Laparoscopic repair with cone-shaped mesh implantation for perineal hernia occurred after laparoscopic abdominoperineal resection

Koichi Teramura a,*, Yusuke Watanabe a, b, Shintaro Takeuchi a, Fumitaka Nakamura a, Satoshi Hirano b

a Department of Surgery, Teine Keijinkai Hospital, Sapporo, Japan
b Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo, Japan

A R T I C L E I N F O

Article history:
Received 14 June 2018
Received in revised form 24 June 2018
Accepted 27 June 2018
Available online 28 June 2018

Keywords:
Perineal hernia
Mesh repair
Laparoscopy
Abdominoperineal resection

A B S T R A C T

INTRODUCTION: Perineal hernia after abdominoperineal resection (APR) is a rare complication, and no standard surgical procedures are established. We describe a simple laparoscopic mesh implantation technique utilizing a large synthetic flat mesh.

PRESENTATION OF CASE: We report a case of perineal hernia after APR. We performed laparoscopic repair using a soft and large synthetic mesh with simple technique. The essence of this technique is that mesh is inserted into the abdominal cavity without trimming and it forms in a conical shape to better adjust to the pelvic cavity.

DISCUSSION: The perineal and laparoscopic approaches for perineal hernia repair have been performed most commonly in recent years, but the recurrence rate after repair remains high (24.1%). Using a large mesh could cover the hernial orifice with a sufficient margin, reducing a risk of recurrence caused by shrinkage and slippage of the mesh.

CONCLUSION: Our technique utilizing a large, lightweight, synthetic mesh can be practical and useful for perineal hernia repair after laparoscopic APR.

© 2018 The Author(s). Published by Elsevier Ltd on behalf of IJS Publishing Group Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The reported incidence of secondary perineal hernia occurring after abdominoperineal resection (APR) of the rectum is 1%–13% [1]. Some repair approaches have been described for secondary perineal hernia including the perineal, laparoscopic, open abdominal, laparoscopic perineal, and open abdominoperineal approaches [2]. Although the current major approaches were the perineal or laparoscopic approach with a mesh, these approaches are technically demanding because of the complexity of the procedures. The technique of perineal hernia repair varies, and the simple repair method has not been established. Furthermore, the recurrence rate after repair remains high (24.1%) [2]. We report a case of perineal hernia after laparoscopic APR and describe a simple laparoscopic mesh implantation technique utilizing a large synthetic flat mesh.

This case report is in line with the SCARE criteria [3].

2. Presentation of case

A 63-year-old man underwent laparoscopic APR for lower rectal cancer. There were no postoperative complications. The postoperative pathological diagnosis was T3pN1aM0, Stage IIIB (Union for International Cancer Control [UICC] 7th edition). Adjuvant chemotherapy was administered to the patient. Six months after the surgery, the patient complained of perineal swelling and pain. Computed tomography (CT) showed the small intestine protruding through the pelvic floor into the perineal area (Fig. 1), and the diagnosis of perineal hernia was made. After adjuvant chemotherapy, laparoscopic repair with a large synthetic mesh was performed. The patient was placed in a lithotomy position under general anesthesia, a 12-mm port was placed above the umbilicus with optical technique, and a pneumoperitoneum was established. There was no adhesion in the abdominal and pelvic cavity. Two 5-mm ports were added in the right lower quadrant and right flank region, avoiding the left side with a colostomy. The hernial orifice was identified at the bottom of the pelvic floor using a flexible scope, and the size was 3.5 × 5 cm. As the hernial orifice was located in a very deep place in the narrow pelvis, it was challenging to fix the mesh to the pelvic floor (Fig. 2). Therefore, to cover the pelvic cavity sufficiently, we used a soft synthetic mesh, an oval VentralightTM ST mesh (Davol Inc., Subsidiary of C.R. Bard, Inc. Warwick, RI) of 15.2 × 20.3 cm. The mesh was inserted into the abdominal cavity.

* Corresponding author at: Department of Surgery, Teine Keijinkai Hospital, Maeda 1-12-1-40, Teine-ku, Sapporo, 006-8555, Japan.
E-mail address: terakou3@gmail.com (K. Teramura).

https://doi.org/10.1016/j.jiscr.2018.06.032
2210-2612 © 2018 The Author(s). Published by Elsevier Ltd on behalf of IJS Publishing Group Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
was 180 min with minimal blood loss. The patient was discharged on postoperative day 5 without any complications. Postoperative symptomatic seroma developed but was reabsorbed after 4 months of observation with no intervention. Thirteen months after the repair, there was no hernia recurrence based on both CT and physical examination (Fig. 4).

