MODULUS OF CONTINUITY OF AVERAGES OF SRB MEASURES FOR A TRANSVERSAL FAMILY OF PIECEWISE EXPANDING UNIMODAL MAPS

FABIÁN CONTRERAS

Abstract. Let $f_t : [0, 1] \to [0, 1]$ be a family of piecewise expanding unimodal maps with a common critical point that is dense for almost all $t \in [a, b]$. If μ_t is the corresponding SRB measure for f_t, we study the regularity of $\Gamma(t) = \int \phi \, d\mu_t$ when assuming that the family is transversal to the topological classes of these maps, more precisely, we prove that if $J_t(c) = \sum_{k=0}^{\infty} v_t(f_k^t(c)) \frac{Df_k^t(f^t(c))}{Df^t(c)} \neq 0$ for all t, where $v_t(x) = \partial_s f^s(x)|_{s=t}$, then $\Gamma(t)$ is not Lipschitz for almost all $t \in [a, b]$. Furthermore, we give the exact modulus of continuity of $\Gamma(t)$.

Contents

1. Introduction 1
2. Preliminaries 3
 2.1. Setting and assumptions 3
 2.2. Example 4
 2.3. Auxiliary Facts 4
3. Shadowable points 6
4. Changing variables 8
5. Contribution of shadowable points 8
6. Modulus of continuity of $\Gamma(t)$ 9
 6.1. Preliminary Results 9
 6.2. Proof of Main Result 14
7. Appendix 18

1. Introduction

Sinai-Ruelle-Bowen (SRB) measures play an important role in the study of statistical properties of dynamical systems. Let f be a map of a manifold M preserving a measure μ. A point x is called μ-regular if for every continuous function ϕ we have

$$\frac{1}{N} \sum_{n=0}^{N-1} \phi(f^n x) \to \mu(\phi).$$

A measure μ is called SRB if the set of μ regular points has positive Lebesgue measure. In other words the SRB measure describes statistics of a Lebesgue positive measure set of initial conditions.

For example, if f preserves an absolutely continuous invariant measure which is ergodic then that measure is SRB.

Another case where SRB measures are known to exist is when some hyperbolicity is present.

In particular, when the system is uniformly hyperbolic, for example, for topologically transitive Axiom A diffeomorphisms or for smooth expanding maps SRB measures exist and have good statistical properties such as the Central Limit Theorem (CLT) [28]. The CLT states that if ϕ is a Holder
continuous function and \(x \) is chosen uniformly with respect to the Lebesgue measure then

\[
\lim_{N \to \infty} P \left(\sum_{n=0}^{N-1} \phi(f^n x) - n \mu(\phi) \leq z \right) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt
\]

where the diffusion coefficient \(\sigma(\phi, f) \) is defined by

\[
\sigma^2(\phi, f) = \mu(\phi^2) + 2 \sum_{n=1}^{\infty} \mu(\phi(\phi \circ f^n)).
\]

In case \(\phi \) is smooth (rather than just Holder continuous) the normalizing constants \(\mu_{SRB}(\phi, f) \) and \(\sigma^2(\phi, f) \) depend smoothly on \(f \).

This smoothness plays important role in averaging theory including some problems of statistical mechanics [21, 9, 13, 14].

Uniformly hyperbolic systems appear rarely in applications. Much more common are systems which are either nonuniformly hyperbolic on the set of large measure (notable examples are quadratic family [15] and Henon family [7]) or are hyperbolic but have singularities (notable examples are Lorenz system [27] and Lorentz gas [10]).

While uniformly hyperbolic system provides us with a good understanding on what happens for more general chaotic maps, in the sense that many results first proven in the uniformly hyperbolic setting hold under much weaker conditions (see [28]) the families of uniformly hyperbolic maps are not good models for predicting what happens with more general families. Therefore our understanding of parameter dependence of invariant measures in weakly hyperbolic systems are quite poor. To remedy this situation David Ruelle suggested to look at families of piecewise expanding unimodal maps.

We call a map \(f : [0, 1] \to [0, 1] \) piecewise expanding unimodal map (PEUM) if there is a point \(c \) and two maps \(f_L \) defined on \([0, c + \varepsilon]\) and \(f_R \) defined on \([c - \varepsilon, 1]\) such that \(f_1(c) = f_2(c) \) and there is a constant \(\lambda > 1 \) such that \(|Df_*(x)| \geq \lambda \) for all \(x \) from the domain of \(f_* \) with \(* = L, R \) and

\[
f(x) = \begin{cases} f_L(x) & \text{if } x \leq c \\ f_R(x) & \text{if } x \geq c. \end{cases}
\]

PEUMs have unique absolutely continuous invariant measure [14] which is ergodic (in fact it is mixing and even exponentially mixing [2, 28]) so it is the SRB measure for this system.

Several papers have been devoted to studying regularity of SRB absolutely continuous invariant measures in families of PEUMs. In particular some sufficient conditions for regular dependence of SRB measures on parameters have been found (those conditions however are exceptional in the sense that they do not hold for typical families).

This work also deals with families of PEUMs. That is, if \(t \in [a, b] \), we work with a smooth one-parameter family of PEUMs \(f_t : [0, 1] \to [0, 1] \), with \(\mu_t \) the (unique) SRB measure associated to each \(f_t \). Thus, we want to study the regularity of \(\Gamma(t) = \int \phi \ d\mu_t \), with \(\phi \) in some suitable space.

In [22] and [23], Ruelle considered the case \(v = X \circ f \) and suggested a candidate for the derivative of \(\Gamma(t) \). In [1], Baladi studied properties of a complex function involved in Ruelle’s candidate based on spectral perturbation theory for transfer operators. She found a different way to express Ruelle’s suggestions. The latter was used by Baladi and Smania ([3, 4]) to give sufficient and necessary conditions for the differentiability of \(\Gamma(t) \) (the differentiability does not always hold as shown in [20, 1, 12]) and exhibited an explicit formula for the derivative. Besides some routine differentiability and irreducibility assumptions on the family \(f_t \), the important assumption is that the quantity

\[
J(c, f) = \sum_{k=0}^{\infty} \frac{v(f^k(c))}{|Df^k(f(c))|}
\]

equals zero.
As we mentioned before, in [1], Baladi shows that there is a one-parameter family when a transversality condition holds, or equivalently when $J(c, f) \neq 0$, and concludes that $\Gamma(t)$ is not Lipschitz (and then it cannot be differentiable) for such a particular family. In [12], De Lima and Smania proved that for every $\Omega \subset [a, b]$ with positive Lebesgue measure, $\Gamma(t)$ is not Lipschitz, for almost all t in Ω. Our approach is more elementary. While in [12], their analysis lie on studying a decomposition of the difference (the complement of the set before) where we try to estimate the exact modulus of continuity for $\Gamma(a,b)$ cannot be differentiable) for such a particular family. In [12], De Lima and Smania proved that for every $\epsilon_1 > 0$ and for all $t \in [a, b]$. Then, for $\phi \in Lip[0,1]$ and for almost all t, we have

$$
\limsup_{h \to 0} \frac{\Gamma(t + h) - \Gamma(t)}{h \sqrt{|\log(h) \log \log |\log(h)||}} = 2\sqrt{2}\rho_t(c)J(c, f_t)\sigma_t(\phi) \left(\int \log |Df_t(x)| \, d\mu_t \right)^{-1/2}.
$$

The paper is organized as follows:

In Section 2, we state the assumptions on our family of PEUMs and formulate the idea for proving Theorem 1.1. Also, the section shows an example that fulfills all the requirement asked, the necessary definitions throughout the paper, and some results on the decomposition needed for the phase space. Section 3 and 4 are focused on proving the results stated on Section 2. Finally, Section 5 starts by stating some preliminary results needed for our main result and ends with the proof of Theorem 1.1. At the end, In Section 6, we present the proof of the technical lemmas from the beginning of Section 5.

2. Preliminaries

2.1. Setting and assumptions. Recall that expanding unimodal maps are defined by formula [4]. Now we consider families of such maps. Namely, we assume that $f_{L,t}(x)$ is defined for $(t, x) \in [a, b] \times [c, c + \epsilon]$ and $f_{R,t}(x)$ is defined for $(t, x) \in [a, b] \times [c - \epsilon, 1]$ and that $f_{s,t}(x)$ are C^2 functions of their arguments, with $* = L, R$. Then we let

$$
f_t(x) = \begin{cases}
 f_{L,t}(x) & \text{if } x \leq c \\
 f_{R,t}(x) & \text{if } x \geq c.
\end{cases}
$$

Thus we assume that c is a common critical point for all s.

We will also assume the following:

(1) c is not periodic for almost all t.

(2) f_t are uniformly expanding, i.e, there exists a constant $\lambda > 1$ such that

$$
|Df_{s,t}(x)| \geq \lambda,
$$

for all t and $* = L, R$.

(3) f_t is topologically mixing for all t.

(4) The family $\{f_t\}$ is transversal to the topological classes of these PEUMs, that is, there exists $\epsilon_1 > 0$ such that

$$
J_t(c) = \sum_{k=0}^{\infty} \frac{v_t(f_t^k(c))}{Df_t^k(c)} > \epsilon_1. \tag{3}
$$

\footnote{Indeed, we could require that $J_t(c) \neq 0$, however, if $J_t(c) > 0$ for some s, then $\inf\{J_t(c) : t \in [a, b]\} > 0$ by [4].}
for all \(t \), where \(\tau_t(x) = \frac{\partial}{\partial t} f_t(x) \).

(5) For \(\phi \in \text{Lip}[0,1] \), the diffusion coefficients are positive for all parameters, i.e.,

\[
\sigma_t(\phi) = \int \left(\phi - \int \phi d\mu_t \right)^2 d\mu_t + 2 \sum_{k>0} \int \left(\phi - \int \phi d\mu_t \right) \left(\phi \circ f_t^k \right) \left(\phi \circ f_t^k - \int \phi d\mu_t \right) d\mu_t > 0,
\]

for all \(t \).

