Search for Violation of CPT and Lorentz Invariance in B^0_s Meson Oscillations

V. M. Abazov,31 B. Abbott,67 B. S. Acharya,25 M. Adamczyk,46 T. Adams,44 J. P. Agnew,41 G. D. Alexeev,31 G. Alkhazov,35 A. Alton,56,a A. Askew,44 S. Atkins,54 K. Augsten,7 C. Avila,5 F. Badaud,10 L. Bagby,45 B. Baldin,45 D. V. Bandurin,73 S. Banerjee,25 E. Barberis,55 P. D. Bartlett,15 J. F. Bartlett,45 U. Bassler,15 V. Batta,46 A. Bean,33 M. Begalli,2 L. Bellantoni,45 S. B. Beri,23 G. Bernardi,14 R. Bernhard,19 I. Bertram,39 M. Besançon,53 R. Beuselinck,40 P. C. Bhat,45 S. Bhatia,58 V. Bhatnagar,53 G. Blazey,47 S. Blessing,44 K. Bloom,59 A. Boehmlein,45 D. Boline,64 E. E. Boos,33 G. Borissov,39 M. Borysova,38,A. Brandt,70 O. Brandt,20 R. Brock,57 A. Bross,45 D. Brown,14 X. B. Bu,45 M. Buehler,45 V. Buescher,21 V. Bunichek,33 S. Burdin,39,b C. P. Buszello,37 E. Camacho-Pérez,28 B. C. K. Casey,45 H. Castilla-Valdez,28 G. Borissov,39 M. Borissov,38,A. Brandt,70 O. Brandt,20 R. Brock,57 A. Bross,45 D. Brown,14 X. B. Bu,45 M. Buehler,45 V. Buescher,21 V. Bunichek,33 S. Burdin,39,b C. P. Buszello,37 E. Camacho-Pérez,28 B. C. K. Casey,45 H. Castilla-Valdez,28 G. Borissov,39 M. Borissov,38,A. Brandt,70 O. Brandt,20 R. Brock,57 A. Bross,45 D. Brown,14 X. B. Bu,45 M. Buehler,45 V. Buescher,21 V. Bunichek,33 S. Burdin,39,b C. P. Buszello,37 E. Camacho-Pérez,28 B. C. K. Casey,45 H. Castilla-Valdez,28 G. Borissov,39 M. Borissov,38,A. Brandt,70 O. Brandt,20 R. Brock,57 A. Bross,45 D. Brown,14 X. B. Bu,45 M. Buehler,45 V. Buescher,21 V. Bunichek,33 S. Burdin,39,b C. P. Buszello,37 E. Camacho-Pérez,28 B. C. K. Casey,45 H. Castilla-Valdez,28...
LAFFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
Universidade Federal do ABC, Santo André, Brazil
University of Science and Technology of China, Hefei, People’s Republic of China
Universidad de los Andes, Bogotá, Colombia
Charles University, Faculty of Mathematics and Physics, Center for Particle Physics, Prague, Czech Republic
Czech Technical University in Prague, Prague, Czech Republic
Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
Universidad San Francisco de Quito, Quito, Ecuador
LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France
CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
LPNHE, Universités Paris VI and VII, CNRS/IN2P3, Paris, France
CEA, Irfu, SPP, Saclay, France
IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France
IPNL, Université Lyon I, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France
III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany
Physikalisches Institut, Universität Freiburg, Freiburg, Germany
II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
Institut für Physik, Universität Mainz, Mainz, Germany
Ludwig-Maximilians-Universität München, München, Germany
Panjab University, Chandigarh, India
Delhi University, Delhi, India
Tata Institute of Fundamental Research, Mumbai, India
University College Dublin, Dublin, Ireland
Korea Detector Laboratory, Korea University, Seoul, Korea
CINVESTAV, Mexico City, Mexico
Nikhef, Science Park, Amsterdam, The Netherlands
Radboud University Nijmegen, Nijmegen, The Netherlands
Joint Institute for Nuclear Research, Dubna, Russia
Institute for Theoretical and Experimental Physics, Moscow, Russia
Moscow State University, Moscow, Russia
Institute for High Energy Physics, Protvino, Russia
Petersburg Nuclear Physics Institute, St. Petersburg, Russia
Institució Catalana de Recerca i Estudis Avançats (ICREA) and Institut de Física d’Altes Energies (IFAE), Barcelona, Spain
Uppsala University, Uppsala, Sweden
Taras Shevchenko National University of Kyiv, Kiev, Ukraine
Imperial College London, London SW7 2AZ, United Kingdom
The University of Manchester, Manchester M13 9PL, United Kingdom
University of Arizona, Tucson, Arizona 85721, USA
University of California Riverside, Riverside, California 92521, USA
Florida State University, Tallahassee, Florida 32306, USA
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
University of Illinois at Chicago, Chicago, Illinois 60607, USA
Northern Illinois University, DeKalb, Illinois 60115, USA
Northwestern University, Evanston, Illinois 60208, USA
Indiana University, Bloomington, Indiana 47405, USA
Purdue University Calumet, Hammond, Indiana 46323, USA
University of Notre Dame, Notre Dame, Indiana 46556, USA
Iowa State University, Ames, Iowa 50011, USA
University of Kansas, Lawrence, Kansas 66045, USA
Louisiana Tech University, Ruston, Louisiana 71272, USA
Northeastern University, Boston, Massachusetts 02115, USA
University of Michigan, Ann Arbor, Michigan 48109, USA
Michigan State University, East Lansing, Michigan 48824, USA
University of Mississippi, University, Mississippi 38677, USA
University of Nebraska, Lincoln, Nebraska 68588, USA
Rutgers University, Piscataway, New Jersey 08855, USA
mixing. The propagating B meson is independent of its direction of motion or boost velocity. The standard model extension (SME) [1] provides a framework for potential Lorentz- and CPT-invariance violation (CPTV), suggesting that such violations can occur at the Planck scale but still result in potentially observable effects at currently available collider energies. The process of neutral meson oscillations is described by a 2 × 2 effective Hamiltonian with mass eigenvalues of the B system, the fractional difference between the eigenvalues is of the order of 10⁻¹². Because of this, B₀ − B̄₀ oscillations form an interferometeric system that is very sensitive to small couplings between the valence quarks and a possible Lorentz-invariance violating field, making it an ideal place to search for new physics [2].

