Diagnostic and methodological evaluation of studies on the urinary shedding of SARS-CoV-2, compared to stool and serum: A systematic review and meta-analysis

Mohammad Reza Roshandel¹, Masoud Nateqi², Ramin Lak³, Pooya Aavani⁴, Reza Sari Motlagh⁵, Shahrokh F. Shariat⁶, Tannaz Aghaei Badri⁷, John Sfakianos⁸, Steven A. Kaplan⁹, Ashutosh K. Tewari¹⁰

¹ Urology Department of Icahn School of Medicine, Mount Sinai Hospitals, NY, USA
² Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, USA
³ Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
⁴ Department of Biology, Emory University, Atlanta, Georgia, USA
⁵ Urology Department of Medical University of Vienna, Austria

*Correspondence to: ashstewari@mountsinai.org

Received July 9, 2020; Accepted September 13, 2020; Published September 30, 2020

Doi: http://dx.doi.org/10.14715/cmb/2020.66.6.26

Abstract: Investigating the infectivity of body fluid can be useful for preventative measures in the community and ensuring safety in the operating rooms and on the laboratory practices. We performed a literature search of clinical trials, cohorts, and case series using PubMed/MEDLINE, Google Scholar, and Cochrane library, and downloadable database of CDC. We excluded case reports and searched all-language articles for review and repeated until the final drafting. The search protocol was registered in the PROSPERO database. Thirty studies with urinary sampling for viral shedding were included. A total number of 1,271 patients were enrolled initially, among which 569 patients had undergone urinary testing. Nine studies observed urinary viral shedding in urine from 41 patients. The total incidence of urinary SARS-CoV-2 shedding was 8%, compared to 21.3% and 39.5% for blood and stool, respectively. The summarized risk ratio (RR) estimates for urine positive rates compared to the pharyngeal rate was 0.08. The pertaining RR urine compared to blood and stool positive rates were 0.20 and 0.33, respectively. Our review concludes that not only the SARS-CoV-2 can be excreted in the urine in eight percent of patients but also its incidence may have associations with the severity of the systemic disease, ICU admission, and fatality rates. Moreover, the findings in our review suggest that a larger population size may reveal more positive urinary cases possibly by minimizing biases.

Key words: SARS-CoV-2; COVID-19; Urine; Real-time RT-PCR; Infection.

Introduction

Urinary viral shedding can be important from the aspects of diagnosis, vertical and horizontal transmission of infection (1). Viral shedding has been proven for some other contagious viruses including the Ebola virus, Zika virus, and hepatitis-B virus (2, 3).

Up to date, SARS-CoV-2 has spread to 213 countries and territories and infected over 28,000,000 patients around the globe with around 1,000,000 death toll (4). Before Coronavirus disease-2019 (COVID-19), the latest coronavirus outbreaks were the severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1) and Middle Eastern respiratory syndrome coronavirus (MERS-CoV) outbreaks. For SARS-CoV-1, the urinary positivity rates were reported to be up to 42% (5). SARS-CoV-2 structural features are similar to both SARS-CoV-1 and MERS-CoV which all belong to the family Coronaviridae (6).

The presence of SARS-CoV-2 has been shown in urine (7,12). Angiotensin-converting enzyme-II (ACE2) has been known as the cellular entry receptor of SARS-CoV-2 (13, 14). The cells with ACE-II receptors such as epithelia of lung, kidney, and bladder may act as targets to SARS-CoV-2 (9, 15, 16). Although there are discrepancies in the reported results of the studies over the SARS CoV-2 urinary shedding, since the viral dynamics are yet to be fully determined, it has been recommended that the urethral or ureteral instrumentation and handling should be carried out cautiously (17).

Determining whether the virus is detectable throughout the disease is critical to control transmission. Considering the stability of SARS-CoV-2 for up to 72 hours (18), performing urological surgeries, or collecting infected urinary samples may put urologists and health care workers at risk (19). The Ebola virus epidemic (2014 to 2015) was an awakening alarm for the health care community regarding the lack of biosafety in the handling of samples containing suspected special pathogens (20). His is true, particularly for the novel pathogens in fluid samples (21), as the recommendations are often fluid (21). Learning about the infectivity also can alter preventative measures in the operating room and the settings needed for safety on laboratory practices (22).

Furthermore, the probability of transmission by pets (23, 24), leaves urine with a large potential to be a source of disease spread (25, 26). Although no data are
available to confirm or exclude the possibility of such transmission, CDC advises restricting contact with pets and other animals while one has COVID-19 (27).

By this review, we systematically investigated the findings on the urinary SARS-CoV-2 to points out the important methodological considerations needed to be considered in future studies.

Materials and Methods

The protocol for this systematic review was registered with the International Prospective Register of Systematic Reviews (CRD42020187294). The review follows the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analysis) statement (28).

