The relevance of MTHFR C677T, A1298C, and MTRR A66G polymorphisms with response to male infertility in Asians

A meta-analysis

Tian-Lu Shi, MDᵃ,ᵇ, Yan Wu, MSᵃ, Yu Li, MSᵃ,ᵇ, Zhen-Feng Chen, MSᵃ, Yi-Ni Ma, MSᵃ, Zhe-Tao Zhang, MSᵃ, Yong-Huang Zhang, MSᵃ,ᵇ, Lei Zhang, MDᵃ

Abstract

Although published studies have reported the association between MTHFR C677T (rs1801133), A1298C (rs1801131), and MTRR A66G (rs1801394) polymorphisms and male infertility in Asian populations, the results are conflicting. In order to accurately evaluate the relevance, a meta-analysis was performed.

We searched for potential studies in 4 databases, containing PubMed, ScienceDirect, China National Knowledge Infrastructure (CNKI), and Wanfang database until May 31, 2018. The summarized odds ratio (OR) with 95% confidence intervals (95% CI) were calculated to evaluate the relevance in 5 genetic models. The heterogeneity test, sensitivity analysis, and publication bias test was performed by Review Manager 5.3 software.

Overall, 22 case-control studies with 5049 cases and 4157 controls were included in this meta-analysis, which contained 20 studies of MTHFR C677T polymorphism, 12 studies of MTHFR A1298C polymorphism and 4 studies of MTRR A66G polymorphism. The results indicated that MTHFR C677T, A1298C, and MTRR A66G polymorphisms were significantly associated with male infertility in Asian populations (Dominant model: MTHFR CC + CT vs TT: OR = 0.60, 95% CI (0.53, 0.67), P < .00001; MTRR AA + AC vs CC: OR = 0.62, 95% CI (0.49, 0.79), P = .0001; MTRR AA + AG vs GG: OR = 0.60, 95% CI (0.45, 0.81), P = .001. Recessive model: MTHFR CC vs CT + TT: OR = 0.67, 95% CI (0.61, 0.74), P < .00001; MTHFR AA vs AC + CC: OR = 0.70, 95% CI (0.67, 0.82), P < .00001; MTRR AA vs AG + GG: OR = 0.71, 95% CI (0.56, 0.88), P = .002. Homozygote model: MTHFR CC vs CT: OR = 0.73, 95% CI (0.67, 0.80), P < .00001; MTHFR AA vs AC: OR = 0.79, 95% CI (0.70, 0.88), P < .00001; MTRR AA vs AG: OR = 0.76, 95% CI (0.67, 0.89), P = .01. Homozygote model: MTHFR CC vs TT: OR = 0.48, 95% CI (0.41, 0.56), P < .00001; MTRR AA vs CC: OR = 0.51, 95% CI (0.43, 0.60), P = .001. Allele model: MTHFR C vs T: OR = 0.70, 95% CI (0.66, 0.75), P < .00001; MTHFR A vs C: OR = 0.82, 95% CI (0.71, 0.95), P = .01; MTRR A vs G: OR = 0.76, 95% CI (0.66, 0.88), P = .00003. Stratified analyses by geographical location and source of controls showed the same results. Sensitivity analyses indicated that the final consequences of this meta-analysis were stable, and the publication biases test had not found obvious asymmetry.

This meta-analysis indicates that MTHFR C677T, A1298C, and MTRR A66G polymorphisms are the risk factors with susceptibility to male infertility in Asians.

Abbreviations: CI = confidence interval, CNKI = China National Knowledge Infrastructure, HB = hospital-based, HWE = Hardy-Weinberg equilibrium, MTHFR = methylene tetrahydrofolate reductase, MTRR = methionine synthase reductase, OR = odds ratio, PB = population-based.

Keywords: Asians, male infertility, MTHFR A1298C, MTHFR C677T, MTRR A66G, polymorphism

1. Introduction

It had shown that about 10%~15% of married couples in the world were suffering from infertility, about half of which was attributed to male partner.[1] So far, male infertility has become a concern and urgent problem in the world. Many reasons such as environmental disruptors, genetic, testes pathologies, and sedentary lifestyle may affect spermatogenesis leading to male infertility.[2,3] but almost half of all male infertility patients are still undiagnosed for the complicated mechanism which may be associated with spermatogenesis process of gene mutations.[4]

