Magnetic resonance evaluations of biliary malignancy and condition at high-risk for biliary malignancy: Current status

Reiji Sugita

Reiji Sugita, Department of Radiology, Sendai City Medical Center, Miyagino-ku 983-0824, Japan
Author contributions: Sugita R solely contributed to this paper.
Correspondence to: Reiji Sugita, MD, Department of Radiology, Sendai City Medical Center, 5-22-1, Tsurugaya, Miyagino-ku 983-0824, Japan. rsugita@openhp.or.jp
Telephone: +81-22-2521111 Fax: +81-22-2529431
Received: July 3, 2013 Revised: October 31, 2013
Accepted: December 9, 2013
Published online: December 27, 2013

Abstract
Tumors of the biliary tree are relatively rare; but their incidence is rising worldwide. There are several known risk factors for bile duct cancers, and these seem to be associated with chronic inflammation of the biliary epithelium. Herein, 2 risk factors have been discussed, primary sclerosing cholangitis and reflux of pancreatic juice into the bile duct, as seen in such an abnormal union of the pancreatic-biliary junction because magnetic resonance imaging (MRI) is used widely and effectively in the diagnosis of these diseases. When biliary disease is suspected, MRI can often help differentiate between benignity and malignancy, stage tumors, select surgical candidates and guide surgical planning. Nowadays remarkable technical advances in magnetic resonance technology have expanded the clinical applications of MRI in case of biliary diseases. In this article, it is also discussed how recent developments in MRI contribute to the diagnosis of the bile duct cancer and the evaluation of patients with risk factors affecting bile duct cancer.

Core tip: Tumors of the biliary tree are relatively rare; but their incidence is rising worldwide. When biliary disease is suspected, magnetic resonance imaging (MRI) can often help differentiate between benignity and malignancy, stage tumors, select surgical candidates and guide surgical planning. Nowadays remarkable technical advances in magnetic resonance technology have expanded the clinical applications of MRI in case of biliary diseases. In this article, it is also discussed how recent developments in MRI contribute to the diagnosis of the bile duct cancer and the evaluation of patients with risk factors affecting bile duct cancer.

© 2013 Baishideng Publishing Group Co., Limited. All rights reserved.

INTRODUCTION
Bile duct malignancies are relatively rare, estimated at 2% of all cancers with an incidence of 0.01%-0.04% in autopsy series[1]; however their incidence is rising worldwide[2,3]. The several known risk factors account for bile duct cancers, and these seem to be associated with chronic inflammation of the biliary epithelium[4-7]. The exact mechanism of tumor development is not completely understood and various possible pathways have been proposed, including chronic inflammatory process in the bile duct, mutation, and parasite-induced DNA damage[8-11]. When biliary disease is suspected, optimal imaging studies provide the required information for differentiating between benign and malignant tumors, tumor staging, selection of surgical candidate, and surgical
planning of bile duct cancer. Various imaging modalities, invasive and noninvasive, are employed in diagnosis and staging of bile duct tumors\cite{1,12}. The invasive methods include endoscopic retrograde cholangiopancreatography (ERCP), endoscopic ultrasonography (EUS), intraductal ultrasonography (IDUS), percutaneous transhepatic cholangiography (PTC), and optical coherence tomography. Noninvasive imaging methods include ultrasonography (US), multidetector computed tomography (MDCT), magnetic resonance imaging (MRI), and positron emission tomography-computed tomography (PET-CT). ERCP and PTC are not used as diagnostic tools alone owing to invasive nature. Nowadays ERCP is used for interventions such as biopsy, drainage and EUS/IDUS. US, EUS and IDUS are useful technique for screening biliary diseases particularly gallbladder disease; however their efficacy depends on operator skill and experience. MDCT are accurate and useful imaging techniques for the evaluation of biliary diseases. MDCT offers detailed information about the biliary tree and surrounding structures; however, it has some demerits such as ionized radiation and adverse reaction of intravenous contrast materials. MRI is a reliable noninvasive common imaging tool for the diagnosis and pre-surgical evaluation of bile duct tumors. MRI has many advantages over other modalities: (1) it is completely noninvasive, does not require exposure to ionizing radiation, and does not cause patient discomfort; (2) it does not require expert technicians with sophisticated technical skills. Therefore MRI has become an important diagnostic tool for bile duct diseases.

Moreover nowadays remarkable technical advances in magnetic resonance (MR) technology have increased the clinical applications of MRI for diagnosing biliary diseases\cite{12-15}. In this article, it is discussed how developments in MRI have improved the evaluation of patients with risk factor affecting bile duct cancers and the diagnosis of bile duct cancers.

MRI TECHNIQUE

A pre-procedural fasting is recommended for gallbladder distension and gastric emptying. When fluid is present in the stomach and duodenum, visualization of the bile duct may be obscured by interposition of bile loop. Therefore administration of oral contrast agent (iron oxide particles, blueberry juice or pineapple juice) is recommended.

Most institutes may perform MR examinations at 1.5 T with a torso coil. Although imaging at 3 T can improve the signal-to-noise ratio and spatial resolution, it may be hampered by dielectric effects, banding, and other pulse sequence-related effects\cite{16-19}. The pulse sequences used for MRI of the bile duct are usually axial T1- and T2-weighted imaging, MR cholangiopancreatography (MRCP), and axial diffusion-weighted imaging (DWI). T1-weighted image may be used under an intravenous contrast material. Most gadolinium contrast agents produce an enhancement pattern similar to that observed with iodine-based CT contrast. The advent of the hepatocyte-specific contrast agents (Gd-EOB-DTPA, Gd-BOPTA, etc.) allows the usual early-phase imaging of the arterial, portal, and venous phases, plus delayed-phase hepatic parenchymal and biliary imaging, taking advantage of the fact that about 50% of injected dose of these contrast agents are excreted via the biliary system\cite{19,20}.

