Patterns of IgE responses to multiple allergen components and clinical symptoms at age 11 years

Angela Simpson, MD, PhD, Nevena Lazic, PhD, Danielle C. M. Belgrave, PhD, Phil Johnson, PhD, Christopher Bishop, PhD, Clare Mills, PhD, and Adnan Custovic, MD, PhD

Background: The relationship between sensitization to allergens and disease is complex.

Objective: We sought to identify patterns of response to a broad range of allergen components and investigate associations with asthma, eczema, and hay fever.

Methods: Serum specific IgE levels to 112 allergen components were measured by using a multiplex array (Immuno Solid-phase Allergen Chip) in a population-based birth cohort. Latent variable modeling was used to identify underlying patterns of component-specific IgE responses; these patterns were then related to asthma, eczema, and hay fever.

Results: Two hundred twenty-one of 461 children had IgE to 1 or more components. Seventy-one of the 112 components were recognized by 3 or more children. By using latent variable modeling, 61 allergen components clustered into 3 component groups (CG1, CG2, and CG3); protein families within each CG were exclusive to that group. CG1 comprised 27 components from 8 plant protein families. CG2 comprised 7 components of plant, animal, and fungal origin from 12 protein families. CG3 included 27 components from 3 protein families. CG1 was most strongly associated with asthma (OR, 6.03; 95% CI, 3.49-19.24; P < .001) and lower FEV1 (P < .001). Sensitization to CG2 was most strongly associated with asthma (OR, 3.60; 95% CI, 2.05-6.29) and hay fever (OR, 2.52; 95% CI, 1.38-4.61). Sensitization to CG3 was most strongly associated with asthma (odds ratio [OR], 8.20; 95% CI, 3.49-19.24; P < .001) and lower FEV1 (P < .001). Sensitization to CG1 was associated with hay fever (OR, 12.79; 95% CI, 6.84-23.90; P < .001).

Key words: IgE, childhood, component-resolved diagnostics, latent variable modeling, allergens, asthma, wheeze, eczema, hay fever

Although the presence of specific IgE (sIgE) to allergens is a major risk factor for asthma and hay fever, the relationship is inconsistent, and IgE-mediated sensitization is neither necessary nor sufficient for the expression of disease. In clinical practice and research studies patients are usually assigned as being atopic or not based on the results of skin prick or sIgE tests to extracts made from whole allergen sources. One potential limitation of using whole-allergen extracts is that the sources used for their preparation contain multiple different allergenic proteins and that a positive result might reflect cross-reactivity consequent to homology between similar proteins in different allergen sources. The advent of molecular allergology has enabled investigators to identify individual proteins within whole allergen sources and to detect sIgE to individual allergen components. In patients with food allergy, measuring sensitization to components is more informative than measuring levels of IgE to whole extracts. For some allergen sources, there is a dominant component to which most sensitized subjects will react (eg, Fel d 1 is positive in almost all subjects with IgE to cat), but for others, no such dominant allergen exists (eg, sensitization to Can f 1, 2, 3, and 5 identifies less than half of those with IgE to dog).

The commercialization of molecular or component-resolved diagnostics (CRD) has facilitated the development of products in which sIgE to more than 100 allergen components can be measured simultaneously by using small volumes of serum. One such technology is the multiplex Immuno Solid-phase Allergen Chip (ImmunoCAP Immuno Solid-phase Allergen Chip [ISAC]). We have recently reported that ISAC data might facilitate better assessment of allergic airway diseases.

The role of such “high-resolution” tools in clinical practice and how best to interpret the complex data they generate is a matter of...
some debate. Conventional analyses can overaggregate the underlying complexity and do not capture the heterogeneity in patterns of responses to multiple components, and therefore more sophisticated approaches are needed. A particularly appealing framework is that of latent variable models, in which a latent underlying mechanism explains the presence of multiple correlated items.

We hypothesize that distinct patterns of component-specific IgE are associated with different clinical presentations. We propose that latent variable models can be used to identify such patterns and might facilitate better understanding of how data on sIgE to multiple allergen components can be interpreted within individual patients. To address our hypotheses, we measured levels of sIgE to 112 allergen components using a commercially available multiplex array in a population-based birth cohort and used a latent variable model to identify underlying patterns of component-specific IgE responses; these patterns were then related to asthma, eczema, and hay fever.

