The genome sequences of *Arachis duranensis* and *Arachis ipaensis*, the diploid ancestors of cultivated peanut

David John Bertoti1,2,27, Steven B Cannon3,27, Lutz Froenicke4,5,27, Guodong Huang6,27, Andrew D Farmer7, Ethalinda K S Cannon8, Xin Liu6, Dongying Gao9, Josh Clevenger9, Sudhansu Dash7, Longhui Ren10, Márcio C Moretzsohn11, Kenta Shirasawa12, Wei Huang13, Bruna Vidigal11,11, Brian Abernathy2, Ye Chu14, Chad E Niederhuth15, Pooja Umale7, Ana Cláudia G Araújo11, Alexander Kozik3, Kyung Do Kim2, Mark D Burow16,17, Rajeev K Varshney18, Xingjun Wang19, Xinyou Zhang20, Noelle Barkley21,22, Patricia M Guimarães11, Sachiko Isobe12, Baozhu Guo23, Boshou Liao24, H Thomas Stalker25, Robert J Schmitz18, Brian E Scheffler26, Soraya C M Leal-Bertioli2,11, Xu Xun6, Scott A Jackson2, Richard Michelmore4,5 & Peggy Oziás-Akins9,14

Cultivated peanut (*Arachis hypogaea*) is an allotetraploid with closely related subgenomes of a total size of ~2.7 Gb. This makes the assembly of chromosomal pseudomolecules very challenging. As a foundation to understanding the genome of cultivated peanut, we report the genome sequences of its diploid ancestors (*Arachis duranensis* and *Arachis ipaensis*). We show that these genomes are similar to cultivated peanut’s A and B subgenomes and use them to identify candidate disease resistance genes, to guide tetraploid transcript assemblies and to detect genetic exchange between cultivated peanut’s subgenomes. On the basis of remarkably high DNA identity of the *A. ipaensis* genome and the B subgenome of cultivated peanut and biogeographic evidence, we conclude that *A. ipaensis* may be a direct descendant of the same population that contributed the B subgenome to cultivated peanut.

Peanut (also called groundnut; *Arachis hypogaea* L.) is a grain legume and oilseed, which is widely cultivated in tropical and subtropical regions (annual production of ~64 million tons). It has a key role in human nutrition. In Africa and Asia, more peanut is grown than any other grain legume (including soy bean) (FAOSTAT 2015; see URLs). The *Arachis* genus is endemic to South America and is composed mostly of diploid species (*2n = 2x = 20*). *A. hypogaea* is a allotetraploid (AABB-type genome; *2n = 4x = 40*), probably derived from a single recent hybridization event between two diploid species and polyploidization1–6. Chromosomes are of mostly similar size and are metacentric, but strong chromosomal centromeric banding and one pair of small chromosomes distinguish the A from the B subgenome. Cytogenetic, phylogeographic and molecular evidence indicate *A. duranensis* Krapov. & W.C. Greg. and *A. ipaensis* Krapov. & W.C. Greg. as the donors of the A and B subgenomes, respectively5,7–11.

The peanut subgenomes are closely related5,12. This, together with a total genome size of ~2.7 Gb and an estimated repetitive content of 64% (ref. 13), makes the assembly of the peanut genome sequence very challenging. However, the A and B subgenomes appear to have undergone relatively few changes since polyploidization: genomic *in situ* hybridization (GISH), using genomic DNA from the diploid species as probes, clearly distinguishes A and B chromosomes and does not show large A-B mosaics7,8. Also, the genome size of *A. hypogaea* is close to the sum of those for *A. duranensis* and *A. ipaensis* (1.25 and 1.56 Gb, respectively14), indicating that there has been no large change in genome size since polyploidy. Most notably, observations of progeny derived from crosses between cultivated peanut and an artificially induced allotetraploid *A. ipaensis* K30076 × *A. duranensis* V14167 (*2n = 4x = 40*)15 strongly support the close relationships between the diploid genomes and the corresponding

1Institute of Biological Sciences, University of Brasília, Brasília, Brazil. 2Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, USA. 3Corn Insects and Crop Genetics Research Unit, US Department of Agriculture–Agricultural Research Service, Ames, Iowa, USA. 4Genome Center, University of California, Davis, Davis, California, USA. 5Department of Plant Sciences, University of California, Davis, California, USA. 6BGI-Shenzhen, Shenzhen, China. 7National Center for Genome Resources, Santa Fe, New Mexico, USA. 8Department of Computer Science, Iowa State University, Ames, Iowa, USA. 9Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Tifton, Georgia, USA. 10Interdepartmental Genetics Graduate Program, Iowa State University, Ames, Iowa, USA. 11Embrapa Genetic Resources and Biotechnology, Brasília, Brazil. 12Kazusa DNA Research Institute, Department of Frontier Research, Kisarazu, Japan. 13Department of Agronomy, Iowa State University, Ames, Iowa, USA. 14Department of Horticulture, University of Georgia, Tifton, Georgia, USA. 15Department of Genetics, University of Georgia, Athens, Georgia, USA. 16Texas A&M AgriLife Research, Lubbock, Texas, USA. 17Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA. 18International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India. 19Shandong Academy of Agricultural Sciences, Biotechnology Research Center, Jinan, China. 20Henan Academy of Agricultural Sciences, Zhengzhou, China. 21Plant Genetic Resources Conservation Unit, US Department of Agriculture–Agricultural Research Service, Griffin, Georgia, USA. 22International Potato Center, Lima, Peru. 23Crop Protection and Management Research Unit, US Department of Agriculture–Agricultural Research Service, Tifton, Georgia, USA. 24Chinese Academy of Agricultural Sciences, Oil Crops Research Institute, Wuhan, China. 25Department of Crop Science, North Carolina State University, Raleigh, North Carolina, USA. 26Middle Southern Area Genomics Laboratory, US Department of Agriculture–Agricultural Research Service, Stoneville, Mississippi, USA. 27These authors contributed equally to this work. Correspondence should be addressed to D.J.B. (djbertioli@gmail.com).

Received 30 July 2015; accepted 29 January 2016; published online 22 February 2016; doi:10.1038/ng.3517
subgenomes of *A. hypogaea*. Progeny are vigorous, phenotypically normal and fertile and showed lower segregation distortion than has been observed for some populations derived from *A. hypogaea* intraspecific crosses. Therefore, as a first step to characterizing the genome of cultivated peanut, we sequenced and analyzed the genomes of the two diploid ancestors of cultivated peanut.

RESULTS

Sequencing and assembly of the diploid A and B genomes

Considering that *A. duranensis* V14167 and *A. ipaensis* K30076 are likely good representatives of the ancestral species of *A. hypogaea*, we sequenced their genomes. After filtering the data generated from the seven paired-end libraries corresponded to an estimated 154× and 163× base-pair coverage for *A. duranensis* and *A. ipaensis*, respectively (Supplementary Tables 1–6). The total assembly sizes were 1,211 and 1,512 Mb for *A. duranensis* and *A. ipaensis*, respectively, of which 1,081 and 1,371 Mb were represented in scaffolds of 10 kb or greater in size (Supplementary Table 7). Ultradense genetic maps were generated through genotyping by sequencing (GBS) of two diploid recombinant inbred line (RIL) populations (Supplementary Data Set 1). SNPs within scaffolds were used to validate the assemblies and confirmed their high quality; 190 of 1,297 initial scaffolds of *A. duranensis* and 49 of 353 initial scaffolds of *A. ipaensis* were identified as chimeric. Thus, approximate chromosomal placements were obtained for 1,692 and 459 genetically verified scaffolds, respectively. Conventional molecular marker maps (Supplementary Data Set 2) and syntenic inferences were then used to refine the ordering of scaffolds within the initial genetic bins. Generally, agreement was good for maps in euchromatic arms and poorer in pericentromeric regions (although one map showed large inversions in two linkage groups in comparison to the other maps; Supplementary Data Set 2).

