Ab-initio-calculations of the GMR-effect in Fe/V multilayers

A. Moser, U. Krey1, A. Paintner2, B. Zellermann2

Institut für Physik II der Universität Regensburg,
Universitätsstr. 31, D-93040 F.R.G.

October 7, 1997; revised version

Abstract

In a self-consistent semi-empirical numerical approach based on \textit{ab-initio}-calculations for small samples, we evaluate the GMR effect for disordered $(001)-(3\text{–Fe}/3\text{–V})_\infty$ multilayers by means of a Kubo formalism. We consider four different types of disorder arrangements: In case (i) and (ii), the disorder consists in the random interchange of some Fe and V atoms, respectively, at interface layers; in case (iii) in the formation of small groups of three substitutional Fe atoms in a V interface layer and a similar V group in a Fe layer at a different interface; and for case (iv) in the substitution of some V atoms in the innermost V layers by Fe. For cases (i) and (ii), depending on the distribution of the impurities, the GMR effect is enhanced or reduced by increasing disorder, in case (iii) the GMR effect is highest, whereas finally, in case (iv), a negative GMR is obtained ("inverse GMR").

\textit{PACS}: 75.50R-Magnetism in interface structures (incl. layers and superlattice structures); 72.15G-Galvanomagnetic and other magneto-transport effects (metals/alloys);

\textit{KEYWORDS}: GMR-effect; magnetic multilayers; \textit{ab initio} calculations;

*based on the diploma thesis of A. Moser, Regensburg 1997 (present address: Siemens Co., Munich) ; 1 corresponding author; e-mail: krey@rphys1.physik.uni-regensburg.de; 2 present address: Inst. für Physikalische Chemie der LM-Universität München
1 Introduction

The so-called Giant Magnetoresistance effect (GMR-effect) is well-known meanwhile, [1], and several overviews exist on theoretical interpretations, [2, 3, 4]. The effect exists in thin film systems made of metallic ferromagnets separated by nonmagnetic or antiferromagnetic metallic spacers, and consists in the fact that e.g. in such a trilayer or multilayer system, if one starts from a state, where the ferromagnetic films have mutually antiparallel magnetization, one can switch the magnetization directions, by application of a magnetic field, to parallel orientation, which – as a consequence – generally implies a decrease of the electrical resistance. This amounts typically to values around 10% or so, which is already interesting for applications, but in the case of Fe/Cr/Fe trilayers the effect can be as large as 200%, [5].

Thus, the GMR-effect is given by the simple formula

\[
\text{GMR} = \frac{\Gamma_{\uparrow\uparrow}}{\Gamma_{\uparrow\downarrow}} - 1 ,
\]

(1)

where the \(\Gamma_{\uparrow\uparrow}\) and \(\Gamma_{\uparrow\downarrow}\) are the conductances for mutually parallel resp. antiparallel magnetizations. Here one distinguishes between the CPP and CIP geometries, where the current is perpendicular to the planes, or in the plane, respectively.

Considering Eqn. (1), we would like to stress already at this place that in a numerical calculation not \(\Gamma_{\uparrow\uparrow}\) and \(\Gamma_{\uparrow\downarrow}\) separately, but only their ratio \(\Gamma_{\uparrow\uparrow}/\Gamma_{\uparrow\downarrow}\) must come out correctly.

A considerable GMR effect can already exist in the ballistic regime, i.e. without any impurities, due to the fact that the reflectivity of the electrons at the interfaces changes with the above-mentioned switch. This is shown by the \textit{ab initio} calculation of Schep \textit{et al.} for Co/Cu-multilayers in [6], and by recent model calculations of Krompiewski \textit{et al.}, [7, 8]. But one of the main problems, namely the question, how impurities and disorder influence the strength and perhaps even the sign of the GMR in a \textit{realistic} system with non-ideal interfaces and significant impurity scattering, is not answered by theories for the ballistic case. For example, it seems almost natural to state that an increase of spin-dependent scattering at the interface should lead to an \textit{enhancement} of the GMR; on the other hand one can also imagine that too much disorder at the interface should \textit{reduce} the difference of the
spin-dependent reflexion properties for the two cases considered above: Thus, without detailed calculations for different systems it remains an open question, whether the GMR is enhanced or reduced by an increasing amount of impurities. Moreover, the answer on this question may depend on the arrangement of the impurities.

In the present communication, we study the influence of disorder on the GMR for bcc-(001)-(Fe-3/V-3)\(\infty\) multilayers, both for CPP and CIP geometry, with four different situations (see below). Our extensive numerical calculations employ a self-consistent semi-empirical approach, which also works for non-ideal systems with impurities. We have applied a similar approach already earlier for almost-ab-initio-calculations of the magnetic and transport properties of strongly disordered or even amorphous systems. Both the electronic structure, \[9, 10, 11\], and the transport properties of the systems, \[11, 12\], have been calculated, the transport properties directly from the Kubo formula, and separated into contributions from the up-spin and down-spin carriers. We stress that the Kubo approach is rigorous in principle, and does not invoke the usual Boltzmann approximations. Instead, already from the beginning the disorder of the system is fully taken into account: In particular, in our paper the eigenvalues and eigenvectors of the electronic Hamiltonian are always calculated for the disordered system, before the Kubo formula is applied (see below); in the language of diagrammatic theories this means that the vertex corrections are automatically included.

