We have modified the original Bligh and Dyer method by introducing ultrasonication for enhancing the lipid extraction from green algae and compared with Soxhlet extractor. The Bligh and Dyer method coupled with ultrasonication increased the lipid extraction from green algae, *Oedogonium* sp. by up to 3.95 %, *Botryococcus braunii* KUTZING NIES 2199 up to 8.5 %, *Cladophora* sp. up to 4.5 %. Therefore, ultrasonication assisted Bligh and Dyer method might be an important development for the removal of lipids from green algal biomass.

Keywords: Lipid extraction, Bligh and Dyer method, Green algae, *Botryococcus braunii*, *Oedogonium* sp., *Cladophora* sp.

INTRODUCTION

The rapid increase in the demand for fuel energy has encouraged the scientific community worldwide to search for more reliable energy sources other than the conventional fuels. The biofuels hold a promising future to sustain the equilibrium between demand and supply of the energy. The competition of the first generation biofuels with the livestock feed gave rise to second generation of biofuels, wherein there was no need for compromising on the side of food resources [1-4]. The yield and efficiency of the second generation biofuels was required to increase to meet the demand. This gave rise to the third generation of biofuels, where both the problems were attempted to solve. The primary stock of the third generation is the microalgae. The growth of algae is not subjected to specificity of place or time of the year. This unique property is an added advantage for algae based fuels for continuous production throughout the years. Although algae provide us with drastically high efficiency of yields and no binding on time and place of growth [5-7], competitive commercialization of algae biofuels is yet to be realized. Fuels derived from algae cost much more than its conventional counterparts. The main hurdle in its commercial viability is biological challenges [8-10]. Harnessing energy from algae implies benefitting from the biological properties of algae. The research to overcome problems involves amplifying the algal properties, which are harnessed in the form of fuels. Biomass is considered as one of the best renewable source of energy which not only helps as an alternative source but also contributes to removal of carbon dioxide from atmosphere. Biodiesel produced from biomass is one such alternative fuel, which is obtained by the transesterification of triglycerides present in biomass. It is non-toxic and biodegradable and does not pose any health hazards. Lipid extraction using suitable and efficient solvents is the first primary step for increasing production of biodiesel from biomass. Among various biomass sources, microalgae usually have higher photosynthetic efficiency. Elumalai et al. [11] reported that algae is considered as a superior source for biodiesel production when compared with plant sources. All algae primarily comprise of carbohydrates, proteins, fats and nucleic acid. While the percentages differs based on the type of algae. Dried biomass of some type of algae comprises up to 40 % of fatty acids [12]. These fatty acids contain triglycerides which can thereby use for conversion into biodiesel.

Oedogonium is a filamentous green algae which can be identified by a distinctive rings at the apical ends of certain cells. It lives in quiet, fresh water and can be used to extract biodiesel. Zhang et al. [13] reported that *Oedogonium* sp. has about 45.38 % of lipids by dry weight. Other green algae’s like
Botyrococcus braunii KUTZING NIES 2199 and Cladophora sp. has more than 30-40 % of lipids [14] and 40 % [15] of lipids by dry weight, respectively.

Extraction techniques like the Soxhlet method and Bligh and Dyer method are commonly used for lipid extractions from biomass. The Soxhlet method for lipid extraction is done using hexane, petroleum ether or ethyl acetate. The disadvantages of Soxhlet method include its long duration and wastage of large amount of solvents. Disposal of solvents is not only expensive but also causes additional threat to the environment.

The Bligh and Dyer method is considered as one of the best method for polar lipid extraction. It has wide applications in environmental engineering for analyzing lipid content of the samples [9-7]. The method mainly consists of extraction of fats using polar solvent mixtures (chloroform, methanol and water (1:2:0.8)). After extraction, the chloroform layer was removed and evaporated for collection of residual fats. Since the introduction of this method, many scientists have used it in various fields for extraction of polar ad neutral lipids [11,12]. Ranjan et al. [16] has compared Bligh and Dryer method, Soxhlet method and ultrasonicaation assisted Bligh and Dryer method for removal of lipids from Scenedesmus sp. Upto 8 g of lipids can be extracted from 100 g of dry biomass of Scenedesmus sp. [17]. Botyrococcus braunii can give 30 g of lipids per 100 g of dry biomass [18].

In present study, the original Bligh and Dyer method has been modified by introducing three changes including the change in the composition of solvents, increasing the mechanical homogenization time and introducing ultrasonication for lipid extraction for Botyrococcus braunii, Oedogonium sp. and Cladophora sp. The study also involves comparing the results with conventional Soxhlet method and original Bligh and Dyer method [10-12].

