Thermodynamic cycle of lithium bromide absorption chillers with two-level absorption and generation processes and with associated mass flow

O S Malinin, A V Kasyanov and A V Baranenko
Department of Low Temperature Energy, ITMO University, 49, Kronverksky Ave., St. Petersburg, 197101, Russia
E-mail: holmash_malinina@mail.ru

Abstract. The paper presents the assessment of the energy efficiency of the thermodynamic cycle of the absorption lithium bromide refrigeration unit with two-level absorption and generation processes with the associated mass flow. The analysis of temperature effect of heating and cooling sources on thermal coefficient is carried out. The parameters of external sources when it is possible to determine the energy efficiency of the thermodynamic cycle are defined.

1. Introduction
In recent decades, there has been a growing interest to lithium bromide absorption chillers (LBAC) [1, 2, 3, 4, 5, 6, 7]. Their performance can be based on renewable energy sources (RES) and secondary energy resources (SER), which corresponds well to the world energy development tendencies aimed at increasing the share of these resources in the energy balance in order to increase energy efficiency and reduce carbon intensity of the global economy [8]. LBAC has been widely applied in cooling systems of basic technologies, comfortable and technological conditioning in chemical, oil refining, electronic, food industry, housing and communal sector and social sphere. The studies of cooling and air conditioning systems using solar-powered absorption lithium bromide refrigeration units and RES are presented in [1, 3, 7, 9, 10, 12, 13, 14, 15].

The analysis of LBAC thermodynamic cycles is considered in a number of works [11, 12, 13, 16, 17, 18, 19, 20, 21]. The authors of [17] give the classification of cycles of absorption refrigeration units thus identifying a one-level cycle, cycles with external and inner closures of devices for circulation of a solution, a coolant, heat and mass exchange. The latter two categories may include a series of simple or complex interconnected cycles. This paper briefly describes thirty-seven different absorption cycles. The one-level cycle is the most widely spread and is therefore considered the base cycle. It is most convenient to study the possibilities of other cycles and determine their advantages in comparison with a one-level base cycle. Multi-stage cycles, including cycles with multi-stage solution generation and multi-stage absorption, expand the capabilities of the base cycle. They allow using both high- and low-temperature heating sources for operation of the machine.

LBAC thermodynamic cycles involving multi-stage absorption, as well as single multi-stage absorption and generation of a solution can be carried out by externally coupled heat or mass transfer processes. These cycles are performed in a region of lower solution concentrations compared to a cycle with the two-level generation. This reduces the risk of solution crystallization during LBAC operation. All other things being equal, these cycles require a lower heating source temperature than
the base cycle. Therefore, in such cycles it is possible to effectively use low temperature RES and solar energy as a heating medium. The positive qualities of these cycles indicate the relevance of their study.

The work [22] carried out the analysis of LBAC cycles with two-level absorption and two-level generation of a solution with externally connected mass flow with air cooling of absorbers and a capacitor at a coolant boiling point of 5°C and the use of low-temperature solar heat for generation of a solution in generators. The research was primarily aimed at studying cycle parameters that exclude crystallization of the solution in the machine. It was found that this cycle can be realized at a condensation temperature of not more than 53°C. Thus, the temperature of the heating source was about 80°C. The theoretical thermal coefficient made about 0.38.

2. Research methods

The authors of this paper performed the study of the thermodynamic cycle with two-level absorption and two-level generation of a solution with externally connected mass flow. In the cycle there are two circulation loops of the solution, high-temperature G₁ – A₁ and low-temperature G₂ – A₂. The externally connected mass transfer process is G₂ – A₁. The coolant steam evaporated in the low-pressure generator G₂ is absorbed into the high-pressure absorber A₁. The actual cycle is shown in Figure 1.

The main processes of the thermodynamic cycle are as follows: 1 – 1’ – boiling of a working substance in an evaporator; 22 – 72 – heating of weak solution in a heat exchanger of the second stage solutions; 72 – 52 – adiabatic-isobaric desorption of working substance steam; 52 – 42 – solution boiling in the second stage generator; 42 – 82 – cooling of the rich solution in the heat exchanger of the second stage solutions; 82 – 22 – adiabatic-isobaric absorption of working substance steam in the second stage absorber; 21 – 71 – heating of a weak solution in a heat exchanger of the first stage solutions; 71 – 51 – adiabatic-isobaric desorption of working substance steam; 51 – 41 – solution boiling in the first stage generator; 41 – 81 – cooling of rich solution in a heat exchanger of the first stage solutions; 81 – 21 – adiabatic-isobaric absorption of working substance steam in the first stage absorber; 3’ – 3 – removal of the heat of superheat and vapor condensation of a working substance in the capacitor.

