Nurse-led randomised controlled trials in the perioperative setting: A scoping review

Follow this and additional works at: https://www.journal.acorn.org.au/jpn

Part of the Perioperative, Operating Room and Surgical Nursing Commons

This work is licensed under a Creative Commons Attribution 4.0 License.

Recommended Citation
Munday, Judy; Higgins, Niall; Mathew, Saira; Dalgleish, Lizanne; Batterbury, Anthony S.; Burgess, Luke; Campbell, Jill; Delaney, Lori J.; Griffin, Bronwyn R.; Hughes, James A.; Ingleman, Jessica; Keogh, Samantha; and Coyer, Fiona (2022) "Nurse-led randomised controlled trials in the perioperative setting: A scoping review," Journal of Perioperative Nursing: Vol. 35 : Iss. 1 , Article 7. Available at: https://doi.org/10.26550/2209-1092.1187

https://www.journal.acorn.org.au/jpn/vol35/iss1/7

This Article is brought to you for free and open access by Journal of Perioperative Nursing. It has been accepted for inclusion in Journal of Perioperative Nursing by an authorized editor of Journal of Perioperative Nursing.
Nurse-led randomised controlled trials in the perioperative setting: A scoping review

Abstract

Purpose: Nurses provide care at each phase of the complex perioperative pathway and are well placed to identify areas of care requiring investigation in randomised controlled trials. Yet, currently, the scope of nurse-led randomised controlled trials conducted within the perioperative setting are unknown. This scoping review aims to identify areas of perioperative care in which nurse-led randomised controlled trials have been conducted, to identify issues impacting upon the quality of these trials and identify gaps for future investigation.

This paper is reprinted from doi.org/10.2147/JMDH.S255785 under a CC BY 4.0 international license.
Methods: This scoping review was conducted in reference to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews. Searches were conducted in PubMed, Embase, Cumulative Index for Nursing and Allied Health Literature and the Cochrane Central Register of Controlled Trials, with a date range of 2014–2019. Sources of unpublished literature included Open Grey, ProQuest Dissertation and Theses, Clinical Trials.gov and the Australian and New Zealand Clinical Trials Registry. After title and abstract checking, full-text retrieval and data extraction, studies were appraised using the Joanna Briggs Institute Critical Appraisal Checklist for Randomised Controlled Trials. Data were synthesised according to the main objectives. Key information was tabulated.

Results: From the 86 included studies, key areas where nurses have led randomised controlled trials include patient or caregiver anxiety, post-operative pain relief, surgical site infection prevention, patient and caregiver knowledge, perioperative hypothermia prevention and post-operative nausea and vomiting in addition to other diverse outcomes. Issues impacting upon quality (including poorly reported randomisation) and gaps for future investigation (including a focus on vulnerable populations) are evident.

Conclusion: Nurse-led randomised controlled trials in the perioperative setting have focused on key areas of perioperative care. Yet, opportunities exist for nurses to lead experimental research in other perioperative priority areas and within different populations that have been neglected, such as in the population of older adults undergoing surgery.

Keywords: perioperative, nursing, randomised controlled trial, scoping review

Introduction

Health care providers are facing pressure to provide effective services to an increasing population with often limited resources. This pressure to provide more with less is evident within the provision of perioperative care. As morbidity increases, so does the complexity of surgery and the pressure upon resources in this highly technical, resource-intensive, fast-paced, acute clinical environment.

For most patients, the experience of undergoing a surgical procedure represents a significant life event. During this critical period, health care practitioners are entrusted to advocate for and maintain the safety of patients when they are removed from family and loved ones and unable to speak up for themselves due to anaesthesia. A safe passage through surgery is the highest priority. However, it has been argued that – despite the amount of effort spent on developing interventions and policy in recent years – progress in optimising patient safety in perioperative care has been much slower than anticipated.

Internationally, perioperative care is described in four distinct phases: pre-admission, the immediate pre-operative (pre-anaesthetic) phase, the intra-operative phase (during induction of anaesthesia and surgery itself) and the immediate post-operative phase of care (prior to patients returning to ward areas). This multi-staged pathway necessarily involves care delivered by a range of health care professions: registered and enrolled nurses, surgeons, anaesthetists, technicians, orderlies and radiographers. However, nurses are a consistent presence at all phases of perioperative care and may work in multiple roles, including pre-operative care, anaesthetic assistance, intra-operative (scrub/scout) and immediate post-operative care roles. In some countries, other professions such as registered operating department practitioners (ODPs) take on perioperative roles.

However, globally, nurses have a ubiquitous presence in health care teams that provide perioperative care and are uniquely placed to understand critical points of care and patient concerns across the whole perioperative pathway. It is imperative that nurses ensure they are both driving health care improvements and identifying research priorities in this specialised field.

Experimental research underpins the assessment of the effectiveness of interventions, yet it is widely acknowledged that randomised controlled trials (the gold standard of experimental research) are expensive, resource-intensive and time-consuming. It is essential that time and finite resources are well spent on interventions that are effective, safe and acceptable to patients. Resources and funding to conduct research are difficult to obtain, and therefore it is imperative that resources are directed to areas where gaps in experimental research exist. Furthermore, there is a need to ensure that resources are directed toward research that will be conducted in a rigorous manner in order to ensure high quality and reliable findings.

Experimental research in the perioperative setting

The conduct of rigorous, randomised controlled trials (RCTs) is often inhibited by well-known factors such as cost, time and resources. There are also other challenges in conducting research within this complex, multidisciplinary field that are not widely acknowledged. For instance,
many recent systematic reviews and meta-analyses of perioperative care lack sufficient detailed reports of individual elements of care which may impact on or confound outcomes. Perioperative outcomes are influenced by a wide range of factors throughout the pre- and post-operative journey and need to account for the truly multidisciplinary nature of perioperative care, by including nursing as well as medical interventions during each phase of care in study designs. Therefore, the complexity of the perioperative pathway needs to be considered in both the design of primary studies and the assessment of these studies via systematic review. Authors have recently questioned the status of RCTsin remaining the ‘gold standard’ design to inform perioperative decision-making. Several authors have suggested that carefully designed before-and-after (observational) studies can be used to inform perioperative decision-making, with the benefit of being less resource-intensive, and more indicative of the feasibility of implementing interventions in actual practice. However, well-conducted, RCTs offer the highest level of scrutiny with the lowest level of bias, and therefore the greatest benefits to our patients, and remain the gold standard of experimental studies.

Nurse-led research in the perioperative setting

The multidisciplinary nature of perioperative care can result in challenges for nurses when trying to implement evidence-based practice change, such as negotiating staff buy-in across large multidisciplinary groups. Challenges also exist for perioperative nurses engaging in primary research that is pertinent to the discipline, such as funding. Potential sources of funding for specifically nurse-led research may also be even more scarce given the seemingly limited lack of financial backing for perioperative research both locally and internationally. Yet, the importance of supporting perioperative nurses to undertake research is vital in both facilitating evidence-based change in this domain of care. Nurses must drive research priorities that are relevant to perioperative nursing care. Although perioperative, nurse-led research may be increasing, the extent to which of these are nurse-led perioperative RCTshas not been evaluated.

Methods

Aim

The purpose of this scoping review is to identify in which domains of perioperative care nurses are leading experimental research.

Objectives

The main objectives of the scoping review were the following:

- to identify in which domains of perioperative care nurse-led RCTs have been conducted
- to analyse the issues impacting upon the quality of experimental research undertaken in the perioperative setting
- to identify what, if any, gaps exist in nurse-led experimental research in the perioperative setting, thus identifying priorities for future research.

Design

This scoping review was conducted in reference to the methodology set out by the Joanna Briggs Institute (JBI), with the framework developed by Arksey and O’Malley and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR). The scoping review methodology is appropriate for this question as it facilitates a broad exploration of perioperative care domains in which nurses are researching. This approach has been used successfully in similar reviews that have explored the scope of research undertaken in other specialised areas of health care. Scoping reviews are not eligible for registration with PROSPERO.

Search methods

A comprehensive search strategy was undertaken to find both published and unpublished (grey) literature in English from 2014 to May 2019, as per the recommendations for scoping reviews established by Peters et al. Only studies published in English were included due to lack of resources for translation. Databases for published literature included PubMed, Embase, Cumulative Index for Nursing and Allied Health Literature (CINAHL) and the Cochrane Central Register of Controlled Trials (CENTRAL). The search for unpublished literature utilised OpenGrey, and ProQuest Dissertation and Theses (PQDT). Searches for trials in progress were conducted using Clinical Trials.gov and the Australian and New Zealand Clinical Trials Registry (ANZCTR). Initial searches of PubMed and CINAHL were conducted to refine index terms and keywords, followed by a second search with keywords and index terms across all databases. Finally, perioperative nursing journals (Journal of PeriAnesthesia Nursing, Journal of Perioperative Practice, AORN Journal, Journal of Perioperative Nursing, Perioperative Care and Operating Room Management) were screened for additional RCTs across the date range.
Initial search terms for CINAHL were as follows:

1. ‘perioperative’
2. MH ‘Perioperative Care’
3. MH ‘Perioperative Nursing’
4. MH ‘Perioperative Period’
5. MH ‘Pre-operative Care’
6. MH ‘Pre-operative Period’
7. MH ‘Intraoperative care’
8. MH ‘Intraoperative Period’
9. MH ‘Postoperative Care’
10. MH ‘Postoperative Period’
11. MH ‘Post Anesthesia Care’
12. MH ‘Post Anesthesia Care Units’
13. MH ‘Anesthetics’
14. #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10 OR #11
15. MH ‘Randomized controlled trials’
16. #12 AND #13.

Inclusion and exclusion criteria

Studies that met the following inclusion criteria were eligible for review:

Population: participants receiving care during one or more phases of the perioperative pathway: pre-operatively, intra-operatively or immediately post-operatively.

Concept (study designs): only nurse-led randomised controlled study designs were included. To enable the identification of these particular trials, in-depth investigation of author names and qualifications were performed for those studies in which details were not listed on the abstract or full text. Other trials were included if known to be led by nursing academics but whose qualifications are not explicitly stated in the citation.

Context: studies focused on perioperative care including the pre-operative, intra-operative or immediate post-operative setting.

Screening and eligibility process

Four reviewers conducted screening of titles and abstracts to identify relevant papers for full-text retrieval (JM, NH, LD, SM). Full texts were then screened for eligibility against the inclusion criteria by the authorship team using a verification form developed for this purpose (see Supplement 1).

Data charting process

A flow chart was generated to indicate the papers included in the review at each stage, as per the PRISMA guidelines (Figure 1). A data charting form was developed to record and extract study characteristics and variables relevant to the review question (see Supplement 2). Pairs of reviewers undertook data extraction independently for each article and a third reviewer mediated where there was a lack of agreement.

Critical appraisal

Studies identified as relevant to the review were assessed for quality using the JBI Critical Appraisal Checklists for Randomised Controlled Trials. While quality assessment is not considered mandatory in scoping reviews, undertaking this process assisted in identifying common issues that influenced or undermined the quality of RCTs in the perioperative setting. Pairs of reviewers also assessed each included study for quality, with disagreements resolved through discussion and consensus. Where agreement was not resolved through this process, an independent third reviewer was used.

