Cis-acting DNA elements of mouse granulocyte/macrophage colony-stimulating factor gene responsive to oxidized low density lipoprotein

Takeshi Matsumura
Division of Endocrinology, Albert Einstein College of Medicine

We previously demonstrated that the induction of granulocyte/macrophage colony-stimulating factor (GM-CSF) played an important role in oxidized low density lipoprotein (Ox-LDL)-induced macrophage growth as a growth priming factor. The present study was undertaken to elucidate the transcriptional regulation of GM-CSF gene using Raw 264.7 cells, a mouse macrophage cell line. Transient transfection into Raw 264.7 cells of several 5'-flanking region of GM-CSF gene-luciferase fusion plasmids revealed the presence of two positive regulatory sites in regions spanning from -97 to -59 and from -59 to -37, and one negative regulatory site from -120 to -97 in unstimulated cells. When cells were stimulated by Ox-LDL, there was one positive responsive site from -225 to -120, and one negative responsive site from -97 to -59 which contained NF-κB binding site. Computer analysis revealed the presence of a putative AP-2 binding site from -169 to -160. Mutagenesis of a putative AP-2 binding site and tandem repeat of this site in plasmid resulted in a complete loss and increased responsiveness to Ox-LDL, respectively. Electrophoretic mobility shift assay showed that Ox-LDL increased the binding of certain nuclear protein(s) to a putative AP-2 binding site but decreased their binding to NF-κB binding site. Supershift assay showed that nuclear proteins bound to NF-κB binding site contained, at least, p50 and p65, but could not demonstrate nuclear protein(s) bound to a putative AP-2 binding site. Our results suggested that a putative AP-2 binding site from -169 to -160 was a positive responsive element to Ox-LDL and NF-κB binding site from -91 to -82 was a negative responsive element in Ox-LDL-induced GM-CSF transcription.
Lysosomal accumulation of oxidized phosphatidycholine-apolipo-protein B complex in macrophages: Intracellular fate of oxidized low density lipoprotein

Hiroyuki Itabe
Department of Microbiology and Molecular Pathology, Faculty of Pharmaceutical Sciences, Teikyo University

Oxidized phosphatidylcholine (OxPC) formed in oxidized low density lipoprotein (OxLDL) is thought to be involved in development of atherosclerosis. OxPC has been found in foam cells in atherosclerotic lesions and suggested to be the epitopes for OxLDL recognition by macrophages. OxPC is present as a complex with apolipoprotein B (apoB) in OxLDL, since some OxPC can bind with proteins. In the current study, the intracellular fate of OxPC-apoB complexes after internalization of OxLDL by macrophages was investigated. Murine Macrophage cell line J774.1 was incubated with either OxLDL or acetylated LDL for 24h, then the cells were further incubated for up to 24h in new media without lipoprotein. Modified apoB in the cells was quantitated by sandwich ELISA using monoclonal antibodies against OxPC and apoB. Intracellular OxLDL decreased rapidly for the first 4h to approximately 20% of that before medium change, with the apparent metabolism of OxPC-apoB complex ceasing. OxPC-apoB complexes remained in the cells after 24h chasing increased as the period of OxLDL loading in macrophages is prolongs. Acetylated LDL in the cells decreased quickly and disappeared after 4h of chasing. Subcellular fractionation using sucrose density gradient ultracentrifugation of macrophages, which had already accumulated OxPC-apoB complexes by 24h of incubation with OxLDL and further 24h chasing, showed that the complexes was colocalized with endosomal and lysosomal markers. Immunohistochemical double staining studies demonstrated that OxPC and apoB co-localize in foam cells in early atherosclerotic lesions obtained from human coronary artery. These results suggest that OxPC-apoB complexes originating from OxLDL accumulate in foam cells in human atherosclerotic lesions as well as in macrophages in vitro.
A novel function of a member of Rho GTPases family, Cdc42Hs, as a physiological component for high density lipoprotein-mediated cholesterol efflux

—Involvement of decreased expression of the small G protein in the pathogenesis of tangier disease—

Ken-ichi Hirano
Department of Internal Medicine and Molecular Science, Graduate School of Medicine, B5, Osaka University

Tangier disease (TD) is a rare, autosomal recessive disorder of lipid and lipoprotein metabolism, characterized by the severe reduction of plasma high density lipoprotein (HDL)-cholesterol. Because many previous studies showed impaired cholesterol efflux and abnormal intracellular trafficking of HDL in TD cells, TD is thought to be a model for the impairment of the first step of reverse cholesterol transport, a major protective system against atherosclerosis. To know the molecular basis of TD, we performed the approach of cDNA subtraction technique which revealed a decreased expression of a member of Rho GTPases family, Cdc42Hs, in TD cells. We have found that abnormal actin cytoskeletons were observed in both TD fibroblasts and macrophages. Transient transfection of dominant negative form of Cdc42Hs (N17Cdc42Hs) transformed normal fibroblasts into ones with TD-like phenotype showing the abnormal cell shape with re-arrangement of actin cytoskeletons. The introduction of dominant negative Cdc42Hs into mammalian cells caused the decrease in HDL-mediated cholesterol efflux, irrespective of the expression of scavenger receptor class B type I (SR-BI) in the cells tested. These findings clearly show that the decreased expression of Cdc42Hs is involved in the pathogenesis of TD. The current study is the first demonstration that the small G protein plays an important role as a physiological key component in the process of HDL-mediated cholesterol efflux.
会頭講演

血管傷害と動脈硬化

沼野 藤夫
東京医科歯科大学第三内科

Virchowの炎症説以来動脈硬化の成因の一つとして血管傷害の重要性が研究され続けてきた。

著者は故島本多喜雄教授と共に（1960年代）種々の条件下による血管内膜の障害が血漿成分を含む多くの物質の血管管内浸潤を惹起し、この初期変化が動脈硬化発生の重要な鍵であることを強調した（急性血管障害 acute vascular injury）。この変化は内皮細胞の器質的傷害によるのみでなく機能的傷害にとっても生ずることをP. Constantinitides教授と共に形態学的に追求、更には微量酵素定量法を用いて生化学的面からも検索した。かかる内皮細胞の器質的、機能的変化（Endotheliopathy）は同時に血小板の血管壁への粘着を増強し、血栓性疾患を生じさせる。かかる変化は血小板事態の変化のみならず、血小板・内皮細胞との相互関係が重要である。1976年R. Ross教授によるPDGFの発見はこの相互関係の解明の大きな発展期となりその後のVascular Biologyの発展の端緒となった。著者はRoss教授と協同して内皮細胞障害時壁内に出現する細胞は血中の単核細胞、Tリンパ球、白血球であることを免疫組織学手法を用いて確認、また壁内でmacrophage(Mφ)に変化した単球やリンパ球、白血球は種々のサイトカインを産生分泌していることを明らかにした。すなわち内膜障害につづく血球、脂質の浸潤とその後に展開する種々サイトカインを中心にする炎症性変化の病態が動脈硬化の発展の重要な鍵であることを更に確信し始めたのである。

一方かかる内皮細胞障害の防止が動脈硬化予防に寄与する可能性を検索している過程で偶然実験的に大量の女性ホルモン投与が血管中膜平滑細胞を傷害して大血管炎の病態を示した病像を呈することを観察、これを契機として大血管炎の成因、病態を追求した。本病態は自己免疫機構が大きな役割を演じているが、そのきっかけは栄養血管炎（Vasa Vasoritis）であり、これから壁内に浸潤したTリンパ球を主体とする血球の浸潤が外膜、中膜に炎症性病変を惹起し、やがて内膜までに至る血管全層への変化が出現していく。ここで生ずる内膜病変は線維性肥厚のみならず典型的な動脈硬化性病変も出現し、この事実は動脈硬化発生進展に於て炎症が重要なリスクファクターであることを明示しているといえよう。
動脈硬化の局在性と血流ずり応力

吉 田 洋 二
山梨医科大学

動脈硬化は動脈内膜に一緒に生ずる疾患ではなく好発部位を有する。すなわち動脈壁には動脈硬化が起こりやすい場所と起こりにくい場所が存在する。これを大動脈分岐口周辺について見ると、ヒトにおいては、前者は分岐口の近位部、後者は分流部先端（遠位部）である。食塩性高脂血症ウサギにおいては、脂質沈着は分流部先端から数100μm隔たった下流域に起こりやすく、近位部や分流部先端には起こりにくい。ヒトとウサギにおける脂質沈着ないし動脈硬化の好発部位は、解剖学的に異なるが、局所の血流力学環境は類似しており、両者とも非流性の平均的に低いずり応力にさらされている。一方、非好発部位は層流性の高いずり応力下にある。若年者、健常ウサギの好発部位、非好発部位を形態学的に比較研究し、それぞれの動脈壁の特徴を検討した。

ウサギ：脂質沈着の好発部位は腫大した卵円形内皮細胞に覆われ、そのglyocalyxは薄く、細胞は小器官に富み、細胞間のzonular tight junctionは乏しかった。屠殺直前に静注したperoxidaseは容易に内皮下に達した。一方、非好発部位の内皮細胞は長縄形で、glyocalyxは厚く、tight junctionが良く発達し、peroxidaseの透過は少なかった。

ヒト：好発部位の内皮細胞はウサギと同様卵円形であった。その内膜表面は非層性で、線維性間質に乏しく、内膜筋細胞は合成性を示していた。内皮細胞にTNFα，PAF(R)，VCAM-1などのmRNAが、内膜筋細胞にもTNFα，PDGF(R)β，MCP-1などのmRNAが高頻度に発現していた。なお内膜筋細胞にはMIB-1，PCNA陽性細胞が増加していた。

一方、非好発部位の内膜には、コラーゲン線維、弾性線維が豊富で、線維性に緻密な組織を形成していた。内膜筋細胞は卵巣形で、収縮型を示していた。内皮細胞や内膜筋細胞には上記のmRNAの発現は乏しかった。

以上の所見ならびにin vitroの実験成績（未記載）を総合すると、血流の非層流性低ずり応力刺激は、内皮細胞の形態と機能、更に内膜の組織構築、筋細胞機能を変え、血管壁に動脈硬化を生じやすい基礎を作り、層流性高ずり応力刺激は、内皮細胞の形態と機能を安定化させ、筋細胞を収縮型に導き、壁を抗動脈硬化性とすると考えられた。
新しい病態の発見とそれらを基盤にした動脈硬化の分子機構の研究

松 澤 佑 次
大阪大学大学院医学系研究科生体制御御学

研究の流れ—新しい病態の発見とそれらを基盤にした動脈硬化の分子機構の研究—

申請者は動脈硬化と強く関連する重要な病態を発見し、症例の研究を基礎的研究所発展させることによって動脈硬化の分子機構について従来の概念を変えるような新しい知見を見出した。

1. マルチプルリスクファクター症候群としての内臓脂肪症候群の概念の確立とその分子機構の解明

申請者は、世界に先駆けて発表したCTスキャンによる脂肪分析法によって腹部内臓脂肪（肝臓膜脂肪）の蓄積がインスリン抵抗性、高血糖、高脂血症などの観察を基盤である事実を明らかにして、マルチプルリスクファクター症候群の本態が内臓脂肪の蓄積である可能性を明らかにした。マルチプルリスク発症の機序としては、内臓脂肪から門脈を介して肝臓に直接流入するFFAの重要性を明らかにし、例えばacyl-CoA合成酵素やmicrosomal triglyceride transfer protein（MTP）の転写亢進を通じたVLDL分泌亢進を証明し、過栄養による高脂血症発症の分子機構解明にも重要なヒントを与えた。一方、申請者の方が行った脂肪細胞の大規模ラムダーサイクルを用いて内臓脂肪細胞の有するエネルギー蓄積の役割を果たすのではなく、多彩な生理活性物質（adipokynesと名付けた）を分泌する内分泌細胞であるという概念を確立し、内臓脂肪から分泌されるPAI-IやHBEGFが血栓形成、動脈硬化の発症に大きく関与していることを見出した。さらに、新しいマトリックス様の脂肪細胞特異的分泌蛋白のアディポネクチンを同定し、本蛋白がNFκBの制御を通じて、皮下細胞における接着因子の発現を抑制することや平滑筋細胞増殖抑制作用や動脈硬化の動的制御をなしていることを見出した。また血中レベルは内臓脂肪蓄積に逆相関して著しく低下し、また肥満度とは無関係に冠動脈疾患を低下している事実を明らかにした。さらに、マルチプルリスクファクター症候群における動脈硬化の発症がリスクが蓄積することを抑制するだけでなく、脂肪組織、とくに内臓脂肪の蓄積によって、adipokynesの濃縮収縮または分泌低下が直接血管細胞に影響することが、基本であることを示したのである。

2. 脂質蓄積を伴う高HDL-コレステロール血症の発見とそれを基盤とした動脈硬化防御機構の解明

申請者は、1983年HDL代謝異常の典型症状である動脈硬化や角膜混濁を伴う高HDL-C血症を発見し、その基盤がコレステロールエステル転送蛋白（CETP）の遺伝子異常であることを見出した。HDL粒子、LDL粒子の構造分析や血管細胞との相互作用の検討から本症例ではコレステロール逆送送系の異常によって、動脈硬化防御機構が障害されていることが予測されていたが、秋田大学大島におけるCETP欠損遺伝子多発の発見及びその臨床研究を通じて、それを確認した。CETP欠損はantiatherogenicと考えていた欧米の研究者と長年論争を続けてきたが、その中心的のコンピュータでのAlan Tallらのグループがハイアットの日系人の分析で、CETP欠損に冠動脈疾患が多いという成績を、1996年LCIに発表し、その意味でHavelが書いた書籍に我々の成績も示され、一応の決着はついた。このような両宮の発見からHDLを介したコレステロール逆送送系の分子機構の解明をさらに進めており、最近HDLを介したマクロファージのコレステロール引き抜き、及び肝臓へのコレステロール輸送に関わるHDL受容体の一部SRBIの意義の解明及びTangier病のマクロファージの分析から最近注目されているABC-Iと連関してsmall G proteinの異常を発見しており、これらを通じて動脈硬化防御機構の解明がさらに進み、新しい治療医学が開発できると思われる。

3. CD36欠損症の発見とそれを介した酸化LDL代謝及びインスリン抵抗性症候群の分子機構の解明

申請者は血小板輸血不応症の分析から膜蛋白CD36欠損症を見出し、遺伝子異常（三種類）を同定した。その後CD36が酸化LDLを結合するとというEmdemannの報告をもとに、欠損症mococyteで酸化LDL結合能が50%低下していることを確認し、ヒトにおいて重要な酸化LDL受容体であることを報告した。CD36はマクロファージにおいて酸化LDL自体で発現増加される特異な受容体で、動脈硬化巣に強く発現し、foam cell形成に大きく関与していることも確認した。CD36は長鎖脂肪
酸のトランスポーターでもあり、本症では、心筋への脂肪酸取込が欠損し、心筋症にも関与することを見出した。一方、最近では CD36 欠損症はむしろ atherogenic であり、マルチプルリスクファクター症候群を有する症例の多いことが明らかになってきた。動物でも Scott らのグループから SHR におけるインスリン抵抗と CD36 の遺伝子異常がリンクすることを報告されており、レセプター以降に PPAR-γ とリンクすることや、CD36 を発現する脂肪組織や心筋、骨格筋における CD36 程度の脂肪酸取込欠損から生じる肝臓の CD36 independent なFFA 流入亢進による脂質代謝異常、糖代謝異常が新しいマルチプルリスクファクター症候群の分子機構として注目され、現在さらなる分析を進めているところである。

まとめ

以上掲載は、世界に先駆けた新しい疾病を次々と発見しきれを基盤に代謝、血管細胞生物学を通じ動脈硬化と関係する多彩な分子機構を明らかにしてきた。これら一見、別々の独立したものに見えるが脂肪細胞の分化に CD36、PPAR-γ を介した機構が重要であり、CETP が脂肪細胞で多重合成され、また SRB1 は CD36ファミリーであることなど有機的に連関した一連の機構と捉えることができる。近年発生工学的手法が広く浸透したが脂質代謝や血管代謝がヒトと異なる動物での研究は必ずしも、人類の動脈硬化解明にはつながらない可能性もあり、申請者のヒト症例を基盤とした発想からの研究は動脈硬化学の発展に貢献するものとして期待するものである。
International Symposium on Atherosclerosis Research
—present and future—

座長：沼野 藤夫（東京医科歯科大学第三内科）
矢崎 義雄（国立国际医療センター）

Introductory Remarks from the Chairpersons
Tokyo Medical and Dental University
Fujio Numano
International Medical Center of Japan
Yoshio Yazaki

Welcome to the 32nd Annual Meeting of Japan Atherosclerosis Society and to the Symposium entitled “International Symposium on Atherosclerosis Research—Present and Future—”.

