Title

Characterization of genomic DNA of lactic acid bacteria for activation of plasmacytoid dendritic cells.

Authors

Akira Horie1,2, Yasuyuki Tomita1, Konomi Oshio1, Daisuke Fujiwara1, and Toshio Fujii*1

Affiliations

1) Central Laboratories for Key Technologies, Kirin Co., Ltd., Yokohama, Japan,
2) Research Laboratories for Beverage Technologies, Kirin Co., Ltd., Yokohama, Japan

Contact Information

* Corresponding author
Toshio Fujii
Address; Central Laboratories for Key Technologies, Kirin Co., Ltd., Yokohama, Japan 1-13-5, Fukuura Kanazawa Yokohama Kanagawa, 2360004
Mail; tfujii@kirin.co.jp
Phone; +81 45 788 7200, Fax +81 45 788 4042
Running title

CpG motif in the low-GC region of bacterial genome DNA

Key Words

Plasmacytoid dendritic cells, type I interferon,

Lactococcus lactis subsp. *lactis* LC-Plasma, CpG, TLR9, G+C contents
Abstract

Lactococcus lactis strain Plasma (LC-Plasma) possesses strong activity of stimulating plasmacytoid dendritic cells (pDCs) via the TLR9-Myd88 pathway. To reveal the effective genome structure for pDCs stimulatory activity, we performed an *in vitro* screening, using randomly selected DNA fragments from the LC-Plasma genome. The results showed that CpG motifs are necessary factor for active DNA fragment, but the copy number of CpG motifs did not show strong correlation to the pDCs stimulatory activity of DNA fragment. We also found that the G+C contents of DNA fragments have significant negative effects on pDCs stimulatory activity. We also performed bioinformatics analysis of genome of lactic acid bacteria (LAB) and investigated the relation between CpG copy number in the genome and pDCs stimulatory activity. We found that strains of lactic acid bacteria (LAB) with high copy number of CpG motifs in the low-G+C region of the genome had higher probability of having high pDCs stimulatory activity. Three species, *L. lactis* subsp. *lactis*, *Leuconostoc mesenteroides*, and *Pediococcus pentosaceus* were the typical examples of high pDCs stimulatory activity LAB.

Importance

This study provides a new perspective on the structure of DNA fragments that are able to activate pDCs via the TLR9-Myd88 pathway. The information from this study should be useful for designing new DNA fragments, including phosphodiesterbond-DNA oligomers containing CpG motifs and DNA-containing vaccines. This work also presented an *in silico* screening method for identifying...
bacterial species that are able to activate pDCs. Therefore, this study should be useful for providing data for the development of vaccine adjuvants and therapeutics for infectious and allergic diseases.
Introduction

Immunomodulatory effects of lactic acid bacteria (LAB) have attracted growing attention over decades. Numerous animal studies and clinical studies have demonstrated that LAB have antiallergic activity (1) and antivirus activity (2, 3). The cell products of probiotics that are responsible for immunomodulation are largely not known but might involve modifications of some of the known Microbe Associated Molecular Patterns (MAMPs) such lipoteichoic acids (LTA), exopolysaccharaides, RNA, and DNA. Interestingly, several studies suggested that strength of immunomodulatory activities depends on the species and strains on LAB (4-6).

Plasmacytoid dendritic cells (pDCs), a subset of dendritic cells (DCs) are immune cells that have a crucial function in the body’s defense against viral infections (7, 8). The pDCs originate in the bone marrow from myeloid and lymphoid precursors and require fms-like kinase 3 (Flt3L) for development. The pDCs sense DNA and RNA viruses through toll-like receptor 9 (TLR9) and TLR7, respectively, and subsequently produce interferon-alpha (IFN-α) (9), which induces the expression of genes coding for antiviral proteins such as MxA, viperin, and 2′-5′-oligoadenylate synthase. Several recent studies have revealed that pathogenic bacteria such as Staphylococcus aureus (10-12), Neisseria meningitidis, Haemophilus influenza (12), and Streptococcus pyogenes (13) are able to enhance IFN-α production in mice and humans. However, well-known probiotic LAB strains such as Lactobacillus and Bifidobacterium have not yet been reported to activate pDCs.

We previously found that a specific strain of LAB, LC-Plasma (synonym of
Lactococcus lactis subsp. lactis JCM 5805) was able to stimulate murine pDCs to produce IFN-α (5). Oral administration of LC-Plasma was found to result in significant immunomodulatory activity and enhanced antiviral activity in mice and humans (14-17). We also found that the LC-plasma stimulate pDCs via TLR9-Myd 88 pathway (5). This suggested that CpG motifs of genome DNA was the main MAMPs for pDCs stimulation.

It is well known unmethylated CpG motifs of bacterial genome that is the ligand of TLR9 (18, 19). Firstly, 5’-GACGTC-3’, 5’-AGCGCT-3’, and 5’-AACGTT-3’ was identified as efficient immunostimulatory oligonucleotide ISS-ODN (20) and following studies proved that CpG containing hexamers, known as CpG motifs are able to stimulate B cells (18), and pDCs (21, 22). Various types of CpG-motifs have demonstrated as potent immunostimulatory DNA sequences (23). Studies of ODNs with phosphorothioate backbones for clinical application revealed the key structure of ISS-ODNs. For example, Hartmann et al. studied the effect of base change inside and outside of hexamers on activation of B cells and NK cells (24). Lenert et al. studied the extended sequence preferences both on ISS-ODN and immuno-inhibitory ODN (INH-ODN) on B cells (25). It was proposed that 5’-RRCGYY-3’ and 5’-GTCGTT-3’ are optimal consensus sequences for B cell activation in mice and primate, respectively (18, 24). The ISS-ODN containing CpG motif for pDCs activation was lately identified (22). The structural preference for ODN to activate pDCs was distinctly different from the ODN for B cells. 5’-RRCGRYCGYY-3’, 5’-RYCGYRTCGYR-3’, and 5’-RYCGRY-3’ were the most efficiently activate pDCs.
Later, the phosphorothioate bonded oligonucleotides containing the B cell stimulating motifs designated as Class B ODN and the phosphorothioate bonded oligonucleotides containing the pDCs stimulating motifs designated as Class A ODN. The importance of poly-G sequences at the 5' end, the 3' end have also been demonstrated. Fewer studies are carried out on phosphodiester bond backbone (21, 26, 27) and particular ODNs with high activity was also proposed.

