Abstract

In this paper we study stochastic currents of Brownian motion $\xi(x)$, $x \in \mathbb{R}^d$, by using white noise analysis. For $x \in \mathbb{R}^d \setminus \{0\}$ and for $x = 0 \in \mathbb{R}$ we prove that the stochastic current $\xi(x)$ is a Hida distribution. Moreover for $x = 0 \in \mathbb{R}^d$ with $d > 1$ we show that the stochastic current is not a Hida distribution.

Keywords: Stochastic currents, extended Skorokhod integral, white noise analysis.

1 Introduction

The concept of current is fundamental in geometric measure theory. The simplest version of current is given by the functional

$$\varphi \mapsto \int_0^T (\varphi(\gamma(t)), \gamma'(t))_{\mathbb{R}^d} \, dt, \quad 0 < T < \infty,$$

in a space of vector fields $\varphi : \mathbb{R}^d \to \mathbb{R}^d$ and γ is a rectifiable curve in \mathbb{R}^d. Informally, this functional may be represented via its integral kernel

$$\zeta(x) = \int_0^T \delta(x - \gamma(t))\gamma'(t) \, dt,$$
where δ is the Dirac delta distribution on \mathbb{R}^d. The interested reader may find comprehensive account on the subject in the books [Fed96, Mor16].

The stochastic analog of the current $\zeta(x)$ rises if we replace the deterministic curve $\gamma(t), t \in [0, T]$, by the trajectory of a stochastic process $X(t), t \in [0, T]$, in \mathbb{R}^d. In this way, we obtain the following functional

$$
\xi(x) := \int_0^T \delta(x - X(t)) \, dX(t). \quad (1.1)
$$

The stochastic integral (1.1) has to be properly defined. Now we consider a d-dimensional Brownian motion $B(t), t \in [0, T]$, and the main object of our study is

$$
\xi(x) = \int_0^T \delta(x - B(t)) \, dB(t). \quad (1.2)
$$

In this work the stochastic integral (1.2) is interpreted as an extension of the Skorokhod integral developed in [HKPS93]. It coincides with the extension given by the adjoint of the Malliavin gradient. There have been some other approaches to study stochastic current, such as Malliavin calculus and stochastic integrals via regularization, see [FGGT05, FGR09, FT10, Guo14], among others.

An initial study of the stochastic current (1.2) using white noise theory was done in [GT13]. The authors showed that $\xi(x)$ in (1.2) is well defined as a Hida distribution for all $x \in \mathbb{R}^d$ and all dimensions $d \in \mathbb{N}$. However the proof of Theorem 3.3 in [GT13] is not carefully written which lead the authors to an inaccurate conclusion. In fact, for $x = 0 \in \mathbb{R}^d, d > 1$, we show that $\xi(0)$ is not a Hida distribution. This is confirmed by first orders of the chaos expansion we obtained. Moreover, we got the impression that the authors were not checking integrability of the integrand in (1.1). Hence, they cannot apply Corollary 2.5 below. We in turn could check the assumptions of Corollary 2.5 below, for all nonzero $x \in \mathbb{R}^d, d \in \mathbb{N}$, and for $x = 0 \in \mathbb{R}$. The aim of this paper is to fill this gap and obtain kernels of first orders of the chaos expansion of $\xi(x)$.

The organization of the paper is as follows. Section 2 provides some background of white noise analysis. In Section 3 we prove the main results of this paper on the existence of the Brownian currents.

2 Gaussian White Noise Analysis

In this section we summarize pertinent results from white noise analysis used throughout this work, and refer to [HKPS93, KLP+96, Kuo96] and references therein for a detailed presentation.

