Single-Nucleotide Variants in the AIM2 – Absent in Melanoma 2 Gene (rs1103577) Associated With Protection for Tuberculosis

Mariana Brasil de Andrade Figueira1,2*, Dhémerson Souza de Lima3, Antonio Luiz Boechat1,2, Milton Gomes do Nascimento Filho1, Irineide Assumpção Antunes4, Joycené da Silva Matsuda5, Thais Rodrigues de Albuquerque Ribeiro1, Luana Sousa Felix1, Ariane Senna Fonseca Gonçalves1, Allyson Guimarães da Costa2,5, Rajendranath Ramasawmy2,6,7, Alessandra Pontillo3, Mauricio Morishi Ogusku8 and Aya Sadahiro1,2*

1 Laboratório de Imunologia Molecular, Departamento de Parasitologia, Universidade Federal do Amazonas (UFAM), Manaus, Brazil, 2 Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Brazil, 3 Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), São Paulo, Brazil, 4 Policlínica Cardoso Fontes – Secretaria de Estado da Saúde do Amazonas-SUSAM, Manaus, Brazil, 5 Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMODA), Manaus, Brazil, 6 Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil, 7 Faculdade de Medicina Nilton Lins, Universidade Nilton Lins, Manaus, Brazil, 8 Laboratório de Micosbacteriologia, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil

Tuberculosis (TB) remains a serious public health burden worldwide. TB is an infectious disease caused by the Mycobacterium tuberculosis Complex. Innate immune response is critical for controlling mycobacterial infection. NOD-like receptor pyrin domain containing 3/absent in melanoma 2 (NLRP3/AIM2) inflammasomes are suggested to play an important role in TB. NLRP3/AIM2 mediate the release of pro-inflammatory cytokines IL-1β and IL-18 to control M. tuberculosis infection. Variants of genes involved in inflammasomes may contribute to elucidation of host immune responses to TB infection. The present study evaluated single-nucleotide variants (SNVs) in inflammasome genes AIM2 (rs1103577), CARD8 (rs2009373), and CTSB (rs1692816) in 401 patients with pulmonary TB (PTB), 133 patients with extrapulmonary TB (EPTB), and 366 healthy control (HC) subjects with no history of TB residing in the Amazonas state. Quantitative Real Time PCR was performed for allelic discrimination. The SNP of AIM2 (rs1103577) is associated with protection for PTB (padj: 0.033, ORadj: 0.69, 95% CI: 0.49-0.97). CTSB (rs1692816) is associated with reduced risk for EPTB when compared with PTB (padj: 0.034, ORadj: 0.50, 95% CI: 0.27-0.94). Serum IL-1β concentrations were higher in patients with PTB than those in HCs ($p = 0.0003$). The SNV rs1103577 of AIM2 appeared to influence IL-1β release. In a dominant model, individuals with the CC genotype (mean 3.78 ± SD 0.81) appeared to have a higher level of
IL-1β compared to carriers of the T allele (mean 3.45 ± SD 0.84) among the patients with PTB (p = 0.0040). We found that SNVs of AIM2 and CTSB were associated with TB, and the mechanisms involved in this process require further study.

Keywords: tuberculosis, inflammasome, SNV, AIM2, CARD8, CTSB

INTRODUCTION

Tuberculosis (TB) is an infectious disease caused by mycobacteria belonging to the *Mycobacterium tuberculosis* complex (MTBC) (1). The MTBC typically affects the lungs (pulmonary TB (PTB)) but can also affect other tissues and organs (extrapulmonary TB (EPTB)) (2). Approximately 25% of the world’s population is infected with *M. tuberculosis*, but only approximately 5% to 10% of *M. tuberculosis*-infected individuals subsequently develop TB (3). The complexity of TB is influenced by several factors, such as the immune status and genetic factors of host (4–8).

The innate immune response is the first line of host defense against mycobacteria infection (9, 10). Innate immune system senses pathogens via pattern-recognition receptors (PRRs) to recognize conserved microbial components known as pathogen-associated molecular patterns (PAMPs). PRR also function as innate sensors of host-derived danger signals, the danger-associated molecular patterns (DAMPs) and may assemble in inflammasomes (11). Inflammasomes are intracellular multimeric protein complexes that play key roles in the innate immune response (12, 13). Inflammasomes are essential for controlling bacterial growth through the activation of caspase-1 to process pro-inflammatory IL-1β and IL-18 into active cytokines (14, 15). Caspase-1 also induces a type of inflammatory cell death called pyroptosis (16).

Inflammasomes belonging to the NOD-like receptor (NLR) family are composed of at least three components, a sensor protein (NLRP1, NLRP3, NLRP6, NLRP12, NLRC4; PYHIN family (PYD-like and HIN domain-containing proteins) as AIM2 and TRIM family (Tripartite motif proteins) containing PYRIN), an inflammatory caspase (caspase-1, Caspase-11) and an adapter molecule such as the apoptosis-associated speck-like containing a CARD domain (ASC) (17). NLRP3-inflammasomes is the most studied compared to others (18). NLRP3 and AIM2 inflammasomes play important role in host defense against *M. tuberculosis* (9, 15, 19–22).