This symposium is designed to discuss internationally outstanding work on the cutting edge in atherosclerosis research, so that we can better grasp future research directions in the 21st century.

To carry out this mission we invited several prominent speakers from USA, France and Japan, all of whom are well known for the achievements in vascular inflammation, the coagulation system, vascular biology, lipid and cancer research in relation to atherosclerosis.

We are grateful to our expert speakers who graciously accepted the invitation. The symposium is open to all participants and we are certain that it will help all of us in directing and promoting future research.

1. PPARs: Nuclear Receptors Controlling Vascular Inflammation

Dépt. D’Athérosclérose,
Institut Pasteur de Lille, Lille, France
B. Staels

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors belonging to the nuclear receptor family. The hypolipidemic fibrates and the antidiabetic glitazones are synthetic ligands for PPARα and PPARγ, respectively. Furthermore, fatty acids and eicosanoids are natural PPAR ligands. PPARs function as regulators of lipid and lipoprotein metabolism and glucose homeostasis and influence cellular proliferation, differentiation and apoptosis. PPARα is highly expressed in tissues such as liver, muscle, kidney and heart, where it stimulates the β-oxidative degradation of fatty acids. PPARα furthermore mediates the action of the hypolipidemic drugs of the fibrate class on plasma lipoprotein metabolism. PPARγ is predominantly expressed in intestine and adipose tissue. PPARγ triggers adipocyte differentiation and promotes lipid storage. In addition, PPARs play a role in inflammation control. PPAR activators inhibit the activation of inflammatory response genes by negatively interfering with the NF-κB and AP-1 signalling pathways. PPAR activators exert these anti-inflammatory activities in different immunological and vascular wall cell types such as monocyte/macrophages, endothelial, epithelial and smooth muscle cells in which PPARs are expressed. These findings indicate a modulatory role for PPARs in the control of the inflammatory response with potential therapeutic applications in inflammation-related diseases, such as atherosclerosis.
2. Genetic Control of LDL Levels: Studies in Patients with Familial Hypercholesterolemia

Hadassah University Hospital, Jerusalem, Israel
Eran Leitersdorf

Steady state extracellular cholesterol concentrations are regulated by a large number of genes encoding for transcription factors, enzymes, apoproteins and cell surface receptors. Genetic defects causing markedly increased LDL-C levels were mapped to the apolipoprotein B (Familial Defective Apolipoprotein B100, FDB) and the LDL receptor (Familial Hypercholesterolemia, FH) genes. Low or complete deficiency of plasma LDL are caused by defects in the apolipoprotein B (Hypobetalipoproteinemia) and the microsomal triglyceride transfer protein (Abetalipoproteinemia), respectively. In studies of FH families we reported significant variations of plasma cholesterol levels among family members even after adjustment for multiple constitutional and environmental factors. In some FH families, heterozygotes for a known LDL receptor mutation have normal LDL-C levels possibly due to a major effect caused by a LDL Lowering Gene (LLG). In studies in such a family of Puerto Rican origin using the candidate gene approach excluded all known genes as possible LLGs and failed to map the putative LLG. More recently we postulated the presence of LLG in a Moslem Arab family where we identified an internalization-defective mutation in the LDL receptor causing FH. The presence of LLG was mainly suspected in FH heterozygotes that had normal LDL-C levels. We excluded apolipoproteins B and E by candidate gene analysis. Using whole genome scan, linkage and affected sibpair analysis we identified quantitative-trait locus (QTL) for LLG on chromosome 13 (multipoint LOD score 4.8, \(p<0.000002 \)). The presence of this QTL was also confirmed in normal twins. These data provide evidence for the existence of LLG in FH families as well as in the general population. It may be one of several genes, which control the steady state plasma LDL-C levels, which are differentially expressed among diverse ethnic groups, populations and families.

3. Transcriptional Regulation of Smooth Muscle Phenotypic Modulation

Department of Cardiovascular Medicine, University of Tokyo
Ryozo Nagai

Mechanical stress causing endothelial damage could result in vascular remodeling that includes circulating cell adhesion and smooth muscle proliferation. Phenotypic modulation of smooth muscle cell plays a pivotal role in the development of vascular disease, such as atherosclerosis and restenosis after angioplasty. We have identified a zinc finger protein BTEB2 as a DNA binding protein which regulates the nonmuscle myosin heavy chain (SMemb) promoter. BTEB2 is expressed in fetal aorta but not in adult aorta, and is induced in neointima in response to vascular injury. BTEB2 activates a number of vascular disease-associated genes, such as tissue factor, PAI-1 (plasminogen activator inhibitor-1), Egr-1 gene as well as the SMemb gene. We have isolated and characterized human BTEB2 genomic clone. Functional studies using 5'-deletion and site-directed mutation constructs localized the major phorbol ester-responsive motifs to Egr-1 consensus binding site located at -32 from the transcription start site. These results suggest that BTEB2 functions as a transcription factor for phenotypic modulation of vascular smooth muscle cells and that inhibition of BTEB2 can be a new therapeutic strategy for treatment of vascular diseases.
4. Transforming Growth Factor-β1 (TGF-β1) and TGF-β2 Decrease Expression of CD36, the Type B Scavenger Receptor, through MAP kinase phosphorylation of PPAR-γ

CD36, a macrophage scavenger receptor, binds oxidized LDL (OxLDL), a key event in the development of atherosclerosis. We investigated the effect of transforming growth factor-β1 (TGF-β1) and TGF-β2 on expression of macrophage CD36. Treatment of PMA-differentiated THP-1 macrophages with TGF-β1 or TGF-β2 decreased expression of CD36 mRNA and surface protein. TGF-β1/TGF-β2 also inhibited CD36 mRNA expression induced by OxLDL and 15-deoxy12,14 prostaglandin J2 (15d-PGJ2), a PPAR-γ ligand, suggesting that the TGF-β1/TGF-β2 down-regulated CD36 expression by inactivating PPAR-γ mediated signaling. TGF-β1/TGF-β2 increased phosphorylation of both MAP kinase and PPAR-γ while MAP kinase inhibitors reversed suppression of CD36 and inhibited PPAR-γ phosphorylation induced by TGF-β1/TGF-β2. MAP kinase inhibitors alone increased expression of CD36 mRNA and protein but had no effect on PPAR-γ protein levels. Our data demonstrate that TGF-β decreases CD36 expression by phosphorylation of MAP kinase, subsequent MAP kinase phosphorylation of PPAR-γ, and a decrease in CD36 gene transcription by phosphorylated PPAR-γ.

5. Viral Activation of the Coagulation Cascade

Hemostasis requires a balance between procoagulant activity, anticoagulant activity, fibrin assembly, and fibrinolysis. The vascular endothelium normally provides a thromboresistant surface. Perturbation of the endothelium by injury or activation can shift this balance to one that promotes the assembly of the prothrombinase complex, thrombin generation, and coagulation. We have evidence demonstrating that herpes simplex virus (HSV) infection can activate the endothelium. In vitro experiments have shown that HSV infection of vascular endothelial cells can inhibit anticoagulant function, induce the expression of both virally-encoded or cellular receptors for coagulation proteins, and thus, alter the balance of procoagulant and anticoagulant activity. Viral glycoprotein C (gC), a virally encoded envelope glycoprotein, is expressed on the surface of HSV-infected endothelial cells, and can act as a Factor X receptor. In addition, viral infection of the endothelium increases expression of tissue factor (TF), von Willebrand factor (vWF) secretion (which mediates platelet adhesion) and adhesion molecules for inflammatory cells (P-selectin). We further speculate on how viral infection of the vascular endothelium and vessel wall may impact on the initiation and progression of atherosclerosis.

We have recently identified the binding site on the endothelium for the coagulation protein, Factor Xa. The binding of Factor Xa represents an important step in the generation of thrombin and vascular cell signaling. Effector cell protease receptor (EPR-1) has been identified as a novel cell surface receptor for Factor Xa. EPR-1 is expressed on human arterial cells. Cross-linking of 125I Factor Xa to cells revealed a band at approximately Mr 90,000, consistent with formation of an EPR-1: Xa complex. 125I-labeled Factor Xa binds to endothelial cells in a saturable manner. Binding was inhibited by an antibody to EPR-1 but could not be blocked by an antibody to Factor V. No specific binding was observed with a mutant Factor X in which the proteolytic activation site was substituted (Arg196>Gln196) to prevent the conversion of Factor X to Xa. Exposure of smooth muscle cells to Factor Xa induced a three-fold increase in 3H-thymidine
uptake, an effect that was inhibited 75% by a monoclonal antibody to EPR-1. However, receptor occupancy alone is insufficient for mitogenic signaling as the active site of the enzyme is required for mitogenesis. Thus, EPR-1 represents a site of potential specific protease-receptor complex assembly capable of thrombin generation and may have a role in mediating vascular cell signaling. The implications of this process during thrombo-atherogenesis will be discussed.

1. Hajjar D. Viral pathogenesis of atherosclerosis: impact of molecular mimicry and viral genes. Am J Pathol 1991; 139: 1195-1211.
2. Melnick J, Adam E, De Bakey M. Cytomegalovirus and atherosclerosis. BioEssays 1995; 17: 899-903.
3. Visser M, Vercellotti G. Herpes simplex virus and atherosclerosis. Eur Heart J 1993; 14
4. Etingin O, Silverstein R, Friedman H, Hajjar DP. Viral activation of the coagulation cascade: molecular interactions at the surface of the infected endothelial cell. Cell 1990; 61: 657-662.
5. Nicholson AC, Nachman R, Altieri DC, Summers, BD, Ruf, W., Edgington, TS, and Hajjar DP. Effector cell protease receptor-1 is a vascular receptor for coagulation factor Xa. J Biol Chem 1996; 271: 28407-28413.

6. Current Topics in Lipid: The AVERT Trial and Future Directions for Research

The Robert W. Woodruff Health Sciences Center, Emory University, USA

W. Virgil Brown
シボシュム 2

動脈硬化の危険因子としての高トリグリセライド血症

座 長：田中 明（東京医科歯科大学第三内科）
山田 信博（筑波大学臨床医学系内科医学代謝講義）

はじめに

東京医科歯科大学第三内科 田中 明
筑波大学臨床医学系内科 山田 信博

最近、動脈硬化危険因子としての高トリグリセライド (TG) 血症が注目され、大規模疫学調査や介入試験の結果が発表されている。

高 TG 血症が冠動脈疾患 (CAD) のリスクであることを示した大規模疫学調査としては、CAD のない対象者では、Prospective Cardiovascular Munster (PROCAM) Study (1996年、ドイツ、対象は男性4,849例)、The Physicians' Health Study (1996年、アメリカ、対象は574例)、Copenhagen Male Study (1998年、デンマーク、対象は男性2,906例)、CAD の既にある対象では、The Baltimore Coronary Observation Long-Term Study (COLTS) (1998年、アメリカ、CAD 350例)、The Bezafibrate Infarction Prevention (BIP) Study (1999年、イスラエル、対象はCAD 11,532例)、Copenhagen Male Study (1998年、デンマーク、対象は男性2,906例)、CAD の既にある対象では、The Baltimore Coronary Observation Long-Term Study (COLTS) (1998年、アメリカ、CAD 350例)、The Bezafibrate Infarction Prevention (BIP) Study (1999年、イスラエル、対象はCAD 11,532例)などが報告されている。また、Bezafibrate に入漬試験としては、1次予防効果を示したthe St. Mary's, Ealing, Northwick Park Diabetes Cardiovascular Disease Prevention (SENDCAP) Study (イギリス、1988年、対象は2型糖尿病164例)、2次予防効果を示したBezafibrate Coronary Artery Disease Intervention Trial (BECAIT) (1996年、スウェーデン、心筋梗塞既往男性92例)、The Bezafibrate Infarction Prevention (BIP) Study (1999年、イスラエル、対象はCAD 3,122例)などが報告されている。これら大規模疫学調査や介入試験の結果、高 TG 血症は動脈硬化危険因子として確率しつつある。しかし、高コレステロール血症に比較すると、その研究の進展の遅れは明らかである。

高コレステロール血症に比較して、高 TG 血症の動脈硬化危険因子としての研究が遅延した原因は、その多様性にあると考えられる。高 TG 血症を生じるリポ蛋白としては、カイロシン、VLDL、レムナントリポ蛋白などのいわゆる TG リッチリポ蛋白であるが、高 TG 血症例のリポ蛋白構成は症例の病態により非常に異なる。また、高 TG 血症の動脈硬化進展メカニズムに関連する要因は、高レムナント血症、低 HDL コレステロール血症、Small Dense LDL、血液凝固活性異常、インスリン抵抗性など非常に多様である。

本シンポジウムでは、高 TG 血症に関連するこれら要因を分析することにより、高 TG 血症の動脈硬化進展メカニズムを検討する。

1. 高レムナントトリボタンク血症のモデル動物

東京大学糖尿病代謝内科 島野 仁

高血圧性脂肪血症と動脈硬化症の関連においてレムナントトリボタンク血症が最近注目されている。高レムナント血症は糖尿病に随伴しやすく、また食事療法によく反応することが知られている。これはレムナントが単なるdyslipidemia とみなすよりも糖脂質代謝異常として捉える必要性を示唆する。従って糖の取り込みに応じた肝臓で脂肪酸合成の変動がレムナントのレベルにおよぶ影響を検討することは興味深い。今まで高レムナント血症はその血中生成過程からLPLの活性との関連で議論されてきた。しかし、動物実験ではこのレムナントが主にLPLレセプターを介してとり込まれていることを実証されている。我々は脂肪酸、中性脂肪の肝臓での合成が転写因子SREBPにより支配されていることを示してきた。するとSREBP-1aの肝脂質発見トランスジェニックマウスは肝臓での脂肪酸、コレステロール合成が明らかに増加し、著しい脂肪肝を形成したが、興味深いことに低脂血症を呈した。このメカニズムを解析するためこのTgSREBP-1aをレムナントノックアウトマウスと交配すると今度はレムナントの著増を伴う著しい高脂血症を呈し動脈硬化症をきたした。この結果は肝臓での脂質合成の増加はレムナントの合成、分泌を誘導するが、血中レベルは処理の機構をとくにレムナントレセプターに大きく依存することを示唆する。一連の検討から結論されること、TgSREBP-1aの肝臓における脂質の合成が増加すると粒の大小なリポバッケが形成される。通常この粒はアポEの増加を伴い、LPLレセプターなどを介して効率よく血中から処理されていく、しかしLDLRKOのように血中の取り込みに遅延が生じるとLPLの停滞のみならず、LPLの処理の減量を超えてレムナント粒子の停滞を起こし、III型の高脂血症をきたす。このようにレムナントの血中代謝を考える場合、lipolysis と receptor作用は協調しており、肝臓での脂質合成増加は高レムナント血症の誘発因子になると推測される。

そこで我々はこの仮説を中性脂肪のみの視点で検証するためにII型糖尿病のモデル動物である肝臓の中性脂肪合成が増加しているOb/Obマウスを着目してレムナント血症に関する検討を行っている。Ob/ObLDRKOのダブルKOマウスは高脂血症をきたしているように現在詳細を検討中である。肝臓の中性脂肪合成増加と高レムナント血症の関連、さらにdiabetic lipemiaのメカニズムを検討する上での格好のモデルとなることを期待している。
2. 低 HDLコレステロール血症

多くの疫学調査の結果から、低 HDLコレステロール血症は冠動脈疾患などの動脈硬化性疾患の独立した危険因子であることは広く認められている。また、Tangier病などの遺伝性 HDL欠損症や Familial hypoalphalipoproteinemiaの家系では、早発性の動脈硬化の頻度が高かった。このような遺伝性的低 HDLコレステロール血症以外にも、諸疾患や各種の高脂血症に伴って低 HDLコレステロール血症が観察される。特に、高トリグリセリド血症はしばしば低 HDLコレステロール血症を合併することが知られている。糖尿病患者において低 HDL-C血症と血清トリグリセリド値との関連性を示す多くの報告があるが、血清トリグリセリド値が 150mg/dlを超えると低 HDL-C血症を呈する患者の比率が急激に増加していた。

高トリグリセリド血症に伴う低 HDLコレステロール血症の成因は十分には明らかになっていない。トリグリセリドリッチリポ蛋白（VLDL）の代謝過程において、これらのリポ蛋白がリポ蛋白リバーゼによる変異を受ける。この変異の発現から HDLが生成されると考えられている。高トリグリセリド血症ではトリグリセリドリッチリポ蛋白の異化過程の障害により、HDLの生成障害を生じ、低 HDLコレステロール血症になると考えられる。

3. 動脈硬化危険因子としての Small Dense LDL:

