THE EFFECT OF AROMATHERAPY WITH ORANGE ESSENTIAL OIL ON ANXIETY AND PAIN IN PATIENTS WITH FRACTURED LIMBS ADMITTED TO AN EMERGENCY WARD: A RANDOMIZED CLINICAL TRIAL

Davood Hekmatpou1, Yasaman Pourandish2, Pouran Varvani Farahani1, Ramin Parvizrad1

1Department of Nursing, Traditional and Complementary Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
2Department of Nursing, Traditional and Complementary Medicine Research Center, Arak University of Medical Sciences, Arak, Iran (student)

Received December 19, 2016; Accepted April 4, 2017. Copyright: This is an open access article distributed under the terms of the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

Abstract

Aim: Pain and anxiety are unpleasant feelings associated with actual or potential tissue damage. The goal of this study is to determine the effect of aromatherapy with orange oil on the pain and anxiety of patients with limb fractures hospitalized in an emergency ward. Design: Randomized Clinical Trial. Methods: 60 patients in an emergency ward were allocated to one of two groups: an experimental and a control group, using a randomized blocking sampling method. Four drops of orange oil were poured onto a pad, which was attached to his/her collar by a plastic safety pin (posing no risk to patients), so that the distance from the patient’s head was not more than 20 cm. To prevent loss of aroma from the impregnated pad, the fragrance was replaced every hour. Pain was measured every hour for six hours, and the patients’ anxiety rate was measured before and after the intervention. All data were analysed using SPSS 21. Results: Mean age of participants was 37.93 ± 18.19 years. Most fractures were in the scapula area (11 patients – 18.3%). The results indicated a significant difference between the mean of anxiety in the intervention group (p < 0.001) compared to the control group (p = 0.339). Regarding pain, a Friedman test showed significant differences between the mean of pain in the intervention group (p < 0.001) compared to the control group (p = 0.339). Conclusion: Aromatherapy with orange essential oil reduced pain and anxiety in patients with limb fractures. Therefore, the application of aromatherapy with orange essential oil as a complementary therapy is recommended for these patients.

Keywords: aromatherapy, anxiety, limb fracture, orange oil, pain, relief.

Introduction

Anxiety is the most prevalent mental disorder in 15–20% of patients in medical clinics (Ghardashi et al., 2003). The prevalence of preoperative anxiety in adults is 11–80% (Agarwal, Ranjan, Dhirag, 2005). Preoperative anxiety is caused by worries about problems after surgery, including pain, changes in body image or function, increased dependency, family concerns, or likely changes in lifestyle (O’Brien, 2003). Preoperative anxiety prevents postoperative recovery. Excessive preoperative anxiety is associated with increased pain after surgery (Kindler et al., 2000), reduced ability to resist infections, increased intake of painkillers after surgery, slow-healing wounds (Granot, Ferber, 2005), negative impacts on patients’ mood (Montgomery, Bovbjerg, 2004), and prolonged hospitalization (Frazier et al., 2003). Conversely, it has been found that reduced anxiety can result in faster recovery, reduced intake of medication during anesthesia, increased pain tolerance, and early discharge, ultimately leading to lower costs and a reduction in postoperative complications (Mahfoozi, Hasani Mian, 2000). Lack of pain control can activate the sympathetic nervous system and increase morbidity and mortality in patients. Indeed, sympathetic system activity can increase myocardial oxygen consumption and lead to, in some cases, ischemia, and even myocardial infarction (by decreasing oxygen due to coronary artery contraction and inhibition of local vasodilator mechanisms) (Desborough, 2000; Kehlet, Holte, 2001). Another important side effect of stimulation of the sympathetic nervous system is a delay in the stimulation of the digestive system (ileus) (Desborough, 2000; Kehlet, Holte, 2001). Moreover,
pain also has psychological effects, and is regarded as the main reason for fear, anxiety, distress, and disappointment (Naghbi, 2001).

Fractures cause severe pain in patients, necessitating the use of narcotic analgesics (Ogunnaike et al., 2002; Marret et al., 2005). Since narcotic analgesics have general side effects, such as respiratory problems, sedation, nausea and vomiting, symptoms of tolerance, or withdrawal syndrome in patients, the use of non-pharmacological methods as a complement, rather than an alternative intervention, is recommended. In this regard, it a complementary method which nurses can use to help patients (Stoelting, Miller, 2007; Ball, Bindler, Cowen, 2010).