By [19], for each \(t \), there exists a unique ergodic absolutely continuous invariant measure \(\mu_t = \rho_t dx \) for \(f_t \). Let \(\Gamma(t) = \Gamma(t, \phi) = \int \phi(x) \rho_t(x) dx \). As described before, the purpose is to study the modulus of continuity of \(\Gamma(t) \). For this, by uniform Lasota-Yorke estimates (see [2]), there exist \(C \geq 1 \) and \(\delta \in (0,1) \) such that for all \(n \geq 1 \),

\[
\left| \int \phi(x) \rho_t(x) \, dx - \int \phi(f^n_t x) \, dx \right| \leq C\delta^n.
\]

Thus, we can work with iterations of the systems, that is, we can study the regularity of \(\Gamma(t) \) by means of the following approximation

\[
\Gamma(t+h) - \Gamma(t) = \int \phi(f^n_{t+h} x) \, dx - \int \phi(f^n_t x) \, dx + O(\delta^n).
\]

Therefore, the idea is then to take \(n = n(h) \) depending on \(h \) and in such a way that \(n \) and \(h \) are inversely proportional.

2.2. Example. A well-studied family of maps is the family of tent maps \(f_t : [0,1] \to [0,1] \) defined by

\[
f_t(x) = \begin{cases}
 tx & \text{if } x \in [0,1/2] \\
 t(1-x) & \text{if } x \in [1/2,1]
\end{cases}
\]

for \(t \in [\sqrt{2},2] \). This family satisfies all the conditions above. In fact, by [3], the critical point \(c = 1/2 \) is dense for almost all \(t \), then (1) is satisfied. Condition (2) is easy to see that holds, and (3) and (4) do as well by [6] and [26] respectively. Condition (5) can be assumed because if \(\sigma_n(\phi) > 0 \) for some \(s \) then, since \(t \to \sigma_t \) is continuous (25), \(\sigma_t \) is positive in a neighborhood of \(s \).

2.3. Auxiliary Facts. Set \(t \in [a,b] \) and, as we observed, set \(n = n(h) = \lfloor \| \log(h) \| \rfloor \), where \(h > 0 \) is such that \(t + h \in [a,b] \) and \(\lfloor \| \log(h) \| \rfloor \) denotes the largest integer less than \(\| \log(h) \| \).

Definition 2.1. Let \(x \in [0,1] \). The \(n \)-th itinerary of \(x \) with respect to the PEUM \(f_t : [0,1] \to [0,1] \) is defined as the finite sequence

\[
\omega_{t,n}(x) = (\sigma_0(x),\sigma_1(x),\sigma_2(x),\ldots,\sigma_n(x)) \in \{L,R\}^{n+1},
\]

where

\[
\sigma_t(x) = \begin{cases}
 L & \text{if } f_t^k(x) \leq c. \\
 R & \text{if } f_t^k(x) > c.
\end{cases}
\]

The itinerary of \(x \) with respect to \(f_t \) is the sequence

\[
\omega_t(x) = (\sigma_0(x),\sigma_1(x),\sigma_2(x),\ldots,\sigma_n(x)) \in \{L,R\}^N.
\]

An important tool through this paper is the following operator.

Definition 2.2. The transfer operator for a PEUM \(f \) is defined as

\[
\mathcal{L}(\phi)(x) = \sum_{f(x)=y} \frac{\phi(y)}{|Df(y)|},
\]

for all \(\phi \in \text{BV}[0,1] \).
Let us recall that the space $BV[0,1]$ is a Banach space with the norm $||\phi||_{BV} = ||\phi||_\infty + \text{var}(\phi)$, where $|| \cdot ||$ is the usual supremum norm and $\text{var}(\cdot)$ is the total variation.

Also, since f_t is stably mixing, there exists a constant $0 < \theta < 1$ (not depending on t), such that

$$(7) \quad L^n_t(h) = \rho_t \int h + O(\theta^n||h||_{BV}).$$

Note that, in particular, ρ_t is bounded by a constant not depending on t.

In the case of smooth expanding maps on the circle, the key to prove the differentiability of $\Gamma(t)$ is that for each $x \in [0,1]$, there exists $y \in [0,1]$ shadowing x, i.e., if $n \geq 0$, then $\omega_{t+h,n}(x) = \omega_{t,n}(x)$ and $f^n_{t+h}(x) = f^n_t(y)$.

With the previous in mind, with n fixed, we shall decompose the integral $\Gamma(t + h) - \Gamma(t)$ in two parts: one part where we can emulate the smooth expanding and another part which will be the corresponding complement. For this, let us define the following

Definition 2.3. Let $n \geq 0$ and $0 < h \ll 1$. In $[0,1]$, we define the following sets

- $A_{h,n} = \{ x \in [0,1] : \text{there exists } y \in [0,1] \text{ such that } \omega_{t+h,n}(x) = \omega_{t,n}(y) \text{ and } f^n_{t+h}(x) = f^n_t(y) \}$,
- $B_{h,n} = \{ y \in [0,1] : \text{there exists } x \in [0,1] \text{ such that } \omega_{t+h,n}(x) = \omega_{t,n}(y) \text{ and } f^n_{t+h}(x) = f^n_t(y) \}$.

If $x \in A_{h,n}$, define $y_n(x)$ as the corresponding $y \in [0,1]$ in the definition of $A_{h,n}$.

Definition 2.4. If $x \in A_{h,n}$ and $y = y_n(x)$, define

$$J_{t,k}(y) = J_k(y) = - \sum_{j=0}^{k-1} \frac{v_t(f^j_t(y))}{Df^j_t(f^j_t(y))},$$

where $v_t = \partial_t f_t|_{s=s}$.

Note that $J_k(c)$ converges to $J_t(c)$ as $k \to \infty$.

The properties of the sets $A_{h,n}$ and $B_{h,n}$ are described in the following lemma.

Lemma 2.5. (a) The complement of $A_{h,n}$ equals

$$(8) \quad [0,1] \setminus A_{h,n} = \bigcup_{k=0}^{n} f_{t+h}^{-k} I_{n-k}$$

where

$$I_k = \begin{cases} [c + h \frac{J_k(c)}{Df_{L,t}(c)},c] + O(h^2) & \text{if } J_k(c) \leq 0 \\ [c,c - h \frac{J_k(c)}{Df_{L,t}(c)}] + O(h^2), & \text{if } J_k(c) > 0. \end{cases}$$

and where $Df_{L,t}(c)$ and $Df_{R,t}(c)$ are the derivative of $f_{L,t}$ and $f_{R,t}$ respectively at $x = c$.

Moreover,

$$[0,1] \setminus A_{t,n} = O(tn),$$

where $| \cdot |$ denotes the Lebesgue measure.

(b) The complement of $B_{h,n}$ equals

$$(9) \quad [0,1] \setminus B_{h,n} = \bigcup_{k=0}^{n} f_{t}^{-k} \tilde{I}_{n-k}$$

with

$$\tilde{I}_k = \begin{cases} [c - h \frac{J_k(c)}{Df_{R,t}(c)},c] + O(h^2) & \text{if } J_k(c) > 0 \\ [c,c + h \frac{J_k(c)}{Df_{R,t}(c)}] + O(h^2), & \text{if } J_k(c) \leq 0. \end{cases}$$
Moreover, \[|0,1] \setminus B_{h,n} = O(tn). \]

Consider the following decomposition

\[
(10) \quad \int \phi(f^n_{t+h}x)dx = \int_{A_{h,n}} \phi(f^n_{t+h}x)dx + \int_{(0,1] \setminus A_{h,n}} \phi(f^n_{t+h}x)dx.
\]

We start with analyzing the first term in (10). By definition of \(A_{h,n} \) we have

\[
\int_{A_{h,n}} \phi(f^n_{t+h}x)dx = \int_{B_{h,n}} \phi(f^n_{t}y) \left(\frac{dx}{dy} \right) dy.
\]

Lemma 2.6. \[
\left(\frac{dx}{dy} \right) = 1 - hR_{t,n}(y) + O(h^2)
\]

where

\[
R_{t,n}(y) = \sum_{k=0}^{n-1} \left\{ \frac{v^k_t(f^n_{t}y)}{Df_t(f^n_{t}y)} - \frac{v_t(f^n_{t}y)}{Df_t(f^n_{t}y)} \sum_{j=0}^{k} \xi(f^n_{t}y) \right\}
\]

and \(\xi(z) = \frac{D^2 f_t(z)}{Df_t(z)} \).

Accordingly

\[
\int_{A_{h,n}} \phi(f^n_{t}x)dx = \int_{B_{h,n}} \phi(f^n_{t}y)dy - h \int_{B_{h,n}} \phi(f^n_{t}y)R_{t,n}(y)dy + O(h^2 n^2)
\]

\[
= \int_{B_{h,n}} \phi(f^n_{t}y)dy - h \int_{0}^{1} \phi(f^n_{t}y)R_{t,n}(y)dy + O(h^2 n^2)
\]

where the last step uses Lemma 2.5(a). It follows that

\[
\Gamma(t+h) - \Gamma(t) = -h \int_{0}^{1} \phi(f^n_{t}y)R_{t,n}(y)dy + \int_{(0,1] \setminus A_{h,n}} \phi(f^n_{t+h}x)dx - \int_{(0,1] \setminus B_{h,n}} \phi(f^n_{s}y)dy + O(h^2 n^2).
\]

Proposition 2.7. The integral

\[
\int \phi(f^n_{t})R_{t,n}dx
\]

is bounded by a constant that does not depend on \(n \).

Remark 2.8. Note that if \(\phi = \phi - \int \phi d\mu_t \), then \(\phi \) is of zero mean with respect to \(\mu_t \) (i.e. \(\int \phi d\mu_t = 0 \)) and \(\Gamma(t+h, \phi) - \Gamma(t, \phi) = \Gamma(t+h, \tilde{\phi}) - \Gamma(t, \tilde{\phi}) \). Therefore, without loss of generality, we will assume that \(\phi \) is of zero mean from now on.

3. Shadowable points.

Proof of Lemma 2.5(a) Let \(x \in A_{h,n} \) and let \(y_n(x) \) the corresponding \(y \) according to the definition of \(A_{h,n} \). Then, \(\omega_{t+h,n}(x) = \omega_{t,n}(y_n(x)) \). The latter condition is the same as saying that, given \(0 \leq k \leq n \), \(f^n_{t+h}(x) \) and \(f^n_{t}(y_n(x)) \) are both in either \([0,c] \) or \([c,1] \).