Folate plays an important role in cell metabolism, like the synthesis of nucleic acids and epigenetic regulation of gene expression through remethylation of homocysteine into methionine.[5] Once the folate is deficient, the proliferation of sperm cells will be reduced.[6] Methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) are the key enzymes in folate metabolism. The enzyme activities of
MTHFR and MTRR are influenced by gene polymorphisms.\(^7\) So the polymorphisms of MTHFR and MTRR may be a potential risk factor for male infertility.\(^8\)

Several studies have investigated the association between MTHFR C677T (rs 1801133), A1298C (rs 1801131) and MTRR A66G (rs1801394) polymorphisms, and male infertility, but the conclusions are controversial.\(^9\) The reason may be partially attributed to racial difference. For Asians, only 4 meta-analyses have evaluated the impact of MTHFR C677T polymorphism on male infertility by far\(^{10-13}\) Gupta's study with 522 cases and 315 controls was limited to Indian population.\(^{10}\) Weiner's study with 275 men of idiopathic male infertility and 349 controls was limited to Russian population.\(^{11}\) Ren's study including 1713 cases and 1104 controls was limited to Chinese population,\(^{12}\) and Rai's research with 4392 breast infertile males and 3667 fertile males has not included the latest research data after March 2015.\(^{13}\) Only Ren et al have evaluated the association between MTHFR A1298C and male infertility.\(^{12}\) The system review with respect to MTRR A66G polymorphism specifically for Asian populations has not been reported till date. In this present research, we performed a meta-analysis based on 22 studies with 5049 cases and 4157 controls to investigate the relationship between MTHFR C677T, A1298C, and MTRR A66G polymorphisms and risk of male infertility in Asians.

2. Materials and methods

2.1. Literature search and selection

The systematic search from PubMed, ScienceDirect, CNKI, and Wanfang databases updated on May 31, 2018 using the terms "(Methylenetetrahydrofolate reductase or MTHFR or methionine synthase reductase or MTRR or C677T or A1298C or A66G) and (polymorphism or variants or mutation) and (male infertility)" was conducted by 2 review authors (Shi and Wu). The languages were limited to English and Chinese. Furthermore, we manually searched references in the eligible articles to acquire more applicable information.

2.2. Criteria of inclusion and exclusion

Inclusion criteria were showed as following:

1. case–control studies;
2. evaluation of the association between MTHFR C677T and/or A1298C and/or MTRR A66G polymorphism and male infertility risk in Asian populations;
3. all genotypes had complete data;
4. published in English or Chinese language.

The reasons for excluding studies were:

1. uncertain type of study or not case–control study;
2. no detailed data on genotype distribution;
3. not in Asian populations.

115 articles identified from Pubmed, ScienceDirect, CNKI, Wan Fang database (duplications excluded)
62 articles excluded: Not for MTHFR 677T/A1298C or MTRR A66G (n=39) Review or Meta-analysis or Letter articles (n=23)
53 articles for Full-text reviewed
31 articles excluded: Not case-control study (n=17) Not Asian populations (n=14)
22 articles included in this meta-analysis: 1) 20 studies involved MTHFR C677T polymorphism and male infertility 2) 12 studies involved MTHFR A1298C polymorphism and male infertility 3) 4 studies involved MTRR A66G polymorphism and male infertility

Figure 1. Flow chart of the included studies in the meta-analysis.
2.3. Data extraction

The following information was carefully and independently collected from each eligible study by 2 reviewers: the first author’s name, publication year, country, geographical location, source of controls, and the count of persons with each genotype and allele. The \(P \) value of Hardy–Weinberg equilibrium test (HWE) was also calculated. If the clinical trial data is not complete, we try to contact the author as far as possible.

2.4. Methodological quality assessment

Two reviewers (Shi and Wu) independently assessed the methodological quality of included literature using Newcastle-Ottawa Scale (NOS). The maximum score was 9, and the score of studies ranged from 0 to 3, 4 to 6, and 7 to 9 were regarded as low-quality, moderate-quality, and high-quality, respectively.\[14\]

2.5. Statistical analysis

Review Manager 5.3 software was used for analyses. HWE in each study was calculated by Chi-squared test. The associations were estimated by odds ratio (OR) with 95% confidence interval (95% CI). The heterogeneity among studies was evaluated by \(Q \) and \(I^2 \) statistics. If there was no heterogeneity with \(P \geq 0.1 \) or \(I^2 \leq 50\% \), the fixed-effect model was used. Conversely, the random-effect model was used. Subgroup analysis or sensitivity analysis was performed to exclude the possible causes of heterogeneity. Funnel plot was applied to detect publication bias in the included studies. The statistical significance was considered with \(P \) value less than 0.05.

