Contrasting effects of Elg1–RFC and Ctf18–RFC inactivation in the absence of fully functional RFC in fission yeast

Jiyoung Kim¹, Kathryn Robertson¹, Katie J. L. Mylonas¹, Fiona C. Gray¹,², Iryna Charapitsa¹ and Stuart A. MacNeill¹,²,*

¹Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Mayfield Road, Edinburgh EH9 3JR, UK and ²Institute of Molecular Biology and Physiology, University of Copenhagen, Sølvgade 83H, DK-1307 Copenhagen K, Denmark

Received May 4, 2005; Revised June 16, 2005; Accepted July 5, 2005

ABSTRACT

Proliferating cell nuclear antigen loading onto DNA by replication factor C (RFC) is a key step in eukaryotic DNA replication and repair processes. In this study, the C-terminal domain (CTD) of the large subunit of fission yeast RFC is shown to be essential for its function in vivo. Cells carrying a temperature-sensitive mutation in the CTD, rfc1-44, arrest with incompletely replicated chromosomes, are sensitive to DNA damaging agents, are synthetically lethal with other DNA replication mutants, and can be suppressed by mutations in rfc5. To assess the contribution of the RFC-like complexes Elg1–RFC and Ctf18–RFC to the viability of rfc1-44, genes encoding the large subunits of these complexes have been deleted and over-expressed. Inactivation of Ctf18–RFC by the deletion of ctf18C, cdc13 or ctf8 is lethal in an rfc1-44 background showing that full Ctf18–RFC function is required in the absence of fully functional RFC. In contrast, rfc1-44 elg1Δ cells are viable and overproduction of Elg1 in rfc1-44 is lethal, suggesting that Elg1–RFC plays a negative role when RFC function is inhibited. Consistent with this, the deletion of elg1C is shown to restore viability to rfc1-44 ctf18Δ cells.

INTRODUCTION

The ring-shaped homotrimer proliferating cell nuclear antigen (PCNA) plays key roles in many aspects of DNA metabolism in eukaryotic cells. PCNA encircles DNA to form a sliding clamp that can move freely along the duplex and acts to tether a host of interacting proteins implicated in DNA replication, DNA repair and DNA modification, such as DNA ligase I, the nuclease Fen1 and XP-G, uracil-N-glycosylase and cytosine-5-methyltransferase. However, the central function of PCNA is to act as a processivity factor for the replicative DNA polymerases. In the absence of polymerase tethering by PCNA, chromosomal DNA replication cannot be completed efficiently, if at all [reviewed in (1,2)].

The loading of PCNA onto DNA requires that the PCNA ring be opened and closed around the duplex. This reaction is catalysed in an ATP-dependent manner by a clamp loader complex. Clamp loaders have been identified in all three kingdoms of life. In eukaryotic cells, the first clamp loader to be identified was replication factor C (RFC), discovered in the studies of SV40 viral DNA replication in vitro (3,4). RFC is a pentameric complex comprising a large subunit (Rfc1) and four smaller subunits (Rfc2–Rfc5). All the five subunits are members of the AAA+ protein superfamily of ATPase and ATPase-related proteins, and are essential for chromosomal DNA replication and cell survival in yeast. Recently, the structure of the yeast RFC complex was solved, revealing a complex with spiral geometry that closely matches that of the DNA duplex (5).

In addition to RFC, three RFC-like complexes have been identified in recent years, two of which have been demonstrated to possess clamp loading activity, albeit with different sliding clamps [reviewed in (2,6)]. In this study, the fission yeast protein nomenclature is used when describing these complexes, although it should be noted that much of the information that has been gathered on their functions has come from the analysis of budding yeast (see Table 1 for nomenclature summary).

The first RFC-like complex to be identified (Rad17–RFC in fission yeast) performs its function in DNA structure checkpoints [reviewed in (7)]. The Rad17–RFC comprises the same...
four small subunits as RFC, Rfc2–Rfc5, but the large subunit Rfc1 is replaced by the related Rad17 protein (8–10). The effect of substituting Rad17 for Rfc1 is to alter the biochemical properties of the complex, notably its DNA substrate specificity (11–13). However, the Rad17–RFC also functions with a different sliding clamp. Instead of PCNA, Rad17–RFC loads the 9–1–1 complex onto DNA. This alternative sliding clamp comprises the Rad9, Rad1 and Has1 DNA checkpoint proteins (Table 1) (11–13). It is thought that the Rad17–RFC and 9–1–1 complex act together as sensors of DNA structure perturbations.

The second RFC-like complex to be identified was Ctf18–RFC (14,15). In this complex, the large subunit of RFC is substituted with Ctf18. Two additional factors, Dec1 and Ctf8, also associate with Ctf18, resulting in a seven subunit complex. The Ctf18–RFC is required for the efficient establishment of chromosome cohesion during S-phase, the process by which the newly replicated sister chromatids are held together until anaphase. Although all the three genes are non-essential, Schizosaccharomyces cerevisiae cells carrying ctf18, dec1 or ctf8 mutations display genome instability and chromosome loss phenotypes (14,16). Biochemical evidence indicates that Ctf18–RFC functions as an ATP-dependent PCNA loader, loading PCNA onto primed templates ~10-fold less efficiently than RFC (17,18).

The third RFC-like complex sees Rfc1 substituted by Elg1 [reviewed in (6,19)]. Mutants in the budding yeast ELG1 gene were identified in a number of independent genetic screens for factors affecting genome stability in diverse ways (20–27): elg1Δ mutants display increased levels of mitotic recombination, chromosome loss, transposition and gross chromosomal rearrangement. The elg1Δ mutants also display telomere lengthening and are synthetically lethal or sick when combined with mutations in various DNA processing pathways, such as homologous recombination (synthetic interactions with rad50, rad51, rad52, rad54, rad55, rad57, mre11 and xrs2), replication fork re-start (mms8l and mms4) and DNA replication (pol32, dna2 and rad27). The elg1Δ cells are also mildly sensitive to the alkylating agent methylmethanesulphonate (MMS) but not to hydroxyurea (HU) or UV treatment. Despite this analysis, the precise function of the Elg1–RFC is unknown, although it has been shown that the complex co-immunoprecipitates with PCNA (23). The complete subunit composition of the Elg1–RFC is also unknown.

Although the small and large subunits of the clamp loader complexes are related to one another, the large subunits have extended N- and C-terminal regions. In the case of Rfc1, the function of the N-terminal extended region has been analysed previously (28–30). This region includes both a conserved PCNA-binding motif with a potential role in targeting RFC to replication factories (31) and a BRCT domain (32), and possesses DNA-binding activity (28,33) but is not required either for PCNA loading in vitro or for RFC function in vivo. The function of the C-terminal domain (CTD) has been less well characterized, although in vitro reconstitution experiments point to an important role for this domain in RFC complex assembly (28). Recent structural studies suggest a role for this domain in stabilizing the RFC complex by bridging the ends of the spiral assembly of RFC subunits but the functional consequences of this are not known (5).

