Mechanisms of Neuroprotection from Hypoxia-ischemia (HI) Brain Injury by Up-regulation of Cytoglobin (Cygb) in a Neonatal Rat Model

Shu-Feng Tian¹, Han-Hua Yang¹, Dan-Ping Xiao¹, Yue-Jun Huang¹, Gu-Yu He¹, Hai-Ran Ma¹, Fang Xia¹, Xue-Chuan Shi,*

¹ From the Department of Pediatrics, the Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, People’s Republic of China

Running title: Neuroprotective effect of Cygb in a neonatal rat model with HI injury

To whom correspondence should be addressed: Xue-Chuan Shi, Department of Pediatrics, the Second Affiliated Hospital, Shantou University Medical College, North Section of Dong-xia Rd., Shantou, Guangdong 515041, China, Tel.: +86-754-88915666; Fax: +86-754-88346543; E-mail: sxc1957@yahoo.com.cn

Key Words: Cytoglobin; Hypoxia-ischemia; Neuroprotection; Apoptosis; Angiogenesis; Mechanisms

Background: Potential functions of Cytoglobin (Cygb) in neonatal hypoxia-ischemia (HI) brain injury have not been reported.

Results: Up-regulation of Cygb reduces HI injury and improves long-term cognitive impairment after neonatal HI.

Conclusion: Cygb exhibits neuroprotective effects, possibly through anti-oxidant and anti-apoptotic functions as well as by stimulating angiogenesis.

Significance: These results provide a novel target for developing a clinically relevant strategy for future studies.

SUMMARY

This study was designed to investigate the expression profile of Cygb, its potential neuroprotective function, and underlying molecular mechanisms using a model of neonatal hypoxia-ischemia (HI) brain injury. Cygb mRNA and protein expression were evaluated within the first 36 hours after the HI model was induced using RT-PCR and Western blotting. Cygb mRNA expression was increased at 18 hours in a time-dependent manner, and its level of protein expression increased progressively in 24 hours. To verify the neuroprotective effect of Cygb, a gene transfection technique was employed. Cygb cDNA and shRNA delivery adenovirus systems were established (Cygb-cDNA-ADV and Cygb-shRNA-ADV, respectively) and injected into the brains of 3-day-old (P3) rats, 4 days before they were induced with HI treatment. Rats from different groups were euthanized 24 hours post-HI and brain samples were harvested. TTC, TUNEL, and Nissl staining indicated that an up-regulation of Cygb resulted in reduced acute brain injury. Superoxide dismutase (SOD) level was found to be dependent on expression of Cygb. The Morris water maze (MWM) test in P28 rats demonstrated that Cygb expression was associated with improvement of long-term cognitive impairment. Studies also demonstrated that Cygb can up-regulate mRNA and protein levels of Vegf, increase both the density and diameter of the microvessels, but inhibits activation of Caspase-2, 3. Thus, this is the first in vivo study focusing on the neuroprotective role of Cygb. The reduction of neonatal HI injury by Cygb may be due in part to anti-oxidant and anti-apoptotic mechanisms and by promoting angiogenesis.

Perinatal hypoxia-ischemia (HI) brain injury is a common cause of lifelong morbidities (1,2). Approximately half of HI events result in death and 25% of the survivors suffer from neurological disabilities, including cerebral palsy,
cognitive and/or sensory deficits, mental retardation, learning disabilities, and epilepsy (3,4). These impairments significantly impact life experience and social welfare. To date, there are no effective therapies for the treatment of these neurological disorders. Thus, this limitation has provided an incentive to search for new, more effective therapeutic interventions which may lead to better outcomes.

The globins have striking functions, which initially attracted our research interest. Cytoglobin (Cygb), the fourth member of the vertebrate globin family of hemoproteins, is detectable in various organs (5). Hemoglobin (Hgb) and myoglobin (Mb) are abundant hemoproteins that have been extensively studied. Neuroglobin (Ngb), the third heme protein (6), can be induced by neuronal hypoxia and cerebral ischemia, and can protect neurons from the effects of hypoxia in vitro (7,8) and in vivo (8-11). The most recently discovered androglobin (Adgb), the fifth member of globin family, is preferentially expressed in the testis and is insensitive to experimental hypoxia (12). The physiological function of Cygb remains unknown, but it is believed to have various roles due to its family homology, such as storing O2, facilitating O2 diffusion, detoxifying reactive oxygen species, acting as an O2 sensor, and functioning as an NO dioxygenase (5,13-16). Thus, Cygb may play a cytoprotective role under hypoxic and/or ischemic conditions. Increasing evidence suggests that Cygb may be up-regulated in the liver, heart, brain, muscle, and kidney (16-19) under hypoxic and/or ischemic conditions, suggesting that Cygb might be a protective factor in these organs. Previous studies have also indicated that Cygb acts as a stress-responsive hemoprotein expressed both in the developing and adult brain (20) and is protective under oxidative stress in cell lines (21,22). More recently, Cygb was found to act as a tumor suppressor gene (23,24), and protect kidney fibroblasts under ischemic conditions (25), which are related to oxidative stress (25-27).

Our hypothesis was that Cygb might protect neonatal rats from the damage associated with HI brain injury. The aims of the present study were to investigate the potential role of Cygb in neonatal HI and clarify the underlying mechanisms, as well as to provide a new therapeutic target for the treatment of neonatal HI brain injury. For the first time, we identified the expression profiles of Cygb mRNA and protein induced by HI using a widely applied animal model. We also provided the first evidence that HI outcomes could be significantly affected under the condition of over-expression and knock-down of Cygb using adenovirus transfection systems in vivo. MDA and SOD assays were also carried out in order to demonstrate the antioxidant ability of Cygb in vivo. In addition, we identified the molecular mechanisms associated with Cygb under HI injury. These findings suggest that Cygb plays an important role in protecting the developing brain against HI injury.

EXPERIMENTAL PROCEDURES

Animals and Experimental Schedule—Sexual mature Sprague-Dawley (SD) rats (n = 28, male; n = 56, female) were purchased from the experimental Animal Center of Shantou University Medical College (Shantou, China). Care of the animals used in this investigation conformed to the US National Institutes of Health guidelines (79) and followed the rules of the National Animal Protection of China. The study was approved by the Institutional Animal Care and Use Committee of Shantou University Medical College. Pregnant females were housed individually and the presence of pups was checked for daily. The day of birth was considered day 0 (P0), and one day later, the litters were culled to 8 rat pups per dam. Animals were maintained in the same temperature and humidity-controlled holding facility (22–24 °C) under a 12:12 light/dark cycle (light onset at 8:00 AM), with free access to food and water. Efforts were made to minimize animal suffering and to reduce the number of animals used. A schedule of the treatment, surgical procedure and tests of the animals is shown in Figure 1. 535 neonatal SD rats were used in this study and the survival rate
of each group (animals used for studying the endogenous expression profiles of Cygb and confirming the efficiency of ADV transfection reagents were considered as sham) in the first 36 h after treatment were listed in Fig 1C. Log-rank test were used to compare survival curves among groups at 28 days when they were ready for Morris Water Maze (MWM) test.

Reagents—*In situ* cell death detection kits were purchased from Roche (Roche Applied Science, Mannheim, Germany). The PCR primers (as listed in Table 1), cDNA, and shRNA for Cygb were synthesized by Sangon Biological Engineering Technology & Services Co., Ltd (Shanghai, China). The RT-PCR kits were purchased from Takara Biotechnology Co., Ltd (Dalian, China). Rabbit polyclonal antibody for Cygb (FL-190), as well as goat polyclonal antibody for CD31 was purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA, USA). Primary monoclonal antibody for β-actin, cleaved Caspase-2 and Caspase-3, and horse radish peroxidase-conjugated secondary antibody were from Cell Signaling Technology, Co., Ltd (USA). The SuperSignal western blotting detection kits was obtained from Pierce Biotech. Co., Ltd (Rockford, IL, USA). Cy3 conjugated anti-rabbit secondary antibody and 4’,6-diamidino-2-phenylindole (DAPI) for immunofluorescence were from Sigma Aldrich (Shanghai, China). Rabbit anti-Vegf and relative Streptavidin-Peroxidase immunohistochemical staining kits were purchased from Biosynthesis Biotechnology Co., Ltd (Beijing, China). All surgical materials used were acquired from Yuehua Medical Products Ltd (Shantou, Guangdong, China). Other chemicals and reagents were of molecular biology grade and were purchased from local commercial stores.

Establishment of Animal Model—HI brain injury was induced in P7 SD rats based on the classical “Levine method” (28) with modifications by snipping the left common carotid artery (CCA) between double ligations and prolonging hypoxia duration from 90 min to 120 min. Briefly, each rat was deeply anesthetized by inhalation of isoflurane. The CCA was exposed through a midline cervical incision, permanently double ligated with 5-0 silk sutures, and severed. The total time for surgery in each animal lasted approximately 3 min. After surgery, animals were given 1–2 h to recover from anesthesia. Following recovery, animals were placed in an airtight container partially submerged in a 37 °C water bath to maintain a constant thermal environment. A 120 min continuous hypoxia (8% O2, 92% N2) was used to induce systemic hypoxia. Sham animals received anesthesia and exposure of the left CCA but did not receive HI treatment. After another 30 min recovery, all surviving rats were returned to their cages and kept in a standard environment as previously described in the animal housing section.

Construction of Adenovirus-mediated Transfection Systems—shRNA and cDNA of Cygb sequences were designed based on a protocol used in a previous study (23). We obtained plasmids PDC316-mCMV-ZsGreen-cDNA-Cygb and PDC316-ZsGreen-shRNA-Cygb, with null vectors transfected as negative controls (29-32). The plasmids were cloned to adenovirus vectors and the viral null vectors were propagated in human embryonic kidney 293 (HEK 293) cells. Viral titer was determined by using standard plaque assays on HEK293 cells. The resulting titers for Cygb-shRNA-ADV and Cygb-cDNA-ADV were 3×10⁹ PFU/ml and 2×10⁹ PFU/ml, respectively.