MRCP use 2 varieties of T2-weighted sequences. One is obtained with a single-shot turbo spin-echo T2-weighted sequence by using a long echo time to selectively display the fluid filled bile ducts. The other is obtained by using a navigator-based respiratory-triggered three-dimensional acquisition sequence with a longer acquisition time\cite{21}. The differences of both are small, and thus either or both are used for MRCP accordingly.

DWI can obtain additional information derived from the microscopic motion of proton in water, which is not possible by using conventional MRI. DWI is a sensitive sequence for the detection of tumors and inflammation of the bile ducts. It has the advantage of quantitative data analysis through the generation of apparent diffusion coefficient (ADC) maps, which can contribute to objective disease assessment and monitoring of response to therapy\cite{22-25}.

MRI can allow us to evaluate the analysis of bile and pancreatic juice flow, which may have relate to carcinogenesis of the bile duct tumors. Although by now the flow analysis of the bile duct based on MRI was held by a continuous MRCP examination after secretin injection, a new method [time-spatial labeling inversion pulse (SliP) imaging] become to evaluate the flow analysis easier and faster than before\cite{26}.

CLINICAL INDICATION

Benign biliary diseases and condition at a high-risk for malignancy

Risk factors for bile duct carcinoma include (1) primary sclerosing cholangitis (PSC), (2) reflux of pancreatic juice into the common bile duct, such as in an abnormal arrangement of the pancreato-biliary ductal system (AAPB), (3) exposure to chemicals, and (4) medication such as oral contraceptives and methyldopa\cite{4-7}. In this chapter, MRI applications for benign biliary diseases and condition at a high-risk for malignancy are discussed about PSC and reflux of pancreatic juice into the bile duct because MRI is used widely and effectively for these entities (Table 1).

PSC: PSC is a chronic cholestatic liver disease of possible autoimmune origin, characterized by intra- and extrahepatic bile duct inflammation and fibrosis\cite{6,27-31}. PSC is the most common risk factor for cholangiocarcinoma in Western countries, with a prevalence of cholangiocarcinoma ranging from 8% to 25%\cite{27}. Diagnostic criteria for PSC include (1) typical cholangiographic abnormalities; (2) clinical, biochemical, and hepatic histologic finding; and (3) the exclusion of secondary cause of sclerosing cholangitis.

The diagnosis of PSC was based on characteristic...
choledochographic finding in combination with clinical, biochemical, and histologic features. Therefore ERCP was considered the standard method for diagnosis of PSC. However, owing to developments in MR technology, MRCP has become another important modality. The result of a meta-analysis showed that MRCP had high sensitivity and very high specificity for the diagnosis of PSC.\cite{43,45} The radiological characteristics of PSC mimic those of cholangiocarcinoma.\cite{43} Both make differential diagnosis quite difficult even with current diagnostic modalities including MRI.

AAPB: AAPB is a congenital anomaly defined as the junction of the pancreatic and bile ducts being located outside the duodenal wall. As the contraction of the sphincter of Oddi within the duodenal wall does not functionally affect the junction in patients with this congenital abnormality, continuous pancreaticobiliary reflux occurs, resulting in a high incidence of biliary cancer. AAPB can be divided into (1) AAPB with biliary dilatation (choledochal cyst) and (2) AAPB without biliary dilatation.

AAPB with choledochal cyst: Choledochal cysts are rare congenital biliary tract anomalies characterized by biliary tree dilatation. Although the incidence in the Western population is 1 in 100000 to 150000 live births, it is much higher in Asian countries, particularly Japan, where they can be found in up to 1 in 1000 live births. Choledochal cysts are usually classified into several types, based on anatomical findings. According to Todani’s classification system, choledochal cysts include five main types. In Todani’s classification system, almost all patients with choledochal cyst are classified into 3 types (type Ia, Ic and IV-A), and that associated with AAPB. Biliary tract malignancies were seen in 10%-30% of patients with choledochal cyst and it increases with age.\cite{46,47} A prompt and accurate diagnosis of choledochal cyst, follow by surgical is therefore essential.

In diagnostic imaging, researchers have shown that MRCP can offer diagnostic information equivalent to that of ERCP for assessment of choledochal cysts in adults.\cite{46,47} Figure 2). Although MRCP should not replace ERCP totally in pediatric patients, MRCP should be considered the first-choice imaging technique for evaluation of choledochal cysts. MRCP can provide pre-operative information about minute structure of AAPB.
AAPB without choledochal cyst: AAPB patients without choledochal cyst, similar to those with choledochal cyst, experience continuous reciprocal reflux between pancreatic juice and bile. Because the hydro pressure within the pancreatic duct is usually greater than that within the bile duct, pancreatic juice frequently refluxes into the bile duct in these patients, which results in a high incidence of cancer of the biliary tract.

Although AAPB patients with and without choledochal cyst have a risk of biliary malignancy, the usual sites of malignancy differ. To the contrast bile duct and gallbladder cancers were seen in 34% and 65% of AAPB with choledochal cysts, only gallbladder cancer was found in almost all of 38% of AAPB without biliary dilatation. Once AAPB is diagnosed, prophylactic flow-diversion surgery (bile duct resection and biloenteric anastomosis) is performed for patients with choledochal cyst.

Treatment of patients with AAPB without biliary dilatation is controversial. Prophylactic cholecystectomy is performed in many institutions. However, some surgeons propose excision of the extrahepatic bile duct, together with gallbladder.

The diagnostic criteria for AAPB have been established on the basis of ERCP. Although Kamisawa et al have reported that MRCP can be used to detect AAPB (Figure 3), they have also reported that some atypical cases with relative short common channel cannot be diagnosed by MRCP, and should be confirmed by ERCP.

