BliStr: The Blind Strategymaker

Josef Urban
Radboud University Nijmegen

Abstract. BliStr is a system that automatically develops strategies for E prover on a large set of problems. The main idea is to interleave (i) iterated low-timelimit local search for new strategies on small sets of similar easy problems with (ii) higher-timelimit evaluation of the new strategies on all problems. The accumulated results of the global higher-timelimit runs are used to define and evolve the notion of “similar easy problems”, and to control the selection of the next strategy to be improved. The technique was used to significantly strengthen the set of E strategies used by the MaLARea, PS-E, E-MaLeS, and E systems in the CASC@Turing 2012 competition, particularly in the Mizar division. Similar improvement was obtained on the problems created from the Flyspeck corpus.

1 Introduction and Motivation

The E [5] automated theorem prover (ATP) contains a number of points where learning and tuning methods can be used to improve its performance. Since 2006, the author has experimented with selecting the best predefined E strategies for the Mizar/MPTP problems [7], and since 2011 the E-MaLeS\footnote{http://www.cs.ru.nl/~kuehlwein/CASC/E-MaLeS.html} system has been developed. This system uses state-of-the-art learning methods to choose the best schedule of strategies for a problem. An early evaluation of E-MaLeS in CASC 2011 has been counterintuitive: E-MaLeS solved only one more FOF problem than E. Under reasonable assumptions (imperfect knowledge, reasonably orthogonal strategies) it is however easy to prove that for (super-)exponentially behaving systems like E, even simple strategy scheduling should on average (and with sufficiently high time limits) be better than running only one strategy. A plausible conclusion was that the set of E strategies is not sufficiently diverse.

For the 2012 Mizar@Turing competition, 1000 large-theory MPTP2078 problems (that would not be used in the competition) were released for pre-competition training and tuning, together with their Mizar and Vampire [4] proofs. From the premises used in the Mizar proofs, Vampire 1.8 (tuned well for Mizar in 2010 [7]) could in 300s prove 691 of these problems. A pre-1.6 version of E run with its old auto-mode could solve only 518 of the problems. In large-theory competitions like Mizar@Turing, where learning from previous proofs is allowed, metasystems like MaLARea can improve the performance of the base ATP a lot. But the SInE premise-selection heuristic [1] has been also tuned for several years, and with the great difference of the base ATPs on small version of the problems, the result of competition between SInE/Vampire and MaLARea/E would be hard to predict. This provided a direct incentive for constructing a method for automated improvement of E strategies on a large set of related problems.
2 Blind Strategymaking

For the rest of this paper, the task is fixed to (Max:) developing a set of E strategies that together solve as many of the 1000 small Mizar@Turing pre-competition problems as possible. A secondary criterion is that (Gen:) the strategies should be reasonably general, i.e., perform similarly also on the unknown problems that would be later used in the competition, and that (Size:) the set of such strategies should not be too large, so that strategy-selection system like E-MaLeS stand a chance. This setting is very concrete, however nothing particular is assumed about the Mizar@Turing problems. Even though the author has some knowledge of E (see, e.g., [6]), the strategy-improving methods were intentionally developed in a data-driven way, i.e., assuming as little knowledge about the meaning of E’s strategies as possible. The credo of AI research is to automate out human intelligence, so rather than manually developing deep theories about how the strategies work, which ATP parameters are the right for tuning, how they influence each other, etc., it was considered more interesting to push such “blind” approach as far as possible, and try hard to automate the discovery process based on data only. That is also why there is no explanation of E strategies here (see the E manual), except the following.

A strategy is assumed to be a collection of ATP parameters with their (integer, boolean, enumerated) values. The parameters influence the choice of inference rules, orderings, selection heuristics, etc. Perhaps one unusual feature of E is that it provides a language that allows the user to specify a linear combination of clause-selection heuristics used during the given-clause loop. The individual clause-selection heuristics further consist of a (dependent) number of parameters, making the set of meaningful strategy parameters very large (probably over 1000). Capturing this expressive power seemed tedious, and also looked like a hurdle to a straightforward use of the established ParamILS [2] system which searches for good parameters by iterative local search. Since ParamILS otherwise looks like the right tool for the task, a data-driven (“blind”) approach was applied again to get a smaller set (currently 20) of meaningful parameters: the existing strategies that were (jointly) most useful on the training problems (see 2.1) were used to extract a smaller set (a dozen) of clause-selection heuristics. In some sense, an intelligent designer (Schulz) was trusted to have already made reasonable choices in creating these smaller building blocks, but we at least know that these are the building blocks that provide the best performance so far, and reduce their parameter search to their linear combinations. This can certainly be made more “blind” later. The currently used set of parameters and their allowed values limits the space of all expressible strategies to ca. 4.5 \times 10^7.

