Two-Year Clinical Outcomes of Biodegradable Polymer vs. Durable Polymer Drug-Eluting Stent Implantation in Patients With End-Stage Renal Disease on Dialysis

Shota Okuno, MD; Takayuki Ishihara, MD; Osamu Iida, MD; Mitsutoshi Asai, MD, PhD; Masaharu Masuda, MD, PhD; Shin Okamoto, MD; Kiyonori Nanto, MD; Takashi Kanda, MD; Takuya Tsujimura, MD; Yasuhiro Matsuda, MD; Yosuke Hata, MD; Toshiaki Mano, MD, PhD

Background: There are limited data comparing clinical outcomes between biodegradable polymer and durable polymer drug-eluting stents (BP-DES and DP-DES, respectively) in patients with end-stage renal disease (ESRD).

Methods and Results: This study enrolled 229 ESRD patients who underwent successful percutaneous coronary intervention (PCI) for 400 lesions with 472 DES, with 2-year clinical outcomes compared between the BP-DES and DP-DES groups. The primary outcome measure was the incidence of target lesion revascularization (TLR), whereas secondary outcome measures were the occurrence of cardiac death (CD), myocardial infarction (MI), stent thrombosis (ST), target vessel revascularization (TVR), non-TVR, and major adverse cardiac events (MACE), defined as a composite of CD, MI, and TVR. Multivariate analysis was used to identify predictors of TLR occurrence. The 2-year incidence of TLR did not differ significantly between the BP-DES and DP-DES groups (P=0.274). In addition, there were no significant differences in the 2-year incidence of CD (P=0.144), MI (P=0.812), ST (P=0.241), TVR (P=0.434), non-TVR (P=0.375), or MACE (P=0.841) between the 2 groups. Multivariate analysis showed that diabetes (P=0.021) was independently associated with TLR occurrence.

Conclusions: BP-DES and DP-DES had comparable safety and efficacy profiles over a 2-year follow-up period after PCI in ESRD patients.

Key Words: Biodegradable polymer drug-eluting stent; Coronary artery disease; Durable polymer drug-eluting stent; End-stage renal disease; Hemodialysis
Hospital Cardiovascular Center between July 2011 and March 2017 were evaluated. To be eligible for study inclusion, patients had to be ≥18 years of age and good candidates for PCI, as determined by the heart team of cardiologists and surgeons at the Kansai Rosai Hospital Cardiovascular Center. In addition, patients had to have clinical evidence of ischemic heart disease and/or a positive functional study.

The BP-DES used in this study was either a biodegradable polymer sirolimus-eluting stent (BP-SES; Ultimaster™; Terumo Corporation, Tokyo, Japan) or a biodegradable polymer everolimus-eluting stent (BP-EES; Synergy™; Boston Scientific, Natick, MA, USA). The DP-DES used in this study were either a durable polymer cobalt-chromium everolimus-eluting stent (DP-CoCr EES; Xience™; Abbott Vascular, Santa Clara, CA, USA), a durable polymer platinum-chromium everolimus-eluting stent (DP-PtCr EES; Promus Element stent; Boston Scientific), or a slow-release zotarolimus-eluting stent (ZES; Resolute™; Medtronic, Minneapolis, MN, USA).

Of the 365 ESRD patients (726 lesions) evaluated for this study, 136 patients (326 lesions) were excluded for the following reasons: failed PCI (5 patients, 11 lesions), PCI was not done (5 patients, 17 lesions), in-stent restenosis lesions (88 patients, 152 lesions), treatment with a bare metal stent (BMS) or drug-coated balloon (DCB; 6 patients, 22 lesions), and treatment with first-generation and drug-eluting stents (DES) other than BP-SES, BP-EES, DP-CoCr EES, DP-PtCr EES, and ZES (32 patients for 124 lesions). This left 229 ESRD patients who underwent successful PCI for 400 lesions with new-generation DES eligible for enrollment in this study, and these patients were divided into 2 groups, namely BP-DES and DP-DES groups (Figure 1). Patients were followed-up by means of telephone interviews, a review of hospital records, or through outpatient visits.

This study was conducted according to the ethical guidelines of the Declaration of Helsinki. The study protocol was approved by the Medical Ethics Committee of Kansai Rosai Hospital. All individual participants included in the study provided written informed consent prior to enrollment.

