Meta-analyses of the association of G6PC2 allele variants with elevated fasting glucose and type 2 diabetes

Yuanyuan Shi1, Yuqian Li2, Jinjin Wang3, Chongjian Wang1, Jingjing Fan1, Jingzhi Zhao4, Lei Yin4, Xuejiao Liu1, Dongdong Zhang1, Linlin Li1*

1 Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China, 2 Department of Clinical Pharmacology, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, PR China, 3 Discipline of Public Health and Preventive Medicine, Center of Preventive Medicine Research and Assessment, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, PR China, 4 Department of Endocrinology, Military Hospital of Henan Province, Zhengzhou, Henan, PR China

Abstract

Objective
To collectively evaluate the association of glucose-6-phosphatase catalytic unit 2 (G6PC2) allele variants with elevated fasting glucose (FG) and type 2 diabetes (T2D).

Design
Meta-analysis

Data sources
PubMed, Web of Knowledge and Embase databases.

Study selection
Full text articles of studies that identified an association of G6PC2 with T2D and elevated FG.

Patient involvement
There was no T2D patient involvement in the analyses on the association of FG with G6PC2, there were T2D patients and non-diabetes patient involvement in the analyses on the association of T2D with G6PC2.

Statistical analysis
Random-effects meta-analyses were used to calculate the pool effect sizes. I² metric and H² tests were used to calculate the heterogeneity. Begg’s funnel plot and Egger’s linear regression test were done to assess publication bias.
Results

Of the 423 studies identified, 21 were eligible and included. Data on three loci (rs560887, rs16856187 and rs573225) were available. The G allele at rs560887 in three ethnicities, the C allele at rs16856187 and the A allele at rs573225 all had a positive association with elevated FG. Per increment of G allele at rs560887 and A allele at rs573225 resulted in a FG 0.070 mmol/l and 0.075 mmol/l higher (β (95% CI) = 0.070 (0.060, 0.079), p = 4.636e-50 and 0.075 (0.065, 0.085), p = 5.856e-48, respectively). With regard to the relationship of rs16856187 and FG, an increase of 0.152 (95% CI: 0.034–0.270; p = 0.011) and 0.317 (95% CI: 0.193–0.442, p = 6.046e-07) was found in the standardized mean difference (SMD) of FG for the AC and CC genotypes, respectively, when compared with the AA reference genotype. However, the G-allele of rs560887 in Caucasians under the additive model and the C-allele of rs16856187 under the allele and dominant models were associated with a decreased risk of T2D (OR (95% CI) = 0.964 (0.947, 0.981), p = 0.570e-4; OR (95% CI) = 0.892 (0.832, 0.956), p = 0.001; and OR (95% CI) = 0.923(0.892, 0.955), p = 5.301e-6, respectively).

Conclusions

Our meta-analyses demonstrate that all three allele variants of G6PC2 (rs560887, rs16856187 and rs573225) are associated with elevated FG, with two variants (rs560887 in the Caucasians subgroup and rs16856187 under the allele and dominant model) being associated with T2D as well. Further studies utilizing larger sample sizes and different ethnic populations are needed to extend and confirm these findings.

Introduction

Fasting plasma glucose (FPG) levels are associated with a risk of type 2 diabetes (T2D) and cardiovascular disease [1]. There is strong evidence suggesting that hyperglycemia is a risk factor in a dose-dependent manner for both micro- and macro-vascular complications in both type 1 and type 2 diabetes [2].

Both genetic and environmental factors contribute to the pathophysiology of T2D [3, 4]. However, the contribution of genetic factors to T2D risk is not well understood. Global knock-out of the glucose-6-phosphatase catalytic unit 2 (G6PC2) gene in mice led to a significant decrease in blood glucose [5]. Previous studies have showed that higher FPG levels within the normal glucose range constitute an independent risk factor for T2D [1, 6]. Considering the genetic risk that might result from G6PC2 alleles, a number of studies have explored the association of G6PC2 with fasting glucose (FG) and T2D in different ethnicities [7–12]. However, individual studies have yielded inconsistent or conflicting findings, possibly caused by limitations associated with an individual study, such as different genetic backgrounds and ethnicity, sample size and so on. Wang H et al [13] have previously performed a meta-analysis on the association of G6PC2 rs560887 with T2D. To expand and evaluate more precisely the relationship between G6PC2 and FG and T2D, we carried out meta-analyses of published studies.

Methods

Search strategy

We included all studies published prior to 4th April of 2017 that reported an association between G6PC2 and T2D and FG. Eligible studies were found by searching the PubMed, Web
of Knowledge and Embase databases for relevant reports. We used the gene name “G6PC2” as search term limited in all fields to retrieve association studies between genetic variants in G6PC2 and FG or T2D. We also reviewed reference lists of the identified publications for additional relevant studies. A literature search was performed on these databases without restriction to regions or publication types. Two investigators (YY.S and YQ.L) independently searched the articles, and disagreements were resolved by discussion.

Selection

The study inclusion criteria were as follows: (1) published in Chinese or English; (2) primary outcomes of T2D or FG were given; (3) either I or II, as follows: (I) provided the odds ratio (OR) with 95% confidence interval (CI) or adequate information about the genotype and allele to calculate the OR and 95% CI for the association of rs568007 and rs16856187 polymorphisms with T2D. (II) provided mean and standard deviation (SD) values of FG and sample size (n) in every genotype for rs16856187, and linear regression coefficients (β) of per-effect allele from linear regression analysis for the association of rs560887 and rs573225 with FG or enough data to calculate them. Studies were excluded if any of the following factors were identified: (1) not an association study for T2D or FG [14–24]; (2) studied other single nucleotide polymorphisms (SNPs) [25–28]; (3) data were not fully available [29–32]; (4) not population-based studies [33–34]; (5) meta-analyses or systematic review [13, 35–40]; (6) duplicate studies [41–43]. For duplicate publications, the study with the most recent and complete information was included.

Patient involvement

There was no T2D patient involvement in the analyses on the association of FG with G6PC2; There were T2D patients and non-diabetes patient involvement in the analyses on the association of T2D with G6PC2.

Data extraction

Data were extracted and summarized independently by two of the authors. The adjudicating senior authors resolved any disagreement. If the data were unavailable, an attempt was made to contact the corresponding author to request missing data via E-mail. The following information was extracted: (1) study characteristics such as the first author, study name, year published, country; (2) subjects and methods characteristics including sex, mean age, sample size (n), Body Mass Index (BMI), genotyping method and blood samples measured for FG; (3) primary outcomes such as risk allele, risk allele frequency (RAF), OR with 95% CI and their adjustment factors, statistical methods and the \(p \) value of Hardy-Weinberg equilibrium (HWE) test in control group for data on T2D; Mean and SD of FG and sample size (n) in every genotype, and \(\beta \) and their standard error (SE) or 95% CI, \(p \) value for linear regression and their adjustment factors as in previously published studies [44–46], and the \(p \) value of HWE for data on FG. All data were extracted independently by two investigators (YY.S and YQ.L), and discrepancies were resolved by discussion.

Quality assessment

The strengthening report of genetic association studies (STREGA) quality score system was used to assess the qualities of all included studies [47]. The STREGA system includes twenty-two quality assessment items with scores ranging from 0 to 22 (S1 Supplement). Studies are classified into three levels based on their scores: low quality (0–12), moderate-high quality...
(13–17), and high quality (18–22). Two authors (XJ.L and DD.Z) independently assessed the quality of included studies. Discrepancies over quality scores were resolved by discussing with all authors and subsequent consensus.

Statistical analysis

In our meta-analyses the included studies on rs560887 and rs573225 used an additive model to assess the genetic effect of G6PC2 polymorphisms [48]. For the studies on rs16856187, an additive model (AA versus AC versus CC) was used for the association of FG, and an allele model (A versus C), dominant model and recessive model were used for the association of T2D. The \(\beta \) value and SEs were used to identify the association of rs560887 and rs573225 \[14, 32, 44\] with FG. SE of the \(\beta \) value was calculated by 95% CI or \(\beta \) value and \(p \) value when SE was not extracted directly from the original literature \[49, 50\]. The SMD was used to analyze the association between rs16856187 and FG. ORs with 95% CIs were assessed to determine the relationship between T2D and rs560887 and rs16856187.

