Estramustine binding protein and anti-proliferative effect of estramustine in human glioma cell lines

E. von Schoultz, D. Lundblad, J. Bergh, K. Grankvist & R. Henriksson

Departments of Oncology, Applied Cell and Molecular Biology, Clinical Chemistry, University of Umeå, S-901 87 Umeå, Sweden, and Department of Oncology, University of Uppsala, Sweden

Summary Four human cell lines derived from malignant gliomas were immunohistochemically examined for their content of estramustine-binding protein (EMBP). EMBP was detected in a large amount in all glioma cells during the entire cell cycle. EMBP has previously been demonstrated to be the major receptor protein in prostatic cancers for the cytostatic drug estramustine-phosphate (EMP). EMP caused a dose-dependent inhibition of exponentially growing cells by increasing the number of cells in G0/M stage of the cell cycle as monitored by flow cytometry. The effect may be coupled to arrest of the glioma cells at metaphase. The presence of EMBP may suggest a selective binding and effect of EMP in glioma cells.

Estramustine phosphate (EMP), a cytotoxic norethandol-1β-phosphate, is generally accepted in the treatment of advanced prostatic carcinoma (Madajewics et al., 1980). Estramustine phosphate is dephosphorylated in the gastrointestinal tract to estramustine, which to a high extent is oxidized to estromustine (Anderson et al., 1981). The exact mechanism of action by EMP on malignant tissue is incompletely understood. EMP has been shown to induce mitotic arrest in human prostatic cancer cell lines by interaction with the mitotic spindle (Hartley-Asp, 1984). Recently EMP was found to generate free oxygen-radicals (Grankvist et al., 1988).

The presence of a specific binding protein, estramustine binding protein (EMBP), could be important for the effect. EMBP has been demonstrated in prostatic cancer tissue cytosol from rat and man (Björk et al., 1982). EMBP, which is distinct from the estramustine receptor, binds estramustine and the main metabolite estromustine with high affinity, and thus may be important for drug action in malignant target tissue (Forsgren et al., 1979b; Björk et al., 1985).

In this report we demonstrate the presence of EMBP in cultured human malignant glioma cell lines by an immunohistochemical method using mouse monoclonal antibodies with cross-reactivity to the human counterpart (Bergh et al., submitted; Nilsson et al., submitted). Furthermore, the effects of EMBP on cellular growth were examined.

Materials and methods

Cell culture

Four human glioma cell lines (U-251 MG, U-118 MG, U-105 MG, U-87 MG) were used (Westermark et al., 1973). The cells were grown as monolayer cultures in Eagles MEM supplemented with 10% foetal calf serum, penicillin, streptomycin and fungizone. They were incubated at 37°C in humidified atmosphere containing 5% CO2. Synchronization was achieved by seeding the cells in microtitre wells (Becton & Dickinson labware, Oxnard, CA) in 0.1 ml of Eagle's medium at a concentration of 104 cells/well. The next day the medium was changed to MEM without serum and incubated for 4 to 6 additional days. The synchrony (>85% cells in Go/G1) was controlled by flow cytometry.

Micronised estramustine phosphate

(Estracyt®/t, AB LEO, Helsingborg, Sweden), 300 mg, was dissolved in 8 ml sterile water and diluted in Eagles medium to appropriate concentrations (range of 1–40 μg ml⁻¹), and included in the incubation media (see above).

Cell proliferation

Cell proliferation was measured by seeding cells (U-251 MG, U-118 MG, U-105 MG) in 24-well tissue culture dishes (Costar, Cambridge, MA USA) at 6 x 10⁴—1.2 x 10⁵ cells/well depending on cell line. Medium was changed three times a week. Cells were harvested by incubation with 0.2 ml EDTA (0.5 mM) for 5 min followed by trypsin (0.1%). A Linson 431 counter (Linson Instruments, Stockholm, Sweden) was used to analyze cell number. Reversibility experiments were performed on all cell lines. On the third day of culture, after repeated washing a group of cells were reincubated with fresh medium devoid of estramustine phosphate.

Flow cytometry

Cells were stained with propidium iodide according to Vindelöv (1977) and analysed in a Model 4800 A flow cytometer (Bio/Physics Systems Inc., Mahopac, NY, USA). The DNA curves were obtained in a TN1705 pulse height analyzer (Tracor Northern Inc., Middleton, WI, USA).