This study was approved by the Ethics Committee of the First Affiliated Hospital of University of Science and Technology of China. It was conducted in accordance with the Declaration of Helsinki.

3. Results

3.1. Characteristics of included studies

A flow chart summarizing the process of literature selection is shown in Fig. 1. Based on the inclusion-exclusion criteria, 22 case-control studies were recruited in the final analysis.\[15–36\] 20 studies were concerned with the association between MTHFR C677T polymorphism and male infertility,\[15–18,20,21,23–36\] 12 studies evaluated the MTHFR A1298C polymorphism,\[15–17,19,20,22,28,29,33,35,36\] and only 4 studies evaluated the MTRR A66G polymorphism.\[13,25–27\] The characteristics of included studies in the meta-analysis are presented in Table 1.

Table 1

Main characteristics of included studies in the meta-analysis.

A: MTHFR C677T polymorphism

Author	Year	Country	Geographical location	Source of controls	Cases	Controls
Wang Y	2017	China	East Asia	PB	76	15
Najafpour R	2017	Iran	West Asia	HB	280	113
Karimian M	2016	Iran	West Asia	HB	118	51
Li XY	2015	China	East Asia	PB	162	61
Mhady OS	2014	Jordanian	Western Asia	HB	150	67
Naghi H	2014	Indian	South Asia	HB	637	447
Li SS	2014	China	East Asia	PB	82	14
Pet J	2013	China	East Asia	PB	290	39
Vardi GT	2011	Italy	South Asia	HB	206	156
Liu L	2011	China	East Asia	HB	75	27
Gao X	2011	China	East Asia	NA	271	75
Yang BH	2010	China	East Asia	HB	131	34
Zhang WB	2010	China	East Asia	HB	491	43
Dhillon VS	2007	India	South Asia	NA	179	81
Ali J	2007	China	East Asia	HB	351	130
Zhang XI	2007	China	East Asia	HB	165	41
Li XY	2014	China	East Asia	PB	373	105
Park JH	2005	Korea	South Asia	Mixed	151	105
Singh K	2005	India	South Asia	Mixed	151	105
Sun HF	2005	China	East Asia	PB	182	27

B: MTHFR A1298C polymorphism

Author	Year	Country	Geographical location	Source of controls	Cases	Controls
Najafpour R	2017	Iran	West Asia	HB	280	113
Karimian M	2016	Iran	East Asia	PB	118	51
Li XY	2015	China	East Asia	HB	162	101
Mhady OS	2014	Jordanian	West Asia	HB	150	71
Li XY	2014	China	East Asia	PB	162	101
Li SS	2014	China	East Asia	PB	82	49
Singh K	2005	India	East Asia	Mixed	151	66
Lee HC	2006	Korea	East Asia	Mixed	373	137

C: MTRR A66G polymorphism

Author	Year	Country	Geographical location	Source of controls	Cases	Controls
Li XY	2015	China	East Asia	PB	162	83
Mhady OS	2014	Jordanian	West Asia	HB	150	46
Zhang WB	2010	China	East Asia	HB	491	224
Lee HC	2006	Korea	East Asia	Mixed	360	222
Park JH	2005	Korea	East Asia	Mixed	373	137

\(CI = \) confidence interval, \(HB = \) hospital-based, \(MTHFR = \) methylene tetrahydrofolate reductase, \(MTRR = \) methionine synthase reductase, \(OR = \) odds ratio, \(PB = \) population-based.
Figure 2. Forest plots for association of MTHFR C677T polymorphism with the risk of male infertility in Asians. MTHFR=methylene tetrahydrofolate reductase.
A66G polymorphism.\cite{15,17,28,29} The main characteristics and quality score of each study were displayed in Table 1. All studies were stratified by geographical location, of which 14 studies were performed in East Asians\cite{11,16,18,21,22,24,29} and the remaining 8 across South/West Asians.\cite{17,19,20,23,30,31,35,36} When stratified by source of controls, the amount of hospital-based (HB) studies was 10,\cite{11,17,18,21,25,28,30,32,33,35,36} and population-based (PB) studies was 8,\cite{11,22,24,27,29,33,34} and mixed population or uncertain source was 4.\cite{15,16,20,26}