Literature search strategies

A systematic search of the literature was performed in PubMed/MEDLINE, Google Scholar, Cochrane library, and COVID-19 research articles downloadable database of CDC (Centers for Disease Control and Prevention). The comprehensive literature was performed in June 2020. No language restrictions were applied. Articles published in 2019 and 2020 were included. Searches were repeated until the final drafting of the manuscript, to capture emerging evidence from the ongoing studies. The searches included medical subject headings (MeSH) and keywords for SARS-CoV-2, COVID, Corona, together with shedding, persistence, urine, urinary, specimen, viral load, or RNA body fluids. Searches were designed to be broad and comprehensive initially, using the following keywords and MeSH terms: (“specimen” or “urine” or “urinary”) and (“corona” or “coronavirus” or “COVID” or “COVID-19” or “COVID-2019” or “SARS” or “SARS-CoV” or “SARS-CoV-2”).

Eligibility criteria and study selection

Study selection was based on predefined eligibility criteria within a CoCoPop (Condition, Context, Population) and a PIRD (Population, Index Test, Reference test, Diagnosis of Interest) format (Table 1) (29). Additional exclusion criteria were applied at the full-text stage. After finalizing the selection of studies on the urinary SARS-CoV-2, information on viral existence in stool and blood specimens were explored in the selected studies (Figure 1).

All studies required a minimum of 2 patients were included. All potential studies were independently screened by two investigators. In the case disagreement, it resolved either through discussion or the involvement of a third researcher according to Delphi consensus criteria. Clinical trials, retrospective, prospective observational, case series, and cross-sectional studies were included as well as supplementary or non-peer-reviewed reports, correspondence, research letters, and preprints. Review articles, case reports, or non-relevant articles were excluded from the pool. Following reviewing and extraction of data, references of each manuscript were

Table 1. List of inclusion/exclusion criteria.

Population	Any age with a confirmed COVID-19 on the admission or later	Animal studies
Interventions	Real-time RT-PCR	Limited to non-RT-PCR
Comparisons	Stool and serum specimens	Innovative methods or uncommon genes incorporated to the test
Outcomes	Existence of shedding of viral RNA	Case Reports
Type of Study	Any study more equal/more than 2 cases with original data (including editorials, letters, comments, abstracts, summaries, Case reports)	Review articles
Timing and Setting	2019 and 2020, All settings	Publications with no original data (e.g., comments, reviews)
		Non-English publications

Figure 1. Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flow diagram shows the study selection process. Adapted from Moher et al. (doi.org/10.1371/journal.pmed.1000097) ©2009, under terms of Creative Commons Attribution 4.0 International License.
searched for relevant missing manuscripts.

Data extraction
We created standardized forms for data extraction and the pilot tested the forms before the process of data extraction. We completed the data abstraction process using created forms to record study characteristics, clinical data, and laboratory data including study year and design, country of study origin, total initial population size, test type for disease diagnosis, test type for samples (urine/stool/rectal swab/blood), patients' age (including mean and range), number of positive and total patients and/or (wherever applicable) number of positive and total specimens collected for each test category, disease severity, ICU admission, and fatality rate. More details for study items are shown in Table 2.

Risk of bias assessment and strength of body of evidence
Two investigators assessed the risk of bias for individual studies independently using JBI's (Joanna Briggs) critical appraisal tools for prevalence study and diagnostic test accuracy studies to assess the trustworthiness, and results of the studies (30-32).

Statistical analysis
Forest plots were used to assess risk ratio (RR) and summarized them to describe RR of viral shedding rates in the urine and control groups (i.e., nasopharynx, stool, blood). Primary, secondary, and tertiary meta-analysis was conducted among all studies that reported urine and nasopharynx positive rates, urine, and stool positive rates, urine, and serum positive rates as an outcome, respectively. The heterogeneity across studies was evaluated using p-values, and Q and I² statistics. Random effect and fixed effect meta-analysis were used when the heterogeneity was greater and lower than 50%, respectively. P-values lower than 0.05 were considered statistically significant. All analyses were carried out using Stata version 14.

Results
A total of 30 studies met the inclusion criteria and were included in the review (8-13, 17, 35-49). The overall prevalence of urinary SARS-CoV-2 shedding was 8%. This was 21.3% and 39.5 % for blood and stool respectively.

Study characteristics and urinary testing population
Characteristics of the included studies, comparison among positive and negative studies are detailed in Tables 2, 3, and Figure 2.

I. Primary Study Population: A total number of 1,271 COVID-19 patients were enrolled initially in the studies. The confirmatory testing was positive pharyngeal swabs, except two studies that included four patients with initially negative pharyngeal but positive stool results (13, 40). Essentially, all studies included patients with a median age between 40s and 60s (ranged from 6 months to 92 years).

II. Ultimate Urinary Tested Population: Of 746 patients, 439 had undergone urinary testing. In three studies, the number of urinary tests patients were not available, instead, the total number of laboratory samples (119 samples in total) was reported (Diagram 2).

