Giant Fully Spin-Polarized Currents Enhanced by Disorder in Nodal Chain Spin-Gapless Semimetals

Xiaodong Zhou,1,2 Run-Wu Zhang,1,2 Xiuxian Yang,1,2 Xiao-Ping Li,1,2 Wanxiang Feng,1,2,* Yuryi Mokrousov,3,4,† and Yugui Yao1,2,‡

1Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
2Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
3Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
4Institute of Physics, Johannes Gutenberg University Mainz, 55099 Mainz, Germany

(Dated: November 8, 2021)

Recently discovered high-quality nodal chain spin-gapless semimetals MF_3 ($M = Pd, Mn$) feature an ultra-clean nodal chain in the spin up channel residing right at the Fermi level and displaying a large spin gap leading to a 100% spin-polarization of transport properties. Here, we investigate both intrinsic and extrinsic contributions to anomalous and spin transport in this class of materials. The dominant intrinsic origin is found to originate entirely from the gapped nodal chains without the entanglement of any other trivial bands. The side-jump mechanism is predicted to be negligibly small, but intrinsic skew-scattering enhances the intrinsic Hall and Nernst signals significantly, leading to giant values of respective conductivities. Our findings open a new material platform for exploring colossal anomalous and spin transport properties in magnetic topological semimetals.

Introduction.— After the discovery of magnetic topological insulators [1, 2], different types of magnetic topological states ranging from insulators to semimetals have emerged [2–16, 18–28]. This brings new vitality to the ideas evolving around the next generation of dissipationless spintronic devices benefiting from exotic anomalous and spin transport properties. The Hall currents of charge J^A_H can be generated in magnetic materials either by an applied electric field E or a thermal gradient $-\nabla T$, known correspondingly as the anomalous Hall effect (AHE) [5, 30] and anomalous Nernst effect (ANE) [6, 32]. Magnetic topological semimetals provide a prominent advantage to enhance anomalous Hall conductivity (AHC) and/or anomalous Nernst conductivity (ANC) driven by the divergent Berry curvature of gapped Weyl points or nodal lines (NLs), as reported previously for various systems theoretically and experimentally [33–47]. On the other hand, the Hall currents of spin J^S_H — i.e., the spin counterparts of J^A_H also known as the spin Hall effect (SHE) [48] and spin Nernst effect (SNE) [49] — are also largely driven by topological nodal features which give rise to large spin Hall conductivity (SHC) and spin Nernst conductivity (SNC) in non-magnetic topological semimetals [50–63].

In the realm of emergent anomalous and spin transport in topological semimetals, however, many issues still have to be addressed. One of the most prominent aspects is the role played by disorder-induced extrinsic mechanisms. It is well known that both AHC σ_{xy} and ANC α_{xy} can be decomposed into three different contributions (SHC σ_{xy}^s and SNC α_{xy}^s are also the case) [4, 64, 65, 67]:

$$\alpha_{xy}^{tot}(\sigma_{xy}^{tot}) = \alpha_{xy}^{int}(\sigma_{xy}^{int}) + \alpha_{xy}^{sk}(\sigma_{xy}^{sk}) + \alpha_{xy}^{sj}(\sigma_{xy}^{sj}) \quad (1)$$

The first term is the so-called intrinsic (int) contribution, which can be well described by Berry phase theory [5, 30], and which was the focus of previous studies on magnetic topological semimetals [33–47]. The second and the last terms are the disorder-driven extrinsic contributions referred to as the skew-scattering (sk) [68, 69] and side-jump (sj) [70], respectively, and whose role in Hall effects of magnetic topological semimetals received very little attention so far, besides several very recent experimental [71–73] and model studies [74–79]. Another challenge is to draw a clear correlation between the topological characterization and the magnitude of transport properties. Most of the previously reported materials suffer from a “contaminated” band dispersion around the Fermi level. Moreover, the situation is complicated by the fact that often the band topology is formed by fermions of opposite spin with parabolic dispersion, which greatly decreases the current spin-polarization and the carrier Fermi velocity in real spintronic devices.

In this Letter, we address the above two issues directly. Using first-principles calculations, we collect all contributions to the AHE and ANE as well as the SHE and SNE in the recently proposed novel nodal chain spin-gapless semimetals (NCSGSMs) MF_3 ($M = Pd, Mn$) [2], which feature an ultra-clean nodal chain residing right at the Fermi level, providing an ultrahigh Fermi velocity and 100% spin-polarization simultaneously. This provides us with a prefect platform to clearly identify pure topological contributions to Hall transport. We show that such a remarkable electronic structure inevitably gives rise to giant Hall effects. We further uncover the intrinsic mechanism as the main underlying physical origin of the giant AHC and ANC, resulting from the gapped nodal chain-
induced large Berry curvature. We find the side-jump to be negligibly small but discover that the intrinsic skew-scattering plays an important role for the overall signal. Our work provides a foundation for educated design of giant pure spin-polarized Hall currents for future "green" spintronics.

High-quality candidate hosting giant fully spin-polarized current. — A crucial issue for addressing topological contributions to anomalous transport is screening out the influence of trivial bands. To tackle this, we focus on a promising candidate platform — the recently proposed spin gapless semiconductors or semimetals [2, 7, 80, 85, 86]. Among these, we select an outstanding example, the rhombohedral transition metal trifluorides MF_3 ($M = \text{Pd, Mn}$) [2, 80] (Fig. 1(a)), which display a linear semimetallic band structure in the spin up channel, while exhibiting a large indirect band gap (2.46 eV for PdF_3, 6.43 eV for MnF_3) in the spin down channel (Fig. 1(c) and Fig. S1 in Supplemental Material [84]), thus enjoying a 100% spin-polarization of the states at the Fermi energy. The spin-up electronic structure around the Fermi level is formed by two types of cross-connection modes. The one mode comprises three accidentally formed NLs (NL$_0$, NL$_1$, NL$_3$) (see Fig. 3(c-d)), which are positioned in three mirror planes (\mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3) (see Fig. 1(a)) and are pinned at the two Z points [[(0.5,0.5,0.5), (−0.5,−0.5,−0.5)]. The other mode, a "snakelike" structure with six corners at the L points (NL$_4$), crosses the former three NLs transversely.

The ultra-clean topological nodal lines (NL$_{1-4}$) not only perfectly avoid the entanglement of trivial bands, but can generate the much desired fully spin-polarized Hall current based on AHE and ANE as well as their spin counterparts SHE and SNE (Fig. 1(d)). Accordingly, the anomalous and spin Hall currents can be written down as follows [67]:

$$J_H^A = J^+ + J^x = J^+,$$

$$J_H^S = (J^+ - J^x) \frac{\hbar}{2e} = \frac{\hbar}{2e} J^x,$$

since the spin-down bands reside far away from the Fermi level and do not contribute to the Hall effect. Respectively, the SHC and SNC are given by $\sigma_{xx} = \frac{\hbar}{2e} \sigma_{xy}$ and $\sigma_{xy} = \frac{\hbar}{2e} \sigma_{xy}$, as also confirmed by first-principles calculations (see Eqs. S2 [84]).

