Enhanced energy storage properties of La\(^{3+}\) modified 0.92Bi\(_{0.5}Na_{0.5}\)TiO\(_3\) - 0.06Ba(Zr\(_{0.2}\)Ti\(_{0.8}\))O\(_3\) - 0.02NaNbO\(_3\) ternary ceramic system

Aqib Ali Khan \(^1\), Safeer Ahmad Arbab \(^2\), Abdul Manan \(^3\), Abdul Saboor \(^4\), Atta Ullah \(^5\), Noor Saeed Khattak \(^6\), Ifhtikhar Ahmad \(^7\), Muhammad Naeem Khan \(^8\), Tariq Bashir \(^9\), Muhammad Asif \(^10\), Muhammad Sadiq \(^10\) and Muhammad Arif \(^10\)

1 Department of Physics, Islamia College Peshawar, 25120, Peshawar, Khyber Pakhtunkhwa, Pakistan
2 Center of Materials Science, Islamia College Peshawar, 25120, Peshawar, Khyber Pakhtunkhwa, Pakistan
3 Laboratory for Research in Advanced Materials, Center of Physics, University of Science and Technology, Bannu, Khyber Pakhtunkhwa, 28100, Pakistan
4 School of Chemical and Materials Engineering, National University of Sciences and Technology, Sector H-12, Islamabad 46000, Pakistan
5 Energy Research Center, COMSATS University, Islamabad (Lahore Campus), Pakistan
6 Department of Electrical Engineering, Bannu Campus, University of Engineering and Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan
7 Department of Electrical & Computer Engineering, COMSATS University, Islamabad, Pakistan
8 Department of Electrical Engineering, City University of Science and Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan
9 Department of Mechanical Engineering, University of Engineering and Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan
10 Center for Advance Studies in Energy, University of Engineering and Technology Peshawar, Khyber Pakhtunkhwa, Pakistan

E-mail: arif.khattak@uetpeshawar.edu.pk

Keywords: Bi\(_{0.5}Na_{0.5}\)TiO\(_3\), energy storage, relaxation behaviour, thermal stability, dielectric constant

Abstract

The development in field of hybrid vehicles, telecommunication and energy sectors require dielectric materials having high-energy storage density with optimum thermal stability to operate in certain environment. To fulfill such requirement a new set of materials along the ternary solid solutions of 0.92Bi\(_{0.5}Na_{0.5}\)TiO\(_3\) - 0.06Ba(Zr\(_{0.2}\)Ti\(_{0.8}\))O\(_3\) - 0.02NaNbO\(_3\) (NB\(_{1-x}\)L\(_x\)-T-BZT-NN) (x = 0, 0.03, 0.05, 0.07) were fabricated through solid-state mix oxide route. The XRD patterns analysis confirmed a structural phase transformation from rhombohedral to the tetragonal-P4bm phase when x content increased from 0 to 0.07. The SEM study revealed, dense microstructure for all ceramics accompanied by a decrease in the average grain from 1.66 \(\mu\)m to 1.05 \(\mu\)m leading to high densities for these materials with an increase in the x content. The dielectric breakdown field increased from \(~115\) to \(137\) kV cm\(^{-1}\) resulting in an increase in recoverable energy density from \(\sim0.68\) to \(1.14\) J cm\(^{-3}\) with the increase in x content. Furthermore, excellent temperature stability (±15%) in dielectric permittivity was observed in a wide temperature range for each ceramic. In the present study, a recoverable energy density of \(1.14\) J cm\(^{-3}\) along with an efficiency of 70.6% was obtained for the composition of x = 0.07.

1. Introduction

The electronic industry in past few decades has extensively relied on ceramic capacitors and its development [1, 2]. The use of capacitors has increased multifold due to requirement in electromotive, telecommunications, defense, oil explorations, aerospace industries all while operating at in harsh temperature dependent environment. Dielectric behavior of ceramics defines its value and Bi\(_{0.5}Na_{0.5}\)TiO\(_3\) (NBT) is considered as one of the cornerstones [3–8]. Ideally electrical Industries requires the temperature stable capacitors with variation in capapcitance in (±15%). Another important parameter for capacitors is the energy storage capacity which is typically calculated by ferroelectric hysteresis loop (PE-loop) using equation (1) [9].
Here \(W \) is recoverable energy, \(E \) is applied electric field, \(P_1 \) and \(P_{\text{max}} \) are remnant and maximum polarization respectively \([10–12]\). From equation (1), to achieve high energy density the difference between \(P_{\text{max}} - P_1 = \Delta P \) should be maximum. Another way to increase the energy storage density is to increase \(E \) while avoiding electrical breakdown. This is achieved by improving electrical break down strength (BDS) \([13]\). Many Pb-based binary and ternary system compounds \([9, 14–16]\) have been reported to have better dielectric properties than NBT based systems, but lead oxide (PbO) being toxic generally avoided \([16]\).

