Switching to systemic therapy after locoregional treatment failure: Definition and best timing

Sadahisa Ogasawara1,2,*, Yoshihiko Ooka1,*, Keisuke Koroki1, Susumu Maruta1, Hiroaki Kanzaki1, Kengo Kanayama1, Kazulumi Kobayashi1,2, Soichiro Kiyono1, Masato Nakamura1, Naoya Kanogawa1, Tomoko Saito1, Takayuki Kondo1, Eiichiro Suzuki1, Shingo Nakamoto1, Akinobu Tawada1,3, Tetsuhiro Chiba1, Makoto Arai1,3, Jun Kato1, and Naoya Kato1,2

1Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba; 2Translational Research and Development Center, Chiba University Hospital, Chiba; 3Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan

INTRODUCTION

Hepatocellular carcinoma (HCC) is the one of the worst malignancies, where mortality (781,631 deaths) closely parallels incidence (841,080 cases diagnosed)1,3. Frequent surveillance is recommended for the high-risk population of patients with HCC, such as those with cirrhosis or hepatitis virus infection, to diagnose the disease at an early stage1,8. Patients with limited tumor

Abbreviations:
BCLC, Barcelone Clinic Liver Cancer; BRIDGE, Bridge to Better Outcomes in HCC; cTACE, conventional transarterial chemoembolization; DEB-TACE, drug-eluting bead transarterial chemoembolization; EHM, extrahepatic metastasis; HCC, hepatocellular carcinoma; MVI, macrovascular invasion; OPTIMIS, Outcomes of Hepatocellular Carcinoma Patients Treated With Transarterial Chemoembolization and Early, Not Early or Not at All Followed by Sorafenib; OS, overall survival; RESORCE, regorafenib after sorafenib in patients with HCC; TACE, transarterial chemoembolization

*These authors contributed equally to this work.

Editor: Yoon Jun Kim, Seoul National University College of Medicine, Korea

Received: Nov. 15, 2019 / Accepted: Nov. 22, 2019

Copyright © 2020 by Korean Association for the Study of the Liver
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
burden with well liver function are the best candidates for resec-
tion. Another alternative treatment option for those with up to
three nodules or nodules 3 cm or smaller (without both macrovas-
cular invasion [MVI] and extrahepatic metastasis [EHM]) is local
ablation therapy (radiofrequency ablation or microwave abla-
tion). 3–8 All over the world, the first-line treatment widely recom-
manded for unresectable HCC without both MVI and EHM is trans-
arterial chemoembolization (TACE), which is a locoregional treat-
ment. 3–8 Novel molecular target therapies have been proven
the effectiveness in phase 3 studies, and thus, several treatment
options have become standard systemic therapies for advanced-
stage HCC or for those tumors progressing to locoregional treat-
ment. 9–14 However, creating a distinct definition of the timing of
switching from locoregional treatment to systemic therapies in
patients with HCC is not easy. Thus far, consultation with experts
with advanced knowledge is needed when deciding to give up lo-
coregional treatment and switching to systemic therapies in the
field. Therefore, the aims of this study were to review the efficacy
and limitations of TACE and discuss the most appropriate timing
for switching from locoregional treatment to systemic therapies.

RECONSIDERATION OF TACE FROM THE CUR-
RENT PERSPECTIVE

TACE is the most widely used treatment worldwide for unre-
sectable HCC. 2,3,15 The Bridge to Better Outcomes in HCC (BRIDGE)
study, an international large and longitudinal cohort study that
included 18,031 patients in 14 countries, indicated that TACE was
frequently performed not only for patients with intermediate-
stage HCC but also for patients with early- or advanced-stage
HCC according to the Barcelona Clinic Liver Cancer (BCLC) staging
system. 15 Looking back at the history of TACE, improved patient
survival with TACE compared with best supportive care or subop-
tional treatments was demonstrated by a meta-analysis of six ran-
domized controlled trials in 2003. 16 Therefore, both Eastern and
Western guidelines have recommended TACE as therapy in pa-
ients with intermediate-stage HCC (Table 1). 4–8 So far, there are
two major TACE techniques, namely, conventional TACE (cTACE),
which uses a lipiodol mixture with chemotherapy agents, and
TACE with drug-eluting bead (DEB-TACE). 17–24 In one randomized
controlled trial comparing cTACE and DEB-TACE, no difference
was found in tumor response and time to progression. 25 The deci-
sion whether to undergo cTACE or DEB-TACE seems to be depen-
dent on the medical situation of each country or the institution.

