Subsequent Antituberculous Treatment may not be Mandatory among Surgically Resected Culture-Negative Pulmonary Granulomas: a Retrospective Nationwide Multicenter Cohort Study

Che-Liang Chung1, Wei-Chang Huang2,4,5,6, Hung-Ling Huang7,8,9, Chun-Shih Chin2, Meng-Hsuan Cheng8,9, Meng-Rui Lee10,11, Sheng-Hao Lin12, Jann-Yuan Wang11, Ching-Hsiung Lin12,13,14, Inn-Wen Chong8,9,15,16, Jin-Yuan Shih11, and Chong-Jen Yu10,11

1Department of Internal Medicine, Yuanlin Christian Hospital, Changhua, Taiwan
2Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
3Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
4Master Program for Health Administration, Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, Taiwan
5Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
6School of Medicine, Chung Shan Medical University, Taichung, Taiwan
7Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
8Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan

© The Author(s) 2021. Published by Oxford University Press on behalf of Infectious Diseases Society of America. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
9 Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan

10 Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan

11 Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan

12 Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan

13 Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan

14 Department of Recreation and Holistic Wellness, MingDao University, Changhua, Taiwan

15 Departments of Respiratory Therapy, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan

16 Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsin-chu, Taiwan

Corresponding author:

Dr. Meng-Rui Lee

Department of Internal Medicine

National Taiwan University Hospital

#7 Chung-Shan South Rd., Zhongzheng Dist., Taipei 10002, Taiwan

E-mail: leemr@ntu.edu.tw
Key Points

The incidence of active tuberculosis in patients with surgically resected culture-negative pulmonary granulomas was very low. Regular clinical, radiological, and microbiological follow-up, instead of routine immediate anti-TB treatment, may be a reasonable option.
ABSTRACT

Background: Histologic diagnosis of granuloma is often considered clinically equivalent to a definite diagnosis of pulmonary tuberculosis (TB) in endemic area. Optimal management of surgically resected granulomatous inflammation in lung with negative mycobacterial culture results, however, remains unclear.

Methods: From seven medical institutions in northern, middle, and southern Taiwan between January 2010 and December 2018, patients whose surgically resected pulmonary nodule(s) had histological features suggestive of TB but negative microbiological study results and who received no subsequent anti-TB treatment were identified retrospectively. All patients were followed up for 2 years until death or active TB disease was diagnosed.

Results: A total of 116 patients were enrolled during the study period. Among them, sixty-one patients (52.6%) were clinically asymptomatic, and 36 (31.0%) patients were immunocompromised. Solitary pulmonary nodule accounted for 44 (39.6%) of all cases. The lung nodules were removed by wedge resection in 95 (81.9%), lobectomy in 17 (14.7%), and segmentectomy in 4 (3.4%) patients. The most common histological feature was granulomatous inflammation (n=116, 100%), followed by caseous necrosis (n=39, 33.6%). During follow-up (218.4 patient-years), none of the patients developed active TB.

Conclusions: In patients with surgically resected culture-negative pulmonary granulomas, the incidence rate of subsequent active TB is low. Watchful monitoring along with regular clinical, radiological, and microbiological follow-up, instead of routine anti-TB treatment, may also be a reasonable option.

Key words list: acid-fast stain; caseous necrosis; granulomatous inflammation; pulmonary nodule; tuberculosis.
INTRODUCTION

With the widespread use of chest computed tomography (CT), solitary pulmonary nodule (SPN) or multiple pulmonary nodules are now frequently encountered in clinical setting. The underlying etiologies can be diverse and may vary with the nodular sizes, pattern, and local epidemiology \(^1\). In early reports, malignancy accounted for 10 to 70 percent of solitary pulmonary nodule \(^2,3\). Nonetheless, recent lung cancer screening studies of smokers suggested that most pulmonary nodules detected on CT were benign \(^4,5\). In one recent study of two separate low-dose CT screening cohorts, for instance, the proportion of benign diseases among patients with nodules was 94.5% and 96.3%, respectively \(^4\). Surgical resection, however, was still performed among many patients to obtain a definite diagnosis of lung nodules \(^1,6\). In approximately 25% of the surgical procedures, the resected pulmonary nodules were benign in diagnosis \(^4\). Furthermore, about 80% of all benign nodules were infectious granulomas \(^1,6\).