Study Procedures
PCI procedures were performed according to standard practice. All further procedures, lesion predilation, stenting or post-stenting dilation, and the use of debulking devices or imaging modalities were left to the operator’s discretion. All patients received dual antiplatelet therapy (DAPT) according to hospital practice. Continuation of DAPT was recommended for at least 12 months. Antiplatelet therapy beyond 12 months was at the discretion of the treating physician considering prevailing guidelines.

Quantitative Coronary Angiography (QCA)
Coronary angiography was performed in at least 10 projections. The view showing the most severe stenosis was selected for QCA, which was subsequently performed using a computerized angiographic analysis system (CAAS Workstation 5.11; Pie Medical Imaging, Maastricht, Netherlands) at the same angle of projection prior to and immediately after PCI.

Outcome Measures and Definitions
The primary outcome measure was the incidence of target lesion revascularization (TLR) at 2 years. Secondary out-
come measures were the occurrence of cardiac death (CD), ST, myocardial infarction (MI), target vessel revascularization (TVR), non-TVr, and major adverse cardiac events (MACE), defined as a composite of CD, MI, and TVR, at 2 years. TLR was defined as clinically driven repeat revascularization caused by a >50% stenosis within the stent or within a 5-mm border proximal or distal to the stent. CD was defined as any death resulting from an evident cardiac cause, any death related to PCI, an unwitnessed death, or death from unknown causes. ST was defined as definite stent thrombosis according to the Academic Research Consortium definition. MI was defined as Type 1–Type 3 or Type 4b based on the Third Universal Definition of Myocardial Infarction. TVR was defined as any repeat PCI or surgical bypass of any segment within the entire major coronary vessel that was proximal or distal to a target lesion, including upstream and downstream branches, and the target lesion itself. Non-TVr was defined as any repeat PCI or surgical bypass of any segment of the non-target coronary artery.

Statistical Analysis

Data are expressed as the mean±SD or as counts and percentages. For discrete variables, the significance of differences between 2 groups were analyzed using X^2 or Fisher’s exact tests, as appropriate. Multivariable Cox proportional hazards regression analysis, which includes baseline confounding factors, was conducted. Various clinical outcomes were estimated using Kaplan-Meier curves, and differences between groups were compared with the log-rank test. The following available variables were tested for potential relevance to TLR occurrence: sex (male), hypertension, dyslipidemia, diabetes, hyperuremia, current smoker, previous MI, previous PCI, previous coronary artery bypass grafting, acute coronary syndrome, chronic heart failure, atrial fibrillation, cerebrovascular disease, peripheral arterial disease, malignancy, aortic dissection, lesion location, American College of Cardiology (ACC)/American Heart Association (AHA) lesion types, chronic total occlusion, ostial, ostial right coronary artery, bifurcation, multivessel disease, direct stenting, the use of rotational atherectomy, BP-DES, and stent length \geq32 mm and vessel size \leq2.5 mm, which were defined based on the diameter of the stent used and post-dilation. Two-tailed $P<0.05$ was considered statistically significant. All statistical analyses were performed using SPSS version 25 (IBM Corp., Armonk, NY, USA).

Results

Baseline Patient, Lesion and Procedural Characteristics

In all, 229 ESRD patients who underwent successful PCI for 400 lesions with new-generation DES were enrolled in the study. Baseline patient characteristics are summarized in Table 1 and were similar between the BP-DES and DP-DES groups. Lesion and procedural characteristics are summarized in Table 2; again, there were no significant differences between the 2 groups. Approximately 80% of the lesions were ACC/AHA Type B2/C and multivessel disease in ESRD patients. All patients underwent PCI using an intravascular imaging device (intravascular ultrasound or optical coherence tomography) and approximately 20% of the patients underwent rotational atherectomy.
Clinical Outcomes

The cumulative incidence of clinical outcomes at 2 years is listed in Table 4 and shown in Figure 2. The 2-year incidence of TLR was not significantly different between the BP-DES and DP-DES groups (16.7% vs. 23.3%, respectively; P=0.274; Figure 2A). Similarly, there were no significant differences between BP-DES and DP-DES groups in the 2-year incidence of CD (18.5% vs. 12.0%, respectively; P=0.144; Figure 2B), MI (6.5% vs. 6.1%, respectively; P=0.812; Figure 2C), ST (0% vs. 0%, respectively; P=0.241), TVR (23.4% vs. 28.7%, respectively; P=0.434).