Institutions with a high volume of patients or substantial experi-
ences have advanced TACE techniques. 20,25–28 So far, cone-beam
or interventional radiology angiography computed tomography
systems can construct three-dimensional reconstruction of arter-
ies and support superselective TACE. 29–31 Moreover, inserting a
catheter into the tumor feeding arteries superselectively leads to
the prevention of liver function and reduction in negative side ef-
fects. Using a large cohort of patients (n=815), Yamakado et al. 32
reported that selective TACE contributed to survival outcomes in
patients who received TACE (hazard ratio, 0.68; 95% confidence
interval, 0.48–0.97; P=0.033). Another systemic review indicated
that the most common adverse events were related to the
postembolization syndrome, including increased liver enzyme
(18.1%), fever (17.2%), abdominal pain (11.0%), vomiting (6.0%)
and nausea (1.7%). 20 In a recent randomized placebo-controlled
trial, 33 it was that indicated prophylactic dexamethasone prevent-
ed postembolization syndrome, although validation is required.
Current treatment-related death rate is estimated to be less than
1% in patients with HCC.

Table 1. Recommendations for transarterial chemoembolization in guidelines all over the world

| Guidelines | Recommendations |
|------------|-----------------|
| Asian Pacific Association for the Study of the Liver (APASL) (2017) 4 | First line in patients with unresectable, large multifocal HCCs, without vascular invasion or extrahepatic spread. |
| European Association for the Study of the Liver (EASL) (2018) 6 | First line in BCLC B patients (not recommended for patients with decompensated liver disease, advanced liver and/or kidney dysfunction, macroscopic vascular invasion, or extrahepatic spread). |
| Korean Liver Cancer Association-National Cancer Center Korea (2019) 9 | Patients with a good performance status without major vascular invasion or extrahepatic spread who are ineligible for surgical resection and liver transplantation, RFA, or PEIT. |
| Japan Society of Hepatology (JSH) (2019) 10 | Unresectable Child-Pugh A and B patients with one to three nodules (≥3 cm) and more than four nodules (any size), without both vascular invasion and extrahepatic metastasis. |

HCC, hepatocellular carcinoma; BCLC, Barcelona Clinic Liver Cancer; RFA, radiofrequency ablation; PEIT, percutaneous ethanol injection therapy.
A latest systemic review that had, to date, more than 10,000 patients with HCC undergoing TACE documented a 52.3% objective response, with overall 1-, 2-, 3-, and 5-year survival rates of 70.3%, 51.8%, 40.4%, and 32.4%, respectively. Nowadays, the median overall survival (OS) of patients with intermediate-stage HCC who received TACE is suggested to be around 30 months. In more than half of patients, objective response can be achieved by TACE, and tumor progression may be delayed in these patients. However, a latest international observation study (the outcomes of HCC patients treated with TACE and early, not early or not at all followed by sorafenib [OPTIMIS] study) found that with repeated TACE, expectation rates of objective response decreased (first TACE: 40%; second TACE: 26%; third TACE: 24%; and fourth TACE: 25%).

A recent report based on a US database (n=3,967) demonstrated deterioration of liver function from baseline in the acute period, which persisted in the chronic period (bilirubin, 30% and 23%; albumin, 52% and 31%; aspartate transaminase, 44% and 25%; alanine transaminase, 43% and 25%; and prothrombin time, 25% and 15%, respectively). Hiraoka et al., using a Japanese multicenter cohort, reported that liver function deteriorated with repeated TACE. It is well known that in patients with HCC, retaining liver function is equally important as removing or controlling tumor. That is, it is possible to experience decreasing liver function without getting an objective response when continuing TACE without appropriate decisions.

WHAT IS “TACE REFRACTORY”?

In most cases of unresectable HCC, before the use of sorafenib was approved, treatment with TACE was continued casually. Repeated TACE is associated with increased liver failure and diminishing efficacy. If treatment with TACE is continued without any assessment, the patient loses the opportunity to convert to systemic therapy because of liver function deterioration. Regarding recommendations or suggestions for patients with unresectable HCC to switch from TACE to systemic therapies, “TACE refractory” is a new-era concept that has been advocated since sorafenib was first used in practice (Table 2).