Next we proceed to explore these physical phenomena quantitatively. First, to confirm the leading mechanism of AHC in MF_3, the computed variation of σ_{xy} (the superscript tot is omitted in the following discussion) with σ_{xx} at $E = E_f$ and $E = E_f - 0.04$ eV is plotted in Fig. 2(a) for the magnetization M being along the z-axis ([111] direction) and x-axis ([110] direction), respectively. To do this, we use the implementation of uncorrelated disorder scattering formalism from the first-principles (see Eqs. (S5)-(S8) [84]). By analysing the dependency of σ_{xy} on σ_{xx}, different scaling relations have been proposed for a variety of ferromagnets [81–83, 87, 88]: $\sigma_{xy} \propto \sigma_{xx}^{\alpha}$ in the dirty regime ($\sigma_{xx} < 10^4$ S/cm), nearly constant in the intrinsic regime ($\sigma_{xx} \sim 10^4 - 10^6$ S/cm), and $\sigma_{xy} \propto \sigma_{xx}^{\beta}$ or σ_{xx}^{γ} in the clean regime ($\sigma_{xx} > 10^6$ S/cm). From Fig. 2(a), one can see that MF_3 is located within the intrinsic regime, and σ_{xy} exhibits a nearly constant plateau for both $E = E_f$ and $E = E_f - 0.04$ eV for $10^5 < \sigma_{xx} < 10^6$ S/cm, in accordance with the above scaling relation. In other words, the AHC is dominated by the intrinsic mechanism. To reveal this observation more clearly, the component-resolved AHC of PdF_3 with

![FIG. 1. Nodal chain spin gapless semimetals (NCSGSMs) and their fully spin-polarized currents. (a) The crystal structure of MF_3 ($M = \text{Pt, Mn}$), and the view of (111) plane. The blue spheres are magnetic M atoms, whereas yellow spheres are nonmagnetic F atoms. The red arrows label the spin magnetization aligned along [111] direction. The pink lines denote three mirror planes. The sketch of the Brillouin zone is shown in (b), and (c) shows spin-polarized band structure without SOC, where the inset is a zoom into the bands near the Z point. The horizontal violet dashed lines mark the con-

![FIG. 1. Nodal chain spin gapless semimetals (NCSGSMs) and their fully spin-polarized currents. (a) The crystal structure of MF_3 ($M = \text{Pt, Mn}$), and the view of (111) plane. The blue spheres are magnetic M atoms, whereas yellow spheres are nonmagnetic F atoms. The red arrows label the spin magnetization aligned along [111] direction. The pink lines denote three mirror planes. The sketch of the Brillouin zone is shown in (b), and (c) shows spin-polarized band structure without SOC, where the inset is a zoom into the bands near the Z point. The horizontal violet dashed lines mark the considered energy range of anomalous and spin transport. (d) Schematic illustration of fully spin-polarized Hall current induced by AHE (SHE) and ANE (SNE) in a NCSGSM (indicated with a hexagonal petal), when an electric field or a temperature gradient field is applied along the longitudinal direction.
FIG. 2. Giant spin-pure AHC and ANC. (a) AHC σ_{xy} versus σ_{xx} for PdF$_3$ at the true Fermi energy E_f and at $E_f - 0.04$ eV, with the magnetization M along the z or x direction, ranging across intrinsic from dirty to clean regimes. Note that when $M \parallel x$, the nonzero component of AHC is σ_{yz}. The data of MnF$_3$ for $M \parallel z$ is also plotted. In the plot, data for various ferromagnets are shown for comparison, as reported in previous works [81–83]. (b-c) Disorder-related contributions to the AHC (σ_{int}^{xy}, σ_{isk}^{xy}, σ_{sj}^{xy}, and the total σ_{xy}) as a function of σ_{xx} (at E_f) and energy, respectively. In (c), the intrinsic AHC is calculated at the clean limit, while the extrinsic AHC is evaluated by incorporating a Gaussian disorder potential with a weak disorder parameter (1.83 eV2bohr3) [84], at where σ_{xx} reaches 2.12×10^5 S/cm. (d-e) Disorder-related contributions to the ANC (α_{int}^{xy}, α_{isk}^{xy}, α_{sj}^{xy}, and the total α_{xy}) for various temperatures T and energy, computed at E_f and for $T = 200$ K, respectively.

$E = E_f$ and $E = E_f - 0.04$ eV when $M \parallel z$ are shown in Figs. 2(b) and S3 as σ_{xx} is varied. The intrinsic part dominates the shape of AHC, while the intrinsic skew-scattering also plays an important role, contributing by about one-third of σ_{xy}. In contrast, we find the side-jump to be negligibly small.

The energy evolution of σ_{xy}, shown in Fig. 2(c), reveals considerable values in the range of $[-0.1, 0.1]$ eV, near the band crossing points, which can be easily accessed by current experimental techniques such as angle-resolved photoemission spectroscopy [12]. Another prominent feature of Fig. 2(c) is a large variation of σ_{xy} with energy. According to the low-temperature Mott relation, which relates the ANC to the energy derivative of the AHC [6],

$$\alpha_{xy} = -\frac{\sigma_{xy}^2 k_B T}{3e} \left. \frac{d\sigma_{xy}}{dE} \right|_{E=E_f}$$

where k_B, T, and e are Boltzmann constant, temperature, and elementary charge, respectively, one can expect a large ANC near the Fermi energy. Using the generalized Mott formula [84], we compute the ANC and show the component-resolved data in Figs. 2(d) and 2(e). The temperature dependence of ANC shows that the low-temperature Mott relation is valid up to about 40 K, and one can indeed observe an ANC which is much larger than that in traditional ferromagnets (typically $|\alpha_{xy}| = 0.01 - 1$ A/Km [35]) once $T \geq 50$ K. Remarkably, a giant α_{xy} of about 2 A/Km is observed at $T = 200$ K, which is by far larger than that in conventional ferromagnets. Another prominent advantage of PdF$_3$ is that the peak of α_{xy} is positioned right at the true E_f, as seen in Fig. 2(e), while the range of energies with large α_{xy} is wide enough for giant ANE to be easily detected experimentally.

The underlying physical origin of colossal transport properties.— Next, we uncover the underlying physical origin of the giant AHC and ANC in PdF$_3$ (similar analysis can be performed for SHC and SNC). The band structure of PdF$_3$ with SOC together with the Berry curvature Ω_{xy} along high symmetry lines is shown in
we integrate Ω_{xy} mainly distributed near the gapped nodal lines. Further, the Brillouin zone [Fig. 3(e)] indicates that the hot spots are at \bar{Z}-point, and an accidental degeneracy along the $\Gamma\bar{Z}$ direction. We stress that giant AHE and ANE predicted here differ from previous studies [35, 43], which require a simultaneous enhancement of the Berry curvature and density of states created by a large Fermi surface with Weyl points or a flat nodal line. In contrast, for NC-SGSMs, the density of states is nearly vanishing at the Fermi level. Hence the giant AHC and ANC predicted here are driven by pure topological characteristics.

