PARP1 Regulates Cellular Processes Mediated by Exosomal miRNAs in Dental Pulp Stem Cells

Ryusuke Nakatsuka1, Yuka Sasaki1, Mitsuko Masutani2 and Tadashige Nozaki3

1) Department of Pharmacology, Faculty of Dentistry, Osaka Dental University, Osaka, Japan
2) Department of Molecular and Genomic Biomedicine, School of Medicine, Nagasaki University Graduate School of Biomedical Sciences, Center for Bioinformatics and Molecular Medicine, Nagasaki, Japan

(Accepted for publication, September 13, 2021)

Abstract: Non-coding RNAs including microRNAs (miRNAs) derived from extracellular exosomes are considered as biomarkers for multiple intracellular communication pathways. Meanwhile, poly ADP-ribosylation (PARylation) catalyzed by poly (ADP-ribose) polymerase 1 (PARP1) is related to various intracellular processes. The comprehensive idea of cell-cell signaling phenomena mediated by PARP1-related exosomes remains unsolved, although individual molecules are considered to provoke disease pathogenesis and progression under aberrant regulation. In the present study, we knocked down the PARP1 gene in dental pulp stem cells (DPSCs) by gene targeting using the CRISPR-Cas9 system to determine the functions of exosomal miRNAs regulated by PARP1. The exosomes produced by PARP1-knockdown DPSCs were harvested and the miRNAs contained within these exosomes were comprehensively analyzed by next-generation sequencing. From the results, significantly altered miRNAs were picked up among the detected miRNAs. Gene ontology enrichment analyses were performed on these miRNAs to predict their cellular functions. Most of the up-regulated miRNAs after PARP1 knockdown were identified as cell proliferation-related functional non-coding RNAs, and were indicated to affect cellular processes regulating cellular senescence and differentiation. Therefore, the present findings suggest that PARP1 in DPSCs regulates cellular processes such as cell proliferation through intercellular communication mediated by exosomal miRNAs.

Key words: Dental pulp stem cell (DPSC), Exosome, microRNA (miRNA), Poly (ADP-ribose) polymerase 1 (PARP1)

Introduction

In 1981, the first report of exosomes, defined as small membrane-bound vesicles secreted by exocytosis, was published by Trams et al.1 Exosomes include informative components like proteins, messenger RNAs (mRNAs), and microRNAs (miRNAs) and participate in intercellular communication pathways.2,3 Secreted exosomes stimulate surrounding cells in many situations, and are consequently involved in extensive biological functions. Numerous studies have clarified that exosomes are produced by various types of cells, including hematopoietic cells, cardiomyocytes, vascular endothelial cells, and fibroblasts.4,5 Bruno and colleagues revealed that exosomes produced by mesenchymal stromal cells (MSCs) promote wound healing by stimulating cells adjacent to the wounded tissue.6 Exosomes are also implicated in a variety of diseases. Moreover, exosomes produced by tumor cells provoke malignant progression with invasion, acquisition of drug resistance, and immune system evasion by tumor cells.7-10 Dental pulp stem cells (DPSCs), established from extracted tooth pulp, exhibit high proliferation activity and have the potential to differentiate into bone, cartilage, and adipose cells, similar to the case for MSCs9,10. DPSCs are also suggested to produce many exosomes, and these exosomes are considered to promote DPSC proliferation and differentiation.11-14

The post-translational protein modification known as poly ADP-ribosylation (PARylation) is catalyzed by poly (ADP-ribose) polymerase member 1 (PARP1).15 PARP1 is a 113-kDa nuclear enzyme that behaves as a protective molecule in DNA damage responses and in various cellular processes such as differentiation, proliferation, and transformation of tumor cells.16-18. A previous study indicated that PARP inhibitors down-regulated the osteogenic differentiation potential of mouse MSCs.19 Therefore, PARP1 is thought to be involved in the regulation of stemness in somatic stem cells. From another point of view, analysis of miRNAs in Parp1-knockout mouse embryonic stem (ES) cell-derived exosomes showed that Parp1 affected intercellular communication through miRNAs contained within the exosomes.20 Nevertheless, the functional significance of PARP1 for exosome secretion and the role of exosomes modulated by PARP1 in DPSCs remain uncertain. In the present study, we performed a comparative analysis of the expressions of exosomal miRNAs by next-generation sequencing (NGS) in PARP1 gene-targeted human DPSCs and control DPSCs to determine the functions of exosomal miRNAs regulated by PARP1.