In this study, the CTD of Schizosaccharomyces pombe Rfc1 is shown to be essential for RFC function in vivo, and the isolation and the analysis of novel mutant rfc1 alleles generated by random and targeted mutagenesis of the CTD, including a temperature-sensitive mutant, rfc1-44, is described. Analysis of rfc1-44 shows the cells to be incapable of completing DNA replication at their restrictive temperature, sensitive to DNA damaging agents, and synthetically lethal with a number of DNA replication mutants. To investigate this further, genes encoding S.pombe orthologues of Elg1, Ctf18, Dcc1 and Ctf8 are identified, elg1Δ, ctf18Δ, dcc1Δ and ctf8Δ strains constructed and analysed, and rfc1-44 ctf18Δ, rfc1-44 dcc1Δ and rfc1-44 ctf8Δ double mutants shown to be inviable, implying that Ctf18–RFC function is essential for cell viability in the absence of fully functional RFC. The purification of the Elg1–RFC from fission yeast is also described, demonstrating for the first time in any organism that this complex has a five subunit structure. In support of a model in which Elg1–RFC plays a negative role when RFC function is impaired, elevated levels of Elg1–RFC are shown to be lethal in rfc1-44 and the deletion of elg1Δ shown to restore viability to rfc1-44 ctf18Δ cells. Finally, the identification of suppressors of rfc1-44 mapping within the rfc5 gene is reported, suggesting that the functional defect in RFC in rfc1-44 cells may lie in the Rfc1–Rfc5 interaction revealed by the crystal structure.

MATERIALS AND METHODS

Yeast strains, media and methods

Haploid S.pombe strains used for strain construction were as follows: Sp236 (leu1-32 ura4-D18 h+), Sp292 (leu1-32 ura4-D18 ade6-M210 h+), Sp293 (leu1-32 ura4-D18 ade6-M216 h+), Sp322 (leu1-32 ura4-D18 h+), Sp347 (972 h+) and Sp348 (h+), PCR-mediated gene targeting was used to construct the following strains: Sp323 (elg1::natMX6 leu1-32 ura4-D18 h+), Sp325 (elg1::kanMX6 leu1-32 ura4-D18 h+), Sp359 (dcl1::natMX6 h+), Sp360 (dcl1::natMX6 h+), Sp365 (ctf18::natMX6 h+), Sp378 (ctf8::natMX6 h+), Sp380 (ctf8::natMX6 h+) and Sp402 (elg1-TAP:natMX6 h+). A wild-type diploid strain (leu1-32 ura4-D18/ura4-D18 ade6-M210/ade6-M216 h+) was created by standard methods by mating haploids Sp292 and Sp293 and used to construct various rfc1 mutants (see below). The following rfc1 strains were generated by subsequent matings: HSp1 (rfc1-44 h+), HSp9 (rfc1-54 h+).
HSp17 (rfc1-44 h-), HSp23 (rfc1-54 h-), HSp25 (rfc1-44 elg1::natMX6 h-), HSp26 (rfc1-44 elg1::natMX6 h-), HSp27 (rfc1-44 elg1::kanMX6 cfi18::natMX6 h-) and KSp1 (elg1::kanMX6 cfi18::natMX6 h-). Yeast growth media (YE, EMM and ME) were used essentially as described (34). 5-Fluoroorotic acid (5-FOA) selection was performed using YE medium supplemented with 1 mg/ml 5-FOA. G418 (Geneticin; from Invitrogen/GibcoBRL) and nourseothricin (ClonNAT; from Werner BioAgents) was added to YE plates at 100 mg/l in YE agar. Transformations were performed by electroporation (35) or lithium acetate methods (36) as appropriate. Tetrad dissection was accomplished using a micromanipulator (Singer Instruments). Flow cytometry on fixed propidium-iodide stained cells was performed by using a FACS Calibur instrument and CellQuest software (BD Biosciences) as described previously (37), cell number counts by using a Z2 particle counter (Beckman Coulter), and pulse-field gel electrophoresis (PFGE) as described by Kelly et al. (38) using a BioRad CHEF DRII system.

Construction and analysis of rfc1+/rfc1-ΔC strain

For plasmid integration into the genome, a series of constructs based on plasmid pJKE1 were used. pJKE1 corresponds to pUR19 (39) from which ars1* has been deleted by Cla1 digestion and re-ligation. Initially, sequences encoding amino acids 590–935 of Rfc1 (corresponding to the CTD plus 130 amino acids N-terminal to the CTD) were amplified by PCR using pUR19-Rfc1 as template and cloned into plasmid pJKE1 to generate plasmid pJKE11. The PCR overlap extension method (39) was then used, with pJKE11 as template and complementary 50mer oligonucleotides, to introduce stop codons in all three frames into the rfc1* sequence, so that the encoded protein would terminate after Pro719. The product of the second round of PCR was cloned into pJKE32 (see below) to generate pJKE59. Linearized plasmid DNA was then transformed into S. pombe diploid strain (leu1-32/leu1-32 ura4-D18/urad-D18 ade6-M210/ade6-M216 h+/h-) and stable integrant transformants isolated and analysed as described above. For further analysis, 5-FOA was used to select for rfc1-44 and rfc1-54 strains in which the plasmid had recombined out of the genome leaving a mutated copy of the rfc1 gene on the chromosome. These strains were then backcrossed to wild type to remove auxotrophic markers, resulting in strains HSp1 (rfc1-44 h-), HSp9 (rfc1-54 h-), HSp17 (rfc1-44 h-) and HSp23 (rfc1-54 h-).

Suppressor screening

To screen for suppressors of rfc1-44, a 1.3 kb fragment was amplified by PCR from the rfc5+ chromosomal region and subcloned into plasmid pJKE31 (above). This corresponded to ~200 bp S' to the rfc5+ open reading frame (ORF) and 1.2 of sequence encoding the first 289 (of 358) amino acids of Rfc5. The resulting plasmid pJKE55 was subjected to mutagenesis with Tn4430 as described above except that, following mating with E. coli DS941, a library of transposon-containing plasmids was prepared, digested with KpnI, re-ligated and transformed in E. coli DH5α. Plasmid DNA was prepared from the >3000 pooled colonies, linearized and used to transform rfc1-44.

