RESEARCH ARTICLE

MARC: a robust method for multiple-aspect trajectory classification via space, time, and semantic embeddings

Lucas May Petry, Camila Leite Da Silva, Andrea Esuli, Chiara Renso and Vania Bogorny

Programa de Pós-Graduação em Ciência da Computação (PPGCC), Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil; Istituto di Scienza e Tecnologie dell’Informazione (ISTI), Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy

ABSTRACT

The increasing popularity of Location-Based Social Networks (LBSNs) and the semantic enrichment of mobility data in several contexts in the last years has led to the generation of large volumes of trajectory data. In contrast to GPS-based trajectories, LBSN and context-aware trajectories are more complex data, having several semantic textual dimensions besides space and time, which may reveal interesting mobility patterns. For instance, people may visit different places or perform different activities depending on the weather conditions. These new semantically rich data, known as multiple-aspect trajectories, pose new challenges in trajectory classification, which is the problem that we address in this paper. Existing methods for trajectory classification cannot deal with the complexity of heterogeneous data dimensions or the sequential aspect that characterizes movement. In this paper we propose MARC, an approach based on attribute embedding and Recurrent Neural Networks (RNNs) for classifying multiple-aspect trajectories, that tackles all trajectory properties: space, time, semantics, and sequence. We highlight that MARC exhibits good performance especially when trajectories are described by several textual/categorical attributes. Experiments performed over four publicly available datasets considering the Trajectory-User Linking (TUL) problem show that MARC outperformed all competitors, with respect to accuracy, precision, recall, and F1-score.

ARTICLE HISTORY

Received 23 May 2019
Accepted 18 December 2019

KEYWORDS

Trajectory classification; multiple-aspect trajectory; semantic trajectory classification; Geohash embedding; recurrent neural network

1. Introduction

We are witnessing an explosion of big data generated on the internet and an increasing popularity of Location-Based Social Networks (LBSNs), such as Foursquare, Twitter, and Facebook. These networks collect not only information about visited places, feelings, and thoughts of their users, but their real movement as sequences of check-ins or geotagged posts, that represent the sample points of a trajectory. We strongly believe that this new type of trajectory data is the challenge of the next-generation data mining methods to be explored by large companies, for obtaining one of the most valuable information: the daily routine patterns and behaviors of every human being.
Semantically rich movement data are important for analyzing mobility patterns in a vast range of applications, from Point of Interest (POI) recommendation (Zhou et al. 2016, Feng et al. 2018), profiling taxi trip purposes (Chen et al. 2019), inferring the effect of external factors as the weather conditions on human mobility (Brum-Bastos et al. 2018), to discovering animal behaviors and habitats (De Groeve et al. 2016, 2019, van Toor et al. 2016).

In this work we focus on the trajectory classification problem, which consists of categorizing a moving object according to its trajectories (Lee et al. 2008). In other words, given a set of labels and a set of trajectories, we want to build a model for predicting and assigning such labels to every trajectory in the dataset. Examples of trajectory classification tasks are transportation mode inference (e.g. car, bus, taxi) (Dabiri and Heaslip 2018, Etemad et al. 2018), determining a person profile (e.g. worker, student, retired) (de Alencar et al. 2015), inferring the strength level of a hurricane (Lee et al. 2008, Buchin et al. 2012, Ferrero et al. 2018), predicting the user/owner of a trajectory (Gao et al. 2017, Zhou et al. 2018), among others.

Trajectory data are very complex because of the nature of their multiple dimensions. A raw trajectory, for instance, that is generated from a Global Positioning System (GPS) device, and that is the simplest type of movement data, is a sequence of spatio-temporal points in the form of \((x, y, t)\), where \(x\) and \(y\) represent the spatial position of the moving object at time instant \(t\). Raw trajectories are more complex than time series, since they combine both time and space attributes, in which time is more than the temporal sequence.

Trajectory data extracted from LBSNs or context-aware trajectories of other domains such as in ecology (Andrienko et al. 2011, Dodge et al. 2013), pose new challenges when compared to raw trajectories. While in raw trajectories a point has basically the space and time dimensions, in trajectories extracted from LBSNs a spatio-temporal point is enriched with several levels of heterogeneous semantic dimensions as the text of the social-media posts, the reviews of a venue, the humor/opinion of the moving object, etc. This new type of trajectory data is called multiple-aspect trajectory (Ferrero et al. 2016, Mello et al. 2019, Petry et al. 2019). Figure 1 shows an example of the multiple-aspect trajectory of a tourist in Paris. Besides the spatial and temporal dimensions, the trajectory is enriched with POI information (category, rating, and price), the means of transportation, the weather conditions, and the social-media posts of the tourist.

Differently from classical data mining problems, trajectory data cannot be summarized or normalized without losing information, and require a special treatment because of the complexity associated to the data. For instance, the spatial dimension is composed of two attributes, latitude and longitude, and they should be considered as a whole. Earlier methods for trajectory classification (Lee et al. 2008, Dodge et al. 2009, Patel 2013) have been developed for raw trajectories, where attributes and features are derived from the spatial and temporal dimensions, such as speed, acceleration, traveled distance, etc. In fact, existing works do not propose new classifiers, but propose different feature extraction and/or trajectory partition methods that better capture the trajectory discriminant parts.

A recent method, called MOVELETS, was proposed by Ferrero et al. (2018), supporting multiple attributes as space, time, and semantics. MOVELETS supports the different types of data and the heterogeneous dimensions and it outperformed most previous works for raw trajectories. Although it is robust for several dimensions, it only explores patterns of
consecutive trajectory points and does not leverage the aspects that better describe each class. In other words, the trajectory patterns found by the method always consider all attributes available. Indeed, it is a time consuming method because it explores all possible subtrajectories of different size.

The works of Gao et al. (2017), Zhou et al. (2018), and Ferrero et al. (2019) have been developed for LBSN trajectory data. Differently from all previous works, Gao et al. (2017) and Zhou et al. (2018) use the idea of word embeddings, and embed POIs based on the concept of the distributional hypothesis, similarly to the idea proposed in Mikolov et al. (2013a). An embedding is a numerical vector in an l-dimensional space \mathbb{R}^l, which can be a more meaningful representation of information for machine learning methods.

In Gao et al. (2017) and Zhou et al. (2018) a given POI is embedded based on the previous POIs and the next POIs that the user visited. For instance, suppose a user has visited the POIs Home, Restaurant, and Office, while another user has visited the POIs Home, Cafe, and Office. The embeddings of Restaurant and Cafe will be similar, because they happened in the same context (after Home and before Office). However, in these works the embeddings are solely based on the POI sequence, so they neither explore the spatio-temporal dimensions nor the different semantic aspects that characterize multiple-aspect trajectories. We argue that the more trajectory aspects (or dimensions) the classifier is able to treat, the more robust is the method, and that different aspects can contribute to characterizing the behavior of a moving object. For instance, in Brum-Bastos et al. (2018) the authors explored the weather effects on human mobility and were able to find different patterns in commuters behavior depending on the weather conditions.

