Valerio Del Vescovo, Margherita Grasso, Mattia Barbareschi, Michela A Denti, Laboratory of RNA Biology and Biotechnology, Centre for Integrative Biology, University of Trento, 38123 Trento, Italy
Mattia Barbareschi, Unit of Surgical Pathology, Laboratory of Molecular Pathology, Trentino Biobank, S.Chiara Hospital, 38100 Trento, Italy

Author contributions: Del Vescovo V and Grasso M contributed equally to this work, searched the literature material and designed the research; Del Vescovo V, Grasso M and Denti MA wrote the paper; Barbareschi M and Denti MA revised the paper.

Correspondence to: Dr. Michela A Denti, Laboratory of RNA Biology and Biotechnology, Centre for Integrative Biology, University of Trento, via Sommarive 5, 38123 Trento, Italy. denti@science.unitn.it Telephone: +39-0461-283820 Fax: +39-0461-283937 Received: January 16, 2014 Revised: February 28, 2014 Accepted: May 8, 2014 Published online: October 10, 2014

Abstract
Lung cancer is the leading cause of cancer mortality worldwide. Its high mortality is due to the poor prognosis of the disease caused by a late disease presentation, tumor heterogeneities within histological subtypes, and the relatively limited understanding of tumor biology. Importantly, lung cancer histological subgroups respond differently to some chemotherapeutic substances and side effects of some therapies appear to vary between subgroups. Biomarkers able to stratify for the subtype of lung cancer; prognosticate the course of disease, or predict the response to treatment are in high demand. In the last decade, microRNAs (miRNAs), measured in resected tumor samples have emerged as biomarkers, due to the ease of their detection and in their extreme specificity. Moreover, miRNAs present in sputum, in plasma, in serum or in whole blood have increasingly been explored in the last five years as less invasive biomarkers for the early detection of cancers.

INTRODUCTION
Lung cancer is the leading cause of cancer mortality worldwide[1]. About 270000 individuals were predicted to die of lung cancer in the European Union in 2013[2]. This high mortality is due to the poor prognosis of the disease caused by a late disease presentation, tumor heterogeneities within histological subtypes, and the relatively limited understanding of tumour biology. Most lung cancer patients are diagnosed at an advanced stage of disease, and, although a small subsets of these patients can be treated with new drugs offering improved survival and reasonable quality of life, the majority of patients can only be treated with palliative chemotherapy. Overall survival remains poor, and many patients die within a few months
of diagnosis.

Lung cancer is not one, but rather a group of diseases: small cell lung carcinomas (SCLCs) are high grade neuroendocrine tumours (NET), metastasize earlier and are initially more chemosensitive than the so called non-small cell lung carcinomas (NSCLC). Over the past two decades it has become clear that NSCLC itself is a clinically and biologically heterogeneous group of lung cancers, and should not be treated as a single disease entity. The two main subgroups of NSCLC are adenocarcinoma (AD) and squamous cell carcinoma (SCC), with a remaining third class of carcinomas devoid of histological features of adeno- or squamous- differentiation, named LCC (large cell carcinoma)[9]. The appearance of these tumours at light microscopy differs substantially, suggesting that their aetiology and biology differ as well. Importantly, the histological subgroups of NSCLC respond differently to some chemotherapeutic substances[10] and side effects of some therapies appear to vary between subgroups[11].

Beside SCLC, NETs include a spectrum of tumors from the low-grade typical carcinoid (TC) and intermediate-grade atypical carcinoid (AC) to the high-grade large-cell NE carcinoma (LCNEC). The distinction between these various entities may be sometimes difficult on histological grounds, but is of great therapeutic relevance.

Biomarkers able to stratify for the subtype of lung cancer, prognosticate the course of disease, or predict the response to treatment in an increasing demand. Lung cancer subtyping has traditionally relied on the histopathological observation of resected specimens, bronchoscopic biopsies, fine needle aspirations or sputum, which represent samples with decreasing invasiveness for the patient, but also of increasing challenge for the pathologist, as proportionally fewer tumour cells are captured[12-14]. Recently, the introduction of several immunohistochemical markers has rendered lung cancer subtyping more accurate and clinically useful[15].

In the last decade, microRNAs (miRNAs), measured either from tumour samples or in biofluids, have emerged as biomarkers for tumor diagnosis, prognosis and prediction of response to treatment. In the following pages we will review the increasing amounts of data that have accumulated in the last ten years on the use of miRNAs as lung cancer biomarkers.

MIRNAS AND CANCER

microRNAs (miRNAs or miRs) are small non-coding single-stranded RNAs, 19-25 nucleotides (nt) in length, acting as negative regulators of gene expression at the post-transcriptional level. More than 1000 miRNAs are transcribed from miRNA genes in the human genome. A single miRNA is able to modulate hundreds of downstream genes by recognizing complementary sequences in the 3’UTRs of their target mRNAs. It has been estimated that in humans about 30% of messenger RNAs (mRNAs) are under miRNA regulation, but this percent-

age is likely to grow in the future, as studies have shown that miRNAs can also bind target sequences located in the 5’ UTR or in the open reading frame (ORF)[16]. The biological functions of miRNAs are diverse and include several key cellular processes, such as differentiation, proliferation, cellular development, cell death and metabolism.

In a seminal paper the Croce laboratory showed in 2002 that the genes for miR-15 and miR-16 are deleted or down-regulated in the majority of chronic lymphocytic leukaemia cases[17]. Scott Hammond, Gregory Hannon and collaborators demonstrated that miRNAs can modulate tumour formation and implicated the mir-17-92 cluster as a potential human oncogene in another fundamental paper[18], in which they demonstrated that enforced expression of the mir-17-92 cluster acts with c-myc expression to accelerate tumour development in a mouse B-cell lymphoma model. Since then, evidences have accumulated to indicate that miRNAs play a role in the onset and progression of several human cancers[19]. The transcription or processing of some miRNAs is altered in neoplastic tissues, in respect to their normal counterparts. miRNAs whose levels increase in tumors are referred to as oncogenic miRNAs (“onco-miRs”), sometimes even if there is no evidence for their causative role in tumorigenesis. On the other hand, miRNAs down-regulated in cancer are considered tumor suppressors. From the mechanistic point of view, it is important to understand how these variations may contribute to tumor progression.

In 2005, the Horvitz and Golub labs demonstrated the potential for miRNAs as diagnostic tumor markers, when they were able to indicate the tumor embryonic origin using miRNA expression profiles, successfully classifying poorly differentiated tumors, among which lung tumors[20]. Subsequently, the Croce lab performed a large-scale miRNAome analysis on 540 samples including lung, breast, stomach, prostate, colon, and pancreatic tumors, and identified a solid cancer miRNA signature composed by a large portion of over-expressed miRNAs. While some miRNAs were commonly dys-regulated in the six cancer types, several other miRNAs were associated to a particular type of cancer[21]. The utility of miRNAs levels as diagnostic and prognostic biomarkers became clear already from these first studies[22]. Moreover, the effectiveness of miRNAs as biomarkers for tracing the tissue of origin of cancers of unknown primary origin was demonstrated by Rosenfeld and colleagues[23], who constructed a tissue classifier based on the measurement of 48 miRNAs on a microarray, to identify the tissue origin of metastatic tumors. These results were translated into a qRT-PCR platform, to develop a diagnostic test for the identification of tumour tissue origin[24]. The classifier has been further implemented in a second-generation custom microarray based on the measurement of 64 miRNAs[25], the usefulness of which as a diagnostic tool was very recently confirmed[26].

A different 47-miRNA signature for the identification
of cancers with unknown primary tissue-of-origin was identified by other authors using a different microarray platform[24].

MIRNAS AND LUNG CANCER

As far as lung cancers are concerned, the role of miRNAs in lung carcinogenesis was indicated as early as 2004, when the Croce lab demonstrated that more than half of the miRNA genes then known were located in cancer-associated genomic regions or in fragile sites and that several miRNAs located in this deleted regions have low expression levels in lung cancer cell lines as well as in chronic lymphoeyctic leukaemia samples[25]. In the same year, Takamizawa and colleagues reported reduced expression of the let-7 microRNA in human NSCLC lung cancers[26-29], followed by several independent studies[30-33]. The let-7 family was later shown to have an onco-suppressor activity in NSCLC tumor development in mice xenografts[34]. One of the consequences of let-7a downregulation in lung cancer has been demonstrated to be the upregulation of RAS protein[27]. A single nucleotide polymorphism (SNP) in a let-7 complementary site of KRAS mRNA was found to be associated with increased risk of NSCLC in moderate smokers[31]. Based on in vitro experiments and analyses of patient samples the authors concluded that this SNP alters the ability of let-7 to regulate translation of KRAS, leading to overexpression of KRAS and increased lung cancer risk.

Other miRNAs may also interact with RAS. For instance, Wang et al[32] found that miR-451 is downregulated in NSCLC, and that low expression correlated with poor survival. The authors were able to show that miR-451 inhibits the expression of ras-related protein 14 (RAB14), suggesting that lower expression of miR-451 may allow this oncogene to escape regulation.

The oncogenic miR-17-92 cluster is markedly overexpressed in lung cancers, especially with SCLC histology and promotes activity in NSCLC tumor development in mice xenografts[34]. With time, it has become clear in the field that the use of microarrays for miRNA profiling presents with major problems of cross-hybridisation between members of miRNA families and discrepancies in comparison results obtained with different microarray platforms[35-37]. A common strategy is to validate the microarray data by qRT-PCR, which warrants high sensitivity and specificity.

Additionally, the analysis of a great number of genes including ones whose changes are not directly or indirectly associated with cancer, in clinical settings is not necessary. Hence, the large amount of data obtained by microarray and NGS profiling needs to be transposed into clinical trials by developing an easily performed and serviceable assay that can analyze the cancer-specific miRNAs for cancer diagnosis and prognosis. Such an analysis has been so far relying on qRT-PCR assays.