AAPB cases with choledochal cysts have clinical symptoms due to cholangitis or pancreatitis in childhood, and thus they tend to be diagnosed in childhood. Patients without choledochal cysts are usually not diagnosed until adulthood, when they have already progressed to advanced stage gallbladder carcinoma, which has a poor prognosis. An appropriate strategy is necessary to detect and manage these cases. Takuma et al have suggested that MRCP should be performed in patients who are found to have gallbladder wall thickening by US.

Pancreatic juice reflux without AAPB

Recently, several case series have been published on the reflux of pancreatic juice into the bile duct without a morphologically AAPB, and the correlation of such cases with biliary diseases, especially biliary malignancies, is drawing attention. These cases could not be detected by existing imaging modalities based on morphological change.

Several reports have shown that high amylase levels in bile samples on ERCP, which indicate reflux of pancreatic juice, or reflux of contrast medium into the pancreatic duct during intraoperative cholangiography, were found in 26%-87% of patients with normal pancreatico-biliary duct anatomy. Researchers have shown that MRCP can be used to detect pancreatic juice reflux in those patients. In patients without AAPB, reflux of pancreatic juice into the common bile duct can be indirectly observed by using secretin-stimulating MRCP. The cause of such reflux may be dysfunction of the sphincter of Oddi.

The new method of time-SLIP technique, used in vascular studies, has the potential to visualize pancreatic juice flow directly. Researchers have shown that this method can be used to detect pancreatic juice flow reflux in the normal patients (Figure 5). The new
Figure 4 Flow of pancreatic juice by time-spatial labeling inversion pulse imaging. A: Magnetic resonance cholangiopancreatography image; B: Time-spatial labeling inversion pulse image obtained by applying labeling pulse box surrounded by lines to the body and tail portions of the main pancreatic duct, not showing movement; C: Flow of pancreatic juice in duct from body into the head of pancreas is identified by high signal intensity (arrow).

Figure 5 Pancreatic juice reflux into the biliary tree by time-spatial labeling inversion pulse imaging. A 56-year-old female patient underwent magnetic resonance imaging after abnormal laboratory findings. Magnetic resonance cholangiopancreatography revealed normal morphology, but time-spatial labeling inversion pulse imaging showed pancreatic juice reflux into the biliary tree. A: Magnetic resonance cholangiopancreatography image; B: Flow of pancreatic juice from body of the pancreas into the head of the pancreas is identified by high signal intensity (arrows).

BILIARY MALIGNANCIES

In general, the diagnosis of biliary tumors, particularly early detection and differential diagnosis, is still challenging, although many sensitive direct and indirect techniques have been adopted.

Cholangiocarcinoma

Cholangiocarcinoma arise from the epithelial cells lining the biliary tree. Intrahepatic cholangiocarcinoma arise within the intrahepatic ducts and extrahepatic cholangiocarcinoma originate in the bile duct along the hepatoduodenal ligament. Extrahepatic biliary carcinomas are further divided into hilar, also called Klatskin tumors, and distal tumors. Hilar tumors represent approximately 60%-70% of cholangiocarcinoma, distal tumors represent 20%-30%, and intrahepatic cholangiocarcinomas represent 5%-10%.

The tumors are rare, estimated at 3% of all gastrointestinal cancers. They are the second most common type of primary hepatic tumors. This ratio includes intrahepatic and extrahepatic tumors. The patients present mostly in the 6th and 7th decades of life.

The pathologic classification of cholangiocarcinoma categorizes into 3 types: mass-forming, periportal infiltrating, and intraductal growing. The intraductal growing type is currently thought to be the counterpart of intraductal papillary mucinous neoplasm of the pancreas.

MRI with MRCP is usually considered the modality of choice for the diagnosis of cholangiocarcinomas. Several studies have shown that MRI has sensitivity and specificity > 90%. However, its ability to differentiate between benign and malignant obstruction is low and variable, according to the authors.

Intrahepatic cholangiocarcinoma: Intrahepatic cholangiocarcinoma is the second most common primary hepatic malignant tumors after hepatocellular carcinoma. The important prognostic factors of intrahepatic cholangiocarcinoma are tumor size, lymph node metastasis, and vascular invasion.

The mass-forming type makes up a large percentage of intrahepatic cholangiocarcinoma, and shows an irregular shaped solid mass with peripheral rim enhancement.
and incomplete concentric pooling of contrast material on dynamic studies\[13,70-72\]. The MRI appearances depend on the degree of fibrosis, coagulative necrosis, cell debris, and mucin production. Capsular retraction, bile duct dilatation distal to the tumor, vascular encasement, and central scar have been also reported.

Several researchers have reported that the use of hepatocyte-specific contrast agent (Gd-EOB-DTPA) may aid in the diagnosis of intrahepatic cholangiocarcinoma\[73-76\]. They have shown that Gd-EOB-DTPA enhanced images displayed increased lesion conspicuity and better delineation of daughter nodules and intrahepatic metastases. Other researchers have reported that DWI may be also useful for detection of bile duct cancers\[77,78\] (Figure 6).

Extrahepatic biliary cancer: Extrahepatic biliary carcinomas are divided into hilar, also called Klatskin tumors, and distal tumors. Hilar tumors represent approximately 60%-70% and distal tumors 20%-30%\[15,16\]. The most common pattern of tumor growth is focal infiltration of the ductal wall or the periductal-infiltrating type, resulting in focal strictures. The mass-forming and intraductal-growing types are less common\[14\].

The role of MRI is to detect and characterize the tumor, and determine respectability. On cross-sectional MRI, the lesion appears ill-defined, and moderately hypo- to isointense on T1-weighted images and mildly iso- to hyperintense on T2-weighted images as compared to adjacent liver parenchyma.