III. Stool/rectal Swab and Blood Sampling: Of 30 studies with urinary sampling for viral shedding, 21 studies performed fecal/rectal swab testing and 22 studies accomplished blood viral testing.

Laboratory methods to identify SARS CoV-19 in the literature
Within the literature examined, the most commonly
Table 3. Demographic information of studies and urinary viral results.

Study	Country	Initial population	Age (mean/ median)	Patients§ with (+) urine among tested ones	Urine samples¶ tested
Zhang N (33)	China/Beijing	23	48 *	2/23	2/56
Ling Y (34)	China/Shanghai	66	44	4/58	
Wang L (35)	China/Wuhan	116	54	5/53	
Zheng S (10)	China	96	55	1/67	
Tan W (36)	China	67	49	12/64	
Mondanizadeh M (37)	China	50	46	0/50	
Peng L (38)	China	9	38.9	1/9	
Kujawski SA (39)	USA/CDC	12	53	0/10	
Ghinai I (40)	USA/Illinois	2	NA	0/2	0/12
Young BE (41)	Singapore	18	47	0/10	
Wölf R (42)	Germany/Munich	9	NA	0/9	0/27
Lescure XF (43)	France/Paris	5	48	0/5	
Yu F (44)	China/Beijing	76	40*	NA	0/14
To KKW (45)	China/Hong Kong	23	62*	0/23	
Chan JFW (16)	China/Hong Kong	5	55.4	0/5	
Wang W (46)	China/Beijing	205	44	NA	0/72
Pan Y(X) (47)	China/Beijing	2	NA	0/2	
Lo IL (48)	China/Macau SAR	10	54	0/10	0/49
Chan JFW (49)	China/Hong Kong	15	63	NA	0/33
Chen Y (50)	China/Wuhan	42	51	0/10	
Fang Z (51)	China/Xiangan	32	41	0/23	
Mumm JN (52)	Germany/Munich	7	62	0/6	
Diao B (53)	China/Wuhan	259	NA	14/19	
Qiu L (54)	China/Beijing	10	52 to 80	0/10	
Xie C (55)	China/Chengdu	19	33	0/9	
Kim JY (56)	Korea/Seoul	2	45	0/2	
Couturier A (57)	France/Paris	2	53	0/2	
Jeong HW (58)	Korea/Chongju	5	63	5/5	
Liu P (59)	China/Shanghai	9	NA	0/9	
Kim JM (60)	Korea/Chongju	74	43	2/74	2/274

* median; ¶ the provided numbers are positive cases/specimens out of available total ones

Table 4. Clinical characteristics of patients in studies.

Study	Case-Fatality (death/total cases)	Severe Pneumonia (/total cases)	ICU /ARDS (/total cases)
Zhang N	0	2/23	
Ling Y	0	0	
Wang L	7/116	46/116	11/116
Zheng S	0	74/96	30/96
Tan W	0	29/67	9/67
Mondanizadeh M			
Peng L			
Kujawski SA	0	0	1/12
Ghinai I	0	0	0
Young BE	0	5/18	2/18
Wölf R	0	0	0
Lescure XF	1/5	3/5	3/5
Yu F	17/76		
To KKW	2/23	10/23	5/23
Chan JFW	0	3/6	
Wang W	39/205		
Pan Y(X)	1/2		
Lo IL	0	4/10	0
Chan JFW			
Chen Y	0	11/42	8/32
Fang Z	0		
Mumm JN			
Diao B			
Qiu L		10/10	
Xie C			
Kim JY			
Couturier A			
Jeong HW			2/2
Liu P			
Kim JM			

*Blank spaces= no data was provided.
used assays for detection of SARS-CoV-2 in different samples such as urine, stool, blood, and pharyngeal swabs were RNA extraction followed by semi-quantitative and quantitative real-time reverse transcriptase-polymerase chain reaction (real-time RT-PCR, or rRT-PCR). In some studies, serological and molecular methods such as enzyme-linked immunosorbent assay (ELISA), partial and whole-genome sequencing were used for more verification. Several specific primers pairs were used to amplification of gene regions including RdRp/helicase, spike, and nucleocapsid genes of SARS-CoV-2. Such data were not available for all papers.

Severity, ICU admission, fatality rate, and patient enrolling

The COVID-19 severity and ICU admission rates are detailed in Table 4.

- 20.1% of the total initial population were admitted into the ICU, as reported in 13 studies.
- 33.0% of the total initial population had severe respiratory disease because of SARS-CoV-2, as reported in 16 studies.
- There was no information about the severity or ICU admission in the rest of the studies. Four studies that included the cases terminated by death reported a total fatality rate of 7.6% (11/144). The other 11 studies only enrolled survived cases. Related information was not provided in 15 studies.

Shedding in urine and other specimens

The results are shown in Table 5 and Figure 2.

1. Urinary results: Of 30 studies, urinary viral shedding was observed in nine studies.
2. Stool or rectal swab results: 19 of 23 studies found positivity in the stool samples.
3. Blood testing results: 14 out of 25 studies reported positive results.

