On the non-existence of extended perfect codes and some perfect colorings∗

Evgeny Bespalov †

Abstract

In this paper we obtain the necessary condition for the existence of perfect k-colorings (equitable k-partitions) in Hamming graphs $H(n, q)$, where $q = 2, 3, 4$ and Doob graphs $D(m, n)$. As an application, we prove the non-existence of extended perfect codes in $H(n, q)$, where $q = 3, 4$, $n > q + 2$, and in $D(m, n)$, where $2m + n > 6$.

1. Introduction

A k-coloring of a graph $G = (V, E)$ is a surjective function from the vertex set V into a color set of cardinality k, usually denoted by $\{0, 1, \ldots, k - 1\}$. This coloring is called perfect if for any i, j the number of vertices of color j in the neighbourhood of vertex x of color i depends only on i and j, but not on the choice of x. An equivalent concept is an equitable k-partition, which is a partition of the vertex set V into cells V_0, \ldots, V_{k-1}, where these cells are the preimages of the colors of some perfect k-coloring. Also the perfect colorings are the particular cases of the perfect structures, see e.g. [1]. In this paper, we consider perfect colorings in Hamming graphs $H(n, q)$ (mainly focusing on the case $q = 2, 3, 4$) and Doob graphs $D(m, n)$. Remind that the Hamming graph $H(n, q)$ is the direct product of n copies of the complete graph K_q on q vertices, and the Doob graph $D(m, n)$, where $m > 0$, is the direct product of m copies of the Shrikhande graph and n copies of K_4. These graphs are distance-regular; moreover, the Doob graph $D(m, n)$ has the same intersection array as $H(2m + n, 4)$. Many combinatorial objects can be defined as perfect colorings with corresponding parameters, for example, MDS codes with distance 2; latin squares and latin hypercubes; unbalanced boolean functions attending the correlation-immunity.

∗This work was funded by the Russian Science Foundation (Grant 18-11-00136).
†Sobolev Institute of Mathematics, Novosibirsk, Russia. E-mail: bespalovpes@mail.ru
bound \[^2\]; orthogonal arrays attaining the Bierbrauer–Friedman bound \[^3, 4\]; boolean-value functions on Hamming graphs and orthogonal arrays that attach some other bounds \[^5, 6, 7\]; some binary codes attending the linear-programming bound that are cells of equitable partitions into 4, 5, or 6 cells \[^8, 9\].

One important class of objects that corresponding to perfect colorings is the 1-perfect codes. It is generally known \[^10\] Ch. 6, Th. 37\] that if \(q = p^m \) is a prime power, then there is a 1-perfect code in \(H(n, q) \) if and only if \(n = (q^l - 1)/(q - 1) \) for some positive integer \(l \). In the case when \(q \) is not prime power, there is very little known about the existence of 1-perfect codes. It is known that there are no 1-perfect codes in \(H(7, 6) \) \[^11\], Theorem 6\] (since there are no pair of orthogonal latin squares of order 6). Heden and Roos obtained the necessary condition \[^12\] on the non-existence of some 1-perfect codes, which in particular implies the non-existence of 1-perfect codes in \(H(19, 6) \). Also we mention result of Lenstra \[^13\], which generalized Lloyd’s condition (see \[^14, 10\]) for a non-prime power \(q \). This result implies that if there is a 1-perfect code in \(H(n, q) \), then \(n = kq + 1 \). Krotov \[^15\] completely solved the problem of the existence of 1-perfect codes in Doob graphs. Namely, he proved that there is a 1-perfect code in \(D(m, n) \) if and only if \(2m + n = (4^l - 1)/3 \) for some positive integer \(l \). Note that the existence of a 1-perfect code in \(D(m, n) \) not always implies the existence of linear or additive 1-perfect codes in this graph (the set of admissible parameters of unrestricted 1-perfect codes in Doob graphs is essentially wider than that of linear \[^16\] or additive \[^17\] 1-perfect codes).

Another important class of codes corresponding to perfect colorings is the completely regular codes. A code \(C \) is completely regular if the distance coloring with respect to \(C \) (a vertex \(v \) has the color that is equal to the distance from \(v \) to \(C \)) is perfect. These codes originally were defined by Delsarte \[^18\], but here we use the different equivalent definition from \[^19\]. For more information about completely regular codes and problem of its existence, we refer to the survey \[^20\], papers \[^21, 22\] (for codes with covering radius \(\rho = 1 \)), and the small-value tables of parameters \[^23\].

In the current paper, we stay on the class of completely regular codes that correspond to extended 1-perfect codes. An extended 1-perfect code is a code with code distance 4 obtained by appending an additional symbol (this operation we call an extension) to the codewords of some 1-perfect code (the rigorous definition will be given in the next section). It is known that there is an extended 1-perfect code in \(H(2^m, 2) \) and in \(H(2^m + 2, 2^m) \) for any positive integer \(m \) (see \[^10, 20\]). It was mentioned in \[^24\] Section 4\] that a result from \[^25\] implies the non-existence of extended 1-perfect codes in \(H(n, q) \) obtained from the Hamming codes, except the case when \((n, q) = (2^m, 2) \) or \((n, q) = (2^m + 2, 2^m) \). An extended 1-perfect code in \(H(q + 2, q) \) (or in \(D(m, n) \), where \(2m + n = 6 \)) is also an MDS code with distance 4. There is
a characterization of all extended 1-perfect codes in $H(6, 4)$ [26] and in Doob graphs $D(m, n)$ [27], where $2m + n = 6$, $m > 0$. Ball showed [28] that if q is odd prime, then there are no linear extended 1 prefect codes in $H(q + 2, q)$. The non-existence of extended 1-perfect codes in $H(7, 5)$ and $H(9, 7)$ was proved in [29]. In [30] it was shown that any extended 1-perfect code in $H(10, 8)$ is equivalent to a linear code. The non-existence of extended 1-perfect codes in $H(14, 3)$ follows from the bound established in [31]. For completeness, note that formally codes consisting from one vertex in $H(2, q)$ are also extended 1-perfect codes. Such codes are called trivial.

