Is nutritional labeling associated with individual health? The effects of labeling-based awareness on dyslipidemia risk in a South Korean population

Jong Yeob Kim¹, Ki Hong Kweon¹, Min Jae Kim¹, Eun-Cheol Park²,³, Suk-Yong Jang²,³, Woorim Kim³,⁴ and Kyu-Tae Han³,⁴*

Abstract

Background: In 1995, the South Korean government made nutrition labeling compulsory, which has positively impacted patients with certain chronic diseases, such as dyslipidemia. We investigated the association between nutrition labeling-based awareness and the risk of dyslipidemia among individuals not yet diagnosed.

Methods: Our study used data from the fifth Korea National Health and Nutrition Examination Surveys administered during 2010–2014 (n = 17,687). We performed multiple or logistic regression analysis to examine the association between nutritional analysis and various outcome variables.

Results: Approximately 70 % of the respondents (n = 11,513) were familiar with nutrition labeling, of which 20 % (n = 3172) decided what food to buy based on that information. This awareness yielded mostly positive results on outcome indicators, such as triglyceride and high-density lipoprotein cholesterol levels. In general, individuals who used nutritional labels to make decisions regarding food purchases had a lower risk of dyslipidemia than individuals who did not (OR: 0.806, 95 % CI: 0.709–0.917).

Conclusion: Utilizing nutrition labels for making food choices correlated with a lower risk of dyslipidemia in certain subgroups. Based on our findings, we recommend that health policymakers and medical professionals consider promoting nutrition labeling as an alternative method for managing certain chronic diseases in South Korean patients.

Keywords: Nutrition labeling, Health policy perception, Dyslipidemia, Hyperlipidemia

Background

During the past 30 years, South Korea has experienced evolving health care perspectives, with a recent focus on chronic diseases. Although many health care professionals have studied treatment options extensively, some chronic diseases persist in South Korean patients [1]. Therefore, developing prevention strategies for managing risk factors, such as hypertension, diabetes mellitus, and dyslipidemia, may be important for controlling these diseases [2–4].

Dyslipidemia is a state of abnormal amounts of lipids in the blood and is characterized by conditions such as hypercholesterolemia, hypertriglyceridemia, increased low-density lipoprotein (LDL) cholesterolemia, and decreased high-density lipoprotein (HDL) cholesterolemia [5]. Dyslipidemia can be managed by diet, exercise, and sometimes drug injections, depending on the health of the patient [6]. However, based on previous studies in South Korea, the prevalence rate of dyslipidemia has gradually increased since 2000 [7]. Although not necessarily harmful itself, the condition is a major risk factor for various cardiovascular...
diseases (CVD) [8]. Mortality due to CVD has also increased in recent years, making it the second most common cause of death in South Korea [9]. Therefore, it is essential to investigate alternatives for effectively preventing and/or managing dyslipidemia.

In 1995, the South Korean government made nutrition labeling compulsory. Nutrition labeling is a type of food labeling [10] that describes the nutritional properties of processed foods to help consumers make a reasonable choice in purchasing food based on its nutritional values [11]. Labeling also protects consumers from dishonest advertisement by providing exact nutrition information. Previous studies show that nutrition labeling affects food intake with respect to total fat, carbohydrates, and saturated fat and that awareness of nutrition facts and may be helpful in managing certain chronic diseases [12–14].

Because nutrition labeling has since expanded in South Korea, some positive effects on patients with chronic diseases, particularly dyslipidemia, have been linked closely to dietary patterns [15, 16]. Despite increased dyslipidemia prevalence and the expansion of nutrition labeling in South Korea, few studies have investigated their relationship. As introducing the nutrition labelling system in South Korea, we expected that the health information related to food consumption would be well provided to South Korean. Therefore, South Korean would easily access to health information which might be helpful in well managing their health compared to past. Based on our hypothesis that nutrition labeling may help prevent dyslipidemia, we analyzed the potential association between nutrition labeling-based awareness and the prevalence of dyslipidemia among individuals not yet diagnosed.

Methods

Study population
This study used data from the fifth Korea National Health and Nutrition Examination Surveys (KNHANES V/VI 2010–14), which are cross-sectional questionnaires that have been administered annually since 1998 by the Korea Centers for Disease Control and Prevention (KCDC) to assess the health and nutritional status of the Korean population. This survey is composed of three parts: Health Interview Survey, Health Examination, and Nutrition Survey. The health examination survey collected the information about anthropometric index, blood pressure, blood test, urine test, dental examination, pulmonary function test, optical test, and hearing test. These tests were performed through visiting examination using vehicle for health examination. The nutrition survey was conducted through additional visiting research of investigator after Health Interview Survey and Health Examination. The nutrition survey including average amount of daily fat intake was consisted to dietary pattern, dietary supplements, nutrition knowledge, food safety, food intake of the day before survey (24 h recall method), and food frequency questionnaire. A stratified multi-stage cluster-sampling design was used to obtain a nationally representative sample from the three parts of the survey. The overall response rates were 81.9 % in 2010, 80.4 % in 2011, 80.0 % in 2012, 79.3 % in 2013, and 77.8 % in 2014 and included 41,101 total respondents. Individuals not tested for dyslipidemia indicators and those under the age of 30 were excluded from the study. In addition, we excluded respondents diagnosed with dyslipidemia before the survey. Thus, we included 17,687 eligible participants in the study.