Granulomatous inflammation, a unique type of chronic inflammation, results from tissue reaction following cell injury due to various conditions \(^7\). Histologic diagnosis of granuloma is often considered as equivalent to a definite diagnosis of tuberculosis (TB) in endemic areas even when there is lack of TB bacteriological evidence \(^8-10\). Nevertheless, granulomatous inflammation is not specific to active TB. Atypical mycobacteria, coccidioidomycosis, and histoplasmosis can also be the culprit pathogen \(^7\). Besides, granulomatous inflammation can also result from various conditions such as autoimmune diseases, toxins, drugs, and neoplasms \(^7,11\). Although necrotizing granulomatous inflammation is more likely to contain organisms, the etiology still could not be identified in 25~40% of resected necrotizing granulomas after clinical, serological, and microbiological surveillance \(^12-14\). On the other hand, non-necrotizing granuloma also doesn't readily exclude infectious disease as etiology \(^7\).

Currently, most patients with surgically resected solitary pulmonary granuloma would receive anti-TB treatment after operation \(^10\). Adverse effects, however, could develop in as high as 53-61% of
patients who received treatment. Furthermore, TB reactivation rate was low among patients who did not receive anti-TB treatment, and risk of active TB was similar regardless of receiving anti-TB treatment or not. Nevertheless, in the above studies, extensive surveillance for TB including respiratory specimens (sputum, bronchoalveolar lavage, and tissue) for acid-fast stain (AFS) and mycobacterial culture was not performed universally among included patients. This would lead to difficulty in interpretation of the findings and clinical implication. With the increasing use of chest CT and identification of SPNs, reliable evidence regarding optimal management and the indication of anti-TB treatment after surgical resection is in great need.

To evaluate the outcome of untreated pulmonary nodules after surgical resection with histological evidence of TB infection and negative culture results, we conducted this nationwide multicenter retrospective cohort study to investigate the incidence for the development of active TB in this population.

METHODS

Study Population

Between 2010/01/01~2018/12/31, patients with pulmonary nodule(s) who received surgical resection at seven medical institutions with totally more than 7000 beds in northern, middle and southern Taiwan (National Taiwan University Hospital (NTUH), Taichung Veterans General Hospital (VGHTC), Kaohsiung Medical University Hospital (KMUH), Changhua Christian Hospital (CCH), and their three branch hospitals) and met the following criteria 1) caseous necrosis, or granulomatous inflammation in the histological samples; 2) not receiving anti-TB treatment during or within 3 weeks after the surgery were included. All the institutional review boards (IRB) of the above institutions approved the study (NTUH IRB No.: 202001021RINB, KMUH IRB-E(I)-20200117, CCH IRB No.: 200126, VGHTC IRB No.: CE20127A). IRB waived the need for informed consent since data utilized in this retrospective study have been de-identified.
Patients were excluded if: 1) *Mycobacterium tuberculosis* or nontuberculous mycobacteria (NTM) were isolated within 60 days before or after surgical resection; 2) Tissue culture of the pulmonary nodule was not performed; 3) There was histology or culture evidence (such as sputum or bronchoalveolar lavage) of fungal infection, viral infection, or parasite infection.

Per the guidelines of the World Health Organization (WHO), standard regimen used for treating new TB cases in Taiwan consists of isoniazid, rifampicin, pyrazinamide, and ethambutol for 2 months, followed by isoniazid, rifampicin, plus ethambutol for 4 months if susceptibility test is not available 20-23.

Data collection

Information regarding patient age, sex, underlying diseases, past medical history of TB, surgical procedures (wedge resection, segmentectomy, or lobectomy), histology, laboratory test results at the beginning of tissue diagnosis, and other associated symptoms, was retrieved retrospectively from medical records.

Microbiological data included acid-fast stain (AFS) results from respiratory specimens and histology, mycobacterial culture results of sputum, bronchial washing, bronchoalveolar lavage, and tissue specimens were also retrieved.

Chest images (chest CT preferred) before surgical procedure were recorded, including presence of solitary or multiple pulmonary nodules, fibrocalcified lesions, bronchiectasis, cavitation, ground glass opacities (GGO), and maximum size of lesions.

Mycobacterial culture methods

All respiratory specimens sent for mycobacterial culture were processed as previously described 24,25. In brief, the specimens for acid-fast bacilli smears were processed with auramine-rhodamine fluorochrome and examined using standard procedures. Kinyoun stain method was used to confirm fluorochrome stain-positive smears. The standard N-acetyl-L-cysteine and sodium...
hydroxide method was used for the process of mycobacterial cultures. Cultures were performed by inoculating 0.5 mL of the processed specimens into Middlebrook 7H11 selective agar (Remel Inc, Lexena, Kansas, USA) and MGIT 960 culture tubes (BACTEC Mycobacteria Growth Indicator Tube 960 System, Becton-Dickinson Diagnostic Instrument Systems, Sparks, Maryland, USA) \(^{24,25}\).

