Cosmic ray production in Historical Supernova Remnants

V G Sinitsyna and V Y Sinitsyna

P. N. Lebedev Physical Institute, Russian Academy of Science
E-mail: sinits@sci.lebedev.ru

Abstract. We present the results of observations of two types of Galactic supernova remnants with the SHALON mirror Cherenkov telescope of Tien-Shan high-mountain Observatory: the shell-type supernova remnants Tycho, Cas A and IC 443; plerions Crab Nebula, 3c58(SN1181) and Geminga (probably plerion). The experimental data have confirmed the prediction of the theory about the hadronic generation mechanism of very high energy (800 GeV - 100 TeV) gamma-rays in Tycho’s supernova remnant. The data obtained suggest that the very high energy gamma-ray emission in the objects being discussed is different in origin.

1. Introduction
The hypothesis that Supernova Remnants (SNRs) are unique candidates for cosmic-ray sources [1, 2] has been prevalent from the very outset of cosmic-ray physics. Recent observations of several SNRs in X-rays and TeV γ-rays will help in solving the problem of the origin of cosmic rays and are key to understanding the mechanism of particle acceleration at a propagating shock wave. A number of nearby Northern Hemisphere SNRs (see table 1) of different types has been observed in TeV energies with SHALON Cherenkov telescope; some of them have been studied in details and the results of observations are presented in this paper.

2. Crab Nebula (SN 1054)
The Crab Nebula, most famous SNR, plays an important role in the modern astrophysics. Since the first detection with ground based telescope the Crab has been observed by the number of independent groups using different methods of registration of γ-initiated showers [3, 4, 5, 6]. Perhaps the most important fact is that this source with a stable flux can be used to calibrate Cherenkov telescopes in both Northern and Southern Hemispheres. However, quite recently,

Sources	Type	Observable flux, (cm$^{-2}$s$^{-1}$)	Distance, (kpc)
Crab Nebula	Plerion	$(2.12 \pm 0.11) \times 10^{-12}$	2
Geminga	Radioweak pulsar/PWN	$(0.48 \pm 0.07) \times 10^{-12}$	0.25
3c58(SN1181)	Plerion	$(0.84 \pm 0.33) \times 10^{-12}$	2.6 - 3.2
Tycho’s SNR	Shell-type SNR	$(0.52 \pm 0.04) \times 10^{-12}$	2.3
Cas A	Shell type SNR	$(0.68 \pm 0.13) \times 10^{-12}$	3.1
IC 443	Shell-type SNR	$(1.69 \pm 0.58) \times 10^{-12}$	1.5
The spectrum of γ-rays from the Crab has been measured in the energy range 800 GeV to 30 TeV at the SHALON telescope $[3 - 6] [3, 4, 5]$ with a statistical significance $[11]$ of 36.1σ. The integral energy spectrum is well described by the single power law $I(> E_\gamma) \propto E_\gamma^{-1.40 \pm 0.07}$ (Fig. 1 left). To make a description of the intensity and spectral shape in the TeV region, the model of Inverse Compton (IC) scattering of the ambient photons in the nebula in the Ref. $[6]$ is used. Additionally, we need the assuming about magnetic field strength in the region of TeV emission (Fig. 1, right). The average magnetic field in the region of TeV γ-ray emission is extracted from the comparison of $800 \text{ GeV} - 30 \text{ TeV}$ (SHALON data) and X-ray (Chandra data $[12]$) emission regions (Figs. 1); and it ranges from 62 nT up to 153 nT with the average value $67 \pm 7 \text{ nT}$. The γ-ray emission regions observed by SHALON in the Crab correlate well with the emission regions of synchrotron photons in the energy range $0.4 - 2.1 \text{ keV}$.

Finally, the TeV γ-ray spectrum of Crab by SHALON is generated via IC scattering of soft, mainly optical, photons which are produced by relativistic electrons and positrons, in the nebula region around $1.5'$ (Fig. 1) from the pulsar with specific average magnetic field of about $67 \pm 7 \text{nT}$.

3. Geminga ($\sim 3.4 \times 10^5 \text{ yr}$)

A neutron star in the constellation Gemini is the second brightest source of high-energy γ-rays in the sky, discovered in 1972, by the SAS-2 satellite. For nearly 20 years, the nature of Geminga was unknown, since it didn’t seem to show up at any other wavelengths. In 1991, an regular periodicity of 0.237 second was detected by the ROSAT satellite in soft X-ray emission, indicating that Geminga is almost certainly a pulsar. Geminga is the closest known pulsar to Earth. It is one of the brightest source of MeV - GeV γ-ray, but the only known pulsar that is radio-quiet. Also this object it suggested to be a Geminga supernova remnant with expected age of
0.8 TeV was estimated as $(0.1996 - 2010 \text{ years})$ with a statistical significance [11] of 17.

