In Vitro Activity of a Novel Antimicrobial Agent, TG44, for Treatment of Helicobacter pylori Infection

Osamu Kamoda,1,3,* Kinsei Anzai,2 Jun-ichi Mizoguchi,2 Masatoshi Shiojiri,2 Toshiharu Yanagi,2 Takeshi Nishino,3 and Shigeru Kamiya4

Quality Assurance Division, Nagase Chemtex Corporation, 1-58-1, Osadano-cho, Fukuchiyama, Kyoto 620-0853, Japan; Bio/Fine Chemicals Division, Nagase Chemtex Corporation, 2-2-3 Murotani, Nishi-ku, Kobe, Hyogo 651-2241, Japan; Department of Microbiology, Kyoto Pharmaceutical University, Misasagi-Nakauchicho 5, Yamashina, Kyoto 607-8414, Japan; and Department of Infectious Disease, Division of Medical Microbiology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan

Received 10 January 2006/Returned for modification 13 February 2006/Accepted 6 June 2006

Due to concerns about the current therapeutic modalities for Helicobacter pylori infection, e.g., the increased emergence of drug-resistant strains and the adverse reactions of drugs currently administered, there is a need to develop an anti-H. pylori agent with higher efficacy and less toxicity. The antibacterial activity of TG44, an anti-H. pylori agent with a novel structural formula, against 54 clinical isolates of H. pylori was examined and compared with those of amoxicillin (AMX), clarithromycin (CLR), and metronidazole (MNZ). Consequently, TG44 inhibited the growth of H. pylori in an MIC range of 0.0625 to 1 μg/ml. The MIC ranges of AMX, CLR, and MNZ were 0.0078 to 8 μg/ml, 0.0156 to 64 μg/ml, and 2 to 128 μg/ml, respectively. The antibacterial activity of TG44 against AMX-, CLR-, and MNZ-resistant strains was nearly comparable to that against drug-susceptible ones. In a pH range of 3 to 7, TG44 at 3.13 to 12.5 μg/ml exhibited potent bactericidal activity against H. pylori in the stationary phase of growth as early as 1 h after treatment began, in contrast to AMX, which showed no bactericidal activity at concentrations of up to 50 μg/ml at the same time point of treatment. TG44 at 25 μg/ml exhibited no antibacterial activity against 13 strains of aerobic bacteria, suggesting that its antibacterial activity against H. pylori is potent and highly specific. The present study indicated that TG44 possesses antibacterial activity which manifests quickly and is potentially useful for eradicating not only the antibiotic-susceptible but also the antibiotic-resistant strains of H. pylori by monotherapy.

In recent years, the association between Helicobacter pylori and gastritis, gastric ulcer, and duodenal ulceration (14, 21), as well as gastric cancer, has been clarified (7, 24, 28). The eradication of H. pylori drastically reduces the recurrence of ulceration and is therefore considered essential to treat ulceration. Currently, proton pump inhibitor-based triple therapy using a proton pump inhibitor and two antibiotics is frequently conducted to eradicate H. pylori in patients with gastric and/or duodenal ulcer. Among the antibiotics frequently used are amoxicillin (AMX), clarithromycin (CLR), and metronidazole (MNZ). Many clinical studies have reported eradication rates of 80 to ≥90%, attained by the relevant triple therapy (1, 2, 3, 8, 9, 15). However, many concerns remain to be addressed in the future, including the increased emergence of drug-resistant strains of H. pylori due to the overuse of antibiotics (4, 5, 6, 11, 12, 16, 17, 19, 23, 25, 26, 27, 29) and the indiscriminate use of eradication therapy for the bacterium, as well as the adverse reactions (e.g., diarrhea, dysgeusia, and eruption) to the drugs administered. Therefore, there is a strong need to develop an anti-H. pylori agent which is suitable for the next generation of eradication therapy. Ideally, such an agent is expected to satisfy the following requisites: (i) potent antibacterial activity against H. pylori (administrable by mono-therapy); (ii) high specificity for H. pylori (without efficacy for other intestinal bacteria); (iii) bactericidal activity against AMX-, CLR-, or MNZ-resistant strains of H. pylori; (iv) stability in the stomach (10); (v) possible synergism with other drugs; and (vi) less likelihood of generating drug-resistant strains of H. pylori.