Variables analyzed
The outcome variables analyzed in this study included four indicators of dyslipidemia: total cholesterol (TC), LDL cholesterol, HDL cholesterol, and triglyceride (TG) levels. Although TC, TG, and HDL cholesterol levels were measured on the day of investigation. This blood test was measured through fasting blood test (minimum 8 h and recommended 12 h after eating). The LDL cholesterol levels were not measured, so were instead calculated using the Friedewald formula. This methods also relatively efficient methods than the ultracentrifugal measurement of LDL cholesterol [17]. We first considered each indicator as a continuous variable and then defined dyslipidemia as the presence of at least one indicator meeting the following diagnostic criteria: TC≥200 mg/dL, LDL cholesterol≥130 mg/dL, HDL cholesterol≤40 mg/dL, or TG≥150 mg/dL [18].

The primary independent variable was the respondents’ awareness regarding nutrition labeling, which we defined as one of three levels: 1) “unaware of nutrition facts (lowest awareness)”; 2) “aware of nutrition facts but does not check them when making food purchase/checks nutrition facts but does not make labeling-dependent purchase decisions”; or 3) “checks nutrition facts and makes labeling-dependent purchase decisions (highest awareness)”. We included other independent variables to investigate the association between labeling awareness and dyslipidemia. These additional variables were sex, age, educational level, economic activity, household income, body mass index (BMI), aerobic exercise habits, smoking status, high risk drinking, family history of hyperlipidemia, stress awareness, subjective health, average amount of daily fat intake, frequency of eating out, and survey year [19–21]. Age was divided by 10-year increments or grouped as more than 60 years old. Educational level was classified as no high school graduation, bachelor’s degree, and master’s degree or above. BMI was categorized into three groups based on obesity criteria in South Korea (<23, 23–25,
Awareness regarding nutrition labelling	Checks nutrition facts and makes labeling-dependent purchase decisions	Checks nutrition facts but does not make labeling-dependent purchase decisions/ Aware of nutrition facts but does not check them when making food purchase decisions	Unaware of nutrition facts	P-value	
Variables	N/Mean %/SD	N/Mean %/SD	N/Mean %/SD		
Sex					
Male	645 8.76	3,739 50.78	2,979 40.46	<.0001	
Female	2,527 24.48	4,602 44.58	3,195 30.95		
Age (years)					<.0001
30–39	1,406 34.19	2,402 58.41	304 7.39		
40–49	1,014 25.76	2,367 60.14	555 14.10		
50–59	524 13.88	2,001 53.02	1,249 33.09		
60+	228 3.89	1,571 26.79	4,066 69.33		
Educational level					<.0001
Under high school graduation	1,313 11.25	4,881 41.83	5,476 46.92		
Bachelor’s degree	1,635 30.91	3,035 57.37	620 11.72		
Master’s degree or above	224 30.81	425 58.46	78 10.73		
Economic activity					<.0001
Unemployed	1,389 20.23	2,706 39.41	2,772 40.37		
Employed	1,783 16.48	5,635 52.08	3,402 31.44		
Household income					<.0001
Low	172 5.09	869 25.70	2,340 69.21		
Mid-low	715 15.92	2,124 47.29	1,652 36.78		
Mid-high	1,085 22.04	2,599 52.79	1,239 25.17		
High	1,200 24.53	2,749 56.19	943 19.28		
BMI					<.0001
<23	1,629 20.62	3,814 48.28	2,456 31.09		
23–25	687 16.21	1,951 46.04	1,600 37.75		
>25	856 15.42	2,576 46.41	2,118 38.16		
Aerobic exercise habits					<.0001
Yes	937 21.97	2,115 49.59	1,213 28.44		
No	2,235 16.65	6,226 46.39	4,961 31.96		
Smoking status					<.0001
Non-smoker	2,821 19.73	6,536 45.71	4,943 34.57		
Smoker	351 10.36	1,805 53.29	1,231 36.34		
High risk drinking					<.0001
No	2,935 18.39	7,375 46.22	5,646 35.38		
Yes	237 13.69	966 55.81	528 30.50		
Family history for hyperlipidemia					<.0001
No	2,915 17.22	7,941 46.91	6,073 35.87		
Yes	257 33.91	400 52.77	101 13.32		
Survey year					<.0001
2010	725 18.28	1,721 43.39	1,520 38.33		
2011	623 15.73	1,735 43.81	1,602 40.45		
2012	621 17.25	1,675 46.54	1,303 36.20		
and >25). Aerobic exercise habits were based on the amount of aerobic exercise per week, with 150 min of exercise as the cutoff. The smoking status was defined as follows. Smoker group included the current smoker regardless the amount of smoking. Non-smoker group included the ex-smoker and people who have never smoke in their life. The high risk drinking was defined as people who consume more than seven (for males) or five (for females) drinks on a single occasion at least twice a week. The average amount of daily fat intake was calculated based on food intake of the day before survey (24 h recall method). Respondents were recorded the information about food intake of the day before survey, and investigator calculated the nutrient component based on this information. The frequency of eating out was categorized based on five times a week. Stress awareness was defined as the respondents’ daily stress awareness and was classified as “high” or “low”. Subjective health status was classified as “bad,” “normal,” or “good.”

