On empty pentagons and hexagons in planar point sets

Pavel Valtr†

Abstract

We give improved lower bounds on the minimum number of k-holes (empty convex k-gons) in a set of n points in general position in the plane, for $k = 5, 6$.

Keywords: Empty polygon, planar point set, empty hexagon, empty pentagon

1 Introduction

We say that a set P of points in the plane is in general position if it contains no three points on a line.

Let P be a set of n points in general position in the plane. A k-hole of P (sometimes also called empty convex k-gon or convex k-hole) is a set of vertices of a convex k-gon with vertices in P containing no other points of P.

Let $X_k(n)$ be the minimum number of k-holes in a set of n points in general position in the plane. Horton [7] proved that $X_k(n) = 0$ for any $k \geq 7$ and for any positive integer n. The following bounds on $X_k(n), k = 3, 4, 5, 6$, are known (the letter H denotes the number of vertices of the convex hull of the point set):

*Work on this paper was supported by project 1M0545 of The Ministry of Education of the Czech Republic.

†Department of Applied Mathematics and Institute for Theoretical Computer Science (ITI), Charles University, Malostranské nám. 25, 182 00 Praha 1, Czech Republic
The upper bounds were shown in [2], improving previous bounds of [9, 11, 14]. The lower bounds for \(k = 3, 4, 5 \) can be found in an updated version of the conference paper [6], also improving lower bounds from several papers. The lower bound on \(X_6(n) \) follows from a result of V. A. Koshelev [8].

In this paper we give the following improved lower bounds:

Theorem 1

\[
X_5(n) \geq \frac{n}{2} - O(1),
\]

\[
X_6(n) \geq \frac{n}{229} - 4.
\]

After finishing our research, we have learned that a group of researchers including Oswin Aichholzer, Ruy Fabila-Monroy, Clemens Huemer, and Birgit Vogtenhuber has very recently obtained a better bound \(X_5(n) \geq 3n/4 - o(n) \). Their result is not written yet. Their method does not seem to achieve our bound on \(X_6(n) \) but it also gives slight improvements on the lower bounds on \(X_3(n) \) and \(X_4(n) \) mentioned above.

2 Proofs

To prove the first inequality in Theorem 1, it suffices to prove that if \(P \) is a set of \(n > 20 \) points in general position in the plane then \(P \) contains a subset \(P' \) of eight points such that \(P' \) and \(P - P' \) can be separated by a line and at least four 5-holes of \(P \) intersect \(P' \). Indeed, if this is true then we can repeatedly remove eight points of \(P' \). Each removal decreases the number of points by 8 and the number of 5-holes by at least 4. Doing this as long as at least 21 points remain, we obtain the first inequality in Theorem 1.
Let P be a set of $n > 20$ points in general position in the plane. For two points x, y of P, we denote by $L(xy)$ the open halfplane to the left of the line xy (oriented from x to y). The complementary open halfplane is denoted by $R(xy)$. If $L(xy)$ contains exactly k points of P, then we say that the oriented segment xy is a k-edge of P.

Take a vertex a of the convex hull of P. Order the other points radially around a starting from the point on the convex hull clockwise from a. Let a' be the 12-th point in this order. Then aa' is an 11-edge. Since $X_5(10) > 0$ [5], $L(aa')$ contains a 5-hole, D, of P. In the rest of the proof, D is fixed but aa' may later denote other 11-edges.

The key part of the proof is to find an 11-edge bb' such that b is a vertex of D and the other four vertices of D lie in $L(bb')$. To do it, we clockwise rotate a line l starting from $l = aa'$ as follows. Initially we start to rotate l at the midpoint of the segment aa'. During the rotation, the center of rotation may change at any moment but the rotated line l cannot go over any point of P. We rotate as long as it is possible, until we reach a position $l = bb'$, where $b, b' \in P$, the point b was originally to the left of l and b' was originally to the right of l. Thus, $b \in L(aa') \cup \{a'\}$ and $b' \in R(aa') \cup \{a\}$. There are no points of P in the open wedges $R(aa') \cap L(bb')$ and $L(aa') \cap R(bb')$. The edge bb' is an 11-edge of P. We distinguish three cases:

Case 1: The segments aa' and bb' internally cross, thus a, a', b, b' are pairwise different.

Case 2: $b' = a$.

Case 3: $b = a'$.