However, all this is possible only for rather small systems: Our computer samples comprise stacks of 12 non-equivalent, partially disordered Fe– or V–monolayers with 4\(\times\)4 atoms per layer, and with periodic boundary conditions in all three directions. Thus, altogether we have 192 atoms, with 9 orbitals per atom (five 3d–, three 4p–, and one 4s–orbital); i.e. for fixed spin projection \(s = \pm 1\) of the electron we diagonalize a Hamiltonian with 1728 lines and columns. After each diagonalization, the expectation values of the local occupations and local moments for every orbital are calculated, and the Hamiltonians are updated, until finally, after a lot of iterations of the procedure, self-consistency is obtained with respect to all local charge and spin expectations (see below). Also the Fermi energies \(E_f(s)\) are determined self-consistently. However, in view of the smallness of our systems, the
results suffer from the fact that in the numerical calculation we have a discrete spectrum and not a continuum, so that evaluation of histograms instead of continuous functions becomes necessary. (This is different with the technique of Asano et al., [13], which is however not applicable to our system, see below.) Furthermore, one should also be aware of the fact that the T=0 conductance of a mesoscopic physical system is not self-averaging: One needs to average over different samples to obtain significant “typical results”, although with large error bars. But even for these small systems, such results can be obtained, as seen below. This has also been exemplified in former calculations of the resistivity in the magnetic state of disordered systems, [11, 12].

In the following sections we describe at first our formalism, and then our results for (001)-(3–Fe/3–V)∞-multilayers with four different types of disorder: In cases (i) and (ii), we consider interchanges of some nearest-neighbour Fe and V atoms at the interface, whereas in the particular case (iii) we deal with the effect of small Fe “islands” of three Fe atoms in a V interface layer and vice versa; finally, the case (iv) of a substitutional Fe impurity in an inner V layer is considered.

In case (i), we treat the standard situation that the impurities are randomly distributed among all four nonequivalent interfaces, whereas in case (ii) we assume that the impurities are concentrated at only one of the interfaces. Concerning (i), we find at first – as expected – an increase of the GMR with increasing impurity concentration, namely from GMR ~ 60% for an impurity concentration of $n_{\text{imp}} \approx 1\%$ to GMR ~ 120% for $n_{\text{imp}} \approx 3\%$ and $\approx 4\%$, whereas in case (ii) a reduction of the GMR from ~ 60% (for $n_{\text{imp}} \approx 1\%$) to ~ 0% (for $n_{\text{imp}} \approx 5\%$) is obtained. Also in case (i) the GMR decreases again, if n_{imp} becomes as large as $\approx 5\%$. This different behaviour is discussed below.

For the particular case (iii), see above, we get the largest values of the GMR (~ 250 to 300%). Finally, in case (iv), the Fe impurity in the inner V layer is significantly magnetized by $-0.5 \mu_B$, i.e. antiparallel to the Fe layers, if these are aligned in parallel (see below); whereas the Fe impurity is nonmagnetic, if the magnetization directions of the Fe films are mutually antiparallel. In the first-mentioned case the impurity scattering is stronger, which implies that in case (iv) we have a negative GMR (“inverse GMR”) of ~ (-50%). This is true for both the CPP and the CIP geometries, although quantitatively the results are somewhat
different for these geometries (see below).

A negative GMR has already been observed in \[14\], but for ternary systems, whereas the present system is binary.

\section{Formalism}

We use our realistic self-consistent semi-empirical LCAO approach already described in \[15, 11\], i.e. with 9 orthogonalized orbitals per atom (five 3d-, three 4p- and one 4s-orbital) and a collinear magnetic state described by the equations

\begin{equation}
\sum_{m_\beta} H_{l\alpha,m_\beta} c_{m_\beta,s}^{(\nu)} + \frac{U_{l\alpha}}{2} \left(n_{l\alpha\uparrow} + n_{l\alpha\downarrow} - 2 n_{l\alpha}^{\text{para}} \right) c_{l\alpha,s}^{(\nu)} - \frac{U_{l\alpha}}{2} \left(n_{l\alpha\uparrow} - n_{l\alpha\downarrow} \right) \cdot s \cdot c_{l\alpha,s}^{(\nu)} = \epsilon_{\nu}(s) \cdot c_{l\alpha,s}^{(\nu)}.
\end{equation}

