Data Article

Gene expression profile data of the developing small intestine of Id2-deficient mice

Kentaro Mori a, b, *, Kota Tamada c, Hisanori Kurooka b, d, Makoto Matsui a, Toru Takumi c, Yoshifumi Yokota b

a Department of Neurology, Kanazawa Medical University, 1-1 Uchinada, Ishikawa 920-0293, Japan
b Division of Molecular Genetics, Department of Biochemistry and Bioinformative Sciences, School of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui 910-1193, Japan
c RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
d Faculty of Nutritional Science, Department of Nutritional Management, Sagami Women’s University, Sagamihara, Kanagawa, 252-0383, Japan

A R T I C L E I N F O

Article history:
Received 14 November 2018
Received in revised form 23 January 2019
Accepted 23 January 2019
Available online 15 March 2019

Keywords:
Endoderm
Foregut
Midgut
Id2
Sox21
Microarray

A B S T R A C T

This article contains data related to the research article entitled “Id2 determines intestinal identity through repression of the foregut transcription factor, Irx5” [1]. Id2 deficient (Id2−/−) mice developed gastric tumors and heterotopic squamous epithelium in the small intestine. These tumors and heterotopic tissues were derived from ectopic gastric cells and squamous cells formed in the small intestine respectively during development. In this study, microarray data of the developing small intestine of Id2−/− mice was analyzed.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Data

Microarray analysis was performed in the developing small intestine of Id2−/− mice. In total, 34 genes were differentially expressed in Id2−/− embryo compared with Id2+/+ embryo with criteria of fold change >2. Of these differentially expressed genes, 14 genes were upregulated and 20 genes were downregulated in Id2−/− embryo (Table 1) [1].

Furthermore, the expression levels of the selected 24 genes that are preferentially expressed in a specific embryonic gut segment, including foregut (eight genes), anterior-midgut (eight genes) and posterior-midgut (eight genes) were analyzed [16]. Heatmap visualization indicated that the expression of six of foregut-enriched genes were upregulated in Id2−/− embryo (Fig. 1) while the expressions of three of the midgut-enriched genes were remarkably downregulated in Id2−/− embryo. The remaining two foregut-enriched genes and 12 midgut enriched genes were not altered.

Sox21 is highly expressed in the anterior region over the period of foregut endoderm formation [3,16,17]. qRT-PCR analysis revealed that Sox21 expression increased only in the posterior part of the Id2−/− mice midgut (Fig. 2A). RT-PCR analysis clearly showed that heterotopic Sox21 expression was confined to the midgut of Id2−/− embryo, but not to the posterior part of midgut or hindgut (Fig. 2B).

2. Experimental design, materials and methods

2.1. Animals

Id2 mutant mice with 129/Sv genetic background were used for analysis [18]. Preparation of Id2+/+ and Id2−/− embryos was performed by crossing 8-week-old Id2+/+ male and Id2−/− female mice.

2.2. RNA extraction

Total RNA samples were extracted using an RNeasyMini Kit (QIAGEN, Valencia, CA, USA). Tissue lysate was purified by QIAshredder (QIAGEN) and treated with DNasel to remove genomic DNA. For
microarray analysis, total RNA from three midguts of the same genotype was taken as one sample. RNA quality was measured using the Agilent 2100 Bioanalyzer 2100 (Agilent Technology, Wilmington, DE, USA), and samples with 28S/18S ribosome ratio >2.0 were used for analysis.

2.3. Microarray

One microgram of total RNA was amplified and labeled with digoxigenin (DIG) for one round using a NanoAmp RT-IVT Labeling Kit (Applied Biosystems, Foster City, CA, USA). DIG labeled cRNA was fragmented and hybridized to Mouse Genome Survey Microarray ver.2.0 (Applied Biosystems) followed by chemiluminescence detection.

2.4. Data analysis

Raw signal values were normalized by the median. In all probe sets with false spots (flag < 5000) and signal-to-noise values < 3 (as determined by the software) were excluded. Normalized signal values were converted to log2 ratios. Fold changes between Id2⁻/⁻ and wild-type samples were calculated for each of the resulting probe sets. Heatmap visualization was constructed by Cluster 3.0 and Treeview software [19].

2.5. RT-PCR

Oligo(dT)-primed cDNA synthesis was performed using SuperScript III reverse transcriptase (Invitrogen, Carlsbad, CA, USA). qRT-PCR was performed using the Power SYBR green PCR master mix and a StepOnePlus real-time PCR system (Applied Biosystems, Foster City, CA, USA). Primer sequences for RT-PCR analysis are as follows: Sox21-forward, TACATGATCCCGTCACTG; and Sox21-reverse, TGCAGCCTGTCAAACAC. PCR primer sequences for qRT-PCR and Actb primers for RT-PCR analysis were described previously [1].

Table 1
Differentially expressed genes in Id2 KO midgut.