Materials and Methods

Preparation of human DPSCs

Human DPSCs were purchased from Lonza Group AG (Lonza, Basel, Switzerland). These cells were isolated from adult third molars collected during extraction of wisdom teeth. The cells were cultured in DPSC basal medium (Lonza) containing DPSC SingleQuots (Lonza) at 37°C under 5% CO2 in air.
Isolation of exosomes and NGS analysis of small RNAs were performed as previously described \(^19\). Briefly, the medium supernatant of cultured cells was collected by centrifugation at 2000×g for 30 min at 4°C, and filtered through a Millex-GV 0.22-μm filter (Merck Millipore Ltd., Burlington, MA, USA). Exosomes were isolated from the supernatant of cultured cells by centrifugation at 100,000×g for 70 min at 4°C, and filtered through a 0.22-μm filter (Merck Millipore Ltd., Burlington, MA, USA). Exosomes were isolated from the supernatant using the exoRNeasy Serum/Plasma Maxi Kit (Qiagen Ltd., Venlo, Netherlands). Next, total RNAs were extracted by an acid-phenol method, and the quality of the purified RNAs was evaluated using an Agilent 2100 Bioanalyzer (Agilent Technologies Ltd., Santa Clara, CA, USA). Subsequently, miRNA libraries were prepared using a QIAseq miRNA Library Kit (Qiagen) according to the manufacturer’s instructions. NGS was performed with 50-bp single reads using a HiSeq 1500 platform (Illumina Inc., San Diego, CA, USA). The enriched regions were detected, and the types of small RNAs were classified. All procedures for exosome-derived small RNA preparation and NGS analysis were performed by DNA Chip Research Inc. (Tokyo, Japan).

Table 1. crRNAs used for PARP1 gene targeting in this study

crRNA	Sequence	PAM sequence	Strand
A	5'-GAGTCGAGTACGCCAAGGC-3'	GGG	–
B	5'-ATTGACCCGTGGTACCATCC-3'	AGG	–
C	5'-CTCAACGTCAGGGTGCAGGA-3'	TGG	+
D	5'-AAGTACGTCAGGAGGTGTA-3'	TGG	–

PAM: proto-spacer adjacent motif.

Gene targeting of the PARP1 gene using the Crisper/Cas9 system

The PARP1 gene was targeted using the Alt-R CRISPR-Cas9 system (Integrated DNA Technologies Inc., Coralville, IA, USA). The CRISPR RNAs (crRNAs) used in this study are shown in Table 1. To construct the guide RNA (gRNA) complex, each crRNA was mixed with a trans-activating crRNA (tracrRNA), heated to 95°C for 5 minutes, and cooled down. The gRNA complex was then mixed with Cas9 Nuclease (TrueCut Cas9 Protein v2; Thermo Fisher Scientific Inc., Waltham, MA, USA) to construct the ribonucleoprotein (RNP) complex. The RNP complex and a puromycin-N-acetyltransferase expression vector, used for screening the complex and vector-transfected cells, were transfected at a complex-to-vector ratio of 1:10.1 using the Nucleofector system (Human MSC Nucleofector Kit and Nucleofector 2b Device; Lonza). The transfected cells were selected with puromycin for 7 days and cell clones were established. The knockdown efficiency was evaluated using a PARP/Apoptosis Assay Kit (R&D Systems Inc., Minneapolis, MN, USA) according to the manufacturer’s instructions.