Synthesis

Following data extraction and quality assessment, key information from each study was tabulated to assist in determining country of origin, interventions, primary outcomes, surgical population, sample size and funding source (see Supplement 3). Studies were organised according to the primary outcome in order to identify domains of perioperative care. Within each primary outcome, the interventions of interest and the study population assisted in determining gaps in phases of care or where study populations had not been included.

To analyse factors influencing the overall quality of included studies, common quality indicators were synthesised according to the quality assessment checklist where studies had scored poorly. Areas of perioperative care where experimental nurse-led research is appropriate but not yet evident were identified. Data synthesis and analysis were discussed within the authorship team to ensure consensus and that all relevant themes within the review questions were identified. Results are presented in table form, to provide an overview of all included studies as per the data extraction (charting) form.

Results

Eighty-six studies were included in the final review (Figure 1). The included studies were geographically widespread (Table 1). The region of origin with the most included RCTs was North America (n = 28) followed by Europe (n=26), Asia (n=15), the Middle East (n=7), Oceania and South America (both n=5).
Identification
Records identified through database searching (n=20,238)

Additional records identified through other sources (grey literature, journal searching) (n=957)

Records after duplicates removed (n=16,593)

Screening
Records screened (n=16,593)

Records excluded (n=16,437)

Eligibility
Full-text articles assessed for eligibility (n=156)

Full-text articles excluded, with reasons (n=72)
1. Not an RCT (n=10)
2. Not nurse led (n=10)
3. Not perioperative setting (n=45)
4. Abstract only in English (n=1)
5. Abstract only (n=1)
6. Confirmation thesis (n=1)
7. Combination of factors (n=4)

Included
Studies included in scoping review (n=86)

Figure 1: PRISMA flow diagram
Table 1: Randomised controlled trials by country and region

Region	Country	Number (n, % of total)
Oceania	Australia	5 (5.8)
South America	Brazil	5 (5.8)
North America	Canada	3
	United States	25
Total		28 (33)
Asia	China	3
	Hong Kong	1
	India	1
	Singapore	1
	South Korea	3
	Taiwan	6*
Total		15* (17)
Europe	Croatia	1
	Denmark	2
	France	1
	Greece	1
	Italy	4
	Norway	1
	Spain	3
	Sweden	4
	Turkey	9
Total		26 (30)
Middle East	Iran	6
	United Arab Emirates (UEA)	1
Total		7 (8)
Overall total		86

Note: *Duplication of one study into two publications noted in this group.

Domains of perioperative care addressed by nurse-led RCTs

Six main domains of perioperative care, addressed by nurse-led RCTs were identified, in addition to other diverse clinical outcomes (see Supplement 3):

1. prevention of caregiver and patient anxiety
2. perioperative hypothermia prevention and temperature monitoring
3. post-operative pain relief
4. post-operative nausea and vomiting (PONV) prevention and treatment
5. prevention of surgical site infection (SSI)
6. patient and parental knowledge.

Prevention of caregiver and patient anxiety

Prevention of anxiety, both from the patient and caregivers’ perspective, was the most common primary outcome of interest, accounting for over a fifth of studies (n=20, 23%).

Of the studies including anxiety prevention as the primary outcome, nine studies (47%) were focused on adult patients, nine were focused on paediatric patients (with four of these also including caregivers as a sub-population) and another focused on adolescents and one study concentrated solely on caregiver (parent) anxiety. The interventions of interest included music, education (including videos), visiting pre-operative facilities, play, relaxation and sounds from nature, aromatherapy, photographic displays, distraction versus midazolam, therapeutic listening, different timings of communication and an application with clown doctors.

Perioperative hypothermia prevention and temperature monitoring

Thirteen published studies (15% of included studies) had a primary outcome of preventing perioperative hypothermia or temperature monitoring. However, one study was published twice in two different journals. Active warming (comprising forced air, thermal gown, intravenous (IV) fluid warming or underbody warming) and passive warming strategies (reflective versus cotton blankets or cloths) were tested in various combinations. All perioperative hypothermia studies were conducted in the adult population, but within different surgical specialities: interventional cardiovascular procedures, gastrointestinal or thoracic surgery, obstetrics, laparoscopic cholecystectomy, colorectal surgery, gynaecology, cardiovascular or multiple specialities. One study assessed skin temperatures after blankets warmed to different temperatures in a population of healthy volunteers.

Post-operative pain relief

Post-operative pain relief was the third most common primary outcome of interest (n=13, 15% of included studies) and a secondary outcome in 13 studies (15%). Interventions of interest included hypnosis, anaesthetic technique (for hysteroscopy), play, Reiki, premedication and information, different routes of paracetamol administration, cold application, guided imagery and...
relaxation,25 positioning and early sandbag removal (post-coronary angiography),26 room air versus carbon dioxide insufflation,24,31 and bed positioning.38 Nine studies had adult participants,31,34,36,40,50,51,62,65,92 two were paediatric based,52,72 and one study focused on adolescents.12

Post-operative nausea and vomiting (ONPV) prevention and treatment

Eleven studies (13% of included studies) focused on the prevention or treatment of ONPV. Six studies tested pericardium 6 (P6) acupressure,29,34,64,69,73,89 two studies tested aromatherapy with or without additional therapies,74,84 one study tested early hydration,90 one study tested an individualised pre-operative education intervention90 and one study tested different doses of promethazine.24

Prevention of surgical site infection (SSI)

Five studies (6% of included studies) focused on SSI prevention as the primary outcome, using a variety of interventions: post-operative shampooing,66 pre-operative 2% chlorhexidine gluconate skin preparation cloths,41 silver impregnated versus standard dry sterile dressings (cardiac surgery),26 hair shaving techniques13 and different antiseptic methods.38

Patient and parental knowledge

The primary outcome of interest for five studies (6% of included studies) was patient or parental knowledge.21,62,106 and two in parental knowledge.23,107

Other clinical outcomes

A wide variety of other clinical practices were investigated as primary outcomes in the included RCTs (see Supplement 3).25,27,28,30,33,45,47,51,68,75,76,96,101,102

Perioperative research populations and phases of care addressed by nurse-led RCT designs

Study populations

Predominantly, studies were focused on the adult population (n=71, 83%), with ten studies focusing on paediatrics as the population of interest (12%). Four studies included both caregivers and children as the population of interest.23,47,51,52 while one study focused on caregivers only.107 Two studies focused on adolescents,23,107 and one study included both adults and children.75 Although older adults (>75 years) were included in some studies,22,61,62 they were not specifically identified as the target population in any of the included studies.

Phases of care

Almost half of studies involved interventions that were delivered during the pre-operative phase of care (n=41, 48%), 13 studies delivered interventions during the intra-operative phase (n=13, 15%),24,26,31,43,46,53,75,86,92,99,101,107 and 13 studies (15%) delivered interventions solely in the post-operative phase.24,36,39,44,47,48,64,66,68,73,75,77,92,96,107 Eight studies (9%) were based on interventions that were delivered during multiple phases of the perioperative pathway.24,36,39,42,56,61,76,81,96 Almost half of the included studies assessed outcomes at multiple phases of the perioperative pathway (n=34, 40%), while 24 studies (28%) assessed post-operative outcomes extending beyond the immediate Post Anaesthesia Care Unit (PACU) phase.24,27,34,35,39,44,47,51,61,62,64,66,68,73,75,89,90,91,92,101

Issues impacting upon the quality of experimental research undertaken in the perioperative setting

Issues impacting upon the quality of RCTs included in this review were related predominantly to the reporting of blinding techniques. Blinding of participants was unclear or not implemented in 79 per cent of included studies (n=68), binding of those delivering the intervention was not used or was unclear in 80 per cent (n=69) of studies, and binding of outcome assessors was not used or was unclear in 73 per cent (n=63) of included studies. Many studies did acknowledge the reasons for lack of blinding and most often this was related to the nature of the intervention under study; yet, most often, lack of blinding of one or more key groups was not discussed or acknowledged as a limitation.

In addition, a lack of, or unclear, randomisation was found in just over a quarter of included studies (35%, n=31). Similarly, a high number of included studies were assessed as having incomplete follow-up or there was inadequate analysis or description of differences between groups (32%, n=28). Duplication of study results was also found in one instance, where the same study was published in different journals with a different author order.85,87
Discussion

To our knowledge, this is the first scoping review to investigate the range of nurse-led randomised controlled trials conducted in the perioperative setting. Geographically, this review has revealed that North America contributed the highest number of studies to this review, with the United States of America (USA) the most prolific individual country in terms of conducting nurse-led perioperative RCTs in the last five years. This contrasts with a recent scoping review of RCTs and quasi-experimental studies published in nursing journals, whereby Taiwanese nursing researchers were found to have published the most frequently in nursing journals. However, our review also included studies that, although nurse-led, were published in journals that were not specifically nursing-focused, and only focused on RCTs which was appropriate to address the review question. Similarly, though, our review also found no African studies for inclusion. This may be unsurprising given that a 2015 scoping review of clinical nursing and midwifery research in African countries found that, at the time of the review, most included research was qualitative, and focused on primary or secondary prevention of cancer. Additional obstacles to conduct and publication of nursing research in this region include a lack of resources (including funding, library access, equipment and collaborators) and political and civil unrest.

This review of 86 studies revealed that there are six clearly identifiable areas in which nurses are leading experimental research (specifically RCTs) relevant to perioperative care. The most common primary outcome across included studies was the prevention of anxiety and this was investigated using a range of supportive interventions. Given how commonly pre-operative anxiety is experienced, and the detrimental patient outcomes associated with anxiety, this may be justified despite anxiety prevention not being a stated priority by professional associations. The investigation of supportive or complementary therapies may be reflective of the growing interest in complementary therapies in health care more broadly. The quality issues noted in this review, in which a large proportion of studies assessed the effectiveness of supportive therapies, indicate that nursing researchers are utilising facets of the randomised controlled study design adaptively (and creatively). Given the expense and resources required to conduct RCTs, it is imperative for nurses to ensure that these resources are well spent on trials that are well conducted and provide useful findings. At this stage, it may be pertinent for the focus on anxiety prevention to shift from primary research to translation into practice.

Almost half of the included studies (47%) assessed interventions that were delivered during the pre-operative phase. A moderate number (n=13, 15%) delivered interventions during the intra-operative phase but due to the nature of the interventions and outcomes under study – for example, the focus on anxiety reduction which would be difficult to assess intra-operatively due to anaesthesia – few studies assessed outcomes during the intra-operative phase of care (n=4, 5%). This gap in the literature is an opportunity for nurses to design experimental studies that measure the outcomes of interventions and outcomes related to intra-operative or procedural nursing care. Despite anxiety prevention being the most common outcome in the included studies, one did highlight that further investigation with teens or adolescents is worthy of future study.

