European guidelines for topical photodynamic therapy part 1: treatment delivery and current indications – actinic keratoses, Bowen’s disease, basal cell carcinoma

C.A. Morton,1,* R.-M. Szeimies,2 A. Sidoroff,3 L.R. Braathen4

1Department of Dermatology, Stirling Community Hospital, Stirling, UK
2Behandlungszentrum, Knapschaftskrankenhaus Recklinghausen, Klinik für Dermatologie und Allergologie, Klinikum Vest GmbH, Recklinghausen, Germany
3Department of Dermatology and Venereology, Medical University of Innsbruck, Austria
4Department of Dermatology, Bern, Switzerland

*Correspondence: C.A. Morton. E-mail: colin.morton@nhs.net

Abstract
Topical photodynamic therapy (PDT) is a widely used non-invasive treatment for certain non-melanoma skin cancers, permitting treatment of large and multiple lesions with excellent cosmesis. High efficacy is demonstrated for PDT using standardized protocols in non-hyperkeratotic actinic keratoses, Bowen’s disease, superficial basal cell carcinomas (BCC) and in certain thin nodular BCC, with superiority of cosmetic outcome over conventional therapies. Recurrence rates following PDT are typically equivalent to existing therapies, although higher than surgery for nodular BCC. PDT is not recommended for invasive squamous cell carcinoma. Treatment is generally well tolerated, but tingling discomfort or pain is common during PDT. New studies identify patients most likely to experience discomfort and permit earlier adoption of pain-minimization strategies. Reduced discomfort has been observed with novel protocols including shorter photosensitizer application times and in daylight PDT for actinic keratoses.

Received: 27 June 2012; Accepted: 03 October 2012

Funding sources
None Declared

Conflict of interest
CA Morton has received speaker honoraria from Galderma and served as a consultant to Almirall and Leo Pharma. RM Szeimies has served as a consultant for, and has received speakers’ honoraria and financial support to perform clinical trials from Almirall, Biofrontera, Galderma, Leo, photonamic and Spirig. The other authors declare no conflicts of interest.

[Correction added on 30 November 2012, after first online publication: conflict of interest statement was amended.]

Disclaimer
The following guidelines are based on the best evidence available at the time of publication and caution should be exercised when interpreting data where there is a limited evidence base. It may be necessary to depart from the guidelines in the interests of specific patients and circumstances.

Introduction
This guideline seeks to promote safe and effective practice across Europe for the delivery of topical photodynamic therapy (PDT) in dermatological indications and reflects evidence derived from a systematic literature review (using MEDLINE), and previous therapy guidelines.1,2 There is a substantial literature on novel indications for topical PDT and these are reviewed in Part II.3

Topical PDT has, to date, been approved for the treatment of certain non-melanoma skin cancers (NMSC). Currently, only three photosensitizing agents are licensed for use in Europe (Table 1). One is methyl aminolaevulinate (MAL) Metvix®/Metvixia® (Galderma, Lausanne, Switzerland). MAL is used along with red light to treat non-hyperkeratotic actinic keratoses (AK), Bowen’s disease (BD), superficial and nodular basal cell
Photosensitizers

PDT for dermatological indications, first described over 20 years ago, typically involves the topical application of the photosensitizer prodrug, ALA or its methylated ester MAL, which are converted by the haem biosynthetic pathway predominantly to protoporphyrin IX (PpIX) and activated by light of an appropriate wavelength, producing reactive oxygen species, especially singlet oxygen, resulting in apoptosis and necrosis of target tissue. Selective uptake of the prodrugs is probably due to altered surface permeability over lesions and different rates of porphyrin metabolism, with activated lymphocytes also accumulating photosensitizer.

ALA is hydrophilic whereas MAL is more lipophilic, and hence MAL may penetrate more deeply into lesions, although studies that have compared these agents when used to treat AK and nodular BCC failed to show a difference in response. Recently, the nanoemulsion BF-200 ALA, which improves ALA stability and skin penetration, was compared with MAL for thin/moderate thickness face/scalp AK, with a higher patient complete clearance of 78% vs. 64% respectively.

A self-adhesive, skin-coloured thin 5-ALA patch, directly applied to AK lesions without crust removal was superior to cryotherapy in clearing mild/moderate AK.

Enhancing penetration of a photosensitizer using iontophoresis or chemical enhancers may increase the efficacy of PDT, but remains experimental. Elevating skin temperature during ALA application may also improve efficacy as PpIX production is a temperature-dependent process.

MAL-PDT is delivered using a standardized protocol of two treatments 1 week apart for BCC and BD, but with only one initial treatment for AK, repeated at 3 months only if required. MAL is typically applied for 3 h, but Levulan ALA although licensed for an 18–24 h application, is widely used with shorter application intervals around 1 h. A shorter 1-h incubation for MAL-PDT in AK is also an option with no significant difference in clearance rates when compared (1 h:76%, 3 h:85%). Several novel topical photosensitizers including hypericin and silicon phthalocyanine have been assessed in a variety of cutaneous neoplasms, but await commercialization.

Light sources and dosimetry

A range of light sources can be used for topical PDT including lasers, filtered xenon arc, metal halide or fluorescent lamps and light emitting diodes (LED). Large fields can be treated using narrowband LED devices, e.g. the Aklitite 128 (Galderma, Lausanne, Switzerland) and the Omnilux (Phototherapeutics Ltd, London, UK). These red LED sources match the 630/635-nm activation peak of PpIX while excluding the extraneous wavelengths present in broadband lights, thus permitting shorter illumination times. Filtered intense pulsed lights (IPLs) have been successfully used in PDT for AK, although phototoxic effects may not match cut-off filter notations provided by their manufacturers. Narrow-spectrum light sources are associated with relatively higher response rates when compared with broad-spectrum devices, with complete patient clearance rates of 85% and 68% for BF-200 ALA-PDT or MAL-PDT, respectively, compared with 72% and 61% when broad-spectrum devices were used.