QCA

The QCA findings are summarized in Table 3. Lesion length was longer in the BP-DES than DP-DES group and, at the preprocedural assessment, diameter stenosis was smaller in the BP-DES than DP-DES group. However, reference vessel diameter and minimum lumen diameter at the post-procedural assessment were larger in the BP-DES than DP-DES group. Consequently, diameter stenosis was not significantly different between the 2 groups (P=0.141).

Table 2. Lesion and Procedural Characteristics

Lesion characteristics	BP-DES (n=138)	DP-DES (n=262)	P value
Lesion location			0.170
LAD	47 (34.1)	85 (32.4)	
LCX	28 (20.3)	66 (25.2)	
RCA	47 (34.1)	93 (35.5)	
LMT	16 (11.5)	18 (6.9)	
ACC/AHA Type B2/C	118 (85.5)	209 (79.8)	0.175
Chronic total occlusion	4 (2.9)	3 (1.1)	0.240
Ostial	22 (15.9)	38 (14.5)	0.769
Bifurcation	56 (40.6)	86 (32.8)	0.126
Multivessel disease	114 (82.6)	207 (79.0)	0.430

Preprocedural QCA

Reference vessel diameter (mm)	2.55±0.65	2.55±0.74	0.213
Minimal lumen diameter (mm)	0.90±0.46	0.96±0.47	0.996
Lesion length (mm)	21.7±13.1	18.7±12.1	0.022
Diameter stenosis (%)	66.6±14.0	62.9±14.1	0.013

Post-procedural QCA

Reference vessel diameter (mm)	3.04±0.51	2.85±0.62	0.003
Minimal lumen diameter (mm)	2.57±0.48	2.37±0.51	<0.001
Diameter stenosis (%)	15.6±5.8	16.6±8.3	0.141

Table 3. Quantitative Coronary Angiography (QCA)

Data are given as the mean±SD. Abbreviations as in Table 1.
In this study we compared 2-year clinical outcomes between BP-DES and DP-DES in ESRD patients with coronary artery disease after PCI. The main findings of this study are that: (1) there was no significant difference between the BP-DES and DP-DES groups in the 2-year incidence of TLR (16.7% vs. 23.3%, respectively; P=0.274); (2) there was no significant difference between the BP-DES and DP-DES groups in the 2-year incidence of non-TVR (25.8% vs. 31.4%, respectively; P=0.375), and MACE (38.2% vs. 41.1%, respectively; P=0.841; Figure 2D).

After multivariate analysis, diabetes (hazard ratio [HR] 2.09; 95% confidence interval [CI] 1.12–3.88; P=0.021) was found to be independently associated with TLR occurrence in ESRD patients on dialysis (Table 5).

Table 4. Two-Year Cumulative Incidence of Clinical Outcomes Between the BP-DES and DP-DES Groups, Determined by Kaplan-Meier Analysis

	BP-DES (72 patients, 138 lesions)	DP-DES (157 patients, 262 lesions)	P value
TLR	16.7	23.3	0.274
CD	18.5	12.0	0.144
ST	0	0	0.241
MI	6.5	6.1	0.812
TVR	23.4	28.7	0.434
Non-TVR	25.8	31.4	0.375
MACE	38.2	41.1	0.841

CD, cardiac death; MACE, major adverse cardiac events; ST, stent thrombosis; TLR, target lesion revascularization; TVR, target vessel revascularization. Other abbreviations as in Table 1.

Discussion

In this study we compared 2-year clinical outcomes between BP-DES and DP-DES in ESRD patients with coronary artery disease after PCI. The main findings of this study are that: (1) there was no significant difference between the BP-DES and DP-DES groups in the 2-year incidence of TLR (16.7% vs. 23.3%, respectively; P=0.274); (2) there was no significant difference between the BP-DES
BP-DES vs. DP-DES in ESRD Patients on Dialysis

A patient-level pooled analysis on 12,426 patients undergoing PCI using second-generation DES showed that the cumulative incidence of target lesion failure was 24.1% during the study period (median follow-up duration 1,046 days) in ESRD patients on dialysis. The outcomes of that study, including the cumulative incidence of TLR, CD, and MI, were also consistent with those of the present study. Data from retrospective analyses of >35,000 dialysis patients over a 7-year period noted a significant reduction in death, death or MI, and death, MI, or repeat revascularization at 1 year among patients receiving DES compared with those receiving BMS.11,12

However, there are few studies comparing BP-DES and DP-DES in patients with ESRD on dialysis. In the present study, we found that the 2-year clinical outcomes were not significantly different between these 2 groups.