2.1 Choosing a Starting Set of Strategies

As mentioned above, the E auto-mode solves in 300s 518 of the 1000 problems. One obvious choice of a set of starting strategies for further improvement would

2 For the exact set of used parameters and values see the file e-params.txt in the BliStr distribution. The E interpretation of the parameters is in the file e_interpreter.rb.
be to take those that are used by the auto-mode to solve the 518 problems. The auto-mode is typically constructed from an evaluation of about 280 pre-defined E strategies on TPTP. It has been observed several times that while the auto-mode in general chooses good strategies on TPTP, it does not choose so well the (still pre-defined) strategies for MPTP problems. In other words, even though some MPTP problems are included in TPTP, the auto-mode should not be trusted to know the best pre-defined strategies for MPTP. The following method was used instead.

All the 280 pre-defined strategies were run on randomly chosen 200 problems from the 1000 with a low 5s timelimit, solving 117 problems in total. A minimal set of strategies covering the 117 solutions was computed (using MiniSat++), yielding the following six pre-defined strategies:

\begin{verbatim}
G-E--_008_B31_F1_PI_AE_S4_CS_SP_S2S G-E--_008_K18_F1_PI_AE_CS_SP_S0Y
G-E--_010_B02_F1_PI_AE_S4_CS_SP_S0Y G-E--_024_B07_F1_PI_AE_Q4_CS_SP_S0Y
G-E--_045_B31_F1_PI_AE_S4_CS_SP_S0Y G-E--_045_K18_F1_PI_AE_CS_OS_S0S
\end{verbatim}

These six strategies were then run again on all the 1000 training problems with 60s, proving 597 problems altogether. To get a fair (300s) comparison to the 300s runs of E and Vampire auto-mode, only solutions obtained by each of these six strategies within 50s can be considered. This yields 589 problems, i.e., a 13.7% improvement over the E auto-mode. Thus, as conjectured, there are pre-defined E strategies that can already do much better on MPTP problems than the E auto-mode. However their distance to Vampire’s performance (691 problems) is still large.

2.2 Growing Better Strategies

How can new strategies be found that would solve some of the unsolved 403 problems? The space of possible strategies is so large that a random exploration seems unlikely to find good new strategies. The guiding idea is again to use a data-driven approach. Problems in a given mathematical field often share a lot of structure and solution methods. Mathematicians become better and better by solving the problems, they become capable of doing larger and larger steps with confidence, and as a result they can gradually attack problems that were previously too hard for them. The reason for translating the Mizar library for ATPs and having competitions like Mizar@Turing is exactly to enable development and evaluation of systems that try to emulate such self-improvement.

By this analogy, it is plausible to think that if the solvable problems become much easier for an ATP system, the system will be able to solve some more (harder, but related) problems. For this to work, a method that can improve an ATP on a set of solvable problems is needed. While this can still be hard (or

3 Their exact interpretation can be found in E’s source code.
4 A later test verifying this intuition has shown that random exploration run for 7 hours on all unsolved problems finds a new strategy that solves 15 unsolved problems. The first solution was found after about 1000 E runs. 15 is not much, but it shows that some reasonable strategies are not so rare in the pre-defined parameter space.
even impossible), it is often much easier task than to directly develop strategies for unsolved problems. The reason is that an initial solution is known, and can be used as a basis for algorithms that improve this solution using local search or other non-random (e.g., evolutionary) methods. As already mentioned, the established ParamILS system can be used for this.

2.3 The ParamILS Setting and Algorithm

Let A be an algorithm whose parameters come from a configuration space (product of possible values) Θ. A parameter configuration is an element $\theta \in \Theta$, and $A(\theta)$ denotes the algorithm A with the parameter configuration θ. Given a distribution (set) of problem instances D, the algorithm configuration problem is to find the parameter configuration $\theta \in \Theta$ resulting in the best performance of $A(\theta)$ on the distribution D. ParamILS is an implementation of an iterated local search (ILS) algorithm for the algorithm configuration problem. In short, starting with an initial configuration θ_0, ParamILS loops between two steps: (i) perturbing the configuration to escape from a local optimum, and (ii) iterative first improvement of the perturbed configuration. The result of step (ii) is accepted if it improves the previous best configuration.