Observe that if \(s \geq 1 \) and \(z \in A_{h,n} \) then by chain rule

\[
(11) \quad z = y_s(z) + h \frac{J_s(y_s(z))}{Df_t(y_s(z))} + O(h^2).
\]

Thus, we could express \(y_s(z) \) as
Note that if $0 \leq k \leq n$, then

$$f_{t+h}^{n-k}(f_t^k(y_n(x))) = f_t^n(y_n(x)) = f_{t+h}^n(x) = f_{t+h}^{n-k}(f_{t+h}^k x)$$

Hence, $y_{n-k}(f_{t+h}^k(x)) = f_t^k(y_n(x))$ and using (12), we have that

$$f_t^k(y_n(x)) + O(h^2) = f_{t+h}^k(x) - h \frac{J_{n-k}(f_t^k(y_n(x)))}{Df_t(f_t^k y_n(x))}.$$

Since x and $y_n(x)$ have the same itinerary under f_{t+h} and f_t respectively up to the n–iteration, $f_t^k(y_n(x))$ and $f_{t+h}^k(x)$ must be sufficiently far away from c so that they can be in the same side, for each $0 \leq k \leq n$. More precisely, in order to have that $f_t^k y_n(x)$ and $f_{t+h}^k x$ stay both in the same side, it is sufficient and necessary to require that

$$f_{t+h}^k(x) \notin [c + h \frac{J_{n-k}(c)}{Df_{t+h}(c)} + O(h^2), c], \quad \text{if } J_{n-k}(c) \leq 0,$$

or

$$f_{t+h}^k(x) \notin [c, c - h \frac{J_{n-k}(c)}{Df_{t+h}(c)} + O(h^2)], \quad \text{if } J_{n-k}(c) > 0.$$

Indeed, suppose $J_{n-k}(c) \leq 0$ and $f_{t+h}^k(x) \in [c + h \frac{J_{n-k}(c)}{Df_{t+h}(c)} + O(h^2), c]$.

Since $f_{t+h}^k(x) = c + O(h^2)$, $f_t^k(y_n(x)) = c + O(h^2)$, and since $\frac{J_{n-k}(x)}{Df_t(x)}$ is left C^1–continuous, we can replace (13) by

$$f_t^k(y_n(x)) + O(h^2) = f_{t+h}^k(x) - h \frac{J_{n-k}(c)}{Df_{t+h}(c)}.$$

Now, we are assuming that $f_{t+h}^k(x)$ is in $[c + h \frac{J_{n-k}(c)}{Df_{t+h}(c)} + O(h^2), c]$, so in particular,

$$f_{t+h}^k(x) > c + h \frac{J_{n-k}(c)}{Df_{t+h}(c)} + O(h^2).$$

Using (16), the above inequality implies that $f_t^k(y_n(x)) > c$, that is, $f_{t+h}^k(x)$ and $f^k(y)$ are in different side so they have different itineraries. Therefore, if we want them to lie in the same side we must require the condition (14) as we claimed. The condition (15) is proved similarly.

Therefore,

$$A_{h,n} = [0,1] \setminus \bigcup_{k=0}^{n} f_{t+h}^{-k} I_{n-k}$$

and thus we have proved (8).

Let us prove that the Lebesgue measure of $[0,1] \setminus \bigcup_{k=0}^{n} f_{t+h}^{-k} I_{n-k}$ is of order $O(hn)$. We have

$$\left| \bigcup_{k=0}^{n-1} f_{t+h}^{-k} I_{n-k} \right| \leq \sum_{k=0}^{n-1} \left| f_{t+h}^{-k} I_{n-k} \right| = \sum_{k=0}^{n-1} \int_{f_{t+h}^{-k} I_{n-k}} dx.$$
where \(\beta(n) \leq O(1) \leq \sum_{k=1}^{n-1} O(h J_{n-k}(c)) + O(h^2) \)
\[
= O\left(h \sum_{k=0}^{n-1} J_{n-k}(c)\right) + O(h^2 n) \leq O(h n)
\]
(note that we used (17)). Therefore, we conclude that
\[
(17) \quad \left| \bigcup_{k=0}^{n} f_{t+h}^{-k} I_{n-k} \right| = O(h n)
\]
Similarly, we prove (b).

4. Changing variables

Proof of Lemma 2.4. By definition of \(A_{h,n} \), given \(x \in A_{h,n} \), there is \(y = y_n(x) \) such that \(f_t^n(x) = f_t^n(y_n(x)) \).

Since \(\frac{\partial y_n}{\partial x} = \prod_{k=0}^{n-1} \frac{\partial y_{k+1}}{\partial y_k} \) (note that \(y_0 = x \)), we analyze the factors of this product. We have
\[
\frac{\partial y_n}{\partial x} = \prod_{k=0}^{n-1} (1 + h \beta_k) = 1 + h \sum_{k=0}^{n-1} \beta_k + O(h^2 n^2)
\]
where \(\beta_k(y) = \sum_{k=0}^{n-1} \left\{ \frac{v_i'(f_t^k y)}{D f_i(f_t^k y)} - \frac{v_i(f_t^k y)}{D f_i(f_t^k y)} \sum_{j=0}^{k-1} \frac{\xi(f_t^j y)}{D f_i^{k-j}(f_t^j y)} \right\} \). Hence,
\[
\left(\frac{\partial y_n}{\partial x} \right)^{-1} = 1 - h \sum_{k=0}^{n-1} \beta_k + O(h^2 n^2) \quad \square
\]

5. Contribution of shadowable points

Proof of Lemma 2.7. Let us write the integral as
\[
\int \phi(f_t^n y) R_{t,n}(y) \, dy = \int \phi(f_t^n y) \left(\sum_{k=0}^{n-1} \left\{ \frac{v_i'(f_t^k y)}{D f_i(f_t^k y)} - \frac{v_i(f_t^k y)}{D f_i(f_t^k y)} \sum_{j=0}^{k-1} \frac{\xi(f_t^j y)}{D f_i^{k-j}(f_t^j y)} \right\} \right) \, dy.
\]
Let us start by analyzing (I). Making the change of variables \(z = f_t^{n-j} y \) and \(w = f^j z \), we get
\[
\sum_{k=0}^{n-1} \int \phi(f_t^n y) \frac{v_i'(f_t^k y)}{D f_i(f_t^k y)} \, dy = \sum_{j=1}^{n} \int \phi(f_t^n y) \frac{v_i'(f_t^{n-j} y)}{D f_i(f_t^{n-j} y)} \, dy
\]
\[
= \sum_{j=1}^{n} \int \phi(f_t^j z) \frac{v_i'(z)}{D f_i(z)} \mathcal{L}_t^{n-j}(1)(z) \, dz = \sum_{j=1}^{n} \int \phi(w) \mathcal{L}_t^j(1)(w) \, dw.
\]
By Remark 2.8 and (17), we have that
(18) \[\left| \sum_{j=1}^{n} \int \phi(w) L_j^k(\psi_j)(w) \, dw \right| \leq \sum_{j=1}^{n} O(\theta^j) \left\| \frac{\nu}{Df_t} L_j^k(1) \right\|_{BV} \]

(19) \[\leq \sum_{j=1}^{n} O(\theta^j) \left\| \frac{\nu}{Df_t} \right\|_{BV} \left\| L_j^k(1) \right\|_{BV}. \]

By (18), \(\| L_j^k(1) \|_{BV} \) is bounded by \(1 + \| \rho_t \|_{BV} \). Since \(\sum_{j=1}^{n} \theta^j \) is bounded by \(1/(1 - \theta) \), it follows that \(|\sum_{k=0}^{n-1} \int \phi(f_t^n y) \psi_k(f_t^n y) \, dy| \) is bounded by a constant not depending on \(n \).

Now, let us study \((II)\). Making the change of variables \(z = f_t^j y \) and \(w = f_t^{k-j}(z) \), we obtain that

\[\int \sum_{k=0}^{n-1} \phi(f_t^n y) \frac{\nu_t(f_t^n y)}{Df_t} \sum_{j=0}^{k} \frac{\xi(f_t^j y)}{Df_t^{k-j}(f_t^j y)} \, dz = \int \sum_{k=0}^{n-1} \phi(f_t^n y) \frac{\nu_t(f_t^n y)}{Df_t} \sum_{j=0}^{k} \frac{\xi(f_t^j y)}{Df_t^{k-j}(f_t^j y)} \, dz \]

\[\leq \int \sum_{k=0}^{n-1} \phi(f_t^n y) \frac{\nu_t(f_t^n y)}{Df_t} \sum_{j=0}^{k} \frac{\xi(f_t^j y)}{Df_t^{k-j}(f_t^j y)} \, dz \]

\[\leq \frac{\nu_t}{Df_t} \left(\frac{\xi(f_t^j y)}{Df_t^{k-j}(f_t^j y)} \right) dq \]

where \(\xi_{t,1}(\phi)(w) = \sum_{j=0}^{k} \frac{\phi(w)}{Df_t^{k-j}(f_t^j y)} \).

By (11), there exists \(\tilde{\lambda} > 1 \) such that

(20) \[\| L_{t,1} h \|_{BV} = O(\tilde{\lambda}^{-1} \| h \|_{BV}). \]

Then, by Remark 2.8 and 4, we have that

\[\sum_{k=0}^{n-1} \sum_{j=0}^{k} \int \phi(q) \xi_{t,1}^{-k} \left(\frac{\xi_{t,1}^{k-j}(\xi : L_t^1(1))}{Df_t^{k-j}(f_t^j y)} \right) dq \leq \sum_{k=0}^{n-1} \sum_{j=0}^{k} O(\theta^{n-k} \| \nu_t \|_{BV} \| \xi_{t,1}^{k-j}(\xi : L_t^1(1)) \|_{BV}) \]

\[\leq \sum_{k=0}^{n-1} \sum_{j=0}^{k} O(\theta^{n-k} \tilde{\lambda}^{-(k-j)} \| L_t^1(1) \|_{BV} \| \nu_t \|_{BV} \| \xi \|_{BV}). \]

As observed before, \(\| L_t^1(1) \|_{BV} \) is bounded and since \(\sum_{k=0}^{n-1} \sum_{j=0}^{k} \theta^{n-k} \tilde{\lambda}^{-(k-j)} \) is bounded above, it follows that \(|\sum_{k=0}^{n-1} \phi(f_t^n y) \frac{\nu_t(f_t^n y)}{Df_t^{k-j}(f_t^j y)} \sum_{j=0}^{k} \frac{\xi(f_t^j y)}{Df_t^{k-j}(f_t^j y)}| \) is bounded by a constant not depending on \(n \).

