Change in pulmonary arterial compliance and pulmonary pulsatile stress after balloon pulmonary angioplasty

ABSTRACT

Objective: Although the underlying pathology of chronic thromboembolic pulmonary hypertension (CTEPH) is mechanical obliteration of the major pulmonary vessels, high pulsatile stress penetrating into the normal distal pulmonary microvasculature resulting from reduced pulmonary arterial compliance (C_{pa}) may cause progressive deterioration in pulmonary hemodynamics. Hypothetically, balloon pulmonary angioplasty (BPA) may be beneficial in reducing C_{pa} and pulsatile stress in patients with CTEPH.

Methods: In total, 26 patients with available pre- and post-BPA right heart catheterization results were included in the study. BPA was performed in a series of staged procedures by 2 experienced interventional cardiologists.

Results: The median C_{pa} showed a 59.2% increase (1.03 to 1.64 mL/mm Hg, $p=0.005$). The median pre-BPA pulsatile stress product decreased by 20.7% (4,266 to 3,380 mm Hg/min, $p=0.003$). A linear regression model established that the percent change in C_{pa} after BPA accounted for 21.8% of the explained variability in the change in 6-minute walk test ($p=0.009$).

Conclusion: Our results indicate that BPA decreases C_{pa} and pulmonary pulsatile stress. These changes may be partly responsible for the improvement in functional capacity after BPA.

Keywords: balloon angioplasty, compliance, pulmonary embolism, pulmonary hypertension, pulsatile flow

INTRODUCTION

Chronic thromboembolic pulmonary hypertension (CTEPH) is one of the potentially treatable causes of pulmonary hypertension (PH) in which high pulmonary arterial pressure results from a decrease in effective pulmonary vascular cross-sectional area (1). Although the underlying pathology of CTEPH is thromboembolic obliteration of the major vessels and elevated proximal pulmonary vascular resistance (PVR), high pulsatile stress penetrating into normal distal pulmonary microvasculature resulting from reduced pulmonary arterial compliance (C_{pa}) may negatively affect the remaining microvasculature. This may cause progressive deterioration in pulmonary hemodynamics (2).

Balloon pulmonary angioplasty (BPA) is a recently established method used in patients with inoperable or residual CTEPH (3). It has been shown to decrease mean pulmonary artery pressure (mPAP) and PVR and improve functional capacity, quality of life, and response to PH-specific therapy (4–9). Although the main mechanism of BPA is to eliminate proximal occlusive lesions and to reduce proximal PVR, it may also be beneficial in reducing C_{pa} and pulsatile stress by decompressing the pressure-loaded pulmonary arteries. Hypothetically, this may translate into a reduced pulsatile stress in the normal distal microvasculature and prevent progressive vascular remodeling. However, the data on the effects of BPA on C_{pa} and pulsatile stress are limited. In this study, we sought to explore the effects of BPA on C_{pa} and pulsatile stress in patients with inoperable or residual CTEPH.

Dursun Akaslan* Halil Ataş* Emre Aslanger* Batur Gönenç Kanar* Derya Kocakaya** Bedrettin Yıldızeli*** Bülent Mutlu*
Departments of *Cardiology, and **Pulmonology, ***Thoracic Surgery, Marmara University, Pendik Training and Research Hospital, Istanbul-Turkey

Corresponding Author:
Dursun Akaslan
dursun_akaslan@yahoo.com

Accepted: June 29, 2021
Available Online Date: December 23, 2021

Cite this article as: Akaslan D, Ataş H, Aslanger E, Kanar BG, Kocakaya D, Yıldızeli B, et al. Change in pulmonary arterial compliance and pulmonary pulsatile stress after balloon pulmonary angioplasty. Anatol J Cardiol 2022; 26: 43–8.

DOI: 10.5152/AnatolJCardiol.2021149
METHODS

Statement of ethics
A Local Ethical Committee approval was obtained, all the participants gave informed consent, and the study was undertaken in accordance with the Declaration of Helsinki.

Study protocol
The study was undertaken at a tertiary center for PH. We retrospectively screened our hospital database for the patients with inoperable or postoperative residual CTEPH who underwent BPA in our hospital between October 2017 and January 2020. Patients with available pre- and post-BPA right heart catheterization (RHC) results were included in the study.