In this paper, we obtain a necessary condition for the existence of perfect colorings in Hamming graphs $H(n, q)$, where $q = 2, 3, 4$, and Doob graphs. We apply it to extended 1-perfect codes and prove that there are no such codes in $H(n, q)$, $q = 3, 4$, $n > q + 2$, and in $D(m, n)$, $2m + n > 6$. This completes the characterization of such codes in these graphs (see Theorem [3]). In addition, we prove that extended 1-perfect codes can exist in $H(n, q)$ only if n is even, which particularly implies the non-existence of some MDS codes with distance 4. We hope that this method can be applied for a proof of the non-existence of some other perfect k-colorings (but for perfect 2-colorings it does not add something new to results from [22]).

The paper is organized as follows. In Section 2 we give main definitions and simple observations. In Section 3 we obtain a necessary condition (Theorem [1]) for the existence of perfect colorings in Doob graphs and Hamming graphs $H(n, q)$, where $q = 2, 3, 4$. In Section 4 we prove that any extended 1-perfect code in $H(n, q)$ is a completely regular code with intersection array $(n(q-1), (n-1)(q-1); 1, n)$, and vice versa; similar results are shown for Doob graphs. This allows us to apply Theorem [1] to prove the non-existence of some extended 1-perfect codes in Section 5. Finally, we describe all parameters for which there is an extended 1-perfect code in $D(m, n)$ and $H(n, 3)$ in Theorem [3].

2. Preliminaries

Given a graph G, we denote by νG its vertex set. A surjective function $f : \nu G \to \{0, 1, \ldots, k-1\}$ on the vertex set of G is called a k-coloring of a graph G in the colors $0, 1, \ldots, k-1$. If for all i, j every vertex x of color i has exactly $s_{i,j}$ neighbours of color j, where $s_{i,j}$ does not depend on the choice of x, then the coloring f is called a perfect k-coloring with quotient matrix $S = (s_{i,j})$.

Let G be a connected graph. A code C in G is an arbitrary nonempty subset of νG. The distance $d(x, y)$ between two vertices x and y is the length of the shortest path between x and y. The code distance d of a code C is the minimum distance between two different vertices of C. The distance $d(A, B)$ between two sets of vertices
A and B equals \(\min\{d(x, y) : x \in A, y \in B\} \). The \textit{covering radius} of a code \(C \) is \(\rho = \max_{v \in V_G} d\{v\}, C\} \). Let \(C \) be a code in a graph \(G \). The \textit{distance coloring} with respect to \(C \) is the coloring \(f \) defined in the following way: \(f(x) \) is equal to the distance between \(\{x\} \) and \(C \). If \(f \) is a perfect coloring with quotient matrix \(S \), then \(C \) is called a \textit{completely regular code} with quotient matrix \(S \). In this case, the matrix \(S \) is tridiagonal. A connected regular graph \(G \) is called distance-regular if for any vertex \(x \) of \(G \) the set \(\{x\} \) is a completely regular code with quotient matrix \(S \) that does not depend on the choice of \(x \). The sequence \((b_0, \ldots, b_{\rho-1}; c_1, \ldots, c_\rho) = (s_{0,1}, \ldots, s_{\rho-1, \rho}, s_{1,0}, \ldots, s_{\rho, \rho-1}) \) is called the intersection array.

The \textit{Shrikhande graph} \(Sh \) is a Cayley graph with the vertex set \(\mathbb{Z}_4^2 \), where two vertices \(x \) and \(y \) are adjacent if and only if their difference \((x - y) \) belongs to the connecting set \(\{01, 10, 03, 30, 11, 33\} \). The complete graph \(K_q \) on \(q \) vertices can be represented as a Cayley graph, where the vertex set is \(\mathbb{Z}_q \), and two vertices \(x \) and \(y \) are adjacent if and only if their difference \((x - y) \) belongs to the connecting set \(\{1, 2, \ldots, q - 1\} \). The Hamming graph \(H(n, q) \) is the direct product \(K_q^n \) of \(n \) copies of \(K_q \). The vertex set of \(H(n, q) \) can be represented as \(\mathbb{Z}_q^n = \{(x_1, \ldots, x_n) : x_i \in \mathbb{Z}_q\} \). Denote by \(D(m, n) = Sh^m \times K_4^n \) the direct product of \(m \) copies of the Shrikhande graph \(Sh \) and \(n \) copies of the complete graph \(K_4 \). If \(m > 0 \), then this graph is called \textit{Doob graph}. The vertex set of \(D(m, n) \) can be represented as \((\mathbb{Z}_4^2)^m \times \mathbb{Z}_4^n = \{(x_1, \ldots, x_m; y_1, \ldots, y_n) : x_i \in \mathbb{Z}_4^2, y_j \in \mathbb{Z}_4\}\). The Hamming graph \(H(n, q) \) is distance-regular with intersection array \((n(q-1), (n-1)(q-1), \ldots, q-1; 1, 2, \ldots, n) \). The Doob graph \(D(m, n) \) is distance-regular with the same intersection array as \(H(2m + n, 4) \).