Statistical analysis
We first examined the distribution of values by frequency and percentage for categorical variables or mean and standard deviation for continuous variables, showed the association between other independent variables and awareness of nutrition labelling. Next, we performed ANOVA for continuous variables to determine their relationship with the independent variables by comparing the means and standard deviations of the outcome variables. We also performed Chi-square tests to determine relationships with dyslipidemia diagnosis. Finally, multiple regression analysis was used to examine the association between awareness of nutrition labeling and dyslipidemia indicators while controlling for potential confounding (independent) variables described above. We then performed logistic regression analysis of dyslipidemia risk based on the four dyslipidemia indicators. In addition, we carried out subgroup multiple logistic regression analysis by sex, age, educational level, BMI, and subjective health status to examine differences in nutrition labeling-mediated awareness and dyslipidemia risk. Sampling weights assigned to each participant were applied in the analyses to generalize the sampled data.

Results
The data used in this study included 17,687 unique responses to the KNHANES V/VI from 2010 to 2014. Table 1 shows the general characteristics of our study participants by awareness of nutrition labelling. Approximately 70 % of respondents were aware of nutrition labelling, but most did not actively check nutrition labels or make food purchasing decisions based on nutrition labels. Only about 20 % of these respondents made nutrition label-dependent food purchasing decisions. Females were more frequently in higher awareness level in nutrition labelling than males. The people with younger age, higher educational level, and higher income were more recognized for nutrition labelling than others. In addition, people who had more healthy behaviors were more frequent in higher awareness of nutrition labelling.

Table 2 shows associations between the independent and outcome variables. The average values for dyslipidemia indicators (TC, TG, HDL cholesterol, and LDL cholesterol) were 190.88, 137.42, 50.86, and 112.54 mg/dL, respectively. Individuals with higher awareness of nutrition labeling had positive association with low TC,
Table 2 The association between awareness on nutrition labelling and 4 indicators related to dyslipidemia or diagnosis of dyslipidemia