Hilar bile duct cancers are most commonly of the infiltrative type and less frequently exophytic or polypoid lesions\[14\]. Many studies have reported that MRI, including MRCP, is useful in the staging of perihilar bile duct cancers\[79-84\] (Figure 7). MRI cannot assess tumor in stented ducts\[81,82\]. Minimal invasion along the mucosa and in the perineural space may escape detection if it is below the limit of resolution\[82,83\].

Distal extrahepatic cholangiocarcinomas are most commonly of the infiltrative type and grow intramurally, beneath the bile duct epithelium. The accuracy of MRCP is reported to be comparable to that of ERCP for differentiating extrahepatic bile duct carcinoma from benign stricture\[96,97,99\]. Although some overlap exists, in general the presence of a long segment of extrahepatic bile duct stricture with irregular margins and asymmetric narrowing is suggestive of cholangiocarcinoma, whereas a short segment with regular margins and symmetric narrowing indicates a benign cause\[97\]. The addition of a contrast-enhanced dynamic study to evaluate the longitudinal tumor extent of bile duct cancers is controversial. One report has shown favorable results, but another report showed no improvement in diagnostic accuracy\[100,101\].

Several researchers have reported on the utility of

Figure 6 Intrahepatic cholangiocarcinoma in a 70-year-old man. A: Axial T2-weighted image shows high signal intensity liver mass (arrow); B: Diffusion-weighted imaging shows high signal intensity in the lesion (arrow).

Figure 7 Hilar bile duct cancer in an 84-year-old woman. A: Axial T2-weighted image shows wall thickening and high signal intensity of hilar bile duct (arrow); B: Diffusion-weighted imaging shows high signal intensity in the lesion (arrow); C: Magnetic resonance cholangiopancreatography shows occlusion of the hilar bile duct (arrow).
DWI in these lesions, and it may play an important role in the diagnosis of extrahepatic tumors\cite{95,96} (Figure 8).

Gallbladder cancer

Primary carcinoma of the gallbladder is the most common malignancy of the biliary tract. Spread of gallbladder carcinoma to the liver is common due to the thinness of the gallbladder's smooth muscular layer and the proximity to the liver, allowing spread to lymphatic channels\cite{97-101}. Gallbladder carcinomas exhibit 3 typical patterns: polypoid, mural thickening, and diffusely infiltrative\cite{102}. Nearly 70% of gallbladder carcinoma present as diffusely infiltrative lesions\cite{103}.

Usually, US is used as an initial diagnostic modality. As a second step, CT, MRI with MRCP, and/or traditional cholangiography is often used for obtaining additional information. Comparative studies of CT and MRI with MRCP are desirable.

The role of MRI is to characterize the tumor, and determine respectability\cite{103,104}. Gallbladder carcinoma usually exhibits low to intermediate signal intensity on T1-weighted sequences and heterogenous hyperintensity on T2-weighted sequences with a characteristically ill-defined contour\cite{105}. In the polypoid and mural thickening types, lesion more than 10 mm in diameter or which enhance after intravenous contrast material, are usually malignant. The diffusely infiltrative type, the tumor appears as a large solid mass in the gallbladder fossa, obscuring the gallbladder. The presence of gallstones within the mass may be helpful in making the diagnosis. In tumor staging, differentiation between stage T1 (lesions confined to the muscular layer) and stage T2 (lesions confined to subserosal or perimuscular connective tissue) is important, because vastly different operative procedures used depending on the stage. Yoshimitsu et al\cite{101} have reported that submucosal enhancement on a delayed phase dynamic MRI study is a useful sign for differentiating between the stages.

Several researchers have showed that DWI may be useful in the diagnosis of gallbladder carcinoma\cite{106-109} (Figure 9). The sensitivity and specificity of conventional MRI alone was 74% and 68%-83%, respectively; these values increased when DWI was used along with conventional MRI\cite{24}.

Ampullary cancer

Ampullary carcinoma tends to appear as small mass that causes biliary obstruction. Although CT and MRI are used to evaluate ampullary carcinoma, it is difficult to diagnose because of the small tumors and difficulty of differentiating between the tumors and surrounding normal structure. MRI, including MRCP, has been reported to be more accurate than CT\cite{106,107}. MRI in ampullary carcinoma has a high sensitivity and low specificity\cite{110}. EUS and ERCP are usually used to identify ampullary carcinoma.

Histologically, most ampullary carcinoma develop

Figure 8 Distal extrahepatic cholangiocarcinoma in an 83-year-old woman. A: Axial T2-weighted image shows wall thickening and slight high mass of the distal common bile duct (arrow); B: Diffusion-weighted imaging shows high signal intensity in the lesion (arrow); C: Magnetic resonance cholangiopancreatography shows occlusion of the distal common bile duct (arrow).

Figure 9 Gallbladder carcinoma in a 56-year-old woman. A: Axial T2-weighted image shows focal wall thickening (arrow); B: Diffusion-weighted imaging shows high signal intensity in the lesion (arrow); C: Magnetic resonance cholangiopancreatography shows a filling defect in the gallbladder (arrow). Abnormal arrangement of the pancreato-biliary ductal system is identified.
from 1 of 2 types of epithelium, resulting in an intestinal-type adenocarcinoma arising from the intestinal epithelium lining the duodenal papilla and pancreaticobiliary-type adenocarcinoma developing from the biliary epithelium of the ampullary portion. The subtypes of ampullary tumors have different prognoses. Chung et al.[11] have shown MRI may be helpful in determining the subtypes of ampullary tumors.

Several studies have reported that DWI has the potential for differentiating malignant ampullary tumors from benign ampullary tumors[114,115]. Researchers have reported that malignant tumors have a low ADC value compared to that of benign tumors (Figure 10).

