DISTRIBUTIONAL LIMITS OF POSITIVE, ERGODIC STATIONARY PROCESSES AND INFINITE ERGODIC TRANSFORMATIONS.

JON. AARONSON AND BENJAMIN WEISS

Abstract. In this note we identify the distributional limits of non-negative, ergodic stationary processes, showing that all are possible. Consequences for infinite ergodic theory are also explored and new examples of distributionally stable- and α-rationally ergodic transformations are presented.

§0 Short Introduction

Classical central limit theory is concerned with the distributional convergence of normalized partial sums $\frac{1}{a_n} \sum_{k=1}^{n} X_n$ of independent, identically distributed random variables (X_1, X_2, \ldots). Here, we consider this asymptotic distributional behavior of normalized partial sums $\frac{1}{a_n} \sum_{k=1}^{n} X_n$ of random variables (X_1, X_2, \ldots) generated by a stationary process (SP) by which we mean a quintuple $(\Omega, \mathcal{F}, P, T, f)$ where $(\Omega, \mathcal{F}, P, T)$ is a probability preserving transformation (PPT) and $f : \Omega \to \mathbb{R}$ is measurable; the "generated random variables" being the sequence of random variables $(X_n = f \circ T^n)_{n \geq 0}$ defined on the sample space (Ω, \mathcal{F}, P).

The stationary process $(\Omega, \mathcal{F}, P, T, f)$ is non-negative if $f \geq 0$; and ergodic (ESP) if the underlying PPT $(\Omega, \mathcal{F}, P, T)$ is an ergodic PPT (EPPT).

For independent processes, the possible probability distributions (or laws) occurring as limits were determined by Paul Levy in [21]. They are the stable laws (including the normal distribution of the central limit theorem).

For a general ESP, it was shown in [28] that any probability distribution on \mathbb{R} is a possible limit.

2010 Mathematics Subject Classification. 37A, (28D, 60F).

Key words and phrases. Infinite ergodic theory, measure preserving transformation, ergodic stationary process, normalizing constants, distributional limit.

©2016. Aaronson's research was partially supported by ISF grant No. 1599/13.
This paper is about what happens when the stationary process is non-negative.

Our main result on stationary processes is

Theorem 2 Let \((\Omega, \mathcal{F}, P, T)\) be a EPPT and let \(Y \in \text{RV}(\mathbb{R}_+)\), then \(\exists\) 1-regularly varying, convex function \(b : \mathbb{R}_+ \rightarrow \mathbb{R}_+\) and a positive measurable function \(f : \Omega \rightarrow \mathbb{R}_+\) so that

\[
\frac{1}{b(n)} \sum_{k=0}^{n-1} f \circ T^k \xrightarrow{\text{d}}_{n \rightarrow \infty} Y.
\]

Here and throughout,

- \(\mathbb{R}_+ := (0, \infty)\),
- for a metric space \(Z\), \(\text{RV}(Z)\) denotes the collection of \(Z\)-valued random variables, and
- \(\xrightarrow{\text{d}}_{n \rightarrow \infty}\) denotes strong distributional convergence as defined in §1 below.

Given a random variable, we’ll first construct (theorem 1) a specific ESP satisfying *inter alia* \((\text{��})\). This will be done by stacking. We’ll then show that a general EPPT induces an extension of the given underlying EPPT and that this enables transference of \((\text{��})\).

Previous work on distributional limits of stochastic processes over arbitrary EPPTs can be found in [14], [30], [28].

We then apply our results to give new examples of distributionally stable MPTs (measure preserving transformations).

In theorem 3 we show (*inter alia*) that: for any \(Y \in \text{RV}(\mathbb{R}_+)\), \(\exists\) a MPT \((X, \mathcal{B}, m, T)\) and a 1-regularly varying function \(a : \mathbb{R}_+ \rightarrow \mathbb{R}_+\) satisfying

\[
\frac{1}{a(n)} \sum_{k=1}^{n} f \circ T^k \xrightarrow{\text{d}}_{n \rightarrow \infty} Y \int_X f dm \quad \forall \ f \in L^1(m)_+.
\]

A full statement of theorem 3 is given in §1 below.

Remarks.

1) It is natural to ask what would be the possible limit laws of the partial sums of nonnegative ESP which are scaled and also centered by positive constants.

That is, what are the possible limit laws of \(\frac{S_n - a(n)}{b(n)}\) where \(S_n\) is the \(n^{th}\) partial sum of a nonnegative ESP, and \(b(n), a(n) > 0 \ (n \geq 1)\) are constants?
Our result shows that any probability distribution with support bounded from below can be obtained in this fashion. It is likely that our proof can be modified so as to obtain all distributions as limits of these normalized and "centered" sums. We thank the referee for raising this issue.

2) It is also natural to ask about the stochastic processes occurring as distributional limits of the random step functions \(\Phi_n \in D([0, 1]) \) (as in §11, chapter 3) generated by the partial sums of an ESP and defined by \(\Phi_n(t) := \frac{S_{(n)}}{b(n)} \).

For example, if \(\frac{S_n}{b(n)} \xrightarrow{d} Y \) as in theorem 2, then, due to the 1-regular variation of \(b \), \(\Phi_n \xrightarrow{d} L_Y \) in \(D([0, 1]) \) where \(L_Y(t) := tY \).

§1 Longer introduction

Distributional convergence. Consider the compact metric space \(([0, \infty], \rho)\) with

\[
\rho(x, y) := |\tan^{-1}(x) - \tan^{-1}(y)|.
\]

For \(x, y \in \mathbb{R}_+ \), \(\rho(x, y) \leq |x - y| \). We’ll use the

- \(\rho \)-uniform distance on \(RV(\mathbb{R}_+) \) defined by

\[
u(Y_1, Y_2) := \min \{ \sup \rho(Z_1, Z_2) : Z = (Z_1, Z_2) \in RV(\mathbb{R}_+ \times \mathbb{R}_+), Z_i \xrightarrow{d} Y_i (i = 1, 2) \};
\]

and the

- \(\rho \)-Vasershtein distance on \(RV(\mathbb{R}_+) \) defined (as in [29]) by

\[
v(Y_1, Y_2) := \min \{ E(\rho(Z_1, Z_2)) : Z = (Z_1, Z_2) \in RV(\mathbb{R}_+ \times \mathbb{R}_+), Z_i \xrightarrow{d} Y_i (i = 1, 2) \}.
\]

Evidently \(v(Y_1, Y_2) \leq u(Y_1, Y_2) \) and, if \(v(Y_1, Y_2) < \epsilon \), then \(\exists Z = (Z_1, Z_2) \in RV(\mathbb{R}_+ \times \mathbb{R}_+), Z_i \xrightarrow{d} Y_i (i = 1, 2) \) so that

\[
\text{Prob}(\rho(Z_1, Z_2) > \sqrt{\epsilon}) < \sqrt{\epsilon}.
\]

For \(Y_n, Y \in RV(\mathbb{R}_+) \),

\[
E(g(Y_n)) \xrightarrow{n \to \infty} E(g(Y)) \quad \forall g \in C_B(\mathbb{R}_+) \iff v(Y_n, Y) \xrightarrow{n \to \infty} 0.
\]

See the Skorohod representation theorem in [26] and [11].
Strong distributional convergence.

For \((X, \mathcal{B})\) be a measurable space, we denote the collection of probability measures on \((X, \mathcal{B})\) by \(\mathcal{P}(X, \mathcal{B})\).

Now let \((X, \mathcal{B}, m)\) be a measure space, \(Z\) be a metric space, \(F_n : X \to Z\) be measurable, \(Y \in \text{RV}(Z)\) and \(P \in \mathcal{P}(X, \mathcal{B})\), \(P \ll m\). We’ll write

\[
F_n \xrightarrow{P-d} Y
\]

if

\[
\int_X g(F_n) dP \xrightarrow{n \to \infty} E(g(Y)) \quad \forall \quad g \in C_B(Z)
\]

and say (as in \([3, 4]\) and \([27]\)) that \(F_n\) converges strongly in distribution (written \(F_n \xrightarrow{P} Y\)) if

\[
F_n \xrightarrow{P-d} Y \quad \forall \quad P \in \mathcal{P}(X, \mathcal{B}), \ P \ll m.
\]

This is called mixing distributional convergence in \([22]\) and \([17]\).

In ergodic situations, strong distributional convergence of normal partial sums is an automatic consequence of distributional convergence. Namely:

Eagleson’s Theorem \([17]\) (see also \([3, 4]\) and \([4]\))

If \((X, \mathcal{B}, m, T, f)\) is an \(\mathbb{R}\)-valued, ESP, \(a(n) \to \infty\) and \(\exists \ P \in \mathcal{P}(X, \mathcal{B})\) \(P \ll m\) so that

\[
\int_X g\left(\frac{S_n}{a(n)}\right) dP \xrightarrow{n \to \infty} E(g(Y)) \quad \forall \quad g \in C([0, \infty])
\]

where \(S_n := \sum_{k=1}^{n} f \circ T^k\), then \(\frac{S_n}{a(n)} \xrightarrow{n \to \infty} Y\).

Examples.

1. Let \(\gamma \in (0, 1]\) and let \((\Omega, \mathcal{A}, P, S, f)\) be a positive ESP where \((f \circ S^n : n \geq 1)\) are independent random variables satisfying

\[
E(f \wedge t) \xrightarrow{t \to \infty} \frac{t}{A(t)}
\]

where \(A(t)\) \(\gamma\)-regularly varying in the sense that \(\frac{A(xt)}{A(t)} \to x^\gamma\) \(\forall \ x > 0\) (see \([12]\)).

By the stable limit theorem (\([21]\), also e.g. XIII.6 in \([18]\))

\[
\frac{1}{A^{-1}(n)} \sum_{k=1}^{n} f \circ S^k \xrightarrow{dist} Z_{\gamma}
\]
where Z_γ is normalized, γ-stable in the sense that $E(e^{-pZ_\gamma}) = e^{-c_\gamma p}$ where $c_\gamma > 0$ and $E(Z_\gamma^2) = 1$. Note that $Z_1 \equiv 1$. For generalizations of this to weakly dependent SPs, see [7] and references therein.

¶2 In [5] positive ESPs $(\Omega, \mathcal{F}, P, R, f)$ were constructed so that

$$\frac{1}{b(n)} \sum_{k=0}^{n-1} f \circ R^k \xrightarrow{\text{dist}_{n \to \infty}} e^{\frac{1}{2} \mathcal{N}(0,1)^2}$$

where $b(n) \sim n \sqrt{\log n}$ and $\mathcal{N}(0,1)$ is standard normal. For example $R = \tau f$ where τ is the dyadic adding machine on \{0, 1\} and $f(x) = \min\{n \geq 1 : \sum_{k=1}^n [(\tau^nx)_k - x_k] = 0\}$ is the exchangeability waiting time.

The following is the main construction enabling theorem 2. It is a specific construction tailored to the target random variable.

Theorem 1 Let $Y \in RV(\mathbb{R}_+)$, then there exist

- an odometer (X, \mathcal{B}, m, T),
- an increasing, 1-regularly varying function $b : \mathbb{R}_+ \to \mathbb{R}_+$
- a positive measurable function $f : X \to \mathbb{R}_+$

so that

$$\frac{1}{b(n)} \sum_{k=0}^{n-1} f \circ T^k \xrightarrow{n \to \infty} Y$$

$$\exists M > 1, \ r > 0 \text{ and } N_0 \geq 1 \text{ such that}$$

$$P\left(\sum_{k=0}^{n-1} f \circ T^k < xb(n)\right) \leq P(Y \leq Mx) \quad \forall \ x \in (0, r), \ n \geq N_0.$$

The (\otimes) condition (repeated from page 2) is used in the proofs of theorem 2 and 3. The ($\otimes\otimes$) condition will be used in theorem 3 in §6 to obtain examples of α-rational ergodicity.

The next proposition explains why the normalizing constants are necessarily 1-regularly varying when the support of Y is compact in \mathbb{R}_+.

Normalizing constant proposition

Suppose that $(\Omega, \mathcal{F}, P, R, f)$ is a positive ESP, $b(n) > 0$, and $Y \in RV(\mathbb{R}_+)$ with $\min \text{supp } Y =: a > 0$ and $\max \text{supp } Y =: b < \infty$.

