We empirically analyze the impact of economic uncertainty due to the COVID-19 pandemic on the trading volume of each sector in the S&P 500 index. Wavelet coherence analysis is carried out using economic policy uncertainty data and the trading volume of each sector in the S&P 500 index from July 2004 to September 2020. Furthermore, we apply multifractal detrended fluctuation (MF-DFA) analysis to the trading volume series of all sectors. The wavelet coherence analysis shows that the COVID-19 pandemic has substantially influenced trading volume in all sectors. However, the impact of the pandemic is different from that during the global financial crisis in some sectors, such as information technology, consumer discretionary, and communication services. Because of the lockdown taken to suppress COVID-19, increased remote working and remote learning are the main reasons for these results. Additionally, according to the MF-DFA analysis, the trading volume of all the sectors has clear multifractal characteristics, and they are all nonpersistent. Specifically, trading volumes of the real estate and materials sector are highly correlated, whereas the trading volumes of industry and information technology sectors are comparatively less correlated.
COVID-19 pandemic (Adiga et al. [34]). For example, Agrawal et al. [35] build an agent-based simulator to study the impact of various nonpharmaceutical interventions in the COVID-19 pandemic and demonstrate the ability of simulators through several case studies. Gharakhanlou and Hooshangi [36] develop an agent-based model that simulates the spatio-temporal outbreak of COVID-19. Additionally, they simulate the transmission of COVID-19 between human agents based on one of the SIR-type models. Third, there are studies on developing new mathematical models for COVID-19. For example, Matouk [37] suggests a susceptible-infected model with a multi-drug resistance, called SIMDR. They also investigated the dynamic behavior of the SIMDR model for the COVID-19 pandemic. Mohammed et al. [38] examine the dynamic behavior of COVID-19 using Lotka–Volterra-based models. Particularly, their proposed models contain fractional derivatives, which present a more sufficient and realistic description of the COVID-19 phenomena. In this study, we examine the impact of economic uncertainty on the trading volume of the U.S. stock market. We employ the U.S. daily news-based economic policy uncertainty (EPU) index to measure economic uncertainty. To do that, we calculate industry-specific trading volume and investigate the relationship between the trading volume of each industry and EPU. Furthermore, we investigate the multifractal nature of the industry-specific trading volume. Based on this investigation, we analyze the fluctuations of trading volumes. Industry-specific trading volume is defined based on the trading volume of 11 S&P 500 index sectors. We apply wavelet coherence analysis to estimate the interdependence and causality between EPU and each sector’s trading volume from January 2008 to September 2020. Furthermore, we examine the relationship between them in terms of several events during the sample period such as the global financial crisis (GFC) and COVID-19 pandemic. Recently, many studies have investigated the relationship between EPU and volatility of various financial assets, such as the stock market (Ko and Lee [39]; Liu and Zhang [40]; Li et al. [41]; Choi [42], oil Mei et al. [43]; Ma et al. [44]; Wen et al. [45], foreign exchange Juhro and Phan [46]; Bartsch [47]; Chen et al. [48], and cryptocurrency Demir et al. [49]; Wang et al. [50]; Cheng and Yen [51]). Unlike the previous literature, studies of the relationship between the trading volume and EPU are relatively scarce. To the best of our knowledge, this is the first report on the relationship between EPU and trading volume. Furthermore, we employ the multifractal detrended fluctuation analysis (MF-DFA) approach introduced by Kantelhardt et al. [52] to investigate long-range autocorrelations and describe the multifractal properties of the trading volume. Several studies show that stock markets are multifractal (Bacry et al. [53]; Kwapień et al. [54]; Zunino et al. [55]; Wang et al. [56]; Machado [57]; Choi [58]). The contributions of this study are threefold: first, it adds to the flourishing strand of the literature on the impact of COVID-19 on the U.S. stock market (Mazur et al. [59]; Sharif et al. [60]; Hanke et al. [61]; Smales [62]; Baker et al. [63]). Second, our study extends the literature by examining the change in trading volume at the industry level following extreme events. In particular, while some studies have examined the relationship between the effect of the COVID-19 pandemic and trading volume of individual stocks or the stock market in each country (Ortmann et al. [64]; Chiah and Zhong [26]), no studies have addressed the trading volume of each sector. Third, we inspect whether the trading volumes for all sectors have multifractal characters. The investigation of the multifunctional nature of the trading volume at the industrial level is also not adequately explored in the existing literature. The remainder of this study is organized as follows: Section 2 describes the data and reviews the wavelet coherence analysis and MF-DFA approaches. Section 3 presents the main findings. Finally, concluding remarks are provided in Section 4.

2. Data Description and Methodology

2.1. Data Description. The time series of EPU is obtained from https://www.policyuncertainty.com. This website presents data on the news-based EPU index proposed by Baker et al. [65]. The sample period runs from July 2004 to September 2020. The index measures EPU using information from keyword searches in 10 large newspapers and is normalized to the volume of news articles discussing EPU.

Figure 1 shows the monthly time series of EPU and total trading volume (the sum of the trading volume of all the shares included in the S&P 500 index) during the sample period and several events that shocked the market such as the Lehman bankruptcy, debt-ceiling crisis, trading tensions between the United States and China, and the COVID-19 pandemic. As can be seen, the EPU index during the pandemic is significantly higher than in other events. In addition, changes in total trading volume tend to be similar to changes in EPU. About 500 companies in the U.S. stock market are used to define the S&P 500 index, which has 11 sectors in total (we use the global industry classification standard). The market cap of the S&P 500 is 70–80% of total U.S. stock market capitalization. Consequently, the sectors of the index naturally become a classification criterion for the U.S. economy. To calculate the trading volume of each sector, we first define the daily average sectoral trading volume of the i-th sector at time t as follows:

$$r_{it} = \frac{1}{N(t)} \sum_{j=1}^{N(t)} V_{j,t},$$

where $N(t)$ is the total number of stocks (the total number of shares (N) changes as the incorporated stock in the i-th sector changes) in the sector at time t and $V_{j,t}$ is the trading volume of the j-th stock in the i-th sector at time t. Because the EPU is calculated monthly, we define the monthly average trading volume (MATV) r_{im} for $m \in \{m = july 2004, Aug 2004, \ldots September 2020\}$ as the sum of average daily trading volume in each month. Table 1 presents the summary statistics of MATV. In addition, the MATV in each sector is shown in Figure 2. According to Table 1 and Figure 2, the MATV of the IT and financial industries is large and the fluctuation of MATV is also large. On the contrary, the MATV of the utilities and real estate
Figure 1: The monthly EPU index from July 2004 to September 2020. The events are based on those presented on the website.