Figs. 3(a-b). Clearly, the slightly gapped crossing points generate large Ω_{xy} with negligible contributions at other “trivial” regions. Specifically, a pronounced negative peak is found near the $Z(0.5, 0.5, 0.5)$ point, which is the rotation-invariant point of three glide mirrors (M_1, M_2, and \tilde{M}_3) – the combined symmetries of three mirrors, Fig. 1(a), with translational symmetry), and which hosts a fourfold degeneracy in the absence of SOC, ensured by three glide mirrors and $C_{3[111]}$ symmetry, Fig. 1(c) [2]. The SOC breaks three glide mirrors, and the fourfold degeneracy is split into a gapped group of states at Z point, and an accidental degeneracy along the $\Gamma\bar{Z}$ direction. The former rather than the latter is responsible for the large Ω_{xy}. Indeed, the distribution of Ω_{xy} in the Brillouin zone [Fig. 3(e)] indicates that the hot spots are mainly distributed near the gapped nodal lines. Further, we integrate Ω_{xy} along the k_z direction (Fig. 3(f)), which shows prominent features near the \bar{Z}, \bar{L} points and along the $\bar{Z}\bar{X}$ direction. We stress that giant AHE and ANE predicted here differ from previous studies [35, 43], which require a simultaneous enhancement of the Berry curvature and density of states created by a large Fermi surface with Weyl points or a flat nodal line. In contrast, for NC-SGSMs, the density of states is nearly vanishing at the Fermi level. Hence the giant AHC and ANC predicted here are driven by pure topological characteristics.

To further confirm the topological origin of transport in PdF$_3$, we also consider the case of the magnetization directed along other directions, e.g., x- and y-axes (see Figs. 4, S4, S5, and S6 [84]). The results show that the spectral features of the symmetry-allowed AHC and ANC are nearly the same as those for the case of magnetization oriented along the z-axis, while there is a large difference in magnitude, which indicates a strongly anisotropic anomalous and spin transverse transport in the zx and zy plane. Remarkably, a giant AHC of 646 S/cm and ANC of 2.8 A/Km are found (Fig. 4), among which the latter is particularly striking owing to the magnitude larger than that in the famous kagome magnet Co$_3$St$_2$S$_2$ [42] while approaching the largest recorded experimental values of about 4 A/Km in Co$_2$MnGa [35] and 5.2 A/Km in Fe$_3$Ga [43]. In Figs. S4 and S5, we present evidence that this enhancement originates from the intrinsic contribution, mediated by the reduction of magnetic symmetries from $R3c'$ for magnetization along z-axis to $C2'/c$ for x-axis ($C2'/c'$ for y-axis), that splits the nodal lines further and gives rise to Berry curvature’s amplification. In contrast, the change in extrinsic contributions is neglig-
able. This further supports the topological origin of large anomalous and spin transport in PdF₃.

Finally, we also investigated transverse transport in other NCSGSMs, in particular in MnF₃ [2, 80]. Large AHC (SHC) and ANC (SNC) are also found due to the similar topological band structure and Berry curvature distribution (see Figs. S1 and S2 [84]). We believe that giant fully spin-polarized currents can be also found in a large family of spin-gapless semimetals or semiconductors [2, 7, 80, 85, 86].

The authors thank Chaoxi Cui, Shifeng Qian, and Jin Cao for fruitful discussions. This work is supported by the National Key R&D Program of China (Grant No. 2020YFA0308800), the National Natural Science Foundation of China (Grant Nos. 11734003, 11874085, and 12047512), and the Project Funded by China Postdoctoral Science Foundation (Grant Nos. 2020M680011 and 2021T140057). Y.M. acknowledges the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - TRR 288 - 422213477 (project B06). Y.M., W.F., and Y.Y. acknowledge the funding under the Joint Sino-German Research Projects (Chinese Grant No. 12061131002 and German Grant No. 1731/10-1) and the Sino-German Mobility Programme (Grant No. M-0142).

[1] R. Yu, W. Zhang, H.-J. Zhang, S.-C. Zhang, X. Dai, and Z. Fang, Quantized Anomalous Hall Effect in Magnetic Topological Insulators, Science 329, 61 (2010).

[2] C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.-L. Wang, et al., Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator, Science 340, 167 (2013).

[3] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Topological Semimetal and Fermi-arc Surface States in the Electronic Structure of Pyrochlore Iridates, Phys. Rev. B 83, 205101 (2011).

[4] G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Chern Semimetal and the Quantized Anomalous Hall Effect in HgCr₂Se₄, Phys. Rev. Lett. 107, 186806 (2011).

[5] C. Fang, M. J. Gilbert, and B. A. Bernevig, Large-Chern-Number Quantum Anomalous Hall Effect in Thin-Film Topological Crystalline Insulators, Phys. Rev. Lett. 112, 046801 (2014).

[6] Z. Wang, M. G. Vergniory, S. Kushwaha, M. Hirschberger, E. V. Chulkov, A. Ernst, N. P. Ong, R. J. Cava, and B. A. Bernevig, Time-Reversal-Breaking Weyl Fermions in Magnetic Heusler Alloys, Phys. Rev. Lett. 117, 236401 (2016).

[7] X.-L. Wang, Dirac Spin-Gapless Semiconductors: Promising Platforms for Massless and Dissipationless Spintronics and New (Quantum) Anomalous Spin Hall Effects, Natl. Sci. Rev. 4, 252 (2016).

[8] P. Tang, Q. Zhou, G. Xu, and S.-C. Zhang, Dirac Fermions in an Antiferromagnetic Semimetal, Nat. Phys. 12, 1100 (2016).

[9] L. Smejkal, J. Železný, J. Sinova, and T. Jungwirth, Electric Control of Dirac Quasiparticles by Spin-Orbit Torque in an Antiferromagnet, Phys. Rev. Lett. 118, 106402 (2017).

[10] K. Kuroda, T. Tomita, M.-T. Suzuki, C. Bareille, A. A. Nugroho, P. Goswami, M. Ochi, M. Ikhlas, M. Nakayama, S. Akebi, et al., Evidence for Magnetic Weyl Fermions in a Correlated Metal, Nat. Mater. 16, 1090 (2017).

[11] Q. Xu, E. Liu, W. Shi, L. Muechler, J. Gayles, C. Felser, and Y. Sun, Topological Surface Fermi Arcs in the Magnetic Weyl Semimetal Co₃SnS₂, Phys. Rev. B 97, 235416 (2018).

[12] D. F. Liu, A. J. Liang, E. K. Liu, Q. N. Xu, Y. W. Li, C. Chen, D. Pei, W. J. Shi, S. K. Mo, P. Dudin, et al., Magnetic Weyl Semimetal Phase in a Kagome Crystal, Science 365, 1282 (2019).

[13] N. Morali, R. Batabyal, P. K. Nag, E. Liu, Q. Xu, Y. Sun, B. Yan, C. Felser, N. Avraham, and H. Beidenkopf, Fermi-arc Diversity on Surface Terminations of the Magnetic Weyl Semimetal Co₃SnS₂, Science 365, 1286 (2019).

[14] L. Belopolski, K. Manna, D. S. Sanchez, G. Chang, B. Ernst, J. Yin, S. S. Zhang, T. Cochran, N. Shumiya, H. Zheng, et al., Discovery of Topological Weyl Fermion Lines and Drumhead Surface States in a Room Temperature Magnet, Science 365, 1278 (2019).