Immunohistochemical demonstration of EMBP

Malignant glioma cells from stock cultures (see above) were washed in PBS three times and spun down at 500 g for 10 min. The pellets were snap frozen at −70°C, followed by freeze sectioning at time of use. The cells were then analyzed for the presence of EMBP using the conventional indirect antibody-peroxidase technique. The techniques have been described in detail elsewhere (Sternberger, 1979; Bergh et al., 1985a).

Endogenous peroxidase activity was blocked by addition of H2O2 in methanol. The primary mouse monoclonal antibody (Mab EMBP 1) raised against purified rat EMBP, with demonstrated cross-reactivity to human EMBP (Bergh et al., 1988), was added diluted 1/10 to the sections for 1–1 h. After sequential washings in PBS the rabbit anti mouse avidin-biotin peroxidase antiperoxidase complexes (Vectastain, Burlingame, California, USA) were added. The staining reaction was developed in DMSO/ethanolcarbozole, followed by counterstaining with haematoxylin and mounting in glycerol-gelatin. Two small cell lung cancer cell lines U-1285 and U-1906 (Bergh et al., 1985b) were used as negative and positive controls respectively. Distribution of EMBP has previously been demonstrated to contain only minute amounts of EMBP using fast-protein liquid chromatography, whereas U-1906 has been shown to exhibit large amounts (Bergh et al., submitted). Furthermore, for each tested cell line — another negative control was obtained by omitting the primary monoclonal antibody. Immunohistochemical staining results were semiquantitatively analyzed according to the scheme in Table I.
Results

Immunohistochemical demonstration of EMBP

All studied malignant glioma cell lines contained high amounts of EMBP as monitored with the monoclonal antibody (Table I). The intensity in positive staining, localized to the cytoplasm and the proportion of positive cells (>90%) were similar in all investigated cell lines. The staining pattern was similar to that previously found in the positive control, the human small cell lung cancer cell line U-1906 (Bergh et al., submitted). The same intense positive staining was observed in all phases of the cell cycle investigated (G_0/G_1, S, G_2/M).

Antiproliferative effects

Cells were grown with different estramustine phosphate (EMP) concentrations (Figures 1 and 2). EMP caused a dose-dependent inhibition of growth of all three cell lines tested in the concentration range 1–40 µg ml\(^{-1}\). All cell lines were maximally inhibited by 20 µg ml\(^{-1}\) EMP during 6 days incubation. There was a small difference in the sensitivity of the different cell lines with U-118-MG being the most sensitive. In all investigated cell lines the inhibitory effect of EMP was reversed by washing and reincubation in fresh medium. Figure 3 illustrates the reversal of the inhibitory effect even in a rather high concentration of 20 µg ml\(^{-1}\) EMP on U-105 MG cells.

Effect on cell cycle

To examine whether a block existed in a certain cell cycle phase, cell cycle parameters were studied by cytofluorometry. Estramustine phosphate treatment for 3 days caused a large increase in the number of cells in G_2/M compared to controls (Figure 4, Table II). Consequently this diminished the proportion of G_0/G_1 cells. Estramustine did not seem to block cells in a resting G_0 stage. All cells also had the morphological characteristics of mitotic cells (Figure 2b).

Discussion

EMBP has been described as a major androgen dependent secretory protein in the rat ventral prostate (Pousette et al., 1981). It is distinct from the estrogen receptor, has a low affinity for estrogens but binds estramustine with a dissociation constant (K_d) of 2 \times 10^{-8} M (Forsgren et al., 1979b, Björk et al., 1985). A human analogue to this protein has been demonstrated in normal benign hyperplastic and

Table I

Cell line	Histopathological diagnosis	Monoclonal EMBP-antibody\(^a\)
		Intensity in staining – proportion of positive cells\(^b\)
87-MG	Astrocytoma grade IV\(^1\)	+ + + >90%
Negative control		0%
105-MG	Astrocytoma grade IV\(^1\)	+ + + >90%
Negative control		0%
118-MG	Astrocytoma grade IV\(^1\)	+ + + >90%
Negative control		0%
251-MG	Astrocytoma grade IV\(^1\)	+ + + >90%
Negative control		0%
U-1285	Small cell carcinoma\(^2\)	–
Negative control		<1% (rare positive cells)
U-1906	Small cell carcinoma\(^2\)	+ + + >90%
Negative control		0%

\(^1\)Westermark et al., 1973; \(^2\)Bergh et al., 1984; \(^a\)Staining intensity in a four graded scale: Negative, +, + +, + + +; \(^b\)Number of positive cells in five groups: <1%, 1–10%, 11–50%, 51–90%, >90%.

