Supplementary Material S1: Investigating the Role of T-Cell Avidity and Killing Efficacy in Relation to Type 1 Diabetes Prediction

Anmar Khadra1, Massimo Pietropaolo2, Gerald T. Nepom3, Arthur Sherman1

1Laboratory of Biological Modeling
National Institute of Diabetes and Digestive and Kidney Diseases
National Institutes of Health, Bethesda, Maryland, USA

2Laboratory of Immunogenetics
University of Michigan, Ann Arbor, Michigan, USA

3Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA

\section{A Model Scaling}

\subsection{A.1 Scaled one-clone model}

By making the following substitutions: \(t_c = T_c/\tilde{R} \) (here \(\tilde{R} := (\alpha^{1/2} - \delta^{1/2}_{T_c})^2/\epsilon \)), \(b = \eta_0 B/\gamma \), \(p_c = \delta_P P_c/\gamma \), \(i_g = \delta_I g P_c/(a_2 \gamma) \), \(p = \delta_P P/(R \tilde{R} \beta_0) \) (here \(\beta_0 \) is the initial number of beta cells), \(\beta_s = \beta/\beta_0 \), we get

\begin{align}
\frac{dt_c}{dt} &= \alpha t_c \frac{p}{p + k} - \delta_T t_c - (\alpha^{1/2} - \delta^{1/2}_T)^2 \epsilon c \\
\frac{db}{dt} &= \eta_0 + (-\eta_2 p t_c + \eta_1 p - \eta_0)b \\
\frac{dp_c}{dt} &= \delta_P \left[\eta_2 p t_c b/\eta_0 - p_c \right] \\
\frac{di_g}{dt} &= \delta_I g \left[\ell b + p_c - i_g \right] \\
\frac{d\beta_s}{dt} &= -\kappa R t_c \beta_s \\
\frac{dp}{dt} &= \delta_P \left[t_c \beta_s - p \right],
\end{align}

where \(k = \delta_P \tilde{k}/(R \tilde{R} \beta_0) \), \(\eta_2 = \tilde{\eta}_2 R \tilde{R}^2 \beta_0/\delta_P \), \(\eta_1 = \tilde{\eta}_1 R \tilde{R} \beta_0/\delta_P \), and \(\ell = a_1 \delta_P/(a_2 \eta_0) \).
A.2 Reduced/scaled one-clone model

Substituting the variables \(b, i_g \) and \(p \) by their steady states (fast variables) and assuming that \(\beta_s \) is roughly a constant (slow variable), i.e. \(\beta_s = 1 \), generates the following two-variable model

\[
\begin{align*}
\frac{dt_c}{dt} &= \alpha t_c \frac{t_c}{t_c + \bar{k}} - \delta t_c t_c - (\alpha^{1/2} - \delta^{1/2} t_c)^2 t_c^2 \\
\frac{dp_c}{dt} &= \delta p_c \left[\frac{\eta_2 t_c^2}{\eta_1 t_c + \eta_0} - p_c \right],
\end{align*}
\]

(S2a)

where \(\bar{k} = k/\beta_s (= k) \) (can be shown analytically to satisfy \(0 \leq \bar{k} \leq 1 \), see Section B) and \(\eta_0 = \eta_0/\beta_s (= \eta_0) \).

A.3 Scaled two-clone model

By applying the following substitutions \(t_{cj} = T_{cj}/\bar{R} \) (here \(\bar{R} := (\alpha^{1/2} - \delta^{1/2} t_c)^2/\epsilon \)), \(b_j = \eta_0 j B_j/\gamma_j \), \(p_{cj} = \delta P_{cj} P_{cj}/\gamma_j \), \(i_{gj} = \delta i_{gj} \beta_{gj} I_{gj}/(a_{2j} \gamma_j) \) and \(p_j = \delta P_j P_j/(R_j \bar{R} \beta_0) \) \((j = 1, 2) \), we obtain

