PLANE SYMMETRIC DOMAIN WALL IN
LYRA GEOMETRY

Anirudh Pradhan, Aotemshi I.
Department of Mathematics,
Hindu Post-graduate College
Zamania-232 331, Ghazipur, U. P., India
and
G. P. Singh
Department of Mathematics
Visvesvaraya Regional College of Engineering,
Nagpur-440 011, India.
e-mail: gps@vrce.ernet.in

Abstract

In this paper general solutions are found for domain walls in Lyra geometry in the plane symmetric spacetime metric given by Taub. Expressions for the energy density and pressure of domain walls are derived in both cases of uniform and time varying displacement field β. It is also shown that the results obtained by Rahaman et al [IJMPD, 10, 735 (2001)] are particular case of our solutions. Finally, the geodesic equations and acceleration of the test particle are discussed.

KEYWORDS : Domain Wall, Cosmology, Lyra Geometry.
PACS No. : 98.80.H, 04.20.Jb

*Corresponding Author e-mail: acpradhan@yahoo.com, apradhan@mri.ernet.in
1 Introduction

The study of topological defects in cosmology relevant to structure formation and evolution of the universe has been widely studied [1]. Of all the topological defects domain walls are deceptively simple to study. It is established that absolutely stable domain walls that have a mass per unit area greater than $4 \times 10^{-3} \text{g/cm}^2[(10\text{MeV})^3$ in units where $\hbar = c = 1]$ are cosmological disaster [2, 3]. However, unstable (but perhaps long-lived) domain walls could have been present in the early universe [4]. Furthermore, light domain walls might even be present today [5]. In either case domain walls may play an important role in the universe.

Domain walls form when a discrete symmetry is spontaneously broken [2]. In simplest models, symmetry breaking is accomplished by a real scalar field ϕ whose vacuum manifold is disconnected. [For example, suppose that the scalar potential for ϕ is $U(\phi) = \lambda(\phi^2 - \mu^2)^2$. The vacuum manifold for ϕ then consists of the two points $[\phi = \mu$ and $\phi = -\mu]$. After symmetry breaking, different regions of the universe can settle into different parts of the vacuum with domain walls forming the boundaries between these regions. The stress energy for a static, plane-symmetric domain wall consists of a positive surface energy density and a surface tension equal in magnitude to the surface energy [3]. We note, however that this analysis neglects the effects of gravity [6]. Locally, the stress energy for a wall of arbitrary shape is similar to that of a plane-symmetric wall having both surface energy density and surface tension. Closed-surface domain walls collapse due to their surface tension. However, the details of the collapse for a wall with arbitrary shape and finite thickness are largely unknown.

The spacetime of cosmological domain walls has now been a subject of interest for more than a decade since the work of Vilenkin and Ipser and Sikivie [4, 5] who use Israel’s thin wall formalism [9] to compute the gravitational field of an infinitesimally thin planar domain wall. After the original work by Vilenkin, Ipser and Sikivie [7, 8] for thin walls, attempts focused on trying to find a perturbative expansion in the wall thickness [10, 11]. With the proposition by Hill, Schramm and Fry [11] of a late phase transition with thick domain walls, there was some effort in finding exact thick solution [12, 13]. Recently, Bonjour et al [14] considered gravitating thick domain wall solutions with planar and reflection symmetry in the Goldstone model.
Bonjour et al. [15] also investigated the spacetime of a thick gravitational domain wall for a general potential $V(\phi)$. Jensen and Soleng [16] have studied anisotropic domain walls where the solution has naked singularities and the generic solution is unstable to Hawking decay.

The universe is spherically symmetric and the matter distribution in it is on the whole isotropic and homogeneous. But during the early stages of evolution, it is unlikely that it could have had such a smoothed out picture. Hence we consider plane symmetry which provides an opportunity for the study of inhomogeneity. Most studies in cosmology involve a perfect fluid. Large entropy per baryon and the remarkable degree of isotropy of the cosmic microwave background radiation, suggest that we should analyse dissipative effects in cosmology. Further, there are several processes which are expected to give rise to viscous effect. These are the decoupling of neutrinos during the radiation era and the recombination era [17], decay of massive super string modes into massless modes [18], gravitational string production [19, 20] and particle creation effect in grand unification era [21]. It is known that the introduction of bulk viscosity can avoid the big bang singularity. Thus, we should consider the presence of a material distribution other than a perfect fluid to have realistic cosmological models (see Grøn [22] for a review on cosmological models with bulk viscosity).

