigate your claim.
Unconventional Nickel Nitride Enriched with Nitrogen Vacancies as a High-Efficiency Electrocatalyst for Hydrogen Evolution

Bin Liu, Bin He, Hui-Qing Peng, Yufei Zhao, Junye Cheng, Jing Xia, Jianhua Shen, Tsz-Wai Ng, Xiangmin Meng, Chun-Sing Lee, and Wenjun Zhang*

DOI: 10.1002/advs.201800406

Development of high-performance and cost-effective non-noble metal electrocatalysts is pivotal for the eco-friendly production of hydrogen through electrolysis and hydrogen energy applications. Herein, the synthesis of an unconventional nickel nitride nanostructure enriched with nitrogen vacancies (Ni$_3$N$_{1-x}$) through plasma-enhanced nitridation of commercial Ni foam (NF) is reported. The self-supported Ni$_3$N$_{1-x}$/NF electrode can deliver a hydrogen evolution reaction (HER) activity competitive to commercial Pt/C catalyst in alkaline condition (i.e., an overpotential of 55 mV at 10 mA cm$^{-2}$ and a Tafel slope of 54 mV dec$^{-1}$), which is much superior to the stoichiometric Ni$_3$N, and is the best among all nitride-based HER electrocatalysts in alkaline media reported thus far. Based on theoretical calculations, it is further verified that the presence of nitrogen vacancies effectively enhances the adsorption of water molecules and ameliorates the adsorption–desorption behavior of intermediately adsorbed hydrogen, which leads to an advanced HER activity of Ni$_3$N$_{1-x}$/NF.

Hydrogen, a clean and sustainable energy vector, is a promising alternative to traditional fossil fuels, and its utilization has significant value for addressing the energy crisis and environmental issues. Among the approaches developed thus far for hydrogen production, water electrolysis has demonstrated its inherent superiority in the views of its low cost and environmental benignity. In water electrolysis, electrocatalysts play a predominant role in achieving a high energy conversion efficiency in hydrogen evolution reaction (HER). However, the state-of-the-art catalysts for HER are currently restricted to noble-metal (such as Pt)-based materials, and the high cost and scarcity of these materials largely hamper their widespread applications. The development of new cost-efficient electrocatalysts with their performance competitive to that of the precious metal-based electrocatalysts has thus important application value.

Inspired by the great abundance (90 ppm in nature), low price (4000 times less expensive than platinum on a mole basis), and special d-orbit electron configuration of nickel,[3] a variety of nickel-based compounds, including oxides, sulfides, ...
carbides, and selenides, have been extensively studied, and their pronounced HER catalytic activities have been demonstrated.\[^4\]\ The recent theoretical and experimental results also suggested that transition metal nitrides (TMNs) could be another type of potential HER electrocatalysts due to their high binding capabilities for the adsorbates (atomic hydrogen, proton, or water molecule) and relatively low electrical resistance.\[^5\] Indeed, the Ni-based TMNs in diverse nanostructures and chemical compositions, such as polycrystalline Ni\(_3\)N film,\[^6\] Ni\(_3\)N nanospheres,\[^3\] Ni\(_3\)FeN nanoparticles,\[^7\] NiMo\(_x\) nanosheets,\[^8\] and porous hierarchical Ni\(_3\)Fe\(_{1−x}\)N,\[^9\] have been reported for HER applications. Nevertheless, their catalytic performance, e.g., hydrogen production yield, overpotential for hydrogen evolution, and stability, still needs to be improved to compete with the noble metal catalysts.

