The fading of symmetry non-restoration at finite temperature

M.B. Gavelaa, O. Pèneb, N. Riusc and S. Vargas-Castrillóna

April 29, 2019

aDepartamento de Física Teórica, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid.
b Laboratoire de Physique Théorique et Hautes Energies1
Université de Paris XI, Bâtiment 211, 91405 Orsay Cedex, France
cDepartamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Valencia, Spain.

Abstract

The fate of symmetries at high temperature determines the dynamics of the very early universe. It is conceivable that temperature effects favor symmetry breaking instead of restoration. Concerning global symmetries, the non-linear sigma model is analyzed in detail. For spontaneously broken gauge symmetries, we propose the gauge boson magnetic mass as a “flag” for symmetry (non)-restoration. We consider several cases: the standard model with one and two Higgs doublets in the perturbative regime, and the case of a strongly interacting Higgs sector. The latter is done in a model independent way with the tools provided by chiral Lagrangians. Our results clearly point towards restoration, a pattern consistent with recent lattice computations for global symmetries. In addition, we explicitly verify \textit{BRST} invariance for gauge theories at finite temperature.

1 Laboratoire associé au Centre National de la Recherche Scientifique - URA D00063
e-mail: gavela@delta.ft.uam.es, nuria@goya.ific.uv.es, pene@qcd.th.u-psud.fr,vargas@delta.ft.uam.es.
In which sense does one say that an internal symmetry is restored or broken due to temperature effects? What is the relevant order parameter? And whenever more than one such parameter can be defined, for which physical consequences are their differences relevant? These are the type of questions to face when discussing symmetry (non-)restoration.

The vacuum structure of a system remains unchanged when it is heated. In this sense the degree of symmetry of a system is not modified. “Symmetry restoration” due to temperature effects is thus a misleading denomination for a very simple effect: the spontaneous breaking of a global or gauge symmetry can be masked for all physical purposes when thermal agitation is present. This suits intuition, as a thermal excitation gives in general a positive energy contribution, allowing particles to “climb” barriers between separate minima and finally hiding those barriers for high enough temperatures. Thermal field theory computes these effects and usually synthesizes them in the form of a so-called effective potential whose minimum sits at zero values of the fields. Ferromagnets provide well-known experimental examples of a similar behavior when heated above some critical temperature.

The suggestion that spontaneously broken field theories are restored at high temperature was first made by Kirzhnits and Linde [1]. They gave qualitative arguments to support this idea in the case of global symmetries. In the same direction pointed the results of Dolan and Jackiw [2] and Weinberg [3] for gauge theories (although in this case the choice of the scalar field vacuum expectation value as an order parameter is a delicate one).

Weinberg noticed as well an opposite possibility: global symmetry non-restoration at high temperatures for scalar potentials with more than one Higgs multiplet. With just one Higgs the scenario is ruled out due to the constraints imposed on the scalar self-coupling by the boundedness of the potential, while models with two (or more) multiplets can easily accommodate it. The same behavior was found in the Schwinger model and in a dynamical model of symmetry violation in four dimensions [2].

An analogous situation has been experimentally observed in nature for the ferroelectric material known as Rochelle salt, which shifts from a disordered phase to a more ordered one when heated, as measured by the spontaneous polarization parameter. In the case of the Rochelle salt the symmetry is restored again for high enough temperatures, though. Common sense suggests that this should be as well the case in field theory, with thermal excitations dominating the free energy unless some finite parameter, such as finite volume, causal domain size, etc., plays a role. Without entering to discuss it, it is clear that even a temporal intermediate period, in which thermal effects enhance the effective symmetry breaking instead

2 A related question is the so-called inverse symmetry breaking, describing systems for which the symmetry is exact at zero temperature and broken when heated; all through the paper we will take the liberty of dubbing symmetry non-restoration both scenarios, unless the contrary is explicitly stated.
of restoring it, could have far reaching cosmological consequences.

It is worth to remark, though, that Weinberg results on symmetry non-restoration are based on the one-loop approximation to the finite temperature effective potential, which is known to be unreliable for the discussion of many aspects of phase transitions. Different techniques, including non-perturbative ones, are being actively applied to improve the one-loop approximation, mainly for the study of global symmetries. The results are very interesting and quite often contradictory: some studies confirm that symmetry non-restoration exists, although with a sizable reduction of the parameter space where it occurs \([1]-[3]\), while other analysis conclude that symmetry is always restored at high temperature when non-perturbative effects are taken into account \([3]-[5]\). It has been shown that in a finite lattice no order is possible at sufficiently high temperature \([6]\). Although the relevance of this result for the continuum limit is unclear, a Monte Carlo simulation in 2+1 dimensions seems to support this conclusion \([6]\).

Symmetry non-restoration is indeed being increasingly reconsidered as a candidate way out of many cosmological problems arising in spontaneously broken theories. Examples are the domain wall and axion problems \([12]\) and the monopole problem in Grand Unified Theories \([13]\).

As recalled in Section 3, in the minimal standard \(SU(2) \otimes U(1)\) model the symmetry is necessarily restored, given the simplicity of its Higgs sector. At present, there are two main avenues to explore physics beyond the Standard Model: theories in which the Higgs particle is a fundamental one, supersymmetry being its most representative example, and those for which it is not, currently dubbed as strongly interacting Higgs scenarios.

Supersymmetry is broken “de facto” at high temperatures, due to the difference in the boson and fermion populations, as dictated by Bose-Einstein versus Fermi-Dirac statistics. The debatable and interesting question is whether the internal symmetries present in supersymmetric theories, and whose fate is fundamental for the existence of topological defects, are restored. It has been proven that such is the case for renormalizable supersymmetric theories \([14]\). For the latter, a recent analysis for systems involving non-vanishing background charges shows that symmetry non-restoration could be possible \([15]\). The consideration of non-renormalizable terms in the Lagrangian has led as well to a polemics: their mere addition does not lead to symmetry non-restoration \([16]\).

Here we rather follow the path leading to a non-elementary Higgs scenario. In so doing, we first reanalyze the global \(SU(N_f)_R \otimes SU(N_f)_L\) non-linear sigma model, relevant in supergravity and many other scenarios, in sect. 2. Sect. 3 is devoted to the analysis of gauge symmetries; after discussing \(BRST\) invariance at finite temperature, we study the behavior of the \(SU(2) \otimes U(1)\) symmetry in several scenarios. In subsect. 3.3 we analyze both the minimal standard model and the standard model with two Higgs doublets within the perturbative regime, while in subsect. 3.4 we consider a strongly interacting Higgs sector in a model independent way, using the techniques of chiral Lagrangians, and we discuss the
differences with the results of the previous section. These different chapters are
preceded by some comments on order parameters, sect. 1, and followed by our
conclusions.

1 The order parameter

The interesting order parameter to consider in a phase transition depends first
of all on the question one wants to study.

An illustrative example is provided by spin systems in solid state physics.
Both in ferromagnets and antiferromagnets, the ground state breaks rotational
symmetry: the spins align for the former and display an antiparallel alignment
for the latter. The traditional order parameter is the average spontaneous mag-
netization $\langle \vec{m} \rangle \neq 0$ which plays a crucial role in the description of the response of
the system to an external magnetic field: it turns to be important for ferromag-
nets, while marginal or even vanishing for antiferromagnets to the extent that the
ground state approaches the Néel-type magnetic order. Hence, the spontaneous
magnetization is an example of order parameter whose non-zero value is not nec-
essary for the spontaneous breakdown of the symmetry. Ferrimagnets are yet
another scenario: antialignment is present alike to the case of antiferromagnets
although $\langle \vec{m} \rangle \neq 0$, as the weight allocated to the two possible spin projections
differs.

Analogous questions arise in particle physics: different so-called order param-
eters can be correlated to different physical effects. The appropriate parameter
depends on the aspect of the history of the universe under study, and not all of
them necessarily “bip” simultaneously.

