Foliar sprays of citric acid and salicylic acid alter the pattern of root acquisition of some minerals in sweet basil (Ocimum basilicum L.)

Noushin Ghazijahani1 *, Ebrahim Hadavi2 and Byoung R. Jeong3

1 Microbiology Department, Karaj Branch, Islamic Azad University, Karaj, Iran
2 Horticulture Department, Karaj Branch, Islamic Azad University, Karaj, Iran
3 Horticulture Department, Gyeongsang National University, Jinju, South Korea

*Correspondence:
Noushin Ghazijahani, Microbiology Department, Karaj Branch, Islamic Azad University, Karaj, Iran
e-mail: n.ghazijahani@kiau.ac.ir

INTRODUCTION
Sweet basil (Ocimum basilicum L.) is an herb belonging to the Lamiaceae family that is used as a favorite fresh vegetable together with many traditional foods, dressings, and salads. The aroma of basil makes an essential contribution to its organoleptic quality as well as the medicinal value.

Salicylic acid (SA) is one of the most readily available plant growth regulating materials, which is also effective in other forms of acetyl SA and methyl salicylate in the plant (Raskin, 1992). SA acts as a stress messenger that induces the hypersensitive response (HR) in the plant, helping the plant to resist invading organisms (Klessig and Malamy, 1994), and interactions between SA and other natural stress management compounds have been reported (Cipollini et al., 2004; Metraux and Durner, 2004; Kachroo and Kachroo, 2007; Zottini et al., 2007; De Torres Zabala et al., 2009). SA could induce the alternative oxidase enzyme activity in mitochondria that are involved in the stress alleviation mechanism (Raskin, 1992; Vanlerbergh and McIntosh, 1997). In lower concentrations (less than 1 mM) it has been reported to be beneficial for plant growth (Rivas-San Vicente and Plasencia, 2011). Enhancement (Kiddle et al., 1994; Kang et al., 2004; Wang et al., 2007) or decline (Prithiviraj et al., 2005; D’Onofrio et al., 2009) in specific secondary metabolites of the plant by SA was also reported. There is a report on increasing the content of essential oils of the sweet basil in response to sprays of SA at 0.1 mM (Gharib, 2006).

Citric acid (CA) is a six carbon organic acid, having a central role in CA cycle in mitochondria that creates cellular energy by phosphorylative oxidation reactions. It is created by addition of acetyl-CoA to oxaloacetic acid that is converted to succinate and malate in next steps (Wills et al., 1981). It has been documented that the exudation of citrate and malate from roots of calcicole plants (plants growing in alkaline soils) enables them to extract P and Fe from such soils (Lopez-Bucio and Nieto-Jacobo, 2000). Foliar sprays of CA alone or in combination with Fe sources have been used to recover many plants from the iron chlorosis (Mengel et al., 1994; Tagliavini et al., 1995, 2000; Abadia et al., 2002; Alvarez-Fernández et al., 2004; Eidyan et al., 2014). Later studies revealed that the CA effect is not just due to pH change and there are a variety of physiological responses to applied CA. Use of CA alone or in combinations with SA and malic acid increased the essential oil production of sweet basil (Jaafari and Hadavi, 2012) and dill (Jafari and Hadavi, 2012). Results on the application of CA, on some physiological parameters in Tuberose (Eidyan et al., 2014), Lilium (Daran-deh and Hadavi, 2012), and Bean (El-Tohamy et al., 2013) were promising. Foliar pre-harvest application of the combinations of SA and CA in the soilless culture increased the vase life of cut rose flowers (Hajreza et al., 2013). A recent study on sweet basil revealed that the combination of 1 mM SA with 7 mM CA was superior to others in many physiological traits and yield (Mirzajani, 2013).

The effect of foliar application of two levels of citric acid (CA; 0 and 7 mM) and two levels of salicylic acid (SA; 0 and 1 mM) combined with two levels of nutrient solution strength (full strength and half strength) on mineral acquisition by sweet basil were investigated. The experiment was conducted in a randomized block design arrangement with three replications. SA alone reduced the plant height and thickened the stem. Plants supplied with a full strength solution had a ticker stem, produced more biomass, and showed higher values of Fv/Fm. Some changes in the uptake pattern of some nutrients, especially boron and sulfur, were noticed. Higher boron concentrations in leaves were in plants sprayed with a combination of 7 mM CA and 1 mM of SA. Applying combination of CA and SA was more effective than using them individually that suggests an effective synergism between them.