Several methods for the analysis of miRNAs by qRT-PCR have been devised[40] and companies are providing

METHODS FOR THE QUANTIFICATION OF MIRNAS

The main advantage of the use of miRNAs as biomark-
multwell plate-based qRT-PCR assays that promise to substitute microarrays in the high-throughput profiling of miRNAs. Additionally, qRT-PCR is the most easily performed and cost-effective technique and it is therefore the method of choice when it comes to measuring the levels of the restricted number of miRNA biomarkers in cancer samples, in the clinical setting.

qRT-PCR measures the relative levels of variable target miRNAs in comparison with one or more stably expressed reference genes (sometimes called housekeeping or endogenous control genes). This normalization is required to allow for variability in RNA quantity and quality and/or in the efficiency of cDNA synthesis. Despite miRNAs having been intensively studied in cancer research in the last years, suitable reference genes for relative quantification of miRNA levels in qRT-PCR assays have not been satisfactorily identified. Ribosomal RNAs (rRNAs) have been used as a reference RNA in miRNA studies. However, concerns have been raised regarding the use of rRNAs in normalization, as they can be expressed at much higher levels than the target RNA, making it challenging to quantify an rRNA and a rare transcript in the same RNA dilution. Moreover, there is evidence of rRNA deregulation in apoptosis and cancer. The most commonly used reference RNA in miRNA qRT-PCR experiments is the small nuclear RNA U6 (U6 snRNA). However, using U6 snRNA to normalise miRNA levels is controversial because being much bigger in size (106-107 nt) it might differ from miRNAs with respect to efficiency of its extraction, reverse transcription and PCR amplification. U6 snRNA has been analysed as a reference gene for miRNA gene studies in several papers, and most of them came to the conclusion that the variance of U6 expression across tissues is high, therefore making U6 not a suitable reference gene for miRNA quantification. Further reference genes commonly used are snoRNAs but they too might be dys-regulated in cancer. Several authors have suggested to use as reference a combination of miRNAs whose levels do not vary in the specific tumor tissue under investigation. For example, in fresh-frozen lung cancer samples, Peltier and Latham suggest the use of a combination of miR-191 and miR-103.

The use of unvalidated and different reference genes makes it difficult to compare papers describing miRNA-expression cancer profiles and might represent one of the major reasons for the discrepancies in published studies regarding differentially expressed miRNAs in specific cancers.

A recent addition to the detection methods for miRNAs is droplet digital PCR (dPCR), a method especially useful for low abundance miRNAs. In droplet dPCR, single cDNA molecules are partitioned evenly among hundreds of individual droplets in which they are amplified to generate binary calls. With this method an absolute readout of total DNA copy number can be obtained, avoiding the need for an endogenous reference gene.

MiRNAs as biomarkers for the diagnosis of lung cancer and for stratifying lung cancer subtypes

In 2005, the Horvitz and Golub labs used a bead-based flow cytometric miRNA expression method to identify complex profiles consisting of approximately a hundred of dys-regulated miRNAs, able to classify 11 different tumor types, among which lung tumors. Subsequently, the Croce lab used a custom-made oligonucleotide miRNA microarray to compare lung carcinomas to normal tissue, and identified a group of three downregulated and 35 upregulated miRNAs. Among these, miR-21 was commonly up-regulated in the six cancer types analyzed (lung, breast, stomach, prostate, colon, and pancreatic tumors) and miR-17-5p, miR-128b, miR-155, miR-191 and miR-199a-1 were up-regulated in at least other two cancer types.

In 2006 Yanaihara et al. compared the miRNAs expression profiles in 104 pairs of lung cancer tissues and corresponding non-cancerous lung tissue, by the same custom-made oligonucleotide miRNA microarray used by Volinia and colleagues. They identified a unique profile made of 43 differentially expressed miRNAs (Table 1) allowing the distinction of lung cancer from the non-cancerous lung tissue. Of the 15 upregulated and 28 downregulated miRNAs, miR-21 and miR-205 are located in a chromosomal region amplified and miR-32, miR-126-5p and miR-126-3p in a region deleted in lung cancers, respectively. The authors next validated the microarray results by a solution hybridization detection method and by qRT-PCR, confirming that miR-21 and miR-205 are frequently up-regulated and miR-126-5p is often down-regulated in lung cancer tissues when compared with the corresponding noncancerous lung tissues.

Comparison analyses between ADC vs noncancerous tissues and SCC vs noncancerous tissues revealed 17 and 16 miRNAs with statistically different expression, respectively (Table 1). Six miRNAs (miR-21, miR-155, miR-191, miR-126-5p, miR-210 and miR-224) were shared in both histological types of NSCLC. Yanaihara and colleagues also directly compared the two most common histological types of NSCLC, identifying two miRNAs (miR-99b and miR-102) that were higher in ADC and 4 miRNAs (miR-202, miR-203, miR-205 and the precursor of miR-204) that were higher in SCC. However, the authors do not explore further the issue of distinguishing ADCs from SCCs, in this paper.

Decreased expression of miR-107, miR-185 and let7a, and the overexpression of miR-31a, was observed by qRT-PCR in lung cancer tissues and cell lines, compared to normal lung tissue. Landi et al. reported 34 miRNAs that significantly differentiated SCCs from ADs in male smoker patients, of which 2 were downregulated and 32 upregulated in AD vs SCC. Raponi et al. used Ambion microarrays to profile total RNA from 61 SCC samples and 10 matched normal lung samples and identified 15 miRNAs that were differentially expressed.
The panel includes miR-182, which was most strongly expressed from FFPE samples, and was confirmed by qRT-PCR. Researchers have also aimed at finding one or few miRNAs that can be used as a convenient tool for lung cancer diagnosis. Lebanon et al.[28] used a microarray to measure miRNA levels in AD and SCC FFPE samples, and verified their findings by qRT-PCR. They identified miR-205 as a highly specific marker for SCC, when combined with the measured miR21 levels. The finding was confirmed by other papers[29,70]. Moreover, an algorithm for accurate classification of NSCLC cases, diagnosed as LCC on purely morphologic grounds, was proposed by integrating immunohistochemical markers (Δnp63, DSC3, and napsin A) with miR-205 and miR-21 measurement. The finding was confirmed by other papers[28,71]. This classifier had an accuracy of 94.1% in a training cohort (34 patients) and 96.2% in a test cohort (26 patients).

A panel of 16 miRNAs has been reported to differen-
tiate between primary lung tumors and metastases to the lung of various origin (Table 1)[70]. This miRNA profile was identified using microRNA microarray data generated from FFPE samples, and was confirmed by qRT-PCR. The panel includes miR-182, which was most strongly over-expressed in the lung primary tumors, and miR-126, which was over-expressed in the metastatic tumors.

Researchers have also aimed at finding one or few miRNAs that can be used as a convenient tool for lung cancers diagnosis. Lebanon et al.[28] used a microarray to measure miRNA levels in AD and SCC FFPE samples, and verified their findings by qRT-PCR. They identified miR-205 as a highly specific marker for SCC, when combined with the measured miR21 levels. The finding was confirmed by other papers[29,70]. Moreover, an algorithm for accurate classification of NSCLC cases, diagnosed as LCC on purely morphologic grounds, was proposed by integrating immunohistochemical markers (Δnp65, DSC3, and napsin A) with miR-205 and miR-21 measurement[70].

Evaluating by qRT-PCR FFPE specimens from NETs, Lee et al.[74] found that the levels of miR-21 and

MiRNA	Scope Sample	Ref.	
miR-31 (UP)	miR-107, miR-185, let-7a (DOWN)	[70]	
miR-26a, let-7g, let-7f, miR-98, miR-29a, let-7c, let-7b, miR-29b, miR-26b, let-7a, miR-146b-5p, miR-195, miR-29c, miR-30d, miR-20a, miR-17, miR-196, miR-106a, miR-16, let-7d, miR-106b, miR-181a, miR-498, miR-103, miR-107, miR-191, miR-663, miR-491-5p, let-7c, miR-654-5p (UP)	miR-453, miR-509-3p (DOWN)	[71]	
miR-17-5p, miR-20a, miR-20b, miR-93, miR-106a, miR-106b, miR-182, miR-183, miR-200a, miR-370, miR-200b, miR-382 (UP)	miR-126, miR-451, miR-195, miR-486-5p, miR-214, miR-199a-5p (DOWN)	[72]	
miR-20a, miR-20c, miR-203, miR-210, miR-214 (UP)	miR-125a, let7e (DOWN)	[73]	
miR-30a, miR-140-3p, miR-182, miR-210, miR-486-5p	Stage I-III vs normal	[74]	
miR-182, miR-200c, miR-141, miR-375, miR-7, miR-429, miR-200a, miR-370, miR-200b, miR-382 (UP)	Stage I-III vs normal	[75]	
miR-205, miR-21 (relative expression)	Lung cancer vs SCC; male smokers patients	Solid, Snap-frozen	[76]
miR-21, miR-155 (UP)	Lung cancer tissue vs normal	Solid, Snap-frozen	[77]
miR-205, miR-27a, miR-29b, miR-34a (DOWN in NSCLC)	miR-25, miR-375 (UP in NSCLC)	SCLCs and TCs vs TCGs and ACs	[78]
miR-29a, miR-29b, miR-34a, miR-375 (DOWN in SQ)	miR-205, miR-25, miR-27a (UP in SQ)	Lung cancer vs SCC	[79]
miR-7, miR-21, miR-29b, miR-106a, miR-125a-5p, miR-129-3p, miR-205, miR-375 (relative expression)	Carcinoid, SCLC, and squamous and nonsquamous NSCLC	Solid, fine-needle aspirate (FNA)	[80]
miR-21, miR-155 (UP)	Lung cancer vs normal	Lung cancer tissue vs normal	[81]
miR-205, miR-27a, miR-29a, miR-29b, miR-34a (DOWN in NSCLC)	miR-25, miR-375 (UP in NSCLC)	SCLCs and TCs vs TCGs and ACs	[82]
miR-29a, miR-29b, miR-34a, miR-375 (DOWN in SQ)	miR-205, miR-25, miR-27a (UP in SQ)	Lung cancer vs SCC	[83]
miR-7, miR-21, miR-29b, miR-106a, miR-125a-5p, miR-129-3p, miR-205, miR-375 (relative expression)	Carcinoid, SCLC, and squamous and nonsquamous NSCLC	Solid, fine-needle aspirate (FNA)	[84]
miR-21, miR-155 (UP)	Lung cancer vs normal	Lung cancer tissue vs normal	[85]
miR-205, miR-20b, miR-708 (relative expression)	Lung cancer vs normal	Lung cancer tissue vs normal	[86]
miR-21, miR-200b, miR-375 and miR-486 (relative expression)	Lung cancer vs normal	Lung cancer tissue vs normal	[87]
miR-31, miR-210 (relative expression)	Lung cancer vs normal	Lung cancer tissue vs normal	[88]
miR-31, miR-210 (Relative Expression) + computed tomography	Lung cancer vs normal	Lung cancer tissue vs normal	[89]
miR-155 were significantly higher in high-grade NET carcinomas (LCNECs and SCLCs) than in carcinoid tumors (TCs and ACs).