Protoporphyrin IX has its largest absorption peak in the blue region at 410 nm with smaller absorption peaks at 505, 540, 580 and 630 nm. Most light sources for PDT seek to utilize the 630-nm red absorption peak, to improve tissue penetration. However, a blue fluorescent lamp (peak emission 417 nm) is used in Levulan-PDT.

Fractionation (discontinuous illumination) can improve tumour responsiveness by permitting tissue reoxygenation during ‘dark’ periods. Studies support the superiority of fractionation to conventional illumination in ALA-PDT for superficial BCC (97% vs. 89%), but not in Bowen’s disease. Overall clearance of 95% after 2 years was achieved for 552 NMSC lesions following ALA-PDT using two light fractions of 20 and 80 J/cm²; at 4 and 6 h.

Another group has shown superior clearance of fractionated lesions by ALA-PDT (using the same protocol) at 3 months of 96% AK compared with 89% for lesions treated twice 7 days apart, with 12-month clearance rates of 94% and 85%. An alternative ALA-PDT fractionation protocol of two doses of 75 J/cm²; at 4 and 5 h was associated with initial clearance of 94% nBCC, but with a cumulative failure rate of 30% by 3 years.

PDT using daylight (MAL for 0.5 h, then daylight for 2.5 h) has been shown to be as effective as conventional red light MAL-PDT in AK, but with minimal or no therapy-related pain. The same group has demonstrated no inferiority by reducing daylight exposure to 1.5 h in a study of thin AK, an observation replicated in another study of all severity grades of AK, although with poorer response rates for moderate and thick AK and variation in response between centres. A recent international consensus highlighted the convenience of daylight PDT for patients with multiple AK requiring field therapy, but careful scheduling is required, giving consideration to time of the year when suitable daylight and tolerable weather conditions prevail, with use of an appropriate sunscreen to the entire sun-exposed area.

There is also an option for ambulatory PDT where patients wear a portable LED light source with low irradiance over 100 min. In two small pilot studies, the device has been effective.
in treating BD and sBCC, clearing 11 of 17 lesions with minimal pain in most.29,30

Lesion preparation

Gentle removal of overlying crust and scale is commonly performed for moderate thickness/hyperkeratotic AK, BD and sBCC when using MAL-PDT. Occlusion of lesions with a keratolytic the night before treatment can facilitate easier crust removal. Tape-stripping, microdermabrasion or laser ablation or gentle curettage can also be used to reduce hyperkeratosis. Some practitioners have observed reduced efficacy if lesions are not debrided prior to PDT,11,14 whereas others have not noted increased drug uptake following lesion preparation of BD and BCC (in a study of 4- and 6-h ALA application possibly indicating reduced need with longer application times) and lesion preparation is not necessary when using a novel ALA patch.10,31,32

Preparation is probably more important when treating nodular BCC by PDT with recommended practice to gently remove overlying crust with a curette/scalpel in a manner insufficient to cause pain, and thus not requiring local anaesthesia. Some PDT operators perform a more significant preparation with debulking curettage, 3 weeks prior to ALA-PDT, clearing 92% of nBCC in a single treatment, although no comparison without prior curettage was made.33 In a small comparison study of PDT (ALA and MAL) with or without debulking immediately before application of pre-photosensitizer, residual nBCC was more often observed in lesions that were not debulked.7 Additional preparation techniques reported include microneedling, skin vapourization with CO2 laser or ablative fractional resurfacing.34–36

Practitioners typically cover treatment sites with light occlusive dressings, on the presumption that full exposure to ambient light during the incubation period will lead to increased activation of PpIX superficially reducing deeper photosensitizer penetration before photoactivation. Occlusion is standard practice in MAL-PDT of AK, Bowens and BCC, but is not performed when using Levulan-ALA. When daylight was compared with conventional PDT, no difference in efficacy was noted between 0.5-h and 3-h occlusion intervals and recent studies recommend no occlusion, yet report equivalent efficacy in AK.26

Fluorescent diagnosis

The detection of skin surface fluorescence, either subjectively using simple handheld Wood’s lamp (long wave UVA) or semiquantitatively using CCD camera systems coupled to digital imaging, is used to help delineate lesions and can be useful in identifying persistent/recurrent disease.37,38 PpIX fluorescence imaging to determine tumour boundaries during Mohs micrographic surgery has shown inconsistent results regarding improvement in surgical efficacy.39 Fluorescence diagnosis was not substantially superior to clinical assessment in a study of 28 BCC where tumours were excised on the basis of fluorescence outline with failure of correla-

tion of the margin with histopathological tumour border in six lesions.40

Extent of photobleaching during PDT, but not total initial protoporphyrin IX fluorescence, is predictive of lesion clearance.41 In another study, fluorescence diagnosis in keratinocyte intraepidermal neoplasias was unable to discriminate between lesions or proliferative activity.42 Intensity of pain has been associated with fluorescence and may anticipate patients more likely to require anaesthesia.43

Actinic Keratoses (Strength of Recommendation A, Quality of Evidence I)

Thin and moderate thickness AK on the face and scalp respond well to topical PDT, with typical clearance rates of 89–92% 3 months after therapy, equivalent or superior to cryotherapy, depending on protocol.44–46 One-year sustained lesion clearance rates of 78% and 63–69% have been reported following ALA-PDT (up to two treatments) and patch ALA-PDT (single treatment) respectively.32,47

Current licensed use recommends that for AK, MAL-PDT be given as a single treatment and repeated if required after 3 months, reflecting equivalent efficacy in a comparison study with double therapy 7 days apart.45 A large randomized intraindividual study of face/scalp AK in 119 patients used this protocol to compare MAL-PDT with cryotherapy.46 After the initial cycle of treatments, PDT cleared more lesions (87% vs. 76%), but with equivalent outcome after non-responders were retreated (89% vs. 86%).