While some regions and countries have established perioperative research priorities, an international consensus is not evident. The lack of consensus may be influenced by the diverse and differing needs between developed and under-developed regions, but also reflects the variation in the processes used to determine the published perioperative priorities (including the variation in stakeholder involvement). The perioperative pathway is complex, multi-staged and involves numerous health professions in the delivery of care. Therefore, it is logical that any work to establish areas of perioperative care that requires a stronger evidence base needs to ensure multidisciplinary input – as well as ensuring that health care consumers also have input.

In the United Kingdom (UK), the National Institute of Academic Anaesthesia and James Lind Alliance (JLA) Research Priority Setting Partnership’s agreed on ten anaesthetic and perioperative care priorities include a range of issues. These range from the study of the term effects of anaesthesia, to establishing ‘success’ measures for perioperative care. The authors determined that specific care and physiological questions were ranked more highly by clinicians, whereas lay stakeholders ranked communication and long-term outcomes of anaesthesia more highly. Similarly, Biccard et al’s Delphi study of perioperative investigators in South Africa, while recognising the need for a co-ordinated perioperative research agenda, established national priorities that focused on a
wide range of quite specific clinical care aspects although lay input into this process was not evident. The failure to investigate outcomes that matter to patients within pragmatic trials is not unique to perioperative care. Nonetheless, the primary outcomes of anxiety prevention and knowledge generation identified in this review align more closely with lay stakeholder-identified priorities related to communication, which may be unsurprising given that patient advocacy is a key nursing role.

This review also found that safety outcomes received minimal attention in the nurse-led trial research included in this review. It has also been argued that safety outcomes, having also been neglected, should also be reported in pragmatic trials in the perioperative setting. Within the perioperative nursing field, Steelman’s top ten patient safety priority areas, established by perioperative nurses in the USA, identify only one of the primary outcomes of interest found in the included studies in this review as a safety concern (perioperative hypothermia prevention). However, many of these safety concerns may not lend themselves as a focus of experimental research due to being rare events (for example, wrong-site surgery, prevention of retained surgical items, surgical fires) while others are less so (medication errors, pressure injuries). A number of aspects of perioperative hypothermia prevention are also identified in the Association of periOperative Registered Nurses (AORN) 2019 Research Gaps. The AORN Research Priorities for Perioperative Nursing 2018–2023 focuses on patient education practices as well as the need to improve outcomes for vulnerable populations.

The outcomes from this review of nurse-led RCTs do align, to some degree, with care priorities established by the Australian Government that are published in clinical indicators and guidelines. In the Australian setting, perioperative hypothermia (measured as the number of patients arriving into PACU with a temperature of less than 36°C), pain, PONV, surgical site infection and post-dural puncture headache – all outcomes of interest in the included studies – are key clinical indicators assessed by the Australian Council on Healthcare Standards in the most recent Australasian Clinical Indicator Report: 2010–2017. This report highlights that, for some areas, meeting the key performance indicators has been problematic. For example, in 2017 there was an increased incidence of perioperative hypothermia reported. Therefore, it can be argued that the continued focus on developing strategies to manage this condition is warranted.

All health care professionals leading experimental perioperative research need to ensure that the populations upon which research is focused are reflective of the needs of the surgical populations. As mentioned, no studies specifically focused on the needs of older adults were found in this review. Studies of younger, fitter populations may not be truly reflective of surgical populations outside of trial settings; thus, the practical application of research findings is reduced, and the interests of the older adults receiving surgical care may not be met. This need has been evident over the last ten years. In 2010, a large multicentre, prospective observational study of older adults undergoing surgery in Australia and New Zealand highlighted that complications and mortality among this cohort were prevalent, and strategies were urgently needed to address these issues. However, nurse-led RCTs in the perioperative setting do not reflect the trend of focusing on older adults, and patients with cancer, which were reported more broadly in nurse-led experimental research across clinical settings.

This review has also revealed that common quality indicators are problematic in the conduct of RCTs in this setting. Unclear randomisation was evident across the majority of studies, despite the inclusion criteria only specifying randomised controlled designs. There was a lack of blinding in the included studies. In the studies where blinding was implemented, the method of blinding varied considerably. Successful blinding may have occurred for the participant, those delivering interventions and/or the outcome assessors. While a number of studies acknowledged and provided an explanation for a lack of blinding, many other studies either reported but did not explain, or did not acknowledge the lack of blinding at all. Where acknowledged, most often blinding was not achieved due to the nature of the intervention. This is perhaps unsurprising, given that most of the interventions were delivered and/or outcomes assessed at time points of care where patients were awake. It is acknowledged that interventions such as the use of forced air warming, or some complementary therapies, are extremely problematic when trying to include effective blinding techniques for participants. Nonetheless, bias related to lack of participant blinding may be offset by the assessment of objective outcome measures and the use of outcome assessor blinding, where possible.

Limitations

There is potential that some nurse-led RCTs meeting the inclusion criteria have been inadvertently missed, despite our extensive and thorough search process. The process
of identifying nurse-led studies was complex during the search phase of this review. Not all studies clearly identified the professional background of authors. This meant that additional searches of the primary author’s name were, in some instances, needed to identify whether or not studies were nurse-led.

This review also only provides a picture of randomised controlled studies conducted by nurses in the last five years. Quasi-experimental, observational and qualitative studies were not included, nor were secondary analyses such as systematic reviews and meta-analyses. Therefore, this review cannot provide an indication of the non-experimental or synthesised body of evidence generated by nurses in this clinical setting. We also only included studies published in English. Future studies may seek to investigate the body of nurse-led research conducted using these study designs to gain a more inclusive snapshot of research in this clinical setting.

Conclusions
This scoping review has identified clear areas of perioperative care that have been the focus of nurse-led randomised controlled trials. The emphasis has been on supportive care of both patients, and caregivers. Most conducted research has involved multiple phases of care, across the perioperative pathway. Significant issues affecting the quality of experimental nurse-led research conducted in the perioperative setting have also been identified, mainly relating to blinding and randomisation. Acknowledging these issues provides opportunities for maximising research quality in nurse-led experimental research. Gaps in perioperative nursing research exist in focused assessment of intra-operative or procedural aspects of care, patient safety outcomes and care of vulnerable groups. Opportunities also exist for nurses to contribute to multidisciplinary research priority setting in the perioperative field and focus on the translation of evidence to practice in areas such as anxiety prevention where further extensive experimental research may not be warranted. Priority settings must also include patients and caregivers as stakeholders to ensure that we are meeting their needs.

Ethical considerations
This review did not involve primary research and therefore ethical approval was not required. However, a potential conflict of interest relating to one of the primary review authors also being the author of one of the included randomised controlled trials was noted. In this instance, the review author was not involved with the critical appraisal of this study.

Acknowledgments
This review is one of a series of scoping reviews currently being conducted by researchers within the acute and critical care research group at Queensland University of Technology (QUT). They aim to identify current nurse-led research activities in acute and critical care settings (including perioperative care) and nursing research priorities. This collaborative group includes a number of university-based researchers and clinician researchers working in acute and critical care settings to ensure that the review outcomes are clearly linked to clinical practice. Within this group, we wish to acknowledge the input of Dr Petra Lawrence for assistance in critical appraisal and data extraction.

Funding
There is no funding to report.

Disclosure
A potential conflict of interest related to one of the primary review authors also being the author of one of the included randomised controlled trials was noted. However, in this instance, the review author was not involved with the critical appraisal of this study. SK reports that her employer (QUT) has received monies on her behalf from BD Medical for educational consultancies, outside the submitted work. The authors report no other possible conflicts of interest in this work.