The measurement of the like-sign dimuon asymmetry by the D0 Collaboration [3] shows evidence of anomalously large CP-violating effects. This is currently one of the few significant deviations from the standard model of particle physics. One of the interpretations of this effect could be a CPT-invariant CP violation (CPV) in neutral B-meson mixing. The propagating “light” (L) and “heavy” (H) mass eigenvalues of the B₀ − B̄₀ system can be written as [4]

\[|B_{sL}| \propto p \sqrt{1 - \xi_s} |B_0| + q \sqrt{1 + \xi_s} |B_0^\prime|, \]

\[|B_{sH}| \propto p \sqrt{1 + \xi_s} |B_0| - q \sqrt{1 - \xi_s} |B_0^\prime|. \]

If the complex parameter \(\xi_s \) is zero, CPT is conserved and CPV is due to \(|q/p| \neq 1 \), so that the oscillation probability \(P(B_0^0 \to \bar{B}_s) \) is different from \(P(B_0^0 \to B_s^0) \). An alternative interpretation is that the asymmetry could arise from CPT-violating asymmetry in the decay \(B^0 \to \mu^+\mu^- \) as a function of celestial direction and sidereal phase. We find no evidence for CPT-violating effects and place limits on the direction and magnitude of flavor-dependent CPT- and Lorentz-invariance violating coupling coefficients. We find 95% confidence intervals of \(\Delta \alpha_L < 1.2 \times 10^{-12} \) GeV and \((-0.8 < \Delta \alpha_L - 0.396 \Delta \alpha_T < 3.9) \times 10^{-13} \) GeV.

DOI: 10.1103/PhysRevLett.115.161601 PACS numbers: 11.30.Cp, 11.30.Er, 13.20.He, 14.40.Nd

We present the first search for CPT-violating effects in the mixing of \(B_0^0 \) mesons using the full Run II data set with an integrated luminosity of 10.4 fb⁻¹ of proton-antiproton collisions collected using the D0 detector at the Fermilab Tevatron Collider. We measure the CPT-violating asymmetry in the decay \(B_0^0 \to \mu^+\mu^- \) as a function of celestial direction and sidereal phase. We find no evidence for CPT-violating effects and place limits on the direction and magnitude of flavor-dependent CPT- and Lorentz-invariance violating coupling coefficients. We find 95% confidence intervals of \(\Delta \alpha_L < 1.2 \times 10^{-12} \) GeV and \((-0.8 < \Delta \alpha_L - 0.396 \Delta \alpha_T < 3.9) \times 10^{-13} \) GeV.

