Experimental and theoretical studies on gas-phase reactions of NO$_3$ radicals with three methoxyphenols: Guaiacol, creosol, and syringol

Bo Yang*, Haixu Zhang, Youfeng Wang, Peng Zhang, Jinian Shu, Wanqi Sun, Pengkun Ma

State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

HIGHLIGHTS

- Reaction products of NO$_3$ radical with three methoxyphenols are obtained.
- Nitro-substituted derivatives are observed as major transformation products.
- Reaction mechanisms of methoxyphenols with NO$_3$ radicals are proposed.
- The rate constants of three methoxyphenols with NO$_3$ radicals are measured.

ABSTRACT

Methoxyphenols, lignin pyrolysis products, are major biomass combustion components and are considered potential tracers for wood smoke emissions. Their atmospheric reactivity, however, has not been well characterized. Guaiacol, creosol, and syringol are three typical methoxyphenols generated in relatively high concentrations in fresh wood smoke. In this study, the gas-phase reactions of NO$_3$ radicals with these methoxyphenols were investigated using a laboratory-built vacuum ultraviolet photoionization and GC-MS. By combining experimental and theoretical methods, 4-nitroguaiacol, 6-nitroguaiacol, and 4,6-dinitroguaiacol were determined as the primary degradation products for guaiacol; similarly, 6-nitrocreosol and 3-nitrosyringol were identified for creosol and syringol, respectively. Using the relative rate method, rate constants at 298 K and 1 atm for the gas-phase reactions of guaiacol, creosol, and syringol with NO$_3$ radicals were measured to be 3.2×10^{-12}, 2.4×10^{-13}, and 4.0×10^{-13} cm3 molecule$^{-1}$ s$^{-1}$, respectively. At a typical tropospheric concentration of NO$_3$ radicals (5×10^8 molecule cm$^{-3}$), atmospheric lifetimes for guaiacol, creosol, and syringol toward NO$_3$ radicals were 0.2, 2.3, and 1.4 h, respectively. These results indicate that the reaction with NO$_3$ radicals can be a major sink for methoxyphenols at night.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Biomass combustion is a major global source of gas- and particle-phase air pollutants, and thus has an important impact on human health (Lighty et al., 2000), regional and global air quality (Leieveld et al., 2001), and climate (Lelieveld et al., 2001; Chen and Bond, 2010). Biomass combustion generates nearly 90% of the total global primary organic aerosol (POA) emissions (Bond et al., 2004) and also creates a vast quantity of gas-phase organic materials. Some of these gas-phase organics react in the atmosphere to form secondary organic aerosols (SOA) (Hennigan et al., 2011). Natural wood is a complex material consisting of two major chemical components, carbohydrates (40–50%) and lignin (18–35%) (Nolte et al., 2001; Schauer et al., 2001). Combustion of wood and other biomasses produces substantial amounts of methoxyphenols arising from the pyrolysis of lignin, which produces methoxyphenols at an emission rate of 900–4200 mg kg$^{-1}$ biomass (Hawthorne et al., 1989; Rogge et al., 1998; Schauer et al., 2001).

Most of the methoxyphenols produced from the pyrolysis of lignin are guaiacol and syringol derivatives (Hawthorne et al., 1989; Hays et al., 2002; Re-Poppi and Santiago-Silva, 2002; Simpson et al., 2005; Mazzoleni et al., 2007). Since methoxyphenols are unique to biomass combustion (Hawthorne et al., 1988, 1989; Standley and Simoneit, 1990; Simoneit et al., 1993), they have been
considered as possible atmospheric wood smoke pollution tracers (Hawthorne et al., 1988, 1989; Simonet et al., 1993). Guaiacol (2-methoxyphenol), creosol (4-methylguaiacol), and syringol (2,6-dimethoxyphenol) are the three methoxyphenols found at the highest concentrations in fresh wood smoke (Schauer et al., 2001). Their molecular structures and the labeled numbers on the aromatic ring are shown in Table 1. Due to the relatively high vapor pressures of guaiacol, creosol, and syringol at 25 °C (21, 8.1, and 0.45 Pa, respectively) (Sagebiel and Seiber, 1993), these compounds exist mainly in the gas-phase in the atmosphere (Schauer et al., 2001; Hays et al., 2002; Mazzoleni et al., 2007). These gaseous materials can be chemically modified by reaction with atmospheric oxidants. As a result, the atmospheric lifetimes of these compounds, and hence the ability to use them as wood smoke tracers, are largely dependent upon their gas-phase reactivities.