Two microRNA panels yielded high diagnostic accuracy in discriminating SCLC from NSCLC (miR-29a and miR-375) and in differentiating SCC from AD (miR-205 and miR-34a) in FFPE surgical lung specimens[84]. Moreover, the same microRNA panels accurately differentiated SCLC from NSCLC and SCC from AD in bronchial brushing specimens.

Gilad et al[81] reported a single assay for the classification of the four main types of lung cancer (Table 1): carcinoid, SCLC, and squamous and nonsquamous NSCLC, based on the expression of eight miRNAs (miR-7, miR-21, miR-29b, miR-106a, miR-125a-5p, miR-129-3p, miR-205, miR-375). The assay was effective both on resected and on cytologic (fine-needle aspiration (FNA) and bronchial brushing and washing) lung cancer samples.

A recent study has also evaluated miRNAs in FNA NSCLC biopsies[82], miR-21, miR-155, and miR-7 showed a higher level in tumoral FNA than in normal FNA specimens, while let-7a showed a lower level. A direct comparison of FNAS with resected specimens from the same patients indicated that the measured miRNAs had the same trend in the two types of specimens.

MiRNAs as biomarkers for lung cancers prognosis

Reduced expression of the let-7 family has been correlated with poor postoperative survival in NSCLC[73]. In a later study, AD patients with high expression of either mir-155, mir-17-3p, mir-106a, mir-93, or mir-21 and low expression of either let-7a-2, let-7b, or mir-145 were found to have a significantly worse prognosis (Table 2)[29]. Overexpression of the precursor of miR-155 and reduced expression of let-7-a was especially predictive of poor survival.

Analyzing frozen resected specimens from NSCLC patients, Yu et al[83] identified a five-microRNA signature that can predict the survival and relapse of patients with lung cancer (Table 2). Two of these miRNAs (miR-221 and let-7a) were protective (i.e., their down-regulation correlated with poor survival and high relapse probability), while the other three (miR-137, miR-182-3p, miR-372) were risky, and their up-regulation was predictive of poor survival and high relapse probability. The authors also demonstrated that miR-221, miR-137, miR-182-3p and miR-372 can alter the invasive ability of lung cancer cells in culture.

In the already described work by Raponi et al[72]. Twenty miRNAs were identified as having a significant association with overall survival in lung SCC patients (Table 2). Among these miRNAs, miR-146b alone was found to have the strongest prediction accuracy as the group with high miR-146b expression had significantly worse overall survival.

The p53-dependent miR-34 family was observed to be down-regulated in surgically resected NSCLC tumor samples compared with normal tissue, and low levels of miR-34a expression were correlated with a high probability of relapse[86]. MicroRNA expression profiles were also identified that may predict recurrence of localized stage I NSCLC after surgical resection[83]. These profiles included mir-124-5p, mir-146b-3p, mir-200b-5p, mir-30c-1-3p, mir-510, mir-585, mir-630, mir-657 and mir-708 (Table 2).

High miR-16 levels, measured by qRT-PCR in resected NSCLC samples, were reported as a prognostic factor for poor disease-free survival and poor overall survival[86]. Low mir-145 and high mir-367 are associated with shorter time to relapse (TTR) in resected NSCLC[83]. Noteworthy, p53 regulates miR-145 expression, which, in turn, inhibits the translation of SRY-related HMG box (SOX)2 and octamer-binding transcription factor (OCT)4. These transcription factors control the expression of the miR-302-367 cluster.

In a panel of 27 miRNAs which were observed by microarray analysis to be deregulated greater than twofold in NSCLC resected samples compared to normal lung tissue, Gao et al[88] identified three miRNAs whose levels (confirmed by qRT-PCR) were related to clinicopathologic characteristics or patient prognosis: low levels of miR-143 were significantly correlated with smoking status, high miR-21 expression and low miR-181a expression were associated with poor survival.

The lower expression level of a 5-miRNA signature (miR-25, miR-34c-5p, miR-191, let-7c, and miR-34a) correlated with poor overall survival among SCC patients (Table 2)[71] and high expression of miR-31 was associated with poor survival in Chinese SCC patients[71].

Eight miRNAs were confirmed to be significantly differentially expressed in NSCLC FFPE samples from patients with brain metastases compared with patients without brain metastases (Table 2)[80]. In particular, in this work, the over-expression of miR-328 and miR-330-3p was indicated as a marker for patients at risk for brain metastases, and a role for miR-328 in conferring migratory potential to NSCLC cells was suggested.

MiRNAs as biomarkers to predict response to therapy in lung cancer

miRNAs have also been used as biomarkers predictive of patient’s response to therapy: miR-21 expression was significantly increased in platinum-based chemotherapy-resistant NSCLC patients and increased miR-21 expression was associated with the shorter disease-free survival[86]. A single nucleotide polymorphism in miR-196a-2 gene was reported to be associated with severe toxicity after platinum-based chemotherapy of advanced NSCLC patients in a Chinese population[86].

Recent therapeutic advances for the treatment of NCLSC include the use of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) including gefitinib and erlotinib. MiRNA-128b was shown to directly regulate EGFR translation and miR-128b LOH was found to be frequent in NSCLC samples and cor-
Del Vescovo V et al. MicroRNAs as lung cancer biomarkers

Table 2 MicroRNAs as biomarkers for the prognosis and to predict response to therapy

MicroRNA	Experiment	Scope	Sample	Ref.
let-7a family (DOWN)	lung cancer tissue vs normal	NSCLC poor postoperative survival	Solid, (not specified)	[26]
mir-155, mir-17-3p, mir-106a, mir-93, mir-21 (UP)		AD vs SCC	Solid, (not specified)	[28]
let-7a-2, let-7b (DOWN)		AD poor survival		
miR-221, let-7a (DOWN) miR-137, miR-182-3p, miR-372 (UP)	NSCLC vs normal	NSCLC poor survival	Solid, snap frozen	[83]
miR-146b, miR-191, miR-155, miR-15a, miR-511, miR-100, miR-10a, miR-21, miR-126 (UP) miR-206, miR-299-3p, miR-122a, miR-513, miR-184, miR-453, miR-379, miR-202, miR-494, miR-432, miR-370 (DOWN)	SCC vs normal	SCC Overall Survival	Solid, snap frozen	[72]
miR-34a (DOWN)	NSCLC tissue vs normal stage I NSCLC tissue vs normal	NSCLC Probability of relapse Stage I NSCLC recurrence	Solid, (not specified)	[84]
mir-124-5p, mir-146b-3p, mir-200b-5p, mir-30c-1-3p, mir-510, mir-585, mir-ε0, mir-657, mir-708 (relative expression)	Lung cancer tissue vs normal	NSCLC poor survival smoking status	Solid, (not specified)	[86]
miR-143 (UP)	Lung cancer tissue vs normal	NSCLC poor survival	Solid, snap frozen	[88]
miR-25, miR-34c-5p, miR-191, let-7e, miR-34a (DOWN)	Lung cancer tissue vs NSCLC tissue	SCC survival	Solid, snap frozen	[88]
miR-31 (UP)	SCC vs normal	SCC poor survival	Solid, snap frozen	[73]
miR-325, miR-326, miR-329-2-pre, miR-330-3p, miR-500a-3p, miR-650-5p (UP)	BM + NSCLC vs BM + NSCLC	NSCLC, risk for brain metastasis	Solid, formalin-fixed, paraffin-embedded (FFPE)	[89]
miR-21 (UP)	Treatment vs genotype	Platinum-based chemotherapy-resistant NSCLC patients	Solid, snap frozen	[90]
mir-196a-2 SNP	Severe toxicity after platinum-based chemotherapy of advanced NSCLC patients	Genomic DNA from peripheral leukocytes		[91]
miR-128b (UP)	NSCLC samples correlated with clinical response and survival following gefitinib treatment	Microdissected primary NSCLC tumors		[92]
miR-30b, miR-30c	Regulated by EGFR and hepatocyte growth factor (MET) receptor tyrosine kinase	Solid, Lung tumor tissue samples		[93]
miR-30b, miR-30c	Prognostic predictors in NSCLC patients who underwent first line treatment with TKIs	Solid, formalin-fixed, paraffin-embedded (FFPE)		[94]

NSCLC: Non-small cell lung cancer; AD: Adenocarcinoma; SCC: Squamous cell carcinoma; BM: Brain metastasis.

related significantly with clinical response and survival following gefitinib treatment. miR-30b and miR-30c expression levels, which are regulated by EGFR and hepatocyte growth factor (MET) receptor tyrosine kinase, have been reported to be prognostic predictors in NSCLC patients who underwent first line treatment with TKIs.

MIRNAS IN SPUTUM AS NON-INVASIVE LUNG CANCER BIOMARKERS

An early diagnosis of cancer remains a challenge and, in this context, it is important to find a sensitive, non-invasive tool to detect early neoplastic changes. One relatively non-invasive source of miRNAs for the diagnosis of lung cancers is sputum. The Jiang laboratory demonstrated that endogenous miRNAs are stably present in sputum specimens. Using qRT-PCR, miR-21 and miR-155 were detected, of which miR-21 was significantly overexpressed in sputum of NSCLC patients as compared with cancer-free subjects. Furthermore, elevated miR-21 expression was more sensitive (70%) than conventional sputum cytology (48%) in diagnosing lung cancer. The same research group defined miRNA signatures for different histologic types of lung cancer in studies of similar design. For the diagnosis of SCC, the combination of miR-205, miR-210 and miR-708 yielded 73% sensitivity and 96% specificity. A panel consisting of miR-21, miR-200b, miR-375 and miR-486 produced 81% sensitivity and 92% specificity in discriminating sputum of AD patients from controls. The authors found no association between miRNA expression and stage of lung cancer, suggesting that the miRNA signatures can be used as a tool in the detection of early lung cancer. The same group recently reported that combined quantification of miR-31 and miR-210 copy number by digital PCR in sputum of the cases and controls provided 65.71% sensitivity and 85.00% specificity for stage I NSCLC diagnosis. Very recently, the same authors also reported that combining miR-31 and miR-210 detection by qRT-PCR in sputum of the cases and controls provided 65.71% sensitivity and 85.00% specificity for stage I NSCLC diagnosis.
PCR and Computed Tomography they improved NSCLC diagnosis specificity[106].

