ON THE X-RAY TRANSFORM OF PLANAR SYMMETRIC TENSORS

DAVID OMOGBHE AND KAMRAN SADIQ

ABSTRACT. In this article we characterize the range of the attenuated and non-attenuated X-ray transform of compactly supported symmetric tensor fields in the Euclidean plane. The characterization is in terms of a Hilbert-transform associated with A-analytic maps in the sense of Bukhgeim.

1. INTRODUCTION

We consider here the problem of the range characterization of (non)-attenuated X-ray transform of a real valued symmetric m-tensors in a strictly convex bounded domain in the Euclidean plane. As the X-ray and Radon transform [38] for planar functions (0-tensors) differ merely by the way lines are parameterized, the $m = 0$ case is the classical Radon transform [38], for which the range characterization has been long established independently by Gelfand and Graev [13], Helgason [14], and Ludwig [22]. Models in the presence of attenuation have also been considered in the homogeneous case [21,2], and in the non-homogeneous case in the breakthrough works [3,32,33], and subsequently [28,6,5,17,25]. The references here are by no means exhaustive.

The interest in the range characterization problem in the 0-tensors case stems out from their applications to data enhancement in medical imaging methods such as Single Photon Emission Computed Tomography or Positron Emission Computed Tomography [27,12]. The X-ray transform of 1-tensors (Doppler transform [29,46]) appears in the investigation of velocity distribution in a flow [7], in ultrasound tomography [47,44], and also in non-invasive industrial measurements for reconstructing the velocity of a moving fluid [30,31]. The X-ray transform of second order tensors arises as the linearization of the boundary rigidity problem [46]. The case of tensor fields of rank four describes the perturbation of travel times of compressional waves propagating in slightly anisotropic elastic media [46, Chapters 6,7]. Thus, due to the various applications the range characterization problem has been a continuing subject of research.

Unlike the scalar case, the X-ray transform of tensor fields has a non-zero kernel, and the null-space becomes larger as the order of the tensor field increases. For tensors of order $m \geq 1$, it is easy to check that injectivity can hold only in some restricted class: e.g., the class of solenoidal tensors, and it is possible to reconstruct uniquely (without additional information of moment ray transforms [46]) only the solenoidal part of a tensor field. The non-injectivity of the X-ray transform makes the range characterization problem even more interesting.

For the attenuating media in planar domains, interesting enough, the 1-tensor field can be recovered in the regions of positive absorption as shown in [18,5,48,40], without using some additional data information [45,9,23]. It is due to a surprising fact that the two-dimensional attenuated Doppler transform with positive attenuation is injective while the non-attenuated Doppler transform is not.

Date: October 5, 2022.

2000 Mathematics Subject Classification. Primary 30E20; Secondary 35J56.

Key words and phrases. X-ray transform of symmetric tensors, Attenuated X-ray transform, A-analytic maps, Hilbert transform.
The systematic study of tensor tomography in non-Euclidean spaces originated in [46]. On simple Riemannian surfaces, the range characterization of the geodesic X-ray of compactly supported 0 and 1-tensors has been established in terms of the scattering relation in [37], and the results were extended in [4, 11, 20] to symmetric tensors of arbitrary order. Explicit inversion approaches in the Euclidean case have been proposed in [17, 10, 24]. In the attenuating media, tensor tomography was solved for the cases $m = 0, 1$ in [43]. Inversion for the attenuated X-ray transform for solenoidal tensors of rank two and higher can be found in [35], with a range characterization in [36, 25, 4].

The original characterization in [13, 14, 22] was extended to arbitrary symmetric m-tensors in [34]; see [10] for a partial survey on the tensor tomography in the Euclidean plane. The connection between the Euclidean version of the characterization in [37] and the characterization in [13, 14, 22] was established in [24]. Recently, in [41] the connection between the range characterization result in [39] and the original range characterization in [13, 14, 22] has been established.

In here we build on the results in [39, 40, 42], and extends them to symmetric tensor fields of any arbitrary order. In particular, the range characterization therein are given in terms of the Bukhgeim-Hilbert transform [39] (the Hilbert-like transform associated with A-analytic maps in the sense of Bukhgeim [8]). The characterization in here can be viewed as an explicit description of the scattering relation in [35, 36] particularized to the Euclidean setting. In the sufficiency part we reconstruct all possible m-tensors yielding identical X-ray data; see (43) and (69) for the non-attenuated case and (94) and (122) for the attenuated case.

This article is organized as follows: All the details establishing notations and basic properties of symmetric tensor fields needed here are in Section 2. In Section 3 we briefly recall existing results on A-analytic maps that are used in the proofs. In Section 4 and Section 5 we provide range characterization of symmetric tensor field f of even order, respectively, odd order in the non-attenuated case. In Section 6 and Section 7 we provide range characterization of symmetric tensor field f of even order, respectively, odd order in the attenuated case.

2. Preliminaries

Given an integer $m \geq 0$, let $T^m(\mathbb{R}^2)$ denote the space of all real-valued covariant tensor fields of rank m:

$$f(x^1, x^2) = f_{i_1 \cdots i_m}(x^1, x^2) dx^{i_1} \otimes dx^{i_2} \otimes \cdots \otimes dx^{i_m}, \quad i_1, \cdots, i_m \in \{1, 2\},$$

where \otimes is the tensor product, $f_{i_1 \cdots i_m}$ are the components of tensor field f in the Cartesian basis (x^1, x^2), and where by repeating superscripts and subscripts in a monomial a summation from 1 to 2 is meant.

We denote by $S^m(\mathbb{R}^2)$ the space of symmetric covariant tensor fields of rank m on \mathbb{R}^2. Let $\sigma : T^m(\mathbb{R}^2) \rightarrow S^m(\mathbb{R}^2)$ be the canonical projection (symmetrization) defined by $(\sigma f)_{i_1 \cdots i_m} = \frac{1}{m!} \sum_{\pi \in \Pi_m} f_{i_{\pi(1)} \cdots i_{\pi(m)}}$, where the summation is over the group Π_m of all permutations of the set $\{1, \cdots, m\}$.

A planar covariant symmetric tensor field of rank m has $m + 1$ independent component, which we denote by

$$\tilde{f}_k := f_{\underbrace{1 \cdots 1}_{m-k} \underbrace{2 \cdots 2}_k}, \quad (k = 0, \cdots, m),$$
in connection with this, a symmetric tensor \(f = (f_{i_1 \cdots i_m}, \ i_1, \cdots, i_m = 1, 2) \) of rank \(m \) will be given by a pseudovector of size \(m + 1 \)

\[
f = (\tilde{f}_0, \tilde{f}_1, \cdots, \tilde{f}_{m-1}, \tilde{f}_m).
\]

We identify the plane \(\mathbb{R}^2 \) by the complex plane \(\mathbb{C} \), \(z^1 \equiv z = x^1 + 1x^2 \), \(z^2 \equiv \bar{z} = x^1 - 1x^2 \). We consider the Cauchy-Riemann operators

\[
\frac{\partial}{\partial z^1} \equiv \frac{\partial}{\partial z} := \frac{1}{2} \left(\frac{\partial}{\partial x^1} - \frac{\partial}{\partial x^2} \right), \quad \frac{\partial}{\partial z^2} \equiv \frac{\partial}{\partial \bar{z}} := \frac{1}{2} \left(\frac{\partial}{\partial x^1} + \frac{\partial}{\partial x^2} \right),
\]

and the inverse relation by

\[
\frac{\partial}{\partial x^1} = \frac{\partial}{\partial z} + \frac{\partial}{\partial \bar{z}}, \quad \frac{\partial}{\partial x^2} = \frac{\partial}{\partial z} - \frac{\partial}{\partial \bar{z}}.
\]

Let \(f = (f_{i_1 \cdots i_m}(x^1, x^2), \ i_1, \cdots, i_m = 1, 2) \) be real valued symmetric \(m \)-tensor field in Cartesian coordinates \((x^1, x^2)\), then in complex coordinates \((z^1, z^2)\) it will have new components \((F_{i_1 \cdots i_m}(z, \bar{z}))\), which are formally expressed by the covariant tensor law:

\[
F_{i_1 \cdots i_m}(z, \bar{z}) = \frac{\partial x^{s_1}}{\partial z^1} \cdots \frac{\partial x^{s_m}}{\partial z^m} f_{i_1 \cdots i_m}(x^1, x^2), \quad \text{and}
\]

\[
f_{i_1 \cdots i_m}(x^1, x^2) = \frac{\partial z^1}{\partial x^{i_1}} \cdots \frac{\partial z^m}{\partial x^{i_m}} F_{i_1 \cdots i_m}(z, \bar{z}),
\]

where the Jacobian matrix has the form

\[
J := \begin{pmatrix}
\frac{\partial x^1}{\partial z^1} & \frac{\partial x^1}{\partial \bar{z}} \\
\frac{\partial x^2}{\partial z^1} & \frac{\partial x^2}{\partial \bar{z}}
\end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \quad \text{and} \quad J^{-1} = \begin{pmatrix}
\frac{\partial z^1}{\partial x^1} & \frac{\partial z^1}{\partial x^2} \\
\frac{\partial z^2}{\partial x^1} & \frac{\partial z^2}{\partial x^2}
\end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.
\]

Adopting the notation in \([17]\), we shall write the transformations \((4)\) as

\[
f = \{f_{i_1 \cdots i_m}(x^1, x^2)\} \quad \mapsto \quad F = \{F_{i_1 \cdots i_m}(z, \bar{z})\}, \quad \text{and}
\]

\[
F = \{F_{i_1 \cdots i_m}(z, \bar{z})\} \quad \mapsto \quad f = \{f_{i_1 \cdots i_m}(x^1, x^2)\}.
\]

A symmetric tensor \(F \) of rank \(m \), obtained from the real symmetric tensor \(f \) by passing to complex variables, we also define a pseudovector \((F_0, F_1, \cdots, F_{m-1}, F_m)\) with components

\[
F_k = F_{\underbrace{1 \cdots 1}_m \underbrace{2 \cdots 2}_k}, \quad k = 0, \cdots, m,
\]

and subject to the conditions

\[
F_k = \overline{F}_{m-k}, \quad k = 0, \cdots, m.
\]

Taking into account the tensor law \((4)\), we obtain formulas relating the components of pseudovectors in \((2)\) and pseudovectors in \((6)\):

\[
F_k = \frac{(-1)^{m-k} m-k}{2^m} \sum_{q=0}^{m-k} \sum_{p=0}^{k} \binom{m-k}{q} \binom{k}{p} 1^{k-p+q} \tilde{f}_{p+q}, \quad k = 0, 1, \cdots, m,
\]

\[
\tilde{f}_k = i^k \sum_{q=0}^{m-k} \sum_{p=0}^{k} \binom{m-k}{q} \binom{k}{p} (-1)^{k-p} F_{p+q}, \quad k = 0, 1, \cdots, m.
\]

In Cartesian coordinates covariant and contravariant components are the same, and thus contravariant components of the tensor field \(f \) coincide with its corresponding covariant components, \(\tilde{f}_{i_1 \cdots i_m} = f^{i_1 \cdots i_m} \). The dot product on \(S^m(\mathbb{R}^2) \) induced by the Euclidean metric is defined by

\[
(f, h) := f_{i_1 \cdots i_m} h^{i_1 \cdots i_m}.
\]
Note that if $f_1 \mapsto F_1$ and $f_2 \mapsto F_2$, then the pointwise inner product of tensors is invariant:

\begin{equation}
\langle f_1, f_2 \rangle = \langle F_1, F_2 \rangle.
\end{equation}

For $\theta = (\theta^1, \theta^2) = (\cos \theta, \sin \theta) \in S^1$, we denote by θ^m the tensor product $\theta^m := \theta \otimes \theta \otimes \cdots \otimes \theta$ and θ^m will be an m-contravariant tensor in Cartesian coordinates. According to the tensor law for contravariant components its representation in complex coordinates will look like

$$
\theta \mapsto \Theta, \quad \Theta^k = \frac{\partial z^k}{\partial x^s} \theta^s, \quad \Theta = (\Theta^1, \Theta^2) = (e^{i\theta}, e^{-i\theta}),
$$

and $\Theta^m := \Theta \otimes \Theta \otimes \cdots \otimes \Theta$ be an m-contravariant tensor, and we also have $\theta^m \mapsto \Theta^m$. Using (11), we get

\begin{equation}
\langle f, \theta^m \rangle = \langle F, \Theta^m \rangle = \sum_{k=0}^{m} \binom{m}{k} F_k e^{i\theta(m-k)} e^{-i\theta k} = \sum_{k=0}^{m} \binom{m}{k} F_k e^{i(m-2k)\theta}
\end{equation}

\begin{equation}
= \begin{cases}
\sum_{k=0}^{q} f_{-2k} e^{i(2k)\theta} + \sum_{k=1}^{q} f_{2k} e^{-i(2k)\theta}, & \text{(if } m = 2q, \ q \geq 0), \\[1.5ex]
\sum_{k=0}^{q} f_{-(2k+1)} e^{i(2k+1)\theta} + f_{2k+1} e^{-i(2k+1)\theta}, & \text{(if } m = 2q + 1, \ q \geq 0),
\end{cases}
\end{equation}

where

\begin{equation}
f_{-2k} = \binom{2q}{q-k} F_{q-k}, \quad 0 \leq k \leq q, \ q \geq 0, \quad (q = \frac{m}{2}, \ m \text{ even}),
\end{equation}

\begin{equation}
f_{-(2k+1)} = \binom{2q+1}{q-k} F_{q-k}, \quad 0 \leq k \leq q, \ q \geq 0, \quad (q = \frac{m-1}{2}, \ m \text{ odd}),
\end{equation}

and $f_n = f_{-n}$ and $F_n = F_{m-n}$, for $0 \leq n \leq m$.

Let f be a real valued symmetric m-tensor, with integrable components of compact support in \mathbb{R}^2, and $a \in L^1(\mathbb{R}^2)$ a real valued function. The attenuated X-ray transform of f is given by

\begin{equation}
X_a f(x, \theta) := \int_{-\infty}^{\infty} \langle f(x + t\theta), \theta^m \rangle \exp \left\{-\int_{t}^{\infty} a(x + s\theta)ds \right\} dt,
\end{equation}

where $x \in \mathbb{R}^2, \ \theta \in S^1$, and $\langle \cdot, \cdot \rangle$ is the inner product in (10). For the non attenuated case ($a \equiv 0$), we use the notation Xf.

In here, we consider the tensor field f be defined on a strongly convex bounded set $\Omega \subset \mathbb{R}^2$ with vanishing trace at the boundary Γ; further regularity and the order of vanishing will be specified in the theorems. In the statements below we use the notations in [46]:

$$C^\mu(S^m; \Omega) = \{ f = (f_{i_1\ldots i_m}) \in S^m(\Omega) : f_{i_1\ldots i_m} \in C^\mu(\Omega) \}$$

$0 < \mu < 1$, for the space of real valued, symmetric tensor fields of order m with locally Hölder continuous components. Similarly, $L^1(S^m; \Omega)$ denotes the tensor fields of order m with integrable components.

For any $(x, \theta) \in \overline{\Omega} \times S^1$, let $\tau(x, \theta)$ be length of the chord passing through x in the direction of θ. Let also consider the incoming ($-$), respectively outgoing ($+$) submanifolds of the unit bundle
restricted to the boundary

\[\Gamma_\pm := \{(x, \theta) \in \Gamma \times S^1 : \pm \theta \cdot \nu(x) > 0\}, \]

and the variety

\[\Gamma_0 := \{(x, \theta) \in \Gamma \times S^1 : \theta \cdot \nu(x) = 0\}, \]

where \(\nu(x) \) denotes outer normal.

