Review

Anti-proliferative, genotoxic and cytotoxic effects of phytochemicals isolated from Anatolian medicinal plants

Kadriye Nur Kasapoğlu1, Gökçe Altın1,2, Ammad Ahmad Farooqi3, Bahare Salehi4,*, Beraat Özçelik1,5,*, William N. Setzer6,7, Javad Sharifi-Rad6,7

1 Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR-34469, Istanbul, Turkey
2 Molecular Engineering & Science Institute, University of Washington, 3946 W Stevens Way NE, 98105, Seattle, WA, USA
3 Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
4 Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
5 BIOACTIVE Research & Innovation Food Manufac. Indust. Trade Ltd, Katar Street, Teknokent ARI-3, B110, Saryer, TR-34467, Istanbul, Turkey
6 Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA
7 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
8 Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

*Correspondence to: bahar.salehi007@gmail.com; ozcelik@itu.edu.tr; javad.sharifirad@gmail.com

Received April 23, 2020; Accepted May 8, 2020; Published June 25, 2020

Doi: http://dx.doi.org/10.14715/cmb/2020.66.4.19

Copyright: © 2020 by the C.M.B. Association. All rights reserved.

Abstract: The potential of natural products in cancer prevention and treatment has received worldwide interest in recent years from the nutraceutical and pharmaceutical industry point of view. Medicinal plants have been traditionally used as they exhibit a wide range of therapeutical effects due to their phytoconstituents which play an active role against oxidative stress-associated diseases such as cancer. They may block or suppress multistage carcinogenesis mainly through mechanistic regulation of the myriad of deregulated cellular pathways. Bioactive constituents isolated from different plants have been shown to induce reversal of drug resistance, restoration of apoptosis, inhibition of cell proliferation and stimulation of the immune system, etc. These phytochemicals such as terpenoids, flavonoids, phenolic acids, carotenoids, alkaloids, tannins, anthraquinones, and saponins can be present in any of the plant parts like root, stem, leaves, bark, seed, flower, and fruit which produce a definite physiological response in the organism. Turkish flora is a rich reservoir of wide-ranging bioactive chemicals having premium pharmacological importance. This review provides an overview of the anticancer properties of various Turkish medicinal plant species against different type of cancers via anti-proliferative, genotoxic and cytotoxic effects.

Key words: Medicinal plants; Phytochemicals; Cancer prevention and therapy; Antioxidant activity.

Introduction

Cancer is the second leading cause of death worldwide. According to the report of the International Agency for Research on Cancer of the World Health Organization in 2014, the most prevalent cancer was lung cancer in 2012 followed by breast cancer, colon cancer, and prostate cancer (1). Because of rapidly developing resistance against modern clinical drugs and significant off-target effects, botanicals offer a precious reservoir of pharmacologically effective products to inhibit and/or prevent cancer. Eliminating toxicity issues of current drugs, edible phytochemicals are considered to be an inexpensive and accessible approach in chemoprevention. Nearly, 80% of all drugs approved by the FDA during the last three decades for cancer therapy are either natural products per se or are based thereon, or mimicked natural products in one form or another (2).

Many clinical trials on the use of nutritional supplements and modified diets to prevent cancer are ongoing. Medicinal plants are utilized both internally like herbal teas and externally such as poultice, decoction, ointment and other herbal formulations in order to cure a broad spectrum of ailments (3,4). The relevant biological activities are attributed to a vast array of phytochemicals (‘phyto’ is from the Greek word meaning plant)—the bioactive non-nutrient plant compounds. More than 10,000 phytochemicals have been identified to date (5). The most consistent chemo protective effects were reported for higher levels (dietary intake, serum, plasma, or urinary metabolites) of β-carotene and renal cell cancer, flavonoids and lung cancer, isothiocyanates and gastrointestinal cancer, lignans and postmenopausal breast cancer (6).

Carcinogenesis is generally recognized as a multistep process in which distinct molecular and cellular alterations occur (7). There are many difficulties associated with its treatment, the most common of which include drug resistance, toxicity and the low specificity of currently available cytotoxic drugs (8). Phytochemicals exert anticancer effects through modulation of cellu-
lar and molecular events relying on antioxidant and anti-inflammatory properties (5,9). Furthermore, phytochemicals have been shown to restore apoptosis in drug-resistant cancer cells, downregulate oncoproteins, upregulate tumor-suppressor genes, as well as inhibit angiogenesis and metastatic spread (7).

The anticancer effects of medicinal plants have been recognized for centuries. The United States National Cancer Institute reported that about 3,000 plant species have demonstrated reproducible anticancer activity among screened approximately 35,000 species (10). With a rich diversity of plants where more than 12,000 taxa are growing, Turkey is the richest among the Mediterranean, European and neighboring countries (11). Endemic plants are represented as one third of the native taxa (12). The most frequently employed plant families in traditional Turkish ethnic medicine are the Lamiaceae, Rosaceae and Asteraceae families (3). Identification of new sources of phytochemicals is an essential step in improving the translation of these laboratory findings to clinically efficient drugs. As can be seen in Table 1, the dominant families that were subjected in cancer studies are Lamiaceae, Liliaceae, Rosaceae, Asteraceae, Scrophulariaceae, Rubiaceae, Moraceae, Hypericaceae, and Ericaceae. Both endemic and non-endemic Turkish medicinal plants belonging to a variety of plant families and their phytochemicals responsible for anticancer effects on various cell lines and animal models were highlighted in this review.

**Apinaceae**

The family Apiaceae comprises about 170 aromatic plant species occurring from central Asia westward to northern Africa that is well-known in folk medicine for the treatment of various organ disorders (13). The plant family Apiaceae is known to produce a set of unusual fatty acids in the seed oils in which petroselinic acid as the predominant constituent (14). Essential oils from Italian *Eryngium* rich in sesquiterpene hydrocarbons, with germacrene D as the major compound, were found to be highly cytotoxic against tumor cells (15). Subgenus *Eryngium* L. is centered in the Mediterranean type climate and Turkey is an eminent region for the genus (16). Anti-inflammatory and antinociceptive activity of Turkish *Eryngium* species have been reported (17). Among extracts derived from 11 different plant species grown in Turkey, methanolic *Eryngium campestre* extract and aqueous *Asarum europaeum* (Aristolochiaceae) extract obtained from Bolu province indicated by far strongest tumor inhibition rates, 86% and 100%, respectively (18). Triterpene saponins, coumarin derivatives, monoterpenic glycosides and flavonoids comprise the phytochemical composition of *E. campestre* (19).

A famous traditional Chinese Medicine, Radix *Bupleuri*, originating from herbs belong to *Bupleurum* L. is a widely used herbal drug in Asia to treat of a number of diseases including common cold with fever, influenza, hepatitis, malaria and menoxenia for more than 2000 years (20). The anti-proliferative activity of *Bupleurum* species has been linked to the presence of different lignans whereas anti-inflammatory, hepatoprotective and immunomodulatory activities has been attributed to saikosaponins (21). Kars, Akin, & Saraccedil (2012) investigated Turkish endemic *Bupleurum* root extracts against human breast carcinoma cells. *B. turcum* and *B. pauciradiatum* root extracts were more toxic to the MCF-7/Pac cell line than the root extracts of other three species. *B. turcum* root extract had the highest free radical scavenging activity although *B. lycaonicum* root extract has about 1.5-fold more total phenolic content with respect to others. Moreover, higher saikosaponin A, saikosaponin D and isosiquertin contents of the root extracts were found in comparison to podophyllotoxin, catechin and quercetin contents (22).

**Asteraceae**

The genus *Centaurea* belonging to the Asteraceae family comprises nearly about 600 species through the World and mostly distributed in the Mediterranean region and Western Asia (23). Turkish flora is one of the gene centers of *Centaurea* having nearly two hundred species many of which (> 60%) are endemic (24). In Anatolian folk medicine, some *Centaurea* species have been employed as herbal remedies in the treatment of fever, hemorrhoids, diabetes, and peptic ulcer (25,26). Secondary metabolites present in this genus, revealed in previous pharmacological studies, including sesquiterpene lactones (27,28), acetylenic compounds (29), and flavonoids (30).

Different Turkish authors achieved bioactivity-guided isolation of antiproliferative flavonoids from *Centaurea carduiformis* DC (31) and sesquiterpene lactones from *Centaurea solstitialis* L. ssp. *solstitialis* (32). The anticancerogenic properties of *Solstitialia* A and 15-dechloro-15-hydroxychlorojanerin against cervical and kidney has been reported by Erenler et al. (2016), that were exhibited the highest antiproliferative activity in methanolic extract isolated from stem of plant *C. solstitialis* L. ssp. *Solstitialis* (32).