Follow-up and outcome

All patients were followed up for 2 years, or until death or a diagnosis of active TB. According to the policy and regulation of National Tuberculosis Program of Taiwan, report of all culture-confirmed TB or clinically suspicious TB cases to the Taiwan Centers for Disease Control (CDC) is mandatory \(^{20}\). TB culture results and follow up outcomes were obtained from the database of the seven institutions and confirmed by obtaining information on the TB registration databases of Taiwan CDC.

Statistical analysis

All statistical analyses were performed using IBM SPSS (version 23.0; SPSS Inc., Chicago, IL, USA).

RESULTS

Selection of study participants

Figure 1 shows the process of patient identification and enrollment process. From January 2010 to December 2018, cases with histology evidence of caseous necrosis or granulomatous inflammation and negative tissue culture results who did not receive anti-TB therapy were retrieved for further analysis. All cases with positive tissue culture results for mycobacteria, fungi, or positive culture from other samples within 3 months were excluded.
Clinical characteristics of included patients

In total, 116 patients were included for analysis (Figure 1). The median follow-up duration was 730 days (interquartile range: 0 day, quartile 1: 730 days, quartile 3: 730 days) since resection. Among them, 87.1% (n=101) of subjects were followed for 2 years.

Table 1 summarizes the clinical characteristics of the included 116 cases. The median age was 58 years, with a female/male ratio of 1:1. The most common comorbidity was malignancy (n = 29, 25.0%), followed by diabetes mellitus (n = 27, 23.3%). Twenty-one (18.1%) cases had past medical history of TB. Among patients with malignancy, 17 (14.7% of 116) had lung cancer and 16 (55.1% of 29) received systemic therapy after pulmonary nodule resection. There were neither HIV-positive cases nor patients receiving biologic agent in our cohort.

Fifteen (12.9%) patients did not have complete clinical follow up for 2 years in our hospitals and among them, no active TB development was found in the following 2 years based on national TB registry.

Sixty-one patients (52.6%) were clinically asymptomatic, and they received computed tomography either due to lung cancer screening or incidental abnormal chest X-ray findings. In the other 55 symptomatic patients, forty-four (80%) patients had cough symptoms and 15 (27.2%) had dyspnea. Because the symptoms were considered due to underlying comorbidities, the 55 cases did not receive anti-TB treatment. Additionally, none of our included patients received anti-TB treatment within 6 months prior to surgery or during the follow-up period.

Surgical procedures and histological characteristics of SPN

Of the 116 cases, 95 (81.9%) received wedge resection, 17 (14.7%) received lobectomy, and 4 (3.4%) received segmentectomy. Among patients with multiple pulmonary nodules, the granulomatous nodules in the same lung segment were removed at the same time during surgery. Otherwise, whether all lung nodules were removed during surgery depended on lung function.
reserve and complexity of surgical procedure. Fourteen cases (12.1%) had concomitant malignancy and granulomatous inflammation in histological specimen. The most common histological feature was granulomatous inflammation (n=116, 100%), followed by caseous necrosis (n=39, 33.6%). In 21 cases with past history of TB, 9 had histological finding of caseous necrosis. Fifteen cases (12.9%) had concomitant histological evidence of caseous necrosis or granulomatous inflammation of lymph nodes in addition to pulmonary nodule(s). Tissue AFS showed positive results in 7 (6%) patients. Of them, five had past medical history of TB. Fungal stain (periodic acid-Schiff or Gomori methenamine silver stain) was performed in 92 (79.3%) of all cases, which all yielded negative results.

Radiographic features of SPN

Table 2 shows laboratory data and radiographic features of the cohort. In summary, most patients had normal hemogram and albumin values. SPN (Figure 2A) accounted for 44 (39.6%) of all cases, while multiple pulmonary nodules (Figure 2B) accounted for 64 (57.7%) cases. Ten (22.7%) cases had at least one lesion size larger than 3 cm (Figure 2C) in diameter. All 7 (6.3%) cases with cavitary lesions had multiple pulmonary nodules.

