TORSORS OF ISOTROPIC LOOP REDUCTIVE GROUPS OVER LAURENT POLYNOMIALS

ANASTASIA STAVROVA

Abstract. Let k be a field of characteristic 0. Let G be a reductive group over the ring of Laurent polynomials $R = k[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$. Assume that G is loop reductive, that is, G contains a maximal R-torus, and that every semisimple normal subgroup of G contains G_m, R. We show that the natural map $H_1^\text{ét}(R, G) \to H_1^\text{ét}(k(x_1, \ldots, x_n), G)$ has trivial kernel. This settles in positive the conjecture of V. Chernousov, Ph. Gille, and A. Pianzola that $H_1^\text{Zar}(R, G)$ is trivial.

1. Introduction

Let R be a commutative ring. Let G be a reductive group scheme over R in the sense of [SGA3]. We say that G has isotropic rank $\geq n$ if every normal semisimple reductive R-subgroup of G contains $(G_m, R)^n$.

V. Chernousov, Ph. Gille, and A. Pianzola proposed the following conjecture.

Conjecture. [ChGP17, Conjecture 5.4] Let k be a field of characteristic 0. Let G be a loop reductive group over the ring of Laurent polynomials $R = k[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$. Assume that G has isotropic rank ≥ 1. Then $H_1^\text{Zar}(R, G)$ is trivial.

We prove this conjecture. Previously, this statement was known to hold if G is defined over k [GP2], if k is algebraically closed, $n = 2$ and G is simply connected [SZ12]; for some twisted forms of GL_n [Art95] and of orthogonal groups [Par83].

The proof relies on the “diagonal argument” trick for loop reductive groups [St16] and on the established cases of the Serre–Grothendieck conjecture [PSV15, FP15].

2. Preliminaries on loop reductive groups

Let k be a field of characteristic 0. We fix once and for all an algebraic closure \bar{k} of k and a compatible set of primitive m-th roots of unity $\xi_m \in \bar{k}$, $m \geq 1$.

P. Gille and A. Pianzola [GP3, Ch. 2, 2.3] compute the étale (or algebraic) fundamental group of the k-scheme

$$X = \text{Spec } k[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$$

at the natural geometric point $e : \text{Spec } \bar{k} \to X$ induced by the evaluation $x_1 = x_2 = \ldots = x_n = 1$. Namely, let $k_\lambda, \lambda \in \Lambda$ be the set of finite Galois extensions of k contained in \bar{k}.

2010 Mathematics Subject Classification. 14F20, 20G35, 17B67, 11E72.

Key words and phrases. loop reductive group, Laurent polynomials, torsor.

The author is a winner of the contest “Young Russian Mathematics”. The work was supported by the Russian Science Foundation grant 19-71-30002.
Let I be the subset of $\Lambda \times \mathbb{Z}_{>0}$ consisting of all pairs (λ, m) such that $\xi_m \in k_\lambda$. The set I is directed by the relation $(\lambda, m) \leq (\mu, k)$ if and only if $k_\lambda \subseteq k_\mu$ and $m|k$. Consider

$$X_{\lambda,m} = \text{Spec} \ k_\lambda[x_1^{\pm \frac{1}{m}}, \ldots, x_n^{\pm \frac{1}{m}}]$$

as a scheme over X via the natural inclusion of rings. Then $X_{\lambda,m} \to X$ is a Galois cover with the Galois group

$$\Gamma_{\lambda,m} = (\mathbb{Z}/m\mathbb{Z})^n \rtimes \text{Gal}(k_\lambda/k),$$

where $\text{Gal}(k_\lambda/k)$ acts on $k_\lambda[x_1^{\pm \frac{1}{m}}, \ldots, x_n^{\pm \frac{1}{m}}]$ via its canonical action on k_λ, and each $(\bar{k}_1, \ldots, \bar{k}_n) \in (\mathbb{Z}/m\mathbb{Z})^n$ sends $x_i^{1/m}$ to $\xi_{\bar{k}_m}^k x_i^{1/m}$, $1 \leq i \leq n$. The semi-direct product structure on $\Gamma_{\lambda,m}$ is induced by the natural action of $\text{Gal}(k_\lambda/k)$ on $\mu_m(k_\lambda) \cong \mathbb{Z}/m\mathbb{Z}$. We have

$$(2.1) \quad \pi_1(X,e) = \varprojlim_{(\lambda,m) \in I} \Gamma_{\lambda,m} = \hat{\mathbb{Z}}(1)^n \rtimes \text{Gal}(k),$$

where $\hat{\mathbb{Z}}(1)$ denotes the profinite group $\varprojlim_m \mu_m(\bar{k})$ equipped with the natural action of the absolute Galois group $\text{Gal}(k) = \text{Gal}(\bar{k}/k)$.