References
1. Cromwell I, Peacock SJ, Mitton C. ‘Real-world’ health care priority setting using explicit decision criteria: A systematic review of the literature. BMC Health Serv Res. 2015;15(1):164.
2. Munday J, Kyochi K, Hines S. Nurses’ experiences of advocacy in the perioperative department: A systematic review. JBI Database System Rev Implement Rep. 2015;13(8):146–189.
3. Sevdalis N, Hull L, Birnbach D. Improving patient safety in the operating theatre and perioperative care: Obstacles, interventions, and priorities for accelerating progress. Br J Anaesth. 2012;109(suppl_1):13–116.
4. International Federation of Perioperative Nurses (IFON). Supporting perioperative nurses. Promoting safe surgery and evidence-based practice [Internet]. IFPN; 2020 [cited 9 Jan 2020]. Available from: www.ifpn.world
5. Timmons S, Tanner J. A disputed occupational boundary: Operating theatre nurses and operating department practitioners. Social Health Illn. 2004;26(5):645–666.
6. Yeung J, Gillies M, Pearse R. Pragmatic trials in peri-operative medicine: Why, when and how? Anaesthesia. 2018;73(7):803.
7. Kehlet H, Joshi GP. Systematic reviews and meta-analyses of randomized controlled trials on perioperative outcomes: An urgent need for critical reappraisal. Anesth Analg. 2015;121(4):1104–1107.
8. Saugel B, Joosten A, Scheeren TW. Perioperative goal-directed therapy: What's the best study design to investigate its impact on patient outcome? Springer; 2018.
9. Joshi G, Alexander J, Kehlet H. Large pragmatic randomised controlled trials in peri-operative decision making: Are they really the gold standard? Anaesthesia 2018;73(7):799.
10. Duff J, Butler M, Davies M, Williams R, Carlile J. Factors that predict evidence use by Australian perioperative nurses. ACORN. 2016;29(2):24.
11. Munday J, Hines SJ, Chang AM. Evidence utilisation project: Management of inadvertent perioperative hypothermia. The challenges of implementing best practice recommendations in the perioperative environment. J Evid Based Healthc. 2013;16(4):305–311.
12. Wilkes L, Jackson D. Trends in publication of research papers by Australian-based nurse authors. Collegian. 2011;18(3):125–130.
13. Gillespie BM. ACORN: promoting an evidence-based culture through recognition of the contribution of research to perioperative practice. ACORN. 2016;27(3):4.
14. Peters MD, Godfrey CM, Khalil H, McInerney P, Parker D, Soares CB. Guidance for conducting systematic scoping reviews. Int J Evid Based Healthc. 2015;13(3):141–146.
15. Arksey H, O’Malley L. Scoping studies: Towards a methodological framework. Int J Soc Res Methodol. 2005;8(1):19–32.
16. Tricco AC, Lillie E, Zarin W et al. P RISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2015;163(6):467–473.
17. Webster N, Oyebode J, Jenkins C, Smythe A. Using technology to support the social and emotional well-being of nurses: A scoping review protocol. J Adv Nurs. 2019;75(4):898–904.
18. Pihodova L, Guerin S, Tunney C, Kernohan WG. Key components of knowledge transfer and exchange in health services research: findings from a systematic scoping review. J Adv Nurs. 2019;75(2):313–326.
19. Lawlor PG, Rutkowski NA, MacDonald AR et al. A scoping review to map empirical evidence regarding key domains and questions in the clinical pathway of delirium in palliative care. J Pain Symptom Manage. 2019;57(3):661–681.
20. Theou O, Squires E, Mallery K et al. What do we know about frailty in the acute care setting? A scoping review. BMC Geriatr. 2018;18(1):139.
21. Joanna Briggs Institute (JBI). Checklist for randomized controlled trials: The Joanna Briggs Institute Critical Appraisal tools for use in JBI Systematic Reviews. Adelaide JBI, 2017.
22. Charette S, Fiola J-L, Charest M-C et al. Guided imagery for adolescent post-surgical pain management: A pilot study. Pain Manage Nurs. 2015;16(3):211–220.
23. Chartrand J, Tourigny J, MacCormick J. The effect of an educational pre-operative DVD on parents’ and children’s outcomes after a same-day surgery: A randomized controlled trial. J Adv Nurs. 2017;73(3):599–611.
24. Chen Y-I, Lee J, Puryear M et al. A randomized controlled study comparing room air with carbon dioxide for abdominal pain, distention, and recovery time in patients undergoing colonoscopy. Gastroenterol Nurs. 2014;37(4):273–278.
25. Chevilllon C, Hellyar M, Madani C, Kerr K, Kim SC. Pre-operative education on postoperative delirium, anxiety, and knowledge in pulmonary thromboendarterectomy patients. Am J Crit Care. 2015;24(2):164–171.
26. Dickinson Jennings C, Culver Clark R, Baker JW. Prospective A. Randomized controlled trial comparing 3 dressing types following sternotomy. Ostomy Wound Manage. 2015;61(5):42–49.
27. Gross SL. Comparison of three practices for dressing chest tube insertion sites: A randomized controlled trial. MEDSURG Nurs. 2016;25(4):229–250.
28. Groton M, Fisher MJ, Speroni KG, Daniel JW, Prospective A. Randomized controlled study comparing room air with carbon dioxide for abdominal pain and recovery time in patients undergoing colonoscopy: A randomized controlled study. J Obstet Gynecol Neonatal Nurs. 2014;43(6):719–728.
29. Pool J, Dercher M, Hanson B et al. The effect of head of bed elevation on patient comfort after angiography. J Cardiovasc Nurs. 2015;30(6):491–496.
30. Rhodes L, Nash C, Moisan A et al. Does pre-operative orientation and education alleviate anxiety in posterior spinal fusion patients? A prospective, randomized study. J Pediatr Orthop. 2015;35(3):276–279.
31. Salomon H. Using pre-operative communication to reduce anxiety in patients undergoing office based procedures with anesthesia: a urology clinic improvement project. Wilmington: Wilmington University; 2018.
32. Sites DS, Johnson NT, Miller JA et al. Controlled breathing with or without peppermint aromatherapy for postoperative nausea and/or vomiting symptom relief: A randomized controlled trial. J Perianesth Nurs. 2016;29(1):12–19.
33. Wilson RA, Watt-Watson J, Hodnett E, Tranmer J. A randomized controlled trial of an individualized pre-operative education intervention for symptom management after total knee arthroplasty. Orthop Nurs. 2016;35(1):20–29.
34. Baker R Pre-operative IV versus oral acetaminophen [Internet]. Bethesda: US National Library of Medicine Clinical Trials; 2019 [cited 22 June 2020]. Available from: clinicaltrials.gov/ct2/show/NCT03668920.
35. Klintworth S. Use of 2% chlorhexidine cloths reduce surgical site infections [Internet]. Bethesda: US National Library of Medicine Clinical Trials; 2019 [cited 22 June 2020]. Available from: clinicaltrials.gov/ct2/show/NCT02385708.
36. Carr KL, Johnson FE, Kenaan CA, Welton JM. Effects of P6 stimulation on postoperative nausea and vomiting in laparoscopic cholecystectomy patients. J Perianesth Nurs. 2015;30(2):143–150.
37. Deitrick CL, Mick DJ, Lauffer V, Prostka E, Nowak D, Ingersoll G. A comparison of two differing doses of promethazine for the treatment of postoperative nausea and vomiting. J Perianesth Nurs. 2015;30(1):5–13.
45. Fetzer SJ, Goodwin L, Stanizzi M. Effectiveness of a pre-emptive pre-operative belladonna and opium suppository on postoperative urgency and pain after urorectoscopy. J Perianesth Nurs. 2019;34(3):594–599.

46. Kelly PA, Morse EC, Swanfeldt JV et al. Safety of rolled and folded cotton blankets warmed in 130° F and 200° F cabinets. J Perianesth Nurs. 2017;32(6):600–608.

47. Martin S, Smith AB, Newcomb P, Miller J. Effects of therapeutic suggestion under anesthesia on outcomes in children post tonsillectomy. J Perianesth Nurs. 2016;29(2):94–106.

48. Stallings-Welden LM, Doerner M, Ketchem EL, Benkert L, Alka S, Stallings JD. A comparison of aromatherapy to standard care for relief of PONV and PONV in ambulatory surgical patients. J Perianesth Nurs. 2018;33(2):116–128.

49. Stewart B, Cazzell MA, Peacoy T. Single-blinded randomized controlled study on use of interactive distraction versus oral midazolam to reduce pediatric pre-operative anxiety, emergence delirium, and postanesthesia length of stay. J Perianesth Nurs. 2019;34(3):567–575.

50. Al-Azawy M, Oeterhals K, Fridlund B, Allmus J, Schuster P. Premedication and pre-operative information reduces pain intensity and increases satisfaction in patients undergoing ablation for atrial fibrillation. A randomised controlled study. Appl Nurs Res. 2015;28(4):268–273.

51. Brix LD, Thillemann TM, Nikolajsen L. Local anaesthesia combined with sedation compared with general anaesthesia for ambulatory operative hysteroscopy: A randomized study. J Perianesth Nurs. 2016;31(4):309–316.

52. Çakar E, Yilmaz E, Çakar E, Baydur H. The effect of pre-operative oral carbohydrate solution intake on patient comfort. A randomized controlled study. J Perianesth Nurs. 2017;32(6):589–599.

53. Ayik C, Özden D. The effects of pre-operative aromatherapy massage on anxiety and sleep quality of colorectal operative patients: A pilot experimental study. J Clin Nurs. 2018;27(1–2):86–91.

54. Duparc-Alegia N, Tiberghien K, Abdoul H, Dahmani S, Alberts C, Thillier AF. Assessment of a short hypnosis in a paediatric operating room in reducing postoperative pain and anxiety: A randomised study. J Clin Nurs. 2018;27(1–2):133–138.
78. Ham EM, Lee SH. Effects of replacing saline solution during surgery for colon cancer in Korea. J Surg Res. 2017;214:176–181.

79. He H-G, Zhu L, Chan SW-C et al. Therapeutic play intervention on children’s perioperative anxiety, negative emotional manifestation and postoperative pain: A randomized controlled trial. J Adv Nurs. 2015;71(5):1032–1043.

80. Karunagaran ARK, Babu V, Simon EG, Sukumaran J. Antonisamy. A randomised control trial: effectiveness of a video assisted teaching on knowledge, anxiety, physiological and behavioural responses of patients undergoing gastroscopy. Int J Nurs Educ. 2016;8(4):170–176.

81. Lee C-H, Liu J-T, Lin S-C, Hsu T-Y, Lin C-Y, Lin I-Y. Effects of educational intervention on state anxiety and pain in people undergoing spinal surgery: A randomized controlled trial. Pain Manage Nurs. 2018;19(2):163–171.

82. Lee WP, Wu PY, Shih WM, Lee MY, Ho LH. The effectiveness of the newly designed thermal gown on hypothermic patients after surgical procedure. J Clin Nurs. 2015;24(19–20):2779–2787.

83. Li WH, Chan SS, Wong EM, Kwok MC, Lee IT. Effect of therapeutic play on pre- and post-operative anxiety and emotional responses in Hong Kong Chinese children: A randomised controlled trial. Hong Kong Med J. 2014.20(Suppl 7):36–39.

84. Ma L, Liu L, Tian Y et al. Bacteriostasis evaluation of the different soaking solutions in perineal skin preparation before the male urethral open operation: A randomized controlled trial. Int J Urol Nurs. 2015;9(2):74–77.

85. Nieh HC, Su SF. Forced-air warming for rewarming and comfort following laparoscopy: A randomized controlled trial. Clin Nurs Res. 2018;27(5):540–559.

86. Pu y, Cen G, Su J et al. Warming with an underbody warming system reduces intraoperative hypothermia in patients undergoing laparoscopic gastrointestinal surgery: A randomized controlled study. Int J Nurs Stud. 2014;51(2):181–189.

87. Su SF, Nieh HC. Efficacy of forced-air warming for preventing perioperative hypothermia and related complications in patients undergoing laparoscopic surgery: A randomized controlled trial. Int J Nurs Pract. 2018;24(5):11.

88. Tsai JC, Lin YK, Huang YJ et al. Antiseptic effect of conventional povidone-iodine scrub, chlorhexidine scrub, and waterless hand rub in a surgical room: A randomized controlled trial. Infect Control Hosp Epidemiol. 2017;38(4):417–422.

89. Oh H, Kim BH. Comparing effects of two different types of nei-guan acupuncture stimulation devices in reducing postoperative nausea and vomiting. J Perianesth Nurs. 2017;32(3):177–187.

90. Wu M, Yang L, Zeng X et al. Safety and feasibility of early oral hydration in the postanesthesia care unit after laparoscopic cholecystectomy: A prospective, randomized, and controlled study. J Perianesth Nurs. 2019;34(2):425–430.

91. Al-Yateem N, Brenner M, Shorrab AA, Dockerty C. Play distraction versus pharmacological treatment to reduce anxiety levels in children undergoing day surgery: A randomized controlled non-inferiority trial. Child Care Health Dev. 2016;42(4):572–581.

92. Bakhshi F, Namjouz A, Anidshmand A, Panabadi A, Bagherinasab M, Sarebanhassanabadi M. Effect of positioning on patient outcomes after coronary angiography: A single-blind randomized controlled trial. J Nurs Res. 2014;22(1):45–50.

93. Dehghan Z, Reyhani T, Mohammadpour V, Aemmi SZ, Shojaeian R, Nekah SMA. The effectiveness of dramatic puppet and therapeutic play in anxiety reduction in children undergoing surgery: A randomized clinical trial. Iran Red Crescent Med J. 2017;19:3.

94. Mousavi Malek N, Zakerimoghadam M, Esmaeli M, Kazeremnejad A. Effects of nurse-led intervention on patients’ anxiety and sleep before coronary artery bypass grafting. Crit Care Nurs Q. 2018;41(2):161–169.

95. Mirbagher Ajorpaz N, Zagheri Tafreshi M, Mohtashami J, Zayeri F, Rahemi Z. The effect of mentoring on clinical perioperative nurses’ competence in operating room nursing skills. Int J Nurs Pract. 2016;22(1):45–50.

96. Baradanarfard F, Jabalamelie M, Ghadami A, Aarabi A. Evaluation of warming effectiveness on physiological indices of patients undergoing laparoscopic cholecystectomy surgery: A randomized controlled clinical trial. J Perianesth Nurs. 2019;34(5):1016–1024.