To study thick domain walls, one can study the field equations as well as equations of the domain walls treated as the self interacting scalar field. A thick domain wall can be viewed as a soliton-like solution of the scalar field equation coupled with gravity. In order to determine the gravitational field one has to solve Einstein’s equation with an energy momentum tensor $T_{\mu\nu}$ describing a scalar field ϕ with self-interactions contained in a potential $V(\phi)$ [6, 7, 8, 12].

$$T_{\mu\nu} = \delta_\mu^\lambda \delta_\nu_\lambda \phi - g_{\mu\nu} \left(\frac{1}{2} \delta_\sigma^\lambda \phi \delta^\mu_\sigma \phi - V(\phi) \right) \quad (1)$$

In another approach to study the phenomenon one has to assume the energy momentum tensor in the form

$$T_{ik} = \rho (g_{ik} + W_i W_k) + p W_i W_k, \quad W_i W^K = -1 \quad (2)$$

where ρ is the energy density of the wall, p is the pressure in the direction normal to the plane of the wall and W_i is a unit space like vector in the same
In 1951 Lyra proposed a modification of Riemannian geometry by introducing a gauge function into the structureless manifold, as a result of which the cosmological constant arises naturally from geometry. This bears a remarkable resemblance to Weyl’s geometry. But in Lyra’s geometry, unlike Weyl’s, the connection is metric preserving as in Riemannian; in other words, length transfers are integrable. Lyra also introduced the notion of a gauge and in the “normal” gauge the curvature scalar is identical to that of Weyl. In subsequent investigations Sen, Sen and Dunn proposed a new scalar-tensor theory of gravitation and constructed an analog of the Einstein field equations based on Lyra’s geometry. It is, thus, possible to construct a geometrised theory of gravitation and electromagnetism along the lines of Weyl’s “unified” field theory without inconvenience of non-integrability length transfer. Halford has pointed out that the constant vector displacement field ϕ_i in Lyra’s geometry plays the role of cosmological constant Λ in the normal general relativistic treatment. It is shown by Halford that the scalar-tensor treatment based on Lyra’s geometry predicts the same effects, within observational limits as the Einstein’s theory. Several investigators viz. Sen and Vanstone, Bhamra, Karade and Borikar, Kalyanshetti and Wagmode, Reddy and Innaiah, Beesham, Reddy and Venkateswarlu, Soleng, Singh and Singh, Singh and Desikan, Pradhan and Vishwakarma, Pradhan et al. have studied cosmological models based on Lyra’s manifold with a constant displacement field vector. However, this restriction of the displacement field to be constant is merely one of convenience and there is no a priori reason for it. Soleng has pointed out that the cosmologies based on Lyra’s manifold with constant gauge vector ϕ will either include a creation field and be equal to Hoyle’s creation field cosmology or contain a special vacuum field which together with the gauge vector term may be considered as a cosmological term. In the latter case the solutions are equal to the general relativistic cosmologies with a cosmological term.

In this paper we obtain all possible general solutions for domain wall in Lyra geometry in the plane symmetric spacetime metric given by Taub. Expressions for the energy density and pressure of domain walls are obtained in both cases of uniform and time varying displacement field β. We have also
shown that the result obtained by Rahaman et al. [23] is a special case of our solutions.

2 Field Equations

In this section we shall consider the field equations, in normal gauge for Lyra’s manifold, obtained by Sen [26] as

$$ R_{ij} - \frac{1}{2}g_{ij}R + \frac{3}{2}\phi_i\phi_j - \frac{3}{4}g_{ij}\phi_k\phi^k = -8\pi GT_{ij} \quad (3) $$

for study domain walls. The energy momentum tensor T_{ij} in comoving co-ordinates for thick domain walls take the form

$$ T_0^0 = T_2^2 = T_3^3 = \rho, \quad T_1^1 = -p, \quad T_0^1 = 0 \quad (4) $$

and displacement vector ϕ_i is defined by $\phi_i = (0, 0, 0, \beta)$, where β may be considered constant as well as function of time coordinate like cosmological constant in Einstein’s theory of gravitation.

We consider the most general plane symmetric spacetime metric suggested by Taub [46]

$$ ds^2 = e^{-A}(dt^2 - dz^2) - e^B(dx^2 + dy^2) \quad (5) $$

where A and B are functions of t and z.