2.1 White Noise Space

We start with the Gel’fand triple

$$
S_d \subset L^2_d \subset S_d',
$$

2
where \(S_d := S(\mathbb{R}, \mathbb{R}^d) \), \(d \in \mathbb{N} \), is the space of vector valued Schwartz test functions, \(S'_d \) is its topological dual and the central Hilbert space \(L^2_d := L^2(\mathbb{R}, \mathbb{R}^d) \) of square integrable vector valued measurable functions. For any \(f \in L^2_d \) given by \(f = (f_1, \ldots, f_d) \) its norm is

\[
|f|^2 = \sum_{i=1}^{d} \int_{\mathbb{R}} |f_i(x)|^2 \, dx.
\]

Let \(\mathcal{B} \) be the \(\sigma \)-algebra of cylinder sets on \(S'_d \). Since \(S_d \) equipped with its standard topology is a nuclear space, by Minlos’ theorem there is a unique probability measure \(\mu_d \) on \((S'_d, \mathcal{B}) \) with the characteristic function given by

\[
C(\varphi) := \int_{S'_d} e^{i\langle w, \varphi \rangle} \, d\mu_d(w) = \exp \left(-\frac{1}{2} |\varphi|^2 \right), \quad \varphi \in S_d.
\]

Hence, we have constructed the white noise probability space \((S'_d, \mathcal{B}, \mu_d)\). In the complex Hilbert space \(L^2(\mu_d) := L^2(S'_d, \mathcal{B}, \mu_d; \mathbb{C}) \) a \(d \)-dimensional Brownian motion is given by

\[
B(t, w) = (\langle w_1, \eta_1 \rangle, \ldots, \langle w_d, \eta_d \rangle), \quad w = (w_1, \ldots, w_d) \in S'_d, \quad \eta := \mathbb{1}_{[0,t]}, \quad t \geq 0.
\]

In other words, \((B(t))_{t \geq 0}\) consists of \(d \) independent copies of \(1 \)-dimensional Brownian motions. For all \(F \in L^2(\mu_d) \) one has the Wiener-Itô-Segal chaos decomposition

\[
F(w) = \sum_{n=0}^{\infty} \langle w \otimes^n ; F_n \rangle, \quad F_n \in (L^2_{d, \mathbb{C}}) \otimes^n,
\]

where \(w \otimes^n : (S'_{d, \mathbb{C}}) \otimes^n \) denotes the \(n \)-th order Wick power of \(w \in S'_{d, \mathbb{C}} \) and \(\langle \cdot, \cdot \rangle \) denotes the dual pairing on \((S'_{d, \mathbb{C}}) \otimes^n \times (S_{d, \mathbb{C}}) \otimes^n \) which is a bilinear extension of \(\langle \cdot, \cdot \rangle_2 \), where \(\langle \cdot, \cdot \rangle_2 \) is the inner product on \((L^2_{d, \mathbb{C}}) \otimes^n \) in the sense of a Gel’fand triple. Here \(V_{\mathbb{C}} \) denotes the complexification of the real vector space \(V \) and \(\otimes^n \) denotes the \(n \)-th power symmetric tensor product. Note that \(\langle \cdot \otimes^n ; \cdot \rangle, \quad n \in \mathbb{N}_0 \), in the second variable extends to \((L^2_{d, \mathbb{C}}) \otimes^n \) in the sense of an \(L^2(\mu_d) \) limit.

2.2 Hida Distributions and Characterization

By the standard construction with the Hilbert space \(L^2(\mu_d) \) as central space, we obtain the Gel’fand triple of Hida test functions and Hida distributions.

\[
(S_d) \subset L^2(\mu_d) \subset (S_d)'.
\]

We denote the dual pairing between elements of \((S_d)’ \) and \((S_d)\) by \(\langle \cdot, \cdot \rangle \). For \(F \in L^2(\mu_d) \) and \(\varphi \in (S_d) \), with kernel functions \(F_n \) and \(\varphi_n \), respectively, the dual pairing yields

\[
\langle F, \varphi \rangle = \sum_{n=0}^{\infty} n! \langle F_n, \varphi_n \rangle.
\]
This relation extends the chaos expansion to $\Phi \in (S_d)'$ with distribution valued kernels $\Phi_n \in (S_{d,C})^{\otimes n}$ such that

$$\langle \Phi, \varphi \rangle = \sum_{n=0}^{\infty} n! \langle \Phi_n, \varphi_n \rangle,$$

for every generalized test function $\varphi \in (S_d)$ with kernels $\varphi_n \in (S_{d,C})^\otimes n$, $n \in \mathbb{N}_0$.

