THE KAPLANSKY TEST PROBLEMS FOR \aleph_1-SEPARABLE GROUPS

PAUL C. EKLOF AND SAHARON SHELAH

Abstract. We answer a long-standing open question by proving in ordinary set theory, ZFC, that the Kaplansky test problems have negative answers for \aleph_1-separable abelian groups of cardinality \aleph_1. In fact, there is an \aleph_1-separable abelian group M such that M is isomorphic to $M \oplus M \oplus M$ but not to $M \oplus M$. We also derive some relevant information about the endomorphism ring of M.

Introduction

Kaplansky [15, pp. 12f] posed two test problems in order to “know when we have a satisfactory [structure] theorem. ... We suggest that a tangible criterion be employed: the success of the alleged structure theorem in solving an explicit problem.” The two problems were:

(I) If A is isomorphic to a direct summand of B and conversely, are A and B isomorphic?

(II) If $A \oplus A$ and $B \oplus B$ are isomorphic, are A and B isomorphic?

In fact, he says ([15, p. 75]) that he invented the problems “to show that Ulm’s theorem [a structure theory for countable abelian p-groups] could really be used”. For some other classes of abelian groups, such as finitely-generated groups, free groups, divisible groups, or completely decomposable torsion-free groups, the existence of a structure theory leads to an affirmative answer to the test problems. On the other hand, negative answers are taken as evidence of the absence of a useful classification theorem for a given class; Kaplansky says “I believe their defeat is convincing evidence that no reasonable invariants exist” ([15, p. 75]). Negative answers to both questions have been proven, for example, for the class of uncountable abelian p-groups and for the class of countable torsion-free abelian groups.

Of particular interest is the method developed by Corner (cf. [1], [2],[4]) which, by realizing certain rings as endomorphism rings of groups, provides negative answers to both test problems (for a given class) as special cases of an even more extreme pathology. More precisely, Corner’s method — where applicable — yields, for any positive integer r, an abelian group G_r (in the class) such that for any positive integers m and k, the direct sum of m copies of G_r is isomorphic to the direct sum of k copies of G_r if and only if m is congruent to k mod r. (See, for example, [3] or [4], Thm 91.6, p. 145.) Then we obtain negative answers to both test problems by letting $A = G_2 \cong G_2 \oplus G_2 \oplus G_2$ and $B = G_2 \oplus G_2$.

1991 Mathematics Subject Classification. Primary 20K20; Secondary 03E35.

Key words and phrases. Kaplansky test problems, \aleph_1-separable group, endomorphism ring.

Travel supported by NSF Grant DMS-9501415.

Research supported by German-Israeli Foundation for Scientific Research & Development Grant No. G-294.081.06/93. Pub. No. 625.
Our focus here is on the class of \aleph_1-separable abelian groups (of cardinality \aleph_1). We will prove, in ordinary set theory (ZFC), that both test problems have negative answers by deriving the Corner pathology:

Theorem 0.1. For any positive integer r there is an \aleph_1-separable group $M = M_r$ of cardinality \aleph_1 such that for any positive integers m and k, M^m is isomorphic to M^k if and only if m is congruent to k mod r.

(Here M^m denotes the direct sum of m copies of M.) We do not determine the endomorphism ring of M, even modulo an ideal. However, we can derive a property of the endomorphism ring of M which is sufficient to imply the Corner pathology: see section 3.

A group M is called \aleph_1-separable [10, p. 184] (respectively, strongly \aleph_1-free) if it is abelian and every countable subset is contained in a countable free direct summand of M (resp., contained in a countable free subgroup H which is a direct summand of every countable subgroup of M containing H). Obviously, an \aleph_1-separable group is strongly \aleph_1-free, so a negative answer to one of the test problems for the class of \aleph_1-separable groups implies a negative answer to the problem for the class of strongly \aleph_1-free groups. (It is independent of ZFC whether these classes are different for groups of cardinality \aleph_1: the weak Continuum Hypothesis ($2^{\aleph_0} < 2^{\aleph_1}$) implies that there are strongly \aleph_1-free groups of cardinality \aleph_1 which are not \aleph_1-separable; on the other hand, Martin’s Axiom (MA) plus the negation of the Continuum Hypothesis (\negCH) implies that every strongly \aleph_1-free group of cardinality \aleph_1 is \aleph_1-separable; cf. [16].) This group G cannot be \aleph_1-separable since the endomorphism ring of an \aleph_1-separable group has too many idempotents. However, Thomé ([20] and [21]) showed that ZFC plus V = L (Gödel’s Axiom of Constructibility) implies the Corner pathology for \aleph_1-separable groups of cardinality \aleph_1; he did this by constructing an \aleph_1-separable G such that End(G) is a split extension of A by I (in the sense of [3, p. 277]), where I is the ideal of endomorphisms with a countable image.

