Holographic superconductors in quintessence AdS black hole spacetime

Songbai Chen1,2, Qiyuan Pan1,2 and Jiliang Jing1,2

1 Institute of Physics and Department of Physics, Hunan Normal University, Changsha, Hunan 410081, People’s Republic of China
2 Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081, People’s Republic of China

E-mail: csb3752@163.com, panqiyuan@126.com and jljing@hunnu.edu.cn

Received 24 January 2013, in final form 18 May 2013
Published 10 June 2013
Online at stacks.iop.org/CQG/30/145001

Abstract
We present a solution of Einstein equations describing a d-dimensional planar quintessence anti-de Sitter (AdS) black hole which depends on the state parameter w_q of quintessence. We investigate holographic superconductors in this background and probe effects of the state parameter w_q on the critical temperature T_c, the condensation formation and conductivity. The larger absolute value of w_q leads to the lower critical temperature T_c and the higher ratio between the gap frequency in conductivity to the critical temperature for the condensates. Moreover, we also find that for the scalar condensate there exists an additional constraint condition originating from the quintessence $(d-1)w_q + \lambda_\pm > 0$ for the operators \mathcal{O}_\pm, respectively. Our results show that the scalar condensation is harder to form and the occurrence of the holographic dual superconductor needs the stronger coupling in the quintessence AdS black hole spacetime.

PACS numbers: 04.70.Bw, 11.25.Tq, 74.20.−z

(Some figures may appear in colour only in the online journal)

1. Introduction
The anti-de Sitter/conformal field theory (AdS/CFT) correspondence [1] indicates that a string theory on asymptotically AdS spacetimes can be related to a CFT on the boundary, which is now a powerful tool to study strongly coupled phenomena in quantum field theory [2–4]. In recent years, this holographic correspondence has been employed to study the strongly correlated condensed matter physics from the gravitational dual [5–10]. This dual consists of a system with a black hole and a charged scalar field, in which the black hole admits a scalar hair at temperature lower than a critical temperature, but does not possess the scalar hair at...
higher temperatures. According to the AdS/CFT correspondence, the emergence of a hairy AdS black hole means the occurrence of a second-order phase transition from the normal state to the superconducting state which brings the spontaneous U(1) symmetry breaking in the dual CFTs [11]. Due to the potential applications to the condensed matter physics, the property of the holographic superconductor has been studied extensively in the various gravity models [12–41]. The effects of nonlinear electrodynamics on the holographic superconductor are also studied in [42–45].

On the other hand, our Universe is undergoing an accelerated expansion, which could be explained by the assumption that our Universe is filled with dark energy. It is an exotic energy component with negative pressure and constitutes about 72% of present total cosmic energy. The simplest interpretation of such a dark energy is a cosmological constant with the equation of state \(w = -1 \) [46]. Although the cosmological constant model is consistent with the observational data, at the fundamental level it fails to be convincing. The vacuum energy density falls far below the value predicted by any sensible quantum field theory, and it unavoidably yields the coincidence problem, namely, why the dark energy and the dark matter are comparable in size exactly right now. Thus, the dynamical scalar fields, such as quintessence [47], k-essence [48] and phantom field [49], have been put forth as an alternative of dark energy. Models of dark energy differ with respect to the size of the parameter \(w \) namely, the relation between the pressure and energy density of the dark energy.

Although dark energy has been firstly proposed to explain the accelerated cosmological expansion, a lot of efforts have been devoted to probing the effects of dark energy on the black hole physics. Some attempts have been made to construct black hole solutions with dark energy by using dynamical scalar fields [50]. However, the dependence of the structure of spacetime on the state parameter of dark energy is not shown directly in these black holes. Actually, in the presence of a dynamical scalar field, the field equations of Einstein gravity are complicated, and it is difficult to obtain the black hole solution with the state parameter of dark energy. Kiselev [51] adopted to a phenomenological model of quintessence and obtained a static black hole solution which depends on the state parameter \(w_q \) of quintessence. In this phenomenological model, quintessence is constructed by an unknown fluid with the energy–momentum tensor satisfied the additive and linear conditions, rather than by a dynamical scalar field as in the cosmology. For this special phenomenological fluid, the nature is not clear, but the effective equation of state \(w_q \) is in the range of \(-1 < w_q < 0\). Thus, the quintessence in this black hole solution is different from that in the time-dependent cosmological evolution where it is encoded in the ‘fifth-force’ scalar field. Subsequently, we [52] extend Kiselev’s work to the high-dimensional case and find that the first law is universal for the arbitrary state parameter \(w_q \) of quintessence. The quasinormal modes and Hawking radiation of these black holes surrounded by the quintessence have been studied entirely in [52–54]. These investigations could help us further disclosing the relationship between the dark energy and black hole. The main purpose of this paper is to study the properties of the holographic superconductor in the quintessence AdS black hole spacetime and to see the effect of the state parameter \(w_q \) on the critical temperature, the condensation formation and conductivity.

