Gut dysbiosis and clinical phases of pancolitis in patients with ulcerative colitis

Brenda Maldonado-Arriaga1,2 | Sergio Sandoval-Jiménez1 | Juan Rodríguez-Silverio3 | Sofía Lizeth Alcaráz-Estrada4 | Tomás Cortés-Espinosa5 | Rebeca Pérez-Cabeza de Vaca6 | Cuauhtémoc Licona-Cassani7 | July Stephany Gámez-Valdez7 | Jonathan Shaw8 | Paul Mondragón-Terán6 | Cecilia Hernández-Cortez9 | Juan Antonio Suárez-Cuenca1 | Graciela Castro-Escarpulli2

1Laboratorio de Metabolismo Experimental e Investigación Clínica, División de Investigación Clínica, C.M.N. “20 de Noviembre”, ISSSTE and Hospital General de 2A Troncoso, Instituto Mexicano del Seguro Social, Ciudad de México, México
2Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
3Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
4Unidad de Análisis y Referencia Viroológica, C.M.N. “20 de Noviembre”, ISSSTE, Ciudad de México, México
5Clínica de Enfermedad Inflamatoria Intestinal, Servicio de Gastroenterología, C.M.N. “20 de Noviembre”, ISSSTE, Ciudad de México, México
6Coordinación de Investigación y División de Investigación Biomédica, C.M.N. “20 de Noviembre”, ISSSTE, Ciudad de México, México
7Laboratorio de Genómica Industrial, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Monterrey, NL, Mexico
8Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
9Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México

Correspondence
Graciela Castro-Escarpulli, Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México.
Email: chelacastro@hotmail.com

Juan Antonio Suárez-Cuenca, Laboratorio de Metabolismo Experimental e Investigación Clínica; División de Investigación Clínica, C.M.N. “20 de Noviembre”, ISSSTE and Hospital General de 2A Troncoso, Instituto Mexicano del Seguro Social, Ciudad de México, México.
Email: suarej05@gmail.com

Funding information
E-015 institutional program; Secretaría de Investigación y Posgrado del Instituto Politécnico Nacional, Grant/Award Number: 20200675 and 20194936; CONACyT

Abstract
Ulcerative colitis (UC) is a frequent type of inflammatory bowel disease, characterized by periods of remission and exacerbation. Gut dysbiosis may influence pathophysiology and clinical response in UC. The purpose of this study was to evaluate whether gut microbiota is related to the active and remission phases of pancolitis in patients with UC as well as in healthy participants. Fecal samples were obtained from 18 patients with UC and clinical-endoscopic evidenced pancolitis (active phase n = 9 and remission phase n = 9), as well as 15 healthy participants. After fecal DNA extraction, the 16S rRNA gene was amplified and sequenced (Illumina MiSeq), operational taxonomic units were analyzed with the QIIME software. Gut microbiota composition revealed a higher abundance of the phyla Proteobacteria and Fusobacteria in active pancolitis, as compared with remission and healthy participants. Likewise, a marked abundance of the genus Bilophila and Fusobacteria were present in active pancolitis, whereas a higher abundance of Faecalibacterium characteristic both remission and healthy participants. LEfSe analysis showed that the genus Roseburia and Faecalibacterium were enriched in remission pancolitis, and genera Bilophila and Fusobacterium were enriched in active...
pseudomembranous colitis, and antibiotic treatment during the previous 4 weeks were excluded. Pancolitis was defined according to clinical, radiological, endoscopic, and histological criteria (Van Assche et al., 2010). All the patients had experienced at least one previous episode of pancolitis before their recruitment. The study at remission phase of pancolitis received therapy based on pharmacological treatment, a fiber-rich diet, and the use of probiotics (Owczarek et al., 2016). Some patients with active pancolitis did not receive treatment due to non-medical reasons, like the inability to attend their follow-up appointment. Characteristics like age, time since disease onset, affected gastrointestinal location, frequency of bowel movements, and presence of blood in stools were collected from clinical records. Clinical activity was defined as a value of 4 or higher for colitis activity index (CAI [Clinical activity index], used for ulcerative colitis), and clinical remission was defined with CAI value

2.1 Study population

In this cross-sectional study, groups of 18 patients with UC and clinical-endoscopic-evidenced pancolitis (active phase $n = 9$ and remission phase $n = 9$) as well as 15 healthy participants, attended the Department of Gastroenterology, Centro Médico Nacional ‘20 de Noviembre’ ISSSTE, Mexico City, Mexico, between July 2017 and January 2019. Patients with concomitant irritable bowel syndrome, pseudomembranous colitis, and antibiotic treatment during the previous 4 weeks were excluded. Pancolitis was defined according to clinical, radiological, endoscopic, and histological criteria (Van Assche et al., 2010). All the patients had experienced at least one previous episode of pancolitis before their recruitment. The study at remission phase of pancolitis received therapy based on pharmacological treatment, a fiber-rich diet, and the use of probiotics (Owczarek et al., 2016). Some patients with active pancolitis did not receive treatment due to non-medical reasons, like the inability to attend their follow-up appointment. Characteristics like age, time since disease onset, affected gastrointestinal location, frequency of bowel movements, and presence of blood in stools were collected from clinical records. Clinical activity was defined as a value of 4 or higher for colitis activity index (CAI [Clinical activity index], used for ulcerative colitis), and clinical remission was defined with CAI value

2.2 Sample collection

Samples were collected from clinical records. Clinical activity was defined as a value of 4 or higher for colitis activity index (CAI [Clinical activity index], used for ulcerative colitis), and clinical remission was defined with CAI value

2.3 Culture-based analysis

Culture-based analysis was performed using standard techniques. Microorganisms were identified using biochemical tests and 16S rRNA gene sequencing. The results were compared with the clinical outcomes.
Inhibitors commonly present in stool samples were then removed during the isolation procedure (Tedjo et al., 2015). A NanoDrop μ the manufacturer’s instructions. DNA was eluted in 30 μL of the obtained DNA was mixed with primers PE-PCR-III-F and PE-PCR-IV-barcode, in a 25 μL final volume PCR reaction (quadruplicate), at run cycle conditions of 98°C for 30 s [98°C for 30 s, 83°C for 30 s, 72°C for 30 s] for 7 cycles, 4°C hold. Then, the 4 PCR reactions were pooled and the products were cleaned by using 16S Metagenomic Sequencing Purification beads (Caporaso et al., 2012). The DNA library concentrations were quantified and then multiplexed to provide the same amount of DNA in each sample. A single Illumina MiSeq lane set for paired-end 300-basepair reads was used to sequence the libraries. Paired-end reads of 16S rRNA gene libraries were generated with the Illumina, MiSeq platform. A total of 10,629,314 raw sequences were obtained, with further quality filter and binned resulting in 8,349,697 usable sequences, with a sample average of 378,489 per sequence. Sequences were clustered and singletons removed; the data were rarefied to control for variations in sequencing efforts. The datasets supporting the conclusions of this article are available in https://www.ncbi.nlm.nih.gov/bioproject/596546, under the ID PRJNA596549 repository. The analyses of taxonomy and diversity of the samples were performed taking as a reference the SILVA database (Bokulich et al., 2013; Bolyen et al., 2018).