Aromatherapy derives its name from the words “aroma”, meaning fragrance or smell, and “therapy” meaning treatment. It is a natural way of healing a person’s mind, body and soul. Aromatherapy has established itself as a treatment for an array of complications and conditions (Ali et al., 2015). It has been used for millennia to offer comfort and promote healing. Its nursing roots can be traced to its use by Florence Nightingale during the Crimean War. More recent evidence supports aromatherapy for the relief of pain, nausea, and anxiety in a variety of patient populations (Boyce, Natschke, 2016).

Aromatherapy is the controlled use of natural aromatic oils to enhance psychological and physical well-being, and is used as a part of nursing in many countries including Switzerland, Germany, England, Canada, and America (Buckle, 2002). The aromatic oils are extracted from aromatic plants, which are anti-inflammatory, antimicrobial, and reduce pain and stress (Cooke, Ernst 2000; Long, Huntley, Ernst, 2001; Buckle, 2002; Howarth, 2002). In fact, aromatherapy is the second most common complementary method used by nurses, and has the most clinical applications (Marline, Laraine, 2008). Inhalation of essential oils has given rise to olfactory aromatherapy, whereby simple inhalation results in enhanced emotional wellbeing, calmness, relaxation or rejuvenation of the human body.

The release of stress is associated with pleasurable scents which unlock scent memories (Ali et al., 2015). It has been proven that inhalation of orange essential oil can reduce labor pain (Rashidi Fakari et al., 2013). Moreover, other studies have shown the effectiveness of this oil in reducing anxiety (Lehrner et al., 2000; Lehrner et al., 2005; Kanani et al., 2012). It also can stimulate the central nervous system, enhance mood, cause sedation and relief, and it is antispasmodic, anti-inflammatory, anti-bloating, digestive and diuretic, and can lower blood pressure. Its active substances are limonene, and Flanders Citral (Levomenthol) (Haji Akhondi, Baligh, 2005; Soltani, 2005).

A recently conducted double-blind, randomized, controlled clinical trial on aromatherapy has indicated that citrus oil is effective in relieving the first stages of labor pain. It is effective in controlling nausea and vomiting, and has mood elevating properties (Ali et al., 2015).

Aim

Considering the importance of the control of anxiety and pain in patients, and the limited amount of internal and external research on the relationship between aromatherapy and pain and preoperative anxiety of patients with fractured bones, this paper aimed to study the effect of aromatherapy with orange essential oil on pain and anxiety of patients with fractured limbs admitted to an emergency ward.

Methods

Design

The research was a Randomized Clinical Trial registered with the Center of Clinical Trials in Iran under the code IRCT201607124519N6.

Sample

Samples size was obtained by the following formula.

$$n = \frac{(z_{1-\alpha}^2 + z_{1-\beta}^2)(S_1^2 + S_2^2)}{(\mu_1 - \mu_2)^2}$$

After comparison of means formula and reference (Kanani et al., 2012), the sample size for each group was set at 30.

In the emergency ward of Vali-e-Asr hospital, Arak, Iran, 60 patients were selected by purposive sampling. Subsequently, all the patients were allocated to one of two groups: an experimental and a control group, by a randomized blocking sampling method (n = 30). The research was conducted during one work shift (morning or afternoon), over a period of six hours. Emergency ward patients with fractured limbs requiring orthopedic surgery voluntarily participated in this study (they were matched based on their age, sex, type of fracture, and the initial pain). For intervention, four drops of the essential oil were poured onto a pad pinned with a plastic safety pin to patients’ collars, about 20 cm from the head. The pads were replaced with new ones every hour for the six hours. The pain in patients was checked every hour for the six hours. Anxiety rates were measured by the state section of the Spiel Berger questionnaire, after the first hour (before), and after intervention.
(after six hours). In addition to the aromatherapy that was provided as a complementary medicine in the intervention group, common analgesic treatments (e.g. Acetaminophen tablets) were administered to both groups to control pain.

Inclusion criteria: patients over 18 years old, with no history of chronic pain, problems with vision, respiratory problems, asthma, allergies, mental health, and sense of smell could participate in the research. Informed consent was obtained from the participants.

Exclusion criteria: lack of interest in participating in or subsequent withdrawal from the research, and displaying any allergic symptoms during the course of the research.

Data collection

Data collection tools: The Visual Analog Scale (VAS 0–10) was used to evaluate pain (Figure 1).

