Calculations of Configurations of Doubly Ionized Copper (Cu III)

J. Sugar and W. C. Martin

Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234

(March 29, 1976)

The energy levels belonging to the configurations $3d^{7}4s^{2}$ and $3d^{8}n^f$ ($n^f = 4s, 5s, 4p, 5p, 4d, 5d, 4f$, and $5g$) have been calculated. The radial energy integrals were treated as parameters and adjusted to give a least-squares fit to the observed levels. Two- and three-body effective electrostatic interactions for equivalent electrons were included, as well as two-body effective interactions for inequivalent electrons. Strong configuration interaction between $3d^{7}4s^{2}$ and $3d^{8}4d$ was taken into account. Values of the parameters are given for all the above configurations, and the calculated levels are given for all except $3d^{8}4s$ and $3d^{8}4p$ (for which essentially equivalent results have been published). Leading eigenvector percentages are given in appropriate coupling schemes.

Key words: Atomic energy levels; atomic spectra; atomic theory; copper; doubly ionized copper; electron configuration.

1. Introduction

A great extension of the analysis of Cu III has recently been achieved by Shenstone [1]. In this work he determined nearly all the levels of the configurations $3d^{7}4s^{2}$ and $3d^{8}n^f$ for $n^f = 4d, 5d, 5s, 6s, 5p, 4f$, and much of $3d^{8}5g$. In the course of this analysis we provided calculations of the level structures and continually refined them as new data were obtained. The final result is a set of calculations for all the known configurations of this ion (with the exception of $3d^{7}4s4p$) that are internally consistent so far as common radial integrals (parameters) are concerned and that include all the effective electrostatic interactions, as well as the usual Slater and spin-orbit interactions, that have so far been considered in the iron group.

2. Method

Calculations of the energy matrices for these configurations, as well as the matrix diagonalizations and level fitting, were carried out on the NBS Univac 1108 computer. The computer programs were originally obtained from the Laboratoire Aimé Cotton (Orsay, France). Successive diagonalizations and variations of the radial parameters were performed until a least-squares fit of the energy levels was achieved. Final values for the parameters, the standard error for each parameter, and the rms error of the least-squares fit for each configuration are given in table 1. (See ref. [2], for example, for more details of the general procedure.) The rms error is defined as

$$[\sum_{i=1}^{n} \delta_i^2/(n-m)]^{1/2},$$

where δ is the difference between the experimental and calculated positions for a level, n is the number of levels used in the fitting, and m is the number of free parameters. The standard error for a parameter value (in parentheses following the value) indicates how well the value is “defined” by the equations and the experimental levels.

In our initial calculations we were guided by the theoretical study of the even configurations of the third spectra of the iron group by Shadmi, Caspi, and Oreg [3] and by a similar work on the odd configurations by Roth [2]. These papers included calculations of the almost completely known $3d^{n}4s$ and $3d^{n}4p$ configurations of Cu III. Most of the parameters we use, including the effective two-body interactions (α and β) and three-body interactions (T and T_x) for equivalent electrons, are defined in these papers or in reference [4]. In addition we introduced the two-body effective interactions for inequivalent electrons, denoted here as D^k and X^k.
Table 1. Fitted radial parameters for configurations of Cu III. Units are cm$^{-1}$. Standard errors are given in parentheses except for those parameters whose values were fixed in the least-squares calculation.

