A Challenging Case of Domestically Acquired Leprosy in the Southern United States"

1. Shruthi Mohan
 Emory University, Atlanta, GA, USA
 Shruthi.mohan@emory.edu

2. Jessica K. Fairley
 Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
 Jessica.fairley@emory.edu

Corresponding author:
Jessica K. Fairley, MD, MPH
550 Peachtree St. NE
7th Floor
Atlanta, GA 30306 USA
Jessica.fairley@emory.edu
Tel: 404-686-4553
Fax: 404-686-4508

Author Contributions: SM and JKF contributed equally to the writing and editing of the manuscript.

© The Author(s) 2020. Published by Oxford University Press on behalf of Infectious Diseases Society of America.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Abstract:

Hansen’s disease is rare in the United States but a steady number of cases are diagnosed annually, especially in southern areas where armadillos are present. Challenges associated with erythema nodosum leprosum (ENL), a complication of multibacillary leprosy, call for novel regimens. We present a case of a man with recalcitrant ENL from HD likely acquired in the US. He required a combination of four drugs to control chronic ENL.
Introduction:

Hansen’s disease (HD), or leprosy, is an infectious disease caused by *Mycobacterium leprae*. Affecting the nerves, skin, eyes, and nasal mucosa, it has the potential to lead to severe disability and nerve damage if treatment is delayed\(^1,2\). In the United States, 178 new cases were reported in 2015\(^3\). Interestingly, there has been an increase in HD in the south, predominantly in Florida, since 2016\(^4,5-9\). This disease is treatable by combination antibiotic therapy; however, significant challenges remain. Type 1 and Type 2 leprosy reactions, which may cause severe immune-mediated episodes\(^1,10\). This case will focus on treatment for Type 2 reactions (erythema nodosum leprosum, ENL), a systemic immune-complex mediated syndrome, which can be recalcitrant and resistant to treatment.

Case:

A 43-year-old, previously healthy male presented with a one-year history of erythematous lesions on his legs, which then spread to his trunk and other extremities. He was born in the US, spent some time in Germany as a child and traveled once to the Bahamas as a young adult. He grew up in Florida and has been in Georgia for the last 19 years. The patient knew of a family friend with HD, but was never in contact with her. He is a carpenter by trade and often works outdoors.

On presentation, the patient reported feelings of occasional parasthesias in the right calf. On exam, he had scattered, hyperpigmented, maculopapular lesions on extremities and back (Figure 1). The left ankle had decreased sensation over a hypopigmented skin lesion, but intact sensation was noted over hands and feet. The skin biopsy showed perineural infiltrates and numerous acid-fast bacilli in macrophages were noted on Fite stain. He was started on multidrug therapy (MDT), which included clofazimine, rifampin, and dapsone.
He was also given a 1-month prednisone taper for swollen ankles and concern for possible Type 1 reaction.

Although his nerve symptoms and skin lesions improved on MDT, two months later the patient presented with diffuse tender skin nodules (Figure 2), swollen joints, and fever, consistent with Type 2 reaction, or erythema nodosum leprosum (ENL). He was initially treated with prednisone at 40 mg daily (Table 1), tapered to 20 mg daily but required repeated bursts of 30-40 mg daily. The patient was hesitant to try thalidomide due to the side effects. After a discussion on potential options, methotrexate was added to prednisone, and ultimately its dose increased to 20 mg per week. There was initial improvement but he then had recurrent ENL flares (painful nodules, fever, joint pains and swelling) on this regimen (Table 1). At that point, thalidomide at 100 mg / day was prescribed and methotrexate discontinued since it did not seem to have had a significant or sustained effect on symptoms. Prednisone was continued and initially was weaned to 15 mg / day with the addition of thalidomide. However, fatigue limited the titration of thalidomide over 100 mg / day and with periodic ENL flares a dosage of 15 mg daily was unsustainable; he was never able to wean down under 20 mg of prednisone/day for more than three months at a time. Most recently, 4 years after diagnosis of ENL, methotrexate at 10 mg / week was added to thalidomide at 50 mg / day and 100 mg / day of clofazimine (for anti-inflammatory properties) as well as decreasing doses of prednisone. He has made progress and has had fewer ENL flares.
Discussion:

Clinically, the Ridley-Jopling classification uses immune responses to the infection and histopathology to classify HD into categories spanning tuberculoid to lepromatous11. Patients with borderline and lepromatous disease are at risk of erythema nodosum leprosum with up to 50\% suffering this complication. ENL is characterized by painful skin nodules, systemic symptoms like fever, and sometimes neuritis1,10. Thalidomide is generally considered the treatment of choice for ENL, but limited availability, teratogenicity, and side effects often limit its use 12. Corticosteroids, therefore, are frequently prescribed instead, but often require very high doses and prolonged therapy, increasing the risk of potentially serious adverse effects. Patients who transition from prednisone to thalidomide are often able to wean completely off prednisone and continue to control ENL with thalidomide alone12. However, in our patient, this was not the case, with attempts at steroid sparing regimens (first methotrexate and then thalidomide) thwarted by recalcitrant symptoms and side effects.

