Effective Dirac Hamiltonian for anisotropic honeycomb lattices: optical properties

M. Oliva-Leyva and Gerardo G. Naumis

I. INTRODUCTION

Among the most unusual properties of graphene, one can cite the linear dispersion relation for electrons and holes at the so-called Dirac points. Therefore, at low energies, electrons and holes behave as two-dimensional massless Dirac fermions, which also present chiral symmetry. This special property provides for the possibility of observing phenomena such as Klein tunneling originally predicted for relativistic particle physics. From a practical view point, thinking in the use of graphene for the electronic, the unity probability of tunneling through such a barrier, at least for the normal incidence, has resulted a challenge.

Given the unique mechanical properties of graphene, in particular its striking interval of elastic response, the strain engineering has been an alternative to explore the strain-induced modifications of the electronic properties of graphene. Although a theoretical prediction of strain-induced opening of a band gap, the most interesting strain-induced effect is the experimental observation of Landau levels signatures to zero magnetic field. As earlier predicted for carbon nanotubes and subsequently extended to graphene, the lattice deformation fields can be interpreted in the form of pseudomagnetic fields. Manifestations of such strain-induced pseudomagnetic fields are continuously examined even in other materials such as transition metal dichalcogenides or Weyl semimetals.

In the optical context, strain-induced effects in graphene are significant and open an avenue to potential applications. The optical properties of graphene are ultimately determined by its electronic structure which is modified by strain. Needless to say, strain produces anisotropy in the electronic dynamics, which is introduced in an anisotropic optical conductivity and finally in a modulation of the transmittance as a function of the polarization direction. Such modulation of the transmittance has been observed in graphene samples under uniaxial strain. Recently, a theoretical characterization of the transmittance and dichroism was given for graphene under an arbitrary uniform strain, e.g., uniaxial, biaxial, and so forth.

Nowadays, synthetic systems with honeycomb lattices are artificially created to mimic the behavior of Dirac quasiparticles. The main advantage of these artificial systems is that one can tune in a controlled and independent manner the hopping of particles between different lattice sites. As a consequence, in such artificial graphene one can observe effects which are induced by the anisotropy of the hopping parameters, that are not observable in normal graphene under strain. For example, in normal graphene under an uniaxial strain, it has been predicted that the Dirac cones can merge. However, such theoretical prediction requires unrealistic large values of strain. However, in artificial graphene of different nature, e.g. of cold atoms or of photonic crystals, the merging of Dirac point has been experimentally observed. More recently, in electronic artificial graphene, created in a two-dimensional electron gas in a semiconductor heterostructure, the merging of Dirac point has been demonstrated for realistic experimental conditions.

Undoubtedly, artificial graphene paves new opportunities for studying the physics of Dirac quasiparticles in condensed-matter. Now, given the excellent possibility to tune the lattice parameters, it seems necessary to have on hand an effective Dirac Hamiltonian, which appropriately describes the dynamics of the quasiparticles in anisotropic configurations of the hopping parameters. In the case of normal graphene under a uniform strain, an effective Dirac Hamiltonian was reported as a function of the strain tensor. However, to the best of our knowledge, the effective Dirac Hamiltonian of artificial graphene, with weak anisotropy of the hopping parameters, has not been reported in the literature. The main objective of this paper is to give such low-energy Hamiltonian for an anisotropic honeycomb lattice (artificial graphene).

This paper is organized as follows. In Sec. II, we derive the effective Dirac Hamiltonian for a honeycomb...
lattice with weak anisotropy in the hopping parameters. For this purpose, we start from nearest-neighbor tight-binding model and carry out an expansion around the real Dirac point. The obtained low-energy Hamiltonian is used in Sec. III to discuss the optical properties of anisotropic honeycomb lattices, which are assumed by having linear response to an external oscillating field. In Sec. IV, our findings are particularized to the case of graphene under a nonmechanical deformation, which can not represented by means of the strain tensor. Finally, in Sec. V, our conclusions are given.

II. GENERALIZED HONEYCOMB LATTICE

We are interested in the low-energy Hamiltonian, i.e., the effective Dirac Hamiltonian, of a honeycomb lattice with anisotropy in the nearest-neighbor hopping parameters. As unstrained graphene, our lattice consists of a triangular Bravais lattice with a pair of Carbon atoms (open and filled circles in Fig. 1 (a)) located in its primitive cell. However, we consider that the hoppings between nearest sites are dependent on the direction and, in general, are characterized by three hopping parameters t_1, t_2 and t_3 (see Fig. 1 (a)). Within this nearest-neighbor tight-binding model, one can demonstrate that the Hamiltonian in momentum space can be represented by a (2×2) matrix of the form\cite{Fleury2010}

$$H = \sum_{n=1}^{3} t_n \begin{pmatrix} 0 & e^{i k \cdot \delta_n} \cr e^{-i k \cdot \delta_n} & 0 \end{pmatrix},$$

where $\delta_1, \delta_2, \delta_3$ are the nearest-neighbor vectors. Hereafter, we define the the nearest-neighbor vectors as

$$\delta_1 = \frac{a}{2} (\sqrt{3}, 1), \quad \delta_2 = \frac{a}{2} (-\sqrt{3}, 1), \quad \delta_3 = a(0, -1),$$

i.e., we choose the coordinate system xy in a way that the x axis is along the zigzag direction of the honeycomb lattice (see Fig. 1 (a)). We denote the system xy as the crystalline coordinate system.

