Hyper-Specific Prefixes:
Gotta Enjoy the Little Things in Interdomain Routing

Presenter: Khwaja Zubair Sediqi
23.May.2023

Authors: Khwaja Zubair Sediqi, Lars Prehn, Oliver Gasser
zsediqi@mpi-inf.mpg.de, lprehn@mpi-inf.mpg.de, oliver.gasser@mpi-inf.mpg.de
Paper Published at: ACM SIGCOMM Computer Communication Review, Volume 52 Issue 2, April 2022
ASes use the BGP to announce prefixes

BGP best practices recommend filtering prefixes
 • more specific than /24 in IPv4 and /48 in IPv6

Plenty of /25 to /32 IPv4 and /49 to /128 IPv6 exist

hyper-specific prefixes (HSPs)

How prominent and why HSPs exist in the Internet routing ecosystem?
Related Work

In 2014 and 2015 Aben and Petrie
- announced /24, /25, and /28 IPv4 prefixes
- RIPE Atlas measurements
- HSPs visible at most 20% of RIPE RIS peers

In 2017, Strowes and Petrie conclude
- at most one fourth of all BGP peers

In 2017, Huston analyzed different types of more-specific prefixes
1. hole punching (different origin AS),
2. traffic engineering (same origin AS, but different AS path),
3. overlay (same AS path)
Methodology

For our analysis we utilize “snapshots” from the RC projects RIPE RIS, Routeviews, and Isolario:

- From Jan. 2010 to October 2021
- Quarterly, 7 days per quarter
- BGP RIBs – every 24 hours
- BGP Updates – every 5 mins
- Applied filters to clean the data

Supplemental datasets

ASDB
1. OBSERVABILITY
HSPs in Routing Ecosystem

Share of HSPs in the Internet

HSPs make ~ 14% to more than 20% of all the prefixes

HSPs make ~ 10% of all the prefixes
HSP Visibility and Consistency

We use one year data of BGP RIBs and updates
• to track every HSP for the whole year

There is a correlation between consistency and visibility

HSPs have life span from days to more than a year
Many have visibility to less than 50 peer ASes
2. USE CASES & FUNCTIONS
CIDR Sizes of HSPs

CIDR sizes hint use cases

- /32 and /128 for blackholing purposes
- /30, /29 peering subnets
- /56 and /64 address block assignments
- /25 traffic engineering

HSPs have heterogeneous use cases
Protocols on HSP IPs

We leverage Rapid7’s Open Data platform Responding hosts and total tested hosts per-protocol

Top5 Protocols:
- CWMP is only present in the IPv4-wide
- BGP is only present in the HSP

HSPs have upto 5 times higher hitrate than IPv4-wide
BGP Communities of HSPs

We examine BGP communities:

- specifically used for blackholing (BH)
- restrict route propagation (RES)

13% and 7% of IPv4 and IPv6 HSPs are Blackholing
3. INTENDED OR ACCIDENTAL USE?
HIR has high HSP origin ASes
Many HSPs from RC/BGP have no entries in operator databases
• could be accidental announcements
• misconfigured route collector sessions
• leak of internal routes

Are HSPs caused by BGP prefix hijacks?
HSPs in the RPKI Database

Invalid (Length) - largest group
Invalid (Origin) - a minor fraction
Invalid (Origin) and Invalid (Both):
• not entered sibling ASes
• DDoS Protection Service (DPS)

legitimate ASes announce 75 % of HSPs
4. THE FUTURE OF HSPS
Discussion: Research Community

RC projects play a vital role in awareness
HSP dashboard https://hyperspecifics.io
Discussion: Operator Community

Discussing with thirteen operators
 • customer requests
 • traffic engineering

Question: Should operators filter HSPs in the first place?
 • for IPv6, Yes, no shortage of IPv6, avoid large routing table size
 • for IPv4, shifting filters by a few CIDR sizes (e.g., /26 or /28)

