Recent advances in the application of dynamical supersymmetry to describe atomic nuclei.

J. Jolie, Ch. Bernards, S. Heinze, J.M. Régis, T. Thomas
Institut fuer Kernphysik, Universitaet zu Koeln, Zueplicher Str. 77, D-50937 Cologne, Germany
E-mail: jolie@ikp.uni-koeln.de

Abstract. In recent years we have investigated further the use of supersymmetry in the Au-Pt region. In the extended supersymmetry which takes account of the neutron-proton degree of freedom, the even-even Hg isotopes 196,198Hg could be described as two proton fermions coupled to a neutron boson core. We have performed experiments on 193Au at the 10 MV Tandem accelerator in Cologne using the HORUS and Double ORANGE spectrometers and fast LaBr3(Ce) scintillators to perform $\gamma - \gamma$, $\gamma - e^{-}$ and $e^{-} - e^{-}$ coincidences and on 196Hg at the Yale accelerator using YRAST Ball. Both level schemes could be considerably extended and corrected. This allowed a detailed comparison with the predictions of the U(6/4) supersymmetry for the positive parity states in 193Au and 196Hg.

1. Introduction
In 1980, Iachello introduced dynamical supersymmetries to describe bosonic and fermionic systems [1]. In the following year the U(6/4) supersymmetry was compared to the positive parity-states of Au and Pt isotopes [2, 3], showing for the first time that U(6/4) is able to describe odd gold isotopes. In 1984, Van Isacker et al. [4] introduced the so-called extended supersymmetry by including the proton-neutron degree of freedom and thus were able to describe sets of four neighboring nuclei: even-even 196Pt, odd-neutron 197Pt, odd-proton 197Au, and odd-odd 198Au. Such a supermultiplet is also called magical quartet or magical square. About 15 years later, experimental evidence was found for a new neighboring magical quartet consisting of 194,196Pt and 195,196Au [5, 6, 7].

These magical quartets contain odd Au isotopes on which the experimental knowledge is rather scarce as many were studied in the early 1970’s [8, 9]. It is of interest whether other Au isotopes can be described using Bose-Fermi symmetry and/or supersymmetry and to improve the experimental knowledge on odd Au isotopes. Therefore we started recently a campaign to extend the knowledge on odd Au isotopes. Here, we present results for 193Au [10, 11].

In 1986 the magic square was further extended to include the even-even Hg isotopes. They are described as two proton fermions coupled to $N_{B\nu}$ neutron boson[12]. Only recently these calculations were tested in 198Hg[13] and 196Hg[14].

In the next section the Bose-Fermi symmetry and supersymmetry are shortly reviewed. Section 3 gives an overview of the new results for the 196Hg isotope obtained from a beta decay experiment performed in Yale. Section 4 describes the experiment on 193Au performed at the Cologne Tandem accelerator. Then, a common description of the isotones 193Au and 192Pt in the supersymmetric U(6/4) scheme is investigated.
2. The $U^B(6) \times U^F(4)$ Bose-Fermi symmetry and the $U(6/4)$ supersymmetry

The model used to describe odd proton Au isotopes, is the Interacting Boson Fermion Model 1 (IBFM) [15] in the $U^B(6) \times U^F(4)$ limit [16]. Hereby, a fermion in the $\pi 2d_3$ orbital is coupled to a system of N_B bosons using the $U^B(6) \otimes U^F(4)$ algebra. Isomorphisms in the sub-algebra structure of $U^B(6) \otimes U^F(4)$ can be found between the boson and fermion algebras. Such an isomorphism exists between $U^B(6) \supset SO^B(6)$ and $U^F(4) \supset SU^F(4) \simeq SO^F(6)$ groups. The generators g_k of these subgroups $SO^B(6)$ and $SO^F(6)$ commute and a linear combination of these generators closes under commutation and thus forms a boson-fermion algebra $O^{BF}(6) = Spin(6)$. The group chain of the Hamiltonian with the quantum numbers generated by the groups is:

$$U^B(6) \otimes U^F(4) \supset SO^B(6) \otimes SU^F(4) \supset O^{BF}(6) \supset O^{BF}(5) \supset SU^{BF}(2)$$

with $N_F=1$. The Hamiltonian written in form of a linear combination of Casimir operators, neglecting constant terms that only contribute to the binding energy, is:

$$H = DC_2(SO^B(6)) + AC_2(SO^{BF}(6)) + BC_2(O^{BF}(5)) + CC_2(SU^{BF}(2)).$$

The corresponding energy eigenfunction of the Hamiltonian can be derived from the eigenfunction of the Casimir operators of the subgroups:

$$E = D\sigma(\sigma + 4) + A(\sigma_1(\sigma_1 + 4) + \sigma_2(\sigma_2 + 2) + \sigma_3^2) + B(\tau_1(\tau_1 + 3) + \tau_2(\tau_2 + 1)) + C(J(J + 1)).$$

