EXTENSIONS OF WEAK-TYPE MULTIPLIERS

P. MOHANTY AND S. MADAN

Abstract. In this paper we prove that if \(\Lambda \in M_p(\mathbb{R}^N) \) and has compact support then \(\Lambda \) is a weak summability kernel for \(1 < p < \infty \), where \(M_p(\mathbb{R}^N) \) is the space of multipliers of \(L^p(\mathbb{R}^N) \).

1991 Mathematics Subject Classification. 46E30, 42B15.

Key words and phrases. Weak-type multipliers, transference.

The first author was supported by CSIR.
1. Introduction

Let G be a locally compact abelian group, with Haar measure μ and let \hat{G} be its dual. We call an operator $T : L^p(G) \to L^{p,\infty}(G)$, $1 \leq p < \infty$, a multiplier of weak type (p, p), if it is bounded and translation invariant i.e. $\tau_x T = T \tau_x \forall x \in G$, and there exists a constant $C > 0$ such that

$$\mu\{x \in G : |Tf(x)| > t\} \leq \frac{Cp}{tp} \|f\|_p^p$$

for all $f \in L^p(G)$ and $t > 0$. (Here $L^{p,\infty}$ denotes the standard weak L^p spaces.) Asmar, Berkson and Gillespie in [3] proved that for all such operators T there exists a $\phi \in L^\infty(\hat{G})$ such that $(T^\wedge f) = \phi \hat{f}$ for all $f \in L^2 \cap L^p(G)$. We will also call such ϕ’s to be multipliers of weak type (p, p). Let $M_p^{(u)}(\hat{G})$ denote the space of multipliers of weak type (p, p) for $1 \leq p < \infty$, and let $N_p^{(w)}(\phi)$ be the smallest constant C such that inequality (1.1) holds.

In this paper we are concerned with extensions of weak type multipliers from \mathbb{Z}^N to \mathbb{R}^N through summability kernels. For similar results on strong type multipliers, see [4], [6]. Here we identify \mathbb{T}^N with $[0,1)^N$ and for $f \in L^1(\mathbb{R}^N)$ we define its Fourier transform as $\hat{f}(\xi) = \int_{\mathbb{R}^N} f(x) e^{-2\pi i \xi \cdot x} dx$ for $\xi \in \mathbb{R}^N$. Let us define summability kernels for weak type multipliers as follows

Definition 1.1. A bounded measurable function $\Lambda : \mathbb{R}^N \to \mathbb{C}$ is called a weak summability kernel for $M_p^{(u)}(\mathbb{R}^N)$ if for $\phi \in M_p^{(u)}(\mathbb{Z}^N)$ the function $W_{\phi, \Lambda}(\xi) = \sum_{n \in \mathbb{Z}^N} \phi(n) \Lambda(\xi - n)$ is defined and belongs to $M_p^{(u)}(\mathbb{R}^N)$.

This definition is just the weak type analogue of summability kernel for strong type multipliers [4]. We first cite two important results
regarding the summability kernels of strong type multipliers from the
work of Jodeit [6] and of Berkson, Paluszynski and Weiss [4]:

Theorem 1.1. [6] Let $S \in L^1(\mathbb{R}^N)$ and supp $S \subseteq \left[\frac{1}{4}, \frac{3}{4}\right]^N$ with $\tau = \sum_{n \in \mathbb{Z}^N} |\hat{s}(n)| < \infty$, where s is the 1-periodic extension of S, then the function defined by $W_{\phi,\hat{S}}(\xi) = \sum_{n \in \mathbb{Z}^N} \phi(n)\hat{S}(\xi - n)$ belongs to $M_p(\mathbb{R}^N)$, for $1 \leq p < \infty$ with $\|W_{\phi,\hat{S}}\|_{M_p(\mathbb{R}^N)} \leq C_p \tau \|\phi\|_{M_p(\mathbb{Z}^N)}$

Theorem 1.2. [4] For $1 \leq p < \infty$, let $\Lambda \in M_p(\mathbb{R}^N)$ and supp $\Lambda \subseteq \left[\frac{1}{4}, \frac{3}{4}\right]^N$. For $\phi \in M_p(\mathbb{Z}^N)$ define $W_{\phi,\Lambda}(\xi) = \sum_{n \in \mathbb{Z}^N} \phi(n)\Lambda(\xi - n)$ on \mathbb{R}^N. Then $W_{\phi,\Lambda} \in M_p(\mathbb{R}^N)$ and $\|W_{\phi,\Lambda}\|_{M_p(\mathbb{R}^N)} \leq C_p \|\Lambda\|_{M_p(\mathbb{R}^N)} \|\phi\|_{M_p(\mathbb{Z}^N)}$ where C_p is a constant. (Further, if Λ has arbitrary compact support the same result holds except that the constant C_p necessarily depends on the support of Λ, as shown in [4].

