Effective time-independent analysis for quantum kicked systems

Jayendra N. Bandyopadhyay\(^1\) and Tapomoy Guha Sarkar\(^1\)

\(^1\)Department of Physics, Birla Institute of Technology and Science, Pilani 333031, India.

We present a mapping of potentially chaotic time-dependent quantum kicked systems to an equivalent effective time-independent scenario, whereby the system is rendered integrable. The time-evolution is factorized into an initial kick, followed by an evolution dictated by a time-independent Hamiltonian and a final kick. This method is applied to the kicked top model. The effective time-independent Hamiltonian thus obtained, does not suffer from spurious divergences encountered if the traditional Baker-Cambell-Hausdorff treatment is used. The quasienergies spectrum of the Floquet operator is found to be in excellent agreement with the energy levels of the effective Hamiltonian for a wide range of system parameters. The density of states for the effective system exhibits sharp peak-like features, pointing towards quantum criticality. The dynamics in the classical limit of the integrable effective Hamiltonian shows remarkable agreement with the non-integrable map corresponding to the actual time-dependent system in the non-chaotic regime. This suggests that the effective Hamiltonian serves as a substitute for the actual system in the non-chaotic regime at both the quantum and classical level.

PACS numbers: 05.30.Rt, 05.45.Mt, 03.65.-w

Introduction: Quantum systems driven periodically in time are known to undergo remarkable alterations in its long-time dynamical evolution \(^1\) \(^3\) \(^7\) and is an area of extensive study. External driving is known to create non-trivial gauge structures \(^3\) \(^5\) and topological effects \(^10\) \(^13\). Modulated driving systems have the potential to fabricate new materials and phases of matter \(^10\) \(^11\) \(^14\) \(^19\). In this scheme, the modulation of the driving system is used to recreate an effective static Hamiltonian which is thereby investigated for interesting features of time-independent systems \(^6\) \(^7\) \(^20\) \(^21\).

Kicked Hamiltonian systems are widely studied as prototype model for classical and quantum chaos \(^22\) \(^23\). The traditional approach to such periodic systems uses the Floquet analysis to obtain the quasienergies of the systems. Earlier works \(^1\) \(^3\) \(^22\) use the formulation based on the Cambell-Baker-Hausdorff (CBH) expansion to provide an effective time-independent Hamiltonian \(^21\). This method has been used to explore non-chaotic regimes and study critical quasi-energy states \(^24\). We claim that the traditional CBH approach to study such time-dependent problem have intrinsic flaws and an alternative formulation \(^6\) \(^8\) is more robust and accurate for the study of the kicked systems. In this paper, we have applied this alternative formulation on quantum kicked systems where the time dependence of the Hamiltonian is in the form of a series of Dirac-delta pulses. We have studied the specific case of the kicked top model \(^22\). We show that this alternative formulation allows the effective static Hamiltonian to accurately mimic the exact evolution for a significantly large range of parameters and the eigenvalues of the effective Hamiltonian faithfully trace the exact quasienergies without any spurious divergences (as observed in \(^24\)) that are pathologies of the CBH based formulation. In the absence of such singularities the effective Hamiltonian obtained in our method can be used to study divergences in the density of states as signature of excited state quantum phase transition for a much wider range of parameter values. We have also shown remarkable match between the phase-space dynamics of the classical limits of the exact quantum map \(^22\) and symplectic evolution governed by the effective static Hamiltonian in the non-chaotic regime.

Formalism: Generic time-dependent problems where $\hat{H}(t) = \hat{H}_0 + \hat{V}(t)$ is tackled using the Floquet theory when $\hat{V}(t) = \hat{V}(t + T)$ is time-periodic with period T. The Floquet operator $\hat{F}(t)$ corresponds to the time-evolution unitary operator $\hat{U}(t)$ after one time-period of the driving potential and has eigenvalues of the form $\exp(-i\phi T)$ where ϕ are refer to as the quasienergies of the system. In the traditional approach to find an effective Hamiltonian for kicked systems where $\hat{V}(t) = \hat{V}_0 \sum_{n=-\infty}^{\infty} \delta(t-nT)$ the Floquet operator is factorized as $\hat{F} = \exp(-i\hat{V}_0) \exp(-i\hat{H}_0 T) = \exp(-i\hat{H}_{eff} T)$. In the formalism described in \(^21\) and used in \(^24\) the effective Hamiltonian \hat{H}_{eff} is extracted using the CBH expansion and truncated upon a certain order in $T \sim 1/\omega$. In the absence any unique prescription for splitting the Hamiltonian, the Trotter-CBH method is sensitive to the initial phase of the driving potential. It is evident that any shift of the initial time t_i will lead to spurious artifact in \hat{H}_{eff}. This ambiguity has been discussed in the case of square two-phase modulation of a static Hamiltonian \(^8\). The effective Hamiltonian obtained for the kicked top system is also seen to exhibit unphysical singularities for a class of parameters \(^24\). In view of such criticisms about using the CBH expansion, to find the effective static Hamilto-
nians, we adopt the alternative formulation6,7 to study Floquet systems.

