Clinical presentation and outcomes of peripartum cardiomyopathy in the Middle East: a cohort from seven Arab countries

Amar M. Salam1,2,3*, Mohamed Badie Ahmed1, Kadhim Sulaiman4, Rajvir Singh5, Mohammed Alhashemi2, Alison S. Carr1, Alawi A. Alsheikh-Al6, Khalid F. AlHabib7, Ibrahim Al-Zakwani8, Prashanth Panduranga4, Nidal Asaad9, Abdulla Shehab9, Wael ALMahmeed10 and Jassim Al Suwaidi2,3

1College of Medicine, QU Health, Qatar University, University street, Doha, 2713, Qatar; 2Adult Cardiology, Hamad Medical Corporation, Hamad Medical city, Rayan Street, Doha, 3050, Qatar; 3Department of Medicine, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065, USA; 4Department of Cardiology, Royal Hospital, Muscat, Oman; 5Biostatistics Section, Clinical Research, Hamad General Hospital, Doha, Qatar; 6College of Medicine, Mohammad Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates; 7Department of Cardiac Sciences, King Fahad Cardiac Center, King Saud University, Riyadh, Saudi Arabia; 8College of Medicine and Health Sciences, Department of Pharmacology and Clinical Pharmacy, Sultan Qaboos University, and Gulf Health Research, Muscat, Oman; 9College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates; 10Cleveland Clinic, Abu Dhabi, United Arab Emirates

Abstract

Aims Published data on the clinical presentation of peripartum cardiomyopathy (PPCM) are very limited particularly from the Middle East. The aim of this study was to examine the clinical presentation, management, and outcomes of patients with PPCM using data from a large multicentre heart failure (HF) registry from the Middle East.

Methods and results From February to November 2012, a total of 5005 consecutive patients with HF were enrolled from 47 hospitals in 7 Middle East countries. From this cohort, patients with PPCM were identified and included in this study. Clinical features, in-hospital, and 12 months outcomes were examined. During the study period, 64 patients with PPCM were enrolled with a mean age of 32.5 ± 5.8 years. Family history was identified in 11 patients (17.2%) and hypertension in 7 patients (10.9%). The predominant presenting symptom was dyspnoea New York Heart Association class IV in 51.6%, class III in 31.3%, and class II in 17.2%. Basal lung crepitations and peripheral oedema were the predominant signs on clinical examination (98.2% and 84.4%, respectively). Most patients received evidence-based HF therapies. Inotropic support and mechanical ventilation were required in 16% and 5% of patients, respectively. There was one in-hospital death (1.6%), and after 1 year of follow-up, nine patients were rehospitalized with HF (15%), and one patient died (1.6%).

Conclusions A high index of suspicion of PPCM is required to make the diagnosis especially in the presence of family history of HF or cardiomyopathy. Further studies are warranted on the genetic basis of PPCM.

Keywords Cardiomyopathy; Heart failure; Outcomes; Peripartum; Registry; Symptoms

Introduction

Most of the available literature on peripartum cardiomyopathy (PPCM) was based on either small case series or larger registry-based administrative data, focusing on incidence, risk factors, and short-term outcomes.1,2 Published data on the clinical presentation of PPCM are very limited particularly from the Middle East. In the current study, we used prospectively collected data from a real-world cohort of consecutive patients with PPCM hospitalized with acute heart failure (HF) with two specific aims: firstly, to examine in detail the clinical presentation of patients with PPCM and, secondly, to report the management, and in-hospital and 1 year clinical outcomes of PPCM in seven Arab countries in the Middle East.
Peripartum cardiomyopathy in the Middle East

Methods

Study design

Data were extracted from the Gulf CARE registry (Gulf aCute heArt failuRe Registry). Details of the Gulf CARE design were previously published. In summary, Gulf CARE was a multicentre, multinational, prospective, observational study that recruited patients who were admitted with the final diagnosis of acute HF from 47 hospitals in 7 Middle Eastern countries in the Arabian Gulf (Oman, Saudi Arabia, United Arab Emirates, Qatar, Bahrain, Yemen, and Kuwait) from February 2012 until November 2012. Study ethical approval was obtained from all concerned authorities in the recruiting centres, and informed consent was obtained from all patients. The study was registered at clinicaltrials.gov with the number NCT01467973. PPCM was defined as HF in the last month of pregnancy and up to 5 months postpartum with left ventricular systolic dysfunction (left ventricular ejection fraction <45%), where no other cause of HF was found.