Gene	Expression pattern in the developing digestive tract	Reference
Up-regulated genes (KO/WT, fold change > 2)		
Cym, Irx3, Irx5	Specifically expressed in foregut endoderm	[2], [3]
Krt15, Foxa2, Adcy8	Preferentially expressed in foregut endoderm	[4], [5], [6]
Traf6, Orfr1337, Cacng7, Wdr86, Ocr1, C030016D13Rik, Cdc96	Oral endoderm and mesenchyme not annotated	[7]
Down-regulated genes (KO/WT, fold change < 0.5)		
Sulp1, Spink3, Anxa13, Muc13, Lingo1, Bspry, Fabpl	Highly expressed in midgut endoderm	[8], [9], [10], [11], [12], [13], [14]
Cbhn2	Preferentially expressed in midgut mesenchyme	[13]
Myl1, Slc27a2, Foxq1	Highly expressed in the other region of midgut endoderm	[13], [15]
Them7, Kynu, Ppp1r1b, Mkrn2os, Hapln2, BC030870, 2610044015Rik, Ifi203, Faim3	not annotated	
Fig. 1. Heatmap of specific gene expressions in the midgut of Id2 wild-type (WT) and Id2 deficient (KO) mice embryos. The colored scale at the top of heatmap is log based. Genes are preferentially expressed in the specific gut segment. Foregut enriched genes, Anterior-Midgut enriched genes and Posterior-Midgut enriched genes were represented with different colors; cyan, orange and magenta respectively. Hierarchical clustering was performed with the complete-linkage method.
Funding
This work was supported in part by JSPS KAKENHI (JP24790194 to K.Mori, JP 21390092 and JP24390077 to Y.Yokota, JP16H06316 and JP16H06463 and JP16K13110 to T.Takumi) and by JST CREST (to T.Takumi) and by the grant provided by The Ichiro Kanehara Foundation (to K. Mori) and by research grants from the University of Fukui (to Y.Yokota).

Acknowledgements
We thank our laboratory members for their valuable suggestion and discussion. We also thank Edanz Group (www.edanzediting.com/ac) and Editage (www.editage.jp) for English language editing.

Transparency document
Transparency document associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2019.103717.

Fig. 2. Sox21 expression in the developing gastrointestinal tract of Id2+/− embryo. (A) qRT-PCR analysis of Sox21 expression in E13.5 midguts. Midgut tissues were subdivided into anterior and posterior parts (n=7 per genotype). (B) RT-PCR analysis of Sox21 expression in E15.5 gastrointestinal tract. Midgut tissues were subdivided into three segments along the anterior-posterior axis. Ant - anterior segment of midgut; Mid - middle segment of midgut; Pos - posterior segment of midgut.
References

[1] K. Mori, H. Nakamura, H. Kurooka, H. Miyachi, K. Tamada, M. Sugai, T. Takumi, Y. Yokota. Id2 determines intestinal identity through repression of the foregut transcription factor Irix5, Mol. Cell Biol. 38 (2018) 1–17, https://doi.org/10.1128/MCB.00250-17.

[2] A.C. Houweling, R. Dildrop, T. Peters, J. Mummenhoff, A.F.M. Moorman, U. Rüther, V.M. Christophel, Gene and cluster-specific expression of the Iroquois family members during mouse development, Mech. Dev. 107 (2001) 169–174, https://doi.org/10.1016/S0925-4773(01)00451-8.

[3] R.I. Sherwood, T.Y.A. Chen, D.A. Melton, Transcriptional dynamics of endodermal organ formation, Dev. Dynam. 238 (2009) 29–42, https://doi.org/10.1002/dvdy.21810.

[4] C. Lloyd, Q.C. Yu, J. Cheng, K. Turksen, L. Degenstein, E. Hutton, E. Fuchs. The basal keratin network of stratified squamous epithelia: defining K15 function in the absence of K14, J. Cell Biol. 129 (1995) 1329–1344, https://doi.org/10.1083/jcb.129.5.1329.

[5] A.P. Monaghan, K.H. Kaestner, E. Grau, G. Schutz, Postimplantation expression patterns indicate a role for the mouse forkhead/HNF-3 alpha, beta and gamma genes in determination of the definitive endoderm, chordamesoderm and neuroectoderm, Development 119 (1993) 567–578.

[6] A. Visel, GenePaint.org: an atlas of gene expression patterns in the mouse embryo, Nucleic Acids Res. 32 (2004) 5520–556D, https://doi.org/10.1093/nar/gkh029.

[7] A. Ohazama, J.-M. Courtney, P.T. Sharpe, Expression of TNF-receptor-associated factor genes in murine tooth development, Gene Expr. Patterns 3 (2003) 127–129, https://doi.org/10.1016/S1567-133X(03)00028-0.