In this paper we propose an approach for trajectory classification that is simpler than existing methods, more efficient, and that far outperforms the state of the art in four datasets. The method is a Recurrent Neural Network (RNN)-based approach for multiple-aspect trajectory classification via a multi-attribute embedding layer, which allows encoding the heterogeneous dimensions associated to each trajectory point. Because of the multiple and heterogeneous textual features that characterize human movement in social

![Figure 1. The multiple-aspect trajectory of a tourist in Paris.](image)
media data, more specifically due to the sparsity and high dimensionality of features, we believe that embeddings are the best technique to capture the semantic aspects of trajectories and that can deal together with the textual dimensions and the spatial dimension represented with Geohash (Niemeyer 2008). In summary, we make the following contributions:

- We introduce a new classification method for trajectory data considering their multiple and heterogeneous dimensions that characterize current mobility data, namely Multiple-Aspect tRajactory Classifier (MARC). The MARC architecture exhibits similar or lower network complexity compared to state-of-the-art methods, while achieving better accuracy;
- We model trajectory points via a multi-attribute embedding layer, specifically including an approach for embedding the spatial dimension of trajectories using Geohash encoding (Niemeyer 2008), given that embeddings were designed for discrete data;
- We evaluate our method on four real-world LBSN datasets enriched with multiple semantic aspects. This allows us to show the robustness of our approach for classifying users based on their semantically rich trajectories. We compare our method with state-of-the-art approaches to show that MARC outperforms competitors in all datasets. We also highlight the fact that MARC performs well when information or trajectory attributes are missing.

The remainder of this paper is organized as follows: Section 2 presents related works and highlights their differences to our approach; Section 3 describes the proposed method; Section 4 presents the experimental evaluation; in Section 5 we discuss about our method and achieved results, placing them into a larger context, and Section 6 concludes the paper and outlines future work.

2. Related work

Most existing works in trajectory classification are limited to raw spatio-temporal data. Such works focus on the extraction of features from trajectories, which are then given as input to traditional classifiers, such as Random Forest, Support Vector Machine, and Multilayer Perceptron (MLP) classifier. The features are extracted from the spatio-temporal points as, for instance, the average speed, acceleration, direction, etc, and are related either to the whole trajectory or to specific trajectory segments.

One of the first works for raw trajectory classification was the method TraClass (Lee et al. 2008), which is limited to the spatial dimension. Patel (2013) extended the work of Lee et al. (2008) to support the time dimension. Dodge et al. (2009) proposed a classification method that partitions trajectories based on deviation and sinuosity change, extracting attributes such as velocity, acceleration, turning angle, displacement and deviation change rate. The attributes are extracted from the partitions and the whole trajectory. Zheng et al. (2010) splits trajectories based on velocity and acceleration, further extracting statistics as the maximum velocity, maximum acceleration, deviation change, etc. Biljecki et al. (2013) propose a segmentation method for robust transportation mode classification. Recently, Xiao et al. (2017) extended the method proposed by Dodge et al. (2009) to extract a larger number of global and local attributes from trajectories.
Existing methods for raw trajectory classification were developed for dense GPS trajectories (e.g. points are regularly sampled every second), and are limited to numerical attributes inferred from space and time. In multiple-aspect trajectories extracted from LBSNs, the points can be more sparse (e.g. points can be sampled in hours or days), not being characterized by attributes such as speed, acceleration or direction change.

Ferrero et al. (2018) proposed MOVELETS, a method that supports spatial, temporal, and semantic attributes, which outperformed previous works for raw trajectory classification. Ferrero explores the training set looking for relevant subtrajectories, which are the trajectory segments that better characterize the movement patterns of a given class. The presence or absence of the discovered MOVELETS in trajectories are then given as features to a traditional classifier. Although MOVELETS supports multiple attributes, it cannot automatically find those which better discriminate each class. Furthermore, MOVELETS cannot ignore noise in trajectory points, because it only explores patterns of consecutive trajectory points.

To the best of our knowledge, so far MOVELETS is the only method in the literature that can deal with multiple-aspect trajectories exploring space, time, semantics, and sequence. Novel methods were developed for LBSN trajectory classification (Gao et al. 2017, Zhou et al. 2018), but they are limited to a single trajectory attribute.

Gao et al. (2017) introduced the Trajectory-User Linking (TUL) problem, a special case of trajectory classification where the labels are the users, i.e. the person who generated each trajectory. Gao proposed Bi-TULER, a bidirectional RNN model for classifying LBSN trajectories. However, Gao analyzes only the POIs visited by the users, thus having trajectories represented as the sequence of places visited by a user. Bi-TULER learns continuous vector representations (embeddings) of the POIs, following the concept of the distributional hypothesis, similar to word embeddings proposed by Mikolov et al. (2013a). The embeddings are used to train an RNN model for classifying trajectories, and, even though it is able to capture more complex patterns of mobility data than previous works, only the POI identifier is used for training the model. In Section 4 we show that using only one layer of semantics is insufficient for characterizing human movement. In fact, different levels of semantics provide a more accurate representation of human mobility.

More recently, Zhou extended Bi-TULER and proposed TULVAE (Zhou et al. 2018) to address the TUL problem. Similarly to Bi-TULER, POI embeddings are pre-learned and then fed to the model. Zhou employs a Variational Autoencoder (VAE) architecture to model trajectories and extracts an interpretable representation of POI dependencies present in trajectories. As Bi-TULER, TULVAE is solely based on the POIs visited by users, thus not supporting the spatial, temporal, and additional semantic attributes of trajectories. Furthermore, the model shows a relatively complex network architecture similar to sequence-to-sequence models.

Both Bi-TULER and TULVAE embed POIs similarly to the word embeddings described by Mikolov et al. (2013a). Word embeddings alleviate data sparsity and provide a continuous representation of words (or POIs). However, the embedding of a POI is based on temporal context, regardless of class label, which can make POIs less discriminative in classification problems. The proposed method MARC, differently from Bi-TULER and TULVAE, is based on an end-to-end classification task, instead of pre-learning attribute embeddings similar to word embeddings. MARC is not exclusive developed for LBSN trajectories, but can be
used for any type of semantically enriched or context-aware trajectory of other domains, as for instance in ecology (Dodge et al. 2013, Demšar et al. 2015).

3. Multiple-aspect trajectory classification

In this section we introduce MARC: a novel method for multiple-aspect trajectory classification. Figure 2 illustrates the three components of MARC: (1) trajectory encoding via a multi-attribute embedding layer; (2) a recurrent component for modelling the sequential factor present in trajectories; and (3) the classification component, which uses information from the previous components for assigning labels to trajectories.

MARC is a Recurrent Neural Network (RNN) that takes a trajectory as input and outputs the corresponding label (class). RNNs are a special class of neural networks capable of processing sequences of inputs. As they demand higher computational power than normal feed-forward neural networks, their use in practical applications was only made possible in recent years. RNNs can be applied to a variety of applications, from speech recognition (Sak et al. 2014) to trajectory classification. Before going into the details of our method, we start defining multiple-aspect trajectory in Definition 3.1, based on the concept introduced by Mello et al. (2019).

Definition 3.1. Multiple-aspect trajectory. A multiple-aspect trajectory is a sequence of points \(T = (p_1, p_2, \ldots, p_n) \), with \(p_i = (x, y, t, A) \) being the \(i \)-th point of the trajectory at location \((x, y)\) and timestamp \(t \), described by the set \(A = \{a_1, a_2, \ldots, a_r\} \) of \(r \) attributes.