[15] B. Feng, R.-W. Zhang, Y. Feng, B. Fu, S. Wu, K. Miyamoto, S. He, L. Chen, K. Wu, K. Shimada, et al., Discovery of Weyl Nodal Lines in a Single-Layer Ferromagnet, Phys. Rev. Lett 123, 116401 (2019).

[16] S. Nie, Y. Sun, F. B. Prinz, Z. Wang, H. Weng, Z. Fang, and X. Dai, Magnetic Semimetals and Quantized Anomalous Hall Effect in EuB₆, Phys. Rev. Lett 124, 076403 (2020).

[17] R.-W. Zhang, Z. Zhang, C.-C. Liu, and Y. Yao, Nodal Line Spin-Gapless Semimetals and High-Quality Candidate Materials, Phys. Rev. Lett 124, 016402 (2020).

[18] Y. Xu, L. Elcoro, Z.-D. Song, B. J. Wieder, M. G. Vergniory, N. Regnault, Y. Chen, C. Felser, and B. A. Bernevig, High-throughput Calculations of Magnetic Topological Materials, Nature 586, 702 (2020).

[19] J. Li, Y. Li, S. Du, Z. Wang, B.-L. Gu, S.-C. Zhang, K. He, W. Duan, and Y. Xu, Intrinsic Magnetic Topological Insulators in Van Der Waals Layered MnBi₂Te₄-Family Materials, Sci. Adv. 5, eaaw5685 (2019).

[20] M. M. Otrokov, I. P. Rusinov, M. Blanco-Rey, M. Hoffmann, A. Y. Vyazovskaya, S. V. Ereemeev, A. Ernst, P. M. Echenique, A. Arnau, and E. V. Chulkov, Unique Thickness-Dependent Properties of the Van Der Waals Interlayer Antiferromagnet MnBi₂Te₄ Films, Phys. Rev. Lett. 122, 107202 (2019).

[21] M. M. Otrokov, I. I. Klimovskikh, H. Bentmann, D. Esrytin, and et al, Prediction and Observation of an Antiferromagnetic Topological Insulator, Nature 576, 416 (2019).

[22] D. Zhang, M. Shi, T. Zhu, D. Xing, H. Zhang, and J. Wang, Topological Axion States in the Magnetic Insulator MnBi₂Te₄ with the Quantized Magnetoelectric Effect, Phys. Rev. Lett. 122, 206401 (2019).

[23] Y. Gong, J. Guo, J. Li, K. Zhu, M. Liao, X. Liu,
Q. Zhang, L. Gu, L. Tang, X. Feng, et al., Experimental Realization of an Intrinsic Magnetic Topological Insulator, Chin. Phys. Lett. 36, 076801 (2019).

[24] Y.-J. Hao, P. Liu, Y. Feng, X.-M. Ma, E. F. Schwier, M. Arita, S. Kumar, C. Hu, R. Lu, M. Zeng, et al., Gapless Surface Dirac Cone in Antiferromagnetic Topological Insulator MnBi$_2$Te$_4$, Phys. Rev. X 9, 041038 (2019).

[25] H. Li, S.-Y. Gao, S.-F. Duan, Y.-F. Xu, K.-J. Zhu, S.-J. Tian, J.-C. Gao, W.-H. Fan, Z.-C. Rao, J.-R. Huang, et al., Dirac Surface States in Intrinsic Magnetic Topological Insulators EuSn$_2$As$_2$ and MnBi$_2$Te$_3$n+1, Phys. Rev. X 9, 041039 (2019).

[26] Y. J. Chen, L. X. Xu, J. H. Li, Y. W. Li, H. Y. Wang, C. F. Zhang, H. Li, Y. Wu, A. J. Liang, C. Chen, et al., Topological Electronic Structure and Its Temperature Evolution in Antiferromagnetic Topological Insulator MnBi$_2$Te$_4$, Phys. Rev. X 9, 041040 (2019).

[27] C. Liu, Y. Wang, H. Li, Y. Wu, Y. Li, J. Li, K. He, X. Xu, J. Zhang, and Y. Wang, Robust Axion Insulator and Chern Insulator Phases in a Two-dimensional Antiferromagnetic Topological Insulator, Nat. Mater. 19, 522 (2020).

[28] Y. Deng, Y. Yu, M. Z. Shi, Z. Guo, Z. Xu, J. Wang, X. H. Chen, and Y. Zhang, Quantum Anomalous Hall Effect in Intrinsic Magnetic Topological Insulator MnBi$_2$Te$_4$, Science 367, 805 (2020).

[29] Y. Yao, L. Kleinman, A. H. MacDonald, J. Sinova, T. Jungwirth, D.-S. Wang, E. Wang, and Q. Niu, First Principles Calculation of Anomalous Hall Conductivity in Ferromagnetic bcc Fe, Phys. Rev. Lett. 92, 037204 (2004).

[30] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Anomalous Hall Effect, Rev. Mod. Phys. 82, 1539 (2010).

[31] D. Xiao, Y. Yao, Z. Fang, and Q. Niu, Berry-phase Effect in Anomalous Thermoelectric Transport, Phys. Rev. Lett. 97, 026603 (2006).

[32] D. Xiao, M.-C. Chang, and Q. Niu, Berry Phase Effects on Electronic Properties, Rev. Mod. Phys. 82, 1959 (2010).

[33] M. Ikhas, T. Tomita, T. Koretsune, M.-T. Suzuki, D. Nishio-Hamane, R. Arita, Y. Otani, and S. Nakatsuji, Large Anomalous Nernst Effect at Room Temperature in a Chiral Antiferromagnet, Nat. Phys. 13, 1085 (2017).

[34] X. Li, L. Xu, L. Ding, J. Wang, M. Shen, X. Lu, Z. Zhu, and K. Behnia, Anomalous Nernst and Righi-Leduc Effects in Mn$_3$Sn: Berry Curvature and Entropy Flow, Phys. Rev. Lett. 119, 056601 (2017).

[35] A. Salaï, Y. P. Mizuta, A. A. Nugroho, R. Siombing, T. Koretsune, M.-T. Suzuki, N. Takemori, R. Ishii, D. Nishio-Hamane, R. Arita, et al., Giant Anomalous Nernst Effect and Quantum-critical Scaling in a Ferromagnetic Semimetal, Nat. Phys. 14, 1119 (2018).

[36] Q. Wang, Y. Xu, R. Lou, Z. Liu, M. Li, Y. Huang, D. Shen, H. Weng, S. Wang, and H. Lei, Large Intrinsic Anomalous Hall Effect in Half-metallic Ferromagnet Co$_3$Sn$_2$S$_2$ with Magnetic Weyl Fermions, Nat. Commun. 9, 3681 (2018).

[37] E. Liu, Y. Sun, N. Kumar, L. Muechler, A. Sun, L. Jiao, S.-Y. Yang, D. Liu, A. Liang, Q. Xu, et al., Giant Anomalous Hall Effect in a Ferromagnetic Kagome-lattice Semimetal, Nat. Phys. 14, 1125 (2018).

[38] K. Kim, J. Seo, E. Lee, K.-T. Ko, B. S. Kim, B. G. Jang, J. M. Oh, J. Lee, Y. J. Jo, W. Kang, et al., Large Anomalous Hall Current Induced by Topological Nodal Lines in a Ferromagnetic Van Der Waals Semimetal, Nat. Mater. 17, 794 (2018).