The \(\alpha \)-attenuated X-ray transform of \(f \) is realized as a function on \(\Gamma_+ \) by

\[X_\alpha f(x, \theta) = \int_0^\infty \langle f(x + t\theta), \theta^m \rangle e^{-\int_0^t a(x(s\theta))ds} dt, (x, \theta) \in \Gamma_+. \]

We approach the range characterization via the well-known connection with the transport model as follows: The boundary value problem

\[
\begin{align*}
\theta \cdot \nabla u(x, \theta) + a(x)u(x, \theta) &= \langle f(x), \theta^m \rangle, \quad (x, \theta) \in \Omega \times S^1, \\
u|_{\Gamma_-} &= 0,
\end{align*}
\]

has a unique solution in \(\Omega \times S^1 \) and

\[u|_{\Gamma_+}(x, \theta) = X_\alpha f(x, \theta), \quad (x, \theta) \in \Gamma_. \]

The range characterization is given in terms of the trace

\[g := u|_{\Gamma_+ \times S^1} = \begin{cases} X_\alpha f, & \text{on } \Gamma_+, \\
0, & \text{on } \Gamma_- \cup \Gamma_0. \end{cases} \]

We note that from (12), the expression \(\langle f, \theta^m \rangle \) in the transport equation (19a) is represented in the Fourier decomposition in \(\theta \) as in terms of the following Fourier modes:

\[
\langle f, \theta^m \rangle = \begin{cases} f_0 + f_{\pm 2}e^{\mp 2\theta} + f_{\pm 4}e^{\mp 4\theta} + \cdots + f_{\pm m}e^{\mp m\theta} & (m \text{ even}), \\
 f_{\pm 1}e^{\mp \theta} + f_{\pm 3}e^{\mp 3\theta} + \cdots + f_{\pm m}e^{\mp m\theta} & (m \text{ odd}). \end{cases}
\]

3. Ingredients from A-analytic theory

In this section we briefly introduce the properties of A-analytic maps needed later. For \(0 < \mu < 1, p = 1, 2 \), we consider the Banach spaces:

\[
\begin{align*}
l_\infty^{1,p}(\Gamma) := \left\{ g = \langle g_0, g_{-1}, g_{-2}, \ldots \rangle : \|g\|_{l_\infty^{1,p}(\Gamma)} := \sup_{\xi \in \Gamma} \sum_{j=0}^\infty \langle j \rangle^p |g_{-j}(\xi)| < \infty \right\}, \\
C^\mu(\Gamma; l_1) := \left\{ g = \langle g_0, g_{-1}, g_{-2}, \ldots \rangle : \sup_{\xi \in \Gamma} \|g(\xi)\|_{l_1} + \sup_{\xi, \eta \in \Gamma_{\xi \neq \eta}} \frac{\|g(\xi) - g(\eta)\|_{l_1}}{|\xi - \eta|^\mu} < \infty \right\}, \\
Y_\mu(\Gamma) := \left\{ g : g \in l_\infty^{1,2}(\Gamma) \text{ and } \sup_{\xi, \eta \in \Gamma_{\xi \neq \eta}} \sum_{j=0}^\infty \langle j \rangle \frac{|g_{-j}(\xi) - g_{-j}(\eta)|}{|\xi - \eta|^\mu} < \infty \right\},
\end{align*}
\]

where \(l_\infty(, l_1) \) is the space of bounded (, respectively summable) sequences, and for brevity, we use the notation \(\langle j \rangle = (1 + |j|^2)^{1/2} \). Similarly, we consider \(C^\mu(\overline{\Omega}; l_1) \), and \(C^\mu(\overline{\Omega}; l_\infty) \).
A sequence valued map \(\Omega \ni z \mapsto \mathbf{v}(z) := \langle v_0(z), v_{-1}(z), v_{-2}(z), \ldots \rangle \) in \(C(\overline{\Omega}; l_\infty) \cap C^1(\Omega; l_\infty) \) is called \(L^k \)-analytic (in the sense of Bukhgeim), \(k = 1, 2, \) if
\[
(23) \quad \overline{\mathbf{v}}(z) + L^k \partial \mathbf{v}(z) = 0, \quad z \in \Omega,
\] where \(L \) is the left shift operator \(L(\langle v_0, v_{-1}, v_{-2}, \ldots \rangle) = \langle v_{-1}, v_{-2}, \ldots \rangle \), and \(L^2 = L \circ L \).

Bukhgeim’s original theory in [8] shows that solutions of (23), satisfy a Cauchy-like integral formula,
\[
(24) \quad \mathbf{v}(z) = B[\mathbf{v}|_\Gamma](z), \quad z \in \Omega,
\] where \(B \) is the Bukhgeim-Cauchy operator acting on \(\mathbf{v}|_\Gamma \). We use the formula in [12], where \(B \) is defined component-wise for \(n \geq 0 \) by
\[
(25) \quad (Bg)_n(z) := \frac{1}{2\pi i} \int_\Gamma \frac{g_n(\zeta)}{\zeta - z} \, d\zeta + \frac{1}{\pi i} \int_\Gamma \left\{ \frac{d\zeta}{\zeta - z} - \frac{d\overline{\zeta}}{\overline{\zeta} - z} \right\} \sum_{j=1}^{\infty} g_{n-j}(\zeta) \left(\frac{\zeta - \overline{z}}{\zeta - z} \right)^j, \quad z \in \Omega.
\]

The following regularity result in [39, Proposition 4.1] is needed.

Proposition 3.1. [39, Proposition 4.1] Let \(\mu > 1/2 \) and \(g = \langle g_0, g_{-1}, g_{-2}, \ldots \rangle \) be the sequence valued map of non-positive Fourier modes of \(g \).

(i) If \(g \in \mathcal{C}^\mu(\Gamma; C^1([S^1])) \), then \(g \in l_{1,1}^1(\Gamma) \cap C^\mu(\Gamma; l_1) \).

(ii) If \(g \in \mathcal{C}^\mu(\Gamma; C^1([S^1])) \cap C(\Gamma; C^2([S^1])) \), then \(g \in Y_\mu(\Gamma) \).

Similar to the analytic maps, the traces of \(L \)-analytic maps on the boundary must satisfy some constraints, which can be expressed in terms of a corresponding Hilbert-like transform introduced in [39]. More precisely, the Bukhgeim-Hilbert transform \(\mathcal{H} \) acting on \(g \),
\[
(26) \quad \Gamma \ni z \mapsto (\mathcal{H}g)(z) = \langle (\mathcal{H}g)_0(z), (\mathcal{H}g)_{-1}(z), (\mathcal{H}g)_{-2}(z), \ldots \rangle
\] is defined component-wise for \(n \geq 0 \) by
\[
(27) \quad (\mathcal{H}g)_n(z) = \frac{1}{\pi} \int_\Gamma \frac{g_n(\zeta)}{\zeta - z} \, d\zeta + \frac{1}{\pi} \int_\Gamma \left\{ \frac{d\zeta}{\zeta - z} - \frac{d\overline{\zeta}}{\overline{\zeta} - z} \right\} \sum_{j=1}^{\infty} g_{n-j}(\zeta) \left(\frac{\zeta - \overline{z}}{\zeta - z} \right)^j, \quad z \in \Gamma,
\]
and we refer to [39] for its mapping properties.

Note that the Bukhgeim-Cauchy integral formula in (25) above is restated in terms of \(L \)-analytic maps as opposed to \(L^2 \)-analytic as in [39]. The only change is the index relabeling. In particular, the index \(g_{n-j} \) will change to \(g_{n-2j} \) therein to account for \(L^2 \)-analytic. Moreover, the same index relabelling in the Bukhgeim-Hilbert transform formula (27) is made to account for the difference between \(L \)-analytic and \(L^2 \)-analytic.

The following result recalls the necessary and sufficient conditions for a sufficiently regular map to be the boundary value of an \(L^k \)-analytic function, \(k = 1, 2, \)

Theorem 3.1. Let \(0 < \mu < 1 \), and \(k = 1, 2 \). Let \(B \) be the Bukhgeim-Cauchy operator in (25).

Let \(g = \langle g_0, g_{-1}, g_{-2}, \ldots \rangle \in Y_\mu(\Gamma) \) for \(\mu > 1/2 \) be defined on the boundary \(\Gamma \), and let \(\mathcal{H} \) be the Bukhgeim-Hilbert transform acting on \(g \) as in (27).

(i) If \(g \) is the boundary value of an \(L^k \)-analytic function, then \(\mathcal{H}g \in C^\mu(\Gamma; l_1) \) and satisfies
\[
(28) \quad (I + i\mathcal{H})g = 0.
\]
(ii) If g satisfies (28), then there exists an L^k-analytic function $v := Bg \in C^{1,\mu}(\Omega; l_1) \cap C^{\mu}(\overline{\Omega}; l_1) \cap C^2(\Omega; l_\infty)$, such that

$$
(29) \quad v|_r = g.
$$

For the proof of Theorem 3.1 we refer to [39, Theorem 3.2, Corollary 4.1, and Proposition 4.2] and [40, Proposition 2.3].

Another ingredient, in addition to L^2-analytic maps, consists in the one-to-one relation between solutions $u := \langle u_0, u_{-1}, u_{-2}, \ldots \rangle$ satisfying

$$
(30) \quad \partial u_{-n}(z) + \partial u_{-n-2}(z) + a(z)u_{-n-1}(z) = 0, \quad z \in \Omega, \ n \geq 0,
$$

and the L^2-analytic map $v = \langle v_0, v_{-1}, v_{-2}, \ldots \rangle$ satisfying

$$
(31) \quad \partial v_{-n}(z) + \partial v_{-n-2}(z) = 0, \quad z \in \Omega, \ n \geq 0;
$$

via a special function h, see [42, Lemma 4.2] for details. The function h is defined as

$$
(32) \quad h(z, \theta) := Da(z, \theta) - \frac{1}{2} (I - iH) Ra(z \cdot \theta^\perp, \theta^\perp),
$$

where θ^\perp is the counter-clockwise rotation of θ by $\pi/2$, $Ra(s, \theta^\perp) = \int_{-\infty}^{\infty} a(s\theta^\perp + t\theta) \, dt$ is the Radon transform in \mathbb{R}^2 of the attenuation a, $Da(z, \theta) = \int_{-\infty}^{\infty} a(z + t\theta) \, dt$ is the divergent beam transform of the attenuation a, and $H h(s) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{h(t)}{s - t} \, dt$ is the classical Hilbert transform [26], taken in the first variable and evaluated at $s = z \cdot \theta^\perp$. The function h appeared first in [27] and enjoys the crucial property of having vanishing negative Fourier modes yielding the expansions

$$
(33) \quad e^{-h}(z, \theta) := \sum_{k=0}^{\infty} \alpha_k(z) e^{ik\theta}, \quad e^{h}(z, \theta) := \sum_{k=0}^{\infty} \beta_k(z) e^{ik\theta}, \quad (z, \theta) \in \overline{\Omega} \times \mathbb{S}^1.
$$

Using the Fourier coefficients of $e^\pm h$, define the integrating operators $e^{\pm G} u$ component-wise for each $n \leq 0$, by

$$
(34) \quad (e^{-G} u)_n = (\alpha \ast u)_n = \sum_{k=0}^{\infty} \alpha_k u_{n-k}, \quad \text{and} \quad (e^{G} u)_n = (\beta \ast u)_n = \sum_{k=0}^{\infty} \beta_k u_{n-k},
$$

where α and β is given by

$$
\overline{\Omega} \ni z \mapsto \alpha(z) := \langle \alpha_0(z), \alpha_1(z), \alpha_2(z), \ldots \rangle, \quad \overline{\Omega} \ni z \mapsto \beta(z) := \langle \beta_0(z), \beta_1(z), \beta_2(z), \ldots \rangle.
$$

Note that $e^{\pm G}$ can also be written in terms of left translation operator as

$$
(35) \quad e^{-G} u = \sum_{k=0}^{\infty} \alpha_k L^k u, \quad \text{and} \quad e^{G} u = \sum_{k=0}^{\infty} \beta_k L^k u,
$$

where L^k is the k-th composition of left translation operator. It is important to note that the operators $e^{\pm G}$ commute with the left translation, $[e^{\pm G}, L] = 0$. We refer [42, Lemma 4.1] for the properties of h, and we restate the following result [39, Proposition 5.2] to incorporate the operators $e^{\pm G}$ notation used in here.
Proposition 3.2. [39, Proposition 5.2] Let \(a \in C^{1,\mu}(\Omega), \mu > 1/2 \). Then \(\alpha, \partial \alpha, \beta, \partial \beta \in l^1_{C^1} (\Omega) \), and the operators

\[
(i) \ e^{\pm G} : C^\mu(\Omega; l_\infty) \rightarrow C^\mu(\Omega; l_\infty);
(ii) \ e^{\pm G} : C^\mu(\Omega; l_1) \rightarrow C^\mu(\Omega; l_1);
(iii) \ e^{\pm G} : Y_\mu(\Gamma) \rightarrow Y_\mu(\Gamma).
\]

Lemma 3.1. [40, Lemma 4.2] Let \(a \in C^{1,\mu}(\Omega), \mu > 1/2 \), and \(e^{\pm G} \) be operators as defined in (34).

(i) If \(u \in C^1(\Omega, l_1) \) solves \(\overline{\partial} u + L^2 \partial u + a L u = 0 \), then \(v = e^{-G} u \in C^1(\Omega, l_1) \) solves \(\overline{\partial} v + L^2 \partial^2 v = 0 \).

(ii) Conversely, if \(v \in C^1(\Omega, l_1) \) solves \(\overline{\partial} v + L^2 \partial^2 v = 0 \), then \(u = e^G v \in C^1(\Omega, l_1) \) solves \(\overline{\partial} u + L^2 \partial u + a L u = 0 \).

4. EVEN ORDER \(m \)-TENSOR - NON-ATTENUATED CASE

We establish necessary and sufficient conditions for a sufficiently smooth function on \(\Gamma \times S^1 \) to be the non-attenuated X-ray data of some sufficiently smooth real valued symmetric tensor field \(f \) of even order \(m = 2q, q \geq 0 \). In this non-attenuated case, the transport equation (19a) becomes

\[
\theta \cdot \nabla u(x, \theta) = \sum_{k=-q}^{q} f_{2k}(x) e^{-i(2k)\theta}, \quad x \in \Omega,
\]

where \(f_{2k} \) defined in (13), and \(f_{2k} = \overline{f_{-2k}} \), for \(-q \leq k \leq q, q \geq 0 \). Note that \(f_0 \) is real-valued while other modes are complex conjugates.

For \(z = x_1 + i x_2 \in \Omega \), the advection operator \(\theta \cdot \nabla \) in complex notation becomes \(e^{-i \theta} \overline{\partial} + e^{i \theta} \partial \), where \(\theta = (\cos \theta, \sin \theta) \), and \(\overline{\partial}, \partial \) are the Cauchy-Riemann operators in (3).

If \(\sum_{n \in \mathbb{Z}} u_n(z) e^{i n \theta} \) is the Fourier series expansion in the angular variable \(\theta \) of a solution \(u \) of (37), then, provided some sufficient decay (to be specified later) of \(u_n \) to allow regrouping, the equation (37) reduces to the system:

\[
\begin{align*}
(38) \quad & \overline{\partial} u_{-2(n-1)}(z) + \partial u_{-(2n+1)}(z) = f_{2n}(z), \quad 0 \leq n \leq q, q \geq 0, \\
(39) \quad & \overline{\partial} u_{-(2n-1)}(z) + \partial u_{-(2n+1)}(z) = 0, \quad n \geq q + 1, q \geq 0, \\
(40) \quad & \overline{\partial} u_{-2n}(z) + \partial u_{-(2n+2)}(z) = 0, \quad n \geq 0.
\end{align*}
\]

Recall that the trace \(u|_{\Gamma^+} = g \) as in (21), with \(g = Xf \) on \(\Gamma^+ \) and \(g = 0 \) on \(\Gamma^- \cup \Gamma_0 \).

The range characterization is given in terms of the Fourier modes of \(g \) in the angular variables:

\[
g(\zeta, \theta) = \sum_{n=-\infty}^{\infty} g_n(\zeta) e^{i n \theta}, \quad \zeta \in \Gamma.
\]

Since the trace \(g \) is also real valued, its Fourier modes will satisfy \(g_{-n} = g_n \), for \(n \geq 0 \).

From the non-positive Fourier modes, we built the sequences

\[
\text{g}^{\text{even}} := \langle g_0, g_{-2}, g_{-4}, \ldots \rangle, \quad \text{and} \quad \text{g}^{\text{odd}} := \langle g_{-1}, g_{-3}, g_{-5}, \ldots \rangle.
\]

From the negative odd modes starting from mode \((2q+1) \), we built the sequence

\[
L^q \text{g}^{\text{odd}} := \langle g_{-(2q+1)}, g_{-(2q+3)}, g_{-(2q+5)}, \ldots \rangle, \quad q \geq 0,
\]

where \(L^q \) is the \(q \)-th composition of left translation operator.
We characterize next the non-attenuated X-ray data \(g \) in terms of the Bukhgeim-Hilbert Transform \(\mathcal{H} \) in (27). We will construct the solution \(u \) of the transport equation (37), whose trace matches the boundary data \(g \), and also construct the right hand side of the (37). The construction of solution \(u \) is in terms of its Fourier modes in the angular variable. We first construct the non-positive Fourier modes and then the positive Fourier modes are constructed by conjugation. For even \(m = 2q \), \(q \geq 1 \), apart from \(q \) many Fourier modes \(u_{-1}, u_{-3}, \cdots, u_{-(2q-1)} \), all non-positive Fourier modes are defined by Bukhgeim-Cauchy integral formula (25) using boundary data. Other than having the traces \(u_{-(2j-1)}|_{\Gamma} = g_{-(2j-1)}, \ 1 \leq j \leq q, \ q \geq 1 \), on the boundary, the \(q \) many Fourier modes \(u_{-(2j-1)}, \ 1 \leq j \leq q, \ q \geq 1 \), are unconstrained. They are chosen arbitrarily from the class \(\Psi_g^{\text{even}} \) of functions of cardinality \(q = \frac{m}{2} \) with prescribed trace on the boundary \(\Gamma \) defined as

\[
\Psi_g^{\text{even}} := \left\{ (\psi_{-1}, \psi_{-3}, \cdots, \psi_{-(2q-1)}) \in \left(C^{1,\mu}(\overline{\Omega}; \mathbb{C}) \right)^q, 2\mu > 1 : \psi_{-(2j-1)}|_{\Gamma} = g_{-(2j-1)}, \ 1 \leq j \leq q, \ q \geq 1 \right\}.
\]

(43)

Remark 4.1. In the 0-tensor case (\(m = 0 \)), there is no class, and the characterization of the X-ray data \(g \) is in terms of the Fourier modes \(g \).

