DYADIC LOWER LITTLE BMO ESTIMATES

K. DOMLEVO, S. KAKAROUMPAS, S. PETERMICHL, O. SOLER I GIBERT

Abstract. We characterize dyadic little BMO via the boundedness of the tensor commutator with a single well chosen dyadic shift. It is shown that several proof strategies work for this problem, both in the unweighted case as well as with Bloom weights. Moreover, we address the flexibility of one of our methods.

2010 MSC Primary: 42B35. Secondary: 42B20.

Keywords: Little BMO, dyadic operators, norm estimates for commutators.

Notation

1_E characteristic function of a set E;

\int_E integration with respect to Lebesgue measure;

$|E|$ d-dimensional Lebesgue measure of a measurable set $E \subseteq \mathbb{R}^d$;

$\langle f \rangle_E$ average with respect to Lebesgue measure, $\langle f \rangle_E := \frac{1}{|E|} \int_E f(x)dx$;

$L^p(w)$ weighted Lebesgue space, $\|f\|_{L^p(w)}^p := \int_{\mathbb{R}^d} |f(x)|^p w(x)dx$;

(f,g) usual L^2-pairing, $(f,g) := \int f(x)g(x)dx$;

$w(E)$ Lebesgue integral of a weight w over a set E, $w(E) := \int_E w(x)dx$;

p' Hölder conjugate exponent to p, $1/p + 1/p' = 1$;

\mathcal{D} family of all dyadic intervals in \mathbb{R};

$\mathcal{D}(E)$ family of all dyadic intervals $I \in \mathcal{D}$ contained in a subset E of \mathbb{R};

$\mathcal{D}(E)$ family of all dyadic rectangles in \mathbb{R}^2;

$\mathcal{D}(E)$ family of all dyadic rectangles $R \in \mathcal{D}$ contained in a subset E of \mathbb{R}^2;

I_-, I_+ left, right respectively half of an interval $I \in \mathcal{D}$;

I' sibling in \mathcal{D} of an interval $I \in \mathcal{D}$;

\tilde{I} parent in \mathcal{D} of an interval $I \in \mathcal{D}$;

h_I L^2-normalized (cancellative) Haar function for an interval $I \in \mathcal{D}$, $h_I := \frac{1_I - 1_{I')))}{\sqrt{|I|}}$;

f_I Haar coefficient of a function $f \in L^1_{\text{loc}}(\mathbb{R})$, $f_I := (f,h_I), I \in \mathcal{D}$;

h_R L^2-normalized (bicancellative) Haar function for a rectangle $R \in \mathcal{D}$, $h_R := h_I \otimes h_J$, where $R = I \times J$;

f_R usual (biparameter) Haar coefficient of a function $f \in L^1_{\text{loc}}(\mathbb{R}^2)$, $f_R := (f,h_R), R \in \mathcal{D}$.

\[\text{The authors are partially supported by ERC project CHRI\textsc{SharMa} no. DLV-682402 and the Alexander von Humboldt Stiftung.}\]
1. Introduction

Let us denote by \(\{ h_I : I \in \mathcal{D} \} \) the Haar base on \(\mathbb{R} \) and let \(S \) be the operator densely defined by
\[
h_{I_+} \mapsto -h_{I_-} \text{ and } h_{I_-} \mapsto h_{I_+}.
\]
This shift is different from the classical one in [P]. It is time faithful and has other nice properties, in particular it is an excellent model for the Hilbert transform.

We will work in two parameter space \(L^2(\mathbb{R}^2) \) and we denote by \(S_i \) the shift operator acting in variable \(i \). In this note, we mainly consider the commutator with the tensor product \(S \otimes S = S_1S_2 \) as follows:
\[
C_b = [S_1S_2, b].
\]
It is bounded in \(L^2 \) if and only if the symbol \(b \) is in dyadic little BMO. More precisely,

Theorem 1.1. There holds
\[
\|b\|_{bmo} \leq |C_b|_{L^2 \to L^2} \leq \|b\|_{bmo}
\]
with constants independent of the symbol. The lower norm estimate means that
\[
\exists C > 0 : \forall b \in bmo \; \exists f \in L^2 : \|C_b f\|_{L^2} \geq C \|b\|_{bmo} \|f\|_{L^2},
\]
while the upper estimate means, as usual, that
\[
\exists C : \forall b \in bmo \; \forall f \in L^2 : \|C_b f\|_{L^2} \leq C \|b\|_{bmo} \|f\|_{L^2}.
\]

The theorem holds also with exponents \(1 < p < \infty \) and in the Bloom setting. Moreover, we show these estimates hold for a certain class of dyadic shifts.

We will provide two proofs of the lower bounds for the commutator with \(S_1S_2 \) and refer for example to [OP] and [HPW] for the upper bound. One proof strategy uses an explicit calculation of the kernel and a modification of the argument of [CRW] and another passes via a direct testing on a part of the symbol.

This result is not a surprise, it is well known for the Hilbert transform, where the most elegant argument that is known to us uses Toeplitz operators [FS] and the elementary characterization of their boundedness to deduce the little BMO lower estimate from the one parameter result, Nehari’s theorem [N]. A real analytic proof relying on the explicit BMO expression can be found in [OP], extending a one parameter real variable argument brought forward by [CRW]. As it turns out and as is well known to experts, the argument by [CRW] relying on the kernel expression can give lower commutator estimates in various settings. It is somewhat surprising, that it can be used for some dyadic operators as well, because the original argument relied heavily on the particular form of the kernels of Hilbert or Riesz transforms and an identity for spherical harmonics.

Of independent interest is a direct argument by testing on the symbol. It also extends trivially to the rectangular BMO case of the iterated commutator. Notice that for the rectangular BMO norm we do not have John–Nirenberg inequalities \([\text{CRW}] \), therefore the exponent 2 in the definition is highly relevant. This case was treated by [FS] for the Hilbert transform also via direct testing.

Holmes, Treil and Volberg [HTV] have proved a similar result for a different dyadic shift. Blasco and Pott [BP] have an interesting result in the product BMO setting, requiring boundedness of a commutator with a large class of dyadic multiplier operators.

Our proof strategies extend to the weighted Bloom case, in which case we demonstrate lower estimates and commutator characterizations as well. An interesting result in the Bloom product BMO setting can be found in [KS].

Our arguments inspired by [CRW] are somewhat flexible and we give certain criteria under which we have a lower bound for a shift operator. These include the one considered in [HTV] and our \(S_1S_2 \) in this note, showing that both these groups have selected their operators wisely.

Definition 1.2. A function \(b(x) \) is in the dyadic BMO space if
\[
\|b\|_{1,\text{BMO}} = \sup_I \frac{1}{|I|} \int_I |b(x) - \{b\}_I| \, dx
\]
is finite. The supremum runs over dyadic intervals.

Since John–Nirenberg holds for this space, we may define the equivalent norm for $1 < p < \infty$

$$\|b\|_{p,\text{BMO}}^p = \sup_I \frac{1}{|I|} \int_I |b(x) - \langle b \rangle_I|^p \, dx.$$

Definition 1.3. A function $b(x_1, x_2)$ is in the dyadic little BMO space if

$$\|b\|_{1,\text{bmo}} = \sup_R \frac{1}{|R|} \int_R |b(x_1, x_2) - \langle b \rangle_R| \, dx_1 \, dx_2$$

is finite. The supremum runs over all dyadic rectangles.

Since John–Nirenberg holds for this space, we may define the equivalent norm

$$\|b\|_{p,\text{bmo}}^p = \sup_R \frac{1}{|R|} \int_R |b(x_1, x_2) - \langle b \rangle_R|^p \, dx_1 \, dx_2.$$

Definition 1.4. A function $b(x_1, x_2)$ is in the dyadic rectangular BMO space if

$$\|b\|_{2,\text{BMO,rec}}^2 = \sup_R \frac{1}{|R|} \int_R |b(x_1, x_2) - \langle b \rangle_{R_2}(x_1) - \langle b \rangle_{R_1}(x_2) + \langle b \rangle_{R_1}\rangle_{R_2}^2 | \, dx_1 \, dx_2$$

is finite. The supremum runs over all dyadic rectangles.

