EttA regulates translation by binding the ribosomal E site and restricting ribosome-tRNA dynamics

Bo Chen1, Grégory Boël1,2,6, Yaser Hashem3,6, Wei Ning4, Jingyi Fei4,5, Chi Wang1, Ruben L Gonzalez Jr4, John F Hunt1,2 & Joachim Frank1,3

Cells express many ribosome-interacting factors whose functions and molecular mechanisms remain unknown. Here, we elucidate the mechanism of a newly characterized regulatory translation factor, energy-dependent translational throttle A (EttA), which is an Escherichia coli representative of the ATP-binding cassette F (ABC-F) protein family. Using cryo-EM, we demonstrate that the ATP-bound form of EttA binds to the ribosomal tRNA-exit site, where it forms bridging interactions between the ribosomal L1 stalk and the tRNA bound in the peptidyl-tRNA–binding site. Using single-molecule fluorescence resonance energy transfer, we show that the ATP-bound form of EttA restricts ribosome and tRNA dynamics required for protein synthesis. This work represents the first example, to our knowledge, in which the detailed molecular mechanism of any ABC-F family protein has been determined and establishes a framework for elucidating the mechanisms of other regulatory translation factors.

The efficient function of cells requires that ribosome biogenesis and activity be regulated in response to changing environmental and metabolic conditions1. However, the understanding of the molecular mechanisms of many of these regulatory processes has remained limited, despite their biological importance. Many ribosome-interacting proteins beyond the canonical translation factors have been identified that are believed to function as regulatory translation factors1,2. Unfortunately, it has been possible to elucidate the exact physiological role and mechanism of action for only a relatively small subset of such regulatory translation factors. The limited progress in this area has impeded the development of atomic-resolution mechanistic models for translation regulation, despite the tremendous progress that has been made over the past two decades in understanding ribosome structure3,4 and many other aspects of protein synthesis. In the current study, we used a combination of biophysical methods to develop such a model for a new translational regulatory factor called EttA, which, to our knowledge, is characterized for the first time in Boël et al.5. Close coordination of the work reported in these two papers has provided a unique opportunity to dissect the function and mechanism of EttA, which belongs to the ubiquitously distributed ABC-F protein family.

Protein synthesis by the ribosome is a highly dynamic molecular process, particularly during the stage of polypeptide chain elongation. This stage involves cyclical execution of three steps: (i) binding of a cognate aminoacylated tRNA to the mRNA codon at the aminoacyl-tRNA–binding (A) site on the ribosome; (ii) synthesis of the next peptide bond in the peptidyl transferase center (PTC) on the ribosome, a process that results in transfer of the nascent polypeptide chain from the tRNA bound in the peptidyl-tRNA–binding (P) site to the newly bound tRNA in the A site; and (iii) translocation of the mRNA and the cognate tRNAs located in both the P and A sites, which moves these tRNAs to the exit (E) and P sites, respectively. Cryo-EM5,6 and single-molecule fluorescence resonance energy transfer (smFRET)7–11 measurements have been used to characterize the structure and dynamics of the ribosomal pretranslocation (PRE) complex that has completed the first two steps in the elongation cycle but not the third. These studies demonstrate that the PRE complex exists in a spontaneous equilibrium between two global conformational states, called macrostates I and II (MS-I and MS-II)12 or global states 1 and 2 (GS1 and GS2)11. This equilibrium has a central role in the translocation of the bound mRNA and tRNAs in the final step of the elongation cycle7–11,13.

Cryo-EM studies of PRE complexes have shown that the transition from MS-I to MS-II involves a counterclockwise, ratchet-like rotation of the small ribosomal subunit relative to the large ribosomal subunit (when viewed from the solvent-accessible side of the small subunit)14. This rotation, which is accompanied by movement of the L1 stalk on the large subunit toward the small subunit, is coupled to a reconfiguration of the ribosome-bound tRNAs and moves them into a ‘hybrid’ state in which their acceptor stems are closer to their post-translocation locations4,15. Modulation of the transition from MS-I to MS-II by the universally conserved translation factor EF-G is essential for efficient translocation during the elongation cycle8,11. The transition from MS-I to MS-II also represents a conceptually attractive point for modulation of the elongation cycle by...
regulatory translation factors, but, until now, no such regulatory factor has been demonstrated to act via this mechanism.

Deep understanding of the mechanism by which EF-G drives translocation has been achieved by combining insight from three types of studies. First, elegant biochemical studies have demonstrated that the binding and hydrolysis of GTP by EF-G drives efficient directional translocation on the ribosome. Second, cryo-EM and X-ray crystal structures of EF-G complexes with the ribosome have elucidated the structural basis for this activity, which involves stabilization of the ribosomal PRE complex in the MS-II conformation by GTP-bound EF-G. Finally, smFRET studies have characterized the dynamics of the translocation process, revealing that the ribosome undergoes spontaneous fluctuations between the MS-I and MS-II states before EF-G binding.

The essential eukaryotic and archaeal translation factor ABCE1 (or RLI1) provides another example of the power of synergistic structural and functional studies. This protein belongs to the ABC-E family, which represents a different phylogenetic lineage from the ABC-F family within the ATP-binding cassette (ABC) protein superfamily. Cryo-EM studies have shown that ABCE1 (or RLI1) binds near the A site on the ribosome, at the interface between the small and large ribosomal subunits, results consistent with its previously demonstrated biochemical activity in dissociating the small and large ribosomal subunits to recycle them from post-termination complexes or stalled ribosomes. Combined with X-ray crystal structures of ABCE1 (ref. 22) and model ABC-transporter domains, the cryo-EM structures of ribosome-bound ABCE1 have led to an atomic-resolution model for the mechanism of ABCE1-catalyzed ribosome recycling. ATP binding at the interface between the two ATPase domains in ABCE1 is proposed to drive a mutual rotation of these domains that mechanically pries apart the small and large ribosomal subunits. However, interpretation of ribosome structures with some other translation factors has been impeded by uncertainty as to their exact physiological and biochemical activities, as discussed in the Supplementary Note.

Boël et al. demonstrate that a protein that they renamed EttA (energy-dependent translational throttle A, formerly known as YjjK) gates the entry of 70S ribosomal initiation complex (70S IC) into the translational elongation cycle via a different interaction in the presence of ATP versus ADP. EttA is one of four E. coli paralogs belonging to the ABC-F protein family. This phylogenetically distinct lineage within the ABC protein superfamily has multiple representatives in the vast majority of eubacterial genomes and all eukaryotic genomes but very limited prior functional characterization. In this study, we set out to characterize the molecular mechanism of EttA. We used cryo-EM and smFRET to characterize the interaction, with ribosomes, of an EttA variant (EttA-EQ2) that is locked in the ATP-bound conformation by mutations in the catalytic bases located in its dual ATPase active sites. Our results demonstrate that ATP-bound EttA-EQ2 binds to the ribosomal E site and kinetically traps the ribosomal PRE complex in the MS-I state. Therefore, EttA regulates translation by modulating the ribosome and tRNA dynamics required for polypeptide elongation.