A multiple-aspect trajectory is a trajectory enriched with semantic information, contributing to the characterization of the movement, such as the visited POIs, the goal of the visit, the possible activity, the weather conditions, the means of transportation, etc. Multiple-aspect trajectories are variable-length sequences of information, and the attributes of these trajectories are heterogeneous, have different natures, and distinct data

![Figure 2. Overview of the architecture of MARC.](image)
types. We define trajectory classification in Definition 3.2, which is the problem we address in this paper.

Definition 3.2. *Trajectory classification.* Given a set of labels \(\mathcal{L} \) and a trajectory set defined by a set of pairs \(T = \{ (T_1, \text{label}(T_1)), (T_2, \text{label}(T_2)), \ldots, (T_{|T|}, \text{label}(T_{|T|})) \} \), where each pair contains a trajectory \(T_i \) and its class label \(\text{label}(T_i) \in \mathcal{L} \), trajectory classification is the task of learning a prediction function (model) \(f \) that maps each trajectory \(T_i \in T \) to one of the class labels in \(\mathcal{L} \).

As multiple-aspect trajectories may have several textual attributes, it may be harder for a classifier to measure the attribute similarity because of the high number of dimensions in the attribute space. Given their heterogeneity and sparsity, we use a multi-attribute embedding layer in order to encode these multiple attributes, which is detailed in the following section.

3.1. Trajectory encoding

The first component of our method is responsible for encoding trajectory attributes. Since trajectory attributes can have a variety of formats, we use an embedding layer for uniformly encoding them. Figure 3 illustrates the overall process of encoding a trajectory point. We consider an example of a single trajectory described by the attributes POI, hour, and spatial location, representing the semantics, temporal, and spatial dimensions, respectively. We encode the second trajectory point, which is a visit to a Park at 11 am located at the spatial location \((40.767667, -73.97334)\).

The attributes are first one-hot encoded, except for spatial attributes that are encoded with Geohash. The one-hot encoding of an attribute \(a \) is a \(d \)-dimensional vector of zeros with a 1 in the position corresponding to the value of the attribute, where \(d \) is the number of values that the attribute may take. In our example the dataset has only 6 different POIs, as shown in the legend of Figure 3, so the one-hot encoded POI vector has 6 dimensions,
and Park corresponds to the 5-th element in the vector. Similarly, as there are 24 different hours, the encoded hour is a 24-dimensional vector and the 11-th element corresponds to the hour 11 am (hours encoded from 1 am to 12 pm and 1 pm to 12 am).

The spatial dimension of trajectories is usually modeled with two attributes, latitude and longitude, and these attributes are meaningless if considered separately. Therefore, we encode them with the Geohash algorithm (Niemeyer 2008), as it is necessary to merge both latitude and longitude into a single meaningful attribute in order to further embed them. Figure 4 illustrates the Geohash algorithm. It successively divides the space into rectangular grid cells, encoding a spatial location (latitude and longitude coordinates) as a Base32 character string. Two locations with a common Geohash prefix are spatially close to each other. We further extract the binary representation of Geohash, and use it as the encoding of the spatial dimension of trajectory points. Since Base32 is used for building the Geohash encoding, each character is mapped to a 5-digit binary string ($2^5 = 32$). For instance, considering 32 characters from 0 to 9 and A to V, 0 is mapped to 00000, 1 is mapped to 00001, 2 to 00010, and so on up to V, which is mapped to 11111. The size of the encoded spatial location depends on the precision chosen for the Geohash algorithm, i.e. how many cells we have in the grid (see Figure 4).

The encoded attributes are multiplied by their respective embedding matrices (W_{POI}, W_{Hour}, and W_{Space} in Figure 3) to extract their corresponding embedded representations. In neural networks, embedding layers map attributes to an embedding space, so that they may be fed to the subsequent layers of the network. Embeddings are numerical vector representations that can be interpreted as points in a continuous l-dimensional space \mathbb{R}^l, created according to a model (e.g. vector space models for modeling textual data). Attributes are usually embedded in order to reduce the dimensionality of the underlying space, so that the similarity of attributes can be better measured; or simply to map discrete attributes into equivalent but meaningful representations for machine learning algorithms. For instance, let us consider the POIs Park, Restaurant, and Cafe. A naive way of measuring the similarity of POIs could be comparing their names with a string similarity function such as the Edit Distance (ED) (Wagner and Fischer 1974). In that case, Cafe and Park would have a higher similarity than Cafe and Restaurant, which is not realistic considering the semantics of the POIs. Hence, embedding methods are used to create

![Figure 4. Geohash encoding toy example.](image)
similarity-based representations for textual attributes. As the number of attributes can
grow fast in multiple-aspect trajectories, it may be unfeasible and hard to define similarity
measures for every attribute, as proposed in Ferrero et al. (2018) and Furtado et al. (2016),
for instance.

Mikolov et al. (2013a) proposed a neural network model to embed words based on the
context they appear in the text (words that come before and after a given word). The
word embeddings are extracted from the weights of the neural network after performing
the task proposed in their paper. Afterwards, the embeddings are used in other natural
language processing tasks, such as text translation. Similarly, two previous works for
trajectory classification (Gao et al. 2017, Zhou et al. 2018) proposed to embed POIs
based on the same concept. However, while they use only the visited POIs in the
classification task, in our method we not only embed POIs but all trajectory attributes,
which we describe later. Moreover, even though embedding matrices can be initialized
with pretrained embeddings, they can also be randomly initialized and trained altogether
with the other components of the neural network classification model. We formally define
the embedding of a single attribute as follows.

Definition 3.3. Attribute embedding. Given a trajectory \(T = (p_1, p_2, \ldots, p_n) \) and a set \(A = \{a_1, a_2, \ldots, a_r\} \) of attributes describing \(p_i \), the embedding of attribute \(a_k \) is given by
\[
e(a_k) = \text{encoding}(a_k)W_{a_k},
\]
where \(W_{a_k} \) is the embedding matrix of attribute \(a_k \).

\(W_{a_k} \) is a matrix with \(|a_k| \times l\) dimensions, where \(|a_k|\) is the number of values that
attribute \(a_k \) may take. For instance, in the example in Figure 3 we have 6 different types
of POIs and decided to embed them in the space \(\mathbb{R}^3 \), so \(W_{\text{POI}} \) has \(6 \times 3 \) dimensions. As we
mentioned previously, we use one-hot encoding as the \(\text{encoding}(\cdot) \) of nominal and
numeric attributes, so that embeddings are properly selected from the embedding matrix.
In other words, given an ordering of the values of \(a_k \) (i.e. a fixed mapping of POIs to
a position in the encoding vector), the \(\text{encoding}(a_k) \) is built in a way that when multiplied
by \(W_{a_k} \), the \(i \)-th row of \(W_{a_k} \) is the embedded representation of the \(i \)-th value of \(a_k \).

In order to encode trajectory points with multiple attributes, we apply an aggregation
function to the embedded point attributes. Attributes must be aggregated so that
trajectory points can be fed to the recurrent component of the network. We may combine
attributes similarly to how words are aggregated in Le and Mikolov (2014), via element-
wise average or concatenation. In Figure 3, we aggregate the embedded attributes by
averaging each dimension individually. This implies that if we aggregate attributes by
sum or average, all embeddings must have the same size. If we opt for concatenation,
then the embedded attributes may have different sizes, and the size of the final encoded
trajectory point will be the sum of the embedding sizes. In Section 4 we present different
results considering the sum, average, and concatenation of attributes.