CONCLUSION

MRI is a promising non-invasive imaging technique for evaluating biliary lesions. MRI can be used for diagnosis, tumor characterization, preoperative planning, and follow-up of malignant biliary lesions.

REFERENCES

1. Ganeshan D, Moron FE, Szklaruk J. Extrahepatic bile duct cancer: New staging classification. World J Radiol 2012; 4: 345-352 [PMID: 22937214 DOI: 10.4329/wjir.v4.i8.345]
2. Shaib Y, El-Serag HB. The epidemiology of cholangiocarcinoma. Semin Liver Dis 2004; 24: 115-125 [PMID: 15192785 DOI: 10.1055/s-2004-828899]
3. Watanapa P. Cholangiocarcinoma in patients with opisthorchiasis. Br J Surg 1996; 83: 1062-1064 [PMID: 8869303 DOI: 10.1002/bjs.1800830809]
4. Khan SA, Thomas HC, Davidson BR, Taylor-Robinson SD. Cholangiocarcinoma. Lancet 2005; 366: 1303-1314 [PMID: 16214602 DOI: 10.1016/S0140-6736(05)67350-7]
5. Patel R. Cholangiocarcinoma, Nat Clin Pract Gastroenterol Hepatol 2006; 3: 33-42 [PMID: 16397610]
6. Parkin DM, Olshina H, Srivatanakul P, Vatanasapt V. Cholangiocarcinoma: epidemiology, mechanisms of carcinogenesis and prevention. Cancer Epidemiol Biomarkers Prev 1993; 2: 537-544 [PMID: 8268770]
7. Vauthy JN, Blumgart LH. Recent advances in the management of cholangiocarcinomas. Semin Liver Dis 1994; 14: 109-114 [PMID: 8047893 DOI: 10.1055/s-2007-1007302]
8. Khan SA, Taylor-Robinson SD, Toledano MB, Beck A, Elliott P, Thomas HC. Changing international trends in mortality rates for liver, biliary and pancreatic tumours. J Hepatol 2002; 37: 806-813 [PMID: 12445422 DOI: 10.1016/S0168-8270(02)0297-0]
9. Menias CO, Surabhi VR, Prasad SR, Wang HL, Narra VR, Chintapalli KN. Mimics of cholangiocarcinoma: spectrum of disease. Radiographics 2008; 28: 1115-1129 [PMID: 18635652 DOI: 10.1148/rg.284075148]
10. Noda Y, Fujita N, Kobayashi G, Ito K, Horaguchi J, Takasawa O, Obana T, Ishida K, Senoo S, Yoneichi M, Suzuki T, Hirasawa D, Sugawara T, Kobari M, Sawai T, Uzuki M, Watanabe M. Histological study of gallbladder and bile duct epithelia in patients with anomalous arrangement of the pancreaticobiliary ductal system: comparison between those with and without a dilated common bile duct. J Gastroenterol 2007; 42: 211-218 [PMID: 17380279 DOI: 10.1007/s00535-006-1991-y]
11. Zen Y, Quaglia A, Heaton N, Rela M, Portmann B. Two distinct pathways of carcinogenesis in primary sclerosing cholangitis. Histopathology 2011; 59: 1100-1110 [PMID: 22175890 DOI: 10.1111/j.1365-2559.2011.04048.x]
12. Aljiffry M, Walsh MJ, Molinari M. Advances in diagnosis, treatment and palliation of cholangiocarcinoma: 1990-2009. World J Gastroenterol 2009; 15: 4220-4226 [PMID: 19750567 DOI: 10.3748/wjg.v15.i42]
13. Chung YE, Kim MJ, Park YN, Choi JY, Pyo YJ, Kim YC, Cho HJ, Kim KA, Choi SY. Varying appearances of cholangiocarcinoma: radiologic-pathologic correlation. Radiographics 2009; 29: 683-700 [PMID: 19448110 DOI: 10.1148/rg.293085729]
14. Matsos C, Serrao E, Bali MA. Magnetic resonance imaging of biliary tumours. Magn Reson Imaging Clin N Am 2010; 18: 477-496 [PMID: 21094451 DOI: 10.1016/j.mrcin.2010.08.004]
15. Manfredi R, Barbaro B, Masselli G, Vecchioli A, Marano P. Magnetic resonance imaging of cholangiocarcinoma. Semin Liver Dis 2004; 24: 155-164 [PMID: 15192788 DOI: 10.1055/s-2004-828892]
16. Isoda H, Kataoka M, Maetani Y, Kidoh A, Umeoka S, Tamaki K, Koyama T, Nakamoto Y, Miki Y, Saga T, Togashi K. MRCP imaging at 3.0 T vs. 1.5 T: preliminary experience in healthy volunteers. J Magn Reson Imaging 2007; 25: 1000-1006 [PMID: 17410562 DOI: 10.1002/jmri.20892]
17. Li N, Liu C, Bi W, Lin X, Jiao H, Zhao P. MRCP and 3D LAVA imaging of extrahepatic cholangiocarcinoma at 3 T MRI. Clin Radiol 2012; 67: 579-586 [PMID: 22137873 DOI: 10.1016/j.crad.2011.10.016]
18. Chang JK, Kamel IR, Macura KJ, Bluemke DA. 3.0-T MR imaging of the abdomen: comparison with 1.5 T. Radiographics 2008; 28: 1983-1998 [PMID: 19001653 DOI: 10.1148/rg.287075154]
19. Lee NK, Kim S, Lee JW, Lee SH, Kang DH, Kim GH, Seo HI. Biliary MR imaging with Gd-EOB-DTPA and its clinical applications. Radiographics 2009; 29: 1707-1724 [PMID: 19959517 DOI: 10.1148/rg.296095051]
20. Koelblinger C, Schima W, Weber M, Mang T, Nemec S, Kulina-CoSentini C, Bastani N, Ba-Salamah A. Gadoxate-
enhanced T 1-weighted MR cholangiography: comparison of 1.5 T and 3.0 T. Radiology 2009; 181: 587-592 [PMID: 19353488 DOI: 10.1148/radiol.18121022]