Intracerebroventricular Injection of Adenovirus—Adenoviral vectors delivery were conducted on P3 SD rats based on previously described protocols (29,33). Briefly, the rats were anesthetized with isoflurane and mounted onto a SR-6N stereotactic frame (Narishige Scientific Instrument Laboratory, Tokyo, Japan). 4 μL of adenoviral vectors or saline (NaCl solution) were injected into the lateral ventricle (0.8 mm posterior and 1.0 mm lateral in relation to lambda and at a depth of 3 mm from the skin surface of the brain) (33) using a Hamilton syringe with a 10-gauge needle. The vector or saline was injected over a period of 2 min and the needle was left in the place for another 2 min, and then removed slowly over 2 min. In order to
avoid the potential effect of tissue damage caused by the injection procedure on the assessment of HI injury, all injections were made into the cerebral ventricle contralateral to the injury hemisphere.

To confirm adenovirus-mediated expression in vivo, ADV vectors were tagged with green fluorescence protein (GFP) and expression was detected using a Zeiss Axio Imager Z1 inverted microscope (Massachusetts, USA) 4 days post-injection. To evaluate temporal change of the expression of Cygb protein after transfection, rats were euthanized at 1, 3, 5, and 7 days after injection of the vectors (n=3), and the cortex and hippocampus were harvested for Western blot analysis.

Immunofluorescence—Neonatal rats were sacrificed 4 days after saline or ADV vectors injection. Three rats were used for each group, and three sham rats were used as control. Targeted brain tissues (3-4 mm) were obtained as indicated in Fig.1 B and then fixed for 18 h in 4% paraformaldehyde in PBS at 4 °C, followed by incubation in 30% sucrose in PBS overnight at 4 °C. Then, the fresh brain tissues were embedded in O.C.T and cut into 25 um-thick sections using a cryostat, and the sections were mounted onto glass slides and stored at -80 °C. The brain sections were fixed with pre-cooled acetone for 15 min at 4 °C and rinsed with PBS for 5 min. The sections were then incubated in PBS buffer containing 0.1% Triton X-100 for 15 min and then blocked with 5% BSA in PBS. Blocked sections were then treated overnight with primary antibody at 4 °C. The primary antibody used was rabbit anti-Cygb diluted (1:100) in PBS containing 1% BSA. The sections were rinsed with washing buffer and then incubated in secondary antibody for 1 h at room temperature in the dark. The secondary antibody used was Cy3 conjugated goat anti-rabbit IgG (1:1000). Samples were washed and stained by DAPI for 10 min at room temperature in the dark and then washed again, mounted with glycerol/PBS, and observed using a Zeiss Axio Imager Z1 inverted microscope (Massachusetts, USA).

Reverse Transcription and Polymerase Chain Reaction (RT-PCR) — Total RNA was prepared from samples of injured tissues (Fig.1B) using Trizol reagent (Invitrogen, Carlsbad, CA, USA) following the manufacturer's instructions. After establishing HI for 0, 6, 12, 18, 24 and 36 h time points, rats from different groups were euthanized. RT-PCR experiments and results analysis were performed as described previously (34) to evaluate the mRNA expression pattern of Cygb under HI conditions. Then, we conducted HI treatment within specific time windows (the time for reaching the peak of endogenous Cygb mRNA up-regulation) to rats which had been given saline, ADV only, shRNA, or cDNA treatment to reveal expression of the potential candidates, including Hif-1α, Vegf, Caspase-2, and Caspase-3. The sham group served as control. The PCR primers used are shown in Table 1. β-actin was used in each assay to normalize the amount of mRNA.

Western Blotting—To evaluate changes of endogenous expression of Cygb after HI injury, rats were euthanized at 0, 6, 12, 18, 24 and 36 h and the injured hemisphere of the brain (approximately 100 mg, indicated in Fig 1 B) was collected. In addition, as mentioned previously, rats were euthanized at 1, 3, 5, and 7 days after receiving injection of the Cygb-shRNA or Cygb-cDNA vectors. P7 rats (4 days after injection) injected with the ADV vector only or with saline served as the ADV vector-only group and control group. Brain tissues were homogenized in cold RIPA lysis buffer (Beyotime, Jiangsu, China) and the protein concentrations were determined by BCA assay kits (Beyotime, Jiangsu, China). Equal amounts of protein (40 μg) were separated on 12% SDS-PAGE and transferred onto polyvinylidene fluoride (PVDF) membrane (pore size, 0.22 μm; Millipore). The membrane was blocked by a 1 h incubation at room temperature in a Tris-buffered saline solution (TBS-T: 20 mM Tris, pH 7.6, 135 mM NaCl, and 0.05% Tween) containing 5% nonfat dry milk, and then incubated with different primary antibodies including anti-Cygb (1:400, Santa Cruz), anti-β-actin(1:1000,CST) overnight at 4 °C. After washing the membrane 3x with TBS-T,
the secondary antibody HRP-labeled goat-anti-rabbit IgG was then added to the membrane according to the vendor’s recommendation (1:8000 dilution; CST) and incubated for 1 h at room temperature and then washed again as described previously. The bound antibodies were detected by using SuperSignal western blotting kits. Quantity One Software (v4.5.2, Bio-Rad, Hercules, CA, USA) was used to perform densitometric analysis of western blots. The expression of β-actin was used as a control for equal protein loading.

To reveal the association between caspase activation and Cygb expression, we conducted HI treatment at specific time windows (the time for reaching the peak of endogenous Cygb protein up-regulation) to rats which had been given saline, ADV only, shRNA, or cDNA treatment. The sham group served as control. Samples were harvested at the time point that demonstrated the highest transfection efficiency, which was 24 h post-HI in this study. The activation levels of both cleaved-caspase-2 and cleaved-caspase-3 were studied following the steps described above. The conditions of primary antibodies used were: anti-cleaved-caspase-2 (1:1000), anti-cleaved-caspase-3 (1:1000).

TTC Staining—As previously described (35), 24 h after HI induction, 2,3,5-triphenyltetrazolium chloride (TTC) staining was performed (n = 8) to measure the infarct volume. The animals were perfused transcardially with cold saline under deep anesthesia and brains were quickly removed and subsequently imbedded in brain matrix and frozen for 3 min at -80 °C. Each brain was sliced coronally at 2-mm intervals with the matrix. Four sliced sections were then subsequently stained with 1% TTC (w/v) at 37°C for 12 min and then fixed in 4% (w/v) formaldehyde in PBS for 24 h at 4°C. Finally, the brain slice images were captured using a digital camera (SONY DSC-W150, Japan), and the areas of unstained tissue (the infarct areas) were delineated manually using the Image Pro Plus 6.0 software by a person blinded to the treatment groups. The corrected infarct area was calculated as that total area of the infarct area - the edema area (calculated as the ischemic hemisphere area - the contralateral hemisphere area). Corrected infarct volume was then calculated by the sum of the corrected infarct area on each section multiplied by slice thickness. Total corrected infarct volume was expressed as percentage of the contralateral hemisphere area. As this kind of data is usually binomial distributed, an arcsine transformation which can be calculated by using the formula “ \(\pi = \arcsin \sqrt{p} \) ” should be done in the statistical software first before further analysis.

Nissl Staining—The targeted brain specimens (Fig. 1B) obtained 24 h after HI were fixed in 4% (w/v) formaldehyde in PBS, paraffin embedded, and sliced in sections of 3 μm thickness. For Nissl staining (n = 8), after dewaxing in xylene and rehydration through graded ethanol, the sections were hydrated in 1% (w/v) toluidine blue at 37 °C for 20 min. After rinsing with double distilled water, they were dehydrated and mounted with permount. 8 slices per brain were used for cell counting. Six fields of each slice in the injured side both of the cerebral cortex and hippocampus (CA1) were chosen randomly at 400 × magnifications to count staining cells. Imaging-Pro-Plus software 6.0 was used to perform quantitative analysis of cell number counts. The mean number of intact neurons in the six views was used for cell counts in each section. The final average number of the eight sections from each sample was used for analysis.

TUNEL Staining—TUNEL staining (n = 8) was performed on paraffin-embedded sections by using the in situ cell death detection kit, according to the manufacturer’s instructions. Briefly, sections were deparaffinized in xylene, rehydrated through graded ethanol, rinsed in 3% hydrogen peroxide and treated with proteinase K (20 mg/ml) for 25 min at room temperature. Subsequently, the sections were incubated with the TUNEL reaction mixture for 1 h at 37 °C. After washing with PBS, the sections were incubated with converter-POD for 30 min and then visualized with DAB. Sections were then counterstained with hematoxylin for 3 min and...
rinsed under running water. After dehydration in graded ethanol series and transparent in xylene, the brain sections were mounted onto gelatin-coated slides. Apoptotic cell counting was performed in hippocampus (CA1) and cerebral cortex in the hemisphere that was ipsilateral to the injured hemisphere. Cells with yellow-brown granules in the nucleus were considered to be apoptotic cells. In evaluating numeric density, total TUNEL positive stained neurons were calculated in six views under the light microscope with 400 × magnifications. The mean number of apoptotic neurons was used for cell counts in each section. The final average number of apoptotic neurons of eight sections from each sample was used for analysis and the severity of brain damage was evaluated by apoptotic index, defined as the average number of TUNEL-positive neurons.

Histology and Immunohistochemistry—4 paraffin sections from each sample (n = 8) from sham, HI, shRNA, and cDNA group were processed for Hematoxylin and Eosin (HE) for the examination of brain tissue under light microscopy. For Vegf and CD31 staining, briefly, after deparaffinization and rehydration, non-specific endogenous peroxidase activity was blocked by treating sections with 3% hydrogen peroxide in methanol for 25 min. The antigen was recovered by boiling the sections for 15 min in 10mM citrate buffer (pH 6.0). Nonspecific binding was blocked with 1% non-immune serum in PBS for 30 min. The sections were then incubated with anti-Vegf (1:300) or anti-CD31 (to stain endothelial cells) (1:60) overnight at 4 °C. They were then washed with PBS, incubated with a biotinylated goat anti-rabbit IgG (1:300) for 1 h at 37 °C, washed and incubated with an avidin peroxidase conjugate solution (1:100) for 1 h. Finally, the sections were developed with dianinobenzidine for 5 min. Negative controls were similarly processed without the primary antibody. Five slides from each brain, with each slide containing 6 fields were digitized under 100 × magnifications by two independent observers who were blinded to the experimental conditions. The density and size of the vasculature were analyzed in a blinded manner in digital images using the Imaging-Pro-Plus software 6.0.

