PROBING THE EPOCH OF REIONIZATION WITH THE Lyα FOREST AT z ∼ 4–5

RENYUE CEN1, PATRICK MCDONALD2, HY TRAC3, AND ABRAHAM LOEB3
1 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA
2 Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8, Canada
3 Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA

Received 2009 July 16; accepted 2009 October 21; published 2009 November 4

ABSTRACT

The inhomogeneous cosmological reionization process leaves tangible imprints in the intergalactic medium (IGM) down to z ∼ 4–5. The Lyα forest flux power spectrum provides a potentially powerful probe of the epoch of reionization. With the existing Sloan Digital Sky Survey I/II quasar sample, we show that two cosmological reionization scenarios, one completing reionization at z = 6 and the other at z = 9, can be distinguished at ∼7σ level by utilizing Lyα forest absorption spectra at z = 3.9–4.1 in the absence of other physical processes that may also affect the Lyα flux power spectrum. The difference may not be distinguishable at such high significance after marginalization over other effects, but, in any case, one will need to consider this effect in order to correctly interpret the power spectrum in this redshift range. The redshift range z = 4–5 may provide the best window because there are still enough transmitted flux and quasars to measure precise statistics of the flux fluctuations, and the IGM still retains a significant amount of memory of reionization.

Key words: galaxies: high-redshift – hydrodynamics – intergalactic medium – large-scale structure of universe – quasars: absorption lines – radiative transfer

1. INTRODUCTION

The history of cosmological reionization is presently primarily constrained by the cosmic microwave background observations of Wilkinson Microwave Anisotropy Probe (WMAP; Dunkley et al. 2009) and Sloan Digital Sky Survey (SDSS) quasar absorption spectra. The former gives an integral constraint, strongly suggesting that cosmological reionization may well be underway at z ∼ 12, while the latter provides a solid anchor point at z ∼ 6 when the universe became largely transparent to Lyman limit photons (e.g., Fan et al. 2001, 2006b; Becker et al. 2001; Cen & McDonald 2002). At z ≥ 6.3, the lower bound on the neutral hydrogen fraction, x, of the intergalactic medium (IGM) provided by SDSS observations is, however, fairly loose at x ≥ 0.01. Thus, exactly when most of the neutral hydrogen became reionized is yet unknown and there are many possible scenarios that could meet the current observational constraints (e.g., Barkana & Loeb 2001; Cen 2003; Haiman & Holder 2003; Fan et al. 2006a; Wyithe & Cen 2007; Becker et al. 2007).

The process of inhomogeneous cosmological reionization leaves quantifiable and significant imprints on the thermal evolution of the IGM (Trac et al. 2008; Furlanetto & Oh 2009). In this Letter, we show that the Lyα forest flux spectrum at moderate redshift z = 4.5 ± 0.5 sensitively depends on the epoch of reionization.

2. REIONIZATION MODELS

We use a hybrid code to accurately compute the reionization process, which consists of a high-resolution N-body code, a shock-capturing total variation diminishing hydro code and a ray-tracing radiative transfer code. The reader is referred to Trac et al. (2008) for more details. The best-fit WMAP five-year cosmological parameters are used: Ωm = 0.28, ΩΛ = 0.72, Ωb = 0.046, h = 0.70, σ8 = 0.82, and ns = 0.96 (Komatsu et al. 2009). We use 24 billion dark matter particles on an effective mesh with 11,5203 cells in a comoving box of 100 h−1 Mpc, yielding a particle mass resolution of 2.68 × 106 h−1 M⊙ and allowing us to resolve all atomic cooling dark matter halos. A total of N = 15363 gas cells of size 65 h−1 kpc are used, and we trace five frequency bins at > 13.6 eV with the ray-tracing code. The star formation rate is controlled by the halo formation history. We adjust the ionizing photon escape fraction to arrive at two models, where reionization is completed early (z ∼ 9) and late (z ∼ 6), respectively.

3. RESULTS

Previous studies (e.g., Furlanetto et al. 2004; Iliev et al. 2006; Lee et al. 2008) have shown that the reionization process proceeds in an inside-out fashion, where regions around high-density peaks get reionized first. H ii regions initially surround isolated galaxies that formed in high-density peaks. With time these H ii regions expand and lower density (void) regions are eventually engulfed by the expanding H ii regions stemming from high-density peaks. Consequently, the redshift of reionization of each individual spatial point, zri, is highly correlated with the underlying large-scale density field, as we have shown earlier (Trac et al. 2008). Once an expanding region is photonized and photoheated, it would cool subsequently due to adiabatic expansion and other cooling processes (primarily Compton cooling at high redshift), countered by photoheating of residual recombining hydrogen atoms (on the timescale of recombination; e.g., Theuns et al. 2002; Hui & Haiman 2003). As a result, the strong correlation between zri and the underlying large-scale density is manifested in a strong anti-correlation between the temperature and the underlying large-scale density field. Specifically, different regions of the same low densities δ ≤ a few (without large-scale smoothing in this case) would display a large, long-range-correlated, dispersion in temperature, following the completion of reionization (e.g., Trac et al. 2008).

