Mechanisms of body weight fluctuations in Parkinson’s disease

Andrea Kistner1,2,*, Eugénie Lhommée1,2 and Paul Krack1,2,3

1 Movement Disorder Unit, Department of Psychiatry and Neurology, University Hospital Grenoble, Grenoble, France
2 Unité 836, Équipe 11, INSERM, Grenoble Institut des Neurosciences, Grenoble, France
3 Joseph Fourier University, Grenoble, France

Typical body weight changes are known to occur in Parkinson’s disease (PD). Weight loss has been reported in early stages as well as in advanced disease and malnutrition may worsen the clinical state of the patient. On the other hand, an increasing number of patients show weight gain under dopamine replacement therapy or after surgery. These weight changes are multifactorial and involve changes in energy expenditure, perturbation of homeostatic control, and eating behavior modulated by dopaminergic treatment. Comprehension of the different mechanisms contributing to body weight is a prerequisite for the management of body weight and nutritional state of an individual PD patient. This review summarizes the present knowledge and highlights the necessity of evaluation of body weight and related factors, as eating behavior, energy intake, and expenditure in PD.

Keywords: Parkinson’s disease, body weight, eating behavior, DBS, dopamine, binge-eating disorder

INTRODUCTION

Parkinson’s disease (PD) is a chronic neurodegenerative disease with diffuse α-synuclein deposits in the neural system (1). The most prevalent symptoms in early disease are mainly due to progressive degeneration of the dopaminergic nigrostriatal and mesocorticolimbic pathways with motor (akinesia, rigidity, tremor) and non-motor (apathy, anxiety, depression) symptoms (2). The disease is also characterized by the presence of non-motor vegetative symptoms explained by a synucleinopathy of central and peripheral vegetative system (3) and in its advanced stages by dementia, which correlates with cortical deposits of alpha-synuclein (intracellular Lewy bodies and Lewy neurites) (4). On top of the dopaminergic system, serotonergic, noradrenergic, and cholinergic nuclei in the brainstem projecting to the cortex are also impaired by the diffusely synucleinopathy which starts in the lower brainstem. Typically, the first α-synuclein deposits are found in the vagal nerve with a gastroparesis and constipation starting before the first motor symptoms and leading the patients to consult before a diagnosis of PD can be made (5). According to the clinical stage, body weight of a given patient may considerably change during the course of the disease raising the risk for both disease-related under-nutrition and treatment-related overweight.

Body weight is determined by many factors including genetic, epigenetic, metabolic, and environmental components and under physiological conditions homeostatic behavioral adaptations protect against weight gain as well as weight loss (6).

However, regulation of body weight seems to be more effective in response to weight loss than to weight gain (7). Weight gain is the result of a positive energy balance, which means that energy intake exceeds expenditure, resulting in accumulation of fat. Although this equation seems rather simple maintaining a constant body weight is a complex physiological process comprising internal and external, homeostatic and hedonic, and neurological and metabolic factors. The fine regulation of these systems is hindered by the “obesogenic” environment characterized by increased availability of large amounts of palatable and energy-dense foods and presence of powerful food cues, together with minimal physical activity. The result is the increasing prevalence of obesity in western communities (8).

The situation of PD patients should be seen against this background with additional factors in relation to the severity of the disease and dopaminergic treatment: these factors include (1) perturbation of hypothalamic metabolic regulation, (2) alteration of energy expenditure (EE) (through tremor, rigidity, dyskinesia, physical activity including hyperactivity, sleep disorders), and (3) alteration of intake (i.e., perturbation of swallowing, gastrointestinal disorders, alteration of eating behavior).

The aim of this review is:

- To highlight pathophysiological mechanisms implicated in nutrition and leading to body weight fluctuations in PD.
- To summarize available data about body weight fluctuations in PD (literature until January 2014).
- To link observed body weight fluctuations to possible mechanisms in order to improve future patient care of PD patients.

PHYSIOLOGICAL MECHANISMS

HOMEOSTATIC CONTROL OF FOOD INTAKE

Homeostatic control of food intake and energy metabolism is assured by a network of several hypothalamic nuclei (Figure 1) [for review see Ref. (9–11)].

Central pathway of hunger

The neuronal «pathway of hunger» includes neurons in the arcuate nucleus containing orexigenic peptides (i.e., agouti-related peptide, neuropeptide Y). These neurons project to the
Another neuronal population in the arcuate nucleus is encoding the lateral hypothalamus which contains other anorexigenic peptides such as cocaine-and-amphetamine-regulated transcript (CART) which was also shown to interact with hedonic circuits and dopamine (11). Another central satiety signal is cocaine-and-amphetamine-regulated transcript; CRH, corticotropin-releasing hormone; OT, oxytocin; GLP-1, glucagon-like peptide; CCK, cholecystokinin; FFA, free fatty acids.

**Lateral Hypothalamus**

The lateral hypothalamus is a key area for the regulation of appetite and food intake. It is involved in the homeostatic control of hunger and satiety. This area contains neurons that are sensitive to ghrelin, a hormone that increases appetite, and leptin, a hormone that decreases appetite. The balance between these two hormones plays a crucial role in the regulation of food intake.

**Central Pathway of Satiety**

Another neuronal population in the arcuate nucleus is encoding serotonergic and melanin-concentrating hormone neurons. These neurons produce numerous orexigenic peptides, such as α-melanocyte-stimulating hormone, derived from a common precursor, pro-opiomelanocortin (POMC). Together with their receptor, these peptides constitute the melanocortin system which plays an important role in energy homeostasis. Interactions of this system with dopamine neurons in the nucleus accumbens are described (11). Another central satiety signal is cocaine-and-amphetamine-regulated transcript (CART) which was also shown to interact with hedonic circuits and dopamine (11).

**Peripheral Signals**

Peripheral signals are identified and the list is still growing [for review see Ref. (9–11)].

**Dopaminergic Control of Eating Behavior**

The hypothalamic control of food intake is modulated by the dopaminergic system and both systems are modulated by homeostatic orexigenic and anorexigenic signals such as ghrelin and leptin (26, 27). Dopamine and the dopamine D2 receptor play a central role in motivated behavior including feeding behavior (28, 29). However, the role of the dopaminergic system in feeding behavior is very complex and not completely understood. It seems to exert different actions in separate circuits and in the pattern of release (phasic versus chronic release) (26, 30).

**Exposure to Food and Food-related Cues**

Exposure to food and food-related cues results in an activation of the mesolimbic dopamine system and especially the projection from the ventral tegmental area to the nucleus accumbens [for review see Ref. (10, 30)]. This led to the hypothesis that the mesolimbic dopamine system mediated pleasure associated with eating [for review see Ref. (26, 27, 30)]. This idea is strongly challenged since it was shown that dopaminergic depletion of nucleus accumbens does not blunt the hedonic response to pleasant food and dopamine is not required for “liking” of food (28, 31). In line with these results, dopamine-deficient mice still demonstrate a marked preference for sucrose over water (31).

**Hunger and Appetite**

Hunger and appetite may be induced by ghrelin, which is the only peripheral hunger signal thus far identified. Ghrelin is a peptide synthesized and liberated from the gastric mucosa in fasting state (10). In addition to actions in the hypothalamus, ghrelin stimulates appetite via receptors located in mesolimbic circuits (9). In PD, plasma ghrelin levels are low and paradoxically correlated with BMI (17). A reduced postprandial ghrelin response was shown in early stages of PD (21) which is not modified by dopamine treatment or acute STN-stimulation (22, 23). Thus, low levels of ghrelin may contribute to weight loss in PD (24). Six months after STN-stimulation, ghrelin was shown to increase (25) which is coherent with the concomitant weight gain (see later).

**Dopaminergic Signals**

Dopaminergic signals are described (11). Another central satiety signal is cocaine-and-amphetamine-regulated transcript; CRH, corticotropin-releasing hormone; OT, oxytocin; GLP-1, glucagon-like peptide; CCK, cholecystokinin; FFA, free fatty acids.

**Eating Behavior**

Eating behavior is regulated by hedonic, homeostatic, and peripheral signals. This figure represents the main mechanisms, which are disturbed in PD (hatched areas) and may affect eating behavior. VTA, ventral-tergal area; ARC, arcuate nucleus; NRI, nucleus raphe; LC, locus coeruleus; PVN, paraventricular nucleus; LHA, lateral hypothalamus; AgRP, agouti-gene related peptide; NPY, neuropeptide Y; MCH, melanin-concentration hormone; POMC, proopiomelanocortin; CART, cocaine-and-amphetamine-regulated transcript; CRH, corticotropin-releasing hormone; OT, oxytocin; GLP-1, glucagon-like peptide; CCK, cholecystokinin; FFA, free fatty acids.
In some cases, a dopamine overstimulation may increase motivation for food, leading to a drive to eat, foraging behavior, and overeating (craving or binge-eating), known to occur in PD patients under treatment with dopamine agonists (see later).

