Interventional Domain Adaptation

Jun Wen
College of Computer Science and Technology, Zhejiang University
junwen@zju.edu.cn

Changjian Shui
Laval University
changjian.shui.1@ulaval.ca

Kun Kuang
College of Computer Science and Technology, Zhejiang University
kunkuang@zju.edu.cn

Junsong Yuan
State University of New York at Buffalo
jsyuan@buffalo.edu

Zenan Huang
College of Computer Science and Technology, Zhejiang University
lccurious@zju.edu.cn

Zhefeng Gong
Zhejiang University
school of Medicine
zfgong@zju.edu.cn

Nenggan Zheng
Qiushi Academy for Advanced Studies, Zhejiang University
zng@cs.zju.edu.cn

Abstract

Domain adaptation (DA) aims to transfer discriminative features learned from source domain to target domain. Most of DA methods focus on enhancing feature transferability through domain-invariance learning. However, source-learned discriminability itself might be tailored to be biased and unsafely transferable by spurious correlations, i.e., part of source-specific features are correlated with category labels. We find that standard domain-invariance learning suffers from such correlations and incorrectly transfers the source-specifics. To address this issue, we intervene in the learning of feature discriminability using unlabeled target data to guide it to get rid of the domain-specific part and be safely transferable. Concretely, we generate counterfactual features that distinguish the domain-specifics from domain-sharable part through a novel feature intervention strategy. To prevent the residence of domain-specifics, the feature discriminability is trained to be invariant to the mutations in the domain-specifics of counterfactual features. Experimenting on typical one-to-one unsupervised domain adaptation and challenging domain-agnostic adaptation tasks, the consistent performance improvements of our method over state-of-the-art approaches validate that the learned discriminative features are more safely transferable and generalize well to novel domains.

1 Introduction

Domain shift is commonly encountered by machine learning practitioners that a model is trained in one specific distribution, denoted as the source domain, but applied to another different yet related distribution, denoted as the target domain. Domain adaptation (DA) is proposed to generalize learning machines and alleviate the performance degradations caused by domain shift, which is studied in varied fields, e.g., computer vision [1] and nature language processing [2].

The key to successful domain adaptation is to learn discriminative features from the source domain that are transferable to the target domain. Feature discriminability is generally learned via supervised training with labeled source data, and feature transferability is most studied and prevalently strengthened by learning domain-invariant features [3]. To this end, various DA approaches have

Preprint. Under review.
The main contributions of our work are summarized as the following. 1) We show that feature discriminability might be damaged, as shown in [9, 10], which attempt to maintain source-learned feature discriminability by guiding the target domain to approach the source. However, we find that source-learned feature discriminability itself could be unsafely transferable because of spurious feature-label correlations which is commonly encountered in machine learning practice [11]. To dive into this issue, we perform domain adaptation on a colored Office-31 dataset, where colors are highly correlated with category labels. As shown in Figure 1(a), domain adversarial training, DANN [7], fails to get rid of such spurious correlations and incorrectly transfers the colors as “discriminative” features from the source to target. In Figure 1(a), we denote the colors as domain-specific features V whose discriminability is domain-dependent while the object semantics are denoted as domain-sharable features U which are consistently discriminative across domains. U and V are generally unknown in prior and entangled in feature space. Standard domain-invariance learning suffers from such correlations, especially when domain discrepancy in V is more salient than that in U, which is common in DA practice, e.g., the dominated variations of image styles across domains in most of the DA testbeds [12, 13, 6]. In this case, standard domain discrepancy minimization is generally dominated by V, instead of by U, and V is incorrectly transferred by learning a domain-invariant arbitrary mix-up between $P(V_S)$ and $P(V_T)$ with trivial transformations from V_S to V_T, which deteriorates the learned feature discriminability and causes the performance drop of DANN by 27.9% in Figure 1(b).

