Recycling RNA-Seq Data to Identify Candidate Orphan Genes for Experimental Analysis

Jing Li1,3,4, Zebulun Arendsee2,3,4, Urminder Singh2,3,4, and Eve Syrkin Wurtele1,2,3,4

1Genetics and Genomics Graduate Program, Iowa State University, Ames, 541004, US,
2Bioinformatics and Computational Biology Program, Iowa State University, Ames, 50014, USA
3Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, 50014, US and
4Center for Metabolic Biology, Iowa State University, Ames, 50014, US

*Correspondence: evewurtele@gmail.com

Abstract

Motivation: Each organism contains genes with no protein homolog in other species ("orphan genes"). Some of these have arisen de novo from non-genic material, while others may be the result of ultra-rapid mutation of existing genes. The challenges of identifying orphan genes and predicting their functions are immense, resulting in under-appreciation of their importance. The yeast genome expresses thousands of transcripts, many that contain ORFs that are translated, that are not annotated as genes. Here, we apply computational approaches to re-cycle and re-evaluate massive raw public RNA-Seq data to identify those ORFs that are the best candidates to represent orphan genes.

Results: We created a pooled, aggregated RNA-Seq dataset from the raw reads and metadata of over 3,400 RNA-seq samples from 172 studies in the NCBI-Sequence Read Archives (SRA) database (Leinonen et al., 2011), and realigned these reads to a transcriptome consisting of the Saccharomyces Genome Database ((Cherry et al., 1998), SGD)-annotated genes and 29,354 unannotated ORFs of the Saccharomyces cerevisiae genome. Phylostratigraphy analysis of the predicted proteins from the 29,354 non-annotated open reading frames (ORFs) in the S. cerevisiae genome inferred: 15,806 are orphans ("orphan-ORFs"), 11,942 are genus-specific, and 1,606 are more highly conserved. These RNA-Seq data reveal over 150 of transcripts containing orphan encoding-ORFs with mean levels of expression across all samples comparable to half of annotated non-orphan genes. Most orphan-encoding ORFs are highly expressed only under limited conditions. We built a co-expression matrix from the transcription dataset, and optimized partitioning by Markov Chain Clustering. The MCL clustering result is significant different from random clusters based on GO enrichment analysis to show the biological significance. Over 3,000 significant GO terms (p-value<0.05) were found in the clusters, and plenty of unannotated ORFs were found highly correlated (PCC > 0.8) to annotated genes. For example, cluster 112 is composed of seripauperin genes, and smORF247301 is correlated to YPL223C with a 0.95 Pearson correlation. We provide the results of the optimized aggregate-data analysis in a tool that can be used for powerful statistical analysis and visualization of specific transcripts under user-selected conditions. This approach maximizes a user’s ability to view potential interactions across experimental perturbations, and provides a rich context for experimental biologists to make novel, experimentally-testable hypotheses as to potential functions of as yet unannotated transcripts.

Contact: evewurtele@gmail.com

Supplementary information: Supplementary data are available at BioRxiv online.

1 Introduction

The transcription of unannotated genome sequence is evidenced by transcriptomic studies in which raw reads do not align to known genes (Wu and Knudson, 2018; Pertea et al., 2018b; Delcourt et al., 2018; Struhl, 2007; Lu et al., 2017). Many dismiss this genome expression as "noise" (Pertea et al., 2018b; Consortium et al., 2012; Barroso et al., 2018; Lloréns-Rico et al., 2016). However, some of this sequence are translated (Wu and Knudson, 2018; Carvunis et al., 2012; Smith et al., 2014; Olexiouk et al., 2017; Hsu et al., 2016; Ruiz-Orera et al., 2015; Chew et al., 2013), and several functional genes have been identified from it (Ji et al., 2015; Andrews and Rothnagel, 2014). To our knowledge, the levels and patterns of transcription of these unannotated transcripts have not been globally evaluated. Genes that encode species-specific proteins (orphan genes) (Arendsee et al., 2019b) are among those least likely to be annotated. Orphan genes may evolve de novo from non-coding sequence in regions of the genome lacking genes entirely, or they may evolve
as new reading frames within existing genes (Ruiz-Orera et al., 2015; Arendsee et al., 2019a; Obo and Carvunis, 2019; Tautz and Domazet-Lošo, 2011). Alternatively, existing proteins could be highly altered and converted to orphans (Tautz and Domazet-Lošo, 2011; Khalturin et al., 2009), a process that would require selective ultra-rapid mutation. The process by which such ultra-rapid mutation might occur is, to our knowledge, as-yet undefined.