A multidisciplinary PH team including a cardiologist, a cardiovascular surgeon, a pulmonologist, a rheumatologist, and a radiologist evaluated all patients. All patients underwent a comprehensive examination, including medical assessment, transthoracic echocardiography, multi-slice computed tomography, ventilation/perfusion scintigraphy, RHC, and selective pulmonary angiography as required. CTEPH was diagnosed and managed according to the European Society of Cardiology Guidelines for the diagnosis and management of PH (10). Patients with severe medical comorbidities or surgically inaccessible lesions were regarded as inoperable. Patients with World Health Organization functional class II despite medical therapy were considered inoperable. The eligibility for BPA was determined on the basis of a consensus among the multidisciplinary PH team. The periprocedural test results were obtained via chart review and included complete blood count, kidney function tests, serum N-terminal pro-brain natriuretic peptide (NT-proBNP) levels, 6-minute walk test (6MWT), and RHC measurements. RHC was performed via the right jugular vein using a Swan-Ganz catheter (Edwards Lifesciences Corporation, Irvine, CA, USA), and cardiac output was measured using the Fick method. After the last BPA session, all patients were re-evaluated with RHC at 3-month follow-up. CTEPH was diagnosed and managed according to the European Society of Cardiology Guidelines for the diagnosis and management of PH (10). The eligibility for BPA was determined on the basis of a consensus among the multidisciplinary PH team. The periprocedural test results were obtained via chart review and included complete blood count, kidney function tests, serum N-terminal pro-brain natriuretic peptide (NT-proBNP) levels, 6-minute walk test (6MWT), and RHC measurements. RHC was performed via the right jugular vein using a Swan-Ganz catheter (Edwards Lifesciences Corporation, Irvine, CA, USA), and cardiac output was measured using the Fick method. After the last BPA session, all patients were re-evaluated with RHC at 3-month follow-up. C_{PA} was defined as stroke volume divided by pulmonary pressure (11). Pulsatile stress product (PSP) was defined as pulse pressure times heart rate (12).

HIGHLIGHTS
• Balloon pulmonary angioplasty has been shown to decrease mean pulmonary artery pressure and pulmonary vascular resistance (PVR) and improve functional capacity, quality of life, and response to pulmonary hypertension (PH)-specific therapy.
• Although the underlying pathology of chronic thromboembolic pulmonary hypertension is thromboembolic obliteration of the major vessels and elevated proximal PVR, high pulsatile stress penetrating into normal distal pulmonary microvasculature resulting from reduced pulmonary arterial compliance (C_{PA}) may negatively affect the remaining microvasculature.
• Decreased C_{PA} may contribute to the progression of PH.

BPA protocol
Two experienced interventional cardiologists performed BPA in a series of staged procedures using the right femoral access. A 6 French long destination sheath (Terumo Corporation, Tokyo, Japan) was used to provide the guiding catheter stability. A 6 French guiding catheter (Medtronic, Dublin, Ireland) was inserted to the respective segmental pulmonary arteries, and selective pulmonary angiography was performed. Targeted lesions were crossed with a 0.014-inch guidewire (Soft J, Asahi Intecc, Aichi, Japan), and the lesions were dilated using 1.25 to 4.0 mm×20 mm semi-compliant balloon catheters (BrosMed, Japan, for 1.25 mm balloon catheters; Simeks Tibbi Urunler, İstanbul, Turkey for 2.0 to 4.0 mm balloon catheters). In the initial sessions, undersized balloon catheters were preferred to avoid reperfusion lung injury, especially in patients who had high mPAP and PVR. Further dilatations were performed using appropriate-diameter balloon catheters (2 to 7 mm; Simeks Tibbi Urunler, İstanbul, Turkey). The lower lobe lesions were targeted first, as pulmonary blood flow at this site was high compared with the others. During one hospital admission, 2 BPA sessions were performed with an interval of 2–4 days. RHC was repeated at an interval of 4–6 weeks, and additional BPA sessions were performed until an mPAP below 30 mm Hg was achieved or when it was assumed that all the accessible lesions were treated.

Statistical analysis
Continuous variables were expressed as median [interquartile range (IQR)] and categorical variables as counts (percentages). The change in 6MWT, NT-proBNP, C_{PA}, and PSP were assessed using the paired-sample t-test. The normality of the difference in these variables was checked using the Shapiro-Wilk test. The paired-sample t-test, Wilcoxon signed-rank test, and McNemar test were used for the comparison of pre- and post-BPA hemodynamic variables. The correlations between absolute change in 6MWT and NT-proBNP with the change in C_{PA}, PSP, and PVR were assessed by Pearson’s correlation test. A simple linear regression analysis was performed to explore whether the change in C_{PA} explains any variability observed in the improvement in 6MWT. The SPSS version 22.0 (SPSS Inc., Chicago, IL, USA) software was used for statistical analysis. For all statistical analyses, a p<0.05 was considered significant.

