Supporting Information

Modeling the Formation, Degradation and Spatiotemporal Distribution of 2-Nitrofluoranthene and 2-Nitropyrene in the Global Atmosphere

Jake Wilson¹, Mega Octaviani¹,ǂ, Benjamin A. Musa Bandowe¹, Marco Wietzoreck¹,
Cornelius Zetzsch¹,ǂ, Ulrich Pöschl¹, Thomas Berkemeier¹,* , Gerhard Lammel¹,ǂ,*

¹ Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz Germany
² Bayreuth Centre for Ecology and Environmental Research, University of Bayreuth, 95448 Bayreuth, Germany
³ Masaryk University, Research Centre for Toxic Compounds in the Environment, Kamenice 5, 62500 Brno, Czech Republic
† Now at Pacific Northwest National Laboratory, Richland, Washington 99352, United States
ǂ Equal contribution
* Corresponding authors: Gerhard Lammel (g.lammel@mpic.de), Thomas Berkemeier (t.berkemeier@mpic.de)

Content including: 24 pages, 2 tables and 7 figures
Contents of Supporting Information

Additional information

S1. Formation chemistry of 2-NFLT and 2-NPYR
S2. Partitioning between gas and particle phase
S3. Particle-phase loss of 2-NFLT and 2-NPYR
S4. Comparing simulated with measured concentrations

Tables

Table S1. Physicochemical properties and degradation rate coefficients of 2-NFLT and 2-NPYR used.
Table S2. Full collection of NPAH observations used for comparison with the model.

Figures

Figure S1. Mechanism of 2-nitrofluoranthene and 2-nitropyrene formation.
Figure S2. Dependence of yield on NO$_2$ in the respective reactivity scheme for the reaction of FLT or PYR with a) OH or b) NO$_3$.
Figure S3. Comparison between measured and simulated concentrations [pg m$^{-3}$] of 2-NFLT and 2-NPYR at rural and urban sites using the default reactivity scenario and sensitivity test with loss of NPAH by OH.
Figure S4. Comparison between simulated and measured near-surface concentrations [pg m$^{-3}$] at rural and urban sites of 2-NFLT comparing alternative scenarios with $\alpha = 0.05$ and $\alpha = 0.005$.
Figure S5. Comparison between simulated and measured near-surface concentrations [pg m$^{-3}$] at rural and urban sites of 2-NPYR comparing alternative scenarios with $\alpha = 0.05$ and $\alpha = 0.005$.
Figure S6. Comparison between measured and simulated concentrations [pg m$^{-3}$] of FLT and PYR at rural and urban sites using the default reactivity scenario.
Figure S7. Column densities of 2-NFLT (left) and 2-NPYR (right) of sensitivity study relative to the default NPAH$_{\text{NPAH_sensitivity/NPAH_default}}$.

S2
S1. Formation Chemistry of 2-NFLT and 2-NPYR

\[Y_{2\text{-NFLT,OH}} \quad Y_{2\text{-NPYR,OH}} \quad \text{and} \quad Y_{2\text{-NFLT,NO}_3} \] is the total yield of either 2-nitrofluoranthene (2-NFLT) or 2-nitropyrene (2-NPYR) from the amount consumed of fluoranthene (FLT) or pyrene (PYR), by their respective reactions. Experimental values can be seen in Table S1 and ranged between 0.5-24%.\(^1\) One key factor contributing to this value of total yield is the % conversion of the PAH-radical adduct into NPAH (reaction with \(\text{NO}_2 \)) instead of other oxygenated products (reaction with \(\text{O}_2 \)) (Fig. S1). Several other factors conflate to reduce the empirical \(Y_{\text{NPAH/PAH}} \) of 2-NFLT and 2-NPYR. These likely include: (1) further reaction and loss of NPAH and (2) formation of other NPAH isomers. The contribution of (2) may be estimated from the theoretical calculations of Zhang et al. (2014), by accounting for the fact that only certain adducts may lead to the formation of 2-NFLT or 2-NPYR (\(\approx 20\text{-}60\% \)).\(^2\)

Initial radical addition is described by experimentally determined rate coefficients (Table S1).\(^1\) The kinetics of reaction of FLT with OH has been measured by Brubaker and Hites.\(^3\) These rate coefficients are in reasonable agreement with theoretical calculations for the reaction of OH and \(\text{NO}_3 \) at specific positions on FLT and PYR.\(^2\) Notably, the rate of reaction between FLT and \(\text{NO}_3 \) is dependent on \(\text{NO}_2 \).

With respect to fate of the PAH-radical adduct, Ghigo et al. (2006), calculated theoretically the ratio \(k_{\text{NO}_2}/k_{\text{O}_2} \) of rate coefficients for benzene and naphthalene (\(9\times10^3 \) and \(8\times10^4 \) respectively).\(^4\) This is in good agreement with the experimentally determined value, \(3.6\times10^4 \), for \(k_{\text{NO}_2}/k_{\text{O}_2} \text{-naphthalene} \) (i.e. rate coefficient for reaction with \(\text{NO}_2 \) and \(\text{O}_2 \) is for the naphthalene- and benzene-OH adducts, respectively).\(^5\text{-}7\) The ratio \(k_{\text{NO}_2}/k_{\text{O}_2} \) for the pyrene-OH and pyrene-\(\text{NO}_3 \) adducts were calculated as \(5\times10^9 \) and \(2\times10^9 \), respectively.\(^4\) By using the concentration of \(\text{NO}_2 \) and \(\text{O}_2 \), an analytical expression for the yield scaling factor (\(\Omega \)) may be obtained from the ratio of rate coefficients \(k_{\text{NO}_2}/k_{\text{O}_2} \) (equation 1). In the \(\text{NO}_2 \)-dependent scheme, the yield scaling factor is multiplied by the empirically determined yield to ensure that (a) the model yield is equivalent to the empirically determined one at high \(\text{NO}_2 \) concentrations and (b) decreases towards lower \(\text{NO}_2 \) concentrations.

\[
(1) \quad \Omega = (k_{\text{NO}_2}/k_{\text{O}_2})([\text{NO}_2]/[\text{O}_2]) / (1 + (k_{\text{NO}_2}/k_{\text{O}_2})([\text{NO}_2]/[\text{O}_2]))
\]
Results from a sensitivity study using a formation scheme in which $Y_{2\text{-NFLT},\text{OH}}$, $Y_{2\text{-NPYR,OH}}$ and $Y_{2\text{-NFLT},\text{NO}_3}$ were dependent on NO$_2$ are shown in Fig. S2. In this scheme the value of $k_{\text{NO}_2}/k_{\text{O}_2}$ was set as 1×10^7 (see Table S1). The dependence of $Y_{2\text{-NFLT},\text{OH}}$, $Y_{2\text{-NPYR,OH}}$ and $Y_{2\text{-NFLT},\text{NO}_3}$ on NO$_2$ in this scheme is shown (Fig. S5) as well as the spatial distribution of $Y_{2\text{-NFLT},\text{OH}}$ for an illustrative month (Fig. S6).