Table 1: Summary statistics of MATV in the S&P 500 index. Here, the statistics are obtained based on scale-adjusted MATV (divided by 10 million).

Sectors	Observed	Mean	Maximum	Minimum	Standard deviation	Skewness	Kurtosis
Communication services	195	19.4914	33.7481	12.1475	3.8021	0.4977	0.4525
Consumer discretionary	195	10.9942	23.6278	6.5459	3.8239	1.1698	0.5081
Consumer staples	195	9.9723	24.7695	5.9175	2.8209	1.5751	3.8429
Energy	195	14.023	39.8828	7.8626	4.5355	2.1723	8.1248
Financial	195	13.3954	53.8857	3.5619	8.5303	1.9237	5.1907
Health care	195	8.1234	17.7929	4.5768	2.2544	1.2121	1.6574
Industrials	195	7.6887	23.1635	4.3141	3.0851	1.9966	5.0637
Information technology	195	33.5651	108.5334	11.6259	18.1847	0.8331	0.5104
Materials	195	6.8426	20.1044	3.0459	2.5255	1.5097	4.2935
Real estate	195	3.8818	13.2393	1.0849	1.8127	1.7786	6.2873
Utilities	195	5.3573	10.6955	2.4811	1.3121	0.3104	1.9175

Figure 2: MATV ($\left\{ r_{\text{mat},i} \right\}_{i = 1, \ldots, 11}$) from July 2004 to September 2020.
sectors is smaller than those of the other industries and their changes are also small. Furthermore, during both the GFC and the COVID-19 pandemic, there is a considerable change in trading volume in all sectors. According to the World Health Organization (WHO) (“Tracking SARS-CoV-2 variants” https://www.who.int/en/activities/tracking-SARS-CoV-2-variants), several COVID-19 variants have been observed, namely, alpha, beta, gamma, and delta. As they were all officially designated after December 2020, our sample data do not include the impact of the new COVID-19 variants on the EPU and the MATV. Therefore, we provide the extended EPU and MATV, that is, from January 2020 to June 2021, in Figures 3 and 4. In Figure 3, the designation date of COVID-19 variances is indicated. When looking at the plots, the EPU and the volume do not seem to have been significantly affected by the occurrence of COVID-19 variances. Furthermore, MATVs in all sectors do not appear to be significantly related to the COVID-19 variants. However, it is noteworthy that the MATV of the energy sector from January 2020, except for a few periods, is the largest among the MATVs of all sectors. This is largely different from the MATV results before 2020 in Figure 2. We use monthly EPU and the monthly sample data during the COVID-19 pandemic are not enough to apply to the wavelet coherency analysis. To solve this problem, a short-term sample data set is needed, such as weekly or daily data. Additionally, a longer study period may capture the impact of the new COVID-19 variants. These are opportunities for future studies.
2.2. Methodology

2.2.1. Wavelet Coherence Analysis. Using wavelet coherence analysis with the Morlet specification, we investigate the causality and interdependence between the EPU and trading volume. Based on this analysis, we make inferences in a time-frequency frame. From several studies (Ko and Lee [39]; Kristoufek [66]; Pal and Mitra [67]; Sharif et al. [60]), this can be briefly explained as follows: For time series $x(t)$, the continuous wavelet transform is given by the following equation:

$$W_x(r, s) = \int_{-\infty}^{\infty} x(t) \bar{\psi}_{r,s}(t) dt,$$

where s is the scaling factor adjusting the length of the wavelet and τ is the translation parameter adjusting the wavelet location in time. $\bar{\psi}_{r,s}(t)$ is the complex conjugate of $\psi_{r,s}(t)$. In addition, $\bar{\psi}$ is found by scaling and shifting the mother wavelet ψ. According to Torrence and Webster [70], the smooth cross-wavelet transform, respectively.

$$W_{xy}(r, s) = W_x(r, s)W^*_y(r, s).$$

From the cross-wavelet transform, the wavelet coherence between two series, $x(t)$ and $y(t)$, is given by Torrence and Webster [70]:

$$R^2(r, s) = \frac{|S(1/sW_{xy}(r, s))|^2}{S(1/sW_x(r, s))^2 S(1/sW_y(r, s))^2},$$

where S is the smooth operator in time and scale. $R^2(r, s)$ is a squared correlation localized in time frequency and $0 \leq R^2(r, s) \leq 1$. Based on Bloomfield et al. [71], the phase difference from the phase angle obtained by the cross-wavelet transform is as follows:

$$\rho_{xy}(r, s) = \tan^{-1} \left(\frac{\Im[S(1/sW_{xy}(r, s))]}{\Re[S(1/sW_{xy}(r, s))]} \right),$$

where $\rho_{xy} \in [-\pi, \pi]$.

where Re and Im are the real and imaginary parts of the smooth cross-wavelet transform, respectively. $\rho_{xy}(r, s)$ can explain the interdependence and causality between the two time series, $x(t)$ and $y(t)$, while the squared wavelet coherence does not know the direction of the relationship. Based on several studies (Flor and Klarl [72]; Cai et al. [73]; Funashima [74]), we can determine the connection between the two time series, $x(t)$ and $y(t)$, by understanding the scale of the phase difference, ρ_{xy}. If $\rho_{xy} \in (0, \pi/2)$, $x(t)$ and $y(t)$ have positive relations, and $x(t)$ leads $y(t)$. If $\rho_{xy} \in (-\pi/2, 0)$, $x(t)$ lags $y(t)$. For $\rho_{xy} \in (\pi/2, \pi)$, $x(t)$ and $y(t)$ have negative relations, but $x(t)$ lags $y(t)$. If $\rho_{xy} \in (-\pi, -\pi/2)$, the two time series also have negative relations, with $x(t)$ leading $y(t)$.