For a vertex \(v = (x_1, \ldots, x_{n-1}) \) of \(H(n-1, q) \) and \(a \in \mathbb{Z}_q \), denote by \(v_i^a = (x_1, \ldots, x_{i-1}, a, x_i, \ldots, x_{n-1}) \) the vertex of \(H(n, q) \). Analogously, for a vertex \(v = (x_1, \ldots, x_m; y_1, \ldots, y_{n-1}) \) of \(D(m, n - 1) \) and \(a \in \mathbb{Z}_4 \), denote by \(v_i^a = (x_1, \ldots, x_m; y_1, \ldots, y_{i-1}, a, y_i, \ldots, y_{n-1}) \) the vertex of \(D(m, n) \). The projection (also known as puncturing) \(C_i \) of a code \(C \) in \(H(n, q) \) is the code in \(H(n-1, q) \) defined as follows:

\[
C_i = \{v \in \mathcal{V} H(n-1, q) : v_i^a \in C \text{ for some } a \in \mathbb{Z}_q\}.
\]

Similarly, the projection \(C_{ij} \) of a code \(C \) in the Doob graph \(D(m, n) \), \(n > 0 \), is the code in \(D(m, n - 1) \) defined as follows:

\[
C_{ij} = \{v \in \mathcal{V} D(m, n - 1) : v_i^a \in C \text{ for some } a \in \mathbb{Z}_4\}.
\]

By \(B_e(x) = \{y : d(x, y) \leq e\} \) denote the radius \(e \)-ball with center \(x \). A code \(C \) in a graph \(G \) is called \textit{\(e \)-perfect} if \(|C \cap B_e(x)| = 1 \) for any \(x \in \mathcal{V} G \). In equivalent
definition, an e-perfect code is a code with code distance \(d = 2e + 1 \), whose cardinality achieves the sphere-packing bound. It is known that if \(q = p^m \) is a prime power, then a 1-perfect code in \(H(n, q) \) exists if and only if \(n = (q^l - 1)/(q - 1) \) for some positive integer \(l \) \[^{10}\]. The cardinality of this code is equal to \(q^{n-l} \). It is also known that a 1-perfect code in \(D(m, n) \) exists if and only if \(2m + n = (4^l - 1)/3 \) for some positive integer \(l \) \[^{15}\]. The cardinality of this code is equal to \(4^{2m+n-l-1} \).

A code \(C \) in \(H(n, q) \) is called an extended 1-perfect code if its code distance is equal to 4 and the projection \(C_i \) in some position \(i \) is a 1-perfect code. If a code \(C \) has distance \(d > 1 \), then its projection has distance at least \(d - 1 \) and the same cardinality. Therefore, if \(C \) is an extended 1-perfect code, then the projection \(C_i \) is a 1-perfect code for any \(i = 1, \ldots, n \). So, if \(q = p^m \) is a prime power, then an extended 1-perfect code in \(H(n, q) \) can exist only for \(n = (q^l + q - 2)/(q - 1) \), \(l \in \mathbb{N} \). The cardinality of such code equals \(q^n-l-1 \). Similarly, a code \(C \) in \(D(m, n) \) is called an extended 1-perfect code if its code distance equals 4 and the projection \(C_i \), for some position \(i \) is a 1-perfect code. So an extended 1-perfect code in \(D(m, n) \) can exist only if \(2m + n = (4^l + 2)/3 \), \(l \in \mathbb{N} \). The cardinality of such code equals \(4^{2m+n-l-1} \).

If \(n = 0 \), then a code \(C \) in \(D(m, 0) \) is called an extended 1-perfect code if it has the same parameters as an extended 1-perfect code in Doob graph of the same diameter, i.e. \(2m = (4^l + 2)/3 \), the code distance is equal to 4, \(|C| = 4^{2m-l-1} \).

3. A necessary condition for the existence of perfect colorings

Given a graph \(G \), let us consider the set of complex-valued functions \(f : \nu G \to \mathbb{C} \) on the vertex set. These functions form a vector space \(U(G) \) with the inner product \((f, g) = \sum_{x \in \nu G} f(x) \overline{g(x)} \). A function \(f : \nu G \to \mathbb{C} \) is called an eigenfunction of \(G \) if \(Mf = \lambda f \), \(f \neq 0 \), where \(M \) is the adjacency matrix of \(G \), for some \(\lambda \), which is called an eigenvalue of \(G \). Denote by \(U_\lambda = \{ f : Mf = \lambda f \} \) the eigensubspace corresponding to \(\lambda \).

Let \(G \) be a Hamming graph \(H(n, q) \) or a Doob graph \(D(m, n) \). Then it is convenient to use the characters to form a basis of each eigensubspace. Let \(\xi \) be the \(q \)-th root of unity, namely \(\xi = e^{\frac{2\pi i}{q}} \). If \(G \) is \(H(n, q) \), then for an arbitrary \(z \in \mathbb{Z}_q^n \) define the function \(\varphi_z(t) = \frac{\xi^{\langle z, t \rangle}}{q^n} \), where \(\langle v, u \rangle = v_1u_1 + \ldots + v_nu_n \mod q \). If \(G \) is \(D(m, n) \), then for an arbitrary \(z \in (\mathbb{Z}_4^n)^m \times \mathbb{Z}_4^n \) define the function \(\varphi_z(t) = \frac{\xi^{\langle z, t \rangle}}{4^{2m+n}/2} \), where \(\langle x, v \rangle = (x_1v_1 + y_1u_1) + \ldots + (x_mv_m + y_mu_m) + r_1s_1 + \ldots + r_ns_n \mod 4 \); \(x = ([x_1, y_1], \ldots, [x_m, y_m]; r_1, \ldots, r_n) \) and \(v = ([v_1, u_1], \ldots, [v_m, u_m]; s_1, \ldots, s_n) \) are vertices in \(D(m, n) \) (we denote by \([a, b]\) an element of \(\mathbb{Z}_4^n \)). It is known that the functions
\(\varphi_z\), where \(z \in \nu G\), are eigenfunctions of \(G\) and these functions form an orthonormal basis of the vector space \(U(G)\).

Lemma 1. Let \(f\) be a perfect \(k\)-coloring of a graph \(G\) with quotient matrix \(S\). Let \(f_j = \chi_{f^{-1}(j)}\) be the characteristic function of the set of vertices of color \(j\). Then for any \(t \in \mathbb{N}\)

\[
(M^t f_j, f_j) = s_{j,j}^t \cdot |f^{-1}(j)|,
\]

where \(M\) is the adjacency matrix of \(G\), and \(s_{j,j}^t\) is the \((j,j)\)-th element of the matrix \(S^t\).