In Equ. (2) the $c_{l\alpha,s}^{(\nu)}$ are the probability amplitudes for the event that an electron with spin s (= ±1) and single-particle energy $\epsilon_{\nu}(s)$ occupies an orbital α (= 1, ..., 9) at the site l. Here $\nu = 1, ..., N_l \cdot N_\alpha$, where the number of atoms is $N_l = 192$ and the number of orbitals per atom $N_\alpha = 9$. The orbitals are assumed to be orthonormalized, and the real-symmetric matrix $H_{l\alpha,m_\beta}$ describes the paramagnetic state of the disordered system. Altogether 26 neighbours, i.e. up to the third shell, are taken into account for each site. The matrix elements are derived from Papaconstantopoulos, \[17\], in the approximation with two-center integrals: We assume that we have a bcc-structure with an averaged lattice constant, $a = (a_{Fe} + a_{V})/2$, with $a_{Fe} = 2.87 ~\text{Å}$ and $a_{V} = 3.02 ~\text{Å}$. Thus it is only necessary to modify the hopping matrices of Papaconstantopoulos according to the modified positions, i.e. for the two-center integrals one uses relations as $I_{dd}(r) \propto r^{-5}$, see \[15, 11\]; additionally, if site l is occupied by a Fe atom, but site m by V, we assume as usual $H_{l\alpha,m_\beta}^{Fe,V} = (H_{l\alpha,m_\beta}^{Fe,Fe} \cdot H_{l\alpha,m_\beta}^{V,V})^{1/2}$. Finally, to get agreement with \textit{ab initio} calculations, see below, we have used a common shift of $\Delta E = 0.5 ~\text{eV}$ for the Fe d-levels with respect to the values in \[10\], whereas for V no shift was assumed, and for the Hubbard-energies we have taken $U_{l\alpha} = 5.8$ and 2.58 eV for the Fe and V d-orbitals, respectively, $U_{l\alpha} = 0$ otherwise.
Concerning the expectation values in Equ. (2), we require self-consistency in the magnetic state, again for the disordered system, namely for every site and every d-orbital we demand that $\langle n_{\ell\alpha,s} \rangle \equiv \sum_{\nu=1}^{\nu_f(s)} |c_{\ell\alpha,s}^{(\nu)}|^2$. Here $\nu_f(s)$ counts the highest occupied single-particle eigenstate for $s = \pm 1$, respectively.

In Fig. 1, the results for the magnetic moments of the different layers for an ideal sample of our system are presented, in comparison with similar results obtained by us for the same system with an \textit{ab-initio} LMTO method, [17]. Obviously, the agreement obtained is quite convincing and should give confidence to the reliability of our self-consistent semi-empirical method. Moreover, the following results from Fig. 1 deserve attention: In the central Fe layers, the Fe moments are enhanced to $2.8 \mu B$ with respect to the bulk value of $2.2 \mu B$, whereas at the interface they are reduced to $1.6 \mu B$. On the other hand, Vanadium, which is nonmagnetic in the bulk, has at the interface layers a moment of $(-0.5 \mu B)$, i.e. antiferromagnetically coupled to Fe. Already the second V layer, however, is practically nonmagnetic. These results are similar to those obtained by the first-principles LMTO calculations of F. Süß, [18, 19].

3 The Kubo formalism

The resistivity is calculated by means of the Kubo formula, [20], namely

$$\sigma_{xx}^{(s)} = \frac{e^2 \pi}{h \Omega} \left(g^{(s)}(E_f) \right)^2 (\Delta E(s))^2 |\langle f, s | x | i, s \rangle|^2. \quad (3)$$

Here Ω is the volume of the elementary cell of 192 atoms, $\sigma_{xx}^{(s)}$ the contribution of electrons with spin direction $s = \pm 1$ to the conductivity in x-direction, $g^{(s)}(E_f)$ the value of the spin-dependent density of states of the disordered system at the Fermi energy $E_f(s)$; $|i, s\rangle$ and $|f, s\rangle$ are the exact eigenstates of the full Hamiltonian, again with impurities, with single-particle eigenvalues just above above and below $E_f(s)$, respectively, see below; $\langle ... \rangle$ denotes the quantum mechanical expectation value, and the overline denotes an average over 10 samples. $\Delta E(s)$ is a typical energy difference involved in the transition from i to f. To be precise: We choose $\Delta E(s) = e^{\nu_f+1}(s) - e^{\nu_f-1}(s)$,
if the highest occupied single-particle eigenstate of spin s has single-particle energy $e^{\nu}(s)$. Furthermore: although the eigenstates of our Hamiltonian have been calculated with periodic boundary conditions in x, y, and z-direction, we assume in Eqn. (3) for the calculation of the resistivity that the resistance is measured with parallel planar contacts of a distance as small as our cluster-sizes $\Delta x = \Delta y = 4a = 11.78 \, \text{Å}$ and $\Delta z = 12 \cdot (a/2) = 17.67 \, \text{Å}$, respectively. Thus, even without impurities we assume an inelastic dephasing-length of this short size, i.e. by a factor (2/3) shorter in x- and y-directions than for the z-direction. As a consequence of this factor (2/3), our in-plane conductivities should be scaled by a factor $(3/2)^2 = 2.25$, if a direct comparison with the perpendicular conductivity is desired. In any case, these correction factors do not enter the GMR, since the ratio $\Gamma^{\uparrow\uparrow}/\Gamma^{\uparrow\downarrow}$ in Eqn. (1) does not depend on them.

