Dynamic Balance in Children With Trisomy 21: A Pilot Study*

David Catela, Ana Paula Seabra
Higher School of Sports Sciences of Rio Maior, Polytechnique Institute of Santarém, Santarém, Portugal
Life Quality Research Centre (CIEQV), Rio Maior, Portugal
Research Unity of the Polytechnique Institute of Santarém, Santarém, Portugal
Bernardo Matias, Miguel Nunes, Pedro Neves, Samuel Rodrigues
Higher School of Sports Sciences of Rio Maior, Polytechnique Institute of Santarém, Santarém, Portugal

At age 5, children with trisomy 21 have roughly 2 years of delayed motor development. We aimed to verify if children with trisomy 21 (AD) (N = 6, 7.67 ± 1.51 years) had a similar performance to children with a typical development (TD) (N = 37, 5.19 ± 0.40 years old), in a playful motor action (to spin on herself until she cannot get more). On average, ADs gave less laps, for less time, spending more time per rotation, but without significant difference. Of the AD, one-third fell and rose to continue to spin; one-third stopped and resumed spinning (with intervals of 2.05 ± 0.86s). Three ADs performed the action counterclockwise and the other three in clockwise direction. The results support the hypothesis that AD can perform the activity of spinning, with DT (significantly) younger, allowing to AD momentary pauses and conditions for their physical security.

Keywords: children, dynamic balance, motor development, trisomy 21

Introduction

Dynamic balance is the maintenance of equilibrium in rapidly changing kinetic condition during a motor action, being an essential component in many fundamental motor skills (DeOreo & Keogh, 1980; Espenschade & Eckert, 1980), particularly for pre-schoolers (B. D. Ulrich & D. A. Ulrich, 1985). Between three and six years of age, they increase the mastery of the base of support (Assaiante, Amblard, & Carblanc, 1988; Brenière, Bril, & Fontaine, 1989; Bril, & Breniere, 1988; Gallahue & Ozmun, 1998), the stabilization of the head in space (Assaiante & Amblard, 1993), and the use of peripheral vision (Assaiante, 1998); with the emergence of new modes of postural synergies (Shumway-Cook & Woollacott, 1985a). This contributes to an attunement of the vestibular-ocular reflex (Casselbrant et al., 2010) and an ability to better detect vestibular somatosensory

* Funding acknowledgements: This study was partially supported by the Portuguese Foundation for Science and Technology, I.P. under Grant number UIDP/04748/2020.

David Catela, Ph.D., Coordinator Professor, Higher School of Sports Sciences of Rio Maior, Polytechnique Institute of Santarém, Santarém; Life Quality Research Centre (CIEQV), Rio Maior; Research Unity of the Polytechnique Institute of Santarém, Santarém, Portugal. https://orcid.org/0000-0003-0759-8343
Ana Paula Seabra, M.Sc., Assistant Professor, Higher School of Sports Sciences of Rio Maior, Polytechnique Institute of Santarém, Santarém; Life Quality Research Centre (CIEQV), Rio Maior; Research Unity of the Polytechnique Institute of Santarém, Santarém, Portugal. https://orcid.org/0000-0003-0759-8343
Bernardo Matias, Bachelor, Higher School of Sports Sciences of Rio Maior, Polytechnique Institute of Santarém, Portugal. https://orcid.org/0000-0002-0219-2881
Miguel Nunes, Bachelor, Higher School of Sports Sciences of Rio Maior, Polytechnique Institute of Santarém, Portugal.
Pedro Neves, Bachelor, Higher School of Sports Sciences of Rio Maior, Polytechnique Institute of Santarém, Portugal.
Samuel Rodrigues, Bachelor, Higher School of Sports Sciences of Rio Maior, Polytechnique Institute of Santarém, Portugal.
information (Foudriat, Di Fabio, & Anderson, 1993). In studies on dynamic balance control, postural instability is created by action on the child or the support base (Shumway-Cook & Woollacott, 1985a; Forssberg & Nashner, 1982; Woollacott, Debû, & Mowatt, 1987); or, observing sustained, undisturbed spontaneous locomotor control (Valente, 2007), especially in the laboratory setting and in translational displacement; rotational conditions only those by extrinsic constraints (e.g., Amblard, Assaïante, Lekhel, & Marchand, 1994). Few tests run through rotations; for example, Zimmer and Volkamer (1987) include in their MOT 4-6 a test in which the child makes a 180° vertical jump to land on a rim in front of him/her, performing a second jump to starting position with another 180° rotation. Franco et al. (2017) based on solitary functional play, which is common in day care and preschool children (Rubin, Watson, & Jambor, 1978) asked children from three and six years old to spin on their selves until they cannot get more, noticing that 3-year-olds were slower, and that both directions of rotation were equally distributed among all children.