MDA and SOD Assays—Brain samples were taken from the injured hemispheres of rats at 24 h after hypoxia–ischemia induction (n = 8). The MDA level and SOD activity were measured according to the manufacturer's specifications (Beyotime, Jiangsu, China). Briefly, the tissues were homogenated and centrifuged at 2000×g for 10 min at 4 °C. The supernatant was collected to measure the MDA level and SOD activity. The protein content of the supernatant was measured as described in the Western blot section. The MDA level and SOD activity were measured using the thiobarbituric acid (TBA) and xanthine oxidase methods. The absorbance levels of the MDA and SOD test samples were measured using a spectrophotometer (Thermo) at 532 nm and 550 nm. The MDA levels and SOD activities were expressed as nmol/mg protein and U/mg protein.

Morris Water Maze Test—Spatial learning and memory abilities were evaluated using the Morris Water Maze (MWM) test P28–P33 rats (n = 8; 36). A circular pool (160 cm diameter × 50 cm high) divided into four quadrants was filled with water (22 ± 1°C), and an 12 × 12 cm platform was positioned 1 cm below the water surface in the center of one of the quadrants. Four points on the perimeter of the pool were designated and room lights illuminated the pool. The swimming path of the rats was recorded using a video camera mounted above the center of the pool and analyzed using a video tracking and analysis system (Institute of Medica, Chinese Academy of Medical Sciences). On each training day (P28-P32), the rats received eight consecutive training trials during which the hidden platform was kept in a constant location. A different start location was used on each trial, which consisted of a search followed by a 20 s platform sit. The time to reach the platform was recorded. If a rat could not find the platform within 90 s, it was led to the platform by the experimenter for a 20 s rest. On the fifth day (P33), memory retention was evaluated during a 90 s probe trial carried out 24 h after the last training session in the absence of the escape.
platform. The test parameters included time to reach the platform, swimming track, swimming distance of the platform space, and traversing times of the platform.

Statistical Analysis—Each experiment was performed at least three times. Statistical analysis was performed using GraphPad Prism software, Version 5.01 (San Diego, CA, USA). Continuous data were expressed as mean ± standard deviation (SD). One-way analysis of variance (ANOVA) followed by Student–Newman–Keuls’s test was used to compare the differences among multiple groups. Log-rank test were done to compare the survival curves among groups. Data from Morris Water Maze tests were analyzed using the general linear models repeated-measures analysis of variance. A probability (P) value less than 0.05 was regarded as statistically significant.

RESULTS

Survival—In this study, 535 neonatal rats were used and the total survival rate of animals was 87.4%. Pups’ survival rate appeared unaffected by pretreatment before HI, indicating that vehicle injection did not significantly affect pups’ survival. The survival rates among HI, saline-HI, and ADV-HI groups were not significantly different (Fig. 1, C) 36 h after HI induction. However, the survival rate of the Cygb-shRNA-ADV-HI group was 70.4% while the Cygb-cDNA-ADV-HI group was 89.8%. This indicated that over-expression of Cygb increased the survival rate of animals whereas inhibition of Cygb expression decreased survival. In addition, the 28-day survival curves also showed consistent result (Fig. 1 D). Over-expression of Cygb improved the survival of rats suffering from HI.

Cygb is Induced by HI in vivo—We evaluated the changes of endogenous Cygb expression in the brain after HI in the P7 rat pups (Fig. 2). Cygb mRNA levels were measured by RT-PCR at 0, 6, 12, 18, 24 and 36 h time points after HI. As shown, the transcriptional level of Cygb increased in a time-dependent manner 18 h after HI (Fig. 2, A and B). The protein level of Cygb was detected by Western blotting at 0, 6, 12, 18, 24 and 36 h after HI. Endogenous Cygb expression in the ipsilateral hemisphere significantly increased from 6 h time point post-HI and gradually peaked at 24 h after HI (Fig. 2, C and D). Cygb was elevated nearly 3-fold as compared with sham group at the 24 h time point. Therefore, Cygb may be involved in the pathogenesis process of HI.

Adenovirus-mediated Transfection Alters the Expression of Cygb in vivo—ADV vectors were tagged with green fluorescence protein (GFP) and expression was measured in the periventricular area (Fig. 3E). Cygb protein level was detected on day 1, 3, 5, and 7 after injection in P3 rats (Fig. 3A-D). Expression of Cygb peaked at 5 days post-injection (Fig. 3, B and D). In order to further assess whether the transfection systems were down-regulated or up-regulated, Cygb expression were examined in region of interest (ROI) using immunofluorescence co-localization analysis 4 days post saline or ADV vector injection (Fig. 3F). Although the subcellular distribution of Cygb was not thoroughly assessed, we found that Cygb was localized in both the cytoplasm and nuclei of hippocampus neurons (Fig. 3F), a finding that is consistent with the distribution pattern previously reported (15). The results showed that Cygb-shRNA-ADV and Cygb-cDNA-ADV exhibited significant effects in regulating Cygb expression of brain, which is consistent with the western blotting data (Fig. 3, A-D). Results from saline or ADV only group indicated that there was no effect on Cygb expression. Together with these results and the expression profiles of Cygb mRNA and protein shown above, animal HI model was induced at day 4th post injection for subsequent assays in this study.

Adenovirus-mediated Transfection Alters the Expression of Cygb in the Developing Brain 24 h Post-HI—To confirm how different levels of Cygb expression affects the outcomes of neonatal HI brain damage, we assessed the Cygb mRNA and protein levels in developing brain tissues from different groups 18 h or 24 h post-HI. Western blotting revealed that Cygb
protein expression was significantly lower in the Cygb-shRNA-ADV group as compared to the sham, ADV only, and saline groups, and expression levels were higher in the Cygb-cDNA-ADV group as compared to sham group (Fig. 4, B and D). In addition, RT-PCR analysis also exhibited that Cygb-shRNA-ADV inhibited Cygb mRNA expression while Cygb-cDNA-ADV enhanced its expression as compared to ADV only or saline groups 18 h post-HI (Fig. 4, A and C). As compared to the sham group, expression levels of Cygb in HI-ADV and HI-saline groups were significantly higher, indicating that HI could induce Cygb expression (Fig. 4, A-D). Together, these data show that Cygb expression was mediated by exogenous Cygb-cDNA-ADV and Cygb-shRNA-ADV despite endogenous up-regulation in the neonatal HI model.

Cygb Reduces Injury in the Neonatal HI Model– Rats from different groups were sacrificed 24 h post-HI and morphological injury was assessed by TTC staining, Nissl, and TUNEL staining. Fig. 5 shows images of neonatal rat brain.

Quantitative assessment of TTC-stained sections was used to assess brain infarct volume in different groups (Fig. 5A). Our findings showed that injection with Cygb-shRNA-ADV dramatically increased the infarct volume at 24 h after HI injury (p < 0.01) (Fig. 5B). Injection with Cygb-cDNA-ADV resulted in a significant decrease in brain infarct volume as compared with the ADV only group or the saline group (p < 0.01). There was no difference between saline, ADV only pretreatments, and untreated HI group, yet all HI groups with or without pre-injection of different reagents were significantly different as compared to the sham control group (p < 0.05).

Neuronal cell loss in both the ipsilateral cortex and hippocampus were identified by Nissl staining 24h post-HI injury (Fig. 5C). As expected, HI significantly reduced the number of cells and resulted in smaller and irregularly arranged neurons in the brain 24h after HI as compared with the contralateral part or the sham control group (Fig. 5E). Furthermore, inhibition of Cygb significantly reduced the number of neuronal cells under HI as compared with saline or ADV only pretreated group (p < 0.01). However, more Nissl-stained cells were observed in Cygb over-expression group than in the other HI group (p < 0.01).

TUNEL staining of tissue sections was carried out to determine if Cygb could prevent apoptosis at an acute stage of neonatal HI injury. Significantly more apoptotic cells were observed in the Cygb-shRNA-ADV group compared with control HI groups 24 h post-HI (p < 0.01; Fig. 5, D and F); however, the number of cells was significantly lower in the Cygb-cDNA-ADV treatment group (p < 0.01). There was no significant difference in the number of TUNEL-positive cells in the cortex and hippocampus across three control HI groups while HI induced greater number of apoptotic neurons as compared with sham group (p < 0.05).

Cygb Exhibits Anti-oxidant Action in the HI Model– To evaluate the anti-oxidant activity of Cygb, we measured the MDA level and SOD activity 24 h after HI insult (n = 8). These findings indicate that inhibition of Cygb significantly increased MDA levels and decreased SOD activity whereas Cygb over-expression significantly decreased MDA levels and increased SOD activity as compared to the HI group (p < 0.01; Fig. 6A). There was no difference between HI, HI-saline, and HI-ADV groups, although all three groups demonstrated increased MDA levels and decreased SOD activity as compared with the sham group (p < 0.01).

Cygb Plays a Critical Role in Anti-apoptosis and Promotes Angiogenesis– Transcriptional levels of Caspase-2, Caspase-3, Hif-1α, and Vegf in HI brain tissue (n = 3) were measured by RT-PCR 18 h after HI in three different groups (HI, HI-Cygb-shRNA-ADV, and HI-Cygb-cDNA-ADV; Fig. 6, B and C). Cygb was inhibited by Cygb-shRNA-ADV but enhanced by Cygb-cDNA-ADV (Fig. 6B). Hif-1α and Vegf are protective factors in HI, whereas Caspase-2 and Caspase-3 play an
important role in apoptotic pathways. In the present study, we found that Cygb-cDNA-ADV could induce Vegf mRNA expression but inhibit Caspase-2 and Caspase-3 mRNA levels as compared to the HI groups (p < 0.01; Fig. 6C). These results are consistent with previous studies (37-39) and suggest that these three factors are critical for understanding the mechanism underlying the neuroprotective effect of Cygb in neonatal HI.

Furthermore, to confirm whether the effect of Cygb overexpression/knockdown on Vegf, Caspase-2, and Caspase-3 is specific to HI conditions, we conducted a RT-PCR assay. RNA was extracted from samples harvested five days after Cygb-shRNA-ADV and Cygb-cDNA-ADV injection (Fig. 6D). The results indicated that Cygb expression did not significantly affect the expression of these three genes under basal conditions (Fig. 6E).