Overall, 96.0% and 99.2% of the sequence in contigs ≥10,000 bp in length, represented by 1,692 and 459 scaffolds, could be ordered into 10 chromosomal pseudomolecules per genome of 1,025 and 1,338 Mb for *A. duranensis* and *A. ipaensis*, respectively (Aradu.A01–Aradu.A10 and Araip.B01–Araip.B10; GenBank accession numbers GCA_000817695.1 and GCA_000816755.1; Supplementary Table 8). The pseudomolecules mostly showed one-to-one equivalence between the A and B genomes (Figs. 1 and 2, and Supplementary Figs. 1–12).

Characterization of transposons

We identified transposable elements that contributed 61.7% and 68.5% of the *A. duranensis* and *A. ipaensis* genomes, respectively (Supplementary Tables 10 and 11; PeanutBase). These values are compatible with the 64% repetitive content estimated for cultivated peanut using renaturation kinetics. Most transposon families were shared by the two genomes, and, for abundant families, macroscale positioning in the two genomes seemed similar. However, because of transposon activity since the divergence of the two genomes, microscale positioning and relative abundance differed (data not shown). A few Ty3-gypsy and non-autonomous retrotransposon families were very abundant, forming dense accumulations in pericentromeres (Fig. 1 and Supplementary Figs. 16 and 17). These included the previously described autonomous/non-autonomous pairs FIDEL/Feral and Pipoka/Pipa, the non-autonomous Gordo26,27, and the newly observed Apolo and Polo. Overall, long terminal repeat (LTR) retrotransposons comprised more than half of each genome. In contrast, DNA transposons constituted about 10%. Notably, 7.8% and 11.7% of the genomes could be attributed to long interspersed nuclear elements (LINEs) for *A. duranensis* and *A. ipaensis*, respectively. These are the highest coverages for LINEs thus far reported for plant genomes.

Gene annotation and analysis of gene duplications

Transcript assemblies were constructed using sequences expressed in diverse tissues of *A. duranensis* V14167, *A. ipaensis* K30076 and were numbered according to previously published linkage maps17,19,23,24. They represent 82% and 86% of the genomes, respectively, when considering genome size estimates based on flow cytometry14,25, or 95% and 98% of the genomes when using estimates derived from k-mer frequencies with k = 17 (Supplementary Figs. 13 and 14). Comparisons of the chromosomal pseudomolecules with 14 BAC sequences from *A. duranensis* and 6 BAC sequences from *A. ipaensis* showed collinearity of contigs and high sequence identity (>99%) (Supplementary Fig. 15a–l and Supplementary Table 9).
A. hypogaea cv. Tifrunner28 (16,439,433, 21,406,315 and 2,064,268,316 paired-end reads for each species, respectively; details below and in Supplementary Tables 12 and 13). Using these assemblies and representative characterized transposon sequences, MAKER2 (ref. 29) delineated 36,734 and 41,840 high-quality non–transposable element genes for

\textit{A. duranensis} and \textit{A. ipaensis}, respectively (PeanutBase). The \textit{A. ipaensis} genome consists of 345 and 397 of these genes in the \textit{A. duranensis} and \textit{A. ipaensis} clades, respectively (\textit{A. cyrtopygus} genotypes, respectively (\textit{A. magna} Krapov. & W.C. Greg. (ref. 34) resides in a cluster of 38 NB-LRR–encoding genes covering 6.1 Mb. Another source of nematode resistance already widely used in the United States originates from an introgression of the \textit{A. duranensis} clade ~58 million years ago. Modal \(K_s\) paralog values (synonymous substitutions per synonymous site) are approximately 0.95 for \textit{A. ipaensis} and 0.90 for \textit{A. duranensis}, more similar to that for Medicago (paralogous \(K_s\) value of ~0.65) than to those of \textit{Arachis cardenasii} in their pedigree38. Markers mapped this QTL to an introgressed chromosome segment at the lower end of A03 (\textit{A. ipaensis} A03, 131,305,113–133,690,542) where an NB-LRR–encoding gene resides in an A09 chromosome segment at the upper distal 7.6 Mb of chromosome 12510075 50 25 0 of \textit{Arachis stenosperma} V10309 Krapov. & W.C. Greg. (ref. 34) resides in a cluster of 38 NB-LRR–encoding genes covering 6.1 Mb. Another source of nematode resistance already widely used in the United States originates from an introgression of the \(A. duranensis\) clade ~58 million years ago. Modal \(K_s\) paralog values (synonymous substitutions per synonymous site) are approximately 0.95 for \textit{A. ipaensis} and 0.90 for \textit{A. duranensis}, more similar to that for \textit{Arachis} (paralogous \(K_s\) value of ~0.65) than to those of \textit{Lotus} (~0.65), \textit{Glycine} (~0.65) or \textit{Phaseolus} (~0.80). Average rates of change for \textit{Arachis} genes were estimated at 8.12 \(\times\) \(10^{-9}\) \(K_s\)/year. On the basis of this and the peak in the frequency of \(K_s\) values between \textit{A. duranensis} and \textit{A. ipaensis} being 0.035,
Figure 3 Mutations and genome duplications. Frequency distributions are shown of values of synonymous substitutions (K_s) for paralogous and orthologous genes in comparisons of $A.\,$duranensis (Ad), $A.\,$ipaensis (Ai) and Glycine max (Gm). Peaks in the $G.\,$max–$G.\,$max comparison represent the Glycine whole-genome duplication (WGD) at $K_s = 0.10$ (~10 million years ago) and the early papilionoid WGD at $K_s = 0.65$ (58 million years ago). The same early papilionoid WGD also affected the Arachis lineage, so the shift in the $A.\,$duranensis–$A.\,$duranensis and $A.\,$ipaensis–$A.\,$ipaensis peaks (at $K_s = 0.90$ and 0.95, respectively) indicates that Arachis has accumulated silent changes at a rate ~1.4 times faster than that in $G.\,$max. On the basis of average rates of change for Arachis of 8.12×10^{-9} K_s/year, we estimate that $A.\,$duranensis and $A.\,$ipaensis diverged ~2.16 million years ago.

the divergence of the two species was estimated as occurring ~2.16 million years ago (Fig. 3 and Supplementary Figs. 21 and 22).

Analysis of chromosomal structure and synteny
In accordance with cytogenetic observations9,10, most pseudomolecules had symmetrically positioned pericentromeres. Most pseudomolecules showed a one-to-one correspondence between the two species: pairs 02, 03, 04 and 10 were collinear; pairs 05, 06 and 09 were each differentiated by a large inversion in one arm of one of the pseudomolecules; and the pseudomolecules in pair 01 were differentiated by large inversions of both arms (Figs. 1 and 2, and Supplementary Figs. 1–12). In contrast, chromosomes 07 and 08 have undergone complex rearrangements that transported repeat-rich DNA to A07 and gene-rich DNA to A08. As a result, A07 has only one normal (upper) euchromatic arm and A08 is abnormally small, with low repetitive content (Fig. 4 and Supplementary Table 11). In accordance with cytogenetic observations8,26, A08 could be assigned as the characteristic small ‘A chromosome’ (cytogenetic chromosome A09; Supplementary Fig. 23).