These studies highlight the technical and conceptual advantages of close coordination of functional biochemical experimentation with structural and biophysical studies. This close coordination has provided insight into a sophisticated translational regulatory process at a level of detail and confidence seldom achieved in the past.

RESULTS

The ATP-bound form of EttA binds tightly to the ribosome

We began our structural characterization by using the ATPase-deficient mutant of EttA (EttA-EQ2), which traps the protein in the ATP-bound conformation, on the basis of extensive evidence summarized in Boël et al. Using in vivo Ni2+-nitrilotriacetic acid pulldown experiments (Supplementary Fig. 1), we isolated EttA-EQ2–bound 70S ribosomes at an estimated EttA-EQ2/70S molar ratio of ~1:1 from an E. coli strain overexpressing N-terminal hexahistidine-tagged EttA-EQ2 (His6-EttA-EQ2). In contrast, we did not detect 70S ribosomes in control pulldown experiments using wild-type His6-EttA or untagged EttA (Supplementary Fig. 1). These results immediately suggested that the interaction of EttA-EQ2 with 70S ribosome is sufficiently specific and stable for structural characterization of the EttA-EQ2–bound ribosomal complexes.

Preparation of EttA-EQ2–bound ribosomal PRE complex

We therefore used cryo-EM and single-particle reconstruction methods to investigate the structure of EttA-EQ2–bound ribosomal complexes. We used a purified in vitro translation system to assemble 70S IC–containing N-formylmethionine (fMet)–bound tRNAfMet on a model mRNA encoding initiator Met–Phe–Lys residues.
(Supplementary Note). EttA-EQ2 together with ATP and the ternary complex Phe-tRNA^{Phe}–EF-Tu–GTP were added sequentially to this 70S IC to produce 70S PRE complex. We performed translational activity assays in parallel with cryo-EM sample preparation by using radiolabeled [35S]fMet-tRNA^{Met} to enable analysis of the peptide products with electrophoretic thin-layer chromatography (eTLC) assays. These assays included EF-G–GTP and Lys-tRNA^{Leu}–EF-Tu–GTP to promote translocation and to enable tripeptide synthesis (although we omitted these components from the reactions used to prepare samples for cryo-EM analysis). The translational activity assays yielded ~60% [35S]Met-Phe dipeptide but only ~10% [35S]Met-Phe-Lys tripeptide (Supplementary Fig. 2), thus confirming the translation activity of the ribosomes and also its inhibition by EttA-EQ2 (as characterized in Boël et al.4).

Cryo-EM reconstruction of the EttA-EQ2–bound PRE complex

After single-particle reconstruction and classification (Online Methods, Supplementary Note and Supplementary Fig. 3), we obtained a major class comprising 70S ribosomal complexes (class I, 36% of the total data set, 7.5-Å resolution; Supplementary Fig. 3b) containing masses of density at the A and P sites that are attributable to A- and P-site tRNAs as well as an additional mass at the E site that is too large to be attributable to a bound tRNA (Fig. 1). We assigned this density, on the basis of its size and shape (Fig. 1d,e), to monomeric EttA-EQ2. This assignment was confirmed by a standard E-site binding assay28, which demonstrated that a saturating amount of EttA-EQ2 almost completely inhibits the binding of deacylated tRNA to the ribosomal E site (Fig. 2). On the basis of the aforementioned translational activity assays (Supplementary Fig. 2), the ribosome particles in class I represent translation-active ribosomal PRE complex stalled by EttA-EQ2, which should contain deacylated tRNA^{fMet} at the P site and fMet-Phe-tRNA^{Phe} at the A site. Thus, we assigned the reconstruction from class I to the EttA-EQ2–bound PRE complex.

The structure of the EttA-EQ2–bound ribosome derived from the class I density map is similar to that of a PRE complex in MS-I,12,27 (Fig. 3). However, previous cryo-EM studies on PRE complexes captured two classes of 70S ribosomes that were in MS-I and MS-II conformations, respectively, under similar polyamine-containing, low-Mg2+-concentration buffer conditions and in the absence of translation factors28. Therefore, our cryo-EM observation that the EttA-EQ2–bound PRE complexes homogenously exhibit only the MS-I conformation suggests that EttA-EQ2 stabilizes 70S ribosome in the MS-I state and prevents the ribosome from advancing to the state required for translocation, an inference validated by smFRET experiments presented below.

Fitting the structure of the EttA-EQ2–bound PRE complex

To gain more insights into the detailed interactions between EttA-EQ2 and the bound ribosomal complex, we fitted the atomic structure of the EttA-EQ2–bound PRE complex into the class I density map by using molecular dynamics flexible fitting (MDFF)23. We first built a structural model of monomeric EttA in the ATP-bound conformation by using the crystal structure of nucleotide-free EttA2 (ref. 4). We superimposed the two ABC domains in EttA (ABC1 and ABC2) onto the respective domains in the cryo-EM map of the EttA-EQ2–bound PRE complex (Fig. 4). We then flexibly fitted the remaining domain of EttA (ABC3) until a fitting protocol was found that minimally improved the structure-factor correlation coefficient between the EttA-EQ2–bound PRE complex and the cryo-EM map. The resulting model revealed that EttA-EQ2 lies in the E site on the 70S ribosome (Fig. 4).

Figure 2 Ribosome E-site binding assay. Filter-binding assay evaluating the influence of increasing concentration of EttA-EQ2 on the interaction of deacylated [35S]tRNA^{fMet} with the E site on 70S ribosomes (0.2 µM) after a 2-min incubation at 4 °C in 20 mM Tris-HCl, pH 7.4, 100 mM NH4Cl, 10 mM Mg(OAc)2 and 0.1 mM Mg-ATP. The graph shows the fraction of ribosomes retaining an E-site tRNA after three washes on a nitrocellulose filter with 20 mM Tris-HCl, pH 7.4, 100 mM NH4Cl, 20 mM Mg(OAc)2 and 1 mM EDTA.