Using equation (4) the field equations (3) for the metric (5) reduce to

$$ \frac{e^{-A}}{4}(-4B'' - 3B'^2 + 2A'B') + \frac{e^{-A}}{4}(\ddot{B}^2 + 2\dot{B}\dot{A}) - \frac{3}{4}e^{-A}\beta^2 = 8\pi\rho \quad (6) $$

$$ \frac{e^{-A}}{4}(-B'^2 - 2B'A') + \frac{e^{-A}}{4}(-4\dot{B} + 3\ddot{B} - 2\dot{A}\dot{B}) + \frac{3}{4}e^{-A}\beta^2 = -8\pi p_1 \quad (7) $$

$$ \frac{e^{-A}}{4}[-2(A'' + B'') - B'^2] + \frac{e^{-A}}{4}[2(\ddot{A} + \ddot{B}) + \dot{B}^2] + \frac{3}{4}e^{-A}\beta^2 = 8\pi\rho \quad (8) $$

$$ -\dot{B}' + B'(A' - B') + \dot{A}B' = 0 \quad (9) $$

In order to solve the above set of field equations we assume the separable form of the metric coefficients as follows

$$ A = A_1(z) + A_2(t), \quad B = B_1(z) + B_2(t) \quad (10) $$
From Eqs. (9) and (10), we obtain

\[
\frac{A'_1}{B'_1} = \frac{\dot{B}_2 - \dot{A}_2}{B_2} = m, \tag{11}
\]

where \(m \) is considered as separation constant

Eq. (11) yields the solution

\[
A_1 = mB_1 \tag{12}
\]

\[
A_2 = (1 - m)B_2 \tag{13}
\]

Again, subtracting Eq. (8) from Eq. (6) and using Eq. (10), we obtain

\[
A''_1 - B''_1 - B''_2 + A'B'_1 = \ddot{A}_2 + \ddot{B}_2 - \dot{A}_2\dot{B}_2 + 3\beta^2 = k, \tag{14}
\]

where \(k \) is another separation constant. With the help of Eqs (12) and (13), Eq. (14) may be written as

\[
(m - 1)[B''_1 + B''_2] = k \tag{15}
\]

\[
(2 - m)\ddot{B}_2 + (m - 1)\dot{B}_2^2 = k - 3\beta^2 \tag{16}
\]

3 Solutions of the field equations

In this section we shall obtain exact solutions for thick domain walls in different cases.

Using the substitution \(u = e^{B_1} \) and \(a = \frac{k}{1 - m} \), Eq. (15) takes the form

\[
u'' + au = 0 \tag{17}
\]

which has solution

\[
e^{B_1} = u = \begin{cases}
 c_1 \sinh(z\sqrt{|a|}) + c_2 \cosh(z\sqrt{|a|}) & \text{when } a < 0 \\
 c_1 + c_2z & \text{when } a = 0 \\
 c_1 \sin(z\sqrt{a}) + c_2 \cos(z\sqrt{a}) & \text{when } a > 0
\end{cases} \tag{18}
\]

where \(c_1 \) and \(c_2 \) are integrating constants. Eq. (18) represent the complete solution of the differential Eq. (17). It may be noted that Rahaman et al [23] have obtained a particular solution for the case \(a < 0 \). Their solution can be
obtained from Eq. (18) by taking $c_1 = 0$ and $c_2 = 2$ for the case $a < 0$.

Eq. (16) may be written as

$$\ddot{B}_2 - \frac{(1-m)}{(2-m)} \dot{B}_2^2 + \frac{3}{(2-m)} \beta^2 = \frac{k}{2-m}$$

(19)

Now we shall consider uniform and time varying displacement field β separately.

Case I: Uniform displacement field ($\beta = \beta_0$, constant)

By use of the transformation $v = e^{-\frac{(1-m)}{(2-m)} B_2}$, equation (19) reduces to

$$\ddot{v} + bv = 0,$$

(20)

where $b = \frac{(1-m)(k-3\beta_0^2)}{(2-m)^2}$. Again, it can be easily seen that Eq. (20) possesses the solution

$$e^{-\frac{(1-m)}{(2-m)} B_2} = v = \begin{cases}
\tilde{c}_1 \sinh(t \sqrt{|b|}) + \tilde{c}_2 \cosh(t \sqrt{|b|}) & \text{when } b < 0 \\
\tilde{c}_1 + \tilde{c}_2 t & \text{when } b = 0 \\
\tilde{c}_1 \sin(t \sqrt{b}) + \tilde{c}_2 \cos(t \sqrt{b}) & \text{when } b > 0
\end{cases}$$