Efficacy of PDT for AK on acral sites is reduced by approximately 10% to that for face/scalp lesions, probably in part due to a higher proportion of less-responsive thicker lesions on these sites. When compared, MAL-PDT was less effective than cryotherapy for acral AK (lesion clearance 78% vs. 88% at 6 months).48 In a right/left comparison study with imiquimod, ALA-PDT cleared significantly more moderate AK lesions (58% vs. 37%), and equivalent numbers of thin AK on the hands/forearms (72% lesions).49

As reviewed above, several novel methods of delivering PDT have been used to treat AK, including the adhesive patch, daylight, ambulatory light sources and fractionated light protocols. Licensed recently, PDT using the BF-200 ALA was superior to MAL with clearance of 90% vs. 83% of thin/moderate thickness face/scalp AK (complete clearance rates of 78% vs. 64%) 12 weeks after one or two PDT treatments.9

PDT may be a useful therapy for patients with actinic cheilitis. Clearance was achieved in 26/40 patients after ALA-PDT (two treatments 2 weeks apart), although with histological recurrence in nine during 18 months of follow-up.50 Two sessions of MAL-PDT 1 week apart achieved clinical clearance in 7/15 patients, although histological clearance was evident in only 4/7.51 A recent study achieved superior results using sequential MAL-PDT then imiquimod 5% cream with complete clinical cure of 80% and histological cure of 73%.52
Guidelines identify PDT as effective both as a lesion and field-directed treatment for AK and suggest PDT has a role where AK are multiple and/or confluent, at sites of poor healing, or where there has been a poor response to other topical therapies. In a randomized comparison of patient tolerance to MAL-PDT or topical imiquimod for multiple face/scalp AK, a significantly higher level of satisfaction was observed following PDT.

Bowen’s Disease (Strength of Recommendation A, Quality of Evidence I)

Invasive SCC (Strength of Recommendation D, Quality of Evidence II-iii)

A patient can expect clearance of 86–93% of BD lesions (squamous cell carcinoma in situ) 3 months beyond one or two cycles of MAL-PDT using red light, respectively, (two treatments 7 days apart as one cycle) with sustained clearance at 24 months of 68–71%, equivalent to conventional therapy, but with superior cosmesis. Another study observed 76% clearance rate after two sessions of MAL-PDT and median follow-up of 16 months.

MAL-PDT is effective in treating lesions over 3 cm, with 96% lesions cleared 3 months after one cycle of two treatments 7 days apart, with only three recurrences by 1 year. PDT has been reported to clear digital, subungual and nipple BD and where it arises in a setting of poor healing (lower leg, epidermolysis bullosa and radiation dermatitis). PDT may offer an alternative for treating penile intraepithelial neoplasia, with one large series using both ALA- and MAL-PDT in 10 patients showing clearance in 7, but later recurrence in 4.

Therapy guidelines recommend PDT as the treatment of choice for both large and small plaques of BD on poor-healing sites, representing the majority of lesions, and a good choice for large lesions in good-healing sites. There is reduced efficacy of PDT for microinvasive and for nodular invasive SCC, where 24-month clearance rates of 57% and 26% have been reported. The degree of cellular atypia is a negative prognostic factor, suggesting that poorly differentiated keratinocytes are less sensitive to PDT. In view of its metastatic potential and reduced efficacy rates, PDT currently cannot be recommended for invasive SCC.

Superficial Basal cell carcinoma (Strength of Recommendation A, Quality of Evidence I)

Nodular Basal cell carcinoma (Strength of Recommendation A, Quality of Evidence I)

Clearance rates at 3 months of 92–97% following MAL-PDT for primary superficial BCC are observed with protocols of either one single initial treatment or two treatments 7 days apart, followed by a repeat two-treatment cycle at 3 months, if required. Recurrence rates of 9% at 1 year were noted in both studies, with 22% of initially responding lesions recurring over 5 years of follow-up. A weighted initial clearance rate of 87% was noted for sBCC treated by ALA-PDT in a review of 12 studies, compared with 53% for nodular lesions.

Thicker lesions appear less responsive to PDT and lesions in the H-zone also have reduced sustained clearance rates. Clearance at 3 months of 91% of primary nBCC following MAL-PDT is reported, with 76% still clear at 5 years.

Comparison of ALA-PDT with cryotherapy for BCC showed equivalent efficacy with superior cosmesis. Clearance rates were also equivalent for MAL-PDT vs. cryotherapy for sBCC, 97% and 95% at 3 months, respectively, with overall clearance after 5 years identical at 76% of lesions initially treated, but with superior cosmesis post-PDT.

MAL-PDT was equivalent to surgery (92% vs. 99% initial clearance, 9% and 0% recurrences at 1 year) for sBCC, but inferior to surgery for nBCC when recurrence rates were compared (91% vs. 98% initial clearance, 14% and 4% recurrences at 5 years). Cosmetic outcome was superior following PDT compared with surgery. In a randomized pilot study of PDT with minimal curettage pre-ALA application vs. conventional surgery, there was no evidence of superiority of PDT over surgery. Overall histologically confirmed response rates of 73% were reported following MAL-PDT for nBCC, using the standard licensed protocol, although 89% of facial BCC cleared. A poorer response was reported in a large series of 194 BCC, with an 82% clearance rate for sBCC, but only 33% of nodular lesions clearing following MAL-PDT by standard protocol, although no debulking of the tumour mass was performed.

Fractionated ALA-PDT was equivalent to surgery in initially clearing nBCC, but with a 30% failure rate over 3 years after PDT when a 75J/75J protocol was used, although in another study, 80% of nBCC remained clear at 2 years using a 20J/80J fractionated dosing described above.

A 6-year clinical and histological follow-up of 53 BCCs, originally less than 3.5-mm thick, and treated by one or two sessions of ALA-PDT using the penetration enhancer dimethylsulphoxide and with prior lesion curettage, reported 81% of sites as disease free.

PDT is a potentially useful option for patients with naevoid BCC syndrome (NBCCS), with series and cases reported and a large cohort of 33 patients treated by topical or systemic PDT, depending on whether lesions were less than/greater than 2 mm in thickness when assessed by ultrasound.

MAL-PDT for NBCCS can improve patient satisfaction and reduces the need for surgical procedures.