Statistical analysis

Baseline and outcome data were presented as percentages for categorical variables and as continuous variables as means and standard deviations (and median and interquartile range for non-normally distributed variables) as appropriate. The Statistical Package for Social Sciences Version 22.0 (SPSS Inc., USA) was used for the analysis.

Results

Baseline characteristics

The study included 64 patients hospitalized with acute HF with the diagnosis of PPCM. Most of the patients were Arabs (96.9%) with a mean age of 32.5 ± 5.8 years. A family history of cardiomyopathy/HF was present in 11 patients (17.2%), and 12 patients (18.8%) had a past history of HF. Hypertension was present in seven patients (10.9%) and diabetes mellitus in three patients (4.7%).

Symptoms

All patients presented with dyspnoea (100%). The majority (51.6%) of patients were in New York Heart Association (NYHA) class IV, followed by NYHA class III (31.3%) and NYHA class II (17.2%). Other important symptoms were orthopnoea (90.6%), easy fatigability (81.3%), abdominal/lower limb swelling (79.7%), and weight gain (68.8%).

Signs

Common physical signs included basal lung crepitations (98.2%), peripheral oedema (84.4%), a raised jugular venous pressure (76.6%), and an enlarged tender liver (67.2%).

Investigations

The mean left ventricular ejection fraction by transthoracic echocardiography was 35% (±9). Electrocardiogram in all patients showed sinus rhythm with no reported significant arrhythmia. One patient was hospitalized after resuscitation from cardiac arrest. Only seven patients had results for HF biomarkers; B-type natriuretic peptide (BNP) and N-terminal proBNP (NT-proBNP) were elevated in all (Table 1).

In-hospital course

Three patients (4.7%) underwent tracheal intubation and mechanical ventilation. Inotropes were used in 10 patients (15.6%), blood transfusion in 9 patients (14.1%), and antibiotics were administered to 16 patients (25%). The median length of stay was 7 days (interquartile range 6–11). There was one case of in-hospital mortality (1.6%) that occurred in the patient that presented with cardiac arrest.

Discharge medications

Most patients were discharged on diuretics (98.4%), beta-blockers (75%), angiotensin-converting enzyme inhibitors (76.6%), and aldosterone antagonists (68.8%).

One-year follow-up

At 1 year, rehospitalization for HF had occurred in nine patients (14.8%) with one new death reported (1.6%) (Table 2).

Discussion

The current study examined in detail the clinical features of patients with PPCM admitted with acute HF in seven Middle Eastern countries. The striking observation in our study was that a significant number of PPCM patients presented with only mild to moderate dyspnoea (17.2% NYHA class II and 31.3% NYHA class III). Dyspnoea is commonly seen in normal pregnancy, affecting up to 60% of healthy women during exercise and 20% of women at rest. Physiological dyspnoea of pregnancy is thought to be induced by sex hormone-related hyperventilation and the increased metabolism in normal
Clinical presentation

Patients presented as investigations

Table 1 Baseline characteristics, clinical presentation, and investigations

Variable	Presented as n (%)	PPCM (N = 64)
Patients’ characteristics		
Age in years, mean ± SD	32.5 ± 5.8	
Ethnicity: Arab	62 (96.9%)	
Family history of cardiomyopathy/heart failure	11 (17.2%)	
Past history of systolic LV dysfunction	12 (18.8%)	
Hypertension	7 (10.9%)	
Diabetes mellitus	3 (4.7%)	
Hyperlipidemia	1 (1.6%)	
Asthma/COPD	1 (1.6%)	
Thyroid disease	1 (1.6%)	
Atrial fibrillation	1 (1.6%)	
Current smoker	3 (4.7%)	
Clinical presentation		
Dyspnoea NYHA class		
NYHA II	11 (17.2%)	
NYHA III	20 (31.3%)	
NYHA IV	33 (51.6%)	
Orthopnoea	58 (90.6%)	
Easy fatigability	52 (81.3%)	
Abdominal/lower limb swelling	51 (79.7%)	
Chest pain	12 (18.8%)	
Palpitation	27 (42.2%)	
Weight gain	44 (68.8%)	
RR (b.p.m.), mean ± SD	79.7 ± 10.8	
RR, mean ± SD	27.5 ± 4.7	
BMI (kg/m²), mean ± SD	27.2 ± 5	
Systolic blood pressure (mmHg), mean ± SD	125.5 ± 28.8	
Diastolic blood pressure (mmHg), mean ± SD	83.4 ± 21	
Raised JVP ≥ 6	49 (76.6%)	
Signs of pleural effusion	21 (32.8%)	
Gallbladder	45 (70.3%)	
$\text{BNP} \quad (\mu \text{g/mL})$, mean ± SD	90.5 ± 29.6	
Creatinine (µmol/L), mean ± SD	11 ± 2	
Renal failure	2 (3.1%)	