TG44 (4-methylbenzyl 4-trans-4-(guanidinomethyl)cyclohexyl carbamoyloxyl[biphenyl-4-carboxylate monohydrochloride [CAS registry number 178748-55-3]], synthesized by Nagase Chemtex Corporation, is an antimicrobial agent with potent anti-H. pylori activity to which the bacterium exhibits high susceptibility.

In the present study, we used 56 strains of H. pylori, including two reference strains and 54 clinical isolates, to examine the antibacterial activity of TG44 in comparison with those of three antibiotics which are frequently used for the eradication of the bacterium, AMX, CLR, and MNZ.

MATERIALS AND METHODS

Test compound and antibiotics. TG44 (Fig. 1) was synthesized by Nagase Chemtex Corporation (Osaka, Japan). AMX, CLR, and MNZ were purchased from Wako Pure Chemical Industries, Ltd. (Osaka, Japan).

Reagents. Brain heart infusion broth (BHIB) and brain heart infusion agar (BHIA) were purchased from Difco Laboratories, Inc. (Detroit, MI), β-Cyclo-dextrin (β-CD) was purchased from Nihon Shokuhin Kako Co., Ltd. (Tokyo, Japan). Calf serum was purchased from Wako Pure Chemical Industries, Ltd. (Osaka, Japan).

Strains. The fifty-six strains of H. pylori used were supplied by the following sources: the American Type Culture Collection provided 2 reference strains...
(ATCC 43504 and ATCC 43629), S. Kamiya (Department of Microbiology, Kyorin University School of Medicine, Tokyo, Japan) provided 12 clinical isolates (KR 2098, TK 1003, TK 1025, TK 1027, TK 1030, TK 1042, TK 1047, TK 1126, TK 1147, TK 1307, TK 1308, and TK 1310), and M. Sasatsu (Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Tokyo, Japan) provided 42 clinical isolates (TH 517, TH 555, TH 582, TH 607, TH 627, TH 1818, TH 2095, TH 3391, TH 3892, TH 4165, TH 1126, TH 1609, TH 1611, TH 1614, TH 1663, TH 1711, TH 1723, TH 1729, TH 1735, TH 1775, TH 1826, TH 1831, TH 1832, TH 1876, TH 1887, TH 1889, TH 1890, TH 1892, TH 1893, and TH 1899).

Helicobacter mastilae ATCC 45772, Helicobacter pullorum ATCC 51864, Helicobacter bilis ATCC 51630, Arcobacter cryaerophilus ATCC 49615, Campylobacter helveticus ATCC 51209, Campylobacter jejuni ATCC 700819, and Campylobacter jejuni ATCC 29428 were purchased from the American Type Culture Collection.

Stock cultures were stored in a freezer at −85°C in BHIB supplemented with 5% heat-inactivated calf serum and 15% glycerol. Thirty reference strains of common aerobic bacteria, preserved at the Department of Microbiology at Kyoto Pharmaceutical University (Kyoto, Japan), were used in the present study. Gram-positive strains included Staphylococcus aureus (ATCC 29212), the stock cultures of 13 reference strains of aerobic bacteria were grown at 35°C for 3 days. The MIC was defined as the lowest concentration at which the compound inhibited visible bacterial growth.

Bacterial suspension (20 µl) was seeded into 4 ml of BHIB supplemented with 0.1% β-CyD and containing two-fold serial dilutions of the compound. The agar plate was inverted and incubated at 35°C for 20 h. The MIC was defined as the lowest concentration at which the compound inhibited visible bacterial growth.

Determination of the MICs for H. pylori. The MICs were determined by the agar dilution method using BHIA. Under microaerobic conditions (5% O2, 10% as an alternative to bovine serum in an attempt to avoid the enzymatic inactivation of the culture was incubated, and aliquots were collected at various time points. Each sample was serially diluted 10-fold with saline, and 10 µl of the diluted sample was plated on BHIA supplemented with 7% horse blood (TG44-treated sample) or on BHIA supplemented with 7% horse blood and 5% pen-

FIG. 1. Structural formula of TG44.

