The efficacy of CCP was uncertain early in the pandemic, whereby the data that supported its use were largely gleaned from observational studies of variable quality, prompting calls for clinical trials to guide practice [12]. Multiple
trials and meta-analyses have since been reported, attesting to the survival benefit of early administration (ie, relative to symptom onset) of high-titer units to patients with COVID-19 [13, 14]. By contrast, transfusion of CCP in late-stage disease has shown little benefit compared with placebo or control (eg, standard of care alone) [15, 16]. It is important to continue the ongoing randomized trials in order to fully understand the efficacy of CCP across different patient populations and settings.

Donor qualification and optimal selection of donors to ensure high-titer units of CCP remain a challenge. Certain factors have already been established, such as the association between male sex, severe disease requiring hospitalization, and advanced age with higher titers of neutralizing antibodies [17]. Neutralizing activity may be the best surrogate of functional effect, but its assessment is not amenable to high-throughput donation testing, thus forcing reliance on clinical assays. Pertinent to the current study, Girardin and colleagues [1] offer insight into the correlation with one clinical assay, the Ortho Vitros SARS-CoV-2 IgG assay, which has been used to benchmark CCP under the EUA. They also provide data on the durability of neutralizing effect.

One challenge—as acknowledged by the authors—is the neutralization assay itself, which suffers from inherent variability, limiting comparability of neutralization findings across laboratories. Similarly, the performance characteristics of the clinical assays vary [18], explaining, in part, the seemingly disparate findings across studies. For example, one group reported a decline in antibodies 3–4 months after resolution of infection [19], while another indicated that neutralizing effect remained robust at 5 months [20].

Another challenge, as highlighted by Girardin and colleagues [1], is how to meet the growing demand for CCP, while optimizing functionality within a narrow window when donor antibody titers against SARS-CoV-2 are highest. These authors suggest that there is a 6-week window (approximately 3–9 weeks after symptom onset) when recruitment would be ideal to assure collection of high-titer CCP. Unfortunately, fewer than half of donors in the study demonstrated adequate neutralizing effect approximately 3 months after initial donation. In short, it is difficult to operationalize a policy with such narrow parameters. For one, the findings suggest that repeated donation, which is foundational to safety and sustainability of the blood supply, would be time limited.

Compounding this situation, the availability of CCP will likely continue to decline as SARS-CoV-2 vaccination gains traction. Some have proposed that CCP should be collected among recently vaccinated individuals. However, questions remain unaddressed surrounding the efficacy of CCP that is collected from individuals after a vaccine-induced response and how this compares with that following natural infection. The logistics of segregating inventories accordingly are not trivial.

As Girardin and colleagues have demonstrated in the current study [1], studying CCP continues to provide invaluable insight into the immunopathogenesis of SARS-CoV-2 [21, 22]. While their findings suggest potential modification of CCP donation, refined practice may be impractical. Despite early support for CCP, collections have been comparatively static relative to demand, thus affecting reserves of CCP [10]. With evolution of policy pertaining to CCP, there have been progressively more restrictive requirements in an effort to standardize this investigational product. At the outset, many—if not most—units of CCP were transfused without determination of titers before transfusion.

With waning inventories of CCP, as would be expected, higher Ortho Vitros IgG ratios may be correlated with higher NTs, but there are insufficient donors to sustain an inventory of high-titer units alone. Clinical trials evaluating the use of CCP as postexposure prophylaxis and early outpatient treatment are currently underway. Should these show favorable effects on morbidity and mortality rates, demand for CCP could increase dramatically. It will be important for US government regulators to work with the transfusion medicine, infectious disease, and blood donor communities to ensure a sustainable model for CCP supply through the end of the pandemic.

Notes

Financial support. This work was supported in part by National Institute of Allergy and Infectious Diseases (grants R01AI120938, R01AI12093851, and R01AI128779 to A. A. R. T) and the National Heart Lung and Blood Institute (grant 1K23HL151826-01 to E. M. B).

Potential conflicts of interest. All authors: No reported conflicts. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References

1. Girardin R, Dupuis AP II, Paynea A, et al. Temporal analysis of serial donations reveals decrease in neutralizing capacity and justifies revised qualifying criteria for COVID-19 convalescent plasma. J Infect Dis 2021; 223:743–51.