For this Hamiltonian, it is possible to find an embedding superalgebra to the Bose-Fermi symmetry [1, 16]. The generators of this graded Lie algebra now also consist of mixed boson-fermion creation and annihilation operators. While the Bose-Fermi symmetry preserves the boson and fermion numbers separately, the supersymmetry only preserves the total number of particles $N = N_B + N_F$. The embedding algebra of $U^B(6) \otimes U^F(4)$ is:

$$U(6/4) \supset U^B(6) \otimes U^F(4).$$

In case that a fermion is annihilated and a boson created, the number of fermions is $N_F = 0$ and the problem can be described within the Interacting Boson Model (IBM - 1). The eigenvalues of the IBM in the $O(6)$ limit are given by the formula:

$$E = \overline{A}\sigma(\sigma + 4) + B\tau(\tau + 3) + CJ(J + 1),$$

with $\overline{A} = A + D$. In the opposite case a boson is converted into a fermion and we have a system with two fermions and $N - 2$ bosons. While this situation generally would describe so-called broken pair states a different interpretation follows when considering an neutron-proton version of (4):

$$U(6/4) \supset U^B(6) \otimes U^F(4).$$

and atomic nuclei having two proton holes in the $Z=82$ shell and neutron boson holes below $N=126$. This is exactly the case for the even-even Hg isotopes next to the magic squares [12, 13].
3. Beta-decay study of 196Hg
The beta-decay experiment was performed using the ESTU Tandem Van de Graaff Accelerator of the WNSL of Yale University using a 198HgS target. With a 35 MeV proton beam the (p,3n) reaction produced 196Tl which decays to 196Hg with a half life of 1.5 hours. Gamma-gamma coincidences and angular correlations were measured using the YRAST spectrometer. The main results not found in the in-beam experiment of [14] are the non-existence of a 1,2$^+$ state at 958 and the new determination of the spin 2$^+$ of the 1450 keV state, which before was assigned 0$^+$ [17].

![Figure 1. (Color online) Comparison between experiment and theory for 196Hg. Also given are the values for the quantum numbers. The dashed experimental states were not confirmed by this experiment and the one described in [14].](image)

In Figure 1 a fit of the experimental positive parity states using eq. (2) is shown. The quantum numbers and reduction rules used are given in [13]. The parameter D was artificially set to a high negative value. The other parameters are (all in keV): $A= 78.3$, $B= 81.4$ and $C= 7.9$. The obtained agreement is good and of similar quality as the one in 198Hg [13]. However, the parameters differ from those obtained for a common description of the Pt, Au nuclei.

4. In-beam study of 193Au.
The experiments on 193Au were performed at the Cologne Tandem accelerator by impinging a 14 MeV proton beam onto a 1.3 and 0.2 mm 194Pt target. The (p,2n) reaction was used which at this energy yields an angular momentum transfer of about 3.5 \hbar. The HORUS spectrometer [19], the Orange spectrometers[10] and LaBr3(Ce) scintillators[20] were used. During the experiments HORUS was equipped with 12 high-purity germanium detectors on the edges and the faces of a cube to detect the γ transitions of excited states. The setup of the spectrometer allows the analysis of $\gamma\gamma$ angular correlations. The data were sorted in so-called correlation group matrices, which consist of detector pairs defined by specific angles. The method using the HORUS spectrometer is described in more detail in Refs. [19, 21]. By fitting theoretical angular distributions described in Refs. [23, 22] to the data, spins, multipolarities, multipole mixing
ratios, and eventually parities are obtained. The fit was performed with the computer code CORLEONE [24]. An example of a correlation fit for the 861 keV-258 keV cascade from the 3/2^+ level at 1119 keV in ^{193}Au is shown in Fig. 1. Both, the spin and the mixing ratios, could be clearly determined.

By analyzing the γγ coincidence matrices, numerous new transitions and states in ^{193}Au could be identified. As an example, The spins of all low-lying positive-parity states in ^{193}Au were determined except for a state at 828 keV, where the fits cannot distinguish between spin $\frac{1}{2}$ and $\frac{3}{2}$.