Theorem 4.1 (Range characterization for even order tensors). (i) Let \(f \in C^{1,\mu}(S^m; \Omega), \ \mu > 1/2, \) be a real-valued symmetric tensor field of even order \(m = 2q, \ q \geq 0 \), and

\[
g = Xf \text{ on } \Gamma_+ \text{ and } g = 0 \text{ on } \Gamma_+ \cup \Gamma_0.
\]

Then \(g^{\text{even}}, g^{\text{odd}} \in l_{\infty}^{1,1}(\Gamma) \cap C^\mu(\Gamma; l_1) \) satisfy

\[
[I + 1\mathcal{H}]g^{\text{even}} = 0,
\]

(44)

\[
[I + 1\mathcal{H}]L_g^{\infty}g^{\text{odd}} = 0,
\]

(45)

where \(g^{\text{even}}, g^{\text{odd}} \) are sequences in (41), and \(\mathcal{H} \) is the Bukhgeim-Hilbert operator in (27).

(ii) Let \(g \in C^\mu(\Gamma; C^{1,\mu}(S^1)) \cap C(\Gamma; C^{2,\mu}(S^1)) \) be real valued with \(g|_{\Gamma_+ \cup \Gamma_0} = 0 \). For \(q = 0 \), if the corresponding sequences \(g^{\text{even}}, g^{\text{odd}} \in Y_\mu(\Gamma) \) satisfies (44) and (45), then there is a unique real valued symmetric 0-tensor \(f \) such that \(g|_{\Gamma_+} = Xf \). Moreover, for \(q \geq 1 \), if \(g^{\text{even}}, g^{\text{odd}} \in Y_\mu(\Gamma) \) satisfies (44) and (45), and for each element \((\psi_{-1}, \psi_{-3}, \cdots, \psi_{-(2q-1)}) \in \Psi_g^{\text{even}} \), then there is a unique real valued symmetric m-tensors \(f_\psi \in C^\mu(S^m; \Omega) \) such that \(g|_{\Gamma_+} = Xf_\psi \).

Proof. (i) **Necessity:** Let \(f = (f_i, \cdots, f_m) \in C^{1,\mu}_0(S^m; \Omega) \). Since all components \(f_i, \cdots, f_m \in C^{1,\mu}_0(\Omega) \) are compactly supported inside \(\Omega \), then for any point at the boundary there is a cone of lines which do not meet the support. Thus \(g \equiv 0 \) in the neighborhood of the variety \(\Gamma_0 \) which yields \(g \in C^{1,\mu}(\Gamma \times S^1) \). Moreover, \(g \) is the trace on \(\Gamma \times S^1 \) of a solution \(u \in C^{1,\mu}(\overline{\Omega} \times S^1) \) of the transport equation (37). By [39] Proposition 4.1 \(g^{\text{even}}, g^{\text{odd}} \in l_{\infty}^{1,1}(\Gamma) \cap C^\mu(\Gamma; l_1) \).

If \(u \) solves (37) then its Fourier modes satisfy (38), (39), and (40). Since the negative even Fourier modes \(u_{2n} \), for \(n \leq 0 \), satisfies the system (40), then the sequence valued map

\[
\Omega \ni z \mapsto u^{\text{even}}(z) := \langle u_0(z), u_{-2}(z), u_{-4}(z), \cdots \rangle
\]

is \(L \)-analytic in \(\Omega \) and the necessity part in Theorem 3.1 yields the condition (44).

The equation (39) for negative odd Fourier modes starting from negative \(2q + 1 \) mode, yield that the sequence valued map

\[
z \mapsto \langle u_{-(2q+1)}, u_{-(2q+3)}, u_{-(2q+5)}, \cdots \rangle
\]

is \(L \)-analytic in \(\Omega \) and the necessity part in Theorem 3.1 gives the condition (45).
(ii) **Sufficiency:** Let \(g \in C^\mu(\Gamma; C^{1,\mu}(S^1)) \cap C(\Gamma; C^{2,\mu}(S^1)) \) be real valued with \(g|_{r_\pm r_0} = 0 \). Since \(g \) is real valued, its Fourier modes in the angular variable occurs in conjugates\(^{(46)}\)

\[
 g_{-n}(\zeta) = \overline{g}_n(\zeta), \quad \text{for } n \geq 0, \, \zeta \in \Gamma.
\]

Let the corresponding sequences \(g^{\text{even}} \) satisfying \(^{(44)}\) and \(g^{\text{odd}} \) satisfying \(^{(45)}\). By Proposition \(^{(3.1)}\), \(g^{\text{even}}, g^{\text{odd}} \in Y_\mu(\Gamma) \).

Let \(m = 2q, \, q \geq 0 \), be an even integer. To prove the sufficiency we will construct a real valued symmetric \(m \)-tensor \(f \) in \(\Omega \) and a real valued function \(u \in C^1(\Omega \times S^1) \cap C(\overline{\Omega} \times S^1) \) such that \(u|_{\Gamma \times S^1} = g \) and \(u \) solves \(^{(37)}\) in \(\Omega \). The construction of such \(u \) is in terms of its Fourier modes in the angular variable and it is done in several steps.

Step 1: The construction of even modes \(u_{2n} \) for \(n \in \mathbb{Z} \).

Apply the Bukhgeim-Cauchy Integral operator \(^{(25)}\) to construct the negative even Fourier modes:

\[
 \langle u_0(z), u_{-2}(z), u_{-4}(z), u_{-6}(z), \ldots \rangle := Bg^{\text{even}}(z), \quad z \in \Omega.
\]

By Theorem \(^{(3.1)}\) the sequence valued map

\[
 z \mapsto \langle u_0(z), u_{-2}(z), u_{-4}(z), \ldots \rangle \in C^{1,\mu}(\Omega) \cap C^\mu(\overline{\Omega}; l_1),
\]

is \(L \)-analytic in \(\Omega \), thus the equations

\[
 \overline{\partial}u_{-2n} + \partial u_{-2n-2} = 0,
\]

are satisfied for all \(n \geq 0 \). Moreover, the hypothesis \(^{(44)}\) and the sufficiency part of Theorem \(^{(3.1)}\) yields that they extend continuously to \(\Gamma \) and \(u_{-2n}|_{\Gamma} = g_{-2n}, \forall n \geq 0 \).

Construct the positive even Fourier modes by conjugation: \(u_{2n} := \overline{u}_{-2n} \), for all \(n \geq 1 \).

By conjugating \(^{(48)}\) we note that the positive even Fourier modes also satisfy

\[
 \overline{\partial}u_{2n+2} + \partial u_{2n} = 0, \quad n \geq 0.
\]

Moreover, by reality of \(g \) in \(^{(46)}\) they extend continuously to \(\Gamma \) and

\[
 u_{2n}|_{\Gamma} = \overline{u}_{-2n}|_{\Gamma} = \overline{g}_{-2n} = g_{2n}, \quad n \geq 1.
\]

Thus, as a summary from above equations, we have shown that the even modes \(u_{2n} \) satisfy

\[
 \overline{\partial}u_{2n} + \partial u_{2n-2} = 0, \quad \text{and} \quad u_{2n}|_{\Gamma} = g_{2n}, \quad \forall n \in \mathbb{Z}.
\]

Step 2: The construction of odd modes \(u_{2n-1} \), for \(|n| \geq q, \, q \geq 0 \).

Apply the Bukhgeim-Cauchy Integral operator \(^{(25)}\) to construct the other odd negative modes:

\[
 \langle u_{-(2q+1)}(z), u_{-(2q+3)}(z), \ldots \rangle := B_{l_{-q}} g^{\text{odd}}(z), \quad z \in \Omega.
\]

By Theorem \(^{(3.1)}\) the sequence valued map

\[
 z \mapsto \langle u_{-(2q+1)}(z), u_{-(2q+3)}(z), u_{-(2q+5)}(z), \ldots \rangle \in C^{1,\mu}(\Omega) \cap C^\mu(\overline{\Omega}; l_1),
\]

is \(L \)-analytic in \(\Omega \), thus the equations

\[
 \overline{\partial}u_{-(2n+1)} + \partial u_{-(2n+3)} = 0,
\]

are satisfied for all \(n \geq q, \, q \geq 0 \). Moreover, the hypothesis \(^{(45)}\) and the sufficiency part of Theorem \(^{(3.1)}\) yields that they extend continuously to \(\Gamma \) and

\[
 u_{-(2n+1)}|_{\Gamma} = g_{-(2n+1)}, \quad \forall n \geq q, \, q \geq 0.
\]

Construct the positive odd Fourier modes by conjugation: \(u_{2n+1} := \overline{u}_{-(2n+1)} \), for all \(n \geq q, \, q \geq 0 \).

By conjugating \(^{(51)}\) we note that the positive odd Fourier modes also satisfy

\[
 \overline{\partial}u_{2n+3} + \partial u_{2n+1} = 0, \quad \forall n \geq q, \, q \geq 0.
\]
Moreover, by (46) they extend continuously to Γ and

$$u_{2n+1}|_{\Gamma} = \mathcal{T}_{-1}(2n+1)|_{\Gamma} = \mathcal{T}_{-1}(2n+1) = g_{2n+1}, \quad n \geq q, q \geq 0.$$

Step 3: The construction of the tensor field f in the $q = 0$ case. In the case of the 0-tensor, $f = f_0$, and f_0 is uniquely determined from the odd Fourier mode u_{-1} in (50), by

$$f_0 := 2 \Re \partial u_{-1}, \quad (\text{for } q = 0 \text{ case}).$$

We consider next the case $q \geq 1$ of tensors of order 2 or higher. In this case the construction of the tensor field f_{Ψ} is in terms of the Fourier mode $u_{-(2q+1)}$ in (50) and the class Ψ_{even}^q in (43).

Step 4: The construction of odd modes $u_{-(2n-1)}, \text{for } 1 \leq n \leq q, q \geq 1.$

Recall the non-uniqueness class Ψ_{even}^q in (43).

For $(\psi_{-1}, \psi_{-3}, \ldots, \psi_{-(2q-1)}) \in \Psi_{\text{even}}^q$ arbitrary, define the modes $u_{\pm 1}, u_{\pm 3}, \ldots, u_{\pm (2q-1)}$ in Ω by

$$u_{-(2n-1)} := \psi_{-(2n-1)} \quad \text{and} \quad u_{2n-1} := \mathcal{T}_{-1}(2n-1), \quad 1 \leq n \leq q, q \geq 1.$$

By the definition of the class (43), and the reality of g in (46), we have

$$u_{-(2n-1)}|_{\Gamma} = g_{-(2n-1)}, \quad \text{and} \quad u_{2n-1}|_{\Gamma} = \mathcal{T}_{-1}(2n-1) = g_{2n-1}, \quad 1 \leq n \leq q, q \geq 1.$$

Step 5: The construction of the tensor field f_{Ψ} whose X-ray data is g.

The components of the m-tensor f_{Ψ} are defined via the one-to-one correspondence between the pseudovectors $\langle f_0, f_1, \ldots, f_m \rangle$ and the functions $\{f_{2n} : -q \leq n \leq q\}$ as follows.

For $q \geq 1$, we define f_{2q}^Ψ by using $\psi_{-(2q-1)}$ from the non-uniqueness class (43), and Fourier mode $u_{-(2q+1)}$ from the Bukhgeim-Cauchy formula (50). Then, define $\{f_{2n} : 0 \leq n \leq q-1\}$ solely from the information in the non-uniqueness class. Finally, define $\{f_{-2n} : 1 \leq n \leq q\}$ by conjugation.

$$f_{2q} := \mathcal{T}_{-1}(2q-1) + \partial u_{-(2q+1)}, \quad q \geq 1,$$

$$f_{2n} := \mathcal{T}_{-1}(2n-1) + \partial \psi_{-(2n+1)}, \quad 1 \leq n \leq q-1, q \geq 2,$$

$$f_0 := 2 \Re \partial \psi_{-1}, \quad \text{and} \quad q \geq 1,$$

$$f_{-2n} := \mathcal{T}_{2n}, \quad 1 \leq n \leq q, q \geq 1.$$

By construction, $f_{2n} \in C^\mu(\Omega)$, for $-q \leq n \leq q$, as $\psi_{-1}, \ldots, \psi_{-(2q+1)} \in C^{1,\mu}(\Omega)$. We use these Fourier modes $f_0, f_{\pm 2}, f_{\pm 4}, \ldots, f_{\pm 2q}$ for $q \geq 1$, and equations (13), (7) and (9) to construct the pseudovectors $\langle \tilde{f}_0, \tilde{f}_1, \ldots, \tilde{f}_m \rangle$, and thus the m-tensor field $f_{\Psi} \in C^\mu(S^m; \Omega)$.

In order to show $g|_{\Gamma} = Xf_{\Psi}$ for $q \geq 1$, with f_{Ψ} being constructed as in (58), we define the real valued function u via its Fourier modes for $q \geq 1$,

$$u(z, \theta) = \sum_{n=\infty}^{\infty} u_{2n} e^{i2n\theta} + \sum_{|n| \geq q} u_{2n+1} e^{i(2n+1)\theta} + \sum_{n=1}^{q} \psi_{-(2n-1)} e^{-i(2n-1)\theta} + \sum_{n=1}^{q} \mathcal{T}_{-1}(2n-1) e^{i(2n-1)\theta}.$$

Since $g \in C^\mu(\Gamma; C^{1,\mu}(\Omega)) \cap C(\Gamma; C^{2,\mu}(\Omega))$, we use Proposition 3.1 (ii) and [39, Proposition 4.1 (iii)] to conclude that u defined in (59) belongs to $C^{1,\mu}(\Omega \times S^1) \cap C^{\mu}(\Omega \times S^1)$. Using (49), (52), (54), (57), and definition of $(\psi_{-1}, \psi_{-3}, \ldots, \psi_{-(2q-1)}) \in \Psi_{\text{even}}^q$ for $q \geq 1$, the trace $u(\cdot, \theta)$ in (59) extends to the boundary,

$$u(\cdot, \theta)|_{\Gamma} = g(\cdot, \theta).$$
Assume that justified, and u satisfy (57):

$$
\theta \cdot \nabla u = \partial \psi^{-1} + \partial \psi^{-1} + \sum_{n=1}^{q-1} \left(\psi^{-2(n-1)} + \psi^{-2(n+1)} \right)c^{-(2n)\theta} + \sum_{n=1}^{q-1} \left(\psi^{-2(n+1)} + \psi^{-2(n-1)} \right)c^{i(2n)\theta}
$$

$$
+ e^{-\theta}(\psi^{-2(2q-1)} + \psi^{-2(2q+1)}) + e^{i\theta}(\psi^{-2(q-1)} + \psi^{-2(q+1)})
$$

$$
= \sum_{n=-q}^{q} f_{2n}(z)e^{-\theta} = \langle f, \theta \rangle,
$$

where the cancellation uses equations (49), (51), (53), (56), and the second equality uses the definition of f_{2k}’s in (58).

\[\square\]

5. Odd order m-tensor - non-attenuated case

In this section we establish necessary and sufficient conditions for a sufficiently smooth function on $\Gamma \times S^1$ to be the non-attenuated X-ray data of some sufficiently smooth real valued symmetric tensor field f of odd order $m = 2q + 1$, $q \geq 0$.

In the non-attenuated odd m-tensor case, the transport equation (19a) becomes

$$
\theta \cdot \nabla u(z, \theta) = \sum_{n=0}^{q} \left(f_{2n+1}(z)e^{-\theta} + f_{2n+1}(z)e^{\theta} \right), \quad (z, \theta) \in \Omega \times S^1,
$$

where f_{2n+1} defined in (14), and $f_{2n+1} = f_{-2n-1}$, for $0 \leq n \leq q$, $q \geq 0$.