All $A.\,$ipaensis pseudomolecules were larger than their $A.\,$duranensis counterparts (Supplementary Table 8). This is partly because of a greater frequency of local duplications and higher transposon content in $A.\,$ipaensis. In dot plots of collinear chromosomes, slopes formed by orthologous genes were similar in both euchromatic and peri-centromeric regions, with $A.\,$duranensis regions being ~80–90% the length of the corresponding regions in $A.\,$ipaensis (Supplementary Figs. 2–4 and 12). In contrast, in the dot plots, chromosomal regions differentiated by inversions showed distinct arcs (Fig. 1 and Supplementary Figs. 1, 5, 6 and 11). These arcs are due to changes in rates of DNA loss and gain29,40 in regions that switch from distal to pericentromeric contexts, or vice versa, when inverted (Fig. 5). In chromosomes without inversions, there were characteristic density gradients for genes, repetitive DNA and methylation (with gene densities increasing and densities of repetitive DNA and methylation decreasing toward chromosome ends). However, in regions that had undergone large rearrangements, in $A.\,$duranensis, these gradients were disrupted (Supplementary Figs. 16, 17 and 24–27).

From these observations, we concluded that the major rearrangements have all occurred in the A-genome lineage. Size differences between homeologous chromosomes that were differentiated by large rearrangements tended to be greater than those between collinear ones ($r(6) = 0.65, P < 0.05$; Supplementary Table 14). Because the $A.\,$duranensis chromosomes that have undergone inversions are smaller than expected, it is evident that, in this dynamic, on balance, the elimination of DNA has predominated over its accumulation.
Comparisons with *Phaseolus vulgaris* L., which shared a common ancestor with *Arachis* about 58 million years ago, showed syntenous chromosomal segments. In some cases, although the dot plots were highly distorted, there was almost a one-to-one correspondence between chromosomes (for example, B01 and P03, B05 and P02, B06 and P01, and B08 and P05; Supplementary Figs. 28–31).

Sequence comparisons to tetraploid cultivated peanut

Comparisons showed fundamentally one-to-one correspondences between the diploid chromosomal pseudomolecules and cultivated peanut linkage groups. Of the marker sequences from three maps, 83%, 83% and 94% were assigned by sequence similarity searches to the expected diploid chromosomal pseudomolecules (Supplementary Table 15a–c and Supplementary Data Set 8). For more detailed genome-wide comparisons, we produced 5.74 Gb (2× coverage) of long-sequence Moleculo reads from *A. hypogaea* cv. Tifrunner and mapped the reads to the combined diploid pseudomolecules. The corrected median identities between the *A. hypogaea* Moleculo reads and the pseudomolecules of *A. duranensis* and *A. ipaensis* were 98.36% and 99.96%, respectively (Supplementary Data Set 6). When visualized as plots along the chromosomal pseudomolecules, the diploid A-genome chromosomes were distinctly less similar to *A. hypogaea* sequences than the B-genome chromosomes (Fig. 6, Supplementary Fig. 32a–c and Supplementary Data Set 9).

We found distinct signals of genetic recombination between the A and B subgenomes of *A. hypogaea*, and, as expected, these signals were more frequent in regions of the homeologous chromosome pairs that were collinear. This recombination erodes the similarities between the tetraploid subgenomes and their corresponding diploid genomes. We observed a significant tendency for *A. hypogaea* Moleculo reads that mapped to collinear A-genome pseudomolecules to have, on average, lower sequence identity than reads that mapped to pseudomolecules with inversions (Kruskal-Wallis test, *P* < 0.0001; Supplementary Tables 16 and 17, and Supplementary Data Set 9). This trend was much weaker for the B subgenome on a
whole-chromosome scale but was clearly visible at the ends of some of the collinear B-subgenome chromosome arms, where percentage identities dropped dramatically. An example of this is indicated by the blue arrow in Figure 6b. In this case, the A. hypogaea B subgenome has become nullisomic and the A subgenome has become tetrasomic (producing a genome composition of AAAA instead of the expected AABB).

This was confirmed by an inverse symmetry in the total number of bases mapping to the A and B genomes (Fig. 6a, b, red arrows). This phenomenon, a degree of tetrasomic genetic behavior, has been observed in the progeny of interploidy crosses involving wild species\(^4\) and recently in the cultivated \(\times\) induced allotetraploid RILs used in this study\(^3\), but this is the first time, to our knowledge, that it has been observed in pure cultivated peanut. The event depicted in Figure 6 affects approximately the top 6 Mb, about half the euchromatic arms of A. hypogaea cv. Tifrunner genome 05. Smaller similar events covered the bottom ~1 Mb of A02 and B02, the bottom ~0.4 Mb of A03 and B03, the bottom ~2 Mb of A06 and B06, and the top ~0.5 Mb of A09 and B09. Because of lower sequence identities, A-subgenome nullisomes were more difficult to detect; nevertheless, the bottom ~3 Mb of chromosomes 04 appeared to be nullisomic for the A subgenome and tetrasomic for the B subgenome (Supplementary Fig. 32 and Supplementary Data Set 9).

Although we recognize that genetic exchange between the A and B subgenomes will tend to inflate the values calculated (especially for the A genomes), we estimated the dates of evolutionary divergence of the sequenced diploid genomes and the corresponding subgenomes of A. hypogaea. To estimate the genome-wide Arachis mutation rate, we mapped A. ipaensis Molecule reads against the A. duranensis pseudomolecules. This gave a corrected median DNA identity of 93.11% (a value compatible with previous comparisons using BAC sequences\(^4\)).

Considering the date of divergence of the A and B genomes as 2.16 million years ago (from \(K_s\) values), this gives an Arachis genome-wide mutation rate of \(1.6 \times 10^{-8}\) mutations per base per year (within the range of \(1-2 \times 10^{-8}\) calculated for other plants\(^4\)). This mutation rate and the divergence of the most conserved chromosomes (presumably the ones that have undergone the least recombination between subgenomes; A01 and B07) gives an estimate of the divergence time of A. duranensis V14167 from the A subgenome of A. hypogaea as ~247,000 years and for the divergence time of A. ipaensis from the B subgenome of A. hypogaea as a remarkably recent ~9,400 years.

We used the chromosomal pseudomolecules to investigate the frequency of recombination between A and B subgenomes in 166 cultivated peanut RILs described in a previous study\(^4\). To do this, we calculated the mapping densities of restriction site–associated sequence reads from these RILs and their parental lines along the chromosomal pseudomolecules. Mostly, the relative dosage of mapping on the A and B genomes was equal and the same as in the parents, but for one line (RIL028) the relative dosage was dramatically altered for two homeologous chromosomal regions (Fig. 7): 104–112 Mb on Araud.A04 and 112–126 Mb on Araip.B04. In these regions, mapping to Araip.B04 almost disappeared and mapping to Aradu.A04 dramatically increased in density. This clear signal indicates that genetic exchange occurred between the A and B subgenomes in regions of the cultivated peanut genome that had balanced dosage in the parental lines. This seems most likely to have occurred by tetrasomic recombination, but gene conversion after the formation of an unresolved Holiday junction is also possible.