NBT has gained a lot of attention due to its optimum diffusive phase transition behavior (relaxor behavior) leading to excellent dielectric and ferroelectric properties. At room temperature NBT exhibits rhombohedral (R3c) structure and phase transition occurs from rhombohedral to tetragonal (P4bm) due to variation in composition or temperature \([17, 18]\). Some studies also indicate the presence of both R3c and P4bm phases in unmodified NBT with dominant phase being R3c at room temperature \([14, 19]\). The two phases have different ferroelectric response. In the case of R3c phase long range ferroelectric order has been reported which leads to large \(P \), and reduces \(\Delta P \) giving low energy storage. On other hand, P4bm phase of NBT, \(\Delta P \) value tends to increase leading to a larger energy storage density \([8]\). In order to suppress the R3c phase and enhance the P4bm phase many NBT based solid solutions like \(\text{Bi}_2\text{Na}_{0.5}\text{Ti}_2\text{O}_7-\text{Bi}_{0.5}\text{K}_{0.5}\text{Ti}_2\text{O}_7 \) (NBT-BKT), \(\text{Bi}_{0.5}\text{Na}_{0.5}\text{Ti}_2\text{O}_7-\text{BaTi}_2\text{O}_7 \) (NBT-BT), \(\text{Bi}_{0.5}\text{Na}_{0.5}\text{Ti}_2\text{O}_7-\text{K}_0.5\text{Na}_{0.5}\text{NbO}_3 \) (NBT-KNN) have been investigated \([16–20]\). These solid solutions take advantage of two types of dielectric anomalies occurring in permittivity versus temperature \((\varepsilon - T)\) plots. First is depolarization temperature \((T_d)\) and second is curie temperature \((T_m)\). \(T_d \) is associated with an intermediate phase that is formed when polar nano regions (PNR) embedded in ions/paraelectric phases (with different radii and charge) are distributed randomly at A/B-site. In second case \((T_m)\), is where relative permittivity is maximum. There are many views of phase-structure-evolution in \(T_m \) and \(T_d \) region, but majority state that above \(T_d, P_1 \), and coercive field \((E_c)\) decrease \([21, 22]\) leading to larger \(\Delta P \) in NBT based systems. This gives NBT based binary/ternary compounds an advantage in obtaining excellent dielectric and ferroelectric properties.

The effect of NaNbO\(_3 \) (NN) in NBT-BT-NN based ceramics has previously been studied \([14, 19]\) the findings revealed a temperature stable system having optimum dielectric properties. Furthermore, increasing amount of NN leads to reduction in the R3c phase hence and a relaxor behavior in energy storage density of 0.71 \(\text{J cm}^{-3} \). Moreover, addition of NN causes a shift towards the relaxor phase \([13]\). NBT modified with \(\text{Ba(Zr}_{0.2}\text{Ti}_{0.8})\text{O}_3 \) (BZT) also gives a similar result with enhanced \(\varepsilon_i \) and \(T_m \). That is due to incorporation of Zr and Ti-ions at B-site in NBT-BZT system. The disordering created by Zr substitution has an effect on phase transition diffusivity and \(T_m \) \([23–35]\). Aksel et al \([26]\) have reported modification NBT with \(\text{La}^{3+} \) also reduces \(T_d \) which could also be beneficial in achieving good energy storage properties. In this study \(\text{0.92Bi}_{0.5}\text{Na}_{0.5}\text{TiO}_3-0.06\text{Ba(Zr}_{0.2}\text{Ti}_{0.8})\text{O}_3 \) O3-0.02NaNbO\(_3 \) ternary solid solution modified with \(\text{La}^{3+} \) at A-site was investigated to obtain a high-temperature stable composition with optimum dielectric and ferroelectric properties. The effects of various concentrations of \(\text{La}^{3+} \) substitution on phase, microstructure, dielectric and ferroelectric properties for the \(\text{0.92Bi}_{0.5(1-x)}\text{La}_{x}\text{Na}_{0.5}\text{TiO}_3-0.06\text{Ba(Zr}_{0.2}\text{Ti}_{0.8})\text{O}_3-0.02\text{NaNbO}_3 \) \((0.00 \leq x \leq 0.07)\) are discussed in detail.