2.5 | Microbial composition and analysis by Illumina

A two-steps PCR methodology was used to prepare 16S rRNA libraries. For the first-step, extracted DNA was quantified and samples were diluted to the amount of the least concentrated sample. Then 2 μL were used for the PCR reaction (quadruplicates) at the following conditions: 98°C for 30 s [98°C for 30 s, 52°C for 30 s, 72°C for 30 s] for 20 cycles, 4°C hold. Then, the 4 resulting reactions were amalgamated. The samples were then cleaned by using AmpureXP beads and eluted in 40 μL final volume. For the second step, a 4 μL of the purified DNA was used for the PCR reaction (quadruplicates), at run cycle conditions of 98°C for 30 s [98°C for 30 s, 83°C for 30 s, 72°C for 30 s] for 7 cycles, 4°C hold. Then, the 4 PCR reactions were pooled and the products were cleaned by using 16S Metagenomic Sequencing Purification beads (Caporaso et al., 2012). The DNA library concentrations were quantified and then multiplexed to provide the same amount of DNA in each sample. A single Illumina MiSeq lane set for paired-end 300-basepair reads was used to sequence the libraries. Paired-end reads of 16S rRNA gene libraries were generated with the Illumina, MiSeq platform. A total of 10,629,314 raw sequences were obtained, with further quality filter and binned resulting in 8,349,697 usable sequences, with a sample average of 378,489 per sequence. Sequences were clustered and singletons removed; the data were rarefied to control for variations in sequencing efforts. The datasets supporting the conclusions of this article are available in https://www.ncbi.nlm.nih.gov/bioproject/596546, under the ID PRJNA596549 repository. The analyses of taxonomy and diversity of the samples were performed taking as a reference the SILVA database (Bokulich et al., 2013; Bolyen et al., 2018).

2.6 | Bioinformatic analysis

The Illumina Real-Time Analysis software (version 1.17.28) was used for base calling, image analysis, and error estimation. Sequencing provided read lengths of 300 bp, which were demultiplexed, verifying that the paired ends provided a clear overlap. The paired ends were then linked together with the fastq-join program (http://code.google.com/p/ea-utils/). Separate files of each sample (R1 and R2) were entered in fastq format by using the split_libraries_fastq.py pipelines. Sequences that had quality value (QV) scores of ≥20 (Phred score of 20) for no-less than 99% of the sequence were selected for further study. All sequences with ambiguous base calls were discarded. Subsequently, the sequences were grouped in Operational Taxonomic Units (OTU), where the pick_closed_reference_otus.py pipelines were used. QiIME, which uses the BIOM
format, was used to represent OTU tables (Bolyen et al., 2018; Dubinsky & Braun, 2015; Edgar et al., 2011). Analyses of sequence reads were performed by using SILVA multiclassifier tools with a 97% confidence threshold (Navas-Molina et al., 2013). Subsequent analyses of diversity index were all performed based on this output normalized data (Allali et al., 2017; Abhauer et al., 2015). To perform the diversity analyses, the core_diversity_analyses.py pipelines were executed with the pipeline alpha_diversity.py. Alpha diversity metrics were calculated with QIIME, that is, the observed OTUs (observed species) and the phylogenetic diversity or complete tree PD (PD_whole_tree) (Bolyen et al., 2018); whereas the weighted distances of UniFrac of the beta diversity were determined with beta_diversity.py pipelines, and the R software v.2.15.3 was used to display the results (Barwell et al., 2015; Chao et al., 2006; Hass et al., 2011). The “Linear discriminant analysis (LDA) effect size (LEfSe)” algorithm was performed with the Galaxy online platform to determine the different relative abundances of bacterial communities among the different groups of patients. The significance thresholds used were those recommended in the program. LEfSe considered statistical significance between the different biological classes with a Kruskal–Wallis test and subsequently analyzed the biological significance with a Wilcoxon test (Segata et al., 2011).

2.7 | Fecal calprotectin test

Fecal calprotectin (FC) was measured as a marker of intestinal inflammation by using a commercial ELISA (MyBioSource), following the manufacturer’s instructions. Optical densities were read at 405 nm with a microplate ELISA reader. Samples were tested in duplicate, and results were calculated from a standard curve and expressed as μg/g stool (Chang & Cheon, 2018).

2.8 | Statistical analysis

Data normality were compared by using the Shapiro–Wilk test. Quantitative data were compared by non-paired, two-tail, t test, or U-Mann Whitney, as appropriate. Analyses of the sequences were carried out in the QIIME and R software. Multivariate nonparametric ANOVA was used to determine the differences in the abundance of the microbial community between groups, whereas UniFrac was used to compare the abundance of the specific microbiota and the concentration of fecal calprotectin, and it was visualized by principal coordinate analysis. To test whether the clusters of microbiota from the study conditions were different between them, UniFrac p-values, based on principal coordinate analysis applied to the matrix distance, were performed to allow pairwise comparison of microbiota from clinical phases of pancolitis and healthy controls (Caporaso et al., 2010; Lawley & Tannock, 2017). Finally, the Area Under the Curve (AUC) was calculated to explore whether the relative abundance of the bacterial genus most frequently observed (cutoff value according to ROC analysis) may predict UC severity. The Statistical Package for Social Sciences SPSS v.18.0 was used, and p-values of ≤0.05 (2-tailed) were considered to be statistically significant.

3 | RESULTS

3.1 | Study population

Eighteen patients diagnosed with UC and pancolitis, mean aged 37-years-old constituted the study population, who were further divided according to the disease activity, as demonstrated by the CAI and fecal calprotectin values. A cohort of sex- and age-matched, healthy volunteers were included for comparison. Baseline clinical-demographic characteristics are shown in Table 1. Stools from patients with active pancolitis were characterized by being watery, corresponding to Bristol type 7, and bloody (two points in rectal bleeding of Mayo Clinical Score) in all cases.

