Comparative Genome Analysis of *Campylobacter fetus* Subspecies Revealed Horizontally Acquired Genetic Elements Important for Virulence and Niche Specificity

Sabine Kienesberger1,2,7*, Hanna Sprenger1,7, Stella Wolfgruber1, Bettina Halwachs5,6, Gerhard G. Thallinger5,6, Guillermo I. Perez-Perez2,3, Martin J. Blaser2,3,4, Ellen L. Zechner1, Gregor Gorkiewicz7*

1 Institute of Molecular Biosciences, University of Graz, Graz, Austria, 2 Department of Medicine, NYU Langone Medical Center, New York, New York, United States of America, 3 Department of Microbiology, NYU Langone Medical Center, New York, New York, United States of America, 4 Medical Service, VA New York Harbor Healthcare System, New York, New York, United States of America, 5 Institute for Genomics and Bioinformatics, Graz University of Technology, Graz, Austria, 6 Core Facility Bioinformatics, Austrian Centre of Industrial Biotechnology, Graz, Austria, 7 Institute of Pathology, Medical University of Graz, Graz, Austria

Abstract

Campylobacter fetus are important animal and human pathogens and the two major subspecies differ strikingly in pathogenicity. *C. fetus* subsp. *venerealis* is highly niche-adapted, mainly infecting the genital tract of cattle. *C. fetus* subsp. *fetus* has a wider host-range, colonizing the genital- and intestinal-tract of animals and humans. We report the complete genomic sequence of *C. fetus* subsp. *venerealis* 84-112 and comparisons to the genome of *C. fetus* subsp. *fetus* 82-40. Functional analysis of genes predicted to be involved in *C. fetus* virulence was performed. The two subspecies are highly syntenic with 92% sequence identity but *C. fetus* subsp. *venerealis* has a larger genome and an extra-chromosomal element. Aside from apparent gene transfer agents and hypothetical proteins, the unique genes in both subspecies comprise two known functional groups: lipopolysaccharide production, and type IV secretion machineries. Analyses of lipopolysaccharide-biosynthesis genes in *C. fetus* isolates showed linkage to particular pathotypes, and mutational inactivation demonstrated their roles in regulating virulence and host range. The comparative analysis presented here broadens knowledge of the genomic basis of *C. fetus* pathogenesis and host specificity. It further highlights the importance of surface-exposed structures to *C. fetus* pathogenicity and demonstrates how evolutionary forces optimize the fitness and host-adaptation of these pathogens.

Introduction

The 8-proteobacterial genus *Campylobacter* comprises bacteria with a high degree of niche adaptation and host tropism [1]. The species colonize mucosal surfaces and are animal and human pathogens [2]. The genomes of *Campylobacter* spp. are not large (≈1.5 Mbp) and show characteristics of genome decay typical for niche-adapted bacteria [3]. These features make *Campylobacter* species ideal model systems to study genetic contributions to niche specificity and virulence by comparative genome analysis [3]. The multi locus sequence typing (MLST) has shown that the two *C. fetus* subspecies, *C. fetus* subsp. *fetus* and *C. fetus* subsp. *venerealis*, have a clonal population structure [4] and differentiation of the taxa is only partially successful [5]. Both subspecies are important veterinary pathogens causing abortions and infertility in ruminants [6]. *C. fetus* subsp. *venerealis* is a bovine-adapted “clone” [7] causing venereal infections and epidemic abortion in cattle. Statutory preclusion of *C. fetus* subsp. *venerealis* infection underscores the importance of this veterinary pathogen [8], but human infections are rare [6]. In contrast the generalist subspecies, *C. fetus* subsp. *fetus*,colonizes the intestinal and the genital-tract of multiple hosts including sheep, cattle, birds and humans. It is an emerging human pathogen, leading to invasive infections and even death [9,10]. Most bacteremic illnesses caused by *Campylobacter* are due to *C. fetus* [9,11]. *C. fetus* displays two major (O-antigen based) sero-types, A and B, and a rare variant AB [12]. The sero-types correlate with the type of surface array protein (Sap) expressed by the bacterium [13] and differ in their lipopolysaccharide (LPS) composition [12,14]. The Sap-layer (S-layer) creates a paracrystalline proteinaceous cover enabling *C. fetus* to resist serum bactericidal activity, and by phase variation to overcome immune recognition [11,13,16]. Sero-type A strains expressing SapA are more frequently isolated from human blood than sero-type B strains expressing SapB. The
Subspecies

VRs of strain 84-112 carry additional blocks of genes, which are but are highly similar, suggesting a common origin. Notably, the regions of variation are not identical between the two subspecies, to the position of Fetus Genomic Island (FGI) I of strain 82-40. VRs of strain 84-112, Venerealis Genomic Island (VGI) I and VGI II represent the best-characterized -locus of C. fetus, however, since a thiC homolog is also present in the unfinished genome of C. fetus subsp. venerealis NCTC 10354. Also no other obvious differences in respiration systems, nutrient transporters and catalytic or anabolic pathways were identified. Whether more subtle genetic differences, like insertions, point mutations or variation in transcriptional control, which might influence metabolism, contribute to the different biology of C. fetus subspecies remains to be elucidated.

In summary, comparative genomics revealed that the two C. fetus subspecies are highly syntenic, but the chromosome of C. fetus subsp. venerealis 84-112 is about 9% larger. The genomic VRs distinguishing the two subspecies are located within a small number of hot-spots, displaying features typical for horizontally acquired DNA.