2. Experimental

2.1. Materials and methods

All compositions in \(\text{0.92Bi}_{0.5(1-x)}\text{La}_{x}\text{Na}_{0.5}\text{TiO}_3-0.06\text{Ba(Zr}_{0.2}\text{Ti}_{0.8})\text{O}_3-0.02\text{NaNbO}_3 \) \((0.00 \leq x \leq 0.07)\) series were fabricated via solid-state sintering process using reagent grade \(\text{Bi}_2\text{O}_3 \) (99.99%), \(\text{La}_2\text{O}_3 \) (99.99%), \(\text{Nb}_2\text{O}_5 \) (99.99%), \(\text{Ti}_2\text{O}_3 \) (99.99%), \(\text{Na}_2\text{CO}_3 \) (99.9%), \(\text{BaCO}_3 \) (99.50%), and \(\text{ZrO}_2 \) (99.50%). The reagents were weighed in stoichiometric ratios followed by ball milling for 24 h in 2-propanol using \(\text{ZrO}_2 \) balls as grinding media. The obtained slurries were air-dried using a hot air oven at 100 °C and sieved using size 300 mesh. Calcination of the milled powders was carried out at 800 °C for 2 h with a ramp rate of 5 °C min\(^{-1}\) followed by remilling and sieving. Pallets of 12 mm diameter of the calcined powders were made using steel die and manual hydraulic pellet press operated at 100 MPa pressure. The green body pellets were sintered without binder at 1175 °C in air for 2 h with a ramp rate of 5 °C min\(^{-1}\).

2.2. Characterization techniques

The phase(s) analysis of the sintered samples of each composition was carried out at room temperature using x-ray diffractometer (Pan Analytical XPert\(^3\), Netherlands). For microstructure analysis samples of each composition were polished and thermally etched at a 1050 °C for 30 min followed by Au-coating in a sputtering machine. The microstructure was examined via a scanning electron microscope (JEOL, Japan, and JSM5910) equipped with an energy dispersive x-ray spectroscopy (EDX) (Oxford instruments, U.K.-INCA200). For
dielectric property measurements, both surfaces of each composition pellets were first well-polished and then silver paste was applied on both sides for electrode purpose followed by heat treatment at 500 °C for 15 min. Precision LCR meter (E4980A, Agilent, USA) coupled with custom-designed furnace and computerized data logger were used to collect temperature-dependent dielectric properties. The hysteresis loop data were collected using a ferroelectric tester system (RT66A, Radiant Technologies, USA).

3. Results and discussion

3.1. Phase analysis

Crystal structure of NB$_{1-x}$La$_x$-BZT-NN for (0.00 ≤ x ≤ 0.07) sintered at 1175 °C/2 h were analyzed using x-ray diffraction (XRD) figure 1(a). The result suggests a pure perovskite solid solution was obtained with no secondary phase. Figure 1(b) shows an enlarge view of three different anomalies. First of peak (110) at 2θ ~ 32.5°, indicating a clear peak shift towards a smaller value. Solid-state crystal chemistry dictates that ions replacement is only possible if they have the same valency, coordination number, and approximately the same ionic radii. From Shannon’s ionic radii charts, the effective ionic radii of Bi$^{3+}$ _R12_ = 1.30 Å (R = Radii, 12 = coordination number) and La$^{3+}$ _R12_ = 1.36 Å. therefore, it is most likely that La$^{3+}$ replaces Ba$^{3+}$ at A-site which are in agreement with previous studies [28, 29]. The replacement of relatively larger ion causes an increase in d-spacing and hence a decrease in 2θ as both are inversely related (equation (2)).

$$2d = \frac{n\lambda}{\sin \theta}$$

(2)

The second anomaly in figure 1(b) at 2θ ~ 40°, is marked by peaks (003) and (021) for x = 0.00 indicating the presence of rhombohedral (R3c) phase which upon increasing the x-content converges to form a single peak marked by (111). This convergence coupled with the third anomaly of dual peaks (002) and (200) at 2θ ~ 46.5° indicates the presence of the tetragonal (P4bm) phase [17, 30, 31] which is backed by improved PE-loop data. The presence of both R3c and P4bm phases at x = 0.00 is in agreement with previous studies [14, 19]. The transformed tetragonal (P4bm) phase matches with ICDD card # 01-070-4760.