It follows from known structure theorems for the class of \aleph_1-separable groups of cardinality \aleph_1 under the hypothesis MA + \negCH that the Dugas-Göbel and Thomé realization results are not theorems of ZFC (cf. [5] or [17]). The fact that there are positive structure theorems for the class of \aleph_1-separable groups assuming MA + \negCH or the stronger Proper Forcing Axiom (PFA) — see, for example, [8] or [18] — led to the question of whether the Kaplansky test problems could have affirmative answers for this class assuming, say, PFA. Thomé [21] gave a negative answer to the second test problem in ZFC, using a result of Jónsson [14] for countable torsion-free groups; however, till now, the first test problem as well as the Corner pathology were open (in ZFC).

Our construction of the Corner pathology involves a direct construction of the pathological group M using a tree-like ladder system and a “countable template” which comes from the Corner example for countable torsion-free groups. A key role is played by a paper of Göbel and Goldsmith [13] which — while it does not itself
prove any new results about the Kaplansky test problems for strongly \(\aleph_1 \)-free or \(\aleph_1 \)-separable groups — provides the tools for creating a suitable template from the Corner example.

1. The countable template

Fix a positive integer \(r \). For this \(r \), let \(A = A_r \) be the countable ring constructed by Corner in \([8]\). (See also \([11, p. 146] \).) Specifically, \(A \) is the ring freely generated by symbols \(\rho_i \) and \(\sigma_i \) \((i = 0, 1, ..., r)\) subject to the relations

\[
\rho_i \sigma_i = \begin{cases}
1 & \text{if } i = j \\
0 & \text{otherwise}
\end{cases}
\]

and

\[
\sum_{i=0}^{r} \sigma_i \rho_i = 1.
\]

Then \(A \) is free as an abelian group, and \(\sigma_0 \rho_0, \ldots, \sigma_r \rho_r \) are pairwise orthogonal idempotents. Moreover, if \(M \) is a right \(A \)-module, then \(M = M \sigma_0 \rho_0 \oplus M \sigma_1 \rho_1 \oplus \ldots \oplus M \sigma_r \rho_r \), and \(M \sigma_i \rho_i \cong M \) because \(\sigma_i \rho_i \sigma_i : M \to M \sigma_i \rho_i \) and \(\rho_i \sigma_i \rho_i : M \sigma_i \rho_i \to M \) are inverses; therefore \(M \cong M^{r+1} \).

Our construction will work for any countable torsion-free ring \(A \) whose additive subgroup is free; but hereafter \(A \) will denote the ring \(A_r \) just defined.

Corner shows that there is a torsion-free countable abelian group \(G \) whose endomorphism ring is \(A \); thus \(G \) is an \(A \)-module and hence \(G \cong G^{r+1} \). Furthermore, he shows that \(G^\ell \) is not isomorphic to \(G^n \) if \(1 \leq \ell < n \leq r \), and hence \(G^{m} \) is not isomorphic to \(G^k \) if \(m \) is not congruent to \(k \) mod \(r \). We shall require these and further properties of \(G \), which we summarize in the following:

Proposition 1.1. There are countable free \(A \)-modules \(B \subseteq H \) such that \(G \cong H/B \) and \(B \) is the union of a chain of free \(A \)-modules, \(B = \bigcup_{n \in \omega} B_n \), such that \(B_0 = 0 \) and for all \(n \in \omega \), \(H/B_n \) and \(B_{n+1}/B_n \) are free \(A \)-modules of rank \(\omega \). Moreover, for any positive integers \(m \) and \(k \), if \(m \) is not congruent to \(k \) mod \(r \), then \(G^m \oplus \mathbb{Z}^{(\omega)} \) is not isomorphic to \(G^k \oplus \mathbb{Z}^{(\omega)} \).

The main work in proving Proposition 1 will be done in two lemmas from \([8]\). For the first one, we give a revised proof (cf. \([13, p. 343]\)). We maintain the notation above.