LDLのピーグ粒子径が22.5mm未満であるsmall dense LDLは、LDLコレステロール（LDL-C）の量的増加を伴わなくても、動脈硬化形成性のトリグリセリド（TG）の代謝異常において生じる LDLの質的変化としてKraussらが報告している。当教室でも1993年より同様の電気泳動法にて測定を開始し、small dense LDLの頻度、冠動脈疾患及び血中脂質との関連、動脈硬化形成の機序、介入治療による効果などについての検討を行っている。

その結果、small dense LDLの出現頻度と年令、疾患との関連の検討では、8~12歳の小児で10%、40~50歳の検診受診者で18%、50~60歳の冠動脈疾患患者では37%と加齢とともに増加する傾向にあることが示された。血中脂質との関連では、small dense LDLを有する例ではnon-small dense LDLに比べて有意にTG値は高く、small dense LDL-Cには有意差を認めなかった。また測定したLDLのピーグ粒子径との関相関解析でも、TG値は有意に相関（r=−0.38）を示し、TG値は正の有意相関（r=0.42）を示したが、LDL-Cとは相関を認めなかった。一方、LDL粒子径の脂質成分によって、コレステロール、インスタッド脂質はLDL粒子径に有意な正相関を認めたが、TG値は有意な相関を認めなかった。

動脈硬化形成の機序の解明としては、穀との反応によるジエン生成開始時間（ラグタイム）によるLDLの被酸化性とLDLのピーグ粒子径との関連を検討した。その結果、LDL粒子径とラグタイムとの有意な相関（r=−32）を認めたsmall dense LDLの被酸化性の亢進が示された。さらに、small dense LDLを有する例に対するインスリン抵抗性改善剤であるtroglitazoneの効果を検討したところ、インスリン抵抗性の改善に対しても血中脂質では TGの低下とHDL-Cの増加を認め、LDLの粒子径も有意な増加を示した。脂質代謝の関連検討では、治療開始前に低値であったヘパリン静注後のリポ蛋白リバーゼ量が有意に増加し、こうした脂質の変化との強い関連を認めた。

以上small dense LDLについて、インスリン抵抗性におけるTG代謝異常との関連と、こうした状態における動脈硬化形成との関連を示した。今後はsmall dense LDLを生じる代謝を改善することによる動脈硬化の予防的效果についての検討が必要と思われる。
4. 動脈硬化危険因子としての高トリグリセリド血症
—血液凝固線溶系の異常—

杏林大学医学部高齢医学

大荷 淑生, 水川真二郎, 中島久夫子

秦 靖哉, 鳥羽 研二

動脈硬化性疾患の発症要因には、高コレステロール血症を中心とした脂質代謝異常とともに、血管壁に対する血小板の粘着凝集、血管内皮の傷害により発現する凝固因子の活性亢進ならびに血栓形成に対する生体の防御機能である線容能の低下といった血液凝固線溶系の不均衡が深く関与する。ヒトの生体内において、脂質成分の蓄積による血管壁の変化と血栓形成は単独ではなく、互いに関連をもち進行して進動硬化性疾患を発症する。

しかし、これまでこの両者を直接結びつける事実を臨床的に捉えることは困難であった。

このような状況に対して、脂質代謝異常のもう一つの柱である高トリグリセリド血症は、動脈硬化の成因を血栓形成という立場から解析することに手掛かりを与えた。すなわち、血液凝固線溶系を構成する凝固第 VII因子（F-VII）、第 X因子（F-X）、plasminogen activator inhibitor-1（PAI-1）は、血清トリグリセリドと比例して増加し、高トリグリセリド血症があると、固定は常に凝固能が亢進し、線容能が抑制され血栓形成傾向がすることに、強まった状態に置かれることがある。

高トリグリセリド血症を基盤とする動脈硬化性疾患では、脂質代謝異常をともなる動脈壁の変化にくわえて、血栓形成が強く働きイベントを発症する可能性が考えられる。

われわれは、1）慢性安定期にある冠動脈疾患および脳梗塞発症例、年齢、性を一致させた対照群と比較し、F-VII、F-X の活性に亢進がみられる、2）外因性凝固因子の中で最も血清トリグリセリドと強い相関をもつ F-VII の遺伝子多型（R353Q）は、F-VII そのものの活性だけでなく血清トリグリセリドのレベルにも関連性をもつ、3）糖負荷試験、脂肪負荷試験により、インスリンと血清トリグリセリドを短期に変化させても、凝固線溶系因子は大きく変動しないが、トリグリセリドが生体に長期に蓄積した状態、すなわち腹部 CT 検査で評価した内臓脂肪面積は、PAI-1 活性と相関をもつという事実を見た、これらの事実をもとに、動脈硬化の危険因子としての高トリグリセリド血症を血液凝固線溶系因子の観点からみる。

5. インスリン抵抗性と動脈硬化

日本医科大学第三内科 及川 眞一

【はじめに】

インスリン抵抗性と動脈硬化の関連性については GM Reaven の提唱した「Syndrome X」以来、多くの議論がなされている。これに先駆けて示された重井・松澤らの「内臓肥満」の病態は、まさにインスリン抵抗性症候群と動脈硬化の関連性の強さを指摘したものとして評価される。ここでは、インスリン抵抗性の臨床的な評価法を示し、これに関与する病態と高 TG 血症との関連性を示す。

【インスリン抵抗性の評価】

インスリン抵抗性は血中のインスリン濃度に見合ったグルコース代謝が認められない状態を指す。インスリン感度パ－ミナルモデル法といった方法によってインスリン濃度の推移と血糖値の推移を算出するグルコースの代謝量を検討してインスリンの感受性を評価するものである。近年 HOMA モデルといった考え方が示され、空腹時のインスリン濃度と血糖値から算出される指数によってインスリン抵抗性を評価する方法が示されている。

【インスリン抵抗性に関与する因子】

インスリン抵抗性を示す因子として糖尿病状態あるいは肥満といった病態があげられる。ここでは、非糖尿病状態・非肥満においてもインスリン抵抗性が存在しうる。特に高カイロミクロン血症では HOMA 指数が増大して、インスリン抵抗性が存在している可能性が考えられる。

【高 TG 血症と過酸化脂質】

動脈硬化では酸化 LDL がその原因リポ蛋白として注目されている。一方、高脂血症では過酸化脂質の増加が示唆されている。この過酸化脂質の存在するリポ蛋白は LDL のみならず、HDL や TG リッチリポ蛋白にも多く存在することが認められている。特にコレステロール負荷ウサギでは血中リポ蛋白組成の変化と過酸化脂質（フッソフチョリシルヒドロバーキサイド PCOOH）の増加が著明となり、粥状動脈硬化の出現に関与することが示され、これは酸化 LDL の出現のみで説明できず、TG リッチリポ蛋白中の PCOOH 増加も考慮されなければならない。

【まとめ】

インスリン抵抗性といった病態の背景に存在する様々な代謝変化は、臨床的な表現型として高 TG 血症に集約されることが考えられる。この病態では肥満状態が認められなくとも、インスリンに対する感受性が低下しており、いわば、fat-induced insulinresistance と表現される病態である。このような病態は、食事因子のみならず、原発性高脂血症においても認められる可能性が考えられることから、インスリン抵抗性の改善のターゲットとして、高 TG 血症を考慮することが必要であろう。
シンポジウム 3

動脈硬化の分子病態

座長：渡邊 照男（筑波大学基礎医学系病理学）
下門顕太郎（東京医科歯科大学大学院血流制御内科学）

はじめに

リポ蛋白代謝の分子生物学やresponse to injury hypothesisを代表とする血管生物学の華々しい成果が出そろい、動脈硬化発症メカニズムをめぐる研究は急速に円熟を迎えようとしているように思われます。これらの研究は遺伝子治療をはじめとする新しい動脈硬化治療法の開発として結果しつつあります。他方動脈硬化研究の新たなパラダイムを探る動きも盛んです。本シンポジウムは、血管細胞に関する研究の最前線にいる6人に先生の研究を拝聴することで、参加者全員に次世代の動脈硬化研究の芽吹きを感じ取っていただくことを目的に企画しました。

1. 高脂血症に伴う血管緊張異常の細胞内情報伝達メカニズム：スフィンゴ脳脂とRhoキナーゼ（RK）の役割

山口大学医学部生理学第一講座 小林 誠

高脂血症においては、血管イベントの発症頻度が増加することが知られている。一方、高血圧症や血管軟化などの血管緊張異常の病態として、血管平滑筋のCa²⁺非依存性収縮（[Ca²⁺]i増加の程度だけでは説明できない異常収縮）が注目されている。しかしながら、このCa²⁺非依存性収縮と血中コレステロール（Chol）濃度との関係は、不明である。我々は、ヒトおよび動物（正常および高Chol血症）の血管標本におけるCa²⁺非依存性収縮と血中Chol濃度の関係、およびその原因となる細胞内情報伝達機構を検索した。

Rhoキナーゼ（RK）の酵素活性領域のリコンピーナ

ト蛋白（活性型RK）は、Ca²⁺が非依存下でも、トリトント×100（TX）によるスフィンゴ脳脂を収縮させ、ミオシン軽鎖をリン酸化させた。スフィンゴ脳脂の一つであるスフィンゴシルフォスフォリルコリン（SPC）は、[Ca²⁺]i一定で、かつG蛋白の活性化に必要なGTPが無い条件下下でも、αトキシンやβ⁺エッシンによるスフィンゴ脳脂を収縮させたが、TXによるスフィンゴ脳脂には無効であった。RK阻害薬は、SPCによる収縮をほぼ完全に阻害した。従って、SPCは、RKの上流にあって、Ca²⁺非依存性収縮を引き起こす新規の細胞内情報伝達因子である事が示唆された。一方、ヒトにおいては、正常Chol濃度(<220mg/dl)の患者さんから得た血管では、SPCによる収縮は、ほとんど認められなかったが、高脂血症(>220mg/dl)患者さんから得た血管では、急激に増加し、その収縮の大きさはChol濃度と強い相関を示したが、他の危険因子（喫煙、糖尿病）とは相関が低かった。高脂血症治療薬により、SPCによるCa²⁺非依存性収縮は抑制された。また、Chol负荷ウサギの血管においても、ヒト血管と同様な結果が得られた。さらに、高脂血症ウサギから得た血管をChol吸着剤であるβサイクロデキストリノンと作用させると、SPCによる収縮は消失した。

以上の結果より、SPC・RK情報伝達系は、ヒトの高Chol血症に合併する血管緊張異常の発症に重要な役割を果たしている可能性が示唆された。さらに、総Chol濃度を220mg/dl以下にコントロールすることは、プラーキングコントロールののみでなく血管緊張異常を予防する上でも有意義であるものと考えられた。
2. 核内レセプターPPARと血管変病

東京医科歯科大学医学部第三内科
小林 賢, 原口 剛, 田中 明
宮部 光章, 岸 幸夫, 沼野 藤夫

脂肪性シグナル分子は、細胞質あるいは核内に局在する受容体を介し、標的遺伝子の転写制御に働いている。この受容体は脂肪性リガンドの誘導により、脂肪性シグナル分子の細胞内における作用中心的な機能を司っている。この核内受容体は100種類あると考えられ、種々の疾患の原因遺伝子であることが判明した。また、最近、核内受容体に関する研究が進められている。さらに、核内受容体も知られており、再発学の面からも注目されている。

PPAR (peroxisome proliferator-activated receptor) は、この核内受容体に属するリガンド誘導性転写制御因子である。PPARα、δ、γの3つのサブタイプが知られている。このうちPPARαはフィブリル系薬剤やleukotriene B4 (LTB4) などがリガンドであり、サブクロリジン誘導体や15-deoxy-D prostaglandin J2 はPPARγに対するリガンドとして知られている。内因性のリガンドであるLTB4に対してはPPARαと異なり、リガンド結合性受容体が存在し、白血球遊走などの炎症惹起に働くことが知られている。このように同じ脂肪性リガンドが細胞膜と核内双方に受容体を持つというdualreceptor仮説が近年提唱され注目を浴びている。

これまでPPARαは肝で発現していることが知られ、またフィブリル系薬剤のターゲットであり、リガンド誘導性にApo-A-Ⅱ遺伝子、LPL遺伝子の活性化、ApoC-Ⅲ遺伝子の抑制を通じ到脂代謝の改善に働く。一方、PPARγは脂肪細胞で発現している。転写因子C/EBPとともに脂肪細胞の分化に重要な働きをしている。チアゾリジン誘導体は小型の脂肪細胞数を増加させることが知られ、インスリン抵抗性を改善させることが期待されている。

最近、これらのPPARが血管壁構成細胞においても発現していることが報告され、種々の血管変病の進行に関わっている可能性が明らかになってきた。PPARαは主として血管平滑筋で発現しており、またPPARγは単球、マクロファージ系細胞で発現していることがわかった。こうしたPPAR因子が血管壁において炎症の制御や新病態制御の目標になる可能性が期待されている。

3. PPARγを介するマクロファージの活性化と分化の分子機構

群馬大学第二内科 倉林 正彦

動脈硬化変病の形成におけるマクロファージの役割はきわめて大きい。循環している単球が内皮細胞に接着したのち皮細胞間をとおって内皮下組織に侵入し、マクロファージに分化する。この過程でマクロファージはTNFα, IL-1βなどの炎症性サイトカインの他、スケルトン受容体 (SR-A)や、リポ蛋白リージョー (LPL)など酸化LDLやトリグリセリドの代謝経路に関与する蛋白の発現を増加させる。こうしたマクロファージの活性化と分化形態の誘導は、粥状硬化変の発生と進展、およびプラックの脆弱化や破裂の機序として非常に重要である。最近、核内受容体に属するPPARγの活性化がマクロファージへの分化に中心的な役割をもつことが明らかにされてきた。われわれは、ヒト単球細胞株で、ホルモンエステルPMAによりマクロファージへの分化が可能なTHP-1細胞を用いて、マクロファージの活性化と分化の分子機構を解析している。オストエプチニン（OPN）は、マクロファージによって合成される主要な細胞外マトリックス蛋白で、粥状硬化の進行、血管壁の石灰化に機能する。THP-1細胞をPMAで刺激することによって、マクロファージの分化マーカーであるSR-AやLPLの発現が増加する。PPARγの合成リガンドであるトログルリタンの添加によって、OPNの発現増加はほぼ完全に消失した。この効果は他のPPARγリガンドであるPGJ2やインダメチカインでは同様に認められた。また、この抑制効果はヒストンアセチルトリフランスフェラゼ (HAT)活性をもつ転写ファクター p300/CBPの共発現によって消失した。プロモーター解析から、トリグリセリドの効果は、転訳開始点から900bp上流に存在するA/T-rich配列を介することが明らかとなった。この配列にはマクロファージに比較的に豊富に存在する核蛋白が結合した。この蛋白のDNA結合性は、PMA刺激やトリグリセリドによる分化誘導過程で変化しなかった。興味深いことにDNA結合はホメオドメイン蛋白の結合配列によって競合されるため、ホメオドメイン蛋白に属する可能性がある。今後この蛋白の同定によってマクロファージの活性化と分化の新たな機序を明らかにすると考えられる。
4. 不安定ブラークにおける血栓形成性とマクロファージの関与
ベンチからベッドサイドまで

福島県立医科大学第一内科
石橋 敏幸，新道 諒二，永田 兼司
中里 和彌，横山 恵子，阪本 貴之
丸山 幸夫

動脈硬化の発症と進展に単球・マクロファージが関与しているが、我々はそれらの機能亢進と活性化が動脈硬化進展の促進と抑制の両側面に影響すると考え、研究を進めてきた。しかし、急性冠症候群においては、単球・マクロファージはその病態形成を積極的に促進しているものと思われる。

我々は類粒球・マクロファージコロニ刺激因子（GM-CSF）が抗動脈硬化性に働くことを報告しているが（Shindo et al. Circulation 1999; 99: 2150）、WHHLウサギへのGM-CSF投与により動脈硬化の細胞外脂質沈着が減少し、同時にGM-CSFのマクロファージ活性化によりと思われる血管平滑筋細胞のアポトーシス増加と細胞外マトリックスの減少が見られ、それはプラック不安定性の病態に対し類似している。

急性冠症候群はプラック破綻による血栓形成により発症するが、プラックの不安定化プラック自体が血栓形成性を絶密に関連していると考えられている。血栓形成性の増加は凝固系亢進と線溶不全から成るが、急性冠症候群においてプラック内易血栓形成性を線溶不全の観点から検討したデータを紹介する。各種虚血性心疾患患者から得られたアテレクトミーサンプルを用いて、plasminogen activator inhibitor-1（PAI-1）発現およびapolipoprotein（a）の沈着を評価し、さらにそれらとマクロファージの関係についても検討した。PAI-1の発現は主に血管平滑筋細胞で見られ、apolipoprotein（a）の沈着はdense connective tissueを中心に認められた。急性冠症候群では安定狭心症に比べPAI-1発現とapolipoprotein（a）が増加し、それらはマクロファージ侵入の程度と関係していた。さらにin vitro培養系を用いて線溶不全を含めた血栓形成性の検証を試み、急性冠症候群プラック内易血栓性に対する治療戦略を検討した。特にスタチンの作用とそのメカニズムについて触れてもみたい。

