Is *Helicobacter pylori* infection associated with glycemic control in diabetics?

Yi-Ning Dai, Wei-Lai Yu, Hua-Tuo Zhu, Jie-Xia Ding, Chao-Hui Yu, You-Ming Li

Abstract

AIM: To investigate whether *Helicobacter pylori* (*H. pylori*) infection is associated with glycemic control and whether hyperglycemia is modified by eradication therapy.

METHODS: The databases of PubMed, Cochrane Library, Chinese BioMedicine Web Base and Chinese Science and Technology Journals were searched from inception to June 2014. Studies examining the association between *H. pylori* infection and glycemic control and/or the effect of eradication treatment on glycemic control in diabetic humans were eligible for inclusion. Meta-analyses were conducted using the Review Manager software version 5.2. The outcome measures are presented as weighed mean differences (WMDs) with 95% confidence intervals (CIs). Statistical heterogeneity was assessed by the Cochran Q test and the I^2 statistic.

RESULTS: A total of 21 relevant publications were identified. A meta-analysis of 11 studies with 513 patients with diabetes mellitus (DM) showed significantly lower glycosylated hemoglobin (HbA1c) levels in the *H. pylori*-negative than *H. pylori*-positive DM participants (WMD = 0.43, 95%CI: 0.07-0.79; $P = 0.02$). In children and adolescents with type 1 DM (T1DM), there was a positive association between *H. pylori* infection and HbA1c level (WMD = 0.35, 95%CI: 0.05-0.64; $P = 0.02$), but there was no difference in those with type 2 DM (T2DM, WMD = 0.51, 95%CI: -0.63-1.65; $P = 0.38$). A meta-analysis of six studies with 325 T2DM participants showed a significant difference in the fasting plasma glucose levels between *H. pylori*-positive and *H. pylori*-negative participants (WMD = 1.20, 95%CI: 0.17-2.23; $P = 0.02$). Eradication of *H. pylori* did not improve glycemic control in the T2DM participants in a three-month follow-up period (HbA1c decrease: WMD = -0.03, 95%CI: -0.14-0.08; $P = 0.57$; fasting plasma glucose decrease: WMD = -0.06, 95%CI: -0.36-0.23; $P = 0.68$). Glycemic control was significantly better in T1DM participants who were not reinfected than in those who were reinfected (HbA1c: WMD = 0.72, 95%CI: 0.32-1.13: $P = 0.00$).

CONCLUSION: *H. pylori* infection is associated with poorer glycemic control in T1DM patients, but eradication may not improve glycemic control in DM in a short-term.
follow-up period.

Key words: Diabetes mellitus; Eradication; Glycemic control; Helicobacter pylori; Meta-analysis; Reinfection

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Infection with Helicobacter pylori (H. pylori) has been suggested to play a pathogenic role in diabetes mellitus. The association between H. pylori and glycemic control in diabetics remains controversial. Our systematic review suggests a positive association between H. pylori and glycemic control in diabetics, especially in patients with type 1. While a short-term follow-up analysis demonstrated that H. pylori eradication does not improve glycemic control in diabetics, the long-term effects of eradication treatment remain unknown. Thus, the question remains as to whether the indication for H. pylori eradication in diabetic patients should be extended.

INTRODUCTION

Helicobacter pylori (H. pylori) is a gram-negative, spiral-shaped, microaerophilic bacterium that plays a major pathogenic role in gastric diseases, including, but not limited to, chronic gastritis, peptic ulcer disease, gastric cancer, and mucosa-associated lymphoid tissue-associated lymphoma[1-3]. Studies have published in the literature over the past two decades have suggested potential associations for H. pylori and several extragastrointestinal manifestations, such as idiopathic thrombocytopenic purpura, iron deficiency anemia, and atherosclerotic disease[4,5], as well as cardiovascular disease, diabetes mellitus (DM), nonalcoholic fatty liver disease, and other metabolic syndromes[6-9].

It has been suggested that infection with H. pylori is potentially linked to DM in many aspects. Various studies have reported a higher prevalence of H. pylori infection[10-13], a lower eradication rate[12,16] and a more frequent reinfection prevalence[12,13,17-19] in diabetic patients vs controls. Moreover, H. pylori infection is considered to be associated with metabolic control in diabetics[6,7,20]. Chen et al[20] found that H. pylori seropositivity was positively associated with glycosylated hemoglobin (HbA1c) levels through a large-scale cross-sectional analysis, which indicated a role of H. pylori in impaired glucose tolerance in adults. However, the questions of whether H. pylori infection is associated with poorer glycemic control in diabetic patients and whether eradication of H. pylori can improve their glycemic control remain controversial. Thus, we performed a systematic review with the aim of assessing whether H. pylori infection is associated with glycemic control in patients with DM and whether hyperglycemia in diabetics is modified by eradication of H. pylori.

MATERIALS AND METHODS

Search strategy

The PubMed, Cochrane Library, Chinese BioMedicine Web Base and Chinese Science and Technology Journals databases were systematically searched from inception to June 2014 for relevant studies. No language restriction was used. The search terms included: “Helicobacter pylori” [Mesh] or “Helicobacter pylori” or “H. pylori” and “Diabetes mellitus” [Mesh] or “diabetes mellitus” or “diabetes” or “diabetic” or “hyperglycemia” and “glucose” or “sugar” or “glucose control” or “glycemic control” or “glycaemic control” or “insulin” or “insulin sensitivity.” We also performed manual searches and screenings of the reference lists of each article identified by the electronic search.

Selection criteria

Cross-sectional studies, case-control studies, cohort studies and randomized controlled trials (RCTs) examining the association between H. pylori infection and glycemic control and/or the effect of eradication treatment on glycemic control in diabetic humans were considered eligible for study inclusion. Letters were also selected for use in our systematic review and meta-analysis. Two reviewers independently judged the eligibility of each study identified by the electronic and manual searches, and disagreements were resolved by consulting a third reviewer.