Already at zero temperature, the relationship among different possible order
parameters is not always straightforward. Recall massless QCD at low energies,
with pion interactions appropriately described by chiral Lagrangians. The pion
decay constant, F_π, and the condensate, $\langle \bar{\Psi} \Psi \rangle$, are not necessarily equivalent
order parameters. Although unnatural, $\langle \bar{\Psi} \Psi \rangle = 0$ is not theoretically forbidden
while a non-null v.e.v. of some higher dimension operator accompanies
F_π as a “flag” for dynamical symmetry breaking [17].

In a general way it is clear that when the Lagrangian, at zero temperature, is
just a one parameter theory, all putative order parameters should be equivalent.
Such is the case with most Lagrangians respecting global symmetries, where the
value of the field at the minimum of the effective potential is a well-defined order
parameter, commonly used, and any other one is simply related to it.

On the contrary, for spontaneously broken gauge theories the issue is much
more subtle. To begin with, the v.e.v. of any non-gauge invariant operator is
necessarily zero [18]. Only gauge invariant operators, such as $|\phi|^2$, may have a
non-vanishing v.e.v., signaling the Higgs mechanism. Once a gauge-fixing proce-
dure has been performed, a gauge-non invariant minimum of the effective poten-
tial may appear, which may be useful whenever its physical meaning is properly extracted in due respect of general Ward identities. The same applies to the v.e.v. of higher dimension operators.

The effective potential itself is gauge dependent. However, the values of the effective potential at its local minima or maxima are gauge independent. Hence if there is a minimum of $V(φ)$ with a value lower than $V(0)$ in one gauge, then there will be such minimum in any gauge (although its position will generally be different) and the symmetries will definitely be broken.

In practice, gauge-dependent correlation functions are often used in the study of phase transitions: the physical conclusions are expected to be rather close to those derived with gauge-invariant ones if the fluctuations of the scalar fields are small compared to their vacuum expectation values. This can be safe in the broken phase of the theory, while quite misleading in the symmetric phase, as recently discussed in ref. [19], where a detailed description of the zoo of correlation functions can be found as well.

It is worth to briefly specify the “flags” for symmetry breaking discussed in the present paper:

- for the global symmetries of the non-linear $σ$ model and its extensions in terms of chiral Lagrangians, we discuss both the pion decay constant $F_π$ and the vacuum expectation value of the condensate. The latter is defined from an effective potential and can be interpreted as the remnant of the disappeared sigma field. Both parameters are essentially equivalent since, at zero temperature, we are dealing with a one parameter theory.

- for the gauge symmetry case, specifically the standard electroweak model and its extensions, we concentrate instead on particle masses. In the perturbative regime, both the negative Higgs “mass” and the magnetic mass for the gauge bosons are discussed. When the Higgs particle disappears from the spectrum and we enter the non-perturbative regime of the gauged non-linear sigma model, our order parameter will be the gauge boson magnetic mass.

The magnetic mass squared is defined as the temperature dependent contribution to the transverse part of the gauge boson self-energy, $Π_T(0, \vec{k})$, for vanishing three-momentum \vec{k}. At the order we work it is gauge invariant. Notice that Weinberg [3] advocates the use of gauge invariant operators carrying moderate momenta and zero energy as order parameters.

The analogous electric mass, whose square is defined by the longitudinal component of the gauge boson self-energy, $Π_L(0, \vec{k})$ with $\vec{k} \to 0$, is not a suitable parameter. Indeed, it tends to increase at high temperature even when the symmetry is restored. The intuitive explanation is electric screening: some particles in the theory carry an electric charge. Already at one-loop order, thermal fluctuations pull charged pairs out of the vacuum to screen external charges. However, there are no fundamental particles in any gauge theory which carry a magnetic charge. Magnetic screening can presumably then only arise from non-perturbative
fluctuations which carry magnetic charge.

A perturbative computation of the magnetic mass shows that it is exactly equal to zero at one loop in an unbroken gauge theory. For unbroken non-Abelian gauge theories, such as QCD, higher orders in perturbation theory suffer from infrared divergences, and a magnetic mass of order \(g^2 T \) is expected to be generated non-perturbatively. In spontaneously broken gauge theories, such as the standard electroweak model and its extensions, no such divergences are present. Thus, we propose to use the magnetic mass as a “flag”, expecting that even in perturbation theory it will show a tendency to vanish at high enough temperatures whenever symmetry restoration occurs. Of course, it will be a valid “flag” only when exploring the broken phase of the theory, for the reasons given above.

Another pertinent point to recall is that temperature corrections break Lorentz invariance as the plasma sets a preferred reference frame. Assume for instance a zero temperature Lagrangian based on an internal symmetry. Certainly the mixed states describing the new “effective vacuum” may greatly differ from the real vacuum structure. What about the finite temperature effective Lagrangian itself? Up to which point its functional form may differ from the initial one? Non-zero temperature is tantamount to treat space and time differently: internal symmetries at the Lagrangian level, such as chiral symmetry, cannot be explicitly broken due to it. What is to be a priori expected is a splitting of any operator into its temporal and spatial components, with differing coefficients. For instance \(F_\pi \) in the chiral non-linear sigma model will generate two different coupling constants at finite temperature, a temporal one, \(F_\pi^t(T) \), and a spatial one, \(F_\pi^s(T) \) [20]. We leave the corresponding considerations for gauge theories for the beginning of sect. 3.

A necessary condition for symmetry restoration is that all possible order parameters or “flags” for symmetry restoration do signal it.

2 Global non-linear sigma model: the \(T \neq 0 \) effective Lagrangian

The restoration of spontaneously broken global symmetries is discussed in this section within an effective Lagrangian approach. We consider the \(SU(N_f)_R \otimes SU(N_f)_L \) non-linear sigma model, which may be defined by the Lagrangian

\[
\mathcal{L} = \frac{1}{2} \partial_\mu \pi_\alpha \partial^\mu \pi_\alpha + \frac{1}{2} \partial_\mu \sigma \partial^\mu \sigma ,
\]

with the constraint

\[
F_\pi^2 = \sigma^2 + \vec{\pi}^2 .
\]

By convention, we take the scalar condensate in the direction of the \(\sigma \) component; that is, at tree level

\[
\langle \sigma^2 \rangle = F_\pi^2 .
\]
Since the global symmetry is broken down to an $SU(N_f)$ symmetry, there are a total of $N_f^2 - 1$ Goldstone bosons, which are identified with the pion fields, $\vec{\pi}$. The constraint (4) determines the σ field in terms of the pion fields, so that in the non-linear Lagrangian only the latter appears. A non-linear redefinition of the fields is possible without changing the physical content of the theory, leading to different parametrizations. The so-called exponential representation can be described by the Lagrangian

$$\mathcal{L}^{(2)} = \frac{1}{4} F_\pi^2 \text{Tr}(\partial_\mu U \partial^\mu U^\dagger),$$

where U is a $SU(N_f)$ unitary matrix field

$$U = \exp \left(i \frac{\pi_a T_a}{F_\pi} \right),$$

with T_a the generators of $SU(N_f)$, normalized as $\text{Tr}(T_a T_b) = 2\delta_{ab}$ and $[T_a, T_b] = 2i f_{abc} T_c$, being f_{abc} the structure constants of $SU(N_f)$.

As it is well known, all realizations of the non-linear chiral Lagrangian, such as the exponential one (4), square root, Weinberg, etc. [21], with $N_f = 2(3)$, are low energy effective theories for QCD with 2(3) massless quarks, expressed in terms of Goldstone bosons and systematically expanded in powers of the Goldstone bosons momenta. As a consequence of the chiral symmetry, these models possess the remarkable property of universality: once the coupling constants have been adjusted (F_π is the only one at lowest order) all physical predictions are the same. Therefore, the chiral Lagrangian not only parametrizes the dynamics of the Goldstone bosons that emerge in QCD but also of any other theory, such as the Higgs model, that follows the same symmetry breaking pattern.