2. Food and Drug Administration. Clinical memorandum. Re: EUA 26382: emergency use authorization (EUA) request (original request 8/12/20; amended request 8/23/20). Available from https://www.fda.gov/media/141480/download

3. Shen C, Wang Z, Zhao F, et al. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA 2020; 323:1582–9.

4. Duan K, Liu B, Li C, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci U S A 2020; 117:9490–6.

5. Tobian AAR, Shaz BH. Earlier the better: convalescent plasma. Blood 2020; 136:652–4.
6. Bloch EM, Shoham S, Casadevall A, et al. Deployment of convalescent plasma for the prevention and treatment of COVID-19. J Clin Invest 2020; 130:2757–65.

7. Budhai A, Wu AA, Hall L, et al. How did we rapidly implement a convalescent plasma program? Transfusion 2020; 60:1348–55.

8. COVID-19 expanded access program. https://www.uscovidplasma.org/. Accessed 21 January 2021.

9. Joyner M, Bruno K, Stephen A, Klassen S, et al. Safety update: COVID-19 convalescent plasma in 20,000 hospitalized patients. Mayo Clin Proc 2020; 95:1888–97.

10. America’s Blood Centers. COVID-19 convalescent plasma updates. ABC Newsletter. No. 44. Washington, DC: America’s Blood Centers, December 18, 2020.

11. Johns Hopkins University. Coronavirus COVID-19 global cases by the Center for Systems Science and Engineering at Johns Hopkins. https://coronavirus.jhu.edu/map.html. Accessed 3 January 2020.

12. Bloch EM. Convalescent plasma to treat COVID-19. Blood 2020; 136:654–5.

13. Klassen SA, Senefeld JW, Johnson PW, et al. Evidence favoring the efficacy of convalescent plasma for COVID-19 therapy. medRxiv [Preprint: not peer reviewed]. 29 October 2020. Available from https://www.medrxiv.org/content/10.1101/2020.07.29.20162917v3.

14. Libster R, Marc GP, Wappner D, et al. Prevention of severe COVID-19 in the elderly by early high-titer plasma. medRxiv [Preprint: not peer reviewed]. 21 November 2020. Available from https://www.medrxiv.org/content/10.1101/2020.11.20.2034013v1.

15. Simonovich VA, Burgos Pratx LD, Scibona P, et al. A randomized trial of convalescent plasma in Covid-19 severe pneumonia. N Engl J Med 2020.

16. Agarwal A, Mukherjee A, Kumar G, Chatterjee P, Bhatnagar T, Malhotra P; PLACID Trial Collaborators. Convalescent plasma in the management of moderate covid-19 in adults in India: open label phase II multicentre randomised controlled trial (PLACID Trial). BMJ 2020; 371:m3939.

17. Klein SL, Pekosz A, Park HS, et al. Sex, age, and hospitalization drive antibody responses in a COVID-19 convalescent plasma donor population. J Clin Invest 2020; 130:6141–50.

18. Patel E, Bloch EM, Clarke W, et al. Comparative performance of five commercially available serologic assays to detect antibodies to SARS-CoV-2 and identify individuals with high neutralizing titers [published online ahead of print November 2, 2020]. J Clin Microbiol doi:10.1128/JCM.02257-20.

19. Perreault J, Tremblay T, Fournier MJ, et al. Waning of SARS-CoV-2 RBD antibodies in longitudinal convalescent plasma samples within 4 months after symptom onset. Blood 2020; 136:2588–91.

20. Wajnberg A, Amanat F, Firpo A, et al. Robust neutralizing antibodies to SARS-CoV-2 infection persist for months. Science 2020; 370:1227–30.

21. Benner SE, Patel EU, Laeyendecker O, et al. SARS-CoV-2 antibody avidity responses in COVID-19 patients and convalescent plasma donors. J Infect Dis 2020; 222:1974–84.

22. Bonny TS, Patel EU, Zhu X, et al. Cytokine and chemokine levels in COVID-19 convalescent plasma. Open Forum Infect Dis doi:10.1093/ofid/ofaa574. Published 26 November 2020.