3.2. Surface morphology

Figures 2(a)–(d) shows secondary electron SEM images of NB$_{1-x}$La$_x$-BZT-NN; (0.00 ≤ x ≤ 0.07) ceramics with grain size distribution charts. The relative density versus average grain size is given in figure 2(e) for all samples. The relative density was calculated using the already defined method [17]. All samples reflect homogenous morphology with distinct grain boundaries and good densification. EDX results were also found to be in accordance with stoichiometric data for overall samples showing mainly NBT elements. The average grain size values are given in figure 2(e); were calculated using ImageJ software. It is evident that as the value of x increases relative density increases from 91.2% to 97.8% and the grain size decreases accordingly from 1.66 μm to 1.05 μm, implying that the addition of La$^{3+}$ restricts the grain growth. The reduction in grain size could be...
attributed to the Solute drag mechanism which states that the difference in radii of host and impurity atoms causes the reduction in grain growth expressed by equation (3). (lattice strain energy-ΔG_{strain})

\[
\Delta G_{\text{strain}} = 4\pi N_A M \left(\frac{r_o}{2} \left(r_d - r_o \right)^2 + \frac{1}{3} \left(r_d - r_o \right)^3 \right)
\]

where \(r_o \) represents the optimal radius of the lattice site, \(r_d \) is the ionic radius of dopant, \(N_A \) is Avogadro’s number, and \(M \) is Young’s modulus. From XRD data it is clear that La^{3+} R_{12} = 1.36 Å > Bi^{3+} R_{12} = 1.30 Å. Thus, the increasing content of La^{3+} can hinder the grain boundary mobility and disrupt the grain size growth. This behavior has also been reported previously. The increased density (less porosity) and reduced grain size data mentioned in figure 2(e) also suggest a larger dielectric breakdown strength (BDS) given by equation (4)

\[
\text{Grainsize} \propto \frac{1}{\sqrt{\text{BDS}}}
\]

3.3. Frequency and temperature dependent dielectric properties

Temperature-dependent dielectric behavior for NB_{1-x}La_T-BZT-NN; (0.00 ≤ x ≤ 0.07) ceramics at different frequencies (1 kHz, 10 kHz, 100 kHz, 250 kHz, and 1 MHz) are shown in figures 3(a)–(d). There are three distinct anomalies marked \(T_d, T_s, \) and \(T_m \) respectively. \(T_d \) generally corresponds to depolarization temperature, a point where ferroelectric relaxor phase transition occurs and it can be seen that as x-content increases \(T_d \)
shifts towards lower temperature, which is consistent with past studies [28]. The second anomaly appears at T_s (saturation temperature) with broad characteristics frequency dispersions and is considered a ferroelectric relaxor property [34] which might indicate a transition from rhombohedral ($R3c$) phase to tetragonal ($P4bm$) phase as has been previously reported [35, 36].

There have been studies that suggest that if T_s is dependent on frequencies which is true in this case then it can also be an indication of polarization of polar nano regions (PNR) [37]. The third and final anomaly marked T_m corresponds to maximum temperature also called Curie temperature at which ε_r reaches a maximum value and represents a transition between non-polar and paraelectric state [38]. Studies suggest that relatively broad peaks at T_m correspond to diffusive phase transition which means that either A- or B-site are being occupied by two or more cations which are true for NBT [39, 40]. The random distribution of Na$^{+}$, Bi$^{3+}$, and La$^{3+}$ ion at A-site in NB$_{1-x}$La$_x$T-BZT-NN ceramic might be the cause of diffusive phase transition near T_m.

It is generally reported that ε_r of dielectric materials strongly depends on frequency. Lower frequencies lead to high ε_r and vice versa. The permittivity of each composition decreases with increasing frequency from 1 kHz to 1 MHz because at high frequencies the dipoles of respective polarization do not follow the frequency leading to low polarization and hence low ε_r. The Curie temperature ε_r at 1 kHz for operational range with ±5%, ±10%, and ±15% deviation, and (f) The temperature dependence of $\Delta\varepsilon_r$ – stability range for composition NB$_{1-x}$La$_x$T-BZT-NN ceramic.