Table 2. Recommendations/suggestions for switching from transarterial chemoembolization to systemic therapies in patients with unresectable hepatocellular carcinoma without both macrovascular invasion and extrahepatic metastasis

| Guidelines/articles | Recommendations/suggestions |
|---------------------|-----------------------------|
| Raoul et al. (2011) | Patients who progress after two cycles of TACE |
| JSH-LCSGJ criteria 2014 (so-called the definition of TACE failure/refractoriness) (2014) | (1) Intrahepatic lesion • Two or more consecutive insufficient responses of the treated tumor (viable lesion >50%) even after changing the chemotherapeutic agents and/or reanalysis of the feeding artery seen on response evaluation CT/MRI at 1–3 months after having adequately performed selective TACE • Two or more consecutive progressions in the liver (tumor number increases as compared with tumor number before the previous TACE procedure) even after having changed the chemotherapeutic agents and/or reanalysis of the feeding artery seen on response evaluation CT/MRI at 1–3 months after having adequately performed selective TACE (2) Continuous elevation of tumor makers immediately after TACE even though slight transient decrease in observed (3) Appearance of vascular invasion (4) Appearance of extrahepatic spread |
| Asian Pacific Association for the Study of the Liver (APASL) (2017) | Treatment conversion from TACE to systemic therapy is recommended for patients in whom TACE is expected to be insufficient. |
| Galle et al. (2017) | Patients who have never or no longer respond to TACE (treatment stage migration to the right-hand side on the BCLC staging system). |
| American Association for Study of Liver Disease (AASLD) (2018) | Patients who are ineligible for or progress after TACE/TARE should be considered for systemic therapy. |
| Japan Society of Hepatology (JSH) (2019) | Molecular target therapy is recommended as second-line therapy for up to four intrahepatic nodules. |

TACE, transarterial chemoembolization; CT, computed tomography; MRI, magnetic resonance imaging; BCLC, Barcelona Clinic Liver Cancer; TARE, transarterial radioembolization.
mendment was validated in two retrospective studies that showed that patients with intermediate-stage HCC whose disease was refractory to TACE and who switched to sorafenib had prolonged OS compared with those who continued TACE (first trial: 25.4 vs. 11.5 months, P=0.003; second trial: 24.7 vs. 13.6 months, P=0.002).\textsuperscript{42,43} Currently, a large cohort global prospective observation study (OPTIMIS) confirmed that compared with other treatments, switching to sorafenib immediately after TACE ineligibility improved OS (propensity score matched cohort: 15.2 vs. 11.8 months).\textsuperscript{34}

Regarding liver function, one Japanese study confirmed that liver function was not preserved with continuing TACE treatment after TACE refractory; patients with TACE refractory who continued to receive TACE had a significantly shorter median time to liver dysfunction than did those who switched to sorafenib (17.0 vs. 29.8 months, P=0.030).\textsuperscript{42} In another study, patients with TACE refractory who underwent repeated TACE had a greater increase in Child-Pugh score compared with patients who were converted to sorafenib.\textsuperscript{43} Taken together, these two studies strongly suggest that repeated TACE leads to deterioration in liver function in patients who are deemed refractory to TACE.

\textbf{WHY IS “TACE REFRACTORY” EMPHASIZED NOW?}

At present, phase 3 trials have proven the statistical significance of five molecular target agents as both first-line (sorafenib and lenvatinib) and second-line (regorafenib, ramcirumab, and cabozantinib) treatments for patients with HCC.\textsuperscript{9-14} These drugs have been approved worldwide. Moreover, on the basis of early-phase trials, the US Food and Drug Administration also approved two immune checkpoint inhibitors (nivolumab and pembrolizumab).\textsuperscript{44,45} Looking back at the results of the phase 3 trials in patients with HCC, both the testing and control arms had increased median OSs during the previous decade as a result of the treatments after progression.\textsuperscript{9,10,14,46,47} In the study of regorafenib after sorafenib in patients with HCC (RESORCE) trial, Finn et al.\textsuperscript{48} reported a median OS of 26.0 months for the regorafenib arm from the time sorafenib was started, although the included population in the trial was limited because of strict inclusion criteria. Several retrospective studies have reported that sequential therapies might have an impact on the survival of patients with advanced HCC.\textsuperscript{49,50} In the next era, a major strategy in patients with HCC seems to be sequential treatment with systemic therapies, although different countries or regions have different regulations regarding the use of each drug. That being said, in TACE refractory patients, survival outcomes with systemic therapies are suggested to be longer than with treatment with a single agent, like sorafenib.

