Structural basis of agonist-induced desensitization and sequestration of the P2Y2 nucleotide receptor: Consequences of truncation of the C terminus

Richard C. Garrad
Miguel A. Otero
Laurie Erb
Patty M. Theiss
Lane L. Clarke

See next page for additional authors

Follow this and additional works at: https://bearworks.missouristate.edu/articles-chhs

Recommended Citation
Garrad, Richard C., Miguel A. Otero, Laurie Erb, Patty M. Theiss, Lane L. Clarke, Fernando A. Gonzalez, John T. Turner, and Gary A. Weisman. "Structural basis of agonist-induced desensitization and sequestration of the P2Y2 nucleotide receptor: consequences of truncation of the C terminus." Journal of Biological Chemistry 273, no. 45 (1998): 29437-29444.

This article or document was made available through BearWorks, the institutional repository of Missouri State University. The work contained in it may be protected by copyright and require permission of the copyright holder for reuse or redistribution.
For more information, please contact BearWorks@library.missouristate.edu.
Molecular determinants of P2Y2 receptor desensitization and sequestration have been investigated. Wild-type P2Y2 receptors and a series of five C-terminal truncation mutants of the receptor were epitope-tagged and stably expressed in 1321N1 cells. These constructs were used to assess the importance of the intracellular C terminus on 1) UTP-stimulated increases in intracellular calcium concentration, 2) homologous desensitization of the receptor, and 3) agonist-induced decreases in cell-surface density (receptor sequestration) of epitope-tagged receptors using fluorescence-activated cell sorting. The potency and efficacy of UTP were similar for tagged receptors using fluorescence-activated cell sort-surface density (receptor sequestration) of epitope- the receptor, and 3) agonist-induced decreases in cell-
calcium concentration, 2) homologous desensitization of
minus on 1) UTP-stimulated increases in intracellular
used to assess the importance of the intracellular C ter-
stably expressed in 1321N1 cells. These constructs were

Responses to extracellular nucleotides are mediated by P2 receptors that belong to two receptor superfamilies: P2Y G protein-coupled receptors (GPCRs) and P2X ligand-gated ion channels. Multiple P2Y subtypes have been classified pharmacologically and molecularly and are predominantly linked to activation of phospholipase C and increased levels of inositol 1,4,5-trisphosphate and diacylglycerol, leading to elevations in the intracellular free calcium concentration ([Ca^{2+}]_i) and the activation of protein kinase C (PKC) (1–4). The P2Y2 nucleo-
tide receptor subtype (formerly the P2U receptor) is distin-
guished pharmacologically from the other known mammalian P2Y2 receptor subtypes by the equal potency and efficacy of the naturally occurring agonists ATP and UTP.

Activation of P2Y2 receptors present in airway epithelia increases Cl secretion through Ca^{2+}-dependent and outwardly rectifying Cl channels (5). It has been shown that P2Y2 receptor activation by UTP in airway epithelia of cystic fibrosis patients can increase Cl secretion, thereby effectively bypassing the defective cAMP-dependent Cl transport (6). Like other members of the GPCR superfamily, P2Y2 receptors undergo agonist-induced desensitization (7), but little is known about the mechanisms involved in desensitization of the P2Y2 receptor. It seems likely that a fuller understanding of desen-
sitization and the signaling pathways that affect the P2Y2 receptor may lead to improved therapies targeted to this receptor.

Desensitization of GPCRs is a complex process involving phosphorylation of the receptors by multiple protein kinases, including G protein-coupled receptor kinases, cAMP-dependent protein kinase, and PKC. The mechanisms of GPCR desensiti-

! This work was supported in part by the Cystic Fibrosis Foundation, the F21C Program of the University of Missouri (Columbia, MO), the National Institutes of Health, and the Minority Biomedical Research Support-National Institutes of Health Program. The costs of publica-
tion of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

§ Cystic Fibrosis Foundation Postdoctoral Fellow. To whom corre-

\[\text{This is an Open Access article under the CC BY license.} \]
protein were constructed by polymerase chain reaction (PCR). The truncated receptor cDNAs were expressed in a clonal human 1321N1 astrocytoma cell line devoid of P2Y nucleotide receptors. UTP-induced desensitization was compared in cells expressing mutant or wild-type P2Y receptor cells. Cell-surface receptor density and agonist-induced sequestration in 1321N1 cells were assessed by immunofluorescence detection of the epitope-tagged receptors.