3.2. Results of meta-analysis and subgroup-analysis

3.2.1. MTHFR C677T polymorphism. After pooling 20 studies with 4734 cases and 3967 controls into 1 data set for meta-analysis, we found that the MTHFR C677T polymorphism had statistical association with the risk of male infertility in Asians (see Fig. 2; (A) Dominant model (CC+CT vs TT): OR = 0.60, 95% CI (0.53, 0.67), P < 0.00001; (B) Recessive model (CC vs CT + TT): OR = 0.67, 95% CI (0.61, 0.74), P < 0.00001; (C) Heterozygote model (CC vs CT): OR = 0.74, 95% CI (0.67, 0.82), P < 0.00001; (D) Homozygote model (CC vs TT): OR = 0.48, 95% CI (0.41, 0.56), P < 0.00001; (E) Allele model (C vs T): OR = 0.70, 95% CI (0.66, 0.75), P < 0.00001.)

In the subgroup analysis of geographical location, we observed that a similar association existed both in East Asians and South/West Asians for the MTHFR C677T polymorphism with the male infertility risk. Further stratified analysis by the source of controls showed that the MTHFR C677T polymorphism was also significantly associated with male infertility both in HB and population-based studies. Table 2 summarized the results of overall and subgroup analysis in all of 5 genetic models.

![Figure 2. (Continued).]
3.2.2. **MTHFR A1298C polymorphism.** Twelve studies with 2673 cases and 2328 controls were included to examine the effect of MTHFR A1298C polymorphism on male infertility (see Fig. 3; (A) Dominant model (AA + AC vs CC): OR = 0.62, 95% CI (0.49, 0.79), *P* = .0001; (B) recessive model (AA vs AC + CC): OR = 0.79, 95% CI (0.70, 0.88), *P* < .0001; (C) Heterozygote model (AA vs AC): OR = 0.83, 95% CI (0.73, 0.95), *P* = .001; (D) Homozygote model (AA vs CC): OR = 0.61, 95% CI (0.39, 0.93), *P* = .02; (E) Allele model (A vs C): OR = 0.82, 95% CI (0.71, 0.95), *P* = .01). The results showed the significantly increased risk of male infertility with MTHFR 1298C allele carriers.

In the subgroup analysis of geographical location, we observed that the statistic association existed in East Asians but not in South/West Asians. Further stratified analysis by the source of controls, no significant enhanced risk was observed in all of 3 subgroups. Table 3 showed the results of overall and subgroup analysis in all of 5 genetic models.

3.2.3. **MTRR A66G polymorphism.** Four studies with 837 cases and 727 controls were included to assess the association between MTRR A66G polymorphism and the risk of male infertility (see Fig. 4 (A) Dominant model (AA + AG vs GG): OR = 0.60, 95% CI (0.45, 0.81), *P* = .001; (B) recessive model (AA vs AG + GG): OR = 0.70, 95% CI (0.56, 0.88), *P* = .002; (C) Heterozygote model (AA vs AG): OR = 0.76, 95% CI (0.60, 0.92), *P* = .02; (D) Homozygote model (AA vs GG): OR = 0.51, 95% CI (0.36, 0.72), *P* = .0001; (E) Allele model (A vs G): OR = 0.76, 95% CI (0.66, 0.88), *P* = .0003). In short, the MTRR 66G allele carriers had a markedly increased risk of male infertility in Asian populations.

3.3. **Sensitivity analysis and publication bias**

In sensitivity analysis, elimination of each study made no qualitative difference on the pooled OR values, which indicated that the final consequences of this meta-analysis were stable (Table 4).

The publication biases of the included studies were assessed by funnel plot. The shape of funnel plot in MTHFR C677T, A1298C, and MTRR A66G genotype comparison indicated no obvious asymmetry (Fig. 5).

4. **Discussion**

According to the present meta-analysis involving 3049 cases and 4157 controls from 22 published studies, the MTHFR C677T polymorphism has statistical impact on the risk of male infertility in Asian populations which was similarly supported by the prior 4 meta-analysis of Asians.[10–13] Compared with them, this meta-analysis has a bigger number of included studies and samples. Therefore, the results are more valuable for Asian populations. Previously, a meta-analysis had included 3 studies with a total of 898 individuals to assess the association between MTHFR A1298C polymorphism and male infertility risk in Chinese population and confirmed that MTHFR A1298C polymorphism...
was not the risk factor of male infertility (C vs A; OR = 1.22, 95% CI (0.97, 1.53), \(I^2 = 0\); CC + AC vs AA; OR = 1.27, 95% CI (0.98, 1.65), \(I^2 = 0\); CC vs AA; OR = 1.34, 95% CI (1.66, 2.77), \(I^2 = 0\); CC vs AC + AA; OR = 1.44, 95% CI (0.72, 2.88), \(I^2 = 9\).\(^{[12]}\) which was in contrast to the conclusion of present meta-analysis. This difference may be caused by sample sizes or population substructure. Regarding the MTRR A66G polymorphism, our results provided strong evidence of the association with male infertility risk. For Asians, NCBI database has shown that the allelic frequencies of MTHFR C677T, A1298C, and MTRR A66G are 0.51, 0.24, and 0.30 respectively. Basing on present study, we reached the following conclusion that men carrying the
Table 3