In addition, several reports suggested that more specific CpG motifs or even non-CpG sequences of LAB are critical for proliferation of B cell activity, including BL07 motifs in Bifidobacterium longum BB536 (28), OL-LB7 motifs in Lactobacillus delbrueckii (29), ID35 motifs in Lactobacillus rhamnosus GG (30), and OL-LG10 motif from Lactobacillus gasseri JCM 1131 (31).

In this study, we constructed a library of genomic DNA fragments of LC-Plasma and investigated the pDCs stimulatory activity of each fragments to identify the essential character for pDCs activation. As we expected, the CpG motif was necessary for active DNA fragments. However, we found that the total copy number of CpG motifs in each DNA fragment was not strongly correlated with its pDCs stimulatory activity and that the G+C content of a genome DNA fragment has a significant effect on its potential for pDCs activation. We also performed an in silico analysis of the copy number of CpG motifs in the genome LAB and found that the low-G+C region of the genome has significant impact on the pDCs stimulation.
Results

CpG motifs are necessary for pDCs stimulatory activity of DNA fragments from LC-Plasma.

In order to confirm that the necessity of CpG motifs for pDCs stimulatory activity, we performed in vitro experiment using PCR fragments. Four CpG-rich genomic loci (R1 R2, R3, and R4), and 2 CpG-free genomic loci (F1 and F2) were selected from the LC-Plasma genome. Three or four different fragments of each loci were selected and PCR primers were designed. The length and the copy number of CpG motifs in each fragments are shown in Table S1. In total, twelve CpG-rich DNA fragments and 7 non-CpG fragments were amplified and subjected to pDCs stimulating assay. The IFN-α production of pDCs stimulated with these amplified fragments was shown in Fig. 1. Eleven of 12 CpG-rich DNA fragments strongly induced IFN-α production, while none of the CpG-free fragments induced IFN-α production. These results strongly suggested CpG motif is necessary for pDCs stimulation.

The copy number of CpG motifs are not strongly correlated to the pDCs stimulatory activity of DNA fragments from LC-Plasma.

To reveal the copy numbers of CpG motif are related to the level of pDCs stimulatory activity, we constructed another library of DNA fragments from LC-Plasma. Fragments of approximately 200 bp with varied numbers of CpG motifs were randomly selected from the LC-Plasma genome (Table S2). The PCR-amplified fragments were subjected to assays for pDCs stimulatory activity.

We analyzed the correlation between pDCs stimulatory activity and copy number
of CpG motifs in each DNA fragment (Fig. 2A). The results showed that the copy number of CpG motifs in the fragments was positively significantly correlated with activity ($p < 0.01$), and the correlation coefficient was $R = 0.491$, “moderate coefficient” defined by Guilford et.al. However, determination coefficient (R^2) was only 0.24 which means another factor affects the pDCs stimulatory activity.

G+C content of DNA fragments from LC-Plasma is negatively correlated with pDCs stimulatory activity.

We then studied the relation of the G+C contents of DNA fragments with the level of pDCs stimulatory activity. A significant negative correlation between pDCs stimulatory activity and G+C contents of the fragment ($R = -0.474, p < 0.01$, Fig. 2B) was observed. We performed bilayer stratified analysis based on G+C contents and compared the relation between the copy number CpG motifs and pDCs stimulatory activity. The DNA fragments into the low-G+C group composed of fragments with G+C < 40%, and the high-G+C group composed of fragments with G+C ≥ 40%. (Fig. 3A and 3B). The correlation coefficient was increased in both of the low-G+C group ($R = 0.680, p < 0.01$) and the high-G+C group ($R = 0.647, p < 0.01$). The degree of pDCs stimulatory activity per copy of CpG motifs was higher in the low-G+C group.

We also stratified DNA fragments into groups based on G+C contents as follows: < 30%, ≥30% to <35%, ≥35% to <40%, ≥40% to <45%, ≥45% to <50% and ≥50%. Stepwise reduction in pDCs stimulatory activity was observed, with a stepwise increase in G+C contents (Fig. 3C). We performed one-way ANOVA and Dunnet test. The results revealed that the levels of pDCs activity resulting from stimulation by
fragments with G+C contents of ≥40% to <45%, ≥45% to <50%, and ≥50% were significantly lower compared to the activity induced by fragments with < 30% G+C.

We also performed correlation analyses using randomly synthesized 300 bp fragments. Similar results were observed again (Fig. S1). These results strongly suggested that G+C content of DNA fragment is another essential factor to affect high level of pDCs stimulatory activity.

Total copy number of CpG motifs in the genome DNA are not strongly correlated to the pDCs stimulatory activity of LC-Plasma.

We carried out in silico analysis to investigate the relation between the copy number of CpG motifs and pDCs stimulatory activity. The total copy number of CpG motifs in the genome of *L. lactis* LC-Plasma was measured and compared to those of in the genomes of *Lactobacillus rhamnosus* ATCC 53103, and *Bifidobacterium longum* NCC 2705 which showed low pDCs stimulatory activity in a previous study (5). The results suggested that the number of CpG motifs in the LC-Plasma is three times smaller than that in the ATCC 53103 and four times smaller than that in NCC2705 (Table 1). We also measured the three of the pDCs-activating motifs, and two of B cell activating motifs in the genome of these LABs (Table 1). The results showed that the genome of ATCC 53103 contained 3.7 to 5.7 fold greater copy number of pDCs activating motifs and 1.7 to 5.7 fold greater copy number of B cells activating motifs than that of the genome of LC-Plasma. The genome of NCC2705 contained 5.6 to 17.4 fold greater copy number of pDCs activating motifs and 1.5 to 2.8 fold greater copy number of B cells activating motifs than that of the genome of LC-Plasma. These
results suggested the copy number of CpG motifs are not strongly related to the level of pDCs stimulatory activity of LC-Plasma.