For any reductive group scheme G over X, we denote by G_0 the split, or Chevalley–Demazure reductive group in the sense of [SGA3] of the same type as G. The group G is a twisted form of G_0, corresponding to a cocycle class ξ in the étale cohomology set $H^1_{\text{ét}}(X, \text{Aut}(G_0))$.

Definition 2.1. [GP3] Definition 3.4] The group scheme G is called loop reductive, if the cocycle ξ is in the image of the natural map

$$H^1(\pi_1(X,e), \text{Aut}(G_0)(\bar{k})) \to H^1_{\text{ét}}(X, \text{Aut}(G_0)).$$

Here $H^1(\pi_1(X,e), \text{Aut}(G_0)(\bar{k}))$ stands for the non-abelian cohomology set in the sense of Serre [Se]. The group $\pi_1(X,e)$ acts continuously on $\text{Aut}(G_0)(\bar{k})$ via the natural homomorphism $\pi_1(X,e) \to \text{Gal}(\bar{k}/k)$.

This definition can be reformulated as follows.

Theorem. [GP3] Corollary 6.3] A reductive group scheme over X is loop reductive if and only if G has a maximal torus over X.

The definition of a maximal torus is as follows.

Definition 2.2. [SGA3] Exp. XII Déf. 3.1] Let G be a group scheme of finite type over a scheme S, and let T be a S-torus which is an S-subgroup scheme of G. Then T is a maximal torus of G over S, if $T_{k(s)}^{\gamma(s)}$ is a maximal torus of $G_{k(s)}^{\gamma(s)}$ for all $s \in S$.

Our main result is based on the following observation.

Lemma 2.3 ("diagonal argument"). [St16] Lemma 4.1] Let k be a field of characteristic 0. Let G be a loop reductive group over $R = k[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$. For any integer $d > 0$, denote by $f_{z,d}$ (respectively, $f_{w,d}$) the composition of k-homomorphisms

$$R \to k[z_1^{\pm 1}, \ldots, z_n^{\pm 1}, w_1^{\pm 1}, \ldots, w_n^{\pm 1}] \to k[z_1^{\pm 1}, \ldots, z_n^{\pm 1}, (z_1 w_1^{-1})^{\pm \frac{1}{d}}, \ldots, (z_n w_n^{-1})^{\pm \frac{1}{d}}]$$

sending x_i to z_i (respectively, to w_i) for every $1 \leq i \leq n$. Then there is $d > 0$ such that

$$f_{z,d}(G) \cong f_{w,d}(G).$$
as group schemes over \(k[z_1^{\pm 1}, \ldots, z_n^{\pm 1}, (z_1w_i^{-1})^{\pm 1/d}, \ldots, (z_nw_i^{-1})^{\pm 1/d}] \).

We introduce additional notation that will be used every time when we apply Lemma 2.3 in proofs of other statements.

Notation 2.4. In the setting of the claim of Lemma 2.3, set
\[
t_i = (z_iw_i^{-1})^{1/d}, \quad 1 \leq i \leq n,
\]
where \(z_i, w_i, \) and \(d \) are as in that lemma. Note that this is equivalent to
\[
z_i = w_it_i^d, \quad 1 \leq i \leq n.
\]
We denote by \(G_z \) the group scheme over \(k[z_1^{\pm 1}, \ldots, z_n^{\pm 1}] \) which is the pull-back of \(G \) under the \(k \)-isomorphism
\[
k[x_1^{\pm 1}, \ldots, x_n^{\pm 1}] \overset{\phi_i \otimes z_i}{\longrightarrow} k[z_1^{\pm 1}, \ldots, z_n^{\pm 1}].
\]
The group scheme \(G_w \) over \(k[w_1^{\pm 1}, \ldots, w_n^{\pm 1}] \) is defined analogously. Note that \(G_z \) and \(G_w \) are isomorphic after pull-back to
\[
k[z_1^{\pm 1}, \ldots, z_n^{\pm 1}, t_1^{\pm 1}, \ldots, t_n^{\pm 1}] = k[w_1^{\pm 1}, \ldots, w_n^{\pm 1}, t_1^{\pm 1}, \ldots, t_n^{\pm 1}].
\]

3. Proof of the conjecture

The following statement was obtained in [St19] as a joint corollary of the corresponding statement for simply connected semisimple reductive groups [PSV15 Theorem 1.6], and of the result of I. Panin and R. Fedorov on the Serre–Grothendieck conjecture [FP15].