Diploid genome-guided tetraploid transcriptome assembly

Assemblies of transcribed sequences from tetraploid cultivated peanut are challenging because reads from genes on the A and B subgenomes are erroneously assembled together, resulting in chimeric sequences. We used the diploid genomes to minimize this collapse and produced tetraploid transcript assemblies. We assessed four assembly software approaches in three different ways: *de novo* assembly; parsing into A- and B-genome sets followed by separate assembly; and parsing followed by genome-guided assembly using the combined pseudomolecules. Results were compared by measuring the percentage of assembled transcripts that mapped back to the pseudomolecules without mismatches. Higher percentages indicate less...
collapse, as collapsed transcripts can only map with mismatches. This analysis showed that the de novo assemblies were the least accurate, with the percentage of mismatch-free mapping ranging from 32.17 to 39.82%, followed by the parsed set assemblies (40.07 to 55.8%). Finally, the genome-guided assembly was the most accurate with 65.87% mismatch-free mapping (Supplementary Fig. 33). Using this workflow, together with filtering for transposable elements, low-expression transcripts and redundancy, we obtained 183,062 assembled Arachis hypogaea transcripts, of which we could tentatively assign 88,643 (48.42%) to the A subgenome and 94,419 (51.58%) to the B subgenome.

DISCUSSION

The peoples of South America have cultivated Arachis species since prehistoric times, but only the allotetraploid Arachis hypogaea was completely transformed by domestication to become a crop of global importance. As a foundation to investigate peanut’s genome, we sequenced its diploid progenitors Arachis duranensis and A. ipaensis. Comparisons of the chromosomal pseudomolecules of the diploid species with A. hypogaea show high levels of similarity, but, most notably, the cultivated peanut B subgenome is nearly identical to the genome of A. ipaensis. This similarity suggests a remarkable story for this particular Arachis population dating back to the time of the earliest human occupation of South America.

Arachis species have an unusual reproductive biology; although the flowers develop above ground, a special ‘peg’ structure (gynophore) pushes the young pod underground, where development is completed. Flowers develop above ground, a special ‘peg’ structure (gynophore) pushes the young pod underground, where development is completed. However, in the case of the B genomes, it persisted, perhaps owing to extreme genetic bottlenecks and reproductive isolation in both species (A. ipaensis and A. hypogaea). We think that this is a unique find among crop plants, which was possible because of the peculiar biology of the genus and the remarkable work of botanical collectors.

Building on their tractability as genetic systems, we sequenced peanut’s diploid ancestors. We used them to identify candidate pest and disease resistance genes, to reduce collapse in tetraploid transcriptome assemblies and to show the impact of recombination between subgenomes in cultivated peanut. The availability of these genomes will lead to further advances in knowledge of genetic changes since the very recent polyploidization event that gave rise to cultivated peanut and to the production of better tools for molecular breeding and crop improvement.

URLs. Food and Agriculture Organization Corporate Statistical Database (FAOSTAT), http://faostat3.fao.org/home/; MadMapper, http://www.atgc.org/XLinkage/MadMapper/; RepeatMasker, http://www.repeatmasker.org/; FastQC, http://www.bioinformatics.babraham.ac.uk/projects/fastqc/; Trim Galore! v0.3.5, http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/; FASTX-Toolkit, http://hannonlab.cshl.edu/fastx_toolkit/; PeanutBase, Arachis genome sequences and repeat libraries, http://peanutbase.org/download; Natural Earth maps, http://www.naturalearthdata.com/.
METHODS

Methods and any associated references are available in the online version of the paper.

Accession codes. Genome assemblies and annotations, identified transferrable elements, transcript assemblies and map data are available at http://www.peanutbase.org/download. Genome assemblies have also been deposited in GenBank under assembly accession GCA_000817695.1 and GCA_000816755.1. MethylC-seq data are available under Gene Expression Omnibus (GEO) accession GSE71357.

Note: Any Supplementary Information and Source Data files are available in the online version of the paper.

ACKNOWLEDGMENTS

We would like to thank G. Birdsong, V. Nwosu, J. Elder, D. Smyth, F. Luo, D. Hoisington, H. Shapiro, H. Valentine, R. Wilson and D. Ward for their support of the Peanut Genome Initiative. We thank J.M. Valls, C. Simpson and G. Seijo for valuable discussions. Major financial contributors for this work were from Mars, US potato associations, the National Peanut Board, the United States Department of Agriculture and industry groups. A full list can be downloaded at http://peanutbioscience.com/peanutgenomoproject.html. We also thank the generous support of the Agriculture and Food Research Initiative for grant 2012-85117-19435 from the US Department of Agriculture, the US National Science Foundation for grant NSF-MCB-1339194 to R.J.S., EMBRAPA (Brazil) for project 02.11.008.00 and the National High Technology Research and Development Program (China) for grant 2012AAA02A701.

AUTHOR CONTRIBUTIONS

Project planning: D.J.B., S.B.C., L.E., X.L., B.G., B.L., X.Z., M.D.B., R.K.V., X.W., N.B., H.T.S., B.E.S., S.C.M.L.-B., X.X., S.A.J., R.M. and P.O.-A. Cultivation of accessions and lines, preparation of DNA: M.C.M., S.C.M.L.-B., L.F. and D.J.B. Production of Illumina libraries, sequencing and genome assembly: G.H., X.L. and X.X. RI sequencing, production of GBS maps and genetic validation of scaffolds, Molecule sequencing: L.F. and R.M. Construction and curation of conventional genetic maps: M.C.M., S.C.M.L.-B., P.O.-A. and D.J.B. Ordering of scaffolds into chromosomal pseudomolecules: S.B.C., E.K.S.C. and S.D. BAC sequencing and comparison with pseudomolecules: P.M.G. and D.J.B. Analysis of mobile elements: D.G., B.V., A.C.G.A., B.A., D.J.B. and S.A.J. Tissue sampling, transcriptome sequencing and assembly: J.C., B.E.S., Y.C., S.C.M.L.-B., L.F., S.A.J. and P.O.-A. Gene annotation: A.D.E., S.D., P.U. and L.R. Melation analysis: C.E.N., K.D.K., S.A.J. and R.I.S. Analysis of disease resistance and candidate genes: S.C.M.L.-B., A.K., M.C.M., D.J.B., S.B.C., E.K.S.C. and R.M. Analysis of synten and gene evolution: E.K.S.C., L.R., W.H., D.J.B. and S.B.C. Comparisons of diploid and tetraploid genomes and biogeography: B.A., K.S., M.C.M. and D.J.B. Analysis of genetic recombination in tetraploid RILs: K.S. and D.J.B. Writing of the manuscript: D.J.B., S.B.C., S.C.M.L.-B., P.O.-A., B.E.S., C.E.N., J.C., D.G., K.S., X.L., G.H., L.F., R.M., R.I.S. and S.A.J. All authors approved the manuscript.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. The images or other third party material in this article are included in the articles Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material.

To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/.