S2. Partitioning Between Gas and Particle Phase
Semi-volatile compounds are distributed to significant mass fractions between the particle and gas phases of aerosols. Polyparameter linear free energy relationships (ppLFERs) are suitable to predict the mass distribution of NPAHs. Experimentally determined ppLFER solute specific descriptors for 1-nitropyrene are used in the model. These parameters are expected to be reasonably well representative for both 2-NFLT and 2-NPYR. Phase equilibrium is re-established at each model time step (30 min).

S3. Particle-phase Loss of 2-NFLT and 2-NPYR
In the gas-phase, NPAHs are generally less reactive than their precursors. Ringuet et al. investigated the reactivity of different NPAH species and found the O$_3$ reaction to be negligible for 2-NFLT (Ringuet et al., 2012). The same reaction was never reported for 2-NPYR. Particle phase 1-nitropyrene was shown to be less reactive than PYR with O$_3$ or NO$_2$.

S4. Comparing Simulated and Measured Concentrations
In order to minimize incommensurability issues, model simulated concentration values were compared with observed values in the following ways:
- Bilinear interpolation within the model grid cell is used to obtain simulated concentrations that better represents the location of each observational site.
- Comparison between model and observations is now solely presented at rural rather than urban sites. Rural sites are less affected by local sources, and make for more representable comparison.
- Temporal incommensurability is addressed by:
 - Comparing measured concentrations with simulated concentrations from the same months (even if not same year).
 - Observation sites where data was available over multiple seasons, were split into separate data points in order to prevent seasonal information being lost by averaging over time.
Table S1. Physicochemical properties and degradation rate coefficients of 2-NFLT and 2-NPYR used.

Parameter	Units	2-NFLT	2-NPYR	Reference
Molar mass	g mol\(^{-1}\)	247.25	247.25	
Molar volume at boiling point	cm\(^3\) mol\(^{-1}\)	245.8	242.3	Le Bas method\(^{14}\)
Total (biotic and abiotic) decay rate in soil	s\(^{-1}\)	2.08 × 10\(^{-8}\)	3.13 × 10\(^{-8}\)	Estimate. Value for parent compound adopted due lack of data.
Total (biotic and abiotic) decay rate in ocean	s\(^{-1}\)	4.20 × 10\(^{-8}\)	2.80 × 10\(^{-9}\)	Estimate. Value for parent compound adopted due lack of data.
Water solubility (at 298K)	mg L\(^{-1}\)	0.019	0.021	\(^{15,16}\)
Vapor pressure	Pa	9.91 × 10\(^{-7}\)	4.40 × 10\(^{-6}\)	\(^{16}\)
Enthalpy of dissolution, ∆sol\(H\)	J mol\(^{-1}\)	6.595 × 10\(^4\)	6.546 × 10\(^4\)	COSMO-RS\(^{17}\)
Heat of vaporization	J mol\(^{-1}\)	7.64 × 10\(^4\)	7.64 × 10\(^4\)	\(^{18}\)
Heat of sublimation	J mol\(^{-1}\)	1.25 × 10\(^5\)	1.25 × 10\(^5\)	\(^{19}\)
Octanol-water partition coefficient, log\(_{10}(K_{OW})\)	-	4.69	4.69	\(^{16,20}\)
Property	Value 1	Value 2	Notes	
--	--------------------------	--------------------------	--------------------------------	
Octanol-air partitioning coefficient, \(\log_{10}(K_{OA}) \)^\(^a\)	\(A = 5.2236 \)	\(A = 5.1659 \)	COSMO-RS\(^{17}\)	
	\(B = 1222.62 \) [K]	\(B = 1220.86 \) [K]		
Henry’s constant. H(T)\(^b\)	\(H^\theta = 8545 \) [M atm\(^{-1}\)]	\(H^\theta = 9354 \) [M atm\(^{-1}\)]	COSMO-RS\(^{17}\)	
	\(-\Delta_{\text{sol}}H/R = 7932\) [K]	\(-\Delta_{\text{sol}}H/R = 7874\) [K]		
ppLFER solute descriptors	E = 2.81	E = 2.81	Adopted from 1-nitropyrene\(^9\)	
	S = 2.07	S = 2.07		
	A = 0	A = 0		
	B = 0.33	B = 0.33		
	V = 10.46	V = 10.46		
	L = 1.76	L = 1.76		
Enthalpy of adsorption on black carbon	1.25 \times 10^5 J mol\(^{-1}\)	1.25 \times 10^5 J mol\(^{-1}\)	Estimated for 1-nitropyrene using a predictive model and the estimated \(K_{\text{soot/air}} \)^\(^{9,21}\)	

\(^a\) Temperature dependence of \(K_{OA} \) is in the form \(K_{OM}(T) = A + B/T \)

\(^b\) \(H(T) = H^\theta \times \exp\left(\frac{-\Delta_{\text{sol}}H}{R} \times \left(\frac{1}{T} - \frac{1}{T^\theta}\right)\right) \) where \(H^\theta \) is Henry’s constant at the reference temperature \(T^\theta = 298.15 \) K, \(\Delta_{\text{sol}}H \) is the enthalpy of dissolution, \(R \) is the gas constant and \(T \) is temperature.\(^22\)
Table S2. Full collection of NPAH observations used for comparison with the model.