VGI I and II Contain T4SS-related Genes, Prophage- and Plasmid-like Features

We previously identified and characterized a pathogenicity island (PAI) in C. fetus subsp. venerealis that was absent in all 45 C. fetus subsp. fetus isolates tested [17]. The PAI contained a full set of virB1/virD4 genes prototypical for a T4SS (for review see [18]). The T4SS of strains ATCC 19438 and 84-112 mediate conjugative DNA transfer as well as host interaction [17,19]. This PAI is located in VGI I of strain 84-112 (Figure 2A). VGI I also harbors the putative prophage I encompassing a region of 33.7 kb (position: 1,266,041 to 1,299,761) with 47 orfs and a GC-content of 55.4%.

The gene organization of VGI II is less consistent, but with conserved functional modules (Figure 2B). Although T4SS-related genes are present, the system lacks virB5 and virB6 and may be non-functional (see below, and Figure S3). Under laboratory conditions, we did not detect transcription of these genes (data not shown). The gene for transposase ISHa1152 suggests a putative integration site for VGI.

FGI I and VGI III Contain the Sap-locus

The sap-locus of C. fetus is present in both subspecies and represents the best-characterized C. fetus virulence attributes [11,15,16]. In C. fetus subsp. fetus 82-40 the sap genes are located on FGI I close to a tRNA and putative ABC-transporter genes (Figure 3). In C. fetus subsp. venerealis 84-112, the comparable region of VGI III is highly similar to FGI I. However, a block of...
Table 1. *C. fetus* genome attributes, including the extra-chromosomal element.

Attributes	**Cff** strain 82-40	**Cfv** strain 84-112	**ICE_84-112**
Genome size (bp)	1,773,615	1,926,886	61,141
GC-content %	33.31	33.34	31.54
coding DNA sequence (# of orfs)	1,769	1,992	73
rRNA genes	6	6	–
tRNA genes	43	43	–
Genomic Islands			
FlexSS loci			
Integrate XERCD family	1	1	0
Integrate/recombinases	1	2	0
Insertion Elements (# of copies)	0	ISha1152 (2)	ISha1152 (3)
Prophage-like gene clusters	0	ISC1904 (3)	0
CRISPR			
Spacers (# of copies)	21 (1)	24 (1)	0
cas-genes	cas1-6	0	0

*according to RAST annotation.

doi:10.1371/journal.pone.0085491.t001

Figure 1. Genome comparisons of *C. fetus* subspecies. Plots were generated using *C. fetus* subsp. *venerealis* 84-112 (*Cfv*) as a reference (A) or *C. fetus* subsp. *fetus* 82-40 (*Cff*) (B). Inside tracks represent GC-content (ring 1) and GC-skew (ring 2). *Cff* is shown in blue and *Cfv* in red. Variation regions (VR) relative to the reference genome are indicated in orange/yellow and named according to the corresponding Genomic Island (GI) or the subspecies definition region (SDR). (V) and (F) in the feature names designate the subspecies *venerealis* and *fetus*, respectively. Important genes or features are indicated in parenthesis. Positions of selected mobility genes are indicated.

doi:10.1371/journal.pone.0085491.g001
phage-related genes and a series of genes for hypothetical proteins indicate the presence of another prophage (Figure 2C, Figure 3) apparently leading to rearrangement and separation of the sap genes that may affect S-layer variation of C. fetus subsp. v. 84-112. The transcriptome analysis indicates that the insertion of prophage III did not lead to inactivation or truncation of sapAb8_612 (Figure 4). As in VGI I, the ISHa1152 transposase gene was detected, putatively marking a site for extra-chromosomal DNA insertion.

FGII and VGI IV Contain CRISPR Loci

We identified CRISPR-repeats on the genomes of both C. fetus subspecies (Figure S1). In C. fetus subsp. v. 84-112, a single locus (nt 684,618 to 686,228) (Cfv_CRISPR) displays the typical features of a CRISPR-array with 30-bp direct repeats (DR), separated by 21 different spacers. No cas-homologues were identified. Two CRISPR-arrays (nt 655,350 to 656,762 and nt 674,442 to 676,187) were identified in C. fetus subsp. f. 82-40 (Cff_CRISPR_1 and Cff_CRISPR_2), but only Cff_CRISPR_2 is in close proximity to cas-gene homologues. The DRs and the leader sequence are identical in both subspecies. Some spacers are shared between Cfv_CRISPR and Cff_CRISPR_1, but Cff_CRISPR_2 has no homology to Cfv_CRISPR and Cff_CRISPR_1. Sequences homologous to the spacers of the CRISPR loci were not detected in public DNA databases, thus their putative DNA targets remain unknown.

Since Cas1 is a hallmark of dynamic CRISPR arrays, we screened 102 C. fetus strains for its presence. Cas1 was detected in 19 (47.5%) of 40 subsp. fetus subsp. fetus isolates but was absent in all 62 subsp. v. isolates (Odd ratio = 110, 95% CI: 6.3 to 1,897, p = 0.0012). In strain 84-112 another prophage-like gene cluster (prophage IV) is present instead of the cas-genes and the second CRISPR array (Figure 2D, Figure S1). Interestingly, type B strains are more likely to carry the cas1 gene (14 of 15) compared to type A strains (5 of 24) (Odd ratio = 53.2, 95% CI: 5.6 to 507.4; p = 0.0006) (Table S6 in File S5).