Subgroup analyses for MTHFR A1298C polymorphism in 5 comparative genetic models.

Models	Population	No. of studies	Sample size (case/control)	I² (%)	OR (95% CI)	P
Dominant model (AA vs CC) overall	12	2673/3238	50	0.62 (0.49, 0.79)	.001	
East Asia	7	1759/1856	59	0.49 (0.35, 0.68)	<.0001	
South/West Asia	5	876/742	0	0.86 (0.56, 1.38)	.31	
HB	5	1204/964	71	0.51 (0.36, 0.71)	<.0001	
PB	4	557/443	22	0.55 (0.27, 1.10)	.09	
Others	3	912/201	0	0.94 (0.61, 1.44)	.78	
Recrecessive model (AA vs CC) overall	12	2673/3238	46	0.70 (0.50, 0.98)	<.0001	
East Asia	7	1759/1856	38	0.70 (0.50, 0.98)	<.0001	
South/West Asia	5	876/742	0	1.00 (0.82, 1.22)	.98	
HB	5	1204/964	77	0.72 (0.50, 1.06)	.0001	
PB	4	557/443	0	0.83 (0.64, 1.09)	.16	
Others	3	912/201	46	0.86 (0.71, 1.04)	.12	
Heterozygote model (AA vs AC) overall	12	2471/2216	27	0.83 (0.73, 0.93)	.002	
East Asia	7	1678/1532	0	0.74 (0.64, 0.86)	<.0001	
South/West Asia	5	763/684	0	1.04 (0.94, 1.15)	.74	
HB	5	1074/909	70	0.78 (0.65, 0.94)	.008	
PB	4	530/429	0	0.87 (0.66, 1.16)	.32	
Others	3	867/878	0	0.86 (0.70, 1.04)	.13	
Homozygote model (AA vs CC) overall	12	1641/1504	58	0.61 (0.39, 0.93)	.02	
East Asia	7	1142/1093	65	0.46 (0.24, 0.90)	.02	
South/West Asia	5	501/411	0	0.88 (0.60, 1.28)	.50	
HB	5	703/596	78	0.48 (0.22, 1.08)	.08	
PB	4	344/280	8	0.53 (0.24, 1.19)	.12	
Others	3	594/628	0	0.89 (0.57, 1.38)	.60	
Allele model (A vs C) overall	12	5346/4656	57	0.82 (0.71, 0.95)	.01	
East Asia	7	3593/3172	56	0.73 (0.60, 0.89)	.001	
South/West Asia	5	1756/1484	0	0.97 (0.83, 1.13)	.68	
HB	5	2408/1928	80	0.78 (0.57, 1.08)	.13	
PB	4	1114/886	0	0.83 (0.67, 1.04)	.10	
Others	3	1842/1842	0	0.89 (0.76, 1.05)	.16	

CI = confidence interval, HB = hospital-based, MTHFR = methylene tetrahydrofolate reductase, MTR = methionine synthase reductase, OR = odds ratio, PB = population-based.
alleles of MTHFR 677T, 1298C, and MTRR 66G were likely to become infertile. Therefore, the analysis of these 3 key mutations would be helpful in the prognostication and screening of male infertility.

Although the precise mechanism by which MTHFR C677T, A1298C, and MTRR A66G polymorphisms have effect on fertility is unclear, previous researches have put forward some potential mechanisms. The folate-mediated 1-carbon metabolism is very important for many reactions in human sperm cells,[37,38] such as the methylation, repair, and synthesis of DNA. As one of the key enzymes in DNA synthesis, MTHFR catalyzes the reduction of 5,10-methylenetetrahydrofolate acid which participates in the exchange of deoxyuridine triphosphate (dUTP) for deoxythymidine monophosphate (dTMP) to 5-methyl-tetrahydrofolic acid with a biological function.[39] As a major regulatory enzyme in the pathway of homocysteine metabolism, MTRR plays a vital role in folate and vitamin B12-dependent remethylation of homocysteine to methionine.
Therefore, the polymorphisms of MTHFR C677T, A1298C, and MTRR A66G may influence the activity and stability of the above enzymes leading to imbalance of folate-related metabolism.\(^{40}\) Then, the abnormal metabolism may give rise to the risk of male infertility.

