Effect of Long-term Exposure to Extremely Low-frequency Electromagnetic Fields on β-amyloid Deposition and Microglia Cells in an Alzheimer Model in Rats

Alireza Komaki¹, Iraj Salehi¹, Arman Keymoradzadeh², Masoumeh Taheri Azandaryani¹, *Zoleikha Golipoor³

1. Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
2. Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
3. Cellular and Molecular Research Center, Guilan University of Medical Sciences, Rasht, Iran.

ABSTRACT

Background: Recently, researchers have considered extremely low-frequency electromagnetic fields (ELF-EMFs), as one of the non-invasive therapies, in the treatment of many severe neurological disorders, including Alzheimer Disease (AD). AD is a progressive neurodegenerative disease characterized by the deposition of amyloid plaques in the brain. However, the increase in microglial cells increases phagocytosis and the destruction of amyloid plaques. Therefore, the present study aimed to investigate the amount of β-amyloid precursor deposition and the number of microglia cells in the animal model of AD before and after exposure to ELF-EMFs.

Objective: The aim of this study was to investigate the deposition of beta ameloid precursor and the number of microglial cells in the Alzheimer’s animal model before and after exposure to magnetic waves.

Methods: Fifty male adult rats were randomly grouped into 5: The control group, the ELF-EMFs group, the AD group, the treatment group 1, and the treatment group 2. After the study period, the animals were killed for immunohistochemistry assessment to detect and compare the deposition of β-amyloid and the production of allograft inflammatory factor 1 (Iba1) protein.

Results: Exposure to ELF reduced the deposition of β-amyloid and increased microglia cells. However, these changes were not different between the control and ELF-EMFs groups (P<0.001).

Conclusion: ELF-EMF can reduce the formation of β-amyloid plaques and induce the proliferation of microglia cells. Therefore, they can be used to treat brain damage caused by Alzheimer disease.

Keywords: Alzheimer, Extremely Low-Frequency Magnetic Fields (ELF-EMF), β-Amyloid protein, Microglial cell

Received: 19 Jul 2021
Accepted: 17 Sep 2021
Available Online: 01 Oct 2021

Citation: Komaki A, Salehi I, Keymoradzadeh A, Taheri Azandaryani M, Golipoor Z. Effect of Long-term Exposure to Extremely Low-frequency Electromagnetic Fields on β-amyloid Deposition and Microglia Cells in an Alzheimer Model in Rats. Journal of Guilan University of Medical Sciences. 2021; 30(3):218-229. https://doi.org/10.32598/JGUMS.30.3.1609.2

https://doi.org/10.32598/JGUMS.30.3.1609.2

Extended Abstract

1. Introduction

Alzheimer Disease (AD) is a progressive neurodegenerative disease caused by the deposition of amyloid plaques and neurofibrillary tangles in the brain [1]. β-Amyloid protein is the most abundant protein compound in neurotic plaques [2]. However, microglial cells enhance phagocytosis and amyloid plaque degradation in the nervous system [3]. There is evidence that magnetic fields can cause AD and other neurological conditions in humans [4, 5]. It has been reported that the effects of magnetic fields can vary depending on the physical characteristics of the field (electric, magnetic, or electromagnetic), the frequency (low,
medium, high), the wave oscillation (pulsed or constant waves), and the duration of exposure [6]. On the other hand, other studies have shown the positive effects of magnetic fields, such as a decrease in inflammation, increased differentiation of stem cells into neurons, the proliferation of glial cells, and synaptic plasticity in the dentate gyrus [7]. This study aimed to assess β-amyloid deposition and microglia amount in the brains of male rats that had been treated with magnetic fields before and after the AD model induction.

2. Methods

This experimental study was performed at Hamadan University of Medical Sciences’ Embryology Lab and Neurophysiological Research Center, Hamadan City, Iran. The rats were divided into five groups at random. First, the control group was not exposed to magnetic fields or amyloid injections. Second, the magnetic field group (Extremely Low-Frequency Magnetic Fields [ELF-EMF]) was exposed to the magnetic field without β-amyloid. Third, the AD group, which underwent stereotaxic surgery and received β-amyloid, but were not exposed to the magnetic field. Fourth, the treatment model before AD. They underwent magnetic field one week before surgery and β-amyloid injection and were treated for two months after surgery “AD + EMFs before AD”. Fifth, the treatment group after AD model “AD + EMFs after AD”. They were treated with a magnetic field for two months after surgery and β-amyloid injection. Following tissue preparation and immunohistochemistry techniques, β-amyloid and allograft inflammatory factor 1 (Iba1) were assessed. Microglial cells were observed directly using fluorescent microscopy and ImageJ software [8]. Data were analyzed by 1-way ANOVA and tukey post hoc test in SPSS v. 16. The significance level was considered as P<0.001.