The *NLRP3* gene is located on human chromosome 1. Basically, member of NLR family of PRR consists of three domains: a leucine-rich repeat (LRR)-region that interacts with antigens, a central nucleotide-binding NACHT domain and an effector domain PYD or CARD (23). *AIM2* gene is located on human chromosome 1. AIM2 is composed of two domains: a N-terminal pyrin domain (PYD) and a C-terminal hematopoietic interferon-inducible nuclear protein with a 200-amino acid repeat (HIN200) domain. AIM2 is a cytosolic double-stranded DNA receptor (24, 25).

Principles of inflammasome activation in TB involve two signals. The first signal induces the expression of NLRP3 and/or AIM2 inflammasome, pro-IL-1β and pro-IL-18 genes caused by Toll-like receptor (TLR) stimulation. The second signal results to oligomerization domain and formation of inflammasome complex consequent of activating stimuli. After that, the effector domain recruits ASC protein to assemble the inflammasome complex (PRR, ASC protein and procaspase-1). ASC protein recruits procaspase-1 through caspase recruitment domain (CARD) consequently it is cleaved into active caspase-1 (14).

Activating stimuli described for NLRP3 are mitochondrial factors (mitochondrial reactive oxygen species, mitochondrial DNA, cardiolipin), mycobacterial components, cathepsins after lysosomal rupture as Cathepsin B encoded by *CTSB* gene located on human chromosome 8, potassium efflux and extracellular ATP via the P2X7 purinergic receptor (26, 27) and AIM2 is cytosolic dsDNA (25, 28). CTSB is cysteine exo/endopeptidase enzymes pH dependent belonging members of the papain family seems to involvement roles in NLRP3-inflammasome activation as well as degradation or processing of lysosomal proteins (29–31). CARD8 adaptor protein is encoded by *CARD8* gene present on chromosome 19. CARD8 acts as a negative regulator during NLRP3 inflammasome activation for adequate functioning and balanced response (32, 33).

In animal models of TB, NLRP3 (34, 35) and AIM2 (19, 36) inflammasomes have been found to recognize cytosolic DNA. Recently, the importance of inflammasomes in TB (37) as well as the crucial role of IL1β in infection control independent of inflammasome activation have been highlighted (38). TB is complex and multifactorial and identification of genetic variants can improve our understanding of the pathogenesis of TB (39).

Several studies have shown a genetic predisposition to development of TB (40–44). Genetic variant in inflammasomes can change their physiological function and contribute to the susceptibility, severity, and outcomes of TB (45). Single-nucleotide variant (SNV) of *NLRP3* (rs10754558) and SNV of *P2X7* (rs2230911) are associated with TB. SNV of *NLRP3* (rs10754558) is associated with protection against PTB (41). The SNV of *P2X7* (rs2230911) is associated with susceptibility to PTB. SNVs of *CARD8* (rs2043211) and *NLRP3* (rs35829419) are associated with EPTB in Ethiopian population (46).

The important role of inflammasomes in immunity to TB prompted us to evaluate the associations of SNVs in genes encoding the AIM2 inflammasome, CARD8, and CTSB in patients with TB from Amazonas state of Brazil.

MATERIAL AND METHODS

Ethics Statement

This study was approved by Human Research Ethics Committee of Federal University of Amazonas (N°. CAAE: 57978916.3.0000.5020;
August 17, 2016). All patients and controls participating in this study provided written informed consent for collection of blood and sputum samples for analysis.

Study Population

This is a case–control study and is consisted of 401 patients with PTB, 133 patients with EPTB, and 366 healthy controls (HCs). The study population was recruited from Policlinica Cardoso Fontes, a sanitary pneumology center (Manaus, AM, Brazil). The patients with PTB were positive for *M. tuberculosis*, which was determined through a molecular rapid test (TRM, GeneXpert MTB/RIF) (47) or through sputum smears and PKO culture method (47, 48). The diagnosis of EPTB was based on recommendations of Brazilian National Guidelines for the Control of Tuberculosis (49). The patients with EPTB were either sputum MTB-positive or culture-positive and were molecularly characterized for MTBC. The clinical manifestations of EPTB were pleural, cutaneous, ganglionic, intestinal, perianal, ocular, bone, and miliary.

HCs participating in study had no history of TB and were contacts of patients with TB. The HCs were devoid of TB symptoms and negative for *M. tuberculosis* in sputum and/or in culture tests. Exclusion criteria comprised current pregnancy, comorbidities, such as cancer, diabetes, HIV positive, hepatitis, *M. tuberculosis* symptoms and negative for contacts of patients with TB. The HCs were devoid of TB intestinal, perianal, ocular, bone, and miliary.