Keywords: citric acid, hydroponic production, organic acids, salicylic acid, silicon, boron, sulfur
Table 1 | The effect of combinations of salicylic acid and citric acid on mineral concentrations (fresh weight basis) in the leaf and biomass yield.

Spray treatment	Solution strength	Total dry biomass (g)	Total fresh biomass (g)	Plant height (mm)	Stem diameter (mm)	Fv/Fm K (ppm)	Ca (ppm)	Mg (ppm)	Fe (ppm)	Mn (ppm)	Zn (ppm)	Cu (ppm)	Ni (ppm)	B (ppm)	P (ppm)	S (ppm)	Si (ppm)	
CA7*	Full strength	1.37 abc	18.81 ab	40.5 b	4 a	0.815 ab	12317 a	31975 a	8625 a	132 a	133 a	47 a	38 a	3 a	22 b	8055 a	6052 b	446 a
	Half strength	1.22 bc	16.81 bc	44.5 a	3.3 c	0.801 bc	15882 a	28107 a	6763 a	146 a	128 a	38 a	35 a	2 a	17 b	5362 a	6036 b	359 a
CA7SA1	Full strength	1.77 a	22.29 a	42.4 ab	4.2 a	0.821 a	15362 a	33482 a	8440 a	142 a	160 a	45 a	35 a	6 a	53 a	6208 a	7300 b	498 a
	Half strength	1.17 bc	15.43 bc	40 c	3.3 c	0.801 bc	16722 a	27600 a	7310 a	133 a	128 a	41 a	38 a	4 a	19 b	5008 a	6770 b	393 a
DW†	Full strength	1.62 ab	21.66 a	42.6 ab	3.9 ab	0.821 a	13788 a	30957 a	7550 a	138 a	139 a	46 a	38 a	9 a	21 b	6928 a	5455 b	413 a
	Half strength	1.51 abc	15.89 bc	43.2 ab	3.5 bc	0.799 bc	16372 a	31932 a	7697 a	153 a	160 a	44 a	38 a	2 a	25 ab	5243 a	8144 b	400 a
SA1	Full strength	1.42 abc	19.90 ab	38.2 c	4.2 a	0.817 ab	13207 a	35185 a	8220 a	154 a	137 a	51 a	41 a	6 a	12 b	8432 a	6831 b	360 a
	Half strength	1.02 c	13.52 c	38.2 c	3.6 bc	0.794 c	16872 a	30988 a	7557 a	145 a	158 a	42 a	31 a	2 a	18 b	5410 a	15087 a	374 a

§ Values in the same column that are followed by the same letter do not differ significantly according to Tukey's multiple range test (p ≤ 0.05).

*The numbers represent concentration of foliar sprays in millimolar.

† Distilled water (control).
effects on photosynthetic efficiency as a possible mechanism of reported effects by these compounds.

The presence of a casual relationship between foliar sprays containing CA and nutrient acquisition by roots was not investigated before. Studies in soil could be biased by the effect of microorganism, which could affect on nutrient acquisition and on the other hand are dependent to organic acids excreted by roots. Here, by use of soilless system we tried to highlight the pure effect of foliar sprays on the root behavior. The present experiment was designed to assess the effect of those promising combinations of SA and CA suggested by Mirzajani (2013) on function and efficiency of nutrient absorption by the root in a hydroponic culture system. As the requirements of this plant regarding the hydroponic media strength was not studied before so we used the medium with full and half strength to create a better picture regarding the response of basil plant in a soilless culture system for use in future studies. Additionally, this enables us to study the consistency of the effect of applied combinations in different nutrient strengths.

MATERIALS AND METHODS

This study was conducted in the experimental greenhouse of Horticulture Department at Gyeongsang National University, Jinju, South Korea during the fall season of 2013. The greenhouse climate was controlled using a fully automated system without any artificial lighting system. The mean daily temperature was 22.4°C and the mean relative humidity level was 74.7%.

