Calcium silicate as a graft material for bone fractures: a systematic review

Marcelo Sanmartin de Almeida¹, Gustavo Vicentis de Oliveira Fernandes¹,², Aline Muniz de Oliveira¹ and José Mauro Granjeiro¹,³

Abstract

Objective: The goal of this review was to determine whether calcium silicate (wollastonite) as a bone graft material is a viable alternative to autogenous bone or whether the evidence base for its use is weak.

Methods: In this systematic review, electronic databases (MEDLINE/PubMed and BVS) were searched for relevant articles in indexed journals. Articles published in a 10-year period were identified (n = 48). After initial selection, 17 articles were assessed for eligibility; subsequently, seven articles were excluded and 10 articles were included.

Results: Among the studies included, 20% emphasized the importance of randomization, which adds reliability to the study, minimizing the risk of bias. High variability was observed in the material used, such as additives, amounts, dosage, and chemical alterations, rendering direct comparison among these studies impossible. The experimental periods varied considerably; one of the studies did not include statistical analysis, weakening the evaluation. Nonetheless, the true potential of wollastonite as a graft material conducive to new bone formation was reported in all studies.

Conclusion: The results support the use of wollastonite as a bone graft material. The initial research question was answered despite the significant variability observed among these preclinical studies, which hindered the precision of this analysis.

¹Federal Fluminense University, Niterói, RJ, Brazil
²Department of Periodontics, Salgado de Oliveira University, Niterói, RJ, Brazil
³Quality and Technology Department, National Institute of Metrology, Rio de Janeiro, RJ, Brazil

Corresponding author:
Gustavo Vicentis de Oliveira Fernandes, Alameda São Boaventura, 987 – B-807, Fonseca, Niterói/RJ. CEP 24130-001, Brazil.
Email: gustfernandes@gmail.com
Keywords
Biomaterial, calcium silicate, wollastonite, bone graft, synthetic material, systematic review

Introduction
The current gold standard in the treatment of pathological, degenerative, esthetic, or traumatic conditions is autogenous bone. However, there is a need to replace autogenous bone with a new biocompatible natural or synthetic bone substitute for tissue regeneration, to minimize postoperative trauma.1,2

The ideal material should mimic bone in shape, size, texture, and performance, promoting an adequate response in the biological system.3 Synthetic materials have emerged as a relevant option because there is no risk of disease transmission and because these materials are available in potentially unlimited quantities.

Bone repair materials currently in use are either bioinert, bioresorbable, or biodegradable, depending on the characteristics of the treatment site or the subsequent treatments planned. Bioinert materials remain in the treated site and interact with the medium without inducing rejection by surrounding bone. Biodegradable materials ideally should promote bone formation as they are resorbed, and both the material and its degradation products must be well accepted by the organism. Degradation of bone biomaterials should be gradual and proportional to new bone formation: neither too fast, nor too slow. If too fast, the healing process can leave gaps that may result in voids or fibrosis in the newly formed bone. If degradation is slower than new bone formation, bone repair may be delayed.

Calcium silicate, also known as wollastonite, is capable of inducing in vivo osseointegration. The bioactivity of wollastonite is attributed to the nucleation of hydroxyapatite (HA), activated by the dissolution of calcium and silicate ions. This material is regarded as osteoinductive and has the added advantage of not being cytotoxic.4–7

Considering the limitations of wollastonite as a bone graft material,8 the aim of this systematic review was to seek greater evidence in the scientific literature to support the utilization of this biomaterial, which is still not widely applied in clinical practice.9

Methods
Protocol and search strategy
The methodology used was based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (http://www.prisma-statement.org) and on the Population, Intervention, Comparison, Outcome (PICO) model to frame the theme and the search strategy (Table 1).10–14

A literature search of the MEDLINE/PubMed and BVS electronic databases was conducted between 23 February 2016 and 23 December 2016; relevant articles published in indexed journals in the previous 10 years were included. Prospective studies were evaluated for possible inclusion.
Focused question and study objective

The focused question in this systematic review was, “Can wollastonite (CaSiO₃) be used to effectively aid the bone repair process?”