In-hospital course

Inotropic agents | 10 (15.6%) |
IV	3 (4.7%)
Intubation/ventilation	1 (1.6%)
Major bleeding	2 (3.1%)
Blood transfusion	9 (14.1%)
Inhospital mortality	1 (1.6%)

Table 2 Management and outcomes

Variable	PPCM, N (%)	
MNPI class		
NYHA IV	33 (51.6%)	
NYHA III	20 (31.3%)	
NYHA II	11 (17.2%)	
Recurrence		
Cause of death		
Arrhythmias	1 (1.6%)	
Other		
Rehospitalization for HF at 1 year	9 (14.8%)	

Moreover, the physical signs specific to HF that were observed in most of our patients were signs of pulmonary oedema, namely, basal lung crepitations. As lung crepitations are not considered part of the physiological signs associated with pregnancy, further lung should be carefully examined in pregnant patients presenting with dyspnoea.

A family history of cardiomyopathy or HF was present in 17.2% of our patients. This is consistent with previous reports that suggested, at least in some cases, a hereditary or genetic component of PPCM. A family history of cardiomyopathy (imprecisely defined as PPCM, idiopathic cardiomyopathy, sudden death, or arrhythmias in first-degree relatives) was noted in 15% of patients in one German cohort. In addition, a genome-wide association study in 79 patients identified a single-nucleotide polymorphism near the parathyroid hormone–like hormone gene as being associated with PPCM. Furthermore, variants in genes encoding myofibrillar proteins including the gene encoding the sarcomere protein titin have been identified in rare pedigrees of patients affected by both PPCM and dilated cardiomyopathy (DCM). Genetic mutations surrounding dystrophin have also been proposed. Moreover, a retrospective study investigated the association of familial DCM and PPCM and found that a subset of PPCM patients with certain genes had an initial manifestation of pregnancy.
familial DCM. It is not easy to distinguish sporadic PPCM from other genetic forms, and therefore, careful familial history should be taken in these patients as well as counselling of affected families.

Results for HF biomarkers, BNP and NNT-proBNP, were measured in seven patients in our cohort (10.9%) and in all were increased. Levels of BNP or NT-proBNP do not fluctuate during pregnancy or postpartum period and are only mildly elevated in women with pre-eclampsia. Natriuretic peptides have therefore been suggested as useful tools to evaluate pregnant and postpartum women with suspected HF to distinguish between physiologic symptoms of pregnancy and early signs of HF owing to their high sensitivity and negative predictive value. Combined with a transthoracic echocardiogram, BNP or NT-proBNP could be useful non-invasive screening tests when PPCM is suspected.

Conclusions

A high index of suspicion of PPCM is required to make the diagnosis as associated symptoms and signs can be indistinguishable from those related to normal pregnancy. Transthoracic echocardiography and BNP biomarkers are useful screening tests to aid in an early diagnosis to limit life-threatening complications. Future HF registries should include variables specific to pregnancy and foetal outcomes, when PPCM is the aetiology of HF, which would enable detailed study of this uncommon condition.

Acknowledgements

We would like to thank the Gulf CARE registry investigators, data collectors, and staff at all the participating centres for their invaluable efforts and cooperation. Open Access funding was provided by the Qatar National Library.

Conflict of interest

The authors report no relationships that could be construed as a conflict of interest.

Funding

Gulf CARE is an investigator-initiated study conducted under the auspices of the Gulf Heart Association and funded by Servier, Paris, France, and (for centres in Saudi Arabia) by the Saudi Heart Association [The Deanship of Scientific Research at King Saud University, Riyadh, Saudi Arabia (Research Group Number RG-1436-013)]. This does not alter our adherence to policies on sharing data and materials, and the funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