3.2 | Microbial composition and diversity

The analysis of microbiome from fecal samples showed the relative abundance of OTUs at different taxonomic levels (Figure 1a, b, Table 2). OTUs were created out of the filtered tags and were grouped at a similarity of 97%. This gave a total of 1533 OTUs for the 33 samples used in this study. Taxonomic composition at the level of phyla is summarized in Figure 1a. The bacterial phyla Firmicutes, Bacteroidetes, Proteobacteria, and Fusobacteria were the most common sequences showing 97% of similarity. For remission pancolitis and healthy participants, Firmicutes was the most abundant bacterial phylum. Microbiota abundance in remission pancolitis was very similar to that observed in healthy participants, at the phyla level; whereas, active pancolitis showed phylum Proteobacteria as the most abundant. Genus distribution provided a subjective perception of the difference between the relative abundance of patients with active vs. remission pancolitis and healthy participants (Figure 1b) The most abundant genera in active pancolitis were Fusobacterium and Bilophila. For the group of remission pancolitis and healthy participants, the most abundant genera were Faecalibacterium, Roseburia, and Bacteroides (Appendix: Table A1, A2, and A3). Regarding bacterial alpha diversity comparison, pancolitis activity was related to the lowest community richness (Chao index) and diversity (Shannon index) (Figure 1c, d), whereas community richness and diversity were similar between remission pancolitis and healthy participants. Likewise, significant differences in species dominance of microbiota (Simpson index) (Figure 1e) were found between active vs. remission pancolitis and healthy participants (Appendix: Table A4).

Interestingly, the relative abundance of the most frequent bacterial genus observed in active pancolitis was significantly different from those corresponding to remission pancolitis and healthy participants (Table 2; Figure 2).

The structure of the most abundant microbial species was explored with the biomarker of UC severity, fecal calprotectin; where
the clusters of the different phases are significantly separated based on fecal calprotectin (Figure 3).

The microbial community structure was investigated by using the principal component analysis, which allows splitting particular microbial communities according to their potential relation with clinical scenarios. Highly defined microbiota clusters were distributed according to clinical phases of pancolitis, where the distribution of active pancolitis clusters was significantly separated from those of remission pancolitis and healthy participants, showing these two last clusters a closer distribution between them (Figure 4).

Linear discriminant analysis (LDA) effect size (LEfSe) was used to determine differentially abundant bacterial taxa between active and remission pancolitis. Patients with active pancolitis were related to the phylum Proteobacteria and Fusobacteria, while patients in remission pancolitis were related to the phylum Firmicutes and Bacteroidetes ($\alpha = 0.01$, LDA score >3.0) (Figure 5; Appendix: Table A5).

Table 1: Demographic and clinical characteristics of the study population ($n = 33$)

	AP ($n = 9$)	RP ($n = 9$)	HS ($n = 15$)	p-value
Age (years old)	36.9 ± 1.4	37.9 ± 1.1	36.4 ± 1.6	NS
Male	7 (77.7)	6 (66.6)	6 (40)	NS
Index CAI	11.0 ± 1.3	1.7 ± 0.6	N/A	<0.05
Montreal A (age at onset)				
A1 (16)	None	None	N/A	NS
A2 (17–40)	7 (77.7)	6 (66.6)		
A3 (41)	2 (22.2)	3 (33.3)		
Montreal Score Extensive				
E1 ulcerative proctitis	None	None	N/A	NS
E2 left-sided UC	None	None		
E3 extensive UC	9 (100)	9 (100)		
Montreal Score Severity				
S0 silent colitis	None	9 (100)	N/A	NS
S1 mild colitis	None	None		
S2 moderate colitis	None	None		
S3 severe colitis	9 (100)	None		
Endoscopy Mayo Score				
0	NONE	N/A	N/A	N/A
1	NONE	N/A		
2	NONE	N/A		
3	9 (100)	None		
Frequency of bowel movements		2 to 4	1 to 2	NS
Presence of blood in stools		None	None	NS
Time (years) from diagnosis				
≥10	8 (88.8)	6 (66.6)	N/A	NS
≤10	1 (11.1)	3 (33.3)		
Currently smoking	2 (22.2)	None	None	N/A
Medication use				
Mesalazine	None	6 (66.6)	N/A	NS
Corticosteroids	2 (22.2)	2 (22.2)		
Infliximab	none	1 (11.1)		
No treatment	7 (77.7)	None		
Fecal calprotectin (μg/g)	480.1 ± 13.7	99.6 ± 8.9	21.6 ± 4.3	p < 0.05

Quantitative data were resumed as mean ± SD and qualitative data as n (%). Statistical analysis was performed with a two-way U-Mann Whitney and Fisher’s test, as appropriate.

Abbreviations: AP, active pancolitis; HS, healthy subjects; N/A, not applicable; NS, non-significant; RP Remission pancolitis.
FIGURE 1 Characteristics of the microbial community in pancolitis, remission, and healthy participants. (a) Taxonomic composition distribution in samples of phylum level. (b) The taxonomic composition distribution in samples of genus level. (c) Alpha diversity index boxplot, including community richness (Chao), (d) diversity (Shannon), and (e) Dominance (Simpson). The *p*-value indicates the statistical significance of two-way ANOVA. Abbreviations: AP, active pancolitis; HS, healthy subjects; RP, Remission pancolitis.

Phylum	AP (n = 9)	RP (n = 9)	HS (n = 15)
Firmicutes	4.0 ± 1.5**	50.0 ± 5.2	54.6 ± 6.4
Bacteroidetes	15.0 ± 0.2**	46.0 ± 4.2	45.0 ± 3.4
Proteobacteria	52.5 ± 5.6**	0.0 ± 0.0	2.5 ± 1.0
Fusobacteria	30.0 ± 2.5**	0.0 ± 0.0	0.0 ± 0.0
Actinobacteria	1.5 ± 0.5	2.5 ± 1.0	2.5 ± 1.0
Verrucomicrobia	0.0 ± 0.0	1.5 ± 0.3	1.5 ± 0.5

Genus	AP (n = 9)	RP (n = 9)	HS (n = 15)
Lactobacillus	0.0 ± 0.0**	5.6 ± 4.2	8.5 ± 2.4
Faecalibacterium	0.5 ± 1.5**	21.0 ± 8.7***	40.2 ± 4.9
Roseburia	0.0 ± 0.0**	5.4 ± 7.2***	7.3 ± 7.4
Bacteroides	7.6 ± 4.1	11.5 ± 10.8***	3.5 ± 2.1
Bilophila	12.0 ± 9.1**	0.0 ± 0.0	0.0 ± 0.0
Fusobacterium	35.6 ± 15.4**	0.0 ± 0.0	0.0 ± 0.0

Relative abundance is shown as mean ± SD and (†) percentage of the relative abundance in relation to that observed in healthy participants. Statistical analysis was performed with two-way ANOVA. Significant difference (*p* < 0.01) between: (*) AP vs. RP; (**) AP vs. HS; (***) RP vs. HS.