The seeds of sweet basil “Karaj” were planted in plug trays on Oct 1, 2013 and the plantlets were transplanted into 10 cm plastic containers containing commercial medium (Tosilee Medium, Shinan Grow Co., Jinju, Korea) on Nov 7, while they had two full size leaves and the subsequent pair of leaves were developing. They were placed on trays of an ebb and flow system, which were irrigated twice a day. The nutrient solution (200 L tank per replication) was prepared based on the Gib’s formula (Gilbeaut et al., 1997), and was amended with 1 mM (NH₄)₂SO₄ as recommended by Cramer (2008).

Starting on Nov 15, the plants were sprayed manually using a 500 mL hand sprayer on a weekly basis around 12:00 am for a total of five times with combinations of CA (0 or 7 mM) and SA (0 or 1 mM), combined along with two levels of nutrient solution strength (full vs. half strength of macro elements). The 200 mM stock solutions of organic acids were used to make up the desired concentrations before spraying. As the surfactant, tween 20 (0.1 mL/L) was added to all spray solutions.

The experiment was conducted in a randomized block design factorial arrangement (2 × 2 × 2) with three replications. On Dec 16, the plants were harvested and the collected plant materials (nine plants from each replication) were weighted to estimate the fresh biomass, the plant height, and the stem diameter. The stem diameter was measured at the plant crown. The plants were then put in paper envelopes and dried in a ventilated dry oven at 70°C for 72 h after which they were weighted and the dry biomass was recorded.

The mineral contents of the leaf were measured at 3 days before harvest. We created a collective sample of 1 g fresh leaf samples by cutting out the area excluding the major veins from all nine plants in a replication. The samples were digested in 3 mL H₂O₂ and then added 5 mL HClO₄ and put in a rotary incubator overnight. The next day the samples were added with deionized water up to 50 mL and then filtered through Watman paper, and the resulting extract was analyzed for levels of inorganic nutrients. The nutrient solutions were directly sampled for analyses. An ICP-OES spectrometer (Optima 4300DV/5300DV, Perkin Elmer Inc., Waltham, MA, USA) was used to measure the levels of inorganic nutrients following the methods described by Oh et al. (2014).

The chlorophyll fluorometry was carried out with a pulse-amplitude-modulation (PAM) fluorometer (PAM-2100, H. Walz, GmbH, Effeltrich, Germany). Three measurements in each replication were conducted and averaged.

The data collected were analyzed for statistical significances with the SPSS (version 16.0, SPSS Inc., Chicago, IL, USA).

Table 2 | The effect of combinations of salicylic acid and citric acid on mineral accumulation ratio in plant vs. nutrient solution (fresh weight basis).

Spray treatment	Solution strength	K	Ca	Mg	Fe	Mn	Zn	Cu	Ni	B	P	S	B
CA₇	Full strength	264 b	413 ab	325 ab	55 a	236 a	64 ab	119 a	333 a	38 ab	663 ab	48 b	90 ab
	Half strength	614 a	587 ab	413 ab	52 a	237 a	43 b	87 a	278 a	30 b	940 a	66 b	113 ab
CA₇ SA₁	Full strength	339 b	428 bc	311 ab	60 a	290 a	61 ab	109 a	670 a	95 a	507 b	60 b	99 ab
	Half strength	646 a	579 ab	449 ab	47 a	244 a	46 ab	89 a	373 a	33 b	883 ab	75 b	124 a
DW₁	Full strength	301 b	401 c	282 b	58 a	254 a	62 ab	113 a	963 a	37 ab	562 ab	43 b	85 ab
	Half strength	638 a	667 a	470 a	55 a	306 a	50 ab	96 a	274 a	45 ab	914 ab	90 b	125 a
SA₁	Full strength	287 b	459 bc	308 ab	66 a	249 a	69 a	140 a	665 a	20 b	695 ab	54 b	73 b
	Half strength	655 a	648 a	464 a	52 a	295 a	47 ab	83 a	222 a	32 b	950 a	167 a	117 ab

§ Values represent the accumulation ratio between concentrations of the mineral in plant tissue to the medium. Values in the same column that are followed by the same letter do not differ significantly according to Tukey’s multiple range test (p ≤ 0.05).
Table 3 | Correlation matrix between selected traits.