Many annotated orphan genes are up-regulated by an environmental stress; spatially or developmentally localized; or associated with species-specific traits or regulatory patterns (Li et al., 2009; Guo et al., 2007; Colbourne et al., 2011; Arendsee et al., 2014). We propose this is also likely a characteristic of as-yet unannotated orphans (“orphan-ORFs”).

Most annotations of genomes identify genes by combining evidence of homology with genes of other species (Meyer and Durbin, 2004; Proux-Wéra et al., 2012) and ab initio gene prediction via canonical motifs (e.g., splice junctions) (Cantarel et al., 2008; Hoff et al., 2016). Homology cannot identify orphan genes, and it is quite possible that ab initio gene prediction would not be very effective, as orphans may not have evolved canonical motifs.

Here, we introduce an approach and tools to reuse and re-mine aggregated RNA-Seq data from public databases to identify transcribed ORFs and to construct a co-expression network. Integrating these with co-expression networks, GO enrichment analysis and RNA-Seq metadata offers a perspective on which to base experimentally-testable biological hypotheses for unknown genes.

2 Methods

2.1 Orphan detection in S. cerevisiae

We used the automated R software for phylostratigraphy, phylostratr (Arendsee et al., 2019b), to infer the phylostrata of CDSs and ORFs of the S. cerevisiae genome. CDSs were obtained from SGD: Unannotated ORFs (≥ 150 nt) were extracted by bedtools2 (Quinlan and Hall, 2010), translated by emboss (Rice et al., 2000), yielding 24,912 ORFs; to these we added ORFs less than 150 nucleotides: the set of 1,139 smaller translated sequences (smORFs) identified by ribosome profiling (Carvinis et al., 2012) and 3,303 ORFs identified by TIF-Seq (Li et al., 2017) (xCDSs) that were not included among the ORFs due to small size (≥ 150 nt). The analysis compared the proteins predicted from the S. cerevisiae CDSs and ORFs to proteins of 123 target species distributed across phylostrata: 117 species identified by the phylostratr algorithm, supplemented with six manually-selected species in the S. cerevisiae genus (S. paradoxus, S. mikatae, S. kudriavzevi, S. arboricola, S. rouxii, and S. uvarum). To avoid false positives when identifying orphan ORFs from S. cerevisiae, we extracted the translation products from all ORFs (≥ 150 nt) from each of the six S. cerevisiae genomes, and then added these to the annotated proteins. (See Figure S1 for workflow, species.xlsx for full species list, and phylostratr_heatmap.pdf for gene by gene results). Each gene is assigned to the most evolutionarily-distant phylostratum that contains an inferred homolog. A gene is inferred as an orphan if it is assigned a phylostratum level as S. cerevisiae (ps=15).

2.2 Raw read processing and data normalization

RNA-Seq raw reads were pseudolabeled to a transcriptome index of SGD-annotated genes plus unannotated ORFs and quantified by kallisto (Weijers et al., 2012) (see S.cerevisiae_RNA-seq.mog for RNA-Seq metadata). The ORFs over 150 nt with less were filtered out before making the pairwise PCC networks: all SGD genes and smORFs were retained regardless of expression values.

We evaluated the performance of two diverse methods for normalizing raw counts (Section 3, Supplementary_Material.pdf) and three Pearson’s correlation coefficients (PCC) cutoffs (Section 3, Supplementary_Material.pdf) using Markov chain graph clustering (MCL). (Dongen and Marinus, 2000) followed by GO enrichment analysis. The ORFs with expression values in lowest 75% quartile were removed from the data, and networks were created from the SGD and SGD+ORF databases by calculating the pairwise Pearson correlation matrix across all 3,457 samples.

Our consideration of which normalization methods to use was twofold. Based on the evaluation of Dillies et al. (2013), we used edgeR (Robinson et al., 2010). We also normalized the raw data by a single cell RNA-Seq normalization XScour (Bacher et al., 2017). This method examines sequence information from individual cells with the aim to provide a higher resolution of cellular differences. Two features of single cell RNA-Seq analysis are similar to analysis of the orphan-ORF-focused multi-study RNA-Seq data here: 1) raw counts contain an abundance of zero-expression values, 2) there is high technical variability among samples.