The calculations were performed with the following initial data: cooled source temperature \(t_{c1} = 12°C \), cooling source temperature made \(t_{wcl} = t_{wcl1} = t_{wcl2} = (20; 25; 30; 35; 40)°C \), temperature of the heating source varied within \(t_{h11} = t_{h12} = (50 \div 80)°C \), irreversible losses of the actual cycle were accepted according to the recommendations stated in the known literature. To calculate
thermodynamic cycles depending on different parameters of external sources, a software complex was created with the help of the gfortran compiler. The program package consists of the main program and a number of subprograms. The input of initial data and the output of results are performed in separate files. The developed complex mathematical model includes the following subprograms: calculation of thermodynamic cycle point parameters; calculation of heat loads on units; determination of thermal coefficient. A comparative analysis of one-level LBAC and LBAC with two-level absorption and generation processes was conducted.

3. Results and discussion
Table 1 shows the calculation results of a one-level LBAC.

Parameter	\(t_{ret} = t_{out}, ^\circ C \)	\(t_{h1}, ^\circ C \)	80	85	90	95	100	105
\(t_{st}, ^\circ C \)	20	12	12	*	*	*	*	*
25	–	–	–	12	*	*	*	*
30	–	–	–	–	12	*	*	*
\(\xi, \% \)	20	61.1	63.4	*	*	*	*	*
25	–	60.5	62.7	65.1	*	*	*	*
30	–	–	–	–	64.6	*	*	*
\(\Delta \xi, \% \)	20	5.61	7.94	*	*	*	*	*
25	–	2.1	4.27	6.69	*	*	*	*
30	–	–	–	–	3.61	*	*	*
\(\zeta \)	20	0.773	0.786	*	*	*	*	*
25	–	0.652	0.728	0.753	*	*	*	*
30	–	–	–	–	0.694	*	*	*

* Crystallization of the solution is possible.

b Cycle cannot be performed.

Figure 2 shows a diagram of thermal coefficient (\(\zeta \)) dependence on heating and cooling source temperature for the LBAC cycle (Figure 1).

![Figure 2. Diagram of thermal coefficient dependence on heating and cooling source temperature](image-url)
Table 2 shows the calculation results of LBAC with two-level absorption and generation processes with associated mass flow.

Table 2. Calculation results of LBAC with two-level absorption and generation processes with associated mass flow

Parameter		55	60	65	70	75	80
\(t_{w1} = t_{w11} = t_{w12}, ^\circ C \)	20	–	12	12	12	*	*
25	–	–	12	12	12	*	*
30	–	–	–	–	12	*	*
35	–	–	–	–	–	–	–
\(\xi_{r2}, \% \)	20	–	58.3	61.1	63.4	*	–
25	–	–	59.6	62.1	64.7	–	–
30	–	–	–	–	63.3	–	–
35	–	–	–	–	–	–	–
\(\xi_{r1}, \% \)	20	–	51.0	53.5	56.0	*	–
25	–	–	50.6	53.1	55.6	*	–
30	–	–	–	–	52.6	*	–
35	–	–	–	–	–	–	–
\(\Delta \xi_{r2}, \% \)	20	–	2.86	5.61	7.91	*	–
25	–	–	1.21	3.70	6.30	*	–
30	–	–	–	–	2.40	*	–
35	–	–	–	–	–	–	–
\(\Delta \xi_{r1}, \% \)	20	–	5.24	7.77	10.31	*	–
25	–	–	2.51	5.04	7.49	*	–
30	–	–	–	–	2.72	*	–
35	–	–	–	–	–	–	–
\(\xi \)	20	–	0.387	0.408	0.414	*	–
25	–	–	0.321	0.383	0.397	*	–
30	–	–	–	–	0.347	*	–
35	–	–	–	–	–	–	–

\(a \) Crystallization of the solution is possible.
\(b \) Cycle cannot be performed.

4. Conclusion

The calculations made it possible to establish that in case it is possible to avoid crystallization of a solution the studied cycle can be performed at a heating source temperature of 60°C ÷ 75°C, the cooling water temperature shall be no more than 30°C. The actual thermal coefficient of the cycle is within the range of 0.35 ÷ 0.41. At the same temperatures of the cooled and cooling media, the one-level cycle makes 0.69 ÷ 0.79, but requires a heating source with a temperature of 20°C ÷ 25°C higher than that of the studied cycle.