3.2. Recurrent component

To properly assess trajectory data, we use an RNN with Long Short-Term Memory (LSTM)
units (Hochreiter and Schmidhuber 1997), which is the state of the art for sequence
processing in neural networks. RNNs are able to represent more complex patterns than shallow networks, and can deal with variable-length sequences of information.

After encoding trajectory points, trajectories are fed to the recurrent module. LSTM cells capture patterns in sequences over variable-length time intervals, regulating how much information is remembered via their input, output, and forget gates. Compared to MOVELETS (Ferrero et al. 2018), for instance, this can be an advantage for modeling trajectory patterns. MOVELETS only captures sequential patterns of consecutive trajectory points, while, LSTM cells may learn patterns that include the very first points and the last points of a trajectory. This means that LSTM units can model the relationships between different trajectory points and their attributes, even if they are far away.

3.3. Trajectory classification

The last component of our method uses the information provided by the recurrent component for inferring the trajectory label. The output of the recurrent module is fed into a fully-connected layer and subsequently a softmax function is applied. The goal of the last fully-connected layer is to map the learned knowledge to the corresponding label. Then, a softmax function is applied to emphasize the differences between labels, further outputting the probability distribution for all possible data labels. As for some classification problems the number of labels can be particularly high, such as the TUL problem introduced by Gao et al. (2017), negative sampling (Mikolov et al. 2013b) can be employed to alleviate the cost of softmax computation.

3.4. Training and optimization

For training the proposed model, our goal is to minimize the categorical cross entropy loss, as given by the following equation

$$\frac{1}{|T_{\text{train}}|} \sum_{T \in T_{\text{train}}} \sum_{L \in \mathcal{L}} 1_{T \in L} \cdot \log p[T \in L]$$

(1)

where T_{train} is the set of trajectories for training the model and \mathcal{L} is the set of labels according to which trajectories are classified. In other words, we want to maximize the probability of our model to correctly predict the label of each trajectory T.

To avoid overfitting our model to the training data, which is a problem inherent to deep neural networks such as RNNs, we use dropout (Srivastava et al. 2014) and regularization techniques. Dropout layers are applied throughout the model, so units are randomly dropped during the training process. In addition, the weights and biases of the LSTM units are regularized using L1 regularization.

As in the works of Gao et al. (2017) and Zhou et al. (2018), the embedding layers of the input attributes could be initialized by training embeddings in a separate model, similar to learning word embeddings (Mikolov et al. 2013a). Hence, attribute values that appear in similar contexts in trajectories will have similar embeddings. Although this method is good for capturing attributes similarity, these embeddings may substantially spoil the performance of a classifier, making it harder to discriminate between different classes (labels).
In the following section we present an experimental evaluation, showing the robustness of our method in relation to state-of-the-art approaches.

4. Experimental evaluation

We evaluate our approach over four real-world trajectory datasets extracted from the Foursquare, Brightkite, and Gowalla LBSNs. These datasets have been widely used in several works on both trajectory classification (Gao et al. 2017, Zhou et al. 2018) and next POI prediction (Zhao et al. 2017, Feng et al. 2018).

We compare our work to the state-of-the-art methods that can handle trajectories that have other dimensions than space and time. These works are Bi-TULER (Gao et al. 2017) and TULVAE (Zhou et al. 2018), developed for LBSN trajectories, and MOVELETS (Ferrero et al. 2018), that outperformed previous methods developed for raw trajectories. We evaluate existing works using a similar approach to the Trajectory-User Linking (TUL) problem described in Gao et al. (2017), in which the classification task is to predict the corresponding user who generated a given trajectory. MARC was implemented in Python using the Keras framework. For reproducibility purposes, we made the source code of MARC available on GitHub.

In the next few sections, we describe the datasets, the metrics used to evaluate the results, the experimental setup, and the achieved results.

4.1. Datasets

We run the experiments over four datasets extracted from the Foursquare, Brightkite, and Gowalla LBSNs: (i) a dataset of Foursquare check-ins in New York, USA, collected between April 2012 and February 2013 (Yang et al. 2015); (ii) a dataset of Foursquare check-ins in several cities around the world, collected between April 2012 and September 2013 (Yang et al. 2016); (iii) a dataset of user check-ins around the world on Brightkite, collected between April 2008 and October 2010 (Cho et al. 2011); and (iv) a dataset of user check-ins around the world on the Gowalla LBSN, collected between February 2009 and October 2010 (Cho et al. 2011).

Tables 1 and 2 describe the attributes of trajectory points in each dataset. In order to show that our approach can handle many dimensions and that additional information contributes to the classification of trajectories, we enrich the original dataset with more information. For the Foursquare datasets, we enriched check-in data with venue

Attribute	Type	Range/example	N.
POI	Nominal	{15,703, 21,580, ...}	(13,848; 131,155)
Space	Composite	((38.7423, -90.3658), ...)	–
Category	Nominal	{Arts & Entertainment, College & University, ...}	10
Price tier	Numeric	{−999, 1, 2, 3, 4}	5
Rating	Numeric	{−999} U {4.0, 10.0}	62
Hour	Numeric	[0, 23]	24
Weekday	Nominal	{Monday, Tuesday, ..., Sunday}	7
Weather⁶	Nominal	{Clear, Clouds, Rain, ...}	6
User ID	Nominal	{1, 2, 3, ...}	(193; 498)

⁶Available only for the Foursquare NYC dataset.
information (e.g. price tier and rating) collected from the Foursquare API\(^4\). In addition, weather information was collected from the Weather Wunderground API\(^5\) and added to each check-in in the Foursquare NYC dataset. We enrich trajectories with information that may affect the movement behavior of a moving object. As we mentioned in Section 1, an example of such influence has been shown in Brum-Bastos et al. (2018), where different commuter patterns were observed according to different weather conditions. Lastly, the attribute User ID is the label of each trajectory in the datasets.

In order to ensure variability and consistency in the evaluation, we applied a few transformations to the datasets. For the Foursquare datasets we removed noisy check-ins belonging to broad categories, such as roads and neighborhoods, because each venue has a unique geographic location. We also removed duplicated check-ins considering a 10-minute threshold. For all datasets, we created weekly trajectories from each user check-in, and we selected only trajectories with at least 10 check-ins, as well as users who have at least 10 weekly trajectories. For the Gowalla and Brightkite datasets we randomly selected 300 users. Table 3 shows the statistics of the curated datasets. As may be observed, the evaluated datasets are heterogeneous, with different sizes, number of classes, and trajectories.

4.2. Metrics

For each dataset we report Accuracy at K (ACC@K), Macro Precision (Macro-P), Macro Recall (Macro-R), and Macro F1 score (Macro-F1), which are commonly used metrics in classification and information retrieval (Manning et al. 2008).

\[
\text{ACC@K} = \frac{1}{|T_{\text{test}}|} \sum_{T \in T_{\text{test}}} \sum_{L \in L_K(T)} 1_{T \in L_K(T)}
\]

where \(T_{\text{test}}\) is the set of trajectories in the test split and \(L_K(T)\) is the set of \(K\) labels with the highest probabilities predicted for trajectory \(T\). Macro-P and Macro-R are the mean precision and recall among all classes, respectively, computed as follows.

Table 3. Summary of the datasets (averages reported in the format AVG ± SD).