3. Discussion

Perineal hernia after APR is a rare complication, and no standard surgical procedures are established. According to a recent systematic review, a perineal hernia repair was performed using the perineal approach in 69%, laparoscopic approach in 23%, and open abdominal approach, laparoscopic perineal approach, and open abdominoperineal approach in a few percent. The perineal and laparoscopic approaches have been performed most commonly in recent years [2]. We performed the laparoscopic repair of the secondary perineal hernia following APR with cone-shaped mesh implantation. The mesh implantation is anatomically difficult to cover the hernial orifice that is typically located at the base of the pelvic cavity in this type of hernia. Moreover, the mesh fixation is also challenging due to considerations for preventing injuries to major pelvic nerves and vessels. Taking above considerations into account, our technique has several advantages. Using a large mesh could cover the hernial orifice with a sufficient margin, reducing a risk of recurrence caused by shrinkage and slippage of the mesh. Cone-shaped implantation by folding a mesh can be well fitted at the base of the pelvic cavity without the necessity of trimming the mesh before implantation (Fig. 5). When fixing the mesh to the peritoneum with suturing, careful attention should be paid in preventing injuries to nerves, vessels, and ureters. Our procedure can

Fig. 1. Preoperative CT shows the protrusion of the small bowel through the pelvic floor into the perineal region.

Fig. 2. Laparoscopic view of the pelvic cavity. A part of the hernial orifice was slightly visible by lifting the bladder.

Fig. 3. Mesh covering the pelvic cavity. Arrows show the folded part of the mesh.

Fig. 4. CT after 3 months from surgery shows the seroma in the perineal region and no recurrence of perineal hernia. Arrows show the hernial orifice.
be applied with minimum visualization of the deep hernial orifice. While the perineal approach might have a difficulty of bowel reposi-
tion and potential risk of organ injury, the laparoscopic approach has several advantages including better visualization, easier reposi-
tion of hernia contents, and secure mesh fixation. There has been
some reports [4,5] of perineal hernia repair with the laparoscopic
approach, in which a mesh covered the hernial orifice directly and
was fixed to the levator ani muscle and sacrum by sutures and/or
tacks. In this procedure, however, there seems to be insufficient
overlap of the hernial orifice, and there can be a risk of recurrence.
The same situation could occur in the perineal approach. The guide-
lines of International Endohermia Society (IEHS) recommend that
the mesh should overlap the hernial orifice by at least 3 or 4 cm
in all directions in the laparoscopic treatment of ventral and inci-
sional wall hernias. Goedhart-de Hann et al. [6] reported 12 patients
who underwent repair with cone-shaped 10 × 15 cm mesh, but 3
of them had recurrence. The authors considered that the way of
mesh trimming was caused by recurrence. In this point of view, our
technique could overcome the disadvantages of previous reports.
In the present case, we performed laparoscopic repair with a large
synthetic mesh that is mainly used for incisional hernia. As this
mesh is highly flexible, it meets required features for covering a
complex hernial orifice with sufficient overlap width. Initial lapa-
roscopic surgery for rectal cancer might minimize postoperative
bowel adhesions in the pelvic cavity. Therefore, the laparoscopic
approach can be an option for perineal hernia repair.

4. Conclusion

Our technique utilizing a large, lightweight, synthetic mesh can be
practical and useful for perineal hernia repair after laparoscopic
APR.

Sources of funding

There is no funding for the case report.

Ethical approval

A case report is exempt from ethical approval in our institution.

Consent

Written informed consent was obtained from the patient for
publication of this case report and accompanying images. A copy
of the written consent is available for review by the Editor-in-Chief
of this journal on request.

Author contribution

All authors have contributed significantly in this case. The first
author have performed the surgery and rest of the authors helped in
collecting data, designing, organizing to write the manuscript.

Registration of research studies

Non applicable.

Guarantor

Koichi Teramura.

Acknowledgment

We would like to thank Editage (www.editage.jp) for English
language editing.

Conflicts of interest

The authors have no conflicts of interest to declare.

References

[1] G.D. Musters, C.J. Buskens, W.A. Bemelman, P.J. Tanis, Perineal wound healing
after abdominoperineal resection for rectal cancer: a systematic review and
meta-analysis, Dis. Colon. Rectum 57 (2014) 1129–1139.
[2] A. Balla, G. Batista Rodriguez, N. Buonomo, C. Martinez, P. Hernandez, J. Bollo,
et al., Perineal hernia repair after abdominoperineal excision or extralevator
abdominoperineal excision: a systematic review of the literature, Tech.
Coloproctol. 21 (2017) 329–336.
[3] R.A. Agha, A.J. Fowler, A. Sarta, J. Barai, S. Rajmohan, D.P. Orgill, The SCARE
statement: consensus-based surgical case report guidelines, Int. J. Surg. 34
(2016) 180–186.
[4] M. Casasanta, L.J. Moore, Laparoscopic repair of a perineal hernia, Hernia 16
(2012) 363–367.
[5] J.L. Dulucq, P. Wintringer, A. Mahajna, Laparoscopic repair of postoperative
perineal hernia, Surg. Endosc. 20 (2006) 414–418.
[6] A.M. Goedhart-de Haan, B.S. Langenhoff, D. Petersen, P.M. Verheijen,
Laparoscopic repair of perineal hernia after abdominoperineal excision, Hernia
20 (2016) 741–746.

Open Access

This article is published Open Access at sciencedirect.com. It is distributed under the JJSCR Supplemental terms and conditions, which
permits unrestricted non commercial use, distribution, and reproduction in any medium, provided the original authors and source are credited.