Performance evaluation of 108 KW grid connected solar photovoltaic System

Haidar Gafar Abugoukh
O.M. Beketov National University of Urban Economy in Kharkov
Ukraine
E-mail: haidarjokh2004@yahoo.com

Annotation - Solar power has emerged as the fastest growing energy generation technology globally over the past decade, mainly due to large scale adoption of the technology by utilities and private sector. Increasing awareness of climate changes, energy security needs facilitation from government decline in solar energy costs and emergence of new and innovative business are some of the prime drivers for the large scale development and deployment of the solar energy. Importance of Solar energy Solar energy is an important part of life and has been since the beginning of time. Increasingly, man is learning how to harness this important resource and use it to replace traditional energy sources. Solar Energy Is Important in Nature: Solar energy is an important part of almost every life process, if not, all life processes. Solar Energy Is Important as Clean Energy: Since solar energy is completely natural, it is considered a clean energy source. It does not disrupt the environment or create a threat to Eco-systems the way oil and some other energy sources might. It does not cause greenhouse gases, air or water pollution. This study aims to design and evaluate the grid-connected solar photovoltaic roof-top system. A design and feasibility study of rooftop solar photovoltaic system project is conducted using tools- PVsyst. The performance of the system was simulated using PVsyst software and the results were analyzed. The analyses of the simulation results show that the Maximum total energy generation of 18.23 MW h was observed in the month of May and lowest total energy generation of 10.10MWh was observed in the month of December. The utilization of roof building will be increasing the amount of solar energy injected into grid. The utilization of roof building will be increasing the amount of solar energy and achieving Dubai clean energy strategy 2050 goals which aims to provide seven per cent of Dubai’s power through clean energy by 2020, 25 per cent by 2030 and 75 per cent by 2050.

Keywords – Grid system, Photovoltaic (PV); Performance ratio.

I. INTRODUCTION

Nowadays, renewable energy resources play an important role in replacing conventional fossil fuel energy resources. Photovoltaic energy is one of the very promising renewable energy resources which grew rapidly in the past few years.

Renewable energy resources play an important role in electric power generation. There are various renewable resources which is used for electric power generation, such as solar energy, wind energy, geothermal etc. Solar Energy is a good choice for electric power generation, since the solar energy is directly converted into electrical energy by solar photovoltaic modules. These modules are made up of silicon cells. When many such cells are connected in series we get a solar PV module. The current rating of the modules increases when the area of the individual cells is increased, and vice versa. When many PV modules are connected in series and parallel combinations we get a solar PV array, which is suitable for obtaining higher power output.

The electricity consumption in the United Arab Emirates (UAE) has increased by 12% per annum from about 60,000 GWh in 2006 to 85,000 GWh in 2010, the electricity peak demand in Dubai is increase from 3.228MW in 2004 to 8,507MW in 2018. To meet this increasing energy demand, the Dubai relies heavily on gas and oil. As a matter of fact, 73% of the generation capacity is based on gas turbine generators (7,448MW), and 25% is based on steam turbine generators (2,542MW). As a result, the Dubai has a high ecological footprint per capita, and it actually had the world’s highest in 2018 (figure 1). The government of Dubai has recently committed to have (1000MW) 1% of its generation capacity from renewable resources and mainly from solar energy by the year 2020 and 5000MW by 2030.

The Mohammed bin Rashid Al Maktoum Solar Park is the largest single-site solar park in the world, with a planned capacity of 1,000MW by 2020, and 5,000MW by 2030, the solar park will use a range of photovoltaic and concentrated solar power technologies to provide clean energy to the citizens and residents of Dubai.

- SOLAR POWER IN THE UAE

The UAE (United Arab Emirates) is in the ‘sunbelt region’ in which solar irradiation levels (the amount of solar radiation which falls on the Earth) are very high. This means that a solar panel in the UAE can potentially produce double the electrical energy compared to a country with relatively lower irradiation levels such as Germany [5]. The UAE is also in a region where bad weather rarely affects solar power production, making it an ideal location for solar installations. Being in a region with nearly 365 days of sunlight a year, the UAE can easily become one of the largest producers of solar energy per capita.