Comparison of GO enrichment results led to selection of edgeR normalization for further analyses. Networks obtain from PCC cutoffs of 0.6, 0.7 and 0.8 were then evaluated (Section 3, Supplementary_Material.pdf).

2.3 Cluster evaluation by Gene Ontology (GO) term enrichment analysis

Clustering results from each of the eight MCL analyses were evaluated by GO enrichment analysis; only clusters with over five genes were considered (Section 2, Supplementary_Material.pdf). The GO term representation of each experimental result was compared to that of 100 random sets of clusters that were obtained by permuting gene IDs. For these permutations, the same number of clusters of the same size as the those from the experimental result were assigned to each random set (Mentzen and Wurtele, 2008). The best adjusted p-value p.adj was recorded for the
Despite this significant body of research on S. cerevisiae, the yeast genome expresses thousands of transcripts that are not annotated as genes (Carvunis et al., 2012; Lu et al., 2017; Oss and Carvunis, 2019; Wu and Knudson, 2018; Smith et al., 2014; Pelechano et al., 2013; Lu et al., 2017), some supported with translational evidence and many of de novo origin (Oss and Carvunis, 2019; Lu et al., 2017).

To delineate those ORFs that could encode orphan proteins, we inferred the the oldest phylostratum (PS) to which each S. cerevisiae protein (or candidate protein) can be traced using phylostratum designated as PS1, and no similarity to any protein outside of S. cerevisiae being PS15. (See MOG file S.cerevisiae_RNA-seq.mog for complete PS assignments by transcript). By this analysis, less than 4% of SGD-annotated genes are inferred as orphans, and 54% of unannotated ORFs are orphans (orphan-ORFs). More than 80% of the conserved ORFs are genus-specific. The mean CDS length of genes generally increases during evolution, with orphan CDSs being the shortest on average (Arendsee et al., 2014; Palmieri et al., 2014; Arendsee et al., 2015b; Oss and Carvunis, 2019; Teoli et al., 2009) (Figure S4.A). The unannotated orphan-ORFs follow a similar trend, average length is also shorter than that of SGD-annotated conserved genes (Figure S4.A). Similar to the finding of (Basile et al., 2017), the mean GC content for annotated orphans in S. cerevisiae is slightly lower than that of more conserved genes; interestingly, Vakirlis et al. (2018) report a higher GC content among those orphan genes of confirmed de novo origin. The unannotated orphan-ORFs also have a slightly lower mean GC content than those of other phylostratum genes (Figure S4.B).

3.2 Functional inference

To infer potential functions of the yeast orphan genes and orphan-ORFs through co-expression with genes of known function, we downloaded from SRA raw sequence reads of 3,457 RNA-Seq samples from 177 studies. The experimental variables across these samples include a wide variety of mutants, chemical treatments, stresses, nutrition deprivations, and growth stages. We mapped the RNA-Seq reads to a yeast transcriptome composed of SGD-annotated genes and ORFs, and quantified abundances. Then, we analyzed the expression patterns of ORFs in the context of the 6,692 annotated genes of S. cerevisiae across an aggregated dataset of 3,457 RNA-Seq samples, consisting of the re-processed, edgeR-normalized raw reads from SRA and the corresponding metadata.

Figure 2 compares the expression for the matrix of 3,457 RNA-Seq samples for SGD genes, smORFs, and orphan-ORFs (See Figure S7 for full expression plot). The mean expression for all annotated genes across all data is 38 cpm, whereas the mean expression for the 25% most highly expressed ORFs is 18 cpm. Many SGD-annotated genes are expressed in most of the samples. In contrast, most ORFs have very low expression in most samples but accumulate more highly in a few samples. This contributes to the low mean expression of many of the ORFs.

Across 3,457 RNA-Seq runs, conserved SGD annotated genes have significantly higher mean expression than orphan SGD genes and unannotated ORFs (Figure S8.A). Over 600 of unannotated orphan-ORFs have higher mean expression than 10% of conserved SGD genes. Moreover, 36 of orphan-ORFs have mean expression higher than 90% conserved SGD genes (Table S4.A). ORFs with transcription evidence from our study and Lu et al. (2017) have higher mean expression than SGD genes.
smORFs with translation evidence (Carvunis et al., 2012) (Figure S8.B), which indicates these expressed ORFs may not be transcription noise.