TABLE 1. Antibacterial activities of TG44, AMX, CLR, and MNZ against H. pylori

H. pylori strain	TG44	AMX	CLR	MNZ	
Reference strains	ATCC 43504	0.5	0.0313	0.0156	64
	ATCC 43629	0.5	0.0313	0.0156	2
Clinical isolates					
KL 2098	0.5	0.0313	0.0313	2	
TK 1003	1	0.0313	0.0625	64	
TK 1025	0.25	0.0313	0.0156	16	
TK 1027	0.125	0.0313	0.0313	8	
TK 1030	0.5	0.0156	0.0313	8	
TK 1042	0.5	0.125	0.0625	8	
TK 1047	0.125	0.0156	2	4	
TK 1126	0.25	0.0313	0.0313	8	
TK 1147	0.25	0.0156	4	4	
TK 1307	0.125	0.0156	0.0313	32	
TK 1308	1	0.0625	0.0625	4	
TK 1310	1	0.0156	0.0156	8	
TK 517	1	8	8	4	
TK 555	0.25	0.0313	0.0313	64	
TK 582	0.25	0.0156	0.0156	32	
TK 607	0.125	0.0156	0.0625	8	
TK 627	0.25	0.0313	0.0625	32	
TK 1818	0.5	4	8	4	
TK 2095	0.125	0.0156	0.0625	128	
TK 3391	0.25	0.0156	0.0313	128	
TK 3392	0.25	0.0156	0.0313	128	
TK 4165	0.125	0.0156	0.0313	32	
TS 119	0.25	0.0156	0.0156	128	
TS 120	0.25	0.0156	0.0156	32	
TS 251	0.25	0.0156	0.0313	16	
TS 279	0.25	0.0156	0.0156	128	
TS 1131	0.25	0.5	4	4	
TS 1367	0.25	0.0156	16	2	
TS 1407	0.25	0.0078	32	8	
TS 1419	0.25	0.0156	32	8	
TS 1445	0.5	0.0156	32	4	
TS 1459	0.25	0.0078	32	4	
TS 1556	0.25	0.0156	32	2	
TS 1609	0.125	0.0313	4	2	
TS 1611	0.25	0.0625	8	2	
TS 1614	0.125	0.0625	4	2	
TS 1664	0.125	0.0625	8	8	
TS 1683	0.25	0.0078	8	2	
TS 1711	0.25	0.0313	16	32	
TS 1723	0.5	0.0156	16	2	
TS 1729	0.25	0.0313	8	2	
TS 1735	0.25	0.0156	0.0156	16	
TS 1775	0.5	0.0313	1	32	
TS 1826	0.25	0.0078	8	8	
TS 1831	0.5	0.5	2	64	
TS 1832	0.5	0.5	4	64	
TS 1876	0.125	0.0156	4	4	
TS 1887	0.125	0.0156	4	4	
TS 1888	0.0625	0.0313	8	4	
TS 1889	0.25	0.0313	0.0156	2	
TS 1890	0.125	0.0078	4	2	
TS 1892	0.5	0.0156	64	4	
TS 1893	0.5	0.0156	32	2	
TS 1899	0.125	0.0156	0.0313	2	

* MICs were determined by the agar dilution method on brain heart infusion agar supplemented with 0.1% β-cyclodextrin which was seeded with a bacterial suspension of 10^7 CFU/ml.