This paper is organized as follows. In section 2, we present the metric describing a \(d \)-dimensional planar quintessence AdS black hole and give the holographic dual of this black hole by introducing a complex charged scalar field. In section 3, we apply the Sturm–Liouville analytical [38] and numerical methods to explore the relations between the critical temperature and the state parameter \(w_q \) of quintessence. In section 4, we probe the effects of the state parameter on the electrical conductivity of the charged condensates. Finally, in the last section, we will include our conclusions.
2. Holographic dual in the quintessence AdS black hole spacetime

In this section, firstly we present the metric describing a d-dimensional planar quintessence AdS black hole and construct the holographic dual of the quintessence AdS black hole by introducing a complex charged scalar field. The metric ansatz describing a d-dimensional planar black hole can be taken as

$$\text{d}x^2 = -f(r) \text{d}t^2 + \frac{1}{f(r)} \text{d}r^2 + r^2 \text{d}x_i \text{d}x^i, \quad i = 1, 2, \ldots, d - 2,$$

which satisfies Einstein’s field equation

$$R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R - \frac{(d - 1)(d - 2)}{2L^2} g_{\mu\nu} = 8\pi T_{\mu\nu},$$

(2)

where L is the radius of AdS and $T_{\mu\nu}$ is the energy–momentum tensor for the matter field. As in [51], one can construct the non-zero components of the energy–momentum tensor for the quintessence as

$$T^t_t = T^r_r = -\rho_q, \quad T^s_i = T^i_s = \cdots = T^{s_{d-2}}_{s_{d-2}} = \frac{\rho_q}{d - 2} [(d - 1)w_q + 1],$$

(3)

where w_q is the state parameter of quintessence. Substituting equations (1) and (3) into Einstein’s field equation (2), we can obtain

$$\frac{(d - 2)f'(r)}{2r} + \frac{(d - 2)(d - 3)f(r)}{2r^2} + \frac{(d - 3)(d - 4)}{2r^2} f' - \frac{(d - 1)(d - 2)}{2L^2} = \frac{\rho_q}{d - 2} [(d - 1)w_q + 1],$$

(4)

which means that

$$r^2 f''(r) + [(d - 1)w_q + 2d - 5]f'(r) + (d - 3)[(d - 1)w_q + d - 3]f(r) - \frac{(d - 1)^2(w_q + 1)r^2}{L^2} = 0.$$

(5)

The general solution of the above equation has the form

$$f(r) = \frac{r^2}{L^2} + \frac{c_1}{r^{d-3}} + \frac{c_2}{r^{(d-1)w_q + d-3}},$$

(6)

where c_1 and c_2 are the normalization factors. The energy density ρ_q for quintessence can be described by

$$\rho_q = \frac{(d - 1)(d - 2)c_2 w_q}{2^{(d-1)}}.$$

(7)

In general, for the usual quintessence, the energy density ρ_q is positive and the state parameter w_q is negative, which means that the constant c_2 must be negative. When $w_q = -1$ and $c_2 = -\frac{1}{2}$, one can find that the energy density of quintessence becomes $\rho_q = \frac{4}{2^{(d-1)}}$, which reduces to the cosmological constant Λ. Thus, the cosmological constant can be treated as a special kind of quintessence and the study of quintessence could help us understand further the cosmological constant. Moreover, we also find that one could construct a type of anti-quintessence with the negative energy density ρ_q by setting the positive normalization factor c_2 and then a bare negative cosmological constant could be constructed by setting that the positive $c_2 = \frac{1}{2}$ and the state parameter $w_q = -1$. The metric (1) with the function (6) describes an interesting set of planar black hole. As $c_1 = -M$ and $c_2 = 0$, it reduces to the...
usual Schwarzschild AdS black hole. When $c_1 = -M$, $c_2 = q^2$ and $w_q = (d - 3)/(d - 1)$, it can reduce to the Reissner–Nordström AdS black hole.

Here, we focus only on the case with the positive energy density, i.e., $c_2 < 0$. Taking $c_1 = 0$ and $c_2 = -M$, we can obtain a metric function of the quintessence AdS black hole spacetime

$$f(r) = \frac{r^2}{L^2} - \frac{M}{r^{(d-1)w_q + d - 3}}. \quad (8)$$

The above choice of the normalization factors c_1 and c_2 is very convenient for us to study the properties of holographic superconductors. In order to study the properties of the s-wave holographic superconductor in the black hole spacetime (1) with the metric function (6), we must rely on the numerical method to solve the equation of motion of the gauge field and the scalar field. However, in the case with $c_1 \neq 0$, we find that it is hard to look for the numerical solution for the scalar field and the gauge field with the standard algorithm. Fortunately, in the case with $c_1 = 0$, we find that this difficulty can be avoided, so that we can study further the effect of the quintessence on the holographic superconductor. Moreover, this choice also leads us to the fact that the metric can be reduced to the usual planar Schwarzschild AdS black hole as the state parametric $w_q = 0$. It is clear that the metric depends on the state parametric w_q and the dimensional number d. The radius of the black hole is $r_H = (ML^2)^{1/(d-1)(w_q+1)}$. The Hawking temperature of the quintessence AdS black hole spacetime is given by

$$T_H = \frac{(d - 1)(w_q + 1)r_H}{4\pi L^2}, \quad (9)$$

which is a function of the state parameter w_q of quintessence. As w_q tends to -1, the metric (1) describes a pure AdS spacetime rather than a black hole since the metric coefficient $f(r) = (\frac{1}{r^2} - M)r^2$ in this limit. It could be understand by a fact that when $w_q = -1$, quintessence becomes indistinguishable from a cosmological constant, and so the overall negative cosmological constant proportional to $1/L^2$ has been renormalized slightly by the subtraction of M. Moreover, Smarr’s formula for the quintessence AdS black hole can be expressed as

$$T S = \frac{1}{d - 2} \Theta_L L + \frac{(d - 1)w_q + d - 3}{d - 2} \Theta_q M, \quad (10)$$

with

$$\Theta_L = \frac{F(d)r^{d-1}_H}{L^3}, \quad \Theta_q = \frac{2F(d)}{r^{d-1}_H w_q}. \quad (11)$$

Here, we treat the AdS radius L and the parameter M as variables. $F(d)$ is only a function of dimension d. The corresponding differential form of the first law of thermodynamics is

$$T dS = \Theta_L dL + \Theta_q dM. \quad (12)$$

Comparing it with the formula of the first law for usual black holes, one can find that the parameter M can be interpreted as the mass of the black hole only if $w_q = 0$. When $w_q \neq 0$, the energy from quintessence is the product of the parameter M and the corresponding generalized force Θ_q, i.e., $E_q = \frac{(d-1)w_q + d - 3}{d - 1} \Theta_q M$. Thus, in a sense, the parameter M could be called as the ‘quintessence charge’. The entire understanding of such ‘quintessence charge’ M needs us to clarify the true nature of quintessence in future.

