Trehalose-induced alterations in serum expression levels of microRNAs associated with vascular inflammation in patients with coronary artery disease - the pilot results from the randomized controlled trial.

Keywords
Trehalose, Coronary artery disease, microRNA, vascular inflammation

Abstract
Introduction
Background: This study aimed to investigate the trehalose-induced alterations in serum expression levels of miRNAs associated with vascular inflammation in patients with coronary artery disease (CAD) in order to evaluate the effectiveness of intravenous (IV) trehalose administration in reducing arterial wall inflammation.

Material and methods
Methods: This trial enrolled 14 men with a history of myocardial infarction (MI) and systemic inflammation. The patients were randomized in a 2:1 ratio to trehalose (15g/week, IV administration) (N=10) or placebo (equal volume 0.9% normal saline) (N=4) for a period of 12-weeks. The relative serum expression levels of miRNA-126, miRNA-24, miRNA-181b, miRNA-10a and miRNA-92a were assessed.

Results
Results: IV trehalose administration significantly increased the serum level of miRNA-24 (2.473±0.72; P=0.037) compared to the baseline, but did not alter the other miRNA serum levels. However, at the end of the study, miRNA-24 (4.58±0.99; P=0.002), miRNA-181b (4.08±1.75; P=0.009) and miRNA-10a (3.68±0.63; P=0.013) showed notably higher serum levels in the trehalose relative to the placebo group. Furthermore, the reduction (normalized to baseline) in serum levels of miRNA-126 (P=0.042) and miRNA-92a (P=0.001) were reduced in the trehalose versus placebo group, while the serum level of miRNA-24 (P=0.007) was notably higher than that in the placebo group.

Conclusions
Conclusion: Serum levels of miRNAs associated with vascular inflammation were altered following IV trehalose administration. The alterations in serum miRNAs, especially miRNA-126 and miRNA-24, could be considered as helpful biomarkers for the evaluation of trehalose potency in reducing arterial wall inflammation in patients with CAD.
Trehalose-induced alterations in serum expression levels of microRNAs associated with vascular inflammation in patients with coronary artery disease – the pilot results from the randomized controlled trial

Shiva Ganjali 1, Tannaz Jamialahmadi 2, Mitra Abbasifard 3,4*, Seyed Ahmad Emami 5, Zahra Tayarani-Najaran 6,7, Alexandra E. Butler 8, Maciej Banach 9,10, Amirhossein Sahebkar 2,11,12,13*

1 Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran.
2 Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
3 Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
4 Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
5 Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
6 Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
7 Medical Toxicology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
8 Research Department, Royal College of Surgeons in Ireland, Bahrain, Adliya, Bahrain.
9 Department of Preventive Cardiology and Lipidology, Medical University of Łódź (MUL), Łódź, Poland.
10 Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland.
11 Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
12 School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
13 School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.

Correspondence: amir_saheb2000@yahoo.com; dr.mabbasifard@gmail.com

Funding: Mashhad University of Medical Sciences, Mashhad, Iran.
Abstract

Background: This study aimed to investigate the trehalose-induced alterations in serum expression levels of miRNAs associated with vascular inflammation in patients with coronary artery disease (CAD) in order to evaluate the effectiveness of intravenous (IV) trehalose administration in reducing arterial wall inflammation.

Methods: This trial enrolled 14 men with a history of myocardial infarction (MI) and systemic inflammation. The patients were randomized in a 2:1 ratio to trehalose (15g/week, IV administration) (N=10) or placebo (equal volume 0.9% normal saline) (N=4) for a period of 12-weeks. The relative serum expression levels of miRNA-126, miRNA-24, miRNA-181b, miRNA-10a and miRNA-92a were assessed.

Results: IV trehalose administration significantly increased the serum level of miRNA-24 (2.473±0.72; P=0.037) compared to the baseline but did not alter the other miRNA serum levels. However, at the end of the study, miRNA-24 (4.58±0.99; P=0.002), miRNA-181b (4.08±1.75; P=0.009) and miRNA-10a (3.68±0.63; P=0.013) showed notably higher serum levels in the trehalose relative to the placebo group. Furthermore, the reduction (normalized to baseline) in serum levels of miRNA-126 (P=0.042) and miRNA-92a (P=0.001) were reduced in the trehalose versus placebo group, while the serum level of miRNA-24 (P=0.007) was notably higher than that in the placebo group.

Conclusion: Serum levels of miRNAs associated with vascular inflammation were altered following IV trehalose administration. The alterations in serum miRNAs, especially miRNA-126 and miRNA-24, could be considered as helpful biomarkers for the evaluation of trehalose potency in reducing arterial wall inflammation in patients with CAD.