Topical PDT is recommended for primary superficial and thin low-risk nodular BCC, but is a relatively poor choice for high-risk lesions including morphoeic BCC. PDT is best considered for nodular lesions where surgical excision is relatively contraindicated, or where patient preference, reflecting past therapy history, comorbidities and/or cosmetic considerations result in a willingness to accept higher risk of recurrence. It is advised that patients receiving topical PDT for nodular BCC are reviewed for evidence of recurrence for at least 1 year.
Indication	Preparation / drug application	Illumination recommendations	Protocol	Reference
16.0% MAL Metvix® /Metvixia® (Galderma) Thin, non-hyper keratotic AK (face/scalp), Bowens, superficial/ nodular BCC	Remove scales/crusts, slightly roughen surface (remove intact epidermis overlying nBCC) Apply a layer of cream approx 1-mm thick via spatula to lesion and surrounding 5–10 mm of skin. Cover with occlusive dressing for 3 h, then wipe clean with saline	After 3 h, remove dressing, wipe clean with saline, then illuminate using red light of spectrum 570–670 nm, total dose 75 J/cm² (red light with narrower spectrum can be used)	AK – one treatment, assess 3 months, BD and BCC – two sessions 7 days apart, reassess after 3 months. Remaining lesions may be retreated.	Full details @ http://www.medicines.org.uk/EMC/medicine/11913/SPC/Metvix+160 + mg+g+cream/ (accessed 24/12/11)
8 mg 5-ALA (2 mg/cm²) medicated plaster (Alacare®, Spirig AG) Mild AK (≤1.8 cm in diameter) face/bald scalp (hairless areas)	Apply medicinal plaster up to a maximum of six patches on six different lesions. Incubate for 4 h.	After 4 h, remove plaster and expose to red light with a narrow spectrum device (spectrum of 630 ± 3 nm, total light dose of 37 J/cm²).	Single use treatment,Full details @ http://www.mhra.gov.uk/home/groups/par/documents/websitesources/con057372.pdf (published 28.9.2009)	
78 mg/g 5-ALA gel (Ameluz®, Biofrontera Bioscience) Mild to moderate AK (Olsen 1 and 2), face/scalp	Remove scales/crusts, gently roughen surface, degrease skin. Apply a layer of cream approx 1-mm thick via spatula or protected fingertips to lesion and surrounding 5–10 mm of skin. Cover with occlusive dressing for 3 h, then wipe off remnant gel.	After 3 h, remove dressing, wipe clean, then illuminate using red light either with a narrow spectrum (~630 nm, light dose 37 J/cm²) or a broader, continuous spectrum (570–670 nm, light dose 75–200 J/cm²).	One treatment, reassess after 3 months, remaining lesions may be retreated.	Full details @ http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/002204/index.jsp?mid=W0b01ac058001d124 (published 09/01/2012)
20% ALA solution (Levulan Kerastick™, DUSA Pharmaceuticals) Minimal /moderate thickness AK, face/scalp	Lesions should be clean and dry. Following solution admixture, apply directly to lesions by dabbing gently with the wet applicator tip, and reapply once dry. Treatment site not occluded, but protect from sun/bright light	After 14–18 h, 10 J/cm² light dose BLU-U (1000 s), positioning lamp as per manufacturer’s instructions	One application and one dose of illumination per treatment site per 8-week treatment session	Full details @ http://www.dusapharma.com/levulan-product-information.html (accessed 24/12/11)

ALA, aminolaevulinic acid; AK, actinic keratoses; BCC, basal cell carcinomas; BD, Bowen's disease; MAL, methyl aminolaevulinate.
Adverse effects

Pain/burning sensation is often experienced during PDT, although varying widely in severity, usually developing within minutes of commencing light exposure and probably reflects nerve stimulation and/or tissue damage by reactive oxygen species, possibly aggravated by hyperthermia. Most patients tolerate PDT without anaesthesia, but pain is more likely to be experienced if large fields are treated, especially on well-innervated areas (face, scalp, hands, perineum), and is more common when treating AK than Bowen’s/BCC. Although cooling may slow the photodynamic reaction, transcutaneous nerve stimulation appears to have limited effect. In a recent comparison of ALA and MAL in PDT for NSMC, both applied for 4 h, MAL-PDT was less painful on the head, but not on the trunk and extremities. In a single-centre retrospective study comparing BP-200 ALA with MAL-PDT for AK, patients treated using MAL had a lower mean pain score and fewer treatment interruptions, although a similar level of pain was observed in a large randomized blinded comparison of BF-200 ALA with MAL for AK.

The topical anaesthetics, tetracaine gel, a mixture of lignocaine 2.5% and prilocaine 2.5% or morphine gel, have not been shown to reduce pain significantly during PDT. Cold-air analgesia, using a device to blow air at a temperature of 3–5°C, reduced pain and severity in a study of ALA-PDT for BD and BCC, although cooling may slow the photodynamic reaction. Transcutaneous nerve stimulation appears to have limited effect.

Nerve blocks are useful for large field treatments (e.g. forehead, entire scalp), more effective than cold-air analgesia in a split-face controlled study of MAL-PDT during treatment of multiple AK in the frontal region.

PDT using low-intensity light (daylight, ambulatory) is less painful, but results in prolonged treatment times. PDT using a device to blow air at a temperature of 3–5°C, reduced pain during and severity in a study of ALA-PDT for BD and BCC, although cooling may slow the photodynamic reaction. Transcutaneous nerve stimulation appears to have limited effect.

References

1. Braathen LR, Szeimies RM, Basset Seguin N et al. Guidelines on the use of photodynamic therapy for nonmelanoma skin cancer: An international consensus. *J Am Acad Dermatol* 2007; 56: 125–143.

2. Morton CA, McKenna KE, Rhodes LE. Guidelines for topical photodynamic therapy. *Br J Dermatol* 2008; 159: 1245–1266.

3. Morton CA, Szeimies RM, Sideroff A, Braathen LR. European guidelines for photodynamic therapy part 2: emerging indications. *J Eur Acad Dermatol Venereol* 2012; doi: 10.1111/jdv.12026 [Epub ahead of print].