EXPERIMENTAL PROCEDURES

Mutagenesis, Epitope Tagging, and Subcloning—Wild-type murine P2Y receptor cDNA was subcloned into the retroviral vector pLXSN at the EcoRI/BamHI sites of the multiple cloning site. The open reading frame of the wild-type P2Y2 receptor cDNA was modified to incorporate, at the amino terminus of the expressed protein, the hemagglutinin (HA) epitope (YPYDVPDYA) from influenza virus using PCR. The forward and reverse HA primers were 5'-gatggatctctactgtcccttccagctggtgtggactc-3' and 5'-gattggtcctcgacctgtttggctgatta-agtagc-3', respectively. The PCR solution contained primers (0.7 μM each), 10 μl of 10X Vent polymerase buffer (New England Biolabs Inc., Beverly, MA), 100 ng of template DNA, 2.5 units of Vent (exo-) polymerase, 0.25 units of Nt (exo-) polymerase, and 20 μl of dNTP mixture (0.2 mM dATP, dCTP, dTTP, and dGTP) in a final volume of 100 μl of PCR buffer. The PCR parameters were as follows: 96 °C for 1 min, 62 °C for 1 min, and 72 °C for 2.5 min for 25 cycles. The PCR conditions were identical for creation of the five truncation mutants. In each case, the HA epitope was inserted using the forward HA primer and the following reverse primers: 5'-tgatggatctctactgtcccttccagctggtgtggactc-3' (truncation mutant 1), 5'-tgatggatctctactgtcccttccagctggtgtggactc-3' (truncation mutant 2), 5'-tgatggatctctactgtcccttccagctggtgtggactc-3' (truncation mutant 3), 5'-tgatggatctctactgtcccttccagctggtgtggactc-3' (truncation mutant 4), and 5'-tgatggatctctactgtcccttccagctggtgtggactc-3' (truncation mutant 5). After verification of the PCR amplification by agarose gel electrophoresis, the products were purified using a PCR Wizard kit (Promega, Madison, WI). The purified PCR products and pLXSN were digested overnight with restriction enzymes digested together, followed by transformation of competent Escherichia coli and identification of positive clones (14). All mutant DNAs were sequenced on both strands to ensure that mutagenesis had occurred as predicted, using an ABI Prism automated sequencing apparatus (Perkin-Elmer) and fluorescence dideoxynucleotide technology.

Cell Culture—Human 1321N1 cells were transfected with HA-tagged mutant P2Y2 receptor cDNA (P2Y2-HA) as described previously (15). The P2Y2-1321N1 cells were grown to a density of ~5 x 10^5 cells/cm^2 in DMEM containing 5% fetal bovine serum, 100 units/ml penicillin, 100 μg/ml streptomycin, and 500 μg/ml Gentecin (G418, Life Technologies, Inc.) at 37 °C in a humidified atmosphere of 95% CO2 and 5% air. The day prior to use of the cells, the growth medium was replaced with G418-free medium.

Calcium Measurements—Changes in [Ca^{2+}] were detected by dual-excitation spectrofluorometric analysis of P2Y2-1321N1 cell suspensions loaded with fura-2 as described previously (16, 17). Cells were assayed in 10 ml Hepes-buffered saline (pH 7.4) containing 1 mM CaCl2 and 1 mM MgCl2 unless indicated otherwise. Desensitization experiments were performed by incubating P2Y2-1321N1 cell suspensions with varying concentrations of UTP for 5 min at 37 °C. The cells were pelleted in a microcentrifuge and resuspended in 2 ml of buffer. The EC50 value of UTP, determined during the concentration-response experiments (see Fig. 3), was used to re-challenge the cells. Concentration-response data were analyzed with the Prism curve fitting program (GraphPAD Software for Science, San Diego, CA).