Studies on the gas-phase atmospheric reactions of methoxyphenols are scarce, however. In one study, Lauraguais and Coeur-Tournier et al. determined the rate constants and oxidation products of the gas-phase reaction between guaiacol, creosol, and syringol, and the OH radical (Coeur-Tournier et al., 2010; Lauraguais et al., 2012, 2014b). The results revealed that the atmospheric lifetime of these compounds when reacting with OH radicals was about 2 h, and the primary products for the reaction of guaiacol and syringol with OH radicals were nitro derivatives. The gas-phase rate constants for the reaction of chlorine atoms with different methoxyphenols were also investigated, and the results showed that their atmospheric lifetimes were in a range of 12–21 h (Lauraguais et al., 2014a). In addition, the aqueous-phase phototnitration, or radical-initiated reaction, between guaiacol and phenols forming SOAs have been reported (Kitanovski et al., 2014; Yu et al., 2014). The nitro-products were identified, and they are suspected constituents of atmospheric “brown” carbons. Other studies have been published on the heterogeneous ozonolysis of methoxyphenols adsorbed on silica particles (Net et al., 2010a, 2010b, 2011), aqueous-phase ozonolysis of methoxyphenols in solutions (Khudoshin et al., 2008; Ko et al., 2011), heterogeneous nitration of suspended methoxyphenol particles by reaction with NO3 radicals (Liu et al., 2012), and heterogeneous oxidation kinetics of biomass-burning aerosol surrogates reacting with a series of atmospheric oxidants (Knopf et al., 2011). To the best of our knowledge, no study on the gas-phase reactions of methoxyphenols with NO3 radicals has been reported, nor have their reaction mechanisms been delineated so far.

The NO3 radical is one of the most important oxidants in the atmosphere, controlling the chemistry of the nighttime troposphere (Wayne et al., 1991). In the present work, the gas-phase reactions between guaiacol, creosol, and syringol, and NO3 radicals were studied. Formation of the products and the decay of reactants were monitored on-line using a laboratory-built vacuum ultraviolet photoionization gas time-of-flight mass spectrometer (VUV-GTOFMS). This apparatus can produce the mass spectrum of organic gasses with less fragmentation, which has obvious advantages in the study of gas-phase organic reactions. The second-order rate constants for the reaction of methoxyphenols with NO3 radicals at room temperature (298 ± 2 K) and 1 atm pressure were obtained using a relative rate method. With the aid of an off-line gas chromatography-mass spectrometer (GC-MS) and quantum chemistry methods, the predominating products were determined, and chemical reaction mechanisms were developed.

2. Experiment

2.1. Materials and equipment

The experimental setup was composed of an 180-L reaction chamber, an N2O5 vapor manipulator, and analytical instruments. The reaction chamber consists of a open head stainless steel drum (50 cm (diameter) × 60 cm (height)) and a Tedlar polyvinyl fluoride (PVF) film bag (50 cm (diameter) × 50 cm (length)). A small fan placed at the bottom of the chamber is used to mix reactants rapidly. The N2O5 vapor manipulator has been described elsewhere (Zhang et al., 2014). The analytical instrumentation included the lab-built VUV-GTOFMS, a Vaisala Humicap (HMM100) humifier, and a GC-MS (Agilent 6890). Gas-phase organic materials injected into the chamber were sampled directly with the VUV-GTOFMS through a copper tube, which was heated to ∼373 K to reduce condensation loss of the gas-phase organic samples. In the VUV-GTOFMS, organic vapor were photoionized with a VUV light radiated from an RF-powered krypton lamp. The photon flux was ∼5 × 1014 photon s−1, and the photon energy was ∼10 eV. Each time-of-flight mass spectrum takes 10 s for acquisition and 1 s for data file storage. The detection limit of the VUV-GTOFMS is 0.2 ppbv (parts per billion by volume) to guaiacol. The relative humidity in the reaction chamber measured by a Vaisala Humicap was 10 ± 3% at 298 ± 2 K and 1 atm. N2O5 was synthesized by dehydrating concentrated nitric acid (Yang et al., 2011) and kept in a liquid nitrogen cold trap before use.

2.2. Methods

Before each experiment, the reaction chamber was filled with filtered air. The filtered air was passed through activated carbon and silica gel to control the relative humidity of the chamber, and to remove airborne particles ensuring the mass concentration less than 0.5 μg m−3. Since the concentration of NO3 radicals cannot be directly monitored with our instruments, the rate coefficients of the gas-phase reaction between the methoxyphenols and NO3 radicals were determined by a relative rate method. The NO3 exposure (CNO3) was derived from the measured decay of the reference gases using the following equation:

$$\ln \left(\frac{C_{\text{ref}}/C_{\text{ref}0}}{k_{\text{ref}}} \right) = \int_{0}^{t} C_{\text{NO3}} dt = \frac{C_{\text{NO3}}}{k_{\text{ref}}}$$

(1)

where C_{ref} and $C_{\text{ref}0}$ are the time-dependent and initial concentrations of the reference gas, and k_{ref} is the reaction rate constant for the reaction of gas-phase reference gas and NO3 radicals. After several preliminary screening experiments, 2-methyl-2-butene was selected as the reference compound for guaiacol due to the rapid decay rate of guaiacol in the reaction experiment, whereas isoprene was chosen for creosol and syringol. The reported rate constants of 2-methyl-2-butene and isoprene with NO3 radical are (5.1 ± 1.6) × 10−12 and (7.0 ± 2.0) × 10−13 cm3 molecule−1 s−1, respectively (http://www.iupac-kinetic.ch.cam.ac.uk/; Atkinson et al., 1984). The rate constant of methoxyphenol (k_{m}) is expressed in the following equation:

$$\ln \left(\frac{C_{\text{m}}/C_{\text{mo}}}{k_{\text{m}}} \right) = -k_{\text{m}} C_{\text{NO3}} t$$

(2)

where C_{m} and C_{mo} are the time-dependent and initial concentrations of methoxyphenols.