Figure 2. Comparative overview of Genomic Islands (GIs). (A) VGI I (PAI) with the T4SS and putative prophage I, (B) VGI II with a vir-gene cluster and plasmid-related genes, (C) VGI III containing the surface array protein cluster and prophage III, (D) VGI IV containing the CRISPR-array and prophage IV and (E) FGI II with prophage-related genes (prophage II) and the CRISPR-cluster (array and cas-genes). The GI borders to genes shared between the subspecies (grey) are indicated with nucleotide position. Gene clusters are colored as follows: phage-related genes (orange), plasmid related genes (green), integrases and transposases (blue), T4SS (red), effector proteins (yellow), surface array proteins (purple), cas-genes (lavender), tRNAs (green boxes); Each x represents a hypothetical protein and their numbers in tandem are indicated above.

doi:10.1371/journal.pone.0085491.g002

PLOS ONE | www.plosone.org 4 January 2014 | Volume 9 | Issue 1 | e85491
The Extra-chromosomal Element of C. fetus subsp. Venerealis 84-112 Displays Features Typical for Integrative Conjugative Elements (ICE)

The extra-chromosomal element was designated as ICE_84-112 and is the first ICE described in C. fetus (physical map Figure S2; annotation details in File S3). Conjugative transfer (tra) and other genes of apparent plasmid origin were identified but autonomous replication features were lacking. The T4SS locus, termed ICE_trb/tra, most likely is involved in horizontal self-transfer, based on its close relation to the broadly disseminated RP4-like systems. Several phage-related genes and transposases, including the ISHa1152 transposase, could aid chromosomal integration and excision of the ICE (Figure 1A, Figure 2BC). A region with structural homology to the PAI of VGI I was identified on ICE_84-112 (termed ICE_vir). ICE_84-112 also encodes proteins with a domain called filamentation-induced by cyclic AMP (Fic). This domain is similarly present in Fic1 and Fic2 expressed by the ICE_84-112 also encodes proteins with a domain called filamentation-induced by cyclic AMP (Fic). This domain is similarly present in Fic1 and Fic2 expressed by the ICE of VGI I [17,19].

We screened our C. fetus collection for the presence of ICE_84-112 using the ICE specific genes fic3 and fic4 as PCR targets. Of 62 C. fetus subsp. venerealis strains, 7 harbored the ICE-related genes (Table S6 in File S5). The target genes fic3 and fic4 were not detected in any of the 40 C. fetus subsp. fetus strains tested. Transcriptome analysis showed expression of the majority of genes on ICE_84-112.

ICE_84-112 may replicate extra-chromosomally via a conjugal transfer replication mode, as proposed for other ICEs [20,21], since the obligatory features including a putative IncPα-site, an origin of transfer-binding protein, a relaxase, a helicase and a nicking-endonuclease were identified (Figure S2). According to the classification of Barcillán-Barica et al. [22], the putative ICE_84-112 (CDS peg.24) relaxase belongs to the MPBP1 group (clade MOBp[11]) of relaxases, displaying the typical conserved sequence motifs. Most of the MPBP1 group of relaxases are linked to conjugative plasmids. Lee et al. [20] demonstrated that the chromosomally encoded Bacillus subtilis helicase PcrA associates with ICEBs1 during replication. ICEBs1 is defective for replication in pcrA-mutant strains and pcrA is necessary for ICEBs1 conjugation. PcrA orthologs, which could be recruited for replication and conjugation, are present in both C. fetus subspecies (84-112 CDS peg.56 & peg.1280 and 82-40 CDS peg.690 & peg.934).

dRNA-seq Identified Transcriptional Start Sites and the Typical Promoter Structure for Campylobacterales in Both Subspecies

Transcriptional start sites (TSS) annotation, performed computationally, allowed classification of TSS according to their location relative to the surrounding orfs. The analysis revealed a variety of transcripts with TSS located upstream and internal to their respective orf but also included antisense transcripts. Many TSS were simultaneously assigned to more than one category (Figure S5).

Sequences upstream of the annotated TSS were used to define C. fetus promoter motifs. C. fetus subsp. venerealis has more orfs than C. fetus subsp. fetus and we identified 797 promoter sequences in strain 84-112 and 575 promoter sequences in strain 82-40, with an extended Prbnow box (gtgTATAAT) as the −10 motif in both subspecies. Consistent with other Campylobacterales [23,24] the typical bacterial −35 motif is replaced by a periodic AT-rich signal upstream of position −14 (Figure 4AB). This also is evident in the sap-locus located on genomic islands VGI III and FGI I. The intragenic promoter region between sapC (component of the Sap-transporter) and a respective sap-homologue is 100% conserved between the subspecies and only the sap-homolog directly downstream of the promoter is transcribed (Figure 4C).
C. fetus subsp. **Venerealis** 84-112 Harbors T4SS-related Loci

C. fetus subsp. **Venerealis** 84-112 harbors four regions showing homology to T4SS genes (**Figure S3**). Two are on the chromosome within VGI I (PAI) and II (**Figure 2AB**) and two are located on ICE_84-112 (**Figure S2**) annotated as ICE_trb/tra and ICE_jvr. The ICE_trb/tra region differs from the other T4SS and shares homology to IncP plasmid RP4. For the ICE_jvr region, blast searches and phylogenetic analyses using VirB4 and VirB11 [25] identified the PAI T4SS (**Table S2 in File S5**) and an as yet uncharacterized T4SS of *Campylobacter hominis* as their

Figure 4. C. fetus promoter sequence and transcriptional organization of the sap-locus. Promoter consensus sequence for (A) *C. fetus* subsp. **Venerealis** 84-112 (**Cfv**) and (B) *C. fetus* subsp. **fetus** 82-40 (**Cff**). The promoter motif is defined by an extended Pribnow box (tgnTAtaAT) at the –10 position. The –35 motif is replaced by a periodic AT-rich signal upstream of position –14 (dotted line). (C) Transcriptional organization of **Cfv** VGI III (**top**) and **Cff** VGI I (**bottom**), identical sap-promoter sequence of **Cfv** and **Cff** (**middle**).

doi:10.1371/journal.pone.0085491.g004
closest neighbor. The *vir*-genes located on VGI II did not share high homology with the *vir*-genes present on either VGI I or ICE subsp. Instead the closest relative is a putative T4SS present in *C. rectus* RM3267, indicating a different origin. Finally, transcriptome analysis indicated that the VGI III T4SS components are not transcribed under laboratory conditions, whereas expression of the PFL T4SS (VGI I), ICE_czw and ICE_br/br was detected (data not shown, and [17]).