Proof. Let \(F = (f_0, \ldots, f_{k-1})\) be the \(|\nu G| \times k\) matrix, where the \(i\)-th column \(f_i = \chi_{f^{-1}(i)}\) is the characteristic function of the set of vertices of color \(i\). It is known that \(MF = FS\) (see for example [32, Section 5.2]), and consequently \(M^t F = FS^t\) for any \(t\). Hence, \((M^t f_j)(x) = (M^t F)_{x,j} = (FS^t)_{x,j} = s^t_{f(x),j}\) for any vertex \(x \in \nu G\). Since \(f_j(x) = 0\) if \(f(x) \neq j\), we have \((M^t f_j, f_j) = s_{j,j}^t \cdot |f^{-1}(j)|\). □

Lemma 2. [32, Section 5.2]. Let \(f\) be a perfect coloring of a graph \(G\) with quotient matrix \(S\). If \(\lambda\) is an eigenvalue of \(S\), then \(\lambda\) is an eigenvalue of \(G\).

Theorem 1. Let \(G\) be the Hamming graph \(H(n, q)\), where \(q \in \{2, 3, 4\}\), or the Doob graph \(D(m, n)\). Let \(f\) be a perfect \(k\)-coloring of \(G\) with quotient matrix \(S\) that has eigenvalues \(\lambda_0 > \lambda_1 > \ldots > \lambda_l\). Let \(i\) be a color of \(f\), and let \(s_{i,i}^t\) be the \((i,i)\)-th element of \(S^t\), \(t = 1, \ldots, l - 1\).

Then the linear system of equations

\[
\begin{pmatrix}
1 & 1 & \ldots & 1 \\
\lambda_1 & \lambda_2 & \ldots & \lambda_l \\
\lambda_1^2 & \lambda_2^2 & \ldots & \lambda_l^2 \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_1^{l-1} & \lambda_2^{l-1} & \ldots & \lambda_l^{l-1}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_2 \\
\vdots \\
x_l
\end{pmatrix}
= |f^{-1}(i)|
\begin{pmatrix}
1 \\
1 \\
s_{i,i}^1 \\
s_{i,i}^2 \\
s_{i,i}^{l-1}
\end{pmatrix}

- \frac{|f^{-1}(i)|^2}{|\nu G|}
\begin{pmatrix}
1 \\
\lambda_0 \\
\lambda_1 \\
\vdots \\
\lambda_l
\end{pmatrix}
\]

has a unique solution \((a_1, \ldots, a_l)\). Moreover, \(a_j \cdot |\nu G|\) is a non-negative integer for \(j = 1, \ldots, l\).

Proof. The matrix of the system is a transposition of Vandermonde matrix, so the determinant is not equal to 0. Hence the system has a unique solution. Let \(f_i = \chi_{f^{-1}(i)}\) be the characteristic function of color \(i\). By Lemma 2 eigenvalues \(\lambda_0, \ldots, \lambda_l\) are eigenvalues of \(G\). It is known that \(f_i\) belongs to the direct sum of the eigensubspaces corresponding to the eigenvalues of \(S\), i.e., \(f_i \in U_{\lambda_0} \oplus \ldots \oplus U_{\lambda_l}\) (see for example [1].
where $\alpha_z, z \in vG$, are complex coefficients. Therefore,

$$M^t f_i = \sum_{z: \varphi_z \in U_{\lambda_1}} \lambda_1 \alpha_z \varphi_z + \ldots + \sum_{z: \varphi_z \in U_{\lambda_i}} \lambda_i \alpha_z \varphi_z + \lambda_j \alpha_0 \varphi_0.$$

This representation implies the following relation for $t = 0, 1, \ldots$

$$(M^t f_i, f_i) = \lambda_1 \sum_{z: \varphi_z \in U_{\lambda_1}} |\alpha_z|^2 + \ldots + \lambda_i \sum_{z: \varphi_z \in U_{\lambda_i}} |\alpha_z|^2 + \lambda_j |\alpha_0|^2.$$

Since the basis is orthonormal, we have $\alpha_0 = (f_i, \varphi_0) = |f^{-1}(i)| / |\lambda_0|$, and hence $|\alpha_0|^2 = |f^{-1}(i)|^2 / |\lambda_0|^2$. Since $(M^t f_i, f_i) = |f^{-1}(i)| \cdot s_{t,i}$ by Lemma 1, it is straightforward that (a_1, \ldots, a_t), where $a_j = \sum_{z: \varphi_z \in U_{\lambda_j}} |\alpha_z|^2$, is the solution of the system. On the other hand, as the basis $\{\varphi_z : z \in vG\}$ is orthonormal, we have $\alpha_z = (f_i, \varphi_z)$ for any $z \in vG$. Let us consider subcases.

If $q = 2$, then for any $z \in \mathbb{Z}_2^n$ the function φ_z has two distinct values: $\pm 1 / \sqrt{2}$. In this case, $\alpha_z = (f_i, \varphi_z) = x / \sqrt{2}$ and $|\alpha_z|^2 = x^2 / 2$ for some integer r. Hence $a_j 2^n = \sum_{z: \varphi_z \in U_{\lambda_j}} 2^n |\alpha_z|^2$ is a non-negative integer.

If $q = 3$, then φ_z has three distinct values: $\pm 1 / \sqrt{3}$ and $\pm 2 / \sqrt{3}$. In this case, $\alpha_z = \frac{a + b \sqrt{3} \sqrt{-1}}{2 \sqrt{3} \sqrt{2}}$, were a and b are integers and, moreover, they have the same parity. So $|\alpha_z|^2 = \frac{a^2 + 3b^2}{4} = \frac{r^2}{3}$ for some integer r. So $a_j \frac{3^2}{4} = \sum_{z: \varphi_z \in U_{\lambda_j}} 3^n |\alpha_z|^2$ is a non-negative integer.