1. Husted, L. Cytological studies of the peanut, Arachis 2. Chromosome number, morphology and behavior, and their application to the problem of the origin of the cultivated forms. Cytologia (Tokyo) 7, 396–423 (1936).
2. Halward, T., Stalker, T., LaRue, E. & Kochert, G. Use of single-primer DNA amplifications in genetic studies of peanut (Arachis hypogaea L.). Plant Mol. Biol. 18, 315–325 (1992).
3. Kochert, G. et al. RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am. J. Bot. 83, 1282–1291 (1996).
4. Cuc, L.M. et al. Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea). BMC Plant Biol. 8, 55 (2008).
5. Moretzsohn, M.C. et al. A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers. Ann. Bot. 111, 113–126 (2013).
6. Kochert, G., Halward, T., Branch, W.D. & Simpson, C.E. RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor. Appl. Genet. 81, 565–570 (1991).
7. Ramos, M.L. et al. Chromosomal and phylogenetic context for conglutin genes in Arachis based on genomic sequence. Mol. Genet. Genomics 275, 578–592 (2006).
8. Seijo, G. et al. Genomic relationships between the cultivated peanut (Arachis hypogaea, Leguminosae) and its close relatives revealed by double GISH. Ann. J. Bot. 94, 1963–1971 (2007).
9. Robledo, G. & Seijo, G. Species relationships among the wild B genome of Arachis species (section Arachis) based on FISH mapping of rDNA loci and heterochromatin detection; a new proposal for genome arrangement. Theor. Appl. Genet. 121, 1033–1046 (2010).
10. Robledo, G., Lavia, G.I. & Seijo, G. Species relationships among Arachis species with the A genome as revealed by FISH mapping of rDNA loci and heterochromatin detection. Theor. Appl. Genet. 112, 1955–1967 (2006).
11. Grabiele, M., Chalup, L., Robledo, G. & Seijo, G. Genetic and geographic origin of domesticated peanut as evidenced by 5S rDNA and chloroplast DNA sequences. PLoS One 9, e85368 (2014).
12. Fávero, A.P., Simpson, C.E., Valls, F.M.J. & Velo, N.A. Study of evolution of cultivated peanut through crossability studies among Arachis (pasiensi, A. duranensis and A. hypogaea). Crop Sci. 46, 1546–1552 (2006).
13. Moretzsohn, M.C. et al. Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic basis of a recent allotetraploid. BMC Plant Biol. 9, 103 (2009).
14. Shirasawa, K. et al. Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes. DNA Res. 20, 173–184 (2013).
15. Hong, Y. et al. A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome. BMC Plant Biol. 10, 17 (2010).
16. Leal-Bertioli, S.C.M. et al. An international reference consensus genetic map with B97 marker loci based on 11 mapping populations for tetraploid groundnut (Arachis hypogaea L.). PLoS One 7, e41213 (2012).
17. Qin, H. et al. An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations. Theor. Appl. Genet. 124, 653–664 (2012).
18. Shirasawa, K. et al. In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol. 12, 80 (2012).
19. Nagy, E.D. et al. A high-density genetic map of Arachis duranensis, a diploid ancestor of cultivated peanut. BMC Genomics 13, 469 (2012).
20. Moretzsohn, M.C. et al. A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor. Appl. Genet. 111, 1060–1071 (2005).
21. Moretzsohn, M.C. et al. A linkage map for the B-genome of Arachis (Fabaceae) and its synteny to the A-genome. BMC Plant Biol. 9, 40 (2009).
22. Samoluk, S.S. et al. Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea). BMC Plant Biol. 8, 55 (2008).
23. Schultz, M.D., Schmitz, R.J. & Ecker, J.R. ‘Leveling’ the playing field for analyses of single-base resolution DNA methylomes. Trends Genet. 28, 583–585 (2012).
24. Zemach, A., McDaniel, I.E., Silva, P. & Zilberman, D. Genome-wide evolutionary analysis of euakaryotic DNA methylation. Science 328, 916–919 (2010).
25. Feng, S. et al. Conservation and divergence of methylation patterning in plants and animals. Proc. Natl. Acad. Sci. USA 107, 8689–8694 (2010).
26. Leal-Bertioli, S.C.M. et al. Genetic mapping of resistance to Meloidogyne arenaria in Arachis stenosperma, a new source of nematode resistance for peanut. J. (Beltsoslo) 6, 377–390 (2016).
Burow, M.D., Simpson, C.E., Paterson, A.H. & Starr, J.L. Identification of peanut (Arachis hypogaea) RAPD markers diagnostic of root-knot nematode (Meloidogyne arenaria (Neal) Chitwood) resistance. Mol. Breed. 2, 369–379 (1996).

Nagy, E. et al. Recombination is suppressed in an alien introgression in peanut harboring Rma, a dominant root-knot nematode resistance gene. Mol. Breed. 26, 357–370 (2010).

Leal-Bertioli, S.C. et al. Identification of QTLs for rust resistance in the peanut wild species Arachis magna and the development of KASP markers for marker assisted selection. G3 (Bethesda) 5, 1403–1413 (2015).

Sujay, V. et al. Quantitative trait locus analysis and construction of consensus genetic map for foliar disease resistance based on two recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Mol. Breed. 30, 773–788 (2012).

Bennetzen, J.L., Ma, J. & Devos, K.M. Mechanisms of recent genome size variation in flowering plants. Ann. Bot. 95, 127–132 (2005).

Tian, Z. et al. Do genetic recombination and gene density shape the pattern of DNA elimination in rice long terminal repeat retrotransposons? Genome Res. 19, 2221–2230 (2009).

Zhou, X. et al. Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq). BMC Genomics 15, 351 (2014).

Garcia, G.M., Stalker, H.T., Shroeder, E. & Kochert, G. Identification of RAPD, SCAR, and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenasii into Arachis hypogaea. Genome 39, 836–845 (1996).

Leal-Bertioli, S. et al. Tetrasomic recombination is surprisingly frequent in allotetraploid Arachis. Genetics 199, 1093–1105 (2015).

Jiao, Y. et al. Genome-wide genetic changes during modern breeding of maize. Nat. Genet. 44, 812–815 (2012); corrigendum 46, 1039–1040 (2014).

Krapovickas, A. & Gregory, W.C. Taxonomy of the genus Arachis (Leguminosae). Bonplandia 16 (Supl.), 1–205 (2007) [transl.].

Smith, B. Arachis hypogaea, aerial flower and subterranean fruit. Am. J. Bot. 37, 802–850 (1950).

Bertioli, D.J. et al. An overview of peanut and its wild relatives. Plant Genet. Resour.; Characterization Util. 9, 134–149 (2011).

Dillehay, T.D. et al. Monte Verde: seaweed, food, medicine, and the peopling of South America. Science 320, 784–786 (2008).

Dillehay, T.D., Rossen, J., Andres, T.C. & Williams, D.E. Preceramic adoption of peanut, squash, and cotton in northern Peru. Science 316, 1890–1893 (2007).

Simpson, C.E., Krapovickas, A. & Valls, J.F.M. History of Arachis including evidence of A. hypogaea L. progenitors. Peanut Sci. 28, 78–80 (2001).