Gene deletions

The elg1Δ+, ctf18Δ+, dcc1Δ+ and ctf8Δ+ genes were deleted in wild-type 972 h- (SP347) and h8S (Sp348) strains using the PCR-mediated gene targeting method for fission yeast as described by Bähler et al. (36) using either pFA6a-kanMX6 or pFA6a-natMX6 as PCR templates. The latter (a gift from P. Hentges and T. Carr, University of Sussex) confers resistance to nourseothricin (also known as clonNAT, supplied by Werner BioAgents), which was added to YE plates at 100 μg/ml. Oligonucleotides (100mer with 80 nt of gene-specific sequence) were supplied by DNA Technology A/S. The deletions were confirmed by PCR using oligonucleotide primers flanking the cassette. The sequences of all the oligonucleotides used can be obtained from the authors upon request.
Purification of the Elg1–RFC

To facilitate purification of the Elg1–RFC, the chromosomal \textit{elg1}^+ gene was tagged at its 3' end with sequences encoding the TAP module marked with the \textit{natMX6} cassette. For this, the \textit{kanMX6} module was first excised from pFA6a-CTAP-kanMX6 (43) and replaced with the \textit{natMX6} cassette from pFA6a-natMX6 (above). The resulting plasmid, pFA6a-CTAP-natMX6, was then used as the template for PCR using 100mer oligonucleotides (sequences from the authors upon request), the PCR product transformed into \textit{S.pombe} strain Sp347 and nourseothricin-resistant colonies identified. Successful tagging was confirmed by PCR and direct sequencing of amplified chromosomal DNA fragments. For purification, a 12 litres culture of the \textit{elg1}–TAP–natMX6 \textit{h}^+ strain (Sp402) was grown to an OD_{600} of 0.8 (1 x 10^7 cells/ml) at 32°C, before the cells were harvested and processed as described previously (43) except that the cells were broken by grinding in liquid nitrogen using an RM100 mortar grinder (Retsch) for 15 min. Following TCA precipitation, the samples were resolved by SDS–PAGE and silver stained. Trypsin digestion of excised bands and mass spectrometric analysis was carried out commercially at the Proteomics Facility at the University of Dundee, UK. (http://www.dundee.ac.uk/biocentre/FingerPrints/).

RESULTS

The conserved CTD of fission yeast Rfc1 is required for RFC function

In all eukaryotic species, the large subunit of RFC differs from the small subunits in having extended N- and C-terminal regions (Figure 1A). In order to probe the function of the CTD in greater detail, one copy of the chromosomal \textit{rfc1}^+ gene in a diploid \textit{S.pombe} strain was altered to encode a truncated Rfc1 protein lacking the entire 215 amino acid \textit{rfc1} gene in a diploid strain (Materials and Methods). This \textit{rfc1}^+\textit{rfc1}–\Delta C diploid was sporulated and the properties of haploid \textit{rfc1}–\Delta C cells analysed following meiotic tetrad dissection. Spores expressing the truncated Rfc1–\Delta C protein were capable of germination and 1–5 cell divisions, but incapable of colony formation (data not shown). Similar to \textit{S.pombe} \textit{rfc1}α cells (44), the arrested \textit{rfc1}–\Delta C cells were often elongated, indicative of a cell cycle defect. Transformation of the \textit{rfc1}–\Delta C diploid prior to sporulation with a plasmid carrying wild-type \textit{rfc1} rescued the \textit{rfc1}–\Delta C haploid, allowing efficient colony formation (data not shown). The CTD is therefore required for RFC function \textit{in vivo}, consistent with the earlier observation that the deletion of sequences from the C-terminus of the human Rfc1 orthologue hRFC140 abolished RFC complex formation \textit{in vitro} (28).

Mutational analysis of the CTD

To further probe its function, the CTD was subjected to mutational analysis. Both random and directed mutagenesis strategies were used to generate a total of 21 mutant \textit{rfc1} alleles. Random mutagenesis was accomplished using the Tn4430-based pentapeptide insertion method (41,42). Twelve alleles were constructed by this method (Figure 1B, circles), seven of which contained insertions within the CTD. The remaining five insertions mapped N-terminal to the CTD, within the RFC collagen domain (5). Oligonucleotide-directed \textit{in vitro} mutagenesis was used to generate a further nine \textit{rfc1} alleles with mutations within the CTD (Figure 1B, squares). All nine mutations changed individual conserved charged amino acids to alanine (see Supplementary Information for details).

As above, the mutant alleles were targeted to one copy of the \textit{rfc1}^+ gene in a diploid strain (Materials and Methods). Following meiosis and sporulation, the properties of the \textit{rfc1} mutants were analysed by tetrad dissection and re-growth. The results are summarized in the Supplementary Information. Briefly, 13 of the 21 alleles were viable in haploid form and essentially indistinguishable from wild type (Figure 1B, open circles or squares) whereas only one, \textit{rfc1}–43, was inviable (Figure 1B, closed circle). The latter encodes an Rfc1 protein with a pentapeptide insertion within the CTD. Two of the mutant alleles, \textit{rfc1}–44 and \textit{rfc1}–54, displayed a temperature-sensitive phenotype (Figure 1B, grey circles and Figure 2A) that could be rescued by wild-type \textit{rfc1} (data not shown).

One of these alleles, \textit{rfc1}–44, was characterized further. When shifted to the restrictive temperature of 35°C, \textit{rfc1}–44 cells arrest with a 2C DNA content (determined by flow cytometry of propidium iodide stained cells, Figure 2B) indicating
that bulk DNA replication is completed prior to arrest. Note that the apparent increase in DNA content seen following shift to the restrictive temperature (as seen in a gradual rightwards drift in the position of the 2C peak over the timecourse of the experiment shown in Figure 2B) is the result of ongoing mitochondrial DNA replication in elongating (i.e. cell cycle arrested) \textit{S. pombe} cells, as described previously (37). Similar peak movements are shown in Figure 6 for \textit{rfc1-44} single-, double- and triple-mutant combinations (see below), but not in cells of normal length.

To analyse DNA structure in the arrested cells, PFGE of chromosomal DNA from wild-type and mutant cells was performed. Many previously isolated yeast DNA replication mutants display a 2C DNA content by flow cytometry but their chromosomes cannot enter a PFGE gel (45). Similar results are obtained when chromosomes are prepared from the cells arrested in S-phase with HU, for example, and are taken as an indication that the chromosomes remain at least partly unreplicated (45). Significantly, by 4 h after temperature shift, the chromosomes from \textit{rfc1-44} cells failed to enter the PFGE gel, indicating that the replication is not complete under these circumstances (Figure 2C). At the permissive temperature of 25°C, \textit{rfc1-44} cells display increased sensitivity compared with wild type to the DNA replication inhibitor HU and to the DNA damaging agents, MMS and UV, consistent with the previous data implicating RFC and PCNA in various DNA repair mechanisms (Figure 2D). In addition, \textit{rfc1-44} is synthetically lethal at 25°C with a number of temperature-sensitive DNA replication mutants (data not shown), including \textit{pol3-ts3}, \textit{cdc1-P13}, \textit{cdc27-P11}, \textit{cdc27-D1} and \textit{dna2-C2} (46–49). The \textit{pol3}, \textit{cdc1} and \textit{cdc27} genes encode the catalytic, B and C subunits, respectively, of DNA polymerase δ in \textit{S. pombe}, while \textit{dna2} encodes an endonuclease-helicase implicated in Okazaki fragment processing.

