ON THE PUSH-OUT SPACES

M. FATHY AND M. FAGHFOURI

Abstract. Let \(f : M^m \rightarrow \mathbb{R}^{m+k} \) be an immersion where \(M \) is a smooth connected \(m \)-dimensional manifold without boundary. Then we construct a subspace \(\Omega(f) \) of \(\mathbb{R}^k \), namely push-out space, which corresponds to a set of embedded manifolds which are either parallel to \(f \), tubes around \(f \) or, in general, partial tubes around \(f \). This space is invariant under the action of the normal holonomy group, \(\text{Hol}(f) \). Moreover, we construct geometrically some examples for normal holonomy group and push-out space in \(\mathbb{R}^3 \). These examples will show that properties of push-out space that are proved in the case \(\text{Hol}(f) \) is trivial, is not true in general.

1. Introduction

In this paper we introduce push-out space for an immersion \(f : M^m \rightarrow \mathbb{R}^{m+k} \), where \(M \) is a smooth connected \(m \)-dimensional manifold without boundary. To do this, we give some examples in 3-dimensional Euclidean space, \(\mathbb{R}^3 \), in fact, in these examples we calculate normal holonomy group and push-out space geometrically. We consider the case when \(\text{Hol}(f) \) is non-trivial. This extends the work of Carter and Senturk [2], who obtained results about the case when \(\text{Hol}(f) \) is trivial. In these examples we show that some of the properties of push-out space which they obtained is not true for the case when \(\text{Hol}(f) \) is non-trivial.

2. Basic definitions

Definition 2.1 [2]. Let \(f : M^m \rightarrow \mathbb{R}^{m+k} \) be a smooth immersion where \(M \) is a smooth connected \(m \)-dimensional manifold without boundary. The total space of the normal bundle of \(f \) is defined by
\[
N(f) = \{(p,x) \in M \times \mathbb{R}^{m+k} : <x,v> = 0 \quad \forall v \in f^*T_p(M)\}
\]
The endpoint map \(\eta : N(f) \rightarrow \mathbb{R}^{m+k} \) is defined by \(\eta(p,x) = f(p) + x \) and, the set of singular points of \(\eta \) is subset \(\Sigma(f) \subset N(f) \) called the set of critical normals of \(f \) and the set of focal points of \(\eta \) is a subset \(\eta(\Sigma(f)) \subset \mathbb{R}^{m+k} \).

For \(p \in M \), we put \(N_p(f) = \{x : (p,x) \in N(f)\} \) and \(\Sigma_p(f) = \{x : (p,x) \in \Sigma(f)\} \) respectively, normal space at \(p \) and the set can be thought of as focal points with base \(p \).

Definition 2.2 [1]. For \(p_0 \in M \) and \(p \in M \) and path \(\gamma : [0,1] \rightarrow M \) from \(p_0 \) to \(p \) define \(\varphi_{p,\gamma} : N_{p_0}(f) \rightarrow N_p(f) \) by parallel transport along \(\gamma \). The \(\varphi_{p,\gamma} \)'s are isometries. The normal holonomy group on \(N_{p_0}(f) \), is
\[
\text{Hol}(f) = \{\varphi_{p_0,\gamma} : \gamma : [0,1] \rightarrow M, \quad \gamma(0) = \gamma(1) = p_0\}
\]

1991 Mathematics Subject Classification. 53C40, 53C42.
Key words and phrases. Singular points, Normal holonomy group, push-out space.
If the closed path γ at p_0 is homotopically trivial then $\varphi_{p_0,\gamma}$ is an element of the restricted normal holonomy group $\mathcal{Hol}_0(f)$.

Definition 2.3 ([3]). For a fix $p_0 \in M$ the push-out space for an immersion $f : M^m \rightarrow \mathbb{R}^{m+k}$ is defined by

$$\Omega(f) = \{ x \in N_{p_0}(f) : \forall p \in M, \forall \gamma \text{ s.t. } \gamma(0) = p_0, \gamma(1) = p \text{ then } \varphi_{p,\gamma}x \notin \Sigma_p(f) \}$$

(i.e. $\forall p \in M$, $f(p) + \varphi_{p,\gamma}(x)$ is not a focal point with base p when x belongs to $\Omega(f)$). Therefore $\Omega(f)$ is the set of normals at p_0, where transported parallely along all curves, do not meet focal points. So $\Omega(f)$ is invariant under the action of $\mathcal{Hol}(f)$.