Location	Time Start	Time End	Keywords	Classification	Reference
Marseilles_France_A	Jul-2004	Jul-2004	‘Urban’	Urban	23
Marseilles_France_B	Jul-2004	Jul-2004	‘Suburban’	Urban	23
Marseilles_France_C	Jul-2004	Jul-2004	‘Rural’	Rural	23
Los_Angeles_US	Jan-2003	Jan-2003	‘Source’, ‘Urban’	Urban	24
Riverside_US	Jan-2003	Jan-2003	‘Downwind receptor’	Urban	24
São_Paulo_Brazil	Aug-2002	Aug-2002	‘City’	Urban	25
São_Paulo_Brazil	Jul-2003	Jul-2003	‘City’	Urban	25
Araraquara_Brazil	Aug-2002	Aug-2002	‘Urban’	Urban	25
Araraquara_Brazil	Jul-2003	Jul-2003	‘Urban’	Urban	25
Piracicaba_Brazil	Jul-2003	Jul-2003	‘Sugar cane burning pollution’	Urban	25
Paulinía_Brazil	Aug-2002	Aug-2002	‘Sugar cane burning’	Urban	25
Araraquara_Brazil	Jun-2010	Jun-2010	‘Vehicular emissions’	Urban	26
Rayes_Saudia_Arabia	Sep-2013	Sep-2013	‘Petrochemical works’	Urban	27
Rabegh_Saudia_Arabia	Sep-2013	Sep-2013	‘Residential area’, ‘Local industry’	Urban	27
Abhur_Saudia_Arabia	Sep-2013	Sep-2013	‘Suburb’	Urban	27
Baltimore_US	Jan-2001	Jan-2001	‘Urban’	Urban	28
Fort_Meade_US	Jul-2001	Jul-2001	‘Suburban’	Urban	28
Finokalia_Crete	Jul-2012	Jul-2012	‘Marine background’	Rural	29
Pusztas_Hungary	Aug-2013	Aug-2013	‘Continental background’	Rural	29
Chamonix_Valley_1_France	Jan-2003	Jan-2003	‘Suburban’	Urban	30
Chamonix_Valley_2_France	Jan-2003	Jan-2003	‘Traffic’	Urban	30
Chamonix_Valley_3_France	Jan-2003	Jan-2003	‘Altitude’	Rural	30
Location	Start Year	End Year	Type	Note	
----------------------------------	------------	----------	---------------	--	
Chamonix_Valley_4_France	Jan-2003	Jan-2003	‘Rural’	Rural	
Chamonix_Valley_1_France	Jul-2003	Jul-2003	‘Suburban’	Urban	
Chamonix_Valley_2_France	Jul-2003	Jul-2003	‘Traffic’	Urban	
Chamonix_Valley_3_France	Jul-2003	Jul-2003	‘Altitude’	Rural	
Chamonix_Valley_4_France	Jul-2003	Jul-2003	‘Rural’	Rural	
Maurienne_Valley_1_France	Jan-2003	Jan-2003	‘Rural’	Rural	
Maurienne_Valley_3_France	Jan-2003	Jan-2003	‘Suburban’	Urban	
Maurienne_Valley_4_France	Jan-2003	Jan-2003	‘Rural’	Rural	
Maurienne_Valley_1_France	Jun-2003	Jul-2003	‘Rural’	Rural	
Maurienne_Valley_2_France	Jun-2003	Jul-2003	‘Suburban’	Urban	
Maurienne_Valley_3_France	Jun-2003	Jul-2003	‘Suburban’	Urban	
Maurienne_Valley_4_France	Jun-2003	Jul-2003	‘Rural’	Rural	
Wanqingsha_China	Nov-2010	Nov-2010	‘Rural’, ‘Coal-fired electric power plant’	Urban	
Rouiba_Algeria	Jul-2006	Jul-2006	‘Urban’, ‘Industrial’	‘Moderate or scarce vehicle traffic’	Urban
Ouled_Moussa_Algeria	Jul-2006	Jul-2006	‘Urban’	Urban	
Bouzareah_Algeria	Jul-2006	Jul-2006	‘Urban’	Urban	
Chrea_Algeria	Jul-2006	Jul-2006	‘Park’, ‘Forest’	Rural	
Grenoble, France	Jan-2013	Jan-2014	‘Urban’	Urban	
Agra, India_1	Oct-2015	Feb-2016	‘Rural’	Rural	
Agra, India_2	Oct-2015	Feb-2016	‘Traffic-dominated’	Urban	
China_Wuwei_1	Apr-2010	Mar-2011	‘Urban’	Urban	
China_Yinchuan_1	Apr-2010	Mar-2011	‘Urban’	Urban	
China_Taiyuan_1	Apr-2010	Mar-2011	‘Urban’	Urban	
China_Beijing	Apr-2010	Mar-2011	‘Urban’	Urban	
China_Dezhou_1	Apr-2010	Mar-2011	‘Urban’	Urban	
China_Yantai_1	Apr-2010	Mar-2011	‘Urban’	Urban	
China_Dalian_1	Apr-2010	Mar-2011	‘Urban’	Urban	
China_Rural_Wuwei_2	Apr-2010	Mar-2011	‘Rural field’	Rural	
China_Rural_Yinchuan_2	Apr-2010	Mar-2011	‘Rural field’	Rural	
Location	Start Date	End Date	Type	Notes	
----------------------------------	------------	----------	------------	----------------	
China_Rural_Taiyuan_2	Apr-2010	Mar-2011	‘Rural field’	Rural	
China_Rural_Depzhou_2	Apr-2010	Mar-2011	‘Rural field’	Rural	
China_Rural_Yantai_2	Apr-2010	Mar-2011	‘Rural field’	Rural	
China_Rural_Wuwei_3	Apr-2010	Mar-2011	‘Rural village’	Rural	
China_Rural_field_Yinchuan_3	Apr-2010	Mar-2011	‘Rural village’	Rural	
China_Rural_field_Taiyuan_3	Apr-2010	Mar-2011	‘Rural village’	Rural	
China_Rural_field_Depzhou_3	Apr-2010	Mar-2011	‘Rural village’	Rural	
China_Rural_field_Yantai_3	Apr-2010	Mar-2011	‘Rural village’	Rural	
China_Rural_field_Dalian_2	Apr-2010	Mar-2011	‘Rural field’	Rural	