The periodic potential \(\hat{V}(t) \) is assumed to be of the form \(\hat{V}(t) = \hat{V}_0 + \sum_{n=-\infty}^{\infty} \delta(t-nT) \), and may be expanded in a Fourier series as
\[
\hat{V}(t) = \hat{V}_0 + \sum_{n=1}^{\infty} \hat{V}_n e^{i\omega nt} + \hat{V}_- e^{-i\omega nt}.
\tag{1}
\]

The method expresses the evolution operator \(\hat{U}(t_i \rightarrow t_f) \) between initial time instant \(t_i \) and final time instant \(t_f = t_i + T \), as a sequence of an initial kick followed by an evolution under a static Hamiltonian and a final ‘micromotion’8
\[
\hat{U}(t_i \rightarrow t_f) = \hat{U}(t_f)e^{-i\hat{H}_{\text{eff}} T} \hat{U}(t_i)
\tag{2}
\]
where \(\hat{U}(t) = e^{\hat{F}(t)} \) such that \(\hat{F}(t) = \hat{F}(t+T) \) with zero average over one time period. The operators \(\hat{H}_{\text{eff}} \) and \(\hat{F}(t) \) are expanded in a perturbation series in powers of \(1/\omega \) as
\[
\hat{H}_{\text{eff}} = \hat{H}_0 + \frac{1}{2\omega^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \left(\left[\hat{V}_n, \hat{H}_0 \right], \hat{V}_- \right) + \text{h.c.}
\tag{3}
\]
\[
\hat{F}(t) = \frac{1}{i\omega} \sum_{n=1}^{\infty} \frac{1}{n} \left(\hat{V}_n e^{i\omega nt} - \hat{V}_- e^{-i\omega nt} \right)
\tag{4}
\]
\[
+ \frac{1}{i\omega^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \left(\hat{V}_n, \hat{H}_0 + \hat{V}_0 \right) e^{i\omega nt} - \text{h.c.}.
\]

These express results for general quantum kicked systems with Dirac-delta forcing and when \([\hat{V}_n, \hat{V}_-] = 0 \) for all \(n \). It is evident that in the partitioning of the time-evolution operator as in Eq. \(\text{(2)} \) the system is assumed to undergo an initial kick
\(\exp(i\hat{F}(t_i)) \) which is sensitive to the launching time \(t_i \). This therefore has a long term bearing on the dynamical evolution, though the evolution after the initial kick is essentially dictated by the static effective Hamiltonian. In our analysis with \(t_i = 0 \) and \(t_f = T \), we have \(\hat{F}(t_i) = \hat{F}(t_f) \). Thus the effect of
\(\hat{U}(t_i) = \hat{U}(t_f) \) is that of similarity transformation on \(\exp(-i\hat{H}_{\text{eff}}) \). The eigenvalues of \(\hat{H}_{\text{eff}} \) shall hence mimic the quasienergies obtained from the Floquet operator.

The kicked top model is representative of a host of such kicked systems and manifests chaotic dynamics26–28. This model is also known to have closed bearings with condensed matter systems like metal-topological-insulator29,30 and also has also been studied in the context of quantum critical transition24,31. The study of the kicked top is also motivated by recent experiments32,33.