3.3 Network inference and MCL clustering of the inferred expression network

Orphan genes have no homologs in other species and are likely to have less canonical structure, hence we cannot use standard gene prediction tools to identify them or infer their functions (Arendsee et al., 2014). Based on the assumption that genes with similar patterns of expression across different conditions are likely to encode proteins with related functions or be involved in the same pathway, we inferred functions for those orphan genes that are co-expressed with known function across many conditions.

We used two datasets for network inference. One network, “SGD genes” is from the 6,692 SGD-annotated genes. The other network, “SGD+ORF”, contains 14,885 transcripts in total and includes all SGD-annotated genes, 1139 smORFs, and 7,054 ORFs (comprising the 25% most highly-expressed as ranked by mean expression across 3,475 annotated genes, 1139 smORFs, and 7,054 ORFs (comprising the 25% most highly-expressed as ranked by mean expression across 3,475 samples).

To identify sets of co-expressed genes, we used a high-throughput graph-clustering pipeline based on flow simulation (Markov chain graph clustering, MCL (Dongen and Marinus, 2000)) to identify clusters of co-expressed genes. After parameter optimization (see Figure S2, S3, and Table S1) a final network derived from the full SGD+ORF dataset was partitioned by MCL into 544 clusters (Table S2). Since clusters of < five transcripts are problematic for functional analysis, we focused on those clusters with at least 5 genes. Forty-six percent of the 273 SGD genes that have been designated as orphans (Arendsee et al., 2019b) are members of clusters containing more than 5 genes; 59% of the 3,899 expressed orphan-ORFs are in clusters with more than 5 genes.

3.4 GO enrichment analysis for clustering results

In order to evaluate the significance of the clustering results, we compared the extent of significant enrichment of Gene Ontology (GO) terms in the set of the clusters of more than 5 genes derived from MCL clustering of experimental data with that of 100 randomly-obtained sets of clusters. For each random set, the number of clusters and the number of genes in each cluster are held the same as the experimental data; however, the genes assigned to each cluster were changed by random permutation. The best adjusted p-value for enriched GO terms was recorded for each random set, the number of clusters and the number of genes in each cluster are held the same as the experimental data; however, the genes assigned to each cluster were changed by random permutation. The best adjusted p-value for enriched GO terms was recorded for each random set; 59% of the 3,899 expressed orphan-ORFs are in clusters with more than 5 genes.

3.5 Exploring Gene Function

As proof-of-concept for the utility of these data, we provide three examples of functional inference combining MCL clustering analysis, GO enrichment analysis, and RNA-Seq expression across multiple conditions. Metadata about each transcript includes: functional annotations (from SGD), CDS/ORF GC content, CDS/ORF length, genomic positional coordinates, orientation, phylogenetic assignment, MCL-cluster membership. Metadata about each sample includes: study ID, title, summary, reference, design description, library construction protocol, sequencing apparatus; sample title, experimental attributes, number of replicates; replicate name, sequencing depth, base coverage. (See S.cerevisiae_RNA-seq.mog for the complete expression matrix and gene/ORF and RNA-Seq sample metadata).

In many cases, co-expression clusters are composed of genes and ORFs located across widely diverse regions of the genome. MCL Cluster 112 contains 20 SGD-annotated genes and 21 unannotated ORFs (Figure 4, top panel). Twelve of the genes are in the seripauperin (P AU) family. PAU-rich gene clusters have been identified in independent microarray studies using distinct data sets (Orellana et al., 2014; Magwene and Kim, 2004). Many PAU family members are induced by low temperature and anaerobic conditions, and repressed by heme (Rachidi et al., 2008) and individual PAU proteins confer resistances to biotic and abiotic stresses (Rivero et al., 2015); their molecular function is not known. PAU proteins are localized to the cell wall, plasma membrane, endoplasmic reticulum and vacuole.

