Slow conductance relaxation in insulating granular Al: evidence for screening effects

J. Delahaye, J. Honoré, T. Grenet

Institut Néel, CNRS & Université Joseph Fourier, BP 166, 38042 Grenoble, France
(Dated: June 15, 2011)

It is shown that the conductance relaxations observed in electrical field effect measurements on granular Al films are the sum of two contributions. One is sensitive to gate voltage changes and gives the already reported anomalous electrical field effect. The other one is independent of the gate voltage history and starts when the films are cooled down to low temperature. Their relative amplitude is strongly thickness dependent which demonstrates the existence of a finite screening length in our insulating films and allows its quantitative estimate (about 10nm at 4K).
This metallic-like screening should be taken into account in the electron glass models of disordered insulators.

PACS numbers: 72.80.Ng, 61.20.Lc, 73.23.Hk.

During the last 20 years, slow and glassy conductance relaxations were found in several disordered insulating systems [1–3]. These relaxations have been revealed and often studied by means of field effect measurements. In such experiments, disordered insulating films are used as (weakly) conducting channels of MOSFET devices which allow us to measure their conductance response to gate voltage \(V_g\) changes. After a quench at e.g. 4K, a slow and endless decrease of the conductance is found as long as \(V_g\) is kept constant, and any \(V_g\) change triggers a new conductance relaxation. Moreover, the system keeps some memory of its \(V_g\) history: Any stay under a fixed \(V_g\) value remains printed for some time in \(G(V_g)\) sweeps as a conductance dip centered on this value. We have also shown recently in granular Al thin films that these \(V_g\) induced relaxations display aging, i.e. the dynamics of the system depends on the time spent at low temperature, a characteristic property of glassy systems [4].

Several experimental findings suggest that these slow conductance relaxations could reflect the properties of the "electron glass" [5, 6], a glassy state theoretically predicted in the 1980s for disordered insulators [7, 8]. According to theoretical and numerical studies, a system of electrons with ill-screened interactions and disorder will need an infinite time to reach its equilibrium state at low temperature, the relaxation towards equilibrium being characterized by a conductance decrease of the system [9]. Up to now, the electron glass problem has received considerable theoretical developments but only few experimental illustrations, which explain the interest in the electrical field effect results. Moreover, most of the experiments have focused on the electrical conductance and its \(V_g\)-induced relaxations but less is known concerning the dielectric properties and their possible time evolution at low \(T\).

Since even after a long stay under a fixed \(V_g\) the conductance decrease shows no sign of saturation, it is not possible to define the conductance relaxation relative to the equilibrium value, which is unknown. Instead, short excursions to \(V_g\) values never explored before are often used to define a \(V_g\) history-free reference conductance \(G_{ref}\) [2–5]. This history-free conductance was sometimes called the "off-equilibrium" conductance since the system has never been allowed to equilibrate at these \(V_g\)'s. In the present Letter, we show that \(G_{ref}\) is not constant in time after a cool down to 4.2K in granular Al films thicker than 10nm. We also show that this feature demonstrates the existence of a screening length in our insulating granular films and allows its quantitative estimate.

Our granular Al films were prepared by e-gun evaporation of Al under a partial pressure of \(O_2\), as described elsewhere [3]. By changing the \(O_2\) pressure, we can tune the resistance of the films from metallic to insulating. For insulating samples, x-rays and TEM studies have revealed an assembly of crystalline Al grains with a typical size of a few nanometers. They are believed to be separated by thin insulating Al\(_2\)O\(_{3-x}\) layers. MOSFET devices are made by deposition of granular Al films on top of heavily doped Si wafers (the gate) covered by a 100nm thick thermally grown SiO\(_2\) layer (the gate insulator).

The film conductance \(G\) was measured by using a two terminal ac technique, employing a FEMTO current amplifier DLPCA 200 and a lock in amplifier SR 7265. Source-drain voltage was such that \(G\) stays in the Ohmic regime. All the electronic equipments sensitive to room temperature drifts were placed in a thermalized chamber with a \(T\) stability better than 0.1K. This last point was crucial in order to follow \(G\) variations with a precision of 10\(^{-3}\)% during weeks of measurements.

For 4.2K measurements, the MOSFET devices are mounted in a box filled with He exchange gas and plunged into a 100l liquid He dewar. The sample temperature follows the \(mK\) variations of the liquid He bath around 4.2K and a carbon glass thermometer close by was used to correct these temperature variations. The time required to cool down the sample from room temperature to 4.2K is about 10min.