References

- Ban C, Yoshida Y, Kubota H, et al. (2006) In vitro activity of TG44 against Helicobacter pylori. Antimicrob Agents Chemother 50:3063-3069.
of penicillinase (AMX-treated sample). The plate was incubated at 37°C under microaerobic conditions for 3 days, and the colonies of H. pylori were then counted. **Effects of pH on bacterialidal activity.** At pH 7, 6, 5, and 3, H. pylori ATCC 43504 was used to examine the bactericidal activity of TG44 at 1×, 2×, 4×, 8×, and 16× the MIC of the compound. The bacterial suspension (20 μl at 2×10⁶ CFU/ml) was seeded into 4 ml of BHIB supplemented with 0.1% β-Cyd and containing TG44 at each concentration. The culture medium suspensions were adjusted to pH 7, 6, 5, and 5 with 1 N HCl and to pH 3 with 1 N HCl plus urea (1.4 mmol/liter). Urea was added to the medium because of H. pylori lethality under acidic pH conditions. With urea, a substrate of urease, H. pylori can produce ammonia to survive at pH 3. Cultures were incubated, and aliquots were collected at various time points. Each sample was serially diluted 10-fold with saline, and 10 μl of the diluted sample was plated on BHIA supplemented with 7% horse blood (TG44-treated sample) or on BHIA supplemented with 7% horse blood and 5% penicillin (AMX-treated sample). The plate was incubated at 37°C under microaerobic conditions for 3 days, and the number of colonies of H. pylori was counted.

Electron microscopy. Under microaerobic conditions (5% O₂, 10% CO₂, and 85% N₂) in an AnaeroPack Campylo jar (Mitsubishi Gas Chemical Co., Inc., Tokyo, Japan), the stock culture of H. pylori ATCC 43504 was grown at 37°C for 24 h in BHIB supplemented with 0.1% β-Cyd by shaking the bacteria on a shaker at 125 rpm. The bacterial suspension (10 ml) in the exponential phase of growth was seeded into BHIB (990 ml) supplemented with 0.1% β-Cyd and containing TG44 (at concentrations of 0.20, 0.39, 1.56, and 25 μg/ml). After incubation at 37°C under microaerobic conditions for 3 days and 6 h with shaking at 125 rpm, the sample was collected.

After prefixation with an aqueous solution of 1.5% glutaraldehyde in 0.05 M phosphate buffer (pH 7.2) for 30 min at 5°C, the sample was washed twice with 0.05 M phosphate buffer (pH 7.2) and then fixed with 1% OsO₄ in Veronal-acetate buffer (pH 6.1) for 1 h at room temperature by the method of Kellenberger et al. (13). After treatment with 0.5% uranyl acetate, the sample was subsequently dehydrated in alcohol solutions at serial concentrations. For scanning electron microscopic observation, alcohol from serial concentrations was replaced with isooctyl acetate for further dehydration, and samples were then dried by the critical-point drying method and further evaporated with carbon and gold. The surface structures of bacterial cells were then observed with a transmission electron microscope (model 1200EX; Japan Electron Optics Laboratory, Tokyo, Japan).

RESULTS

Table 2. Summary of the antibacterial activities of TG44, AMX, CLR, and MNZ against 54 clinical isolates of H. pylori

Compound	MIC (μg/ml)	50%	90%
TG44	0.0625–1	0.25	0.5
AMX	0.0078–8	0.0156	0.125
CLR	0.0156–64	2	32
MNZ	2–128	8	64

Table 3. Antibacterial activities of TG44 against Helicobacter species and common bacteria

Microorganism	MIC (μg/ml)	AMX	CLR	MNZ	
Helicobacter pylori ATCC 43504	0.5	0.0313	0.0078	64	
Helicobacter mustelae ATCC 43772	8	4	1	4	
Helicobacter pullorum ATCC 51864	>16	4	2	16	
Helicobacter bilis ATCC 51630	>16	4	8	2	
Aerococcus pyraerophilus ATCC 49615	>16	16	4	8	
Campylobacter helveticus ATCC 51209	>16	16	4	16	
Campylobacter jejuni ATCC 700819	>16	16	2	1	>64
Campylobacter jejuni ATCC 29428	>16	0.5	0.25	32	

*MICs were determined from the agar dilution method on brain heart infusion agar supplemented with 0.1% β-cyclodextrin, which was seeded with a bacterial suspension of 10⁵ CFU/ml.