Dedicated studies investigating multidrug therapy for ENL are lacking; however, some 2-drug combinations have been used and were initially attempted in the presented case. A study comparing thalidomide and prednisone to clofazimine and prednisone in patients with chronic ENL showed that thalidomide with prednisone was more efficient in treating recurrent Type 2 reactions13. Due to the long-term adverse effects of steroids, though, it is paramount to taper prednisone to lower levels, scaling up for new ENL flares as needed. However, this has been a challenge as our patient was unable to control flares on lower than 20 mg per day of prednisone, with the sedating effects of thalidomide limiting use at higher doses.
Methotrexate, whose effectiveness in treatment resistant ENL is still being studied, also has anti-inflammatory properties and is thought to suppress immune responses14,15. A recent study followed the disease progression of 9 severe ENL patients who were unresponsive to clofazimine and prednisolone treatment. With a combination methotrexate and prednisone treatment for 30-36 months, the patients showed a gradual but steady improvement that lead to sustained remission of ENL long after the study’s conclusion15. Our patient, though, did not respond to 20 mg weekly of methotrexate combined with prednisone. It is important to note that thalidomide was not a part of these early treatment regimens. However, with combination therapy, there has been significant improvement with four drugs: prednisone, thalidomide, methotrexate, and clofazimine, all at low doses. This would support the use of multiple drugs to both better control of symptoms and reduce risk of serious adverse events, but more formal studies need to be done to compare regimens. Use of other treatments, such as azathioprine, infliximab, and etanercept, have been reported and may be important in situations where thalidomide is either restricted or not well regulated16-19.

The patient’s epidemiological risk factors were also an interesting part of this case. He denied any foreign residence or significant international travel, therefore, he likely acquired HD through the armadillo reservoir. He reports having no direct contact with armadillos except seeing them on his property. Though there are still many unknown factors about transmission of this disease, the most accepted route is person-to-person through nasal droplets. Armadillos that are naturally infected with the bacteria have also been proven reservoirs, with potential transmission through soil or free-living ameoba9,20,21. Cases that are considered to be domestic are most common in Florida and
from Texas to Georgia9,21.

The patient living on armadillo inhabited land indicates a greater possibility of indirect exposure to \textit{M. leprae}9. Since carpentry is a profession that requires frequent exposure to house dust and soil, the question of whether these vocations pose an increased risk for Hansen’s disease in areas with rising incidence, presents an interesting topic of further study.
Acknowledgements:

We would like to thank clinicians and staff of the National Hansen's Disease Program who supported the clinical care of this patient through expert advice and consultation.

Consent:

The patient described in this case has given full, signed, informed consent to describe his medical treatment and to use deidentified photographs of his skin.

Figure 1:

Photographs of case patient at the time of diagnosis. Subtle hyperpigmented papules are noted on the upper leg with a large hypopigmented, anesthetic lesion proximal to the left medial malleolus. Photos shared with permission from patient.

Figure 2.

Photographs of case patient with ENL nodular lesions on leg (left) and forearm (right).
Table 1. Timeline of Patient Symptoms and Treatment Regimens

Timeline	Symptoms	Treatment notes
T – 1 year	Erythematous lesions develop and spread	-------
Time 0 (1st visit to HD clinic)	Parasthesias, bilateral ankle swelling, maculopapular lesions on extremities and back	1. MDT started Clofazimine Rifampin Dapsone 2. 40 mg prednisone for concern of Type 1 reaction (swollen joints), tapering down and off within 4 weeks
2 months	Type 2 reaction: tender skin nodules, fever, swollen joints	Restarted prednisone at 40 mg with quick taper to 20 mg daily
3 months	Continued ENL symptoms	Brief attempt at 10 mg prednisone daily, but then brought up to 20 mg daily. Clofazimine increased to 200 mg daily
6 months	Symptoms initially controlled on above, then	Methotrexate started – titrated up to 20 mg / week
Time Period	Condition	Treatment
-------------	-----------	-----------
7 – 10 months	New flare with nodules and fever	Prednisone (20mg/day)
11 months	Improved symptoms	Prednisone weaned to 15 mg daily; rest as above
	ENL symptoms worsen with more frequent flares of nodules, fevers, joint swelling.	Methotrexate 20 mg / week; Prednisone 40 mg intermittently
12 months	Prednisone wean attempted	Thalidomide started 100 mg / day
		Clofazimine decreased to 50 mg / day due to risk of crystal enteropathy
12 – 18 months	Unable to control flares with 20 mg prednisone	Thalidomide 100 mg daily; Prednisone 25 – 30 mg daily
18 – 42 months	Less flares	Thalidomide 100 mg daily; Prednisone 15- 20 mg daily; MDT stopped t 24 months
42 months	Patient wishes to wean of thalidomide	Thalidomide 50 mg daily; Prednisone 15 mg daily
42 – 48 months	ENL flares increase with weaning of thalidomide	Clofazimine restarted – 200 mg / day; Thalidomide 50 mg daily; Prednisone 20-30 mg daily
Currently (4 years after diagnosis)	Progress with fewer ENL flares	Methotrexate (10mg/week)
		Thalidomide (50mg/day)
		Clofazimine (100mg/day)
		Prednisone 10-15 mg / day
References