Lemma 1.2. The group \(G \) is the union, \(G = \bigcup_{n \geq 1} G_n \), of an increasing chain of free \(A \)-modules.

Proof. By \([1, p. 699]\) \(G \) is the pure closure \(\langle G_1 \rangle_\hat{A} \) of a free \(A \)-module \(G_1 = \bigoplus_{i \in I} e_i A \oplus A \) containing \(A \). Here \(\hat{A} \) is the natural, or \(\mathbb{Z} \)-adic, completion of \(A \) (cf. \([1, p. 692]\)). We will define inductively \(G_n = \bigoplus_{i \in I} e_i A \oplus A \) such that \(G_n \supseteq G_{n-1} \) and for all \(i \in I \), \(n e_{i,n} + A = e_{i,n-1} + A \). Let \(e_{i,1} = e_i \) for all \(i \in I \). If \(G_{n-1} \subseteq G \) has been defined for some \(n > 1 \), then since \(A \) is dense in \(\hat{A} \), there exists \(e_{i,n} \in \hat{A} \) such that \(n e_{i,n} + A = e_{i,n-1} + A \); say \(n e_{i,n} = e_{i,n-1} + a_i \). By the definition of \(G \), \(e_{i,n} \in G \). We need to show that \(\{ e_{i,n} : i \in I \} \cup \{ 1 \} \) is \(A \)-linearly independent. Suppose that \(\Sigma_{i \in I} e_{i,n} a_i + 1 \cdot c_0 = 0 \) for some \(a_i, c_i \in A \). Then \(\Sigma_{i \in I} n e_{i,n} a_i + n c_0 = 0 \), so \(\Sigma_{i \in I} n e_{i,n-1} a_i + 1 \cdot (\Sigma_{i \in I} a_i c_i + n c_0) = 0 \). By the \(A \)-linear independence of \(\{ e_{i,n-1} : i \in I \} \cup \{ 1 \} \), we can conclude that each \(c_i \) equals 0 and hence also \(c_0 \) equals 0. This completes the definition of \(G_n \).
It remains to prove that \(G \subseteq \bigcup_{n \geq 1} G_n \). Let \(g \in G \setminus G_1 \). For some \(n > 1 \), \(ng \in G_1 \). We claim that \(g \in G_n \). Since \(ng \in G_{n-1} \), \(ng = \Sigma_{i \in \ell} e_{i,n-1} c_i + c_0 \) for some \(c_i, c_0 \in A \). Then

\[
ng = \Sigma_{i \in \ell} (ne_{i,n} - a_i) c_i + c_0 = n \Sigma_{i \in \ell} e_{i,n} c_i + a'
\]

for some \(a' \in A \). Since \(A \) is pure in \(\mathcal{A} \), \(a' = n a'' \) for some \(a'' \in A \). Thus \(g = \Sigma_{i \in \ell} e_{i,n} c_i + a'' \in G_n \).

\[\Box\]

The second lemma is proved in [3, Lemma 2.5] generalizing a result in [9, Lemma XII.1.4]. We state it here for the sake of completeness.

Lemma 1.3. Let \(G \) be a countable \(A \)-module which is the union, \(G = \bigcup_{n \geq 1} G_n \), of an increasing chain of free \(A \)-modules, then there exist countable free \(A \)-modules \(B \subseteq H \) such that \(G \cong H/B \) and \(B \) is the union of a chain of free \(A \)-modules, \(B = \bigcup_{n \geq 1} B_n \), such that for all \(n \geq 1 \), \(H/B_n \) and \(B_{n+1}/B_n \) are free \(A \)-modules. \(\square \)