5. 動脈硬化治療への新しいアプローチ

筑波大学基礎医学系免疫学
中内 啓光，堀 裕
金子 新，小野寺雅史

我々は種々の臓器に存在する自己複製性多能性を兼ね備えた幹細胞を標的とした遺伝子治療を目指し、基礎的な研究を行っている。

Apolipoprotein E（ApoE）はリポタンパク代謝の鍵を握る重要な調節因子である。

ApoEは主として肝臓で合成されるが、動脈硬化の抑制には骨髄由来である単球/マクロファージによって産生されるApoEが重要であることが示唆されている。事実、ヒトType III hyperlipoproteinemiaのモデルであるApoEノックアウト（KO）マウスに正常マウス骨髄細胞を移植することによって脂質代謝が改善され、動脈壁の動脈硬化の形成が抑制される。しかし、現行の骨髄移植はMHCのマッチしたドナーと放射線照射や化学療法による強力な前処置（myeloablation）の両方を必要とするから、必ずしも現実的な治療法とは言えない。アロの骨髄移植に替わる治療法としては、患者の造血幹細胞に正常ApoE遺伝子を導入してから自家移植を行う遺伝子治療が考えられる。

しかしながら現在用いられているレトロウイルスベクターで全ての造血幹細胞にApoE遺伝子を導入することは困難である。そこで、我々は正常細胞が末梢血中に何％存在すれば動脈硬化の抑制を見ることができるかを検討した。ApoEノックアウトマウスと正常マウス由来の骨髄細胞を種々の割合で致死量放射線照射したApoEノックアウトマウスに移植し、異なる血液メラニズムを持つマウスを多数作成した。血清コレステロールおよび大動脈における動脈硬化病変の程度を解析したところ、血清コレステロールの値は正常マウス造血幹細胞由来の細胞によるキメラムに反比例して低下することが明らかとなった。さらに、大動脈壁における動脈硬化病変は正常マウス由来の細胞が10%程度存在するだけでも有意に減少することが示され、部分血液メラニズムを作成目的としたアロ骨髄移植や、造血幹細胞を標的とした遺伝子治療が現実的な治療となりえることが強く示唆された。
6. 平滑筋細胞形質（分化・脱分化）を決定するシグナル伝達系と遺伝子発現制御

大阪大学大学院医学系研究科
生体統合医学専攻神経生化学研究室
西田 万, 林 謙一郎, 祖父江憲治

細胞の分化、なかでも後期分化は細胞特有の形態と機能発現を示す、平滑筋細胞は一旦分化を遂げた後も、種々の刺激により脱分化する（形質転換）可塑性を備えている。特に血管平滑筋細胞形質転換により増殖能と運動能を獲得した脱分化平滑筋細胞は、血管内腔狭帯（内膜肥厚）を来たし動脈硬化症に至る。これまで分化型平滑筋細胞培養系および平滑筋由来株細胞が確立されていなかったが、平滑筋細胞形質転換に関する分子機構の解析は進まなかった。われわれは、液性因子としてIGF-I、細胞外マトリックス因子としてラミニンを用いた分化型血管・内臓平滑筋細胞培養系を確立し、この培養系を用いて細胞内情報伝達系の解析を行った。その結果、平滑筋細胞分化はPI3キナーゼ（PI3K）/プロテインキナーゼB（PKB/Akt）系が必須であり、MEK/ERKと MKK6/p38MAPKの両MAPキナーゼ（MAPK）系の協調的活性化により脱分化誘導を来たすことを明らかにした。血管および内臓平滑筋細胞の形質は、PI3K/PKB（Akt）と両MAPKの力のバランスにより決定されることを解明した。また、平滑筋細胞形質に依存してアイソフォーム変換を示す平滑筋細胞分子マーカーはカルデスモンとα-トロポミオンであり、発現量変化を示す分子マーカーはカルデスモン・α1インテグリンにした。これをSRF/GATA6β-トロポミオンであることを明らかにした。そこで、平滑筋細胞形質転換に伴う遺伝子発現制御機構のうち上記細胞内シグナル伝達系の支配下で起こる転写調節について解析を行い、Nks3.2（ホメオボックス転写因子）・SRF・GATA6（GATA転写因子）による血管平滑筋細胞特異的転写制御の存在を明らかにした。
シノポジウム4

血管内皮細胞の血栓制御機能とAtherogenesis

座長：池田 康夫 (慶應義塾大学内科学)
加藤 久雄 (国立循環器病センター研究所)

1. 血管内皮細胞の機能障害と小胞体ストレス

国立循環器病センター研究所

小亀 浩市, 宮田 敏行, 加藤 久雄

血管壁を覆う内皮細胞は常に血液に接しており、血液の流動性維持をはじめとする様々な大役を演じている。したがって、血栓の形成や動脈硬化の発症・進展において、血管内皮細胞の機能変化が及ぼす影響は大きい。

血管障害危険因子の一つとして、高ホモシンテイン血症が知られている。ホモシンテインは、メチオニンの代謝中間物である、ず多々の疫学的研究によって、ホモシンテインの血中濃度上昇が血栓傾向を招くという事実が明らかにされてきた。しかしながら、なぜ血中ホモシンテイン濃度が高くなると血栓が形成されやすいのか？そのメカニズムの追求には多くの研究者が携わってきたが、未だ結論が得られていない。

私達は、血管内皮細胞の遺伝子発現に及ぼすホモシンテインの影響を調べた。その結果、小胞体ストレス応答性遺伝子群の発現調節が見出された。小胞体は、蛋白質の合成・高次構造形成・分泌、細胞内カルセリウムイオン濃度の調節、脂質合成などを担うオルガナである。立体構造不全蛋白質の過剰蓄積やカルシウムイオン恒常性の破綻などで小胞体の機能が過負荷になった状態を小胞体ストレスと呼ぶ。したがって、ホモシンテインに由来する小胞体ストレス応答性遺伝子の発現上昇が見られたことは、細胞の小胞体機能が障害されていることを意味する。過去の研究から、内皮細胞の抗血栓性機能を担うトロンボポリシェリンの細胞表面発現がホモシンテインによって阻害されていることが報告されている。このことから、小胞体ストレスによって高度な高次構造をもつ蛋白質の機能障害が起こっていると理解され、ホモシンテイン側鎖に存在するSH基の還元力が小胞体内における蛋白質のジスルフィド形成を阻害しているのではないかと考えられる。

近年、細胞の小胞体ストレス応答機構に関する研究が急速に進んでいる。小胞体の機能障害あるいは過負荷状態を認識するセカーパイ蛋白質が小胞体に存在し、ここから発生されたシグナルが核へ伝達される。これでは、私達が見出した新規小胞体ストレス応答性遺伝子の解析成果も含め、小胞体ストレス応答機構の概要を紹介する。

ごく最近、早期発症型家族性アルツハイマー病の原因遺伝子プレドニリオン1の異常が小胞体ストレス応答を阻害し、細胞のストレス耐性能を抑制することを報告された。今後、小胞体ストレスと種々の病態との関連が明らかになり、その重要性が増していくであろう。

2. 血管内皮によるvonWillebrandfactor依存性血小板血栓の制御

東海大学医学部循環器内科 後藤 信哉

動脈硬化の進行には白血球の血管壁への浸潤が必須の役割を果たす。高い壁ずり応力を発現した冠血管壁は、白血球が直接浸潤するに適した環境ではない。白血球の浸潤を可能とする条件、すなわち、血流のうつ滝による低ずり領域を作り出す成分の関与が必要である。われわれは、血流に抗して血管壁に粘着し、下流に所定の低ずり領域を作ることができる血小板の役割に着目した。血小板は活性化されると、白血球と結合する蛋白であるP-selectinを表面に発現することにより血管壁への白血球の浸潤に関与することができる。血管内皮細胞を剥離させ、内皮下成分を曝露させると曝露した血管内皮下組織上に血小板血栓が形成されることは広く知られる。Flow chamberを用いて、損傷血管壁で血流に曝露される成分であるコラーゲンを固相化したガラス板上に血液を流したところ、コラーゲン上に血小板血栓が形成された。各種モノクローナ抗体を用いて血栓の形成機序を検討したところ、血流下でコラーゲン上に血栓の形成されるためにvonWillebrand因子(vWF)と血小板膜糖蛋白GP Ibα、GP Iib/IIaの相互作用が必要であった。白血球は、血流下では、直接コラーゲンと結合しなかった。コラーゲン上に血小板血栓が形成されると、低ずり速度下で血小板上に結合した。白血球の血小板への結合にはP-selectinとともにインテグリン系の蛋白が関与していた。血管内皮細胞が、このvWF依存性の血栓に与える影響について検討するために、血管内皮細胞で産生されるNOの効果を検討した。化学的なNOの供与体としてNOC-7を用いた。NOC-7を中性の環境に曝露した直後、すなわち大量のNOが発生していると想定される時点では、NOC-7によりvWF依存性血栓の形成が抑制された。一方、NOC-7を中性の環境に曝露して2時間経過した後、すなわちNOの放出が終了した時点で同じNOC-7は、vWF依存性の血栓形成に影響を与えない。血管内皮細胞は、血流成分と血管内皮下の血栓形成成分との接触を抑制するパリアーとして働くとともに、抗血栓物質としてのNOを局所放出する細胞として、血栓形成を制御し、動脈硬化の発症と進展の抑制に一定の役割を果たす。
3. 血小板と血管内皮細胞

東京医科歯科大学第三内科 岸 幸夫

1. 血管内皮細胞の抗血小板作用
血管内皮細胞の抗血小板作用を担う機構として明らかにされているのはプロスタサイクリン、一酸化窒素 (NO) の産生・遊離、それに内皮細胞膜上に発現されている ATPDase (ecto-ADPase) の ADP 分解作用である。このうち、プロスタサイクリンと NO はそれぞれ cAMP および cGMP をシグナル伝達物質として作用を発揮する。その抗血小板作用は血管壁の cAMP, cGMP 分解活性 (PDE 活性) に依存する。血小板の PDE 活性は主として cGMP を特異的に分解する PDE5 と、cAMP, cGMP ともに分解する PDE3 の 2 種の isozyme からなり、これらの isozyme を阻害する薬物の存在下では内皮細胞の血小板凝集抑制作用は著明に増強する。

2. Anoxia-reoxygenation (AR) による内皮細胞傷害
内皮細胞存在下でコラーゲンによる血小板凝集能を検討すると、AR により傷害された内皮細胞の抗血小板作用の微弱が観察される。この機構の少なくとも一部は ATPDase 活性の低下が関与している。血小板の α 顆粒に含まれる TGF-β で前処置したり、内皮細胞をプレコンディショニングしておくと、内皮細胞の eNOS 活性の亢進と NO 遊離の増加が認められ、AR による内皮細胞の抗血小板機能の低下は部分的に回復する。

3. 血小板の NO 受感性
内皮細胞の血小板への作用に影響を与える因子として血小板側の感受性も問題になる。血小板の NO 受感性を NO donor を用いて、血小板凝集抑制能および細胞内 cGMP で評価すると、性差、年齢差、日内変動が認められる。また急激な運動により、血小板の刺激物質に対する感受性は著しく亢進し、血小板の NO 感受性は低下する。この機序として運動に伴う機械的なストレスとエピネフリンの増加が関与している一方、運動選手の血小板は強調に比して血小板内 cGMP の基礎値は増加しており、NO donor に対する感受性が高いため、また急激な運動による NO 受感性の変異を認められない。なお、演者らは内膜変動にもリスケフターによる修復が認められる初回蛋白密度の最近見出している。

4. まとめ
内皮細胞は常態ではプロスタサイクリン、NO 分泌等の作用により血小板活性化を防いでいるが、加齢や、リスケフターの存在、急激な運動等のストレスを受けると、血小板内皮細胞相関係はダイナミックに変化し、心血管事故の発症につながっていくものと思われるのである。

4. 凝固線溶と動脈硬化に関する臨床疫学的研究
Tissue Factor Pathway Inhibitor (TFPI) と動脈硬化

国立循環器病センター動脈硬化薬物内科、心臓血管内科
都島 基夫、京谷 晋吾

【目的】動脈硬化的進展過程では LDL などが血管壁内へ侵入、マクロファージへコレステロール (C) 累積、HDL の C の抜き取り、CETP によるリポ蛋白間の C とトリグリセリド (TG) との交換などのコレステロールの血管壁循環機構が働く、循環のバランスが崩れると泡沬細胞が形成され粥状硬化にいたる。血管壁を守る血管内皮細胞が傷害されると、血栓形成、血管拡張、平滑筋細胞の増殖、LDL の侵入累積が進み、一方同時に血管を防御する抗血栓反応が、今回血栓制御機構のひとつ TFPI と atherogenesis との関係を臨床疫学的に検討した。

【方法および対象】凝固線溶系溶系マーカー -PA, PAI-1, fibrinogen, ATIII, TFPI, plasminogen や血小板凝集能、LPL, CETP を含む脂質マーカー、血管内皮傷害に関与する homocysteine, cramydiaN など

【結果】(1) 一般農漁村住民 257 人 (57 歳) と、(2) 国立循環器病センター薬物内科を受診した 163 人 (60.1 歳)。【結果】(1) 住民では freeTFPI 値は男 19.9±8.8, 女 18.4±7.5 ng/ml で、リピ蛋白結合型 (Lp-) TFPI 値は男 66.0±19.3, 女 58.0±18.8 ng/ml であった。両者とも TG, TC と正相関、HDL-C とは freeTFPI は逆相関、Lp-TFPI は正相関を示し、freeTFPI は IMT と正相関 (p=0.0077) をみた。【注意】(2) 症状群では freeTFPI 値は男 26.5±8.6, 女 24.0±18.1 ng/ml, Lp-TFPI 値は 男 44.9±17.6, 女 44.0±11.8 ng/ml で freeTFPI が住民より高く、動脈硬化に関与することが示唆された。freeTFPI は PT, t-PA, 凝固 VII 因子、proteinC, plasminogen, ICAM-1 と正、APT, CETP と逆相関があった。freeTFPI は ACWC と相関なく、脳梗塞、拡張性狭心症、高血圧、喫煙者で高値傾向を示した。なお、VCAM-1, ICAM-1 とは wVF, homocysteine と正、plasmonogen と ATIII と逆相関を示し、因果関係を含め今後の検討が必要である。【結論】外因系凝固反応を制御する内皮由来の freeTFPI は inhibitor の侵害に反応して上昇する可能性が示唆された。
血管疾患の遺伝子治療

座　長：荻原　俊男（大阪大学大学院医学系研究科加齢医学

発表） 光章（東京医科歯科大学第三内科）

1. 血管新生を利用した末梢動脈疾患・虚血性心疾患の
遺伝子治療

帝京大学内科　竹下　聡

下肢閉塞性動脈硬化症に対する血管新生療法は、循環器領域における初の遺伝子治療として、1994年来国
のIsnerにより開始された。Isnerは血管内皮細胞に特異的
な増殖因子である VEGF_{165} のプラスミドを、PTCA 用
のバルーンカテーテルにコーティングし、血管新生への
経皮的遺伝子導入を試みた。しかしながら、このような
カテーテルを用いた遺伝子導入法は、高度狭帯血管にお
いてはその実施がしばしば困難で、後に虚血筋へのプラ
スミド注入の手法も試みるに至った。VEGF 遺
伝子導入法は、大動脈細胞で VEGF 蛋白を分泌させる
ことにより血管新生を促進するという訳である。筋注
という遺伝子導入法の単純化は、これまで技術的に遺伝
子導入が困難であった症例にも遺伝子治療を可能とし、
対象患者の拡大という副産物を産むこととなった。

閉塞性動脈硬化症に対する VEGF_{165} を用いた遺伝子
治療の安全性と有効性が確認されるに至り、その適応は
虚血性心疾患（狭心症）にも拡大された。当初は全身麻
酔下で背中の小切開からプラスミドを心筋内へと注入
していたが、現在では NOGA と呼ばれる心筋マッシン
グのシステムを用いた経皮的遺伝子導入が行われてい
る。