The UAE is also part of a region rich in fossil fuels. Since the 1970s, the country underwent rapid economic growth powered by readily available oil and gas, and has attained high living standards with a per capita income amongst the highest in the world. However this also led to very high per capita energy consumption as cities grew and became very energy intensive. When the governments of the UAE and other GCC (Gulf Cooperation Council) countries realized that their conventional energy reserves

DOI: 10.33042/2079-424X-2019-2-55-78-84
were rapidly depleting they set out to make their economies less reliant on fossil fuel-based energy and more on renewable energy, helping the UAE to achieve energy security.

The development of large scale solar power installations as well as renewable energy goals for 2020 and 2030 also reflect the UAE’s ambition to move forward.

System Description

The system description is given in Table 1. A rooftop system is chosen. The PV cell material chosen is monocrystalline because of the higher efficiency. The system is of fixed stand type and can sufficiently power a household of a small family.

The grid connected PV system, consists of solar arrays to absorb and convert sunlight into electricity, a solar inverter to convert DC current to AC current, a mounting, cabling and other electrical accessories. Schematic of the grid connected PV system is shown in Fig. 2. The main component for grid-connected solar PV power systems comprise of:

Solar PV modules, connected in series and parallel, depending on the solar PV array size, to generate DC power directly from the sun’s intercepted solar power. Maximum tracker (MPPT), making sure the solar PV modules generated DC power at their best power output at any given time during sunshine hours Grid-connected DC/AC inverter, making sure the generated and converted AC power is safely fed into the utility grid whenever the grid is available Grid connection safety equipment like DC/AC breakers fuses etc., according to the local utility’s rules and regulations.

I. Geographical location of the site:
The solar plan located in Dubai at longitude of 55.28 E. Latitude 25.24 N.

II. Specification of solar panel:
The solar panels mounted at the building are of 275 Wp rating and made up of polycrystalline. These panels have an efficiency of 16.8% and are of fixed type. Polycrystalline panel ratings are open circuit voltage \(V_{OC} \) of 38.1 V and short circuit current \(I_{SC} \) of 9.27 A. It has a maximum operating temperature up to 80°C centigrade.

- Creating a string of modules

A string comprises a number of PV modules connected in series. The electrical characteristics of PV modules connected in series to form a string are the same as PV cells connected in series to form a module: meaning the output voltage of the string will be the sum of the output voltages of all the modules and the output current of the string will be the lowest output current of any module.

Modules can also be connected in parallel. In this case the current output of the modules will add instead of the voltage. The output voltage is that of a single module.

The installation of the solar panel included is 3 inverters and 401 PV modules connected with 19 strings in parallel and 116 modules in series.

- Inverter #1 (2X24, 2X24, 2X18, 1X15).
- Inverter #2 (2X24, 2X22, 2X20).
- Inverter #3 (2X17, 2X24, 1X18, 1X22).

- Power conditioning units:

Inverter converts DC power into AC power. The inverter power rating is 36 kW. PV voltage of 620 V and supply DC current 22 A is fed as input to inverter. The output AC voltage and current from inverter are 400 V and 57, 8 A respectively. The output of the inverter is synchronized automatically with same voltage and frequency as that of grid.

Fig. 1. Dubai Electricity and water authority (DEWA) statistics 2018

Fig. 2. Direct normal Irradiation in UAE
PV Output Modeling:

For the calculated utilizable roof area the energy production from the installed solar panels has been estimated with the help of PVsyst software employing the Dhahran weather conditions.

Specimen energy yield calculations for the academic buildings are provided in Figure 6 and Table 6.

Figure 7 specifically provides a detailed flow diagram of PV energy production from the buildings, while also highlighting the involved losses at various stages.

Fig. 3. Schematic layout of installed system.

III. THE SIMULATION USING PV SYST

The maximum energy is generated in the month of May (18.23MW h) and minimum energy is in the month of December (10.10 MW h). The total amount of energy injected into grid for the year 177.21 MW h.

Annual global horizontal irradiation is 2121. 0 kW h/m². Global Incident energy that is incident on the collector plane annually is 2186.5 kW h/m². Total energy obtained from the output of the PV array is 182.96 MW h.