The aggregated results OR and 95% CI, \(\beta \) and 95% CI and SMD were calculated using random-effects meta-analysis. A statistical test for heterogeneity was conducted using the I\(^2\) metric and H\(^2\) tests \[51\]. A I\(^2\) greater than 50% or H\(^2\) greater than 1 was suggestive of substantial between-study heterogeneity \[52–53\]. Sensitivity analyses were performed by omitting each study to identify possible study contributions to the heterogeneity. To evaluate the reliability and stability of our results, Begg’s funnel plot and Egger’s linear regression test were done to assess publication bias \[54, 55\]. We divided the study populations into three ethnic subgroups, including Caucasians, Asians and African-Americans for the relationship between FG and rs560887, and two ethnic subgroups (Caucasians and Asians) for the relationship between T2D and rs560887. All analyses were performed using Stata 12.1 (Stata Corp, College Station, TX, USA).

The HWE for all the subjects of each study was evaluated using \(\chi^2 \) test. For the studies which didn’t include the distributions of genotypes but contained the information on the RAF in both cases and controls, we calculated the frequency of the different genotypes according to the HWE Law, which can be used to calculate the crude ORs and 95% CIs under an additive genetic model. All reported probabilities (\(p \) values) were two-sided, with \(p < 0.05 \) considered statistically significant.

Finally, for a better presentation of the public health relevance, we explored the PAR by taking into account both the pooled per-allele ORs and the pooled RAF (T2D risk allele frequency). PAR was calculated as \(PAR = (X − 1)/X \). Assuming a multiplicative model, \(X = (1 − f)^2 + 2f(1 − f)\gamma + f^2\gamma^2 \), where \(f \) is RAF and \(\gamma \) is their estimated ORs. We calculated the pooled prevalence of each risk allele in various groups using the inverse variance method described previously \[56\].

Power calculations

Power to detect a genetic association was estimated using the QUANTO program version 1.2.4. For the association study with FG, we had an estimated power of more than 99.99% to detect a minimal per-allele effect at \(\beta \) of 0.070 mmol/l for rs560887 and 0.075 mmol/l for rs573225 under an additive model, depending on an allele frequency of 0.76 and 0.67. For the association study with T2D, we had an estimated power of 97.58% to detect an OR of 0.967 for rs560887 under the prevalence of 8.8% \[57\] under an additive model, and 98.78%, 64.23% and 10.01% power to detect genetic effects at an OR of 0.960, 0.892 and 0.923 for rs16856187 under allele, dominant and recessive model, respectively. A \(p \) value <0.05 was considered statistically significant (two-tailed).
Results

Literature search results

Through literature searches a total of 423 articles from PubMed (National Center for Biotechnology Information), Web of Knowledge and Embase databases were identified up to 4th April 2017. A flow chart of study selection in the meta-analyses is shown in Fig 1. There were 52 articles included after duplicates were removed and following the screening of the titles and abstracts. As shown in S2 Supplement, 31 full-text articles were excluded. Overall, 21 articles were eligible and included (see study inclusion flowchart in Fig 1[7–12, 58–72]). Of these, 5 articles covered the loci rs560887 for FG and T2D, 3 articles covered the loci rs16856187 for FG and T2D, 2 articles covered the loci rs560887 and rs573225 for FG, 8 articles covered the loci rs560887 for FG, and 3 articles covered the loci rs560887 for T2D, respectively (Tables 1 and 2). In total, 18 studies comprising 69120 cases (62492 for rs560887, 6628 for rs16856187), 126483 non-diabetic controls (119627 for rs560887, 6856 for rs16856187), and 35 studies...
Table 1. Characteristics of the studies on the association of two SNPs with T2D.

First Author	Study name	Country (Ethnicity)	Year published	FG-raising allele (frequencies)	Case	Control	STREGA score	HWE	rs560887	rs16856187
Bouatia-Naji et al.	European	France (Caucasian)	2008	G (0.70)	2792	62.2	50.4	N	Yes	√
Reiling et al.	New Hoorn Study	The Netherlands (Caucasian)	2009	G (0.692)	2628	55	64	N	Yes	√
Rose et al.	Inter99	Denmark (Caucasian)	2009	G (0.689)	1963	61.6	60.5	N	Yes	√
Takeuchi et al.	Japanese	Japan (Asian)	2009	G (0.971)	5629	NA	NA	N	Yes	√
Takeuchi et al.	Sri Lankan	Sri Lanka (Asian)	2009	G (0.907)	599	NA	NA	N	Yes	√
Takeuchi et al.	DGI	Finland, Sweden (Caucasian)	2009	G (NA)	1464	NA	NA	N	Yes	√
Takeuchi et al.	KORA	Germany (Caucasian)	2009	G (NA)	433	NA	NA	N	Yes	√
Takeuchi et al.	Rotterdam	The Netherlands (Caucasian)	2009	G (NA)	1178	NA	NA	N	Yes	√
Takeuchi et al.	WTCCC T2D	UK (Caucasian)	2009	G (NA)	1924	NA	NA	N	Yes	√
Takeuchi et al.	CCC	UK (Caucasian)	2009	G (NA)	512	NA	NA	N	Yes	√
Takeuchi et al.	ADDITION/ELY	Europe (Caucasian)	2009	G (NA)	852	NA	NA	N	Yes	√
Dupuis et al.	MAGIC	Europe (Caucasian)	2010	G (0.70)	40655	NA	NA	N	Yes	√
Rees et al.	UKADS	South Asian (Asian)	2011	G (0.82)	857	45.3	56.9	N	Yes	√
Rees et al.	DGP	South Asian (Asian)	2011	G (0.84)	821	52.4	54.6	N	Yes	√
Al-Daghri et al.	RIYADH COHORT	Saudi Arabia (Caucasian)	2017	G (0.81)	185	52.0	59.4	N	Yes	√
Hu et al.	Shanghai	China (Asian)	2008	C (0.285)	1876	52.4	61.2	N	Yes	√
Hu et al.	Shanghai	China (Asian)	2010	C (0.294)	3410	54.9	60.33	N	Yes	√
Tam et al.	Hong Kong	China (Asian)	2010	C (0.298)	1342	40.5	44.5	N	Yes	√

NA = not available; √ represents this SNP was studied; HWE = Hardy-Weinberg equilibrium; No represents p value of HWE less than 0.05, Yes represents p value of HWE more than 0.05; Europe represents the country from Europe.

https://doi.org/10.1371/journal.pone.0181232.t001
Table 2. Characteristics of the studies on the association of three SNPs with fasting glucose.