An endemic *Centaurea* species, *C. drabifolia* Sibth. & Sm. ssp. *detonsa* collected from the Central Anatolia region of Turkey, has been reported to contain acylated guaiane sesquiterpenes (33). Antiproliferative activity of an apolar organic extract from aerial parts was shown on two cancer cell lines, namely acute lymphoblastic leukemia and its multidrug-resistant subline likely attributed to aguerin B and cynaropicrin contents (33). Similarly, aerial parts of endemic *Centaurea fenzlii* Reichhardt collected from East Anatolian region indicated significant cytotoxic effects on the MCF-7 breast cancer cell line (34). Hispidulin was reported as the main component (34). In the study of Sen and coworkers (2015), chloroform and methanol extracts of another endemic *Centaurea* species, *C. kilaea* Boiss. showed the highest antitumor activity with IC_{50} of 73.92 and 70.11 μg/mL, respectively against prostate carcinoma in vitro (35).

**Ericaceae**

*Rhododendron luteum* and *Rhododendron ponticum*, which are non-evergreen short trees with green leaves and have flowers of different colors and usually used as a decoration plants, grow naturally in Turkey, especially in eastern Black Sea Region (18,36). Extracts of the *Rhododendron* species are composed of several bioac-
ative compounds (Table 1), but they also contain “grayanotoxins”, a class of terpenoids that exhibit phytoxic effects, and for this reason the usage of this genus in traditional medicine is limited (37). On the other hand, grayanotoxins exhibit cytotoxic effects on cancer cells. Recently, Bilir and co-workers demonstrated the dose-dependent cytotoxic effect of *Rhododendron ponticum* L. floral extract with grayanotoxin-I and -II on brain tumors. Removal of grayanotoxins during extraction process is a convenient option for eliminating the side effects of *Rhododendron* species (38). Antiproliferative activity of *Rhododendron luteum* on colon and liver cancer cells was reported (39). More importantly, it was pointed out that the *Rhododendron luteum* floral extract exhibited selective cytotoxicity against colon and liver cancer cells.

**Fabaceae**

* Astragalus* L. is a member of the Fabaceae family which containing up to 3000 species (40). The aqueous extract of *Astragalus* roots are traditionally used for treatment of nephritis, diabetes, leukemia and wound-healing in both Anatolia and Chinese medicine (41,42). *Astragalus* is the largest genus in Turkey where it is represented by 439 species and 204 of them are endemic (43). One of the endemic species is *Astragalus chrysochlorus* that growing in 32°-36° meridian of southern Anatolia (44). The cytotoxic effects of the ethyl acetate extract of *Astragalus chrysochlorus* roots on cervix cancer cells was reported (45). It was also indicated that there was a significant change especially on antiapoptotic genes due to the presence of the root extract. Re-balancing pro- and anti-apoptotic proteins through upregulation of pro-apoptotic proteins and downregulation of anti-apoptotic proteins is necessary to induce apoptosis in drug-resistant cancer cells. Özbek et al. (2008) studied on the antimutagenic effects of methanol extract of *Astragalus* L. species growing in the eastern Anatolia region of Turkey. They indicated that *Astragalus* extracts can be considered to be protective agents against cancer, as they showed antimutagenic effects (46).

**Hypericaceae**

Members of the *Hypericum* genus have been used as traditional medicinal plant for hundreds of years. The genus contains approximately 400 species that grow widely at temperate region of the world, where 89 *Hypericum* species in present the flora of Turkey which 43 are endemic (47). Ari and co-workers (2017) investigated the anti-proliferation and cytotoxic activities of the crude methanol extracts of *Hypericum olympicum* L. and *H. adenotrichum* on brain and liver cancer cells. Their findings showed that, these extracts have potential anti-growth activity against brain and liver cancer cells in a dose dependent manner, moreover, induce cell death via necrosis (48).

**Lamiaceae**

The Lamiaceae family, also known as Labiatae, are herbs or shrubs often with an aromatic smell (49). They are common in the Mediterranean countries for the fact that some of them produce a high amount of essential oil that enables them to survive the hot summer season. It consists of approximately 236 genera and 6,900 to 7,200 species (50). Many prevalent culinary herbs, such as basil, lavender, marjoram, mint, basil, oregano, perilla, rosemary, sage, skullcap, and thyme are members of this family (51). Besides its great economic importance, this family contributes significantly to the endemic flora of Greece and Turkey (52). In Lamiaceae species, essential oils, hydroxycinnamic acids and flavonoids were found as the major bioactive constituents (53).

Essential oils are the subtle, highly concentrated, aromatic, and volatile liquids. These are extracted from the flowers, seeds, leaves, stems, bark, and roots of plants, usually through steam or hydro-distillation. These natural oils are mixtures of complex and volatile compounds that are synthesized by aromatic plants as secondary metabolites (13). The composition of *Origanum vulgare* essential oil from distinct geographical origins is predominantly described by carvacrol and thymol as the major constituents. Phenolic acids and flavonoids are also present substantially (54). Anticancer effects of various *Oreganum* species from different origins have been well documented in the literature (55–59). Essential oil of *Origanum vulgare* L. ssp. *vire* (Boiss.) Hayek that was collected from Black Sea region of Turkey and carrying anti-proliferative activity was dominated by carophyllene oxide, while sabinein and eucalyptol were the main monoterpenoid volatiles (60). It has been shown that luteolin 7-O-glucuronide and luteolin 7-O-xyloside present in *O. vulgare* L. ssp. *vulgare* have antimutagenic properties (61). On the other hand, the essential oils from Turkish *O. onites* containing linalool as the most abundant component have been reported to possess higher membrane-protective effects than thymol and carvacrol (62).

Another Lamiaceae genus containing thymol and carvacrol is *Thymus* L. is represented by 38 species and 64 taxa, 24 of which are endemic in Turkey and the East Aegean Islands (63). There are several chemotypes of *Thymus vulgaris*. Rosmarinic acid, luteolin, apigenin, eriodictyol, and some methylated flavones were also reported in thyme (64,65). Essential oil of Turkish *Thymus revolutus* Celak, an endemic species, has γ-terpinene and p-cymene as major constituents (66). In the study of Özkan and Erdoğan (2017), the cytotoxic effects of *Thymus revolutus* Celak have been evaluated against lung cancer and epidermoid carcinoma cells. Occurrence of membrane lipid peroxidation and oxidation of DNA, due to elevated levels of malondialdehyde and 8-hydroxy-2′-deoxyguanosine have been indicated (67). In addition, a potent proliferative activity has been reported for hexane and water extracts of *Thymus spatulifolius*, an endemic ethnomedicinal plant from Sivas Province (68).