Variables	Total cholesterol (mg/dL)	Triglyceride (mg/dL)	HDL cholesterol (mg/dL)	LDL cholesterol (mg/dL)	Dyslipidemia	P-value											
	Mean	SD	P-value	Mean	SD	P-value	Mean	SD	P-value	N	%	N	%	P-value			
Checks nutrition facts and makes labeling-dependent	188.53	34.01	0.0399	111.89	79.41	<.0001	55.48	12.75	<.0001	110.68	30.10	0.0006	1,536	48.42	1,636	51.58	<.0001
purchase decisions																	
Checks nutrition facts but does not	191.32	34.24	129.82	102.12	52.80	12.52	112.55	31.57	4.778	57.28	3.563	42.72					
make labeling-dependent purchase decisions/Aware of																	
nutrition facts but does not check them when making																	
food purchase decisions																	
Unaware of nutrition facts	192.54	36.35	144.53	109.29	50.13	12.25	113.50	33.74	4.108	66.54	2.066	33.46					
Sex																	
Male	189.06	34.48	<.0001	155.43	123.33	<.0001	48.90	11.82	<.0001	109.08	33.39	<.0001	4,777	64.88	2,586	35.12	<.0001
Female	192.80	35.24	114.85	78.70	54.81	12.58	115.02	30.92	5.645	54.68	4,679	45.32					
Age (years)																	
30–39	183.28	33.23	<.0001	116.04	97.17	<.0001	54.78	12.67	<.0001	105.30	29.70	<.0001	1,816	44.16	2,296	55.84	<.0001
40–49	190.31	33.50	130.36	113.12	53.24	12.41	110.99	31.25	2.151	54.65	1,785	45.35					
50–59	199.50	34.47	142.52	109.54	52.56	12.75	118.43	33.11	2.595	68.76	1,179	31.24					
60+	192.14	36.17	136.74	89.46	49.90	12.18	114.89	32.61	3.860	65.81	2.005	34.19					
Educational level																	
Under high school graduation	192.88	35.56	0.1972	136.69	104.97	0.0105	51.73	12.58	0.1640	113.82	33.02	0.0338	7.343	62.92	4,327	37.08	<.0001
Bachelor's degree	187.73	33.61	121.24	94.43	53.75	12.57	109.74	30.09	2.679	50.64	2,611	49.36					
Master’s degree or above	190.55	33.42	128.79	93.64	52.14	12.55	112.66	30.07	4.00	55.02	327	44.98					
Economic activity																	
Unemployed	191.26	36.26	0.5049	125.39	87.09	0.0150	52.62	12.87	0.0188	113.57	32.13	0.1766	4.024	58.60	2,843	41.40	0.4833
Employed	191.23	34.14	135.77	109.81	52.17	12.44	111.90	32.08	6.398	59.13	4,422	40.87					
Household income																	
Low	191.86	36.26	0.5209	140.45	96.60	0.2011	50.15	12.60	0.0143	113.62	33.65	0.3923	2.249	66.52	1,132	33.48	<.0001
Mid-low	191.04	35.62	133.31	110.04	52.20	12.58	112.18	32.03	2.634	58.65	1,857	41.35					
Mid-high	190.33	34.21	128.97	101.42	52.99	12.49	111.55	32.33	2.750	55.86	2,173	44.14					
High	191.92	34.22	127.06	97.02	53.36	12.59	113.15	30.80	2.789	57.01	2,103	42.99					
BMI																	
<23	185.60	33.75	<.0001	106.94	79.58	<.0001	55.72	13.07	<.0001	108.50	30.34	<.0001	3,666	46.41	4,233	53.59	<.0001
Activity	Mean	SD	P-value														
--------------------------------	------	-----	---------	------	-----	---------	------	-----	---------	------	-----	---------	------	-----	---------		
Aerobic exercise habits																	
Yes	190.61	33.52	<.0001	126.55	96.47	<.0001	52.42	12.90	<.0001	111.87	31.27	<.0001	2425	56.86	43.14		
No	191.45	35.43	<.0001	133.39	103.28	<.0001	52.01	12.50	<.0001	112.76	32.36	<.0001	7997	59.58	40.42		
Smoking status																	
Non-smoker	191.20	34.87	<.0001	123.16	89.01	<.0001	52.98	12.51	<.0001	113.59	31.11	<.0001	8152	57.01	42.99		
Smoker	191.41	35.42	<.0001	167.97	137.71	<.0001	49.67	12.67	<.0001	108.15	35.69	<.0001	2270	67.02	32.98		
High risk drinking																	
No	190.96	34.90	<.0001	125.77	89.46	<.0001	52.13	12.44	<.0001	113.68	31.34	<.0001	9254	58.00	42.00		
Yes	193.88	35.57	<.0001	186.79	169.14	<.0001	54.38	13.89	<.0001	102.14	36.89	<.0001	1168	67.48	32.52		
Family history for hyperlipidemia																	
No	191.12	34.91	<.0001	132.05	102.08	<.0001	52.24	12.58	0.0002	112.46	32.11	<.0001	9995	59.04	40.96		
Yes	194.05	36.41	<.0001	124.93	92.97	<.0001	54.65	13.00	<.0001	114.41	32.06	<.0001	427	56.33	43.67		
Survey year																	
2010	190.41	35.86	0.0245	130.30	98.76	0.0539	52.71	12.77	<.0001	111.64	32.60	0.0032	2294	57.84	42.16		
2011	192.84	36.05	0.0007	132.72	106.89	<.0001	52.93	12.80	0.0001	113.36	32.66	0.0352	2352	59.39	40.61		
2012	191.79	34.76	<.0001	130.01	98.86	0.0167	51.46	12.45	<.0001	114.33	31.93	<.0001	2187	60.77	39.23		
2013	190.80	34.06	<.0001	133.48	106.04	<.0001	52.15	12.30	<.0001	111.95	32.09	<.0001	1879	59.35	40.65		
2014	190.05	33.47	<.0001	132.59	97.21	<.0001	52.36	12.62	<.0001	111.17	30.81	<.0001	1710	57.08	42.92		
Stress awareness																	
Low	191.18	34.87	0.1373	131.38	99.14	0.3396	52.23	12.58	0.0746	112.67	32.04	0.2953	8020	59.25	40.75		
High	191.46	35.33	<.0001	132.92	109.72	<.0001	52.73	12.69	<.0001	112.14	32.32	<.0001	2402	57.88	42.12		
Subjective health status																	
Good	191.50	34.39	0.0008	126.37	95.89	0.0031	53.29	12.74	<.0001	112.93	31.31	0.0005	3316	57.01	42.99		
Normal	191.20	34.43	<.0001	133.28	106.44	<.0001	52.25	12.57	<.0001	112.30	32.02	<.0001	5173	59.20	40.80		
Bad	190.88	37.50	<.0001	137.42	98.28	<.0001	50.86	12.33	<.0001	112.54	33.77	<.0001	1933	61.72	38.28		
The frequency of eating out																	
Less than four times a week	191.43	35.53	0.0007	128.23	96.74	0.8791	52.55	12.76	0.0980	113.24	32.19	0.0001	7138	58.92	41.08		
More than five times a week	190.83	33.75	<.0001	139.38	111.40	<.0001	51.90	12.28	<.0001	111.05	31.86	<.0001	3284	58.94	41.06		
Total	191.243	34.976	<.0001	131.74	101.717	<.0001	52.347	12.611	<.0001	112.548	32.105	<.0001	10422	58.92	41.08		
Variables	Total cholesterol (mg/dL)	Triglyceride (mg/dL)	HDL cholesterol (mg/dL)	LDL cholesterol (mg/dL)	Dyslipidemia	OR	95 % CI	P-value									
-----------	--------------------------	----------------------	-------------------------	-------------------------	--------------	----	--------	--------									
	β	SE	P-value	β	SE	P-value	β	SE	P-value	OR	95 % CI	P-value					
Awareness on nutrition labelling																	
Checks nutrition facts and makes labeling-dependent purchase decisions	0.837	1.056	0.4280	−11.803	3.061	0.0001	1.259	0.357	0.0004	1.938	0.994	0.0515	0.806	0.709	0.917	0.0011	
Checks nutrition facts but does not make labeling-dependent purchase decisions/Aware of nutrition facts but does not check them when making food purchase decisions	2.350	0.783	0.0028	−7.170	2.725	0.0086	0.799	0.249	0.0014	2.985	0.774	0.0001	0.919	0.828	1.020	0.1110	
Unaware of nutrition facts	Ref	-	-	Ref	-	-	Ref	-	-	1.000	-	-	-				
Sex																	
Male	−5.197	0.833	<.0001	27.026	2.565	<.0001	−6.089	0.279	<.0001	−4.513	0.768	<.0001	1.395	1.265	1.537	<.0001	
Female	Ref	-	-	Ref	-	-	Ref	-	-	1.000	-	-	-				
Age (years)																	
30–39	−10.395	1.105	<.0001	−6.634	3.267	0.0426	1.822	0.372	<.0001	−10.890	1.056	<.0001	0.497	0.432	0.572	<.0001	
40–49	−5.299	1.035	<.0001	6.350	3.465	0.0672	0.706	0.367	0.0544	−7.275	1.001	<.0001	0.678	0.596	0.772	<.0001	
50–59	3.804	0.985	0.0001	11.906	3.065	0.0001	1.012	0.322	0.0018	0.411	0.940	0.6623	1.168	1.025	1.331	0.0198	
60+	Ref	-	-	Ref	-	-	Ref	-	-	1.000	-	-	-				
Educational level																	
Under high school graduation	−2.553	1.535	0.0966	1.013	4.692	0.8291	0.221	0.548	0.6871	−2.976	1.456	0.0413	0.983	0.801	1.206	0.8674	
Bachelor’s degree	−2.206	1.508	0.1438	−3.499	4.603	0.4474	0.206	0.537	0.7017	−1.712	1.417	0.2273	0.954	0.776	1.173	0.6558	
Master’s degree or above	Ref	-	-	Ref	-	-	Ref	-	-	1.000	-	-	-				
Economic activity																	
Unemployed	0.749	0.794	0.3461	4.398	2.187	0.0446	−0.464	0.251	0.0653	0.333	0.729	0.6480	1.153	1.049	1.267	0.0031	
Employed	Ref	-	-	Ref	-	-	Ref	-	-	1.000	-	-	-				
Household income																	
Low	0.258	1.039	0.8042	2.602	3.436	0.4491	−0.585	0.389	0.1331	0.323	1.031	0.7544	1.076	0.946	1.223	0.2677	
Mid-low	−0.302	0.876	0.7302	−0.916	3.057	0.7644	−0.196	0.303	0.5180	0.077	0.805	0.9237	0.926	0.829	1.035	0.1771	
Mid-high	0.064	0.848	0.9399	−2.031	2.702	0.4524	0.012	0.269	0.9648	0.458	0.808	0.5705	0.953	0.858	1.059	0.3729	
High	Ref	-	-	Ref	-	-	Ref	-	-	1.000	-	-	-				
BMI																	
<23	−13.918	0.749	<.0001	−55.011	2.572	<.0001	6.944	0.253	<.0001	−9.860	0.725	<.0001	0.306	0.280	0.335	<.0001	
23–25	−7.322	0.869	<.0001	−27.998	3.190	<.0001	2.754	0.265	<.0001	−4.477	0.795	<.0001	0.566	0.509	0.629	<.0001	
>25	Ref	-	-	Ref	-	-	Ref	-	-	1.000	-	-	-				
Table 3 The results of multiple regression or logistic regression analysis to examine the association between awareness on nutrition labelling and outcome variables (Continued)