DNA Isolation and SNV Genotyping

Genomic DNA was extracted from whole human blood (1 mL) using tetramethylammonium bromide salts protocol (50). SNVs were selected according to the minor allele frequency (MAF) of >10% in the selected population from NCBI database, but also for background information on inflammasome complex in tuberculosis. Three SNVs in inflammasome genes AIM2 T>C (rs1103577) situated on chromosome 1q15, CARD8 T>C (rs2009373) on 19q48, and CTSB A>C (rs1692816) on 8q11 were selected and genotyped using TaqMan probes for allelic discrimination assay by Real-Time PCR System (Applied Biosystems). The technology is based on hydrolysis fluorescent probes. The fluorescent probes are allele-specific oligonucleotides sequences of target SNV labeled with either VIC or FAM fluorescence to discriminate the alleles. Thermal cycling conditions for PCR were a pre-read stage at 60°C for 30 sec and subsequently a hold stage at 95°C for 10 min followed by 50 cycles of denaturation at 95°C for 15 sec and annealing/extension at 60°C for 01 sec and finally followed by a post-read stage at 60°C for 30 sec. The reaction mix contained 5 μL TaqMan Genotyping Master Mix 1X; 0.5 μL TaqMan® probes 20X of target SNV, 4.5 μL Milli-Q water and 2 μL DNA. (50ng/μL). For each PCR plate, a negative control and three known positive controls of target SNV (rare homozygote, wild-type homozygote and heterozygote) were included to increase the reliability of assay. Of note, the SNV rs35130877 of the *AIM2* gene was previously studied in the same population (41). This was carried out using QuantStudio™ 3 (ThermoFisher Scientific) and Design & Analysis Software v1.4.2. The probes used in experiment are shown in Supplementary Table 1.

Cytokine Measurements

Human IL-1β levels were measured in plasma sample from patients with PTB prior to start of drug therapy and HCs using a commercially available enzyme-linked immunosorbent assay (ELISA) kit (BioLegend ELISA MAX™ Deluxe Sets) following the manufacturer’s instructions. 50 μL of plasma samples were added to each well of high binding plate and readings were performed on a BioRad spectrophotometer plate as recommended by kit, using the 450 nm filter. Samples and standards were analyzed in duplicate. The minimal detectable concentration of IL-1β for this kit was 0.5 pg/mL.

Statistical Analysis

For each SNVs analysis, alleles analysis was performed using on the link https://ihg.helmholtz-muenchen.de/ihg/snpss.html and the associations between the allelic/genotype frequencies among patients with PTB, EPTB, and HCs were examined using the package “SNPassoc” version 1.9-2 (https://cran.r-project.org/web/packages/SNPassoc/index.html) for R software version 3.4.3 (www.r-project.org). The best genetic model was performed via Akaike information criterion (AIC). The Hardy-Weinberg equilibrium was evaluated for all SNVs. The results were shown as the odds ratio (OR) and 95% confidence intervals (95% CI) from multivariate logistic regression analyses. To control the potential confounding factors, adjusted OR (ORadj) values for age and sex were provided. The multivariate logistic regressions were performed using STATA 15 (StataCorp Texas, USA) after adjusting for age and sex. To compare multiple means of cytokine levels, one-way analysis of variance was applied with the Tukey’s post-hoc test adjusted for multiple comparisons. A p-value less than 0.05 was considered as statistically significant.

RESULTS

Characteristics of the Study Population

A total of 900 unrelated individuals born in the North of Brazil participated in this study. Of 900 individuals, 534 and 366 were patients with TB and HCs, respectively. Among those with TB, 401 had PTB and 133 had EPTB. The mean ages of patients with PTB, EPTB, and the HCs were 38.1 ± 13.7, 34.6 ± 14.1, and 32.9 ± 12.5, respectively. Of patients with PTB, EPTB, and HCs, 243 (60.6%), 75 (56.4%), and 180 (49.2%) were male, respectively. Patients with EPTB exhibited mostly pleural (55.6%), followed by cutaneous (17.3%) and ganglionic (16.5%). Intestinal, perianal, ocular, bone, and miliary TB accounted for 10.5%.

Analysis of the SNVs in Inflammasome Genes

All SNVs studied AIM2 rs1103577, CARD8 rs2009373 and CTSB rs1692816 were in the Hardy-Weinberg equilibrium (HWE) in both HCs and patients with TB. The frequencies of alleles and genotypes as well as the different comparisons are shown in Tables 1–4. Genotypes and the best inheritance modeling for AIM2, CARD8 and CTSB genes are reported in Supplementary Table 2.
The distribution of SNV of AIM2 (rs1103577) genotypes is slightly different between patients with PTB compared with HC (p_{adj}: 0.083). The frequency of genotype CC was slightly higher among patients with PTB (32%) than among HCs (27%). The SNV of AIM2 (rs1103577) was associated with a reduced risk of developing PTB (p_{adj}: 0.027, OR_{adj}: 0.69, 95% CI: 0.50-0.96) in a dominant model (CC versus CT + TT) when compared with HCs (Table 1). Carriers of T allele had 31% less chances of developing PTB compared to individuals homozygous for C allele, suggesting homozygosity for C allele may be a risk factor for PTB.