Theorem. [St19] Theorem 4.2] Assume that \(R \) is a regular semilocal domain that contains an infinite field, and let \(K \) be its fraction field. Let \(G \) be a reductive group scheme over \(R \) of isotropic rank \(\geq 1 \). Then for any \(n \geq 1 \) the natural map
\[
H^1_{\text{et}}(R[x_1, \ldots, x_n], G) \to H^1_{\text{et}}(K[x_1, \ldots, x_n], G)
\]
has trivial kernel.

Lemma 3.1. Let \(G \) be a reductive group of isotropic rank \(\geq 1 \) over a regular local ring \(A \) containing an infinite field \(k \). Let \(f(x) \in A[x] \) be a non-zero polynomial. Then \(H^1_{\text{et}}(\mathbb{A}^1_A, G) \to H^1_{\text{et}}((\mathbb{A}^1_A)_f, G) \) has trivial kernel.

Proof. Let \(K \) be the fraction field of \(A \). By [St19] Theorem 4.2] the map \(H^1_{\text{et}}(A[x], G) \to H^1_{\text{et}}(K[x], G) \) has trivial kernel. By [CTO] Proposition 2.2] the map \(H^1_{\text{et}}(K[x], G) \to H^1_{\text{et}}(K(x), G) \) has trivial kernel. Hence the claim. \(\square \)

The following lemma is based on a classical trick of Quillen [Q].

Lemma 3.2. Let \(G \) be a reductive group of isotropic rank \(\geq 1 \) over a regular ring \(A \) containing an infinite field \(k \). Let \(f(x) \in A[x] \) be a monic polynomial. Then \(H^1_{\text{et}}(\mathbb{A}^1_A, G) \to H^1_{\text{et}}((\mathbb{A}^1_A)_f, G) \) has trivial kernel.

Proof. Let \(\xi \in H^1_{\text{et}}(\mathbb{A}^1_A, G) \) be in the kernel. Since \(f \) is monic, for any maximal ideal \(m \) of \(A \) the image of \(f \) in \(A_m[x] \) is non-zero. Then by Lemma 3.1 the \(G \)-bundle \(\xi|_{\mathbb{A}^1_A} \) is trivial. Since \(A \) is regular, \(G \) is \(A \)-linear by [Tho87] Corollary 3.2]. Then by [AHW18] Theorem 3.2.5] (see also [Mos] Korollar 3.5.2]) the fact that for any maximal ideal \(m \) of \(A \) the \(G \)-bundle \(\xi|_{\mathbb{A}^1_A} \) is trivial implies that \(\xi \) is extended from \(A \).
Set \(y = x^{-1} \) and choose \(g(y) \in A[y] \) so that \(x^{\deg(f)}g(y) = f(x) \). Then \(g(0) \in A^\times \) and \(A[x]_{xf} = A[y]_{gy} \). We have \(\mathbb{P}^1_A = \mathbb{A}^1_A \cup \text{Spec}(A[y]_g) \), and \(\mathbb{A}^1_A \cap \text{Spec}(A[y]_g) = (\mathbb{A}^1_A)_{xf} \). Hence we can extend \(\xi \) to a bundle \(\xi \) on \(\mathbb{P}^1_A \) by patching it with the trivial bundle on \(\text{Spec}(A[y]_g) \).

Let \(\eta = \xi|_{\text{Spec}(A[y])} \). By assumption, \(\eta \) is trivial on \(\text{Spec}(A[y]_g) \). Since \(g(0) \in A^\times \), by the same argument as above \(\eta \) is extended. However, \(g(0) \) is invertible and \(\eta \) is trivial at \(y = 0 \), hence \(\eta \) is trivial. Hence \(\xi \) is trivial at \(x = y = 1 \). Hence \(\xi \) is trivial. □

Lemma 3.3. Let \(G \) be a reductive group of isotropic rank \(\geq 1 \) over a regular ring \(A \) containing an infinite field \(k \). Let \(f(x) \in A[x] \) be a monic polynomial such that \(f(0) \in A^\times \). Then \(H^1_{\text{ét}}((\mathbb{A}^1_A)_x, G) \rightarrow H^1_{\text{ét}}((\mathbb{A}^1_A)_{xf}, G) \) has trivial kernel.