Outcome after observation without anti-TB treatment

During a total of 218.4 patient-years follow-up, none of the patients developed active TB according to the medical records and the data in the TB registration databases of Taiwan CDC. One 67 y/o male patient died at day 18 after surgery due to septic shock. Pathological report showed negative results of acid-fast staining and fungal staining. Cultures from sputum, bronchoalveolar lavage, and surgical specimen all showed no evidence of mycobacterial infection. In 36 cases with immunocompromised status (cirrhosis, DM, transplant recipients, autoimmune diseases), none developed active TB within a total follow-up of 66.6 patient-years.
DISCUSSION

This study investigated the incidence of active TB within 2 years in patients with culture-negative surgically resected pulmonary granulomas after thorough clinical, radiological, and microbiological workup. Mycobacteria culture was performed in all resected pulmonary granulomas with negative findings. While patients in this study may be considered to be not at high risk for TB by their physicians, the fact that no active TB developed in this cohort during a total of 218.4 patient-year follow-up implies that the risk of TB in this special group is likely to be lower than TB contacts who are test-positive by interferon-gamma release assay (5% in the first 2 years) \(^\text{26}\). Routine treatment with anti-TB drugs immediately for cases with histological evidence suggestive of TB but negative culture results should not be considered the only and standard option.

A literature review of patients with resected lung nodules having histological findings suggestive of TB yet subsequently not receiving anti-TB treatment was summarized in Table 3 \(^9,10,12,15-18,27\). 421 cases with “tuberculoma”, “granuloma”, or “granulomatous inflammation” were identified in seven studies. Of them, 212 (50.4%) cases received no anti-TB therapy. The duration of follow-up in these studies varied from 0.1 to 16.7 years. Although some data were unavailable in these studies, only one cancer patient who underwent regular chemotherapy developed TB reactivation \(^\text{15}\). In the other report, two cases with resected pulmonary necrotizing granulomas developed new lung nodules but did not receive additional treatment or develop new symptomatic disease \(^\text{12}\). Overall, the estimated incidence of active TB among patients received no anti-TB treatment in the seven studies was less than 1 per 647.2 patient-years (Table 3).

Benefit of empiric anti-TB treatment should be weighed with risk of treatment-related drug toxicity. In one retrospective study from Taiwan, 53% of patients with culture-negative granulomas developed adverse events after empiric anti-TB treatment and 18% of them had drug-induced hepatotoxicity \(^\text{15}\). In our cohort, 49.1% of enrolled cases were more than 60 years old and concern exists regarding the impact of age and comorbidity on management and follow-up of pulmonary
nodule. Considering higher risk of serious adverse effects among elderly patients and uncertainty of TB diagnosis, the necessity of empiric anti-TB treatment should be carefully evaluated in culture-negative granuloma patients with low possibility of infectiousness.

In one large retrospective study, despite increasing use of chest CT and identifying of incidental SPN, the incidence of lung cancer diagnosis within 2 years of SPN detection was not increased. Therefore, more frequent SPN identification was presumed to be secondary to indolent infections, granulomas, and scar formation. With the increasing encountering of pulmonary granulomas in clinical practice, skepticism regarding the need for treatment is warranted.

According to previous reports, infectious granuloma, such as actinomycetes, mycobacteria, fungi, and helminths infection, accounted for about 80% of benign nodules. Nevertheless, no micro-organisms can be identified after Ziehl-Neelsen and Gomori’s methenamine silver (GMS) stains in more than one-fourth of patients who underwent resection of radiographically solitary pulmonary granuloma. In one multi-nation study investigating 500 histological specimens containing pulmonary granulomas, 42% had no identifiable etiology. Of the 58% cases with identified etiology, sarcoidosis was the most common (27%), followed by mycobacterial or fungal infections (25%). Interestingly, mycobacteria were more commonly identified outside the United States, whereas fungi were more commonly in the United States. Although incidence of tuberculomas and NTM pulmonary nodules had not been established, tuberculoma is still first considered for culture-negative granuloma in TB endemic area. In 2019, 8732 new TB cases was reported in Taiwan and the overall incidence of TB was 37 cases per 100,000 population. Of them, 20% were sputum smear-negative and culture-negative TB. Tissue biopsy or resection may, therefore, be necessary for establishing diagnosis when non-invasive testing could not confirm the diagnosis.