[8] Y. Sakakibara, K. Yanagisawa, Y. Takami, T. Nakayama, M. Suiko, M.C. Liu. Molecular cloning, expression, and functional characterization of novel mouse sulfotransferases, Biochem. Biophys. Res. Commun. 247 (1998) 681–686, https://doi.org/10.1006/bbrc.1998.8872.

[9] J. Wang, M. Ohmuraya, M. Hirota, H. Baba, G. Zhao, M. Takeya, K. Araki, K. Yamamura. Expression pattern of serine protease inhibitor kazal type 3 (Spink3) during mouse embryonic development, Histochem. Cell Biol. 130 (2008) 387–397, https://doi.org/10.1007/s00418-008-0425-8.

[10] B.M. Wice, J.I. Gordon, A strategy for isolation of cDNAs encoding proteins affecting human intestinal epithelial cell growth and differentiation: characterization of a novel gut-specific N-myristoylated annexin, J. Cell Biol. 116 (1992) 405–422, https://doi.org/10.1083/jcb.116.2.405.

[11] S.J. Williams, D.H. Wreschner, M. Tran, H.J. Eyre, G.R. Sutherland, M.A. McGuckin. MUC13, a novel human cell surface mucin expressed by epithelial and hemopoietic cells, J. Biol. Chem. 276 (2001) 18327–18336, https://doi.org/10.1074/jbc.M00850200.

[12] B.P. Haines, P.W.J. Rigby, Expression of the Lingo/LERN gene family during mouse embryogenesis, Gene Expr. Patterns 8 (2008) 79–86, http://www.ncbi.nlm.nih.gov/pubmed/18297755 (accessed 1 September 2018).

[13] G. Diez-Roux, S. Banfi, M. Sultan, L. Geffers, S. Anand, D. Rozado, A. Magen, E. Canidio, M. Pagani, I. Peluso, N. Lin-Marcq, M. Koch, M. Bilo, I. Cantiello, R. Verde, C. De Masi, S.A. Bianchi, J. Cicchini, E. Perroud, S. Mehmeti, E. Dagand, S. Schrinner, A. Nürnberg, K. Schmidt, M. Zwingmann, N. Brieske, C. Springer, A.M. Hernandez, S. Herzog, F. Grabbe, C. Sieverding, B. Fischer, K. Schrader, M. Brockmeyer, S. Dettmer, C. Helbig, V. Alunni, M.-A. Battaini, C. Mura, C.N. Henrichsen, R. Garcia-Lopez, D. Echevarria, E. Puelles, E. Garcia-Calero, S. Kruse, M. Uhr, K. Kauck, G. Feng, N. Milyaev, C.K. Ong, L. Kumar, M. Lam, C.A. Semple, A. Gyenesei, S. Mundlos, U. Radolof, H. Lehrach, P. Sarmientos, A. Reymond, D.R. Davidson, P. Dollé, S. E. Antonarakis, M.-L. Gaspo, S. Martinez, R.A. Baldock, G. Eichele, A. Vallabio, A high-resolution anatomical atlas of the transcriptome in the mouse embryo, PLoS Biol. 9 (2011), e1000582, https://doi.org/10.1371/journal.pbio.1000582.

[14] D.A. Sweetser, E.H. Birkenmeier, I.J. Klisak, S. Zollman, R.S. Sparkes, T. Mohandas, A.J. Lusis, J.I. Gordon, The human and rodent intestinal fatty acid binding protein genes. A comparative analysis of their structure, expression, and linkage relationships, J. Biol. Chem. 262 (1987) 16060–16071.

[15] M.P. Verzi, A.H. Khan, S. Ito, R.A. Shvidasani, Transcription factor Foxq1 controls mucin gene expression and granule content in mouse stomach surface mucous cells, Gastroenterology 135 (2008) 591–600, https://doi.org/10.1053/j.gastro.2008.04.019.

[16] R.I. Sherwood, R. Maeher, E.O. Mazzoni, D.A. Melton, Wnt signaling specifies and patterns intestinal endoderm, Mech. Dev. 128 (2011) 387–400, https://doi.org/10.1016/j.mod.2011.07.005.

[17] A.N. Kuzmichev, S.K. Kim, A.C. D’Alessio, J.G. Chenoweth, L. Wittko, L. Campanati, R.D. McKay, Sox2 acts through Sox21 to regulate transcription in pluripotent and differentiated cells, Curr. Biol. 22 (2012) 1705–1710, https://doi.org/10.1016/j.cub.2012.07.013.

[18] Y. Yokota, A. Mansouri, S. Mori, S. Sugawara, S. Adachi, S.J. Nishikawa, P. Gruss, Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2, Nature 397 (1999) 702–706, https://doi.org/10.1038/17812.

[19] A.J. Saldanha, Java Treeview - extensible visualization of microarray data, Bioinformatics 20 (2004) 3246–3248, https://doi.org/10.1093/bioinformatics/bth349.