Instead of repeating the detailed construction of these spaces we present a characterization in terms of the S-transform.

Definition 2.1. Let $\varphi \in S_d$ be given. We define the Wick exponential by

$$e_{\mu_d}(\cdot, \varphi) := \frac{e^{\langle \cdot, \varphi \rangle}}{E(e^{\langle \cdot, \varphi \rangle})} = \sum_{n=0}^{\infty} \frac{1}{n!} \langle \cdot, \varphi \otimes_n \varphi^{\otimes n} \rangle \in (S_d),$$

and the S-transform of $\Phi \in (S_d)'$ by

$$S\Phi(\varphi) := \langle \Phi, e_{\mu_d}(\cdot, \varphi) \rangle.$$

Example 2.2. For $d \in \mathbb{N}$ the S-transform of d-dimensional white noise $(W(t))_{t \geq 0}$ is given by $SW(t)(\varphi) = \varphi(t)$, for all $\varphi \in S_d$, $t \geq 0$, see [HKPS93]. Here $(W(t))_{t \geq 0}$ is the derivative of $(B(t))_{t \geq 0}$ as a Hida space valued process. That is, each of its components takes values in $(S_d)'$.

Definition 2.3 (U-functional). A function $F : S_d \rightarrow \mathbb{C}$ is called a U-functional if:

1. For every $\varphi_1, \varphi_2 \in S_d$ the mapping $\mathbb{R} \ni \lambda \mapsto F(\lambda \varphi_1 + \varphi_2) \in \mathbb{C}$ has an entire extension to $z \in \mathbb{C}$.

2. There are constants $0 < C_1, C_2 < \infty$ such that

$$|F(z\varphi)| \leq C_1 \exp(C_2|z|^2\|\varphi\|^2), \quad \forall z \in \mathbb{C}, \varphi \in S_d$$

for some continuous norm $\| \cdot \|$ on S_d.

We are now ready to state the aforementioned characterization result.

Theorem 2.4 (cf. [KLP+96], [PS91]). The S-transform defines a bijection between the space $(S_d)'$ and the space of U-functionals. In other words, $\Phi \in (S_d)'$ if and only if $S\Phi : S_d \rightarrow \mathbb{C}$ is a U-functional.

Based on Theorem 2.4 a deeper analysis of the space $(S_d)'$ can be developed. The following corollary concerns the Bochner integration of functions with values in $(S_d)'$ (for more details and proofs see e.g. [HKPS93], [KLP+96], [PS91] for the case $d = 1$).

Corollary 2.5. Let (Ω, F, m) be a measure space and $\lambda \mapsto \Phi_\lambda$ be a mapping from Ω to $(S_d)'$. We assume that the S-transform of Φ_λ fulfills the following two properties:
1. The mapping $\lambda \mapsto S\Phi(\lambda)$ is measurable for every $\varphi \in S_d$.

2. The U-functional $S\Phi(\lambda)$ satisfies

$$|S\Phi(z\varphi)| \leq C_1(\lambda) \exp \left(C_2(\lambda) |z|^2 \|\varphi\|^2 \right), \quad z \in \mathbb{C}, \varphi \in S_d,$$

for some continuous norm $\| \cdot \|$ on S_d and for some $C_1 \in L^1(\Omega, m)$, $C_2 \in L^\infty(\Omega, m)$.

Then

$$\int_{\Omega} \Phi(\lambda) \, dm(\lambda) \in (S_d)'$$

and

$$S \left(\int_{\Omega} \Phi(\lambda) \, dm(\lambda) \right)(\varphi) = \int_{\Omega} S\Phi(\lambda)(\varphi) \, dm(\lambda), \quad \varphi \in S_d.$$

Moreover, the integral exists as a Bochner integral in some Hilbert subspace of $(S_d)'$.