METHODS
Study population
The Manchester Asthma and Allergy Study is a population-based birth cohort. Subjects were recruited prenatally and followed prospectively. The study was reviewed by the local institutional review board, and parents provided written informed consent. We used data collected at follow-up at age 11 years for this study. Validated questionnaires were interviewer administered to collect information on parentally reported symptoms, physician-diagnosed diseases, and treatments received. We performed spirometry and measured exhaled nitric oxide (eNO) levels and assessed airway hyperreactivity in a 5-step methacholine challenge test.

Definition of clinical outcomes
Current wheeze was defined as a positive answer to the following question: “Has your child had wheezing or whistling in the chest in the last 12 months?”

Current asthma was defined as a positive answer to 2 of 3 of the following questions: “Has the doctor ever told you that your child had asthma?”; “Has your child had wheezing or whistling in the chest in the last 12 months?”; and “Has your child had asthma treatment in the last 12 months?”

Current hay fever was defined as a positive answer to the following question: “Does your child have hay fever now?”

Current eczema was defined as a positive answer to the following question: “Has your child had an itchy rash that comes and goes in the last 12 months?”

Lung function was recorded as FEV1 and forced vital capacity values.

Airway hyperreactivity was defined as a greater than 20% decrease in FEV1 by the final stage of the challenge (16 mg/mL). We also calculated the dose-response slope to analyze the data as a continuous variable. OR was calculated as odds ratio for each component.

Statistical grouping of allergen components
Our statistical model assumed that there exist clusters of allergen components to which subjects have a similar IgE responses (ie, either being sensitized or not to most of the components within the same cluster). We refer to these clusters as component groups (CGs). We restricted our analysis to 71 components for which there were at least 3 children with positive test results. Components to which fewer than 3 children were sensitized are listed in Table E1 in this article’s Online Repository at www.jacionline.org. We modeled different patterns of IgE response in 221 children with any positive test results.

We inferred allergen clusters and child sensitization to each cluster using Expectation Propagation, an algorithm for approximate Bayesian inference (see a detailed description in Fig E1 in this article’s Online Repository at www.jacionline.org). We relied on the Expectation Propagation implementation (available in Infer.NET http://research.microsoft.com/infernet), a Microsoft-owned library for large-scale Bayesian inference freely available for research purposes. Inference was performed based solely on IgE responses without using any information about protein structure or function or clinical phenotypes. We assigned a component to a CG if the posterior cluster membership probability was greater than 0.7 and characterized each child as sensitized to a CG if the posterior sensitization probability was greater than 0.5. Robustness and reproducibility of the results were assessed by repeating the analysis on 20 random subsets of 200 subjects.

Sequence, structure, and function of allergen components within CGs
We then investigated the sequence, structure, and functional properties of components clustered within the inferred CGs. We compiled an allergen sequence database (available on request) using allergens listed in the ALLFAM database (http://www.meduniwien.ac.at/allergens/allfam; release 2011-09-12) downloaded from the UniProt database (http://www.uniprot.org). Allergen sequences were grouped by Pfam clan/family designation and aligned with ClustalW2 by using default settings. Dendrograms (average distance, BLOSUM62) were drawn by using Jalview, version 2.7. Dendrograms were colored and annotated by using Figtree, version 1.3.1 (http://tree.bio.ed.ac.uk/software/figtree). Within each protein family within a CG where 3 or more family members were present, we used a Venn diagram to map the distribution of sensitization.

Associations between CGs and clinical outcomes
Each child was assigned a probability of being sensitized to each CG on a scale of 0 to 1. We then modeled the quantitative CG scores for each participant as a latent variable predictor of clinical outcome using multivariate logistic regression tests. In addition, we assigned each child as sensitized or not to each of the CGs by using a posterior cutoff threshold of 0.5 or greater, noting that each child could be sensitized to any combination of CGs, to quantify the prevalence of sensitization to each CG and provide descriptive statistics of the characteristics of children sensitized to each CG. Analyses were performed with Stata 12.1 and SPSS 20 software (IBM, Armonk, NY).

RESULTS
Participant flow and demographic data
Among 1184 children born into the cohort, 822 attended follow-up at age 11 years; of these, CRD data were obtained for
461 (56.1%). There were no significant differences in demographic characteristics between children with and without CRD data (see Table E2 in this article’s Online Repository at www.jacionline.org). Of 461 children included in this study, 221 (47.9%) had a positive sIgE result to at least one of the 112 allergen components, and 58 (12.5%) had asthma.

