Systematic Review of Physical Activity, Sedentary Behaviour and Sleep Among Adults Living with Chronic Respiratory Disease in Low- and Middle-Income Countries.

Jayamaha, A. R., Jones, A. V., Katagira, W., Girase, B., Yusuf, Z. K., Pina, I., Wilde, L. J., Akylbekov, A., Divall, P., Singh, S. J. & Orme, M
Published PDF deposited in Coventry University’s Repository

Original citation:
Jayamaha, AR, Jones, AV, Katagira, W, Girase, B, Yusuf, ZK, Pina, I, Wilde, LJ, Akylbekov, A, Divall, P, Singh, SJ & Orme, M 2022, 'Systematic Review of Physical Activity, Sedentary Behaviour and Sleep Among Adults Living with Chronic Respiratory Disease in Low- and Middle-Income Countries.', International Journal of Chronic Obstructive Pulmonary Disease, vol. 2022, no. 17, pp. 821-854.
https://doi.org/10.2147/COPD.S345034

DOI 10.2147/COPD.S345034
ISSN 1176-9106

Publisher: Dove Medical Press

© 2022 Jayamaha et al. This work is published by Dove Medical Press Limited, and licensed under a Creative Commons Attribution License. The full terms of the License are available at http://creativecommons.org/licenses/by/4.0/. The license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Systematic Review of Physical Activity, Sedentary Behaviour and Sleep Among Adults Living with Chronic Respiratory Disease in Low- and Middle-Income Countries

Akila R Jayamaha1,2, Amy V Jones1,3, Winceslaus Katagira4, Bhushan Girase5, Zainab K Yusuf1,3, Ilaria Pina1,3, Laura J Wilde1,3, Azamat Akylbekov6, Pip Divall7, Sally J Singh1,3, Mark W Orme1,3

1Department of Respiratory Sciences, University of Leicester, Leicester, UK; 2Department of Health Sciences, KIU, Battaramulla, Sri Lanka; 3Centre for Exercise and Rehabilitation Science, NIHR Leicester Biomedical Research Centre-Respiratory, Leicester, UK; 4Makerere University Lung Institute, Makerere University College of Health Sciences, Mulago Hospital, Kampala, Uganda; 5Family Health, PATH, Delhi, India; 6National Centre for Cardiology and Internal Medicine, Bishkek, Kyrgyzstan; 7University Hospitals of Leicester NHS Trust, Leicester, UK

Correspondence: Akila R Jayamaha, Tel +94759359834, Email arj22@leicester.ac.uk

Abstract: Physical activity (PA), sedentary behaviour (SB) and sleep are important lifestyle behaviours associated with chronic respiratory disease (CRD) morbidity and mortality. These behaviours need to be understood in low- and middle-income countries (LMIC) to develop appropriate interventions.

Purpose: Where and how have free-living PA, SB and sleep data been collected for adults living with CRD in LMIC? What are the free-living PA, SB and sleep levels of adults living with CRD?

Patients and Methods: The literature on free-living PA, SB and sleep of people living with CRD in LMIC was systematically reviewed in five relevant scientific databases. The review included empirical studies conducted in LMIC, reported in any language. Reviewers screened the articles and extracted data on prevalence, levels and measurement approach of PA, SB and sleep using a standardised form. Quality of reporting was assessed using bespoke criteria.

Results: Of 89 articles, most were conducted in Brazil (n=43). PA was the commonest behaviour measured (n=66). Questionnaires (n=52) were more commonly used to measure physical behaviours than device-based (n=37) methods. International Physical Activity Questionnaire was the commonest for measuring PA/SB (n=11). For sleep, most studies used Pittsburgh Sleep Quality Index (n=18). The most common ways of reporting were steps per day (n=21), energy expenditure (n=21), sedentary time (n=16), standing time (n=13), sitting time (n=11), lying time (n=10) and overall sleep quality (n=32). Studies revealed low PA levels [steps per day (range 2669–7490 steps/day)], sedentary lifestyles [sitting time (range 283–418 min/day); standing time (range 139–270 min/day); lying time (range 76–119 min/day)] and poor sleep quality (range 33–100%) among adults with CRD in LMIC.

Conclusion: Data support low PA levels, sedentary lifestyles and poor sleep among people in LMIC living with CRDs. More studies are needed in more diverse populations and would benefit from a harmonised approach to data collection for international comparisons.

Keywords: chronic respiratory disease, low- and middle-income countries, physical activity, sedentary behaviour, sleep

Introduction

Chronic respiratory disease (CRD) (chronic diseases of the airways and the other structures of the lungs) is associated with cigarette smoking, fumes from cooking on open stoves, air pollution, and pulmonary tuberculosis, and is highly prevalent across low- and middle-income countries (LMIC). Physical behaviours include all activities over a 24-h period across the movement spectrum, from no/little movement (sleep, sedentary behaviour) to movement of greater intensities.
Physical inactivity is a key risk factor for non-communicable disease, has been estimated to cause 9% of premature deaths worldwide and global trends are not on track to meet the global physical activity target, which is 10% relative reduction in the prevalence of insufficient physical activity by 2025. People living with CRD are not only less physically active than healthy adults, but also those living with other chronic diseases. Symptoms of CRD, including breathlessness, deconditioning and declining lung function, contribute to a physically inactive lifestyle; linked to an increased risk of hospitalisation and premature death. Sedentary behaviour (SB) (any waking behaviour characterized by an energy expenditure ≤1.5 metabolic equivalents, while in a sitting, reclining or lying posture) comprises the majority of people’s waking day. People living with CRD spend more time sedentary which has been associated with premature mortality. Poor sleep quality, sleep dissatisfaction, and inadequate sleep contributes significantly to societies’ health burden. Sleep disturbances are a common feature of CRD, leading to more severe respiratory symptoms and putting people at a greater risk of an acute exacerbation.

Whilst distinct behaviours, PA, SB and sleep are intrinsically interrelated components of the 24-hour day, demonstrating the need to examine them in the context of each other rather than in isolation. Recent WHO guidelines for PA and SB and Canadian 24-hour movement guidelines have started to reflect this notion, but research is almost exclusively from high-income countries (HIC). Not least, PA in LMIC is mainly accumulated through transportation and occupation-related activities, contrasting HIC where most PA is undertaken recreationally. Economical, societal and cultural diversities in LMIC must be considered in the evaluation and monitoring of physical behaviours. A range of measurement options are available to quantify free-living PA, SB and sleep.

By compiling the current evidence on free-living PA, SB and sleep of adults living with CRD in LMIC, this review seeks to highlight research priorities, enabling researchers and clinicians to address important lifestyle health challenges in a more time- and cost-effective manner. Our scoping exercise identified no similar published reviews in LMIC. Similar reviews have been conducted in HIC which have aided comparisons between our findings from LMIC with findings from HIC.

Materials and Methods

This systematic review is reported in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement. The protocol was prospectively registered on the International Prospective Register of Systematic Reviews (PROSPERO; CRD42020176196).

The search strategy was developed by an experienced clinical librarian using appropriate subject headings for each database. Search terms included chronic respiratory disease, “physical* activ*”, “sedent*” and sleep*alongside filters on LMIC (a full search strategy is provided in Appendix A). The strategy was adapted for each database.

Relevant articles were identified through systematic searches in five databases (Ovid-MEDLINE, Cochrane library, Ovid-EMBASE, Ovid-EMCARE and CINAHL). Searches for articles published in peer-reviewed journals were from the inception of each database until 30th January 2020. Global Index Medicus was searched, which included African Index Medicus, Index Medicus for Eastern Mediterranean Region, Index Medicus for South-East Asia Region, Latin Am. and Carib. Center on Health Sci Info, and Western Pacific Region Index Medicus. Reference lists of included articles were searched by hand for additional eligible articles. Studies on adults living with CRD in LMIC (population) which related to PA, SB and sleep (intervention), irrespective of the presence or absence of comparator (control group) which report what, where and how PA, SB and sleep data have been collected (outcome) were included in the review. Eligible studies included cross-sectional, longitudinal and case-control studies. Intervention studies were included if baseline data were presented. No restrictions were placed on sample size or language. The full text of the conference abstracts were
requested from the corresponding author and if the authors did not respond, conference abstracts were also considered due to the paucity of the empirical evidence in LMICs.

Search results were screened using Rayyan software. Two reviewers independently screened for eligibility by title and abstract [MO, AVJ]. Interrater agreement was 99.6%. Discrepancies between the two reviewers were resolved through discussion and with final decision provided by ZY. The full texts of these potentially eligible articles were then retrieved and independently assessed by two reviewers [MO, ZY]. Discrepancies between the two reviewers were resolved through discussion and final decision provided by SS in the event of no consensus. Interrater agreement was 88.1%. Study authors were asked for full text copies if these could not be retrieved.

Data from included studies were extracted using a bespoke Microsoft Excel spreadsheet which included details on study location, study design, participant characteristics, free-living 24-hour physical behaviour measurements and methods, income classification, climate classification, air quality (see Appendix B for full data extraction form/table). Authors of included studies were not contacted in the event of missing data. Data extraction was performed by five authors [AA, ARJ, BG, MO, WK], with double-data extraction for each study. Any conflicts in data extraction were resolved through discussion with final decision provided by MO/SS.

The main summary measures were objectively measured overall free-living PA, SB and sleep. Given the nature of the review, no formal risk of bias assessment was conducted. Instead, indicators of quality of reporting and questionnaire/device deployment were examined. Reporting quality of the included studies was conducted by considering whether key information was provided. The presence or absence of information relating to each of the above items was used to describe the quality of reporting. Reporting quality of the included studies was presented through narrative and table summaries. In accordance with our PROSPERO registration, a meta-analysis was not planned due to anticipated heterogeneity in measurement approaches (Table 1).

Extracted data and summary measures were stratified into subgroups: Region (African, Region of the Americas, South-East Asia, European, Eastern Mediterranean, Western Pacific); income classification (Countries with low-income economies (Gross national income per capita $1045 or less in 2020); lower middle-income economies (GNI per capita between $1046 and $4095) and upper middle-income economies (GNI per capita between $4096 and $12,695) constitute low-and middle-income countries (LMIC)), Köppen-Geiger climate classification (Equatorial, Arid, Warm temperature, Snow, Polar), air quality levels (PM10: above or below 20µg/m^3 annual mean and PM2.5: above or below 10µg/m^3 annual mean), and measurement approach.

Results
Study Selection and Characteristics
Figure 1 shows the selection process according to the PRISMA statement. The initial search retrieved 18,121 records, 153 full texts were screened for eligibility and 89 articles (0.6%) met the criteria for inclusion (Appendix C). Of the 89 articles identified, 78 were articles and 11 were conference abstracts. The full text of the selected conference abstracts were requested from the corresponding authors but none responded. Most studies recruited exclusively COPD (65 studies [73%]) and asthma patients (13 studies [15%]). Four studies (4%) recruited a combined sample of COPD and asthma and two studies (2%) recruited bronchiectasis patients. Excluding studies covering all regions, sample sizes totalled 8986 participants. Most studies were cross-sectional in design (65 studies [73%]), comprised male majority samples (55 studies [62%]) and included data collected in warm temperature climates (45 studies [51%]) (Table 2). Fifteen studies reported having a control group and eight studies compare the patients with healthy control (Appendix D).