To be accepted for study inclusion, articles had to meet the following criteria: (1) study of subjects that had received previous diagnosis of DM [either type 1 (T1) or type 2 (T2)]; (2) measurement of fasting plasma glucose (FPG), HbA1c, insulin or C-peptide, and/or other parameters reflecting glycemic control in H. pylori-positive vs H. pylori-negative patients, in patients with H. pylori reinfection vs those who were not reinfected after successful eradication, in patients with successful H. pylori eradication treatment vs patients with H. pylori infection that was not eradicated, or in patients before and after an H. pylori eradication treatment; (3) H. pylori infection was confirmed by methods that were either invasive (histology, culture, or rapid urease test) or noninvasive (serologic test, 13C-urea breath test, stool antigen test). Age and gastrointestinal symptoms of the subjects at the time of enrollment were not considered as inclusive/exclusive criteria for study inclusion.

Articles were excluded if they provided no sufficient information of H. pylori infection or parameters reflecting glycemic control. Case series were also excluded.
Data extraction and quality assessment

A data extraction sheet was developed and pilot-tested using randomly selected studies, the results of which were used to refine the sheet accordingly. Data were extracted by two reviewers working independently. The following information was extracted from each included paper: (1) study characteristics, including author and year of publication, location of the study, sample size, study design, and type of intervention; (2) population information, including age, sex, type of DM, H. pylori status, duration of DM, presence or absence of dyspeptic symptoms, type of therapy for DM; (3) outcome data, including mean change and standard deviation in FPG, HbA1c, insulin or C-peptide, and other parameters reflecting glycemic control; (4) diagnosis of H. pylori infection; and (5) eradication treatment schedules and follow-up time. Disagreements were resolved by discussion.

The quality of included studies was also assessed by two reviewers working independently. Observational studies were assessed using standards by reference to Quality Assessment Forms[21] that ranged from 0 to 11 points, concerning the selection and representativeness of subjects, the diagnosis of DM and H. pylori infection, the comparability of the experimental group and the control group, the measurement of parameters, the loss of follow-up, and many other factors. RCTs were assessed by the Jadad scale[22], which ranged from 0 to 5 points, with higher scores indicating better quality.

Statistical analysis

The outcome measures were continuous and are presented as weighted mean differences (WMD) with 95% confidence intervals (CIs). Statistical heterogeneity was assessed by the Cochran Q test and the I² statistic. Heterogeneity was considered significant by the Cochran Q test for P < 0.05 or I² > 50%[23,24]. A fixed or random effects model was adopted, depending on the absence or presence of heterogeneity. Funnel plots[25] were generated to initially assess publication bias, after which publication bias was confirmed using Egger’s[26] and Begg’s[27] tests. The meta-analyses were conducted using Review Manager software, version 5.2, while the Egger’s and Begg’s tests were carried out using Stata software, version 12.0.

In cases when the study design and population characteristics varied markedly, we decided not to combine studies but instead to show outcome data of each study in a table form or to describe the conclusion of each study.

RESULTS

Study selection, quality, and characteristics

The electronic searches yielded 193 publications with potential relevancy. After each publication was reviewed, only 21 met our inclusion criteria and were selected for study[17-19,28-45], including 14 studies that investigated the association between H. pylori and glycemic control in diabetics (11 examined HbA1c level[17,28-37], 6 examined FPG[29,32,35,37-39], and 2 examined the levels of insulin and C-peptide[36,40] in H. pylori-positive and H. pylori-negative diabetic patients), 6 studies of the effect of eradication treatment (2 trials that compared glycemic control in H. pylori-eradicated and noneeradicated diabetic patients[41,42], and 4 trials that compared glycemic control before and after H. pylori eradication treatment in diabetics[23,24-45]), and two studies of the association between H. pylori reinfection and glycemic control[25,46].

The principal characteristics of the selected trials, as well as the quality score of each study, are shown in Table 1. All observational studies scored ≥ 7, and the Jadad scores of the two RCTs were both 3, which represented moderate to high quality. The basic information of the population is shown in Table 2. There were no significant differences in diabetes duration or gastrointestinal symptoms between the subjects in the experimental and control groups of each study, except for those denoted in the table, or those studies with data that were unavailable.

H. pylori infection and glycemic control

Eleven of the included publications[17,28-37] measured plasma HbA1c level in H. pylori-positive and H. pylori-negative patients with DM, including five studies[17,28,31,33,34] involving children and adolescents with T1DM, five studies[17,29,32,35-37] involving T2DM patients, and one study[35] in which the T1DM and T2DM patients were not distinguished. Overall, the pooled mean difference in HbA1c level showed a positive association with H. pylori infection (WMD = 0.43, 95%CI: 0.07-0.79; P = 0.02). Through the subgroup analysis, we found that the HbA1c level was significantly higher in the H. pylori-positive children and adolescents with T1DM than in their H. pylori-negative counterparts (WMD = 0.35, 95%CI: 0.05-0.64; P = 0.02). However, there was no significant difference in the HbA1c levels between H. pylori-positive and H. pylori-negative patients with T2DM (WMD = 0.51, 95%CI: -0.63-1.65; P = 0.38). Overall, the studies included were heterogeneous (I² = 72%; P < 0.01). But significant homogeneity was observed among the studies on children and adolescents with T1DM (I² = 25%; P = 0.26), whereas the studies on T2DM patients were heterogeneous (I² = 83%; P < 0.01; Figure 1).

Six observational studies[29,32,35,37-39] assessed FPG in H. pylori-positive and H. pylori-negative T2DM patients, the meta-analysis of which showed a positive association between H. pylori infection and FPG (WMD = 1.20, 95%CI: 0.17-2.23; P = 0.02). The included studies did not show homogeneity (I² = 70%; P < 0.01; Figure 2).