Histological studies and microbiological cultures are complementary, although many cases can be tested positive for both modalities. In one report, cultures yielded more positive results in...
mycobacterial infections, yet fungi were identified in most of histological specimens of fungal infections. These results highlight the necessity to submit biopsied tissue for cultures as well as cultures of respiratory specimens whenever feasible. In our cohort, 191 cases with pulmonary granulomas were culture-positive for mycobacteria, while 65 cases with pulmonary granulomas were diagnosed as fungal infection histologically (Figure 1). This finding again emphasizes the importance of concomitant culture and pathology surveillance to increase diagnostic yield. In a study of pulmonary necrotizing granulomas of unknown cause, a careful review of clinical features, radiographic studies, cultures, fungal serologies, and special stains could lead to identification of definite etiology in 60% of all histologically unexplained cases.

Our study still has limitations. First, since our study design was retrospective, whether anti-TB treatment could further lower the risk of TB reactivation in culture-negative granulomas remained unknown. The effect of anti-TB treatment on TB reactivation in this special clinical entity, however, can be trivial as the results of our previous study suggested. In addition, our untreated patients might not be considered high risk to have TB by their medical doctors, which might lead to selection bias. Second, this study did not have PET scan results. Although PET scan is promising in helping differential diagnosis of lung nodules, it is still unable to reliably differentiate between active TB, inactive granuloma and malignancy. Besides, work-up for sarcoidosis was not universal and mandatory for all patients. None of our patients, however, was diagnosed with sarcoidosis during follow-up. Finally, NAA test of histopathology is not routinely used in current study. Further, neither the results of TST nor IGRA were available since these tests are not recommended as diagnostic in this setting due to the high background rate of Bacillus Calmette–Guérin (BCG, an attenuated Mycobacterium bovis) vaccine and the high cost of IGRAs in Taiwan.
Conclusion

In conclusion, after obtaining negative results through detailed clinical, radiological, microbiological, and histopathologic review, watchful monitoring instead of immediate anti-TB treatment may be a reasonable option. Regularly radiographic exams and microbiological study, however, are still warranted.
Funding Source to this article: This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Potential Conflicts of interest: All authors have no conflicts of interest relevant to this study to declare.

Acknowledgements

The authors would like to thank Dr. Gwan-Han Shen who supervised Laboratory No. 114 in Taichung Veterans General Hospital and passed away in 2014. We hold you dear in our memories.

The authors also would like to thank members of Yuanlin Christian Hospital Center for Infection Control, Hui-Chen Yu and Chung-Ya Huang, for data collection.

Patient consent statement:

All the institutional review boards (IRB) of the above institutions approved the study. IRB waived the need for informed consent since data utilized in this retrospective study have been de-identified (NTUH IRB No.: 202001021RINB, KMUH IRB-E(I)-20200117, CCH IRB No.: 200126, VGHTC IRB No.: CE20127A).

Authors’ Contributions

MRL is the guarantor of the paper and takes responsibility for the content of the manuscript, including the data and analysis.

CLC drafted the manuscript and designed the study with MRL and JYW. CLC, MRL, WCH, HLH, and JYW were involved in data processing. CLC, CSC, MHC, SHL, and JYW performed statistical analysis. JYW, CHL, IWC, JYS, and CJY supervised the research and provided critical revision of the article. All authors reviewed, provided input, and approved the final manuscript.
Reference:

1. Kikano GE, Fabien A, Schilz R. Evaluation of the Solitary Pulmonary Nodule. Am Fam Physician 2015; 92(12): 1084-91.

2. Khouri NF, Meziane MA, Zerhouni EA, Fishman EK, Siegelman SS. The solitary pulmonary nodule. Assessment, diagnosis, and management. Chest 1987; 91(1): 128-33.

3. Siegelman SS, Khouri NF, Leo FP, Fishman EK, Braverman RM, Zerhouni EA. Solitary pulmonary nodules: CT assessment. Radiology 1986; 160(2): 307-12.

4. McWilliams A, Tammemagi MC, Mayo JR, et al. Probability of cancer in pulmonary nodules detected on first screening CT. N Engl J Med 2013; 369(10): 910-9.

5. Aberle DR, Adams AM, Berg CD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 2011; 365(5): 395-409.

6. Ost D, Fein AM, Feinsilver SH. Clinical practice. The solitary pulmonary nodule. N Engl J Med 2003; 348(25): 2535-42.

7. Shah KK, Pritt BS, Alexander MP. Histopathologic review of granulomatous inflammation. J Clin Tuberc Other Mycobact Dis 2017; 7: 1-12.

8. Subotic D, Yablonskiy P, Sulis G, et al. Surgery and pleuro-pulmonary tuberculosis: a scientific literature review. J Thorac Dis 2016; 8(7): E474-85.