Asmar, Berkson and Gillespie proved a weak type analogue of Theorem 1.1 in [3]. In this same paper they also proved that Λ defined by $\Lambda(\xi) = \prod_{j=1}^N \max(1 - |\xi_j|, 0)$ for $\xi = (\xi_1, ..., \xi_N)$ is a weak type summability kernel. In this paper, we prove the weak type analoge of Theorem 1.2 in §2, for $1 < p < \infty$. In §3 we relax the hypothesis that supp $\Lambda \subseteq \left[\frac{1}{4}, \frac{3}{4}\right]^N$. For the proof of our main result , as in [4], we will obtain the weak type inequalities by applying the technique of transference couples due to Berkson, Paluszyński, and Weiss [4].

Definition 1.2. For a locally compact group G, a transference couple is a pair $(S, T) = (\{S_u\}, \{T_u\})$, $u \in G$, of strongly continuous mappings defined on G with values in $\mathcal{B}(X)$, where X is a Banach space, satisfying
(i) \(C_S = \sup \{ \| S_u \| : u \in G \} < \infty \)

(ii) \(C_T = \sup \{ \| T_u \| : u \in G \} < \infty \)

(iii) \(S_v T_u = T_{vu} \quad \forall u, v \in G \)

In §4, as an application of our result, we prove a weak type analogue of an extension theorem by de Leeuw.

2. Weak-Type Inequality for Transference Couples and The Main Theorem

Let \(\Lambda \in L^\infty(\mathbb{R}^N) \) and \(\text{supp} \ \Lambda \subseteq [\frac{1}{4}, \frac{3}{4}]^N \). Consider the following transference couple \((S, T)\) used by Berkson, Paluszyński, and Weiss in [4]. For \(u \in \mathbb{T}^N \) the family \(T = \{ T_u \} \) is given by

\[
(T_u f) \hat{\lambda}(\xi) = \sum_{n \in \mathbb{Z}^N} \Lambda(\xi - n) e^{2\pi i u \cdot n} \hat{f}(\xi), \quad \text{for } f \in L^p(\mathbb{R}^N)
\]

and the family \(S = \{ S_u \} \) is defined by

\[
(S_u f) \hat{\lambda}(\xi) = \sum_{n \in \mathbb{Z}^N} b(\xi - n) e^{2\pi i u \cdot n} \hat{f}(\xi), \quad \text{for } f \in L^p(\mathbb{R}^N), \quad (2.3)
\]

where \(b(\xi) = \prod_{i=1}^N b_i(\xi_i) \) for \(\xi = (\xi_1, \ldots, \xi_N) \) and for each \(i \), \(b_i \) is the continuous function defined on \(\mathbb{R} \) as \(b_i(x) = 1 \) if \(x \in [\frac{1}{4}, \frac{3}{4}] \), linear in \([0, \frac{1}{4}] \cup (\frac{3}{4}, 1] \) and 0 otherwise. It is easy to see that

\[
S_u f(x) = \sum_{l \in \mathbb{Z}^N} \tilde{\beta}_u(l) f(x + u - l) \quad \text{a.e.,} \quad (2.4)
\]

where \(\tilde{\beta}_u \) is the inverse Fourier transform of the function \(\beta_u(\xi) = b(\xi) e^{2\pi i u \cdot \xi} \), given explicitly by

\[
\tilde{\beta}_u(\xi) = \prod_{i=1}^N \tilde{\beta}_u(\xi_i),
\]
where

\[\tilde{\beta}_{ui}(\xi_i) = \begin{cases} 2e^{2\pi i (\xi_i - u_i/2)}(\cos \frac{\pi}{2}(\xi_i - u_i) - \cos \pi(\xi_i - u_i)) & \text{if } \xi_i \neq u_i \\ \frac{e^{2\pi i (\xi_i + u_i)/4}}{2} & \text{if } \xi_i = u_i. \end{cases} \]

Then by a straightforward calculation using Eqn. (2.5) we have

\[\sum_{l \in \mathbb{Z}^N} |\tilde{\beta}_{u}(l)| \leq \sum_{l \in \mathbb{Z}^N} \beta(l) = C < \infty, \]

where \(\beta(l) = \prod_{i=1}^N \beta_i(l_i) \) and \(\beta_i(l_i) = \begin{cases} \frac{1}{(l_i-1)^2} & \text{if } l_i > 1 \\ \frac{1}{(l_i+1)^2} & \text{if } l_i < 1 \\ \|b_i\|_1 & \text{otherwise.} \end{cases} \)

In the following theorem we shall show that the operator transferred by \(T \) (of the transference couple \((S, T)\) defined in Eqn. (2.2) and Eqn. (2.3)) given by

\[H_k f(.) = \int_{\mathbb{T}^N} k(u)T_{u-1} f(.) du, \]

where \(k \in L^1(\mathbb{T}^N) \) and \(f \in L^p(\mathbb{R}^N) \), satisfies a weak \((p, p)\) inequality.