First Author	Study name	country (Ethnicity)	Year published	n	Age (SD), year	Sex	BMI (SD), kg/m²	STREGA score	HWE	rs560887	rs573225	rs16856187
Reiling et al.	New Hoorn Study	The Netherlands (Caucasian)	2009	2225	53 (7)	46	NA	17	Yes	G (0.693)		
Prokopenko et al.	CoLaus	Switzerland (Caucasian)	2009	5000	52.46 (10.72)/53.84 (10.73)	46	26.36 (3.84)/24.94 (4.63)	14	Yes	G (0.72)		
Prokopenko et al.	Framingham	USA (Caucasian)	2009	6479	45.9 (11.5)/46.0 (11.6)	46.0	27.7 (4.2)/25.9 (5.5)	14	Yes	G (0.70)		
Prokopenko et al.	Rotterdam	The Netherlands (Caucasian)	2009	2058	63.8 (5.5)/64.2 (6.1)	43	25.9 (2.8)/26.3 (3.8)	14	Yes	G (0.69)		
Prokopenko et al.	Sardinia	Italy (Caucasian)	2009	4305	44.08 (18.10)/43.19 (17.3)	43.8	26.15 (4.11)/24.75 (5.03)	14	Yes	G (0.63)		
Takeuchi et al.	Japanese	Japan (Asian)	2009	4813	48.8 (12.3)	58.2	22.9 (3.2)	17	Yes	G (0.97)		
Takeuchi et al.	Sri Lankan	Sri Lankan (Asian)	2009	2319	51.8 (8.1)	45.9	23.9 (4.3)	17	No	G (0.91)		
Chambers et al.	Indian Asian	India (Asian)	2009	5089	53.9 (10.6)	85	26.8 (4.2)	13	Yes	G (0.85)		
Chambers et al.	European whites	Finland (Caucasian)	2009	4462	31	47.6	24.6 (4.2)	13	Yes	G (0.69)		
Bouatia-Naji et al.	Haguenau	France (Caucasian)	2010	1201	22.27 (3.95)	48.1	22.63 (4.15)	15	Yes	G (NA)	A (NA)	
Bouatia-Naji et al.	DESIR	France (Caucasian)	2010	3483	46.87 (9.99)	46.5	24.29 (3.57)	15	Yes	G (NA)	A (NA)	
Bouatia-Naji et al.	NFBC86	Finland (Caucasian)	2010	4372	16 (0)	48.9	21.27 (3.56)	15	Yes	G (NA)	A (NA)	
Bouatia-Naji et al.	Obese children	France (Caucasian)	2010	476	10.89 (3.14)	47.9	28.42 (6.13)	15	Yes	G (NA)	A (NA)	
Ramos et al.	HUFS	Africa (African-American)	2010	927	46.1 (12.6)/46.9 (13.5)	42	28.3 (6.9)/31.4 (8.7)	14	Yes	G (0.957)		
Rennström et al.	GLACIER	Sweden (Caucasian)	2010	1630	52.3 (8.8)	39.8	25.9 (4.1)	15	Yes	G (0.71)		
Dupuis et al.	MAGIC	Europe (Caucasian)	2010	76558	NA	NA	NA	10	Yes	G (0.70)		
Barker et al.	FRENCH controls	France (Caucasian)	2011	634	11.9 (2.4)/11.9 (2.2)	48.9	17.5 (2.2)/17.7 (2.5)	14	Yes	G (0.70)		
Barker et al.	EYHS	Denmark, Estonia (Caucasian)	2011	1934	11.9 (2.9)/12.0 (2.9)	46.3	18.4 (2.8)/18.5 (3.1)	14	Yes	G (0.70)		
Barker et al.	FRENCH cases	France (Caucasian)	2011	581	11.2 (2.9)/10.8 (3.4)	45.1	29.9 (6.4)/29.4 (6.6)	14	Yes	G (0.70)		
Barker et al.	Raine	Australia (Caucasian)	2011	1045	14.1 (0.2)/14.1 (0.2)	52.2	21.2 (4.2)/21.9 (4.2)	14	Yes	G (0.70)		
Barker et al.	ALSPAC	UK (Caucasian)	2011	1736	15.4 (0.3)/15.4 (0.3)	51.0	20.9 (3.3)/21.7 (3.7)	14	Yes	G (0.70)		
Rees et al.	South Asians	Pakistan (Asian)	2011	1163	56.3 (10.8)	52.9	24.3 (5.0)	15	Yes	G (0.84)		

(Continued)
First Author	Study name	country (Ethnicity)	Year published	n	Age (SD), year	Sex	BMI (SD), kg/m²	STREGA score	HWE	rs560887	rs573225	rs16856187
Torvik et al.	CAU	European-Americans (Caucasian)	2012	2349	62.5 (10.3)	46.8	27.5 (4.9)	16	Yes	G (0.72)		
Torvik et al.	CHN	China (Asian)	2012	664	61.7 (10.4)	48.6	23.8 (3.3)	16	Yes	G (0.97)		
Torvik et al.	AFA	Africa (African-American)	2012	1366	61.8 (10.2)	45.1	29.8 (5.6)	16	No	G (0.93)		
Torvik et al.	HIS	Hispania (Caucasian)	2012	1171	60.7 (10.3)	48.0	29.0 (4.8)	16	Yes	G (0.86)		
Baerenwald et al.	DESIR cohort	France (Caucasian)	2013	4220	NA	NA	NA	17	Yes	G (0.695)	A (0.670)	
Zheng et al.	Caucasians	Caucasus (Caucasians)	2015	336	13.9	38.7	NA	15	Yes	G (0.723)		
Zheng et al.	Hispanics	Hispania (Caucasian)	2015	205	12.6	45.6	NA	15	Yes	G (0.834)		
Zheng et al.	African-Americans	Africa (African-American)	2015	211	13.4	40.8	NA	15	Yes	G (0.934)		
Horikoshi et al.	1000G	Europe (Caucasian)	2015	40091	57.9	43.0	NA	10	Yes	G (0.69)		
Langlois et al.	Mexican children and adolescents	Mexico (mixed)	2016	1421	9.25 (2.07)	53.1	19.67 (4.22)	18	Yes	G (0.913)		
Tam et al.	Healthy Adults	China (Asian)	2010	583	41.4 (10.5)	45.5	22.9 (3.3)	19	Yes	A (0.303)		
Tam et al.	Healthy Adolescents	China (Asian)	2010	1061	15.4 (1.9)	45.3	19.9 (3.5)	19	Yes	A (0.299)		
Hu et al.	Shanghai	China (Asian)	2008	1800	57.35 (12.35)	41.3	23.57 (3.25)	19	Yes	A (0.303)		

NA = not available; √ represents this SNP was studied
HWE = Hardy-Weinberg equilibrium
No represents p value of HWE less than 0.05, Yes represents p value of HWE more than 0.05
Europe represents the country from Europe,mixed represents a multi-ethnic nation.

https://doi.org/10.1371/journal.pone.0181232.t002
containing 187,968 non-diabetic participants (13,752 for rs573225 and rs560887, 17,077 for rs560887 and 3,444 for rs16856187) were included. The meta-analyses were carried out according to the “Meta-analysis on Genetic Association Studies” statement (S3 Supplement).

Association of rs560887, rs573225 and rs16856187 polymorphisms with FG

Meta-analysis estimates of SNP associations with FG are presented in Table 3. Under an additive model [48], a nominally significant positive association with FG was observed: per increment of additional G allele at rs560887 in \(G6PC2 \), FG was 0.070 mmol/l (95% CI: 0.060, 0.079, \(p = 4.635 \times 10^{-50} \)) higher, with heterogeneity observed (I\(^2\) = 72%, 95% CI: 60%, 80%; H\(^2\) = 2.56).

When the study population was divided into three ethnic subgroups, pooled \(\beta \) (95% CI) and \(p \) were [0.075 (0.068, 0.081) mmol/l, \(p = 4.06 \times 10^{-118} \)], [0.054 (0.020, 0.088) mmol/l, \(p = 0.002 \)] and

| Table 3. Meta-analyses of \(G6PC2 \) polymorphisms and FG or T2D. |
|-----------------------------|-----------------------------|
| **SNP/FG-raising allele** | **Association of \(G6PC2 \) polymorphism with FG** | **Association of \(G6PC2 \) polymorphism with T2D** |
| number of studies | \(n \) | \(\beta \) (ADD) (95% CI) | \(p \) | I\(^2\) (95% CI) | \(H^2 \) | number of studies | \(n \) (case/control) | OR (95% CI) | \(p \) | I\(^2\) (95% CI) | \(H^2 \) |
| rs560887/G (overall) 32 | 184,524 | 0.070 (0.060,0.079) | 4.635e-50 | 72 (60.80) | 2.56 | 15 | 24278/67043 | 0.967 (0.932,1.003) | 0.076 | 39 (0.67) | 0.42 |
| Caucasians | 23 | 78,334 | 0.075 (0.068,0.081) | 4.06e-118 | 37 (38.73) | 0.58 | 11 | 16372/58538 | 0.964 (0.947,0.981) | 0.570e-4 | 0 (0.60) | 0.00 |
| Asians | 5 | 14,048 | 0.054 (0.020,0.088) | 0.002 | 46 (0.80) | 0.85 | 4 | 7906/8505 | 1.120 (0.940,1.334) | 0.205 | 66 (0.88) | 2.06 |
| African-Americans | 3 | 2504 | 0.018 (0.004,0.031) | 0.010 | 0 (0.90) | 0.00 | - | - | - | - | - |
| Mexico | 1 | 1,421 | 0.120(0.002,0.238) | 0.046 | - | - | - | - | - | - | - |
| rs16856187/C allele model#, (A vs C) | 3 | 3,444 | - | - | - | - | - | - | - | - | - |
| Additive model# | - | - | - | - | - | - | - | - | - | - | - |
| AC vs AA | - | - | 0.152 (0.034,0.270) | 0.011 | 58 (0.88) | 1.36 | - | - | - | - | - |
| CC vs AA | - | - | 0.317 (0.193,0.442) | 6.046e-07 | 0 (0.90) | 0.00 | - | - | - | - | - |
| Dominant model, (AC+CC) vs AA | - | - | - | - | - | - | - | - | - | - | - |
| Recessive model, CC vs (AC+AA) | - | - | - | - | - | - | - | - | - | - | - |
| rs573225/A | 5 | 13,752 | 0.075 (0.065,0.085) | 5.856e-48 | 0 (0.79) | 0.00 | - | - | - | - | - |
| * indicate standardized mean differences (SMD) of AC vs AA and CC vs AA genotypes in rs16856187, respectively.
indicate additive model for FG, allele model for T2D, respectively.
\(p \): significance test of effect size (\(\beta \)) = 0 or effect size (OR) = 1.