In this paper, we report for the first time that nickel nitride nanostructure synthesized directly on Ni foam substrate (Ni\(_3\)N\(_{1−x}\)/NF) could be used as a cost-effective self-supported HER electrocatalyst with excellent performance. In contrast to the conventional chemical approaches, which employed hazardous nitrogen sources (such as azides, hydrazine, cyanamide, and ammonia) to synthesize metal nitrides at temperatures usually >400 °C and with long reaction duration (usually >1 h),\[^5,7,10\] the Ni\(_3\)N\(_{1−x}\) nanostructures were formed through nitridation of commercially available Ni foam in nitrogen plasma generated by microwave. The rich energetic ions and excited neutral particles in the plasma enabled the quick synthesis of nickel nitride at reduced temperature and without the need of toxic substances.\[^11\] In particular, the plasma-assisted nitridation led to the formation of significant nitrogen vacancies in nickel nitride, which was demonstrated to enhance the adsorption of water molecules (i.e., reducing kinetic energy barriers of the Volmer and Heyrovsky steps) and to ameliorate the adsorption–desorption behavior of intermediately adsorbed hydrogen on its surface. Moreover, the intimate contact between the metallic Ni\(_3\)N\(_{1−x}\) and Ni substrate allowed fast charge transport during the HER process. As a result, the Ni\(_3\)N\(_{1−x}\)/NF cathode presented an HER activity comparable to that of Pt/C electrode with an overpotential of 55 mV at 10 mA cm\(^{-2}\) and a Tafel slope of 54 mV dec\(^{-1}\) achieved in alkaline environment, and the cathode also showed outstanding long-term durability toward HER.

In our experiments, a piece of clean Ni foam was subjected to the nitrogen plasma initiated by microwave for the in situ growth of nickel nitride nanostructures (Figure 1a). The microwave power was 450 W, the substrate temperature was maintained at 300 °C, and the duration for plasma treatment was 90 s. The pristine Ni foam had a macroporous structure with the pore size ranging from 100 to 400 µm (Figure S1, Supporting Information), and its skeleton had a smooth surface with visible grain boundaries, as shown by the scanning electron
microscopy (SEM) image in Figure 1b. After plasma treatment, the color of the Ni foam changed to dark gray (Figure S2, Supporting Information); its porous structure is still maintained, and energy-dispersive X-ray spectroscopy (EDX) elemental mapping verified that Ni was uniformly distributed on the NF surface (Figure S3, Supporting Information). The skeleton surface became rough (Figure 1c), and close observation by transmission electron microscopy (TEM) revealed that a low-density layer with a thickness of about 700 nm was formed on Ni foam during plasma treatment (Figure 1d). The layer was identified to be Ni$_3$N with enriched nitrogen vacancies by the chemical composition characterization as shown below (denoted as Ni$_3$N$_{1-x}$/NF hereafter), and the Ni$_3$N$_{1-x}$ was in nanoparticle configuration with a size of tens of nanometers (Figure 1e), Figure S4 (Supporting Information) and Figure 2. In the high-resolution TEM (HRTEM) image of a nanoparticle in Figure 1f, the denoted lattice fringes with an interplanar spacing of 0.41 nm and an interfacial angle of 60° were indexed to (10T0) and (01T0) planes of Ni$_3$N$_{1-x}$, and the corresponding fast Fourier transform (FFT) pattern also agreed with the diffraction pattern along the [0001] zone axis of hexagonal Ni$_3$N$_{1-x}$ (Figure 1g).