Nepal_Kathmandu	Aug-2014	Oct-2014	‘City’	Urban	
Nepal_Pokhara	Aug-2014	Oct-2014	‘City’	Urban	
Nepal_Birgunj	Aug-2014	Oct-2014	‘City’	Urban	
Nepal_Biratnajor	Aug-2014	Oct-2014	‘City’	Urban	
Lampang_Thailand	Mar-2013	Mar-2013	‘Urban’	Urban	
ChiangMai_Thailand_DrySeason	Feb-2010	Apr-2010	‘City’	Urban	
ChiangMai_Thailand_TransitionSeason	May-2010	May-2010	‘City’	Urban	
ChiangMai_Thailand_WetSeason	Aug-2010	Sep-2010	‘City’	Urban	
HoChi Minh_VNU_Vietnam	Jan-2005	Mar-2006	‘Urban area’	Urban	
HoChi Minh_ITTE_Vietnam	Jan-2005	Feb-2006	‘Urban area’	Urban	
HoChi Minh_DOSTE_Vietnam	Jan-2005	Feb-2006	‘Urban area’	Urban	
Elms_EROS_Birmingham	Sep-2012	Sep-2012	‘Urban background’	Urban	
Coyhaique_Chile	Mar-2007	Apr-2007	‘Remote’	Rural	
Concepcion_Chile	Mar-2007	Apr-2007	‘Urban’	Urban	
Xujiahui_Shanghai_China_Spring	Dec-2007	Jan-2008	‘Urban’, ‘Busy highway’	Urban	
Xujiahui_Shanghai_China_Summer	Dec-2007	Jan-2008	‘Urban’, ‘Busy highway’	Urban	
Xujiahui_Shanghai_China_Autumn	Dec-2007	Jan-2008	‘Urban’, ‘Busy highway’	Urban	
Xujiahui_Shanghai_China_Winter	Dec-2007	Jan-2008	‘Urban’, ‘Busy highway’	Urban	
Baoshan_Shanghai_China_Spring	Dec-2007	Jan-2008	‘Industrial’, ‘Busy highway’, ‘Residential’,	Urban	
Baoshan_Shanghai_China_Summer	Dec-2007	Jan-2008	‘Industrial’, ‘Busy highway’, ‘Residential’,	Urban	
Location	Start Date	End Date	Features	Setting	
--------------------------------	-------------	-----------	---	---------	
Baoshan_Shanghai_China_Autumn	Dec-2007	Jan-2008	'Busy highway', 'Residential', 'Industrial'	Urban	
Baoshan_Shanghai_China_Winter	Dec-2007	Jan-2008	'Busy highway', 'Residential'	Urban	
Linan_China_Spring	Dec-2007	Jan-2008	'Regional background'	Rural	
Linan_China_Summer	Dec-2007	Jan-2008	'Regional background'	Rural	
Linan_China_Autumn	Dec-2007	Jan-2008	'Regional background'	Rural	
Linan_China_Winter	Dec-2007	Jan-2008	'Regional background'	Rural	
HongKong WholeYearAverage	Sep-2011	Aug-2012	'Urban'	Urban	
Beijing_China	Mar-2012	Mar-2013	'Urban'	Urban	
Jinan_China_(Urban)	Jun-2015	Jul-2015	'Urban'	Urban	
MountTai_China	Jul-2015	Jul-2015	'Background', 'Mountain summit'	Rural	
TuojiIsland_China	Jun-2015	Jun-2015	'Background', 'Marine'	Rural	
CordobaCity_Argentina_Fall	Mar-2008	Apr-2008	'City'	Urban	
CordobaCity_Argentina_Winter	Jun-2008	Jul-2008	'City'	Urban	
CordobaCity_Argentina_Summer	Nov-2008	Dec-2008	'City'	Urban	
SaoPaulo_Brazil	Jan-2014	Sep-2014	'Expressway', 'Campus'	Urban	
SaoPaulo_Brazil	Jan-2014	Dec-2014	'Expressway', 'Campus'	Urban	
TlalneplantaNW_MexicoValley_Mexico	Jan-2006	Dec-2006	'Metropolitan zone', 'Residential', 'Commercial', 'Factories', 'Vehicular avenues'	Urban	
SanAgustinNE_MexicoValley_Mexico	Jan-2006	Dec-2006	'Metropolitan zone', 'Residential', 'Vehicular avenues'	Urban	
MercedCentral_MexicoValley_Mexico	Jan-2006	Dec-2006	'Metropolitan zone', 'Residential', 'Commercial', 'Vehicular avenues'	Urban	
CoyoacanSW_MexicoValley_Mexico	Jan-2006	Dec-2006	'Metropolitan zone', 'Residential', 'Vehicular avenues'	Urban	
UniversidadAutonomous_MexicoValley_Mexico	Jan-2006	Dec-2006	'Metropolitan zone', 'Residential', 'Commercial', 'Vehicular avenues'	Urban	
NorthMexicoCity_Mexico	Apr-2006	Feb-2007	'City'	Urban	
Palaiseau_Paris_France	Jun-2009	Jul-2009	'Suburban'	Urban	
PorteDAuteuil_Paris_France	Jun-2010	Aug-2010	'Traffic'	Urban	
Station	Dates	Background	Location		
-------------------------------	----------------	---	----------------		
Rao_EMEPstation_Sweden	Dec-2008 - Feb-2009	‘Background’	Rural		
Rao_EMEPstation_Sweden	Mar-2009 - Mar-2009	‘Background’	Rural		
Rao_EMEPstation_Sweden	Apr-2009 - Apr-2009	‘Background’	Rural		
Pallas_AMAPstation_Finland	Feb-2009 - Mar-2009	‘Background’	Rural		
Pallas_AMAPstation_Finland	Mar-2009 - Apr-2009	‘Background’	Rural		
GoteborgFolketsHus_Sweden	Dec-2008 - Dec-2008	‘Urban’, ‘City/traffic’	Urban		
GoteborgFolketsHus_Sweden	Feb-2009 - Mar-2009	‘Urban’, ‘City/traffic’	Urban		
GoteborgGarda_Sweden	Jan-2009 - Feb-2009	‘Urban’, ‘City/traffic’	Urban		