![Cluster 112](image)

Fig. 4. Case study: Genes and ORFs grouped into Cluster 112 by MCL partitioning. Cluster 112 contains 12 seripauperin genes. Top, network view of cluster 112. Edge colors, Pearson correlations of 0.6 to 1.0; light blue nodes, SGD-annotated genes; pink nodes, unannotated transcripts; square nodes, orphans, circular nodes, conserved. Bottom, significantly-enriched GO terms. Fourteen of the 19 conserved annotated genes in Cluster 112 are classified by one or more GO terms in the table. (See cluster_example.xlsx and S.cerevisiae_RNA-seq.mog for complete clustering and ontology results.)
Fig. 5. The 41 genes and ORFs in cluster 112 respond to anoxia. US should we mention the visualizations are produced with MOG Expression patterns of the 41 genes and ORFs in cluster 112 are similar across multiple conditions. (See geneInfo_cluster112and 317.xlsx for gene/ORF-list.) X-axis, 3,457-samples, sorted by study. Y-axis, expression values. Each line represents the expression pattern of a single gene or ORF. Top left inset, zoom-in to Study SRP067275: "Sequence, annotate, and analyze the genome of GLBRCY 22-3, a stress tolerant strain of S. cerevisiae with biofuels potential". RNA-Seq samples sorted by: aerobic or anaerobic condition, ACSH or YPDX media, and growth phase. ACSH, Ammonia Fiber Expansion-(AFEX-)pretreated corn stover hydrolysate. YPDX, YP media containing containing 60 g/L dextrose and 30 g/L xylose. Top right inset, zoom-in to Study SRP098655: "Lipid engineering reveals regulatory roles for membrane fluidity in yeast fluctuation and oxygen-limited growth". The 41 genes and ORFs of cluster 112 are up-regulated in response to anoxia, regardless of changes in growth media.

YER011W and YJR150C, also in Cluster 112, are localized to the same cellular compartments as seripauperin and have been shown to be induced under anaerobic conditions (Sertil et al., 1997; Kowalski et al., 1995; Kitagaki et al., 1997; Cohen et al., 2001). The other genes in this cluster have no functional annotation. GO enrichment analysis identified eight GO terms to be significantly-over-represented in this cluster (Figure 4, bottom panel). Exploration and visualization of in Cluster 112 in MetaOmGraph (MOG) (Singh et al., 2019). Figure 5 shows the expression of the genes and ORFs across all 3,457 samples of the RNA-Seq dataset, and highlights the two studies in this dataset that evaluate oxygen content as an experimental variable. Study SRP067275 compares four growth stages of the stress-tolerant yeast strain GLBRCY22-3 grown in YPDX and ACSH media, with and without oxygen (McIlwain et al., 2016) (Figure 5, top left). The expression of the genes and ORFs in Cluster 112 is higher under anaerobic conditions, irrespective of media or growth stage. Study SRP098655 compares OLE1-repressible strains growing under anaerobic and aerobic conditions (Degreif et al., 2017) (Figure 5, top right). Expression of genes and ORFs in Cluster 112 is induced in cells grown under anaerobic conditions. These expression patterns indicate the genes and the ORFs in this cluster might be sensitive to anoxia, or play a role in cellular response to this stress.

In several cases, ORFs are located near an existing gene and also share a similar transcription pattern. This is the case for smORF247301, which is 77nt upstream of YPL223C (Figure 6). MOG analysis indicates smORF247301 and SGD gene YPL223C have a Pearson's correlation of 0.95 across the 3,457 RNA-Seq samples. smORF247301 is located on the "+" strand of chromosome 16, while YPL223C is on the "-" strand of the same chromosome. The CDS of YPL232C is 507 nt, while smORF247301 is 33 nt. YPL223C is more highly expressed than smORF247301. YPL223C, a hydrophilin gene that is essential in surviving desiccation-rehydration, is regulated by the high-osmolarity glycerol (HOG) pathway (Garay-Arroyo et al., 2000), and induced by osmotic, ionic, oxidative, heat shock and heavy metals stresses. Three independent stress studies (Figure 6 B-D) show increased expression of smORF247301 and YPL223C in response to osmotic, heat and desiccation stresses. smORF247301 has translation evidence through ribosomal profiling (Carvunis et al., 2012).

Fig. 6. Expression patterns of smORF247301 and YPL223C are located on nearby regions of chromosome 16 in opposite orientations. A) Expression patterns are similar (Pearson correlation, 0.95) across 3,457 samples. B-D: Expression patterns for smORF247301, YPL223C, and mean of SGD genes and all genes/ORFs in these studies. (B) ERP020876, salt stress; (C) SRP073654: wild type and mutant strains in heat and osmotic stress; (D)SRP105277, surface and invasive cells of biofilms.