Let us now consider an electric field and a charged complex scalar field coupled via a Lagrangian

$$\mathcal{L} = -\frac{i}{4} F_{\mu \nu} F^{\mu \nu} - |\nabla_\mu \psi - i A_\mu \psi|^2 - m^2 \psi^2, \quad (13)$$
where \(\psi \) is a charged complex scalar field and \(F^{\mu\nu} \) is the strength of the Maxwell field \(F = dA \).

Adopting to the ansatz

\[
A_\mu = (\phi(r), 0, 0, \ldots, 0), \quad \psi = \psi(r),
\]

one can find that the equations of motion for the complex scalar field \(\psi \) and electrical scalar potential \(\phi(r) \) can be written as

\[
\psi'' + \left(\frac{f'}{f} + \frac{d-2}{r} \right) \psi' + \frac{\phi^2 \psi}{f^2} - \frac{m^2 \psi}{f} = 0, \quad (15)
\]

and

\[
\phi'' + \frac{d-2}{r} \phi' - \frac{2\psi^2}{f} \phi = 0, \quad (16)
\]

respectively, where we set \(L^2 = 1 \) and a prime denotes the derivative with respect to \(r \). Here, we must point out that we ignore the backreaction for simplification in the subsequent numerical calculations. The equation of motion including backreaction becomes more complicated (see the appendix). Since there is no any directed coupling among the quintessence, the complex scalar field \(\psi \) and the electrical field \(\phi(r) \), the energy–momentum tensor originating from the quintessence does not appear in the equations of motion (15) and (16). However, the quintessence affects indirectly the behaviors of the scalar and gauge fields \(\psi(r) \) and \(\phi(r) \) by the function \(f(r) \). The regularity condition at the horizon gives the boundary conditions

\[
\phi(r_H) = 0,
\]

\[
\psi(r_H) = -\frac{(d-1)(w_q + 1)r_H}{m^2} \psi'(r_H). \quad (17)
\]

At the spatial infinite \(r \to \infty \), the scalar field \(\psi \) and the scalar potential \(\phi \) behave like

\[
\psi = \psi_- + \psi_+, \quad (18)
\]

and

\[
\phi = \mu - \frac{\rho}{r^{d-3}}, \quad (19)
\]

with

\[
\lambda_{\pm} = \frac{1}{2} \left[(d-1) \pm \sqrt{(d-1)^2 + 4m^2} \right]. \quad (20)
\]

The constants \(\mu \) and \(\rho \) can be interpreted as the chemical potential and the charge density in the dual field theory, respectively. The coefficients \(\psi_- \) and \(\psi_+ \) correspond to the vacuum expectation values of the condensate operator \(O \) dual to the scalar field according to the AdS/CFT correspondence. As in [55], we can impose the boundary condition that either \(\psi_- \) or \(\psi_+ \) vanish, so that the theory is stable in the asymptotic AdS region.

3. Dependence of critical temperature on the state parameter of quintessence

In this section, we will use both the Sturm–Liouville analytical [38] and numerical methods to probe the dependence of critical temperature on the state parameter of quintessence.

Introducing a new coordinate \(z = r_H/r \), the equations of motion (15) and (16) can be rewritten as

\[
\psi'' + \left(\frac{f'}{f} - \frac{d-4}{z} \right) \psi' + \frac{r_H^2}{z^4} \left(\frac{\phi^2 \psi}{f^2} - \frac{m^2 \psi}{f} \right) = 0, \quad (21)
\]
where a prime denotes the derivative with respect to z. As $T \to T_c$, one can find the condensation tends to zero, i.e., $\psi \to 0$. This means that near the critical temperature, the electric field can be expressed as

$$\phi = \xi r_H(1 - z^{d-3}),$$

where $\xi = \rho/r_H^2$. Near the boundary $z = 0$, one can introduce a trial function $F(z)$ which obeys

$$\psi \sim \frac{\psi_i}{r_H} \sim \langle 0 | \frac{\xi}{r_H^2} F(z),$$

with subscript $i = (+, -)$. The trial function $F(z)$ should satisfy the boundary conditions $F(0) = 1$ and $F'(0) = 0$. The equation of motion for $F(z)$ reads

$$F''(z) + \left\{ \frac{2\lambda_i}{z} - \frac{2 + [(d - 1)w_q + d - 3]z^{(d-1)(w_q+1)}}{z(1 - z^{(d-1)(w_q+1)})} + \frac{d - 4}{z} \right\} F'(z)$$

$$+ \left\{ \frac{\lambda_i(\lambda_i - 1)}{z^2} - \frac{\lambda_i}{z} \left[\frac{2 + [(d - 1)w_q + d - 3]z^{(d-1)(w_q+1)}}{z(1 - z^{(d-1)(w_q+1)})} + \frac{d - 4}{z} \right] \right\}$$

$$+ \frac{\xi^2(1 - z^{d-3})^2}{(1 - z^{(d-1)(w_q+1)})^2} - \frac{\xi^2}{z^2(1 - z^{(d-1)(w_q+1)})} F(z) = 0. \tag{25}$$

