Superstable groups acting on trees

Abderezak Ould Houcine
Camille Jordan Institute, University Lyon 1, France

Modnet Bercelona Conference, November 4, 2008
Groups acting on trees

Definition

A simplicial tree is a connected graph without circuits.

A group G acts on a simplicial tree T if it acts by automorphisms on T.

A real tree X is a geodesic metric space such that any two points are joined by an unique arc.

This equivalent to saying that X is a 0-hyperbolic geodesic space.

A group G acts on a real tree if it acts by isometries.
A simplicial tree is a connected graph without circuits.

A real tree is a geodesic metric space such that any two points are joined by an unique arc. This equivalent to saying that X is a 0-hyperbolic geodesic space.

A group G acts on a real tree if it acts by isometries.
A simplicial tree is a connected graph without circuits.

A group G acts on a simplicial tree T if it acts by automorphisms on T.

A real tree X is a geodesic metric space such that any two points are joined by an unique arc. This equivalent to saying that X is a 0-hyperbolic geodesic space.

A group G acts on a real tree if it acts by isometries.
Groups acting on trees

Definition

- A simplicial tree is a connected graph without circuits.
- A group G acts on a simplicial tree T if it acts by automorphisms on T.
- A real tree X is a geodesic metric space such that any two points are joined by an unique arc.
Definition

- A simplicial tree is a connected graph without circuits.
- A group G acts on a simplicial tree T if it acts by automorphisms on T.
- A real tree X is a geodesic metric space such that any two points are joined by an unique arc. This equivalent to saying that X is a 0-hyperbolic geodesic space.
A simplicial tree is a connected graph without circuits.

A group G acts on a simplicial tree T if it acts by automorphisms on T.

A real tree X is a geodesic metric space such that any two points are joined by an unique arc. This equivalent to saying that X is a 0-hyperbolic geodesic space.

A group G acts on a real tree if it acts by isometries.
Groups acting on trees

Definition (Classification of elements)

Let G be a group acting on a simplicial or a real tree T. An element g is said an inversion if $ge = \bar{e}$ for some edge e (when T is simplicial). An element g is said elliptic if $gx = x$ for some x of T. An element g is said hyperbolic if it is neither an inversion nor elliptic. A group G acts freely if every nontrivial element of G is hyperbolic.
Groups acting on trees

Definition (Classification of elements)

Let G be a group acting on a simplicial or a real tree T.

- An element g is said an inversion if $ge = \bar{e}$ for some edge e (when T is simplicial).
- An element g is said elliptic if $gx = x$ for some x of T.
- An element g is said hyperbolic if it is neither an inversion nor elliptic.

A group G acts freely if every nontrivial element of G is hyperbolic.
Groups acting on trees

Definition (Classification of elements)

Let G be a group acting on a simplicial or a real tree T.

- An element g is said an *inversion* if $ge = \bar{e}$ for some edge e (when T is simplicial).
- An element g is said *elliptic* if $gx = x$ for some x of T.
- An element g is said *hyperbolic* if it is neither an inversion nor elliptic.

A group G acts freely if every nontrivial element of G is hyperbolic.
Groups acting on trees

Definition (Classification of elements)

Let G be a group acting on a simplicial or a real tree T.

- An element g is said an *inversion* if $ge = \bar{e}$ for some edge e (when T is simplicial).
- An element g is said *elliptic* if $gx = x$ for some x of T.
- An element g is said *hyperbolic* if it is neither an inversion nor elliptic.

A group G acts freely if every nontrivial element of G is hyperbolic.
Groups acting on trees

Definition (Classification of elements)

Let G be a group acting on a simplicial or a real tree T.

- An element g is said an inversion if $ge = \bar{e}$ for some edge e (when T is simplicial).
- An element g is said elliptic if $gx = x$ for some x of T.
- An element g is said hyperbolic if it is neither an inversion nor elliptic.
Groups acting on trees

Definition (Classification of elements)

Let G be a group acting on a simplicial or a real tree T.

- An element g is said an *inversion* if $ge = \bar{e}$ for some edge e (when T is simplicial).
- An element g is said *elliptic* if $gx = x$ for some x of T.
- An element g is said *hyperbolic* if it is neither an inversion nor elliptic.
- A group G acts *freely* if every nontrivial element of G is hyperbolic.
Motivation

Theorem 1 (Sela)
A free group is stable.

Reformulation:
A group acting freely on a simplicial tree is stable.

Remark:
A superstable group acting freely on a real (or simplicial) tree is abelian.
Motivation

Theorem 1 (Sela)

A free group is stable.

Reformulation:

A group acting freely on a simplicial tree is stable.

Remark.

A superstable group acting freely on a real (or simplicial) tree is abelian.
Motivation

Theorem 1 (Sela)

A free group is stable.
Motivation

Theorem 1 (Sela)

* A *free* group is stable.*

Reformulation:
Motivation

Theorem 1 (Sela)

A free group is stable.

Reformulation: A group acting freely on a simplicial tree is stable.
Motivation

Theorem 1 (Sela)

A free group is stable.

Reformulation: A group acting freely on a simplicial tree is stable.

Remark. A superstable group acting freely on a real (or simplicial) tree is abelian.
Motivation

The action of G is trivial if there is no hyperbolic elements.

Question

What can be said about the model theory of groups acting nontrivially on simplicial trees? Is it possible for such groups to be ω-stable or superstable?
Motivation

Definition

The action of G is *trivial* if there is no hyperbolic elements.
Motivation

Definition
The action of G is trivial if there is no hyperbolic elements.

Question
What can be said about the model theory of groups acting nontrivially on simplicial trees?
Is it possible for such groups to be ω-stable or superstable?
Motivation

Definition
The action of G is *trivial* if there is no hyperbolic elements.

Question
What can be said about the model theory of groups acting nontrivially on simplicial trees?
Motivation

Definition

The action of G is *trivial* if there is no hyperbolic elements.

Question

What can be said about the model theory of groups acting nontrivially on simplicial trees? Is it possible for such groups to be ω-stable or superstable?
Theorem 2 (Bass-Serre)

A group acts without inversions and nontrivially on a simplicial tree if and only if either G splits as a free product with amalgamation or G has an infinite cyclic quotient.
Theorem 2 (Bass-Serre)

A group acts without inversions and nontrivially on a simplicial tree if and only if either G splits as a free product with amalgamation or G has an infinite cyclic quotient.
Theorem 2 (Bass-Serre)

A group acts without inversions and nontrivially on a simplicial tree if and only if either G splits as a free product with amalgamation or G has an infinite cyclic quotient.
Free products

What about the superstability of free products?

Theorem 3 (Poizat, 1984)

A nontrivial free product $G_1 \ast G_2$ is superstable if and only if $G_1 = G_2 = \mathbb{Z}_2$.
What about the superstability of free products?
What about the superstability of free products?

Theorem 3 (Poizat, 1984)

A nontrivial free product $G_1 \ast G_2$ is superstable if and only if $G_1 = G_2 = \mathbb{Z}_2$.
What about the superstability of free products?

Theorem 3 (Poizat, 1984)

A nontrivial free product $G_1 \ast G_2$ is superstable if and only if $G_1 = G_2 = \mathbb{Z}_2$.
Theorem 4

An action of an ω-stable group on a simplicial tree is trivial.

Using Bass-Serre theorem:

Corollary 1

A free product with amalgamation or an HNN-extension is not ω-stable.
ω-stable groups

Theorem 4

An action of an ω-stable group on a simplicial tree is trivial.

Using Bass-Serre theorem:

Corollary 1

A free product with amalgamation or an HNN-extension is not ω-stable.
Theorem 4

An action of an ω-stable group on a simplicial tree is trivial.
Theorem 4

An action of an ω-stable group on a simplicial tree is trivial.

Using Bass-Serre theorem:
Theorem 4

An action of an ω-stable group on a simplical tree is trivial.

Using Bass-Serre theorem:

Corollary 1

A free product with amalgamation or an HNN-extension is not ω-stable.
Superstable groups

Examples:

\mathbb{Z} is superstable and acts freely on a simplicial tree.

If G is superstable then $G \oplus \mathbb{Z}$ is superstable and acts nontrivially on a simplicial tree.

If G is superstable then $G \oplus (\mathbb{Z}_2 \ast \mathbb{Z}_2)$ is superstable and acts nontrivially on a simplicial tree.

Moreover $G \oplus (\mathbb{Z}_2 \ast \mathbb{Z}_2) = (G \oplus \mathbb{Z}_2) \ast G (G \oplus \mathbb{Z}_2)$.
Examples:
Examples:

- \(\mathbb{Z} \) is superstable and acts freely on a simplicial tree.
Examples:

- \mathbb{Z} is superstable and acts freely on a simplicial tree.
- If G is superstable then $G \oplus \mathbb{Z}$ is superstable and acts nontrivially on a simplicial tree.
Examples:

- \mathbb{Z} is superstable and acts freely on a simplicial tree.
- If G is superstable then $G \oplus \mathbb{Z}$ is superstable and acts nontrivially on a simplicial tree.
- If G is superstable then $G \oplus (\mathbb{Z}_2 \ast \mathbb{Z}_2)$ is superstable and acts nontrivially on a simplicial tree.
Examples:

- \(\mathbb{Z} \) is superstable and acts freely on a simplicial tree.
- If \(G \) is superstable then \(G \oplus \mathbb{Z} \) is superstable and acts nontrivially on a simplicial tree.
- If \(G \) is superstable then \(G \oplus (\mathbb{Z}_2 \ast \mathbb{Z}_2) \) is superstable and acts nontrivially on a simplicial tree. Moreover \(G \oplus (\mathbb{Z}_2 \ast \mathbb{Z}_2) = (G \oplus \mathbb{Z}_2) \ast_G (G \oplus \mathbb{Z}_2) \).
Let $\Lambda = \mathbb{Z}$ or $\Lambda = \mathbb{R}$. Let G be a group acting on a Λ-tree T. We suppose that if T is simplicial then the action is without inversions.

Definition
The hyperbolic length function is defined by:

$$
\ell(g) = \inf \{ d(x, gx) | x \in T \}.
$$

Fact
g is hyperbolic if and only if $\ell(g) > 0$.
Let $\Lambda = \mathbb{Z}$ or $\Lambda = \mathbb{R}$. Let G be a group acting on a Λ-tree T.

Let $\Lambda = \mathbb{Z}$ or $\Lambda = \mathbb{R}$. Let G be a group acting on a Λ-tree T.

Definition The hyperbolic length function is defined by:

\[\ell(g) = \inf \left\{ d(x, gx) \mid x \in T \right\}. \]

(Fact) g is hyperbolic if and only if $\ell(g) > 0$.

Let $\Lambda = \mathbb{Z}$ or $\Lambda = \mathbb{R}$. Let G be a group acting on a Λ-tree T. We suppose that if T is simplicial then the action is without inversions.

Definition

The hyperbolic length function is defined by:

$$\ell(g) = \inf \{ d(x, gx) | x \in T \}.$$

Fact

g is hyperbolic if and only if $\ell(g) > 0$.
Let $\Lambda = \mathbb{Z}$ or $\Lambda = \mathbb{R}$. Let G be a group acting on a Λ-tree T. We suppose that if T is simplicial then the action is without inversions.

Definition

The hyperbolic length function is defined by:

$$\ell(g) = \inf \{ d(x, gx) \mid x \in T \}.$$

(Fact) g is hyperbolic if and only if $\ell(g) > 0$.
Let $\Lambda = \mathbb{Z}$ or $\Lambda = \mathbb{R}$. Let G be a group acting on a Λ-tree T. We suppose that if T is simplicial then the action is without inversions.

Definition

The *hyperbolic length* function is defined by:

$$\ell(g) = \inf\{d(x, gx) | x \in T\}.$$
Let $\Lambda = \mathbb{Z}$ or $\Lambda = \mathbb{R}$. Let G be a group acting on a Λ-tree T. We suppose that if T is simplicial then the action is without inversions.

Definition

- The *hyperbolic length* function is defined by:

$$\ell(g) = \inf\{d(x, gx) | x \in T\}.$$

- (Fact) g is hyperbolic if and only if $\ell(g) > 0$.

Classifications of actions

One of the following cases holds:

1. **Abelian actions**
 - The hyperbolic length function is given by $\ell(g) = |\rho(g)|$ for $g \in G$, where $\rho : G \to \Lambda$ is a homomorphism.

2. **Dihedral actions**
 - The hyperbolic length function is given by $\ell(g) = |\rho(g)|$ for $g \in G$, where $\rho : G \to \text{Isom}(\Lambda)$ is a homomorphism whose image contains a reflection and a nontrivial translation, and the absolute value signs denote hyperbolic length for the action of Isom(\Lambda).

3. **Irreducible actions**
 - G contains a free subgroup of rank 2 which acts freely, without inversions and properly discontinuously on T.
Classifications of actions

One of the following cases holds:

1. (Abelian actions) the hyperbolic length function is given by $\ell(g) = |\rho(g)|$ for $g \in G$, where $\rho: G \to \Lambda$ is a homomorphism.

2. (Dihedral actions) the hyperbolic length function is given by $\ell(g) = |\rho(g)|$ for $g \in G$, where $\rho: G \to \text{Isom}(\Lambda)$ is a homomorphism whose image contains a reflection and a nontrivial translation, and the absolute value signs denote hyperbolic length for the action of $\text{Isom}(\Lambda)$.

3. (Irreducible actions) G contains a free subgroup of rank 2 which acts freely, without inversions and properly discontinuously on T.

One of the following cases holds:

(1) (Abelian actions) the hyperbolic length function is given by $\ell(g) = |\rho(g)|$ for $g \in G$, where $\rho : G \to \Lambda$ is a homomorphism.

(2) (Dihedral actions) the hyperbolic length function is given by $\ell(g) = |\rho(g)|$ for $g \in G$, where $\rho : G \to \text{Isom}(\Lambda)$ is a homomorphism whose image contains a reflection and a nontrivial translation, and the absolute value signs denote hyperbolic length for the action of $\text{Isom}(\Lambda)$.

(3) (Irreducible actions) G contains a free subgroup of rank 2 which acts freely, without inversions and properly discontinuously on T.

One of the following cases holds:

(1) (Abelian actions) the hyperbolic length function is given by
\[\ell(g) = |\rho(g)| \] for \(g \in G \), where \(\rho : G \to \Lambda \) is a homomorphism.

(2) (Dihedral actions) the hyperbolic length function is given by
\[\ell(g) = |\rho(g)| \] for \(g \in G \), where \(\rho : G \to \text{Isom}(\Lambda) \) is a homomorphism whose image contains a reflection and a nontrivial translation, and the absolute value signs denote hyperbolic length for the action of \(\text{Isom}(\Lambda) \).

(3) (Irreducible actions) \(G \) contains a free subgroup of rank 2 which acts freely, without inversions and properly discontinuously on \(\mathbb{T} \).
Classifications of actions

One of the following cases holds:

(1) (Abelian actions) the hyperbolic length function is given by \(\ell(g) = |\rho(g)| \) for \(g \in G \), where \(\rho : G \to \Lambda \) is a homomorphism.

(2) (Dihedral actions) the hyperbolic length function is given by \(\ell(g) = |\rho(g)| \) for \(g \in G \), where \(\rho : G \to \text{Isom}(\Lambda) \) is a homomorphism whose image contains a reflection and a nontrivial translation, and the absolute value signs denote hyperbolic length for the action of \(\text{Isom}(\Lambda) \).

(3) (Irreducible actions) \(G \) contains a free subgroup of rank 2 which acts freely, without inversions and properly discontinuously on \(\mathcal{T} \).
Theorem 5

Let G be a superstable group acting nontrivially on a Λ-tree, where $\Lambda = \mathbb{Z}$ or $\Lambda = \mathbb{R}$. If G is α-connected and $\Lambda = \mathbb{Z}$, or if the action is irreducible, then G interprets a simple group having a nontrivial action on a Λ-tree.

Corollary 2

If G is superstable and splits as $G = G_1 \ast A G_2$, with the index of A in G_1 different from 2, then G interprets a simple superstable non-ω-stable group acting nontrivially on a simplicial tree.
Theorem 5

Let G be a superstable group acting nontrivially on a Λ-tree, where $\Lambda = \mathbb{Z}$ or $\Lambda = \mathbb{R}$. If G is α-connected and $\Lambda = \mathbb{Z}$, or if the action is irreducible, then G interprets a simple group having a nontrivial action on a Λ-tree.

Corollary 2

If G is superstable and splits as $G = G_1 \ast A G_2$, with the index of A in G_1 different from 2, then G interprets a simple superstable non-ω-stable group acting nontrivially on a simplicial tree.
Theorem 5

Let G be a superstable group acting nontrivially on a Λ-tree, where $\Lambda = \mathbb{Z}$ or $\Lambda = \mathbb{R}$.
Theorem 5

Let G be a superstable group acting nontrivially on a Λ-tree, where $\Lambda = \mathbb{Z}$ or $\Lambda = \mathbb{R}$. If G is α-connected and $\Lambda = \mathbb{Z}$, or if the action is irreducible, then G interprets a simple group having a nontrivial action on a Λ-tree.
Theorem 5

Let G be a superstable group acting nontrivially on a Λ-tree, where $\Lambda = \mathbb{Z}$ or $\Lambda = \mathbb{R}$. If G is α-connected and $\Lambda = \mathbb{Z}$, or if the action is irreducible, then G interprets a simple group having a nontrivial action on a Λ-tree.

Corollary 2

If G is superstable and splits as $G = G_1 \ast_A G_2$, with the index of A in G_1 different from 2, then G interprets a simple superstable non-ω-stable group acting nontrivially on a simplicial tree.
Minimal Superstable groups

Definition

Let G be a group and B be a family of definable subgroups of G. We say that B is a Borel family, if for any $B \in B$, $N_G(B)/B$ is finite and B is generous, for any $g \in G$, $B^g \in B$, and any two elements of B are conjugate to each other.
Definition

Let G be a group and B be a family of definable subgroups of G. We say that B is a Borel family, if for any $B \in B$, $N_G(B)/B$ is finite and B is generous, for any $g \in G$, $B^g \in B$, and any two elements of B are conjugate to each other.
Definition

Let G be a group and B be a family of definable subgroups of G. We say that B is a Borel family, if for any $B \in B$, $N_G(B)/B$ is finite and B is generous, for any $g \in G$, $B^g \in B$, and any two elements of B are conjugate to each other.
Definition

Let G be a group and \mathcal{B} be a family of definable subgroups of G. We say that \mathcal{B} is a *Borel* family, if for any $B \in \mathcal{B}$, $N_G(B)/B$ is finite and B is generous, for any $g \in G$, $B^g \in \mathcal{B}$, and any two elements of \mathcal{B} are conjugate to each other.
Theorem 6

Let G be a superstable group of finite Lascar rank acting nontrivially on a Λ-tree where $\Lambda = \mathbb{Z}$ or $\Lambda = \mathbb{R}$. Suppose that, if H is a definable subgroup such that $U(H) < U(G)$, and having a nontrivial action on a Λ-tree, then H is nilpotent-by-finite. Then there are definable subgroups $H_1 \triangleleft H_2 \triangleleft G$ such that H_2 is of finite index in G, and one of the following cases holds:

1. H_1 is connected, any action of H_1 on a Λ-tree is trivial, H_2/H_1 is soluble and has a nontrivial action on a Λ-tree.

2. H_2/H_1 is simple and acts nontrivially on a Λ-tree, H_2/H_1 has a Borel family of equationally-definable nilpotent subgroups such that there exists $m \in \mathbb{N}$ such that for every hyperbolic element g in H_2/H_1, there is $1 \leq n \leq m$, such that g^n is in some $B \in B$.

If $\Lambda = \mathbb{Z}$ then $H_2/H_1 = G_1 \ast A G_2$ with the biindex of A is 2 in both G_1 and G_2.
Theorem 6

Let G be a superstable group of finite Lascar rank acting nontrivially on a Λ-tree where $\Lambda = \mathbb{Z}$ or $\Lambda = \mathbb{R}$.

Suppose that, if H is a definable subgroup such that $U(H) < U(G)$, and having a nontrivial action on a Λ-tree, then H is nilpotent-by-finite.

Then there are definable subgroups $H_1 \triangleleft H_2 \triangleleft G$ such that H_2 is of finite index in G, and one of the following cases holds:

1. H_1 is connected, any action of H_1 on a Λ-tree is trivial, H_2/H_1 is soluble and has a nontrivial action on a Λ-tree.

2. H_2/H_1 is simple and acts nontrivially on a Λ-tree, H_2/H_1 has a Borel family of equationally-definable nilpotent subgroups such that there exists $m \in \mathbb{N}$ such that for every hyperbolic element g in H_2/H_1, there is $1 \leq n \leq m$, such that g^n is in some $B \in B$.

If $\Lambda = \mathbb{Z}$ then $H_2/H_1 = G_1 \ast G_2$ with the biindex of A is 2 in both G_1 and G_2.
Theorem 6

Let G be a superstable group of finite Lascar rank acting nontrivially on a Λ-tree where $\Lambda = \mathbb{Z}$ or $\Lambda = \mathbb{R}$.
Theorem 6

Let G be a superstable group of finite Lascar rank acting nontrivially on a Λ-tree where $\Lambda = \mathbb{Z}$ or $\Lambda = \mathbb{R}$. Suppose that, if H is a definable subgroup such that $U(H) < U(G)$, and having a nontrivial action on a Λ-tree, then H is nilpotent-by-finite.
Theorem 6

Let G be a superstable group of finite Lascar rank acting nontrivially on a Λ-tree where $\Lambda = \mathbb{Z}$ or $\Lambda = \mathbb{R}$. Suppose that, if H is a definable subgroup such that $U(H) < U(G)$, and having a nontrivial action on a Λ-tree, then H is nilpotent-by-finite. Then there are definable subgroups $H_1 \triangleleft H_2 \triangleleft G$ such that H_2 is of finite index in G, and one of the following cases holds:

1. H_1 is connected, any action of H_1 on a Λ-tree is trivial, H_2/H_1 is soluble and has a nontrivial action on a Λ-tree.
2. H_2/H_1 is simple and acts nontrivially on a Λ-tree, H_2/H_1 has a Borel family of equationally-definable nilpotent subgroups such that there exists $m \in \mathbb{N}$ such that for every hyperbolic element g in H_2/H_1, there is $1 \leq n \leq m$, such that g^n is in some $B \in B$. If $\Lambda = \mathbb{Z}$ then $H_2/H_1 = G_1 * A G_2$ with the biindex of A is 2 in both G_1 and G_2.
Theorem 6

Let G be a superstable group of finite Lascar rank acting nontrivially on a Λ-tree where $\Lambda = \mathbb{Z}$ or $\Lambda = \mathbb{R}$. Suppose that, if H is a definable subgroup such that $U(H) < U(G)$, and having a nontrivial action on a Λ-tree, then H is nilpotent-by-finite. Then there are definable subgroups $H_1 \triangleleft H_2 \triangleleft G$ such that H_2 is of finite index in G, and one of the following cases holds:

(1) H_1 is connected, any action of H_1 on a Λ-tree is trivial, H_2/H_1 is soluble and has a nontrivial action on a Λ-tree.
Theorem 6

Let G be a superstable group of finite Lascar rank acting nontrivially on a Λ-tree where $\Lambda = \mathbb{Z}$ or $\Lambda = \mathbb{R}$. Suppose that, if H is a definable subgroup such that $U(H) < U(G)$, and having a nontrivial action on a Λ-tree, then H is nilpotent-by-finite. Then there are definable subgroups $H_1 \trianglelefteq H_2 \trianglelefteq G$ such that H_2 is of finite index in G, and one of the following cases holds:

1. H_1 is connected, any action of H_1 on a Λ-tree is trivial, H_2/H_1 is soluble and has a nontrivial action on a Λ-tree.
2. H_2/H_1 is simple and acts nontrivially on a Λ-tree,
Theorem 6

Let G be a superstable group of finite Lascar rank acting nontrivially on a Λ-tree where $\Lambda = \mathbb{Z}$ or $\Lambda = \mathbb{R}$. Suppose that, if H is a definable subgroup such that $U(H) < U(G)$, and having a nontrivial action on a Λ-tree, then H is nilpotent-by-finite. Then there are definable subgroups $H_1 \triangleleft H_2 \triangleleft G$ such that H_2 is of finite index in G, and one of the following cases holds:

(1) H_1 is connected, any action of H_1 on a Λ-tree is trivial, H_2/H_1 is soluble and has a nontrivial action on a Λ-tree.

(2) H_2/H_1 is simple and acts nontrivially on a Λ-tree, H_2/H_1 has a Borel family of equationally-definable nilpotent subgroups such that there exists $m \in \mathbb{N}$ such that for every hyperbolic element g in H_2/H_1, there is $1 \leq n \leq m$, such that g^n is in some $B \in \mathcal{B}$. If $\Lambda = \mathbb{Z}$ then $H_2/H_1 = G_1 \ast A G_2$ with the biindex of A is 2 in both G_1 and G_2.
Theorem 6

Let G be a superstable group of finite Lascar rank acting nontrivially on a Λ-tree where $\Lambda = \mathbb{Z}$ or $\Lambda = \mathbb{R}$. Suppose that, if H is a definable subgroup such that $U(H) < U(G)$, and having a nontrivial action on a Λ-tree, then H is nilpotent-by-finite. Then there are definable subgroups $H_1 \triangleleft H_2 \triangleleft G$ such that H_2 is of finite index in G, and one of the following cases holds:

(1) H_1 is connected, any action of H_1 on a Λ-tree is trivial, H_2/H_1 is soluble and has a nontrivial action on a Λ-tree.
(2) H_2/H_1 is simple and acts nontrivially on a Λ-tree, H_2/H_1 has a Borel family of equationally-definable nilpotent subgroups such that there exists $m \in \mathbb{N}$ such that for every hyperbolic element g in H_2/H_1, there is $1 \leq n \leq m$, such that g^n is in some $B \in \mathcal{B}$. If $\Lambda = \mathbb{Z}$ then $H_2/H_1 = G_1 \star_A G_2$ with the biindex of A is 2 in both G_1 and G_2.