If $\frac{S_n}{b(n)} \xrightarrow{\text{dist}_{n \to \infty}} Y$ where $S_n := \sum_{k=1}^n f \circ T^k$, then b is 1-regularly varying.

Proof It suffices to show that $\frac{b(2n)}{b(n)} \xrightarrow{n \to \infty} 2$. To see this, suppose otherwise, then there exist $\epsilon > 0$ and a subsequence $K \subset \mathbb{N}$, so that

$$\left|\frac{b(2n)}{b(n)} - 2\right| \geq \epsilon \quad \forall \ n \in K.$$
Next, by compactness, there is a further subsequence $K' \subset K$ and a random variable $Z = (Z_1, Z_2) \in \mathcal{RV}([0, \infty]^2)$ so that
\[
\left(\frac{S_n}{b(n)}, \frac{S_n \circ T^n}{b(n)} \right) \xrightarrow{\varnothing} Z.
\]
By assumption, we have that $\text{dist} Z_i = \text{dist} Y$ ($i = 1, 2$). Thus,
\[
2a \leq Z_1 + Z_2 \leq 2b.
\]
Now fix $K'' \subset K'$ so that
\[
\frac{b(2n)}{b(n)} \xrightarrow[n \to \infty, n \in K''] n \to \infty, n \in K'' c \in [0, \infty].
\]
By assumption,
\[
Y \xleftarrow{\varnothing} \begin{aligned}
\frac{S_{2n}}{b(2n)} \\
= \frac{b(n)}{b(2n)} \left(\frac{S_n}{b(n)} + \frac{S_n \circ T^n}{b(n)} \right) \\
\xrightarrow[\varnothing, n \in K''] n \to \infty, n \in K'' c^{-1}(Z_1 + Z_2).
\end{aligned}
\]
It follows that $c \in \mathbb{R}_+$ and that $Z_1 + Z_2 \overset{\text{dist}}{=} cY$. So on the one hand
\[
\min \supp cY = ca \quad \text{and} \quad \max \supp cY = cb < \infty
\]
and on the other hand,
\[
ca = \min \supp (Z_1 + Z_2) \geq 2a \quad \text{and} \quad cb = \max \supp (Z_1 + Z_2) \leq 2b
\]
with the conclusion that $c = 2$ which contradicts (\dagger). \(\Box\)

Distributional convergence in infinite ergodic theory.
Let (X, \mathcal{B}, m, T) be a conservative, ergodic MPT (CEMPT) and let $Y \in \mathcal{RV}([0, \infty])$. Let $n_k \uparrow \infty$ be a subsequence and let $d_k > 0$ be constants. As in [3] and [4], we’ll write
\[
\frac{S_{nk}^{(T)}}{d_k} \xrightarrow[k \to \infty]{} Y
\]
if
\[
\frac{S_{nk}^{(T)}(f)}{d_k} \xrightarrow[k \to \infty]{} Y \int_X f \, dm \quad \forall \ f \in L^1_+.
\]
Call the random variable $Y \in \mathcal{RV}([0, \infty])$ appearing a subsequence distributional limit of T and let
\[
\mathcal{L}_T := \{ \text{subsequence distributional limits of } T \}.
\]
The collection
\[
\{ T \in \text{MPT}(\mathbb{R}) : \mathcal{L}_T = \mathcal{RV}([0, \infty]) \}
\]
is residual in $\text{MPT}(\mathbb{R})$, the group of invertible transformations of \mathbb{R} preserving Lebesgue measure, equipped with the weak topology (see [3]).
We call the CEMPT $\text{CEMP} (X, \mathcal{B}, m, T)$ distributionally stable if there are constants $a(n) = a_n, Y(T) > 0$ and a random variable Y on $(0, \infty)$ (called the ergodic limit) so that

$$\frac{S_n(T)}{a(n)} \xrightarrow{d} Y. \quad (\otimes)$$

The sequence of constants $(a_n, Y(T) : n \geq 1)$ is determined up to asymptotic equality and we call it the Y-distributional return sequence. Note that $a_n, Y(T) \sim \frac{1}{x} a_n, Y(T)$. For distributionally stable CEMPTs which are also weakly rationally ergodic, we have that $a_n, Y(T) \asymp a_n(T)$ the usual return sequence (see [1]).

Classic examples of distributionally stable CEMPTs are obtained via the Darling-Kac theorem ([16]): pointwise dual ergodic transformations (e.g. Markov shifts) with regularly varying return sequences are distributionally stable with Mittag-Leffler ergodic limits (see also [4], [3]).

More recently, it has been shown that certain “random walk adic” transformations have exponential chi-square distributional limits (see [5], [10] and [13]).

Our main result about infinite, ergodic transformations is

Theorem 3 For each $Y \in RV(\mathbb{R}_+)$, there is a distributionally stable CEMPT $\text{CEMP} (X, \mathcal{B}, m, T)$ with ergodic limit Y with $a_n, Y(T)$ 1-regularly varying and $\Omega \in \mathcal{B}, m(\Omega) = 1$ so that

$$m(\Omega \cap [S_n(1\Omega) \geq xa(n)]) \leq 2P(Y \geq x) \quad \forall \ x > 1 \quad \text{and} \ n \geq 1 \quad \text{large.} \quad (\otimes)$$

The (\otimes) condition (which is an inversion of the (\otimes_5) condition on page 5) will be used in the construction of α-rationally ergodic MPTs in §6.

By proposition 3.6.3 in [1], distributional stability of a CEMPT entails existence of a law of large numbers (as in [3] and [4]) for it. An example in §6 shows it does not entail α-rational ergodicity.

Plan of the paper.

In §2, we recall the stacking method used to construct the odometer in theorem 1. This odometer is constructed together with a sequence of step functions and in §3, we formulate the step function extension lemma needed for the proof of theorem 1 where the limit is a rational random variable (taking finitely many values, each with rational probability). In §4 we prove the step function extension lemma and theorem 1 in this (rational rv) case. In §5, we prove theorem 1
in general, developing the necessary approximations of random variables by rational ones. We conclude in §6 by proving theorem 3 and considering some of its consequences in infinite ergodic theory.

§2 The stacking constructions

Stacking as in [15] (aka the stacking method [19] and cutting and stacking in [21],[25]) is a construction procedure yielding a piecewise translation of an almost open subset \(X \subset \mathbb{R} \). This transformation is invertible and preserves Lebesgue measure.

As in [15] and [19], a column is a finite sequence of disjoint intervals \(W = (I_1, I_2, \ldots, I_h) \) with equal lengths. The width of the column is the length of \(I_k \) and we’ll sometimes call \(W = (I_1, I_2, \ldots, I_h) \) an \(h \)-column.

The base of the column \(W = (I_1, I_2, \ldots, I_h) \) is \(B(W) := I_1 \), its top is \(A(W) := I_h \) and its union is \(U(W) = \bigcup_{k=1}^{h} I_k \). The measure of a column is the length of its union. Columns \(W \) and \(W' \) are disjoint if their unions are disjoint.

The column \(W \) is equipped with the periodic map \(T = T_W : U(W) \to U(W) \) defined by the translations \(T : I_k \to I_{k+1} \) (for \(1 \leq k \leq h - 1 \)) and \(T : I_h \to I_1 \).

A castle (tower in [15] and [19]) is a finite collection of disjoint columns.

A castle consisting of a single column is known as a Rokhlin tower.

A castle is called homogeneous if all the columns have the same height and width. As before, an homogeneous castle consisting of \(h \)-columns is called an \(h \)-castle.

The base of the castle \(\mathfrak{W} = \{W_1, W_2, \ldots, W_n\} \) is \(B(\mathfrak{W}) = \bigcup_{k=1}^{n} B(W_k) \), its top is \(A(\mathfrak{W}) = \bigcup_{k=1}^{n} A(W_k) \) and its union is \(U(\mathfrak{W}) = \bigcup_{k=1}^{n} U(W_k) \).

It is equipped with the periodic transformation \(T_{\mathfrak{W}} : U(\mathfrak{W}) \to U(\mathfrak{W}) \) defined by

\[
T_{\mathfrak{W}|_{U(W_k)}} \equiv T_{W_k}.
\]

Refinements of castles.

The castle \(\mathfrak{W}' \) refines the castle \(\mathfrak{W} \) (written \(\mathfrak{W}' \succ \mathfrak{W} \)) if

(i) each interval of \(\mathfrak{W} \) is a union of intervals of \(\mathfrak{W}' \);
(ii) \(A(\mathfrak{W}') \subset A(\mathfrak{W}) \) and \(B(\mathfrak{W}') \subset B(\mathfrak{W}) \);
(iii) \(T_{\mathfrak{W}'|_{U(\mathfrak{W}) \setminus A(\mathfrak{W})}} \equiv T_{\mathfrak{W}}. \)
If $W' > W$, then $U(W') \supset U(W)$.

All castle refinements $W' > W$ considered here are mass preserving in the sense that $U(W') = U(W)$ (no “spacers” are added).

Call the refinement $W' > W$ transitive if

$$m(U(W') \cap U(W)) > 0 \quad \forall \ W' \in W' \text{ and } W \in W.$$

A sequence $(W_n)_{n \geq 1}$ of castles is a nested sequence if each W_{n+1} refines W_n.

Let $(W_n)_{n \geq 1}$ be a nested sequence of castles and consider the measure space (X, B, m) with $X := \bigcup_{n=1}^{\infty} U(W_n)$ equipped with Borel sets B and Lebesgue measure m.

As shown in [15] and [19], there is a measure preserving transformation (X, B, m, T) defined by

$$T(x) = \lim_{n \to \infty} T_{W_n}(x) \quad \text{for } m\text{-a.e. } x$$

iff $m(A(W_n)) \to 0$.

It is standard to show that if infinitely many of the refinements $W_{n+1} > W_n$ are transitive, then (X, B, m, T) is ergodic.

The transformation (X, B, m, T) is aka the inverse limit of $(W_n)_{n \geq 1}$ and denoted $T = \lim_{\leftarrow n \to \infty} W_n$.

Odometers.

An odometer is an inverse limit of a (mass preserving) nested sequence of Rokhlin towers. Odometers are ergodic because if W', W are Rokhlin towers and $W' > W$, then the refinement is clearly transitive. The odometers are the ergodic transformations with rational, pure point spectrum.

Induced Transformation (as in [20])

Let (X, B, m, T) be a CEMPT and let $\Omega \in B$, $0 < m(\Omega) < \infty$. The first return time to Ω is the function $\varphi_\Omega : \Omega \to \mathbb{N} \cup \{\infty\}$ defined by $\varphi_\Omega(x) := \min \{n \geq 1 : T^n x \in \Omega\}$ which is finite for a.e. $x \in \Omega$ by conservativity.

The induced transformation is $(\Omega, B \cap \Omega, m_\Omega, T_\Omega)$ where $T_\Omega : \Omega \to \Omega$ is defined by $T_\Omega(x) := T^{\varphi_\Omega(x)}$ and $m_\Omega(A) := m(A \cap \Omega)$. It is a PPT.

Odometer factor proposition
Let R be an odometer and let (X, \mathcal{B}, m, T) be an aperiodic PPT, then $\exists \Omega \in \mathcal{B}$, $m(\Omega) > 0$ so that R is a factor PPT of T_Ω.

Proof

Let $R = \lim_{n \to \infty} W_n$ where $(W_n)_{n \geq 1}$ is a nested sequence of Rokhlin towers. Let the height of W_n be H_n, then there is a sequence $a_1, a_2, \cdots \in \mathbb{N}$, $a_n \geq 2$ so that $H_1 = a_1$, $H_{n+1} = a_{n+1}H_n$.

By the basic Rokhlin lemma, for any $\epsilon_1 \in (0,1)$ there is some B_1 of positive measure such that the sets \(\{ T^i(B_1) : i = 0, 1, \ldots, a_1 - 1 \} \) are disjoint and

\[
X = \bigcup_{i=0}^{a_1-1} T^i(B_1) \cup E_1
\]

where $E_1 \in \mathcal{B}$ and $m(E_1) = \epsilon_1 m(B_1)$.

Next apply the Rokhlin lemma again to the induced transformation T_{B_1} with $\epsilon_2 \in (0,1)$ to get a base $B_2 \subset B_1$ with the sets \(\{ T^i(B_1) : 0 \leq i < a_2 \} \) disjoint and

\[
B_1 = \bigcup_{i=0}^{a_2-1} T^i_{B_1}(B_2) \cup E_2
\]

where $E_2 \in \mathcal{B}(B_1)$ and $m(E_2) = \epsilon_2 m(B_2)$.