Multiplying the above equation with the following function

$$T(z) = z^{2\lambda_i-d+2}(z^{(d-1)(w_q+1)} - 1), \tag{26}$$

we can rewrite equation (25) as

$$[T(z)F'(z)]' - Q(z)F(z) + \xi^2 P(z)F(z) = 0, \tag{27}$$

with

$$Q(z) = -T(z) \left\{ \frac{\lambda_i(\lambda_i - 1)}{z^2} - \frac{\lambda_i}{z} \left[\frac{2 + [(d - 1)w_q + d - 3]z^{(d-1)(w_q+1)}}{z(1 - z^{(d-1)(w_q+1)})} + \frac{d - 4}{z} \right] \right\}$$

$$- \frac{m^2}{z^2(1 - z^{(d-1)(w_q+1)})} \right\},$$

$$P(z) = T(z) \left(\frac{1 - z^{d-3}}{1 - z^{(d-1)(w_q+1)}} \right)^2. \tag{28}$$

Making use of the Sturm–Liouville method, one can obtain the minimum eigenvalue of ξ^2 in equation (27), which can be calculated by

$$\xi^2 = \frac{\int_0^1 [T(z)F'(z)^2 + Q(z)F(z)^2] \, dz}{\int_0^1 P(z) F(z)^2 \, dz}. \tag{29}$$

The trial function $F(z)$ satisfies its boundary condition can be taken as $F(z) = 1 - az^2$, so ξ^2 can be explicitly written as

$$\xi^2 = \frac{s(w_q, \lambda_i, d, a)}{t(w_q, \lambda_i, d, a)}. \tag{30}$$

with

$$s(w_q, \lambda_i, a) = \left[\frac{\lambda_i^2 + \lambda_i(d - 1)w_q - 4}{(d - 1)w_q + 2\lambda_i + 4} + \frac{4}{2\lambda_i - d + 5} \right] a^2 + \frac{2\lambda_i[\lambda_i + (d - 1)w_q]}{(d - 1)w_q + 2\lambda_i + 2}$$

$$- \frac{\lambda_i(d - 1)w_q}{(d - 1)w_q + 2\lambda_i},$$

and

$$t(w_q, \lambda_i, d, a) = \left[\frac{\lambda_i^2 + \lambda_i(d - 1)w_q - 4}{(d - 1)w_q + 2\lambda_i + 4} + \frac{4}{2\lambda_i - d + 5} \right] a^2 + \frac{2\lambda_i[\lambda_i + (d - 1)w_q]}{(d - 1)w_q + 2\lambda_i + 2}$$

$$- \frac{\lambda_i(d - 1)w_q}{(d - 1)w_q + 2\lambda_i}.$$
For different values of w_q which shows that the analytical values of λ and w_q for $d = 4$.

w_q	$\lambda_+ = \frac{1}{2}$ (m2 = -2)	$\lambda_+ = \frac{3}{2}$ (m2 = $-\frac{3}{2}$)
0	0.2250 0.2255	0.1507 0.1517
-0.2	0.2057 0.2059	0.1294 0.1297
-0.4	–	0.1200 0.1200
-0.6	–	–
-0.8	–	–

$T_c/\rho^{1/2}$ for \mathcal{O}_-

w_q	$\lambda_+ = \frac{3}{2}$ (m2 = 0)	$\lambda_+ = \frac{7}{2}$ (m2 = $-\frac{5}{2}$)
0	0.0844 0.0867	0.1170 0.1184
-0.2	0.0705 0.0717	0.0987 0.0992
-0.4	0.0567 0.0571	0.0823 0.0824
-0.6	–	–
-0.8	–	–

$T_c/\rho^{1/2}$ for \mathcal{O}_+

w_q	$\lambda_+ = \frac{3}{2}$ (m2 = 0)	$\lambda_+ = \frac{7}{2}$ (m2 = $-\frac{5}{2}$)
0	0.1676 0.1705	0.1825 0.1847
-0.2	0.1378 0.1392	0.1502 0.1512
-0.4	0.1080 0.1084	0.1182 0.1185
-0.6	–	–
-0.8	–	–

$T_c/\rho^{1/3}$ for \mathcal{O}_-

w_q	$\lambda_+ = \frac{3}{2}$ (m2 = 0)	$\lambda_+ = \frac{7}{2}$ (m2 = $-\frac{5}{2}$)
0	0.0755 0.0779	0.0979 0.0979
-0.2	0.0462 0.0463	0.0591 0.0591

$T_c/\rho^{1/3}$ for \mathcal{O}_+

w_q	$\lambda_+ = \frac{3}{2}$ (m2 = 0)	$\lambda_+ = \frac{7}{2}$ (m2 = $-\frac{5}{2}$)
0	0.1676 0.1705	0.1825 0.1847
-0.2	0.1378 0.1392	0.1502 0.1512
-0.4	0.1080 0.1084	0.1182 0.1185
-0.6	–	–
-0.8	–	–

For different values of w_q, d and λ_+, we can obtain the minimum value of ξ^2 with the appropriate value of α. Combing $T = \frac{3(w_q+1)\rho_0}{4\pi}$ and $\xi = \frac{\rho}{\rho_0}$, we can obtain the form of the critical temperature T_c,

$$T_c = \gamma \rho^{\frac{1}{\alpha}},$$

with the coefficient $\gamma = \frac{w_q+1}{4\pi\rho_0^{\frac{\alpha}{\alpha-1}}}$. Thus, we can probe the effects of the state parameter w_q on the critical temperature T_c through estimating ξ_{min} by using the Sturm–Liouville method.