Immunofluorescence staining

DPSCs cultured on 24-well cell culture plates (BD Falcon Inc., Franklin Lakes, NJ, USA) were fixed with 4% paraformaldehyde, permeabilized with Ca\(^{2+}\)- and Mg\(^{2+}\)-free Dulbecco’s Phosphate-Buffered Saline (PBS; Nacalai Tesque Inc., Kyoto, Japan) containing 0.1% Triton X-100, and blocked with PBS containing 5% chicken serum to reduce non-specific binding. The cells were then incubated overnight at 4°C in Saline (PBS; Nacalai Tesque Inc., Kyoto, Japan) containing 0.1% Triton X-100, and blocked with PBS containing 5% chicken serum to reduce non-specific binding. The cells were then incubated overnight at 4°C in a humidified chamber with an anti-PARP1 primary antibody (rabbit anti-human PARP1 antibody; 46D11; Cell Signaling Technology Inc., Danvers, MA, USA) at 1:400 dilution, followed by incubation with an Alexa Fluor 647-conjugated secondary antibody (Thermo Fisher Scientific) for 30 minutes at room temperature. Cellular filamentous actin was counterstained with Alexa Fluor 488-Phalloidin (Thermo Fisher Scientific), and the cells were observed with a BZ-9000 fluorescence microscope (Keyence Corp., Osaka, Japan).

Cell cycle analysis

Cell cycle analysis was performed using the Tali cell cycle reagent (Thermo Fisher Scientific) according to the manufacturer’s instructions. PARP1-knockdown DPSCs and control DPSCs were seeded onto 6-well cell culture plates (BD Falcon) and cultured for 2 days. Then, cells were harvested using accutase (Nacalai Tesque) and washed with PBS. Cells were fixed with ice-cold 70% ethanol overnight, at −20°C. Cells were stained with Tali cell cycle reagent and analyzed using the Tali image-based cytomter (Thermo Fisher Scientific). The proportion of cells at different cell cycle phases were counted and quantified based on the fluorescence intensity of propidium iodide.

Isolation of exosomes and NGS analysis of small RNAs

Isolation of exosomes and NGS analysis of small RNAs were performed as previously described \(^19\). Briefly, the medium supernatant of cultured cells was collected by centrifugation at 2000×g for 30 min at 4°C, and filtered through a Millex-GV 0.22-μm filter (Merck Millipore Ltd., Bangalore, India).

Morphological and cell cycle analysis of PARP1-targeted DPSCs

Immunofluorescence analysis was performed to confirm the PARP1 knockdown efficiency. As shown in Fig. 2A, a clone of PARP1-knock-
Figure 2. PARP1 expression and cell cycle arrest of PARP1-knockdown DPSCs. (A) Immunofluorescence staining of PARP1-knockdown DPSCs. Representative fluorescence images of filamentous actin with phalloidin staining (upper panels: green) and PARP1 (lower panels: red) are shown. PARP1 expression is recognized in control DPSCs (left panel), but is not detected in PARP1-knockdown DPSCs with crRNA (A) (right panel). Scale bars: 100 μm. (B) Representative phase-contrast images of (a) control DPSCs and (b, c) PARP1-knockdown DPSCs. Scale bars: 100 μm. (C) The cell cycle analysis of control DPSCs (gray bars) and PARP1-knockdown DPSCs (open bars). These values were compared between control and knockdown cells: bars represent the mean ± S.D. of three independent measurements. The data were evaluated by student t-tests with Sidak-Bonferroni’s comparison procedure. Statistical significance was defined as the following p-values: * P < 0.01, N.S.: not significant.
down DPSCs with crRNA (A) lacked PARP1 expression. Therefore, this DPSC clone was considered to exhibit knockdown of the PARP1 gene. We finally established three subclones from the PARP1-knockdown DPSCs with crRNA (A). However, two of the subclones showed the cell morphology of senescence: flat and larger morphologies, and decreased cell growth during the early stages of culture (Fig. 2B-b). The remaining PARP1-knockdown clone did not show severe morphological defects in early passages (Fig. 2B-c). However, this clone indicated the higher cell cycle arrest in G2/M phase (Fig. 2C). Therefore, the remaining clone of PARP1-knockdown DPSCs with crRNA (A) was used for subsequent experiments.

Profiling of miRNA expressions in PARP1-knockdown and control DPSCs

PARP1-knockdown DPSCs and control DPSCs were cultured on a large scale, and the exosomes extracted from their culture supernatants were subjected to NGS analysis. Based on the NGS analysis, the numbers of up-regulated and down-regulated miRNAs with ≥2-fold expression changes under PARP1 deficiency were 163 and 171, respectively (Fig. 3A). From these up-regulated miRNAs with ≥2-fold expression changes, we focused on the miRNAs showing ≥2-fold changes between control DPSCs and PARP1-knockdown DPSCs and having read counts >150 in PARP1-knockdown DPSCs are indicated. The read counts indicated on the Y-axis are the raw data values.