[39] J. Noky, Q. Xu, C. Felsker, and Y. Sun, Giant Anomalous Hall and Nernst Effects from Nodal Line Symmetry Breaking in Fe$_3$MnX (X = P, As, Sb), Phys. Rev. B 99, 165117 (2019).

[40] J. Noky, Y. Zhang, J. Gooth, C. Felsker, and Y. Sun, Giant Nernst Effect and Nernst Effect in Magnetic Cubic Heusler Compounds, npj Comput. Mater. 6, 77 (2020).

[41] S. N. Guin, K. Manna, J. Noky, S. J. Watzman, C. Fu, N. Kumar, W. Schnelle, C. Shekhar, Y. Sun, J. Gooth, et al., Anomalous Nernst Effect Beyond the Magnetization Scaling Relation in the Ferromagnetic Heusler Compound Co$_2$MnGa, NPG Asia Mater. 11, 16 (2019).

[42] S. N. Guin, P. Vir, Y. Zhang, N. Kumar, S. J. Watzman, C. Fu, E. Liu, K. Manna, W. Schnelle, J. Gooth, et al., Zero-field Nernst Effect in a Ferromagnetic Kagome-lattice Weyl-semimetal Co$_3$Sn$_2$S$_2$, Adv. Mater. 31, 1806622 (2019).

[43] A. Sakai, S. Minami, T. Koretsune, T. Chen, T. Higo, Y. Wang, T. Nomoto, M. Hirayama, S. Miwa, D. Nishio-Hamane, et al., Iron-based Binary Ferromagnets for Transverse Thermoelectric Conversion, Nature 581, 53 (2020).

[44] S. N. Guin, F. Ishii, M. Hirayama, T. Nomoto, T. Koretsune, and R. Arita, Enhancement of the Transverse Thermoelectric Conductivity Originating from Stationary Points in Nodal Lines, Phys. Rev. B 102, 205128 (2020).

[45] P. Li, J. Koo, W. Ning, J. Li, L. Miao, L. Min, Y. Zhu, Y. Wang, N. Alem, C.-X. Liu, et al., Giant Room Temperature Anomalous Hall Effect and Tunable Topology in a Ferromagnetic Topological Semimetal Co$_2$MnAl, Nat. Commun. 11, 3476 (2020).

[46] H. Yang, W. You, J. Wang, J. Huang, C. Xi, X. Xu, C. Cao, M. Tian, Z.-A. Xu, J. Dai, et al., Giant Anomalous Nernst Effect in the Magnetic Weyl Semimetal Co$_3$Sn$_2$S$_2$, Phys. Rev. Mater. 4, 024202 (2020).

[47] Z. Guguchia, J. A. T. Verezchuk, D. J. Gawryluk, S. S. Tsirkin, J.-X. Yin, I. Belopolski, H. Zhou, G. Simutis, S.-S. Zhang, T. A. Cochran, et al., Tunable Anomalous Hall Conductivity through Volume-wise Magnetic Competition in a Topological Kagome Magnet, Nat. Commun. 11, 559 (2020).

[48] J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, Spin Hall Effects, Rev. Mod. Phys. 87, 1213 (2015).

[49] S.-G. Cheng, Y. Xing, Q.-F. Sun, and X. C. Xie, Spin Nernst Effect and Nernst Effect in Two-dimensional Electron Systems, Phys. Rev. B 78, 045302 (2008).

[50] C. Şahin and M. E. Flatté, Tunable Giant Spin Hall Conductivities in a Strong Spin-Orbit Semimetal: Bi$_{1-x}$Sb$_x$, Phys. Rev. Lett. 114, 107201 (2015).

[51] Y. Sun, Y. Zhang, C. Felsker, and B. Yan, Strong Intrinsic Spin Hall Effect in the TaAs Family of Weyl Semimetals, Phys. Rev. Lett 117, 146403 (2016).

[52] E. Derunova, Y. Sun, C. Felsker, S. S. P. Parkin, B. Yan, and M. N. Ali, Giant Intrinsic Spin Hall Effect in W$_3$Ta and other A15 superconductors, Sci. Adv. 5, eaav8575 (2019).

[53] S. Bhowal and S. Satpathy, Dirac Nodal Lines and Large Spin Hall Effect in the 6H-perovskite Iridate Ba$_4$TiIr$_2$O$_9$, Phys. Rev. B 100, 115101 (2019).
[54] Y. Zhang, Q. Xu, K. Koepenik, C. Fu, J. Goeth, J. van den Brink, C. Felser, and Y. Sun, Spin Nernst Effect in a p-band Semimetal InBi, New J. Phys. 22, 030003 (2020).

[55] Y. Yen and G.-Y. Guo, Tunable Large Spin Hall and Spin Nernst Effect in the Dirac Semimetals ZrX, Y (X = Si, Ge; Y = S, Se, Te), Phys. Rev. B 101, 064430 (2020).

[56] B. B. Prasad and G.-Y. Guo, Tunable Spin Hall and Spin Nernst Effects in Dirac Line-node Semimetals CXn, Yn, Phys. Rev. Mater. 4, 124205 (2020).

[57] K. Taguchi, D. Oshima, Y. Yamaguchi, T. Hashimoto, J. van den Brink, C. Felser, and Y. Sun, Spin Nernst Effect in a 2D Massive Dirac Metal Due to Spin-charge Correlated Disorder, Phys. Rev. Lett. 123, 126603 (2019).

[58] M. Papaj and L. Fu, Enhanced Anomalous Nernst Effect in Disordered Dirac and Weyl Materials, Phys. Rev. B 103, 057424 (2021).

[59] Y. Jiao, F. Ma, C. Zhang, J. Bell, S. Sanvito, and A. Du, First-principles Prediction of Spin-polarized Multiple Dirac Rings in Manganese Fluoride, Phys. Rev. Lett. 119, 016403 (2017).

[60] T. Miyasato, N. Abe, T. Fujii, A. Asamitsu, S. Onoda, Y. Onose, N. Nagaosa, and Y. Tokura, Crossover Behavior of the Anomalous Hall Effect and Anomalous Nernst Effect in Itinerant Ferromagnets, Phys. Rev. Lett. 99, 086602 (2007).

[61] S.-Y. Yang, Y. Wang, B. R. Ortiz, D. Liu, J. Gayles, E. Derunova, R. Gonzalez-Hernandez, L. Smejkal, Y. Chen, S. S. P. Parkin, et al., Giant, Unconventional Anomalous Hall Effect in the Metallic Frustrated Magnet CrTe2, ACS Nano 15, 9759 (2021).

[62] J. Shen, Q. Zeng, S. Zhang, H. Sun, Q. Yao, X. Xi, W. Wang, G. Wu, B. Shen, Q. Liu, et al., 33% Giant Anomalous Hall Current Driven by Both Intrinsic and Extrinsic Contributions in Magnetic Weyl Semimetal CO3MnGa, Adv. Funct. Mater. 30, 2000830 (2020).

[63] J.-Y. Yang, B. Singh, B. Lu, C.-Y. Huang, F. Bahrami, W.-C. Chiu, D. Graf, S.-M. Huang, B. Wang, H. Lin, et al., Transition from Intrinsic to Extrinsic Anomalous Hall Effect in the Ferromagnetic Weyl Semimetal PrAlGe1−xSi3, APL Mater. 8, 011111 (2020).