Definition 2.4 ([4]). Let $B \subset N(f)$ be a smooth subbundle with type fiber S

1) S is a smooth submanifold of \mathbb{R}^k

2) $B \cap \Sigma(f) = \emptyset$

3) B is invariant under parallel transport (along any curve in M). Then B is a smooth manifold and $g \equiv \eta|_B : B \rightarrow \mathbb{R}^{m+k}$ is a smooth immersion called a partial tube about f.

Theorem 2.5 ([2]). Let $\mathcal{Hol}(f)$ is trivial and M be a compact manifold. Then each path-connected component of $\Omega(f)$ is open in \mathbb{R}^k.

Theorem 2.6 ([2]). Let $\mathcal{Hol}(f)$ is trivial then Each path-connected component of $\Omega(f)$ is convex.

Remark 2.7. In Example 3.2 if $\frac{\pi}{2}$ is irrational then $\Omega(\bar{f})$ is not open in \mathbb{R}^2 but $M = S^1$ is compact. Also, in Example 3.5 $\Omega(f) = \{O\}$ hence $\Omega(f)$ is closed in \mathbb{R}^2 but $\mathcal{Hol}(f)$ is trivial. This shows that Theorem 2.5 is false when M is not compact or $\mathcal{Hol}(f)$ is non-trivial.

Remark 2.8. In Example 3.6 one of path-connected components of $\Omega(f)$, which is the complement space of cone and two other components in \mathbb{R}^3, is not convex. This shows that Theorem 2.6 is false when $\mathcal{Hol}(f)$ is non-trivial.

we conclude that the properties of push-out space that are proved in the case $\mathcal{Hol}(f)$ is trivial, is not true in general.

3. Examples of Normal Holonomy Groups and Push-Out Spaces

Example 3.1. We start with a curve as below

![Diagram](image)

suppose this curve is given by $s \mapsto (\xi(s),\eta(s))$ where $s \in [0, 1]$ and at $(1, 0, 0): s = 0$ $\frac{\partial \xi}{\partial s} = 1, \frac{\partial \eta}{\partial s} = 0$ for all $r \geq 0$ and at $(0, 1, 0): s = 1, \frac{\partial \eta}{\partial s} = 1, \frac{\partial ^2 \xi}{\partial s^2} = 0$ for all $r \geq 0$. Now, we take this curve in \mathbb{R}^3 and consider the same curves in yz-plane and
xz-plane and fit together to make a smooth closed curve in \(\mathbb{R}^3 \). Now by identifying \(S^1 \) with \(\mathbb{R}_/\mathbb{Z} \), the curve in \(\mathbb{R}^3 \) can be redefined as \(f : S^1 \to \mathbb{R}^3 \) where:

\[
f(s) = \begin{cases}
(\xi(s), \eta(s), 0) & 0 \leq s \leq 1 \\
(0, \xi(s-1), \eta(s-1)) & 1 \leq s \leq 2 \\
(\eta(s-2), 0, \xi(s-2)) & 2 \leq s \leq 3
\end{cases}
\]

To find the normal holonomy group of the above curve, we will consider normal vector to the curve under parallel transport. As each part of the curve lies in a 2-plane, the normal plane at a point of the curve is spanned by the perpendicular direction to the 2-planes.

Step 1. Start with the normal vector at \((1,0,0)\), in the diagram, it stays in the xy-plane under parallel transport.

The normal vector \((0,1,0)\) at \((1,0,0)\) goes to normal vector \((-1,0,0)\) at \((0,1,0)\).

Step 2. At \((0,1,0)\) the normal vector \((-1,0,0)\) is perpendicular to the yz-plane, it stays perpendicular to the yz-plane under parallel transport form \((0,1,0)\) to \((0,0,1)\).
The normal vector (-1,0,0) at (0,1,0) goes to normal vector (-1,0,0) at (0,0,1).