Figure 3. (a)–(d) Represents the relative permittivity (ε_r) and dielectric loss ($\tan\delta$) as a function of temperature with values of T_p, T_s and T_m for NB$_{1-x}$La$_x$T-BZT-NN ($0.00 \leq x \leq 0.07$), (e) $\Delta\varepsilon_r/\varepsilon_{150^\circ C}$ @ 1 kHz for operational range with ±5%, ±10%, and ±15% deviation, and (f) The temperature dependence of $\Delta\varepsilon_r$ – stability range for composition NB$_{1-x}$La$_x$T-BZT-NN ceramic.
reported that dielectric loss strongly depends on frequency and temperature. Dielectric loss normally increases rapidly above T_m \[\text{[16, 41]}\]. In this case $\tan \delta < 0.05$ up to $\sim 350 ^\circ C$ for all the samples.

3.4. Ferroelectric and energy storage properties

The thermal stability of capacitance or dielectric constant with varying temperature of $\text{NB}_1-x\text{L}_x\text{T}-\text{BZT-NN}$ ($0.00 \leq x \leq 0.07$) composition at 1 kHz is given in figures 3(e), (f) calculated via equation (5).

$$\Delta \varepsilon_r = \frac{\varepsilon_r - \varepsilon_{150 ^\circ C}}{\varepsilon_{150 ^\circ C}}$$

Figure 4. Plot of $\ln(1/\varepsilon_r - 1/\varepsilon_{150 ^\circ C})$ as a function of $\ln(T-T_m)$ for $\text{NB}_{1-x}\text{L}_x\text{T}-\text{BZT-NN}$ ceramics ($0.00 \leq x \leq 0.07$) @ 1 kHz, the solid line indicates fitted results using modified Curie–Weiss law.

Figure 5. (a)–(d) P-E loop for $\text{NB}_{1-x}\text{L}_x\text{T}-\text{BZT-NN}$ for $x = 0.00, 0.03, 0.05$ and 0.07 ceramic. Of all the composition $x = 0.07$ show highest thermal stability, followed by $x = 0.03$. To further analyze the dielectric behavior and to confirm the diffusive phase transition (DPT) modified Curie Weiss law defined by equation (6)
is applied [42–44].

\[
\frac{1}{\varepsilon} - \frac{1}{\varepsilon_m} = \frac{(T - T_m)}{\varepsilon}; \quad T > T_m
\]

Where \(\varepsilon\) and \(\varepsilon_m\) are dielectric constant values at temperature \(T\) and \(T_m\) respectively, \(C\) is Curie constant and \(\gamma\) is phase transformation diffusivity coefficient, whose value varies between 1 and 2. When the value of \(\gamma = 1\) then the material has ferroelectric nature if greater than 1, then the material is a relaxor ferroelectric [13]. Figure 4 shows the evaluated \(\gamma\) value graph plotted between \(\ln(1/\varepsilon - 1/\varepsilon_m)\) and \(\ln(T - T_m)\). For all specimens \(\gamma\) value calculated after linear fitting at frequency of 1 kHz are given for \(x = 0.00, 0.03, 0.05\) and 0.07 are 1.68, 1.74, 1.81, and 1.96 respectively suggesting that DPT behavior enhanced with increasing \(x\)-content [45–47].

Figures 5(a)–(d) shows P-E loop of NB\(_{1-x}\)L\(_x\)-T-BZT-NN for (0.00 \(\leq x \leq 0.07\)) ceramic at room temperature. Figures 6(a), (b) gives the polarization and electric field values. It can be seen from the figures that with increasing \(x\)-content \(P_r\) first increases then starts to decrease with its lowest value of 2.57 \(\mu\text{C cm}^{-2}\) @ \(x = 0.07\). \(P_{\text{max}}\) on the other hand increases follows a zig-zag movement of increase-decrease-increase with values of 14.1, 19.14, 15.0 and 22.47 \(\mu\text{C cm}^{-2}\) for \(x = 0.00, 0.03, 0.05\) and 0.07 respectively. It is also evident that \(\Delta P\) is maximum for \(x = 0.07\). The coercive field \(E_c\) decreases gradually but the increase for \(x = 0.07\) on other hand \(E_{\text{max}}\) increase gradually with increasing \(x\)-content. The behavior depicted in figure 6(a) can be attributed to the grain size and density of the samples. From table 1 it can be seen that BDS also follows the zig-zag movement of increase-decrease-increase this can be explained by equation (2) in which grain size is inversely related to BDS or \(E_{\text{max}}\).
Figure 6(b) shows the total energy W_t, recoverable energy W_{rec} and energy loss W_{loss} for
NB$_x$LaxTiO$_3$-BZT-NN for (0.00 ≤ x ≤ 0.07) ceramics calculated from the PE-loops using equation (1).
The efficiency of ceramic samples is 76.7, 61.5, 60.3, and 70.6% respectively with maximum recoverable energy being
1.14 J cm$^{-3}$ @ 70.6% efficiency for $x = 0.07$. From this data it’s clear that the introduction of La content
4. Conclusion