We have analyzed two order parameters: the pion decay constant F_π, and the vacuum expectation value of the σ field, $\langle \sigma \rangle$. Notice that, while their behavior should be essentially equivalent, their precise variation rate with temperature may differ somewhat. Indeed, the constraint (4) as a thermal average implies $\langle \sigma^2 \rangle = F_\pi^2$, while in general $\langle \sigma^2 \rangle \neq \langle \sigma \rangle^2$. Our treatment differs from previous ones in that we have considered them as Lagrangian parameters, whose variation with temperature is read from the one-loop effective Lagrangian we derive.

Although we will just discuss below the calculation in the exponential representation, we have explicitly checked that the results of measurable quantities are the same in other parametrizations used in the literature, namely the square root and Weinberg representations. Of course, for quantities without a physical meaning, the temperature corrections can be representation dependent.

We drop all temperature independent ultraviolet divergent quantities from our expressions, recalling that when a theory is renormalized at zero temperature no more infinities of that type appear at finite temperature.
2.1 Temperature corrections to F_π

Temperature corrections to F_π are obtained from an effective Lagrangian approach. The chiral Lagrangian (4) can be expanded in powers of $(\pi \pi^2)$ up to a certain order,

$$\mathcal{L}^{(2)} = \frac{1}{2} \partial_\mu \pi \partial_\mu \pi + \frac{1}{6F_\pi^2} \left((\pi \partial_\mu \pi)(\pi \partial^\mu \pi) - (\pi \pi) \partial_\mu \pi \partial^\mu \pi \right) + \ldots$$ \hspace{1cm} (6)

We have computed the one-loop temperature corrections to this Lagrangian to leading order T^2/F_π^2, and proved that they lead to an effective Lagrangian with the same structure as the tree-level one, albeit with two F_π's: a temporal one, F^t_π, and a spatial one, F^s_π. It encloses the full temperature effects in the renormalized (temperature dependent) parameters.

Due to the derivative character of the interactions, a contribution to the kinetic energy term, at leading order T^2/F_π^2, is obtained when computing the one particle irreducible (1PI) two point Green function at one loop (Fig. 1). This term is absorbed by pion field renormalization. In the exponential representation used here, we find

$$\pi^2(T) = \pi^2 \left[1 - \frac{(N-1)T^2}{36F_\pi^2} \right].$$ \hspace{1cm} (7)

Diagrams in Fig. 2 contribute to the 1PI four point function at one loop, leading to different thermal corrections for the spatial and the temporal coupling constants in which F_π splits at finite temperature, as mentioned above. To this order, it results

$$F^s_\pi(T) = F_\pi \left[1 - \frac{(N-1)T^2}{24F_\pi^2} \right],$$ \hspace{1cm} (8)

$$F^t_\pi(T) = F_\pi \left[1 - \frac{(N+1)T^2}{24F_\pi^2} \right],$$ \hspace{1cm} (9)

where $N = N_f^2 - 1$ represents the number of pions. Both temperature dependent renormalized parameters $F^s_\pi(T)$ and $F^t_\pi(T)$ show a clear tendency to vanish at
Figure 2: One loop diagrams contributing to the 1PI four point Green function for the pions.

high enough temperatures, pointing towards chiral symmetry restoration. We have as well explicitly checked that F_s^π so derived is representation independent.

Thermal corrections to the pion decay constant have been computed in the literature following different approaches [22], [23], [21], [25], [26]. Our result for the effective spatial coupling, $F_s^\pi(T)$, is in agreement with those calculations of $F^\pi(T)$. In most of them, $F^\pi(T)$ is obtained from its usual definition (slightly modified at finite temperature [21]) through the two point function of the axial vector current, and there is no splitting between temporal and spatial couplings at one loop; it appears at two loops [27]. Notice that since we consider F^π just as a parameter in the Lagrangian, it does not necessarily coincide with the pion decay constant as usually defined.

To avoid technical complications, we have computed the pion field and F^π renormalization from the lowest order terms in the expansion of the Lagrangian $\mathcal{L}^{(2)}$ in powers of the pion fields; chiral symmetry ensures that all higher terms in the field expansion are consistently renormalized once $\vec{\pi}$ and F^π have been renormalized from these lowest order terms.

2.2 Temperature Corrections to the Condensate at One Loop

Temperature corrections to $\langle \sigma \rangle$ are computed through the addition of a small chirality breaking term, which makes the Lagrangian slightly asymmetric \Box that

\footnote{We recall that the QCD scalar density $\overline{\Psi}\Psi$ whose vacuum expectation value represents the familiar QCD condensate, is equivalent to $\sigma \equiv \frac{F^\pi}{4} Tr(U + U^\dagger)$ since $\overline{\Psi}\Psi$ and $Tr(U + U^\dagger)$ can...}
is, we consider
\[\mathcal{L} = \mathcal{L}^{(2)} + \mathcal{L}_B, \]
with
\[\mathcal{L}_B = c\sigma = \frac{c F_\pi}{4} \text{Tr}(U + U^\dagger). \]
Expanding the last term in powers of \(\frac{\pi^2}{T^2} \) in the exponential representation it is found
\[\mathcal{L}_B = c F_\pi - \frac{c}{2F_\pi} \bar{\pi}\pi \bar{\pi}\pi + \frac{c}{24F_\pi^3} (\bar{\pi}\pi)^2 + \ldots \]
Following the effective Lagrangian approach, we compute the one-loop order \(T^2 \) corrections to \(\mathcal{L} \) through the 1PI zero, two and four point Green functions. The kind of diagrams involved in the calculation are vacuum energy ones for the zero point 1PI Green function and the same as in the previous section (see Figs. 1 and 2), although with modified couplings, for the two and four point 1PI functions. Now, besides \(F_\pi \) and the pion field, also the parameter \(c \) is renormalized. Since it only appears in the product \(c F_\pi \), there is an ambiguity, depending on which (spatial or temporal) \(F_\pi(T) \) we consider, leading to
\[c^s(T) = c \left(1 - \frac{T^2}{24F_\pi^2} \right), \]
\[c^t(T) = c \left(1 + \frac{T^2}{24F_\pi^2} \right). \]
Again, the one-loop effective Lagrangian written in terms of the temperature-dependent parameters has the same structure as the tree-level one, space-time splitted, though.

Notice that (minus) the first term in the expansion of \(\mathcal{L}_B, -c F_\pi \), can be interpreted as the vacuum energy density of the system. That is, the free energy of a system of free bosons, given by
\[c^s(T) F^s_\pi(T) = c^t(T) F^t_\pi(T). \]
Since the operator \(\sigma \) can be obtained by deriving the bare Lagrangian with respect to the parameter \(c \) (see eq. (11)), we can also interpret the result as a thermal correction to the scalar condensate \(\langle \bar{\pi}\pi \rangle \). Taking the derivative with respect to \(c \) be shown to transform in the same way under the chiral group. \(\mathcal{L}_B \) is thus equivalent to a quark mass term. \footnote{Recall that the thermal average of the operator \(\sigma \) is defined as}
\[\langle \sigma \rangle_T = \frac{\text{Tr}(\sigma e^{-\beta H})}{\text{Tr}(e^{-\beta H})} \]
where \(T e^{-\beta H} = \int [dU] e^{-\int d^4x \mathcal{L}} \) is the partition function and \(\beta = 1/T \). Thus, one can compute \(\langle \sigma \rangle_T \) as the derivative of the partition function with respect to the parameter \(c \), at \(c = 0 \).
to (bare) c of the one loop effective Lagrangian, the temperature corrections to
the condensate are found. Explicit chiral symmetry is recovered by fixing $c = 0$
at the end of the computation. The final result is satisfactorily the same whether
either the spatial set F^s_π, c^s or the temporal set F^t_π, c^t is used, leading to:

$$\langle \sigma \rangle_T = \langle \sigma \rangle \left(1 - N \frac{T^2}{24 F^2_\pi} \right),$$

(17)
in agreement with [24], [22], [21]. As can be seen in (17), the temperature cor-
rection to the condensate also points towards chiral symmetry restoration.

Notice that L_B is just the well known classical potential up to a minus sign.
However, it was not possible to use the standard method for computing effective
potentials [2] due to the presence of derivative couplings. Using a generalization
of this method [24] the same result is recovered, as already mentioned.