Little BMO can also be realized as a function belonging uniformly to BMO in each variable separately. The rectangular BMO space can be realized via a convexity argument as the probabilistic BMO space in two parameters. See [B] for the definition of the probabilistic BMO space in two parameters.

2. Remarks on one parameter

2.1. Lower BMO estimate in one parameter via testing.

In this section we prove the following lower estimate by testing the commutator on an appropriate test function:

Theorem 2.1. There holds the one-parameter two-sided estimate

$$\|b\|_{\text{BMO}} \lesssim \|b\|_{L^2 \rightarrow L^2} \lesssim \|b\|_{\text{BMO}}.$$

Proof. For any dyadic interval I with parent \hat{I}, we will provide a lower estimate for

$$\|\mathcal{S}(b 1_{\hat{I}}) - b \mathcal{S}(1_{\hat{I}})\|_{L^2(I)}$$

which is bounded above by the full L^2 norm of the commutator. It will be useful to know how \mathcal{S} acts on characteristic functions. There holds

$$\mathcal{S}(1_{\hat{I}}) = \mathcal{S} \left(\sum_L (1_{\hat{I}}, h_L) h_L \right) = \mathcal{S} \left(\sum_{L \ni \hat{I}} (1_{\hat{I}}, h_L) h_L \right).$$

A simple but important observation is that $\mathcal{S}(1_{\hat{I}})$ is supported outside of \hat{I}. Indeed, for intervals $L \supsetneq I$ observe that $\mathcal{S}(h_L)$ is supported on the dyadic sibling L' of L and has therefore no support on \hat{I} or \hat{I}'. Let us now consider the local part $P_{\hat{I}}^b$ defined as

$$P_{\hat{I}}^b = \sum_{K \in D(I)} b_K h_K.$$

We calculate

$$\mathcal{S}(P_{\hat{I}}^b \cdot 1_{\hat{I}}) = \mathcal{S} \left(\sum_{K \in D(I)} b_K h_K \cdot 1_{\hat{I}} \right) = \mathcal{S} \left(\sum_{K \in D(I)} b_K h_K \right).$$
Then we calculate
\[P_I^b \cdot S(1_I) = \sum_{K \in \mathcal{D}(I)} b_K h_K \left[S \left(\sum_{L \in I} (1_L, h_L) h_L \right) \right] = 0. \]
Indeed, \(S(1_I) \) has no support in \(I \) but \(P_I^b \) is only supported on \(I \). Let us now consider the outer part
\[P_{I^0}^b = \sum_{K \notin \mathcal{D}(I)} b_K h_K. \]
Observe that \(P_{I^0}^b \) is constant on \(I \): if \(K \cap I = \emptyset \) that constant is 0. If \(I \subseteq K \) then \(h_K \) is constant on \(I \). Therefore \(S(P_{I^0}^b \cdot 1_I) = P_{I^0}^b(I) S(1_I) \) and this part does not have a contribution on \(I \). Likewise \(P_{I^0}^b S(1_I) \) has no contribution on \(\hat{I} \). Gathering the information, we have
\[
\|[S, b]1_I\|_{L^2(I)}^2 = \|[S, P_I^b]1_I + [S, P_{I^0}^b]1_I\|_{L^2(I)}^2
\]
\[= \left| S \left(\sum_{K \in \mathcal{D}(I)} b_K h_K \right) \right|^2_{L^2(I)}
\]
\[= \int_I |b - (b) I|^2. \]
Here we used the fact that the support of \(S(P_I^b) \) is contained in \(\hat{I} \) and that \(S \) is an isometry in \(L^2 \). These considerations tell us that the lower BMO estimate is seen when testing on \(1_I \) and taking the supremum in \(I \).
\[\|b\|_{\text{BMO}} \lesssim \sup_I \left\| \frac{1_I}{|I|^{1/2}} \right\|_{L^2}. \]
The upper estimate is similar to the one for the classical Haar shift and is omitted. \(\square \)

3. TWO PARAMETER IMPLICATIONS

3.1. Lower little BMO estimate via testing.

Theorem 3.1. There holds the two-parameter two-sided estimate
\[\|b\|_{\text{bmo}} \lesssim \|C_b\|_{L^2 \to L^2} \lesssim \|b\|_{\text{bmo}}. \]

Proof. Let us write for \(R \in \mathcal{D}, \ R = R_1 \times R_2 \), define the domain \(\check{R} = (\check{R}_1 \times \mathbb{R}) \cup (\mathbb{R} \times \check{R}_2) \) and define \(\mathcal{R}^c = \{ K \in \mathcal{D} : R_i \not\subseteq K_i \text{ for } i = 1, 2 \} \). Then, let
\[P_{\mathcal{R}}^b = \sum_{K \in \mathcal{R}} b_K h_K \quad \text{and} \quad P_{\mathcal{R}^c}^b = \sum_{K \in \mathcal{R}^c} b_K h_K. \]
Observe that the sum over \(K \in \mathcal{R} \) can be split as
\[P_{\mathcal{R}}^b = \sum_{K \in \mathcal{R}} b_K h_K - \sum_{K_1 \in \mathcal{D}(R_1)} \sum_{K_2 \in \mathcal{D}(R_2)} b_{K_1 \times K_2} h_{K_1 \times K_2}. \]
The first term in the previous expression is just \(b(x, y) \), while for \((x, y) \in R \), the second term is just \(\langle b \rangle_R \) (it is enough to apply the one-parameter argument on each variable separately). In other words, we have that
\[P_{\mathcal{R}}^b(x, y) = b(x, y) - \langle b \rangle_R \]
for all \((x, y) \in R \). We test on \(1_R \); split the commutator \(C_b = C_{P_{\mathcal{R}}^b} + C_{P_{\mathcal{R}^c}^b} \) and integrate only in \(\check{R} \). Observe that \((P_{\mathcal{R}}^b + P_{\mathcal{R}^c}^b) S_1 S_2(1_R) \) has no contribution in \(\check{R} \). Likewise, observe that when \(K \in \mathcal{R}^c \), then \(h_K \) is constant on \(R \) and \(S_1 S_2(h_K 1_R) = h_K(R) S_1 S_2(1_R) \) with no contribution on \(\check{R} \). The remaining term is \(S_1 S_2(P_{\mathcal{R}}^b 1_R) \). Now, we observe that the support of \(S_1 S_2(P_{\mathcal{R}}^b 1_R) \) lies in \(\check{R} \). To this end, we only need to check the action of the shifts on functions \(h_K 1_R \) with \(K \in \mathcal{R} \). Indeed, when \(K \cap R = \emptyset \), then \(h_K 1_R = 0 \). The \(K \in \mathcal{R} \) that remain have \(K_i \subseteq R_i \) for either \(i = 1 \) or \(i = 2 \).
Let us assume that $K_1 \subseteq R_1$, as the other case follows the same argument. It holds that $S_1(h_K \mathbf{1}_R)$ has support in $K_1 \times \mathbb{R}$ and so $S_1S_2(h_K \mathbf{1}_R)$ has support in \hat{R}. Finally, $P_R \mathbf{1}_R = \mathbf{1}_R(\cdot - (b)_R)$, which follows from (3.1).

Gathering the information, we have

$$\| [S_1S_2, b] \mathbf{1}_R \|^2_{L^2(\hat{R})} = \| S_1S_2(P_R \mathbf{1}_R) \|^2_{L^2(\hat{R})} = \int_R |b(x_1, x_2) - (b)_R|^2 \, dx_1 dx_2.$$

\[\square \]

3.2. Lower rectangular BMO estimate for iterated commutator.

In this section we prove a lower rectangular BMO estimate by testing the iterated commutator $C^\xi_b = [S_1, [S_2, b]] = [S_2, [S_1, b]]$ on $\mathbf{1}_R$.