Screening and selection

Review articles, in vivo tests in animals, clinical trials, randomized controlled trials, and controlled clinical trials in English, Portuguese, and Spanish investigating the use of wollastonite in bone fractures were included. Case reports on the use of wollastonite, studies involving only in vitro tests on the use of wollastonite, and articles describing the use of wollastonite in patients with pre-existing systemic conditions were excluded. The articles were selected by two evaluators (AMO and GVOF) working independently, and selection was based on the titles and the abstracts. Articles that were included in the study were evaluated in their entirety. Duplicate articles were excluded.

Data collection process

The formulations used; characteristics of the bone defects; types of treatment performed; clinical, histological, and radiographic results; and statistical analyses performed in the articles retrieved were systematically recorded.

Risk of bias assessment

The methodological quality of the studies included was evaluated both independently and jointly by two evaluators (AMO, GVOF), using the Cochrane collaboration tool for assessing risk of bias, and the PRISMA and the CONSORT statements. The risk of bias was assessed based on the following quality criteria: randomization, standardization of the study execution, use of test and control groups, standardization of the bone defects, statistical analysis, and results obtained. All of these criteria were established as adequate, inadequate, unclear, or not described.

Articles were deemed as presenting low risk of bias when all the criteria were identified and accepted (low likelihood of bias affecting the results), moderate risk of bias when one of the criteria was not found or when there were doubts about the results, and high risk of bias when two or more criteria did not match the parameters selected.

Any discrepancies between the two evaluators were resolved through discussion; when no consensus was reached, a third evaluator was consulted (MSA).

Data analysis

The quality of the studies included in the review was assessed, focusing on the similarities (homogeneity) and differences (heterogeneity) among the studies. GraphPad
Prism 7.0c for Mac (GraphPad Software, La Jolla, CA, USA) was used for data analysis.

Results

After application of the inclusion and exclusion criteria, 48 articles were selected initially.

Specifically, the search using the PICO model, as described in Table 1, yielded 26 articles from MEDLINE/PubMed and 22 articles from BVS published within the past 10 years. After preliminary analysis of the abstracts, 17 articles were selected for full analysis and evaluation, after which seven articles were excluded and 10 articles were selected for detailed analysis (Figure 1).

Only data from in vivo studies were analyzed. Results concerning evaluations of the biomaterial itself (preparation, characteristics, and in vitro analyses) were not included. The main data from the articles selected are shown in Table 2. The articles excluded, along with the reasons for exclusion, are listed in Table 3.

Study characteristics

Among the studies analyzed, wollastonite was used in animal model studies (parietal, femoral, tibial, and radial bones), usually in association with other biomaterials or growth factors, as well as in adapted formulations. Standardized creation of bone defects was performed in nine studies, and in only one study wollastonite was used as an implant coating. No clinical studies were found.

All studies included histological and/or histomorphometric analyses of the samples.
Table 2. Main data from the studies selected.