Example 2.6 (Donsker’s delta function). As a classical example of a Hida distribution we have the Donsker delta function. More precisely, the following Bochner integral is a well defined element in $(S_d)'$

$$\delta(x - B(t)) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{i\lambda(x - B(t))} \, d\lambda, \quad x \in \mathbb{R}^d.$$

The S-transform of $\delta(x - B(t))$ for any $z \in \mathbb{C}$ and $\varphi \in S_d$ is given by

$$S\delta(x - B(t))(z\varphi) = \frac{1}{(2\pi t)^{d/2}} \exp \left(-\frac{1}{2t} \sum_{j=1}^d (x_j - \langle z\varphi_j, \eta_t \rangle)^2 \right). \quad (2.1)$$

It is well known that the Wick product is a well defined operation in Gaussian analysis, see for example [KLS96], [HOUZ10] and [KSWY98].

Definition 2.7. For any $\Phi, \Psi \in (S_d)'$ the Wick product $\Phi \diamond \Psi$ is defined by

$$S(\Phi \diamond \Psi) = S\Phi \cdot S\Psi. \quad (2.2)$$

Since the space of U-functionals is an algebra, by Theorem 2.4 there exists an element $\Phi \diamond \Psi \in (S_d)'$ such that (2.2) holds.

3 Stochastic Currents of Brownian Motion

In this section we investigate in the framework of white noise analysis the following functional

$$\varphi \mapsto \int_0^T \langle \varphi(B(t)), dB(t) \rangle_{\mathbb{R}^d}, \quad (3.1)$$
on a given space of vector fields $\varphi : \mathbb{R}^d \to \mathbb{R}^d$. The functional (3.1) can be represented via its integral kernel

$$\xi(x) := \int_0^T \delta(x - B(t)) \, dB(t), \quad x \in \mathbb{R}^d.$$

We interpret the stochastic integral as an extended Skorokhod integral

$$\int_0^T \delta(x - B(t)) \, dB(t) := \left(\int_0^T \delta(x - B(t)) \, W_1(t) \, dt, \ldots, \int_0^T \delta(x - B(t)) \, W_d(t) \, dt \right) =: (\xi_1(x), \ldots, \xi_d(x)),$$

where $W = (W_1, \ldots, W_d)$ is the white noise process as in Example 2.2. If the integrand is a square integrable function then this stochastic integral coincides with the Skorokhod integral. In this interpretation, we call $\xi(x)$ stochastic currents of Brownian motion.

Below we show that $\xi(x), x \in \mathbb{R}^d \setminus \{0\}$ is a well defined functional in $(S_d)'$. From now on, C is a real constant whose value is immaterial and may change from line to line.

Theorem 3.1. For $x \in \mathbb{R}^d \setminus \{0\}, 0 < T < \infty$, the Bochner integral

$$\xi_i(x) = \int_0^T \delta(x - B(t)) \, W_i(t) \, dt$$

is a Hida distribution and its S-transform at $\varphi \in S_d$ is given by

$$S \left(\int_0^T \delta(x - B(t)) \, W_i(t) \, dt \right)(\varphi) = \frac{1}{(2\pi)^{d/2}} \int_0^T \frac{1}{t^{d/2}} e^{-\frac{|x - \langle \eta_t, \varphi \rangle|_R^2}{2t}} \varphi_i(t) \, dt.$$

(3.3)

Proof. First we compute the S-transform of the integrand

$$(0, T) \ni t \mapsto \Phi_i(t) := \delta(x - B(t)) \, W_i(t).$$

Using Definition 2.7, Example 2.6, and Example 2.2 for any $\varphi \in S_d$ we have

$$t \mapsto S\Phi_i(t)(\varphi) = S(\delta(x - B(t)))(\varphi) SW_i(t)(\varphi)$$

$$= \frac{1}{(2\pi t)^{d/2}} \exp \left(-\frac{1}{2t} |x - \langle \eta_t, \varphi \rangle|_R^2 \right) \varphi_i(t),$$

which is Borel measurable on $(0, T]$. Furthermore, for any $z \in \mathbb{C}, t \in (0, T]$ and
all \(\varphi \in S_d \) we obtain

\[
|S\Phi(t)(z\varphi)| \leq \frac{C}{(2\pi t)^{d/2}} \exp \left(-\frac{1}{2t} |x - \langle \eta_t, z\varphi \rangle|^2 \right) \exp \left(\frac{1}{2t} |x|^2 \right) |z\varphi(t)|
\]

where \(C \) is the constant from Corollary 2.5.