Income Classification
Of the 89 articles identified, none were conducted in low-income countries, 12 (13%) were conducted in lower-middle-income countries, 71 (80%) were conducted in upper-middle-income countries (UMIC) and six (7%) spanned income classifications.
Table 1 Summary of the Variables Used to Describe Physical Activity, Sedentary Behaviour and Sleep

Physical Behaviour Category of Variables	Frequency
Physical activity (PA)	
Steps per day	21
Energy expenditure	21
(e.g. kcal/day, EE during activity)	
Active/inactive binary groups	19
(e.g. ≥80 min MVPA, ≥30 min above 3METs)	
Time spent walking	16
A physical activity score or index	16
(e.g. IPAQ score, YPAS summary index)	
Time in moderate-to-vigorous PA (MVPA)	11
(e.g. time in >3METs, time in ≥3METs)	
Movement intensity	9
(e.g. movement intensity during walking)	
Physical inactivity	8
(e.g. severe inactivity <4580 steps)	
Active/inactive 3+ groups	7
(e.g. Inactive/Moderately inactive/Moderately active/Active)	
Time in PA	6
(e.g. total active time)	
Leisure activities	4
Metabolic equivalents (MET)-min/week	4
(e.g. MET-min/week walking)	
Sport activities	4
Time in vigorous PA	4
Time in moderate PA	3
Household PA	3
Standing and walking time	2
Time in light PA	2
Distance walked	1
Impaired daily functioning	1
Ratio between time in moderate PA & walking	1
Time in other behaviours	1
Sedentary behaviour	
Sedentary time	16
(e.g. time in <1.5METs, time in <2METs)	
Standing time	13

(Continued)
WHO Regions
The most prevalent region for included studies was the Region of the Americas (45 studies [51%]; 43 in Brazil) followed by European (11 studies [12%], eight in Turkey) and South-East Asian (10 studies [11%], six in India). Three studies were conducted solely in Africa (all in Nigeria).

The Methods of Physical Behaviour Data Collection
PA (66 studies) was the most commonly measured behaviour; measured solely in 47 studies, in combination with SB in 16 studies, with sleep in one study and with SB and sleep in two studies. Sleep (24 studies) was measured exclusively in 21 studies and SB (20 studies) was measured solely in two studies.

Most of the studies assessed physical behaviours using questionnaires only (52 studies [58%]). Fourteen different questionnaires were used across included studies, with an additional 12 studies reporting specific questions. For sleep, the Pittsburgh Sleep Quality Index (PSQI) was the most common questionnaire (18 studies). For PA/SB, the International Physical Activity Questionnaire (IPAQ) was most common (11 studies). Questions or questionnaires were not provided in four studies. Most studies (58%) did not report the recall period of the questionnaires used and only one study (2%) reported how missing data were handled (Appendix E).
Of the 36 studies using device-based measurement of physical behaviours, twenty-six studies (72%) used accelerometers and 10 studies (28%) used pedometers. Dynaport activity monitors were used in 15 studies (58% of accelerometer studies) and the SenseWear Armband in seven studies. Five studies (19%) deployed a Dynaport and SenseWear simultaneously. Four studies (15%) did not provide the model of activity monitor used. Most studies (32, 89%) did not report whether participants had access to feedback on their behaviour during the measurement period. Four studies (11%) did not report the number of days participants were asked to wear the device. Most studies (18, 50%) monitored behaviours for two days and six studies (17%) had a seven-day wear protocol. Fifteen studies (42%) did not report how long each day participants were asked to wear a device. Of the 21 studies reporting this information, the majority (18 studies, 86%) asked for 12 hours of wear and during a fixed time period (19 studies, 90%) to be included in analysis, 14 studies (39%) did not report the minimum number of hours each day and minimum number of days the device needed to be worn. Most studies (35, 97%) did not report average wear-time and 34 studies (94%) did not report if or how periods of non-wear were calculated (Appendix F).
Reference	Study Location: Country	Income Classification	Climate Classification	Air Quality PM2.5	Air Quality PM10	Study Design	CRD Population	Sample Size	Age (Years)	Gender Mix	Behaviour Measured
African region											
Adetiloye (2018)²⁴	Nigeria (Ile-Ife)	Lower-Middle	Equatorial	Not available	Not available	Cross-sectional	COPD	60	70 (8)	53% male	Sleep
Adewolea (2017)²³	Nigeria (Ile-Ife)	Lower-Middle	Equatorial	Not available	Not available	Cross-sectional	Chronic pulmonary parenchyma	410	48.5 (16.5)	69.3% female	Sleep
Desalu (2019)²⁶	Nigeria (Northwest, Southeast, Northcentral geopolitical zones)	Lower-Middle	Not available	Not available	Not available	Cross-sectional	Asthma	172	37 (15)	67.4% female	Sleep
Eastern Mediterranean Region											
Ali Zohal (2013)²⁵	Iran (Qazvin city)	Upper-Middle	Warm temperate	Above	Below	Case-control	COPD	120	66.4 (10.8)	66% male	Sleep
Borji (2018)²⁶	Iran (Ilam)	Upper-Middle	Arid	Above	Above	RCT	Asthma	120	Not stated	Not stated	Sleep
Chegeni (2018)²⁷	Iran (Khorramabad)	Upper-Middle	Arid	Above	Above	RCT	COPD	91	57.14 (11.8)	59% male	Sleep
Eslaminejad (2017)²⁸	Iran (Tehran)	Upper-Middle	Arid	Above	Above	Cross-sectional	COPD	850	53.88 (16.5)	53.6% female	Sleep
Mahmood (2019)²⁹	Iraq (Basra, Baghdad)	Upper-Middle	Arid	Above	Above	Cross-sectional	Asthma	56	40–49 years: 50%; 50–59 years: 12.4%; 60+ years: 28.8%	62.5% female	Physical activity
Moussa (2014)³⁰	Tunisia (Sousse)	Lower-Middle	Arid	Above	Above	Case-control	COPD	16	48.99 (5.33)	100% male	Physical activity
Moussa (2016)³¹	Tunisia (Sousse)	Lower-Middle	Arid	Above	Above	Case-control	COPD	16	48.99 (5.33)	100% male	Physical activity

(Continued)
Reference	Study Location: Country	Income Classification	Climate Classification	Air Quality PM2.5	Air Quality PM10	Study Design	CRD Population	Sample Size	Age (Years)	Gender Mix (Majority %)	Behaviour Measured	
Mihaltan (2019)	Bulgaria, Serbia (Unknown)	Upper-Middle	Not available	Not available	Not available	Cross-sectional	COPD	Not stated	Not stated	Not stated	Physical activity	
Mihaltan (2019)	Bulgaria; Serbia (Unknown)	Upper-Middle	Not available	Not available	Not available	Cross-sectional	COPD	Bulgaria: 210; Serbia: 250	B: 66.7; S: 68.0	Not stated	Physical activity	
Vukoja (2018)	Serbia (Sremska Kamenica)	Upper-Middle	Snow	Not available	Not available	Cross-sectional	Asthma, COPD	Asthma: 117, COPD: 100	Asthma: 39 (14); COPD: 63 (10)	Asthma 48% male; COPD 61% male	Sleep	
Akinci (2013)	Turkey (Kırklareli)	Upper-Middle	Warm temperate	Above	Above	Cross-sectional	COPD	102	66.8 (10.0)	86.1% male	Sleep	
Genc (2012)	Turkey (Afyonkarahisar)	Upper-Middle	Warm temperate	Above	Above	Pre-post trial	COPD	30	57.9 (10.2)	100% male	Physical activity	
Genc (2014)	Turkey (Afyonkarahisar)	Upper-Middle	Warm temperate	Above	Above	Cross-sectional	COPD	30	54.1 (8.1)	100% male	Physical activity	
Pehlivan (2019)	Turkey (Istanbul)	Upper-Middle	Warm temperate	Above	Below	Single-arm intervention study	Non-cystic fibrosis bronchiectasis	19	Median [IQR] 48.36 [34–73]	63% female	Physical activity	
Sahin (2015)	Turkey (Kağdas)	Upper-Middle	Snow	Not available	Not available	Single-group pretest/posttest trial	COPD	45	58.36 (10.12)	50.3% male	Sleep	
Saglam (2013)	Turkey (Ankara)	Upper-Middle	Arid	Above	Below	Cross-sectional	COPD	28	NW: 63.07 (6.32); OW/OB: 63.79 (6.87)	100% male	Physical activity	
Author	Country	Region	Temperature	Area	Study Design	Disease	N	Mean (SD)	Male (%)	Physical Activity		
-------------------	------------------------	-------------------------	-------------	------------	-----------------------	---------	-----	-----------	----------	-------------------		
Turan (2016)	Turkey (Afyonkarahisar)	Upper-Middle Warm temperate	Above	Above	Cross-sectional	COPD	93	61.4 (9.8)	100%	Physical activity		
Yilmaz (2016)	Turkey (Sivas)	Upper-Middle Snow	Above	Above	Experimental design	COPD	50	Median [IQR] NW: 61[56–65]; OW: 65[62–69]; OB: 66[61–69]	90%	Physical activity		
Region of the Americas												
Lopez Jove (2013)	Argentina (Buenos Aires)	Upper-Middle Warm temperate	Above	Below	Observational prospective study	COPD	113	63.1 (8.3)	71.1%	Physical activity		
Molinas (2007)	Argentina (Córdoba)	Upper-Middle Warm temperate	Not available	Not available	Cross-sectional	Asthma	151	24.24 (8.86)	81.5%	Physical activity		
Amorim (2014)	Brazil (São Paulo)	Upper-Middle Warm temperate	Above	Below	Cross-sectional	COPD	40	64.4 (7.7)	55%	Physical activity		
Athayde (2014)	Brazil (Belo Horizonte)	Upper-Middle Equatorial	Above	Below	Cross-sectional	COPD	72	65.86 (9.25)	65.3%	Physical activity		
Borges (2012)	Brazil (São Paulo)	Upper-Middle Warm temperate	Above	Below	Longitudinal	COPD	20	68.6 (10.7)	70%	Physical activity; Sedentary behaviour		
Campos (2017)	Brazil (Fortaleza)	Upper-Middle Equatorial	Not available	Not available	Cross-sectional	Asthma	123	50.8 (12.2)	100%	Sleep		
Cani (2019)	Brazil (Florianópolis, São Jose)	Upper-Middle Warm temperate	Not available	Not available	Cross-sectional	COPD	59	DOT: 68.3 (7.72); CG: 67.5 (7.61)	DOT: 72% male; CG: Not stated	Physical activity; Sedentary behaviour		
Cavalcante (2012)	Brazil (Fortaleza)	Upper-Middle Equatorial	Not available	Not available	Cross-sectional	COPD	104	69.1 (8.0)	Not stated	Sleep		
Cetlin (2012)	Brazil (Ribeirão Preto)	Upper-Middle Warm temperate	Above	Below	Cross-sectional	Asthma	200	Not stated	67%	Physical activity		