Comparing the pDCs stimulatory activity of single-stranded DNA.

Because G+C content is directly related to the dissociation temperature of ds-DNA fragments, we evaluated pDCs stimulatory activity induced by synthetic oligonucleotides in single-stranded (ss) or double-stranded (ds) form. Two ss-CpG oligomers were synthesized, based on the sequences of ODN 1585 and ODN 2216 (InvivoGen, San Diego, CA, USA). As shown in Fig. 4, both oligonucleotides induced pDCs stimulatory activity, while their complementary sequences did not. We also synthesized the ds-form of ODN 1585 and ODN 2216, by annealing the normal and complementary strands. Interestingly, neither ODN 1585 nor ODN 2216 induced pDCs stimulatory activity in ds forms. In addition, the sense ODN hybridized with the antisense 6-bp sequence of the core CpG motif induced high pDCs stimulatory activity. These results suggest that an ss-CpG oligomer is more efficient at stimulating pDCs than a ds-CpG oligomer. The results also suggest that strong hybridization affinity between complementary strands might reduce the pDCs stimulatory activity of CpG motifs.

In silico analysis of the copy number of CpG motifs in whole genome and low-G+C region of the genome of LAB.

We investigated the frequency of CpG motifs in whole genomes and in the low-G+C region (<40% of G+C contents) of the genome (Fig. 5A). A linear increase of frequency of CpG motifs was observed with increasing G+C content of whole
genomes. On the contrary, the frequency of CpG motifs localized to low-G+C regions of the genome showed an inverse correlation with the G+C content of whole genomes (Fig. 5B). Three species (Lactococcus lactis subsp. lactis, Pediococcus pentosaceus, and Leuconostoc mesenteroides) with the genomes of low G+C contents (35.2% to 37.7%) contains 20 copies/kb CpG motifs in their low-G+C regions, while the other four species (L. plantarum, L. casei, L. fermentum, and Bifidobacterium longum) with the genomes of high G+C contents (46.6% to 60.1%) contains less than 10 copies/kb CpG motifs in their low-G+C regions.

The copy number of CpG motifs in the low-G+C region of the genome was closely related to the pDCs stimulatory activity of LAB.

We investigated the differences of pDCs stimulatory activity between strains of these LAB species (Table 2). The wide variations of strains-based-activity were observed in each species. It was also observed that the frequencies of high-activity-strains were clearly different between the species. Five of 7 strains belonging to L. lactis subsp. lactis strains, two of 10 L. mesenteroides strains, and five of 19 P. pentosaceus strains induced marked (> 100 pg/mL) production of IFN-α. On the contrary, none of the LAB strains showing a lower frequency of CpG motifs in low-G+C regions, including L. plantarum, L. casei, and L. fermentum, exhibited significant stimulatory activity. The means of activity was also higher in the three strains compared to others. These results strongly suggest that the pDCs stimulatory activity of a bacterial strain depends on the copy number of CpG motifs in the low-G+C region of the genome and not on the copy number over the entire genome.
We also carried out a statistical analysis of species-based pDCs stimulatory activity using Steel-Dwass method (Table S4). Significant differences were observed between *L. lactis* to *P. damnosus*, *L. mensteroides*, and *Lactobacillus* low G+C species. Marginally significant difference was also observed between *L. lactis* and *Lactobacillus* high G+C species. In addition, *P. pentosaceus* and *L. mesenteroides* also showed significant difference to *Lactobacillus* high G+C species.
Discussion.

Though stain differences of immunostimulatory activity of LAB has been the focus of interest for these decades, the molecular mechanisms has not yet been well understood. In the beginning of this study, we hypothesized that CpG copy number in the genome might be proportional to the pDCs stimulatory activity and that LC-Plasma may contain greater copy number of CpG motifs and/or some special sequences containing of CpG motifs. However, our results using DNA fragments and in silico analysis did not supported this hypothesis. In DNA fragment analysis, the CpG motifs seemed to be necessary for pDCs stimulation, but the correlation of the copy number of the CpG motifs and pDCs stimulatory activity was weak. In genome analysis, we could not find greater copy number of total CpG motifs, nor three of consensus sequences that have been reported as pDCs in the genome of LC-Plasma. In the long process of DNA fragment analysis, we found that the G+C contents have negative correlation of pDCs stimulatory activity. The stratification of DNA fragments based on G+C contents made the correlation between the copy number of CpG motifs and the pDCs stimulatory activity much stronger. In the genome analysis, we found that the CpG motifs in the low-G+C region of the genome is critical determinants of the pDCs stimulatory activity. Taken these together, we demonstrate that the G+C contents of DNA is one of the critical factor for pDCs stimulatory activity in either of DNA fragments or genome.

The effect of G+C contents on immunostimulatory activity has not yet been fully studied in the history of CpG motifs. Yamamoto et al. isolated DNA from bacteria,
virus, invertebrate, vertebrate, and plant. They investigated the NK stimulatory activity of DNA samples but no correlation was observed between G+C contents and activity. To the best of our knowledge, this is the first study that has demonstrated that the G+C contents of DNA fragments has a direct effect on the immunomodulatory activity of pDCs.

