Yield gain of groundnut cultivars released from 1950 until 2017

N Nugrahaeni, Purwantoro, and Y Baliadi

Indonesian Legumes and Tuber Crops Research Institute (ILETRI)
Jl. Raya Kendalpayak Km 8, PO.Box 66, Malang, East Java, Indonesia
Email: nnugrahaeni@gmail

Abstract. The renewal of the cultivars is believed to contribute significantly to crop yield increased, including groundnut. Indonesia has released 45 improved cultivars from 1950 to 2017. Among those, thirty cultivars were evaluated to assess the yield gain of the crop’s improvements. The period in which the thirty cultivars released divided into five eras, separated every ten years, except between the first and second era. Those cvs planted in Jambegede Res. Sta. during the dry season 2018, were arranged in randomized complete block design, replicated 2 times. Each cv was planted in 6 rows of 2 m length, 50 x 10 cm planting distance, one plant per hill. Two rows were used for destructive samplings, and the rest four rows were harvested for yield and yield components measurements. Data collected consisted of growth rates at four growth stages (plant height, branches number, leaflets number, gynophore number, shoot and root dry weight), pod size, seed size, dry pod yield. All the cultivars were highly varied in yield and yield components variables at harvest. However, there was no variability existence on the observed growth parameters. The exception were on branch and leaflets number at 15 days and gynophore number at 80 days. Cultivars mean dry pod yield of the five classification eras ranged from 1531.4 g-1847.7 g 8m⁻² with yield gain 5.89 g/8 m⁻² or 0.38% year⁻¹.

1. Introduction
Groundnut is an important palawija crop in Indonesia. It serves as a cash crop [1], animal feed, and an important protein source in people diet for its multi nutrients content [3] and very prospective functional food for bioactive compounds content [3]. Despite its high economic importance, the national average yield is still low, i.e. 13.23 ku/ha [4], and the production is only meet 70,5% of the national demand [5].

Groundnut breeding program in Indonesia began in 1950 with the prime objective was bacterial wilt (BW) resistance and yield increased. BW was the most important disease for groundnut cultivation in Java, the main groundnut planting area. Four improved cultivars, i.e. Gajah, Banteng, Kidang, and Macan have been released for the purpose. Those four cultivars last for a long time in farmers’ field, and only after 33 years later new improved cultivars were released, i.e. Rusa, Anoa, Tapir, Pelanduk, and Tupai. Afterwards, as many as 36 improved cultivars were released until 2017. Those following released cultivars, in addition of high yield and BW resistance, breeders added abiotic (acid soil, drought, shading, Fe deficiency) to tolerance and biotic (foliar diseases) resistances, and improved stability and production efficiency and seed quality. That improved cultivar has indirectly resulted in the improvement of national groundnut yield [6; 4]. However, the progress made in those cultivars has not been assessed so far. Evaluation of genetic improvement and the associated changes in agronomic and
physiological traits determining grain yield in crops may help identify traits of potential value for future breeding [7].

Various procedures to estimate genetic progress realized from long-term breeding efforts are reported, one of them is evaluating performance of varieties developed over certain and long periods in common environment regressed over years of varietal release [7; 8; 9; 10; 11; 12].

The study was carried out to assess the progress in yield and yield-related traits made in groundnut cultivars released during 1950-2014. There was no improved cultivar released during 2015-2017, made cultivars released in 2014 were the latest improved cultivars. The released period was divided into five eras, i.e. 1950-1980, 2. 1980-1990, 3. 1990-2000, 4. 2000-2010, and 5. >2010. The first era represented by 4 cultivars, second era by 4 cvs, third era by 6 cvs, fourth era by 7 cvs, and the fifth one by 9 cvs.

2. Materials and Methods
The field evaluation was undertaken in ILETRI Experimental Station at Jambegede (8°10′30″LS, 112°33′32.4″BT, and altitude 335 m, Alfisol and Inceptisol Association) during the dry season on January-May 2018. Total rainfall during the trial was 499 mm in 32 rainy days, and temperature ranged from a minimum of 19°C to a maximum of 32°C.