For Fig. 1a, a MOSFET device with a 20nm thick granular Al channel was cooled down to 4.2K and main-
FIG. 1: (a) G(V_g) curves measured at different times t after a cool down to 4.2K. V_g = V_{geq} = 0 V between V_g sweeps. (b) Corresponding G(t) curves for negative V_g sweeps and out of the conductance dip region. The sample was 20nm thick with R_C = 550MΩ at 4.2K. See the text for the details.

tained at this temperature under V_{geq} = 0V. Fast V_g sweeps from −15 to +15V (250s long) were taken every 6000s after the cool down. All the G(V_g) curves display a conductance dip centered on V_{geq} which reflects the memory of the relaxation associated with the stay under V_{geq}. Far enough from V_{geq} (here for |V_g| > 5V), G is roughly constant and this baseline reflects the "off-equilibrium" conductance G_{ref} previously mentioned. Looking at the time evolution of G(V_g) curves, two features are salient. First, the amplitude of the dip increases as a function of time. This result is well known from previous studies [2–5]: the longer the stay under V_{geq}, the more pronounced the dip is. Second, and this is the new feature we aim to discuss here, the baseline conductance also decreases as a function of time. As highlighted in Fig. 1b, the G decrease is well described at any V_g's by a ln t dependence, more pronounced in the dip region because of the superposed baseline relaxation and dip growth.

To be more quantitative, we can define a parameter whose physical meaning will become clear later, the slope ratio SR of the G relaxation slope in Fig. 1b at V_{geq} to the G_{ref} relaxation slope (at −10V for example). For the sample of Fig. 1, SR ≃ 2.9. We have measured 4 different 20nm thick films with R_C values from 10MΩ to 10GΩ. A baseline relaxation was always observed, with SR at 4K between 2 and 3. For one film, the gate and the gate insulator were respectively Al and alumina and consistent results were obtained which excludes any role of a specific gate insulator material. Detailed investigation of the vertical electrical homogeneity of the films has also shown that the baseline relaxation is not related to a specific layer close to the film-substrate interface [10].

We checked that this baseline relaxation was independent of the V_g history by using the "two dip" protocol [5]. After some time under V_{geq1}, V_{geq} was changed to V_{geq2} for the rest of the experiment. We observed the formation of a new dip at V_{geq2} and the erasure of the old one at V_{geq1} (as already known [3, 5]), but the baseline relaxation in any V_g range far enough from V_{geq1} and V_{geq2} continue as if no V_{geq} change was imposed.

One may think that the baseline relaxation is induced by the V_g sweeps themselves. Indeed, when measuring G(V_g) curves, a small dip starts to form at each measured point. The baseline thus reflects a short time relaxed G value (10s being typical for our sweep parameters). We know from the "two dip" protocol results that a dip formed during 10s will be erased roughly in about 100s [2, 3]. In our case, we wait for 6000s between two V_g sweeps, thus no memory of the previous sweep is expected out of the dip region. In one experiment, we checked that the baseline relaxation was unaffected by the suspension of V_g sweeps during 30h.

An experimental artifact that may explain the baseline relaxation is the existence of a T drift after the cool down. Because of the rapid divergence of the films resistance at low T, the observed baseline variations correspond typically to drifts of few mK (≃ 2.5mK for the whole relaxation observed at 4.2K in Fig. 1). We have performed different tests (thermometer stability, comparison with and without He exchange gas) which indicate that the T drifts are much smaller than the baseline relaxation amplitude. The effect of the film thickness discussed below will definitely ruled out any interpretation in terms of a T drift.

If the baseline relaxation is a property of the granular film itself, how can we explain it? A simple hypothesis is to state that the granular Al film, although electrically insulating, has a metallic-like screening length L_{sc} that is smaller than its thickness T_h (T_h = 20nm in Fig. 1). Then, only the layer of the film located at a distance smaller than L_{sc} from the gate insulator is sensitive to V_g changes. The conductance dip ∆G_{dip} reflects the relaxation of this layer, whereas the conductance baseline G_{ref} reflects the relaxation of the rest of the film. The conductance relaxation measured at V_{geq} is then the sum of the two contributions: ∆G(V_{geq}, t) = ∆G_{dip}(t) + ∆G_{ref}(t). Since the relaxations at any V_g are well described by a ln t dependence, we can write ∆G_{ref}(t) = −A_{ref}ln t and ∆G_{dip}(t) = −A_{dip}ln t. The slope ratio SR is by defini-
FIG. 2: $G(t)$ measurements after a cool down at 4.2K for:
(a) a 10 nm thick film, $R_C = 6 G\Omega$; (b) a 100 nm thick film, $R_C = 2M\Omega$. The $G(t)$ relaxations are plotted at 0V (V_{geo}) and at $-10V$ (baseline relaxation G_{ref}).

