How do diquark fluctuations and chiral soft modes affect di-lepton production in the deconfined phase

Teiji Kunihiro (YITP, Kyoto)
CPOD2007:
GSI, Germany
July 9 --13, 2007
in collaboration with M. Kitazawa and Y. Nemoto
A conjectured QCD phase diagram

Various phases

superconducting phases

various meson condensation?

H-dibaryon matter?

Ferromagnetism?
A conjectured QCD phase diagram

- Various phases
- RHIC
- QCD CEP
- QGP
- FAIR(GSI)
- Various phases
- CFL
- Ferromagnetism?
- H-dibaryon matter?
- superconducting phases
- ρ_0
- χ_{SB}
- T_c
- T
- μ
- Various meson condensation?
Contents

• Part 1 The soft mode of CSC above Tc and lepton-pair production
• Part 2 The sigma mode above Tc at finite density and lepton-pair production
PART I

Precursory Phenomena of Color Superconductivity in Heated Quark Matter

Ref. M. Kitazawa, T. Koide, T. K. and Y. Nemoto
Phys. Rev. D70, 956003(2004);
Prog. Theor. Phys. 114, 205(2005),
M. Kitazawa, T.K. and Y. Nemoto,
Phys. Lett.B 631(2005),157
M. Kitazawa and T. K., in preparation
Various CSC phases in $T-\mu$ plane

H. Abuki and T.K. Nucl. Phys. A, 768 (2006), 118; with charge and color neutrality

The phase in the highest temperature is 2SC or g2SC.
Various CSC phases in $T-\mu$ plane

The phase in the highest temperature is 2SC or g2SC.

H. Abuki and T.K. Nucl. Phys. A, 768 (2006), 118; with charge and color neutrality
Pair Fluctuations in CSC

\[D^R(x, t) = -2G_c \left\{ \left(\bar{\psi}(x)i\gamma_5\tau_2\lambda_2\psi^C(x), \bar{\psi}(0)i\gamma_5\tau_2\lambda_2\psi^C(0) \right) \right\} \theta(t) \]

Spectral Function of the diquark excitations

\[\rho(k, \omega) = -\frac{1}{\pi} \text{Im} \, D^R(k, \omega) \]

\[D^R(k, \omega) = \]

\[\begin{array}{c}
 \begin{array}{c}
 \downarrow \quad \downarrow \\
 + \quad + \\
 \end{array} \\
\end{array} \\
+ \begin{array}{c}
 \begin{array}{c}
 \downarrow \quad \downarrow \\
 + \quad + \\
 \end{array} \\
\end{array} + \cdots \]

Sharp peak from \(\varepsilon \sim 0.2 \)

electric SC: \(\varepsilon \sim 0.005 \)

even in 2d-SC

Existence of large pair fluctuations

M. Kitazawa, T. Koide, T. K., Y. Nemoto, PRD 65, 091504 (2002)

It may affect various observables even well above \(T_c \).
Precursory Phenomena

- quark dispersion
 - rapid increase around p_F
 - density of states
 - formation of the pseudogap
 - specific heat
 - anomalous enhancement as $T \rightarrow T_c$

M. Kitazawa, T. Koide, T. K., Y. Nemoto, PRD 70, 056003 (’04)

QM~ High Tc SC

More accessible observables?

- dilepton-pair production in H-I collisions.

But how?
How do the diquark fluctuations affect the photon self-energy?
Anomalous Self-energy of Photon; Aslamasov-Larkin term

Photon Self-Energy Π

$$\Pi_{AL}^{\mu\nu} = \frac{\hat{e} \gamma^\mu}{k} \cdots \frac{\hat{e} \gamma^\nu}{k} = \int dq q \Gamma^\mu(q, q + k) \Xi(q + k) \Gamma^\nu(q + k, q) \Xi(q)$$

- Factor 3 due to color degrees of freedom
- Pair field (T-matrix):
 $$\Xi(q) = 1 + \cdots \sim$$

Vertex:
$$\Gamma^\mu(p_1, p_2) = \hat{e} \gamma^\mu$$

cf) Maki-Thompson term

Sov. Phys. SS 10, 875 (’68)
Dilepton-pair Production

\[\frac{dR_{ee}}{d^4 q} = -\frac{\alpha}{12\pi^4 Q^2} \text{Im} \Pi^{R\mu}_\mu \frac{1}{e^{q^0/T} - 1} \]

-per invariant mass

\[\frac{dR_{ee}}{dM^2} = \int \frac{d^3 q}{2q^0} \frac{dR_{ee}}{d^4 q} \]

--- from AL-term
----- from free quarks

M. Kitazawa and T.K., (2005), unpublished

- Prominent enhancement at \(M < 150 \text{MeV} \).
- The peak becomes sharp as \(\varepsilon \to 0 \).

Possible experimental observable for the CSC to be seen in FAIR(GSI)?
Maybe difficult, unfortunately, because of the too-low mass enhancement.
Remarks:

* Effects of the Maki-Thompson term

* If T_c is higher, say, 100 MeV or higher, the enhancement is more prominent.