In the kinetic experiments, ∼10 μL of a dichloromethane solution containing methoxyphenol or reference compound (0.4 mol L−1) was injected into the reaction chamber separately. Assuming it volatilized completely, the concentration of the individual methoxyphenol and reference compound was calculated to be ∼500 ppb using its known total mass and the known volume of the reaction chamber. The signal intensities of methoxyphenol and the reference compound were monitored simultaneously.
Reactant	Oxidation product	MW	Structure	Retention time (min)	η
Catechol	1,2-Dimethoxybenzene	138	![Structure](image1)	21.9	<0.01
Creosol	3,4-Dimethoxytoluene	152	![Structure](image2)	24.1	<0.01
Syringol	1,2,3-Trimethoxybenzene	168	![Structure](image3)	25.8	<0.01
Syringol	2,6-Dimethoxynitrobenzene	183	![Structure](image4)	30.2	0.04
	2,6-Dimethoxyquinone	168	![Structure](image5)	31.7	0.49

(continued on next page)
Table 1 (continued)

Reactant	Oxidation product	MW	Structure	Retention time (min)	η
3-Nitrosyringol		199	![Structure](image)	38.0	1

"-" represents the product not detected by the GC-MS.
η The relative signal intensities of the products obtained by GC-MS.
^ Confirmed by analysis of the commercial standard.
^ Confirmed by DFT theoretical calculation.
^ Compared with the available mass spectra in the NIST 2005 library (match rate >95%).
^ Compared with the available mass spectra in the NIST 2005 library (match rate >80%).

using the VUV-GTOFMS until they stabilized. Subsequently, N₂O₅ was eluted by passing a stream of N₂ (0.5 L min⁻¹) over the N₂O₅ crystals held in a cooling bath (233 K), and then introduced into the chamber. NO₃ and NO₂ were generated by the thermal decomposition of N₂O₅ under a chamber temperature of 298 K. At the same time, the decay of methoxyphenol and the reference compound was measured online using the VUV-GTOFMS to obtain kinetic data. The duration of the kinetic experiments is within 5 min. The reliability of the experimental method and setup was evaluated using 1,4-cyclohexadiene of which the rate coefficient was established in the literature. The reaction rate constant of 1,4-cyclohexadiene obtained from triplicate measurements with isoprene as reference compound was (6.2 ± 1.9) × 10⁻¹³ cm³ molecule⁻¹ s⁻¹, which covers the published value, 6.6 × 10⁻¹³ cm³ molecule⁻¹ s⁻¹ (Wayne et al., 1991).

In the experiments for determining the reaction products, only methoxyphenol was injected into the reaction chamber at a relatively high concentration (~2.0 ppmv). N₂O₅ was introduced into the chamber under the same conditions as used in the kinetic experiments. Formation of the oxidation products was analyzed online using the VUV-GTOFMS. The reaction lasted 3–6 min. After the reaction, both gas- and particle-phase substances in the reaction chamber were collected by liquid nitrogen washing. The collection apparatus was described in a previous study (Zhang et al., 2014). The reaction products were then dissolved in ~5 mL dichloromethane, extracted by sonication and analyzed immediately by GC-MS. Analytical procedures for use of the GC-MS and a list of chemicals used in this study are provided in the Supporting Information (SI).

2.3. Computational method

All calculations were performed using the Gaussian 09 program (Frisch et al., 2009). Geometry optimization and frequency analysis of the reactants, intermediates, transition states, and products were conducted using density functional theory (DFT) at the B3LYP/6-31 + G(d,p) level. For each transition state, the intrinsic reaction coordinate (IRC) calculation was performed to verify that the transition state connected the correct intermediate structures. Flexible potential energy surface scanning was conducted to confirm that H-abstraction from hydroxyl groups was a barrierless pathway.

3. Results and discussions

3.1. Rate constants

The wall losses of gaseous methoxyphenols and the reference compounds were ignored because no changes were detected in their concentrations within 5 min in the absence of NO₃ radicals. By plotting ln(Cₘ/Cₘ₀) versus NO₃ exposure (N₂O₅), the rate constants (km) are obtained from the slopes of the lines, as shown in Fig. 1. The gas-phase rate constants for the reactions of guaiacol, creosol, and syringol with NO₃ radicals are (3.2 ± 1.4) × 10⁻¹²,(2.4 ± 1.7) × 10⁻¹³, and (4.0 ± 4.7) × 10⁻¹³ cm³ molecule⁻¹ s⁻¹, respectively. Uncertainties were calculated using the standard deviations of the rate constants derived from triplicate measurements and the cumulative uncertainties from the rate constants of reference compounds.