HE staining revealed that cell morphology and microvessels were disrupted (Fig. 6F), and immunostaining indicated that higher levels of Vegf protein were expressed in the Cygb over-expression group (Fig. 6, G and H). Immunohistochemical staining of CD31 revealed that a smaller number of microvessels were distributed in the shRNA group, whereas more microvessels were distributed in the cDNA group compared to the HI group (Fig. 6, I and J), similar to the number of microvessels with a diameter larger than 15 µm per section (Fig. 6, I and K).

Western blotting showed that HI induced both cleaved-Caspase-2 and cleaved-Caspase-3 were declined by Cygb over-expression whereas they were increased in the Cygb knockdown (Fig. 7, A-C).

There was no significant difference between the Cygb-shRNA-ADV and Cygb-cDNA-ADV groups in Hif-1α mRNA expression levels (Fig. 6C).

Thus, we propose that Hif-1α may be the upstream factor promoting Cygb expression, similar to neuroglobin (40), and Vegf, Caspase-2, and Caspase-3 are downstream target genes of Cygb.

Cygb Improves Long-term Learning and Memory in the HI Model–The Morris water maze test (n = 8) was performed at 3 weeks post-HI (P28 rats) to evaluate long-term spatial learning and memory abilities dependent upon the function of the hippocampus and cortex (41). The escape latency (EL) in training days (P28-32) is shown in Fig. 8A. The results showed longer EL in the HI group as compared to sham group (p < 0.01). EL in the Cygb-shRNA-ADV group was significantly longer compared with HI group (p < 0.01), whereas Cygb-cDNA-ADV groups had significantly shorter EL (p < 0.01). There was no significant difference in EL between the HI, saline, and ADV only groups. The space probe trial was conducted after spatial maze training. Platform crossing times and the time spent in the target quadrant were also recorded (Fig. 8B). Animals in the sham group had approximately 10 times crossing frequency, while the HI, saline, and ADV group had about 3 times crossing frequency, and there was no significant difference among these three groups (Fig. 8B). The crossing frequency was reduced to twice in the Cygb-shRNA-ADV group. In contrast, Cygb-cDNA-ADV significantly increased the crossing frequency. HI rats spent less time in the target quadrant compared with sham rats (p < 0.01), and Cygb inhibition significantly reduced time spent in the target quadrant compared with HI rats (p < 0.01; Fig. 8C). Cygb-cDNA-ADV significantly increased the percentage of time spent in quadrant as compared to the HI group (p < 0.01; Fig. 8C). These results demonstrated a long-term neuroprotective effect of Cygb on HI brain injury.

DISCUSSION

Perinatal hypoxia-ischemia (HI) brain injury is a major cause of morbidity and mortality in infants and children (1,2), and an increasing number of studies are being conducted to investigate the pathogenesis of the disease. In present study, we show for the first time that Cygb is neuroprotective in neonatal rats exposed to HI through possible
anti-oxidative and anti-apoptotic mechanisms and by promoting angiogenesis. First, we identified the endogenous up-regulation patterns of Cygb mRNA and protein in the developing brain under the condition of HI brain injury. Moreover, we found that changes in Cygb expression result in corresponding changes in the severity of histological and functional deficits after HI, in a manner consistent with an endogenous neuroprotective action of Cygb. In summary, this study suggests that Cygb plays an important role in the signaling pathway underlying oxidative stress, angiogenesis and neuronal apoptosis in the neonatal HI rat model.

Though several previous studies have demonstrated that Cygb is affected by hypoxia in vitro (16,21,42) and in vivo (17,18,20,42,43), the detailed expression patterns of Cygb mRNA and protein in neonatal rats brain suffered from HI have not been report until now. The present study is the first to undertake a comprehensive analysis of Cygb expression in response to neonatal rat brain HI injury at acute stage. Our study demonstrates that Cygb is significantly up-regulated at both transcriptional and translational levels in a time-dependent manner. However, it must be noted that two previous studies reported that the expression of Cygb was not significantly up-regulated in the ischemic model of adult rats (44,45). A possible explanation for the paradoxical findings is that there were some limitations in these two studies, such that no detailed data were presented to illustrate the changes in Cygb expression during the first 36 hours after ischemia, and different animal models that only suffered ischemic treatment were used. Moreover, it is possible that the age of the rats also contributed to the differences in results. Since we found that the expression of Cygb protein peaks at 24 h post-HI (Fig.2), it appears that Cygb is up-regulated during the acute stage of HI. Based on previous data of Cygb expression change under hypoxic conditions in vivo and in vitro (18,19,42,43), another possible explanation for the discrepancy is that hypoxia may play a more important role than ischemia in up-regulating Cygb expression. Since there was significantly higher Cygb mRNA and protein levels in neonatal HI injury rats compared to sham rats, which point to an important role of Cygb in hypoxia-ischemia adaptation, RNA interfering technology was used and a Cygb knock-down model was successfully established using the Cygb-shRNA-ADV system 4 days before HI induction (Fig. 3). Significantly aggravated brain injuries were observed at 24h after HI (Fig.5). Cognitive functions were also impaired severely under conditions of HI in the Cygb-shRNA-ADV group as demonstrated by the performance of MWM test (Fig. 8). These data indicated that Cygb is a novel endogenous neuroprotective factor in the neonatal HI model.

Many investigators have explored the development of therapeutic methods for neonatal HI disease. Although hypothermia, the most widely applied clinical intervention in asphyxiated babies, improves outcome, the efficiency is limited because it is only mildly affective for children born at term (46,47). Our study focused on the effect of Cygb over-expression in HI injury and was initially stimulated by the application of gene therapy to various brain diseases. The results showed that Cygb over-expression attenuated cerebral infarction and neuron cell apoptosis caused by HI in neonatal brain (Fig. 5). The protective effect improved long-term neurological function 3 weeks after HI insult (Fig. 8); thus, we propose that Cygb functions as an endogenous neuroprotective protein, providing a new therapeutic target for neonatal HI disease.

Previous findings have shown that Cygb is expressed in distinct regions of the mouse brain as compared with neuroglobin (Ngb), and these regions (hippocampus, thalamus, and hypothalamus) play an important role in protecting from oxidative stress (20). As compared with the adult brain, the immature brain is highly susceptible to oxidative stress because of its high concentration of unsaturated fatty acids, rate of oxygen consumption, and availability of redox active iron, but poorly developed scavenging systems (48). Therefore, oxidative stress is thought to be one of the major factors that induce neuronal cell death in the...
immature brain (49). In this study, MDA and SOD activity were measured to confirm the anti-oxidant role of Cygb in vivo. The results indicated that Cygb could increase neonatal tolerance to HI partly due to its anti-oxidative effect at the early stage of HI injury. The anti-oxidant effects of Cygb have recently been investigated, and emerging evidence has demonstrated a protective role of Cygb against oxidative stress, especially in models of fibrosis that involve hypoxic reperfusion and subsequent oxidative injury (19,25,50-53). It was also reported that Cygb expression protected neuronal cells from oxidative damage in vitro (21,22,54,55); however, it is unclear whether this is a direct anti-oxidative effect of Cygb under HI condition. Downstream signaling in the Cygb pathway may result in these anti-oxidative effects. Due to its NO dioxygenase activity (56-58), Cygb might reduce intracellular NO concentration, which in turn may prevent accumulation of peroxynitrite, a strong oxidant formed from the reaction between superoxidaxide and NO. It has been speculated that Cygb, like other hexacoordinated globins, may eliminate reactive oxygen species (ROS) utilizing haem and thiol residues (59,60), and it has been found that Cygb may reduce the induction of intracellular ROS formation (55,61). The processes of lipid-induced transformation of Cygb from hexa-co-ordinate to penta-co-ordinate may allow the cell to up-regulate antioxidant defenses before extensive oxidative damage occurs (62). Nevertheless, additional studies are required to confirm the pathways and mechanisms of the protein in protecting brain HI damage from oxidative stress.

In our study, we show that Cygb mediates a neuroprotective effect through reducing cerebral infarctions and apoptosis caused by oxidative stress in vivo. Furthermore, the molecular mechanisms and signal pathways which are responsible for the neuroprotective property of Cygb are also of great interest. Fordel et al. reported that the up-regulation of Cygb, as well as Vegf gene, was abrogated in brain tissue of Hif-1 knockout mice upon hypoxia (42,63), and found that the mechanism of Cygb induction is Hif-1α-dependent (63). Guo et al. proposed that Hif-1 could regulate Cygb expression by binding to hypoxia responsive elements (HREs) of the protein (64) which was confirmed by Singh et al. in 2009 (19). Our results show that Hif-1α was not affected by Cygb, supporting the assumption that Hif-1α might be the upstream gene of Cygb in vivo under HI condition. In present study, we found that ischemic infarction could be affected by different expression levels of Cygb (Fig.5, A and B), and both the Vegf mRNA and protein expression levels were regulated by Cygb (Fig.6) which is consistent with previous findings that Cygb may induce the induction and synthesis of Vegf in vitro (16). We also show that Cygb over-expression increased both the density and diameter of microvessels in brain tissue under HI conditions, due at least in part to the Vegf up-regulation. Vegf was found to increase phosphorylation of protein kinase B (Akt) and extracellular-signal regulated kinase 1/2 (ERK1/2) in the cortex in the neonatal rat HI model (65). Jones and Bergeron have found that activation of ERK1/2 contributes to HI-tolerance in the neonatal brain in part by preserving vascular and white matter integrity (66). A role for ERK1/2 in neurons has been demonstrated in neuronal gene expression regulation (CREB, Elk-1, and c-Myc) and long-term potentiation and memory formation (67). Dash et al. demonstrated ERK activation in the hippocampus and cortex during MWM training (68,69), which is consistent with our results that Cygb can promote long-term spatial learning and memory abilities. These findings are strengthened by data suggesting that Vegf can reduce infarct size, improve neurological performance, markedly enhance angiogenesis in the ischemic brain, and reduce neurological deficits during stroke recovery (39,70). Thus, we believe that “Hif-1α-Cygb-Vegf” signaling pathway might be an important part in the Cygb antioxidant mechanism to protect neurons against HI injury in neonatal brain and reduce infarct. An in vitro model confirming this “Hif-1α-Cygb-Vegf” signaling pathway is needed for future study. In addition, it remains to
be tested whether other signal molecules may also act as upstream mediators of Cygb in vivo, such as erythropoietin (EPO), which has been confirmed to have anti-oxidative effects by regulating several downstream genes including Cygb (64).