Therefore, the integral \(\int \phi(f_t^n y) R_{t,n}(y) \, dy \) is bounded by a constant that does not depend on \(n \) as claimed.

\[\square \]

6. Modulus of continuity of \(\Gamma(t) \)

6.1. Preliminary Results. We have already decompose the phase space in order to write \(\Gamma(t + h) - \Gamma(t) \) as
Proposition 6.1. There exists \(t \) for all \(j \) such that |

\[
\Gamma(t+h) - \Gamma(t) = h \int \phi(f_t^n(y)) R_{t,n}(y) dy + \int_{[0,1] \setminus A_{h,n}} \phi(f_{t+h}^n x) dx - \int_{[0,1] \setminus B_{h,n}} \phi(f_t^n y) dy + O(h^2 n^2).
\]

Lemma 2.7 gives us a control over the integral \(\int \phi(f_t^n(y)) R_{t,n}(y) dy \), so we need to still analyze the difference \(\int_{[0,1] \setminus A_{h,n}} \phi(f_{t+h}^n x) dx - \int_{[0,1] \setminus B_{h,n}} \phi(f_t^n y) dy \). The idea to do this will be to estimate this difference by integrals over a set nearby the critical point in order to prove Theorem 1.1. To achieve this, we will need a couple of preliminary results.

Define \(c_j(t) = f_t^j(c) \). Then, we start with this proposition about recurrence of points in the orbit of \(c \).

Proposition 6.1. There exists \(m > 1 \) such that for almost all \(t \) in a small interval around \(0 \)

\[
|c_j(t) - c| > j^{-m}
\]

if \(j \) is sufficiently large.

Proof. By regularity of \(f_t^n \) on \(t, c_n(t) \) is of bounded variation. Let \(C \) be the constant that bounds the quotient of derivatives with respect to \(t \) of \(c_n(t) \).

Take \(k_0 \) such that \(A^{k_0} > 2C \).

Assume first that

\[
c_k(t) \neq c,
\]

for all \(t \in I \) and all \(k \leq k_0 \). Define

\[
w_n(t) = \{ s : c_j(t) and c_j(s) have the same itinerary for j \leq n \},
\]

\[
W_n(t) = \{ c_n(s) \}_{s \in w_n}, \text{ and}
\]

\[
\Gamma_n(t) = d (c_n(t), \partial W_n(t))
\]

Let us also define \(Z_n = \sup_{0 < t < 1} \frac{\text{Leb}(t : \Gamma_n(t) < t)}{t} \), where \(\text{Leb}(\cdot) \) denotes the Lebesgue measure.

We claim that there exists \(\bar{K} \) such that

\[
Z_n < \bar{K}.
\]

Assuming \(23 \) take \(\epsilon = n^{-m} \), for \(n > 1 \) and \(m > 1 \), then

\[
\text{Leb}(t : |c_n(t) - c| < n^{-m}) \leq \text{Leb}(\{ t : |\Gamma_n(t)| < n^{-m} \}) \leq \bar{K} n^{-m}
\]

Then, \(\text{Leb}(\{ t : |c_n(t) - c| < n^{-m} \}) \leq \bar{K} n^{-m} \), which implies that

\[
\sum_{n=1}^{\infty} \text{Leb}(\{ t : |c_n(t) - c| < n^{-m} \}) < \infty
\]

Therefore, we can by Borel-Cantelli lemma, there exist \(n_0 \) such that for all \(n \geq n_0 \)

\[
\text{Leb}(\{ t : |c_n(t) - c| < n^{-m} \}) = 1 \text{ as we want.}
\]

Hence, we need to prove \(23 \).

In fact, we prove that there exist \(n_0 > 1, \vartheta < 1 \) and \(M > 0 \) such that

\[
Z_{n+k} \leq Z_n \vartheta + M.
\]
This will certainly imply \(\mathfrak{M} \). In order to prove \(\mathfrak{M} \), let us pick \(\tilde{\delta} < \epsilon \). Then, we will analyze two cases

1. The components of \(W_n \) that have measure less than \(\tilde{\delta} \).
2. The components of \(W_n \) that have measure greater than \(\tilde{\delta} \).

Let us work in the first case and let \(V_n \) be a component of \(W_n \) such that \(|V_n| < \tilde{\delta} \) and let \(v_n \) the component of \(\omega_n \) associated to \(V_n \). Then, \(f^{k_0} \) maps \(V_n \) into, at most, two intervals contained in \(W_{n+k_0} = \bigcup W_{n+k_0}(t) \). If \(V_n \) is split then \(V_n \) passes trough \(c \) at some point. Note that we cannot have more than two intervals because of \(\mathfrak{M} \). Suppose we have two intervals. Let us call them \(V_{n+k_0} \) and \(V_{n+k_0}'' \).

Take \(\epsilon > 0 \) and note that by the expansivity of \(f^{k_0} \), we have that \(\text{Leb}(\{ t : c_{n+k_0}(t) \in V_{n+k_0}' \cup V_{n+k_0}'' \text{ and } \Gamma_{n+k_0}(t) < \epsilon \}) \) is less or equal than \(\text{Leb}(\{ t : d(c_n(t), a) \leq \frac{\epsilon}{\lambda^{k_0}} \text{ or } \Gamma_n(t) \leq \frac{\epsilon}{\lambda^{k_0}} \}) \), where \(a \) is the point where \(V_n \) reaches \(c \) at some point, this is, \(f_{k_0}^{i_0}(a) = c \) for some \(j \leq k_0 \) and \(s_0 \in V_n \). By bounded distortion, the measure of \(\{ t : d(c_n(t), a) \leq \frac{\epsilon}{\lambda^{k_0}} \} \) is comparable to \(\{ v_n : \Gamma_n(t) \leq \frac{\epsilon}{\lambda^{k_0}} \} \), then

\[
\text{Leb}(\{ t : c_{n+k_0}(t) \in V_{n+k_0}' \cup V_{n+k_0}'' \text{ and } \Gamma_{n+k_0}(t) < \epsilon \}) \leq \text{Leb}(\{ t : d(c_n(t), a) \leq \frac{\epsilon}{\lambda^{k_0}} \text{ or } \Gamma_n(t) \leq \frac{\epsilon}{\lambda^{k_0}} \}) \leq 2C\text{Leb}(\{ t : \Gamma_n(t) \leq \frac{\epsilon}{\lambda^{k_0}} \})
\]

By summing over all components of \(W_n \) with measure less than \(\tilde{\delta} \), we have that

\[
\text{Leb}(\{ t : c_{n+k_0}(t) \in V_{n+k_0}' \cup V_{n+k_0}'' \text{ and } \Gamma_{n+k_0}(t) < \epsilon \}) \leq \frac{2C\epsilon}{\lambda^{k_0}} Z_n,
\]
(note that we use the definition of \(Z_n \) as supremum). This suggest to take \(\vartheta = \frac{2C\epsilon}{\lambda^{k_0}} < \epsilon \).

Now, let us analyze the case when the components have measure greater than \(\tilde{\delta} \). In fact, the idea is the same but we have that if \(V_n \) is component with measure greater or equal than \(\delta \), then \(f^{k_0}(V_n) \) will split in at most \(2^{k_0} \) components inside \(W_{n+k_0} \). Call \(a_1, a_2, \ldots, a_{2^{k_0}} \) the points that visit \(c \). Arguing as in the first case the first case we see that the measure of \(\{ t : d(c_n(t), a_i) \leq \frac{\epsilon}{\lambda^{k_0}} \} \) is comparable to \(\text{Leb}(\{ t : \Gamma_n(t) \leq \frac{\epsilon}{\lambda^{k_0}} \}) \).

Therefore

\[
\text{Leb}(\{ t : c_{n+k_0}(t) \in \tilde{V}_{n+k_0,1} \cup \cdots \cup \tilde{V}_{n+k_0,2^{k_0}} \text{ and } \Gamma_{n+k_0}(t) < \epsilon \}) \leq \frac{2^{k_0}C\epsilon}{\lambda^{k_0}\delta} \text{Leb}(\{ t : c_n(t) \in \tilde{V}_n \}).
\]

Summing over components we get

\[
\text{Leb}(\{ t : \Gamma_{n+k_0}(t) < \epsilon \text{ and } c_n(t) \text{ is in a long component} \}) \leq M \epsilon
\]

where \(M = \frac{2^{k_0}C\epsilon}{\lambda^{k_0}\delta} \).

Combining the two cases we get

\[
Z_{n+k_0} \leq Z_n \vartheta + M \epsilon
\]
as claimed.

\[\square \]

Recalling that \(t \in [a, b] \) is fixed and \(h > 0 \) is such that \(t + h \in [a, b] \), define \(\tilde{I}_h = [c - hJ_t(c), c + hJ_t(c)] \). Also, define \(n_1 = n_1(h) \) such that there exists \(s_1 \in [t, t + h] \) so that

\[
f_{s_1}^{-n_1}\tilde{I}_h \cap \tilde{I}_h \neq \emptyset,
\]
and

\[
f_{s}^{-n}\tilde{I}_h \cap \tilde{I}_h = \emptyset,
\]
for all $n < n_1$ and for all $s \in [t, t + h]$.

Lemma 6.2. For all $s_1, s_2 \in [t, t + h]$ and for all $n \leq n_1$

\[
\frac{1}{C} \leq \frac{|f^n_{s_1}(\tilde{I}_h)|}{|f^n_{s_2}(\tilde{I}_h)|} \leq C.
\]

and

\[
\frac{1}{C} \leq \frac{|f^n_{s_1}(\tilde{I}_h)|}{|c_n(t + h) - c_n(s_1)|} \leq \tilde{C}.
\]

Lemma 6.3.

\[
\left| \int \bigcup_{k=1}^{n} f^{-k}_{t+h}(I_h) \psi(x) \, dx - \sum_{k=1}^{n} \int f^{-k}_{t+h}(I_h) \psi(x) \, dx \right| \leq \|\psi\|_{\infty} \sum_{k_1, k_2} |L_{k_1} \cap L_{k_2}|.
\]

Note that

\[
n_1^{-m} \leq |c_n(s) - c| \leq |c_n(s) - c_n(s_1)| + |c_n(s_1) - c|.
\]

Up to a constant, the first term in the right side is bounded by $|f^n_{s_1}(\tilde{I}_h)|$ by Lemma (6.2), and the second term is also bounded by $|f^n_{s_1}(\tilde{I}_h)|$ by definition of s_1. Then

\[
n_1^{-m} = O(|f^n_{s_1}(\tilde{I}_h)|)
\]

Since

\[
\lambda^{n_1} h \leq |f^n_{s_1}(\tilde{I}_h)| \leq 1,
\]

we have that $n_1 \leq \tilde{C}_1 |\log h|$. Hence, the latter along with (27) gives

\[
|f^n_{s_1}(\tilde{I}_h)| \geq (\tilde{C}_1 |\log h|)^{-m}
\]

Hence, if $\Lambda = \sup_{x,t} Df(x,t)$ then

\[
(\tilde{C}_1 |\log h|)^{-m} = O(h^{n_1})
\]

and so

\[
n_1 \geq \frac{|\log(h|\tilde{C}_1 \log h|^{m})|}{\log \Lambda}
\]

Now, since h is assumed to be sufficiently small

\[
\frac{|\log h| |\log h|^{m}}{\log \Lambda} \geq R |\log h|,
\]

where $0 < R \ll 1$. Then,

\[
n_1 \geq \frac{|\log(h|\tilde{C}_1 \log h|^{m})|}{\log \Lambda} \geq R |\log h|,
\]

where $\tilde{C}_2 = \frac{\tilde{C}_1}{\Lambda}$. Therefore,

\[
n_1 \geq R |\log h|.
\]

Thus, as h decreases, $n_1(h)$ grows up tending to infinity. Moreover, (30) allows us to obtain the following estimate.
Lemma 6.4. There exists $0 < \eta < 1$ such that

$$\sum_{k_1, k_2 = 1}^n |L_{k_1} \cap L_{k_2}| \leq Cn^2 h^{1+\eta}.$$

Lemma 6.5. Let L be an interval such that $|L| = O(h)$ and let $m \in \mathbb{N}$. If $\phi, \psi \in BV[0,1]$, then

$$\sum_{k=0}^m \int_L \phi(f_t^k) \psi(x) dx = O(|L| \log |L||).$$

The details of the proofs of the lemmas above are shown in the Appendix.