The measurement of the like-sign dimuon asymmetry by the D0 Collaboration [3] shows evidence of anomalously large CP-violating effects. This is currently one of the few significant deviations from the standard model of particle physics. One of the interpretations of this effect could be a CPT-invariant CP violation (CPV) in neutral B-meson mixing. The propagating “light” (L) and “heavy” (H) mass eigenvalues of the B₀ − B̄₀ system can be written as [4]

\[|B_{sL}| \propto p \sqrt{1 - \xi_s} |B_0| + q \sqrt{1 + \xi_s} |B_0^\prime|, \]

\[|B_{sH}| \propto p \sqrt{1 + \xi_s} |B_0| - q \sqrt{1 - \xi_s} |B_0^\prime|. \]

If the complex parameter \(\xi_s \) is zero, CPT is conserved and CPV is due to \(|q/p| \neq 1 \), so that the oscillation probability \(P(B_0^0 \to \bar{B}_s) \) is different from \(P(B_0^0 \to B_s^0) \). An alternative interpretation is that the asymmetry could arise from CPT-violating effects in the mixing of B mesons using the full Run II data set with an integrated luminosity of 10.4 fb⁻¹ of proton-antiproton collisions collected using the D0 detector at the Fermilab Tevatron Collider. We measure the CPT-violating asymmetry in the decay B₀ → μ⁺μ⁻ as a function of celestial direction and sidereal phase. We find no evidence for CPT-violating effects and place limits on the direction and magnitude of flavor-dependent CPT- and Lorentz-invariance violating coupling coefficients. We find 95% confidence intervals of \(\Delta \alpha_L < 1.2 \times 10^{-12} \) GeV and \((-0.8 < \Delta \alpha_L - 0.396 \Delta \alpha_T < 3.9) \times 10^{-13} \) GeV.

\[\xi_s = \frac{(M_{11} - M_{22}) - \frac{1}{2} (\Gamma_{11} - \Gamma_{22})}{-\Delta m_s + i\Delta \Gamma_s/2} \approx -\beta_a \Delta m_s \frac{\Delta \Gamma_s}{\Delta \Gamma_s/2}. \]

where \(\Delta a \) is a four vector direction and magnitude in space-time characterizing Lorentz-invariance violation which in the SME is given by \(\Delta a = r_1 a_1^i - r_2 a_2^i \), where \(a_\mu^i \) are Lorentz-violating coupling constants for the two valence quarks in the BN meson, and where the factors \(r_\mu \) allow for quark-binding or other normalization effects. The four velocity of the BN meson is given by \(\beta = \gamma(1, \beta) \), \(\beta^\mu \Delta a_\mu \) is the difference between the diagonal elements of the effective Hamiltonian, and the mass and decay rate differences of the mass eigenstates are \(\Delta m_s = m_H - m_L \) and \(\Delta \Gamma_s = \Gamma_L - \Gamma_H \) [6]. The small fractional values of
\(\Delta m_s\) and \(\Delta \Gamma_s\) make the \(B^0\) system sensitive to CPTV effects. In the underlying theory, spontaneous Lorentz symmetry breaking generates constant background expectation values for the quark fields that are Lorentz vectors represented by \(\Delta a_\mu\) or tensors instead of scalars \([4]\).

Any observed CPT violation should vary in the frame of the detector denoted with indices \((t, x, y, z)\). The period will be one sidereal day (=0.99727 solar days) as the direction of the proton beam follows Earth’s rotation with respect to the distant stars \([4]\). In the SME the variation would depend on CPT- and Lorentz-invariance violation coupling coefficients \(\Delta a_\mu\) with indices \((T, X, Y, Z)\). We choose \((T, X, Y, Z)\) as coordinates in the standard Sun-centered frame, with the rotation axis of Earth taken as the \(Z\) axis and \(X\) \((Y)\) at right ascension 0° \((90°)\) \([7]\) (see the Supplemental Material \([8]\) for a diagram of the coordinate system). If CPTV in \(B^0 - \bar{B}^0\) oscillations is allowed, then \(A_{\text{CPT}} = (\Delta m_s/\Gamma_s)\text{Im}(\tilde{\eta})\) if \(\tilde{\eta}\) is small. By translating from the Sun-centered frame to the detector frame we have \([4]\)

\[
A_{\text{CPT}} = \frac{-\Delta \Gamma_s^B}{\Gamma_s \Delta m_s} \left[\Delta a_T - C_s S_x \beta_s^{B0} \Delta a_Z \right.
\]
\[
+ \sqrt{C_s^2 + S_s^2} \sin(\Omega \hat{t} + \delta + \kappa) \beta_s^{\bar{B}0} \Delta a_Z \right],
\]