[64] A. Burkov, Anomalous Hall Effect in Weyl Metals, Phys. Rev. Lett. 113, 187202 (2014).

[65] C.-Z. Chen, J. Song, H. Jiang, Q.-F. Sun, Z. Wang, and X. Xie, Disorder and Metal-insulator Transitions in Weyl Semimetals, Phys. Rev. Lett. 115, 246603 (2015).

[66] H. Shapourian and T. L. Hughes, Phase Diagrams of Disordered Weyl Semimetals, Phys. Rev. B 93, 075108 (2016).

[67] I. A. Ado, I. A. Dmitriev, P. M. Ostrovsky, and M. Titov, Sensitivity of the Anomalous Hall Effect to Disorder Correlations, Phys. Rev. B 96, 235148 (2017).

[68] A. C. Kesper, R. Raimondi, and D. Culcer, Sign Change in the Anomalous Hall Effect and Strong Transport Effects in a 2D Massive Dirac Metal Due to Spin-charge Correlated Disorder, Phys. Rev. Lett. 123, 126603 (2019).

[69] M. Papaj and L. Fu, Enhanced Anomalous Nernst Effect in Disordered Dirac and Weyl Materials, Phys. Rev. B 103, 057424 (2021).

[70] Y. Jiao, F. Ma, C. Zhang, J. Bell, S. Sanvito, and A. Du, First-principles Prediction of Spin-polarized Multiple Dirac Rings in Manganese Fluoride, Phys. Rev. Lett. 119, 016403 (2017).

[71] T. Miyasato, N. Abe, T. Fujii, A. Asamitsu, S. Onoda, Y. Onose, N. Nagaosa, and Y. Tokura, Crossover Behavior of the Anomalous Hall Effect and Anomalous Nernst Effect in Itinerant Ferromagnets, Phys. Rev. Lett. 99, 086602 (2007).

[72] S.-Y. Yang, Y. Wang, B. R. Ortiz, D. Liu, J. Gayles, E. Derunova, R. Gonzalez-Hernandez, L. Smejkal, Y. Chen, S. S. P. Parkin, et al., Giant, Unconventional Anomalous Hall Effect in the Metallic Frustrated Magnet Candidate, KV3Sb5, Sci. Adv. 6, eabb6003 (2020).

[73] M. Huang, S. Wang, Z. Wang, P. Liu, J. Xiang, C. Feng, X. Wang, Z. Zhang, Z. Wen, H. Xu, et al., Colossal Anomalous Hall Effect in Ferromagnetic Van Der Waals CrTe2, ACS Nano 15, 9759 (2021).

[74] See Supplemental Material for a detailed description of computational methods and supplemental data and figures.

[75] X. L. Wang, Proposal for a New Class of Materials: Spin-Gapless Semiconductors, Phys. Rev. Lett. 100, 156404 (2008).

[76] Q. Gao, I. Opahle, and H. Zhang, High-throughput Screening for Spin-gapless Semiconductors in Quaternary Heusler Compounds, Phys. Rev. Mater. 3, 024410 (2019).

[77] D. Hou, G. Su, Y. Tian, X. Jin, S. A. Yang, and Q. Niu, Multivariable Scaling for the Anomalous Hall Effect, Phys. Rev. Lett. 114, 217203 (2015).

[78] G.-H. Park, H. Reichlova, R. Schiltz, M. Lammel, A. Markou, P. Sweeki, P. Ritzinger, D. Kriegner, J. Noky, J. Gayles, et al., Thickness Dependence of the Anomalous Nernst Effect and the Mott Relation of Weyl Semimetal CO3MnGa Thin Films, Phys. Rev. B 101, 060406 (2020).
SUPPLEMENTAL MATERIAL FOR “GIANT FULLY SPIN-POLARIZED CURRENTS ENHANCED BY DISORDER IN NODAL CHAIN SPIN-GAPLESS SEMIMETALS”

Details of first-principles calculations

Electronic structure calculations.—The electronic structure calculations were performed by employing the full-potential linearized augmented plane-wave (FP-LAPW) method as implemented in the FLEUR code [1]. The GGA-PBE functional was used in all calculations. The primitive lattice constants of α = β = γ = 52.480° (55.223°) for PdF₃ (MnF₃) were adopted [2]. The energy cut-off of plane wave was chosen as 4.5 a₀⁻¹ (4.8 a₀⁻¹) for PdF₃ (MnF₃), where a₀ is Bohr’s radius, and a k-mesh of 10 × 10 × 10 was used. The effective Hubbard parameter for the d-orbitals of Pd and Mn atoms was set to be 4.0 eV [2]. The 56 Wannier functions including the d-orbitals of Pd (Mn) atoms and the p-orbitals of F atoms on a k-mesh of 8 × 8 × 8 were constructed using WANNIER90 package [3].

Anomalous Hall and anomalous Nernst effects.—The anomalous Hall conductivity (σₓᵧ) and Fermi-sea (σₓᵧ) terms. The intrinsic contribution σₓᵧ was calculated using the Kubo formalism with a constant Γ approximation [4],

\[\sigma_{ij}^{I} = \frac{-e^2 \hbar}{2\pi} \int \frac{d^3k}{(2\pi)^3} \sum_{m,n,m\neq n} \text{Im} \left[v_{im}^t(k)v_{jm}^j(k) \right] \times \frac{(E_{mk} - E_{nk})}{(E_f - E_{mk} + \Gamma^2)((E_f - E_{nk})^2 + \Gamma^2)^2} \]

(5)

\[\sigma_{ij}^{II} = \frac{e^2 \hbar}{\pi} \int \frac{d^3k}{(2\pi)^3} \sum_{m,n,m\neq n} \text{Im} \left[v_{im}^t(k)v_{jm}^j(k) \right] \times \frac{1}{(E_{mk} - E_{nk})[(E_f - E_{mk})^2 + \Gamma^2]} \text{Im} \left[\ln \frac{E_f - E_{mk} + \Gamma}{E_f - E_{nk} + \Gamma} \right] \}

(6)

where \(e, \hbar, v, k, E_{mk}, E_f, \) and Γ are the elementary charge, reduced Planck constant, velocity operator, Cartesian coordinates, eigenenergy at band index \(n \) and momentum \(k \), Fermi energy, and constant band broadening, respectively. The bold font \(i \) represents the imaginary unit. To model the variation of \(\sigma_{ij}^{int} \) against \(\sigma_{xx} \) (at \(E_f \)) [see Fig. 2(b) in the main text], Γ was altered in the range of 0 ~ 0.25 eV. On the other hand, to analyze the variation of \(\sigma_{ij}^{int} \) versus energy [see Fig. 2(c) in the main text], Γ was fixed at 0 eV (i.e., clean limit). To ensure the convergence, a ultra-dense k-mesh of 451 × 451 × 451 was used to calculate the intrinsic anomalous Hall effect.