To reveal the difference of the Ni$_3$N$_{1-x}$ synthesized by plasma-enhanced nitridation, a reference nickel nitride sample was prepared by heating NF in ammonia atmosphere at 450 °C for 1 h (denoted as Ni$_3$N/NF). The X-ray diffraction (XRD) patterns (Figure S4, Supporting information) verified the formation of hexagonal Ni$_3$N (JCPDS: 10-0280) in both samples. However, the Ni$_3$N$_{1-x}$/NF showed weaker and broader diffraction in comparison with the reference sample, indicating a lower crystallinity or a more defective structure of the sample prepared by plasma treatment. X-ray photoelectron spectroscopy (XPS) was further performed to study the chemical composition of the two samples. In the Ni 2p XPS spectra (Figure 2a), two peaks at 853.6 and 871.4 eV for Ni$_3$N/NF were observed, which were assigned to the 2p$_{3/2}$ and 2p$_{1/2}$ of Ni$^+$, respectively, and the “shake up” satellites were also seen on the higher binding energy side of the main Ni 2p peaks. In comparison, two additional peaks at 851.5 eV (2p$_{3/2}$) and 869.5 eV (2p$_{1/2}$), which were attributed to the existence of the less valence state of Ni (Ni$^{2+}$), could be resolved in the Ni 2p XPS spectra of Ni$_3$N$_{1-x}$/NF. The predominance of Ni$^{2+}$ in Ni$_3$N$_{1-x}$/NF suggested that the electron density of a considerable fraction of Ni atoms was affected by the existence of nitrogen vacancies. Moreover, the peak at 398.0 eV ascribed to the N=N bonding was observed for both Ni$_3$N/NF and Ni$_3$N$_{1-x}$/NF in the high-resolution N 1s XPS spectra (Figure 2b), and a peak centered at around 399.9 eV (denoted as V$_N$) was also revealed for Ni$_3$N$_{1-x}$/NF. The observation of this extra peak at higher binding energy suggested the reduction of negative charges of nitrogen atoms and further verified the formation of nitrogen vacancies in Ni$_3$N$_{1-x}$/NF, similar to the variation of XPS signals of oxygen in the oxide nanomaterials with oxygen vacancies. In addition, detailed compositional analysis revealed that the atomic ratio of N:Ni in Ni$_3$N/NF was 1:3.16, which was close to the stoichiometry of Ni$_3$N. By contrast, a significantly smaller atomic ratio of N:Ni (1:5.28) was obtained for Ni$_3$N$_{1-x}$/NF, which indicated the presence of abundant nitrogen vacancies in Ni$_3$N$_{1-x}$. All of the above characterizations revealed that the nickel nitride prepared by the microwave-initiated nitridation had a defective structure enriched with nitrogen vacancies. Moreover, it was found that the amount of nitrogen vacancies was dependent on the temperature of nitrogen plasma treatment. Herein, besides Ni$_3$N$_{1-x}$/NF prepared at 300 °C (denoted as Ni$_3$N-300/NF for convenience), additional two nickel nitrides were prepared through nitridation of Ni foams in nitrogen plasma generated by microwave at 350 and 400 °C, and the obtained electrocatalysts were denoted as Ni$_3$N-350/NF and Ni$_3$N-400/NF, respectively. The samples were characterized using XPS. It was revealed that the atomic ratio of N:Ni gradually increased with the increment of temperature (1:5.28 for Ni$_3$N-300, 1:4.36 for Ni$_3$N-350, and 1:3.21 for Ni$_3$N-400). Furthermore, Figure S5 (Supporting Information) shows the high-resolution N 1s spectra and their deconvolution of the samples. The intensity of the peak centered at around 399.9 eV was associated with the amount of nitrogen vacancies. It was revealed clearly that Ni$_3$N-300/NF displayed a very distinct peak at 399.9 eV, indicating the existence of massive nitrogen vacancies. With the increase of the plasma treatment temperature, the intensity of this peak decreased and almost vanished at the temperature of 400 °C, which suggested the formation of nearly stoichiometric Ni$_3$N. Based on this observation, the formation mechanism of nitrogen vacancies could be discussed as follows. In nitrogen plasma, there are molecular, atomic, and ionic nitrogen (N$^+$ and N$^{2+}$) species. Considering that the nickel nitride is an interstitial compound, in which planes of nickel atoms stack in an ABAB fashion within the unit cell, and nitrogen atoms as interstices atoms occupy the octahedral sites of the nickel lattice in an ordered fashion to minimize the repulsive N–N

Figure 2. The high-resolution XPS spectra of a) Ni 2p and b) N 1s (top: Ni$_3$N$_{1-x}$/NF; bottom: Ni$_3$N/NF).
interactions,[15] the nitrogen atoms of the as-produced nitrogen species as interstices atoms permeate into the nickel lattice of Ni foam substrate surface to result in the formation of nickel nitride phase. Higher processing temperature will result in higher diffusion rate and stronger reactivity of nitrogen species, and therefore more nitrogen atoms can be filled into the nickel lattices, forming the nickel nitride phase close to perfect crystalline structure with a N/Ni ratio of 1/3 (e.g., the Ni$_3$N-400/NF). In contrast, lower processing temperature restrains the diffusion rate and reactivity of nitrogen species, leading to the formation of nickel nitride phase with nitrogen vacancies.