Bonavia, D. Precerámico Peruano. Los Gavilanes. Mar, Desierto y Oasis en La Historia del Hombre (Corporación Financiera de Desarrollo and Instituto Arqueológico Alemán, 1982).
ONLINE METHODS
Species accessions for genome sequencing. Stock seeds were from the Brazilian *Arachis* germplasm collection, maintained at Embrapa Genetic Resources and Biotechnology (Brasília, Brazil). Plants were maintained in pollinator-proof greenhouses. To sequence the A genome, *A. duranensis* V14167 was used: this yellow-flowered accession was collected by J.F.M. Valls, L. Novara and A. Echeverryin 1997 from Ruta Nacional 51, Estación Alvarado, near Tabacalera, Argentina, 24º 50’ 18.4” S, 65º 27’ 28.9” W, at an elevation of 1,206 m. To sequence the B genome, *A. ipaensis* K30076 was used. This accession, collected by A. Krapovickas, W.C. Gregory, D.J. Banks, J.R. Pietrarelli, A. Schinini and C.E. Simpson in 1977, is the only available accession in germplasm collections worldwide. It originated from the same isolated site as the holotype of this species, the species’ only known site of occurrence, –30 km north of Villa Montes, Bolivia. The site was originally recorded with the techniques available in 1977 as 21º 00’ 01” S, 63º 23’ 37” W, at an elevation of 660 m (ref. 45) but, considering the topology of the region and the description of the site of occurrence, was more probably near Camatindi about 21º 00’ 01” S, 63º 23’ 37” W, at an elevation of 660 m, or in or near Tígüpa (J.F.M. Valls and C. Simpson, personal communication).

Genome sequencing and assembly. Sequence generation. Illumina HiSeq 2000 paired-end sequencing libraries with insert sizes of 250 bp, 500 bp, 2 bp, 5 kb, 10 kb and 20 kb were constructed following the manufacturer’s instructions. Libraries with 40-kb inserts were constructed using a fosmid-based method82. In total, 14 and 19 sequencing libraries were constructed for *A. duranensis* and *A. ipaensis*, respectively, from which we generated 325.73 Gb of raw data reads for *A. duranensis* and 416.59 Gb of raw data reads for *A. ipaensis*, with read lengths from 90–150 bp (Supplementary Tables 1–S).

Quality filtering. The following lower-quality reads were discarded: reads with more than 5% Ns or with polyadenylated termini; reads from the short-insert libraries (170–800 bp) with 20 or more bases having quality scores ≤7; reads from the large-insert libraries (2–40 kb) with 40 or more bases having quality score ≤7; reads with adaptor contamination (more than 10 bp aligned to the adaptor sequence when allowing ≤3 bp of mismatches); reads with read 1 and read 2 having ≥10 bp overlapping (allowing 10% mismatches; except for the 250-bp insert library, where the paired reads should overlap); reads identical to each other at both ends that might have been caused by PCR duplication; and reads where the quality of the bases at the head or tail was ≤7.

k-mer analysis. k-mers were extracted from sequences generated from the short-insert libraries, and the frequencies were calculated and plotted. Genome sizes were estimated by dividing the total numbers of k-mers by the depths of the major peaks. Error correction. We also used k-mers to correct for errors. For sequencing with high depth, the k-mers without any sequencing errors should appear multiple times in the read data set, whereas error-containing k-mers should have low frequencies. We corrected sequencing errors in the 17-mers with frequencies lower than 3 in the clean data for the 250-bp and 500-bp insert libraries

Genome assembly. COPE53 was used to join paired-end reads from the 250-bp insert library into single longer reads of ~250 bp. Genome assembly was performed using SOAPdenovo version 2.05 (ref. 54), with parameters --K 81 --R. Gaps were filled using KGF and Gapcloser86 (version 1.10). Finally, SPACEx56 was used to further link the scaffolds where connections were supported by more than five paired reads.

Production of Molecule synthetic long reads. TruSeq synthetic long-read sequencing libraries57 were generated by Molecule and Illumina as part of beta tests of this technology. Fifteen libraries were generated for *A. duranensis* K7988, and each was sequenced on a HiSeq 2500 lane; the PE100 reads were assembled into 1.5 million TruSeq (Molecule) synthetic long reads, providing approximately 5× genome coverage with a mean read length of 3,684 bases and an N50 of 4,344 bases. Twelve libraries were used for *A. ipaensis* K30076 to yield approximately 2 million Molecule reads with mean length of 4,054 bases and an N50 length of 5,152 bases, providing ~6× genome coverage. Thirteen libraries were used for *A. hypogaea* cv. Tifrunner, which produced 1,263,111 Molecule reads with a mean length of 4,547 bases and an N50 length of 6,137 bases, providing 2.3× genome coverage. These reads were used for genome comparisons and were not incorporated in the diploid genome assemblies.

Mapping populations. Three RIL mapping populations derived by single-seed descent were used, a diploid A-genome population composed of 90 F2 individuals derived from *A. duranensis* K7988 and *A. stenosperma* V10309, a diploid B-genome RIL population composed of 94 F2 individuals derived from a cross between *A. ipaensis* KG30076 and *A. magnu* KG30097, and a tetraploid AB RIL population composed of 89 F2 individuals derived from a cross between *A. hypogaea* cv. Runner IAC 886 (ref. 58) and a colchicine-induced tetraploid *A. ipaensis* K30076 × *A. duranensis* V14167 (2n = 4x = 40)15. Populations were developed and maintained in pollinator-proof greenhouses.

Linkage maps and identification of misjoins. Conventional molecular marker maps from diploid A- and B-genomes and cultivated peanut × induced allotetraploid RIL populations. Linkage maps were constructed using Mapmaker Macintosh 2.0 (ref. 59) or as previously published. For details, see the Supplementary Note.

Genetic maps generated from genotyping-by-sequencing data for diploid A- and B-genome RIL populations and identification of chimeric scaffolds. Recombinant inbred lines from the diploid A- and B-genome populations were shotgun sequenced to 1× genome coverage with paired-end 100-bp reads on a HiSeq 2500 sequencer. The parents were sequenced at 20× genome coverage.

Parental-homozygous SNPs were identified by alignments to either of the scaffolds of the *A. duranensis* and *A. ipaensis* genome assemblies as well as local realignment and probabilistic variant calling in CLC Genomics Workbench (CLC Bio). Filtering in CLC Workbench resulted in about 3 million high-quality homozygous-parental SNPs for both A- and B-genome mapping population parents. The coordinates of these SNPs were converted into BED format, and the alignment data at the SNP coordinates were extracted with SAMtools mpileup60. From the low-coverage sequencing data, groups of 20 consecutive SNPs were haplotype with a set of custom Python scripts. Genotype calls were inspected visually and by a hidden Markov model (HMM) script (courtesy of I. Korf, University of California, Davis) to identify population-wide switches in genotype calls corresponding to scaffold misjoins. Scaffolds not displaying recombination for an individual RIL were haplotype. Linkage groups were identified from the haplotype data using MadMapper and Carthage61, applying logarithm of odds (LOD) score thresholds of 8 and distance thresholds of 50 cm; genetic maps were generated with Carthage using the lhk traveling salesman algorithm and flips, polish and annealing optimizations. Additional scaffolds (indicated in the data files) were added to genetic bins in two rounds of binning with a custom Python script. Misjoined scaffolds were split at breakpoint locations identified by flanking GBS SNP locations, at the ‘upstream SNP’ and the ‘downstream SNP’, delineating the switches in genotype calls, and intervening sequence was excluded from the pseudomolecule assembly

Generation of chromosomal pseudomolecules. Scaffolds less than 10 kb in length were removed (they are available in the full assembly scaffold files at PeanutBase: Adur1.split6.fa and Aipa2s.split7.fa). Sequences were subjected to RepeatMasker using *Arachis* repeat libraries available at PeanutBase (mobile-elements-AA051914.fasta and mobile-elements-BB051914.fasta). Pseudomolecules were given initial chromosomal placements and orderings according to the GBS maps. Placement was arbitrary within blocks with the same centimorgan value. Scaffold orientation and placement were refined according to the conventional maps using, in order of priority, the tetraploid AB-genome map, the diploid F2 A-genome Nagy map22 (for the *A. duranensis* assembly), the diploid B-genome map23 (for the *A. ipaensis* assembly) (Supplementary Data Set 2) and finally the tetraploid AB-genome Shirasawa map27. Markers were located on the scaffolds using BLAST and ePCR (electronic PCR) with high similarity parameters (taking the top hits only, with placement by BLAST (e value < 1 x 10–18) given preference over ePCR where both were available). Markers placing scaffolds on linkage groups other than the one assigned by the GBS data were dropped.