Parameter	$3d^4s$	$3d^45s$	$3d^46s$	$3d^4p$	$3d^5p$	$3d^4d$	$3d^5d$	$3d^4f$	$3d^5g$	$3d^4s^2$
A	74956(28)	204843(40)	249188(41)	145275(67)	231897(38)	208143(74)	251877(38)	245483(25)	268577(17)	186606(98)
B	12074.3(3.4)	12343.4(4.3)	12311.3(3.7)	12179.3(3.8)	12373.1(19)	12355.2(9.2)	12379.1(1.8)	12471.1(1.0)	1247(1.0)	12949.7(5.5)
C	5024(28)	5059(36)	5115(24)	5006(11)	5051(24)	5073(13)	50674(7.2)	49.2(0.9)	49.2(0.9)	53.16(49)
α	48.8(3.4)	50.4(4.6)	49.8(2.4)	41.0(2.8)	48.9(1.3)	48.8(2.5)	50.2(1.2)	49.2(0.9)	49.2(0.9)	53.16(49)
β	7120.7(3.4)	12343.4(4.3)	12311.3(3.7)	12179.3(3.8)	12373.1(19)	12355.2(9.2)	12379.1(1.8)	12471.1(1.0)	1247(1.0)	12949.7(5.5)
T	-5.63	-5.63	-5.63	-5.63	-5.63	-5.63	-5.63	-5.63	-5.63	-5.63
T_e	5024(28)	5059(36)	5115(24)	5006(11)	5051(24)	5073(13)	50674(7.2)	49.2(0.9)	49.2(0.9)	53.16(49)
F^2	9488(60)	2292(95)	819(80)	6250(55)	1643(35)	2820(140)	1412(62)	87(120)	195(91)	195(91)
F^4	12074.3(3.4)	12343.4(4.3)	12311.3(3.7)	12179.3(3.8)	12373.1(19)	12355.2(9.2)	12379.1(1.8)	12471.1(1.0)	1247(1.0)	12949.7(5.5)
G^3	9488(60)	2292(95)	819(80)	6250(55)	1643(35)	2820(140)	1412(62)	87(120)	195(91)	195(91)
G^4	-648(98)	-313(50)	-390(110)	-990(280)	-570(110)	-570(110)	-570(110)	-570(110)	-570(110)	-570(110)
G^5	901(15)	901(24)	918(10)	1420(580)	1450(520)	910.8(6.7)	911.7(5.1)	907.7(3.4)	913.7(6.0)	973(25)
X^2	901(15)	901(24)	918(10)	1420(580)	1450(520)	910.8(6.7)	911.7(5.1)	907.7(3.4)	913.7(6.0)	973(25)
$R^2(d^4d)$	53	32	10	72	34	4930(170)	77	35	28	4930(170)
$R^2(d^4s^2)$	53	32	10	72	34	4930(170)	77	35	28	4930(170)
rms dev.	53	32	10	72	34	4930(170)	77	35	28	4930(170)
for the direct and exchange parts [5]. We found these to be significant for the $3d^4p$, $3d^5p$ and $3d^4d$ configurations.

3. Parameters of the $3d^8$ Core

All configurations treated except $3d^44s^2$ are built on the $3d^8$ core. It is evident from the parameter values (table 1) that the core parameters are little affected by the additional outer electron of these configurations. The electrostatic parameters B, C, and α were freely varied in all cases except $3d^85g$; their fitted values are nearly identical for each configuration. The seniority parameter β could be meaningfully evaluated only for $3d^44s$ and $3d^44p$, for which the doublet built on the $3d^8 1s^2$ core state is now known [1]. Its value was nearly the same in both cases and was also close to the value derived by Shadmi et al. [3] in their general treatment of the third spectra. It was therefore fixed at the value -496 cm$^{-1}$, derived from $3d^85s$, in all configurations of Cu III. Since most of the $3d^85g$ levels known with certainty are based on the $3p^6$ core term, all core parameters except the spin-orbit parameter $\zeta(3d)$ were fixed at average values derived from the other configurations. The fitted value of $\zeta(3d)$ for each of the $3d^8nl$ configurations was practically unchanged.

The effective 3-body parameter T includes the interaction of $3s^33d^8$ with $3s3d^9$ and has a non-zero matrix element only for the $1D$ state of $3d^8$. This parameter cannot be freely determined for $3d^8$ because the number of core parameters exceeds the number of core terms; we therefore fixed it at the value -5.63 cm$^{-1}$ deduced by Shadmi et al. [3]. The significance of T is demonstrated by the fact that the omission of this particular parameter leads to values for the parameters C, α, and β of the $3d^8nl$ configurations that are totally inconsistent with those derived from the general treatment of third spectra in references [2] and [3]. The second three-body parameter T_x, had no effect on the d^8nl configurations and was omitted. This parameter was included for $3d^44s^2$, where (along with T) it is an independent interaction. It was not possible to obtain meaningful fitted values for T and T_x in $3d^44s^2$, probably because their effect is small and this configuration is strongly distorted by near-configuration interaction. The fixed values used for them were estimated from the results of Shadmi et al. [3].