(4) In hypo-dopaminergic state, taste perception and appreciation of the foodstuff (liking) is maintained. Thus, as feeding does not require any effort and highly palatable food is easily available, snacking can be maintained even in pathologic patients who lost motivation for any other physical activity.

(5) Thus, both hypo- and hyperdopaminergic traits may lead to overeating with subsequent weight gain. Eating behavior in both cases may be different.

**SEROTONERGIC AND NORADRENERGIC MODULATION OF ENERGY METABOLISM AND APPETITE**

Other aminergic systems such as serotonergic or noradrenergic systems are mutually connected with the hypothalamus and may influence homeostatic metabolic regulation. Both systems are affected by alpha-synucleinopathy (43). The noradrenergic locus coeruleus (LC) as well as serotonergic neurons express high amounts of orexin receptor and dense orexin fiber projections (44). Loss of LC neurons had been described in PD (45). In the 6-OHDA rat model, degeneration of LC produces a transient drop in body weight which could be reversed by DBS-STN (46). This had led to the hypothesis that weight variations in PD could be modulated by noradrenergic interaction between LC, STN, and hypothalamus (47).

Serotonin plays a role in eating behavior and high cerebral levels may improve mood, depression, and sleep (48). Cerebral serotonin biosynthesis is favored by its precursor, the essential amino acid tryptophan in the presence of dietary carbohydrates. This mechanism is triggered via the insulin response which enhances cerebral uptake of tryptophan (49). Tryptophan is a constituent of many protein-containing foods. The positive effect of carbohydrates, especially those with high glycemic index such as sucrose, on mood could be the reason why efforts to lose weight are doomed to failure in obesity (49) which is often associated with depression (50). Neurodegeneration of the serotonergic system with low levels of serotonin in PD (48) may explain the pronounced preference for all kind of sweets and increased intake of chocolate in PD patients (51).

**ENTERIC NERVOUS SYSTEM AND GASTROINTESTINAL DISORDERS**

Gastrointestinal functions are regulated by the enteric nervous system, a neuronal network organized in two plexuses, myenteric and submucosal, which control gut motility and secretion (5).

In PD, the enteral nervous system is affected by alpha-synucleinopathy which may explain the high incidence of gastrointestinal disorders, beginning in pre-motor stages of the disease. The most frequent symptom is chronic constipation affecting up to 89% of PD patients [for review see Ref. (52)]. The primary cause for constipation is impaired peristalsis with slow colonic transit due to neurodegeneration of myenteric neurons, which may be modulated by dopamine (52). In some patients, constipation is secondary to abnormal coordination of the rectoanl reflex with paradoxical contraction of the subrectalis muscle, which leads to defecatory dysfunction (5, 52). Loss of serotonergic neurons in raphe nucleus is thought to be involved in this clinical feature (52). Gastroparesis is characterized by slowed emptying of food into the small bowel leading to postprandial fullness, early satiety, nausea,
Table 1 | Body weight modification in pre-motor PD

| Reference          | Study type           | Population                                      | n    | Origin   | PD cases | Result     |
|--------------------|----------------------|-------------------------------------------------|------|----------|----------|------------|
| Chen et al. (54)   | Prospective cohort   | NHS*, HPFS*                                      | 160,000 | USA      | 468      | Weight loss |
| Logroscino et al.  | Prospective cohort   | Harvard Alumni Health Study                      | 10,812 | USA      | 106      | Weight loss |
| Cheshire and Wzolek (55) | Case–control study | 100 + 100                                       | USA  | 100      |          | Weight loss |
| Ma et al. (57)     | Prospective cohort   | Rural population Lixian                         | 16,488 | China    | 464 (85 analyzed) | Weight loss |
| Hu et al. (58)     | Prospective cohort   | Cross-sectional population surveys               | 47,156 | Finland  | 526      | Weight gain |
| Ikeda et al. (59)  | Prospective cohort   | Check up in health care center                   | 20,000 | Japan    | 24       | Weight gain |
| Abbott et al. (60) | Prospective cohort   | Honolulu Heart Program                           | 7990  | USA/Japanese origin | 137 | Weight gain |
| Kyrozis et al. (61)| Prospective cohort   | EPIC* Study                                     | 26,173 | Greece   | 120      | No association |
| Becker et al. (62) | Retrospective database analysis | Database                               | 5,000,000 | UK         |          | No association |
| Ragonese et al. (63)| Case–control study  |                                                | 318 + 318 | Italy    | 318      | No association |
| Scigliano et al. (64)| Case–control study | Clinical records of newly diagnosed PD           | 178 + 533 | Italy    | 178      | No association |

*NHS, National Health Study; HPFS, Health Professional Follow-up Study; EPIC, European Prospective Investigation into Cancer and Nutrition.

vomiting, and bloating (53). Gastrointestinal disorders affect the quality of life and may limit food intake thus contributing to mal- and under-nutrition in PD (24).

**PARKINSON’S DISEASE**

**WEIGHT CHANGES IN PRE-MOTOR PD**

In prospective American cohort or case–control and Chinese epidemiological studies, a decrease of body weight was reported several years prior to diagnosis (5 pounds in the 4 year preceding diagnosis) (54–57) (Table 1). On the other hand, large Finnish and Japanese cohort studies reported a weight gain in pre-diagnostic PD (58, 59). The same result was found in the Honolulu Heart Program which included Americans of Japanese origin (60). No association between PD and BMI before or at disease onset was reported for the Greece EPIC population (61), the UK-based general Practice Research Database (62), and in Italian case–control studies (63, 64). As degeneration of the dopaminergic system begins years before diagnosis (65), BMI variation may reflect a dysregulation of dopaminergic control of eating behavior rather than modification of energy metabolism in pre-motor stages of the disease. Apathy, depression, and anxiety are frequent in de novo PD (66, Bichon et al., personal communication) and eating disorders may also appear in response to these negative emotional state. In the general population, a strong association between depression and overweight has been described (50, 67) which may be due to sub-threshold eating disorders described as “emotional eating” (68), increased “snacking” (69), or increased sweet preference (70). Alterations of eating behavior have been described in de novo PD, prior to treatment (Bichon et al., personal communication).

Furthermore, disturbance of smell and taste may alter preference for foodstuff. In fact, nutritional factors have been correlated with “PD-risk”: in a Chinese study, meat consumption was inversely associated with PD (57) and in a Japanese study, dietary glycemic index was inversely correlated with PD-risk (71). An association of dietary milk protein with PD-risk is established for large prospective US cohorts (72), but a case–control study in Japan could not confirm this association (73). As dietary patterns are very different between Asian and western populations, these findings might reflect cultural variations of eating behavior in pre-motor PD. A recent meta-analysis found significant negative associations with PD for smoking, coffee drinking, and alcohol consumption which may represent a modification of preferences in early PD (74).

**PREVALENCE OF MALNUTRITION IN PD**

Weight loss in PD has been reported since the first publication of James Parkinson in 1817. A recent meta-analysis on BMI in PD reported a lower BMI of PD patients than controls (pooled difference: −1.73 kg/m²), which is related to disease severity (75). Average weight loss is about 3.6 kg 8 years after diagnosis (54) or 6 kg in one decade (76). Both fat mass and lean body mass were reported to be reduced in PD patients who lost weight (18, 77). It should be outlined that a lower average BMI does not mean that many PD patients are at risk for malnutrition. In spite of a decline of body weight, during disease progression patients may be overweight (see later). Prevalence of underweight depends on the used assessment tool and ranges from 0 to 24% (4–5% in the control group), while 3–60% of PD patients were...
Despite eventual weight loss, PD patients increase their energy intake by about 350 kcal/day, mainly due to increased carbohydrate intake (54, 79) (Figure 2). This suggests that weight loss is induced by increased energy expenditure (EE). Indeed, metabolic studies had shown that resting EE is increased in PD (about 20–51% of control subjects) in ON and OFF-medication state. The main factors for this increase seem to be dyskinesia and rigidity (80–87). Consequently, when patients with severe dyskinesia were excluded, resting EE was not increased (87–89). Dyskinesia and rigidity as well as tremor may be considered as spontaneous physical activity, like standing or fidgeting. In healthy volunteers, it was shown that spontaneous physical activity may account for EE up to 700 kcal/day (90). If this is not compensated by energy intake, weight loss is inevitable.

**Impaired homeostatic regulation of energy metabolism**

Taken into account that weight loss may take place before the onset of motor symptoms, other disease-related factors should be considered. As described above, several disorders of the hypothalamic regulation are known in PD, namely a massive loss of hypothalamic orexin-producing neurons, occurring prior to the onset of drug treatment (15, 16, 91). As orexin is involved both in appetite and spontaneous physical activity (92), its decrease may contribute to a decrease in food intake and physical activity. Weight loss could be promoted by impaired bioenergetics due to mitochondrial dysfunction, as shown in a mouse model of PD. In this model, which has a loss-of-function mutation of the mitochondrial protein kinase (PINK1) causing a genetic form of PD, significant weight reduction occurred in pre-motor stage (93).