Choi JY, Kim MJ, Lee JM, Koo JH, Kim KH, Han JK, Choi BI. Magnetic resonance cholangiography: comparison of two- and three-dimensional sequences for assessment of malignant biliary obstruction. Eur Radiol 2008; 18: 78-86 [PMID: 18260646 DOI: 10.1007/s00330-007-0670-6]

Miquel ME, Scott AD, Macdougall ND, Boubertakh R, Bharwani N, Rockall AG. In vitro and in vivo repeatability of abdominal diffusion-weighted MRI. Br J Radiol 2012; 85: 1507-1512 [PMID: 22674704 DOI: 10.1259/bjr/32264440]

Lee NK, Kim S, Kim GH, Kim DU, Seo HJ, Kim TU, Kang DH, Jang HJ. Diffusion-weighted imaging of biliary pancreatice disorders: correlation with conventional magnetic resonance imaging. World J Gastroenterol 2012; 18: 4102-4117 [PMID: 22919924 DOI: 10.3748/wjg.v18.i13.4102]

Kim SJ, Lee JM, Kim H, Yoon JH, Han JK, Choi BI. Role of diffusion-weighted magnetic resonance imaging in the diagnosis of gallbladder cancer. J Magn Reson Imaging 2013; 38: 127-137 [PMID: 22381048 DOI: 10.1002/jmri.23596]

Corona-Villalobos CP, Pan L, Halappa VG, Bonekamp S, Lichtenstein DR. Liver dis

Lichtenstein DR. Hepatobiliary complications of inflammatory bowel disease. Curr Gastroenterol Rep 2011; 13: 495-505 [PMID: 21773706 DOI: 10.1007/s11894-011-0213-9]

Vitellas KM, Keogan MT, Freed KS, Enns RA, Spritzer CE, Baillie J, Nelson RC. Comparison of MR cholangiopancreatographic techniques with contrast-enhanced cholangiography in the evaluation of sclerosing cholangitis. AJR Am J Roentgenol 2002; 178: 327-334 [PMID: 11804887 DOI: 10.2214/ajr.178.1.1780327]

Berstad AE, Aabakken L, Smith HJ, Aasen S, Boberg KM, Schrunpf E. Diagnostic accuracy of magnetic resonance and endoscopic retrograde cholangiography in primary sclerosing cholangitis. Clin Gastroenterol Hepatol 2006; 4: 514-520 [PMID: 16616338 DOI: 10.1016/j.cgh.2005.10.007]

Fulcher AS, Turner MA, Franklin KJ, Shiffman ML, Sterling RK, Luketic VA, Sanay AI. Primary sclerosing cholangitis: evaluation with MR cholangiopancreatography-a case-control study. Radiology 2000; 215: 71-80 [PMID: 10751470]

Ferrara C, Valeri G, Salvolini L, Giovagnoni A. Magnetic resonance cholangiopancreatography in primary sclerosing cholangitis in children. Pediatr Radiol 2002; 32: 413-417 [PMID: 12029541 DOI: 10.1007/s00247-001-0617-z]

Textor HJ. Flacks S, Paulse D, Keller E, Neubrand M, Terjung B, Gieseke J, Scheurcen C, Sauerbruch T, Schild HH. Three-dimensional magnetic resonance cholangiopancreatography with respiratory triggering in the diagnosis of primary sclerosing cholangitis: comparison with endoscopic retrograde cholangiography. Endoscopy 2002; 34: 984-990 [PMID: 12471543 DOI: 10.1055/s-2002-358300]

Meagher S, Yousuff I, Kennedy W, Martel M, Adam V, Barkan A. The role of magnetic resonance and endoscopic retrograde cholangiopancreatography (MRCP and ERCP) in the diagnosis of patients with suspected sclerosing cholangitis: a cost-effectiveness analysis. Endoscopy 2007; 39: 222-228 [PMID: 17385107 DOI: 10.1055/s-2007-966253]

Clayton RA, Clarke DL, Currie EJ, Madhavan KK, Parks RW, Garden OJ. Incidence of benign pathology in patients undergoing hepatic resection for suspected malignancy. Surgery 2003; 1: 32-38 [PMID: 15604822 DOI: 10.1016/S1479-666x(03)80006-9]

Mortelé KJ, Rocha TC, Streeter JL, Taylor AJ. Multimodality imaging of pancreatic and biliary congenital anomalies. Radiographics 2006; 26: 715-731 [PMID: 16702450 DOI: 10.1148/rg.263055164]

Toki A, Suzuki J, Watarai Y, Sugiyama A, Hotta H, Nakayama T, Tanaka A. Is the classification of congenital biliary dilatation and pancreatobiliary maljunction useful (Japanese language) ? Tan to Sui 2012; 33: 17-22. Available from URL: http://www.igakutosho.co.jp/magazine/1_s

Jablonska B. Biliary cysts: etiology, diagnosis and management. World J Gastroenterol 2012; 18: 4801-4810 [PMID: 23002354 DOI: 10.3748/wjg.v18.i35.4801]

Matos C, Nicoise N, Deviere J, Cassart M, Metens T, Struyven J, Cremer M. Choledochal cysts: comparison of findings at MR cholangiopancreatography and endoscopic retrograde cholangiopancreatography in eight patients. Radiology 1998; 209: 443-448 [PMID: 9807571]