Since D lies in $L(aa')$, it also lies in $L(bb') \cup \{b\}$. The point b may be a vertex of D in Cases 1 and 2. All other vertices of D lie in $L(bb')$. If b is not a vertex of D, then we rename the points b and b' by a and a', respectively, and rotate a line l in the same way as above from the position $l = aa'$. We reach some new position $l = bb'$. Repeat this process until the point b coincides with one of the vertices of D. (Note that the line l cannot rotate outside of D forever, because $n > 20$.) Then we are in Case 1 or in Case 2, and the other four vertices of D lie in $L(aa') \cap L(bb')$. In Case 1 or 2, we consider the 12-point set $Q := (P \cap L(bb')) \cup \{b\}$. Since $X_5(12) \geq 3$ [3], the set Q contains at least three 5-holes of P. Together with D, these are at least four 5-holes of P with vertices in the 13-point set $Q \cup \{b\} = P \cap \text{closure}(L(bb'))$. None of these 5-holes contains both b and b'. Therefore, we can take P' as the set of eight points of $L(bb')$ with largest distances to the line bb'. This finishes the proof of the first inequality in Theorem [4].
We remark without proof that a slightly better bound \((1/2 + c)n - \text{const}\) with \(c > 0\) can be obtained by using the fact that any sufficiently large set \(P\) contains linearly many disjoint 6-holes.

The above proof can be generalized to give the more general theorem below. The theorem below together with \(X_6(463) > 0\) (proved by V. A. Koshelev [8]) gives the second inequality in Theorem 1.

Theorem 2 Suppose that \(X_k(s - 1) \geq 1\) and \(X_k(s) \geq t\) for some positive integers \(k, s, t\). Then \(X_k(n) \geq \frac{t+1}{s-k+1}(n - (2s - 2))\) for \(n \geq 2s - 2\).

Proof. If \(P\) is a set of \(n > 2s - 2\) points then \(P\) contains an \((s-1)\)-edge \(aa'\). Let \(D\) be a \(k\)-hole of \(P\) contained in \(L(aa')\). Analogously as in the previous proof, we find two \((s-1)\)-edges \(aa'\) and \(bb'\) such that \(b\) is a vertex of \(D\) and \(D\) lies in \(L(aa')\) and also in \(L(bb') \cup \{b\}\). In Case 1 or 2, we consider the \(s\)-point set \(Q := (P \cap L(bb')) \cup \{b\}\). Since \(X_k(s) \geq t\), the set \(Q\) contains at least \(t\) \(k\)-holes of \(P\). Together with \(D\), these are at least \(t+1\) \(k\)-holes of \(P\) with vertices in the \(s+1\)-point set \(Q \cup \{b\} = P \cap \text{closure}(L(bb'))\). None of these \(k\)-holes contains both \(b\) and \(b'\). Therefore, if we take \(P'\) as the set of \(s-k+1\) points of \(L(bb')\) with largest distances to the line \(bb'\) then removing the \(s-k+1\) points of \(P'\) from \(P\) decreases the number of \(k\)-holes by at least \(t+1\). Theorem 2 follows.

References

[1] I. Bárány and Z. Füredi, Empty simplices in Euclidean space, Canadian Math. Bull. 30 (1987), 436-445.

[2] I. Bárány and P. Valtr, Planar point sets with a small number of empty convex polygons, Stud. Sci. Math. Hung. 41 (2004), 243-266.

[3] K. Dehnhardt, Leere konvexe Vielecke in ebenen Punktmengen, dissertation (in German), Braunschweig Techn. Univ., 1987.

[4] A. Dumitrescu, Planar sets with few empty convex polygons, Stud. Sci. Math. Hung. 36 (2000), 93-109.

[5] H. Harborth, Konvexe Fünfecke in ebenen Punktmengen (in German), Elem. Math. 33 (1978), 116-118.
[6] A. García, A note on the number of empty triangles, Proc. XIV Spanish Meeting on Computational Geometry, July 27-30, 2011, pp. 101-104.

[7] J. D. Horton, Sets with no empty convex 7-gons, Canadian Math. Bull. 26 (1983), 482-484.

[8] V. A. Koshelev, On Erdős-Szekeres problem for empty hexagons in the plane, Model. Anal. Inform. Sist 16(2) (2009), 22-74.

[9] M. Katchalski and A. Meir, On empty triangles determined by points in the plane, Acta. Math. Hungar. 51 (1988), 323-328.

[10] P. Valtr, Convex independent sets and 7-holes in restricted planar point sets, Discrete Comput. Geom. 7 (1992), 135-152.

[11] P. Valtr, On the minimum number of empty polygons in planar point sets, Studia Scientiarum Mathematicarum Hungarica 30 (1995), 155-163.