4. Kennedy J C, Pottier R H, Pros D C. Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience. *J Photochem Photobiol, B* 1990; 6: 143–148.

5. Henderson BW, Dougherty TJ. How does photodynamic therapy work? *Photochem Photobiol* 1992; 55: 145–157.

6. Babillas P, Landthaler M, Szeimies RM. Photodynamic therapy in dermatology. *Eu J Dermatol* 2006; 16: 340–348.

7. Moloney FJ, Collins P. Randomized, double-blind, prospective study to compare topical 5-aminoalavulenic acid methyl ester with topical 5-aminoalavulenic acid photodynamic therapy for extensive scalp actinic keratosis. *Br J Dermatol* 2007; 157: 87–91.

8. Kuippers D, Thissen MR, Thissen CA, Neumann MH. Similar effectiveness of methyl aminolevulinate and 5-aminolevulinate in topical photodynamic therapy for nodular basal cell carcinoma. *J Drugs Dermatol* 2006; 5: 642–645.

9. Dirschka T, Radny P, Dominicus R et al. Photodynamic therapy with BF-200 ALA for the treatment of actinic keratoses: results of a multicentre, randomized, observer-blind phase III study in comparison with registered methyl-5-aminolevulinate cream and placebo. *Br J Dermatol* 2012; 166: 137–146.

10. Hauschild A, Stockfleth E, Popp G et al. Optimization of photodynamic therapy with a novel self-adhesive 5-aminolevulenic acid patch: results of two randomized controlled phase III studies. *Br J Dermatol* 2009; 160: 1066–1074.

11. Gerritsen MJP, Smits T, Kleipenning MM et al. Pretreatment to enhance protoporphyrin IX accumulation in photodynamic therapy. *Dermatolog, 2009; 218; 193–202.

12. Rhodes LE, de Rie M, Enstrom Y et al. Photodynamic therapy using topical methyl aminolevulinate vs surgery for nodular basal cell carcinoma: results of a multicenter randomized prospective trial. *Arch Dermatol* 2004: 140: 17–23.

13. Nester MS, Gold MH, Kauvar ANB et al. The use of photodynamic therapy in Dermatology: results of a consensus conference. *J Drugs Dermatol* 2006; 5: 140–154.

14. Braathen I R, Paredes B E, Saksela O et al. Short incubation with methyl aminolevulinate for photodynamic therapy of actinic keratoses. *J Eur Acad Dermatol Venereol* 2009; 23: 550–555.

15. Kacervska D, Pizinger K, Majer F et al. Photodynamic therapy of nonmelanoma skin cancer with topical hypericum perforatum extract—a pilot study. *Photochem Photobiol* 2008; 84: 779–785.
16 Rook AH, Wood GS, Duveik M et al. A phase II placebo-controlled study of photodynamic therapy with topical hypericin and visible light irradiation in the treatment of cutaneous T-cell lymphoma and psoriasis. J Am Acad Dermatol 2010; 63: 984–990.

17 Baron ED, Malbasa CL, Santo-Domingo D et al. Silicon phthalocyanine (Pc 4) photodynamic therapy is a safe modality for cutaneous neoplasms: results of a phase I clinical trial. Lasers Surg Med 2010; 42: 728–735.

18 Maisch T, Moor AC, Regenburger J et al. Intense pulse light and 5-ALA PDT: phototoxic effects in vitro depend on the spectral overlap with protoporphyrin IX but do not match cut-off filter notations. Lasers Surg Med 2011; 43: 176–182.

19 Szeimies RM, Radny P, Sebastian M et al. Photodynamic therapy with BF-200 ALA for the treatment of actinic keratosis: results of a prospective, randomized, double-blind, placebo-controlled phase III study. Br J Dermatol 2010; 163: 386–394.

20 de Haas ER, Kruitj B, Sterenborg HJ et al. Fractionated illumination significantly improves the response of superficial basal cell carcinoma to aminolevulinic acid photodynamic therapy. J Invest Dermatol 2006; 126: 2679–2686.

21 de Haas ER, Sterenborg HJ, Neumann HA, Robinson DJ. Response of Bowen disease to ALA-PDT using a single and a 2-fold illumination scheme. Arch Dermatol 2007; 143: 264–265.

22 de Haas ER, de Vlijder HC, Sterenborg HJ et al. Fractionated aminolevulinic acid-photodynamic therapy provides additional evidence for the use of PDT for non-melanoma skin cancer. J Eur Acad Dermatol Venereol 2008; 22: 426–430.

23 Sotiriou E, Apalla Z, Chovara E et al. Single vs. fractionated photodynamic therapy for face and scalp actinic keratoses: a randomized, intra-individual comparison trial with 12 month follow-up. J Eur Acad Dermatol Venereol 2012; 26: 36–40.

24 Mosterd K, Thissen MRTM, Nelemans P et al. Fractionated 5-aminolevulinic acid-photodynamic therapy vs. surgical excision in the treatment of nodular basal cell carcinoma: results of a randomized controlled trial. Br J Dermatol 2008; 159: 864–870.

25 Wiegell SR, Haak CS, Thaysen-Petersen D et al. Continuous activation of PpIX by daylight is as effective as and less painful than conventional photodynamic therapy for actinic keratoses; a randomized, controlled, single-blind study. Br J Dermatol 2008; 158: 740–746.

26 Wiegell SR, Fabricius S, Stender I M et al. A randomized multicentre study of directed daylight exposure times of 1 1⁄4 vs. 2 1⁄2 h in day-light-mediated photodynamic therapy with methyl aminolaevulinate in patients with multiple thin actinic keratoses of the face and scalp. Br J Dermatol 2011; 164: 1083–1090.

27 Wiegell SR, Fabricius S, Gniadecka M et al. Daylight-mediated photodynamic therapy of moderate to thick actinic keratoses of the face and scalp - a randomized multicentre study. Br J Dermatol 2012; 166: 1327–1332.

28 Wiegell S, Wulf H, Szeimies R-M et al., Daylight photodynamic therapy for actinic keratosis: an international consensus. J Eur Acad Dermatol Venereol 2012; Br J Dermatol 2012; 26: 673–679.