| Authors, year | Formulation/scaffold | Objectives | Study design | Population | Analyses | Outcomes | Conclusions |
|---------------|----------------------|------------|--------------|------------|----------|----------|-------------|
| Xu et al., 2008 | Porous β-calcium silicate (β-CS) and β-tricalcium phosphate (β-TCP) | Investigate and compare osteogenic property and degradability of β-CS and β-TCP | Two separate circular bone defects (10 mm) in parietal bone randomly filled with porous β-CS and β-TCP ceramics | 12 adult New Zealand white rabbits (n = 4 for each time period) | Micro computed tomography (CT), histomorphometry, scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS) | Micro CT: Decrease in areas and volumes of porous β-CS remarkably higher than porous β-TCP | Quantitative analysis results showed that porous β-CS had a much higher resorption rate and better bone regenerative capacity than β-TCP |
| Sharma et al., 2009 | Coating of apatite-wollastonite (AW)/chitosan | Compare bone response in coated and uncoated titanium implants | Two groups (coated and uncoated implants); tibial defect 14, 21, 35, and 42 days to euthanasia | Rabbits (n = 12) | Radiography, scintigraphy, histopathology, fluorescence labeling, hematology | Radiography: Coated implants suggested expedited healing | AW/chitosan-coated implants have advantages of faster bone healing, increased mechanical strength, and good bone-implant bonding |
| Guo et al., 2012 | Bioactive cement by incorporation of wollastonite nanofibers (WNFs) into calcium phosphate cement (CPC) | Study cell and tissue responses to WNF-CPC and CPC | Femur defect (6 mm) | 24 New Zealand white rabbits (n = 4 for each material and time period) | Histology | WNF-CPC showed excellent biocompatibility, degradability, and osteogenesis, with greater bone-forming efficiency than CPC | WNF-CPC exhibited improved efficiency of bone regeneration |
| Zhang et al., 2013 | Calcium silicate/CPC scaffold (CSPC) with macropores and micropores | Assay osteoinductive properties and bone regeneration efficacy of CPC, CPC/recombinant human bone morphogenetic protein-2 (rhBMP-2) and CPC scaffolds | Study 1: Insertion in muscle pocket to examine ectopic bone formation of CSPC/rhBMP-2 scaffold | Study 1: 48 male C57BL/6 mice (n = 6 for each material and time period) | Study 1: Synchrotron radiation–based micro CT, histology | Study 1: Bone formation in rhBMP-2–loaded groups at 2 weeks and 4 weeks, while no bone formation was observed in either CPC or CSPC group; CSPC/rhBMP-2 induced significantly more new bone formation than CPC/rhBMP-2 in 2 weeks | Compared with CPC, CPC/rhBMP-2 and CSPC scaffolds, rhBMP-2–loaded CSPC scaffold significantly promoted ectopic bone formation and bone regeneration |
|                |                      |            | Study 2: Femur defects (5 × 10 mm) | Study 2: 24 female New Zealand rabbits (n = 12 per group) | Study 2: Micro CT, histology | Study 2: New ingrowth of bone in | These observations indicate that porous CSPC/rhBMP-2 is a promising candidate for bone tissue engineering. | (continued) |
| Authors, year | Formulation/scaffold | Objectives | Study design | Population | Analyses | Outcomes | Conclusions |
|--------------|----------------------|------------|--------------|------------|----------|----------|-------------|
| Lin et al., 2013 | Calcium silicate (CS) and porous Sr-substituted calcium silicate (SrCS) ceramic scaffolds | Compare CS and combination of SrCS scaffolds in osteoporotic bone regeneration | Two bilateral calvarial defects (5 mm each) Randomly filled with CS and SrCS ceramic scaffolds, respectively | 6 ovariectomized Fisher female rats (n=6) | Sequential fluorescence labeling, Microfil perfusion, Micro CT, histology/histomorphometry | For all analyses, newly formed bone area was bigger with greater density in SrCS ceramic scaffolds than in CS group | CS and SrCS showed inhibitory effects on osteoclastogenesis; SrCS presented better results in osteoinductive activity and angiogenesis |