The \textit{rfc1-44} mutant can be rescued by mutations in \textit{rfc5}

The structure of the budding yeast RFC complex has been solved recently (5). The structure shows the ATPase domains of all five subunits forming a right-handed spiral whose pitch matches that of duplex DNA and the CTD forming a physical link between the two ends of the spiral, bridging Rfc1 and Rfc5. This suggested to us that the RFC complex in \textit{rfc1-44} cells might be defective in this linking function and that it might be possible to identify suppressors of \textit{rfc1-44} by randomly mutagenizing \textit{rfc5}. The cloned \textit{rfc5} gene was therefore subjected to pentapeptide insertion mutagenesis and a library of mutagenized plasmids constructed (Materials and Methods). The library DNA was then linearized by restriction enzyme digestion and transformed into \textit{rfc1-44} cells. Approximately 2400 integrative transformants obtained at 25°C were tested for their ability to grow at 35°C and six clones capable of growth selected for further analysis, including sequencing of the chromosomal \textit{rfc5} gene (Figure 3). Remarkably, all six contained pentapeptide insertions within a very short stretch of the Rfc5 protein, despite the random distribution of insertions in individual library clones as determined by restriction mapping (data not shown). Indeed, five of the six insertions (named \textit{rfc5-S1} through \textit{rfc5-S5}, see Figure 3B) were identical, containing an insertion of the pentapeptide sequence PSRGT between amino acids 75 and 76. The sixth allele (\textit{rfc5-S6}) contained an insertion of the sequence SRGTP between amino acids 76 and 77. Unfortunately, amino acids 68–85 of budding yeast Rfc5 are absent from the published threedimensional structure, making it impossible to locate these in relation to the CTD (5). However, these genetic observations suggest that there may be a close functional relationship between those regions of the Rfc1 and Rfc5 proteins defined by \textit{rfc1-44} and \textit{rfc5-S} and support a model in which the biochemical defect in the RFC (Rfc1–44) complex lies in bridging the ends of the RFC spiral.

Fission yeast \textit{Elg1–RFC}

During the course of this work, several groups reported the isolation and genetic analysis of the budding yeast \textit{ELG1} gene encoding the large subunit of a novel RFC-like complex (20–27). To investigate whether a similar complex...
existed in *S. pombe*, the fission yeast *elg1*+ gene was identified by BLAST searching (E-value 6.7×10^{-16}). *elg1*+ (systematic name SPBC947.11c, see Table 2 and Figure 4A) lies on *S. pombe* chromosome II and encodes a 2760 bp ORF interrupted by two introns of 44 and 47 nt, resulting in a predicted protein of 920 amino acids and Mr of 103.9 kDa.

To determine the composition of the Elg1–RFC complex, the chromosomal *elg1*+ gene was tagged at its 3’ end with sequences encoding the tandem affinity purification (TAP) tag [reviewed in (50)] and the Elg1–RFC purified by the TAP technique (43). Silver staining and subsequent mass spectrometric analysis of the purified material identified Elg1 in both full-length and N-terminally degraded forms, as well as all four small RFC subunits (see Figure 4B and Supplementary Material for the coverage of individual proteins). No additional proteins were identified in these purified preparations, strongly suggesting that Elg1–RFC comprises the Elg1, Rfc2, Rfc3, Rfc4 and Rfc5 proteins only. If the Elg1–RFC complex contains additional proteins, perhaps similar to Dcc1 and Ctf8 in Ctf18–RFC, these must be present in sub-stoichiometric amounts relative to full-length Elg1, be refractive to silver staining, or lost during the TAP purification. Further analysis will be required to address these issues.

To study its function, *elg1*+ was deleted from the chromosome and replaced with the *natMX6* cassette by the PCR-mediated gene targeting method (36). Cells carrying the

Table 2. RFC and RFC-like complex components in fission yeast

Protein	Systematic name	Size	E-scorea	Essential function?
Elg1	SPBC947.11c	920	6.7×10^{-16}	No
Ctf18	SPBC902.02c	960	3.7×10^{-20}	No
Dcc1	SPAC31A2.15c	349	5.1×10^{-68}	No
Ctf8	SPAC19D5.11c	109	0.26	No

*a*BLAST E-score versus *S. cerevisiae* orthologue.

Figure 3. Suppression of *rfc1-44* by *rfc5-S1*. (A) Upper parts: serially diluted cultures of wild-type, *rfc1-44* and *rfc1-44 rfc5-S1* double mutant cells plated at 25°C (left panel, 4 days) or 35°C (right panel, 3 days). Lower parts: the same serial dilutions plated on either 5 mM HU (left panel) or 0.005% MMS (right panel) and incubated at 25°C for 4 days. Although *rfc5-S1* can suppress *rfc1-44* at 35°C, it does not fully restore *rfc1-44* activity as the double mutant cells are still sensitive to HU and MMS. See the text for details. (B) Sequence alignment of *S. pombe*, *S. cerevisiae* and human Rfc5 proteins showing location of *rfc1-44* suppressing insertion alleles. The structure of this region is unknown, except for a short β-strand (1SXJ β22) encompassing amino acids 86–88. Conserved residues are indicated by dots beneath the aligned sequences.

Figure 4. Fission yeast Elg1. (A) Chromosome context and schematic structure of the *elg1*+ gene on chromosome II. (B) TAP of Elg1–RFC. Protein extracts were prepared from *elg1-TAP* cells and subject to TAP. Following TCA precipitation, the purified proteins were subjected to SDS–PAGE and silver staining (lane 1). The bands indicated were excised and identified by mass spectrometry (see Supplementary Information). Wild-type cells (lane 2) were processed in parallel. The species marked with an asterisk corresponds to N-terminally degraded Elg1. (C) The *elg1*Δ cells display increased sensitivity to MMS. Serial dilutions were plated on YE medium containing 0, 0.002, 0.004 or 0.006% MMS and incubated for 4 days at 32°C. (D) The *rfc1-44 elg1*Δ cells are viable at 28°C. Eight tetratype tetrads (labelled 1–8) are shown. The genotypes of colonies were confirmed by replica plating and/or PCR with genomic DNA templates as appropriate.
elg1Δ allele (elg1::natMX6) were viable and displayed mild sensitivity to MMS (Figure 4C) but were insensitive to UV, HU and the topoisomerase inhibitor camptothecin (data not shown) as is the case for budding yeast elg1Δ cells (21–23).