The obtained Ni$_3$N$_{1-x}$/NF was directly utilized as a self-supported cathode for hydrogen generation in a 1.0 M KOH solution (pH 14) using a standard three-electrode configuration. To highlight the superiority of Ni$_3$N$_{1-x}$/NF, the catalytic performance of bare NF, Ni$_3$N/NF, and commercial Pt/C (20 w%) Pt/XC-72 was also evaluated for comparison. Figure 3a presents the linear sweep voltammetry (LSV) curves of all these samples. Among them, Pt/C/NF showed the best HER activity with an overpotential ($\eta$$_{10}$) of 46 mV at 10 mA cm$^{-2}$, which was consistent with those of the previous reports.[16] Impressively, Ni$_3$N$_{1-x}$/NF electrode exhibited an electrocatalytic performance very competitive to that of Pt/C/NF electrode, i.e., an onset potential close to that of commercial Pt/C and an $\eta$$_{10}$ of 55 mV (only 9 mV higher than that of Pt/C/NF). The $\eta$$_{10}$ value of Ni$_3$N$_{1-x}$/NF was substantially reduced as compared with that of Ni$_3$N/NF (140 mV), implying the decisive role of nitrogen vacancies in enhancing the HER activity of nickel nitrides. Figure 3b presents the Tafel slopes of the samples derived from the polarization curves at a slow scan rate of 1 mV s$^{-1}$. Ni$_3$N$_{1-x}$/NF showed a Tafel slope of 54 mV dec$^{-1}$, which was slightly higher than that of Pt/C/NF (45 mV dec$^{-1}$) but obviously smaller than that of Ni$_3$N/NF (96 mV dec$^{-1}$). Because the Tafel slope is directly associated with the HER reaction kinetics of electrocatalyst,[17] the lower Tafel slope of Ni$_3$N$_{1-x}$/NF indicates that the presence of nitrogen vacancies results in its faster kinetics and superior catalytic activity as compared with Ni$_3$N/NF. In addition, Figure S6 (Supporting Information) shows the LSV curves and the corresponding Tafel plots of the samples prepared at different temperatures of plasma treatment. It was revealed that Ni$_3$N-300/NF (i.e., Ni$_3$N$_{1-x}$/NF) with the largest amount of nitrogen vacancies exhibited the smallest overpotential and Tafel slope among the samples. These results verified that the HER catalytic activity of the as-prepared samples was closely related to the amount of nitrogen vacancies, highlighting the importance of nitrogen vacancies. As summarized in Figure 3c and Table S1 (Supporting Information), Ni$_3$N$_{1-x}$/NF has actually the lowest $\eta$$_{10}$ in all nitride-based HER electrocatalysts in alkaline media reported thus far, e.g., Ni$_3$N nanospheres (\approx185 mV)[18] Ni$_3$FeN nanosheets/ NF (75 mV)[18] Co–Ni$_3$N nanorods (194 mV)[19] hierarchical NiMoN/carbon cloth (109 mV)[9] CoN nanowires (97 mV)[20] and Co$_{x.6}$N@N–C (149 mV)[21]; and the overall performance of Ni$_3$N$_{1-x}$/NF is also among the best non-noble-metal HER catalysts working in basic electrolytes including hydroxides, sulfides, carbides, phosphides, and selenides (Table S2, Supporting Information). Another critical factor to evaluate an HER catalyst is its long-term stability. To explore the durability