From Eq. (1) follows that the dispersion relation is given by two bands:

$$E(k) = \pm |t_1 e^{i k \cdot \delta_1} + t_2 e^{i k \cdot \delta_2} + t_3 e^{i k \cdot \delta_3}|,$$

As is well documented, for the isotropic case $t_1, t_3 = t_0$, the Dirac points K_D, which are determined by condition $E(K_D) = 0$, coincide with the corners of the first Brillouin zone. Then, to obtain the Dirac Hamiltonian in this case, one can simply expand the Hamiltonian (1) around a corner, e.g., $K_0 = (\frac{4 \pi}{3 \sqrt{3} a}, 0)$. However, for the considered anisotropic case, the Dirac points do not coincide with the corners of the first Brillouin zone (as illustrated in Fig. 1 (b,c))\cite{Hasegawa2013}. In consequence, to derive the Dirac Hamiltonian, one can no longer expand the Hamiltonian (1) around K_0. As recently demonstrated, such expansion around K_0 yields an inappropriate Hamiltonian\cite{Watanabe2010}. The appropriate procedure is to find the position of the Dirac points and carry out the expansion around them.\cite{Watanabe2010} Note that when the hopping anisotropy increases, a gap can appear while the Dirac points disappear. Such effects are characterized by the Hasegawa triangular inequalities\cite{Watanabe2010}

A. Effective Dirac Hamiltonian

Now let us study the effect of a weak anisotropy given by a small perturbation of the hopping parameters. The perturbed hoppings are given by

$$t_n = t_0 (1 + \Delta_n),$$

on the low-energy description. As expressed above, to derive the proper effective Dirac Hamiltonian it is essential to find the condition $E(K_D) = 0$, up to first
order in the parameters \(\{\Delta_n\}\), one can obtain that \(K_D\) is given by
\[
K_D \approx K_0 + A,
\]
where
\[
A_x = \frac{1}{3a} (2\Delta_3 - \Delta_1 - \Delta_2), \quad A_y = \frac{1}{\sqrt{3a}} (\Delta_1 - \Delta_2),
\]
and \(K_0\) presents valley index \(\xi = +1\). As is well known, the shift \(A\) of the Dirac point plays the role of an emergent gauge field, similar to a vector potential, when the hopping parameters are position-dependent throughout the sample. Thus gauge fields couple with opposite signs to valleys with different index \([15,20]\).

Once the position of \(K_D\) is found, we expand the Hamiltonian \([4]\) around the Dirac point by means of \(k = K_D + q\). Following this approach up to first order in the parameters \(\{\Delta_n\}\), which is the leading order used throughout the rest of the paper, we derive that the effective Dirac Hamiltonian results in (see Appendix B),
\[
H = \hbar v_F \sigma \cdot (\vec{I} + \vec{\Delta}) \cdot q,
\]
where \(v_F = 3t_0a/2\hbar\) is the Fermi velocity for the unperturbed honeycomb lattice, \(\sigma = (\sigma_x, \sigma_y)\) are the non-diagonal Pauli matrices, \(\vec{I}\) is the 2 \(\times\) 2 identity matrix and \(\vec{\Delta}\) is the symmetric matrix
\[
\vec{\Delta} = \begin{pmatrix}
\frac{1}{\sqrt{3}} (2\Delta_1 + 2\Delta_2 - \Delta_3) & \frac{1}{3} (\Delta_1 - \Delta_2) \\
\frac{1}{3} (\Delta_1 - \Delta_2) & \Delta_3
\end{pmatrix}.
\]