The annual average performance ratio is 73.5%.

- Normalized productions:
 The LC value is recorded as 1.44kWh/kW p/day and the LS value is recorded as 0.14 kW h/kW p/day in the same way YF is given as 4.4 kW h/kW p/day.

No	System Parameter	QTY
1	Number of PV modules	401
2	P nom. total .KWp	110
3	Number of inverters	3
4	Inverters Pnom total KW_AC	108
5	Produced Energy MWh/year	177.2
6	Specific production KWh/KWp/year	1607
7	Performance ratio	73.3%

TABLE II. SOLAR PANEL ELECTRICAL CHARACTERISTICS
Rated Power (P max)
Voltage at P max (V mp)
Current at P max
Short Circuit Current (I sc)
Open Circuit Voltage (V oc)

- Loss diagram:

The global horizontal irradiance is 2121 kW h/m². The effective irradiation on the collector plane is 2007 kW h/m². Therefore, the loss in energy is 3.2%. The solar energy incident on the solar panels will convert into electrical energy. After the PV conversion, the nominal array energy is 221.6MWh. The efficiency of the PV array is 16.82% at standard test condition (STC). Array virtual energy obtained is 183, 0 MW h. After the inverter losses the available energy obtained at the inverter output is 177.2MWh.

- CO₂ emission reduction

As the PV systems do not require fossil fuels to generate electricity, their life-cycle CO₂ emissions are extremely low compared to electricity generated using conventional power plants. Therefore, the solar energy conversion using PV systems will result in a substantial reduction of CO₂.
TABLE III. BALANCES AND MAIN RESULTS

	GlobHor kWh/m²	DiffHor kWh/m²	T Amb °C	GlobInc kWh/m²	GlobEff kWh/m²	EArray MWh	E_Grid MWh	PR
January	123.8	48.4	19.70	135.2	123.5	11.90	11.32	0.759
February	135.6	55.2	20.90	145.0	132.6	12.57	12.27	0.768
March	178.3	73.5	23.20	185.4	170.2	15.91	15.53	0.760
April	197.0	82.5	27.00	199.4	183.4	16.74	16.33	0.743
May	229.1	91.5	30.80	227.9	210.0	18.70	18.23	0.725
June	220.4	95.4	32.80	217.1	199.7	17.79	17.35	0.725
July	209.0	107.6	34.30	206.8	189.8	16.95	16.54	0.725
August	207.2	97.4	34.60	208.4	191.6	16.98	16.56	0.721
September	192.7	77.1	32.20	198.0	182.3	16.22	15.81	0.724
October	175.0	61.0	29.30	185.5	170.7	15.47	15.09	0.738
November	134.1	48.3	25.50	146.7	133.8	12.36	12.08	0.747
December	118.8	46.2	21.89	131.2	119.3	11.34	10.10	0.698
Year	2121.0	884.1	27.72	2186.5	2007.0	182.96	177.21	0.735

Legends: GlobHor - Horizontal global irradiation
 DiffHor - Horizontal diffuse irradiation
 GlobEff - Effective Global, corr. for IAM and shadings
 EArray - Effective energy at the output of the array
 E_Grid - Energy injected into grid GlobInc - Global incident in coll. plane
 T Amb - Ambient Temperature

Fig. 4. Normalized Production for the building

Fig. 5. Performance Ratio PR

Fig. 6. Path of the Sun over a year.
Main system parameters	System type	Grid-Connected
Near Shadings	According to strings	Electrical effect
PV Field Orientation	2 orientations	10°/-62° and 10°/30°
PV modules	Model STP 275-20/Wfw	Phnom
PV Array	401	Phnom total
Inverter Model	SUN2000_36KTL	Phnom
Inverter pack	Nb. of units	3.0 Phnom total
User's needs	Unlimited load (grid)	