4. The Two-Body Effective Interaction for Inequivalent Electrons

The interaction is represented here by the parameters D_k and X_k calculated according to the formulas of Goldschmidt and Starkand [5]. They are the coefficients of the scalar products of unit operators, D_k for the direct and X_k for the exchange interaction. The allowed parameters for d^8p are D^1 and X^2, and for d^8d they are D^1, D^2, X^1, and X^3. In the case of $3d^44p$ and $3d^5p$ both effective parameters are well defined by a least-squares fit. Only D^1 and D^2 were defined for $3d^4d$, perhaps because the far-configuration effects were partly masked by the interaction with $3d^44s^2$. Our attempts to include this type of interaction by least-squares fits in the other configurations of Cu III were unsuccessful, but it is surely important for all $3d^44p$ and $3d^44d$ configurations of the iron period.

5. Results

An indication of the success of these calculations is the low rms error reached for all configurations (table 1), always less than 100 cm$^{-1}$ and usually much less. This is particularly significant for the highly mixed $3d^44d$ and $3d^44s^2$ configurations where large deviations present in single-configuration calculations are considerably reduced by the introduction of a single parameter $R^2(d^8,ss)$ for configuration interaction. The inclusion of the effective parameters D_k and X_k in the $3d^44d$ configuration appears to be their first use for $3d^44d$. As a further test we introduced them in a calculation of $3d^44d$ of V III and found a reduction of the rms error from 117 cm$^{-1}$ reported by Spector [6] to 67 cm$^{-1}$. We repeated the calculation of $3d^44p$ of Cu III by Roth [2] who obtained an rms error of 126 cm$^{-1}$; with the inclusion of D^1 and X^2 the rms error was reduced to 72 cm$^{-1}$ (table 1).

Tables 2 through 8 contain the calculated levels obtained with the parameters of table 1. (The $3d^44s$ and $3d^44p$ results are not included because they are essentially the same as appear in references [2] and [3].)

All observed levels are from Shenstone [1], the values being rounded off to the nearest cm$^{-1}$. Observed levels followed by a question mark were so denoted by Shenstone to indicate that these levels may not be real. The “Leading Percentages” refer to squared eigenvector components given as percentages following the term symbols, and rounded off to the nearest percent. The “average %” given at the end of a “Leading Percentage” column is the average purity of the levels for the indicated coupling scheme. The $3d^8$ parent terms for LS-coupling designations are given in parentheses.

5.1. ($3d^44d + 3d^44s^2$) and $3d^45s$

The calculated levels for these even configurations are in tables 2 and 3, respectively. The two leading percentages in LS coupling are given for each level, any second percentage less than 0.5 percent being omitted. In table 2, the two $3d^44s^2$ 2D terms are labeled 1 and 2 as in Nielson and Koster [7].

Shenstone [1] has described his method of assigning LS names to the levels, beginning with the $3d^8$, $3d^8s$, and $3d^44p$ levels and proceeding to name the levels