We consider the Hamiltonian for the kicked top
\[
\hat{H}(t) = \frac{\alpha}{2jT} \hat{j}_z^2 + \beta \hat{j}_x \sum_{n=-\infty}^{\infty} \delta(t-nT),
\tag{5}
\]
where \(\hat{j}_i \) denotes the components of the angular momentum, \(j(j+1) \) is the eigenvalue of \(\hat{j}^2 \). The operators \(\hat{j}_z \) and \(\hat{j}_x \) are the \(x- \) and \(y- \) components of the angular momentum operator, respectively. Three components of the angular momentum operator satisfy standard commutation relation \([j_i, j_j] = i\epsilon_{ijk} j_k \). The Floquet operator for the above Hamiltonian is given by
\[
\hat{F} = \exp(-i\beta \hat{j}_z) \exp \left(-i \frac{\alpha \hat{j}_z^2}{2jT} \right).
\tag{6}
\]
The first factor in \(\hat{F} \) describes a rotation operator around the \(x \)-axis by the angle \(\beta \). The second factor corresponds to a nonuniform rotation or torsion around the \(z \)-axis; instead of being a constant rotation angle is itself proportional to the angular momentum component \(\hat{j}_z \). Therefore, the parameter \(\alpha \) measures the torsional strength. We have set \(T = 1 \) for all subsequent analysis.

Evaluating the commutators in Eq. \(\text{(4)} \), we have the expressions for the truncated \(\hat{H}_{\text{eff}} \) and \(\hat{F} \) given by
\[
\hat{H}_{\text{eff}} = \alpha \frac{\hat{j}_z^2}{2j^2} + \beta \hat{j}_x - \frac{\alpha \hat{j}_z^2}{24j} (\hat{j}_z - \hat{j}_y)
\tag{7}
\]
\[
\hat{F}(t_i) = \hat{F}(t_f) = -\frac{i\beta}{24j} (\hat{j}_y \hat{j}_z + \hat{j}_z \hat{j}_y).
\]

We note that \(\hat{H}_{\text{eff}} \) does not show any singularities for any values of the parameters \(\alpha \) and \(\beta \). This feature differs crucially from the results obtained earlier24 where the effective quasienergies showed divergence when \(\alpha(2m+1) = 4jl\pi \) where \(l \in \mathbb{Z} \) and \(m \) denotes the eigenvalues of \(\hat{j}_z \). We claim that these singularities are an artifact of the naive use of the CBH formula. Figure11 shows the numerically obtained eigenvalues of the Floquet operator \(\hat{F} \) and the effective Hamiltonian \(\hat{H}_{\text{eff}} \) for \(\beta = 0.1 \). We note that, the former is non-integrable whereas the later is static, approximate, and integrable.

The figure shows the eigenvalues \(\epsilon \) of \(\hat{H}_{\text{eff}} \) mapped into the first Brillouin zone. A remarkable match of \(\epsilon \) with the quasienergies \(\phi \) is obtained for broad range of values of \(\alpha \). The agreement of the approximate eigenvalues with the exact quasienergies at a very high level of precision is noticed even in the domain of the parameters \(\alpha \) for which
the system approaches chaotic regime. This is different from the results obtained in an earlier work [24] where such agreement is noticed for a very small range of values of α. The fundamental departure in the approximate analysis adopted here, occurs around regions where the quasienergy spectrum shows level repulsion which is characteristic of non-integrable systems. In the eigenvalue spectrum of \tilde{H}_eff which is an integrable system there is manifestation of degeneracy. The actual quasienergy spectrum avoids such crossings [23]. The situation gets worse for higher values of β where more of such spurious crossings appear.

To investigate the nature of critical quasienergy states for a much wider range of parameters in the Hamiltonian we use the spectrum of \tilde{H}_eff. This is expected to manifest as divergence in the density of states $\rho(\epsilon) = (2j + 1)^{-1} \sum_r \delta(\epsilon - \epsilon_r)$ where ϵ_r are the eigenvalues of H_{eff}. This can be written as

$$\rho(\epsilon) = \frac{1}{2\pi} + \frac{1}{2\pi(2j + 1)} \text{Re} \left\{ \sum_{n=1}^{\infty} \xi_n e^{i n\epsilon} \right\}$$

(8)

where $\xi_n = \sum_r \exp(-i n \epsilon_r)$. Figure 2 compares the density of states (DOS) for the exact quasienergy spectrum and the energy spectrum of \tilde{H}_eff. The two are found to match to a high degree of accuracy for different values of the parameter α, and also for different spin. The sharp peak-features that appears in the DOS for $\alpha = 0.2$ for spin $j = 40$ indicates quantum criticality as suggested in an earlier work [24]. The feature however is sensitive to α and flattens out at larger values of α. The position of the peak is seen to shift as j increases. This is quite expected since the DOS is closely related to the degeneracies of the energy levels which in turn depends on j. The claim for the indication of quantum criticality as reflected in logarithmic divergence of the DOS is noted in an earlier work [24]. This result is vindicated by our present analysis which uses an effective Hamiltonian intrinsically differing from the one used earlier but however, does not suffer from mismatches in the spectrum at larger values of α.