Ghrelin, the gastric «hunger hormone» is reduced in PD and has even been considered as a potential biomarker of the disease (21). This could be due to impaired gastric mobility and contribute to weight loss in all stages of the disease [for review see Ref. (24)]. Furthermore, evidence from studies with rodents indicate that hypothalamic leptin signaling (which acts as a satiety signal) might be enhanced in PD (20).

**Impact of dopaminergic treatment**

As described above, dopamine has anorectic effects in the hypothalamic arcuate nucleus leading to a suppression of appetite and food intake (28). Likewise, substances which increase the synaptic dopamine by inhibition of the presynaptic dopamine transporter like amphetamine have anorectic effects (38).

In addition, dopaminergic treatment, especially apomorphine, may induce nausea and vomiting thus limiting energy intake, mainly on introduction of treatment (94). However, in the longer term, the treatment is mostly tolerated and may induce dyskinesia and behavioral side effects including physical hyperactivity both leading to increased EE.

**Other factors**

Other factors include impairment of gastrointestinal function (dysphagia, delayed gastric emptying, constipation, malabsorption), disturbed hand–mouth-coordination, and other motor symptoms limiting activities of daily living or a decline in cognitive functions (95–99). Medical conditions such as infection, bone fractures, and malignant diseases may be other factors (99). Levodopa is an amino acid and its intestinal absorption and cerebral uptake competes with dietary amino acids thus may be impaired by dietary protein. A low-protein diet may increase its bioavailability. Patients with severe postprandial OFF-periods are often advised for a “protein-redistribution diet” which is based on the protein restriction throughout the day whereas the daily protein ration is consumed at dinner. These diets may further worsen the nutritional state of the patient (100). Some authors reported a link of PD with impaired glucose homeostasis (101, 102) but presently there is no clear evidence in this context [for review see Ref. (103)] and a recent meta-analysis confirmed a lack of relationship between PD and diabetes (104).

**WEIGHT GAIN AND OVERWEIGHT IN PD**

In the pre-levodopa era, PD was a disease of malnutrition and even 20 years ago, it was rare to encounter obese PD patients (98) (Figure 3). Today, in spite of a decreased average BMI, individual PD patients may be overweight (75). In fact, prevalence of overweight in PD was reported to be about 60% in Italy (105) and 50% in Germany (80). In France and USA, more than 50% of the patients selected for DBS, i.e., patients with advanced disease suffering from motor complications presented an overweight with a BMI >25 kg/m² (106–108). These data are close to the prevalence of overweight and obesity in the general population in western countries which is between 50 and 70% (109). We can state that modern pharmacotherapy together with overall increase in overweight in modern society seems to have changed the phenotype.
Weight gain after surgery for PD

Weight gain after pallidotomy for PD was first published in 1953 (128–130) (Table 2). Since then many authors reported increased body weight after surgery for PD, mostly STN-DBS (131, 132), but also stimulation of GPI (107, 134–135). In case of STN-DBS, weight gain is present in the majority of patients, is rapid, that is occurs mainly within the first 3 months (131, 136, 137). In the long-term, body weight tends to stabilize in many patients (138, 139) and some patients may lose weight again, but mean weight remains higher than before surgery (136, 140). In individual patients, excessive weight gain leading to obesity was described (106). Weight gain seems to be independent of target (GPI or STN) and procedure (lesion, stimulation, uni-or bilateral) (107, 134, 141). However, in a recent study, STN was more associated with weight gain as GPI (142). In any case, weight gain is achieved by a positive energy balance for which several mechanisms may play a role.

Normalisation of body weight after previous weight loss. A compensation of previous weight loss in underweight patients is normal and desirable. In humans as in animals, a period of starvation results in hyperphagia related to the extent to which body fat was previously depleted. Therefore, a drive to overeat seems to be part of a regulatory system to restore fat mass (6). The phenomenon of “rebound adiposity” in PD after STN-DBS was described by Dulloo and Montani (143). Accordingly, weight gain after DBS in PD may be correlated with the pre-operative weight, and initially underweight patients take more weight (106, 133). However, weight gain often exceeds previous weight loss by far (144). Thus, additional mechanisms have to be considered.

Reduction of energy expenditure with unchanged intake. After STN-DBS, a significant decrease (7–13%) of daily EE was reported (86, 145). A decrease of EE of 13% without adaptation of intake would lead to a weight gain of 20 kg after 1 year (145). This decrease of EE after successful STN-DBS may be explained by:

- a reduced resting EE (87) following improvement of rigidity and tremor,
- a reduction of levodopa-induced dyskinesia (146),
- reduction of OFF-period dystonia (147),
- a reduction of levodopa-induced behavioral hyperactivity (121),
- an improvement of sleep pattern and nocturnal hyperactivity (121, 148).

Accordingly, correlations of weight gain with reduction of motor symptoms, reduction and severity of OFF-periods, LEDD reduction, and reduction of levodopa-induced dyskinesia (133, 136, 149, 150) had been described. Despite improved motor response and decreased EE after DBS, 80% of the patients do not increase their physical activity nor change their eating habits (136). This imbalance between intake and expenditure leads inevitably to weight gain, mostly due to an increase in fat mass (86, 106, 150).

Direct impact of STN-stimulation on adjacent brain regions. A direct effect of STN-stimulation on the hypothalamus by current diffusion has been hypothesized as indeed the lateral hypothalamus is very close to the medial limbic tip of the STN (151). In a recent study, weight gain after chronic DBS of STN was inversely related to the distance of the contacts from the wall of the third ventricle (152). However, this observation could not distinguish between current diffusion to the hypothalamus or to the mesolimbic part of the STN. In the rat, a lesion of the STN without lesioning the hypothalamus leads to impulsive feeding behavior (153), strongly arging for a lesioning effect of the mesolimbic STN. The most impressive clinical behavioral changes may be observed immediately after stimulation has been switched on, while patients are still in the hospital. Patients in the immediate post-operative state may experience a euphoric state induced...
### Table 2: Weight gain in PD after surgical treatment: possible mechanisms and predictive factors.

| Reference | N enrolled | FU (m) | n Patients with WG* | Mean increase of BMI (kg/m²)/body weight (kg) | Target and surgical procedure | Findings and predictive factors |
|-----------|------------|--------|---------------------|-----------------------------------------------|-------------------------------|---------------------------------|
| Guiot and Brion (128) | 47 | 12 | 20 | 5–16 kg | Pallidotomy | WG in the first months after surgery |
| Lang et al. (129) | 40 | 12 | 14 | 13.6 kg | Pallidotomy | Greater ease of feeding, altered eating behaviour, reduced dyskinesia |
| Moro et al. (132) | 7 | 9 | 7 | 8 kg | STN-DBS unilateral | Increased appetite |
| Ondo et al. (130) | 60 | 12 | 49 | 4 kg | Pallidotomy | WG predicted by improvement of motor score, most pronounced during first months |
| Gironell et al. (133) | 27 | 12 | 26 | 4.7 kg | STN-DBS, GPI-DBS, pallidotomy | WG predicted by improvement of dyskinesia, motor score, pre-op weight |
| Krack et al. (131) | 42 | 60 | 39 | 4 kg | STN-DBS | WG occurs in the first months after surgery and remains stable after 1 year |
| Barichella et al. (136) | 30 | 12 | 29 | 3.1 kg/m², 9.3 kg | STN-DBS | Improvement of dyskinesia score |
| Maccia et al. (150) | 19 | 13±8 | 18 | 4.7 kg/m²/9.7 kg | STN-DBS | Decreased REE with unchanged DEI, increase of fat mass |
| Tuite et al. (144) | 27 | 6 | 22 | 1.2 kg/m²/4.5 kg | STN-DBS | No significant weight gain in the immediate post-operative period, weight gain occurred after stimulator was activated |
| Novakova et al. (138) | 23 | 45 | 23 | 3.3 kg/m²/9.4 kg | STN-DBS | Body weight tended to stabilize in long-term |
| Montaurier et al. (86) | 24 | 3 | Data not given | 1.1 kg/m²/3.4 kg [men], 1.0 kg/m²/2.6 kg [women] | STN-DBS | Low improvement of UPDRS motor score, EE decreased but did not correlate with weight gain |
| Bannier et al. (106) | 22 | 16 | 20 | 2.2 kg/m²/5.5 kg | STN-DBS | Low pre-operative body weight, low improvement of UPDRS motor score |
| Guimarães et al. (176) | 57 | 3 | 41 | 3 kg/m² | STN-DBS | Nutritional intervention prevents weight gain |
| Walker et al. (108) | 39 | 12 | 33 | 0.4 kg/m²/4.3 kg | STN-DBS unilateral | No correlation with UPDRS or LED, no association with the side of unilateral DBS |
| Sauleau et al. (135) | 46 | 6 | 37 | 5.7 kg [STN], 1.7 [GPI] | STN-DBS vs. GPI-DBS | WG in STN-DBS > GPI-DBS, association of WG with dyskinesia in GPI-DBS, no change of food intake |
| Moghaddasi and Boshtam (137) | 15 | 3 | Data not given | 6 kg | STN-DBS | Rapid weight gain after DBS |
| Strowd et al. (107) | 99 | 24 | Data not given | 2.3 kg | STN-DBS, VIM-DBS | WG greater in VIM-DBS |
| Escamilla-Sevilla et al. (19) | 14 | 6 | 12 | 1.2 kg/m²/5.5 kg | STN-DBS | Increase of leptin without expected decrease of NPY, correlation with higher stimulation voltages |
| Locke et al. (134) | 44 | 6 | 31 | 2.3 kg | STN-DBS unilateral vs. GPI-DBS unilateral | No difference in WG between STN and GPI, no correlation with clinical parameters |

