Investigation on correlation between expression of CD58 molecule and severity of hepatitis B

Li Sheng, Jie Li, Bao-Tai Qi, Yu-Qiang Ji, Zhao-Jun Meng, Ming Xie

ABSTRACT

AIM: To investigate the correlation between expression of CD58 and severity of hepatitis B.

MATERIALS AND METHODS

Sample collection and processing
Forty-three patients with hepatitis B were selected from outpatients and inpatients of the Department of Infectious Diseases of First Hospital of Xi'an Jiaotong University and Second Hospital of Xi'an Jiaotong University. The patients were divided into four groups, namely mild chronic hepatitis B group (n = 12), moderate chronic hepatitis B group (n = 11), severe chronic hepatitis B group (n = 10) and severe hepatitis B group (n = 10). Eleven healthy persons were taken as normal control group. The diagnostic code for Hepatitis B which edited by 5th Chinese Academic committee of Infection Disease and Parasite in 2000 was used as the classification criteria.

RESULTS: The levels of sCD58 in serum and membrane CD58 molecule in PBMC of patients with hepatitis B were significantly higher than that in normal controls (P < 0.05). Level of CD58 was related to the levels of serumal TBIL, DBIL, IBIL, ALT and AST.

CONCLUSION: The level of CD58 molecule (in both serum and PBMC form) of patients with hepatitis B is related to the degree of liver damage.

© 2006 The WJG Press. All rights reserved.

Key words: Hepatitis B; CD58; Liver damage

INTRODUCTION

Hepatitis B is caused by Hepatitis B virus (HBV), but the pathogenesis of hepatitis B is not well understood. HBV infects human liver cells but has no direct cytopathic effect on these cells. Therefore, it is unlikely that direct viral cytotoxicity is the primary cause of pathology in vivo. Several studies have suggested that hepatitis B may be mediated in part by immunopathologic mechanisms. As one of the intercellular adhesion molecules, CD58 provided co-stimulatory signals for the activation of T lymphocyte, it plays an important role in promoting the adhesion of T cells to targeted cells[1-3]. In this study, we used double antibody sandwich ELISA and direct immunofluorescence to analyze the levels of sCD58 in serum and the expression of CD58 on the surface of PBMC of patients with hepatitis B, and compared with those levels of healthy controls to evaluate the role of CD58 in the pathogenesis of hepatitis B.
Content of membrane CD58 molecule

The results showed that the level of membrane CD58 molecule in PBMC of patients with HBV infection was significantly higher than that of the normal group and the differences among the groups were significant ($P < 0.05$). The levels of membrane CD58 molecule increased significantly in an order from light chronic hepatitis B, medium group, severe group and severe hepatitis B. The membrane CD58 molecule in PBMC might relate to the severity of the disease (Figures 2-5, Table 1).

DISCUSSION

CD58 is also called lymphocyte function associated antigen-3 (LFA-3)\(^{[4-6]}\), which belongs to the CD2 family. As an important co-stimulating molecule, CD58 plays an important role in promoting the adhesion of T cells to targeted cells, and enhancing the recognition and sensitivity of T lymphocyte to the superantigen\(^{[7-9]}\). CD58 promotes hyperplasia and activation of T cell\(^{[1,2]}\), promotes T cells to soak inflammatory parts and takes part in signal transmission of T cells. Combined with CD2 molecules on the surface of NK cells, CD58 increases the adhesion between NK cells and target cells, activates NK cells\(^{[10,11]}\), and increases the toxin of the cells\(^{[12,13]}\). After integrating...
with activated T cells, CD58 and CD2 facilitate interferon γ and IL-2 mRNA record and translate, differentiate CD4+ T to Th1 and further initiate the immune response of the cell[3,14]. Some researchers proved that integrated with matching cells, CD58 may boost the ability of activated T cells and NK cells[15,16].

Our experiment showed that the levels of sCD58 in serum and membrane CD58 molecule in PBMC of patients with HBV infection were significantly higher than that of the normal group. The levels of CD58 varied from different groups of patients with hepatitis B, correlated to the severity of the disease. The results also showed that the percentage of CD58+ cell of patients with hepatitis B might be related with TBIL, DBIL, IBIL, ALT and AST, which prove the expression of CD58 is closely associated with the severity of the disease. The results also showed that the combination of CD58 and CD2 activated T cells might enhance the elimination of viruses through activating T and NK cells and promoting cell immune response. However, this would also lead to the damage of liver cells.

Table 1 The liver function

Group	n	TBIL (μmol/L)	DBIL (μmol/L)	IBIL (μmol/L)	ALT (IU/L)	AST (IU/L)
Normal control	11	11.25 ± 1.14	3.12 ± 1.54	6.41 ± 1.85	25.19 ± 2.58	19.57 ± 3.06
Chronic hepatitis B (mild)	12	15.14 ± 3.26	15.92 ± 2.03	10.39 ± 2.63	63.33 ± 3.68	46.67 ± 9.81
Chronic hepatitis B (moderate)	11	39.21 ± 8.73	25.21 ± 7.11	23.74 ± 3.87	98.21 ± 18.90	114.43 ± 12.80
Chronic hepatitis B (severe)	10	105.33 ± 17.67	49.88 ± 8.62	50.86 ± 16.05	221.61 ± 18.19	157.01 ± 22.54
Severe hepatitis B	10	143.57 ± 23.15	75.26 ± 6.56	117.35 ± 15.27	116.73 ± 28.57	94.82 ± 41.49

*P < 0.05, compared with control group.