In this paper, we intervene in the learning of feature discriminability with unlabeled target data to attenuate the above spurious correlations by proposing interventional domain adaptation (IDA) to learn discriminative features that are safely transferable. Concretely, assuming inputs $X_S = (U_S, V_S)$ and $X_T = (U_T, V_T)$ from the source S and target T, respectively, we first generate counterfactual features $X_{S,T} = (U_S, V_T)$ and $X_{T,S} = (U_T, V_S)$ through a novel feature intervention strategy that distinguishes U from V in entangled feature space via an adversarially-trained feature attention module. Then, to prevent the domain-specifics from residing in the learned feature discriminability, we train both F_S and F_T to be invariant to the mutations of the domain-specifics with the counterfactual features, namely achieving $P(F_S|U_S, V_S)) = P(F_S|U_T, V_T)) = P(F_S|U_S)$ and $P(F_T|U_T, V_T)) = P(F_T|U_T, V_S)) = P(F_T|U_T)$.

The main contributions of our work are summarized as the following. 1) We show that feature discriminability learned from source domain could suffer from spurious feature-label correlations and be unsafely transferable. 2) We propose to intervene in the learning of feature discriminability with unlabeled target data to guide it to focus on domain-sharable part by performing mapping consistency over counterfactual features that are generated through a novel feature intervention strategy. 3) Extensive experimental results on both standard one-to-one unsupervised domain adaptation and...
Figure 2: Architecture of the proposed IDA for learning discriminative features that are safely transferable. The parameterized feature intervention operation $\mathcal{FI}(\cdot, \cdot, \cdot)$ is designed to distinguish domain-sharable feature U and domain specific V. Minimizing $D(\cdot, \cdot)$ encourages the domain-invariant feature F to focus on U and get rid of V.

challenging domain-agnostic adaptation tasks demonstrate the promise of the proposed method by outperforming the state-of-the-art approaches. Further, the learned features are shown to generalize well to novel domains.

2 Related Work

Domain adaptation aims to transfer learned discriminative features from source to target domain. To strength features transferability, mainstream methods generally learn domain-invariant features \cite{3, 14}. Among them, the deep adversarial-domain-adaptation approaches are the most popular and have achieved the top performance \cite{7, 8, 15–18}. However, recent works show that domain-invariance learning could deteriorate the learned feature discriminability and propose various approaches to maintain or strengthen it \cite{9, 10, 19–21}. However, in this paper, we show that the source-learned discriminability itself could suffer from source-specific correlations and be of poor transferability, and propose to alleviate the correlations and learn discriminative features that are safely transferable.

3 Intervenational Domain Adaptation

We present the proposed method for unsupervised domain adaption. We are given a labeled source-domain dataset $D_S = (X_S, Y_S)$ and an unlabeled target-domain dataset $D_T = (X_T)$. The D_S and D_T are assumed to be sampled from two different but related distributions $P_S(X_S)$ and $P_T(X_T)$, respectively, with $P_S \neq P_T$. The ultimate goal is to transfer discriminative features learned from D_S to D_T to minimize the label prediction risk on D_T. Due to the commonly encountered data bias, DA methods could suffer from the spurious correlations between source-specific feature V and label Y, and incorrectly transfer V as important predictors. In this paper, we attenuate the above unsafely transferable correlations and guide the model to focus on the transfer of domain-sharable U by learning domain-invariant feature F which satisfies $P(F|U, V) = P(F|U)$.

The architecture of the proposed method is mainly composed of three parts, as shown in Figure 2. The feature extractor E extracts feature X, the domain-invariant mapping M transforms X into domain-invariant representation F, and the classifier C predicts label Y upon F. We train the network with the following three objectives:

$$\mathcal{L} = J(f(X), Y) + \beta \mathcal{L}_{FI} + \gamma D(S, T),$$ \hspace{1cm} (1)
where $\mathcal{L}_{F, I}$ denotes feature intervention loss which guides the discriminability learning to get rid of domain-specific features and be safely transferable. $\mathcal{D}(S, T)$ measures domain discrepancy.

The β and γ are balance parameters. The detailed training procedure is provided in the supplementary materials. In the following sections, we first describe the feature intervention strategy for the $\mathcal{L}_{F, I}$, and then present the $\mathcal{D}(S, T)$ over the counterfactual features.

3.1 Intervening in Discriminability

In this section, we explain how to intervene in the learning of feature discriminability and guide it to focus on domain-sharable features. We first present a novel feature intervention strategy to generate counterfactual features. Then, we perform mapping consistency over the counterfactual features to encourage the learned discriminability to be independent of the domain-specifics.