At age 5, Down 21 children have a cumulative delay in motor development of approximately two years (Butterworth & Cicchetti, 1978; Share & French, 1974). Its ability to respond to loss of balance is very slow until age 6, probably not due to its hypotonia (Shumway-Cook & Woollacott, 1985b). Down’s syndrome children are hardly able to ride a tricycle at age 7 (Share, 1971). However, three and six years old that performed jumping practice could improve their dynamic balance (Wang & Ju, 2002).

It was intended to verify if children with trisomy 21 had a similar performance to younger typically developing children, in a playful motor action.

**Methods**

**Sample**

Six children with trisomy 21 (AD) (7.67 ± 1.51 years, 1 girl) and 37 significantly younger children with typical development (TD) (5.19 ± 0.40 years, 16 girls) (Z = 4.517, p = 0.001, r = 0.69). Written informed consent and assent were obtained.

**Procedures and Protocols**

According to Franco et al. (2017), it was asked to children to spin around themselves till they could not more or till they stopped definitively and totally unbalanced or fall on the floor, on a gym mat. The activity was presented was a playing one. No restriction of velocity or time was imposed. No feedback was provided. Participants did not receive any reward. It was allowed for child to stop for short moments during the spinning and to continue to spin, a behaviour that was frequent in children with trisomy 21. Direction of rotation, total spinning time, number of turns, and mean time per turn were obtained.

**Statistical Analysis**

It was used IBM SPSS Statistics for Windows, version 24, for a significance level of 0.05. Normal distribution was obtained through Shapiro-Wilk test. For comparison between groups, Mann-Whitney U test (Z), with Monte Carlo test, was used, and effect size r was estimated when significant difference occurred. Probability error was set at 0.05, two-tailed.

**Results**

On average, AD rotated less, for less time, spending more time per rotation, but without significant difference (Table 1).
Table 1

| Variable              | Group | Mean ± SD  | Z     | p     |
|-----------------------|-------|------------|-------|-------|
| Number of turns       | DT    | 16.27 ± 12.53 | 1.475 | 0.140 |
|                       | DA    | 10.33 ± 5.54  |       |       |
| Total time (sec)      | DT    | 36.97 ± 30.73 | 0.491 | 0.623 |
|                       | DA    | 28.84 ± 17.85 |       |       |
| Time per turn (sec)   | DT    | 2.25 ± 0.47   | 1.265 | 0.206 |
|                       | DA    | 2.69 ± 0.82   |       |       |

Of the DA, one third fell and rose to continue spinning; one third stopped and restarted spinning (at intervals of 2.05 ± 0.86s). Three AD performed the action counter clockwise and the other three clockwise.

Discussion

In this fundamental motor skill, these AD children retain slight but not significant limitation of motor performance. The occurrence of falls during activity may be due to their difficulty in efficiently using vestibular somatosensory information (Foudriat et al., 1993) and to readjust to situations of loss of stability (Shumway-Cook & Woollacott, 1985b), unlike children DT (cf. Franco et al., 2017). As in children with TD (Franco et al., 2017), in these AD children there is no evidence of predominance of direction of rotation.

Conclusion

The results support the hypothesis that AD can perform the spinning activity on itself, with (significantly) younger DTs, enabling during the motor action to AD momentary pauses and conditions for their physical safety.

References

Amblard, B., Assaïante, C., Lekhel, H., & Marchand, A. R. (1994). A statistical approach to sensorimotor strategies: Conjugate cross-correlations. Journal of Motor Behavior, 26(2), 103-112. Retrieved from https://doi.org/10.1080/00222895.1994.9941665

Assaïante, C. (1998). Development of locomotor balance control in healthy children. Neuroscience & Biobehavioral Reviews, 22(4), 527-532.

Assaïante, C., & Amblard, B. (1993). Ontogenesis of head stabilization in space during locomotion in children: Influence of visual cues. Experimental Brain Research, 93(3), 499-515.

Assaïante, C., Amblard, B., & Carblanc, A. (1988). Peripheral vision and dynamic equilibrium control in five to twelve year old children. In Posture and gait: Development, adaptation and modulation (pp. 75-83). Amsterdam: Elsevier (Excerpta Medica).

Bril, B., & Brenière, Y. (1989). Analysis of the transition from upright stance to steady state locomotion in children with under 200 days of autonomous walking. Journal of Motor Behavior, 21(1), 20-37. Retrieved from https://doi.org/10.1080/00222895.1989.10735462

Bril, B., & Breniere, Y. (1988). Do temporal invariances exist as early as the first six months of independent walking. In Posture and gait: Development, adaptation and modulation (pp. 23-31). Amsterdam: Elsevier (Excerpta Medica).