RESULTS
During the predetermined period, we identified 31 patients with inoperable or postoperative residual CTEPH who underwent BPA. One patient was excluded because he underwent surgical pulmonary endarterectomy after the post-BPA re-evaluation. Four patients were also excluded from the analyses because their BPA interventions were still ongoing at the time of writing of this manuscript. Therefore, the final study population consisted of 26 patients. The interval from the first diagnosis to enrollment was 42 months (IQR=39). The baseline characteristics are presented in Table 1.

The patients underwent a total of 3 BPA sessions (IQR=3, range=1–10). The number of targeted vessels per intervention was 4 (IQR=3, range=2–10). Major hemoptysis was observed only in 1 patient who was managed conservatively. No
Table 1. Baseline characteristics*

Parameter	Value
Age, years	48.5 (28)
Sex, female	18 (69.2)
Body mass index, kg/m²	26.4 (10.3)
History of VTE, n (%)	7 (26.9)
Inoperable disease, n (%)	15 (57.7)
Distal predominant disease, n (%)	10 (38.5)
Severe medical comorbidities, n (%)	5 (19.2)
Previous PEA (residual/recurrent), n (%)	11 (42.3)
Underlying disease or hypercoagulable state, n (%)	11 (43.3)
Splenectomy, n (%)	1 (3.8)
Lupus, n (%)	2 (7.7)
Isolated pulmonary vasculitis, n (%)	2 (7.7)
Factor V Leiden homozygosity, n (%)	2 (7.7)
Behçet’s disease, n (%)	1 (3.2)
History of cancer, n (%)	3 (11.5)
WHO functional class, n (%)	
I	0
II	7 (26.9)
III	16 (61.5)
IV	3 (11.5)
Medications	
PAH-specific therapy	21 (80.8)
Riociguat, n (%)	15 (57.7)
Endothelin receptor antagonists	6 (23.1)
Phosphodiesterase S inhibitors	4 (15.4)
Prostacyclin analog	5 (19.2)
Medications (none/single/double/triple), n	5/16/1/4
Anticoagulant drugs	
Warfarin, n (%)	10 (38.5)
Newer oral anticoagulants, n (%)	16 (61.5)

*Data are presented as median (interquartile range) and n (%).

Table 2. Baseline transthoracic echocardiography findings*

Parameter	Value
Left ventricular ejection fraction, %	65 (12.5)
Right ventricular basal diameter, mm	46 (11.5)
Right ventricular fractional area change, %	40 (13)
TAPSE, mm	13 (7.25)
Right ventricular S', cm/sec	9.5 (3.35)
The maximal tricuspid regurgitation velocity, m/sec	4.65 (1.03)
Right atrial area, cm²	23.5 (9.9)

*Data are presented as median (interquartile range) and n (%).

DISCUSSION

To the best of our knowledge, this is the first study exploring whether an increase in C_Pa and a decrease in pulsatile stress with BPA are linked to a functional improvement in patients with CTEPH. Our results suggest that favorable effects of BPA on functional capacity may be at least partly related with the change in C_Pa. Although our study is predominantly a mechanistic one, it may have important implications for providing new insights into the management of the patients with CTEPH.

In accordance with our results, it has been shown that C_Pa is decreased in patients with PH, and this decrease is associated with a poor prognosis (13, 14). The temporal relationship between PH and decreased C_Pa is also a constantly evolving area of research. Some evidence indicate that C_Pa changes start early in PH process, even before pulmonary artery pressures exceed abnormality limits. A reduced C_Pa was shown in patients with exercise-induced PH despite a normal resting pulmonary artery pressure (15). Evidence also suggests that decreased C_Pa may contribute to the progression of PH (16).