In the case of clean limit, \(\sigma_{ij} \) can be reduced to the well-known Berry curvature expression [5],

\[\sigma_{ij} = \frac{-e^2}{\hbar} \sum_n \int \frac{d^3k}{(2\pi)^3} \Omega_{ij}^n(k) f_n(k), \]

(7)

where \(f_n(k) = 1/\exp((E_{mk} - E_f)/k_B T) + 1 \) is the Fermi-Dirac distribution function, \(\Omega_{ij}^n(k) \) is the band- and momentum-resolved Berry curvature.

\[\Omega_{ij}^n(k) = -\sum_{m\neq n} \frac{2\text{Im} \left[v_{im}^t(k)v_{jm}^j(k) \right]}{(\omega_{mk} - \omega_{nk})^2}. \]

(8)

In our calculations, the extrinsic contribution of \(\sigma_{ij} \) has two parts, side-jump \(\sigma_{ij}^{sk} \) and intrinsic skew-scattering \(\sigma_{ij}^{sk} \), which are simulated by incorporating a Gaussian disorder potential. It should be noted that the intrinsic skew-scattered calculation here differs from the conventional skew-scattering, which contains more than two powers of disorder potential of vertex correlations. The formalism and first-principles code were developed by Czaja et al. [4] in terms of the retarded and advanced Green functions \(G^R/A \),

\[\sigma_{ij}^{I} = \frac{e^2 \hbar}{4\pi} \int \frac{d^3k}{(2\pi)^3} \text{Tr} \left[\Gamma^i(E_f,k)G^R(E_f,k)v^jG^A(E_f,k) - (i \leftrightarrow j) \right], \]

(9)

\[\sigma_{ij}^{II} = \frac{e^2 \hbar}{2\pi} \int \frac{d^3k}{(2\pi)^3} \int_{-\infty}^{E_f} dE \text{Re} \left[\text{Tr} \left[\Gamma^i(E,k)G^R(E,k)\gamma(E,k)G^R(E,k)\Gamma^j(E,k)G^R(E,k) - (i \leftrightarrow j) \right] \right], \]

(10)
in which the vector vertex function $\Gamma(E, k)$ and scalar vertex function $\gamma(E, k)$ can be solved iteratively,

$$\Gamma(E, k) = \mathbf{v}(k) + V \int \frac{d^3k'}{(2\pi)^3} O_{kk'} G^A(E, k') \Gamma(E, k') G^R(E, k') O_{kk'},$$

$$\gamma(E, k) = I + V \int \frac{d^3k'}{(2\pi)^3} O_{kk'} G^R(E, k') \gamma(E, k') G^R(E, k') O_{kk'},$$

where $\mathbf{v}(k)$ is the vector velocity operator, I is the identity matrix, $O_{kk'}$ is the overlap matrix, $V = U^2 n_{\text{imp}}$ is the disorder parameter (U and n_{imp} are disorder strength and disorder concentration, respectively). To model the variation of σ_{ij}^{sk} and σ_{ij}^{sj} against σ_{xx} (at E_f) [see Fig. 2(b) in the main text], V was altered in the range of $0 \sim 80$ eV$^2 a_0^3$ (a_0 is Bohr’s radius). On the other hand, to analyze the variation of σ_{ij}^{sk} and σ_{ij}^{sj} versus energy [see Fig. 2(c) in the main text], V was fixed at a weak disorder value of 1.83 eV$^2 a_0^3$. To ensure the convergence, a ultra-dense k-mesh of $350 \times 350 \times 350$ was used to calculate the extrinsic anomalous Hall effect.

After calculated the anomalous Hall conductivity, the component-resolved anomalous Nernst conductivity α_{ij} can be obtained by using the generalized Mott formula [6]:

$$\alpha_{ij} = -\frac{1}{e} \int dE (\frac{\partial f}{\partial E}) \sigma_{ij} E - E_f \frac{T}{},$$

here, f is the Fermi-Dirac distribution function and T is temperature. To converge the anomalous Nernst conductivity, the anomalous Hall conductivity was initially calculated with an energy interval of 0.01 eV and then was interpolated to 0.1 meV.

Spin Hall and spin Nernst effects.—The intrinsic spin Hall and spin Nernst conductivities can be calculated from the Berry phase theory [7–11]. Nevertheless, because the bands near the Fermi energy are fully single-spin component, both the intrinsic and extrinsic contributions of spin Hall (σ_{ij}^{sk}) and spin Nernst (α_{ij}^{sk}) conductivities can be calculated through the anomalous Hall (σ_{ij}^{sk}) and anomalous Nernst (α_{ij}^{sk}) conductivities, i.e., $\sigma_{ij}^{sk} = \frac{\hbar}{2\pi} \sigma_{ij}$ and $\alpha_{ij}^{sk} = \frac{\hbar}{2\pi} \alpha_{ij}$, respectively.

Supplemental Figures of MnF$_3$

The giant anomalous and spin transport of MnF$_3$.—Besides PdF$_3$, we have also investigated the electronic properties as well as the spin and transport of MnF$_3$. Similarly to PdF$_3$, MnF$_3$ has a similar fully spin-polarized band structure (Fig. S1). The small band gap induced by spin-orbit coupling (Fig. S2(a)) gives rise to large Berry curvature Ω_{xy} near the Z and L points as well as along the $\Gamma - X$ direction (Fig. S2(b)). Figures S2(e) and S2(f) display the distribution of Ω_{xy} in the first Brillouin zone and its integral along the k_y direction, respectively, from which one can see that the large hot pots are located near the gapped nodal lines. This leads to a giant intrinsic anomalous Hall conductivity (close to 400 S/cm) and anomalous Nernst conductivity (above 1 A/Km) near the Fermi level. Moreover, the spin Hall and spin Nernst conductivities are displayed in Figs. S2(c) and S2(d).

Supplemental Figures of PdF$_3$

The component-resolved anomalous Hall conductivity ($\sigma_{xy}^{int}, \sigma_{xy}^{sk}, \sigma_{xy}^{sj}$, and the total σ_{xy}) versus σ_{xx} at $E = E_f - 0.04$ eV is plotted in Fig. S3. Clearly, all the components are enhanced by shifting E_f downward 0.04 eV, comparing to the results at E_f (see Fig. 2(b) in the main text). Nevertheless, the key features are remained, i.e., the shape of anomalous Hall conductivity is dominated by σ_{xy}^{int}, and the magnitude is amplified by the contribution from σ_{xy}^{sk}. Note that σ_{xy} reaches a nearly constant plateau for $E = E_f$ and $E = E_f - 0.04$ eV when $\sigma_{xx} > 1 \times 10^5$ S/cm and $\sigma_{xx} > 2 \times 10^5$ S/cm, respectively. The side-jump contribution σ_{xy}^{sj} is also small at $E = E_f - 0.04$ eV but interestingly exhibits a sign change at $\sigma_{xx} \sim 0.7 \times 10^5$ S/cm.

We have also investigated the anisotropy of anomalous Hall and anomalous Nernst effects when the magnetization is along x-axis ([110]) and y-axis ([112]) (refer to Fig. 1(a) in the main text), as shown in Figs. S4 and S5. Firstly, we discuss the intrinsic contribution. Apparently, both anomalous Hall and anomalous Nernst conductivities are enhanced when magnetization \mathbf{M} rotates from z axis ([111] direction) to xy plane ([111] plane), indicating a strong anisotropy within the zx and yz planes. In addition, if \mathbf{M} is along the x and y axes, the sizes of the intrinsic contribution are nearly the same, indicating the isotropy of the anomalous Hall and anomalous Nernst effects within the xy plane. The
anisotropy of anomalous transport on the zx and yz plane as well as the isotropy on the xy plane are in accordance with the change of magnetocrystalline anisotropy energy [2]. The close relationship between anomalous transport and magnetocrystalline anisotropy energy has been well discussed in our previous works [12, 13].