\[
\begin{align*}
\frac{dt_{cj}}{dt} &= \alpha_{t_{cj}} t_{cj} \frac{p_{cj}}{p_{cj} + k_{1j}} - \delta_{t_{cj}} t_{cj} - (\alpha_{21}^{1/2} - \delta_{21}^{1/2} t_{cj})^2 t_{cj} (t_{c11} + t_{c12}) \\
\frac{dt_{cj}}{dt} &= \alpha_{t_{cj}} t_{cj} \frac{p_{cj}}{p_{cj} + k_{2j}} - \delta_{t_{cj}} t_{cj} - (\alpha_{21}^{1/2} - \delta_{21}^{1/2} t_{cj})^2 t_{cj} (t_{c21} + t_{c22}) \\
\frac{dp_{cj}}{dt} &= \delta_{p_{cj}} \left[\frac{\eta_2 p_{cj} G(t_{c11}, t_{c12}, t_{c21}, t_{c22})}{\eta_0} + \eta_1 p_{cj} - \eta_0 \right] b_j \\
\frac{dp_{cj}}{dt} &= \delta_{p_{cj}} \left[\frac{\eta_2 p_{cj} G(t_{c11}, t_{c12}, t_{c21}, t_{c22}) b_j}{\eta_0} - p_{cj} \right] \\
\frac{dp_{cj}}{dt} &= \delta_{i_{gj}} \left[\ell_j b_j + p_{cj} - i_{gj} \right] \\
\frac{dp_{cj}}{dt} &= -\kappa \bar{R} G(t_{c11}, t_{c12}, t_{c21}, t_{c22}) \beta_s \\
\frac{dp_{cj}}{dt} &= \delta_{P_j} \left[G(t_{c11}, t_{c12}, t_{c21}, t_{c22}) \beta_s - p_j \right],
\end{align*}
\]

(S3a)

(S3b)

(S3c)

(S3d)

(S3e)

(S3f)

(S3g)

where \(k_j = \delta_{P_j} \bar{k}_j/(R_j \bar{R} \beta_0) \), \(\eta_{2j} = \bar{\eta}_{2j} R_j \bar{R}^2 \beta_0/\delta_{P_j} \), \(\eta_{1j} = \bar{\eta}_{1j} R_j \bar{R} \beta_0/\delta_{P_j} \), \(\ell_j = a_{1j} \beta_{P_j}/(a_{2j} \eta_0) \) (recall that \(G \) is linear).
B Theoretical Results

B.1 Nullclines and steady states

We focus in this section on the reduced model described by Eqs. (S2a)-(S2b) to find its steady states and determine under what conditions these steady states are stable. In order to do so, we examine the t_c and p_c-nullclines and their points of intersections (steady states).

$$f_1(t_c) := \frac{\alpha}{t_c + \bar{k}} = \delta_{T_c} + (\alpha^{1/2} - \delta_{T_c}^{1/2})^2 t_c = 0$$

$$f_2(t_c, \bar{k}) := -k \left[\delta_{T_c} + (\alpha^{1/2} - \delta_{T_c}^{1/2})^2 t_c \right].$$

Equation (S2a) is independent of p_c, therefore its nullclines are vertical lines. Clearly, $t_c = 0$ is one t_c-nullcline. For additional t_c-nullclines, we must have

$$\alpha \frac{t_c}{t_c + \bar{k}} = \delta_{T_c} + (\alpha^{1/2} - \delta_{T_c}^{1/2})^2 t_c = 0 \iff \left(\alpha^{1/2} - \delta_{T_c}^{1/2} \right)^2 t_c^2 - (\alpha - \delta_{T_c}) t_c = -k \left[\delta_{T_c} + (\alpha^{1/2} - \delta_{T_c}^{1/2})^2 t_c \right].$$