The ranges of NO₃ concentrations used in the kinetic experiment were estimated to be (0–5.0) × 10¹⁰ molecules cm⁻³ according to the loss rates of reference compounds. The initial concentra-

![Fig. 1. Plots of ln(Cₘ/Cₘ₀) vs NO₃ exposure for guaiacol (A), creosol (B), and syringol (C).](image)
tion of N$_2$O$_5$ and the maximum concentration of NO$_2$ in the kinetic experiments are calculated to be (1.0–1.4)$\times$$10^{13}$ and ~1.2$\times$$10^{13}$ molecules cm$^{-3}$, respectively. The calculation method is shown in the SI. The direct reactions of N$_2$O$_5$ and NO$_2$ with the methoxyphenols were ignored for the following reasons. The major reaction mechanism of N$_2$O$_5$/NO$_2$/NO$_2$ with methoxyphenol is the same as those of PAHs and phenol (Jessen et al., 2011). And N$_2$O$_5$ has been ruled out as a reactive species for PAHs toward N$_2$O$_5$/NO$_2$/NO$_2$ mixture (Ghigo et al., 2006). In addition, the reaction rate constant of N$_2$O$_5$ with guaiacol was calculated to be 1.2\times10$^{-23}$ cm3 molecule$^{-1}$ s$^{-1}$ at 298 K using theoretical method (shown in SI).

In a separate experiment, no decay of gas-phase methoxyphenol was observed with VUV-GTOFMS under 2.4\times1013 molecules cm$^{-3}$ of NO$_2$.

3.2. Oxidation products

Fig. 2 shows the time-of-flight (TOF) mass spectra of the oxidation products from guaiacol, creosol, and syringol exposed to NO3 radicals for 3 min, 5 min, and 6 min respectively. The mass peaks at m/z 30, 32, and 46 are derived from the molecular ions of NO, O$_2$, and NO$_2$. The signal intensity of all mass peaks in the spectra was normalized to that of O$_2$. The O$_2$ molecular ion was generated via photoelectron bombardment. In addition to the mass peaks for guaiacol (m/z 124), creosol (m/z 138), and syringol (m/z 154), the VUV-GTOFMS detected some other mass peaks in the spectra, which were attributed to the oxidation products of the three methoxyphenols. The mass peaks from these oxidation products can be divided into four categories: (1) [M + 45]$^+$ or [M + 90]$^+$, (2) [M−14]$^+$, (3) [M + 14]$^+$, and (4) [M + 29]$^+$. Combined with GC-MS analysis and theoretical calculations, assignments were made for the products corresponding to these peaks. Their chemical structures are shown in the Table 1. As marked in the Table 1, the products are confirmed by analysis of the commercial standard (a), DFT theoretical calculation (b), or mass spectral library match (c and d). Some of the products observed by VUV-GTOFMS were not detected by GC-MS, probably because of the different detection limits for the two instruments. In addition, some higher MW products may be present in particle-phase, which cannot be observed by VUV-GTOFMS. Thus, the relative signal intensities of products are calculated based on the data of GC-MS.

Category 1 products ([M + 45]$^+$) were determined to be nitro-substitution products resulting from one nitro group added (NO$_2$, mol wt 46), and one hydrogen atom removed (H, mol wt 1) from the substitution position. Consequently, [M + 90]$^+$ represents a dinitro product. Based on the relative signal intensities shown in Table 1, the nitro derivatives are main products from the gas-phase reaction of methoxyphenols with NO$_3$ radicals. These products were identified either by theoretical or experimental methods, or both. It should be noted that the relative yields of reaction products obtained by experiments may be different from those under atmospheric conditions. For example, more products derived from O$_2$ addition (such as quinones) might be produced under an extremely low NO$_2$ concentration. However, since nitro derivatives were also reported as major reaction products for guaiacol and OH radical reaction (Lauraguais et al., 2014b), these derivatives might be important products for methoxyphenols in the atmosphere. Category 2 products ([M−14]$^+$) were derived from the transformation of the methoxy (-OCH$_3$) group into the hydroxyl (-OH) group. This transformation has been observed by photolysis and NO$_3$-initiated oxidation of vanillic acid (Net et al., 2011; Liu et al., 2012). Category 3 products ([M + 14]$^+$) resulted from either transformation of the hydroxyl (-OH) group into the methoxy (-OCH$_3$) group or the formation of quinone at C1 and C4 position. These products were determined using GC-MS analytical procedure and comparison of the EI characteristic peaks of the homologous products (as shown in Figs. S1 and S2 in Supporting Information). It should be noted that the formation of quinone was not observed from the reaction of creosol because the C4 position of creosol is occupied by a methyl group. Category 4 products ([M + 29]$^+$) were tentatively identified as nitro-substitution products at the C1 position, which occurred with the addition of a nitro group (NO$_2$, mol wt 46) and substitution of a hydroxyl group (OH, mol wt 17).