(Continued)
Reference	Study Location: Country	Income Classification	Climate Classification	Air Quality PM2.5	Air Quality PM10	Study Design	CRD Population	Sample Size	Age (Years)	Gender Mix (Majority %)	Behaviour Measured
Coelho (2018)	Brazil (Minas Gerais)	Upper-Middle	Equatorial	Not available	Not available	Cross-sectional	Asthma	36	45.8 (12.3)	100% female	Physical activity
Coelho (2018)	Brazil (Minas Gerais)	Upper-Middle	Equatorial	Not available	Not available	Randomized parallel-group controlled trial	Asthma	37	Median [IQR] Ped: 45.0 [19.0]; Con: 47.0 [14.0]	86% female Physical activity	
da Costa (2012)	Brazil (Vale Dos Sinos)	Upper-Middle	Warm temperate	Not available	Not available	Prospective comparative study	COPD	7	64 (8.12)	100% female	Physical activity
Cukier (2020)	Brazil (Blumenau, Botucatu, Campinas, Porto Alegre, Rio de Janeiro, Sao Bernardo do Campo, Sao Paulo)	Upper-Middle	Warm temperate, Equatorial	Above	Below	Cross-sectional	COPD	593	67.7 (9.0)	52.1% male	Physical activity
Felcar (2018)	Brazil (Londrina)	Upper-Middle	Warm temperate	Not available	Not available	Randomised trial	COPD	36	LG: 68 (8); WG: 69 (9)	64% male Physical activity	
Filippin (2011)	Brazil (Cascavel)	Upper-Middle	Warm temperate	Not available	Not available	Cohort retrospective cross-sectional study	COPD	55	Physically active: 67.12 (5.72); physically inactive: 71 (6.18)	Not stated Physical activity	
Fonesca (2016)	Brazil (Florianópolis)	Upper-Middle	Warm temperate	Not available	Not available	Cross-sectional	COPD	17	67 (8)	82% male	Physical activity; Sedentary behaviour
Author	Location	Region	Climate	Setting/Design	Study Type	N	Mean (SD)	Gender	Activity Status		
-----------------	---------------------------	--------	---------	----------------	------------	-------	-----------	--------	--------------------------------------		
Freitas (2018)	Brazil (São Paulo)	Upper-Middle	Warm temperate	Above	Below	Randomised trial	Asthma	81	WL+S: 48.5 (9.8); WL+E: 45.9 (7.7)	98% female	Physical activity; Sedentary behaviour; Sleep
Furlanetto (2016)	Brazil (Londrina)	Upper-Middle	Warm temperate	Not available	Not available	Cross-sectional	COPD	104	66 (8)	63% male	Physical activity
Furlanetto (2017)	Brazil (Londrina)	Upper-Middle	Warm temperate	Not available	Not available	Cross-sectional	COPD	101	Median [IQR] 66 [60–72]	57% male	Physical activity; Sedentary behaviour
Furlanetto (2017)	Brazil (Londrina)	Upper-Middle	Warm temperate	Not available	Not available	Cross-sectional	COPD	19	69 (7)	53% male	Physical activity
Gülart (2019)	Brazil (Florianópolis)	Upper-Middle	Warm temperate	Not available	Not available	Cross-sectional	COPD	61	65.5 (8.76)	77% male	Physical activity; Sedentary behaviour
Hernandes (2009)	Brazil (Northern Paraná)	Upper-Middle	Warm temperate	Not available	Not available	Cross-sectional	COPD	40	66 (8)	55% female	Physical activity; Sedentary behaviour
Jardim (2011)	Brazil (São Paulo)	Upper-Middle	Warm temperate	Above	Above	Cross-sectional	COPD	49	68.9 (8.5)	59% male	Physical activity
Karloh (2016)	Brazil (Florianópolis)	Upper-Middle	Warm temperate	Not available	Not available	Cross-sectional	COPD	38	Median [IQR] 65 [63–68]	58% male	Physical activity; Sedentary behaviour
Landal (2014)	Brazil (Northern Paraná)	Upper-Middle	Warm temperate	Not available	Not available	Longitudinal	COPD	30	66 (7)	51% female	Physical activity; Sedentary behaviour

(Continued)
Reference	Study Location: Country	Income Classification	Climate Classification	Air Quality PM2.5	Air Quality PM10	Study Design	CRD Population	Sample Size	Age (Years)	Gender Mix (Majority %)	Behaviour Measured
Lanza (2018)	Brazil (São Paulo)	Upper-Middle	Warm temperate	Above	Below	Cross-sectional	Bronchiectasis	100	48 (14)	59% female	Physical activity
Lopes (2019)	Brazil (São Paulo)	Upper-Middle	Warm temperate	Above	Below	Cross-sectional	COPD	150	68 (8.3)	67% male	Physical activity
Mantoani (2011)	Brazil (Londrina)	Upper-Middle	Warm temperate	Not available	Not available	Cross-sectional	COPD	67	Median [IQR] 66 [61–72]	54% male	Physical activity; Sedentary behaviour
Monteiro (2012)	Brazil (Londrina)	Upper-Middle	Warm temperate	Not available	Not available	Cross-sectional	COPD	74	65 (9)	61% male	Physical activity
Morita (2018)	Brazil (Londrina)	Upper-Middle	Warm temperate	Not available	Not available	Retrospective cross-sectional	COPD	145	Median [IQR] 65 [60–73]	54% male	Physical activity; Sedentary behaviour
Munari (2018)	Brazil (Florianópolis)	Upper-Middle	Warm temperate	Not available	Not available	Cross-sectional	COPD	110	66 (8)	68.2% male	Physical activity; Sedentary behaviour
Nobeschi (2020)	Brazil (Santo André)	Upper-Middle	Warm temperate	Above	Below	Single-arm intervention study	COPD	30	68.17 (6.11)	56.7% male	Sleep
Nunes (2008)	Brazil (Ceará)	Upper-Middle	Equatorial	Not available	Not available	Randomized, double-blind, parallel-group, placebo-controlled study	COPD	25	Melatonin: 64.17 (9.9); Placebo: 67.38 (8.1)	56% male	Sleep
Nyssen (2013)	Brazil (São Carlos)	Upper-Middle	Warm temperate	Not available	Not available	Cross-sectional	COPD	30	68 (10)	77% male	Physical activity
Reference	Location	Region	Climate	Temperature	Study Type	Sample Size	Age	Gender	Physical Activity	Sedentary Behaviour	
-----------	----------	--------	---------	-------------	------------	-------------	-----	--------	-------------------	-------------------	
Pitta (2009)	Brazil (Londrina)	Upper-Middle	Warm temperate	Not available	Cross-sectional	COPD	40	66 (8)	55% female	Physical activity; Sedentary behaviour	
Probst (2011)	Brazil (Londrina)	Upper-Middle	Warm temperate	Not available	Prospective randomized trial	COPD	40		Calisthenics and Breathing Exercises Group: 65 (10); Endurance and Strength Training Group: 67 (7)	53% male	
Reboredo (2017)	Brazil (São Pedro)	Upper-Middle	Warm temperate	Not available	Cross-sectional	COPD	166	64.94 (9.9)	59% male	Physical activity	
Rocha (2017)	Brazil (Florianópolis)	Upper-Middle	Warm temperate	Not available	Cross-sectional	COPD	25	67.56 (9.21)	56% male	Physical activity; Sedentary behaviour	
Rodrigues (2014)	Brazil (Gurupi)	Upper-Middle	Equatorial	Not available	Cross-sectional	COPD		Not stated			
Schneider (2018)	Brazil (Londrina)	Upper-Middle	Warm temperate	Not available	Cross-sectional	COPD	45	66 (8)	56% male	Physical activity; Sedentary behaviour	
Silva (2011)	Brazil (Porto Alegre)	Upper-Middle	Warm temperate	Not available	Cross-sectional	COPD	95	67.3 (8.1)	65% male	Physical activity	
Simon (2009)	Brazil (Curitiba)	Upper-Middle	Warm temperate	Not available	Cross-sectional	COPD	38		Physically active: 67 (6); Physically inactive: 65 (9)	71% male	
Tavares (2017)	Brazil (Recife)	Upper-Middle	Equatorial	Not available	Cross-sectional	COPD	54			68.5% male	Physical activity

(Continued)
Reference	Study Location: Country	Income Classification	Climate Classification	Air Quality PM2.5	Air Quality PM10	Study Design	CRD Population	Sample Size	Age (Years)	Gender Mix (Majority %)	Behaviour Measured
Vitorasso (2012)	Brazil (Londrina) Upper-Middle Warm temperate	Not available	Not available	Cross-sectional	COPD	73	65 (9)	63% male	Physical activity; Sedentary behaviour		
Xavier (2016)	Brazil (Unknown) Upper-Middle Not available	Not available	Not available	Cross-sectional	COPD	153	68 (8)	68% male	Physical activity		
South-East Asian Region											
Yunus (2018)	Bangladesh (Dhaka) Lower-Middle Equatorial Above Above Cross-sectional COPD	116	Not stated	Not stated	Sleep						
Bhuker (2012)	India (New Delhi) Lower-Middle Arid Above Above Cross-sectional Asthma	50	Range: 18–50 years	Not stated	Physical activity						
De (2012)	India (Maharashtra) Lower-Middle Arid Not available Not available Cross-sectional COPD	40	62.2 (9.2)	Not stated	Sleep						
Gupta (2018)	India (Doiwala, Chakrata, Joshimath) Lower-Middle Warm temperate Not available Not available Cross-sectional COPD	130	Not stated	Not stated	Sleep, physical activity						
Panigrahi (2018)	India (Bhubneshwar) Lower-Middle Equatorial Above Above Cross-sectional Asthma	101	38 (16.2)	44% male	Sleep						
Poongadan (2016)	India (New Delhi) Lower-Middle Arid Above Above Cross-sectional Asthma	125	Not stated	56% male	Physical activity; Sedentary behaviour; Sleep						
Sharma (2019)	India (Nalhar) Lower-Middle Arid Not available Not available Cross-sectional COPD	120	Dep: 58.1 (6.43); No Dep: 57.72 (7.93)	59% male	Physical activity						
Ulfathinah (2019)	Indonesia (DKI Jakarta Province) Upper-Middle Equatorial Above Above Cross-sectional COPD	200	61.76 (10.089)	67.5% male	Sleep						
Author	Country/Region	Region	Climate	Temperature	Study Design	Condition	N	Mean (SD)	Male (%)	Activity	
-------------------------	---------------------------------	--------	---------	-------------	---------------	--------------------	-------	-----------	-----------	--------------	
Widyastuti (2017)	Indonesia (Central Java)	Upper-Middle	Equatorial	Not available	Not available	COPD	36	Not stated	Not stated	Physical activity	
Chanthitivech (2017)	Thailand (Bangkok)	Upper-Middle	Equatorial	Above	Above	Cross-sectional COPD	26	67.73 (7.56)	88.5% male	Physical activity	
Chunrong (2014)	China (Guangzhou)	Upper-Middle	Warm temperate	Above	Above	Cross-sectional COPD	71	65.17 (6.80)	76% male	Physical activity	
Ding (2017)	China (Beijing, Chengdu, Guangzhou, Jinan, Nanjing, Shanghai, Shenyang, Wuhan, Xi’an)	Upper-Middle	Snow climate, Warm temperate	Above	Above	Cross-sectional COPD and Asthma-COPD Overlap	675	62.0 (11.4)	60.7% male	Sleep	
Tao (2016)	China (Tianjin)	Upper-Middle	Snow	Above	Above	Cross-sectional COPD	35 b	69.1 (6.9)	64.1% male	Physical activity	
Wang (2016)	China (Tianjin)	Upper-Middle	Snow	Above	Above	Cross-sectional COPD	154	72.8 (9.6)	59.7% male	Physical activity	
Wang (2016)	China (Tianjin)	Upper-Middle	Snow	Above	Above	Cross-sectional COPD	100	71.23 (9.58)	71% male	Physical activity	
Wang (2017)	China (Jilin)	Upper-Middle	Snow	Above	Above	Cross-sectional COPD	334	Not stated	Not stated	Sleep	
Zheng (2019)	China (Qingdao city, Shandong province)	Upper-Middle	Snow	Not available	Not available	Cohort retrospective study	COPD	72	66.00 (5.59)	76% male	Sleep
Vancampfort (2017)	See footnote c	All	Not available	Not available	Not available	Cross-sectional Asthma	11,857	Not stated	Not stated	Physical activity	
Koyanagi (2017)	China, Ghana, India, Mexico, Russia, South Africa	Lower-Middle; Upper-Middle	Not available	Not available	Not available	Cross-sectional Asthma, COPD	Asthma: 2696; COPD: 5392 d	Not stated	Not stated	Physical activity	