97. Zaman SS, Rahmani F, Majedi MA, Roshani D, Valiie S. Clinical A trial of the effect of warm intravenous fluids on core temperature and shivering in patients undergoing abdominal surgery. J Perianesth Nurs. 2018;33(5):616–625.

98. Munday J, Osborne S, Yates P, Sturgess D, Jones L, Gosden E. Pre-operative warming versus no pre-operative warming for maintenance of normothermia in women receiving intrathecal morphine for cesarean delivery. A single-blinded, randomized controlled trial. Anesth Analg. 2018;126(1):183–189.

99. Conway A, Eroselos S, Sutherland J, Duff J. Forced air warming during sedation in the cardiac catheterisation laboratory: A randomised controlled trial. Heart. 2018;104(8):685–690.

100. Koenen M, Passey M, Rolfe M. “Keeping them warm”—a randomized controlled trial of two passive perioperative warming methods. J Perianesth Nurs. 2017;32(3):188–198.

101. Reynolds H, Taraporewalla K, Tower M et al. Novel technologies can provide effective dressing and securement for peripheral arterial catheters: A pilot randomised controlled trial in the operating theatre and the intensive care unit. Aust Crit Care. 2015;28(3):140–148.

102. Webster J, Osborne SR, Gill R et al. Does pre-operative oral carbohydrate reduce hospital stay? A randomised trial. AORN J. 2014;99(2):233–262.

103. Franzo MA, Goulart CB, Lara EO, Martins G. Music listening for anxiety relief in children in the pre-operative period: A randomized clinical trial. Rev Lat Am Enfermagem. 2016;24:e2841.

104. Fuganti CCT, Martinez EZ, Galvao CM. Effect of preheating on the maintenance of body temperature in surgical patients: A randomised clinical trial. Rev Lat Am Enfermagem. 2018;26:e3057.

105. Garcia ACM, Simao-Miranda TP, Carvalho AMP, Elias PCL, Pereira MDG, Carvalho EC. The effect of therapeutic listening on anxiety and fear among surgical patients: randomized controlled trial. Rev Lat Am Enfermagem. 2018;26:e3027.

106. Oliveira AP, Souza EN, Pellanda LC. Effectiveness of video resources in nursing orientation before cardiac heart surgery. Rev Assoc Med Bras. 2016;62(6):762–767.

107. Ribeiro Razera AP, Dos Santos Trettene A, da Silva Demoro Mondini CC, Ravagnani Neves Cintra FM, Merghi Tabauqim M. Educational video: A training strategy for caregivers of children with cleft lip and palate. Acta Paulista De Enfermagem. 2016;29(4):430–438.

108. Li W, Chan S, Wong E, Kwok M, Lee I. Effect of therapeutic play on pre- and post-operative anxiety and emotional responses in Hong Kong Chinese children. A randomised controlled trial. Hong Kong Med J. 2014.
109. Aksu NT, Akçiçek Rezeksiyonu EA. Yapılan Hastalarda Uyku Kalitesinin Değerlendirilmesi. [Evaluation of Sleep Quality in Patients with Lung Resection]. J Turk Sleep Med. 2017;4(2):35–42.

110. Gonella S, Di Giulio P, Palese A, Dimonte V, Campagna S. Randomized controlled trials and quasi-experimental studies published in nursing journals: findings from a scoping review with implications for further research. Worldviews Evid Based Nurs. 2019;16(4):299–309.

111. Sun C, Larson E. Clinical nursing and midwifery research in African countries: A scoping review. Int J Nurs Stud. 2015;52(5):1011–1016.

112. Sun C, Dlamini PS, Mambolwa MC et al. Success stories: overcoming barriers to research in southern and eastern African countries. Los Angeles: SAGE Publications; 2017.

113. Boney O, Bell M, Bell N et al. Identifying research priorities in anaesthesia and perioperative care: final report of the joint National Institute of Academic Anaesthesia/James Lind Alliance Research Priority Setting Partnership. BMJ Open. 2015;5(12):e010006.

114. AORN research priorities in perioperative nursing 2018–2023 [Internet]. Denver: AORN; 2019 [cited 22 June 2020]. Available from: www.aorn.org/guidelines/clinicalresources/nursing-research/nursing-research-topics

115. Biccard BM, Alphonsus CS, Bishop DG et al. National priorities for perioperative research in South Africa. S Afr Med J. 2016;106(5):485–488.

116. Steelman VM, Graling PR, Perkhounkova Y. Priority patient safety issues identified by perioperative nurses. AORN J. 2013;97(4):402–418.

117. Association of periOperative Registered Nurses (AORN). AORN Guideline Research Gaps [Internet]. Denver: AORN; 2019 [cited 22 June 202]. Available from: www.aorn.org/guidelines/clinical-resources/nursing-research/nursing-research-priorities

118. Australian Council on Healthcare Standards (ACHS). Australasian Clinical Indicator Report. 2010–2017. 19th ed. Sydney: Australia ACHS; 2018.

119. Story DA, Leslie K, Myles PS et al. Complications and mortality in older surgical patients in Australia and New Zealand (the REASON study): A multicentre, prospective, observational study. Anaesthesia. 2010;65(10):1022–1030.

120. The Cochrane Collaboration. 8.12.1 Rationale for concern about bias [Internet]. In: Higgins JPT, Green S, editors. Cochrane handbook for systematic reviews of interventions Version 5.1.0. Oxford: The Cochrane Collaboration; 2011 [cited 10 January 2020]. Available from: https://handbook-5.1.cochrane.org/chapter_8/8_12_1_rationale_for_concern_about_bias.htm.
Nurse-led randomised controlled trials in the perioperative setting: A scoping review

Supplement 1: Verification form

Question	Response
Is the paper a randomised controlled trial?	Yes
Is the paper nurse-led (is the first or last author a nurse as per listed qualifications)?	Yes
Is the article published between January 2014 and May 2019?	Yes
Is the topic of the paper related to perioperative care at one or more phases (pre-admission; pre-operatively; intra-operatively; immediately post-operatively)?	Yes
Eligible for inclusion?	Yes

Supplement 2: Data extraction form

Author/s	Year of publication	Country of origin	Primary aim	Secondary aim/s	Study population	Sample size	Study design	Intervention	Comparator/s	Timing of intervention	Timing of comparator	Outcome measurements	Outcome assessor	Outcome points	Outcome measurements methods	Findings

Findings
Primary outcome
Secondary outcome/s
Reviewer comments
Funding source
Supplement 3: Table of included studies