Aerobic exercise habits	Yes	Ref	-	-	Ref	-	-	Ref	-	-	1.000	-	-	-			
No	0.783	0.752	0.2981	10.527	2.478	<0.001	-1.456	0.255	<0.001	0.134	0.717	0.8517	1.090	0.992	1.199	0.0731	
Smoking status																	
Non-smoker	Ref	-	-	Ref	-	-	Ref	-	-	1.000	-	-	-				
Smoker	3.364	0.916	0.0003	26.004	3.516	<0.001	-1.325	0.301	<0.001	-0.512	0.910	0.5739	1.445	1.292	1.616	<0.001	
High risk drinking																	
No	Ref	-	-	Ref	-	-	Ref	-	-	1.000	-	-	-				
Yes	2.614	1.123	0.0202	41.059	5.895	<0.001	4.954	0.366	<0.001	-10.553	1.190	<0.001	1.229	1.066	1.416	0.0046	
Family history for hyperlipidemia																	
No	Ref	-	-	Ref	-	-	Ref	-	-	1.000	-	-	-				
Yes	6.016	1.501	<0.001	5.369	4.264	0.2083	0.477	0.531	0.3687	4.465	1.380	0.0013	1.307	1.096	1.560	0.0028	
Survey year																	
2010	0.362	1.093	0.7404	-9.251	3.187	0.0038	1.093	0.354	0.0021	1.120	1.007	0.2663	0.998	0.878	1.134	0.9711	
2011	1.526	1.090	0.1619	-6.695	3.336	0.0451	1.137	0.349	0.0012	1.728	1.003	0.0854	1.000	0.876	1.142	0.992	
2012	1.877	1.114	0.0922	-5.973	3.523	0.0904	-0.092	0.389	0.8141	3.163	1.055	0.0028	1.117	0.975	1.278	0.1106	
2013	-0.479	1.062	0.6523	-4.680	3.494	0.1807	0.513	0.353	0.1464	-0.056	1.028	0.9567	1.030	0.900	1.179	0.6653	
2014	Ref	-	-	Ref	-	-	Ref	-	-	1.000	-	-	-				
Stress awareness																	
Low	Ref	-	-	Ref	-	-	Ref	-	-	1.000	-	-	-				
High	0.443	0.757	0.5589	2.219	2.994	0.4588	0.281	0.263	0.2850	-0.282	0.732	0.6998	0.994	0.907	1.089	0.8906	
Subjective health status																	
Good	0.979	1.014	0.3347	-8.120	3.109	0.0092	1.710	0.330	<0.001	0.894	0.853	0.2949	0.942	0.829	1.070	0.3556	
Normal	0.972	0.978	0.3209	-2.164	2.945	0.4627	0.761	0.299	0.0109	0.643	0.855	0.4521	1.056	0.937	1.190	0.3686	
Bad	Ref	-	-	Ref	-	-	Ref	-	-	1.000	-	-	-				
Average amount of daily fat intake																	
Less than four times a week	0.040	0.011	0.0002	-0.030	0.036	0.4076	0.008	0.003	0.0139	0.038	0.010	0.0002	1.000	0.999	1.001	0.9479	
More than five times a week	1.374	0.801	0.0867	-2.755	2.835	0.3314	0.074	0.258	0.7748	1.851	0.794	0.0199	1.043	0.943	1.153	0.4132	
low TG, high HDL cholesterol, low LDL cholesterol, and less diagnosis of dyslipidemia than individuals with lower awareness. Likewise, subjects with dyslipidemia were more likely to have lower awareness of nutrition labeling. In addition, older or male individuals were more frequently diagnosed with dyslipidemia, as were subjects with lower socio-economic status, educational level, or household income.

