Data for the simulation of different CO₂ utilization processes

Gerardo G. Esquivel-Patiño*, Fabricio Nápoles-Rivera

Chemical Engineering Department, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58060, México

Abstract

The simulation of chemical processes is a useful tool that provides valuable information and data for process analysis. The obtained data from simulations could be used later in optimization, economic, environmental, energetic, exergetic and different kind of analysis. In this work, it is presented the data that serves as basis for the simulation of different chemical process that use CO₂ as a raw material, to produce some value-added chemicals and fuels. The stream of captured CO₂ is taken from a biogas combined cycle power plant, and it is fed to a formic acid production plant, a syngas production plant and a methanol production plant.

© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Specifications Table

Subject	Process engineering
Specific subject area	Process simulation, chemical engineering
Type of data	Tables, Figures and Text
How data were acquired	Software of process simulation (Aspen Plus™) (continued on next page)

DOI of original article: 10.1016/j.jenvman.2021.113746

* Corresponding author.

E-mail address: ggesquivel@umich.mx (G.G. Esquivel-Patiño).
Table 1. Description of the data

Subject	Process engineering
Data format	Simulation basis description
Parameters for data collection	For all CO₂ utilization processes simulations of the biogas power plant study case, it was consider the same amount of flow of raw carbon dioxide for each process
Description of data collection	Common process modules and tools available in Aspen Plus were employed
Data source location	Universidad Michoacana de San Nicolás de Hidalgo
Data accessibility	Repository name: CCU simulation data. Data identification number: 10aac9 [1] https://github.com/espagio12/CCU-simulation-data.git 10.5281/zenodo.6408798 [1]
Related research article	G.G. Esquivel-Patiño and F. Nápoles-Rivera, Environmental and energetic analysis of coupling a Biogas combined cycle power plant with carbon capture, organic Rankine cycles and CO₂ utilization processes, Journal of Environmental Management. 300 (2021) 113746. 10.1016/j.jenvman.2021.113746.

Value of the Data

- The data gives insights on simulations of steady-state design of various CO₂ utilization processes.
- The data shown in this document could be used by anyone who wants to assess the performance of the CO₂ utilization processes.
- This dataset can be used for validation/verification of further simulation studies.
- The data presented could be used in several further studies of analysis (economic, energetic, exergetic, environmental, optimization, etc.) of the different CO₂ utilization processes.

1. Data

This article contains data related to the research article entitled “Environmental and energetic analysis of coupling a Biogas combined cycle power plant with carbon capture, organic Rankine cycles and CO₂ utilization processes” [2]. The tables contain the necessary data for the realization of the CO₂ utilization processes simulation, first for comparison and verification, are presented the parameters obtain by other articles [3–5], then the parameters used for the simulations of the study cases of the related article are presented. Fig. 1 and Table 1, presents the flowchart and the parameters used in the simulations of each case, for the formic acid production plant (FAPP), Fig. 2 and Table 2 the parameters for the methanol production plant (MPP), Fig. 3 and Table 3 the parameters for the syngas production plant (SynPP) via hydrogenation, and finally Fig. 4 and Table 4 presents the parameters for the syngas production plant (SynPP) via dry reforming of methane (DRM).

2. Experimental Design, Materials and Methods

With the aim of validating the CO₂ utilization processes (CUPs) simulations, the related simulations data were compared with those available in literature. The simulation shown in Fig. 1, corresponds to the process of formic acid production, the parameters used for the simulation were obtained from the article of Barbera et al. [5] and are shown in Table 1. The simulation of Fig. 2 shows the process of methanol production by CO₂ hydrogenation, the parameters used were obtained from Kiss et al., [3] and are shown in Table 2. Fig. 3 shows the flowchart of the production of syngas by CO₂ hydrogenation, which was carried out with the parameters in Table 3,
Table 1
Main parameters for the FAPP simulation.

Parameter	Base case	BGCC case	Study case
CO₂ flow (kg/h)	729.526	4478.43	1492.81
H₂ flow (kg/h)	40.604	249.26	83.08
Triethylamine flow (kg/h)	4233.43	32817.91	8660.95
Methanol flow (kg/h)	205.63	1262.82	420.94
Water flow (kg/h)	205.63	420.9408	151.512
Compressors outlet pressure (bar)	105	105	105
Reactor conversion (%)	42.91	42.91	42.91
Valve V-1 outlet pressure (bar)	70	70	70
Flash operational conditions (bar/°C)	(100/50.16)	(100/50.16)	(100/50.16)
Valves V-2,3 outlet pressure (bar)	1	1	1
Pump P-1 outlet pressure (bar)	105	105	105
Heater H-1 outlet temperature °C	50	50	50
Heater H-2 outlet temperature °C	50	50	50
Compressor C-3 outlet pressure (bar)	105	105	105
Heater H-3 outlet temperature °C	25	25	25
Separator S-2 operational conditions (bar/°C)	1/25	1/25	1/25
Distillation tower DT-1 operational conditions (stages/r)	(20/11)	(25/11)	(20/11)
Distillation tower DT-2 operational conditions (stages/r)	(10/0.7)	(20/0.7)	(12/0.7)

Table 2
Main parameters for the MPP simulation.