29 Moseley H, Allen JW, Ibbotson S et al. Ambulatory photodynamic therapy: a new concept in delivering photodynamic therapy. Br J Dermatol 2006; 154: 747–750.

30 Attili SK, Lasar A, McNell A et al. An open pilot study of ambulatory photodynamic therapy using a wearable low-irradiance organic light-emitting diode light source in the treatment of nonmelanoma skin cancer. Br J Dermatol 2009; 161: 170–173.

31 Moseley H, Brancalion L, Lesar A, Ferguson J, Ibbotson SH. Does surface preparation alter ALA uptake in superficial non-melanoma skin cancer in vivo? Photodermol Photoinmun Photomed. 2008; 24: 72–75.

32 Szeimies RM, Stockfleth E, Popp G et al. Long-term follow-up of photodynamic therapy with a self-adhesive 5-aminolevulinic acid patch: 12 months data. Br J Dermatol 2010; 162: 410–414.

33 Thissen MR, Schroeter CA, Neumann HA. Photodynamic therapy with delta-aminolevulinic acid for nodular basal cell carcinomas using a prior debulking technique. Br J Dermatol 2000; 142: 338–339.

34 Clementoni MT, B-Roscher M, Munavalli GS. Photodynamic photo-rejuvenation of the face with a combination of microneedling red light and broadband pulsed light. Lasers Surg Med 2010; 42: 150–159.

35 Whitaker IS, Shokrollahi K, James W et al. Combined CO2 Laser With Photodynamic Therapy for the Treatment of Nodular Basal Cell Carcinomas. Ann Plast Surg 2007; 59: 484–488.

36 Togsvend Bo K, Haak CS, Thaysen-Petersen D, Wulf HC, Anderson RR, Hædersdal M. Intensified photodynamic therapy of actinic keratoses with fractional CO2 laser – a randomized clinical trial. Br J Dermatol 2012; 166: 1262–1269.

37 Fritsch CJ, Ruzicka T. Fluorescence diagnosis and photodynamic therapy in dermatology from experimental state to clinic standard methods. J Environ Pathol Toxicol Oncol 2006; 25: 425–439.

38 Eyre M, Campbell S, Curnow A. Validation of a non-invasive fluorescence imaging system to monitor dermatological PDT. Photodiagnostics Photodyn Ther 2010; 7: 86–97.

39 Lee CY, Kim KH, Kim YH. The efficacy of photodynamic therapy in defining the lateral border between a tumour and a tumour-free area during Mohs micrographic surgeryDermatol Surg. 2010; 36: 1704–1710.

40 Neus S, Gambichler T, Bechara FG, Wohl S, Lehmann P. Preoperative assessment of basal cell carcinoma using conventional fluorescence diagnosis. Arch Dermatol Res 2009; 301: 289–94.

41 Tyrrell JS, Campbell SM, Curnow A. The relationship between protoporphyrin IX photobleaching during real-time dermatological methylaminolevulinate photodynamic therapy (MAL-PDT) and subsequent clinical outcome. Lasers Surg Med 2010; 42: 613–619.

42 Smits T, Kleijnpenning MM, Bloks WAM, van de Kerkhof PCM, van Erp PEJ, Gerritsen M-JP. Fluorescence diagnosis in keratinocytic intraepidermal neoplasias. J Am Acad Dermatol 2007; 57: 824–831.

43 Wiegell SR, Skiveren PA, Philipsen PA, Wulf HC. Pain during photodynamic therapy is associated with protoporphyrin IX fluorescence and fluorescence rate. Br J Dermatol 2008; 158: 727–735.

44 Piacciudio DJ, Chen DM, Farber HF et al. Photodynamic therapy with aminolevulinic acid topical solution and visible blue light in the treatment of multiple actinic keratoses of the face and scalp: investigator-blinded phase 3 multicenter trials. Arch Dermatol 2004; 140: 41–46.

45 Tarstede M, Rosdahl I, Berne B et al. A randomized multicenter study to compare two treatment regimens of topical methyl aminolevulinate (Metvix®)-PDT in actinic keratosis of the face and scalp. Acta Derm Venerol 2005; 85: 424–428.

46 Morton C, Campbell S, Gupta G et al. Intra-individual, right-left comparison of topical methyl aminolevulinate-photodynamic therapy and cryotherapy in subjects with actinic keratoses: a multicentre, randomized controlled study. Br J Dermatol 2006; 155: 1029–1036. Morton CA. Guidelines for topical photodynamic therapy 2008

47 Tschern EH, Wong DS, Pariser DM, et al. The Phase IV ALA-PDT Actinic Keratosis Study Group. Photodynamic therapy using aminolevulinic acid for patients with nonhyperkeratotic actinic keratoses of the face and scalp: phase IV multicentre clinical trial with 12-month follow up. Br J Dermatol 2006; 155: 1262–9.

48 Kaufmann R, Spelman I, Weightman W et al. Multicentre intra-individual randomized trial of topical methyl aminolevulinate–photodynamic therapy vs. cryotherapy for multiple actinic keratoses on the extremities. Br J Dermatol 2008; 158: 994–999.

49 Sotiriou E, Apalla Z, Malamani F et al. Intra-individual, right-left comparison of topical 5-aminolevulinic acid photodynamic therapy vs. 5% imiquimod cream for actinic keratoses on the upper extremities. J Eur Acad Dermatol Venereol 2009; 23: 1061–1065.