Proof of Proposition 1.1. The existence of \(H, B \), and the \(B_n \) is now an immediate consequence of Lemmas 1.2 and 1.3. All that is left to show is that if \(m \) is not congruent to \(k \) mod \(r \), then \(G^m \oplus \mathbb{Z}^{(\omega)} \) is not isomorphic to \(G^k \oplus \mathbb{Z}^{(\omega)} \). Since \(G^m \) is not isomorphic to \(G^k \), it is enough to show that \(R_\mathbb{Z}(G^l \oplus \mathbb{Z}^{(\omega)}) = G^l \) for any \(l \in \omega \). Here \(R_\mathbb{Z}(N) \) is the \(\mathbb{Z} \)-radical of \(N \), that is, \(R_\mathbb{Z}(N) = \cap \{ \ker(\varphi) : \varphi : N \to \mathbb{Z} \} \). (See, for example, [3, pp. 289f].) To show that \(R_\mathbb{Z}(G^l \oplus \mathbb{Z}^{(\omega)}) = G^l \) it is enough to show that \(\text{Hom}(G^l, \mathbb{Z}) = 0 \), or, equivalently, \(\text{Hom}(G, \mathbb{Z}) = 0 \). This follows from Observation 2.7 of [3], but we give here a self-contained argument based on the notation of Lemma 1.2. Suppose \(\psi \in \text{Hom}(G, \mathbb{Z}) \); we can regard \(\psi \) as an endomorphism of \(G \) by identifying \(\mathbb{Z} \) with the subgroup \(\langle 1 \rangle \) of \(A \subseteq G \) which is generated by the unit 1 of \(A \). Since the endomorphism ring of \(G \) is \(A \), there is \(a \in A \) such that \(\psi(g) = ga \) for all \(g \in G \). By considering \(\psi(1) = 1a = a \), we see that \(a \in \langle 1 \rangle \). Now consider \(\psi(e_i) \) for any \(e_i \); since \(\psi(e_i) = e_ia \) and since \(e_i A \cap \langle 1 \rangle = \{ 0 \} \) we see that \(a = 0 \). \(\square \)

2. The Main Construction

Fix a positive integer \(r \) and let \(A, H, B, B_n \) and \(G \) be as in Proposition 1.1. For each \(n \in \omega \), fix a basis \(\{ b_{n,i} + B_n : i \in \omega \} \) of \(B_{n+1}/B_n \) (as \(A \)-module). Also, fix a set of representatives \(\{ h_i : i \in \omega \} \) for \(H/B \) where \(h_0 = 0 \); thus each coset \(h + B \) equals \(h_i + B \) for a unique \(i \in \omega \).

Fix a stationary subset \(E \) of \(\omega_1 \) consisting of limit ordinals and a ladder system \(\{ \eta_\delta : \delta \in E \} \). That is, for every \(\delta \in E \), \(\eta_\delta : \omega \to \delta \) is a strictly increasing function whose range is cofinal in \(\delta \); we shall also choose \(\eta_\delta \) so that its range is disjoint from \(E \). Furthermore, we choose a ladder system which is tree-like, that is, for all \(\delta, \gamma \in E \) and \(n, m \in \omega \), \(\eta_\delta(n) = \eta_\gamma(m) \) implies that \(m = n \) and \(\eta_\delta(l) = \eta_\gamma(l) \) for all \(l < n \) (cf. [3, pp. 368, 386]).

Inductively define free \(A \)-modules \(M_\beta (\beta < \omega_1) \) as follows: if \(\beta \) is a limit ordinal, \(M_\beta = \bigcup_{\alpha < \beta} M_\alpha \); if \(\beta = \alpha + 1 \) where \(\alpha \notin E \), let

\[
M_\beta = M_\alpha \oplus \bigoplus_{i \in \omega} x_{\alpha,i} A.
\]
If $\beta = \delta + 1$ where $\delta \in E$, define an embedding $i_\delta : B \rightarrow M_\delta$ by sending the basis element $b_{n,i}$ to $x_{\eta_\delta(n),i}$. Essentially $M_{\delta+1}$ will be defined to be the pushout of

\[
\begin{array}{c}
M_\delta \\
\uparrow i_\delta \\
B & \hookrightarrow H
\end{array}
\]

but we will be more explicit in order to avoid the necessity of identifying isomorphic copies. Let $y_{\delta,i} = 0$ and let \(\{ y_{\delta,i} : i \in \omega \setminus \{ 0 \} \} \) be a new set of distinct elements (not in M_δ). Then define $M_{\delta+1}$ to be $\{ y_{\delta,i} + u : u \in M_\delta, i \in \omega \}$ where the operations on $M_{\delta+1}$ extend those on M_δ and are otherwise determined by the rules

\[
y_{\delta,i} + y_{\delta,j} = y_{\delta,k} + i_\delta(b) \quad \text{if} \quad h_i + h_j = h_k + b
\]

\[
y_{\delta,i}a = y_{\delta,\ell} + i_\delta(b) \quad \text{if} \quad h_i = h_\ell + b
\]

where $b \in B$ and $a \in A$. Then there is an embedding $\theta_\delta : H \rightarrow M_{\delta+1}$ extending i_δ which takes h_i to $y_{\delta,i}$ and induces an isomorphism of H/B with $M_{\delta+1}/M_\delta$.