The SNV of CARD8 (rs2009373) showed a decrease risk in development of EPTB when compared to PTB in a recessive model (p_{adj}: 0.026, OR_{adj}: 0.48, 95% CI: 0.25-0.96) (Table 2). Bearers of C allele had 52% less chance of developing PTB. The frequency of genotype TT was predominant among the patients with PTB (22%) than in the EPTB group (12%). Individuals homozygous for T allele had twice chance of developing PTB than EPTB when compared with individuals homozygous for C allele (TT vs. CC p = 0.05, OR=2.1, 95% CI: 0.99-4.4) (The results of the different alleles were extracted on the link https://ihg.helmholtz-muenchen.de/ihg/snps.html). Of note, the frequencies of genotype were 31%, 49% and 20% for CC, CT and TT respectively, among HCs group (Supplementary Table 2). Comparisons between patients with EPTB and HCs revealed that carriers of C allele (CC +CT vs. TT) had 85% risk of developing EPTB (p=0.07, OR = 1.85, 95% CI: 0.94-3.7). No association was revealed when patients with PTB were compared with HCs.

Regarding the SNV of CTSB (rs1692816), an overdominant model indicated that heterozygous individuals have a lower risk of developing EPTB compared to patients with PTB (p: 0.022, OR: 0.50, 95% CI: 0.27-0.92) (Supplementary Table 2) and when adjusted for sex and age (p: 0.026, OR: 0.50, 95% CI: 0.27-0.94) (Tables 3 and 4). The frequencies were 23%, 50% and 27% for

Table 1 Genetic models of association SNV rs1103577 of AIM2 gene adjusted for sex and age in patients with pulmonary tuberculosis (PTB) and healthy control.

AIM2 Genetic Model	PTB n, %	Controls n, %	p value_{adj}	OR_{adj} (95% CI)	AIC
Codominant					
CC	124 (0.32)	95 (0.27)	0.083	1.00	988.4
CT	180 (0.47)	180 (0.51)	0.68 (0.48-0.96)	0.72 (0.47-1.11)	
TT	81 (0.21)	76 (0.22)	0.72 (0.47-1.11)		
Dominant			0.027		986.5
CC	124 (0.32)	95 (0.27)	0.027		
CT-TT	261 (0.68)	256 (0.73)	0.69 (0.50-0.96)		991.2
Recessive			0.672		
CT-CC	304 (0.79)	275 (0.78)	0.69 (0.50-0.96)		
TT	81 (0.21)	76 (0.22)	0.92 (0.64-1.33)		
Overdominant			0.096		988.6
CC-TT	205 (0.53)	171 (0.49)	0.096		
CT	180 (0.47)	180 (0.51)	0.78 (0.58-1.05)		
Log-Additive	385 (0.52)	351 (0.48)	0.096	0.84 (0.68-1.03)	
0,1,2					

PTB (pulmonary tuberculosis); adjusted for sex and age (p value_{adj}, OR_{adj}); 95% confidence interval (CI); AIC, Akaike information criterion value.

The results statistically significant are highlight in bold characters.

Table 2 Genetic models of association SNV rs2009373 of CARD8 gene adjusted for sex and age in patients with extrapulmonary tuberculosis (EPTB) and pulmonary tuberculosis (PTB).

CARD8 Genetic Model	EPTB n, %	PTB n, %	p value_{adj}	OR_{adj} (95% CI)	AIC
Codominant					
CC	31 (0.34)	111 (0.30)	0.083	1.00	462.3
CT	50 (0.54)	183 (0.49)	0.98 (0.59-1.64)	0.48 (0.23-1.01)	
TT	11 (0.12)	82 (0.22)	0.48 (0.23-1.01)		
Dominant			0.444		464.6
CC	31 (0.34)	111 (0.30)	0.444		
CT-TT	61 (0.66)	265 (0.71)	0.82 (0.50-1.35)		460.3
Recessive			0.026		
CT-CC	81 (0.88)	294 (0.78)	0.026		
TT	11 (0.12)	82 (0.22)	0.48 (0.25-0.96)		464.2
Overdominant			0.322		
CC-TT	42 (0.46)	193 (0.51)	0.322		
CT	50 (0.54)	183 (0.49)	1.26 (0.80-2.00)		462.2
Log-Additive	92 (0.20)	376 (0.80)	0.084	0.75 (0.53-1.04)	
0,1,2					

PTB (pulmonary tuberculosis); EPTB (extrapulmonary tuberculosis); adjusted for sex and age (p value_{adj}, OR_{adj}); 95% confidence interval (CI); AIC, Akaike information criterion value.

The results statistically significant are highlight in bold characters.
the CC, AC and AA genotypes, respectively among patients with PTB and similar pattern was observed among HCs (CC 25%, AC 48% and AA 27%). In contrast, the frequencies among patients with EPTB were 29%, 33%, and 37% for CC, AC and AA genotypes, respectively. Similarly, comparison between patients and HCs disclosed that heterozygous individuals have lower risk of developing EPTB (\(p = 0.045, \text{OR adj: } 0.54, 95\% \text{ CI: } 0.29-1.0\)).

