Femoral nerve block versus adductor canal block for postoperative pain control after anterior cruciate ligament reconstruction: A randomized controlled double blind study

Mohamed Sayed El Ahl,
Lecturer of Anesthesia, Ain Shams University, Cairo, Egypt

ABSTRACT

Background: The objective of this study was to evaluate the reliability of the postoperative pain control using adductor canal block (ACB) compared that using the femoral nerve block (FNB) in patients with anterior cruciate ligament reconstructions (ACLR). Materials and methods: One hundred and twenty-eight patients who had been scheduled to patellar graft ACLR were included in this double blind study, and were randomly allocated into two groups; group ACB and group FNB (64 patients each). All patients received general anesthesia. At the end of the surgery, patients in group FNB received a FNB and those in group ACB received an ACB. The postoperative pain (visual analog scale [VAS]) and muscle weakness were assessed in the postoperative care unit and every 6 h thereafter for 24 h. The total morphine requirements were also recorded. Results: Patients in group ACB had significantly higher VAS (at 18 h and 24 h), higher morphine consumption, but significantly less quadriceps weakness than those in group FNB. Conclusion: In patients with patellar graft ACLR, the ACB can maintain a higher quadriceps power, but with lesser analgesia compared with the FNB.

Key words: Anesthetic techniques, anesthetics local, equipment, femoral, regional, ropivacaine, ultrasound machines

INTRODUCTION

The anterior cruciate ligament injury is a common athletic injury and one of the most commonly treated conditions of the knee. Approximately, 60,000-175,000 anterior cruciate ligament reconstructions (ACLR) procedures are performed annually in the United States (US). The ACLR is widely accepted as the treatment of choice for individuals with functional instability due to anterior cruciate deficiency. Femoral nerve blocks (FNB) have been shown to significantly improve postoperative analgesia compared with systemic opioid therapy, and it may even reduce hospital length of stay after knee procedures. Therefore, FNB was commonly added to general or centroxial anesthesia to achieve adequate pain control after ACLR. Recently, the adductor canal block (ACB) has been described and used frequently as postoperative analgesia after total knee arthroplasty, where it was shown to provide a reliable postoperative pain control with less quadriceps weakness compared with that of using the FNB. However, the analgesic effectiveness of the ACB after ACLR surgeries has not yet been adequately studied. The objective of this study was to evaluate the reliability of the postoperative pain control using ACB compared that using the FNB in patients with patellar graft ACLR.

MATERIALS AND METHODS

This prospective controlled randomized double-blind study was approved by the Research and Ethical Committee of Burjeel Hospital, Abu Dhabi, UAE, and was conducted between January and July 2014. One hundred and twenty-eight patients (American Society of Anesthesiologist [ASA] I or II, aged 18-45 years) who were scheduled for patellar...
Ahl: FNB versus ACB for ACLR

Vol. 9, Issue 3, July-September 2015
Saudi Journal of Anesthesia

Variables	Group FNB	Group ACB	P
Age (year) mean (SD) | 28 (12) | 27 (13) | 0.651
Gender (male/female) | 58/6 | 53/11 | 0.297
ASA (I/II) | 52/12 | 55/9 | 0.633
BMI (kg/m²) mean (SD) | 27.5 (3.9) | 26.7 (3.6) | 0.230
Duration of surgery (min) mean (SD) | 118 (36) | 105 (48) | 0.085

ASA: American Society of Anesthesiologist; BMI: body mass index; SD: Standard deviation; FNB: Femoral nerve block; ACB: Adductor canal block
less quadriceps muscle weakness, but also in a less analgesia compared with that of the FNB.

The ACL is the most common torn knee ligament and its reconstruction is the second most common knee surgery.[15] Early ambulation after ACLR surgery is one of the most important targets of modern anesthesia. It minimizes the bedridden related risks, improves the patient recovery and allows early hospital discharge.[16] Two main parameters can hasten or delay the early ambulation; the muscle power and the severity of pain during movements. Unfortunately, improving one of these parameters usually impairs the other. For many decades, the femoral nerve has been used to achieve analgesia after lower limb surgery.[5-7] Recently, a selective block of the femoral nerve branches within the adductor canal has been described.[9-12] The adductor canal is an inter-muscular space lying in the mid-thigh, between the adductor longus, sartorius, and the vastus medialis muscles. It contains superficial femoral vessels and only two branches of the femoral nerve; the saphenous nerve (a pure cutaneous nerve) and the nerve to vastus medialis.[9-12]

Many studies have shown that the ACB can provide adequate analgesia after knee arthroplasty comparable to that with the FNB.[9-12] Unlike the knee arthroplasty, during the ACLR, an allograft (hamstring or patellar tendon) is usually harvested. The patellar tendon (used in this study) is purely supplied by the motor fibers of the femoral nerve. This may explain the better analgesia achieved with FNB group in the current result compared with that in ACB group. In contrast, a recent study showed that both blocks had comparable postoperative analgesia after ACLR.[17]

In the current study, ACB has shown to reduce the quadriceps muscle strength in some patients, but to a limited extent compared to the FNB patients. This may be due to blocking the nerve to vastus medialis muscle that lies within the adductor canal. Jaeger et al.[18] reported that the ACB can reduce quadriceps muscle strength (8%) compared with placebo, but such reduction was not considered functionally important. In comparison, the FNB reduced quadriceps strength by 49%.[18] It was also reported that both the ACB and the FNB may reduce adductor strength as the ACB may block the posterior branch of the obturator nerve while the FNB blocks the innervations of the pectineus muscle and may spread to the obturator nerve.[18,19]

All the studied patients underwent ACLR using patellar tendon graft and most of them were males. Therefore, the above result may not be applicable for other knee procedures or for the female gender.