EXPERIMENTAL

Hill and Machlis media for algal growth (viz. CuSO4·5H2O, Na2HPO4·10H2O, CoCl2·6H2O, MnCl2·4H2O, ZnSO4·7H2O, CaCl2·2H2O, KOHNO3, (NH4)6Mo7O24·4H2O, FeSO4·7H2O, Ni(CH2COOH)2, MgSO4·7H2O, KH2PO4 and vitamin B12), chloroform and methanol (Merck, India). Distilled water was used throughout the experiments (Millipore Sigma India).

Maintenance of green algae cultures: Bulk biomass of Oedogonium Sp. and Cladophora Sp. were obtained directly from the pond (Latitude: 13º4′ 27.21″ N, Longitude: 77º34′ 47.7156″ E) present in University of Agricultural Sciences, GKVK Campus, Bengaluru, India. The bulk biomass of Oedogonium sp. and Cladophora sp. were dried and kept for storage at -4 °C for further experimentation.

TABLE-1 MODIFIED CHU 13 MEDIA (NIES, JAPAN)

Compounds	Grams	Compounds	Grams
Potassium nitrate (KNO3)	240	Manganese(II) chloride tetrahydrate (MnCl2·4H2O)	2.172
Dipotassium phosphate (K2HPO4)	48	Zinc sulfate heptahydrate (ZnSO4·7H2O)	0.264
Calcium chloride dehydrate (CaCl2·2H2O)	64.2	Copper(II) sulfate pentahydrate (CuSO4·5H2O)	0.096
Magnesium sulfate heptahydrate (MgSO4·7H2O)	120	0.072 N H2SO4 (sulfuric acid)	1 drop
Ferric citrate (Fe2(C2O4)3)	12	Cobalt(II) chloride (CoCl2)	0.012
Citric acid (C6H8O7)	60	Boric acid (H3BO3)	3.432

Lipid extraction procedure: The dried biomass of three green algae (Botyrococcus braunii KUTZING NIES 2199, Oedogonium sp. and Cladophora sp.) was treated by three methods for extraction of lipids as described below:

Bligh and Dyer method: The Bligh and Dyer method was proposed in 1959 for extraction of lipids from fish muscle. Algae biomass of 2.5 g was homogenized in a blender for 2 min with 20 mL of chloroform and 40 mL of methanol. To this mixture again 20 mL of chloroform was added and continued blending for 30 s. To this mixture, 20 mL of distilled water was added and again blended for 30 s. The final solution was filtered using Whatman no. 1 filter paper. The solution was kept in a separating funnel for 20 min. The residual biomass along with filter paper was blended with 20 mL chloroform. The mixture is filtered and rinsed with 10 mL chloroform. Both chloroform solutions were added and evaporated for extraction of lipids. The final weight of lipid was measured.

Ultrasonication assisted Bligh and Dyer method: Algal biomass weighing 2.5 g on dry basis was taken for ultrasonication assisted Bligh and Dyer method. Methanol (40 mL) and chloroform (40 mL) was added to algal biomass and blended for 10 min. To this mixture, additional 20 mL chloroform and 20 mL water was added and homogenized for 10 min and ultrasonicated for another 10 min. The Erlenmeyer flask was covered with a cap to stop chloroform from evaporating and cooled in
EXTRACTION OF LIPIDS FROM THREE GREEN ALGAE USING VARIOUS METHODS

Method	Green algae (grams lipid per 2 g of algae biomass)
Bligh and Dryer method	Botryococcus braunii KUTZING NIES 2199 0.218
	Oedogonium sp. 0.072
	Cladophora sp. 0.315
Ultrasonication Assisted Bligh and Dryer method	0.322
	0.083
	0.482
Soxhlet method	0.168
	0.056
	0.218