9. Wang C, Liu Y, Lin H, et al. The Necessity of Anti-Tuberculosis Therapy after Resection of Pulmonary Tuberculous Nodules: A Single Center Retrospective Study. Ann Thorac Cardiovasc Surg 2020; 26(4): 190-5.

10. Watanabe H, Uruma T, Seita I, et al. Solitary pulmonary caseating granulomas: A 5-year retrospective single-center analysis. Mol Clin Oncol 2017; 6(6): 839-45.

11. Williams GT, Williams WJ. Granulomatous inflammation--a review. J Clin Pathol 1983;
12. Mukhopadhyay S, Wilcox BE, Myers JL, et al. Pulmonary necrotizing granulomas of unknown cause: clinical and pathologic analysis of 131 patients with completely resected nodules. Chest 2013; 144(3): 813-24.

13. Aubry MC. Necrotizing granulomatous inflammation: what does it mean if your special stains are negative? Mod Pathol 2012; 25 Suppl 1: S31-8.

14. Ulbright TM, Katzenstein A-LA. Solitary necrotizing granulomas of the lung: Differentiating features and etiology. Am J Surg Pathol 1980; 4(1): 13-28.

15. Chung CL, Chen YF, Lin YT, Wang JY, Kuo SW, Chen JS. Outcome of untreated lung nodules with histological but no microbiological evidence of tuberculosis. BMC Infect Dis 2018; 18(1): 530.

16. Dagaonkar RS, Choong CV, Asmat AB, et al. Significance of coexistent granulomatous inflammation and lung cancer. J Clin Pathol 2017; 70(4): 337-41.

17. Yakar F, Yakar A, Buyukpinarbasili N, Erelel M. Does Every Necrotizing Granulomatous Inflammation Identified by NSCLC Resection Material Require Treatment? Med Sci Monit 2016; 22: 1218-22.

18. T. ISHIDA HY, S. KANKEO, K. SUGIO, K. SUGIMACHI, N. HARA. Pulmonary tuberculoma and indications for surgery: radiographic and clinicopathological analysis. Respir Med 1992; 86: 431-6.

19. Gould MK, Tang T, Liu IL, et al. Recent Trends in the Identification of Incidental Pulmonary Nodules. Am J Respir Crit Care Med 2015; 192(10): 1208-14.

20. Centers for Disease Control, Ministry of Health and Welfare, Taiwan. Taiwan Guidelines for TB Diagnosis & Treatment. 6th ed. Taiwan: Centers for Disease Control, Ministry of Health and Welfare, Taiwan, 2017. [in Chinese] Available at:
21. World Health Organization (WHO). Guidelines for treatment of drug-susceptible tuberculosis and patient care, 2017 update. World Health Organization (WHO) 2017. Available at: https://apps.who.int/iris/bitstream/handle/10665/255052/9789241550000-eng.pdf. Accessed 21 Oct 2021.

22. World Health Organization (WHO). Guidelines for treatment of tuberculosis, 4th edition. World Health Organization (WHO) 2010. Available at: https://apps.who.int/iris/bitstream/handle/10665/44165/9789241547833_eng.pdf. Accessed 21 Oct 2021.

23. Nahid P, Dorman SE, Alipanah N, et al. Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of Drug-Susceptible Tuberculosis. Clin Infect Dis 2016; 63(7): e147-e95.

24. Lee MR, Yang CY, Shu CC, et al. Factors associated with subsequent nontuberculous mycobacterial lung disease in patients with a single sputum isolate on initial examination. Clin Microbiol Infect 2015; 21(3): 250.e1-7.

25. Ruan SY, Chuang YC, Wang JY, et al. Revisiting tuberculous pleurisy: pleural fluid characteristics and diagnostic yield of mycobacterial culture in an endemic area. Thorax 2012; 67(9): 822-7.

26. Mack U, Migliori GB, Sester M, et al. LTBI: latent tuberculosis infection or lasting immune responses to M. tuberculosis? A TBNET consensus statement. Eur Respir J 2009; 33(5): 956-73.
27. Hsu KY, Lee HC, Ou CC, Luh SP. Value of video-assisted thoracoscopic surgery in the
diagnosis and treatment of pulmonary tuberculoma: 53 cases analysis and review of
literature. J Zhejiang Univ Sci B 2009; 10(5): 375-9.

28. Wong ML, Shi Y, Fung KZ, et al. Age, comorbidity, life expectancy, and pulmonary
nodule follow-up in older veterans. PLoS One 2018; 13(7): e0200496.