Figure 3 Characterization of the global conformation of EttA-EQ2–bound ribosome. (a,b) Superimposition of the cryo-EM map of the EttA-EQ2–bound PRE complex determined here on that of the 70S–tRNA^{fMet}–MF–tRNA^{Phe} PRE complex in MS-I,27 (a) or on that of the 70S–tRNA^{fMet}–EF–G–GDPNP complex with puromycin in MS-II6 (b), as viewed from the solvent side of the 30S subunit. (c–e) Comparison of EttA’s binding site on the 70S ribosome (c) with those of E-site tRNA (d) and EF-P (e), as viewed from the 30S-subunit side of the intersubunit interface. The 30S subunit and A-site tRNA are not shown, to provide clear visualization of the factors and P-site tRNAs. Labels are as in Figure 1. (e) Map calculated from the X-ray crystal structure of the T. thermophilus 70S-ribosome complex with elongation factor EF-P20, displayed in the same manner and orientation as in c and d. (f) Comparison of the positions of the L1 stalk in the 70S–EttA-EQ2 and 70S PRE complex, showing superposition of the cryo-EM maps in the boxed regions in c and d. The maps are colored as in a.
ABC2) onto those in the crystal structure of a homologous ABC domain that crystallizes in the form of an ATP-bound homodimer (PDB 2PZE). We performed alignment separately in the F1-like ATP-binding core and the α-helical subdomain of each of the two ABC domains in EttA, in order to account for the subdomain rotation that occurs upon ATP binding to ABC domains (Online Methods and Fig. 4). After rigid-body fitting of the resulting ATP-bound EttA model into the isolated cryo-EM density corresponding to EttA-EQ2, we were able to unambiguously assign the two protrusions in the density to unique structural features in EttA relative to other ABC proteins. One of these, the arm (residues 95–139), is an α-helical hairpin extending from the surface of the α-helical subdomain in ABC1, whereas the other, the inter–ABC-domain linker (residues 242–322, named the PtIM below), contains a long α-helical extension at the C terminus of ABC1 (Fig. 4). That the similarity of the cryo-EM map is substantially higher to the modeled ATP-bound conformation of EttA than to the conformation observed in its nucleotide-free crystal structure, measured by cross-correlation coefficient, strongly supports the inference that EttA-EQ2 binds to the ribosome in the standard ATP-bound conformation observed for other ABC domains (Online Methods).

After positioning the ATP-bound model of EttA into the class I density map, we used MDeFF to fit into that map the composite atomic structure of the complex containing the 70S ribosome, A-site and P-site tRNAs and EttA (Supplementary Fig. 4 and Online Methods). In the resulting structure (Fig. 5), the ABC1 and ABC2 domains of EttA lie close to the 50S and 30S subunits, respectively. ABC1 contacts helices 68 and 77 of 23S rRNA as well as ribosomal proteins L1 and L33 on the 50S subunit. ABC2 contacts helices 41 and 42 of 16S rRNA as well as ribosomal proteins L5 and L33 on the 50S subunit and ribosomal protein S7 on the 30S subunit (Fig. 5b,d and Supplementary Table 1). The N terminus of EttA is solvent exposed, in agreement with our ability to pull down EttA-EQ2–bound ribosomes via an N-terminal His6 tag on EttA (Supplementary Fig. 1). Notably, the regions of the ABC domains flanking the two nucleotide-binding sites in EttA are also solvent accessible, thus suggesting that EttA should be able to undergo nucleotide exchange while bound to the 70S ribosomal complex.

The arm region of EttA interacts extensively with the L1 stalk of the 50S ribosomal subunit, burying ~1,400 Å² of surface area on EttA that would otherwise be solvent accessible (Fig. 3e and Supplementary Table 1). This structural interaction is likely to contribute to the tight binding that is observed between EttA-EQ2 and the PRE complex and to the putative stabilization of the PRE complex in the MS-I conformation. These inferences are supported by the observation that E. coli strains expressing an EttA-EQ2 variant lacking the arm (EttA-Aarm-EQ2) do not exhibit the strong trans-dominant toxicity phenotype observed in E. coli strains expressing full-length EttA-EQ2 (ref. 4). The conformation of the L1 stalk observed in the EttA-EQ2–bound ribosome is more open than was previously observed in the MS-I conformation of PRE complexes containing an E-site tRNA (Fig. 3f). Comparison of these structures indicates that L1 stalk pivots by ~14° around the hinge region at the base of helix 76 in 23S rRNA, as viewed from the 30S subunit. Moreover, the L1 stalk conformation observed in the EttA-EQ2–bound ribosome is similar to the most open L1 stalk conformation that has been observed in the MS-I conformation of PRE complexes lacking an E-site tRNA (class 2 in ref. 32).

EttA-EQ2 contacts identity elements on the P-site tRNA Met EttA-EQ2 bound to the PRE complex has direct access to structural elements in the P-site tRNA that distinguish initiator tRNAfMet from most elongator tRNAs, namely the C1-A72 mismatch (based on tRNA numbering in ref. 33) and the so-called C17pU17a bulge or ‘CpU bulge’ (described below). The cryo-EM density map (Fig. 1d) shows that the side of EttA-EQ2 facing the P site exhibits a shape that is complementary to the P-site tRNA. The atomic model produced by MDeFF fitting of this density map shows direct contact between the inter–ABC-domain linker of EttA-EQ2 and the aminoacyl-acceptor stem of the P-site tRNA. Notably, the Pfam database identifies the first 70 of the 80 residues in the inter–ABC-domain linker (residues 242–312) as a conserved domain in its own right, which is called PF12484. On this basis, we have designated the inter–ABC-domain linker of EttA-EQ2 as the P-site tRNA interaction motif, PtIM (Supplementary Fig. 5a). Some of the conserved residues in the PtIM interact directly with helices 68, 69 and 74 in 23S rRNA as well as with the P-site tRNAfMet (Supplementary Table 1), residues that...
seem likely to stabilize the observed conformation of the PtIM. Analysis of the class III cryo-EM map, obtained from ribosome particle classification, support this hypothesis. The class III map contains density for EttA but not for tRNA molecules in either the P or A site on the ribosome (Supplementary Fig. 6 and Supplementary Note). In these tRNA-free particles, the EttA density is substantially weaker in the region of the PtIM connected to ABC2 compared to the density in the same region of EttA in the class I map, which has tRNA molecules bound in both the A and the P site (comparison of Fig. 1 and Supplementary Fig. 6). These observations suggest that PtIM makes functionally important stabilizing interactions with the P-site tRNA, in the absence of which the PtIM fails to adopt a well-defined conformation when EttA is bound to ribosomes.

The C1-A72 mismatch at the end of the aminoacyl-acceptor stem is a structural feature that distinguishes initiator tRNAfMet from most elongator tRNAs35 (Supplementary Fig. 5b). In the MDFF-fitted structure of the EttA-EQ2–bound PRE complex, the aminoacyl-acceptor stem of tRNAfMet interacts with several positively charged residues at the distal end of the PtIM (residues 275–286), including Arg277 and Lys281 (Fig. 5e and Supplementary Table 1). Another distinguishing feature of tRNAfMet is the CpU bulge within the dihydrouridine loop (D loop)33, which comprises bases C17 and U17a (where ‘17a’ refers to an additional nucleotide between 17 and 18). This feature is present in both isoforms of initiator tRNAfMet as well as in two of three isoforms of tRNAfMet in E. coli but is absent from all other elongator tRNAs (Supplementary Fig. 5b). The two bases of the CpU bulge are flipped out of the elbow region of the tRNA in crystal structures of E. coli tRNAfMet either alone36 or bound at the P site of the Thermus thermophilus 70S ribosome37. In the class I density map, this bulge is prominent in the P-site tRNA but missing in the A-site tRNA (Figs. 1d and 5d), observations consistent with the assignment of tRNAfMet at the P site and tRNAfMet at the A site. Several residues in EttA-EQ2, including residues 299–302 in PtIM and a region on the surface of ABC2, may interact with the CpU bulge of tRNAfMet (Supplementary Table 1). Taken together, the interactions of EttA-EQ2 with the aminoacyl-acceptor stem and the CpU bulge of tRNAfMet suggest that EttA is capable of interacting more strongly with ribosomes bearing tRNAfMet rather than elongator tRNAs in the P site, an inference consistent with biochemical assays presented in Boël et al. showing that EttA interacts preferentially with the 70S IC compared to ribosomes that have entered the elongation cycle4.