Theorem 3.2. There holds

$$\| b \|_{\text{BMO}_{\text{rec}}} \lesssim \| C^\xi_b \|_{L^2 \to L^2}.$$

The proof is similar to the one parameter case above. Let $R = R_1 \times R_2$ be a dyadic rectangle. We calculate $C^\xi_b \mathbf{1}_R$. For that, introduce $\varphi = [S_1, b](\mathbf{1}_{R_1})$ and observe that

$$[S_1, b](\mathbf{1}_R) = [S_1, b](\mathbf{1}_{R_1}) \mathbf{1}_{R_2} = \varphi \mathbf{1}_{R_2},$$

and

$$[S_1, b](S_2(\mathbf{1}_R)) = [S_1, b](\mathbf{1}_{R_1})S_2(\mathbf{1}_{R_2}) = \varphi S_2(\mathbf{1}_{R_2}).$$

It follows

$$C^\xi_b \mathbf{1}_R = S_2([S_1, b](\mathbf{1}_R)) - [S_1, b](S_2(\mathbf{1}_R)) = S_2(\varphi \mathbf{1}_{R_2}) - \varphi S_2(\mathbf{1}_{R_2}).$$

Now we integrate the commutator, using the facts learned in the one-parameter case.

$$\int_{R_1} \int_{R_2} |[S_2, \varphi] \mathbf{1}_{R_2} |^2 \, dx_2 dx_1$$

$$= \int_{R_1} \int_{R_2} |\varphi - (\varphi)_{R_2} |^2 \, dx_2 dx_1$$

$$= \int_{R_1} \int_{R_2} \| [S_1, b] \mathbf{1}_{R_1} - ([S_1, b] \mathbf{1}_{R_1})_{R_2} \|_{L^2}^2 \, dx_2 dx_1$$

$$= \int_{R_1} \int_{R_2} \| [S_1, b - (b)_{R_2}] \mathbf{1}_{R_1} \|_{L^2}^2 \, dx_2 dx_1$$

$$= \int_{R_1} \int_{R_2} |b - (b)_{R_2} - (b - (b)_{R_2})_{R_2} |^2 dx_2 dx_1$$

$$= \int_{R_1} \int_{R_2} |b(x_1, x_2) - (b)_{R_2}(x_1) - (b)_{R_2}(x_2) + (b)_R |^2 dx_1 dx_2.$$

Taking the supremum over R delivers the rectangular BMO lower estimate.

4. Lower estimates via the kernel

In this section we work in L^p — in the light of the upper estimates, this is not needed in the unweighted case, but will be of value in the weighted case later on.
4.1. Kernel representation. First, we establish the kernel of the operator S_1S_2. We recall that in one parameter

$$Sf := \sum_{I \in \mathcal{D}} (f_{I, L}h_{I, L} - f_{I, L}h_{I, L}).$$

Thus in two parameters (now writing $R = I \times J$ to avoid indices)

$$(S \otimes S)f = S_1S_2f = \sum_{I, J \in \mathcal{D}} \sum_{\varepsilon, \delta \in \{-, +\}} \varepsilon \delta f_{I \times J, y}h_{I \times J, x}(x, y).$$

The operator S_1S_2 has a formal kernel. Namely

$$S_1S_2f(x) = \int_{\mathbb{R}^2} K(x, y)f(y)dy,$$

where

$$(4.1) \quad K(x, y) := \sum_{I, J \in \mathcal{D}} \sum_{\varepsilon, \delta \in \{-, +\}} \varepsilon \delta h_{I \times J, y}h_{I \times J, x}(x),$$

for all $x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$ with $x_i \neq y_i$, $i = 1, 2$, and $K(x, y) := 0$ if $x_1 = y_1$ or $x_2 = y_2$. The kernel K given by formula (4.1) is well-defined pointwise. In fact, for each $x, y \in \mathbb{R}^2$ with $x_i \neq y_i$, $i = 1, 2$ there exists at most one dyadic rectangle $I \times J$ such that $\sum_{\varepsilon, \delta \in \{-, +\}} \varepsilon \delta h_{I \times J, y}h_{I \times J, x}(x) \neq 0$, and then exactly one of the products $h_{I \times J, y}h_{I \times J, x}(x)$, $\varepsilon, \delta \in \{-, +\}$ is nonzero ($I \times J$ is then the minimal dyadic rectangle containing both x and y). In particular, for all $I, J \in \mathcal{D}$ and for all $x, y \in I \times J$ with $x_i \neq y_i$, $i = 1, 2$, we have $K(x, y) \neq 0$ and

$$(4.2) \quad K(x, y) = \sum_{I \in \mathcal{D}} \sum_{J \in \mathcal{D}} \varepsilon \delta h_{K_x \times L_y, y}h_{K_x \times L_y, x}(x).$$

For all $x \in \mathbb{R}^2$, set

$$A_x := \{y \in \mathbb{R}^2 : K(x, y) \neq 0\} = \{y \in \mathbb{R}^2 : x_i \neq y_i, \ i = 1, 2, \ \exists I, J \in \mathcal{D} \text{ such that } x, y \in I \times J\}.$$

Then the previous observations imply that for all $I, J \in \mathcal{D}$ and for all $x, y \in \mathbb{R}^2$ with $x_i \neq y_i$, $i = 1, 2$ we have

$$(4.3) \quad 1_{I \times J}(x) \cdot 1_{I \times J}(y) \frac{1_{A_x}(y)}{K(x, y)} = \sum_{I \in \mathcal{D}} \sum_{J \in \mathcal{D}} \varepsilon \delta h_{K_x \times L_y, y}h_{K_x \times L_y, x}(x),$$

where we adopt the convention $0/0 = 0$.

4.2. A heuristic argument. We want to prove that

$$(4.4) \quad \left(\frac{1}{|I \times J|} \int_{I \times J} |b(x) - (b)_{I \times J}|^p dx\right)^{1/p} \leq \|[S_1S_2, b]\|_{L^p(\mathbb{R}^2) \rightarrow L^p(\mathbb{R}^2)}, \quad \forall I, J \in \mathcal{D}.$$

Note that formally

$$(4.5) \quad [S_1S_2, b]f(x) = \int_{\mathbb{R}^2} (b(x) - b(y))K(x, y)f(y)dy.$$

Let $I, J \in \mathcal{D}$ be arbitrary. Fix $x \in I \times J$. Then

$$(I \times J) \setminus ((\{x_1\} \times \mathbb{R}) \cup (\mathbb{R} \times \{x_2\})) \subseteq A_x.$$
Therefore, we can formally write
\[
\begin{align*}
|I \times J|1_{I \times J}(x)(b(x) - \langle b \rangle_{I \times J}) = 1_{I \times J}(x) \int_{I \times J} (b(x) - b(y)) dy \\
= 1_{I \times J}(x) \int_{A_x} (b(x) - b(y))1_{I \times J}(y) dy \\
= 1_{I \times J}(x) \int_{\mathbb{R}^2} (b(x) - b(y))1_{I \times J}(y) \mathcal{K}(x, y) \frac{1_{A_x}(y)}{\mathcal{K}(x, y)} dy \\
= [S_1S_2, b] \left(1_{I \times J}(x) \cdot 1_{I \times J} \frac{1_{A_x}}{\mathcal{K}(x, \cdot)} \right)(x) \\
= \sum_{K \in D(I)} \sum_{L \in D(J)} \delta[S_1S_2, b] \left(\frac{1_{K \times L}}{h_{K \times L}} \right)(x) \cdot \frac{1_{K', \times L'}}{h_{K', \times L'}}(x).
\end{align*}
\]
Thus, taking the $L^p_\nu(\mathbb{R}^2)$ norms of both sides, writing K' for the sibling of a dyadic interval K, and using the triangle inequality we deduce
\[
\begin{align*}
\|I \times J|1_{I \times J}(x)(b(x) - \langle b \rangle_{J}) \|_{L^p_\nu(\mathbb{R})} \\
\leq [S_1S_2, b]_{L^p(\mathbb{R}^2) \to L^p(\mathbb{R}^2)} \sum_{K \in D(I) \cap \{I\}} \frac{\|1_{K \times L} \|_{L^\infty(\mathbb{R}^2)}}{h_{K \times L}} \frac{\|1_{K', \times L'} \|_{L^p(\mathbb{R}^2)}}{h_{K', \times L'}}.
\end{align*}
\]