Thirty groundnut improved cultivars released from 1950 to 2017 (table 1) were evaluated in the study. The experiment was set in a randomized block design replicated 2 times. Each cv was planted in 6 rows of 2 m length, 50 x 10 cm planting distance, one plant per hill. Two rows were used for destructive samplings, and the rest four rows were harvested for yield and yield components measurements. Fertilizers Phonska 300 kg ha⁻¹ + SP36 100 kg ha⁻¹ applied entirely at planting time.

Data measurements were on growth rates at 4 growth stages (juvenile, flowering, maximum vegetative, and full seed) consisted of plant height, number of branches, number of leaflets, number of gynophores, shoot and root dry weight, and pod dry weight. Pod size (g/100 pods), seed size (g/100 seeds), pod yield were recorded on a plot basis. Pod yields were determined from all plants harvested from the plot, sun dried, and reported in kilograms per plot (8m²).

Variance, correlation and regression analyses were performed using Minitab and Excel. Genetic yield potential gains were determined by linear regression of yield, expressed in gram per plot size (8m²), by year of cultivar release (13). DMRT was used for pod yield mean comparisons between cultivars.
No.	Cultivars	Pedigree	Year released	Era
1	Banteng	Schwarz 21xSpanish 18-38 Eyc.3	1950	1
2	Gajah	Schwarz 21xSpanish 18-38	1950	1
3	Kidang	Schwarz 21xSmall Japan	1950	1
4	Macan	Schwarz 21/Small Japan	1950	1
5	Anoa	Gajah/ AH.223 (PI 350680)	1983	2
6	Tapir	Kidang x Virginia Bunch Improved	1983	2
7	Kelinci	Introduction Philipinnes Acc 12	1987	2
8	Jepara	Local Jepara	1989	2
9	Badak	No 726 x FESR 12	1991	3
10	Mahesa	PI 350680 x Kidang	1991	3
11	Zebra	MGS 9-2-5 x NC 3033-4B-9	1992	3
12	Jerapah	Local Majalengka x ICGV 86021	1998	3
13	Panter	ICG 1703	1998	3
14	Singa	ICG 1697	1998	3
15	Bima	Local Bima	2001	4
16	Kancil	F334A-B-14 x NC Ac 2214	2001	4
17	Sima	Local Majalengka x ICGV 87165	2001	4
18	Turangga	OG 69-6-1 x NC Ac 17090	2001	4
19	Tuban	Local Tuban	2003	4
20	Bison	Kelinci x Gajah mutant	2004	4
21	Domba	Gajah x PI 259747	2004	4
22	Talam-1	Jerapah x ICGV 91283	2010	5
23	Hypoma 1	Local Lamongan x Tuban	2012	5
24	Hypoma 2	Local Lamongan x Tuban	2012	5
25	Takar 2	Local Muneng x ICGV 92088	2012	5
26	Takar 1	Macan x ICGV 91234	2012	5
27	Litbang Garuda 5	Local Lamongan x ICGV 87123	2013	5
28	Var. Gundul	Local Gundul Kalimantan	2013	5
29	Talam 2	Gajah x ICGV 92088	2014	5
30	Talam 3	Gajah x ICGV 92088	2014	5

3. Results and Discussion

3.1. Variance analyses

Variance analysis of yield and yield components of 30 groundnut cultivars released from 1950 till 2017 showed that all the cultivars were highly varied in yield and yield components variables, except the number of branches Table 2). However, there was no variability existence on the measured growth parameters, the exception was on branch and leaflets no. at 15 days, gynophore number. at 60 and 80 days, the number of filled- and young-pods at 80 days (Table 3). The narrow genetic base of the 30 evaluated cultivars might be contributed to the absence on the most growth parameter variabilities. Among those 30 cultivars, twenty-two cultivars were directly or indirectly derived from Schwarz 21 (Table 1). Moreover, seed and pod characteristics preference were also narrowing the cultivars’
variability. Nevertheless, the requirement for distinct improvement for the newer improved cultivars was expressed in the yield and yield-related traits (Table 2) and abiotic/biotic tolerance (6).

Table 2. Mean squares and coefficient of variation of yield and yield components of 30 groundnuts improved cultivars at harvest time.