In an independent study, a five-miRNA profile (miR-21, miR-143, miR-155, miR-210, miR-372) performed by qRT-PCR on sputum samples detected NSCLC with 83.3% sensitivity and 100% specificity[109].

CIRCULATING miRNAs

First evidences

The finding that miRNAs have an exceptional stability in several tissues suggested that these tiny molecules were also preserved, detectable and quantifiable in the circulation and in other biofluids.

The first indication of circulating microRNAs with a potential as non-invasive diagnostic biomarkers for diffuse large B-cell lymphoma (DLBCL) and possibly other cancers was found by Lawrie et al[103]. These authors were the first to highlight that miRNAs could be reliably detected in serum and they demonstrated that high levels of miR-21, miR-210 and miR-155 could discriminate cancer patients with (DLBCL) from healthy individuals. Plasma miRNAs were observed to be present in a remarkably stable form that is protected from endogenous RNase activity[103]. These papers established the measurement of tumor-derived miRNAs in serum or plasma as an important approach for the blood-based detection of human cancer. Further studies demonstrated that miRNAs are also preserved and detectable in other biofluids such as urine, saliva, cerebro-spinal fluid and amniotic fluid[104] and their composition and concentrations are measurably different among these fluids[104].

On the origin of circulating miRNAs

miRNAs can be released in the circulation by two different pathways: energy-free passive release or active and selective secretion in response to different stimuli. The first process does not need energy, it occurs after cell breakage in pathological conditions such as tissue damage, apoptosis, metastasis or inflammation but it does not play a major role in the generation of circulating miRNAs[106].

miRNAs active secretion, differently from the passive leakage, is a process ATP- and temperature-dependent. It is similar to the release of hormones and cytokines, with or without cell stimulation[100].

Circulating miRNAs can be packaged in microvesicles (MVs) or apoptotic bodies (ABs) or can be found as microvesicle-free miRNAs, associated with various multi-protein or lipoprotein complexes.

MVs are small vesicles derived from cells, generally including microparticles (MPs) and exosomes. These two kinds of MVs have quite different vesicular structures: exosomes (50-90 nm), with an endocytic origin, are released by fusion of multivesicular bodies (MVBs) with the plasma membrane[107]. They have been identified in various body fluids such as blood, urine, malignant ascites, bronchoalveolar lavage fluid, synovial fluid, breast milk and saliva[108]. MPs, on the other hand, are larger than exosomes (> 100 nm diameter) and are shed from plasma membranes[109]. Almost all cell types can release MVs under normal physiological or pathological conditions.

Larger in size than MPs, ABs are generated in response to apoptotic stimuli[110] and implicated in tissue repair and angiogenesis.

It has been demonstrated that MVs and ABs are involved in the transport of circulating miRNAs[111-114]. Gibbings et al[115] showed that miRNAs loading into exosomes is not a random event, but it is mediated by proteins as Argonaute protein Ago2, a part of RNA-induced silencing complex.

On the other hand, several studies suggested that a significant fraction of extracellular miRNAs resides outside of vesicles and acts in exosome-independent manner, by its association with RNA-binding proteins including Ago2 and Nucleophosmin 1 (NPM1) or lipoprotein complexes such as high-density lipoprotein (HDL). Arroyo et al[116] showed that miRNAs in plasma are predominantly free of exosomes or microvesicles. They demonstrated an association of miRNAs with Ago2 protein, showing that this binding protects and increases the stability of released miRNAs[116]. Turchinovich et al[117] confirmed this hypothesis and demonstrated that also additional Argonaute proteins (Ago1, -3, -4) may be associated with cell-free circulating miRNAs. Wang et al[118] found that other RNA binding proteins, such as NPM1, can protect miRNAs from degradation, playing a role in the packaging and export of circulating miRNAs. Vickers et al[119] in 2011 revealed a potential new role for HDL in gene regulation and intercellular communication, showing that this lipoprotein transports and delivers miRNAs to recipient cells.

Circulating miRNAs as cancer biomarkers

It has been shown that miRNAs present in body fluids can reflect altered physiological conditions, representing new effective biomarkers[104].

A perfect biomarker should have some important features: non-invasivity, specificity, early detection, sensitivity and ease of translatability from model systems to humans.

Proteins used as blood biomarkers (e.g., troponin for cardiovascular conditions, carcinoembryonic antigen (CAE) for various cancers, prostate specific antigen (PSA) for prostate cancer, and aminotransferases for liver function) do not respect all these criteria and are difficult to use in this field. On the contrary, secreted miRNAs have many of these requisites: they are stable in various biofluids, the expression of some miRNAs is specific to tissues or biological stages, and their level can be easily detected by various methods.

However, several challenges have to be overcome in order to successfully use circulating miRNAs as cancer biomarkers. First, biofluids contain very low amount of RNA, and normal quantification methods are not suitable for these type of samples. Second, it is important
to avoid cellular contamination and hemolysis and third, biofluids contain inhibitors of reverse transcriptase and polymerase enzymes used for miRNAs quantification. All these factors are obstacles to consider when circulating miRNAs are isolated and quantified from biofluids such as plasma or serum. Another major challenge for the analysis of circulating miRNAs is the choice of an appropriate reference gene, since some of the small RNA species frequently used as reference genes (such as U6 RNA) are present in extremely low concentrations in serum and plasma as well as in other biofluids. Moreover, normalization controls used to remove variations and increase the accuracy of miRNAs quantification cannot ensure constant expression under all experimental conditions, underlining the importance of the selection of a proper reference gene.

Chen et al\(^{24}\) reported that U6 and 5S rRNA are degraded in serum samples from lung cancer patients, and miR-16 is inconsistent, choosing to normalize the level of circulating miRNAs to total RNA. In a study on sera from Hepatitis B infected patients and matched controls, snRNA U6-1 is found to have high variability and snRNA U6-2 is not detectable. In this type of samples the combination of miR-26a, miR-221, and miR-22* is recommended as the most stable set of reference genes for circulating miRNAs evaluation\(^{123}\). Similarly, U6-2 is inconsistent in serum from gastric cancer patients and healthy controls. In this study, authors recommend the combined use of miR-16 and miR-93 as suitable reference genes\(^{123}\). On the contrary, in serum from urological patients, U6-2 is detectable and rather consistent\(^{123}\). snRNA U44 levels are similar in sera from breast cancer patients and from age-matched healthy women, differently from miR-16 and 5S rRNA that show remarkable variability in the same samples. Surprisingly, snRNA U6-1 serum levels are found consistently higher in breast cancer patients compared to healthy controls, not only confirming that U6 is not an appropriate reference gene, but also indicating an interesting new paradigm in cancer\(^{124}\). Finally, Sourvinou and colleagues showed that a combined use of endogenous miR-21 and miR-16 and exogenous cel-miR-39, compensates differences in miRNAs recovery and differences in cDNA synthesis between samples. Using this normalization procedure and miR-21 as a biomarker, it seems possible to clearly discriminate healthy individuals from NSCLC patients\(^{125}\).

Circulating miRNAs as lung cancer biomarkers

The Jiang laboratory found that miR-155, miR-197 and miR-182 can be potential biomarkers for early detection of lung cancer with 81.33% sensitivity and 86.76% specificity (Table 3). The levels of these miRNAs in plasma of NSCLC patients are elevated compared with healthy controls\(^{126}\). The same group demonstrated that another set of plasma miRNAs (miR-21, miR-126, miR-210, and miR-486-5p), had 86.22% sensitivity and 96.55% specificity in distinguishing NSCLC patients from the healthy controls (Table 3). Furthermore, the panel of four miRNAs produced 73.33% sensitivity and 96.55% specificity in identifying stage I NSCLC patients. The miR panel had higher sensitivity (91.67%) in diagnosis of AD compared with SCC (82.35%)\(^{127}\). Authors from the Jiang lab recently reported that quantification of the plasma miR-21-5p and miR-335-3p by digital PCR provided 71.8% sensitivity and 80.6% specificity in distinguishing lung cancer patients from cancer-free subjects (Table 3)\(^{128}\).

Tang et al\(^{129}\) reported that higher plasma miR-21 and miR-155 and lower plasma miR-145 expression levels distinguish lung cancer patients from healthy smokers with 69.4% sensitivity and 78.3% specificity (Table 3). Levels of miR-361-3p and miR-625-3p might have a protective influence on the development of NSCLC, and the quantification of these miRNAs in serum could be useful for the diagnosis of NSCLC, in particular in smokers\(^{130}\). A study reported that the expression of miR-146b, miR-221, let-7a, miR-155, miR-17-5p, miR-27a and miR-106a is significantly reduced in sera of NSCLC cases, while miR-29c is significantly increased (Table 3). Unexpectedly, no significant differences were observed in plasma of patients compared with controls\(^{131}\).

Bianchi et al\(^{132}\) provided an evidence that some serum-circulating miRNAs are important to identify asymptomatic high-risk individuals with early stage lung cancer (Table 3). Between others, they highlighted the importance of let-7 family, members of miR-17-92 cluster, miR-126 and miR-486 in sera of NSCLC patients\(^{133}\).

Recently, qRT-PCR was used to assess miR-205-5p, miR-205-3p, and miR-21-3p expressions in serum and tissue samples (Table 3)\(^{134}\). The relative expressions of miR-205-5p and miR-205-3p were significantly higher in NSCLC tissues compared with cancer-adjacent paired specimens. In the serum, significantly higher miR-205-5p, miR-205-3p, and miR-21-3p relative expressions were observed in the NSCLC group compared with healthy volunteers or patients diagnosed with a benign lung disease (pulmonary tuberculosis, pneumonia, chronic obstructive pulmonary disease, or interstitial pneumonia). The relative expressions of miR-205-5p and miR-21-3p in NSCLC tissues and serum were significantly correlated, while no significant correlation was observed for miR-205-3p. Expressions of miR-205-5p and miR-205-3p in SCC specimens were significantly higher than in lung adenocarcinoma specimens. Similarly, higher serum miR-205-5p and miR-205-3p levels were observed in SCC patients.