Moreover, when considering using two or more molecular target agents in the clinical treatment of identical patients with HCC, we should focus on maintaining liver function more than we did in the previous era. Liver function deterioration leads to missed opportunities to start or switch to systemic therapies. Several latest reports have demonstrated that the high-tumor-burden population of patients with intermediate-stage HCC (large size or a lot of nodules) were at high risk of liver function deterioration after TACE.\textsuperscript{51-53} Two retrospective studies, which criticized the Japan Society of Hepatology’s definition of TACE refractory, reported that 20–25% of patients had decreased liver function and Child-Pugh class B or C at the time they were deemed TACE re-

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Figure1.png}
\caption{Concept of “Stop and think carefully before proceeding to each TACE.” TACE, transarterial chemoembolization.}
\end{figure}
fractory even though they were determined to have Child-Pugh class A at the time of initial TACE.\textsuperscript{42,43} Taken together, the optimal timing to convert from TACE to systemic therapies may be when the patient’s condition becomes unstable, which is different among individuals based on each patient’s tumor status, treatment outcome of previous TACE and hepatic spare ability.

Recently, Kudo et al.\textsuperscript{54} compared survival outcomes between TACE and lenvatinib in seven patients with intermediate-stage HCC by using the propensity score matching method. In this study, the lenvatinib group had no history of receiving TACE. Despite the presence of several biases, the result might suggest the possibility that systemic therapies can become the initial treatment choice and may replace TACE in a limited population of patients with intermediate-stage HCC. A randomized controlled trial that compares systemic therapy and TACE will be carried out in the near future.

**STOP AND THINK CAREFULLY BEFORE PROCEEDING TO EACH TACE**

With the development of novel compounds and the improving survival outcomes of patients with HCC, current systemic therapies should be considered as a treatment option for unresectable HCC. Especially in patients with intermediate-stage HCC, who can expect long clinical courses with better prognosis compared with advanced-stage HCC, updated treatment strategies with multicol-"}

**CONCLUSIONS**

The present guidelines recommend TACE as first-line treatment for patients with unresectable HCC without both MVI and EHM. Several novel compounds have shown survival benefits in patients with advanced HCC. Nowadays, sequential therapies with two or more agents have prolonged patients’ survival outcomes and have become predominant treatment strategies among patients with HCC. The anticipated clinical impact of systemic therapies in patients with HCC has increased, and conversion from TACE to systemic therapies is now weighed more heavily. Before starting treatment with TACE, conversion to systemic therapies or not should be considered (“Stop and think carefully before proceeding to each TACE”). Looking ahead to the future of systemic therapies, it is now necessary to foster a greater understanding of preserving liver function during TACE treatments.

**Authors’ contribution**

SS, YO, Keisuke Koroki, SM, HK, Kengo Kanayama, Kazufumi Kobayashi, SK, MN, Naoya Kanogawa, TS, TK, ES, SN, AT, TC, MA, JK designed the article. SS and YO took the lead in writing the manuscript. Naoya Kato supervised the manuscript. All authors provided critical feedback and approved the manuscript.

**Acknowledgements**

We would also like to thank Enago (www.enago.jp) for the English language review.

**Conflicts of Interest**

Sadahisa Ogasawara received honoraria from Bayer, Eisai, Eli Lilly, consulting or advisory fees from Bayer, Eisai, Merck & Co., Inc., Chugai Pharma, Eli Lilly, AstraZeneca, and research grants from Bayer and Eisai. Yoshihiko Ooka received honoraria from Eisai. Naoya Kato received honoraria from Bayer and Eisai, consulting or advisory role from Bayer and Eisai, research funding from Bayer and Eisai. The other authors who took part in this study indicated that they did not have anything to declare regarding funding or conflict of interest with respect to this study.