How about, the lepton pair emission from the color-conducting phase?
Dilepton emission rate from the CFL phase

P. Jaikumar R. Rapp and I. Zahed('02)

Enhancement due to photon-gluon mixing in the CFL phase, and from the generalized rho meson.(not shown here)
PART II

The Case of the Chiral Transition
Chiral Transition and the sigma mode (meson)

\[\mathcal{V}(\sigma, \pi) \]

\[T, \rho \]

\[\pi \]

\[\sigma (\sim \langle \bar{q}q \rangle) \]

\[T > T_c \quad \rho > \rho_c \]

c.f. Higgs particle in WS model

\[\phi ; \text{Higgs field} \quad \phi = \langle \phi \rangle + \tilde{\phi} \]

Higgs particle
Fig. 2. Deconfinement and chiral symmetry restoration in 2-flavour QCD: Shown is $\langle L \rangle$ (left), which is the order parameter for deconfinement in the pure gauge limit ($m_q \to \infty$), and $\langle \bar{\psi}\psi \rangle$ (right), which is the order parameter for chiral symmetry breaking in the chiral limit ($m_q \to 0$). Also shown are the corresponding susceptibilities as a function of the coupling $\beta = 6/g^2$.
Cf. Lattice Calculation of the generalized masses

F. Karsch, Lect. Note Phys. 583 (2002), 209. $N_f = 2, 8^3 \times 4$; Staggered fermion

\[m_\sigma^2 = \chi_\sigma^{-1} \]

\[\chi_\sigma = \langle (\bar{q}q)^2 \rangle \]

the softening of the σ with increasing T

and

a degeneracy of the σ and π at high T

What is the significance of the σ in hadron physics?
How about above T_c?
Interest in the nature of elementary modes in ‘QGP’ phase

- RHIC experiments
 - robust collective flow
 - good agreement with rel. hydro models
 - almost perfect liquid

- (quenched) Lattice QCD
 - charmonium states up to 1.6-2.0 Tc
 (Asakawa et al., Datta et al., Matsufuru et al. 2004)

- Strongly coupled plasma rather than weakly interacting gas
The spectral function of the degenerate hadronic "para-pion" and the "para-sigma" at \(T > T_c \) for the chiral transition: \(T_c = 164 \text{ MeV} \)

T. Hatsuda and T.K. (1985)

- **response function in RPA**

 \[
 D(k, \omega) = \text{\large \begin{tikzpicture}

 \end{tikzpicture}} + \text{\large \begin{tikzpicture}

 \end{tikzpicture}} + \text{\large \begin{tikzpicture}

 \end{tikzpicture}} + \ldots
 \]

- **spectral function**

 \[
 A(k \omega) = -\frac{1}{\pi} \text{Im} D(k \omega)
 \]

\(T \to T_c \), they become elementary modes with small width!

sharp peak in time-like region!

1. two \(\gamma \) decay
2. modified quark spectrum

M. Kitazawa, Y. Nemoto and T.K. (05)
Finite T and μ with finite quark mass
Phase diagram

$m_{q0} = 0$

$m_{q0} = 5.5$ MeV

Asakawa, Yazaki, (1989)
Caveats
Effects of G_V on Chiral Restoration

As G_V is increased,
- Chiral restoration is shifted to higher densities.
- The phase transition is weakened.

T. Hatsuda and T.K. ('85); without vector coupling

Asakawa, Yazaki ’89 /Klimt, Lutz, & Weise ’90 /T.K. ’90/ Buballa, Oertel ’96

What would happen when the CSC joins the game?
With color superconductivity transition incorporated

\[G_V / G_S = 0.35 \]

The first order transition between \(\chi_{SB} \) and CSC phases is weakened and eventually disappears.

\[G_V / G_S = 0.5 \]

The region of the coexisting phase becomes broader.

Appearance of the coexisting phase becomes robust.

Another end point appears from lower temperature, and hence there can exist two end points in some range of \(G_V \)!

\[0.33 \sim G_V \sim 0.38 \]
Smooth variation of the quark condensate with baryon density?

S. Klimt, M. Lutz and W. Weise, PLB249 ('90)

So strong vector coupling making the chiral transition crossover at finite density!
Phase diagram

$m_{q0} = 0$

$m_{q0} = 5.5$ MeV

crossover

Asakawa, Yazaki, (1989)
What is the soft mode at CP?

Sigma meson has still a non-zero mass at CP. This is because the chiral symmetry is explicitly broken.

What is the soft mode at CP?

Phonon mode in the space-like region softens at CP.

H. Fujii (2003)
H. Fujii and M. Ohtani (2004)
See also, D. T. Son and M. Stephanov (2004)

does not affect particle creation in the time-like region.

It couples to hydrodynamical modes, leading to interesting dynamical critical phenomena.
Dilepton production rate from the sigma mode at $T>T_c$

What is contributions of the sigma mode?

Enhancement around $m_\sigma \approx 2M_q$.