Let us note some important remarks about our generalized Hamiltonian \([7]\). First of all, when the three hopping parameters \(\{t_n\}\) are equal to \(t_0(1 + \Delta)\), we have that \(\vec{\Delta} = 1\vec{I}\). Then Eq. \([7]\) reproduces the expected result \(\hbar v_F (1 + \Delta) \sigma \cdot q\), which is just a renormalization of the Fermi velocity. In general, from Eq. \([7]\) one can recognize a generalized Fermi velocity tensor as
\[
\vec{v} = v_F (\vec{I} + \vec{\Delta}),
\]
whose matrix character is due to the shape of the isenergetic contours around \(K_D\), which are rotated ellipses. Only for the case that \(t_1 = t_2\) \((\Delta_1 = \Delta_2)\), the Fermi velocity tensor is diagonal with respect to the crystalline coordinate system \(xy\) chosen. In this case, the principal axes of the isenergetic ellipses are collinear with the \(xy\) axes. Moreover, the general character of Eq. \([7]\) enables to estimate the variation effects of the hopping parameters for graphene under a spatially uniform strain. For the last case, to first order in the strain tensor \(\epsilon\), the hopping parameters are approximated by \(t_n \approx t_0 (1 - \beta \delta_n \cdot \epsilon \cdot \delta_n / a^2)\), where \(\beta\) is the electron Gr"uneisen parameter. Thus, \(\Delta_n = -\beta \delta_n \cdot \epsilon \cdot \delta_n / a^2\) and as a consequence, one obtain that for uniformly strained graphene, \(\vec{\Delta} = -\beta \vec{\epsilon}\).

However, to write the effective Dirac Hamiltonian for uniformly strained graphene, it should also take into account the deformation of the lattice vectors \([15,20]\).

It is important to emphasize that the expression \([8]\) for the matrix \(\Delta\) is referred to the crystalline coordinate system \(xy\). In general, if one choose an arbitrary coordinate system \(x'y'\), rotated at an angle \(\phi\) respect to the system \(xy\), then the new components of \(\Delta\) can be found by means of the transformation rules of a second order Cartesian tensor. In other words, \(\Delta\) is a second order Cartesian tensor, whose explicit form \([8]\) is given with respect to the crystalline coordinate system \(xy\).

III. Optical Conductivity

Let us now study the optical properties of those anisotropic electronic honeycomb Fermionic lattices that exhibit linear response to an external electric field of frequency \(w\). For this purpose, we firstly obtain the optical conductivity tensor \(\sigma_{ij}(w)\) by combining the Hamiltonian \([7]\) and the Kubo formula. Following the representation used in Refs. \([21,22]\), the optical conductivity \(\sigma_{ij}(w)\) can be written as a double integral with respect to two energies \(E, E'\):
\[
\sigma_{ij}(w) = \frac{i}{\hbar} \int \int \text{Tr} \{ j_i \delta(H - E') j_j \delta(H - E) \}
\]
\[
\times \frac{f(E) - f(E')}{E - E' + w - i\alpha} \, dEdE',
\]
where \(f(E) = (1 + \exp[E/(kB T)])^{-1}\) is the Fermi function at temperature \(T\) and \(j_l = -ie[\vec{H}, r_l]\) is the current operator in the \(l\)-direction, with \(l = x, y\).

To calculate the integral \([10]\) it is convenient to carry out the change of variables
\[
q = (\vec{I} + \vec{\Delta})^{-1} \cdot q^*.
\]

In the new variables \((q_{x}^*, q_{y}^*)\), the Hamiltonian \([7]\) becomes \(H = \hbar v_F \sigma \cdot q^*\), corresponding to an unperturbed honeycomb lattice, as unstrained graphene. On the other hand, the current operator components transform as
\[
j_x = -ie[H, r_x] = e \frac{\partial H}{\partial q_x^*},
\]
\[
= e \left(\frac{\partial H}{\partial q_x^*} \frac{\partial q_x^*}{\partial q_x} + \frac{\partial H}{\partial q_y^*} \frac{\partial q_y^*}{\partial q_x} \right),
\]
\[
= (1 + \Delta_{xx}) j_x^* + \Delta_{xy} j_y^*,
\]
and analogously
\[
j_y = (1 + \Delta_{yy}) j_y^* + \Delta_{yx} j_x^*,
\]
where \(j_x^* = e(\partial H/\partial q_y^*)\) and \(j_y^* = e(\partial H/\partial q_x^*)\) are the current operator components for the case of the unperturbed honeycomb lattice.

Then, substituting Eqs. \([12]\) and \([13]\) into Eq. \([10]\), we obtain
\[
\sigma_{xx}(w) \approx (1 + 2\Delta_{xx}) J \sigma_0(w),
\]
\[
\sigma_{yy}(w) \approx (1 + 2\Delta_{yy}) J \sigma_0(w),
\]
\[
\sigma_{xy}(w) = \sigma_{yx}(w) \approx 2\Delta_{xy} J \sigma_0(w),
\]
where J is the Jacobian determinant of the transformation and $\sigma_0(w)$ is the optical conductivity of the unperturbed honeycomb lattice. Note that as an explicit expression for $\sigma_0(w)$ one can use the reported optical conductivity of unstrained graphene.

Finally, from Eqs. (14, 16) it follows that the optical conductivity tensor for the anisotropic honeycomb lattice results in,

$$\bar{\sigma}(w) \simeq \sigma_0(w)(I + 2\Delta - \text{Tr}(\Delta)I).$$

In other words, a Dirac system described by the generalized Hamiltonian presents an anisotropic optical response given by Eq. (17), independently of the expression of matrix Δ. Now substituting Eq. (6) into Eq. (17) we obtain the explicit form of the optical conductivity tensor for the anisotropic honeycomb lattice, respect to the crystalline coordinate system xy.