As the elastic arteries, such as major pulmonary arteries, cushion the cyclical changes in pressure and provide a continuous flow to the distal microvasculature, a substantial decrease in C_Pa may cause penetration of the pressure oscillations further down into distal pulmonary microvasculature (17). Increased pulsatile stress in normal pulmonary vasculature is sensed by the endothelial cells, which transduce it into a signaling cascade leading to a proinflammatory response and maladaptive growth process (18). The decrease in C_Pa increases pulsatile component of right ventricular afterload and may induce right-sided heart failure (19).
BPA is a recently established method in patients with inoperable CTEPH (4). It is associated with moderate improvements in pulmonary vascular hemodynamics with an average 20%–30% decrease in mPAP and PVR and a similar amount of increase in cardiac index (4–9). Successful BPA can increase exercise capacity and quality of life and also decrease the requirement for supplemental oxygen therapy and the need for costly PAH-specific drug therapies (6, 9). Several recent publications have also shown an increase in C\textsubscript{PA} with BPA (20-22). Wiedenroth et al. (20) assessed C\textsubscript{PA} in 10 patients undergoing BPA and reported an increase from 3.2±2.1 to 4.1±1.7 mL/mm Hg (p=0.027). However, it is hard to interpret these data, as the patients showed unusually high C\textsubscript{PA} values both at baseline and after treatment. Magoń et al. (21) showed that C\textsubscript{PA} increased from 1.02 (0.70 to 1.39) to 2.08 (1.49 to 2.39) mL/mm Hg (p<0.001) after successful BPA in 17 patients. Go-
dinas et al. (22) evaluated 18 patients with CTEPH and reported an increase in \(C_{PA} \) from 1.30±0.51 to 2.24±0.96 mL/mm Hg (p<0.001). None of these studies attempted to elucidate the potential contribution of \(C_{PA} \) on improvement in functional outcomes. Our study is the first one to explore such a relationship. Furthermore, the presence of a significant correlation between \(C_{PA} \) and 6MWT but absence of such an association with NT-proBNP may also hint that the favorable effects on functional capacity act through the effects on pulmonary vasculature and not through lowered right ventricular afterload. This hypothesis needs to be further clarified in future studies.

Study limitations

Our study had several limitations. First, our study had a limited size, although the reported studies on BPA had always been relatively limited in enrollment numbers given the rare nature of CTEPH and the limited applicability of BPA. Second, \(C_{PA} \) may be overestimated by dividing stroke volume with pulmonary artery pulse pressure (17). Third, the change in \(C_{PA} \) is not independent of other hemodynamic changes, but we were unable to control for the possible cofounders owing to the limited size of our dataset.

CONCLUSION

Our results indicate that BPA decreases \(C_{PA} \) and pulmonary pulsatile stress. These changes may be partly responsible for the improvement in functional capacity after BPA. Further studies are needed to clarify the role of \(C_{PA} \) and pulsatile stress in the pathogenesis of CTEPH and the possible contribution of BPA in the management of these pathologic processes.

Conflict of interest: None declared.

Peer-review: Externally peer-reviewed.

Author contributions: Concept – D.A., H.A., E.A., B.G.K., D.K., B.Y., B.M.; Design – D.A., H.A., E.A., B.G.K., D.K., B.Y., B.M.; Supervision – D.A., H.A., E.A., B.G.K., D.K., B.Y., B.M.; Fundings – None; Materials &/or processing – D.A., H.A., E.A., B.G.K., D.K., B.Y., B.M.; Data collection &/or processing – D.A., H.A., E.A., B.G.K., D.K., B.Y., B.M.; Analysis &/or interpretation – D.A., H.A., E.A., B.G.K., D.K., B.Y., B.M.; Literature search – D.A., H.A., E.A., B.G.K., D.K., B.Y., B.M.; Writing – D.A., H.A., E.A., B.G.K., D.K., B.Y., B.M.; Critical review – D.A., H.A., E.A., B.G.K., D.K., B.Y., B.M.;