Where allowed by map data, scaffold positions and orientations were adjusted using synteny between the two *Arachis* species and, where necessary (generally within pericentromeric regions), synteny with *G. max* and
Proteus vulgaris; the presence of telomeric repeats near chromosome ends; information from repeat-masked paired-end sequences from 42,000 BAC clones of A. duranensis V14167 (F1321525–F1281689) and Molecule sequence reads from A. ipaensis and A. duranensis. Apparent inversions were visually inspected and confirmed. Scaffolds with either <5,000 non-N bases or <20,000 bp in length and with <10,000 non-N bases were removed. Pseudomolecules were generated with 10,000 Ns separating the scaffold sequences and were oriented and numbered in accordance with previously published maps17,19,23,24.

Characterization of transposons. Mobile elements were identified using a number of homology and de novo structural pattern finding algorithms and manual curation. For details, see the Supplementary Note.

Estimation of transposon coverages. All annotated transposons were combined together and used as a library to screen the diploid genomes (pseudomolecules and unplaced scaffolds) using RepeatMasker with default parameters except with -nolow and -norna to not mask low-complexity (pseudomolecules and unplaced scaffolds) using RepeatMasker with default combined together and used as a library to screen the diploid genomes manual curation. For details, see the Supplementary Note.

Gene prediction and annotation. Genome assemblies were masked with RepeatMasker using the repeat libraries developed for the two diploid species and annotated for gene models using the MAKER-P pipeline62. Arachis-specific models for the ab initio gene predictor SNAP63 were trained using high-scoring gene models from a first iteration of the pipeline and then used in the final annotation pass; no training was done for the other ab initio predictors included in the pipeline. RNA sequencing de novo assemblies for A. hypogaea and the diploid Arachis species were supplied as transcript evidence along with available EST and mRNA data sets from NCBI for these same species. Further evidence was supplied by proteomes derived from the annotations for G. max, P. vulgaris and Medicago truncatula as represented in Phytozome v. 10 (ref. 64). Default MAKER-P parameters were used for all other options, with the exception of disabling splice isoform prediction (alt_splice = 0) and forcing start and stop codons into every gene (always_complete = 1). The resulting MAKER-P gene models were post-processed to exclude from the main annotation files gene models with relatively poor support (annotation evidence distance scores of ≥0.75) or with significant BLASTN64 homology to identified mobile elements (HSP (high-scoring segment pair) coverage over ≥50% of the transcript sequence at ≥80% identity and e value ≤1 × 10−10). Provisional functional assignments for the gene models were produced using InterProScan65 and BLASTP66 against annotated proteins from Arabidopsis thaliana, G. max and M. truncatula, with outputs processed using AHRD (https://github.com/groupschool/AHRD), for lexical analysis and selection of the best functional descriptor of each gene product.

Analysis of gene duplications. The protein sequences of precalculated gene families were downloaded from Phytozome 10. Multiple-sequence alignments were built for each gene family using Muscle67. HMMS68 were built from each gene family alignment and were searched against the protein sequences of A. duranensis and A. ipaensis using HMMER. GENES were assigned family IDs using their best hits. Local gene duplication was defined as genes from the same gene family within ten successive genes and was calculated by a sliding window with a window size of ten genes and a step of one gene. After the calculation, only the number of locally duplicated genes was recorded.

DNA methylation analysis. See the Supplementary Note.

Disease resistances and NB-LRR-encoding genes. We used two complementary approaches to identify R-gene candidates: HMM scans (HMMER 3.1b1; ref. 68) against the Pfam protein domains TIR, NB-ARC and nine LRRs plus the Arabidopsis NB-ARC domain (NBS_712) to provide information about domain composition and a BLASTP search69 against two consensus sequences for the TIR and non-TIR classes of the NB-ARC–encoding genes to assist in distinguishing the two classes (NBS-TIR and NBS-CC)70. Results were compiled in Microsoft Excel for further analysis, and candidates that matched with an expectation value better than 1 × 10−10 were considered significant (Supplementary Data Set 6).

Gene evolution in A. ipaensis and A. duranensis and species divergence. All-by-all synteny and Ks comparisons were made between A. duranensis, A. ipaensis, G. max, Lotus japonicus, M. truncatula and P. vulgaris. Synteny blocks were identified within and between these species using DAGchainer, on the basis of gene alignments. Ks values for aligned genes were calculated using the codeml method from the PAML package72. Median values were then taken for each synteny block. On the basis of known WGD and speciation information, the structure of a phylogenetic tree for species of interest was constructed, with branch lengths derived from modal Ks values from the Ks plots. Internal branch lengths were calculated from a system of equations based on modal values from all species comparisons.

Analysis of chromosomal structure and synteny. Structural comparisons between A. ipaensis and A. duranensis were made using visual interpretations of dot plots created using mummer and mummerplot from the MUMmer suite of alignment tools2. Gene density plots were created using CVIT77. Synteny comparisons were also made with other legume genomes (G. max, L. japonicus, M. truncatula and P. vulgaris), using MUMmer and DAGChainer24.

Sequence comparisons to tetraploid cultivated peanut. Molecule reads were mapped against the diploid chromosomal pseudomolecules using nucmer mapp = 500 -mincluster = 100. Show-coords, a nucmer utility, was run on the resulting nucmer delta files to produce alignment files. A single ‘best’ alignment to the diploid pseudomolecules was selected for each A. hypogaea cv. Tifrunner Molecule read. Alignment selection was based primarily on length and secondarily on identity. Show-tiling, another nucmer utility, was used to produce the tiling path of Molecule reads. Output files were further processed using in-house scripts and Microsoft Excel (Supplementary Data Set 9).

Analysis of genetic exchange in cultivated peanut RILs. Paired-end sequence reads of restriction site–associated DNA sequencing for 166 RILs and their parents were obtained from the Sequence Read Archive (SRR1236437 and SRR1236438)41. The data were divided into 168 subsets of individuals (2 parents and 166 RILs) on the basis of index tags. Low-quality sequences (quality value of <10) and adaptors (AGATCGGAAGAGC) were trimmed with PRINSEQ75 and fastx_clipper in the FASTX-Toolkit. The filtered reads were mapped onto the two Arachis diploid genomes with Bowtie 2 (ref. 76) parameters of --minins 0 --maxins 1000). The resultant SAM files excluding reads mapped at multiple loci on the reference were converted to BAM files with SAMtools66. Depth of coverage in 1-Mb bins was calculated from the BAM files with the GenomeCoverageBed option in BEDtools77 (using parameter -d). Biases with depth of coverage among the RILs due to different numbers of mapped reads were corrected by converting the depth of coverage into the percentage relative to the total number of mapped reads in each line. Log2-transformed ratios of the corrected values in each RIL to that in the parent were calculated and plotted with R (ref. 76) and Excel.