Our results suggested that CpG fragment lost its pDCs stimulating activity by annealing to the complementary whole strand, while annealing of core sequence of CpG motif did not reduce the pDCs stimulating activity. This suggested that the dissociation is important for the CpG-motif containing DNA to stimulate pDCs. The CpG-motif containing DNA lost its activity by annealing the complementary strand. A recent study of crystal structures of 3 forms of TLR9 suggested that single-stranded oligonucleotides bound to TLR9 act as DNA agonists. It is possible that the G+C contents of DNA and affects the dissociation of ds-DNA fragments and the interaction with TLR9, which is followed by activation of pDCs. However, some investigators insist that oligonucleotides cannot occur in ss-forms (32), or that duplex structures are required for recognition by TLR9 (33, 34). It was suggested that the DNA sequence around the CpG motifs are also important for activation, since the fragment did not lost its activity by annealing the complementary strand of core CpG motif. Additional studies are needed to clarify whether single-strandedness is a key factor for pDCs activation.

Our results also presented a useful in silico screening methods of bacteria with high pDCs stimulatory activity at species level. We showed L. lactis subsp. lactis,
Pediococcus pentosaceus, and Leuconostoc mesenteroides as typical example of higher pDCs stimulatory activity. In addition, our data also suggested that the copy number of CpG motifs in low-G+C region is not the absolute determinant of pDCs stimulatory activity of bacterial cells. We observed wide variety of pDCs stimulatory activities of strains in sole species. Moreover, the activity of Lactococcus lactis was significantly higher than those of Pediococcus pentosaceus, and Leuconostoc mesenteroides, though the copy number of CpG motifs in low-G+C region of those two species were higher than that of Lactococcus lactis. Not only the structure of DNA but also the bacterial cell’s affinity to pDCs or suitability of phagocytosis of pDCs affects the pDCs stimulating activity.

It should be noted that several previous studies were not consistent with our findings. Bioinformatics study by Kant et al. suggested that the number of CpG motifs were highly negatively correlated with G+C content, which was also observed in this study. They also demonstrated that 5’-GTCGTT-3’ motif that is one of the most effective CpG motifs for humans had lower correlation with the G+C contents, and that the genomes of some probiotic strains had higher frequencies of 5’-GTCGTT-3’ motifs than intestinal bacterial strains (35). The observation in our study did not support their hypothesis since the frequency of 5’-GTCGTT-3’ motifs nor 5’-RRCGYY-3’ motifs did not correlate with the pDCs stimulating activity. Ménard et al. showed that CpG-rich DNA fragments with high G+C content from Bifidobacterium longum were effective for macrophage activation (36). We could not duplicate the findings of Ménard et al when we tested CpG-rich DNA fragments with
high G+C content from *B. longum* on BM-derived DCs (data not shown). However, the effect of G+C contents may depend on host cell lineage. Singer *et al.* investigated the proportions of inflammation stimulatory (5’-RRCGYY-3’) and inhibitory (5’-NCCGNN-3’ and 5’-NNGCRN-3’) sequences in the genomes of pathogenic bacteria (37). They found species dependent differences in the proportion of stimulatory and inhibitory sequences, but they did not study the inflammatory responses of each pathogen. It would be a great interest whether the effect of G+C contents on inflammatory immune cytokines such as TNF-α, IL-1, and IL-6 caused by pathogenic bacteria.

In conclusion, our study provides a new perspective on the structure of DNA fragments that are able to activate pDCs via the TLR9-Myd88 pathway. Additional investigations and applications of our hypothesis may lead to the detailed understanding of host-bacterium interactions via TLR9 in other bacteria, other immune reactions, and other immunocytes.
Materials and Methods.

Bacterial strains

The bacterial strains used in this study, *Lactococcus lactis* LC-Plasma and *Lactobacillus rhamnosus* ATCC 53103, were purchased from the collections held at the Japan Collection of Microorganisms (JCM) and American Type Culture Collection (ATCC), respectively. Other bacterial strains used in the screening assay were purchased from JCM, ATCC, or NITE Biological Resource Center (NBRC).

Cultures of bacterial strains were grown at 30°C or 37°C for 48 hours in De Man, Rogosa, and Sharpe (MRS) medium (BD Biosciences) or GAM medium (Nissui), which were prepared according to the suppliers’ instructions.

Preparation of DNA fragments

Genomic DNA was extracted and purified from bacterial cultures grown as described in the previous section, using QIAGEN Genomic-tip 500/G (Qiagen). PCR amplifications of selected sequences, which were based on the results of our *in silico* analysis, were performed using the GeneAmp PCR System (Applied Biosystems), with primers designed according to the *L. lactis* LC-Plasma genome sequence. PCR was performed using TaKaRa Ex Taq® (TaKaRa), according to the manufacturer’s instructions, using 10 ng of DNA template in 50 μl of reaction mixture containing primers at a concentration of 0.5 μM. The following thermal cycling profile was used: 5 min at 94°C followed by 35 cycles of 30 sec at 94°C for denaturation, 30 sec at hybridization temperatures based on the primers, and 30 sec at 72°C for extension; and then a final 7-min extension phase at 72°C.
The PCR products were purified using QIAquick PCR Purification Kit (Qiagen), according to the manufacturer’s instructions, using 50 μl of elution solution. Each eluent was evaporated and concentrated on a DNA SpeedVac (Thermo Scientific). The concentrated DNA solutions were assessed by NanoDrop 2000 (Thermo Scientific), and the DNA concentration was adjusted to 10 mg/mL using double-distilled water.

The oligonucleotide sequences used for amplification; and the length, G+C content, and number of CpG motifs contained in the amplicon are shown in Suppl. Table 1. The draft genome sequence of *L. lactis* LC-Plasma was available to the public (38) and was used for the design of primers and other purposes.

Bone marrow (BM)-derived DC cultures

Four to 8-week-old female BALB/c wild-type mice were purchased from CLEA Japan. All animal care and experimental procedures were performed in accordance with the guidelines of the Committee for Animal Experimentation at Kirin Company. These studies were approved by the Committee for Animal Experiment at Kirin Company.