Figure 3. a) The LSV curves of NF, Ni$_3$N$_{1-x}$/NF, Ni$_3$N/NF, and Pt/C/NF measured in 1.0 M KOH solution (pH 14). b) Corresponding Tafel plots for the samples. c) The comparison of the performance of Ni$_3$N$_{1-x}$/NF with the previously reported nitrides and other non-noble-metal-based electrocatalysts in basic environment (the related references are listed in Tables S1 and S2 in the Supporting Information). d) LSV curves before and after the stability test for 50 h. The inset is the chronoamperometry curve of Ni$_3$N$_{1-x}$/NF recorded at an overpotential of 100 mV for a total duration of 50 h. e) The linear fitting of the capacitive currents of the electrodes as a function of scan rates for Ni$_3$N$_{1-x}$/NF and Ni$_3$N/NF. f) Nyquist plots of Ni$_3$N$_{1-x}$/NF and Ni$_3$N/NF at an overpotential of 120 mV from 100 kHz to 10 mHz.
of Ni$_3$N$_{1-x}$/NF as a self-supported cathode, a fixed overpotential of 100 mV was applied to Ni$_3$N$_{1-x}$/NF. As shown in the inset of Figure 3d, the current density maintained almost unchanged during the 50 h tests. Moreover, the polarization curve recorded after the durability test almost overlapped with the initial one before the test, and the overpotential required to achieve a current density of 100 mA cm$^{-2}$ merely increased by 6 mV, demonstrating its excellent catalytic stability in basic condition.

To understand the effects of nitrogen vacancies on the superior HER activity of Ni$_3$N$_{1-x}$/NF to that of Ni$_3$N/NF, we evaluated their electrochemically active surface areas (EASAs) by measuring electrochemical double-layer capacitance (C_{dl}). As demonstrated in Figure 3e, the C_{dl} value of Ni$_3$N$_{1-x}$/NF (3.20 mF cm$^{-2}$) was almost threefold higher than that of the Ni$_3$N/NF (1.14 mF cm$^{-2}$), which indicated that Ni$_3$N$_{1-x}$/NF had much increased electrochemically active sites. In addition, electrochemical impedance spectroscopy (EIS) was also carried out to study the HER kinetics of Ni$_3$N$_{1-x}$/NF and Ni$_3$N/NF, as shown in Figure 3f. It was obvious that Ni$_3$N$_{1-x}$/NF had a much smaller charge transfer resistance (R_{ct}) at the interface between the electrode and electrolyte than that of Ni$_3$N/NF (18.1 vs 31.8 Ω), illustrating a highly efficient and fast electron transport in the HER process in Ni$_3$N$_{1-x}$/NF. The results agreed well with the observation of smaller Tafel slope and superior HER kinetics of Ni$_3$N$_{1-x}$/NF. Electrocatalytic HER is a representative surface reaction, and the surface wettability of an electrocatalyst is directly associated with its capability for the access of electrolyte, the adsorption of water molecules, and the electrocatalytic activity. In this work, we also measured the water contact angles on Ni$_3$N$_{1-x}$/NF and Ni$_3$N/NF. The smaller contact angle on Ni$_3$N$_{1-x}$/NF (91.3° vs 128.2° for Ni$_3$N/NF), as illustrated in Figure S7 in the Supporting Information, suggested its better wettability, which would benefit the adsorption of water and the enhancement of HER reaction kinetics of Ni$_3$N$_{1-x}$/NF.