The polymer in BP-DES consists of polylactic acid that fully degrades into carbon dioxide and water within 3–4 months. Despite this particular advantage of BP-DES, the long-term clinical outcomes are debatable compared with DP-DES. Although BP-DES are expected to improve clinical outcomes compared with DP-DES because of their thin struts, which reduce stent thrombogenicity,13 and the biodegradable polymer, it was reported that BP-DES induced a severe histiolymphocytic and fibromuscular reaction.14,15 In a meta-analysis of RCTs, BP-DES had similar 1-year clinical outcomes to contemporary DP-DES.16 Furthermore, BP-DES were found to have similar safety and efficacy profiles to DP-DES in another meta-analysis of RCTs at the longest available follow-up (mean duration 26 months).17 The present study also showed that the incidence of TLR (HR 0.709; 95% CI 0.381–1.318; P=0.274) was similar for BP-DES and DP-DES in ESRD patients on dialysis. This suggests that we may expand the results of the previous meta-analysis to ESRD patients. In addition, the incidence of TLR is very high in both groups of ESRD patients because of: (1) insufficient drug penetration for calcified lesions; (2) the loss of polymer during delivery for calcified lesions; (3) stent fracture; and (4) stent underexpansion.18 These issues are not resolved even if BP-DES are used instead of DP-DES, and clinical outcomes in the present study were similar between the 2 groups of ESRD patients.

Table 5. Predictors of TLR

Unadjusted HR	Adjusted HR			
HR (95% CI)	P value	HR (95% CI)	P value	
Male sex	0.89 (0.50–1.57)	0.687		
Hypertension	1.57 (0.67–3.67)	0.296		
Dyslipidemia	1.10 (0.65–1.86)	0.724		
Diabetes	2.18 (1.17–4.06)	0.014	2.09 (1.12–3.88)	0.021
Hyperuremia	1.55 (0.82–2.93)	0.179		
Current smoker	0.75 (0.35–1.58)	0.441		
Previous MI	1.32 (0.69–2.56)	0.404		
Previous PCI	1.59 (0.94–2.68)	0.086		
Previous CABG	1.23 (0.49–3.07)	0.665		
ACS	1.67 (0.95–2.93)	0.073		
Chronic heart failure	0.65 (0.28–1.51)	0.316		
Atrial fibrillation	0.99 (0.43–2.32)	0.990		
Cerebrovascular disease	1.41 (0.51–3.91)	0.506		
Peripheral arterial disease	1.51 (0.88–2.57)	0.136		
Malignancy	0.75 (0.35–1.58)	0.441		
Aortic dissection	0.05 (0.00–30.1)	0.354		
Lesion location	1.17 (0.95–1.46)	0.146		
ACC/AHA Type B2/C	2.91 (1.05–8.05)	0.040	2.23 (0.78–6.38)	0.136
Chronic total occlusion	1.14 (0.16–8.25)	0.897		
Ostial	0.85 (0.39–1.88)	0.691		
Ostial right coronary artery	1.13 (0.35–3.63)	0.833		
Bifurcation	1.77 (1.04–2.99)	0.033	1.51 (0.89–2.58)	0.128
Multivessel disease	2.25 (0.96–5.25)	0.061		
Direct stenting	0.36 (0.09–1.47)	0.153		
Rotational atherectomy	0.73 (0.33–1.61)	0.437		
BP-DES	0.71 (0.38–1.32)	0.277		
Stent length ≥32 mm	1.80 (1.04–3.14)	0.037	1.47 (0.84–2.59)	0.180
Vessel size ≤2.5 mm	1.56 (0.88–2.75)	0.129		
Post-dilation	1.60 (0.69–3.73)	0.276		