3.1.1 Counterfactual Feature Generation

We generate counterfactual features through attention-guided feature intervention. With inputs $X_S = (U_S, V_S)$ and $X_T = (U_T, V_T)$ from the source S and target T, respectively, we learn discriminative representation F_S and F_T via supervised training with available source labeled data. To avoid V being learned as important predictors for incorrect transfer, F is guided to be conditionally independent of V, given U, namely satisfying $P(F_S(U_S, V_S)) = P(F_S(U_S, V_T))$ and $P(F_T(U_T, V_T)) = P(F_T(U_T, V_T))$ in which both $X_{S, T} = (U_S, V_T)$ and $X_{T, S} = (U_T, V_S)$ are counterfactual features. To generate them, we devise the following feature intervention strategy $\mathcal{FL}(\cdot, \cdot, \cdot)$:

$$\hat{x} = \mathcal{FL}(x_h^{y_a}, x_l^{y_b}, W) = a \cdot x_h^{y_a} + (1 - a) \cdot x_l^{y_b},$$

(2)

where $x_h^{y_a}$ and $x_l^{y_b}$, parents of the counterfactual feature \hat{x}, denote n-dimensional features with category label y_a and y_b, and domain label h and l, respectively. The intervention switch value $a = \sigma(x_h^{y_a}, x_l^{y_b}, W)$ is calculated by an attention module [22] that is parameterized by W and with a sigmoid activation function $\sigma(\cdot)$. The attention module determines which part of the counterfactual features are going to be inherited from the two parent features, respectively. It is trained to distinguish V from U and guide the learning of F in an adversarial manner against the M.

To be noted, we expect counterfactual features that are ideally with fully inherited or invariant U across domains but variant V. However, the feature intervention could incorrectly mix up U and then its influence on F across domains. To alleviate this, the feature intervention is limited only within each category, where U is expected to be invariant. Further, we train the whole model with the source-generated counterfactual feature $\mathcal{FL}(x_h^{y_a}, x_l^{y_b}, W)$ in a supervised manner which is of the same category label y_a to its parents. Such training encourages the whole model to be insensitive to the feature interventions on U within each category.

3.1.2 Consistent Mapping

We guide the discriminability learning to focus on the domain-sharable U and get rid of the domain-specific V by optimizing the learned representation F to be invariant to the cross-domain mutations of V when conditioned on U. To this end, we first formulate the following distance measure $\mathcal{D}(\cdot, \cdot)$ over F:

$$\mathcal{D}(F_{x_h^{y_a}}, F_{x_l^{y_b}}) = \begin{cases} \|F_{x_h^{y_a}} - F_{x_l^{y_b}}\|_q & y_a = y_b; \\ \max(0, t_d - \|F_{x_h^{y_a}} - F_{x_l^{y_b}}\|_q) & y_a \neq y_b, \end{cases}$$

(3)

where $F_{x_h^{y_a}}$ (or $F_{x_l^{y_b}}$) denotes the representation of sample $x_h^{y_a}$ (or $x_l^{y_b}$) with label y_a (or y_b) from domain h (or l). The t_d is distance threshold for samples from different categories. Minimizing the distance encourages samples from the same category to be mapped to consistent F while samples from different categories to distinct F.

To achieve F’s independence of V, we perform mapping consistency over the counterfactual features. Concretely, counterfactual features that are composed of the same domain-sharable U but different domain-specific V, namely (U, V_S) and (U, V_T), should be mapped by the M into consistent or identical F, with the V_S and V_T assumed to be distinct across domains. To this end, we optimize F to minimize the following objective:

$$\mathcal{L}_{F, I} = Q_S[\mathcal{D}(F_S, F_{S, S}) + \mathcal{D}(F_S, F_{S, T})] + Q_T[\mathcal{D}(F_T, F_{T, S}) + \mathcal{D}(F_T, F_{T, T})],$$

(4)
where $F_{S,S} = F_{FI(x_S,x_S,W)}$ and $F_{T,T} = F_{FI(x_T,x_T,W)}$ denote the representations of the source and target counterfactual features $FI(x_S,x_S,W)$ and $FI(x_T,x_T,W)$, respectively. $F_{S,T}$ and $F_{T,S}$ are the representations of the cross-domain counterfactual features $FI(x_S,x_T,W)$ and $FI(x_T,x_S,W)$, respectively. The Q_{x_S} and Q_{x_T} denote the label prediction certainty and are quantified as $Q_x = -e^{H(p)}$, where $H(\cdot)$ is the information entropy function and p is the prediction probability of sample x. Since the target labels are unavailable, the pseudo-labels are utilized. The certainty-guided loss re-weighting to progressively reduce F’s dependency on V is found to stabilize the training.