Using the Heisenberg equation of motion, we find the following quantum dynamical map for the angular momentum operator as

$$\hat{J}_{n+1} = \tilde{F} n \hat{J}_n \tilde{F}.$$

(9)

The classical limit of this map can be achieved by first rescaling the operator \mathbf{J} as $X = \mathbf{J}/j$, i.e., \{X, Y, Z\} = \{J_x, J_y, J_z\}/j, where the commutators of the different components of the rescaled angular momentum operators take the form $[X, Y] = i Z/j$, and so on. This shows that, in $j \to \infty$ limit, components of this rescaled angular momentum operator will commute and become classical c-number variables, and we get the classical limit of the quantum dynamical map as

$$X_{n+1} = \tilde{X} \cos \alpha \tilde{Z} - \tilde{Y} \sin \alpha \tilde{Z}$$

$$Y_{n+1} = \tilde{X} \sin \alpha \tilde{Z} + \tilde{Y} \cos \alpha \tilde{Z}$$

$$Z_{n+1} = \tilde{Z}, \quad \text{where}$$

$$\tilde{X} = X$$

$$\tilde{Y} = Y \cos \beta - Z \sin \beta$$

$$\tilde{Z} = Y \sin \beta + Z \cos \beta.$$

(10)

The above map satisfies the condition $X^2 + Y^2 + Z^2 = 1$. This suggests that the classical phase-space dynamics
of the kicked top on the surface of a unit sphere, and each point on that surface is represented by two canonically conjugate dynamical variables \(Z = \cos \theta\) and \(\phi = \tan^{-1}(Y/X)\).

This classical map is to be compared with the dynamical solution in the phase-space corresponding to the classical limit of the effective Hamiltonian \(\hat{H}_{\text{eff}}\) in Eq. (7). We use the following prescription to find this classical limit designated by \(H_{\text{cl}}\) with

\[
H_{\text{cl}} = \lim_{j \to \infty} \frac{\langle \gamma | \hat{H}_{\text{eff}} | \gamma \rangle}{j}
\]

where \(|\gamma\rangle\) is the spin coherent state \(\text{[22]}\). From Eq. (7), this yields

\[
H_{\text{cl}} = \frac{\alpha Z^2}{2} + \beta \sqrt{1 - Z^2} \cos \phi + \frac{\alpha \beta^2}{24} \sin^2 \phi - \frac{\alpha \beta^2}{24} (1 + \sin^2 \phi) Z^2
\]

This classical Hamiltonian represents the effective integrable model corresponding to the original Floquet system. The form of this Hamiltonian shows that it is non-separable. The terms contain the canonical variables \((Z, \phi)\) in a manner which does not allow a separation of \(H_{\text{cl}}\) into a purely position/momentum dependent components. Hamilton’s canonical equations are given as follows:

\[
\dot{Z} = -\frac{\partial H_{\text{cl}}}{\partial \phi} = \beta \sqrt{1 - Z^2} \sin \phi - \frac{\alpha \beta^2}{24} (1 - Z^2) \sin 2\phi
\]

\[
\dot{\phi} = \frac{\partial H_{\text{cl}}}{\partial Z} = \alpha Z - \frac{\beta Z}{\sqrt{1 - Z^2}} \cos \phi - \frac{\alpha \beta^2}{12} Z (1 + \sin^2 \phi).
\]

The symplectic evolution for this dynamical system mimics the map in Eq. (10) despite the fundamental difference between the two situations. The former represents conservative evolution satisfying Liouville’s theorem without any signature of chaos for any values of the parameters \(\alpha\) and \(\beta\). The latter, on the contrary, is well studied candidate of quantum and classical chaos for large \(\alpha, \beta \gg 1\).

The equation (11) can be also recast in terms of the variables \(\{X, Y, Z\}\) as

\[
\dot{X} = -\left(\alpha - \frac{\alpha \beta^2}{6}\right)YZ
\]

\[
\dot{Y} = \left(\alpha - \frac{\alpha \beta^2}{12}\right)XZ - \beta Z
\]

\[
\dot{Z} = \beta Y - \frac{\alpha \beta^2}{12} XY.
\]

We note that this equation can be obtained as the large \(j\) limit of the quantum Hamiltonian \(\hat{H}/j = (\alpha/2)\hat{Z}^2 + \beta \hat{X} + (\alpha \beta^2/24)(\hat{Z}^2 - \hat{Y}^2)\) using the Heisenberg’s equation of motion for the operators \(\{\hat{X}, \hat{Y}, \hat{Z}\}\), and subsequently replacing the quantum commutators by classical Poisson brackets.