0.92Bi$_{0.5}$(Li$_{1-x}$La$_x$)$_{0.5}$Na$_{0.3}$TiO$_3$—0.06Ba(Zr$_{0.2}$Ti$_{0.8}$)$_3$O$_3$—0.02NaNbO$_3$ (0.00 ≤ x ≤ 0.07) lead free relaxor ferroelectric ceramics have been prepared using the conventional solid-state technique. The XRD results show that La$^{3+}$ has completely diffused into the lattice forming a homogenous solid solution. The substitution of La$^{3+}$ decreased the average grain size. The introduction of La$^{3+}$ causes structural ordering and the evolution of PNRs. This behavior enhances the energy storage properties. In the present work, an efficiency of 70.6% with recoverable energy of 1.14 J cm$^{-3}$, and storage energy density of 1.63 J cm$^{-3}$ are obtained for $x = 0.07$ demonstrating that the electroceramics can have protential application in high-performance temperature stable energy storage application.

Acknowledgments

The authors acknowledge the financial support extended by Higher Education Commission (HEC) Islamabad, Pakistan through the International Research Support Initiative Program (IRSIP) and (NRPU-7488).

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

ORCID iDs

Noor Saeed Khattak https://orcid.org/0000-0003-0280-3184
Muhammad Asif https://orcid.org/0000-0001-6202-5471
Muhammad Arif https://orcid.org/0000-0002-1566-1675