29. Yee D, Valiquette C, Pelletier M, Parisien I, Rocher I, Menzies D. Incidence of serious
side effects from first-line antituberculosis drugs among patients treated for active
tuberculosis. Am J Respir Crit Care Med 2003; 167(11): 1472-7.

30. Kradin RL, Mark EJ. Pulmonary Infections. In: Kradin R. Diagnostic Pathology of
Infectious Disease. 1 ed, 2010:125-88.

31. Mukhopadhyay S, Farver CF, Vaszar LT, et al. Causes of pulmonary granulomas: a
retrospective study of 500 cases from seven countries. J Clin Pathol 2012; 65(1): 51.

32. Centers for Disease Control, Ministry of Health and Welfare, Taiwan. 2020 CDC Annual
Report. Centers for Disease Control, Ministry of Health and Welfare, Taiwan, 2020.
Available at:
https://www.cdc.gov.tw/File/Get/VzxSlitRN9UWzV7N9z6bNA. Accessed 21 Oct 2021

33. Centers for Disease Control, Ministry of Health and Welfare, Taiwan. Taiwan
Tuberculosis Control Report 2019. 2020. [in Chinese] Available at:
https://www.cdc.gov.tw/File/Get/eohpj5F-9obJG4sMlmbHw. Accessed 21 Oct 2021

34. Kim IJ, Lee JS, Kim SJ, et al. Double-phase 18F-FDG PET-CT for determination of
pulmonary tuberculoma activity. Eur J Nucl Med Mol Imaging 2008; 35(4): 808-14.

35. Priftakis D, Riaz S, Zumla A, Bomanji J. Towards more accurate (18)F-
fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) imaging in active
and latent tuberculosis. Int J Infect Dis 2020; 92s: S85-s90.
36. Jou R, Huang WL, Su WJ. Tokyo-172 BCG vaccination complications, Taiwan. Emerg Infect Dis 2009; 15(9): 1525-6.

37. Chiu WT, Scholl J, Li YJ, Wu J. So Few COVID-19 Cases in Taiwan: Has Population Immune Health Played a Role? Front Public Health 2021; 9: 676750.
Table 1. Clinical characteristics of study participants

Variables	N = 116²
Male sex	58 (50.0%)
Age (years)	58 [22 – 82]
Follow up durations (days)	730 [18 – 730]
Surgical procedure	
wedge	95 (81.9%)
segmentectomy	4 (3.4%)
lobectomy	17 (14.7%)
Lymph node sampling	58 (50.0%)
Histology	
Granulomatous inflammation	116 (100.0%)
Caseous necrosis	39 (33.6%)
Acid-fast staining	
Not performed	37 (31.9%)
Negative	72 (62.1%)
Positive	7 (6.0%)
Lymph node involvement⁴	15 (12.9%)
PAS or GMS stain	
Not performed	24 (20.7%)
Negative	92 (79.3%)
Concomitant malignancy	14 (12.1%)
Underlying disease	
Malignancy	29 (25.0%)
Lung cancer	17 (14.7%)
Others	12 (10.3%)
Status	Count (Percentage)
---	--------------------
Remission	13 (11.2%)
Under systemic treatment	16 (13.8%)
Diabetes mellitus	27 (23.3%)
History of tuberculosis	21 (18.1%)
Chronic kidney disease stage ≥ 3	14 (12.1%)
Cirrhosis of liver	2 (1.7%)
Transplant recipients	2 (1.7%)
Alcoholism	3 (2.6%)
Autoimmune disease	11 (9.5%)

Symptoms	Count (Percentage)
Cough	44 (37.9%)
Sputum	24 (20.7%)
Dyspnea	15 (12.9%)
Hemoptysis	7 (6.0%)
Fever	6 (5.2%)
Weight loss	16 (13.8%)
Clinically asymptomatic	61 (52.6%)

Development of active tuberculosis within 2 years	Count (Percentage)
	0

\(^a\) Data are expressed as either number (%) or median [min – max].

\(^b\) Lymph node involvement refers to concomitant histological evidence of caseous necrosis or granulomatous inflammation of lymph nodes in addition to pulmonary nodule(s).