Theorem 2.1. Let \((S, T)\) be the transference couple as defined in Eqn. (2.2) and Eqn. (2.3). Then for \(1 < p < \infty\) and \(t > 0\)

\[\lambda\{x \in \mathbb{R}^N : |H_k f(x)| > t\} \leq \left(\frac{C_p}{t} C_T N_p^{(w)}(k) \|f\|_p \right)^p, \]

where \(\lambda \) denotes the Lebesgue measure of \(\mathbb{R}^N \), \(C = \sum_{l \in \mathbb{Z}^N} \beta(l) \) as in Eqn. (2.6), \(C_T \) is the uniform bound for the family \(T = \{T_u\} \), and \(C_p = \frac{p}{p-1}. \)
Proof: Assume $f \in S(\mathbb{R}^N)$. For $t > 0$ define $E_t = \{x : |H_k f(x)| > t\}$. Notice that

$$H_k f(x) = S_{v^{-1}} S_v H_k f(x) = \sum_{l \in \mathbb{Z}^N} \tilde{\beta}_{v^{-1}}(l) \int_{\mathbb{T}^N} k(u) T_{u^{-1}} f(x - v - l) du > t.$$ Let $F_t = \{(v, x) \in \mathbb{T}^N \times \mathbb{R}^N : |\sum_{l \in \mathbb{Z}^N} \tilde{\beta}_{v^{-1}}(l) \int_{\mathbb{T}^N} k(u) T_{u^{-1}} f(x - l) du| > t\}$. Then, using translation invariant of Lebesgue measure

$$\lambda(E_t) = \lambda\{x \in \mathbb{R}^N : |S_{v^{-1}} \int_{\mathbb{T}^N} k(u) T_{u^{-1}} f(x) du| > t\}$$

$$= \lambda\{x \in \mathbb{R}^N : |\sum_{l \in \mathbb{Z}^N} \tilde{\beta}_{v^{-1}}(l) \int_{\mathbb{T}^N} k(u) T_{u^{-1}} f(x - l) du| > t\}$$

$$= \int_{\mathbb{T}^N} \int_{\mathbb{R}^N} \chi_{F_t}(v, x) dx dv$$

$$= \int_{\mathbb{R}^N} |\{v : \sum_{l \in \mathbb{Z}^N} \tilde{\beta}_{v^{-1}}(l) \int_{\mathbb{T}^N} k(u) T_{u^{-1}} f(x - l) du| > t\}| dx,$$ where $|E|$ denotes the measure of the subset $E \subseteq \mathbb{T}^N$. Thus

$$\lambda(E_t) \leq \int_{\mathbb{R}^N} |\{v : \sum_{l \in \mathbb{Z}^N} \beta(l)| \int_{\mathbb{T}^N} k(u) T_{u^{-1}} f(x - l) du| > t\}| dx$$

$$= \int_{\mathbb{R}^N} |\{v : \sum_{l \in \mathbb{Z}^N} \beta(l)|k \ast F(v, x - l)(v)| > t\}| dx,$$ where $F(v, x) = T_v f(x)$ a.e.

We know that $\sup_{t > 0} t \lambda_f(t)^\frac{1}{p} = \|f\|_{L^{p, \infty}}$ for $f \in L^{p, \infty}$. Also, since $p > 1$, $\|\cdot\|_{p, \infty}$ is equivalent to a norm $\|\cdot\|_{p, \infty}^*$ (\textsection 3), using triangle inequality for norms

we have

$$\lambda(E_t) \leq \int_{\mathbb{R}^N} \frac{1}{t^p} \| \sum_{l \in \mathbb{Z}^N} \beta(l)|k \ast F(., x - l)|^p_{L^{p, \infty}(\mathbb{T}^N)} dx$$

$$\leq C_p \int_{\mathbb{R}^N} \frac{1}{t^p} \left(\sum_{l \in \mathbb{Z}^N} \beta(l) \|k \ast F(., x - l)|^*_{L^{p, \infty}(\mathbb{T}^N)} \right)^p dx, \quad \text{where} \quad C_p = \frac{p}{p - 1}$$

$$\leq C_p \int_{\mathbb{R}^N} \frac{1}{t^p} \left(\sum_{l \in \mathbb{Z}^N} \beta(l) N_p^*(l) \|F(., x - l)|^p_{L^{p}(\mathbb{T}^N)} \right)^p dx,$$
where \(N_p^{(w)}(k) \) is the weak-type norm of the convolution operator \(f \mapsto k * f \) for \(f \in L^p(\mathbb{T}^N) \). Thus,