Cultivar	Released year	Plant height (cm)	No. of branches/plant	No. filled pods/plant	Pod weight (g/100 pods)	Seed weight (g/100 seeds)	Pod yield (g/8m²)
Hypoma 1	2012	47.4	6.2	20.0	151.0	55.0	2661.5 f
Bima	2001	41.2	4.7	15.3	139.2	36.2	2467.9 f
Domba	2004	51.7	4.2	19.7	186.6	47.6	2419.0 f
Takar 2	2012	41.5	6.8	21.3	132.7	57.2	2279.7 ef
Talam 2	2014	42.9	7.0	25.8	113.3	47.1	1952.2 def
Takar 1	2012	48.0	6.7	24.2	166.6	67.4	1851.9 ede
Talam 1	2010	47.0	6.5	22.5	119.1	45.7	1839.4 bcde
Badak	1991	49.2	4.0	21.8	141.7	41.5	1704.3 e
Kancil	2001	42.4	5.2	34.0	100.5	44.3	1644.1 abcd
Hypoma 2	2012	38.3	7.0	17.8	146.6	54.3	1623.9 abcd
Gajah	1950	41.6	4.8	28.5	149.7	56.2	1610.5 abcd
Anoa	1983	46.4	5.2	22.7	115.2	47.6	1610.1 abcd
Mahesa	1991	45.5	5.8	28.0	126.0	49.6	1607.2 abcd
Tapir	1983	42.7	6.8	17.7	136.1	54.4	1606.6 abcd
Sima	2001	40.4	4.3	19.0	131.5	40.5	1603.7 abcd
Singa	1998	54.7	4.3	13.5	166.3	43.8	1602.3 abcd
Jerapah	1998	48.6	5.7	24.8	97.2	44.3	1598.1 abcd
Turangga	2001	61.3	4.2	19.2	168.6	43.6	1590.4 abcd
var Gundul	2013	34.5	8.0	22.0	118.3	45.1	1571.6 abcd
Macan	1950	44.9	5.5	23.7	118.3	48.1	1570.0 abcd
Tuban	2003	47.6	5.3	28.3	107.4	43.3	1533.7 abcd
Zebra	1992	48.5	4.2	21.5	157.1	42.6	1530.7 abcd
Bison	2004	44.9	4.8	27.3	110.1	47.8	1528.6 abcd
Kidang	1950	45.1	5.2	20.2	123.3	53.4	1528.6 abcd
Talam 3	2014	43.4	4.5	31.0	110.8	47.8	1481.1 abc
Panter	1998	47.8	4.5	22.2	109.8	42.7	1445.6 abc
Banteng	1950	46.1	4.8	25.7	119.3	50.9	1416.4 abc
Jepara	1989	35.1	5.2	25.3	114.5	50.2	1406.4 abc
Kelinci	1987	42.8	4.8	20.2	139.1	43.7	1406.2 ab
Litbang	1991	45.1	5.2	20.2	123.3	53.4	1528.6 abcd
Garuda 5	2013	40.3	5.2	21.2	106.3	44.1	1359.7 a

| MS Squares | 58.21** | 2.218ns | 1035.3 | 41.04 | 78.35* | 219772* |
| CV (%) | 13.34 | 9.58 | 9.58 | 20.77 | 9.75 | 16.95 |

*ns : mean squares non-significant at 5% probability level. ** : mean squares significant at 5% and 1% probability levels. respectively.
Table 3. Mean squares and mean value of yield and yield components and growth rates at 4 growth stages of 30 groundnuts improved cultivars released from 5 periods1.

Characters	Mean squares	Mean value
Plant height 15 dap	0.234ns	6.52
Plant height 30 dap	7.343ns	12.24
Plant height 60 dap	22.970ns	31.69
Plant height 80 dap	25.610ns	41.23
Number of branches 15 dap	0.642*	3.59
Number of branches 30 dap	0.469ns	3.37
Number of branches 60 dap	0.707ns	4.84
Number of branches 80 dap	2.440ns	5.36
No. of leaflet 15 dap	4.688**	9.23
No. of leaflet 30 dap	14.720ns	21.00
No. of leaflet 60 dap	109.300ns	64.22
No. of leaflet 80 dap	271.300ns	78.97
No. of gynophore 60 dap	174.900**	22.76
No. of gynophore 80 dap	169.650**	17.93
No. of young pods 60 dap	32.250ns	8.85
No. of young pods 80 dap	23.240ns	10.34
No. of filled pods 60 dap	29.730ns	14.44
No. of filled pods 80 dap	62.160**	21.65
Dry shoot weight 15 dap	4.440ns	4.70
Dry shoot weight 30 dap	21.860ns	9.73
Dry shoot weight 60 dap	477.600ns	68.47
Dry shoot weight 80 dap	476.500ns	84.93
Dry root weight 15 dap	0.117ns	0.81
Dry root weight 30 dap	0.103ns	0.69
Dry root weight 60 dap	12.710ns	14.42
Dry root weight 80 dap	11.503ns	7.65
Weight of young pods 60 dap	32.250**	8.40
Weight of young pods 80 dap	23.240ns	10.65
Weight of filled pods 60 dap	602.900ns	45.48
Weight of filled pods 80 dap	480.300ns	59.96