Proof. Since \(f(0) \in A^\times \), any \(G \)-bundle in the kernel can be extended to \(\mathbb{A}^1_A \) by patching with a trivial \(G \)-bundle on \((\mathbb{A}^1_A)_f \). Then it is trivial by Lemma 3.2 applied to \(xf \). □

Lemma 3.4. Under the assumptions of Lemma 3.3 for any \(n \geq 0 \) the natural map

\[
H^1_{\text{ét}}(A[t_1^{\pm 1}, \ldots, t_n^{\pm 1}], G) \rightarrow H^1_{\text{ét}}(A \otimes_k k(t_1, \ldots, t_n), G)
\]

has trivial kernel.

Proof. We prove the claim by induction on \(n \); the case \(n = 0 \) is trivial. Set \(l = k(t_1, \ldots, t_{n-1}) \).

By the inductive hypothesis, the map

\[
H^1_{\text{ét}}(A[t_1^{\pm 1}, \ldots, t_n^{\pm 1}], G) \rightarrow H^1_{\text{ét}}(A[t_n^{\pm 1}] \otimes_k l, G) = H^1_{\text{ét}}(A \otimes_k l[t_n^{\pm 1}], G)
\]

has trivial kernel, so it remains to prove the triviality of the kernel for the map

\[
H^1_{\text{ét}}(A \otimes_k l[t_n^{\pm 1}], G) \rightarrow H^1_{\text{ét}}(A \otimes_k l(t_n), G).
\]

We have \(l(t_n) = \lim_{g \rightarrow l} |l(t_n)|_{t_n,g} \), where \(g \in l(t_n) \) runs over all monic polynomials with \(g(0) \in l^\times \).

Since \(H^1_{\text{ét}}(-, G) \) commutes with filtered direct limits, it remains to show that every map

\[
(1) \quad H^1_{\text{ét}}(A \otimes_k l[t_n^{\pm 1}], G) \rightarrow H^1_{\text{ét}}(A \otimes_k l[t_n]_{t_n,g}, G)
\]

has trivial kernel. This is the claim of Lemma 3.3. □

Lemma 3.5. Let \(k \) be an infinite field, \(A \) be a regular ring containing \(k \), and let \(G \) be a reductive group of isotropic rank \(\geq 1 \) over \(A[z_1^{\pm 1}, \ldots, z_n^{\pm 1}] \). For any set of integers \(d_i > 0 \), \(1 \leq i \leq n \), the map

\[
\psi: H^1_{\text{ét}}(A[z_1^{\pm 1}, \ldots, z_n^{\pm 1}, t_1, \ldots, t_n], G) \xrightarrow{z_i \mapsto w_i t_1^{d_i}} H^1_{\text{ét}}(A \otimes_k k(w_1, \ldots, w_n)[t_1^{\pm 1}, \ldots, t_n^{\pm 1}], \psi^*(G))
\]

has trivial kernel.

Proof. We prove the claim by induction on \(n \geq 0 \). The case \(n = 0 \) is trivial. To prove the induction step for \(n \geq 1 \), it is enough to show that

\[
\phi: H^1_{\text{ét}}(A \otimes_k k[z_1^{\pm 1}, \ldots, z_n^{\pm 1}, t_1, \ldots, t_n], G) \xrightarrow{z_1 \mapsto w_1 t_1^{d_1}} H^1_{\text{ét}}(A \otimes_k k(w_1)[t_1^{\pm 1}][z_2^{\pm 1}, \ldots, z_n^{\pm 1}, t_2, \ldots, t_n], \phi^*(G))
\]

has trivial kernel. Indeed, after that we can apply the induction assumption with \(k \) substituted by \(k(w_1) \) and \(A \) substituted by \(A \otimes_k k(w_1)[t_1^{\pm 1}] \). Set