The domain-invariance mapping M and intervention module are trained in an adversarial manner against each other to prevent the presence of domain-specific V in the learned discriminability. Specifically, the intervention module is optimized to distinguish the domain-sharable U from domain-specific V, detect F’s dependence on V, and generate counterfactual features that maximize the intervention loss in Equation [4]. Meanwhile, the M is trained to guide both the discriminability and domain-invariance learning to focus on U only by minimizing the intervention loss to reduce V’s influence on F.

3.2 Interventional Adversarial Training

We learn domain-invariant features to bridge the source and target domains by minimizing the distribution divergence between source F_s and target F_t via adversarial training. Specifically, we train an additional domain discriminator network D to distinguish F_s from F_t. The negative cross-entropy loss is used to measure how well the learned representation confuses the domain discriminator and as an indicator of domain discrepancy. To guide the domain-invariance learning to focus on domain-sharable U, the adversarial training is performed over the representation of the counterfactual features:

$$D(S,T) = E_{x_i,x_j \sim X_S} \log[D(F_{FI(x_i,x_j,W)})] + E_{x_i,x_j \sim X_T} \log[1 - D(F_{FI(x_i,x_j,W)})].$$ (5)

Following [7], we implement a gradient reverse layer (GRL) to reduce domain discrepancy.

3.3 Theoretical Insights

In this section, we show how IDA better controls target prediction risk. Following the theory of [3], let H be the hypothesis class and F be the discriminative feature where adaptation is performed with S and T domains, the target risk is upper-bounded by:

$$\forall h \in H, \varepsilon_T(h(F)) \leq \varepsilon_S(h(F)) + \frac{1}{2} d_H(S(F),T(F)) + \lambda,$$ (6)

where 1) $\varepsilon_S(h)$ denotes expected source risk; 2) $d_H(S(F),T(F))$ measures domain discrepancy over the adapted feature F w.r.t. the hypothesis set H; 3) $\lambda = \min_{h \in H} (\varepsilon_S(h(F),f_S(F)) + \varepsilon_T(h(F),f_T(F)))$ is the optimal joint error on both domains, in which f_S and f_T are the underlying labeling functions. Because the labeling procedures only depend on U, instead of V, then $f_S(F) = f_S(U)$ and $f_T(F) = f_T(U)$. In the following, we discuss the error bound of DA methods with standard domain-invariance learning, as well as the proposed IDA. Since the first term $\varepsilon_S(h)$ is generally minimized to be negligibly small by source labeled data, we mainly consider the second and third term. The definitions of V_S, V_T, U_S, U_T, and $F = M(U,V)$ are given above.

Standard Domain-invariance Learning. The M is optimized by both source supervised training and domain-invariance learning. Due to the correlation between V_S and label Y, supervised training tends to map V_S as important predictors into F for classification, which is conflicting with domain-invariance learning because V_s and V_t are assumed to be distinct. A generally achieved tradeoff between the two objectives is an arbitrary mixup between (U_S,V_S) and (U_T,V_T). If V dominates domain discrepancy and then domain-invariance learning, which is commonly encountered in practice, V_t tends to be transformed by M into V_S for domain-invariance learning and thus only V_S is mapped into F. Such a tradeoff satisfies both training objectives. In this case, while the second term is significantly reduced, the third term would be unboundedly enlarged, especially the target $\varepsilon_T(h(V_S),f_T(U_T))$, as verified in Figure [3]. This is because that V_S is usually non-informative for target label prediction.