We have
\[
\left\| \frac{1_{K \times L}(x)}{h_{K \times L}(x)} \right\|_{L^\infty(\mathbb{R}^2)} = \sqrt{|K \times L|}, \quad \left\| \frac{1_{K', \times L'}(y)}{h_{K', \times L'}(y)} \right\|_{L^p(\mathbb{R}^2)} = |K' \times L'|^{1/p} = |K \times L|^{1/p},
\]
Thus
\[
\sum_{K \in D(I) \cap \{I\}} \frac{\|1_{K \times L} \|_{L^\infty(\mathbb{R}^2)}}{h_{K \times L}} \frac{\|1_{K', \times L'} \|_{L^p(\mathbb{R}^2)}}{h_{K', \times L'}} = \sum_{K \in D(I) \cap \{I\}} |K \times L|^{1+1/p} = \left(\sum_{K \in D(I) \cap \{I\}} |K|^{1+1/p} \right) \left(\sum_{L \in D(J)} |L|^{1+1/p} \right).
\]
We have
\[
\sum_{K \in D(I) \cap \{I\}} |K|^{1+1/p} = |I|^{1+1/p} \sum_{n=1}^{\infty} 2^n \cdot 2^{-n(1+1/p)} = c_p |I|^{1+1/p},
\]
and similarly for J. Thus
\[
|I \times J| \left(\int_{I \times J} |b(x) - \langle b \rangle_J|^p dx \right)^{1/p} \leq [S_1S_2, b]_{L^p(\mathbb{R}^2) \to L^p(\mathbb{R}^2)} c_p |I \times J|^{1+1/p},
\]
which immediately implies (4.4) (with constant c_p^2).

4.3. A rigorous argument.

4.3.1. Truncated kernel. For all positive integers n, denote by \mathcal{K}_n the truncated kernel given pointwise by
\[
\mathcal{K}_n(x, y) := \sum_{\varepsilon, \delta \in \{-+, +\}} \sum_{I \in D} \sum_{2^n \leq |I| \leq 2^n} \varepsilon \delta h_{I \times J}(y) h_{I \times J}(x),
\]
for all \(x, y \in \mathbb{R}^2\) with \(x_1 \neq y_1, i = 1, 2\), and \(K_n(x, y) := 0\) whenever \(x_1 = y_1\) or \(x_2 = y_2\). Note that for every fixed \(x \in \mathbb{R}^2\), the sum in (4.6) is always finite. For all \(x \in \mathbb{R}^2\), set

\[
A_{n,x} := \{y \in \mathbb{R}^2 : K_n(x, y) \neq 0\}.
\]

Clearly \(A_{n,x} \subseteq A_{n+1,x}\) and \(\bigcup_{n=0}^{\infty} A_{n,x} = A_x\). Note that \(K(x, y) = K_n(x, y)\), for all \(y \in A_{n,x}\) and for all \(x \in \mathbb{R}^2\), since for each fixed \(x, y \in \mathbb{R}^2\) there exists at most one \(I \times J\) having nonzero contribution in the sum in (4.1). It follows by (4.3) that for all \(I, J \in D\) and for all \(x, y \in \mathbb{R}^2\) with \(x_1 \neq y_1, i = 1, 2\) we have

\[
\varepsilon_1 I_{x,J}(x) \cdot 1_{I_{x,J}}(y) \cdot \frac{1_{A_{n,x}}(y)}{K_n(x, y)} = \sum_{K \subseteq D(I)} \sum_{\varepsilon_2 \in \{+,-\}} \varepsilon_2 \delta_{\frac{1_{K_{x,L}}(y)}{h_{K_{x,L}}}} \cdot \frac{1_{K_{x,L}}(x)}{h_{K_{x,L}}}(x)
\]

(4.7)

4.3.2. Truncated operators. Fix a positive integer \(n\). Clearly, the operator \(T_n\) given pointwise everywhere by

\[
T_n f(x) := \int_{\mathbb{R}^2} K_n(x, y) f(y) dy = \sum_{\varepsilon_2 \in \{+,-\}} \sum_{I \subseteq D} \varepsilon_2 \delta_{\frac{1_{I_{x,J}}}{K_n(x, y)}} h_{I_{x,J}}(x),
\]

for \(x \in \mathbb{R}^2\) and \(f \in L_{loc}^1(\mathbb{R}^2)\), is well-defined. In fact, for every fixed \(x \in \mathbb{R}^2\), the sum in the last line above is finite.

4.3.3. Computations. Let now \(I, J \in D\) be arbitrary. Notice that for all \(x \in I \times J\), we have \((I \times J) \setminus ((\{x_1\} \times \mathbb{R}) \cup (\mathbb{R} \times \{x_2\})) \subseteq A_x\). Therefore, for all \(x \in \mathbb{R}^2\) we have

\[
\begin{align*}
|I \times J| 1_{I_{x,J}}(x)(b(x) - b(y)) &= 1_{I_{x,J}}(x) \int_{I_{x,J}} (b(x) - b(y)) dy \\
&= \lim_{n \to \infty} 1_{I_{x,J}}(x) \int_{A_{n,x}} (b(x) - b(y)) 1_{I_{x,J}}(y) dy \\
&= \lim_{n \to \infty} 1_{I_{x,J}}(x) \int_{A_{n,x}} (b(x) - b(y)) 1_{I_{x,J}}(y) dy \\
&= \lim_{n \to \infty} 1_{I_{x,J}}(x) \int_{A_{n,x}} \frac{1_{A_{n,x}}(y)}{K_n(x, y)} dy \\
&= \lim_{n \to \infty} \left[T_n, b \right] \left[1_{I_{x,J}}(x) \cdot 1_{I_{x,J}} \cdot \frac{1_{A_{n,x}}(y)}{K_n(x, y)} \right] (x)
\end{align*}
\]

Note that all sums in the last line are finite, so we have no convergence issues. Notice now that for all \(K, L \in D\) with \(2^{-n} \leq |K|, |L| \leq 2^n\) and for any \(\varepsilon, \delta \in \{+,-\}\) we have

\[
1_{K_{x,L}} T_n(f 1_{K_{x,L}}) = \varepsilon \delta f_{K_{x,L}} h_{K_{x,L}}^{-1} 1_{K_{x,L}} \cdot 1_{K_{x,L}} = 1_{K_{x,L}} S_1 S_2(f 1_{K_{x,L}}) \quad \text{a.e.,}
\]

which clearly implies

\[
1_{K_{x,L}} T_n(b)(f 1_{K_{x,L}}) = 1_{K_{x,L}} \left[S_1 S_2, b \right] (f 1_{K_{x,L}}) \quad \text{a.e.}
\]

Since \(D\) is a countable set, it follows that for all positive integers \(n\), there exists a Borel set \(E_n\) in \(\mathbb{R}^2\) of zero measure, such that for all \(K, L \in D\), for any \(\varepsilon, \delta \in \{+,-\}\) and for any \(x \in \mathbb{R}^2 \setminus E_n\), there holds

\[
\frac{1_{K_{x,L}}(x)}{h_{K_{x,L}}(x)} \left[T_n, b \right] \left(\frac{1_{K_{x,L}}(x)}{h_{K_{x,L}}(x)} \right) (x) = \frac{1_{K_{x,L}}(x)}{h_{K_{x,L}}(x)} \left[S_1 S_2, b \right] \left(\frac{1_{K_{x,L}}}{h_{K_{x,L}}} \right) (x).
\]
Set $E := \bigcup_{n=1}^{\infty} E_n$. Then, E is a set of zero measure in \mathbb{R}, and we have

$$\|I \times J \|_{1_{I \times J}(x)}(b(x) - \langle b \rangle_{I \times J}) = \lim_{n \to \infty} \sum_{\delta \in \mathcal{D}(I) \times \mathcal{D}(J)} \sum_{\epsilon \in \{-, +\}} \epsilon \delta \left[S_1 S_2, b \right] \left(\frac{1}{h_{K_n \times L_n}} \right) \left(x \right) \cdot \left[\frac{1}{K_n \times L_n} \right] \left(x \right),$$

for all $x \in \mathbb{R}^2 \setminus E$, and therefore for almost every $x \in \mathbb{R}^2$. Hence, taking the $L_p^w(\mathbb{R}^2)$ norm of both sides in the last display, using Fatou’s lemma (to pass the limit outside the weighted estimate by testing).