![Figure 5](image-url) Content of membrane CD58 molecule in severe hepatitis B.

REFERENCES

1. Oh S, Hodge JW, Ahlers JD, Burke DS, Schlom J, Berzofsky JA. Selective induction of high avidity CTL by altering the balance of signals from APC. *J Immunol* 2003; 170: 2523-2530
2. Lopez RD, Waller EK, Lu PH, Negrin RS. CD58/LFA-3 and IL-12 provided by activated monocytes are critical in the in vitro expansion of CD56+ T cells. *Cancer Immunol Immunother* 2001; 49: 629-640
3. Le Guiner S, Le Dréan E, Labarrière N, Fonteneau JF, Viret C, Diez E, Jotereau F. LFA-3 co-stimulates cytokine secretion by cytotoxic T lymphocytes by providing a TCR-independent activation signal. *Eur J Immunol* 1998; 28: 1822-1331
4. Henniker AJ, CD58 (LFA-3). *J Biol Regul Homest Agent* 2001; 15: 190-192
5. Elangbam CS, Qualls CW Jr, Dahlgren RR. Cell adhesion molecules–update. *Vet Pathol* 1997; 34: 61-73
6. Hahn WC, Muen E, Bothwell AL, Sims PJ, Bierer BE. Overlapping but nonidentical binding sites on CD2 for CD58 and a second ligand CD59. *Science* 1992; 256: 1805-1807
7. Geppert TD, Lipsky PE. Immobilized anti-CD3-induced T cell growth: comparison of the frequency of responding cells within various T cell subsets. *Cell Immunol* 1991; 133: 206-218
8. Shaw S, Shimizu Y. Two molecular pathways of human T cell adhesion: establishment of receptor-ligand relationship. *Curr Opin Immunol* 1988; 1: 92-97
9. Halvorsen R, Leivestad T, Gaudernack G, Thorsby E. Accessory cell-dependent T-cell activation via Ti-CD3. Involvement of CD2-LFA-3 interactions. *Scand J Immunol* 1988; 28: 277-284
10. Barber DF, Long EO. Coexpression of CD58 or CD48 with intercellular adhesion molecule 1 on target cells enhances adhesion of resting NK cells. *J Immunol* 2003; 170: 294-299
11. Fletcher JM, Prentice HG, Grundy JE. Natural killer cell lysis of cytomegalovirus (CMV)-infected cells correlates with virally induced changes in cell surface lymphocyte function-associated antigen-3 (LFA-3) expression and not with the CMV-induced down-regulation of cell surface class I HLA. *J Immunol* 1998; 161: 2365-2374
12. Grosenbach DW, Schlom J, Gritz L, Gómez Yafal A, Hodge
JW. A recombinant vector expressing transgenes for four T-cell costimulatory molecules (OX40L, B7-1, ICAM-1, LFA-3) induces sustained CD4+ and CD8+ T-cell activation, protection from apoptosis, and enhanced cytokine production. Cell Immunol 2003; 222: 45-57

Gollob JA, Ritz J. CD2-CD58 interaction and the control of T-cell interleukin-12 responsiveness. Adhesion molecules link innate and acquired immunity. Ann N Y Acad Sci 1996; 795: 71-81

Gollob JA, Li J, Kawasaki H, Daley JF, Groves C, Reinherz EL, Ritz J. Molecular interaction between CD58 and CD2 counter-receptors mediates the ability of monocytes to augment T cell activation by IL-12. J Immunol 1996; 157: 1886-1893

Gollob JA, Li J, Reinherz EL, Ritz J. CD2 regulates responsiveness of activated T cells to interleukin 12. J Exp Med 1995; 182: 721-731

Chen CM, Li SC, Lin YL, Hsu CY, Shieh MJ, Liu JF. Consumption of purple sweet potato leaves modulates human immune response: T-lymphocyte functions, lytic activity of natural killer cell and antibody production. World J Gastroenterol 2005; 11: 5777-5781

Polese L, Angriman I, Giuseppe DF, Cecchette A, Sturniolo GC, Renata D, Scarpa M, Ruffolo C, Norberto L, Frego M, D’Amico DF. Persistence of high CD40 and CD40L expression after restorative proctocolectomy for ulcerative colitis. World J Gastroenterol 2005; 11: 5303-5308

Qiu WH, Zhou BS, Chu PG, Chen WG, Chung C, Shi J, Hwu P, Yeh C, Lopez R, Yen Y. Over-expression of fibroblast growth factor receptor 3 in human hepatocellular carcinoma. World J Gastroenterol 2005; 11: 5266-5272

Han YN, Yang JL, Zheng SG, Tang Q, Zhu W. Relationship of human leukocyte antigen class II genes with the susceptibility to hepatitis B virus infection and the response to interferon in HBV-infected patients. World J Gastroenterol 2005; 11: 5721-5724

Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995; 267: 1456-1462

S- Editor Wang J L- Editor Zhao JB E- Editor Ma WH