Both the anti-correlation between temperature and the underlying large-scale density and the consequent temperature dispersion at a fixed density weaken as time progresses and
Figure 1. Top panels show the log of the ratio of gas temperature from the simulation to that prescribed by a fixed EoS at \(z = 4 \), for the early (left) and late (right) reionization model, respectively. We use EoS formula \(T = T_0 (\rho / \rho_0)^{0.62} \), where \(T_0 \) is the temperature at mean density \(\rho_0 \) in each model. The slice shown has a size \((100 \ h^{-1} \text{ Mpc})^2\) with a thickness equal to two hydro cells \((130 \ h^{-1} \text{ kpc})\). The distribution of flux transmission, \(F(\text{early}) = \exp(-\tau(\text{early})) \), for the late-reionization model is shown in the bottom left, where \(\tau(\text{early}) \) is the Ly\(\alpha \) optical depth computed based on the distribution of neutral hydrogen density, gas peculiar velocity, and temperature at \(z = 4 \). In computing the neutral hydrogen fraction, we have used a uniform background radiation field with its amplitude adjusted such that both models yield the same mean transmitted flux of \(\langle F \rangle = 0.43 \) at \(z = 4 \), as observed (Fan et al. 2006b). The flux difference between the two models: \(F(\text{late}) - F(\text{early}) = \exp(-\tau(\text{late})) - \exp(-\tau(\text{early})) \) is shown in the bottom right panel.
temperature, the two different temperature distributions in the two reionization models result in different large-scale neutral hydrogen distribution. In the bottom left panel of Figure 1, we show the expected flux transmission for the early-reionization model. In the bottom right panel, the flux difference between the two models is shown. It is seen that the transmitted Ly\alpha flux is significantly affected by the temperature difference at $z = 4$, resulting in fractional difference in the transmitted flux in the voids between the two models of $\sim 15\%$ (blue regions). Specifically, there is more transmitted flux in the void regions in the late-reionization model, compensated by reduced transmission in high-density regions. It is noted that, at $z \geq 4$, the majority of transmitted Ly\alpha flux comes from the lowest density regions of $\delta \lesssim 1$.

Figure 2 shows the ratio of flux power spectrum in the late-reionization model to that in the early-reionization model at $z = 4$ and $z = 5$, respectively. Also shown as the two green curves are the corresponding ratios produced by replacing the real temperature in each simulation by that prescribed by the EoS given density (the same EoS in both simulations). The black error bars are the error one can expect from the full SDSS I/II sample plus existing high-resolution data. The error bars will be approximately uncorrelated. A formal analysis of the 16 data points indicates that the two reionization models can be differentiated at 7σ level.

Figure 2. Black solid and dashed curves are the ratio of flux power spectrum in the late-reionization model to that in the early-reionization model at $z = 4$ and $z = 5$, respectively. Also shown as the two green curves are the corresponding ratios produced by replacing the real temperature in each simulation by that prescribed by the EoS given density (the same EoS in both simulations). The black error bars are the error one can expect from the full SDSS I/II sample plus existing high-resolution data. The error bars will be approximately uncorrelated. A formal analysis of the 16 data points indicates that the two reionization models can be differentiated at 7σ level.

4. DISCUSSION

The effect of inhomogeneous reionization on the flux power spectrum was explored by Lai et al. (2006) at $z = 3$, based on a semianalytic model. Their focus was on $z = 3$ and they found that, on large scales, $k \sim 0.001 \text{ (km s}^{-1})^{-1}$, temperature fluctuations lead to an increase in the flux power spectrum by at most 10%. Our focus is at higher redshifts $z = 4$–5 and the effects, not surprisingly, are larger and potentially more discriminating.

A fluctuating radiation background, produced largely by radiation from sparsely distributed quasars but also by galaxies, can affect the flux power spectrum (Meliksin & White 2004; Croft 2004; McDonald et al. 2005a). Larger fluctuations in the radiation background give rise to larger amplitudes of the flux power spectrum at large scales (e.g., McDonald et al. 2005a, Figures 6 and 7 therein). This enhancement of the flux power spectrum on large scales due to a fluctuating radiation background will be additional to what is caused by the gas temperature fluctuations shown here, if QSOs were dominant. The radiation contribution from stars may be more dominant at the redshift range of concern here (e.g., Faucher-Giguère et al. 2008a). Star formation is known to be biased, and hence, higher density regions, on average, tend to have higher radiation fields than lower density regions. Thus, the two effects due to a fluctuating radiation background and an inhomogeneous reionization process may be partially degenerate or have a tendency to cancel each
other’s contribution, although there is a possibility that the radiation fluctuations may be relatively modest (e.g., Mesinger & Furlanetto 2009). A more careful modeling of the contribution from quasars as well as radiation sinks (such as Lyman limit systems) is required in a comprehensive modeling. The purpose of this Letter is to demonstrate that, if the effects on the Lyα flux power spectrum determination due to the epoch of reionization were the only relevant ones, then a precise measure of the flux power spectrum with the full SDSS I/II data would be able to place a very tight constraint on the epoch of reionization.