A. Dichroism and Transmittance

The anisotropy of the optical absorption yields two effects: dichroism and modulation of the transmittance as a function of the polarization direction. To examine such effects, let us consider normal incidence of linearly polarized light between two dielectric media separated by an anisotropic honeycomb lattice, as illustrated in Fig. 2(a).

From the boundary conditions for the electromagnetic field on the interface between both media, one can obtain that the electric fields of the incident and transmitted waves, E_i and E_t respectively, are related by

$$E_i = \frac{1}{2} \sqrt{\mu_1 \varepsilon_1}\left(\left(\sqrt{\frac{\varepsilon_1}{\mu_1}} + \sqrt{\frac{\varepsilon_2}{\mu_2}}\right)i + \sigma\right) \cdot E_t,$$

where $\varepsilon_{1,2}$ are the electrical permittivities and $\mu_{1,2}$, the magnetic permeabilities. Note that, in general, the anisotropy of the conductivity σ produces that E_i and E_t are not collinear (see Fig. 2(b)). Analogously, the magnetic fields, H_i and H_t, fulfill the same relation.

Now from Eq. (18) the calculation of the transmittance is straightforward

$$T(\theta_i) = \frac{|E_t \times H_i|}{|E_i \times H_t|} = \frac{|\sqrt{\varepsilon_2/\mu_2}E_t|}{|\sqrt{\varepsilon_1/\mu_1}E_i|},$$

$$\approx T_0 \left(1 - \frac{2\sqrt{\mu_1\mu_2}}{\sqrt{\varepsilon_1\mu_1} + \sqrt{\varepsilon_2\mu_2}}(\Re\bar{\sigma}) \cdot e_\perp,\right),$$

where T_0 is the transmittance for normal incidence between two media in absence of the anisotropic honeycomb lattice as interface and $e_\perp = (\cos \theta_i, \sin \theta_i)$, with θ_i being the incident polarization angle θ_i.

To illustrate even more clearly the dichroism and the modulation of $T(\theta_i)$ induced by the anisotropic honeycomb lattice, it is convenient to consider that the chemical potential equals zero for the lattice. In consequence, for the domain of infrared and visible frequencies, in Eq. (17) $\sigma_0(w)$ can be replaced by the universal and frequency-independent value $\epsilon^2/(4\hbar)$. Additionally, if both media are vacuum, then from Eqs. (17, 19) we obtain that

$$\theta_i - \theta_i \approx \frac{\pi\alpha}{2}A \sin(2\theta_i - \theta_0),$$

$$T(\theta_i) \approx 1 - \pi\alpha(1 + A \cos(2\theta_i - \theta_0)),$$

where

$$A = \sqrt{(\Delta_{xx} - \Delta_{yy})^2 + 4\Delta_{xy}^2} = \sqrt{(\text{Tr}\Delta)^2 - 4\text{Det}\Delta},$$

$$\sin \theta_0 = 2\Delta_{xy}/A \cos \theta_0 = (\Delta_{xx} - \Delta_{yy})/A$$

and α is the fine-structure constant.

It is immediate to verify that, for $\Delta = 0$, the dichroism disappears and $T(\theta_i)$ reduces to $1 - \pi\alpha$ ($\approx 97.7\%$), which is the transmittance of unstrained graphene. Expressions (20) and (21) clearly show π-periodic modulations of the dichroism and transmittance respect to the incident polarization angle θ_i, which is due to the physical equivalence between θ_i and $\theta_i + \pi$, for normal incidence of linearly polarized light. From Eq. (20) follows that the principal directions of Δ can be determined by monitoring the polarization angles θ_i for which the incident and transmitted polarizations coincide. At the same time, Eq. (21) shows that the principal directions of Δ can be determined by measuring the polarization angles θ_i for which the transmittance takes its minimum or maximum values. Also, it is important to note that while the phase θ_0 of both modulations is dependent on the coordinate system orientation, the amplitude A is independent on any orientation of the coordinate system, as physically expected, because A is given as a function of the invariants $\text{Tr}\Delta$ and $\text{Det}\Delta$.

So far, our discussion on dichroism and transmittance is general for an anisotropic Dirac system described by Eq. (7). By substituting Eq. (8) into Eqs. (20, 21), one obtains the explicit form of such effects for the anisotropic honeycomb lattice with respect to the crystalline coordinate system xy.