Proof. By adapting the proof of Theorem 3.1 we obtain for any \(\eta \in \mathbb{C} \) and all \(\varphi \in S_1 \)

\[
|S\Phi(t)(z\varphi)| \leq \frac{C}{(2\pi t)^{d/2}} \exp \left(\frac{1}{2} |z|^2 \right) |\varphi(t)|.
\]

The first factor \(\frac{C}{(2\pi t)^{d/2}} \exp \left(-\frac{1}{2t} |x|^2 \right) \) is integrable with respect to the Lebesgue measure \(dt \) on \([0, T] \). To be more precise, using the formula

\[
\int_0^\infty y^{\nu-1} e^{-\mu y} dy = \mu^{-\nu} \Gamma(\nu, \mu u), \quad u > 0, \text{Re}(\mu) > 0,
\]

where \(\Gamma(\cdot, \cdot) \) is the complementary incomplete gamma function, one can show that

\[
\int_0^T t^{d/2} \exp \left(-\frac{1}{2t} |x|^2 \right) dt = 2^{d/2-1} |x|^2 \Gamma \left(\frac{d}{2} - 1, \frac{|x|^2}{2T} \right).
\]

As the second factor \(\exp \left(\frac{1}{2} |z|^2 \right) \) is independent of \(t \in (0, T) \), the result now follows from Corollary 2.5.

Corollary 3.2. For \(x = 0 \) and \(d = 1 \) the stochastic current \(\xi(0) \) is a Hida distribution, that is, the Bochner integral

\[
\xi(0) = \int_0^T \delta(B(t)) \diamond W(t) \ dt
\]

is a Hida distribution. Moreover its S-transform at \(\varphi \in S_1 \) is given by

\[
S \left(\int_0^T \delta(B(t)) \diamond W(t) \ dt \right)(\varphi) = \frac{1}{\sqrt{2\pi}} \int_0^T \frac{1}{\sqrt{t}} e^{-\frac{\langle \eta_t, \varphi \rangle^2}{2t}} \varphi(t) \ dt.
\]

Proof. By adapting the proof of Theorem 3.1 we obtain for any \(z \in \mathbb{C} \), \(t \in (0, T] \) and all \(\varphi \in S_1 \)

\[
|S\Phi(t)(z\varphi)| \leq \frac{C}{(2\pi t)^{1/2}} \exp \left(\frac{1}{2} |z|^2 \right) |\varphi(t)|.
\]
Since the function \((0, T] \ni t \mapsto t^{-1/2}\) is integrable with respect to the Lebesgue measure, Corollary 2.4 implies the statement of the corollary. \(\square\)

Remark 3.3. We would like to comment on the chaos expansion of the stochastic current of Brownian motion. To this end we identify the space \(L^2_\mathbb{H}\) with the Hilbert space \(L^2(m) := L^2(E, \mathcal{B}, m)\), where \(E := \mathbb{R} \times \{1, \ldots, d\}\), \(\mathcal{B}\) is the product \(\sigma\)-algebra on \(E\) of the Borel \(\sigma\)-algebra on \(\mathbb{R}\) and the power set of \(\{1, \ldots, d\}\) and \(m = dx \otimes \Sigma\) is the product measure of the Lebesgue measure on \(\mathbb{R}\) and the counting measure on \(\{1, \ldots, d\}\). That is, for all \(f, g \in L^2(m)\) we have

\[
(f, g)_{L^2(m)} = \int_E f(x, i)g(x, i) \, dm(x, i) = \sum_{i=1}^d \int_{\mathbb{R}} f(x, i)g(x, i) \, dx.
\]