1 These authors use the notations $-F$ and $-G$ for the parameters here designated D^p and X^s, respectively ($k=4$).
2 With T omitted, these parameters take the following values for Cu III $3d^44s$: $C = 4686 (28)$ cm$^{-1}$, $\alpha = 91(3)$ cm$^{-1}$, and $\beta = -45(36)$ cm$^{-1}$.
3 The following values were obtained for V III by least-squares fitting: $D^1 = -728(88)$ cm$^{-1}$, $D^2 = -1099(200)$ cm$^{-1}$, $X^1 = -327(100)$ cm$^{-1}$, and $X^3 = -678(170)$ cm$^{-1}$.
J	Levels (cm⁻¹)	O–C	Leading percentages	Remarks
	Observed	Calculated		
1/2	189695	193945	¹P 95	²P 3
	195723	195743	²P 91	¹P 9
	197200	197198		
	198034	198041		
	211286	211296		
	212209	212137		
	213142	213148		
	215762	215730		
	216834	216794		
3/2	169608	169571	¹F 99	
	194684	194670	²P 91	³P 8
	196100	196095	²P 76	³D 2
	196806	196745	²P 61	³F 10
	197986	198005	²P 19	³D 14
	201732	201751	²P 51	³F 27
	21124	211073	²P 48	³P 19
	211652	211634	²P 74	³F 26
	213312	213264	²P 61	³P 20
	215197	215172	²P 25	³D 4
	215807	215758	²P 24	³D 2
	218235	216063	²P 172	³F 19
	224504	224479	²P 92	³D 4
	240176	256250	²P 92	³D 4
5/2	168857	168834	²P 98	³F 2
	193885	193911	²P 56	³F 30
	195340	195255	²P 51	³F 28
	196220	196232	²D 59	³D 37
	196731	196768	²P 34	³D 30
	197901	197932	²P 49	³D 24
	198061	198070	²P 56	³D 24
	201215	201118	²P 79	³D 13
	210159	210205	²P 45	³D 23
	211680	211172	²P 34	³D 19
	213134	213117	²P 51	³D 19
	213515	213317	²P 73	³D 19
	214990	214952	²P 45	³D 23
	215100	215042	²P 83	³F 23
	216145	216146	²P 77	³F 23
	216376	216448	²P 68	³F 22
	221879	221882	²P 98	³F 22
	223787	223869	²P 73	³D 23
	240945	256273	²P 99	³D 23
7/2	167739	167741	²F 100	
	189603	189616	²G 98	³F 2
	193521	193536	²P 93	³D 24
	195344	195374	²D 53	³F 24
	196742	196740	²F 36	³D 24
	197055	197063	²F 47	³D 24
	197594	197605	²F 40	³D 24
	198930	198988	²F 81	³D 24
	210240	210309	²F 69	³D 24
Table 2. Calculated energy levels and leading percentages (LS coupling) for the interacting 3d^44d and 3d^44s^2 configurations. States of 3d^44s^2 are distinguishable by the absence of parentage. The meaning of the letters under “Remarks” is explained in the text (5.1) — Continued

J	Levels (cm\(^{-1}\))	O–C (cm\(^{-1}\))	Leading percentages	Remarks
	Observed	Calculated		
1/2	211217	211271	54	(^3)D^F^G 83 (^3)P^F^F 10
	212752	212860	–108	(^3)P^F^F 72 (^3)D^F^F 19
	213816	213988	–172	(^3)F 56 (^3)P^F^F 23
	214845	214901	–56	(^3)P^F^F 90 (^3)D^F^F 3
	215977	216090	–113	(^3)P^F^F 65 (^3)D^F^F 2
	221861	221876	–15	(^3)G^F^F 98 (^3)D^F^F 1
	223174	223190	–24	(^3)G^F^F 99 (^3)D^F^F 1
9/2	166160	166210	–50	(^3)F 99
	188098	188116	–18	(^3)G 94 (^3)H 3
	195062	195086	–24	(^3)F^G^F 39 (^3)F^F^F 36
	195518	195415	103	(^3)F^F^F 33 (^3)F^F^F 21
	196029	196167	–138	(^3)H 30 (^3)F^G^F 23
	196796	196675	121	(^3)F^F^H 65 (^3)F^G^F 18
	197376	197573	–197	(^3)F^F^G 49 (^3)F^G^F 26
	198687	198561	126	(^3)F^F^H 60 (^3)H 26
	211314	211259	55	(^3)D^F^G 82 (^3)P^F^F 16
	214748	214782	–34	(^3)P^F^F 83 (^3)D^G^F 16
	223090	223101	–11	(^3)G^F^H 91 (^3)G^F^G 9
	223201	223217	–16	(^3)G^F^G 90 (^3)G^F^H 9
11/2	194033	194017	16	(^3)F^F^H 51 (^3)H 35
	194818	194816	2	(^3)F^G^F 68 (^3)F^H^G 27
	195758	195745	13	(^3)F^H^H 41 (^3)H 31
	197039	197000	39	(^3)F^F^H 47 (^3)H 31
	220311	220291	20	(^3)G^F^F 100
	223175	223173	2	(^3)G^F^F 100
13/2	194332	194320	12	(^3)F^H^F 100
	220414	220379	35	(^3)G^F^F 100

This level was found by Shenstone after publication of his paper [1]. The more exact value is 196220.49 cm\(^{-1}\).

Table 3. Calculated energy levels and leading percentages (LS coupling) for the 3d^55s configuration.