Characteristics of CGs

Of the 71 allergen components included in the model, 61 clustered into 3 groups (CG1, CG2, and CG3; Fig 1, A, and see Table E3 in this article’s Online Repository at www.jacionline.org). The remaining 10 components did not strongly belong to any cluster, and therefore we did not assign these to any CG (non-CG components, see Table E3). The posterior distribution used to assign components to groups is shown in Fig 1, B. Most of the components were assigned to a single group with very high probability (>0.9). Group membership was very stable, as demonstrated by the component similarity matrix in Fig E2 in this article’s Online Repository at www.jacionline.org. Repeating the analysis using quaternary data produced similar results, with CG assignment differing in only 3 components (see Table E4 in this article’s Online Repository at www.jacionline.org). However, group membership was less stable (see Fig E3 in this article’s Online Repository at www.jacionline.org). Therefore we opted for the binary data...
representation because it was sufficient to find patterns in the data, while requiring fewer model parameters.

The allergen components within each CG were then sorted by protein family (Pfam), as presented in Table I (see detailed accession numbers Table E5 in this article’s Online Repository at www.jacionline.org). CG1 comprised 27 components exclusively of plant origin belonging to 8 different protein families. CG2 comprised 7 components almost exclusively made up of mite allergens classified into 3 protein families. CG3 was the most complex and included 27 components of plant, animal, and fungal origin drawn from 12 protein families. Of note, the protein families within each CG were exclusive to that group.

Ten non-CG allergens (to which there were generally fewer positive test results) came from 9 protein families; 2 were venom allergens, and 5 were from protein families not otherwise represented on the microarray. The 3 remaining allergens in the non-CG group are from protein families that already fall within CGs but to which very few children reacted.

Sequence and structure of allergen components within CGs

Unrooted dendrograms of allergens belonging to different protein families within CGs and accompanying Venn diagrams mapping the distribution of sensitization to each component within each protein family (when ≥3 family members were present) are presented in Figs E4 to E8 in this article’s Online Repository at www.jacionline.org. For some protein families, almost all subjects were sensitized to a single dominant allergen. Within the profilin family, the dominant allergens were Mer a 1 and Hev b 8, which bound IgE from all profilin-reactive subjects (see Fig E4). For the expansin family, Phl p 1 was the dominant allergen (see Fig E5). For the Bet v 1–like family, all but 1 child was sensitized to Bet v 1 (see Fig E6). For pectate lyase, only 3 of the 8 family members are represented on ISAC, and most subjects were sensitized to Cup a 1 (see Fig E7).

Similar relationships were observed for the CG2 components, with the cysteine proteases being dominated by Der p 1, whereas Der f 2 was the dominant allergen for the MD-2–related lipid recognition domain (ML domain) proteins (see Fig E9 in this article’s Online Repository at www.jacionline.org). For CG3 (see Fig E10 in this article’s Online Repository at www.jacionline.org), the cupin allergen family was dominated by Ara h 1. For the prolamin family, Ara h 2 appeared to predominate, and for the serum albumins, it was Fel d 2. Fel d 1 was a frequent sensitizer in CG3, but it is the only member of the uteroglobin-like family identified as an allergen. A dominant allergen was less likely to be identifiable where

Table I. Allergen components within each CG

CG	Pfam protein family	ISAC component
CG1	β-Expansins (including N- and C-terminal domains)	C-terminal domains: nCyn d 1, rPhl p 1. N-terminal domain only: rPhl p 2
	Ribonuclease	rPhl p 5, rPhl p 6
	Berberine bridge (FAD binding)	nPhl p 4
	Profilin	rBet v 2, rHev b 8, rMer a 1, rPhl p 12
	Bet v 1 like (PR10)	rAla g 1, rBet v 1, rCor a 1.0101, rCor a 1.0401, Mal d 1, rFru p 1, rGly m 4, rAra h 8, rApi g 1
	Ole e 1 family	rChe a 1, rOle e 1, rPhl p 11
	CCD	rChe a 1, rOle e 1, rPhl p 11
	Glycosylhydroxylase family 28 (polygalacturonase and pectate lyase)	nPla a 2, nCry j 1, nCup a 1
CG2	MD-2–related lipid recognition (ML) domain (group 2 mite allergens)	nDer p 1, nDer f 2, nLep d 2
	Cysteine protease	nDer p 1, nDer f 2, nLep d 2
	Mite allergen family 5	rBlo t 5
CG3	Prolamin	rAra h 2, nAra h 6, nJug r 3, rPru p 3
	Cupin	rAra h 1, rAra h 3, nGly m 6
	EF hand	rBet v 4
	Thaumatatin family	nAct d 2
	Lipocalcin	rCan f 1, rCan f 2, rEqu c 1, rFel d 4, Mus m 1
	Serum albumin	rDer p 2, rDer f 2, rLep d 2
	Uteroglobin-like	nDer p 1, nDer f 1, nAct d 1
	Kazal-type inhibitor	rBlo t 5
	Tropomyosin	rAra h 1, rAra h 3, nGly m 6
	ATP:guanido phosphotransferase (arginine kinase)	nDer p 1, nDer f 1, nAct d 1
	Superoxide dismutase	rBet v 4
	Unique to fungi	nAct d 2
Non-CG	EF-hand	rBet v 4
	Bet v 1 like	rAct d 8
	Cysteine-rich secretory protein family (venom antigen)	rPol d 5, rVes v 5
	Tripsin-like serine protease (peptidase S1)	rCan f 5
	Enolase	rAlt a 6
	Transferrin	rGal d 3
	Glycosyl hydroxylases family 17 (β-glucanase)	rOle e 9
	γ-Thionin (thionin with O-glycans; Art v 1 family)	nArt v 1
	Cupin	nJug r 1