MiRNAs expression profile in whole-blood showed that miR-190b, miR-630, miR-942 and miR-1284 are present in a majority of the classifiers generated during the analyses to distinguish lung cancer cases from controls\(^{135}\). In a different study, miR-22, miR-24, and miR-34a were found upregulated in RNA extracted from whole blood of NSCLC patients vs healthy controls (Table 3)\(^{136}\).

In a recent paper, Aushve et al\(^{137}\) described a specific panel of miRNAs (miR-205, -19a, -19b, -30b, and -20a)
The efficacy of lung cancer screening (Table 3) involving low-dose computed tomography (LDCT), thus improving predictive, diagnostic, and prognostic value was described, whose use could reduce the false-positive rate of smokers.

With respect to their diagnostic potential for overall survival (Table 3), the expression of these miRNAs is associated with poor outcome. Regarding the potential of circulating miRNAs as prognostic factors, the levels of miR-155 and miR-197 have been found higher in plasma from lung cancer patients with metastasis than in those without metastasis (Table 3).

Moreover, Hu et al. using NGS described that serum levels of miR-486, miR-30d, miR-1 and miR-499 are significantly associated with overall survival (Table 3). NSCLC patients and healthy controls differ in vesicle-related miRNAs in plasma: let-7f and miR-30c-3p levels decreased in plasma vesicles of NSCLC patients and healthy patients with metastasis vs non resistant patients. Finally, serum miR-125b may represent a biomarker in NSCLC with an independent prognostic potential for overall survival (Table 3).

Also NGS has been used to depict the differential expression of miRNAs in peripheral blood of lung cancer patients detecting 76 previously unknown miRNAs and 41 novel mature forms of known precursors. In addition, the authors identified 32 annotated and seven unknown miRNAs that were significantly altered in NSCLC patients detecting 76 previously unknown miRNAs and 41 novel mature forms of known precursors. In addition, the authors identified 32 annotated and seven unknown miRNAs that were significantly altered in NSCLC patients.

A plasma-based 24-miRNA signature classifier with predictive, diagnostic, and prognostic value was described, whose use could reduce the false-positive rate of low-dose computed tomography (LDCT), thus improving the efficacy of lung cancer screening (Table 3).

Table 3 Circulating miRNAs as biomarkers in lung cancer

miRNA	Function	Scope	Sample	Ref.
miR-155, miR-197, miR-382	Diagnostic	Lung cancer patients vs healthy controls	Plasma	[126]
miR-21, miR-210, miR-126, miR-486-5p	Diagnostic	NSCLC patients vs healthy controls	Plasma	[127]
miR-21-5p (UP) and miR-335-3p (DOWN)	Diagnostic	Lung cancer patients vs healthy controls	Plasma	[128]
miR-21, miR-155 (UP), miR-145 (DOWN)	Diagnostic	Lung cancer patients vs healthy smokers	Plasma	[129]
miR-361-3p, miR-625* (DOWN)	Diagnostic	Lung cancer patients vs healthy controls	Serum	[130]
miR-146b, miR-221, let-7a, miR-155, miR-17-5p, miR-27a and miR-106a (DOWN), miR-29c (UP)	Diagnostic	Early stage NSCLC vs healthy controls	Serum	[131]
miR-92a, miR-484, miR-486-5p, miR-328, miR-191, miR-376a, miR-342, miR-331-3p, miR-30c, miR-28-5p, miR-98, miR-17-5p, miR-26b, miR-374, miR-30b, miR-26a, miR-142-3p, miR-103, miR-126, let-7a, let-7d, let-7b, miR-22, miR-148b, miR-139 (DOWN), miR-32, miR-133b, miR-566, miR-432-3p, miR-223, miR-20a, miR-148a, miR-142-5p, miR-140-5p, miR-486-5p, miR-328, miR-191, miR-376a, miR-342	Diagnostic	Asymptomatic NSCLC patients vs healthy smokers	Serum	[132]
miR-205-5p, miR-205-3p, and miR-21-3p (UP)	Diagnostic	NSCLC patients vs benign lung disease vs healthy controls	Serum	[133]
miR-190b, miR-630, miR-942 and miR-1284 (relative expression)	Diagnostic	Lung cancer patients vs healthy controls	Whole-blood	[85]
miR-22, miR-24, and miR-34a (UP)	Diagnostic	NSCLC patients vs healthy controls	Whole-blood	[134]
miR-205, miR-19u, miR-19b, miR-30b, miR-20a (DOWN)	Diagnostic	Patients after lung cancer surgery vs healthy controls	Plasma	[135]
miR-7, miR-21, miR-20b, miR-210, miR-219-1, miR-324 (UP), miR-126, miR-451, miR-30a, miR-486 (DOWN)	Diagnostic	NSCLC patients vs healthy controls	Plasma	[137]
miR-101, miR-106a miR-126, miR-133a, miR-140-3p, miR-140-5p, miR-142-3p, miR-145, miR-148a, miR-15b, miR-16, miR-17, miR-197, miR-19b, miR-21, miR-221, miR-28-3p, miR-30b, miR-30c, miR-320, miR-451, miR-486-5p, miR-660, and miR-92a (relative expression)	Diagnostic	NSCLC patients vs healthy controls	Plasma	[138]
miR-155, miR-197 (UP)	Prognostic	Lung cancer patients with metastasis vs patients without metastasis	Plasma	[126]
miR-486, miR-30d, miR-1, miR-499 (relative expression)	Prognostic	NSCLC patients vs healthy controls	Serum	[139]
let-7f, miR-30e-3p (DOWN)	Prognostic	NSCLC patients vs healthy controls	Plasma	[140]
miR-125b (relative expression)	Prognostic	NSCLC patients vs healthy controls	Serum	[141]
miR-21 (UP)	Response to treatment	Platinum chemotherapy-resistant patients vs non resistant patients	Plasma	[90]
miR-21 and miR-10b (UP)	Response to treatment	NSCLC patients with EGFR mutation vs patients without mutation	Plasma	[142]
miR-22 (UP)	Response to treatment	NSCLC patients vs healthy controls	Whole-blood	[134]

NSCLC: Non-small cell lung cancer.
Circulating miRNAs have also been explored for their ability to predict response to treatment. miR-21 expression has trends similar in plasma and matched resected specimens and was significantly increased in platinum-based chemotherapy-resistant patients, in which increased miR-21 expression was associated with the shorter disease-free survival (Table 3)\[^{96}\].

The expression of miR-21 and miR-10b was much higher in plasma samples of patients with NSCLCs with EGFR mutation than without mutation (Table 3)\[^{142}\]. Patients who had up-regulated miR-21 expression had shorter overall survival, but a better response to gefitinib than patients who had low expression of the microRNA. Additionally, miR-10b is highly expressed in progressive disease compared with complete remission or stable disease.

Franchina et al\[^{134}\] recently reported a correlation between high expression of miR-22 in whole blood and the lack of response in pemetrexed treated NSCLC patients (Table 3).

CONCLUSION

MiRNAs have increasingly been pointed as important players in carcinogenesis and cancer progression, but also as potential diagnostic and prognostic markers.

For the future, circulating miRNAs could open new opportunities in the field of diagnosis and prognosis in various types of human cancers. The difficulties found in traditional therapies, due to insufficient disruption of oncogenic pathways, drug resistance and drug-induced toxicity, require the development of novel therapeutic strategies. The ease, specificity and sensitivity of determining body fluid miRNAs profiles paves the way for several applications and provides hope to accomplish this task. However, from the technical and applicative point of view, there are still several limitations to consider. Further studies are necessary to find the best possible normalization control and to improve the technique, but also to establish panels of miRNAs specific to each type of tumor, taking into account early or advanced cancer stages, response to treatment, patient outcome and recurrence. After the complete validation for several candidates, miRNAs studies could open a new era in cancer treatments, providing improved targeted agents for the cure of patients\[^{143}\] and constituting the basis for the development of novel therapies.