This process is continued to obtain $B_k \in \mathcal{B}$, $B_k \subset B_{k-1}$ with the sets \(\{ T^i_{B_{k-1}} B_k : 0 \leq i < a_k \} \) disjoint and

\[
B_{k-1} = \bigcup_{i=0}^{a_k-1} T^i_{B_{k-1}}(B_k) \cup E_k
\]

where $E_k \in \mathcal{B}(B_{k-1})$ and $m(E_k) = \epsilon_k m(B_{k-1})$. If $\sum_{k \geq 1} \epsilon_k < 1$, then

\[
\Omega := \bigcap_{k \geq 1} \bigcup_{i=0}^{H_k-1} T^i(B_k)
\]

is as advertised.

We’ll need a condition for an inverse limit of castles to be isomorphic to an odometer.

If $W = (I_1, I_2, \ldots, I_k)$ and $W' = (I'_1, I'_2, \ldots, I'_{k'})$ are disjoint columns of intervals with equal width, the stack of W and W' is the column

\[
W \otimes W' := (I_1, I_2, \ldots, I_k, I'_1, I'_2, \ldots, I'_{k'})
\]

Let $q \in \mathbb{N}$. The column W can be sliced into q subcolumns

\[qW_1, qW_2, \ldots, qW_q\]

of equal width and the same height.
For a column W and $q \in \mathbb{N}$, $W^{\otimes q}$ denotes the column obtained from W by slicing the column into q disjoint subcolumns of equal width and then stacking. That is

$$W^{\otimes q} = \bigotimes_{k=1}^{q} W_k.$$

Let $\mathcal{W} = \{W_k : 1 \leq k \leq K\}$ and $\mathcal{W}' = \{W'_\ell : 1 \leq \ell \leq L\}$ be homogeneous castles.

The refinement $\mathcal{W}' > \mathcal{W}$ is uniform if $\exists Q \geq 1, \kappa_1, \kappa_2, \ldots, \kappa_Q \in \{1, 2, \ldots, K\}$ with $\{\kappa_q : 1 \leq q \leq Q\} = \{1, 2, \ldots, K\}$ and $s_1, s_2, \ldots, s_Q \in \mathbb{N}$ so that

$$W'_\ell = L \left(\bigotimes_{q=1}^{Q} W_{\kappa_q}^{\otimes s_q} \right)_\ell.$$

Note that a uniform refinement is transitive.

The nested sequence of homogeneous castles $(\mathcal{M}_n)_{n \geq 1}$ is called uniformly nested if each refinement $\mathcal{M}_{n+1} > \mathcal{M}_n$ is uniform.

Proposition Let $(\mathcal{M}_n)_{n \geq 1}$ be a uniformly nested sequence of homogeneous castles, then the EPPT $(X, \mathcal{B}, m, T) := \lim_{n \to \infty} \mathcal{M}_n$ is an odometer.

Proof Let $\mathcal{M}_n = \{W_j^{(n)} : 1 \leq j \leq k_n\}$ and suppose that

$$W_j^{(n+1)} = k_{n+1} \left(\bigotimes_{q=1}^{Q_n+1} W_{\kappa_q}^{(n)\otimes (n+1)} \right)_\ell,$$

then

$$W'^{(n+1)}_\ell = k_{n+1} \left(\overline{W}'^{(n)} \right)_\ell,$$

where

$$\overline{W}'^{(n)} := \bigotimes_{q=1}^{Q_n+1} W_{\kappa_q}^{(n)\otimes (n+1)}.$$

The Rokhlin tower $\overline{\mathcal{M}}^{(n)} := \{\overline{W}'^{(n)}\}$ is refined by $\overline{\mathcal{M}}^{(n+1)}$ and

$$(X, \mathcal{B}, m, T) = \lim_{n \to \infty} \overline{\mathcal{M}}^{(n)}.$$

§3 Step functions, labeled castles and block arrays

Here we introduce the framework for the proof of Theorem 1.

We’ll a construct recursively a nested sequence of homogeneous, unit measure castles $(\mathcal{M}_n)_{n \geq 1}$ and set $(X, \mathcal{B}, m, T) = \lim_{n \to \infty} \mathcal{M}_n.$
The advertised function \(f : X \to \mathbb{R}_+ \) will be defined as \(f = \lim_{n \to \infty} f^{(n)} \) where \(f^{(n)} : \mathfrak{W}_n \to \mathbb{R}_+ \) is a step function in the sense that it is constant on each of the intervals making up each column in the castle \(\mathfrak{W}_n \).

If \(\mathfrak{W}_n = \{W_j^{(n)} : 1 \leq j \leq k_n\} \) where each \(W_j^{(n)} = (I_{j,k}^{(n)})_{1 \leq k \leq h_n} \) is a column of height \(h_n \), then

\[
 f^{(n)} = (w_j^{(n)} : 1 \leq j \leq k_n) \in (\mathbb{R}_+^{h_n})^{k_n}
\]

where

\[
 f^{(n)} \equiv w_j^{(n)}(k) \text{ on } I_{j,k}^{(n)}.
\]

Formally, let a \(J \)-block be a positive vector \(w \in \mathbb{R}_+^J \) (where \(J \in \mathbb{N} \)). The \textit{length} of \(J \)-block \(w \) is \(|w| := J \).

A block \(w \in \mathbb{R}_+^J \) determines a labeled column: an underlying column \(W = (I_1, I_2, \ldots, I_J) \) together with a step function \(F_W : U(W) \to \mathbb{R}_+ \) defined by

\[
 F_W = \sum_{k=1}^J w_k 1_{I_k}.
\]

A block array is an ordered collection of blocks of the same length (called \(J \)-block array when all the blocks have length \(J \)).

The block array \(\mathfrak{w} = (w_1, w_2, \ldots, w_N) \in (\mathbb{R}_+^h)^N \) determines a labeled castle:

an underlying castle \(\mathfrak{W} = (W_1, W_2, \ldots, W_N) \) of height \(h \), together with a step function \(F_\mathfrak{w} : U(\mathfrak{w}) \to \mathbb{R}_+ \) defined by

\[
 F_\mathfrak{w} := \sum_{k=1}^N 1_{U(W_k)} F_{W_k}.
\]

We’ll say that the block array \(\mathfrak{y} \) refines the block array \(\mathfrak{r} \) written \(\mathfrak{y} > \mathfrak{r} \) if the castle determined by \(\mathfrak{y} \) refines that determined by \(\mathfrak{r} \).

Blocks can be concatenated. If \(w \in \mathbb{R}_+^J \) and \(w' \in \mathbb{R}_+^{J'} \), the concatenation of \(w \) and \(w' \) is

\[
 w \odot w' := (w_1, w_2, \ldots, w_J, w'_1, w'_2, \ldots, w'_{J'}) \in \mathbb{R}_+^{J+J'}.
\]

The concatenation of blocks corresponds to the stacking of their underlying columns.

If \(W \) and \(W' \) are columns of height \(J \) and \(J' \) respectively and with the same width, and \(w \in \mathbb{R}_+^J \) and \(w' \in \mathbb{R}_+^{J'} \), then

\[
 F_{w \odot w'} = F_{\{w, w'\}} \text{ on } U(W \odot W') = U(\{W, W'\}) = U(W) \cup U(W').
\]

Similarly, self concatenation \(w \odot q \) of the same block \(w \) corresponds to cutting and stacking \(W \odot q \) of the corresponding column \(W \).
We call a sequence of block arrays *nested* if the underlying sequence of castles is nested.

We’ll obtain the required ESP by producing a nested sequence \((w_n)_{n \geq 1}\) of block arrays whose associated sequence of step functions \((F_{w_n})_{n \geq 1}\) is convergent.

Block statistics.

Distributional convergence will be achieved by controlling the empirical distributions of the various short-term partial sums over the tall block arrays.

Given a block \(w \in \mathbb{R}_h^+\), define

\[
S_k(F_w) := \sum_{j=0}^{k-1} F_w \circ T_w^j
\]

where \(T_w\) is the periodic transformation defined on the column underlying \(w\). We have

\[
S_k(F_w) = \sum_{\nu = 1}^{h} S_k(w)(\nu) 1_{\nu}
\]

where, for \(1 \leq \nu \leq h\),

\[
S_k(w)(\nu) := \sum_{j=0}^{k-1} w_{\nu+j}.
\]

Here translation is considered \(\text{mod } h\) that is \(\nu + j := \nu + j \text{ mod } h\).

For a block array \(w = \{w_j : 1 \leq j \leq K\}\), set

\[
S_k(F_w) = \sum_{j=1}^{K} 1_{U(w_j)} F_{w_j}
\]

and \(S_k(w)(\nu, j) := S_k(w_j)(\nu)\).

We study the distributions of \(S_k(w)\) and \(S_k(w)\) considered as \(\mathbb{R}_+\)-valued random variables on the symmetric probability spaces \(\{1, 2, \ldots, h\}\) and \(\{1, 2, \ldots, h\} \times \{1, 2, \ldots, K\}\) respectively.

If \(w \in \mathbb{R}_h^+\) and \(m \in \mathbb{N}\), then

\[
S_k(w^\otimes m)(\nu) = S_k(w)(\nu \text{ mod } h)
\]

whence \(S_k(w^\otimes m)\) and \(S_k(w)\) are equidistributed.
In a similar manner, we consider partial sums on a block array \(w = \{ w_k : 1 \leq k \leq n \} : \{1, \ldots, h\} \times \{1, \ldots, n\} \to \mathbb{R}_+ \):

\[
S_k(w)(j, \ell) := S_k(w_\ell)(j).
\]

Before starting the construction, we need some notions of block normalization.

Block normalizations.

Suppose that \(h \in \mathbb{N} \) and \(w \in \mathbb{R}^h_+ \) is a block. Write

\[
|h| := h, \quad M(w) := \max_{1 \leq j \leq h} w_j, \quad \Sigma(w) := \sum_{1 \leq j \leq h} w_j \quad \text{and} \quad E(w) := \frac{\Sigma(w)}{|w|}.
\]

Note that

\[
E(w) = \int_{[1, h]^\mathbb{N}} wdP_{[1, h]^\mathbb{N}}.
\]

The block \(w \in \mathbb{R}_+^h \) is \(\epsilon \)-normalized if

\[
S_k(w) = kE(w)(1 \pm \epsilon) \quad \forall \ k \geq \frac{\epsilon \Sigma(w)}{M(w)}.
\]

We call the block array \(w \subset \mathbb{R}_+^h \) \(\epsilon \)-normalized if each block \(w \in w \) is \(\epsilon \)-normalized.

Block array distributions.

Let \(X \) be a metric space. We'll identify the collection \(\mathcal{P}(X) \) of Borel probabilities on \(X \) with

\[
\text{RV}(X) := \{ \text{random variables with values in } X \}
\]

by

\[
Y \in \text{RV}(X) \leftrightarrow \text{dist.}(Y) \in \mathcal{P}(X)
\]

where

\[
\text{dist.}(Y) := P \circ Y^{-1} \in \mathcal{P}(X)
\]

in case \(Y \) is defined on the probability space \((\Omega, \mathcal{F}, P)\).

A symmetric representation of \(Y \in \text{RV}(X) \) is an ordered pair \((\Omega, f)\) where \(\Omega \) is a finite set and \(f : \Omega \to X \) is so that

\[
\text{Prob}(Y = x) = \frac{1}{|\Omega|} \# \{ \omega \in \Omega : f(\omega) = x \} \quad \forall \ x \in X.
\]

Evidently, the random variable \(Y \in \text{RV}(X) \) has a symmetric representation iff \(Y \) is rational in the sense that there is a finite set \(V \subset X \) so that \(Y \in V \) a.s. and

\[
\text{Prob}(Y = x) \in \mathbb{Q}_+ \quad \forall \ x \in F.
\]
Let $Y \in \text{RV}(\mathbb{R}_+)$ be rational. A Y-distributed, h-block array is a h-block array of form

$$w \subset \mathbb{R}_+^h$$

with respect to which, block averaging is a symmetric representation for $c \cdot Y$ for some $c = c(w) \in \mathbb{R}_+$.