	Fv/Fm	Total dry biomass	Total fresh biomass	K	Ca	Mg	Fe	Mn	Zn	Cu	Ni	B	P	S
Total dry biomass	0.549**													
Total fresh biomass	0.774**	0.775**												
K			-0.423*	-0.129	-0.470*									
Ca	0.298	0.342	0.430*	-0.519**										
Mg	0.326	0.313	0.443*	-0.646**	0.733**									
Fe	0.002	0.271	0.017	0.233	0.159	-0.167								
Mn	0.090	0.071	0.014	0.073	0.463*	0.249	0.012							
Zn	0.525**	0.219	0.219	-0.335	0.255	0.162	0.255	0.226						
Cu	0.206	0.239	0.170	-0.070	0.066	0.002	0.254	-0.130	0.281					
Ni	0.496*	0.312	0.297	-0.079	-0.167	-0.087	0.292	-0.078	0.479*	0.324				
B	0.287	0.566**	0.340	0.190	0.150	0.220	-0.073	0.418*	0.035	-0.099	-0.029			
P	0.392	0.225	0.418*	-0.712**	0.637**	0.567**	-0.177	-0.114	0.375	0.206	-0.100	-0.084		
S	-0.457*	-0.246	-0.571**	0.471*	-0.156	-0.188	0.259	0.171	-0.022	-0.132	-0.077	0.084	-0.293	
Si	0.347	0.492*	0.479*	-0.047	0.028	0.264	0.048	0.190	0.031	-0.248	0.058	0.512*	-0.221	-0.064

*Correlation is significant at $p \leq 0.05$ level.
**Correlation is significant at $p \leq 0.01$ level.
RESULTS AND DISCUSSION
The “Results and Discussion” sections have been combined in this manuscript and so will be dealt with together in this section.

The plant height was significantly suppressed in response to 1 mM SA applied alone in both nutrient strength levels, while others were not significantly different as compared to that of the control (Table 1). This is in accordance with report by Nazar et al. (2011) on inhibitory effects of SA in this concentration. Both the sulfur (S) concentration and accumulation ratio in plant tissue were significantly higher in the treatment with spray of 1 mM SA on plants grown in a half-strength medium (Tables 2 and 3). This agrees with report on increasing S assimilation by foliar SA application (Nazar et al., 2011). However, the related mechanism and the role of the medium strength call for further investigation.

Most of the nutrients were absorbed similarly in all treatments. However, S and B could be considered as exceptions. Boron (B) concentration and accumulation ratio was significantly higher in the CA7SA1 (7 mM CA concentration and accumulation ratio was significantly higher in the treatment with spray of 1 mM SA on plants grown in a half-strength medium (Tables 2 and 3). This agrees with report on increasing S assimilation by foliar SA application (Nazar et al., 2011). However, the related mechanism and the role of the medium strength call for further investigation.

Where each organic acid, when applied alone in specific concentration, proved to be not beneficial, the combination of CA and SA as foliar spray was considered more effective than applying them separately. However, in our hydroponics culture system, the increases in growth parameters were slightly better than control (distilled water, DW). This is while Mirazjani (2013) reported significant increase in growth parameters of field grown basil plants. This could be due to more complicated interactions in the soil medium that could affect the outcome. The root exudates in soil play an important role in root function by interaction with rhizosphere microflora that has a limited role in hydroponics condition. The suggested increase in mineral absorption by elevated exudation of organic acids in response to foliar organic acids (Jafari and Hadavi, 2012) was confirmed recently by An et al. (2014), and the mediation of these exudates in mineral absorption in the soil medium is well known (Marschner, 1998; Arcand and Schneider, 2006; Bais et al., 2006).

The synergism between applied levels of CA and SA is readily notable in our results, which is consistent with the previous report. This confirms that the response to this combination takes place as an internal plant physiological response and is independent of the type of used culture medium.

We conclude that there is a pure effect by sprayed organic acids, which could be transmitted to the root and influence on the acquisition of mineral nutrients from the medium. The physiological mechanism behind this effect may not be the same for different nutrients and calls for further research. Higher B uptake in plants grown in full-strength medium and sprayed with the combination of CA7SA1 could provide a key to understand the possible mechanism of this response.