2.2.2. Multifractal Detrended Fluctuation Analysis. The MFDFA method represents the multifractal properties of a financial time series. According to Kantelhardt et al. [52], the MFDFA procedure consists of the following five steps (Wang et al. [75]). Let $\{x_i, i = 1, \ldots, N\}$ be a time series, where N is the length of the series:

(i) Step 1. Determine the profile

$$Y(i) = \frac{x(i) - \bar{x}}{\Delta s},$$

where

$$\bar{x} = \frac{1}{N} \sum_{k=1}^{N} x(k),$$

(ii) Step 2. Divide the profile $\{Y(i)\}_{i=1}^{N}$ into $N_s \equiv \text{int}(N/s)$ nonoverlapping segments of equal length s. To cover the whole sample, repeat the same procedure from the end of the sample. In this way, $2N_s$ segments are obtained altogether:

$$\{Y[(y-1)s+i]\}_{i=1}^{s}, y = 1, 2, \ldots, N_s,$$

$$\{Y[N-(y-N_s)s+i]\}_{i=1}^{s}, y = N_s + 1, N_s + 2, \ldots, 2N_s.$$

(iii) Step 3. Calculate the local trend for each of the $2N_s$ segments. For every segment, the local trend is estimated by a least-square fitting polynomial. Consequently, the variance is determined as follows:

$$F^2(s, v) = \frac{1}{s} \sum_{i=1}^{s} \left[Y[(y-1)s+i] - \bar{Y}^m_v(i) \right]^2, \quad v = 1, 2, \ldots, N_s,$$

$$F^2(s, s) = \frac{1}{s} \sum_{i=1}^{s} \left[Y[N-(y-N_s)s+i] - \bar{Y}^m_v(i) \right]^2, \quad v = N_s + 1, N_s + 2, \ldots, 2N_s.$$
Here, \(\alpha^m_v(i) \) is the fitting polynomial with order \(m \) in segment \(v \). In this study, we adopt a linear polynomial \((m=1)\) to prevent overfitting and facilitate the calculation (Lashermes et al. [76]; Ning et al. [77]).

(iv) Step 4. Average over all the segments. Then, we obtain the \(q \)-th order fluctuation function:

\[
F_q(s) = \begin{cases}
\left[\frac{1}{2N_s} \sum_{\nu=1}^{2N_s} F^q(s, \nu) \right]^{\frac{1}{q}}, & q \neq 0, \\
\exp \left[\frac{1}{4N_s} \sum_{\nu=1}^{2N_s} \ln \left(F^2(s, \nu) \right) \right], & q = 0.
\end{cases}
\]

(v) Step 5. Determine the scaling behavior of the fluctuation functions. Compare the log-log plots \(F_q(s) \) with \(s \) for each value of \(q \). If the series are long-range power-law correlated, \(F_q(s) \) increases for high values of \(s \). The power law is expressed as follows:

\[
F_q(s) \propto s^{h(q)},
\]

where \(h(q) \) represents the generalized Hurst exponent. Equation (12) can be written as

\[
F_q(s) = a \cdot s^{h(q)} + b.
\]

After taking the logarithms of both sides,

\[
\log(F_q(s)) = h(q) \cdot \log(s) + c,
\]

where \(c \) is a constant.

The exponent \(h(q) \) depends on \(q \). The time series is monofractal when \(h(q) \) does not depend on \(q \); otherwise, it is multifractal. For \(q = 2, h(2) \) is identical to the Hurst exponent Calvet and Fisher [78]. Thus, the function \(h(q) \) is called a generalized Hurst exponent. If \(h(2) = 0.5 \), the time series are not correlated, and it follows a random walk process. When \(0.5 < h(2) \), the time series is long-range dependent, and an increase (decrease) is more likely to be followed by another increase (decrease). \(h(2) < 0.5 \) means a nonpersistent series; that is, an increase (decrease) is more likely to be followed by a decrease (increase). According to Kantelhardt et al. [52], \(h(q) \) relates to the multifractal scaling exponents \(\tau(q) \) as follows:

\[
\tau(q) = qh(q) - 1.
\]

To estimate multifractality, we transform \(q \) and \(\tau(q) \) to \(\alpha \) and \(f(\alpha) \) using a Legendre transform with the following equations:

\[
\alpha = \frac{d}{dq} \tau(q), f(\alpha) = \frac{\alpha}{q} - \tau(q),
\]

where \(f(\alpha) \) is the multifractal spectrum or singularity spectrum, and \(\alpha \) is the singularity strength. Furthermore, we define the degree of multifractality \(\Delta h \) as follows (Yuan et al. [79]; Antônio et al. [80]; Ruan et al. [81]):

\[
\Delta h = \max(h(q)) - \min(h(q)).
\]

In addition, we define the width of the multifractal spectrum \(\Delta \alpha \) as follows (Wang et al. [82]; Antônio et al. [80]; Ruan et al. [81]):

\[
\Delta \alpha = \max(\alpha) - \min(\alpha).
\]

A larger \(\Delta h \) value indicates a stronger degree of multifractality and a wider multifractal spectrum, implying a stronger degree of multifractality. As another important feature of the multifractal spectrum (Drożdż and Oświęcimka [83]; Maiorino et al. [84]; Drożdż et al. [85]; Wątorek et al. [86]), we define the asymmetric parameter as follows:

\[
\Theta = \frac{\Delta \alpha_L - \Delta \alpha_R}{\Delta \alpha_L + \Delta \alpha_R},
\]

where \(\Delta \alpha_L = \alpha_0 - \alpha_{\min}, \Delta \alpha_R = \alpha_{\max} - \alpha_0 \). Here, \(\alpha_0 \) is the \(\alpha \) value at the maximum of \(f(\alpha) \). The asymmetric parameter estimates the asymmetry of the spectrum and determines the dominance of small and large fluctuations for the multifractal spectrum. When the asymmetric parameter \(\Theta = 0 \), both large and small fluctuations lead fairly to multifractality. In other words, during the GFC and COVID-19 pandemic periods, \(\Theta > 0 \) exhibits left-sided asymmetry, which implies that subsets of large fluctuations contribute substantially to the multifractal spectrum. Conversely, \(\Theta < 0 \) exhibits right-sided asymmetry in the spectrum, thus indicating that smaller fluctuations constitute a dominant multifractality source.