TABLE 4. Antibacterial activities of TG44, AMX, CLR, and MNZ against common aerobic bacteria

Microorganism	MIC (μg/ml)	AMX	CLR	MNZ	
Gram positive					
Staphylococcus aureus	209P JC	>25	0.20	0.10	>200
Staphylococcus aureus Smith		>25	0.20	0.20	>200
Staphylococcus epidermidis ATCC 12228		>25	0.78	0.20	>200
Enterococcus faecalis ATCC 29212		>25	0.78	1.56	>200
Bacillus subtilis PCI 219		>25	0.05	0.10	200

Gram negative

Microorganism	MIC (μg/ml)	AMX	CLR	MNZ
Escherichia coli K-12	>25	3.13	6.25	>200
Klebsiella pneumoniae	>25	50	12.5	>200
NCTC 9632				
Serratia marcescens IFO 3736	>25	100	>100	>200
Proteus vulgaris OX-19	>25	>100	>100	>200
Proteus mirabilis 1287	>25	0.39	>100	>200
Morganella morganii KONO	>25	>100	>100	>200
Providencia rettgeri NIH 96	>25	3.13	>100	>200
Pseudomonas aeruginosa PAO-1	>25	>100	>100	>200

*MICs were determined from the agar dilution method on Mueller-Hinton S agar which was seeded with a bacterial suspension of 10⁶ CFU/ml.
Antibacterial activities of TG44, AMX, CLR, and MNZ against common aerobic bacteria. The MICs of TG44, AMX, CLR, and MNZ for 13 reference strains of aerobic bacteria were determined by the agar dilution method. The MICs thereof are shown in Table 4. At a concentration of 25 μg/ml, TG44 showed no antibacterial activity against gram-positive aerobic bacteria (i.e., S. aureus 209P JC, S. aureus Smith, S. epidermidis ATCC 12228, E. faecalis ATCC 29212, and B. subtilis PCI 219) or gram-negative aerobic bacteria (i.e., E. coli K-12, K. pneumoniae NCTC 9632, S. marcescens IFO 3736, P. vulgaris OX-19, P. mirabilis 1287, M. morganii KONO, P. rettgeri NIH 96, and P. aeruginosa PAO-1). The MICs of AMX and CLR for these aerobic bacteria ranged from 0.05 to >100 μg/ml and from 0.10 to >100 μg/ml, respectively.

Bactericidal activity of TG44 against H. pylori. The bactericidal activity of TG44 against reference strains of H. pylori was compared with that of AMX by using a short-term assay. Time-kill studies were conducted using the microbes at a concentration of approximately 10^5 CFU/ml for the initial seeding.

Figure 2a shows the effects of TG44 on the viability of H. pylori ATCC 43629. H. pylori ATCC 43629 was incubated in BHIB supplemented with 0.1% β-CyD containing various concentrations of TG44. Aliquots were removed at various time points, and the numbers of colonies of H. pylori were counted. (b) Bactericidal activity of AMX against H. pylori ATCC 43629. H. pylori ATCC 43629 was incubated in BHIB supplemented with 0.1% β-CyD containing various concentrations of AMX. Aliquots were removed at various time points, and the numbers of colonies of H. pylori were counted.

Bactericidal activity of TG44 against H. pylori ATCC 43504. H. pylori ATCC 43504 was incubated in BHIB supplemented with 0.1% β-CyD containing various concentrations of TG44. Aliquots were removed at various time points, and the numbers of colonies of H. pylori were counted. (b) Bactericidal activity of AMX against H. pylori ATCC 43504. H. pylori ATCC 43504 was incubated in BHIB supplemented with 0.1% β-CyD containing various concentrations of AMX. Aliquots were removed at various time points, and the numbers of colonies of H. pylori were counted.

Antibacterial activities of TG44, AMX, CLR, and MNZ against common aerobic bacteria. The MICs of TG44, AMX, CLR, and MNZ for 13 reference strains of aerobic bacteria were determined by the agar dilution method. The MICs thereof are shown in Table 4. At a concentration of 25 μg/ml, TG44 showed no antibacterial activity against gram-positive aerobic bacteria (i.e., S. aureus 209P JC, S. aureus Smith, S. epidermidis ATCC 12228, E. faecalis ATCC 29212, and B. subtilis PCI 219) or gram-negative aerobic bacteria (i.e., E. coli K-12, K. pneumoniae NCTC 9632, S. marcescens IFO 3736, P. vulgaris OX-19, P. mirabilis 1287, M. morganii KONO, P. rettgeri NIH 96, and P. aeruginosa PAO-1). The MICs of AMX and CLR for these aerobic bacteria ranged from 0.05 to >100 μg/ml and from 0.10 to >100 μg/ml, respectively.