EttA-EQ2 binding restricts ribosome and tRNA dynamics

To explore the mechanism through which EttA’s interactions with the 70S ribosome and the P-site tRNA regulate protein synthesis, we turned to smFRET experiments (Fig. 6). These experiments have been used extensively to characterize how translation factors modulate the dynamics of 70S ribosomal complexes as part of the mechanisms through which they regulate translation8,10,11,38,39. We conducted initial experiments by using a previously developed smFRET signal between the L1 stalk and a deacylated P-site tRNA.
(smFRET-L1-tRNA)11 in a ribosomal PRE complex analog with an empty A site (PRE–A\textsubscript{Phe}). Control smFRET-L1-tRNA experiments recorded in the absence of EttA-EQ\textsubscript{2} exhibited fluctuations between FRET states centered at a FRET efficiency (\(E_{\text{FRET}}\)) of 0.15, associated with MS-I, and \(E_{\text{FRET}}\) = 0.74, associated with MS-II (Supplementary Fig. 7, Supplementary Table 2 and Online Methods). In contrast, smFRET-L1-tRNA experiments recorded in the presence of 1.8 \(\mu\)M EttA-EQ\textsubscript{2} and 2 mM ATP showed a dramatic shift in the MS-I→MS-II equilibrium of the PRE–A\textsubscript{Phe} complex to a FRET state centered at \(E_{\text{FRET}}\) = 0.15, consistently with stabilization of the ribosome in MS-I by EttA-EQ\textsubscript{2} in the presence of ATP.

To more sensitively and directly investigate the conformational dynamics of the L1 stalk, we next used a previously described smFRET signal between the apical tip and the base of the L1 stalk (smFRET-L1-L9)10 in a PRE–A\textsubscript{Phe} complex containing a deacylated P-site tRNAMet and an empty A site (PRE–A\textsubscript{Met}) (Fig. 6, Supplementary Table 2 and Online Methods). Control experiments recorded in the absence of EttA or EttA-EQ\textsubscript{2} exhibited fluctuations between FRET states centered at \(E_{\text{FRET}}\) = 0.56, associated with the open L1 stalk in MS-I, and \(E_{\text{FRET}}\) = 0.35, associated with the closed L1 stalk in MS-II. In contrast, smFRET-L1-L9 experiments recorded in the presence of 6 \(\mu\)M EttA (i.e., the wild-type protein) and 2 mM ATP showed exclusive population of the FRET state centered at \(E_{\text{FRET}}\) = 0.56, demonstrating that EttA shifts the conformational equilibrium of the ribosome toward the MS-I state with an open conformation of the L1 stalk. Experiments recorded in the presence of 6 \(\mu\)M EttA-EQ\textsubscript{2} and 2 mM ATP demonstrated an even stronger effect, with shifting of the open L1 stalk→closed L1 stalk equilibrium toward a FRET state centered at \(E_{\text{FRET}}\) = 0.62 that is even higher than the \(E_{\text{FRET}}\) observed for the open L1 stalk in MS-I. This result suggests that EttA-EQ\textsubscript{2} stabilizes a conformation of the L1 stalk in which the mean separation between the labeling positions on ribosomal proteins L1 and L9 is slightly shorter than that observed for the open L1 stalk in MS-I, conclusions consistent with those from our cryo-EM studies.

DISCUSSION

We propose, on the basis of the work reported here and in Boël et al.4, a model for the regulation of translation by EttA at the start of the elongation cycle (Fig. 7). ATP-bound EttA docks initially to the E site of a 70S IC. Upon accommodation of an aminocacylated tRNA in the A site of this complex, the ATP-bound form of EttA stimulates peptide-bond formation4 by modulating the conformation of the PTC on the ribosome, thus resulting in formation of a 70S PRE complex, which is stabilized in the MS-I state by EttA. Modulation of the conformation of the PTC is mediated by the interactions of EttA with ribosomal proteins, rRNA and the acceptor stem of the P-site tRNA, which is proximal to the PTC. The ATPase activity assays presented in Boël et al.3 suggest that these EttA-ribosome interactions reciprocally stimulate ATP hydrolysis by EttA. ATP hydrolysis by EttA is hypothesized to drive the two ABC domains apart10 into a conformation that is no longer compatible with ribosome binding, thereby triggering release of EttA. After EttA’s dissociation, the PRE complex regains the capability to undergo MS-I→MS-II transitions, thereby permitting EF-G binding and translocation to occur and completing the process by which EttA gates entry of the 70S IC into the translational elongation cycle. In contrast, the ATPase-deficient EttA-EQ\textsubscript{2} mutant protein, which is trapped in the ATP-bound conformation, remains bound to the PRE complex and keeps it stalled in MS-I.

The cryo-EM structure shows that the arm and the toe of EttA—structural elements found in EttA and other ABC-F proteins—but not in other ABC superfamily proteins—both contact structural elements of the large ribosomal subunit within the 70S PRE complex (Fig. 5b,d and Supplementary Table 1). Specifically, the arm of EttA makes extensive contacts with the L1 stalk of the large ribosomal subunit while the toe of EttA contacts the ribosomal protein L5. The functional importance of the observed interaction of EttA’s arm with the L1 stalk of the ribosome is supported by genetic complementation experiments presented in Boël et al.4. The cryo-EM structure reported here verifies the inference in Boël et al.4, based on the crystal structure of EttA, that these structural elements unique to ABC-F proteins mediate contact with some functional interaction partner. The crystal structure of EttA reported in Boël et al.4 shows that these structural
elements are inserted at the sites at which ABC domains contact the transmembrane domains in ABC transporters41–43. Notably, a chromodomain inserted in the equivalent loop in the second ABC domain of eEF3 mediates interaction with a different region of the ribosome44.