Dataset	# of points	# of trajectories	# of labels	Avg. traj. length	Avg. # of traj. per class-label
Brightkite	130,494	7,911	300	16.50 ± 7.07	26.37 ± 16.37
Foursquare Global	663,020	20,911	498	31.71 ± 22.05	41.99 ± 13.04
Foursquare NYC	66,962	3,079	193	21.75 ± 14.46	15.95 ± 6.33
Gowalla	98,158	5,329	300	18.42 ± 8.05	17.76 ± 8.20
Macro – \(P = \frac{1}{|L|} \sum_{L \in L} \frac{TP_L}{TP_L + FP_L} \) \hspace{1cm} (3)

Macro – \(R = \frac{1}{|L|} \sum_{L \in L} \frac{TP_L}{TP_L + FN_L} \) \hspace{1cm} (4)

where \(TP_L, FP_L, \) and \(FN_L \) are the number of true positives, false positives, and false negatives for class \(L \), respectively. While Macro-P shows the ability of the classifier not to give false positives for each class, Macro-R exhibits its ability to retrieve all relevant trajectories of each class. Macro-F1 is the harmonic mean of Macro-P and Macro-R, averaged across all classes, computed as

\[
\text{Macro – F1} = \frac{2 \cdot \text{Macro – P} \cdot \text{Macro – R}}{\text{Macro – P} + \text{Macro – R}}
\] \hspace{1cm} (5)

4.3. Experimental setup

On all the datasets we run the experiments performing a stratified holdout evaluation, with 2/3 of the data for training and 1/3 for validation. In order to show the robustness of our work, we run an additional experiment on a modified version of the Foursquare datasets in which the POI identifier is generalized to POI category and the spatial dimension is removed. This is motivated by the fact that human movement exhibits high spatio-temporal regularity, so users tend to visit a few POIs regularly (Gonzalez et al. 2008). Therefore, the POIs visited by a user, as well as the spatial dimension, are highly discriminative information, and, because of privacy concerns (Seidl et al. 2016), in some situations the exact locations visited by users may not be publicly available. Hence, we consider this further experiment to be representative of a realistic scenario, which is harder than the one typically faced in previous literature.

We use 100-dimensional embeddings and 100 LSTM units for MARC and we run three variants of our model: MARC -S, MARC -A, and MARC -C, which use sum, average, and concatenation for attribute aggregation, respectively. We also run a variant of our method, named MARC (Geohash), with only the space dimension, so that we can validate the use of the Geohash representation in the model.

For Bi-TULER and TULVAE we use the same settings reported in the respective papers. We embed POIs into 250-dimensional vectors and use 300 units for the classifier RNNs. We use 512 units for the encoder-decoder RNN and 100 units for the latent variable \(z \) in TULVAE. For MOVELETS, we experimented several attributes and their combinations and report the best results, achieved by using only the POI identifiers. For the experiment where the POI identifier is removed we consider all trajectory attributes. Additionally, as we run MOVELETS for multiple-aspect trajectories, we use binary distance for nominal features and euclidean distance for numeric, temporal, and spatial dimensions. We evaluated MOVELETS with a single-layer MLP classifier with 100 units, Decision Trees and Random Forest, and only the best results (achieved with MLP) are reported. For all networks we use a dropout rate of 0.5, batch size of 64, and we minimize the categorical cross entropy loss using the Adam optimizer with a learning rate of 10\(^{-3}\).
In the following sections we present the experimental results. In Section 4.4 we show the classification results on the original datasets, and in Section 4.5 we present the results on the modified version of the Foursquare datasets.

4.4. Classification results

Table 4 shows the classification results for the proposed method and compared to existing techniques over the four datasets. For each metric, the best result is highlighted in bold and the second best result is underlined. The results show that MARC systematically outperforms existing methods on all datasets. MOVELETS is the second best method on Foursquare NYC, Brightkite (tied with Bi-TULER), and Gowalla, which used only the POI identifiers to classify trajectories. Such results show that, indeed, the POIs visited by users are highly discriminative data for trajectory classification. Moreover, the high space complexity of MOVELETS is shown by the fact that we were not able to run MOVELETS without filtering the set of discovered patterns on Foursquare Global, the largest dataset evaluated.

Bi-TULER and TULVAE perform poorly on Foursquare NYC (accuracies of 48.20 and 54.33, respectively), but significantly better on Foursquare Global (accuracies of 80.58 and 80.67, respectively), Brightkite (accuracies of 90.64 and 88.41, respectively), and Gowalla (accuracies of 66.15 and 67.94, respectively). Considering the three variations of our method, we observe that aggregating attributes via concatenation (MARC -C) yielded the best results for the majority of the metrics. However, summing (MARC -S) and averaging (MARC -A) attributes also gave great results, on average no more than 1% above or below concatenation scores. As stated in Section 3, MARC -C uses embedded representations and weight matrices \(r \) times larger than MARC -S and MARC -A (considering the same embedding dimension for all attributes). Considering only the spatial dimension (MARC (Geohash)), we observe that MARC was able to achieve competitive results with the compared approaches.

Figure 5 shows the convergence of ACC@1 for all methods on all datasets. All variants of MARC show fast convergence in comparison to existing deep learning methods, Bi-TULER and TULVAE. Both Bi-TULER and TULVAE pre-learn embeddings for POIs in an unsupervised manner, which we claim to be one of the underlying factors for their worse performance. MOVELETS exhibits fast convergence as well, but it is important to highlight that it uses a shallow neural network and there is an extensive feature extraction process before the classification task is performed.

4.5. Classification results for generalized POIs and without the spatial dimension

Table 5 presents the results for the experiment where the POI identifier was generalized to POI category and the spatial dimension removed. We highlight that this experiment shows a more difficult yet realistic scenario, motivated by privacy concerns about the users information. Similarly to the previous experiment, for each metric the best result is highlighted in bold and the second best result is underlined. We observe that for all methods the accuracy decreased significantly in comparison to the previous experiment in which the detailed information of the POI identifier and the spatial dimension was
Table 4. Classification results on stratified holdout evaluation, considering all attributes available in the datasets.

Dataset	Metric	Bi-TULER (Gao et al. 2017)	MOVELETS (Ferrero et al. 2018)	TULVAE (Zhou et al. 2018)	MARC -S	MARC -A	MARC -C	MARC (Geohash)
Foursquare NYC	ACC@1	48.20	97.66	54.33	97.57	98.05	98.64	93.77
	ACC@5	67.38	98.93	73.81	98.93	99.03	99.34	97.86
	Macro-P	43.48	96.85	48.66	97.94	97.77	98.34	94.33
	Macro-R	41.88	96.67	47.32	96.94	97.50	98.24	92.56
	Macro-F1	40.56	96.45	46.54	97.11	97.37	98.20	92.75
Foursquare Global	ACC@1	80.58	76.66^a	80.67	98.78	98.65	99.07	96.67
	ACC@5	90.23	80.38^a	90.48	99.33	99.20	99.31	98.87
	Macro-P	81.69	75.88^a	81.01	98.78	98.64	99.07	96.67
	Macro-R	77.57	68.13^a	77.60	98.63	98.53	98.98	96.24
	Macro-F1	78.31	70.27^a	78.07	98.64	98.52	98.97	96.28
Brightkite	ACC@1	90.64	90.55	88.41	96.35	96.01	96.85	94.92
	ACC@5	95.55	93.79	92.15	98.62	98.62	98.99	97.61
	Macro-P	88.98	93.53	85.00	95.97	95.85	96.76	93.90
	Macro-R	88.23	87.92	83.86	95.43	95.00	96.21	93.19
	Macro-F1	87.92	89.41	83.63	95.15	94.86	96.17	93.04
Gowalla	ACC@1	66.15	91.44	67.94	92.36	93.46	94.33	88.31
	ACC@5	78.36	94.04	78.76	96.01	97.16	97.57	95.31
	Macro-P	67.44	93.24	69.19	92.72	94.11	94.77	88.93
	Macro-R	63.21	89.27	64.80	91.25	92.63	93.28	86.90
	Macro-F1	63.26	90.25	64.91	91.13	92.43	93.28	86.81