Table 3 shows results of our multiple and logistic regression analysis to investigate the association between awareness of nutrition labeling and outcome variables related to dyslipidemia. Individuals with higher awareness of nutrition labeling had lower TG and higher HDL cholesterol levels than those with lower awareness, although we observed some negative associations between awareness and TC and LDL cholesterol levels. Male or older individuals generally had association with high risk levels of four indicators, while individuals with healthy behaviors had association with low risk levels of those. The results of our logistic regression analysis to examine the association between awareness of nutrition labeling and risk of dyslipidemia show that individuals with higher awareness of nutrition labeling had a lower risk of dyslipidemia than individuals who did not. Risk of dyslipidemia was also higher in males, older participants, and individuals with unhealthy behaviors.

We also performed subgroup multiple logistic regression analysis to examine possible associations between nutrition labeling awareness and the risk of dyslipidemia with respect to sex, age, educational level, BMI, subjective health status, and the frequency of eating out. Although the interactions between subgroup variables and labeling awareness were only analyzed for sex and age, we did note positive associations between low risk of dyslipidemia and higher awareness in each group. In general, these positive association were more noticeable in males, younger individuals, those with the low educational level, obese participants, and those with the less than four times a week of eating out (Figs. 1 and 2).

Discussion

After 1995, nutrition labeling was mandated by the South Korean government to improve consumer information regarding food purchases. Its expansion since then is expected to positively impact the overall health status in South Korea, especially in patients with certain chronic diseases [10]. Thus, we hypothesized that

Fig. 1 The results of subgroup analysis for the multiple logistic regression analysis to examine the association between awareness regarding nutrition labelling and risk of dyslipidemia according to sex, age, and educational level. *Awareness regarding nutrition labelling = A1: checks nutrition facts and makes labeling-dependent purchase decisions, A2: checks nutrition facts but does not make labeling-dependent purchase decisions/aware of nutrition facts but does not check them when making food purchase decisions, and ref = unaware of nutrition facts. The OR is marked as square point; and results were statistically significant if each bar as marked to SD is not reached the cutoff line in 1.00. *UCL = 95 % upper confidence limit, LCL = 95 % lower confidence limit
awareness of nutrition labeling significantly affects diet-related health status, particularly dyslipidemia, and explored possible associations between awareness level and risk of dyslipidemia in individuals not yet diagnosed.