3 Gauge symmetry: $SU(2) \otimes U(1)$

In this section we study theories with gauge group $SU(2) \otimes U(1)$. We consider
the cases with one light Higgs doublet, two light Higgs doublets, and the generic
one where the Higgs sector becomes strongly interacting, the latter done in a
model independent way. Before entering into such details, we dwell again into
the delicate issue of the “flag” for symmetry (non-)restoration for gauge theories,
and in the fate of gauge invariance itself when a system is heated.

3.1 The magnetic mass

In a gauge theory, the pseudo-Goldstone bosons of the Lagrangian are unphysical
fields, unlike the gauge bosons.

As stated in sect. [4], we choose the gauge boson magnetic mass as our “flag”
or indicator for symmetry (non-)restoration.

At non-zero temperature, the self-energy tensor of the gauge boson may de-
pend on the four-velocity of the plasma u_μ. Consequently, the gauge boson
self-energy can be expressed as a linear combination of four possible tensors: $g_{\mu \nu}$,
$k_\mu k_\nu, u_\mu u_\nu$ and $k_\mu u_\nu + k_\nu u_\mu$. Some linear combinations of these tensors are usually
chosen as the standard basis set [23], denoted $A_{\mu \nu}, B_{\mu \nu}, C_{\mu \nu}$ and $D_{\mu \nu}$ and defined
in Appendix A. In this basis, the one loop gauge boson self-energy is written as

$$\Pi^{\mu \nu} = \Pi_T A^{\mu \nu} + \Pi_L B^{\mu \nu} + \Pi_D D^{\mu \nu},$$

(18)

where the subscripts T and L denote transverse and longitudinal with respect to
the spatial component k of the wave vector.

This is analogous to the extraction of $\langle \bar{\Psi} \Psi \rangle_T$ in QCD, by first adding an explicitly chiral
symmetry breaking term $m \bar{\Psi} \Psi$ to the bare Lagrangian, computing the temperature corrections,
and deriving then with respect to m [2].
The magnetic mass is defined as \(\Pi_T(0, \vec{k}) \), with vanishing \(\vec{k} \). At one-loop and leading order, \(O(gT) \), it will be shown to be gauge invariant both for the standard model and for its extensions considered below. The explicit computations will be focused in the W gauge boson mass.

3.2 Checking gauge invariance: BRST identities

Up to our knowledge, the Slavnov-Taylor identities at finite temperature have never been explicitly verified in the literature for the electroweak theory. We explicitly perform such a task in the present work, for the two-point functions of the theory.

Indeed, one expects gauge invariance to be preserved at non-zero temperature. A simple reasoning can be developed in the imaginary time formalism, where finite temperature just amounts to compactifying the time direction, that is, to perform a global “distortion” of the system. Gauge transformations are local ones by definition, and thus they should not be affected by global topological conditions. Once the gauge fixing procedure has been implemented, BRST invariance remains, and the corresponding Slavnov-Taylor identities are to be proven.

One should realize that the proof is much more juicy than at zero temperature: there, quadratic divergences are disposed of by counterterms from the start, and the Slavnov-Taylor identities for such non-physical quadratically divergent terms are not even considered. At finite temperature those quadratic divergences are the source of the \(T^2 \) dependence. It is then mandatory, and new, to check the BRST identities on them.

Both in the linear and the non-linear realizations of the \(SU(2) \otimes U(1) \) gauge symmetry, the Ward identities relating the two point Green functions at one loop are given by

\[
\begin{align*}
k^2(\Pi_D^W + 2M_W \Pi^{W \pi} \pm) - M_W^2 \Pi^{\pi \pm} & = 0, \\
k^2(\Pi_D^Z - 2iM_Z \Pi^{Z \pi^0}) - M_Z^2 \Pi^{\pi^0} & = 0, \\
k^2\Pi_D^0 & = 0, \\
k^2(\Pi_D^Z - iM_Z \Pi^{\gamma \pi^0}) & = 0, \\
\xi \Pi_D^Z - iM_Z \xi \Pi^{Z \pi^0} - \Pi^{\pi^0} & = 0, \\
\xi \Pi_D^W + M_W \xi \Pi^{W \pi \pm} - \Pi^{\pi \pm} & = 0,
\end{align*}
\]

where \(\xi \) is the gauge fixing parameter in \(R_\xi \) gauges. \(\Pi_D^W, \Pi_D^Z, \Pi_D^0 \) and \(\Pi_D^Z \) are the form factors introduced in eq. (18) for the \(W^\pm - W^\pm, Z - Z, \gamma - \gamma \) and \(Z - \gamma \) self-energies, respectively. \(\Pi^{W \pi \pm}_\mu \) is defined from the two point Green function with external legs \(W^\pm - \pi^\pm \) as

\[
\Pi^{W \pi \pm}_\mu = k_\mu \Pi^{W \pi \pm}, \tag{20}
\]
and analogously for $\Pi^{Z\pi^0}$ and $\Pi^{\gamma\pi^0}$, while Π^{π^\pm} and Π^{π^0} represent the charged and neutral Faddeev-Popov ghosts self-energies.

3.3 Perturbative Higgs sector

3.3.1 Minimal Standard Model

Consider the minimal electroweak standard model, that is, with just one light Higgs doublet. Here, all the couplings of the theory are in the perturbative range, and we can rely on the one-loop approximation to the effective potential at non-zero temperature.

It is well known that with just one Higgs doublet the gauge symmetry is always restored at high temperature. Indeed, given the simplicity of the potential, $V(\phi)_{T=0} = -\mu^2(\phi^\dagger \phi) + \lambda (\phi^\dagger \phi)^2$, the condition that it has to be bounded from below forces the sign of λ to be positive. The one-loop thermal corrections to the above potential can be readily computed in R_ξ gauges by the usual methods [2]. In the high temperature limit ($T \gg m_i$, with m_i the masses of all standard model particles) the leading order T^2 corrections are gauge invariant and read:

$$\delta \mu^2 = -\frac{T^2}{12} (6\lambda + \frac{9}{4} g^2 + \frac{3}{4} g'^2 + 3h_t^2 + 3h_b^2 + h_\tau^2),$$

leading to the temperature dependent Higgs v.e.v.

$$v(T)^2 = v^2 - \frac{T^2}{2} \left[1 + \frac{3g^2}{8\lambda} + \frac{g'^2}{8\lambda} + \frac{h_t^2}{2\lambda} + \frac{h_b^2}{2\lambda} + \frac{h_\tau^2}{6\lambda} \right]. \quad (23)$$

where $v^2 = \mu^2/\lambda$ denotes the Higgs v.e.v. at tree level and h_t, h_b and h_τ are the Yukawa coupling constants of the quarks t and b, and the τ lepton, respectively.

As expected, exactly the same behavior is seen from the Z and W gauge boson magnetic mass. The set of diagrams contributing to the Z self-energy at one loop are shown in Fig. [3]. The coupling constants are not renormalized at one loop (at order T^2), which allows to write

$$M_{W,\text{mag}}^2 = \frac{g^2}{4} v(T)^2, \quad (24)$$

$$M_{Z,\text{mag}}^2 = \frac{g^2 + g'^2}{4} v(T)^2,$$

$$v(T)^2 = v^2 - \frac{T^2}{2} \left[1 + \frac{3g^2}{8\lambda} + \frac{g'^2}{8\lambda} + \frac{h_t^2}{2\lambda} + \frac{h_b^2}{2\lambda} + \frac{h_\tau^2}{6\lambda} \right].$$

The result in eq. (23) is then recovered, pointing towards restoration in an inescapable way.

Finally, we have checked all the Ward identities in eq. (19); the explicit results for the diagrams involved can be found in Appendix C.
3.3.2 Two Higgs doublets

Models with a richer Higgs structure have several scalar couplings. In order to explore symmetry non-restoration, the rule of the game is then to play with the freedom in the sign of some of those couplings, while respecting the boundedness condition.