If $\sum_{n \in \mathbb{Z}} u_n(z)e^{in\theta}$ is the Fourier series expansion in the angular variable θ of a solution u of (60), then, by identifying the Fourier modes of the same order, the equation (60) reduces to the system:

$$
\partial u_{-2n}(z) + \partial u_{-2(n+2)}(z) = f_{2n+1}(z), \quad 0 \leq n \leq q, \quad q \geq 0,
$$

$$
\partial u_{-2n}(z) + \partial u_{-2(n+2)}(z) = 0, \quad n \geq q + 1, \quad q \geq 0,
$$

$$
\partial u_{-2(n+1)}(z) + \partial u_{-(2n+1)}(z) = 0, \quad n \geq 0.
$$

In the odd m-tensor case, the even and odd Fourier modes of u plays a different role, unlike the even m-tensor case in the previous section. To emphasize this difference we separate the non-positive even modes $u^{\text{even}} := \langle u_0, u_{-2}, u_{-4}, \ldots \rangle$, and negative odd modes $u^{\text{odd}} := \langle u_{-1}, u_{-3}, \ldots \rangle$, and note that if $\langle u_0(z), u_{-1}(z), u_{-2}(z), \ldots \rangle$ is L^2-analytic, then $u^{\text{even}}, u^{\text{odd}}$ are L-analytic.

Let us consider the sequence $\{u^{2k-1}\}_{k \geq 1} \subset C(\Omega; l_\infty) \cap C^1(\Omega; l_\infty)$ given by

$$
u_{2k-1} := \langle u_{2k-1}, u_{2k-3}, \ldots, u_1, u_{-1}, u_{-3}, u_{-5}, \ldots \rangle, \quad k \geq 1,
$$

obtained by augmenting the sequence of negative odd indices $\langle u_{-1}, u_{-3}, u_{-5}, \ldots \rangle$ by k many terms in the order $u_{2k-1}, u_{2k-3}, \ldots, u_1$.

One of the ingredients in our characterization of the odd m-tensor is the following simple property of L-analytic maps, shown in [39, Lemma 2.6].

Lemma 5.1. [39, Lemma 2.6] Let $\{u^{2k-1}\}_{k \geq 1}$ be the sequence of L-analytic maps defined in (64). Assume that

$$
u_{2k-1}|_f = \nu_{-(2k-1)}|_f, \quad \forall k \geq 1.
$$

Then, for each $k \geq 1$,
\begin{equation}
\begin{multlined}
 u_{2k-1}(z) = u_{-(2k-1)}(z), \quad z \in \Omega.
\end{multlined}
\end{equation}

The range characterization of data g will be given in terms of its Fourier modes:
\begin{equation}
 g(\zeta, \theta) = \sum_{n=-\infty}^{\infty} g_n(\zeta) e^{in\theta}, \quad \zeta \in \Gamma.
\end{equation}
Since the trace g is also real valued, its Fourier modes will satisfy $g_n = \overline{g_n}$, for $n \geq 0$. From the non-positive even modes, we build the sequence
\begin{equation}
 g_{\text{even}} := \{g_0, g_{-2}, g_{-4}, g_{-6}, \ldots\}.
\end{equation}
For each $k \geq 1$, we use the odd modes $\{g_{-1}, g_{-3}, g_{-5}, \ldots\}$ to build the sequence
\begin{equation}
 g^{2k-1} := \{g_{2k-1}, g_{2k-3}, \ldots, g_1\}
\end{equation}
by augmenting the negative odd indices by k-many terms in the order $g_{2k-1}, g_{2k-3}, \ldots, g_1$.

Similar to the non-attenuated even m-tensor case before, we will construct the solution u of the transport equation (60), whose trace matches the boundary data g, and also construct the right hand side of the (60). The construction of solution u is in terms of its Fourier modes in the angular variable. Except for non-positive modes $u_0, u_{-2}, \ldots, u_{-2q}$, all non-positive modes are defined by Bukhgeim-Cauchy integral formula in (25) using boundary data. Other than having the traces $u_{-2j}\big|_{\Gamma} = g_{-2j}, \; 0 \leq j \leq q, \; q \geq 0$, on the boundary, the $q + 1$ many Fourier modes $u_{-2j}, \; 0 \leq j \leq q, \; q \geq 0$, are unconstrained. They are chosen arbitrarily from the class of functions
\begin{equation}
 \Psi_{g}^{\text{odd}} := \{\{\psi_0, \psi_{-2}, \ldots, \psi_{-2j}\} \in C^{1,\mu}(\overline{\Omega}; \mathbb{R}) \times (C^{1,\mu}(\overline{\Omega}; \mathbb{C}))^q : 2\mu > 1 :
 \begin{cases}
 \psi_{-2j}\big|_{\Gamma} = g_{-2j}, \; 0 \leq j \leq q, \; q \geq 0
 \end{cases}\}
\end{equation}

\noindent **Remark 5.1.** In the 1-tensor case ($m = 1$), only Fourier mode u_0 be an arbitrary function in $C^1(\Omega) \cap C(\overline{\Omega})$ with $u_0\big|_{\Gamma} = g_0$. The arbitrariness of u_0 characterizes the non-uniqueness (up to the gradient field of a function which vanishes at the boundary) in the reconstruction of a vector field from its Doppler data.

Theorem 5.1 (Range characterization for odd tensors.). Let $f \in C^{1,\mu}(\overline{S^m}; \Omega)$, $\mu > 1/2$, be a real-valued symmetric tensor field of odd order $m = 2q + 1$, $q \geq 0$, and
\begin{equation}
 g = Xf \text{ on } \Gamma_+, \text{ and } g = 0 \text{ on } \Gamma_+ \cup \Gamma_0.
\end{equation}
Then $g_{\text{even}}, g^{2k-1} \in L^{1,1}_\infty(\Gamma) \cap C^\mu(\Gamma; l_1)$ for $k \geq 1$, and satisfy
\begin{align}
 [I + i\mathcal{H}] L^{\frac{m+1}{2}} g_{\text{even}} &= 0, \quad (70) \\
 [I + i\mathcal{H}] g^{2k-1} &= 0, \quad \forall k \geq 1, \quad (71)
\end{align}
where g_{even} is the sequence in (41), g^{2k-1} for $k \geq 1$ is the sequence in (68), and \mathcal{H} is the Bukhgeim-Hilbert operator in (27).

(ii) Let $g \in C^\mu(\Gamma; C^{1,\mu}(\overline{S^1})) \cap C(\Gamma; C^{2,\mu}(\overline{S^1}))$ be real valued with $g\big|_{\Gamma_+ \cup \Gamma_0} = 0$. If the corresponding sequence $g_{\text{even}} \in Y_\mu(\Gamma)$ satisfies (70), $g^{2k-1} \in Y_\mu(\Gamma)$ for $k \geq 1$, satisfies (71), and for each element $(\psi_0, \psi_{-2}, \ldots, \psi_{-2j}) \in \Psi_{g}^{\text{odd}}$, then there is a unique real valued symmetric m-tensor $f_\psi \in C^\mu(\overline{S^m}; \Omega)$ such that $g\big|_{\Gamma_+} = Xf_\psi$.

Proof. (i) Necessity: Let \(f = (f_{(i_1,\ldots,i_m)}) \in C^{1,H_0}(S^m;\Omega) \). Since all components \(f_{(i_1,\ldots,i_m)} \in C^{H_0}(\Omega) \), \(Xf \in C^{1,H_0}(\Gamma_+) \), and, thus, the solution \(u \) to the transport equation \((60) \) is in \(C^{1,H_0}(\Omega \times S^1) \). Moreover, its trace \(g = u|_{\Gamma \times S^1} \in C^{1,H_0}(\Gamma \times S^1) \). By Proposition 4.1 \(g^{\text{even}}, g^{2k-1} \in L^1_\infty(\Gamma) \cap C^H(\Gamma;I_1) \) for all \(k \geq 1 \).

If \(u \) solves \((60) \) then its Fourier modes satisfy \((61), (62), \) and \((63) \). Since the negative even Fourier modes \(u_{-2n} \) for \(n \geq \frac{m+2}{2} \), satisfies the system \((62) \), then the sequence valued map
\[
\Omega \ni z \mapsto u(z) := (u_1(z), u_{-1}(z), u_{-3}(z), \ldots)
\]
is \(L \)-analytic in \(\Omega \) and the necessity part in Theorem 3.1 yields the condition \((70) \).

The system \((63) \) yield that the sequence valued map
\[
\Omega \ni z \mapsto u^1(z) := (u_1(z), u_{-1}(z), u_{-3}(z), \ldots)
\]
is \(L \)-analytic in \(\Omega \) with the trace satisfying \(u_{2k-1}|_{\Gamma} = g_{2k-1} \), for all \(k \leq 1 \).
By Theorem 3.1 necessity part, the sequence \(g^1 = (g_1, g_{-1}, g_{-3}, \ldots) \) must satisfy
\[
[I + iH]g^1 = 0.
\]
Recall that \(u \) is real valued so that its Fourier modes occur in conjugates \(u_n = \overline{u_{-n}} \) for all \(n \geq 0 \). Consider now the equation \((63) \) for \(n = 1 \) and take its conjugate to yield
\[
(72)
\]
Equation \((72) \) together with \((63) \) yield that the sequence valued map
\[
\Omega \ni z \mapsto u^3(z) := (u_3(z), u_1(z), u_{-1}(z), u_{-3}(z), \ldots)
\]
is \(L \)-analytic in \(\Omega \) with the trace satisfying \(u_{2k-1}|_{\Gamma} = g_{2k-1} \) for all \(k \leq 2 \).
By the necessity part in Theorem 3.1 it must be that \(g^3 = (g_3, g_1, g_{-1}, g_{-3}, \ldots) \) satisfies
\[
[I + iH]g^3 = 0.
\]
Inductively, the argument above holds for any odd index \(2k - 1 \) to yield that the sequence
\[
\Omega \ni z \mapsto u^{2k-1}(z) := (u_{2k-1}(z), u_{2k-3}(z), \ldots, u_1(z), u_{-1}(z), u_{-3}(z), \ldots)
\]
is \(L \)-analytic in \(\Omega \). Then, again by the necessity part in Theorem 3.1 its trace \(u^{2k-1}|_{\Gamma} = g^{2k-1} \) must satisfy the condition \((71) \):
\[
[I + iH]g^{2k-1} = 0, \quad \text{for all} \ k \geq 1.
\]
(ii) Sufficiency: Let \(g \in C^H(\Gamma; C^{1,H_0}(S^1)) \cap C(\Gamma; C^{2,H_0}(S^1)) \) be real valued with \(g|_{\Gamma \cup \Gamma_0} = 0 \).
Since \(g \) is real valued, its Fourier modes in the angular variable occurs in conjugates
\[
(73)
\]
Let the corresponding sequences \(g^{\text{even}} \) satisfying \((44) \) and \(g^{\text{odd}} \) satisfying \((45) \). By Proposition 3.1, \(g^{\text{even}}, g^{\text{odd}} \in Y_{\mu}(\Gamma) \).

Let \(m = 2q + 1, q \geq 0, \) be an odd integer. To prove the sufficiency we will construct a real valued symmetric \(m \)-tensor \(f \) in \(\Omega \) and a real valued function \(u \in C^1(\Omega \times S^1) \cap C(\Omega \times S^1) \) such that \(u|_{\Gamma \times S^1} = g \) and \(u \) solves \((60) \) in \(\Omega \). The construction of such \(u \) is in terms of its Fourier modes in the angular variable and it is done in several steps.

Step 1: The construction of even modes \(u_{2n} \) for \(|n| \geq 2q + 1, q \geq 0 \).
Apply the Bukhgeim-Cauchy integral formula \((25) \) to construct the negative even Fourier modes:
\[
(74)
\]
By Theorem 3.1, the sequence valued map
\[\Omega \ni z \mapsto \langle u_{-2(q+1)}(z), u_{-2(q+2)}(z), u_{-2(q+3)}(z), \ldots \rangle \in C^{1,\mu}(\Omega; l_1) \cap C^\mu(\overline{\Omega}; l_1), \]
is L-analytic in Ω, thus the equations
\[(75) \quad \overline{\partial}u_{-2n} + \partial u_{-(2n+2)} = 0, \]
are satisfied for all $n \geq q + 1$, $q \geq 0$. Moreover, the hypothesis (70) and the sufficiency part of Theorem 3.1 yields that they extend continuously to Γ and
\[(76) \quad u_{-2n}|_\Gamma = g_{-2n}, \quad n \geq q + 1, \quad q \geq 0. \]

Construct the positive even Fourier modes by conjugation: $u_{2n} := \overline{u_{-2n}}$, for all $n \geq q + 1$, $q \geq 0$.

By conjugating (75) we note that the positive even Fourier modes also satisfy
\[(77) \quad \overline{\partial}u_{2n+2} + \partial u_{2n} = 0, \quad n \geq q + 1, \quad q \geq 0. \]
Moreover, by reality of g in (73), they extend continuously to Γ and
\[(78) \quad u_{2n}|_\Gamma = \overline{u_{-2n}}|_\Gamma = g_{-2n} = g_{2n}, \quad n \geq q + 1, \quad q \geq 0. \]

Step 2: The construction of even modes u_{2n}, for $|n| \leq 2q$, $q \geq 0$.

Recall the non-uniqueness class Ψ_g^{odd} in (69).

For $(\psi_0, \psi_{-2}, \ldots, \psi_{-2q}) \in \Psi_g^{\text{odd}}$ arbitrary, define the modes $u_0, u_{\pm 2}, u_{\pm 4}, \ldots, u_{\pm 2q}$ in Ω by
\[(79) \quad u_{-2n} := \psi_{-2n}, \quad \text{and} \quad u_{2n} := \overline{\psi_{-2n}}, \quad 0 \leq n \leq q. \]

By the definition of the class (69), and reality of g in (73), we have
\[(80) \quad u_{2n}|_\Gamma = \overline{g_{-2n}} = g_{2n}, \quad 0 \leq n \leq q. \]

Step 3: The construction of negative modes u_{2n-1} for $n \in \mathbb{Z}$.

Use the Bukhgeim-Cauchy Integral formula (25) to construct the negative odd Fourier modes:
\[(81) \quad \langle u_{-1}(z), u_{-3}(z), u_{-5}(z), \ldots \rangle := Bg^{\text{odd}}(z), \quad z \in \Omega. \]

By Theorem 3.1 the sequence valued map
\[\Omega \ni z \mapsto \langle u_{-1}(z), u_{-3}(z), u_{-5}(z), \ldots \rangle \in C^{1,\mu}(\Omega; l_1) \cap C^\mu(\overline{\Omega}; l_1), \]
is L-analytic in Ω, thus the equations
\[(82) \quad \overline{\partial}u_{-2n-1} + \partial u_{-2n-3} = 0, \]
are satisfied for all $n \geq 0$.

Note that $Lg^1 = g^{\text{odd}}$. By hypothesis (71), $[I + i\mathcal{H}]g^1 = 0$. Since \mathcal{H} commutes with the left translation L, then
\[0 = L[I + i\mathcal{H}]g^1 = [I + i\mathcal{H}]Lg^1 = [I + i\mathcal{H}]g^{\text{odd}}. \]

By applying Theorem 3.1 sufficiency part, we have that each u_{2n-1} extends continuously to Γ:
\[u_{2n-1}|_\Gamma = g_{-2n-1}, \quad n \geq 1. \]

If we were to define the positive odd index modes by conjugating the negative ones (as we did for the non-attenuated even tensor case) it would not be clear why the equation (63) for $n = 0$:
\[\overline{\partial}u_1 + \partial u_{-1} = 0, \]
should hold. To solve this problem we will define the positive odd modes by using the Bukhgeim-Cauchy integral formula (25) inductively.
Let \(u^1 = \langle u_1, u_{-1}, u_{-3}, \cdots \rangle \) be the \(L \)-analytic map defined by
\begin{equation}
(83) \quad u^1 := Bg^1.
\end{equation}
The hypothesis (71) for \(k = 1 \),
\[[I + i\mathcal{H}]g^1 = 0, \]
allows us to apply the sufficiency part of Theorem 3.1 to yield that \(u^1 \) extends continuously to \(\Gamma \) and has trace \(g^1 \) on \(\Gamma \). However, \(Lu^1 = u^{\text{odd}} \) is also \(L \)-analytic with the same trace \(g^{\text{odd}} \) as \(u^{\text{odd}} \). By the uniqueness of \(L \)-analytic maps with the given trace we must have the equality
\[\langle u^1_{-1}, u^1_{-3}, \cdots \rangle = \langle u_{-1}, u_{-3}, \cdots \rangle. \]
In other words the formula (83) constructs only one new function \(u_1 \) and recovers the previously defined negative odd functions \(u_{-1}, u_{-3}, \cdots \). In particular \(u^1 = \langle u_1, u_{-1}, u_{-3}, \cdots \rangle \) is \(L \)-analytic, and the equation \(\partial \overline{u}_1 + \partial u_{-1} = 0 \) holds in \(\Omega \). We stress here that, at this stage, we do not know that \(u_1 \) is the complex conjugate of \(u_{-1} \).