\[
\lambda(E_t) \leq C_p \frac{1}{tp} \sum_{l \in \mathbb{Z}^N} \beta(l) N_p^{(w)}(k) \left(\int_{\mathbb{R}^N} \int_{\mathbb{T}^N} |T_v f(x - l)|^p \, dx \, dv \right)^{\frac{1}{p}}
\]

\[
= C_p \frac{1}{tp} \left(\sum_{l \in \mathbb{Z}^N} \beta(l) N_p^{(w)}(k) \left(\int_{\mathbb{R}^N} \int_{\mathbb{T}^N} |T_v f(x - l)|^p \, dx \, dv \right)^{\frac{1}{p}} \right)
\]

\[
\leq \left(\frac{CC_p C_T}{t^p} N_p^{(w)}(k) \|f\|_p \right)^p.
\]

Hence, \(H_kf \) satisfies a weak \((p,p)\) inequality.

In order to prove the weak-type analogue of Theorem 1.2 we need the following Lemma proved by Asmar, Berkson, and Gillespie in [1].

Lemma 2.1. Suppose that \(1 \leq p < \infty \), \(\{\phi_j\} \subseteq M_p^{(w)}(\hat{G}) \); \(\sup \{|\phi_j(\gamma)| : j \in \mathbb{N}, \gamma \in \hat{G}\} < \infty \) and suppose \(\phi_j \) converges pointwise a.e. on \(\hat{G} \) to a function \(\phi \). If \(\lim \inf j N_p^{(w)}(\phi_j) < \infty \) then \(\phi \in M_p^{(w)}(\hat{G}) \) and \(N_p^{(w)}(\phi) \leq \lim \inf j N_p^{(w)}(\phi_j) \).

In the following theorem, we use the family of operators \(\{T_u\} \) defined in (2.2) with \(\Lambda \in M_p(\mathbb{R}^N) \) and \(\text{supp} \Lambda \subseteq [\frac{1}{4}, \frac{3}{4}]^N \). In this case, by [3] we have \(C_T \leq c_p \|\Lambda\|_{M_p(\mathbb{R}^N)} \), where \(c_p \) is a constant.

Theorem 2.2. Suppose \(1 < p < \infty \) and \(\Lambda \in M_p(\mathbb{R}^N) \) is supported in the set \([\frac{1}{4}, \frac{3}{4}]^N \). For \(\phi \in M_p^{(w)}(\mathbb{Z}^N) \) define

\[
W_{\phi, \Lambda}(\xi) = \sum_{n \in \mathbb{Z}^N} \phi(n) \Lambda(\xi - n) \quad \text{on } \mathbb{R}^N.
\]

Then \(W_{\phi, \Lambda} \in M_p^{(w)}(\mathbb{R}^N) \) and \(N_p^{(w)}(W_{\phi, \Lambda}) \leq CN_p^{(w)}(\phi) \|\Lambda\|_{M_p(\mathbb{R}^N)} \).

Proof: Using Lemma 2.1 we first show that it is enough to prove the theorem for \(\phi \in M_p^{(w)}(\mathbb{Z}^N) \) having finite support. Suppose the theorem
is true for finitely supported \(\phi \). Then for arbitrary \(\phi \in M_p^w(\mathbb{Z}^N) \),
define \(\phi_j = \hat{k}_j \phi \), where \(k_j \) is the j-th Féjer kernel. Then for each \(j \),
\(\phi_j \)'s have finite support and \((T_{\phi_j} f)^w(n) = \phi_j(n) \hat{f}(n) = (T_{\phi_k} (k_j \ast f))^w(n)\).
So \(\phi_j \in M_p^w(\mathbb{Z}^N) \) for each \(j \) and \(N_p^w(\phi_j) \leq N_p^w(\phi) \). Define
\(W_{\phi_j, \Lambda}(\xi) = \sum_{n \in \mathbb{Z}^N} \phi_j(n) \Lambda(\xi - n) \).
Now \(\liminf W_{\phi_j, \Lambda}(\xi) = W_{\phi, \Lambda}(\xi) \).
Also, by our assumption
\[N_p^w(W_{\phi_j, \Lambda}) \leq CN_p^w(\phi) \| \Lambda \|_{M_p(\mathbb{R}^N)} \]
and \(|W_{\phi_j, \Lambda}| \leq 2 \| \Lambda \|_{\infty} \| \phi_j \|_{\infty} \leq 2 \| \Lambda \|_{\infty} \| \phi \|_{\infty} \).
Thus by Lemma 2.1, applied to \(W_{\phi_j, \Lambda} \)'s, we conclude that \(W_{\phi, \Lambda} \in M_p^w(\mathbb{R}^N) \). Hence it is
enough to assume that \(\phi \in M_p^w(\mathbb{Z}^N) \) has finite support.