Keywords: Trehalose, Coronary artery disease, microRNA, vascular inflammation
Introduction

Coronary artery disease (CAD) and myocardial infarction (MI) are the most common cardiovascular diseases (CVDs) and remain the leading causes of mortality worldwide (1-3). CAD occurs as a consequence of atherosclerosis, a chronic inflammatory response in the arterial wall. Various cells, proteins, and inflammatory mediators play important roles in the pathogenesis of atherosclerosis (4-6). The assessment of circulatory lipid levels, especially low-density lipoprotein cholesterol (LDL-C), and the adjustment of its levels is the first step in the management of atherosclerotic cardiovascular disease (ASCVD) (3, 7). However, the reduction in mortality following lipid-lowering therapies such as statins is not only due to their cholesterol-lowering effects but also to their anti-inflammatory effects, one key mechanism of action of statins (8-10). As inflammation plays a principal role in the development of atherosclerosis, there is a need for anti-inflammatory drug therapy to effectively reduce the risk of atherogenesis-related complications.

Trehalose (C\textsubscript{12}H\textsubscript{22}O\textsubscript{11}) is a natural non-reducing sugar with an α,α-1,1-glycosidic linkage between two glucose units that prevents the destruction of biological molecules against environmental stresses (11, 12). The positive anti-oxidant and anti-inflammatory effects of trehalose have been shown in cellular and preclinical studies, suggesting the therapeutic capacity of this natural disaccharide against a variety of diseases (13-22). Trehalose can exhibit anti-inflammatory responses through NF-κB pathway inhibition (23) as well as induction of autophagy via lysosomal-mediated TFEB activation and an mTOR-independent pathway (24-27). Although alterations in sensitive indicators of inflammation, such as serum concentrations of cytokines and acute-phase proteins (APPs) are common to virtually all inflammatory responses, these traditional markers generally lack the specificity to identify the exact pathologic events occurring in the arterial wall during development of ASCVD (28).

MicroRNAs (miRNAs) are conserved endogenous short (~18-22 nucleotides) single-stranded non-coding RNA molecules found in a wide variety of organs, cells and body fluids and can regulate the gene expression at the post-transcriptional level (29). Dysregulation of miRNA expression has been linked to different pathophysiological conditions such as inflammation (30, 31). Therefore, circulating miRNAs have been considered as potential biomarkers for the prognosis and diagnosis of certain diseases, as well as a mechanism by which to track the efficacy of treatment strategies (29, 32-39). MiRNAs have been reported to affect vascular smooth muscle cell (VSMC) and inflammatory cell function, disrupting endothelial integrity and cholesterol homeostasis, factors involved in the onset of vascular inflammation and subsequent development of atherosclerotic plaque (40). For instance, miRNA-92a (41-44) and miRNA-126 (45) are highly expressed in endothelial cells (ECs) (46) and, through the regulation of adhesion molecule expression and pro-inflammatory cytokine production, play a role in vascular inflammation and the progression of atherosclerosis. It has also been demonstrated that miRNA-181b (47, 48) and miRNA-10a (49), by affecting the nuclear factor kappa B (NF-κB) pathway and the inflammatory process, may be involved in the pathogenesis of atherosclerosis.
Therefore, this study was designed to investigate trehalose-induced alterations in the serum levels of miRNAs known to be associated with vascular inflammation in patients with CAD in order to evaluate the effectiveness of IV trehalose administration in reducing arterial wall inflammation.

Material and Methods

Study population
This randomized, placebo-controlled, double-blind clinical trial enrolled 15 men (aged 18-80) with a history of MI and percutaneous coronary intervention (PCI)>90 days before study, as well as having evidence of inflammation, defined as a highly sensitive C-reactive protein (hs-CRP) >2 mg/l. The inclusion criteria were ST deviation, raised troponin and cardiac catheterization. Patients with impaired renal function (creatinine >3.0 mg/dL), diabetes, active hepatitis or severe hepatic dysfunction, active cancer, on immunosuppressive therapy, with active infectious or febrile disease and recipients of transplantation were excluded from the trial. Using computer-generated random numbers, patients were randomized in a 2:1 ratio to either trehalose (15 g/week, intravenous (IV) administration) or placebo (equal volume 0.9% normal saline) for a period of 12 weeks. All infusions were conducted by a trained nurse in the presence of a specialist physician over a 90-minute period. All participants provided written informed consent and the ethics committee of Mashhad University of Medical Sciences approved the study protocol and the study was conducted in Ghaem Educational, Research and Treatment Center, Mashhad, Iran. The trial was registered on ClinicalTrials.gov (NCT03700424) on October 9, 2018. Fasting blood samples were drawn from all participants. Serum was separated by centrifugation for 20 min at a relative centrifugal force (RCF) of 1000 and then stored at –80°C prior to analysis. Routine biochemical factors were also measured in the samples using commercial kits.