**Liliaceae**

Species belonging to the Liliaceae have been a focus for phytochemists since they contain structurally complex and biologically fascinating steroidal alkaloids. The Liliaceae family consists of more than 3500 species worldwide (69). *Colchicum* L. (Liliaceae) is represented by 35 species, of which 14 are endemic and known as...
| Family | Plant species | Part(s) used | Important compounds | Mode of action | Type of cancer | References |
|--------|---------------|-------------|---------------------|---------------|---------------|------------|
| Apiaceae | *Bupleurum heldreichii* | Root | Saikosaponin A, Saikosaponin D, isoquercitrin | Antiproliferative activities | Breast Carcinoma | (22) |
| | *Eryngium campestre* | Aerial parts | Various Antioxidative Compounds | Antitumour activity | in vitro | (135) |
| Aristolochiaceae | *Asarum europaeum* | Aerial parts | Tannin | Antitumour activity | in vitro | (135) |
| Asteraceae | *Centaurea drabifolia* subsp. *detonsa* (Bormm.)* | Aerial parts | seven sesquiterpene lactones belonging to the guaiane class (1–7) | Antiproliferative activity | Acute lymphoblastic leukemia | (33) |
| | *Centaurea fendelii* Reichardt* | Aerial parts | Hispidulin | Strong growth-inhibitory effect on breast cancer cells | Breast Carcinoma | (34) |
| | *Echinacea pallida* (Nutt.) Nutt. | Root | Pentadeca-(8E, 13Z)-dien-11-yn-2-one | Antiproliferative activity | Uterus carcinoma, Rat Brain tumor | (31) |
| | *Chrysophthalmum montanum* | Root | Phenolic Acids, mainly: Vanillic Acid, Flavonoids, Fatty Acids mainly: Linoleic Acid | Antiproliferative activities | Cervix Carcinoma | (136) |
| Betulaceae | *Alnus glutinosa* (L.) Gaertn. | Aerial Parts | Phenolic Acids, Flavonoids | Antiproliferative activities | Brain Tumor, Cervix Carcinoma | (32) |
| Cucurbitaceae | *Momordica charantia* | Fruit | Vitamin C, E, Carotenoids, Lycopenes, Flavonoids | Antioxidant and chemoprotective activity: reduce ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-deethylase (MROD) activities in liver microsomes | Liver Carcinoma | (137) |
| Ericaceae | *Rhododendron luteum* | Flower | Flavonoids, Chromones, Terpenoids, Steroids. | Selective cytotoxicity against colon and liver cancer cells | Colon and Liver Carcinoma | (39) |
| | *Rhododendron ponticum* | Flower | Grayanotoxin I and III | Selective cytotoxic and anti-proliferative effects on glioma cells | Brain Tumor | (38) |
| Fabaceae (Leguminosae) | *Astragalus spp.* | Aerial Parts | Antioxidative Compounds | Antimutagenic activity | Protective Effect Against Cancer | (46) |
| Plant Species                  | Part            | Secondary Metabolites                                                                 | Antiproliferative Activities                                                                 | Cancer Cell Lines                                      | Reference |
|-------------------------------|-----------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------|
| *Astragalus chrysochlorus*     | Root            | Saponines, Flavonoids, Phenolic Acids, Flavonoids                                      | Antiproliferative activities: change on especially antiapoptotic genes                       | Cervix Carcinoma                                      | (45)      |
| *Glycyrrhiza glabra,*          | Aerial Parts    | Saponines, Flavonoids                                                              | Antiproliferative activities                                                               | Brain Tumor                                          | (119)     |
|                               |                 |                                        |                                                                                            | Cervix Carcinoma                                      |           |
| Hypericaceae                  | *Hypericum adenotrichum* | Flowers, Phenolic Compounds                                                        | Induced non-apoptotic cell death                                                           | Brain and Liver Carcinoma                             | (48)      |
|                               | *Hypericum Retusum*     | Flowers, Protocatechuic Acid, Catechin, Caffeic Acid, Syringic Acid                | Acetyl and butyrl-cholinesterase inhibitory activity, antioxidant and antigenotoxic effect | Cervix Carcinoma                                      | (138)     |
|                               | *Hypericum olympicum*   | Flowers, Phenolic Compounds                                                        | Induced non-apoptotic cell death                                                           | Brain and Liver Carcinoma                             | (48)      |
| Lamiaceae                     | *Melissa officinalis*  | Aerial Parts, Polyphenols mainly: Rosmarinic Acid, Trimeric Compounds, Luteolin-7-O-Glucoside | Induces apoptosis: decrease the Ki-67 activity in tumoral tissues and induced the activation of caspase-7 | Mammary tumors in vivo                                | (139)     |
|                               | *Origanum rotundifolium* | Aerial Parts, Vitexin, Globoidan A, Caprolactam, Rosmarinic acid, Apigenin, Ferulic acid | Antiproliferative activity                                                                | Cervix Carcinoma Colorectal Adenocarcinoma Brain Tumor Cells | (140)     |
|                               | *Origanum acutidens*    | Aerial Parts, Carvacrol, p-cymene, γ-terpinene, Borneol                             | Antiproliferative activity, Radical scavenging activity                                    | Colorectal adenocarcinoma Cervical adenocarcinoma     | (141)     |
|                               | *Origanum acutidens*    | Herbal Parts, Linalyl Acetate, Borneol (E)-Caryophyllene, Carnosol, Rosmarinic Acid, Hesperetin, Caffeic Acid, Ferulic Acid, Vanillic Acid | Cytotoxic effects, Induce activation of caspase-7                                          | Breast Carcinoma                                      | (142)     |
|                               | *Rosmarinus officinalis* | Leaves, Rosmarinic Acid, Hesperetin, Caffeic Acid, Ferulic Acid, Vanillic Acid      | Selectively inhibits adenosine deaminase activity in cancerous gastric tissue                | Gastric Carcinoma                                    | (133)     |

Anticancer activities of Anatolian medicinal plants.
| Plant Name                      | Part            | Active Compounds                                                                 | Activity                          | Tumor Type                |
|--------------------------------|-----------------|-----------------------------------------------------------------------------------|-----------------------------------|---------------------------|
| **Satureja boissieri**          | Aerial Parts    | *p*-Cymene, *γ*-Terpinene, Thymol, Carvacrol                                      | Cytotoxic effects                 | Cervical Carcinoma (143)  |
| **Scutellaria orientalis**      | Aerial parts    | Apigenin, baicalein, chrysin, luteolin, wogonin                                     | Anti-leukemic activity            | Promyeloic leukaemia (144) |
| **Thymus revolutus Célak**      | Aerial parts    | *γ*-terpinene, *p*-cymene, *n*-Alkanes mainly; Pulegone, Menthol, Menthone        | Antitumor and Prooxidative activity| Lung Carcinoma (67)       |
| **Ziziphora clinopodioides**    | Aerial Parts    |                                                                                  | Cytotoxic effects                 | Colon Carcinoma (145)     |
| **Liliaceae**                   |                 |                                                                                   |                                   |                           |
| Allium sivasicum                | Herbal Parts    | Several Anticancer Compounds                                                     | Antiproliferative activity        | Breast Carcinoma (89)     |
| Allium sativum                  | All Parts       | Several Antioxidative Compounds, Anthraquinones, Bianthraquinones                  | Selectively inhibits adenosine deaminase activity in cancer cells | Urinary Bladder Carcinoma (146) |
| Asphodeline lutea               | Root            | Naphthalenes, Flavonoids, Hydroxycinnamic Acid, Various Antioxidative Compounds    | Antiproliferative activity        | Breast Carcinoma (78)     |
| Colchicum sanguicolle           | Tubers          | Various Antioxidative Compounds                                                   | Antitumor activity                | Cervical Carcinoma (73)   |
| Colchicum sanguicolle K.M. Pers* | Aerial parts    | Various Antioxidative Compounds                                                   | Antiproliferative activity        | Cervical Carcinoma (74)   |
| Urginea maritima (L.) Baker     | bulb and leaves | Various Antioxidative Compounds                                                   | Induces more cytotoxicity than standard chemotherapeutics | Lung Carcinoma (86)       |
| Lythraceae                      | Punica granatum | Fruit Peel, Phenolic Compounds mainly Ellagic Acid                                | Antioxidant and apoptotic activity: reduces cell proliferation and induces apoptosis | Breast Carcinoma (147)     |
| Moraceae                        | Morus nigra     | Phenolic Compounds, Ascorbic Acid, Chlorogenic Acid                               | Induce apoptosis via increase caspase activity and reduce mitochondrial membrane potential | Prostate Carcinoma (107)  |
| Family         | Species                  | Type         | Secondary Metabolites                                    | Effects                                                                 | Tumor Type          | Page |
|---------------|--------------------------|--------------|----------------------------------------------------------|-------------------------------------------------------------------------|---------------------|------|
| Moraceae      | *Morus rubra*            | Fruit        | Phenolics, Flavonoids, Anthocyanins, Carotenoids         | Induce cell cycle arrest at the G1 phase and apoptosis via reduced mitochondrial membrane potential | Colon Carcinoma (108) |
| Pinaceae      | *Pinus nigra ssp. pallasiana var. şeneriana* | Pine needles | α-pinene, β-pinene, myrcene, linalyl acetate, germacrene-D, (E)-caryophyllene, α-humulene and δ-cadinene | Induced apoptosis via reduced mitochondrial membrane potential | Breast Carcinoma (148) |
| Plantaginaceae| *Plantago major*         | Leaves       | Tannins, Glycosides, Phenolic Compounds                  | Cytotoxic effects                                                      | Ehrlich Ascites Tumor (149) |
| Polygonaceae  | *Rheum palmatum*         | All Parts    | Anthraquinones mainly Emodin                           | Inhibits adenosine deaminase activity                                  | Protective Effect Against Gastric and Colon Carcinoma (150) |
| Rosaceae      | *Crataegus monogyna*     | Aerial Parts | Phenolic Acids, Flavonoids                              | Antiproliferative activities                                           | Brain Tumor Cervix Carcinoma (119) |
|               | *Rosa canina*            | Fruits       | Phenolic Acids, Proanthocyanidins, Tannins, Flavonoids, Pentacyclic Triterpenes | Induced cell cycle arrest at the S phase and apoptosis via reduced mitochondrial membrane potential | Colon Carcinoma (116) |
|               | *Prunus laurocerasus*    | Fruits       | Phenolic Acids, Flavonoids, Cyanogenic Glycosides       | Antiproliferative activities: destroy the cellular membrane in tumor cell lines | Cervix, Colorectal Carcinoma Brain Tumor (118) |
|               | *Prunus cerasus*         | Fruit        | Anthocyanins, Melatonin                                 | Antiproliferative activity: induce apoptosis                           | Breast Carcinoma (120) |
| Plant Family | Species | Part | Secondary Metabolites | Activity | Tumor Type | Reference |
|-------------|---------|------|-----------------------|----------|------------|-----------|
| Verbascum spp. | All Parts | Iridoid and neolignan type glycosides, Oleanane triterpenes, Flavonoids, Saponins, Steroids, Alkaloids | Selective cytotoxic effects on cervical and ovarian cancer cells | Cervical and Ovarian Carcinoma | (130) |
| Theaceae | Camellia sinensis | Aerial Parts | Flavonoids | Protection against cancer cells: carcinogenic chemical induced oxidative injury | Protective Effect Against Cancer | (134) |
| Urticaceae | Urtica dioica | Aerial Parts | Flavonoids | Carcinogenic chemical induced oxidative injury | Protective effect in vivo | (134) |
| | Urtica dioica | Leaves | Carnosol, Rosmarinic Acid, Hesperetin, Caffeic Acid, Ferulic Acid, Vanillic Acid | Selectively inhibits adenosine deaminase activity in cancerous gastric tissue | Gastric Carcinoma | (133) |
| Vitaceae | Vitis vinifera | Aerial Parts | Phenolic Acids, Flavonoids | Antiproliferative activities | Brain Tumor Cervix Carcinoma | (119) |
Acicigdem’ in Turkey (70). Tropolone alkaloid components of the distinct species belonging to the genus Colchicum were dissimilar according to the different regions and growth stages (71). Colchicine, the main alkaloid of genus Colchium, is an antitumor agent that is classified as a mitotic inhibitor (72). An effective in-vitro antitumor activity on cervical carcinoma cells has been indicated for Turkish Colchicum sanguicole methanolic extract with IC₅₀ values of 0.01 mg/mL and 0.001 mg/mL at 48 hrs for HeLa and C4-1 cell lines, respectively (73). In addition, an endemic species, Colchicum sanguicole K. M. Perss, revealed significant selective toxicity against the HeLa cell line whereas indicated low cytotoxicity on the Vero cell line (74). The degree of selectivity is defined by its selectivity index (SI = IC₅₀ normal cell/IC₅₀ cancer cell) (75).