Bactericidal activity of TG44 against H. pylori. The bactericidal activity of TG44 against reference strains of H. pylori was compared with that of AMX by using a short-term assay. Time-kill studies were conducted using the microbes at a concentration of approximately 10^5 CFU/ml for the initial seeding.

Figure 2a shows the effects of TG44 on the viability of H. pylori ATCC 43629 at 1/2 ×, 1 ×, 2 ×, 4 ×, and 8 × the MIC for up to 24 h. TG44 showed potent bactericidal activity at a concentration of 3.13 μg/ml for 1 to 24 h of treatment.

Figure 2b shows the effects of AMX on the viability of H. pylori ATCC 43629 at concentrations of 1/2 ×, 1 ×, 2 ×, 4 ×, and 8 × the MIC for up to 24 h of treatment. AMX had almost no bactericidal activity at 8 × the MIC for up to 6 h. At 24 h of treatment, when the number of cells in the control group
increased, AMX showed a slight inhibition of the viability of *H. pylori*.

Figure 3a shows the effects of TG44 on the viability of *H. pylori* ATCC 43504 at concentrations of 3.13 to 50 µg/ml for up to 1 h of treatment. TG44 showed potent bactericidal activity at 1 h of treatment. No visible microorganisms were detected after treatment with TG44 at 12.5 µg/ml or higher concentrations for 1 h of treatment.

Figure 3b shows the effects of AMX on the viability of *H. pylori* ATCC 43504 at concentrations of 3.13 to 50 µg/ml for up to 1 h of treatment. AMX had no bactericidal activity at a concentration of 50 µg/ml for 1 h of treatment.

Figure 4 shows the bactericidal activity of TG44 against *H. pylori* ATCC 43504 under various pH conditions. TG44 at 3.13 µg/ml showed bactericidal activity at pH 7 and 6 within 3 h of treatment. At pH 5, TG44 at 1.56 and 3.13 µg/ml also reduced the viable numbers of *H. pylori* cells at 24 and 6 h of treatment, respectively. At an acidic pH of 3, *H. pylori* survived for 2 h in the presence of urea. TG44 exerted a predominant bactericidal effect at a concentration of 0.78 µg/ml or higher for 2 h of treatment.

DISCUSSION

H. pylori is well recognized as a major etiologic factor for gastritis and peptic ulceration (14, 21) and has also been...
Implicated as a risk factor for gastric lymphoma and carcinoma (7, 24, 28). Considerable progress in the therapeutic modalities for \textit{H. pylori} infection has been achieved in recent years. However, the emergence of resistant bacteria has elicited a major clinical concern. The relevant resistance seems to be attributable to the types of antibiotics prescribed in eradication therapy, especially MNZ and CLR (16, 17, 23). Furthermore, the emergence of AMX-resistant strains has also been reported (4, 5, 6, 11, 19, 25). Hence, there are great medical needs for the eradication of \textit{H. pylori} by monotherapy if possible.

In the present study, in which the antibacterial activity of TG44 against 56 strains of \textit{H. pylori} (including 2 reference strains and 54 clinical isolates) was examined in comparison with those of AMX, CLR, and MNZ, TG44 exhibited equivalent antibacterial activities against both susceptible bacterial strains and highly resistant clinical isolates.

TG44 was found to have a high specificity because it clearly exhibited antibacterial activity against \textit{H. pylori}, a slight activity against \textit{H. mustelae}, and no activity against other bacterial species examined.

Transmission electron microscopy showed the detachment
of outer membranes of *H. pylori*, which might be the mechanism responsible for the rapid bactericidal activity of TG44, which is as short as 1 h of treatment. The mechanism of detachment is under investigation.

H. pylori is known to be transformed to the coccoid form after treatment with AMX or CLR. The coccoid form is hypersensitive to these antibiotics. In the present study, however, we observed no transformation of *H. pylori* to the coccoid form after treatment with TG44, implying its possible clinical relevance.