J	Levels (cm\(^{-1}\))	O–C (cm\(^{-1}\))	Leading percentages	
	Observed	Calculated		
1/2	213418	213408	10	(^3)P^P^P 98 (^3)P^P^P 2
	214730	214709	23	(^3)P^P^P 98 (^3)P^P^P 2
		254805		
3/2	196442	196406	36	(^3)F^F 99 (^3)D^D 1
	210033	210035	–2	(^3)D^P 86 (^3)P^P^P 10
	213127	213155	–28	(^3)P^P^P 94 (^3)D^D 5
	214265	214256	29	(^3)P^P^P 90 (^3)D^D 8
5/2	195555	195524	31	(^3)F^F 89 (^3)F^F 11
	197400	197444	–44	(^3)F^F^F 88 (^3)F^F^F 11
	209875	209860	15	(^3)D^D^P 77 (^3)P^P^P 22
	212951	212995	–44	(^3)P^P^P 78 (^3)D^D 22
7/2	194117	194140	–23	(^3)F^F 64 (^3)F^F^F 36
	195789	195792	–3	(^3)F^F 64 (^3)F^F^F 36
	220569	220566	3	(^3)G^G^G 100
9/2	193371	193363	8	(^3)F^F^P 100
	220564	220565	–1	(^3)G^G^G 100

Average % __ 89

469
J	Levels (cm⁻¹)	O-C (cm⁻¹)	Leading percentages			
	Observed	Calculated	LS			
1/2				(L,S,)(J,J)	3F₃,3/2	99
	215161	215155	6	(F)D	99	
	229054	229142	-88	(D)P	75	
	231298?	231304	-6	(P)P	91	
	232620			(P)D	97	
	233591			(P)P	86	
	234189			(P)S	95	
	273668			(S)P	100	
				(S)₁/₂	100	
3/2				(F)D	88	
	214358	214351	7	(F)F	90	
	215783	215777	6	(F)F	90	
	216449	216463	-14	(F)D	90	
	228469	228465	4	(D)P	57	
	229430	229430	75	(D)P	55	
	231438	231429	29	(P)P	73	
	232478?	232499	-21	(P)D	87	
	232814	232847	-33	(P)P	85	
	233654	233581	73	(P)P	87	
	234036	234059	-23	(P)F	90	
	274085			(S)P	100	
				(S)₁/₂	100	
5/2				(F)D	73	
	213026	213024	2	(F)F	39	
	214703	214704	-1	(F)F	38	
	214766	214768	-2	(F)D	38	
	215417	215410	7	(F)G	60	
	216566	216583	-17	(F)F	76	
	228424	228436	-12	(D)P	52	
	228960	228962	-2	(D)F	62	
	231333	231371	-38	(P)P	72	
	232458	232391	67	(P)D	71	
	233057			(P)D	75	
	239149	239125	24	(G)F	99	
				(G)₁/₂	99	
7/2				(F)D	91	
	211821	211821	0	(F)F	36	
	213312	213313	-1	(F)F	36	
	214328	214327	1	(F)G	59	
	215000	214998	2	(F)F	46	
	216018	216030	-12	(F)G	65	
	229098	229074	24	(D)F	81	
	223436	223499	-52	(P)D	82	
	238834	238829	5	(G)F	98	
	240786	240786	0	(G)G	99	
				(G)₁/₂	68	
9/2				(F)D	42	
	212415	212418	-3	(F)F	67	
	212995	213004	-9	(F)F	67	
	214588	214581	7	(F)G	56	
	238788	238807	-19	(G)H	99	
	240853	240853	0	(G)G	99	
11/2				(F)G	74	
	212525	212510	15	(F)H	100	
	239142	239154	-12	(G)H	100	

Average % .. 77 71

* This tentative level was not entered into the least-squares adjustment of the parameters. See text (5.2).
Table 5. Calculated energy levels and leading percentages for the 3d^86s configuration

J	Levels (cm⁻¹)	O–C (cm⁻¹)	Leading percentages
	Observed	Calculated	
1/2	258291	258785	
	299796		
3/2	241392	241135	7
	254694	254703	−9
	258046	258380	
5/2	240326	240330	−4
	241694	241699	−5
	254640	254630	10
	257866	257887	−1
7/2	238638	238629	9
	240303	240306	−3
	265293	265294	