This completes the inductive definition of the M_β. Let $M = \bigcup_{\beta < \omega_1} M_\beta$. Note that it follows from the construction that every element of M has a unique presentation in the form

\[
\sum_{j=1}^\alpha y_{\delta_j,n_j} + \sum_{\ell=1}^t x_{\alpha_\ell,i_\ell} a_\ell
\]

where $\delta_1 < \delta_2 < ... < \delta_\alpha$ are elements of E, $n_j \in \omega \setminus \{ 0 \}$, $\alpha_\ell \in \omega_1 \setminus \{ E \}$, $i_\ell \in \omega$, $a_\ell \in A$, and the pairs (α_ℓ, i_ℓ) ($\ell = 1, ..., t$) are distinct.

Since M is constructed to be an A-module, M is isomorphic to M^{r+1}. We claim that

(\dagger) M is \aleph_1-separable; in fact for all $\alpha < \omega_1$, $M_{\alpha+1}$ is a free direct summand of M.

Assuming this for the moment, we can show that

(\dagger\dagger) M^m is not isomorphic to M^k if m is not congruent to k mod r.

In brief this is because M^m and M^k are not quotient-equivalent (cf. [I, pp. 251f]) since for all $\delta \in E$, $(M_{\delta+1}/M_\delta)^m \oplus \mathbb{Z}^\omega$ is not isomorphic to $(M_{\delta+1}/M_\delta)^k \oplus \mathbb{Z}^\omega$ by Proposition [I.1]. In more detail, if there is an isomorphism $\varphi : M^m \rightarrow M^k$, then there is a closed unbounded subset C of ω_1 such that for $\beta \in C$, $\varphi[M^m\beta] = M^k\beta$. Since E is stationary in ω_1, there exist $\delta \in C \cap E$; choose $\beta > \delta$ such that $\beta \in C$. Then φ induces an isomorphism of M_{β}^m/M_{β}^m with M_{β}^k/M_{β}^k. Since $M_\beta/M_{\beta+1}$ is free (of infinite rank) by (\dagger), we can conclude that

\[
(M_{\beta+1}/M_\delta)^m \oplus \mathbb{Z}^\omega \cong (M_{\beta+1}/M_\delta)^k \oplus (M_{\beta}^m/M_{\beta}^m) \cong M_{\beta}^k/M_{\beta}^m \cong M_{\beta}^k/M_{\beta}^k
\]

\[
\cong (M_{\beta+1}/M_\delta)^k \oplus (M_{\beta}^k/M_{\beta}^k) \cong (M_{\beta+1}/M_\delta)^k \oplus \mathbb{Z}^\omega
\]

which contradicts Proposition [I.1].

We are left with the task of proving (\dagger). First we shall show that each $M_{\alpha+1}$ is a direct summand of M by defining a projection π_{α} of M onto $M_{\alpha+1}$ (that is, $\pi_{\alpha}|M_{\alpha+1}$ is the identity). For every integer k there is a projection $\rho_k : H \rightarrow B_{k+1}$ since H/B_{k+1} is free. Given α, for each $\delta \in E$ with $\delta > \alpha$, let k_δ be the maximal integer k such that $\eta_\delta(k) \leq \alpha$. For each $\delta \in E$, we let π_{α} act like ρ_{k_δ} on the isomorphic copy, $\theta_\delta[H]$, of H. More precisely, for each element z of $\theta_\delta[H]$,

\[
\pi_{\alpha}(z) = \theta_\delta(z) \quad \text{if} \quad z \in \theta_\delta[H]
\]
define $\pi_\alpha(z)$ to be $\theta_\delta(\rho_k(\theta_\delta^{-1}(z)))$; if $\nu \notin \bigcup \{\text{ran}(\eta_m) : \delta \in E\}$ and $\nu > \alpha$, define $\pi_\alpha(x_{\nu,i}) = 0$. Extend to an arbitrary element of M by additivity; this will define a homomorphism on M provided that π_α is well-defined. It is easy to see, using the unique representation of elements, that the question of well-definition reduces to showing that the definition of $\pi_\alpha(x_{\beta,i})$ for $x_{\beta,i} \in \theta_\delta[M]$ is independent of δ. If $\beta \leq \alpha$, then $\pi_\alpha(x_{\beta,i}) = x_{\beta,i}$. Say $\beta > \alpha$ and $\beta = \eta_\delta(n) = \eta_\delta'(n)$; by the tree-like property, $\eta_\delta(m) = \eta_\delta'(m)$ for all $m \leq n$, and hence $k_\delta = k_\gamma$. Hence $\pi_\alpha(x_{\beta,i})$ is well-defined because $\rho_k = \rho_\gamma$, and thus $\theta_\delta(\rho_k(\theta_\delta^{-1}(x_{\beta,i}))) = \theta_\gamma(\rho_\gamma(\theta_\gamma^{-1}(x_{\beta,i})))$.