On the basis of the peripheral, solvent-exposed location of the ATP-binding sites in EttA in the ribosome-bound structure reported here, nucleotide exchange on EttA should be able to occur while EttA remains bound to the ribosome. The monomer structure fit to the cryo-EM map shows closure of the interface between ABC1 and ABC2, as compared to the nucleotide-free crystal structure of EttA4, that yields a conformation in which the two ABC domains interact in a geometry equivalent to that observed in a wide variety of other ATP-bound ABC proteins (including that in the crystal structure of the E-to-Q mutant of MJ0796)40,43,45,46. This structural observation supports the inference made in Boël et al.4, based on results obtained with a wide variety of ABC proteins, that the EQ2 mutations trap EttA in an ATP-bound conformation.

Specific structural interactions between EttA and the P-site tRNA visualized in the cryo-EM structure reported in this paper could contribute to the specificity of EttA for the 70S IC compared to elongating ribosomes4. The PtIM and ABC2 domains of EttA interact with two distinguishing structural features of initiator tRNA_{Met}, the C1–A72 mismatch and the CpU bulge, the first of which does not occur in any other tRNA and the second of which occurs in only some isoforms of tRNA_{Pro}. Notably, there are several parallels between the mechanism proposed here for EttA and that previously proposed for the elongation factor EF-P47. Both EF-P47 and EttA4 have been proposed to modulate the conformation of the PTC to control the peptidyl-transferase activity of the ribosome when a tRNA containing the CpU bulge is bound in the P site, as discussed in the Supplementary Note.

Boël et al.4 also present evidence that, in the presence of ADP, EttA stabilizes the 70S IC in a hibernating state that prevents synthesis of the first peptide bond on the ribosome4. The cryo-EM structure reported here helps guide development of an integrated model for this activity and the functional interaction of EttA with 70S IC. The global conformation of the ribosome in the hibernating state stabilized by EttA in the presence of ADP is likely to be similar to that of the EttA-EQ2–bound PRE complex in the presence of ATP reported in this paper, but it must have important local conformational differences in the vicinity of the PTC to inhibit, rather than promote, peptide-bond formation. The lifetime of this hibernating state is likely to be longer than the lifetime of the state stabilized by EttA in the presence of ATP because in the latter state, ATP hydrolysis by EttA presumably promotes a conformational change of EttA accelerating its release from the ribosome. In the absence of this driving force produced by ATP hydrolysis, EttA in the presence of ADP presumably remains bound to the ribosome longer. Our cryo-EM structure suggests that nucleotide exchange could take place on EttA while it remains bound to the ribosome. Upon binding ATP, ribosome-bound EttA should drive peptide-bond formation. EttA would then be rapidly released from the ribosome upon ATP hydrolysis (Fig. 7), which would induce escape of the ribosome from the hibernating state stabilized by EttA in the presence of ADP. In contrast, under conditions of energy depletion, which results in an elevated concentration of ADP compared to ATP48,49, competition of ADP with ATP for interaction with the ATPas active sites in ribosome-bound EttA could perpetuate the hibernating state and prevent the ribosome from entering the translation elongation cycle. This model for the mechanism of nucleotide exchange and ATP hydrolysis by ribosome-bound EttA, while consistent with the biochemical results presented by Boël et al.4 and the cryo-EM structure presented here, must be critically evaluated in future research on this system.

In conclusion, the research reported in this paper demonstrates that the ATP-bound form of EttA interacts with the E site of the 70S ribosome in the MS-I state and modulates the transition of the translating ribosome from MS-I to MS-II. This molecular mechanism used by EttA is new among those of all the known translational regulatory factors. Future work is needed to validate EttA’s specificity for ribosomes with an initiator tRNA_{Met} in the P site and to provide more details on the mechanism of ATP hydrolysis on the ribosome-bound EttA. The methods used to characterize EttA in this paper and in Boël et al.4 provide a paradigm to evaluate whether translation is modulated in a related manner by other established and putative translation factors, including the many uncharacterized proteins in the ABC-F protein family (for example, Uup, YbiT and YheS in E. coli).

METHODS
Methods and any associated references are available in the online version of the paper.
Accession codes. The EM maps have been deposited in the Electron Microscopy Data Bank under accession codes EMD-5784 (class I), EMD-5785 (class II) and EMD-5786 (class III). Coordinates of the EM-based model for class I have been deposited in the Protein Data Bank under accession number 3J5S.

Note: Any Supplementary Information and Source Data files are available in the online version of the paper.

ACKNOWLEDGMENTS
This work was supported by Howard Hughes Medical Institute and US National Institutes of Health (NIH) grants (R01 GM29149 and GM55440) to J.E.; an NIH grant (U01CA105658) and a US National Science Foundation (NSF) grant (0424043) to J.F.H.; a Burroughs Wellcome Fund Career Awards in the Biomedical Sciences (CABS 1004856), an NSF CAREER Award (MCB 0644262) and an NIH National Institute of General Medical Sciences grant (R01 GM084288) to R.L.G. The authors thank R.A. Grassucci for assistance with cryo-EM data collection and M. Thomas and C. Kinz-Thompson for assistance with the preparation of illustrations. We thank members of the Frank, Hunt and Gonzalez laboratories for advice and technical assistance.

AUTHOR CONTRIBUTIONS
G.B., J. Fei, J.F.H., R.L.G. and J. Frank designed the experiments. G.B. performed biochemical studies and prepared the biological samples for cryo-EM. B.C. collected cryo-EM data and performed 3D reconstruction. Y.H., B.C. and C.W. performed the modeling, fitting and analysis. W.N. and J. Fei collected and analyzed smFRET data. B.C., G.B., Y.H., W.N., R.L.G., J.F.H. and J. Frank wrote the manuscript; all authors approved the final manuscript.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

The authors thank R.A. Grassucci for assistance with cryo-EM data collection and analysis smFRET data. B.C., G.B., Y.H., W.N., R.L.G., J.F.H. and J. Frank wrote the manuscript; all authors approved the final manuscript.

© 2014 Nature America, Inc. All rights reserved.
ONLINE METHODS

Pulldown of 70S ribosome with His6-EttA-EQ2. These methods are described in the Supplementary Note.

smFRET experiments on PRE–AfMet and PRE–Phe complexes. smFRET experiments were performed with a laboratory-built total internal reflection fluorescence (TIRF) microscope as previously described in ref. 51, where it was designated as the PRE–AfMet complex. We note that tRNAfMet, rather than tRNAfMet, was used for these experiments because the labeling position within the central-fold domain of tRNAfMet provides a smFRET signal that has greater dynamic range, and therefore greater sensitivity, than does the smFRET signal corresponding to the labeling position in the central-fold domain of tRNAfMet.

The PRE–Phe complex used for the smFRET experiments was prepared with a ribosome labeled with a Cy5 FRET acceptor fluorophore at ribosomal protein L1 and a P-site tRNAPhe labeled with a Cy3 FRET donor fluorophore at the central-fold domain as previously described in ref. 51, where it was designated as the PRE–AfMet complex. We note that tRNAPhe, rather than tRNAfMet, was used for these experiments because the labeling position in the central-fold domain of tRNAPhe provides a smFRET signal that has greater dynamic range, and therefore greater sensitivity, than does the smFRET signal corresponding to the labeling position in the central-fold domain of tRNAfMet.