(Continued)
Table 2 (Continued).

Reference	Study Location: Country	Income Classification	Climate Classification	Air Quality PM2.5	Air Quality PM10	Study Design	CRD Population	Sample Size	Age (Years)	Gender Mix (Majority %)	Behaviour Measured
Vancampfort (2017)	China, Ghana, India, Mexico, Russia, South Africa	Lower-Middle; Upper-Middle	Not available	Not available	Not available	Cross-sectional	Chronic lung disease	4477	Not stated	Not stated	Sedentary behaviour
Vancampfort (2018)	China, Ghana, India, Mexico, Russia, South Africa	Lower-Middle; Upper-Middle	Not available	Not available	Not available	Cross-sectional	Asthma; Chronic lung disease	Not stated	Not stated	Not stated	Physical activity
Vancampfort (2017)	China, Ghana, India, Mexico, Russia, South Africa	Lower-Middle; Upper-Middle	Not available	Not available	Not available	Cross-sectional	Asthma, COPD	Not stated	Not stated	Not stated	Physical activity
Vancampfort (2018)	China, Ghana, India, Mexico, Russia, South Africa	Lower-Middle; Upper-Middle	Not available	Not available	Not available	Cross-sectional	Asthma, COPD	Not stated	Not stated	Not stated	Sedentary behaviour
Variables to Assess 24-Hour Physical Behaviours

A summary of the variables used to describe physical behaviours is given in Table 1 (full extraction of the variables in Appendix B). The most common PA categories of variables used were steps per day (n=21), energy expenditure (n=21), binary classification of active/inactive (n=19), time spent walking (n=16) and classification of active/inactive using at least three groups (n=16). For SB, the common categories of variables used were sedentary time (n=16), standing time (n=13), sitting time (n=11) and lying time (n=10). Overall sleep quality (n=32), sleep duration (n=14), use of sleep medication (n=11) and sleep disturbances (n=11) were the most commonly used categories of sleep variables.

Levels of Free-Living PA, SB and Sleep

Time spent walking (12 studies; range 36–91min/day) and movement intensity (eight studies; range 0.18–1.9m/s²) measured by Dynaport activity monitor were most common, followed by the number of steps per day measured by Dynaport (six studies; range 2669–6557steps/day) and Yamax (five studies; range 4227–7490 steps/day) and MVPA measured by SenseWear Armband (five studies; range 29–89min/day). Three SB variables, all measured using Dynaport, were directly comparable between studies; comprising sitting time (12 studies; range 283–418min/day); standing time (12 studies; range 139–270min/day); lying time (11 studies; range 76–119min/day). For sleep, PSQI score was provided in 12 studies (range 4–11) and PSQI classification of poor sleep quality in 11 studies (range 33–100%) (Table 3).

Sub-Group Analysis of 24-Hour Physical Behaviours

Four studies measuring PA and two studies measuring SB spanned all regions. The Region of the Americas accounted for the majority of studies measuring PA (45 studies [68%]) (Figure 2A) and SB (19 studies [95%]) (Figure 2B). Studies measuring sleep were distributed across regions in small numbers with South-East Asia as the most common (six studies [25%]) (Figure 2C). One study measuring PA included data from all low- and middle-income classifications. No studies solely took place in low-income countries. Most took place in upper-middle income countries (60 [91%] measured PA, 19 [95%] measured SB and 16 [67%] measured sleep). We were unable to classify climate for seven studies measuring PA, two studies measuring SB and one study measuring sleep. Most studies were conducted in warm temperature climates (41 studies [69%] of PA, 17 studies [94%] of SB and six studies of sleep [26%]). There were 52 studies where we were unable to classify air quality (61% measuring PA, 85% measuring SB and 46% measuring sleep). All other studies exceeded the annual 10µg/m³ PM2.5 threshold. Using the annual 20µg/m³ PM10 threshold, 15 studies (58%) measured PA, one study (33%) measured SB and ten studies (77%) measured sleep in areas exceeding the threshold (Table 4).

Discussion

This systematic review provided a comprehensive assessment of the prevalence, levels and measurement approaches of studies assessing 24-hour physical behaviours in people living with CRD in LMIC. The majority of studies examining PA and SB in CRD in LMIC are limited to Brazil (UMIC), whilst studies measuring sleep were more evenly distributed across regions. Questionnaires were more commonly used to measure physical behaviours than device-based methods, with data supporting low physical activity levels, sedentary lifestyles and poor sleep quality for people in LMIC living with CRDs.

Most studies were conducted in upper-middle-income countries with Brazil accounting for almost half. In other regions, Turkey (European), India (South-East Asian) and Nigeria (Africa) had the monopoly of identified articles within their respective regions. No studies were conducted exclusively in low-income countries. Therefore, more studies are needed to compare physical behaviours within and between regions and income classifications. For large cohort studies of general adult populations, such as those included in The Lancet physical inactivity series, data were from predominantly HIC in Europe and North America; with data from Africa and Central Asia particularly scarce.
Table 3 Summary of the Studies with Comparable Measurement of Physical Activity, Sedentary Behaviour and Sleep

Reference	Value for Physical Behaviour	Study Location(s): Country	Study Location(s): Region	Income Classification(s)	Climate Classification(s)	PM2.5 Air Quality (Year Taken)	PM10 Air Quality (Year Taken)
Step count (Dynaport, steps/day)							
Borges (2012)	3575±2799	Brazil	Region of the Americas	Upper-Middle	Warm temperate	35 (2012)	18 (2012)
Cani (2019)	DOT: 2669±1883; CG: 4599±2308	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	Not available
Gulart (2019)	5273±2726	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	Not available
Karloh (2016)	6557[5496–7619]	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	Not available
Munari (2018)	5292±3200	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	Not available
Rocha (2017)	6388.12 ± 3671.66	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	Not available
Walking time (Dynaport, min/day)							
Borges (2012)	6.1±4.4%	Brazil	Region of the Americas	Upper-Middle	Warm temperate	35 (2012)	18 (2012)
Cani (2019)	DOT: 36.1±23.7; CG: 90.7±39.6	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	Not available
Fonesca (2016)	68.0[57.5–87.0]	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	Not available
Gulart (2019)	68.5±38.2	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	Not available
Hernandes (2009)	55 ± 33	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	Not available
Karloh (2016)	81.1[68.1–94.0]	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	Not available
Researcher	Value	Country	Region of the Americas	Climate Class	Availability	Not Available	
---------------------	----------------	-------------	-------------------------	---------------	--------------	---------------	
Mantoani (2011)	51[34–73]	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	
Morita (2018)	55[37–81]	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	
Munari (2018)	67.4±31.5	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	
Pitta (2009)	56±32	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	
Probst (2011)	CBEG 54±28; ESTG 57±32	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	
Vitorasso (2012)	53[36–80]	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	

Movement Intensity (Dynaport, m/s²)

Researcher	Value	Country	Region of the Americas	Climate Class	Availability	Not Available
Cani (2019)	DOT: 1.5±0.22; CG: 1.88 ±1.01	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available
Fonesca (2016)	1.81±0.30	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available
Hernandez (2009)	1.9 ± 0.4	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available
Karlhol (2016)	1.78[1.70–1.97]	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available
Mantoani (2011)	1.9[1.6–2.1]	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available
Munari (2018)	1.72±0.27	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available
Pitta (2009)	1.9±0.4	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available
Rocha (2017)	0.18 ± 0.03	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available
Table 3 (Continued).

Reference	Value for Physical Behaviour	Study Location(s): Country	Study Location(s): Region	Income Classification(s)	Climate Classification(s)	PM2.5 Air Quality (Year Taken)	PM10 Air Quality (Year Taken)
MVPA time (SenseWear, min/day)							
Furlanetto (2017)²⁴	0.48 [0.14–1.24] hours/day	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	Not available
Furlanetto (2017)²¹	89±15 vs 84±15 during summer and winter	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	Not available
Mantoani (2011)²⁹	29 [10–86]	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	Not available
Probst (2011)²⁷	CBEG 4533±5968; ESTG 4539±5314	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	Not available
Schneider (2018)¹⁰¹	49.3 [25.7–100]	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	Not available
Step count (Yamax, steps/day)							
Amorim (2014)¹⁶⁵	6251.0 ± 2422.8	Brazil	Region of the Americas	Upper-Middle	Warm temperate	35 (2014)	19 (2014)
Coelho (2018)⁷²	7490.3±3330.2	Brazil	Region of the Americas	Upper-Middle	Equatorial	Not available	Not available
Coelho (2018)⁷³	PED: 7295±3241; CON: 6998±3490	Brazil	Region of the Americas	Upper-Middle	Equatorial	Not available	Not available
Felcar (2018)⁷⁶	LG: 5891±3054; WG: 6101±3591	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	Not available
Nyssen (2013)⁹⁵	4227±2075	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	Not available
Sitting time (Dynaport, min/day)							
Borges (2012)⁵⁷	38.9±17.6%	Brazil	Region of the Americas	Upper-Middle	Warm temperate	35 (2012)	18 (2012)
Study (Year)	Standing Time (Dynaport, min/day)	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	Not available
-------------	-----------------------------------	--------	------------------------	--------------	----------------	--------------	--------------
Cani (2019)	22.7±14.0%	Brazil	Region of the Americas	Upper-Middle	Warm temperate	35 (2012)	18 (2012)
Borges (2012)	CBEG 283±121; ESTG 296±91	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	Not available
Probst (2011)	307[228–376]	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	Not available
Vitorasso (2012)	DOT: 139±64.3; CG: 149±60.9	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	Not available
Cani (2019)	307[228–376]	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	Not available