Butterworth, G., & Cicchetti, D. (1978). Visual calibration of posture in normal and motor retarded Down’s syndrome infants. Perception, 7(5), 513-525. Retrieved from https://doi.org/10.1068/p070513

Casselbrant, M. L., Mandel, E. M., Sparto, P. J., Perera, S., Redfern, M. S., Fall, P. A., & Furman, J. M. (2010). Longitudinal posturography and rotational testing in children three to nine years of age: Normative data. Otolaryngology—Head and Neck Surgery, 142(5), 708-714. Retrieved from https://doi.org/10.1016/j.otohns.2010.01.028

DeOreo, K. L., & Keogh, J. (1980). Performance in fundamental motor skills. A textbook of motor development. In C. B. Corbin
DYNAMIC BALANCE IN CHILDREN WITH TRISOMY 21: A PILOT STUDY

(Ed.), A textbook of motor development (pp. 6-91). Dubuque, IA: WC Brown.

Espenschade, A. S., & Eckert, H. M. (1980). Motor development. Columbus, OH: Merrill.

Forssberg, H., & Nashner, L. M. (1982). Ontogenetic development of postural control in man: Adaptation to altered support and visual conditions during stance. Journal of Neuroscience, 2(5), 545-552. Retrieved from https://doi.org/10.1523/JNEUROSCI.02-05-00545.1982

Foudriat, B. A., Di Fabio, R. P., & Anderson, J. H. (1993). Sensory organization of balance responses in children 3-6 years of age: A normative study with diagnostic implications. International Journal of Pediatric Otorhinolaryngology, 27(3), 255-271. Retrieved from https://doi.org/10.1016/0165-5876(93)90231-Q

Franco, D., Casimiro, L., Rodrigues, B., Abreu, R., Gonçalves, R., Passos, R., Valagão, A., Almeida, D., Cardeira, C., Martins, R., Seabra, A. P., & Catela, D. (2017). Spinning as dynamic balance in kindergarten and preschool children: An exploratory study. In L. P. Rodrigues, F. M. Clemente, and R. Lima (Eds.), Estudos em Desenvolvimento Motor da Criança (pp. 29-36). Escola Superior de Desporto e Lazer de Melgaço-Instituto Politécnico de Viana do Castelo.

Gallahue, D. L., & Ozmun, J. C. (1998). Understanding motor development: Infants, children, adolescents, adults. New York, NY: McGraw-Hill Humanities, Social Sciences & World Languages.

Rubin, K. H., Watson, K. S., & Jambor, T. W. (1978). Free-play behaviors in preschool and kindergarten children. Child Development, 49, 534-536.

Share, J. (1971). A study of New Zealand Down’s syndrome children under six years of age (Doctoral thesis, National University of Mexico, 1971).

Share, J., & French, R. (1974). Guidelines of early motor development in Down’s syndrome children for parents and teachers. Special Children, 1, 61-65.

Shumway-Cook, A., & Woollacott, M. H. (1985a). The growth of stability: Postural control from a developmental perspective. Journal of Motor Behavior, 17(2), 131-147.

Shumway-Cook, A., & Woollacott, M. H. (1985b). Dynamics of postural control in the child with Down syndrome. Physical Therapy, 65(9), 1315-1322. Retrieved from https://doi.org/10.1093/ptj/65.9.1315

Ulrich, B. D., & Ulrich, D. A. (1985). The role of balancing ability in performance of fundamental motor skills in 3-, 4-, and 5-year-old children. In J. E. Clark and J. H. Humphrey (Eds.), Motor development: Current selected research (pp. 87-97). Princeton: Princeton Book Company.

Valente, M. (2007). Maturational effects of the vestibular system: A study of rotary chair, computerized dynamic posturography, and vestibular evoked myogenic potentials with children. Journal of the American Academy of Audiology, 18(6), 461-481. Retrieved from https://doi.org/10.3766/jaaa.18.6.2

Wang, W. Y., & Ju, Y. H. (2002). Promoting balance and jumping skills in children with Down syndrome. Perceptual and Motor Skills, 94(2), 443-448. Retrieved from https://doi.org/10.2466/pms.2002.94.2.443

Woollacott, M., Debu, B., & Mowatt, M. (1987). Neuromuscular control of posture in the infant and child: Is vision dominant? Journal of Motor Behavior, 19(2), 167-186. Retrieved from https://doi.org/10.1080/00222895.1987.10735406

Zimmer, R., & Volkamer, M. (1987). MOT 4-6: Motoriktestfürvier-bis sechsjährige Kinder; Manual. Weinheim: Beltz Test.