FG = fasting glucose; T2D = type 2 diabetic.
\(\beta \) represents linear regression coefficients for the association of \(G6PC2 \) polymorphism with FG.
OR represents odds ratio for the association of \(G6PC2 \) polymorphism with T2D.
ORs for rs560887 were calculated with logistic regression adjusted for different adjustment factors.
ORs for rs16856187 were calculated using \(\chi^2 \) tests.

https://doi.org/10.1371/journal.pone.0181232.t003
[0.018 (0.004, 0.031) mmol/l, \(p = 0.010\)] in Caucasians, Asians and African-Americans, respectively (Fig 2). Heterogeneity was observed \([I^2 = 37\%, 95\% CI: 38\%, 73\%; H^2 = 0.58], (I^2 = 46\%, 95\% CI: 0, 80%; H^2 = 0.85), (I^2 = 0, 95\% CI: 0, 90%; H^2 = 0.00)\) in Caucasians, Asians and African-Americans, respectively.

In the association of rs16856187 with FG under the additive model, an additive trend of 0.152 (0.034, 0.270) and 0.317 (0.193, 0.442) increased in SMD of FG for AC and CC genotypes was found when compared to the AA reference genotype, respectively. Heterogeneity was observed \((I^2 = 58\%, 95\% CI: 0, 88%; H^2 = 1.36)\) for AC vs AA while no heterogeneity was observed \((I^2 = 0, 95\% CI: 0, 90%; H^2 = 0.00)\) (Fig 3).

In the association of rs573225 with FG, a nominally significant positive association with elevated FG was observed: per increment of A allele at rs573225 in G6PC2, FG was 0.075 mmol/L higher (\(\beta = 0.075; 95\% CI: 0.065–0.085, p = 5.856e-48\), with no heterogeneity observed \((I^2 = 0, 95\% CI: 0, 79%; H^2 = 0.00)\) (Fig 4).

Association of rs568007 and rs16856187 polymorphisms with T2D

In the overall estimate, no association was detected between the rs568007 and risk of T2D (OR = 0.967; 95% CI: 0.932–1.003; \(p = 0.076\), with low heterogeneity \((I^2 = 39\%, 95\% CI: 0, 67%; H^2 = 0.42)\). In Asians, rs568007 also had no association with risk of T2D (OR = 1.120; 95%CI: 0.940–1.334; \(p = 0.205\)) (Fig 5). Conversely, in the Caucasian subgroup we found a significant association between the FPG-raising G-allele and decreased risk of T2D (OR = 0.964;
95% CI: 0.947–0.981; \(p = 0.570 \times 10^{-4} \), with no heterogeneity observed (\(I^2 = 0 \), 95% CI: 0, 60%; \(H^2 = 0.00 \)). When both the pooled RAF and the pooled per-allele OR were taken into account, the presence of each risk allele would be associated with a 5.4%, 5.3% and 18.3% increase in incidence of T2D according to the PAR estimate in total sample, Caucasian and Asians subgroup, respectively.

Fig 3. Forest plot for the association of rs16856187 with FG under the additive model.

https://doi.org/10.1371/journal.pone.0181232.g003

95% CI: 0.947–0.981; \(p = 0.570e^{-4} \), with no heterogeneity observed (\(I^2 = 0 \), 95% CI: 0, 60%; \(H^2 = 0.00 \)). When both the pooled RAF and the pooled per-allele OR were taken into account, the presence of each risk allele would be associated with a 5.4%, 5.3% and 18.3% increase in incidence of T2D according to the PAR estimate in total sample, Caucasian and Asians subgroup, respectively.

Fig 4. Forest plot for the association of rs573225 with FG under the additive model. Pooled \(\beta \) for the additive genetic model was shown under a random-effects model. Square sizes were proportional to weight of each study in the meta-analysis.

https://doi.org/10.1371/journal.pone.0181232.g004
Under the allele model, the association between the rs16856187-C allele and decreased risk of T2D was significant (OR = 0.892; 95% CI: 0.832–0.956; \(p = 0.001 \)) with low heterogeneity among studies (\(I^2 = 35, 95\% \text{ CI}: 0, 79\%; H^2 = 0.50 \)) (Fig 6A). Under the dominant model (AC+CC vs AA), a significant negative association was detected (OR = 0.923; 95% CI: 0.892–0.955; \(p = 5.301e-6 \)) with no heterogeneity among studies (\(I^2 = 0, 95\% \text{ CI}: 0, 90\%; H^2 = 0.00 \)) (Fig 6B). Under the recessive model (CC vs AC+AA), no significant association was detected (OR = 0.960; 95% CI: 0.827, 1.115; \(p = 0.596 \)) with high heterogeneity among studies (\(I^2 = 80, 95\% \text{ CI}: 35%, 94%; H^2 = 3.28 \)) (Fig 6C). Results under the allele and dominant model indicated that the FPG-raising C-allele might be associated with a decreased risk of T2D. When both the pooled RAF (rs16856187-A allele) and the pooled per-allele OR were taken into account, the presence of each A-allele would be associated with a 6.5%, 4.6% and 2.3% increase in incidence of T2D according to the PAR estimate under allele, dominant and recessive model, respectively.

Publication bias, sensitivity test

Visual inspection of funnel plots for the primary outcomes did not show distinct asymmetry, and based on Begg’s funnel plots (S1 Fig) and Egger’s linear regression, no publication bias was observed (all \(p > 0.1 \)). In the sensitivity test (S2 Fig), the leave-one-out influential analyses did not show any major change in the primary outcome, indicative of a good stability of results.

Discussion

To the best of our knowledge, this is the most comprehensive meta-analyses on the evaluation of the associations between G6PC2 SNPs and FG and T2D. Our meta-analyses include the
most SNPs in G6PC2 on the associations of these SNPs with FG and T2D studied to date. In these meta-analyses, we analyzed three SNPs (rs560887, rs16856187 and rs573225) in the G6PC2 gene for an effect on FG and two SNPs (rs560887 and rs16856187) for an association with T2D. We found that all three SNPs were associated with elevated FG level in participants with normal glucose regulation, and rs560887 in the Caucasians subgroup and rs16856187 under allele and dominant model were all associated with T2D. However, no associations with T2D risk were found for G at rs560887 in overall and Asians populations, which is consistent with a meta-analysis published in 2013[13]. Compared with this previous study, our study contained greater sample sizes in the Caucasians subgroup (number of case/control were 47673/97909 and 54586/111122 for previous and current studies,

Fig 6. Forest plot for the association between G6PC2 rs16856187 and T2D under the allele (A), dominant (B) and recessive (C) model.

https://doi.org/10.1371/journal.pone.0181232.g006
respectively). Association of G at rs560887 with T2D and FG in Caucasians is similar to individuals of European descent in the MAGIC study [OR (95% CI): 0.97 (0.95–0.99), β (SE): 0.075 (0.003) mmol/l, respectively] [70].