GoteborgGarda_Sweden	Jan-2009 - Feb-2009	‘Urban’, ‘City/traffic’, ‘Traffic’	Urban		
Lycksele_North_Sweden	Feb-2009 - Feb-2009	‘Urban’, ‘Wood combustion’, ‘Traffic’	Urban		
Lycksele_North_Sweden	Mar-2009 - Mar-2009	‘Traffic’	Urban		
Lycksele_North_Sweden	Apr-2009 - Apr-2009	‘Traffic’, ‘Wood combustion’, ‘Traffic’	Urban		
KanazawaCity_Japan_Autumn	Nov-2016 - Nov-2016	‘City’	Urban		
KanazawaCity_Japan_Spring	Mar-2017 - Mar-2017	‘City’	Urban		
KanazawaCity_Japan_Summer	Aug-2016 - Aug-2016	‘City’	Urban		
KanazawaCity_Japan_Winter	Jan-2017 - Jan-2017	‘City’	Urban		
Wajima_Japan_Autumn	Nov-2016 - Nov-2016	‘Rural background’	Rural		
Wajima_Japan_Spring	Mar-2017 - Mar-2017	‘Rural background’	Rural		
Wajima_Japan_Summer	Jan-2017 - Jan-2017	‘Rural background’	Rural		
Wajima_Japan_Winter	Jul-2016 - Jul-2016	‘Rural background’	Rural		
Kigali_Rwanda_Dry season	Jun-2017 - Jun-2017	‘Urban background’	Urban		
Kigali_Rwanda_Wet season	Apr-2017 - Apr-2017	‘Urban background’	Urban		
Kigali_Rwanda_Dry season	Jun-2017 - Jun-2017	‘Urban roadside’	Urban		
Kigali_Rwanda_Wet season	May-2017 - May-2017	‘Urban roadside’	Urban		
Rwanda_Wet season	Apr-2017 - May-2017	‘Rural’	Rural		
AucklandCity_New Zealand_Autumn	Apr-2016 - Apr-2016	‘City’	Urban		
AucklandCity_New Zealand_Spring	Oct-2016 - Oct-2016	‘City’	Urban		
Location	Season	Months	Type	Notes	
--------------------------------	-----------------	---------------	--------------	---------------------	
Auckland_City_New Zealand	Summer	Mar-2017	Urban	'City'	
Auckland_City_New Zealand	Winter	Jul-2016	Urban	'City'	
Tapora_New Zealand	Autumn	Apr-2016	Rural	'Rural background'	
Tapora_New Zealand	Spring	Oct-2016	Rural	'Rural background'	
Tapora_New Zealand	Summer	Feb-2017	Rural	'Rural background'	
Tapora_New Zealand	Winter	Jul-2016	Rural	'Rural background'	
Figure S1. a) Mechanism of 2-nitrofluoranthene formation by the addition of a radical (X = OH or NO$_3$). Following initial radical addition (k_{add}), three processes compete for the fluoranthene-radical adduct: unimolecular decomposition (k_{rev}), reaction with O$_2$ to form oxygenated products (k_{O_2}) or reaction with NO$_2$ to form 2-nitrofluoranthene. b) The same scheme is applicable for 2-nitropyrene with addition of an OH radical.
Figure S2. Dependence of yield on NO$_2$ mixing ratio in the NO$_2$-dependent reactivity schemes for the reaction of FLT or PYR with a) OH or b) NO$_3$.
Figure S3. Comparison between simulated and measured near-surface concentrations [pg m$^{-3}$] of 2-NFLT (above) and 2-NPYR (below) using the default reactivity scenario and sensitivity test with homogeneous reaction of NPAH with the OH radical.
Figure S4. Comparison between simulated and measured near-surface concentrations [pg m\(^{-3}\)] at rural and urban sites of 2-NFLT comparing alternative scenarios with \(\alpha = 0.05\) (above) and \(\alpha = 0.005\) (below).
Figure S5. Comparison between simulated and measured near-surface concentrations [pg m$^{-3}$] at rural and urban sites of 2-NPYR comparing alternative scenarios with $\alpha = 0.05$ (above) and $\alpha = 0.005$ (below).
Figure S6. Comparison between simulated and measured concentrations [pg m$^{-3}$] of FLT (above) and PYR (below). Observations at rural sites (including remote) are distinguished from urban sites. Error bars represent the upper and lower quartile for simulated results across the entire time period. P = particle phase concentration, P+G = total concentration.
Figure S7. Column densities of 2-NFLT (left) and 2-NPYR (right) of sensitivity study averaged over 2006 – 2008 relative to the default scenario averaged over 2006 - 2008, NPAH_{sensitivity}/NPAH_{default}. For the scenarios with a) no photodegradation, b) with reduced photodegradation ($\alpha = 0.005$), c) with NO$_2$-dependent formation ($\alpha = 0.005$) and d) with NO$_2$-dependent formation (0.05), averaged over 2006 - 2008.
References