^aWe could not run MOVELETS without filtering the set of discovered MOVELETS, because too many are generated.
Figure 5. Classification accuracy (ACC@1) over training time (Epoch) of compared approaches, considering the datasets with all attributes. Brightkite (top left), Gowalla (top right), Foursquare Global (bottom left), and Foursquare NYC (bottom right).

considered. However, among all approaches, MARC still keeps a significantly higher accuracy when compared to state of the art. Figure 6 shows the convergence of ACC@1 for all methods in this new scenario. MARC achieves accuracies lower than the ones of Bi-TULER and TULVAE for the first few epochs, because while they use pre-trained embeddings, we train an end-to-end task. Afterwards, our models continue to learn whereas both Bi-TULER and TULVAE converge to an accuracy of about 33%. MOVELETS also exhibits much slower convergence compared to the previous experiment, which suggests that the discovered patterns are not as discriminating as they were before. In summary, the results of the experiments show that MARC is more robust than existing approaches, and good classification accuracies can be achieved after only a few epochs of training.

5. Discussion

In Section 4, we showed that the proposed classification method, MARC, outperforms existing approaches in all datasets. Due to the lack of multiple-aspect trajectory datasets from other domains, our evaluation was constrained to the TUL problem with LBSN data, as this problem has been consistently addressed by previous works in the literature (Gao et al. 2017, Zhou et al. 2018, Petry et al. 2019).

In the first experiment (Section 4.4), Bi-TULER and TULVAE performed poorly on the Foursquare NYC dataset, but significantly better on the other ones. We conjecture that these results are related to (1) the larger size of these datasets and (2) the geographic distribution of check-ins. Check-ins in the Foursquare Global, Brightkite, and Gowalla
Table 5. Classification results on stratified holdout evaluation, considering the datasets without the POI identifiers.

Dataset	Metric	Bi-TULER (Gao et al. 2017)	MOVELETS (Ferrero et al. 2018)	TULVAE (Zhou et al. 2018)	MARC -S	MARC -A	MARC -C
Foursquare NYC	ACC@1	33.50	41.58	32.81	74.10	70.59	74.87
	ACC@5	60.76	67.96	61.15	88.32	87.83	88.12
	Macro-P	29.58	38.76	29.55	73.16	70.83	75.19
	Macro-R	29.70	36.93	29.52	71.28	67.34	72.23
	Macro-F1	28.29	35.11	28.14	70.21	66.59	71.22
Foursquare Global	ACC@1	34.70	51.88	34.40	81.97	81.47	81.55
	ACC@5	60.46	73.74	62.01	92.73	92.74	92.28
	Macro-P	34.22	54.64	33.64	82.47	82.55	82.20
	Macro-R	33.43	49.96	32.96	80.53	80.16	80.34
	Macro-F1	32.41	49.19	31.58	80.63	80.40	80.46
Datasets are distributed around the globe, so the data is inherently more discriminative than in the Foursquare NYC dataset. Moreover, although MARC-C was the best performing variant of our method on all datasets, for applications with memory/storage constraints MARC-S and MARC-A are the best alternatives, since the sum and average of attributes results in fewer parameters (weights) in the neural network. Additionally, the high scores achieved by MARC (Geohash) show that the Geohash representation can successfully preserve the discriminative power of the spatial dimension in neural networks.

In the second experiment (Section 4.4), we presented results considering a harder and more realistic scenario in which very sensitive information of the datasets is not available (visited POIs and spatial locations). Instead of relying on the specific locations and POIs visited by users, MARC leveraged user preference information (rating and price tier of the visited POIs) and daily habits in order to discriminate between different users. In this scenario, the accuracy of the other methods decreased substantially in comparison with the previous experiment, while MARC was still able to perform classification with a high accuracy. We explain the poor performance of previous works with two major aspects of this experiment. First, as we observed in the previous experiment, the specific POI identifiers play a big role in discriminating user trajectories. Bi-TULER and TULVAE consider only the POI attribute, which was replaced by the POI category for this experiment. Since they do not consider multiple trajectory attributes, their performance decreased substantially, achieving 33.50 and 32.81 accuracy on Foursquare NYC, and 34.70 and 34.40 on Foursquare Global, respectively. Second, classifiers must be able to leverage between the remaining attributes in order to correctly classify user based on their trajectories.

Although the MOVELETS technique supports multiple attributes, it always considers all attributes when looking for trajectory patterns, therefore the less discriminant dimensions will then add noise to the pattern, as MOVELETS is not able to find the best dimensions for classification problems. MOVELETS achieved 41.58 and 51.88 accuracies on Foursquare NYC and Global, respectively, and performed better than Bi-TULER and TULVAE for all evaluated metrics on both datasets. The method should perform better by using only the spatial dimension as it is a more discriminant feature. However, by embedding multiple attributes and modelling complex sequential patterns with MARC, we were able to achieve much higher accuracy and F1 scores than existing approaches (between 70% and 92%).
MARC is generic enough to deal with different trajectory classification problems, such as transportation mode inference, predicting the profile of a person, etc, as highlighted in Section 1. However, we expect our method to perform better in problems with more textual/categorical attributes. This is because attributes are one-hot encoded (i.e. discretized), thus the precision of numerical attributes may be affected as different values of the attribute may have the same one-hot encoding. In that case, methods that explicitly define distance functions for numerical attributes (e.g. Ferrero et al. (2018)) will most likely perform better than MARC. For example, the proposed approach would probably perform well at predicting the profile of a person based on qualitative attributes of the person, but would be not as good at predicting the transportation mode of trajectory based on speed and direction information.

From a high-level point of view, the results show that MARC can be a useful tool for other important tasks that affect our daily lives. Regarding social aspects, correlating trajectories with their users allows for a better understanding of the movement patterns of users, as well as identifying user profiles for making more personalized recommendations. From a security point of view, identifying the user of a given trajectory may be helpful, for instance, in identifying criminals or terrorists (Gao et al. 2017). Even though in LBSNs the users may be already known, the classification model may assist in the detection of hacked user profiles by identifying abnormal behavior (through the analysis of the misclassifications made by the model).

6. Conclusions

In this paper we presented a new method, named MARC, for classifying multiple-aspect trajectories. Our method focuses on the different spatial, temporal, and semantic attributes that characterize multiple-aspect trajectories, and a multi-attribute embedding layer is used to encode these heterogeneous dimensions. We leave to the neural network the task of learning abstract features and sequential patterns that are present in trajectory data. We designed an architecture with similar or lower network complexity compared to existing works, yet it achieved significantly higher levels of accuracy than other state-of-the-art approaches.