Sequestration Assays—P2Y2-1321N1 cells, grown to 80% confluency in 35-mm dishes, were incubated with UTP (Amersham Pharmacia Biotech) or phosphor 12-myristate 13-acetate (PMA; Sigma) for the times and at the concentrations indicated in the figure legends. Control cells were incubated without UTP (to allow an estimation of the total cell-surface complement of P2Y2 receptors) for 180 min.

RESULTS

Five cDNAs encoding P2Y2 receptors with different length C-terminal truncations (Fig. 1) were constructed by PCR and expressed in 1321N1 cells to determine the role of the C terminus in agonist-induced desensitization of receptor-mediated calcium mobilization and receptor sequestration. The most extensively truncated receptor (truncation mutant 5) lacks two of three protein kinase C consensus phosphorylation sites and potential sites of phosphorylation by G protein-coupled receptor kinase present in the intracellular domains of the wild-type P2Y2 receptor.
of HA-tagged wild-type P2Y₂ receptors in 1321N1 cells was estimated by comparison with the fluorescence intensity due to HA-tagged β₂-adrenergic receptors (500 fmol/mg of total protein) in HEK-293 cells (20). The β₂-adrenergic receptor density was determined to be 32,667 ± 6669 receptors/cell compared with 22,767 ± 9753 receptors/cell for the wild-type P2Y₂ receptor.

Progressive Truncations of the C Terminus Result in Altered Agonist Concentration-effect Curves for Receptor Desensitization—As shown in Fig. 3 (A–F), wild-type and truncated P2Y₂ receptors had similar concentration-effect curves for UTP-induced increases in [Ca²⁺] i. The similarity of the EC₅₀ and maximal response values with UTP for the six P2Y₂ receptor constructs (Fig. 3 and Table I) indicates that the truncations had no marked effect on receptor activation and signaling when the various constructs were expressed at approximately the
same density. The truncated receptors exhibited rapid and transient increases in \([\text{Ca}^{2+}]_i\) in response to UTP, followed by a return to baseline levels within 3 min (data not shown), similar to the wild-type receptor. The desensitization of the calcium response to UTP was determined for each receptor following a 5-min preincubation with the indicated concentration of UTP (Fig. 3). Progressive truncations of the C terminus increased the IC_{50} values for UTP-induced desensitization to a maximum of 25-fold with truncation mutant 4 (Table I).

TABLE I

EC_{50}/IC_{50} values of agonist-induced activation and desensitization of \([\text{Ca}^{2+}]_i\) together with receptor expression and estimated \(t_{1/2}\) values and maximum levels of receptor sequestration

Concentration responses (EC_{50} and IC_{50}) were determined from the data collected in Fig. 3 (A–F). Normalized receptor expression levels were calculated by determining the ALI (\(n = 3\)) for each receptor construct and comparing each value to the wild-type receptor, which was regarded as 1. Estimated \(t_{1/2}\) values of sequestration were from Fig. 4 (A–F). Maximal receptor sequestration (the percentage of receptor complement removed from the cell surface) was determined from the data used to construct Fig. 4 (A–F).

Recombinant P2Y_{2} receptors	Concentration-response EC_{50} of UTP (activation)	Concentration-response IC_{50} of UTP (desensitization)	Normalized receptor expression (wild-type = 1)	Estimated \(t_{1/2}\) values of sequestration	Maximal receptor sequestration after 180 min
Wild-type	0.25 ± 0.03	0.43 ± 0.1	1.00 ± 0.10	<5	90 ± 1
Truncation 1	0.47 ± 0.07	1.23 ± 0.8	1.07 ± 0.15	5–10	90 ± 1
Truncation 2	0.61 ± 0.23	3.37 ± 1.8	1.95 ± 0.18	45	80 ± 1
Truncation 3	0.05 ± 0.01	7.78 ± 4.8	2.00 ± 0.15	60	80 ± 2
Truncation 4	0.10 ± 0.02	12.3 ± 3.3	1.09 ± 0.17	150	50 ± 2
Truncation 5	0.18 ± 0.04	9.75 ± 5.1	1.72 ± 0.36	120	67 ± 14