Concerning the average of Eqn. (3), for $|i, s\rangle$ and $|f, s\rangle$ we take the $(n + 1)$ highest occupied and n lowest unoccupied states, respectively, for given s, with $n=1,...,5$ in Fig. 2 below, $n=1$ otherwise. Additionally, as it is usual with the Kubo-formalism for the dc-conductivity, although it would be rigorous only in the thermodynamic limit, we also include the case $i=f$ in eqn. (3), so that the average in this equation is dominated by the $2n + 1$ diagonal terms. Finally, the origin of our coordinates is fixed in such a way that the matrix element $\langle i, s | x_k | i, s \rangle$ would give the actual length of our elementary cell in k-direction ($k = x, y, z$), i.e. the distance of the contacts, for constant $|i, s\rangle$.

4 Results for the GMR

4.1 Pure sample, cases (i) and (ii), and some remarks

In Fig. 2, which only should be considered as a check of the accuracy of our method and also serves for the statement (see below) that without impurities we obtain $\text{GMR} \approx 0$, we present our (fictitious) results for the CPP- resp. CIP-conductivities of pure samples obtained with the different dephasing lengths of $\Delta z = 17.67 \, \text{Å}$ and $\Delta x = \Delta y = 11.78 \, \text{Å}$, corresponding to our sample size, see above. Taking the average over the five cases of $(2n + 1)$ one gets the dotted lines, from which one concludes $\rho_{\text{CIP}}/\rho_{\text{CPP}} \sim 2$, as expected from $(\Delta z/\Delta x)^2 = 2.25$. The error bars of our results amount to $\sim \pm 20\%$. Since these results apply
both to the cases of mutually antiparallel resp. parallel magnetizations of the Fe films, we conclude that in our case the GMR-effect in the pure systems vanishes within our accuracy. For the disordered systems this will be different, see below.

Additionally, at this place the following remarks are in order:

1.) It is not important that due to our short dephasing length our values for ρ_{CPP} and ρ_{CIP} are ~ 2 resp. ~ 4 times larger than the estimates, which one would expect at room temperature, \[2\]: Since these rescaling factors of ~ 2 resp. ~ 4 do not depend on whether one considers $\Gamma_{\uparrow \uparrow}$ or $\Gamma_{\uparrow \downarrow}$, the GMR itself should be insensitive against these rescalings, as already mentioned in connection with Eqn. \[1\].

2.) This is supported by the observation that the numerical results for the resistivities in the magnetic state of disordered Fe/Ni/Mn alloys in our former paper \[11\] have also come out too large just by a constant factor ~ 5, in spite of the fact that with increasing Mn concentration the conductance decreased considerably. However again, apart from the constant factor, the concentration dependence of the experimental values was well-reproduced in \[11\] with our formalism.

3.) Y. Asano et al., \[13\], have performed a schematic model calculation for pure and impure systems with only s-bands, only nearest-neighbour hopping in simple-cubic arrays, and where the magnetism was not treated self-consistently, but replaced by a spin-dependent constant potential $V_{\uparrow} = -0.5$, $V_{\downarrow} = +0.5$ for the magnetic atoms, whereas for the nonmagnetic atoms $V \equiv +0.5$ was chosen. Finally, even the Fermi energy was arbitrarily fixed at $E_f = 0$. (Here the magnitude of the nearest-neighbour hopping integral has been used as energy unit.) Due to these simplifications, Asano et al. could use a recursive technique, where planes with 12×12 atoms could be treated, and 'perfect leads' could be attached to the sample in the current direction. Although within our group this powerful technique has already been extended to extremely accurate model calculations of the CPP-GMR and of a corresponding Giant Magneto-Thermopower in pure s-band tight-binding samples with infinite planes, \[4\], the method is not applicable to the present system, since s-, p-, and d-bands, self-consistency, and interactions up to third-nearest neighbours, are needed. However at the end we will discuss our results in the light of \[13\].

After these preparations we now consider the impure systems: In

8
Fig. 3, we present the results for the GMR obtained with Eqn. (3) and Eqn. (4) for case (i), i.e. impurities distributed randomly across the four interfaces (see below). The concentrations considered correspond to 1, 2, ..., 5 interchanged impurity pairs, e.g. V impurities in a Fe plane and vice versa. Since the volume corresponds to 192 sites, and since to every V impurity position in a Fe plane there is a neighbouring Fe impurity in the adjacent V plane, the impurity concentrations range from 1.04% to 5.2%, and we have produced our random samples in such a way that for $n_{\text{imp}} \leq 4.16\%$ the impurity pairs are situated at different interfaces, whereas for $n_{\text{imp}} = 5.2\%$ resp. 6.24% at one of the four interfaces (resp. two of them) two pairs are situated. The error bars in Fig. 3 result from the average over 10 samples, and the evaluation of Eqn. (3) has been performed as in Fig. 2, but with $(2n+1)=3$, separately for $s = \pm 1$.

It is essential that in spite of the large error bars there is a clear trend in the concentration dependence in Fig. 3, namely at first a roughly linear increase from GMR $\sim 60\%$ at $n_{\text{imp}} \approx 1\%$ to GMR $\sim 120\%$ at $n_{\text{imp}} \approx 4\%$, which is then followed by a decrease to GMR $\sim 50\%$ for $n_{\text{imp}} \approx 5\%$. (Almost the same results, GMR$=32\%$ and 53% for the CIP and CPP cases respectively, are obtained with 6% impurities.)