Fig. 2. (Color online) (a) Scattering problem for normal incidence between two media with the anisotropic honeycomb lattice separating them. The z direction is chosen along the propagation of the electromagnetic wave. k_i and k_t represent the wave vectors of the incident and transmitted waves, respectively. (b) Schematic representation of the dichroism induced by the anisotropic absorption of the honeycomb lattice. The electromagnetic fields lie in the lattice plane.
FIG. 3. (Color online) Scheme of the modified graphene lattice. The red arrow represents the displacement u of the open-circles sublattice.

IV. APPLICATION

As an application of the previous results, we consider a deformation of graphene lattice, as illustrated in Fig. 3(a). Here the primitive vectors a_1 and a_2 remain undeformed, while the atom of basis, denoted by an open circle, is displaced a vector u in an arbitrary direction. This deformation of graphene lattice is basically a displacement, given by u, of the open-circles sublattice respect to the filled-circles sublattice. A possible scenario for such deformation could occur in graphene grown on substrate with an appropriate combination of lattice mismatch between the two crystals.

The new nearest-neighbor vectors δ'_n are related to the unstrained nearest-neighbor vectors δ_n by means of $\delta'_n = \delta_n - u$. However, it is worth mentioning that the reciprocal lattice of our modified graphene lattice remains undeformed because the direct lattice, determined by a_1 and a_2, is undistorted. The last is a notable difference with the case of strained graphene by means of mechanical stress, for which the lattice vectors are deformed.

As in Sec. II, if we begin from a nearest-neighbor approach, it is easy to demonstrate that the dispersion relation for this modified graphene lattice reads

$$E(k) = \pm |t_1 e^{i k \cdot (\delta_1 - u)} + t_2 e^{i k \cdot (\delta_2 - u)} + t_3 e^{i k \cdot (\delta_3 - u)}|,$$

where we characterize the variation of the hopping parameters in the usual form: $t_n = t_0 \exp[-\beta(|\delta_n|/a - 1)]$.

Note that Eq. (23) coincides with Eq. (3), so the modified graphene lattice can be considered as a particular case of the generalized honeycomb lattice examined in Sec. II. Therefore, now we can particularize all general previous results for the modified graphene lattice.

Effective Dirac Hamiltonian: Writing the variation of the hopping parameters to first order in u, one get

$$t_n = t_0 \exp[-\beta(|\delta_n - u|/a - 1)],$$

thus, for this case one can identify from Eq. (1) that $\Delta_n = \beta \delta_n \cdot u/a^2$. Consequently, from Eqs. (7) and (8), the effective Dirac Hamiltonian of the modified graphene lattice results in

$$H = \hbar v_F \sigma \cdot (\bar{T} + \Delta^u) \cdot q,$$

where the matrix $\bar{\Delta}_u$ depends on the components of the vector u as

$$\Delta^u = \begin{pmatrix} u_y & u_x \\ u_x & -u_y \end{pmatrix}.$$

It is immediate to verify that for $u = 0$ one recovers the case of unstrained graphene. Note that Tr$\Delta^u = 0$, which is because the studied deformation does not vary the area of graphene sample. This fact is analogous to having a pure shear strain.

The form (26) of the tensor $\bar{\Delta}^u$ is referred to the crystalline coordinate system xy. Now let us give its general expression respect to an arbitrary coordinate system $x'y'$, which is inclined to xy at an angle ϕ. Using the transformation rules of a second order Cartesian tensor we find

$$\Delta^u_{x'x'} = -\Delta^u_{y'y'} = \frac{\beta}{a} (u_{y'} \cos 3\phi + u_{x'} \sin 3\phi),$$

$$\Delta^u_{x'y'} = \Delta^u_{y'x'} = \frac{\beta}{a} (-u_{y'} \sin 3\phi + u_{x'} \cos 3\phi),$$

where $u_{x'}$ and $u_{y'}$ are the components of the vector u respect to the system $x'y'$. These expressions for the tensor $\Delta^u(\phi)$ exhibit a clear periodicity of $2\pi/3$ in ϕ, which reflects the trigonal symmetry of the underlying honeycomb lattice.

Optical properties: From Eqs. (17) and (26), the optical conductivity for the modified graphene lattice immediately follows as

$$\sigma^u(w) = \sigma_0(w)(1 + 2\beta u_x/a),$$

$$= \sigma_0(w) \begin{pmatrix} 1 + 2\beta u_y/a & 2\beta u_x/a \\ 2\beta u_x/a & 1 - 2\beta u_y/a \end{pmatrix},$$

FIG. 4. (Color online) Rotation of the transmitted field (top panel) and transmittance (bottom panel) as a function of the incident polarization angle for two different deformations. The red curves correspond to the displacement $u_1/a = (0.05, 0)$, while the blue curves correspond to the displacement $u_2/a = (0.04, 0.03)$. The color online version of this figure is available in the electronic edition of this JOURNAL.
with respect to the crystalline coordinate system xy. At the same time, from Eqs. (20) and (21) one obtains that, for normal incidence of linearly polarized light, the dichroism and the transmittance are characterized by

$$
\begin{align*}
\theta_1 - \theta_1 &\approx \frac{\pi \alpha \beta}{a} (u_y \sin 2\theta_1 - u_x \cos 2\theta_1), \\
T(\theta_1) &\approx 1 - \pi \alpha - \frac{2\pi \alpha \beta}{a} (u_y \cos 2\theta_1 + u_x \sin 2\theta_1),
\end{align*}
$$

(30)

where the incident polarization angle θ_1 is measured with respect to the x axis of the crystalline coordinate system.