We are interested in the limit

$$\limsup_{h \to 0} \frac{\Gamma(t+h) - \Gamma(t)}{h \sqrt{\log(h) \log \log |\log(h)|}}.$$

As mentioned before, we have that

$$\Gamma(t+h) - \Gamma(t) = -h \int_0^1 \phi(f_t^n y) R_t(n,y) dy + \int_{[0,1] \setminus A_{h,n}} \phi(f_t^n y) dx - \int_{[0,1] \setminus B_{h,n}} \phi(f_t^n y) dy + O(h^2 n^2).$$

By Lemma 2.7, $h \int_0^1 \phi(f_t^n y) R_t(n,y) dy + O(h^2 n^2)$ is negligible when dividing by $h \sqrt{\log(h) \log \log |\log(h)|}$, then we have to focus on the limit

$$\limsup_{h \to 0} \frac{\int_{[0,1] \setminus A_{h,n}} \phi(f_t^n x) dx - \int_{[0,1] \setminus B_{h,n}} \phi(f_t^n y) dy}{h \sqrt{\log(h) \log \log |\log(h)|}}.$$

We already know that

$$\int_{[0,1] \setminus A_{h,n}} \phi \circ f_t^n(x) dx = \int_{\bigcup_{k=1}^n f_{t+h}^{-k} f_{t+h}^{-k}} \phi \circ f_t^n(x) dx.$$

Let $U_{n,k} = \bigcup_{k=1}^n f_{t+h}^{-k} I_{n-k}, V_{n,k} = \bigcup_{k=1}^n f_{t+h}^{-k} \bar{I}, P_{n,k} = \bigcup_{k=1}^n \left(f_{t+h}^{-k} I_{n-k} \setminus f_{t+h}^{-k} \bar{I} \right)$ and $Q_{n,k} = \bigcup_{k=1}^n \left(f_{t+h}^{-k} \bar{I} \setminus f_{t+h}^{-k} I_{n-k} \right)$. Then,

$$\left| \int_{U_{n,k}} \phi \circ f_t^n(x) dx - \int_{V_{n,k}} \phi \circ f_t^n(x) dx \right| = \left| \int_{P_{n,k}} \phi \circ f_t^n(x) dx - \int_{Q_{n,k}} \phi \circ f_t^n(x) dx \right| \leq \int_{P_{n,k}} |\phi \circ f_t^n(x)| dx + \int_{Q_{n,k}} |\phi \circ f_t^n(x)| dx \leq \sum_{k=1}^n \left| \int_{f_{t+h}^{-k} I_{n-k} \setminus f_{t+h}^{-k} \bar{I}} \phi \circ f_t^n(x) dx \right| + \left| \int_{f_{t+h}^{-k} \bar{I} \setminus f_{t+h}^{-k} I_{n-k}} \phi \circ f_t^n(x) dx \right| = \sum_{k=1}^n \left| \int_{I_{n-k} \setminus \bar{I}} \phi \circ f_t^n(x) dx \right| + \int_{I_{n-k}} |\phi \circ f_t^n(x)| \mathcal{L}_{t+h}^k dx \leq \sum_{k=1}^n \bar{C} \left(|I_{n-k} \setminus \bar{I}| + |\bar{I} \setminus I_{n-k}| \right),$$

where C comes from bounding ϕ and \mathcal{L}_{t+h} (the latter is bounded by (24)).

Now, note that $|\bar{I} \setminus I_{n-k}| = O(h)$. Therefore we have
\[
\int_{\bigcup_{k=1}^{n} I_{t+k}^{n}t_{-k}}^{n} \phi \circ f_{t+h}^{n}(x)dx = \int_{\bigcup_{k=1}^{n} I_{t+k}^{n}t_{-k}}^{n} \phi \circ f_{t+h}^{n}(x)dx + O(h).
\]

Since \(\frac{h}{\sqrt{\log|h|}} \rightarrow 0 \) as \(h \downarrow 0 \), we can work with
\[
\int_{\bigcup_{k=1}^{n} I_{t+k}^{n}t_{-k}}^{n} \phi \circ f_{t+h}^{n}(x)dx
\]
instead of \(\int_{\bigcup_{k=1}^{n} I_{t+k}^{n}t_{-k}}^{n} \phi \circ f_{t+h}^{n}(x)dx \).

By Lemmas (6.3) and (6.4), since \(n^2 h^{1+\eta} \) is negligible when dividing it by \(h \sqrt{\log|\log|\log|h||} \), instead of working with \(\int_{\bigcup_{k=1}^{n} I_{t+k}^{n}t_{-k}}^{n} \), we can just focus on studying
\[
\sum_{k=1}^{n} \frac{\int_{I_{t+k}}^{n} \phi \circ f_{t+h}^{n}(x)dx}{h \sqrt{\log|\log|\log|h||}}.
\]

Similarly, instead of working with \(\int_{\bigcup_{k=1}^{n} I_{t+k}^{n}t_{-k}}^{n} \), we can just focus on studying
\[
\sum_{k=1}^{n} \frac{\int_{I_{t+k}}^{n} \phi \circ f_{t+h}^{n}(x)dx}{h \sqrt{\log|\log|\log|h||}}.
\]

6.2. Proof of Main Result.

Proof of Theorem [11] Let us recall that we shall assume that \(\phi \) is of zero mean with respect to \(\mu_t \).

With the above in mind, we have to study the limit
\[
\Phi_1(t) = \lim sup_{h \downarrow 0} \sum_{k=0}^{n} \frac{\int_{I_{t+k}}^{n} \phi \circ f_{t+h}^{n}(x)dx}{h \sqrt{\log|\log|\log|h||}}
\]
and
\[
\Phi_2(t) = \lim sup_{h \downarrow 0} \sum_{k=0}^{n} \frac{\int_{I_{t+k}}^{n} \phi \circ f_{t+h}^{n}(x)dx}{h \sqrt{\log|\log|\log|h||}}
\]

Let us start with (38).

The derivative of \(\rho_s \) equals a function \(\rho_{1,s} \in BV[0,1] \) almost everywhere \((11, 11]\). In particular, \(\rho_{1,s} \) is bounded, hence, using that \(\rho_s \) is continuous at \(c \) (since \(c \) is not periodic) and its regular part is absolutely continuous (see [11]), we have that on \(I_h \)
\[
\rho_{t+h}(x) = \rho_{t+h}(c) + O(h).
\]

Then,
\[
\sum_{k=0}^{n} \int_{I_{t+k}}^{n} \phi \circ f_{t+h}^{n}(x)dx = \sum_{k=0}^{n} \int_{I_{t+h}}^{n} \phi \circ f_{t+h}^{n}(x)C_{t+h} dx
\]
\[
= \sum_{k=0}^{n} \int_{I_{t+h}}^{n} \phi \circ f_{t+h}^{k}(x)C_{t+h}^{n-k} dx
\]

Recall that since \(\rho_s \in BV \), it can be written as the sum of two functions, namely, the saltus part which is a sum of pure jumps and the regular part which is absolutely continuous.
where the estimate above comes from Lemma 6.5.

Using bounded distortion, we have

$$\|\int_I \phi(f^k) dx\| \leq \sum_{k=0}^{n} \int_{I_h} \phi \circ f^k(x) dx + O(\theta^{n-k}) dx$$

The above implies

$$\|\int_I \phi(f^k) dx\| \leq \sum_{k=0}^{n} \int_{I_h} \phi \circ f^k(x) dx + O(\theta^{k})$$

Thus, we finally obtain

$$\sum_{k=0}^{n} \int_{I_h} \phi \circ f^k(x) dx + O(h) = \sum_{k=0}^{n} \left[\int_{I_h} \phi \circ f^k(x) dx \right] \rho_{t+h}(c) + O(h).$$

Thus,

$$\sum_{k=0}^{n} \int_{I_h} \phi \circ f^k(x) dx = \sum_{k=0}^{n} \left[\int_{I_h} \phi \circ f^k(x) dx \right] \rho_{t+h}(c) + O(h).$$

Define $\tilde{I}_h = f^{n_1-1} \tilde{I}_h$. For $n \geq n_1$, since f^{n_1-1} is $1 - 1$ (by definition of n_1), we have

$$\sum_{k=n_1+1}^{\|\log(h)\|} \int_{I_h} \phi(f^k) dx \leq \sum_{n=1}^{\|\log(h)\|} \int_{I_h} \phi(f^n) dx$$

$$= \sum_{k=1}^{\|\log(h)\|} \left[\int_{I_h} \phi(f^{k-n_1+1}y) \frac{Df^{n_1-1}(x)}{Df^{n_1-1}(f^{-(n_1-1)}(y))} dy \right] \frac{1}{Df^{n_1-1}(c)}$$

$$= O\left(\frac{\tilde{I}_h}{Df^{n_1-1}(c)} \right) \log(\tilde{I}_h),$$

where the estimate above comes from Lemma 6.5.

