Quadrature rules and distribution of points on manifolds

LUCA BRANDOLINI, CHRISTINE CHOIRAT, LEONARDO COLZANI, GIACOMO GIGANTE, RAFFAELLO SERI AND GIANCARLO TRAVAGLINI

Abstract. We study the error in quadrature rules on a compact manifold. Our estimates are in the same spirit of the Koksma-Hlawka inequality and they depend on a sort of discrepancy of the sampling points and a generalized variation of the function. In particular, we give sharp quantitative estimates for quadrature rules of functions in Sobolev classes.

Mathematics Subject Classification (2010): 41A55 (primary); 11K38, 42C15 (secondary).

1. Introduction

In what follows, \mathcal{M} is a smooth compact d-dimensional Riemannian manifold without boundary, with Riemannian measure dx, normalized so that the total volume of the manifold is 1, and Δ is the Laplace-Beltrami operator. This operator is self-adjoint in $L^2(\mathcal{M})$, it has a sequence of eigenvalues $\{\lambda_k^2\}$ and an orthonormal complete system of eigenfunctions $\{\varphi_k(x)\}$, $\Delta \varphi_k(x) = \lambda_k^2 \varphi_k(x)$. The eigenvalues, possibly repeated, are ordered with increasing modulus. In particular, the first eigenvalue is 0 and the associated eigenfunction is 1. An example is the torus $\mathbb{T}^d = \mathbb{R}^d/\mathbb{Z}^d$ with the Laplace operator $-\sum \partial^2/\partial x_j^2$, eigenvalues $\{4\pi^2|k|^2\}_{k \in \mathbb{Z}^d}$ and eigenfunctions $\{\exp(2\pi i k x)\}_{k \in \mathbb{Z}^d}$. Another example is the sphere $S^d = \{x \in \mathbb{R}^{d+1} : |x| = 1\}$ with dx the normalized surface measure and with Δ the angular component of the Laplacian in the space \mathbb{R}^{d+1}, eigenvalues $\{n(n+d-1)^{+\infty}_{n=0}\}$ and eigenfunctions the restriction to the sphere of homogeneous harmonic polynomials in space. With a small abuse of notation and in analogy with the Euclidean space, the Riemannian distance between x and y will be denoted $|x - y|$.

A classical problem is to approximate an integral $\int_{\mathcal{M}} f(x)dx$ with Riemann sums $N^{-1} \sum_{j=1}^N f(z_j)$, or weighted analogues $\sum_{j=1}^N \omega_j f(z_j)$, and what follows will be concerned with the discrepancy between integrals and sums for functions in

Received March 24, 2011; accepted in revised form September 4, 2012.