REFERENCES

1. Ferlay J, Parkin DM, Steliarova-Foucher E. Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer 2010; 46: 765-781 [PMID: 20166997 DOI: 10.1016/j.ejca.2009.12.014]
2. Malvezzi M, Bertuccio P, Levi F, La Vecchia C, Negri E. European cancer mortality predictions for the year 2013. Ann Oncol 2013; 24: 792-800 [PMID: 23402763 DOI: 10.1093/annonc/mdt010]
3. Rossi G, Mengoli MC, CavaZZa A, Nicoli D, Barbareschi M, Cantaloni C, Papotti M, Tironi A, Graziano P, Paci M, Stefani A, Migaldi M, Sartori G, Pelosi G. Large cell carcinoma of the lung; clinically oriented classification integrating immunohistochemistry and molecular biology. Virchows Arch 2014; 464: 61-68 [PMID: 24221342 DOI: 10.1007/s00428-013-1501-6]
4. Scagliotti GV, Selvaggi G. New data integrating multitargeted antifolates into treatment of first-line and relapsed non-small-cell lung cancer. Clin Lung Cancer 2008; 9 Suppl 3: S122-S128 [PMID: 19419926 DOI: 10.3836/CLC2008.s0.18]
5. Hanna N, Shepherd FA, Fossella FV, Pereira JR, De Marinis F, von Pawel J, Gatzemeier U, Tsao TC, Pless M, Muller T, Lim JL, Desch C, Szychy K, Gervais R, Shaharvyan C, Paul S, Paolo P, Einhorn L, Burn PA. Randomized phase III trial of pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy. J Clin Oncol 2004; 22: 1589-1597 [PMID: 15117980 DOI: 10.1200/JCO.2004.08.163]
6. Ciuleanu T, Brodowicz T, Zielinski C, Kim JH, Krazkowski M, Laack E, Wu YL, Bover L, Beggie S, Tkzko V, Cuveic B, Pereira JR, Yang SH, Madyavan J, Sugarman KP, Peterson P, John WJ, Krejc K, Belani CP. Maintenance pemetrexed plus best supportive care versus placebo plus best supportive care for non-small-cell lung cancer: a randomised, double-blind, phase 3 study. Lancet 2009; 374: 1432-1440 [PMID: 19767093 DOI: 10.1016/S0140-6736(09)61497-5]
7. Ardizzoni A, Boni L, Tiseo M, Fossella FV, Schiller JH, Paesmans M, Radosavljevic D, Paccagnella A, Zatloukal P, Mazanti P, Bisset D, Rosell R, CISC (CISplatin versus Carboplatin) Meta-analysis Group. CISplatin- versus carboplatin-based chemotherapy in first-line treatment of advanced non-small-cell lung cancer: an individual patient data meta-analysis. J Natl Cancer Inst 2007; 99: 847-57 [PMID: 17551145 DOI: 10.1093/jnci/djk196]
8. Sandler AB, Schiller JH, Gray R, Dimery I, Brahmier J, Sa-mant M, Wang LI, Johnson DH. Retrospective evaluation of the clinical and radiographic risk factors associated with severe pulmonary hemorrhage in first-line advanced, unresectable non-small-cell lung cancer treated with Carboplat in and Paclitaxel plus bevacizumab. J Clin Oncol 2009; 27: 1405-1412 [PMID: 19224857 DOI: 10.1200/JCO.2008.1]
9. Rekhtman N, Brandt SM, Sigel CS, Friedlander MA, Riely GJ, Travis WD, Zakowski MF, Moreira AL. Suitability of thoracic cytology for new therapeutic paradigms in non-small cell lung carcinoma: high accuracy of tumor subtyping and feasibility of EGFR and KRAS molecular testing. J Thorac Oncol 2011; 6: 451-458 [PMID: 21266922 DOI: 10.1097/JTO.0b013e31820517a]
10. Nizzoli R, Tiseo M, Gelsomino F, Bartolotti M, Majori M, Ferrari L, De Filippo M, Rindi G, Silini EM, Guazzi A, Ar-dizzoni A. Accuracy of fine needle aspiration cytology in the pathological typing of non-small cell lung cancer. J Thorac Oncol 2011; 6: 489-493 [PMID: 21258246 DOI: 10.1097/JTO.0b013e3182086cb]
11. Travis WD, Rekhtman N. Pathological diagnosis and classification of lung cancer in small biopsies and cytology: strategic management of tissue for molecular testing. Semin Respir Crit Care Med 2011; 32: 22-31 [PMID: 21500121 DOI: 10.1055/s-0031-1272866]
12. Rossi G, Pelosi G, Barbareschi M, Graziano P, CavaZZa A, Papotti M. Subtyping non-small cell lung cancer: relevant issues and operative recommendations for the best pathology practice. Int J Surg Pathol 2013; 21: 326-336 [PMID: 23740564 DOI: 10.1177/1066896913489346]
13. Lytle JR, Yario TA, Steitz JA. Target miRNAs are repressed as efficiently by microRNA-binding sites in the 3’ UTR as in the 3’ UTR. Proc Natl Acad Sci USA 2007; 104: 9667-9672 [PMID: 17535905 DOI: 10.1073/pnas.0703820104]
14. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldier H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, NegriN M, Bullrich F, Croce CM. Frequent deletions and
down-regulation of microRNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia.

Proc Natl Acad Sci USA 2002; 99: 15524-15529 [PMID: 12434020 DOI: 10.1073/pnas.242657999]

15 He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordova-Cardo C, Lowe SW, Hannon GJ, Hammond SM. A microRNA polycistron as a potential human oncogene. Nature 2005; 435: 828-833 [PMID: 15944707 DOI: 10.1038/nature03552]

16 Farazi TA, Spitzer JL, Morozov P, Tuschi T. miRNAs in human cancer. J Pathol 2011; 223: 102-115 [PMID: 21125669 DOI: 10.1002/path.2806]

17 Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR. MicroRNA expression profiles classify human cancers. Nature 2005; 435: 834-838 [PMID: 15944708 DOI: 10.1038/nature03702]

18 Volinia S, Calin GA, Liu CG, Amgs S, Cimmino A, Petrorca F, Visone R, Iorio M, Roldo C, Ferracin M, Pruteil RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006; 103: 2257-2261 [PMID: 16461460 DOI: 10.1073/pnas.0510561010]

19 Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6: 857-866 [PMID: 17069645 DOI: 10.1038/nrc1997]

20 Rosenfeld N, Aharonov R, Meiri E, Rosenwald S, Spector Y, Zepeniuk M, Benjamin H, Shabes N, Tabak S, Levy A, Lebanony D, Goren Y, Silberschein E, Targan N, Ben-Ari A, Gilad S, Sion-Vardy N, Tobar A, Feinmesser M, Kharenon O, Nativ O, Nass D, Perelman M, Yousepoivich A, Shalmon B, Polak-Sorcan C, Fridman E, Avniel A, Bentwich I, Bentwich Z, Chajut C, Asharbach I. MicroRNAs accurately identify cancer tissue origin. Nat Biotechnology 2008; 26: 462-469 [PMID: 18362881 DOI: 10.1038/nbt1392]

21 Rosenwald S, Gilad S, Benjamin S, Lebanony D, Dromi N, Faerman A, Benjamin H, Tamir R, Ezagouri M, Goren E, Barshack I, Nass D, Tobar A, Feinmesser M, Rosenfeld N, Leizerman I, Ashkenazi K, Spector Y, Chajut A, Aharonov R. Validation of a microRNA-based qRT-PCR test for accurate identification of tumor tissue origin. Mod Pathol 2010; 23: 814-823 [PMID: 20348879 DOI: 10.1038/modpathol.2010.57]

22 Meiri E, Mueller WC, Rosenwald S, Zepeniuk M, Klinke E, Edmonston TB, Werner M, Lass U, Barshack I, Feinmesser M, Huszar K, Ashkenazi K, Sanden M, Goren E, Dromi N, Zioni O, Burnstein I, Chajut A, Spector Y, Aharonov R. A second-generation microRNA-based assay for diagnosing tumor tissue origin. Oncologist 2012; 17: 801-812 [PMID: 22618571 DOI: 10.1634/theoncologist.2011-0466]

23 Pentheroudakis G, Pavlidis N, Fountzilas G, Krikeli G, Goussia A, Stoyianni A, Sanden MS, St Cyr B, Erkeland SJ, Pester RE, Chen CY, Ebert MS, Sharp PA, Jacks T. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci USA 2008; 105: 3903-3908 [PMID: 18308936 DOI: 10.1073/pnas.0712321105]

24 Chin L, Ratner E, Sbai R, Nallur S, Babar I, Muller RU, Strake E, Su L, Burki EA, Crowell RE, Patel R, Kulkarni T, Homer R, Zelterman D, Kidd KK, Zhu Y, Christiani DC, Belinsky SA, Slack FJ, Weidhaas JB. A SNP in a let-7 microRNA complementary site in the KRAS 3' untranslated region increases non-small cell lung cancer risk. Cancer Res 2008; 68: 8535-8540 [PMID: 18922928 DOI: 10.1158/0008-5472.CAN-08-2129]

25 Wang R, Wang ZX, Yang JS, Pan X, De W, Chen LB. MicroRNA-451 functions as a tumor suppressor in human non-small cell lung cancer by targeting ras-related protein 14 (RAB14). Oncogene 2011; 30: 2644-2658 [PMID: 21358675 DOI: 10.1038/onc.2010.642]

26 Takahashi T, Nau MM, Chiba I, Birrer MJ, Rosenberg RK, Vinocour M, Levitt M, Pass H, Gazdar AF, Minna JD. p53: a frequent target for genetic abnormalities in lung cancer. Science 1989; 246: 491-494 [PMID: 2554494 DOI: 10.1126/science.2554494]

27 Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, Sougnez C, Greulich H, Muzny DM, Morgan MB, Fulton L, Fulton RS, Zhang Q, Wendt MC, Lawrence MS, Larson DR, Wilson RK, Ding L, Shi Y, Tang Y, Koboldt DC, Lin L, Abbott R, Miner TL, Pohl C, Fewell G, Haipke C, Schmidt C, Dunford-Shore BH, Kraja A, Crosby SD, Sawyer CS, Vickery T, Sander S, Robinson J, Winckler W, Baldwin J, Chirieac LR, Dutt A, Fennell T, Hanna M, Johnson BE, Onofrio RC, Thomas RK, Tonon G, Weir
microRNA technology. PLoS One 2009; 4: e5540 [PMID: 19436744 DOI: 10.1371/journal.pone.0005540]

51 Git A, Dvinge H, Salmon-Divon M, Osborne M, Kutter C, Hadfield J, Bertone P, Caldas C. Systematic comparison of microRNA profiling: real-time PCR and next-generation sequencing technologies for measuring differential microRNA expression. RNA 2010; 16: 991-1006 [PMID: 20360395 DOI: 10.1261/rna.1947110]

52 Sah S, McCall MN, Eveleigh D, Wilson M, Irizrray RA. Performance evaluation of commercial miRNA expression array platforms. BMC Res Notes 2010; 3: 80 [PMID: 20298858 DOI: 10.1186/1756-0500-3-80]

53 Pradervand S, Weber J, Lemoine F, Consailes F, Paulusson A, Dupasquier M, Thomas J, Richter H, Kaessmann H, Beaudong E, Hagenbühl C, Harshman K. Concordance among digital gene expression, microarrays, and qPCR when measuring differential expression of microRNAs. Biotechniques 2010; 48: 219-222 [PMID: 20359303 DOI: 10.2144/00113367]

54 Yauk CL, Rowan-Carroll A, Stead JD, Williams A. Cross-platform analysis of global microRNA expression technologies. BMC Genomics 2010; 11: 330 [PMID: 20504329 DOI: 10.1186/1471-2164-11-330]

55 Wang B, Howell P, Bruheim S, Ju J, Owen LB, Fodstad O, Xi Y. Systematic evaluation of three microRNA profiling platforms: microarray, beads array, and quantitative real-time PCR array. PLoS One 2011; 6: e17167 [PMID: 21347261 DOI: 10.1371/journal.pone.0017167]