Using bounded distortion, we have

$$\frac{\tilde{I}_h}{Df^{n_1-1}(c)} = \frac{1}{Df^{n_1-1}(c)} \int_{I_h} |Df^{n_1-1}(x)| dx$$

$$= O(\|\tilde{I}_h\|).$$

By (28), $|\tilde{I}_h| \geq (\tilde{C}_1 |\log(h)|)^{-m}$. Thus

$$\log |\tilde{I}_h| \geq \log((\tilde{C}_1 |\log(h)|)^{-m})$$

$$= -m \log(\tilde{C}_1 |\log(h)|).$$

This implies $\log |\tilde{I}_h| \leq m \log(\tilde{C}_1 |\log(h)|)$

Thus, we finally obtain

$$\sum_{k=1}^{n} \int_{I_h} \phi \circ f^k(x) dx \leq \sum_{k=1}^{\|\log(h)\|} \int_{I_h} \phi(f^k(x)) dx \rho_{t+h}(c) + O(h)$$

$$= \sum_{k=1}^{n_1} \int_{I_h} \phi(f^k(x)) dx \rho_{t+h}(c) + \sum_{k=n_1}^{\|\log(h)\|} \int_{I_h} \phi(f^k(x)) dx \rho_{t+h}(c) + O(h)$$

$$= \sum_{k=1}^{n_1} \int_{I_h} \phi(f^k(x)) dx \rho_{t+h}(c) + O(h \log |\log(h)|)$$
Since $\phi \in \text{Lip}[0,1]$, we have that for $1 \leq k \leq n_1$

$$\phi(f_{t+h}^k(x)) = \phi(f_{t+h}^k(c)) + O(|f_{t+h}^k|)$$

$$= \phi(f_{t+h}^k(c)) + O(|\hat{I}_h|).$$

Then,

(40) \hspace{1cm} \phi(f_{t+h}^k(x)) = \phi(f_{t}^k(c)) + O(h).

Hence

$$\sum_{k=1}^{[\log(h)]} \int_{f_{t+h}^k(I)} \phi \circ f_{t+h}^k(x) \, dx = \left[\sum_{k=1}^{n_1} \int_{f_{t+h}^k(I)} \phi(f_{t+h}^k(x)) \, dx \right] \rho_{t+h}(c) + O(h \log |\log(h)|)$$

$$= \left[\rho_{t+h}(c)|\hat{I}_h| \sum_{k=1}^{n_1} \phi(f_{t+h}^k(c)) \right] + O(h \log |\log(h)|)$$

$$= \left[2h J_t(c)\rho_{t+h}(c) \sum_{k=1}^{n_1} \phi(f_{t+h}^k(c)) \right] + O(h \log |\log(h)|).$$

Therefore, we have that

(41) \hspace{1cm} \sum_{k=1}^{[\log(h)]} \int_{f_{t+h}^k(I)} \phi \circ f_{t+h}^k(x) \, dx

$$= \left[2h J_t(c)\rho_{t+h}(c) \sum_{k=1}^{n_1} \phi(f_{t+h}^k(c)) \right] + O(h \log |\log(h)|).$$

Now, define $n_2 = n_2(h)$ as the smallest number such that

(42) \hspace{1cm} |Df_{t+h}^{n_2}(c)||\hat{I}_h| \geq 1,

where $Df_{t+h}^{n_2}(c)$ must be understood as $\min\{Df_{t+h}^{n_2}(c+), Df_{t+h}^{n_2}(c-), Df_{t+h}^{n_2}(c\pm)\}$, with $Df_{t+h}^{n_2}(c\pm)$ the side derivatives of c.

We claim that $n_2 - n_1 \leq C \log |\log(h)|$. Indeed write

$$|Df_{t+h}^{n_2}(c)| = |Df_{t+h}^{n_2-1}(c_1)Df_{t+h}(c)|.$$

Using the definition of n_2 we have that $|Df_{t+h}^{n_2-1}(c_1)||\hat{I}_h| \leq 1$ so

(43) \hspace{1cm} |Df_{t+h}^{n_2}(c)||\hat{I}_h| \leq C_2,$

where $C_2 = \max_x |Df(x)|$.

Note that

$$|Df_{t+h}^{n_2}(c)||\hat{I}_h| = |Df_{t+h}^{n_2-n_1+1}(f_{t+h}^{-n_1+1}(c))||Df_{t+h}^{n_1-1}(c)||\hat{I}_h|$$

$$\leq \Lambda^{n_2-n_1+1}|Df_{t+h}^{n_1-1}(c)||\hat{I}_h|.$$

As before, using bounded distortion, we have that

$$|Df_{t+h}^{n_1-1}(c)||\hat{I}_h| \geq C_1|\hat{I}_h|.$$
Hence,

\[|Df_{t+h}^n(c)||\tilde{h}| \geq C_1\Lambda^{n_2-n_1+1}|\tilde{h}| \]

Using (43) and (44), we finally obtain

\[C_1\Lambda^{n_2-n_1+1}|\tilde{h}| \leq C_2, \]

which implies

\[n_2 - n_1 + 1 = O(|\log |\tilde{h}||). \]

Back to (41), we can decompose it as

\[
\sum_{k=1}^{[\log(h)]} \int_{\bar{f}_{t+h}^k(I)} \phi \circ f_{t+h}^n(x) \, dx = \left[2hJ_{t+h}(c) \rho_{t+h}(c) \sum_{n=1}^{n_1} \phi(f_{t+h}^n(c)) \right] + O(h \log |\log(h)|)
\]

\[
= \left[2hJ_{t+h}(c) \rho_{t+h}(c) \sum_{n=1}^{n_2} \phi(f_{t+h}^n(c)) + \sum_{n=n_2+1}^{n_1} \phi(f_{t+h}^n(c)) \right] + O(h \log |\log(h)|).
\]

Using (40), we have that

\[
\sum_{k=1}^{[\log(h)]} \int_{\bar{f}_{t+h}^k(I)} \phi \circ f_{t+h}^n(x) \, dx = \left[2hJ_{t+h}(c) \rho_{t+h}(c) \sum_{n=1}^{n_2} \phi(f_{t+h}^n(c)) \right] + O(h \log |\log(h)|)
\]

Thus,

\[
\Phi_1(t) = \limsup_{h \downarrow 0} \frac{\sum_{k=1}^{[\log(h)]} \int_{\bar{f}_{t+h}^k(I)} \phi \circ f_{t+h}^n(x) \, dx}{h \sqrt{|\log(h)| \log |\log(h)|}}
\]

\[
= 2\rho(c)J_t(c) \limsup_{h \downarrow 0} \frac{\sum_{n=1}^{n_2} \phi(f_{t+h}^n(c))}{h \sqrt{|\log(h)| \log |\log(h)|}}
\]

\[
= 2\rho(c)J_t(c) \limsup_{h \downarrow 0} \frac{\sum_{n=1}^{n_2} \phi(f_{t+h}^n(c))}{h \sqrt{|\log(h)| \log |\log(h)|}} \sqrt{n_2 \log \log n_2}
\]

\[
= 2\rho(c)J_t(c) \limsup_{h \downarrow 0} \frac{\sum_{n=1}^{n_2} \phi(f_{t+h}^n(c))}{\sqrt{n_2 \log \log n_2}} \limsup_{h \downarrow 0} \frac{\sqrt{n_2 \log \log n_2}}{\sqrt{|\log(h)| \log |\log(h)|}}
\]

Note that, as \(h \downarrow 0 \), \(n_2 \) goes to \(\infty \). Then, by (25), for almost all \(t \),

\[
\limsup_{h \downarrow 0} \frac{\sum_{n=1}^{n_2} \phi(f_{t+h}^n(c))}{\sqrt{n_2 \log \log n_2}} = \limsup_{n_2 \to \infty} \frac{\sum_{n=1}^{n_2} \phi(f_{t+h}^n(c))}{\sqrt{n_2 \log \log n_2}} = \sqrt{2} \sigma(c)(\phi).
\]

For the limit \(\limsup_{h \downarrow 0} \frac{\sqrt{n_2 \log \log n_2}}{\sqrt{|\log(h)| \log |\log(h)|}} \), we will prove that \(\limsup_{h \downarrow 0} \frac{n_2}{|\log(h)|} \) converges which implies the convergence of the limit we want. For this, note that

\[
\log |Df_{t+h}^n(c)| = \sum_{j=0}^{n_2-1} \log |Df_{t+h}(f_{t+h}^j(c))|
\]

Then,
Proof of Lemma 6.2.

Define \(f \) we replace \(\phi \) the assumption that \(\alpha \) to the same limit. Then

\[
\log |Df^{n_2}_{t+h}(c)| = \frac{\sum_{j=0}^{n_2-1} \log |Df_{t+h}(f_j^i(c))|}{n_2}.
\]

By Theorem 1.2 in [24], for almost all \(t \), the sequence \(\frac{\sum_{j=0}^{n_2-1} \log |Df_{t+h}(f_j^i(c))|}{n_2} \) converges to \(\int \log |Df_{t+h}(x)| \, d\mu_{t+h} \) and so does its subsequence \(\frac{\sum_{j=0}^{n_2-1} |Df_{t+h}(f_j^i(c))|}{n_2} \) so \(\log |Df^{n_2}_{t+h}(c)| \) converges as \(n_2 \to \infty \).

Also, as we already saw, \(|Df^{n_2}_{t+h}(c)||\bar{I}_h| \) is bounded by below (by 1 by definition) and by above for some constant \(C \). Then

\[
1 \leq |Df^{n_2}_{t+h}(c)||\bar{I}_h| \leq C,
\]

which implies

\[
\frac{|\log(h)|}{n_2} \leq \frac{\log |Df^{n_2}_{t+h}(c)|}{n_2} \leq \frac{|\log h|}{n_2},
\]

and because \(\frac{\log |Df^{n_2}_{t+h}(c)|}{n_2} \) converges so does \(\frac{|\log(h)|}{n_2} \) as \(h \to 0 \) to the same limit. Then

\[
\limsup_{h \to 0} \frac{n_2(h)}{|\log(h)|} = \left(\int \log |Df_t(x)| \, d\mu_t \right)^{-1}.
\]

In particular, this implies that \(\limsup_{h \to 0} \frac{\log |Df^{n_2}_{t+h}(c)|}{n_2} = 1 \). Hence, for almost all \(t \),

\[
(47) \quad \limsup_{h \to 0} \frac{n_2 \log |Df^{n_2}_{t+h}(c)|}{\sqrt{\log(h)||\log(h)||}} = \left(\int \log |Df_t(x)| \, d\mu_t \right)^{-1/2}.
\]

Therefore, we finally conclude that \(\Phi_1(t) \) exists for almost all \(t \) and equals

\[
\Phi_1(t) = 2\sqrt{2} \rho_t(c) J_t(c)(\phi) \left(\int \log |Df_t(x)| \, d\mu_t \right)^{-1/2}.
\]

In order to analyze (36), we need to work on the limit \(\Phi_2(t) \). For this, note that (39) remains true if we replace \(f_t \) instead of \(f_{t+h} \). Since \(c \) is periodic for the expanding map \(f_t \), we can use (6.3), (6.4), and the assumption that \(\phi \) is of zero mean with respect to \(\mu_t \) to get that \(\Phi_2(t) \) is zero.