(21)

where \tilde{c}_1 and \tilde{c}_2 are integrating constants. Hence the metric coefficients have the explicit forms as

$$e^A = \begin{cases}
\{c_1 \sinh(z \sqrt{|a|}) + c_2 \cosh(z \sqrt{|a|})\}^m \times \\
\{\tilde{c}_1 \sinh(t \sqrt{|b|}) + \tilde{c}_2 \cosh(t \sqrt{|b|})\}^{(m-2)} & \text{when } a < 0, \ b < 0 \\
\{c_1 + c_2 z\}^m \{\tilde{c}_1 + \tilde{c}_2 t\}^{(m-2)} & \text{when } a = 0, \ b = 0 \\
\{c_1 \sin(z \sqrt{a}) + c_2 \cos(z \sqrt{a})\}^m \times \\
\{\tilde{c}_1 \sin(t \sqrt{b}) + \tilde{c}_2 \cos(t \sqrt{b})\}^{(m-2)} & \text{when } a > 0, \ b > 0
\end{cases}$$

(22)

$$e^B = \begin{cases}
\{c_1 \sinh(z \sqrt{|a|}) + c_2 \cosh(z \sqrt{|a|})\} \times \\
\{\tilde{c}_1 \sinh(t \sqrt{|b|}) + \tilde{c}_2 \cosh(t \sqrt{|b|})\}^{\frac{(2-m)}{(1-m)}} & \text{when } a < 0, \ b < 0 \\
\{c_1 + c_2 z\} \{\tilde{c}_1 + \tilde{c}_2 t\}^{\frac{(2-m)}{(1-m)}} & \text{when } a = 0, \ b = 0 \\
\{c_1 \sin(z \sqrt{a}) + c_2 \cos(z \sqrt{a})\} \times \\
\{\tilde{c}_1 \sin(t \sqrt{b}) + \tilde{c}_2 \cos(t \sqrt{b})\}^{-\frac{(2-m)}{(1-m)}} & \text{when } a > 0, \ b > 0
\end{cases}$$

(23)
With the help of Eqs. \((22)\) and \((23)\), the energy density and pressure can be obtained from Eqs. \((8)\) and \((9)\)

\[
32\pi \rho = \begin{cases}
\left[e^{-A} \left\{ (m + 1) \left| a \right| \left(\frac{Z_2}{Z_1} \right)^2 - 4 \right| a \right| + \\
(3-m)(2-m)^2 \left| b \right| \left(\frac{T_3}{T_1} \right)^2 - 3\beta_0^2 \right] \quad & \text{when } a < 0, \quad b < 0 \\
\left[e^{-A} \left\{ \frac{c_1(1+m)}{c_1+2c_2} \right\} - \\
(3-m)(2-m)^2 \left| b \right| \left(\frac{T_3}{T_1} \right)^2 - 3\beta_0^2 \right] \quad & \text{when } a = 0, \quad b = 0 \\
\left[e^{-A} \left\{ 4a + a \left(\frac{Z_2}{Z_1} \right)^2 (1 + m) + \\
(3-m)(2-m)^2 b(\frac{T_3}{T_1})^2 - 3\beta_0^2 \right\} \right] \quad & \text{when } a > 0, \quad b > 0
\end{cases}
\]

\[
32\pi p_1 = \begin{cases}
\left[e^{-A} \left\{ (m + 1) \left| a \right| \left(\frac{Z_2}{Z_1} \right)^2 - \frac{4(2-m)}{(1-m)} \left| b \right| + \\
(2-m)(2m^2-7m+2) \left| b \right| \left(\frac{T_3}{T_1} \right)^2 - 3\beta_0^2 \right] \quad & \text{when } a < 0, \quad b < 0 \\
\left[e^{-A} \left\{ \frac{c_1(1+m)}{c_1+2c_2} \right\} - \\
(4-m^2)(3-2m)c_2 \left(\frac{Z_2}{Z_1} \right)^2 - 3\beta_0^2 \right] \quad & \text{when } a = 0, \quad b = 0 \\
\left[e^{-A} \left\{ (1 + m)a \left(\frac{Z_2}{Z_1} \right)^2 + \frac{4(2-m)b}{(1-m)} + \\
(2-m)(2m^2-7m+2) b(\frac{T_3}{T_1})^2 - 3\beta_0^2 \right\} \right] \quad & \text{when } a > 0, \quad b > 0
\end{cases}
\]

where \(e^{-A} = \cosh^m(z\sqrt{\left| a \right|})\cosh^{2-m}(t\sqrt{\left| b \right|})Z_1^{-m}T_1^{2-m}\)