Logistic regression analysis, including sex and age variables with SNVs, confirmed the association of \(\text{AIM2 rs1103577 (} p = 0.033, \text{OR: } 0.69, 95\% \text{ CI: } 0.49-0.97\) and \(\text{CTSB rs1692816 with a lower risk for EPTB (} p = 0.034, \text{OR: } 0.50, 95\% \text{ CI: } 0.27-0.94\) (Table 5).

DISCUSSION
Genetics and environmental factors are crucial for host immune response against \(M.\text{tuberculosis}\). The complex network of mechanisms from early infection to development of TB remains
poorly understood. Since the identification of function of various inflammasomes, several studies of genetic variants of genes involved in assembling the multiprotein complex of inflammasomes have attempted to determine the reason of susceptibility of some individuals to develop diseases while others remain asymptomatic. In the early stage of infection, innate immune response is essential to ensure the success of control and elimination of bacilli. Subsequently, upon inflammasomes activation, proinflammatory cytokines are released to keep in check the invading pathogen (45). In this context, we have focus on one SNV in the \textit{AIM2} inflammasome in tuberculosis together with two other SNVs, one in \textit{CARD8} and one in \textit{CTSB}, that are related to NLRP3 pathway.

Studies regarding human genetic variants of \textit{AIM2} are rare in infectious diseases (41, 42, 45). Recently, we investigated another SNV of \textit{AIM2} (rs35130877) in 288 patients with PTB and 288 HCs. None of participants had this SNV (41). In this study, we found that SNV of \textit{AIM2} (rs1103577) was associated with protection against TB. Interestingly, immunological studies involving mice have demonstrated a protective role of \textit{AIM2} against \textit{M. tuberculosis} infection (19, 51). Inhibition of inflammasomes decreased the survival of \textit{M. tuberculosis} in mice (37) and suggested that a high level of IL-1β favored the survival of bacteria. Carriers homozygous for C allele have higher IL-1 concentrations compared to T allele carriers, and T allele is associated with protection in our study. Furthermore, modern lineages of MTBC have high multiplication rates, which correlates to high levels of IL-1β (52). However, some individuals are resistant to \textit{M. tuberculosis} infection despite continuous exposure (53, 54), suggesting sterile clearance potentially due to a reflex of genetic background and immunity of individual.

Variable	Tuberculosis vs Control	Pulmonary tuberculosis vs Control	Extrapolmonary tuberculosis vs Control	Pulmonary vs Extrapolmonary tuberculosis				
	p value	OR (95% CI)						
AIM2	0.053	0.73 (0.53-1.00)	0.033	0.69 (0.49-0.97)	0.241	0.68 (0.35-1.29)	0.976	1.00 (0.53-1.90)
rs1103577	0.825	0.95 (0.70-1.31)	0.652	0.92 (0.66-1.28)	0.539	1.21 (0.64-2.28)	0.279	1.41 (0.75-2.67)
CARD8 rs2009373	0.229	0.83 (0.63-0.81)	0.597	1.08 (0.80-1.46)	0.066	0.55 (0.29-1.03)	0.034	0.50 (0.27-0.94)
CTSB rs1692816								

The results statistically significant are highlight in bold characters.

FIGURE 1 | IL-1β profile respective on genotypes of \textit{AIM2}, \textit{CARD8} and \textit{CTSB} from pulmonary tuberculosis patients and control. (A) Serum concentrations of IL-1β distributed in \textit{AIM2}, \textit{CARD8} and \textit{CTSB} dominant model genotypes. (B) Graphic Normal QQ plot for three SNV studied. Groups were further compared with each other using ANOVA test with Tukey’s multiple comparisons test, *p < 0.05; **p < 0.001; ***p < 0.0001.
IL-1β is a proinflammatory cytokine and has been suggested to play key role in host protection against *M. tuberculosis* infection (55, 56). The protein ESAT of *M. tuberculosis* is cited as a potent activator of NLRP3 ASC inflammasome to liberate mature IL-1β (9). Patients with PTB also exhibit increased levels of IL-1β compared to HCs. Patients with PTB also demonstrate higher levels of IL-1β (37, 38, 57), reinforcing an important role in the early innate immune response to control *M. tuberculosis* infection. We found that the serum concentrations of cytokine IL-1β were correlated according to genotypes CC versus CT- TT (AIM2) among patients with PTB in a dominant model. The T allele (TT +CT) correlated with low level of IL1 while homozygosity for the C allele with high level of IL-1β. The T allele is associated with protection to development of TB while individuals homozygous for C allele with susceptibility. Interestingly, excessive levels of IL-1β has been associated with severe TB and lung damage (57, 58).