3.3. Reaction mechanisms

To elucidate the chemical mechanism of the gas-phase reaction between a methoxyphenol and an NO$_3$ radical, and to assist in the determination of the oxidation products that have not yet been identified (i.e., nitrocresol and nitrosyringol), theoretical studies on the formation of nitro products were performed. Taking guaiacol for example, there are two possible pathways to form a nitroguaiaoc, namely the H abstraction and addition-elimination mechanisms, as shown in the Fig. 3.

The first mechanism involves H abstraction from the OH group by the NO$_3$ radical producing the intermediate IM1abs and HNO$_3$. This reaction is followed by the addition of NO$_2$ on the C6 position forming IM2abs. Then IM2abs transforms into 6-nitroguaiaoc (6-NG) through the transition state, TS1abs. However, this reaction is hard to accomplish under normal temperature and pressure conditions since the transformation of IM2abs into 6-NG in the H-abstraction mechanism, requires overcoming an energy barrier of 50.1 kcal mol$^{-1}$. The phenoxy radical (IM1abs) may react with HO$_2$ to regenerate guaiacol, as has been reported for the reactions of
Fig. 3. Schemes for the reaction of guaiacol with NO\textsubscript{3} radical to form nitroguaiacols deriving from H abstraction of the hydroxyl group and addition-elimination reactions initiated at C1 position. The unit of embedded potential barriers ΔE and reaction enthalpies ΔH is kcal/mol.

Fig. 4. Profile of the potential energy surface for the reaction of guaiacol with NO\textsubscript{3} radical to form nitroguaiacols deriving from H abstraction of the hydroxyl group and addition-elimination reactions initiated at C1 position.

For creosol, only C5 showing electronegativity that can be added by the NO\textsubscript{3} radical, and for syringol, two positions C1 and C4 can be initially attacked by the NO\textsubscript{3} radical. Based on the reaction barriers, the most favorable reaction products for creosol and syringol are 6-Nitrocreosol (6-NC) and 3-Nitrosyringol (3-NS), respectively. Since there is only one nitro-product observed on chromatograms of creosol and syringol individually, the nitration products of creosol and syringol are tentatively identified as 6-NC and 3-NS. Combined experimental and theoretical results, the proposed reaction mechanism for the gas-phase reaction of the NO\textsubscript{3} radical with guaiacol, creosol, and syringol are shown in Fig. 5. Table S1 shows the relative energies (ΔE in kcal/mol), relative enthalpies (ΔH in kcal/mol), and Gibbs free energies (ΔG in kcal/mol) of the stationary points on the ground-state potential energy surface for all the NO\textsubscript{3}-initiated addition-elimination reactions.
4. Conclusion and implications

The reactivity of gaseous methoxyphenols (guaiacol, creosol, and syringol) with two important atmospheric oxidants (NO$_3$ and OH radicals), as well as the atmospheric lifetimes for these compounds are compared in Table 2. Under a typical tropospheric concentration of 5×10^8 molecules cm$^{-3}$ for the NO$_3$ radical (Shu and Atkinson, 1995), the atmospheric lifetimes for guaiacol, creosol, and syringol reacting with the NO$_3$ radical are 0.2, 2.3, and 1.4 h, respectively, which are comparable with those with the OH radical. These lifetimes indicate that the OH radical is an important oxidation agent concerning methoxyphenols' degradation during the daytime, whereas the NO$_3$ radical is the dominant oxidant at night. Guaiacol exhibited an amazing reactivity with the NO$_3$ radical, with a lifetime ten times shorter than that with the OH radical. The rate of reaction between guaiacol and the NO$_3$ radical is also about ten times faster than the other two methoxyphenols, and is similar to that of phenol (3.8×10^{-12} cm3 molecule$^{-1}$ s$^{-1}$) (Atkinson et al., 1992). The high reaction rate of guaiacol may because the initial reaction between guaiacol and NO$_3$ radicals proceeds at the C1 position adjacent to the hydroxyl group (like the reaction of phenol with NO$_3$ radicals), whereas the reactions with creosol and syringol occur at other C atoms on the aromatic ring. Nevertheless, the reaction rates of creosol and syringol are still much faster than those of toluene, benzaldehyde, and methoxybenzene (3.4×10^{-17}, 2.0×10^{-15}, and 9.0×10^{-17} cm3 molecule$^{-1}$ s$^{-1}$, respectively) (Atkinson et al., 1987). Therefore, based on this study and the studies reported in the literature (Atkinson et al., 1987), the general reactivity order involving NO$_3$ radicals is phenols $>$ methoxyphenols $>$ methoxybenzenes.