Serum miRNA extraction and cDNA synthesis
For evaluation of miRNA expression, total RNA was extracted from 300 μl of serum samples using BIOzol RNA lysis buffer (BN-0011.33, Bonyakhteh, Tehran, Iran) according to the manufacturer’s protocol with some modifications, such that, the time of centrifugation as well as incubation was increased to obtain the highest content of miRNAs in the samples. The quantity and quality of the extracted RNAs were evaluated by NanoDrop 2000 (Thermo, Wilmington, DE, USA).

Complementary DNA (cDNA) was synthesized by BONmiR High Sensitivity MicroRNA 1st Strand cDNA Synthesis kit (BN-0011.17.2, Bonyakhteh, Tehran, Iran) according to the manufacturer’s instructions. About 5 μg of total RNA with absorbance of 1.8-2 at 260/280 nm was used for the initial polyadenylation step and followed by using RT Stem-loop primer designed by Bonyakhteh company which was available in the kit; the universal cDNA synthesis was completed via the thermocycler device for 10min at 25°C, 60min at 42°C, and 10min at 70°C. Synthetized cDNA was stored at −20°C for future quantitative real-time PCR (qRT-PCR) analysis.

qRT-PCR
In order to measure the relative serum expression of miRNA-126, miRNA-24, miRNA-181b, miRNA-10a and miRNA-92a, the SYBR Green qPCR method was run in a Light Cycler 96
instrument (Roche Diagnostics, Mannheim, Germany) using a specific forward primer for each miRNA (Designed by Bonyakhteh company, Tehran, Iran) (Table 1) and BON microRNA 2x QPCR Master mix (BN-0011.17.4, Tehran, Iran) according to the following program: 2min at 95°C followed by 45 cycles at 95°C for 5s and at 60°C for 30s. All reactions were performed in duplicate. The expression levels of the miRNAs of interest were calculated using the Ct (Cycle threshold) value and quantified by the comparative (2\(^{-\Delta\Delta Ct}\)) method and normalized to U6 small nuclear RNA (U6snRNA) expression as an internal control.

Statistical analysis

All analyses were performed using SPSS software, version 11.5 (Chicago, IL, USA). P values less than 0.05 were considered statistically significant. Variables had normal distribution and were presented as mean ± standard error (SE). Within-group comparisons were performed using a paired samples t test. Between-group comparisons were performed using an independent samples t test. The relative expression software tool (REST) was used to analyze the miRNA-126, miRNA-24, miRNA-181b, miRNA-10a and miRNA-92a expression level changes for comparing relative ‘after treatment’ levels to ‘before treatment’ as well as before and after trehalose treatment relative to before and after placebo group, respectively. In addition, an independent samples t-test was applied for expression change comparison between groups.

Table 1: Sequence of forward primers used to evaluate the expression of miRNA-126, miRNA-24, miRNA-181b, miRNA-10a and miRNA-92a.

miRNAs	Sequences
miRNA-126	5´-GCGTCGTACCGTGAGT-3´
miRNA-24	5´-ACATGGGCTCAGTTCAG-3´
miRNA-181b	5´-GGGCAACATTCAACGCTG-3´
miRNA-10a	5´-ACCCTGTAGATACGAATTTG-3´
miRNA-92a	5´-GGTTGGGATGGGTTG-3´
U6 snRNA	5´-AAGGATGACACGCAAAT-3´

Results

Of the 15 patients, 14 were considered in final analysis and one patient did not due to the missing data. patients were categorized into trehalose (N=10) and placebo (N=4) groups. Figure 1 presents the flowchart of study.
Baseline comparison of biochemical factors in the studied groups

As are detailed in Table 2, the biochemical parameters analyzed included lipid profile, liver enzymes (alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT)), renal function tests (urea, creatinine, bilirubin total and direct) and hs-CRP, none of which were statistically different between trehalose and placebo groups at baseline. Following IV trehalose administration, increases in both HDL-C (mg/dL) (35.7±1.9 vs 32.4±1.6; final vs baseline, P=0.005) and LDL-C (mg/dL) (77.6±11.3 vs 60.2±8.9; final vs baseline, P=0.042) were found, as well as a decrease in aspartate transaminase (AST) level (23.3±2.8 vs 29.0±2.7; final vs baseline, P=0.039) at the end of the study compared to baseline. Other
biochemical parameters showed no significant changes in either the trehalose or placebo group. In addition, except for alanine aminotransferase (ALT) level (U/L) which changes showed a significant difference between the trehalose and placebo group (3.80±3.14 vs -10.25±5.10; P=0.035), there were no significant differences in the changes of other biochemical parameters between the groups.