In conclusion, the present study revealed that (i) TG44 has equivalent antibacterial activities against both antibiotic-susceptible and -resistant strains of *H. pylori* and that (ii) TG44 exhibits bactericidal activity against *H. pylori* at a pH range of 3 to 7, confirming its high stability in the pH range as demonstrated in physicochemical studies (data not shown), in a short time of treatment. These facts suggest that TG44 is a promising chemotherapeutic agent which allows monotherapy against *H. pylori* infection, unlike conventional therapy which requires drug combinations and systemic circulation.
ACKNOWLEDGMENT

We thank M. Sasatsu for kindly supplying the clinical isolates.

REFERENCES

1. American Digestive Health Foundation. 1997. The report of the Digestive Health Initiative SM International Update Conference on Helicobacter pylori. Gastroenterology 113(Suppl. 6):S4–S8.

2. Asaka, M., T. Sugiyama, M. Kato, K. Satoh, H. Kawaiyama, Y. Fukuda, T. Fujiko, T. Takemoto, K. Kimura, T. Shimaoyama, K. Shimizu, and S. Kobayashi. 2001. A multicenter, double-blind study on triple therapy with lansoprazole, amoxicillin and clarithromycin for eradication of Helicobacter pylori in Japanese peptic ulcer patients. Helicobacter 6:254–261.

3. Bazzoli, F., R. M. Zagari, S. Fossi, P. Pozzato, G. Alampi, P. Simoni, S. Sottili, A. Ronda, and E. Ronda. 1994. Short-term low dose triple therapy for the eradication of Helicobacter pylori. Eur. J. Gastroenterol. 6:773–777.

4. Debets-Ossenkoppa, Y. J., A. J. Hescheida, R. G. M. J. E. Vandenbroucke-Grauls, J. G. Kusters, and C. M. J. E. Vandenbroucke-Grauls. 1999. Prevalence of Helicobacter pylori resistance to metronidazole, clarithromycin, amoxicillin, tetracycline and trolvofloxacin in The Netherlands. J. Antimicrob. Chemother. 43:511–515.

5. Dore, M. P., A. Piana, M. Carta, A. Atzei, B. M. Are, I. Mura, G. Massarelli, A. Maida, A. R. Sepulveda, D. Y. Graham, and G. Realdi. 1998. Amoxicillin resistance is one reason for failure of amoxicillin-omeprazole treatment of Helicobacter pylori infection. Aliment Pharmacol. Ther. 12:625–639.

6. Dore, M. P., D. Y. Graham, A. R. Sepulveda, G. Realdi, and M. S. Osato. 1999. Sensitivity of amoxicillin-resistant Helicobacter pylori to other penicillins. Antimicrob. Agents Chemother. 43:1803–1804.

7. El-Omar, E. M., M. Carrington, W. H. Chow, K. E. L. McColl, J. H. Bream, H. A. Young, J. Herrera, J. Lissowska, C. C. Yuan, N. Rothman, G. Lanyon, M. Martin, J. F. Faumeni, Jr., and C. S. Rabkin. 2000. Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature 404:398–402.

8. The European Helicobacter pylori Study Group (EHPSG). 1997. Current European concepts in the management of Helicobacter pylori infections. The Maastricht consensus report. Gut 41:8–13.

9. Graham, D. Y., G. M. Lew, H. M. Malaty, D. J. Evans, P. D. Klein, L. C. Alpert, and R. M. Gentia. 1992. Factors influencing the eradication of Helicobacter pylori with triple therapy. Gastroenterology 102:493–496.

10. Grayson, M. L., G. M. Eliopoulos, M. J. Ferraro, and R. C. Moellering. 1989. Effect of varying pH on the susceptibility of Campylobacter pylori to antimicrobial agents. Eur. J. Clin. Microbiol. Infect. Dis. 8:888–889.

11. Han, S.-R., S. Bhakdi, M. J. Mauerer, T. Schneider, and S. Gehring. 1999. Stable and unstable amoxicillin resistance in Helicobacter pylori: should antibiotic resistance testing be performed prior to eradication therapy? J. Clin. Microbiol. 37:2740–2747.