\[
B = A[z_2^{\pm 1}, \ldots, z_n^{\pm 1}, t_2, \ldots, t_n]
\]
and omit for simplicity the subscript 1. Then we need to show that the map
\[
\phi : H^1_{\text{ét}}(B[z^{\pm 1}, t], G) \xrightarrow{z \mapsto wt^d} H^1_{\text{ét}}(B \otimes_k k(w)[t^{\pm 1}], \phi^*(G))
\]
has trivial kernel. Here \(G \) is defined over \(B[z^{\pm 1}] \). We have
\[
B \otimes_k k(w)[t^{\pm 1}] = \lim_{g} B \otimes_k k[w^{\pm 1}][t^{\pm 1}] = \lim_{g} B \otimes_k k[w^{\pm 1}, t^{\pm 1}],
\]
where \(g = g(w) \) runs over all monic polynomials in \(k[w] \) with \(g(0) \neq 0 \). Let \(N = \deg(g) \geq 1 \).
Since \(\phi(z) = wt^d \), we have \(g(w) = g(\phi(z)t^{-d}) = t^{-Nd} f(t) \), where \(f(t) \) is a polynomial in \(t \) with coefficients in \(k[\phi(z)^{\pm 1}] \) such that its leading coefficient is in \(k \setminus 0 \), and \(f(0) = \phi(z)^N \). Then
\[
B \otimes_k k[w^{\pm 1}, t^{\pm 1}]_g = B \otimes_k k[\phi(z)^{\pm 1}, t]_{tf}.
\]
The group scheme \(\phi^*(G) \) is defined over \(B \otimes_k k[\phi(z)^{\pm 1}] \). Both terminal coefficients of \(tf(t) \) are invertible in \(k[\phi(z)^{\pm 1}] \), hence by Lemma 3.2 the map
\[
H^1_{\text{ét}}(B[z^{\pm 1}, t], G) \xrightarrow{z \mapsto wt^d} H^1_{\text{ét}}(B \otimes_k k[w^{\pm 1}, t^{\pm 1}]_g, \phi^*(G)) = H^1_{\text{ét}}(B \otimes_k k[\phi(z)^{\pm 1}, t]_{tf}, \phi^*(G))
\]
has trivial kernel.
Since \(H^1_{\text{ét}}(-, G) \) commutes with filtered direct limits, we conclude that \(\phi \) has trivial kernel.

Theorem 3.6. Let \(k \) be a field of characteristic 0, and let \(G \) be a loop reductive group of isotropic rank \(\geq 1 \) over \(R = k[x_1^{\pm 1}, \ldots, x_n^{\pm 1}] \). For any regular ring \(A \) containing \(k \), the natural map
\[
H^1_{\text{ét}}(k[x_1^{\pm 1}, \ldots, x_n^{\pm 1}] \otimes_k A, G) \to H^1_{\text{ét}}(k(x_1, \ldots, x_n) \otimes_k A, G)
\]
has trivial kernel.

Proof. We apply Lemma 2.3 to \(G \), and we use Notation 2.4. Consider the following commutative diagram. In this diagram, the horizontal maps \(j_1 \) and \(j_2 \) are the natural ones, and all maps always take variables \(t_i \) to \(t_i \), \(1 \leq i \leq n \), and \(A \) to \(A \). The bijections \(g_1 \) and \(g_2 \) exist by Lemma 2.3

\[
\begin{array}{ccc}
H^1_{\text{ét}}(k[x_1^{\pm 1}, \ldots, x_n^{\pm 1}] \otimes_k A, G) & \xrightarrow{j_1} & H^1_{\text{ét}}(k(x_1, \ldots, x_n) \otimes_k A, G) \\
\downarrow f_1: x_i \mapsto z_i & & \downarrow f_2: x_i \mapsto z_i \\
H^1_{\text{ét}}(k[z_1^{\pm 1}, \ldots, z_n^{\pm 1}, t_1, \ldots, t_n] \otimes_k A, G_z) & \xrightarrow{h: z_i \mapsto wt_i^d} & H^1_{\text{ét}}(k(z_1, \ldots, z_n, t_1, \ldots, t_n) \otimes_k A, G_z) \\
\downarrow g_1 & & \cong \downarrow g_2: z_i \mapsto wt_i^d \\
H^1_{\text{ét}}(k(w_1, \ldots, w_n)[t_1^{\pm 1}, \ldots, t_n^{\pm 1}] \otimes_k A, G_z) & \xrightarrow{j_2} & H^1_{\text{ét}}(k(w_1, \ldots, w_n, t_1, \ldots, t_n) \otimes_k A, G_w)
\end{array}
\]