Generation and assembly of transcribed sequences. Details of the tissues sampled can be found in Supplementary Table 12 and the Supplementary Note.

Sequencing of cDNAs. Libraries were constructed with Illumina TruSeq RNA Sample Preparation v2 kit (tissues listed in Supplementary Tables 12 and 13). Three biological replicates were used for diploid tissue, and five biological replicates were used for A. hypogaea cv. Tifrunner tissues (for some seed stages, only two biological replicates were used). For diploids, RNA from biological replicates was pooled before generating the libraries. For tetraploids, libraries constructed individually for each biological replicate were combined in equimolar pools for sequencing. Libraries were sequenced on an Illumina HiSeq 2500 instrument with a total of 209 cycles of TruSeq Rapid SBS kit v1 (Illumina) chemistry. For the diploids, to obtain longer reads to improve transcriptome assemblies, size-selected libraries were sequenced using an Illumina MiSeq instrument with v3 chemistry, and additional paired-end sequencing data were generated on Illumina NextSeq500.

Quality control and k-mer normalization. Total raw reads were trimmed 10 bp from the 5’ end and 2 bp from the 3’ end after inspection of nucleotide bias using FastQC. Trimmed reads were then aligned to a compiled
set of rRNA sequences using Bowtie, allowing two mismatches per 25-bp seed, and mapped reads were discarded. rRNA contamination varied from as low as 0.39% to as high as 51%, but most libraries had between 1–2% rRNA contamination. A total of 2,064,268,316 paired-end reads (4,128,536,632 total 100-bp reads) were subjected to k-mer normalization using the Trinity package28. A script was used to randomly discard reads with mean k-mer coverage of more than 20.

Transcriptome assemblies. Adaptor and quality trimming was performed using Trim Galore! v0.3.5. Transcripts were assembled using the genome-guided pipeline from Trinity29. For A. duranensis and A. ipaensis, reads were mapped to their respective genomes using GSNAP80,81. For A. hypogaea cv. Tifrunner, a diploid genome–guided tetraploid assembly was carried out; total reads were mapped to an in silico tetraploid genome (a concatenate of the chromosomal pseudomolecules of A. duranensis and A. ipaensis). Once the reads were mapped, the SAM files were run through the genome-guided pipeline. Briefly, loci of reads were extracted into separate directories, where they were then assembled on a locus-by-locus basis. For the A. hypogaea cv. Tifrunner assembly, information on whether loci were guided by A. duranensis or A. ipaensis was retained so that transcripts were annotated as being either ‘A’ or ‘B’. Expression-based filtering of the final assembly of tetraploid transcripts. Total reads were mapped to the transcript assembly from the 58 libraries using Bowtie, allowing two mismatches in a 25-bp seed. Fragments per kilobase per million reads mapped (FPKM) values were estimated using RSEM82 for annotated as being either ‘A’ or ‘B’. A and mapping to A-derived transcripts were counted as correct, and those following parameters: -n 1 -m 0 -A sam --nofails. Fragments diagnostic for sequences were mapped to the transcript assembly using GSNAP with the mismatch to the opposite genome. These fragments were collected as diagnostic sets of hits were filtered for the following criteria: >80% amino acid identity and >80% coverage of the protein model; 90% amino acid identity and >80% coverage of the protein model; and >90% amino acid identity and >90% coverage of the protein model.

52. Zhang, G. et al. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat. Biotechnol. 30, 549–554 (2012).
53. Liu, B. et al. COPE: an accurate k-mer-based pair-end reads connection tool to facilitate genome assembly. Bioinformatics 28, 2870–2874 (2012).
54. Li, R. et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 20, 2175–2184 (2010).
55. Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18 (2012).
56. Boetzer, M., Henkel, C.V., Jansen, H.J., Butler, D. & Pirovano, W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27, 578–579 (2011).
57. McCoy, R.C. et al. Illumina TruSeq synthetic long-reads empower de novo assembly and resolve complex, highly-repetitive transposable elements. PLoS One 9, e106689 (2014).
58. Godoy, I.J. et al. Cultivares de Amendoim: Novas Opções para o Mercado de Confeitaria (Campinas: Instituto Agronômico, 2003).
59. Lander, E.S. et al. MAPPmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181 (1997).
60. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
61. Schiex, T. & Gaspin, C. CARTHAGENE: constructing and joining maximum likelihood genetic maps. Proc. Int. Conf. Intell. Syst. Mol. Biol. 5, 258–267 (1997).
62. Campbell, M.S. et al. MAKER-P: a tool kit for the rapid creation, management, and quality control of plant genome annotations. Plant Physiol. 164, 513–524 (2014).
63. Kurtz, S. Gene finding in novel genomes. BMC Bioinformatics 5, 59 (2004).
64. Wu, T.D. & Watanabe, C.K. GMAP: a genomic mapping and alignment program for sequences. Bioinformatics 21, 307–308 (2005).
65. Li, B. & Dewey, C.N. RSEM: accurate transcript quantification from RNA-Seq data using an intra-subgenome self-BLAST. Transcripts with 90% retention locus information from the assembly in the transcript names. Filtering lacking in minimum read coverage evidence to be supported. Expression-based filtered transcripts were tested for redundancy using a custom script to retain locus information from the assembly in the transcript names. Filtering was performed using an intra-subgenome self-BLAST. Transcripts with 90% or greater coverage and 100% identity were filtered out, leaving the longer transcript. Transcripts were aligned to the annotated repetitive sequences from A. duranensis and A. ipaensis using GMAT82, with the following parameters: -n 4 where -n controls the number of paths.

Estimation of the accuracy of transcriptome assembly of A. hypogaea cv. Tifrunner using diagnostic sequences. A. duranensis and A. ipaensis pseudomolecules were fragmented into 100-bp fragments that were mapped to their opposite genome using Bowtie. The SAM files were filtered for fragments that mapped uniquely and completely (no clipping) with a maximum of only one mismatch to the opposite genome. These fragments were collected as diagnostic sequences. To test the accuracy of the assembled transcripts, diagnostic sequences were mapped to the transcript assembly using GSNAP with the following parameters: -n 1 -m 0 -A sam --nofails. Fragments diagnostic for A and mapping to A-derived transcripts were counted as correct, and those mapping to B-derived transcripts were counted as ambiguous. This testing was also done for B diagnostic transcripts.

Diploid protein comparisons. Assembled transcripts were compared to the combined A. duranensis and A. ipaensis predicted protein models using BLASTX (e value < 1 × 10−20), and the best hit was taken for each. Using AWK, sets of hits were filtered for the following criteria: >80% amino acid identity and >70% coverage of the protein model; >80% amino acid identity and >80% coverage of the protein model; >90% amino acid identity and >80% coverage of the protein model; and >90% amino acid identity and >90% coverage of the protein model.