GMS, Gomori methenamine silver; PAS, periodic acid-Schiff;
Table 2. Radiographic pattern and laboratory data of all participants

Variables	N = 116
Findings on chest computed tomography	
Multiple nodules	64 (57.7%)
Solitary nodule	44 (39.6%)
Lesion size > 3cm	10 (9.0%)
Associate findings	
Ground glass opacity	36 (32.4%)
Fibrosis	24 (21.6%)
Calcification	17 (15.3%)
Bronchiectasis	13 (11.7%)
Cavitation	7 (6.3%)
Lab data	
Albumin (g/dL)	4.1 ± 0.6
Hemoglobin (mg/dL)	13.1 ± 1.9
Leukocyte count (K/uL)	6.8 ± 2.2
Segment (%)	63.3 ± 11.6
Lymphocyte (%)	24.7 ± 10.8
C-reactive protein (mg/dL)	3.2 ± 7.8

Data are expressed as either number (%) or mean ± standard deviation.
Table 3. Literature review of clinical characteristics and outcomes of patients with resected lung nodules having histological findings suggestive of tuberculosis (TB) yet subsequently not receiving anti-TB treatment (ATT)

Study [REF]	No. of patients: Total / no ATT	Age (year)*	Median FU year [range]	No. of patients with AFS: Positive / Performed	Coexistence of cancer (%)	No. of patients developing active TB (FU duration)b
Ishida. 1992 [18]	36 / 8	53.5 [23 - 76]	[1 - 16]	16 / NA	NA	0 (≥ 8 person-years)
Mukhopadhyay. 2013 [12]	52 / 36	55 ± 14.9	7 [0.1 - 16.7]	0 / 52	NA	0 (217 person-years)c
Yakar. 2016 [17]	48 / 37	63 [40 - 76]	≥ 2	0 / 25	48 (100%)	0 (≥ 74 person-years)
Dagaonkar. 2017 [16]	19 / 18	63 [40 - 84]	1.3 [0.1 - 4.3]	0 / 19	19 (100%)	0 (23.4 person-years)
Watanabe. 2017 [10]	8 / 3	59 [32 - 74]	NA	NA	1	0 (NA)
Chung. 2018 [15]	107 / 67	57 [21 - 91]	4 [0.5 - 4]	0 / 107	18 (17%)	1 (251.2 person-years)
Wang. 2020 [9]	98 / 32	50.0 ± 13.2	2.3 [0.8 - 5.8]	59 / 98	NA	0 (73.6 person-years)
Overall	421 / 212	NA	NA	59 / 301	NA	1 (≥ 647.2 person-years)

Abbreviations: AFS, acid-fast staining; FU, follow up; NA, not available.

* Data are expressed in median [min – max] or mean ± standard deviation
Median number of follow up years was assumed as mean number for calculation of incidence rate of active TB in reference 9, 12, 16. Minimum follow up year was used for calculation in reference 17, 18. Reference 10 was not included for calculation due to insufficient information.

Follow up period was available in 31 of 36 no ATT patients.
Figure Legends

Figure 1. Case selection process. (MAC, *Mycobacterium avium-intracellulare* complex; MTB, *Mycobacterium tuberculosis*; NTM, nontuberculous mycobacteria; TB, tuberculosis)

Figure 2. Chest CT of a 35-year-old man with an ovoid 1.7-cm nodule with pleural tagging at the posterior aspect of the right upper lobe (A). Chest CT of a 52-year-old woman with two round nodules in the right lower lobe (B). Chest CT of a 36-year-old woman with one 6.2-cm lobulated mass-like lesion in the left upper lobe (C).
Figure 1

2010/01/01 ~ 2018/12/31, histological evidence of TB (caseous necrosis or granulomatous inflammation) (n = 3792) in five medical centers in Taiwan

Histological evidence of pulmonary fungal infection (n = 65)

Lung tissue specimens available (n = 828)

Tissue culture for mycobacteria or fungus performed (n = 560)

Positive tissue culture
- *MTB* (n = 113), *MAC* (n = 22), *M. kansasii* (n = 13), *M. abscessus* (n = 6),
- *M. gordonae* (n = 1), nonchromogens (n = 1), photochromogens (n = 1),
- NTM not otherwise specified (n = 34), *Cryptococcus neoformans* (n = 2)

Tissue culture negative (n = 367)

Positive culture from other samples within 3 months
- *MTB* (n = 24), *MAC* (n = 16), *M. fortuitum* (n = 9), *M. abscessus* (n = 5), *M. kansasii* (n = 3),
- *M. gordonae* (n = 2), *M. chelonae* (n = 1), nonchromogens (n = 1), *M. lentiflavum* (n = 1),
- *M. parascrofulaceum* (n = 1), NTM not otherwise specified (n = 41), fungus (n = 2)

Culture negative for both lung tissue and other specimens (n = 260)

Receiving anti-TB treatment (n = 144)

Not receiving anti-TB treatment (n = 116)