There may be some reasonable explanations for these differences between ethnic groups. First, the gene-gene interactions and different environmental factors may affect susceptibility to the genetic variant and diabetes [73, 74]. Second, the sample size for Asian populations may be too small. Third, a previous study has reported that Asian subgroups have unique risk-factor profiles for developing diabetes, which differ from other populations [75]. Thus, further investigations on Asian populations are needed to replicate the observed association with type 2 diabetes. We will explore the association of G6PC2 with T2D in the Chinese population in the near future.

G6PC2 belongs to the G6PC family of proteins, which catalyze the dephosphorylation of glucose-6-phosphate to glucose [76]. Thus, glucose-6-phosphatase activity could control glucose metabolism and insulin secretion [76]. However, carriers of the G allele at rs560887 in Caucasians subgroup and A allele at rs16856187 in allele and dominant model all displayed a lower risk of type 2 diabetes and a higher risk of elevated FPG level, which is inconsistent with these previous studies [1, 6]. The mechanism linking the SNP rs560887-A to reduced G6PC2 activity might be connected to the relative expression of the full-length active protein [23, 77]. Studies have shown that heightened beta-cell sensitivity to glucose and a lowered glucose set-point for insulin secretion are early steps toward β cell apoptosis [78]. Recent reports in individuals of European descent also demonstrated a strong association between G6PC2 variants and insulin secretion [32]. The allele that decreased FPG was also found to lower beta cell function [65]. However, carriers of G at G6PC2 rs560887 displayed a higher risk of type 2 diabetes and a higher FPG level in Asians. It is unclear whether ethnic differences in beta cell function [79, 80] contributed to the different results. Moreover, our relatively small sample size of Asians may also limit our ability to reach a reliable conclusion.

In addition, we also found that the presence of T at rs13387347, A at rs2232316, G at rs492594, A at rs483234, T at rs3755157 and C at rs478333 in G6PC2 among Asians were correlated with a higher risk of T2D [10, 65, 69]. Meanwhile, C at rs478333 in adolescents, T at rs3755157 and A at rs483234 among Asians displayed a higher FG level. However, T at rs13387347 displayed a lower FG level [10, 65, 69]. Due to a lack of data, a meta-analysis was not completed for these SNPs, yet they still provide evidence for the association of G6PC2 with FG and T2D.

This study shows that β value (linear regression coefficient) rather than SMD for the association of FG with G6PC2 SNPs (rs560887 and rs573225) when pooled, which was not seen in the previous studies. This is currently the most comprehensive meta-analyses on G6PC2.

Some limitations in our meta-analyses should be mentioned. First, our results on FG and T2D were based on slightly different adjusted estimates. Second, the studies included in the analyses may be insufficient to allow firm conclusions. Thus, potential publication bias is likely to exist, in spite of the lack of evidence for this obtained from our statistical tests. The power to detect bias is limited, particularly for moderate amounts of bias or meta-analyses based on a small number of small studies [81]. Third, heterogeneity is also a potential problem, with estimates of zero or even just low heterogeneity being a concern since heterogeneity is very likely present but undetected [82]. Finally, the sample size for rs16856187 is small, and the estimate of the effect of rs16856187 on FG may be imprecise. Therefore, further study is necessary to confirm this finding.

Supporting information

S1 Supplement. STREGA reporting recommendations, extended from STROBE statement. (DOC)
S2 Supplement. Full-text articles excluded with reasons.

S3 Supplement. Meta-analysis on Genetic Association Studies checklist.

S4 Supplement. PRISMA 2009 checklist.

S1 Fig. Funnel plot of publication bias for the association of rs560887 (A), rs16856187 (CC vs AA) (B) and (AC vs AA) (C), rs573225 (D) with FG, rs560887 (E), rs16856187 under allele (F), dominant (G) and recessive (H) with T2D, respectively.

S2 Fig. Sensitivity tests for the association of rs560887 (A), rs16856187 (CC vs AA) (B) and (AC vs AA) (C), rs573225 (D) with FG, rs560887 (E), rs16856187 under allele (F), dominant (G) and recessive (H) with T2D, respectively.

Acknowledgments

We are grateful to the researchers who provided their data for these analyses and for subjects who participated in the original studies.

Author Contributions

Conceptualization: LLL.

Data curation: YYS.

Formal analysis: YYS YQL JJW.

Funding acquisition: LLL.

Investigation: YYS XJL DDZ.

Methodology: YYS YQL JJW.

Project administration: YYS.

Resources: CJW LLL.

Software: YYS.

Supervision: LLL.

Validation: LLL CJW.

Visualization: YYS.

Writing – original draft: YYS JJF.

Writing – review & editing: LLL LY JZZ JJF.

References

1. Tirosh A, Shai I, Tekes-Manova D, Israeli E, Pereg D, Shochat T, et al. Normal fasting plasma glucose levels and type 2 diabetes in young men. The New England journal of medicine. 2005; 353(14):1454–62. https://doi.org/10.1056/NEJMoa050080 PMID: 16207847.
1. Iqbal N, Rubenstein AH. Does lowering of blood glucose improve cardiovascular morbidity and mortality? Clinical journal of the American Society of Nephrology: CJASN. 2008; 3(1):163–7. https://doi.org/10.2215/CJN.05041107 PMID: 18178783.

2. Rich SS. Mapping genes in diabetes. Genetic epidemiological perspective. Diabetes: 1990; 39 (11):1315–9. PMID: 2227105.

3. Ghosh S, Schork NJ. Genetic analysis of NIDDM. The study of quantitative traits. Diabetes: 1996; 45 (1):1–14. PMID: 8522051.

4. Wang Y, Martin CC, Oeser JK, Sarkar S, McGuinness OP, Hutton JC, et al. Deletion of the gene encoding the islet-specific glucose-6-phosphatase catalytic subunit-related protein autoantigen results in a mild metabolic phenotype. Diabetologia: 2007; 50(4):774–8. https://doi.org/10.1007/s00125-006-0564-1 PMID: 17265032.

5. Pare G, Chasman DI, Parker AN, Nathan DM, Miletich JP, Zee RY, et al. Association of genetic loci with fasting glucose and type 2 diabetes risk. Diabetes. 2010; 59(2):299–308. https://doi.org/10.2337/db09-1595 PMID: 20024710 PMID: 19937311 1.

6. Rose CS, Grarup N, Krapov NT, Poulsen P, Wegener L, Nielsen T, et al. A variant in the G6PC2-ABCB11 locus is associated with increased fasting plasma glucose, increased basal hepatic glucose production and increased insulin release after oral and intravenous glucose loads. Diabetologia. 2009; 52 (10):2122–9. https://doi.org/10.1007/s00125-009-1463-2 PMID: 19669124.

7. Takeuchi F, Katsuya T, Chakravarty S, Yamamoto K, Fujioka A, Serizawa M, et al. Common variants at the GCK, GCKR, G6PC2-ABCB11 and MTNR1B loci are associated with fasting glucose in two Asian populations. Diabetologia. 2010; 53(2):299–308. https://doi.org/10.1007/s00125-009-1595-1 PMID: 19937311 1.

8. Reiling E, van ’t Riet E, Groenewoud MJ, Welschen LM, van Hove EC, Nijpels G, et al. Combined effects of single-nucleotide polymorphisms in GCK, GCKR, G6PC2 and MTNR1B on fasting plasma glucose and type 2 diabetes risk. Diabetologia. 2009; 52(9):1866–70. https://doi.org/10.1007/s00125-009-1413-9 PMID: 19533984; PubMed Central PMCID: PMC2723681.

9. Rees SD, Hydrie MZ, O’Hare JP, Kumar S, Shera AS, Basit A, et al. Effects of 16 genetic variants on fasting glucose and type 2 diabetes in South Asians: ADCYS and GLIS3 variants may predispose to type 2 diabetes. PloS one. 2011; 6(9):e24710. Epub 2011/09/29. https://doi.org/10.1371/journal.pone.0024710 PMID: 21949744; PubMed Central PMCID: PMC3695948.