Flt3L-induced DCs were generated as follows. BM cells were extracted from BALB/c mice, and erythrocytes were removed by brief exposure to 0.168 M NH₄Cl. Cells were cultured at a density of 5 × 10⁵ cells/mL for 7 days in RPMI 1640 medium (Life Technologies) containing 1 mM sodium pyruvate (Life Technologies), 2.5 mM HEPES (Life Technologies), 100 U/mL penicillin/100 μg/mL streptomycin (Life Technologies), 50 μM 2-ME (Life Technologies), 10% fetal calf serum (Life Technologies), and 100 ng/mL Flt3L (R&D Systems).
Stimulating assay for pDCs.

BM-derived DC cultures were stimulated with purified PCR products at a final concentration of 2 µg/mL in the presence of FuGENE® HD Transfection Reagent (Promega) according to the manufacturer’s instructions. Briefly, FuGENE HD was added to the RPMI 1640 medium with 1000-fold dilution in final. Then, purified PCR products were added and the mixture was incubated for 5 min at room temperature. Each incubated mixture (50 µL) was added to 500 µL of culture medium containing BM-derived DCs at a density of 5.0 × 10⁵ cells/mL. For the experiment using oligomers (less than 50bp nucleotides), FuGENE® HD was not used. After overnight incubation at 37°C in an atmosphere containing 5% CO₂ and 95% air, the cell cultures were collected and centrifuged to obtain culture supernatants. The supernatants were stored at -80°C until analysis. IFN-α concentration was measured using the VeriKine™ IFN-α ELISA Kit (PBL Assay Science), according to the manufacturer’s instructions.

In silico analysis of bacterial genomes

In silico analysis was performed using Genetyx ver.9 software (GENETYX). We searched for 5'-purine-purine-CG-pyrimidine-pyrimidine-3' (5'-RRCGYY-3') and 5'-purine-TCG-pyrimidine-pyrimidine-3' (5'-RTCGYY-3'), and the total number of CpG hexamers (5'-NNCGNN-3') in each genome was also calculated. In addition, we searched for 4 immunostimulatory motifs that were previously identified in LAB, as follows: BL07 (5'-GCGTCGGTTTCGGTGCTCAC-3') (28), OL-LB7 (5'-CC-BY-ND 4.0 International license available under a CC-BY-ND 4.0 International license.

375 instructions.

376 **In silico analysis of bacterial genomes**

377 *In silico* analysis was performed using Genetyx ver.9 software (GENETYX).

378 We searched for 5'-purine-purine-CG-pyrimidine-pyrimidine-3' (5'-RRCGYY-3')
379 and 5'-purine-TCG-pyrimidine-pyrimidine-3' (5'-RTCGYY-3'), and the. total number
380 of CpG hexamers (5'-NNCGNN-3') in each genome was also calculated. In addition,
381 we searched for 4 immunostimulatory motifs that were previously identified in LAB,
382 as follows: BL07 (5'-GCGTCGGTTTCGGTGCTCAC-3') (28), OL-LB7
383 (5'-CGGCACGCTCACGATTCTTG-3') (29), ID35

20
(5'-ACTTTCGTTTTCTGCGTCAA-3') (30), and OL-LG10 (5'- ATTTTTAC-3') (31).

Genomic regions with low G+C content (e.g. G+C < 40%) were extracted using the source code that we created, based on the Perl Programming Language. When any 200 bp fragment was calculated with a G+C content ≥ 40%, genomic regions containing that fragment were designated as high-G+C regions. The genome sequence data of *Lactococcus lactis* susp. *lactis* LC-Plasma, *Leuconostoc mesenteroides* NBRC 100496 (synonym of ATCC 8293), *Lactobacillus acidophilus NCFM, Lactobacillus plantarum* WCFS1, *Lactobacillus casei* ATCC 334, *Lactobacillus fermentum* IFO 3956, *Lactobacillus rhamnosus* ATCC 53103, and *Pediococcus pentosaceus* ATCC 25745 were obtained from GENBANK and were used for *in silico* analysis.
References

1. Isolauri E, Salminen S. 2008. Probiotics: Use in Allergic Disorders: A Nutrition, Allergy, Mucosal Immunology, and Intestinal Microbiota (NAMI) Research Group Report. Journal of Clinical Gastroenterology 42:S91-S96.

2. Shida K, Sato T, Iizuka R, Hoshi R, Watanabe O, Igarashi T, Miyazaki K, Nanno M, Ishikawa F. 2015. Daily intake of fermented milk with Lactobacillus casei strain Shirota reduces the incidence and duration of upper respiratory tract infections in healthy middle-aged office workers. European Journal of Nutrition 56:45-53.

3. Nakayama Y, Moriya T, Sakai F, Ikeda N, Shiozaki T, Hosoya T, Nakagawa H, Miyazaki T. 2014. Oral administration of Lactobacillus gasseri SBT2055 is effective for preventing influenza in mice. Scientific Reports 4:4638.

4. Fujiwara D, Inoue S, Wakabayashi H, Fujii T. 2004. The anti-allergic effects of lactic acid bacteria are strain dependent and mediated by effects on both Th1/Th2 cytokine expression and balance. International Archives of Allergy and Immunology 135:205-215.

5. Jounai K, Ikado K, Sugimura T, Ano Y, Braun J, Fujiwara D. 2012. Spherical lactic acid bacteria activate plasmacytoid dendritic cells immunomodulatory function via TLR9-dependent crosstalk with myeloid dendritic cells. PLoS ONE 7:e32588.

6. Makino S, Ikegami S, Kano H, Sashihara T, Sugano H, Horiuchi H, Saito T, Oda M. Immunomodulatory Effects of Polysaccharides Produced by Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. Journal of Dairy Science 89:2873-2881.