5. Weighted estimates

We extend the unweighted bound to a weighted bound at little extra effort. Originally, this type of weighted inequality was introduced by [Bl] and has found new interest, modern proofs and notable generalizations in [HLW], [HLW2]. Meanwhile, a number of articles are written on the subject of weighted commutators, but most concern upper estimates rather than characterizations.

Here and in what follows, recall that a weight w on \mathbb{R} is a locally integrable function on \mathbb{R} which is positive almost everywhere. We say that a weight w on \mathbb{R} is an A_p weight, for $1 < p < \infty$, if

$$[w]_{A_p} := \sup_I \left(\frac{1}{|I|} \int_I w(x) \, dx \right) \left(\frac{1}{|I|} \int_I w(x)^{-1/(p-1)} \, dx \right)^{p-1} < \infty,$$

where the supremum ranges over all finite intervals $I \subseteq \mathbb{R}$. Similarly, we say that a weight w is a dyadic A_p weight, for $1 < p < \infty$, if the supremum in condition (5.1) ranges only over dyadic intervals $I \in \mathcal{D}$. These definitions also extend to the bi-parameter case. Namely, a weight w on \mathbb{R}^2 is a locally integrable function on \mathbb{R}^2 which is positive almost everywhere. Also, we say that a weight w on \mathbb{R}^2 is a bi-parameter A_p weight, for $1 < p < \infty$, if

$$[w]_{A_p} := \sup_{R} \left(\frac{1}{|R|} \int_R w(x) \, dx \right) \left(\frac{1}{|R|} \int_R w(x)^{-1/(p-1)} \, dx \right)^{p-1} < \infty,$$

where the supremum ranges over all finite rectangles $R \subseteq \mathbb{R}^2$ of positive measure with sides parallel to the axes. As before, we say that a weight w is a dyadic bi-parameter A_p weight, for $1 < p < \infty$, if the supremum in condition (5.2) ranges only over dyadic rectangles R.

Theorem 5.1. There holds for dyadic bi-parameter A_p weights μ, λ, $1 < p < \infty$

$$\|b\|_{p, \text{bmo}((\mu, \lambda))} \leq \|C_b\|_{L_p^w(\mu \to L_p^w(\lambda))} \leq \|b\|_{p, \text{bmo}((\mu, \lambda))}$$

with constants independent of the symbol.

Recall that the weighted little BMO space can be equivalently defined, as in [HPW], by the norm

$$\|b\|_{p, \text{bmo}((\mu, \lambda))} = \sup_R \left(\frac{1}{\mu(R)} \int_R |b(x) - \langle b \rangle_R|^p \lambda(x) \, dx \right)^{1/p}$$

for $1 < p < \infty$.

See also [HPW] for the upper estimates.

5.1. Weighted estimate by testing. Most lower norm estimates in the Bloom setting have been obtained via a use of the argument in [CRW], see for example [HLW], [HLW2] and [HPW]. In [KS] a different argument was needed to give lower norm estimates in a product setting.

In this section we demonstrate that the lower bounds can be obtained by testing. We work with the exponent $p = 2$, the argument works for other p. We show the argument in one parameter and point out the modifications needed to pass to the little BMO case in L^p and the rectangular BMO case in L^2 for the iterated commutator.
Proof of Theorem 5.1. As before, for any dyadic interval I with parent \hat{I}, we will provide a lower estimate for

$$\|S(b 1_{\hat{I}}) - b S(1_{\hat{I}})\|_{L^2(I, \lambda)}^2,$$

which is bounded above by $\|[S, b]\|_{L^2(\mu) \to L^2(\lambda)}^2 \|1_{\hat{I}}\|_{L^2(\mu)}$. We have

$$\|[S, b] 1_{\hat{I}}\|_{L^2(I, \lambda)}^2 = \|[S, P_{\hat{I}} b] 1_{\hat{I}} + [S, P_{\hat{I}} b] 1_{\hat{I}}\|_{L^2(I, \lambda)}^2 = \left\|S \left(\sum_{K \in \mathcal{D}(I)} b_K h_K \right) \right\|_{L^2(I, \lambda)}^2.$$

Using the A_2 characteristic of λ and the fact that $S : L^2(\lambda) \to L^2(\lambda)$ is bounded, we obtain also a lower bound $\|f\|_{L^2(\lambda)} \leq \|S f\|_{L^2(\lambda)}$ by using that $S^2 = -\mathrm{Id}$. Therefore

$$\left\|S \left(\sum_{K \in \mathcal{D}(I)} b_K h_K \right) \right\|_{L^2(I, \lambda)}^2 \geq \left\| \sum_{K \in \mathcal{D}(I)} b_K h_K \right\|_{L^2(I, \lambda)}^2 \geq \int_I \|b(x) - \langle b \rangle_{\hat{I}}\|_{L^2(\lambda)}^2 \lambda(x) dx. $$

Note that

$$\int_I \|b(x) - \langle b \rangle_{\hat{I}}\|_{L^2(\lambda)}^2 \lambda(x) dx = \frac{1}{\mu(I)} \int_I \|b(x) - \langle b \rangle_{\hat{I}}\|_{L^2(\lambda)}^2 \lambda(x) dx \cdot \mu(I),$$

so these considerations tell us that the lower BMO estimate is seen when testing on $1_{\hat{I}}$ and taking the supremum in I.

The same considerations hold true for the tensor commutator C_b using the pointwise identities in section 3.1.

Notice also, that the same reasoning, following the above calculation in section 3.2 provides a weighted lower bound for the iterated commutator in terms of rectangular Bloom BMO defined by

$$\|b\|_{\text{BMO}(\mu, \lambda)_{\text{rect}}}^2 = \sup_R \frac{1}{\mu(R)} \int_R \left\| \sum_{K \in \mathcal{D}(R)} b_K h_K \right\|_{L^2(I, \lambda)}^2 \lambda,$$

where the supremum runs over dyadic rectangles R.

5.2. Weighted estimate in L^p using the kernel.

Theorem 5.2. There holds for dyadic bi-parameter A_p weights μ, λ, $1 < p < \infty$

$$\|b\|_{p, \text{bmo}(\mu, \lambda)} \leq \|C_b\|_{L^p(\mu) \to L^p(\lambda)} \leq \|b\|_{p, \text{bmo}(\mu, \lambda)}$$

with constants independent of the symbol.

5.2.1. A heuristic argument. Let $1 < p < \infty$, and let μ, λ be any dyadic bi-parameter A_p weights on \mathbb{R}^2. We want to prove that

$$\left(\frac{1}{\mu(I \times J)} \int_{I \times J} |b(x) - \langle b \rangle_{I \times J}|^p \lambda(x) dx \right)^{1/p} \leq \|[S_1 S_2, b]\|_{L^p(\mu) \to L^p(\lambda)},$$

for all $I, J \in \mathcal{D}$.

Let $I, J \in \mathcal{D}$ be arbitrary. Identically to the unweighted case we formally have