1.1950-1980 (4 cultivars). 2. 1980-1990 (4 cultivars). 3. 1990-2000 (6 cultivars). 4. 2000-2010 (7 cultivars). and 5. >2010 (9 cultivars); ns : mean squares non-significant at 5% probability level *. ** : mean squares significant at 5% and 1% probability levels. respectively

3.2. Genetic gain for yield and yield components

Hypoma 1, Domba, and Bima, cultivars released after 2000’s produced pod yield significantly higher compared to those of the four oldest cultivars and even compared to the all released cultivars’pod yields (table 2). The significant increased indicating that there is yield improvement suggested genetic gene obtained over breeding of those three cultivars. Hypoma 1 and Bima developed from local cultivars, i.e. Local Lamongan, local Tuban, and local Bima (table 1), indicated the significant contribution of local
genetic resources in high yield of improved cultivars. There was an increase trend on pod yield and pod size during the release periods (table 4). Mean pod yield ranged from 1531.4 g 8m² for cultivars released in the 1980’s and 1847.7 g 8m², it means an increase of 316.3 g/8m² or 395.4 kg ha⁻¹ since 1950. Studies in several locations reported that yield gains were varied among locations (14; 15), suggested that the obtained yield gain rate confounded with location or environment.

Era	No. of cultivars	Plant height (cm)	No. of branches	Filled pods/plant	Weight of 100 pods (g)	100 seed weight (g)	Pod yield (g/8m²)
1950-1980	4	44.4	5.1	24.5	127.6	52.2	1531.4
1981-1990	4	41.7	5.5	21.5	126.2	49.0	1507.3
1991-2000	6	49.0	4.7	22.0	133.0	44.1	1581.4
2001-2010	7	47.1	4.9	23.2	132.9	43.6	1828.3
>2010	9	42.0	6.4	22.9	130.7	52.3	1847.7

Remarks: a1. 1950-1980 (4 cultivars). 2. 1980-1990 (4 cultivars). 3. 1990-2000 (6 cultivars). 4. 2000-2010 (7 cultivars). and 5. >2010 (9 cultivars)

Cultivars mean dry pod yield of the five classification eras ranged from 1531.4 g-1847.7 g/8m² (table 4), and regression of the 30 cultivars showed a yield gain of 5.89 kg/8m² or 0.38% year⁻¹ (figure 1). Similar result with higher yield gain obtained in Ethiopia, i.e. an annual relative genetic gain of 1.89% (16). No genetic gain on plant height and there were no correlations between plant height and pod yield (r= 0.12 ns). Significant progress has been made on pod size, an increase of 0.09 g year⁻¹ was recorded (figure 1). Relationship between pod size and pod yield was highly significant (r=0.315**) supporting the profile of those yield and pod size improvement. There was a negative gain or decreasing seed size and number filled pods during those breeding period (figure 2). Correlation analysis between the two characters, seed size and filled-pod number, showed weak correlations (r=0.12). The same picture was found on correlation between pod yield and the two characters, r=0.13ns and r=0.18ns for filled pod number and 100-seed weight respectively. This finding was not in line with others studies results (17, 18, 19, 20) which reported significant correlations between pod yield and those yield components. Even suggested that seed size and filled pod number as two characters among important yield attributes contribute to increasing groundnut pod yield (17). It is, therefore, suggested that breeding program to increase yield should give due attention to those yield-related traits. Employing large seeded and high yield potential groundnut germplasm would be prospective for improving groundnut cultivars. Addition biotic/abiotic tolerance characteristics in the newer improved cultivars did not decrease yield (table 3). This indicated that groundnut cultivars can be developed for many purposes without sacrificing the yield.
Figure 1. Relationship between pod yield of groundnut cultivars and year of breeding (left) and between pod size of groundnut cultivars and number year of breeding (right)