7. Swiecki M, Colonna M. 2010. Unraveling the functions of plasmacytoid dendritic cells during viral infections, autoimmunity, and tolerance. Immunological Reviews 234:142-62.

8. Takagi H, Fukaya T, Eizumi K, Sato Y, Sato K, Shibazaki A, Otsuka H, Hijikata A,
Watanabe T, Ohara O, Kaisho T, Malissen B, Sato K. Plasmacytoid dendritic cells are crucial for the initiation of inflammation and T cell immunity in vivo. Immunity 35:958-971.

Theofilopoulos AN, Baccala R, Beutler B, Kono DH. 2005. Type I interferon (α/β) in immunity and autoimmunity Annual Review of Immunology 23:307-335.

Parcina M, Wendt C, Goetz F, Zawatzky R, Zähringer U, Heeg K, Bekeredjian-Ding I. 2008. *Staphylococcus aureus*-induced plasmacytoid dendritic cell activation is based on an IgG-mediated memory response. The Journal of Immunology 181:3823-3833.

Parker D, Prince A. 2012. *Staphylococcus aureus* induces type I IFN signaling in dendritic cells via TLR9. The Journal of Immunology 189:4040-4046.

Michea P, Vargas P, Donnadieu M-H, Rosemblatt M, Bono MR, Duménil G, Soumelis V. 2013. Epithelial control of the human pDC response to extracellular bacteria. European Journal of Immunology 43:1264-1273.

Veckman V, Julkunen I. 2008. *Streptococcus pyogenes* activates human plasmacytoid and myeloid dendritic cells. Journal of Leukocyte Biology 83:296-304.

Jounai K, Sugimura T, Ohshio K, Fujiwara D. 2015. Oral administration of *Lactococcus lactis* subsp. *lactis* JCM5805 enhances lung immune response resulting in protection from murine parainfluenza virus infection. PLoS ONE 10:e0119055.

Sugimura T, Jounai K, Ohshio K, Tanaka T, Suwa M, Fujiwara D. 2013. Immunomodulatory effect of *Lactococcus lactis* JCM5805 on human plasmacytoid dendritic cells. Clinical Immunology 149:509-518.

Sugimura T, Takahashi H, Jounai K, Ohshio K, Kanayama M, Tazumi K, Tanihata Y, Miura Y, Fujiwara D, Yamamoto N. 2015. Effects of oral intake of plasmacytoid dendritic cells-stimulative lactic acid bacterial strain on pathogenesis of influenza-like illness and immunological response to influenza virus. British Journal of Nutrition
17. Fujii T, Jounai K, Horie A, Takahashi H, Suzuki H, Ohshio K, Fujiwara D, Yamamoto N. 2017. Effects of heat-killed *Lactococcus lactis* subsp. *lactis* JCM 5805 on mucosal and systemic immune parameters, and antiviral reactions to influenza virus in healthy adults; a randomized controlled double-blind study. Journal of Functional Foods 35:513-521.

18. Krieg AM, Ae-Kyung Y, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM. 1995. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374:546-549.

19. Yamamoto S, Yamamoto T, Kataoka T, Kuramoto E, Yano O, Tokunaga T. 1992. Unique palindromic sequences in synthetic oligonucleotides are required to induce IFN and augment IFN-mediated natural killer activity. J Immunol 1992 Jun 15;148(12):4072-6 148:4072-4076.

20. Tokunaga T, Yano O, Kuramoto E, Kimura Y, Yamamoto T, Kataoka T, Yamamoto S. 1992. Synthetic oligonucleotides with particular base sequences from the cDNA encoding proteins of *Mycobacterium bovis* BCG induce interferons and activate natural killer cells. Microbiol Immunol 36:55-61.

21. Coch C, Busch N, Wimmenauer V, Hartmann E, Janke M, Abdel-Mottaleb MMA, Lamprecht A, Ludwig J, Barchet W, Schlee M, Hartmann G. 2009. Higher activation of TLR9 in plasmacytoid dendritic cells by microbial DNA compared with self-DNA based on CpG-specific recognition of phosphodiester DNA. Journal of Leukocyte Biology 86:663-670.

22. Krug A, Rothenfusser S, Hornung V, Jahrbsdörfer B, Blackwell S, Ballas ZK, Endres S, Krieg AM, Hartmann G. 2001. Identification of CpG oligonucleotide sequences with high induction of IFN-α/β in plasmacytoid dendritic cells. European Journal of
23. Vollmer J, Weeratna R, Payette P, Jurk M, Schetter C, Laucht M, Wader T, Tluk S, Liu M, Davis HL, Krieg AM. 2004. Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. European Journal of Immunology 34:251-262.

24. Hartmann G, Weeratna RD, Ballas ZK, Payette P, Blackwell S, Suparto I, Rasmussen WL, Waldschmidt M, Sajuthi D, Purcell RH, Davis HL, Krieg AM. 2000. Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. The Journal of Immunology 164:1617-1624.

25. Lenert P, Goeken AJ, Ashman RF. 2006. Extended sequence preferences for oligodeoxyribonucleotide activity. Immunology 117:474-481.

26. Lee K-W, Jung J, Lee Y, Kim T-Y, Choi S-Y, Park J, Kim D-S, Kwon H-J. 2006. Immunostimulatory oligodeoxynucleotide isolated from genome wide screening of Mycobacterium bovis chromosomal DNA. Molecular Immunology 43:2107-2118.

27. Choi YJ, Lee KW, Kwon HJ, Kim DS. 2006. Identification of immunostimulatory oligodeoxynucleotide from Escherichia coli genomic DNA. Journal of Biochemistry and Molecular Biology 39:788-793.

28. Takahashi N, Kitazawa H, Shimosato T, Iwabuchi N, Xiao JZ, Iwatsuki K, Kokubo S, Saito T. 2006. An immunostimulatory DNA sequence from a probiotic strain of Bifidobacterium longum inhibits IgE production in vitro. FEMS Immunol Med Microbiol 46:461-469.