The small difference of the CPP-GMR with respect to the CIP-GMR is insignificant; what is only important is that the behaviour of the GMR with increasing concentration is the same for both cases.

The increase observed up to $n_{\text{imp}} = 4.2\%$ is what one would expect by an incoherent superposition of the effects from single impurities. However, for $n_{\text{imp}} = 5.24\%$, as already mentioned, one of the interfaces must host two impurity pairs. That this fact leads to a decrease of the GMR, is in agreement with the behaviour in case (ii), which is presented in Fig. 4: In this case, where – as discussed above – the impurities are concentrated at only one of the four interfaces, the GMR decreases from $\sim 60\%$ for $\approx 1\%$ impurities down to GMR $\sim 0\%$ at $n_{\text{imp}} \approx 5\%$.

The different behaviour of cases (i) and (ii) is not easily understood, since it involves the ratio $\Gamma^{\uparrow\downarrow}/\Gamma^{\uparrow\downarrow}$ of two conductances: According to details of our results, which we do not present as plots, [23], both $\Gamma^{\uparrow\downarrow}$ and $\Gamma^{\uparrow\downarrow}$ decrease significantly with increasing n_{imp}. Concerning $\Gamma^{\uparrow\downarrow}$, we find that this decrease is roughly the same for the cases (i) and (ii), respectively: E.g. $\sigma^{\uparrow\downarrow}_{\text{CIP}}$ decreases from $\sim 11\times10^{-5}$ (Ohm cm)$^{-1}$ at
$n_{\text{imp}} \approx 1\%$ to $\sim 6 \times 10^{-5}$ (Ohm cm)$^{-1}$ at $n_{\text{imp}} \approx 5\%$, both for (i) and (ii), in spite of the different spatial impurity distributions of these cases. In contrast, $\Gamma^{\uparrow \uparrow}$ is found to be quite sensitive to the spatial distribution of the impurities and thus essentially responsible for the different behaviour of the GMR: In case (i) the decay is rather weak, e.g. $\sigma_{\text{CIP}}^{\uparrow \uparrow}$ decays in a 'sub-Boltzmannian way', namely $\propto (7.67 + 9.33 \cdot n_{\text{imp}}^{-1})$, from 17×10^{5} (Ohm cm)$^{-1}$ at $n_{\text{imp}} \approx 1\%$ to 10×10^{5} (Ohm cm)$^{-1}$ at $n_{\text{imp}} \approx 4\%$, whereas in case (ii), where the impurity pairs are randomly concentrated at one of our four interfaces, the decay is much faster, namely from 17×10^{5} (Ohm cm)$^{-1}$ down to to 5×10^{5} (Ohm cm)$^{-1}$, and essentially 'non-Boltzmannian', namely linear in n_{imp}^{-1} instead of n_{imp}^{-1}. This means that vertex corrections and multiple scattering could play an essential role for $\Gamma^{\uparrow \uparrow}$ in case (ii), which is not unreasonable in view of the essentially two-dimensional nature of the scattering for that case, and the erratic magnetization profiles obtained in Fig. 6 below:

4.2 Magnetic-moment profiles

In Fig. 5 and Fig. 6 we present in fact the distribution of magnetic moments in disordered Fe and V interface planes with one resp. five (non-neighbouring) interdiffusions at the same interface. As one can see from these plots, there is a significant reduction of the Fe moments in the vicinity of the V impurity. Also the V impurities in the Fe planes have a considerable magnetic moment of $\sim -0.8 \, \mu_B$, much higher than in the pure V interface plane, where the V moment is only $\sim -0.25 \, \mu_B$. This agrees with first-principles calculations of Coehoorn, [24].

4.3 Cases (iii) and (iv)

We get a much larger GMR effect than that obtained with cases (i) and (ii) by replacing the interchange process of Fe and V neighbours at the interface by the following particular 'island substitution' process (iii): We substitute randomly three neighbouring V atoms in a V interface layer by Fe, and at a different interface in a Fe layer independently three neighbouring Fe atoms by V, which corresponds to $\sim 3.12\%$ impurities. Of course there are many possibilities of such a simultaneous random substitution of a small 'island' of three neighbouring Fe interface atoms by V and three neighbouring V atoms at a different interface by Fe,
e.g. atoms 1,2,3 or 2,5,6 or 2,6,10 or ... in Fig. 5a. Averaging over 10 random samples, we obtain a CIP-GMR as large as \((265 \pm 120)\%\) and a CPP-GMR as large as \((300 \pm 170)\%\). These high values with large scatter, which should be contrasted to GMR\(\sim 120\%\) obtained for \(n_{\text{imp}} \approx 3\%\) in case (i), are not yet understood at present, however it is clear that the differences point again to 'non-Boltzmannian' behaviour and the possible role of vertex corrections. Probably it is important that the interfaces become more "diffuse" for 'interchange impurities' of type (i) and (ii), whereas in case (iii), although the width of the Fe films (V films) varies locally, the interface remains well-defined in a sense.