NLRP3 and AIM2-inflammasome are suggested to play important role in host-defense against mycobacteria (19, 59). Recently, Souza de Lima et al. (22) have shown that NLRP3/IL-1β/IL-18 pathway is strongly activated in a cathepsin-dependent form by virulent strain H37Rv and non-virulent BCG strains of *M. tuberculosis* in human macrophages, in vitro. Interestingly, the response was modulated according to macrophage donor genotype of SNV NLRP3 rs10754558 that correlated to level of IL-1β release (22). Of note, IL-1β is one among key proinflammatory cytokines essential for recruitment of immune cells to the site of *M. tuberculosis* infection (55). Several studies have demonstrated the role of AIM2-inflammasome in mycobacterial infection. Mice macrophages infected with pathogenic strain of *M. bovis* led to activation of AIM2-inflammasome and mature IL-1β release (60). Similarly, another study also demonstrated that THP-1 macrophages exposed to rBCG (Recombinant BCG AureC:: hly) vaccine results in AIM2-inflammasome activation with increased production of IL-1β and IL-18 and autophagy, corroborating the role of AIM2-inflammasome in innate immune response (61).

AIM2-deficient mice infected with *Mycobacterium bovis* Bacillus Calmette-Guérin (BCG) showed a higher infection burden and developed severe disease due to simultaneous induction of reactive IFN-β and IFN-γ responses compared to wild-type mice (51). The AIM2 inflammasome appears to play a protective role through the induction of IL-1β and negative regulation of type I IFN induction. High production of type I IFNs reduces the IFN-γ response in TB infection (51). Interestingly, we showed that individuals homozygous for C allele had higher level of IL-1β compared to carriers of T allele and T allele is associated with protection to the development of TB. Higher level of IL-1β in the early stage might be important in keeping in check the pathogen but at a later stage might cause tissue damage.

The SNVs of AIM2 (rs1103577), CARD8 (rs2009373) and CTSB (rs1692816) are located in intronic region of respective gene. Although the functional role of these variants has not been elucidated, non-coding regions can affect gene expression resulting in different responses to presence of pathogens and can serve such as genetic markers (62). In future studies, it will be interesting to quantify the AIM2 messenger RNA (mRNA) from macrophages of different genotypes of AIM2 (rs1103577) upon mycobacterial infection. Intronic regions have been highlighted for increasing the expression of mRNA in very diverse organisms (mammals, plants). Thus being an important regulator in the expression of proteins (63–66).

In this study, stratification of patients into PTB and EPTB suggested that CARD8 rs2009373 and CTSB rs1692816 were associated with a lower risk of developing PTB. However, multivariate logistic regression analysis showed that only CTSB rs1692816 was associated with a reduced risk for EPTB. Indeed, we observed that heterozygosity for the variant provides lower risk for development of EPTB. CTSB is a member of cathepsin family localized in lysosomes and cytosol. CTSB promotes the degradation of protein in lysosomes and controls autophagy (67). Furthermore, the inhibition of CTSB blocks *M. tuberculosis*-induced NLRP3 inflammasome assembly, thereby leading to a decrease in IL-1β release, suggesting that the release of lysosomal CTSB and possibly other cathepsins are crucial for activation of NLRP3 to control *M. tuberculosis* infection (22, 30).

The distribution of MAF for rs1103577 of AIM2 was not associated with TB in this study. However, other variants of CARD8 (rs6509365 and rs2043211) have been associated with susceptibility to TB (41, 46, 70). CARD8 negatively regulates NLRP3 activation, and CARD8 rs2043211 appears to have a loss of function. Interestingly, NLRP3 (rs35829419)/CARD8 (rs2043211) interaction is associated with levels of IL-1β (71).

Another important aspect is the variation in allele frequencies among populations. We found that some alleles were present in high or low frequencies or were entirely absent in specific populations, thereby indicating different evolutionary histories that are assumed are under selective pressure from prevalent diseases.

The distribution of MAF for rs1103577 of AIM2 (T allele) in HCs (T = 0.47) is comparable to that of a European population (T = 0.40) and different from that of an African population (C = 0.09). The Amazonian population is an admixture of approximately 60% American, 50% European, and 10% African ancestry (72). The MAF of CARD8 rs2009373 (T allele) in our group (T = 0.45) was similar to frequencies of South Asian (T = 0.46), European (T = 0.47), American (T = 0.41), and African (0.50) populations, but different from those of West Asian populations (C = 0.23). For rs1692816 of CTSB, both alleles A and C are frequent in different populations. The frequency of CTSB rs1692816 C allele was 0.49 in our population, compared to
African (0.56), American (0.59), and European (0.66) populations. However, the frequency of the rs1692816 C allele was similar to that of East (0.50) and South (0.53) Asian populations. The frequencies of the different alleles were extracted from http://www.ensembl.org/. These frequencies indicate the importance of careful selection of cases and controls from same homogeneous population to avoid spurious associations.

The present study had some limitations. First, the sample size of the cases was small, especially for patients with EPTB. Second, we could not assay IL-1β in patients with EPTB due to a lack of biological samples. Additionally, the NLRP3 data deviated from the HWE in both cases with TB and HCs; thus, they were excluded.