Genes Involved in LPS-biosynthesis Distinguish C. fetus Sero--Type Strains

The species-specific regions contain unique genes putatively involved in LPS-biosynthesis. Although inserted at the same chromosomal position in both subspecies (Figure 1AB) the islands display only limited similarity (Figure S4). One obvious difference was that VSDR encodes a putative maltose O-acetyltransferase (*mat1*) (cd04647) and FSDR a putative UDP-galactopyranose mutase (*gfl*) (EC 5.4.99.9) (Figure S4). Remarkable is the low GC-content of the VSDR and FSDR of 30.7% and 29.4%, respectively (Table S1 in File S5) and the absence of tRNA or apparent mobility genes.

Acetyltransferases generally catalyze the COA-dependent acetylation of the 6-hydroxyl group of sugar substrates. Maltose O-acetyltransferases exclusively acetylate maltose and glucose. *C. fetus* type A LPS contains 74.5% mannose as well as 6.5% D-glucose [29.4%, respectively positive strains were type A strains positive for *glf*, *wcbK*, *virD4* and *fa1-4* (Table S4 in File S5).

Finally, another enzyme of the LPS-biosynthetic pathway UDP-glucose 4-epimerase (*GalE*, EC 5.1.3.2) catalyzes the reversible conversion of UDP-glucose to UDP-galactose and is known to contribute to *C. jejuni* virulence [32]. Southern-blot and PCR screens of our collection showed that all 102 *C. fetus* isolates studied carried *galE*.

wcbK is Involved in LPS-biosynthesis and Accordingly should have an Impact on Acid Resistance and Serum Sensitivity in *C. fetus* subsp.

Type A strains are resistant to complement-mediated killing since the C3b binding to the bacterial cell surface is inhibited by the presence of the S-layer [33,34]. It is not known why type B strains are sensitive to non-immune serum [12], despite the presence of the surface array protein. We hypothesized that *wcbK* might be linked to the susceptibility of type B strains by generating O-specific side chains where the C3b binding site is not covered by the S-layer. To test this, we first screened *C. fetus* subsp. *fetus* type A and B strains with known serum resistance phenotypes for *wcbK* and *gfl* (Table S5 in File S5). As hypothesized, *wcbK* was exclusively found in type B strains and correlated with serum susceptibility, whereas *gfl* only was present in type A strains and correlated with serum resistance. Next we generated a non-polar *wcbK* mutant (K19) of *C. fetus* subsp. *fetus* ATCC 27374 (type B) that was deficient in LPS-production (Figure 5A). In *Vibrio cholerae* mutant strains it has been shown that providing genes in trans only partially restored LPS-production compared to wild type levels [35]. In our experiments, providing *wcbK* in trans also partially complemented LPS-production. Due to antibiotic selection throughout the experiment we can exclude the loss of the complementation vector. We next compared serum-susceptibility of mutant and wild type strains (Figure 5BC). As expected, *C. fetus* subsp. *fetus* ATCC 27374 did not survive serum treatment (log10 kill 2.23±0.06) whereas the isogenic *wcbK* mutant strain K19 had markedly increased serum-resistance (log10 kill 0.86±0.05). The phenotype was partially complemented (log10 kill 1.23±0.10) by providing *wcbK* in trans. The serum resistant strain 82-40 (type A) was used as a control (log10 kill 0.27±0.01).

Type A and type B *C. fetus* strains differ in the carbohydrate composition of their LPS [12,26]. The O-antigen of type A strain has a higher molecular weight (Figure 5A) than that of type B strains. *C. fetus* strains 84-112, 82-40 and ATCC 27374 are similar in their resistance to acid (Figure 5 and results not shown). In *H. pylori* GDP-mannose 4,6-dehydratase (encoded by *wcbK*) is important for the expression of O-antigen and for the bacterium to survive the acidic milieu of the stomach [29]. We hypothesized that the loss of *LPS* in the *wcbK* deficient *C. fetus* strain might result in increased acid sensitivity. Indeed, when incubated at low pH the wild type strain (ATCC 27374) survived significantly better than the *wcbK* mutant; this acid-sensitive phenotype was partially complemented by providing *wcbK* in trans (Figure 5CD).

In summary, *wcbK* is important for LPS-biosynthesis and *SapB* binding. Activity of this enzyme attenuates survival of the pathogen in blood, and also can provide effective protection from stomach acid en route to colonization of the intestinal niche.

Discussion

E-Proteobacteria including *Campylobacter* and its close relative *Helicobacter* show evidence of genome reduction indicated by small genome size (~1.5 to 2.5 Mbp) and the nearly complete absence of non-coding DNA. These features are typical for adaptation to a
specific colonization niche and both species display strong host preference ("tropism") [36,37]. Among Campylobacters, C. fetus subspecies are an exceptional model system to study the molecular basis of pathogen-host adaptation since, despite a highly clonal structure, they display strikingly dissimilar host preferences and tissue tropism. To investigate the genetic basis underlying the distinct pathogenicity of C. fetus subspecies, we performed whole genome comparisons and transcriptome analyses of C. fetus subspecies, focusing on identifying differences that contribute to host and tissue tropism. We propose that the additional genome
content of C. fetus subsp. venerealis was horizontally acquired (Table S1 in File S5). The observation that genes shared between the subspecies are nearly 100% identical on the nucleotide level supports the hypothesis that HGT and not mutation or genetic drift is the predominant factor in the evolution of C. fetus.