![Figure 3. Profiling of exosomal miRNA expressions. (A) Dot blot analysis for the expression levels of exosomal miRNAs. The read counts of all detected miRNAs were normalized and plotted. Data outside the gray lines represent miRNAs with ≥2-fold changes in expression. The dotted line indicates the linear regression. (B) Comparison of miRNA read counts. The miRNAs showing ≥2-fold changes between control DPSCs and PARP1-knockdown DPSCs and having read counts >150 in PARP1-knockdown DPSCs are indicated. The read counts indicated on the Y-axis are the raw data values.](image-url)
changes, ten miRNAs with high read counts were obtained (Fig. 3B).

GO enrichment analysis for predicted functions of exosomal miRNAs

To predict the functions of the miRNAs produced by PARP1-knockout DPSCs, GO enrichment analysis was performed. The results revealed some characteristic GO terms related to cell cycle regulations, transforming growth factor (TGF)-β and bone morphogenetic protein (BMP) signaling pathways, differentiation potentials, chromatin modifications, and transcription activities (Fig. 4). These results suggested that the exosomal miRNAs produced by PARP1-knockdown DPSCs affected various cellular processes such as cell growth.

Discussion

The contribution of PARylation regulated by PARP1 to cell-cell signaling has remained unclear, despite its involvement in various intracellular processes\(^\text{16,17}\). Meanwhile, exosomes secreted by cells are considered to act as intercellular communication molecules\(^\text{2}\). In fact, many studies have shown that the exosomes secreted by MSCs participate in regeneration processes after tissue injury through cell-cell communication\(^\text{16,17}\). DPSCs also produce exosomes and these exosomes are considered to

Figure 4. GO analysis for predicted functions of exosomal miRNAs. GO terms, defined by the GO Consortium, were extracted by GO enrichment analysis and classified. Corrected P-values (−log\(_10\)) were calculated from the P-values. Up-GO Term: GO terms increased by PARP1 knockdown; Down-GO Term: GO terms decreased by PARP1 knockdown.
promote DPSC proliferation and differentiation. PARP1 expression is up-regulated in DPSCs through oxidative stress caused by endodontic materials. Valverde and colleagues reported that PARP1 functions as a negative regulator for brain-derived neurotrophic factor secretion during odontogenic differentiation. However, the functional significance of PARP1 for exosome secretion and the role of the exosomes modulated by PARP1 in DPSCs remain unknown.

In the present study, we analyzed the exosomal miRNAs that exhibited marked changes after PARP1 knockdown. As shown in Fig. 3B, most of the up-regulated miRNAs were related to cell proliferation potential. In previous studies, certain miRNAs were shown to suppress the proliferation, migration, and invasion of various cell types (miR148a-3p: osteosarcoma cells; miR-99a-5p: oral carcinoma cells; miR-101-3p: salivary gland adenoid cystic carcinoma cells; miR-195-5p: nerve cells in Hirschsprung disease; miR-497-5p: non-small cell lung cancer cells) (20-23). Meanwhile, miR-424-5p was found to repress intrahepatic cholangiocarcinoma metastasis and invasion, while miR-224-5p was shown to suppress renal cell carcinoma cell proliferation and induced cell cycle arrest (24-25). In particular, miR-486-5p was reported to induce replicative senescence in human adipose tissue-derived mesenchymal stem cells (26). In our GO analysis, it was predicted that cellular processes such as cell cycle regulations and chromatin replication changes were affected by PARP1 knockdown (Fig. 4). Specifically, the results suggested that the miRNAs up-regulated by PARP1 knockdown suppressed cell proliferation activities. Indeed, the DPSCs showed decreased cell proliferation and cell cycle arrest in G2/M phase after PARP1 knockdown (Fig. 2B-b and C). Recent studies advocated that G2/M checkpoint are key factors for the onset of replicative senescence (21). Therefore, it is suggested that PARP1 in DPSCs inhibits the production of miRNAs that regulate cell proliferation through suppression.