Finally, in case (iv), we discuss the situation that there is just 1 Fe substitutional impurity (i.e. a concentration of 0.5\%) in one of the two central V planes of our sample. In this case, if adjacent Fe films are magnetized in opposite direction, the Fe moment at the central V layer vanishes on symmetry grounds; but if the Fe films are aligned in parallel, there is a considerable moment induced at the Fe impurity:

In Fig. 7 we present the magnetization profile in the relevant central V layer for this case of mutually parallel magnetic polarizations of the adjacent Fe films. As already mentioned for the pure system, the V polarization in the central plane is almost negligibly small, but the Fe impurity moment is not: Instead, it is magnetized antiparallel to the adjacent Fe films, with \(\sim -0.5 \mu_B\), whereas in the Fe films themselves one has the results of Fig. 1, namely \(\mu \sim 1.5\) and \(2.5 \mu_B\) at the interfacial resp. central Fe layers. From this large induced negative polarization one can imagine that the present Fe impurity in "bulk" V induces strong scattering effects in the case of mutually parallel polarization of the Fe films, which is unusual, since now one expects a negative GMR. Averaging with respect to the few different possibilities to place the impurity with respect to the contacts in Eqn. (3), we get in fact (up to \(\sim 20\%\) accuracy) the following results: CIP-GMR\(\sim -47\%\) and CPP-GMR\(\sim -61\%\).

4.4 Discussion

Although a direct comparison is not possible in view of the differences discussed above, we discuss our results in the light of the paper [13] of Asano et al. As already mentioned, these authors treat a a very
simplified s-band model only, but for larger systems, with attached ideal leads, and with a powerful recursion method.

At first we stress that the values for the CPP-GMR in [13] are of the same order as ours in case (i), namely $\sim 45\%$ (compared to our 60\%) for $n_{\text{imp}} \approx 1\%$. This corresponds to the "interface roughness" $\lambda \approx 0.06$ in [13], although these authors do not generate the impurities by pairwise interchange, but by simple substitutions in interface layers, which has a less drastic effect on the local moments, see [24]. But with increasing interface roughness, in [13] the CPP-GMR only decreases rather slowly, e.g. down to $\sim 35\%$ at $\lambda \approx 0.3$, while the CIP-GMR, which vanishes for the pure system, increases still more slowly. Only, if at all sites i the potentials $V_s(i)$ are additionally randomized by addition of terms $\delta V_s(i)$, which are uniformly and independently distributed between $\pm W_B/2$, Asano et al. obtain a more drastic decrease of both GMRs with increasing W_B, which becomes very rapid for $W_B > 1$.

Thus there are two main differences to our results: a) Whereas in our case the CIP-GMR is only slightly lower than the CPP-GMR (see above), in [13] it always remains significantly smaller, e.g. by a factor $\lesssim 0.25$ for $\lambda \approx 0.2$. b) Concerning the CPP-GMR, according to [13], for the pure samples it is even somewhat higher than with impurities, whereas in our case it practically vanishes for pure samples (see above): These differences are due to the fact that in [13] the sample is attached to perfect leads, i.e. the dephasing length is ∞ and the energy spectrum continuous, and the extension of the samples in x- and y-direction is rather large, whereas in our case we assume periodic boundary conditions, but an inelastic dephasing length as short as our sample sizes, and similarly small widths Δx and Δy.

Therefore, our case $n_{\text{imp}} = 0$ does not correspond to the usual 'ballistic situation', in contrast to [13]. However, for our disordered systems the elastic scattering lengths are as short as (or even shorter than) the inelastic dephasing length, and for the GMR of our small and essentially cubic samples, the distinction between 'longitudinal' and 'perpendicular' may become blurred in the presence of impurities and short inelastic dephasing.

The essential point however seems to be the following: According to [13], disorder and impurities apparently always reduce the CPP-GMR, whereas for our small systems with the strong 'magnetic contrast' of
Fe and V and the presence of strongly different local situations, also an increase can happen, and even a negative GMR may be possible. Actually however, in case (i) and (ii), if there are two or more impurities at an interface plane, i.e. for $n_{\text{imp}} \geq 1.04\%$ in case (ii), or for $n_{\text{imp}} \geq 5.2\%$ in case (i), also in our results the GMR always decreases with increasing disorder.

Experimentally it has been found in [26] that increasing the interface roughness by Xe$^+$ irradiation leads to a significant enhancement of the GMR, however beyond a certain irradiation dose the GMR decreased again, which would fit to our main scenario (i).

5 Conclusions

We have applied a self-consistent semi-empirical almost ab-initio approach to small samples, to calculate the magnetic properties and the CIP- and CPP-GMR effects for (001)-(3–Fe/3–V)$_\infty$ multilayers, with impurities generated by randomly interchanging neighbouring Fe and V atoms (i) at all four interfaces, and (ii) only one of the interfaces, for impurity concentrations ranging from 1% to 5% (sometimes 6%). In case (i) we observed an increase of the GMR from $\sim 60\%$ for 1% to $\sim 120\%$ at 4% impurities, followed by a decrease back to $\sim 50\%$ for 5 and 6% impurities, whereas in case (ii), we have found a decrease of the GMR from $\sim 60\%$ for 1% to ~ 0 at 5% impurities. Still much larger GMR values of ~ 250 to $\sim 300\%$ have been obtained in case (iii) for impure systems with small ”islands” of three randomly chosen neighbouring Fe substitutions in a V interface layer and simultaneous, but independent V substitutions in a Fe layer at a different interface, which corresponds to $\approx 3\%$ impurities. Finally, in case (iv), we considered Fe impurities in ”bulk” V, by replacing one of 16 V atoms in one of two central V layers by Fe. This leads in our calculation to a negative GMR of $\sim (-50\%)$. It is remarkable that here a negative (=”inverse”) GMR has been obtained in a binary system, whereas hitherto this was observed only in ternary systems [14].