Irie H, Honda H, Jimi M, Yokohata K, Chiijika K, Kuroiwa T, Hanada K, Yoshimitsu K, Tajima T, Matsuo S, Suta S, Masuda K. Value of MR cholangiopancreatography in evaluating choledochal cysts. AJR Am J Roentgenol 1998; 171: 1381-1385 [PMID: 9788883 DOI: 10.2214/ajr.171.5.9788883]

Kim MJ, Han SJ, Yoon CS, Kim JH, Oh JT, Chung KS, Yoo HS. Using MR cholangiopancreatography to reveal anomalous pancreaticobiliary ductal union in infants and children with choledochal cysts. AJR Am J Roentgenol 2002; 179: 209-214 [PMID: 12076938 DOI: 10.2214/ajr.179.1.1790209]

Kamisawa T, Takuma K, Ikotaru F, Itoi T. Endoscopic diagnosis of pancreaticobiliary maljunction. World J Gastrointest Endosc 2011; 3: 1-5 [PMID: 21258599 DOI: 10.4253/wjge.v3.i1.1]
benate dimethylglumine-enhanced MRI of intraductal papillary mucinous tumor of the bile ducts. J Magn Reson Imaging 2007; 25: 625-627 [DOI: 10.1002/jmri.21079]

57 Sen Y, Fujii T, Itatsu K, Nakamura K, Minato H, Kasahima S, Kurumayai H, Katayama K, Kawashima A, Masuda S, Niwa H, Mitsu T, Asada Y, Miura S, Ohta T, Nakayama Y. Biliary papillary tumors share pathological features with intraductal papillary mucinous neoplasm of the pancreas. Hepatology 2006; 44: 1333-1343 [DOI: 10.1001/hep.21387]

58 Sen Y, Fujii T, Itatsu K, Nakamura K, Konishi F, Masuda S, Mitsu T, Asada Y, Miura S, Miyayama S, Uehara T, Kataya S, Nakayama Y, Biliary cystic tumors with bile duct communication: a cystic variant of intraductal papillary neoplasm of the bile duct. Mod Pathol 2006; 19: 1243-1254 [DOI: 10.1038/modpathol.3800643]

59 Sugita R. MR evaluations of biliary malignancy and condition

60 Anderson MC, Hauman RL, Suriyapar C, Schiller WR. Pancreatic enzyme levels in bile of patients with extrahepatic biliary tract disease. Am J Surg Pathol 1979; 137: 301-306 [PMID: 443420 DOI: 10.1016/0002-9610(79)90055-2]

61 Itokawa F, Itoi T, Nakamura K, Sofuni A, Kakimi K, Mori M, Yasu F, Tsuchida A, Aoki T. Assessment of occult pancreaticobiliary reflux in patients with normal pancreaticobiliary junction. Gastrointest Endosc 2003; 56: 929-932 [PMID: 12447317 DOI: 10.1016/j.gie.2002.130157]

62 Beltrán MA. Current knowledge on pancreaticobiliary reflux in normal pancreaticobiliary junction. Int J Surg 2012; 10: 190-193 [PMID: 22561306 DOI: 10.1016/j.isu.2012.02.009]

63 Kamisawa T, Anjiki H, Egawa N, Iseki T, Nakamura K, Honda G, Tsutsumi Y, Yamashita Y. Usefulness of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced MRI of intraductal papillary neoplasm of the bile ducts: a cystic variant of intraductal papillary neoplasm of the bile duct. Radiographics 2012; 32: 66-68 [PMID: 22798225 DOI: 10.1148/radiographics.32620122308]

64 Park MS, Yu JS, Lee DK, Yoon DS, Cha SW, Kim KW. Gadox...
Growing-type cholangiocarcinomas from nodular-type cholangiocarcinomas at biliary MR imaging with MR cholangiography. Radiology 2010; 257: 364-372 [PMID: 20829532 DOI: 10.1148/放射学.10992105]

93 Kim HJ, Lee JM, Kim SH, Han JK, Lee JY, Choi JY, Kim KH, Kim JY, Lee MW, Kim SJ, Choi BI. Evaluation of the longitudinal tumor extent of bile duct cancer: value of adding gadolinium-enhanced dynamic imaging to unenhanced images and magnetic resonance cholangiography. J Comput Assist Tomogr 2007; 31: 469-474 [PMID: 17538298 DOI: 10.1097/01.rct.0000289011.4260.05]

94 Ryu0 I, Lee JM, Chung YE, Park HS, Kim SH, Han JK, Choi BI. Gadobutrol-enhanced, three-dimensional, dynamic MR imaging with MR cholangiography for the preoperative evaluation of bile duct cancer. Invest Radiol 2010; 45: 217-224 [PMID: 20195160 DOI: 10.1097/RLI.0b013e3181deeb1]

95 Cui XY, Chen HW. Role of diffusion-weighted magnetic resonance imaging in the diagnosis of extrabiliary cholangiocarcinoma. World J Gastroenterol 2010; 16: 3196-3201 [PMID: 20935506 DOI: 10.3748/wjg.v16.i25.3196]

96 Cui XY, Chen HW, Cai S, Bao J, Tang QF, Wu LY, Fang XM. Diffusion-weighted MR imaging for detection of extrabiliary cholangiocarcinoma. Eur Radiol 2012; 21: 2961-2965 [PMID: 22285604 DOI: 10.1007/s00330-012-2587-y]

97 Sons HU, Borchard F, Joel BS. Carcinoma of the gallbladder: autopsy findings in 287 cases and review of the literature. J Surg Oncol 1983; 26: 199-206 [PMID: 2974247 DOI: 10.1002/jso.2930280111]

98 Kelly TR, Chamberlain TR. Carcinoma of the gallbladder. Am J Surg 1982; 143: 737-741 [PMID: 7091509 DOI: 10.1016/0002-9618(82)90049-6]