(Continued)
by STN-DBS, characterized by disinhibition, hyperactivity, and increased appetite. This condition spontaneously recovers within few weeks or months and is thought to be linked to both the lesional effect of surgery with an edema of the STN and to the long-term response of mesolimbic effects of dopaminergic medication (154). The most important gain weight occurs in the first weeks and months until stabilizing. The inverse is the case for stimulation settings, which start very low, and then gradually are increased over time in order to avoid behavioral changes (154). The volume of current diffusion in neural tissue does not increase in a linear way with increase of current setting. On the contrary, there is sharp exponential decrease of efficiency with the distance to the electrode (155). If weight gain were to be explained by current diffusion to the hypothalamus, the weight gain should increase over time in order to avoid behavioral changes (154). The inverse is the case for other behavioral effects of STN-DBS, some toleration effect developing over the first months after surgery is likely (154). It is possible that STN-DBS interferes with homeostatic hypothalamic regulation, but not related to current diffusion toward the hypothalamus.

Eating disorders. As described above, treatment with D2/D3-specific dopamine agonists may lead to compulsive eating behavior, which disappears after discontinuation of treatment (Table 3). Alteration of eating behavior has also been described in PD patients treated with STN-DBS (113, 121, 161). Due to missing classification and nomenclature, hyperphagia is often classified as BED, the only eating behavior disorder (beside bulimia and anemia nervosa) which is described in DSM-IV. BED includes recurrent and frequent bulimic episodes with lack of control and marked distress. There is no compensatory behavior as vomiting. BED is considered as an ICD (110) and as such is part of scales assessing ICD such as the Questionnaire for Impulsive–Compulsive

Table 2 | Continued

| Reference | N enrolled | FU (m) | n Patients with WGa | Mean increase of BMI (kg/m²)/body weight (kg) | Target and surgical procedure | Findings and predictive factors |
|-----------|------------|-------|---------------------|---------------------------------------------|-----------------------------|--------------------------------|
| Lee et al. (141) | 43 | 24 | Data not given | 5 kg (male), 4 kg (female) | STN-DBS uni + staged STN-DBS bilateral | No statistical difference in WG |
| Serranová et al. (160) | 20 | 34 | 18 | 8 kg | STN-DBS | WG correlates with arousal ratings of appetitive stimuli |
| Novakova et al. (172) | 27 | 12 | 24 | 5.2 kg | STN-DBS | Decrease of cortisol levels, no other changes |
| Foubert-Samier et al. (149) | 47 | 12 | 37 | 2.7 kg/m²/7.2 kg | STN-DBS | High pre-operative motor score |
| Markaki et al. (25) | 23 | 6 | 17 | 6 kg | STN-DBS | WG associated with changes of ghrelin, leptin, and NPY. Decrease of cortisol |
| Ružicka et al. (152) | 20 | 18 | 19 | 6.9 kg | STN-DBS | WG correlated with electrode position distance to three ventricles |
| Jorgensen et al. (145) | 7 | 12 | Data not given | 4.7 kg | STN-DBS | Decreased DEE with unchanged DEI, weight gain = fat mass |
| Mills et al. (142) | 31 | 30 | > 12 | Data not given | +0.53 kg/m² STN, −0.14 kg/m² GPi | STN-DBS, GPiDBS | WG target-specific (STN > GPi) |

WG, weight gain; IAPS, international affective picture system; REE, resting energy expenditure; DEI, daily energy intake; NPY, neuropeptide Y; DEE, daily energy expenditure; LED, levodopa-equivalent dose; STN-DBS, subthalamic nucleus deep brain stimulation, if not otherwise stated bilateral.
| Reference                  | Study                        | N total | N cases | Prevalence % | Approach                               | Eating disorder | Disorder related to |
|---------------------------|------------------------------|---------|---------|--------------|----------------------------------------|-----------------|---------------------|
| Nirenberg and Waters (41) | Case report                  | –       | 7       | –            | Definition of CE and BED, not validated| Compulsive eating BED | Dopamine agonist    |
| McKeon et al. (125)       | Case report                  | –       | 2       | –            | Patient self-report                    | Compulsive eating/night-eating | Dopamine agonist    |
| Giladi et al. (116)       | Case–control                 | 193     | 7       | 3.6          | Structured interview                   | New onset excessive drive to eat | Dopamine agonist    |
| Miwa and Kondo (127)      | Prospective                  | 60      | 5       | 8.3          | Structured interview with patient/caregiver | Alteration of preferences | Dopamine agonist    |
| Fan et al. (114)          | Retrospective                | 312     | 1       | 0.32         | DSM-IV and self-reported and telephone interview | BED             | Dopamine agonist    |
| Weintraub et al. (110)    | Cross-sectional study        | 3090    | 132     | 4.3          | DSM-IV, structured interview           | BED             | Dopamine agonist    |
| Lee et al. (164)          | Cross-sectional study        | 1167    | 40      | 3.4          | MIDI modified<sup>a</sup>              | Compulsive eating | L-DOPA              |
| Khan and Rana (124)       | Case report                  | –       | 1       | –            | Patient self-report                    | Craving and night-eating | Dopamine agonist    |
| Kenangil et al. (117)     | Retrospective                | 554     | 9       | 1.6          | Semi structured interview              | Compulsive eating | Dopamine agonist    |
| Solla et al. (119)        | Prospective                  | 349     | 10      | 2.9          | Definition according to Nirenberg and Waters | BED             | Dopamine agonist    |
| Hassan et al. (122)       | Retrospective                | 321     | 12      | 3.7          | Research of keywords in database       | BED             | Dopamine agonist    |
| Ávila et al. (111)        | Prospective                  | 216     | 2       | 1            | Questionnaire                          | Compulsive eating | Dopamine agonist    |
| Vitale et al. (126)       | Retrospective                | –       | 12      | –            | Definition according to Nirenberg and Waters | Compulsive eating | L-DOPA and dopamine agonist |
| Hinnell et al. (123)      | Case report                  | –       | 1       | –            | Patient self-report                    | Compulsive eating | Dopamine agonist    |
| Lim et al. (118)          | Retrospective                | 200     | 27      | 13.5         | QUIP (patient or caregiver)            | “Eating”         | L-DOPA and dopamine agonist |
| Zahodne et al. (161)      | Prospective                  | 96      | 9       | 9.3          | EDE-Q<sup>a</sup>, EDDS<sup>a</sup> | BED and sub-threshold BED | Dopamine agonist, STN-DBS |
| Farnikova et al. (115)    | Case–control                 | 46      | 4       | 8.7          | DSM-IV criteria                        | BED             | Levodopa            |
| Eusebio et al. (113)      | Prospective                  | 110     | 17      | 15.5         | DSM-IV criteria                        | BED             | Dopamine agonist, STN-DBS |
| Callesen et al. (112)     | Retrospective                | 490     | 42      | 8.6          | QUIP                                   | “Eating”         | Dopamine agonist    |
| Tanaka et al. (120)       | Retrospective                | 93      | 10, 3   | 10.8, 3.2    | QUIP interview                         | “Eating,” compulsive eating | Dopamine agonist/levodopa |

<sup>a</sup>MIDI, Minnesota Impulsive Disorders Interview; EDE-Q, Eating Disorder Examination Questionnaire; EDDS, Eating Disorder Diagnostic Scale; QUIP, Questionnaire for Impulsive–Compulsive Disorders in Parkinson’s Disease.

Disorders in PD (162). However, these scales do not inquire about the frequency and amount eaten and therefore do not allow a BED diagnosis. Consequently, they report high false-positive rates (120). In general, assessment of eating behavior in PD in the literature is not systematic and may range from simple telephone interviews, patients self-reports, retrospective database research of key words to different psychological scales.