Two observational studies[36,40] assessed the association of H. pylori infection and plasma insulin...
and C-peptide levels in patients with DM. We did not perform a meta-analysis for these parameters due to insufficient data and varied population characteristics. The study by Lu et al[40] found that fasting and 1-h and 2-h postprandial insulin was significantly lower in the T1DM patients with \textit{H. pylori} positivity than in those with \textit{H. pylori} negativity (\(P < 0.05\)). The study by Zhou \textit{et al}[36] found no significant difference in the fasting C-peptide levels of T2DM patients with \textit{H. pylori} positivity and \textit{H. pylori} negativity (\(P > 0.05\)).

Ref.	Location	Study design and type of intervention	DM patients, n (HP+ vs HP-)1	Diagnosis of \textit{H. pylori}	Parameter(s) measured	Glycemic control (HP+ vs HP-)	Quality score2
de Luis \textit{et al}[34], 2000	Spain	Observational; before and after eradication (6-mo-follow-up)	13 (13/13)	UBT and serologic test	HbA1c	ND	9
Arslan \textit{et al}[35], 2000	Turkey	Observational; HP+ vs HP-	88 (49/39)	Serologic test	HbA1c	ND	8
Ko \textit{et al}[36], 2001	Hong Kong, China	Observational; HP+ vs HP-	63 (32/31)	RUT	HbA1c and FPG	ND	9
Jones \textit{et al}[37], 2002	Australia	Observational; HP+ vs HP-	63 (15/48)	Serologic test	HbA1c	ND	9
Ogetti \textit{et al}[38], 2002	Italy	Observational; reinfected vs not reinfected (1-yr-follow-up)	34 (13/21)	UBT and histology	HbA1c	Worse	7
Candelli \textit{et al}[39], 2003	Italy	Observational; HP+ vs HP-	121 (34/87)	UBT and serologic test	HbA1c	ND	8
Wang \textit{et al}[40], 2003	China	Observational; HP+ vs HP-	94 (75/19)	Serologic test	HbA1c and FPG	ND	8
Candelli \textit{et al}[41], 2004	Italy	Observational; before and after eradication (6-mo-follow-up)	58 (29/29)	UBT	HbA1c	ND	8
Agrawal \textit{et al}[42], 2005	India	Observational; HP+ vs HP-	80 (50/30)	RUT	FPG	Worse	8
Moghimi \textit{et al}[43], 2007	Iran	RCT eradication vs non-eradication (3-mo-follow-up)	41 (22/19)	UBT	HbA1c decrease and FPG decrease	ND	3 (Jadad score)
Ogetti \textit{et al}[44], 2007	Italy	Observational; reinfected vs not reinfected (5-yr-follow-up)	40 (11/29)	UBT and histology	HbA1c	Worse	7
Toporowska-Kowalska \textit{et al}[45], 2007	Poland	Observational; HP+ vs HP-	198 (48/150)	UBT	HbA1c	Worse	7
Khalili \textit{et al}[46], 2007	Belgium	Observational; before and after eradication (12-mo-follow-up)	100 (49/51)	UBT	HbA1C	ND	7
Demir \textit{et al}[47], 2008	Turkey	Observational; HP+ vs HP-	141 (87/54)	RUT and histology	HbA1c and FPG	ND	9
Lu \textit{et al}[48], 2010	China	Observational; HP+ vs HP-	80 (49/31)	UBT and histology	Insulin and C-peptide	Worse	8
Candelli \textit{et al}[49], 2012	Italy	Observational; HP+ vs HP-	69 (17/52)	UBT	HbA1c	ND	8
Wei \textit{et al}[50], 2012	China	Observational; HP+ vs HP-	68 (38/30)	RUT	FPG	Worse	7
Zhou \textit{et al}[51], 2012	China	Observational; HP+ vs HP-	180 (84/96)	Serologic test	HbA1c, insulin and C-peptide	ND	8
Vafaeeimanesh \textit{et al}[52], 2013	Iran	Observational; HP+ vs HP-	93 (46/47)	UBT	HbA1c decrease and FPG decrease	ND	3 (Jadad score)
Peng \textit{et al}[53], 2013	China	Observational; HP+ vs HP-	85 (43/42)	RUT and histology	HbA1c and FPG	Worse	7
Wada \textit{et al}[54], 2013	Japan	Observational; before and after eradication (6-mo-follow-up)	72 (72/72)	UBT and histology	HbA1c	ND	7

1 HP+ includes those who did not receive/failed eradication treatment, and those who were reinfected; HP- includes those who received successful eradication treatment; 2 Quality score is presented in each study by reference to Quality Assessment Forms, except for the two RCTs assessed using the Jadad Scale. DM: Diabetes mellitus; FPG: Fasting plasma glucose; HbA1c: Glycosylated hemoglobin; HP+: \textit{Helicobacter pylori}-positive; HP-: \textit{H. pylori}-negative; ND: No difference; RCT: Randomized controlled trial; RUT: Rapid urease test; UBT: \textit{C}-urea breath test.
Table 2 Population information of the selected studies