In tables 1 and 2, we list the analytical and numerical values of critical temperature for different w_q and λ_+ in the four- and five-dimensional quintessence AdS black hole spacetimes, which shows that the analytical values of T_c from the Sturm–Liouville method agree entirely.
Figure 1. The region I in the \((w_q, \lambda)\) parameter space denotes the allowable regions for the scalar condensates to be formed. The left and right planes are for \(d = 4\) and \(d = 5\), respectively. The middle horizontal line in the region I is the boundary \(\lambda = \frac{d-1}{2}\) between the allowable regions for the operators \(O^-\) and \(O^+\). The top and bottom horizontal lines correspond to the bounds \(\lambda = d - 1\) and \(\lambda = \frac{d-1}{2}\), respectively.

with the exact numerical results. For the same \(\lambda\), we find that the critical temperatures \(T_c\) for the scalar operators \(O\) decrease with the absolute value \(w_q\), which means that the quintessence with the smaller \(w_q\) makes it harder for the scalar hair to be condensated in this background. This could be explained by a fact that the quintessence with the smaller \(w_q\) possesses the stronger negative pressure which yields that the scalar condensate is harder to be formed. Moreover, we also find that the scalar condensate can be formed only in the regions

\[
w_q > -\frac{1}{2} \left[1 + \sqrt{1 + \frac{4m^2}{(d-1)^2}} \right] \quad \text{and} \quad -\frac{(d-1)^2}{4} \leq m^2 < 0, \tag{33}
\]

for the operator \(O^+\), and

\[
w_q > -\frac{1}{2} \left[1 - \sqrt{1 + \frac{4m^2}{(d-1)^2}} \right] \quad \text{and} \quad -\frac{(d-1)^2}{4} \leq m^2 < -\frac{(d-1)^2}{4} + 1, \tag{34}
\]

for the operator \(O^-\). This means that for the scalar condensate there exists an additional constraint condition originating from the quintessence

\[(d-1)w_q + \lambda_\pm > 0, \tag{35}\]

which is shown in tables 1, 2 and figure 1. The mathematical reason is that the positive eigenvalues of equation (27) exists only in the above regions. Beyond these regions, the eigenvalue \(\xi^2\) becomes negative, which results in the fact that near the critical temperature both the electric field (23) and the charge density \(\rho = \xi r_H^2\) are imaginary. In other words, there does not exist any solution with physical meaning for the equations of motion of the electric and scalar fields (21) and (22), so the scalar condensate cannot be formed in this case. It could be understand by a fact that with the smaller \(w_q\) the strength of the negative pressure of quintessence increases, but the critical temperature \(T_c\) decreases and the condensation becomes more difficult to be formed. Beyond the region (35), the negative pressure of quintessence becomes too strong to make the scalar field condense. This means that for a certain fixed \(\lambda\) beyond the region (35), the scalar condensate could occur in the usual black hole spacetime, but now it does not occur in the quintessence AdS black hole.
due to the negative pressure of quintessence. Moreover, the additional constraint condition (35) tells us that for the quintessence with the smaller w_q, the lower limit of λ_\pm becomes larger for the scalar field condensing. Moreover, we also find that the region of the existing scalar condensate for the operator O_- is smaller than that for the operator O_+. In figure 2, we also plot the condensates of the operators O_- and O_+ as a function of temperature with the state parameter w_q of quintessence in the allowable region I for fixed $m^2 = -2$ in the four-dimensional quintessence AdS black hole spacetime. The curves of O_- and O_+ for the non-zero w_q have similar behavior to those in the usual Schwarzschild AdS black hole spacetime with $w_q = 0$. Moreover, from figure 2, it is easy to find that the condensation gap increases with the absolute value w_q. The similar properties of the condensation gap with the absolute value w_q in the five-dimensional black hole are shown in figure 3. These imply that the condensation gap becomes larger and the scalar hair is formed more problematically in the quintessence AdS black hole spacetime.
4. The electrical conductivity

In this section, we will investigate the influence of the state parameter w_q of quintessence on the electrical conductivity. Since the condensation gap and the critical temperature depend on the state parameter w_q, it is natural for us to examine whether the state parameter w_q of quintessence will change the expected universal relation in the gap frequency $\omega_g/Tc \approx 8$ [6]. Following the standard procedure in [5, 6], we here adopt a sinusoidal electromagnetic perturbation $\delta A_x = A_x(r) e^{-i\omega t}$. Neglecting the backreaction of the perturbational field on the background metric, one can find that the electromagnetic perturbation obeys the first-order perturbational equation:

$$A_x'' + \left(\frac{f'}{f} + \frac{d - 4}{r} \right) A_x' + \left[\frac{\omega^2}{f^2} - \frac{2\psi^2}{f} \right] A_x = 0.$$ (36)

In order to avoid the complicated behavior in the gauge field falloff in dimensions higher than 5, we restrict our study to the cases $d = 4$ and 5. The ingoing wave boundary condition near the horizon is given by

$$A_x = f^{\frac{w_q}{(d-1)(w_q+1)}} r^H,$$ (37)

and the general behavior of A_x at the asymptotic AdS region can be expressed as

$$A_x = A_x^{(0)} + \frac{A_x^{(1)}}{r},$$ (38)

for the case $d = 4$ and

$$A_x = A_x^{(0)} + \frac{A_x^{(1)}}{r^2} + \frac{A_x^{(0)} \omega \log \Lambda r}{2 r^2},$$ (39)

for the case $d = 5$, respectively. From the AdS/CFT dictionary, one can find [5] that $A_x^{(0)}$ and $A_x^{(1)}$ in the bulk corresponds to the source and the expectation value for the current on the CFT boundary, respectively. Thus, we can obtain the conductivity of the dual superconductor by using Ohm’s law [5]

$$\sigma(\omega) = \frac{\langle J_x \rangle}{E_x} = -i \frac{\omega A_x^{(1)}}{\omega A_x^{(0)}},$$ (40)

for the case $d = 4$ and

$$\sigma(\omega) = \frac{\langle J_x \rangle}{E_x} = -2i \frac{A_x^{(1)}}{\omega A_x^{(0)}} + \frac{i\omega}{2},$$ (41)