FIG. 3. UTP concentration-effect curves for activation and agonist-induced desensitization of wild-type and truncation mutant P2Y_{2} receptors. Cells expressing recombinant HA-tagged P2Y_{2} receptors were prepared, and \([\text{Ca}^{2+}]_i\) was measured in response to the indicated concentrations of UTP (A–F) as described under "Experimental Procedures." \([\text{Ca}^{2+}]_i\), is expressed as a percentage of the maximal response to allow comparisons among different receptor constructs. The maximal increases in \([\text{Ca}^{2+}]_i\), in response to UTP obtained for each receptor construct were as follows: wild-type, 282 ± 82 nM (A); truncation mutant 1, 733 ± 13 nM (B); truncation mutant 2, 341 ± 132 nM (C); truncation mutant 3, 341 ± 130 nM (D); truncation mutant 4, 278 ± 33 nM (E); and truncation mutant 5, 318 ± 80 nM (F). Desensitization (A) was assessed by incubating 1321N1 cells expressing the different receptor constructs for 5 min with the indicated concentrations of UTP, followed by re-challenging with the EC_{50} value of UTP, determined in the receptor activation experiments (see Table I). The data presented are expressed as a percentage of the peak calcium response to the EC_{50} value of UTP in cells that were not preincubated with the agonist. The peak values were as follows: wild-type, 176 ± 43 nM (A); truncation mutant 1, 247 ± 43 nM (B); truncation mutant 2, 252 ± 97 nM (C); truncation mutant 3, 240 ± 84 nM (D); truncation mutant 4, 231 ± 47 nM (E); and truncation mutant 5, 420 ± 188 nM (F). The values shown are the mean ± S.E. of three experiments.

Truncations of the C Terminus Decrease Receptor Sequestration—Fig. 4 shows that >80% of the wild-type receptors were sequestered within 10 min. The \(t_{1/2}\) the time at which 50% of the cell-surface receptor complement is sequestered, was <5 min. Progressive truncations of the C terminus of the P2Y_{2}
receptor increased the $t_{1/2}$ for sequestration. For the most truncated forms of the receptor (truncation mutants 4 and 5), the $t_{1/2}$ values were ~25-fold greater, and at least 35% of the receptors remained on the cell surface after 180 min. UTP concentration-effect curves show that 50% of the wild-type receptors were sequestered after a 10-min incubation with 6 mM UTP, whereas sequestration of 50% of the truncation mutant 5 receptors required a 120-min incubation with 1 mM UTP (Fig. 5).

Hydrolysis of UTP by 1321N1 cells was determined by HPLC analysis to be negligible, with 96% of the UTP remaining after 3-h incubation (data not shown). The original UTP stock solution contained a similar percentage of UTP, with 4% contamination with UDP. We were thus unable to detect any significant hydrolysis of UTP under these experimental conditions, unlike Lazarowski et al. (21), who demonstrated significant ecto-apyrase activity in 1321N1 cells. It is possible that, during our experiments, too much UTP and too few 1321N1 cells were present to demonstrate significant hydrolysis of nucleotide.

P2Y$_2$ Receptor Truncations Alter Desensitization/Sequestration

Incubation of the cells for various times in the absence of agonist, cell-surface receptor expression was determined. As shown in Fig. 6, recovery was time-dependent and nearly complete (~90%) after 240 min. Half of the receptor complement returned to the cell surface in ~60 min.

UTP-induced Receptor Desensitization and Sequestration Are Distinct Events—Fig. 7 illustrates the relationship between agonist-induced desensitization and receptor sequestration for the wild-type and truncation mutant 5 receptors. It is apparent for both receptors that 50% of the cell-surface receptor complement was still present when the UTP-induced increase in $[Ca^{2+}]_{i}$ was desensitized. Furthermore, the wild-type and truncation mutant 5 P2Y$_2$ receptors had nearly all of the receptor complement on the cell surface when 50% of the UTP-induced calcium response was desensitized.