10. Benn M, Tybjaerg-Hanssen A, McCarthy MI, Jensen GB, Grande P, Nordestgaard BG. Nonfasting glucose, ischemic heart disease, and myocardial infarction: a Mendelian randomization study. Journal of the American College of Cardiology. 2012; 59(25):2356–65. Epub 2012/06/16. https://doi.org/10.1016/j.jacc.2012.02.043 PMID: 22698489; PubMed Central PMCID: PMC36695982.

11. Borowiec M, Fendler W, Dusatkova P, Antosik K, Puhova S, Cinek O, et al. HbA1c-based diabetes diagnosis among patients with glucokinase mutation (GCK-MODY) is affected by a genetic variant of glucose-6-phosphatase (G6PC2). Diabet Med. 2012; 29(11):1465–9. Epub 2012/04/11. https://doi.org/10.1111/j.1464-5491.2012.03671.x PMID: 22486180.

12. Grimsby JL, Porneala BC, Vassy JL, Yang Q, Florez JC, Dupuis J, et al. Race-ethnic differences in the association of genetic loci with HbA1c levels and mortality in U.S. adults: the third National Health and Nutrition Examination Survey (NHANES III). BMC Med Genet. 2012; 13:30. Epub 2012/05/01. https://doi.org/10.1186/1471-2350-13-30 PMID: 22540250; PubMed Central PMCID: PMC3433372.

13. Huopio H, Cederberg H, Vangipurapu J, Hakkarainen H, Paakkonen M, Kuulasmaa T, et al. Association of risk variants for type 2 diabetes and hyperglycemia with gestational diabetes. Eur J Endocrinol. 2013; 169(3):291–7. Epub 2013/06/14. https://doi.org/10.1530/EJE-13-0286 PMID: 23761423.

14. Pare G, Chasman DI, Parker AN, Nathan DM, Miletich JP, Zee RY, et al. Novel association of HK1 with glycated hemoglobin in a non-diabetic population: a genome-wide evaluation of 14,618 participants in the Women’s Genome Health Study. PLoS Genet. 2008; 4(12):e1000312. Epub 2008/12/20. https://doi.org/10.1371/journal.pgen.1000312 PMID: 19096518; PubMed Central PMCID: PMC2596965.
Meta-analyses of the association of G6PC2 with FG and T2D

19. Rasmussen-Torvik LJ, Li M, Kao WH, Couper D, Boenwinkle E, Bielinski SJ, et al. Association of a fasting glucose genetic risk score with subclinical atherosclerosis: The Atherosclerosis Risk in Communities (ARIC) study. Diabetes. 2011; 60(1):331–5. Epub 2010/11/03. https://doi.org/10.2337/db10-0839 PMID: 21036910; PubMed Central PMCID: PMC3012190.

20. Sanda S, Wei S, Rue T, Shilling H, Greenbaum C. A SNP in G6PC2 predicts insulin secretion in type 1 diabetes. Acta Diabetol. 2013; 50(3):459–62. Epub 2012/03/23. https://doi.org/10.1007/s00592-012-0389-y PMID: 22438186.

21. Bonnefond A, Bouatia-Naji N, Simon A, Saint-Martin C, Dechaume A, de Lonlay P, et al. Mutations in G6PC2 do not contribute to monogenic forms of early infancy diabetes and beta cell dysfunction. Diabetologia. 2009; 52(5):982–5. Epub 2009/02/25. https://doi.org/10.1007/s00125-009-1299-6 PMID: 19238552.

22. Dos Santos C, Bougneres P, Fradin D. A single-nucleotide polymorphism in a methylatable Foxa2 binding site of the G6PC2 promoter is associated with insulin secretion in vivo and increased promoter activity in vitro. Diabetes. 2009; 58(2):489–92. Epub 2008/11/06. https://doi.org/10.2337/db08-0587 PMID: 18984742; PubMed Central PMCID: PMC2628624.

23. Dogra RS, Vaidyanathan P, Prabakar KR, Marshall KE, Hutton JC, Pugliese A. Alternative splicing of G6PC2, the gene coding for the islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP), results in differential expression in human thymus and spleen compared with pancreas. Diabetologia. 2006; 49(5):953–7. https://doi.org/10.1007/s00125-006-0185-8 PMID: 16520917.

24. Chen P, Takeuchi F, Lee JY, Li H, Wu JY, Liang J, et al. Multiple nonglycemic genomic loci are newly associated with blood level of glycated hemoglobin in East Asians. Diabetes. 2014; 63(7):2551–62. Epub 2014/03/22. https://doi.org/10.2337/db13-1815 PMID: 24647736; PubMed Central PMCID: PMC4284808.

25. Chen WM, Erdos MR, Jackson AU, Saxena R, Sanna S, Silver KD, et al. Variations in the G6PC2/ABCB11 genomic region are associated with fasting glucose levels. The Journal of clinical investigation. 2008; 118(7):2620–8. https://doi.org/10.1172/JCI34566 PMID: 18521185; PubMed Central PMCID: PMC2398737.

26. Soranzo N, Sanna S, Wheeler E, Gieger C, Dupuis J, et al. Common variants at 10 genomic loci influence hemoglobin A(1)(C) levels via glycemic and nonglycemic pathways. Diabetes. 2010; 59(12):3229–39. https://doi.org/10.2337/db10-0502 PMID: 20858683; PubMed Central PMCID: PMC2992787.

27. Ezzidi I, Mitraouli M, Chaeib M, Kacem M, Mahjoub T, Almawi WY. Diabetic retinopathy, PAI-1 4G/5G polymorphism, and -844G/A polymorphisms, and changes in circulating PAI-1 levels in Tunisian type 2 diabetes patients. Diabetes Metab. 2009; 35(3):214–9. https://doi.org/10.1016/j.diabet.2008.12.002 PMID: 19419896.

28. Jiang G, Hu C, Tam CH, Lau ES, Wang Y, Luk AO, et al. Genetic and clinical variables identify predictors for chronic kidney disease in type 2 diabetes. Kidney Int. 2016; 89(2):411–20. Epub 2016/01/26. https://doi.org/10.1016/j.kint.2015.09.001 PMID: 26806836.

29. Florez JC, Jablonski KA, McAteer JB, Franks PW, Mason CC, Mather K, et al. Effects of genetic variants previously associated with fasting glucose and insulin in the Diabetes Prevention Program. PloS one. 2012; 7(9):e44424. https://doi.org/10.1371/journal.pone.0044424 PMID: 22984506; PubMed Central PMCID: PMC3439414.

30. Heni M, Ketterer C, Hart LM, Ranta F, van Haeften TW, Eekhoff EM, et al. The impact of genetic variation in the G6PC2 gene on insulin secretion depends on glycemia. The Journal of clinical endocrinology and metabolism. 2010; 95(12):E479–84. https://doi.org/10.1210/jc.2010-0860 PMID: 20826583.

31. Demirci FY, Dressen AS, Hamman RF, Bunker CH, Kammerer CM, Kathmbi M. Association of a common G6PC2 variant with fasting plasma glucose levels in non-diabetic individuals. Annals of nutrition & metabolism. 2010; 56(1):59–64. https://doi.org/10.1159/000268019 PMID: 20029179; PubMed Central PMCID: PMC2855271.

32. Li X, Shu YH, Xiang AH, Trigo E, Kuusisto J, Hartliala J, et al. Additive effects of genetic variation in GCK and G6PC2 on insulin secretion and fasting glucose. Diabetes. 2009; 58(12):2946–53. https://doi.org/10.2337/db09-0226 PMID: 19741163; PubMed Central PMCID: PMC2780888.

33. O'Brien RM. Moving on from GWAS: functional studies on the G6PC2 gene implicated in the regulation of fasting blood glucose. Curr Diab Rep. 2013; 13(6):768–77. Epub 2013/10/22. https://doi.org/10.1007/s11892-013-0422-8 PMID: 24142592; PubMed Central PMCID: PMC4041587.