\[
Z_1 = c_2 + c_1 \tanh(z\sqrt{\left| a \right|}) \\
Z_2 = c_1 + c_2 \tanh(z\sqrt{\left| a \right|}) \\
T_1 = \tilde{c}_2 + \tilde{c}_1 \tanh(t\sqrt{\left| b \right|}) \\
T_2 = \tilde{c}_1 + \tilde{c}_2 \tanh(t\sqrt{\left| b \right|}) \\
Z_3 = c_1 - c_2 \tanh(z\sqrt{\left| a \right|}) \\
Z_4 = c_2 + c_1 \tanh(z\sqrt{\left| a \right|}) \\
T_3 = \tilde{c}_1 + \tilde{c}_2 \tanh(t\sqrt{\left| b \right|}) \\
T_4 = \tilde{c}_2 + \tilde{c}_1 \tanh(t\sqrt{\left| b \right|})
\]

Case II: Time varying displacement field \((\beta = \beta_0 t^\alpha)\).

Using the aforesaid power law relation between time coordinate and displacement field, Eq. \((19)\) may be written as

\[
\ddot{w} - \left[\frac{3(1-m)\beta_0^2}{4(2-m)^2} t^{2\alpha} - \frac{k(1-m)}{(2-m)^2} \right] w = 0,
\]

where

\[
w = e^{\frac{(1-m)}{(2-m)} B_2}
\]
Now, it is difficult to find a general solution of Eq. (26) and hence we consider a particular case of physical interest. It is believed that β^2 has similar behaviour as the cosmological constant which decreases during expansion of universe. Several authors [17]–[52] have considered the relation $\beta \sim \frac{1}{t}$ for study of cosmological models in different context.

Considering $\alpha = -1(\beta = \frac{h}{t})$, Eq. (26) reduces to

$$t^2\ddot{w} + \left[\frac{k(1 - m)}{(2 - m)^2}t^2 - \frac{3}{4}\frac{(1 - m)}{(2 - m)^2}\beta_0^2\right]w = 0$$ \hspace{1cm} (28)

Eq. (28) yields the general solution

$$w = (t^3D)^r \frac{c_1e^{ht} + c_2e^{-ht}}{t^{2r-1}}$$ \hspace{1cm} (29)

where

$$D \equiv \frac{d}{dt}$$

$$r = \frac{1}{2}\left\{1 + \frac{3(1-m)}{(2-m)^2}\beta_0^2\right\}^{1/2} - 1$$

$$h^2 = \frac{k(1 - m)}{(2 - m)^2}$$

For $r = 1$, $\beta_0^2 = \frac{8(2-m)^2}{3(1-m)}$, Eq. (29) suggests

$$w = (h - \frac{1}{t})c_3e^{ht} - (h + \frac{1}{t})c_4e^{-ht},$$ \hspace{1cm} (30)

where c_3 and c_4 are integrating constants.

Hence the metric coefficients have the explicit forms as

$$e^A = \begin{cases}
\{c_1\sinh(z\sqrt{|a|}) + c_2\cosh(z\sqrt{|a|})\}^m \times \\
\{(h - \frac{1}{t})c_3e^{ht} - (h + \frac{1}{t})c_4e^{-ht}\}^{(m-2)} & \text{when } a < 0 \\
\{c_1 + c_2z\}^m\{\{(h - \frac{1}{t})c_3e^{ht} - (h + \frac{1}{t})c_4e^{-ht}\}^{(m-2)} & \text{when } a = 0 \\
\{c_1\sin(z\sqrt{a}) + c_2\cos(z\sqrt{a})\}^m \times \\
\{(h - \frac{1}{t})c_3e^{ht} - (h + \frac{1}{t})c_4e^{-ht}\}^{(m-1)} & \text{when } a > 0
\end{cases}$$ \hspace{1cm} (31)

$$e^B = \begin{cases}
\{c_1\sinh(z\sqrt{|a|}) + c_2\cosh(z\sqrt{|a|})\} \times \\
\{(h - \frac{1}{t})c_3e^{ht} - (h + \frac{1}{t})c_4e^{-ht}\}^{(2-m)} & \text{when } a < 0 \\
\{c_1 + c_2z\}\{(h - \frac{1}{t})c_3e^{ht} - (h + \frac{1}{t})c_4e^{-ht}\}^{(2-m)} & \text{when } a = 0 \\
\{c_1\sin(z\sqrt{a}) + c_2\cos(z\sqrt{a})\} \times \\
\{(h - \frac{1}{t})c_3e^{ht} - (h + \frac{1}{t})c_4e^{-ht}\}^{(2-m)} & \text{when } a > 0
\end{cases}$$ \hspace{1cm} (32)
With the help of Eq. (31) and (34), the energy density and pressure can be obtained from Eqs. (8) and (7).