Average %.. 84 85

Table 6. Calculated energy levels and leading percentages for the 3d^85d configuration

J	Levels (cm⁻¹)	O–C (cm⁻¹)	Leading percentages
	Observed	Calculated	
1/2	240764	240806	−42
	241900	241901	−1
	242247	242272	−25
	255515	255851	
	258312	259847	
3/2	239327	239311	16
	240795	240834	−39
	241328	241334	−6
	242219	242222	−3
	244619	244535	84
	255562		
	255750	255756	−5
	258386	258931	
	259830		
	259957		
	260426		
5/2	267310	267320	−10
	300578		

Average %.. 84 85

Table 6. Calculated energy levels and leading percentages for the 3d^85d configuration

J	Levels (cm⁻¹)	O–C (cm⁻¹)	Leading percentages
	Observed	Calculated	
1/2	388819	388835	−16
	240063	240042	21
	240995	240982	13
	242007	241987	20
	242290	242279	11
	243780	243755	25
	255176	255686	7
3/2	238819	388835	−16
	240063	240042	21
	240995	240982	13
	242007	241987	20
	242290	242279	11
	243780	243755	25
	255176	255686	7
5/2	238819	238835	−16
	240063	240042	21
	240995	240982	13
	242007	241987	20
	242290	242279	11
	243780	243755	25
	255176	255686	7

Average %.. 84 85

Table 6. Calculated energy levels and leading percentages for the 3d^85d configuration

J	Levels (cm⁻¹)	O–C (cm⁻¹)	Leading percentages
	Observed	Calculated	
1/2	258291	258785	
	299796		
3/2	241392	241135	7
	254694	254703	−9
	258046	258380	
5/2	240326	240330	−4
	241694	241699	−5
	254640	254630	10
	257866	257887	−1
7/2	238638	238629	9
	240303	240306	−3
	265293	265294	

Average %.. 84 85
Table 6. Calculated energy levels and leading percentages for the 3d^55d configuration—Cont.

J	Levels (cm⁻¹)	O–C	Leading percentages	
	Observed	Calculated	LS	\((L_S) J J [K]\)
7/2	266092	266088	4	\((G) F F 99 \ G_{5/2} 72\)
	267034	267094	-63	\((G) F D 91 \ G_{3/2} 67\)
	300561			\((S) D 100 \ S_{5/2} 100\)
9/2	238731	238774	-43	\((F) F D 86 \ F_{5/2} 49\)
	239441	239439	2	\((F) F F 59 \ F_{5/2} 49\)
	241074	241069	5	\((F) G 44 \ F_{3/2} 91\)
	241250	241250	0	\((F) H 71 \ F_{3/2} 88\)
	242089	242053	36	\((F) G 69 \ F_{5/2} 69\)
	242610	242666	-56	\((D) F F 77 \ D_{5/2} 66\)
	255173	255162	11	\((D) G G 83 \ D_{3/2} 71\)
	255487	255486	39	\((P) F D 80 \ P_{5/2} 54\)
	256199	256199	0	\((P) F F 80 \ P_{3/2} 53\)
	259018	258986	32	\((P) F F 81 \ P_{5/2} 44\)
	260680	260687	7	\((G) F F 100 \ G_{3/2} 52\)
	266643	266649	-6	\((G) G 100 \ G_{3/2} 52\)

Average %.. 72 68

Table 7. Calculated energy levels and leading percentages for the 3d^44f configuration