In Fig. 4, we display the evaluated expressions (30) and (31) for two different displacements, $u_1/a = (0.05, 0)$ and $u_2/a = (0.04, 0.03)$. Such deformations present the same modulation amplitude either for the rotation of the transmitted field (dichroism) as for the transmittance. The reason is simple. From (31) it follows that the transmittance modulation amplitude ΔT is determined by the module of the vector u: $\Delta T = 2\pi \alpha \beta |u|/a$. Note that $|u_1| = |u_2|$, therefore, $\Delta T_1 = \Delta T_2$. The analogous argument is valid for the modulation amplitude of the rotation of the transmitted field: $\Delta \phi = \pi \alpha \beta |u|/a$.

Nowadays, measurements of transmittance can be used to characterize the deformation state in graphene sample.

To end, let us point out how Eq. (31) serves to characterize the strain state of our modified graphene lattice by means of two measurements of transmittance. Measuring the transmittance at $\theta_1 = 0$ and $\theta_1 = \pi/4$, from Eq. (31) one obtain that

$$
\begin{align*}
u_x &= \frac{a}{2\pi \alpha \beta} (1 - \pi \alpha - T(\pi/4)), \\
u_y &= \frac{a}{2\pi \alpha \beta} (1 - \pi \alpha - T(0)),
\end{align*}
$$

(32)

and of this manner, the strain state can be determined.

V. CONCLUSION

In summary, starting from a nearest-neighbor tight-binding model we derived the effective Dirac Hamiltonian of an anisotropic honeycomb lattice, beyond strained normal graphene. This general Hamiltonian results in a useful tool for studying the anisotropic dynamics of Dirac quasiparticles in artificial graphene. Moreover, it is an excellent starting point for obtaining the effective Dirac Hamiltonian in the case of position-dependent anisotropy of the honeycomb lattice. We also obtained the optical conductivity tensor of the anisotropic honeycomb lattice and showed how such anisotropic optical absorption produces a modulation of the transmittance and of the dichroism as a function of the incident polarization angle. Our findings could provide a platform to characterize the anisotropy in electric artificial graphene by means of optical measurements. At the same time, they could be used for tailoring the optical properties of electric artificial graphene.

ACKNOWLEDGMENTS

This work was supported by UNAM-DGAPA-PAPIIT, project IN-102513. M.O.L acknowledges support from CONACYT (Mexico). G.G. Naumis thanks a PASPA scholarship for a sabbatical leave at the George Mason University.

Appendix A

Here we provide the derivation of the expressions (6) for the shift vector A of the Dirac point K_D.

The condition $E(K_D) = 0$, which defines the Dirac points K_D, can be equivalently rewritten as

$$
\sum_{n=1}^{3} t_n e^{i K_D \cdot \delta_n} = 0.
$$

(A1)

In the isotropic case, $t_n = t_0$, the Dirac points coincide with the corners of the first Brillouin zone, in particular, $K_D = K_0 = (\frac{4\pi}{3\sqrt{3}a}, 0)$, with K_0 being a corner with valley index +1. For the anisotropic case, $t_n = t_0 (1 + \Delta_n)$, the Dirac points do not coincide with the corners of the first Brillouin zone, in particular, $K_D \neq K_0$. Then, one can propose the position of K_D in the form

$$
K_D = K_0 + A + \mathcal{O}(\Delta_n^2),
$$

(A2)

where the unknown shift A will be looked for as a lineal combination on the parameters $\{\Delta_n\}$. Now, substituting Eq. (A2) into Eq. (A1) results

$$
\begin{align*}
\sum_{n=1}^{3} t_0 (1 + \Delta_n) e^{i (K_0 + A + \mathcal{O}(\Delta_n^2)) \cdot \delta_n} &= 0, \\
\sum_{n=1}^{3} (1 + \Delta_n + i A \cdot \delta_n + \mathcal{O}(\Delta_n^2)) e^{i K_0 \cdot \delta_n} &= 0,
\end{align*}
$$

(A3)

Thus, one obtain that the shift A is given by

$$
A_x = \frac{1}{3a} (2\Delta_3 - \Delta_1 - \Delta_2), \\
A_y = \frac{1}{\sqrt{3}a} (\Delta_1 - \Delta_2),
$$

(A4)

which is our Eq. (9). Following a similar calculation, the Dirac point shift respect to the corner $K_0' = (\frac{-4\pi}{3\sqrt{3}a}, 0)$, with valley index -1, results in $-A$.