56 Callari M, Dugo M, Musella V, Marchesi E, Chiorino G, Grand GM, Pierotti MA, Daidone MG, Canevari S, De Cocco L. Comparison of microRNA platforms for measuring differential microRNA expression in paired normal/cancer colon tissues. PLoS One 2012; 7: e51505 [PMID: 23028787 DOI: 10.1371/journal.pone.0051505]

57 Leshkowitz D, Horn-Saban S, Parmet Y, Feldmesser E. Differences in microRNA detection levels are technology and sequence dependent. RNA 2013; 19: 527-538 [PMID: 23431331 DOI: 10.1261/rna.0507167]

58 Kolbert CP, Feddersen RM, Rakhshani F, Grill DE, Simon G, Middha S, Jang JS, Simon V, Schultz DA, Zschunke M, Lingle W, Carr JM, Thompson EA, Oberg AL, Eckloff BW, Wieben ED, Li P, Yang P, Jen J. Multi-platform analysis of microRNA expression measurements in RNA from fresh frozen and FFPE tissues. PLoS One 2013; 8: e52157 [PMID: 23582819 DOI: 10.1371/journal.pone.0052157]

59 Del Vescovo V, Meier T, Inga A, Denti MA, Bolrak J. A cross-platform comparison of affymetrix and Agilent microarrays reveals discordant miRNA expression in lung tumors of c-Raf transgenic mice. PLoS One 2013; 8: e78870 [PMID: 24265725 DOI: 10.1371/journal.pone.0078870]

60 Benes V, Castoldi M. Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods 2010; 50: 244-249 [PMID: 20109550 DOI: 10.1016/j.ymeth.2010.01.026]

61 Kulishehrstha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ, Davuluri R, Liu CG, Croce CM, Negrini M, Calin GA, Ivan M. A microRNA signature of hypoxia. Mol Cell Biol 2007; 27: 1859-1867 [PMID: 17194570 DOI: 10.1128/MCB.01395-06]

62 Nadano D, Sato TA. Caspase-3-dependent and -independent degradation of 28S ribosomal RNA may be involved in the inhibition of protein synthesis during apoptosis initiated by death receptor engagement. J Biol Chem 2000; 275: 13967-13973 [PMID: 10788523 DOI: 10.1074/jbc.275.18.13967]

63 Chan MW, Wei SH, Won P, Wang Z, Matei DE, Liu JC, Liyanarachchi S, Brown R, Nephew KP, Yan PS, Huang TH. Hypermethylation of 185 and 28S ribosomal RNAs predicts progression-free survival in patients with ovarian cancer. Clin Cancer Res 2005; 11: 7376-7383 [PMID: 16243810 DOI: 10.1186/1472-6452-CCR-05-1100]
Patnaik SK, Kannisto E, Knudsen S, Yendamuri S. Evaluation of microRNA expression profiles that may predict recurrence of localized stage I non-small cell lung cancer after surgical resection. *Cancer Res* 2010; 70: 36-45 [PMID: 20028859 DOI: 10.1158/0008-5472.CAN-09-3153]

Peltier HJ, Latham CJ. Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. *RNA* 2008; 14: 844-852 [PMID: 18375788 DOI: 10.1261/rna.939908]

Schafer A, Jung M, Miller K, Lein M, Kristiansen G, Erbersdobler A, Jung K. Suitable reference genes for relative quantification of miRNA expression in prostate cancer. *Exp Mol Med* 2010; 42: 749-758 [PMID: 20890088 DOI: 10.3858/ emm.2010.42.11.076]

Wotschofsky Z, Meyer HA, Jung M, Fendler A, Wagner I, Stephan C, Busch J, Erbersdobler A, Disch AC, Mollenkopf HJ, Jung K. Reference genes for the relative quantification of microRNAs in renal cell carcinomas and their metastases. *Anal Biochem* 2011; 417: 231-241 [PMID: 21749590 DOI: 10.1016/j.ab.2011.06.009]

Gee HE, Buffa FM, Camps C, Ramachandran A, Leek R, Taylor M, Patil M, Sheldon H, Bets G, Homer J, West C, Ragozzis J, Harris AL. The small-nucleolar RNAs commonly used for microRNA normalisation correlate with tumour pathology and prognosis. *Br J Cancer* 2011; 104: 1168-1177 [PMID: 21407217 DOI: 10.1038/sj.bjc.6606076]

Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ, Vessella RL, Tewari M. Absolute quantification by droplet digital PCR versus analog real-time PCR. *Nat Methods* 2013; 10: 1003-1005 [PMID: 23995387 DOI: 10.1038/nmeth.2633]

Takahashi Y, Forrest AR, Maeno E, Hashimoto T, Forrest AR, Maeno E, Hashimoto T, Daub CO, Yasaki J, MiR-107 and MiR-185 can induce cell cycle arrest in human non small cell lung cancer cell lines. *Nat Methods* 2013; 10: 1003-1005 [PMID: 23995387 DOI: 10.1038/nmeth.2633]

Landi MT, Zhao Y, Rotunno M, Koshioj J, Liu H, Bergen AW, Rubagotti M, Goldstein AM, Linnola I, Marincola FM, Tucker MA, Bertazzi PA, Pesatori AC, Caporaso NE, McMahon NE, Shanley LM, Wang E. MicroRNA expression differentiates his- tology and predicts survival of lung squamous cell carcinoma using a novel microRNA-based approach. *Clin Cancer Res* 2010; 16: 610-619 [PMID: 20068099 DOI: 10.1186/1078-0452.CCR-09-2638]

Del Vescovo V, Cantaloneli C, Cucino A, Girlando S, Silvestri M, Bragantini E, Fasanella S, Guerci LV, Palma PD, Rossi G, Papotti M, Pelosi G, Graziano P, Cavazza A, Denti MA, Bar- bareschi M. miR-205 Expression levels in nonsmall cell lung cancer do not always distinguish adenocarcinomas from squamous cell carcinomas. *Am J Surg Pathol* 2011; 35: 268-275 [PMID: 21263248 DOI: 10.1097/PAS.0b013e3182067817]

Barbareschi M, Cantaloneli C, Del Vescovo V, Cavazza A, Monica V, Carella R, Rossi G, Morelli L, Cucino A, Silvestri M, Tirone G, Pelosi G, Graziano P, Papotti M, Dalla Palma P, Doglioni C, Denti MA. Heterogeneity of large cell carcino- ma of the lung: an immunophenotypic and miRNA-based analysis. *Am J Clin Pathol* 2011; 136: 773-782 [PMID: 22031317 DOI: 10.1093/ajcp7y9XAGRAYC]

Lee HW, Lee EH, Ha SY, Lee CH, Chang HK, Chang S, Kwon KY, Hwang IS, Roh MS, Seo JW. Altered expression of microRNA miR-21, miR-155, and let-7a and their roles in pulmonary neuroendocrine tumors. *Pathol Int* 2012; 62: 583-591 [PMID: 22924844 DOI: 10.1111/j.1440-1822.2012.2845.x]

Huang W, Hu J, Yang DW, Fan XT, Jin Y, Hou YY, Wang JP, Yuan YF, Tan YS, Zhu XZ, Bai CX, Wu Y, Zhu HG, Lu SH. Two microRNA panels to discriminate three subtypes of lung carcinoma in bronchial brushing specimens. *Am J Respir Crit Care Med* 2012; 186: 1160-1167 [PMID: 23040304 DOI: 10.1164/rccm.2012-0534OC]

Gild S, Lithwick-Yanai G, Barshack I, Benjamin S, Krivitsky I, Edmonston TB, Bibbo M, Thurm C, Horowitz L, Huang Y, Feinmesser M, Hou JS, St Cyr B, Burnstein I, Gibori H, Dromi N, Sanden M, Kushnir M, Aharonov R. Classification of the four main types of lung cancer using a microRNA-based diagnostic assay. *J Mol Diagn* 2012; 14: 510-517 [PMID: 22794746 DOI: 10.1016/j.jmoldx.2012.03.004]

Petriella D, Galetta D, Rubini V, Savino E, Paradiso A, Simone G, Tommasi S. Molecular profiling of thin-prep FNA samples in assisting clinical management of non-small cell lung cancer. *Mol Biotechnol* 2013; 54: 913-919 [PMID: 23277327 DOI: 10.1007/s12033-012-9640-6]

Yu SL, Chen HY, Chang CC, Chen CY, Chen HW, Singh S, Cheng CL, Yu CJ, Lee VC, Chen ES, Su TJ, Chang CC, Li HN, Hong QS, Su HY, Chen CC, Chen WJ, Liu CC, Chan WK, Chen WJ, Li KC, Chen HS, Su TJ, Chiang CC, Yu SL. A 5-microRNA signature for lung squamous cell carcinoma diagnosis and hsa-miR-31 for prognosis. *Clin Cancer Res* 2010; 16: 430-441 [PMID: 20068076 DOI: 10.1186/1078-0432.CCR-09-1736]

Raponi M, Dossey L, Jatkoe T, Wu X, Chen G, Fan H, Beer DG. MicroRNA classifiers for predicting prognosis of squamous cell lung cancer. *Cancer Res* 2009; 69: 5776-5783 [PMID: 19584273]

Tan X, Qin W, Zhang L, Hang J, Li B, Zhang C, Wan J, Zhou F, Shao K, Sun W, Wu J, Zhang Q, Xiu B, Li N, Shi F, Feng X, Zhao Y, Wang Z, Zhao X, Chen Z, Michelson K, Cheng J, Guo Y, He J. A 5-microRNA signature for lung squamous cell carcinoma diagnosis and hsa-miR-31 for prognosis. *Clin Cancer Res* 2011; 17: 6802-6811 [PMID: 21890451]

Barbarchi I, Lithwick-Yanai G, Afek A, Rosenblatt K, Tabibian-Keissar H, Zepeniuk M, Cohen L, Az son M. miR-16 expression differentiates between primary lung tumors and hsa-miR-31 for prognosis. *Clin Cancer Res* 2011; 16: 6802-6811 [PMID: 21890451]

Del Vescovo V et al. MicroRNAs as lung cancer biomarkers
Del Vescovo V et al. MicroRNAs as lung cancer biomarkers