Since previous studies of Cygb mainly focused on nitric oxide dioxygenase and lipid peroxidase activities, the role of Cygb in process of cell apoptosis remains unknown. Apoptosis is one of many key factors contributing to the injury of developmental brain induced by HI or other insults. Caspase inhibitors have been reported to provide neuroprotection in neonatal rat models (71). Caspase-2 is a developmentally regulated initiator caspase, and recent data has demonstrated that Caspase-2 mediates HI brain injury (38). In our study, we performed a TUNEL apoptosis assay and found a decreased number of apoptotic cells in both the cortex and hippocampus of Cygb over-expression in neonatal rats subjected to HI when compared with Cygb knockdown rats. Our findings demonstrate that Cygb over-expression suppresses the activation of Caspase-2 and Caspase-3. These findings indicate that the Caspase family members are downstream targets in the anti-apoptotic effects of Cygb. In the present study, we show that the anti-apoptotic function of Cygb in neonatal brain was achieved in part through the negative regulation of expression of Caspase-2 and Caspase-3. Previous studies have reported that genetic inhibition of Caspase-2 could reduce neonatal HI brain injury, and that Caspase-3 activity was also attenuated by inhibition of Caspase-2, indicating that Caspase-3 is the downstream gene of Caspase-2 (38). Caspase-3 has also been demonstrated to own a role in regulating ischemic neuronal injury (72), mediated by Vegf, in the regulation of neuronal death under hypoxia (73). Several studies have also suggested that Caspase-2 induced mitochondrial outer membrane permeabilization (MOMP) which led to the release of pro-apoptotic molecules from mitochondria, such as the release of Cytochrome C (74-76) by direct processing of full-length Bid to activated truncated tBid (77). Interestingly, ERK was reported to protect hypoxic cortical neurons via phosphorylation of Bid (78). Thus, it is possible that Cygb plays a neuroprotective role against HI injury partially due to reduction of oxidative stress-mediated caspase-dependent apoptosis.

In conclusion, Cygb, is up-regulated by HI in the neonatal brain. Using gene transfection technique, we demonstrated for the first time that Cygb displayed significant functions of neuronal protection and repair in the HI injured neonatal brain. Also, for the first time it is proposed that Cygb might exert its protective activity by molecular mechanisms of antioxidant and anti-apoptosis, and that the effects of reducing infarct might occur through regulating Vegf expression, thus affecting angiogenesis. Nevertheless, further investigation is required to explain the mechanism by which Cygb contributes to the molecular pathogenesis of neonatal brain HI disease and to pursue the utilization of Cygb in the clinical management of such disorders.
REFERENCES

1. du Plessis, A. J., and Volpe, J. J. (2002) Perinatal brain injury in the preterm and term newborn. *Curr. Opin. Neurol.* **15**, 151-157

2. Ferriero, D. M. (2004) Neonatal brain injury. *N. Engl. J. Med.* **351**, 1985-1995

3. Bass, J. L., Corwin, M., Gozal, D., Moore, C., Nishida, H., Parker, S., Schonwald, A., Wilker, R. E., Stehle, S., and Kinane, T. B. (2004) The effect of chronic or intermittent hypoxia on cognition in childhood: a review of the evidence. *Pediatrics* **114**, 805-816

4. Nelson, K. B., and Lynch, J. K. (2004) Stroke in newborn infants. *Lancet Neurol.* **3**, 150-158

5. Trent, J. T., 3rd, and Hargrove, M. S. (2002) A ubiquitously expressed human hexacoordinate hemoglobin. *J. Biol. Chem.* **277**, 19538-19545

6. Burmester, T., Weich, B., Reinhardt, S., and Hankeln, T. (2000) A vertebrate globin expressed in the brain. *Nature* **407**, 520-523

7. Sun, Y., Jin, K., Mao, X. O., Zhu, Y., and Greenberg, D. A. (2001) Neuroglobin is upregulated by and protects neurons from hypoxic-ischemic injury. *Proc. Natl. Acad. Sci. U S A* **98**, 15306-15311

8. Venis, S. (2001) Neuroglobin might protect brain cells during stroke. *Lancet* **358**, 2055

9. Sun, Y., Jin, K., Peel, A., Mao, X. O., Xie, L., and Greenberg, D. A. (2003) Neuroglobin protects the brain from experimental stroke in vivo. *Proc. Natl. Acad. Sci. U S A* **100**, 3497-3500

10. Jin, K., Mao, Y., Mao, X., Xie, L., and Greenberg, D. A. (2010) Neuroglobin expression in ischemic stroke. *Stroke* **41**, 557-559

11. Yu, Z., Liu, N., Liu, J., Yang, K., and Wang, X. (2012) Neuroglobin, a Novel Target for Endogenous Neuroprotection against Stroke and Neurodegenerative Disorders. *Int. J. Mol. Sci.* **13**, 6995-7014

12. Hoogewijs, D., Ebner, B., Germani, F., Hoffmann, F. G., Fabrizius, A., Moens, L., Burmester, T., Dewilde, S., Storz, J. F., Vinogradov, S. N., and Hankeln, T. (2012) Androglobin: a chimeric globin in metazoans that is preferentially expressed in Mammalian testes. *Mol. Biol. Evol.* **29**, 1105-1114

13. Burmester, T., Ebner, B., Weich, B., and Hankeln, T. (2002) Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues. *Mol. Biol. Evol.* **19**, 416-421

14. Pesce, A., Bolognesi, M., Bocedi, A., Ascenzi, P., Dewilde, S., Moens, L., Hankeln, T., and Burmester, T. (2002) Neuroglobin and cytoglobin. Fresh blood for the vertebrate globin family. *EMBO Rep.* **3**, 1146-1151

15. Geuens, E., Brouns, I., Flamez, D., Dewilde, S., Timmermans, J. P., and Moens, L. (2003) A globin in the nucleus! *J. Biol. Chem.* **278**, 30417-30420

16. Stagner, J. I., Parthasarathy, S. N., Wyler, K., and Parthasarathy, R. N. (2005) Protection from ischemic cell death by the induction of cytoglobin. *Transplant Proc.* **37**, 3452-3453

17. Hankeln, T., Ebner, B., Fuchs, C., Gerlach, F., Haberkamp, M., Laufs, T. L., Roesner, A., Schmidt, M., Weich, B., Wystub, S., Saaler-Reinhardt, S., Reuss, S., Bolognesi, M., De Sanctis, D., Marden, M. C., Kiger, L., Moens, L., Dewilde, S., Nevo, E., Avivi, A., Weber, R. E., Fago, A., and Burmester, T. (2005) Neuroglobin and cytoglobin in search of their role in the vertebrate globin family. *J. Inorg. Biochem.* **99**, 110-119

18. Avivi, A., Gerlach, F., Joel, A., Reuss, S., Burmester, T., Nevo, E., and Hankeln, T. (2010) Neuroglobin, cytoglobin, and myoglobin contribute to hypoxia adaptation of the subterranean mole rat Spalax. *Proc. Natl. Acad. Sci. U S A* **107**, 21570-21575

19. Singh, S., Manda, S. M., Sikder, D., Birrer, M. J., Rothermel, B. A., Garry, D. J., and Mammen, P. P. (2009) Calcineurin activates cytoglobin transcription in hypoxic myocytes. *J.
20. Mammen, P. P., Shelton, J. M., Ye, Q., Kanatous, S. B., McGrath, A. J., Richardson, J. A., and Garry, D. J. (2006) Cytoglobin is a stress-responsive hemoprotein expressed in the developing and adult brain. J. Histochem. Cytochem. 54, 1349-1361

21. Li, D., Chen, X. Q., Li, W. J., Yang, Y. H., Wang, J. Z., and Yu, A. C. (2007) Cytoglobin up-regulated by hydrogen peroxide plays a protective role in oxidative stress. Neurochem. Res. 32, 1375-1380

22. Fang, J., Ma, I., and Allalunis-Turner, J. (2011) Knockdown of cytoglobin expression sensitizes human glioma cells to radiation and oxidative stress. Radiat. Res. 176, 198-207

23. Shivapurkar, N., Stastny, V., Okumura, N., Girard, L., Xie, Y., Prinsen, C., Thunnissen, F. B., Wistuba, II, Czerniak, B., Frenkel, E., Roth, J. A., Liloglou, T., Xinarianos, G., Field, J. K., Minna, J. D., and Gazdar, A. F. (2008) Cytoglobin, the newest member of the globin family, functions as a tumor suppressor gene. Cancer Res. 68, 7448-7456

24. Xinarianos, G., McDonald, F. E., Risk, J. M., Bowers, N. L., Nikolaidis, G., Field, J. K., and Liloglou, T. (2006) Frequent genetic and epigenetic abnormalities contribute to the deregulation of cytoglobin in non-small cell lung cancer. Hum. Mol. Genet. 15, 2038-2044

25. Nishi, H., Inagi, R., Kawada, N., Yoshizato, K., Mimura, I., Fujita, T., and Nangaku, M. (2011) Cytoglobin, a novel member of the globin family, protects kidney fibroblasts against oxidative stress under ischemic conditions. Am. J. Pathol. 178, 128-139

26. Klaunig, J. E., and Kamendulis, L. M. (2004) The role of oxidative stress in carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 44, 239-267

27. Valko, M., Izakovic, M., Mazur, M., Rhodes, C. J., and Telser, J. (2004) Role of oxygen radicals in DNA damage and cancer incidence. Mol. Cell Biochem. 266, 37-56

28. Rice, J. E., 3rd, Vannucci, R. C., and Brierley, J. B. (1981) The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann. Neurol. 9, 131-141

29. Sugiuira, S., Kitagawa, K., Tanaka, S., Todo, K., Omura-Matsuoka, E., Sasaki, T., Mabuchi, T., Matsushita, K., Yagita, Y., and Hori, M. (2005) Adenovirus-mediated gene transfer of heparin-binding epidermal growth factor-like growth factor enhances neurogenesis and angiogenesis after focal cerebral ischemia in rats. Stroke 36, 859-864