Abbreviations: AP, active pancolitis; HS, healthy subjects; RP, Remission pancolitis.
Finally, we explored whether the relative abundance of the bacterial genus most frequently observed (cutoff values according to ROC analysis: active vs. remission pancolitis Bilophila 10%, Faecalibacterium 40%; pancolitis vs. healthy participants Bilophila 10%, Fusobacterium 10%) were related with active pancolitis. Bilophila and Fusobacterium showed an AUC of 0.917 and 0.988 for active vs. remission pancolitis, while similar AUCs were observed for active pancolitis vs. healthy participants, but not for remission pancolitis vs. healthy participants (Appendix: Table A6).
Our main finding was the significant differences of fecal microbiota composition from patients with active vs. remission pancolitis, with potential clinical application. Our study population was constituted of young aged patients with UC and severe stage of pancolitis. Scarce studies have explored gut microbiota in such population, probably due to the low prevalence of pancolitis between cases with UC. However, gut dysbiosis observed in patients with active vs. remission pancolitis in the present study is comparable with other reports (Alam et al., 2020; Danilova et al., 2019; Franzosa et al., 2019; Halfvarson et al., 2017; Imhann et al., 2018; Kumari et al., 2013; Sha et al., 2013). Our results were further validated by comparison with gut microbiota from healthy participant controls from a family who shares a similar diet and they are expected to exert a lower influence on the gut microbiota composition.

FIGURE 4 Principal component analysis. The overall structure of the fecal microbiota was plotted according to the different clinical scenarios (active pancolitis [green], remission pancolitis [pink], and healthy participants [blue]). Each data point represents an individual sample.

FIGURE 5 The linear discriminant analysis effect size (LEfSe) analysis of fecal microbiota with active pancolitis vs. remission pancolitis. (A) Bar graph showing LDA scores of phylum and cladogram generated by LEfSe indicating differences at phylum among active pancolitis and remission pancolitis. (b) Bar graph showing LDA scores of genus and cladogram generated by LEfSe indicating differences at genus among active pancolitis and remission pancolitis. Each successive circle represents a phylogenetic level. Regions in red indicate taxa enriched in active pancolitis, while regions in green indicate taxa enriched in remission pancolitis. Differing genera are listed on the right side of the cladogram.
Our results showed an increased proportion of the phylum Proteobacteria and the genera Fusobacterium and Bilophila in active pancolitis, which was significantly different from the group of remission pancolitis and healthy participants, who shared a microbiota profile of higher proportion of phylum Firmicutes, and genera Faecalibacterium and Roseburia (Vester-Andersen et al., 2019). These results are similar to those obtained by Franzosa et al., 2019, Kumari et al., 2013; Sha et al., 2013. Particularly, the findings of a reduced proportion of the genera Faecalibacterium and Roseburia in active pancolitis, and their restoration in remission pancolitis, has also been observed in previous reports (Khan et al., 2019; Man et al., 2011; Palmela et al., 2018; Vignsaes et al., 2012). Such characterization is relevant due to scanty information regarding microbiota abundance in the remission phase of pancolitis, whereas consistent identification of specific genus in the remission phase may be useful to design more efficient therapeutic strategies, prompted to reduce UC severity. Interestingly, a particular bacterial composition like Faecalibacterium was shared by remission pancolitis and healthy participants. These bacteria have been reported to metabolize dietary components that promote colonic motility, maintain the intestinal immune system, and anti-inflammatory properties (Dicks et al., 2018). Consistently, reduced abundance of these microorganisms has been associated with a higher rate of recurrence of UC (Alam et al., 2020; Al-Bayati et al., 2018; Ferreira-Halder et al., 2017; Kinross et al., 2011; Lopez-Siles et al., 2017; Machiels et al., 2014) although increased levels of Faecalibacterium in stool samples have been associated with a lower activity index, supporting their role as potential biomarkers of disease severity and outcome, as suggested in other studies (Paramsothy et al., 2019; Wang et al., 2018).

Other findings were the higher abundance of the phylum Proteobacteria, and particularly the expansion of the genus Bilophila in active pancolitis. It is known that the relative abundance of Bilophila is promoted by diets enriched in saturated fats, which increase bacterial resistance to bile elimination. Furthermore, a change in the type of fat consumed affects the composition of gut microbiota, which may modify the onset and severity of UC (Devkota & Chang, 2015; Pittayanon et al., 2020; Torres et al., 2018). Dietary modifications involving excessive consumption of fried food, dairy products, and wheat flour are associated with the development of severe diarrhea in patients with active pancolitis (Keshetel et al., 2019). In the present study, we consider that there is no significant effect derived from the modification of the diet, since the population consumed a soft diet with abundant hydration; without a specific recommendation for dietary restrictions, even during active pancolitis.

Certain species of Fusobacterium show pro-inflammatory, invasive, and adherent capacity to the intestinal mucosa, while the increased proportion of Bilophila in the gut promotes an immune response mediated by Th1, resulting in the development of colitis in experimental mice models (Bashir et al., 2016; Chen et al., 2020; Hirano et al., 2018; Liu et al., 2019; Ohkusa et al., 2002; Tahara et al., 2015; Wright et al., 2015). Although a direct pathophysiological mechanism is not possible to elucidate from the present study, we can propose that the relative abundance of some species is associated with the degree of inflammation and pancolitis, derived from the inverse relationship observed between the abundance of Fecalibacterium and Roseburia with calprotectin, a biomarker of severity of UC, which was consistent with a recent report (Björkqvist et al., 2019; Yu et al., 2019). Likewise, differences in bacterial richness, diversity, and dominance were highly related to the clinical scenarios studied. Remarkably, remission pancolitis and healthy participants showed the highest relative abundance of the phylum Firmicutes, which contributed to most of the bacterial diversity and richness (Björkqvist et al., 2019; Ganji-Arjenaki & Rafieian-Kopaei, 2018; Jandhyala et al., 2015). Further analyses of cluster distribution of bacterial communities showed differences in active pancolitis, as compared to remission pancolitis and healthy participants, which was consistent with previous studies showing a difference in the structure of microbiota between active pancolitis and healthy participants (Forbes et al., 2016; Havenaar, 2011; Louis & Flint, 2017).