By normalizing the HER current densities with respect to the EASAs, the intrinsic activities of Ni$_3$N$_{1-x}$/NF and Ni$_3$N/NF were obtained, as depicted in Figure S8 (Supporting Information). At a given potential after onset, the current density of Ni$_3$N$_{1-x}$/NF was considerably higher than that of the Ni$_3$N/NF, implying that Ni$_3$N$_{1-x}$/NF had a significantly improved intrinsic HER activity. Density functional theory (DFT) simulations were carried out to pinpoint the origin of the enhanced intrinsic activity of Ni$_3$N$_{1-x}$/NF. As shown in Figure 4a, with the existence of nitrogen vacancies, a continuous distribution of the density of states (DOS) and a large number of electronic states near the Fermi level were observed, suggesting that Ni$_3$N$_{1-x}$/NF had fast electron transport in the electrocatalytic process. Furthermore, as revealed by the calculated partial charge density distribution in Figure 4b and Figure S9 (Supporting Information), the existence of nitrogen vacancy might lead to charge redistribution in Ni$_3$N$_{1-x}$/NF, in which the electron density around Ni atoms next to the nitrogen vacancy substantially increased. Such a charge redistribution led to the formation of Ni$^{2+}$, as revealed in the XPS measurements. Moreover, the change of electronic state of Ni$_3$N$_{1-x}$/NF relative to Ni$_3$N could be reflected by ultraviolet photoelectron spectroscopy (UPS), as shown in

Figure 4. a) Total and partial electronic density of states (TDOS and PDOS) calculated for Ni$_3$N$_{1-x}$. The Fermi level is set at 0 eV. The inset shows the atomic structure model of Ni$_3$N$_{1-x}$. b) Partial charge density distribution of Ni$_3$N$_{1-x}$. c) Adsorption energies of H$_2$O molecules on the surfaces of Ni$_3$N and Ni$_3$N$_{1-x}$. The inset is a side-view schematic model showing the Ni$_3$N$_{1-x}$ structure with a H$_2$O molecule adsorbed on its surface. d) The calculated free-energy diagram of HER at the equilibrium potential for Ni$_3$N, Ni$_3$N$_{1-x}$, and Pt reference. H$^+$ denotes that intermediate adsorbed hydrogen.
Figure S10 (Supporting Information). The valence band maximum (VBM) value of Ni3N was determined to be 3.4 eV. For Ni11N1−x with nitrogen vacancies, the VBM increased to 4.1 eV, which indicated the VBM of Ni11N−x shifted more from the Fermi level than that of Ni11N due to the presence of nitrogen vacancies. The shift of the valence band implied the d-band center of Ni11N−x also shifted as compared to that of Ni11N, and the downshift of the d-band center of Ni11N−x would facilitate the desorption of H from its surface, thus enabling an enhanced HER activity of Ni11N1−x/NF.[25]

For the HER in basic media, two separate pathways (the Volmer–Tafel and the Volmer–Heyrovsky mechanism) have been proposed for reducing H* to H2. Specifically, these two distinct mechanisms involve three principal steps, referring to the Volmer (adsorption and electrochemical reduction of water: H2O + e → H* + OH−), the Heyrovsky (electrochemical desorption: H* + H2O + e → H2 + OH−), and the Tafel (chemical desorption: H* + H* → H2) reactions.[26] Tafel plot analysis is generally utilized to elucidate the reaction mechanism, which may provide information associated with the rate-determining steps.[27] The Tafel slopes of 54 and 96 mV dec−1 for Ni11N1−x/NF and Ni11N/NF implied a Volmer–Heyrovsky mechanism on the two electrocatalysts,[28] where the adsorption of H2O molecules is fundamental in both reactions. Therefore, we calculated the adsorption energies of H2O molecules on the surfaces of Ni11N1−x and Ni11N.[29] The optimized structures of Ni11N−x and Ni11N with H2O molecules adsorbed on their surfaces are shown in Figure 4c and Figure S11 (Supporting Information), respectively. The Ni11N−x enriched with nitrogen vacancies possessed an increased adsorption energy (absolute value) as compared with the stoichiometric Ni11N (1.48 vs 1.15 eV as summarized in Figure 4c), verifying that the presence of nitrogen vacancies could decrease the energy barrier for the adsorption of H2O.