Inductively, for \(k \geq 1 \), the formula
\begin{equation}
(84) \quad u^{k-1} = \langle u_{2k-1}, u_{2k-3}, \ldots, u_1, u_{-1}, \cdots \rangle := Bg^{2k-1}
\end{equation}
defines a sequence \(\{u^{k-1}\}_{k \geq 1} \) of \(L \)-analytic maps with \(u^{k-1}|_\Gamma = g^{2k-1} \). By the uniqueness of \(L \)-analytic maps with the given trace, a similar reasoning as above shows
\[Lu^{k-1} = u^{k-3}, \quad \forall k \geq 2. \]
In particular for all \(k \geq 1 \), the sequence
\[\{u^{k-1}\}_{k \geq 1} \]
is \(L \)-analytic. Note that the sequence \(\{u^{k-1}\}_{k \geq 1} \) constructed above satisfies the hypotheses of the Lemma 5.1 and therefore for each \(k \geq 1 \),
\begin{equation}
(85) \quad u_{2k-1}(z) = \overline{\psi}_{-(2k-1)}(z), \quad z \in \Omega.
\end{equation}
We stress here that the identities (85) need the hypothesis (71) for all \(k \geq 1 \), cannot be inferred directly from the Bukhgeim-Cauchy integral formula (25) for finitely many \(k \)'s.

We have shown that
\begin{equation}
\overline{\partial}u_{2n-1} + \partial u_{2n-3} = 0, \quad \text{and} \quad u_{2n-1}|_\Gamma = g_{2n-1}, \quad \forall n \in \mathbb{Z}.
\end{equation}

Step 4: The construction of the tensor field \(f_\psi \) whose X-ray data is \(g \).

The components of the \(m \)-tensor \(f_\psi \) are defined via the one-to-one correspondence between the pseudovectors \(\langle \tilde{f}_0, \tilde{f}_1, \cdots, \tilde{f}_m \rangle \) and the functions \(\{f_{\pm n}^{\pm m+1} : 0 \leq n \leq q \} \) as follows.

For \(q \geq 0 \), we define \(f_{2q+1} \) by using \(\psi_{-2q} \) from the non-uniqueness class in (69), and Fourier mode \(u_{-(2q+2)} \) from the Bukhgeim-Cauchy formula (74). Then, define \(\{f_{2n+1} : 0 \leq n \leq q-1 \} \) solely from the information in the non-uniqueness class. Finally, define \(\{f_{-(2n+1)} : 0 \leq n \leq q \} \) by conjugation.

\begin{align*}
f_{2q+1} & := \overline{\partial}\psi_{-2q} + \partial u_{-(2q+2)}, \quad q \geq 0, \\
f_{2n+1} & := \overline{\partial}\psi_{-2n} + \partial \psi_{-(2n+2)}, \quad 0 \leq n \leq q-1, \quad q \geq 1, \quad \text{and}
\end{align*}
\begin{align*}
f_{-(2n+1)} & := \overline{f}_{2n+1}, \quad 0 \leq n \leq q, \quad q \geq 0.
\end{align*}
By construction, \(f_{\pm(2n+1)} \in C^\mu(\Omega) \), for \(0 \leq n \leq q \), as \(\psi_0, \psi_{-2}, \ldots, \psi_{-2q} \in C^{1, \mu}(\Omega) \). We use these Fourier modes \(f_{\pm1}, f_{\pm3}, \ldots, f_{\pm m} \) for \(m = 2q + 1 \), \(q \geq 0 \), and equations (14), (7) and (9) to construct the pseudovectors \(\{ \tilde{f}_0, \tilde{f}_1, \ldots, \tilde{f}_m \} \), and thus the \(m \)-tensor field \(f_\Psi \in C^\mu(S^m; \Omega) \).

In order to show \(g|_{\Gamma_\alpha} = Xf_\Psi \) with \(f_\Psi \) being constructed from pseudovectors via Fourier modes as in (87) from class \(\Psi^{\text{odd}} \), we define the real valued function \(u \) via its Fourier modes

\[
(88) \quad u(z, \theta) := \sum_{n=-\infty}^{\infty} u_{2n-1}(z)e^{i(2n-1)\theta} + \sum_{|n| \geq 1} u_{2n}(z)e^{2n\theta} + \sum_{n=0}^{q} \psi_{-2n}(z)e^{-i2n\theta} + \sum_{n=0}^{q} \tilde{\psi}_{-2n}(z) e^{i2n\theta}.
\]

Since \(g \in C^\mu(\Gamma; C^{1, \mu}(\mathbb{S}^1)) \cap C(\Gamma; C^{2, \mu}(\mathbb{S}^1)) \), we use Proposition 3.1 (ii) and [39, Proposition 4.1 (iii)] to conclude that \(u \) defined in (88) belongs to \(C^{1, \mu}(\Omega \times \mathbb{S}^1) \cap C(\overline{\Omega} \times \mathbb{S}^1) \).

Using (76), (78), (80), (86), and element \((\psi_0, \psi_{-2}, \ldots, \psi_{-2q}) \in \Psi^{\text{odd}}_g \), the \(u(\cdot, \theta) \) in (88) extends to the boundary

\[
(92) \quad u(\cdot, \theta)|_{\Gamma} = g(\cdot, \theta),
\]

Since \(u \in C^{1, \mu}(\Omega \times \mathbb{S}^1) \cap C^{\mu}(\overline{\Omega} \times \mathbb{S}^1) \), then the term by term differentiation in (88) is now justified, satisfying the transport equation (60):

\[
\theta \cdot \nabla u = 2 \mathbb{R} \left\langle \left(\partial \psi_{-2q} + \partial u_{-(2q+2)} \right) e^{i(2q+1)\theta} \right\rangle + 2 \mathbb{R} \left\langle \sum_{n=0}^{q-1} \left(\partial \psi_{-2n} + \partial \psi_{-(2n+2)} \right) e^{i(2n+1)\theta} \right\rangle
\]

\[
= \sum_{n=0}^{q} \left(f_{2n+1} e^{-i(2n+1)\theta} + f_{-(2n+1)} e^{i(2n+1)\theta} \right) = \langle f, \theta^{2q+1} \rangle,
\]

where the cancellation uses equations (75), (77), (80), and the second equality uses the definition of \(f_{2k+1}\)’s in (87).

\[\square\]

6. Even order \(m \)-tensor - attenuated case

Let \(a \in C^{2, \mu}(\overline{\Omega}) \), \(\mu > 1/2 \), with \(\min \Omega > 0 \). We now establish necessary and sufficient conditions for a sufficiently smooth function on \(\Gamma \times \mathbb{S}^1 \) to be the attenuated X-ray data of some sufficiently smooth real valued symmetric tensor field \(f \) of even order \(m = 2q \), \(q \geq 0 \). In this case \(a \neq 0 \), the transport equation (19a) becomes

\[
(89) \quad \theta \cdot \nabla u(x, \theta) + a(x)u(x, \theta) = \sum_{k=0}^{q} f_{-2k} e^{i(2k)\theta} + \sum_{k=1}^{q} f_{2k} e^{-i(2k)\theta},
\]

where \(f_{2k} \) defined in (13), and \(f_{2k} = \overline{f_{-2k}} \), for \(-q \leq k \leq q \), \(q \geq 0 \).

If \(\sum_{n \in \mathbb{Z}} u_n(z) e^{in\theta} \) is the Fourier series expansion in the angular variable \(\theta \) of a solution \(u \) of (89), then by identifying the Fourier coefficients of the same order, equation (89) reduces to the system:

\[
(90) \quad \overline{\partial} u_{-(2n+1)}(z) + \partial u_{-(2n+1)}(z) + a u_{-2n}(z) = f_{2n}(z), \quad 0 \leq n \leq q, \ q \geq 0,
\]

\[
(91) \quad \overline{\partial} u_{-2n}(z) + \partial u_{-(2n+2)}(z) + a u_{-2n-1}(z) = 0, \quad 0 \leq n \leq q - 1, \ q \geq 1,
\]

\[
(92) \quad \overline{\partial} u_{-n}(z) + \partial u_{-(n+2)}(z) + a u_{-(n+1)}(z) = 0, \quad n \geq 2q, \ q \geq 0.
\]
Recall that the trace \(u|_{\Gamma_+ \times \mathbb{R}^1} := g \) as in (21), with \(q = X_a f \) on \(\Gamma_+ \) and \(g = 0 \) on \(\Gamma_- \cup \Gamma_0 \).

We expand the attenuated X-ray data \(g \) in terms of its Fourier modes in the angular variables:

\[
g(\zeta, \theta) = \sum_{n=-\infty}^{\infty} g_n(\zeta)e^{in\theta}, \quad \zeta \in \Gamma.
\]

Since the trace \(g \) is also real valued, its Fourier modes will satisfy \(g_{-n} = \overline{g_n} \), for \(n \geq 0 \). From the negative modes, we built the sequence \(g := (g_0, g_{-1}, g_{-2}, g_{-3}, \ldots) \). From the special function \(h \) defined in (32) and the data \(g \), we built the sequence

\[
g_h := e^{-G}g := \langle \gamma_0, \gamma_1, \gamma_2, \gamma_3, \ldots \rangle,
\]

where \(e^{\pm G} \) as defined in (34). From the negative even, respectively, negative odd Fourier modes, we built the sequences

\[
\Psi^\text{even}_a := \langle \gamma_0, \gamma_2, \gamma_4, \ldots \rangle, \quad \text{and} \quad \Psi^\text{odd}_a := \langle \gamma_1, \gamma_3, \gamma_5, \ldots \rangle.
\]

Next we characterize the attenuated X-ray data \(g \) in terms of its Fourier modes \(\langle g_0, g_{-1}, g_{-2}, \cdots g_{-(m-1)} \rangle \), and the Fourier modes

\[
L^m g_h := L^m e^{-G}g := \langle \gamma_{-m}, \gamma_{-(m+1)}, \gamma_{-(m+2)}, \ldots \rangle.
\]

Similar to the non-attenuated case as before, we construct simultaneously the right hand side of the transport equation (89) together with the solution \(u \) via its Fourier modes. For \(m = 2q, q \geq 1 \), apart from modes \(u_0, u_{-1}, u_{-2}, \cdots u_{-(2q-1)} \), all Fourier modes are constructed uniquely from the data \(L^{2q}g_h \). The modes \(u_0, u_{-2}, u_{-4}, \cdots u_{-(2q-2)} \) will be chosen arbitrarily from the class \(\Psi_{a,g} \) of cardinality \(q = \frac{m}{2} \) with prescribed trace and gradient on the boundary \(\Gamma \) defined as

\[
\Psi^\text{even}_{a,g} := \left\{ \left(\psi_0, \psi_{-2}, \cdots, \psi_{-(2q-1)} \right) \in C^2(\overline{\Omega}; \mathbb{R}) \times \left(C^2(\overline{\Omega}; \mathbb{C}) \right) \right\}^q:
\]

\[
\begin{align*}
\psi_{-2j}|_\Gamma &= g_{-2j}, \quad 0 \leq j \leq q-1, \quad q \geq 1, \\
\overline{\partial} \psi_{-(2q-1)}|_\Gamma &= -\partial(e^G B e^{-G}g)_{-2q}|_\Gamma - a|_\Gamma g_{-(2q-1)}, \quad q \geq 1, \\
\overline{\partial} \psi_{-2j}|_\Gamma &= -\overline{\partial} \psi_{-(2j+2)}|_\Gamma - a|_\Gamma g_{-(2j+1)}, \quad 0 \leq j \leq q-2, \quad q \geq 2
\end{align*}
\]

where \(B \) be the Bukheim-Cauchy operator in (25), and the operators \(e^{\pm G} \) as defined in (34).

Remark 6.1. In the 2-tensor case \(m = 2 \), apart from zeroth mode \(u_0 \) and negative one mode \(u_{-1} \), all Fourier modes are constructed uniquely from the data \(L^2g_h \). The mode \(u_0 \) will be chosen arbitrarily from the class \(\Psi_{a,g}^m \). We rewrite the above class \(\Psi_{a,g}^m \) explicitly for \(m = 2 \), as

\[
\Psi_{a,g}^m := \left\{ \psi_0 \in C^2(\overline{\Omega}; \mathbb{R}) : \psi_0|_\Gamma = g_0, \quad \overline{\partial} \psi_0|_\Gamma = -\partial(e^G B e^{-G}g)_{-2}|_\Gamma - a|_\Gamma g_{-1} \right\}.
\]

In the 0-tensor case \(m = 0 \), there is no class, and the characterization of the attenuated X-ray data \(g \) is in terms of the Fourier modes \(g_h := e^{-G}g \).

Next, we characterize the range for even \(m = 2q, q \geq 0 \), in the attenuated case.
Theorem 6.1 (Range characterization for even order tensors). Let $a \in C^{2,\mu}(\overline{\Omega})$, $\mu > 1/2$ with $\min a > 0$. (i) Let $f \in C^{1,\mu}(S^n; \Omega)$, be a real-valued symmetric tensor field of even order $m = 2q$, $q \geq 0$, and $g = X_a f$ on Γ_+ and $g = 0$ on $\Gamma_0 \cup \Gamma_0$. Then $g^\text{even}_h, g^\text{odd}_h \in L_{\infty}^2(\Gamma) \cap C^\mu(\Gamma; l_1)$ satisfy
\begin{equation}
[I + i\mathcal{H}] L^m T g^\text{even}_h = 0, \quad [I + i\mathcal{H}] L^m T g^\text{odd}_h = 0.
\end{equation}
where $g^\text{even}_h, g^\text{odd}_h$ are sequences in \mathcal{W}_3, and \mathcal{H} is the Bukhgeim-Hilbert operator in (27).

(ii) Let $g \in C^\mu(\Gamma; C^{1,\mu}(S^1)) \cap C(\Gamma; C^{2,\mu}(S^1))$ be real valued with $g|_{\Gamma_0 \cup \Gamma_0} = 0$. For $q = 0$, if the corresponding sequences $g^\text{even}_h, g^\text{odd}_h \in Y^\mu(\Gamma)$ satisfies (96), then there is a unique real valued symmetric 0-tensor f such that $g|_{\Gamma_+} = X_a f$. Moreover, for $q \geq 1$, if $g^\text{even}_h, g^\text{odd}_h \in Y^\mu(\Gamma)$ satisfies (96), and for each element $(\psi_0, \psi_{-2}, \cdots, \psi_{-2(q-1)}) \in \Psi^\text{even}_{a,g}$, there is then a unique real valued symmetric m-tensor $f_\psi \in C(S^m; \Omega)$ such that $g|_{\Gamma_+} = X_a f_\psi$.

Proof. (i) Necessity: Let $f = (f_{i_1 \cdots i_m}) \in C^{1,\mu}_0(S^n; \Omega)$. Since all components $f_{i_1 \cdots i_m} \in C^{1,\mu}_0(\Omega)$ are compactly supported inside Ω, for any point at the boundary there is a cone of lines which do not meet the support. Thus $g \equiv 0$ in the neighborhood of the variety Γ_0 which yields $g \in C^{1,\mu}(\Gamma \times S^1)$. Moreover, g is the trace on $\Gamma \times S^1$ of a solution $u \in C^{1,\mu}(\overline{\Omega} \times S^1)$ of the transport equation (89). By Proposition 3.1(i) and Proposition 3.2, $g^\text{even}_h = e^{-G} g \in L_{\infty}^2(\Gamma) \cap C^\mu(\Gamma; l_1)$.

If u solves (89) then its Fourier modes satisfy (90), (91) and (92). In particular, the sequence valued map $\mathbf{u} := \langle u_0, u_{-1}, u_{-2}, \cdots \rangle$, satisfies $\partial L^m u + L^2 \partial L^m u + a L^m u = 0$.

Let $v := e^{-G} L^m u$, then by Lemma 3.1 and the fact that the operators $e^{\pm G}$ commute with the left translation, $[e^{\pm G}, L] = 0$, the sequence $v = L^m e^{-G} u$ solves $\partial v + L^2 \partial v = 0$, i.e. v is L^2 analytic. Thus, the negative even subsequence $\langle v_0, v_{-2}, \cdots \rangle$, and negative odd subsequence $\langle v_1, v_{-3}, \cdots \rangle$, respectively, are L analytic, with traces $L^2 g^\text{even}_h$, respectively, $L^2 g^\text{odd}_h$. The necessity part in Theorem 3.1 yields (96):
\begin{equation}
[I + i\mathcal{H}] L^m T g^\text{even}_h = 0, \quad [I + i\mathcal{H}] L^m T g^\text{odd}_h = 0.
\end{equation}
This proves part (i) of the theorem.

(ii) Sufficiency: Let $g \in C^\mu(\Gamma; C^{1,\mu}(S^1)) \cap C(\Gamma; C^{2,\mu}(S^1))$ be real valued with $g|_{\Gamma_0 \cup \Gamma_0} = 0$. Let the corresponding sequences $g^\text{even}_h, g^\text{odd}_h$ as in (93) satisfying (96). By Proposition 3.1(ii) and Proposition 3.2(iii), we have $g^\text{even}_h, g^\text{odd}_h \in Y^\mu(\Gamma)$.