With the ORANGE electron spectrometers and fast LaBr₃(Ce) scintillators γ−γ, γ−e⁻ and e⁻−e⁻ coincidences were performed using the fast timing technique. Using the deconvolution method, the centroid shift technique and the new mirror symmetric centroid difference method [20] several new lifetimes could be measured. Unfortunately, all are of states with negative parity. The results are described in detail in Refs. [10,11] to which we refer the interested reader.

For ^{193}Au it was investigated whether a U(6/4) supersymmetry with ^{192}Pt exists. A common fit of both nuclei yielded $A = -0.0432$, $B = 0.0403$ and $C = 0.0173$ (all in MeV)[11]. It is clear that the fit of ^{193}Au shown in Figure 3 gives only a reasonable description.

5. Summary
We have studied ^{196}Hg after beta decay using the YRAST Ball at Yale university and ^{193}Au using the (p,2n) reaction at the Cologne Tandem accelerator. Using angular correlation and lifetime measurements the experimental knowledge on these nuclei could be considerably extended and corrected. A good fit of ^{196}Hg can be obtained considering coupling two proton fermions to a neutron boson core. A less good but still reasonable description is found using the U(6/4) supersymmetry for ^{193}Au-^{192}Pt.
Figure 3. Fit of 193Au-192Pt using the U(6/4) supersymmetry.

References
[1] F. Iachello, Phys. Rev. Lett. 44, 772 (1980).
[2] J.L. Wood, Phys. Rev. C 24, 1788 (1981).
[3] J. Vervier, Phys. Lett. B 100, 383 (1981).
[4] P. Van Isacker, J. Jolie, K. Heyde, and A. Frank, Phys. Rev. Lett. 54, 653 (1985).
[5] A. Metz, et al., Phys. Rev. Lett. 83, 1542 (1999).
[6] J. Gröger et al., Phys. Rev. C 62, 064304 (2000).
[7] H.-F. Wirth et al., Phys. Rev. C 70, 014610 (2004).
[8] B. Fogelberg, A. Baecklin, V. Berg, and S. G. Malmskog, Nuclear Physics A153, 301 (1970).
[9] Y. Gono, R. M. Lieder, M. Müller-Veggian, A. Neskas, and C. Mayer-Börnicke, Nucl. Phys. A327, 269 (1979).
[10] J.-M. Régis, Th. Materna, G. Pasovici, S. Christen, A. Dewald, C. Fransen, J. Jolie, P. Petkov, K.O. Zell, Rev. Sci. Instr. 81, 113505 (2010).
[11] T. Thomas, C. Bernard, J.-M. Régis, S. Heinze, C. Fransen, J. Jolie, D. Radeck, M. Albers, K.O. Zell, subm. to Phys. Rev. C (2011) to be publ.
[12] J. Jolie PhD-thesis, Rijksuniversiteit Gent (1986).
[13] C. Bernard, S. Heinze, J. Jolie, C. Fransen, A. Linnemann, and D. Radeck, Phys. Rev. C 79 (2009) 054307.
[14] C. Bernard, S. Heinze, J. Jolie, M. Albers, C. Fransen, and D. Radeck, Phys. Rev. C 81 (2010) 024312.
[15] F. Iachello and P. Van Isacker, The Interacting Boson Fermion Model (Cambridge University Press, Cambridge, England, 1991).
[16] A.B. Balantekin, I. Bars and F. Iachello Nucl. Phys. A370, 284 (1981).
[17] Ch. Bernards, PhD thesis, University of Cologne (2011).
[18] F. Pühlhofer, Nucl. Phys. A280, 267 (1977).
[19] A. Linnemann, Ph.D. thesis, University of Cologne, 2005, unpublished.
[20] J.-M. Régis, G. Pasovici, J. Jolie, M. Rudigier, Nucl. Instr. Meth. A 622, 83 (2010).
[21] D. Radeck, M. Albers, C. Bernard, L. Bettermann, A. Blazhev, C. Fransen, S. Heinze, J. Jolie, and D. Mücher, Nucl. Phys. A821, 1 (2009).
[22] K.S. Krane, R.M. Steffen and R.M. Wheeler, At. Nucl. Data tables 11, 351 (1973).
[23] K.S. Krane and R.M. Steffen, Phys. Rev. C 2, 724 (1970).
[24] I. Wiedenhöver, code CORLEONE, University of Cologne, 1995, unpublished.
[25] http://www.nndc.bnl.gov
[26] S. Heinze, Ph.D. thesis, University of Cologne, (2008).