Now let \(\phi \in M_p^w(\mathbb{Z}^N) \) be finitely supported. Define \(k(u) = \sum_{n \in \mathbb{Z}^N} \phi(n) e^{-2\pi i u \cdot n} \)
then \(k \in L^1(\mathbb{T}^N) \) and \(\hat{k}(n) = \phi(n) \). For this particular \(k \) and the transference couple \((S,T)\) defined above. We have
\[(H_k f)^w(\xi) = (T_{W_{\phi, \Lambda}} f)^w(\xi). \]
Thus \(T_{W_{\phi, \Lambda}} f = H_k f \). Hence from Theorem 2.1 and since \(C_T \leq c_p \| \Lambda \|_{M_p(\mathbb{R}^N)} \),
we have
\[\lambda\{x \in \mathbb{R}^N : |T_{W_{\phi, \Lambda}} f(x)| > t\} \leq \left(\frac{C}{t} N_p^w(\phi) \| \Lambda \|_{M_p(\mathbb{R}^N)} \| f \|_p \right)^p. \]

3. Lattice Preserving Linear Transformations and Multipliers

We shall now relax the hypothesis that \(\text{supp} \ \Lambda \subseteq [\frac{1}{4}, \frac{3}{4}]^N \) to allow \(\Lambda \) to have arbitrary compact support. In fact this can be done by a
partition of identity argument as in \([4]\). Here we give a different method by proving Lemma 3.2 below. Particular cases of this lemma occur in
\([3]\) and in \([2]\). Suppose \(\text{supp} \ \Lambda \subseteq [-M, M]^N \); define \(\Lambda_M(\xi) = \Lambda_1(4M\xi) \),
where $\Lambda_1(\xi) = \Lambda(\xi - \frac{1}{2})$. So $\text{supp } \Lambda_M \subseteq \left[\frac{1}{4}, \frac{3}{4} \right]^N$. Thus if we define a non-singular transformation $A : \mathbb{R}^N \rightarrow \mathbb{R}^N$ such that $Ax = 4Mx$ then $\Lambda_M = \Lambda_1 \circ A$. In order to replace the support condition we need to prove $\Lambda_M \circ A^{-1}$ is a summability kernel. In the work of Jodeit and of Asmar, Berkson and Gillespie they assume A in Lemma 3.2 to be multiplication by 2. We have combined some of the results proved by Gröchenig and Madych [5] in the following lemma which will help us to prove Lemma 3.2. In the proof of Theorem 3.1, we only use the case of a diagonal linear transform, but the more general results proved below are of some interest in their own right.

Lemma 3.1. [5] Let $A : \mathbb{R}^N \rightarrow \mathbb{R}^N$ be a non-singular linear transformation which preserves the lattice \mathbb{Z}^N (i.e. $A(\mathbb{Z}^N) \subseteq \mathbb{Z}^N$). Then the following are true.

(i) The number of distinct coset representatives of $\mathbb{Z}^N/A\mathbb{Z}^N$ is equal to $q = |\det A|$.

(ii) If $Q_0 = [0, 1)^N$ and k_1, \ldots, k_q are the distinct coset representatives of $\mathbb{Z}^N/A\mathbb{Z}^N$ then the sets $A^{-1}(Q_0 + k_i)$ are mutually disjoint.

(iii) Let $Q = \bigcup_{i=1}^q A^{-1}(Q_0 + k_i)$, then $\lambda(Q) = 1$ and $\cup_{k \in \mathbb{Z}^N}(Q + k) \simeq \mathbb{R}^N$.

(iv) $AQ \simeq \bigcup_{i=1}^q (Q_0 + k_i)$.

Where $E \simeq F$ if $\lambda(F \triangle E) = 0$.

The above result is essentially contained in [5].

Lemma 3.2. Let A be as in Lemma 3.1. Denote $A^t = B$, where A^t is the transpose of A. For $\phi \in l_\infty(\mathbb{Z}^N)$ define

$$\psi(n) = \phi(Bn)$$

and
\(\eta(n) = \begin{cases}
\phi(B^{-1}n) & n \in B\mathbb{Z}^N \\
0 & \text{otherwise.}
\end{cases} \)

(i) If \(\phi \in M_p(\mathbb{Z}^N) \) then \(\psi, \eta \in M_p(\mathbb{Z}^N) \) with multiplier norms not exceeding the multiplier norm of \(\phi \).