Next, rfc1-44 was crossed to elg1Δ. The double mutant rfc1-44 elg1Δ was viable at 28°C (Figure 4D) and essentially indistinguishable from rfc1-44. However, closer inspection suggested that at 36.5°C the rfc1-44 elg1Δ cells grew marginally better than the rfc1-44 mutant alone, suggesting that elg1Δ might exert a negative effect on rfc1-44 cells (data not shown). This is explored further below.

Fission yeast Ctf18–RFC

To complement our studies on the S.pombe Elg1–RFC, the role of the fission yeast Ctf18–RFC in rfc1-44 cells was examined. In S.cerevisiae, the Ctf18–RFC comprises seven subunits: Ctf18, Dcc1, Rfc2, Rfc3, Rfc4, Rfc5 and Ctf8 (2). The same appears to be true of the human Ctf18–RFC as well (17). To investigate whether S.pombe possessed Ctf18, Dcc1 and Ctf8 proteins and to test their function in relation to RFC, the fission yeast genome sequence was probed for genes encoding putative fission yeast Ctf18, Dcc1 and Ctf8 orthologues. Searches using the budding yeast proteins as the query sequences readily identified putative Ctf18 and Dcc1 orthologues (BLAST E-scores of 3.7 × 10⁻⁷⁰ and 5.1 × 10⁻⁶⁵, respectively; Table 2). ctfl8Δ (systematic name SPBC902.02c) lies on chromosome II and is predicted to encode a 960 amino acid protein with an Mr of 108.6 kDa (Figure 5A). This is somewhat larger than the S.cerevisiae protein (741 amino acids, Mr 84.3 kDa). The two proteins are 28% identical over their C-terminal 720 amino acids. The dcc1Δ gene on chromosome I (SPAC31A2.15c) is predicted to encode a 349 amino acid protein with predicted Mr 40.9 kDa, that is, ~22% identical to S.cerevisiae Dcc1 (Figure 5A).

A gene encoding a Ctf8 homologue was also identified. This gene, designated ctf8Δ, contains a single 50 bp intron
(confirmed by cDNA sequencing; data not shown) and encodes a 109 amino acid protein. The ctf8\(^{+}\) is located on chromosome I between the SPAC19D5.06c and SPAC19D5.05c genes. Owing to its small size, the presence of the intron, and the low sequence similarity between Ctf8 family members (S.pombe Ctf8 is only \(\sim 20\%\) identical to its S.cerevisiae counterpart, see Figure 5B), this region of the chromosome was not previously predicted to encode a protein. The gene has now been assigned the systematic name SPAC19D5.11c (Table 2).

To investigate the role of these three proteins in \(S.pombe\), all three genes were deleted from the chromosome and replaced by the natMX6 cassette. Cells carrying one of the ctf18::natMX6 (ctf18\(^{\Delta}\)), dcc1::natMX6 (dcc1\(^{\Delta}\)) or ctf8::natMX6 (ctf8\(^{\Delta}\)) alleles were viable and indistinguishable from wild type under normal growth conditions. Deletion of CTF18 in \(S.cerevisiae\) renders cells sensitive to the microtubule inhibitor benomyl (16). This was also true of \(S.pombe\) ctf18\(^{\Delta}\), dcc1\(^{\Delta}\) and ctf8\(^{\Delta}\) cells (Figure 5C), suggesting that the Ctf18–RFC complexes play an essential role when RFC function is impaired. Whether ctf8\(^{\Delta}\) and dcc1\(^{\Delta}\) were required for ctf18\(^{\Delta}\) viability was also tested, by crossing dcc1\(^{\Delta}\) and ctf8\(^{\Delta}\) strains to ctf18\(^{\Delta}\), but in each case the double mutant, \(rfc1-44\) dcc1\(^{\Delta}\) or rfc1-44 ctf8\(^{\Delta}\), was inviable (Figure 5B), as was the case for rfc1-44 ctf18\(^{\Delta}\). We conclude that the full Ctf18–RFC activity is required for the rescue of rfc1-44.

Overproduction of RFC and RFC-like complex large subunits in rfc1-44

In order to test the effects of overproducing the large subunits, each gene was cloned into a fission yeast expression plasmid, 3’ to the thiamine-repressible nmt1 promoter (52). The resulting pREP plasmids were then transformed into wild-type, rfc1-44, elg1\(^{\Delta}\) and ctf18\(^{\Delta}\) strains. With one exception, the transformed cells were viable and suitable for further analysis (Figure 6). The exception was rfc1-44 transformed with pREP3X-Elg1. Only microcolonies could be obtained following transformation and plating onto minimal medium with or without 5 \(\mu\)g/ml thiamine (i.e. with the nmt1 promoter repressed or fully derepressed) at the permissive temperature of 25°C. Microscopic examination revealed that the transformed cells were highly elongated and only marginally viable, as even after prolonged incubation the formation of larger colonies was not possible. Strikingly, transformation of wild-type, elg1\(^{\Delta}\) or ctf18\(^{\Delta}\) strains with the same pREP3X-Elg1 plasmid did not affect their growth, either in the presence or in the absence of thiamine. Thus, cells in which RFC activity is impaired by mutation within the CTD are highly sensitive to increased Elg1 protein levels. The extent of Elg1 overproduction under these circumstances is not known, as our recent attempts to generate anti-Elg1 antibodies have not been successful (data not shown). Nevertheless, it is tempting to speculate that in these cells excess Elg1 out-competes Rfc1–44 for binding to the small RFC subunits, resulting in an increase in the levels of Elg1–RFC. Additional dominant-negative phenotypes, albeit non-lethal ones, were seen when rfc1\(^{+}\) was overexpressed in wild-type, rfc1-44, elg1\(^{\Delta}\) and ctf18\(^{\Delta}\) cells grown on medium lacking thiamine. Cells were transformed with the indicated plasmids (pREP3X, etc.) and serial dilutions plated on EMM plates either with or without 5 \(\mu\)g/ml thiamine, to either repress or induce large subunit expression from the nmt1 promoter. Plates were incubated at 25 or 35°C as indicated for 3–5 days.
Inactivation of the Elg1–RFC restores viability to rfc1-44 ctf18Δ cells

The results above suggested that the Elg1–RFC complex might play a negative role in rfc1-44 cells, since elevated levels of elg1Δ expression prevented rfc1-44 colony formation. To test this further, construction of an rfc1-44 elg1Δ ctf18Δ triple mutant was attempted by crossing rfc1-44 elg1Δ to ctf18Δ elg1Δ, for the reason that viability of rfc1-44 ctf18Δ might be restored by inactivation of the negatively acting elg1Δ. As predicted, the rfc1-44 elg1Δ ctf18Δ triple mutant was viable (Figure 7A). Fifteen tetrads, each of which gave rise to four viable colonies, were obtained following tetrad dissection of meiotic asci from this cross. Further analysis of the 24 meiotic products from six of these asci (using PCR and replica plating to nourseothricin or G418 to identify ctf18Δ and elg1Δ, respectively, and replica plating to 35°C to identify rfc1-44; Materials and Methods) identified six triple mutants, as predicted, among four tetratypic asci, one parental ditypic and one non-parental ditypic. Viable rfc1-44 elg1Δ ctf18Δ triple mutants, together with inviable rfc1-44 ctf18Δ double mutants, were also obtained by crossing rfc1-44 with elg1Δ ctf18Δ (data not shown).