99 Sumiyoshi K, Nagai E, Chiiujiwa K, Nakayama F. Pathology of carcinoma of the gallbladder. World J Surg 1991; 15: 315-321 [PMID: 1853609 DOI: 10.1007/BF01685722]

100 Levy AD, Murakata LA, Rohrmann CA. Gallbladder carcinoma: radiologic-pathologic correlation. Radiographics 2001; 21: 295-314; questionnaire, 549-455 [PMID: 11259693]

101 Yoshimitsu K, Nishihara Y, Okamoto D, Ushijima Y, Nishie A, Yamaguchi K, Taketomi A, Honda H. Magnetic resonance differentiation between T2 and T1 gallbladder carcinoma: significance of suberosal enhancement on the delayed phase dynamic study. Magn Reson Imaging 2012; 30: 854-859 [PMID: 22495258 DOI: 10.1016/j.mri.2012.02.016]

102 Yoshimitsu K, Honda H, Kaneko K, Kuroiwa T, Irie H, Ueki T, Chiiujiwa K, Takenaka K, Masuda K. Dynamic MRI of the gallbladder lesions: differentiation of benign from malignant. J Magn Reson Imaging 1997; 7: 696-701 [PMID: 9243391 DOI: 10.1002/jmri.1880070415]

103 Kim JH, Kim TK, Eun HW, Kim BS, Lee MG, Kim PN, Ha HK. Preoperative evaluation of gallbladder carcinoma: efficacy of combined use of MR imaging, MR cholangiography, and contrast-enhanced dual-phase three-dimensional MR angiography. J Magn Reson Imaging 2002; 16: 676-684 [PMID: 12451581 DOI: 10.1002/jmri.10122]

104 Schwartz LH, Black J, Fong Y, Jarnaquin W, Blumgart L, Gruen D, Winston C, Panicek DM. Gallbladder carcinoma: findings at MR imaging with MR cholangiopancreatography. J Comput Assist Tomogr 2002; 26: 405-410 [PMID: 12016370 DOI: 10.1097/01.rct.000007428-20020500-00001]

105 Catalano OA, Sahani DV, Kalva SP, Cushing MS, Hahn PF, Brown J, Edelman RR. MR imaging of the gallbladder: a pictorial essay. Radiographics 2008; 28: 135-55; quiz 324 [PMID: 18203935 DOI: 10.1148/rg.28605183]

106 Sugita R, Yamazaki T, Furuta A, Itoh K, Fujita N, Takashii S. High b-value diffusion-weighted MRI for detecting gallbladder carcinoma: preliminary study and results. Eur Radiol 2009; 19: 1794-1798 [PMID: 19190910 DOI: 10.1007/s00330-009-1322-9]

107 Irie H, Kamochi N, Nojiri J, Egashira Y, Sasaguri K, Kudo S. High b-value diffusion-weighted MRI in differentiation...
between benign and malignant polypoid gallbladder lesions. *Acta Radiol* 2011; 52: 236-240 [PMID: 21498356 DOI: 10.1258/ar.2010.100234]

108 Ogawa T, Horaguchi J, Fujita N, Noda Y, Kobayashi G, Ito K, Koshita S, Kanno Y, Masu K, Sugita R. High b-value diffusion-weighted magnetic resonance imaging for gallbladder lesions: differentiation between benignity and malignancy. *J Gastroenterol* 2012; 47: 1352-1360 [PMID: 22576026 DOI: 10.1007/s00535-012-0604-1]

109 Sugita R, Ito K, Fujita N, Takahashi S. Diffusion-weighted MRI in abdominal oncology: clinical applications. *World J Gastroenterol* 2010; 16: 832-836 [PMID: 2043461]

110 Andersson M, Kostic S, Johansson M, Lundell L, Asztély M, Hellström M. MRI combined with MR cholangiopancreatography versus helical CT in the evaluation of patients with suspected periampullary tumors: a prospective comparative study. *Acta Radiol* 2005; 46: 16-27 [PMID: 15841735 DOI: 10.1080/02841850510016018]

111 Wu DS, Chen WX, Wang XD, Acharya R, Jiang XH. Pancreatobiliary duct changes of periampullary carcinomas: quantitative analysis at MR imaging. *Eur J Radiol* 2012; 81: 2112-2117 [PMID: 21908124 DOI: 10.1016/j.ejrad.2011.08.009]

112 Chung YE, Kim MJ, Kim HM, Park MS, Choi YJ, Hong HS, Kim KW. Differentiation of benign and malignant ampullary obstructions on MR imaging. *Eur J Radiol* 2011; 80: 198-203 [PMID: 20494539 DOI: 10.1016/j.ejrad.2010.04.017]

113 Chung YE, Kim MJ, Park MS, Choi YJ, Kim H, Kim SK, Lee M, Kim HJ, Choi JS, Song SY, Kim KW. Differential features of pancreatobiliary- and intestinal-type ampullary carcinomas at MR imaging. *Radiology* 2010; 257: 384-393 [PMID: 20829529 DOI: 10.1148/radiol.10100200]

114 Jang KM, Kim SH, Lee SJ, Park HJ, Choi D, Hwang J. Added value of diffusion-weighted MR imaging in the diagnosis of ampullary carcinoma. *Radiology* 2013; 266: 491-501 [PMID: 23238154 DOI: 10.1148/radiol.12121106]

115 Lee NK, Kim S, Seo HI, Kim DU, Woo HY, Kim TU. Diffusion-weighted MR imaging for the differentiation of malignant from benign strictures in the periampullary region. *Eur Radiol* 2013; 23: 1288-1296 [PMID: 23223836 DOI: 10.1007/s00330-012-2725-6]

P- Reviewers: Midorikawa Y, Thuwajit P, Wongkham S
S- Editor: Zhai HH
L- Editor: A
E- Editor: Wu HL