(1) Atkinson, R.; Arey, J.; Zielinska, B.; Aschmann, S. M. Kinetics and nitro-products of the gas-phase OH and NO$_3$ radical-initiated reactions of naphthalene-d8, fluoranthene-d10, and pyrene. *Int. J. Chem. Kinet.* **1990**, *22*, 999–1014. https://doi.org/10.1002/kin.550220910.

(2) Zhang, Q.; Gao, R.; Xu, F.; Zhou, Q.; Jiang, G.; Wang, T.; Chen, J.; Hu, J.; Jiang, W.; Wang, W. Role of water molecule in the gas-phase formation process of nitrated polycyclic aromatic hydrocarbons in the atmosphere: A computational study. *Environ. Sci. Technol.* **2014**, *48*, 5051–5057. https://doi.org/10.1021/es500453g.

(3) Brubaker, W. W.; Hites, R. OH reaction kinetics of polycyclic aromatic hydrocarbons and polychlorinated dibenzo-p-dioxins and dibenzofurans. *J. Phys. Chem. A* **1998**, *102*, 915–921. https://doi.org/10.1021/jp9721199.

(4) Ghigo, G.; Causà, M.; Maranzana, A.; Tonachini, G. Aromatic hydrocarbon nitration under tropospheric and combustion conditions. A theoretical mechanistic study. *J. Phys. Chem. A* **2006**, *110*, 13270–13282. https://doi.org/10.1021/jp064459c.

(5) Knispel, R.; Koch, R.; Siese, M.; Zetzsch, C. Adduct formation of OH radicals with benzene, toluene, and phenol and consecutive reactions of the adducts with NO$_x$ and O$_3$. *Ber. Bunsenges. Physik. Chem.* **1990**, *94*, 1375–1379.

(6) Feilberg, A.; Kamens, R. M.; Strommøen, M. R.; Nielsen, T. Modeling the formation, decay, and partitioning of semivolatile nitro-polycyclic aromatic hydrocarbons (nitronaphthalenes) in the atmosphere. *Atmos. Environ.* **1999**, *33*, 1231–1243. https://doi.org/10.1016/S1352-2310(98)00275-1.

(7) Koch, R.; Knispel, R.; Elend, M.; Siese, M.; Zetzsch, C. Consecutive reactions of aromatic–OH adducts with NO, NO$_2$ and O$_3$: Benzene, toluene, m- and p-cyclene, hexamethylbenzene, phenol, m-cresol and aniline. *Atmos. Chem. Phys.* **2007**, *6*, 2057–2071. https://doi.org/10.5194/acpd-6-7623-2006.

(8) Tomaz, S.; Shahpoury, P.; Jaffrézo, J.-L.; Lammel, G.; Perraudin, E.; Villenave, E.; Albinet, A. One-year study of polycyclic aromatic compounds at an urban Site in Grenoble (France): Seasonal variations, gas/particle partitioning and cancer risk estimation. *Sci. Total Environ.* **2016**, *565*, 1071–1083. https://doi.org/10.1016/j.scitotenv.2016.05.137.

(9) Ariyasena, T. C.; Poole, C. F. Determination of descriptors for polycyclic aromatic hydrocarbons and related compounds by chromatographic methods and liquid-liquid partition in totally organic biphasic systems. *J. Chromatogr. A* **2014**, *1361*, 240–254. https://doi.org/10.1016/j.chroma.2014.08.008.

(10) Atkinson, R.; Arey, J. Atmospheric chemistry of gas-phase polycyclic aromatic hydrocarbons: Formation of atmospheric mutagens. *Environ. Health Perspect.* **1994**, *102* (Suppl 4), 117–126.

(11) Ringuet, J.; Albinet, A.; Leoz-Garziandia, E.; Budzinski, H.; Villenave, E. Reactivity of polycyclic aromatic compounds (PAHs, NPAHs and OPAHs) adsorbed on natural aerosol particles exposed to atmospheric oxidants. *Atmos. Environ.* **2012**, *61*, 15–22. https://doi.org/10.1016/j.atmosenv.2012.07.025.
(12) Miet, K.; Le Menach, K.; Flaud, P.-M.; Budzinski, H.; Villenave, E. Heterogeneous reactivity of pyrene and 1-nitropyrene with NO₂: Kinetics, product yields and mechanism. Atmos. Environ. 2009, 43, 837–843. https://doi.org/10.1016/j.atmosenv.2008.10.041.

(13) Miet, K.; Le Menach, K.; Flaud, P. M.; Budzinski, H.; Villenave, E. Heterogeneous reactions of ozone with pyrene, 1-hydroxypyrene and 1-nitropyrene adsorbed on particles. Atmos. Environ. 2009, 43, 3699–3707. https://doi.org/10.1016/j.atmosenv.2009.04.032.

(14) Poling, B. E.; Prausnitz, J. M.; O’Connell, J. P. The Properties of Gases and Liquids; McGraw-Hill, 2001.

(15) Yu, G.; Xu, X. Investigation of aqueous solubilities of nitro-PAH by dynamic couple-column HPLC. Chemosphere 1992, 24, 1699–1705. https://doi.org/10.1016/0045-6535(92)90224-F.

(16) Yaffé, D.; Cohen, Y.; Arey, J.; Grosovsky, A. J. Multimedia analysis of PAHs and nitro-PAH daughter products in the Los Angeles Basin. Risk Anal 2001, 21, 275–94. https://doi.org/10.1111/0272-4332.212111.

(17) Parnis, J. M.; Mackay, D.; Harner, T. Temperature dependence of Henry’s Law constants and KOA for simple and heteroatom-substituted PAHs by COSMO-RS. Atmos. Environ. 2015, 110, 27–35. https://doi.org/10.1016/j.atmosenv.2015.03.032.

(18) Joback, K. G.; Reid, R. C. Estimation of pure-component properties from group-contributions. Chem. Eng. Commun. 1987, 57, 233–243. https://doi.org/10.1080/00108528708960487.

(19) Goldfarb, J. L.; Suuberg, E. M. Vapor pressures and thermodynamics of oxygen-containing polycyclic aromatic hydrocarbons measured using knudsen effusion. Environ. Toxicol. Chem. 2008, 27, 1244–9. https://doi.org/10.1897/07-486.1

(20) Hansch, C.; Leo, A. Substituent constants for correlation analysis in chemistry and biology; Wiley, 1979.

(21) Arp, H. P. H.; Goss, K.-U.; Schwarzenbach, R. P. Evaluation of a predictive model for air/surface adsorption equilibrium constants and enthalpies. Environ. Toxicol. Chem. 2006, 25, 45–51. https://doi.org/10.1897/05-291r.1.

(22) Sander, R. Compilation of Henry’s Law constants (version 4.0) for water as solvent. Atmos. Chem. Phys. 2015, 15, 4399–4981. https://doi.org/10.5194/acp-15-4399-2015.

(23) Albinet, A.; Leoz-Garziandia, E.; Budzinski, H.; Villenave, E. Polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs and oxygenated PAHs in ambient air of the Marseilles area (South of France): Concentrations and sources. Sci. Total Environ. 2007, 384, 280–292. https://doi.org/10.1016/j.scitotenv.2007.04.028.