To gain insights to the genetic plasticity of C. fetus genomes, and particularly whether the identified variation regions are conserved we compared the VGI – IV of C. fetus subsp. venerealis 84-112 to the draft genome sequences of C. fetus subsp. venerealis NCTC 10354 (ATCC 19438) [38], C. fetus subsp. venerealis Azul-94 [39] and C. fetus subsp. venerealis biovar Intermedius INTA 99/341 [40]. We identified homologous sequences in all three strains with over 90% homology on the nucleotide level. These results indicate that the GIs are at least partially present in other venerealis strains. However, given that many of the remaining contig boundaries are located in the variable regions, to be able to perform more detailed analysis the draft genomes will need to be closed and the sequences verified.

We focus in the current study on the description of genomic regions and genes unique to each subspecies. Genome comparisons of C. fetus subspecies reported previously using the draft sequences of C. fetus subsp. venerealis strains [39,41] focused mainly on the description of shared putative virulence factors or the identification of putative targets for diagnostics. Many of the genes putatively involved in adherence, invasion, motility, secretion and toxin production identified by Ali et al. [41] and Moolhuijzen et al. [39] were also present in strain 84-112 (File S1). Homologs to the antibiotic resistance gene cluster identified within a homologous genomic island in C. fetus subsp. fetus IMD 523-06 [42] were not present in C. fetus subsp. venerealis ATCC and 84-112.

Metabolic differences between C. fetus subspecies such as glycine tolerance, H2S production and selenite reduction have traditionally been used to discriminate the subspecies and are therefore intriguing features linked to niche adaptation. Nonetheless, metabolic modeling of the two genomes revealed no apparent subspecies differences, except a possible difference in thiamin (vitamin B1) biosynthesis. The overall metabolic capacity seems to subspecies differences, except a possible difference in thiamin (vitamin B1) biosynthesis. The overall metabolic capacity seems to

ICE replicate autonomously if they adopt a rolling-circle-like mechanism mediated by replication- or single-strand DNA transfer initiation factors [20,21]. In Bacillus subtilis helicase PcrA associates with ICEB1 during replication [20]. Candidate PcrA orthologs are present in both C. fetus subspecies (84-112 CDS peg-36 & peg-1280 [File S1] and 82-40 CDS peg-690 & peg-934 [File S2]). The surveyed fic3 and fic4 genes suggest that the distribution of ICE_84-112 is quite narrow. In that case important virulence-associated characteristics are unlikely to be carried by the element, but it may be a vehicle of interspecies gene exchange.

C. fetus subsp. fetus 82-40 mostly lacks phage- and plasmid-related genes and this might be due to the presence of an active CRISPR cluster, protecting from invasion of foreign DNA. Although there are six core cas-genes, cas1 may be of central importance in the acquisition of new spacers [for review see [43]]. In contrast to C. fetus subsp. venerealis 84-112, we identified two CRISPR-arrays in strain 82-40. Since C. Iff CRISPR_2 showed prototypical architecture, i.e., cas-genes and an AT-rich leader sequence followed by the DRs and the spacers, this CRISPR array may be functional. The presence of cas-genes in C. fetus subsp. fetus highlights another important subspecies difference. The occurrence of CRISPRs is linked to natural competence of bacteria [44]. This C. fetus subsp. fetus type B strains more frequently harbor putative functional CRISPRs than type A strains might have stabilized the type B phylotype and may explain why the type A clade later diverged [4] (Figure 6). All of the C. fetus strains that we and others have thus far tested are not naturally competent (unpublished data, [43,46]) thus a possible connection between the presence of CRISPRs and natural competence of C. fetus subspecies remains unresolved.

The most important genetic differences between the subspecies are cell surface structures including the S-layer and LPS. The distribution of these genes across a panel of diverse C. fetus isolates indicates linkage to particular pathotypes. The distinct distribution patterns detected for webk, mat1, and glf among type A and B strains support the following model (Figure 6). webk and glf are subsp. fetus-specific genes that have been acquired more recently than mat1 and galE, which represent “ancient” constituents of the C. fetus genome. These loci are similar in reptile C. fetus and C. fetus subsp. venerealis but MLST reveals that variation has emerged and that type B strains separated from type A prior to the division of C. fetus subsp. fetus and C. fetus subsp. venerealis [4]. We showed that type B strains maintained mat1 and galE but diversification of phylotypes led to acquisition of webk by C. fetus subsp. fetus type B. C. fetus subsp. venerealis also maintained mat1 and galE, but type A C. fetus subsp. fetus, the invasive pathotype often found in human infections, have lost mat1 and acquired glf. Extended analysis of C. fetus evolution will require analysis of more geographically and phenotypically diverse isolates. Moreover, analysis of the newly proposed subspecies/biovar intermedium [7] may provide a missing link in the subspecies divergence.

Little is known how C. fetus interacts with the host immunity, but LPS and the S-layer are important for TLR4-mediated recognition [47,48]. The S-layer producing C. rectus induces TLR4 expression in the mouse placenta [49]. To avoid dysregulated inflammatory responses to LPS, the intestinal epithelium as well as placental tissue normally express no or low levels of TLR4 [48,50,51]. Low density of TLR4 may allow the hosts’ immune response and subsequently invade the host cells. Type A and type B C. fetus strains are different in their LPS composition and S-layer proteins [12,26]. The activity of WcbK and the putative functions of mat1 and glf are linked to the S-layer. C. fetus subsp. venerealis strains (webk− / glf− / mat1+) and C. fetus subsp. fetus type A strains (webk− / glf− / mat1+) are serum resistant, whereas C. fetus subsp. fetus type B strains (webk+/ glf− / mat1+) are serum sensitive. We showed that webk is essential for LPS-biosynthesis in C. fetus subsp. fetus type B strains and that loss of webk leads to increased serum resistance. This data indicates that WcbK generated side chains are important for serum sensitivity. We propose that similar to webk, the products of mat1 and glf of C. fetus might be involved in LPS-biosynthesis by generating different O-antigen side chains, potentially influencing complement and antibody binding, acid resistance and TLR4 recognition.