One possibility is that the transcription and translation of smORF247301 is "noice" (Eling et al., 2019) associated with the expression of the nearby
YPL223C. Another possibility is that smORF247301 is a young, not-
annotated gene that is "piggybacking" on the expression apparatus of
YPL223C. In that case, the co-expression of these two transcripts could
reflect a mechanism whereby a new gene can emerge provided with a ready-
made exposure to transcription factors associated with open chromatin
during transcription of a nearby established gene (YPL223C), evolving to
confer a survival advantage, e.g., the stress response pathway of YPL223C.

A variety of methods can be used for network inference and
partitioning. Each combination of inference and partitioning methods
provides complementary information, revealing different types of
relationships. Networks can be inferred by correlation among expression
values (Ruan et al., 2010; Luo et al., 2007; Mentzen and Wurtele,
2008), by mutual information (Zhang et al., 2012) or by Relational
approaches (Netoeta et al., 2014). Pearson correlation, as in this paper, is
highly sensitive at extracting genes whose expression is linearly correlated
across multiple conditions, but it misses many more complex, non-linear
relationships. To our knowledge, the strengths and weaknesses provided
by the various network partitioning methods for extracting different types
of biological information has not been investigated. Thus, the identical
RNA-Seq expression data can be reanalyzed and further explored to reveal
different biological interactions.

4 Conclusion

In this study we have assessed the accumulation of transcripts representing
36,046 annotated genes and unannotated ORFs of S. cerevisiae across
3,457 public RNA-seq samples derived from diverse biological conditions.
Fourty-nine ORFs had no detectable expression in any sample. Of the 8,193
expressed ORFs, 48% were inferred to be "orphan-ORFs", encoding S.
cerevisiae-specific proteins. Despite tendency to be expressed only under
specific conditions, 163 of the orphan-ORFs had mean levels of expression
greater than that of the median SGD-annotated gene. Over 2,000 of the
orphan-ORFs are members of gene clusters identified by MCL partitioning
of the network. We postulate that among these ORFs are functional genes,
and suggest an approach to hone in on these for experimental analysis.

The SGD+ORF dataset assembled herein represents the expression of
SGD-annotated genes and unannotated ORFs under multiple conditions in
a readily explorable, user-friendly format. Combining this network-
informative view of aggregate RNA-Seq data with text-mining of sample
and gene metadata creates a powerful approach to develop novel,
experimentally-testable hypotheses on the potential functions of as yet
unannotated transcripts.

Acknowledgements

We thank Drs. Kevin Bassler and Pramesh Singh at University of Houston
for insightful discussion about clustering analysis, and Manhui Hur and
Nishanth Sivakumar for developing the MCL Spark pipeline used in this
study.

Funding

This work is funded in part by the National Science Foundation grant NSF-
IOS 1546858. Orphan Genes: An Untapped Genetic Reservoir of Novel
Traits.

References

Andrews, S. J. and Rothnagel, J. A. (2014). Emerging evidence for
functional peptides encoded by short open reading frames. Nature
Reviews Genetics, 15(3), 193.

Arendsee, Z. et al. (2019a). fagin: High resolution contextual
phlyostratigraphy of young genes. Accepted in BMC Bioinformatics.

Arendsee, Z. et al. (2019b). phlyostrat: a framework for
phlyostratigraphy. Bioinformatics.

Arendsee, Z. W. et al. (2014). Coming of age: orphan genes in plants.
Trends in Plant Science, 19(11), 698–708.

Bacher, R. et al. (2017). SCnorm: robust normalization of single-cell
RNA-seq data. Nature Methods, 14(6), 584–586.

Barroso, G. V. et al. (2018). The evolution of gene-specific transcriptional
noise is driven by selection at the pathway level. Genetics, 208(1),
173–189.

Basile, W. et al. (2017). High GC content causes orphan proteins
to be intrinsically disordered. PLOS Computational Biology, 13(3),
e1005375.

Cantarel, B. L. et al. (2008). MAKER: An easy-to-use annotation pipeline
designed for emerging model organism genomes. Genome Research, 18(1),
188–196.

Carvinas, A.-R. et al. (2012). Proto-genes and de novo gene birth. Nature,
487(7407), 370–374.

Cherry, J. M. et al. (1998). SGD: Saccharomyces Genome Database.
Nucleic Acids Research, 26(1), 73–79.

Chew, G.-L. et al. (2013). Ribosome profiling reveals resemblance
between long non-coding RNAs and 5′ leaders of coding RNAs.
Development, 140(13), 2828.