To fully determine how to use ParamILS in a particular case, A, Θ, θ_0, D, and a performance metric needs to be instantiated. In our case, A is run with a low timelimit t_{low}, Θ is the set of the ca. 4.5×10^7 E strategies, and as a performance metric the number of given-clause loops done by E during solving the problem was chosen. If E cannot solve a problem within the low timelimit, a sufficiently high value (10^6) is used. A CPU time could be in some cases a better metric, however for very easy problems it could be hard to measure the improvement factor with confidence. It thus remains to instantiate θ_0 and D.

2.4 Guiding ParamILS

It seems unlikely that there is one best E strategy for all Mizar@Turing problems. In principle this could be possible particularly if the strategy language allowed to specify variant behavior for different problem characterizations, however this is not yet the case. Thus, it seems counterproductive to use all the 597 solved training problems as the set D for ParamILS runs. If there is no best strategy, improved performance of a strategy on one subset of all problems would be offset by worse performance on another subset, the average value of the performance metric would not improve, and ParamILS would not develop such strategy further.

But this already suggests a data-driven way how to guide ParamILS. If there is no best strategy, then the set of all solvable problems is partitioned into subsets on which the particular strategies perform best. In more detail, this “behavioral” partitioning could be even finer, and the vector of relative performances of all strategies on a problem could be used as a basis for various clusterings of the problems. The current heuristic for choosing successive θ_0 and D is as follows.
BliStr selection heuristic: Let θ_i be a set of E strategies, P^j a set of problems, and $E_{\theta_i}(P^j)$ the performance matrix obtained by running E with θ_i on P^j with a higher time limit t_{high} (set to 10s). Let $c_{min} < c_{max}$ be the minimal and maximal eligible values of the performance metric (given-clause count) (set to 500 and 30000). Let $E'_{\theta_i}(P^j)$ be $E_{\theta_i}(P^j)$ modified by using an undef value for values outside $[c_{min}, c_{max}]$, and using an undef value for all but the best (lowest) value in each column. Let V (versatility) be the minimal number (set to 8) of problems for which a strategy has to be best so that it was eligible, and let N be the maximum number of eligible strategies (set to 20). Then the eligible strategies are the first N strategies θ_i for which their number of defined values in E' is largest and greater than V. These strategies are ordered by the number of defined values in E', i.e., the more the better, and their corresponding sets of problems D_i are formed by those problems P^j, such that $E'_{\theta_i}(P^j)$ is defined.

Less formally, we prefer strategies that have many best-solvable problems which can be solved within $[c_{min}, c_{max}]$ given-clause loops. We ignore those whose versatility is less than V (guarding the Gen criterion), and only consider the best N (guarding the Size criterion). The maximum on the number of given-clause loops guards against using unreasonably hard problems for the ParamILS runs that are done in the lower time limit t_{low} (typically 1s, to do as many ParamILS loops as possible). It is possible that a newly developed strategy will have better performance on a problem that needed many given-clause loops in the t_{high} evaluation. However, sudden big improvements are unlikely, and using very hard problems for guiding ParamILS would be useless. Too easy problems on the other hand could direct the search to strategies that do not improve the harder problems, which is our ultimate scheme for getting to problems that are still unsolved. The complete BliStr loop is then as follows. It iteratively co-evolves the set of strategies, the set of solved problems, the matrix of best results, and the set of eligible strategies and their problem sets.

BliStr loop: Whenever a new strategy θ is produced by a ParamILS run, evaluate θ on all Mizar@Turing training problems with the high time limit t_{high}, updating the performance matrices E and E', and the ordered list of eligible strategies and their corresponding problem sets. Run the next ParamILS iteration with the updated best eligible strategy and its updated problem set, unless the exact strategy and problem set was already run by ParamILS before. If so, or if no new strategy is produced by the ParamILS run, try the next best eligible strategy with its problem set. Stop when there are no more eligible strategies, or when all eligible strategies were already run before with their problem sets.\footnote{The stopping criterion is now intentionally strict to see the limits of this approach. But it is easy to relax, e.g., by allowing further runs on smaller problem subsets.}

This loop is implemented in about 500 lines of publicly available Perl script.\footnote{https://github.com/JUrban/BliStr} It implements the selection heuristic, controls the ParamILS runs, and the higher-timelimit evaluations. Content-based naming (SHA1) is used for the new strategies, so that many BliStr runs can be merged as a basis for another run.
Table 1: Two BliStr runs and a union of 6 runs done within 30 hours

description	t_{low}	$T_{ParamILS}$	real time	user time	iterations	best strat. solved	
BliStr$_{400}^1$	1 s	400 s	593 m	3230 m	37	569	648
BliStr$_{3}^{2500}$	3 s	2500 s	1558 m	3123 m	23	576	643
Union of 6 runs		1800 m			113	576	659

solve the 659 problems, in general using 22 * 10 = 220s, which is less than the 6 * 60 = 360s used by the 6 initial strategies to solve the 597 problems. These 22 strategies were later run also with a 60s time limit, to have a comparison with the initial 6 strategies. Their joint 60s coverage is 670 problems. The (greedily) best 6 of them solve together 653 problems, and the best of them solves 598 problems alone, i.e. one more problem than the union of the initial strategies.