Loss diagram over the whole year
Horizontal global irradiation
Global incident in coll. plane
Near Shadings: irradiance loss
IAM factor on global
Soiling loss factor
Effective irradiance on collectors
PV conversion
Array nominal energy (at STC effic.)
PV loss due to irradiance level
PV loss due to temperature
Shadings: Electrical Loss acc. to strings
LID - Light induced degradation
Mismatch loss, modules and strings
Ohmic wiring loss
Mixed orientation mismatch loss
Array virtual energy at MPP
Inverter Loss during operation (efficiency)
Inverter Loss over nominal inv. power
Inverter Loss due to max. input current Inverter Loss over nominal inv. voltage
Inverter Loss due to power threshold
Inverter Loss due to voltage threshold
Night consumption
Available Energy at Inverter Output
System unavailability AC
Ohmic loss
Energy injected into grid

Fig. 7. Grid connected System : Loss diagram
emissions. The equivalent CO₂ emissions avoided by using the PV systems have been calculated based on the CO₂ emission resulting from the conventional electricity generation in the UAE, which is about 938 g CO₂eq/kWh [8]. The CO₂ emission from electricity generation in Western Europe is in the range 480–530 g CO₂eq/kWh [9,10]. In addition, 671 g CO₂eq/kWh was reported for Hong Kong [11], 12 g CO₂eq/kWh for Norway [10]. The difference in the amount of CO₂ emissions between these countries is due to various mixes in their electricity generation where renewable energy sources are used alongside conventional ones.

IV. CONCLUSION

A performance study of 108 KW peak grids connected solar photovoltaic power plant installed at Dubai was evaluated on annual basis. The following conclusions are drawn from the study:

- Maximum total energy generation of 18.23 MW h was observed in the month of May and lowest total energy generation of 10.10MWh was observed in the month of December. Geographical location, the weather and other atmospheric conditions at the installation site. The direction your panels face, the temperature they reach, the angle of tilt they are on, the amount of dust and shading they encounter all affect the ability of the system to perform at its peak level.

The utilization of roof building will be increasing the amount of solar energy injected into grid and achieving Dubai clean energy strategy 2050 goals, which we have launched to turn Dubai into a global hub for clean energy and green economy and become the lowest carbon footprint in the world by 2050.

REFERENCES

[1] Angelo Baggini University of Bergamo.’’Handbook of Power Quality’’,
[2] State of Energy Report Dubai 2014 www.dcce.ae/energyreport.
[3] Central Electricity Regulatory Commission (2015) CERC, New Delhi.
[4] Gan CK, Tan PH, Khalid S (2013) System Performance Comparison Between Crystalline and Thin-Film Technologies under Different Installation Conditions. IEE Conference on Clean Energy and Technology 362-367.
[5] Ahmed MM (2003) Design and Proper Sizing of Solar Energy Schemes for Electricity Production in Malaysia. National Power and Energy Conference (PECon) Proceedings 268-271.

[6] Singh VP, Ravindra B, Vijay V, Bhatt MS (2014) A comparative performance analysis of C-Si and A-Si PV based rooftop grid tied solar photovoltaic systems in Jodhpur. 3rd International Conference On Renewable Energy Research And Applications 250-255.

[7] D.V. Tugay, Yu.P. Kolontaevsy, S.V. Kotelevets, Ye.S. Savchuk “SOLAR POWER PLANT OPERATION MODELING IN SMART GRID ELECTRICITY SUPPLY SYSTEM “.

[8] Ismail H. Alans and Adel M. Sharaf.”Solar Energy and PV Systems.

[9] Endo E, Kurokawa K. (1994) Sizing Procedure For Photovoltaic Systems. IEEE 1:1196-1199.

[10] Zolakphi M, Al-Anid SAM, Obhan Z, Manst A, MohdZulkiifi MA (2013) HighEfficiency Dual-Axis Solar Tracking Development using Arduino. International Conference on Technology, Informatics, Management, Engineering and Environment 23-26.

[11] M.M. A. Khan, M. Asif, E. Stach ”Rooftop PV Potential in the Residential Sector of the Kingdom of Saudi Arabia

[12] Muhammad A. Ahmed, and Sidra A. Shaikh ”Solar Radiation Studies for Dubai and Sharjah, UAE- 2013.

[13] Duffie JA, Beckman WA (2013) Solar Engineering of Thermal Processes (2nd edn). New York

[14] Sulaiman SA, Hussain HH, NikLeh NSH, Razali MSI (2011) Effects of Dust on the Performance of PV Panels. World Academy of Science, Engineering and Technology 5: 2028-2033.