VEGF プラスミドを用いた遺伝子治療が開始されて既
に 6年が経過した。この間、パラグムの理由から、
VEGF_{165} プラスミドから VEGF-2 プラスミドへと使用
遺伝子が変更され、臨床試験の形態も、照準群患者を加
えた placebo-controlled study へと変わりつつある。治療
を受けた患者数は約 100人を超えるため、これまでのとこ
ろ重大な合併症の報告はない。虚血性心疾患に対する遺
伝子治療は、遺伝子導入法の単純化、閉塞性動脈硬化症か
ら狭心症への適応拡大、臨床試験の多数施設無作為化な
ど、着実な進歩を遂げている。我が国においても HGF を
用いた遺伝子治療の計画が進められており、その将来が
期待される。

2. 移植後動脈硬化に対する遺伝子治療

東京医科歯科大学医学部循環器内科　礦野　光章

大阪大学大学院医学系研究科遺伝子治療学

金田　安史　森下　竜一

信州大学医学部第 1 内科　鈴木　淳一

信州大学医学部第 2 外科　天野　純

東京大学医学部心臓外科　川内　基裕

【目的】慢性抵抗と呼ばれる冠動脈硬化は現在心臓移植
後の最著的な合併症であり、有効な治療法は知られて
いない。我々は急性・慢性抵抗の遺伝子治療法を開発し、
マウスの実験系で検討してきた。仮性抵抗遺伝子の
発現とアテンドでリショール遺伝子導入による慢性抵抗予防効
果について報告した。それによれば、c-kit チュノに対する
アテンド遺伝子の導入により、冠動脈硬化を抑制さ
れており、慢性抵抗に遺伝子治験が有効である。今回
より長期的な効果が得られる遺伝子治験の標的として、
転写因子である E2F と NF-xB を着目して、デコイ遺
伝子による発現抑制が慢性および急性抵抗反応を抑制
する効果について、マウスとサルの心移植モデルを用い
て検討した。

【対象と方法】マウスおよびサルの異所性心移植は既報
の方法の通り、腹部血管への血管挿入を用いて行った。
マウスでは NF-xB デコイを、サルでは E2F デコイ遺
伝子を導入した。サルの異所性心移植はドナー細胞の不
規則および NF-xB を着目して、異所性心移植の標的として、
転写因子である E2F と NF-xB を着目して、デコイ遺
伝子による発現抑制が慢性および急性抵抗反応を抑制
する効果について、マウスとサルの心移植モデルを用い
て検討した。

【結果】マウス（major mismatch）：植え付の生着はコン
トロールで、平均 8 日に対し、NF-xB デコイ導入群では
平均 15 日と有意に延長した。マウス（minor mismatch）：
NF-xB デコイ遺伝子導入群では、新生不整の血管内腔占
拠率が 22±14% とコントロール群（53±12%）に比べて
減少した。血管壁における VCAM-I の発現も低下して
いた。サル：E2F デコイ導入により内腔占拠率は平均
18±10% とコントロールの 49±12% より有意に減少し
た。サルの肝臓、脳、腎、精巢のいずれもも HVJ の F 蛋
白は検出されなかった。

【考察】NF-xB デコイ、E2F デコイ遺伝子が慢性抵抗
の抑制に有効であることが示された。今後臨床応用に向け、長期の成績、大
動物における安全性の検討について研究を行う必要が
ある。
3. 動脈硬化の遺伝子治療：ヒト臨床研究に向けて

大阪大学大学院医学系研究科遺伝子治療学1, 加齢医学2
森下 龍一1, 萩原 俊男2

現在米国では循環器疾患において多くの遺伝子治療臨床研究が開始されている。閉塞性動脈硬化症やパーキンソン病を含む末梢性動脈疾患や心筋梗塞などの疾患は、有効な治療法はなく予後不良である。そこで、閉塞性動脈硬化症に対してまず血管内皮特異的増殖因子（VEGF）プラスマドの筋肉内投与による遺伝子治療が開始され、良好な成績が報告された。現在 VEGF 遺伝子による心筋梗塞治療も、良好な成績が明らかにされている。

我々は、VEGF に変わりうる血管新生因子として肝細胞増殖因子 HGF 遺伝子導入により、ラット及びウサギ下肢虚血モデルで血管新生と血流増加を明らかにした。興味深いことに、内因性血管壁 HGF は閉塞性動脈硬化症患者の血管では正常血管に比べ減少していることも明らかになった。これらのことより、HGF は閉塞性動脈硬化症患者において「補完療法」として側副血流を促進することが期待される。以上の結果に基づき、我々は大阪大学遺伝子治療臨床研究審査委員会、[HGF 遺伝子プラスミドを用いた末梢性血管疾患（慢性閉塞性動脈硬化症・パルガー病）の治療]に関する試験計画書を提出し、平成 11 年 11 月に承認を得た。現在、厚生・文部両省における審議を受けている。

また、末梢性血管疾患を含んで遺伝子治療の対象となる循環器疾患は血管拡張術後再狭窄である。再狭窄抑制のストラテジーとして、我々は細胞期進行を抑制する細胞周期調節による血管平滑筋細胞増殖抑制療法を提示し、転写因子を生体内で直接制御できるトリプトファン抗酸化薬（デイ）を考案した。そこで、転写因子 E2F に対するデイの有効性をラット頭動脈及びプタ冠動脈バルーン障害後再狭窄モデルで明らかにした。また、サルを用いた安全性試験も実施し、副作用が見られないこととも示し、大阪大学医学部倫理審査会より「血管拡張術後に再狭窄に対する E2F デイによる治療」に関する臨床研究の承認を得た。本講演では、ヒト遺伝子治療臨床研究に望んで我々の取り組みと問題点を述べたい。

4. 血栓症に対する遺伝子治療

九州大学医学部 上野 光

急性冠動脈症候群の直接の病因はプラクラク破綻などに伴う血栓症である。破綻やすいプラクラクの特徴として血栓の付着も指摘されている。PTCA 等のステント留置後、さらにバイパスグラフトの初期合併症も血栓である。傷害血管壁の抗血栓性を維持することは冠動脈イベントの発症予防のためにきわめて重要である。日常臨床において頻用されている抗血小板薬ではケトコラミン存在下ではその作用が不十分となり血栓が形成されてしまう。一方で塩の抗血小板・抗凝固薬を用いれば、常に出血のリスクを伴う。

インターベンション後、傷害部位が再度内皮細胞で覆われるまでの間、あるいは血栓形成傾向が沈静化するまでの間、傷害血管壁・抗血栓分子を遺伝子導入し発現させることができれば、全身の出血イベントを回避できるための遺伝子治療の可能性がある。

我々は事実上の凝固開始因子といわれる組織因子に対する生理性拮抗分子である TFPI (Tissue factor pathway inhibitor) 遺伝子を傷害血管壁に導入した。するとシアストレス下の血栓形成は完全に抑制された。この抑制は高濃度のケトコラミンの存在下でも有効であった。一方、全身の凝固系溶系には変動を与えず血小板機能もそのまま保たれていた。

血栓塊からは PDGF を初めとする様々な増殖因子が放出されること、トロンピン自体が強力な細胞増殖因子でもあることから、血栓は腫瘍性血管病変形成にも重要と考えられてきた。傷害を加えて 4 週間後の組織を観察すると、TFPI 遺伝子導入群では内膜肥厚は有意に抑制される。さらに TFPI 白蛋白と TFPI 遺伝子導入を併用すると、相加的な内膜肥厚抑制効果が得られた。蛋白製剤と遺伝子導入法の併用療法の有用性を示している。

抗血栓薬の遺伝子治療は戦略がとりやすく治療効果も検定しやすいため、実用化の可能性も十分あると考えられている。
5. 遺伝子治療への取組について

厚生省大臣官房厚生科学課研究企画官 中垣 俊郎

遺伝子治療は、新しい画期的な治療法となる可能性を有している。欧米では既に数千例の臨床研究が実施されるなど積極的な研究開発を実施しているところであり、最新の医療をより早く国民に提供する観点から、わが国においても積極的な取組が期待される。

このような観点から、平成5年以降、厚生科学研究費補助金によって遺伝子治療の基礎研究・臨床研究の推進を図ってきたところである。

同時に、遺伝子治療の臨床研究が科学的・倫理的に適正に実施され、国民からも受容されるよう、厚生省としては指針を策定し、各研究機関の自主審査に加え、厚生科学研究会における個別事前審査を実施しているところである。これらの枠組みについては、遺伝子治療の研究の進展とともに適宜見直すこととしており、本年2月には、対象疾患として、従来の「生命を脅かす疾患」に加えて、「閉塞性血栓血管炎その他の身体の機能を著しく損なう疾患」を告示したところである。

6. 血管疾患の遺伝子治療

University of Southern California
岩城 裕一

遺伝子治療に関しては、いまだ研究の段階にあると思われているふしがあるが、実際の治療を期待できるレベルまで到達したといっても過言ではない。

私たちの施設で行われているアデノ関連ウイルス (Adeno Associated Virus, AAV) を使った血友病 B および血友病 A の動物実験、および臨床試験について以下の点について発表する。

1) プロモーターの選択 (CMV vs EF1) による遺伝子の発現、凝固因子産生におよぼす影響
2) 投与ルートによる遺伝子の発現、凝固因子の産生におよぼす影響
3) インヒビターの産生について
1. Regulation and Function of Cox Isoenzymes

Center for Vascular Biology, Department of Physiology, University of Connecticut School of Medicine, Farmington, USA

Timothy Hla

The cyclooxygenase (Cox) isoenzymes Cox-1 and -2 catalyze the rate-limiting steps in the prostanoid biosynthesis cascade. The induction of Cox-2 gene by the inflammatory cytokine interleukin-1 (IL-1) involves activation of transcription and post-transcriptional stabilization of the mRNA. In contrast, anti-inflammatory glucocorticoids such as dexamethasone decrease the stability of the Cox-2 mRNA and thereby down-regulates the expression. Recently, we studied the exaggerated expression of Cox-2 in MDA mammary tumor cells. Serum-regulated Cox-2 expression occurs primarily by regulation of mRNA stability at the post-transcriptional level.

Dysregulation of mRNA stability of the Cox-2 gene may be involved in Cox-2 overexpression which occurs in a variety of proliferative conditions.

Overexpression of the Cox-2 enzyme is associated with enhanced angiogenesis, an important phenomenon in rheumatoid arthritis and solid tumor development. Cox enzymes regulate angiogenesis by a complex mechanism which requires prostanoid-dependent as well as independent functions. Secreted PGE2 interacts with EP receptors on rheumatoid synovial fibroblasts and induce the expression of the angiogenic factor VEGF. In addition, 15-deoxy-Δ9,12,14-PGJ2 which is a potent activator of the nuclear receptor PPARg induce endothelial cell apoptosis and inhibit angiogenesis. Moreover, Cox-2 expression is associated with cell growth arrest which occurs by a non-prostaglandin dependent signaling pathway.

These data suggest that overexpression of the Cox isoenzymes regulate chronic remodelling events such as angiogenesis in a complex manner and may be critical for the evolution of the chronic inflammatory disease phenotype.
2. 血管内皮における Fas リガンド発現の生理的意義及び\nその遺伝子治療への応用に関する検討

東京大学大学院医学系研究科循環器内科
佐藤 政隆、杉浦 清子
平田 慎信、永井 良之

血管内皮が、異常な白血球の浸潤を能動的に制御して\nいることが提唱されてきたがその詳細な機序は不明で\nあった。Fas リガンド (FasL) は細胞傷害性 T リンパ球\nで同定された death factor で、Fas 受容体を有する標的\n細胞にアポトーシスを誘導する。近年、FasL が「免疫特\n権（移植後拒絶を受けにくい）器官」に発現されており、\n浸潤してきた炎症細胞にアポトーシスを誘導すること\nで免疫反応を抑制する機序が示された。

我々は、血管内皮細胞に機能的 FasL が発現されてい\nることを初めて報告した。培養内皮細胞表面の FasL 発\n現は TNFα の投与により減少し、共培養した細胞に対\nする傷害性の低下を伴った。In vivo において TNFα の\n血管への局所投与は、内皮細胞における FasL の発現低\n下ならびに接着因子の発現亢進を促した。そして、この\nような内皮細胞の変化は単核球の中膜への著明な浸潤\nを伴った。ところが、FasL を発現するアデノウイルスベ\nクター (Ad-FasL) を用いて FasL を内皮細胞に恒常的\nに発現させたところ TNFα 演示後に接着因子は発現亢\n進しているものの内皮に付着した白血球はアポトーシス\nをおこし、細胞浸潤は著明に抑制された。以上の結果\nは血管内皮は通常 FasL を発現し、有害な炎症細胞の浸\n潤を選択的に誘導することで制御していることを示唆する。また、炎症際において内皮細胞は接着因子を誘導すると同時に FasL の発現を低下させることで、適切な細胞浸潤を促進していると考えられる。

さらに我々は、FasL のこのような機能を各種の動脈\n疾患の遺伝子治療へ応用することを検討している。心臓\n移植後動脈硬化症は慢性期の最大の死亡原因であり、炎\n症細胞の内皮下への浸潤とそれに引き続く求心性の新\n生内膜増殖を特徴とする。このグラフト動脈硬化症の治\n療法を検討するために、ラット頸動脈移植モデルを確\n立した。Ad-FasL を用いて移植グラフトの血管内皮に\nFasL を過剰発現させたところ、移植一週間後の T 細胞、\nマクロファージの浸潤が著明に抑制された。コンドロイ\nンのグラフトでは移植 4 週間、8 週間後に著明な新生内\n膜の形成を認めたが、Ad-FasL で前処置した血管グラフ\nトでは有意に抑制された。以上の結果は移植後動脈硬化\n症が宿主炎症細胞のグラフト血管内への浸潤を契機と\nすることを明らかにし、移植後動脈硬化症をはじめとする\n増悪性動脈疾患の治療手段として FasL を用いた遺伝\n子治療が有効であることを示す。

3. アネキシン II と血管内皮線溶活性

東京医科歯科大学難治疾患研究所 吉田 雅幸

正常の血管内皮細胞の表面においては、凝固系と線溶\n系のバランスにより “抗血栓性” が保たれているが、炎\n症や外傷などにより血管に傷害がおこると、ただちに血\n栓機構が作動し、凝固系反応が増強する。この凝固線溶系の\n調節は急性炎症や動脈硬化症などの\n血管内皮細胞を主接すると病態に重要な役割を果たし\nていることが近年明らかになり、分子生物学的アプローチ\nにより凝固線溶系諸因子の分子レベルでの解析もすす\nmている。血管内皮細胞においても、分子量 40,000 の分\n子がプラスミノゲン結合因子として報告され、その後\nアミノ酸配列の決定よりこの物質がアネキシン II で\nあることが同定された。アネキシン II とはカルシウム依存性\nリシン脂質結合蛋白質であるアネキシンファミリーの一\nつで、フォスフォリパーゼ A2 の調節や、細胞内カルシウ\nム輸送などに関与しているといわれているが、線溶機\n構への関与はこれまで知られていなかった。このシノポ\nジウムではアネキシン II の構造および血管内皮細胞で\nの線溶活性の賦活作用を解析し、凝固線溶反応の新しい\n制御因子としてのアネキシン II の役割について検討し\nたい。
4. 動脈硬化変性安定化のメカニズム

ハーバード大学医学部ブリガム・ウィメンズ病院循環器科
相川 奉範

【背景】マクロファージなどの炎症細胞に富み、細胞外基質に乏しい不安定な動脈硬化変性病の破綻と血栓形成は冠疾患イベントを惹起する。1990年代前半から脂質低下による冠疾患イベントの発症の低下が報告され、動脈硬化変性の機能的・質的変化（安定化）の概念が提唱されてきた。われわれはウサギ動脈硬化モデルを用いて、病変の不安定性や血栓形成に関与する因子に対する食事療法やHMG-CoA還元酵素阻害剤の作用を検討してきた。

【炎症細胞（マクロファージ）の減少】血管傷害および4ヶ月間の高コレステロール食投与により形成されたウサギ大動脈変性病には、ヒトの不安定な動脈硬化変性病同様、薄いfibrous cap下にマクロファージが集積し、細胞外基質分解酵素であるMMPの発現と活性が認められた。しかし、その後16ヶ月間の普通食投与による脂質低下によりマクロファージが減少し、MMPの発現と活性は低下し、血管の安定性を規定するコラーゲンの構成が増加し、ウサギ動脈硬化変性病には血栓形成を促進する組織因子の発現も認められたが、脂質低下によるマクロファージの減少は、その発現と活性も低下し、脂質低下下の細胞外基質分解酵素や血栓形成促進因子を変えマクロファージを減少させ、病変を安定化させると考えられる。

【平滑筋細胞形質の改善】動脈硬化変性の平滑筋細胞は低分化形質を有し、MMPや組織因子を発現する。脂質低下後の平滑筋細胞は中膜同様の分化した形質を示し、MMPや組織因子の発現も低下した。Fibrous capの平滑筋の再分化も病変安定化に寄与するとと思われる。