50 Sotiriou E, Apalla Z, Chovara E, Panagiotidou D, Ioannides D. Photodynamic therapy with 5-aminolevulinic acid in actinic cheilitis: an
18 month clinical and histological follow-up. J Eur Acad Dermatol Venereol 2010; 24: 916–920.
51 Berking C, Herzinger T, Flaig MJ et al. The efficacy of photodynamic therapy in actinic cheilitis of the lower lip: a prospective study of 15 patients. Dermatol Surg 2007; 33: 825–830.
52 Sotiriou E, Lallas A, Goussi C et al. Sequential use of photodynamic therapy and imiquimod 5% cream for the treatment of actinic cheilitis: a 12 month follow-up study. Br J Dermatol 2011; 165: 888–892.
53 Stockleff E, Terhorst D, Braathen L et al. Guidelines on actinic keratosis. European Dermatology Forum: http://www.euroderm.org/edff/images/stories/guidelines/guideline_Management_Actinic_Keratoses-update2011.pdf.
54 De Berker D, McGregor J, Hughes B. Guidelines for management of Bowen’s disease: an observational study of tolerance and satisfaction in the treatment of actinic keratoses of the face and scalp between 5% imiquimod cream and photodynamic therapy with methyl aminolevulinate. Br J Dermatol 2011; 164: 429–433.
55 Morton CA, Horn M, Leman J et al. A randomized, placebo-controlled, European study comparing MAL-PDT with cryotherapy and 5-fluorouracil in subjects with Bowen’s disease. Arch Dermatol 2006; 142: 729–735.
56 Calzavara-Pinton P, Venturini M, Sala R. Methylaminolaevulinate-based photodynamic therapy of Bowen’s disease and squamous cell carcinoma. Br J Dermatol 2008; 159: 137–144.
57 Truchuelo M, Fernández-Guarrino M, Fleta B, Alcántara J, Jaén P. Effectiveness of photodynamic therapy in Bowen’s disease: an observational and descriptive study in 51 lesions. J Eur Acad Dermatol Venereol 2012; 26: 868–874.
58 Lopez N, Meyer-Gonzalez T, Herrera-Acosta E et al. Photodynamic therapy in the treatment of extensive Bowen’s disease. J Dermatolog Treat 2011. doi: 10.3109/09546634.2011.590789.[Epub ahead of print].
59 Paoli J, Ternesten Bratel A, Lowhagen G-B et al. Penile intraepithelial neoplasia: results of photodynamic therapy. Acta Derm Venerol 2006; 86: 418–421.
60 Cox N, Eddy D, Morton C. Guidelines for management of Bowen’s disease: 2006 update. Br J Dermatol 2007; 156: 11–21.
61 Vinciullo C, Elliott T, Francis D et al. Topical methyl aminolevulinate photodynamic therapy versus cryotherapy for superficial basal cell carcinoma: a 5 year randomized trial. Eur J Dermatol 2008; 18: 547–553.
62 Szigethy I, Ibbotson S, Murrell D et al. A clinical study comparing methyl aminolevulinate photodynamic therapy and surgery in small superficial basal cell carcinoma (8–20mm), with a 12-month follow-up. J Eur Acad Dermatol Venereol 2008; 22: 1302–1311.
63 Peng Q, Warloe T, Berg K et al. 5-Aminolevulinic acid-based photodynamic therapy: Clinical research and future challenges. Cancer 1997; 79: 2282–2308.
64 Morton CA, Whitehurst C, McColl JH, Moore JV, MacKie RM. Photodynamic therapy for basal cell carcinoma - Effect of tumour thickness and duration of photosensitiser application on response. Arch Dermatol 1998; 134: 248–249.
65 Vincigli R, Eliott T, Francis D et al. Photodynamic therapy with topical methyl aminolevulinate for difficult-to-treat basal cell carcinoma. Br J Dermatol 2005; 152: 765–772.
66 Rhodes LE, de Rie MA, Leisfodt R et al. Five year follow up of a randomized prospective trial of topical methyl aminolevulinate-photodynamic therapy versus surgery for nodular basal cell carcinoma. Arch Dermatol 2007; 143: 1131–1136.
67 Wang I, Bendsoe N, Klintenberg CA et al. Photodynamic therapy vs. cryosurgery of basal cell carcinomas: results of a phase III clinical trial. Br J Dermatol 2001; 144: 832–840.
68 Berroeta L, Clark C, Dawe RS et al. A randomized study of minimal curtaille follow up by topocal photodynamic therapy compared with surgical excision for low risk nodular BCC. Br J Dermatol 2007; 157: 401–403.
69 Foley P, Freeman M, Menter A et al. Photodynamic therapy with methyl aminolevulinate for primary nodular basal cell carcinoma: results of two randomized studies. Int J Dermatol 2009; 48: 1236–1245.
70 Fantini F, Greco A, Del Giovane C et al. Photodynamic therapy for basal cell carcinoma: clinical and pathological determinants of response. J Eur Acad Dermatol Venereol 2011; 25: 896–901.
71 Christensen E, Skogoll E, Visek T, Warloe T, Sundström S. Photodynamic therapy with 5-aminolevulinic acid, dimethylsulfoxide and curettag in basal cell carcinoma: a 6-year clinical and histological follow-up. J Eur Acad Dermatol Venereol 2009; 23: 58–66.
72 Loncaster J, Swindell R, Slevin F et al. Efficacy of photodynamic therapy as a treatment for Gorlin Syndrome-related basal cell carcinomas. Clin Oncol (R Coll Radiol) 2009; 21: 502–508.
73 Pauwels C, Mazereeuw-Hautier J, Basset-Seguin N et al. Topical methyl aminolevulinate photodynamic therapy for management of basal cell carcinomas in patients with basal cell nevus syndrome improves patient’s satisfaction and reduces the need for surgical procedures. J Eur Acad Dermatol Venereol 2011; 25: 861–864.
74 Telfer N, Colyer G, Morton C. Guidelines for the management of basal cell carcinoma. Br J Dermatol 2008; 159: 35–48.
75 Grapengiesser S, Ericson M, Gudmundsson F et al. Pain caused by photodynamic therapy of skin cancer. Clin Exp Dermatol 2002; 27: 493–497.
76 Sandberg C, Stenquist B, Rosdahl I et al. Important factors for pain during photodynamic therapy for actinic keratosis. Acta Derm Venereol 2006; 86: 404–408.
77 Warren CB, Karai IJ, Vidmos A, Maytin EV. Pain associated with aminolevulinic acid-photodynamic therapy of skin disease. J Am Acad Dermatol 2009; 61: 1033–1043.
78 Halldin CB, Gillstedt M, Paoli J et al. Predictors of pain associated with photodynamic therapy: a retrospective study of 638 treatments. Acta Derm Venereol 2011; 91: 543–551.
79 Aritos A, Van De Weert M, Nelemans P, Kelleners-Smeets N. Pain during topical photodynamic therapy: uncomfortable and unpredictable. J Eur Acad Dermatol Venereol 2010; 24: 1453–1457.
80 Kasche A, Lunderschied S, Ring J, Hein R. Photodynamic therapy induces less pain in patients treated with methyl aminolevulinate compared to aminolevulinic acid. J Drugs Dermatol 2006; 5: 353–356.
81 Wiegel S, Stender IM, Na R, Wulf HC. Pain associated with photodynamic therapy using 5-aminolevulinic acid or 5-aminolevulinic acid methylester on tape-stripped normal skin. Arch Dermatol 2003; 139: 1173–1177.
82 Aerts M, Ottersina S, Baltas E et al. Photodynamic therapy of non-melanoma skin cancer with methyl aminolavulinate is associated with less pain than with aminolevulinic acid. Acta Derm Venereol 2012; 92: 173–175.
83 Gholam P, Weberschock T, Denk K, Enk A. Treatment with 5-aminolevulinic acid methylester is less painful than treatment with 5-aminolevulinic acid nanoemulsion in topical photodynamic therapy for actinic keratosis. Dermatology 2011; 222: 358–362.
84 Holmes M, Dawe RS, Ferguson J, Ibbotson SH. A randomized, double-blind, placebo-controlled study of the efficacy of tetcane gel (Ametop) for pain relief during topical photodynamic therapy. Br J Dermatol 2004; 150: 337–340.
85 Langan SM, Collins P. Randomized, double-blind, placebo-controlled prospective study of the efficacy of topical anaesthesia with aeutic mixture of lignocaine 2.5% and prilocaine 2.5% for topical 5-aminolevulinic acid-photodynamic therapy for extensive scalp actinic keratoses. Br J Dermatol 2006; 154: 146–149.
86 Skiveren J, Haedersdal M, Philippen PA et al. Morphine gel 0.3% does not relieve pain during topical photodynamic therapy: a randomized
double-blind, placebo controlled study. Acta Derm Venereol 2006; 86: 409–411.