Tycho's SNR has been detected by SHALON at TeV energies [3, 4, 5] (in observations long been considered as a candidate to cosmic ray hadrons source in Northern Hemisphere. Tycho supernova remnant has been observed by SHALON telescope since 1996. This object has $4. Tycho's SNR (SN 1572)$

The Geminga integral γ - quantum spectrum by SHALON in comparison with other experiments. right: The image of γ-ray emission from Geminga by SHALON.

$\sim 3.4 \times 10^5 \text{ yr } [13, 14]$. The extended VHE emission from Geminga (in Fermi observations) could arise from the Pulsar Wind Nebula associated with the Geminga SNR remnant. Geminga has been the object for study at TeV energies with upper limits being reported by three experiments Whipple'93 [15], Tata'93 [16], Durham'93 [17] and very recently by VERITAS'09 [18]. Also Geminga has observed with Milagro'07 [19] at energies of 20TeV and 35 TeV and Fermi LAT at energies $30\text{MeV} - 200\text{GeV} [20]$. The observations of Geminga by SHALON in 1999 year had yielded the detection of γ-ray emission from this object [3, 4, 5] and it have been intensively studied since then. Figure 2 shows the SHALON results for this γ-source [3, 4, 5]. As is seen from this figure the value Geminga flux obtained by SHALON is lower than the upper limits published before. Its integral γ-ray flux is found to be $(0.48 \pm 0.07) \times 10^{-12} \text{cm}^{-2} \text{s}^{-1}$ at energies of $> 0.8 \text{ TeV}$ [3] with a significance of 7.6σ[11]. An image of γ-ray emission from Geminga by SHALON telescope is shown in Fig. 2, right. Within the range $0.8 - 6 \text{ TeV}$, the integral energy spectrum is well described by the single power law $I(> E_\gamma) \propto E_\gamma^{-0.59\pm 0.10}$ (Fig. 2). The energy spectrum of supernova remnant Geminga $F(E_O > 0.8T eV) \propto E^k$ is harder than Crab spectrum.

4. Tycho's SNR (SN 1572)

Tycho supernova remnant has been observed by SHALON telescope since 1996. This object has long been considered as a candidate to cosmic ray hadrons source in Northern Hemisphere. Tycho's SNR has been detected by SHALON at TeV energies [3, 4, 5] (in observations of 1996 - 2010 years) with a statistical significance [11] of 17σ. The integral γ-ray flux above 0.8 TeV was estimated as $(0.52 \pm 0.04) \times 10^{-12} \text{cm}^{-2} \text{s}^{-1}$. The energy spectrum of γ-rays in the observed energy region from 0.8 TeV is well described by the power law with exponential cutoff, $I(> E_\gamma/1T eV) = (0.42\pm 0.04) \times 10^{-12} \times (E_\gamma/1T eV)^{-0.93\pm 0.09} \exp(-E_\gamma/35T eV)$ (Fig. 3). Recently, Tycho's SNR was also confirmed with VERITAS [21] in observations of 2008 - 2010 years. The high energy γ-ray emission from Tycho'SNR was detected with Fermi LAT [22] in the range $400 \text{ MeV} - 100 \text{ GeV}$ (Fig. 3). A nonlinear kinetic model of cosmic ray acceleration in supernova remnants is used in [23, 24] to describe the properties of Tycho’s SNR. The expected flux of γ-quanta from π^0-decay, $F_\gamma \propto E^{-1}_\gamma$, extends up to $\sim 30 \text{ TeV}$, while the flux of γ-rays originated from the IC scattering has a sharp cutoff above the few TeV, so the detection of γ-rays with energies up to 80 TeV by SHALON (Fig. 3) is an evidence of their hadronic origin. The
Figure 3. The Tycho’s SNR characteristics from left to right: The differential spectrum of Tycho’s SNR; Spectral energy distribution of the γ-ray emission from Tycho’s SNR; The Tycho’s SNR image in TeV γ-rays by SHALON.

additional information about parameters of Tycho’s SNR can be predicted in frame of nonlinear kinetic model if the TeV γ- quantum spectrum of SHALON telescope is taken into account: a source distance 3.1 - 3.3 kpc and an ambient density $N_H \ 0.5 - 0.4 \ \text{cm}^{-3}$ and the expected π^0-decay γ-ray energy spectrum extends up to about 100 TeV [23, 24, 25].