J	Levels (cm⁻¹)	O–C	Leading percentages	
	Observed	Calculated	LS	\((L_S) J J [K]\)
1/2	234531	234510	21	\(3F_{1}[1] 100 \ F F S 45\)
	236324	236319	5	\(3F_{1}[1] 75 \ F F F D 40\)
	236371	236368	3	\(3F_{1}[0] 74 \ F F P 42\)
	237591	237586	5	\(3F_{1}[1] 99 \ F F P 36\)
	251062			\(D_{5/2} 83 \ D F P 83\)
	254662			\(F_{2}[1] 84 \ F F F P 84\)
	260986			\(G_{1}[1] 100 \ G F P 100\)
3/2	234427	234458	-31	\(3F_{1}[1] 84 \ F F P 49\)
	234661	234649	12	\(3F_{1}[2] 84 \ F F F 48\)
	236395	236405	-10	\(3F_{1}[1] 71 \ F F F D 36\)
	236485	236488	-3	\(3F_{1}[2] 71 \ F F F 39\)
	237559	237563	-24	\(3F_{1}[1] 74 \ F F F P 36\)
	237734	237733	1	\(3F_{1}[2] 74 \ F F D 41\)
	250942			\(D_{2}[2] 81 \ D F F 81\)
	251070			\(D_{2}[1] 83 \ D F P 83\)
	254178			\(F_{2}[2] 72 \ P F F 87\)
5/2	234491	234489	2	\(3F_{1}[2] 88 \ F F D 45\)
	234775	234771	4	\(3F_{1}[3] 88 \ F F D 50\)
J	Levels (cm⁻¹)	O - C (cm⁻¹)	Leading percentages	
---------	--------------	--------------	---------------------	
			(L₃S₃J₃/₁K₃)	LS
			L, S, l, J/₁K	
	Observed	Calculated		
7/2	234562	234566	-4	
	234813	234802	11	
	236512	236494	18	
	236611	236607	4	
	237731	237761	-10	
	250734	250732	2	
	250818	250859	-41	
	254132	254103	29	
	254221			
	254772	254737	35	
	254927	254914	13	
	255131			
	261563	261508	55	
	261763	261798	-35	
9/2	234655	234674	-19	
	234775	234753	22	
	236337	236529	8	
	236550	236656	-15	
	237645	237613	32	
	237779	237789	-10	
	250734	250730	4	
	251000	250946	54	
	253831	254070	-39	
	254449	254508	-59	
	254784	254729	55	
	261757	261800	-43	
	261996	261966	30	
11/2	234681	234695	-14	
	234717	234752	-35	
	236419	236407	12	
	236532	236540	-8	
	237641	237645	-4	
	251011	250949	62	
	254468	254492	-24	
	261829	261837	-17	
	261998	261969	20	
13/2	234533	234553	-20	
	234671	234670	1	
	236418	236403	15	
	261710	261159	11	
	261812	261843	-31	
15/2	234337	234520	17	
	261168	261165	3	

Average % .. 88 67
J	Levels (cm⁻¹)	O−C (cm⁻¹)	Leading percentages
1/2			(L,S,) J, j [K]
	Observed	Calculated	
1/2	257495	257407	88
	257491	257391	
	284186	284229	
3/2	257560	257540	19
	257584	259363	
	259433	259376	57
	260612	273899	
	277499	284219	
	284303		
5/2	257489	257464	25
	257672	257673	1
	259441	259463	7
	260545	260724	
	273812	273899	
	277466	277633	
	284291	284410	
7/2	257515	257506	9
	257668?	257701	
	259421	259565	
	260625	260741	
	273724	273843	
	277176	277361	
	277650	277744	
	277996	284403	
	284542	318914	
9/2	257574?	257546	28
	257626	257655	
	259403?	259414	
	259480	260654	
	260676?	273692	
	273807	277141	
	277236	277630	
	277866	284539	
	284662	318908	
11/2	257531	257575	44
	257556	257586	
	259404	259415	
	259418	259434	
	260591	260564	

Table 8. Calculated energy levels and leading percentages for the 3d⁵5g configuration.
of the higher configurations on the basis of the relative intensities of their transitions. His designations are usually in agreement with our calculations for those levels whose assigned eigenvectors yield meaningful LS names. As examples of the nature of such discrepancies as exist, we have added a column to table 2 for remarks on the designations of the levels. (Shenstone draws attention to the \((3d^8 4d + 3d^7 4s^2)\) group in this connection.) The eigenvectors for the observed levels in table 2 given without a letter in the final column confirm the names assigned by Shenstone.\(^5\) The letters in the final column have the following meanings:

A. The leading component of the eigenvector indicates a designation different from that assigned by Shenstone.

B. The eigenvector yields no theoretically satisfactory single-configuration single-term designation.\(^5\)

C. Indicates pairs of neighboring levels whose eigenvectors might possibly be interchanged.

The low \(3d^8(2F) 4d\) \(4P\) and \(4D\) terms overlap, but the \(4D\) term is lower according to our calculations; this accounts for the first six “A” notations in the table. The several B notations for the \(J = 9/2\) and \(J = 11/2\) levels mainly arise because of the strong admixtures of \(3d^7 4s^2\) \(2H\) components, which are so distributed amongst these levels that no level for either \(J\) value can meaningfully be assigned to this term. The very similar compositions of the \(J = 11/2\) levels at 194033 and 197039 cm\(^{-1}\) may be noted; these prevent a designation for either level according to our criteria.