IDA Method. In contrast, IDA eases the above conflicts by explicitly guiding supervised training to focus on U for discriminability. Concretely, with intervention on feature to reduce the correlation...
We evaluate the proposed IDA with two settings: 1) typical one-to-one which are sampled from the (W) and DSLR (AlexNet).

Table 1: Accuracy (%) on the Office31 dataset for one-to-one unsupervised domain adaptation (AlexNet).

Method	A→W	D→W	W→D	A→D	W→A	D→A	Avg
AlexNet	61.6 ± 0.4	95.4 ± 0.3	99.0 ± 0.2	63.8 ± 0.5	49.8 ± 0.4	51.1 ± 0.6	70.1
DANN [7]	73.0 ± 0.5	96.4 ± 0.3	99.2 ± 0.3	72.3 ± 0.3	51.2 ± 0.5	53.4 ± 0.4	74.3
ADDA [8]	73.5 ± 0.6	96.2 ± 0.4	98.8 ± 0.4	71.6 ± 0.4	53.5 ± 0.6	54.6 ± 0.5	74.7
JAN [5]	74.9 ± 0.3	96.6 ± 0.2	99.5 ± 0.2	71.8 ± 0.2	55.0 ± 0.4	58.3 ± 0.3	76.0
CDAN-M [24]	78.3 ± 0.2	97.2 ± 0.1	100.0 ± 0.0	76.3 ± 0.1	57.3 ± 0.3	57.3 ± 0.2	77.7
BUMDA [25]	78.9 ± 0.4	96.9 ± 0.3	99.8 ± 0.2	77.8 ± 0.3	56.6 ± 0.5	57.4 ± 0.4	77.9
MSTN [15]	80.5 ± 0.4	96.9 ± 0.1	99.9 ± 0.1	74.5 ± 0.4	60.0 ± 0.6	62.5 ± 0.4	79.1
CADA-P [20]	83.4 ± 0.2	99.8 ± 0.1	100.0 ± 0.0	80.1 ± 0.1	59.8 ± 0.2	59.5 ± 0.3	80.4
DM-ADA [18]	83.9 ± 0.4	99.8 ± 0.1	99.9 ± 0.1	77.5 ± 0.2	64.0 ± 0.3	64.6 ± 0.3	81.6

Method	A→W	D→W	W→D	A→D	W→A	D→A	Avg
Ours(fc5)	83.4 ± 0.2	99.8 ± 0.1	100.0 ± 0.0	80.1 ± 0.1	59.8 ± 0.2	59.5 ± 0.3	80.4
Ours(fc7)	84.3 ± 0.4	99.3 ± 0.1	100.0 ± 0.0	82.6 ± 0.3	64.3 ± 0.4	64.9 ± 0.3	82.6

Method	A→W	D→W	W→D	A→D	W→A	D→A	Avg
Ours(fc7, L2P)	82.9 ± 0.3	98.2 ± 0.4	99.8 ± 0.2	82.0 ± 0.3	62.3 ± 0.2	63.0 ± 0.3	81.4
Ours(fc7, L1P)	83.7 ± 0.2	98.8 ± 0.2	100.0 ± 0.0	82.6 ± 0.3	63.7 ± 0.3	64.1 ± 0.2	82.2

between V_S and label Y, the source supervised training is guided to avoid M mapping V_S as important predictors to F, thus both objectives focus on U. Since both labeling functions $f_S(U)$ and $f_T(U)$ are built on U, the third term is expected to be negligibly small while the second term is reduced significantly, as shown in Figure [5].

4 Experiments

We evaluate the proposed IDA with two settings: 1) typical one-to-one unsupervised domain adaptation; 2) domain-agnostic adaptation, a more challenging but practical problem of learning from one labeled source domain and adapting to unknown unlabeled target domains [23].

4.1 Setup

Office-31. This dataset is widely used for visual domain adaptation [12]. It consists of 4,652 images and 31 categories collected from three different domains: Amazon (A) from amazon.com, Webcam (W) and DSLR (D), taken by web camera and digital SLR camera in different environmental settings, respectively. The Colored Office-31 is a binary classification task by randomly assigning 15 categories from Office-31 with a novel category label “0” and the rest 16 categories with label “1”, which is inspired by [11].