Specifically,

$$\text{Prob}(c \cdot Y = x) = \frac{1}{|w|} \# \{w \in w : E(w) = c \cdot x\} \quad \forall \, x \in \mathbb{R}_+.$$

Definition: Relative Y-distribution

Let $Y \in \text{RV}(\mathbb{R}_+)$ be rational, let $\Delta > \mathcal{E} > 0$, $h, Q \in \mathbb{N}$ and let $w \subset \mathbb{R}_+^h$ and $w' \subset \mathbb{R}_+^{Qh}$ be Y-distributed block arrays with w' refining w, w Δ-normalized and w' \mathcal{E}-normalized.

We’ll say that the pair (w, w') is relatively, $Y-(\Delta, \mathcal{E})$-distributed if

(i) $m([F_{w'} = F_w]) < \Delta$,

(ii) $\exists \ c(w) = \gamma(h) \leq \gamma(h + 1) \leq \cdots \leq \gamma(h') = c(w')$ and $\Delta \geq \epsilon_h > \epsilon_{h+1} > \cdots > \epsilon_{Qh} = \mathcal{E}$ so that $\gamma(k + 1) - \gamma(k) \leq \Delta$ and

$$u \left(\frac{S_k(w')}{k \gamma(k)}, Y \right) < \epsilon_k \quad \forall \, h \leq k \leq Qh.$$

The proof of theorem 1 for rational random variables is based on the:

Step function extension lemma Let $Y \in \text{RV}(\mathbb{R}_+)$ be rational, let $\Delta > 0$ and $h \in \mathbb{N}$. If $w \subset \mathbb{R}_+^h$ is a Δ-normalized, Y-distributed block array, then for any $0 < \mathcal{E} < \Delta$ and $Q \in \mathbb{N}$ large enough, there is a homogeneous Qh-block array w' refining w transitively so that $F_{w'} \geq F_w$ and so that (w, w') is relatively $Y-(\Delta, \mathcal{E})$-distributed.

§4 **Proof of theorem 1 in the rational case**

We first prove this case of theorem 1 assuming the step function extension lemma.

Fix $Y \in \text{RV}(\mathbb{R}_+)$. Given $\Delta_n \downarrow 0$, with $\Delta_1 < \frac{1}{9} \min Y$, we build using the step function extension lemma iteratively, a refining sequence of block arrays $(w_n)_{n \geq 1}$ with each refinement transitive and each (w_n, w_{n+1}) is relatively, $Y-(\Delta_n, \Delta_{n+1})$-distributed. This gives an ESP with distributional limit Y establishing (µ) as on page 2.
To see (Bicycle) as on page 5, we note that by the extension lemma, for
\(|w| \leq k \leq |w_{n+1}| \), we have a coupling of
\[
\frac{S_k(w_{n+1})}{k\gamma(k)} \quad \text{and} \quad Y
\]
so that
\[
\frac{S_k(w_{n+1})}{k\gamma(k)} \geq Y - \frac{1}{9} \min Y \geq \frac{8}{9} Y
\]
By monotonicity,
\[
\frac{S_k(w_{\nu})}{k\gamma(k)} \geq \frac{8}{9} Y \quad \forall \ \nu \geq n + 1
\]
whence
\[
\frac{S_k(f)}{k\gamma(k)} \geq \frac{8}{9} Y
\]
where \(F_{w_{\nu}} \to f \) a.s.. Thus
\[
P(\left\{ \frac{S_k(f)}{k\gamma(k)} < t \right\}) \leq P(Y \leq \frac{9}{8} t) \quad \forall \ t > 0. \quad \Box \quad \Box
\]

The rest of this section is a proof of the step function extension
lemma.

The proof is via block concatenation and perturbation.

Basic lemma I

Let \(0 < \Delta < 1 \) and let \(w \in \mathbb{R}^h_+ \) be \(\Delta \)-normalized. For each
\[
0 \leq \kappa \leq \Delta E(w), \quad \delta > 0 \quad \text{and} \quad q > \frac{1}{\Delta},
\]
then for \(\mu \in \mathbb{N} \) large enough: if \(m := \mu q \) and \(w' \in \mathbb{R}^{qh}_+ \) is defined by
\[
w' = w^{(\mu)} := w^{\otimes m} + \kappa qh^1_{1,mh^{\gamma qh^2}},
\]
then

(i) \(w' \) is \(\delta \)-normalized;
(ii) \(E(w') = E(w) + \kappa; \)
(iii) \(P(S_J(w') \neq S_J(w^{\otimes m})) \leq \frac{J}{qh} \quad \forall \ 1 \leq J \leq qh; \)
(iii') \(P(S_k(w') = S_k(w^{\otimes m}) \quad \forall \ 1 \leq k \leq \sqrt{\Delta qh} \geq 1 - \sqrt{\Delta}; \)
(iv) \(S_k(w') = kE(w)(1 \pm 2\sqrt{\Delta}) \quad \forall \ \sqrt{\Delta qh} \leq k \leq qh; \)
(v) \(S_k(w') = k(E(w) + \kappa)(1 \pm (\Delta - \frac{1}{k} + \frac{\Delta qh}{k})) \quad \forall \ k > qh. \)
Remarks.
(a) Note that $F_{w'} \geq F_w$.
(b) There is no contradiction between (iv) and (v) for $k \sim qh$ as the error in (iv) is at least $\frac{k}{E(w)}$ which is the increment in (v).

Proof for $\kappa > 0$

Proof of (i)
Let $v \in \mathbb{R}_+^H$ be a block. We claim that
\[
S_k(v) \frac{kE(v)}{kE(v)} \xrightarrow{k \to \infty} 1.
\]
To see this, let $k = JH + r$ where $J \geq 1$ and $0 \leq r < H$, then
\[
S_k(v) = S_{JH}(v) \pm HM(v) = JE(v) \pm HM(v) = kE(v) \pm 2HM(v)
\]
whence
\[
S_k(v) \frac{kE(v)}{kE(v)} = 1 \pm \frac{2HM(v)}{kE(v)} \xrightarrow{k \to \infty} 1.
\]
We have,
\[
w' = w^{(\mu)} := (w'')^{\otimes \mu}
\]
where
\[
w'' := w^{\otimes q} + \kappa qh1_{qh}.
\]
It follows that
\[
E(w^{(\mu)}) = E(w'') \text{ and } M(w^{(\mu)}) = M(w'').
\]
By (.), δ-normalization of w' is obtained by enlarging μ. \(\checkmark\)

Proof of (ii)
We have
\[
S_k(w')(\nu) = S_k(w^{\otimes m})(\nu) + \kappa qh\#([\nu, \nu + k - 1] \cap qh\mathbb{Z}) \quad \forall \ \nu \in [1, mh].
\]
Therefore
\[
S_{Jqh}(w') = Jq\Sigma(w) + J\kappa qh, \ \Sigma(w') = m\Sigma(w) + \mu\kappa qh \text{ and } E(w') = E(w) + \kappa. \ (ii)
\]
Also
\[
S_k(w') \leq S_k(w^{\otimes m}) + \kappa qh\left(\frac{k}{qh}\right) \leq S_k(w^{\otimes m}) + k\kappa(1 + \frac{qh}{k});
\]
\[S_k(w') \geq S_k(w^{\circ m}) + \kappa qh \left[\frac{k}{qh} \right] \geq S_k(w^{\circ m}) + k\kappa \left(1 - \frac{qh}{k} \right). \]

Proof of (iii) and (iii')

\[S_k(w') = S_k(w^{\circ m}) \text{ on } [1, mh] \setminus \bigcup_{1 \leq J \leq \frac{m}{q}} (Jhq - k, Jhq] :\]

\[P(S_k(w') \neq S_k(w^{\circ m}) \leq \frac{K}{qh}; \quad \forall \text{ (iii)} \]

\[P(S_k(w') = S_k(w^{\circ m}) \forall 1 \leq k \leq \sqrt{\Delta qh} \geq 1 - \sqrt{\Delta}. \quad \forall (iii') \]

Proof of (iv) and (v)

We begin with an estimate of \(S_k(w^{\circ m}) \) for \(k \geq \Delta h \).

\[(\$)\]

\[S_k(w^{\circ m}) = kE(w)(1 + \Delta \land \frac{h}{k}) \forall k \geq \Delta h. \]

Proof of \((\$) \)

For \(\Delta h \leq k \leq h \), we have \(\Delta \land \frac{h}{k} = \Delta \) and \((\$) \) follows from the \(\Delta \)-normalization of \(w \).

Let \(h \leq k \), then \(k = Jh + r \) with \(J \geq 1 \) and \(r < h \) and

\[S_k(w^{\circ m})(\nu) = JhE(w) + \sum_{i=\nu + Jh}^{\nu + Jh + r - 1} w_i \]

\[= kE(w) - rE(h) + \sum_{i=\nu + Jh}^{\nu + Jh + r - 1} w_i \]

\[= kE(w) + \mathcal{E}. \]

Thus

\[-\Sigma(w) < -rE(h) \leq \mathcal{E} \leq S_r(w)(\nu \mod h) \leq \Sigma(w) \]

and

\[\frac{|\mathcal{E}|}{kE(w)} \leq \frac{\Sigma(w)}{kE(w)} = \frac{h}{k}. \]

To see the other estimation, we use the \(\Delta \)-normalization of \(w \).

If \(r \leq \frac{\Delta hE(w)}{M(w)} \), then

\[|\mathcal{E}| \leq Mr \leq \Delta hE(w); \]

and if \(r > \frac{\Delta hE(w)}{M(w)} \), then by \(\Delta \)-normalization of \(w \),

\[\mathcal{E} = -rE(w) + S_r(\nu + Jh) = -rE(w) + rE(w)(1 + \Delta) = \pm \Delta E(w). \quad \Box \]

We have
\[S_k(w')(\nu) - S_k(w^{\text{om}})(\nu) = \kappa qh \#([\nu, \nu + k - 1] \cap qhZ). \]

For \(\sqrt{\Delta} qh \leq k < qh \), \(\#([\nu, \nu + k - 1] \cap qhZ) = 0, 1 \)

\[S_k(w') - S_k(w^{\text{om}}) \leq \kappa qh \leq \Delta E(w)qh < \sqrt{\Delta} \cdot kE(w) \]

and by (§),

\[S_k(w') = kE(w)(1 \pm (\Delta \wedge \frac{h}{k} + \sqrt{\Delta})) = kE(w)(1 \pm 2\sqrt{\Delta}). \]

Therefore

\[S_k(w') = S_k(w^{\text{om}}) + \kappa k \pm \kappa qh \]

\[= kE(w)(1 \pm \Delta \wedge \frac{h}{k}) + \kappa k \pm \kappa qh \]

\[= k(E(w) + \kappa)(1 \pm (\Delta \wedge \frac{h}{k} + \frac{\kappa qh}{kE(w)})) \]

\[= k(E(w) + \kappa)(1 \pm (\Delta \wedge \frac{h}{k} + \frac{\Delta qh}{k})). \]

This proves the basic lemma. \(\square \)

Example 1 Constant limit random variable.

To see how the basic lemma works, we build a sequence of (trivial) block arrays \((w_n)_{n \geq 1}\) with each \(w_n = \{w^{(n)}\}\) a single block. This will give \(Y \equiv 1\) as distributional limit.

We’ll define \(f^{(n)} := w^{(n)} : Z_{b_n} \rightarrow \mathbb{R}^+\) where \(b_n = |w^{(n)}|\).

Suppose that each block \(w^{(n)}\) is constructed from \(w^{(n-1)}\) using the basic lemma with parameters

\(\Delta_n, \kappa_n, q_n, \mu_n, m_n, \delta_n = \Delta_{n+1}. \)

\(\Omega \)

\[\exists \lim_{n \to \infty} f^{(n)} = f \in \mathbb{R}^+ \text{ a.s..} \]

Proof

\[P([w^{(n)} \neq w^{(n-1)}]) = \frac{1}{q_n|w^{(n-1)}|}. \]

Since \(\sum_{n=1}^{\infty} \frac{1}{q_n|w^{(n-1)}|} < \infty\), \(\exists N : \Omega \rightarrow \mathbb{N}\) so that a.s., \(f^{(k)} \equiv f^{(N)} \forall k \geq N. \)
If $\sum_{n=1}^{\infty} \kappa_n = \infty$, then as $n \to \infty$,

$$E(w^{(n)}) \sim \sum_{k=1}^{n} \kappa_k.$$

Now let $(\Omega, \mathcal{F}, P, T)$ be the corresponding odometer and let $f := \lim_{n \to \infty} f^{(n)}: \Omega \to \mathbb{R}_+$. Define $b: \mathbb{N} \to \mathbb{R}_+$ by

$$b(N) := NE(w^{(n)}) \quad \text{for} \quad |w^{(n)}_1| < N \leq |w^{(n)}|, \quad n \geq 1.$$

If $\kappa_n \to 0$ and $\sum_{n=1}^{\infty} \kappa_n = \infty$, then

$$b(n) \sim \frac{b(2n)}{b(n)} \quad \text{for} \quad n \to \infty$$

and

$$\frac{1}{b(n)} \sum_{k=0}^{n-1} f \circ T^k \xrightarrow{n \to \infty} 1.$$

In example 1, the normalizing constants were directly determined by the sequence $(E(w^{(n)}))_{n \geq 1}$ of block expectations, which increased slowly.