The high reactivities of methoxyphenols with NO$_3$ and OH radicals mean that gas-phase methoxyphenols are too reactive to be
used as tracers for wood smoke emissions during either the day or night. If released into the atmosphere, the methoxylphenols would rapidly transform forming nitro-derivatives released nearby the pollution sources. It is reported that reactivities of 2-nitrophenol towards OH and NO3 radicals are slow, with atmospheric residence times estimated to be 13 days and at least 2 days due to the reaction with OH and NO3 radicals, respectively (Harrison et al., 1990; Rudolph and Czuba, 2000; Tseng et al., 2009). It should be noted that the partitioning of the products between gas- and particle-phase would be taken into account when using this method. Since the presence of nitro groups may increase the toxicity in humans and animals (Kitanovski et al., 2014), more attention should be given to the atmospheric detection and toxicological lifetimes of methoxyphenols and the associated atmospheric lifetimes.

Table 2

Compounds	NO3 radicals	OH radicals		
	k_{NO3}	τ_{NO3}	k_{OH}	τ_{OH}
Guaiacol	32 ± 14^a	0.2^a	7.5 ± 0.4^b	2.0^b
Creosol	2.4 ± 1.7^c	2.3^c	9.5 ± 0.6^b	1.8^b
Syringol	4.0 ± 4.7^d	1.4^d	9.7 ± 11^e	1.8^e

*a Units of 10$^{-13}$ cm3 molecule$^{-1}$ s$^{-1}$.

*b Lifetime in hours: $\tau_{OH} = 1/k_{OH}[OH]$, where 12 h nighttime average [OH] = 5 × 10$^{-16}$ molecules cm$^{-3}$ (Shu and Atkinson, 1995).

*c Units of 10$^{-11}$ cm3 molecule$^{-1}$ s$^{-1}$.

*d Lifetime in hours: $\tau_{NO3} = 1/k_{NO3}[NO3]$, where 12 h average [NO3] = 1 × 1016 molecules cm$^{-3}$ (Prinn et al., 2005).

*e This work, with conditions at 298 ± 2 K and 1 atm.

f Data derived from Coeur-Tourneur et al. with conditions at 294 ± 2 K and 1 atm (Coeur-Tourneur et al., 2010).

g Data derived from Lauraguais et al. with conditions at 294 ± 2 K and 1 atm (Lauraguais et al., 2012).

Acknowledgment

This work is supported by funds from the National Natural Science Foundation of China (Grant No. 21277155 and No. 21207143), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB05040501), and the Creative Research Groups of China (No.51228192).

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.atmosenv.2015.11.028.

References

Atkinson, R., Aschmann, S.M., Arey, J., 1992. Reactions of oh and no3 radicals with phenol, cresols, and 2-nitrophenol at 296 K ± 2K. Environ. Sci. Technol. 26, 1397–1403.

Atkinson, R., Aschmann, S.M., Winer, A.M., 1987. Kinetics of the reactions of NO3 radicals with a series of aromatic-compounds. Environ. Sci. Technol. 21, 1123–1126.

Atkinson, R., Plum, C.N., Carter, W.P.L., Winer, A.M., Pitts, J.N., 1984. Rate constants for the gas-phase reactions of nitrate radicals with a series of organics in air at 298 ± 2 K. J. Phys. Chem. 88, 1210–1215.

Bond, T.C., Streets, D.G., Yaeber, K.F., Nelson, S.M., Wool, J.H., Klimont, Z., 2004. A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res. Atmos. 109.

Chen, Y., Bond, T.C., 2010. Light absorption by organic carbon from wood combustion. Atmos. Chem. Phys. 10, 1773–1787.

Coeur-Tourneur, C., Cassez, A., Wenger, J.C., 2010. Rate coefficients for the Gas-Phase reaction of hydroxyl radicals with 2-Methoxyphenol (Guaiacol) and related compounds. J. Phys. Chem. A 114, 11645–11650.

Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A.E., 2009. Gaussian 09, Rev. A.02. Gaussian, Inc, Wallingford CT.

Glhgo, C., Causil, M., Maranzana, A., Tonachini, G., 2006. Aromatic hydrocarbon nitration under tropospheric and combustion conditions. A theoretical mechanistic study. J. Phys. Chem. A 110, 13270–13282.

Harrison, M.A.J., Barra, S., Borghesi, D., Vione, D., Arsenic, C., Alarui, R.J., 2005. Nitrate phenols in the atmosphere: a review. Atmos. Environ. 39, 231–248.

Hawthorne, S.B., Kriebel, M.S., Miller, D.J., Mathiasos, M.B., 1989. Collection and quantitation of methoxylated phenol tracers for atmospheric wood smoke pollution. Environ. Sci. Technol. 23, 470–475.

Hawthorne, S.B., Miller, D.J., Barkley, R.M., Kriebel, M.S., 1984. Identification of methoxylated phenols as candidate tracers for atmospheric wood smoke pollution. Environ. Sci. Technol. 22, 1191–1196.

Hays, M.D., Geron, C.D., Linna, K.J., Smith, N.D., Schauer, J.J., 2002. Speciation of gas-phase and fine particle emissions from burning of fossil fuels. Environ. Sci. Technol. 36, 2281–2285.