The bacterial transcriptome provides an additional reference to study genome composition as well as regulation of virulence. In the initial profile of C. fetus gene transcription, the characteristic e-proteobacterial promoter signature was identified. We confirmed
that the promoter region is 100% conserved between the subspecies, and that one sap gene is predominantly transcribed under laboratory conditions. This finding is intriguing since recombination and therefore exchange of sap-homologs occurs frequently in this region to enable phase variation of the pathogen [11]. It has been proposed that the sap-region belongs to the ancestral part of the C. fetus core genome and not a PAI [52]. That the region is shared between both subspecies confirms ancient presence of a horizontally acquired element. Based on the significance of the S-layer for immune evasion [11,15,16], the genome insertion can be considered as a classical PAI.

Whole-genome comparisons of related pathogens of distinct characteristics, such as those described in the presented work, lay the foundation for additional mutational, functional, and animal studies that will ultimately help elucidate the mechanisms underlying the emergence of new pathogens. This study broadens knowledge of the genomic basis of C. fetus pathogenesis and host specificity. The most interesting differences in the genetic repertoire of the subspecies relate to cell surface structures including the S-layer and LPS and distribution of these genes is associated with certain pathotypes. This emphasizes the importance of surface-exposed structures to C. fetus pathogenicity and demonstrates how evolutionary forces optimize the fitness and host adaptation of these pathogens. The presence of genes like glf is particularly interesting as the gene product is a promising drug target, as proposed for Leishmania [53], and relevant since glf is connected to type A strains, which are more often isolated from human blood. In any event, wcbK and glf are excellent candidates applicable for reliable subspecies differentiation.

Experimental Procedures

Bacterial Strains

Campylobacter and E. coli strains were grown as described [45]. Antibiotic selection applied concentrations of 100 μg/ml ampicillin, 75 μg/ml nalidixic acid, or kanamycin and chloramphenicol at 25 μg/ml. Bacterial strains are listed in Table S6 and Table S7 in File S5. Only C. fetus strains typed definitively to the subspecies level were tested in PCR screens (n = 102). Subspecies were identified biochemically as described [17].

Gene Detection

Oligonucleotides are listed in Table S8 in File S5. PCR amplification for surveying gene prevalence used chromosomal DNA and the following primer pairs 1/2 for wcbK, 3/4 for glf and 5/6 for mat1. The sap-type was determined with primers 7/8 and 9/10, as described [54]. Southern blots were hybridized with radiolabeled DNA probes as described [17]. Probes for galE and cas1 were generated with primer pair 11/12 and 13/14 from chromosomal DNA of C. fetus, ATCC 27374, respectively. The same primers were used for PCR-screening for galE and cas1. fic3 and fic4 were amplified with primer pairs 15/16 and 17/18, respectively.

Genome Sequencing, Assembly and Annotation

A standard whole genome shot-gun and a 3-kb paired-end library were generated according to the manufacturer’s recommendations (Roche Diagnostics, Vienna, Austria) using 5 μg chromosomal DNA. For each library, high-throughput pyrosequencing was performed on a Genome Sequencer FLX system (Roche) producing 145 Mb and 62.2 Mb sequence data, respectively. Read assembly applied the Newbler assembly software,
version 2.6 (Roche) and resulted in 89 contigs and 11 scaffolds. One scaffold represented the circular extra-chromosomal element and the remaining 10 were grouped into 3 super-scaffolds (SSC) using the information from the 3 kbp mate-pair library and the contig-graph generated by the Newbler assembler. Additionally, PCR and Sanger sequencing was used to determine the orientation and order of contigs and the SSC. Gaps in the extra-chromosomal element and the chromosome were closed in silico with a custom R script [55] and with PCR. Homopolymer uncertainties from the 454-reads were corrected through mapping of the Illumina reads derived from the C. fetus subsp. venederais 84-112 genome to the draft sequence using CLC Genomics Workbench 5.5 (CLC Bio; Aarhus, Denmark). The resulting consensus sequences and C. fetus subsp. fetus strain 82-40 were annotated and compared with Rapid Annotations using Subsystem Technology version 4.0 (RAST) [56]. Annotation tables for each strain and the extra-chromosomal element are presented in Files S1-S3.

Differential RNA-sequencing

Library preparation for dRNA-seq was performed as reported [23]. In brief, RNA was isolated from bacterial cells grown on CBA plates for 24 h. To construct differential CDNA library pairs, aliquots of extracted RNA from each strain was treated with Terminator-5’-phosphate-dependent exonuclease (TEX; Epicentre) to deplete processed RNAs (denoted TEX+) in addition to untreated RNA (denoted TEX−). Construction of cDNA libraries was performed by zert Biotechnology AG (Munich, Germany). Libraries were sequenced using cluster amplification with the TruSeq PE Cluster Kit v.5 on a cluster station. Sequencing image files were processed with the Sequencing Control Software (SCS) Real Time Analysis (RTA) v2.6 and CASAVA v1.7 (Illumina). Reads were mapped to the reference genomes using the CLC Genomics workbench (CLC Bio) with default settings. Information on transcriptional start sites (TSS) and promoter annotation can be found in the supplement.