For more complicated limit random variables (e.g. $Y \in \mathcal{RV}((\mathbb{R}_+)$ given by $P(Y = 1) = P(Y = 2) = \frac{1}{2}$) this is no longer the case as the distributions of the block expectations need to be considered. A more elaborate construction procedure is necessary.

We'll need the following simultaneous version of Basic Lemma I which is an immediate consequence of it.

Basic Lemma II

Let $w \in \mathbb{R}^h_+$ be a Δ-normalized h-block array and let $\kappa: w \to \mathbb{R}_+$ satisfy $0 \leq \kappa(w) \leq \Delta E(w)$.

For each $\delta > 0$ and $q > \frac{1}{\Delta}$, and $\mu \in \mathbb{N}$ large enough: if $m := \mu q$ and the mh-block array $w' := \{v(w) \in \mathbb{R}^{mh}_+: w \in w\}$ is defined by

$$v(w) = w^{(\mu)} := w^{\circ m} + \kappa(w)qh_{[1,mh]} \circ h\mathbb{Z}, \quad (w \in w)$$

then $w' > w$ and $F_{w'} \geq F_w$ and for $w \in w$,
II to achieve larger, but gradual changes of the block averages.

Proof of the step function extension lemma

Let \(E(v(w)) = E(w) + \kappa(w) \);

\[P(S_{\delta}(v(w)) = S_{\delta}(w) \uparrow) \leq \frac{J}{qh} \quad \forall \ 1 \leq J \leq qh; \]

\[P(S_{\kappa}(v(w)) = S_{\kappa}(w) \downarrow) \quad \forall \ 1 \leq k \leq \sqrt{\Delta qh} \geq 1 - \sqrt{\Delta}; \]

\[S_k(v(w)) = kE(w)(1 \pm 2\sqrt{\Delta}) \quad \forall \ \sqrt{\Delta qh} \leq k \leq qh; \]

\[S_k(v(w)) = k(E(w) + \kappa(w))(1 \pm (\Delta \wedge \frac{1}{k} + \frac{\Delta qh}{k})) \quad \forall \ k > qh. \]

The next lemma is an iteration of the procedure in Basic Lemma II to achieve larger, but gradual changes of the block averages \(E(w) \). We’ll use it to prove both the step function extension lemma and the step function straightening lemma.

Compound lemma

Let \(0 < \Delta < 1, h \in \mathbb{N} \) and let \(w \in R^h_+ \) be a \(\Delta \)-normalized \(h \)-block array. Let \(t : w \rightarrow (1, \infty) \), then \(\forall \ \beta > 0 \) and \(\mathcal{E} > 0 \), and \(Q \in \mathbb{N} \) large enough, there is an \(\mathcal{E} \)-normalized, \(Qh \)-block array

\[w' := \{ v(w) : w \in w \} \subset R^Q_+ \]

numbers

\[\delta_k \geq \delta_{k+1}, \ \delta_{Qh} < \mathcal{E} \quad \text{and} \quad 0 = p_h < p_{h+1} < \ldots < p_{Qh} = 1, \ 0 \leq p_k < p_k - \beta \]

so that \(w' > w \) and \(F_{w'} \geq F_w \) for each \(w \in w \),

\[E(v(w)) = t(w)E(w); \]

\[P(S_{k}(v(w)) = S_{k}(w) \uparrow) \quad \forall \ 1 \leq k \leq \sqrt{\Delta h} \geq 1 - 2\sqrt{\Delta}; \]

\[\forall \ k > \Delta h, \ S_k(v(w)) \geq kE(w)((1 - p_k + p_kt(w))(1 - \delta_k) \quad \text{and} \]

\[P([S_k(v(w)) = kE(w)((1 - p_k + p_kt(w))(1 + \delta_k)] \geq 1 - \delta_k. \]

Proof of the step function extension lemma

Suppose that that \(Y \in RV(R_+) \) is rational. Let:

- \((\Omega, f) \) be a symmetric representation of \(Y \) with \(|\Omega| \geq 2 \),
- \(w = \{ w(\omega) : s \in \Omega \} \subset R^h_+ \) be a \(\Delta \)-normalized block array, where \(\Delta > 0 \) and \(h \in \mathbb{N} \) so that

\[E(w(\omega)) = c \cdot f(\omega) \quad (\omega \in \Omega) \]

where \(c = c(w) > 0 \).

Fix \(0 < \mathcal{E} < \Delta \). We’ll construct for any \(Q \in \mathbb{N} \) large enough, a
Qh-block array $w' = \{ w'(s) : s \in \Omega \} \subset \mathbb{R}^{Qh}$ so that

$$E(w'(s)) = c' \cdot f(s) \quad (\omega \in \Omega)$$

where $c' = c(w') > c(w)$; $w' > w$ is a transitive, homogeneous extension and (ω, w') is relatively, $Y - (\Delta, E')$-distributed.

The construction is via auxiliary, intermediary block arrays $w^{(1)}, w^{(2)}, \ldots, w^{(N)}$ where $N > \frac{1}{h}$ is arbitrary and fixed.

Let $V \subset \mathbb{R}_+$ be the value set of Y and let

$$K > \frac{2 \max V}{\min V} \quad \text{and} \quad N' := 2(|\Omega| - 1)N.$$

We have that $\min_{s,t} \frac{Kf(t)}{f(s)} > 1$ and so, using the compound lemma, we can find $J_1 > 1$ and for each $s, t \in \Omega$ find E-normalized $w^{(s,t)}(1), \in \mathbb{R}^{J_1h}$ so that

(i) $E(w^{(s,t)}(1)) = Kc f(t) = \frac{Kf(t)}{f(s)} E(w^{(s)})$;

(ii) $P(S_k(w^{(s,t)}(1))) = S_k(w^{(s)\oplus J_1}) \forall 1 \leq k \leq \Delta J_1 h > 1 - \Delta$;

(iii) $c = \gamma(k_0) \leq \gamma(k_0 + 1) \leq \ldots \leq \gamma(qh) = Kc$;

(iv) $P([S_k(w^{(s,s)}(1))] = k \gamma(k)f(s)(1 + \Delta)] \geq 1 - \Delta \quad \forall k > k_0$.

Here $\gamma(k) = E(w^{(s)})((1 - p_k) + p_k K)$ is as in the compound lemma with $t = K$.

The first intermediary block array is

$w^{(1)} = \{ w^{(s,s)}(1, k) : 1 \leq k \leq |\Omega|(N' - |\Omega| + 1), s \in \Omega \} \cup \{ w^{(u,v)}(1) : u, v \in \Omega, u \neq v \}$

where $w^{(s,s)}(1, k) \quad (1 \leq k \leq N - 1)$ is a copy of $w^{(s,s)}(1)$.

Next, find $J_2 \geq 1$ and for each $s, t, u, v \in \Omega, s \neq t$ find $w^{(s,t,u)}(2) \in \mathbb{R}^{J_2 J_1 h}$ so that

(iii') $E(w^{(s,t,u)}(u)) = cK^2 f(u) = \frac{Kf(u)}{f(t)} E(w^{(s,t)})(1))$,

(iv) $P(S_k(w^{(s,t,u)}(2))) = S_k(w^{(s,t)}(1)\oplus J_2) \forall 1 \leq k \leq \Delta J_2 J_1 h > 1 - \Delta$;

(v) $Kc = \gamma(k_0) \leq \gamma(k_0 + 1) \leq \ldots \leq \gamma(qh) = K^2 c$;

(vi) $P([S_k(w^{(s,t,u)}(u))] = k \gamma(k)f(t)(1 + \Delta)] \geq 1 - \Delta \quad \forall k > k_0$.

The second intermediary block array is

$w^{(2)} = \{ w^{(s,s)}(2, k) : 1 \leq k \leq |\Omega|(N' - 2(|\Omega| - 1)), s \in \Omega \} \cup \{ w^{(s,t)}(2), w^{(s,s)}(2) : s, t \in \Omega, s \neq t \}$

where $w^{(s,s)}(2, k) \quad (1 \leq k \leq N - 2)$ is a copy of $w^{(s,s,s)}(2)$.
Recurse this, to find J_2, J_3, \ldots, J_N and for each $2 \leq \nu \leq N$, $s_1, s_2, \ldots, s_\nu \in \Omega$, $w^{(s_1, s_2, \ldots, s_\nu)}(\nu) \in R^N_{+}$ where $h^{(\nu)} := h_{J_1J_2 \ldots J_\nu}$; so that

(iii') $\hat{E}(w^{(s_1, s_2, \ldots, s_\nu)}(\nu)) = cK^\nu f(s_\nu) = \frac{K f(s_\nu)}{f(s_\nu-1)} E(w^{(s_1, s_2, \ldots, s_{\nu-1})}(\nu - 1))$,

(iv) $P(S_k(w^{(s_1, s_2, \ldots, s_\nu)}(\nu))) = S_k(w^{(s_1, s_2, \ldots, s_{\nu-1})}(\nu - 1)) \odot J_\nu \forall 1 \leq k \leq \Delta h^{(\nu)} > 1 - \Delta$;

(v) $K^{\nu-1}c = \gamma(k_0) \leq \gamma(k_0 + 1) \leq \ldots \leq \gamma(qh) = K^{\nu}c$;

(vi) $P([S_k(w^{(s_1, s_2, \ldots, s_{\nu-2}, t, t)}(\nu))) = f(t)k\gamma(k)(1 + \Delta)] \geq 1 - \Delta \forall k > k_0$.

The ν^{th} intermediary block array is

$w^{(\nu)} = \{w^{(s^\nu)}(\nu, k) : 1 \leq k \leq |\Omega|(N' - \nu(|\Omega|-1)), s \in \Omega \} \cup \bigcup_{j=1}^{\nu-1}\{w^{(s^j, t^{\nu-j})}(\nu) : s, t \in \Omega, s \neq t\}$

where $w^{(s^\nu)}(\nu, k) (1 \leq k \leq N - \nu)$ is a copy of $w^{(s^\nu)}(\nu)$.

In particular,

$w^{(N)} = \{w^{(s^N)}(N, k) : 1 \leq k \leq |\Omega|(N' - N(|\Omega|-1)), s \in \Omega \} \cup \bigcup_{j=1}^{N-1}\{w^{(s^j, t^{N-j})}(N) : s, t \in \Omega, s \neq t\}$

where $w^{(s^N)}(N, k) (1 \leq k \leq N - N)$ is a copy of $w^{(s^N)}(N)$.

Now set $w' = \{w'(s) : s \in \Omega\}$ where

$$w'(s) := \left(\bigotimes_{k=1}^{N(|\Omega|-1)} w^{(s^N)}(N, k) \odot \bigotimes_{t \in \Omega \setminus \{s\}} \bigotimes_{j=1}^{N} w^{(t^{N-j}, s^j)}(N)\right)^{\otimes T}$$

where T is chosen large enough to ensure E-normalization.

This is as advertised. \(\Box \)

§5 General Case of Theorem 1 and Theorem 2

We now complete the proof of theorem 1 by constructing an ESP with an arbitrary $Y \in RV(\mathbb{R}_+)$ as distributional limit.

For this, we need to approximate an arbitrary $Y \in RV(\mathbb{R}_+)$ with rational random variables in a controlled manner.

Splittings.

A splitting of the finite set Ω is a surjection $\pi : \Xi \rightarrow \Omega$ defined on another finite set Ξ so that $P_{\Omega} = P_{\Xi} \circ \pi^{-1}$.

Equivalently, $\#\pi^{-1}(x) = \frac{\#\Xi}{\#\Omega} \forall x \in \Omega$.