Table 2. Baseline comparison of biochemical factors in the studied groups.

	Trehalose (N=10)	Placebo (N=4)	P-value
TG (mg/dL)	112.1±21.9	101.3±39.1	0.802
Cholesterol (mg/dL)	106.7±10.0	118.5±24.5	0.597
HDL-C (mg/dL)	32.4±1.6	33.5±3.0	0.733
LDL-C (mg/dL)	60.2±8.9	70.3±17.7	0.582
Urea (mg/dL)	30.4±2.0	30.8±7.2	0.949
Cr (mg/dL)	1.1±0.1	1.3±0.1	0.273
AST (U/L)	29.0±2.7	34.0±1.9	0.296
ALT (U/L)	19.4±2.3	27.5±3.0	0.074
ALP (U/L)	228.5±22.3	182.0±11.3	0.088
Bill T (mg/dL)	0.5±0.1	0.9±0.3	0.251
Bill D (mg/dL)	0.2±0.1	0.5±0.2	0.267
hs_CRP (mg/dL)	7.7±1.2	10.4±2.2	0.272

Data are expressed as mean±SEM. AST, aspartate aminotransferase; ALT, alanine aminotransferase; ALP, alkaline aminotransferase; Bill T, bilirubin total; Bill D, bilirubin direct; Cr, creatinine; HDL, high density lipoprotein; hs-CRP, high sensitive C-reactive protein; LDL, low density lipoprotein; TG, triglycerides.

Changes in serum miRNA expression related to the studied groups

The results demonstrated that, with the exception of miRNA-10a (0.22±0.20; P=0.042) (Figure 2D) that showed a lower expression level in the trehalose relative to the placebo group, the serum expression levels of the other miRNAs, namely miRNA-126 (Figure 2A), miRNA-24 (Figure 2B), miRNA-181b (Figure 2C) and miRNA-92a (Figure 2E), were not different between groups at baseline. However, at the conclusion of the study, miRNA-24 (4.58±0.99; P=0.002) (Figure 2B), miRNA-181b (4.08±1.75; P=0.009) (Figure 2C) and miRNA-10a (3.68±0.63; P=0.013)
(Figure 2D) showed notably higher serum expression levels in the trehalose relative to the placebo group. In addition, the results demonstrated that IV trehalose administration significantly increased serum levels of miRNA-24 (2.47±0.72; P=0.037) (Figure 3B) relative to baseline, though none of the other miRNA levels were altered. A significant reduction in the serum level of miRNA-10a (0.12±0.15; P=0.028) (Figure 3D) was observed in the placebo group versus baseline.

Furthermore, the reduction relative to baseline of serum levels of miRNA-126 (P=0.042) (Figure 3A) and miRNA-92a (P=0.001) (Figure 3E) was significantly less in the trehalose than in the placebo group, while the alteration in serum levels of miRNA-24 (P=0.007) (Figure 3B) was notably higher in the trehalose relative to the placebo group. There were no significant changes in levels of miRNA-10a and miRNA-181b between the groups.

Figure 2: Serum miRNA-126 (A), miRNA-24 (B), miRNA-181b (C), miRNA-10a (D) and miRNA-92a (E) fold changes in the trehalose group relative to the placebo group, at baseline and at the conclusion of the study. Data are expressed as mean±SEM. *P<0.05, **P<0.01.
Figure 3: Serum miRNA-126 (A), miRNA-24 (B), miRNA-181b (C), miRNA-10a (D) and miRNA-92a (E) fold changes in the trehalose and placebo group at the conclusion of the study relative to baseline. Data are expressed as mean±SE. *: P<0.05, **: P<0.01, ***: P<0.001
Discussion

Several studies have indicated that trehalose exerts anti-atherosclerotic actions through its anti-inflammatory and anti-oxidant properties (50-53). IV trehalose administration has also been shown to alter serum levels of miRNAs associated with vascular inflammation and may effect reduction in inflammation in the arterial wall in patients with CAD. However, hs-CRP, as a nonspecific marker of inflammation, showed no significant changes in either the trehalose or the placebo groups indicating that this traditional biomarker is less effective in the evaluation of trehalose potency for reducing arterial wall inflammation in these patients. By contrast, miRNA-24 showed notably higher levels after trehalose treatment. In addition, the change in miRNA-24 level was interestingly higher than that found in placebo group. MiRNA-24 is highly expressed in ECs and, by targeting genes involved in the proliferation, apoptosis and inflammation pathways, plays a key role in the regulation of endothelial function (54-56). It has been suggested that miRNA-24, by targeting YKL-40 (an inflammatory glycoprotein involved in endothelial dysfunction) (57), may serve as a biomarker for predicting CHD patients, and reduction in the serum levels of miRNA-24 has been reported in these patients (58). Therefore, the higher level of miRNA-24 in the trehalose group in our study is indicative of the efficacy of treatment in CAD patients.