Let $m = 2q$, $q \geq 0$, be an even integer. To prove the sufficiency we will construct a real valued symmetric m-tensor f in Ω and a real valued function $u \in C^{1}(\Omega \times S^1) \cap C^\mu(\Omega \times S^1)$ such that $u|_{\Gamma \times S^1} = g$ and u solves (89) in Ω. The construction of such u is in terms of its Fourier modes in the angular variable and it is done in several steps.

Step 1: The construction of modes u_m for $|n| \geq 2q$, $q \geq 0$.

Use the Bukhgeim-Cauchy Integral formula (25) to define the L-analytic maps
\begin{align*}
v^\text{even}(z) &= \langle v_0(z), v_{-2}(z), v_{-4}(z), \cdots \rangle := BL^q g^\text{even}_h(z), \quad z \in \Omega, \\
v^\text{odd}(z) &= \langle v_{-1}(z), v_{-3}(z), v_{-5}(z), \cdots \rangle := BL^q g^\text{odd}_h(z), \quad z \in \Omega.
\end{align*}
By intertwining the above L-analytic maps, define also the L^2-analytic map
\begin{equation}
v(z) := \langle v_0(z), v_{-1}(z), v_{-2}(z), v_{-3}(z), \cdots \rangle, \quad z \in \Omega.
\end{equation}
By Theorem 3.1(ii),
\begin{equation}v, v^\text{even}, v^\text{odd} \in C^{1,\mu}(\Omega; l_1) \cap C^\mu(\overline{\Omega}; l_1) \cap C^2(\Omega; l_\infty).
\end{equation}
Moreover, since \(g^\text{even}_h, g^\text{odd}_h \) satisfy the hypothesis (96), by Theorem 3.1 sufficiency part, we have

\[
v^\text{even}|_r = L^q g^\text{even}_h \quad \text{and} \quad v^\text{odd}|_r = L^q g^\text{odd}_h.
\]

In particular, \(v \) is \(L^2 \)-analytic map with trace:

\[
v|_r = L^{2q} g_h = L^{2q} e^{-G} g,
\]

where \(g_h \) is formed by intertwining \(g^\text{even}_h \) and \(g^\text{odd}_h \).

Define the sequence valued map

\[
\Omega \ni z \mapsto L^{2q}(\mathbf{u})(z) = (u_{-2q}(z), u_{-2q-1}(z), u_{-2q-2}(z), \cdots) := e^G \mathbf{v}(z),
\]

where the operator \(e^G \) as defined in (34). Since convolution preserves \(l_1 \), by Proposition 3.2

\[
L^{2q} u \in C^{1,\mu}(\Omega; l_1) \cap C^\mu(\Omega; l_1).
\]

Moreover, since \(v \in C^2(\Omega; l_\infty) \) as in (97), we also conclude from convolution that \(L^{2q} u \in C^2(\Omega; l_\infty) \).

As \(v \) is \(L^2 \) analytic, by Lemma 3.1 \(L^{2q} u \) satisfies

\[
\overline{\partial} L^{2q} u + L^2 \partial L^{2q} u + aL^{2q+1} u = 0,
\]

which in component form is written as:

\[
\overline{\partial} u_{-n} + \partial u_{-n-2} + au_{-n-1} = 0, \quad n \geq 2q, \ q \geq 0.
\]

The trace satisfy

\[
L^{2q} u|_r = e^G v|_r = e^G L^{2q} e^{-G} g = L^{2q} g,
\]

where the second equality follows from (96) and in the last equality we use the fact that the operators \(e^{\pm G} \) commute with the left translation, \([e^{\pm G}, \partial] = 0\).

Construct the positive Fourier modes by conjugation: \(u_n := \overline{u_{-n}}, \) for all \(n \geq 2q, \ q \geq 0 \). Moreover using (102), the traces \(u_n|_r \) for each \(n \geq 2q, \ q \geq 0 \), satisfy

\[
u_n|_r = \overline{u_{-n}}|_r = \overline{g_{-n}} = g_n, \quad n \geq 2q, \ q \geq 0.
\]

By conjugating (101) we note that the positive Fourier modes also satisfy

\[
\overline{\partial} u_{n+2} + \partial u_n + au_{n+1} = 0, \quad n \geq 2q, \ q \geq 0.
\]

Step 2: The construction of the tensor field \(f \) in the \(q = 0 \) case.

In the case of the 0-tensor, \(f = f_0 \), and \(f_0 \) is uniquely determined from the odd Fourier mode \(u_{-1} \), and the zeroth mode \(u_0 \) in (99), by

\[
f := 2 \Re \overline{\partial} u_{-1} + au_0, \quad (f \text{ for } q = 0 \text{ case}).
\]

We consider next the case \(m = 2q, q \geq 1 \) of tensors of order 2 or higher. In this case the construction of the tensor field \(f_q \) is in terms of the mode \(u_{-2q} \) in (99) and the class \(\Psi^\text{even}_{a,g} \) in (94).

Step 3: The construction of modes \(u_n \) for \(\lvert n \rvert \leq 2q - 1 \) \(q \geq 1 \).

Recall that \(a \in C^{2,\mu}(\overline{\Omega}), \mu > 1/2 \) with \(\min a > 0 \), and the non-uniqueness class \(\Psi^\text{even}_{a,g} \) in (94).

For \((\psi_0, \psi_2, \cdots, \psi_{2(q-1)}) \in \Psi^\text{even}_{a,g} \) arbitrary, define the modes \(u_0, u_{\pm 2}, \cdots, u_{\pm (2(q-1))} \) in \(\Omega \) by

\[
u_{-2j} := \psi_{-2j}, \quad \text{and} \quad u_{2j} := \psi_{2j}, \quad 0 \leq j \leq q - 1, \ q \geq 1.
\]

Using the mode \(u_{-2q} \) from (99) and \(\psi_{-2(q-1)} \), define the modes \(u_{\pm (2q-1)} \) by

\[
u_{-(2q-1)} := \frac{\overline{\partial} \psi_{-2(q-1)} + \partial u_{-2q}}{a}, \quad \text{and} \quad u_{2q-1} := \overline{\psi}_{-(2q-1)}, \text{ for all } q \geq 1.
\]
As \(\psi_0 \in C^2(\Omega; \mathbb{R}) \) and \(\psi_{-(2j+2)} \in C^2(\Omega; \mathbb{C}) \), for \(0 \leq j \leq q - 2, \ q \geq 2 \), define modes

\begin{equation}
 u_{-(2j+1)} := -\frac{\partial \psi_{-2j} + \partial \psi_{-(2j+2)}}{a}, \quad \text{and} \quad u_{2j+1} := \overline{u_{-(2j+1)}}, \quad \text{for all} \ 0 \leq j \leq q - 2, \ q \geq 2.
\end{equation}

By the construction in (106), (107), and (108):

\begin{equation}
 u_{-2j} \in C^2(\Omega; l_{\infty}), \quad \text{for} \quad 0 \leq j \leq q - 1, \ q \geq 1,
\end{equation}

\begin{equation}
 u_{-(2j+1)} \in C^1(\Omega; l_{\infty}), \quad \text{for} \quad 0 \leq j \leq q - 1, \ q \geq 1, \quad \text{and}
\end{equation}

\[\overline{\partial u_{-2j} + \partial u_{-(2j+2)}} + a u_{-(2j+1)} = 0, \quad \text{for} \quad 0 \leq j \leq q - 1, \ q \geq 1, \]

are satisfied. Moreover, by conjugating the last equation in (109) yields

\begin{equation}
 \partial u_{2j} + \overline{\partial u_{(2j+2)}} + a u_{(2j+1)} = 0, \quad \text{for} \quad 0 \leq j \leq q - 1, \ q \geq 1.
\end{equation}

By the definition of the class (94), and reality of \(g \), we have the trace of \(u_{-2j} \) in (106) satisfies

\begin{equation}
 u_{-2j} \mid_{\Gamma} = g_{-2j}, \quad \text{and} \quad u_{2j} \mid_{\Gamma} = \overline{g_{-2j}} = g_{2j}, \quad 0 \leq j \leq q - 1, \ q \geq 1.
\end{equation}

We check next that the trace of \(u_{-(2j+1)} \) is \(g_{-(2j+1)} \) for \(0 \leq j \leq q - 2, \ q \geq 2 \):

\begin{equation}
 u_{-(2j+1)} \mid_{\Gamma} = -\frac{\overline{\partial \psi_{-2j} + \partial \psi_{-(2j+2)}}}{a} \mid_{\Gamma} = g_{-(2j+1)},
\end{equation}

where the last equality uses the condition in class (94). Similar calculation to (112) for mode \(u_{-(2q-1)} \) give the trace

\begin{equation}
 u_{-(2q-1)} \mid_{\Gamma} = -\frac{\overline{\partial \psi_{-(2q-1)} + \partial u_{-2q}}}{a} \mid_{\Gamma} = g_{-(2q-1)}.
\end{equation}

Thus, from (111) - (113), we have the traces:

\begin{equation}
 u_n \mid_{\Gamma} = g_n, \quad \forall |n| \leq 2q - 1.
\end{equation}

Step 4: The construction of the tensor field \(f_\psi \) whose attenuated X-ray data is \(g \).

The components of the \(m \)-tensor \(f_\psi \) are defined via the one-to-one correspondence between the pseudovectors \(\langle \tilde{f}_0, \tilde{f}_1, \cdots, \tilde{f}_m \rangle \) and the functions \(\{ f_{2n} : -q \leq n \leq q \} \) as follows.

We define first \(f_{2q} \) by using \(\psi_{-(2q-1)} \) from the non-uniqueness class, and Fourier modes \(u_{-2q}, u_{-(2q+1)} \in C^2(\Omega; l_{\infty}) \) from (99). Then, next define \(f_{2q-2} \) by using \(\psi_{-(2q-1)}, \psi_{-(2q-2)} \) from the non-uniqueness class, and Fourier mode \(u_{-2q} \) from (99). Then, define \(\{ f_{2n} : 0 \leq n \leq q - 2 \} \) solely from the information in the non-uniqueness class. Finally, define \(\{ f_{-2n} : 1 \leq n \leq q \} \) by conjugation.
Equations (13), (7) and (9) to construct pseudovectors as in (115) from class Ψ.

By construction, $f_{2n} \in C(\Omega)$, for $0 \leq n \leq q$, $q \geq 1$, as $\psi_{-2n} \in C^2(\Omega; l_\infty)$, for $0 \leq n \leq q - 1$, from (94). Note that f_{2n} satisfy (90). We use these Fourier modes $\langle f_0, f_{\pm 1}, f_{\pm 2}, \ldots, f_{\pm m} \rangle$ and equations (13), (7) and (9) to construct pseudovectors $\langle f_0, f_1, \ldots, f_m \rangle$, and thus m-tensor field $f_\psi \in C(S^m; \Omega)$.

In order to show $g|_{\Gamma} = X_a f_\psi$, with f_ψ being constructed from pseudovectors via Fourier modes as in (115) from class $\Psi_{a,g}$, we define the real valued function u via its Fourier modes

\[
\begin{aligned}
\frac{\partial \psi_{-2(q-1)} + \partial u_{-2q}}{a} \quad &+ \partial u_{-(2q+1)} + a u_{-2q}, \quad q \geq 1, \\
\frac{\partial \psi_{-2(q-2)} + \partial \psi_{-2(q-1)}}{a} \quad &- \partial \left(\frac{\partial \psi_{-2(q-1)} + \partial u_{-2q}}{a} \right) + a \psi_{-2(q-1)}, \quad q \geq 2, \\
\frac{\partial \psi_{-2(n-1)} + \partial \psi_{-2n}}{a} \quad &- \partial \left(\frac{\partial \psi_{-2n} + \partial \psi_{-2(n+1)}}{a} \right) + a \psi_{-2n}, \quad 1 \leq n \leq q - 2, \quad q \geq 3,
\end{aligned}
\]

\[
\begin{aligned}
f_0 := \begin{cases}
-2 \Re \partial \left(\frac{\partial \psi_0 + \partial u_{-2}}{a} \right) + a \psi_0, & q = 1, \\
-2 \Re \partial \left(\frac{\partial \psi_0 + \partial \psi_{-2}}{a} \right) + a \psi_0, & q \geq 2,
\end{cases}
\end{aligned}
\]

\[
f_{-2n} := f_{2n}, \quad 0 \leq n \leq q, \quad q \geq 1,
\]

By construction, $f_{2n} \in C(\Omega)$, for $0 \leq n \leq q$, $q \geq 1$, as $\psi_{-2n} \in C^2(\Omega; l_\infty)$, for $0 \leq n \leq q - 1$, from (94). Note that f_{2n} satisfy (90). We use these Fourier modes $\langle f_0, f_{\pm 1}, f_{\pm 2}, \ldots, f_{\pm m} \rangle$ and equations (13), (7) and (9) to construct pseudovectors $\langle f_0, f_1, \ldots, f_m \rangle$, and thus m-tensor field $f_\psi \in C(S^m; \Omega)$.

In order to show $g|_{\Gamma} = X_a f_\psi$, with f_ψ being constructed from pseudovectors via Fourier modes as in (115) from class $\Psi_{a,g}$, we define the real valued function u via its Fourier modes

\[
\begin{aligned}
\sum_{|n| \geq 2q} u_n(z) e^{i n \theta} + 2 \Re \left(\frac{-\partial \psi_{-2(q-1)} + \partial u_{-2q}}{a} \right) e^{-i(2q-1)\theta}
+ 2 \Re \left\{ \sum_{n=0}^{q-1} \psi_{-2n}(z) e^{-i(2n)\theta} \right\} + 2 \Re \left\{ \sum_{n=0}^{q-2} \frac{-\partial \psi_{-2j} + \partial \psi_{-(2j+2)}}{a} \right\} e^{-i(2n+1)\theta}
\end{aligned}
\]

and check that it has the trace g on Γ and satisfies the transport equation (89).

Since $g \in C^\mu(\Gamma; C^{1,\mu}(S^1)) \cap C(\Gamma; C^{2,\mu}(S^1))$, we use Proposition 3.1(ii) and [39, Proposition 4.1(iii)] to conclude that u defined in (116) belongs to $C^{1,\mu}(\Omega \times S^1) \cap C(\Omega \times S^1)$. In particular $u(\cdot, \theta) = (\cos \theta, \sin \theta)$ extends to the boundary and its trace satisfies

\[
u(\cdot, \theta)|_{\Gamma} = \sum_{|n| \geq 2q} u_n|_{\Gamma} e^{i n \theta} + \sum_{|n| \leq 2q-1} u_n|_{\Gamma} e^{i n \theta} = \sum_{|n| \geq 2q} g_n e^{i n \theta} + \sum_{|n| \leq 2q-1} g_n e^{i n \theta} = g(\cdot, \theta),
\]

where in the second equality above we use (98), (103) and (114).

Since $u \in C^{1,\mu}(\Omega \times S^1) \cap C^{\mu}(\Omega \times S^1)$, then using (101), (104), (107), (109), (110), and the definition of f_{2n} for $-q \leq n \leq q$, $q \geq 1$, in (115), the real valued u defined in (116) satisfies the transport equation (89):

\[
\theta \cdot \nabla u + au = \langle f_\psi, \theta^{2q} \rangle, \quad q \geq 1.
\]
7. Odd order m-tensor - attenuated case

In this section, we establish necessary and sufficient conditions for a sufficiently smooth function on $\Gamma \times S^1$ to be the attenuated X-ray data of some sufficiently smooth real valued symmetric tensor field f of odd order $m = 2q + 1$, $q \geq 0$.

In this case $a \neq 0$, the transport equation becomes

$$\theta \cdot \nabla u(x, \theta) + a(x)u(x, \theta) = \sum_{n=0}^{q} (f_{2n+1}(x)e^{-i(2n+1)\theta} + f_{-(2n+1)}(x)e^{i(2n+1)\theta}), \quad x \in \Omega,$$

where $f_{2n+1} = f_{-(2n+1)}$, $0 \leq n \leq q$, $q \geq 0$.

If $\sum_{n \in Z} u_n(z)e^{m\theta}$ is the Fourier series expansion in the angular variable θ of a solution u of (117), then by identifying the Fourier coefficients of the same order, the equation (117) reduces to the system:

$$\Gamma(118) \quad \overline{\partial}u_{-n}(z) + \partial u_{-(n+2)}(z) + au_{-(n+1)}(z) = f_{n+1}(z), \quad 0 \leq n \leq q, \quad q \geq 0,$$

$$\Gamma(119) \quad \overline{\partial}u_{-(n+1)}(z) + \partial u_{-(n+2)}(z) + au_{-(n+1)}(z) = 0, \quad 0 \leq n \leq q, \quad q \geq 0,$$

$$\Gamma(120) \quad \overline{\partial}u_{-n}(z) + \partial u_{-(n-2)}(z) + au_{-(n-1)}(z) = 0, \quad n \geq 2q + 1, \quad q \geq 0,$$

Recall that the trace $u|_{R \times S^1} := g$ as in (21), with $g = X_a f$ on Γ_+ and $g = 0$ on $\Gamma_- \cup \Gamma_0$.