【酸化ストレス・細胞核活性化の改善】酸化ストレスは血管壁細胞を活性化する。活性化内皮細胞は細胞接着分子やケモカインを発現し、マクロファージに富む不安定な病変の形成を誘導する。脂質低下により病変の産生する酸化ストレスは減少し、細胞核活性化も改善し、動脈硬化変性のマクロファージの減少をひいては安定化に寄与することが示唆された。

【マクロファージ増殖抑制、活性低下】HMG-CoA還元酵素阻害剤は内因性高コレステロール血症モデルであるWHHLウサギの動脈硬化変性および培養細胞におけるマクロファージの増殖を抑制し、MMPや組織因子の発現や活性を低下させた。

【結語】動脈硬化変性の安定化には炎症細胞の集積、血管壁の脆弱化、血栓性亢進などに関与するさまざまな因子の改善が寄与すると考えられる。

5. 平滑筋細胞の分化・脱分化状態におけるシグナル伝達と転写調節機構

大阪大学大学院医学系研究科
生体統合医学専攻神経生化学 西田 亜

平滑筋細胞は生体内で横紋筋とは全く違った生理機能よりもよくは病態を呈する。動脈硬化変性病の終末から成熟を遂げて細胞増殖ももやおきさがりが、平滑筋細胞は外界の刺激に応じて分化段階からでも脱分化段階へと形質転換し増殖することにある。これが、動脈硬化変性における中膜平滑筋細胞の遊走・増殖および血管内腔狭隘の主要因であると考えられている。

このような平滑筋細胞は分化・脱分化形質への変換という可塑性を有しており、それぞれの形質がどのようなシグナル伝達もしくは転写調節機構により制御されているのが大変興味深い。我々は平滑筋細胞の形質転換機構を明らかにするため、現在シグナル伝達と遺伝子転写の二面から解析を行っている。

分化型平滑筋細胞を血清もしくはPDGFなどの細胞増殖因子で刺激すると、形態は線維芽細胞様に変化し、収縮能も失われる。これまで用いられてきた平滑筋細胞は、血清存在下で継代培養したものが殆どであり、分化形質の解析に用いることは不可能であった。このため、我々はまず平滑筋細胞の初期分化維持培養系を確立した、形態・収縮能・分子マーカーの3つを指標として分化維持条件の検索を行ったところ、細胞外基質としてラミン、液性因子としてIGF-1の2つを与えても血管管および血管平滑筋細胞とともに分化段階を維持できることは明らかになった。IGF-1シグナルの下流ではPI3キナーゼおよびプロテインキナーゼB（Akt）が活性化されており、PI3キナーゼの阻害剤である Wortmannin およびLY294002 を添加することでIGF-1存在下である平滑筋細胞は脱分化状態へ移行した。一方、同培養系を用いて脱分化状態におけるシグナル伝達機構を解析した結果、平滑筋細胞の形質転換を起こすには、MAPキナーゼ経路のうちERKおよびp38MAPKが同時に活性化される必要があることを明らかにした。我々は現在、これらのシグナル伝達解析の結果を踏まえて、血清中で最も強力な動脈硬化誘導因子の分離・同定作業を行っている。

次に、我々は平滑筋細胞特異的遺伝子の転写調節機構を明らかにするため、これまでカルテリオン、α1-インテグリン、SM22α、βトポモジン等遺伝子のプロモーター領域を解析してきた。この結果、興味深いことに全てのプロモーター領域にCARGポックスが存在し、SRF
(serum response factor)が同部位に結合することで転写の活性化が起こることが明らかになった。しかしながらSRFは全身で発現しているため単独では平滑筋組織特異的な転写調節を規定することはできない。我々はCarGボックス/ SRF相互作用の補助調節因子として、平滑筋組織で豊富に発現するホメオボックス遺伝子、Nkx-3.2のクローニングに成功した。フリップトット解析の結果、α1-インテグリン遺伝子のプロモーター領域にはCarGボックスの他、TA配列およびGATA配列に核蛋白質が結合することが明らかになった。そこでSRF、Nkx-3.2およびGATA-6を非筋細胞である10T1/2線維芽細胞に同時に強制発現するとα1-インテグリン遺伝子のプロモーター活性は著しく上昇した。以上より、平滑筋組織特異的な転写調節にはCarGボックス/ SRFがコア因子として働き、組織特異性はホメオボックス遺伝子およびGATAファミリーが規定していると考えられる。

6. 生体内遺伝子導入による血管壁細胞の機能制御：新規遺伝子導入ベクター（組換えセンダイウイルス）の血管壁に対する遺伝子導入特性

九州大学大学院病理学部
居石 秋夫、満 晃、吉崎 一郎
DNAVEC研究所 福村 正之、長谷川 護
国立感染症研究所 加藤 篤、永井 美之

成熟個体における特定遺伝子の過剰発現が病変形成や疾患発生にどのように関わっているかを解析する目的のためには、生体内遺伝子導入技術は重要な研究手段である。さらにこの技術の進歩そのものは、疾患の遺伝子治療に直接応用が可能であるため、高い効率で目的の遺伝子を導入し、さらに安全性の高いベクターを構築することはこの分野の研究を進める上で重要な課題である。

血管壁に対する遺伝子導入ベクターとして、現在最も汎用されているのはアデノウイルスベクター（Ad）である。Adは高い遺伝子導入効率、発現効率を得られるため、これまでに様々な遺伝子が血管壁細胞へ導入され、多くの知見が報告されてきた。しかしけAdは高い抗原性、催炎症性があり、さらにAdのレセプターを介した効率のよい細胞内取り込みには30分以上の接触時間を要する。これは血管壁への遺伝子導入には長時間の血流遮断を要することを意味し、臨床応用へは編していない。以上の理由から実際の遺伝子治療への応用は成されていない。

我々はこれまで、ハイブリッドベクター系による血管壁への遺伝子導入により、血管内皮細胞増殖因子（VEGF）の過剰発現が血管腫模血管新生を伴った高度の内膜肥厚病を形成すること、ヒトサイトメガロウイルス前初期遺伝子（CMV-IE）の過剰発現が細胞線維性内膜肥厚を惹起すること、平滑筋細胞における癌抑制遺伝子p53の過剰発現が血管傷害後の内膜肥厚形成を強く阻害することなどを示してきた。しかしAdと比較して遺伝子発現レベルが劣るため、さらに広範な解析および遺伝子治療の臨床応用のためには、より強力かつ安全性の高いベクターが望まれる。

最近我々は、全く新しい組み換えウイルスベクターとしてセンダイウイルス（SfV）のベクター化に成功し、種々の臓器、細胞でAdを凌駕する遺伝子発現を得た。そこで、本ベクターを用いて培養細胞とヒト大陵在静脈壁に対する遺伝子導入効率を詳細に検討した。SfVの間立った特徴として、ヒト血管壁においてもわずか1～2分の細胞との接触時間でAdに匹敵する遺伝子導入、発現効率が達成可能であることが挙げられる。SfVはヒトに対する病原性が知られておらず、細胞質で転写が行われ宿主ゲノムと緩衝しないため、安全性も極めて高いことが予想される。

本シンポジウムでは組み換えSfVベクターの血管壁遺伝子導入ベクターとしての特性について示し、今後の病態解析、遺伝子治療への臨床応用の展望について述べる。
ワークショップ

動脈硬化リスクファクター管理基準設定に向けて

座　長：馬渕　宏（金沢大学第二内科）

板倉　広重（東京大学先端科学技術研究センター客員研究員）

1. JLIT＋KLIS；わが国の大規模試験

東京大学先端科学技術研究センター客員研究員　板倉　広重

2. 糖尿病患者における動脈硬化リスクファクターの管理基準策定に向けて

滋賀医科大学第三内科　柏木　厚典

糖尿病は冠動脈疾患 (CHD), 脳血管障害 (CVD), 末梢循環障害の強い危険因子であり, 非糖尿病者に比べて高頻度でそれら疾患を合併することから, 日本動脈硬化学会, 日本糖尿病学会合同委員会にてその管理基準に関する指針の策定に向けての取り組みがなされてきた。糖尿病患者の動脈硬化症発症予防については, 1) 血糖コントロール以外に, 2) 肥満度, 3) 血圧, 4) 血清コレステロール値, 5) 血清中性脂肪値, 6) 血清 HDL-C 値, 7) 禁煙の管理が重要であるが, 非糖尿病者と異なる管理基準を作成する必要があるかどうかが重要であった。昨年, 第 14 回日本糖尿病合併症学会シンポジウムにて, 我が国における糖尿病患者の動脈硬化危険因子の管理基準に関するシンポジウムが開かれた。久山町住民検診で 2427 名 8 年間追跡した成績が九州大学医学部第二内科清原裕先生から発表され, また 40 施設 1673 名の糖尿病患者の大血管障害発症に関する多施設共同研究(MSDM)の結果が国立循環器病センター原研優先生から発表された。久山町研究により, 糖尿病患者の各動脈硬化危険因子の各基準値は, 非糖尿病者に比べて低い値であった。血糖コントロールに関しては, 久山町研究では, HbA1c 5.5% - 6.4%, FPG 120 mg/dl からリスクの上昇が認められた。一方 MSDM の検討では, 大血管症 (+) 369 症例, (−) 467 症例での追跡結果 (MSDM)では, FPG 140 - 150 mg/dl 以上でリスクの上昇がみられた。また, フィンランドにて行われた 65 才以上の高齢 2 型糖尿病者の 3.5 年間の追跡調査にて CHD の発症率は, 調査前 HbA1c < 6.0%, 6.0 - 7.9%, 8.0% では々々 1%, 5%, 13% であった。HbA1c 値との関連は CVD, 末梢循環障害でも認められた。その他の危険因子の管理基準として, 久山町研究では BMI 23 kg/m², 収縮期血圧 130-139 mmHg, 血清コレステロール値 (TC) 220-229 mg/dl であったが, 中性脂肪, HDL-c の関値は明確でなかった。一方, MSDM では BMI 23 kg/m², 収縮期血圧 120-130 mmHg, 拡張期血圧 70-80 mmHg, HDL-C 40 mg/dl, TG 120 mg/dl が関値として提示され, 2 研究の対象は異なるが, きわめて近似した値で, 管理基準の設定に使用できることが示唆された。
3. 高血圧学会紹介

札幌医科大学第二内科 島本 和明

4. 高齢高脂血症ガイドライン

労働福祉事業団中国労災病院 江草 玄士
5. 職域における冠動脈疾患の発症と冠危険因子について

富士銀行大阪健康管理センター　広部 一彦

職域健康管理において、生活習慣病ともいわれる冠動脈疾患や脳卒中等の動脈硬化性疾患をいかに予防するかは、近年の大きなテーマの一つとなっている。中でも過労死や突然死のかなりを占めるといわれる冠動脈疾患の予防はきわめて重要な問題である。現代の労働者のライフスタイルである過食、飽食、運動不足、ストレス過多が冠危険因子としての高血圧、高脂血症、耐糖能障害の発症を増加させており、また減らない喫煙も重なった問題となっている。実際この 20 年間に 40、50 代男性の血清コレステロール値は平均で約 20 mg/dl 上昇し、耐糖能障害も増加している。高血圧に関しては昭和 30 年代より法定健診項目となり、脳卒中対策と相まって受診率が増加し一时減少傾向であったが、最近の企業や労働者を取り巻く環境の厳しさを反映して再度増加傾向にある。

高脂血症については 1988 年に総コレステロールとトリグリセライドが世界で初めて法定健診項目に指定されさらに昨年に HDL コレステロールが追加され農業の関も高めて高い。日本動脈硬化学会の新ガイドラインに対しては、高脂血症の診断基準についてはばら産業医の間でもコンセンサスが得られているものの、薬物療法適用基準に対しては主として医療経済的な面からコンセンサスの形成にはいたらずと多よりも見られる。

今回は全国多施設共同調査（サンエーテータ）による職域の心筋梗塞発症率と冠危険因子の役割についての調査報告と、種々の冠危険因子の頻度・受療率とその経年変化、高脂血症・高血圧・糖尿病に対する各種薬学アンケート調査結果について報告し、働き盛りの中生年男性職域における冠動脈疾患管理について考察を加えた。

6. ライフスタイルの改善による血清総コレステロール値の低下

滋賀医科大学福祉保健医学　上島 弘嗣

目的：今回、高コレステロール血症者を対象に実施した、生活習慣の改善による血清総コレステロール値の低下効果に関する、われわれの非作化化対照試験の成績について報告する。

研究(1)：「コレステロールを下げるための健康教育」保健同人（上島、岡山編著より）

事業所に勤務する 197 名の 220 mg/dl 以上の高コレステロール血症者を対象として、無作為化対照試験を実施した、介入群では 246 mg/dl あったものが、6 カ月後には 230 mg/dl まで低下し、対照群との差は約 8 mg/dl で有意であった。また、指導の基本として、脂肪の多い肉類と乳製品、コレステロールの多い食品を控え、魚介類を多く摂るように、また体重の減量を図るよう指導した。その結果、介入群の肉類摂取量と脂肪の多い肉類の摂取量は有意に対照群より少なくなった、魚肉比も介入群で高くなった。

研究(2)：「循環器疾患ハイリスク集団への生活習慣改善によるリスク低下のための介入研究班」(班長上島の報告書より)

高コレステロール血症者に対する無作為化対照試験を、多施設共同研究として高コレステロール血症群 559 名(男女比の平均年齢 49.6 歳)、対照群 563 名(49.2 歳)で実施した。ベースラインの血清総コレステロール値はそれぞれ 236 mg/dl であった。6 カ月後には、介入群 230.4 mg/dl、対照群 238.0 mg/dl となった。対照群との差は約 8 mg/dl であり、その差は有意であった。

まとめ

我々の高コレステロール血症者への生活習慣による介入試験では、対照群に比べて介入群は約 8 mg/dl 大きく低下した。その効果は 2 カ月目には現れ、指導を続けた 6 カ月後で最も大きな差となった。

体重減量と食生活の改善により、血清総コレステロール値の改善が可能であることを明らかにした。
7. LDLコレステロール測定法の問題点—直接法とFriedewald式による方法との比較およびIDLの影響

川崎医科大学 糖尿病内科 衛藤 雅昭

LDLコレステロール（LDL-C）は冠動脈疾患と密接に関連する指標である。1997年日本学会による高脂血症診療ガイドラインにおいても重用され、診断基準として高コレステロール血症はLDL-C値140mg/dl以上と定められた。さらに、高コレステロール血症患者の管理基準としてLDL-Cの治療目標値が定められた。

LDL-Cの測定法として超遠心法、Friedewald式による方法、直接法がある。LDL-C値の測定は本来、超遠心法によって比重1.019〜1.063の分画を分取し測定すべきであるが、特殊な遠心装置を要する。日数を要する、熟練した技術を要することから日常検査で行うには無理があり、Friedewald式による方法（LDL-C＝血中総コレステロール—血中トリグリセライド/5—HDL-C）が一般的に用いられてきた。前述の高脂血症診療ガイドラインにおいてもこの方法が推奨されている。しかし、Friedewald式は、血中トリグリセライド（TG）値400mg/dl以上では換算できない、IDL（比重1.006〜1.019）を含む換算している。IDL主体のIII型高脂血症では換算できないという問題がある。最近、血中TG値に影響されないとされるLDL-Cの直接測定法が普及しつつある。現在4社の直接法キットがあるが、IDLをどのくらい測り込むかによって差異が生じることが報告されている。そこで、同一検体のLDL-CをFriedewald式および、また4社の直接法キットおよび超遠心法によって同時測定し、以下の結果を得た。正脂血症、IIa型高脂血症においてはどの方法によってもほぼ近似した値を得ることができた。IIb型、IV型高脂血症においては血中TG値が300mg/dl代後半からFriedewald式による値が低値をとった。血中TG値がそれ以下でもIDL-Cが高値の場合、Friedewald式による方法と直接法との間に、また4社の直接法の間に差異が生じた。III型高脂血症において4社の直接法の間に大きな差異が生じたが、超遠心法による値と近似するものであった。V型高脂血症において、ある直接法では測定不能のものもあったが、その他の差は超遠心法と近似した。

LDL-Cの直接測定法は概ね有用と考えられるが、IDLをどのくらい測り込むかによって差異が生じており、IDLを含まない狭義のLDLを測定すべきか、Friedewald式と同じようにIDLを含む広義のLDLを測定すべきか、議論すべきである。動脈硬化の危険因子の意義をIDL、LDLを区別して正確に解明していくという意味では前者が望ましいと考える。