References

[1] Hagler P, Henson P and Johnson RW 2011 Packaging technology for electronic applications in harsh high-temperature environments IEEE Trans. Ind. Electron. 58 2673–82
[2] Kwon Set al 2011 Nonlinear dielectric ceramics and their applications to capacitors and tunable dielectrics IEEE Electr. Insul. Mag. 27 43–55
[3] Liu G et al 2019 An investigation of the dielectric energy storage performance of Bi(Mg$_{1/2}$Nb$_{1/2}$)$_3$O$_7$-modified BaTiO$_3$, Pb-free bulk ceramics with improved temperature/frequency stability. Ceram. Int. 45 19189–96
[4] Yang Z et al 2019 Realizing high comprehensive energy storage performance in lead-free bulk ceramics via designing an unmatched temperature range J. Mater. Chem. A 7 27256–66
[5] Hu Q et al 2020 Achieve ultrahigh energy storage performance in BaTiO$_3$-Bi(Mg$_{1/2}$Ti$_{1/2}$)$_3$O$_7$ relaxor ferroelectric ceramics via nanoscale polarization mismatch and reconstruction Nano Energy 67 104264
[6] Ma B et al 2011 Dielectric properties and energy storage capability of antiferroelectric Pb$_{0.92}$La$_{0.10}$Mg$_{1.92}$Ti$_{10.87}$O$_{35}$ film-on-foil capacitors J. Mater. Res. 26 2993–6
[7] Ma B et al 2011 Fabrication and dielectric property of ferroelectric PLZT films grown on metal foils Mater. Res. Bull. 46 1124–9
[8] Zhang L et al 2013 Microstructure and energy-storage performance of BaO–B$_2$O$_3$–SiO$_2$ glass added (Na$_{0.8}$Bi$_{0.2}$)$_3$TiO$_3$ thick films J. Mater. Sci., Mater. Electron. 24 3830–5
[9] Wang X et al 2015 Dielectric properties and energy-storage performances of (1−x)Pb(Mg$_{1/2}$Nb$_{1/2}$)$_3$O$_7$–xPbTiO$_3$ relaxor ferroelectric thin films J. Mater. Sci., Mater. Electron. 26 9583–90
[10] Chen T et al 2014 High energy density capacitors based on 0.888BaTiO$_3$–0.12Bi(Mg$_{0.5}$Ti$_{0.5}$)$_3$O$_7$/PbZrO$_3$ multilayered thin films Ceram. Int. 40 5327–32
[11] Zhao Y, Hao X and Li M 2014 Dielectric properties and energy-storage performance of (Na$_{0.8}$Bi$_{0.2}$)$_3$TiO$_3$ thick films J. Alloys Compd. 601 112–5
[12] Zhao Y, Hao X and Zhang Q 2014 Energy-storage properties and electrocaloric effect of Pb(1−3x/2)LaxZr$_{0.5}$Ti$_{0.5}$O$_3$ antiferroelectric thick films. ACS Appl. Mater. Interfaces 6 11633–9
[13] Tang W et al 2016 High energy density dielectrics in lead-free Ba0.5Na0.5TiO3–NaNbO3–BaZrO3–TiZr2O5 ternary system with wide operating temperature J. Mater. Sci., Mater. Electron. 27 6526–34
[14] Xu Q et al 2015 Ultra-wide temperature stable dielectrics based on Ba0.5Na0.5TiO3–NaNbO3 system J. Am. Ceram. Soc. 98 3119–26
[15] Hu Z et al 2014 Relaxor behavior and energy storage performance of ferroelectric PLZT thin films with different Zr/Ti ratios Ceram. Int. 40 557–62
[16] Choi D HR et al 2013 Structural and dielectric properties of (1–x)BaTiO3–xBi(Mg1/2,Zr1/2)O3 ceramics (0.1 ≤ x ≤ 0.5) and potential for high-voltage multilayer capacitors J. Am. Ceram. Soc. 96 2197–202
[17] Pal V et al 2017 Preparation, microstructure and relaxor ferroelectric characteristics of BNT–BCT lead-free piezoceramics J. Alloys Compd. 714 723–35
[18] Reichmann K, Feteira A and Li M 2015 Bismuth sodium titanate based materials for piezoelectric actuators Materials (Basel) 8 8467–95
[19] Xu Q et al 2015 Enhanced energy storage properties of NaNbO3 modified Bi0.5Na0.5TiO3 based ceramics J. Eur. Ceram. Soc. 35 545–53
[20] Wang T et al 2015 Relaxor ferroelectric BaTiO3–Bi(Mg1/2,Zr1/2)O3 ceramics for energy storage application J. Am. Ceram. Soc. 98 559–66
[21] Shvartsman V V and Lupascu D C 2012 Lead-free relaxor ferroelectrics J. Am. Ceram. Soc. 95 1–26
[22] Jo W et al 2011 On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)2Ti2O6 6 mol% BaTiO3 J. Appl. Phys. 110 074106
[23] Parija B et al 2013 Morphotropic phase boundary and electrical properties of 1–x(Bar0.8K0.2)xBi0.5TiO3–xBi2Zr2O7 ferroelectric ceramics J. Mater. Sci. 49 3877–86
[24] Peng C, Li J-F and Gong W 2005 Preparation and properties of (Bi1/2Na1/2)2Ti2O6–Ba(Zr,Ti)O3 lead-free piezoelectric ceramics. Mater. Lett. 59 1576–80
[25] Tan X et al 2009 Effect of uniaxial stress on ferroelectric behavior of (Bi1/2Na1/2)2Ti2O6 based lead-free piezoelectric ceramics J. Appl. Phys. 106 064107