We expand the attenuated X-ray data g in terms of its Fourier modes in the angular variables:

$$g(\zeta, \theta) = \sum_{n=\infty}^{\infty} g_n(\zeta)e^{i\theta n}, \quad \text{for } \zeta \in \Gamma. \quad \text{From the non-positive modes of } g, \text{ we built the sequences }$$

$$g^e := \langle g_0, g_{-1}, g_{-2}, \ldots \rangle, \text{ and } g^{G} := e^{-G}g := \langle \gamma_0, \gamma_{-1}, \gamma_{-2}, \ldots \rangle, \text{ where } e^{\pm G} \text{ as defined in (34). From the non-positive even, respectively, negative odd Fourier modes, we built the sequences }$$

$$g^{even}_n = \langle \gamma_0, \gamma_{-2}, \gamma_{-4}, \ldots \rangle, \quad \text{and } g^{odd}_n = \langle \gamma_{-1}, \gamma_{-3}, \gamma_{-5}, \ldots \rangle.$$

Next we characterize the attenuated X-ray data g in terms of its m many modes $g_0, g_{-1}, \cdots g_{-(m-1)}$, and the Fourier modes $L^m g^e := L^m e^{-G}g := \langle \gamma_{-m}, \gamma_{-(m+1)}, \gamma_{-(m+2)}, \ldots \rangle$.

As before we construct simultaneously the right hand side of the transport equation (117) together with the solution u. Construction of u via its Fourier modes. We first construct the negative modes and then the positive modes are constructed by conjugation. For $m = 2q + 1$ (odd integer), $q \geq 1$, the modes will be chosen arbitrarily from the class $\psi_{a,g}^{odd}$ of cardinality $q = \frac{m-1}{2}$ with prescribed trace and gradient on the boundary Γ defined as

$$\psi_{a,g}^{odd} := \left\{ \psi_{-1}, \psi_{-3}, \cdots, \psi_{-(2q-1)} \right\} \in \left(C^2(\Omega; \mathbb{C}) \right)^q :$$

$$\Gamma(122) \quad \overline{\partial}\psi_{-(2j-1)}|_\Gamma = -\partial(e^G B e^{-G} g)|_{-(2q+1)}|_\Gamma - a|_\Gamma g_{-2q}, \quad q \geq 1,$$

$$\Gamma(122) \quad \overline{\partial}\psi_{-(2j-1)}|_\Gamma = -\partial\psi_{-(2j+1)}|_\Gamma - a|_\Gamma g_{-2j}, \quad 1 \leq j \leq q - 1, \quad q \geq 2,$$

$$\Gamma(122) \quad 2 \left(\Re e \partial\psi_{-1} \right) = -a|_\Gamma g_0,$$

where B be the Bukhgeim-Cauchy operator in (25), and the operators $e^{\pm G}$ as defined in (34).
Remark 7.1. In the 1-tensor case \((q = 0)\), there is no class, and the feature of the attenuated X-ray data \(g\) is in terms of its zero-th mode \(g_0 = \oint g(\cdot, \theta) \, d\theta\) and negative Fourier modes of \(g_h := e^{-G}g\).

Theorem 7.1 (Range characterization for odd order tensors). Let \(a \in C^{2, \mu}({\overline{\Omega}})\), \(\mu > 1/2\) with \(\min \alpha > 0\), and \(m = 2q + 1, \ q \geq 0\). (i) Let \(f \in C^{1, \mu}_0(S^m; \Omega)\) be a real-valued symmetric \(m\)-tensor field of odd order and

\[
g = X_a f \quad \text{on } \Gamma_+ \quad \text{and} \quad g = 0 \quad \text{on } \Gamma_- \cup \Gamma_0.
\]

Then \(g_{\text{even}}\), \(g_{\text{odd}}\) \(\in l_{1,1}^f(\Gamma) \cap C^\mu(\Gamma; l_1)\) satisfy

\[
[I + i\mathcal{H}]L^{m+1} g_{\text{even}} = 0, \quad [I + i\mathcal{H}]L^{m-1} g_{\text{odd}} = 0, \quad \text{for} \quad q \geq 0,
\]

where \(g_{\text{even}}, g_{\text{odd}}\) are sequences in \((121)\). Additionally, in \(q = 0\) case, for each \(\zeta \in \Gamma\), the zero-th Fourier mode \(g_0\) of \(g\) satisfy

\[
g_0(\zeta) = \lim_{\Omega_\zeta \rightarrow \zeta \in \Gamma} \frac{-2 \Re e \partial (e^G B g_h)_{-1}(z)}{a(z)}, \quad \text{for} \quad q = 0,
\]

where \(B\) be the Bukhgeim-Cauchy operator in \((25)\), and the operators \(e^{\pm G}\) as defined in \((34)\).

(ii) Let \(g \in C^\mu(\Gamma; C^{1, \mu}(S^1)) \cap C(\Gamma; C^{2, \mu}(S^1))\) be real valued with \(g|_{\Gamma_- \cup \Gamma_0} = 0\). For \(q = 0\), if the corresponding sequences \(g_{\text{even}}, g_{\text{odd}} \in Y_\mu(\Gamma)\) satisfies \((123)\), and \(g_0\) satisfies \((124)\), then there exists a unique real valued vector field \((1\text{-tensor})\) \(f \in C(S^m; \Omega)\) such that \(g|_{\Gamma_+} = X_a f\). Moreover, for \(q \geq 1\), if \(g_{\text{even}}, g_{\text{odd}} \in Y_\mu(\Gamma)\) satisfies \((123)\), and for each element \(\psi_{-1}, \psi_{-3}, \cdots, \psi_{-(2q-1)} \in \Psi_{a, \mu}\), then there is a unique real valued symmetric \(m\)-tensor \(f_\psi \in C(S^m; \Omega)\) such that \(g|_{\Gamma_+} = X_a f_\psi\).

Proof. (i) **Necessity:** Let \(f = (f_{1, \cdots, m}) \in C^{1, \mu}_0(S^m; \Omega)\). Since all components \(f_{1, \cdots, m} \in C^{1, \mu}(\Omega)\), \(X_a f \in C^{1, \mu}(\Gamma_+)\), and, thus, the solution \(u\) to the transport equation \((117)\) is in \(C^{1, \mu}(\overline{\Omega} \times S^1)\). Moreover, its trace \(g = u|_{\Gamma \times S^1} \in C(\Gamma \times S^1)\). By Proposition 3.1 (i) and Proposition 3.2, \(g_h = e^{-G}g \in l_{1,1}^f(\Gamma) \cap C^\mu(\Gamma; l_1)\).

If \(u\) solves \((117)\) then its Fourier modes satisfies \((118), (119)\) and \((120)\). In particular, the sequence valued map \(u = \langle u_0, u_{-1}, u_{-2}, \ldots \rangle\) satisfy \(\overline{\partial} L^m u + L^2 \partial L^m u + a L^{m+1} u = 0\).

Let \(v := e^{-G}L^m u\), then by Lemma 3.1 and the fact that the operators \(e^{\pm G}\) commute with the left translation, \([e^{\pm G}, L] = 0\), the sequence \(v = L^m e^{-G} u\) solves \(\overline{\partial} v + L^2 \partial v = 0\), i.e \(v\) is \(L^2\) analytic. The non-positive even and negative odd subsequence \(\langle v_{0}, v_{-3}, \cdots \rangle\), respectively, are \(L\) analytic, with traces \(L^m e^{-G} g_{\text{even}}, \) respectively, \(L^m e^{-G} g_{\text{odd}}\). The necessity part in Theorem 3.1 yields \((123)\):

\[
[I + i\mathcal{H}]L^{m+1} g_{\text{even}} = 0, \quad [I + i\mathcal{H}]L^{m-1} g_{\text{odd}} = 0, \quad \text{for} \quad m = 2q + 1, \ q \geq 0.
\]

Additionally, in the \(q = 0\) case, the Fourier modes \(u_0, u_{-1}, u_1\) of \(u\) solve \((119)\) for \(n = 0\). Since \(a > 0\) in \(\Omega\), we have

\[
u_0(z) = \lim_{\Omega_\zeta \rightarrow \zeta \in \Gamma} \frac{-2 \Re e \partial u_{-1}(z)}{a(z)}, \quad z \in \Omega.
\]

Since the left hand side of \((125)\) is continuous all the way to the boundary, so is the right hand side. Moreover, the limit below exists and in the \(q = 0\) case, we have

\[
g_0(z_0) = \lim_{\Omega_\zeta \rightarrow \zeta \in \Gamma} u_0(z) = \lim_{\Omega_\zeta \rightarrow \zeta \in \Gamma} -2 \Re e \partial u_{-1}(z) = \frac{-2 \Re e \partial u_{-1}(z)}{a(z)},
\]

thus \((124)\) holds. This proves part (i) of the theorem.
(ii) **Sufficiency:** Let \(g \in C^\mu (\Gamma; C^1.S(\Omega)) \cap C(\Gamma; C^2.S(\Omega)) \) be real valued with \(g|_{\Gamma \cap \Gamma_0} = 0 \). Let the corresponding sequences \(g^\text{even}_h, g^\text{odd}_h \) as in (121) satisfying (123). By Proposition 3.1(ii) and Proposition 3.2(iii), \(g^\text{even}_h, g^\text{odd}_h \in Y^\mu_h (\Gamma) \).

Let \(m = 2q + 1, q \geq 0 \), be an odd integer. To prove the sufficiency we will construct a real valued symmetric \(m \)-tensor \(f \) in \(\Omega \) and a real valued function \(u \in C^1(\Omega \times S^1) \cap C(\Omega \times S^1) \) such that \(u|_{\Gamma \times S^1} = g \) and \(u \) solves (117) in \(\Omega \). The construction of such \(u \) is in terms of its Fourier modes in the angular variable and it is done in several steps.

Step 1: The construction of modes \(u_n \) for \(|n| \geq 2q + 1, q \geq 0\).

Use the Bukhgeim-Cauchy Integral formula (25) to define the \(L \)-analytic maps
\[
\begin{align*}
v^\text{even}(z) &= \langle v_0(z), v_{-2}(z), v_{-4}(z), \ldots \rangle := \mathcal{B}L^{q+1}g^\text{even}_h(z), \quad z \in \Omega, \\
v^\text{odd}(z) &= \langle v_{-1}(z), v_{-3}(z), v_{-5}(z), \ldots \rangle := \mathcal{B}L^qg^\text{odd}_h(z), \quad z \in \Omega.
\end{align*}
\]

By intertwining let also define \(L^2 \)-analytic map
\[
v(z) = \langle v_0(z), v_{-1}(z), v_{-2}(z), v_{-3}(z), \ldots \rangle, \quad z \in \Omega.
\]

By Theorem 3.1(ii),
\[
v^\text{even}, v^\text{odd}, v \in C^1(\Omega; l_1) \cap C^2(\Omega; l_1) \cap C^2(\Omega; l_\infty).
\]

Moreover, since \(g^\text{even}_h, g^\text{odd}_h \) satisfy the hypothesis (96), by Theorem 3.1 sufficiency part, we have
\[
v^\text{even}|_{\Gamma} = L^{q+1}g^\text{even}_h \quad \text{and} \quad v^\text{odd}|_{\Gamma} = L^q g^\text{odd}_h, \quad q \geq 0.
\]

In particular, \(v \) is \(L^2 \)-analytic with trace:
\[
v|_{\Gamma} = L^{2q+1}g^\text{even}_h = L^{2q+1}e^{-G}g, \quad q \geq 0,
\]

where \(g_h \) is formed by intertwining \(g^\text{even}_h \) and \(g^\text{odd}_h \).

For \(q \geq 0 \), define the sequence valued map
\[
\Omega \ni z \mapsto L^{2q+1}u(z) = \langle u_{-(2q+1)}(z), u_{-(2q+2)}(z), u_{-(2q+3)}(z), \ldots \rangle := e^{\mathcal{G}}v(z).
\]

By Proposition 3.2, \(L^{2q+1}u \in C^1(\Omega; l_1) \cap C^2(\Omega; l_1) \). Moreover, since \(v \in C^2(\Omega; l_\infty) \) as in (126), we also conclude from convolution that \(L^{2q+1}u \in C^2(\Omega; l_\infty) \). Thus,
\[
L^{2q+1}u \in C^1(\Omega; l_1) \cap C^2(\Omega; l_1) \cap C^2(\Omega; l_\infty).
\]

As \(v \) is \(L^2 \) analytic, by Lemma 3.1, \(L^{2q+1}u \) satisfies \(\partial L^{2q+1}u + L^2 \partial L^{2q+1}u + aL^{2q+2}u = 0 \), for \(q \geq 0 \), which in component form is written as:
\[
\partial u_{-n} + \partial u_{-n-2} + au_{-n-1} = 0, \quad n \geq 2q + 1, \quad q \geq 0.
\]

The trace satisfy
\[
L^{2q+1}u|_{\Gamma} = e^{\mathcal{G}}v|_{\Gamma} = e^{\mathcal{G}}L^{2q+1}e^{-\mathcal{G}}g = L^{2q+1}g, \quad q \geq 0,
\]

where the second equality follows from (127) and in the last equality we use \([e^{\pm \mathcal{G}}, L] = 0 \).

Construct the positive Fourier modes by conjugation: \(u_n := \overline{u_{-n}} \), for all \(n \geq 2q + 1, q \geq 0 \). Moreover using (131), and the reality of \(g \), the traces \(u_n|_{\Gamma} \) satisfy
\[
u_n|_{\Gamma} = \overline{u_{-n}}|_{\Gamma} = \overline{g_{-n}} = g_n, \quad n \geq 2q + 1, \quad q \geq 0.
\]

By conjugating (130), and from (131) and (132), we thus have the Fourier modes satisfy
\[
\partial u_{-n} + \partial u_{-n-2} + au_{-n-1} = 0, \quad \text{and} \quad u_n|_{\Gamma} = g_n, \quad \forall |n| \geq 2q + 1, \quad q \geq 0.
\]

Step 2: The construction of 1-tensor (\(q = 0 \) case).
Since $a > 0$ in Ω, we can define u_0 (in $q = 0$ case) by using the Fourier mode u_{-1} from (128):

\begin{equation}
(134) \quad u_0(z) := -\frac{2 \text{Re} \partial u_{-1}(z)}{a(z)}, \quad z \in \Omega, \quad (\text{for } q = 0 \text{ case}).
\end{equation}

Note that u_0 satisfy (133) for $n = -1$. In particular $\overline{\partial u_1} + \partial u_{-1} + au_0 = 0$ holds.

From (124), u_0 defined above extends continuously to the boundary Γ and

\[u_0|_{\Gamma} = g_0, \quad (\text{for } q = 0 \text{ case}). \]

Moreover, since $u_{-1} \in C^2(\Omega)$ as shown in (129) and $a \in C^2(\Omega)$ we get $u_0 \in C^1(\Omega)$.

Using the Fourier modes u_{-1}, u_{-2} from (128) and u_0 as in (134), we next define the real valued vector field $\mathbf{f} \in C(\Omega; \mathbb{R}^2)$ (for $q = 0$ case) by

\begin{equation}
(135) \quad \mathbf{f} = \langle 2 \text{Re} f_1, 2 \text{Im} f_1 \rangle, \quad \text{where } f_1 := \overline{\partial u_0} + \partial u_{-2} + au_{-1}.
\end{equation}

We consider next the case $q \geq 1$ of tensors of order 3 or higher. In this case the construction of the tensor field \mathbf{f}_q is in terms of the Fourier modes $u_{-(2q+1)}, u_{-(2q+2)}$ in (128) and the class $\Psi^\text{odd}_{a,g}$ as in (122).

Step 3: The construction of modes u_n for $|n| \leq 2q, q \geq 1$.

Recall the non-uniqueness class $\Psi^\text{odd}_{a,g}$ as in (122).