Pollen allergens are shown in boldface. Allergen nomenclature is based on that of the International Union of Immunological Societies Allergen subcommittee. Pathogenesis-related class 10 proteins.
few children were sensitized to that protein family. Although few children were sensitized to tropomyosins, most children were sensitized to most allergens, without a clear dominant allergen. For the lipocalins, the overlapping sensitization patterns were not clear, although Can f 1 was the most common sensitizing allergen.

Relationship between CG sensitization and clinical outcomes

We investigated the association between sensitization to each CG and clinical outcomes using the quantitative CG scores in a multivariate analysis (Fig 2 and Table II). Children sensitized to CG3 were more likely to have asthma (odds ratio [OR], 8.20; 95% CI, 3.49-19.24; \(P < .001 \)), as were children sensitized to CG2 (OR, 3.60; 95% CI, 2.05-6.29; \(P < .001 \)) but not CG1. A similar pattern was seen for wheeze. For hay fever, sensitization to CG1 was the strongest predictor (OR, 12.79; 95% CI, 6.84-23.90; \(P < .001 \)), as were children sensitized to CG2. For eczema, there was no significant association between sensitization to any of the CGs.

For lung function, only children sensitized to CG3 had a significantly poorer FEV₁ percent predicted, with values in this group on average 6.8% lower than in children not sensitized to CG3 (95% CI, 2.69-11.06; \(P = .001 \); Fig 3, A). Airway reactivity was significantly greater in those sensitized to CG2, whether expressed as a dose/response ratio or a positive or negative methacholine challenge result (Fig 2). eNO levels were significantly higher among children sensitized to each of the CGs (\(P < .001 \); Fig 3, B).

We then assigned each child as sensitized or not to each of the CGs using a posterior cutoff threshold of 0.5 or greater. Of the 149 children who were sensitized to 1 or more CGs, 99 were sensitized to only 1, 34 were sensitized to 2, and 16 were sensitized to all 3 CGs (see Fig E11 and Tables E6 and E7 in this article’s Online Repository at www.jacionline.org). For the nonsensitized group, two thirds of children were disease free, and eczema was numerically the most common disease (21.4%). For those sensitized to CG3, 28.6% had asthma, eczema, and hay fever as comorbidities, and only 2 (5.7%) children were disease free.

DISCUSSION

We demonstrated that different patterns of IgE responses to multiple allergen components can be uncovered using latent variable modeling and that each pattern bears different associations with clinical outcomes. Within those children with IgE responses, the allergen components to which they had IgE fell into 3 major clusters. The clustering was robust, reproducible, and biologically plausible. The review of the protein families to which the allergen components within each CG belonged indicated striking patterns, with each protein family being exclusive to only 1 CG. (Of note, the algorithms by which CGs were identified did not impose any prior clinical knowledge/information on protein sequence or clinical phenotypes of children.) Importantly, although children could be sensitized to more than 1 CG (and frequently were), sensitization to each distinct cluster (or CG) was associated with different patterns of disease. These results are consistent with our recent findings, which suggested the existence of multiple atopy phenotypes.

The main limitation of our study is that there are a number of potentially important allergens that are not included on the ISAC chip, such as those from fungi (ISAC has only 6 of the 109 fungal allergens identified in the International Union of Immunological Societies). The use of recombinant allergens means posttranslational modifications, such as proline hydroxylation, which are important for IgE binding in some allergens, such as Ara h 2.26 It is possible that the clustering would have been different if additional or alternative allergen components had been available. We also observed that a proportion of children who were not sensitized to any allergen reported symptoms of “allergic” disease, particularly eczema, which was reported in almost 20% of these children. This has been observed in other studies37 and reflects the heterogeneity of these diseases in the population.