Spectral function of the sigma mode
The above vector-scalar mixing exists if

\[
\left\{ \begin{array}{l}
\mu \neq 0 \\
m_q \neq 0 \\
q \neq 0 \\
\text{Not SU(3) limit } (m_u = m_d = m_s)
\end{array} \right.
\]

ex: SU(2) symmetry \(m_q = m_u = m_d \)

cf: quark number susceptibility through the vs-mixing
Kunihiro, 1991

cf: dilepton production due to \(\sigma-\omega \) and \(\sigma-\gamma \) mixings in hadronic matter
Weldon, 1992
Wolf, Friman, Soyeur, 1998

without the notion of chiral transition, nor softening of the sigam
Di-electron Production Rate

\[
\frac{d\Gamma}{dM^2} = \int \frac{d^3q}{2q_0} \frac{d\Gamma}{d^4q} = -\alpha \text{Im} \Pi_{\mu}^{R\mu}(q_0, q) / 12\pi^4 q^2 (\exp[q_0 / T] - 1)
\]

\[
\Pi_{\mu}^{R\mu}(q_0, q) = \frac{e_q \gamma_\mu}{\Gamma} + \frac{e_q \gamma_\nu}{\Gamma}
\]

Enhancement around \(m_\sigma \approx 2M_q \) at \(T > T_c \)

along T-axis
Di-muon Production Rate

\[
\frac{d\Gamma}{dM^2} = \int \frac{d^3q}{2q_0} \frac{d\Gamma}{d^4q} = \frac{-\alpha \text{Im} \Pi^{R\mu}_\mu(q_0, q)}{12\pi^4 q^2 (\exp[q_0/T] - 1)} \left(1 + \frac{2m_\mu}{q^2}\right) \left(1 - \frac{4m_\mu^2}{q^2}\right)^{1/2}
\]

\[
\Pi^{R\mu}_\mu(q_0, \bar{q}) = e_q \gamma_\mu e_q \gamma_\mu + e_q \gamma_\mu e_q \gamma_\nu
\]

\[\mu = \mu_C\]

\[
d\Gamma/d[\text{fm}^{-4} \text{ GeV}^2] = 1.01T_c \quad 1.05T_c \quad 1.1T_c \quad 1.2T_c \quad 1.3T_c
\]

\[
\text{pseudo-critical line}
\]

CP pseudo-critical line
Di-electron Production Rate along a pseudo-critical line

\[
\frac{d\Gamma}{dM^2} = \int \frac{d^3q}{2q_0} \frac{d\Gamma}{d^4q} \quad \frac{d\Gamma}{d^4q} = -\alpha \text{Im}\Pi^R_{\mu}(q_0, q) \frac{1}{12\pi^4q^2(\exp[q_0/T] - 1)}
\]

\[\Pi^R_{\mu}(q_0, q) = e_q\gamma_{\mu} + \gamma_{\mu} \quad e_q\gamma_{\nu} + \gamma_{\nu}\n\]

Graph showing the di-electron production rate as a function of mass with and without fluctuations. The graph includes lines for different temperatures: 1.3Tc, 1.2Tc, 1.1Tc, 1.05Tc, and 1.01Tc.
Di-muon Production Rate

\[\frac{d\Gamma}{dM^2} = \int \frac{d^3q}{2q_0} \frac{d\Gamma}{d^4q} \]

\[\frac{d\Gamma}{d^4q} = -\alpha \operatorname{Im} \Pi_{\mu}^{R\mu}(q_0, q) \left(1 + \frac{2m_\mu^2}{q^2} \right) \left(\frac{1 - 4m_\mu^2}{q^2} \right)^{1/2} \]

\[\Pi_{\mu}^{R\mu}(q_0, \bar{q}) = e_\gamma \gamma_{\mu} + e_\gamma \gamma_{\nu} \]

Graph showing di-muon production rate along a pseudo-critical line.
What is the origin of an enhancement around 0.3 GeV?
Remarks on the sigma mode in the hadronic phase at finite T and density.
Lattice Calculations in full QCD of the sigma mass

The SCALAR collaboration, PRD70, 034504(2004)
The poles of the S matrix in the complex mass plane for the sigma meson channel:
complied in Z. Xiao and H.Z. Zheng (2001)

See also, I. Caprini, G. Colangero and H. Leutwyler, PRL(2006);
H. Leutwyler, hep-ph/0608218; M_{sigma}=441 – i 272 MeV
A conjectured QCD phase diagram

Various phases

CSC

CFL

Various meson condensation?

H-dibaryon matter?

Ferromagnetism?

see T. Hatsuda and T.K., nucl-th/0112027; contribution to Chiral 01.
Fig. 6. Spectral function for the σ at $\rho_B / \rho_0 = 2$.

see also, G. Wolf et al (1998);
O. Teodorescu et al (2001)
Summary and concluding remarks

- The notion of the soft modes of QCD phase transitions was emphasized; they may be hadronic excitations above T_c.
- The soft modes of color-superconductivity above T_c may cause an enhancement of the electron-pair production in very-low mass region.
- Off the chiral limit, the lepton-pair production due to the specific mode around the QCD critical point is enhanced around $2\;Mq \sim 300-400\text{MeV}$, which might account (at least partly) for the excess of lepton pairs seen in CERES experiment.