Lipopolysaccharide Analysis

C. fetus strains were grown for 24 h and resuspended in buffer (10% glycerine, 20% SDS, 5% β-mercaptoethanol, 62.5 mM Tris-HCl pH 6.8, bromophenol blue) for lysis at 100°C for 10 min. Proteinase K solution was added to 6 μg/μl and samples were incubated overnight at 55°C. LPS-preparations were electrophoretically on 15% polyacrylamide gels (running buffer: 86 mM glycine, 3,5 mM SDS and 25 mM Tris pH 8). Gels were fixed overnight (25% isopropanol, 7% acetic acid) under gentle shaking. LPS was oxidized with 100 μl fixative containing 4 mmol NaIO4 for 10 min. After three washing steps with H2O for 30 min each, LPS was streaked on CBA plates 24 h prior to the assay and cell count was adjusted to 1×10⁸ bacteria/ml, based on optical density in EMEM medium. The actual cell count was determined by plating serial dilutions. Heat-inactivated (56°C for 30 min), or active- (thawed on ice) pooled human serum was added to the bacteria to a 10% final concentration and incubated for 1 h at 37°C. Surviving cells were counted on CBA plates after 48 h growth. For the acid resistance assays, C. fetus cells were harvested as described above, centrifuged, resuspended in PBS with different pH values and incubated at 37°C for 30 min. Cells were washed in PBS (pH 7.3) before the number of surviving bacteria was determined by plating serial dilutions.

Nucleotide Sequence Accession Numbers

The genome sequence of C. fetus subsp. venederais 84-112 including the ICE element (ICE_84-112) has been deposited in EMBL Nucleotide Archive under accession numbers (HG004426 and HG004427). The genome of C. fetus subsp. fetus 82-40 used for comparative analyses has the GenBank accession number CP000487.1. dRNAseq data can be accessed via the EMBL-EBI short read archive under the accession number ERP002581.

Supporting Information

Figure S1 Comparative maps of CRISPR-related genomic islands. (A) C. fetus subsp. venederais 84-112 VGI I harbors the direct repeats with spacers (CRISPR) but lacks CRISPR-associated (cas)-genes. Prophage-related genes (putative prophage IV) were identified (orange) adjacent to a region identical to C. fetus subsp. fetus 82-40 downstream of these regions respectively. These regions are the core-genome continues with a chromosomal rearrangement between the two subspecies on the 3-prime end (striped boxes). A sequence region between the subspecies was identified (blue box). (B) C. fetus subsp. fetus 82-40 FGI I carries two regions of direct repeats and spacers, cas-genes precede the second CRISPR-array resulting in a putatively functional CRISPR-system. One region with a prophage-like structure (orange) was identified. (TIF)

Figure S2 Physical map of the extra-chromosomal element ICE_84-112. Shown is the GC-content (circle 1), GC-skew (circle 2) and open reading frames (circle 3). The trb-region (red) comprises genes putatively involved in conjugative transfer of the ICE. The vir-region (orange) shows putative T4SS genes with homology to the chromosomal PAI on VGI I. Genes possibly involved in autonomous replication of the ICE are named individually and labeled (green and red). Genes of predicted plasmid origin (green); phage genes and transposons (blue); putative effector proteins or toxin-antitoxin system (yellow); hypothetical proteins (grey). (TIF)

Figure S3 Schematic representation of the apparent T4SS identified in C. fetus subsp. venederais 84-112. (A, B, C) Represent loci with homology to virB/virD4-genes. (A) The PAI T4SS is functional in virulence and conjugative DNA transfer [1,2]. (B) ICE_vir displays a similar gene organization to VGI I but protein homologies are not strikingly high. virD4 is truncated compared to the functional PAI homologue. (C) A partial set of vir-genes. (D) ICE_th/va genes share homology to plasmid RP4 and are putatively involved in the conjugal transfer of ICE_84-112. Homologous genes (vir, va) are indicated by color. (TIF)

Figure S4 Comparative map of C. fetus subspecies variation regions VSDR and FSDR. (A) C. fetus subsp. venederais 84-112 VSDR and (B) C. fetus subsp. fetus 82-40 FSDR. MAUVE was used to compare the regions to visualize rearrangements and insertions. Regions free of rearrangements are indicated by colored colinear blocks. White regions within these blocks symbolize insertions or non-homologous regions. Important open
reading frames are colored and/or labeled accordingly. Genes unique to the subspecies, matA and glf, are highlighted in pink.”

Figure S5 Venn diagram of annotated TSS. (A) *C. fetus* subsp. *venerealis* 84-112 and (B) *C. fetus* subsp. *fetus* 82-40. TSS were categorized according to the genomic context into five classes: primary (TSS having the most cDNAs within 500 bp upstream of annotated mRNA start codons), secondary (TSS associated with the same gene but with fewer cDNAs), internal (TSS within an annotated gene on the same strand), antisense (TSS situated inside or within 100 bp of the coding region of a gene encoded on the opposite strand), or orphan (TSS without annotated genes in proximity) [3]. Numbers in parentheses indicate the TSS, which associate with only one orf.

Author Contributions
Conceived and designed the experiments: SK ELZ GG MJB GIP. Performed the experiments: SK HS SW. Analyzed the data: SK HS BH GG MJB. Contributed reagents/materials/analysis tools: SK GIP MJB. Wrote the paper: SK ELZ GG.

References

1. On SL (1996) Identification methods for *Campylobacters*, *Helicobacters*, and related organisms. Clin Microbiol Rev 9: 405–422.

2. Man SM (2011) The clinical importance of emerging *Campylobacter* species. Nat Rev Gastroenterol Hepatol 8: 669–685.

3. Fouts DE, Mungiond EF, Mandrell RE, Miller WG, Rasko DA, et al. (2005) Major structural differences and novel potential virulence mechanisms from the genomes of multiple *Campylobacter* species. PLoS Biol 3: 72–85.

4. Dingle KE, Blaser MJ, Tu ZC, Pruckler J, Fitzgerald C, et al. (2010) Genetic relationships among reptile and mamalian *Campylobacter fetus* by Multilocus Sequence Typing. J Clin Microbiol 48: 977–980.

5. van Bergen MA, Simons G, van der Graaf-Van Bloois L, Van Putten JP, Rombout J, et al. (2005) Amplified fragment length polymorphism based identification of genetic markers and novel PCR assay for differentiation of *Campylobacter fetus* subspecies. J Med Microbiol 54: 1217–1224.