DOI: 10.1183/09031936.0048712

88 Gao W, Yu Y, Cao H, Shen H, Li X, Pan S, Shu Y. Deregulated expression of mir-21, mir-143 and mir-181a in non small cell lung cancer is related to clinicopathological characteristics for patient prognosis. Biomed Pharmacotherapy 2010; 64: 399-408 [PMID: 20630360 DOI: 10.1016/j.biopha.2010.01.018]

89 Arora S, Ranade AR, Tran NL, Nasser S, Sridhar S, Korn RL, Ross JT, Dhruv H, Foss KM, Sibenaller Z, Ryeken T, Gotway MB, Kim S, Weiss CJ. MicroRNA-328 is associated with (non-small) cell lung cancer (NSCLC) brain metastasis and mediates NSCLC migration. Int J Cancer 2011; 129: 2621-2631 [PMID: 21448905 DOI: 10.1002/ijc.2]

90 Gao W, Lu X, Liu L, Xu J, Feng D, Shu Y. MiRNA-21: a biomarker predictive for platinum-based adjuvant chemotherapy response in patients with non small cell lung cancer. Cancer Biol Ther 2012; 13: 330-340 [PMID: 22237007 DOI: 10.4161/cbt.19.07]

91 Zhan X, Wu W, Han B, Gao G, Qiao R, Lv J, Zhang S, Zhang W, Fan W, Chen H, Zhang T, Gu A, Shen J, Wu Q, Lu D. Hsa-miR-196a2 functional SNP is associated with severe toxicity after platinum-based chemotherapy of advanced nonsmall cell lung cancer patients in a Chinese population. J Clin Lab Anal 2012; 26: 441-446 [PMID: 23143626 DOI: 10.1002/jcla.21544]

92 Weiss CJ, Bemis LT, Nakajima E, Sugita M, Birks DK, Robinson WA,arella-Garcia M, Bunn PA, Haney J, Helfrich RA, Kato H, Hirsch FR, Franklin WA. EGFR regulation by microRNA in lung cancer: correlation with survival and response to gefitinib and EGFR expression in cell lines. Ann Oncol 2008; 19: 1053-1059 [PMID: 18304967 DOI: 10.1093/annonc/mdn006]

93 Garofalo M, Romano G, Di Leva G, Nuovo G, Jeon YJ, Naganova A, Sun J, Lovalt E, Alder H, Condorelli G, Engelmann JA, Ono M, Rho JK, Cascione L, Volinia S, Nephew KP, Croce CM. EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nat Med 2012; 18: 74-82 [PMID: 22157681 DOI: 10.1038/nm.2577]

94 Gu YF, Zhang H, Su D, Mo ML, Song P, Zhang F, Zhang SC. mir-30b and mir-30c expression predicted response to tyrosine kinase inhibitors as first line treatment in non-small cell lung cancer. Chin Med J (Engl) 2013; 126: 4435-4439 [PMID: 24266491 DOI: 10.1097/CM9.0B000000000000409]

95 Hubers AJ, Prinsen CF, Sozzi G, Witte BI, Thunnissen E, Aires JA, Ono M, Rho JK, Cascione L, Volinia S, Nephew KP, Croce CM. MicroRNA-21: A miRNA with a dual role in lung cancer. BMC Cancer 2012; 12: 530-537 [PMID: 23868001 DOI: 10.1038/bjc.2013.393]

96 Xie Y, Todd NW, Liu Z, Zhan M, Fang H, Peng H, Alattar M, Deepak J, Stass SA, Jiang F. Altered microRNA expression in sputum for diagnosis of non-small cell lung cancer. Lung Cancer 2010; 67: 170-176 [PMID: 19446359 DOI: 10.1016/j.lungcan.2009.04.004]

97 Xing L, Todd NW, Yu L, Fang H, Jiang F. Early detection of squamous cell lung cancer in sputum by a panel of microRNA markers. Mod Pathol 2010; 23: 1157-1164 [PMID: 20526284 DOI: 10.1038/modpathol.2010.111]

98 Yu L, Todd NW, Xing L, Xie Y, Zhang H, Liu Z, Fang H, Zhang J, Katz RL, Jiang F. Early detection of lung adenocarcinoma in sputum by a panel of microRNA markers. Int J Cancer 2010; 127: 2870-2878 [PMID: 21351266 DOI: 10.1002/ijc.25289]

99 Li N, Ma J, Guanera MA, Fang H, Cai L, Jiang F. Digital PCR quantification of miRNAs in sputum for diagnosis of lung cancer. J Cancer Res Clin Oncol 2014; 140: 145-150 [PMID: 24281335 DOI: 10.1007/s00432-013-1555-5]

100 Shen J, Liao J, Guanera MA, Fang H, Cai L, Stass SA, Jiang F. Analysis of MicroRNAs in sputum to improve computed tomography for lung cancer diagnosis. J Thorac Oncol 2014; 9: 33-40 [PMID: 24305007 DOI: 10.1097/JTO.0000000000000225]
1143-1149 [PMID: 19684575 DOI: 10.1038/ncb1929] 116

Arroyo JD, Chevillet JR, Kroh EM, Rul IK, Fritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL, Tait JF, Tewari M. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. *Proc Natl Acad Sci USA* 2011; 108: 5003-5008 [PMID: 21383194 DOI: 10.1073/pnas.101955108]

Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. *Nucleic Acids Res* 2011; 39: 7223-7233 [PMID: 21609644 DOI: 10.1093/nar/gkr254]

Wang K, Zhang S, Weber J, Baxter D, Galas DJ. Export of microRNAs and microRNA-protective protein by mammalian cells. *Nucleic Acids Res* 2010; 38: 7248-7259 [PMID: 20615901 DOI: 10.1093/nar/gk069]

Vickers KC, Palmsano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. *Nat Cell Biol* 2011; 13: 423-433 [PMID: 21425178 DOI: 10.1038/ncb2210]

Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Zhang Y, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang CY. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. *Cell Res* 2008; 18: 977-996 [PMID: 18766170 DOI: 10.1038/cr.2008.282]

Zhu X, Li H, Long L, Hui C, Chen H, Wang X, Shen H, Xu W. miR-126 enhances the sensitivity of non-small cell lung cancer cells to anticancer agents by targeting vascular endothelial growth factor A. *Acta Biochim Biophys Sin* (Shanghai) 2012; 44: 519-526 [PMID: 22510476 DOI: 10.1093/abbs/gms026]

Song J, Bai Z, Han W, Zhang J, Meng H, Bi J, Ma X, Han S, Zhang Z. Identification of suitable reference genes for qPCR analysis of serum microRNA in gastric cancer patients. *Dig Dis Sci* 2012; 57: 897-904 [PMID: 22198701 DOI: 10.1007/s10620-011-1981-7]

Sanders I, Holdensen S, Walgenbach-Brünegal G, von Rueckert A, Kristiansen G, Müller SC, Ellinger J. Evaluation of reference genes for the analysis of serum miRNA in patients with prostate cancer, bladder cancer and renal cell cancer. *Int J Lab Invest* 2012; 72: 1017-1025 [PMID: 22788411 DOI: 10.1177/144220421030804.2]

Appiah IHN, Goswami CP, Mina LA, Badve S, Sledge GF, Liu Y, Nkashati H. Persistent upregulation of U6: SNORD44 small RNA ratio in the serum of breast cancer patients. *PloS One* 2013; 8: e78649 [PMID: 24130905 DOI: 10.1371/journal.pone.0078649]

Keller A, Backes C, Leidinger P, Kefer N, Boisguerin V, Barbacioru C, Vogel B, Matzas M, Huwer H, Katus HA, Stähler C, Meder B, Meese E. Next-generation sequencing identifies novel microRNAs in peripheral blood of lung cancer patients. *Mol Biostat* 2011; 7: 3187-3199 [PMID: 22027949 DOI: 10.1039/c1mb05353a]

Toeri M, Verri C, Conte D, Roz L, Modena P, Facchinetti F, Calabrò E, Croce CM, Pastorino U, Sozzi G. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. *Proc Natl Acad Sci USA* 2011; 108: 3713-3718 [PMID: 21300873 DOI: 10.1073/pnas.110048108]

Sozzi G, Boeri M, Rossi M, Verri C, Suatoni P, Bravi F, Roz L, Conte D, Grassi M, Sverzutelli N, Marchiano A, Negri E, La Vecchia C, Pastorino U, Sozzi G. Clinical utility of a plasma-based miRNA signature classifier within computed tomography lung cancer screening: a prospective field trial study. *Clin Oncol* 2014; 32: 768-773 [PMID: 24419137]

Hu Z, Chen X, Zhao Y, Tian T, Jin G, Shu Y, Chen Y, Xu L, Zen K, Zhang C, Shen H. Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling to predict survival of non-small-cell lung cancer. *Clin Oncol* 2010; 28: 1721-1726 [PMID: 21094856 DOI: 10.1200/JCO.2009.24.9342]

Silva J, Garcia V, Zaballos A, Provencio M, Lombardía L, Almonacid L, Garcia JM, Domínguez G, Peña C, Díaz R, Herrera M, Varela A, Bonilla F. Vesicle-related microRNAs in plasma of nonsmall cell lung cancer patients and correlation with survival. *Eur Respir J* 2011; 37: 617-623 [PMID: 20595154 DOI: 10.1183/09031936.00029610]

Yu-Xia M, Zhenman T, Wei Z. Circulating mir-125b is a novel biomarker for screening non-small-cell lung cancer and predicts poor prognosis. *J Cancer Res Clin Oncol* 2012; 138.

Del Vescovo V et al. MicroRNAs as lung cancer biomarkers
Del Vescovo V et al. MicroRNAs as lung cancer biomarkers

Med Oncol 2013; 30: 750 [PMID: 24198203 DOI: 10.1007/s12032-013-0750-1]

142 Shen Y, Tang D, Yao R, Wang M, Wang Y, Yao Y, Li X, Zhang H. microRNA expression profiles associated with survival, disease progression, and response to gefitinib in completely resected non-small-cell lung cancer with EGFR mutation.

Bader AG, Brown D, Stoudemire J, Lammers P. Developing therapeutic microRNAs for cancer. Gene Ther 2011; 18: 1121-1126 [PMID: 21633392 DOI: 10.1038/gt.2011.79]

P- Reviewer: Wu DF, Vetvicka V
S- Editor: Song XX
L- Editor: A
E- Editor: Lu Y