Figure 1 Antiproliferative effects of different concentrations of estramustine on three human glioma cell lines: (a) U-105 MG, (b) U-118 MG, (c) U-251 MG. ○ = control, * = 5 µg/ml\(^{-1}\), △ = 10 µg/ml\(^{-1}\), ■ = 20 µg/ml\(^{-1}\).
malignant prostatic tissue (Björk et al., 1982) and suggested to act as an accumulator of estramustine and estramustine during clinical therapy (Björk et al., 1985). EMBP was originally identified when looking for the mechanism of action by estramustine phosphate (EMP), a drug which is accepted in the treatment of advanced prostatic carcinoma. In the present study we demonstrate for the first time the presence of EMBP in human glioma cell lines and that EMP has the capacity of inhibiting the growth of glioma cells in vitro.

The mouse monoclonal antibody (Mab EMBP-1) used here, raised against purified rat EMBP displays a significant reactivity with human tissues previously demonstrated to be positive with the polyclonal rabbit antisera to EMBP (Forsgren et al., 1979a, Björk et al., 1982). Significant interspecies immunoreactivities have also been demonstrated together with specific staining with the Mab EMBP-1 in normal human prostatic epithelium and prostatic carcinomas (Nilsson et al., 1988, Bergh et al., 1988).

Previously EMBP has been detected in the pituitary gland and cerebral cortex of male and female rats (Forsgren et al., 1979a). While the biological role of this glycoprotein within the CNS remains to be elucidated its presence of EMBP in glioma cells may have a clinical interest in the management of malignant gliomas. As previously demonstrated in the rat (Björk et al., 1982) immunohistochemical detection of EMBP was only accomplished in the cytoplasm of the glioma cells. To what extent the binding protein is involved in the cytotoxic action of estramustine on glioma cells as demonstrated here is unclear.

The cytotoxic effect of EMP is believed to be mediated by a direct action of the main metabolites estramustine and estramustine (Björk et al., 1985). Mitotic arrest and inhibition of DNA synthesis were more pronounced by the estramustine complex than for the nor-nitrogen mustard alone (Hartley-Asp et al., 1982; Hartley-Asp, 1984; Björk et al., 1985). In our in vitro system it is difficult to state which of the components is responsible for the growth-inhibition of glioma cells.

In the present cell cultures the effect was clearly dose-dependent and maximal inhibition was achieved at concentrations from 10–20 μg/ml⁻¹. Using these concentrations exponentially growing glioma cells were accumulated in the G₂/M stage and the fraction of G₂/M was reduced. These data are in good agreement with previous studies on various prostatic cancer cell lines (Hartley-Asp et al., 1982) and cell lines of small cell lung cancer (Westlin et al., unpublished results). Moreover, the effects of EMP seemed to be reversible. However, the possibility also exists that fully sensitive
cells do not regrow. This would be the effect if the used cells were not from a pure clonal cell line. The exact mechanism for this interaction between EMP and tumour cells is unknown but has recently been suggested to involve free oxygen radicals (Granqvist et al., 1988).

In conclusion, a protein with immunohistochemical characteristics related to EMBP has been demonstrated for the first time in human malignant glioma cells. The physiological significance of this observation remains to be elucidated. EMBP has been proposed to participate in the mechanism for a specific binding of the metabolites of EMP (Björk et al., 1985). Detection of EMBP in tumour cells could possibly be of future value for the selection of patients that may benefit from EMP treatment. Further studies on the mechanism of action of EMP and its specific binding protein within the CNS are certainly justified.

This study was supported by grants from the Swedish Cancer Society and Lions’ research Foundations, Dept. of Oncology, University of Umeå, Lion’s research foundation at Akademiska sjukhuset, University of Uppsala, Sweden.