[26] Aksel E et al 2012 Structure and properties of La-modified Na0.5Bi0.5TiO3 at ambient and elevated temperatures J. Appl. Phys. 112 054111
[27] Shannon R 1976 Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides Acta Crystallographica Section A 32 751–67
[28] Wang B et al 2012 Piezoelectric and dielectric properties of (Bi1−xNa0.5K0.5)xTiO3 lead-free ceramics. J. Alloys Compd. 526 79–84
[29] Jin L, Li F and Zhang S 2014 Decoding the fingerprint of ferroelectric loops: comprehension of the material structures and properties J. Am. Ceram. Soc. 97 1–27
[30] Yao Z et al 2009 Morphotropic phase boundary and piezoelectric properties of (Bi1/2Na1/2)2Ti2O6–x(1/2Bi1/2K1/2)xTiO3–0.03(Na0.8K0.2)Nb2O5 ferroelectric ceramics Mater. Lett. 63 547–50
[31] Yang Z et al 2009 Structure and electrical properties of Na3D2O8-doped 0.8Ba0.5Na0.5TiO3–0.18Bi0.5K0.5TiO3 ceramics. Ceram. Int. 35 1423–27
[32] Boonlakhorn J et al 2014 Very high-performance dielectric properties of Ca1−xNa0.8K0.2LaxTiO3 ceramics. J. Alloys Compd. 584 103–9
[33] Qiao X et al 2019 Enhanced energy density and thermal stability in relaxor ferroelectric Bi0.5Na0.5TiO3–Sr0.2Bi0.8Ti0.2O3 ceramics J. Eur. Ceram. Soc. 39 4778–84
[34] Young A et al 2007 Effect of liquid-phase sintering on the breakdown strength of barium titanate J. Am. Ceram. Soc. 90 1504–10
[35] Hiruma Y, Nagata H and Takenaka T 2009 Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics J. Appl. Phys. 105 034112
[36] Hiruma Y, Nagata H and Takenaka T 2008 Phase diagrams and electrical properties of (Bi1/2Na1/2)2Ti2O6-based solid solutions. J. Appl. Phys. 104 124106
[37] Zhou C et al 2009 Dielectric relaxor behavior of A-site complex ferroelectrics of Bi60Na20Ti20–Bi24K8O57–BiFeO3. Solid State Commun. 149 681–5
[38] Xu C, Lin D and Kwock K W 2008 Structure, electrical properties and depolarization temperature of (Bi1/2Na1/2)2Ti2O6–BaTiO3 lead-free piezoelectric ceramics Solid State Sci. 10 934–40
[39] Fan G et al 2007 Morphotropic phase boundary and piezoelectric properties of (Bi1/2Na1/2)2Ti2O6–(Bi1/2K1/2)xTiO3–K8NbO3 lead-free piezoelectric ceramics. Appl. Phys. Lett. 91 202908
[40] Ni H et al 2011 Preparation and electrical properties of Ba2.5Na0.5TiO3–Ba0.5TiO3–K8NbO3 lead-free piezoelectric ceramics J. Alloys Compd. 509 3568–62
[41] Huang X et al 2014 Structure and dielectric properties of BaTiO3–BiYO3 ceramics. J. Am. Ceram. Soc. 97 1797–801
[42] Malathi A R et al 2013 Dielectric relaxation in NBT–ST ceramic composite materials Ionics 19 1571–60
[43] Babu M V G et al 2017 Grain size effect on structure and electrical properties of lead-free Na0.8K0.2Bi0.5TiO3 ceramics Ceram. Int. 43 12599–604
[44] Liu G et al 2020 Enhanced electrical properties and energy storage performances of NBT–ST Pb-free ceramics through glass modification J. Alloys Compd. 836 154961
[45] Zhou X et al 2016 Energy storage properties and electrical behavior of lead-free (1−x)Ba0.8K0.2Ti0.8yNa0.2TiO3–xSr0.2Zr0.8TiO3 ceramics J. Mater. Sci., Mater. Electron. 27 3948–56
[46] Ma HY et al 2013 Structure, dielectric and ferroelectric properties of 0.92Na0.5Bi0.5TiO3–0.08Ba0.5TiO3 lead-free ceramics: Effect of Co3O4 additive. Ceram. Int. 39 3721–9
[47] Wang J et al 2019 Bi(Mg0.85Ti0.15)O3 addition induced high recoverable energy-storage density and excellent electrical properties in lead-free Na0.5Bi0.5TiO3-based thick films J. Eur. Ceram. Soc. 39 235–63
[48] Yuan C et al 2015 Microstructures and energy storage properties of Mn-doped 0.97Bi0.4Na0.6Bi0.2Ti0.6Zr0.4O3 lead-free antiferroelectric ceramics. J. Mater. Sci., Mater. Electron. 26 6793–7
[49] Wang B et al 2014 Energy-storage properties of (1−x)Bi0.5Na0.5Bi0.10TiO3–xBi2O3 lead-free ceramics J. Alloys Compd. 585 14–8
[50] Ye J et al 2014 Enhanced energy-storage properties of SrTiO3 doped [(Bi1/2Na1/2)xTi2O5–(Bi1/2K1/2)xTi2O5 lead-free antiferroelectric ceramics. J. Mater. Sci., Mater. Electron. 25 4632–7
[51] Zhang L et al 2019 Enhanced energy storage performance in Sn doped Sr0.6 (Na0.5Bi0.5)0.4 TiO3 lead-free relaxor ferroelectric ceramics. J. Eur. Ceram. Soc. 39 3057–63
[52] Wang G et al 2019 Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity Environ. Sci. 12 582–8