\[
32\pi \rho = \begin{cases}
 e^{-A}\left\{ a \left(\frac{Z_a}{Z_4} \right)^2 (1 + m) - 4 \right\} + \frac{(3-m)(2-m)^2}{(1-m)^2} \left(\frac{c h^2 t}{T_6} - \frac{1}{t} \right)^2 - \frac{3\beta^2}{t^2} & \text{when } a < 0 \\
 e^{-A}\left\{ \frac{c^2}{\left(c_1 + c_2 \right)^2} \right\} + \frac{(3-m)(2-m)^2}{(1-m)^2} \left(\frac{c h^2 t}{T_6} - \frac{1}{t} \right)^2 - \frac{3\beta^2}{t^2} & \text{when } a = 0 \\
 e^{-A}\left\{ 4a + (1 + m) a \left(\frac{Z_a}{Z_4} \right)^2 \right\} + \frac{(3-m)(2-m)^2}{(1-m)^2} \left(\frac{c h^2 t}{T_6} - \frac{1}{t} \right)^2 - \frac{3\beta^2}{t^2} & \text{when } a > 0
\end{cases}
\]

32\pi p_1 = \begin{cases}
 e^{-A}\left\{ (m + 1)a \left(\frac{Z_a}{Z_4} \right)^2 - \frac{(1+2m)(2-m)^2}{(1-m)^2} \left(\frac{c h^2 t}{T_6} - \frac{1}{t} \right)^2 \right\} - \frac{4(2-m)}{(1-m)} \left(\frac{1}{r^2} - \frac{4c_4 h^2 t e^{-2ht}}{T_6} + h^2 \left(\frac{T_6}{T_5} \right)^2 - \frac{3\beta^2}{t^2} \right) & \text{when } a < 0 \\
 e^{-A}\left\{ \frac{c^2}{(c_1 + c_2)^2} - \frac{(1+2m)(2-m)^2}{(1-m)^2} \left(\frac{c h^2 t}{T_6} - \frac{1}{t} \right)^2 \right\} - \frac{4(2-m)}{(1-m)} \left(\frac{1}{r^2} - \frac{4c_4 h^2 t e^{-2ht}}{T_6} + h^2 \left(\frac{T_6}{T_5} \right)^2 - \frac{3\beta^2}{t^2} \right) & \text{when } a = 0 \\
 e^{-A}\left\{ (1 + m) a \left(\frac{Z_a}{Z_4} \right)^2 - \frac{(1+2m)(2-m)^2}{(1-m)^2} \left(\frac{c h^2 t}{T_6} - \frac{1}{t} \right)^2 \right\} - \frac{4(2-m)}{(1-m)} \left(\frac{1}{r^2} - \frac{4c_4 h^2 t e^{-2ht}}{T_6} + h^2 \left(\frac{T_6}{T_5} \right)^2 - \frac{3\beta^2}{t^2} \right) & \text{when } a > 0
\end{cases}
\]

where

\[
T_5 = c_3 + c_4(1 + 2ht)e^{-2ht} \\
T_6 = c_3(ht - 1) - c_4(1 + ht)e^{-2ht}
\]

From the above results in both cases it is evident that at any instant the domain wall density \(\rho \) and pressure \(p_1 \) in the perpendicular direction decreases on both sides of the wall away from the symmetry plane and both vanish as \(Z \rightarrow \pm \infty \). The space times in both cases are reflection symmetry with respect to the wall. All these properties are very much expected for a domain wall.

4 Study of Geodesics

The trajectory of the test particle \(x^i(t(\lambda), x(\lambda), y(\lambda), z(\lambda)) \) in the gravitational field of domain wall can be determined by integrating the geodesic equations

\[
\frac{d^2 x^\mu}{d\lambda^2} + \Gamma^\mu_{\alpha\beta} \frac{dx^\alpha}{d\lambda} \frac{dx^\beta}{d\lambda} = 0
\]
for the metric (5). It has been already mentioned in [23], the acceleration of the test particle in the direction perpendicular to the domain wall (i.e. in the z-direction) may be expressed as

$$\ddot{z} = \frac{e^{B-A}}{2} \frac{\partial B}{\partial z} \left(\dot{x}^2 + \dot{y}^2 \right) - \frac{1}{2} \frac{\partial A}{\partial z} \left(\dot{t}^2 + \dot{z}^2 \right) - \frac{\partial A}{\partial z} \dot{t} \dot{z} \quad (36)$$

By simple but lengthy calculation one can get expression for acceleration which may be positive, negative (or zero) depending on suitable choice of the constants. This implies that the gravitational field of domain wall may be repulsive or attractive in nature (or no gravitational effect).