MiRNA-126 is another miRNA that is prominent in cardiac muscle and is significantly reduced in CAD patients (59). Although in this study the serum expression level of miRNA-126 was unchanged in the trehalose group, its reduction relative to baseline was significantly less and levels remained almost constant relative to the placebo group; this again is indicative of the efficacy of trehalose treatment in CAD patients.

Trehalose was also potent in maintaining the serum level of miRNA-92a, another endothelial miRNA, in these patients, so that its reduction relative to baseline was significantly less in the trehalose versus the placebo group. MiRNA-92a has been shown to contribute to the development of CVD through NF-κB and downstream inflammatory pathways (60) and its increased serum level has been reported in both stable CAD and acute coronary syndrome (60, 61), though this study failed to show a reduction in miRNA-92a levels in the trehalose group.

The serum levels of miRNA-181b were not different between groups at the baseline. While, miRNA-10a showed significant lower level in trehalose group than in placebo groups at the baseline. Nevertheless, at the conclusion of this study, serum levels of these miRNA were notably higher in the trehalose versus the placebo group. One study reported that miRNA-181 is upregulated in human atherosclerosis plaques and suggested an essential role for miRNA-181 in the development of atherosclerosis through regulation of endothelial dysfunction (62). However, another study reported lower levels of miRNA-181 in CAD patients (63). In addition, low levels of miRNA-10a were associated with the development of atherosclerosis (64). Thus, higher levels of miRNA-181b and miRNA-10a in the trehalose versus the placebo group are indicative of the efficacy of trehalose treatment in this study (65-69).

In conclusion, the serum levels of some miRNAs associated with vascular inflammatory processes were effectively changed after 12 weeks of IV trehalose administration. Therefore, these miRNAs,
especially miRNA-126 and miRNA-24, could be considered to be useful biomarkers for the evaluation of trehalose potency in reducing arterial wall inflammation in patients with CAD.
References