The effects of the protein kinase C activator PMA on desensitization of UTP-stimulated increases in $[Ca^{2+}]_{i}$ were examined in cells expressing the wild-type and truncation mutant 5 P2Y$_2$ receptors. Fig. 8 shows that the wild-type and truncation mutant 5 receptors have similar IC$_{50}$ values (35 ± 17 and 62 ± 35 nM, respectively) for PMA-induced desensitization.
However, truncation mutant 5 required greater concentrations of PMA to induce desensitization. For example, truncation mutant 5 was 65% desensitized at 1 mM PMA, a concentration that fully desensitized the wild-type receptor. These data indicate a strong desensitizing effect of PMA on UTP-stimulated Ca$^{2+}$ mobilization.

FIG. 5. Concentration-dependent effect of UTP on sequestration of recombinant P2Y$_2$ receptors. A, 1321N1 cells expressing the wild-type P2Y$_2$ receptor were incubated with the indicated concentrations of UTP for 10 min, and receptor density on the cell surface was determined as described under "Experimental Procedures." B, 1321N1 cells expressing truncation mutant 5 were incubated with the indicated concentrations of UTP for 120 min, and receptor sequestration was determined as described for A. The values shown are the mean ± S.E. of data from three experiments.

FIG. 6. Time course of recovery of the cell-surface P2Y$_2$ receptor complement. 1321N1 cells expressing the wild-type P2Y$_2$ receptor were incubated with 1 mM UTP for 10 min. UTP was removed; the medium was replaced; and the cells were incubated at 37 °C in 5% CO$_2$ and allowed to recover for the indicated times before the percentage of receptors remaining on the cell surface was determined as described under "Experimental Procedures." The receptor complement is expressed as a percentage of the level of receptors present in 1321N1 cells incubated in the absence of UTP. The values shown are the mean ± S.E. from three experiments.

FIG. 7. Relationship between agonist-induced desensitization of recombinant P2Y$_2$ receptors and the percentage of receptors remaining on the surface of 1321N1 astrocytoma cells. Values for UTP-induced desensitization (after a 10-min preincubation with agonist) of calcium mobilization by wild-type (○) and truncation mutant 5 (●) P2Y$_2$ receptors expressed in 1321N1 cells were plotted against the percentage of receptors remaining on the cell surface after incubation with the concentrations of UTP indicated in Fig. 5 (A and B).

FIG. 8. Concentration-effect curves for PMA-induced desensitization of wild-type and truncation mutant 5 P2Y$_2$ receptors. Cells expressing recombinant HA-tagged P2Y$_2$ receptors were prepared, and [Ca$^{2+}$], was measured and desensitization was assessed as described under "Experimental Procedures" by incubating 1321N1 cells expressing the different receptor constructs (wild-type (△) and truncation mutant 5 (■) P2Y$_2$ receptors) for 5 min with the indicated concentrations of PMA, followed by re-challenging with the EC$_{50}$ value of UTP, determined in receptor activation experiments (Fig. 3). [Ca$^{2+}$], is expressed as a percentage of the maximal response to allow comparisons of the receptor constructs. The maximal increases in [Ca$^{2+}$], in response to UTP obtained for each receptor construct were as follows: wild-type, 189 ± 43 nM; and truncation mutant 5, 196 ± 55 nM. The values shown are the mean ± S.E. from three experiments.

FIG. 9. Effect of PKC activation on wild-type P2Y$_2$ receptor sequestration. 1321N1 cells expressing the wild-type P2Y$_2$ receptor were incubated for periods of up to 180 min with 1 mM UTP (△), 1 mM UTP and 1 μM PMA (■), or 1 μM PMA (■), and the percentage of receptors remaining on the cell surface was determined as described under "Experimental Procedures." The receptor complement is expressed as a percentage of the level of receptors present in 1321N1 cells incubated in the absence of UTP. The values shown are the mean ± S.E. from three experiments.
However, exposure of cells to 1 μM PMA for times ranging from 5 to 180 min failed to induce sequestration of wild-type P2Y2 receptors (Fig. 9). Furthermore, co-incubation with 1 μM PMA and 1 mM UTP produced a pattern of sequestration similar to that obtained with UTP alone. These findings suggest no role for PKC in the sequestration of the P2Y2 receptor and thus dissociate receptor desensitization from sequestration.