5 Conclusions

The present study deals with plane symmetric domain wall within the framework of Lyra geometry. The essential difference between the cosmological theories based on Lyra geometry and Riemannian geometry lies in the fact that the constant vector displacement field β arises naturally from the concept of gauge in Lyra geometry whereas the cosmological constant λ was introduced in ad hoc fashion in the usual treatment. Currently the study of domain walls and cosmological constant have gained renewed interest due to their application in structure formation in the universe. Recently Rahaman et al [23] have presented a cosmological model for domain wall in Lyra geometry under a specific condition by taking displacement fields β as constant. The cosmological models based on varying displacement vector field β have widely been considered in the literature in different context [38]–[42]. Motivated by these studies it is worthwhile to consider domain walls with a time varying β in Lyra geometry. In this paper both cases viz., constant and time varying displacement field β, are discussed in the context of domain walls with the framework of Lyra geometry. It has been pointed out that the result of Rahman et al [23] is a special case of our results. Further for the sake of completeness all possible solutions of the field equations are presented in this paper.
Acknowledgements

The authors would like to thank the Harish-chandra Research Institute, Allahabad, India for hospitality during a school on cosmology where part of this work is done. We also thank Shiv Sethi for useful suggestions.

References

[1] A. Vilenkin and E. P. S. Shellard, *Cosmic string and other topological defects* (Cambridge: Cambridge University Press, 1994).

[2] T. W. B. Kibble, *J. Phys. A* **9**, 1387 (1976); *Phys. Rep.* **67**, 183 (1980).

[3] Ya. B. Zel’dovich, I. Yu. Kobzarev and L. B. Okun, *Zh. Eksp. Teor. Fiz.* **67**, 3 (1974) [Sov. Phys. JETP **40**, 1 (1975)].

[4] W. B. Kibble, G. Lazarides and Q. Shafi, *Phys. Rev. D* **26**, 435 (1982); A. Vilenkin and A. E. Everett, *Phys. Rev. Lett.* **48**, 1867 (1982); A. E. Everett and A. Vilenkin, *Nucl. Phys. B* **207**, 43 (1982).

[5] C. T. Hill, D. N. Schramm and J. N. Fry, *Nucl. Phys. B* **111**, 253 (1988).

[6] L. M. Widrow, *Phys. Rev. D* **39**, 3571 (1989).

[7] A. Vilenkin, *Phys. Lett.* **133 B**, 177 (1983).

[8] J. Ipser and P. Sikivie, *Phys. Rev. D* **30**, 712 (1984).

[9] W. Israel, *Nuovo Cim. B* **44**, 1 (1966).

[10] D. Garfinkle and R. Gregory, *Phys. Rev. D* **41**, 1889 (1990).

[11] C. T. Hill, D. N. Schramm and J. N. Fry, *Comment Nucl. Part. Phys.* **19**, 25 (1989).

[12] G. Goetz, *J. Math. Phys.* **31**, 2683 (1990).

[13] M. Mukherjee, *Class. Quant. Grav.* **10**, 131 (1993).
[14] F. Bonjour, C. Charmousis and R. Gregory, [qr-qc/9903059] talk given at Les Houches Winter School (1999).

[15] F. Bonjour, C. Charmousis and R. Gregory, *Class. Quant. Grav.* **16**, 2427 (1999).

[16] B. Jensen and H. H. Soleng, *Class. Quant. Grav.* **14**, 1821 (1997).

[17] E. W. Kolb and M. S. Turner, *The Early Universe* (Addison - Wesley, U S A, 1990).

[18] S. Myung and B. M. Cho, *Mod. Phys. Letter A* **1**, 37 (1987).

[19] N. Turok, *Phys. Rev. Lett.* **60**, 549 (1988).

[20] J. D. Barrow, *Nucl. Phys.* **B 310**, 243 (1988).

[21] C. Wolf, *S.-Afr. Tydskr.* **14**, 68 (1991).