**REFERENCES**

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer
1. Park JW, Chen M, Colombo M, Roberts LR, Schwartz M, Chen PJ, et al. Global patterns of hepatocellular carcinoma management from diagnosis to death: the BRIDGE study. Liver Int 2015;35:2155-2166.
2. Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet 2018;391:1301-1314.
3. Villanueva A. Hepatocellular carcinoma. N Engl J Med 2019;380:1450-1462.
4. Omata M, Cheng AL, Kokudo N, Kudo M, Lee JM, Jia J, et al. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update. Hepatol Int 2017;11:317-370.
5. Marrero JA, Kulik LM, Sirlin CB, Zhu AX, Finn RS, Abecassis MM, et al. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American Association for the Study of Liver Diseases. Hepatology 2018;68:723-750.
6. European Association for the Study of the Liver. EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 2018;69:182-236.
7. Korean Liver Cancer Association; National Cancer Center. 2018 Korean Liver Cancer Association-National Cancer Center Korea practice guidelines for the management of hepatocellular carcinoma. Gut Liver 2019;13:227-299.
8. Kokudo N, Takemura N, Hasegawa K, Takayama T, Kubo S, Shimada M, et al. Clinical practice guidelines for hepatocellular carcinoma: the Japan Society of Hepatology 2017 (4th JSH-HCC guidelines) 2019 update. Hepatol 2019;49:1109-1113.
9. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008;359:378-390.
10. Cheng AL, Kang YK, Chen Z, Tsao CI, Qin S, Kim JS, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 2009;10:25-34.
11. Bruix J, Qin S, Merle P, Granito A, Huang YH, Bodoky G, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017;389:56-66.
12. Zhu AX, Park JO, Ryoo BY, Yen CJ, Poon R, Pastorelli D, et al. Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH): a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol 2015;16:859-870.
13. Abou-Alfa GK, Meyer T, Cheng AL, El-Khoueiry AB, Rimassa L, Ryoo BY, et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med 2018;379:54-63.
14. Kudo M, Finn RS, Qin S, Han KH, Ikeda K, Piscaglia F, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet 2018;391:1163-1173.
15. Park JW, Chen M, Colombo M, Roberts LR, Schwartz M, Chen PJ, et al. Global patterns of hepatocellular carcinoma management from
28. Raoul JL, Forner A, Bolondi L, Cheung TT, Kloekner R, de Baere T. Updated use of TACE for hepatocellular carcinoma treatment: how and when to use it based on clinical evidence. Cancer Treat Rev 2019;72:28-36.

29. Pua U, Teo CC, U PT, Quek LHH. Cone-beam CT acquisition during transradial TACE made easy; use of the swivel arm board. Br J Radiol 2018;91:20170248.

30. Liu FY, Li X, Yuan HJ, Guan Y, Wang MQ. Angio-computed tomograph-guided immediate lipiodol computed tomograph for diagnosis of small hepatocellular carcinoma lesions during transarterial chemoembolization. Chin Med J (Engl) 2018;131:2410-2416.

31. Piron L, Le Roy J, Cassinotto C, Delicque J, Belgour A, Allimant C, et al. Radiation exposure during transarterial chemoembolization: angio-CT versus cone-beam CT. Cardiovasc Interv Radiol 2019;42:1609-1618.

32. Yamakado K, Miyayama S, Hirota S, Mizunuma K, Nakamura K, Inaba Y, et al. Hepatic arterial embolization for unresectable hepatocellular carcinomas: do technical factors affect prognosis? Jpn J Radiol 2012;30:560-566.

33. Ogasawara S, Chiba T, Ooka Y, Kanogawa N, Motoyama T, Suzuki E, et al. A randomized placebo-controlled trial of prophylactic dexamethasone for transcatheter arterial chemoembolization. Hepatology 2018;67:575-585.

34. Peck-Radosavljevic M, Kudo M, Raoul JL, Lee HC, Decaens T, Heo J, et al. Outcomes of patients (pts) with hepatocellular carcinoma (HCC) treated with transarterial chemoembolization (TACE): Global OPTIMIS final analysis. J Clin Oncol 2018;36(Suppl):4018.

35. Miksad RA, Ogasawara S, Xia F, Fellous M, Piscaglia F. Liver function changes after transarterial chemoembolization in US hepatocellular carcinoma patients: the LiverT study. BMC Cancer 2019;19:795.

36. Hiraoka A, Kumada T, Kudo M, Hirooka M, Koizumi Y, Hiasa Y, et al. Hepatic function during repeated TACE procedures and prognosis after introducing sorafenib in patients with unresectable hepatocellular carcinoma: multicenter analysis. Dig Dis 2017;35:602-610.

37. Piscaglia F, Ogasawara S. Patient selection for transarterial chemoembolization in hepatocellular carcinoma: importance of benefit/risk assessment. Liver Cancer 2018;7:104-119.

38. Kudo M, Izumi N, Kokudo N, Matsui O, Sakamoto M, Nakashima O, et al. Management of hepatocellular carcinoma in Japan: consensus-based clinical practice guidelines proposed by the Japan Society of Hepatology (JSH) 2010 updated version. Dig Dis 2011;29:339-364.