Plants of the genus Asphodeline have been traditionally used as medicinal plants in various parts of the world. The genus contains 20 taxa, 12 of which are endemic in Turkey (76). A number of Asphodeline species are used to alleviate warts and heal wounds and to treat earaches and hemorrhoids in Turkish folk medicine. Moreover, species of A. ciliacea, A. damascena, A. globifera, A. lutea and A. taurica are consumed as salad vegetables in different regions (77). In the study of Lazarova and coworkers (2015), methanolic extracts of A. lutea roots from Turkish and Bulgarian origins were assessed for their ability to regulate the growth of the breast cancer cell line MCF-7 and the noncancerous breast epithelial cell line MCF-10A and their anti-proliferative effect were reported. A naphthalene derivative (2-acetyl-1,8-dimethoxy-3-methylnaphthalene) was the major compound in Bulgarian accession while Turkish accession had caffeic acid as the most abundant (78).

Eremurus spectabilis (serish -common name and ciris -local name) belongs to the family Liliaceae and is geographically distributed in the region of South Asia and Central Asia, including Iran, West Pakistan, Afghanistan, Iraq, Palestine, Lebanon, Syria, Caucasus and Turkey (79). Growing in spring and localized in the east of Turkey, Eremurus species used in folk medicine to cure ailments such as hemorrhoids and diabetes, and also used as antihyperensive and antisydursia agents (80). Recently, anticancer activity of Turkish E. spectabilis leaves and roots originating from Bingol Province has been reported against prostate cancer cells. Acetone, ethanol and water extracts activated mitochondrially-triggered apoptosis in PC-3 cells by up-regulation of Bax and caspase-3 and down-regulation of Bcl-2 mRNA (81).

Urginea maritima (L.) Baker (Liliaceae) is a cardiac glycoside-producing native Mediterranean medicinal plant, commonly known as squill (82). In traditional medicine, it has been used for many centuries due to its for powerful digitalis-like cardiac effect (83), and is also used as a diuretic and heart stimulant (84). Bulbs of Urginea indica have been reported with potent in-vivo antitumor activity against growth of an ascites tumor (85). A bioactive bufadienolide that was subsequently shown to be proscillaridin A has been isolated from alcoholic Egyptian U. maritima extracts (82). Turkish Urginea maritima (L.) Baker has been reported to be a strong candidate for drug development against solid tumors. The bulb extract (1 μg/mL) was found more cytotoxic than cisplatin (1 μg/mL), gemcitabine (1 nm/mL), or the leaf extract (1 μg/mL). Hence, the authors claimed that U. maritima extracts induced more cytotoxicity than standard chemotherapeutics in the A549 non-small cell lung cancer cell line (86).

The genus Allium belonging to the family Liliaceae includes approximately 500 species all over the world (87). Allium L. is one of the largest genera in the Turkish flora. The total number known from Turkey is 190 of which 75 taxa are endemic (88). The members of this genus have been reported to possess antitumoral (89), antimicrobial (90), antioxidant (91), antiviral (92), antidiabetic (93) properties. The potential use of Allium species as anti-cancer agents has been reviewed previously (94,95). A well-known plant is garlic (Allium sativum) having a place among oldest cultivated plants in Middle and West Asia (96). A lower prevalence of cancer has been indicated countries where garlic is traditionally consumed in higher amounts (97). It has sulfur-containing phytochemicals such as diallyl disulfide which has been found as highly effective in affording protection against cancer in animal and clinical studies (98,99). The antiproliferative properties Allium sivasicum collected from Sivas region was investigated on breast cancer cell lines, namely MCF-7 (IC₅₀ 21 ± 1,4 μg/mL), MDA-MB-468 (IC₅₀ 22 ± 1,4 μg/mL) and MDA-MB-231 (IC₅₀ 24 ± 1,3 μg/mL). In addition, the aqueous extract of A. sivasicum exhibited mean tumor volume inhibition ratio of 38% in the treated group in comparison with the untreated in female albino Wistar rats (89).

Moraceae

Morus rubra L. and Morus nigra L. are the most extensive Morus species that belongs to the family Moraceae. These species have been cultivated in Europe and Asia since pre-Roman times (100,101). The deep-colored Morus fruits, commonly known as mulberries, are a rich source of phenolic compounds such as flavonoids, anthocyanins and carotenoids (102). Since the Morus species contain various phenolic content in high amounts, the fruits exhibit antimicrobial, antioxidant, anti-diabetic, anti-HIV, anti-inflammatory, hypolipidemic, hepatoprotective, antiobesity, neuroprotective and anticancer activities (102–106). Proapoptotic and antiproliferative properties of Morus nigra dimethyl sulfoxide extract on prostate cancer cells was evaluated. Researchers reported that Morus nigra extract arrested the cell cycle of prostate cancer cells at the G1 phase, therefore inducing apoptosis by increased caspase activity and reduced mitochondrial membrane potential of prostate cancer cells (107). A similar proapoptotic and antiproliferative mechanism was also observed in the effect of Morus rubra extract on colon cancer cells, which is summarized in Table 1 (108). On the other hand, to understand in more detail the exact anticancer mechanism, phytochemical analyses should be carried out in addition to in vivo biological activity experiments (107,108).

Rosaceae

The family Rosaceae is a remarkable taxon with res-
pect to systematic biology (109). It is diversified particularly in the northern hemisphere and comprises more than 100 genera and 3000 species (110). Numerous well-known and beloved species of economic importance. Temperate zone members of the family are well known for edible fruits (111) in addition to some timber crops and medicinals (112). For example, cherry, apricot, almond, peach, apple, pear, plum, hawthorn, strawberry, blackberry, and rosehip belong to Rosaceae (112). When antioxidant activities of infusions prepared form 70 medicinal plants belonging to different taxa were compared, leaves of raspberry, blackberry, and strawberry were among eleven of the most effective plants (113).

*Rosa canina* L. from in Rosaceae has long been used for medicinal purposes. Turkey has one of the most substantial native populations of rose species with about 25% of rose species growing in Turkey (114). Phytochemicals such as phenolic acids, proanthocyanidins, tannins, flavonoids, pentacyclic triterpenes have been reported (115). *R. canina* is traditionally used to treat of colds, asthma, hemorrhoids, infections, chronic pains, arthritis, and inflammatory diseases in both Western and Asian countries (114–116). Being also a good source of vitamin C, it has been reported that only polyphenols contribute to its antiproliferative activity (117). The fruits have recently been suggested as a source of potent novel phytochemical anticancer agents. It was reported that *R. canina* extract reduced mitochondrial membrane potential and the expression of telomerase in human colon cancer cells; it induced apoptosis and cell cycle arrest at the S phase. Moreover, selective cytotoxic effect of the extracts on colon cancer cells was highlighted (116).