Therefore, for almost all \(t \),

\[
\limsup_{h \to 0} \frac{\Gamma(t+h) - \Gamma(h)}{h \sqrt{\log(h)||\log(h)||}} = 2\sqrt{2} \rho_t(c) J_t(c)(\phi) \left(\int \log |Df_t(x)| \, d\mu_t \right)^{-1/2}
\]

as claimed. \(\square \)

7. Appendix

Proof of Lemma 6.3. Define \(d_n = \sqrt{(s_1 - s_2)^2 + (c_n(s_1) - c_n(s_2))^2} \). By the Mean Value Theorem, there exists \(\tilde{s} \) between \(s_1 \) and \(s_2 \) such that

\[
\frac{c_n(s_1) - c_n(s_2)}{s_1 - s_2} = \frac{\partial c_n}{\partial s}(\tilde{s}).
\]

By the Chain Rule,

\[
\frac{\partial c_n}{\partial s}(\tilde{s}) = J_n(c(\tilde{s})) Df^2_n(c_1(\tilde{s})).
\]
Since $Df_s^n(c_1(s)) \geq \lambda^n$ and J_n converges as n goes to infinity
\[\left| \frac{\partial c_n}{\partial s}(s) \right| \geq \lambda^n C_{12}. \]
Hence $\left(\frac{\partial c_n}{\partial s}(s) \right)^{-1} = O(\lambda^{-n})$. So
\[
\sqrt{1 + \left(\frac{\partial c_n}{\partial s}(s) \right)^2} = \left| \frac{\partial c_n}{\partial s}(s) \right| \left[1 + O(\lambda^{-2n}) \right].
\]
Then,
\[
d_n = |s_1 - s_2| \sqrt{1 + \left(\frac{\partial c_n}{\partial s}(s) \right)^2} = |s_1 - s_2| \left| \frac{\partial c_n}{\partial s}(s) \right| \left[1 + O(\lambda^{-2n}) \right] = |c_n(s_1) - c_n(s_2)| \left[1 + O(\lambda^{-2n}) \right].
\]
Thus,
\[(48) \]
\[d_n = |c_n(s_1) - c_n(s_2)| \left[1 + O(\lambda^{-2n}) \right] \]
We claim that
\[(49) \]
\[d_{n+1} \geq (\lambda - \delta)d_n \]
In fact, by (48), this is the same as proving
\[(50) \]
\[|c_{n+1}(s_1) - c_{n+1}(s_2)| \geq (\lambda - \delta)|c_n(s_1) - c_n(s_2)|. \]
Since
\[\left| \frac{c_{n+1}(s_1) - c_{n+1}(s_2)}{c_n(s_1) - c_n(s_2)} \right| = \left| \frac{\partial c_{n+1}}{\partial c_n}(s) \right| \]
it suffices to show that
\[(51) \]
\[\left| \frac{\partial c_{n+1}}{\partial c_n}(s) \right| \geq \lambda - \delta \]
so let us prove this last inequality.
Since $\left| \frac{\partial c_n}{\partial s} \right| \geq D\lambda^n$, in particular $\left| \frac{\partial c_n}{\partial s} \right| \neq 0$, so by the Implicit Function Theorem, $s = s(c_n)$ and
\[\left| \frac{\partial s}{\partial c_n} \right| = \left| \frac{1}{\frac{\partial c_n}{\partial s}} \right| \leq \frac{D}{\lambda^n} \]
Since $c_{n+1} = f_s(c_n)(c_n)$, by using Chain Rule,
\[|Df_s(c_n)| \leq \left| \frac{\partial c_{n+1}}{\partial c_n} \right| + \left| \frac{\partial c_n}{\partial s}(s) \frac{\partial s}{\partial c_n} \right| \]
This implies
where $\lambda^{-n}D < \delta \ll 1$.

Therefore, (51) holds, which, as discussed, implies

$$d_{n+1} \geq (\lambda - \delta)d_n.$$

With the above in mind, if D is the function on $[0, t] \times [0, 1]$ defined by $D(s, x) = Df_s(x)$, then $\log|D|$ is P–Lipschitz, for some constant P, hence

$$\log \left| \frac{Df^n_s(x)}{Df^n_{s_2}(c)} \right| \leq \sum_{k=0}^{n-1} \log \left| Df_{s_k}(c_{k+1}) \right| - \log \left| Df_{s_k}(c_{k+1}) \right|$$

$$\leq \sum_{k=0}^{n-1} Pd_k \leq P \sum_{k=0}^{n-1} \frac{d_n}{(\lambda - \epsilon)^{n-k}} \leq \tilde{P} d_n \leq \tilde{C},$$

where $\tilde{P} = \sum_{j=1}^{\infty} \frac{1}{(\lambda - \epsilon)^j}$ (note that d_n is bounded by 2). Therefore, $\frac{|Df^n_s(c)|}{|Df^n_{s_2}(c)|}$ is bounded above by some constant C_1 and since s_1 and s_2 are arbitrary then they are exchangeable so the expression $\frac{|Df^n_s(c)|}{|Df^n_{s_2}(c)|}$ is also bounded by below by the reciprocal of C_1.

Since

$$\frac{|Df^n_s(x)|}{|Df^n_s(y)|} = \frac{|Df^n_{s_1}(x)|}{|Df^n_{s_1}(y)|} \frac{|Df^n_{s_2}(c)|}{|Df^n_{s_2}(c)|},$$

using that f_{s_1} and f_{s_2} are functions of bounded distortion, we have that

$$\frac{1}{C} \leq \frac{|Df^n_s(x)|}{|Df^n_{s_2}(y)|} \leq C,$$

where $C = C_1C_2C_3$ and C_2 and C_3 are the bounds for the distortion of f_{s_1} and f_{s_2} respectively.

Hence, if $x \in I_h$, we have that

$$\frac{|\tilde{I}_h|}{C} \leq \int_{I_h} \frac{|Df^n_{s_2}(y)|}{|Df^n_{s_1}(x)|} dy \leq C|\tilde{I}_h|.$$

Therefore

$$\frac{|f^n_{s_1, I_h}|}{|f^n_{s_2, I_h}|} = \frac{\int_{I_h} |Df^n_{s_1}(x)| dx}{\int_{I_h} |Df^n_{s_2}(y)| dy} = \frac{1}{\int_{I_h} \frac{1}{|Df^n_{s_2}(y)|} dy} \int_{I_h} \frac{1}{|Df^n_{s_2}(y)|} dy \leq \int_{I_h} \frac{1}{|I_h|} dx = C.$$

Thus $\frac{|f^n_{s_1, I_h}|}{\|J^n_{s_2, I_h}\|} \leq C$. Similarly $\frac{1}{C} \leq \frac{|f^n_{s_1, I_h}|}{\|J^n_{s_2, I_h}\|}$, and so (50) holds.

To prove (49), note that $\frac{f^n_{s_1}(0)}{J^n_{s_2}(c)}$ is bounded above and below by some constant C_6 and $\frac{1}{C} \tilde{C}$ respectively (because as t decreases so does s and n increases as well, so $J_n(c(s))$ converges to $J(c(0))$). Then, using that $\frac{\partial c}{\partial s}(\tilde{s}) = J_n(c(\tilde{s}))Df^n_s(c_1(\tilde{s})$ (by the Chain Rule) we have
\[
\frac{|f_{s_1}(\bar{I}_h)|}{|c_n(s_2) - c_n(s_1)|} = \frac{1}{|h|} \int_{I_h} |Df^n_{s_1}(x)|\,dx
\]
\[
= \frac{1}{|h||J_n(c(s))|} \int_{I_h} |DF^n_{c_1(s)}(x)|\,dx
\]
\[
= O\left(\frac{|\bar{I}_h|}{|h||J_n(c(s))|}\right)
\]
\[
= O\left(\frac{|J_n(c(c))|}{|J_n(c(s))|}\right)
\]
\[
= O(1),
\]
where we use \[23\] to bound \(\frac{|DF^n_{c_1(s)}(x)|}{|DF^n_{c(s)}(c(s))|}\).

Then,
\[
\frac{|f_{s_1}(\bar{I}_h)|}{|c_n(t) - c_n(s_1)|} \leq \tilde{C}
\]
for some constant \(\tilde{C}\).

Similarly, we can prove that
\[
\frac{1}{C} \leq \frac{|f_{s_1}(\bar{I}_h)|}{|c_n(t) - c_n(s_1)|}.
\]
Thus we obtain \[26\].