Let $f_1(t_c) := (\alpha^{1/2} - \delta_{T_c}^{1/2})^2 t_c^2 - (\alpha - \delta_{T_c}) t_c$ and $f_2(t_c, \bar{k}) := -k \left[\delta_{T_c} + (\alpha - \delta_{T_c}) t_c \right]$. Fig. S1 shows typically the graphs of these two functions (f_1, f_2) intersecting at two points when the avidity of T cells is high.
enough (i.e., when k is small enough) and do not intersect otherwise. To determine the parameter range for k in which the two curves f_1, f_2 intersect, we solve for the roots of t_c from the quadratic Eqn. (S4). By letting $a := \alpha^{1/2} - \delta_{T_c}^{1/2} > 0$ and $b := \alpha^{1/2} + \delta_{T_c}^{1/2}$, we deduce that the roots of Eqn. (S4) are

$$t_{cr} = \frac{a(b - a\bar{k}) \pm \sqrt{a^2(b - a\bar{k})^2 - 4a^2\bar{k}\delta_{T_c}}}{2a^2}. \tag{S5}$$

To obtain real roots, we require the quantity inside the square root to be non-negative, i.e. $(b - a\bar{k})^2 - 4\bar{k}\delta_{T_c} \geq 0$. It follows that

$$b^2 - 2ab\bar{k} + a^2\bar{k}^2 - 4\bar{k}\delta_{T_c} \geq 0 \quad \iff \quad b^2 - 2(\alpha - \delta_{T_c})\bar{k} + a^2\bar{k}^2 - 4\delta_{T_c}\bar{k} \geq 0 \quad \iff \quad b^2 - 2\alpha\bar{k} + a^2\bar{k}^2 - 2\delta_{T_c}\bar{k} \geq 0.$$

But $-2\alpha\bar{k} - 2\delta_{T_c}\bar{k} = -2\bar{k}(\alpha + \delta_{T_c}) = -\bar{k}(a^2 + b^2)$. Hence

$$a^2\bar{k}^2 - (a^2 + b^2)\bar{k} + b^2 \geq 0 \quad \iff \quad a^2\bar{k}(\bar{k} - 1) - b^2(\bar{k} - 1) \geq 0,$$

which implies that

$$(a^2\bar{k} - b^2)(\bar{k} - 1) \geq 0. \tag{S6}$$

Inequality (S6) is satisfied either when $\bar{k} \geq (b/a)^2 > 1$ or $0 \leq \bar{k} \leq 1 < (b/a)^2$. If $\bar{k} \geq (b/a)^2$, then one of the $t_{cr} < 0$, a physiologically irrelevant case. However, if $0 \leq \bar{k} \leq 1$, then both $t_{cr} > 0$ and the graphs of the two functions f_1, f_2 intersect at either one point (i.e. they are tangential to each other) when $\bar{k} = 1$, or intersect at two points when $0 \leq \bar{k} < 1$, as demonstrated in Fig. S1. Thus, two physiologically relevant t_c-nullclines (vertical lines) are obtained in the interval $\bar{k} \in [0, 1)$.

By solving for p_c in Eqn. (S2b), we obtain the p_c-nullcline, given by

$$p_c = \frac{\eta_2 t_{c}^2}{\eta_2 t_{c}^2 - \eta_1 t_{c} + \eta_0}.$$

The points of intersection of the t_c- and p_c-nullclines are the steady states of Eqs. (S2a)-(S2b). There are three such intersections; namely, the point $S_1 := (0, 0)$, corresponding to a healthy state (with no effector CD8$^+$ T-cell, CD4$^+$ T-cell or plasma-cell accumulation); the point U, whose t_c-component is the left
black dot shown in Fig. S1; and the point S_2, corresponding to an autoimmune state (with elevated level of CD$^8^+$ T cells, CD$^4^+$ T cells and plasma cells), whose t_c-component is the right black dot in Fig. S1. These steady states can all coexist provided that $\bar{k} \in [0, 1)$. We demonstrate below that S_1 and S_2 are stable, while U is unstable.