Besides the anticancer properties of natural extracts, recent studies showed that, natural extracts can be more effective therapeutic agents against tumors than standard chemotherapeutic candidates (118). It was demonstrated that the methanol extract of *Crataegus monogyna* (Rosaceae) exhibited better antiproliferative activity than standard chemotherapeutics 5-flourouracil and cisplatin on brain tumors and cervical cancer cells (119). Furthermore, the natural extracts can be added to the standard anticancer drugs for increasing their treatment effectiveness and reducing their side effects. Aydin et al. (2016) showed that high concentration of *Prunus laurocerasus* aqueous fruit extract destroyed the cellular membrane of tumor cells. Furthermore, they indicated that when the *P. laurocerasus* aqueous fruit extract did not show effective anticancer properties, it can still be a potential adjuvant therapy to current chemotherapeutic agents. For this reason, adding the *P. laurocerasus* extract to the chemotherapeutic formulation has been suggested. The fatty acid-rich bioactive components of Turkish cherry laurel fruit extracts have been reported to be responsible for the chemoprotective effect against HT29, HeLa, C6 and Vero cell lines (118). Furthermore, aqueous ethanolic extracts prepared from cherry pulp have been evaluated for their anti-cancer activity. The antiproliferative activity of *Prunus cerasus* was shown on breast cancer cells. The extract induced apoptosis and reduced the asymmetric dimethylarginine concentration. Therefore, *P. cerasus* extract may be considered as a novel prophylactic therapeutic agent for breast cancer (120).

**Rubiaceae**

*Galium aparine* L. and *Morinda citrifolia* L. belong to the Rubiaceae family, which are commonly used in folk medicine for the treatment of wounds, fever and hypertension (121,122). The previous studies showed that these plants contain several anticarcinogenic compounds, as they can be a part of cancer treatment strategies (Table 1). *Galium aparine* grows throughout Anatolia and is a typical climbing plant (123). Atmaca and co-workers (2016) identified 14 major phytochemicals and 34 volatile compounds in the ethanol extract of the aerial parts of *G. aparine*. They reported that the extract induced apoptosis of breast cancer cells, while it did not show any negative effects on normal breast epithelial cells. More importantly, they assumed that the *G. aparine* extract may enable the killing of apoptosis resistant breast cancer cells (124). In another study, the anticarcinogenic effect of *Morinda citrifolia* was investigated via *in vivo* experiments. It was found that the fruit of *M. citrifolia* induces apoptosis of breast cancer cells. Therefore, it can be used the treatment of breast cancer either on its own or in combination with doxorubicin, which is a most commonly used chemotherapeutic for breast cancer (121).

**Scrophulariaceae**

The Scrophulariaceae contains more than 220 genera, where *Scrophularia* spp. and *Verbascum* L. spp. commonly grow in Turkey. In the traditional practices, these plants are used for the treatment of scabies, eczema, psoriasis, hemorrhoids, rheumatic pain, superficial fungal infections, wounds and diarrhea. (125,126). The major bioactive compounds in the Scrophulariaceae plants are of sugar esters, iridoid glycosides, oleane type triterpenoids, flavonoids, polysaccharides, sapo-nins, steroids and alkaloids (127,128). Anti-inflammatory and anti-neoplastic effects of *Scrophularia* spp., have been reported. Moreover, it has been shown that the methanol extract of *Scrophularia* spp. induced apoptosis in breast cancer cells as well as exhibited strong anti-proliferative properties (129). *Verbascum* L. is another genus that belongs to Scrophulariaceae family, where the methanol extract of *V. pycnostachyum* has selective cytotoxic effects on cervical and ovarian cancer cells (130).

**Urticaceae**

In traditional medicine, both roots and leaves of *Urtica dioica* are used as an adjuvant remedy in the treatment of several diseases especially for cancer therapy (131). The bioactive compounds of *U. dioica* leaves have been shown to inhibit the genetic transcription factor which activates the tumor necrosis factor-α (TNF-α) (132). The anticancer properties of *U. dioica* have also been demonstrated by the inhibitory activity on adenosine deaminase. The inhibition of adenosine deaminase in cancerous gastric tissues was reported for the aqueous extract (133). In an *in-vivo* study, rats that had been exposed to the chemical carcinogen trichloroacetic
acid (TCA) were fed a beverage of *U. dioica* for 50 days and investigated the protective effects of the beverage. They observed that since the *U. dioica* contains strong antioxidant compounds (Table 1), the oxidative stress, which is induced by TCA, was remarkably reduced in the *U. dioica* fed rats. Thus, they reported that *U. dioica* beverage can be thought as a potential cancer preventive supplement since it has a protective effect against oxidative injury (134).

**Concluding Remarks**

It is exciting to note that Anatolian plants provide a rich source of whole extracts and isolated bioactive phytochemicals of pharmacological importance. However, much of the available data have been derived through preliminary findings. Future studies are needed with in-depth and detailed research with special focus on regulation of deregulated pathways by natural products obtained from Turkish flora in different cancers to realistically evaluate potential of bioactive components.

**References**

1. Gulland A. Global cancer prevalence is growing at “alarming pace,” says WHO. Vol. 348, BMJ (Clinical research ed.). BMJ, 2014; 348.

2. Bishayee A, Sethi G. Bioactive natural products in cancer prevention and therapy: Progress and promise. Semin. Cancer Biol. 2016; 40-41: 1–3.

3. Konczak I, Dalar A, Konczak-Islam KA. Health Attributes , Antioxidant Properties and Phytochemical Composition of Traditional Medicinal Plants from Eastern Anatolia In: Medicinal Plants: Antioxidant Properties, Traditional Uses and Conservation Strategies. Pereira DAM. (ed), Nova Science Publishers, New York, 2014, pp. 183–226.

4. Vijayan N, Swapna TS, Seghal Kiran G, Abdulhameed S. Medicinal plants of India: Implications in modern medicine. In: Bioreources and Bioprocess in Biotechnology. Abdulhameed S., Pradeep N., Sugathan S. (eds), Springer, Singapore, 2017, pp. 421–438.

5. Russo M, Spagnuolo C, Tedesco I, Russo GL. Phytochemicals in Cancer Prevention and Therapy: Truth or Dare? Toxins 2010; 2:517-51.

6. Miller PE, Snyder DC. Phytochemicals and Cancer Risk. Nutr Clin Pract 2012; 27:599–612.

7. Suri YJ. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer. 2003; 3:768–80.

8. de Mesquita ML, de Paula JE, Pessoa C, de Moraes MO, Cals. Nat. Rev. Cancer. 2003; 3:768–80.

9. Kasapoğlu KN, Kocyigit A, Yenigun VB, Balkan E, Demircan N., Sugathan S. (eds), Springer, Singapore, 2017. pp. 421–438.

10. Antioxidant Properties and Phytochemical Composition of Traditional Medicinal Plants of Anatolia: Distribution, 13C NMR spectral data and biological properties. Phytochemistry 2013; 95:19–93.

11. Dural H, Bagci E, Yurtgurlu K, Demirelma H, Flamini G et al. Cytotoxic Essential Oils from Eryngium species. J Ethnopharmacol 2006; 107:32–7.

12. Krohmeier K, Al-Masri A, Bakir S, Al-Attar M, Al-Maftah R, et al. Antioxidant and antimicrobial activity of essential oil from the flower of Rhododendron luteum sweet. Asian J Chem. 2012; 24,1927–30.

13. Sahebkar A, Iranshahi M. Biological activities of essential oils from the genus Ferula (Apiaceae). Asian Biomed 2010; 4:835–47.

14. Bagci E. Fatty acids and tocochromanol patterns of some Turkish Apiaceae (Umbelliferae) plants; a chemotaxonomic approach. Acta Bot Gall. 2007; 154:143–51.

15. Cianflone K, Blomme EE, Quassinti L, Bramucci M, Lupidi G, Dell’Acqua S, et al. Cytotoxic Essential Oils from *Eryngium campestre* and *Eryngium amethystinum* (Apiaceae) Growing in Central Italy. Chem Biodivers 2017; 14: e1700096.

16. Wöhr A. On the Distribution and Relationships of the South-West Asian Species of *Eryngium* L. (Apiaceae-Saniculoideae). Turk J Botany 2004; 28:85–92.

17. Kähler E, Kartal M, Aslan S, Yesilada E. Comparative evaluation of the anti-inflammatory and antinociceptive activity of Turkish *Eryngium* species. J Ethnopharmacol 2006; 107:32–7.

18. Usta A, Yaylı B, Kahrman N, Alpay Karaoğlulu S, Yaylı N. Composition and antimicrobial activity of essential oil from the flower of *Rhododendron luteum* sweet. Asian J Chem. 2012; 24,1927–30.

19. Kartal M, Mitaine-Offer A-C, Abu-Asaker M, Miyamoto T, Calis I, Wagner H, et al. Two New Triterpene Saponins from *Eryngium campestre*. Chem Pharm Bull (Tokyo) 2005; 53:1318–20.

20. Yang Z-Y, Zhao Z, Huo K-K, Xie H, Tian Z-P, Pan S-L. ITS sequence analysis used for molecular identification of the Bupleurum species from northwestern China. Phytomedicine 2007; 14:416–23.