Meta-analysis

Meta-analysis was performed across the urinary studies. The summarized RR of 30 retrospective studies that reported urine compared to nasopharynx positive rates, was 0.08 (95% confidence intervals (CI); 0.05-0.16). The pertaining RR urine compared to blood and stool positive rates were 0.20 (95% CI; 0.14-0.29) and 0.33 (95% CI; 0.15-0.72) respectively. The forest plots of the meta-analysis are shown in Figures 3-5. There was no significant heterogeneity across all studies that included in the all meta-analysis, therefore fixed-effect analyses have been used.

Discussion

According to our three meta-analyses, stool and blood tests are associated with a significantly higher positive rate than urine (Figures 1-3). These results indicated that when the naso-/oro-pharyngeal SARS-CoV-2 test is negative, stool, and/or blood tests are more helpful for virus diagnosis than urine. Nevertheless, different factors such as the nature of viruses, missing data, design flaws, or methodological limitations might have contributed to these findings. The importance of urinary viral infection should not be ignored in terms of protective measures. We reviewed some important factors

STUDY	Stool⁺ Patients	Stool⁺² Specimens	Blood⁺ Patients	Blood⁺² Specimens
Zhang N	10/12	33/51	0/23	0/56
Ling Y	11/66	-	0/14	-
Wang L	-	-	-	-
Zheng S	55/93	-	39/95	-
Tan W	45/62	-	9/63	-
Mondanizadeh M	2/50	-	3/50	-
Peng L	2/9	-	2/9	-
Kujawski SA	7/10	-	1/12	-
Ghinai I	1/2	4/11	0/2	0/14
Young BE	4/8	-	1/12	-
Wölfel R	0/4	0/13	0/9	0/31
Lescure XF	2/5	-	1/5	-
Yu F	-	-	NA	0/4
To KK W	4/23	-	5/23	-
Chan JFW	0/2	-	2/6	-
Wang W	NA	44/153	NA	3/307
Pan Y(X)	0/2	-	-	-
Lo II	10/10	46/79	-	-
Chan JFW	NA	7/33	NA	10/87
Chen Y	28/42	-	-	-
Fang Z	-	-	23/32	-
Mumm JN	-	-	2/4	-
Diao B	-	-	-	-
Qiu L	-	-	0/10	-
Xie C	8/9	-	0/9	-
Kim JY	0/2	-	1/2	-
Couturier A	-	-	0/1	-
Jeong HW	5/5	-	5/5	-
Liu P	8/9	-	0/9	-
Kim JM	8/74	13/129	6/74	9/323

*º the provided numbers are positive cases/specimens among tested cases
*²rRT-PCR=Real-time Reverse Transcription Polymerase Chain reaction
sincerely, we emphasize the importance of inclusion of ticoid, an immunosuppressive medication (8, 10). Augmented and prolonged the existence of the virus in the blood of ICU patients was longer. The authors suggested its relationship with viral load and disease severity. Viruses were not found in the urine samples. Although their classification based on ICU admission was informative, the study did not have any information on whether the cases who ended in death which might bear a higher urinary positive rate had not been excluded from the study (63). Similarly, some other studies with totally negative urinary results were limited to the populations with mild or moderate severity with null fatality (64, 65).

According to figure 2, the incidence risk of viral shedding in stool or blood was similar for both groups of studies with and without positive results. While trying to justify why a study has positive urinary results but another study does not, the mentioned finding might not be in favor of the hypothesis that it could have arisen from systematic flaws in or in inclusion or exclusion criteria, sampling, or handling methods.

Nevertheless, a lack of concordance between the severity of disease and ICU admission rates in two groups in table 2 indicates heterogeneity of study populations among the studies.

As a result, since the difference in the severity of COVID-19 may contribute to the urinary negative results, we suggest to consider it while planning the study.

Determining when the virus is detectable in the urine, is not simple. Different phases of the disease may lead to considerable differences in viral loads and peak concentrations and can be another factor responsible for different urinary findings. Toward the end of the period of the COVID disease, the virus is shown to be only intermittently detectable in pharyngeal swabs (41). Since the pharyngeal samples have much higher positive rates, finding a virus in the other fluid types could be more challenging.

As reported in SARS-CoV-1 studies, the urinary positivity rate was up to 42% at the end of the second week (5) with a peak occurring at weeks 3–4 and even shedding in the convalescent phase (66, 67). Similarly, for SARS-CoV-2, positive urinary samples were detected at the latest available detection point (16 or 21 days after illness onset) (7).

Another study with a urinary positivity rate of 6.9% for viral RNA, revealed urine could stay positive after the throat swabs turned negative (8).

Although regular serial sampling was performed for pharyngeal specimens in some of the studies in our review, that was not the case for urine. Since repeat urinary testing is warranted especially in clinically suspected cases with an initially negative urinary result, we would emphasize the importance of systematic serial sample monitoring, throughout the disease phases, with an increased number of tested samples.