Appendix B

In this section, we present the details of the calculations to derive the effective Hamiltonian around $K_D = K_0 + A$. Also, these calculations can be taken as an alternative proof of Eq. (9), as pointed out below.
Considering momenta close to the Dirac point K_D, i.e. $k = K_D + q$, and expanding to first order in q and $\{\Delta_n\}$, Hamiltonian \(H \) transforms as

\[
H = - \sum_{n=1}^{3} t_n \left(e^{-i(K_0 + A + q) \delta_n} e^{-(iK_0 + A + q) \delta_n} \right),
\]

\[
= - \sum_{n=1}^{3} t_0 (1 + \Delta_n) \left(e^{-iK_0 \delta_n} e^{-(iK_0 + A + q) \delta_n} \right)
\times (\bar{I} + i\sigma_z A \cdot \delta_n)(\bar{I} + i\sigma_z q \cdot \delta_n),
\]

\[
= - t_0 \sum_{n=1}^{3} \left(i \frac{\sigma \cdot \delta_n}{a} \sigma_z \right) (\bar{I} + i\sigma_z q \cdot \delta_n + i\sigma_z A \cdot \delta_n)
+ \Delta_n \bar{I} - (q \cdot \delta_n)(A \cdot \delta_n)\bar{I}, \tag{B1}
\]

where it has been assumed that the A vector is given by Eq. (6) and $K_0 = (\frac{4\pi}{3\sqrt{3}a}, 0)$ has valley index $\xi = +1$. Collecting the contribution of each term in this expression, one obtain:

\[
-t_0 \sum_{n=1}^{3} \left(i \frac{\sigma \cdot \delta_n}{a} \sigma_z \right) = 0, \tag{B2}
\]

\[
-t_0 \sum_{n=1}^{3} \left(i \frac{\sigma \cdot \delta_n}{a} \sigma_z \right) (i\sigma_z A \cdot \delta_n) = h_F \sigma \cdot A, \tag{B3}
\]

where the Δ matrix is given by Eq. (8). Then, taking into account the contribution of each term in Eq. (B1), the effective Dirac Hamiltonian around K_D has the form

\[
H = h_F \sigma \cdot (\bar{I} + \Delta) \cdot q. \tag{B7}
\]

This result also shows that the Dirac point K_D is given by Eqs. (6). Note that in the Hamiltonian (B7), all terms are $O(q)$, which is a consequence of an expansion around the real Dirac point and, therefore, this proves that the expression (6) for the shift A of the Dirac point is correct.

For K_0 with valley index $\xi = -1$, the calculation is analogous, and the effective Dirac Hamiltonian results

\[
H = h_F \sigma^* \cdot (\bar{I} + \Delta) \cdot q. \tag{B8}
\]

* \texttt{moliva@fisica.unam.mx}

† \texttt{naumis@fisica.unam.mx}

1 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

2 M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nat. Phys. 2, 620 (2006).

3 A. F. Young and P. Kim, Nat. Phys. 5, 222 (2009).

4 A. Calogeracos and N. Dombey, Contemporary Physics 40, 313 (1999).

5 C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008).

6 A. Castellanos-Gomez, V. Singh, H. S. J. van der Zant, and G. A. Steele, Annalen der Physik 527, 27 (2015).

7 V. M. Pereira and A. H. Castro Neto, Phys. Rev. Lett. 103, 046809 (2009).

8 F. Guinea, Solid State Communications 152, 1437 (2012).

9 B. Wang, Y. Wang, and Y. Liu, Functional Materials Letters 08, 1535001 (2015).

10 B. Amorim, A. Cortijo, F. de Juan, A. G. Grushin, F. Guinea, A. Gutiérrez-Rubio, H. Ochoa, V. Parente, R. Roldán, P. San-José, J. Schiefele, M. Sturla, and M. A. H. Vozmediano, arXiv:1503.00747 (2015).

11 V. M. Pereira, A. H. Castro Neto, and N. M. R. Peres, Phys. Rev. B 80, 045401 (2009).

12 Y. Li, X. Jiang, Z. Liu, and Z. Liu, Nano Research 3, 545 (2010).

13 G. Cocco, E. Cadelano, and L. Colombo, Phys. Rev. B 81, 241412 (2010).

14 G. Gui, D. Morgan, J. Booske, J. Zhong, and Z. Ma, Applied Physics Letters 106, 053113 (2015).

15 N. Levy, S. A. Burke, K. L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A. H. C. Neto, and M. F. Crommie, Science 329, 544 (2010).