For Asians, our meta-analysis again indicated the significant association between MTHFR C677T polymorphism and male infertility which kept consistent with previous meta-analysis.\(^{12}\) Instead, as to MTHFR A1298C polymorphism, the conclusions were not the same. Ren et al suggested it was not the risk factor of male infertility in Chinese population.\(^{12}\) However, the present meta-analysis observed the statistic association existing in Asians especially for East Asians. This discordant finding may be due to the more included studies and a larger sample size for our research. Most importantly, this is the first meta-analysis specifically for Asian populations assessing the correlation between MTRR A66G polymorphism and male infertility. It showed that the genotypes and mutant allele of MTRR A66G were significantly related with male infertility in Asians. Liu et al and Xu et al have performed meta-analyses to investigate the association between MTRR A66G polymorphism and male infertility in overall population, and they failed to draw any statistic conclusion.\(^{38,41}\) When restricting the subgroup analysis to ethnicity, Liu et al observed an increased risk in Asians but

| Sensitivity analysis for the MTHFR C677T, A1298C, and MTRR A66G polymorphism. |
|-------------------------------------|------------------|-----------------|------------------|
| **A: MTHFR C677T polymorphism** | **Heterogeneity** | **Effect size** | **OR (95%)** |
Eliminated study	\(I^2\)	\(P\)	OR (95%)
A Z C 2007	31	.10	0.60 (0.52,0.68)
Dhillon VS 2007	6	.38	0.57 (0.51,0.65)
Karimian M 2016	29	.12	0.60 (0.52,0.68)
Lee HC 2006	31	.10	0.59 (0.52,0.68)
Li SS 2014	31	.10	0.60 (0.52,0.68)
Li XY 2015	24	.16	0.58 (0.51,0.66)
Liu L 2011	30	.11	0.60 (0.52,0.68)
Miftadi DS 2014	29	.12	0.60 (0.53,0.68)
Najaipour R 2017	31	.10	0.60 (0.53,0.68)
Napei H 2014	30	.11	0.60 (0.53,0.68)
Park JH 2005	29	.12	0.58 (0.51,0.66)
Pei J 2013	26	.14	0.61 (0.53,0.69)
Qiu XF 2011	28	.12	0.61 (0.53,0.69)
Singh K 2005	23	.17	0.60 (0.53,0.68)
Sun HT 2005	27	.14	0.60 (0.53,0.68)
Vare GT 2011	25	.16	0.60 (0.53,0.68)
Wang Y 2017	30	.11	0.60 (0.53,0.68)
Yang BH 2010	28	.13	0.60 (0.53,0.69)
Zhang WB 2010	30	.11	0.60 (0.50,0.67)
Zhang XJ 2007	24	.17	0.58 (0.51,0.66)

B: MTHFR A1298CT polymorphism

Eliminated study	\(I^2\)	\(P\)	Effect size
Dhillon VS 2007	48	.04	0.58 (0.45,0.75)
Karimian M 2016	54	.02	0.60 (0.47,0.78)
Lee HC 2006	53	.02	0.60 (0.46,0.77)
Li SS 2014	51	.03	0.60 (0.47,0.77)
Li XY 2014	54	.02	0.62 (0.49,0.80)
Li XY 2015	53	.02	0.63 (0.49,0.81)
Miftadi DS 2014	53	.02	0.59 (0.46,0.77)
Najaipour R 2017	53	.02	0.59 (0.46,0.77)
Park JH 2005	53	.02	0.60 (0.46,0.77)
Singh K 2010	50	.03	0.64 (0.50,0.82)
Zhang WB 2010	6	.38	0.75 (0.58,0.90)
Zhang XJ 2007	44	.06	0.66 (0.51,0.85)

C: MTRR A66G polymorphism

Eliminated study	\(I^2\)	\(P\)	Effect size
Lee HC 2006	17	.30	0.70 (0.57,0.85)
Li XY 2015	50	.13	0.77 (0.65,0.90)
Miftadi DS 2014	49	.14	0.75 (0.64,0.89)
Zhang XJ 2007	0	.88	0.82 (0.70,0.97)