21. Ashour ML, Wink M. Genus *Bupleurum*: a review of its phytochemistry, pharmacology and modes of action. J Pharm Pharmacol 2011; 63:305–21.

22. Kars G, Demirel M, Maksin M, Saracoğlu HT, Gündüz U. Determination of saikosaponin, phenolic and podophyllotoxin contents of five endemic Bupleurum root extracts and their effects on MCF-7 cells. J Med Plants Res 2012; 6:825–32.

23. Mabberley JD. The Plant-Book: A Portable Dictionary of the Vascular Plants. Cambridge University Press; New York, 1997.

24. Davis PH, Mill RR, Tan K. Flora of Turkey and the East Aegean Islands. Edinburgh University Press 1988; pp.177–180.

25. Aktunsek A, Zengin G, Güler GO, Cakmak YS, Duran A. Antioxidant potentials and anticholinesterase activities of methanolic and aqueous extracts of three endemic Centaurea L. species. Food Chem Toxicol 2013; 55:290–6.

26. Honda G, Yesıldelı E, Tabata M, Sezik E, Fujita T, Takeda Y, et al. Traditional medicine in Turkey VI. Folk medicine in West Anatolia: Abyon, Kütahya, Denizli, Muğla, Aydın provinces. J Ethnopharmacol 1996; 53:75–87.

27. Bruno M, Bancheva S, Rosselli S, Maggio A. Sesquiterpenoids in subtribe Centaureinae (Cass.) Dumort (tribe Cardueae, Asteraceae): Distribution, 13C NMR spectral data and biological properties. Phytochemistry 2013; 95:19–93.

28. Dural H, Bagci Y, Ertugrul K, Demirelma H, Flamini G, Cioni PM, et al. Essential oil composition of two endemic Centaurea species from Turkey, *Centaurea mucronifera* and *Centaurea chrysantha*, collected in the same habitat. Biochem Syst Ecol 2003; 31:1417–25.

29. Christensen LP, Lam J, Thomesen T. Polyenes from Centaurea solstitialis L. ssp. solstitialis. Comb Chem High Through Sci 2000; 3:241–430.

30. Kubacey TM, Haggag EG, El-Toumy SA, Ahmed AA, El-Ashmawy JM, Youns MM. Biological activity and flavonoids from *Centaurea scabiosa*. Phytochemistry 1991; 30:3457–8.

31. Sahin Yaglioglu A, Demirtas I, Goren N. Bioactivity-guided Isolation of Antiproliferative Sesquiterpene Lactones from *Eryngium amethystinum* (Apiaceae) Growing in Central Italy. Chem Biodivers 2017; 14: e1700096.

32. Erenler R, Sen O, Sahin Yaglioglu A, Demirtas I. Bioactivity-Guided Isolation of Antiproliferative Sesquiterpene Lactones from *Centaurea solstitialis* L. ssp. solstitialis. Comb Chem High Through-
33. Formisano C, Cirignano C, Rigano D, Chianese G, Zengin G, Seo E-J, et al. Antiproliferative activity against leukemia cells of sesquiterpene lactones from the Turkish endemic plant Centaurea drabfolia subsp. detonsa. Fitoterapia 2017; 120:98–102.

34. Yirtici Ü, Göger F, Sarimahmut M, Ergene A. Cytotoxic and apoptotic effects of endemic Centaurea fenzlilii Reichardt on the MCF-7 breast cancer cell line. Turkish J Biol 2017; 41:370–7.

35. Sen A, Turan Ozbas S, Akbuga J, Bitis L. In vitro Antiproliferative Activity of Endemic Centaurea kilaea Boiss. against Human Tumor Cell Lines. J Marmara Univ Inst Heal Sci 2015; 3:3.

36. Erdemoglu N, Akkol EE, Yesilada E, Calis I. Bioassay-guided isolation of anti-inflammatory and antiinociceptive principles from a folk remedy, Rhododendron ponticum L. leaves. J Ethnopharmacol. 2008; 119:172–8.

37. Zhang WD, Jin HZ, Chen G, Li XF, Yan SK, Zhang L, et al. A new grayanane diterpenoid from Rhododendron decorum. Fitoterapia. 2008; 79:602–4.

38. Bilir EK, Sevin S, Tutun H, Alcigir ME, Yarzan E. Cytotoxic and Anti-proliferative Effects of Rhododendron Ponticum L. Extract on Rat Glioma. Int J Pharm Sci Res 2017; 9:1815–20.

39. Demir S, Turan I, Alyazicicoglu Y. Selective cytotoxic effect of Rhododendron luteum extract on human colon and liver cancer cells. JBUON 2016; 21:883–8.

40. Lock JM, Simpson K. Legumes of West Asia: a check-list. Royal Botanic Gardens, Kew, 1991.

41. Dogan M, Ekim T, Anderson DMW. The production of gum tragacanth from astragalus microcephalus in turkey—A contribution towards a balanced environment. Biol Agric Hortic. 1985; 2:329–34.

42. Karagöz A, Turgut-Kara N, Çakır, Demirgân R, Ari S. Cytopholic activity of crude extracts from astragalus chrysoclorus (leguminosae). Biotechnol Equip. 2007; 21:220–2.

43. Akan H, Aytaç Z. The revision of the section Alopecuroidei of the genus Astragalus (Fabaceae) in Turkey. Turk J Botany. 2014; 38:37–59.

44. Aytaç Z. The revision of the section DasypHYllium Bunge of the genus Astragalus L. of Turkey. Turk J Botany 1997; 21:31–57.

45. Arican GO, Cakir O, Arican E, Kara T, Dogdeviren A, Ari S. Effects of Geven root extract on proliferation of HeLa cells and bel-2 gene expressions. African J Bot 2012; 41:4296–304.

46. Özkab T, Güllüce M, Ağar G, Adığıüz İ, Özkab H, Şahin F, et al. Investigation of the Antimutagenic Effects of Methanol Extract of Astragalus Species Growing in Eastern Anatolia Region of Turkey. Freseniuus Environ. Bull. 2008; 17:2052–8.

47. Crockett SL, Robson NKB. Taxonomy and Chemotaxonomy of the Genus Hypericum. Med Aromat Plant Sci Biotechnol. 2011; 5:13.

48. Ari F, Aztopal N, Erkisa M, Celikler S, Sahin S, Ulukaya E. Nonapoptotic cell death induced by Hypericum species on cancer cells. Eur Res J 2017; 3:1–10.

49. Werker E. Function of essential oil-secreting glandular hairs in aromatic plans of Lamiaceae—a review. Flavour Fragr J. 1993; 8:249–55.

50. Raja RR. Medicinally potential plants of Labiatae (Lamiaceae) family: an overview. Res J Med plant 2012; 6:203–13.

51. Venkateshappa SM, Sreenath KP. Potential Medicinal Plants of Lamiaceae. Am Int J Res Form Appl Nat Sci 2013; 3:82–7.

52. Theodoridis S, Stefanaki A, Tezcan M, Aki C, Kokkini S, Vlachonasios KE. DNA barcoding in native plants of the Labiatae (Lamiaceae) family from Chios Island (Greece) and the adjacent Çeşme-Karaburun Peninsula (Turkey). Mol Ecol Resour 2012; 12:620–33.

53. Vladimir-Knežević S, Blažeković B, Kindl M, Vladić J, Lower-Nedza A, Brantner A. Acetyloxolinesterase Inhibitory, Anti-

54. Teixeira B, Marques A, Ramos C, Serrano C, Matos O, Neng NR, et al. Chemical composition and bioactivity of different ore-gano (Originum vulgarum) extracts and essential oil. J Sci Food Agric 2013; 93:2707–14.

55. Al Dhaheri Y, Attoub S, Arafat K, AbuQamar S, Viallet J, Saleh A, et al. Anti-Metastatic and Anti-Tumor Growth Effects of Origanum majorana on Highly Metastatic Human Breast Cancer Cells: Inhibition of NFkB Signaling and Reduction of Nitric Oxide Production. PLoS One. 2013; 8:e68808.

56. Al-Kalaldeh JZ, Abu-Dahab R, Affifi FU. Volatile oil composition and antiproliferative activity of Laurus nobilis, Origanum syriacum, Origanum vulgarum, and Salvia triloba against human breast adenocarcinoma cells. Nutr Res 2010; 30:271–8.

57. Chaouki W, Leger DY, Eljastimi J, Beneytout-J-L, Hmamouchi M. Antiproliferative effect of extracts from Aristolochia baetica and Origanum compactum on human breast cancer cell line MCF-7. Pharm Biol 2010; 48:269–74.

58. Rao S, Timsina T, Kilingan Nadumane V. Evaluation of the anticancer potentials of Origanum marjorana on fibrosarcoma (HT-1080) cell line Evaluation of the anticancer potentials of Origanum marjorana on fibrosarcoma (HT-1080) cell line. Asian Pacific J Trop Dis 2014; 4:389–94.