DISCUSSION

Desensitization of the G protein-coupled P2Y2 receptor can attenuate responses to nucleotides, which may impair the therapeutic effects of nucleotides in treatment of diseases such as cystic fibrosis. G protein-coupled receptor desensitization can involve several protein kinases, including protein kinase A, PKC, and G protein-coupled receptor kinases (reviewed in Ref. 8). However, the pathway involved in P2Y2 receptor desensitization is not well understood. P2Y2 receptor activation is coupled to phospholipase C, leading to the production of diacylglycerol, an activator of PKC. The presence of three consensus sites for phosphorylation by PKC and possible sites for G protein-coupled receptor kinase phosphorylation in the intracellular domain of the P2Y2 receptor prompted us to investigate the role of the serine/threonine-rich C terminus in agonist-induced P2Y2 receptor desensitization.

It has been established in this study that the recombinant P2Y2 receptor expressed in 1321N1 cells desensitizes like the endogenous receptor in bovine aortic endothelial cells (7). Desensitization of the P2Y2 receptor occurs in response to UTP or activation of PKC with PMA, although in some cells, PKC may not mediate P2Y2 receptor desensitization (22).

The lack of a reliable radioligand binding assay and antibodies to the endogenous P2Y2 receptor necessitated the incorporation of the HA epitope of influenza virus at the N terminus of the receptor to monitor sequestration with the 12CA5 monoclonal antibody. Truncation of 30 amino acids from the C terminus of the P2Y2 receptor (truncation mutant 5) increased the concentration of UTP required for receptor desensitization and decreased the ability of these receptors to sequester as efficiently as the wild-type P2Y2 receptor. This trend was also exhibited with truncation mutants 3 and 4. However, truncation mutant 2 had a similar UTP concentration response for desensitization, but different sequestration properties compared with the wild-type P2Y2 receptor, whereas truncation mutant 1 desensitized and sequestered like the wild-type P2Y2 receptor. The cause for the change in sequestration properties that occurred between truncation mutants 1 and 2 requires further investigation, but may involve the loss of one or more essential amino acids from truncation mutant 2 that impact on sequestration, but not desensitization. Clearly, these changes do not affect receptor activation since UTP-induced increases in [Ca2+]i, for all the recombinant P2Y2 receptor constructs had similar concentration-response curves. The wild-type P2Y2 receptor lacks any cysteine residues in its C terminus that are apparently required for palmitoylation of the β2-adrenergic receptor (23, 24) and the formation of tertiary structure required for agonist-induced receptor desensitization (25).

The wild-type P2Y2 receptor expressed in 1321N1 cells desensitizes and sequesters in a time-dependent manner similar to other GPCRs, and although the P2Y2 receptor recovers from desensitization like other GPCRs, its recovery from sequestration is slower (11, 26). It may be that the presence of the HA epitope affects the sequestration kinetics of the P2Y2 receptor, but until reliable radioligands are developed for this receptor, we are unable to address this question. Although de novo protein synthesis may be responsible for recovery of some receptor activity, resensitization is more likely due to receptor recycling given the short incubation period with UTP. However, recovery from receptor sequestration was difficult to evaluate in cells expressing truncation mutant 5 because of the necessity to incubate these cells for 180 min (a period that may involve receptor down-regulation) to get adequate sequestration. Experiments on transcriptional regulation of the endogenous P2Y2 receptor will be necessary to determine the mechanisms of recovery from receptor down-regulation.

Truncations of the carboxyl-terminal tail of G protein-coupled receptors can have a wide range of effects on receptor desensitization and sequestration. Truncation of the terminal 45 amino acids of the angiotensin II type 1A receptor inhibited receptor internalization with no effect on radioligand binding, downstream signaling, or agonist-induced desensitization (27). Removal of 72 of 86 amino acids from the C terminus of the serotonin type 2 receptor had no effect on the ability of the receptor to stimulate phospholipase C or to be internalized even though three of five PKC consensus phosphorylation sites and potential G protein-coupled receptor kinase phosphorylation sites were removed (28). However, the authors noted the presence in the truncated and wild-type 5HT2 receptors of the consensus NPXY sequence, in which the tyrosine residue has been reported to be essential for β2-adrenergic receptor sequestration. In contrast, Thomas et al. (27) have reported the presence of an NPXXY sequence in an internalization-resistant mutant of the angiotensin II type 1A receptor. The P2Y2 receptor has a DPXXY sequence that remains after the most radical truncation (truncation mutant 5), and it will be of interest to see if this tyrosine residue has any role in receptor sequestration.