First author (year), country	Primary aim	Primary outcome	Secondary outcome/s	Participant age	Surgical population	Total sample size (n)	Timing of intervention (I) and timing of outcome (O)	Funding
Al-Azawy (2015) Norway	To compare and evaluate the effect of premedication, standardised pre-operative information and anxiety on pain intensity, drug consumption and satisfaction.	Pain intensity	Pre-operative anxiety on pain intensity and drug consumption	Adults >18	Patients undergoing ablation for AF under conscious sedation	60	I: pre-operative information, medication one hour prior to surgery	Supported by Department of Heart Disease Haukeland University Hospital, Bergen. No specific funding mentioned.
Al-Yateem (2016) UAE	To assess play distraction versus premedication.	Anxiety	Anxiety (STAI)	Children 3–8	ASA I–II undergoing elective day surgery under GA	168	I: one hour prior to surgery; 0: during anaesthesia, pre-operatively, induction, anaesthetically, upon discharge	Funded by a grant from University of Sharjah.
Ayik (2018) Turkey	To measure effects of lavender oil aromatherapy massage versus usual care.	Anxiety (STAI)	Sleep quality	Adults >18	Colorectal surgery	80	I: pre-operatively – night before and morning of surgery; 0: pre-operatively – night before and morning of surgery (after massage / usual care)	No specific grant funding received.
Baker (clinical trial protocol) USA	To compare IV versus oral acetaminophen (paracetamol).	Pain	1. Opioid consumption 2. PONV 3. Post-operative respiratory depression 4. Administration of reversal agents 5. LOS in PACU 6. Satisfaction	Adults >18	Multiple surgical specialties	120	I: pre-operatively 0: within 24 hours (except patient satisfaction – two days post-operatively)	Not stated.
Bakhshi (2014) Iran	To assess effects of positioning and early sandbag removal.	Back pain	1. Foot pain 2. Haematoma 3. dorsalis pedis pulse 4. Bleeding	Adults	Post-coronary angiography patients	80	I: after catheterisation; 0: one, two, three and six hours post-operatively and the following morning	No statement of funding evident.
Baradanfar (2018) Iran	To evaluate impact of warming (forced air versus warmed IV fluids versus control) on physiological indices.	Core body	1. Blood pressure 2. Heart rate 3. Shivering	Adults 18–65	Laparoscopic cholecystectomy	96	I: from induction of anaesthesia until PACU discharge; 0: before induction of anaesthesia until discharge from PACU	Funding by Isfahan University of Medical Sciences.
Brix (2016) Denmark	To compare two anaesthetic techniques.	Post-operative pain (NRS)	1. Intraoperative fentanyl use 2. Analgesic and antiemetic use in PACU 3. PONV occurrence 4. Time to PACU discharge 5. Recalled worst pain after discharge 6. Recalled PONV after discharge	Adult females	Ambulatory operative hysteroscopy	153	I: Initial surgery; 0: immediately post-operatively and two weeks post-discharge	Author has received funding from Hede Nielsen Family Foundation, the Gurli and Hans Engell Friis Foundation, the Aase and Ejnar Danielsens Foundation and the Health Research Fund of Denmark.
Çakar (2017) Turkey	To assess pre-operative oral carbohydrate vs standard fasting.	Pre-operative	1. Post-operative complications 2. Physiological parameters 3. PONV 4. Pain	Adults 16–80	Thyroidectomy	95	I: from 00.00 hours night before surgery; 0: 10 pm and 6 am prior to surgery, every two hours post-surgery	No statement of funding.
Carlson (2018) Sweden	To assess the effectiveness of pre-operative visits to the operating theatre on anxiety.	Anxiety (mYPAS)	Parental anxiety (STAI)	Children 3–12	ENT day surgery	57	I: prior to the day of surgery; 0: in the waiting room, after arrival to OR, at anaesthesia induction; 0: (parents) in waiting room and once child anaesthetised	Centre of clinical research in Värmland supported the project.
First author (year, country)	Primary aim	Primary outcome	Secondary outcome/s	Participant age	Surgical population	Total sample size (n)	Timing of intervention (I) and timing of outcome (O)	Funding
-------------------------------	-------------	-----------------	---------------------	------------------	----------------------	----------------------	---	---------
Carr (2015) USA	To compare P6 stimulation versus control on PONV	PONV (Likert nausea scale score)	Nil	adult females 18–67 years	laparoscopic cholecystectomy	56	I: intraoperatively 0: on admission to PACU; at 30 and 60 mins, PACU discharge, at home up to 24 hours	No statement of funding.
Charette (2015) Canada	To assess guided imagery and relaxation combined with education versus usual care.	pain intensity 1. anxiety (STAI-Y) 2. coping strategies 3. regular activities	adolescents and young adults	spinal fusion for scoliosis	40	I: commenced pre-operatively 0: day of surgery to two weeks post-discharge	Funded by the Canadian Nurses Foundation; the Quebec Inter-university Nursing Intervention Research Group (GRIISIQ); the Quebec Ministry of Education, Recreation and Sports; the Fonds de Recherche du Québec-Santé (FRQS); The Sante Justine Hospital Foundation; the Foundation of Stars and the Gustav Levinschi Foundation.	
Chartrand (2017) Canada	To examine the effect of a pre-operative DVD on parental knowledge versus standard care.	parental knowledge 1. participation 2. anxiety 3. children’s distress 4. analgesia 5. length of recovery	parent–child dyads (children 3–10 years)	elective ENT outpatient or dental surgery	105	I: after pre-assessment clinic appointment 0: in the recovery room until discharge from day surgery.	Study funded by Children’s Hospital of Eastern Ontario Research Institute Surgery Associates Research and Development Fund. First author also received scholarships.	
Chen (2014) USA	To compare carbon dioxide versus room air insufflation.	discomfort abdominal girth	adults >18 years	screening colonoscopy	98	I: during colonoscopy 0: upon arrival to recovery room, at time of post-anesthesia recovery (PAR) score of 10 or pre-procedure baseline, when eligible for discharge	No funding received.	
Chen (2015) Taiwan	To assess effects of music versus no music on psychophysiological responses	Psycho-physiological parameters (HR, RR, SBP, DBP) 1. pain (VAS) 2. opioid dosage	adults	elective total knee replacement	30	I: pre-operatively; in OR and in PACU 0: pre-operatively, in surgical waiting area, in PACU and in post-operative ward	No funding statement.	
Chevillon (2015) USA	To evaluate impact of multifaceted pre-operative education versus standard care	post-operative delirium 1. anxiety (STAI) 2. knowledge 3. predictors of delirium 4. days of mechanical ventilation 5. ICU stay (days)	adults	pulmonary thromboendarterectomy	129	I: one day prior to surgery 0: intra-operatively (cardiopulmonary indicators), daily for up to seven days after surgery or until ICU discharge	No funding statement.	
Choi (2018) South Korea	To compare durations of bed rest and immobilisation (three groups).	incidence of post-dural puncture headache (PDH)	adults >18 years	elective orthopaedic knee or hip, or bladder surgery, or haemorrhoidectomy under spinal anaesthesia	138	I: post-surgery 0: immediate post-ward transfer then daily for five days	No funding statement.	
First author (year), country	Primary aim	Primary outcome	Secondary outcome/s	Participant age	Surgical population	Total sample size (n)	Timing of intervention (I) and timing of outcome (O)	Funding
-----------------------------	-------------	----------------	---------------------	-----------------	---------------------	----------------------	--	---------
Conway (2017) Australia	To assess effectiveness of forced air warming versus usual care (passive warming) for hypothermia prevention.	post-procedure temperature	1. shivering 2. thermal comfort 3. major post-operative complications 4. cardiovascular complications, cardioversion or myocardial infarction	adults >18 years	interventional cardiovascular procedures <30 minutes duration with sedation	140	I: during procedure O: during procedure, post-operatively, at 30 days (complications)	First author awarded an NHMRC Early Career Fellowship. Study funded by St Vincent's Clinic Foundation Multidisciplinary Patient Focussed Research Grant. Equipment provided by Covidien Investigator sponsored Research Program.
Dehghan (2017) Iran	To compare dramatic puppet versus therapeutic play versus usual care.	anxiety	nil	children 6–12 years	appendectomy	75	I: pre-operatively, morning of surgery O: night before surgery, pre-operatively before anaesthesia	Supported by Mashhad University of Medical Sciences.
Deitrick (2015) USA	To compare two doses of IV promethazine (6.25mg versus 12.5mg).	PONV (verbal descriptive scale)	post-operative sedation (institution’s internal sedation scale)	adults 18–75 years	ambulatory surgery	120	I: throughout Phase I and Phase II recovery O: throughout Phase I and Phase II recovery	Combined AORN/STTI International Small Grant.
Dickinson (2015) USA	To assess silver impregnated dressings versus dry sterile dressings.	wound healing	infection	Adults	cardiac surgery with sternotomy wound	315	I: incision closure O: five days post-operatively and throughout recovery	No funding statement but dressings donated by manufacturers.
Duparc-Alegria (2018) France	To assess impact of short hypnotic session versus usual care.	post-operative pain (VAS)	1. anxiety level 2. total morphine consumption	children 10–18 years	routine major orthopaedic surgery	119	I: just prior to surgery O: 24 hours post-operatively	Funded by Ministry of Health grant and sponsored by Assistance-Publique-Hôpitaux de Paris-Direction Recherce Clinique et du Développement.
Erdling (2015) Sweden	To compare oesophageal and nasopharyngeal temperature in patients receiving prewarming versus no prewarming.	difference in temperature change between devices and warming groups	effect of prewarming, age and Body Mass Index (BMI) upon measured temperatures (two devices)	adults	elective open colorectal surgery under combined anaesthesia	53	I: pre-operatively (prewarming) or intra-operatively O: before epidural, after test dose, anaesthesia start and then at 30 minute intervals	No funding statement.
Ertug (2017) Turkey	To compare nature sounds versus relaxation exercises versus no intervention.	anxiety	nil	adults >18 years	elective surgery (under GA)	159	I: day of surgery O: day of surgery recruitment, after intervention, 30 minutes post-intervention	No funding statement.
First author (year), country	Primary aim	Primary outcome	Secondary outcome/s	Participant age	Surgical population	Total sample size (n)	Timing of intervention (I) and timing of outcome (O)	Funding
----------------------------	-------------	----------------	---------------------	-----------------	---------------------	---------------------	---	---------
Fetzer (2018) USA	To assess effectiveness of pre-emptive pre-operative belladonna and opium suppository versus routine care.	post-operative bladder comfort (bladder urgency via five-point Likert scale and pain via 0–10 VAS)	1. narcotic requirements 2. LOS	adults	uroscopy	50	I: after anaesthesia induction and before insertion of surgical scope O: during PACU at every 15 minutes until discharge, outpatient discharge	One author funded by Vermont/New Hampshire Association of Perianaesthesia Nurses for cost of study medication.
Franzoi (2016) Brazil	To compare listening to music versus usual care (toys and television).	anxiety	1. HR 2. SBP 3. DBP 4. RR 5. oxygen saturation	children 3–12 years	elective surgery under GA	52	I: day of surgery O: 15 minutes post-intervention	No funding statement.
Fuganti (2018) Brazil	To evaluate effect of prewarming versus usual care (cotton blankets) on body temperature.	tympanic temperature	1. air temperature in OR 2. humidity OR	adults >18 years	elective gynaecological surgery	86	I: pre-operatively O: after prewarming and at 30 minute intervals until end of surgery	No funding statement.
Garcia (2018) Brazil	To compare therapeutic listening versus standard care.	anxiety	1. surgical fears 2. salivary cortisol 3. HR 4. RR 5. SBP 6. DBP	adults >18 years	surgery for colorectal cancer	50	I: day of surgery O: pre-intervention at 2.5 hours, then 1 hour post-procedure	Supported by Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil, grant.
Gomez-Urquiza (2016) Spain	To compare projection of photos versus photos and music versus usual care	anxiety	1. HR 2. RR 3. DBP 4. SBP	adults 25–50 years	ENT surgery	180	I: day of surgery O: pre-operatively from 45 to 120 minutes prior to surgery	No funding received.
Gross (2016) USA	To assess outcomes after three different dressing practices.	air leak	1. patient comfort 2. skin integrity at incision site	adults >18 years	patients with chest drains	64	I: following insertion of chest tube in OR O: upon post-operative arrival to trauma centre and then daily up until a maximum of five days	No funding statement.
Groton (2015) USA	To evaluate effectiveness, tolerability and cost of three bowel preparations (three groups).	effectiveness of bowel preparation	1. tolerability 2. cost	adults >18 years	outpatient colonoscopy	276	I: prior to colonoscopy O: during colonoscopy, post-procedure and at follow-up clinic	No funding received.
Ham (2017) South Korea	To assess saline solution replacement versus not changing saline solution.	colony-forming units (CFU)	nil	adults >18 years	colectomy for colon cancer	52	I: intra-operatively after colon removal (intervention) O: 48 hours post collection	Funded by Konkuk University GLOCAL Campus, Republic of Korea.
First author (year), country	Primary aim	Primary outcome	Secondary outcome/s	Participant age	Surgical population	Total sample size (n)	Timing of intervention (I) and timing of outcome (O)	Funding
-----------------------------	------------	----------------	---------------------	-----------------	---------------------	----------------------	--	---------
Handan (2018) Turkey	To assess impact of music during caesarean delivery versus usual care.	Anxiety (VAS)	1. body temperature 2. oxygen saturation 3. RR 4. HR 5. SBP 6. DBP	females	caesarean delivery for multiple births	60	I: during surgery 0: at the end of surgery	Supported by the Scientific Research Project Fund of Karamanoglu Mehmetbey University.
He (2015) Singapore	To assess therapeutic care versus standard care (plus information pamphlet).	Inpatient elective surgery	1. post-operative pain	children 6–14 years	95	I: three to seven days prior to surgery 0: baseline, day of surgery, 24 hours post-surgery	Funded by the National Medical Research Council New Investigator Grant, Ministry of Health, Singapore.	
Hoffman (2017) USA	To assess efficacy of P6 acupressure versus placebo	PONV incidence N/A	1. negative emotional manifestation 2. post-operative pain	adults	Planned ambulatory surgery; high risk for PONV	110	I: pre-operatively: 30-60 minutes pre-induction 0: three recovery phases – Phase 1 (PACU), Phase 2 (pre-discharge), Phase 3 (24 hours post-discharge)	No funding statement.
Kapritsou (2018) Greece	To compare fast-track conventional recovery protocols.	LOS	1. readmission rates 2. complications 3. pain (VAS)	adults 30–82 years	Hepatectomy	62	I: immediately after surgery 0: point of discharge	No funding received.
Karunagaran (2016) India	To assess video-assisted learning versus usual care.	Knowledge	1. anxiety (STAI) 2. physiological and behavioral responses 3. relationship between knowledge, anxiety and physiological responses	Adults	Gastroscopy	72	I: pre-procedure 0: 30 minutes prior to procedure	College of Nursing, Christian Medical College, Vellore, Tamil Nadu.
Kelly (2017) USA	To assess effectiveness of folded and rolled dry cotton blankets warmed in 130°F or 200°F cabinets.	Skin temperature	1. thermal comfort 2. safety	Adults >18 years	Hospital volunteers or employees (healthy volunteers)	20	I: in-vitro (in perioperative setting) 0: at regular intervals up to 40 minutes after blanket application	No funding statement.
Klintworth (clinical trial protocol) USA	To examine the use of 2% chlorhexidine gluconate cloths pre-operatively and daily post-operatively versus standard care.	Surgical site infection	1. serious adverse events 2. mortality	Adults >18 years	Colorectal surgery	163	I: pre- and post-operatively up to four days 0: up to 30 days post-operatively	No funding statement.
Koenen (2017) Australia	To compare reflective blankets versus cotton blankets for reduction of core-periphery heat gradient.	Pre-operative change in foot temperature	1. normothermia on arrival to PACU 2. proportion of patients requesting additional warmed blankets	Adults	Elective surgery more than one hour duration	328	I: pre-operative holding bay 0: on admission and then at regular intervals until before discharge from PACU	Supported by the NSW Health Education and Training Institute (Rural Research Capacity Building Program).
First author (year, country)	Primary aim	Primary outcome	Secondary outcome/s	Participant age	Surgical population	Total sample size (n)	Timing of intervention (I) and timing of outcome (O)	Funding
-----------------------------	-------------	----------------	---------------------	-----------------	---------------------	---------------------	---	---------
Kose (2016) Turkey	To examine different hair shaving practices.	Surgical site infection	Body image	Adults	Elective cranial surgery	200	I: pre-operatively in OR O: Post-operatively – first, third, fourth, seventh and tenth days	Funded by Gulhane Military Medical Academy Scientific Research Council.
Kurtovic (2017) Croatia	To compare post-operative analgesic efficacy of intermittent versus PCA paracetamol.	Post-operative analgesic efficacy	Nil	Adults 27–80 years	Elective lumbar discectomy of intervertebral disc extrusion at L4-L5	56	I: in OR on completion of surgery to 48 hours post-operatively every six hours O: In OR on completion of surgery to 48 hours post-operatively	No funding statement.
Lee (2015) Taiwan	To examine Clickamico app with clown doctors versus dolls versus standard care (brochure).	Hypothermia duration	1. cost effectiveness 2. thermal comfort	Adults	Post-spinal surgery (in PACU)	100	I: PACU O: post-operatively: on admission to PACU until normothermia achieved	No funding statement.
Lee (2016) Taiwan	To assess nurse-delivered education with video versus standard care.	Anxiety (STAI and cortisol levels)	Pain	Adults ≤ 20 years	Lumbar spinal surgery	86	I: day before surgery O: day before surgery; 30 minutes pre-surgery, day after surgery	No funding statement.