Step 3. The normal vector (-1,0,0) is in the xz-plane at (0,0,1) and stays in the xz-plane from (0,0,1) to (1,0,0).

The normal vector (-1,0,0) at (1,0,0) by going once around the curve the normal vector will turn about $\frac{\pi}{2}$.

Going around of curve again, the normal vector moves through another $\frac{\pi}{2}$ and after four times around the curve back to its original position. This shows that $Hol(f)$ is generated by a rotation through $\frac{\pi}{2}$.

Now we find the push-out space of f. Except at end-points of three areas, locally the curve lies in a 2-plane so the focal points with base $s, f(s) + \Sigma_s(f)$, consists of a straight line through the center of curvature, $c(s)$, of the curve at s, perpendicular to the line joining $c(s)$ and $f(s)$.

At end-points of three areas, and possibly some other points, the focal set is empty as the center of curvature "at infinity".

so $\Sigma_s(f)$ is a line in $N_s(f)$. The image of $\Sigma_s(f)$ under normal holonomy group is obtained by rotating it through $\frac{\pi}{2}$ until it returns to the original position.

Now, fix the normal plane $N_{s_0}(f)$ at $f(S_0) = (1, 0, 0)$ where $s_0 = 0$ and use parallel transport to identify all the normal planes with the normal plane $N_{s_0}(f)$. The push-out space is complement of all the $\Sigma_s(f)$ and their images under normal holonomy group.
Therefore the push-out space of $f: S^1 \to \mathbb{R}^3$ is an open square Q with sides of length 2ρ where ρ is the minimum absolute value of the radius of curvature of the original curve in the xy-plane. (i.e. $\Omega(f)$ is the interior of the smallest square on $N_{s_0}(f)$.)

Example 3.2. We consider the immersion \bar{f} as in Example 3.1 except that the xz-plane is tilted through an angle α.

In other words, $\bar{f} = Lof$ where f is the immersion in example 3.1 and L is the linear transformation given by

$$L = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & \tan \alpha \\
0 & 0 & 1
\end{pmatrix}$$

where $0 < \alpha < \frac{\pi}{2}$. So, we have

$$\bar{f}(s) = \begin{cases}
(\xi(s), \eta(s), 0) & 0 \leq s \leq 1 \\
(0, \xi(s-1) + \eta(s-1) \tan \alpha, \eta(s-1)) & 1 \leq s \leq 2 \\
(\eta(s-2), \xi(s-2) \tan \alpha, \xi(s-2)) & 2 \leq s \leq 3
\end{cases}$$

The end-points of three areas of this immersion are $(1,0,0), (0,1,0)$ and $(0,\tan \alpha,1)$. Note that at these points the tangent to the curve is the radial line form $(0,0,0)$ so unit tangent at $(1,0,0)$ is $(1,0,0)$ and unit tangent at $(0,\tan \alpha,1)$ is $(0,\tan \alpha,1)$ etc.

As in Example 3.1 under parallel transport, the normal vector $(0,1,0)$ at $(1,0,0)$ goes to the normal vector $(-1,0,0)$ at $(0,1,0)$, which goes to the normal vector $(-1,0,0)$ at $(0,\tan \alpha,1)$, which goes to the normal vector $(0,\tan \alpha,1)$ at $(1,0,0)$. So going once around the curve the normal vector has moved through $\frac{\pi}{2} - \alpha$.