Sensitization to CG1 (comprising allergens of 8 different protein families of plant origin, all of which, apart from CCD, can be found in pollens) was strongly associated with hay fever (>12-fold compared with those not sensitized to CG1) but not asthma or wheeze. In their classification of pollen allergens, Radauer and Breiteneder38 identified that of the 2615 pollen protein families found in seed plants, 29 accounted for more than 150 pollen allergens described. Of the 9 most abundant protein families that were identified as dominating the pollen allergen landscape, all but one clustered in CG1. The remaining common family (EF hand, represented by Bet v 4) clustered to CG3, but only 5 children were sensitized to this allergen. Within individual protein families in CG1, it was often possible to identify a “lead/dominant” allergen to which almost all children were sensitized; for example, among the β-expansins, all children reacted to Phl p 1. Bermuda grass is not found in the United Kingdom, yet 115 subjects had IgE to Cyn d 1. It is likely that this represents cross-reactivity with Phl p 1, which has approximately 67% sequence identity to Cyn d 1. It is likely that this represents cross-reactivity with Phl p 1, which has approximately 67% sequence identity to Cyn d 1. For the profilins, all children were sensitized to Mer a 1 (pollen from annual mercury, a weed commonly seen in Europe) and Hev b 8, and most were also sensitized to Phl p 12 and Bet v 2. For the Bet v 1–like allergens, Bet v 1 was the allergen to which most children were sensitized. It was interesting to observe that for all protein families in CG1, the ISAC array contained at least 1 component known to be present in pollen (www.Allergome.org), and for each individual protein family, the pollen allergen or allergens are frequently the one or ones to which much of the
TABLE II. Association between sensitization to CGs and clinical outcomes

Sensitization to:	Current wheeze (OR [95% CI], P value)	Current asthma (OR [95% CI], P value)	Current hay fever (OR [95% CI], P value)	Eczema (OR [95% CI], P value)
CG1	1.48 (0.77-2.84), .24	1.61 (0.84-3.10), .15	12.79 (6.84-23.90), <.001	1.10 (0.57-2.13), .78
CG2	4.19 (2.41-7.30), <.001	3.60 (2.05-6.29), <.001	2.52 (1.38-4.61), .003	1.62 (0.91-2.90), .10
CG3	5.44 (2.42-12.24), <.001	8.20 (3.49-19.24), <.001	1.15 (0.44-3.00), .77	2.00 (0.89-4.40), .09

Values in boldface indicate statistical significance.

FIG 3. Estimated marginal means for FEV1 (percent predicted; A) and eNO (B) in those sensitized to CGs.

children are sensitized, indicating that these might be the lead allergens. At age 11 years, many children had sIgE to all of Phl p 1, 2, 4, 5, 6, 11, and 12. This is in keeping with the concept of "molecular spreading," as suggested by the analyses in the German Multicenter Atopy Study 90 cohort.

For CG2, the allergen components were predominantly from dust mites and included the cysteine protease family, where Der p 1 was the allergen to which all children were sensitized, and the group 2 mite allergens, where Der f 2 was the dominant component. Sensitization to CG2 was associated with an approximately 3-fold increase in asthma and a 2-fold increase in hay fever; no association was seen with FEV1, but there was a significant increase in airway hyperresponsiveness.

CG3 contained a broad range of protein families, many represented by a single component, and this was the CG to which fewest children were sensitized (8.5%). Sensitization to CG3 was most strongly associated with asthma; FEV1 was significantly less in this group (almost 7% less than in those not sensitized to CG3), with a trend for the airways to be more reactive to methacholine. Almost all allergens from domestic pets clustered in this CG. Within the lipocalin protein family, most children were sensitized to Can f 1, and all those sensitized to Can f 2 were sensitized to multiple lipocalins, with a few children sensitized only to Equ c 1 (n = 5) or Fel d 4 (n = 6). Of the 9 children sensitized to Can f 2, all but 1 had asthma. In a recent description of the characteristics of a pediatric population with severe asthma, Konradsen et al identified that sensitization to the lipocalins Can f 2 and Equ c 1 was associated with severe asthma, whereas for serum albumins (Fel d 2, Can f 3, and Equ c 3), there was no difference between severe and controlled disease. Furthermore, all children sensitized to Can f 2 were in the severe asthma group. It has been suggested that because of sequence similarity with endogenous human lipocalins, these proteins lie at the borderline between self and nonself, which could predispose to T_{p2} immunity.