Li (2014) Hong Kong	To assess therapeutic play with dolls versus standard care (pre-operative preparation).	Anxiety (STAIIC)	1. parental anxiety 2. satisfaction (child and parental)	Children 7–12 years	Elective surgery	108	I: day of surgery O: before and after intervention, post procedure	Supported by the Health and Health Services Research Fund, Food and Health Bureau, Hong Kong SAR Government.
Liguori (2016) Italy	To examine Clickamico app with clown doctors versus standard care (brochure).	Pre-operative anxiety	Nil	Children 7–12 years	Elective surgery	40	I: night prior to procedure O: afternoon before surgery, day of surgery (on transfer)	Funded by the Department of Health Sciences at the University of Florence, the Meyer Children’s Hospital, and the Meyer Foundation.
LoRusso (2018) USA	To evaluate perioperative blood glucose levels of Type II diabetic patients with use of etomidate versus propofol for induction of anaesthesia.	Perioperative blood glucose	Nil	Adults	Patients with Type II diabetes undergoing surgery	18	I: at induction O: at induction and following emergence from anaesthesia	No funding statement.
Lynch (2015) USA	To compare room air versus carbon dioxide insufflation.	Pain intra-procedure and anaesthetic-ly (non-verbal and verbal pain scale)	1. length of recovery 2. nursing tasks and time	Adults	Routine screening or surveillance colonoscopy under moderate sedation	191	I: during procedure O: during and post-procedure	No funding received.
Ma (2015) China	To assess three perineal disinfection solutions.	Pre-operative bacterial count	Nil	Adults or children	Urethral opening surgery	I: five times a day O: one and two days post-procedure	No funding statement.	
Martin (2014) USA	To examine the impact of therapeutic suggestion under anaesthesia.	LOS	1. anxiety (VAS and CRA scale) 2. pain (FLACC and Wong-Baker FACES pain rating scale) 3. intravenous morphine dosage 4. PONV 5. emergence delirium 6. implicit memory	Children 4–8 years and self-identified primary caregiver	Non-coblation transsclerotomy or adenotonsillectomy	94	I: completion of surgery until readiness to wake up in PACU O: post-operatively (PACU)	Funded by ASPAN grant, and an XTO Energy Clinical Scholars Grant.
First author (year, country)	Primary aim	Primary outcome	Secondary outcome/s	Participant age	Surgical population	Total sample size (n)	Timing of intervention (I) and timing of outcome (O)	Funding
-------------------------------	-------------	----------------	---------------------	-----------------	---------------------	-----------------------	---	---------
McClurkin (2016) USA	To assess impact of self-selected music versus music versus no music (usual care).	anxiety (STAI)	1. patient satisfaction 2. relationship between STAI and NVAAS	adults 18–75 years	day surgery (multiple specialities)	133	I: pre-operatively O: after surgery, day of surgery (on transfer)	Funded by Baylor St. Luke’s Nursing Research Council and the Friends of Nursing.
Mirbagheri (2015) Iran	To assess effects of monitoring versus usual learning activities.	clinical perioperative competence	nil	adults	OR students	60	I: over 15 months O: before and after intervention	No funding statement.
Molloy (2018) USA	To compare preventative use of dorzolamide-timolol ophthalmic solution with balanced salt solution.	intraocular pressure	time effects	adults	patients scheduled for prolonged steep Trendelenburg procedures	90	I: following induction of anaesthesia O: baseline, then every 30 minutes during surgery	No funding statement.
Mousavi (2018) Iran	To assess supportive educational nurse-led interventions versus standard care	anxiety (STAI)	sleep (SSQoS)	adults	Elective coronary artery bypass graft (CABG) surgery	160	I: one and two days prior to surgery O: day of admission, right before surgery	Funded by Tehran University of Medical Sciences.
Munday (2018) Australia	To compare pre-operative warming plus IV fluid warming versus usual care including IV fluid warming.	perioperative heat loss	1. hypothermia 2. maternal thermal comfort 3. MAP 4. shivering 5. agreement between temperature devices 6. neonatal temperature 7. Apgar score	women >18 years	women undergoing elective Caesarean delivery with intrathecal morphine	50	I: pre-operatively O: post-operatively up to discharge	Funded by Perioperative Nurses Association of Queensland (PNAQ).
Nieh (2018) Taiwan	To assess efficacy of forced air warming versus passive insulation on rewarming.	rewarming	thermal comfort	adults >20 years	laparoscopic thoracic or abdominal surgery over one hour anaesthesia	127	I: during anaesthesia until PACU discharge O: every 30 minutes intra-operatively and in PACU until normothermia achieved	Taichung Veterans General Hospital, Republic of China.
Nilsson (2014) Sweden	To assess effectiveness of P6 acupressure (with Sea-Band) versus placebo on post-operative nausea.	post-operative nausea	frequency of vomiting	adults >18 years	elective infratentorial or supratentorial craniotomy	120	I: applied at the end of surgery O: on arrival to PACU, then at specified intervals until 48 hours post-operatively	Devices partly provided by SeaBand Ltd, remainder provided by Department of Neurosurgery of Umeå University Hospital. Study supported by hospital’s research foundation.
Notte (2016) USA	To measure effect of Reiki versus usual care on perceived pain.	perceived pain	1. post-operative analgesic consumption 2. satisfaction with Reiki 3. satisfaction with hospital experience	adults 18–30 years	total knee arthroplasty (TKA)	43	I: after admission, after admission to PACU, daily for three post-operative days O: before and after each treatment or at each participant–nurse encounter	Funded by Sharpe/Strumia Research Foundation of Bryn Mawr Hospital.
Oh (2017) Korea	To compare effects of truncatunaeus electrical nerve stimulation reflex band with wrist band, with acupressure on Nei-Guan acupuncture point.	PONV (Rhodes Index of Nausea, Vomiting and Retching)	frequency of patient-requested anti-emetics	adult females 16–65 years	gynaecology surgery under general anaesthesia with POA	54	I: prior to anaesthesia O: at 0–24 hours after PACU discharge	No funding received.
Oliveira (2016) Brazil	To assess pre-operative orientation video versus usual care.	patient knowledge	nil	adults >18 years	cardiac surgery	90	I: approximately 72 hours prior to surgery O: Post-intervention	Funded by Fundo de Apoio à Pesquisa do Instituto de Cardiologia (FAPIC).
Oulu (2018) Turkey	To assess the effect of cold application versus no cold application on pain and bleeding.	pain bleeding	sepsplast to correct deviated septum	adults >18 years		60	I: in ENT clinic for 15 minutes prior to surgery O: post-operatively at regular intervals up to 24 hours	No funding received.
Palese (2015) Italy	To assess post-operative shampooing versus no shampooing.	comfort	1. surgical site contamination (CFU) 2. surgical site infection	adults >18 years	elective craniotomy	53	I: post-procedure O: 30 days post-surgery	No funding statement.
First author (year, country)	Primary aim	Primary outcome	Secondary outcome/s	Participant age	Surgical population	Total sample size (n)	Timing of intervention (I) and timing of outcome (O)	Funding
-----------------------------	-------------	----------------	--------------------	-----------------	---------------------	----------------------	---	---------
Paris (2014) USA	To examine effect of various warming methods on maternal body temperature during Caesarean delivery.	maternal core body temperature	1. maternal hypothermia					
2. estimated blood loss
3. post-operative pain
4. rescue blanket use
5. maternal shivering
6. maternal–newborn bonding
7. first axillary newborn temperature
8. cord pH
9. Apgar scores (one and five minutes) | women | elective, singleton Caesarean delivery | 226 | I: pre-operatively until two hours post-delivery
O: pre-operatively through to fourth postpartum hour | Medline Industries donated the warming pad and temperature sensing Foley catheters. |
| Sáenz-Jalón (2015) Spain | To evaluate effectiveness of information booklet alone or with clarification questions versus standard care (three groups). | short- and long-term knowledge regarding totally implantable access ports (TIAPs) | physiological indicators of anxiety | adults >18 years | patients diagnosed with cancer, admitted to day surgery for insertion of TIAP | 105 | I: In day surgery waiting room
O: before TIAP implantation, in waiting room, at three months | No funding statement. |
| Razera (2015) Brazil | To assess feasibility and efficacy of intra-operative underbody warming vs passive warming. | intra-operative hypothermia | 1. temperature decline (via nasopharyngeal temperature)
2. prothrombin time
3. activated partial thromboplastin time
4. thrombin time
5. complications: in OR and post-operatively
6. shivering
7. pain (VAS) | adults >18 years | open and laparoscopic surgery for gastrointestinal tumours | 110 | I: intra-operatively
O (primary): from anaesthesia induction, every 20 minutes until end of procedure
O (secondary): in OR, end of anaesthesia, post-operative day 1 | Funded by the Science and Technology Commission of Shanghai Jiao Tong University. |
| Pool (2015) USA | To assess raising head of bed to 15 degrees versus keeping flat. | patient comfort: pain (VAS) | | nil | adults | cardiac angiography | 71 | I: post-procedure
O: before procedure, every 15 minutes post-procedure | No funding statement. |
| Pu (2014) China | To assess feasibility and efficacy of intra-operative underbody warming vs passive warming. | intra-operative hypothermia | 1. temperature decline (via nasopharyngeal temperature)
2. prothrombin time
3. activated partial thromboplastin time
4. thrombin time
5. complications: in OR and post-operatively
6. shivering
7. pain (VAS) | adults >18 years | open and laparoscopic surgery for gastrointestinal tumours | 110 | I: intra-operatively
O (primary): from anaesthesia induction, every 20 minutes until end of procedure
O (secondary): in OR, end of anaesthesia, post-operative day 1 | Funded by the Science and Technology Commission of Shanghai Jiao Tong University. |
| Ovarforth (2014) Denmark | To assess mobilisation shortly after lumbar disc surgery versus walking from PACU to ward. | feasibility | 1. safety
2. wellbeing (Bournemouth questionnaire) | adults >18 years | elective lumbar discectomy | 22 | I: one hour post-operatively
O: one hour post-operatively | Funded by Glostrup Hospital, the Capital Region of Denmark. |
| Reynolds (2015) Australia | To assess BPU, SSD and TA versus usual care. | feasibility | 1. peripheral arterial catheter failure
2. dislodgement
3. occlusion
4. phlebitis
5. infection: local or CRBSI | adults >18 years | surgical patients booked for post-operative ICU | 123 | I: operating theatre
O: on insertion of arterial catheter in OR, daily in ICU, on ICU discharge | Funding provided for products by the Alliance for Vascular Access Teaching and Research Group (AVATAR) at Griffith University. |
| Razera (2015) Brazil | To assess use of educational video versus usual care. | knowledge of informal caregivers | nil | Unclear: caregivers of children | informal caregivers of children undergoing primary choleiplasty and/or palatoplasty | 80 | I: post-operatively, on day of discharge (24 hours post-surgery)
O: peri- and post-operatively on discharge | PhD scholarship funding by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP). |
| Rhodes (2015) USA | To assess effect of pre-operative education and orientation versus no education and orientation. | anxiety | 1. caregiver anxiety
2. LOS
3. morphine equivalent use
4. patient/caregiver satisfaction | children 11–21 years | posterior spinal fusion (PSF) surgery | 65 | I: pre-operative
O: two weeks pre-operatively, immediately prior to surgery, during surgery, post-operative day 2, on discharge | No funding statement. |
| Sáenz-Jalón (2017) Spain | To assess the limb occlusion pressure technique versus standard pneumatic ischemia technique. | arterial blood pressure | 1. ischemia time
2. anaesthetic incidents: pain, administration of opiates
3. surgical incidents: interruptions to procedure, bleeding
4. LOS | adults | upper limb surgery requiring surgical ischemia and locoregional anaesthesia | 160 | I: intra-operative
O: intra-operatively and post-operatively (LOS) | Funded by Premio Nacional de Investigación de Enfermería Valdecilla a del año 2012. |
| First author (year, country) | Primary aim | Primary outcome | Secondary outcome/s | Participant age | Surgical population | Total sample size (n) | Timing of intervention (I) and timing of outcome (O) | Funding | |
|---|---|---|---|---|---|---|---|---|---|
| Sahin (2018) Turkey | To evaluate acupressure versus placebo application on P6 acupoint. | PONV | 1. post-operative pain severity | adults (females) | laparoscopic cholecystectomy | 1: one hour prior to surgery | O: at two, six and 24 hours post-operatively | No funding statement. |
| Salomon (2018) USA | To assess pre-operative telephone communication by nurse anaesthetist versus standard care (face-to-face on morning of surgery). | anxiety (APANS, STAI Y-1) | nil | adults | office-based anaesthesia for urological procedures | 41 | I: pre-operative – night before surgery (intervention), day of surgery (control) | O: pre- and post-operatively | No funding statement. |
| Simone (2017) Italy | To evaluate the efficacy of a nursing educational intervention. | parental anxiety (STAI) | nil | adults | parents of children undergoing cardiac surgery for interventricular defect for the first time | 96 | I: pre-operatively | O: unclear (stated pre- and post-operatively | No funding statement. |
| Sites (2014) USA | To evaluate controlled breathing with peppermint aromatherapy versus controlled breathing alone for PONV relief. | PONV | administration of post-operative anti-emetics | adults >18 years | elective laparoscopic, ENT, orthopaedic or urological day surgery under GA with intubation | 330 | I: upon initial report of PONV in PACU or day surgery | O: post-operatively in PACU or day surgery | No funding statement. |
| Stallings-Welden (2018) USA | To examine the effectiveness of aromatherapy with standard care for PONV. | PONV | 1. post discharge nausea and vomiting (PONV) 2. risk factors for PONV | adults >18 years | ambulatory surgical patients | 221 | I: post-operatively and through discharge | O: post-operatively and after discharge | No funding statement. |
| Stewart (2018) USA | To compare tablet-based interactive distraction with oral midazolam. | perioperative hypothermia | 1. emergence delirium 2. PACU LOS 3. caregiver anxiety (seven-point Likert) 4. caregiver satisfaction (seven-point Likert) | children 4–12 years and caregivers | outpatient surgery | 102 patients (and 102 care-givers) | I: pre-induction | O: on admission, parental separation, mask induction and then on emergence | Funded by West Coast University. |
| Su (2018) Taiwan | To assess efficacy of forced air warming versus passive insulation. | perioperative hypothermia | 1. shivering 2. pain 3. blood loss 4. adverse cardiac events | adults >20 years | laparoscopic thoracic or abdominal surgery | 124 | I: during anaesthesia, intra-operatively until end of PACU | O: every 30 minutes intra-operatively and in PACU until normothermia achieved | Taichung Veterans General Hospital, Republic of China. |
| Tsai (2017) Taiwan | To assess effectiveness of three antiseptic handwashing methods amongst surgical staff. | CFU counts | time for hand cleansing | adults | practicing surgeons and scrub nurses with experience of conventional surgical and waterless hand rub OR protocols | 180 | I: immediately pre-operatively | O: before and after surgical hand disinsection, immediately after operation | Funded by Taipei Medical University, Shuang Ho Hospital. |
| Ullan (2014) Spain | To assess effect of play versus usual care | pre-operative anxiety (STAI) | 1. SBP 2. DBP 3. HR 4. cortisol levels | adults | surgical otorhinolaryngology patients | 95 | I: during hospital stay | O: each hour post-operatively, commencing when consciousness regained | Funded by The Council of Education of the Junta of Castilla and Leon Spain, and the Spanish Ministry of Education. |
| Unulu (2018) Turkey | To assess effectiveness of P6 acupuncture. | nausea intensity | 1. patient information 2. anxiety 3. perianesthesia comfort 4. general comfort | adults | gynaecologic (not obstetric) surgery | 1: within 12 hours after procedure | O: post-operatively (0–2, 2–6, 6–12, 12–24 and 24–48 hours | No funding statement. |
| First author (year, country) | Primary aim | Primary outcome | Secondary outcome/s | Participant age | Surgical population | Total sample size (n) | Timing of intervention (I) and timing of outcome (O) | Funding |
|-------------------------------|-------------|----------------|---------------------|-----------------|---------------------|----------------------|---|---------|
| Webster (2014) Australia | To assess consumption of carbohydrate fluids versus usual care | Time to readiness to discharge | 1. time to first flatus 2. time to first bowel movement 3. mortality (from any cause during trial) 4. adverse outcomes | adults >18 years | elective bowel surgery | 46 | I: from 19.00 the night prior to surgery 0: post-operatively | No funding statement. |
| Wilson (2016) Canada | To assess individualised education prevention. | nausea | 1. pain 2. analgesic and anti-emetic administration | adults | total knee replacement surgery | 1 | I: pre-operatively 0: post-operatively day 3 | Partially funded by the Kingston General Hospital Women’s Auxiliary Millennium Fund. |
| Wistrand (2016) Sweden | To compare preheated and room temperature skin disinfectant solution. | patients’ experience | 1. skin temperature 2. patients’ experience | adults >18 years | patients undergoing pacemaker, implantable cardioverter-defibrillator or cardiac resynchronisation therapy under local anaesthesia | 220 | I: OR (immediately prior to procedure) 0: Before and after skin disinfection (in OR) | Funded by research council of Örebro County Council. |
| Wu (2019) China | To assess safety and feasibility of early oral hydration in the PACU. | PONV | 1. thirst 2. incidence of oropharyngeal discomfort 3. patient satisfaction | adults | elective laparoscopic cholecystectomy | 1735 | I: post-operatively (PACU) 0: post-operatively up to day 1 | Funded by the Sichuan Provincial Health Department. |
| Zaman (2018) Iran | To assess effect of warm versus room temperature IV fluids. | shivering | 1. core temperature 2. oxygen saturation 3. vital signs | adults | elective abdominal surgery | 70 | I: intra-operatively 0: post-operatively – on admission to PACU and at 30 minutes in PACU | No funding statement. |