[15] Green MA (1982) Solar cells: operating principles, technology and system applications. Prentice-Hall, Inc., Englewood Cliffs, NJ, USA.

[16] Camblle M (2008) The Drivers of the Levelized Cost of Electricity for UtilityScale Photovoltaics. Sun Power.

[17] Solar Radiation Monitoring Laboratory, University of Oregon.

[18] Tyagi AP (1988) Solar Radiant Energy Over India. Indian Meteorological Department, India.

[19] Shongwe S, Hanif M (2015) Comparative Analysis of Different Single-Diode PV Modeling Methods. IEEE Journal of Photovoltaics 5: 938-946.

[20] Villalva MG, Gazoli JR, Filho ER (2009) Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays. IEEE Transactions On Power Electronics 24: 1198-1208.

[21] Developing renewable energy projects-A guide to achieving success in the Middle East- www.pwc.com/me -JAN.2016.

[22] Saudi Arabia needs to utilize the building sector for PV application to help achieve its 9.5 GW

[23] Renewable energy targets. The study examines the residential sector of Saudi Arabia for rooftop PV

[24] Muhammad Asif-Urban Scale Application of Solar PV to Improve Sustainability in the Building and the Energy Sectors of KSA-2016.

[25] B. Sh.Kumar, K. Sudhakar. Performance evaluation of 10 MW grid connected solar photovoltaic Power plant in India.

[26] M.Al Ali,M.Emziane.Performance Analysis of Rooftop PV Systems in Abu Dhabi—2013

Оцінка працездатності сонячної фотоелектричної системи, підключеної до електромережі потужністю 108кВт

Haidar Gafar Abugoukh
O.M, Beketov National University of Urban Economy in Kharkov
Ukraine

Сонячна енергетика стала останнім десятиліттям найбільш швидко зростаючою технологією вироблення енергії в світі, головним чином завдяки широкомасштабному впровадженню цієї технології комунальними та приватним сектором. Підвищення рівня обізнаності щодо змін клімату, енергетична безпека потребує сприяння зменшенню витрат на

DOI: 10.33042/2079-424X-2019-2-55-78-84
Сонячну енергію та появи нового та інноваційного бізнесу - одні з головних рушій для масштабного розвитку та використання сонячної енергії. Важливість сонячної енергії Сонячна енергія є важливою частиною життя і є з початку часу. Все частіше людина вчиться використовувати цей важливий ресурс і використовувати його для заміни традиційних джерел енергії. Сонячна енергія важлива для природи: Сонячна енергія є важливою частиною майже кожного життєвого процесу, якщо ні, всіх життєвих процесів. Сонячна енергія важлива як чиста енергія: Оскільки сонячна енергія є повністю природною, вона вважається чистим джерелом енергії. Це не порушує навколишнє середовище і не створює загрози екосистемам, як це може призвести нафта та деякі інші джерела енергії. Він не викликає парникових газів, забруднення повітря чи води. Це дослідження має на меті розробити та оцінити підключені до мережі сонячні фотоелектричні системи на даху. Проект та техніко-економічне обґрунтування проекту сонячної фотоелектричної системи на даху проводяться за допомогою інструментів - PVsyst. Працездатність системи моделювали за допомогою програмного забезпечення PVsyst та аналізували результати. Аналіз результатів моделювання показує, що максимальне загальне вироблення енергії 18,23 МВт-год спостерігалось у травні місяці, а найнижча загальна генерація енергії - 10,10МВт-год - у грудні. Використання будівлі на даху буде збільшувати кількість сонячної енергії, що буде збільшувати кількість сонячної енергії, що вводиться в електромережу. Використання споруди для даху буде збільшувати кількість сонячної енергії та досягати цілей стратегії Дубая з чистої енергетики до 2050 року, яка має на меті забезпечити сім відсотків енергії Дубая за допомогою чистої енергії до 2020 року, 25 відсотків до 2030 року та 75 відсотків до 2050 року.

Ключові слова - сітка, фотоелектрична (PV); коефіцієнт продуктивності