Our findings indicate that a higher awareness level was inversely related to the risk of dyslipidemia, especially with respect to TG and HDL cholesterol indicators [22]. Previous studies have already shown that nutrition labeling is positively associated with patient self-management of chronic diseases, such as the changing of their dietary habits. In addition, introducing nutrition labeling may reduce obesity and promote certain healthy behaviors [10, 23]. However, simply introduction of the labeling cannot be effective without a detailed review of how people perceive and use the system [24]. Therefore, more public health promotion of nutrition labeling should be provided for elderly populations. Differences by sex regarding the impact of nutrition labeling were significant only in males. This is similar to reason due to age, the females had more attention for manage their health and body shape than males. In addition, there were greater impact by higher awareness of nutrition labeling than others. The nutrition labeling system in South Korea was applied into food materials for home cooking as well as meals sold by a restaurant. Based on results, the introduction of food labelling system in South Korea might be helpful in improving the health behavior of South Korean when choose the food materials for home cooking rather than eating out. Also, such results might be caused by differences of attention for health, because the people with less eating out had more attention for manage their and their family's health.

Because nutrition labeling appeared to have a greater impact in individuals with lower educational level, perhaps introduction of the system has improved accessibility of health information for economically vulnerable populations [25]. The impact was also greater in younger individuals, likely due to their general concern regarding diet choices [25].

Fig. 2 The results of subgroup analysis for the multiple logistic regression analysis to examine the association between awareness regarding nutrition labelling and risk of dyslipidemia according to BMI, subjective health status, and the frequency of eating out. *Awareness regarding nutrition labelling = A1: checks nutrition facts and makes labeling-dependent purchase decisions, A2: checks nutrition facts but does not make labeling-dependent purchase decisions/aware of nutrition facts but does not check them when making food purchase decisions, and ref = unaware of nutrition facts. The OR is marked as square point; and results were statistically significant if each bar as marked to SD is not reached the cutoff line in 1.00. *UCL = 95 % upper confidence limit, LCL = 95 % lower confidence limit
individuals with poor health, such as those with obesity [13]. These results should motivate health professionals and policymakers to consider the positive effects of nutrition labeling awareness when establishing health policies or programs for specific populations [26]. Moreover, by promoting the advantages of nutrition labeling awareness, we expected that more remarkable improvements of health status in South Korean will be observed.

Our study had several strengths compared with previous studies. First, we used nationwide sampling data during a 5-year period, so our results are helpful in establishing long-term health policy at the national level. Second, to our knowledge, our study is the first to specifically investigate the association between awareness and utilization of nutrition labeling information and the risk of dyslipidemia in South Korean individuals. Third, our results suggest that public perception of new health policies is important for determining their long-term success rather than only shortly after their introduction [24, 27]. Finally, we considered socioeconomic status and health behaviors, such as smoking, alcohol intake, fat intake, and aerobic workout habits, to minimize the effects of confounding variables on our observed results.

However, our study also has limitations. Because the data used in this study were cross-sectional, rather than longitudinal, some concerns about causal relationships between labeling awareness and outcome variables were present. To minimize these concerns, we excluded respondents who were already diagnosed with dyslipidemia and defined dyslipidemia based on their results on the day of investigation. Second, we calculated the respondents’ LDL cholesterol levels using the Friedewald formula because these data were not directly collected as part of our study [28]. The indirect measurement of LDL cholesterol may result in underestimation, so some LDL cholesterol-related results may not be accurate. Finally, the impact of labeling awareness led to some inconsistent trends with some indicators, possibly due to the method of measurement used. Therefore, further studies using data with more detailed measurements are needed.

Despite such limitations, our findings suggest that high awareness and active utilization of nutrition labeling were inversely associated with risk of dyslipidemia, especially in vulnerable populations and younger participants, as they may be more attentive to their health status than others. Based on these results, health policymakers and professionals should consider promoting nutrition labeling awareness as an alternative for managing dyslipidemia in South Korean patients.

Conclusion
The awareness of nutrition labeling had positive outcomes for TG and HDL cholesterol levels related to dyslipidemia.

In addition, the active utilization of nutrition labeling was associated with a low risk of dyslipidemia. Based on our findings, health policymakers and professionals should develop effective alternatives such as promoting the use of nutrition labeling for the management of chronic diseases in South Korea.

Abbreviations
ANOVA: Analysis of variance; BMI: Body mass index; CI: Confidence interval; CVD: Cardiovascular diseases; HDL: High-density lipoprotein; KCDC: Korea Centers for disease control and prevention; KNHANES: Korea National Health and Nutrition Examination Surveys; LDL: Low-density lipoprotein; OR: Odds ratio; SD: Standard deviation; SE: Standard error; TC: Total cholesterol; TG: Triglyceride

Acknowledgement
No specific funding supported this study.

Availability of data and materials
The KNHANES was openly available in https://knhanes.cdc.go.kr/knhanes/eng/index.do after submitting e-mail address and registering short-form information.

Authors’ contributions
JKY, KHK, and MJK designed the study, collected data, performed statistical analyses, and wrote the manuscript. SYJ, ECP, and KTH contributed to the discussion and reviewed and edited the manuscript. KTH is the guarantor of this work and as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. The text in this document has been checked by at least two professional editors who are native English speakers. In addition, WK provided re-editing services for our manuscript to improve quality of scientific writing. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
These data was approved by the KCDC Institutional Review Board, and all participants provided written informed consent (2010-02CON-21-C, 2011-02CON-06-C, 2012-01-EXP-01-2C, 2013-07CON-03-4C, and 2014-12EXP-03-5C).