$$|I \times J| \langle b \rangle_{I \times J}(x) (b(x) - \langle b \rangle_{I \times J}) = \sum_{K \in \mathcal{D}(I)} \sum_{L \in \mathcal{D}(J)} \varepsilon \delta[S_1 S_2, b] \left(\frac{1_{K \times L_2}}{h_{K \times L_2}} \right)(x) \cdot \frac{1_{K \times L_2}}{h_{K \times L_2}}(x)$$
Thus, taking the $L^p_\mu(\lambda)$ norms of both handsides and then using the triangle inequality we deduce
\[
\| I \times J (1_{I \times J}(x)b(x) - \langle b \rangle_{I \times J}) \|_{L^\infty_\mu(\lambda)} \\
\leq \| [S_1 S_2, b] \|_{L^p(\mu) \to L^p(\lambda)} \sum_{K \in D(I)} \| \frac{1}{h_{K \times L}(x)} \|_{L^\infty_\mu(\mathbb{R}^2)} \| \frac{1}{h_{K' \times L'}(x)} \|_{L^p(\mu)},
\]
where we recall that K' denotes the sibling of a dyadic interval K. We have
\[
\| \frac{1}{h_{K \times L}(x)} \|_{L^\infty_\mu(\mathbb{R}^2)} = \| K \times L \|_{\mu},
\]
\[
\| \frac{1}{h_{K' \times L'}(x)} \|_{L^p(\mu)} = | K \times L |^{1/\mu}(\mu(K' \times L'))^{1/\mu}.
\]
Thus
\[
\sum_{K \in D(I) \setminus \{ I \}} \| \frac{1}{h_{K \times L}(x)} \|_{L^\infty_\mu(\mathbb{R}^2)} \| \frac{1}{h_{K' \times L'}(x)} \|_{L^p(\mu)} = \sum_{K \in D(I) \setminus \{ I \}} | K \times L |(\mu(K' \times L'))^{1/\mu}.
\]
We have
\[
\sum_{K \in D(I) \setminus \{ I \}} | K \times L |(\mu(K' \times L'))^{1/\mu} = \sum_{n,m=1}^\infty \sum_{K \in D(I) \setminus \{ I \}} 2^{-m-n} | I \times J |(\mu(K' \times L'))^{1/\mu}
\]
\[
\leq \sum_{n,m=1}^\infty 2^{-m-n} | I \times J | \left(\sum_{K \in D(I) \setminus \{ I \}} 1 \right)^{1/\mu} \left(\sum_{K \in D(I) \setminus \{ I \}} \mu(K' \times L') \right)^{1/\mu}
\]
\[
= c_1^2 | I \times J |(\mu(I \times J))^{1/\mu}.
\]
Thus
\[
| I \times J | \left(\int_{I \times J} | b(x) - \langle b \rangle_{I \times J} |^p \lambda(x) \, dx \right)^{1/p} \leq \| [S_1 S_2, b] \|_{L^p(\mu) \to L^p(\lambda)} c_2^2 | I \times J |(\mu(I \times J))^{1/\mu},
\]
which immediately implies (5.3) (with constant c_2^2).

5.2.2. A rigorous argument. Let $I, J \in \mathcal{D}$ be arbitrary. Identically to the unweighted case we have for almost every $x \in \mathbb{R}^2$
\[
| I \times J | (1_{I \times J}(x)(b(x) - \langle b \rangle_{I \times J})) = \lim_{n \to \infty} \left(\sum_{K \in D(I)} \sum_{J \in D(J) \setminus \{ I \}} \varepsilon \delta([S_1 S_2, b] \frac{1}{h_{K \times L}(x)}(x) \times \frac{1}{h_{K' \times L'}(x)}(x), x \leq 2^n \right)
\]
Therefore, taking the $L^p_\mu(\lambda)$ norm of both handsides, using Fatou’s lemma (to pass the limit outside the $L^p_\mu(\lambda)$ norm) and then working exactly as in the heuristic weighted argument, we conclude again (5.3) (with the same constant c_2^2 in the heuristic argument).

6. LOWER ESTIMATES VIA THE KERNEL FOR MORE GENERAL SHIFTS

In this section we show that the variant of the classical argument due to Coifman–Rochberg–Weiss [CRW] that was used above to obtain lower bounds for commutators involving the shift S can also handle slightly more general shifts, including the one considered in [HTV].
6.1. Setup. Let \(i, j\) be nonnegative integers. Let \(T\) be a Haar shift on the real line of complexity \((i, j)\), i.e., the action of \(T\) on (suitable) functions \(f\) on the real line is given by

\[
Tf = \sum_{I \in D} \sum_{I \in \text{Lech}_j(I)} c_{KL}^I f_{KL}^I h_L^I,
\]

where the *shift coefficients* \(c_{KL}^I\) are complex numbers satisfying the bound

\[
|c_{KL}^I| \leq 2^{-(i+j)/2},
\]

for all \(K \in \text{ch}_i(I), L \in \text{ch}_j(I)\) and for all \(I \in D\). This definition of Haar shifts follows [Per, p. 34]. The operator \(T\) has a formal kernel. Namely, one can write

\[
Tf(x) = \int_{\mathbb{R}} K(x, y) f(y) dy,
\]

where

\[
K(x, y) := \sum_{I \in D} \sum_{I \in \text{Lech}_j(I)} c_{KL}^I h_K^I(y) h_L^I(x),
\]

for all \(x, y \in \mathbb{R}\) with \(x \neq y\), and \(K(x, x) = 0\). While the kernel representation for the shift \(T\) is formal, the kernel is well-defined pointwise. Indeed, let \(x, y \in \mathbb{R}\) with \(x \neq y\) be arbitrary. If there is no dyadic interval containing both \(x\) and \(y\), then \(K(x, y) = 0\). Now assume that there is a dyadic interval containing both \(x\) and \(y\), and let \(J\) be the minimal such dyadic interval. Let \((J_n)_{n=1}^\infty\) be the strictly increasing sequence of all dyadic ancestors of \(J\), so that

\[
J =: J_0 \varsupseteq J_1 \varsupseteq J_2 \varsupseteq J_3 \varsupseteq \ldots.
\]

Then, we have

\[
\sum_{I \in D} \sum_{I \in \text{Lech}_j(I)} |c_{KL}^I h_K^I(y) h_L^I(x)| = \sum_{n=0}^\infty \sum_{I \in \text{Lech}_j(J_n)} |c_{KL}^I h_K^I(y) h_L^I(x)| \\
\leq 2^{-(i+j)/2}, 2^{(i+j)/2}, \sum_{n=0}^\infty \frac{1}{|J_n|} = \frac{2}{|J|}.
\]

Since the Haar function over an interval is constant in the dyadic children of that interval, the above computation shows that we can write

\[
K(x, y) = \sum_{I \in D} \sum_{I \in \text{Lech}_j(I)} a_{KL}^I 1_K(y) 1_L(x), \quad \forall x, y \in \mathbb{R}, x \neq y,
\]

where the *coefficients* \(a_{KL}^I\) satisfy

\[
|a_{KL}^I| \leq \frac{2}{|I|},
\]

and also \(a_{KL}^I = 0\) whenever there is \(J \in \text{ch}(I)\) with \(K \cup L \subseteq J\). Note that the only dyadic interval in the first sum for which we have non-zero terms is the minimal dyadic interval containing both \(x\) and \(y\) (if there is one), so that for each fixed \(x, y \in \mathbb{R}\) with \(x \neq y\), there is at most one nonzero term in the sum in (6.3). Namely, if \(I\) is the minimal dyadic interval containing both \(x\) and \(y\), \(K\) is the unique interval in \(\text{ch}_{i+1}(I)\) containing \(y\), and \(L\) is the unique interval in \(\text{ch}_{j+1}(I)\) containing \(x\), then \(K(x, y) = a_{KL}^I\).
6.2. A non-degeneracy condition. Now we assume the following non-degeneracy condition: there exists some constant $c > 0$ (depending only on i, j), such that whenever there is no $J \in \text{ch}(I)$ such that $K \cup L \subseteq J$, then there holds

$$|u_{KL}^I| \geq \frac{1}{c|I|}. \tag{6.4}$$

Then, in particular we deduce that if $x \neq y$ and there exists some dyadic interval containing both x and y, then $\mathcal{K}(x, y) \neq 0$, in fact

$$\frac{1}{c|I|} \leq |\mathcal{K}(x, y)| \leq \frac{2}{|I|},$$

where I is the minimal dyadic interval containing both x and y. In Section 6.5 below we give representative examples of classes of Haar shifts for which condition (6.4) is satisfied.

6.3. The inverse kernel. For all $x \in \mathbb{R}$, set

$$A_x := \{ y \in \mathbb{R} \setminus \{ x \} : \mathcal{K}(x, y) \neq 0 \}.$$

Note that for all $x \in \mathbb{R}$ and for all $J \in \mathcal{D}$, we have $J \setminus \{ x \} \subseteq A_x$. Then, we can write

$$\frac{1_{A_x}(y)}{\mathcal{K}(x, y)} \sum_{I \in \mathcal{D} \setminus \mathcal{K}_{\text{ch}_{x+1}(I)}} \sum_{\text{Lech}_{x+1}(I)} b_{KL}^I 1_{KL}(y) 1_{L}(x), \quad \forall x, y \in \mathbb{R}, \ x \neq y,$$

where

$$|b_{KL}^I| \leq c|I|,$$

and also $b_{KL}^I = 0$ whenever there is $J \in \text{ch}(I)$ with $K \cup L \subseteq J$. Moreover, as before, this means that the only relevant dyadic interval in the first sum is the minimal dyadic interval I containing both x and y (if there is one). In particular, for all $J \in \mathcal{D}$, we have the localized version

$$\frac{1_{J}(x) \cdot 1_{J}(y)}{\mathcal{K}(x, y)} \cdot 1_{A_x}(y) = \sum_{I \in \mathcal{D} \setminus \mathcal{K}_{\text{ch}_{x+1}(I)}} \sum_{\text{Lech}_{x+1}(I)} b_{KL}^I 1_{KL}(y) 1_{L}(x), \quad \forall x, y \in \mathbb{R}, \ x \neq y.$$

Note that we have adopted everywhere the convention $\frac{0}{0} = 0$.