This shows that $\mathcal{H}ol(\bar{f})$ is generated by a rotation through $\frac{\pi}{2} - \alpha$. As in Example 3.1, the image of $\Sigma_s(\bar{f})$ under normal holonomy group is obtained by rotating the line $\Sigma_s(\bar{f})$ through $\frac{\pi}{2} - \alpha$. It depends on α and is obtained as:

```
Start

Once around the curve
```

This shows that $\mathcal{H}ol(\bar{f})$ is generated by a rotation through $\frac{\pi}{2} - \alpha$. As in Example 3.1, the image of $\Sigma_s(\bar{f})$ under normal holonomy group is obtained by rotating the line $\Sigma_s(\bar{f})$ through $\frac{\pi}{2} - \alpha$. It depends on α and is obtained as:
If R is the rotating through an angle $\frac{\pi}{2} - \alpha$ then $\Omega(\bar{f}) = \bigcap\{(R)^nQ : n \in \mathbb{Z}\}$ where Q is a square as in Example 3.1 thus if $\frac{\pi}{2}$ is rational then $(R)^n(\Sigma_s(\bar{f})) = \Sigma_s(\bar{f})$ for some $n \in \mathbb{Z}$ and so, $\Omega(\bar{f})$ is the interior of the smallest polygon. If $\frac{\pi}{2}$ is irrational then $(R)^n(\Sigma_s(\bar{f})) \neq \Sigma_s(\bar{f})$ for any $n \in \mathbb{Z}$ and so, $\Omega(\bar{f})$ is an open disk of radius ρ together with a dense set of points on the boundary circle where ρ is minimum absolute value of the radius of curvature of the immersed curve by \bar{f}.

Example 3.3. In Example 3.2, we replace the immersion \bar{f} with the immersion $\bar{f}oh$ where $h : \mathbb{R} \rightarrow S^1 \equiv \mathbb{R}^2/\mathbb{Z}$ is covering projection. Since \mathbb{R} is simply connected, for any arbitrary point $s \in \mathbb{R}$, any closed path at s is nullhomotopic with constant path at s, hence definition 2.2 shows that, the normal holonomy group of $\bar{f}oh$ is trivial (i.e. $\text{Hol}(oh) = H_{\text{hol}}(f)$). To calculate $\Omega(foh)$, we prove the theorem 3.4 in general. It will show that $\Omega(\bar{f}oh) = \Omega(\bar{f})$.

Theorem 3.4. Let $f : M^m \rightarrow \mathbb{R}^{m+k}$ be an immersion and \hat{M} be any covering space with covering projection $h : \hat{M} \rightarrow M$. If $\hat{f} = foh$, then $\Omega(\hat{f}) = \Omega(f)$.

Proof. Let $x \in \Omega(f)$ and fix $p_0 \in M$. Then definition 2.3 implies that, $\forall p \in M, \forall \gamma$ s.t. $\gamma(0) = p_0, \gamma(1) = p; \varphi_{p, \gamma}x \neq \Sigma_p(f)$. we define the total space of the normal bundle of \hat{f} by

$$N(\hat{f}) = \{(\hat{p}, x) \in \hat{M} \times \mathbb{R}^{m+k} : <x, v> = 0 \quad \forall v \in \hat{f}_*T_p(\hat{M})\}$$

Also, for any $\hat{p} \in h^{-1}(p)$ we have

$$\hat{f}_*T_p(\hat{M}) = (foh)_*T_p(\hat{M})$$

$$= (f_*oh_*)T_p(\hat{M})$$

$$= f_*T_p(M)$$

this shows that, for any $\hat{p} \in h^{-1}(p)$ we have $N_{\hat{p}}(\hat{f}) = N_p(f)$ and so $\Sigma_{\hat{p}}(\hat{f}) = \Sigma_p(f)$. Further, we fix $\hat{p} \in h^{-1}(p_0)$ then $\hat{\varphi}_{\hat{p}, \hat{\gamma}} = \varphi_{p, \gamma}$ where $\hat{\gamma} : [0, 1] \rightarrow \hat{M}$ s.t. $\hat{\gamma}(0) = \hat{p}_0, \hat{\gamma}(1) = \hat{p}$. Therefore, \hat{p} is \hat{f} in \hat{M}, $\forall \hat{\gamma}; \varphi_{\hat{p}, \hat{\gamma}}x \neq \Sigma_p(f)$. Now using definition 2.3 again, follows that, $x \in \Omega(\hat{f})$. By the same way proves that $\Omega(\hat{f}) \subseteq \Omega(f)$. \hfill \square