for the case $d = 5$, respectively. For different values of w_q, one can obtain the conductivity by solving the Maxwell equation numerically. We will focus on the case for the fixed scalar mass $m^2 = -2$ in our discussion. In figure 4, we plot the frequency-dependent conductivity for the operator $\langle O_+ \rangle$ obtained by solving the Maxwell equation (36) numerically for $w_q = 0, -0.2, -0.4$ and -0.6 at temperatures $T/T_c \approx 0.15$ in the four-dimensional quintessence AdS black hole spacetime. The solid and red dashed curves represent the real part and the imaginary part of the conductivity $\sigma(\omega)$, respectively. We find a gap in the conductivity with the gap frequency ω_g. With increase of the absolute value w_q, the gap frequency ω_g becomes larger, which means that we have larger deviations from the value $\omega_g/Tc \approx 8$ for increasing absolute value w_q of quintessence. From figure 5, we obtain the similar dependence of the conductivity on the state parameter w_q in the five-dimensional case. Thus, the expected universal relation in the gap frequency is really changed in the quintessence black hole AdS spacetime, which is similar to the effect of the Gauss–Bonnet coupling. Our result also shows that the occurrence of the holographic superconductor needs the stronger coupling in the quintessence AdS black hole spacetime.
5. Summary

In this paper, we obtain an exact solution of Einstein equations describing a d-dimensional planar quintessence AdS black hole which depends on the state parameter w_q of quintessence. It can reduce to the usual Schwarzschild AdS black hole as the parameter w_q tends to zero. Applying the Sturm–Liouville analytical and numerical methods, we investigate holographic superconductors in the quintessence AdS black hole and probe effects of the state parameter w_q on the critical temperature T_c and the condensation formation and conductivity. The larger absolute value of w_q leads to the lower critical temperature T_c and make the scalar operator harder to form. Moreover, we found that the ratio between the gap frequency ω_g in the conductivity and the critical temperature T_c becomes larger as the state parameter w_q increases. This means that the occurrence of the holographic superconductor needs the stronger coupling in the quintessence AdS black hole spacetime, which could be explained by a fact that quintessence possesses negative pressure. Our result shows that the holographic superconductor share some similar features in the quintessence and Gauss–Bonnet AdS black holes. Furthermore, we also find that for the scalar condensate there exists an additional
Figure 5. The conductivity for the operator O_+ with different values of w_q in the five-dimensional quintessence AdS black hole spacetime. Each plot is at low temperatures, about $T/T_c \approx 0.25$ and the fixed scalar mass $m^2 = -3$. The solid and dashed curves denote the real part $\text{Re} \sigma$ and the imaginary part $\text{Im} \sigma$ of conductivity, respectively.

constraint condition originating from the quintessence $(d-1)w_q + \lambda_{\pm} > 0$ for the operators O_{\pm}. Beyond the allowable regions, the negative pressure of quintessence is so strong that the scalar condensate cannot be formed. For the smaller w_q, the allowable region becomes more narrow. Moreover, the region of existing scalar condensate for the operator O_- is smaller than that for the operator O_+.

Finally, it is worth pointing that the dual field theoretical interpretation of the quintessence in the metric (1) is a formidable puzzle. The main reason is that the nature of quintessence in the metric (1) is still unclear at present and its form of the Lagrangian L_q is not available. We leave this open issue in future. With the further investigations of the exotic components, one could interpret entirely such a black hole with quintessence in the dual theory.

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China under grant no.11275065, the NCET under grant no.10-0165, the PCSIRT under grant no. IRT0964,
Appendix. The equation of motion including backreaction

In this appendix, we will present the equation of motion including backreaction. Considering the backreaction from the matter field, the metric ansatz for the d-dimensional planar black hole can be expressed as

$$
\text{ds}^2 = -f(r) e^{-\chi(r)} \text{dr}^2 + \frac{1}{f(r)} \text{d}^2 r + r^2 \text{d}x^i, \quad i = 1, 2, \ldots, d - 2.
$$ \hfill (A.1)

Substituting the metric (A.1) into the action

$$
S = \int d^dx \sqrt{-g} \left[\frac{1}{2\kappa^2} (R + 2\Lambda + \mathcal{L}_q) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - [\nabla_\mu \psi - i A_\mu \psi]^2 - m^2 \psi^2 \right],
$$ \hfill (A.2)

and then making use of the variational principle, one can obtain the equation of motion with backreaction

$$
\chi' + \frac{2r}{d - 2} \frac{\partial \mathcal{L}_q}{\partial f} + \frac{4\kappa^2 r}{f} \left(\psi'^2 + \frac{q^2 \phi^2 \psi^2}{f^2} \right) = 0,
$$ \hfill (A.3)

$$
f' + \frac{d - 3}{r} f = \frac{(d - 1)r}{L^2} - \frac{2r}{d - 2} \left(\mathcal{L}_q - 2 \frac{\partial \mathcal{L}_q}{\partial \chi} \right) + \frac{2\kappa^2 r}{f} \left[m^2 \psi^2 + \frac{1}{2} \frac{q^2 \phi^2}{f^2} \right]
+ f \left(\psi'^2 + \frac{q^2 \phi^2 \psi^2}{f^2} \right) = 0,
$$ \hfill (A.4)

$$
\phi'' + \left(\frac{d - 2}{r} - \frac{\chi'}{2} + \frac{f'}{f} \right) \phi' - \frac{2q^2 \psi \phi}{f} = 0,
$$ \hfill (A.5)

$$
\psi'' + \left(\frac{d - 2}{r} - \frac{\chi'}{2} + \frac{f'}{f} \right) \psi' - \frac{m^2}{f} \psi + \frac{q^2 \phi^2}{f^2} \psi = 0.
$$ \hfill (A.6)

Here, the Lagrangian for the quintessence \mathcal{L}_q could be a function of f, χ and w_q. Since there is no any directed coupling among the quintessence, the complex scalar field ψ and the electrical field $\phi(r)$, the energy–momentum tensor originating from quintessence does not appear in the equations of motion for the fields $\psi(r)$ and $\phi(r)$.