The \(n\)-th order chaos of a Hida distribution can be computed by the 1-\(n\) order derivative of its \(S\)-transform at the origin. More precisely, for \(\Psi \in (S_d)’\) and \(\varphi \in (S_d)\) consider the function

\[
\mathbb{R} \ni s \mapsto U(s) := S\Psi(s\varphi) \in \mathbb{C}.
\]

Then the \(n\)-th order chaos \(\Psi^{(n)}\) of \(\Psi\) applied to \(\varphi^\otimes n \in S^\otimes_n\) is given by

\[
\langle \Psi^{(n)}, \varphi^\otimes n \rangle = \frac{1}{n!} \frac{d^n}{ds^n} U(s) \big|_{s=0},
\]

see [Oba94] Lemma 3.3.5. In our situation we have

\[
S\Psi_i(s\varphi) = \frac{1}{(2\pi t)^{d/2}} \exp \left(-\frac{1}{2t} \|x - \langle \eta_t, s\varphi \rangle\|^2_{\mathbb{R}^d} \right) s\varphi_i(t), \quad i \in \{1, \ldots, d\}.
\]

Hence, for the stochastic currents of Brownian motion the first chaos are given by

\[
\xi^{(0)}(x) = (0, \ldots, 0).
\]

\[
\xi^{(1)}_i(x) = \left(0, \ldots, 0, \frac{1}{(2\pi)^{d/2}} \int_0^T \frac{1}{t^{d/2}} e^{-\frac{|x|^2}{2t}} \delta_t dt, 0, \ldots, 0\right).
\]

\[
\left(\xi^{(2)}(x)\right)_{j,k} = \frac{1}{4(2\pi)^{d/2}} \int_0^T \frac{1}{t^{d/2}} \frac{1}{2 + \frac{|x|^2}{2}} (\text{Id}_{k_1}x_{j_1} \delta_t + \text{Id}_{j_1}x_{k_1} \delta_t \otimes \eta_t) dt,
\]

where \(\text{Id}\) denotes the identity matrix on \(\mathbb{R}^d\) and \(\delta_t\) denotes the Dirac distribution at \(t > 0\). Note that for \(x = 0\) and \(d > 1\) the first chaos \(\xi^{(1)}_1(0)\) is divergent, hence in this case \(\xi(0)\) cannot be a Hida distribution. In all the other cases the integrals are well defined as Bochner integrals in a suitable Hilbert subspace of \((S'_d)\) \(n\), \(n = 0, 1, 2\). This follows from the estimates for integrability we derived in the proof of Theorem 4.3. Indeed the estimates derived to apply Corollary 2.4 imply that the integrands \(\Phi_i, 1 \leq i \leq d\), are Bochner integrable in some Hilbert subspace \(H_\cdot\) of \((S'_d)\) equipped with a norm \(|| \cdot ||_\cdot\), see proof of [KLP96] Thm. 17]. More precisely, there one shows that \(||\Phi_i||_\cdot, 1 \leq i \leq d\), is integrable. That implies Bochner integrability of the kernels of \(n\)-th order in the generalized chaos decomposition in a suitable Hilbert subspace of \(S'(\mathbb{R}^d)\).
4 Conclusion and Outlook

In this paper we give a mathematical rigorously meaning to the stochastic current $\xi(x), x \in \mathbb{R}^d \setminus \{0\}$ and $\xi(0), 0 \in \mathbb{R}$, of Brownian motion in the framework of white noise analysis. On the other hand, for $x = 0 \in \mathbb{R}^d, d > 1$, we showed that $\xi(0)$ is not a Hida distribution. The first orders of the chaos expansion leave open whether the $\xi(x), x \in \mathbb{R}^d \setminus \{0\}$, are regular generalized functions or even square integrable. That is, it is not obvious whether $\xi^{(n)}(x) \in (L^2_{d,c})^\otimes n$ or not for $x \in \mathbb{R}^d \setminus \{0\}$ and $n \in \mathbb{N}$. In a future paper we plan to extend these results to a larger class of stochastic processes, e.g., fractional Brownian motion and grey Brownian motion.