Cohen, B. D. et al. (2001). Induction and repression of DAN1 and the
family of anaerobic mannanprotein genes in Saccharomyces cerevisiae
occurs through a complex array of regulatory sites. Nucleic Acids
Research, 29(3), 799–808.

Colbourne, J. K. et al. (2011). The Ecoresponsive Genome of Daphnia
pulex. Science, 331(6017), 555–561.

Consortium, E. P. et al. (2012). An integrated encyclopedia of DNA
elements in the human genome. Nature, 498(7414), 57–74.

Degreif, D. et al. (2017). Lipid engineering reveals regulatory roles
for membrane fluidity in yeast flocculation and oxygen-limited growth.
Metabolic Engineering, 41, 46–56.

Delcourt, V. et al. (2018). Small proteins encoded by unannotated orfs
are rising stars of the proteome, confirming shortcomings in genome
annotations and current vision of an mna. Proteomics, 18(10),
1700058.

Dillites, M.-A. et al. (2013). A comprehensive evaluation of normalization
methods for Illumina high-throughput RNA sequencing data analysis.
Briefings in Bioinformatics, 14(6), 671–683.

Dongen, V. and Marinus, S. (2000). Graph clustering by flow simulation.
Doctoral dissertation, page 1.

Eling, N. et al. (2019). Challenges in measuring and understanding
biological noise. Nature Reviews Genetics, page 1.

Garay-Amoyo, A. et al. (2000). Highly Hydrophilic Proteins in
Prokaryotes and Eukaryotes Are Common during Conditions of Water
Deficit. Journal of Biological Chemistry, 275(8), 5668–5674.

Guo, W.-J. et al. (2007). Significant Comparative Characteristics between
Orphan and Nonorphan Genes in the Rice (Oryza sativa L.) Genome.
Hoff, K. J. et al. (2016). BRAKER1: Unsupervised RNA-Seq-
Based Genome Annotation with GeneMark-ET and AUGUSTUS.
Bioinformatics, 32(5), 767–769.

Hsu, P. Y. et al. (2016). Super-resolution ribosome profiling reveals
unannotated translation events in Arabidopsis. Proceedings of the National
Academy of Sciences, 113(45), E7126–E7135.

Li, Z. et al. (2015). Many lncRNAs, 5′UTRs, and pseudogenes are
translated and some are likely to express functional proteins. eLife, 4,
e08890.

Khalurin, K. et al. (2009). More than just orphans: are taxonomically-
restricted genes important in evolution? Trends in Genetics, 25(9),
404–413.
Kitagaki, H. et al. (1997). Identification and Analysis of a Static Culture-Specific Cell Wall Protein, Tur1p, in Saccharomyces Cerevisiae. European Journal of Biochemistry, 249(1), 343–349.

Kowalski, L. R. et al. (1995). Cold-shock induction of a family of TIP1-related proteins associated with the membrane in Saccharomyces cerevisiae. Molecular Microbiology, 15(2), 341–353.

Leenine, R. et al. (2011). The Sequence Read Archive. Nucleic Acids Research, 39(suppl_1), D19–D21.

Li, L. et al. (2009). Identification of the novel protein QQS as a component of the starch metabolic network in Arabidopsis leaves. The Plant Journal, 58(3), 485–498.

Llorén-Rico, V. et al. (2016). Bacterial antisense mRNAs are mainly the product of transcriptional noise. Science advances, 2(3), e1501363.

Lu, T.-C. et al. (2017). A Comprehensive Analysis of Transcript-Supported De Novo Genes in Saccharomyces sensu stricto Yeasts. Molecular Biology and Evolution, 34(11), 2823–2838.

Luo, F. et al. (2007). Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory. BMC Bioinformatics, 8(1), 299.

Magwene, P. M. and Kim, J. (2004). Estimating genomic coexpression networks using first-order conditional independence. Genome Biology, 5(12), R100.

McIlwain, S. J. et al. (2016). Genome Sequence and Analysis of a Stress-Tolerant, Wild-Derived Strain of Saccharomyces cerevisiae Used in Biofuels Research. G3 (Bethesda, Md.), 6(6), 1757–1766.

Mentzen, W. I. and Wurtele, E. S. (2008). Regulon organization of Arabidopsis. BMC Plant Biology, 8(1), 99.