Failure to find urinary viruses in many studies may be explained by their undersized study population. This may contribute to the positivity of urinary results found in studies done in China which were larger in popula-
tion. Our review demonstrated that a considerable number of studies with a larger population were able to find positive urinary results (10, 34, 36, 53, 60, 68).

Moreover, there was a considerable difference in number between the population initially enrolled and finally tested for urine. Exclusions were not explained, as in some studies it was found to be more than half of the initial population. Except for one study, all the mentioned studies were accompanied by no positive urinary results (9, 49, 53, 69).

Some studies with negative urinary results in this review had no stool positive findings (62, 65, 70), even though stool has been proven to have a high possibility of viral shedding (48.1%) (71). This co-negativity may also be explained by the errors in handling and laboratory techniques.

Although real-time RT-PCR is considered as the gold standard for the diagnosis of COVID-19 (72), some factors such as the RNA quality, operator variability, or processing methods can affect the test results (73-75). Also, this technique does not distinguish between RNA residues and viable active viruses (76). As SARS-CoV-2 shares a high nucleotide identity with SARS-CoV-1 (82%) (77), using nonspecific real-time RT-PCR (e.g. SYBR Green method) may cause false-positive results. Some studies reviewed herein, lack information concerning the real-time RT-PCR type, primer, and probe sequences, candidate genes for virus detection, presence or absence of positive control, and the cycling parameters for PCR assay.

Real-time RT-PCR C (cycle threshold) values may also differ because of specimen collection or handling. The presence of several enzymes such as protease, RNase, or bacteria and the absence of proteins that stabilize RNA and virus in the urine may explain the quick degradation of viral RNA (78, 79). Technical improvement in the sampling to prevent degradation of the urinary viral RNA (such as immediate addition of lysis buffer to the fresh urine) may help to increase the diagnostic sensitivity and diminish false negative (78, 80). Further studies are needed to assess the efficacy of these methods in SARS-CoV-2.

Another source of false-positive urinary results can be passive contamination of urine samples with stool or other sources that can occur in severely ill or in the presence of diarrhea. The presence of different genotypes in urine or the comparatively higher RNA concentrations in urine would indicate active replication in the urine rather than contamination and spillage.

As can be noticed so far, this review encountered several limitations that resulted from a lack of high-quality evidence. We just mentioned the most important topics that help in building researches with a deeper focus on the design and methodologic quality in the future and help assess the viral shedding in urine and other specimens more efficiently.

Based on review of the present literature, shedding of SARS-CoV-2 occurs in around 10 percent of population and it may have an association with the severity of systemic disease, need to admission in ICU and fatality. Investigating relationship between urine results and other factors is hardly possible without avoiding inappropriate exclusions. Furthermore, our review suggests that a larger population size may reveal more positive urinary cases. Moreover, using standardized laboratory quantitative control in real-time RT-PCR as well as repeat urinary testing would be warranted especially in patients with initially negative urinary results.

Declaration of interests
We declare no competing interests.