where \(C_s = \cos(x), S_s = \sin(x)\), \(\hat{t}\) is the elapsed time with respect to the vernal equinox of the year 2000, \(\Omega = 2\pi \text{ rad} / \text{sidereal day}\), \(\beta_s^{B0} = \beta^{B0} \cos \theta\) is the velocity \(\tilde{\beta}\) of the \(B^0\) meson in the detector frame projected onto the \(z\) axis (proton beam direction) of the D0 detector, \(\theta\) is the polar angle between the \(B^0\) momentum and the proton beam direction, \(\gamma^{B0} = 1/\sqrt{1 - (\beta^{B0})^2}\), \(z\) is the colatitude of the D0 detector, \(\alpha\) is the orientation of the \(z\) axis of the detector in Earth’s coordinate system, where the proton beam has a bearing of 219.53°. \(\Delta a_\perp = \sqrt{\Delta a_X^2 + \Delta a_Y^2}\) is the transverse and \(\Delta a_T\) the longitudinal components of \(\Delta a_\mu, \delta = \tan^{-1}(\Delta a_Y/\Delta a_X), \kappa = \tan^{-1}(-S_a/C_a C_x)\), and \(\Delta a_T\) is the time component of the \(\Delta a_\mu\) four-vector. A variation with sidereal time could arise from the rotation of \(\beta_s^{B0}\) with respect to \(\tilde{a}\). In this Letter we place limits on \(\Delta a_\perp\) and \(\Delta a_T - C_s S_x \beta_s^{\bar{B}0} \Delta a_Z\).

Past experiments and analyses have placed constraints on the flavor-dependent \(\Delta a_\mu\) in other neutral meson oscillating systems: \(K^0 - \bar{K}^0\) \([9]\), \(D^0 - \bar{D}^0\) \([10]\), and \(B^0 - \bar{B}^0\) \([11]\), as well as indirect limits for \(B^0_s - \bar{B}^0_s\) \([5]\).

This Letter presents a search for CPT and Lorentz violation using the decay \(B^0 \rightarrow \mu^+ \bar{D}^-\), where \(D^- \rightarrow \phi \pi^-\) and \(\phi \rightarrow K^+ K^-\) (charge conjugate states are assumed in this article). CPT-violating asymmetries are usually between “wrong-sign” decays \(B^0 \rightarrow B^0 \rightarrow \mu^+ \bar{D}^-\), but we want to study the asymmetry between the “right-sign” decays \(B^0 \rightarrow B^0 \rightarrow \mu^- D^+\) and their charge conjugate.

We extract the CPT-violating parameter using the asymmetry

\[
A = \frac{N_+ - N_-}{N_+ + N_-},
\]

where \(N_+ [N_-]\) is the number of reconstructed \(B^0 \rightarrow \mu^+ \bar{D}^-\) events where \(\text{sgn}(\cos \theta) > 0 [\text{sgn}(\cos \theta) < 0]\), which results from the \(\beta_s^{B0} = \beta^{B0} \cos \theta\) terms in Eq. (4) and \(Q\) is the charge of the muon. The direction of the \(\mu^+ D^-\) system differs from that of the parent \(B^0_s\) due to the missing neutrino. However, the migration between \(N_+\) and \(N_-\) terms near \(\theta = \pi/2\) causes a negligible correction to the measured asymmetry. The initial state at production is not flavor tagged in our study, but after experimental selection requirements, the \(B^0_s\) system is fully mixed, so that the probability of observing a \(B^0_s\) or \(\bar{B}^0_s\) is essentially equal regardless of the flavor at production. We assume no CP violation in the mixing \([12]\), so only about half of the observed \(B^0_s\)’s have the same flavor as they had at birth. We assume no CPT violation, so those observed \(B^0_s\) which have changed their flavor do not contribute to CPTV, leading to a 50% dilution in the measured asymmetry. In the presence of CPT violation, the asymmetry is expected to have a period of one sidereal day, so a search is made for variations of the form

\[
A(\hat{t}) = A_0 - A_1 \sin(\Omega \hat{t} + \phi),
\]

where \(A_0, A_1, \text{ and } \phi = \delta + \kappa\) are constants and are extracted by measuring the asymmetry \(A\) in Eq. (5) in bins of the sidereal phase \(\Omega \hat{t}\), and a fitting to the value in each bin with Eq. (6). Measurements of \(A_0\) and \(A_1\) are then interpreted as limits on \(\Delta a_\mu\) from \(B^0_s - \bar{B}^0_s\) oscillations. A nonzero value of \(\Delta a_\perp\) would lead to a CPTV asymmetry that does not vary with sidereal time.