Example 3.5. If $\frac{\pi}{2} - \alpha = \frac{2\pi}{n}$, then Example 3.3 can be modified by replacing h by the n-fold covering $\bar{h} : S^1 \rightarrow S^1$.
Going once around the first S^1 in $\tilde{h} : S^1 \rightarrow S^1$ corresponds to moving n times around the second S^1 so parallely transporting a normal n times around the second S^1 which gives a rotation of
\[n\left(\frac{\pi}{2} - \alpha\right) = n\left(\frac{2\pi}{n}\right) = 2\pi \]
i.e. the identity, so $Hol(\tilde{f} \tilde{h}) = Hol_0(\tilde{f} \tilde{h})$. Since, the immersed curve by $\tilde{f} \tilde{h}$ and the immersed curve by \tilde{f} have same figure in \mathbb{R}^3 and $Hol(\tilde{f} \tilde{h})$ is trivial so the singular sets of them also the same (i.e. $\Sigma(\tilde{f} \tilde{h}) = \Sigma(\tilde{f})$). This implies that $\Omega(\tilde{f} \tilde{h}) = \Omega(\tilde{f})$.

Example 3.6. We consider a sequence of curves f_n in \mathbb{R}^3 defined as in Example 3.1 except that $||f_n(s)||$ and the curvature tends to infinity with n when $s = \frac{1}{2}, \frac{3}{2}$ or $\frac{5}{2}$ but is bounded otherwise.

Now, we define the immersion $f : \mathbb{R} \rightarrow \mathbb{R}^3$ by $f(s \pm 3n) = f_n(s)$. When n tends to infinity, the immersion $f : \mathbb{R} \rightarrow \mathbb{R}^3$ has a sequence of points where the curvature tends to infinity and the radius of curvature at these points can be arbitrary small; in other words, $\exists s$ where $\Sigma_s(f)$ is arbitrary close to "O" in $N_s(f)$. So $\{O\}$ is the only point not in the image of $\Sigma_s(f)$ under normal holonomy group for all $s \in \mathbb{R}$. Then $\Omega(f) = \{O\}$. In this case because \mathbb{R} is simply connected then $Hol(f)$ is trivial.

The following results have been proved in [2], when $Hol(f)$ is trivial.

Theorem 3.7. Let M be a compact manifold, then each path-connected component of $\Omega(f)$ is open in \mathbb{R}^k.

Theorem 3.8. Each path-connected component of $\Omega(f)$ is convex.

Remark 3.9. In Example 3.2 if α is irrational then $\Omega(\tilde{f})$ is not open in \mathbb{R}^2 but $M = S^1$ is compact. Also, in Example 3.5 $\Omega(f) = \{O\}$ so $\Omega(f)$ is closed in \mathbb{R}^2 but $Hol(f)$ is trivial. This shows that Theorem 3.7 is false when M is not compact or $Hol(f)$ is non-trivial.
Remark 3.10. In Example 3.6 one of the path-connected components of $\Omega(f)$, which is the complement space of cone and two other components in \mathbb{R}^3, is not convex. This shows that Theorem 3.8 is false when $\text{Hol}(f)$ is non-trivial.

Thus the properties of push-out space that are proved in the case $\text{Hol}(f)$ is trivial, is not true in general.

References

[1] J. Berndt, S. Console and C. Olmos, Submanifolds and Holonomy, Research Notes in Mathematics 434, CHAPMAN & HALL/CRC, 2003.
[2] S. Carter and Z. Senturk, The space of immersions parallel to a given immersion, J. London Math. Soc. (2) 50 (1994), 404-416.
[3] S. Carter, Z. Senturk and A. West, The push-out space of a submanifold, Geometry and Topology of submanifolds VI, (1994), 50-57.
[4] S. Carter and A. West, partial tubes about immersed manifolds, Geom. Dedicata 54 (1995), 145-169.

University of Applied Science, and Technology of East Azarbayjan Cooperation, Tabriz, Iran
E-mail address: mortaza.fathy@yahoo.com

University of Tabriz, Tabriz, Iran
E-mail address: faghfouri@tabrizu.ac.ir