![Visual Analog Scale (VAS 0–10)](image)

Figure 1 Visual Analog Scale (VAS 0–10)

This scale is graded from 0–10; 0 indicating no pain, and 10 indicating the most severe pain. Patients report their level of pain by selecting the appropriate number on the scale. The scale allows patients to indicate their pain freely (Lehrner et al., 2000). It is the most widely used pain evaluation tool in the world. In addition to validity and reliability, the tool is easy to use. On this scale, a score of 0 indicates no pain; 1–3 indicates mild pain; 4–6 indicates moderate pain; 7–9 indicates severe pain; and 10 indicates very severe pain (Soltani, 2005). Many studies from Iran have proved its validity and reliability (Haji Akhondi, Baligh, 2005). In Iran, the reliability of this scale has been confirmed with a correlational coefficient of 0.88 (Wilkinson, Simpson, 2002).

The State-Trait Anxiety Inventory (by Charles D. Spiel Berger) is an introspective psychological inventory consisting of 40 self-report items pertaining to the effects of anxiety. These items are graded on a four-option Likert scale, by which 1 – almost never; 2 – sometimes; 3 – often; and 4 – nearly always. The total score ranges from 40 to 160. Scores under 40 indicate mild anxiety; 41 to 80 indicate average anxiety; 81–120 indicate higher than average anxiety; 121–140 indicate severe anxiety; and 141–160 indicate very severe anxiety. The validity of this inventory was measured as 0.95 in a study by Kumar, Singh (2007), and Salehi, Dehghan Nayeri (2011) reported it as 0.94.

Data analysis

To test the differences between main variables (anxiety and pain) in the two groups before and after intervention, the Paired t-test, Independent t-tests, the Mann-Whitney test, and the Friedman test were used. To test the differences between demographic variables between the two groups, Fisher’s Exact Test was used. The SPSS 21 program was used for statistical evaluation.

Results

60 patients participated in this research, 30 in the intervention group and 30 in the control group. 40 patients were male (66.7%), and 20 were female (33.3%). Their age average was 31.93 ± 18.19 years old; the youngest patient was 18 and the oldest patient was 72 years old. 37 patients were married (61.7%) and 23 were single (38.3%). 11 patients (18.3%) had a diploma, 8 (13.4%) had academic studies and 41 patients (68.3%) had lower qualifications. The subjects in the two groups provided similar demographic information, with no significant differences.

Fisher’s exact test results showed that there was no significant difference in the distribution of fractures in the two groups, although the most common fractures were of the scapula, in 11 patients (18.3%) (Table 1).

Table 1 Frequency of limb fractures in intervention and control groups

Limb fracture	Intervention n (%)	Control n (%)	Total	p-value
foot finger	0 (0.0)	1 (100.0)	1	
hand finger	2 (66.7)	2 (66.7)	4	
dorsal of the foot	1 (100.0)	0 (0.0)	1	
knee	2 (66.7)	1 (33.3)	3	
forearm	3 (42.9)	5 (71.4)	8	
leg	4 (57.1)	2 (66.7)	6	
thigh	2 (33.3)	4 (66.7)	6	0.808
shoulder	15 (45.5)	6 (54.5)	21	
sole of the foot	1 (50.0)	1 (50.0)	2	
palm of the hand	0 (0.0)	2 (100.0)	2	
ankle	5 (71.4)	4 (66.7)	9	
wrist	3 (42.9)	4 (57.1)	7	
Total	**30 (50.0)**	**30 (50.0)**	**60**	
The results revealed no significant statistical difference between the two groups based on the frequency of different levels of state anxiety before intervention (Table 2).

However, after intervention, the results revealed a significant statistical difference between the two groups based on the frequency of different levels of state anxiety (p < 0.001) (Table 3).

Table 2 Frequency of different levels of state anxiety in the two groups before intervention

Time	Control n (%)	Intervention n (%)	Total	p-value
mild	5 (62.5)	3 (37.5)	8	
average	9 (50.0)	9 (50.0)	18	
higher than average	4 (40.0)	6 (60.0)	10	0.775
severe	8 (44.4)	10 (55.6)	18	
very severe	4 (66.7)	2 (33.3)	6	

Table 3 Frequency of different levels of state anxiety in the two groups after intervention

Time	Control n (%)	Intervention n (%)	Total	p-value
mild	0 (0.0)	10 (100.0)	10	
average	5 (29.4)	12 (70.6)	17	
higher than average	6 (66.7)	3 (33.3)	9	< 0.001
severe	7 (87.5)	1 (12.5)	8	
very severe	8 (80.0)	2 (20.0)	10	

The results indicated that after intervention the mean of state anxiety in the intervention group decreased significantly (p < 0.001). Thus, after intervention a significant statistical difference between the two groups (p < 0.001) could be seen (Table 4).