(Continued)
Reference	Value for Physical Behaviour	Study Location(s): Country	Study Location(s): Region	Income Classification(s)	Climate Classification(s)	PM2.5 Air Quality (Year Taken)	PM10 Air Quality (Year Taken)
Gulart (2019)	140±54.9	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	Not available
Hernandes (2009)	36%	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	Not available
Karloh (2016)	155[140–171]	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	Not available
Mantoani (2011)	237[161–345]	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	Not available
Morita (2018)	209[147–276]	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	Not available
Munari (2018)	149±62.4	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	Not available
Pitta (2009)	246±122	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	Not available
Probst (2011)	CBEG 270±139; ESTG 248±95	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	Not available
Vitorasso (2012)	196[137–289]	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	Not available
Borges (2012)	30.7±20.2%	Brazil	Region of the Americas	Upper-Middle	Warm temperate	35 (2012)	18 (2012)
Cani (2019)	DOT: 114±81.6; CG: 103±85.4	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	Not available
Fonesca (2016)	76[0–143.5]	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	Not available
Furlanetto (2017)	1.72 [0.56–2.97] hr/day	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	Not available
Study (Year)	Sleep Quality (PSQI Score)	Country	Region	Climate Zone	Economic Development	GDP per Capita (2016)	
---------------	-----------------------------	---------	--------	--------------	----------------------	-----------------------	
Gulart (2019)	105±105	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	
Hernandes (2009)	15%	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	
Karloh (2016)	77.1[53.3–101]	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	
Morita (2018)	107[25–183]	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	
Munari (2018)	101±87.2	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	
Pitta (2009)	119±110	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	
Probst (2011)	CBEG 108±100; ESTG 113 ±101	Brazil	Region of the Americas	Upper-Middle	Warm temperate	Not available	
Adetiloye (2018)	9.93±4.19	Nigeria	African Region	Lower-Middle	Equatorial	Not available	
Akinci (2013)	7.1±3.9	Turkey	European Region	Upper-Middle	Warm temperate	70 (2016) 47 (2016, converted)	
Ali Zohal (2013)	8.03±3.66	Iran	Eastern Mediterranean Region	Upper-Middle	Warm temperate	44 (2013) 18 (2013, converted)	
Campos (2017)	9.9±4.6	Brazil	Region of the Americas	Upper-Middle	Equatorial	Not available	
Chegeni (2018)	TG: 6.33±3.41, CG: 6.41 ±3.12	Iran	Eastern Mediterranean Region	Upper-Middle	Arid	75 (2016, converted) 33 (2016)	
De (2012)	Median 11	India	South-East Asian Region	Lower-Middle	Arid	Not available	
Nobeschi (2020)	6.5[4.75–8.75]	Brazil	Region of the Americas	Upper-Middle	Warm temperate	27 (2016) 12 (2016, converted)	

(Continued)
Table 3 (Continued).

Reference	Value for Physical Behaviour	Study Location(s): Country	Study Location(s): Region	Income Classification(s)	Climate Classification(s)	PM2.5 Air Quality (Year Taken)	PM10 Air Quality (Year Taken)
Panigrahi (2018)	4 [3–7]	India	South-East Asian Region	Lower-Middle	Equatorial	81 (2012)	43 (2012, converted)
Sahin (2015)	9.52±0.22	Turkey	European Region	Upper-Middle	Snow	Not available	Not available
Ulfathinah (2019)	Median 6	Indonesia	South-East Asian Region	Upper-Middle	Equatorial	82 (2016, converted)	45 (2016)
Vukoja (2018)	Asthma 4.9±3.9; COPD 5.8 ±4.3	Serbia	European Region	Upper-Middle	Snow	Not available	Not available
Zheng (2019)	Intervention 9.50±2.87; Control 9.31±2.98	China	Western Pacific Region	Upper-Middle	Snow	Not available	Not available

Poor sleep quality (PSQI, %)

Reference	Value for Physical Behaviour	Study Location(s): Country	Study Location(s): Region	Income Classification(s)	Climate Classification(s)	PM2.5 Air Quality (Year Taken)	PM10 Air Quality (Year Taken)
Adeotiloye (2018)	81.7%	Nigeria	African Region	Lower-Middle	Equatorial	Not available	Not available
Adewolea (2017)	37.8%	Nigeria	African Region	Lower-Middle	Equatorial	Not available	Not available
Ali Zohal (2013)	67.9%	Iran	Eastern Mediterranean Region	Upper-Middle	Warm temperate	44 (2013)	18 (2013, converted)
Campos (2017)	80.4%	Brazil	Region of the Americas	Upper-Middle	Equatorial	Not available	Not available
Cavalcante (2012)	59.6%	Brazil	Region of the Americas	Upper-Middle	Equatorial	Not available	Not available
De (2012)	100%	India	South-East Asian Region	Lower-Middle	Arid	Not available	Not available
Gupta (2018)	33.3%	India	South-East Asian Region	Lower-Middle	Warm temperate	Not available	Not available
Nobeschi (2020)	73%	Brazil	Region of the Americas	Upper-Middle	Warm temperate	27 (2016)	12 (2016, converted)
Study	Prevalence	Region	Sub-Region	Income Level	Year	Year (converted)	
------------------------------	------------	-----------------	------------------	--------------	------	------------------	
Panigrahi (2018)¹¹¹	48.5%	India	South-East Asian Region	Lower-Middle	81 (2012)	43 (2012, converted)	
Ulfathinah (2019)¹¹⁴	66%	Indonesia	South-East Asian Region	Upper-Middle	82 (2016, converted)	45 (2016)	
Vukoja (2018)¹⁴	Asthma 40.4%; COPD 38%	Serbia	European Region	Upper-Middle	Snow	Not available	

¹¹¹ Not available
¹⁴ Not available
Efforts to increase the available data on PA, SB and sleep in other LMIC are needed before any reliable prevalence estimates and worthwhile comparisons can be made.

PA was most commonly investigated. There was a relatively equal split of device- and questionnaire-based assessment of PA, with almost exclusively device-based assessment of SB and questionnaire-based assessment of sleep. Compared with a previous systematic review of 76 studies measuring free-living PA in COPD (almost exclusively studies in HIC), the Dynaport activity monitor was more commonly used (42% versus 14%). The disproportionate use of the Dynaport in the included studies from Brazil explains this disparity, whereas the previous review contained a large proportion of studies from HIC. For questionnaire-based PA and SB, we found the IPAQ to be most commonly used; consistent with the evidence base for large epidemiological studies of healthy adult populations.5 IPAQ is commonly used in LMIC for population surveillance, with more than 50 counties adopting it as of 2016,7 but it was developed for individuals aged 15–69 years of age which may not be appropriate for many CRD populations.36 The PSQI was the most common questionnaire in our review with relatively consistent use of the overall PSQI score and classification of poor sleep quality. The PSQI was also more consistently used across regions and currently offers the greatest opportunity for pooled analysis and standardisation. The popularity of the PSQI is supported by a previous review of sleep disorders in COPD.26 Although it is also possible to assess free-living sleep in CRD populations using devices,37,38 the PSQI offers a simple tool to examine sleep quality and duration in LMIC.

Figure 2 (A) Location of studies measuring physical activity. (B) Location of studies measuring sedentary behaviour. (C) Locations of studies measuring sleep.
Articles included in our review relied predominantly on summary variables of physical behaviours, such as steps per day, sedentary time and overall sleep quality. The high prevalence of summary variables supports previous work exploring device-based PA, which found 70% of studies used a marker for total activity, with half using step count. Postural assessments such as sitting, standing or lying down were more commonly reported in the included studies using more device-based assessments than previously found (44% versus 20%); due to the exclusive measurement of postures in Brazilian studies.

The commonly reported variables of PA were mostly related to walking (time spent walking and step count) which is easily interpretable and at the heart of clinical practice guidelines for COPD. It is estimated that 7000–10,000 steps per day is approximately equivalent to taking part in 30 minutes of daily MVPA and data from the included articles support people living with CRD in LMIC to be physically inactive. Indicating a global nature of the problem, prevalence of physical inactivity was found more than twice as high in high-income countries compared to low-income countries. However, the considerable variation between studies and locations, such as their measurement and data processing protocols, make it difficult to generalise.

Only the range of PA, SB and sleep levels were presented in the study. The reported study variables were not consistent across the included articles which caused considerable heterogeneity, and it may lead to false conclusions. Pooling the data on various study designs increase the methodological heterogeneity. Studies included in our review suggest people living with CRD in LMIC have worse sleep quality than healthy counterparts across income classifications. We found PSQI classification of poor sleep quality ranged 33–100%; higher than the

![Figure 2 Continued.](https://doi.org/10.2147/COPD.S345034)
estimated prevalence of 32.8% (95% confidence interval: 25.9–39.7%) based on a meta-analysis of 19 studies of working-age adults in LMIC40 and from adults residing in high-income European countries.41

The strengths of our systematic review include a pre-defined rigorous search methodology, registered on PROSPERO before study screening, bias assessment, including the use of validated search terms, the comprehensive array of databases searched, the absence of language restrictions and screening included reference lists to reduce selection bias. The data extraction phase was also duplicated to minimise assessor bias and error. However, there may be databases unknown to the authors where additional studies may be published in this area. We were unable to translate two non-English publications (Persian). The climate and air quality classifications were not always possible to identify from information reported in the included studies, limiting subgroup analyses.

Conclusion

Based on 89 articles included in our systematic review of the PA, SB and sleep of people living with CRD in LMIC, we showed considerable inequity between behaviours, geographical locations and income classifications. The majority of studies examining PA and SB in CRD in LMIC were limited to Brazil, whilst studies measuring sleep were more limited and spread across regions. Questionnaires were more commonly used to measure physical behaviours than device-based methods, with summary data supporting low physical activity levels, sedentary lifestyles and poor sleep quality for people in LMIC living with CRDs. There was large variation in measurement approaches and poor quality methodological reporting for all physical behaviours which limited direct comparisons. The lack of standardisation and poor reporting reduces the strength of evidence needed to strengthen the scientific integrity of data and resulting clinical and policy implications to support patients to lead healthier lifestyles. More studies of PA, SB and sleep are needed in a broader range of LMICs. Future work would benefit from a harmonised approach to data collection to ensure international comparisons.
Table 4 Summary of the Number of Studies Measuring Each Physical Behaviour, Stratified by Region, Income Classification, Measurement Approach, Climate Classification and Air Quality

Sub-Grouping	Physical Activity	Sedentary Behaviour	Sleep
Region			
African Region	4	2	3
European Region	12	2	3
Eastern Mediterranean Region	7	2	4
Region of the Americas	45	19	5
South-East Asia Region	10	3	6
Western Pacific Region	8	2	3
Income classification			
Low	1	0	0
Lower-middle	10	3	8
Upper-middle	60	19	16
Measurement			
Device	36	17	1
Questionnaire	32	3	23
Not provided	1	0	0
Köppen-Geiger climate classification			
Arid	7	1	5
Equatorial	8	0	8
Polar	0	0	0
Snow	4	0	5
Warm temperature	41	17	6
Unable to classify	7	2	1
Air quality classification			
Above 10µg/m³ PM2.5	26	3	13
Below 10µg/m³ PM2.5	0	0	0
Above 20µg/m³ PM10	15	1	10
Below 20µg/m³ PM10	11	2	3
Unable to classify	40	17	11

Abbreviations

CRD, Chronic respiratory disease; HIC, High-income countries; LMIC, Low- and middle-income; countries; PA, Physical activity; PRISMA, Preferred reporting items for systematic review and meta-analysis; PROSPERO, International prospective register of systematic reviews; SB, Sedentary behaviour; UMIC, Upper-middle-income countries; WHO, World health organisation.
Acknowledgments

The authors thank the University Hospitals of Leicester NHS Trust Libraries, British Library and authors of included studies for providing full-text articles. The authors send a special thank you to Dr Xiaorong Ding (Institute of Biomedical Engineering, University of Oxford, UK), Carlos Morgado Area (Nuffield Department of Clinical Neurosciences, University of Oxford, UK), Daniel Filipe Cunha Taveira (NIHR Leicester Biomedical Research Centre-Respiratory, University of Leicester, UK) and Joao Sousa (NIHR Leicester Biomedical Research Centre-Respiratory, University of Leicester, UK) for extracting data from non-English full-text publications.