The simplest extension, i.e., the standard model with two Higgs doublets, is considered now. We make the usual assumption that the down quarks and charged leptons only couple to the Higgs doublet ϕ_1 and the up quarks to ϕ_2, ensuring tree-level flavor conservation of scalar mediated neutral currents. In order to avoid radiatively induced FCNC terms, we also impose the discrete symmetry $\phi_1 \rightarrow -\phi_1$. The most general, renormalizable, scalar potential consistent with the above symmetry and with gauge invariance is:

\[
V(\phi_1, \phi_2) = -m_1^2 \phi_1^\dagger \phi_1 - m_2^2 \phi_2^\dagger \phi_2 + \lambda_1 (\phi_1^\dagger \phi_1)^2 + \lambda_2 (\phi_2^\dagger \phi_2)^2 + \lambda_3 (\phi_1^\dagger \phi_1)(\phi_2^\dagger \phi_2) + \lambda_4 (\phi_1^\dagger \phi_2)^2 + \frac{1}{2} |\lambda_5 (\phi_1^\dagger \phi_2)|^2 + \text{h.c.}. \quad (25)
\]

The condition for the potential to be bounded from below leads to the constraints:

\[
\lambda_1 > 0, \quad \lambda_2 > 0, \quad 4\lambda_1 \lambda_2 > \lambda_3^2, \\
4\lambda_1 \lambda_2 > (\lambda_3 + \lambda_4 + \lambda_5)^2 \quad (\text{for } \lambda_5 < 0). \quad (26)
\]

The leading one-loop thermal corrections give the following thermal masses
for the fields ϕ_1, ϕ_2:
\[
\Delta V_T(\phi_1, \phi_2) \simeq \frac{T^2}{12} \left[(6\lambda_1 + 2\lambda_3 + \lambda_4 + \frac{9}{4}g^2 + \frac{3}{4}g'^2 + 3h_b^2 + h_\tau^2)|\phi_1|^2 \\
+ (6\lambda_2 + 2\lambda_3 + \lambda_4 + \frac{9}{4}g^2 + \frac{3}{4}g'^2 + 3h_\tau^2)|\phi_2|^2 \right] \\
\equiv m_1^2(T)|\phi_1|^2 + m_2^2(T)|\phi_2|^2.
\]
(27)

Although the contributions from both fermions and gauge bosons are positive, the scalar couplings λ_3 and λ_4 may be negative, and therefore it is not possible to make any a priori statement about the signs of the mass terms above. What can be stated is that the stability conditions in eq. (26) do not allow both mass terms in eq. (27) to be negative. Since ϕ_2 receives a large positive contribution from the top Yukawa coupling, it is easier to get a negative thermal mass for the field ϕ_1. Then, its vacuum expectation value would remain non-zero at high temperature and the $SU(2) \otimes U(1)$ symmetry would never be restored.

Figure 4: Stability bound of the tree level potential (solid line) and parameter space leading to symmetry non-restoration (above the dashed-dotted line), for $\lambda_2 = 1$ (a) and $\lambda_2 = 2$ (b), with $\lambda_5 = 0$ in both.

According to eq. (27), $m_1^2(T) < 0$ requires
\[
6\lambda_1 + 2\lambda_3 + \lambda_4 + \frac{9}{4}g^2 + \frac{3}{4}g'^2 + 3h_b^2 + h_\tau^2 < 0.
\]
(28)
Notice that the term $\frac{9}{4}g^2 = 0.99$ is already of order one at the electroweak scale, which makes it difficult to attain $m_1^2(T) < 0$ within the perturbative regime \[4\]. We have checked numerically that the condition (28) and the stability bounds (26) are incompatible for scalar couplings in the range $[-1 < \lambda_i < 1]$, where the weak coupling expression (27) is justified. As an example, in Fig. 4 we plot the stability bound of the tree level potential (the allowed range is below the solid line) and the curve corresponding to $m_1^2(T) = 0$ (symmetry non-restoration occurs above the dashed-dotted line), for $\lambda_5 = 0$ and $\lambda_2 = 1, 2$.

Heading outside the above mentioned range, the numerical results taken at face value seem to point towards the possibility of symmetry non-restoration as the scalar sector enters the non-perturbative regime, as can be seen in Fig. 4b. Of course, the above computation is meaningless outside that range.

On the above, we have used as “flag” for symmetry (non-)restoration the negative scalar “masses”, that is, the location of the minimum of the potential. As discussed in previous section, one could calculate instead the induced gauge boson magnetic masses, as an alternative analysis of the fate of the symmetry. In the linear realization of the symmetry breaking sector of the minimal standard model, the magnetic mass has been computed and proved to show a tendency towards vanishing. The temperature corrections to the vacuum expectation value of the Higgs field indirectly computed through this procedure agree with the result obtained from the effective potential approach. The magnetic mass squared is given by $g^2v^2(T)$. In the two doublet case, the magnetic mass squared would be given by $g^2v_1^2(T) + v_2^2(T)$, thus if there is a region of parameter space for which one of the vev’s remains non-zero the magnetic mass will not show a tendency towards vanishing and symmetry non-restoration becomes possible.

From our study of the two doublet model, we conclude that the requirement of the validity of perturbation theory points towards the usual assumption of restoration of the $SU(2) \otimes U(1)$ gauge symmetry. In the next section, we extend the analysis outside the perturbative regime.

3.4 Strongly Interacting Higgs Sector

We now study the behavior of the $SU(2)_L \otimes U(1)_Y$ symmetry in the Standard Model with a strongly coupled Higgs sector. Strong coupling implies (at least naively) heavy physical scalar particles, which can be effectively removed from the physical low-energy spectrum. An effective Lagrangian approach is the natural technique to use when all the physical degrees of freedom in the symmetry breaking sector are heavy. We then consider the most general effective Lagrangian which employs a non-linear realization of the spontaneously broken $SU(2)_L \otimes U(1)_Y$ gauge symmetry [29]. The resulting chiral Lagrangian is a non-renormalizable non-linear σ model coupled in a gauge invariant way to the Yang-
Mills theory. Chiral Lagrangians have been widely used in the last few years as low energy effective theories for electroweak interactions [34].

The Lagrangian keeps only the light degrees of freedom, namely the gauge and Goldstone bosons. The latter are collected in a unitary matrix

$$U = \exp \left(i \pi_a \tau_a / v \right),$$

where v is the vacuum expectation value that gives the W and Z gauge bosons a mass, π_a are the would-be Goldstone fields and τ_a the Pauli matrices.

3.4.1 The lowest order Lagrangian

The lowest order terms in a derivative expansion of the effective Lagrangian are

$$\mathcal{L}_{GChL} = \frac{v^2}{4} \text{Tr}[D_\mu U^\dagger D^\mu U] + \mathcal{L}_Y + \mathcal{L}_G + \mathcal{L}_{FP},$$

(29)

where

$$D_\mu U = \partial_\mu U + ig_2 (\vec{W}_\mu \vec{\tau}) U - ig_2' (B_\mu \tau_3).$$

(30)

\mathcal{L}_Y is the pure Yang-Mills piece

$$\mathcal{L}_Y = -\frac{1}{2} \text{Tr}(W_{\mu\nu} W^{\mu\nu}) - \frac{1}{4} B_{\mu\nu} B^{\mu\nu},$$

(31)

and we consider the following gauge-fixing term

$$\mathcal{L}_G = -\frac{1}{2} \left(\frac{1}{\sqrt{\xi_1}} \partial_\mu W_i^\mu - g_2 \frac{v}{\sqrt{\xi_2 \pi_i}} \right)^2 - \frac{1}{2} \left(\frac{1}{\sqrt{\xi_1}} \partial_\mu B^\mu - g_2' \frac{v}{\sqrt{\xi_2 \pi_3}} \right)^2,$$

(32)

from which the Faddeev-Popov term, \mathcal{L}_{FP}, can be computed in the usual way. The relevant part for our calculation is given in Appendix B. At tree level we take $\xi_1 = \xi_2$, so that the gauge boson - Goldstone boson mixing term is canceled.