5.2. \(3d^85p\), \(3d^86s\), and \(3d^85d\).

The results for these configurations are given in tables 4, 5, and 6. The leading percentage for each level is given in LS coupling and in a \((L, S_1, J, K)_{1/2}\) coupling scheme. The notations for the latter scheme have the
3dⁿ parent level (in LS coupling) followed by the j value of the outer electron. Most of the levels have meaningful names in either scheme. The average purity in LS coupling is a little higher than the J₁_j purity (3dⁿ5p and 3dⁿ5d), or the purities in the two schemes are practically equal (3dⁿ6s); the LS names are probably more generally useful.

Shenstone assigned some 25 odd levels to the 3d^f4s4p configuration [1]. We calculated this large configuration, but the results of the level fitting were inconclusive because of the lack of sufficient data. Shenstone assigned a tentative level at 232990 cm⁻¹ to 3d^f7(4F)4s4p (3P⁰) 2D_{3/2} and a level at 233286 cm⁻¹ to 3d^g8(3P)5p 2D_{5/2}. The lower of these levels is closer to our prediction for 3d^f8 (3P) 5p 2D_{5/2} but we used neither level in the least-squares calculations. Although the good fit obtained for the 3dⁿ5p levels indicates that the general configuration interaction with 3d^f4s4p is weak, the closeness of these two 2D_{5/2} levels might result in significant configuration mixing.

5.3. 3dⁿ4f and 3dⁿ5g

Shenstone pointed out that the level structure of the 3dⁿ parent configuration could usually be discerned in the pattern of the 3dⁿnl levels. "In 5g the scheme [in which the parent J value is defined] reaches an extreme which makes it possible to identify some, but not all of the levels. In fact, the number of combinations of a level is reduced in most cases to just two . . . " A small number of combinations is one effect of pair coupling and, as is evident from tables 7 and 8, the 3dⁿ4f and 3dⁿ5g configurations are best described by the J₁_j coupling scheme. The designations for this scheme have the 3dⁿ parent level (L, S, and J) preceding the bracketed K value (obtained by coupling J₁ and the l vector of the outer electron) [8]. Shenstone was able to deduce LS names for the 4f and 5g levels in some accordance with the intensities of their transitions, but many of the LS designations have meaning only in that connection. Only two of the eigenvectors for 3dⁿ4f have leading percentages less than 50 percent in J₁_j coupling, whereas there are 23 such eigenvectors in LS coupling; for 3dⁿ5g, the equivalent numbers are 4 and 26.

6. References

[1] Shenstone, A. G., J. Res. Nat. Bur. Stand. (U.S.), 79A (Phys. and Chem.), No. 3, 497–521 (May–June 1975).
[2] Roth, C., J. Res. Nat. Bur. Stand. (U.S.), 72A (Phys. and Chem.), No. 5, 505–520 (Sept.–Oct. 1968).
[3] Shadmi, Y., Caspi, E., and Oreg, J., J. Res. Nat. Bur. Stand. (U.S.), 73A (Phys. and Chem.), No. 2, 173–189 (Mar.–Apr. 1969).
[4] Shadmi, Y., Oreg, J., and Stein, J., J. Opt. Soc. Am. 58, 909 (1968).
[5] Goldschmidt, Z. B., and Starkand, J., J. Phys. B 3, 1141 (1970).
[6] Spector, N., Opt. Pura Aplic. 3, 33 (1970).
[7] Nielson, C. W., and Koster, G. F., Spectroscopic Coefficients for the pⁿ, dⁿ, and fⁿ Configurations (M.I.T. Press, Cambridge, Mass., 1963), 275 pp.
[8] Racah, G., Phys. Rev. 61, 537 (1942).

(Paper 80A3–898)