Of course our results should be taken with care: One should be aware of the smallness of the systems (192 atoms), the small ‘dephasing distances’ between the voltage contacts ($\Delta x = \Delta y \approx 12 \text{ Å}$, $\Delta z \approx 18 \text{ Å}$), the large number of strongly reflecting Fe/V-interfaces (two of three
monolayers are interface layers), the small concentrations of strongly scattering impurities involved (up to 5% only, Fe impurities in V and vice versa), and the large error bars of the sample averages. However in spite of these caveats, the results seem to justify the statement that the influence of magnetic impurity scattering on the GMR may be more complicated than expected.

Acknowledgements

The authors would like to thank S. Krompiewski, F. Süss and M. Böhm for valuable discussions. The computations have been performed at the computing centers of the university at Regensburg, the LRZ in Munich and the HLRZ in Jülich.

References

[1] M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Frederich, and J. Chazelas, Phys. Rev. Lett. 61 (1988) 2472.

[2] P.M. Levy, Shufeng Zhang, J. Magn. Magn. Mater. 164 (1996) 284.

[3] I. Mertig, P. Zahn, M. Richter, H. Eschrig, R. Zeller, P. Dederichs, J. Magn. Magn. Mater. 151 (1995)

[4] P. Zahn and I. Mertig, M. Richter and H. Eschrig, Phys. Rev. Lett. 75 (1995) 2996.

[5] G. Binasch, P.Grünberg, F.Saurebach and W. Zinn, Phys. Rev. B39 (1989) 4828.

[6] K.M. Schep, P.J. Kelly, and G.E.W. Bauer, Phys. Rev. Lett, 74 (1995) 586; G.E.W. Bauer, K.M. Schep, and P.J. Kelly, J. Magn. Magn. Mater. 151 (1995) 369.

[7] S. Krompiewski and U. Krey, Phys. Rev. B54 (1996) 11961.

[8] S. Krompiewski, M. Zwierzycki, and U. Krey, J. Phys. CM 9 (1997), 7135.
[9] U. Krey, S. Krompiewski, and U. Krauss, J. Magn. Magn. Mater. 86 (1990) 85.

[10] U. Krey, U. Krauss, and S. Krompiewski, J. Magn. Magn. Mater. 103 (1992) 37.

[11] A. Paintner, F. Süss, and U. Krey, J. Magn. Magn. Mater. 154 (1996) 107.

[12] U. Krey, U. Krauss, S. Krompiewski, and T. Stobiecki, J. Magn. Magn. Mater. 116 (1992) L7.

[13] Y. Asano, A. Oguri, and S. Maekawa, Phys. Rev. B48 (1993) 6192.

[14] J. Binder, P. Zahn, and I. Mertig, J. Magn. Magn. Mater. 100 (1997) 100.

[15] F. Süss, U. Krey, J. Magn. Magn. Mater. 125 (1993) 351.

[16] D.A. Papaconstantopoulos, Handbook of the Bandstructure of Elemental Solids (Plenum Press, New York 1986).

[17] O.K. Andersen, O. Jepsen, and D. Glötzel, in: Highlights in Condensed Matter Theory, Eds. F. Bassani, F. Fumi, and M.P. Tosi (North Holland, New York, 1985), p.11. We would like to thank Prof. O.K. Anderson for the possibility to use his LMTO package.

[18] F. Süss, U. Krey, and S. Krompiewski, Acta Phys. Pol. A91 (1997) 281.

[19] F. Süss, PhD thesis, Regensburg 1996.

[20] N.F. Mott and E.A. Davis, Electronic Processes in non-crystalline materials, Clarendon Press, Oxford 1979.

[21] The expected values are $\rho_{CPP} \approx (\rho_{Fe} + \rho_{V})/2 \approx 14 \mu\text{Ohm cm}$ and $\rho_{CIP} \approx 2\rho_{V}\rho_{Fe}/(\rho_{Fe} + \rho_{V}) \approx 12 \mu\text{Ohm cm}$, obtained with $\rho_{Fe}=8.6$ $\mu\text{Ohm cm}$ and $\rho_{V}=19 \mu\text{Ohm cm}$, and the values calculated from Fig.2 are $\rho_{CPP} \approx 24 \mu\text{Ohm cm}$ and $\rho_{CIP} \approx 50 \mu\text{Ohm cm}$.

15
[22] J. Bass, in: Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, Vol. 15a, Springer-Verlag, Berlin-Heidelberg-New York 1982, p. 1.

[23] A. Moser, Diploma thesis, University of Regensburg 1991, unpublished.