Hennigian, C.J., Miracolo, M.A., Engelhart, G.J., May, A.A., Presto, A.A., Lee, T., Sullivan, A.P., McMeekin, G.R., Coe, H., Wold, C.E., Hao, W.M., Gilman, J.B., Kuster, W.C., de Gouw, J., Schuetcht, B.A., Collet Jr., J.L., Kreidenweiss, S.M., Robinson, A.L., 2011. Chemical and physical transformations of organic aerosol from the photo-oxidation of open biomass burning emissions in an environmental chamber. Atmos. Chem. Phys. 11, 7669–7686.

Iustinian, B., Ian, B., Romeo, O., Shouming, Z., Peter, W., Thorsten, B., 2007. Investigations on the gas-phase photolysis and OH radical reactions of methyl-2-nitrophenols. Phys. Chem. Chem. Phys. 9, 5686–5692.

Iustinian, B., Yaisn, A.A., Ian, B., Thorsten, B., Birger, B., Peter, W., Jorg, K., 2006. The photolysis of ortho-nitro-phenols: a new gas phase source of HONO. Phys. Chem. Chem. Phys. 8, 2028–2035.

Jessen, C.E., Gross, A., Kongsted, J., Jorgensen, S., 2011. A theoretical investigation of gas phase NO3 initiated nitration of p-cresol. Chem. Phys. 389, 39–46.

Kautzman, K.E., Surratt, J.D., Chan, M.N., Chan, A.W.H., Hersey, S.P., Chhabra, P.S., Dalleska, N.F., Wellnberg, P.O., Flagot, R., Seinfeld, J.H., 2010. Chemical composition of gas- and aerosol-phase products from the photooxidation of naphthalene. J. Phys. Chem. A 114, 913–934.

Khudoshin, A.G., Mitrofanov, A.N., Lunin, V.V., 2008. Kinetics and mechanism of the reactions of ozone with guaiacol, veratrol, and veratrol derivatives. Russ. Chem. Bull. 57, 283–288.

Kitanovski, Z., Cusak, A., Grjec, I., Ciaevs, M., 2014. Chemical characterization of the main products formed through aqueous-phase photoinitiation of guaiacol. Atmospheric Environ. 47, 2457–2470.

Kitanovski, Z., Grjec, I., Yasmeen, F., Ciaevs, M., Cusak, A., 2012. Development of a new chromatographic method based on ultraviolet-visible and electro-chemical mass spectrometric detection for the identification of nitrocatechols and related tracers in biomass burning atmospheric organic aerosol. Rapid Commun. Mass Spectrom. 26, 793–804.

Koop, D.A., Forrester, S.M., Slade, J.H., 2011. Phys. Chem. Chem. Phys. 13, 21050–21062.

Ko, C.-H., Guan, C.-Y., Lu, P.-J., Chen, J.-M., 2011. Ozonation of guaiacol solution in a rotating packed bed. Chem. Eng. J. 171, 1045–1052.

Langmann, B., Duncan, B., Textor, C., Tostmann, J., van der Werf, G.R., 2009. Vegetation fire emissions and their impact on air pollution and climate. Atmos. Environ. 43, 107–116.

Lauraguais, A., Bejan, I., Barnes, I., Wiesen, P., Coeur-Tourneur, C., Cassez, A., 2014. Rate coefficients for the gas-phase reaction of chlorine atoms with a series of methoxylated aromatic compounds. J. Phys. Chem. A 118, 1777–1784.
Lauraguais, A., Coeur-Tourneur, C., Cassez, A., Deboudt, K., Fourmentin, M., Choe, M., 2014. Atmospheric reactivity of hydroxyl radicals with guaiacol (2-methoxyphenol), a biomass burning emitted compound: secondary organic aerosol formation and gas-phase oxidation products. Atmos. Environ. 86, 155–163.

Lauraguais, A., Coeur-Tourneur, C., Cassez, A., Seydi, A., 2012. Rate constant and secondary organic aerosol yields for the gas-phase reaction of hydroxyl radicals with syringol (2,6-dimethoxyphenol). Atmos. Environ. 55, 43–48.

Lelieveld, J., Crutzen, P., Andreae, M., Brenninkmeijer, C., Campos, T., Cass, G., Dickerson, R., Fischer, H., De Gouw, J., 2001. The Indian Ocean experiment: widespread air pollution from South and Southeast Asia. Science 291, 1031–1036.

Lighty, J.S., Veranth, J.M., Sarofim, A.F., 2000. Combustion aerosols: factors governing their size and composition and implications to human health. J. Air & Waste Manag. Assoc. 50, 1565–1618.

Liu, C., Zhang, P., Wang, Y., Yang, B., Shu, J., 2012. Heterogeneous reactions of particulate methoxynaphthalenes with NO3 radicals: kinetics, products, and mechanisms. Environ. Sci. Technol. 46, 13262–13269.

Mazzoleni, L.R., Zielinska, B., Moosmuller, H., 2007. Emissions of levoglucosan, methoxy phenols, and organic acids from prescribed burns, laboratory combustion of wildland fuels, and residential wood combustion. Atmos. Environ. Sci. Technol. 41, 2115–2122.