The results showed no significant statistical difference in mean pain scores at different times. However, pain scores in the intervention group indicated significant differences at different times (p < 0.001), with pain falling significantly over time (Table 5).

Table 4 The mean and standard deviation of state anxiety in the two groups, before and after intervention

State Anxiety	Before intervention mean ± SD	After intervention mean ± SD	Paired t-test p-value
intervention	56.96 ± 12.03	39.80 ± 14.22	< 0.001
control	56.63 ± 14.04	59.43 ± 14.72	0.004
independent t-tests (p-value)	0.922		< 0.001

Table 5 The mean of pain in the intervention and control groups

Time	Control (Mean of pain) mean (SD)	Intervention (Mean of pain) mean (SD)	Mann-Whitney test p-value
start treatment	8.10 ± 2.15	8.30 ± 2.08	0.729
1 hour later	8.33 ± 1.93	7.46 ± 2.28	0.101
2 hours later	8.53 ± 1.80	6.40 ± 2.45	< 0.001
3 hours later	8.33 ± 1.72	6.10 ± 2.46	< 0.001
4 hours later	8.36 ± 1.69	5.66 ± 2.46	< 0.001
Friedman test (p-value)	0.339		< 0.001

Discussion

The anxiety averages in patients of the control and experimental groups before intervention were 56.63 and 56.96, respectively, indicating relatively high anxiety. Since the patients in this study were due to have operations, the results of this study confirm the results of previous studies. The literature shows that preoperative anxiety is caused by worries about problems after surgery, including pain, changes in body image or function, increased dependency, family concerns, or likely changes in lifestyle (O’Brien, 2003). Preoperative anxiety may prevent postoperative recovery. Excessive preoperative anxiety is associated with increased pain after surgery (Kindler et al., 2000), reduced ability to resist infection, increased intake of painkillers after
surgery, slow-healing wounds (Granot, Ferber, 2005), negative impacts on patient mood (Montgomery, Bovbjerg, 2004), and prolonged hospitalization (Frazier et al., 2003). Whereas it has been found that reduced anxiety can result in faster recovery, reduced intake of medication during anesthesia, greater pain tolerance, and earlier discharge, ultimately leading to lower costs, and fewer postoperative complications (Mahfoozi, Hasani Mian, 2000). The results of the present study showed that aromatherapy with orange oil could reduce anxiety in the experimental group; the frequency distributions of different levels of anxiety were significantly different in the two groups after intervention. These results are in line with those in a study by Goes et al. (2012). They studied the effects of aromatherapy using tea oil and orange oil on reducing anxiety, concluding that orange oil is more effective than tea oil in reducing anxiety. Lehrner et al. (2000) studied the effects of aromatherapy with orange oil on pain and anxiety in patients referred to a dentist, and showed that aromatherapy using orange oil reduced anxiety, confirming the results of this study. Kanani et al. (2012) conducted research on dialysis patients, demonstrating that aromatherapy with orange oil can reduce anxiety in these patients. This result is also in line with the results of our study. Jafarzadeh, Arman, Pour (2013) studied the effects of aromatherapy with orange oil on anxiety in children who had been referred to a dentist, and found that orange oil can reduce anxiety in children, further confirming the results of the current study.

The mean of pain for the control and experimental groups before intervention was 8.3 and 8.1, respectively, indicating severe pain. This result confirms the results of previous research, revealing the high severity of orthopedic pain (Marret et al., 2005). Changes in pain severity in the intervention group demonstrate statistically significant differences at different times; over time, pain reduced significantly in the intervention group. These findings indicate the positive effect of orange oil on pain relief in patients with orthopedic fractures, which is in line with the results of a study by Lehrner on dental procedures (Lehrner et al., 2005). Yip, Tam (2008) showed that aromatherapy and massage with orange oil and ginger can reduce arthritic knee pain, conforming to the results of this paper. However, Malachowska et al. (2016) studied the pain produced when a lancet was used to measure blood sugar in children with type I diabetes, obtaining different results to those in this paper. This difference may be due to the different nature of the respective pains. Ozgoli, Esmaeili, Nasiri (2011) showed that orange oil can relieve breast pain caused by premenstrual syndrome. Rashidi Fakari et al. (2013) also showed that orange oil can reduce labor pain, which is in line with the results of this paper. Thus, as this and other studies have indicated, aromatherapy can be a safe, effective, inexpensive addition to a holistic patient-centered approach to pain management (Boyce, Natschke, 2016).