(ii) If \(\phi \in M_p^{(w)}(\mathbb{Z}^N) \) then \(\psi, \eta \in M_p^{(w)}(\mathbb{Z}^N) \) with weak multiplier norms not exceeding the weak multiplier norm of \(\phi \).

Proof: (i) For \(f \in L^p(Q_0) \), we let \(f \) again denote the periodic extension to \(\mathbb{R}^N \). Define \(Sf(x) = f(Ax) \), then \(Sf \) is also periodic and

\[
\int_{Q_0} |Sf(x)|^p dx = \int_{Q_0} |Sf(x)|^p \sum_j \chi_Q(x - j) dx \\
= \sum_j \int_{Q_0 + j} |Sf(x)|^p \chi_Q(x) dx \\
= \int_Q |Sf(x)|^p dx \\
= \frac{1}{|\det A|} \int_{AQ} |f(x)|^p dx \\
= \frac{1}{q} \sum_{i=1}^q \int_{Q_0 + k_i} |f(x)|^p dx \quad ((iv) \text{ of Lemma 3.1}) \\
= \int_{Q_0} |f(x)|^p dx.
\]

Thus \(S \) is an isometry, i.e., \(\|Sf\|_{L^p(Q_0)} = \|f\|_{L^p(Q_0)} \). Further, from the orthogonality relations of the characters (Lemma 1, [7]) we have

\[
(Sf)\wedge(n) = \begin{cases}
\hat{f}(B^{-1}n) & \text{if } n \in B\mathbb{Z}^N \\
0 & \text{otherwise.}
\end{cases}
\]
For $f \in L^p(Q_0)$ we define an operator W on $L^p(Q_0)$ given by $Wf(x) = \frac{1}{q} \sum_{i=1}^{q} f(A^{-1}(x + k_i))$, where k_1, \ldots, k_q are distinct cosets representations of $\mathbb{Z}^N/A\mathbb{Z}^N$. Then for a trigonometric polynomial f,

$$(Wf)^\wedge(n) = \hat{f}(Bn),$$

and so

$$\left(\int_{Q_0} |Wf(x)|^p dx \right)^{\frac{1}{p}} = \left(\int_{Q_0} \frac{1}{q} \sum_{i=1}^{q} |f(A^{-1}(x + k_i))|^p dx \right)^{\frac{1}{p}}$$

$$\leq \frac{1}{q} \sum_{i=1}^{q} \left(\int_{Q_0} |f(A^{-1}(x + k_i))|^p dx \right)^{\frac{1}{p}}$$

$$= \frac{q^{1/p}}{q} \sum_{i=1}^{q} \left(\int_{A^{-1}(Q_0 + k_i)} |f(x)|^p dx \right)^{\frac{1}{p}}.$$

Therefore $\|Wf\|_{L^p(Q_0)} \leq q^{1-p/p} \|f\|_{L^p(Q_0)}$, since

$$\int_{Q_0} |f(x)|^p dx = \int_{Q} |f(x)|^p dx$$

as above. It is easy to see that

$$ST\phi W = T_\eta \tag{3.7}$$

and

$$WT_\psi S = T_\psi \tag{3.8}$$

It follows that, if $\phi \in M_p(\mathbb{Z}^N)$ then $\|T_\psi f\| \leq C_p \|\phi\|_{M_p(\mathbb{Z}^N)} \|f\|_{L^p(Q_0)}$. Also $\|T_\eta f\|_{L^p(Q_0)} \leq C_p \|\phi\|_{M_p(\mathbb{Z}^N)} \|f\|_{L^p(Q_0)}$. Hence $\psi, \eta \in M_p(\mathbb{Z}^N)$.

(ii) For $\phi \in M_p^{(w)}(\mathbb{Z}^N)$, we need to calculate the distribution function of Sf and Wf. Denote $E_t = \{x \in Q_0 : |Sf(x)| > t \}$, then

$$|E_t| = \int_{Q_0} \chi_{E_t}(x) dx$$

$$= \int_{Q_0} \chi_{\mathbb{R}^+}(|f(Ax)| - t) dx$$

$$= \frac{1}{q} \int_{AQ} \chi_{\mathbb{R}^+}(|f(x)| - t) dx.$$
\[\frac{1}{q} \sum_{i=1}^{q} \int_{Q_0 + k_i} \chi_{\mathbb{R}^+}(|f(x)| - t) \, dx \]
\[= |\{x : |f(x)| > t\}|. \]

Therefore,

\[\{x \in Q_0 : |Sf(x)| > t\} = \{x \in Q_0 : |f(x)| > t\} \]

(3.9)