59. Romete RH. Chemical compositions, antioxidant, anticancer activities and biological effects of myrtus communis L. and origanum vulgar e essential oils. Asian J Biochem. 2016; 11:104–17.

60. Koldaş S, Demirtas I, Özen T, Demirci MA, Behçet L. Phytochemical screening, anticancer and antioxidant activities of Origanum vulgarum L. ssp. viride (Boiss.) Hayek, a plant of traditional usage. J Sci Food Agric 2015; 95:786–98.

61. Gullice M, Karadayi M, Guvenalp Z, Ozbek H, Arasoglu T, Baris O. Isolation of some active compounds from Origanum vul gare L. ssp. vulgar and determination of their genotoxic potentials. Food Chem. 2012 Jan 15;130(2):248–53.

62. Özkan A, Erdoğan A. A comparative evaluation of antioxidant and anticancer activity of essential oil from Origanum onites (Lamiaceae) and its two major phenolic components. Turkish J Biol 2011; 35:735–42.

63. Sokumen A, Gullice M, Akpulat HA, Daferera D, Tepe B, Polli ssio M, et al. The in vitro antimicrobial and antioxidant activities of the essential oils and methanol extracts of endemic Thymus spathulifoli us. Food Forum 2004; 15:627–34.

64. Thompson JD, Chalchat JC, Michet A, Linhart YB, Ehlers B. Qualitative and quantitative variation in monoterpene co-occurrence and composition in the essential oil of Thymus vulgaris chemotypes. J Chem Ecol. 2003; 29:859–80.

65. Wang M, Li J, Ho GS, Peng X, Ho C-T. Isolation and Identification of Antioxidative Flavonoid Glycosides from Thyme (Thymus Vulgaris L.). J Food Lipids 1998; 5:313–21.

66. Karaman S, Digrak M, Ravid U, Ilcim A. Antibacterial and antifungal activity of the essential oils of Thymus selce L. ssp. vulgare and determination of their genetic potentials. Int J Second Metab 2014; 4:155–66.

67. Özkan A, Erdoğan A. Evaluation of cytotoxic, membrane, and DNA damaging effects of Thymus revolutus Célak oil against different cancer cells. Turkish J Med Sci 2017; 47:702–14.

68. Eruyuruk N, Ataş M, Çevir Ö, Tekin M. Investigating of Phytochemicals, Antioxidant, Antimicrobial and Proliferative Properties of Different Extracts of Thymus spathulifolius Hausskn. and Velen. Int J Second Metab 2017; 4:155–66.

69. Li HJ, Jiang Y, Li P. Chemistry, bioactivity and geographical diversity of steroidal alkaloids from the Liliaceae family. Nat Prod Rep 2006; 23:735–52.

70. Düsen O, Sümülbil H. A morphological investigation of Col-
chicum L. (Liliaceae) species in the Mediterranean region in Turkey. Turk J Botany 2007; 31:373–419.

71. Persson K. The genus Colchicum in Turkey. II. Revision of the large-leaved autumnal species. Edinburgh J Bot 1999; 56:103–42.

72. Pirilä, Sütöhipär, N. Atasever B, Erdem-Kuruca S, Pa-
pouskova B, Šimánek V. Chemical constituents of the different parts of 
Colchicum b haystackorum and their cytotoxic activities on K562 
and HL60 cell lines. Pharm Biol 2010; 48:32–9.

73. Ozcan G, Dagdeviren Ozsoyolmez O, Akman G, Khalilina W, 
Tezel Yetiz B, Karagöz A, et al. Screening for antitumor activity of 
various plant extracts on HeLa and C 4-1 cell lines. JBUON 2016; 21:1552–60.

74. Artun FT, Karagöz A, Ozcan G, Melikoglu G, Anil S, Kultur 
S, et al. In vitro anticancer and cytotoxic activities of some plant 
extracts on HeLa and Vero cell lines. JBUON 2016; 21:720–5.

75. Badisa RB, Darling-Reed SF, Joseph P, Cooperwood JS, 
Latinwo LM, Goodman CB. Selective Cytotoxic Activities of Two 
Novel Synthetic Drugs on Human Breast Carcinoma MCF-7 Cells. 
Anticancer Res. 2009; 29:2993–6.

76. Zengin G. A study on in vitro enzyme inhibitory properties of 
Asphodeline anatolica: New sources of natural inhibitors for public 
health problems. Ind Crops Prod 2016; 83:39–43.

77. Tuzlaci E. Çiğrış plants of Turkey (I). J Res Pharm 1985; 1.

78. Lazarova I, Zengin G, Bender O, Zheleva-Dimitrova D, Uysal 
GS, Živanović A V. A survey on macro- and micro-elements, phe-
nolic compounds, biological activity and use of Morus spp. (Mora-
lius) fresh juice Soil Fertility and Soil Microbiology. Soil water ana-
lyses and their cytotoxic effects on K562 cells. Turk J Botany 2007; 31:373–419.

79. Pourfarzad A, Habibi Najafi MB, Haddad Khodaparast MH, 
Hassanzadeh Khayyat M. Characterization of fructan extracted from 
Eremurus spectabilis tubers: a comparative study on different tech-
nical conditions. J Food Sci Technol. 2015; 52:2657–67.

80. Tosun M, Erciści S, Ozer H, Turan M, Polat T, Ozturk E, et 
Al. Chemical Composition and Antioxidant Activity of Foxtail 
Lily (Eremurus spectabilis). Acta Sci Pol Hortorum Cultus. 2012; 11:145–53.

81. Tuzcu Z, Ali Agca C, Aykutoğlu G, Dervişoğlu G, Tartik M, 
Darendelioglu E, et al. Antioxidant, antimicrobial and anticancer ef-
ficacy of a novel glycoprotein from U. indica is mediated by NF-
Cbeta and Caspase activated DNase in ascites tumor model. Biochimie 
2006; 88:297–307.

82. El-Seedi HR, Burman R, Mansour A, Turki Z, Boulos L, Gull 
K, et al. Antiproliferative and apoptotic effect of Morus nigra extract 
on human prostate cancer cells. Saudi Pharm J 2017; 25:241–8.

83. Krenn L, Jelovina M, Kopp B. New bufadienolides from Urgi 
lea maritima sensu strictu. Fitoterapia 2000; 71:126–9.

84. Kamenetsky R. Vegetative Propagation of Species of Genus 
Allium L. Water Sci Technol 1993; 27:511–7.

85. Deepak A V, Salimath BP. Antiangiogenic and proapoptotic 
activity of a novel glycoprotein from U. indica is mediated by NF-
Cbeta and Caspase activated DNase in ascites tumor model. Biochimie 
2006; 88:297–307.

86. Bozcuk H, Özdoğan M, Aykurt O, Topçuoğlu F, Öztürk H, 
Demir S, Kilinc K, Burnaz NA, Yaman SO, Akbulut K, et al. Antiproliferative and apoptotic effect of Morus nigra extract on 
human prostate cancer cells. Saudi Pharm J 2017; 25:241–8.
108. Demir S, Turan I, Aliyazicioglu Y, Kilinc K, Yaman SO, Aya-zoglu Demir E, et al. Morus Rubra Extract Induces Cell Cycle Arrest and Apoptosis in Human Colon Cancer Cells Through Endoplasmic Reticulum Stress and Telomerase. Nutr Cancer. 2017; 69:74–83.

109. Wissemann V, Ritz CM. Evolutionary patterns and processes in the genus Rosa (Rosaceae) and their implications for host-parasite co-evolution. Plant Syst Evol. 2007; 266:79–89.

110. Judd WS, Campbell CS, Kellogg EA, Stevens PF. Plant Systematics. A Phylogenetic Approach Vol. 48, Systematic Biology. Oxford University Press; 1999, pp. 826–28

111. Janick J. The Origins of Fruits, Fruit Growing, and Fruit Breeding. In: Plant Breeding Reviews. Oxford, UK, John Wiley & Sons, Inc, 2005, pp. 255–321.

112. Hummer KE, Janick J. Rosaceae: Taxonomy, Economic Importance, Genomics. In: Genetics and Genomics of Rosaceae. Springer, New York; 2009, pp. 1–17.

113. Katalinic V, Milos M, Kuliscic T, Jukic M. Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem 2006; 94:550–7.

114. Ercisli S. Chemical composition of fruits in some rose (Rosa spp.) species. Food Chem 2007, 104:1379–84.

115. Cheng BCY, Fu X-Q, Guo H, Li T, Wu Z-Z, Chan K, et al. The genus Rosa and arthritis: Overview on pharmacological perspectives. Pharmacol Res 2016; 114:219–34.