References

ANDERSSON, S.B., GUNNARSSON, P.O., NILSSON, T. & PLYM-FORSELL, G. (1981). Metabolism of estramustine phosphate in patients with prostatic carcinoma. Eur. J. Drug Metab. Pharmacokinet., 6, 149.

BERGHI, J., ESSCHER, T., STEINHOLTZ, L., NILSSON, K. & PÄHLMAN, S. (1985a). Immunohistochemical demonstration of neuronspecific enolase in human lung cancers. Am. J. Clin. Path., 84, 1.

BERGHI, J., NILSSON, K., EKMAN, R. & GIOVANELLA, B. (1985b). Establishment and characterization of cell lines from human small and large cell carcinomas of the lung. Acta Path. Microbiol. Immunol. Scand., Sect. A, 93, 133.

BERGHI, J., BJÖRK, P., WESTLIN, J.E., BRODIN, O. & NILSSON, S. (1988). Expression of estramustine-binding protein (EMBP) in human lung cancer cell lines. Cancer Res. (In press.)

BJÖRK, P., FORSGREN, B., GUSTAVSSON, J.-Å., POUSSETTE, Å. & HÖGBERG, B. (1982). Partial characterization and 'quantitation' of human prostatic estramustine-binding protein. Cancer Res., 42, 1935.

BJÖRK, P., FRITJOFSSON, Å. & HARTLEY-ASP, B. (1985). Uptake and binding of estramustine phosphate (estracyt R) in the human prostate and new aspects on the cytotoxic activity of estramustine phosphate in vitro. Experimentelle Urologie, 341.

FORSgren, B., BJÖRK, P., CARLSTRÖM, K., GUSTAVSSON, J.-Å., POUSSETTE, Å. & HÖGBERG, B. (1979a). Purification and distribution of a major protein in rat prostate that binds estramustine, a nitrogen mustard derivative of estradiol-17β. Proc. Natl Acad. Sci. USA, 76, 3149.

FORSgren, B., GUSTAVSSON, J.-Å., POUSSETTE, Å. & HÖGBERG, B. (1979b). Binding characteristics of a major protein in rat ventral prostate cytosol that interacts with estramustine, a nitrogen mustard derivative of 17β-estradiol. Cancer Res., 39, 5155.

GRANqvIST, K., VAN SCHOULTZ, E. & HENRIKSSON, R. (1988). New aspects on the cytoxicity of estramustine -- involvement of free-oxygen radicals. Int. J. Exp. Clin. Chemother.

HARTLEY-ASP, B. & GUNNARSSON, P.-O. (1982). Growth and cell survival following treatment with estramustine, nor-nitrogen mustard, estradiol and testosteron of a human prostatic cancer cell line (DU 145). J. Urol., 127, 818.

HARTLEY-ASP, B. (1984). Estramustine-induced mitotic arrest in two human prostatic carcinoma cell lines DU 145 and PC-3. The Prostate, 5, 93.

MADAJEWICS, S., CATANE, R., MITTELMAN, A., WAJSMAN, Z. & MURPHY, G.F. (1980). Chemotherapy of advanced hormonally resistant prostatic carcinoma. Oncology, 37, 53.

NILSSON, S., NORDGREN, H., KARLBERG, L. & 4 others (1988). Expression of estramustine-binding protein (EMBP) and the proliferation associated antigen Ki-67 in prostatic carcinomas. Scand. J. Urol.

POUSSETTE, Å., BJÖRK, P., CARLSTRÖM, K., FORSGREN, B., HÖGBERG, B. & GUSTAVSSON, J.-Å. (1981). Influence of sex hormones on prostatic secretion protein a major protein in rat prostate. Cancer Res., 41, 688.

STERNBERGER, L.A. (1979). The unlabelled antibody peroxidase – antiperoxidase (PAP) method. In Immunocytochemistry, 2nd edition, p. 104. John Wiley & Sons: New York.

WESTERMARK, B., PONTÉN, J. & HUGOSSON, R. (1973). Determinants for the establishment of permanent tissue culture lines from human gliomas. Acta Path. Microbiol. Scand., Sect. A, 81, 791.

VINDELOV, L.L. (1977). Flow microfluorometric analysis of nuclear DNA in cells from solid tumors and cell suspensions. Virchows Arch. B. Cell Path., 24, 227.