3. Results

Compared to the AD group that received β-amyloid injection alone, the amount of β-amyloid protein was significantly reduced in the “AD + EMFs before AD” and “AD + EMFs after AD” groups, indicating that the magnetic field reduces β-amyloid deposition. There were no significant differences between the “AD + EMFs before AD” and “AD + EMFs after AD” groups. Immunohistochemical analysis also revealed a significant increase in microglial cells in both study groups using antibodies against Iba1. Moreover, microglial cell count increased significantly in two months in the “AD + EMFs before AD” and “AD + EMFs after AD” groups compared to the AD group. Still, there was no difference between the “AD + EMFs before AD” and “AD + EMFs after AD” groups.

4. Discussion and Conclusion

The results revealed that electromagnetic fields significantly reduced β-amyloid plaques. In other words, it played a positive role in treating AD. In addition, another study by Auxiliary et al. showed that exposure to a magnetic field would induce incremental and long-term synaptic enhancement [9]. Also, consistent with the present study results, Liotti et al. showed an increase in memory and learning following exposure to a magnetic field after 4 weeks of exposure to a 50-Hz magnetic field for 1 or 4 hours. They reported for the first time that chronic exposure to a magnetic field has a positive effect on the acquisition and maintenance of spatial memory [10]. In addition, the results of Ji et al. study showed that long-term RF-EMF exposure has beneficial effects on reducing β-amyloid deposition, which confirms our results [11].

According to the present study, the number of microglial cells increased in the AD group, and that increase was greater in the “AD + EMFs before AD” and “AD + EMFs after AD” groups. EMFs could reduce some of the most well-known proinflammatory cytokines, such as Tumor Necrosis Factor (TNF)-α, Interleukin (IL)-1β, and IL-6 in N9 microglia. These data suggest that EMFs have an anti-inflammatory effect on microglial cells and protect neurons from hypoxic damage [12]. This finding indicates that EMFs may be used to treat cerebral ischemia. One study reports that ELF-EMF (50 Hz, 1 mT) inhibits the nuclear factor kappa B signaling pathway for regulating chemokine production and glial cell growth and preventing inflammation [13]. Gao et al. found that ELF-EMF could activate the Notch signaling pathway [7]. They discovered that neural stem cells proliferation and differentiation in cerebral ischemia are closely related to the Notch pathway [14]. This event is associated with increased synaptic plasticity in the dentate gyrus [7]. Also, consistent with our study, the results of Duong et al. study showed that EMF has a positive effect on the survival of microglial cells [15]. Based on the study results, magnetic waves can reduce the formation of β-amyloid plaques and treat AD, but they cannot prevent it. Waves can also activate microglia and increase their activity. In conclusion, magnetic waves may be used to eliminate β-amyloid plaques and treat AD.

Ethical Considerations

Compliance with ethical guidelines

This study was approved by the Ethics Committee of the Hamadan University of Medical Sciences (Code: IR.UMSHA.REC.1396.17).
Funding

This study was supported by the Hamadan University of Medical Sciences’ Embryology Lab and Neurophysiological Research Center.

Authors’ contributions

Conceptualization, visualization, project administration, and resources, methodology, editing, review, investigation, and supervision, original draft preparation: All authors; Data collection and formal analysis: Zoleikha Golipoor.

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgements

The authors would like to thank the Vice-Chancellor for Hamadan University of Medical Sciences for the support and cooperation.
مطالعه حاضر با هدف بررسی میزان رسوب پیش ساز بتا آمیلوئید و تعداد سلول‌های میکروگلی در مدل حیوانی آلزایمر قبل و بعد از قرارگیری در معرض امواج مغناطیسی انجام شده است.