Data are given as unadjusted or adjusted hazard ratios (HRs) for target lesion revascularization with 95% confidence intervals (CIs). Abbreviations as in Tables 1,2,4.
CKD patients were left main or 3-vessel disease lesions and multivessel PCI, old age, male sex, peripheral vascular disease, diabetes, and clinical presentation of acute MI. In the present study, diabetes was independently associated with TLR occurrence in ESRD patients, which is in line with the previous study. It has been reported that the metabolic abnormalities that characterize diabetes, such as hyperglycemia, increased free fatty acids, and insulin resistance, each provoke molecular mechanisms that contribute to vascular dysfunction. This may contribute to the cellular events that cause atherosclerosis and subsequently increase the risk of adverse cardiovascular events that occur in patients with diabetes and atherosclerosis. ESRD Patients with diabetes had worse outcomes than ESRD patients without diabetes, and more careful follow-up was needed for diabetic ESRD patients.

ST did not occur in either group in the present study. It has been reported that one of the causes of early ST, defined ST occurring within 1 month after stent implantation, was stent underexpansion. In the present study, patients underwent PCI using imaging devices, and approximately 20% of patients underwent rotational atherectomy. Lesion preparation to minimize underexpansion may have been crucial in avoiding early ST in ESRD patients on dialysis. Very late ST (VLST), defined as ST occurring >1 year after stent implantation, has been reported. It may have been crucial in avoiding early ST in ESRD patients. Very late ST, defined ST occurring >1 year after stent implantation, was not detected in the present study. It has been reported that an abnormal vascular response causes VLST after DES implantation. BP-DES has been expected to decrease the occurrence of VLST because the polymer, which is suspected as one of the causes of VLST, is completely absorbed within 3–4 months after stent implantation. Although ST was not detected in either group in this study, possibly due to the limited sample size, further studies are needed to evaluate the incidence of VLST after BP-DES vs. DP-DES implantation.

Study Limitations
This study has several limitations. First, the present study was a single-center non-randomized observational study; thus, there may be some under-reporting and/or missed data. Second, even though multivariate analysis was performed, variables not included in the analysis may have affected the study outcomes. Finally, because this study enrolled only Japanese patients and used imaging devices in all patients, the results may not be generalizable to patients of other ethnicities in different parts of the world.

Conclusions
In conclusion, BP-DES had comparable safety and efficacy profiles to DP-DES over a 2-year follow-up period after PCI in patients with ESRD on dialysis. However, further development of DES is necessary because the adverse event rate was still high, even with BP-DES.

Acknowledgments
None.

Data Availability
This manuscript does not report on the results of clinical trials.

Sources of Funding
This study did not receive any specific funding.

Disclosures
None.

IRB Information
This study was approved by the Medical Ethics Committee of Kansai Rosai Hospital (15D081).