Office-home. This is one of the most challenging visual domain adaptation datasets [13], which consists of 15,588 images with 65 categories of everyday objects in office and home settings. There are four significantly dissimilar domains: Art (Ar), Clipart (Cl), Product (Pr) and Real-World (Rw).

Office-Caltech10. This dataset contains the 10 common categories shared by Office-31 and Caltech-256 datasets. Besides the Amazon, DSLR, and Webcam, it includes a novel domain: Caltech (C), which are sampled from the Caltech-256 dataset.

Implementation Details We finetune the AlexNet pre-trained from the ImageNet. Following the DANN [7], a adaptation layer f_{cb} with 256 units is added after the $fc7$ layer, where the feature intervention is performed. The attention module of the intervention operation consists of two fully-connected layers with a 256-units hidden layer and 4096-units output layer. We set $q = 2$ for the interventional feature distance and the weight of intervention loss $\beta = 0.1 * \gamma$. We set the distance threshold t_4 to be 9. We progressively increase the importance of the domain discrepancy and set $\gamma = \frac{2}{1 + \exp(k - m)} - 1$, where $k = -10$ and m denotes the training progress ranging from 0 to 1. We use a similar hyper-parameter selection strategy as in DANN. All reported results are averaged from 5 runs.
4.2 One-to-one Unsupervised Domain Adaptation

Experiencing on the Office31 and the Office-home datasets, the results are reported in Table 1 and Table 2, respectively. The proposed Ours(fc7) outperforms the compared methods consistently. On the Office31 data, the advantages the proposed method over the compared are more distinct when the plain Webcam or DSLR domains act as source domain, in which case the learned discriminative features tend to overfit source labels and be unsafely transferable. This is also verified by the distinct performance improvements of IDA on the Office-home tasks with Real-world being the target domain, in which case diversified target features alleviate source-specific correlations through feature intervention and improve transferability of the learned features.

We explore where to perform the feature intervention and experiment on the conv5, fc6 and fc7 layers, respectively. As shown in Table 1 and Table 2, the performance improves as the intervention layer gets closer to the adaptation layer.

We further study different strategies to achieve the mapping consistency in Equation 4 to alleviate the spurious correlation. We experiment on the predicted probability with KL-divergence, L1-distance, and L2-distance. We find that the KL-divergence tends to cause unstable training and performing the consistency directly on the adaptation layer, which is proposed, achieves the best performance. Because, in this case, we are able to jointly optimize the discriminability and domain-invariance learning in the same feature layer and guide both to focus on the domain-sharable part.

4.3 Domain-agnostic Adaptation

We evaluate the transferability of the learned discriminative features on the domain-agnostic learning task of adaptation from one labeled source domain to unknown unlabeled target domains with the Office-Caltech10 dataset. As shown in Table 3, the proposed Ours(fc7) achieves the best performance on most of the tasks. Negative transfer [28] occurs on RTN and JAN. DADA is specifically designed...
for this task to explicitly disentangle features. The proposed IDA outperforms DADA by distinguishing domain-sharable features from domain-specifics through feature intervention and jointly guiding both domain-invariance and discriminability learning to focus on the domain-sharable part.

4.4 Analyses

4.4.1 Target Error Bound

We study the target-domain error bound on two representative tasks: \(A \rightarrow W \) using the Office-31 and \(W \rightarrow A,D,C \) using the Office-Caltech10. As formulated in Equation 6, the first term is generally ignorable, therefore, only the second term, domain discrepancy, and the third term, joint error of ideal hypothesis, are analyzed.

![Figure 3: Target error bound analyses with (a) for \(A \rightarrow W \) and (b) \(W \rightarrow A,D,C \), and t-SNE visualization of features by (c) AlexNet, (d) DANN, and (e) Ours (different colors denote different category labels).](image)

Domain Discrepancy. As suggested in [3], domain discrepancy is measured using \(A \)-distance, defined as \(d_A = 2(1 - 2\epsilon) \), where \(\epsilon \) is the generalization error of a domain classifier trained to distinguish source and target features. As shown in Figure 3, our method reduces domain discrepancy over fine-tuned AlexNet more significantly than DANN on both tasks.