30. Shinozaki, K., Ebert, O., Suriawinata, A., Thung, S. N., and Woo, S. L. (2005) Prophylactic alpha interferon treatment increases the therapeutic index of oncolytic vesicular stomatitis virus virotherapy for advanced hepatocellular carcinoma in immune-competent rats. J. Virol. 79, 13705-13713

31. Sagawa, T., Yamada, Y., Takahashi, M., Sato, Y., Kobune, M., Takimoto, R., Fukaura, J., Iyama, S., Sato, M., Miyashita, K., Matsunaga, T., Takayama, T., Kato, J., Sasaki, K., Hamada, H., and Niitsu, Y. (2008) Treatment of hepatocellular carcinoma by AdAFPep/rep, AdAFPep/p53, and 5-fluorouracil in mice. Hepatology 48, 828-840

32. Zheng, F. Q., Xu, Y., Yang, R. J., Wu, B., Tan, X. H., Qin, Y. D., and Zhang, Q. W. (2009) Combination effect of oncolytic adenovirus therapy and herpes simplex virus thymidine kinase/ganciclovir in hepatic carcinoma animal models. Acta. Pharmacol. Sin. 30, 617-627

33. Chen, W., Ma, Q., Suzuki, H., Hartman, R., Tang, J., and Zhang, J. H. (2011) Osteopontin reduced hypoxia-ischemia neonatal brain injury by suppression of apoptosis in a rat pup model. Stroke 42, 764-769

34. Xu, J. K., Chen, H. J., Li, X. D., Huang, Z. L., Xu, H., Yang, H. L., and Hu, J. (2012) Optimal Intensity Shock Wave Promotes the Adhesion and Migration of Rat Osteoblasts via Integrin beta1-mediated Expression of Phosphorylated Focal Adhesion Kinase. J. Biol. Chem. 287, 26200-26212

35. Liu, F., Schafer, D. P., and McCullough, L. D. (2009) TTC, fluoro-Jade B and NeuN staining
confirm evolving phases of infarction induced by middle cerebral artery occlusion. J. Neurosci. Methods 179, 1-8

36. Huang, Y., Shi, X., Xu, H., Yang, H., Chen, T., Chen, S., and Chen, X. (2010) Chronic unpredictable stress before pregnancy reduce the expression of brain-derived neurotrophic factor and N-methyl-D-aspartate receptor in hippocampus of offspring rats associated with impairment of memory. Neurochem. Res. 35, 1038-1049

37. Semenza, G. L. (2001) HIF-1 and mechanisms of hypoxia sensing. Curr. Opin. Cell Biol. 13, 167-171

38. Carlsson, Y., Schwendimann, L., Vontell, R., Rousset, C. I., Wang, X., Lebon, S., Charriaut-Marlangue, C., Supramaniam, V., Hagberg, H., Gressens, P., and Jacotot, E. (2011) Genetic inhibition of caspase-2 reduces hypoxic-ischemic and excitotoxic neonatal brain injury. Ann. Neurol. 70, 781-789

39. Sun, Y., Jin, K., Xie, L., Childs, J., Mao, X. O., Logvinova, A., and Greenberg, D. A. (2003) VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J. Clin. Invest. 111, 1843-1851

40. Greenberg, D. A., Jin, K., and Khan, A. A. (2008) Neuroglobin: an endogenous neuroprotectant. Curr. Opin. Pharmacol. 8, 20-24

41. D’Hooge, R., and De Deyn, P. P. (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res. Brain Res. Rev. 36, 60-90

42. Fordel, E., Geuens, E., Dewilde, S., Rottiers, P., Carmeliet, P., Grooten, J., and Moens, L. (2004) Cytoglobin expression is upregulated in all tissues upon hypoxia: an in vitro and in vivo study by quantitative real-time PCR. Biochem. Biophys. Res. Commun. 319, 342-348

43. Schmidt, M., Gerlach, F., Avivi, A., Laufs, T., Wystub, S., Simpson, J. C., Nevo, E., Saaler-Reinhardt, S., Reuss, S., Hankeln, T., and Burmester, T. (2004) Cytoglobin is a respiratory protein in connective tissue and neurons, which is up-regulated by hypoxia. J. Biol. Chem. 279, 8063-8069

44. Buttner, F., Cordes, C., Gerlach, F., Heimann, A., Alessandri, B., Luxemburger, U., Tureci, O., Hankeln, T., Kempski, O., and Burmester, T. (2009) Genomic response of the rat brain to global ischemia and reperfusion. Brain Res. 1252, 1-14

45. Raida, Z., Reimets, R., Hay-Schmidt, A., and Hundahl, C. A. (2012) Effect of permanent middle cerebral artery occlusion on Cytoglobin expression in the mouse brain. Biochem. Biophys. Res. Commun. 424, 274-278

46. Gluckman, P. D., Wyatt, J. S., Azzopardi, D., Ballard, R., Edwards, A. D., Ferriero, D. M., Polin, R. A., Robertson, C. M., Thoresen, M., Whitelaw, A., and Gunn, A. J. (2005) Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet 365, 663-670

47. Azzopardi, D. V., Strohm, B., Edwards, A. D., Dyet, L., Halliday, H. L., Juszczak, E., Kapellou, O., Levene, M., Marlow, N., Porter, E., Thoresen, M., Whitelaw, A., and Brocklehurst, P. (2009) Moderate hypothermia to treat perinatal asphyxial encephalopathy. N. Engl. J. Med. 361, 1349-1358

48. Ferriero, D. M. (2001) Oxidant mechanisms in neonatal hypoxia-ischemia. Dev. Neurosci. 23, 198-202

49. Greggio, S., de Paula, S., de Oliveira, I. M., Trindade, C., Rosa, R. M., Henriques, J. A., and DaCosta, J. C. (2011) NAP prevents acute cerebral oxidative stress and protects against long-term brain injury and cognitive impairment in a model of neonatal hypoxia-ischemia. Neurobiol. Dis. 44, 152-159

50. Xu, R., Harrison, P. M., Chen, M., Li, L., Tsui, T. Y., Fung, P. C., Cheung, P. T., Wang, G., Li, H., Diao, Y., Krissanssen, G. W., Xu, S., and Farzaneh, F. (2006) Cytoglobin overexpression
Neuroprotective effect of Cygb in a neonatal rat model with HI injury

protects against damage-induced fibrosis. *Mol. Ther.* **13**, 1093-1100

51. Kawada, N., Kristensen, D. B., Asahina, K., Nakatani, K., Minamiyama, Y., Seki, S., and Yoshizato, K. (2001) Characterization of a stellate cell activation-associated protein (STAP) with peroxidase activity found in rat hepatic stellate cells. *J. Biol. Chem.* **276**, 25318-25323

52. Stagner, J. I., Seelan, R. S., Parthasarathy, R. N., and White, K. (2009) Reduction of ischemic cell death in cultured Islets of Langerhans by the induction of cytoglobin. *Islets* **1**, 50-54

53. Mimura, I., Nangaku, M., Nishi, H., Inagi, R., Tanaka, T., and Fujita, T. (2010) Cytoglobin, a novel globin, plays an antifibrotic role in the kidney. *Am. J. Physiol. Renal. Physiol.* **299**, F1120-1133

54. Fordel, E., Thijs, L., Martinet, W., Lenjou, M., Laufs, T., Van Bockstaele, D., Moens, L., and Dewilde, S. (2006) Neuroglobin and cytoglobin overexpression protects human SH-SY5Y neuroblastoma cells against oxidative stress-induced cell death. *Neurosci. Lett.* **410**, 146-151

55. Hodges, N. J., Innocent, N., Dhanda, S., and Graham, M. (2008) Cellular protection from oxidative DNA damage by over-expression of the novel globin cytoglobin in vitro. *Mutagenesis* **23**, 293-298

56. Gardner, A. M., Cook, M. R., and Gardner, P. R. (2010) Nitric-oxide dioxygenase function of human cytoglobin with cellular reductants and in rat hepatocytes. *J. Biol. Chem.* **285**, 23850-23857

57. Halligan, K. E., Jourd'heuil, F. L., and Jourd'heuil, D. (2009) Cytoglobin is expressed in the vasculature and regulates cell respiration and proliferation via nitric oxide dioxygenation. *J. Biol. Chem.* **284**, 8539-8547

58. Li, H., Hemann, C., Abdelghany, T. M., El-Mahdy, M. A., and Zweier, J. L. (2012) Characterization of the mechanism and magnitude of cytoglobin-mediated nitrite reduction and nitric oxide generation under anaerobic conditions. *J. Biol. Chem.* **287**, 36623-36633

59. Petersen, M. G., Dewilde, S., and Fago, A. (2008) Reactions of ferrous neuroglobin and cytoglobin under anaerobic conditions. *J. Inorg. Biochem.* **102**, 1777-1782

60. Fordel, E., Thijs, L., Martinet, W., Schrijvers, D., Moens, L., and Dewilde, S. (2007) Anoxia or oxygen and glucose deprivation in SH-SY5Y cells: a step closer to the unraveling of neuroglobin and cytoglobin functions. *Gene* **398**, 114-122

61. De Beuf, A., Hou, X. H., D'Haese, P. C., and Verhulst, A. (2010) Epoetin delta reduces oxidative stress in primary human renal tubular cells. *J. Biomed. Biotechnol.* **2010**, 395785

62. Reeder, B. J., Svistunenko, D. A., and Wilson, M. T. (2011) Lipid binding to cytoglobin leads to a change in haem co-ordination: a role for cytoglobin in lipid signalling of oxidative stress. *Biochem. J.* **434**, 483-492

63. Fordel, E., Geuens, E., Dewilde, S., De Coen, W., and Moens, L. (2004) Hypoxia/ischemia and the regulation of neuroglobin and cytoglobin expression. *IUBMB Life* **56**, 681-687

64. Guo, X., Philipsen, S., and Tan-Un, K. C. (2007) Study of the hypoxia-dependent regulation of human CYGB gene. *Biochem. Biophys. Res. Commun.* **364**, 145-150

65. Feng, Y., Rhodes, P. G., and Bhatt, A. J. (2008) Neuroprotective effects of vascular endothelial growth factor following hypoxic ischemic brain injury in neonatal rats. *Pediatr. Res.* **64**, 370-374