As future work, we will investigate the use of attention mechanisms for modelling trajectory patterns, as it has shown to be a good approach for trajectory POI prediction (Feng et al. 2018). Furthermore, we want to consider supervised approaches for embedding attributes or trajectories, such as the use of the distance-based histogram loss (Ustinova and Lempitsky 2016) and prototypical networks (Snell et al. 2017), because we believe that trajectory attributes lose their discriminative power when embedded through an unsupervised similarity-based manner as in previous works.

Notes

1. https://keras.io/.
2. https://github.com/bigdata-ufsc/petry-2020-marc.
3. https://developer.foursquare.com/.
4. https://www.wunderground.com/weather/api/.
5. http://www.master-project-h2020.eu/.
Disclosure statement

No potential conflict of interest was reported by the authors.

Notes on contributors

Lucas May Petry is a graduate student at Universidade Federal de Santa Catarina (UFSC), Brazil, pursuing an M.Sc. degree in Computer Science. He is currently a research assistant at the Institute for Big Data Analytics, at Dalhousie University, Canada. He received his B.S. degree (2018) in Computer Science from UFSC, having visited the University of California, Davis for a year as an exchange visiting undergraduate student. His research interests include machine learning, deep learning, and spatiotemporal data analysis.

Camila Leite da Silva is a graduate student at Universidade Federal de Santa Catarina (UFSC), Brazil, pursuing an M.Sc. degree in Computer Science in the field of Artificial Intelligence. She is currently a researcher at the Big Data Analytics Laboratory at UFSC, with focus on trajectory data classification. She received her B.S. degree (2018) in Information Systems from Universidade Federal de Mato Grosso do Sul (UFMS), where she was part of interdisciplinary projects. Her main areas of interest are machine learning, data analysis, and trajectory data.

Dr. Andrea Esuli is a tenured researcher at the Italian National Research Council. His research interests include machine learning as applied to text mining, with a special emphasis on quantification and deep learning. Esuli has a Ph.D. in Information Engineering from the University of Pisa. In 2010 he won the European “Cor Baayen” award as a “promising young researcher in computer science and applied mathematics”.

Dr. Chiara Renso is a researcher at the ISTI Institute of CNR (Italy) holding a Ph.D. in Computer Science. She has more than 100 peer reviewed publications in the area of mobility data mining, machine learning for mobility data, analysis of geolocated social media, semantic enrichment of trajectory data, privacy in mobility data. The focus is addressing interesting, often yet unsolved problems, related to the enrichment, representation, analysis of semantic rich trajectory data. She has been the project coordinator of European Commission projects, currently a H2020-MSCA-RISE project called MASTER on multiple aspects trajectories management and analysis. She has been local chair of the IEEE ICDM conference in 2008, local co-chair of the SIGIR conference in 2016. She has been co-chair of the workshops: SADM 2008, SADM 2009, SADM 2010 in conjunction of ICDM conference editions. She is co-chair of two editions of the Workshop on Big Mobility Data Analytics (BMDA) held in conjunction with EDBT 2019 and EDBT 2020. She was co-chair of FATES 2019 and FATES 2020 joint with The Web Conference. She is Workshop Chair of Mobile Data Management 2020 Conference. She is in the Editorial Board of International Journal of GIS.

Dr. Vania Bogorny is a professor at the Departamento de Informática e Estatística of Universidade Federal de Santa Catarina (UFSC), Brazil, since 2009, and is currently the head of the Computer Science Graduate Program. She received her Ph.D. (2006) in Computer Science from Universidade Federal do Rio Grande do Sul (UFRGS), Brazil, and received the Best Ph.D. Thesis Award from the Brazilian Computer Society. She has published in conference proceedings and refereed journals, and has served as a reviewer and technical committee member of international journals (DMKD, TKDE, DKE, JVLDI, UGIS, TGIS, etc) and European Projects. She was the UFSC coordinator of the European FP7 Framework Project SEEK (2011-2015) and the H2020 MASTER Project (2018-2021). She is the coordinator of the CAPES/PRINT project Big Data Analytics. Her general areas of interest are data mining, data modeling, and sequential data analysis.
Data and codes availability statement

The source code and data that support the findings of this study are partially available in Figshare at https://doi.org/10.6084/m9.figshare.10269725. These data were derived from the following resources available in the public domain:

- Brightkite dataset at https://snap.stanford.edu/data/loc-Brightkite.html
- Gowalla dataset at https://snap.stanford.edu/data/loc-gowalla.html
- Foursquare datasets at https://sites.google.com/site/yangdingqi/home/foursquare-dataset

The final processed data from Foursquare cannot be made publicly available in order to comply with the Foursquare API Platform and Data Use Policy. Foursquare venue data are available at https://developer.foursquare.com/places with the permission of Foursquare.

Funding

This study was financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 and through the research project Big Data Analytics: Lançando Luz dos Genes ao Cosmos [CAPES/PRINT process number 88887.310782/2018-00]. This work was also supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo a Pesquisa e Inovação do Estado de Santa Catarina (FAPESC) - Project Match - co-financing of H2020 Projects - Grant 2018TR 1266, and the European Union’s Horizon 2020 research and innovation programme under Grant Agreement 777695 (MASTER1). The views and opinions expressed in this paper are the sole responsibility of the author and do not necessarily reflect the views of the European Commission.

ORCID

Lucas May Petry http://orcid.org/0000-0003-1462-4538
Camila Leite Da Silva http://orcid.org/0000-0003-3739-9820
Andrea Esuli http://orcid.org/0000-0002-5725-4322
Chiara Renso http://orcid.org/0000-0002-1763-2966
Vania Bogorny http://orcid.org/0000-0002-0159-4643

References

Andrienko, G.L., Andrienko, N.V., and Heurich, M., 2011. An event-based conceptual model for context-aware movement analysis. International Journal of Geographical Information Science, 25 (9), 1347–1370. doi:10.1080/13658816.2011.556120
Biljecki, F., Ledoux, H., and van Oosterom, P., 2013. Transportation mode-based segmentation and classification of movement trajectories. International Journal of Geographical Information Science, 27 (2), 385–407. doi:10.1080/13658816.2012.692791
Brum-Bastos, V.S., Long, J.A., and Demšar, U., 2018. Weather effects on human mobility: a study using multi-channel sequence analysis. Computers, Environment and Urban Systems, 71, 131–152. doi:10.1016/j.compenvurbsys.2018.05.004
Buchin, M., Dodge, S., and Speckmann, B., 2012. Context-aware similarity of trajectories. In: International conference on geographic information science. Columbus, OH: Springer, 43–56.
Chen, C., et al., 2019. Trip2vec: a deep embedding approach for clustering and profiling taxi trip purposes. Personal and Ubiquitous Computing, 23, 53–66.
Cho, E., Myers, S.A., and Leskovec, J., 2011. Friendship and mobility: user movement in location-based social networks. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. San Diego, CA: ACM, 1082–1090.
Dabiri, S. and Heaslip, K., 2018. Inferring transportation modes from gps trajectories using a convolutional neural network. *Transportation Research Part C: Emerging Technologies*, 86, 360–371. doi:10.1016/j.trc.2017.11.021

de Alencar, L.A., et al., 2015. A rule- based method for discovering trajectory profiles. *In: The 27th International Conference on Software Engineering and Knowledge Engineering, SEKE 2015*, 6–8 July 2015. Pittsburgh, PA, USA: Wyndham Pittsburgh University Center, 244–249. doi:10.18293/SEKE2015-143