1. White C, Franco-Paredes C. Leprosy in the 21st Century. *Clin Microbiol Rev.* 2015;28(1):80-94.

2. Rodrigues LC, Lockwood D. Leprosy now: epidemiology, progress, challenges, and research gaps. *Lancet Infect Dis.* 2011;11(6):464-470.

3. NHDP. National Hansen’s Disease (Leprosy) Program Caring and Curing Since 1894. https://www.hrsa.gov/hansens-disease/index.html. Published 2019. Accessed November 4, 2019.

4. Domozych R, Kim E, Hart S, Greenwald J. Increasing incidence of leprosy and transmission from armadillos in Central Florida: A case series. *JAAD Case Rep.* 2016;2(3):189-192.

5. Villada G, Zarei M, Romagosa R, Forgione P, Fabbrocini G, Romanelli P. Autochthonous borderline tuberculoid leprosy in a man from Florida. *Leprosy review.* 2016;87(1):101-103.

6. Logas CM, Holloway KB. Cutaneous leprosy in Central Florida man with significant armadillo exposure. *BMJ Case Rep.* 2019;12(6).

7. Aslam S, Peraza J, Mekaieil A, Castro M, Casanas B. Major risk factors for leprosy in a non-endemic area of the United States: A case series. *IDCases.* 2019;17:e00557.

8. Marcos LA, Dobbs T, Walker S, Waller W, Stryjewska BM. Indigenous Cases of Leprosy (Hansen’s Disease) in Southern Mississippi. *J Miss State Med Assoc.* 2015;56(7):188-191.

9. Sharma R, Singh P, Loughry WJ, et al. Zoonotic Leprosy in the Southeastern United States. *Emerg Infect Dis.* 2015;21(12):2127-2134.
10. Kamath S, Vaccaro SA, Rea TH, Ochoa MT. Recognizing and managing the immunologic reactions in leprosy. *Journal of the American Academy of Dermatology*. 2014;71(4):795-803.

11. Ridley DS, Jopling WH. Classification of leprosy according to immunity. A five-group system. *International journal of leprosy and other mycobacterial diseases: official organ of the International Leprosy Association*. 1966;34(3):255-273.

12. Walker SL, Waters MF, Lockwood DN. The role of thalidomide in the management of erythema nodosum leprosum. *Leprosy review*. 2007;78(3):197-215.

13. Kar HK, Gupta L. Comparative efficacy of four treatment regimens in Type 2 Leprosy Reactions (Prednisolone alone, Thalidomide alone, Prednisolone plus Thalidomide and Prednisolone plus Clofazimine). *Indian journal of leprosy*. 2016;88(1):29-38.

14. Rahul N, Sanjay KS, Singh S. Effectiveness of Methotrexate in prednisolone and thalidomide resistant cases of Type 2 lepra reaction: report on three cases. *Leprosy review*. 2015;86(4):379-382.

15. Hossain D. Using methotrexate to treat patients with ENL unresponsive to steroids and clofazimine: a report on 9 patients. *Leprosy review*. 2013;84(1):105-112.

16. Costa P, Fraga LR, Kowalski TW, Daxbacher E, Schuler-Faccini L, Vianna FSL. Erythema Nodosum Leprosum: Update and challenges on the treatment of a neglected condition. *Acta Trop.*. 2018;183:134-141.

17. Jitendra SSV, Bachaspatimayum R, Devi AS, Rita S. Azathioprine in Chronic Recalcitrant Erythema Nodosum Leprosum: A Case Report. *J Clin Diagn Res*. 2017;11(8):FD01-FD02.
18. Faber WR, Jensema AJ, Goldschmidt WF. Treatment of recurrent erythema nodosum leprosum with infliximab. *N Engl J Med.* 2006;355(7):739.

19. Santos JRS, Vendramini DL, Nery J, Avelleira JCR. Etanercept in erythema nodosum leprosum. *An Bras Dermatol.* 2017;92(4):575-577.

20. Truman R, Fine PE. 'Environmental' sources of *Mycobacterium leprae*: issues and evidence. *Leprosy review.* 2010;81(2):89-95.

21. Truman RW, Singh P, Sharma R, et al. Probable zoonotic leprosy in the southern United States. *N Engl J Med.* 2011;364(17):1626-1633.
Figure 2b