Furthermore, studies characterizing gut microbiota composition and its modification during pancolitis are relevant, since (a) pancolitis provides a higher risk for colorectal cancer, whereas gut dysbiosis is thought to facilitate colorectal cancer development; (b) the study of gut microbial communities during clinical phases of pancolitis contributes to a better understanding of potential interactions with the host immune response; (c) characterization of a specific genus of gut microbial communities may own potential clinical application derived from their association with pancolitis or remission phases; and (d) specific microbial manipulation, concomitant to antibiotic use, is currently used as a therapeutic approach for UC (Alard et al., 2018; Devkota & Chang, 2015; Galazzo et al., 2019).

Finally, gut dysbiosis has been proposed as an important contributing factor to the increasing prevalence of pancolitis, with a potential role for the related clinical-therapeutic phases (Halfvarson et al., 2017; Miyoshi et al., 2018; Petrof et al., 2013). Consistently, we found a significant ability of the genus Bilophila and Fusobacterium to selectively associate with cases of activity/remission pancolitis (Fukuda & Fujita, 2014; Guo et al., 2019).

To our knowledge, this is the first study that investigated the composition of fecal microbiota in Mexican patients with active and remission pancolitis. Our study faces some limitations. First, 16S rRNA analysis provides the taxonomic composition of the microbes present in the community and does not provide an analysis of the role of the microbiota in the disease. Second, data analysis may show limitations regarding the specific characterization of microbiota composition as an isolated endpoint; however, we think that the analysis performed yields an adequate interpretation within a translational context, highlighting the role of microbiota diversity in the clinical phases of pancolitis. Third, larger sample size may be required to confirm our data and further research is required to better characterize the role of gut microbiota in patients with pancolitis.

Here, we provide a broad investigation of the fecal microbial community in Mexican patients presenting pancolitis. We demonstrate...
differences in the microbiota communities in patients with active pancolitis, remission pancolitis, and healthy participants. Selective association of gut dysbiosis with active/remission pancolitis may set the basis for further applications of non-invasive methods, clinically useful for early identification of disease severity.

ACKNOWLEDGMENTS
This study was funded by the E-015 institutional program and Secretaría de Investigación y Posgrado del Instituto Politécnico Nacional (SIP 20200675 and 20194936) (IPN). BMA held a scholarship from CONACyT. GCE received support from Estímulos al Desempeño en Investigación, Comisión y Fomento de Actividades Académicas (Instituto Politécnico Nacional), and Sistema Nacional de Investigadores (SNI, CONACyT), CHC received support from Sistema Nacional de Investigadores (SNI, CONACyT). We would like to thank Sofia Mulia for kindly correcting the style of the manuscript.

CONFLICTS OF INTEREST
None declared.

AUTHOR CONTRIBUTIONS
Brenda Maldonado Arriaga: Conceptualization (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Writing-original draft (equal); Writing-review & editing (equal). Sergio Sandoval-Jimenez: Formal analysis (equal); Writing-original draft (equal); Writing-review & editing (equal). Juan Rodríguez -Silverio: Formal analysis (equal); Writing-original draft (equal); Writing-review & editing (equal). Sofía Lizeth Alcárrez-Estrada: Formal analysis (equal); Writing-original draft (equal); Writing-review & editing (equal). Tomás Cortés-Espinosa: Formal analysis (equal); Writing-original draft (equal); Writing-review & editing (equal). Rebeca Pérez-Cabeza de Vaca: Formal analysis (equal); Writing-original draft (equal); Writing-review & editing (equal). Cuauhtémoc Licona-Cassani: Data curation (equal); Formal analysis (equal); Writing-original draft (equal); Writing-review & editing (equal). July Stephany Gámez-Valdez: Data curation (equal); Formal analysis (equal); Writing-original draft (equal); Writing-review & editing (equal). Jonathan Shaw: Formal analysis (equal); Investigation (equal); Writing-original draft (equal); Writing-review & editing (equal). Cecilia Hernández-Cortez: Writing-original draft (equal); Writing-review & editing (equal). Juan Antonio Suárez-Cuenca: Conceptualization (equal); Formal analysis (equal); Investigation (equal); Validation (equal); Writing-original draft (equal); Writing-review & editing (equal). GRACIELA CASTRO-ESCARPULLI: Conceptualization (equal); Formal analysis (equal); Investigation (equal); Supervision (equal); Writing-original draft (equal); Writing-review & editing (equal).

ETHICS STATEMENT
The study was carried out according to the 1975 ethical guidelines of the Declaration of Helsinki. All participants provided written informed consent. The study was approved by the Local Committees of Research, Ethics in Research and Biosafety of the Centro Médico Nacional ‘20 de Noviembre’ ISSSTE, Mexico City (Protocol ID No. 358.2017).

DATA AVAILABILITY STATEMENT
Sequence data are available in the NCBI repository under BioProject accession number PRJNA596546: https://www.ncbi.nlm.nih.gov/bioproject/596546