Let the compact metric space $([0, \infty], d)$ be as before, let $\pi : \Xi \rightarrow \Omega$ be a splitting and let (Ω, f), (Ξ, g) be symmetric representations.
We’ll say, for $\epsilon > 0$, that (Ξ, g) ϵ-splits (Ω, f) via $\pi : \Xi \to \Omega$ if

$$E_\Xi(\rho(g, f \circ \pi)) := \frac{1}{\#\Xi} \sum_{u \in \Xi} \rho(g(u), f(\pi(u))) < \epsilon$$

and we’ll call $\pi : \Xi \to \Omega$ the (associated) ϵ-splitting.

Note that if Z has a symmetric representation which ϵ-splits some symmetric representation of Y, then $v(Y, Z) < \epsilon$.

Splitting approximation lemma

Let $Y \in RV(\mathbb{R}^+)$, then $\forall \epsilon_k \downarrow 0$ there is a sequence (Y_1, Y_2, \ldots) of rational random variables on \mathbb{R}^+ with a nested sequence of symmetric representations (Ω_k, f_k) so that

1. $v(Y_k, Y) < \epsilon_k \ \forall \ k \geq 1$;
2. $(\Omega_{k+1}, f_{k+1}) \ \epsilon_k$-splits $(\Omega_k, f_k) \ \forall \ k \geq 1$.
3. $\exists R > 0$ so that $P_{\Omega_k}(Y_k < t) \leq \text{Prob}(Y < t) \ \forall \ t \in (0, R), \ k \geq 1$.

Proof

Considering Y as a random variable on the compact metric space $([0, \infty], \rho)$, we let $\mu := \text{dist}(Y) \in \mathcal{P}([0, \infty])$. There is a non-decreasing map $\Phi : [0, 1] \to [0, \infty]$ so that $\mu = \lambda \circ \Phi^{-1}$ where λ is Lebesgue measure on $[0, 1]$. Let $\Gamma \subset [0, 1]$ be the collection of discontinuity points of Φ. By monotonicity, this set is at most countable.

Let $Z := \{0, 1\}^\mathbb{N}$ equipped with the product, discrete topology, and let $B : Z \to [0, 1]$ be the “binary expansion map”

$$B((x_1, x_2, \ldots)) := \sum_{k=1}^{\infty} \frac{x_k}{2^k}$$

It follows that the collection of discontinuity points of $\Psi := \Phi \circ B : Z \to [0, \infty]$ is $\bar{\Gamma} = B^{-1} \Gamma$. This set is also at most countable.

We have

$$\mu = \nu \circ \Psi^{-1}$$

where $\nu = \prod(\frac{1}{2}, \frac{1}{2}) \in \mathcal{P}(Z)$.

By the above,

$$\Phi(\frac{n-1}{2^n} + \frac{1}{2^n}) \xrightarrow{n \to \infty} \Psi(x_1, x_2, \ldots) \text{ for } \nu \text{-a.e. } (x_1, x_2, \ldots) \in Z$$

(indeed $\forall (x_1, x_2, \ldots) \notin \bar{\Gamma}$).

Now, for $n \geq 1$, let $Z_n := \{0, 1\}^n$, define $\psi_n : Z_n \to [0, 1]$ by

$$\psi_n(x_1, x_2, \ldots, x_n) := \Phi(\frac{n-1}{2^n} + \frac{1}{2^n})$$.
We have that for \(\nu \)-a.e. \((x_1, x_2, \ldots) \in Z\),
\[
\psi_n(x_1, x_2, \ldots, x_n) \xrightarrow{n \to \infty} \Psi(x_1, x_2, \ldots).
\]

Define the restriction maps \(\pi_n : Z \to Z_n \) and \(\pi_n^{n+m} : Z_{n+m} \to Z_n \) by
\[
\pi_n(x_1, x_2, \ldots) = (x_1, x_2, \ldots, x_n) \quad \text{and} \quad \pi_n^{n+m}(x_1, x_2, \ldots, x_{n+m}) = (x_1, x_2, \ldots, x_n),
\]
then \(\pi_n^{n+m} : Z_{n+m} \to Z_n \) is a splitting and by Egorov’s theorem, along a sufficiently sparse subsequence \(n_k \uparrow \infty \), we have
\[
\int_Z \rho(\psi_{n_k} \circ \pi_{n_k}, \Psi) \, d\nu < \frac{\epsilon_k}{2}
\]
whence
\[
E_{\Omega_{n_k+1}}(\rho(\psi_{n_k} \circ \pi_{n_k}, \psi_{n_k+1})) < \epsilon_k.
\]

Thus
\[
\Omega_k := Z_{n_k}, \quad f_k := \psi_{n_k} \quad \text{and} \quad \text{dist} (Y_k) := P_{\Omega_k} \circ f_k^{-1} \in \mathcal{P}(\mathbb{R}_+)
\]
are as required for (i), which entails (o).

To see (ii) we note that
\[
\psi_n(x_1, x_2, \ldots, x_n) \geq \Psi((x_1, x_2, \ldots)
\]
whenever \((x_1, x_2, \ldots, x_n) \neq 1\). Let
\[
R := \Phi\left(\sum_{j=1}^{n-1} \frac{1}{2^j}\right) = \Phi(1 - \frac{1}{2^{n-1}}) \leq \Phi\left(\sum_{j=1}^{n-1} \frac{1}{2^j}\right) \forall \ k \geq 1.
\]

If \(k \geq 1 \) and \(\psi_{n_k}(x_1, x_2, \ldots, x_{n_k}) < R \) then \((x_1, x_2, \ldots, x_{n_k}) \neq 1 \) and \(\psi_{n_k}(x_1, x_2, \ldots, x_{n_k}) \geq \Psi((x_1, x_2, \ldots)) \).

Since \(f_k = \psi_{n_k} \), for \(t \in (0, R) \)
\[
P_{\Omega_k}([f_k \leq t]) \leq \nu([\Psi \leq t]) = P(Y \leq t). \quad \forall (ii)
\]

Step function straightening lemma

Let \(Y, Z \in \mathbb{RV}(\mathbb{R}_+) \) be rational with symmetric representations \((\Omega, f)\) and \((\Xi, g)\) respectively.

Suppose that \(\mathcal{E}, \Delta > 0 \) and that \((\Xi, g)\) \(\mathcal{E} \) splits \((\Omega, f)\) with \(\mathcal{E} \) splitting \(\Phi : \Xi \to \Omega \).

Let \(w = \{w(\omega) : \omega \in \Omega\} \subset \mathbb{R}_+^h \) be a \(\Delta \)-normalized, \(Y \)-distributed, \(h \)-block array with \(E(w(\omega)) = c(w) f(\omega) \) \(\forall \omega \in \Omega \).

Then for each \(Q \in \mathbb{N} \) large enough and \(\eta > 0 \), \(\exists \) a \(\mathcal{E} \)-normalized, \((\Xi, g)\)-distributed, \(Qh \)-block array
\[
b = \{b(\xi) : \xi \in \Xi\} \subset \mathbb{R}_+^{Qh},
\]
so that
\[
F_b \geq F_w \quad \text{and} \quad m([F_b \neq F_w]) < \mathcal{E},
\]
and
\[\beta(h) \leq \beta(h+1) \leq \cdots \leq \beta(Qh), \quad \beta(k+1) - \beta(k) \leq \eta, \]
\[0 = q_h < q_{h+1} < \cdots < q_{Qh} = 1, \quad \delta_h \geq \delta_{k+1} \geq \cdots \geq \delta_{Qh}, \quad \delta_{Qh} < \mathcal{E} \]
so that for \(h \leq k \leq Qh, \)
\[S_k(b(\xi)) \geq k\beta(k)((1 - q_k)f(\Phi(\xi)) + q_k g(\xi))(1 - \delta_k) \]
\[P([S_k(b(\xi)) = k\beta(k)((1 - q_k)f(\Phi(\xi)) + q_k g(\xi))(1 + \delta_k)]) \geq 1 - \delta_k \]
\[v(S_k(b(\xi)), Z) < \mathcal{E} + \Delta. \]

Proof

Let \(\Phi : \Xi \to \Omega \) be so that
\[P_\Xi \circ \Phi^{-1} = P_\Omega \] and \(E_\Xi(\rho(f \circ \Phi, g)) < \mathcal{E}. \)
For \(\xi \in \Xi, \) let \(v(\xi) := w(\Phi(\xi)) \in w \) and consider the block array
\[\tilde{w} := \{v(\xi) : \xi \in \Xi\}. \]

Note that \(E(v(\xi)) = cf(\Phi(\xi)). \) In order to use the compound lemma, define \(t : \Xi \to (1, \infty) \) by
\[t(\xi) := \frac{Kg(\xi)}{f(\Phi(\xi))} \quad \text{where} \quad K > \max_{\xi \in \Xi} \frac{f(\Phi(\xi))}{g(\xi)} \]
so that \(t > 1. \)

By the compound lemma for \(Q \geq 1 \) large enough, there is an \(\mathcal{E} \)-normalized, \(Qh \)-block array
\[b = \{b(\xi) : \xi \in \Xi\} \subset R_+^{Qh}, \]
numbers
\[\delta_k \geq \delta_{k+1}, \quad \delta_{Qh} < \mathcal{E} \quad \text{and} \quad 0 = p_h < p_{h+1} < \cdots < p_{Qh} = 1, \quad p_{k+1} - p_k < \eta \]
so that for each \(\xi \in \Xi, \)
\[E(b(\xi)) = t(\xi)E(v(\xi)) = c(w)f(\Phi(\xi)); \]
\[P(S_k(b(\xi))) = S_k(v(\xi) \circ \Phi) \quad \forall \ 1 \leq k \leq \Delta h > 1 - 2\Delta \]
and \(\forall \ k > \Delta h, \)
\[P([S_k(b(\xi)) = kE(b(\xi))((1 - p_k) + p_k t(\xi))(1 \pm \delta_k)]) \geq 1 - \delta_k. \]

Next, for \(\xi \in \Xi, \)
\[E(b(\xi))((1 - p_k) + p_k t(\xi)) = c(w)(1 - p_k)f(\Phi(\xi)) + k p_k g(\xi). \]

Let
\[\beta(k) := c(w)(p_k + (1 - p_k)K), \quad q_k := \frac{K p_k}{p_k + (1 - p_k)K}, \]
then
\[0 = q_h < q_{h+1} < \cdots < q_{Qh} = 1 \]
and
\[E(b(\xi))((1 - p_h) + p_hk(\xi)) = \beta(k)((1 - q_k)f(\Phi(\xi)) + q_kg(\xi)). \]
Thus, with probability $\geq 1 - \delta_k$,
\[\rho\left(\frac{S_k(b(\xi))}{k\gamma(k)}\right), (1 - q_k)f(\Phi(\xi)) + q_kg(\xi) < \delta_k \]
and
\[E\left(\rho\left(\frac{S_k(b(\xi))}{k\gamma(k)}\right), g(\xi)\right) \leq 2\delta_k + E\left(\rho(f \circ \Phi, g)\right) \leq \delta_k + \mathcal{E}. \]
The inequality $F_b \geq F_{w_n}$ follows from monotonicity. \(\Box\)

Proof of theorem 1
Fix $\epsilon_n \downarrow 0$, $\sum_{n=1}^{\infty} \epsilon_n < \infty$ and use the splitting approximation lemma to obtain a sequence (Y_1, Y_2, \ldots) of rational random variables on \mathbb{R}_+ with a nested sequence of symmetric representations (Ω_k, f_k) so that

(o) $v(Y_k, Y) < \epsilon_k \quad \forall \ k \geq 1$;

(i) $(\Omega_{k+1}, f_{k+1}) \epsilon_k$-splits $(\Omega_k, f_k) \quad \forall \ k \geq 1$.

(ii) $\exists R > 0$ so that $P_{\Omega_k}(Y_k < t) \leq \text{Prob}(Y < t) \quad \forall \ t \in (0, R), \ k \geq 1$.