3. Empirical Analysis

3.1. Wavelet Analysis. In this subsection, we provide the wavelet coherence between EPU and MATV for each sector to investigate the interdependence between them. Figures 5 and 6 present the estimated wavelet coherence and relative phasing of the two series represented by arrows. An explanation for wavelet coherence analysis is provided in previous studies (Torrence and Webster [70]; Tiwari [87]; Lu et al. [88]; Pal and Mitra [67]). Based on the wavelet coherence analysis results, our main findings are summarized as follows: first, in the figures, the red areas are mainly observed in the GFC and COVID-19 pandemic periods, which indicates strong interdependence between EPU and MATV. In other words, during the GFC and COVID-19 pandemic periods, the EPU and sectoral trading volume have noteworthy interdependence in most sectors. In times other than these two events, while several sectors display a common strong interconnection, the heavy linkage is short. Second, during the pandemic, in most sectors, the MATV has a different relationship with EPU than during the GFC. In particular, the red area in the consumer discretionary, energy, and utility industries is larger during the pandemic than in the GFC. Therefore, the pandemic has a greater influence on the MATV of industries than the GFC. Third, on the contrary, in the communication services, consumer staples, information technology, and materials sectors, the
Figure 5: The wavelet coherence and phase plots between the EPU index and MATV for six sectors (communication services, consumer discretionary, consumer staples, energy, financial, and health care). (a) EPU and communication services. (b) EPU and consumer discretionary. (c) EPU and consumer staples. (d) EPU and energy. (e) EPU and financial. (f) EPU and health care.
Figure 6: The wavelet coherence and phase plots between the EPU index and MATV for five sectors (industrials, information technology, materials, real estate, and utilities). (a) EPU and industrials. (b) EPU and information technology. (c) EPU and materials. (d) EPU and real estate. (e) EPU and utilities.
Figure 7: The curve of the multifractal fluctuation function $F_q(s)$ compared to s in a log-log plot of the MATV series for all the sectors during the GFC. (a) Communication service. (b) Consumer discretionary. (c) Consumer staples. (d) Energy. (e) Financials. (f) Health care. (g) Industrials. (h) Information technology. (i) Materials. (j) Real estate. (k) Utilities.
impact of the GFC on trading volume is greater. One of the reasons may be that some sectors such as technology and e-commerce are more profitable than before because of the pandemic (“Winners from the pandemic Big tech’s covid-19 opportunity,” The Economist, https://www.economist.com/leaders/2020/04/04/big-techscovid-19-opportunity).

3.2. Multifractal Analysis. In this subsection, we apply MF-DFA to the MATV series to investigate the fractal nature of the MATV series, based on the degree of multifractality (Δh) and the width of the multifractal spectrum ($\Delta\alpha$). First, we display the log-log plots of $F_q(s)$ compared to s for all the MATV series for $q = -5, -4.5, \ldots, 4.5, 5$, corresponding to the curve from the bottom to the top when the polynomial order $m = 1$ in Figure 7. According to the plots, we obtain the presence of different scaling laws and exponents.

Second, we further show the generalized Hurst exponents of the MATV series, as shown in Figure 8. As shown in Figure 8, the generalized Hurst exponent of the MATV series decreases as q increases from -5 to 5 in all sectors. This implies that the MATV of all sectors has obvious multifractal features. Additionally, all sectors’ Hurst exponents ($= h(2)$) are smaller than 0.5. This indicates that the MATV series of all sectors are nonpersistent.

Third, Figure 9 and Table 2 illustrate the multifractal spectra and the degree of multifractality and width of the multifractal spectra of all the MATV series, respectively. Regarding the degrees of multifractality ($\Delta\alpha$ and Δh) given in Table 2, the real estate and materials sectors have the first and second-largest degrees of multifractality, respectively. Meanwhile, the industry and information technology sectors have the first and second smallest degree of multifractality, respectively. This implies that the MATV of the real estate and materials sectors is more highly correlated, whereas the MATV of the industry and information technology sectors is less correlated. Finally, all MATV series have negative asymmetric parameters Θ. In other words, the small fluctuations in MATV are more leading multifractality sources than the large fluctuations in the MATV series of all sectors.

4. Concluding remarks

We present empirical evidence on the relationship between economic uncertainty about the COVID-19 pandemic and trading volume at the sector level. Furthermore, we compare the effect of this pandemic with the impact of the GFC in the United States. We employ the wavelet coherence analysis to measure the interrelation and causality between EPU and trading volume of each sector. According to the MF-DFA analysis, we examine the multifractality of the trading volume for all sectors. The empirical results provide a number of interesting conclusions. First, we find a strong positive correlation between EPU and MATV in all sectors in the middle term during the pandemic. In addition, the phase patterns indicate that EPU leads MATV in all sectors. Second, in terms of the impact of the market shock, some industries show different characteristics during the pandemic compared with the GFC. For example, in industries based on Internet technology such as the IT and communication services sectors, the impact of EPU is relatively small. Third, the impact of COVID-19 on the trading volume of the consumer discretionary and material sectors is longer and shorter than that during the GFC, respectively. According to an article (“Consumer discretionary and IT stocks are “egregiously expensive,” strategist says,” CNBC, https://www.cnbc.com/2020/12/04/avoid-expensive-consumer-discretionary-and-it-stocks-strategist-says.html), IT and consumer discretionary stocks have performed strongly since the outbreak of the COVID-19 pandemic, with more people working remotely and spending time at home due to lockdown restrictions. In particular, the MSCI World Consumer Discretionary Price Index has rocketed by 85% since mid-March 2020, while the MSCI World Information Technology Price Index has soared by over 75%. On the contrary, unlike during the GFC, there has been no sharp drop in housing prices during the pandemic; rather, housing prices have risen because of the Federal Reserve’s unprecedented monetary easing (Zhao [89]). Moreover, the materials sector is generally affected by the housing market. Therefore, these factors seem to have caused the difference in the materials sector. Finally, based on the MF-DFA results, the MATV of all the sectors has obvious multifractal features, and the small fluctuations in the MATV are a more dominant multifractality source. In addition, the MATV of the real estate and materials sectors is more highly correlated; meanwhile, the MATV of the industry and information technology sectors is less correlated. Our study contributes insights into the influence of the COVID-19 pandemic on the trading volume of the sectors in the U.S. stock market. The findings demonstrate that overall COVID-19 has affected trading volume considerably. However, some industries are not affected to the same degree as during the GFC. The reason for this difference could be
the lockdown taken to prevent the spread of COVID-19 as well as the implementation of a 0% interest rate and unlimited quantitative easing (Donthu and Gustafsson [90]; Zhang et al. [91]). Moreover, our findings show that the trading volume series for all sectors has a multifractal nature. Compared to the existing literature that mainly conducted multifractal analysis on the trading volume of the financial market (Bolgorian and Raei [92]; Stosic et al. [93]; Zhang