CONCLUSION

In patients with patellar graft ACLR, the ACB can maintain a higher quadriceps power, but with lesser analgesia compared with the FNB.

REFERENCES

1. Bollen SR, Scott BW. Rupture of the anterior cruciate ligament — A quiet epidemic? Injury 1996;27:407-9.
2. Frank CB, Jackson DW. The science of reconstruction of the anterior cruciate ligament. J Bone Joint Surg Am 1997;79:1556-76.
3. Spindler KP, Wright RW. Clinical practice. Anterior cruciate ligament tear. N Engl J Med 2008;359:2135-42.
4. Lyman S, Koulouvaris P, Sherman S, Do H, Mandl LA, Marx RG. Epidemiology of anterior cruciate ligament reconstruction: Trends, readmissions, and subsequent knee surgery. J Bone Joint Surg Am 2009;91:2321-8.
5. Wang H, Docter B, Verner J. The effect of single-injection femoral nerve block on rehabilitation and length of hospital stay after total knee replacement. Reg Anesth Pain Med 2002;27:139-44.
6. Allen HW, Liu SS, Ware PD, Nairn CS, Owens BD. Peripheral nerve blocks improve analgesia after total knee replacement surgery. Anesth Analg 1998;87:93-7.
7. Ng HP, Cheong KF, Lim A, Lim J, Puhaindran ME. Intraoperative single-shot “3-in-1” femoral nerve block with

Figure 1: Visual analogue scale values. *statistically significant

Figure 2: Quadriceps motor block. ACB: Adductor canal block, FNB: Femoral nerve block, *statistically significant
ropivacaine 0.25%, ropivacaine 0.5% or bupivacaine 0.25% provides comparable 48-hr analgesia after unilateral total knee replacement. Can J Anaesth 2001;48:1102-8.

8. Charous MT, Madison SJ, Suresh PJ, Sandhu NS, Loland VJ, Mariano ER, et al. Continuous femoral nerve blocks: Varying local anesthetic delivery method (bolus versus basal) to minimize quadriceps motor block while maintaining sensory block. Anesthesiology 2011;115:774-81.

9. Jenstrup MT, Jæger P, Lund J, Fomsgaard JS, Bache S, Mathiesen O, et al. Effects of adductor-canal-blockade on pain and ambulation after total knee arthroplasty: A randomized study. Acta Anaesthesiol Scand 2012;56:357-64.

10. Jæger P, Zaric D, Fomsgaard JS, Hilsted KL, Bjerregaard J, Gyrn J, et al. Adductor canal block versus femoral nerve block for analgesia after total knee arthroplasty: A randomized, double-blind study. Reg Anesth Pain Med 2013;38:526-32.

11. Grevstad U, Mathiesen O, Lind T, Dahl JB. Effect of adductor canal block on pain in patients with severe pain after total knee arthroplasty: A randomized study with individual patient analysis. Br J Anaesth 2014;112:912-9.

12. Andersen HL, Gyrn J, Møller L, Christensen B, Zaric D. Continuous saphenous nerve block as supplement to single-dose local infiltration analgesia for postoperative pain management after total knee arthroplasty. Reg Anesth Pain Med 2013;38:106-11.

13. Taha AM, Abd-Elmaksoud AM. Lidocaine use in ultrasound-guided femoral nerve block: What is the minimum effective anaesthetic concentration (MEAC90)? Br J Anaesth 2013;110:1040-4.

14. Kim DH, Lin Y, Goytizolo EA, Kahn RL, Maalouf DB, Manohar A, et al. Adductor canal block versus femoral nerve block for total knee arthroplasty: A prospective, randomized, controlled trial. Anesthesiology 2014;120:540-50.

15. Starman JS, Ferretti M, Jarvela T. Anatomy and biomechanics of the anterior cruciate ligament. In: Prodromos CC, editor. The Anterior Cruciate Ligament: Reconstruction and Basic Science. 1st ed. Philadelphia: Saunders-Elsevier Publishers; 2008. p. 3-4.

16. Beaupre LA, Johnston DB, Dieleman S, Tsui B. Impact of a preemptive multimodal analgesia plus femoral nerve block protocol on rehabilitation, hospital length of stay, and postoperative analgesia after primary total knee arthroplasty: A controlled clinical pilot study. Scientific World Journal 2012;2012:273821.

17. Chisholm MF, Bang H, Maalouf DB, Marcello D, Lotano MA, Marx RG, et al. Postoperative analgesia with saphenous block appears equivalent to femoral nerve block in ACL reconstruction. HSS J 2014;10:245-51.

18. Jaeger P, Nielsen ZJ, Henningsen MH, Hilsted KL, Mathiesen O, Dahl JB. Adductor canal block versus femoral nerve block and quadriceps strength: A randomized, double-blind, placebo-controlled, crossover study in healthy volunteers. Anesthesiology 2013;118:409-15.

19. Kwofie MK, Shastri UD, Gadsden JC, Sinha SK, Abrams JH, Xu D, et al. The effects of ultrasound-guided adductor canal block versus femoral nerve block on quadriceps strength and fall risk: A blinded, randomized trial of volunteers. Reg Anesth Pain Med 2013;38:321-5.

How to cite this article: El Ahl MS. Femoral nerve block versus adductor canal block for postoperative pain control after anterior cruciate ligament reconstruction: A randomized controlled double blind study. Saudi J Anaesth 2015;9:279-82.

Source of Support: Nil, Conflict of Interest: None declared.