When employing scales which assess DSM-IV criteria for BED such as the Eating Disorder Examination Questionnaire (EDE-Q), BED is reported to be rather rare in PD: prevalence was about 1%
in a small sample of patients (161), comparable with its occurrence in the general population of 1.4% (165). In contrast, prevalence of sub-threshold pathologic eating behavior (“compulsive eating”) was reported to be between 3.4 and 4.5% in PD (110, 164) and seems to increase after STN-DBS (161). We argue that alterations of eating behavior disorders in PD are mostly not BED but comprise a large spectrum of sub threshold pathologic variants of normal eating behavior, described as «snacking», «night-eating», «sweet preferences», «craving», «compulsive eating» which may not all be impulsive. This may explain why in STN-DBS-treated patients, a marked decrease of ICD was described whereas the prevalence of eating disorders decreases less (121) or even increases significantly (113). In fact, DBS-STN was an independent predictor of sub-threshold eating disorders in a small sample of patients (161).

Impulse control disorders are psychiatric conditions characterized by motivation-based behaviors that involve repetitive reward-based activities and loss of control (165). In PD, ICDSs are linked to dopamine dysregulation (165) and hyperdopaminergic conditions (121). Successful surgery allows for a marked decrease of dopaminergic treatment (166), leading to disappearance of hyperdopaminergic behavior (gambling, hypersexuality, buying) with exception of eating disorders (113, 121). This condition is often associated with apathy and hypoactivity (121). In these patients, eating may be the only pleasure-generating activity which does not require any effort and is therefore compatible with apathy, which is defined as a decrease in motivation (167) in opposition with ICD which reflects excess motivation oriented toward pleasurable activities (165). In the absence of dopamine, the hedonic response (“liking”) and the perception of taste is conserved (28). Moreover, feeding of palatable food increases dopamine levels in dorsal (35) and ventral striatum including nucleus accumbens (168). Hyperphagia leading to obesity in hypo-dopaminergic conditions such as ADHD had been interpreted as unconscious “self-therapy” in order to normalize mesolimbic dopamine concentrations (169). Thus, hyperphagia could be related to a relative hypo-dopaminergic state which is the case for many PD patients in the post-operative period on chronic DBS when successful stimulation allows for marked decrease in dopaminergic treatment (121, 166). This hypothesis is compatible with a laboratory study which could show that rats previously treated for 5 days with L-DOPA gain 15% more weight than control rats during 12 weeks ad libitum feeding. The authors argue that overeating after dopamine withdrawal might be a side effect of dopamine stimulation, (170) and this side effect can easily be explained by a downregulation of the dopaminergic system during dopaminergic treatment followed by a withdrawal syndrome. Of note, a withdrawal state in addiction to cocaine, a direct dopamine increasing drug via inhibition of the dopamine transporter, is characterized by progressive apathy over a period of several weeks and its severity correlates with a progressive striatal dopamine depletion (171).

Given the frequency of apathy after STN-DBS, we propose that the vast majority of eating disorders that appear following DBS in PD should therefore not be considered as ICD but interpreted as sub-threshold pathologic behavior in order to compensate for low dopaminergic signaling. In order to differentiate this particular eating behavior from the compulsive eating observed in patients treated with high dose D2/D3 dopamine agonists, we propose to call this behavior “hypo-dopaminergic snacking.”

Hypo-dopaminergic states more rarely occur after GPi-DBS which does not allow for reduction of levodopa. This may explain why weight gain after GPi-DBS on average is less important than after STN-DBS, and mostly due to the reduction of dyskinesia directly related to GPi-DBS (135).

Other factors.

Improvement of gastric function by STN-DBS and the role of ghrelin. STN-DBS can improve the gastric function in PD and thus improve upper gastrointestinal symptoms such as heavy feeling in the stomach, bloating, nausea or feeling sick, and belching (22). This finding may explain the increased levels of the gastric orexigenic peptide ghrelin in PD patients treated by STN-DBS (25) leading to increased hunger. However, the role of ghrelin in STN-DBS remains unproven since three other authors could not confirm increased levels (22, 23, 172).

Alteration of the serotonergic system. STN-DBS reduces the firing rate of serotonergic neurons in raphe nucleus (173). As serotonin is involved in control of appetite, this may have an impact on eating behavior and increased snacking of sweet foods may be due to a lack of serotonin.

Altered thermogenesis. Centrally-regulated thermogenesis is an important factor in maintaining stable body weight and obesity resistance. Adaptive thermogenesis takes place in brown adipose tissue and the neuropeptide orexin is a key driver (13, 92, 174). Low levels of orexin are common in PD (see above). Although this peptide is investigated in PD mainly with regard to sleep–wake rhythm, orexin deficiency may have an impact on EE and obesity resistance. In fact, PD patients are intolerant to high temperature and drenching sweats is a non-motor symptom which disappears after surgery (175).

STRATEGIES FOR MAINTAINING A STABLE BODY WEIGHT IN PD

As weight gain may be desirable or deleterious, the patient’s individual situation should be thoroughly evaluated. Before intervention the following factors should be assessed:

- Actual BMI and previous weight loss, normal weight, previous fluctuations of body weight, and eating disorders.
- Estimation of pre- and post-surgery EE: motor symptoms, dyskinesia, physical activity.
- Actual alimentation, eating habits, and eating disorders.
- Psychological assessment: apathy, depression, hyperactivity.
- Quality of sleep (night-eating disorder).

In DBS patients, nutritional intervention has been shown to be effective (176) and should be performed routinely (95). As weight gain occurs essentially in the first months after surgery, information and dietetic guidance of the patient should start before surgery. As energy requirement is often diminished after successful surgery, an energy-reduced diet should take place and be maintained lifelong. Patients should be encouraged to control their body weight regularly, to supervise their alimentation, and to practice regular physical exercise. These measures
should be considered as an adaptation of lifestyle rather than short-time diet.

Recent changes of eating behavior should be taken seriously. Severe hyperphagia with compulsive (craving, binge-eating) or night-eating may improve by discontinuation of agonist treatment. On the other hand, disorders including emotional eating may occur in depressive or hyper-dopaminergic patients treated with STN-DBS. In these patients, a deficit of motivation renders dietary approaches difficult and intervention should first be focused on pharmaceutical treatment of apathy. Indeed, in selected obese subjects with apathy, it has been shown that treatment with methylphenidate in combination with a weight-loss program was more effective than the weight loss program alone (177). In healthy and obese adults, methylphenidate reduces dietary energy intake by about 20% (38, 39). Thus, alterations of dopaminergic signaling may be an important factor in obesity management of PD.

CONCLUDING REMARKS

In general, body weight gain results from dysregulation of the balance between energy requirement and energy input, the latter is reflected in eating behavior. In PD, dysregulation may be due to alterations of (i) hypothalamic regulation, (ii) energy expenditure, or (iii) dopaminergic signaling. Consequently, different pathomechanisms may account for alteration of eating behavior in PD. Disruption of homeostatic control results in increased appetite and hunger and may be accompanied by compulsive eating behavior. Weight gain despite unaltered eating may argue for reduced energy expenditure. Hyperdopaminergic eating behavior is merely characterized by compulsive and nocturnal eating whereas hyperphagia in hypo-dopaminergic state is part of the hypo-dopaminergic behavior accompanied by apathy and characterized by random snacking and emotional eating.

Understanding the eating behavior may therefore be a window on the underlying factors for weight gain. Any intervention, if pharmacological, behavioral, or nutritional should focus on analysis of the patient’s energy expenditure and a detailed analysis of eating behavior.