Further evidence in support of the notion that the Elg1–RFC plays a negative role in rfc1-44 cells came from PFGE analysis of chromosome structure following shift of rfc1-44 and rfc1-44 elg1Δ cells to the restrictive temperature (Figure 7B). As shown previously, the ability of the chromosomes from rfc1-44 cells to enter a PFGE gel is significantly reduced by 2 h after shift to the restrictive temperature. In rfc1-44 elg1Δ cells, however, the chromosomes can still enter the gel at later time points (Figure 7B, compare 3 and 4 h timepoints), suggesting that their structure is stabilized by the loss of Elg1–RFC activity. However, note that rfc1-44 elg1Δ cells were still incapable of colony formation at the restrictive temperature, i.e. the deletion of elg1Δ does not fully rescue rfc1-44 (data not shown).

In the rfc1-44 elg1Δ ctf18Δ triple mutant cells, all three PCNA-interacting RFC and RFC-like complexes are functionally impaired or absent. The DNA content of these cells following shift to the rfc1-44 restrictive temperature was examined and compared to the two viable double mutants rfc1-44 elg1Δ and elg1Δ ctf18Δ, the single mutants rfc1-44, elg1Δ and ctf18Δ, and wild type (Figure 7C). No significant differences in DNA content profile were apparent between wild type, elg1Δ and ctf18Δ, and the double mutant elg1Δ ctf18Δ. As shown in Figure 7C, shifting rfc1-44 to 36.5°C results in rightward movement and broadening of the DNA content peak as the cells arrest in elongated form (37). However, no cells with 1C DNA content are apparent. Similar behaviour is seen with rfc1-44 elg1Δ cells. However, when the rfc1-44 elg1Δ ctf18Δ triple mutant cells are shifted to 36.5°C, there is a transient accumulation of cells with <2C DNA content, suggesting that simultaneous impairment or loss of RFC and Ctf18–RFC results in a severe failure in the replication process, consistent with the inviability of the rfc1-44 ctf18Δ double mutant.

DISCUSSION

RFC and the RFC-like complexes, Ctf18–RFC and Elg1–RFC, play vital roles in maintaining genome integrity in eukaryotic cells (2,6). RFC loading of PCNA is essential for chromosomal replication and optimal DNA repair, Ctf18–RFC is required for the establishment of sister chromatid cohesion in S-phase, and Elg1–RFC has been implicated in DNA replication, replication fork re-start, recombination and repair (2,6). This describes the results of experiments aimed at investigating the role of the CTD of the large subunit of

Figure 7. (A) The triple mutant rfc1-44 elg1Δ ctf18Δ is viable. Four tetratype tetrads derived from a cross of rfc1-44 elg1Δ x ctf18Δ are shown. In each case, all four meiotic products were capable of colony formation. The genotypes of colonies were confirmed by replica plating and/or PCR with genomic DNA templates as appropriate. (B) PFGE analysis of chromosome structure following shift of rfc1-44 and rfc1-44 elg1Δ cells to 35°C for 4 h, with samples being taken for PFGE analysis every hour. (C) Flow cytometric analysis of propidium-iodide stained cells following shift of the indicated strains to 35°C for 6 h. The asterisk in the triple mutant indicates the position of a sub-population of cells with 1C DNA content.
RFc in fission yeast, Rfc1. Deletion of the entire CTD was shown to abolish RFC function in vivo and a collection of CTD mutant rfc1 alleles generated by random or directed mutagenesis techniques were examined. Twelve alleles were constructed by random pentapeptide insertion. Perhaps surprisingly, only one of the twelve insertions disrupted RFC function, while none of the twelve had no significant effect. The non-functional mutant protein Rfc143 carries an insertion of the sequence QGVPL between amino acids 753 and 754 (see Supplementary Data for details). Comparison with the S.cerevisiae Rfc1 structure (5) suggests that this region of the Rfc1 protein (amino acids 737–757) is likely to form a lengthy α-helix that would be disrupted by the pentapeptide insertion. The remaining two alleles (rfc1-44 and rfc1-54) caused a temperature-sensitive phenotype (Figure 2A). In this case, the encoded mutant proteins carried insertions of the sequences IRGTP and PVGVP between amino acids 811 and 812, and 780 and 781, respectively. Neither insertion can be mapped onto the S.cerevisiae Rfc1 structure as both fall within a region whose structure could not be determined. None of the nine site-directed mutants created in this study, all of which replaced well-conserved charged amino acids within the CTD with alanine (see Supplementary Information), disrupted RFC function.

Further analysis of rfc1-44 showed that these cells were capable of bulk DNA replication after being shifted to the restrictive temperature (Figure 2B) but that the DNA was incapable of entering an agarose gel in PFGE experiments (Figure 2C). These properties are shared by a number of other DNA replication mutants in S.pombe, including the essential DNA helicases encoded by pfh1 and dna2 (49,53) and the Dna2 interacting factor cdc24 (54,55). The rfc1-44 is also more sensitive than wild-type to the DNA damaging agents MMS, HU and UV (Figure 2D) and displays synthetic lethality with conditional lethal pol3, cdc1 and cdc27 alleles, indicative of a close involvement in lagging strand DNA synthesis (46). In an unpublished work, the ability of a range of DNA replication proteins, including the four small RFC subunits, when overproduced, to suppress rfc1-44 at restrictive or semi-restrictive temperatures was tested. However, none of the proteins tested was capable of rescuing rfc1-44. In a subsequent screening for multi-copy suppressors of rfc1-44 using genomic DNA libraries, the same suppressing gene sks2+ (SPBC1709.05) was identified from two of the three libraries screened (J. Kim and S.A. MacNeill, unpublished data). The sks2+ (formerly known as hsc1+) encodes an HSP70 family member (56,57) that may act as a chaperone promoting the folding or assembly of the RFC complex in rfc1-44 cells. Whether Sks2 plays a role in RFC function in wild-type cells awaits further analysis.