116. Turan I, Demir S, Kilinc K, Yaman SO, Misir S, Kara H, et al. Cytotoxic effect of Rosa canina extract on human colon cancer cells through repression of telomerase expression. J Pharm Anal 2018; 8:394–9.

117. Tumbas VT, Čanadanović-Bruten JM, Četovej-Simin DD, Četković GS, Bilas SM, Gille L. Effect of rosehip (Rosa canina L.) phytochemicals on stable free radicals and human cancer cells. J Sci Food Agric 2012; 92:1273–81.

118. Aydın A, Erenler R, Yılmaz B, Tekin Ş. Antiproliferative effect of Cherry laurel. J Turkish Chem Soc Sect A Chem 2016; 3:217.

119. Sahin Yaglıoğlu A, Eser F, Tekin S, Önal A. Antiproliferative activities of several plant extracts from Turkey on rat brain tumor and human cervix carcinoma cell lines. Front Life Sci. 2016; 9:69–74.

120. Oğur R, İstambułluoglu H, Korkmaz A, Barla A, Tekbas OF, Öztas E. Investigation of anti-cancer effects of cherry in vitro. Pak J Pharm Sci 2014; 27:587–92.

121. Taskin EI, Akgun-Dar K, Kapucu A, Oşanc E, Dogruman H, Oztas E. Investigation of anti-cancer effects of cherry in vitro. Pak J Pharm Sci. 2017; 30:523.

122. Orhan N, Deliorman Orhan D, Aslan M, Şüküroğlu M, Orhan IE. UPLC–TOF–MS analysis of Galium spurium towards its neuroprotective and anticonvulsant activities. J Ethnopharmacol 2012; 141:220–7.

123. Kuşçu Z, Kilic N, Kazaz C, Kaya Y, Demirezer LO. Chemical Constituents of Galium tortumense. Turkish J Chem. 2006; 30:523.

124. Attmaca H, Bozkurt E, Çitman M, Dilek Tepe H. Effects of Galium aparine extract on the cell viability, cell cycle and cell death in breast cancer cell lines. J Ethnopharmacol 2016; 186:305–10.

125. De Santos Galíndez J, Díaz Lanza AM, Matellano LF. Biologically active substances from the genus Scrophularia. Pharm Biol. 2002; 40:45–59.

126. Senatore F, Rigano D, Formisano C, Grassia A, Basile A, Sorbo S. Phytogrowth-inhibitory and antibacterial activity of Verbascum sinuatum. Fitoterapia 2007;78:244–7.

127. Nguyen A-T, Fontaine J, Malonde H, Claeys M, Luhmer M, Duez P. A sugar ester and an iridoid glycoside from Scrophularia ningpoensis. Phytochemistry 2005; 66:1186–91.

128. Turker AU, Camper N. Biological activity of common mullein, a medicinal plant. J Ethnopharmacol 2002; 82:117–25.

129. Giessrigl B, Yazici G, Teichmann M, Kopf S, Ghassemi S, Atanasov AG, et al. Effects of Scrophularia extracts on tumor cell proliferation, death and intravasation through lymphoendothelial cell barriers. Int J Oncol. 2012; 40:2063–74.

130. Küçük S, Özdemir F, İçan G, İncüz S. Determination of Cytoxic and Anticandidal Activities of Three Verbascum L. Species from Turkey: V. cheiranthifolium Boiss. var. asperulum (Boiss.) Murb. Monogr., V. pycnostachyum Boiss. & Heldr. and V. orgyle Boiss. & Heldr. Turkish J Pharm Sci. 2016; 13:318–22.

131. Durak I, Biri H, Devrim E, Sözên S, Avci A. Aqueous extract of Urtica Dioica makes significant inhibition on adenosine deaminase activity in prostate tissue from patients with prostate cancer. Cancer Biol Ther. 2004; 3:855–7.

132. Riehemann K, Behnke B, Schulze-Osthoff K. Plant extracts from stinging nettle (Urtica dioica), an antiarthritic remedy, inhibit the proinflammatory transcription factor NF-κB. FEBS Lett 1999; 442:89–94.

133. Durak ZE, Cubukcu HC, Buber S, Kocaoğlu H, Durak I. Aqueous extracts of Rosmarinus officinalis, Urtica dioica, and soybean exert different effects on adenosine deaminase activity in cancerous and noncancerous human gastric and colon tissues. J Heal Res Rev 2016; 3:27.

134. Celic I, Tuluce Y. Elevation protective role of Camellia sinensis and Urtica dioica infusion against trichloroacetic acid-exposed in rats. Phyt Res 2007; 21:1039–44.

135. Usta C, Yildirim AB, Turker AU. Antibacterial and antitumour activities of some plants grown in Turkey. Biotechnol Biotechnol Equip 2014; 28:306–15.

136. Gecibesler IH, Yaglioglu AS, Gul F, Temirturk M, Demirtas I. Phytochemicals of Chrysophyllum montanum (DC.) Boiss. Roots and Their Antiproliferative Activities Against HeLa and C6 Cell Lines. Proc Natl Acad Sci India Sect B - Biol Sci. 2019; 89:145–54.

137. Semiz A, Sen A. Antioxidant and chemoprotective properties of Momordica charantia L. (bitter melon) fruit extract. African J Biotechnol. 2007; 6:273–7.

138. Keskin C, Aktepe N, Yükselten Y, Sunguroğlu A, Boğa M. In-vitro Antioxidant, Cytotoxic, Cholinesterase Inhibitory Activities and Anti-Genotoxic Effects of Hypericum retusum Aucher Flowers, Fruits and Seeds Methanol Extracts in Human Mononuclear Leukocytes. Iran J Pharm Res. 2017; 16:220.

139. Saraydin SU, Tuncer E, Tepe B, Karadayi S, Özer H, Şen M, et al. Antitumoral effects of melissa officinalis on breast cancer in vitro and in vivo. Asian Pacific J Cancer Prev. 2012; 13:2765–70.

140. Erenler R, Meral B, Sen O, Ermastas M, Aydin A, Eminagaoglu O, et al. Bioassay-guided isolation, identification of compounds from Origanum rotundifolium and investigation of their antiproliferative and antioxidant activities. Pharm Biol 2017; 55:1646–53.

141. Oke Altuntas F, Demirts I. Real-Time Cell Analysis of the Cytotoxicity of Origanum acutidens Essential Oil on HT-29 and HeLa Cell Lines. Turkish J Pharm Sci 2017; 14: 29-34.

142. Tuncer E, Unver-Saraydin S, Tepe B, Karadayi S, Ozer H, Sen M, et al. Antitumor effects of Origanum acutidens extracts on human breast cancer cell. JBUON 2013; 18:77–85.

143. Oke-Altuntas F, Demirtas I, Tufekci AR, Koldas S, Gull F, Belchet L, et al. Inhibitory Effects of the Active Components Isolates from Satureja boissieri Hausskn. Ex Boiss. On Human Cervical Cancer Cell Line. J Food Biochem 2016; 40:499–506.

144. Özmen A, Madfener S, Bauer S, Karsteva S, Vonach C, Giessrigl B, et al. In vitro anti-leukemic activity of the ethno-pharmacological plant Scutellaria orientalis ssp. carica endemic to western Turkey. Phytomedicine 2010; 17:55–62.
145. Yousefbeyk F, Tabaside J, Ostad SN, Salehi Sourmaghi MH, Amin GR. Investigation of chemical composition and cytotoxic activity of aerial parts of Ziziphora clinopodioides Lam. Res J Pharmaco-cogn 2016; 3:47–51.

146. Durak I, Biri H, Ergüder IB, Devrim E, Şenocak Ç, Avci A. Effects of garlic and black grape extracts on the activity of adenosine deaminase from cancerous and noncancerous human urinary bladder tissues. Med Chem Res. 2007; 16:259–65.

147. Dikmen M, Ozturk N, Ozturk Y. The antioxidant potency of punica granatum L. fruit peel reduces cell proliferation and induces apoptosis on breast cancer. J Med Food. 2011; 14:1638–46.

148. Atmaca H, Camli C, Sert S. Ethanol Extract of Pinus nigra ssp. pallasiana var. şeneriana Inhibits Human Breast Cancer Cell Viability through Induction of Apoptosis. Celal Bayar Üniversitesi Fen Bilim Derg 2018; 14:35–40.

149. Ozaslan M, Didem Karagöz I, Kalender ME, Kilic IH, Sari I, Karagöz A. In vivo antitumoral effect of Plantago major L. extract on Balb/C mouse with Ehrlich ascites tumor. Am J Chin Med. 2007; 35:841–51.

150. Durak ZE, Büber S, Devrim E, Kocaoğlu H, Durak I. Aquoeus Extract from Rhubarb Plant Inhibits Adenosine Deaminase Activity in Cancerous and Non Cancerous Human Gastric and Colon Tissues. J Progress Res Chem 2015; 1:9–13.