（共同研究者：三井田孝、佐々木弘子、斉藤美恵子、加来浩平）
New Aspects in the Initiation of Atherosclerosis

座 長：永井 良三（東京大学大学院医学系研究科循環器内科）

1. 動脈硬化における白血球接着現象とその制御

東京医科歯科大学難治疾患研究所分子遺伝
吉田 雅幸

粥状動脈硬化症においてはその初期から、T リンバ球やマクロファージのような炎症性細胞の集髄が認められ、動脈硬化症の発生及び進展に炎症反応が重要な役割を果たしていることが分かってきた。この炎症性細胞の血管壁への集髄には、セレクチン、ICAM-1、VCAM-1などの接着分子そのリガンドとの結合が重要であることが指摘されている。最近、高機能遺伝子導入法の開発や、生体血管内に類似した流速存在下での接着分子機能解析方法の確立によって、各種接着分子の白血球接着現象における役割が徐々に明らかになり、接着因子とケモカインとの双方による接着現象の制御メカニズムも解明されつつある。また、コレステロール低下作用と独立した抗動脈硬化作用が最近注目されている HMGC CoA 還元酵素阻害剤（スタチン）が、接着分子発現の抑制や RhoGTPase 及びアクチン細胞骨格に作用し、生理定期条件下での単球の血管内皮細胞への接着を抑制するということが明らかになってきた。動脈硬化症初期に想定される高脂血症を背景とした単球一血管内皮の接着現象の制御という観点から興味ある結果である。

2. Regulation of Cyclooxygenase Activity by Nitrogen Oxides

Department of Pathology and Center of Vascular Biology, Weill Medical College of Cornell University, New York
David P. Hajjar, Ruba S. Deeb and Rita K. Upmacis

ABSTRACT: Nitric oxide and its derivatives have been shown to both activate and inhibit prostaglandin H2 synthase-1 (PGHS-1) (also known as cyclooxygenase). We set out to determine the mechanisms by which different nitrogen oxide derivatives modulate PGHS-1 activity. To this end, we show that 3-morpholinosydnonimine hydrochloride (SIN-1), a compound capable of generating peroxynitrite, activates purified PGHS-1 and also stimulates PGE2 production in arterial smooth muscle cells in the presence of exogenous arachidonic acid. The effect of SIN-1 in smooth muscle cells was abrogated by superoxide/peroxynitrite inhibitors, which supports the hypothesis that peroxynitrite is an activating species of PGHS-1. Indeed, authentic peroxynitrite also induced PGE2 production in arachidonic acid-stimulated cells. In contrast, when cells were exposed to the nitric oxide-releasing compound, 1-hydroxy-2-oxo-3-(N-methyl-aminopropyl)-3-methyl-1-triazene (NOC-7), PGHS-1 enzyme activity was inhibited in the presence of exogenous arachidonic acid. The effect of SIN-1 in smooth muscle cells was abrogated by superoxide/peroxynitrite inhibitors, which supports the hypothesis that peroxynitrite is an activating species of PGHS-1. Indeed, authentic peroxynitrite also induced PGE2 production in arachidonic acid-stimulated cells. In contrast, when cells were exposed to the nitric oxide-releasing compound, 1-hydroxy-2-oxo-3-(N-methyl-aminopropyl)-3-methyl-1-triazene (NOC-7), PGHS-1 enzyme activity was inhibited in the presence of exogenous arachidonic acid. Finally, in lipid-loaded smooth muscle cells, we demonstrate that SIN-1 stimulates arachidonic acid-induced PGE2 production, albeit the extent of activation is reduced compared to normal conditions. These results indicate that formation of peroxynitrite is a key intermediary step in PGHS-1 activation. However, other forms of Nox inhibit PGHS-1. These results may have implications in the regulation of vascular function and tone in normal and atherosclerotic arteries.
The Pravastation Pooling Project (PRAVA III)

Revolution in medical practice has occurred based on the successful outcome of five major prevention trials using statins. The investigators in the pravastatin trials used similar designs, the same dose (40 mg) of the drug and comparable definitions for end points. As a result, a pooling project (PRAVA III) was launched before the findings of any single trial were known, to examine outcomes and subgroups, where it was predicted that a single trial would be underpowered to provide a conclusive answer.

PRAVA III has shown clear effects on coronary and total mortality in both primary and secondary prevention. Benefit of pravastatin treatment appears to be equivalent in men and women, middle aged and the elderly, in diabetics and non diabetics, and in smokers and non-smokers. Efficacy is independent of baseline HDL or plasma triglyceride levels but is influenced by starting LDL concentration. Those with high LDL receive a larger risk reduction than those with LDL <125 mg/dl. These findings have implications for future treatment strategies.
Regulation of HDL Metabolism by Fenofibrate Through PPARα

Hypoalphalipoproteinemia is the most common lipoprotein abnormality. Reduced plasma concentrations of HDL-cholesterol and apo A-I, the major HDL apolipoprotein, have been found to be major independent risk factors for coronary artery disease. Plasma HDL concentrations are determined by the interaction of environmental and genetic factors, but the major genetic factors are ill-defined. Our laboratory has been studying the transcriptional control of HDL metabolism and we have focussed on the role of specific transcription factors of the nuclear receptor gene superfamily therein. Nuclear receptors are ligand-activated transcription factors which after activation bind to regulatory regions in target genes thereby modulating their expression level. As such they integrate signals coming from the environment allowing the organism to adapt by changing the expression of specific target genes. We have identified the nuclear receptor PPARα as a transcriptional regulator of HDL metabolism in response to fenofibrate treatment. Our results demonstrate that fenofibrate via PPARα regulates the transcription of genes determining HDL levels, such as apo A-I and apo A-II. In addition, absence of PPARα expression profoundly perturbs HDL metabolism. Finally we have determined the human PPARα gene structure and identified several polymorphisms which are associated with altered serum lipid and apo A-I levels in type II diabetic patients. Altogether, these results identify PPARα as the nuclear receptor mediating the actions of fenofibrate on HDL metabolism. These data provide a molecular basis for the use of fenofibrate in the treatment of hypoalphalipoproteinemia and other disorders of lipid and lipoprotein metabolism.
Vascular Biology 研究の最前線

座　長：横山 光宏 (神戸大学第一内科)

1. 抗酸化作用と動脈硬化

鹿児島大学医学部第一内科 宮田 昌明

アポ蛋白 E (apoE) の分子多型のうち E4 を有する人は E2 を有する人に比べ、虚血性心疾患やアリツハイマー病になりやすく、また短命であるとの疫学報告があるが、その機序については不明な点が多い。一方、動脈硬化のモデルマウスであるアポEノックアウトマウス (E0マウス) において、そのアポ蛋白が酸化されやすいことが報告された。

そこで、我々は、apoE が分子多型特異的な抗酸化作用を有するという仮説をえた。酸化の測定法である化学発光法およびアポ蛋白 E のによる酸化のthiobarbituric acid reactive substances (TBARS) を測定する方法において apoE の各分子多型は、E2>E3>E4 の順に抗酸化作用を示しました。次に、リプロ蛋白の銅による酸化のconjugated diene (CD) 形成を流適的に測定する方法において、apoE は用量依存的に CD 形成の slope を緩徐にし抗酸化作用を示した。これは、銅を抑制したときの現象であり、apoE は銅イオンと結合しキレートしている可能性が示唆された。そこで、キレートカラムを用いて各種金属イオンと apoE との結合を検討した結果、apoE は銅や亜鉛と結合した。以上より、apoE は、in vitro の測定系で E2>E3>E4 の順に抗酸化作用を有し、その機序として apoE が鉄や銅や亜鉛の金属イオンと結合しキレートすることにより抗酸化作用を呈することが示唆された (Nature Genetics 1996; 14: 55-61)。

次に、キレート作用を有する抗酸化剤の抗動脈硬化作用を E0 マウスを用いて検討した。E0 マウスを生後 3 週齢で離乳し、同時に高脂食と抗酸化剤の投与を開始し、全 16 週齢で大動脈幹部の動脈硬化病変の定量解析を行った。抗酸化剤、ビタミン E アナログの Trolox (n=8) とキレート作用を有する Nitecapone (n=7) と Trientine (n=9) を使用した。その結果、全 16 週齢の体重、総コレステロールは、コントロール群と比べ、各抗酸化剤投与群間に有意差を認めなかった。動脈硬化病変面積に関しては、コントロール群は、Nitecapone 群は、42%の有意な抑制が認められ (p<0.005)、Trolox 群と Trientine 群は、それぞれ 26% と 18% の抑制傾向が認められた。

さらに、抗酸化作用を有する HMGCoA 還元酵素阻害剤である Fluvastatin の抗酸化作用機序と E0 マウスに対する抗動脈硬化作用についても、我々のデータを紹介する。

2. Regulation of Angiogenesis by EDG-1 Family of Sphingosine-1 Phosphate (SPP) Receptors

Center for Vascular Biology, Department of Physiology, University of Connecticut Health Center, Farmington, Connecticut, USA

Timothy Hla, Meng-Jer Lee, Nicolas Anellin, Catherine H. Liu and Shobha Thangada, Michael Kluk

Angiogenesis, also known as neovessel formation, is dysregulated in rheumatoid synovium and is thought to be critical for the invasive pannus formation and joint destruction. EDG-1, an immediate-early gene induced by angiogenic stimuli in endothelial cells, encodes a G-protein-coupled receptor (GPR) which couples to the Gi pathway (Hla and Maciag, 1990, JBC, 265, 9308-9313). Using an EDG-1 overexpressing HEK293 cells, we showed recently that the EDG-1 GPR binds to SPP with high affinity and induces MAP kinase activation, suppression of cAMP levels, induction of Rho-dependent P-cadherin formation and morphogenesis (Lee et al, Science, 1998, 279, 1552-1556). In addition, SPP binding to EDG-1 also induces receptor phosphorylation and internalization via the endosomal pathway (Liu et al, MBC, 1999, 10, 1179-1190). These data provide formal evidence that the bioactive lipid SPP interacts via the plasma membrane GPR EDG-1 to regulate intracellular signals which culminate in cell differentiation. Related receptors EDG-3, EDG-5 (also known as H218/AGR16) and EDG-8 also interact with SPP as high affinity receptors. However, EDG family of SPP receptors couple differentially to Gq/ phospholipase C pathway, suggesting that SPP receptor isotypes may mediate differential biological responses (Ancellin and Hla, JBC, 1999, 274, 18997-19002). Endothelial cells express high levels of EDG-1 and low levels of EDG-3 mRNAs whereas vascular smooth muscle cells express high levels of EDG-3 and -5. Activation of EDG-1 and -3 receptors on endothelial cells with SPP results in Gi/ MAP kinase/ cell survival pathway and the small GTPase Rho and Rac coupled adherens junction assembly (Lee et al, 1999, Cell, 99, 301-312). Indeed, SPP cooperated with polypeptide growth factors and induced mature neovessels in vivo suggesting that SPP/EDG receptor system is a novel regulator of angiogenesis.
ランチョンセミナー 5

動脈硬化進展抑制のアプローチと評価

座 長：堀 正二（大阪大学大学院医学系研究科病態情報内科学）

1. 頸動脈硬化病変の評価

大阪大学大学院医学系研究科病態情報内科学 松本 昌泰

2. 冠動脈硬化病変の評価：血管内超音波法による検討

国立循環器病センター内科心臓部門 山岸 正和
1. The atherogenic lipoprotein profile, a common lipid abnormality in CHD patients: pathophysiology, epidemiology and drug effect

Hadassah University Hospital, Jerusalem, Israel.
Eran Leitersdorf

The Atherogenic Lipoprotein Profile (ALP) is a common lipid abnormality in patients with coronary heart disease (CHD). It consists of an increase in triglyceride-rich lipoproteins, mild elevation of LDL cholesterol, reduced HDL cholesterol and most frequently post prandial lipemia. It is also found in patients with insulin resistance as part of the pleurimetabolic syndrome. HDL particles have been assigned a key role in the reverse cholesterol transport (RCT), a mechanism of removal of excess cholesterol from peripheral tissues. The recent characterization of ABC1 and SR-B1 shed more light on this important pathway. Interventions, which increase the production of apoprotein AI (the major HDL apoprotein) or increase RCT, may be associated with CHD prevention. Although the underlying mechanism for reduced HDL-C in CHD patients is poorly understood, epidemiological studies demonstrated that it is an independent CHD risk. It was of interest to find-out whether drugs, which increase HDL-C, cause a reduction in CHD events. The VA-HIT study showed that gemfibrozil increases HDL-C levels and reduces CHD events. In a series of event trials, statins (simvastatin, pravastatin and lovastatin) have been shown to reduce CHD events mainly through a reduction of LDL-C levels. More recently, several studies showed that statins also moderately increase HDL-C levels. Although the underlying mechanism is poorly understood, a recent turnover study implicated an increase in Apo AI production as a possible mechanism. The extent and the dose-dependent effect of statins on HDL-C has also been examined and a differential effect among members of this class has been demonstrated. It remains to be shown whether the latter translates into a parallel effect on CHD event rate.
Current Topics in Lipid Management:
The AVERT Trial and Future Directions for Research

Emory University, Atlanta VA Medical Center (III)
W. Virgil Brown

AVERT is an open label, randomized, multicenter study of patients with baseline LDL-c > 3.0 mmol/L (115 mg/dl), triglycerides < 5.7 mmol/L (500 mg/dl) and a left ventricular ejection fraction > 40%. Angina could not be more severe than Class II. After demonstrating at least one lesion of > 50% stenosis and the absence of such lesions in the left main or in three major coronary arteries, patients were assigned randomly to receive PTCA and usual medical therapy including any lipid lowering treatments advised by their physician or atorvastatin (80 mg/day) with any other customary medical treatments.

The incidence of cardiac death, MI, stroke, PTCA, CABG and hospitalization for documented angina pectoris was assessed. The primary endpoint was the number of patients in each group who experienced at least one of these events over an eighteen month period. The PTCA cohort contained 177 and the atorvastatin group 164 patients. After 18 months, 22 patients assigned to atorvastatin therapy had at least one ischemic event while, 37 patients assigned to PTCA had such an event, a 36% lower incidence with the lipid lowering and other medical treatments (p=0.048). The investigators concluded that 87% of the patients on atorvastatin and other medical therapy had avoided an initial PTCA without experiencing death, hospitalization or the need for a procedure during eighteen months.
1. トリグリセライドと動脈硬化

東京医科歯科大学第三内科 田中 明

最近の大规模疫学調査や介入試験の結果、高トリグリセライド（TG）血症は動脈硬化危険因子として確立しつつある。しかし、高コレステロール血症に比較して、高TG血症による動脈硬化進行メカニズムは不明な点が多く、本セミナーでは、TG リッチリボ蛋白の代謝および動脈硬化との関連における最近の知見を発表する。

LDLはスカベンジャー受容体あるいはLDL受容体を介してマクロファージに取り込まれ、その泡沫化を促進することが明らかにされているが、最近、アラバマ大学のBradley WAとGianturco SHらは、TG リッチリボ蛋白を選択的に取り込むマクロファージ上の受容体を発見し、そのcDNAをクローニングした。この受容体はアポB48をリガンドとして、アポEをリガンドとしない。また、アセチルLDLを取り込むことからスカベンジャー受容体あるいはLDL受容体と異なる新しいマクロファージ受容体（アポB48受容体）であることが明らかにされた。我々は、共同研究により、この受容体が動脈硬化の泡沫化したマクロファージに存在することを確認した。この受容体はLG リッチリボ蛋白による動脈硬化進展メカニズムに重要な役割を果たしている可能性が示唆された。

また、TG リッチリボ蛋白のコレステロール含有量は血中TG値が500mg/dl以上ではLDLのコレステロール含有量よりも多く示された。血栓のコレステロール含有量増加が血栓の破綻を生じる重要な因子であることが明らかにされているが、この結果はTG リッチリボ蛋白が血栓へのコレステロール供給源となりうることを示唆する。

ヒトの場合は、カイロミクロンは小腸上皮で発現するアポB48と食事由来の脂質から合成される。しかし、我々は、小腸上皮にアポB100も発現することを確認した。この結果は、小腸で発現するアポB100と食事由来の脂質から合成されるアポB100含有リボ蛋白（VLDL, LDL）の存在を示唆すると考えられる。

2. Hypertriglyceridemia and the Pathogenesis of Atherosclerosis

Hyperlipidemia and Atherosclerosis Research Laboratory, Clinical Research Institute of Montreal, Quebec, Canada
Jeffrey S. Cohn