Another study of the phospholipase C-linked G protein-coupled α1β-adrenergic receptor indicated the importance of the C terminus in agonist-induced receptor phosphorylation and desensitization (29). A 147-amino acid truncation of the C terminus of the α1β-adrenergic receptor did not decrease agonist-induced inositol 1,4,5-triphosphate accumulation compared with the wild-type α1β-adrenergic receptor. However, the truncated receptor was resistant to desensitization and was not phosphorylated in response to activation by its ligand, epinephrine. The truncated α1β-adrenergic receptor was able to sequester, but more slowly than the wild-type receptor.

Removal of 43 amino acids from the C terminus of the lutropin/choriogonadotropin receptor (30) or 48 amino acids from the C terminus of the β2-adrenergic receptor (31) led to a decrease in agonist-induced uncoupling of the receptors from adenyl cyclase. Compared with the wild-type β2-adrenergic receptor, the truncation mutant required longer periods of agonist exposure to desensitize, presumably indicating the importance of β-adrenergic receptor kinase phosphorylation sites that were lost upon receptor truncation.

It will be of interest to investigate the specific amino acid residues of the P2Y2 receptor that are involved in both desensitization and sequestration of this receptor. Fredericks et al. (9) identified G protein-coupled receptor kinase phosphorylation sites in the β2-adrenergic receptor and found similarities between these sites and those found in rhodopsin. The most amino-terminal phosphorylation site in both rhodopsin and the β2-adrenergic receptor has pairs of acidic residues at its amino-terminal side. Truncation mutant 3 of the P2Y2 receptor truncates the receptor directly after two acidic residues and directly before a serine residue. It is tempting to speculate the importance of these amino acids in P2Y2 receptor function since truncation mutant 3 is the least truncated form of the P2Y2 receptor used in this study that required an increased concentration of UTP to induce desensitization compared with the wild-type receptor.

Very few studies have directly investigated the role of func-
tionally important domains of P2Y receptors. Specific amino acids in the transmembrane-spanning domains of the P2Y2 (32) and P2Y1 (33) receptors have been shown to affect agonist potency and specificity. The present study has defined the importance of the C terminus of the P2Y2 receptor in desensitization and sequestration. Considering the widely varying roles of the C terminus in G protein-coupled receptor functions, future studies should better delineate the relevance of this domain to P2Y2 receptor regulation. Studies are also needed to fully evaluate the role of PKC and other protein kinases in the desensitization and sequestration of the P2Y2 receptor. A complete understanding of the signaling pathways involved may help minimize receptor desensitization and sequestration to optimize nucleotide therapies, such as those proposed for cystic fibrosis, that are directed at the P2Y2 receptor.

Acknowledgments—We thank Louise Barnett for excellent technical assistance with the flow cytometry and Jane Burnett and Jean Camden for similar assistance with the HPLC analysis. We also thank Mark von Zastrow for the HEK-293 cells expressing N-terminally HA-tagged β2-adrenergic receptors and F. Dusty Miller for the pLXSN retroviral plasmid.