Ref.	DM type	Age (yr)	Sex (M/F, n)	DM duration (yr)	Type of therapy for DM	GI symptoms, n
de Luis et al[34], 2000	T1DM	44.9 ± 15.5	4/9	13.49 ± 7.0 (1-33)	Insulin	10 with dyspepsia
Arslan et al[35,36], 2000	T1DM	12.6 ± 4.2	36/32	HP+: 3.85 ± 3.62; HP-: 2.30 ± 2.12 (P = 0.02)	Insulin	5 had upper GI symptoms
Ko et al[37,38], 2001	T2DM	49.9 ± 12.0	29/34	HP+: 5.2 ± 5.7; HP-: 7.3 ± 6.6 (NS) (1-26; median: 3)	Irrespective	29 had upper GI symptoms
Jones et al[39], 2002	T1DM and T2DM	44.7 ± 2.99	25/38	16.6 ± 1.4	Insulin; oral drugs	GI symptoms occurred frequently
Ojetti et al[40], 2002	T1DM	42 ± 9	18/16	NA	Insulin	None had GI symptoms
Candelli et al[41], 2003	T1DM	15 ± 6	65/36	6.6 ± 4.6	Insulin	A proportion had GI symptoms
Wang et al[42], 2003	T2DM	(28-83)	44/50	HP+: 5.8 ± 2.2; HP-: 9.3 ± 6.5 (P < 0.05)	Insulin and oral drugs	A proportion had GI symptoms
Candelli et al[43], 2004	T1DM	13.35 ± 3.62	28/30	NA	Insulin	35 had GI symptoms
Agrawal et al[44], 2004	T2DM	52.8 ± 11.1	62/18	NA	Insulin	36 had GI symptoms
Moghimi et al[45], 2004	T2DM	NA	NA	No difference in two	Insulin and oral drugs	NA
Ojetti et al[46], 2007	T1DM	48 ± 9	23/17	27.5 ± 12.5 (0.5-16)	Insulin	NA
Toporowska-Kowalska et al[47], 2007	T1DM	14.38 ± 3.75	NA	NA	Insulin	NA
Khalil et al[48], 2007	T1DM	14.2 ± 2.8	56/44	6.2 ± 2.3	Insulin	45 had vague abdominal pain
Demir et al[49], 2008	T2DM	52.0 ± 8.2	44/97	6.1 ± 5.9	Insulin, oral drugs or diet alone	All had GI symptoms
Lu et al[50], 2010	T1DM	18.6 ± 10.6	45/35	No difference in two	Insulin	NA
Candelli et al[51], 2012	T1DM	16.8 ± NA (9-21)	41/28	NA	Insulin	A proportion had GI symptoms
Wei[52], 2012	T2DM	50.0 ± 11.2	36/32	NA	NA	NA
Zhou et al[53], 2012	T2DM	59.22 ± 2.57	87/93	NA	NA	NA
Vafaeimanesh et al[54], 2013	T2DM	55.3 ± 10.4	50/43	NA	Non-insulin users	A proportion had GI symptoms
Peng et al[55], 2013	T2DM	50.1 ± 10.3	51/34	No difference in two	NA	NA
Wada et al[56], 2013	T2DM	63.7 ± 1.1	55/17	NA	NA	NA

Effect of eradication

Two RCTs[41,42] assessed the effect of *H. pylori* eradication on HbA1c and FPG decreases in T2DM patients, after 3 or 6 mo of follow-up. Moghimi et al[41] compared *H. pylori*-positive patients with or without eradication (achieved by omeprazole (40 mg), azithromycin (500 mg), bismuth subcitrate (480 mg), and metronidazole (1000 mg) for 10 d). Vafaeimanesh et al[42] compared *H. pylori*-positive patients with successful eradication to those who failed to achieve eradication treatment (by omeprazole (40 mg), metronidazole (1000 mg), amoxicillin (2000 mg) and bismuth subcitrate (480 mg), or by omeprazole (40 mg), clarithromycin (1000 mg), and amoxicillin (2000 mg) for 14 d). Meta-analysis of these studies indicated no significant difference of glycemic control in the eradication group vs the noneradication group at 3 mo after treatment (HbA1c decrease: WMD = -0.03, 95%CI: -0.14-0.08, P = 0.57; FPG decrease: WMD = -0.06, 95%CI: -0.36-0.23; P = 0.68). The included studies were homogeneous (HbA1c decrease: I² = 0%; P = 0.76; FPG decrease: I² = 0%; P = 0.52; Figure 3).

Four observational studies[33,43-45] compared plasma HbA1c levels in *H. pylori*-positive diabetic patients before and after eradication treatment. Because the populations were heterogeneous in age, type of DM, gastrointestinal symptoms and so on, we did not perform meta-analysis and instead listed the results of each study in Table 3. All four studies suggested that eradication therapy for *H. pylori* does not affect glycemic control according to short-term follow-up (3-12 mo) in diabetic subjects.

Reinfecion with *H. pylori* and glycemic control

Two cohort studies[18,10] assessed plasma HbA1c levels in *H. pylori* reinfected T1DM patients after *H. pylori* eradication compared to those who were not reinfected. Glycemic control was significantly better in
Dai YN et al. H. pylori infection and glycemic control

Study or subgroup	H. pylori (+)	H. pylori (-)	Mean difference	Mean difference					
	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95%CI	IV, Random, 95%CI
1.1.1 T1DM (children and adolescents)	Arslan, 2000	11.0	3.1	49	10.3	2.6	39	5.6%	0.76 (-0.45, 1.97)
	Candelli, 2003	8.3	1.1	34	8.2	1.5	87	12.2%	0.10 (-0.39, 0.59)
	Candelli, 2012	8.5	1.0	29	8.4	1.7	52	9.5%	-0.15 (-0.88, 0.58)
	Toporowska 2007	7.8	1.5	48	7.1	1.6	150	12.2%	0.70 (0.21, 1.19)
Subtotal (95%CI)	177	357	52.3%						
Heterogeneity: Tau2 = 0.03; \(\chi^2 = 5.31, df = 4 (P = 0.26); I^2 = 25\%									
Test for overall effect: Z = 2.30 (P = 0.02)									