Expanding U, we obtain the interaction vertices, in particular the tree level masses are given by

$$M_Z^2 = (g_2^2 + g_2'^2) \frac{v^2}{4}, \quad M_W^2 = g_2^2 \frac{v^2}{4},$$

(33)

$$m_{\pi^0}^2 = \xi_2 M_Z^2, \quad m_{\pi^\pm}^2 = \xi_2 M_W^2,$$

(34)

$$m_{c^0}^2 = \sqrt{\xi_1 \xi_2} M_Z^2, \quad m_{c^\pm}^2 = \sqrt{\xi_1 \xi_2} M_W^2,$$

(35)

where π^0, π^\pm are the longitudinal components of the gauge bosons Z, W^\pm, respectively, and c^0, c^\pm are the corresponding ghost fields.

We have computed the one loop temperature corrections to the effective Lagrangian (29) at leading order, i.e., $O(T^2)$. Before entering the discussion of the results, it is worth to recall the range of validity of the calculation and the approximations involved. Unitarity implies that this low-energy effective theory should be valid for an energy scale much smaller than $4\pi v \sim 3$ TeV. Furthermore, as we
shall see in eq. (36), our approximation cannot be valid unless $T < \sqrt{6} v$, where the latter limit would give the naively extrapolated critical temperature. In the vicinity of it, the loop expansion performed here is not appropriate. Therefore, our conclusions will be reliable up to $T \simeq 200 \text{ GeV}$, and expected to be an acceptable guideline up to 500 GeV. In order to obtain analytic expressions we work in the limit $T \gg m_i$, with m_i the masses of the low energy spectrum (which means $T \gg gv$), and $T \gg k$, where k are the external momenta. This approximation is known in the literature as the hard thermal loop approximation (HTL) [30].

We are doing an expansion in both T/v and the small coupling constants g, g'. The corrections of order $g^2 T^2 / v^2$ are smaller than T^4 / v^4, which will only appear at higher order in perturbation theory since, in the HTL approximation, we assume $gv \ll T$. Indeed, notice that already at $T = 0$ the gauge coupling constants, g, g', are not corrected by quadratically divergent diagrams, as can be seen from simple power counting arguments on the one-loop diagrams contributing to vertex functions: only logarithmic divergences appear. Hence no T^2 renormalization of g, g' may appear.

Let’s start with the thermal corrections to the gauge boson masses, obtained from the corresponding self-energy tensor (Fig. 4). It is well known that the magnetic mass of the gauge bosons in an unbroken gauge theory vanishes at one loop [11], so that only diagrams involving would-be-Goldstone boson loops will give a non-zero contribution to the magnetic masses in the broken phase, and we find

\[M_{W,\text{mag}}^2 = g^2 v^2 \left(\frac{T^2}{v^2} \right), \]

[^6]: Although we have not included fermions in our calculation, it is easy to see that they do not contribute to the magnetic masses either, at leading order.
\[M_{Z,\text{mag}}^2 = \left(g^2 + g'^2 \right) \frac{v^2}{4} \left(1 - \frac{N_f T^2}{12 v^2} \right) , \]
\[M_{\gamma,\text{mag}}^2 = 0 , \] (36)

where \(N_f = 2 \) in \(SU(2) \). For the electric masses, defined as \(\Pi_L(0, \vec{k}) \), we get \(\]
\[M_{W,\text{el}}^2 = g^2 \frac{v^2}{4} \left(1 + \frac{17 N_f T^2}{12 v^2} \right) , \]
\[M_{Z,\text{el}}^2 = \left(g^2 + g'^2 \right) \frac{v^2}{4} \left(1 - \frac{N_f T^2}{12 v^2} \right) + \frac{N_f T^2}{24} [(g^2 + g'^2)(c_W^2 - s_W^2)^2 + 8g^2 c_W^2] \]
\[M_{\gamma,\text{el}}^2 = e^2 \frac{N_f T^2}{2} , \] (37)

where \(c_W \) (\(s_W \)) is the cosine (sine) of the weak mixing angle at zero temperature.

Focusing on the magnetic masses, we can then rewrite them as
\[M_{W,\text{mag}}^2 = g^2 \frac{v(T)^2}{4} , \] (38)
\[M_{Z,\text{mag}}^2 = \left(g^2 + g'^2 \right) \frac{v(T)^2}{4} , \] (39)

with \(v(T)^2 \) given by
\[v(T)^2 = v^2 \left[1 - \frac{(N - 1) T^2}{12 v^2} \right] . \] (40)

where \(N = 3 \) in \(SU(2) \).

It is worth to remark that the would-be-Goldstone boson field renormalization is the same as the one for the Goldstone bosons in the global case (eq. (3)), while the temperature corrections to \(v^2 \) coincide with those of \(F_{\pi,2} \).

The diagram in Fig. 6 generates a gauge boson - Goldstone boson mixing term proportional to \(T^2 \), which is absorbed by a renormalization of the gauge fixing parameter \(\xi_2 \):
\[\xi_2(T) = \xi_2 \left(1 + \frac{2 T^2}{9 v^2} \right) . \] (41)

With respect to the remaining parameter in the effective Lagrangian in eq. (29), the gauge fixing one \(\xi_1 \), it is not renormalized at \(O(T^2) \). The same applies to the gauge boson and ghost fields. Naive dimensional counting shows that the 1PI one-loop diagrams that will renormalize those entities are at most logarithmically divergent, alike to the situation for \(g \) and \(g' \) discussed earlier, and thus not able to produce \(T^2 \) corrections.

\(^7\)We acknowledge C. Manuel for pointing out two misprints in these formulae, in an earlier version.
The consistency of our results has been verified by computing the leading order corrections to the masses of ghost and would-be-Goldstone bosons through the corresponding one loop self-energies (Figs. 7 and 8). Once the would-be-Goldstone boson field renormalization has been taken into account, the temperature-dependent masses depend on the renormalized parameters in the same way as at tree level, i.e.,

\[
\begin{align*}
 m_{\pi^\pm}(T) &= \xi_2(T) M_{W,\text{mag}}^2, \\
 m_{c^\pm}(T) &= \sqrt{\xi_1 \xi_2(T)} M_{W,\text{mag}}^2.
\end{align*}
\]

The one-loop effective Lagrangian does not have exactly the same functional form as the original bare one, eq. (29): it splits, as exemplified by the differing electric and magnetic masses. Eqs. (40) and (41) allow to connect several important finite T quantities in a compact notation, though. Eqs. (42) and (43) are an example of it.

We have also checked all the Ward identities in eq. (19). The explicit results for the different diagrams involved are given in Appendix C.

A natural question is the relationship with the linear case discussed in subsect. 3.3.1: one expects that taking there the Higgs mass to infinity the results of the
present section should be recovered. A superficial look does not show it. For instance, taking the limit $\lambda \to \infty$ in eq. (25) for the magnetic mass in the linear case, eq. (36) is not recovered. There is no inconsistency, though: the high temperature and heavy Higgs mass limits are not interchangeable. We have indeed checked that eq. (36) is obtained by taking the limit $m \to \infty$ (m being the physical Higgs mass), before doing the one-loop computation in the linear case (which implies not considering the following diagrams of Fig. 3: 2, 5, 10, 11 and 7, 9 when the physical Higgs boson is in the loop). The same argumentation is valid for the rest of the physical parameters.

Regarding the question of the $SU(2) \otimes U(1)$ symmetry non- restoration which initially motivated our study, we conclude from eq. (36) that thermal effects tend to restore the symmetry also in the non-perturbative regime. Notice that although the magnetic mass is non-vanishing in the symmetric phase beyond one-loop order, it is expected to be of order $g^2 T$, and therefore much smaller than the magnetic mass in the broken phase, of order $g v$ (recall that $g^2 T \ll g T < g v$). Thus we can interpret the decreasing of the magnetic mass with the temperature as a “flag” for symmetry restoration. On the contrary, for instance the W electric mass in eq. (37) can be written as

$$M_{W,el}^2 = g^2 \frac{v^2(T)}{4} + g^2 \frac{3N_f T^2}{8},$$

and in the symmetric phase, while $v(T) = 0$, it is nevertheless non-vanishing and of order $g T$, as anticipated.