6.4. Lower BMO bounds. Let $1 < p < \infty$, and let μ, λ be dyadic A_p weights on \mathbb{R}. Let $J \in \mathcal{D}$. We will show that

$$\left(\frac{1}{\mu(J)} \int_{\mathbb{R}} |b(x) - \langle b \rangle_J|^{p} \lambda(x) dx \right)^{1/p} \leq c c_p 2 \widetilde{w}([T, b]) \| \mu \|_{L^p(\mu)}.$$

Let us first give a heuristic argument. We have

$$|J| 1_{J}(x)(b(x) - \langle b \rangle_J) = 1_{J}(x) \int_{\mathbb{R}} (b(x) - b(y)) dy = \frac{1}{\mathcal{K}(x, y)} \int_{\mathbb{R}} \langle b \rangle_J(y) 1_{A_x}(y) dy$$

$$= \frac{1}{\mathcal{K}(x, y)} \int_{\mathbb{R}} (b(x) - b(y)) 1_{J}(y) \mathcal{K}(x, y) 1_{A_x}(y) dy$$

$$= [T, b] \left(\frac{1_{J}(x) \cdot 1_{J}(y) \cdot 1_{A_x}(y)}{\mathcal{K}(x, \cdot)} \right)(x)$$

$$= \sum_{I \in \mathcal{D}(J)} \sum_{\text{Lech}_{x+1}(I)} b_{KL}^I [T, b] 1_{KL}(x) 1_{L}(x).$$
Taking absolute values and using the triangle inequality as well as the non-degeneracy assumption for the coefficients b^l_K, we get

$$|J|^{1/p} \left(\int_J |b(x) - \langle b \rangle_J| \lambda(x) dx \right)^{1/p} \leq c \sum_{I \in D(J)} |I| \sum_{K \in \text{ch}_{i+1}(I)} \| [T, b](1_K) \|_{L^p(\lambda)}^{1/p} \sum_{I \in D(J)} |I| \sum_{K \in \text{ch}_{i+1}(I)} \| [T, b](1_K) \|_{L^p(\lambda)(\mu(K))}^{1/p}.$$

We have

$$\sum_{I \in D(J)} |I| \sum_{K \in \text{ch}_{i+1}(I)} (\mu(K))^{1/p} \leq 2^{2 \beta p \sum_{I \in D(J)} |I| (\mu(I))^{1/p}} + 2^{2 \beta p \sum_{n=0}^\infty 2^{-n} |J| \sum_{I \in \text{ch}_{n}(J)} (\mu(I))^{1/p}} \leq 2^{2 \beta p \sum_{n=0}^\infty 2^{-n} |J| \sum_{I \in \text{ch}_{n}(J)} (\mu(I))^{1/p}} = 2^{2 \beta p |J| (\mu(J))^{1/p}} \sum_{n=0}^\infty 2^{-n/p} \sum_{I \in \text{ch}_{n}(J)} (\mu(I))^{1/p}.$$

The claim follows.

To make the above argument formal, one has just to truncate the kernel, similarly to the case of the shift S treated above, with the only difference that in the present more general case one has to truncate (6.3), instead of (6.2).

A bi-parameter variant of the previous argument also gives little BMO lower bounds for the commutator $[T \otimes T, b]$ (under the same non-degeneracy condition as in the one-parameter case), similarly to the case of the commutator $[S \otimes S, b]$ treated above. In fact, a bi-parameter variant of the above argument also yields little BMO lower bounds for commutators of the form $[S, b]$, where S is an arbitrary biparameter shift S (not necessarily of tensor type) satisfying a bi-parameter non-degeneracy condition analogous to (6.4).

6.5. **Cases where the non-degeneracy condition (6.4) is satisfied.** We give here two representative special cases in which the non-degeneracy condition (6.4) is satisfied.

6.5.1. **Purely mixing shifts of complexity (i, i) with mildly varying coefficients.** Take the shift T to have complexity (i, i), so that it has the form

$$Tf = 2^{-i} \sum_{I \in D} \sum_{K \in \text{ch}_{i}(I)} c^l_K f_K h_L.$$

Moreover, assume as well that this shift is “purely mixing” in the sense that for any $I \in D$ and any $K \in \text{ch}_{i}(I)$ it holds that $c^l_K = 0$, and that all other coefficients vary mildly in the sense that there exists $b \in [1, 2^i/(2^i - 1))$ such that

$$1 \leq |c^l_K| \leq b.$$
for all \(I \in \mathcal{D}\) and all \(K, L \in \text{ch}_i(I)\) with \(K \neq L\). In this case, the kernel for this shift is of the form

\[
K(x, y) = 2^{-i} \sum_{I \in \mathcal{D}} \sum_{I \in \mathcal{D}} c^f_{KL} h_K(y)h_L(x),
\]

with the previous conditions on the coefficients \(c^f_{KL}\) of \(Tf\).

To check the non-degeneracy condition (6.4) for this shift, we estimate directly the coefficients \(a^f_{KL}\) of the kernel \(K\) in (6.3). Observe that for \(I \in \mathcal{D}\) and \(K, L \in \text{ch}_{i+1}(I)\) such that \(K \cup L\) is not contained in a dyadic interval of \(I\), and for \(x \in L\) and \(y \in K\), we have that \(K(x, y) = a^f_{KL}\). Thus, fix \(I, K, L\) dyadic intervals as before and \(x \in L\) and \(y \in K\), and take \((I_n)_{n=1}^\infty\) to be the increasing sequence of dyadic ancestors of \(I_0 := I\). Since \(c_{PP} = 0\) for any \(J \in \mathcal{D}\) and \(P \in \text{ch}_i(J)\), we have that

\[
K(x, y) = 2^{-i} \sum_{n=0}^{i-1} \sum_{I \in \mathcal{D}} c^f_{KL} h_K(y)h_L(x).
\]

For this particular \(x\) and \(y\) we can choose a sequence of signs \((\varepsilon_n)_{n=0}^{i-1}\) in \(-1, 1\) such that

\[
K(x, y) = 2^{-i} \sum_{n=0}^{i-1} \varepsilon_n c_n = \sum_{n=0}^{i-1} \varepsilon_n c_n / 2^n |I|,
\]

where \(c_n\) are complex numbers such that

\[
1 \leq |c_n| \leq b
\]

for \(n = 0, \ldots, i - 1\). Observe that

\[
\left| \sum_{n=1}^{i-1} \varepsilon_n c_n / 2^n |I| \right| \leq b \left(\sum_{n=1}^{i-1} 2^{-n} \right) \leq \frac{2^{i-1} - 1}{2^{i-1}} \frac{b}{|I|}
\]

(here we take the sum to be just 0 if \(i = 1\)). Thus, by the triangle inequality, we get that

\[
|K(x, y)| = \left| \frac{\varepsilon_0 c_0}{|I|} + \sum_{n=1}^{i-1} \varepsilon_n c_n / 2^n |I| \right| \leq \frac{1}{|I|} \left(1 - \frac{2^{i-1} - 1}{2^{i-1}} \right) \frac{1}{|I|}
\]

and the condition on \(b\) yields the non-degeneracy condition (6.4).