(24) Reisen, F.; Arey, J. Atmospheric reactions influence seasonal PAH and nitro-PAH concentrations in the Los Angeles Basin. Environ. Sci. Technol. 2005, 39, 64–73. https://doi.org/10.1021/es0354541.

(25) De Castro Vasconcellos, P.; Sanchez-Coyillo, O.; Balducci, C.; Mabilia, R.; Cecinato, A. Occurrence and concentration levels of nitro-PAH in the air of three Brazilian cities experiencing different emission impacts. Water Air Soil Pollut. 2008, 190, 87–94. https://doi.org/10.1007/s11270-007-9582-y.
(26) Souza, K. F.; Carvalho, L. R. F.; Allen, A. G.; Cardoso, A. A. Diurnal and nocturnal measurements of PAH, nitro-PAH, and oxy-PAH compounds in atmospheric particulate matter of a sugar cane burning region. *Atmos. Environ.* **2014**, *83*, 193–201. https://doi.org/10.1016/j.atmosenv.2013.11.007.

(27) Harrison, R. M.; Alam, M. S.; Dang, J.; Ismail, I. M.; Basahi, J.; Alghamdi, M. A.; Hassan, I. A.; Khodier, M. Relationship of polycyclic aromatic hydrocarbons with oxy(quinone) and nitro derivatives during air mass transport. *Sci. Total Environ.* **2016**, *572*, 1175–1183. https://doi.org/10.1016/j.scitotenv.2016.08.030.

(28) Bamford, H. A.; Baker, J. E. Nitro-polycyclic aromatic hydrocarbon concentrations and sources in urban and suburban atmospheres of the Mid-Atlantic Region. *Atmos. Environ.* **2003**, *37*, 2077–2091. https://doi.org/10.1016/S1352-2310(03)00102-X.

(29) Lammel, G.; Mulder, M. D.; Shahpoury, P.; Kukuaka, P.; Lišková, H.; Přibylová, P.; Prokeš, R.; Wotawa, G. Nitro-polycyclic aromatic hydrocarbons - gas-particle partitioning, mass size distribution, and formation along transport in marine and continental background air. *Atmos. Chem. Phys.* **2017**, *17*, 6257–6270. https://doi.org/10.5194/acp-17-6257-2017.

(30) Albinet, A.; Leoz-Garziandia, E.; Budzinski, H.; Villenave, E.; Jaffrézo, J. L. Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two French Alpine valleys. Part 1: Concentrations, sources and gas/particle Partitioning. *Atmos. Environ.* **2008**, *42*, 43–54. https://doi.org/10.1016/j.atmosenv.2007.10.009.

(31) Huang, B.; Liu, M.; Bi, X.; Chaemfa, C.; Ren, Z.; Wang, X.; Sheng, G.; Fu, J. Phase distribution, sources and risk assessment of PAHs, NPAHs and OPAHs in a rural Site of Pearl River Delta Region, China. *Atmos. Pollut. Res.* **2014**, *5*, 210–218. https://doi.org/10.5094/APR.2014.026.

(32) Moussaoui, Y.; Balducci, C.; Cecinato, A.; Meklati, B. Y. Atmospheric particulate organic matter at urban and forest sites of Northern Algeria. *Urban Clim.* **2013**, *4*, 85–101. https://doi.org/10.1016/j.juclim.2013.05.001.

(33) Kumar Verma, P.; Sah, D.; Maharaj Kumari, K.; Lakhani, A. Atmospheric concentrations and gas–particle partitioning of polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs at Indo-Gangetic sites. *Environ. Sci. Process Impacts* **2017**, *19*, 1051–1060. https://doi.org/10.1039/C7EM00168A.

(34) Li, W.; Wang, C.; Shen, H.; Su, S.; Shen, G.; Huang, Y.; Zhang, Y.; Chen, Y.; Chen, H.; Lin, N.; Zhuo, S.; Zhong, Q.; Wang, X.; Liu, J.; Li, B.; Liu, W.; Tao, S. Concentrations and origins of nitro-polycyclic aromatic hydrocarbons and oxy-polycyclic aromatic hydrocarbons in ambient air in urban and rural areas in Northern China. *Environ. Pollut.* **2015**, *197*, 156–164. https://doi.org/10.1016/j.envpol.2014.12.019.

(35) Yadav, I. C.; Devi, N. L.; Singh, V. K.; Li, J.; Zhang, G. Concentrations, sources and health risk of nitrat ed- and oxygenated-polycyclic aromatic hydrocarbon in urban indoor air and dust from four cities of Nepal. *Sci. Total Environ.* **2018**, *643*, 1013–1023. https://doi.org/10.1016/j.scitotenv.2018.06.265.

(36) Yadav, I. C.; Devi, N. L.; Li, J.; Zhang, G. Altitudinal and spatial variations of polycyclic aromatic hydrocarbons in Nepal: Implications on source apportionment and
risk assessment. *Chemosphere* **2018**, *198*, 386–396. https://doi.org/10.1016/j.chemosphere.2018.01.075.

(37) Orbekj; Chetiyakornknl; Chuesaard; Kaganoi; Uozaki; Homma; Boongla; Tang; Hayakawa; Toriba. Personal inhalation exposure to polycyclic aromatic hydrocarbons and their nitro-derivatives in rural residents in Northern Thailand. *Environ. Monit. Assess.* **2017**, *189*, 510. https://doi.org/10.1007/s10661-017-6220-z.

(38) Chuesaard; Chetiyakornknl; Kamed; Hayakawa; Toriba. Influence of biomass burning on the levels of atmospheric polycyclic aromatic hydrocarbons and their nitro derivatives in Chiang Mai, Thailand. *Aerosol Air Qual. Res.* **2014**, *14*, 1247–1257. https://doi.org/10.4209/aaqr.2013.05.0161.

(39) Hien, T. T.; Thanh, L. T.; Kamed; Takenaka; Bandow. Nitro-polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons in particulate matter in an urban area of a tropical region: Ho Chi Minh City, Vietnam. *Atmos. Environ.* **2007**, *41*, 7715–7725. https://doi.org/10.1016/j.atmosenv.2007.06.020.