References
1. Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: A collaborative meta-analysis. Lancet 2010; 375: 2073–2081.
2. Cheung AK, Sarnak MJ, Yan G, Berkoben M, Heyka R, Kaufman A, et al. Cardiac diseases in maintenance hemodialysis patients: Results of the HEMO Study. Kidney Int 2004; 65: 2380–2389.
3. Chan W, Ivanov J, Kotowycz MA, Sibbald M, McGeech R, Crooks N, et al. Association between drug-eluting stent type and clinical outcomes in patients with chronic kidney disease undergoing percutaneous coronary intervention. Can J Cardiol 2014; 30: 1170–1176.
4. Lee JM, Kang J, Lee E, Hwang D, Rhee TM, Park J, et al. Chronic kidney disease in the second-generation drug-eluting stent era: Pooled analysis of the Korean multicenter drug-eluting stent registry. JACC Cardiovasc Interv 2016; 9: 2097 –2109.
5. Bangalore S, Amoroso N, Fusoaro M, Kumar S, Feit F. Outcomes with various drug-eluting or bare metal stents in patients with ST-segment-elevation myocardial infarction: A mixed treatment comparison analysis of trial level data from 34 068 patient-years of follow-up from randomized trials. Circ Cardiovasc Interv 2013; 6: 378–390.
6. Saito S, Valdes-Chavarri M, Richardt G, Moreno R, Iniguez Romo A, Barbato E, et al. A randomized, prospective, intercontinental evaluation of a biodegradable polymer sirolimus-eluting coronary stent system: THE CENTURY II (Clinical Evaluation of New Terumo Drug-Eluting Coronary Stent System in the Treatment of Patients with Coronary Artery Disease) trial. Eur Heart J 2014; 35: 2021–2031.
7. Kereiakes DJ, Meredith IT, Windecker S, Lee Jb, Mehta SR, Sarembock IJ, et al. Efficacy and safety of a novel bioabsorbable polymer-coated, everolimus-eluting coronary stent: The EVOLVE II Randomized Trial. Circ Cardiovasc Interv 2015; 8: e002372.
8. Haase J, Escaned J, van Swindtger EM, Ozaki Y, Gronenscheld E, Slager CJ, et al. Experimental validation of geometric and densitometric coronary measurements on the new generation Cardiovascular Angiography Analysis System (CAAS II). Cathet Cardiovasc Diagn 1993; 30: 104–114.
9. Cutlip DE, Windecker S, Mehran R, Boam A, Cohen DJ, van Es SR, Sarembock IJ, et al. Efficacy and safety of a novel bioabsorbable polymer-coated, everolimus-eluting coronary stent: The CENTURY II Randomized Trial. Circ Cardiovasc Interv 2015; 8: e002372.
10. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, et al. Third universal definition of myocardial infarction. Circulation 2012; 126: 2020–2035.
11. Chang TI, Montez-Rath ME, Tsai TT, Hatky MA, Winkelmayer WC. Drug-eluting versus bare-metal stents during PCI in patients with end-stage renal disease on dialysis. J Am Coll Cardiol 2016; 67: 1459–1469.
12. Garg P, Chrytian DM, Novack L, Cutlip DE, Popma JJ, Moses J, et al. Impact of moderate renal insufficiency on restenosis and adverse clinical events after sirolimus-eluting and bare metal stent implantation (from the SIRIUS trials). Am J Cardiol 2010; 106: 1436–1442.
13. Kolandaivelu K, Swaminathan R, Gibson WJ, Kolachalam VB, Nguyen-Ehrenreich KL, Giddings VL, et al. Stent thrombogenicity early in high-risk interventional settings is driven by stent design and deployment and protected by polymer-drug coatings. Circulation 2011; 123: 1400–1409.
14. De Scheerder IK, Wilczek KL, Verbeek EV. Biocompatibility of biodegradable and nonbiodegradable polymer-coated stents implanted in porcine peripheral arteries. Cardiovasc Intervent Radiol 1995; 18: 227–232.
15. Van der Giessen WJ, Lincoff AM, Schwartz RS, van Beusekom HM, Serruya PW, Holmes DR Jr, et al. Marked inflammatory sequelae to implantation of biodegradable and nonbiodegrad-
BP-DES vs. DP-DES in ESRD Patients on Dialysis

16. Picard F, Pighi M, de Hemptinne Q, Airaksinen J, Vinco G, de Pommereau A, et al. Comparison of the biodegradable polymer everolimus-eluting stent with contemporary drug-eluting stents: A systematic review and meta-analysis. *Int J Cardiol* 2019; **278**: 51–56.
17. El-Hayek G, Bangalore S, Casso Dominguez A, Devedreedy C, Jaber W, Kumar G, et al. Meta-analysis of randomized clinical trials comparing biodegradable polymer drug-eluting stent to second-generation durable polymer drug-eluting stents. *JACC Cardiovasc Interv* 2017; **10**: 462–473.
18. Otsuka Y, Ishiwata S, Inada T, Kanno H, Kyo E, Hayashi Y, et al. Comparison of haemodialysis patients and non-haemodialysis patients with respect to clinical characteristics and 3-year clinical outcomes after sirolimus-eluting stent implantation: Insights from the Japan multi-centre post-marketing surveillance registry. *Eur Heart J* 2011; **32**: 829–837.
19. Creager MA, Lüscher TF, Cosentino F, Beckman JA. Diabetes and vascular disease: Pathophysiology, clinical consequences, and medical therapy: Part I. *Circulation* 2003; **108**: 1527–1532.
20. Fuji K, Carlier SG, Mintz GS, Yang YM, Moussa I, Weisz G, et al. Stent underexpansion and residual reference segment stenosis are related to stent thrombosis after sirolimus-eluting stent implantation: An intravascular ultrasound study. *J Am Coll Cardiol* 2005; **45**: 995–998.
21. Nakazawa G. Stent thrombosis of drug eluting stent: Pathological perspective. *J Cardiol* 2011; **58**: 84–91.

Circulation Reports Vol.3, January 2021