[24] R. Coehoorn, J. Magn. Magn. Mater. 151 (1995) 341.

[25] J. Pirnay, U. Krey, and S. Krompiewski, J. Magn. Magn. Mater. 93 (1991) 267

[26] D.M. Kelly, I. Schuller, V. Korenivski, K.V. Rao, Kim K. Larsen, J. Bottiger, E.M. Gyorgy, and R.B. Van Dover, Phys. Rev. B50 (1994) 3481
Figure Captions

Fig. 1 Comparison of the magnetic moments of the pure (001)-(3–Fe/3–V)∞ multilayers with a) mutually parallel resp. b) antiparallel magnetization of the Fe moments, obtained with the ab-initio LMTO program (empty squares) and our self-consistent semi-empirical LCAO approach (full squares). Our elementary cell consists of altogether 12 planes with 16 atoms each, and periodic boundary conditions in x-, y-, and z-direction.

Fig. 2: Conductivities of the pure (001)-(3–Fe/3–V)∞ multilayers, with contacts as described in the text. "Ferromagnetic" resp. "antiferromagnetic" means that the magnetization directions of the Fe layers are mutually parallel resp. antiparallel. The number (2n+1) of contributing states for given s, in the vicinity of the spin-dependent Fermi-energy $E_f(s)$, ranges from 3 to 11. The dotted lines represent the averages of the five cases of (2n+1). The apparent difference between the CPP and CIP conductivities ("current perpendicular to the planes" and "current in the planes") is not realistic: It results simply from the different distances of the contacts for CIP and CPP, and can be scaled away (see the text). Finally, within our accuracy, the GMR is zero for the present pure system, i.e. the results for the different mutual magnetizations are practically identical. For further details see the text.

Fig. 3: CIP- and CPP-GMR (see Equ. (1)) for impurity distributions of class (i). This class corresponds to "interchange impurities" concentrated at up to four different interfaces, n with 16 sites per plane. For concentrations of up to 4.16%, every (Fe-V) pair of interchanged atoms has its own interface, whereas in case of 5.2% impurities, at one of four interfaces there are not one, but two of such (Fe-V) pairs. Note that for this class the GMR is mainly increasing with the impurity concentration.
Fig. 4: The same as Fig. 3, however for impurity distributions of class (ii). This class corresponds to "interchange impurities" concentrated at only one of four interfaces with 16 sites per plane; i.e. for (Fe-V)-pairs at the "impure interface", the Fe-atoms are substituted by V and \textit{vice versa}. Note that for this class the GMR is decreasing with increasing impurity concentration.

Fig. 5: In this figure, the spatial distribution of the magnetic moments is presented for a Fe interface plane with one V impurity (Fig. 5b) and for a V interface plane with one Fe impurity (Fig. 5c). The relation between the numbers 1,2,...,16 given to the atoms and their positions in space follows from Fig. 5a.

Fig. 6: The same as in Fig. 5, however for interface planes with 5 impurities (out of 16 sites).

Fig. 7: The same as in Fig. 5, but for case (iv), i.e. there is now only one Fe impurity in a central V plane. The Fe films are magnetized in parallel ("ferromagnetic coupling"). In this case there results a negative GMR, see the text.
Fig. 1a

Ferromagnetic coupling

\[\mu / \mu_B \]

-3 -2 -1 0 1 2 3

Fe Fe Fe V V V Fe Fe Fe V V V

LMTO
LCAO

Fe Fe Fe V V V Fe Fe Fe V V V
antiferromagnetic coupling

![Graph showing antiferromagnetic coupling with Fe and V elements and LCAO and LMTO methods.](image)
Fig. 2a
Fig. 2b: Graph showing the variation of conductivity $\sigma (10^5 \Omega^{-1} m^{-1})$ with the number of contributing states for antiferromagnetic materials. The graph includes two lines labeled CPP (z) and CIP (x,y) with different behaviors and trends.
Fig. 3a

GMR-CIP

GMR [%] vs. \(n_{\text{imp}} [%] \)
Fig. 3b
GMR-CPP

Fig. 4b
Fig. 5a
One V-atom in Fe-layer

Fig. 5b
One Fe-atom in V-layer

Fig. 5c
Five Fe-atoms in a V-layer

![Graph showing magnetic moments (\(\mu[\mu_B]\)) vs. number of atoms (1 to 16). The graph indicates peaks at 1, 4, 8, 12, and 16 atoms, suggesting a pattern or trend in magnetic moment values for these configurations.](image-url)
Five V-atoms in a Fe-layer

![Graph showing magnetic moments for different numbers of atoms. The x-axis represents the number of atoms (1 to 16), and the y-axis represents the magnetic moment (μB). The graph indicates the magnetic moment changes with the number of atoms, with peaks at certain numbers.]
One Fe-atom in innermost V-layer

Fe
V
ferromagnetic coupling of iron films

\[\mu [\mu_B] \]

number of atom

\begin{array}{c}
1 \\
4 \\
8 \\
12 \\
16
\end{array}

\begin{array}{c}
0.2 \\
0.0 \\
-0.2 \\
-0.4 \\
-0.6
\end{array}