Funding

This research was funded by the National Institute for Health Research (NIHR) (17/63/20) using UK aid from the UK Government to support global health research. The views expressed in this publication are those of the author(s) and not necessarily those of the NIHR or the UK Department of Health and Social Care.

Disclosure

The authors report no conflicts of interest in this work.

References

1. Hu G, Zhou Y, Tian J, et al. Risk of COPD from exposure to biomass smoke: a metaanalysis. Chest. 2010;138(1):20–31. doi:10.1378/chest.08-2114
2. Amaral AFS, Coton S, Kato B, et al. Tuberculosis associates with both airflow obstruction and low lung function: BOLD results. Eur Respir J. 2015;46(4):1104–1112. doi:10.1183/09031936.02325-2014
3. Salvi SS, Manap R, Beasley R. Understanding the true burden of COPD: the epidemiological challenges. Prim Care Respir J. 2012;21(3):249–251. doi:10.4104/pcrj.2012.00082
4. Rollo S, Antsygina O, Tremblay MS. The whole day matters: understanding 24-hour movement guideline adherence and relationships with health indicators across the lifespan. J Sport Health Sci. 2020;9:493–510. doi:10.1016/j.jshs.2020.07.004
5. Lee IM, Shirota EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT. Impact of physical inactivity on the world’s major non-communicable diseases. Lancet. 2012;380(9838):219–229. doi:10.1016/S0140-6736(12)6031-9
6. World Health Organization. Global action plan for the prevention and control of noncommunicable diseases 2013–2020. World Health Organization; 2013. Available from: https://apps.who.int/iris/bitstream/handle/10665/94383/?sequence=1. Accessed March 7, 2022.
7. Guthold R, Stevens GA, Riley LM, Bull FC. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1·9 million participants. Lancet Glob Health. 2018;6(10):e1077–e1086. doi:10.1016/S2214-109X(18)30357-7
8. Vorrink SNW, Kort HSM, Troosters T, Lammers J-WJ. Level of daily physical activity in individuals with COPD compared with healthy controls. Respir Res. 2011;12(1):1–8. doi:10.1186/1465-9921-12-33
9. Tudor-Loeke C, Craig CL, Aoyagi Y, et al. How many steps/day are enough? For older adults and special populations. Int J Behav Nutr Phys Act. 2011;8(1):1–19. doi:10.1186/1479-5868-8-1
10. Pitta F, Troosters T, Probst VS, Spruit MA, Decramer M, Gosselink R. Physical activity and hospitalization for exacerbation of COPD. Chest. 2006;129(3):536–544. doi:10.1378/chest.129.3.536
11. Waschki B, Kirsten A, Holz O, et al. Physical activity is the strongest predictor of all-cause mortality in patients with COPD: a prospective cohort study. Chest. 2011;140(2):331–342. doi:10.1378/chest.10-2521
12. Tremblay MS, Aubert S, Barnes JD, et al. Sedentary Behavior Research Network (SBRN) - Terminology Consensus Project process and outcome. Int J Behav Nutr Phys Act. 2017;14(1):1–17. doi:10.1186/s12966-017-0525-8
13. Pitta F, Troosters T, Spruit MA, Probst VS, Decramer M, Gosselink R. Characteristics of physical activities in daily life in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005;171(9):972–977. doi:10.1164/rccm.200407-855OC
14. Furlanetto KC, Donária L, Schenfold J, et al. Sedentary behavior is an independent predictor of mortality in subjects with COPD. Respir Care. 2017;62(5):579–587. doi:10.4187/respcare.05306
15. Ohayon MM, Hickson EM, Hirshkowitz M, et al. National Sleep Foundation’s sleep quality recommendations: first report. Sleep Health. 2017;3(1):6–19. doi:10.1016/j.sleh.2016.11.006
16. Ohayon MM, Paskow M, Roach A, et al. The National Sleep Foundation’s Sleep Satisfaction Tool. Sleep Health. 2019;5(1):5–11. doi:10.1016/j.sleh.2018.10.003
17. Hirshkowitz M, Whiton K, Albert SM, et al. National Sleep Foundation’s updated sleep duration recommendations: final report. Sleep Health. 2015;1(4):233–243. doi:10.1016/j.sleh.2015.10.004
18. Chatur V, Manzar MD, Kumary S, Burman D, Spence DW, Pandi-Perumal SR. The global problem of insufficient sleep and its serious public health implications. Healthcare. 2019;7(1):1–16. doi:10.3390/healthcare7010001
19. Shorofsky M, Bourbeau J, Kimoff J, et al. Impaired sleep quality in COPD is associated with exacerbations: the CanCOLD cohort study. Chest. 2019;156(5):852–863. doi:10.1016/j.chest.2019.04.132
20. Bull FC, Al-Ansari SS, Biddle S, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med. 2020;54(24):1451–1462. doi:10.1136/bjsports-2020-102955
21. Ross R, Chaput JP, Giangregorio LM, et al. Canadian 24-Hour Movement Guidelines for Adults aged 18–64 years and Adults aged 65 years or older: an integration of physical activity, sedentary behaviour, and sleep. Appl Physiol Nutr Metab. 2020;45(10):S77–S102. doi:10.1139/apnm-2020-0467

22. Sallis JF, Bull F, Guthold R, et al. Progress in physical activity over the Olympic quadrennium. Lancet. 2016;388(10051):1325–1336. doi:10.1016/S0140-6736(16)30581-5

23. Lambert EV, Kolbe-Alexander T, Adlakha D, et al. Making the case for ‘physical activity security’: the 2020 WHO guidelines on physical activity and sedentary behaviour from a Global South perspective. Br J Sports Med. 2020;54(24):1447–1448. doi:10.1136/bjsports-2020-103524

24. Strain T, Wijndaele K, Garcia L, et al. Levels of domain-specific physical activity at work, in the household, for travel and for leisure among 327 789 adults from 104 countries. Br J Sports Med. 2020;54(24):1488–1497. doi:10.1136/bjsports-2020-102601

25. Byrom B, Rowe DA. Measuring free-living physical activity in COPD patients: deriving methodology standards for clinical trials through a review of research studies. Contemp Clin Trials. 2016;47:172–184. doi:10.1016/j.cct.2016.01.006

26. Garrow AP, Yorke J, Khan N, Vestbo J, Singh D, Tyson S. Systematic literature review of patient-reported outcome measures used in assessment and measurement of sleep disorders in chronic obstructive pulmonary disease. Int J COPD. 2015;10:293–307. doi:10.2147/COPD.S68903

27. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2020;38:105906. doi:10.1136/bmj.n71

28. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev. 2016;5(1):1–10. doi:10.1186/s13643-016-0384-4

29. World Health Organisation. Definition of regional groupings. Available from: http://www.who.int/healthinfo/global_burden_disease/definition_regions/en/. Accessed March 7, 2022.

30. The World Bank. World Bank Country and Lending Groups. Country Classification. Available from: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups. Accessed March 7, 2022.

31. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F. World map of the Köppen-Geiger climate classification updated. Meteorol Zeitschrift. 2006;15(3):259–263. doi:10.1127/0941-2948/2006/0130

32. Peel MC, Finlayson BL, McMahon TA. Updated world map of the Koppen-Geiger climate classification. Hydrol Earth Syst Sci. 2007;11(5):1633–1644. doi:10.1002/hess.2023

33. World Bank. New World Bank Country Classifications by Income Level: 2020–2021; Washington, DC, USA: World Bank; 2020. Available from: https://blogs.worldbank.org/openda/new-world-bank-country-classifications-income-level-2020-2021. Accessed March 7, 2022.

34. World Health Organisation. WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global update 2005. Summary of risk assessment; 2005. Available from: https://apps.who.int/iris/handle/10665/69477. Accessed March 7, 2022.

35. Hallal PC, Andersen LB, Bull FC, Guthold R, Haskell W, Ekelund U. Physical activity levels of the world’s population Surveillance progress, gaps and prospects. Lancet. 2012;380:247–257. doi:10.1016/S0140-6736(12)60646-1

36. Ainsworth BE, Pratt M, Elden Y, Yuvarge A, Sallis JF, Oja P. International physical activity questionnaire: 12-Country reliability and validity. Med Sci Sports Exerc. 2002;35(6):1381–1395. doi:10.1249/01.MSS.0000078924.61453.FB

37. Ohayon MM, Reynolds III CF. Epidemiological and clinical relevance of insomnia diagnosis algorithms according to the DSM-IV and the International Classification of Sleep Disorders (ICSD). Sleep Med. 2019;14:419–430. doi:10.1016/j.sleep.2019.05.016

38. Spina G, Spruit MA, Alison J, et al. Analysis of nocturnal actigraphic sleep measures in patients with COPD and their association with daytime physical activity. Thorax. 2017;72(8):694–701. doi:10.1136/thoraxjnl-2016-208890

39. Lewithwaite H, Elling TW, Olds T, Williams MT. Physical activity, sedentary behaviour and sleep in COPD guidelines: a systematic review. Chron Respir Dis. 2017;14(3):231–244. doi:10.1177/1479923116687224

40. Simonelli G, Marshall NS, Grillakis A, Miller CB, Hoyos CM, Glover N. Sleep health epidemiology in low and middle-income countries: a systematic review and meta-analysis of the prevalence of poor sleep quality and sleep duration. Sleep Health. 2018;4(3):239–250. doi:10.1016/j.sleh.2018.03.001

41. Ohayon MM, Reynolds III CF. Epidemiological and clinical relevance of insomnia diagnosis algorithms according to the DSM-IV and the International Classification of Sleep Disorders (ICSD). Sleep Med. 2009;10(9):952–960. doi:10.1016/j.sleep.2009.07.008

42. Adetiloye AO, Erhabor GE, Adewole OO, Awopoju O. The determinants of sleep quality and its impact on exercise capacity of patients with COPD. Afr J Respir Med. 2018;13(2):10–14.