The data selection and the signal extraction are identical to those used in Ref. \([13]\). The main details of the data selection using the D0 detector \([14]\) are described here.

The data are collected with a suite of single and dimuon triggers. The selection and the reconstruction of \(\mu^+ D^-\) decays require tracks with at least two hits in both the central fiber tracker and the silicon microstrip tracker. The muon track segment outside the calorimeter has to be matched to a particle found in the central tracking system which has momentum \(p > 3\) GeV and transverse momentum \(2 < p_T < 25\) GeV. The \(D^- \rightarrow 2\pi\) decay is reconstructed by assuming the two \(\phi\) decay particles are kaons, requiring \(p_T > 0.7\) GeV, opposite charges, and \(M(K^+ K^-) < 1.07\) GeV. The charge of the third particle, assumed to be the charged pion, must have charge opposite to that of the muon and 0.5 < \(p_T < 25\) GeV. The three tracks are combined to create a common \(D^-\) decay vertex using the algorithm described in Ref. \([15]\). The reconstructed \(\mu^+ D^-\) candidate is required to pass
several kinematic selection criteria and satisfy likelihood ratio criteria that are identical to those described in Ref. [13].

The effective \(\overline{K}^+ K^- \pi^\pm \) mass distribution is fitted using bins of 6 MeV over a range of \(1.7 < M(\overline{K}^+ K^- \pi^\pm) < 2.3 \) GeV, and the number of signal and background events is extracted by a \(\chi^2 \) fit of an empirical model to the data. The \(D_s^\pm \) meson mass distribution is well modeled by two Gaussian functions constrained to have the same mean, but with different widths and normalizations. There is a negligible peaking background under the \(D_s^\pm \) peak. A second peak in the \(M(\overline{K}^+ K^- \pi^0) \) distribution corresponding to the Cabibbo-suppressed \(D_s^\pm \rightarrow \phi \pi^\pm \) decay is also modeled by two Gaussian functions with widths set to those of the \(D_s^\pm \) meson model scaled by the ratio of the fitted \(D_s^\pm \) and \(D_s^\mp \) masses. The combinatoric background is modeled by a fifth-order polynomial function. Partially reconstructed decays such as \(D_s^\pm \rightarrow \phi \pi^\pm \pi^0 \), where the \(\pi^0 \) is not reconstructed, are modeled with a threshold function that extends to the \(D_s^\pm \) mass after the \(\phi \) mass has been subtracted, given by \(T(m) = \tan^{-1}[p_1 m^2 - p_2] + p_3 \), where \(p_i \) are the fit parameters.

The raw asymmetry [Eq. (5)] is extracted by fitting the \(M(\overline{K}^+ K^- \pi^0) \) distribution of the \(\mu^\pm D_s^\pm \) candidates using a \(\chi^2 \) minimization. The fit is performed simultaneously, using the same models, on the sum and the difference of the \(M(\overline{K}^+ K^- \pi^\pm) \) distribution of \(N_+ \) candidates and \(N_- \) candidates. The functions used to model the two distributions are

\[
W_{\text{sum}} = W_{D_s} + W_D + W_{\text{cb}} + W_{\text{pt}},
\]

\[
W_{\text{diff}} = AW_{D_s} + A_D W_D + A_{\text{cb}} W_{\text{cb}} + A_p W_{\text{pt}},
\]

where \(W_{D_s}, W_D, W_{\text{cb}}, \) and \(W_{\text{pt}} \) describe the distribution of the \(D_s^\pm \) and \(D_s^- \) mass peaks, the combinatoric background, and the partially reconstructed events, respectively, and the \(A \) factors are the corresponding asymmetries which are extracted from the fit. The number of signal events in the sample is \(N(D_s^\pm) = 205865 \pm 626 \).

Following previous conventions [16] we shift the origin of the time coordinate to correspond to the vernal equinox of the year 2000. The value of \(A_1 \) is extracted by dividing the data into \(n \) data sets, each containing a fraction \(f_i \) of the data based on the sidereal phase \(\Omega_i + \phi \). In the fit, the parameters that describe the mass distributions \(W_{\text{sum}} \) and \(W_{\text{diff}} \) are the same for all sidereal bins, except for \(A \) and \(A_D \), which may vary with the sidereal phase.

The number of sidereal bins used to extract the asymmetry is determined by finding the smallest uncertainty on \(A_1 \). By using a MC input of asymmetries that ranges from 0% to 2%, we find that the optimum number of bins is 11. One of the 11 distributions produced in the fit to the data is shown in Fig. 1.