The patterns we observed can be explained in part by the structural relationships of the allergen components within protein families, as indicated by their sequence similarities (shown in the unrooted dendrograms); that is, within protein families, there are allergens from different biological sources that show significant structural homology. In addition, the collection of protein families within each CG appears to reflect the propensity to develop IgE antibodies to multiple nonhomologous proteins arising from the same biological source. For example, CG1 included almost all of the pollen allergens tested, CG2 included almost all of the dust mite allergens, and CG3 included animal and food allergens. That individual subjects have detectable IgE to multiple members of the same protein family is not in itself a novel observation, and it is not surprising that such allergen components would be in the same CG. As a consequence, each protein family is exclusive to one of the 3 CGs. Indeed, in a study of patients recruited from allergy clinic in Italy, Scala et al analyzed IgE component results (from an earlier version of ISAC containing 73 allergen components) in more than 3000 patients with IgE reactivity to any member of 3 “panallergen” groups (tropomyosins, profilins, and pathogenesis-related class 10 proteins). They identified a significant direct relationship between different representative molecules within each panallergen group (correlation coefficient usually >0.7). However, when they performed supervised clustering on these data, the components clustered within these panallergen groups, with little evidence of sensitization to more than 1 panallergen. This contrasts with our findings (where pathogenesis-related class 10 protein and profilin components were in the same CG), which might reflect differences in the components included, populations studies, and clustering methodologies used.

The mechanism of development of IgE to a diverse range of proteins from a common biological source is unclear. The nature of T-cell responses to specific environmental allergens might be determined in part by relative expression of different pattern recognition receptors on the surfaces of antigen-presenting cells, and the role of component-specific IgE on the uptake of the component by dendritic cells is another intriguing finding. Genetic variation within the HLA locus can also influence the pattern of development of IgE to multiple allergens.
In conclusion, our results suggest that distinct patterns of IgE responses to different protein families are associated with different clinical symptoms. Latent variable modeling might help identification of these patterns and development of algorithms that can facilitate better interpretation of multiple sIgE allergen component data. However, our findings need to be replicated in other populations before such algorithms can be developed and applied in the clinic.

We thank Jonas Lidholm (Thermo Fisher–Phadia) for helpful discussions regarding allergen accessions on the ISAC array. We also thank the children and parents of the Manchester Asthma and Allergy Study cohort for their commitment to the project and their continued support and enthusiasm. We acknowledge the dedication of the Manchester Asthma and Allergy Study research team (research fellows, nurses, physicians, technicians, and clerical staff). Finally, we thank Mr Philip Foden for assistance with statistical analysis in preparing figures.

Key messages

- IgE responses to allergen components in a multiplex array (ISAC) cluster into 3 main groups in a population of 11-year-old children.
- These groups contain both homologous proteins from different sources and nonhomologous proteins from the same source.
- IgE responses to clusters of allergens can be differentially associated with respiratory allergies but not with eczema.