If $G = D(m, n)$, then φ_z has four distinct values: $\pm 1 / \sqrt{q(2m+n)/2}, \pm \sqrt{-1} / \sqrt{q(2m+n)/2}$. So $\alpha_z = (f_i, \varphi_z) = \frac{a + b \sqrt{1} \sqrt{-1}}{4 \sqrt{(2m+n)/2}}$ for some integers a and b. Hence $|\alpha_z|^2 = \frac{r}{4^{2m+n}}$ for some integer r. Hence $a_j 4^{2m+n} = \sum_{z: \varphi_z \in U_{\lambda_j}} 4^{2m+n} |\alpha_z|^2$ is a non-negative integer. \(\blacksquare\)

4. Extended perfect codes are completely regular

Theorem 2.

1. A code C in $H(n, q)$ is extended 1-perfect if and only if C is completely regular
with quotient matrix

\[
\begin{pmatrix}
0 & n(q - 1) & 0 \\
1 & q - 2 & (n - 1)(q - 1) \\
0 & n & n(q - 2)
\end{pmatrix}.
\]

2. A code \(C \) in \(D(m, n) \) is extended 1-perfect if and only if \(C \) is completely regular with quotient matrix

\[
\begin{pmatrix}
0 & 6m + 3n & 0 \\
1 & 2 & 6m + 3n - 3 \\
0 & 2m + n & 4m + 2n
\end{pmatrix}.
\]

Proof. In most parts, the proof for \(D(m, n) \) is similar to the proof for \(H(2m + n, 4) \). So we mainly focus on Hamming graphs, and we consider Doob graphs only in the cases for which the proof is different. Let \(C \) be an extended 1-perfect code in \(H(n, q) \) (\(D(m, n) \)). Let \(f \) be the distance coloring of \(H(n, q) \) with respect to \(C \), i.e. \(f(x) = \min_{y \in C} \{d(x, y)\}, x \in vH(n, q) \). Since the projection of \(C \) in any position is a 1-perfect code that has the covering radius 1, the covering radius of \(C \) equals 2 hence the set of colors is \(\{0, 1, 2\} \).

Define the following \(s_j^i : f^{-1}(i) \to \mathbb{Z} \), where \(s_j^i(x) \) is the number of vertices of color \(j \) in the neighbourhood of \(x \), if \(f(x) = i \), and otherwise is not defined. So, \(f \) is a perfect coloring if and only if \(s_j^i \) is constant for all \(i, j \in \{0, 1, 2\} \). Obviously, \(s_0^0 \equiv 0 \) (as the code distance is 4), and \(s_0^0 \equiv 0, s_2^0 \equiv 0 \) (by the definition).

Let \(y \) be an arbitrary vertex of color \(1 \). Let us count the values \(s_0^1(y) \) and \(s_1^1(y) \). On the one hand, \(s_0^1(y) \geq 1 \) by the definition. On the other hand, \(s_0^1(y) \leq 1 \) (otherwise we have a contradiction with the code distance). Hence \(s_0^1 \equiv 1 \). Therefore, for any vertex \(x \) of color \(1 \) we can denote by \(o(x) \) the unique neighbour of \(x \) that has color 0. Any vertex \(y' \) of color \(1 \) that adjacent to \(y \) belongs to the neighbourhood of \(o(y) \) (indeed, if \(o(y) \neq o(y') \), then \(d(o(y), o(y')) \leq 3 \) that contradicts the code distance). Therefore, all neighbours of \(y \) that have color 1 belong to the neighbourhood of \(o(y) \). The number of common neighbours of two arbitrary adjacent vertices in a distance-regular graph is uniquely determined by the intersection array. For \(H(n, q) \), it is equal to \(q - 2 \) and for \(D(m, n) \), to 2. Hence \(s_0^1 \equiv 1 \) and \(s_1^1 \equiv q - 2 \) (\(s_2^i \equiv 2 \) for a Doob graph). For each vertex \(x \in vH(n, q) \), we have \(s_0^i(x) + s_1^i(x) + s_2^i(x) = n(q - 1) \), where \(i \) is the color of \(x \). Therefore, \(s_0^i \equiv n(q - 1) \) and \(s_2^i \equiv (n - 1)(q - 1) \).

It remains to prove that \(s_2^i \equiv n \) (\(s_2^i \equiv 2m + n \) for \(D(m, n) \)). An edge \(\{v, u\} \) is called an \((i, j)\)-edge if \(v \) has color \(i \) and \(u \) has color \(j \), or vice versa. Denote \(\alpha = \sum_{x \in f^{-1}(2)} s_2^i(x), \)
i.e. the number of $(1,2)$-edges.

Let us calculate the values $|f^{-1}(0)|$, $|f^{-1}(1)|$ and $|f^{-1}(2)|$. The first value is equal to the cardinality of a 1-perfect code in $H(n-1, q)$, i.e. $\frac{q^{n-1}}{(n-1)(q-1)+1}$. From the counting of the number of $(0,1)$-edges, we have $|f^{-1}(1)| = |f^{-1}(0)| n(q-1) = \frac{(n-1)(q-1)+1}{n(q-1)} q^{n-1}$. Counting the number of $(1,2)$-edges, we find $\alpha = (n-1)(q-1)|f^{-1}(1)|$. On the other hand,

$$|f^{-1}(2)| = q^n - |f^{-1}(0)| - |f^{-1}(1)| = \frac{q^{n-1} q((n-1)(q-1)+1) - n(q-1) - 1}{(n-1)(q-1)+1} = \frac{q^{n-1} (n-1)(q-1)^2}{(n-1)(q-1)+1}$$

Hence the average value of s_1^2 equals n, i.e. $\frac{\alpha}{|f^{-1}(2)|} = n$ (or $2m+n$ for $D(m,n)$).

Let v be a vertex of color 2 in $H(n, q)$. The induced subgraph on the set of its neighbours has n connected components, and every component is a $(q-1)$-clique. Hence $s_1^2(v) \leq n$ (otherwise there are two vertices u and w of color 1 in the same component, but all their common neighbours except v also belongs to this component and one of them is $o(u)$, which has color 0). Since the average value of s_1^2 equals n, we have $s_1^2 \equiv n$.