Error of Ideal Joint Hypothesis. To evaluate the third term, we train a two-layer MLP classifier on the adapted features from both source and target, using their category labels, as done in [10]. Higher classification accuracy indicates better feature discriminability. As shown in Figure 3, DANN deteriorates feature discriminability with enlarged joint error. Our method enlarges the joint error negligibly on the \(A \rightarrow W \) task while reduces it on the \(W \rightarrow A,D,C \) task which indicates our method contributes to learning more discriminative features than using source labels only.

Combining the two terms above, we show that the proposed method reduces domain discrepancy significantly while keeping feature discriminability negligibly altered, thus successfully reducing the upper bound of target error.

4.4.2 Feature Visualization

To dive deeper into the learned discriminative features, we visualize them of both domains on the \(D \rightarrow A,W,C \) task of Office-Caltech10 using the t-SNE embedding [29]. In Figure 3, we visualize features of non-adapted models, DANN and the proposed IDA. Comparing to DANN, our method achieves better feature discriminability in target domain by keeping each category well separated while with much less false feature alignment.

4.4.3 Domain Generalization

We study domain generalization ability of learned features on the Office-Caltech10 dataset. We perform adaptation from one source to one target domain, and evaluate learned features in novel unseen domains. We experiment with four representative tasks, with results reported in Table 4. DANN improves feature transferability in the target domain but deteriorates the generalization ability over the AlexNet. The proposed IDA simultaneously enhances the feature transferability to the target domain and novel domains.
Table 4: Accuracy (%) on the Office-Caltech10 dataset for domain generalization (AlexNet).

Method	A→W W	C,D	D	A,C	A→D A	Avg				
AlexNet	75.0	86.2	98.6	69.8	83.6	86.1	91.7	85.0	87.2	81.8
DANN	88.7	85.5	99.2	66.2	87.3	81.1	93.8	87.1	92.3	80.0
Ours(fc6)	**94.1**	91.9	99.8	77.7	93.0	88.9	**96.0**	**89.1**	95.7	86.9
Ours(fc7)	**93.9**	**92.9**	**100.0**	**78.7**	**93.7**	89.5	95.7	88.9	**95.8**	**87.5**
Ours(fc7, L2P)	93.0	91.9	100.0	76.9	92.8	88.9	94.9	87.0	95.2	86.2
Ours(fc7, L1P)	93.7	92.3	**100.0**	77.9	93.5	89.2	95.5	87.8	95.7	86.8

Figure 4: Discriminability visualization on the D→A task of DANN and the proposed method on the Office31 dataset. DANN pays attention to trivial features while our method focuses on stably transferable features.

4.4.4 Discriminability Visualization

The learned important predictors are highlighted to show the proposed IDA reduces the influence of spurious correlations and learns discriminative feature that are safely transferable. We utilize Grad-CAM [30] to visualize the class-discriminative feature map extracted from the last pooling layer in AlexNet on the challenging task D→A, with some samples shown in Figure 4. The features learned by DANN tend to focus on some trivial parts of the objects while our method pays more attention to the stably discriminative parts.

5 Conclusion

In this paper, we found standard domain invariance learning suffers from spurious correlations and would learn discriminative features that are inferiorly transferable. To address this issue, a novel interventional domain adaptation method was proposed to reduce the correlations and learn more transferable discriminative features. We generated counterfactual features via the proposed feature intervention strategy and intervened in the discriminability learning to guide it to get rid of the domain-specifics and focus on domain-sharable features. The experimental results on both one-to-one unsupervised domain adaptation and domain-agnostic adaptation tasks validated that our learned discriminative features are more transferable and generalize well to novel domains.

Broader Impact

This domain adaptation method enables more unbiased and reliable data or knowledge utilization. It does not present foreseeable negative societal consequences.
References

[1] Gabriela Csurka. Domain adaptation in computer vision applications, volume 2. Springer, 2017.

[2] Markus Freitag and Yaser Al-Onaizan. Fast domain adaptation for neural machine translation. arXiv preprint arXiv:1612.06897, 2016.

[3] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman Vaughan. A theory of learning from different domains. Machine learning, 79(1-2):151–175, 2010.

[4] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I Jordan. Learning transferable features with deep adaptation networks. arXiv preprint arXiv:1502.02791, 2015.