As a result, the Volmer step and Heyrovsky step could be promoted simultaneously, which greatly accelerated HER kinetics of Ni11N1−x/NF. On the other hand, HER activity is also strongly related to the Gibbs free energy (ΔGf°) of the intermediate adsorbed hydrogen, and |ΔGf°| value is regarded as a descriptor of HER activity for a catalyst, i.e., a smaller |ΔGf°| enables better activity toward HER, and an optimal HER activity can be achieved at |ΔGf°| = 0.0 eV due to the balanced proton reduction rate and the removal of adsorbed hydrogen from the catalyst surface.[30] In this work, we also used DFT to calculate the |ΔGf°| value on the surface of Ni11N with and without nitrogen vacancies, as shown in Figure 4d. It was revealed that Ni11N1−x had a substantially reduced |ΔGf°| value (0.28 eV) compared to the Ni11N (1.05 eV), which illustrated that the presence of nitrogen vacancies induced a more favorable adsorption–desorption behavior of hydrogen on Ni11N1−x. The theoretical simulations also agreed well with the experimental observations that Ni11N1−x/NF had an obviously improved HER catalytic activity (including significantly reduced overpotential and Tafel slope) comparable to the Ni11N/NF in basic condition. In addition, the favorable adsorption–desorption behavior of H* initiated by nitrogen vacancies also led to obviously enhanced HER activity of Ni11N1−x/NF in neutral electrolyte. As shown in Figures S12 and S13 (Supporting Information), Ni11N1−x/NF displayed an η10 value of only 89 mV and a Tafel slope of 63 mV dec−1, respectively, with outstanding durability, both of which were much smaller than those of Ni11N/NF without nitrogen vacancies (223 mV and 106 mV dec−1, respectively).

Based on the structural analysis and the theoretical simulation, the outstanding catalytic performance of Ni11N1−x/NF electrode could be mainly attributed to collective effects of the following aspects: 1) the nitrogen vacancies optimized the electronic structure of Ni11N1−x, which, on one hand, reduced the energy barrier for the adsorption of H2O (promoting the Volmer step and Heyrovsky step simultaneously), and, on the other hand, induced balanced adsorption–desorption of intermediate adsorbed hydrogen H* on Ni11N1−x. 2) The intrinsic metallicity of the Ni11N1−x layer synthesized by plasma nitridation guaranteed the fast charge transfer on the interface between active material and electrolyte during catalytic process. 3) The direct growing of Ni11N1−x on NF formed a robust integrated electrode without the use of polymer binders, which avoided the shelter of active sites and provided a pathway for fast electron transportation.[31] Moreover, the strong adhesion of Ni11N1−x layer on Ni foam also benefited its mechanical and catalytic stabilities.

In conclusion, a self-supported cathode comprising Ni11N1−x nanoparticles enriched with nitrogen vacancies was prepared by a facile nitrogen plasma treatment of NF. Ni11N1−x/NF cathode exhibited a high catalytic activity and outstanding stability for HER in alkaline condition. Theoretical calculations verified that Ni11N1−x was in the metallic state with a high electrical conductivity, and the presence of nitrogen vacancies facilitated the adsorption of H2O on Ni11N1−x and optimized adsorption–desorption behavior of adsorbed hydrogen, which were responsible for the advanced HER catalytic activity of Ni11N1−x/NF. The development of new integrated Ni11N1−x/NF cathodes with the overall performance comparable to that of commercial Pt/C electrodes demonstrates a promising route to achieve highly efficient electrocatalysts for practical hydrogen evolution.

Experimental Section
Experimental Section is available in the Supporting Information.

Supporting Information
Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements
B.L., B.H., and H.-Q.P. contributed equally to this work. The authors are grateful for financial support from the National Science Foundation of China (Grant No. 51672230), and General Research Fund (GRF CityU 11338516). They also thank the “Chemical Grid Project” of Beijing University of Chemical Technology.

Conflict of Interest
The authors declare no conflict of interest.
Keywords
electrocatalysis, hydrogen evolution reaction, nitrogen vacancies, plasma-enhanced nitridation