In a previous study, TGF-β stimulation was suggested to promote cellular senescence of MSCs (27). Moreover, another study indicated that BMP signaling was involved in PARP1-mediated regulation of osteogenic differentiation (28). As shown in Fig. 4, changes in TGF-β and BMP signaling and differentiation potentials were predicted after PARP1 knockdown. From the above findings, it is suggested that PARP1 affects TGF-β and/or BMP signaling, and regulate cellular senescence and differentiation potential.

In conclusion, the present study demonstrated that PARP1 in DPSCs regulates cellular processes such as cell proliferation through intercellular communication mediated by exosomal miRNAs. The present findings suggest that rejuvenation or functional regeneration of DPSCs may be possible through regulation of PARP1.

Acknowledgments
This work was supported by Grants-in-Aid for Scientific Research (C) (Grant Numbers 18K08903 and 21K10151) from the Japan Society for the Promotion of Science.

Conflict of Interest
The authors declare no competing financial interests.

References
1. Trams EG, Lauter CJ, Salem N and Heine U. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta 645: 63-70, 1981
2. O’Brien K, Breyne K, Ughetto S, Laurent LC and Breakfield XO. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol 21: 585-606, 2020
3. Fèvrier B and Raposo G. Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 16: 415-421, 2004
4. Harding C, Heuser J and Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticuloocytes. J Cell Biol 97: 329-339, 1983
5. Johnstone RM, Adam M, Hammond JR, Orr L and Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262: 9412-9420, 1987
6. Kuo H, Hsieh C, Wang S, Chang C, Hung C, Kuo P, Liu Y, Li C and Liu P. Simvastatin attenuates cardiac fibrosis via regulation of cardiomyocyte-derived exosome secretion. J Clin Med 8: 794, 2019
7. Fujimoto S, Fujita Y, Kadota T, Araya J and Kuwano K. Intercellular communication by vascular endothelial cell-derived extracellular vesicles and their microRNAs in respiratory diseases. Front Mol Biosci 7: 619697, 2021
8. Josson S, Gururajan M, Sung SY, Hu P, Shao C, Zhai HE, Liu C, Lichterman J, Duan P, Li Q, Rogatko A, Posadas EM, Haga CL and Chung LWK. Stromal fibroblast-derived miR-409 promotes epithelial-to-mesenchymal transition and prostate tumorigenesis. Oncogene 34: 2690-2699, 2015
9. Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Colillo F, Morando L, Busca A, Falda M, Bussolati B, Tetta C and Camussi G. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 20: 1053-1067, 2009
10. Kulkarni B, Kirave P, Gondaliya P, Jash K, Jain A, Tekade RK and Kalia K. Exosomal miRNA in chemoresistance, immune evasion, metastasis and progression of cancer. Drug Discov Today 24: 2058-2067, 2019
11. Gronthos S, Mankani M, Brahim J, Robey PG and Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97: 13625-13630, 2000
12. Nakatsuka R, Matsuoka Y, Uemura Y, Sumide K, Iwaki R, Takahashi M, Fujioka T, Sasaki Y and Sonoda Y. Mouse dental pulp stem cells support human umbilical cord blood-derived hematopoietic stem/progenitor cells in vitro. Cell Transplant 24: 97-113, 2015
13. HU X, Zhou Y, Ping Y, Chen Y, Feng J and Zheng J. Lineage-specific exosomes promote the odontogenic differentiation of human dental pulp stem cells (DPSCs) through TGFBeta1/smads signaling pathway via transfer of microRNAs. Stem Cell Res Ther 10: 170, 2019
14. Li J, Bao L, Gu Z, Zhou Q, Liang Y, Zheng Y, Xu Y, Zhang X and Feng X. Comparison of immunomodulatory properties of exosomes derived from bone marrow mesenchymal stem cells and dental pulp stem cells. Immunol Res 67: 432-442, 2019