16 J. Lu, A. C. Neto, and K. P. Loh, Nat Commun 3, 823 (2012).

17 H. Suzuura and T. Ando, Phys. Rev. B 65, 235412 (2002).

18 A. F. Morpurgo and F. Guinea, Phys. Rev. Lett. 97, 196804 (2006).

19 S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, L. A. Ponomarenko, D. Jiang, and A. K. Geim, Phys. Rev. Lett. 97, 016801 (2006).

20 F. Guinea, M. I. Katsnelson, and A. K. Geim, Nat Phys 6, 30 (2010).

21 J. V. Sloan, A. A. P. Sanjuan, Z. Wang, C. Horvath, and S. Barraza-Lopez, Phys. Rev. B 87, 155436 (2013).

22 D. A. Gradinar, M. Mucha-Kruczyński, H. Schomerus, and V. I. Fal’ko, Phys. Rev. Lett. 110, 266801 (2013).

23 W.-Y. He and L. He, Phys. Rev. B 88, 085411 (2013).

24 R. Carrillo-Bastos, D. Faría, A. Latgé, F. Mireles, and...
N. Sandler, Phys. Rev. B 90, 041411 (2014)

Z. Qi, A. L. Kitt, H. S. Park, V. M. Pereira, D. K. Campbell, and A. H. Castro Neto, Phys. Rev. B 90, 125419 (2014)

R. Burgos, J. Warnes, L. R. F. Lima, and C. Lewenkopf, Phys. Rev. B 91, 115403 (2015)

M. R. Guassi, G. S. Diniz, N. Sandler, and F. Qu, Phys. Rev. B 92, 075426 (2015)

M. M. Gruijić, M. Z. Tadić, and F. M. Peeters, Phys. Rev. Lett. 113, 046601 (2014)

D. Middtvedt, C. H. Lewenkopf, and A. Croy, arXiv:1509.02365

H. Rostami, R. Roldán, E. Cappelluti, R. Asgari, and F. Guinea, Phys. Rev. B 92, 195402 (2015)

A. Cortijo, Y. Ferreirós, K. Landsteiner, and M. A. H. Vozmediano, Phys. Rev. Lett. 115, 177202 (2015)

S.-H. Bae, Y. Lee, B. K. Sharma, H.-J. Lee, J.-H. Kim, and J.-H. Ahn, Carbon 51, 236 (2013)

R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, Nat Commun 4, 1841 (2013)

B. Dong, P. Wang, Z.-B. Liu, X.-D. Chen, W.-S. Jiang, W. Xin, F. Xing, and J.-G. Tian, Nanotechnology 25, 455707 (2014).

M. Oliva-Leyva and G. G. Naumis, Phys. Rev. B 88, 085430 (2013)

V. M. Pereira, R. M. Ribeiro, N. M. R. Peres, and A. H. Castro Neto, EPL 92, 67001 (2010)

G.-X. Ni, H.-Z. Yang, W. Ji, S.-J. Baeck, C.-T. Toh, J.-H. Ahn, V. M. Pereira, and B. Özyilmaz, Advanced Materials 26, 1081 (2014)

M. Oliva-Leyva and G. G. Naumis, 2D Materials 2, 025001 (2015)

L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger, Nature 483, 302 (2012)

K. K. Gomes, W. Mar, W. Ko, F. Guinea, and H. C. Manoharan, Nature 483, 306 (2012)

M. Polini, F. Guinea, M. Lewenstein, H. C. Manoharan, and V. Pellegrini, Nat. Nano. 8, 625 (2013)

G. Montambaux, F. Péchon, J.-N. Fuchs, and M. O. Gorbig, Phys. Rev. B 80, 153412 (2009)

M. Bellec, U. Kuhl, G. Montambaux, and F. Mortessagne, Phys. Rev. Lett. 110, 033902 (2013)

J. Feihlauer, W. Apel, and L. Schweitzer, arXiv:1508.03189 (2015)

M. I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge University Press, Cambridge, UK, 2012).

M. Oliva-Leyva and G. G. Naumis, Physics Letters A 379, 2645 (2015)

G. Volovik and M. Zubkov, Annals of Physics 340, 352 (2014)

G. Volovik and M. Zubkov, Annals of Physics 356, 255 (2015)

Y. Hasegawa, R. Konno, H. Nakano, and M. Kohmoto, Phys. Rev. B 74, 033413 (2006)

M. A. H. Vozmediano, M. I. Katsnelson, and F. Guinea, Physics Reports 496, 109 (2010)

K. Ziegler, Phys. Rev. Lett. 97, 266802 (2006)

K. Ziegler, Phys. Rev. B 75, 233407 (2007)

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, International Journal of Modern Physics B 21, 4611 (2007)

T. Stauber, N. M. R. Peres, and A. K. Geim, Phys. Rev. B 78, 085432 (2008)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320, 1308 (2008)

S.-M. Lee, S.-M. Kim, M. Na, H. Chang, K.-S. Kim, H. Yu, H.-J. Lee, and J.-H. Kim, Nano Research 8, 2082 (2015)