REFERENCES
Abadía, J., Lopez-Millan, A.-F., Rombola, A., and Abadía, A. (2002). Organic acids and Fe deficiency: a review. Plant Soil 241, 75–86. doi: 10.1023/A:1016093317898
Álvarez-Fernández, A., García-Laviña, P., Fidalgo, C., Abadía, J., and Abadía, A. (2004). Foliar fertilization to control iron chlorosis in pear (Pyrus communis L.) trees. Plant Soil 263, 5–15. doi: 10.1023/B:PLSO.0000047717.97167.d4
An, Y., Zhou, P., Xiao, Q., and Shi, D. (2014). Effects of foliar application of organic acids on alleviation of aluminum toxicity in alfalfa. *J. Plant Nutr. Soil Sci.* 177, 421–430. doi: 10.1002/jpln.201200445

Arcand, M. M., and Schneider, K. D. (2006). Plant-and microbial-based mechanisms to improve the agronomic effectiveness of phosphate rock: a review. *An. Acad. Bras. Cienc.* 78, 791–807. doi: 10.1590/S0001-37652006000400013

Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., and Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. *Annu. Rev. Plant Biol.* 57, 233–266. doi: 10.1146/annurev.arplant.57.032905.105159

Bastam, N., Baninasab, B., and Gholami, C. (2013). Improving salt tolerance by exogenous application of salicylic acid in seedlings of pistachio. *Plant Growth Regul.* 69, 275–284. doi: 10.1007/s10725-012-9770-7

Bingham, E., Elseewi, A., and Oertli, J. (1970). Characteristics of boron sorption by excised barley roots. *Soil Sci. Soc. Am. J.* 34, 613–617. doi: 10.2136/sssaj1970.0363505x000000400022x

Cipollini, D., Enright, S., Traw, M., and Bergelson, J. (2004). Salicylic acid inhibits jasmonic acid-induced resistance of *Arabidopsis thaliana* to *Spodoptera exigua*. *Mol. Ecol.* 13, 1643–1653. doi: 10.1111/j.1365-294X.2004.02161.x

Cramer, G. R. (2008). *Microscope Hydroponics Method*. Available at: http://www.ag.unr.edu/cramer/Arabidopsis%20Hydroponics.doc [accessed on 2013]

Cramer, M. D., Hoffmann, V., and Verboom, G. A. (2008). Nutrient availability moderates transcription in *eharra* calycina. *New Phytol.* 179, 1048–1057. doi: 10.1111/j.1469-8137.2008.02510.x

Darandeh, N., and Hadavi, E. (2012). Effect of pre-harvest foliar application of citric acid and malic acid on chlorophyll content and post-harvest life of lilyum cv. *Brunello*. *Front. Plant Sci.* 2:106. doi: 10.3389/fpls.2011.00106

De Torres Zahala, M., Bennett, M. H., Truman, W. H., and Grant, M. R. (2009). Antagonism between salicylic and abscisic acid reflects early host-pathogen conflict and moulds plant defence responses. *Plant J.* 59, 375–386. doi: 10.1111/j.1365-313X.2009.02375.x

D’Onofrio, C., Cox, A., Davies, C., and Boss, P. K. (2009). Induction of secondary metabolism in grape cell cultures by jasmonates. *Funct. Plant Biol.* 36, 323–338. doi: 10.1071/FP08280

Eidyan, B., Hadavi, E., and Moalem, N. (2014). Pre-harvest foliar application of iron sulfate and citric acid combined with urea fertigation affects growth and vase life of rose (*Polianthes tuberosa*)’por-par’. *J. Appl. Bot. Food Qual.* 89, 55–83. doi: 10.1007/s00227-005-0403-z

El-Töhamy, W., El-Abagy, H., Badr, M., and Gruda, N. (2013). Drought tolerance and iron chlorosis in *Phaseolus vulgaris* as affected by citric acid application. *Arabidopsis* 49–58. doi: 10.1023/A:1004255707413

Hu, H., and Brown, P. H. (1997). Absorption of boron by plant roots. *Plant Physiol.* 115, 317–319. doi: 10.1104/pp.115.3.317

Hajreza, M., Hadavi, E., Zeynanlou, A., Mirzapour, M., and Naeini, M. (2013). The Effect of Foliar Application of Citric Acid and Salicylic Acid on Morphological and Physiological Traits of Annuals Sweet Basil (*Ocimum basilicum* L.). Department of Horticulture, Karaj Branch, Islamic Azad University, Karaj.

Misra, A. N., Misra, M., and Singh, R. (2012). *Chlorophyll Fluorescence in Plant Biology*. Biophysics. Shanghai: InTech.