These results are shown qualitatively in Fig. 9. We plot both the magnetic and the electric masses of the W gauge boson as functions of the temperature, at leading order T^2. The solid and dashed lines correspond to our one loop calculation, and the dotted line to the non-perturbative estimate of the magnetic mass in the symmetric phase, $M_{W,mag}^{sym} = 0.28 g^2 T$, which is taken from ref. [19].
3.4.2 Model dependence

As already mentioned, the lowest order term in the derivative expansion of the effective Lagrangian, $\mathcal{L}_{\text{GChL}}$, has a universal character. The next term in the expansion, $\mathcal{L}^{(4)}$, is model dependent, namely, it depends on the specific dynamics of the symmetry breaking sector through the different values of the various constants. The logarithmic divergences generated at one loop by $\mathcal{L}_{\text{GChL}}$ are consistently absorbed by the renormalization of those constants. As stated before, we have neglected all the zero temperature renormalization effects, and therefore the model dependence contained on them, as well as in the matching conditions \footnote{We thank J. Matias for pointing out this fact to us.}. This is justified, since we are looking for temperature effects.

The only model dependent contribution to the pure thermal corrections at one loop is due to the dimension two term

$$\mathcal{L}_\beta = \frac{1}{4} \beta v^2 (Tr(U \tau_3 U^\dagger (D_\mu U) U^\dagger))^2,$$

which explicitly breaks the custodial $SU(2)_C$ symmetry. This term contributes to $\Delta \rho$ at tree level, and is thus strongly constrained by experimental data. The
Figure 10: Contribution of the model dependent term L_β to the one loop self-energy of the W and Z gauge bosons.

The contribution of L_β to the magnetic mass of the gauge bosons is given by

$$\delta M_{W,mag}^2 = -g^2 \beta \frac{T^2}{12},$$

$$\delta M_{Z,mag}^2 = g^2 \beta \frac{T^2}{3}.$$ (46, 47)

The sign of the parameter β can be either positive or negative. Whatever the case for a given theory, eqs. (46) and (47) show an opposite behaviour for the W and Z magnetic masses, which are no more forced to behave alike since the operator under study breaks the custodial $SU(2)_C$ symmetry. When combined with the universal leading contribution found in eqs. (36), the total correction reads

$$M_{W,mag}^2 = \frac{g^2}{4} v^2 \left(1 - \frac{T^2}{6v^2} - \beta \frac{T^2}{3v^2}\right),$$

$$M_{Z,mag}^2 = \frac{(g^2 + g'^2)}{4} v^2 \left(1 - \frac{T^2}{6v^2} + \beta \frac{4g^2T^2}{3(g^2 + g'^2)v^2}\right).$$ (48, 49)

The $SU(2) \otimes U(1)$ symmetry can be considered effectively restored only when all possible “flags” have signaled it. The above result, taken at face value, would indicate that the $SU(2) \otimes U(1)$ symmetry may never be restored at high temperature for theories where a large enough value of the coefficient of the operator L_β is generated. Such a strong statement has to be tempered by recalling that, if the chiral expansion is valid, we expect β to be small (in typical models it is of order of a coupling constant squared), and the total correction in (49) would be dominated by the leading one, pointing in a natural way towards restoration. Moreover, low energy constraints on new physics give an experimentally allowed value of β of order 10^{-3} \cite{32}, which implies that in phenomenologically acceptable models the contribution of the operator L_β is indeed negligible. It is interesting to retain that the tendency to symmetry restoration can be reversed for values of β which are not outrageously large, as seen from eqs. (49).
4 Conclusions

We show that the spontaneously broken $SU(2) \otimes U(1)$ gauge theory in models where the Higgs sector becomes strongly interacting (such as composite Higgs models and technicolor-like ones) tends to be restored when the system is heated. This conclusion is obtained in a model-independent way using the techniques of the electroweak chiral Lagrangian. Specific models will only affect the sharpness of such a tendency, unless the natural chiral expansion is not respected. We quantify such model dependence computing the generic contribution of the leading effective operator whose coefficient is model-sensitive, \mathcal{L}_β; its one-loop contribution to the W and Z magnetic masses is found to have opposite sign. The technique, while only valid for temperatures lower than the electroweak scale, has the advantage of its non-perturbative character. The physical conclusion reached here parallels the corresponding one for the other main avenue of beyond the standard model physics, supersymmetry, where perturbative treatments show a tendency towards restoration.

In this work we have as well explored the $SU(2) \otimes U(1)$ gauge symmetry in a perturbative regime: the cases of one and two light Higgs doublets. Again, the results show symmetry restoration at high temperatures when the full scalar, gauge boson and fermion corrections are taken into account.

The above conclusions have been obtained mainly through the study of the temperature dependent magnetic mass for the gauge bosons, which we propose as an appropriate “flag” in the broken phase.

In addition, BRST invariance has been explicitly checked for gauge theories at finite temperature, a novel result.

Finally, it is worth to remark that global symmetries have been studied as well for the non-linear sigma model at finite temperature. While this subject and the results are not new, the technical approach we used is so: we derive first the temperature corrected one-loop effective Lagrangian, from which the physical conclusions are then extracted.

A grain of salt: we have disregarded the putative role of finite parameters such as finite volumes or causal domain sizes in the history of the universe. Their effect could constitute an interesting topic to study.

Appendix A: Tensor Basis

The tensor basis in terms of which we have expressed the gauge boson self-energy is given by,

$$A^{\mu \nu} = g^{\mu \nu} - B^{\mu \nu} - D^{\mu \nu}$$ \hspace{1cm} (50)

$$B^{\mu \nu} = -\frac{\bar{K}^\mu \bar{K}^\nu}{K^2}$$ \hspace{1cm} (51)
\[C_{\mu\nu} = \frac{K_\mu K_\nu + \bar{K}_\mu K_\nu}{K^2} \]
\[D_{\mu\nu} = \frac{K_\mu K_\nu}{K^2} \]

(52)

(53)

\[K_\mu = (K \cdot u K_\mu - K^2 u_\mu)/k \] and \(k \) is such that \(K_\mu K_\mu = \omega^2 - k^2 \) with \(\omega = K_\mu u_\mu \).

Appendix B: Faddeev-Popov Lagrangian

The Faddeev-Popov Lagrangian which corresponds to the non-linear realization of the \(SU(2) \otimes U(1) \) gauge symmetry is different from the one derived for the minimal standard model for which the gauge symmetry is linearly realized. Here we present the Faddeev-Popov Lagrangian terms which are relevant for our purposes. More general results can be found in [33].

\[\mathcal{L}_{FP} = c_0^+ [-\nabla^2 - \left(\frac{g^2 v \xi}{2}\right) \frac{v}{2} - \frac{1}{6v} (\pi_1^2 + \pi_2^2) +...]c_0 + \]

\[\sum_{i \neq j \neq k}^3 c_i^+ [-\nabla^2 - \left(\frac{g^2 v \xi}{2}\right) \frac{v}{2} - \frac{1}{6v} (\pi_j^2 + \pi_k^2) +...]c_i + \]

\[(c_1^+ c_2 - c_2^+ c_1)[-g \partial^\mu W_\mu^3 + \left(\frac{g^2 v \xi}{2}\right) \frac{\pi_3}{2}] + \]

\[(c_1^+ c_3 - c_2^+ c_1)[g \partial^\mu W_\mu^2 + \left(\frac{g^2 v \xi}{2}\right) \frac{\pi_2}{2}] + \]

\[(c_2^+ c_3 - c_3^+ c_2)[g \partial^\mu W_\mu^2 + \left(\frac{g^2 v \xi}{2}\right) \frac{\pi_1}{2}] + \]

\[gg^\prime \frac{v \xi}{4} (c_0^+ c_3 + c_3^+ c_0)[v - \frac{1}{3v} (\pi_1^2 + \pi_2^2) +...] +... \]

where \(\xi_1 = \xi_2 = \xi \).