Limitation of study

The limitation of this study was the lack of information about additional complementary medications taken by the patients which might have influenced the results regarding the effect of the inhalation of orange oil on the patients’ anxiety and pain.

Conclusion

Aromatherapy with orange essential oil reduced pain and anxiety in patients with limb fractures. It can lead to faster recovery and discharge of patients, as well as reduced hospitalization costs. Therefore, the application of aromatherapy with orange essential oil as a complementary therapy in such patients is recommended.

Ethical aspects and conflict of interest

The study was carried out in accordance with the Helsinki Declaration. This project was registered under code IR.ARAKMU.REC.1395.111 by the Ethics Committee of Arak University of Medical Sciences. The personal characteristics of all subjects of the research have been kept confidential. All participated voluntarily, and informed consent was obtained. The subjects were free to withdraw from the study at any time. The authors declare no conflict of interest.

Acknowledgment

We would like to thank the Traditional and Complementary Medicine Research Center (TCMRC) in Arak University of Medical Sciences, the personnel in the emergency ward of Vali-e-Asr Hospital in Arak and all the patients who participated in this project.

Author contribution

Concept and design (DH, YP), data collection (YP, RP, PVF), analysis and interpretation of data (DH), the drafting of the manuscript (YP, PVF), a critical revision of the manuscript (DH, RP), the final completion of the article (DH, YP).
References

Agarwal A, Ranjan R, Dhirag S. Acupressure for prevention of pre-operative anxiety: a prospective, randomised, placebo controlled study. *Anaesthesia*. 2005;60(10):978–981.

Ali B, Al-Wabel NA, Shams S, Ahamad A, Alam Khan S, Anwar F. Essential oils used in aromatherapy: a systemic review. *Asian Pacific Journal of Tropical Biomedicine*. 2015;5(8):601–611.

Ball JW, Bindler, RC, Cowen K. *Child health nursing: Partnering with children and families*. 2nd ed. Philadelphia: Prentice Hall; 2010.

Boyce VJ, Natschke M. A non-pharmacologic approach to pain management using aromatherapy: a train-the-trainer approach. *Pain Management Nursing*. 2016;17(2):98–99.

Buckle J. Clinical aromatherapy and AIDS. *Journal of Association Nurses AIDS Care*. 2002;13(3):81–99.

Cooke B, Ernst E. Aromatherapy: a systematic review. *The British Journal of General Practice*. 2000;50(455):493–496.

Desborough JP. The stress response to trauma and surgery. *British Journal of Anaesthesia*. 2000;85(1):109–117.

Frazier SK, Moser DK, Daley LK, McKinley S, Riegel B, Garvin BJ, An K. Critical care nurses’ beliefs about and reported management of anxiety. *American Journal of Critical Care*. 2003;12(1):19–27.

Ghardashi F, Salehe Moghadam A, Hasanabadi H, Setayesh Y. Correlation between duration of waiting before surgery and anxiety of patients. *Scientific Journal of Sabzevar University of Medical Sciences*. 2003;4(30):25–31. (in Persian)

Granot M, Ferber SG. The roles of pain catastrophizing and anxiety in the prediction of postoperative pain intensity: a prospective study. *The Clinical Journal of Pain*. 2005;21(5):439–445.

Goes TC, Antunes FD, Alves PB, Teixeira-Silva F. Effect of sweet orange aroma on experimental anxiety in humans. *The Journal of Alternative and Complementary Medicine*. 2012;18(8):798–804.

Howarth AL. Will aromatherapy be a useful treatment strategy for people with multiple sclerosis who experience pain? *Complementary Therapies in Nursing & Midwifery*. 2002;8(3):138–141.

Haji Akhondi A, Baligh N. *Guideline of herbal medicine*. Tehran: Islamic Azad University; 2005. (in Persian)

Jafarzadeh M. Essential oils used in aromatherapy: a randomized controlled clinical trial. *Advanced Biomedical Research*. 2013;2:10.

Kanani M, Mazloum SR, Ermani A, Mokhber N. The effect of aromatherapy with orange essential oil on salivary cortisol and pulse rate in children during dental treatment: a randomized controlled trial. *Journal of Sabzevar University of Medical Sciences*. 2012;19(3):249–257.