That bulk DNA replication was possible in rfc1-44 cells at the restrictive temperature (Figure 2B) suggested that either the RFC complex was not completely inactive under these conditions or that other clamp loaders could partially compensate for the loss of RFC function. To investigate this, analysis of the RFC-like complexes Elg1–RFC and Cft18–RFC was initiated. The Elg1–RFC complex was purified (Figure 4B) and genes encoding the unique Elg1–RFC and Cft18–RFC subunits Elg1, Ctf18, Dcc1 and Ctf8 were identified and deleted from the genome (Figures 4 and 5). All three double mutants rfc1-44 cft18Δ, rfc1-44 dcc1Δ and rfc1-44 ctf8Δ are non-viable at the permissive temperature for rfc1-44 (Figure 5D). Biochemical evidence indicates that although Ctf18–RFC lacking Dcc1 and Ctf8 can load PCNA onto DNA in vitro, its activity is ~10-fold less than that of the seven subunit complex including Dcc1 and Ctf8 (17). Our genetic results suggest that maximal Ctf18–RFC activity is required when RFC function is impaired, as the both dcc1+ and ctf8+ are required for rfc1-44 viability.

In sharp contrast, the double mutant rfc1-44 elg1Δ was viable at the permissive temperature (Figure 4D) and PFGE results suggests that inactivation of the Elg1–RFC has a positive effect on rfc1-44 at the restrictive temperature, as the chromosomes were able to enter the gel at later timepoints compared to the single mutant (Figure 7B). This negative effect of Elg1–RFC was most clearly seen when ctf18Δ elg1Δ was crossed with rfc1-44 elg1Δ to generate a viable rfc1-44 elg1Δ ctf18Δ triple mutant. This result shows that inactivation of the Elg1–RFC restores viability to the rfc1-44 ctf18Δ double mutant, reinforcing the view that the Elg1–RFC plays an opposing role to RFC and Ctf18–RFC in S.pombe cells.

Previously, various functions have been proposed for Elg1–RFC (6). For example, Elg1–RFC might function as a specialized PCNA clamp loader for DNA substrates associated with, for example, replication fork stalling or collapse. It is possible that in rfc1-44 ctf18Δ cells, recognition of such structures and subsequent PCNA loading by Elg1–RFC has a harmful effect, whereas loss of Elg1–RFC function in the triple mutant rfc1-44 ctf18Δ elg1Δ allows replication fork recovery to be achieved by an alternative mechanism such as homologous recombination. Intriguingly, in S.cerevisiae elg1Δ is synthetically lethal with genes involved in homologous recombination [reviewed in (19)]. Alternatively, it has been suggested that the Elg1–RFC could function as a PCNA clamp unloader (6). Recycling of PCNA is likely to be vital for efficient replication but exactly how this occurs is unclear. If Elg1–RFC acts as a dedicated clamp unloader, its inactivation might counteract, at least in part, the consequences of impairing RFC activity by the rfc1-44 mutation. Finally, Elg1–RFC might have a role in loading or unloading a modified form of PCNA onto DNA. Ubiquitination and sumoylation of PCNA has been demonstrated to play an important role in replication and repair of damaged DNA [reviewed in (58)] but whether PCNA modification impinges on clamp loading and unloading is not known. Further detailed genetic and biochemical studies will be required to resolve these issues.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.

ACKNOWLEDGEMENTS

We would like to thank our friends and colleagues in Edinburgh and elsewhere for their help during the course of this work, in particular Dr Hiroyuki Tanaka for many helpful discussions, Pierre Hentges and Professor Tony Carr (University of Sussex) for the pFA6A-natMX6 plasmid and Dr Finbarr Hayes (UMIST) for supplying the Tn4430 system components. S.M. and F.G. were supported by a Wellcome Trust Senior
REFERENCES

1. Maga,G. and Hubscher,U. (2003) Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J. Cell Sci., 116, 3051–3060.

2. Majka,J. and Burgers,P.M. (2004) The PCNA-RFC families of DNA clamps and clamp loaders. Prog. Nucleic Acid Res. Mol. Biol., 78, 227–260.

3. Tsurimoto,T. and Stillman,B. (1989) Purification of a cellular replication clamp for the DNA damage checkpoint. Proc. Natl Acad. Sci. USA, 86, 10237–10242.

4. Shimomura,T., Ando,S., Matsumoto,K. and Sugimoto,K. (1998) RFC family. Bioessays, 20, 621.

5. Mayer,M.L., Gygi,S.P., Aebersold,R. and Hieter,P. (2001) Identification of the yeast gene-product couples S-phase to mitosis. Cell, 97, 509–516.

6. Warbrick,E. (1998) PCNA binding through a conserved motif. Bioessays, 20, 195–199.

7. Tsurimoto,T. and Stillman,B. (1990) Functions of replication factor C and proliferating cell nuclear antigen—functional similarity of DNA polymerase accessory proteins from human cells and bacteriophage T4. Proc. Natl Acad. Sci. USA, 87, 1023–1027.

8. Smith,S., Hwang,J.Y., Banerjee,S., Majeed,A., Gupta,A. and Myung,K. (2004) Mutator genes for suppression of gross chromosomal rearrangements identified by a genome-wide screening in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA, 101, 9039–9044.

9. Naiki,T., Shimomura,T., Kondo,T., Matsumoto,K. and Sugimoto,K. (2001) Deletion analysis of the large subunit of replication factor C potentiate and modulate its ATase activity. J. Biol. Chem., 273, 12935–12942.

10. Smith,M., Huang,J.Y., Banerjee,S., Majeed,A., Gupta,A. and Myung,K. (2004) Deletion analysis of the large subunit of replication factor C potentiate and modulate its ATase activity. J. Biol. Chem., 273, 12935–12942.

11. Bermudez,V.P., Lindsey-Boltz,L.A., Cesare,A.J., Maniwa,Y., Griffith,J.D., Hurwitz,J. and Sancar,A. (2003) Loading of the human 9-1-1 replication factor C complex on DNA reveals regions required for complex formation and replication activities. J. Biol. Chem., 278, 22720–22727.

12. Warbrick,E. (1998) PCNA binding through a conserved motif. Bioessays, 20, 195–199.

13. Bork,P., Hofmann,K., Bucher,P., Neuwald,S.F. and Koonin,E.V. (1997) A superfamiliy of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. FASEB J., 11, 68–76.

14. Allen,B.L., Ulhmman,F., Gaur,L.K., Mulder,B.A., Posey,K.L., Jones,L.B. and Hardin,S.H. (1998) DNA recognition properties of the N-terminal DNA binding domain within the large subunit of replication factor C. Nucleic Acids Res., 26, 3877–3882.

15. Moreno,S., Klar,A. and Nurse,P. (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol., 194, 755–823.

16. Prentice,H.L. (1992) High-efficiency transformation of Schizosaccharomyces pombe by electroporation. Nucleic Acids Res., 20, 621.