Also

\[\{x \in Q_0 : |Wf(x)| > t\} = \{x \in Q_0 : \left| \sum_{i=1}^{q} f(A^{-1}(x + k_i)) \right| > tq\} \]
\[\leq \{x \in Q_0 : \sum_{i=1}^{q} |f(A^{-1}(x + k_i))| > tq\} \]
\[= \sum_{i=1}^{q} \int_{Q_0} \chi_{\mathbb{R}^+}(|f(A^{-1}(x + k_i))| - t) \, dx \]
\[= \sum_{i=1}^{q} \int_{A^{-1}(Q_0 + k_i)} \chi_{\mathbb{R}^+}(|f(x)| - t) \, dx. \]

Thus

\[\{x \in Q_0 : |Wf(x)| > t\} \leq q \{x \in Q_0 : |f(x)| > t\}. \]

(3.10)

From the relations (3.7) - (3.10), we conclude that \(\psi, \eta \in M_p^{(w)}(\mathbb{Z}^N) \) whenever \(\phi \in M_p^{(w)}(\mathbb{Z}^N) \). Also \(N_p^{(w)}(\psi) \leq CN_p^{(w)}(\phi) \) and \(N_p^{(w)}(\eta) \leq CN_p^{(w)}(\phi) \).

As an application of this Lemma we get the following result regarding weak summability kernels.

Lemma 3.3. Let \(A \) be as in Lemma 3.1. Suppose \(\Lambda \) is a weak (strong) summability kernel then \(\Lambda \circ B \) and \(\Lambda \circ B^{-1} \) are also weak (strong) summability kernels.
Proof: Define $W_{\phi,\Lambda \circ B}$ on \mathbb{R}^N for $\phi \in M_p^{(w)}(\mathbb{Z}^N)$.

$$W_{\phi,\Lambda \circ B}(x) = \sum_{n \in \mathbb{Z}^N} \phi(n) \Lambda \circ B(x - n)$$

$$= \sum_{n \in \mathbb{Z}^N} \eta(n) \Lambda(Bx - n)$$

$$= W_{\eta,\Lambda}(Bx).$$

As $\eta \in M_p^{(w)}(\mathbb{Z}^N)$ (by Lemma 3.2) and since Λ is a summability kernel we have $W_{\eta,\Lambda} \in M_p^{(w)}(\mathbb{R}^N)$. Hence $W_{\phi,\Lambda \circ B} \in M_p^{(w)}(\mathbb{R}^N)$. Similarly

$$W_{\phi,\Lambda \circ B^{-1}}(x) = \sum_{n \in \mathbb{Z}^N} \phi(n) \Lambda(B^{-1}x - B^{-1}n)$$

$$= \sum_{j=1}^{q} \sum_{n \in B\mathbb{Z}^N + p_j} \phi(n) \Lambda(B^{-1}x - B^{-1}n)$$

where $p_1,...,p_q$ are distinct coset representatives of $B\mathbb{Z}^N/\mathbb{Z}^N$ ($p_1 = 0$).

$$W_{\phi,\Lambda \circ B^{-1}}(x) = \sum_{j=1}^{q} \sum_{n \in \mathbb{Z}^N} \phi(Bn + p_j) \Lambda(B^{-1}x + B^{-1}p_j - n)$$

$$= W_{\psi,\Lambda}(B^{-1}x) + \ldots + W_{\psi_{q-1},\Lambda}(B^{-1}x - B^{-1}p_q)$$

where $\psi_{p_i}(l) = \phi(Bl + p_j)$, $i = 1, 2, ..., q$. As $\psi \in M_p^{(w)}(\mathbb{Z}^N)$ and Λ is a summability kernel we conclude that $W_{\phi,\Lambda \circ B^{-1}} \in M_p^{(w)}(\mathbb{R}^N)$.

Hence from Lemma 3.3 and the discussion preceding Lemma 3.1 we conclude the following theorem.

Theorem 3.1. Suppose $\Lambda \in M_p(\mathbb{R}^N)$ and $\text{supp }\Lambda \subseteq [-M, M]$; for $\phi \in M_p^{(w)}(\mathbb{Z}^N)$ define $W_{\phi,\Lambda}(\xi) = \sum_{n \in \mathbb{Z}^N} \phi(n) \Lambda(\xi - n)$ on \mathbb{R}^N, then $W_{\phi,\Lambda} \in M_p^{(w)}(\mathbb{R}^N)$ and $N_p^{(w)}(W_{\phi,\Lambda}) \leq C_{\Lambda} N_p^{(w)}(\phi) \|\Lambda\|_{M_p(\mathbb{R}^N)}$, where C_{Λ} is a constant depending on Λ.

4. An Application

As an application of Theorem 3.1, we prove a weak-type version of a result proved by de Leeuw [8].

Theorem 4.1. For \(1 < p < \infty\), and \(\epsilon > 0\); let \(\{\phi_\epsilon\} \subseteq M_p^w(\mathbb{Z})\) satisfy

(i) \(\lim_{\epsilon \to 0} \phi_\epsilon([\frac{x}{\epsilon}]) = \phi(x)\) a.e.