34. Pound LD, Oeser JK, O'Brien TP, Wang Y, Faulman CJ, Dadi PK, et al. G6PC2: a negative regulator of basal glucose-stimulated insulin secretion. Diabetes. 2013; 62(5):1547–56. Epub 2013/01/01. https://doi.org/10.2337/db12-1067 PMID: 23274894; PubMed Central PMCID: PMC3666286.

35. Mahajan A, Sim X, Ng HJ, Manning A, Rivas MA, Highland HM, et al. Identification and functional characterization of G6PC2 coding variants influencing glycemic traits define an effector transcript at the
Meta-analyses of the association of G6PC2 with FG and T2D

G6PC2-ABCB11 locus. PLoS Genet. 2015; 11(1):e1004876. Peps 2015/01/28. https://doi.org/10.1371/journal.pgen.1004876 PMID: 25625282; PubMed Central PMCID: PMCPmc4307976.

36. Wessel J, Chu AY, Willems SM, Wang S, Yaghoobkar H, Brody JA, et al. Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility. Nat Commun. 2015; 6:5897. Epub 2015/01/30. https://doi.org/10.1038/ncomms6897 PMID: 25631608; PubMed Central PMCID: PMCPmc4311266.

37. Marcolongo P, Fulceri R, Gamberucci A, Czege I, Banhegyi G, Benedetti A. Multiple roles of glucose-6-phosphatases in pathophysiology: state of the art and future trends. Biochimica et biophysica acta. 2013; 1830(3):2608–18. https://doi.org/10.1016/j.bbagen.2012.12.013 PMID: 23266497.

38. Adeva M, Gonzalez-Lucan M, Seco M, Donapetty C. Enzymes involved in l-lactate metabolism in humans. Mitochondrion. 2013; 13(6):615–29. Epub 2013/09/14. https://doi.org/10.1016/j.mito.2013.08.011 PMID: 24029012.

39. Edghill EL, McCulloch L, Fulton P, Beer N, Hattersley AT, Gloyn AL. Mutations in the third gene shown to alter fasting glucose levels in the population (G6PC2) are not a common cause of monogenic forms of pancreatic B-cell dysfunction. Diabet Med. 2009; 26(1):113–4. Epub 2009/01/08. https://doi.org/10.1111/j.1464-5491.2008.02618.x PMID: 19125775.

40. van de Bunt M, Gloyn AL. From genetic association to molecular mechanism. Curr Diab Rep. 2010; 10(6):452–66. Epub 2010/09/30. https://doi.org/10.1007/s11892-010-0150-2 PMID: 20878272.

41. Service SK, Teslovich TM, Fuchsberger C, Ramensky V, Yajnik P, Koboldt DC, et al. Re-sequencing expands our understanding of the phenotypic impact of variants at GWAS loci. PLoS genetics. 2014; 10(1):e1004147. https://doi.org/10.1371/journal.pgen.1004147 PMID: 24497850; PubMed Central PMCID: PMC3907339.

42. Kelliny C, Ekelund U, Andersen LB, Brage S, Loos RJ, Wareham NJ, et al. Common genetic determinants of glucose homeostasis in healthy children: the European Youth Heart Study. Diabetes. 2009; 58(12):2939–45. Epub 2009/09/11. https://doi.org/10.2337/db09-0374 PMID: 19741166; PubMed Central PMCID: PMCPmc2780884.

43. Sabatti C, Service SK, Hartikainen AL, Pouta A, Ripatti S, Brodsky J, et al. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nature genetics. 2009; 41(1):35–46. Epub 2008/12/09. https://doi.org/10.1038/ng.271 PMID: 19660910; PubMed Central PMCID: PMC2687077.

44. Hruby A, Ngwa JS, Renstrom F, Wojczynski MK, Ganna A, Hallmans G, et al. Higher magnesium intake is associated with lower fasting glucose and insulin, with no evidence of interaction with select genetic loci, in a meta-analysis of 15 CHARGE Consortium Studies. The Journal of nutrition. 2013; 143(3):345–53. https://doi.org/10.3945/jn.112.172049 PMID: 23343670; PubMed Central PMCID: PMCPmc3710323.

45. Nettleton JA, Hivert MF, Lemaitre RN, McKeown NM, Mozaffarian D, Tanaka T, et al. Meta-analysis investigating associations between healthy diet and fasting glucose and insulin levels and modification by loci associated with glucose homeostasis in data from 15 cohorts. American Journal of Epidemiology. 2013; 177(2):103–15. https://doi.org/10.1093/aje/kws297 PMID: 23255780; PubMed Central PMCID: PMC3707424.

46. Horikoshi M, Mgi R, van de Bunt M, Surakka I, Sarin AP, Mahajan A, et al. Discovery and Fine-Mapping of Glycaemic and Obesity-Related Trait Loci Using High-Density Imputation. PLoS genetics. 2015; 11(7):e1005230. https://doi.org/10.1371/journal.pgen.1005230 PMID: 26132169; PubMed Central PMCID: PMCPmc4488845.

47. Little J, Higgins JP, Ioannidis JP, Moher D, Gagnon F, von Elm E, et al. Strengthening the Reporting of Genetic Association studies (STREGA)—an extension of the STROBE statement. European journal of clinical investigation. 2009; 39(4):247–66. PubMed Central PMCID: PMC2730482. https://doi.org/10.1111/j.1365-2362.2009.02125.x PMID: 19297801.

48. Lewis CM. Genetic association studies: design, analysis and interpretation. Briefings in bioinformatics. 2002; 3(2):146–53. PMID: 12139434.

49. Altman DG, Bland JM. How to obtain the P value from a confidence interval. BMJ (Clinical research ed). 2011; 343:d2304. Epub 2011/01/01. PMID: 22803193.

50. Altman DG, Bland JM. How to obtain the confidence interval from a P value. BMJ (Clinical research ed). 2011; 343:d2090. Epub 2011/08/10. https://doi.org/10.1136/bmj.d2090 PMID: 21824904.

51. Jackson D, White IR, Riley RD. Quantifying the impact of between-study heterogeneity in multivariate meta-analyses. Statistics in medicine. 2012; 31(29):3805–20. https://doi.org/10.1002/sim.5453 PMID: 22763950; PubMed Central PMCID: PMCPmc3546377.

52. Mittbock M, Heinzl H. A simulation study comparing properties of heterogeneity measures in meta-analyses. Statistics in Medicine. 2006; 25:4321–4333. https://doi.org/10.1002/sim.2692 PMID: 16991104.
53. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. Bmj. 2003; 327(7414):557–60. https://doi.org/10.1136/bmj.327.7414.557 PMID: 12958120; PubMed Central PMCID: PMC192859.

54. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. Bmj. 1997; 315(7109):629–34. PMID: 9310563; PubMed Central PMCID: PMC2127453.

55. Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L. Comparison of two methods to detect publication bias in meta-analysis. JAMA: the American Medical Association. 2006; 295(6):676–80. https://doi.org/10.1001/jama.295.6.676 PMID: 16467236.

56. Thakkinstian A, McEvoy M, Minelli C, Gibson P, Hancock B, Duffy D, et al. Systematic review and meta-analysis of the association between [beta]-2-adrenoceptor polymorphisms and asthma: a HuGe review. American journal of epidemiology. 2005; 162(3):201–11. https://doi.org/10.1093/aje/kw184 PMID: 15987731.

57. The International Diabetes Federation. IDF diabetes atlas: Seventh Edition (2015).

58. Horikoshi M, Mgi R, van de Bunt M, Surakka I, Sarin AP, Mahajan A, et al. Discovery and Fine-Mapping of Glycaemic and Obesity-Related Trait Loci Using High-Density Imputation. PLoS Genet. 2015; 11(7): e1005230. Epub 2015/07/02. https://doi.org/10.1371/journal.pgen.1005230 PMID: 26132169; PubMed Central PMCID: PMC4488845.

59. Barker A, Sharp SJ, Timpson NJ, Bouatia-Naji N, Warrington NM, Kanani S, et al. Association of genetic Loci with glucose levels in childhood and adolescence: a meta-analysis of over 6,000 children. Diabetes. 2011; 60(6):1805–12. https://doi.org/10.2337/db10-1575 PMID: 21515849; PubMed Central PMCID: PMC3114379.