Study or subgroup	H. pylori (+)	H. pylori (-)	Mean difference	Mean difference					
	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95%CI	IV, Random, 95%CI
1.1.2 T2DM	Demir, 2008	7.9	1.8	87	8.7	7.1	54	2.8%	-0.80 (-2.73, 1.13)
	Ko, 2001	8.0	2.1	32	8.4	2.3	31	6.2%	-0.33 (-1.44, 0.78)
	Peng, 2013	9.3	1.9	43	7.0	1.5	42	9.3%	2.27 (1.52, 3.02)
	Wang, 2003	11.6	2.2	75	11	3	19	4.4%	0.60 (-0.84, 2.04)
	Zhou, 2012	8.4	2.4	84	8.1	2.1	96	10.0%	0.27 (-0.41, 0.95)
Subtotal (95%CI)	321	242	32.8%						
Heterogeneity: Tau2 = 1.32; \(\chi^2 = 23.95, df = 4 (P < 0.0001); I^2 = 83\%									
Test for overall effect: Z = 0.88 (P = 0.38)									

Study or subgroup	H. pylori (+)	H. pylori (-)	Mean difference	Mean difference					
	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95%CI	IV, Random, 95%CI
1.1.3 Undistinguished	Jones, 2002	8.8	0.4	15	8.6	0.2	48	14.9%	0.20 (-0.01, 0.41)
	Subtotal (95%CI)	15		48					
Heterogeneity: Not applicable									
Test for overall effect: Z = 1.87 (P = 0.06)									

Figure 1 Helicobacter pylori infection and glycosylated hemoglobin levels in diabetic patients. The forest plot demonstrates the positive association between Helicobacter pylori infection and Hba1c levels in children and adolescents with type 1 diabetes mellitus (T1DM) but not type 2 diabetes mellitus (T2DM). IV: Inverse variance.

Study or subgroup	H. pylori (+)	H. pylori (-)	Mean difference	Mean difference					
	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95%CI	IV, Random, 95%CI
Agrawal, 2005	9.73	2.03	50	7.7	2.19	30	20.2%	2.03 (1.07, 2.99)	
Demir, 2008	9.17	3.59	87	8.9	3.44	54	18.5%	0.27 (-0.92, 1.46)	
Ko, 2001	9.2	3.6	32	9.8	4.2	31	13.2%	-0.60 (-2.53, 1.33)	
Peng, 2013	10.85	2.97	43	8.1	2.69	42	18.4%	2.74 (1.54, 3.94)	
Wang, 2003	10.6	3.8	75	10.5	3.2	19	14.9%	0.10 (-1.58, 1.78)	
Wei, 2012	12.12	3.74	38	10.1	3.31	30	14.9%	2.02 (0.34, 3.70)	
Total (95%CI)	325	206	100.0%						
Heterogeneity: Tau2 = 1.12; \(\chi^2 = 16.81, df = 5 (P = 0.005); I^2 = 70\%									
Test for overall effect: Z = 2.29 (P = 0.02)									

Figure 2 Helicobacter pylori infection and fasting plasma glucose levels in type 2 diabetes mellitus patients. The forest plot demonstrates the positive association between Helicobacter pylori infection and fasting plasma glucose levels in type 2 diabetes mellitus patients. The studies included were not homogeneous. IV: Inverse variance.

those who were not reinfected (WMD = 0.72, 95%CI: 0.32-1.13; P < 0.01). Significant homogeneity was observed among the studies (\(I^2 = 15\%; P = 0.28; \) Figure 4).

Publication bias
Examination of the funnel plots (Figure 5) suggested some publication bias, but the results of Egger’s and Begg’s tests showed no evidence of significant bias in the studies considered. For studies on Hba1c level in H. pylori-positive and H. pylori-negative patients, the P-values of Egger’s and Begg’s tests were 0.365 and 0.350, respectively. For studies on FPG in H. pylori-positive vs H. pylori-negative patients, the P-values of Egger’s and Begg’s tests were 0.631 and 0.452, respectively.

DISCUSSION
The results of the systematic review and meta-analyses suggest that H. pylori infection is associated with higher Hba1c levels in T1DM children and adolescents, which indicates poorer glycemic control. However, further studies are needed to prove whether...
Table 3 Glycosylated hemoglobin levels in *H. pylori*-positive diabetics before and after eradication treatment

Ref.	Eradication regimen	Before treatment	After treatment	P value	3 mo	6 mo	12 mo
de Luis et al[43], 2000	A: 2000 mg, C: 1000 mg, O: 40 mg; 10 d	7.7 ± 1.4	NA	NA	> 0.05		
Candelli et al[44], 2004	< 14 yr: A: 50 mg/kg, C: 30 mg/kg, R: 2 mg/kg; 7 d	8.2 ± 1.0	NA	NA	> 0.05		
	> 14 yr: A: 2000 mg, C: 750 mg, R: 20 mg; 7 d	7.4 ± 1.3	NA	NA	> 0.05		
Khalil et al[45], 2007	Two antibiotics among A, C or M; O: 7 d	7.0 ± 0.1	7.0 ± 0.1	7.0 ± 0.1	> 0.05		
Wada et al[46], 2013	A: 1500 mg, C: 800 mg, L: 60 mg or O: 40 mg or R: 40 mg; 7 d	6.9 ± 0.1	7.0 ± 0.1	7.0 ± 0.1	> 0.05		

Data are presented as mean ± SE. A: Amoxicillin; C: Clarithromycin; L: Lansoprazole; M: Metronidazole; NA: Not available; O: Omeprazole; R: Rabeprazole.

H. pylori infection is associated with glycemic control in patients with T2DM because significant heterogeneity exists among the studies that have assessed HbA1c level and the studies that have assessed FPG level in *H. pylori*-positive and *H. pylori*-negative T2DM patients. We found that the subjects with T2DM in our selected studies may differ in several ways that affect glycemic control, including type of therapy for diabetes, diabetes duration, dyspeptic symptoms, and the compliance for glycemic control. These inconsistencies result in heterogeneity among the studies assessing glycemic control in T2DM patients. In contrast, the subjects with T1DM in our selected studies were all dependent upon insulin therapy, and as a result, no significant heterogeneity was seen in these studies.