References
1. Delforje M-L, Costa E, Brancart F, Goldman D, Montesinos I, Zaytouni S, et al. Presence of Cytomegalovirus in urine and blood of pregnant women with primary infection might be associated with fetal infection. J Clin Virol. 2017;90:14-7.
2. Niedrig M, Patel P, El Wahed AA, Schäddler R, Yactayo S. Find the right sample: A study on the versatility of saliva and urine samples for the diagnosis of emerging viruses. BMC Infectious Diseases. 2018;18(1):707.
3. Knutsson M, Kidd-Ljunggren K. Urine from chronic hepatitis B virus carriers: implications for infectivity. Journal of medical virology. 2000;60(1):17-20.
4. Coronavirus disease 2019 (COVID-19): situation report, 131 [Internet]. World Health Organization. 2020 [cited 30 May 2020]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports.
5. HUI DSC, WONG PC, Wang C. SARS: clinical features and diagnosis. Respiriology. 2003;8:S20-S4.
6. Rabaan AA, Al-Ahmed SH, Haque S, Sah R, Tiwari R, Malik YS, et al. SARS-CoV-2, SARS-CoV, and MERS-CoV: a comparative overview. Le Infezioni in Medicina. 2020;2:174-84.
7. Zhang N, Gong Y, Meng F, Bi Y, Yang P, Wang F. Virus shedding patterns in nasopharyngeal and fecal specimens of COVID-19 patients. medRxiv. 2020.
8. Ling Y, Xu S-B, Lin Y-X, Tian D, Zhu Z-Q, Dai F-H, et al. Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients. Chinese medical journal. 2020.
9. Wang L, Li X, Chen H, Yan S, Li Y, Li D, et al. SARS-CoV-2 infection does not significantly cause acute renal injury: an analysis of 116 hospitalized patients with COVID-19 in a single hospital, Wuhan, China. Wuhan, China (2/17/2020). 2020.
10. Zheng S, Fan J, Yu F, Feng B, Lou B, Zou Q, et al. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort study. BMJ (Clinical research ed). 2020;369:m1443.
11. Tan W, Lu Y, Zhang J, Wang J, Dan Y, Tan Z, et al. Viral kinetics and antibody responses in patients with COVID-19. medRxiv. 2020.
12. Peng L, Liu J, Xu W, Luo Q, Chen D, Lei Z, et al. SARS-CoV-2 can be detected in urine, blood, anal swabs, and oropharyngeal swabs samples. Journal of Medical Virology. n/a(n/a).
13. Fung S, Kwan P, Fabri M, Horban A, Pelemis M, Hann H-W, et al. Randomized comparison of tenofovir disoproxil fumarate vs emtricitabine and tenofovir disoproxil fumarate in patients with lamivudine-resistant chronic hepatitis B. Gastroenterology. 2014;146(4):980-8: e1.
14. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nature Microbiology. 2020;5(4):562-9.
15. Lo IL, Lio CF, Cheong HH, Lei CI, Cheong TH, Zhong X, et al. Evaluation of SARS-CoV-2 RNA shedding in clinical specimens and clinical characteristics of 10 patients with COVID-19 in Macau. International Journal of Biological Sciences. 2020;16(10):1698.
16. Chan JF, Yuan S, Kok KH, To KK, Chu H, Yang J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster.
Lancet (London, England). 2020;395(10223):514-23.
17. Mottrie A. ERUS (EAU Robotic Urology Section) guidelines during COVID-19 emergency. https://uroweb.org/wp-content/uploads/ERUS-guidelines-for-COVID-def.pdf; EAU; 2020.
18. van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. New England Journal of Medicine. 2020;382(16):1564-7.
19. Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. Journal of Travel Medicine. 2020;27(2).
20. Hasan S, Ahmad S, Masood R, Saeed S. Ebola virus: A global public health menace: A narrative review. Journal of Family Medicine and Primary Care. 2019;8(7):2189-201.
21. Iwen PC, Smith PW, Hewlett AL, Kratochvil CJ, Lisco SJ, Sullivan JN, et al. Safety considerations in the laboratory testing of specimens suspected or known to contain Ebola virus. Oxford University Press Oxford, UK; 2015.
22. Iwen PC, Stiles KL, Pentella MA. Safety considerations in the laboratory testing of specimens suspected or known to contain the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). American Journal of Clinical Pathology. 2020;153(5):567-70.
23. Decaro N, Lorusso A. Novel human coronavirus (SARS-CoV-2): A lesson from animal coronaviruses. Vet Microbiol. 2020;244:108693.
24. Lam SD, Bordin N, Waman VP, Scholes HM, Ashford P, Sen N, et al. SARS-CoV-2 spike protein predicted to form stable complexes with host receptor protein orthologues from mammals, but not fish, birds or reptiles. bioRxiv. 2020.
25. Kariwa H, Fujiki M, Yoshimatsu K, Arikawa J, Takashima I, Hashimoto N. Urine-associated horizontal transmission of Seoul virus among rats. Archives of Virology. 1998;143(2):365-74.
26. Li M, Wang B, Li L, Wong G, Liu Y, Ma J, et al. Rift Valley Fever Virus and Yellow Fever Virus in Urine: A Potential Source of Infection. Virologica Sinica. 2019;34(3):342-5.
27. Ling Y, Xu SB, Lin VX, Tian D, Zhu ZQ, Dai FH, et al. Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients. Chin Med J (Engl). 2020;133(9):1039-43.
28. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med. 2009;151(4):W65-94.
29. Munn Z, Stern C, Aromataris E, Lockwood C, Jordan Z. What kind of systematic review should I conduct? A proposed typology and guidance for systematic reviewers in the medical and health sciences. BMC medical research methodology. 2018;18(1):5.
30. Munn Z, Moola S, Lisy K, Riitano D, Tufanaru C. Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and cumulative incidence data. International journal of evidence-based healthcare. 2015;13(3):147-53.
31. Moola S, Munn Z, Tufanaru C, Aromataris E, Sears K, Sfetcu R, et al. Chapter 7: Systematic reviews of etiology and risk. Joanna Briggs Institute Reviewer’s Manual The Joanna Briggs Institute. 2017:2019-05.
32. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Annals of internal medicine. 2011;155(8):529-36.
33. Zhang N, Gong Y, Meng F, Bi Y, Yang P, Wang F. Virus shedding patterns in nasopharyngeal and fecal specimens of COVID-19 patients. 2020;2020.03.28.20043059.
34. Ling Y, Xu S-B, Lin Y-X, Tian D, Zhu Z-Q, Dai F-H, et al. Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients. Chin Med J (Engl). 2020;133(9):1039-43.
35. Wang L, Li X, Chen H, Yan S, Li D, Li Y, et al. Coronavirus Disease 19 Infection Does Not Result in Acute Kidney Injury: An Analysis of 116 Hospitalized Patients from Wuhan, China. American journal of nephrology. 2020;51(5):343-8.
36. Tan W, Lu Y, Zhang J, Wang J, Dan Y, Tan Z, et al. Viral kinetics and antibody responses in patients with COVID-19. 2020.
37. Mondanizadeh M, Rahimi E, Sarmadian H, Jamalian M, Khanarinejad B. Evaluation of SARS-CoV-2 existence in blood, urine, and rectal swab in positive patients with different virus titer. 2020.
38. Peng L, Liu J, Xu W, Luo Q, Chen D, Lei Z, et al. SARS-CoV-2 can be detected in urine, blood, anal swabs, and oropharyngeal swabs specimens. 2020.
39. Kujawski SA, Wong KK, Collins JP, Epstein L, Kilerby ME, Midgley CM, et al. First 12 patients with coronavirus disease 2019 (COVID-19) in the United States. 2020.
40. Ghina JI, McPherson TD, Hunter JC, Kirking HL, Christiansen D, Joshi K, et al. First known person-to-person transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the USA. The Lancet. 2020;395(10230):1137-44.
41. Young BE, Ong SWX, Kalimuddin S, Low JG, Tan SY, Loh J, et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. 2020;323(15):1488-94.
42. Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al. Virological assessment of hospitalized patients with COVID-2019. 2020;581(7809):465-9.
43. Lescure F-X, Bouadma L, Nguyen D, Parisey M, Wicky P-H, Beihili S, et al. Clinical and virological data of the first cases of COVID-19 in Europe: a case series. The Lancet Infectious Diseases. 2020;20(6):697-706.
44. Yu F, Yan L, Wang N, Yang S, Wang L, Tang Y, et al. Quantitative Detection and Viral Load Analysis of SARS-CoV-2 in Infected Patients. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2020;71(15):793-8.
45. To KK-W, Tsang OT-Y, Leung W-S, Tam AR, Wu T-C, Lung DC, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. 2020.
46. Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, et al. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. Jama. 2020;323(18):1843-4.
47. Pan Y, Zhang D, Yang P, Poon LL, Wang QTLD. Viral load of SARS-CoV-2 in clinical samples. 2020;20(4):411-2.
48. Lo IL, Lio CF, Cheong HH, Lei CI, Cheong TH, Zhong X, et al. Evaluation of SARS-CoV-2 RNA shedding in clinical specimens and clinical characteristics of 10 patients with COVID-19 in Macau. 2020;16(10):1698.
49. Chan JF-W, Yip CC-Y, To KK-W, Tang TH-C, Wong SC-Y, Leung K-H, et al. Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel real-time reverse transcription-PCR assay validated in vitro and with clinical specimens. 2020;58(5).
50. Chen Y, Chen L, Deng Q, Zhang G, Wu K, Ni L, et al. The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients. 2020;92(7):833-40.
51. Fang Z, Zhang Y, Hang C, Ai J, Li S, Zhang W. Comparisons of viral shedding time of SARS-CoV-2 of different samples in ICU and non-ICU patients. The Journal of infection. 2020;80(1):147-78.
52. Mumm N-O, Nösterman A, Ruzicka M, Stihl C, Vilsmaier T, Munker D, et al. Urinary Frequency as a Possibly Overlooked Symptom in COVID-19 Patients: Does SARS-CoV-2 Cause Viral Cystitis? European Urology. 2020.
of acute respiratory syndrome coronavirus 2 infection by detection of nucleocapsid protein. 2020.
54. Qiu L, Liu X, Xiao M, Xie J, Cao W, Liu Z, et al. SARS-CoV-2 is not detectable in the vaginal fluid of women with severe COVID-19 infection. 2020.
55. Xie C, Jiang L, Huang G, Pu H, Gong B, Lin H, et al. Comparison of different samples for 2019 novel coronavirus detection by nucleic acid amplification tests. 2020.