MTHFR = methylene tetrahydrofolate reductase, MTRR = methionine synthase reductase, OR = odds ratio.
not in Europeans in homozygous, dominant and allele genetic models. In addition, there were available data analyzing these 3 polymorphisms within certain patients. Zhang et al have enrolled 165 infertile patients and 132 healthy fertile males in China to evaluate the impact of MTHFR and MTRR gene polymorphisms on idiopathic male infertility. The findings discovered that: first, the heterozygous genotype (CT) and combined genotype (CT+TT) were present at statistical significances in male infertility ($P = 0.026$, $P = 0.031$) for MTHFR C677T polymorphism. Second, the frequencies of allele C and homozygous genotype (CC) were significantly different between case group and control group ($P = 0.013$, $P = 0.004$) for MTHFR A1298C polymorphism. Third, the prevalence of GG genotype and combined genotype (AG+GG) showed significant difference in the 2 groups ($P = 0.001$, $P = 0.035$) for MTRR A66G. These data are in consistent with our research revealing that the 3 polymorphisms might play an important role in the occurrence of male infertility. However, further studies are still needed to reveal the correlation between polymorphisms of MTHFR C677T, A1298C, and MTRR A66G with Asian male infertility.

On the other hand, some inherent limitations of this meta-analysis should be admitted. First, there may be some language bias since the included literatures are given priority to Chinese and English. Second, the sources of controls among the studies were different from each other. Some studies were HB studies, some studies were PB studies, and others were mixed population or uncertain. Third, our analysis was merely based on single-factor estimation ignoring the interactions of gene-gene and gene-environmental in the development of male infertility. Finally, the sample size was relatively small in part of the included studies.

5. Conclusion
In short, our meta-analysis provides further evidence indicating that MTHFR C677T, A1298C, and MTRR A66G polymorphisms are the risk factors with susceptibility to male infertility in Asian populations. In the future, studies with larger sample sizes will be performed to confirm it, and to explore the relationship between potential gene-gene, gene-environment interactions and male infertility with purpose of providing an important basis for the prevention and treatment of male infertility.

Author contributions
Conceptualization: Tianlu Shi.
Data curation: Tianlu Shi.
Funding acquisition: Tianlu Shi.
Investigation: Yan Wu, Yu Li, Zhen-Feng Chen, Yi-Ni Ma.
Methodology: Zhe-Tao Zhang, Yong-Huang Zhang, Lei Zhang.
Project administration: Tianlu Shi.
Software: Yan Wu.
References

[1] Sharma RK, Said T, Agarwal A. Sperm DNA damage and its clinical relevance in assessing reproductive outcome. Asian J Androl 2004;6:139–48.

[2] Agbaje IM, Rogers DA, McVicar CM, et al. Insulin dependent diabetes mellitus: implications for male reproductive function. Hum Reprod 2007;22:1871–7.

[3] Teerds KJ, de Rooij DG, Keijer J. Functional relationship between obesity and male reproduction: from humans to animal models. Hum Reprod Update 2011;17:667–83.

[4] Li B, Lan FY. Genetic polymorphism of sperm-specifically expressed genes and male infertility. Zhonghua Nan Ke Xue 2008;14:360–3.

[5] Kelly TL, Neaga OR, Schwahn BC, et al. Infertility in 5, 10-methylenetetrahydrofolate reductase (MTHFR)-deficient male mice is partially alleviated by lifetime dietary betaine supplementation. Biochem Biophys Res Commun 2003;302:667–77.

[6] Ravel C, Chantot-Bastaraud S, Chalmey C, et al. Lack of association between genetic polymorphisms in enzymes associated with folate metabolism and unexplained reduced sperm counts. PLoS One 2009;4:e6401-1-9.

[7] Du B, Tian H, Tian D, et al. Genetic polymorphisms of key enzymes in folate metabolism affect the efficacy of folate therapy in patients with hyperhomocysteinemia. Br J Nutr 2018;119:887–95.

[8] Young SS, Eslenaz B, Marchetti FM, et al. The association of folic acid and antioxidant intake with sperm aneuploidy in healthy non-smoking men. Hum Reprod 2008;23:1014–22.

[9] Hong HH, Hu Y, Yu XQ, et al. Associations of C677T polymorphism in methylenetetrahydrofolate reductase (MTHFR) gene with male infertility: a meta-analysis. Eur J Obstet Gynecol Reprod Biol 2017;212:101–9.