60. Chambers JC, Zhang W, Zabaneh D, Sehmi J, Jain P, McCarthy MI, et al. Common genetic variation near melatonin receptor MTNR1B contributes to raised plasma glucose and increased risk of type 2 diabetes among Indian Asians and European Caucasians. Diabetes. 2009; 58(11):2703–8. https://doi.org/10.2337/db08-1805 PMID: 19651812; PubMed Central PMCID: PMC2768158.

61. Bouatia-Naji N, Bonnefon A, Baerenwald DA, Marchand M, Bugliani M, Marchetti P, et al. Genetic and functional assessment of the role of the rs13431652-A and rs573225-A alleles in the G6PC2 promoter that are strongly associated with elevated fasting glucose levels. Diabetes. 2010; 59(10):2662–71. https://doi.org/10.2337/db10-0389 PMID: 20622168; PubMed Central PMCID: PMC3279535.

62. Prokopenko I, Langenberg C, Florez JC, Saxena R, Soranzo N, Thorleifsson G, et al. Variants in MTNR1B influence fasting glucose levels. Nature genetics. 2009; 41(1):77–81. https://doi.org/10.1038/ng.290 PMID: 19060907; PubMed Central PMCID: PMC2682769.

63. Baerenwald DA, Bonnefon A, Bouatia-Naji N, Flemming BP, Umunakwe OC, Oeser JK, et al. Multiple functional polymorphisms in the G6PC2 gene contribute to the association with higher fasting plasma glucose levels. Diabetologia. 2013; 56(6):1306–16. https://doi.org/10.1007/s00125-013-2875-3 PMID: 23508304; PubMed Central PMCID: PMC4106008.

64. Ramos E, Chen G, Shriner D, Doumatay A, Gerry NP, Herbert A, et al. Replication of genome-wide association studies (GWAS) loci for fasting plasma glucose in African-Americans. Diabetologia. 2011; 54(4):783–8. https://doi.org/10.1007/s00125-010-2002-7 PMID: 21188353; PubMed Central PMCID: PMC3052446.

65. Hu C, Zhang R, Wang C, Ma X, Wang C, Fang Q, et al. A genetic variant of G6PC2 is associated with type 2 diabetes and fasting plasma glucose level in Chinese people. Diabetologia. 2009; 52(3):451–6. Epub 2008/12/17. https://doi.org/10.1007/s00125-008-1241-3 PMID: 19082990.

66. Bouatia-Naji N, Rocheleau G, Van Lommel L, Lemaire K, Schuit F, Cavalcanti-Proença C, et al. A polymorphism within the G6PC2 gene is associated with fasting plasma glucose levels. Science. 2008; 320(5879):1085–8. https://doi.org/10.1126/science.1156849 PMID: 18451265.

67. Renstrom F, Shungin D, Johansson I, Investigators M, Florez JC, Hallmans G, et al. Genetic predisposition to long-term nondiabetic deteriorations in glucose homeostasis: Ten-year follow-up of the GLACIER study. Diabetes. 2011; 60(1):345–54. https://doi.org/10.2337/db10-0933 PMID: 20870969; PubMed Central PMCID: PMC3012192.

68. Hu C, Zhang R, Wang C, Yu W, Lu J, Ma X, et al. Effects of GCK, GCKR, G6PC2 and MTNR1B variants on glucose metabolism and insulin secretion. PloS one. 2010; 5(7):e11761. https://doi.org/10.1371/journal.pone.0011761 PMID: 20668700; PubMed Central PMCID: PMC2909258.

69. Tam CHT, Ho J, Wang Y, Lee HM, Lam VKL, Germer S, et al. Common polymorphisms in MTNR1B, G6PC2 and GCK are associated with increased fasting plasma glucose and impaired beta-cell function in Chinese subjects. PloS one. 2010; 5(7).

70. Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nature genetics. 2010; 42(2):105–16. Epub 2010/01/19. https://doi.org/10.1038/ng.520 PMID: 20081858; PubMed Central PMCID: PMC3018764.
71. Langlois C, Abadi A, Peralta-Romero J, Alyass F, Gomez-Zamudio J, et al. Evaluating the transferability of 15 European-derived fasting plasma glucose SNPs in Mexican children and adolescents. Sci Rep. 2016; 6:36202. Epub 2016/10/27. https://doi.org/10.1038/srep36202 PMID: 27782183; PubMed Central PMCID: PMCPmc5080582.

72. Al-Daghri NM, Pontremoli C, Cagliani R, Forni D, Alokail MS, Al-Attas OS, et al. Susceptibility to type 2 diabetes may be modulated by haplotypes in G6PC2, a target of positive selection. BMC Evol Biol. 2017; 17(1):43. Epub 2017/02/09. https://doi.org/10.1186/s12862-017-0897-z PMID: 28173746; PubMed Central PMCID: PMCPmc5297017.

73. Ma J, Thabane L, Beyene J, Rains P. Power Analysis for Population-Based Longitudinal Studies Investigating Gene-Environment Interactions in Chronic Diseases: A Simulation Study. PLoS One. 2016; 11(2):e0149940. Epub 2016/02/24. https://doi.org/10.1371/journal.pone.0149940 PMID: 26901422; PubMed Central PMCID: PMCPmc4762766.

74. Yang Q, Khoury MJ, Sun F, Flanders WD. Case-only design to measure gene-gene interaction. Epidemiology. 1999; 10(2):167–70. Epub 1999/03/09. PMID: 10069253.

75. Weber MB, Oza-Frank R, Staiman LR, Ali MK, Narayan KM. Type 2 diabetes in Asians: prevalence, risk factors, and effectiveness of behavioral intervention at individual and population levels. Annual review of nutrition. 2012; 32:417–39. Epub 2012/04/25. https://doi.org/10.1146/annurev-nutr-071811-150630 PMID: 22524185.

76. Petrolonis AJ, Yang Q, Tummino PJ, Fish SM, Prack AE, Jain S, et al. Enzymatic characterization of the pancreatic islet-specific glucose-6-phosphatase-related protein (IGRP). The Journal of biological chemistry. 2004; 279(14):13976–83. Epub 2004/01/15. https://doi.org/10.1074/jbc.M307756200 PMID: 14722102.

77. Arden SD, Zahn T, Steegers S, Webb S, Bergman B, O'Brien RM, et al. Molecular cloning of a pancreatic islet-specific glucose-6-phosphatase catalytic subunit-related protein. Diabetes. 1999; 48(3):531–42. PMID: 10078553.

78. Hosokawa H, Corkey BE, Leahy JL. Beta-cell hypersensitivity to glucose following 24-h exposure of rat islets to fatty acids. Diabetologia. 1997; 40(4):392–7. Epub 1997/04/01. PMID: 9112015.

79. Torrens JI, Skurnick J, Davidson AL, Korenman SG, Santoro N, Soto-Greene M, et al. Ethnic differences in insulin sensitivity and beta-cell function in premenopausal or early perimenopausal women without diabetes: the Study of Women's Health Across the Nation (SWAN). Diabetes care. 2004; 27(2):354–61. Epub 2004/01/30. PMID: 14747213.

80. Jensen CC, Cnop M, Hull RL, Fujimoto WY, Kahn SE. Beta-cell function is a major contributor to oral glucose tolerance in high-risk relatives of four ethnic groups in the U.S. Diabetes. 2002; 51(7):2170–8. Epub 2002/06/28. PMID: 12086947.

81. Sterne JA, Gavaghan D, Egger M. Publication and related bias in meta-analysis: power of statistical tests and prevalence in the literature. Journal of clinical epidemiology. 2000; 53(11):1119–29. Epub 2000/12/07. PMID: 11106885.

82. Kontopantelis E, Springate DA, Reeves D. A re-analysis of the Cochrane Library data: the dangers of unobserved heterogeneity in meta-analyses. PLoS One. 2013; 8(7):e69930. https://doi.org/10.1371/journal.pone.0069930 PMID: 23922860; PubMed Central PMCID: PMC3724681.