On the other hand, as in [51], the non-zero components of the energy–momentum tensor of quintessence could be constructed as form (3) for the static spacetime (A.1) because that quintessence meets the equation of state $p_q = w_q \rho_q$ in the arbitrary spacetime. Here, the pressure of quintessence p_q is defined by the average over the spatial part of the energy–momentum tensor [51], i.e., $p_q = \langle T^\mu_{\nu}\rangle$, ($i = 1, \ldots, d - 1$). According to the conservation of energy $T^\mu_{\nu} = 0$, one can find that in the spacetime (A.1) the energy density ρ_q of quintessence obeys

$$
\frac{d\rho_q}{dr} + (d - 1)(w_q + 1) \frac{\rho_q}{r} = 0.
$$ \hfill (A.7)

It can be solved analytically as

$$
\rho_q = \frac{s}{r^{d-1}(w_q+1)},
$$ \hfill (A.8)
which is consistent with equation (7) as we set the integration constant $s = (d - 1) (d - 2) c_2 w_q / 2$. Therefore, one can find that Einstein’s field equation with backreaction can be written as

$$f' + \frac{d - 3}{r} f - \frac{(d - 1) r}{L^2} - \frac{2 \rho_w r}{d - 2} + \frac{2 \kappa^2 r}{d - 2} \left[m^2 \psi^2 + \frac{1}{2} e^x \phi^2 + f \left(\psi^2 + \frac{q^2 e^x \phi^2}{f^2} \right) \right] = 0,$$

(A.9)

$$f' - f \chi' + \frac{d - 3}{r} f - \frac{(d - 1) r}{L^2} - \frac{2 \rho_w r}{d - 2} + \frac{2 \kappa^2 r}{d - 2} \left[m^2 \psi^2 + \frac{1}{2} e^x \phi^2 \right] - f \left(\psi^2 + \frac{q^2 e^x \phi^2}{f^2} \right) = 0.$$

(A.10)

Thus, the equation of motion for χ can be expressed as

$$\chi' + \frac{4 \kappa^2 r}{d - 2} \left(\psi^2 + \frac{q^2 e^x \phi^2}{f^2} \right) = 0.$$

(A.11)

Comparing with equation (A.3), one can find that $\frac{d \mathcal{L}_\psi}{d \chi} = 0$, which means that the Lagrangian of quintessence \mathcal{L}_q is not an explicit function of f. It is not surprising because that the Lagrangian of the electric field also possesses the similar behavior. In this spacetime (A.1), the Lagrangian of the electric field with the form (14) can be written as $\mathcal{L}_q = - \frac{1}{4} F_{\mu \nu} F^{\mu \nu} = \frac{1}{2} e^{x(r)} \phi'(r)^2$, which is not an explicit function of f, but depends on $\chi(r)$. Moreover, we find that the factor $\mathcal{L}_q - 2 \frac{\mathcal{L}_\chi}{\mathcal{L}_q}$ in equation (A.4) can be replaced by the energy density of quintessence ρ_q and then equation (A.4) can be simplified further as equation (A.9). Although quintessence does not appear explicitly in the equations of motion for the fields $\psi(r)$ and $\phi(r)$ (equation (A.6)), quintessence affects indirectly the behaviors of the scalar field $\psi(r)$, the gauge field $\phi(r)$ and the quantity $\chi(r)$ by the function $f(r)$.

References

[1] Maldacena J M 1998 Adv. Theor. Math. Phys. 2 231
[2] Witten E 1998 Adv. Theor. Math. Phys. 2 253
[3] Gubser S S, Klebanov I R and Polyakov A M 1999 Phys. Lett. B 428 105
[4] Aharony O, Gubser S S, Maldacena J M, Ooguri H and Oz Y 2000 Phys. Rep. 323 183
[5] Hartnoll S A, Herzog C P and Horowitz G T 2008 Phys. Rev. Lett. 101 031601
[6] Gubser S S 2008 Phys. Rev. D 78 065034
[7] Hartnoll S A 2009 Class. Quantum Grav. 26 224002
[8] Herzog C P 2009 J. Phys. A: Math. Theor. 42 343001
[9] Basu P, Mukherjee A and Shieh H H 2009 Phys. Rev. D 79 045010
[10] Herzog C P, Kouvou P K and Son D T 2009 Phys. Rev. D 79 066002
[11] Gubser S S 2005 Class. Quantum Grav. 22 5121
[12] Gregory R, Kanno S and Sota J 2009 J. High Energy Phys. JHEP10(2009)010
[13] Zeng H, Fan Z and Ren Z 2009 Phys. Rev. D 80 066001
[14] Hartnoll S A, Herzog C P and Horowitz G T 2008 J. High Energy Phys. JHEP12(2008)015
[15] Gubser S S 2008 Phys. Rev. Lett. 101 191601
[16] Roberts M M and Hartnoll S A 2008 J. High Energy Phys. JHEP08(2008)035
[17] Gubser S S and Pufu S S 2008 J. High Energy Phys. JHEP11(2008)033
[18] Pan Q Y, Wang B, Papantonopoulos E, Oliveira J and Pavan A 2010 Phys. Rev. D 81 106007
[19] Cai R and Zhang H 2010 Phys. Rev. D 81 066003 (arXiv:0911.4867)
[20] Brynjolfsson E I, Danielsson U H, Thorlacius L and Zeng T 2010 J. Phys. A: Math. Theor. 43 065401
(arXiv:0908.2611)
[21] Denef F and Hartnoll S A 2009 Phys. Rev. D 79 126008 (arXiv:0901.1160)
[22] Gubser S S, Herzog C P, Pufu S S and Teisieanu T 2009 Phys. Rev. Lett. 103 141601
[23] Gauntlett J P, Sonner J and Wiseman T 2009 Phys. Rev. Lett. 103 151601 (arXiv:0907.3796)
Gauntlett J P, Sonner J and Wiseman T 2010 J. High Energy Phys. JHEP02(2010)060 (arXiv:0912.0512)