It remains to prove that each M_{β} is \aleph_α-free (as abelian group). Since A is free as abelian group, it suffices to show that $M_{\beta+1}$ is a free A-module for every $\beta \in E$. We will inductively define S_n so that

$$B = \bigcup_{n \in \omega} S_n \cup \{x_{\nu,i} : \nu \in \delta \setminus (E \cup \bigcup \{\text{ran}(\eta_\mu) : \mu \in E \cap (\delta + 1)\}), i \in \omega\}$$

is an A-basis of $M_{\beta+1}$. Let S_0 be the image under θ_δ of a basis of H. Fix a bijection $\psi : \omega \to E \cap \delta$; also, for convenience, let $\psi(-1) = \delta$. Suppose that S_m has been defined for $m \leq n$ so that $\bigcup_{m \leq n} S_m$ is A-linearly independent and generates $\bigcup \{\theta_\psi(m)[H] : -1 \leq m < n\}$. Let $\gamma = \psi(n)$ and let $k = k_\gamma$ be maximal such that $\eta_\gamma(k) = \eta_\psi(m)(k)$ for some $-1 \leq m < n$. Notice that $\{x_{\psi(m),i} : \ell \leq k, i \in \omega\}$ is contained in the A-submodule generated by $\bigcup_{m \leq n} S_m$. Since $H/B_{\beta+1}$ is A-free, we can write $H = B_{\beta+1} \oplus C_{\gamma}$ for some A-free module $C_{\gamma} = \ker(\rho_k)$; let S_{n+1} be the image under θ_γ of a basis of C_{γ}. This completes the inductive construction. One can then easily verify that B is an A-basis of $M_{\beta+1}$; indeed, the fact that $\bigcup_{m \leq n} S_m$ is A-linearly independent can be proved by induction on n, using the unique representation of elements of M to show that if $\sum_{i=1}^r z_i a_i \in \langle \bigcup_{m \leq n} S_m \rangle$, where z_1, \ldots, z_r are distinct elements of S_{n+1}, then $a_i = 0$ for all $i = 1, \ldots, r$.

3. The endomorphism ring of M

While we cannot show that $\text{End}(M)$ is a split extension of A by an ideal, we can obtain enough information about $\text{End}(M)$ to imply the negative results on the Kaplansky test problems. (A similar idea is used in [19, p. 118].)

The ring A is naturally a subring of $\text{End}(M)$. We say that A is algebraically closed in $\text{End}(M)$ when every finite set of ring equations with parameters from A (i.e., polynomials in several variables over A) which is satisfied in $\text{End}(M)$ is also satisfied in A.

Proposition 3.1. If $A = A_r$ is as in section 1, and A is algebraically closed in $\text{End}(M)$, then for any positive integers m and k, M^m is isomorphic to M^k if and only if m is congruent to k mod r.

Proof. Since M is an A-module, $M \cong M^{r+1}$. If M^ℓ is isomorphic to M^n where $1 \leq \ell < n \leq r$, then $\sum_{i=1}^\ell M \sigma_i \rho_i \cong \sum_{i=1}^n M \sigma_i \rho_i$, so by Lemma 2 of [2], there are elements x and y of $\text{End}(M)$ such that $xy = \sum_{i=1}^\ell \sigma_i \rho_i$ and $yx = \sum_{i=1}^n \sigma_i \rho_i$. So by hypothesis, such elements x and y exist in A. We then obtain a contradiction as in [2, p. 45].