Appendix C: Ward Identities at One Loop

We have verified the Ward identities at one loop, both for the linear and non-linear realization of the gauge symmetry, for the two-point Green functions, computing the \(W_\mu^\pm, Z_\mu, A_\mu \) gauge boson, Goldstone boson and ghost self-energies, together with the one loop Goldstone boson-gauge boson mixing term. At leading order \((O(T^2)) \) and for small external momenta the results for the standard model case are:

\[\Pi_D^Z = - (g^2 + g'^2) \frac{T^2}{8} - (g^2 + g'^2) \frac{3M_Z^2 T^2}{8m^2}. \]
\[
\begin{align*}
\Pi^W_D &= \frac{-g^2}{8} \frac{T^2}{T^2} - g^2 \frac{3M_W^2 T^2}{8m^2}, \\
\Pi^\gamma_D &= 0, \\
\Pi^{Z\gamma}_D &= 0, \\
\Pi^\pi &= 0, \\
\Pi^{\pi\gamma} &= 0, \\
\Pi^{\pi\pm W} &= \frac{-g^2}{16M_W} \frac{T^2}{T^2} - g^2 \frac{3M_W T^2}{16m^2}, \\
\Pi^{\pi\pm Z} &= i(g^2 + g'^2) \frac{T^2}{16M_Z} + i(g^2 + g'^2) \frac{3M_Z T^2}{16m^2},
\end{align*}
\]

where \(m^2 = 2\mu^2 \) represents the Higgs boson mass squared.

Concerning the electroweak chiral Lagrangian the results for the two point Green functions are:

\[
\begin{align*}
\Pi^Z_D &= -(g^2 + g'^2) \frac{T^2}{24}, \\
\Pi^W_D &= \frac{-g^2}{24} \frac{T^2}{24}, \\
\Pi^\gamma_D &= 0, \\
\Pi^{Z\gamma}_D &= 0, \\
\Pi^\pi &= k^2 \frac{T^2}{18v^2}, \\
\Pi^{\pi\gamma} &= 0, \\
\Pi^{\pi\pm Z} &= ig \frac{T^2}{18v}, \\
\Pi^{\pi\pm} &= -\xi g^2 \frac{T^2}{T^2}.
\end{align*}
\]

Acknowledgements.

This work was supported through founds from CICYT, projects AEN93-0673, AEN96-1718, AEN97-1678, from DGICYT under grant PB95-1077 and from EEC under the TMR contract ERBFMRX-CT96-0090. O. Pène thanks the BBV fundation for support. We are specially indebted to Maria José Herrero for innumerable illuminating discussions. We acknowledge as well Rolf Baier, Stefano Catani, Concha González-García, Jean-Pierre Leroy, Cristina Manuel, Joaquim Matias, Agustín Nieto, Dominique Schiff and Raymond Stora for several inspiring comments.
References

[1] D.A. Kirzhnits and A.D. Linde, *Phys. Lett.* B42 (1972) 471.

[2] L. Dolan and R. Jackiw, *Phys. Rev.* D9 (1974) 3320.

[3] S. Weinberg, *Phys. Rev.* D9 (1974) 3357.

[4] G. Bimonte and G. Lozano, *Phys. Lett.* B366 (1996) 248; *Nucl. Phys.* B460 (1996) 155.

[5] G. Amelino-Camelia, *Phys. Lett.* B388 (1996) 776; *Nucl. Phys.* B476 (1996) 255.

[6] T. Ross, *Phys. Rev.* D54 (1996) 2944; M. Pietroni, N. Rius and N. Tetradi, *Phys. Lett.* B397 (1997) 119.

[7] J. Orloff, *Phys. Lett.* B403 (1997) 309.

[8] Y. Fujimoto and S. Sakakibara, *Phys. Lett.* B151 (1985) 260; E. Manesis and S. Sakakibara, *Phys. Lett.* B157 (1985) 287; G.A. Hajj and P.N. Stevenson, *Phys. Rev.* D37 (1988) 413; K.G. Klimentko, *Z. Phys.* C43 (1989) 591; *Theor. Math. Phys.* 80 (1989) 929; M.P. Grabowski, *Z. Phys.* C48 (1990) 505.

[9] Y. Fujimoto, A. Wipf and H. Yoneyama, *Z. Phys.* C35 (1987) 351; *Phys. Rev.* D38 (1988) 2625.

[10] C. King and L.G. Yaffe, *Comm. Math. Phys.* 108 (1987) 423; G. Bimonte and G. Lozano, *Phys. Lett.* B388 (1996) 692.

[11] G. Bimonte et al., DFTUZ 97/17, hep-lat/9707029, to appear in *Nucl. Phys.* B.

[12] R.N. Mohapatra and G. Senjanovic, *Phys. Lett.* B89 (1979) 57; *Phys. Rev. Lett.* 42 (1979) 1651; *Phys. Rev.* D20 (1979) 3390; G. Dvali, G. Senjanovic, *Phys. Rev. Lett.* 74 (1995) 5178; G. Dvali, A. Melfo, G. Senjanovic, *Phys. Rev.* D54 (1996) 7857.

[13] G. Dvali, A. Melfo, G. Senjanovic, *Phys. Rev. Lett.* 75 (1995) 4559.

[14] H. Haber, *Phys. Rev.* D46 (1982) 1317; M. Mangano, *Phys. Lett.* B147 (1984) 307.

[15] A. Riotto and G. Senjanovic, *Phys. Rev. Lett.* 79 (1997) 349.

[16] G. Dvali, K. Tamvakis, *Phys. Lett.* B378 (1996) 141; B. Bajc, A. Melfo, G. Senjanovic, *Phys. Lett.* B387 (1996) 796.
[17] J. Stern, How to see the chiral structure of QCD vacuum in low-energy $\pi - \pi$ scattering, e-print archive: hep-ph/9510318. Contribution to the 2nd Workshop on Physics and Detectors for DAPHNE 95.

[18] S. Elitzur, Phys. Rev. D12 (1975) 3978.

[19] W. Buchmüller and O. Philipsen, Phys. Lett. B397 (1997) 112.

[20] R.D. Pisarski and M. Tytgat, Phys. Rev. D54 (1996) 2989, and references therein.

[21] A. Bochkarev, J. Kapusta, Phys. Rev. D54 (1996) 4066.

[22] J. Gasser, H. Leutwyler, Phys. Lett. B184 (1987) 83.

[23] A. Schenk, Phys. Rev. D47 (1993) 5138.

[24] P. Binetruy and M.K. Gaillard, Phys. Rev. D32 (1985) 931.

[25] R.D. Pisarski and M. Tytgat, Phys. Rev. Lett. 78 (1997) 3622.

[26] C. Manuel, ECM-UB-PF-97/27, hep-ph/9710208, to appear in Phys. Rev. D.

[27] D. Toublan, Phys. Rev. D56 (1997) 5629;

[28] M. Le Bellac, Thermal Field Theory, Cambridge University Press, Cambridge 1996.

[29] T. Appelquist and C. Bernard, Phys. Rev. D22 (1980) 200; A.C. Longhitano, Phys. Rev. D22 (1980) 1166; Nucl. Phys. B188 (1981) 118.

[30] R.D. Pisarski, Phys. Rev. Lett. 63 (1989) 1129; E. Braaten and R.D. Pisarski, Nucl. Phys. B337 (1990) 569.

[31] A.D. Linde, Phys. Lett. B96 (1980) 289; D. Gross, R. Pisarski and L. Yaffe, Rev. Mod. Phys. 53 (1981) 43.

[32] S. Dawson, S. Alam and R. Szalapski, Phys. Rev. D57 (1998) 1577.

[33] M.J. Herrero and E. Ruiz-Morales, Nucl. Phys. B418 (1994) 431.

[34] D. Espriu and J. Matias, phys. Rev. D52 (1995) 6530.
\[W^+ \quad \pi^+ \quad Z_\mu \quad Z_\nu \]