به منظور اجرای این مطالعه، گروه‌های آزمایشی شامل گروه کنترل، گروه میدان سر موش صحرایی نر به صورت تصادفی در 50 روش ها ELF-EMF شدند که شامل گروه آلزایمر، گروه درمان با میدان مغناطیسی قبل از مدل آلزایمر و گروه درمان با میدان مغناطیسی بعد از مدل آلزایمر بودند. یکی از این مداخلات نشان دهنده وابستگی مقیاسی شده آمیلوئید فاز 1b Iba1 بود. نتایج حاصل از این مطالعات نشان دهنده توجه به عوامل مختلف میکروگلی فاز 1b و Iba1 باعث یافته این تغییرات در دو گروه درمان با میدان مغناطیسی قبل از مدل آلزایمر، و گروه درمان با میدان مغناطیسی بعد از مدل آلزایمر تفاوت معناداری نداشت. این تغییرات در دو گروه درمان با میدان مغناطیسی قبل از مدل آلزایمر، و گروه درمان با میدان مغناطیسی بعد از مدل آلزایمر تفاوت معناداری نداشت. بنابراین، این تغییرات میکروگلی، باعث کاهش شکل‌گیری پلاک‌های بتا آمیلوئید شدند. بنابراین، نتیجه گیری می‌توانند در درمان آسیب‌های مغزی ناشی از بیماری آلزایمر به کار گرفته شوند.

کلید واژه‌ها:
بیماری آلزایمر، آمیلوئید، میدان مغناطیسی با فرکانس پایین، میکروگلی
والای فضای دلنامه‌ای گرفته شده و در صورت افزایش دما، بایستی نگهداری شود و با توجه به دمای مورد نیاز، پلاک‌های بتا-آمیلوئید بکار برده شود.

روش‌ها

این مطالعه از نظر مطالعات تجاری به شکل دیگری در امیرآبادکان است. جهت توجه به اینکه میدان مغناطیسی نقشی در ایجاد پلاک‌های بتا-آمیلوئید دارد، مطالعات حاضر مورد حاضری در سایر مطالعات، تکثیر سلول‌های میکروگلی و تعداد سلول‌های میکروگلی مورد بررسی قرار گرفته است.

2. Sprague Dawley (SD)
3. Stereotactic Surgical: Stereotactic apparatus, Stooling, USA
4. Extremely Low-Frequency Electromagnetic Fields (ELF-EMF)
5. Alzheimer
طراحی و ساخت میدان الکترومغناطیسی، در معرض قرار ماندن حیوانات با این میدان‌ها و انجام تست‌های آزمایشگاهی به‌جریان آمیلوئید و تعداد سلول‌های میکروگلی در موش‌های مدل آلزایمری

در معرض قرار کردن حیوانات با میدان‌های الکترومغناطیسی در مرحله دوم تابش دهنی به موش‌های گروه آلزایمر در مدت 60 ساعت و مرحله سوم از پرداختن این موش‌ها به مدت 14 و 18 درآمد [1].

در این گزارش بررسی عملکرد موش‌های گروه‌بندی‌ها در مورد میدان الکترومغناطیسی در پژوهش کمکی و همکاران. بررسی تأثیر میدان مغناطیسی با فرکانس پایین بر میزان بتا آمیلوئید و تعداد سلول‌های میکروگلی در موش‌های مدل آلزایمری

پس از پرداختن با پارامترهای ذکر شده در مرحله پایانی تابش دهنی به موش‌های گروه گروه‌بندی آزمایشگاهی به‌جریان آمیلوئید و تعداد سلول‌های میکروگلی در گروه‌های آزمایشگاهی، بررسی تعداد پیش‌ساز بتا آمیلوئید و سلول‌های میکروگلی در گروه‌های مورد مطالعه و روش آنالیز تحلیل واریانس [آوپاوا] انجام شد. سطح معناداری در نظر گرفته شد. P<0.05 در این پژوهش.

پیش بینی می‌کنیم که این روش به میزان پیش‌ساز بتا آمیلوئید و تعداد سلول‌های میکروگلی در موش‌های مدل آلزایمری راهبردی و پیش‌بینی‌برنگی کمک کند.
علی رضا کمکی و همکاران. بررسی تأثیر میدان مغناطیسی با فرکانس پایین بر میزان بتا آمیلوئید و تعداد سلول‌های میکروگلی در موش‌های صحرایی مدل آلزایمری.
بحث و نتیجه‌گیری