Net, S., Alvarez, E.G., Balzer, N., Wortham, H., Zetzsch, C., Gligorovski, S., 2010. Photolysis and heterogeneous reaction of coniferol aldehyde adsorbed on silica particles with ozone. Chemphyschem 11, 4019–4027.

Net, S., Alvarez, E.G., Gligorovski, S., Wortham, H., 2011. Heterogeneous reactions of ozone with methoxynaphthalenes, in presence and absence of light. Atmos. Environ. 45, 3097–3104.

Net, S., Gligorovski, S., Pietri, S., Wortham, H., 2010. Photoenhanced degradation of veratraldehyde upon the heterogeneous ozone reactions. Phys. Chem. Chem. Phys. 12, 7603–7611.

Nolte, C.G., Schauer, J.J., Cass, G.R., Simoneit, B.R.T., 2001. Highly polar organic compounds present in wood smoke and in the ambient atmosphere. Environ. Sci. Technol. 35, 1912–1919.

Prinn, R.G., Weiss, R.F., Miller, B.R., Huang, J., Alyea, F.N., Cunnold, D.M., Fraser, P.J., Hartley, D.E., Simmonds, P.G., 1995. Atmospheric trends and lifetime of CH3CCl3 and global OH concentrations. Science 269, 187–192.

Re-Poppi, N., Santiago-Silva, M.R., 2002. Identification of polycyclic aromatic hydrocarbons and methoxylated phenols in wood smoke emitted during production of charcoal. Chromatographia 55, 475–481.

Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R., Simoneit, B.R.T., 1998. Sources of fine organic aerosol. 9. Pine, oak and synthetic log combustion in residential fireplaces. Environ. Sci. Technol. 32, 13–22.

Rudolph, J., Czuba, E., 2000. On the use of isotopic composition measurements of volatile organic compounds to determine the “photochemical age” of an air mass. Geophys. Res. Lett. 27, 3865–3868.

Rudolph, J., Johne, H., 1990. Measurements of light atmospheric hydrocarbons over the Atlantic in regions of low biological activity. J. Geophys. Res. 95, 20583–20591.

Sagebiel, J.C., Seiber, J.N., 1993. Studies on the occurrence and distribution of wood smoke marker compounds in foggy atmospheres. Environ. Toxicol. Chem. 12, 813–822.

Schauer, J.J., Kleeman, M.J., Cass, G.R., Simoneit, B.R.T., 2001. Measurement of emissions from air pollution sources. 3. C1-C29 organic compounds from fireplace combustion of wood. Environ. Sci. Technol. 35, 1716–1728.

Shu, Y.H., Atkinson, R., 1995. Atmospheric lifetimes and fates of a series of sesquiterpenes. J. Geophys. Res. Atmos. 100, 7275–7281.

Simoneit, B.R.T., Rogge, W.F., Mazurek, M.A., Standley, L.J., Hildemann, L.M., Cass, G.R., 1993. Lignin pyrolysis products, lignans, and resin acids as specific tracers of plant classes in emissions from biomass combustion. Environ. Sci. Technol. 27, 2533–2541.

Simpson, C.D., Paulsen, M., Dills, R.L., Liu, L.J.S., Kalman, D.A., 2005. Determination of methoxyphenols in ambient atmospheric particulate matter: tracers for wood combustion. Environ. Sci. Technol. 39, 631–637.

Standley, L.J., Simoneit, B.R.T., 1990. Preliminary correlation of organic molecular tracers in residual wood smoke with the source of fuel. Atmos. Environ. Part B-Urban Atmos. 24, 67–73.

Tseng, K.-H., Wang, J.-L., Cheng, M.-T., Tsung, B.-J., 2009. Assessing the relationship between air mass age and summer ozone episodes based on photochemical indices. Aerosol Air Qual. Res. 9, 149–171.

Wayne, R.P., Barnes, L., Biggs, P., Burrows, J.P., Canosamas, C.E., Hjorth, J., Lebras, G., Moortgat, G.K., Perner, D., Pollet, G., Restelli, G., Sidebottom, H., 1991. The nitrate radical-physics, chemistry, and the atmosphere. Atmos. Environ. Part A-General 25, 1–203.

Yang, B., Meng, J., Zhang, Y., Liu, C., Gan, J., Shu, J., 2011. Experimental studies on the heterogeneous reaction of NO3 radicals with suspended carbaryl particles. Atmos. Environ. 45, 2074–2079.

Yu, L., Smith, J., Laskin, A., Anastasio, C., Laskin, J., Zhang, Q., 2014. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical. Atmos. Chem. Phys. 14, 13801–13816.

Zhang, P., Sun, W., Li, N., Wang, Y., Shu, J., Yang, B., Dong, L., 2014. Effects of humidity and NO2/NOx ratio on the heterogeneous reaction of fluoranthene and pyrene with NO2/NOx/NO2. Environ. Sci. Technol. 48, 13130–13137.