| Lee et al., 2014 | Synthetic bone scaffold based on hydroxyapatite-gelatin-calcium silicate (HGCS), decellularized bone matrix (DECBM), and multipotent adult progenitor cells (MAPCs) | Evaluate potential of HGCS scaffold in bone formation in vivo | Calvarial critical-sized defect Four groups randomized: control (defect only), DECBM, HGCS with and without MAPCs | 12 Sprague-Dawley rats (n=3 per group) | Micro CT, mineral apposition rate (MAR) by fluorescence microscopy, histology | Micro CT: Better results in HGCS + MAPCs group MAR: Interface between host tissue and scaffold of HGCS + MAPCs and HGCS groups with higher MAR values Histology: Bone regeneration prominently better in HGCS + MAPCs group | HGCS had osteoinductive properties and seeding it with MAPCs yielded a synergic effect to enhance bone regeneration in critical-sized defects |
| Li et al., 2014 | Apatite-wollastonite-magnetic glass ceramic/chitosan (A-W-MGC/CS) | Investigate biocompatibility and in vivo osteogenic capability of A-W-MGC/CS with and without bone | Radial bone defects Group 1: A-W-MGC/CS with BMSCs Group 2: A-W-MGC/CS without BMSCs | 18 Japanese white rabbits (n=2 for each material and time period) | SEM, radiography, histology | SEM: Good attachment and growth of BMSCs on A-W-MGC/CS; rate of ossification 90% with A-W-MGC/CS groups versus 40% with A-W-MGC/CS combined with adenovirus–human bone morphogenetic protein-2-green fluorescent protein-transfected | (continued) |
| Authors, year | Formulation/scaffold | Objectives | Study design | Population | Analyses | Outcomes | Conclusions |
|--------------|----------------------|------------|--------------|------------|----------|----------|-------------|
| Lin et al., 2015 | Calcium silicate (CS) and β-tricalcium phosphate (β-TCP) | Investigate biodegradation of CS during bone regeneration; Si excretion from CS and distribution of Si in animal body were also traced | Femur defect (5 mm x 6 mm) | Two groups (CS and β-TCP) | 18 adult male New Zealand white rabbits (n = 3 for each material and time period) | Histology, silica excretion and distribution | CS was safe, bioactive, and biodegradable; CS significantly stimulated bone regeneration compared with β-TCP |
| Sun et al., 2016 | Magnesium (Mg) doping into calcium silicate (CSI), CSI-Mgₓ (x = 6, 10, 14) | Study effect of dilute Mg doping into CSI on osteogenic capacity and mechanical strength of 3D printed CSI-Mgₓ (x = 6, 10, 14) | Four skull defects (8 mm diameter); CSI, CSI-Mgₓ (x = 6, 10, 14); 6 or 12 weeks to euthanasia | 16 New Zealand white rabbits (8 male and 8 female) | Characterization of CSI-Mgₓ ceramic powders and scaffolds, compressive strength evaluation, in vivo skull defect repair evaluation (micro CT, mechanical testing of retrieved samples, histology) | Micro CT: Residual biomaterials decreased and new bone areas increased over time. Highest bone to total volume ratio was in CSI-Mg₁₄ group at week 12 Histomorphometry: Results consistent with micro CT Mechanical testing: Elastoplastic response in CSI-Mg groups at 6 weeks | 3D printed diluted magnesium doping wollastonite porous scaffolds have superiority of both bone regeneration potential and mechanical evolution in repairing thin-wall bone defects |
| Saravanan and Selvamurugan, 2016 | Mesoporous CaSiO₃ or wollastonite (m-WS) | Investigate bone-forming ability of m-WS particles | Three groups (n = 6/group/period); group 1: control (left unfilled), group 2: carbopol, and group 3: carbopol + m-WS were maintained for 2 and 4 weeks with critical-sized tibial defect (3 mm diameter) | 36 male Albino-Wistar rats | Histology, SEM, and EDS | Histology: New bone growth in defect with bone regeneration and integration with host bone tissue were higher at 4 weeks in response to m-WS particles SEM: Drill hole almost filled at 4 weeks in rats treated with m-WS EDS: Confirmed presence of hydroxy carbonate apatite layer in implanted region | Particles promoted deposition of collagen and phosphates, enhancing new bone formation at 4 weeks after implantation |
obtained, and five studies used micro computed tomography as a tool for analysis. Additional methods used in the analyses were scanning electron microscopy and energy-dispersive x-ray spectroscopy, radiography, scintigraphy, fluorescence labeling, Microfil injection compound perfusion (Flow Tech, Inc., Carver, MA, USA), mineral apposition rate, and scanning electron microscopy. All analytic methods rendered useful information. Hematological and urinary excretion analyses did not show relevant changes.