REFERENCES

1. Braak H, Braak E. Pathoanatomy of Parkinson’s disease. J Neurol (2000) 247(Suppl 2):S13–10. doi:10.1007/PL00007758
2. Agid Y, Arnulf I, Bejjani P, Bloch F, Bonnet AM, Damier P, et al. Parkinson’s disease is a neuropsychiatric disorder. Adv Neurol (2003) 91:365–70.
3. Chaudhuri KR, Healy DG, Schapira AH. Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol (2006) 5:235–45. doi:10.1016/S1474-4426(06)70373-8
4. Aarsland D, Kurz MW. The epidemiology of dementia associated with Parkinson’s disease. J Neurol Sci (2010) 299:18–22. doi:10.1016/j.jns.2009.08.034
5. Lebouvier T, Chaumette T, Paillusson S, Duyckaerts C, Bruley des Varannes S, et al. The second brain and Parkinson’s disease. Eur J Neurol (2009) 30:735–41. doi:10.1111/j.1460-9568.2009.06873.x
6. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Central nervous system control of food intake and body weight. Nature (2006) 443:289–95. doi:10.1038/nature05026
7. Mulder MI, Bosy-Westphal A, Heymsfield SB. Is there evidence for a set point that regulates human body weight? F1000 Med Rep (2010) 2:59. doi:10.3410/M2-59
8. Hill JO, Peters JC. Environmental contributions to the obesity epidemic. Science (1998) 280:1371–4. doi:10.1126/science.280.5368.1371
9. Williams KW, Elmquist JK. From neuroanatomy to behavior: central integration of peripheral signals regulating feeding behavior. Nat Neurosci (2012) 15:385–5. doi:10.1038/nn.3217
10. Benarroch EE. Neural control of feeding behavior: overview and clinical correlations. Neurology (2010) 74:1643–50. doi:10.1212/01.wnl.0b013e3181d1f3a3
11. Harrod JA, Dovey TM, Blundell JE, Halford JC. CNS regulation of appetite. Neuropsychopharmacology (2012) 36:3–17. doi:10.1038/nppharm.2012.1.0007
12. Kott CM. Integration of feeding and spontaneous physical activity: role for orexin. Physiol Behav (2006) 88:294–301. doi:10.1016/j.physbeh.2005.05.031
13. Butterick TA, Billington CJ, Kott CM, Nixon JP. Orexin: pathways to obesity resistance? Rev Endocr Metab Disord (2013) 14:357–64. doi:10.1007/s11154-013-9259-3
14. Drouot X, Moutereau S, Lefaucheur JP, Palfi S, Corvali-Norac A, Margalit L, et al. Low level of ventricular CSF orexin-A is not associated with objective sleepiness in PD. Sleep Med (2011) 12:936–7. doi:10.1016/j.sleep.2011.08.002
15. Fronczek R, Overeem S, Lee SY, Hegeman IM, van Pelt I, van Duijn SG, et al. Hypocretin (orexin) loss in Parkinson’s disease. Brain (2007) 130:1577–85. doi:10.1093/brain/awm090
16. Thannickal TC, Lai YJ, Siegel MJ. Hypocretin (orexin) and melatonin concentrating hormone loss and the symptoms of Parkinson’s disease. Brain (2008) 131:e87. doi:10.1093/brain/awm221
17. Fiszter U, Michalowska M, Baranowska B, Wolinska-Witort E, Jeske W, Jethon M, et al. Leptin and ghrelin concentrations and weight loss in Parkinson’s disease. Acta Neurol Scand (2010) 121:230–6. doi:10.1111/j.1600-0404.2009.01355.x
18. Lorelai F, Toss G, Granerus AK. Weight loss, body fat mass, and leptin in Parkinson’s disease. Mov Disord (2009) 24:885–90. doi:10.1002/mds.22466
19. Escamilla-Sevilla F, Pérez-Navarro MJ, Muñoz-Pasadas M, Sáez-Zea C, Jouma-Katari M, Piedrola-Maroto G, et al. Change of the melanocortin system caused by bilateral subthalamic nucleus stimulation in Parkinson’s disease. Acta Neurol Scand (2011) 124:275–81. doi:10.1111/j.1600-0404.2010.01469.x
20. Kim KS, Yoon YR, Lee HJ, Yoon S, Kim SY, Shin SW, et al. Enhanced hypothalamic leptin signaling in mice lacking dopamine D2 receptors. J Biol Chem (2010) 285:8905–17. doi:10.1074/jbc.M109.079590
21. Unger MM, Müller JC, Manikel K, Eggert KM, Bohne K, Boddem M, et al. Postprandial ghrelin response is reduced in patients with Parkinson’s disease and idiopathic REM sleep behaviour disorder: a peripheral biomarker for early Parkinson’s disease? J Neurol (2011) 258:982–90. doi:10.1007/s00415-010-5864-1
22. Arai E, Arai M, Uchiyama T, Higuchi Y, Aoyagi K, Yamanaoka Y, et al. Subthalamic deep brain stimulation can improve gastric emptying in Parkinson’s disease. Brain (2012) 135:1478–85. doi:10.1093/brain/awt386
23. Corcuff JB, Perlemoine C, Macia F, Pison F, Coman I, Guehl D, et al. Subthalamic nucleus stimulation in patients with Parkinson’s disease does not increase serum ghrelin levels. Br J Nutr (2006) 95:208–9. doi:10.1079/BJN20051678
24. Marrinan S, Emmanuel AV, Burn DJ. Delayed gastric emptying in Parkinson’s disease. Mov Disord (2014) 29:23–32. doi:10.1002/mds.25708
25. Markaki E, Eilid J, Kefalopoulou Z, Trachani E, Theodoropoulou A, Kyriazopoulou V, et al. The role of ghrelin, neuropeptide Y and leptin peptides in weight gain after deep brain stimulation for Parkinson’s disease. Stereotact Funct Neurosurg (2012) 90:104–12. doi:10.1159/000335045
26. Palmeri RD. Is dopamine a physiologically relevant mediator of feeding behavior? Trends Neurosci (2007) 30:375–81. doi:10.1016/j.tins.2007.06.004
27. Volkow ND, Wang GJ, Tomasi D, Baler RD. The addictive dimensionality of obesity. Biol Psychiatry (2013) 73:81–8. doi:10.1016/j.biopsych.2012.12.020
28. Berridge KC, Ho CY, Richard JM, Di Felice Antonio AG. The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Res (2010) 1350:43–64. doi:10.1016/j.brainres.2010.04.003
29. Kenny PJ. Reward mechanisms in obesity: new insights and future directions. Neuron (2011) 69:664–79. doi:10.1016/j.neuron.2011.02.016
30. Salomez JD, Correa M. Dopamine and food addiction: lexicon badly needed. Biol Psychiatry (2011) 70:15–24. doi:10.1016/j.biopsych.2012.09.027
31. Cannon CM, Palmeri RD. Reward without dopamine. J Neurosci (2003) 23:10827–31.
32. McClure SM, Daw ND, Montague PR. A computational substrate for incentive salience. Trends Neurosci (2003) 26:423–8. doi:10.1016/S1016-1996(03)00177-2
33. Sotak BN, Hnasko TS, Robinson S, Kremer EJ, Palmer RD. Dysregulation of dopamine signaling in the dorsal striatum inhibits feeding. Brain Res (2005) 1061:88–96. doi:10.1016/j.brainres.2005.08.053
34. Volkow ND, Wang GJ, Fowler JS, Logan J, Jayne M, Franceschi D, et al. “Non-hedonic” food motivation in humans involves dopamine in the dorsal striatum and methylphenidate amplifies this effect. Synapse (2002) 44:175–80. doi:10.1002/syn.10075
35. Small DM, Jones-Gotman M, Daghet A. Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human vol-
unteers. Neuroimage (2003) 19:1709–15. doi:10.1016/S1053-8119(03)00253-2
36. Wang GI, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W, et al. Brain dopamine and obesity. Lancet (2001) 357:354–7. doi:10.1016/S0140-6736(00)03643-6
37. Wilcon CE, Braskie MN, Kluth JY, Jagust WJ. Overeating and striatal dopamine with 6-[F]-fluoro-L-m-tyrosine PET. J Obes (2010) 2010:999348. doi:
10.1155/2010/999348
38. Goldfield GS, Lorello C, Doucet E. Methylphenidate reduces energy intake and dietary fat intake in adults: a mechanism of reduced reinforcing value of food? Am J Clin Nutr (2007) 86:308–15.
39. Leddy JJ, Epstein LH, Jaroni JL, Roemmich JN, Paluch RA, Goldfield GS, Wurtman RJ, Wurtman JJ. Brain serotonin, carbohydrate-craving, obesity and risk of Parkinson’s disease: a prospective cohort study. Am J Epidemiol (2007) 166:1186–90. doi:10.1093/aje/kwm211
40. Ma L, Zhang L, Gao XH, Chen W, Wu YP, Wang Y, et al. Dietary factors and smoking as risk factors for PD in a rural population in China: a nested case-
control study. Acta Neurol Scand (2006) 113:278–81. doi:10.1111/j.1600-0404.2005.00571.x
41. Hu G, Josuahtil P, Nissinen A, Antikainen R, Kivipelto M, Tuomilehto J. Body mass index and the risk of Parkinson disease. Neurology (2006) 67:1955–9. doi:
10.1212/01.wnl.0000247502.18422.e5
42. Ikeda K, Kasahara H, Tamura M, Kano O, Iwamoto K, Iwasaki Y. Body mass index and the risk of Parkinson disease. Neurology (2007) 68:2156–61. doi:
10.1212/000269477.49238.ec
43. Abbott RD, Ross GW, White LR, Nelson JS, Masaki KH, Tanner CM, et al. Midlife adiposity and the future risk of Parkinson’s disease. Neurology (2002) 59:1051–7. doi:10.1212/WNL.59.7.1051
44. Biroozes A, Chika M, Stathopoulos P, Vasilopoulos D, Trichopoulos D, Tri-
chopoulos A. Dietary and lifestyle variables in relation to incidence of Parkin-
son’s disease in Greece. Eur J Epidemiol (2013) 28:67–77. doi:10.1007/s10654-
012-9760-0
45. Becker C, Brobret GP, Johansson S, Meier CR. Diabetes in patients with idopathic Parkinson’s disease. Diabetes Care (2008) 31:1808–12. doi:10.2337/dc08-
0479
46. Bagnone P, D’Amelio M, Callari G, Di Benedetto N, Palmeri B, Mazzola MA, et al. Body mass index does not change before Parkinson’s disease onset. Eur J Neurol (2008) 15:965–98. doi:10.1111/j.1468-1315.2008.02236.x
47. Scigiono G, Musico M, Soliveri P, Piccolo I, Ronchetti G, Girotri F. Reduced risk factors for vascular disorders in Parkinson disease patients: a case-control study. Stroke (2006) 37:1184–8. doi:10.1161/01.STR.0000217384.03237.9c
48. Gaig C, Tolosa E. When does Parkinson’s disease begin? Mov Disord (2009) 24(Suppl 2):S656–64. doi:10.1002/mds.22672
49. Aarsland D, Brennich K, Alves G, Magnusson P, Ivarsson A, Rottig M, et al. The spectrum of neuropsychiatric symptoms in patients with early untreated Parkinson’s disease. J Neurol Neurosurg Psychiatry (2009) 80:928–30. doi:
10.1136/jnnp.2008.160959
50. Blaine B. Does depression cause obesity? A meta-analysis of longitudinal stud-
ies of depression and weight control. J Health Psychol (2008) 13:1190–7. doi:
10.1177/1359105308095977
51. Konttinen H, Männisto S, Sarlio-Lähteenkorva S, Silventoinen K, Haukkala A. Emotional eating, depressive symptoms and self-reported food consumption. A population-based study: Appetite (2010) 54:473–9. doi:10.1016/j.appet.2010.
01.014
52. Kawada T, Suzuki S. Depressive state, aging, and prevalence of snacking: a preliminary study. Psychogeriatrics (2011) 11:247–8. doi:10.1111/j.1479-8301.
2011.00365.x
53. Rose N, Koperski S, Golomb BA. Mood food: chocolate and depressive symp-
toms in a cross-sectional analysis. Arch Intern Med (2010) 170:699–703. doi:10.1001/archinternmed.2010.78
54. Murakami K, Miyake Y, Sasai S, Tanaka K, Fukushima W, Kiyohara C, et al. Dietary glycemic index is inversely associated with the risk of Parkinson’s disease: a case-control study in Japan. Nutrition (2010) 26:515–21. doi:
10.1016/j.nut.2009.05.021
55. Chen H, Zhang SM, Hernán MA, Willett WC, Ascherio A. Diet and Parkin-
son’s disease: a potential role of dairy products in men. Ann Neurol (2002) 52:793–801. doi:10.1002/ana.10381
56. Miyake Y, Tanaka K, Fukushima W, Sasai S, Kiyohara C, Tsuibo Y, et al. Lack of association of dairy food, calcium, and vitamin D intake with the risk of Parkinson’s disease: a case-control study in Japan. Parkinsonism Relat Disord (2011) 17:112–6. doi:10.1016/j.parkreldis.2010.11.018
57. Noyce AJ, Bestwick JP, Silvera-Monjaya L, Hawkes CH, Giovanni N, Lees AJ, et al. Meta-analysis of early non-motor features and risk factors for Parkin-
son disease. Ann Neurol (2012) 72:893–901. doi:10.1002/ana.23687
58. van der Marck MA, Dicke HC, Uc EY, Kentin ZH, Bloem BR, et al. Body mass index in Parkinson’s disease: a meta-analysis. Parkinsonism Relat Disord (2012) 18:263–7. doi:10.1016/j.parkreldis.2011.10.016