The PRE–AfMet complex used for the smFRET experiments was prepared with ribosomes labeled with a Cy5 FRET acceptor fluorophore at ribosomal protein L1 within the apical tip of the L1 stalk and with a Cy3 FRET donor fluorophore at ribosomal protein L9 protein within the base of the L1 stalk as previously described in ref. 51, where it was designated as the PRE–AfMet complex.

smFRET experiments were performed by preparation of samples containing (i) 100 pM PRE–AfMet complex; (ii) 100 pM PRE–AfMet complex, 1.8 μM wild-type EttA and 0.8 mM Mg-ATP; or (iii) 100 pM PRE–AfMet complex, 1.8 μM ATPase-deficient mutant EttA-EQ2, and 0.8 mM Mg-ATP in Tris-Polymix buffer, with incubation of each sample for 2 min at 25 °C, loading of each sample into an imaging flow cell and imaging of each flow cell as previously described.

smFRET experiments were performed by preparation of samples containing (i) 100 pM PRE–AfMet complex; (ii) 100 pM PRE–AfMet complex, 6 μM wild-type EttA and 2 mM Mg-ATP; or (iii) 100 pM PRE–AfMet complex, 6 μM ATPase-deficient mutant EttA-EQ2 and 2 mM Mg-ATP in Tris-Polymix buffer, with incubation of each sample for 2 min at 25 °C, loading of each sample into an imaging flow cell and imaging of each flow cell as previously described.

The fractional populations of MS-I and MS-II, equilibrium constants governing the MS-I→MS-II equilibrium, and the transition rates between MS-I and MS-II reported for the PRE–AfMet and PRE–Phe complexes in Supplementary Table 2 were calculated according to previously described protocols in ref. 51.

Cryo-EM sample preparation and peptide formation assay. The pT7gp32 mRNA, containing the first four codons AUG–UUU–AAA–GAA (Met–Phe–Lys–Glu), was produced as described by Fei et al. The pT7gp32–1.20 plasmid was used as a template for the mRNA. This plasmid is a derivative from the pT7gp32–1.224 plasmid and has a stop codon after residue 20.

Peptide formation assay. All the components and proteins for the in vitro translation were prepared and purified exactly as described in the method of Fei et al. The [35S]Met–tRNA^Met was prepared with the same protocol but with the methionine replaced by 3 μM of [35S]methionine (PerkinElmer) and quenched 5 min after the beginning of the reaction with 16 μM of cold methionine. Estimation of aminoclay-to-formylation yields was assessed by hydrophobic interaction chromatography. The translation was done in Polymix buffer with 3.5 mM Mg(OAc)2 (50 mM Tris acetate, pH 6.9, 10.0 mM KCl, 5 mM NH4OAc, 15 mM Mg(OAc)2, 0.5 mM Ca(OAc)2, 0.1 mM EDTA, 1 mM spermine, 5 mM putrescine and 6 mM 2-mercaptoethanol) containing 0.5 mM Mg-ATP. Reactions were performed at 37 °C except as otherwise indicated, with the following concentrations: mRNA (1.7 μM), [35S]Met–tRNA^Met (0.3 μM), 70S ribosome (0.45 μM), the initiation factors IF1, IF2 and IF3 (<0.5 μM each), the corresponding aminoclay–tRNA (0.7 μM) and the elongation factors EF-Tu (2 μM), EF-Ts (1 μM), and EF-G (1.5 μM)). The 70S IC was assembled by incubation of 70S ribosome with IF1, IF2, IF3 and GTP in Polymix buffer with 3.5 mM Mg(OAc)2, for 10 min, then with the mRNA for 10 min and with [35S]Met–tRNA^Met for 10 min. After that, the 70S IC was kept on ice for at least 10 min before being used for the elongation reactions. EF-G and ternary complexes (Phe–tRNA^Phe–EF–Tu–GTP and Lys–tRNA^Lys–EF–Tu–GTP) were prepared with the GTP-regenerating buffer as described by Fei et al.

The reactions were assembled in sequential order: the 70S IC was first incubated for 1 min with either Polymix buffer with 3.5 mM Mg(OAc)2 containing 0.5 mM Mg-ATP or with EttA–EQ2 (6 μM) with Mg-ATP (0.5 mM), then incubated for 1 min with ternary complex, and then incubated for the indicated reaction time with EF-G. After hydrolysis of the product with 0.2 M KOH, reaction products were separated by electrophoresis thin layer chromatography (eTLC) as described by Youngman et al. and quantified by phosphorimaging. Specifically, 0.5 μl of each sample was spotted onto TLC-cellulose (EMD Chemicals) plates, dried and separated by electrophoresis in pyridine acetate buffer, pH 2.8 (20% glacial acetic acid and 0.06% pyridine), at 120 V for 20 min.

Cryo–EM sample preparation. The cryo–EM sample was prepared in the same way as in the peptide formation assay, with minor modifications. 70S IC complex was assembled as described above, but the [35S]Met–tRNA^Met was replaced by the same amount of Met–tRNA^Met. The 70S IC complex was incubated with EttA–EQ2 (6 μM) at 37 °C for 1 min, then with Phe–tRNA^Phe–EF–Tu–GTP ternary complex (0.67 μM) at 37 °C for 1 min. The mixture was then kept at room temperature (~25 °C) and diluted ten-fold with Polymix buffer containing 3.5 mM Mg-ATP right before (within 1 min) preparation of the cryo–EM grids, as described by Grassucci et al..

Specifically, the diluted sample was applied on a hydrophilic Quantifoil (Jena, Germany) R2/4 300 mesh Cu EM grid, incubated for 30 s at 4 °C and 100% relative humidity, then plunge-frozen in liquid ethane (approximately ~183 °C) with a Vitrobot Mark IV (FEI, Hillsboro, Oregon).

Cryo–EM data collection, single-particle reconstruction and classification. Cryo–EM data collection. The cryo–EM data were collected, as previously described, in low-dose mode on an FEI (Hillsboro, Oregon) Tecnai F20 TEM at 200-kV extraction voltage and ~80,000x magnification with the automatic image collection program Leginon. Micrographs were recorded on a Gatan (Warrendale, PA) UltraScan 4000 CCD camera binned by 2x with effective CCD magnification of 110,637x and pixel size of 2.71 Å on the object scale.

Single-particle reconstruction. For reference-based single-particle reconstruction with SPIDER, a total of 2,390 CCD micrographs were selected, which had visible particles and perfectly round Thon rings. These micrographs were separated evenly into 40 defocus groups with total defocus range of ~3.5 μm to ~1.2 μm. With a cryo–EM map of the empty ribosome, low-pass-filtered to 15-Å resolution, used as reference, 108,691 ribosome particles were chosen via automatic particle picking and subsequent visual verification. The 3D reconstruction from this total data set was iteratively refined with SPIDER to 8.2-Å resolution (FSC = 0.5 criterion) and subjected to amplitude correction. The cryo–EM map of the total data set revealed a 70S ribosome containing densities at the A and P sites that were attributable to A- and P-site tRNAs, as well as additional density at the E site that was not attributable to an E-site tRNA (visually similar to Fig. 1).