43. Adewole O, Erhabor G, Oguntola O. Sleep pattern, quality and sleepiness among patients with chronic pulmonary parenchyma disease in Nigeria. Sleep Med. 2011;12:254. doi:10.1016/j.sleep.2011.07.013

44. Desalu OO, Onyedum CC, Makusidi MA, et al. Physical and socioeconomic impact of asthma in Nigeria: experience of patients attending three tertiary hospitals. Nig J Clin Pract. 2015;22(6):855–861. doi:10.4103/njcp.njcp_294_18

45. Ali Zohal M, Yazdi Z, Kazemifar AM. Daytime sleepiness and quality of sleep in patients with COPD compared to control group. J Health Psychol. 2017;22(12):1603–1613. doi:10.1177/1359105316684937

46. Mahmood ZA, Malghoosh ZT. Relationship of hips and knees osteoarthritis with bronchial asthma. Res J Pharm Biol Chem Sci. 2019;10(2):64–70.

47. Moussa SB, Sfaxi I, Tabka Z, Saad HB, Rouatbi S. Oxidative stress and lung function profiles of male smokers free from COPD compared to those with COPD: a case-control study. Libyan J Med. 2014;9(1):23873. doi:10.3402/ljm.v9.23873
51. Moussa SB, Rouath S, Saad HB. Incapacity, handicap, and oxidative stress markers of male smokers with and without COPD. *Respir Care*. 2016;61(5):668–679. doi:10.4187/rescare.04420

52. Mihaltan F, Adir Y, Antczak A, et al. Importance of the relationship between symptoms and self-reported physical activity level in stable COPD based on the results from the SPACE study. *Respir Res*. 2019;20(1). doi:10.1186/s12931-019-1053-7

53. Mihaltan F, Antczak A, Radulovic V, Chen Y, Alecu S. Physical activity level in stable COPD patients from central Europe: results from a large observational study. *Chest*. 2019;156(4):A903. doi:10.1016/j.chest.2019.08.848

54. Vukoja M, Kopitovic I, Milicevic D, Maksimovic O, Pavlovic-Popovic Z, Ilic M. Sleep quality and daytime sleepiness in patients with COPD and asthma. *Clin Respir J*. 2018;12(2):398–403. doi:10.1111/crj.12528

55. Akinci AC, Yildirim E. Factors affecting health status in patients with chronic obstructive pulmonary disease. *Int J Nurs Pract*. 2013;19(1):31–38. doi:10.1111/jnnp.12034

56. Gene A, Ucok K, Gunay E, et al. Effects of long-acting beta-2 agonist treatment on daily energy balance and body composition in patients with chronic obstructive pulmonary disease. *Turk J Med Sci*. 2012;42:1414–1422.

57. Gene A, Ucok K, Sener U, et al. Association analyses of oxidative stress, aerobic capacity, daily physical activity, and body composition parameters in patients with mild to moderate COPD. *Turk J Med Sci*. 2014;44(6):972–979. doi:10.3906/sag-1308-65

58. Pehlivan E, Niskarlioglu EY, Balci A, Kilic L. The effect of pulmonary rehabilitation on the physical activity level and general clinical status of patients with bronchectasis. *Turk Thorac J*. 2019;20(1):30–35. doi:10.5152/TurkThoracJ.2018.18093

59. Şahin AZ, Dayapoglu N. Effect of progressive relaxation exercises on fatigue and sleep quality in patients with chronic obstructive lung disease (COPD). *Complement Ther Clin Pract*. 2015;21(4):277–281. doi:10.1016/j.ctcp.2015.10.002

60. Saglam M, Savci S, Vardar Yagci N, et al. Relationship between obesity and respiratory muscle strength, functional capacity, and physical activity level in patients with chronic obstructive pulmonary disease. *Fiz Rehabil*. 2013;24(3):157–162.

61. Turan O, Ure I, Turan PA. Erectile dysfunction in COPD patients. *Chronic Respir Dis*. 2016;13(1):5–12. doi:10.1177/1749799715619382

62. Yilmaz FT, Aydin HT. The effect of a regular walking program on dyspnoea severity and quality of life in normal weight, overweight, and obese patients with chronic obstructive pulmonary disease. *Int J Nurs Pract*. 2018;24(3):1. doi:10.1111/jnnp.12636

63. Lopez Jove OR, Galdames A, Barrionuevo V, et al. Depression in chronic obstructive pulmonary disease (COPD): relationship to dyspnea degrees and impact on quality of life (QOL). *Am J Respir Crit Care Med*. 2013;187:A2505.

64. Molinas JA, Torrent C, Arduos LR, Criscis CD, Barayzarra S, Crisci S. Relationship between body mass index and severity of bronchial asthma in adults. *Arch Allergy Immunol Clin*. 2007;38(1):19–28.

65. Amorim PB, Stelmach R, Carvalho CRF, Fernandes FLA, Carvalho-Pinto R, Cukier A. Barriers associated with reduced physical activity in patients with COPD. *J Bras Pneumol*. 2014;40(5):504–512. doi:10.1590/S1806-37132014000500006

66. Athayde FTS, Vieira DSR, Britto RR, Parreira VF. Functional outcomes in patients with chronic obstructive pulmonary disease: a multivariate analysis. *Rev Bras Fisioter*. 2018;14(1):63–71. doi:10.1590/S1413-35552020000142

67. Borges RC, Carvalho CRF. Physical activity in daily life in Brazilian COPD patients during and after exacerbation. *COPD*. 2012;9(6):596–602. doi:10.3109/15412555.2012.705364

68. Campos FL, de Bruin PFC, Pinto TF, da Silva FGC, Pereira EDB, de Bruin VMS. Depressive symptoms, quality of sleep, and disease control in women with asthma. *Sleep Breathing*. 2017;21(2):361–367. doi:10.1007/s11325-016-1422-0

69. Cani KC, Matte DL, Silva ICS, Gulart AA, Karloh M, Mayer AF. Impact of home oxygen therapy on the level of physical activities in daily life in subjects with COPD. *Respir Care*. 2019;64(11):1392–1400. doi:10.4187/respcare.06206

70. Cavalcante AM, de Bruin VMS, Pereira EDB, et al. Restless leg syndrome, fatigue, and quality of sleep in chronic obstructive pulmonary disease. *Am J Respir Crit Care Med*. 2012;185:A4533.

71. Cetlin AA, Gutierrez MR, Bettiol H, Barbieri MA, Vianna MA. Influence of asthma definition on the asthma-obesity relationship. *BMC Public Health*. 2012;12:844. doi:10.1186/1471-2458-12-844

72. Coelho CM, Campos LA, Pereira FO, et al. Objectively measured daily-life physical activity of moderate-to-severe Brazilian asthmatic women in comparison to healthy controls: a cross-sectional study. *J Asthma*. 2018;55(1):73–78. doi:10.1080/027707903.2017.1306547

73. Coelho CM, Rebored MM, Valle FM, et al. Effects of an unsupervised pedometer-based physical activity program on daily steps of adults with moderate to severe asthma: a randomized controlled trial. *J Sports Sci*. 2018;36(10):1186–1193. doi:10.1080/02640414.2017.1364402

74. Da Costa CC, Bordin CD, Roberto CJF, Lermen C, Colombo C, Machado DSR. The repercussions of a pulmonary rehabilitation program on the level of activity in patients with chronic obstructive pulmonary disease. *Rev Inspir Movimento Saud*. 2012;4(5):34–37.

75. Cukier A, Godoy I, Costa CHD, et al. Symptom variability over the course of the day in patients with stable COPD in Brazil: a real-world observational study. *J Bras Pneumol*. 2020;46(3):e20190223. doi:10.36417/1806-3756/e20190223

76. Felcar JM, Probst VS, De Carvalho DR, et al. Effects of exercise training in water and on land in patients with COPD: a randomised clinical trial. *Physiotherapy*. 2018;104(4):408–416. doi:10.1016/j.physio.2017.10.009

77. Filippin TR, Ariza D, Beloto A-CNDO. Correlation of the body mortality predictor index in physically active and sedentary chronic obstructive pulmonary disease patients. *Rev Inspir Movimento Saud*. 2011;3(4):30–35.

78. Fonseca FR, Karloh M, De Araujo CLP, Dos santos K, Mayer AF. Nutritional status and its relationship with different dimensions of functional status in patients with chronic obstructive pulmonary disease. *Rev Nutr*. 2016;29(5):635–644. doi:10.1590/1678-96862016000500002

79. Freitas PD, Silva AG, Ferreira PG, et al. Exercise improves physical activity and comorbidities in obese adults with asthma. "Med Sci Sports Exerc." 2018;50(7):1367–1376. doi:10.1249/MSS.0000000000001574

80. Furlanetto KC, Pinto IFS, Sant’Anna T, Hernandes NA, Pitta F. Profile of patients with chronic obstructive pulmonary disease classified as physically inactive and according to different thresholds of physical activity in daily life. *Braz J Phys Ther*. 2016;20(6):517–524. doi:10.1590/bjpt-rbf.2014.0185

81. Furlanetto KC, Demeyer H, Sant’anna T, et al. Physical activity of patients with COPD from regions with different climatic variations. *COPD*. 2017;14(3):276–283. doi:10.1080/15412555.2017.1303039

82. Gulart AA, Munari AB, Klein SR, Venancio RS, Alexandre HF, Mayer AF. The London Chest Activity of Daily Living scale cut-off point to discriminate functional status in patients with chronic obstructive pulmonary disease. *Braz J Phys Ther*. 2019;24(3):264–272. doi:10.1016/j.bjpt.2019.03.002
83. Hernandez NA, Teixeira DC, Probst VS, Brunetto AF, Ramos EMC, Pitta F. Profile of the level of physical activity in the daily lives of patients with COPD in Brazil. *J Bras Pneumol*. 2009;35(10):949–956. doi:10.1590/S1806-37132009000100002

84. Jardim JR, Piazza M, Carvalho AK, Ivanaga IT, Nascimento OA. Assessment of physical activity by pedometry in patients with chronic obstructive pulmonary disease (COPD): An emerging country. *Am J Respir Crit Care Med*. 2011;183(1):A2034.