29. Kitazawa H, Watanabe H, Shimosato T, Kawai Y, Itoh T, Saito T. 2003. Immunostimulatory oligonucleotide, CpG-like motif exists in Lactobacillus delbrueckii ssp. bulgaricus NIAI B6. International Journal of Food Microbiology 85:11-21.
30. Iliev ID, Kitazawa H, Shimosato T, Katoh S, Morita H, He F, Hosoda M, Saito T. 2005. Strong immunostimulation in murine immune cells by Lactobacillus rhamnosus GG DNA containing novel oligodeoxynucleotide pattern. Cellular Microbiology 7:403-414.

31. Kitazawa H, Ueha S, Itoh S, Watanabe H, Konno K, Kawai Y, Saito T, Itoh T, Yamaguchi T. 2001. AT oligonucleotides inducing B lymphocyte activation exist in probiotic Lactobacillus gasseri. International Journal of Food Microbiology 65:149-162.

32. Narayanan S, Dalpke AH, Siegmund K, Heeg K, Richert C. 2003. CpG Oligonucleotides with modified termini and nicked dumbbell structure show enhanced immunostimulatory activity. Journal of Medicinal Chemistry 46:5031-5044.

33. Yu D, Putta MR, Bhagat L, Dai M, Wang D, Trombino AF, Sullivan T, Kandimalla ER, Agrawal S. 2008. Impact of secondary structure of toll-like receptor 9 agonists on interferon alpha induction. Antimicrobial Agents and Chemotherapy 52:4320-4325.

34. Heeg K, Dalpke A, Peter M, Zimmermann S. 2008. Structural requirements for uptake and recognition of CpG oligonucleotides. International Journal of Medical Microbiology 298:33-38.

35. Kant R, de Vos W, Palva A, Satokari R. 2014. Immunostimulatory CpG motifs in the genomes of gut bacteria and their role in human health and disease. Journal of Medical Microbiology 63:293-308.

36. Ménard O, Gafa V, Kapel N, Rodriguez B, Butel M-J, Waligora-Dupriet A-J. 2010. Characterization of immunostimulatory CpG-rich sequences from different Bifidobacterium species. Applied and Environmental Microbiology 76:2846-2855.

37. Singer M, de Waaij DJ, Morré SA, Ouburg S. 2015. CpG DNA analysis of bacterial STDs. BMC Infectious Diseases 15:273.
38. Fujii T, Tomita Y, Ikushima S, Horie A, Fujiwara D. 2015. Draft genome sequence of *Lactococcus lactis* subsp. *lactis* JCM 5805(T), a strain that induces plasmacytoid dendritic cell activation. Genome Announcements 3:e00113-15.
Figure legends.

Fig 1.

IFN-α induction by CpG-rich DNA fragments from L. lactis LC-Plasma

Flt3L-induced BM-DCs were stimulated by CpG-rich (R) or non-CpG (N) DNA fragments amplified from LC-Plasma genomic DNA. Each sample was added to cells at a final DNA concentration of 2 μg/mL. Each value is the mean concentration ± S.D. for triplicate cultures.

Fig 2.

Correlation between immunostimulatory activity and the numbers of CpG motifs or G+C content contained in DNA fragments

Each dot depicts an independent 200 bp DNA fragment amplified from the LC-Plasma genome. Horizontal axes indicate A) the number of CpG motifs or B) G+C content contained in each DNA fragment. Vertical axes indicate the amount of IFN-α produced by BM-DCs stimulated by each type of DNA fragment.

Fig 3.

Correlation between the copy numbers of CpG motifs and IFN-α production in 200 bp DNA fragments

Each dot depicts an independent 200 bp amplified DNA fragment. A) amplified from the LC-Plasma genomic regions with G+C < 40%. B) amplified from the LC-Plasma genomic regions with G+C ≥ 40%. C) IFN-a production activities per
CpG motifs in the DNA fragment having various G+C contents. IFN-α production by BM-DCs stimulated with each 200 bp DNA fragment was measured, and was divided by the copy numbers of CpG motifs. Bar depicts the standard deviation (S.D.). Bars with different notation exhibits significant difference (* p<0.05, ** p<0.01)

Fig 4.

IFN-α production induced by single- or double-stranded forms of synthetic oligonucleotides

Single-stranded DNA oligomers (ssDNA) with phosphodiester bonds were synthesized, based on sequences of ODN1585 and ODN2216 (Invivogen, San Diego, CA, USA). Double-stranded DNA oligomers (dsDNA) were prepared by annealing sense and antisense strands of ssDNA. Each synthesized oligomer (2 µg) was tested on Flt3L induced BM-DCs, and the production of IFN-α was measured. + : sense strand; – : antisense strand; ss-core: 6-base CpG motif of sense strand; ds-core : Hybrid of sense strand DNA oligomer with antisense strand of 6 base CpG motif. *not detected

Fig 5.

CpG motifs frequency in the genome of species of LAB.

The frequency in each genome was depicted as a dot: A) whole genome and B) G+C < 40% . Ll; Lactococcus lactis LC-Plasma, Pp; Pediococcus pentosaceus ATCC 25745, Lm; Leuconostoc mesenteroides ATCC 8293, St; Streptococcus
thermophilus CNRZ 1066, *Lp*; *Lactobacillus plantarum* WCFS1, *Lc*; *Lactobacillus casei* ATCC 334, *Lf*; *Lactobacillus fermentum* IFO 3956, *Bl*; *Bifidobacterium longum* NCC 2705
Table 1. CpG motifs and copy numbers in the whole genome of LAB strains

Copy number of typical CpG motifs in the whole genome of *L. lactis* LC-Plasma, *L. rhamnosus* ATCC 53103, and *Bifidobacterium longum* NCC2706 were determined as described in Materials and Methods.