Figure 9: The multifractal spectra of each MATV series for all the sectors. (a) Communication service. (b) Consumer discretionary. (c) Consumer staples. (d) Energy. (e) Financials. (f) Health care. (g) Industrials. (h) Information technology. (i) Materials. (j) Real estate. (k) Utilities.
et al. [94]), this study has another contribution to examining the multifractal nature of the trading volume at the industry level. Finally, we mention a few directions for future research. First, as the COVID-19 pandemic has not been officially terminated, the data used in this study cannot reflect all the effects of the COVID-19 pandemic on the trading volume. Therefore, with the official closure of the COVID-19 pandemic, it is necessary to conduct a study on the entire COVID-19 pandemic period. If so, we can inspect the effect of the new variants of COVID-19 on the trading volume. Second, here, the multiplicity properties of the trading volume of sectors were investigated. According to the previous literature (Ané and Ureche-Rangau [95]; Cheng et al. [96]; Boudt and Petitjean [97]; Ong [98]; Ma et al. [99]; Fitti et al. [100]), the trading volume is known to be highly related to the price and volatility of stocks. Future studies should examine the fractal relationship between trading volume and stock price or volatility based on an industrial level. Finally, as another measure for complexity, the entropy measure might be applied to the trading volume. The entropy measure properly describes the chaotic structure of the time series and it has been broadly used for financial data (Maasoumi and Racine [101]; Bentos and Menezes [102]; Stosic et al. [103]; Ahn et al. [104]; Machado [57]). Therefore, a study on the entropy measure for the trading volume can enhance our findings.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The work of S.-Y. Choi was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (no. 2019R1G1A1010278).

References

1. R. L. Crouch, “The volume of transactions and price changes on the New York stock exchange,” *Financial Analysts Journal*, vol. 26, no. 4, pp. 104–109, 1970.

2. T. E. Copeland, “A model of asset trading under the assumption of sequential information arrival,” *The Journal of Finance*, vol. 31, no. 4, pp. 1149–1168, 1976.

3. J. M. Karpoff, “The relation between price changes and trading volume: a survey,” *Journal of Financial and Quantitative Analysis*, vol. 22, pp. 109–126, 1987.

4. C. M. Jones, G. Kaul, and M. L. Lipson, “Transactions, volume, and volatility,” *Review of Financial Studies*, vol. 7, no. 4, pp. 631–651, 1994.

5. A. J. Foster, “Volume–volatility relationships for crude oil futures markets,” *Journal of Futures Markets*, vol. 15, no. 18, p. 929, 1995.

6. C. Kramer, “Noise trading, transaction costs, and the relationship of stock returns and trading volume,” *International Review of Economics & Finance*, vol. 8, no. 4, pp. 343–362, 1999.

7. G. H. Wang and J. Yau, “Trading volume, bid–ask spread, and price volatility in futures markets,” *Journal of Futures Markets: Futures, Options, and Other Derivative Products*, vol. 20, no. 10, pp. 943–970, 2000.

8. G.-m. Chen, M. Firth, and O. M. Rui, “The dynamic relation between stock returns, trading volume, and volatility,” *The Financial Review*, vol. 36, no. 3, pp. 153–174, 2001.

9. L. Gagnon and G. A. Karolyi, “Information, trading volume, and international stock return comovements: evidence from cross-listed stocks,” *Journal of Financial and Quantitative Analysis*, vol. 44, pp. 953–986, 2009.

10. H.-Y. Lin, “Dynamic stock return–volume relation: evidence from emerging asian markets,” *Bulletin of Economic Research*, vol. 65, no. 2, pp. 178–193, 2013.

11. Z. Wang, Y. Qian, and S. Wang, “Dynamic trading volume and stock return relation: does it hold out of sample?” *International Review of Financial Analysis*, vol. 58, pp. 195–210, 2018.

12. C. F. Lee and O. M. Rui, “Does trading volume contain information to predict stock returns? evidence from China’s stock markets,” *Review of Quantitative Finance and Accounting*, vol. 14, no. 4, pp. 341–360, 2000.

13. N. Güner and Z. Önder, “Information and volatility: evidence from an emerging market,” *Emerging Markets Finance and Trade*, vol. 38, 2002.

14. J. Li and C. Wu, “Daily return volatility, bid-ask spreads, and information flow: analyzing the information content of

Table 2: The width of the multifractal spectrum $\Delta \alpha$ in equation (17) and degree of multifractality Δh for the MATV for all the sectors.