1. McNamara K, Alzubaidi H, Jackson JK. Cardiovascular disease as a leading cause of death: how are pharmacists getting involved? Integr Pharm Res Pract. 2019;8:1-11.
2. WHO. 2021 [Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)#:%3E%3;:text=Cardiovascular%20diseases%20(CVDs)%20are%2020the%2C%2D%20and%20middle%20income%20countries.]
3. Stein EA, Raal FJ. Lipid-Lowering Drug Therapy for CVD Prevention: Looking into the Future. Current Cardiology Reports. 2015;17(11):104.
4. Libby P. Inflammation in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology. 2012;32(9):2045-51.
5. Pothineni NVK, Subramany S, Kuriakose K, Shirazi LF, Romeo F, Shah PK, et al. Infections, atherosclerosis, and coronary heart disease. European heart journal. 2017;38(43):3195-201.
6. Libby P, Ridker PM, Hansson GK, Atherothrombosis LTNo. Inflammation in atherosclerosis: from pathophysiology to practice. Journal of the American college of cardiology. 2009;54(23):2129-38.
7. Ballantyne C, Arroll B, Shepherd J. Lipids and CVD management: towards a global consensus. European heart journal. 2005;26(21):2224-31.
8. Ridker PM, Rifai N, Pfeffer MA, Sacks FM, Moye LA, Goldman S, et al. Inflammation, pravastatin, and the risk of coronary events after myocardial infarction in patients with average cholesterol levels. Circulation. 1998;98(9):839-44.
9. Ridker PM, Rifai N, Clearfield M, Downs JR, Weis SE, Miles JS, et al. Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events. New England Journal of Medicine. 2001;344(26):1959-65.
10. Cohen B, Singh D. C-reactive protein levels and outcomes after statin therapy. The New England journal of medicine. 2005;352(15):1603-5; author reply
11. Elbein AD, Pan YT, Pastuszak I, Carroll D. New insights on trehalose: a multifunctional molecule. Glycobiology. 2003;13(4):17R-27R.
12. Jain NK, Roy I. Effect of trehalose on protein structure. Protein Science. 2009;18(1):24-36.
13. Tanaka M, Machida Y, Niu S, Ikeda T, Jana NR, Kurosawa M, et al. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nature medicine. 2004;10(2):148-54.
14. Rodríguez-Navarro JA, Rodríguez L, Casarejos MJ, Solano RM, Gómez A, Peruco J, et al. Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation. Neurobiology of disease. 2010;39(3):423-38.
15. Castillo K, Nassif M, Valenzuela V, Rojas F, Matus S, Mercado G, et al. Trehalose delays the progression of amyotrophic lateral sclerosis by enhancing autophagy in motoneurons. Autophagy. 2013;9(9):1308-20.
16. Sergin I, Evans TD, Zhang X, Bhattacharya S, Stokes CJ, Song E, et al. Exploiting macrophage autophagy-lysosomal biogenesis as a therapy for atherosclerosis. Nature communications. 2017;8(1):1-20.
17. Forouzanfar F, Guest PC, Jamialahmadi T, Sahebkar A. Hepatoprotective Effect of Trehalose: Insight into Its Mechanisms of Action. Advances in Experimental Medicine and Biology: Springer; 2021. p. 489-500.
18. Khalifeh M, Barreto G, Sahebkar A. Therapeutic potential of trehalose in neurodegenerative diseases: The knowns and unknowns. Neural Regen Res. 2021;16(10):2026-7.
19. Khalifeh M, Barreto GE, Sahebkar A. Trehalose as a promising therapeutic candidate for the treatment of Parkinson's disease. Br J Pharmacol. 2019;176(9):1173-89.
20. Khalifeh M, Read MI, Barreto GE, Sahebkar A. Trehalose against Alzheimer's Disease: Insights into a Potential Therapy. BioEssays. 2020;42(8).
21. Sahebkar A, Hatamipour M, Tabatabaei SA. Trehalose administration attenuates atherosclerosis in rabbits fed a high-fat diet. J Cell Biochem. 2019;120(6):9455-9.
22. Yaribeygi H, Yaribeygi A, Sathyapalan T, Sahebkar A. Molecular mechanisms of trehalose in modulating glucose homeostasis in diabetes. Diabetes Metab Syndr Clin Res Rev. 2019;13(3):2214-8.
23. Minutoli L, Altavilla D, Bitto A, Polito F, Bellocco E, Laganà G, et al. Trehalose: a biophysics approach to modulate the inflammatory response during endotoxic shock. European journal of pharmacology. 2008;589(1-3):272-80.
24. Zhang Y, Higgins CB, Mayer AL, Mysorekar IU, Razani B, Graham MJ, et al. TFEB-dependent induction of thermogenesis by the hepatocyte SLC2A inhibitor trehalose. Autophagy. 2018;14(11):1959-75.
25. Wang Q, Ren J. mTOR-Independent autophagy inducer trehalose rescues against insulin resistance-induced myocardial contractile anomalies: Role of p38 MAPK and Foxo1. Pharmacological research. 2016;111:357-73.
26. Evans TD, Jeong S-J, Zhang X, Sergin I, Razani B. TFEB and trehalose drive the macrophage autophagy-lysosome system to protect against atherosclerosis. Autophagy. 2018;14(4):724-6.
27. Hosseinpour-Moghaddam K, Caraglia M, Sahebkar A. Autophagy induction by trehalose: Molecular mechanisms and therapeutic impacts. Journal of Cellular Physiology. 2018;233(9):6524-43.
28. Germolec DR, Shipkowski KA, Frawley RP, Evans E. Markers of inflammation. Immunotoxicity Testing. 2018:57-79.
29. Wang J, Chen J, Sen S. MicroRNA as biomarkers and diagnostics. Journal of cellular physiology. 2016;231(1):25-30.
30. Garo LP, Murugaiyan G. Contribution of MicroRNAs to autoimmune diseases. Cellular and Molecular Life Sciences. 2016;73(10):2041-51.
31. O'connell RM, Rao DS, Chaudhuri AA, Baltimore D. Physiological and pathological roles for microRNAs in the immune system. Nature Reviews Immunology. 2010;10(2):111-22.
32. Fathullahzadeh S, Mirzaei H, Honardoost MA, Sahebkar A, Salehi M. Circulating microRNA-192 as a diagnostic biomarker in human chronic lymphocytic leukemia. Cancer Gene Ther. 2016;23(10):327-32.
33. Gorabi AM, Ghanbari M, Sathyapalan T, Jamialahmadi T, Sahebkar A. Implications of microRNAs in the pathogenesis of atherosclerosis and prospects for therapy. Curr Drug Targets. 2021;22(15):1738-49.
34. Gorabi AM, Kiaie N, Sathyapalan T, Al-Rasadi K, Jamialahmadi T, Sahebkar A. The Role of MicroRNAs in Regulating Cytokines and Growth Factors in Coronary Artery Disease: The Ins and Outs. J Immunol Res. 2020;2020.