Kehlet H, Holte K. Effect of postoperative analgesia on surgical outcome. *British Journal of Anaesthesia*. 2001;87(1):62–72.

Kindler CH, Harms C, Amsler F, Ilde-Scholl T, Scheidegger D. The Visual Analogue Scale allows effective measurement of preoperative anxiety and detection of patients’ anesthetic concerns. *Anesthesia and Analgesia*. 2000;90(3):706–712.

Kumar A, Singh A. Protective effect of St. John’s Wort (Hypericumperforatum) extract on 72-hours sleep deprivation-induced anxiety-like behavior and oxidative damage in mice. *Planta Medica*. 2007;73(13):1358–1364.

Lehner J, Ekersberger C, Walla P, Pötsch G, Deecke L. Ambient odor of orange in a dental office reduces anxiety and improves mood in female patients. *Physiology & Behavior*. 2000;71(1–2):83–86.

Lehner J, Marwinski G, Lehr S, Johren P, Deecke L. Ambient odors of orange and lavender reduce anxiety and improve mood in a dental office. *Physiology & Behavior*. 2005;86(1–2):92–95.

Long L, Huntley A, Ernst E. Which complementary and alternative therapies benefit which conditions? A survey of the opinions of 223 professional organizations. *Complementary Therapies in Medicine*. 2001;9(3):178–185.

Mahfoozi A, Hasani Mian M. Effect of Midazolam on anxiety reduction surgery. *Journal of Legal Medicine*. 2000;19(3):20. (in Persian)

Malachowska B, Bender W, Pomykala A, Suwala S, Mlynarski W. Essential oils reduce autonomous responses to pain sensation during self-monitoring of blood glucose among children with diabetes. *Journal of Pediatrics Endocrinology & Metabolic*. 2016;29(1):47–53.

Marline S, Larine K. Foundation of aromatherapy. *Lippincott*. 2008;22(1):3–9.

Marret E, Kundi O, Zufferey P, Bonnet F. Effects of nonsteroidal antiinflammatory drugs on patient-controlled analgesia morphine side effects: meta-analysis of randomized controlled trials. *Anesthesiology*. 2005;102(6):1249–1260.

Montgomery GH, Bovbjerg DH. Presurgery distress and specific response expectancies predict post-surgery outcomes in surgery patients confronting breast cancer. *Health Psychology*. 2004;23(4):381–387.

Naghibi K. *Principle of anaesthesia and critical care*. Isfahan: Mani pub; 2001.

O’Brien ME. *Spirituality in nursing: standing on holy ground*. 2nd ed. Sudbury: Jons and Barlett Publishers; 2002.

Ogunnaie BO, Jones SB, Jones DB, Provost D, Whitten ChW. Anesthetic considerations for bariatric surgery. *Anesthesia & Analgesia*. 2002;95(6):1793–1805.

Ozcoli G, Esmaeili S, Nasiri N. The effect oral of orange peel on the severity of symptoms of premenstrual syndrome, double-blind, placebo-controlled clinical trial. *Journal of Reproductive & Fertility*. 2011;12(2):123–129. (in Persian)

Rashidi Fakari F, Tabatabaea Chehr M, Rashidi Fakari F, Mortazavi H, Kamali H, Tayebi V. Effects of aromatherapy on pain of labor in nulliparous women. *Journal of North Khorasan University of Medical Sciences*. 2013;5(2):359–362.

Salehi T, Dehghan Nayeri N. Relationship between anxiety and quality of life in students living in dormitories of Tehran University of Medical Sciences. *Payesh*. 2011;10(2):175–181. (in Persian)

Stoelting RK, Miller RD. *Basics of anesthesia*. 5th ed. Philadelphia: Churchill Livingstone Elsevier; 2007.

Soltani A. *Encyclopedia of traditional medicine herbal*. 2nd ed. Tehran: Arjmand; 2005. (in Persian)

Wilkinson JM, Simpson MD. Personal and professional use of complementary therapies by nurses in NSW, Australia. *Complementary Therapies in Nursing & Midwifery*. 2002;8(3):142–147.

Yip YB, Tam AC. An experimental study on the effectiveness of massage with aromatic ginger and orange essential oil for moderate-to-severe knee pain among the elderly in Hong Kong. *Complementary Therapies in Medicine*. 2008;16(3):131–138.