17. Bahler,J., Wu,J.Q., Longtime,M.S., Shah,N.G., McKenzie,A., III, Steever,A.B., Wach,A. and Pringle,J.R. (1998) Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast, 14, 943–951.

18. Sazer,S. and Sherwood,S.W. (1990) Microbial and DNA synthesis occur in the absence of nuclear DNA replication in fission yeast. J. Cell Sci., 97, 509–516.

19. Kelly,T.J., Martin,G.S., Forsburg,S.L., Stephen,R.J., Russo,A. and Nurse,P. (1993) The fission yeast cyclins delta/cyclin-related gene-product couples S-phase to start and mitosis. Cell, 74, 371–382.

20. Bork,P., Hofmann,K., Bucher,P., Neuwald,S.F. and Koonin,E.V. (1997) A superfamiliy of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. FASEB J., 11, 68–76.

21. Allen,B.L., Ulhmman,F., Gaur,L.K., Mulder,B.A., Posey,K.L., Jones,L.B. and Hardin,S.H. (1998) DNA recognition properties of the N-terminal DNA binding domain within the large subunit of replication factor C. Nucleic Acids Res., 26, 3877–3882.

22. Moreno,S., Klar,A. and Nurse,P. (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol., 194, 755–823.

23. Prentice,H.L. (1992) High-efficiency transformation of Schizosaccharomyces pombe by electroporation. Nucleic Acids Res., 20, 621.

24. Bahler,J., Wu,J.Q., Longtime,M.S., Shah,N.G., McKenzie,A., III, Steever,A.B., Wach,A. and Pringle,J.R. (1998) Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast, 14, 943–951.

25. Sazer,S. and Sherwood,S.W. (1990) Microbial and DNA synthesis occur in the absence of nuclear DNA replication in fission yeast. J. Cell Sci., 97, 509–516.

26. Kelly,T.J., Martin,G.S., Forsburg,S.L., Stephen,R.J., Russo,A. and Nurse,P. (1993) The fission yeast cyclins delta/cyclin-related gene-product couples S-phase to start and mitosis. Cell, 74, 371–382.

27. Bork,P., Hofmann,K., Bucher,P., Neuwald,S.F. and Koonin,E.V. (1997) A superfamiliy of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. FASEB J., 11, 68–76.

28. Allen,B.L., Ulhmman,F., Gaur,L.K., Mulder,B.A., Posey,K.L., Jones,L.B. and Hardin,S.H. (1998) DNA recognition properties of the N-terminal DNA binding domain within the large subunit of replication factor C. Nucleic Acids Res., 26, 3877–3882.

29. Moreno,S., Klar,A. and Nurse,P. (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol., 194, 755–823.

30. Prentice,H.L. (1992) High-efficiency transformation of Schizosaccharomyces pombe by electroporation. Nucleic Acids Res., 20, 621.

31. Bahler,J., Wu,J.Q., Longtime,M.S., Shah,N.G., McKenzie,A., III, Steever,A.B., Wach,A. and Pringle,J.R. (1998) Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast, 14, 943–951.

32. Sazer,S. and Sherwood,S.W. (1990) Microbial and DNA synthesis occur in the absence of nuclear DNA replication in fission yeast. J. Cell Sci., 97, 509–516.

33. Kelly,T.J., Martin,G.S., Forsburg,S.L., Stephen,R.J., Russo,A. and Nurse,P. (1993) The fission yeast cyclins delta/cyclin-related gene-product couples S-phase to start and mitosis. Cell, 74, 371–382.

34. Bork,P., Hofmann,K., Bucher,P., Neuwald,S.F. and Koonin,E.V. (1997) A superfamiliy of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. FASEB J., 11, 68–76.

35. Allen,B.L., Ulhmman,F., Gaur,L.K., Mulder,B.A., Posey,K.L., Jones,L.B. and Hardin,S.H. (1998) DNA recognition properties of the N-terminal DNA binding domain within the large subunit of replication factor C. Nucleic Acids Res., 26, 3877–3882.

36. Moreno,S., Klar,A. and Nurse,P. (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol., 194, 755–823.

37. Prentice,H.L. (1992) High-efficiency transformation of Schizosaccharomyces pombe by electroporation. Nucleic Acids Res., 20, 621.
42. Hayes,F. and Hallet,B. (2000) Pentapeptide scanning mutagenesis: encouraging old proteins to execute unusual tricks. *Trends Microbiol.*, **8**, 571–577.
43. Tasto,J.J., Carnahan,R.H., McDonald,W.H. and Gould,K.L. (2001) Vectors and gene targeting modules for tandem affinity purification in *Schizosaccharomyces pombe*. *Yeast*, **18**, 657–662.
44. Kai,M., Tanaka,H. and Wang,T.S. (2001) Fission yeast Rad17 associates with chromatin in response to aberrant genomic structures. *Mol. Cell. Biol.*, **21**, 3289–3301.
45. Hennessy,K.M., Lee,A., Chen,E. and Botstein,D. (1991) A group of interacting yeast DNA replication genes. *Genes Dev.*, **5**, 958–969.
46. Francesconi,S., Park,H. and Wang,T.S.F. (1993) Fission yeast with DNA polymerase α temperature-sensitive alleles exhibits cell division cycle phenotype. *Nucleic Acids Res.*, **21**, 218–229.
47. Maundrell,K. (1990) *nmt1* of fission yeast. A highly transcribed gene completely repressed by thiamine. *J. Biol. Chem.*, **265**, 10857–10864.
48. Tanaka,H., Ryu,G.H., Seo,Y.S., Tanaka,K., Okayama,H., MacNeill,S.A. and Yuasa,Y. (2002) The fission yeast *pfh1*+ gene encodes an essential 5' to 3' DNA helicase required for the completion of S-phase. *Nucleic Acids Res.*, **30**, 4728–4739.
49. Gould,K.L., Burns,C.G., Feoktistova,A., Hu,C.P., Pasion,S.G. and Forsburg,S.L. (1998) Fission yeast *cdc24* encodes a novel replication factor required for chromosome integrity. *Genetics*, **149**, 1221–1233.
50. Petronczki,M., Chwalla,B., Siomos,M.F., Yokobayashi,S., Helmhart,W., Deutschbauer,A.M., Davis,R.W., Watanabe,Y. and Nasmyth,K. (2004) Sister-chromatid cohesion mediated by the alternative RF-C(Dce1)Ddc1*Chl1* helicase and the polymerase-α-associated protein Ctf14 is essential for chromatid disjunction during meiosis II. *J. Cell Sci.*, **117**, 3547–3559.
51. Puig,O., Caspary,F., Rigaut,G., Rutz,B., Bouveret,E., Bragado-Nilsson,E., Wilm,M. and Seraphin,B. (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. *Methods*, **24**, 218–229.