Meyer, J. M. and Durbin, R. (2004). Gene structure conservation aids similarity based gene prediction. Nucleic Acids Research, 32(2), 776–783.

Netotea, S. et al. (2014). ComPlexEx: conservation and divergence of co-expression networks in A. thaliana, Populus and O. sativa. BMC Genomics, 15(1), 106.

Oleksiuk, V. et al. (2017). An update on sorf.org: a repository of small orfs identified by ribosome profiling. *nat*, 466(7309), D497–D502.

Orellana, M. et al. (2014). Metabolic and transcriptomic response of the wine yeast Saccharomyces cerevisiae strain EC1118 after an oxygen impulse under carbon-sufficient, nitrogen-limited fermentative conditions. FEMS Yeast Research, 14(3), 412–424.

Osu, S. B. V. and Carvunis, A.-R. (2019). De novo gene birth. *PLoS Genetics*, 15(5), e1008160.

Palmiert, N. et al. (2014). The life cycle of Drosophila orphan genes. eLife, 3, e01311.

Pelechano, V. et al. (2013). Extensive transcriptional heterogeneity revealed by isoform profiling. Nature, 497(7447), 127–131.

Pertea, M. et al. (2018a). Chex: a new human gene catalog curated from thousands of large-scale mRNA sequencing experiments reveals extensive transcriptional noise. *Genome biology*, 19(1), 208.

Pertea, M. et al. (2018b). Thousands of large-scale mRNA sequencing experiments yield a comprehensive new human gene list and reveal extensive transcriptional noise. *bioRxiv*, page 332825.

Proux-Wéra, E. et al. (2012). A pipeline for automated annotation of yeast genome sequences by a conserved-synteny approach. *BMC Bioinformatics*, 13(1), 237.

Quinnan, A. R. and Hall, I. M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. *Bioinformatics*, 26(6), 841–842.

Rachidi, N. et al. (2000). Saccharomyces cerevisiae PAU genes are induced by anaerobiosis. *Molecular Microbiology*, 35(6), 1421–1430.

Rice, P. et al. (2000). EMBoss: The European Molecular Biology Open Software Suite. Trends in Genetics, 16(6), 276–277.

Rivero, D. et al. (2015). Hop1lp and paun genes are involved in ecological interactions between natural yeast strains. *Environmental microbiology*, 17(8), 3069–3081.

Robinson, M. D. et al. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics*, 26(1), 139–140.

Ruan, J. et al. (2010). A general co-expression network-based approach to gene expression analysis: comparison and applications. *BMC Systems Biology*, 4(1), 8.

Ruiz-Oreja, J. et al. (2015). Origins of de novo genes in human and chimpanzee. *PLoS genetics*, 11(12), e1005721.

Serril, O. et al. (1997). The DANI gene of S. cerevisiae is regulated in parallel with the hypoxic genes, but by a different mechanism. *Gene*, 192(2), 199–205.

Singh, U. et al. (2019). Metaomgraph: a workbench for interactive exploratory data analysis of large expression datasets. *bioRxiv*, page 1.

Smith, J. E. et al. (2014). Translation of small open reading frames within unannotated RNA transcripts in Saccharomyces cerevisiae. *Cell reports*, 7(6), 1858–1866.

Stahl, K. (2007). Transcriptional noise and the fidelity of initiation by RNA polymerase II. *Nature structural & molecular biology*, 14(2), 103.

Tautz, D. and Domazet-Loso, T. (2011). The evolutionary origin of orphan genes, *Nature Reviews Genetics*, 12(10), 692–702.

Toll-Riera, M. et al. (2009). Origin of Primate Orphan Genes: A Comparative Genomics Approach. *Molecular Biology and Evolution*, 26(3), 603–612.

Vakirlis, N. et al. (2018). A Molecular Portrait of De Novo Genes in Yeasts. *Molecular Biology and Evolution*, 35(3), 631–645.

Weijers, S. R. et al. (2012). KALLISTO: cost effective and integrated optimization of the urban wastewater system Eindhoven. *Water Practice and Technology*, 7(2).

Wu, B. and Knudson, A. (2018). Tracing the De Novo Origin of Protein-Coding Genes in Yeast. *Nat. Rev. Mol. Cell Biol.*, 19(4), e10124–18.

Zhang, X. et al. (2012). Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information. *BMC Bioinformatics*, 28(1), 98–104.