6. Thompson SA, Blaser MJ (2008) Pathogenesis of *Campylobacter fetus* infections. In: Nachamkin I, Blaser MJ, editors. *Campylobacter*, 2nd Ed. Washington, D.C.: ASM Press. 321–347.

7. van Bergen MA, Linnane S, van Putten JP, Wagenaar JA (2005) Global detection and identification of *Campylobacter fetus* subsp. *venerealis* by amplification from human gastric biopsies. J Clin Microbiol 43: 5860–5868.

8. van Bergen MA, Linnane S, Van Putten JP, Wagenaar JA (2005) Global detection and identification of *Campylobacter fetus* subsp. *venerealis*. Rev Sci Tech 24: 1017–1026.

9. Blaser MJ (1998) *Campylobacter fetus* emerging infection and model system for bacterial pathogenesis at mucosal surfaces. Clin Infect Dis 27: 256–258.

10. Skirrow MB, Blaser MJ (2000) Clinical aspects of *Campylobacter* infections. In: Nachamkin I, Blaser MJ, editor. *Campylobacter*, 2nd Ed. Washington, D.C.: American Society for Microbiology. 69–98.

11. Tu ZC, Gaudreau C, Blaser MJ (2005) Mechanisms underlying *Campylobacter* fetus pathogenesis in humans: surface-layer protein variation in relapsing infections. J Infect Dis 191: 2082–2089.

12. Perez-Perez GI, Blaser MJ, Bynner JH (1986) Lipopolysaccharide structures of *Campylobacter fetus* are related to heat-stable serogroups. In: *Campylobacter* jejuni, 2nd Ed. Washington, D.C.: ASM Press. 321–347.

13. Eastwood DM, Clyne CE, Simon AE, Acord CM, Blaser MJ (1982) Epidemiology of *Campylobacter fetus* in a community. J Infect Dis 146: 1086–1094.

14. Blaser MJ, Smith PF, Repine JE, Joiner KA (1988) Pathogenesis of *Campylobacter fetus* infections. J Infect Dis 191: 2082–2089.

15. Garcia MM, Lutze-Wallace CL, Denes AS, Eaglesome MD, Holst E, et al. (2003) Role of S-layer protein antigenic diversity in the immune responses of sheep experimentally infected with *Campylobacter fetus* subsp. *venerealis*. J Bacteriol 185: 5449–5461.

16. Garcia MM, Lutze-Wallace CL, Denes AS, Eaglesome MD, Holst E, et al. (2003) Sequence Typing. J Clin Microbiol 48: 977–980.

17. A genomic island defines subspecies-specific virulence features of the host-adapted pathogen *Campylobacter fetus* subsp. *venerealis*. J Bacteriol 192: 502–517.

18. Kreutzinger MJ, Miller WW, Zulliger R, Geiser DM, Tarczy-Hornoch K, et al. (2003) Three major clades of *Campylobacter jejuni* defined by phylogenetic analysis of the 5′-untranslated region of the rpoC2 gene. Appl Environ Microbiol 69: 111–119.

19. Kienesberger S, Schoder Trummler C, Fauster A, Lang S, Sprenger H, et al. (2011) Interbacterial macromolecular transfer by the *Campylobacter fetus* subsp. *venerealis* type IV secretion system. J Bacteriol 193: 744–758.
38. Stynen AP, Lage AP, Moore RJ, Rezende AM, de Resende VD, et al. (2011) Complete genome sequence of type strain Campylobacter fetus subsp. venerealis NCTC 10354T. J Bacteriol 193: 5871–5872.

39. Moolhuijzen PM, Lew-Tabor AE, Włodek BM, Aguero FG, Comerci DJ, et al. (2009) Genomic analysis of Campylobacter fetus subsp.: identification of candidate virulence determinants and diagnostic assay targets. BMC Microbiol 9: 86.

40. Iraola G, Perez R, Naia H, Paolicchi F, Harris D, et al. (2013) Complete Genome Sequence of Campylobacter fetus subsp. Biovar Intermedius, Isolated from the Prepuce of a Bull. Genome Announc 1.

41. Ali A, Soares SC, Santos AR, Guimarães LC, Barbosa E, et al. (2012) Campylobacter fetus subsp.: Comparative genomics and prediction of potential virulence targets. Gene.

42. Abril C, Brodard I, Perreten V (2010) Two novel antibiotic resistance genes, tet(44) and ant(6)-Ib, are located within a transferable pathogenicity island in Campylobacter fetus subsp. fetus. Antimicrob Agents Chemother 54: 3052–3053.

43. Marraffini LA, Sontheimer EJ (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11: 181–190.

44. Jorth P, Whiteley M (2012) An evolutionary link between natural transformation and CRISPR adaptive immunity. MBio 3.

45. Kienesberger S, Gorkiewicz G, Joaing MM, Scheicher SR, Leitner E, et al. (2007) Development of experimental genetic tools for Campylobacter fetus. Appl Environ Microbiol 73: 4619–4630.

46. Tu ZC, Wassenaar TM, Thompson SA, Blaser MJ (2003) Evidence that the Campylobacter fetus sap locus is an ancient genomic constituent with origins before mammals and reptiles diverged. Infect Immun 71: 2327–2344.

47. Kleczka B, Lamerz AC, van Zandbergen G, Wenzel A, Gerardy-Schahn R, et al. (2007) Targeted gene deletion of Leishmania major UDP-galactopyranose mutase leads to attenuated virulence. J Biol Chem 282: 10498–10505.

48. Dworkin J, Tummuru MK, Blaser MJ (1995) Segmental conservation of sapd sequences in type B Campylobacter fetus cells. J Biol Chem 270: 15093–15100.

49. Blaser MJ, Smith PF, Kohler PF (1985) Susceptibility of Campylobacter isolates to the bactericidal activity of human serum. J Infect Dis 151: 227–235.