Nazar, R., Iqbal, N., Saeed, S., and Khan, N. A. (2011). Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. *J. Plant Physiol.* 168, 807–815. doi: 10.1016/j.jplph.2010.11.001

Oh, H. J., Park, J. E., Park, Y. G., and Jeong, B. R. (2014). Growth and quality of plug seedlings of three indigenous medicinal plants as affected by ionic strength of the nutrient solution. *Hortic. Environ. Biotechnol.* 53, 65–69. doi: 10.1139/s13580-014-0074-x

Pritihivraj, B., Bais, H., Weir, T., Suresh, B., Najarro, E., Dayakar, B., et al. (2005). Down regulation of virulence factors of *Pseudomonas aeruginosa* by salicylic acid attenuates its virulence on *Arabidopsis thaliana* and *Caenorhabditis elegans*. Infect. *Immun.* 73, 3319. doi: 10.1128/IAI.73.9.3319-3326.2005

Ralph, P., Gademann, R., and Dennison, W. (1998). In soil seagrass photosynthesis measured using a subsurface, pulse-amplitude modulated fluorometer. *Mar. Biol.* 132, 367–373. doi: 10.1007/s002270050403

Raskin, I. (1992). Role of salicylic acid in plants. *Annu. Rev. Plant Biol.* 43, 459–463. doi: 10.1146/annurev.pp.43.060192.002235

Rivas-San Vicente, M., and Plasencia, J. (2011). Salicylic acid beyond defence: its role in plant growth and development. *J. Exp. Bot.* 62, 3321–3338. doi: 10.1093/jxb/err031

Schreiber, U., Bilger, W., and Neubauer, C. (1995). Chlorophyll fluorescence as a reporter for plant photosynthetic capacity and efficiency. *Oecologia* 100, 49–70. doi: 10.1007/bf02693793

Seregin, I., and Kozhevnikova, A. (2006). Physiological role of nickel and its toxic effects on higher plants. *Rus. J. Plant Physiol.* 53, 257–277. doi: 10.1134/S1063454006020178

Tagliavini, M., Abadia, J., Rombol, A., Abadia, A., Tsipouridis, C., and Marangoni, B. (2000). Agronomic means for the control of iron deficiency chlorosis in deciduous fruit trees. *J. Plant Nutr.* 23, 2007–2022. doi: 10.1080/01904160041938216

Tagliavini, M., Scudellari, D., Marangoni, B., and Toselli, M. (1999). Acid-spray regreening of kiwifruit leaves affected by lime-induced iron chlorosis. *Iron Nat. Soils Plants* 59, 191–195. doi: 10.1007/s00442-002-1102-6

Thomson, V. P., Cunningham, S. A., Ball, M. C., and Nicotra, A. B. (2003). Composition of taxol production and isopentenyl pyrophosphate biosynthesis in suspension cultures of *Taxus baccata*. *Bot. Mar.* 48, 703–734. doi: 10.1146/annurev.arplant.48.1.703

Wang, Y. D., Wu, J. C., and Yuan, Y. J. (2007). Salicylic acid-induced taxol production and isopentenyl pyrophosphate biosynthesis in suspension...
cultures of Taxus chinensis var. Mairei. Cell Biol. Int. 31, 1179–1183. doi: 10.1016/j.cellbi.2007.03.038

Wildes, R., and Neales, T. (1971). The absorption of boron by disks of plant storage tissues. Aust. J. Biol. Sci. 24, 873–884.

Wills, R., Lee, T., Graham, D., McGlasson, W., and Hall, E. (1981). Postharvest. An Introduction to the Physiology and Handling of Fruit and Vegetables. Willingford: CAB International.

Zottini, M., Costa, A., De Michele, R., Ruzzene, M., Carimi, F., and Lo Schiavo, F. (2007). Salicylic acid activates nitric oxide synthesis in Arabidopsis. J. Exp. Bot. 58, 1397. doi: 10.1093/jxb/erm001

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 24 July 2014; accepted: 06 October 2014; published online: 31 October 2014. Citation: Ghazijahani N, Hadavi E and Jeong BR (2014) Foliar sprays of citric acid and salicylic acid alter the pattern of root acquisition of some minerals in sweet basil (Ocimum basilicum L.). Front. Plant Sci. 5:573. doi: 10.3389/fpls.2014.00573

This article was submitted to Crop Science and Horticulture, a section of the journal Frontiers in Plant Science.

Copyright © 2014 Ghazijahani, Hadavi and Jeong. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.