Sector	α_{max}	α_{min}	α_0	$\Delta \alpha$	Δh	Θ
Communication service	0.7323	-0.027	0.2179	0.7593	0.4818	-0.355
Consumer discretionary	0.6544	-0.0853	0.2041	0.7398	0.441	-0.2175
Consumer staples	0.7014	-0.1123	0.2092	0.8138	0.5147	-0.2098
Energy	0.7278	-0.0745	0.3099	0.8023	0.5065	-0.0419
Financials	0.9589	0.1443	0.3252	0.8146	0.5524	-0.5558
Health care	0.7071	-0.1023	0.1961	0.8094	0.5112	-0.2628
Industrials	0.6086	-0.0174	0.2692	0.626	0.3997	-0.0843
Information technology	0.7078	-0.0115	0.2422	0.7193	0.4391	-0.2948
Materials	0.9872	0.0828	0.3163	0.9044	0.6251	-0.4836
Real estate	1.0968	0.14	0.2992	0.9567	0.6838	-0.6673
Utilities	0.706	-0.1207	0.216	0.8267	0.5385	-0.1854
volume," *Journal of Business*, vol. 79, no. 5, pp. 2697–2739, 2006.

[15] F. Wen and X. Yang, "Empirical study on relationship between persistence-free trading volume and stock return volatility," *Global Finance Journal*, vol. 20, no. 2, pp. 119–127, 2009.

[16] E. Rossi and P. S. De Magistris, "Long memory and tail dependence in trading volume and volatility," *Journal of Empirical Finance*, vol. 22, pp. 94–112, 2013.

[17] S. Darolles, G. Le Fol, and G. Mero, "Measuring the liquidity part of volume," *Journal of Banking & Finance*, vol. 50, pp. 92–105, 2015.

[18] A. E. Clements and T. Neda, "Information flow, trading activity and commodity futures volatility," *Journal of Futures Markets*, vol. 36, no. 1, pp. 88–104, 2016.

[19] Z. Fitts, F. Jawadi, and W. Louhichi, "Modelling the relationship between future energy intraday volatility and trading volume with wavelet," *Applied Economics*, vol. 49, no. 20, pp. 1981–1993, 2017.

[20] Y.-S. Kao, H.-L. Chuang, and Yu-C. Ku, "The empirical linkages among market returns, return volatility, and trading volume: evidence from the shanghai and shenzhen stock exchanges," *The North American Journal of Economics and Finance*, vol. 54, Article ID 100871, 2019.

[21] S. Khuntia and J. K. Pattanayak, "Adaptive long memory in volatility of intra-day bitcoin returns and the impact of trading volume," *Finance Research Letters*, vol. 32, Article ID 101077, 2020.

[22] H. M. Choi, "Market uncertainty and trading volume around earnings announcements," *Finance Research Letters*, vol. 30, pp. 14–22, 2019.

[23] D. Rehse, R. Ryan, N. Rottke, and J. Zietz, "The effects of uncertainty on market liquidity: evidence from hurricane sandy," *Journal of Financial Economics*, vol. 134, no. 2, pp. 318–332, 2019.

[24] V. Nagar, S. Jordan, and L. Wellman, "The effect of economic policy uncertainty on investor information asymmetry and management disclosures," *Journal of Accounting and Economics*, vol. 67, no. 1, pp. 36–57, 2019.

[25] C. Chen, L. Liu, and N. Zhao, "Fear sentiment, uncertainty, and bitcoin price dynamics: the case of covid-19," *Emerging Markets Finance and Trade*, vol. 56, no. 10, pp. 2298–2309, 2020a.

[26] M. Chiaia and A. Zhong, "Trading from home: the impact of covid-19 on trading volume around the world," *Finance Research Letters*, vol. 37, Article ID 101784, 2020.

[27] R. M. Colombo, M. Garavello, F. Marcellini, and E. Rossi, "An age and space structured sir model describing the covid-19 pandemic," *Journal of mathematics in industry*, vol. 10, no. 1, pp. 1–20, 2020.

[28] H. Tian, Y. Liu, Y. Li et al., "An investigation of transmission control measures during the first 50 days of the covid-19 epidemic in China," *Science*, vol. 368, no. 6491, pp. 638–642, 2020.

[29] A. S. Alshomrani, M. Z. Ullah, and B. Dumitru, "Caputo sir model for covid-19 under optimized fractional order," *Advances in Difference Equations*, vol. 2021, no. 1, pp. 1–17, 2021.

[30] K. Leung, J. T. Wu, Di Liu, and G. M. Leung, "First-wave covid-19 transmissibility and severity in China outside of hubei after control measures, and second-wave scenario planning: a modelling impact assessment," *The Lancet*, vol. 395, no. 10233, pp. 1382–1393, 2020.

[31] J. M. Read, J. R. Bridgen, D. A. Cummings, A. Ho, and C. P. Jewell, "Novel coronavirus 2019-nCoV (COVID-19): early estimation of epidemiological parameters and epidemic size estimates B," *Philosophical Transactions of the Royal Society*, vol. 376, p. 1829, 2020.

[32] J. T. Wu, K. Leung, and G. M. Leung, "Nowcasting and forecasting the potential domestic and international spread of the 2019-ncov outbreak originating in wuhan, China: a modelling study," *The Lancet*, vol. 395, no. 10225, pp. 689–697, 2020.

[33] Z. Yang, Z. Zeng, Ke Wang et al. "Modified sir and ai prediction of the epidemics trend of covid-19 in China under public health interventions," *Journal of Thoracic Disease*, vol. 12, no. 3, p. 165, 2020.

[34] A. Adiga, D. Dubhashi, B. Lewis, M. Marathe, V. Srinivasan, and A. Vullikanti, "Mathematical models for covid-19 pandemic: a comparative analysis," *Journal of the Indian Institute of Science*, vol. 1–15, 2020.

[35] S. Agrawal, S. Bhandari, A. Bhattacharjee et al., "City-scale agent-based simulators for the study of non-pharmaceutical interventions in the context of the covid-19 epidemic," *Journal of the Indian Institute of Science*, vol. 1–39, 2020.

[36] N. M. Gharakhlanlou and N. Hooshangi, "Spatio-temporal simulation of the novel coronavirus (covid-19) outbreak using the agent-based modeling approach (case study: urmia, Iran)," *Informatics in Medicine Unlocked*, vol. 20, Article ID 100403, 2020.

[37] A. E. Matouk, "Complex dynamics in susceptible-infected models for covid-19 with multi-drug resistance," *Chaos, Solitons & Fractals*, vol. 140, Article ID 110257, 2020.