REFERENCES

1. Custovic A, Lazic N, Simpson A. Pediatric asthma and development of atopy. Curr Clin Immunol 2013;13:173-80.
2. Heinzerling LM, Burbach GJ, Edenarter G, Bachtet C, Bindslev-Jensen C, Bonini S, et al. GA/LEN skin test study I: GA/LEN harmonization of skin prick testing: novel sensitization patterns for inhalant allergens in Europe. Allergy 2009;64:1498-506.
3. Johansson SG, Hourihane JO, Bousquet J, Bruinjzeel-Koomen C, Dreborg S, Haabtsa T, et al. A revised nomenclature for allergy. An EAACI position statement from the EAACI nomenclature task force. Allergy 2001;56:813-24.
4. Nicolaou N, Murray C, Belgrave D, Poorafshar M, Simpson A, Custovic A. Quantification of specific IgE to whole peanut extract and peanut components in prediction of peanut allergy. J Allergy Clin Immunol 2011;127:684-5.
5. Melioli G, Passalacqua G, Canonica GW, Baena-Cagnani CE, Mattioli P. Component-resolved diagnosis in pediatric allergic rhinoconjunctivitis and asthma. Curr Opin Allergy Clin Immunol 2013;13:446-51.
6. Caubet JC, Kondo Y, Ursu A, Nowak-Wegrzyn A. Molecular diagnosis of egg allergy. Curr Opin Allergy Clin Immunol 2011;11:210-5.
7. Nicolaou N, Poorafshar M, Murray C, Simpson A, Winell H, Kerry G, et al. Allergy or tolerance in children sensitized to peanut: prevalence and differentiation using component-resolved diagnostics. J Allergy Clin Immunol 2010;125:191-7, e1-13.
8. Custovic A, Nicolaou N. Peanut allergy: overestimated in epidemiology or underdiagnosed in primary care? J Allergy Clin Immunol 2011;127:631-2.
9. Konradsson JR, Nordlund B, Onnell A, Borres MP, Gronlund H, Hedlin G. Severe childhood asthma and allergy to furry animals: refined assessment using molecular-based allergy diagnostics. Pediatr Allergy Immunol 2014;25:187-92.
10. Treudler R, Simon JC. Overview of component resolved diagnostics. Curr Allergy Asthma Rep 2013;13:110-7.
11. Valenta R, Lindholm J, Niederberger V, Hayek B, Kraft D, Gronlund H. The recombinant allergen-based concept of component-resolved diagnostics and immunotherapy (CRD and CRIT). Clin Exp Allergy 1999;29:906-908.
12. Melioli G, Bonfazi F, Bonini S, Maggi E, Mussap M, Passalacqua G, et al. The ImmunoCAP ISAC molecular allergology approach in adult multi-sensitized Italian patients with respiratory symptoms. Clin Biochem 2011;44:1005-11.
13. Prosperi MC, Belgrage D, Buchan I, Simpson A, Custovic A. Challenges in interpreting allergen microarrays in relation to clinical symptoms: a machine learning approach. Pediatr Allergy Immunol 2014;25:71-9.
14. Antoncicelli L, Massacesi C, Brusch MC, Cinti B, Bilo MB, Bonfazi F. Component-resolved diagnosis in real life: the risk assessment of food allergy using microarray-based immunosassay. Eur Ann Allergy Clin Immunol 2014;46:30-4.
15. Nettis E, Bonfazi F, Bonini S, Di Leo E, Maggi E, Melioli G, et al. Molecular diagnosis and the Italian Board for ISAC. Eur Ann Allergy Clin Immunol 2014;46:68-73.
16. Bishop CM. Model-based machine learning. Philos Trans A Math Phys Eng Sci 2013;371:20120222.
17. Bishop CM. Latent variable models. In: Jordan MI, editor. Learning in graphical models. Boston: MIT Press; 1999. pp. 371-403.
18. Custovic A, Simpson BM, Murray CS, Lowe L, Woodcock A. The National Asthma Campaign Manchester Asthma and Allergy Study. Pediatr Allergy Immunol 2002;13:32-7.
19. Belgrage DC, Simpson A, Semus-Junfagiac A, Murray CS, Buchan I, Pickles A, et al. Joint modeling of parentally reported and physician-confirmed wheeze identifies children with persistent troublesome wheezing. J Allergy Clin Immunol 2013;132:575-83.e12.
20. Kljaic-Bukvic B, Blekic M, Aberle N, Curtin JA, Hankinson J, Semus-Junfagiac A, et al. Genetic variants in endotoxin signalling pathway, domestic endotoxin exposure and asthma exacerbations. Pediatr Allergy Immunol 2014;25:552-7.
21. Nicolaou NC, Murray C, Lowe LA, Murray CS, Woodcock A, Custovic A. Day-care attendance, position in sibship, and early childhood wheezing: a population-based birth cohort study. J Allergy Clin Immunol 2008;122:500-6.e5.
22. Nicolaou N, Lowe LA, Murray CS, Woodcock A, Simpson A, Custovic A. Exhaled breath condensate pH and childhood asthma: unselected birth cohort study. Am J Respir Crit Care Med 2006;174:254-9.
23. Weiland SK, Bjorksten B, Bruneck B, Cookson WO, von Mutius E, Strachan DP, et al. Phase II of the International Study of Asthma and Allergies in Childhood (ISAAC II): rationale and methods. Eur Respir J 2004;24:406-12.
24. Popa V. ATS guidelines for methacholine and exercise challenge testing. Am J Respir Crit Care Med 2001;163:292-3.
25. Asher MI, Keil U, Anderson HR, Beasley R, Crane J, Martinez F, et al. International Study of Asthma and Allergies in Childhood (ISAAC): rationale and methods. Eur Respir J 1995;8:483-91.
26. Lodrup Carlsen KC, Roll S, Carlsen KH, Mowinckel P, Wijga AH, Bruneck B, et al. Does pet ownership in infancy lead to asthma or allergy at school age? Pooled analysis of individual participant data from 11 European birth cohorts. PLoS One 2012;7:e43214.
27. Braun-Fahrlander C, Wuthrich B, Gassner M, Grize S, Semahusser FH, Varonier HS, et al. Validation of a rhinitis symptom questionnaire (ISAAC core questions) in a population of Swiss school children visiting the school health services. SCARPOL-team. Swiss Study on Childhood Asthma and Respiratory Symptom with respect to Air Pollution and Climate. International Study of Asthma and Allergies in Childhood. Pediatr Allergy Immunol 1997;8:75-82.
28. Simpson A, Custovic A, Tepper R, Graves P, Stern DA, Jones M, et al. Genetic variation in vascular endothelial growth factor-a and lung function. Am J Respir Crit Care Med 2012;185:1064-72.
29. Stanojevic S, Wade A, Cole TJ, Lum S, Custovic A, Silverman M, et al. Spirometry centile charts for young Caucasian children: the Asthma UK Collaborative Initiative. Am J Respir Crit Care Med 2009;180:547-52.
30. Minka T. Expectation Propagation for approximate Bayesian inference. In: Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence, 2001. San Francisco (CA): Morgan Kaufmann, 2001. pp. 362-9.
31. Raduatu C, Dublin M, Wagner S, Mari A, Breiteneder H. Allergens are distributed into few protein families and possess a restricted number of biochemical functions. J Allergy Clin Immunol 2008;121:847-52.e7.
32. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23:2947-8.
33. Radauer C, Nandy A, Ferreira F, Goodman RE, Larsen JN, Lidholm J, et al. Update of the WHO/IUIS Allergen Nomenclature Database based on analysis of allergen sequences. Allergy 2014;69:413-9.
34. Lazic N, Roberts G, Custovic A, Belgrage D, Bishop CM, Winn J, et al. Multiple atopy phenotypes and their associations with asthma: similar findings from two birth cohorts. Allergy 2013;68:764-70.
35. Simpson A, Tan YV, Winn J, Svensen M, Bishop CM, Heckerman DE, et al. Beyond atopy: multiple patterns of sensitization in relation to asthma in a birth cohort study. Am J Respir Crit Care Med 2010;181:1200-6.
36. Bernard H, Guillou B, Dumare M, Paty E, Dreskin SC, Wal JM, et al. Allergenicity of peanut component Ara h 2: contribution of conformational versus linear hydroxyproline-containing epitopes. J Allergy Clin Immunol 2015;135:1267-74.
37. Flohr C, Weiland SK, Weinmayr G, Bjorksten B, Braback L, Brunekreef B, et al. The role of atopic sensitization in flexural eczema: findings from the International Study of Asthma and Allergies in Childhood Phase Two. J Allergy Clin Immunol 2008;121:141-7.e4.