1. Davis MB, Arany Z, McNamara DM, Goland S, ElKayam U. Peripartum cardiomyopathy: JACC state-of-the-art review. J Am Coll Cardiol 2020; 75: 207–221.
2. Sliwa K, Mebazaa A, Hilfiker-Kleiner D, Petrie MC, Maggioli AP, Laroche C, Regitz-Zagrosek V, Schaufelberger M, Tavazzi L, van der Meer P, Roos-Hesselink JW, Seferovic P, van Spandonck-Zwarts K, Mhakwem A, Böhm M, Mouquet F, Pieske B, Hall R, Ponikowski P, Bauersachs J. Clinical characteristics of patients from the worldwide registry on peripartum cardiomyopathy (PPCM): EUROSochanical Research Programme in conjunction with the Heart Failure Association of the European Society of Cardiology Study Group on PPCM. Eur J Heart Fail 2017; 19: 1131–1141.
3. Sulaiman KJ, Pandurangana P, Al-Zakwani I, Alsheikh-Ali A, Al-Habib K, Al-Suwaidi J, Al-Mahmeed W, Al-Faleh H, El-Asfar A, Al-Motarreb A, Ridha M. Rationale, design, methodology and hospital characteristics of the first Gulf Acute Heart Failure Registry (Gulf CARE). Heart Views 2014; 15: 6–12.
4. García-Rio F, Pino JM, Gómez L, Alvarez-Sala R, Villasante C, Villamor J. Regulation of breathing and perception of dyspnea in healthy pregnant women. Chest 1996; 110: 446–453.
5. Wang WW, Wang Y. Peripartum women with dyspnea in the emergency department: is it peripartum cardiomyopathy? Medicine (Baltimore) 2018; 97: e11516.
6. Safirstein JG, Ro AS, Grandhi S, Wang L, Fett JD, Staniloae C. Predictors of left ventricular recovery in a cohort of peripartum cardiomyopathy patients recruited via the internet. Int J Cardiol 2012; 154: 27–31.
7. Lee SY, Chien DK, Huang CH, Shih SC, Lee WC, Chang WH. Dyspnea in pregnancy. Taiwan J Obstet Gynecol 2017; 56: 432–436.
8. Haghikia A, Podewski E, Libhabe R, Labidi S, Fischer D, Roestgen P, Tsikas D, Jordan J, Lichtiingen R, Kaisenberg CS, Struman I, Bovy N, Sliwa K, Bauersachs J, Hilfiker-Kleiner D. Phenotyping and outcome on contemporary management in a German cohort of patients with peripartum cardiomyopathy. Basic Res Cardiol 2013; 108: 366.
9. Horne BD, Rasmussen KD, Alharethi R, Budge D, Bruniholz KD, Metz T, Carlquist JF, Connolly JJ, Porter TF, Lappé DL, Muhlestein JB, Silver R, Stehlik J, Park JJ, May HT, Bair TL, Anderson JL, Renlund DG, Kfouri AG. Genome-wide significance and replication of the chromosome 12p11.22 locus near the PTHLH gene for peripartum cardiomyopathy. Circ Cardiovasc Genet 2011; 4: 359–366.
10. van Spaandonck-Zwarts KY, Posafalvi A, van den Berg MG, Milhiker-Kleiner D, Bollen IAE, Sliwa K, Alders M, Almomin R, van Langen IM, van der Meer P, Sinke RJ, van der Velden J, van Veldhuisen DJ, van Tintelen J. Titin gene mutations are common in families with both peripartum cardiomyopathy and dilated cardiomyopathy. Eur Heart J 2014; 35: 2165–2173.
11. Zagelbaum NK, Bhinder J, Gupta CA, Frishman WH, Aronow WS. Peripartum...
cardiomyopathy incidence, risk factors, diagnostic criteria. Pathophysiology and Treatment Options Cardiol Rev 2020. [Epub ahead of print]; 28: 148–155.

12. van Spaandonck-Zwarts KY, van Tintelen JP, van Veldhuisen DJ, van der Werf R, Jongbloed JD, Paulus WJ, Dooijes D, van den Berg MP. Peripartum cardiomyopathy as a part of familial dilated cardiomyopathy. Circulation 2010; 121: 2169–2175.

13. Hameed AB, Chan K, Ghamsary M, Elkayam U. Longitudinal changes in the B-type natriuretic peptide levels in normal pregnancy and postpartum. Clin Cardiol 2009; 32: E60–E62.

14. Tanous D, Siu SC, Mason J, Greutmann M, Wald RM, Parker JD, Sermer M, Colman JM, Silversides CK. B-type natriuretic peptide in pregnant women with heart disease. J Am Coll Cardiol 2010; 56: 1247–1253.

15. Malhamé I, Hurlburt H, Larson L, Poppas A, Nau C, Bourjeily G, Mehta N. Sensitivity and specificity of B-type natriuretic peptide in diagnosing heart failure in pregnancy. Obstet Gynecol 2019; 134: 440–449.