Proposition 3.2. If M is defined as in section 2, then A is algebraically closed in $\text{End}(M)$.
Proof. For any $\sigma \in \text{End}(M)$, there is a closed unbounded subset C_σ of ω_1 such that for all $\alpha \in C_\sigma$, $\sigma[M_\alpha] \subseteq M_\alpha$. For any $\sigma_1, ..., \sigma_n$ in $\text{End}(M)$, choose $\alpha < \beta$ in $C_{\sigma_1} \cap ... \cap C_{\sigma_n}$ so that also $\alpha \in E$. Then each σ_i induces an endomorphism, also denoted σ_i, of M_β/M_α. The endomorphism ring of M_β/M_α is $\text{End}(G \oplus \mathbb{Z}(\omega))$ and restriction to G defines a natural homomorphism, π, of $\text{End}(G \oplus \mathbb{Z}(\omega))$ onto $\text{End}(G) \cong A$ because $\text{Hom}(G, \mathbb{Z}(\omega)) = 0$. If $\sigma_i = a \in A$ (regarded as an element of $\text{End}(M)$), then $\pi(a) = a$. Hence if $\sigma_1, ..., \sigma_m$ satisfy some ring equations over A, then so do $\pi(\sigma_1), ..., \pi(\sigma_m)$.

Propositions 3.1 and 3.2 provide an alternative proof of (††).

References

[1] A. L. S. Corner, *Every countable reduced torsion-free ring is an endomorphism ring*, Proc. London Math. Soc. 13 (1963), 687–710.
[2] A. L. S. Corner, *On a conjecture of Pierce concerning direct decompositions of Abelian groups*, in Proceedings of the Colloquium on Abelian Groups, Tihany, Budapest (1964), 43–48.
[3] A. L. S. Corner, *On endomorphism rings of primary Abelian groups*, Quart. J. Math. Oxford 20 (1969), 277–296.
[4] A. L. S. Corner and R. Göbel, *Prescribing endomorphism algebras, a unified treatment*, Proc. London Math. Soc. (3) 50 (1985), 447–479.
[5] M. Dugas and R. Göbel, *Every cotorsion-free ring is an endomorphism ring*, Proc. London Math. Soc. (3) 45 (1982), 319–336.
[6] M. Dugas and R. Göbel, *Every cotorsion-free algebra is an endomorphism algebra*, Math. Z. 181 (1982), 451–470.
[7] P. C. Eklof, *The structure of ω_1-separable groups*, Trans. Amer. Math. Soc., 279 (1983), 497–523.
[8] P. C. Eklof, *Set theory and structure theorems*, in *Abelian Group Theory*, Lec. Notes in Math. No. 1006 (1983), Springer-Verlag, 275-284.
[9] P. C. Eklof and A. H. Mekler, *Almost Free Modules*, North-Holland (1990).
[10] L. Fuchs, *Abelian Groups*, Pergamon Press (1960).
[11] L. Fuchs, *Infinite Abelian Groups*, vol. II, Academic Press (1973).
[12] R. Göbel, *An easy topological construction for realising endomorphism rings*, Proc. Royal Irish Acad. Sect. A 92 (1992), 281–284.
[13] R. Göbel and B. Goldsmith, *The Kaplansky test problems - an approach via radicals*, J. Pure and Appl. Algebra 99 (1995), 331–344.
[14] B. Jónsson, *On direct decompositions of torsion-free abelian groups*, Math. Scand. 5 (1957), 230-235.
[15] I. Kaplansky, *Infinite abelian groups*, rev. ed., Univ. of Michigan Press (1969).
[16] A. H. Mekler, *How to construct almost free groups*, Can. J. Math. 32 (1980), 1206–1228.
[17] A. H. Mekler, *Proper forcing and abelian groups*, in *Abelian Group Theory*, Lecture Notes in Mathematics No. 1006, Springer-Verlag, 285–303.
[18] A. H. Mekler, *The structure of groups that are almost the direct sum of countable abelian groups*, Trans. Amer. Math. Soc. 303 (1987), 145–160.
[19] S. Shelah, *Kaplansky test problem for R-modules*, Israel J. Math. 74 (1991), 91–127.
[20] B. Thomé, *Aleph-1-separable Groups, Kaplansky’s Test Problems, and Endomorphism Rings*, Ph.D. Dissertation, Univ. of California, Irvine (1988).
[21] B. Thomé, *\aleph_1-separable groups and Kaplansky’s test problems*, Forum Math. 2 (1990), 203–212.
Department of Mathematics, University of California, Irvine 92697
E-mail address: pceklof@uci.edu

Department of Mathematics, University of Wisconsin, WI
Current address: Institute of Mathematics, Hebrew University, Jerusalem 91904
E-mail address: shelah@math.huji.ac.il