Let $v = (x_1, \ldots, x_m; y_1, \ldots, y_n)$ be a vertex of color 2 in $D(m,n)$. Denote by $h_{j,v}$ the induced subgraph on the set $\{(x_1, \ldots, x_m; y_1, \ldots, y_{j-1}, b, y_{j+1}, \ldots, y_n) : b \in \mathbb{Z}_4\}$. This graph is the complete graph K_4. Denote by $d_{i,v}$ the induced subgraph on the vertex set $\{(x_1, \ldots, x_{i-1}, a, x_{i+1}, \ldots, x_m; y_1, \ldots, y_n) : a \in \mathbb{Z}_2^2\}$. This graph is the Shrikhande graph. Denote by $\alpha_{i,v}$ the number of $(1,2)$-edges in $d_{i,v}$ divided by the number of vertices of color 2 in $d_{i,v}$. Let us prove that for any $i \in \{1, \ldots, m\}$ and $v \in vD(m,n)$ it follows that $\alpha_{i,v} \leq 2$; moreover, if $\alpha_{i,v} = 2$, then any vertex of color 2 in $d_{i,v}$ has exactly two neighbours of color 1 in $d_{i,v}$.

Let $i \in \{1, \ldots, m\}$ and $v \in vD(m,n)$. Consider two cases. If $d_{i,v}$ contains a vertex u of color 0, then $\alpha_{i,v} = 2$. Indeed, all neighbours of u have color 1 and other 9 vertices have color 2 (if some vertex w is at distance 2 from some vertex of color 0, then $f(w) = 2$; otherwise we have a contradiction with the code distance). So any vertex of color 2 has two neighbours of color 1 (because the Shrikhande graph is strongly regular with parameters $(16,6,2,2)$). In the second case, there are no vertices of color 0 in $d_{i,v}$. Then the vertices of color 1 form an independent set (indeed, if some vertices u and w are adjacent, then $o(u)$ is their common neighbour, but these vertices have only two common neighbours, which also belong to $d_{i,v}$). So
\(\alpha_{i,v} = \frac{6x}{16-x} \), where \(x \) is the number of vertices of color 1. A maximum independent set in the Shrikhande graph has cardinality 4; moreover, the characteristic function of a maximum independent set is a perfect coloring, where any vertex that does not belong to this set is adjacent to 2 vertices from this set (see [27, Section 2]). Hence \(\alpha_{i,v} \leq 2 \); moreover, if \(\alpha_{i,v} = 2 \ (x = 4) \), then any vertex of color 2 has exactly two neighbours of color 1 in \(d_{i,v} \). As before, for any \(j \in \{1, \ldots, n\} \) and \(v \in \mathcal{V}(m, n) \) any vertex of color 2 has 0 or 1 neighbours of color 1 in the graph \(h_{j,v} \). Since any \((1,2)\)-edge in \(D(m, n) \) belongs to exactly one subgraph among the subgraphs \(d_{i,v} \) and \(h_{j,v} \), where \(v \in \mathcal{V}(m, n), \ i = 1, \ldots, m, \ j = 1, \ldots, n \), we have \(\alpha_{i,v} \leq 2 \). Moreover, if \(\alpha_{i,v} = 2 \) \((x = 4)\), then any vertex of color 2 has exactly two neighbours of color 1 in the graph \(h_{j,v} \). As before, for any \(j \in \{1, \ldots, n\} \) and \(v \in \mathcal{V}(m, n) \) any vertex of color 2 has 0 or 1 neighbours of color 1 in the graph \(h_{j,v} \). Since any \((1,2)\)-edge in \(D(m, n) \) belongs to exactly one subgraph among the subgraphs \(d_{i,v} \) and \(h_{j,v} \), where \(v \in \mathcal{V}(m, n), \ i = 1, \ldots, m, \ j = 1, \ldots, n \), we have \(\alpha_{i,v} \leq 2 \). Moreover, if \(\alpha_{i,v} = 2 \) \((x = 4)\), then any vertex of color 2 has exactly two neighbours of color 1 in the graph \(h_{j,v} \). As before, for any \(j \in \{1, \ldots, n\} \) and \(v \in \mathcal{V}(m, n) \) any vertex of color 2 has 0 or 1 neighbours of color 1 in the graph \(h_{j,v} \).

5. The non-existence of some extended perfect codes

Now we can apply Theorem \(\Box \) to prove the non-existence of ternary and quaternary extended 1-perfect codes.

Proposition 1.
1. Let C be an extended 1-perfect code in $H(n, 3)$, where $n = \frac{3^l+1}{2}$, $l \in \mathbb{N}$. Then $l \leq 2$.

2. Let C be an extended 1-perfect code in $D(m, n)$ (including the case $D(0, n) = H(n, 4)$), where $2m + n = \frac{4^l+2}{3}$, $l \in \mathbb{N}$. Then $l \leq 3$.

Proof. 1) Let C be an extended 1-perfect code in $H(n, 3)$, where $n = \frac{3^l+1}{2}$ for some positive integer l. The cardinality of C is equal to 3^{n-l-1}. By Theorem 2 and Lemma 3 the distance coloring with respect to C is a perfect coloring with quotient matrix, which has eigenvalues: $\lambda_1 = 1$, $\lambda_2 = -n$ and $\lambda_0 = 2n$. Let us consider the system of equations from Theorem 1

\[
\begin{cases}
a_1 + a_2 = 3^{n-l-1} - 3^{n-2l-2} \\
a_1 - na_2 = -2n \cdot 3^{n-2l-2}.
\end{cases}
\]

From this system we have

\[
a_2 \cdot 3^n = \frac{3^{2n-2l-2}(3^{l+1} + 3^l)}{3^{l+3}} = \frac{3^{2n-3}2^3}{3^l-1 + 1}.
\]

By Theorem 1 the number $a_2 \cdot 3^n$ is integer. Since the denominator $3^{l-1} + 1$ and 3^{2n-l-3} are relatively prime, it follows that $3^{l-1} + 1$ is a divisor of 8. This implies $l = 1$ or $l = 2$.