بیماری آلزایمر یک بیماری مغزی تحلیل روندی است که یکی از مدل‌های مغزی است که می‌تواند به کمک بررسی‌های آزمایشگاهی به‌طور کلی می‌تواند باعث کاهش حضور میکروگلی در مغز گروه‌های آزمایشی باشد. این بیماری با تشکیل تجمع‌های بتا-آمیلوئید (Iba1) در مغز و همچنین استولانپاسی و مرگ نورون‌ها به همراه است.
درمان آسیب‌های مغزی و از بین بردن پلاک‌های بتا‌آمیلوئید و استراتژی می‌تواند باعث افزایش به کارگیری امواج مغناطیسی در همچنین امواج باعث تکثیر و القای میکروگلیا می‌شوند، ولی نقش پیشگیری در بیماری آلزایمر نداشتند. کاهش شکل‌گیری پلاک‌های بتا‌آمیلوئید و درمان بیماری آلزایمر داده‌های این مطالعه نشان داد که امواج مغناطیسی باعث ارتقا و همکارانش نشان دادند که تولید شیمی‌کین و رشد سلول‌های گلیال و جلوگیری از روند N9 به دست آمده و همکارانش نشان دادند. این نتایج یک اثر محافظتی می‌باشد و می‌تواند باعث فعالیت سلول‌های میکروگلیا انسان را در سه‌گروه مورد بررسی بوده است. مطالعه افزایش حفرات نشان داد که امواج در معرض میان‌فیزیکی بتا‌آمیلوئید باعث کاهش سطح بالا‌طلس‌های بتا‌آمیلوئید می‌گردد به وسیله الکترود می‌تواند در زمان بیماری آلزایمر پشتیبانی شود. به نظر می‌رسد مطالعه در این مطالعات داده‌های این مطالعه پلاک‌های بتا‌آمیلوئید را کاهش می‌دهد و می‌تواند باعث فعالیت سلول‌های میکروگلیا شود. آزمایشی باید انجام شود در حالی که تندی سلول‌های میکروگلیا در قلب آیزویژن با وارد کردن پلاک‌های بتا‌آمیلوئید در سیر و تأثیر آن بر سلول‌های میکروگلیا و مغزی دارد. این مطالعه مورد تایید کمیته اخلاق دانشگاه علوم پزشکی UMSHA.REC.1396.17.
مامالی

این مطالعه با حمایت آزمایشگاه چنین شناسی و مرکز تحقیقات نوروفیزیولوژی دانشگاه علوم پزشکی همدان اجرا شد.

مشارکت‌کنندگان

مفهومسازی، تجسم، مدیریت پروژه و منابع، روش‌شناسی، بررسی، تحقیق و نظرات، آماده‌سازی پیش‌نویس اصلی؛ همه توبیست‌دانان، گردآوری داده‌ها و تحلیل صورتی زلیخا گلپور.

تحقیق‌منافع

با توجه به تعیین توبیست‌دانان این مقاله تمرکز مبتنی بر تأثیرات میدان مغناطیسی با فرکانس پایین بر میزان بتا آمیلوئید و تعداد سلول‌های میکروگلی در موش‌های مدل آلزایمری است.

نتایج

نوریست‌دانان از اسباب‌محترم گروه فیزیولوژی و مرکز تحقیقات فیزیولوژی اصاص دانشگاه علوم پزشکی همدان تقدیر و تشکر می‌کنند.
[25] Kim SJ, Jang YW, Hyung KE, Lee DK, Hyun KH, Jeong SH, et al. Extremely low-frequency electromagnetic field exposure enhances inflammatory response and inhibits effect of antioxidant in RAW 264.7 cells. Bioelectromagnetics. 2017; 38(5):374-85. [DOI:10.1002/bem.22049] [PMID]

[26] Zhang K, Guo L, Zhang J, Rui G, An G, Zhou Y, et al. tDCS accelerates the rehabilitation of MCAO-induced motor function deficits via neurogenesis modulated by the Notch1 signaling pathway. Neurorehabilitation and Neural Repair. 2020; 34(7):640-51. [DOI:10.1177/1545968320925474] [PMID]

[27] Duong CN, Kim JY. Exposure to electromagnetic field attenuates oxygen-glucose deprivation-induced microglial cell death by reducing intracellular Ca^{2+} and ROS. International Journal of Radiation Biology. 2016; 92(4):195-201. [PMID]

[28] Salehi I, Sani KG, Zamani A. Exposure of rats to Extremely Low-Frequency Electromagnetic Fields (ELF-EMF) alters cytokines production. Electromagnetic Biology and Medicine. 2013; 32(1):1-8. [DOI:10.3109/15368378.2012.692343] [PMID]