Systematic uncertainties of the fitting method on the extracted values of \(A \) in sidereal bin \(i \), \(A(i) \) are evaluated by varying the fitting procedure and are assigned to be half of the maximal variation in the asymmetry. The mass range of the fit is shifted from 1.700 \(< M(\overline{K}^+ K^- \pi^\pm) < 2.300 \) GeV to 1.724 \(< M(\overline{K}^+ K^- \pi^\pm) < 2.270 \) GeV in steps of 6 MeV resulting in an absolute uncertainty on the measured asymmetries of 0.035%. The width of the mass bins is changed between 1 and 12 MeV, resulting in an absolute uncertainty of 0.071%. The functions modeling the signal are modified to fit the \(D_s^\pm \) and \(D_s^- \) mass peaks by single Gaussian functions, the background is fitted by varying between a fourth- and seventh-order polynomial function, and the parameter \(p_1 \) in the threshold function is allowed to vary. As a test, the fraction of data in each sidereal bin, \(f_i \), is fixed to exactly 1/11. These variations of the signal modeling yield an absolute uncertainty on the asymmetry of 0.085%. The uncertainty for each of these sources is added in quadrature to give the total systematic uncertainty of the fitting procedure of 0.12%. This uncertainty on the measured values of \(A(i) \) is found to be independent of the sidereal bin, and it is added in quadrature to the statistical uncertainty to extract the CPT-violating parameters by fitting to Eq. (6) (see Table I). The measured values of the asymmetries, \(A(i) \), are plotted in Fig. 2 and are tabulated in the Supplemental Material [8].
The red boxes show the fit and its uncertainties to the data points in quadrature of the statistical and systematic uncertainties.

FIG. 2 (color online). The measured asymmetries, $A(i)$, versus the sidereal phase. The uncertainty on each value of $A(i)$ is the sum in quadrature of the statistical and systematic uncertainties. The upper limit (UL) which is extracted by integrating the normalized probability distribution at the value of Δa_\perp gives the most conservative limit.

The limits on Δa_μ are extracted using

$$A_1 \sin(\Omega \hat{t} + \phi) = \frac{F_{\text{non-osc}}}{\Gamma_s \Delta m_s} \frac{\Delta \Gamma_s}{\Delta a_T} \left[\langle p_z \rangle - C_s S_x \langle p_{z,0} \rangle \Delta a_Z \right],$$

where the angle brackets denote average values. The $F_{\text{non-osc}}$ factor is the fraction of $D^\pm \rightarrow \phi \pi^\pm$ decays for which an observed B^0_s has the same flavor as at birth [13]. Combining the fraction of B^0_s decays in the sample and the 50% dilution factor described earlier gives $F_{\text{non-osc}} = 0.465$. Limits are extracted from the probability distribution which is given by $\exp(-\chi^2/2)$, where χ^2 is the χ square as a function of A_1, A_0, δ, and Δa_\perp. Since we are setting limits on $\langle p \rangle$, the probability distribution will be characterized by two quantities, the most probable value of A_1^\perp and the 95% upper limit (UL) which is extracted by integrating the normalized probability distribution at the value of δ that gives the most conservative limit.

To extract limits, we measure the average values of $\langle p_{z,0} \rangle = \langle E_{M1} \rangle / m_{B_s}, \langle p_{z,0} \rangle = \langle p_z \rangle / \langle E_{M1} \rangle$, and $\langle \Gamma_{D^0} \rho_{D^0} \rangle = \langle p_z \rangle / m_{B_s}$, where $\langle p_z \rangle$ is the average momentum in the z direction and $\langle E_{M1} \rangle$ is the average energy of the B^0_s meson. The average momentum of the μD^\pm candidates is measured using sideband subtraction. The signal region is $1.92 < M(K^+K^-\pi^-) < 2.00$ GeV and the sideband regions are $1.75 < M(K^+K^-\pi^-) < 1.79$ GeV and $2.13 < M(K^+K^-\pi^-) < 2.17$ GeV, and the average is $\langle p \rangle = 21.41 \pm 0.03$ GeV. This momentum needs to be corrected for the missing neutrino in the decay using a k-factor correction. These k factors are taken from Ref. [18] and applied to give a momentum of $\langle p \rangle = 25.3$ GeV. The systematic uncertainty on $\langle p \rangle$ of 1.6 GeV is obtained from the difference between the momentum extracted using sideband subtraction and using a weighted average of the number of signal events in momentum bins, which is then added in quadrature to the uncertainty due to the k factors. The effect of possible reconstruction variations in the x and y directions is found to be less than 1%. If we vary the number of sidereal bins the most probable value of A_1^\perp varies by 8%. These variations are added in quadrature as the relative systematic uncertainty on the value of A_1^\perp.