[38] W. W. Mohammed, E. S. Aly, A. E. Matouk, S. Albosaily, and E. M. Elabbasy, "An analytical study of the dynamic behavior of lotka-volterra based models of covid-19," *Results in Physics*, vol. 26, Article ID 104432, 2021.

[39] J.-H. Ko and C.-M. Lee, "International economic policy uncertainty and stock prices: wavelet approach," *Economics Letters*, vol. 134, pp. 118–122, 2015.

[40] Li Liu and T. Zhang, "Economic policy uncertainty and stock market volatility," *Finance Research Letters*, vol. 15, pp. 99–105, 2015.

[41] T. Li, F. Ma, X. Zhang, and Y. Zhang, "Economic policy uncertainty and the Chinese stock market volatility: novel evidence," *Economic Modelling*, vol. 87, pp. 24–33, 2020.

[42] S.-Y. Choi, "Industry volatility and economic uncertainty due to the covid-19 pandemic: evidence from wavelet coherance analysis," *Finance Research Letters*, vol. 37, p. 101783, 2020.

[43] D. Mei, Q. Zeng, X. Cao, and X. Diao, "Uncertainty and oil volatility: new evidence," *Physica A: Statistical Mechanics and Its Applications*, vol. 525, pp. 155–163, 2019.

[44] R. Ma, C. Zhou, H. Cai, and C. Deng, "The forecasting power of epu for crude oil return volatility," *Energy Reports*, vol. 5, pp. 866–873, 2019.

[45] F. Wen, Y. Zhao, M. Zhang, and C. Hu, "Forecasting realized volatility of crude oil futures with equity market uncertainty," *Informatics in Medicine Unlocked*, vol. 395, no. 10225, pp. 689–697, 2020.

[46] Z. Bartsch, "Economic policy uncertainty and dollar-pound exchange rate volatility," *Journal of International Money and Finance*, vol. 98, Article ID 102067, 2019.
[48] L. Chen, Z. Du, and Z. Hu, "Impact of economic policy uncertainty on exchange rate volatility of China," *Finance Research Letters*, vol. 32, Article ID 101266, 2020b.

[49] E. Demir, G. Gozgor, C. K. M. Lao, and S. A. Vigne, "Does economic policy uncertainty predict the bitcoin returns? an empirical investigation," *Finance Research Letters*, vol. 26, pp. 145–149, 2018.

[50] G.-J. Wang, C. Xie, D. Wen, and L. Zhao, "When bitcoin meets economic policy uncertainty (epu): measuring risk spillover effect from epu to bitcoin," *Finance Research Letters*, vol. 31, 2019b.

[51] H.-P. Cheng and K.-C. Yen, "The relationship between the economic policy uncertainty and the cryptocurrency market," *Finance Research Letters*, vol. 35, Article ID 101308, 2020.

[52] J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H. E. Stanley, "Multifractal detrended fluctuation analysis of nonstationary time series," *Physica A: Statistical Mechanics and Its Applications*, vol. 316, no. 1-4, pp. 87–114, 2002.

[53] E. Bacry, D. Jean, and M. Jean-François, "Modelling financial time series using multifractal random walks," *Physica A: Statistical Mechanics and Its Applications*, vol. 299, no. 1-2, pp. 84–92, 2001.

[54] J. Kwapień, P. Oświecimka, and S. Drożdż, "Components of multifractality in high-frequency stock returns," *Physica A: Statistical Mechanics and Its Applications*, vol. 350, no. 2-4, pp. 466–474.

[55] L. Zunino, A. Figliola, B. M. Tabak, D. G. Pérez, M. Garavaglia, and O. A. Rosso, "Multfractal structure in Latin-american market indices," *Chaos, Solitons & Fractals*, vol. 41, no. 5, pp. 2331–2340, 2009.

[56] Y. Wang, L. Liu, and R. Gu, "Analysis of efficiency for shenzhen stock market based on multifractal detrended fluctuation analysis," *International Review of Financial Analysis*, vol. 18, no. 5, pp. 271–276, 2009.

[57] J. A. T. Machado, "Fractal and entropy analysis of the dow jones index using multidimensional scaling," *Entropy*, vol. 22, no. 10, pp. 1138, 2020.

[58] S.-Y. Choi, "Analysis of stock market efficiency during crisis periods in the us stock market: differences between the global financial crisis and covid-19 pandemic," *Physica A: Statistical Mechanics and Its Applications*, vol. 574, Article ID 125988, 2021.

[59] M. Mazur, M. Dang, and M. Vega, "Covid-19 and the march 2020 stock market crash. evidence from s&sp1500," *Finance Research Letters*, Article ID 101690, 2020.

[60] A. Sharif, C. Aloui, and L. Yarovaya, "Covid-19 pandemic, oil prices, stock market, geopolitical risk and policy uncertainty nexus in the us economy: fresh evidence from the wavelet-based approach.∗, *International Review of Financial Analysis*, vol. 70, Article ID 101496, 2020.

[61] M. Hanke, M. Kosolapova, and A. Weissenerste, "Covid-19 and market expectations: evidence from option-implied densities," *Economics Letters*, vol. 195, Article ID 109441, 2020.

[62] L. A. Smales, "Investor attention and the response of us stock market sectors to the covid-19 crisis," *Review of Behavioral Finance*, 2020.

[63] B. S. R. Baker, N. Bloom, S. J. Davis, K. Kost, M. Sammon, and T. Viraytis, "The unprecedented stock market reaction to covid-19," *The Review of Asset Pricing Studies*, vol. 10, no. 4, pp. 742–758, 2020.

[64] R. Ortmann, M. Pelster, and S. Tobias Wengerek, "Covid-19 and investor behavior," *Finance Research Letters*, vol. 37, Article ID 101717, 2020.

[65] B. S. R. Baker, N. Bloom, and S. J. Davis, "Measuring economic policy uncertainty," *Quarterly Journal of Economics*, vol. 131, no. 4, pp. 1593–1636, 2016.

[66] L. Kristoufek, "What are the main drivers of the bitcoin price? evidence from wavelet coherence analysis," *PLoS One*, vol. 10, no. 4, Article ID e0123923, 2015.