ORCID
Graciela Castro-Escarpulli https://orcid.org/0000-0002-7496-8247

REFERENCES
Alam, M. T., Amos, G., Murphy, A., Murch, S., Wellington, E., & Arasaradnam, R. P. (2020). Microbial imbalance in inflammatory bowel disease patients at different taxonomic levels. Gut Pathogens, 12, 1. https://doi.org/10.1186/s13099-019-0341-6
Alard, J., Peucelle, V., Boutilier, D., Breton, J., Kuylle, S., Pot, B., Holowacz, S., & Grangette, C. (2018). New probiotic strains for inflammatory bowel disease management identified by combining in vitro and in vivo approaches. Beneficial Microbes, 9(2), 317–331. https://doi.org/10.3920/BM2017.0097
Al-Bayati, L., Nayeri Fasaei, B., Merat, S., & Bahoner, A. (2018). Longitudinal analyses of gut-associated bacterial microbiota in ulcerative colitis patients. Archives of Iranian Medicine, 21(12), 578–584.
Allali, I., Arnold, J. W., Roach, J., Cadenas, M. B., Butz, N., Hassan, H. M., Koci, M., Ballou, A., Mendoza, M., Ali, R., & Azcarate-Peril, M. A. (2017). A comparison of sequencing platforms and bioinformatics pipelines for compositional analysis of the gut microbiome. BMC Microbiology, 17(1), 194. https://doi.org/10.1186/s12866-017-1101-8
Aßhauer, K. P., Wemheuer, B., Daniel, R., & Meinicke, P. (2015). Tax4Fun: Predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics (Oxford, England), 31(17), 2882–2884. https://doi.org/10.1093/bioinformatics/btv287
Barwell, L. J., Isaac, N. J., & Kunin, W. E. (2015). Measuring β-diversity with species abundance data. The Journal of Animal Ecology, 84(4), 1112–1122. https://doi.org/10.1111/1365-2656.12362
Bashir, A., Miskeen, A. Y., Hazari, Y. M., Asrafuzzaman, S., & Fazili, K. M. (2016). Fusobacterium nucleatum, inflammation, and immunity: The fire within human gut. Tumour Biology: the Journal of the International Society for Oncodevelopmental Biology and Medicine, 37(3), 2805–2810. https://doi.org/10.1007/s13277-015-4724-0
Björkqvist, O., Repsilber, D., Seifert, M., Brislawn, C., Janson, J., Engstrand, L., Rangel, I., & Halfvarson, J. (2019). Alterations in the relative abundance of Faecalibacterium prausnitzii correlate with changes in fecal calprotectin in patients with ileal Crohn’s disease: A longitudinal study. Scandinavian Journal of Gastroenterology, 54(5), 577–585. https://doi.org/10.1080/00365521.2019.1599417
Bokulich, N. A., Subramanian, S., Faith, J. J., Gevers, D., Gordon, J. I., Knight, R., Mills, D. A., & Caporaso, J. G. (2013). Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Methods, 10(1), 57–59. https://doi.org/10.1038/nmeth.2276
Bolven, E., Rideout, J. R., Chase, J., Pitman, T. A., Shiffer, A., Mercurio, W., Dillon, M. R., & Caporaso, J. G. (2018). An Introduction to Applied Bioinformatics: A free, open, and interactive text. The Journal of Open Source Education, 1(5), 27. https://doi.org/10.21105/jose.00027
Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Peña, A. G., Goodrich, J. K., Gordon, J. I., Huttenley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., ... Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335–336. https://doi.org/10.1038/nmeth.f.303

Chang, J. Y., & Cheon, J. H. (2018). Fecal Immunochemical test and fecal calprotectin measurement are noninvasive monitoring tools for predicting endoscopic activity in patients with ulcerative colitis. Gut and Liver, 12(2), 117–118. https://doi.org/10.5009/gnl17445

Chao, A., Chazdon, R. L., Colwell, R. K., & Shen, T. J. (2006). Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics, 62(2), 361–371. https://doi.org/10.1111/j.1541-0420.2005.00489.x

Chassaing, B., Vijay-Kumar, M., & Gewirtz, A. T. (2017). How diet can impact gut microbiota to promote or endanger health. Current Opinion in Gastroenterology, 33(6), 417–421. https://doi.org/10.1097/MOG.0000000000000401

Chen, Y., Chen, Y., Cao, P., Su, W., Zhan, N., & Dong, W. (2020). Fusobacterium nucleatum facilitates ulcerative colitis through activating IL-17F signaling to NF-kB via the upregulation of CARD3 expression. The Journal of Pathology, 250(2), 170–182. https://doi.org/10.1002/path.5358

Danilova, N. A., Abdulkhakov, S. R., Grigoryeva, T. V., Markelova, M. I., Vasilyev, I. Y., Boulygin, E. A., Ardatskaya, M. D., Pavlenko, A. V., Tyakht, A. V., Odintsova, A. K., & Abdulkhakov, R. A. (2019). Markers of dysbiosis in patients with ulcerative colitis and Crohn's disease. Terapeuticeskii Arkhiv, 91(4), 17–24. https://doi.org/10.26442/00403660.2019.04.000211

Devkota, S., & Chang, E. B. (2015). Interactions between diet, bile acid metabolism, gut microbiota, and inflammatory bowel diseases. Digestive Diseases (Basel, Switzerland), 33(3), 351–356. https://doi.org/10.1159/000371687

Dicks, L., Geldenhuys, J., Mikkelsen, L. S., Brandsborg, E., & Marcotte, H. (2018). Our gut microbiota: A long walk to homeostasis. Beneficial Microbes, 9(1), 3–20. https://doi.org/10.1002/bm.20170.0066

Dubinsky, M., & Braun, J. (2015). Diagnostic and prognostic microbial biomarkers in inflammatory bowel diseases. Gastroenterology, 149(5), 1265–1274.e3. https://doi.org/10.1053/j.gastro.2015.08.006

Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics (Oxford, England), 27(16), 2194–2200. https://doi.org/10.1093/bioinformatics/btr381

Farrukh, A., & Mayberry, J. F. (2014). Inflammatory bowel disease in Hispanic communities: A concerted South American approach could identify the etiology of Crohn’s disease and ulcerative colitis. Arquivos De Gastroenterologia, 51(4), 271–275. https://doi.org/10.1590/S0004-28032014000400002
APPENDIX