Motifs	Bacterial strains			
	Lactococcus lactis	*Lactobacillus rhamnosus*	*Bifidobacterium longum*	
	JCM 5805	ATCC 53103	NCC2705	
pDCs-activating	![Motifs](motifs.png)	![Motifs](motifs.png)	![Motifs](motifs.png)	
RRCGRYCGYY	51	195	288	
RYCGYRTCGYR	8	54	139	
RYCGRY	3,072	17,681	25,057	
B cells-activating	![Motifs](motifs.png)	![Motifs](motifs.png)	![Motifs](motifs.png)	
Optimal for mice	RRCGYY	4,691	13,169	13,118
Optimal for human	GTCGTT	882	1,534	1,295
CpG hexamer	NNCGNN	61,462	180,144	240,176
Table 2. pDCs stimulatory activity of LAB strains with varied GC contents in genome DNA

*Number of high (>100 pg/mL)-IFN-α-producing strains per tested strains.

Species	Strains	IFN-α (pg/mL)	CpG frequency (per kb)*	GC (%)	High*
Lactococcus lactis	JCM 5805	404.4			
	JCM 20101	389.8			
	ATCC 15577	12.2			
	mean ± S.E.	271.0 ± 24.6			
	JCM 2026	84.0			
	JCM 20109	353.3			
	JCM 20314	102.1			
	JCM 20459	5.5			
	NBRC 3182	59.1			
	NBRC 3891	15.8			
	NBRC 3892	116.4			
	NBRC 3893	32.2			
	NBRC 3894	46.0			
	NBRC 12229	18.7			
	NBRC 12230	7.9			
	NBRC 12232	14.8			
	NBRC 12318	59.8			
	NBRC 101982	404.4			
	NBRC 101983	5.6			
	NBRC 101984	5.9			
	NBRC 101985	5.8			
	NBRC 101986	172.3			
	NBRC 101987	34.3			
	mean ± S.E.	81.3 ± 114.5			
Pediococcus pentosaceus	NBRC 3349	3.2			
	NBRC 3426	57.3			
	NBRC 3832	353.5			
	NBRC 12060	4.2			
	NBRC 100495	5.7			
	mean ± S.E.	71.4 ± 111.6			
Leuconostoc mesenteroides	NBRC 100496	8.1			
	NBRC 102497	36.0			
	NBRC 102480	74.2			
	NBRC 102481	167.0			
	NBRC 107766	4.4			
	mean ± S.E.	27.1 ± 37.7			
Lactobacillus acidophilus	JCM 1132	11.7	15.4	34.7	
	JCM 1551	16.7			
Lactobacillus plantarum	JCM 6651	55.2	4.6	39.1	0/5
	JCM 8341	4.0			
	JCM 20110	9.8			
Lactobacillus low G+C	mean ± S.E.	19.5 ± 20.5	<40		
Lactobacillus casei	ATCC 393	5.6	1.5	46.6	
	ATCC 53103	3.9		47.0	
Lactobacillus rhamnosus	NBRC 3959	4.4	1.9	51.5	0/4
	NBRC 3961	5.2			
Lactobacillus high G+C	mean ± S.E.	4.8 ± 0.8	40 ≤		
IFN-α induction by CpG-rich DNA fragments from L. lactis LC-Plasma

Flt3L-induced BM-DCs were stimulated by CpG-rich (R) or non-CpG (N) DNA fragments amplified from LC-Plasma genomic DNA. Each sample was added to cells at a final DNA concentration of 2 μg/mL. Each value is the mean concentration ± S.D. for triplicate cultures.
Correlation between immunostimulatory activity and the numbers of CpG motifs or GC content contained in DNA fragments
Each dot depicts an independent 200 bp DNA fragment amplified from the LC-Plasma genome. Horizontal axes indicate A) the number of CpG motifs or B) G+C content contained in each DNA fragment. Vertical axes indicate the amount of IFN-α produced by BM-DCs stimulated by each type of DNA fragment.
Correlation between the copy numbers of CpG motifs and IFN-α production in 200-bpDNA fragments

Each dot depicts an independent 200-bp amplified DNA fragment. A) amplified from the LC-Plasma genomic regions with G+C < 40%. B) amplified from the LC-Plasma genomic regions with G+C ≥ 40%. C) IFN-α production activities per CpG motifs in the DNA fragment having various G+C contents. IFN-α production by BM-DCs stimulated with each 200-bp DNA fragment was measured, and was divided by the copy numbers of CpG motifs. Bar depicts the standard deviation (S.D.). Bars with different notation exhibits significant difference (* p<0.05, ** p<0.01)
IFN-α production induced by single- or double-stranded forms of synthetic oligonucleotides

Single-stranded DNA oligomers (ssDNA) with phosphodiester bonds were synthesized, based on sequences of ODN1585 and ODN2216 (Invivogen, San Diego, CA, USA). Double-stranded DNA oligomers (dsDNA) were prepared by annealing sense and antisense strands of ssDNA. Each synthesized oligomer (2 µg) was tested on Flt3L induced BM-DCs, and the production of IFN-α was measured. + : sense strand; – : antisense strand; ss-core: 6 base CpG motif of sense strand; ds-core : Hybrid of sense strand DNA oligomer with antisense strand of 6 base CpG motif. *not detected
FIG 5

CpG motifs frequency in the genome of species of LAB.

The frequency in each genome was depicted as a dot: A) whole genome and B) G+C < 40% . *Ll*; *Lactococcus lactis* LC-Plasma, *Pp*; *Pediococcus pentosaceus* ATCC 25745, *Lm*; *Leuconostoc mesenteroides* ATCC 8293, *St*; *Streptococcus thermophilus* CNRZ 1066, *Lp*; *Lactobacillus plantarum* WCFS1, *Lc*; *Lactobacillus casei* ATCC 334, *Lf*; *Lactobacillus fermentum* IFO 3956, *Bl*; *Bifidobacterium longum* NCC 2705.