[67] D. Pal and S. K. Mitra, "Oil price and automobile stock return co-movement: a wavelet coherence analysis," *Economic Modelling*, vol. 76, pp. 172–181, 2019.

[68] M. J. Soares and M. J. Soares, "Business cycle synchronisation and the euro: a wavelet analysis," *Journal of Macroeconomics*, vol. 33, no. 3, pp. 477–489, 2011.

[69] P. Goupillaud, A. Grossmann, and J. Morlet, "Cycle-octave and related transforms in seismic signal analysis," *Geophysics*, vol. 23, no. 1, pp. 85–102, 1984.

[70] C. Torrence and P. J. Webster, "Interdecadal changes in the enso–monsoon system," *Journal of Climate*, vol. 12, no. 8, pp. 2679–2690, 1999.

[71] D. S. Bloomfield, R. T. J. McAteer, B. W. Lites, P. G. Judge, M. Mathioudakis, and F. P. Keenan, "Wavelet phase coherence analysis: application to a quiet-sun magnetic element," *The Astrophysical Journal*, vol. 617, no. 1, pp. 623–632, 2004.

[72] M. A. Flor and T. Klarl, "On the cyclicity of regional house prices: new evidence for us metropolitan statistical areas," *Journal of Economic Dynamics and Control*, vol. 77, pp. 134–156, 2017.

[73] X. J. Cai, S. Tian, N. Yuan, and S. Hamori, "Interdependence between oil and east asian stock markets: evidence from wavelet coherence analysis," *Journal of International Financial Markets, Institutions and Money*, vol. 48, pp. 206–223, 2017.

[74] Y. Funashima, "Time-varying leads and lags across frequencies using a continuous wavelet transform approach," *Economic Modelling*, vol. 60, pp. 24–28, 2017.

[75] F. Wang, X. Ye, and C. Wu, "Multifractal characteristics analysis of crude oil futures prices fluctuation in China," *Physica A: Statistical Mechanics and Its Applications*, vol. 533, Article ID 122021, 2019a.

[76] B. Lashermes, P. Abry, and P. Chainais, "New insights into oil price and automobile stock return co-movement: a wavelet coherence analysis," *International Review of Economics and Statistics*, vol. 84, no. 3, pp. 381–406, 2002.

[77] Y. Ning, Y. Wang, and C.-w. Su, "How did China’s foreign exchange reform affect the efficiency of foreign exchange market?" *Physica A: Statistical Mechanics and Its Applications*, vol. 483, pp. 219–226, 2017.

[78] L. Calvet and A. Fisher, "Multifractality in asset returns: theory and evidence," *The Review of Economics and Statistics*, vol. 84, no. 3, pp. 381–406, 2002.

[79] Y. Yuan, X.-t. Zhuang, and X. Jin, "Measuring multifractality of stock price fluctuation using multifractal detrended fluctuation analysis," *Physica A: Statistical Mechanics and Its Applications*, vol. 388, no. 11, pp. 2189–2197, 2009.

[80] C. d. S. F. Antônio, D. M. Natália, and E. Fonseca de Almeida, "Multifractal analysis of bitcoin market," *Physica A: Statistical Mechanics and Its Applications*, vol. 512, pp. 954–967, 2018.
[82] Y. Wang, C. Wu, and Z. Pan, "Multifractal detrending moving average analysis on the us dollar exchange rates," *Physica A: Statistical Mechanics and Its Applications*, vol. 390, no. 20, pp. 3512–3523, 2011.

[83] S. Drożdż and P. Oświęcimka, "Detecting and interpreting distortions in hierarchical organization of complex time series," *Physical Review*, vol. 91, no. 3, Article ID 030902, 2015.

[84] E. Maiorino, F. Maria Bianchi, L. Livi, A. Rizzi, and A. Sadeghian, "Data-driven detrending of nonstationary fractal time series with echo state networks," *Information Sciences*, vol. 382, pp. 359–373, 2017.

[85] S. Drożdż, R. Kowalski, P. Oświęcimka, R. Rak, and R. Gbarowski, "Dynamical variety of shapes in financial multifractality," *Complexity*, vol. 2018, Article ID 7015721, 13 pages, 2018.

[86] M. Wałtorek, S. Drożdż, P. Oświęcimka, and M. Stanuszek, "Multifractal cross-correlations between the world oil and other financial markets in 2012–2017," *Energy Economics*, vol. 81, pp. 874–885, 2019.

[87] A. K. Tiwari, "Oil prices and the macroeconomy reconsideration for Germany: using continuous wavelet," *Economic Modelling*, vol. 30, pp. 636–642, 2013.

[88] Y. Lu, X. J. Cai, and S. Hamori, "Does the crude oil price influence the exchange rates of oil-importing and oil-exporting countries differently? a wavelet coherence analysis," *International Review of Economics & Finance*, vol. 49, pp. 536–547, 2017.

[89] "US housing market during COVID-19: aggregate and distributional evidence," *COVID Economics*, vol. 50, pp. 113–154, 2020.

[90] N. Donthu and A. Gustafsson, "Effects of covid-19 on business and research," *Journal of Business Research*, vol. 117, p. 284, 2020.

[91] D. Zhang, M. Hu, and Q. Ji, "Financial markets under the global pandemic of covid-19," *Finance Research Letters*, vol. 36, Article ID 101528, 2020.

[92] M. Bolgorian and R. Raei, "A multifractal detrended fluctuation analysis of trading behavior of individual and institutional traders in tehran stock market," *Physica A: Statistical Mechanics and Its Applications*, vol. 382, no. 15, pp. 3815–3825, 2011.

[93] D. Stosic, D. Stosic, Teresa Ludermir, Wilson de Oliveira, and T. Stosic, "Foreign exchange rate entropy evolution during financial crises," *Physica A: Statistical Mechanics and Its Applications*, vol. 523, pp. 233–239, 2019.

[94] K. Ahn, D. Lee, S. Sohn, and B. Yang, "Stock market uncertainty and economic fundamentals: an entropy-based approach," *Quantitative Finance*, vol. 19, no. 7, pp. 1151–1163, 2019.