15. Kim MY, Zhang T and Kraus WL. Poly (ADP-ribosyl) ation by PARP-1: ‘PAR-laying’ NAD+ into a nuclear signal. Genes Dev 9: 1951-1967, 2005
16. Schreiber V, Dantzer F, Amé JC and de Murcia G. Poly (ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7: 517-528, 2006
17. Jiang BH, Tseng WL, Li HY, Wang ML, Chang YL, Sung YJ and Chiou SH. Poly (ADP-ribose) polymerase 1: cellular pluriopotency, reprogramming, and tumorogenesis. Int J Mol Sci 16: 15531-15545, 2015
18. Kishi Y, Fujihara H, Kawaguchi K, Yamada H, Nakayama R, Yamamoto N, Fujihara Y, Hamada Y, Satomura K and Masutani M. PARP inhibitor PJ34 suppresses osteogenic differentiation in mouse
mesenchymal stem cells by modulating BMP-2 signaling pathway. Int J Mol Sci 16: 24820-24838, 2015
19. Nozaki T, Sasaki Y, Fukuda I, Isumi M, Nakamoto K, Onodera T and Masutani M. Next-generation sequencing-based miRNA expression analysis in Parp1-deficient embryonic stem cell-derived exosomes. Biochem Biophys Res Commun 499: 410-415, 2018
20. Bock FJ and Chang P. New directions in poly (ADP-ribose) polymerase biology. FEBS J 283: 4017-4031, 2016
21. Victoria-Escandell A, Ibanez-Cabellos JS, de Cutanda SB, Berenguer-Pascual E, Beltran-Garcia J, Garcia-Lopez E, Pallares FV, Garcia-Gimenez JL, Pallares-Sabater A, Zarzosa-Lopez I and Monterde M. Cellular responses in human dental pulp stem cells treated with three endodontic materials. Stem Cells Int 2017: 8920356, 2017
22. Valverde Y, Narayanan R, Alapati SB, Chmilewsky F, Huang CC, Ravindran S and Chung SH. Poly (adenosine phosphate ribose) polymerase 1 inhibition enhances brain-derived neurotrophic factor secretion in dental pulp stem cell-derived odontoblastlike cells. J Endod 44: 1121-1125, 2018
23. Wang X, Zhou Y, Zhao G and Zheng H. MiR-148a-3p suppresses cell proliferation, migration and invasion by targeting PIK3CA in human osteosarcoma cells. Oncotarget 5: 2014
24. Shi Y, Bo Z, Pang G, Qu X, Bao W, Yang L and Ma Y. MiR-99a-5p regulates proliferation, migration and invasion abilities of human oral carcinoma cells by targeting NOX4. Neoplasma 64: 666-673, 2017
25. Liu X, Liu Z, He H, Zhang C and Wang Y. MicroRNA-101-3p suppresses cell proliferation, invasion and enhances chemotherapeutic sensitivity in salivary gland adenoid cystic carcinoma by targeting Pim-1. Am J Cancer Res 5: 3015-3029, 2015
26. Wang G, Wang H, Zhang L, Guo F, Wu X and Liu Y. MiR-195-5p inhibits proliferation and invasion of nerve cells in Hirschsprung disease by targeting GFRA4. Mol Cell Biochem 476: 2061-2073, 2021
27. Huang X, Wang L, Liu W and Li F. MicroRNA-497-5p inhibits proliferation and invasion of non-small cell lung cancer by regulating FGF2. Oncol Lett 17: 3425-3431, 2019
28. Wu J, Yang B, Zhang Y, Feng X, He B, Xie H, Zhou L, Wu J and Zheng S. miR-424-5p represses the metastasis and invasion of intrahepatic cholangiocarcinoma by targeting ARK5. Int J Biol Sci 15: 1591-1599, 2019
29. Qin Z, Hu H, Sun W, Chen L, Jin S, Xu Q, Liu Y, Yu L and Zeng S. miR-224-5p contained in urinary extracellular vesicles regulates PD-L1 expression by inhibiting cyclin D1 in renal cell carcinoma cells. Cancers (Basel) 13: 618, 2021
30. Kim YJ, Hwang SH, Lee SY, Shin KK, Cho HH, Bae YC and Jung JS. miR-486-5p induces replicative senescence of human adipose tissue-derived mesenchymal stem cells and its expression is controlled by high glucose. Stem Cells Dev 21: 1749-1760, 2012
31. Véronique G and Vjekoslav D. Senescence from G2 arrest, revisited. Cell Cycle 14: 297-304, 2015
32. Kawamura H, Nakatsuka R, Matsuoka Y, Sumide K, Fujioka T, Asano H, Iida H and Sonoda Y. TGF-β signaling accelerates senescence of human bone-derived CD271+ and SSEA-4 double-positive mesenchymal stromal cells. Stem Cell Reports 10: 920-932, 2018