Computational classification. The cryo–EM map of the total data set revealed weaker densities for the A- and P-site tRNAs relative to 23S rRNA of the 50S subunit, thus indicating heterogeneity in the total data set, i.e., ribosome particles being in different conformations and/or containing different components. Therefore, we used RELION in a stepwise hierarchical classification (Supplementary Fig. 3a, with methods described in the Supplementary Note).

Resolution measurement with gold-standard FSC. For each data set, the RELION 3D auto refine program was used to independently refine, from randomly split half data sets, the two unfiltered half volumes, with resolution reported by the gold-standard criterion. To eliminate peripheral noise and re-calculate the resolution, we also used SPIDER commands to multiply these two unfiltered half volumes with a soft Gaussian mask having 0.5 fall-off at 3 pixels (8.1 Å) outside the ribosomal complex, and calculated the Fourier shell correlation (FSC) between the two masked half volumes. The FSC versus spatial frequency curves were plotted (Supplementary Fig. 3b). The resolution of each map was then determined with the FSC = 0.143 criterion. The gold-standard resolutions, before (i.e., reported by RELION 3D auto-refine) and after application of the soft Gaussian mask, for each 70S ribosome class are: class I, 8.5 Å (7.5 Å); class II, 10.1 Å (9.1 Å); and class III, 8.7 Å (7.7 Å).

Molecular dynamics flexible fitting (MDFD) of EttA-bound 70S ribosome complex. Modeling of ATP-bound EttA monomeric structure (Fig. 4). First, we...
generated a monomeric apo-EttA structure model by combining residues 1–277 of one protomer and residues 278–542 of the other protomer in the apo-EttA crystallographic structure. Second, we matched this apo-EttA model to the ATP-bound head-to-tail homodimer crystallographic structure of cystic fibrosis transmembrane conductance regulator (CFTR) nucleotide binding domain 1 (NBD1) (PDB 2Z2B30), an ABC transporter homologous to EttA, by separately aligning the core and the helical subdomains, as previously described,38, to account for the subdomain rotation in ABC domains.31 Third, we complemented the secondary structures of missing links in the aligned EttA model with Protein Homology/analogY Recognition Engine (Phyre 2) server31 search hits. Specifically, the missing residues of the EttA arm (residues 132–140), inter-ABC-domain linker helices (residues 243–279, which we call PtIM) and C-terminal helix (residues 543–555) were modeled on the basis of parts of PDB 1UO1, 1ABZ and 2BBM, respectively. Cross-correlation coefficient (CCC) to the EttA-EQ2 isolated density map in class I was calculated in UCSF Chimera62 with simulated maps from atomic structures filtered to 7-Å resolution. The CCC value was 0.91 for the ATP-bound EttA monomer model versus 0.83 for the nucleotide-free EttA monomer model, thus indicating that the ribosome-bound EttA-EQ2 is in the ATP-bound conformation.

MDFF of EttA-bound 70S ribosome complex. The initial system for MDFF32 was prepared with VMD33 and consisted of the E. coli 70S ribosome (PDB 3R8O and 3R8T37), an mRNA coding for Met-Phe with 12 nucleotides of 5′ untranslated region (a combination of PDB 3R8O and 3R8T), P-site tRNAfMet (PDB 3WDC37), with amino acids on tRNAs computationally removed), and ATP-bound monomeric EttA structure model.

Because of the different conformation of the L1 stalk in our reconstruction compared to the E. coli 70S X-ray structure in the initial system, a short in vacuo MDFF run was first performed on the initial system lacking EttA structure model, to bring the L1 stalk to the widely open conformation observed in our cryo-EM reconstruction. For this in vacuo run, the density map used was the class I map with the EttA density computationally removed with SPIDER. This initial system lacking EttA was first rigid-body-fitted into the class I map using the FIT IN MAP module implemented in Chimera62. Starting from this initial fit, the intermolecular steric clashes were fixed by manual adjustment of some of the side chains of proteins and nitrogenous bases of RNAs with PyMOL (http://www.pymol.org/). The system was minimized for 1,000 steps in NAMD34 and subsequently by MDFF35, which applies a potential to the systems on the basis of the cryo-EM density map. The run was stopped after 300 ps, when the L1 stalk stabilized in the open conformation. We call the obtained model open-L1 70S, comprising the E. coli 70S ribosome, A-site tRNAPhe, P-site tRNAfMet and an mRNA.

Next, the open-L1 70S and ATP-bound EttA structure models were rigid-body-fitted into the class I cryo-EM map, with the EttA model binding to the E site, using the FIT IN MAP module in Chimera. The intermolecular steric clashes were fixed manually with PyMOL. The whole system was then minimized for 1,000 steps in NAMD and subsequent in vacuo MDFF in NAMD for 300 ps to relax the system in the presence of EttA. In order to have a better representation of the inter- and intramolecular interaction, the whole system was then embedded in a solvent box of TIP3P water molecules with an extra 12 Å padding in each direction, and negative charges of the ribosome complex were neutralized with potassium ions with an excess amount of ~0.2 M KCl. The whole system was then minimized for 3,000 steps in NAMD and subsequently by MDFF. The in-solvent MDFF was equilibrated over 350 ps by application of harmonic positional constraints starting at 5.0 kcal/(mol×Å) and decreasing it progressively with potassium ions with an excess amount of ~0.2 M KCl. The whole system was then minimized for 5 min at 37 °C. Radioactively labeled tRNA was purified by phenol/chloroform extraction and subsequent ethanol precipitation, resuspended in milliQ water and filtered through a P6 column (Bio-Rad) pre-equilibrated with milliQ water in order to remove unincorporated radioactivity.

E-site binding filter assay. The assay was based on the original assay of Grajevskaia et al.30 used in the discovery of the E site. The 70S ribosomes used for the assay were prepared as for the minimal in vitro–purified translation assay4. 70S ribosomes (0.2 µM) were incubated in the presence of increasing concentrations of EttA-EQ2 (0, 0.2, 0.4, 0.8, 1.0, and 1.2 µM) and decyaated [32P]tRNA Phe (0.4 µM) for 2 min at 4 °C in 0.1 mM ATP, 10 mM Mg(OAc)2, 100 mM NH4Cl, 20 mM Tris-HCl, pH 7.4, in a 20 µl reaction. 5 µl of each reaction was spotted on a nitrocellulose filter (25 mm, 0.45 µm, nitrocellulose, disc filters, Millipore) installed on a sampling manifold (Millipore) under constant vacuum. After three washes with 2 ml of 20 mM Mg(OAc)2, 100 mM NH4Cl, 1 mM EDTA and 20 mM Tris–HCl, pH 7.4, the filters were immersed in scintillant liquid (Ultima Gold, PerkinElmer) and counted on a scintillation counter (Beckman LS6500). 5 µl of each reaction was also counted without being spotted on a nitrocellulose filter or washed, to give the total radioactivity in each reaction. The ratios of radioactivity retained on the filter versus total were calculated and adjusted to the moles of ribosome in each reaction.