tion equal to $(A_{dip} + A_{ref})/A_{ref}$. If the film is homogeneous, it is natural to suggest that A_{dip} and A_{ref} are respectively proportional to L_{sc} (the V_g sensitive layer thickness) and $T_h - L_{sc}$ (the V_g insensitive layer thickness). Then, $SR = T_h/(T_h - L_{sc})$ as long as $T_h > L_{sc}$. The results for the 20nm films (SR between 2 and 3) give estimates for the screening length L_{sc} between 10 and 13nm.

If our simple model is correct, then the baseline relaxation relative to that measured at V_{geo} must change with the thickness of the films. This is illustrated in Fig. 2, where the experiment of Fig. 1 was reproduced for two granular Al films 10nm and 100nm thick. A clear thickness dependence is visible. Qualitatively, the baseline relaxation is almost absent for the 10nm thick film (Fig. 1a, $SR = 20$) while it is almost equal to that measured at V_{geo} for the 100nm thick film (Fig. 1b, $SR = 1.1$). The agreement with the above simple picture is also quantitative. These SR values gives L_{sc} estimates of about 10nm, close to the results obtained from 20nm thick films (10 – 13nm). We stress that the SR variations observed for different thicknesses are much more important than those observed for a given thickness and different R_Cs.

Our simple model also predicts a thickness dependence for the amplitude of the conductance dip $\Delta G/G = [G_{ref} - G(V_{geo})]/G_{ref}$. $\Delta G/G$ data, measured for 10nm, 20nm and 100nm thick films are shown in Fig. 3 as a function of their percolation critical resistance R_C [11]. In 2D films (T_h less than the percolation radius L_0), $R_C \approx R_G$, but for thicker ones, $R_C \approx (T_h/L_0)R_G$. Taking $L_0 \approx 20nm$ [12], we estimate R_C as R_G for 10 and 20nm films and 5R_G for 100nm films. All the samples were measured after being kept under $V_{geo} = 0V$ for $t = 20h$ after a cool down at 4.2K. As can be seen and was already reported [1, 3], $\Delta G/G$ increases significantly with R_C.

Besides, a clear reduction of $\Delta G/G$ is visible for a given R_C as T_h increases, in qualitative agreement with the fact that the conductance dip originates from a layer of a fixed thickness. The agreement is also quantitative. As long as $T_h < L_{sc}$, $\Delta G/G(t)$ does not depend on T_h. Let us note its value $C(t)$ (of course $C(t)$ depends on R_C). When $T_h > L_{sc}$, one has $\Delta G/G(t) = A_{dip} \ln t/(G_0 - A_{ref} \ln t) \approx A_{dip} \ln t/G_0 = C(t)L_{sc}/T_h (\Delta G/G(t) \ll 1)$. Then, plotting $(T_h/L_{sc}) \times (\Delta G/G)$ for all the samples should give one single curve $C(t,R_C)$. This is confirmed in the inset in Fig. 3 for which we have assumed a screening length of 10nm for all the films.

Finally, our model provides a natural explanation for the increase of the $\Delta G/G$ data scatter with the thickness, as observed in Fig. 3. Small variations of the O_2 pressure or of the Al evaporation rate are always present during the deposition of granular Al films. Thus in thick samples, the measured R_C (and the estimated R_C) does not necessarily reflect the resistance of the unscreened 10nm thick layer deposited on top of the gate insulator which determines the amplitude of the dip. The quality of the scaling in the inset of Fig. 3 is indeed an indirect test of the vertical homogeneity of the films, as discussed in details in Ref. [10].