[22] Ø. Grøn, *Astrophys. Space Sci.* **173**, 191 (1990).

[23] F. Rahaman, S. Chakraborty and M. Kalam, *Int. J. Mod. Phys.* **D 10**, 735 (2001).

[24] G. Lyra, *Math. Z.* **54**, 52 (1951).

[25] H. Weyl, Sber. *Preuss. Akad. Wiss.* Berlin, 465 (1918).

[26] D. K. Sen, *Z. Phys.*, **149**, 311 (1957).

[27] D. K. Sen and K. A. Dunn, *J. Math. Phys.* **12**, 578 (1971).

[28] W. D. Halford, *Austr. J. Phys.* **23**, 863 (1970).

[29] W. D. Halford, *J. Math. Phys.* **13**, 1399 (1972).

[30] D. K. Sen and J. R. Vanstone, *J. Math. Phys.* **13**, 990 (1972).

[31] K. S. Bhamra, *Austr. J. Phys.* **27**, 541 (1974).

[32] T. M. Karade and S. M. Borikar, *Gen. Rel. Gravit.* **9**, 431 (1978).

[33] S. B. Kalyanshetti and B. B. Waghmode, *Gen. Rel. Gravit.* **14**, 823 (1982).
[34] D. R. K. Reddy and P. Innaiah, Astrophys. Space Sci. 123, 49 (1986).

[35] A. Beesham, Astrophys. Space Sci. 127, 189 (1986); Austr. J. Phys. 41, 833 (1988).

[36] D. R. K. Reddy and R. Venkateswarlu, Astrophys. Space Sci. 136, 191 (1987).

[37] H. H. Soleng, Gen. Rel. Gravit. 19, 1213 (1987).

[38] T. Singh and G. P. Singh, J. Math. Phys. 32, 2456 (1991a); Il. Nuovo Cimento B 106, 617 (1991b); Int. J. Theor. Phys. 31, 1433 (1992); Fortschr. Phys. 41, 737 (1993).

[39] G. P. Singh and K. Desikan, Pramana, 49, 205 (1997).

[40] A. Pradhan and A. K. Vishwakarma, Preprint IUCAA-27/1999, Gravitation & Cosmology (to appear).

[41] A. Pradhan, V. K. Yadav and I. Chakrabarty, Preprint MRI-PHY/2000 0837; Int. J. Mod. Phys. D 10, 339 (2000).

[42] A. Pradhan, A. Kumar and I. Chakrabarty, Preprint MRI-PHY/P 2000 0835; Preprint MRI-PHY/ P 2000 0836.

[43] F. Hoyle, Monthly Notices Roy. Astron. Soc. 108, 252 (1948).

[44] F. Hoyle and J. V. Narlikar, Proc. Roy. Soc. London Ser. A, 273, 1 (1963).

[45] F. Hoyle and J. V. Narlikar, Proc. Roy. Soc. London Ser. A, 282, 1 (1964).

[46] A. H. Taub, Ann. Math. 53, 472 (1951).

[47] M. S. Berman and M. M. Som, Int. J. Theor. Phys. 29, 1311 (1990).

[48] M. S. Berman, M. M. Som and F. M. Gomide, Gen. Rel. Grav. 21, 287 (1989).

[49] M. S. Berman, Int. J. Theor. Phys. 29, 567 (1990).

[50] M. S. Berman, Int. J. Theor. Phys. 29, 1419 (1990).
[51] O. Bertolami, *Nuovo Cimento* **39**, 36 (1986).

[52] O. Bertolami, *Fortschr. Phys.* **34**, 829 (1986).

[53] A. Beesham, *Phys. Rev.* **D48**, 3539 (1993).

[54] A. Beesham, *Int. J. Theor. Phys.* **25**, 1295 (1986).

[55] T. Singh, A. Beesham and W. S. Mbokazi, *Gen. Rel. Grav.* **30**, 537 (1998).

[56] A. Pradhan and A. K. Vishwakarma, *SUJST*, XII, Sec.B, 42 (2000).

[57] A. Pradhan and A. Kumar, *Preprint IUCAA-24/2000; Int. J. Mod. Phys. D** **10**, 291 (2001).

[58] I. Chakrabarty and A. Pradhan, *Preprint MRI-PHY/P2000 0838; Gravitation & Cosmology, 7*, 55 (2001).

[59] A. Pradhan, N. N. Saste and V. K. Yadav, *Preprint MRI-PHY/P2000 0940; Int. J. Mod. Phys. D* (to appear).