RESULTS AND DISCUSSION

Extraction of lipids from green algae (Botryococcus braunii KUTZING NIES 2199, Oedogonium sp. and Cladophora sp.): The three methods (Bligh and dry method, ultrasonication assisted Bligh and Dryer method and Soxhlet method) were used for lipid extraction using three green algae (Botryococcus braunii KUTZING NIES 2199, Oedogonium sp. and Cladophora sp.). It is quite evident that considerable improvement in the lipid extraction was observed in case of ultrasonication assisted mediated Bligh and dryer method when compared with original Bligh and Dryer method and Soxhlet method. It is also observed that more lipids can be easily extracted from Botryococcus braunii KUTZING NIES 2199 and Cladophora sp. when compared with Oedogonium sp. Morphologically, Oedogonium sp. and the algae cells are hard to break when compared with Botryococcus Braunii and Cladophora sp. About 47% increase in the lipid content was observed for ultrasonication assisted Bligh and Dryer method in case of Botryococcus braunii KUTZING NIES 2199 and 15% increase was observed for Oedogonium sp. and 53% increase was observed for Cladophora sp. when compared with original Bligh and Dryer method. Soxhlet method produced poor results (Table-2). Thus, ultrasonication assisted Bligh and Dryer method proved to be best when compared with original Bligh and Dryer method and Soxhlet method.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this article.

REFERENCES

1. A.S. Hossain, A. Salleh, A.N. Boyce, P. Chowdhury and M. Naqiuddin, Am. J. Biochem. Biotechnol., 4, 250 (2008); https://doi.org/10.3844/ajbbsp.2008.250.254.
2. A.H. Hirani, N. Javed, M. Asif, S.K. Basu and A. Kumar, eds.: A. Kumar, S. Ogita and Y.Y. Yau, A Review on First- and Second-Generation Biofuel Productions, In: Biofuels: Greenhouse Gas Mitigation and Global Warming, Springer: New Delhi (2018).
3. S.N. Naik, V.V. Goud, P.K. Rout and A.K. Dalai, Renew. Sustain. Energy Rev., 14, 578 (2010); https://doi.org/10.1016/j.rser.2009.10.003.
4. A.K. Bajhaiya, S.K. Mandota, M.R. Suseela, K. Toppo and S. Ranade, Avian J. Exp. Biol. Sci., 1, 728 (2010).
5. M.P. Abishek, J. Patel and A.P. Rajan, Biotechnol. Res. Int., 2014, Article ID 272814 (2014); https://doi.org/10.1155/2014/272814.
6. G. Khola and B. Ghazala, Pak. J. Bot., 44, 379 (2011).
7. M. Gavrilescu and Y. Chisti, Biotechnol. Adv., 23, 471 (2005); https://doi.org/10.1016/j.biotechadv.2005.03.004.
8. E.S. Jang, M.Y. Jung and D.B. Min, Comp. Rev. Food Sci., 4, 22 (2005); https://doi.org/10.1111/j.1541-4337.2005.tb00069.x.
9. J. Sheehan, T. Dunahay, J. Benemann and P. Roessler, A Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae, Close-Out Report, United States Department of Energy July (1998).
10. K. Georgi and V. Mari, Food Technol. Biotechnol., 39, 175 (2001).
11. S. Elumalai, R. Sakhthivel and S.G. Kumar, Cur. Botany, 2, 19 (2011).
12. B. Blagovi, M. Messari, V. Mari and J. Rup, Croat. Chem. Acta, 78, 479 (2005).
13. W. Zhang, Y. Zhao, B. Cui, H. Wang and T. Liu, Bioresour. Technol., 420, 407 (2016); https://doi.org/10.1016/j.biortech.2016.08.106.
14. P. Metzger and C. Largeau, Appl. Microbiol. Biotechnol., 66, 486 (2005); https://doi.org/10.1007/s00253-004-1779-z.
15. A.M. Illman, A.H. Scragg and S.W. Shales, Enzyme Microb. Technol., 27, 631 (2000); https://doi.org/10.1016/S0141-0229(00)00266-0.
16. A. Ranjan, C. Patil and V.S. Moholkar, Ind. Eng. Chem. Res., 49, 2979 (2010); https://doi.org/10.1021/ie0916557.
17. D.F. Dal’Oglio, L.C. de Sousa, S.A. de Sousa, M.A. Garcia, E.S. Sousa, S.G. de Lima and C.V. de Moura, J. Braz. Chem. Soc., 30, 633 (2019); https://doi.org/10.15777/jbcb.30.515253.
18. K. Yamaguchi, H. Nakano, M. Murakami, S. Konosu, O. Nakayama, M. Kanda and H. Iwamoto, Aqric. Biol. Chem., 51, 493 (1987); https://doi.org/10.1271/bbb1961.51.493.
19. E.G. Bligh, and W.J. Dyer, Can. J. Biochem. Physiol., 37, 911 (1959); https://doi.org/10.1139/e59-099.
20. L. Xiao, Ph.D. Thesis, Evaluation of Extraction Methods for Recovery of Fatty Acids from Marine Products, University of Bergen (2010). https://sapientia.ualg.pt/handle/10400.1/10737.