REFERENCES

1. Simonneau G, Torbicki A, Dorfmüller P, Kim N. The pathophysiology of chronic thromboembolic pulmonary hypertension. Eur Respir Rev 2017; 26: 160112. [Crossref]
2. Tan W, Madhavan K, Hunter KS, Park D, Stenmark KR. Vascular stiffening in pulmonary hypertension: cause or consequence? [2013 Grover Conference series]. Pulm Circ 2014; 4: 560–80. [Crossref]
3. Ogawa A, Satoh T, Fukuda T, Sugimura K, Fukumoto Y, Emoto N, et al. Balloon Pulmonary Angioplasty for Chronic Thromboembolic Pulmonary Hypertension: Results of a Multicenter Registry. Circ Cardiovasc Qual Outcomes 2017; 10: e004029. [Crossref]
4. Kataoka M, Inami T, Kawakami T, Fukuda K, Satoh T. Balloon Pulmonary Angioplasty (Percutaneous Transluminal Pulmonary Angioplasty) for Chronic Thromboembolic Pulmonary Hypertension: A Japanese Perspective. JACC Cardiovasc Interv 2019; 12: 1382–8. [Crossref]
5. Kwon W, Yang JH, Park TK, Chang SA, Jung DS, Cho YS, et al. Impact of Balloon Pulmonary Angioplasty on Hemodynamics and Clinical Outcomes in Patients with Chronic Thromboembolic Pulmonary Hypertension: the Initial Korean Experience. J Korean Med Sci 2018; 33: e24. [Crossref]
6. Wang W, Wen L, Song Z, Shi W, Wang K, Huang W. Balloon pulmonary angioplasty vs riociguat in patients with inoperable chronic thromboembolic pulmonary hypertension: A systematic review and meta-analysis. Clin Cardiol 2019; 42: 741-52. [Crossref]
7. Lang I, Meyer BC, Ogo T, Matsubara H, Kurzyna M, Ghofrani HA, et al. Balloon pulmonary angioplasty in chronic thromboembolic pulmonary hypertension. Eur Respir Rev 2017; 26: 160119. [Crossref]
8. Brenot P, Jois X, Taniguchi Y, Garcia Alonso C, Gerardin B, Musset S, et al. French experience of balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension. Eur Respir J 2019; 53: 1802095. [Crossref]
9. Anand V, Frantz RP, DuBrock H, Kane GC, Krowka M, Yanagisawa R, et al. Balloon Pulmonary Angioplasty for Chronic Thromboembolic Pulmonary Hypertension: Initial Single-Center Experience. Mayo Clin Proc Innov Qual Outcomes 2019; 3: 311–8. [Crossref]
10. Galilé N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, et al.; ESC Scientific Document Group. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 2016; 37: 67–119. [Crossref]
11. Umemoto S, Abe K, Horimoto K, Hosokawa K, Tsutsui H. P4677: Balloon pulmonary angioplasty improves pulmonary arterial compliance in patients with inoperable chronic thromboembolic pulmonary hypertension. Eur Heart J 2019; (Suppl 1) 40; ezh475.1059. [Crossref]
12. Jae SY, Heffernan KS, Yoon ES, Park SH, Choi YH, Fernhall B, et al. Pulsatile stress, inflammation and change in arterial stiffness. J Atheroscler Thromb 2012; 19: 1035-42. [Crossref]
13. Mahapatra S, Nishimura RA, Sorajja P, Cha S, McGoon MD. Relationship of pulmonary arterial capacitance and mortality in idiopathic pulmonary arterial hypertension. J Am Coll Cardiol 2006; 47: 799–803. [Crossref]
14. Gan CT, Lankhaar JW, Westerhof N, Marcus JT, Becker A, Twisk JW, et al. Noninvasively assessed pulmonary artery stiffness predicts mortality in pulmonary arterial hypertension. Chest 2007; 132: 1906–12. [Crossref]
15. Sanz J, Karisa M, Dellegrottaglie S, Prat-González S, Garcia MJ, Fuster V, et al. Evaluation of pulmonary artery stiffness in pulmonary hypertension with cardiac magnetic resonance. JACC Cardiovasc Imaging 2009; 2: 286–95. [Crossref]
16. Thenappan T, Prins KW, Pritzker MR, Scandurra J, Volmers K, Weir EK. The Critical Role of Pulmonary Arterial Compliance in Pulmonary Hypertension. Ann Am Thorac Soc 2016; 13: 276–84. [Crossref]
17. Chemla D, Lau EM, Papelier Y, Attaï P, Hervé P. Pulmonary vascular resistance and compliance relationship in pulmonary hypertension. Eur Respir J 2015; 46: 1178–89. [Crossref]
18. Tan Y, Tseng PO, Wang D, Zhang H, Hunter K, Hertzberg J, et al. Stiffening-induced high pulsatility flow activates endothelial inflammation via a TLR2/NF-κB pathway. PLoS One 2014; 9: e102195. [Crossref]
19. Vonk Noordegraaf A, Chin KM, Haddad F, Hassoun PM, Hemnes AR, Hopkins SR, et al. Pathophysiology of the right ventricle and
of the pulmonary circulation in pulmonary hypertension: an update. Eur Respir J 2019; 53: 1801900. [Crossref]

20. Wiedenroth CB, Olsson KM, Guth S, Breithecker A, Haas M, Kamp JC, et al. Balloon pulmonary angioplasty for inoperable patients with chronic thromboembolic disease. Pulm Circ 2018; 8: 2045893217753122. [Crossref]

21. Magoń W, Stepniewski J, Waligóra M, Jonas K, Podolec P, Ko- peć G. Pulmonary Artery Elastic Properties After Balloon Pulmonary Angioplasty in Patients With Inoperable Chronic Thromboembolic Pulmonary Hypertension. Can J Cardiol 2019; 35: 422-9. [Crossref]

22. Godinas L, Bonne L, Budts W, Belge C, Leys M, Delcroix M, et al. Balloon Pulmonary Angioplasty for the Treatment of Non-operable Chronic Thromboembolic Pulmonary Hypertension: Single-Center Experience with Low Initial Complication Rate. J Vasc Interv Radiol 2019; 30: 1265-72. [Crossref]