Lu et al[40] reported that fasting and postprandial insulin secretions were significantly higher in *H. pylori*-negative T1DM patients than in their *H. pylori*-positive counterparts. Although there was a limitation of small sample size in that study, the previous finding is consistent with our current finding of better glycemic control occurring in *H. pylori*-negative T1DM patients compared to the *H. pylori*-positive patients with T1DM.

The results from the current systematic review also support the conclusion that eradication of *H. pylori* may not improve glycemic control in diabetic
patients in a short-term follow-up period. Because the number of studies was limited and the follow-up time of the studies was short, further studies are needed to confirm the effect of \textit{H. pylori} eradication on glycemic control in both T1DM and T2DM patients. Furthermore, results from our meta-analysis showed that \textit{H. pylori} reinfection is associated with poorer glycemic control in T1DM patients.

A recent meta-analysis performed by another group that assessed the association of \textit{H. pylori} and glycemic control in diabetics showed that \textit{H. pylori} carriers did not have higher HbA1C levels than the noncarriers.\(^{461}\) The authors concluded that \textit{H. pylori} infection did not worsen glycemic control in patients with DM. Nevertheless, their meta-analysis did not estimate the quality of each included study. Moreover, the authors only examined a single parameter (HbA1C level) to estimate glycemic control of the subjects. The different search strategy used in our current meta-analysis, as well as the different databases that were searched and the different inclusion criteria that were applied, may have led to different conclusions. However, considering the relatively limited population in the current meta-analysis, we appeal for further large-scale observational studies to verify this association. On the other hand, our systematic review further assessed the effects of \textit{H. pylori} eradication treatment and reinfection with \textit{H. pylori} on glycemic control in diabetic humans, which may have some value for clinical practice.

The overall quality of the selected articles is moderate to high. Many of the studies evaluated confounding factors that may affect glycemic control, such as age, sex, duration of DM and gastrointestinal symptoms; in those studies, however, the cases and controls were comparable based upon the consistent measures of the potential confounders. Nevertheless, a few studies observed differences among the confounders in their comparative analyses, without any adjustments. The sample sizes of the selected studies were also small, which represents a major limitation. Furthermore, most of the selected articles were descriptive studies, which precluded their ability to determine the causal relationship between \textit{H. pylori} and glycemic control.

The mechanisms linking \textit{H. pylori} and glycemic control in diabetics are complicated. It is well known that T1DM occurs because of the autoimmune destruction of pancreatic islets (the micro-organ in which insulin production and secretion occur), whereas insulin resistance is a central pathogenic factor in T2DM. \textit{H. pylori} might condition the pathophysiology of autoimmune response and insulin resistance syndrome by pathologic consequences through chronic inflammation outside the stomach, by which the bacterium affects glycemic control in diabetic patients.\(^{9,13,47,48}\) In another aspect, gastrointestinal conditions related to \textit{H. pylori} infection could delay gastric emptying, consequently favoring poor glucose control.\(^{13,43}\) Furthermore, Ibrahim \textit{et al.}\(^{49}\) demonstrated that infection with cytotoxin-associated gene A antigen-positive strains of \textit{H. pylori} is strongly associated with poor glycemic control in T2DM patients. This finding suggests that the more pathogenic type of \textit{H. pylori}, which expresses the cytotoxin-associated gene A antigen and the vacuolating cytotoxin-associated gene antigen, may play a major pathogenic role in DM through its interactions with factors related to the host inflammatory response.

Although \textit{H. pylori} seems to be a pathogenic factor for DM, eradication of \textit{H. pylori} does not benefit all diabetic patients. Khamaisi \textit{et al.}\(^{50}\) reported a case of an 80-year-old man with end-stage renal disease and well-controlled T2DM, who developed severe hypoglycemia after administration of clarithromycin due to a clarithromycin-repaglinide drug interaction. Otsuka\(^{51}\) reported the case of an 82-year-old man with end-stage renal disease who developed severe hypoglycemia during triple drug therapy. These collective findings remind us that clinicians should be aware of possible drug interactions that may occur in diabetics while undergoing \textit{H. pylori} eradication therapy, so as to be careful to avoid adverse events.

Nowadays, the indications for treatment of \textit{H. pylori} include peptic ulcer, mucosa-associated lymphoid tissue, functional dyspepsia, long-term nonsteroidal

Figure 5 Funnel plots for publication bias. Each dot represents the mean difference for glycosylated hemoglobin level (A) or fasting plasma glucose level (B) in \textit{Helicobacter pylori}-positive and \textit{Helicobacter pylori}-negative diabetics.
anti-inflammatory drug use, gastric cancer, iron-deficiency anemia and idiopathic thrombocytopenic purpura [31]. Since our study has suggested a positive association between \textit{H. pylori} and glycemic control in diabetics, there should be a debate about whether we need to extend the \textit{H. pylori} eradication indications for patients with DM. Since this systematic review does not allow for a conclusion about the long-term effect of \textit{H. pylori} eradication on glycemic control in diabetics, further studies with large populations are needed to observe glycemic control in diabetics after eradication therapy in a longer follow-up period.