Using the step function extension- and straightening lemmas (respectively), we next, construct sequences $(v_n)_n$ and $(\epsilon_n)_n$ of Y-distributed h_n- and k_n-block arrays (respectively) so that

\[v_n < w_n < v_{n+1} \quad \text{and} \quad F_{v_n} \leq F_{w_n} \leq F_{v_{n+1}} \]

and a slowly varying sequence $(\gamma(k))_k$, $\gamma(k+1) - \gamma(k) \to 0$ so that with $b(k) := k\gamma(k)$, for some $r > 0$

(iii) $m([F_{v_n} \neq F_{w_n}]) < \epsilon_n$ and $m([F_{w_n} \neq F_{v_{n+1}}]) < \epsilon_{n+1}$;

(iv) $\frac{S_k(w_n)(\xi)}{b(k)} \geq rf_n(\xi) \forall \ h_n < k \leq h_{n+1}$ where $w_n = \{w(\xi) : \xi \in \Omega_n\}$,

(v) $v(\frac{S_k(w_n)(\xi)}{b(k)}) < \epsilon_n \quad \forall \ h_n < k \leq h_{n+1}$.

Let
\[(X, \mathcal{B}, m, T) := \lim_{n \to \infty} \mathcal{M}_n \quad \text{and} \quad f := \lim_{n \to \infty} F_{\mathcal{M}_n,w_n}, \]
then $(X, \mathcal{B}, m, T, f)$ is an ESP with distributional limit Y.
Moreover, if $h_n < k \leq h_{n+1}$, and $t \in (0,R)$ then $S_k(f) \geq S_k(F_{w_n})$ whence

$$[S_k(f) \leq tb(k)] \subset [S_k(F_{w_n}) \leq tb(k)]$$

whence by (iv),

$$P([S_k(f) \leq tb(k)]) \leq P([\frac{S_k(F_{w_n})(\xi)}{b(k)} \leq t]) \leq P(Y_n \leq \frac{t}{r}) \leq P(Y \leq \frac{t}{r}). \quad \square$$

Proof of theorem 2

We use the odometer construction of theorem 1 to prove theorem 2.

Let $Y \in \text{RV}(\mathbb{R}_+)$ and let $(\Omega, \mathcal{F}, P, \tau)$ be an EPPT. We must exhibit a measurable function $\phi : \Omega \to \mathbb{R}_+$ so that the ESP $(\Omega, \mathcal{F}, P, \tau, \phi)$ has distributional limit Y.

Now fix as above, an odometer (X, \mathcal{B}, m, T) with $f : X \to \mathbb{R}_+$ measurable so that $(X, \mathcal{B}, m, T, f)$ satisfies (3) in theorem 1 (on page 2) with distributional limit Y and 1-regularly varying normalizing constants $b(n)_{n \geq 1}$.

By the odometer factor proposition, there is a set $\Omega_0 \in \mathcal{F}$, $P(\Omega_0) > 0$ so that the induced EPPT $(\Omega_0, \mathcal{F} \cap \Omega_0, P_{\Omega_0}, \tau_{\Omega_0})$ has (X, \mathcal{B}, m, T) as a factor.

Let $\phi : (\Omega_0, \mathcal{F} \cap \Omega_0, P_{\Omega_0}, \tau_{\Omega_0}) \to (X, \mathcal{B}, m, T)$ be the factor map and define $\pi : \Omega \to \mathbb{R}$ by

$$\phi = f \circ \pi \text{ on } \Omega_0 \quad \text{ and } \quad \phi \equiv 0 \text{ off } \Omega_0.$$

We have that

$$\frac{1}{b(n)} \sum_{k=0}^{n-1} \phi \circ \tau^k_{\Omega_0} \xrightarrow{P_{\Omega_0} \to 0} Y.$$

Now let $\kappa : \Omega_0 \to \mathbb{N}$ be the first return time of τ to Ω_0 and let $\kappa_n := \sum_{j=0}^{n-1} \kappa \circ \tau^j_{\Omega_0}$ (the n^{th} return time of τ to Ω_0), then on Ω_0,

$$\sum_{k=0}^{n-1} \phi \circ \tau^k_{\Omega_0} \equiv \sum_{j=0}^{\kappa_n-1} \phi \circ \tau^j.$$

By Birkhoff’s theorem, $\kappa_n \sim n \frac{P(\Omega_0)}{P(\Omega_0)}$ a.s. on Ω_0 and so by monotonicity and 1-regular variation of $b(n)_{n \geq 1}$,

$$\frac{1}{b(n)} \sum_{k=0}^{n-1} \phi \circ \tau^k \xrightarrow{P_{\Omega_0} \to 0} P(\Omega_0)Y$$

whence by Eagleson’s theorem,

$$\frac{1}{b(n)} \sum_{k=0}^{n-1} \phi \circ \tau^k \xrightarrow{n \to \infty} P(\Omega_0)Y. \quad \square$$
§6 NEW EXAMPLES IN INFINITE ERGODIC THEORY

We begin by reviewing:

Kakutani skyscrapers and inversion.

As in \cite{20}, the skyscraper over the N-valued SP \((\Omega, \mathcal{F}, P, S, f)\) is the MPT \((X, B, m, T)\) defined by

\[
X = \{(x, n) : x \in \Omega, 1 \leq n \leq f(x)\};
\]

\[
B = \sigma\{A \times \{n\} : n \in \mathbb{N}, A \in \mathcal{F} \cap [f \geq n]\},
\]

and

\[
T(x, n) = \begin{cases} (Sx, f) & \text{if } n = f(x), \\ (x, n + 1) & \text{if } 1 \leq n \leq f(x) - 1. \end{cases}
\]

The skyscraper MPT is always conservative as \(\bigcup_{n \geq 1} T^{-n} \Omega \times \{1\} = X\) and its ergodicity is equivalent to that of \((\Omega, \mathcal{F}, P, S)\). Any invertible CEMPT \((X, B, m, T)\) is isomorphic to the skyscraper over a first return time SP \((\Omega, \mathcal{B} \cap \Omega, m_\Omega, T_\Omega, \varphi_\Omega)\) where \(\varphi_\Omega(x) := \min\{n \geq 1 : T^n x \in \Omega\}\) is the first return time which is finite for a.e. \(x \in \Omega\) by conservativity, \(T_\Omega(x) := T^{\varphi_\Omega(x)}\) is the induced transformation on \(\Omega\) which is a PPT.

Let \((X, B, m, T)\) be an invertible CEMPT let \(\Omega \in \mathcal{B}\), \(m(\Omega) = 1\) and consider the return time stochastic process on \(\Omega\):

\((\Omega, \mathcal{B} \cap \Omega, m_\Omega, T_\Omega, \varphi_\Omega)\) where \(\varphi_\Omega(x) := \min\{n \geq 1 : T^n x \in \Omega\}\).

Distributional limits with regularly varying normalizing constants are transferred between the return time SP and the Kakutani skyscraper by means of the following

Inversion proposition \cite{3}

Let \(a(n)\) be \(\gamma\)-regularly varying with \(\gamma \in (0, 1]\) and fix \(\Omega \in \mathcal{F}\), then for \(Y\) a rv on \((0, \infty)\):

\[
\frac{1}{a(n)} S_n(1_\Omega) \overset{\mathcal{D}}{\to} Y m(\Omega) \iff \frac{\varphi_n}{a^{-1}(n)} \overset{\mathcal{D}}{\to} \left(\frac{1}{m(\Omega) Y}\right)^{1/\gamma}
\]

where \(\varphi_n = \sum_{k=0}^{n-1} \varphi_\Omega \circ T_\Omega^k\).

Proof of Theorem 3

Fix \(Y \in \mathcal{R}(\mathbb{R}_+)\), let \((\Omega, \mathcal{F}, P, S, f)\) be a N-valued ESP and let \(b(n)\) be 1-regularly varying so that

\[
\frac{1}{b(n)} \sum_{k=0}^{n-1} f \circ T^k \overset{\mathcal{D}}{\to} \frac{1}{Y}
\]

\[
P\left(\left\lfloor \sum_{k=0}^{n-1} f \circ T^k \right\rfloor < xb(n)\right) \leq P\left(\frac{1}{Y} \leq t\right) \quad \forall \ t > 0 \text{ small and } n \geq 1 \text{ large.}
\]
These exist by theorem 1. Now let \((X, \mathcal{B}, m, T)\) be the Kakutani skyscraper over \((\Omega, \mathcal{F}, P, S, f)\). By inversion,

\[
\lim_{n \to \infty} \frac{S_n(T)}{b^{-1}(n)} \overset{a}{\to} Y \quad \text{and} \quad m_\Omega([S_n(T)(1_\Omega) > xb^{-1}(n)]) \leq P(Y \geq x) \quad \forall \, y > 1, \, n \geq 1 \quad \text{large.} \quad \Box
\]

Rational ergodicity properties.

Now let \(\alpha > 0\) and let \(K \subset \mathbb{N}\) be a subsequence.

We’ll say that the CEMPT \((X, \mathcal{B}, m, T)\) is \(\alpha\)-rationally ergodic along \(K\) if for some \(\Omega \in \mathcal{B}\), \(0 < m(\Omega) < \infty\), we have

\[
\int_A \left(\frac{S_n(1_B)}{a(n)} \right)^\alpha dm \overset{n \to \infty, \, n \in K}{\longrightarrow} m(A)m(B)^\alpha \quad \forall \, A, \, B \in \mathcal{B}(\Omega)
\]

where \(a(n) = a_{\alpha, \Omega}(n) := \frac{1}{m(\Omega)^{1/\alpha}} \left(\int_\Omega (S_n(1_\Omega)^\alpha dm) \right)^{1/\alpha} \).

We’ll say that \((X, \mathcal{B}, m, T)\) is \(\alpha\)-rationally ergodic if it is \(\alpha\)-rationally ergodic along \(\mathbb{N}\) and subsequence \(\alpha\)-rationally ergodic if it is \(\alpha\)-rationally ergodic along some \(K \subset \mathbb{N}\).

Properties like this have been considered in [8] and [23].

Standard techniques show that \(\Omega \in \mathcal{B}\), \(0 < m(\Omega) < \infty\) satisfies \((\alpha-\text{RE}_K)\) iff

\[
\left\{ \left(\frac{S_n(1_\Omega)}{a_{\alpha, \Omega}(n)} \right)^\alpha : n \in K \right\}
\]

is uniformly integrable on \(\Omega\), and, if nonempty, the collection

\[
R_{\alpha, K}(T) := \{ \Omega \in \mathcal{B} : 0 < m(\Omega) < \infty \text{ satisfying } (\alpha-\text{RE}_K) \}
\]

is a dense \(T\)-invariant hereditary ring.

Moreover \(a_{\alpha, \Omega}(n) \sim a_{\alpha, \Omega'}(n)\) along \(K\) whenever \(\Omega, \Omega' \in R_{\alpha, K}(T)\).

We’ll call the CEMPT \((X, \mathcal{B}, m, T)\) \(\infty\)-rationally ergodic along \(K\) if for some \(\Omega \in \mathcal{B}\), \(0 < m(\Omega) < \infty\), we have

\[
\sup_{n \in K} \left\| \frac{S_n(1_\Omega)}{a_{1, \Omega}(n)} \right\|_{L^\infty(\Omega)} < \infty.
\]

Analogously to as above, if nonempty, the collection

\[
R_{\infty, K}(T) := \{ \Omega \in \mathcal{B} : 0 < m(\Omega) < \infty \text{ satisfying } (\text{BRE}_K) \}
\]

is a dense \(T\)-invariant hereditary ring. It is contained in \(R_{\alpha, K}(T)\) \(\forall \, \alpha > 0\).

The condition \(\infty\)-rational ergodicity along \(\mathbb{N}\) is aka bounded rational ergodicity. For more information and examples, see [2].
\(\alpha\)-return sequence. We define the \(\alpha\)-return sequence of an \(\alpha\)-rationally ergodic CEMPT \((X, \mathcal{B}, m, T)\) as the growth rate
\[
a_{n,\alpha}(T) \sim a_{\alpha,\Omega}(n) \quad \Omega \in R_\alpha(T).
\]

It is also possible to define “subsequence \(\alpha\)-return sequence” for a subsequence \(\alpha\)-rationally ergodic CEMPT.

Note that
- 1-rational ergodicity is equivalent to weak rational ergodicity as in [1] with \(R_1(T) = R(T)\) and \(a_{n,1}(T) \sim a_n(T)\);
- 2-rational ergodicity implies rational ergodicity;
- for \(0 < \alpha \leq \infty\), \(\alpha\)-rational ergodicity implies \(\beta\)-rational ergodicity for each \(\beta \in (0, \alpha)\);
- pointwise dual ergodic transformations are \(\alpha\)-rationally ergodic \(\forall 0 < \alpha < \infty\) (this follows from the existence of moment sets).