Kistner et al. Body weight in Parkinson’s disease

Frontiers in Neurology | Movement Disorders

June 2014 | Volume 5 | Article B4 | 12
and without motor complications. Prog Neuropsychopharmacol Biol Psychiatry (2011) 35:1099–13. doi:10.1016/j.pnpbp.2011.02.002

120. Tanaka K, Wada-Hoe K, Nakashita S, Yamamoto M, Nakashima K. Impulsive compulsive behaviors in Japanese Parkinson's disease patients and utility of the Japanese version of the Questionnaire for impulsive-compulsive disorders in Parkinson's disease. J Neurol (2013) 260:1463–77. doi:10.1007/s00415-013-6651-8

121. Lhommée E, Klinger H, Thobois S, Schmitt E, Ardouin C, Bichon A, et al. Subthalamic stimulation in Parkinson's disease: restoring the balance of motivated behaviours. Brain (2012) 135:1463–77. doi:10.1093/brain/awz078

122. Hassan A, Bower JH, Kumar N, Matsumoto JY, Fealey RD, Josephs KA, et al. Dopamine agonist-induced pathological behaviors: surveillance in the PD clinic reveals high frequencies. Parkinsonism Relat Disord (2011) 17:260–4. doi:10.1016/j.parkreldis.2011.01.009

123. Hinnell C, Hulse N, Martin A, Samuel M. Hypersexuality and compulsive overeating associated with transdermal dopamine agonist therapy. Parkinsonism Relat Disord (2011) 17:295–6. doi:10.1016/j.parkreldis.2011.01.010

124. Khan W, Rana AQ. Dopamine agonist induced compulsive eating behaviour in a Parkinson's disease patient. Pharm World Sci (2010) 32:114–8. doi:10.1007/s11096-009-9358-0

125. McKeon A, Josephs KA, Klos KJ, Hecksel K, Bower JH, Michael Bostwick J, et al. Unusual compulsive behaviors primarily related to dopamine agonist therapy in Parkinson's disease and multiple system atrophy. Parkinsonism Relat Disord (2007) 13:516–9. doi:10.1016/j.parkreldis.2007.04.004

126. Vitale C, Santangelo G, Trojano L, Verde F, Rocco M, Grossi D, et al. Comparative neuropsychological profile of pathological gambling, hypersexuality, and compulsive eating in Parkinson's disease. Mov Disord (2011) 26:830–6. doi:10.1002/mds.23567

127. Miswa H, Kondo T. Alteration of eating behaviors in patients with Parkinson's disease: possibly overlooked? Neurocase (2008) 14:480–4. doi:10.1080/15552980802495324

128. Guist G, Brion S. Traitement des mouvements anormaux par la coagulation pallidale. Technique et résultats. Rev Neurol (Paris) (1953) 99: 578–580.

129. Lang AE, Lozano A, Tasker R, Duff J, Saint-Cyr I, Trépanier L. Neuropsychological and behavioral changes and weight gain after medial pallidotomy. Ann Neurol (1997) 41:834–6. doi:10.1002/ana.41041026

130. Ono WG, Ben-Aire L, Jankovic J, Lai E, Contant C, Grossman R. Weight gain following unilateral pallidotomy in Parkinson's disease. Acta Neurolad (2000) 101:79–84. doi:10.1034/j.1600-4040.2000.101002079.x

131. Krack P, Batir A, Van Blercom N, Chabardes S, Fraix V, Ardouin C, et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson's disease. N Engl J Med (2003) 349:1925–32. doi:10.1056/NEJMoa035275

132. Moro E, Serratori M, Romito LM, Roselli R, Tonali P, Albaneze A. Chronic subthalamic nucleus stimulation reduces medication requirements in Parkinson's disease. Neurology (1999) 53:89–95. doi:10.1212/25N.1.85

133. Gironell A, Pascual-Sedano B, Otermin P, Kulisevsky J. Weight gain following unilateral and staged bilateral STN DBS for advanced PD. Brain Behav (2011) 1:112–8. doi:10.1002/brb3.9

134. Mills KA, Scherzer R, Starr PA, Ostrem JL. Weight change after globus pallidus internus or subthalamic nucleus deep brain stimulation in Parkinson's disease and dystonia. Stereotact Funct Neurosurg (2012) 90:386–93. doi:10.1159/000340071

135. Dullon AG, Montani JP. Obesity in Parkinson's disease patients on electrotherapy: collateral damage, adiposity rebound or secular trends? Br J Nutr (2005) 93:417–9. doi:10.1079/BJN20041437

136. Tuite PJ, Maxwell RE, Iikramuddin S, Kote CM, Billington CJ, Laseki MA, et al. Weight and body mass index in Parkinson's disease patients after deep brain stimulation surgery. Parkinsonism Relat Disord (2005) 11:247–52. doi:10.1016/j.parkreldis.2005.01.006

137. Jorgensen HU, Wedelin L, Lokkengaard A, Westerterp KR, Simonsen L. Free-living energy expenditure reduced after deep brain stimulation surgery for Parkinson's disease. Clin Physiol Funct Imaging (2013) 32:214–20. doi:10.1111/j.1475-097X.2011.01079.x

138. Krack P, Limousin P, Benabid AL, Pollak P. Chronic stimulation of subthalamic nucleus improves levodopa-induced dyskinesias in Parkinson's disease. Lancet (1997) 350:1676–1676. doi:10.1016/S0140-6736(05)64273-0