Acknowledgments

This work was partially supported by a grant from the Niels Hendrik Abel Board and by the Center for Research in Mathematics and Applications (CIMA) related with the Statistics, Stochastic Processes and Applications (SSPA) group, through the grant UIDB/MAT/04674/2020 of FCT-Fundaçao para a Ciência e a Tecnologia, Portugal. We gratefully acknowledge the financial support by the DFG through the project GR 1809/14-1.

References

[Din81] S. Dineen. Complex Analysis in Locally Convex Spaces, volume 57 of Mathematical Studies. North-Holland Publ. Co., Amsterdam, 1981.

[Fed96] H. Federer. Geometric Measure Theory. Berlin: Springer-Verlag, repr. of the 1969 ed. edition, 1996.

[FGGT05] F. Flandoli, M. Gubinelli, M. Giaquinta, and V. M. Tortorelli. Stochastic currents. Stochastic Process. Appl., 115(9):1583–1601, 2005.

[FGR09] F. Flandoli, M. Gubinelli, and F. Russo. On the regularity of stochastic currents, fractional Brownian motion and applications to a turbulence model. Ann. Henri Poincaré, 45(2):545–576, 2009.

[FT10] F. Flandoli and C. A. Tudor. Brownian and fractional Brownian stochastic currents via Malliavin calculus. J. Funct. Anal., 258(1):279–306, 2010.

[GT13] J. Guo and J. Tian. Brownian stochastic current: white noise approach. J. Math. Res. Appl., 33(5):625–630, 2013.

[Guo14] J. Guo. Stochastic current of bifractional Brownian Motion. J. Appl. Math., 2014:10, 2014. Id/No 762484.
[GV68] I. M. Gel'fand and N. Ya. Vilenkin. *Generalized Functions*, volume 4. Academic Press, Inc., New York and London, 1968.

[HKPS93] T. Hida, H.-H. Kuo, J. Potthoff, and L. Streit. *White Noise. An Infinite Dimensional Calculus*. Kluwer Academic Publishers, Dordrecht, 1993.

[HOUZ10] H. Holden, B. Oksendal, J. Ubåge, and T. S. Zhang. *Stochastic Partial Differential Equations: A Modeling, White Noise Functional Approach*. Universitext. Springer, 2 edition, December 2010.

[KLP+96] Y. G. Kondratiev, P. Leukert, J. Potthoff, L. Streit, and W. Westerkamp. Generalized functionals in Gaussian spaces: The characterization theorem revisited. *J. Funct. Anal.*, 141(2):301–318, 1996.

[KLS96] Y. G. Kondratiev, P. Leukert, and L. Streit. Wick calculus in Gaussian analysis. *Acta Appl. Math.*, 44:269–294, 1996.

[KSWY98] Y. G. Kondratiev, L. Streit, W. Westerkamp, and J.-A. Yan. Generalized functions in infinite dimensional analysis. *Hiroshima Math. J.*, 28(2):213–260, 1998.

[Kuo96] H.-H. Kuo. *White Noise Distribution Theory*. CRC Press, Boca Raton, New York, London and Tokyo, 1996.

[Mor16] F. Morgan. *Geometric Measure Theory. A Beginner’s Guide*. Amsterdam: Elsevier/Academic Press, 5th edition edition, 2016.

[Oba94] N. Obata, *White Noise Calculus and Fock Space*. vol. 1577, (Berlin, Heidelberg and New York: Springer-Verlag, 1994).

[PS91] J. Potthoff and L. Streit. A characterization of Hida distributions. *J. Funct. Anal.*, 101:212–229, 1991.

[RS75] M. Reed and B. Simon. *Methods of Modern Mathematical Physics*, volume II. Academic Press, Inc., New York and London, 1975.