Abbreviations: AF = atrial fibrillation; APAIS = Amsterdam Preoperative Anxiety and Information Scale; AORN = Association of periOperative Registered Nurses; ASA I–II = American Society of Anesthesiologists classification normal healthy patients to patients with mild systemic disease; ASPAN = American Society of PeriAnesthesia Nurses; BPU = Bordered Polyurethrane; CFU = colony forming unit; CRA scale = Child Rating of Anxiety scale; CRBSI = Catheter-related bloodstream infection; DBP = diastolic blood pressure; ENT = ear, nose and throat; FLACC = Faces, Legs, Activity, Cry, Consolability scale; GA = general anaesthetic; GSQS = Groningen’s Sleep Quality Scale; HR = heart rate; ICU = intensive care unit; IV = intravenous; LOs = length of stay; MAP = mean arterial pressure; mYPAS = modified Yale Preoperative Anxiety Scale; mYPAS-SF = modified Yale Preoperative Anxiety Scale Short Form; NHMRC = National Health and Medical Research Council; NRS = numeric rating scale; NVAAS = Numerical Visual Analog Anxiety Scale; OR = operating room; P6 = pericardium acupuncture point; PACU = Post Anaesthesia Care Unit; PCA = patient-controlled analgesia; PONV = post-operative nausea and vomiting; RR = respiratory rate; SBP = systolic blood pressure; SSD = sutureless securement device; STAIC = State–Trait Anxiety Inventory for Children; STAI-Y = State–Trait Anxiety Inventory (Form Y); STTI = Sigma Theta Tau International; TA = tissue adhesive; UAE = United Arab Emirates; USA = United States of America; VAS = Visual Analog Scale.