[5] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Deep transfer learning with joint adaptation networks. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 2208–2217. JMLR. org, 2017.

[6] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching for multi-source domain adaptation. In Proceedings of the IEEE International Conference on Computer Vision, pages 1406–1415, 2019.

[7] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks. The Journal of Machine Learning Research, 17(1):2096–2030, 2016.

[8] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 7167–7176, 2017.

[9] Artem Rozantsev, Mathieu Salzmann, and Pascal Fua. Beyond sharing weights for deep domain adaptation. IEEE transactions on pattern analysis and machine intelligence, 41(4):801–814, 2018.

[10] Xinyang Chen, Sinan Wang, Mingsheng Long, and Jianmin Wang. Transferability vs. discriminability: Batch spectral penalization for adversarial domain adaptation. In International Conference on Machine Learning, pages 1081–1090, 2019.

[11] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization. arXiv preprint arXiv:1907.02893, 2019.

[12] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models to new domains. In European conference on computer vision, pages 213–226. Springer, 2010.

[13] Hemanth Venkateswaran, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep hashing network for unsupervised domain adaptation. In Proc. CVPR, pages 5018–5027, 2017.

[14] Han Zhao, Remi Tachet Des Combes, Kun Zhang, and Geoffrey Gordon. On learning invariant representations for domain adaptation. In International Conference on Machine Learning, pages 7523–7532, 2019.

[15] Shaoan Xie, Zibin Zheng, Liang Chen, and Chuan Chen. Learning semantic representations for unsupervised domain adaptation. In International Conference on Machine Learning, pages 5423–5432, 2018.

[16] Zhongyi Pei, Zhangjie Cao, Mingsheng Long, and Jianmin Wang. Multi-adversarial domain adaptation. In AAAI Conference on Artificial Intelligence, pages 3934–3941, 2018.

[17] Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tatsuya Harada. Maximum classifier discrepancy for unsupervised domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3723–3732, 2018.
[18] Minghao Xu, Jian Zhang, Bingbing Ni, Teng Li, Chengjie Wang, Qi Tian, and Wenjun Zhang. Adversarial domain adaptation with domain mixup. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, pages 6502–6509. AAAI Press, 2020.

[19] Hong Liu, Mingsheng Long, Jianmin Wang, and Michael Jordan. Transferable adversarial training: A general approach to adapting deep classifiers. In International Conference on Machine Learning, pages 4013–4022, 2019.

[20] Vinod Kumar Kurmi, Shanu Kumar, and Vinay P Namboodiri. Attending to discriminative certainty for domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 491–500, 2019.

[21] Minghao Chen, Shuai Zhao, Haifeng Liu, and Deng Cai. Adversarial-learned loss for domain adaptation. In AAAI, pages 3521–3528, 2020.

[22] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 7132–7141, 2018.

[23] Xingchao Peng, Zijun Huang, Ximeng Sun, and Kate Saenko. Domain agnostic learning with disentangled representations. In International Conference on Machine Learning, pages 5102–5112, 2019.

[24] Mingsheng Long, ZHANGJIE CAO, Jianmin Wang, and Michael I Jordan. Conditional adversarial domain adaptation. In Advances in Neural Information Processing Systems 31, pages 1647–1657. Curran Associates, Inc., 2018.

[25] Jun Wen, Nenggan Zheng, Junsong Yuan, Zhefeng Gong, and Changyou Chen. Bayesian uncertainty matching for unsupervised domain adaptation. In Proceedings of the 28th International Joint Conference on Artificial Intelligence, pages 3849–3855. AAAI Press, 2019.

[26] Xinhong Ma, Tianzhu Zhang, and Changsheng Xu. Gcan: Graph convolutional adversarial network for unsupervised domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 8266–8276, 2019.

[27] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Unsupervised domain adaptation with residual transfer networks. In Advances in neural information processing systems, pages 136–144, 2016.

[28] Sinno Jialin Pan, Qiang Yang, et al. A survey on transfer learning. IEEE Transactions on knowledge and data engineering, 22(10):1345–1359, 2010.

[29] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning research, 9(Nov):2579–2605, 2008.

[30] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision, pages 618–626, 2017.