139. Krack P, Pollak P, Limousin P, Benazech A, Deuschl G, Benabid AL. From off-period dystonia to peak-dose chorea. The clinical spectrum of varying subthalamic nucleus activity. Brain (1999) 122(6 Pt 5):1133–46. doi:10.1093/brain/122.6.1133

140. Arnold J, Leu-Semenescu S. Sleepiness in Parkinson's disease. Parkinsonism Relat Disord (2009) 15(Suppl 3):S101–4. doi:10.1016/S1353-8020(09)70792-8

141. Fouquet-Samier A, Maurice S, Hivert S, Guefli D, Rigalleau V, Barbuda P, et al. A long-term follow-up of weight changes in subthalamic nucleus stimulated Parkinson's disease patients. Rev Neurol (Paris) (2012) 168:173–6. doi:10.1016/j.neurol.2011.04.006

142. Macia F, Perlemoine C, Coman I, Guefli D, Barbuda P, Cayn E, et al. Parkinson's disease patients with bilateral subthalamic deep brain stimulation gain weight. Mov Disord (2004) 19:206–12. doi:10.1002/mds.160630

143. Haynes WJ, Haber SN. The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for basal ganglia models and deep brain stimulation. J Neurosci (2013) 33:4804–14. doi:10.1523/JNEUROSCI.4764-12.2013

144. Brotzu F, Iech J, Novakova L, Ursu A, Vymazal J, Ruzicka E. Weight gain associated with on/off method of stimulating subthalamic nucleus in Parkinson's disease. Clin Oto1 (2012) 7:e83020. doi:10.1371/journal.pone.0038020

145. Baune C, Amalric M, Robbins TW. Enhanced food-related motivation after bilateral lesions of the subthalamic nucleus. J Neurosci (2002) 22:562–8.

146. Castrioto A, Lhommet E, Moro E, Krack P. Mood and behavioural effects of subthalamic stimulation in Parkinson's disease. Lancet Neurol (2014) 13:387–393. doi:10.1016/S1474-4422(13)70294-1

147. Butson CR, Maks CB, McIntyre CC. Sources and effects of electrode imped ance during deep brain stimulation. Clin Neurophysiol (2006) 117:447–54. doi:10.1016/j.clinph.2005.10.007

148. Sani S, Jobe K, Smith A, Kordower JH, Bakay RA. Deep brain stimulation for treatment of obesity in rats. J Neurosurg (2010) 110:289–93. doi:10.3171/JNS/07/10809

149. Quaide F, Vernet K, Larson S. Stereotaxic stimulation and electrocoagulation of the lateral hypothalamic area in obese humans. Acta Neurochir (Wien) (1974) 33:101–7. doi:10.1007/BF01442257

150. Ponti R, de Jong JW, van Dijk JH, Adan RA. Neurobiology of overeating and obesity: the role of melancortins and beyond. Eur J Pharmacol (2011) 660:28–42. doi:10.1016/j.ejphar.2011.01.034

151. Sieffert C, Beohneke S, Heinzmann J, Baudrexel S, Weise L, Gasser T, et al. Diurnal variation of hypothalamic function and chronic subthalamic nucleus stimulation in Parkinson's disease. Neuroendocrinology (2013) 97:283–90. doi:10.1159/000343808
160. Serranová T, Jech R, Dušek P, Sieger T, Ružička F, Urošič D, et al. Subthalamic nucleus stimulation affects incentive salience attribution in Parkinson's disease. Mov Disord (2011) 26:2266–6. doi:10.1002/mds.23880

161. Zahodne LB, Susatia F, Bowers D, Ong TL, Jacobson CE, IV, Okun MS, et al. Binge eating in Parkinson's disease: prevalence, correlates and the contribution of deep brain stimulation. J Neuropsychiatry Clin Neurosci (2011) 23:56–62. doi:10.1176/appi.neuropsych.23.1.56

162. Weintraub D, Hoops S, Shea JA, Lyons KE, Pahwa R, Driver-Dunckley ED, et al. Validation of the questionnaire for impulsive-compulsive disorders in Parkinson’s disease. Mov Disord (2009) 24:1461–7. doi:10.1002/mds.22571

163. Kessler RC, Berglund PA, Chiu WT, Deitz AC, Hudson JI, Shahly V, et al. The prevalence and correlates of binge eating disorder in the World Health Organization World Mental Health Surveys. Biol Psychiatry (2013) 73:904–14. doi:10.1016/j.biopsych.2012.11.020

164. Lee JY, Kim JM, Kim JW, Cho J, Lee WY, Kim HJ, et al. Binge eating in Parkinson's disease: prevalence, correlates and the contribution of deep brain stimulation. J Neuropsychiatry Clin Neurosci (2011) 23:56–62. doi:10.1176/appi.neuropsych.23.1.56

165. Liu LL, Li BM, Yang J, Wang YW. Does dopaminergic reward system contribute to explaining comorbidity obesity and ADHD? Med Hypotheses (2008) 70:1118–20. doi:10.1016/j.mehy.2007.10.012

166. Okai D, Samuel M, Askey-Jones S, David AS, Brown RG. Impulse control disorders and dopamine dysregulation in Parkinson's disease: a broader conceptual framework. Eur J Neurol (2011) 18:1379–83. doi:10.1111/j.1468-1331.2011.03432.x

167. Thobois S, Ardonc C, Lhomée E, Klinger H, Lagrange C, Xie J, et al. Non-motor dopamine withdrawal syndrome after surgery for Parkinson’s disease: predictors and underlying mesolimbic denervation. Brain (2010) 133:1111–27. doi:10.1093/brain/awp032

168. Marin RS, Fogel BS, Hawkins J, Duffy J, Krupp B. Apathy: a treatable syndrome. J Neuropsychiatry Clin Neurosci (1995) 7:23–30.

169. Taber MT, Fibiger HC. Feeding-evoked dopamine release in the nucleus accumbens: regulation by glutamatergic mechanisms. Neuroscience (1997) 76:1105–12. doi:10.1016/S0361-9230(96)00450-2

170. Reinholz J, Skopp O, Breitenstein C, Bohr I, Winterhoff H, Knecht S. Compensatory weight gain due to dopaminergic hypofunction: new evidence and own incidental observations. Nutr Metab (2008) 5:doi:10.1186/1743-7075-5-35

171. Wu JC, Bell K, Najafi A, Widmark C, Keator D, Tang C, et al. Decreasing striatal 6-FDOPA uptake with increasing duration of cocaine withdrawal. Neuropsychopharmacology (1997) 17:402–9. doi:10.1016/S0893-133X(97)00089-4

172. Novakova L, Haluzik M, Jech R, Urosic D, Ružička F, Ružička E. Hormonal regulators of food intake and weight gain in Parkinson's disease after subthalamic nucleus stimulation. Neuro Endocrinol Lett (2011) 32:437–41.

173. Tan SK, Hartung H, Sharp T, Temtel Y. Serotonin-dependent depression in Parkinson's disease: a role for the subthalamic nucleus? Neuropharmacology (2011) 61:387–99. doi:10.1016/j.neuropharm.2011.01.006

174. Seale P. Orexin turns up the heat on obesity. Cell Metab (2011) 14:441–2. doi:10.1016/j.cmet.2011.09.007

175. Craddock P, Fraix V, Mendes A, Benabid AL, Pollak P. Postoperative management of subthalamic nucleus stimulation for Parkinson's disease. Mov Disord (2002) 17:5188–97. doi:10.1016/mdis.2010.12.010

176. Guimarães J, Mattos E, Rosas MJ, Vieira-Coelho A, Borges N, Correia F, et al. Modulation of nutritional state in Parkinsonian patients with bilateral subthalamic nucleus stimulation. J Neurol (2009) 256:2072–8. doi:10.1007/s00415-009-5252-x

177. Desouza CV, Padala PR, Haynatzki G, Anzuero P, Demasi C, Shivashwamy V. Role of apathy in the effectiveness of weight management programmes. Diabetes Obes Metab (2012) 14:419–23. doi:10.1111/j.1463-1326.2011.01544.x

Conflict of Interest Statement: Paul Krack received research grant from Lundbeck, Orkyn, Novartis, Medtronic, LVL, St. Jude; travel costs/honoraria from Euthérapie, Lundbeck, Boehringer Ingelheim, Novartis, UCB, Medtronic, Orkyn, Abbott, Orion, TEVA, Boston Scientific. The other authors declare no conflicts of interest.

Received: 03 January 2014; paper pending published: 10 April 2014; accepted: 16 May 2014; published online: 02 June 2014.

Citation: Kistner A, Lhomée E and Krack P (2014) Mechanisms of body weight fluctuations in Parkinson's disease. Front. Neurol. 5:84. doi: 10.3389/fneur.2014.00084

This article was submitted to Movement Disorders, a section of the journal Frontiers in Neurology.

Copyright © 2014 Kistner, Lhomée and Krack. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.