Figure 2. Relationship between seed size of groundnut cultivars and number year of breeding (left) and between filled pod per plant of groundnut cultivars and number year of breeding (right)

4. Conclusion
All the cultivars were highly varied in yield and yield components variables. However, there was no variability existence on the observed growth parameters except branch and leaflets number at 15 days and gynophore number at 80 days. Cultivars mean dry pod yield of the five classification eras ranged from 1531.4 g-1847.7 g 8m² with yield gain 6.9%. Significant progress has been made on pod size, yet seed size and filled pods number were decreasing. Therefore, it is suggested that breeding program is needed to increase yield should give due attention to those yield-related traits

Acknowledgement
Authors acknowledge the Germplasm Division of Iletri for providing the seed material of the cultivars used in the study and M. Khalimi for helping the data measurements.

References
[1] Sumarno 2015 Status kacang tanah di Indonesia ed A Kasno et al. Kacang tanah: Inovasi Teknologi dan Pengembangan Produk (Balitkabi. Malang) Monograf Balitkabi No.13-2015 pp 29–39
[2] Mezu R and Kasno A 2015 Profil bio-industri kacang tanah di Indonesia ed A Kasno et al. Kacang tanah: Inovasi Teknologi dan Pengembangan Produk (Balitkabi. Malang) Monograf
BPS 2018 Badan Pusat Statistik: Tabel Dinamis. https://www.bps.go.id/site/resultTab.

[10] Mozingo R W, Coffelt T A and Wynne J C 1987 Genetic improvement in large-seeded Virginia-type peanut cultivars since 1944. Crop Sci. 27 228–31 https://doi.org/10.2135/cropsci1987.0011183X002700030030x

[11] Tadesse M et al. 2018 Breeding progress for grain yield and yield related characters of kabuli chickpea (Cicer arietinum L.) in Ethiopia using regression analysis J. Agric. Scie 10 1–11 Doi: 10.5539/jasv10n2pxx

[12] Tefera H, Kamara AY, Asafo-Adjei B and Dashiell K E 2009 Improvement in grain and fodder yields of early-maturing promiscuous soybean varieties in the Guinea Savanna of Nigeria. Crop Scie 49 2037–42.

[13] Battenfield S D, Klatt A R and Raun W R 2013 Genetic yield potential Improvement of semidwarf winter wheat in the great plains Crop Scie. 53 946–55. Doi:10.2135/cropsci2012.03.0158

[14] Fox C M, Troy T R, Colgrove A L, Nafziger E D, Haudenshield J S, Hartman G L, Specht J E and Diers B W 2013 Estimating soybean genetic gain for yield in the Northern United States-influence of cropping history Crop Sci. 53 2473–82. Doi:10.2135/cropsci2012.12.0687

[15] Nehe A et al. 2019 Genotype x environment interaction and genetic gain for grain yield and grain quality traits in Tuskish spring wheat released between 1964 and 2010 PLoS ONE 14 e0219432. https://doi.org/10.1371.

[16] Hagos F Zeleke F and Woyossa W 2012 Genetic gain in yield and yield related traits of groundnut (Arachis hypogaea L.) in Central Rift Valley of Ethiopia. East African J. of Scie. 6 125–36

[17] Janila P, Nigam S N, Pandey M K, Nagesh P and Varshney R K 2013 Groundnut improvement: use of genetic and genomic tools. Front Plant Sci. https://doi.org/10.3389/fpls.2013.00023

[18] Prabh R, Manivannan N, Mothilai A and Ibrahim S M 2015 Correlation coefficient analysis for yield and yield attributes in groundnut (Arachis hypogaea L.) Plant Archive 15 pp 685–689

[19] Kiranmai M S Verkatavaran P and Puspa H D 2016 Correlation and path analyses studies grown under different environment Legume Res. 39 pp 1043-50

[20] Reddy A T, Vijayabarathi A, Sekhar R, Thalambek L P 2017 Correlation and path analyses of kernel yield and its components in groundnut Internat. J. Of Current Microbiology and Applied Scie. 6 pp 10-16