This result corroborates previous studies carried out by several researchers, both in an experimental model and in human cells infected by mycobacteria, which suggest the critical role of AIM2 in tuberculosis. We suggested AIM2 rs1103577 was found to be associated with a lower risk of developing PTB and genotypes CC for AIM2 rs1103577 patients with PTB demonstrate higher levels of IL-1β. The CARD8 and CTSB genes were also found to be important targets for TB, and other genetic variants should be investigated. Further studies are needed to confirm the association in other populations. Finally, it is indisputable that tuberculosis is a complex disease with a strong genetic link.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by The Human Research Ethics Committee of the Federal University of Amazonas (N°. CAAE: 57978916.3.0000.5020, August 17th, 2016). The patients/participants provided their written informed consent to participate in this study.

REFERENCES

1. Galagan JE. Genomic insights into tuberculosis. Nat Rev Genet (2014) 15:5. doi: 10.1038/nrg3664
2. Pai M, Behr M, Dowdy D, Dheda K, Divangahi M, Boehme CC, et al. Tuberculosis. Nat Rev Dis Primers (2016) 2:16076. doi: 10.1038/nrdp.2016.76
3. World Health Organization. Global Tuberculosis Report 2019 (2019), Geneva: World Health Organization. Available at: https://apps.who.int/iris/bitstream/handle/10665/329368/9789241565714-eng.pdf?ua (Accessed January 02, 2020).
4. Paramel GV, Sirsjö A, Franse K. Role of genetic alterations in the NLRP3 and CARD8 genes in health and disease. Mediators Inflamm (2015) 2015:10. doi: 10.1155/2015/846782
5. Cadena AM, Fortune SM, Flynn JL. Heterogeneity in tuberculosis. Nat Rev Immunol (2017) 17:11. doi: 10.1038/nri.2017.69
6. Torrelles JB, Schlesinger LS. Integrating Lung Physiology, Immunology, and Tuberculosis. Trends Microbiol (2017) 25:8. doi: 10.1016/j.tim.2017.03.007
7. Cardona P-J. Pathogenesis of tuberculosis and other mycobacteria. Enferm Infecc Microbiol Clin (2018) 36:1. doi: 10.1016/j.eimc.2017.10.009
8. Batista LAF, Silva KJS, Silva LMC, Moura YF, Zucchi FCR. Tuberculosis: A granulomatous disease mediated by epigenetic factors. Tuberculosis (2020) 123:101943. doi: 10.1016/j.tube.2020.101943
9. Mishra BB, Moura-ávès P, Sonawane A, Hacohen N, Griffiths G, Moita LF, et al. Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome. Cell Microbiol (2010) 12:8. doi: 10.1111/j.1462-5822.2010.01450.x
10. Abdallah AM, Bestebroer J, Savage NDL, Punder K, Zon VM, Wilson L, et al. Mycobacterial secretion systems ESX-1 and ESX-5 play distinct roles in host cell death and inflammasome activation. J Immunol (2011) 187:9. doi: 10.4049/jimmunol.1101457

AUTHOR CONTRIBUTIONS

MBAF: realized the experiments, analyzed the data and wrote the paper. DL: analyzed the data and intellectual contribution. AB: analyzed the data and intellectual contribution. MGNF: Sample processing and intellectual contribution. IA: Contributed with samples and patient selection and intellectual contribution. JM: Contributed with samples and patient selection and intellectual contribution and intellectual contribution. TR: Sample processing and intellectual contribution. LF: Sample processing and intellectual contribution. AG: Sample processing and intellectual contribution. AC: intellectual contribution. RR: wrote the paper and intellectual contribution. AP: analyzed the data and intellectual contribution. MO: Sample processing, understanding of genotyping assays and intellectual contribution. AS: Analyzed the data, wrote the paper and intellectual contribution. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by FAPEAM (Edital PPSUS, Processo 062.00663/2014).

ACKNOWLEDGMENTS

We thank all subjects involved in the study, including patients and to the staff of Policlinica Cardoso Fontes, Manaus, Amazonas, Brazil; Programa de Apoio à Pós-Graduação-Coordenacação de Aperfeiçoamento de Pessoal de Nível Superior (PROAP/CAPEPS) and Fundação de Amaro à Pesquisa do Estado do Amazonas (FAPEAM).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fimmu.2021.604975/full#supplementary-material
Zhang G, Zhou B, Li S, Yue J, Yang H, Wen Y, et al. Allele-specific...

Yang Y, Zhou X, Kouadir M, Shi F, Ding T, Liu C, et al. The AIM2...

Mishra BB, Rathinam VAK, Martens GW, Martinot AJ, Kornfeld H, ...

Fremond CM, Togbe D, Doz E, Rose S, Vasseur V, Maillet I, et al. IL-1...

Yamada H, Mizumo S, Horai R, Yoichiro I, Sugawara I, et al. Protective Role...