Author details
1Premedical Courses, Yonsei University College of Medicine, Seoul, Republic of Korea. 2Department of Preventive Medicine, Yonsei University Graduate School, Seoul, Republic of Korea. 3Institute of Health Services Research, Yonsei University, Seoul, Republic of Korea. 4Department of Public Health, Graduate School, Yonsei University, Seoul, Republic of Korea.

Received: 25 June 2016 Accepted: 9 September 2016
Published online: 15 September 2016

References
1. Kim E-J, Yoon S-J, Jo M-W, Kim H-J. Measuring the burden of chronic diseases in Korea in 2007. Public Health. 2013;127(9):806–13.
2. Thankappan K, Shah B, Mathur P, Sarma P, Srinivas G, Mini G, Daivadanam M, Soman B, Vasani RS. Risk factor profile for chronic non-communicable diseases: results of a community-based study in Kerala, India. Indian J Med Res. 2010;131(1):53.
3. Egede LE. Effect of comorbid chronic diseases on prevalence and odds of depression in adults with diabetes. Psychosom Med. 2005;67(1):46–51.
4. Zimmet P, King H, Bjorntorp P. Obesity, hypertension, carbohydrate disorders and the risk of chronic diseases. Is there any epidemiological evidence for integrated prevention programmes? Med J Aust. 1986;145(6):256–9. 262.
5. Genest J, McPherson R, Frohlich J, Anderson T, Campbell N, Carpenter A, Couture P, Dufour R, Fodor G, Francis GA. 2009 Canadian Cardiovascular Society/Canadian guidelines for the diagnosis and treatment of dyslipidemia
and prevention of cardiovascular disease in the adult–2009 recommendations. Can J Cardiol. 2006;22(10):567–79.
6. Varady KA, Jones PJ. Combination diet and exercise interventions for the treatment of dyslipidemia: an effective preliminary strategy to lower cholesterol levels? J Nutr. 2005;135(8):1829–35.
7. Roh E, Ko S-H, Kwon H-S, Kim NH, Kim JH, Kim CS, Song K-H, Won JC, Kim DJ, Choi SH. Prevalence and management of dyslipidemia in Korea: Korea National Health and Nutrition Examination Survey during 1998 to 2010. Diabetes Metab J. 2013;37(6):433–49.
8. Genest J, Frohlich J, Fodor G, McPherson R. Recommendations for the management of dyslipidemia and the prevention of cardiovascular disease: summary of the 2005 update. Can Med Assoc J. 2003;169(9):921–4.
9. Statistics Korea, Causes of death. http://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1834EO1&conn_path=I2 (2004-2014). Accessed 10 June 2016.
10. Park H-K. Nutrition policy in South Korea. Asia Pac J Clin Nutr. 2008;17(S1):343–5.
11. Satia JA, Galanko JA, Neuhouser ML. Food nutrition label use is associated with demographic, behavioral, and psychosocial factors and dietary intake among African Americans in North Carolina. J Am Diet Assoc. 2005;105(3):392–402.
12. Campos S, Doxey J, Hammond D. Nutrition labels on pre-packaged foods: a systematic review. Public Health Nutr. 2005;8(1):21–8.
13. Assmann G, Schulte H. The Prospective Cardiovascular Münster (PROCAM) study: prevalence of hyperlipidemia in persons with hypertension and/or diabetes mellitus and the relationship to coronary heart disease. Am Heart J. 1998;136(6):1713–24.
14. Graftagnino C, Gasecki AP, Doig GS, Hachinski VC. The importance of family history in cerebrovascular disease. Stroke. 1994;25(10):1579.
15. Yancy WS, Olsen MK, Guyton JR, Bakst RP, Westman EC. A low-carbohydrate, ketogenic diet versus a low-fat diet to treat obesity and hyperlipidemia: a randomized, controlled trial. Ann Intern Med. 2004;140(10):769–77.
16. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502.
17. Wadhwa RP, Kinney GL, Maahs DM, Snell-Bergeon J, Hakanon Je, Garg SK, Eckel RH, Revers M. Awareness and treatment of dyslipidemia in young adults with type 1 diabetes. Diabetes Care. 2005;28(5):1051–6.
18. Roh E, Ko S-H, Kwon H-S, Kim NH, Kim JH, Kim CS, Song K-H, Won JC, Kim DJ, Choi SH. Prevalence and management of dyslipidemia in Korea: Korea National Health and Nutrition Examination Survey during 1998 to 2010. Diabetes Metab J. 2013;37(6):433–49.
19. Sullivan K. Consumer attitudes to nutrition labelling. J Nutr Educ. 1998;30(4):210–7.
20. Shiner A, O'Reilly S, O'Sullivan K. Consumer attitudes to nutrition labelling. Br Food J. 1997;99(8):283–9.
21. Melck A. Perception of health inequalities in different social classes, by health professionals and health policy makers in Germany and the United Kingdom. In: WZB Discussion Paper; 1998.
22. Scharnagl H, Nauck M, Wieland H, März W. The Friedewald formula underestimates LDL cholesterol at low concentrations. Clin Chem Lab Med. 2001;39(5):426–31.