2) Let C be an extended 1-perfect code in $D(m, n)$, where $2m + n = \frac{4^l+2}{3}$ for some positive integer l.

In this case, we have the following system of equations

\[
\begin{cases}
a_1 + a_2 = 4^{2m+n-l-1} - 4^{2m+n-2l-2} \\
2a_1 - (2m + n)a_2 = -3(2m + n)4^{2m+n-2l-2}.
\end{cases}
\]

From this system we have

\[
a_2 \cdot 4^{2m+n} = \frac{4^{4m+2n-2l-2}(2 \cdot 4^{l+1} - 2 + 4^l + 2)}{4^l+8} = \frac{4^{4m+2n-l-3}3^3}{4^{l+1} + 2}.
\]

By Theorem 1 the number $a_2 \cdot 4^{2m+n}$ is integer. If $l = 1$, then $4^2 \cdot a_2 = 9$. Let $l > 1$. Since the greatest common divisor of the denominator $4^{l-1} + 2$ and $4^{4m+2n-l-3}$ equals 2, it follows that $2 \cdot 4^{l-2} + 1$ divides 27. This implies $l \in \{2, 3\}$. So $l \leq 3$. ▲

The two following propositions solve the remaining cases in $H(n, 3)$ and $D(m, n)$, and codes of odd length in $H(n, q)$ for all q. The proofs of these propositions are particular cases of the method described in [33].

Proposition 2. Let C be an extended 1-perfect code in $H(n, q)$. Then n is even.
Proof. Let C be an extended 1-perfect code in $H(n,q)$ and f be the distance coloring with respect to C. Consider an arbitrary vertex a of color 2. Denote by W_j^i the set of vertices of color i that are at the distance j from a and denote $W_j = W_j^0 \cup W_j^1 \cup W_j^2$. On the one hand, any vertex $x \in W_1^1$ is adjacent to exactly 1 vertex from W_2^0. On the other hand, any vertex $y \in W_2^0$ has 2 neighbors in W_1 and they have color 1. Hence $|W_1^1| = 2|W_2^0|$, and so $|W_1^1|$ is even. But from Theorem 2 we have $|W_1^1| = n$. ▲

Recall that a code C in $H(n,q)$ is called an MDS code with distance d if its cardinality achieves the Singleton bound, i.e. $|C| = q^{n-d+1}$. In the case $n = q + 2$, the definitions of an extended 1-perfect code and an MDS code with distance 4 are equivalent.

Corollary 1. If q is odd, then there are no MDS codes with distance 4 in $H(q+2,q)$.

Corollary 2. Let $q = p^m$ be an odd prime power, and let C be an extended 1-perfect code in $H(n,q)$. Then $n = \frac{q^l + q - 2}{q - 1}$ for some odd l.

Proposition 3. There are no extended 1-perfect codes in $D(m,n)$, where $2m+n = 22$.

Proof. Let C be an extended 1-perfect code in $D(m,n)$, where $2m+n = 22$, and let f be the distance coloring with respect to C. Consider an arbitrary vertex a of color 2. Denote by W_j^i the set of vertices of color i that are at the distance j from a and denote $W_j = W_j^0 \cup W_j^1 \cup W_j^2$. By Theorem 2 we have $|W_1^0| = 0$, $|W_1^1| = 22$, and $|W_1^2| = 44$. As in proof of Proposition 2 we have $2|W_2^0| = |W_1^1|$, so $|W_2^0| = 11$. Let us count the number w of edges (x,y) such that $x \in W_1$ and $y \in W_2$. This number is equal to $(22 \cdot 2 + 44 \cdot 22 - 2t - r)$, where t is the number of $(1,1)$-edges and r is the number of $(1,2)$-edges in the induced subgraph on the set of vertices W_1. It follows from the intersection array that this subgraph is 2-regular, and hence $2t + r = 2|W_1^1| = 44$. So $w = 22 \cdot 2 + 44 \cdot 22 - 44 = 968$. On the other hand, $w = 2|W_2^1|$, so $|W_2^1| = 484$. Let us count the number of $(0,1)$-edges that are incident to some vertex from W_1. This number is equal to $|W_2^0| = 484$; on the other hand, it is equal to $6|W_2^0| + 3|W_3^0| = 66 + 3|W_3^0|$. We find that $3|W_3^0| = 418$. Since $|W_3^0|$ is integer, we have a contradiction. ▲

Remind that formally the singleton from any vertex in $H(2,3)$, $D(0,2)$ or $D(1,0)$ is an extended 1-perfect code, called trivial. Also all extended 1-perfect codes in $D(m,n)$, where $2m+n = 6$, are characterized in [26, 27]. From Propositions 2 and 3 we have the following statement.

Theorem 3.

1. An extended 1-perfect code in $H(n,3)$ exists if and only if $n = 2$.

12
2. An extended 1-perfect code in $D(m,n)$ (including the case $D(0,n) = H(n,4)$) exists if and only if $(m,n) = (0,2)$, or $(m,n) = (1,0)$, or $(m,n) = (0,6)$, or $(m,n) = (2,2)$.

3. For any q, there are no extended 1-perfect codes in $H(n,q)$ if n is odd.

Acknowledgements

The author is grateful to Denis Krotov, Vladimir Potapov, and Ev Sotnikova for helpful remarks and introducing him to some background.

References

[1] A. A. Taranenko. Algebraic properties of perfect structures. E-print 1906.10430v2, arXiv.org, 2020. Available at https://arxiv.org/abs/1906.10430v2.

[2] D. G. Fon-Der-Flaass. A bound on correlation immunity. Sib. Elektron. Mat. Izv., 4:133–135, 2007. Online: http://mi.mathnet.ru/eng/semr149.

[3] J. Bierbrauer. Bounds on orthogonal arrays and resilient functions. J. Comb. Des., 3(3):179–183, 1995. DOI: 10.1002/jcd.3180030304.