(ii) \(\sup_{\epsilon} N_p^w(\phi_\epsilon) = K < \infty\).

Then \(\phi \in M_p^w(\mathbb{R})\) and \(N_p^w(\phi) \leq \sup_{\epsilon} N_p^w(\phi_\epsilon)\).

Proof: For each \(\epsilon > 0\), define \(W_{\phi_\epsilon}^{ \epsilon} on \mathbb{R}\) by

\[
W_{\phi_\epsilon}^{ \epsilon}(x) = \sum_{n \in \mathbb{Z}} \phi_\epsilon(n) \chi_{[0,1)}(x - n).
\]

(4.11)

As \(\chi_{[0,1)} \in M_p(\mathbb{R})\) for \(1 < p < \infty\), from Theorem 3.1 we have \(W_{\phi_\epsilon}^{ \epsilon} \in M_p^w(\mathbb{R})\) and \(N_p^w(W_{\phi_\epsilon}^{ \epsilon}) \leq CN_p^w(\phi_\epsilon) \leq CK\). We define another function \(\psi_\epsilon\), for each \(\epsilon > 0\), by \(\psi_\epsilon(x) = W_{\phi_\epsilon}^{ \epsilon}(\frac{x}{\epsilon})\). Then \(\psi_\epsilon \in M_p^w(\mathbb{R})\) and

\[
N_p^w(\psi_\epsilon) \leq N_p^w(W_{\phi_\epsilon}) \leq CK.
\]

(4.12)

From (4.11) we have

\[
\psi_\epsilon(x) = W_{\phi_\epsilon}^{ \epsilon}(\frac{x}{\epsilon}) = \sum_{n \in \mathbb{Z}} \phi_\epsilon(n) \chi_{[0,1)}(\frac{x}{\epsilon} - n) = \phi_\epsilon([\frac{x}{\epsilon}]).
\]

So from our hypothesis

\[
\lim_{\epsilon \to 0} \psi_\epsilon(x) = \phi(x) a.e.
\]

(4.13)

Also we have \(|\psi_\epsilon(x)| < \infty\) (as \(\sup_{\epsilon,n} |\phi_\epsilon(n)| < \infty\)).

Hence from (4.11), (4.12) and (4.13) along with Lemma 2.1 we have \(\phi \in M_p^w(\mathbb{R})\) and \(N_p^w(\phi) \leq \lim_{\epsilon} N_p^w(\phi_\epsilon) \leq CK\).
REFERENCES

[1] Asmar, N., Berkson, E. and Gillespie, T. A. Maximal estimates on Measure spaces by weak type multipliers. The J. of Geom. Analysis, 5, No.2, 1995, 167-179.

[2] Asmar, N., Berkson, E. and Gillespie, T. A. Generalized de Leeuw Theorems and Extension Theorems for Weak Type Multipliers. Interaction between Functional Analysis, Harmonic Analysis and Probability. N. Kalton et al. (ed.), Marcel Dekker Lect. Notes Pure and Appl. Math., 175, 1996, 41-67.

[3] Asmar, N., Berkson, E. and Gillespie, T. A. Note on norm convergence in the space of a weak type multipliers. J. of Op. Theory, 39, 1998, 139-149.

[4] Berkson, E., Paluszyński, M., and Weiss, G. Transference Couples and Their Applications to convolution Operators and Maximal operators. Interaction between Functional Analysis, Harmonic Analysis, and Probability, N. Kalton et al. (ed.), Lect. Notes in Pure and Applied Maths., Marcel Dekker, 175, 1996, 69-84.

[5] Gröchenig, M. and Madych, W.R. Multiresolution Analysis, Haar Basis, and Self-Similar Tilings of \mathbb{R}^N. IEEE Transactions of Information Theory, Vol. 38, No.2, 1992, 556-568.

[6] Jodeit, M. Restrictions and Extensions of Fourier Multipliers. Studia Math., 34, 1970, 215-226.

[7] Madych, W. R. Some elementary properties of Multiresolution Analysis of $L^2(\mathbb{R}^N)$. Wavelets a Tutorial in Theory and Applications, C.K. Chui (ed.), Academic Press Inc., 1992, 259-294.

[8] Stein, E. M. and Weiss, G. Introduction to Fourier Analysis on Euclidean Spaces. Princeton Math. Ser., Vol. 32, Princeton University Press, Princeton, New Jersey, 1971.
DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF TECHNOLOGY, KANPUR-208016, INDIA

E-mail address: parasar@iitk.ac.in

DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF TECHNOLOGY, KANPUR-208016, INDIA

E-mail address: madan@iitk.ac.in