(40) Keyte, I. J.; Albinet, A.; Harrison, R. M. On-road traffic emissions of polycyclic aromatic hydrocarbons and their oxy- and nitro- derivative compounds measured in road tunnel environments. *Sci. Total Environ.* **2016**, *566–567*, 1131–1142. https://doi.org/10.1016/j.scitotenv.2016.05.152.

(41) Scipioni, C.; Villanueva, F.; Pozo, K.; Mabilia, R. Preliminary characterization of polycyclic aromatic hydrocarbons, nitrated polycyclic aromatic hydrocarbons and polychlorinated dibenzo-p-dioxins and furans in atmospheric PM$_{10}$ of an urban and a remote area of Chile. *Environ. Technol. Sustain. Dev.* **2012**, *33*, 809–820. https://doi.org/10.1080/09593330.2011.597433.

(42) Wang, W.; Liu, D.; Wang, B.; Zhan, J.; Zhang, D.; Sun, Y.; Li, H.; Yang, Y.; Zhao, J.; Jing, L.; Feng, J. Spatial and temporal variations of nitro-polycyclic aromatic hydrocarbons in PM$_{2.5}$ aerosols in Yangtze River Delta Region, China. *World Rev. Sci. Technol. Sustain. Dev.* **2013**, *10*, 228–241. https://doi.org/10.1504/WRSTSD.2013.057694.

(43) Ma, Y.; Cheng, Y.; Qiu, X.; Lin, Y.; Cao, J.; Hu, D. A Quantitative assessment of source contributions to fine particulate matter (PM$_{2.5}$)-bound polycyclic aromatic hydrocarbons (PAHs) and their nitrated and hydroxylated derivatives in Hong Kong. *Environ. Pollut.* **2016**, *219*, 742–749. https://doi.org/10.1016/j.envpol.2016.07.034.

(44) Lin, Y.; Ma, Y.; Qiu, X.; Li, R.; Fang, Y.; Wang, J.; Zhu, Y.; Hu, D. Sources, transformation, and health implications of PAHs and their nitrated, hydroxylated, and oxygenated derivatives in PM$_{2.5}$ in Beijing. *J. Geophys. Res. Atmospheres* **2015**, *120*, 7219–7228. https://doi.org/10.1002/2015JD023628.

(45) Zhang, J.; Yang, L.; Mellouki, A.; Chen, J.; Chen, X.; Gao, Y.; Jiang, P.; Li, Y.; Yu, H.; Wang, W. Diurnal concentrations, sources, and cancer risk assessments of PM$_{2.5}$-bound PAHs, NPAHs, and OPAHs in urban, marine and mountain environments. *Chemosphere* **2018**, *209*, 147–155. https://doi.org/10.1016/j.chemosphere.2018.06.054.

(46) Carreras, H. A.; Calderon-Segura, M. E.; Gomez-Arroyo, S.; Murillo-Tovar, M. A.; Amador-Munoz, O. Composition and mutagenicity of PAHs associated with urban
airborne particles in Córdoba, Argentina. *Environ. Pollut.* **2013**, *178*, 403–410. https://doi.org/10.1016/j.envpol.2013.03.016.

(47) Pereira, G. M.; Teinilä, K.; Custódio, D.; Gomes Santos, A.; Xian, H.; Hillamo, R.; Alves, C. A.; Bittencourt de Andrade, J.; Olimpio da Rocha, G.; Kumar, P.; Balasubramanian, R.; Andrade, M. de F.; Castro Vásconcellos, P. de. Particulate pollutants in the Brazilian city of São Paulo: 1-Year investigation for the chemical composition and source apportionment. *Atmos. Chem. Phys.* **2017**, *17*, 11943–11969. https://doi.org/https://doi.org/10.5194/acp-17-11943-2017.

(48) Amador-Muñoz, O.; Villalobos-Pietrini, R.; Miranda, J.; Vera-Avila, L. E. Organic compounds of PM$_{2.5}$ in Mexico Valley: Spatial and temporal patterns, behavior and sources. *Sci. Total Environ.* **2011**, *409*, 1453–1465. https://doi.org/10.1016/j.scitotenv.2010.11.026.

(49) Valle-Hernández, B. L.; Mugica-Álvarez, V.; Salinas-Talavera, E.; Amador-Muñoz, O.; Murillo-Tovar, M. A.; Villalobos-Pietrini, R.; De Vizcaya-Ruíz, A. Temporal variation of nitro-polycyclic aromatic hydrocarbons in PM$_{10}$ and PM$_{2.5}$ collected in Northern Mexico City. *Sci. Total Environ.* **2010**, *408*, 5429–5438. https://doi.org/10.1016/j.scitotenv.2010.07.065.

(50) Ringuet, J.; Albinet, A.; Leoz-Garziandia, E.; Budzinski, H.; Villenave, E. Diurnal/nocturnal concentrations and sources of particulate-bound PAHs, OPAHs and NPAHs at traffic and suburban sites in the region of Paris (France). *Sci. Total Environ.* **2012**, *437*, 297–305. https://doi.org/10.1016/j.scitotenv.2012.07.072.

(51) Results from the Swedish national screening programme 2008. Subreport 4: Screening of unintentionally produced organic contaminants. https://www.nilu.no/en//apub/27184/.

(52) Kalisa, E.; Nagato, E.; Bizuru, E.; Lee, K.; Tang, N.; Pointing, S.; Hayakawa, K.; Archer, S.; Lacap-Bugler, D. Pollution characteristics and risk assessment of ambient PM$_{2.5}$-bound PAHs and NPAHs in typical Japanese and New Zealand rural sites. *Atmos. Pollut. Res.* **2019**, *10*, 1396–1403. https://doi.org/10.1016/j.apr.2019.03.009.

(53) Kalisa, E.; Nagato, E. G.; Bizuru, E.; Lee, K. C.; Tang, N.; Pointing, S. B.; Hayakawa, K.; Archer, S. D. J.; Lacap-Bugler, D. C. Characterization and risk assessment of atmospheric PM$_{2.5}$ and PM$_{10}$ particulate-bound PAHs and NPAHs in Rwanda, Central-East Africa. *Environ. Sci. Technol.* **2018**, *52*, 12179–12187. https://doi.org/10.1021/acs.est.8b03219.