39. Kudo M, Matsui O, Izumi N, Kadoya M, Okusaka T, Miyayama S, et al. Transarterial chemoembolization failure/ refractoriness: JSH-LCSGJ criteria 2014 update. Oncology 2014;87 Suppl 1:22-31.

40. Raoul JL, Sangro B, Forner A, Mazaferro V, Piscaglia F, Bolondi L, et al. Evolving strategies for the management of intermediate-stage hepatocellular carcinoma: available evidence and expert opinion on the use of transarterial chemoembolization. Cancer Treat Rev 2011;37:212-220.

41. Galle PR, Tovoli F, Foerster F, Wörn MA, Cucchetti A, Bolondi L. The treatment of intermediate stage tumours beyond TACE: from surgery to systemic therapy. J Hepatol 2017;67:173-183.

42. Ogasawara S, Chiba T, Ooka Y, Kanogawa N, Motoyama T, Suzuki E, et al. Efficacy of sorafenib in intermediate-stage hepatocellular carcinoma patients refractory to transarterial chemoembolization. Oncology 2014;87:330-341.

43. Arizumi T, Ueshima K, Minami T, Kono M, Chishina H, Takita M, et al. Effectiveness of sorafenib in patients with transcatheter arterial chemoembolization (TACE) refractory and intermediate-stage hepatocellular carcinoma. Liver Cancer 2015;4:253-262.

44. El-Khoueiry AB, Sangro B, Yau T, Crocenzii TS, Kudo M, Hsu C, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017;389:2492-2502.

45. Zhu AX, Finn RS, Edeline J, Cattan S, Ogasawara S, Palmer D, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol 2018;19:940-952.

46. Johnson PJ, Qin S, Park JW, Poon RT, Raoul JL, Philip PA, et al. Brivanib versus sorafenib as first-line therapy in patients with unresectable, advanced hepatocellular carcinoma: results from the randomized phase III BRISK-FL study. J Clin Oncol 2013;31:3517-3524.

47. Cainap C, Qin S, Huang WT, Chung JJ, Pan H, Cheng Y, et al. Linifanib versus sorafenib in patients with advanced hepatocellular carcinoma: results of a randomized phase III trial. J Clin Oncol 2015;33:172-179.

48. Finn RS, Merle P, Granito A, Huang YH, Bodoky G, Pracht M, et al. Outcomes of sequential treatment with sorafenib followed by regorafenib for HCC: additional analyses from the phase III RESORCE trial. J Hepatol 2018;69:353-358.

49. Yoo C, Park JW, Kim YJ, Kim DY, Yu SJ, Lim TS, et al. Multicenter retrospective analysis of the safety and efficacy of regorafenib after progression on sorafenib in Korean patients with hepatocellular carcinoma. Invest New Drugs 2019;37:567-572.

50. Ogasawara S, Ooka Y, Itokaza N, Inoue M, Okabe S, Seki A, et al. Sequential therapy with sorafenib and regorafenib for advanced hepatocellular carcinoma: a multicenter retrospective study in Japan. Invest New Drugs 2020;38:172-180.

51. Arizumi T, Minami T, Chishina H, Kono M, Takita M, Yada N, et al. Time to transcatheter arterial chemoembolization refractoriness in patients with hepatocellular carcinoma in Kinki criteria stages B1 and B2. Dig Dis 2017;35:589-597.

52. Yasui Y, Tsuchiya K, Kurosaki M, Takeguchi T, Takeguchi Y, Okada M, et al. Up-to-seven criteria as a useful predictor for tumor downstaging to within Milan criteria and Child-Pugh grade deterioration after
initial conventional transarterial chemoembolization. Hepatol Res 2018;48:442-450.
53. Eso Y, Takai A, Takahashi K, Ueda Y, Taura K, Marusawa H, et al. Combination of Mac-2 binding protein glycosylation isomer and up-to-seven criteria as a useful predictor for Child-Pugh grade deterioration after transarterial chemoembolization for hepatocellular carcinoma. Cancers (Basel) 2019;11:405.
54. Kudo M, Ueshima K, Chan S, Minami T, Chishina H, Aoki T, et al. Lenvatinib as an initial treatment in patients with intermediate-stage hepatocellular carcinoma beyond up-to-seven criteria and Child-Pugh a liver function: a proof-of-concept study. Cancers (Basel) 2019;11:1084.