[24] Gubser S S, Pufu S S and Rocha F D 2010 Phys. Lett. B 683 201

[25] Ammon M, Erdmenger J, Kaminski M and Kernan P 2009 Phys. Lett. B 680 516
Ammon M, Erdmenger J, Kaminski M and Kernan P 2009 J. High Energy Phys. JHEP10(2009)067

[26] Horowitz G T and Roberts M M 2008 Phys. Rev. D 78 126008

[27] Gubser S S and Nellore A 2009 Phys. Rev. D 80 105007 (arXiv:0908.1972)

[28] Horowitz G T and Roberts M M 2009 J. High Energy Phys. JHEP11(2009)015 (arXiv:0908.3677)

[29] Konoplya R A and Zhidenko A 2010 Phys. Lett. B 686 199

[30] Nishioka T, Ryu S and Takayanagi T 2010 J. High Energy Phys. JHEP03(2010)131

[31] Cremonesi S, Melnikov D and Or Z Y 2010 J. High Energy Phys. JHEP04(2010)048

[32] Aprile F and Russo J 2010 Phys. Rev. D 81 026009

[33] Busa P, He J, Mukherjee A and Shieh H 2010 Phys. Lett. B 689 45

[34] Sonner J 2009 Phys. Rev. D 80 084031

[35] Nakano T, Vand W 2009 Phys. Rev. D 79 046004

[36] Chen S, Wang L, Ding C and Jing J 2010 Nucl. Phys. B 836 222

[37] Maeda K, Natsuno M and Okamura T 2009 Phys. Rev. D 79 126004
Maeda K, Natsuno M and Okamura T 2010 Phys. Rev. D 81 026002

[38] Siopsis G and Thirring J 2010 J. High Energy Phys. JHEP05(2010)013

[39] Ge X H, Wang B, Wu S F and Yang G H 2010 J. High Energy Phys. JHEP08(2010)108

[40] Liu Y Q, Pan Q Y, Wang B and Cai R G 2010 Phys. Lett. B 693 343

[41] Cai R G and Pang D W 2011 Phys. Rev. D 84 066004

[42] Jing J and Chen S 2010 Phys. Lett. B 686 68

[43] Jing J, Pan Q and Chen S 2011 J. High Energy Phys. JHEP11(2011)45

[44] Pan Q, Jing J and Wang B 2011 Phys. Rev. D 84 126020

[45] Wu J, Cao Y, Kuang X and Li W 2011 Phys. Lett. B 697 153
Ma D, Cao Y and Wu J 2011 Phys. Lett. B 704 604

[46] Weinberg S 1989 Rev. Mod. Phys. 61 1

[47] Sahni V and Starobinsky A 2000 Int. J. Mod. Phys. D 9 373
Peebles P J E and Ratra B 2003 Rev. Mod. Phys. 75 559

[48] Padmanabhan T 2003 Phys. Rep. 380 235

[49] Ratra B and Peebles P J E 1988 Phys. Rev. D 37 3406
Peebles P J E and Ratra B 1988 Astrophys. J. 325 L17

[50] Wetterich C 1988 Nucl. Phys. B 302 668
Caldwell R R, Dave R and Steinhardt P J 1998 Phys. Rev. Lett. 80 1582
Zlatev I, Wang L and Steinhardt P J 1999 Phys. Rev. Lett. 82 896

[51] Doran M and Jaeckel J 2002 Phys. Rev. D 66 043519

[52] Picon C A, Damour T and Mukhanov V 1999 Phys. Rev. D 59 209

[53] Chiba T, Okabe T and Yamaguchi M 2000 Phys. Rev. D 62 023511

[54] Caldwell R R 2002 Phys. Lett. B 545 23
McInnes B 2002 J. High Energy Phys. JHEP06(2002)029

[55] Nojiri S and Odintsov S D 2003 Phys. Lett. B 562 147

[56] Chimento P, Lazzat R 2003 Phys. Rev. Lett. 91 211301
Boisseau B, Esposito-Farese G, Polarski D and Starobinsky A A 2000 Phys. Rev. Lett. 85 2236
Gannouji R, Polarski D, Ranquet A and Starobinsky A A 2006 J. Cosmol. Astropart. Phys. JCAP09(2006)016

[57] Bronnikov K A and Fabris J C 2006 Phys. Rev. Lett. 96 251101 (arXiv:gr-qc/0511109)
Rodrigues M E and Oporto Z A A 2012 Phys. Rev. D 85 104022 (arXiv:1201.5337)

[58] Jardim D F, Rodrigues M E and Houanjo M J S 2012 arXiv:1202.2830
Nakomieczna A, Rogatko M and Moderski R 2012 Phys. Rev. D 86 044043 (arXiv:1209.1203)

[59] Gao C J and Zhang S N 2006 arXiv:hep-th/0604114

[60] Kiselev V V 2003 Class. Quantum Grav. 20 1187

[61] Chen S, Wang B and Su R 2008 Phys. Rev. D 77 124011

[62] Chen S and Jing J 2005 Class. Quantum Grav. 22 4651

[63] Zhang Y and Gui Y X 2006 Class. Quantum Grav. 23 6141

[64] Klebanov I R and Witten E 1999 Nucl. Phys. B 556 89