Evaluation on Small Version of the Mizar@Turing Problems: To see how general the strategies are, they were also evaluated on small versions (i.e., using only axioms needed for their Mizar proof) of the 400 Mizar@Turing competition problems, which were unknown during the training on the 1000 pre-competition problems. The comparison in Table 2 includes also the old E auto-mode, the 6 best pre-defined strategies, and Vampire 2.6 (used in the competition). Each system was given 160s total CPU time (distributed evenly between the strategies). The improvement over the old auto-mode is 25%.

Table 2: Comparison on the (small) 400 competition problems using 160s

System	Old auto-mode	6 old strats.	16 new strats.	Vampire 2.6
Solved	205	233	253	273

CASC@Turing Competition Performance: An early version of a simple strategy scheduler and parallelizer combining the best strategies also with (E's
version of SInE was used by MaLARea in the Mizar@Turing competition. This strategy scheduler (called Epar) runs 16 E strategies either serially or in parallel. In the competition MaLARea/Epar solved 257 of the 400 (large) Mizar@Turing problems in 16000 seconds, and Vampire/SInE 248 problems. After the competition, MaLARea was re-run on the 400 problems (on a different computer and 3 hours) both with Epar, solving 256 problems, and with the old E’s auto-mode, solving 214 problems. The better E strategies were relevant for the competition.

The new strategies were also used by E-MaLeS and E1.6pre in the FOF@Turing competition run with 500 problems. E-MaLeS solved 401 of them, E1.6pre 378, and (old) E1.4pre 344. These improvements are due to more factors (e.g., using SInE automatically in E1.6), however the difference between E-MaLeS and E1.6pre became more visible in comparison to the CASC 2011, likely also thanks to the diverse strategies being now available.

Evaluation on Flyspeck Problems: Epar, E1.6pre and Vampire2.6 were also tested on the newly available Flyspeck problems [3]. With 900s Vampire solves 39.7% of all the 14195 problems, Epar solves 39.4%, and their union solves 41.9%. With 30s, on a random 10% problem subselection, Epar solves 38.4%, E1.6pre 32.6%, and Vampire 30.5% of the problems.

4 Conclusion and Future Work

Running BliStr for 30 hours seems to be a good time investment for ATP systems that are used to attack thousands of problems. It is also a good investment in terms of the research time of ATP developers. The system can probably be made faster, and used online in metasystems like MaLARea. The current selection heuristic could be modified in various ways, as well as the stopping criterion. The set of parameters and their values could be extended, allowing broader and more precise tuning. Extension to other ATPs should be straightforward.

References

1. Krystof Hoder and Andrei Voronkov. Sine qua non for large theory reasoning. In *CADE*, pages 299–314, 2011.
2. Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stützle. ParamILS: an automatic algorithm configuration framework. *Journal of Artificial Intelligence Research*, 36:267–306, October 2009.
3. Cezary Kaliszyk and Josef Urban. Learning-assisted automated reasoning with Flyspeck. *CoRR*, abs/1211.7012, 2012.
4. Alexandre Riazanov and Andrei Voronkov. The design and implementation of VAMPIRE. *AI Commun.*, 15(2-3):91–110, 2002.
5. Stephan Schulz. E - A Brainiac Theorem Prover. *AI Commun.*, 15(2-3):111–126, 2002.
6. Josef Urban. MoMM - fast interreduction and retrieval in large libraries of formalized mathematics. *International J. on Artificial Intelligence Tools*, 15(1):109–130, 2006.
7. Josef Urban, Krystof Hoder, and Andrei Voronkov. Evaluation of automated theorem proving on the Mizar Mathematical Library. In *ICMS*, pages 155–166, 2010.

⁷ https://github.com/JUrban/MPTP2/blob/master/MaLARea/bin/runepar.pl

⁸ Vampire still won the competition: a bug in MaLARea caused 17 undelivered proofs.