Figure 3 shows the phase space for the dynamical systems represented by Eq. (11) and the classical map obtained for the actual time-dependent Floquet system described in Eq. (10). In the predominantly non-chaotic regular regime for small \(\alpha, \beta\) values, the phase space trajectories agree to a very high degree and the effective time-independent classical Hamiltonian mimics the actual system for most purposes pertaining to dynamics. The departure begins to show up as the actual time-dependent classical system approaches chaotic regime, and the trajectories, despite reflecting the same generic form, do not quite follow the same path. As the actual non-integrable system approaches the chaotic regime the phase-space shows the formation of islands which eventually break into further substructures. Expectedly, this feature is completely missing in the dynamics of the effective integrable Hamiltonian, where the phase-space always remains regular and thereby cannot represent the actual time-dependent system for large parameter values.

We conclude by noting that by introducing an unitary transformation that pushes the time-dependence of a time-periodic system to the initial time and final time instants in the form of kicks leads to an effective time-independent Hamiltonian that governs evolution for the bulk of the time. The energy spectrum of this effective Hamiltonian matches with the exact quasienegies of the actual Floquet operator, and in the classical limit mimics the phase-space dynamics of the actual time-dependent non-integrable Hamiltonian in the non-chaotic regime.
[1] J. H. Shirley, Phys. Rev. 138, B979 (1965).
[2] H. Sambe, Phys. Rev. A 7, 2203 (1973).
[3] M. M. Maricq, Phys. Rev. B 25, 6622 (1982).
[4] T. P. Grozdanov and M. J. Rakovic, Phys. Rev. A 38, 1739 (1988).
[5] M. Grifoni and P. Hänggi, Phys. Rep. 304, 229 (1998).
[6] S. Rahav, I. Gilary, and S. Fishman, Phys. Rev. A 68, 013820 (2003).
[7] N. Goldman and J. Dalibard, arXiv:1404.4373v2.
[8] J. Dalibard et. al., Rev. Mod. Phys. 83, 1523 (2011).
[9] Int. J. Mod. Phys. B 26, 1230001 (2012).
[10] X. L. Qi and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2010).
[11] M. Hasan and C. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[12] N. H. Lindner, G. Refael, and V. Galitski, Nat. Phys. 7, 490 (2011).
[13] A. G. Grushin, A. Gómez-León, and T. Neupert, Phys. Rev. Lett. 112, 156801 (2014).
[14] P. A. Lee, N. Nagaosa, and X. G. Wen, Rev. Mod. Phys. 78, 1057 (2006).
[15] K. K. Gomes et. al., Nature 8, 483 (2012).
[16] L. Tarruell et. al., Nature 483, 302 (2012).
[17] I. Carusotto and C. Ciuti, Rev. Mod. Phys. 85, 299 (2013).
[18] M. C. Rechtsman et. al., Nature 496, 196 (2013).
[19] T. Jacqmin et. al., Phys. Rev. Lett. 112, 116402 (2014).
[20] A. Verdeney, A. Mielke, and F. Mintert, arXiv: 1304.3584v3.
[21] R. Scharf, J. Phys. A 21, 2007 (1988).
[22] F. Haake, Quantum Signature of Chaos (Springer, Berlin, 2009), 3rd Ed.
[23] H. -J. Stöckman, Quantum Chaos: An Introduction (Camb. Univ. Press, London, 1999).
[24] V. M. Bastidas et. al., Phys. Rev. Lett. 112, 140408 (2014).
[25] R. Scharf, J. Phys. A 21, 4133 (1988).
[26] F. Haake, M. Kus, and R. Scharf, Z. Phys. B 65, 381 (1987).
[27] M. Kus, F. Haake, and B. Eckhardt, Z. Phys. B 92, 221 (1993).
[28] P. Gerwinski et. al., Phys. Rev. Lett. 74, 1562 (1995).
[29] C. Tian, A. Altland, and M. Garst, Phys. Rev. Lett. 107, 074101 (2011).
[30] E. P. L. van Nieuwenburg et. al., Phys. Rev. B 85, 165131 (2012).
[31] T. Brandes, Phys. Rev. E 88, 032133 (2013).
[32] S. Chaudhury et. al., Phys. Rev. Lett. 99, 163002 (2007).
[33] S. Chaudhury et. al., Nature 461, 768 (2009).