35. Mahmoudi A, Butler AE, Jamialahmadi T, Sahebkar A. The role of exosomal miRNA in nonalcoholic fatty liver disease. Journal of Cellular Physiology. 2022;237(4):2078-94.

36. Mirzaei HR, Sahebkar A, Mohammadi M, Yari R, Salehi H, Jafari MH, et al. Circulating micornas in hepatocellular carcinoma: Potential diagnostic and prognostic biomarkers. Curr Pharm Des. 2016;22(34):5257-69.

37. de Oliveira ARCP, Castanhole-Nunes MMU, Biselli-Chicote PM, Pavarino ÉC, da Silva RDCMA, da Silva RF, et al. Differential expression of angiogenesis-related miRNAs and VEGFA in cirrhosis and hepatocellular carcinoma. Arch Med Sci. 2020;16(5):1150-7.

38. Li H, Liu D, Liu L, Huang S, Ma A, Zhang X. The role of HOTAIR/miR-152-3p/LIN28B in regulating the progression of endometrial squamous carcinoma. Arch Med Sci. 2021;17(2):434-48.

39. Wang H, Liu G, Li T, Wang N, Wu J, Zhi H. MiR-330-3p functions as a tumor suppressor that regulates glioma cell proliferation and migration by targeting CELF1. Arch Med Sci. 2020;16(5):1166-75.

40. Churov A, Summerhill V, Grechko A, Orekhova V, Orekhov A. MicroRNAs as potential biomarkers in atherosclerosis. International Journal of Molecular Sciences. 2019;20(22):5547.

41. Widmer RJ, Chung W-Y, Herrmann J, Jordan KL, Lerman LO, Lerman A. The association between circulating microRNA levels and coronary endothelial function. PLoS One. 2014;9(10):e109650.

42. Parahuleva MS, Lipps C, Parviz B, Hölschermann H, Schieffer B, Schulz R, et al. MicroRNA expression profile of human advanced coronary atherosclerotic plaques. Scientific reports. 2018;8(1):1-9.

43. Fang Y, Davies PF. Site-specific microRNA-92a regulation of Krüppel-like factors 4 and 2 in atherosusceptible endothelium. Arteriosclerosis, thrombosis, and vascular biology. 2012;32(4):979-87.

44. Loyer X, Potteaux S, Vion A-C, Guérin CL, Bouklroun S, Rautou P-E, et al. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circulation research. 2014;114(3):434-43.

45. Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proceedings of the National Academy of Sciences. 2008;105(5):1516-21.

46. Feinberg MW, Moore KJ. MicroRNA Regulation of Atherosclerosis. Circulation research. 2016;118(4):703-20.

47. Sun X, Icli B, Wara AK, Belkin N, He S, Kobzik L, et al. MicroRNA-181b regulates NF-κB-mediated vascular inflammation. The Journal of clinical investigation. 2012;122(6):1973-90.

48. Sun X, Sit A, Feinberg MW. Role of miR-181 family in regulating vascular inflammation and immunity. Trends in cardiovascular medicine. 2014;24(3):105-12.

49. Fang Y, Shi C, Manduchi E, Civelek M, Davies PF. MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proceedings of the National Academy of Sciences. 2010;107(30):13450-5.
50. Echigo R, Shimohata N, Karatsu K, Yano F, Kayasuga-Kariya Y, Fujisawa A, et al. Trehalose treatment suppresses inflammation, oxidative stress, and vasospasm induced by experimental subarachnoid hemorrhage. Journal of translational medicine. 2012;10(1):1-13.

51. Honma Y, Sato-Morita M, Katsuki Y, Mihara H, Baba R, Harada M. Trehalose activates autophagy and decreases proteasome inhibitor-induced endoplasmic reticulum stress and oxidative stress-mediated cytotoxicity in hepatocytes. Hepatology Research. 2018;48(1):94-105.

52. Kaplon RE, Hill SD, Bispham NZ, Santos-Parker JR, Nowlan MJ, Snyder LL, et al. Oral trehalose supplementation improves resistance artery endothelial function in healthy middle-aged and older adults. Aging (Albany NY). 2016;8(6):1167.