In order to prove that \(j_1 \) has trivial kernel, it is enough to show that all maps \(j_2, g_1, h, f_1 \) have trivial kernels. The map \(j_2 \) has trivial kernel by Lemma 3.4. As explained above, \(g_1 \)
is bijective. The map h is has trivial kernel by Lemma 3.5. Finally, the map f_1 has trivial kernel, since it has a retraction. Therefore, the map j_1 has trivial kernel. □

Corollary 3.7. Let k be a field of characteristic 0, and let G be a loop reductive group of isotropic rank ≥ 1 over $R = k[\frac{x_1}{1}, \ldots, \frac{x_n}{1}]$. Then $H^1_{\text{Zar}}(R,G) = H^1_{\text{Nis}}(R,G)$ is trivial.

Proof. This is clear, since $H^1_{\text{Zar}}(k(x_1, \ldots, x_n), G) = H^1_{\text{Nis}}(k(x_1, \ldots, x_n), G)$ is trivial. □

References

[Art95] V. A. Artamonov, Projective modules over crossed products, J. Algebra 173 (1995), no. 3, 696–714.

[AHW18] A. Asok, M. Hoyois, M. Wendt, Affine representability results in K^1-homotopy theory, II: Principal bundles and homogeneous spaces, Geom. Topol. 22 (2018), no. 2, 1181–1225.

[ChGP17] V. Chernousov, P. Gille, and A. Pianzola, A classification of torsors over Laurent polynomial rings, Comment. Math. Helv. 92 (2017), no. 1, 37–55.

[CTO] J.-L. Colliot-Thélène, M. Ojanguren, Espaces Principaux Homogènes Localement Triviaux, Publ. Math. IHÉS 75, no. 2 (1992), 97–122.

[SAG3] M. Demazure, A. Grothendieck, Schémas en groupes. Lecture Notes in Math., vol. 151–153, Springer-Verlag, Berlin-Heidelberg-New York, 1970.

[FP15] R. Fedorov, I. Panin, A proof of the Grothendieck-Serre conjecture on principal bundles over regular local rings containing infinite fields, Publ. Math. Inst. Hautes Études Sci. 122 (2015), 169–193.

[GP2] P. Gille, A. Pianzola, Isotriviality and étale cohomology of Laurent polynomial rings, J. Pure Appl. Algebra 212 (2008), 780–800.

[GP3] P. Gille, A. Pianzola, Torsors, reductive group schemes and extended affine Lie algebras, Mem. Amer. Math. Soc. 1063 (2013), American Mathematical Society.

[Mos] L.-F. Moser, Rational trivial triseur und die Serre-Grothendiecksche Vermutung, Diplomarbeit, http://www.mathematik.uni-muenchen.de/lfmoser/da.pdf (2008). Accessed 01 August 2018

[PSV15] I. Panin, A. Stavrova, and N. Vavilov, On Grothendieck-Serre’s conjecture concerning principal G-bundles over reductive group schemes: I, Compos. Math. 151 (2015), no. 3, 535–567.

[Par83] Raman Parimala, Quadratic spaces over Laurent extensions of Dedekind domains, Trans. Amer. Math. Soc. 277 (1983), no. 2, 569–578.

[Q] D. Quillen, Projective modules over polynomial rings, Invent. Math. 36 (1976), 167–171.

[Se] J.-P. Serre, Galois cohomology. English transl. by P. Ion, Springer-Verlag Berlin Heidelberg, 1997.

[St16] A. Stavrova, Non-stable K_1-functors of multiloop groups, Canad. J. Math. 68 (2016), 150–178.

[St19] A. Stavrova, Isotropic reductive groups over discrete Hodge algebras, J. Homotopy Relat. Str. 14 (2019), 509–524.

[SZ12] Wilhelm Alexander Steinmetz Zikesch, Algèbres de Lie de dimension infinie et théorie de la descente, Mém. Soc. Math. Fr. (N.S.) (2012), no. 129, vii+99.

[Tho87] R. W. Thomason, Equivariant resolution, linearization, and Hilbert’s fourteenth problem over arbitrary base schemes, Adv. in Math. 65 (1987), no. 1, 16–34.

Chebyshev Laboratory St. Petersburg State University, St. Petersburg, Russia

E-mail address: anastasia.stavrova@gmail.com