However, a detailed comparison between models and SDSS I/II observations requires a full analysis of all astrophysical/cosmological processes that may affect the determination of the flux power spectrum, and some of them may be degenerate to varying degrees (McDonald et al. 2005a), including fluctuating radiation field, damped Lyα systems, galaxy formation feedback, initial photoheating temperature (i.e., related to initial mass function of high redshift galaxies), X-ray heating, He ii reionization, among others, before its statistical potential can be precisely marginalized and quantified. We will perform such an analysis in a future study.

5. CONCLUSIONS

Utilizing state-of-the-art radiative transfer hydrodynamic simulations of cosmological reionization, we put forth the point that the inhomogeneous reionization process imprints important and quantitatively significant signatures in the IGM at $z = 4.5 \pm 0.5$ that can be probed by the Lyα forest in the quasar absorption spectra. We illustrate that with Lyα forest data only in the redshift range $z = 3.9-4.1$ to be provided by the SDSS I/II full data sample, one can already distinguish between two cosmological epochs of reionization, one at $z = 6$ and the other $z = 9$ at 7σ level, if they were the only effects on the determination of the Lyα flux power spectrum.

We thank J. Chang at NASA for invaluable supercomputing support. This work is supported in part by NASA grants NNG06GI09G and NNX08AH31G. Computing resources were in part provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. P.M. acknowledges support of the Beatrice D. Tremaine Fellowship. H.T. is supported by an Institute for Theory and Computation Fellowship.

REFERENCES

Barkana, R., & Loeb, A. 2001, Phys. Rep., 349, 125
Becker, R. H., Fan, X., White, R. L., Strauss, M. A., Narayanan, V. K., Lupton, R. H., Gunn, J. E., & Annis, J. 2001, AJ, 122, 2850
Becker, G. D., Rauch, M., & Sargent, W. L. W. 2007, ApJ, 662, 72
Cen, R. 2003, ApJ, 591, 12
Cen, R., & McDonald, P. 2002, ApJ, 570, 457
Croft, R. A. C. 2004, ApJ, 610, 642
Dunkley, J., et al. 2009, ApJS, 180, 306
Fan, X., Carilli, C. L., & Keating, B. 2006a, ARA&A, 44, 415
Fan, X., et al. 2001, AJ, 122, 2833
Fan, X., et al. 2006b, AJ, 132, 117
Faucher-Giguère, C., Lidz, A., Zaldarriaga, M., & Hernquist, L. 2008a, ApJ, 682, L9
Faucher-Giguère, C.-A., Prochaska, J. X., Lidz, A., Hernquist, L., & Zaldarriaga, M. 2008b, ApJ, 681, 831
Furlanetto, S. R., & Oh, S. P. 2009, ApJ, 701, 94
Furlanetto, S. R., Zaldarriaga, M., & Hernquist, L. 2004, ApJ, 613, 1
Haiman, Z., & Holder, G. P. 2003, ApJ, 595, 1
Hui, L., & Gnedin, N. Y. 1997, MNRAS, 292, 27
Hui, L., & Haiman, Z. 2003, ApJ, 596, 9
Iliev, I. T., Mellema, G., Pen, U.-L., Merz, H., Shapiro, P. R., & Alvarez, M. A. 2006, MNRAS, 369, 1625
Komatsu, E., et al. 2009, ApJS, 180, 330
Lai, K., Lidz, A., Hernquist, L., & Zaldarriaga, M. 2006, ApJ, 644, 61
Lee, K.-G., Cen, R., Gott, J. R. I., & Trac, H. 2008, ApJ, 675, 8
McDonald, P., Miralda Escudé, J., Rauch, M., Sargent, W. L. W., Barlow, T. A., Cen, R., & Ostriker, J. P. 2000, ApJ, 543, 1
McDonald, P., Seljak, U., Cen, R., Bode, P., & Ostriker, J. P. 2005a, MNRAS, 360, 1471
McDonald, P., et al. 2005b, ApJ, 635, 761
McDonald, P., et al. 2006, ApJS, 163, 80
Meiksin, A., & White, M. 2004, MNRAS, 350, 1107
Mesinger, A., & Furlanetto, S. 2009, arXiv:0906.3020
Songaila, A. 2004, AJ, 127, 2598
Theuns, T., Schaye, J., Zaroubi, S., Kim, T.-S., Tzanavaris, P., & Carswell, B. 2002, ApJ, 567, L103
Trac, H., Cen, R., & Loeb, A. 2008, ApJ, 689, L81
Wyithe, J. S. B., & Cen, R. 2007, ApJ, 659, 890