Recent clinical trials have clearly established that lipid-lowering drugs are effective in the primary and secondary prevention of coronary artery disease (CAD). Reduction (20-35%) in the plasma concentration of low-density lipoprotein (LDL) cholesterol results in a substantial reduction in both CAD morbidity and mortality. Despite the remarkable success of drugs designed to reduce total and LDL cholesterol levels, it is often pointed out that the battle to prevent and treat CAD is far from over. There is now greater awareness that triglyceride-rich lipoproteins (TRL) play a significant role in the pathogenesis of atherosclerosis. The link between hypertiglyceridemia and CAD has been more difficult to define than that between LDL and CAD, for several reasons. Firstly, plasma triglyceride is carried in a number of different lipoproteins (e.g., chylomicrons, large and small VLDL, chylomicron and VLDL remnants), and the ability of different TRL to promote atherosclerosis is not the same. Secondly, by eating plentiful meals at regular intervals, intestinal and hepatic TRL levels change throughout the day, making a link between TRL and CAD more difficult to establish. Thirdly, because the metabolism of different plasma lipoproteins is strongly interrelated, it is difficult to know whether TRL are directly atherogenic, or whether they are indirectly pathogenic by altering, for example, the size of LDL or the plasma concentration of HLD. Fourthly, increased levels of TRL may have a negative effect on hemostatic parameters, thereby affecting thrombogenesis rather than atherogenesis itself. Independent of whether increased levels of TRL have a direct or indirect effect on the pathogenesis of atherosclerosis, recent angiographic and clinical end-point studies have shown that drugs designed primarily to lower plasma triglyceride and increase HDL cholesterol levels are beneficial in reducing the risk of CAD. Therefore, the benefit of treating hypertriglyceridemia is now more widely accepted. Since plasma triglyceride concentrations can be more readily influenced by diet and exercise than LDL cholesterol levels, the benefit of eating less and exercising more remains a high therapeutic priority.
ランチョンセミナー9

血管内皮を捕える

座長：寺本 民生（帝京大学内科学）

1. 酸化LDL受容体 LOX-1と動脈硬化

京都大学大学院医学研究科加齢医学 久米 典昭

粥状動脈硬化の発生・進展過程において酸化LDLは血管内皮細胞の機能を障害し、マクロファージの泡沫細胞化をきたすと考えられる。血管内皮細胞にてみだされた酸化LDL受容体 Lectin-like oxidized LDL receptor-1 (LOX-1)は細胞外ドメインにレクチン様構造をもつ分子量約40kDa（ヒト）のⅡ型の膜蛋白であるが、その発現は炎症性サイトカインTNFα、血流シアストレスなどの刺激に伴い誘導され、実際にヒトの粥状動脈硬化の初期変化を覆う血管内皮細胞でのLOX-1が強く発現される。また、LOX-1は、末梢血中の単球には発現されないものの、これらがマクロファージ様に分化することに伴いその発現が誘導される。実際に粥状動脈硬化病変に集族するマクロファージにおいてもLOX-1の強い発現が認められた。このように、粥状動脈硬化病変に発現されるLOX-1を介した酸化LDLの取り込みが、血管内皮細胞の機能障害のみならず、マクロファージの泡沫細胞化にも関与し、粥状動脈硬化の病態の進展に強く関与する可能性が示唆される。また、細胞表面に発現されたLOX-1はその一部が何らかのプロテーゼにより切離され可溶性分子として存在することが培養細胞において示され、可溶型LOX-1はおそらくは生体内にも存在しその血中濃度が動脈硬化の新たなマーカーとなることなどが期待される。

2. コレステロール低下療法と内皮機能

九州大学大学院医学系研究科循環器内科学 江頭 健輔

高コレステロール血症をとくに酸化LDL、によって血管内皮細胞機能障害（NO活性低下など）と活性化（炎症性反応の発現など）が生じる。この血管内皮の異常が、動脈硬化の発生・進展に重要な役割を果たすと認識されている。血管内皮障害は、血管収縮、血小板凝集・血栓形成亢進、平滑筋遊走・増殖亢進、単球接着・侵入亢進などをもたらし、急性心筋梗塞などの心血管イベントの発生に寄与するとされている。

HMG-CoA還元酵素阻害薬（スタチン）によるコレステロール低下療法により、血管内皮機能（NO活性）が改善すること、心筋流量の異常な改善すること、心房細動の症状の抑制の際びに心筋虚血が減少すること、PTCA後の心血管イベントが少なくなること、などが明らかにされている。したがって、コレステロール低下療法による虚血性心疾患の予後改善効果（虚血イベントの減少）の一部は内皮機能の改善によって説明可能である。

最近、スタチンによるヒト血管内皮細胞機能の改善はコレステロール低下が認められない症例でも観察されることが報告された。また、大規模臨床試験のsubgroup解析の結果からスタチンによる心血管イベント抑制作用の一部はコレステロール低下作用（肝臓のHMG-CoA還元酵素阻害によるコレステロール合成抑制による）に依存しないことが示された。スタチン投与によってヒト培養内皮細胞においてNO合成酵素活性の増加を伴うNO産生増加が生じること、培養平滑筋細胞ならびに線維芽細胞の増殖・遊走の抑制が起こること、摘出単球の内皮細胞への接着が減少すること、などが報告されている。さらに、スタチンによって血管内皮NO産生が改善するという生体レベルでの実験成績も発表されている。このスタチンによるコレステロール非依存性血管保護作用がヒトの内皮細胞機能の改善、ひいては心血管イベントの減少にどの程度寄与するかは今後の検討課題である。
糖尿病と酸化ストレス

座長：堀内 正公（熊本大学生化学第二）

1. 糖尿病性血管障害と酸化ストレス
—培養血管平滑筋細胞を用いた検討—

大阪市立大学医学部第一内科 安成 憲一

糖尿病は、動脈硬化の危険因子として広く認識されている。我々は高グルコースが培養血管平滑筋細胞内のポリオール経路を活性化し、動脈硬化の発症を促進することが示唆されている。特に、高グルコースにより生成される活性酸化物が細胞にダメージを与え、緊張をもたらすことが示されている。我々は、高血糖の影響を検討し、高血糖状態における細胞障害の機序を解明するため、培養血管平滑筋細胞を用いた実験を行った。

2. インスリン抵抗性と血管壁活性酸素障害

滋賀医科大学第三内科 柏木 厚典

インスリン抵抗性状態における内皮依存性血管弛緩反応の低下は、血圧上昇、LPL 異常に伴う血清中性脂肪、HDL 代謝異常、耐糖能異常の一部を説明し、Syndrome X（内臓脂肪症候群）などのリスク因子が集積した病態の根幹となる病態である可能性が示唆される。インスリン抵抗性状態の解明により、糖尿病の基礎治療法の開発が期待される。
サテライトセミナー

脂肪酸代謝と動脈硬化
—新概念・「生理活性物質としてのFFA」—

座 長：松澤 佑次（大阪大学大学院医学系研究科分子制御内科学）

はじめに

大阪大学大学院分子制御内科学 松澤 佑次

動脈硬化の分子機構の研究が進み、多くの細胞現象に関わる分子との遺伝子レベルの情報が次々と明らかになっている。一方、従来リスクファクターの研究の中で主体を占めていた脂質と動脈硬化の発症メカニズムとの関連は、必ずしも研究が進めているとは言い難い。かつて最も大きなリスクファクターとされたコレステロールについても、それを運ぶ担体であるlow density lipoprotein（LDL）という蛋白の問題として研究が進んでおり、また膜構成に関わる磷脂質についても、時にリポレンチンの役割が示されている以外にあまり重要視されていない。脂質酸に至っては、かつての飽和脂肪酸、不飽和脂肪酸の関与や比較的最近のω-3，ω-6の関与などが動脈硬化発症と関連する可能性が示されていながら、そのメカニズム特に分子レベルの検討は極めて不充分である。しかし近年遊離脂肪酸（FFA）のいわゆる生活習慣病の関与に再び注目を浴びさせるきびしみ見えてきた。ひとつはインスリン抵抗性とFFAの関連である。従来、glucose-fatty acid cycleなどという代謝関連で考察されていたメカニズムも、FFAが核内レセプターのHNFのリガンドとなり得ることから生理活性物質として存在する可能性も示されつつある。また高脂血症の分野においても、腹腔内膜脂質から放出されるFFAの異常を介して肝臓に直接流入し、高脂血症を発症させるメカニズムも新しい観点から検討されつつある。例えば、従来トリグリセリドの単なる前駆体と考えられていたFFAがPPAR-αとの結合を通じて、リポ蛋白のアセンブリーに関わるmicrosomal triglyceride transfer protein（MTP）遺伝子の発現を亢進させるという事実などが示されてきた。本シンポジウムでは、FFA代謝について新しい観点から論じていただき、動脈硬化発症に関わる新しい分子メカニズムについて考察したい。

1. 生体内における脂質合成の転写調節

東京大学医学部糖尿病代謝内科 島野 仁

SREBP ファミリー：Sterol Regulatory Element Binding Protein（SREBP）はbasic HLHタイプの転写因子ファミリーでコレステロール合成酵素群、LDLレセプター遺伝子プロモーター領域に共通する特異配列SREに結合し転写発現を制御する。現在ではSREBPを認識するDNA配列が遺伝子SREの形成に不確かな遺伝子と考えられることから、コレステロール代謝関連遺伝子のみならず、脂肪酸、中性脂肪合成（リポゲンシス）に関連する遺伝子など脂質合成関連の転写調節の見解がわかった。そしてin vivoのデータから、SREBP 1はより脂肪酸合成酵素、SREBP 2はよりコレステロール合成酵素に特異的に作用することが見いだされた。

SREBP 1とリポゲンシス：肝臓や脂肪組織などでは脂質などのエネルギー過剰になるといわゆるリポゲンシス酵素が上昇し脂質酸、中性脂肪の合成が誘導される。この栄養代謝差は、インスリンや糖質による広範でリポゲンシス酵素群の転写レベルにおける調節が主体である。われわれは以降SREBP関連の転写調節の役割の変異のメカニズムに関し、遺伝的遺伝子のプロモーターへの特異性と各SREBPアライオンフォームの発現量調節の2点に着目した最近の結果をin vitro, in vivo両面から紹介したい。コレステロール合成の転写調節が細胞内コレステロールをセンサーするSCAPやサイト1プロテアーゼを介したSREBP 2の切断レベルにありnegative feedback を示すのは対照的に、リポゲンシス（脂肪酸合成）はSREBP 1の発現量より糖代謝とリンクしながらpositive feedback を示す事実が発見された。

SREBPの臨床的意義：SREBP-1α用マウスとLDLレセプターとの交配の結果、著しい高インスリン血症と自然発症の大動脈硬化のアテロームの形成が認められる、このことは過剰栄養の結果がアデノシンの核発酵の増加をきたし、動脈硬化を促進することが示唆している。またSREBP-icを脂肪組織特異的に高発現させると、脂肪の分化に異常が生じ、著しい高インスリン血症をともなうインスリン抵抗性をきたす。脂肪分化あるいはSREBP 1とインスリン抵抗性との関連が強く示唆される。さらにSREBP 1は糖代謝を含むエネルギー代謝、脂質合成に作用するが深く関わっており、冠動脈疾患、生活習慣病といった臨床的側面からもその制御のメカニズムに解決は重要である。
2. 血管内皮細胞の核内受容体 PPARα と酸化ストレス

崎玉医科大学第四内科 井上 郁夫
核内受容体 peroxisome proliferator-activated receptor (PPAR) のリガンド/促進因子が、イコサエン酸などの多価不飽和脂肪酸を含む種々の脂肪酸、プロスタグランジン、フィブリノゲンシス、チアゾリジン系薬剤、他、さらに抗炎症薬のnon-steroïd anti-inflammatoy drug (NSAID) であることも判明した。さらにチアゾリジン系薬剤の血糖降下効果、その薬剤の PPARγへの結合の強さに関連があることや、フィブリノゲンシスによる PPARα の活性化が抗炎症作用に有効とも報告された。さらに以前我々は、PPARγ のリガンドが活性酵素の消去作用、superoxide dismutase (SOD) 様作用を有し、抗動脈硬化効果を持つことを報告したが8）、PPARα の活性化薬剤もまた、強力な活性酵素の消去作用を有する CuZn-SOD やカタラーゼの発現を亢進させ、PPARα の発現の変動を酸化ストレスに関連することを報告した9）。最近では我々は、糖、脂質代謝、高血圧、動脈硬化、炎症、ネクロソーサイ、アポトーシスに関連する遺伝子の発現が多数証明されている血管内皮細胞においても、PPARα が発現していることを示しました9）、PPARα の発現が、活性酵素の産生に関連する NADPH oxidase の発現調節に関連する可能性を報告している9）。さらに、PPARγ の遺伝子はすべての生活習慣病、動脈硬化、抗炎症作用、活性酵素産生・消去作用に関連する遺伝子に作用している可能性がある。今後、PPARγ の発現の機構を明らかすることは、生活習慣病、死病者、動脈硬化の Twins 関連・分化、アポトーシス、老化防止の手段が得られる可能性があり、結果的に quality of life 改善にもつながる生命延長にも関連した、従来の無く新しい新薬研究開発の研究への貢献も大きく、今後の発展性を望まれる分野である。

今回は、我々の最近の研究結果の中から培養ヒト血管内皮細胞での PPARα の機能を中心に、培養ヒト肝細胞における HMG-CoA 還元酵素阻害剤による PPARα の亢進作用についても若干触れ、肝臓での脂質代謝に関連する核内受容体である Liver X receptor (LXR) との関連性についても述べる。

参考文献
(1) Inoue I, et al.: Biochem Biophys Res Commun 235: 113-116, 1997
(2) Inoue I, et al.: Life Science 63: 135-144, 1998
(3) Inoue I, et al.: Biochem Biophys Res Commun 237: 606-610, 1997
(4) Inoue I, et al.: Biochem Biophys Res Commun 246: 370-374, 1998
(5) Inoue I, et al.: Metabolism (revised)
(6) Inoue I, et al.: Life Science (in press)

3. アディポサイトカインとしての FFA と動脈硬化

大阪大学大学院分子制御内科学 山下 静也

栄養摂取の過剰、運動不足などによって、我が国においても脂肪増殖に伴う様々な疾病が問題となっている。近年の脂肪分布と肥満に伴う合併症に関する研究から、過栄養に基づく腹腔内臓脂肪の蓄積が高脂血症、糖尿病、高血圧などの動脈硬化の危険因子の累積を引き起こし、ひいては動脈硬化の発症基盤となることが明らかになっており、我々は内臓脂肪蓄積群として提唱してきた。このようなマルチプルリスクファクター症候群は肥満の有無にかかわらず起こりうる。

一方、脂肪細胞に関する分子生物学的研究により、脂肪組織は単なるエネルギー貯蔵器官であるのみならず、様々な生理活性物質を分泌していることが明らかになってきた。インスリン抵抗性に関する TNF-α、脂肪量調節に関与するレプチンなどである。これらの脂肪組織から分泌される生理活性物質は adipocytokines を総称する。我々はヒト脂肪組織における発現遺伝子のランダムシーケンスを行い、脂肪組織発現遺伝子の解析から、内臓脂肪組織の発現遺伝子の中に Type1 plasminogen activator inhibitor-1 (PAI-1) 遺伝子を見出し、これが血管合併症の発症に関与する見出し、さらに動脈硬化作用を有する新規の脂質組織特定分泌蛋白であるアディポネクチンの低下が血管合併症の発症に関与する可能性を示してきた。

一方、内臓脂肪は門脈を介して肝臓の上流に位置するという解剖学的特徴を有している。内臓脂肪は代表的的に動脈硬化が発症する臓器で、脂肪蓄積と分解を繰り返しており、内臓脂肪蓄積時には高脂血症 (FFA) の門脈中に流入する。このような過剰の FFA 流入が adipocytokine として内臓脂肪組織群における病態発症に関与する可能性がある。我々は内臓脂肪蓄積、高脂血症、糖尿病を発症し、内臓脂肪組織群のモデル動物である OLETF ラットを用い、高脂血症の発症機序を検討した。本稿でインスリン抵抗性が生じる以前の 6 週間より内臓脂肪の蓄積を認め、門脈血 FFA は上昇し、高 TG 血症を示した。肝臓に流入した FFA は acyl-CoA 結合酶 (ACS) により活性化され、TG 合成に関与する。またmicrosomal triglyceride transfer protein (MTP) は脂質とアポ B のアセンブリー、VLDL 分泌に関与する。OLETF ラットでは対照の LETO ラットよりも、Apo B, MTP の増加が存在した。内臓脂肪組織群における門脈への FFA の大量の流入は、単に脂質の増加により VLDL 合成を促進するのみならず、VLDL 合成に関与する多数の因子を転写レベルで活性化することにより高脂肪血症に結びつき考えられる。FFA が PPAR と結合して、種々の遺伝子の転写を促進させることが明らかになっており、本講演では adipocytokines の 1 つとしての FFA の動脈硬化への関与について述べたい。