Parameter	Base case	BGCC case	Study case
CO₂ flow (kg/h)	17209.15	4478.88	1492.81
H₂ flow (kg/h)	2658.87	616.26	205.72
Reactor operational conditions (bar/°C)	50/250	50/250	50/250
CO₂ compressors C-1 outlet pressure (bar)	50	50	50
H₂ compressors C-2 outlet pressure (bar)	45	45	45
Heater H-1 outlet temperature °C	225	225	225
Heater H-2 outlet temperature °C	250	250	250
Cooler CO-1 outlet temperature °C	93.9	93.3	93.3
Cooler CO-2 outlet temperature °C	31	31	31
Flash S-1 operational conditions (bar/°C)	(45/30)	(45/30)	(45/30)
Stripper T-1 operational conditions (stages/r)	(4/0.659)	(4/0.659)	(2/0.659)
Valve V-1 outlet pressure (bar)	5	5	5
Distillation tower DT-1 operational conditions (stages/r)	(30/0.934)	(18/0.934)	(15/0.934)

Table 3
Main parameters for the SynPP by CO₂ hydrogenation simulation.

Parameter	Base case	BGCC case
CO₂ flow (kmol/h)	35.61	101.76
H₂ flow (kmol/h)	160.82	349.57
Heater H-1 outlet temperature °C	530	530
H₂ flow to the stripper ST-1 (kmol/h)	125.21	342.91
Exchanger HE-1 outlet temperature °C	361.7	361.7
Exchanger HE-2 outlet temperature °C	443.7	443.7
Exchanger HE-3 outlet temperature °C	515	515
Reactor operational conditions (bar/°C)	1/530	1/530
Cooler CO-1 outlet temperature °C	25	25
Absorber A-1 stages	12	15
Stripper stages	2	4
W-IN stream flow (kmol/h)	422.21	1206.52
Pump P-1 outlet pressure (bar)	7	7
Separator S-2 operational conditions (bar/°C)	7/31.12	7/31.12
Table 4
Main parameters for the SynPP by DRM.

Parameter	Value
CO₂ flow (kmol/h)	141.69
CH₄ flow (kmol/h)	142.54
Reactor RX operational conditions (bar/°K)	1.97/873
Heater H-1 outlet temperature °K	873
Cooler CO-1 outlet temperature °C	25
Flash S-1 operational conditions (bar/°C)	1/25

obtained from Barbera et al. [5]. Finally, the process of syngas production by dry reforming of methane is shown in Fig. 4, the parameters of Table 4 were used in the simulation and were obtained from the article of Gangadharan et al. [4].

Once the results of the simulations were consistent with the results obtained by the mentioned articles, the flows of the raw materials and some of the operational conditions of the main equipment of all CUPs simulations were adapted to a study case through sensitivity analysis. The study case consists in the use of the CO₂ captured from a biogas combined cycle power plant in the CUPs. For all CUPs it was assumed an equal CO₂ flow of 1492.81 kg/h, value obtained from the carbon capture plant simulation of the related article.
Fig. 2. Simulation of the MPP.

Fig. 3. Simulation of the SynPP by CO₂ hydrogenation.
Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships which have or could be perceived to have influenced the work reported in this article.

CRediT Author Statement

Gerardo G. Esquivel-Patiño: Conceptualization, Methodology, Writing – original draft; Fabricio Nápoles-Rivera: Conceptualization, Resources, Funding acquisition, Writing – review & editing.

Acknowledgments

The authors acknowledge the financial support provided by CONACYT and the Scientific Research Council (CIC_UMSNH) for the development of this project, as well as the support from the faculty of Chemical Engineering at the Universidad Michoacana de San Nicolás de Hidalgo.

References

[1] G.G. Esquivel-Patiño, F. Nápoles-Rivera, CCU simulation data, Zenodo V1 (2022), doi:10.5281/zenodo.6408798.
[2] G.G. Esquivel-Patiño, F. Nápoles-Rivera, Environmental and energetic analysis of coupling a Biogas combined cycle power plant with carbon capture, organic Rankine cycles and CO₂ utilization processes, J. Environ. Manag. 300 (2021) 113746, doi:10.1016/j.jenvman.2021.113746.
[3] A.A. Kiss, J.J. Pragt, H.J. Vos, et al., Novel efficient process for methanol synthesis by CO₂ hydrogenation, Chem. Eng. J. 284 (2016) 260–269, doi:10.1016/j.cej.2015.08.101.

[4] P. Gangadharan, K.C. Kanchi, H.H. Lou, Evaluation of the economic and environmental impact of combining dry reforming with steam reforming of methane, Chem. Eng. Res. Des. 90 (2012) 1956–1968, doi:10.1016/j.cherd.2012.04.008.

[5] E. Barbera, F. Mantoan, A. Bertucco, et al., Hydrogenation to convert CO₂ to C1 chemicals: technical comparison of different alternatives by process simulation, Can. J. Chem. Eng. 9 (98) (2019) 1893–1906, doi:10.1002/cjce.23755.