How do you handle HSPs in your network/work?
We analyzed HSPs in routing ecosystem for the last decade
Most HSPs visible by a few RC peers, still plenty propagate to hundreds of RC peers
IPv4 HSPs: blackholing and infrastructure announcements
IPv6 HSP: related to address block reassignments
Though, hundreds of networks use HSPs intentionally, we attribute even more cases to the accidental “leakage” of internal routes

HSP dashboard and the paper
https://hyperspecifics.io
Backup Slides
Users of HSPs

Comparing all BGP-visible Ases to HSP origin ASes

- ISP(Transit) originate more HSPs
- 12 to 15 of the total 19 Tier 1’s originate HSP
- most hypergiants do not originate HSPs
Growth of HSPs Over Time

- Presence of HSPs increased
- One-tenth of all the prefixes

In IPv4, the increase in HSPs is driven by an increment in feeder ASes. In IPv6, we see an increase also for a constant set of feeder ASes.

![Graph showing growth of HSPs over time for IPv4 and IPv6.](image-url)
HSP Aggregation

Analyse anchor-prefixes:
- /24 in IPv4
- /48 in IPv6

majority of HSPs are aggregated at the origin – BGP confederation
How Far HSPs Propagate?

IPv6 HSPs have better visibility than IPv4 HSPs

Most of HSPs are visible on less than 10 peers
HSP Anchors in Various Datasets

Observations:
• Current RC infrastructure misses 1/3 of anchors potentially contain HSP
• less noisy, linear increase in the number of anchor prefix for which HSPs
• Aggregated class only contains on-path aggregated anchor prefixes
Observations

- HSP origins has more than doubled for IPv4
- For IPv6, the growth rate of more than 25x
- little overlap between the individual data sets
Methodology

- Route Collectors’ Data
 - 11+ years (2010-2021)
 - BGP RIBs + updates
 - From 3 Projects

- IRRs Snapshots
- RPKI Snapshots
- AS Relationships Inferences
- AS Classification Inferences
- ASDB

- Advertise our own HSPs to the Internet and conduct experiment.

Passive Measurement

Supplemental data sets

Active Measurement
Cleaning Noisy Data

Rule1:
• Misconfigured Peer ASes
• Abnormal Prefixes
• Private IP ranges
• Private Origin ASes
• Multicast and IPv4 class E

Rule2:

Testable HSP
• For all HSPs, check if it was announced via a route that crossed at least one additional AS then “testable“.
HSP Propagation Pattern

We use:

AS triplets (three consecutive ASes)

AS Relationship Inferences of CAIDA

• No single occurrence of P2P relationships
 • ASes strongly filter the routes they send to peers

• for IPv4 almost all ASes redistribute HSPs “upwards”
 • Customers pay their providers to reannounce their prefixes

HSPs are only propagated “vertically” and never “horizontally”.
For our analysis we utilize “snapshots“ from the RC projects Isolario, RIPE RIS, and Routeviews

- From Jan.2010 to October.2021
- Quarterly, 7 days per quarter
- BGP RIBs – every 24 hours
- BGP Updates – every 5 mins

seven-day window allows us to achieve a consistency of 97 % and 98 % for IPv4 and IPv6, respectively.
Real World Experimentation

The PEERING testbed	RIPE Atlas probes	Experiment design
• 180 IPv4 and 152 IPv6 neighboring ASes	• To maximize AS coverage - one probe per AS	• announce HSP and anchors
• 8 IPv4 and 9 IPv6 neighboring ASes redistributed HSPs	• prefer dual-stack probes	• wait convergence
Used Prefixes	• Highest stable	• run paris-traceroutes from all probes
• IPv4:184.164.240.0/23		• simultaneously issue ICMP, TCP, and UDP probing
• IPv6:2804:269c:4::/46		• withdraw prefixes
		• map traceroutes to AS Paths using bdrmapit
How Far HSPs Propagate?

We did experiment by advertising anchor + HSPs to the Internet
- conduct traceroute from probes
- check it in RC’s peer ASes

The more specific the CIDR size, the less propagation chances.

Current RC’s infrastructure underestimates data plane reachibility