For $(\psi_{-1}, \psi_{-3}, \cdots, \psi_{-(2q-1)}) \in \Psi^\text{odd}_{a,g}$ arbitrary, firstly define the odd modes

\begin{equation}
(136) \quad u_{-(2n-1)} := \psi_{-(2n-1)}, \quad \text{and} \quad u_{2n-1} := \overline{\psi_{-(2n-1)}}, \quad 1 \leq n \leq q, \quad q \geq 1.
\end{equation}

Secondly, by using $\psi_{-1}, \psi_{-(2q-1)}$ and the mode $u_{-(2q+1)}$ from (128), we define the modes

\begin{equation}
(137) \quad u_0 := -\frac{2 \text{Re} \partial \psi_{-1}}{a},
\end{equation}

\begin{equation}
(138) \quad u_{-2q} := -\frac{\overline{\partial \psi_{-(2q-1)}} + \partial u_{-(2q+1)}}{a}, \quad \text{and} \quad u_{2q} := \overline{u_{-2q}} \quad \text{for } q \geq 1.
\end{equation}

Lastly, by using $\psi_{-(2n-1)} \in C^2(\Omega; \mathbb{C})$, for $1 \leq n \leq q-1, \quad q \geq 2$, we define the even modes

\begin{equation}
(139) \quad u_{-2n} := -\frac{\overline{\partial \psi_{-(2n-1)}} + \partial \psi_{-(2n+1)}}{a}, \quad 1 \leq n \leq q-1, \quad q \geq 2, \quad \text{and}
\end{equation}

\begin{equation}
\begin{split}
\quad u_{2n} := \overline{u}_{-2n}, \quad 1 \leq n \leq q-1, \quad q \geq 2.
\end{split}
\end{equation}

By the construction in (137), (138), and (139), we have

\begin{equation}
(140) \quad u_{-(2n-1)} \in C^2(\Omega; l_\infty), \quad \text{for } 1 \leq n \leq q, \quad q \geq 1,
\end{equation}

\begin{equation}
(140) \quad u_{-2n} \in C^1(\Omega; l_\infty), \quad \text{for } 0 \leq n \leq q, \quad q \geq 1, \quad \text{and}
\end{equation}

\begin{equation}
\overline{\partial u_{-(2n-1)}} + \partial u_{-(2n+1)} + au_{-2n} = 0, \quad \text{for } 0 \leq n \leq q, \quad q \geq 1,
\end{equation}

is satisfied. Moreover, by conjugating the last equation in (140), we have the Fourier modes satisfy

\begin{equation}
(141) \quad \overline{\partial u_{-(2n-1)}} + \partial u_{-(2n+1)} + au_{-2n} = 0, \quad \text{for } |n| \leq q, \quad q \geq 1.
\end{equation}

By the class (122), and reality of g, we have the trace of $u_{-(2n-1)}$ in (136) satisfy

\begin{equation}
(142) \quad u_{-(2n-1)}|_{\Gamma} = g_{-(2n-1)}, \quad \text{and} \quad u_{2n-1}|_{\Gamma} = \overline{g}_{-(2n-1)} = g_{2n-1}, \quad 1 \leq n \leq q, \quad q \geq 1.
\end{equation}

We check next that the trace of u_{-2n} is g_{-2n} for $1 \leq n \leq q-1, \quad q \geq 2$:

\begin{equation}
(143) \quad u_{-2n}|_{\Gamma} = -\frac{\overline{\partial \psi_{-(2n-1)}} + \partial \psi_{-(2n+1)}}{a} \bigg|_{\Gamma} = g_{-2n},
\end{equation}

\begin{equation}
\overline{\partial \psi_{-(2n-1)}} + \partial \psi_{-(2n+1)}
\end{equation}
where the last equality uses the condition in class \((122)\). Similar calculation to \((143)\) for mode \(u_0\) in \((137)\), and mode \(u_{-2q}\) in \((138)\), give the trace

\[
(u_0)_r = g_0, \quad \text{and} \quad (u_{-2q})_r = g_{-2q}, \quad q \geq 1.
\]

Thus, from \((142)\), \((143)\) and \((144)\), we have the traces:

\[
(u_n)_r = g_n, \quad \forall |n| \leq 2q, \quad q \geq 1.
\]

Step 4: The construction of the tensor field \(f_\Psi\) whose attenuated X-ray data is \(g\).

The components of the \(m\)-tensor \(f_\Psi\) are defined via the one-to-one correspondence between the pseudovectors \(|\vec{f}_0, \vec{f}_1, \ldots, \vec{f}_m|\) and the functions \(|\{f_{\pm(2n+1)}: 0 \leq n \leq q\}\) as follows.

We first define \(f_{2q+1}\) by using \(\psi_{-(2q-1)}\) from the non-uniqueness class, and the Fourier modes \(u_{-(2q+1)}, u_{-(2q+2)}\) in \((128)\). Next, define \(f_{2q-1}\) by using \(\psi_{-(2q-1)}, \psi_{-(2q-3)}\) from the non-uniqueness class, and Fourier mode \(u_{-(2q+1)}\) in \((128)\). Then, define \(|\{f_{2n+1} : 0 \leq n \leq q - 2\}|\) solely from the information in the non-uniqueness class. Finally, define \(|\{f_{-(2n+1)} : 0 \leq n \leq q\}|\) by conjugation.

\[
f_{2q+1} := -\vec{\partial} \left(\frac{\partial \psi_{-(2q-1)} + \partial u_{-(2q+1)}}{a} \right) + \partial u_{-(2q+2)} + au_{-(2q+1)}, \quad q \geq 1,
\]

\[
f_{2q-1} := -\vec{\partial} \left(\frac{\partial \psi_{-(2q-3)} + \partial \psi_{-(2q-1)}}{a} \right) - \partial \left(\frac{\partial \psi_{-(2q-1)} + \partial u_{-(2q+1)}}{a} \right) + a \psi_{-(2q-1)}, \quad q \geq 2,
\]

\[
f_{2n+1} := -\vec{\partial} \left(\frac{\partial \psi_{-(2n-1)} + \partial \psi_{-(2n+1)}}{a} \right) - \partial \left(\frac{\partial \psi_{-(2n+1)} + \partial \psi_{-(2n+3)}}{a} \right) + a \psi_{-(2n+1)}, \quad 1 \leq n \leq q - 2,
\]

\[
f_1 := \begin{cases}
-2 \vec{\partial} \left(\frac{\text{Re } \partial \psi_{-1}}{a} \right) - \partial \left(\frac{\partial \psi_{-1} + \partial u_{-3}}{a} \right) + a \psi_{-1}, & q = 1, \\
-2 \vec{\partial} \left(\frac{\text{Re } \partial \psi_{-1}}{a} \right) - \partial \left(\frac{\partial \psi_{-1} + \partial \psi_{-3}}{a} \right) + a \psi_{-1}, & q \geq 2,
\end{cases}
\]

\[
f_{-(2n+1)} := f_{2n+1}, \quad 0 \leq n \leq q, \quad q \geq 1,
\]

By construction, \(f_{2n+1} \in C(\Omega)\) for \(0 \leq n \leq q, \quad q \geq 1\), as \(u_{-(2q+1)} \in C^2(\Omega; L_\infty)\) from \((129)\), and \(\psi_{-(2n-1)} \in C^2(\Omega; L_\infty)\), for \(1 \leq n \leq q - 1, \quad q \geq 1\), from \((122)\). We use these \(m + 1\) Fourier modes \(|\{f_{\pm1}, f_{\pm2}, \ldots, f_{\pm m}\}|\), and equations \((14)\), \((7)\) and \((9)\) to construct the pseudovectors \(|\vec{f}_0, \vec{f}_1, \ldots, \vec{f}_m|\), and thus the \(m\)-tensor field \(f_\Psi \in C(S^m; \Omega)\).

Define the real valued function \(u\) via its Fourier modes

\[
u(z, \theta) := \sum_{|n| \geq 2q+1} u_n(z)e^{in\theta} + 2 \text{Re} \left\{ \sum_{n=1}^{q} \psi_{-(2n-1)}(z)e^{-i(2n-1)\theta} \right\} + \frac{-2 \text{Re } \partial \psi_{-1}(z)}{a} + 2 \text{Re} \left\{ \sum_{n=1}^{q-1} u_{-2n}e^{-i(2n\theta)} \right\}.
\]

(147)

Using \((133)\) and \((145)\), and definition of \(|\psi_{-1}, \psi_{-3}, \ldots, \psi_{-(2q-1)}|\) \(\in \Psi_{a,g}^{\text{odd}}\) for \(q \geq 1\), the trace \(u(\cdot, \theta)\) in \((147)\) extends to the boundary, and its trace satisfy \((u(\cdot, \theta)|_r = g(\cdot, \theta))\).

Moreover, by using \((133)\), \((141)\) and the definition of \(f_{2n-1}\) for \(|n| \leq q, \quad q \geq 1\) in \((146)\), the real valued \(u\) defined in \((147)\) satisfies the transport equation \((117)\):

\[
\theta \cdot \nabla u + au = (f_\Psi, \theta^{2q+1}), \quad q \geq 1.
\]
ACKNOWLEDGMENT

The work of D. Omogbhe and K. Sadiq were supported by the Austrian Science Fund (FWF), Project P31053-N32. The work of K. Sadiq was also supported by the FWF Project F6801–N36 within the Special Research Program SFB F68 “Tomography Across the Scales”.

REFERENCES

[1] V. Aguilar and P. Kuchment, Range conditions for the multidimensional exponential x-ray transform, Inverse Problems, 11 (5) (1995), 977–982.
[2] V. Aguilar, L. Ehrenpreis and P. Kuchment, Range conditions for the exponential Radon transform, J. Anal. Math. 68 (1996), 1–13.
[3] E. V. Arbuzov, A. L. Bukhgeim and S. G. Kazantsev, Two-dimensional tomography problems and the theory of A-analytic functions, Siberian Adv. Math., 8 (1998), 1–20.
[4] Y. M. Assylbekov, F. Monard and G. Uhlmann, Inversion formulas and range characterizations for the attenuated geodesic ray transform, Journal de Mathématiques Pures et Appliquées 111 (2018), 161–190.
[5] G. Bal, On the attenuated Radon transform with full and partial measurements, Inverse Problems 20 (2004), 399–418.
[6] J. Boman and J.-O. Strömberg, Novikov’s inversion formula for the attenuated Radon transform—a new approach, J. Geom. Anal., 14 (2004), 185–198.
[7] H. Braun and A. Hauk, Tomographic reconstruction of vector fields, IEEE Transactions on signal processing 39 (1991), 464–471.
[8] A. L. Bukhgeim, Inversion Formulas in Inverse Problems, chapter in Linear Operators and Ill-Posed Problems by M. M. Lavrentiev and L. Ya. Savalev, Plenum, New York, 1995.
[9] E. Y. Derevtsov and V. V. Pickalov, Reconstruction of vector fields and their singularities from ray transform, Numerical Analysis and Applications 4 (2011), 21–35.
[10] E. Derevtsov and I. Svetov, Tomography of tensor fields in the plane, Eurasian J. Math. Comput. Appl., 3(2), (2015), 24–68.
[11] A. Denisiuk, On range condition of the tensor X-ray transforms in \(\mathbb{R}^n \), Inverse Prob. Imaging, 14(3), (2020), 423–435.
[12] D. V. Finch, The attenuated x-ray transform: recent developments, in Inside out: inverse problems and applications, Math. Sci. Res. Inst. Publ., 47, Cambridge Univ. Press, Cambridge, 2003, 47–66.
[13] I. M. Gelfand and M.I. Graev, Integrals over hyperplanes of basic and generalized functions, Dokl. Akad. Nauk SSSR 135 (1960), no.6, 1307–1310; English transl., Soviet Math. Dokl. 1 (1960), 1369–1372.
[14] S. Helgason, The Radon transform on Euclidean spaces, compact two-point homogenous spaces and Grassmann manifolds, Acta Math., 113 (1965), 153–180.
[15] S. Helgason, The Radon transform, Progress in Mathematics 5, Birkhäuser, Boston, 1980.
[16] Y. Katznelson, An introduction to harmonic analysis, Cambridge Math. Lib., Cambridge University Press, Cambridge, UK, 2004.
[17] S. G. Kazantsev and A. A. Bukhgeim, Singular value decomposition for the 2D fan-beam Radon transform of tensor fields, J. Inverse Ill-Posed Problems 12 (2004), 245–278.
[18] S. G. Kazantsev and A. A. Bukhgeim, The Chebyshev ridge polynomials in 2D tensor tomography, J. Inverse Ill-Posed Problems, 14 (2006), 157–188.
[19] S. G. Kazantsev and A. A. Bukhgeim, Inversion of the scalar and vector attenuated X-ray transforms in a unit disc, J. Inverse Ill-Posed Probl., 15 (2007), 735–765.
[20] V. P. Krishnan, R. Manna, S. K. Sahoo, and V. A. Sharafutdinov, Momentum ray transforms, II: range characterization in the Schwartz space, Inverse Problems 36 (4) (2020) 045009 (33pp).
[21] P. Kuchment, DS. A. L’vin, Range of the Radon exponential transform, Soviet Math. Dokl. 42 (1991), no. 1, 183–184
[22] D. Ludwig, The Radon transform on euclidean space, Comm. Pure Appl. Math., 19 (1966), 49–81.
[23] R. K. Mishra, Full reconstruction of a vector field from restricted Doppler and first integral moment transforms in \(\mathbb{R}^n \), J. Inverse Ill-Posed Problems 28 (2019), 173–184.
[24] F. Monard, Efficient tensor tomography in fan-beam coordinates, Inverse Probl. Imaging, 10(2) (2016), 433–459.
[25] F. Monard, Efficient tensor tomography in fan-beam coordinates. II: Attenuated transforms, Inverse Probl. Imaging, 12(2) (2018), 433–460.
[26] N. I. Muskhelishvili, Singular Integral Equations, Dover, New York, 2008.
[27] F. Natterer, The mathematics of computerized tomography, Wiley, New York, 1986.
[28] F. Natterer, Inversion of the attenuated Radon transform, Inverse Problems 17 (2001), 113–119.
[29] F. Natterer and F. Wübbeling, Mathematical methods in image reconstruction. SIAM Monographs on Mathematical Modeling and Computation, SIAM, Philadelphia, PA, 2001.
[30] S. J. Norton, Tomographic reconstruction of 2-D vector fields: application to flow imaging, Geophysical Journal 97 (1988), 161–168.
[31] S. J. Norton, Unique tomographic reconstruction of vector fields using boundary data, IEEE Transactions on image processing 1 (1992), 406–412.
[32] R. G. Novikov, Une formule d’inversion pour la transformation d’un rayonnement X atténué, C. R. Acad. Sci. Paris Sér. I Math., 332 (2001), 1059–1063.
[33] R. G. Novikov, On the range characterization for the two-dimensional attenuated x-ray transformation, Inverse Problems 18 (2002), no. 3, 677–700.
[34] E. Yu. Pantyukhina, Description of the image of a ray transformation in the two-dimensional case. (Russian) Methods for solving inverse problems (Russian), 80–89, 144, Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk, 1990.
[35] G. P. Paternain, M. Salo, and G. Uhlmann, Tensor tomography on surfaces, Invent. Math. 193(1) (2013), 229–247.
[36] G. P. Paternain, M. Salo, and G. Uhlmann, Tensor Tomography: Progress and Challenges, Chin. Ann. Math. Ser. B., 35(3) (2014), 399–428.
[37] L. Pestov and G. Uhlmann, On characterization of the range and inversion formulas for the geodesic X-ray transform, Int. Math. Res. Not., 80 (2004), 4331–4347.
[38] J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Ber. Sachs. Akad. Wiss. Leipzig, Math.-Phys. Kl., 69 (1917), 262–277.
[39] K. Sadiq and A. Tamasan, On the range of the attenuated Radon transform in strictly convex sets, Trans. Amer. Math. Soc., 367(8) (2015), 5375–5398.
[40] K. Sadiq and A. Tamasan, On the range characterization of the two dimensional attenuated Doppler transform, SIAM J. Math. Anal., 47(3) (2015), 2001–2021.
[41] K. Sadiq and A. Tamasan, On the range of the planar X-ray transform on the Fourier lattice of the torus, preprint (2022).
[42] K. Sadiq, O. Scherzer, and A. Tamasan, On the X-ray transform of planar symmetric 2-tensors, J. Math. Anal. Appl., 442(1) (2016), 31–49.
[43] M. Salo and G. Uhlmann, The attenuated ray transform on simple surfaces, J. Differential Geom., 88(1) (2011), 161–187.
[44] T. Schuster, 20 years of imaging in vector field tomography: a review. In Y. Censor, M. Jiang, A.K. Louis (Eds.), Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT), in: Publications of the Scuola Normale Superiore, CRM 7 (2008) 389–424.
[45] V. A. Sharafutdinov, A problem of integral geometry for generalized tensor fields on \mathbb{R}^n, Dokl. Akad. Nauk SSSR 286 (1986), 305–307.
[46] V. A. Sharafutdinov, Integral geometry of tensor fields, VSP, Utrecht, 1994.
[47] G. Sparr, K. Stråhlén, K. Lindström, and H. W. Persson, Doppler tomography for vector fields, Inverse Problems, 11 (1995), 1051–1061.
[48] A. Tamasan, Tomographic reconstruction of vector fields in variable background media, Inverse Problems 23 (2007), 2197–2205.

FACULTY OF MATHEMATICS, COMPUTATIONAL SCIENCE CENTER, UNIVERSITY OF VIENNA, OSKAR-MORGENSTERN-PLATZ 1, 1090 VIENNA, AUSTRIA

Email address: david.omogbe@univie.ac.at

JOHANN RADON INSTITUTE FOR COMPUTATIONAL AND APPLIED MATHEMATICS (RICAM), ALTENBERGER-STRASSE 69, 4040 LINZ, AUSTRIA

Email address: kamran.sadiq@ricam.oeaw.ac.at