Use of wollastonite was associated with better tissue biocompatibility, faster biomaterial resorption rate, and improved bone repair, especially in the adapted formulations.

**Quality assessment**

Results from the quality assessment of the studies selected for detailed analysis are

| Authors, year          | Randomization | Execution standardization | Test group x control group | Standardization of bone defects | Statistical analysis                |
|------------------------|---------------|---------------------------|---------------------------|----------------------------------|------------------------------------|
| Xu et al., 2008         | ND            | Y                         | Y                         | Y                                | Mean ± SD ANOVA                     |
| Sharma et al., 2009     | ND            | Y                         | Y                         | Y                                | Mean ± SD ANOVA                     |
| Guo et al., 2012        | ND            | Y                         | Y                         | Y                                | Mean ± SD ANOVA                     |
| Zhang et al., 2013      | ND            | Y                         | Y                         | Y                                | Mean ± SD Student's t-test          |
| Lin et al., 2013        | Y             | Y                         | Y                         | Y                                | Mean ± SD ANOVA                     |
| Lee et al., 2014        | Y             | Y                         | Y                         | Y                                | Mean ± SD                           |
| Li et al., 2014         | ND            | Y                         | Y                         | Y                                | Mean ± SD ANOVA                     |
| Lin et al., 2015        | ND            | Y                         | Y                         | Y                                | Mean ± SD ANOVA                     |
| Sun et al., 2016        | ND            | Y                         | Y                         | Y                                | Mean ± SD ANOVA                     |
| Saravanan and Selvamurugan, 2016 | ND            | Y                         | Y                         | Y                                | N                                  |

Y, yes; N, no; ND, not described; SD, standard deviation; ANOVA, analysis of variance.
shown in Table 4. This systematic review followed the CONSORT statement guidelines.15

Discussion

Wollastonite has been studied mainly in preclinical studies aiming to validate this material for clinical applications. Accordingly, in the present systematic review, only animal model studies were found. Wollastonite does not show evidence of carcinogenicity and has been evaluated as a bone substitute because of its biocompatibility, high mechanical resistance, and excellent bioactivity compared with calcium phosphate bioceramics.27 Evidence for these qualities has been previously assessed through various tools, such as micro computed tomography, histomorphometric analysis, scanning electronic microscopy, and others. This was corroborated by the articles included in the present review, which also aimed to verify the osteogenic potential of wollastonite particles.17,21,22

New techniques have been developed for the synthesis of wollastonite, including the use of additives and processing at lower temperatures in order to improve its physical, chemical, and biological properties.18,22,24 Analysis of all the procedures employed to improve the performance of this material underscores the fact that great effort has been placed to this end, as demonstrated in the literature. In addition, structural changes and experiments have been performed to test the full potential of this material; favorable results were observed for the association of wollastonite with recombinant human bone morphogenetic protein-228 and for magnesium-doped wollastonite, both in terms of bone regeneration potential and for improved mechanical properties.19 Moreover, the ability of wollastonite to stimulate the bone regeneration process was compared with β-tricalcium phosphate, a well-known and widely used material.29

De Aza et al.30 verified that materials containing wollastonite (α-CaSiO₃) and pseudowollastonite (β-CaSiO₃) are capable of developing in situ porosity when in contact with physiological fluids, inducing adhesion of osteoblasts and osseointegration in vivo. Synthetic wollastonite displays a greater degree of purity compared to natural wollastonite, which may present other chemical elements in its composition (Ca [Mg, Al][Si, Al]₂O₆). The association of natural or synthetic wollastonite and HA with chemical elements that act as bone turnover cofactors, such as magnesium or zinc, may be worthy of further study with respect to the tissue repair process.2,31 Silica ion deficiency leads to bone malformation. In contrast, during osteogenesis, proliferation of osteoblasts is increased because of the presence of silica ions. Therefore, silica has been proven to be an essential element for bone cell activity.32

Among the studies included in this review (n = 10), we verified that only two (20%) emphasized the importance of randomization,18,19 a procedure that adds reliability to the study and minimizes the risk of bias. Nonetheless, analysis of each study showed that in all of them the execution, research model, and type of defect were standardized. Still, great variability was observed with regard to the characterization of the material used, its association with wollastonite and additives, as well as the amounts, dosage, and chemical changes, rendering the direct comparison among these studies impossible. Moreover, the experimental periods varied greatly; one of the studies did not include statistical analysis, weakening the validity of its findings.23

Greater standardization of the research models, duration of treatment, and materials employed would help to better demonstrate the true potential of wollastonite as a graft material conducive to new bone
formation, despite the fact that all the articles reviewed have reported excellent results in this regard.