56. Kim JY, Ko JH, Kim Y, Kim YJ, Kim JM, Chung YS, et al. Viral Load Kinetics of SARS-CoV-2 Infection in First Two Patients in Korea. J Korean Med Sci. 2020;35(7):e86-e.
57. Couturier A, Ferlicot S, Chevalier K, Guillot M, Essig M, Jauréguyberry S, et al. Indirect effects of severe acute respiratory syndrome coronavirus 2 on the kidney in coronavirus disease patients. Clinical kidney journal. 2020;13(3):347-53.
58. Jeong HW, Kim SM, Kim HS, Kim YI, Kim JH, Cho JY, et al. Viable SARS-CoV-2 in various specimens from COVID-19 patients. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases. 2020.
59. Liu P, Cai J, Jia R, Xia S, Wang X, Cao L, et al. Dynamic surveillance of SARS-CoV-2 shedding and neutralizing antibody in children with COVID-19. 2020;9(1):1254-8.
60. Kim JM, Kim HM, Lee EJ, Jo HJ, Yoon Y, Lee NJ, et al. Detection and Isolation of SARS-CoV-2 in Serum, Urine, and Stool Specimens of COVID-19 Patients from the Republic of Korea. Osong public health and research perspectives. 2020;11(3):112-7.
61. Hung I, Cheng V, Wu A, Tang B, Chan K, Chu C, et al. Viral loads in clinical specimens and SARS manifestations. Emerging infectious diseases. 2004;10(9):1550.
62. Chan JF-W, Yuan S, Kok K-H, To KK-W, Chu H, Yang J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. The Lancet. 2020;395(10223):514-23.
63. Fang Z, Zhang Y, Hang C, Zhang W, Ai J, Li S. Comparisons of nucleic acid conversion time of SARS-CoV-2 of different samples in ICU and non-ICU patients. The Journal of infection. 2020.
64. Kujawski SA, Wong KK, Collins JP, Epstein L, Killerby ME, Midgley CM, et al. First 12 patients with coronavirus disease 2019 (COVID-19) in the United States. MedRxiv. 2020.
65. Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020:1-5.
66. Chan PK, To W-K, Ng K-C, Lam RK, Ng T-K, Chan RC, et al. Laboratory diagnosis of SARS. Emerging infectious diseases. 2004;10(5):825.
67. Xu D, Zhang Z, Jin L, Chu F, Mao Y, Wang H, et al. Persistent shedding of viable SARS-CoV in urine and stool of SARS patients during the convalescent phase. Eur J Clin Microbiol Infect Dis. 2005;24(3):165-71.
68. Wang L, Li X, Chen H, Yan S, Li Y, Li D, et al. SARS-CoV-2 infection does not significantly cause acute renal injury: an analysis of 116 hospitalized patients with COVID-19 in a single hospital, Wuhan, China. 2020.
69. Yu F, Yan L, Wang N, Yang S, Wang L, Tang Y, et al. Quantitative detection and viral load analysis of SARS-CoV-2 in infected patients. Clinical Infectious Diseases. 2020.
70. Pan Y, Zhang D, Yang P, Poon LL, Wang Q. Viral load of SARS-CoV-2 in clinical samples. The Lancet infectious diseases. 2020;20(4):411-2.
71. Cheung KS, Hung IF, Chan PP, Lung K, Tsao E, Liu R, et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from the Hong Kong cohort and systematic review and meta-analysis. Gastroenterology. 2020.
72. Chan JF, Yip CC, To KK, Tang TH, Wong SC, Leung KH, et al. Improved Molecular Diagnosis of COVID-19 by the Novel, Highly Sensitive and Specific COVID-19-RdRp/HeL Real-Time Reverse Transcription-PCR Assay Validated In Vitro and with Clinical Specimens. J Clin Microbiol. 2020;58(5).
73. Overbergh L, Giulietti A, Valckx D, Decallonne R, Bouillon R, Mathieu C. The use of real-time reverse transcriptase PCR for the quantification of cytokine gene expression. J Biomol Tech. 2003;14(1):33-43.
74. Winichakoon P, Chaiwarith R, Liwrisakun C, Salee P, Goonma A, Limsukon A, et al. Negative nasopharyngeal and oropharyngeal swabs do not rule out COVID-19. Journal of clinical microbiology. 2020;58(5).
75. Wu J, Liu J, Zhao X, Liu C, Wang W, Wang D, et al. Clinical Characteristics of Imported Cases of Coronavirus Disease 2019 (COVID-19) in Jiangsu Province: A Multicenter Descriptive Study. Clinical Infectious Diseases. 2020.
76. Parshionikar S, Laseke I, Fout GS. Use of propidium monoazide in reverse transcriptase PCR to distinguish between infectious and noninfectious enteric viruses in water samples. Appl Environ Microbiol. 2010;76(13):4318-26.
77. Cheng VC, Lau SK, Woo PC, Yuen KY. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev. 2007;20(4):660-94.
78. Bharucha T, Sengvilaipaseuth O, Seephonelee M, Vongsouvath M, Vongsouvath M, Rattanavong S, et al. Viral RNA Degradation Makes Urine a Challenging Specimen for Detection of Japanese Encephalitis Virus in Patients With Suspected CNS Infection. Open Forum Infect Dis. 2019;6(3):ofz048-ofz.
79. Janvier F, Devalane D, Poyot T, Valade E, Merens A, Rollin PE, et al. Ebola virus RNA stability in human blood and urine in West Africa’s environmental conditions. Emerging Infectious Diseases. 2016;22:292+.
80. Niedrig M, Patel P, Abd El Wahed A, Schädler R, Yactayo S. Find the right sample: A study on the versatility of saliva and urine samples for the diagnosis of emerging viruses. BMC infectious diseases. 2018;18(1):1-14.