85. Karloh M, Araujo CLP, Gulart AA, Reis CM, Steidle LJ, Mayer AF. The Glittr-ADL test reflects functional performance measured by physical activities of daily living in chronic obstructive pulmonary disease. *Braz J Phys Ther*. 2016;20(3):223–230. doi:10.1590/bjpt-rb.2014.0155

86. Landal AC, Monteiro F, Hevely BC, Kanesawa LM, Hernandez N, Pitta F. Factors associated with improved body composition in individuals with COPD after physical training. *Fixis mov*. 2014;27(4):633–641. doi:10.1590/0103-5150.027.04.AO15

87. Lanza FC, Castro RAS, de Camargo A, et al. COPD assessment test (CAT) is a valid and simple tool to measure the impact of Bronchiectasis on affected patients. *COPD*. 2018;15(5):512–519. doi:10.1080/15412558.2018.140034

88. Lopes AC, Xavier RF, Pereira AC AC, et al. Identifying COPD patients at risk for worse symptoms, HRQoL, and self-efficacy: a cluster analysis. *Chronic Illn*. 2019;15(2):138–148. doi:10.1177/1743953317753883

89. Mantoani LC, Hernandez N, Guimarães M, Vitorasso RL, Probst VS, Pitta F. Does the BODE index reflect the level of physical activity in daily life in patients with COPD? *Braz J Phys Ther*. 2011;15(2):131–137. doi:10.1413/S1413-3555201000200008

90. Monteiro F, Camillo CA, Vitorasso R, et al. Obesity and physical activity in the daily lives of patients with COPD. *Lung*. 2012;190(4):403–410. doi:10.1007/s00408-012-9381-0

91. Morita AA, Silva LKO, Bisca GW, et al. Heart rate recovery, physical activity level, and functional status in subjects with COPD. *Respir Care*. 2018;63(8):1002–1008. doi:10.4187/respcare.05918

92. Munari AB, Gulart AA, Dos Santos K, Venâncio RS, Karloh M, Mayer AF. Modified Medical Research Council Dyspnea Scale in GOLD classification better reflects physical activities of daily living. *Respir Care*. 2018;63(1):77–85. doi:10.4187/respcare.05636

93. Nobeschi L, Zangiroliani R, Cordoni PK, et al. Evaluation of sleep quality and daytime somnolence in patients with chronic obstructive pulmonary disease in pulmonary rehabilitation. *BMC Pulm Med*. 2020;20(1):1–7. doi:10.1186/s12890-020-1046-9

94. Nunes DM, Mota RMS, Machado MO, Pereira EDB, de Bruin VMS, de Bruin PFC. Effect of melatonin administration on subjective sleep quality in chronic obstructive pulmonary disease. *Br J Med Biol Res*. 2008;41(9):926–931. doi:10.1590/S0100-879X2008000100016

95. Nyssen SM, Santos J, Barusso MS, Delfino de OA Jr, Lorenzo VA, Jamami M. Levels of physical activity and predictors of mortality in COPD. *J Bras Pneumol*. 2013;39(6):569–666. doi:10.1590/S1806-37132013000600004

96. Pitta F, Breyer M, Hernandez NA, et al. Comparison of daily physical activity between COPD patients from Central Europe and South America. *Respir Med*. 2009;103(3):421–426. doi:10.1016/j.rmed.2008.09.019

97. Probst VS, Kovelis D, Hernandes N, Camillo CA, Cavelhneri V, Pitta F. Effects of 2 exercise training programs on physical activity in daily life in patients with COPD. *Respir Care*. 2011;56(11):1799–1807. doi:10.4187/respcare.01110

98. Reboredo MDM, Lucinda LM, Yecker GD, et al. Barriers to physical activity in patients with chronic respiratory diseases. *Am J Respir Crit Care Med*. 2018;197:E1714.

99. Rocha FR, Brüggemann A, Karla V, et al. Diaphragmatic mobility: relationship with lung function, respiratory muscle strength, dyspnea, and physical activity in daily life in patients with COPD. *Br J Respir Dis*. 2017;43(1):32–37. doi:10.1590/s1806-37562016000000097

100. Rodrigues ESR, Moreira RDF, Rezende AAB, Costa LD. Sedentarism and smoking in patients with cardiovascular, respiratory and orthopedic diseases. *Rev Enfermagem Ufpe*. 2014;8(3):591–599.

101. Schneider PL, Couto FK, Aparecida HN, Pitta F. Does the wearing time of motion sensor interfere with the choice of physical activity in daily life outcomes of COPD patients? *Fisioter Pesquisa*. 2018;25(1):3–43. doi:10.1590/1809-2950/1678425012018

102. Silva DR, Coelho AC, Dumke A, et al. Osteoporosis prevalence and associated factors in patients with COPD: a cross-sectional study. *Respir Care*. 2011;56(7):961–968. doi:10.4187/respcare.01056

103. Simon KM, Hass AP, Zimmerman JL, Carpes MF. BODE mortality prognostic index and physical activity in chronic obstructive pulmonary disease. *Rev bras med esporte*. 2009;15(1):19–22. doi:10.1590/S1517-86922009000100004

104. Tavares MG, Nascimento ACSF, Ferraz MCCN, Medeiros RABD, Cabral PC, Burgos MGPA. Overweight and obesity in patients with chronic obstructive pulmonary disease. *Bras J Med Biol Res*. 2017;50:PA777.

105. Vitorasso R, Camillo CA, Cavelhneri V, et al. Is walking in daily life a moderate intensity activity in patients with chronic obstructive pulmonary disease? *Eur J Phys Rehabil Med*. 2012;48(4):587–592.

106. Xavier R, Lopes AC, Pereira ACAC, et al. Factors associated with daily life physical activity in Brazilian COPD patients. *Eur Respir J*. 2016;48:PA1889.

107. Yunus FM, Khan S, Mitra DK, Mistry SK, Afsana K, Rahman M. Relationship of sleep pattern and snoring with chronic disease: findings from a nationwide population-based survey. *Sleep Health*. 2018;4(1):40–48. doi:10.1016/j.sleh.2017.10.003

108. Bhuker M, Kapoor S. Environmental and occupational respiratory diseases-104. Effects of socioeconomic status, life style patterns and demographic factors. *World Allergy Organ J*. 2013;6(4):P42. doi:10.1186/1939-4551-6-S1-P42

109. De S. Subjective assessment of quality of sleep in chronic obstructive pulmonary disease patient and its relationship with associated depression. *Lung India*. 2012;29(4):332–335. doi:10.4103/0970-2113.102308

110. Gupta R, Ulfberg J, Allen RP, Goel D. Comparison of subjective sleep quality of long-term residents at low and high altitudes: SARAH study. *Clin J Sleep Med*. 2018;14(1):15–21. doi:10.5646/jcsm.6870

111. Panigrahi MK, Padhan M, Mohapatra PR. Relationship between sleep quality, asthma control and quality of life in adults with asthma. *Am J Respir Crit Care Med*. 2018;197:A1089. doi:10.1164/rcrm.2017-1728OC

112. Poongadan MN, Gupta N, Kumar R. Lifestyle factors and asthma in India - a case-control study. *Pneumonol Alergol Pol*. 2016;84(2):104–108. doi:10.5603/PAP.2016.0008

113. Sharma K, Jain A, Goyal V, et al. Depression and physical activity impairment in COPD subjects. *J Clin Diagn Res*. 2019;13(7):OC16–22.

114. Ulfahinah A, Rachmi SF, Indracahyani A. Characteristics affecting sleep quality of COPD patients. *Enferm Clin*. 2019;29:30–35. doi:10.1016/j.enfcli.2019.04.005

115. Widjastuti K, Makhabah DN, Rima A, Sutanto YS, Suradi S, Ambrosino N. Home based pulmonary rehabilitation with pedometers in Indonesian COPD patients. *Eur Respir J*. 2017;50:PA777.
116. Chanthitivech N, Sirichana W. Cardiopulmonary exercise testing parameters and level of daily physical activity correlation in stable COPD patients. *Eur Respir J*. 2017;50:PA2250.

117. Chunrong J, Rongchang C. Factors associated with impairment of quadriceps muscle function in Chinese patients with chronic obstructive pulmonary disease. *PLoS One*. 2014;9(2):e84167. doi:10.1371/journal.pone.0084167

118. Ding B, Small M, Bergstrom G, Holmgren U. A cross-sectional survey of night-time symptoms and impact of sleep disturbance on symptoms and health status in patients with COPD. *Int J COPD*. 2017;12:589–599. doi:10.2147/COPD.S122485

119. Tao Y, Wang L, Dong X, et al. Psychometric properties of the physical activity scale for the elderly in Chinese patients with COPD. *Int J COPD*. 2017;12:105–114. doi:10.2147/COPD.S120700

120. Wang L, Nygardh A, Zhao Y, Martensson J. Self-management among patients with chronic obstructive pulmonary disease in China and its association with sociodemographic and clinical variables. *Appl Nurs Res*. 2016;32:61–66. doi:10.1016/j.apnr.2016.05.001

121. Wang L, Tao Y, Dong X, et al. Demographic, health behavioral, and self-management abilities associated with disease severity among patients with chronic obstructive pulmonary disease: an exploratory study. *Int J Nurs Pract*. 2017;23(1):e12509. doi:10.1111/ijn.12509

122. Wang S, Wu Y, Ungvari GS, et al. Sleep duration and its association with demographics, lifestyle factors, poor mental health and chronic diseases in older Chinese adults. *Psychiatry Res*. 2017;257:212–218. doi:10.1016/j.psychres.2017.07.036

123. Zheng L, Wang A. Application effect of rational emotional behavior therapy for home chronic obstructive pulmonary disease patients with depression. *Chin Nurs J*. 2019;33:1135–1140.

124. Vancampfort D, Koyanagi A, Ward PB, et al. Chronic physical conditions, multimorbidity and physical activity across 46 low and middle income countries. *Int J Behav Nutr Phys Act*. 2017;14(1):6. doi:10.1186/s12966-017-0463-5

125. Koyanagi A, Stubbs B, Smith L, Gardner B, Vancampfort D. Correlates of physical activity among community-dwelling adults aged 50 or over in six low- and middle-income countries. *PLoS One*. 2017;12(10):e0186992. doi:10.1371/journal.pone.0186992

126. Vancampfort D, Stubbs B, Koyanagi A. Physical chronic conditions, multimorbidity and sedentary behavior amongst middle-aged and older adults in six low- and middle-income countries. *Int J Behav Nutr Phys Act*. 2017;14(1):147. doi:10.1186/s12966-017-0602-z

127. Vancampfort D, Lara E, Stubbs B, Swinnen N, Probst M, Koyanagi A. Physical activity correlates in people with mild cognitive impairment: findings from six low- and middle-income countries. *Public Health*. 2018;156:15–25. doi:10.1016/j.puhe.2017.12.002

128. Vancampfort D, Stubbs B, Veronese N, Mugisha J, Swinnen N, Koyanagi A. Correlates of physical activity among depressed older people in six low-income and middle-income countries: a community-based cross-sectional study. *Int J Geriatr Psychiatry*. 2018;33(2):e314–22. doi:10.1002/gps.4796

129. Vancampfort D, Stubbs B, Mugisha J, Firth J, Schuch FB, Koyanagi A. Correlates of sedentary behavior in 2375 people with depression from 6 low- and middle-income countries. *J Affect Disord*. 2018;234:97–104. doi:10.1016/j.jad.2018.02.088

International Journal of Chronic Obstructive Pulmonary Disease

Publish your work in this journal

The *International Journal of COPD* is an international, peer-reviewed journal of therapeutics and pharmacology focusing on concise rapid reporting of clinical studies and reviews in COPD. Special focus is given to the pathophysiologial processes underlying the disease, intervention programs, patient focused education, and self management protocols. This journal is indexed on PubMed Central, MedLine and CAS. The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.

Submit your manuscript here: https://www.dovepress.com/international-journal-of-chronic-obstructive-pulmonary-disease-journal