[4] J. Friedman. On the bit extraction problem. In Foundations of Computer Science, IEEE Annual Symposium on, pages 314–319, Los Alamitos, CA, USA, 1992. IEEE Computer Society. DOI: 10.1109/SFCS.1992.267760.

[5] V. N. Potapov. On perfect 2-colorings of the q-ary n-cube. Discrete Math., 312(6):1269–1272, 2012. DOI: 10.1016/j.disc.2011.12.004.

[6] V. N. Potapov. On perfect colorings of boolean n-cube and correlation immune functions with small density. Sib. Elektron. Mat. Izv., 7:372–382, 2010. In Russian, English abstract.

[7] D. S. Krotov. On the OA(1536,13,2,7) and related orthogonal arrays. Discrete Mathematics, 343(2):111659, 2020. DOI: 10.1016/j.disc.2019.111659.

[8] D. S. Krotov. On the binary codes with parameters of doubly-shortened 1-perfect codes. Des. Codes Cryptography, 57(2):181–194, 2010. DOI: 10.1007/s10623-009-9360-5.
[9] D. S. Krotov. On the binary codes with parameters of triply-shortened 1-perfect codes. Des. Codes Cryptography, 64(3):275–283, 2012. DOI: 10.1007/s10623-011-9574-1.

[10] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. Amsterdam, Netherlands: North Holland, 1977.

[11] S. W. Golomb and E. C. Posner. Rook domains, latin squares, and error-distributing codes. IEEE Trans. Inf. Theory, 10(3):196–208, 1964. DOI: 10.1109/TIT.1964.1053680.

[12] O. Heden and C. Roos. The non-existence of some perfect codes over non-prime power alphabets. Discrete Math., 311(14):1344–1348, 2011. DOI: 10.1016/j.disc.2011.03.024.

[13] H. W. Lenstra, Jr. Two theorems on perfect codes. Discrete Math., 3(1-3):125–132, 1972. DOI: 10.1016/0012-365X(72)90028-3.

[14] S. P. Lloyd. Binary block coding. Bell Syst. Tech. J., 36(2):517–535, 1957. DOI: 10.1002/j.1538-7305.1957.tb02410.x.

[15] D. S. Krotov. The existence of perfect codes in Doob graphs. IEEE Transactions on Information Theory, 66(3):1423–1427, 2020. DOI: 10.1109/TIT.2019.2946612.

[16] D. S. Krotov. Perfect codes in Doob graphs. Des. Codes Cryptography, 80(1):91–102, 2016. DOI: 10.1007/s10623-015-0066-6.

[17] M. Shi, D. Huang, and D. Krotov. Additive perfect codes in Doob graphs. Des. Codes Cryptography, 87(8):1857–1869, 2019. DOI: 10.1007/s10623-018-0586-y.

[18] P. Delsarte. An Algebraic Approach to Association Schemes of Coding Theory, volume 10 of Philips Res. Rep., Supplement. N.V. Philips’ Gloeilampenfabrieken, Eindhoven, Netherlands, 1973.

[19] A. Neumaier. Completely regular codes. Discrete Mathematics, 106-107:353–360, 1992. DOI: 10.1016/0012-365X(92)90565-W.

[20] J. Borges, J. Rifà, and V. A. Zinoviev. On completely regular codes. Problems of Information Transmission, 55(1):1–45, 2019. DOI: 10.1134/S0134347519010017.

[21] D. G. Fon-Der-Flaass. Perfect 2-colorings of a hypercube. Sib. Math. J., 48(4):740–745, 2007. DOI: 10.1007/s11202-007-0075-4 translated from Sib. Mat. Zh., 48(4) (2007), 923–930.
[22] E. Bespalov, D. Krotov, A. Matiushev, A. Taranenko, and K. Vorob’ev. Perfect 2-colorings of Hamming graphs. E-print 1911.13151v2, arXiv.org, 2020. Available at https://arxiv.org/abs/1911.13151v2

[23] J. Koolen, D. Krotov, and W. Martin. Completely regular codes: tables. https://sites.google.com/site/completelyregularcodes/.

[24] R. Ahlswede, H. K. Aydinian, and L. H. Khachatrian. On perfect codes and related concepts. Des. Codes Cryptography, 22(3):221–237, 2001. DOI: 10.1023/A:1008394205999.

[25] R. Hill. Caps and codes. Discrete Math., 22:111–137, 1978. DOI: 10.1016/0012-365X(78)90120-6

[26] T. L. Alderson. (6, 3)-MDS codes over an alphabet of size 4. Des. Codes Cryptography, 38(1):11–40, 2006. DOI: 10.1007/s10623-004-5659-4

[27] E. Bespalov and D. Krotov. MDS codes in Doob graphs. Problems of Information Transmission, 53:136–154, 2017. DOI: 10.1134/S003294601702003X.

[28] S. Ball. On sets of vectors of a finite vector space in which every subset of basis size is a basis. J. Eur. Math. Soc., 14(3):733–748, 2012. DOI: 10.4171/JEMS/316.

[29] J. I. Kokkala, D. S. Krotov, and P. R. J. Östergård. On the classification of MDS codes. IEEE Trans. Inf. Theory, 61(12):6485–6492, December 2015. DOI: 10.1109/TIT.2015.2488659.

[30] J. I. Kokkala and P. R. J. Östergård. Further results on the classification of MDS codes. Adv. Math. Commun., 10(3):489–498, August 2016. DOI: 10.3934/amc.2016020.

[31] D. Gijswijt, A. Schrijver, and H. Tanaka. New upper bounds for nonbinary codes based on the Terwilliger algebra and semidefinite programming. Journal of Combinatorial Theory, Series A, 113(8):1719–1731, 2006. DOI: 10.1016/j.jcta.2006.03.010.

[32] C. D. Godsil. Algebraic Combinatorics. Chapman and Hall, New York, 1993.

[33] D. S. Krotov. On weight distributions of perfect colorings and completely regular codes. Des. Codes Cryptography, 61(3):315–329, 2011. DOI: 10.1007/s10623-010-9479-4.