5. Cassiopeia A (SN 1680)

Cassiopeia A (Cas A) is the youngest of historical supernova remnant in our Galaxy. Its overall brightness across the electromagnetic spectrum makes it a unique object for studying high-energy phenomena in SNRs. Cas A was detected in TeV γ rays, first by HEGRA’01 [26] and later confirmed by MAGIC’07 [27] and VERITAS’10 [28]. The high energy γ-ray emission from Cas A was detected with Fermi LAT [29] in the range 500 MeV - 50 GeV. Cas A was observed with SHALON telescope during the 27 hours of autumn 2010 [5]. The γ-ray source associated with the SNR Cas A was detected above 800 GeV with a statistical significance [11] of 7.1σ with a γ-quantum flux above 0.8 TeV of $I_{\text{Cas A}}(>0.8 \text{TeV}) = \left(0.68 \pm 0.13\right) \times 10^{-12} \text{cm}^{-2} \text{s}^{-1}$ (Fig. 4, left).

The favored scenarios (both, hadronic and leptonic) in which the γ-rays of 500 MeV - 10 TeV energies are emitted in the shell of the SNR like Cas A are considered in [29, 30]. Figure 4 presents spectral energy distribution of the γ-ray emission from Cas A by SHALON in comparison with other experiment data (see Fig. 4 and [5]) and with theoretical predictions [29, 30]. The

Figure 4. The Cas A characteristics from left to right: The Cas A γ-ray integral spectrum by SHALON experiment; Spectral energy distribution of the γ-ray emission from Cas A; The Cas A image in TeV γ-rays by SHALON.
detection of γ-ray emission at 5 - 10 TeV and the hard spectrum below 1 TeV would favor the π°-decay origin of the γ-rays in Cas A SNR.

6. Conclusion

The investigation of VHE gamma-ray sources by any methods, including mirror Cherenkov telescopes, touches on the problem of the cosmic ray origin and, accordingly, the role of the Galaxy in their generation. The SHALON observations at the Tien Shan high-altitude observatory yielded data on four SNRs: the Crab Nebula, Geminga, Cassiopeia A, and Tycho at energies above 0.8 TeV. The data obtained suggest that the very high energy gamma-ray emission in the objects being discussed is different in origin.

References

[1] Berezhko E G and Krymskii G F 1988 Usp. Fiz. Nauk 154(1) 49
[2] Reynolds S P 2008 Ann. Rev. Astron. Astrophys. 46 89
[3] Sinitsyna V G 2000 AIP (Conf. Proc.) 515 205, 293
[4] Sinitsyna V G et al. 2009 Nucl. Phys. B (Proc.Suppl.) 196 437; ibid. 2008 175-176 455; ibid. 2006 151 112; ibid. 2003 122 247, 409; ibid. 2001 97 215, 219; ibid. 1999 75A 352
[5] Sinitsyna V G and Sinitsyna V Yu 2011 Astron. Lett. 37(9) 621.
[6] Hillas A M et al. 1998 Astrophys.J. 503 744
[7] Tavani M et al. 2010 Science 331 736
[8] Abdo A A et al. 2010 Science 331(6018) 739
[9] Mariotti M Astron. Telegramm No. 2967
[10] Ong R. 2010 Astron. Telegramm No. 2968
[11] Li T-P and Ma Y-Q, 1983 Astrophys. J. 272 317
[12] Seward F D, Tucker W H and Fesen R A 2006 Astrophys. J. 652 1277
[13] Salvati M, Sacco D 2008 Astron.&Astrophys. 485 527
[14] Salvati M 2010 Astron.&Astrophys. 513 A28
[15] Akerlof C W et al. 1993 in Proc. 23rd ICRC, Calgary 1 305
[16] Vishwath P R et al. 1993 Astron.&Astrophys. 267 L5
[17] Bowden C C G et al. 1993 J. Phys. G: Nucl. Part. Phys. 19 L29
[18] Finnegan G 2009 in Proc. of the 31st ICRC, Lodz
[19] Ado A A et al. arXiv:0904.1018v1; arXiv:0705.0707v1;
[20] Celik O 2009 in Proc. of the 31st ICRC, Lodz
[21] Acciari V A et al. arXiv:astro-ph/1102.3871v1.
[22] Giordano F, et al. arXiv:astro-ph/1108.0265v.
[23] Völk H J et al. 2001 in Proc. 27th ICRC, Hamburg, 2 2469
[24] Berezhko E. G. et al. 2007 Astrophys. Space Sci. 309 385
[25] Völk H J, Berezhko E G, Ksenofontov I T 2006 Astron.&Astrophys. 483(2) 529
[26] Aharonian F et al. 2001 Astron.&Astrophys. 370 112
[27] Albert J et al. 2007 Astron.&Astrophys. 474 937
[28] Acciari V A et al. 2010 Astrophys. J. 714 163
[29] Abdo A A et al. 2010 Astrophys. J. 710 L92
[30] Berezhko E G, Pühlhofer G, Völk H J 2003 Astron.&Astrophys 400 971