TABLE A1 List of bacterial taxa with their OTUs ID in active pancolitis

No.	OTUs ID	Bacteria	No.	OTUs ID	Bacteria
1	925	*Brenneria*	49	471278	*Buttiauxella*
2	1006	*Curtobacterium*	50	479863	*Shimwella*
3	1163	Microbacteriaceae	51	484145	Enterobacteriaceae
4	4981	*Rothia*	52	489853	*Cronobacter*
5	5294	Micrococcaceae	53	498961	*Klebsiella*
6	5605	Trueperella	54	501249	Enterobacteriaceae
7	6509	Actinomycetaceae	55	504890	Phocoenobacter
8	7967	*Actinomyces*	56	526378	Pasteurellaceae
9	8584	Actinomycetaceae	57	528975	Pasteurellaceae
10	9376	*An aerofilum*	58	542569	Mannheimia
11	10096	Ruminococcaceae	59	554567	Actinobacillus
12	10256	Sporosarcina	60	561469	Aggregatibacter
13	10458	Planococcaceae	61	566893	Pasteurellaceae
14	10725	Gemella	62	576178	*Haemophilus*
15	11203	Bacillales	63	580361	Pasteurellaceae
16	14506	Pediococcus	64	603577	Fusobacteriaceae
17	14625	Lactobacillaceae	65	640658	Fusobacteriaceae
18	15213	Tetrogenococcus	66	648973	Ilyobacter
19	16721	Enterococcaceae	67	689746	Propionigenium
20	19563	Delftia	68	704128	Fusobacteriaceae
21	125300	Comamonadaceae	69	728910	Bacteroides
22	128695	Burkholderiales	70	731897	Bacteroidiaceae
23	132065	Neisseriaceae	71	735981	Blautia
24	136219	Rhodospirillum	72	765640	*Lachnospiraceae*
25	139865	Rhodospirillumaceae	73	777038	*Aeromonas*
26	174563	Rhodospirillales	74	796328	*Aeromonadaceae*
27	176398	Gemmiger	75	857896	Coprococcus
28	182397	Hyphomicrobiaceae	76	871259	*Lachnospiraceae*
29	187569	Hyphomicrobiaceae	77	901257	*Ruminococcaceae*
30	195637	Rhizobiales	78	943078	*Ruminococcus*
31	198759	Campylobacterales	79	963365	*Ruminococcaceae*
32	201289	*Campylobacter*	80	1005973	*Pseudomonas*
33	206986	Campylobacteraceae	81	1019639	*Pseudomonadaceae*
34	217893	Campylobacterales	82	1025697	Enterococcus
35	241479	Pseudomonadales	83	1056986	Enterococcaceae
36	274893	Aeromonadaceae	84	1078963	Bacilli
37	289963	Shewanella	85	1086935	Escherichia
38	301329	Shewanellaceae	86	1087789	Fusobacterium
39	325698	Alteromonadales	87	1096348	Fusobacteriaceae
40	341449	Enterobacteriaceae	88	1109886	Fusobacteria
41	371893	Yersinia	89	1118963	Bilophila
42	378963	Providencia	90	1116035	Desulfovibrionales
43	390132	Pantoea	91	1131789	Desulfovibrioles
44	405698	Enterobacteriales	92	1135348	Deltaproteobacteriak
45	424147	Citrobacter	93	1137986	Enterobacteriaceae
46	444893	Raoultella	94	1142963	Gammaproteobacteriak
47	459993	Klyvera	95	1145350	Enterobacteriaceae
48	461329	Enterobacteriaceae	96	1147789	Betaproteobacteriak
No.	OTUs ID	Bacteria	No.	OTUs ID	Bacteria
-----	---------	-----------------	------	----------	------------------
1	9012	Peptococcus	49	502589	Pedicoccus
2	9378	Trueperella	50	527810	Lactobacillus
3	9646	Actinomycetaceae	51	530182	Pilibacter
4	9899	Peptostreptococcae	52	537691	Enterococcaseae
5	10463	Dialister	53	540128	Lactobacillales
6	10896	Adlercreutzia	54	562189	Anaerococcus
7	11302	Bacteroides	55	567812	Peptophilus
8	14567	Bacteroidae	56	572143	Parvinomas
9	14996	Clostridiales	57	577810	Clostridiales
10	15027	Ruminococcaseae	58	583071	Pseudoramibacter
11	15201	Atopobium	59	594777	Eubacterium
12	16457	Lactobacillus	60	617802	Eubacteriaceae
13	16830	Collinsella	61	631492	Clostridiales
14	18473	Bradyrhizobium	62	637490	Peptococcus
15	18990	Rikenellaceae	63	658714	Peptococcaseae
16	117963	Clostridiales	64	669748	Acetanaerobacterium
17	118634	Bifidobacterium	65	689816	Ruminococcus
18	119012	Bifidobacteriaceae	66	705933	Butyricoccus
19	119986	Peptostreptococcae	67	729801	Flavonfractor
20	122479	Catenibacterium	68	742137	Clostridium IV
21	126239	Bacteroidales	69	775910	Ruminococcaseae
22	129301	Barnesiellaceae	70	778426	Parasporobacterium
23	134203	Erysipelotrichaceae	71	798763	Lachnospiraceae
24	137748	Prevotella	72	825479	Dorea
25	150193	Phascolarctobacterium	73	876900	Coprococcus
26	189760	Parabacteroides	74	889861	Lachnospiraceae
27	199127	Porphyromonas	75	918733	Ruminococcaseae
28	215079	Odoribacter	76	934759	Peptostreptococcus
29	215630	Butyricimonas	77	989744	Peptostreptococcaseae
30	217998	Barnesiella	78	1012989	Anaerostipes
31	260327	Porphyromonadaceae	79	1026597	Lachnospiraceae
32	269160	Prevotella	80	1044390	Pedicoccus
33	285496	Prevotellaceae	81	1073619	Lactobacillaceae
34	290112	Alistipes	82	1079801	Enterococcus
35	301028	Rikenellaceae	83	1093607	Bacteroides
36	303241	Staphylococcus	84	1107218	Bacteroidae
37	339875	Staphylococcaseae	85	1128970	Bacteroidales
38	340178	Bacillales	86	1140126	Enterococcaseae
39	346920	Aerococcus	87	1149566	Clostridiales
40	375984	Aerococcaseae	88	1151490	Lachnospiraceae
41	379617	Granulicatella	89	1156301	Blautia
42	398863	Carnobacteriaceae	90	1186912	Ruminococcaseae
43	420159	Weissella	91	1211437	Roseburi
44	426713	Leuconostoccaseae	92	1237019	Lachnospiraceae
45	456906	Enterococcaseae	93	1240789	Clostridiales
46	479802	Streptococcus	94	1246772	Faecalibacterium
47	481590	Streptococcaseae	95	1250116	Ruminococcaseae
48	499301	Lactobacillales	96	1257301	Clostridiales
No.	OTUs ID	Bacteria	No.	OTUs ID	Bacteria
-----	----------	-------------------------	-----	----------	-------------------------
1	11456	Rhodospirillum	49	583010	Dorea
2	11895	Duodenibacillus	50	588322	Roseburia
3	11634	Lactobacillales	51	593701	Lachnospiraceae
4	12581	Collinsella	52	601086	Faecalibacterium
5	12988	Atopobium	53	605865	Clostridiales
6	16217	Ruminococaceae	54	612789	Bifidobacterium
7	18759	Bacteroidales	55	645277	Lachnospiraceae
8	24663	Enterococcus	56	648712	Blautia
9	189384	Leuconostocaceae	57	678970	Sutterella
10	183691	Bacteroidaceae	58	698782	Rikenellaceae
11	183968	Enterococcus	59	719017	Predopto
12	214569	Streptococcus	60	732365	Lactobacillales
13	221447	Bacteroides	61	739100	Staphylococcus
14	225896	Streptococaceae	62	753101	Staphylococaceae
15	237562	Enterococaceae	63	772368	Odoribacter
16	268741	Porphyromonas	64	794890	Porphyromonadaceae
17	271458	Ruminococcaceae	65	827745	Eubacteriaceae
18	276398	Phascolarctobacterium	66	875214	Eubacterium
19	281145	Butyricimonas	67	889803	Clostridiales
20	287482	Parvimonas	68	914732	Prevotella
21	301189	Pseudoramibacter	69	963365	Prevotellaceae
22	308756	Clostridiales	70	980217	Butyrroccoccus
23	324470	Peptococcus	71	998510	Ruminococaceae
24	328621	Peptococcaceae	72	1038960	Clostridium
25	331398	Butyricoccus	73	1041517	Parasporobacterium
26	335563	Parabacteroides	74	1048796	Dorea
27	346308	Barnesiella	75	1057893	Lachnospiraceae
28	362391	Flavonifractor	76	1115981	Prevotella
29	367522	Peptostreptococcus	77	1110230	Actinomyces
30	371145	Peptostreptococaceae	78	1110689	Mobiluncus
31	376598	Acetanaerobacterium	79	11110289	Actinomycesetaceae
32	379856	Lachnospiraceae	80	1115981	Prevotella
33	392350	Pediococcus	81	1145780	Dialister
34	398571	Anaerostipes	82	1148765	Clostridiales
35	402265	Enterococcus	83	1150127	Lachnospiraceae
36	428796	Lactobacillaceae	84	1159812	Bacteroides
37	441278	Ruminococaceae	85	1163970	Bacteroides
38	449127	Ruminococaceae	86	1167095	Ruminococcus
39	451281	Ruminococcus	87	1208976	Bacteroidaceae
40	456580	Clostridaceae	88	12120178	Blautia
41	459102	Bifidobacterium	89	1227141	Ruminococaceae
42	467458	Bifidobacteriaceae	90	1240139	Roseburia
43	481097	Parabacteroides	91	1247890	Lachnospiraceae
44	489810	Clostridaceae	92	1261372	Faecalibacterium
45	501433	Bacteroidales	93	1266716	Ruminococaceae
46	510129	Bacteroides	94	1284820	Clostridiales
47	514780	Barnesiellaceae	95	1289362	Clostridiales
48	568894	Erysipelotrichaceae	96		
TABLE A4 Diversity Indexes for pancolitis phases and healthy participants