Clinical studies should be able to confirm the clinical viability of wollastonite, and verify its association with calcium phosphate ceramics in proportions yet to be established, aiming to improve bone repair. Associations with other bone turnover ion cofactors might also be studied, with the same goal.

Conclusion
The preclinical studies included in this systematic review demonstrate that wollastonite (CaSiO₃) can be used to effectively aid the bone repair process, thus answering the focused question affirmatively. However, great variability was observed among the studies, hindering the precision of this analysis and highlighting the importance of conducting standardized studies.

Ethical approval and patient consent
Not required (human subjects were not involved).

Authors’ contributions
AMO and GVOF developed the systematic review. MSA contributed to the introduction and discussion, in addition to serving as the third reviewer. JMG corrected the manuscript and provided the necessary guidance to ensure the logical sequence of this article.

Availability of data and materials
The datasets generated and/or analyzed in the present study are available from the corresponding author on reasonable request.

Declaration of conflicting interest
The authors declare that there is no conflict of interest.

Funding
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

ORCID iD
Gustavo Vicentis de Oliveira Fernandes https://orcid.org/0000-0003-3022-4390

References
1. Calasans-Maia M, Fernandes GVO, Rossi A, et al. Effect of Hydroxyapatite and Zinc-Containing Hydroxyapatite on Osseous Repair of Critical Size Defect in the Rat Calvaria. Key Eng Mat 2008; 361–363: 1273–1276.
2. Fernandes GVO, Calasans-Maia M, Mitri FF, et al. Histomorphometric Analysis of Bone Repair in Critical Size Defect in Rats Calvaria Treated with Hydroxyapatite and Zinc-Containing Hydroxyapatite 5%. Key Eng Mat 2009; 396–398: 15–18.
3. Matassi F, Nistri L, Paez DC, et al. New biomaterials for bone regeneration. Clin Cases Miner Bone Metab 2011; 8: 21–24.
4. De Aza PN, Luklinska ZB, Anseau MR, et al. Bioactivity of pseudowollastonite in human saliva. J Dent 1999; 27: 107–113.
5. Dufrane D, Delloye C, McKay IJ, et al. Indirect cytotoxicity evaluation of pseudowollastonite. J Mater Sci Mater Med 2003; 14: 33–38.
6. Brown L, Luklinska Z, de Aza PN, et al. Mechanism of Osteoinduction by Pseudowollastonite (psW) Ceramic. In: Proc. 7th World Biomaterials Congress, Sydney, Australia, 17–21 May, 2004, paper no. 681. New York: Curran Associates, Inc.
7. Carrodeguas RG, De Aza AH, De Aza PN, et al. Assessment of natural and synthetic wollastonite as source for bioceeramics preparation. J Biomed Mater Res A 2007; 83: 484–495.
8. Moore WR, Graves SE, Bain GI. Synthetic bone graft substitutes. ANZ J Surg 2001; 71: 354–361.
9. Thompson ID, Hench LL. Mechanical properties of bioactive glasses, glass-
ceramics and composites. *Proc Inst Mech Eng H* 1998; 212: 127–136.

10. Miller SA and Forrest JL. Enhancing your practice through evidence-based decision making: PICO, learning how to ask good questions. *J Evid Base Dent Pract* 2001; 1: 136–141.

11. Needleman IG. A guide to systematic reviews. *J Clin Periodontol* 2002; 29 Suppl. 3: 6–9.

12. Schardt C, Adams MB, Owens T, et al. Utilization of the PICO framework to improve searching PubMed for clinical questions. *BMC Med Inform Decis Mak* 2007; 7: 16.

13. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. *PLoS Med* 2009; 6: 1–6.

14. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Ann Intern Med* 2009; 151: 264–269.

15. Schulz KF, Altman DG and Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. *BMC Med* 2010; 8: 18.

16. Moraschini V and Barboza ESP. Effect of autologous platelet concentrates for alveolar socket preservation: a systematic review. *Int J Oral Maxillofac Surg* 2015; 44: 632–641.

17. Xu S, Lin K, Wang Z, et al. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. *Biomaterials* 2008; 29: 2588–2596.

18. Lin K, Xia L, Li H, et al. Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics. *Biomaterials* 2013; 34: 10028–10042.

19. Sun M, Liu A, Shao H, et al. Systematical Evaluation of Mechanically Strong 3D Printed Diluted Magnesium Doping Wollastonite Scaffolds on Osteogenic Capacity in Rabbit Calvarial Defects. *Sci Rep* 2016; 6: 34029.

20. Lee DJ, Padilla R, Zhang H, et al. Biological Assessment of a Calcium Silicate Incorporated Hydroxyapatite-Gelatin Nanocomposite: A Comparison to Decellularized Bone Matrix. *BioMed Res Int* 2014; 2014: 837524.

21. Sharma S, Patil DJ, Soni VP, et al. Bone healing performance of electrophoretically deposited apatite-wollastonite/chitosan coating on titanium implants in rabbit tibiae. *J Tissue Eng Regen Med* 2009; 3: 501–511.

22. Li C, Wang GX, Zhang Z, et al. Biocompatibility and in vivo osteogenic capability of novel bone tissue engineering scaffold A-W-MGC/CS. *J Orthop Surg Res* 2014; 9: 100.

23. Saravanan S and Selvamurugan N. Bioactive mesoporous wollastonite particles for bone tissue engineering. *J Tissue Eng* 2016; 7: 2041731416680319.

24. Guo H, Wei J, Song W, et al. Wollastonite nanofiber-doped self-setting calcium phosphate bioactive cement for bone tissue regeneration. *Int J Nanomedicine* 2012; 7: 3613–3624.

25. Li HC, Wang DG, Chen CZ, et al. Preparation and characterization of laser cladding wollastonite derived bio ceramic coating on titanium alloy. *Biointerphases* 2015; 10: 031007.

26. Lin K, Liu Y, Huang H, et al. Degradation and silicon excretion of the calcium silicate bioactive ceramics during bone regeneration using rabbit femur defect model. *J Mater Sci: Mater Med* 2015; 26: 197.

27. Wang GC, Lu ZF, Zreiqat, H. Bioceramics for skeletal bone regeneration. In: Mallick K (ed) Bone Substitute Biomaterials. 1st ed. United Kingdom: Woodhead Publishing (Elsevier), 2014, pp.180–216.

28. Zhang J, Zhou H, Yang K, et al. RbBMP-2-loaded calcium silicate/calcium phosphate cement scaffold with hierarchically porous structure for enhanced bone tissue regeneration. *Biomaterials* 2013; 34: 9381–9392.

29. Sponer P, Urban K, Kucera T. Comparison of Apatite-Wollastonite Glass-Ceramic and β-tricalcium Phosphate used as Bone Graft Substitutes after Curettage of Bone Cysts. In: Sikalidis C (ed) *Advances in Ceramics, Electric and Magnetic Ceramics*, 2016 edition.
30. De Aza PN, Luklinska ZB, Anseau M, et al. Morphological studies of pseudowollastonite for medical applications. *J Microscopy* 1996; 182 (Pt 1): 24–31.

31. Costa NMF, Yassuda DH, Sader MS, et al. Osteogenic effect of tricalcium phosphate substituted by magnesium associated with Genderm® membrane in rat calvarial defect model. *Mat Sci Eng C* 2016; 61: 63–71.

32. Jurkić LM, Cepanec I, Pavelić SK, et al. Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy. *Nutr Metab* 2013; 10: 2.