Let \((X, \mathcal{B}, m, T)\) be distributionally stable with limit \(Y \in RV(R_+)\). For \(\alpha \in \mathbb{R}_+\), set \(\|Y\|_\alpha := F(Y^\alpha) \leq \infty\) and
\[
\|Y\|_{\infty} := \sup \{t > 0 : P(Y > t) > 0 \} = \lim_{\alpha \to \infty} \|Y\|_{\alpha} \leq \infty.
\]

- For \(0 < \alpha \leq \infty\), if \(T\) is \(\alpha\)-rationally ergodic, then \(\|Y\|_\alpha < \infty\) and if \(\alpha \in \mathbb{R}_+\), then \(a_{n,\alpha}(T) \sim \|Y\|_\alpha a_{n,Y}(T)\).
- If \(\|Y\|_\alpha = \infty\), then \(T\) is not subsequence, \(\alpha\)-rationally ergodic.

Example: distributional stability \(\Rightarrow\) \(\alpha\)-rational ergodicity.

Let \(Y \in RV(R_+)\) be so that \(E(Y^\alpha) = \infty \forall \alpha > 0\). By theorem 3, there is a distributionally stable CEMPT \((X, \mathcal{B}, m, T)\) with ergodic limit \(Y\) with \(a_{n,Y}(T)\) 1-regularly varying. By the above \(\forall \alpha > 0\), \(T\) is not subsequence, \(\alpha\)-rationally ergodic.

For a given CEMPT \((X, \mathcal{B}, m, T)\), we consider the collection
\[
I(T) := \{\alpha > 0 : T \text{ is } \alpha\text{-rationally ergodic}\}.
\]
It follows from the above that \(I(T)\) must be an interval, either empty, or \(\mathbb{R}\), or of form \((0, a)\) or \((0, a]\) for some \(a \in (0, \infty]\).

We conclude this paper by showing that all possibilities occur.

Lemma
Let \((X, \mathcal{B}, m, T)\) be distributionally stable with ergodic limit \(Y \in \text{RV}(\mathbb{R}_+)\) and \(a_{n,Y}(T)\) 1-regularly varying. Suppose that \(\Omega \in \mathcal{B}, m(\Omega) = 1\) satisfies (\(\star\)) as on page 7, then \(T\) is \(\alpha\)-rationally ergodic iff \(\|Y\|_\alpha < \infty\) and in this case, when \(\alpha < \infty\), \(a_{n,\alpha}(T) \sim E(Y^\alpha)^{\frac{1}{\alpha}}a_{n,Y}(T)\).

Proof of \(\|Y\|_\alpha < \infty \implies \alpha\)-RE

We only consider the case \(0 < \alpha < \infty\). The case where \(\alpha = \infty\) is easy. We claim first that

\[\{\Phi_n := (\frac{S_n(1\Omega)}{a_{n,Y}(T)})^\alpha : n \geq 1\}\]

is a uniformly integrable family in \(L^1(\Omega)\).

Now, since \(E(Y^\alpha) < \infty\), we have by monotone convergence and Fubini’s theorem that

\[\rho(t) := \int_t^\infty P(Y^\alpha > s)ds = E(1_{[Y^\alpha > t]}Y^\alpha)_{t \to \infty} 0.\]

By (\(\star\)) (page 7),

\[\int_\Omega 1_{[\Phi_n > t]}\Phi_n dm = \int_t^\infty m([\Phi_n > s])ds \leq 28 \int_t^\infty P(Y^\alpha > s)ds =: \rho(t)\]

whence

\[\sup_{n \geq 1} \int_\Omega 1_{[\Phi_n > t]}\Phi_n dm \leq \rho(t)_{t \to \infty} 0\]

and the family is uniformly integrable.

Next by (\(\star\)) as on page 7 for \(A, B \in \mathcal{B}(\Omega)\) and \(x > 0\),

\[\int_A (\frac{S_n(1\Omega)}{a_{n,Y}(T)})^\alpha \wedge x dm \to_{n \to \infty} m(A)E((m(B)Y)^\alpha \wedge x).\]

Moreover, \(E(m(B)Y^\alpha \wedge x) \to_{x \to \infty} m(B)^\alpha E(Y^\alpha)\). To estimate the error,

\[0 \leq \int_A (\frac{S_n(1\Omega)}{a_{n,Y}(T)})^\alpha dm - \int_A (\frac{S_n(1\Omega)}{a_{n,Y}(T)})^\alpha \wedge x dm \leq \int_A (\frac{S_n(1\Omega)}{a_{n,Y}(T)})^\alpha 1_{[(\frac{S_n(1\Omega)}{a_{n,Y}(T)})^\alpha > x]} dm \leq \int_\Omega 1_{[\Phi_n > x]}\Phi_n dm \leq \rho(x)_{x \to \infty} 0.\]
Standard arguments now show that

\[
\int_A \left(\frac{S_n(1_B)}{a_n(Y(T))} \right)^\alpha dm \xrightarrow{n \to \infty} m(A)m(B)^\alpha E(Y^\alpha). \quad \square
\]

Note that a boundedly rationally ergodic transformation \(T \) has \(I(T) = (0, \infty] \) and a pointwise, dual ergodic transformation \(T \) with return sequence which is regularly varying with index \(\gamma < 1 \) has as ergodic limit a \(\gamma \)-Mittag-Leffler random variable (see [S]) which is unbounded but has moments of all orders, whence \(I(T) = (0, \infty) \).

The following completes the picture (and is also a strengthening of [S]):

Proposition For each \(a \in \mathbb{R}_+ \) there are distributionally stable MPTs \(T_o \) and \(T_c \) with \(I(T_o) = (0,a) \) or \(I(T_c) = (0,a] \).

Proof of the Proposition To construct \(T_o \) with \(I(T_o) = (0,a) \) fix a \(Y \in RV(\mathbb{R}_+) \) so that \(E(Y^t) < \infty \ \forall \ t < a \) but \(E(Y^a) = \infty \) and construct \(T \) as in the theorem 3.

To construct \(T_c \) with \(I(T_c) = (0,a] \) the same but using a \(Z \in RV(\mathbb{R}_+) \) so that \(E(Z^a) < \infty \) but \(E(Z^t) = \infty \ \forall \ t > a \). \(\square \)

References

[1] Jon Aaronson, Rational ergodicity and a metric invariant for Markov shifts, Israel J. Math. 27 (1977), no. 2, 93–123. MR0584018

[2] Jon. Aaronson, Rational ergodicity, bounded rational ergodicity and some continuous measures on the circle, Israel J. Math. 33 (1979), no. 3-4, 181–197 (1980). A collection of invited papers on ergodic theory. MR571529 (81f:28012)

[3] Jon Aaronson, The asymptotic distributional behaviour of transformations preserving infinite measures, J. Analyse Math. 39 (1981), 203–234. MR632462 (82m:28030)

[4] Jon Aaronson, An introduction to infinite ergodic theory, Mathematical Surveys and Monographs, vol. 50, American Mathematical Society, Providence, RI, 1997. MR1450400 (99d:28025)

[5] Jon Aaronson and Omri Sarig, Exponential chi-squared distributions in infinite ergodic theory, Ergodic Theory Dynam. Systems 34 (2014), no. 3, 705–724. MR3199789

[6] Jon Aaronson and Benjamin Weiss, Generic distributional limits for measure preserving transformations, Israel J. Math. 47 (1984), no. 2-3, 251–259. MR738173 (85e:28042)

[7] Jon Aaronson and Roland Zweimüller, Limit theory for some positive stationary processes with infinite mean, Ann. Inst. Henri Poincaré Probab. Stat. 50 (2014), no. 1, 256–284. MR3161531

[8] T. M. Adams and C. E. Silva, Weak Rational Ergodicity Does Not Imply Rational Ergodicity, ArXiv e-prints (February 2015), available at [1502.06566]
[9] D. J. Aldous and G. K. Eagleson, *On mixing and stability of limit theorems*, Ann. Probability 6 (1978), no. 2, 325–331. MR0517416
[10] A. Avila, D. Dolgopyat, E. Duryev, and O. Sarig, *The visits to zero of a random walk driven by an irrational rotation*, Israel J. Math. 207 (2015), no. 2, 653–717. MR3359714
[11] Patrick Billingsley, *Convergence of probability measures*, Second, Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons, Inc., New York, 1999. A Wiley-Interscience Publication. MR1700749
[12] N. H. Bingham, C. M. Goldie, and J. L. Teugels, *Regular variation*, Encyclopedia of Mathematics and its Applications, vol. 27, Cambridge University Press, Cambridge, 1987. MR898871 (88i:26004)
[13] M. Bromberg, *Ergodic Properties of the Random Walk Adic Transformation over the Beta Transformation*, ArXiv e-prints (November 2015), available at [1511.02482](http://arxiv.org/abs/1511.02482).
[14] Robert Burton and Manfred Denker, *On the central limit theorem for dynamical systems*, Trans. Amer. Math. Soc. 302 (1987), no. 2, 715–726. MR891642 (88i:60039)
[15] R. V. Chacon, *Proceedings of the fifth Berkeley symposium on mathematical statistics and probability*, volume 2: Contributions to probability theory, part 2, pp. 335–360.
[16] D. A. Darling and M. Kac, *On occupation times for Markov processes*, Trans. Amer. Math. Soc. 84 (1957), 444–458. MR0084222 (18,832a)
[17] G. K. Eagleson, *Some simple conditions for limit theorems to be mixing*, Teor. Verojatnost. i Primenen. 21 (1976), no. 3, 653–660. MR0428388 (55 #1409)
[18] William Feller, *An introduction to probability theory and its applications. Vol. II*, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR021054
[19] Nathaniel A. Friedman, *Introduction to ergodic theory*, Van Nostrand Reinhold Co., New York-Toronto, Ont.-London, 1970. Van Nostrand Reinhold Mathematical Studies, No. 29. MR0435350 (55 #8310)
[20] Shizuo Kakutani, *Induced measure preserving transformations*, Proc. Imp. Acad. Tokyo 19 (1943), 635–641. MR0014222
[21] P. Lévy, *Calcul des probabilités*, PCMI collection, Gauthier-Villars, 1925.
[22] A. Rényi, *On mixing sequences of sets*, Acta Math. Acad. Sci. Hungar. 9 (1958), 215–228. MR0098161 (20 #4623)
[23] Thomas Roblin, *Sur l’ergodicité rationnelle et les propriétés ergodiques du flot géodésique dans les variétés hyperboliques*, Ergodic Theory Dynam. Systems 20 (2000), no. 6, 1785–1819. MR1804958 (2001m:37061)
[24] Paul C. Shields, *Cutting and stacking: a method for constructing stationary processes*, IEEE Trans. Inform. Theory 37 (1991), no. 6, 1605–1617. MR1134300 (92k:28031)
[25] Paul C. Shields, *The ergodic theory of discrete sample paths*, Graduate Studies in Mathematics, vol. 13, American Mathematical Society, Providence, RI, 1996. MR1400225 (98g:28029)
[26] A. V. Skorohod, *Limit theorems for stochastic processes*, Teor. Veroyatnost. i Primenen. 1 (1956), 289–319. MR0084897
[27] M. Thaler and R. Zweimüller, *Distributional limit theorems in infinite ergodic theory*, Probab. Theory Related Fields 135 (2006), no. 1, 15–52. MR2214150 (2007e:60017)
[28] Jean-Paul Thouvenot and Benjamin Weiss, *Limit laws for ergodic processes*, Stoch. Dyn. 12 (2012), no. 1, 1150012, 9. MR2887924

[29] L. N. Vasershtein, *Markov processes over denumerable products of spaces describing large system of automata*, Problemy Peredači Informacii 5 (1969), no. 3, 64–72. MR0314115 (47 #2667)

[30] Dalibor Volný, *Invariance principles and Gaussian approximation for strictly stationary processes*, Trans. Amer. Math. Soc. 351 (1999), no. 8, 3351–3371. MR1624218 (99m:60062)

(Aaronson) SCHOOL OF MATH. SCIENCES, TEL AVIV UNIVERSITY, 69978 TEL AVIV, ISRAEL.

E-mail address: aaro@tau.ac.il

(Weiss) INSTITUTE OF MATHEMATICS HEBREW UNIV. OF JERUSALEM, JERUSALEM 91904, ISRAEL

E-mail address: weiss@math.huji.ac.il