REFERENCES

1. Lustig, K. D., Erb, L., Landis, D. M., Hicks-Taylor, C. S., Zhang, X., Sportiello, M. G., and Weisman, G. A. (1992) Biochim. Biophys. Acta 1134, 61–72
2. Pearce, B., Murphy, S., Jeremy, J., Morrow, C., and Dandona, P. (1989) J. Neurochem. 52, 971–977
3. Sasakawa, N., Nakaki, T., Yamamoto, S., and Kato, R. (1989) J. Neurochem. 52, 441–447
4. Lin, T.-A., Lustig, K. D., Sportiello, M. G., Weisman, G. A., and Sun, G. Y. (1993) J. Neurochem. 60, 1115–1125
5. Clarke, L. L., and Boucher, R. C. (1992) Am. J. Physiol. 263, C348–C356
6. Knowles, M. R., Clarke, L. L., and Boucher, R. C. (1991) N. Engl. J. Med. 325, 533–538
7. Wilkinson, G. F., Purkiss, J. R., and Boarder, M. R. (1994) Mol. Pharmacol. 45, 731–736
8. Friedman, N. J., and Lefkowitz, R. J. (1996) Recent Prog. Horm. Res. 51, 319–351
9. Fredericks, Z. L., Pitcher, J. A., and Lefkowitz, R. J. (1996) J. Biol. Chem. 271, 15796–15803
10. Pippig, S., Andexinger, S., and Lohe, M. J. (1995) Mol. Pharmacol. 47, 666–676
11. Yu, S. S., Lefkowitz, R. J., and Hausdorff, W. P. (1993) J. Biol. Chem. 268, 327–341
12. Barak, L. S., Tiberi, M., Friedman, N. J., Kwaiter, M. M., Lefkowitz, R. J., and Caron, M. G. (1994) J. Biol. Chem. 269, 2790–2796
13. Sibley, D. R., Strasser, R. H., Benovic, J. L., Daniel, K., and Lefkowitz, R. J. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 9408–9412
14. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
15. Nguyen, T., Erb, L., Weisman, G. A., Marchese, A., Heng, H. H. Q., Garrad, R. C., George, S. R., Turner, J. T., and O'Dowd, B. F. (1995) J. Biol. Chem. 270, 30645–30648
16. Grynkiewicz, G., Poenie, M., and Tsien, R. Y. (1985) J. Biol. Chem. 260, 3440–3450
17. Turner, J. T., James-Kracke, M. J., and Camden, J. M. (1990) J. Exp. Pharmacol. Ther. 253, 1049–1056
18. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. (1985) Anal. Biochem. 150, 76–85
19. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) J. Biol. Chem. 193, 265–275
20. von Zastrow, M., and Kobilka, B. K. (1992) J. Biol. Chem. 267, 3530–3538
21. Lazarowski, E. R., Homolya, L., Boucher, R. C., and Harden, T. K. (1997) J. Biol. Chem. 272, 20402–20407
22. Gonzalez, F. A., Rozengurt, E., and Heppel, L. A. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 4530–4534
23. O'Dowd, B. F., Hnatowich, M., Regan, J. W., Leader, M. W., Caron, M. G., and Lefkowitz, R. J. (1988) J. Biol. Chem. 263, 15985–15992
24. O'Dowd, B. F., Hnatowich, M., Caron, M. G., Lefkowitz, R. J., and Bourvier, M. (1989) J. Biol. Chem. 264, 7564–7569
25. Moffett, S., Mouilac, B., Bonin, H., and Bourvier, M. (1993) EMBO J. 12, 349–356
26. Koenig, J. A., and Edwardson, J. M. (1996) Mol. Pharmacol. 49, 351–359
27. Thomas, W. G., Thekkumkara, T. J., Motel, T. J., and Baker, K. M. (1995) J. Biol. Chem. 270, 207–213
28. Vouret-Craviari, V., Aubher, P., Pouysegur, J., and Van Obberghen-Schillinger, E. (1995) J. Biol. Chem. 270, 4821–4823
29. Lattion, A.-L., Diviani, D., and Cetecchia, S. (1994) J. Biol. Chem. 269, 22887–22893
30. Sanchez-Yague, J., Rodriguez, M. C., Segaloff, D. L., and Ascoli, M. (1992) J. Biol. Chem. 267, 7121–7127
31. Bouvier, M., Hausdorff, W. P., De Blasi, A., O'Dowd, B. F., Kohilka, B. K., Caron, M. G., and Lefkowitz, R. J. (1988) Nature 333, 370–373
32. Erb, L., Garrad, R., Wang, Y., Quinn, T., Turner, J. T., and Weisman, G. A. (1995) J. Biol. Chem. 270, 4185–4188
33. Jiang, Q., Guo, D., Lee, B. X., van Bhee, A. M., Kim, Y.-L., Nicholas, R. A., Schachter, J. B., Harden, T. K., and Jacobson, K. A. (1997) Mol. Pharmacol. 52, 499–507