53. Klück V, Kaplon RE, Eijsvogels TM, Hopman MT, Seals DR. Effect of Trehalose on Arterial Stiffness and Oxidative Stress in Human Vascular Endothelium.

54. Zhou Q, Gallagher R, Ufret-Vincenty R, Li X, Olson EN, Wang S. Regulation of angiogenesis and choroidal neovascularization by members of microRNA-23~27~24 clusters. Proceedings of the national academy of sciences. 2011;108(20):8287-92.

55. Fiedler J, Jazbutyte V, Kirchmaier BC, Gupta SK, Lorenzen J, Hartmann D, et al. MicroRNA-24 regulates vascularity after myocardial infarction. Circulation. 2011;124(6):720-30.

56. Wang J, Huang W, Xu R, Nie Y, Cao X, Meng J, et al. Micro RNA-24 regulates cardiac fibrosis after myocardial infarction. Journal of cellular and molecular medicine. 2012;16(9):2150-60.

57. Rathcke CN, Vestergaard H. YKL-40—an emerging biomarker in cardiovascular disease and diabetes. Cardiovascular diabetology. 2009;8(1):1-7.

58. Deng X, Liu Y, Luo M, Wu J, Ma R, Wan Q, et al. Circulating miRNA-24 and its target YKL-40 as potential biomarkers in patients with coronary heart disease and type 2 diabetes mellitus. Oncotarget. 2017;8(38):63038-46.

59. Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, et al. Circulating microRNAs in patients with coronary artery disease. Circulation research. 2010;107(5):677-84.

60. Wang W, Li Z, Zheng Y, Yan M, Cui Y, Jiang J. Circulating microRNA-92a level predicts acute coronary syndrome in diabetic patients with coronary heart disease. Lipids in Health and Disease. 2019;18(1):22.

61. Liu Y, Li Q, Hosen MR, Zietzer A, Flender A, Levermann P, et al. Atherosclerotic conditions promote the packaging of functional microRNA-92a-3p into endothelial microvesicles. Circulation Research. 2019;124(4):575-87.

62. Liu G, Li Y, Gao XG. microRNA-181a is upregulated in human atherosclerosis plaques and involves in the oxidative stress-induced endothelial cell dysfunction through direct targeting Bcl-2. European review for medical and pharmacological sciences. 2016;20(14):3092-100.

63. Weber M, Baker MB, Patel RS, Quyyumi AA, Bao G, Searles CD. MicroRNA Expression Profile in CAD Patients and the Impact of ACEI/ARB. Cardiology Research and Practice. 2011;2011:532915.

64. Kuo J-T, Tsai H-E, Lin C-T, Lee C-I, Lee P-L, Ruan Y-R, et al. Low Levels of MicroRNA-10a in Cardiovascular Endothelium and Blood Serum Are Related to Human Atherosclerotic Disease. Cardiology research and practice. 2021;2021:1452917-

65. Fras Z, Tršan J, Banach M. On the present and future role of Lp-PLA2 in atherosclerosis-related cardiovascular risk prediction and management. Arch Med Sci. 2020 Aug 20;17(4):954-964.
66. Pirro M, Simental-Mendía LE, Bianconi V, Watts GF, Banach M, Sahebkar A. Effect of Statin Therapy on Arterial Wall Inflammation Based on 18F-FDG PET/CT: A Systematic Review and Meta-Analysis of Interventional Studies. J Clin Med. 2019 Jan 18;8(1):118.

67. Khalifeh M, Penson PE, Banach M, Sahebkar A. Statins as anti-pyroptotic agents. Arch Med Sci. 2021 Aug 9;17(5):1414-1417.

68. Banach M, Burchardt P, Chlebus K, Dobrowolski P, Dudek D, Dyrbus K, Gąsior M, Jankowski P, Jóźwiak J, Kłosiewicz-Latoszek L, Kowalska I, Małecki M, Prejbisz A, Rakowski M, Rysz J, Solnica B, Sitkiewicz D, Sygitowicz G, Sypniewska G, Tomaszik T, Windak A, Zozulińska-Ziółkiewicz D, Cybulska B. PoLA/CFPiP/PCS/PSLD/PSD/PSH guidelines on diagnosis and therapy of lipid disorders in Poland 2021. Arch Med Sci. 2021 Nov 8;17(6):1447-1547.

69. Jamialahmadi T, Emami F, Bagheri RK, Alimi H, Bioletto F, Bo S, Aminzadeh B, Ansari MA, Ehsani F, Rajabi O, Ganjali S, Banach M, Sahebkar A. The effect of trehalose administration on vascular inflammation in patients with coronary artery disease. Biomed Pharmacother. 2022 Mar;147:112632.