38. Radauer C, Breiteneder H. Pollen allergens are restricted to few protein families and show distinct patterns of species distribution. J Allergy Clin Immunol 2006;117:141-7.

39. Hatzler L, Panetta V, Lau S, Wagner P, Bergmann RL, Illi S, et al. Molecular spreading and predictive value of preclinical IgE response to *Phleum pratense* in children with hay fever. J Allergy Clin Immunol 2012;130:894-901.e5.

40. Virtanen T, Kinnunen T, Rytkonen-Nissinen M. Mammalian lipocalin allergens—insights into their enigmatic allergenicity. Clin Exp Allergy 2012;42:494-504.

41. Scala E, Alessandri C, Palazzo P, Pomponi D, Liso M, Bernardi ML, et al. IgE recognition patterns of profilin, PR-10, and tropomyosin panallergens tested in 3,113 allergic patients by allergen microarray-based technology. PLoS One 2011;6:e24012.

42. Emara M, Royer PJ, Mahdavi J, Shakib F, Ghaemmaghami AM. Retagging identifies dendritic cell-specific intercellular adhesion molecule-3 (ICAM3)-grabbing non-integrin (DC-SIGN) protein as a novel receptor for a major allergen from house dust mite. J Biol Chem 2012;287:5756-63.

43. Sharquie IK, Al-Ghouleh A, Fitton P, Clark MR, Armour KL, Sewell HF, et al. An investigation into IgE-facilitated allergen recognition and presentation by human dendritic cells. BMC Immunol 2013;14:54.

44. Potaczek DP, Kabesch M. Current concepts of IgE regulation and impact of genetic determinants. Clin Exp Allergy 2012;42:852-71.

45. Mudde GC, Bheekha R, Bruijnzeel-Koomen CA. IgE-mediated antigen presentation. Allergy 1995;50:193-9.