Moreover, one can see that the symmetry-allowed tensor elements of anomalous Hall and anomalous Nernst conductivities are changed. When \mathbf{M} is along the z axis, the magnetic space group of the system is $R\bar{3}c'$, which has one three-fold rotation axis $C_{3[111]}$, and three combined operations of time-reversal \bar{T} and glide mirrors \bar{M} ($T\bar{M}_1$, $T\bar{M}_2$, $T\bar{M}_3$). With respect to \bar{M}_1, Ω_{zx} and Ω_{xy} are odd, while Ω_{yz} is even. With respect to \bar{T}, all components of Ω_{ij} are odd. Thus, Ω_{zx} and Ω_{xy} are even, while Ω_{yz} is odd under the combined symmetry $T\bar{M}_1$. After integrating the Berry curvature in the first Brillouin zone, the zx and xy components of anomalous Hall and anomalous Nernst conductivities are nonvanishing. Another two $T\bar{M}$ symmetries are related to $T\bar{M}_1$ by $C_{3[111]}$, which further force zx component to be zero. Therefore, only the xy component of anomalous Hall and anomalous Nernst conductivities can exist for $R\bar{3}c'$ group. In the same way, when \mathbf{M} is along x axis (y axis), the σ_{yz} (σ_{zx} and σ_{xy}) are nonvanishing due to the symmetry \bar{M}_1 ($T\bar{M}_1$) in the magnetic space group $C2/c$ ($C2'/c'$).

The giant anomalous transport is dominated by the intrinsic mechanism, which originates from the large Berry curvature around gapped nodal lines. When \mathbf{M} is along the z direction, the large Berry curvature is mainly lying on the \bar{M}_1, \bar{M}_2, and \bar{M}_3 planes, at where four nodal lines (NL_1, NL_2, NL_3, and NL_4) are broken (see Fig. 3(e,f) in the main text). When the \mathbf{M} is along the x or y axis, the symmetry is further reduced, for example, the absence of $C_{3[111]}$. Hence, the nodal lines are further split at more nodes, giving rising to the enhanced Berry curvature in more regions (Figs. S4(c) and S4(d)). Specially, when \mathbf{M} is along the x direction, NL_1 is still survived even including spin-orbit coupling because the glide mirror symmetry \bar{M}_1 that is vertical to the magnetization direction is preserved [2], and thus it contributes a small Berry curvature on α_{yz} plane (compare Fig. S4(c) with Fig. 3(f) in the main text). It further reveals that the origin of large anomalous and spin transport in PdF$_3$ result from the gapped nodal lines.

Next, we discuss the intrinsic mechanism of anomalous transport when \mathbf{M} is along the z and x axes, as shown in Fig. S5. Clearly, the isk contribution plays an important role and the trends for both magnetized directions are remained. On the other hand, the sj contribution is negligible small. In contrast to the strong anisotropy of the int contribution relevant to band topology, the isk and sj contributions do not display obvious enhancement when \mathbf{M} rotates from z axis to x axis even with more gapped topological nodes.

The temperature-dependence of the component-resolved anomalous Nernst conductivity (α_{yz}^{int}, α_{yz}^{isk}, α_{yz}^{sj}, and the total α_{yz}) when \mathbf{M} is along the x axis is plotted in Fig. S6. Similarly, the main features of anomalous Nernst conductivity remain unchanged expect for the enhanced magnitude, comparing to the case of $\mathbf{M}\parallel z$ (see Fig. 2(d) in the main text). In the entire temperature range, the int mechanism plays the leading role, and the isk contribution is much stronger than the negligible sj contribution. Specially, in the low temperature region of $T < 50$ K, the total Nernst conductivity is almost equivalent to the intrinsic one due to the cancel between isk and sj contributions.
genides: A first-principles study, Phys. Rev. B 86, 165108 (2012).

[11] G.-Y. Guo and T.-C. Wang, Large Anomalous Nernst and Spin Nernst Effects in the Noncollinear Antiferromagnets Mn$_3$X ($X = $ Sn, Ge, Ga), Phys. Rev. B 96, 224415 (2017).

[12] X. Zhou, J.-P. Hanke, W. Feng, F. Li, G.-Y. Guo, Y. Yao, S. Blügel, and Y. Mokrousov, Spin-order Dependent Anomalous Hall Effect and Magneto-Optical Effect in the Noncollinear Antiferromagnets Mn$_3$XN with $X =$ Ga, Zn, Ag, or Ni, Phys. Rev. B 99, 104428 (2019).

[13] X. Zhou, W. Feng, X. Yang, G.-Y. Guo, and Y. Yao, Crystal chirality magneto-optical effects in collinear antiferromagnets, Phys. Rev. B. 104, 024401 (2021).
FIG. S1. Spin-polarized band structure of MnF$_3$ without SOC.

FIG. S2. Giant anomalous and spin transport of MnF$_3$. (a,b) The relativistic band structure and Berry curvature along high symmetry lines. (c,d) The intrinsic anomalous Hall (σ_{xy}) and anomalous Nernst (α_{xy} at $T = 300$ K) conductivities as well as the intrinsic spin Hall (σ^s_{xy}) and spin Nernst (α^s_{xy} at $T = 300$ K) conductivities as a function of energy. The spin Hall and spin Nernst conductivities are in units of $\hbar/2e$ S/cm and $\hbar/2e$ A/Km, respectively. (e) The distribution of Berry curvature Ω_{xy} in the first Brillouin zone and (f) the projection of Berry curvature onto the k_x-k_y plane by integrating Ω_{xy} along the k_z direction. To observe the main features of Ω_{xy}, the values of less than 200 bohr2 are not shown.
FIG. S3. Component-resolved anomalous Hall conductivity (σ_{xy}^{int}, σ_{xy}^{isk}, σ_{xy}^{sj}, and the total σ_{xy}) versus σ_{xx} at $E = E_f - 0.04$ eV for PdF$_3$ when the magnetization is along the z direction ($M \parallel z$).
FIG. S4. (a,b) The intrinsic anomalous Hall and anomalous Nernst conductivities ($T = 200$ K) of PdF$_3$ when the magnetization M is along the z, x, and y axes. (c,d) The Berry curvature Ω_{yz} and Ω_{zx} integrated along the k_z direction with M being along the x and y axes, respectively. The black lines draw the nodal lines. To observe the main features of Berry curvature, the values of less than 200 bohr2 are not shown.
FIG. S5. The extrinsic anomalous Hall (a,c) and anomalous Nernst (b,d) conductivities of PdF$_3$ when the magnetization \mathbf{M} is along the z and x axes.
FIG. S6. Component-resolved anomalous Nernst conductivity (α_{yz}, α_{isk}, α_{sj}, and the total α_{yz}) as a function of temperature T for PdF$_3$ when the magnetization \mathbf{M} is along the x axis.