12. Hsu, J., H. C. Ng, K. G. Yeeh, K. Y. Ho, and B. Ho. 1998. Characterization of clinical isolates of Helicobacter pylori in Singapore. Microbiol. 94:71–81.

13. Kellenberger, E., A. Kyté, and J. Schaudt. 1958. Electron microscope study of DNA-containing plasmas. II. Vegetative and mature phage DNA compared with normal bacterial nucleotides in different physiological states. J. Biophys. Biochem. Cytol. 4:671–678.

14. Labenz, J., and G. Borsch. 1994. Evidence of the essential role of Helicobacter pylori in gastric ulcer disease. Gut 35:19–22.

15. Lamonialite, H., R. Casly, F. Zerhbi, P. Talbi, and F. Mégraud. 1995. Triple therapy using proton pump inhibitor-amoxicillin and clarithromycin for Helicobacter pylori eradication. Gut 37(Suppl. 1):A102.

16. López-Brea, M., M. M. Josefa Martinez, D. Domingo, and T. Alarcon. 1997. Evolution of resistance to metronidazole and clarithromycin in Helicobacter pylori clinical isolates from Spain. J. Antimicrob. Chemother. 40:279–281.

17. Luft, J. H. 1961. Improvements in epoxy resin embedding methods. J. Biophys. Biochem. Cytol. 9:409–414.

18. Mendoza, S., C. Ecclissato, M. S. Sartori, A. P. O. Godoy, R. A. Guerzoni, M. Degger, and J. Pedrazzoli, Jr. 2000. Prevalence of Helicobacter pylori resistance to metronidazole, clarithromycin, amoxicillin, tetracycline, and furazolidone in Brazil. Helicobacter 5:79–83.

19. Morshead, M. G., M. Karita, H. Konishi, K. Okita, and T. Nakazawa. 1994. Growth medium containing cyclodextrin and low concentration of horse serum for cultivation of Helicobacter pylori. Microbiol. Immunol. 38:897–900.

20. Nomura, A., G. N. Stemmermann, P. H. Chyou, G. I. Perez-Perez, and M. J. Blaser. 1994. Helicobacter pylori infection and the risk for duodenal and gastric ulceration. Ann. Intern. Med. 120:977–981.

21. Olivieri, R., M. Bugnoli, D. Armellini, S. Bianciardi, R. Rappuoli, P. F. Bayeli, L. Abate, E. Esposito, L. de Gregorio, and J. Aziz. 1993. Growth of Helicobacter pylori in media containing cyclodextrins. J. Clin. Microbiol. 31:160–162.

22. Osato, M. S., R. Reddy, S. G. Reddy, R. L. Penland, H. M. Malaty, and D. Y. Graham. 2001. Pattern of primary resistance of Helicobacter pylori to metronidazole or clarithromycin in the United States. Arch. Intern. Med. 161:1217–1220.

23. Skippon, P., and H. Hyvarinen. 1993. Role of Helicobacter pylori in the pathogenesis of gastritis, peptic ulcer and gastric cancer. Scand. J. Gastroenterol. 28(Suppl. 196):3–7.

24. Smith, S. L., K. S. Oyedeji, A. O. Arighabu, C. Atinomo, and A. O. Coker. 2001. High amoxicillin resistance in Helicobacter pylori isolated from gastritis and peptic ulcer patients in western Nigeria. J. Gastroenterol. 36:67–68.

25. Torres, J., M. Camorlinga-Ponce, G. Pérez-Pérez, A. Madrazo-De la Garza, M. Dehesa, G. Gerardo González-Valencia, and O. Muñoz. 2001. Increasing multidrug resistance in Helicobacter pylori strains isolated from children and adults in Mexico. J. Clin. Microbiol. 39:2677–2680.

26. van Zet A. A., C. M. J. E. Vandenbroucke-Grauls, J. C. Thijs, E. J. van der Wouden, M. M. Gerrits, and J. G. Kusters. 1998. Stable amoxicillin resistance in Helicobacter pylori. Lancet 352:1595–1596.

27. Webb, P. M., and D. Forman. 1995. Helicobacter pylori as a risk factor for cancer. Bailliere’s Clin. Gastroenterol. 9:563–582.