66. Jones, N. M., and Bergeron, M. (2004) Hypoxia-induced ischemic tolerance in neonatal rat brain involves enhanced ERK1/2 signaling. *J. Neurochem.* **89**, 157-167

67. Sweat, J. D. (2001) The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. *J. Neurochem.* **76**, 1-10

68. Blum, S., Moore, A. N., Adams, F., and Dash, P. K. (1999) A mitogen-activated protein kinase cascade in the CA1/CA2 subfield of the dorsal hippocampus is essential for long-term spatial memory. *J. Neurosci.* **19**, 3535-3544
69. Hebert, A. E., and Dash, P. K. (2002) Extracellular signal-regulated kinase activity in the entorhinal cortex is necessary for long-term spatial memory. Learn Mem. 9, 156-166
70. Zhang, Z. G., Zhang, L., Jiang, Q., Zhang, R., Davies, K., Powers, C., Bruggen, N., and Chopp, M. (2000) VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J. Clin. Invest. 106, 829-838
71. Cheng, Y., Deshmukh, M., D’Costa, A., Demaro, J. A., Gidday, J. M., Shah, A., Sun, Y., Jacquin, M. F., Johnson, E. M., and Holtzman, D. M. (1998) Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. J. Clin. Invest. 101, 1992-1999
72. Schulz, J. B., Weller, M., and Moskowitz, M. A. (1999) Caspases as treatment targets in stroke and neurodegenerative diseases. Ann. Neurol. 45, 421-429
73. Jin, K., Mao, X. O., Batteur, S. P., McEachron, E., Leahy, A., and Greenberg, D. A. (2001) Caspase-3 and the regulation of hypoxic neuronal death by vascular endothelial growth factor. Neuroscience 108, 351-358
74. Guo, Y., Srinivasula, S. M., Druilhe, A., Fernandes-Alnemri, T., and Alnemri, E. S. (2002) Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J. Biol. Chem. 277, 13430-13437
75. Bao, Q., and Shi, Y. (2007) Apoptosome: a platform for the activation of initiator caspases. Cell Death Differ. 14, 56-65
76. Bouchier-Hayes, L., Oberst, A., McStay, G. P., Connell, S., Tait, S. W., Dillon, C. P., Flanagan, J. M., Beere, H. M., and Green, D. R. (2009) Characterization of cytoplasmic caspase-2 activation by induced proximity. Mol. Cell 35, 830-840
77. Kumar, S. (2009) Caspase 2 in apoptosis, the DNA damage response and tumour suppression: enigma no more? Nat. Rev. Cancer 9, 897-903
78. Jin, K., Mao, X. O., Zhu, Y., and Greenberg, D. A. (2002) MEK and ERK protect hypoxic cortical neurons via phosphorylation of Bad. J. Neurochem. 80, 119-125
79. National Institutes of Health (2011) Guide for the Care of Use of Laboratory Animals, NIH Publication 85-23, National Institutes of Health, Bethesda, MD
Conflict of interest statement—All the authors declare that they have no conflicts of interest.

Acknowledgments—The experiments were mainly carried out in the Laboratory of Research Center for Reproductive Medicine, Shantou University Medical College. This study was supported by the Postgraduate Student Training Foundation of Shantou University Medical College (LD0504510817), partially supported by the Chinese National Natural Science Foundation for Young Investigator (31140016), and the Administration of Science & Technology Research of Guangdong Province, China (2010B031600282). In the meanwhile, the authors acknowledge the invaluable help of Mr. Jian-Kun Xu (from Prince of Wales Hospital, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR).

FOOTNOTES

*To whom correspondence should be addressed: Xue-Chuan Shi, Department of Pediatrics, the Second Affiliated Hospital, Shantou University Medical College, North Section of Dong-xia Rd., Shantou, Guangdong 515041, China, Tel.: +86-754-88915666; Fax: +86-754-88346543; E-mail: sxch1957@yahoo.com.cn

1The abbreviations used are: Cygb, Cytoglobin; HI, Hypoxia-ischemia; RT-PCR, reverse transcription polymerase chain reaction; HIF-1α, hypoxia-inducible factor 1 alpha; VEGF, vascular endothelial growth factor; PBS, phosphate-buffered saline; MWM, Morris water maze; TUNEL, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling; TTC, 2,3,5-triphenyltetrazolium chloride; MDA, malondialdehyde; SOD, superoxide dismutase.

FIGURE LEGENDS

Table 1. Primer sequences for PCR amplification.

FIGURE 1. The schedule for the treatment, surgical procedure, and experimental tests (A). Neonatal rats at day 3 were randomly divided into saline, ADV only, Cygb-cDNA-ADV, and Cygb-shRNA-ADV groups before injections. After evaluating temporal change of the expression of Cygb protein preliminarily at 1, 3, 5, and 7 days after vector injection, we identified day 5 as the best time point for assessing the outcomes affected by the expression of Cygb. Then we induced the HI model in the 7-day-old neonatal rats. 24 hours later, brain tissue was harvested. Western blotting, RT-PCR, TTC, Tunel, Nissl, MDA, and SOD assays were carried out. Long-term spatial learning and memory abilities were assessed from day 28 to day 33. Corresponding experiments were conducted in the indicated regions of neonatal brain (B). The green round point indicates the location of the injection. RT-PCR and Western blotting quantitative analysis was conducted using coronal sections of left brain tissues between 3 mm before and 3 mm behind the injection point to in order to measure Cygb mRNA and protein expression (the same area was used for MDA and SOD assays). Brain tissue (including both of cortex and hippocampus areas, approximately 3-4mm) was used for Nissl, Tunel staining, and immunofluorescence examination. Whole brain was used for TTC staining to detect the infarct. Survival rates of neonatal rats from different groups in 36 h after operation (sham or HI treatment) are shown (C). In addition, the survival curves are displayed for rats which were assessed in the MWM test at 28 days (D).

FIGURE 2. Both mRNA and protein expression profiles of Cygb within 36 h after neonatal rats suffered from HI. Cygb mRNA increased in a time-dependent manner in 18 h (A, B). A representative
The electrophoretic image of the study on Cygb protein induced by HI is depicted (C). The results show that Cygb protein levels increased in 6 h, peaking at 24 h post-HI (D). Results are presented as mean ± SD in triplicate independent experiments (n = 3). a indicates that there is no significant difference as compared with the control group at 0 h. b, p < 0.05; c, p < 0.01 as compared with control group at the same time. d, p < 0.05 as compared with HI group at 18 h. e, p < 0.05 as compared with HI group at 24 h.

FIGURE 3. Infection of neonatal brain with Adenovirus carrying Cygb cDNA or shRNA. Cygb expression at various time points was confirmed by western blotting using anti-Cygb antibody. β-actin was used as an internal control. Representative electrophoretic images are depicted (A, C). The results showed that 5 days post-injection, inhibition and over-expression of Cygb reached their peaks (B, D). The ADV-null vector did not affect the expression of Cygb. The data are expressed as mean ± SD in triplicate independent experiments (n = 3 per time point per group). a, indicates that there is no significant difference; b, p < 0.01 as compared with control group; c, p < 0.05 as compared with the 5 days post-injection group. GFP could be detected in the periventricular area in ADV system group (E). Intense GFP (green color) signals could be observed in brain of ADV group at 4 days after ADV vector administration, but there was no GFP positive signal detected in the saline group. The pink arrows point to ADV transfected cells. The original magnifications are shown as labeled. Images of GFP (green color), DAPI stained nuclei (blue color), and Cygb-positive signals (red color, Cy3) for hippocampus (near left Lateral ventricle) are depicted 4 days after injection under normal condition (n = 3; F). Corresponding merged images are also shown. The results are consistent with the western blotting data described above. Original magnification, 400x.

FIGURE 4. The expression of Cygb in HI animals injected with shRNA or cDNA. The expression of Cygb mRNA at 18 h post-HI was confirmed by RT-PCR (A). The expression of Cygb protein at 24 h post-HI was confirmed by Western blotting using anti-Cygb antibody (C). β-actin was used as an internal control. The expression levels of Cygb in sham group were normalized to 1.0. The data are expressed as mean ± SD in triplicate independent experiments (n = 3). The results show endogenous up-regulation of Cygb in rats exposed to HI, and both mRNA and protein levels of Cygb were inhibited by shRNA but enhanced by cDNA at 18 h and 24 h, respectively (B, D). The ADV-null vector did not affect the expression of Cygb. a, p < 0.01 as compared with the sham group; b, indicates there is no significant difference as compared with the saline group; c, p < 0.01 as compared with the saline group.

FIGURE 5. Assessment of infarct volume in neonatal brain induced by HI using TTC staining (A). Data from both TTC staining and Nissl staining showed that over-expression of Cygb reduced brain tissue loss (B, E). Representative photomicrographs of Nissl staining for observing the morphology of neurons in the cortex and hippocampus (CA1) of neonatal rat brains from different groups are shown at two different magnifications (in main panel, scale bar: 20 μm; in the inset, scale bar: 200 μm) (C). In the sham group of Nissl staining, the neuronal cell outline was clear and the structure was compact with abundant cytoplasm and cell body; however, evident neuronal loss and neuronal degeneration were observed in the HI group, saline, ADV vector, and shRNA groups with cells arranged sparsely with vague cell outlines. The number of cells with eumorphism was significantly reduced. Injection of Cygb-cDNA-ADV substantially increased the proportion of neurons that survived. TUNEL staining showed apoptosis in the cortex and hippocampus (CA1) of neonatal rat brains from different groups (D). Scale bar: 200μm. The number of positive cells (dark brown, arrows indicate tunnel positive cells) was much lower in Cygb-cDNA-ADV brains than in HI brains (F). ^: TUNEL positive cells. (E, F) Cell counts per visual field (×400) found in the slides with Nissl staining and TUNEL staining. The
data are expressed as mean ± SD (n = 8). a, p < 0.01 as compared with the sham group; b, indicates there is no significant difference; c, p < 0.01 as compared with the HI group.