Curve fitting and analysis. EttA-EQ2 was used to drive degradation of deacylated tRNA from the ribosomal E site in the absence of A-site tRNA (Fig. 2). The binding affinity of this mutant variant of EttA for the ribosome in the presence of Mg-ATP was inferred from the resulting data on the basis of the following competitive-binding model:

\[
\text{ribosome} - \text{EttA} \leftrightarrow \text{EttA}_{\text{free}} + \text{ribosome}_{\text{free}} + \text{tRNA}_{\text{free}} \leftrightarrow \text{ribosome} - \text{tRNA}
\]

In this chemical equation, the species in the middle represent the free forms of the interaction partners, whereas those on the left and right represent the two competing E-site complexes. The dissociation constants for the competing complexes are given by the following expressions:

\[
K_{d,\text{EttA}} = \frac{[\text{EttA}]_{\text{free}}[\text{ribosome}]_{\text{free}}}{[\text{ribosome} - \text{EttA}]}
\]

\[
K_{d,\text{tRNA}} = \frac{[\text{tRNA}]_{\text{free}}[\text{ribosome}]_{\text{free}}}{[\text{ribosome} - \text{tRNA}]}
\]

This binding model yields the following equation describing the fractional concentration of tRNA remaining bound to the ribosome (Y) in the presence of a given total concentration of EttA ([EttA], total) compared to that bound before initiation of the titration ([ribosome–tRNA]):

\[
Y([EttA], \text{total}) = \frac{[\text{ribosome} - \text{tRNA}]}{[\text{total}]} \times K_{d,\text{tRNA}} \times (1 + \frac{[\text{tRNA}]_{\text{free}}}{K_{d,\text{tRNA}}})
\]

\[
Y([EttA], \text{total}) = \frac{[\text{ribosome} - \text{tRNA}]}{[\text{total}]} \times (1 + \frac{[\text{tRNA}]_{\text{free}}}{K_{d,\text{tRNA}}}) + \frac{[\text{total}]}{K_{d,\text{EttA}}}
\]

The parameter [ribosome] represents the total concentration of the deacylated tRNA included in the assay (400 nM). The value of K_{d,\text{tRNA}} under assay conditions was determined to be 111 nM, on the basis of quantification of the radioactive tRNA bound to ribosomes compared to the total amount of radioactive tRNA before addition of any EttA, which was used to calculate the free and bound concentrations of tRNA and ribosome. The last equation above was used to fit the data in Figure 2 in the main text after appropriate factors were included to scale it to the experimental data:

\[
R([EttA], \text{total}) = B + A 	imes Y([EttA], \text{total})
\]

In this equation, R([EttA], total) represents the measured fraction of ribosomes with tRNA bound in the presence of a given total concentration of EttA compared to that bound in the absence of EttA, B is the background level and A is a linear scale factor normalizing for the fraction of ribosomes bound in the absence of EttA. Curve-fitting was performed with the algorithm of Marquardt and Levenberg as implemented in PRISM (version 5.0c for Mac OS X, http://www.graphpad.com), constraining the parameter B to be greater than or equal to zero. The best-fit values ± s.e. are: K_{d,\text{EttA}} = 47 ± 12 nM, B = 0, and A = 0.72 ± 0.05.

51. Fei, J., Richard, A.C., Bronson, J.E. & Gonzalez, R.L. Transfer RNA-mediated regulation of ribosome dynamics during protein synthesis. Nat. Struct. Mol. Biol. 18, 1043–1051 (2011).
52. Youngman, E.M., Brunelle, J.L., Kochaniak, A.B. & Green, R. The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release. *Cell* **117**, 589–599 (2004).
53. Suloway, C. *et al.* Automated molecular microscopy: the new LegoN system. *J. Struct. Biol.* **151**, 41–60 (2005).
54. Shaikh, T.R. *et al.* SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. *Nat. Protoc.* **3**, 1941–1974 (2008).
55. Rath, B.K. & Frank, J. Fast automatic particle picking from cryo-electron micrographs using a locally normalized cross-correlation function: a case study. *J. Struct. Biol.* **145**, 84–90 (2004).
56. Gabashvili, I.S. *et al.* Solution structure of the *E. coli* 70S ribosome at 11.5 Å resolution. *Cell* **100**, 537–549 (2000).
57. Scheres, S.H.W. A Bayesian view on cryo-EM structure determination. *J. Mol. Biol.* **415**, 406–418 (2012).
58. Scheres, S.H.W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. *J. Struct. Biol.* **180**, 519–530 (2012).
59. Scheres, S.H. & Chen, S. Prevention of overfitting in cryo-EM structure determination. *Nat. Methods* **9**, 853–854 (2012).
60. Lewis, H.A. *et al.* Structure and dynamics of NBD1 from CFTR characterized using crystallography and hydrogen/deuterium exchange mass spectrometry. *J. Mol. Biol.* **396**, 406–430 (2010).
61. Kelley, L.A. & Sternberg, M.J.E. Protein structure prediction on the Web: a case study using the Phyre server. *Nat. Protoc.* **4**, 363–371 (2009).
62. Pettersen, E.F. *et al.* UCSF Chimera: a visualization system for exploratory research and analysis. *J. Comput. Chem.* **25**, 1605–1612 (2004).
63. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. *J. Mol. Graph.* **14**, 33–38 (1996).
64. Dunkle, J.A. *et al.* Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. *Science* **332**, 981–984 (2011).
65. Villa, E. *et al.* Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis. *Proc. Natl. Acad. Sci. USA* **106**, 1063–1068 (2009).
66. Phillips, J.C. *et al.* Scalable molecular dynamics with NAMD. *J. Comput. Chem.* **26**, 1781–1802 (2005).
67. Brooks, B.R. *et al.* CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. *J. Comput. Chem.* **4**, 187–217 (1983).
68. Mackerell, A.D. *et al.* in *The Encyclopedia of Computational Chemistry*, Vol. 1 (eds. Schleyer, P.v.R. *et al.*) 271–277 (John Wiley & Sons, 1998).
69. Ledoux, S. & Uhlenbeck, O.C. [3′-32P]-labeling tRNA with nucleotidyltransferase for assaying aminoacylation and peptide bond formation. *Methods* **44**, 74–80 (2008).
70. Wolfson, A.D. & Uhlenbeck, O.C. Modulation of tRNA_{Ala} identity by inorganic pyrophosphatase. *Proc. Natl. Acad. Sci. USA* **99**, 5965–5970 (2002).