Proof of Lemma 6.3 Set \(L_k = f^{-k}_{t+\bar{I}_h}(\bar{I}_h)\) and define \(\bar{L}_k = L_k - \bigcup_{j<k} L_j \cap L_k\). Note that \(\bigcup_{k=1}^n L_k = \bigcup_{k=1}^n \bar{L}_k\) and that \(\bar{L}_{k_1} \cap \bar{L}_{k_2} = \emptyset\), for all \(k_1, k_2\), in particular,
\[
\int_{\bigcup_{k=1}^n \bar{L}_k} \psi(x) \, dx = \int_{\bigcup_{k=1}^n \bar{L}_k} \psi(x) \, dx
\]
\[
= \sum_{k=1}^n \int_{\bar{L}_k} \psi(x) \, dx.
\]

Now, we can work with \(\int_{\bar{L}_k} \psi(x) \, dx\) and bound \(\sum_{k=1}^n \int_{L_k} \psi(x) - \sum_{k=1}^n \int_{L_k} \psi(x) \, dx\). For this, since
\[
\int_{L_k} \psi(x) \, dx = \int_{L_k} \psi(x) \, dx - \int_{L_k \setminus \bar{L}_k} \psi(x) \, dx
\]
\[
= \int_{L_k} \psi(x) \, dx - \int_{\bigcup_{j<k} L_j \setminus L_k} \psi(x) \, dx
\]
we have that
\begin{equation*}
\left| \sum_{k=1}^{n} \int_{L_k} \psi(x) \, dx - \int_{L_n} \psi(x) \, dx \right| = \sum_{k=1}^{n} \left| \int_{U_{j<k} \cap L_k} \psi(x) \, dx \right|
\leq \sum_{k=1}^{n} \left| \bigcup_{j<k} L_j \cap L_k \right| \| \psi \|_{\infty}
\leq \sum_{k=1}^{n} \sum_{j<k} \left| L_j \cap L_k \right| \| \psi \|_{\infty}
\leq \sum_{k_1, k_2=1}^{n} \left| L_{j} \cap L_{k} \right| \| \psi \|_{\infty}
\end{equation*}

Therefore,
\begin{equation*}
\left| \sum_{k=1}^{n} \int_{L_k} \psi(x) \, dx - \int_{L_n} \psi(x) \, dx \right| \leq \sum_{k_1, k_2=1}^{n} \left| L_{j} \cap L_{k} \right| \| \psi \|_{\infty}
\end{equation*}

\[\square \]

Proof of Lemma 6.4. Again, set \(L_k = f_{t+h}^{-k}(\bar{I}_h) \). Let \(1 \leq k_1, k_2 \leq n \). Without loss of generality, assume \(k_1 \leq k_2 \). Then, we can write \(k_2 = k_1 + j \), for some \(0 \leq j \leq n - k_1 \). Then, using the fact that \(\rho_t \) is bounded below, we have

\[|L_{k_1} \cap L_{k_2}| = |L_{k_1} \cap L_{k_1+j}| \]
\[= \int \chi_{\bar{I}_h}(f_{t+h}^{k_1}(x))\chi_{\bar{I}_h}(f_{t+h}^{k_1+j}(x)) \, dx \]
\[\leq C_1 \int \rho_{t+h}(x)\chi_{\bar{I}_h}(f_{t+h}^{k_1}(x))\chi_{\bar{I}_h}(f_{t+h}^{k_1+j}(x)) \, dx \]

Since \(\rho_{t+h} \) is invariant, \(\int \rho_{t+h}(x)\chi_{\bar{I}_h}(f_{t+h}^{k_1}(x))\chi_{\bar{I}_h}(f_{t+h}^{k_1+j}(x)) \, dx = \int \rho_{t+h}(x)\chi_{\bar{I}_h}(f_{t+h}^{k_1+j}(x)) \, dx \). Now using that \(\rho_{t+h} \) is bounded from above, we have

\[|L_{k_1} \cap L_{k_2}| = |L_{k_1} \cap L_{k_1+j}| \]
\[\leq C_1 \int \rho_{t+h}(x)\chi_{\bar{I}_h}(f_{t+h}(x))\chi_{\bar{I}_h}(f_{t+h}^{j}(x)) \, dx \]
\[= C_2 \int \chi_{\bar{I}_h}(f_{t+h}(x))\chi_{\bar{I}_h}(f_{t+h}^{j}(x)) \, dx \]

If \(j < n_1 \) then \(f_{t+h}^{-j} \bar{I}_h \cap \bar{I}_h = \emptyset \), and consequently

\[\int \chi_{\bar{I}_h}(f_{t+h}(x))\chi_{\bar{I}_h}(f_{t+h}^{j}(x)) \, dx = 0. \]

If \(j > n_1 \) then, by \(30 \), \(\theta^j < \theta \). Hence
\[
\int x_{\tilde{h}}(x) \chi_{\tilde{h}}(f_{l+h}^j(x)) \, dx = \int x_{\tilde{h}}(y) L_{l+h}^j(x_{\tilde{h}}(y)) \, dy \\
= \int_{\tilde{h}} L_{l+h}^j(x_{\tilde{h}}(y)) \, dy \\
= \int_{\tilde{h}} |\tilde{h}|\rho_{l+h}(y) + O(\theta^j) \, dy \\
\leq \int_{\tilde{h}} |\tilde{h}|\rho_{l+h}(y) \, dy + \int_{\tilde{h}} O(\theta^j) \, dy
\]

By (1) and \(|\tilde{h}| = O(h)|, the first integral is of order \(O(t^2).\) For the second integral, since \(\theta^j \leq R|\log(h)|\), we have that \(\theta^j \leq h^\eta,\) where \(\eta = R\log(\theta^{-1}) < 1\) since \(R \ll 1.\) Then, the second integral is of order \(O(h^{1+\eta}).\)

Therefore, \(|L_{k_1} \cap L_{k_2}| \leq Ch^{1+\eta},\) for any \(1 \leq k_1 < k_2 \leq n\) and then

\[
\sum_{k_1 < k_2} |L_{k_1} \cap L_{k_2}| \leq Ch^{1+\eta} n^2.
\]

\(\square\)

Proof of Lemma 6.5. Suppose \(m < l,\) where \(l = || \log |L||.\) It is not hard to see that

\[
\left| \sum_{k=0}^{m} \int_{L} \phi(f_{l+h}^k) \psi(x) \, dx \right| = O(|| \log |L||).
\]

Therefore, the statement holds if \(m \leq l.\)

Suppose now \(m \geq l\) and write \(m = l + r,\) with \(0 \leq r \leq l - 1.\) Let \(\Lambda = \max_{x,t} Df_t(x).\)

Note that if \(f(t) = t \log(1/t)\) and \(g(s) = s \log s \log(1/s),\) then \(g > f > 0\) and \(g' \gg f'\) near 0. Hence, if \(|L| = O(t),\) we have that \(t \log(1/t) = |L| \log(1/|L|),\) or equivalently

\[
t \log(t) < (\Lambda^r - 1)|\Lambda^{-1} \log |L||.
\]

\[
\left| \sum_{k=0}^{m} \int_{L} \phi(f_{l+h}^k) \psi(x) \, dx \right| = \left| \sum_{k=0}^{l-1} \int_{L} \phi(f_{l+h}^k) \psi(x) \, dx \right| + \left| \sum_{k=l}^{m} \int_{L} \phi(f_{l+h}^k) \psi(x) \, dx \right| + \sum_{k=l}^{m} \Lambda^k |L| + O(|| \log |L||) = O((\Lambda^{m+1} - \Lambda^l |L|).
\]

Since (53) implies that \((\Lambda^{m+1} - \Lambda^l) t \log(t) < l,\) the statement also holds if \(m \geq l.\)

\(\square\)

References

[1] Baladi V. *On the susceptibility function of piecewise expanding interval maps*, Comm. Math. Phys. **275** (2007) 839–859.

[2] Baladi V. *Positive transfer operators and decay of correlations*, Advanced Ser. Nonlin. Dyn. **16** (2000) World Scientific, River Edge, NJ, x+314 pp.

[3] Baladi V., Smania D. *Linear response formula for piecewise expanding unimodal maps*, Nonlinearity **21** (2008) 677–711.

[4] Baladi V., Smania D. *Smooth deformations of piecewise expanding unimodal maps*, Discrete Contin. Dyn. Syst. **23** (2009) 685–703.

[5] Baladi V., Smania D. *Alternative proofs of linear response for piecewise expanding unimodal maps*, Erg. Th. Dynam. Sys. **30** (2010) 1–20.

[6] Baladi V., Young L.-S. *On the spectra of randomly perturbed expanding maps*, Comm. Math. Phys. **156** (1993) 355–385.
[7] Benedicks M., Young L.-S. Sinai-Bowen-Ruelle measures for certain Henon maps, Invent. Math. 112 (1993) 541–576.

[8] Bruck K., Misiurewicz M. The trajectory of the turning point is dense for almost all tent maps, Erg. Th. Dynam. Sys. 16 (1996) 1173 – 1183.

[9] Chernov N., Dolgopyat D. Brownian Brownian motion–I, Mem. AMS 198 (2009) no. 927 viii+193 pp.

[10] Chernov N., Markarian R. Chaotic billiards, Math. Surveys and Monogr 127 AMS, Providence, RI, 2006. xii+316 pp.

[11] Contreras F., Dolgopyat D. Regularity of absolutely continuous invariant measures for piecewise expanding unimodal maps Nonlinearity. To be published.

[12] De Lima A., Smania D. Central Limit Theorem for the modulus of continuity of averages of observables on transversal families of piecewise expanding unimodal maps, ArXiv preprint, [arXiv:1503.01423].

[13] Dolgopyat D. Averaging and invariant measures, Mosc. Math. J. 5 (2005) 537–576.

[14] Dolgopyat D., Liverani C. Energy transfer in a fast-slow Hamiltonian system, Comm. Math. Phys. 308 (2011) 201–225.

[15] Jakobson M. V. Absolutely continuous invariant measures for one-parameter families of one-dimensional maps, Comm. Math. Phys. 81 (1981) 39–88.

[16] Keller G., Howard P. J., Klages R. Continuity properties of transport coefficients in simple maps, Nonlinearity 21 (2008) 1719–1743.

[17] Keller G., Liverani C. Stability of the spectrum for transfer operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28 (1999) 141–152.

[18] Keller G., Liverani C. Rare events, escape rates and quasistationarity: some exact formulae, J. Stat. Phys. 135 (2009) 519–534.

[19] Lasota A., Yorke J. A. On the existence of invariant measures for piecewise monotonic transformations, Trans. AMS 186 (1973), 481–488.

[20] Marco Mazzolena M. Dinamiche espansive unidimensionali: dipendenza della misura invariante da un parametro, Masters Thesis, Roma 2, 2007.

[21] Ruelle D. Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics, J. Statist. Phys. 95 (1999) 393–468.

[22] Ruelle D., Application of hyperbolic dynamics to physics: some problems and conjectures, Bull. Amer. Math. Soc. 41 (2004) 275–278.

[23] Ruelle D., Differentiating the a.c.i.m. of an interval map with respect to f , Comm. Math. Phys. 258 (2005) 445–453.

[24] Schnellmann, D., Typical points for one-parameter families of piecewise expanding maps of the interval, Discrete Contin. Dyn. Syst. 31 (2011), no.3, 877-911.

[25] Schnellman, D., Law of iterated logarithm and invariance principle for one-parameter families of interval maps, Arxiv, preprint, 2013.

[26] Tsujii M. A simple proof for monotonicity of entropy in the quadratic family, Dynam. Systems, 20(3): 925-933, 2000.

[27] Tucker W. The Lorenz attractor exists, C. R. Acad. Sci. Paris 328 (1999) 1197–1202.

[28] Viana M. Lecture notes on attractors and physical measures, IMCA Monogr. 8 (1999) Lima, iv+101 pp.