88 Pagliaro J, Elliott T, Bulsara M et al. Cold air analgesia in photodynamic therapy of basal cell carcinomas and Bowen’s disease: an effective addition to treatment: a pilot study. Dermatol Surg 2004; 30: 63–66.

89 Halldin CB, Paoli J, Sandberg C et al. Transcutaneous electrical nerve stimulation for pain relief during photodynamic therapy of actinic keratoses. Acta Derm Venereol 2008; 88: 311–313.

90 Paoli J, Halldin C, Ericson MB, Wennberg AM. Nerve blocks provide effective pain relief during photodynamic therapy for extensive facial actinic keratoses. Clin Exp Dermatol 2008; 33: 559–564.

91 Halldin CB, Paoli J, Sandberg C, Gonzalez H, Wennberg AM. Nerve blocks enable adequate pain relief during topical photodynamic therapy of field cancerization on the forehead and scalp. Br J Dermatol 2009; 160: 795–800.

92 Serra-Guillen C, Hueso L, Nagore E et al. Comparative study between cold air analgesia and supraorbital and supratrochlear nerve block for the management of pain during photodynamic therapy for actinic keratoses of the frontotemporal zone. Br J Dermatol 2009; 161: 353–356.

93 Babalis P, Knobler R, Hummel S et al. Variable pulse light is less painful than light-emitting diodes for topical photodynamic therapy of actinic keratoses: a prospective randomized controlled trial. Br J Dermatol 2007; 157: 111–117.

94 Von Felbert V, Hoffmann G, Hof-Fesch S et al. Photodynamic therapy of multiple actinic keratoses: reduced pain through use of visible light plus water-filtered infrared A compared with light from light-emitting diodes. Br J Dermatol 2010; 163: 607–615.

95 Kerr AC, Ferguson J, Ibbotson SH. Acute phototoxicity with urticarial reaetures during topical 5-aminolaevulinic acid photodynamic therapy. Clin Exp Dermatol 2007; 32: 210–212.

96 Golub AL, Gudgin DE, Kennedy JC et al. The monitoring of ALA-induced protoporphyrin IX accumulation and clearance in patients with skin lesions by in vivo surface-detected fluorescence spectroscopy. Lasers Med Sci 1999; 14: 112–122.

97 Angell-Peterson E, Christensen C, Mullet CR, Warloe T. Phototoxic reaction and porphyrin fluorescence in skin after topical application of methyl aminolaevulinate. Br J Dermatol 2006; 155: 301–307.

98 Moseley H, Ibbotson J, Woods J et al. Clinical and research applications of photodynamic therapy in Dermatology: Experience of the Scottish PDT centre. Lasers Surg Med 2006; 38: 403–416.

99 Morton CA, Whitehurst C, McColl JH et al. Photodynamic therapy for large or multiple patches of Bowen’s disease and basal cell carcinoma. Arch Dermatol 2001; 137: 319–324.

100 Wulf HC, Philipson P. Allergic contact dermatitis to 5-aminolaevulinic acid methylster but not to 5-aminolaevulinic acid after photodynamic therapy. Br J Dermatol 2004; 150: 143–145.

101 Harries MJ, Street G, Gilmour E et al. Allergic contact dermatitis to methyl aminolevulinate (Metvix®) cream used in photodynamic therapy. Photodermatol Photoinmunol Photomed 2007; 23: 35–36.

102 Holby T, Andersen KE, Solsvsten H, Sommerlund M. Allergic contact dermatitis to methyl aminolevulinate after photodynamic therapy in 9 patients. Contac Derm 2007; 57: 321–323.

103 Korsboj S, Solsvsten H, Erlandsen M, Sommerlund M. Frequency of sensitization to methyl aminolevulinate after photodynamic therapy. Contact Derm 2009; 60: 320–324.