REFERENCES

1. Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. \textit{Lancet} 1984; 1: 1311-1315 [PMID: 6145023 DOI: 10.1016/S0140-6736(84)9116-6]
2. Sauberbaum S, Michetti P. Helicobacter pylori infection. \textit{N Engl J Med} 2002; 347: 1175-1186 [PMID: 12374879 DOI: 10.1056/NEJM20020542]
3. Peek RM, Blaser MJ. Helicobacter pylori and gastrointestinal tract adenocarcinomas. \textit{Nat Rev Cancer} 2002; 2: 28-37 [PMID: 11902583 DOI: 10.1038/nrc703]
4. Malfertheiner P, Megraud F, O’Morain CA, Atherton J, Axon AT, Bazzoli F, Gentini GF, Gisbert JP, Graham DY, Rokkas T, El-Omar EM, Kuipers EJ. Management of Helicobacter pylori infection—the Maastricht IV/ Florence Consensus Report. \textit{Gut} 2012; 61: 646-664 [PMID: 22941490 DOI: 10.1136/gutjnl-2012-302084]
5. Moyaert H, Franceschi F, Roccarina D, Ducetalle R, Haesebroeck F, Gasbarrini A. Extragastric manifestations of Helicobacter pylori infection: other Helicobacter. \textit{Helicobacter} 2008; 13 Suppl 1: 47-57 [PMID: 18783522 DOI: 10.1111/j.1533-5388.2008.00634.x]
6. Shin DW, Kwon HT, Kang JM, Park JH, Choi HC, Park MS, Park SM, Son KY, Cho B. Association between metabolic syndrome and Helicobacter pylori infection diagnosed by histologic status and serological status. \textit{J Clin Gastroenterol} 2012; 46: 840-845 [PMID: 23064216 DOI: 10.1097/MCG.0b013e3182522477]
7. Roubaud Baudron C, Franceschi F, Salles N, Gasbarrini A. Extragastric diseases and Helicobacter pylori. \textit{Helicobacter} 2013; 18 Suppl 1: 44-51 [PMID: 24011245 DOI: 10.1111/hel.12077]
8. Albaker WH. Helicobacter pylori infection and its relationship to metabolic syndrome: is it a myth or fact? Saudi J Gastroenterol 2011; 17: 165-169 [PMID: 21546717]
9. Li M, Shen Z, Li YM. Potential role of Helicobacter pylori infection in nonalcoholic fatty liver disease. \textit{World J Gastroenterol} 2013; 19: 7024-7031 [PMID: 24222944 DOI: 10.3748/wjg.v19.i41.7024]
10. Zhou X, Zhang C, Wu J, Zhang G. Association between Helicobacter pylori infection and diabetes mellitus: a meta-analysis of observational studies. \textit{Diabetes Res Clin Pract} 2013; 99: 200-208 [PMID: 23395214 DOI: 10.1016/j.diabres.2012.11.012]
11. Jeon CV, Haan MN, Cheng C, Clayton ER, Mayeda ER, Miller JW, Aiello AE. Helicobacter pylori infection is associated with an increased rate of diabetes. \textit{Diabetes Care} 2012; 35: 520-525 [PMID: 22279028 DOI: 10.2337/dc11-1043]
12. Ojetti V, Pellicano R, Fagonees N, Migneco A, Berrutti M, Gasbarrini A. Helicobacter pylori infection and diabetes. \textit{Minerva Med} 2010; 101: 115-119 [PMID: 20467410]
13. Marietti M, Gasbarrini A, Saracco G, Pellicano R. Helicobacter pylori infection and diabetes mellitus: the 2013 state of art. \textit{Paesinervia Med} 2013; 55: 277-281 [PMID: 24088801]
14. Ojetti V, Pitocco D, Ghirlanda G, Gasbarrini G, Gasbarrini A. [Role of Helicobacter pylori infection in insulin-dependent diabetes mellitus]. \textit{Minerva Med} 2001; 92: 137-144 [PMID: 11404721]
15. Gasbarrini A, Ojetti V, Pitocco D, Argazkia A, Silveri NG, Pola P, Ghirlanda G, Gasbarrini G. Efficacy of different Helicobacter pylori eradication regimens in patients affected by insulin-dependent diabetes mellitus. \textit{Scand J Gastroenterol} 2000; 35: 260-263 [PMID: 10766318]
16. Candelli M, Rigante D, Schiaivo A, Gabrielli M, Crea F, Minguel Del Lango L, Pignataro G, Sacco E, Monaco S, Gentiloni Silvetti N, Gasbarrini A. High reinfection rate of Helicobacter pylori in young type 1 diabetic patients: a three-year follow-up study. \textit{Eur Rev Med Pharmacol Sci} 2012; 16: 1468-1472 [PMID: 22119588]
17. Ojetti V, Pitocco D, Bartolozzi F, Danese S, Migneco A, Lupasca A, Pola P, Ghirlanda G, Gasbarrini G, Gasbarrini A. High rate of helicobacter pylori re-infection in patients affected by type 1 diabetes. \textit{Diabetes Care} 2002; 25: 1485 [PMID: 12145262]
18. Ojetti V, Migneco A, Nista EC, Gasbarrini G, Gasbarrini A, Pitocco D, Ghirlanda G. \textit{H pylori} re-infection in type 1 diabetes: a 5 years follow-up. \textit{Dig Liver Dis} 2007; 39: 286-287 [PMID: 17275424 DOI: 10.1016/j.dld.2007.03.014]
Chen Y, Blaser MJ. Association between gastric Helicobacter pylori colonization and glycated hemoglobin levels. J Infect Dis 2012; 205: 1195-1202 [PMID: 22427676 DOI: 10.1093/infdis/jir106].

Rostom A, Dubé C, Cramney A, Saloojee N, Sy R, Garrity C, Sampson M, Zhang L, Yazdi F, Mamaladze V, Pan I, McNeil J, Moher D, Mack D, Patel D. Celiac Disease. Rockville (MD): Agency for Healthcare Research and Quality (US); 2004 Sep. (Evidence Reports/Technology Assessments, No. 104.) Appendix D. Quality Assessment Forms. Available from: URL: http://www.ncbi.nlm.nih.gov/books/NBK35156.

Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan D1, McQuay HJ. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 1996; 17: 1-12 [PMID: 8721797 DOI: 10.1016/0197-4565(95)00134-4].

Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002; 21: 1539-1555 [PMID: 12119190 DOI: 10.1002/sim.1186].

Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557-560 [PMID: 12958120 DOI: 10.1136/bmj.327.7414.557].

Thornton A, Lee P. Publication bias in meta-analysis: its causes and consequences. J Clin Epidemiol 2000; 53: 207-216 [PMID: 10729693 DOI: 10.1053/jcem.9900614-1].

Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629-634 [PMID: 9310563 DOI: 10.1136/bmj.315.7109.629].

Begg CB. Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994; 50: 1088-1110 [PMID: 7786990].

Aslan S, Kandemir M, Kartoglu S, Kula M. Helicobacter pylori infection in children with insulin dependent diabetes mellitus. J Pediatr Endocrinol Metab 2007; 13: 553-556 [PMID: 18083874].

Ko GT, Chan FK, Chan WB, Sung JI, To KF, Lai CW, Cockram CS. Helicobacter pylori infection in Chinese subjects with type 2 diabetes. Endocr Res 2001; 27: 171-177 [PMID: 11428708].

Jones KL, Wishart JM, Berry M, Russo A, Xia HH, Talley NJ, Horowitz M. Helicobacter pylori infection is not associated with delayed gastric emptying or upper gastrointestinal symptoms in diabetes mellitus. Dig Dis Sci 2002; 47: 704-709 [PMID: 11991596].

Candelli M, Rigante D, Marietti G, Nista EC, Crea F, Bartolozzi F, Schiavino A, Pignataro G, Silveri NG, Gasbarrini G, Gasbarrini A. Helicobacter pylori, gastrointestinal symptoms, and metabolic control in young type 1 diabetes mellitus patients. Pediatrics 2003; 111: 800-803 [PMID: 12671115].

Wang YJ, Zhang X, Yang Y. The study of Helicobacter pylori infection and glycemic control and late complications. Zhongxiyi Zazhi 2013; 33: 32-35 [PMID: 23471710 DOI: 10.1002/phar.1228].

Zhou HC, Zhou L, Chen XQ. Influence of Helicobacter pylori infection on insulin resistance in diabetic patient. Guiyang Yiyequansu xuebao 2012; 37: 131-133.

Zhou WP, Wu Q, Ye XL. Clinical study on relationship between Helicobacter pylori infection and type 2 diabetes complications. Zhongguo Yiyi jinxiu Zazhi 2013; 36: 26-28.

Agrawal RP, Sharma R, Garg D, Pokharna R, Kohkar DK, Kothari RP. Role of Helicobacter pylori in causation of diabetic gastropathies and non-gastrointestinal complications in type 2 diabetes. J Indian Med Assoc 2010; 108: 140-143 [PMID: 21043350].

Wei AF. Helicobacter pylori infection and related risk factors in type 2 diabetes research. Zhongguo Shiyong Yiyaou 2012; 7: 34-35.

Lu SC, Yan HJ, Wu BY, Chen L, Zhang Y. HP infection and insulin, C peptic secretion of type 1 diabetes. Medical Research and Education 2010; 27: 26-34.

Khalil T, Dorchi H, Scaillon M, Melot C. [Helicobacter pylori infection and eradication are not related to glycosylated hemoglobin levels (HbA1c) in young patients with type 2 diabetes]. Presse Med 2007; 36: 1191-1195 [PMID: 17360147 DOI: 10.1016/j.pmed.2006.12.030].

Wada Y, Hamamoto Y, Kawasaki Y, Honjo S, Fujimoto K, Tatsuka H, Matsuoka A, Ikei H, Fujikawa J, Koshiyama H. The Eradication of Helicobacter pylori does not Affect Glycemic Control in Japanese Subjects with Type 2 Diabetes. Jpn Clin Med Res 2013; 4: 41-43 [PMID: 23966817 DOI: 10.4137/JCMS.I10828].

Horikawa C, Kodama S, Fujikura K, Yachi Y, Tanaka S, Suzuki A, Hanuo O, Shimono H, Sone H. Association of Helicobacter pylori infection with glycemic control in patients with diabetes: a meta-analysis. J Diabetes Res 2014; 2014: 250620 [PMID: 24901007 DOI: 10.1155/2014/250620].

Ram M, Bazzili O, Shipta Y, Anaya JM, Tincani A, Stoianovich L, Bombardieri S, Bizzaro N, Kivity S, Agmon Levin N, Shoenfeld Y. Helicobacter pylori serology in autoimmune diseases - fact or fiction? Clin Chim Acta Med 2013; 51: 1075-1082 [PMID: 23079514 DOI: 10.1515/cclin-2012-0477].

Polyszos SA, Kountouras J, Zavras C, Deretzi G. The association between Helicobacter pylori infection and insulin resistance: a systematic review. Helicobacter 2011; 16: 79-88 [PMID: 21435084 DOI: 10.1111/j.1537-3587.2011.00822.x].

Ibrahim A, Zaher T, Ghoneyya TA, El-Azim SA, El-Azim MA. Ramadan A. Impact of cytotoxin-associated gene A of Helicobacter pylori strains on microalbuminuria in type 2 diabetes. Saudi J Kidney Dis Transpl 2010; 21: 694-700 [PMID: 20587874].

Khamaisi M, Leitersdorf E. Severe hyperglycemia from clarithromycin-rapepnilide drug interaction. Pharmacotherapy 2008; 28: 682-684 [PMID: 18447665 DOI: 10.1592/phco.28.5.682].

Otsuka SE. Severe hyperglycemia from Helicobacter pylori triple-drug therapy and insulin detemir drug interaction. Pharmacotherapy 2013; 33: e45-e49 [PMID: 23471710 DOI: 10.1002/phar.1228].