Möller M, Kinnear CJ, Orlova M, Kroon EE, Helden PDV, Schurr E, et al. Genetic Resistance to Mycobacterium tuberculosis Infection and Disease. Front Immunol (2018) 9:2219. doi: 10.3389/fimmu.2018.02219

Simmons JD, Stein CM, Seshadri C, Campo M, Alter G, Fortune S, et al. Immunological mechanisms of human resistance to persistent Mycobacterium tuberculosis infection. Nat Rev Immunol (2018) 18:9. doi: 10.1038/s41577-018-0025-3

Yamada H, Mizumo S, Horai R, Yoichiro I, Sugawara I, et al. Protective Role of Interleukin-1 in Mycobacterial Infection in IL-1β/Double-Knockout Mice. Lab Invest (2000) 80(5):759–67. doi: 10.1038/labinvest.3780079

Fremond CM, Togbe D, Doz E, Rose S, Vasseur V, Maillet I, et al. IL-1 receptor-mediated signal is an essential component of MyD88-dependent innate response to Mycobacterium tuberculosis infection. J Immunol (2007) 179:2. doi: 10.4049/jimmunol.179.2.1178

Mishra BB, Rathinam VAK, Martens GW, Martinot AJ, Kornfeld H, Fitzgerald KA, et al. Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1β. Nat Immunol (2013) 14:1. doi: 10.1038/ni.2474

Zhang G, Zhou B, Li S, Yue J, Yang H, Wen Y, et al. Allele-specific induction of IL-1β expression by C/EBPα and PU. 1 contributes to increased tuberculosis susceptibility. PloS Pathog (2014) 10:10. doi: 10.1371/journal.ppat.1004426

Rathinam VAK, Jiang Z, Waggoner SN, Sharma S, Cole LE, Waggoner L, et al. The AIM2 inflammasome is essential for host-defense against cytosolic bacteria and DNA viruses. Nat Immunol (2010) 11:5. doi: 10.1038/ni.1864

Yang Y, Zhou X, Kouadir M, Shi F, Ding T, Liu C, et al. The AIM2 inflammasome is involved in macrophage activation during infection with virulent Mycobacterium bovis strain. J Infect Dis (2013) 208:11. doi: 10.1093/infdis/jit347

Saiga H, Nieuwenhuizen N, Gengenbacher M, Koehler AB, Schuerer S, Moura-Alves P, et al. The Recombinant BCG Δ ureC::hly vaccine targets the AIM2 inflammasome to induce autophagy and inflammation. J Infect Dis (2015) 211:11. doi: 10.1093/infdis/jiu675

Zou H, Wu LX, Tan L, Shang FF, Zhou HH, et al. Significance of Single-Nucleotide Variants in Long Intergenic Non-protein Coding RNAs. Front Cell Dev Biol (2020) 8:347. doi: 10.3389/fcell.2020.00347

Chorev M, Carmel L. The function of inflrns. Front Genet (2012) 3:55. doi: 10.3389/fgene.2012.00055

Gallegos JE, Rose AB. The enduring mystery of intron-mediated enhancement. Plant Sci (2015) 237:8–15. doi: 10.1016/j.plantsci.2015.04.017

Shaul O. How introns enhance gene expression. Int J Biochem Cell Biol (2017) 91:145–55. doi: 10.1016/j.biocel.2017.06.016

Rigau M, Juan D, Valencia A, Rico D. Intronic CNVs and gene expression variation in human populations. Plos Genet (2019) 15:1. doi: 10.1371/journal.pgen.1007902

Man SM, Kanneganti TD. Regulation of lysosomal dynamics and autophagy by CTSB/cathepsin B. Autophagy (2016) 12.12. doi: 10.1080/15548627.2016.1239679

Khor CC, Chapman SJ, Vannberg FO, Dunne A, Murphy C, Ling EY, et al. A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat Genet (2007) 39:4. doi: 10.1038/ng1976

Ramasawmy R, Cunha-Neto E, Fae KC, Borba SCP, Teixeira PC, Ferreira SCP, et al. Heterozygosity for the S180L variant of MAL/TIRAP, a gene encoding an adaptor protein in the Toll-like receptor pathway, is associated with lower risk of developing chronic Chagas cardiomyopathy. J Infect Dis (2009) 199:12. doi: 10.1086/599212

Pontillo A, Carvalho MS, Kamada AJ, Moura R, Schindler HC, Duarte AJS, et al. Susceptibility to Mycobacterium tuberculosis infection in HIV-positive patients is associated with CARD8 genetic variant. J Acquir Immune Defic Syndr (2013) 63:2. doi: 10.1097/QAI.0b013e31828f93bb

Roberts RL, Van Rij AM, Phillips LV, McCormick SPA, Merriman TR, Jones GT, et al. Interaction of the inflammasome genes CARD8 and NLRP3 in abdominal aortic aneurysms. Atherosclerosis (2011) 218:1. doi: 10.1016/j.atherosclerosis.2011.04.043

Araujo FJ, Silva LDO, Mesquita TG, Pinheiro SK, Vital WDS, Chrusicak-Talhari A, et al. Polymorphisms in the TOLLIP Gene Involves in Immunity in Mycobacterial. Atherosclerosis (2011) 237:87–95. doi: 10.1016/j.atherosclerosis.2015.04.017

Copyright © 2021 Figueira, de Lima, Boechat, Filho, Antunes, Matsuda, Ribeiro, Felix, Gonçalves, da Costa, Ramasawmy, Pontillo, Ogaku and Sadahiro. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.