References

[1] Palacios E, Izquierdo M, Marcos J D and Lizarte R 2009 Evaluation of mass absorption in LiBr flat-fan sheets Appl. Energy 86 2574
[2] Bujedo L A, Rodriguez J and Martinez P J 2011 Experimental results of different control strategies in a solar air-conditioning system at part load Solar Energy 85 1302
[3] Lizarte R, Izquierdo M, Marcos J D and Palacios E 2012 An innovative solar-driven directly air-cooled LiBr-H₂O absorption chiller prototype for residential use Energy Build. 47 1
[4] Ketfi O, Merzouk M, Merzouk N K and Bourouis M 2017 Feasibility study and performance evaluation of low capacity water – LiBr absorption cooling systems functioning in different Algerian climate zones// International Journal of Refrigeration 82 36
[5] Chena J F, Daia Y J, Wang H B and Wang R Z 2018 Experimental investigation on a novel air-cooled single effect LiBr-H₂O absorption chiller with adiabatic flash evaporator and adiabatic absorber for residential application Solar Energy 159 579
[6] Sabbagh A A and Gómez J M 2018 Optimal control of single stage LiBr/water absorption chiller International Journal of Refrigeration 92 1
[7] Shiue A, Hu S and Chiang K 2018 Effect of operating variables on performance of an absorption chiller driven by heat from municipal solid waste incineration Sustain. Energy Technol. Assess. 27 134
[8] IEA 2019 Global Energy & CO₂ Status Report 2018 (International Energy Agency)
[9] Al-Ugla A A, El-Shaarawi M A I and Said S A M 2015 Alternative designs for a 24-hours operating solar-powered LiBr-water absorption air-conditioning technology International Journal of Refrigeration 53 90
[10] Li M, Xu C, Hassanien R H E, Xu Y and Zhuang B 2016 Experimental investigation on the performance of a solar powered lithium bromide – water absorption cooling system International Journal of Refrigeration 71 46
[11] Lubisa A, Jeonga J, Giannettia N, Yamaguchia S, Saitoa K, Yabasea H, Alhamid M I and Nasruddin N 2018 Operation performance enhancement of single-double-effect absorption chiller Applied Energy 219 299
[12] Sarabia Escriva E J, Lamas Sivila E V and Soto Frances V M 2011 Air conditioning production by a single effect absorption cooling machine directly coupled to a solar collector field. Application to Spanish climates Solar Energy 85 2108
[13] Xu Z Y and Wang R Z 2017 Comparison of CPC driven solar absorption cooling systems with single, double and variable effect absorption chillers Solar Energy 158 511
[14] Martinez P J, Martinez J C and Martinez P 2016 Performance comparison of solar autonomous and assisted absorption systems in Spain International Journal of Refrigeration 71 85
[15] Muye J, Ayou D S, Saravanan R and Coronas A 2016 Performance study of a solar absorption power-cooling system Applied Thermal Engineering 97 59
[16] Chahartaghi M, Golmohammadi H and Shojaei A F 2019 Performance analysis and optimization of new double effect lithium bromide – water absorption chiller with series and parallel flows International Journal of Refrigeration 97 73
[17] Xu Z Y and Wang R Z 2016 Absorption refrigeration cycles: Categorized based on the cycle construction International Journal of Refrigeration 62 114
[18] She X, Yin Y, Xu M and Zhang X 2015 A novel low-grade heat-driven absorption refrigeration system with LiCl-H₂O and LiBr-H₂O working pairs International Journal of Refrigeration 58 219
[19] Stepanov K I, Mukhin D G, Volkova O V and Baranenko A V 2016 Analysis of COP thermodynamic cycle of LBAC with two-level absorption when obtaining negative temperatures of cooling Journal of the International Academy of Refrigeration 1 86
[20] Aprile M, Toppi T, Garone S and Motta M 2018 STACY – A mathematical modelling framework for steady-state simulation of absorption cycles International Journal of Refrigeration 88 129
[21] Bowie D and Cruickshank C A 2017 Experimental evaluation of a triple-state sorption chiller International Journal of Refrigeration 81 12
[22] Izquiérdoa M, Venegas M, Rodríguez P and Lecuona A 2004 Crystallization as a limit to develop solar air-cooled LiBr – H₂O absorption systems using low-grade heat Solar Energy Materials & Solar Cells 81 205