We now come to a discussion of our results. First, note that the thickness dependence of SR clearly demonstrates that the conductance relaxation exists in the “bulk” of the film and is a property of the granular Al itself (and not of its interface with the gate or the surface oxide layer). The “bulk” relaxation after a cool down at 4.2K is well described by a $\ln t$ dependence without any sign of saturation over weeks of measurement. Such a $\ln t$ dependence was also observed for the time increase of the conductance dip amplitude after a cool down [2, 3] (more complex laws are observed when V_{geo} is fixed a time t_e after the cool down, see [4]). It is a natural relaxation law for a system having a 1/τ distribution of relaxation times, as expected for an electron glass [13].

In our granular Al thin films, the electronic transport at finite T is believed to result from electron tunneling between metallic Al grains. A lower bound for L_{sc} is then the typical grain size, which was found in recent TEM measurements to be 2 – 4nm. A second important microscopic length scale is the percolation radius L_0 of the critical resistance network. Since in our films $R_C \lesssim 100G\Omega$, the diffusion of charge carriers through the critical resistance network is expected to be faster than
the time scale of the measurements (the intergrain capacitance and the capacitance of the granular Al channel to the gate are respectively \(\approx 10^{-19} F \) and \(\approx 10^{-11} F \)). Thus, \(L_0 \) should be an upper bound for \(L_{sc} \) as indeed observed: \(L_0 \) estimates from conductance fluctuations measurements are between 20 \(\text{nm} \) and 40 \(\text{nm} \) [12], a few times our \(L_{sc} \) value.

We note that no baseline relaxation was reported on 20 \(\text{nm} \) thick indium oxide films which may indicate that \(L_{sc}(4K) > 20 \text{nm} \) in this system. Interestingly enough, \(L_0 \) was found to be \(\approx 300 \text{nm} \) in "crystalline" films [14], i.e. \(\approx 10 \) times our estimate for granular Al films, reflecting a less dense percolating network in indium oxide consistent with a larger screening length.

Our observations address the important question of screening in a disordered insulator, a subject which has been little explored both theoretically and experimentally. Electron glass models are generally developed in the limit of strongly localized electrons [7-9] (Ref. [15, 16] are exceptions). But in real systems, there is a mobility of the charge carriers at finite \(T \) which will give rise to a metallic-like screening. Numerical studies on disordered insulators have indeed found a transition between a metallic screening at high \(T \) where most of the electrons are diffusive and a slow dielectric response at low \(T \) where most of the electrons remain located in finite size clusters [17-19]. Such a transition was observed around 1\(K \) in capacitative measurements on a doped semiconductor [20]. According to the usual formula, \(L_{sc}^2 = \epsilon \epsilon_0 / e^2 dN/d\mu(E_F) \), where \(dN/d\mu \) is the thermodynamic DOS. In a glassy phase and for a finite time \(t \), the system cannot explore all the configurations and the thermodynamic DOS has to be replaced by a pseudo-equilibrium DOS \(dN/d\mu(t) \) for which only relaxations faster than \(t \) are allowed. The first theoretical attempts to do so [7, 21] have found that the short time (\(\approx \) Maxwell time) screening length diverges as \(T \) goes to 0 and decreases as a function of \(t \) [21].

In summary, we have described in insulating granular Al films the existence of a \(\nu \) insensitive conductance relaxation. Its thickness dependence demonstrates the existence of a metallic screening length of about 10\(\text{nm} \) at 4\(K \). Our results provide a new way to study the screening length and its relaxation in disordered insulators where an anomalous electrical field effect has been found. They also point to the need for more theoretical studies: how are the classical electron glass models predictions affected by the existence of a metallic screening length ?

This research has been partly supported by the French National Research Agency ANR (contract N°05–JC05–44044).

\[\Delta G/G \text{ values measured 20h after a cool down at 4.2K as a function of } R_C \text{ (see the text for the details). The films are } 10\text{nm} \text{ (squares), } 20\text{nm} \text{ (circles) and } 100\text{nm} \text{ (triangles) thick. The lines are guides for the eye. In the inset, } (\Delta G/G) \times (T_h/L_w) \text{ versus } R_C \text{. Typical error bars on each point are about 10\%} . \]

\[\text{FIG. 3: } \]
[17] W. Xue and P.A. Lee, Phys. Rev. B 38, 9093 (1988).
[18] A.B. Kolton et al., Phys. Rev. B 71, 024206 (2005).
[19] A. Díaz-Sánchez et al., Phys. Rev. B 59, 910 (1999).
[20] Don Monroe et al., Phys. Rev. Lett. 59, 1148 (1987).
[21] M. Müller and S. Pankov, Phys. Rev. B 75, 144201 (2007).