[10] Gupta N, Gupta S, Dama M, et al. Strong association of 677C→T substitution in the MTHFR gene with male infertility-a study on an indian population and a meta-analysis. PLoS One 2011;6:e22277.1-14.

[11] Weiner AS, Boyarskiuk UA, Voronina EN, et al. Polymorphisms in folate-metabolizing genes and risk of idopathic male infertility: a study on a Russian population and a meta-analysis. Ferril Steril 2014;101:87–94.

[12] Ren Z, Ren P, Yang R, et al. MTHFR C677T, A1298C and MS A2756G gene polymorphisms and male infertility risk in a chinese population: a meta-analysis. PLoS One 2017;12:e0169789.1-15.

[13] Ravi V, Kumar P. Methylene tetrahydrofolate reductase C677T polymorphism and risk for male infertility in Asian population. Indian J Clin Biocherm 2014;35:60-4.

[14] Stang A. Critical evaluation of the Newcastle-Notrara scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 2010;25:603–5.

[15] Lee HC, Jeong YM, Lee SH, et al. Association study of four single nucleotide polymorphisms as a possible etiology of male infertility. Genet Mol Res 2014;13:367-74.

[16] Wang Y, Hsuing CY, Kang YL, et al. Association of the methylenetetrahydrofolate reductase gene C677T polymorphism with male infertility in Chinese males. Genet Mol Res 2015;14:3491–500.

[17] Pei J. Association between MTHFR C677T polymorphism and male azoosperma in Han population of Henan (in Chinese). Chin Health Care Nutr 2013;6:29–30.

[18] Zhang WB. Association between seminal plasma folate and folic acid metabolism-related gene polymorphism and male infertility (in Chinese). Nanjing Normal Univ 2010.

[19] Yang BH, Peng YF, Pi JP. Association of methylenetetrahydrofolate reductase gene 677C→T polymorphism and male infertility with azoosperma or severe oligozoospermia. Asian J Androl 2007;9:57–62.

[20] Park JH, Lee HC, Jeong YM, et al. MTHFR C677T polymorphism associates with unexplained infertility male factors. J Assist Reprod Genet 2003;20:361-8.

[21] Liu L, Cai ZM, Leng HM, et al. Association of MTHFR C677T and MS A2756G polymorphisms with semen quality (in Chinese). J Cent South Univ (Med Sci) 2012;37:1054–9.

[22] Li XY, Ye JZ, Ding XP, et al. Association of polymorphisms of MTHFR A1298C and MS A2756G with male infertility in Sichuan males (in Chinese). Chin J Birth Heal & Here 2014;22:26–9.

[23] Singh K, Singh SK, Sah R, et al. Mutation C677T in the methylenetetrahydrofolate reductase gene might be a genetic risk factor for infertility in Chinese men with azoosperma or severe oligozoosperma. Asian J Androl 2007;9:57–62.

[24] Qiu XF, Hu XP, Li YJ, et al. Association between methylenetetrahydrofolate reductase C677T polymorphism and male infertility with azoosperma or severe oligozoosperma and asthenosperma in Ningxia Han population (in Chinese). J Ningxia Med Univ 2011;33:625–8.

[25] Sun HT, Zang YJ, Li YJ, et al. The association of methylenterahydratolofolate reductase gene (in Chinese). Reprod Contracept 2007;212:101.

[26] Naqvi H, Hussain SR, Ahmad MK, et al. Role of 677C→T polymorphism a single substitution in methylenetetrahydrofolate reductase (MTHFR) gene in North Indian infertile men. Mol Biol Rep 2014;41:573–9.

[27] A. ZC, Yang Y, Zhang SZ, et al. Single nucleotide polymorphism C677T in the methylenetetrahydrofolate reductase gene might be a genetic risk factor for infertility in Chinese men with azoosperma or severe oligozoosperma. Asian J Androl 2007;9:57–62.

[28] Xu W, Zhang L, Wu X, et al. Association between methionine synthase reductase A66G polymorphism and primary infertility in Chinese males. Genet Mol Res 2015;14:3491–500.

[29] Liu L, Cai ZM, Leng HM, et al. Association of MTHFR C677T and MS A2756G polymorphisms with male infertility (in Chinese). Reprod Biomed Online 2015;31:668–80.

[30] Xu W, Zhang L, Wu X, et al. Association between methionine synthase reductase A66G polymorphism and infertility: a meta-analysis. Curr Rev Eurakaryot Gene Expr 2017;27:37–46.