Diversity index	HS	AP	RP	p-value
Observed	7122.82	2321.01	4138.14	0.001
Chao1	4215.58	1112.32	3241.56	0.001
Shannon	4.1	1.0	3.6	0.001
Simpson	0.48	1.2	0.52	0.001

p-value indicates the statistical significance of 2-way ANOVA.
Abbreviations: AP, active pancolitis; HS, healthy participants; RP Remission pancolitis.

TABLE A5 Linear discriminant analysis (LDA) effect size (LEfSe) analysis for active pancolitis and remission pancolitis

Taxa	Group	LDA score	p-value
p_Proteobacteria;c_Betaproteobacteria	Active Pancolitis	4.8999	0.042
p_Proteobacteria;c_Gammaproteobacteria	Active Pancolitis	4.8963	0.0210
p_Proteobacteria;c_Deltaproteobacteria;o_Desulfovibrionales	Active Pancolitis	4.8912	0.0160
p_Proteobacteria;c_Deltaproteobacteria;o_Desulfovibrionales;f_Desulfovibrionaceae	Active Pancolitis	4.8836	0.0309
p_Proteobacteria;c_Deltaproteobacteria;o_Desulfovibrionales;f_Desulfovibrionaceae;g_Bilophila	Active Pancolitis	4.8792	0.0436
p_Fusobacteria;c_Fusobacteria	Active Pancolitis	4.8569	0.0122
p_Fusobacteria;c_Fusobacteria;o_Fusobacteriales;f_Fusobacteriaceae	Active Pancolitis	4.8498	0.0132
p_Fusobacteria;c_Fusobacteria;o_Fusobacteriales;f_Fusobacteriaceae;g_Fusobacterium	Active Pancolitis	4.8475	0.0145
p_Firmicutes;c_Clostridia	Remission Pancolitis	4.8961	0.0394
p_Firmicutes;c_Clostridia;o_Clostridiales	Remission Pancolitis	4.8926	0.0058
p_Firmicutes;c_Clostridiales;o_Clostridiales;f_Ruminococcaceae;g_Faecalibacterium	Remission Pancolitis	4.8912	0.0132
p_Firmicutes;c_Clostridiales;o_Clostridiales;f_Lachnospiraceae	Remission Pancolitis	4.8859	0.0246
p_Firmicutes;c_Clostridiales;o_Clostridiales;f_Lachnospiraceae;g_Roseburia	Remission Pancolitis	4.6898	0.0322
p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae	Remission Pancolitis	4.6889	0.0125
p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales	Remission Pancolitis	4.6885	0.0203
p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides	Remission Pancolitis	4.6880	0.0209

The threshold on the logarithmic LDA score for discriminative features was set to 2.0. The name of a higher taxon level was added before its taxon abbreviation. "p", phylum; "c", class; "o", order; "f", family; "g", genus. "LDA" Linear discriminant analysis. p < 0.05 are considered statistically significant.
	AUC	Se (%)	Sp (%)	PPV (%)	NPV (%)
AP vs. HS					
Bilophila	0.917	80	100	100	83
Fusobacterium	0.955	90	100	100	90
Faecalibacterium	0.222	0	80	0	44
Roseburia	0.237	0	90	0	47
AP vs. RP					
Bilophila	0.917	80	100	100	83
Fusobacterium	0.955	90	100	100	90
Faecalibacterium	0.206	10	10	10	10
Roseburia	0.237	0	90	0	47
RP vs. HS					
Bilophila	0.000	N/A	100	N/A	50
Fusobacterium	0.000	N/A	100	N/A	50
Faecalibacterium	0.237	90	0	47	0
Roseburia	0.400	40	60	50	50

Cutoffs. HS vs. AP discrimination: Bilophila (10%), Fusobacterium (10%), Faecalibacterium (45%), Roseburia (20%). AP vs RP discrimination: Bilophila (10%), Faecalibacterium (40%), Roseburia (20%). HS vs RP discrimination: Bilophila (5%), Fusobacterium (5%), Faecalibacterium (20%), Roseburia (10%).

Abbreviations: AP, Active Pancolitis; AUC, Area Under the Curve; HS, Healthy Subjects; N/A, non-applicable; NPV, Negative Predictive Value; PPV, Positive Predictive Value; RP, Remission Pancolitis; Se, Sensitivity; Sp, Specificity. Bold letters and values indicates the most abundant and have statistical significance.