6.5.2. “Sliced” shifts with mildly varying coefficients. Let \(\mathcal{D}_e\) be the family of all even dyadic intervals, i.e.

\[
\mathcal{D}_e := \{ I \in \mathcal{D} : \log_2(|I|) \text{ is even} \}.
\]

Assume that the shift \(T\) is “sliced” and that its coefficients do not vary too much, in the sense that

\[
Tf = 2^{(i+1)/2} \sum_{I \in \mathcal{D}_e \text{ch}_i(I)} \sum_{I \in \mathcal{D}_e \text{ch}_i(I)} c^f_{KL} h_K h_L,
\]

where there exists \(b \in [1, 3]\) such that

\[
1 \leq |c^f_{KL}| \leq b,
\]

for all \(K \in \text{ch}_i(I), L \in \text{ch}_j(I)\) and for all \(I \in \mathcal{D}_e\). In particular, \(c^f_{KL} = 0\), for all \(K \in \text{ch}_i(I), L \in \text{ch}_j(I)\) and for all \(I \in \mathcal{D} \setminus \mathcal{D}_e\). Note that

\[
K(x, y) = 2^{-(i+1)/2} \sum_{I \in \mathcal{D}_e \text{ch}_i(I)} \sum_{I \in \mathcal{D}_e \text{ch}_i(I)} c^f_{KL} h_K(y)h_L(x).
\]

We estimate directly the coefficients \(a^f_{KL}\) in (6.3.

Let \(I \in \mathcal{D}\), and \(K \in \text{ch}_{i+1}(I), L \in \text{ch}_{j+1}(I)\) such that there is no dyadic child of \(I\) containing both \(K\) and \(L\). Pick \(x \in L\) and \(y \in K\). Then, it is clear that \(a^f_{KL} = K(x, y)\).
Let us estimate $K(x, y)$. Let $(I_n)_{n=1}^{\infty}$ be the strictly increasing sequence of all dyadic ancestors of $I_0 := I$. Then, it is clear that there exist a sequence $(\varepsilon_n)_{n=0}^{\infty}$ in $\{-1, 0, 1\}$ and a sequence $(c_n)_{n=0}^{\infty}$ of complex numbers such that
\[
K(x, y) = \sum_{n=0}^{\infty} \frac{\varepsilon_n c_n}{|I_n|},
\]
and
\[
1 \leq |c_n| \leq b, \quad \forall n = 0, 1, 2, \ldots,
\]
and $\varepsilon_n \in \{-1, 1\}$ if $I_n \in D_c$, while $\varepsilon_n = 0$ if $I_n \in D \setminus D_c$, for all $n = 0, 1, 2, \ldots$. We now distinguish two cases.

Case 1. Assume that $I \in D_c$. Then
\[
K(x, y) = \frac{\varepsilon_0 c_0}{|I|} + \sum_{n=1}^{\infty} \frac{\varepsilon_2 n c_{2n}}{|I_{2n}|}.
\]
We notice that
\[
\left| \sum_{n=1}^{\infty} \frac{\varepsilon_2 n c_{2n}}{|I_{2n}|} \right| \leq \sum_{n=1}^{\infty} \frac{b}{|I_{2n}|} = \sum_{n=1}^{\infty} \frac{2^n b}{|I|} = \frac{b}{3|I|},
\]
therefore by the triangle inequality we deduce
\[
|K(x, y)| \geq \left(1 - \frac{b}{3}\right) \frac{1}{|I|}.
\]

Case 2. Assume that $J \in D \setminus D_c$. Then
\[
K(x, y) = \frac{\varepsilon_1 c_1}{|I_1|} + \sum_{n=1}^{\infty} \frac{\varepsilon_{2n+1} c_{2n+1}}{|I_{2n+1}|}.
\]
We notice that
\[
\left| \sum_{n=1}^{\infty} \frac{\varepsilon_{2n+1} c_{2n+1}}{|I_{2n+1}|} \right| \leq \sum_{n=1}^{\infty} \frac{b}{|I_{2n+1}|} = \sum_{n=1}^{\infty} \frac{2^n b}{|I_1|} = \frac{b}{3|I_1|},
\]
therefore by the triangle inequality we deduce
\[
|K(x, y)| \geq \left(1 - \frac{b}{3}\right) \frac{1}{|I_1|} = \frac{1}{2} \left(1 - \frac{b}{3}\right) \frac{1}{|I|},
\]
concluding the proof.

6.6. A question. The non-degeneracy condition (6.4) might be considered a bit too strong from a more general point of view, and especially from the point of view of Calderón–Zygmund operators. A far weaker and perhaps more natural non-degeneracy condition is the following. There exists some $c > 0$ (depending on i and j), such that for all $I \in D$, for all $K \in \text{ch}_{i+1}(I)$, there exists some $L \in \text{ch}_{j+1}(I)$ (depending on K), such that
\[
|a_{KL}'| \geq \frac{1}{c |I|}.
\]
This is equivalent to saying that for all $y \in R$ and for all dyadic intervals I containing y, there exists $x \in I$, such that I is the minimal dyadic interval containing both x and y and $|K(x, y)| \geq \frac{1}{c |I|}$. This is the direct dyadic analog of the non-degeneracy condition for Calderón–Zygmund operators considered by Hytönen in [Hyt], where it is shown that it is sufficient for some lower BMO bounds for commutators with Calderón–Zygmund operators. Note that the proofs of lower BMO bounds in [Hyt] depend heavily on variants of weak factorization. It is not immediately clear to us whether our methods can be adapted to cover shifts that satisfy only this much weaker non-degeneracy condition.
References

[B] Alain Bernard, Espaces H^1 de martingales à deux indices. Dualité avec les martingales de type BMO, Bull. Sci. Math. (2), volume 103, number 3, 1979, pages 297-303.

[BP] Óscar Blasco, Sandra Pott, Dyadic BMO on the bidisk, Rev. Mat. Iberoamericana, volume 21, number 2, 2005, pages 483-510.

[B] Steven Bloom, A commutator theorem and weighted BMO, Trans. Amer. Math. Soc., volume 292, number 1, 1985, pages 103–122.

[CRW] Ronald Coifman, Richard Rochberg, Guido Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. (2), volume 103, number 3, 1976, pages 611-635.

[FS] Sarah Ferguson, Cora Sadosky, Characterizations of bounded mean oscillation on the polydisk in terms of Hankel operators and Carleson measures, J. Anal. Math., volume 81, 2000, pages 239-267.

[HLW] Irina Holmes, Michael Lacey, Brett Wick, Bloom’s Inequality: Commutators in a Two-Weight Setting, Arch. Math. (Basel), volume 106, number 1, 2016, pages 53-63.

[HLW2] Irina Holmes, Michael Lacey, Brett Wick, Commutators in the two-weight setting, Math. Ann., volume 367, number 1-2, 2017, pages 51–80.

[HPW] Irina Holmes, Stefanie Petermichl, Brett Wick, Weighted little bmo and two-weight inequalities for Journé commutators, Anal. PDE, volume 11, number 7, 2018, pages 1693-1740.

[HTV] Irina Holmes, Sergei Treil, Alexander Volberg, Dyadic bi-parameter simple commutator and dyadic little BMO, arXiv:2012.05476, 2020, pages 1-14.

[Hyt] Tuomas Hytönen, The L^p-to-L^q boundedness of commutators with applications to the Jacobian operator, arXiv:1804.11167, 2018, pages 1-35.

[KS] Spyridon Kakaroumpas, Odi Soler i Gibert, Dyadic product BMO in the Bloom setting, arXiv:2011.01769, 2020, pages 1-31.

[N] Zeev Nehari, On bounded bilinear forms, Ann. of Math. (2), volume 65, 1957, pages 153-162.

[OP] Yumeng Ou, Stefanie Petermichl, Little BMO and Journé commutators, Theta Ser. Adv. Math., volume 19, 2017, pages 207-219.

[Per] Maria Cristina Pereyra, Dyadic Harmonic Analysis and Weighted Inequalities: The Sparse Revolution, In: Aldroubi A., Cabrelli C., Jaffard S., Molter U. (eds) New Trends in Applied Harmonic Analysis, Volume 2, Applied and Numerical Harmonic Analysis, Birkhäuser, Cham, vol. 2, p. 159–239 (2019)

[P] Stefanie Petermichl, Dyadic shifts and a logarithmic estimate for Hankel operators with matrix symbol, Comptes Rendus Acad. Sci. Paris, volume 1, number 1, 2000, pages 455-460.