The final results are obtained by scaling the probability distributions obtained for A_0, A_1 with the multiplicative factors given in Table I. The systematic uncertainties on the multiplicative factors, the number of sidereal bins, and the reconstruction effects are included by convoluting the probability distribution with a Gaussian function with the width given by the sum in quadrature of the systematic uncertainties. We obtain a 95% UL of $\Delta a_\perp < 1.2 \times 10^{-12}$ GeV. The most probable values of δ and Δa_\perp are $\delta = 4.901$ and $\Delta a_\perp = 5.7 \times 10^{-13}$ GeV.

The limit on $\Delta a_T - C_s S_x \rho_{D^0} \Delta a_Z$ is obtained from a fit to the asymmetries using Eq. (6). This results in a value of $A_0 = (0.40 \pm 0.31)\%$. In this case, the systematic uncertainties on the measured values of $A(i)$ are assumed to be 100% correlated between sidereal bins to obtain the most conservative limits and are added to the statistical uncertainty obtained from the fit. Using Eq. (10), we obtain $\Delta a_T - C_s S_x \rho_{D^0} \Delta a_Z = \Delta a_T - 0.396 \Delta a_Z = (1.5 \pm 1.2) \times 10^{-13}$ GeV, resulting in a two sided 95% confidence interval $(0.8 < \Delta a_T - 0.396 \Delta a_Z < 3.9) \times 10^{-13}$ GeV.

Parameter	Value	Ref.
A_0	$(-0.40 \pm 0.31)\%$	Eq. (6)
A_1	$(0.87 \pm 0.45)\%$	Eq. (6)
ϕ	-2.28 ± 0.51	Eq. (6)
m_{ρ}	(5.36677 ± 0.00024) GeV	[17]
Δm_s	$(17.761 \pm 0.022) \times 10^{-12}$ h$^{-1}$	[17]
$\Delta \Gamma_s/\Gamma_s$	(0.138 ± 0.012)	[17]
$F_{\text{non-osc}}$	(0.465 ± 0.017)	[13]
$\langle p_z \rangle$	(17.8 ± 1.6) GeV	
$\langle p \rangle$	(25.3 ± 2.3) GeV	
Proton beam dirn α	219.53°	
Colatitude χ	48.17°	
We did a cross-check using the periodogram methodology [19] which sees no anomalous behavior for the frequency 1/sidereal day [8].

For CPTV to explain the difference between the like-sign dimuon asymmetry [3] and the SM requires that $\Delta a_T - 0.396\Delta a_Z$ be of the order of 10^{-12} GeV [5]. These limits imply that CPT violation is unlikely to contribute a significant fraction of the observed dimuon charge asymmetry, and that other explanations need to be sought.

In conclusion, we have carried out the first search for CPT-violating effects exclusively in the $B^0 \rightarrow \bar{B}^0$ oscillation system via semileptonic decays of the B^0 mesons. We find no significant evidence for CPT-violating effects and place limits on the size of the Lorentz-violating effects, Δa_T. These limits constrain a linear combination of the Lorentz-violating coupling constants a^b_μ, a^s_μ, and a^v_μ. We find 95% confidence intervals for the flavor-dependent coefficients $\Delta a_T < 1.2 \times 10^{-12}$ GeV and $(-0.8 < \Delta a_T - 0.396\Delta a_Z < 3.9) \times 10^{-13}$ GeV.

We thank A. Kostelecký for the valuable conversations during the course of this work. We also thank the staffs at Fermilab and collaborating institutions, and we acknowledge support from the Department of Energy and National Science Foundation (U.S.); Alternative Energies and Atomic Energy Commission and National Center for Scientific Research/ National Institute of Nuclear and Particle Physics (France); Ministry of Education and Science of the Russian Federation, National Research Center “Kurchatov Institute” of the Russian Federation, and Russian Foundation for Basic Research (Russia); National Council for the Development of Science and Technology and Carlos Chagas Filho Foundation for the Support of Research in the State of Rio de Janeiro (Brazil); Department of Atomic Energy and Department of Science and Technology (India); Administrative Department of Science, Technology and Innovation (Colombia); National Council of Science and Technology (Mexico); National Research Foundation of Korea (Korea); Foundation for Fundamental Research on Matter (The Netherlands); Science and Technology Facilities Council and The Royal Society (United Kingdom); Ministry of Education, Youth and Sports (Czech Republic); Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research) and Deutsche Forschungsgemeinschaft (German Research Foundation) (Germany); Science Foundation Ireland (Ireland); Swedish Research Council (Sweden); China Academy of Sciences and National Natural Science Foundation of China (China); and Ministry of Education and Science of Ukraine (Ukraine). We also acknowledge support from the Indiana University Center for Spacetime Symmetries (IUCSS).