FIGURE 6. Cygb exerts its neuroprotective activity via anti-oxidant and anti-apoptotic mechanisms but also promotes angiogenesis. A, the comparison of MDA level and SOD activity among different groups (n = 8). SOD activity was higher in the cDNA treatment group but lower in the shRNA group as compared with HI group. A representative image of Cygb related gene is shown (B). RT-PCR showed that over-expression of Cygb leads to up-regulation of transcriptional level of Vegf, which plays a crucial role in promoting angiogenesis but down-regulates, apoptosis-related genes, Caspase-2 and Caspase-3 (C). β-actin was used as an internal control. The expression of Vegf, Caspase-2, and Caspase-3 were not affected by Cygb transfection under normal conditions (D, E). The data are expressed as mean ± SD in triplicate independent experiments (n = 3). Disrupted microvessels and cell morphology in both HE and anti-CD31 staining images of the ischemic border areas from sham, HI, shRNA+HI and cDNA+HI groups were shown, arrow head: microvessels, scale bar: 200 μm (F, I). Representative images of Vegf immunostaining from the corresponding groups show that the expression of Vegf protein is Cygb-dependent under HI conditions, ↓: Vegf positive cells (G). Quantification of Vegf positive cells/field is also shown (H). Immunohistochemical staining of CD31 of the number and diameter of microvessels in different groups are expressed as mean ± SD in triplicate independent experiments (n = 3) (J, K). a, p < 0.01 as compared with the sham group. b and “ns”, indicates there is no significant difference; c, p < 0.01 as compared with the HI group.

FIGURE 7. The activation of both Caspase-2 and Caspase-3 induced by HI were suppressed by Cygb over-expression. Representative electrophoretic images for both the activation of Caspase-2 (upper) and Caspase-3 (lower) from different groups are depicted (A). The results showed that the active levels of Caspase-2 and Caspase-3 protein were suppressed by Cygb (B, C). Results are presented as mean ± SD in triplicate independent experiments (n = 3). a, p < 0.01 as compared with HI group; ns, not significant.

FIGURE 8. Results from the Morris Water Maze tests (n=8). Repeated measures ANOVA revealed statistically significant differences (p < 0.01) (day*group interaction) between the HI, shRNA and cDNA groups, but did not reveal differences between the saline or ADV-null vectors injection groups (A). ▼, Cygb-shRNA-ADV injection + HI group; ⋄, HI group; □, saline injection + HI group; ■, ADV vectors only + HI group; ▲, Cygb-cDNA-ADV injection + HI group; ○, sham group. On the first day, the escape latency (EL) values of these groups were narrow in range. On the fourth day, the EL of the shRNA group were higher as compared with the HI group; however, EL values in Cygb-cDNA injection group were much lower than those in HI group (p < 0.01). On the fifth day, the sham group had a short swim path to the former platform location, while the rats of the other groups had longer swim paths. The platform crossing (swimming into the area where the former platform was located within 90 seconds after removing the platform) was lower in HI group, saline, and ADV only groups compared with the sham group (p < 0.01). (B). The number of platform crossings in the shRNA injection group was lower compared with HI model group (p < 0.05), also significantly less compared with the cDNA injection group (p < 0.01) (B). The comparison of the percentage of time spent in the target quadrant among different groups (C). a, p < 0.01 as compared with Sham group. b, indicates there is no significant difference; c, p < 0.01 as compared with HI group.

FIGURE 9. Schematic of possible mechanisms by which Cygb reduces brain tissue loss and improves long-term learning and memory abilities under condition of neonatal HI. Hif-1α was induced by hypoxia-ischemia, and the Cygb expression was enhanced by Hif-1α. Expression of Vegf,
which could promote angiogenesis, may be up-regulated by Cygb over-expression. Cygb may exert its anti-apoptotic function via negative regulation of Caspase-2 and Caspase-3 expression, potentially leading to reversal of impairments in neonatal rats that suffered from HI.
Gene Name (ID)	Sequences (Forward/Reverse)	Product Size
Cygb (NM_130744.2)	F: 5'-CCTGGTGAGGTTTTGTGAAC-3'	
 R: 5'-CAGAATGACCCCAGAGAATC-3' | 262bp |
| Hif-1α (NM_024359.1) | F: 5'-TCCATTACCTGCTCTGAAACT-3'
 R: 5'-GGATTCTTCGCTTCTGTCTT-3' | 294bp |
| Caspase-2 (NM_022522.2) | F: 5'-GAGCAATGTGCACTTCCTGG-3'
 R: 5'-CCACACCATGTGAGAGAGTG-3' | 224bp |
| Caspase-3 (NM_012922.2) | F: 5'-GGAGCAGTTTTGTGTTGATGAT-3'
 R: 5'-TCCACTGTCTGTCTCAATACCG-3' | 200bp |
| Vegf (NM_031836.2) | F: 5'-CCGACAGACAGACAGACACC-3'
 R: 5'-CCCAGAAGTGGAGGACAAAAG-3' | 175bp |
| β-actin (NM_031144.2) | F: 5'-ACCCTGAAGTACCCCATTG-3'
 R: 5'-TACGACCAGAGGCATACAG-3' | 247bp |
Neuroprotective effect of Cygb in a neonatal rat model with HI injury

Figure 1

A Assessment of Brain Injury
 TTC, TUNEL, Nissl, MDA, SOD, RT-PCR, Western blot
 Saline, ADV, Cygb-cDNA-ADV, Cygb-shRNA-ADV

Neonatal Rat
 Postnatal day 0 3 7 8 28
 Injection
 Sample Collection
 Treatment

B Establishment of HI model

C Hypoxia-ischemia
 initial No. 287 41 64 63 71 59
 survival 227 33 51 50 50 53

D Survival [%]
 Age of the rats exposed for Morris water maze (s) 7 (2.5) 7 (2.5) 7 (2.5) 7 (2.5) 7 (2.5) 7 (2.5)
Figure 2

Neuroprotective effect of Cygb in a neonatal rat model with HI injury

A

B

C

D

Neuroprotective effect of Cygb in a neonatal rat model with HI injury

by guest on July 9, 2020
http://www.jbc.org/Downloaded from
Figure 3

A

Cygb

β-actin

Control

ADV-Vector

ADV-shRNA-ADV injection

Day 1

Day 3

Day 5

Day 7

B

Cygb protein level

Con

ADV

Day 1

Day 3

Day 5

Day 7

ADV-shRNA injection

C

Cygb

β-actin

Control

ADV-Vector

Day 1

Day 3

Day 5

Day 7

Cygb-cDNA-ADV injection

D

Cygb protein level

Con

ADV

Day 1

Day 3

Day 5

Day 7

ADV-cDNA injection

E

Saline

ADV vector

25x

25x

100x

400x

F

Control

Saline

ADV

shRNA

cDNA

DAPI

GFP

Cy3

Merge
Figure 4

Figure 4

Neuroprotective effect of Cygb in a neonatal rat model with HI injury

A

B

C

D

18 hrs after operation

24 hrs after operation

Relative Expression of Cygb

Relative Expression of Cygb
Neuroprotective effect of Cygb in a neonatal rat model with HI injury

Figure 5

A

B

C

D

E

F

Hypoxia-ischemia

Infection volume (%)

Sham
Saline
ADV
shRNA
cDNA

Hypoxia-ischemia

Cortex

Hippocampus

Cortex

Hippocampus

TUNEL positive cell number

Neuroprotective effect of Cygb in a neonatal rat model with HI injury.
Figure 6

A

SOD activity (U/mg)

120

100

80

60

40

20

0

MDA concentration

(mmol/mg)

120

100

80

60

40

20

0

Sham

HI

Saline+HI

ADV+HI

shRNA+HI

cDNA+HI

B

18 hrs post HI

Cygb

Hif

Vegf

Caspase 2

Caspase 3

β-actin

HI

shRNA

cDNA

C

Fold expression/HI

3.0

2.5

2.0

1.5

1.0

0.5

0

Cygb

Hif

Vegf

Caspase 2

Caspase 3

shRNA

cDNA

D

5 days post-injection

Vegf

Caspase 2

Caspase 3

β-actin

Control

shRNA

cDNA

E

Relative expression level of mRNA to β-actin

0.7

0.6

0.5

0.4

0.3

0.2

0.1

ns

Vegf

Caspase 2

Caspase 3

Control

Injection

shRNA

cDNA

F

Sham

HI

Sham

HI

shRNA+HI

cDNA+HI

shRNA+HI

cDNA+HI

G

% Positive Cells per Field

60

50

40

30

20

10

0

Sham

HI

shRNA

cDNA

H

I

J

K

Vessel Density (1/mm²)

0

10

20

30

40

50

Sham

HI

shRNA+HI

cDNA+HI

Y

Vessel Density (1/mm²; size 15 μm)

0

2

4

6

8

10

12

14

16

18

20

Sham

HI

shRNA+HI

cDNA+HI

28
Figure 7

Neuroprotective effect of Cygb in a neonatal rat model with HI injury

A

24 hrs after operation

HI

Sham Saline ADV shRNA cDNA

Procaspe-2

-48 kDa

Cleaved caspase-2

-14/12 kDa

β-Actin

-45 kDa

Procaspe-3

-35 kDa

Cleaved caspase-3

-19/17 kDa

β-Actin

-45 kDa

B

C

Relative Cleaved Caspase-2 Expression to Procaspe-2

Sham Saline ADV shRNA cDNA

Hypoxia-ischemia

NS

Relative Cleaved Caspase-3 Expression to Procaspe-3

Sham Saline ADV shRNA cDNA

Hypoxia-ischemia

NS

β

Figure 9

Hypoxia-ischemia Injury

HIF-1 alpha

HIF-1 independent

Cygb up-regulation

Vegf

Akt

ERK1/2

Caspases cascade

TUNEL (+)

Cell

Angiogenesis

Apoptosis of Neurons

Adaptation to stress

Potential Mechanisms
Mechanisms of Neuroprotection from Hypoxia-ischemia (HI) Brain Injury by Up-regulation of Cytoglobin (Cygb) in a Neonatal Rat Model
Shu-Feng Tian, Han-Hua Yang, Dan-Ping Xiao, Yue-Jun Huang, Gu-Yu He, Hai-Ran Ma, Fang Xia and Xue-Chuan Shi

J. Biol. Chem. published online April 12, 2013

Access the most updated version of this article at doi: 10.1074/jbc.M112.428789

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts