ROOTED INDUCED TREES IN TRIANGLE-FREE GRAPHS

FLORIAN PFENDER

ABSTRACT. For a graph G, let t(G) denote the maximum number of vertices in an induced subgraph of G that is a tree. Further, for a vertex v ∈ V(G), let t(G, v) denote the maximum number of vertices in an induced subgraph of G that is a tree, with the extra condition that the tree must contain v. The minimum of t(G) (t(G, v), respectively) over all connected triangle-free graphs G (and vertices v ∈ V(G)) on n vertices is denoted by t3(n) (t3∗(n)). Clearly, t(G, v) ≤ t(G) for all v ∈ V(G). In this note, we solve the extremal problem of maximizing |G| for given t(G, v), given that G is connected and triangle-free. We show that |G| ≤ 1 + \frac{t(G,v) + 1}{2} and determine the unique extremal graphs. Thus, we get as corollary that t3(n) ≥ t3∗(n) = \left\lceil \frac{1}{7}(1 + \sqrt{8n - 7}) \right\rceil, improving a recent result by Fox, Loh and Sudakov.

All graphs in this note are simple and finite. For notation not defined here we refer the reader to Diestel’s book [1].

For a graph G, let t(G) denote the maximum number of vertices in an induced subgraph of G that is a tree. The problem of bounding t(G) was first studied by Erdős, Saks and Sós [2] for certain classes of graphs, one of them being triangle-free graphs. Let t3(n) be the minimum of t(G) over all connected triangle-free graphs G on n vertices. Erdős, Saks and Sós showed that

Ω \left(\frac{\log n}{\log \log n} \right) ≤ t3(n) ≤ O(\sqrt{n} \log n).

This was recently improved by Matoušek and Šámal [4] to

e^{c\sqrt{\log n}} ≤ t3(n) ≤ 2\sqrt{n} + 1,

for some constant c. For the upper bound, they construct graphs as follows. For k ≥ 1, let B_k be the bipartite graph obtained from the path P^k = v_1 \ldots v_k if we replace v_i by \frac{k+1}{2} − \lfloor \frac{k+1}{2} - i \rfloor independent vertices for 1 ≤ i ≤ k. This graph has |B_k| = \left\lfloor \frac{(k+1)^2}{4} \right\rfloor vertices, yielding the bound.

For a vertex v ∈ V(G), let t(G, v) denote the maximum number of vertices in an induced subgraph of G that is a tree, with the extra condition that the tree must contain v. Similarly as above, we define t3∗(n) as the minimum of t(G, v) over all connected graphs G with |G| = n and vertices v ∈ V(G). As t(G, v) ≤ t(G) for every graph, this can be used to bound t3(n). In a very recent paper, Fox, Loh and Sudakov do exactly that to show that

\sqrt{n} ≤ t3∗(n) ≤ t3(n) and t3∗(n) ≤ \left\lceil \frac{1}{7}(1 + \sqrt{8n - 7}) \right\rceil.

For the upper bound, they construct graphs similarly as above. For k ≥ 1, let G_k be the bipartite graph obtained from the path P^k = v_0v_1 \ldots v_{k-1} if we replace v_i by k - i independent vertices for 1 ≤ i ≤ k - 1. This graph has |G_k| = 1 + \frac{(k-1)^2}{2} vertices, yielding the bound.

In this note, we show that this upper bound is tight, and that the graphs G_k are, in a way, the unique extremal graphs. This improves the best lower bound on t3(n) by a factor of roughly \sqrt{2}. In [3], the authors relax the problem to a continuous setting to achieve their lower bound on t3∗(n). While most of our ideas are inspired by this proof, we will skip this initial step and get a much shorter and purely combinatorial proof of our tight result.

Theorem A. Let G be a connected triangle-free graph on n vertices, and let v ∈ V(G). If G contains no tree through v on k + 1 vertices as an induced subgraph, then n ≤ 1 + \frac{(k-1)^2}{2}. Further, equality holds only if G is isomorphic to G_k with v = v_0.

In the proof we will use the following related statement.
Theorem B. Let \(G \) be a connected triangle-free graph, and let \(v \in V(G) \). If \(G \) contains no tree through \(v \) on \(k + 1 \) vertices as an induced subgraph, then \(|V(G) \setminus N[v]| \leq \frac{(k-2)(k-1)}{2} \).

Proof of Theorems \([A]\) and \([B]\) Let \(A(k) \) be the statement that Theorem \([A]\) is true for the fixed value \(k \), and let \(B(k) \) be the statement that Theorem \([B]\) is true for \(k \). We will use induction on \(k \) to show \(A(k) \) and \(B(k) \) simultaneously.

To start, note that \(A(k) \) and \(B(k) \) are trivially true for \(k \leq 2 \). Now assume that \(A(\ell) \) and \(B(\ell) \) hold for all \(\ell < k \) for some \(k \geq 3 \), and we will show \(B(k) \). We may assume that every vertex in \(N(v) \) is a cut vertex in \(G \) (otherwise delete it and proceed with the smaller graph). Let \(N(v) = \{x_1, x_2, \ldots, x_r\} \), and let \(X_i \) be a component of \(G \setminus N[v] \) adjacent only to \(x_i \) for \(1 \leq i \leq r \).

Let \(k_i + 1 \) be the size of a largest induced tree in \(x_i \setminus X_i \) containing \(x_i \). Clearly, \(G \) contains an induced tree through \(v \) on \(1 + r + \sum k_i \) vertices, so \(1 + r + \sum k_i \leq k \) (and in particular \(k_i + 1 \leq k \)). By \(A(k_i + 1) \) we have \(|X_i| \leq \frac{k(k_i+1)}{2} \).

Now replace each \(G[x_i \cup X_i] \) by a graph isomorphic to \(G_{k_i} \) with \(v_0 = x_i \), reducing the total number of vertices by at most \(\sum k_i \). Note that this new graph \(G' \) is triangle-free and connected. Since every maximal induced tree in \(G \) through \(v \) must contain a vertex \(x_i \) for some \(1 \leq i \leq r \), and therefore exactly \(k_i \) vertices of \(X_i \), every induced tree through \(v \) in \(G' \) has fewer than \(k \) vertices. Therefore, by \(B(k-1) \),

\[
|V(G) \setminus N[v]| \leq |V(G') \setminus N[v]| + \sum k_i \leq \frac{(k-3)(k-2)}{2} + k - r - 1 \leq \frac{(k-2)(k-1)}{2},
\]

establishing \(B(k) \). Equality can hold only for \(r = 1 \), and if \(G[x_1 \cup X_1] \) is isomorphic to \(G_{k-1} \) by \(A(k-1) \). Further, every vertex in \(N(v) \) must be adjacent to all neighbors of \(x_1 \) as otherwise a tree on \(k + 1 \) vertices could be found in \(G \). To see \(A(k) \), note that \(|N(v)| \leq k - 1 \) or there is an induced star centered at \(v \).

As a corollary we get the exact value for \(t_3^*(n) \), which is an improved lower bound for \(t_3(n) \).

Corollary 1. \(\lceil \frac{1}{2}(1 + \sqrt{8n - 7}) \rceil = t_3^*(n) \leq t_3(n) \leq 2\sqrt{n} + 1 \).

Concluding Remarks

One may speculate that, similarly to the role of the \(G_k \) for \(t_3^*(n) \), the graphs \(B_k \) are extremal graphs for \(t_3(n) \). This is not true for \(k = 5 \), though, as \(K_{5,5} \) minus a perfect matching has no induced tree with more than 5 vertices, and \(B_5 \) has only 9 vertices. We currently know of no other examples beating the bound from \(B_k \). In fact, with a similar proof as above one can show that \(B_k \) is extremal under the added condition that \(G \) has diameter \(k - 1 \).

References

1. R. Diestel, Graph Theory, Springer-Verlag New York (1997).
2. P. Erdős, M. Saks and V. Sós, Maximum induced trees in graphs, *J. Combin. Ser. B* 41 (1986), 61–79.
3. J. Fox, P.-S. Loh and B. Sudakov, Large induced trees in \(K_r \)-free graphs, *J. Combin. Ser. B* 99 (2009), 494–501.
4. J. Matoušek and R. Šámal, Induced trees in triangle-free graphs, *Electronic Notes in Discrete Mathematics* 29 (2007), 307–313.

Universität Rostock, Institut für Mathematik, D-18055 Rostock, Germany

E-mail address: Florian.Pfender@uni-rostock.de