De Groeve, J., et al., 2016. Extracting spatio-temporal patterns in animal trajectories: an ecological application of sequence analysis methods. *Methods in Ecology and Evolution*, 7 (3), 369–379. doi:10.1111/2041-210X.12453

De Groeve, J., et al., 2019. Individual movement-sequence analysis method (im-sam): characterizing spatio-temporal patterns of animal habitat use across landscapes. *International Journal of Geographical Information Science*, 1–22. doi:10.1080/13658816.2019.1594822

Demšar, U., et al., 2015. Analysis and visualisation of movement: an interdisciplinary review. *Movement Ecology*, 3 (1), 5. doi:10.1186/s40462-015-0032-y

Dodge, S., et al., 2013. The environmental-data automated track annotation (env-data) system: linking animal tracks with environmental data. *Movement Ecology*, 1 (1), 3. doi:10.1186/2051-3933-1-3

Dodge, S., Weibel, R., and Forootan, E., 2009. Revealing the physics of movement: comparing the similarity of movement characteristics of different types of moving objects. *Computers, Environment and Urban Systems*, 33 (6), 419–434. doi:10.1016/j.compenvurbsys.2009.07.008

Etemad, M., Soares Júnior, A., and Matwin, S., 2018. Predicting transportation modes of gps trajectories using feature engineering and noise removal. *In: Advances in Artificial Intelligence: 31st Canadian Conference on Artificial Intelligence, Canadian AI 2018, Proceedings 31*, May 8–11, 2018. Toronto, ON, Canada: Springer, 259–264

Feng, J., et al., 2018. Deepmove: predicting human mobility with attentional recurrent networks. *In: Proceedings of the 2018 world wide web conference on world wide web’, International world wide web conferences steering committee*. Lyon, France, 1459–1468.

Ferrero, C.A., et al., 2018. Movelets: exploring relevant subtrajectories for robust trajectory classification. *In: Proceedings of the 33rd ACM/SIGAPP symposium on applied computing*. Pau, France, 9–13.

Ferrero, C.A., et al. (2019), ‘Discovering heterogeneous subsequences for trajectory classification’, *arXiv preprint arXiv:1903.07722*.

Ferrero, C.A., Alvares, L.O., and Bogorny, V., 2016. Multiple aspect trajectory data analysis: research challenges and opportunities. *In: XVII Brazilian symposium on geoinformatics - GeoInfo 2016*, November 27–30, 2016. Campos do Jordão, SP, Brazil, 56–67. Available from: http://urlib.net/8JMDK3MPDW34P/3NDC42E

Furtado, A.S., et al., 2016. Multidimensional similarity measuring for semantic trajectories. *Transactions in GIS*, 20 (2), 280–298. doi:10.1111/tgis.2016.20.issue-2

Gao, Q., et al., 2017. Identifying human mobility via trajectory embeddings. *In: Proceedings of the 26th international joint conference on artificial intelligence*. Melbourne, Australia: AAAI Press, 1689–1695.

Gonzalez, M.C., Hidalgo, C.A., and Barabasi, A.-L., 2008. Understanding individual human mobility patterns. *nature*, 453 (7196), 779. doi:10.1038/nature06958

Hochreiter, S. and Schmidhuber, J., 1997. Long short-term memory. *Neural Computation*, 9 (8), 1735–1780. doi:10.1162/neco.1997.9.8.1735

Le, Q. and Mikolov, T., 2014. Distributed representations of sentences and documents. *In: International conference on machine learning*. Beijing, China, 1188–1196.

Lee, J. G., et al., 2008. Traclass: trajectory classification using hierarchical region-based and trajectory-based clustering. *Proceedings of the VLDB Endowment*, 1 (1), 1081–1094. doi:10.14778/1453856

Manning, C.D., Raghavan, P., and Schütze, H., 2008. *Introduction to information retrieval*. Cambridge, UK: Cambridge University Press.

Mello, R.D.S., et al., 2019. Master: a multiple aspect view on trajectories. *Transactions in GIS*, 23 (4), 805–822. doi:10.1111/tgis.12526
Mikolov, T., et al. 2013a. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
Mikolov, T., et al., 2013b. Distributed representations of words and phrases and their compositionality. In: Advances in neural information processing systems: 27th Annual Conference on Neural Information Processing Systems 2013. Lake Tahoe, Nevada, USA, 3111–3119.
Niemeyer, G. 2008. Geohash. Available from: https://en.wikipedia.org/wiki/Geohash
Patel, D., 2013. Incorporating duration and region association information in trajectory classification. Journal of Location Based Services, 7 (4), 246–271. doi:10.1080/17489725.2013.805828
Petry, L.M., et al., 2019. Towards semantic-aware multiple-aspect trajectory similarity measuring. Transactions in GIS, 23, 960–975. doi:10.1111/tgis.v23.5.
Sak, H., Senior, A., and Beaufays, F., 2014. Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In: Fifteenth annual conference of the international speech communication association. Singapore, 338–342.
Seidl, D.E., Jankowski, P., and Tsou, M.-H., 2016. Privacy and spatial pattern preservation in masked gps trajectory data. International Journal of Geographical Information Science, 30 (4), 785–800. doi:10.1080/13658816.2015.1101767
Snell, J., Swersky, K., and Zemel, R., 2017. Prototypical networks for few-shot learning. In: Advances in neural information processing systems: 31st Annual Conference on Neural Information Processing Systems 2017. Long Beach, CA, USA, 4077–4087.
Srivastava, N., et al., 2014. Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15 (1), 1929–1958.
Ustinova, E. and Lempitsky, V., 2016. Learning deep embeddings with histogram loss. In: Advances in neural information processing systems: 30th Annual Conference on Neural Information Processing Systems 2016. Barcelona, Spain, 4170–4178.
van Toor, M.L., et al., 2016. Temporal segmentation of animal trajectories informed by habitat use. Ecosphere, 7 (10), e01498. doi:10.1002/ecs2.1498
Wagner, R.A. and Fischer, M.J., 1974. The string-to-string correction problem. Journal of the ACM (JACM), 21 (1), 168–173. doi:10.1145/321796.321811
Xiao, Z., et al., 2017. Identifying different transportation modes from trajectory data using tree-based ensemble classifiers. ISPRS International Journal of Geo-Information, 6 (2), 57. doi:10.3390/ijgi6020057
Yang, D., et al., 2015. Modeling user activity preference by leveraging user spatial temporal characteristics in lbsns. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45 (1), 129–142. doi:10.1109/TSMC.2014.2327053
Yang, D., Zhang, D., and Qu, B., 2016. Participatory cultural mapping based on collective behavior data in location-based social networks. ACM Transactions on Intelligent Systems and Technology (TIST), 7 (3), 30.
Zhao, W.X., et al., 2017. A time- aware trajectory embedding model for next-location recommendation. Knowledge and Information Systems, 56, 559–579.
Zheng, Y., et al., 2010. Understanding transportation modes based on gps data for web applications. ACM Transactions on the Web (TWEB), 4 (1), 1. doi:10.1145/1658373
Zhou, F., et al., 2018. Trajectory-user linking via variational autoencoder. In: Proceedings of the 27th international joint conference on artificial intelligence. Stockholm, Sweden, 3212–3218.
Zhou, N., et al., 2016. A general multi-context embedding model for mining human trajectory data. IEEE Transactions on Knowledge and Data Engineering, 28 (8), 1945–1958. doi:10.1109/TKDE.2016.2550436