[1] V. A. Kostelecký and S. Samuel, Spontaneous breaking of Lorentz symmetry in string theory, Phys. Rev. D 39, 683 (1989); V. A. Kostelecký and R. Potting, CPT and strings, Nucl. Phys. B359, 545 (1991).

[2] V. A. Kostelecký and R. Potting, CPT, strings, and meson factories, Phys. Rev. D 51, 3923 (1995).

[3] V.M. Abazov et al. (D0 Collaboration), Study of CP-violating charge asymmetries of single muons and like-sign dimuons in pp collisions, Phys. Rev. D 89, 012002 (2014).

[4] V. A. Kostelecký, CPT, T, and Lorentz violation in neutral-meson oscillations, Phys. Rev. D 64, 076001 (2001); V.A. Kostelecký, Sensitivity of CPT Tests with Neutral Mesons, Phys. Rev. Lett. 80, 1818 (1998); V.A. Kostelecký and R. Van Kooten, Bounding CPT violation in the neutral B system, Phys. Rev. D 54, 5585 (1996).

[5] V.A. Kostelecký and R. Van Kooten, CPT violation and B-meson oscillations, Phys. Rev. D 82, 101702(R) (2010).

[6] This is the convention of the definition of $\Delta \Gamma$, so that it is positive in the standard model.

[7] V.A. Kostelecký and C.D. Lane, Constraints on Lorentz violation from clock comparison experiments, Phys. Rev. D 60, 116010(1999); V.A. Kostelecký and N. Russell, Data tables for Lorentz and CPT violation, Rev. Mod. Phys. 83, 11 (2011).

[8] See Supplemental Material at http://link.aps.org/ supplemental/10.1103/PhysRevLett.115.161601 for additional plots supporting the analysis, including diagrams of the coordinate system, the measured values of A, and a brief description of the periodogram analysis.

[9] D. Babusci et al. (KLOE Collaboration), Test of CPT and Lorentz symmetry in entangled neutral kaons with the KLOE experiment, Phys. Lett. B 730, 89 (2014).

[10] J.M. Link et al. (FOCUS Collaboration), Charm system tests of CPT and Lorentz invariance with FOCUS, Phys. Lett. B 556, 7 (2003).

[11] B. Aubert et al. (BABAR Collaboration), Search for CPT and Lorentz Violation in $B^0 \rightarrow \bar{B}^0$ Oscillations with Dilepton...
Events, Phys. Rev. Lett. 100, 131802 (2008); K. Abe et al. (Belle Collaboration), Measurement of $B^0_d - \bar{B}^0_d$ Mixing Rate from the Time Evolution of Dilepton Events at the Υ_{4S}, Phys. Rev. Lett. 86, 3228 (2001); K. Ackerstaff et al. (OPAL Collaboration), A study of B meson oscillations using hadronic Z^0 decays containing leptons, Z. Phys. C 76, 401 (1997).

[12] Y. Amhis et al., Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2014, arXiv:1412.7515; see also the online update at http://www.slac.stanford.edu/xorg/hfag.

[13] V. Abazov et al. (D0 Collaboration), Measurement of the Semileptonic Charge Asymmetry using $B^0\rightarrow \mu^+D^-X$ Decays, Phys. Rev. Lett. 110, 011801 (2013).

[14] V. Abazov et al. (D0 Collaboration), The upgraded D0 detector, Nucl. Instrum. Methods Phys. Res., Sect. A 565, 463 (2006).

[15] J. Abdallah et al. (DELPHI Collaboration), b-tagging in DELPHI at LEP, Eur. Phys. J. C 32, 185 (2004).

[16] V.A. Kostelecký and N. Russell, Data tables for Lorentz and CPT violation, Rev. Mod. Phys. 83, 11 (2011).

[17] K.A. Olive et al. (Particle Data Group), Review of particle physics, Chin. Phys. C 38, 090001 (2014).

[18] V.M. Abazov et al. (D0 Collaboration), Measurement of the B^0_s Lifetime in the Flavor-Specific Decay Channel $B^0_s \rightarrow \mu^+D^-\nu X$, Phys. Rev. Lett. 114, 062001 (2015).

[19] J.D. Scargle, Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data, Astrophys. J. 263, 835 (1982); N.R. Lomb, Least-squares frequency analysis of unequally spaced data, Astrophys. Space Sci. 39, 447 (1976).