Fig. S1 reveals that increasing T-cell avidity (i.e. decreasing \bar{k} within $[0, 1)$) shifts the right black dot of intersection (and thus the corresponding t_c-nullcline) to the right. This shift is accompanied by an elevation in the level of autoreactive T cells in the autoimmune state S_2. The left black dot of intersection, on the other hand, is shifted to the left against the origin, compressing the basin of attraction of the healthy state S_1. Details of these various configurations are explained in detail in the main text.

Notice that the denominator in the equation of p_c-nullcline could be zero (in which case, the p_c-nullcline will have a vertical asymptote). This may lead to an unbounded increase in the level of T cells in the autoimmune state S_2 while varying \bar{k}, a feature considered unrealistic biologically (see Fig. S1(a)). To avoid this situation, we impose the condition $\eta_1^2 < 4\eta_2\bar{\eta}_0$

B.2 Stability analysis

The Jacobian matrix of Eqs. (S2a)-(S2b) is given by

$$J = \begin{pmatrix}
\frac{2\alpha t_c}{t_c + \bar{k}} - \frac{\alpha t_c^2}{(t_c + \bar{k})^2} - 2(\alpha^{1/2} - \delta^{1/2}_{T_c})^2 t_c & 0 \\
\delta_{P_c} \left[\frac{2\eta_2 t_c}{\eta_2 t_c^2 - \eta_1 t_c + \bar{\eta}_0} - \frac{\eta_2 t_c^2 (2\eta_2 t_c - \eta_1)}{(\eta_2 t_c^2 - \eta_1 t_c + \bar{\eta}_0)^2} \right] & -\delta_{P_c}
\end{pmatrix}.$$

The eigenvalues of $J|_{S_1}$ are $\lambda_1 = -\delta_{T_c}$ and $\lambda_2 = -\delta_{P_c}$, both of which are negative, so the healthy state is always stable. In the presence of the two other steady states, the autoimmune state S_2 is also stable while the steady state U is unstable. The t_c-nullcline passing through U is the separatrix between the basins of attraction of the two states S_1 and S_2.

B.3 B-cell-dependent T-cell activation

In one of the model assumptions stated in the main text, we ignored the direct role of B cells in activating T cells and assumed that the three types of APCs under consideration (DCs, macrophages and B cells)
act uniformly on the T-cell population. We also assumed that the population size of APCs is roughly constant. Here we show that having a separate pool of B cells that acts directly on T cells as APCs for activation and cell replication, does not significantly alter the general behaviour of the reduced one-clone model.

To verify this, we modify Eqn. (S2a) to account for B-cell activation of T cells, as follows

$$\frac{dt_c}{dt} = (\alpha_B b + \alpha)t_c \frac{t_c}{t_c + \bar{\kappa}} - \delta T_c t_c - (\alpha^{1/2} - \delta^{1/2} T_c)^2 t_c^2,$$

where $\alpha_B bt_c^2/(t_c + \bar{\kappa})$ is the B-cell-dependent T-cell activation occurring at a rate α_B and satisfying $\alpha_B b + \bar{\alpha} \approx \alpha$. (This equation derives from the non-scaled form as done before.) Including such terms in the dynamic equation of t_c generates a cubic-shaped t_c-nullcline by joining the two right vertical nullcline associated with Eqs. (S2a)-(S2b) (see Fig. S2. Increasing the value of a_B decreases the steepness of this cubic nullcline and slightly alters the location of the steady states S_2 and U, but does not alter their stability. This suggests that the approximation used in Eqn. (S2a) is justifiable.

Fig. S2: The phase plane of Eqs. (S7) and (S2b), displaying the t_c- and p_c-nullclines for $a_B = 0.5$ ($t_c = 0$ nullcline is not shown because the c-axis is in logarithmic scale). The two gray lines are the t_c-nullclines, while the Hill-like black line is the p_c-nullcline. The stable steady state S_2, shown as black dot, is the autoimmune state as before, while the unstable steady state U is shown as a white dot. (The healthy state S_1 is not shown.) Including the term $\alpha_B bt_c^2/(t_c + \bar{\kappa})$ in the dynamic equation of t_c modified the shape of the t_c-nullclines only slightly.