AN EQUIVALENT CHARACTERIZATION OF WEAK BMO MARTINGALE SPACES

BY DEJIAN ZHOU (CHANGSHA), WEIWEI LI (CHANGSHA), AND YONG JIAO* (CHANGSHA)

Abstract. In this paper, we give an equivalent characterization of weak BMO martingale spaces due to Ferenc Weisz (1998).

2010 AMS Mathematics Subject Classification: Primary: 60G42; Secondary: 60G46.

Key words and phrases: Weak BMO space, martingale, John–Nirenberg inequality.

1. INTRODUCTION

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a complete probability space, and $\{\mathcal{F}_n\}_{n \geq 0}$ be an increasing sequence of sub-σ-algebras of \mathcal{F} such that $\mathcal{F} = \sigma\left(\bigcup_{n \geq 0} \mathcal{F}_n\right)$. The expectation operator and the conditional expectation operator relative to \mathcal{F}_n are denoted by E and E_n, respectively. A sequence $f = (f_n)_{n \geq 0}$ of random variables such that f_n is \mathcal{F}_n-measurable is said to be a martingale if $E(|f_n|) < \infty$ and $E_n(f_{n+1}) = f_n$ for every $n \geq 0$.

The study of the space BMO (Bounded Mean Oscillation) began with the establishment of the so-called John–Nirenberg theorem in [11]. Basing mainly on the duality and something else, the space BMO plays a remarkable role both in classical analysis and martingale theory. For example, BMO is a good space in operator actions (see e.g. [14], Chapter 4). And the martingale space $BMO_r(\alpha)$ was first introduced by Herz in [4] as the dual of $H^p_{\alpha} (0 < p \leq 1)$ associated with the dyadic filtration (see Example [13] below). With the help of atomic decomposition, Weisz extended this result in [15] to a general case. Let T be the set of all stopping times with respect to $\{\mathcal{F}_n\}_{n \geq 0}$. The martingale space $BMO_r(\alpha)$ ([16], p. 8; or [15]) for $1 \leq r < \infty$ and $\alpha \geq 0$ is defined as

$$BMO_r(\alpha) = \{f = (f_n)_{n \geq 0} : \|f\|_{BMO_r(\alpha)} < \infty\},$$

* Research supported by NSFC (11471337) and Hunan Province Natural Science Foundation (14JJ1004).
288
D. Zhou et al.

where
\[\|f\|_{BMO_r(\alpha)} = \sup_{\nu \in T} \mathbb{P}(\nu < \infty)^{-1/r - \alpha} \|f - f^\nu\|_r. \]

We present two well-known results (see [16] or [15]). If \(0 < p \leq 1\) and \(\alpha = \frac{1}{p} - 1\), then \(BMO_2(\alpha)\) is the dual space of the Hardy space \(H_p^s\). If the stochastic basis \(\{F_n\}_{n \geq 1}\) is regular, then \(BMO_r(\alpha) = BMO_1(\alpha)\). And recently, Yi et al. proved in [18] that \(BMO_E(\alpha) = BMO_1(\alpha)\), where \(\alpha = 0\) and \(E\) is a rearrangement invariant Banach function space.

In the present paper, we consider a weak BMO martingale space. To characterize the dual of the weak Hardy martingale space \(H_p^s; \infty\), Weisz in [17] first introduced and studied the weak BMO martingale space. Let us recall the definition. We also refer the reader to [12] and [13] for some new results related to weak BMO martingales spaces.

Definition 1.1. Let \(1 \leq r < \infty\), \(\alpha r + 1 > 0\). The space \(wBMO_r(\alpha)\) is defined as the set of all martingales \(f \in L_r\) with the norm
\[\|f\|_{wBMO_r(\alpha)} = \int_0^\infty \frac{t^r_\alpha(x)}{x} dx < \infty, \]
where \(t^r_\alpha(x) = x^{-1/r - \alpha} \sup_{\nu \in T: \mathbb{P}(\nu < \infty) \leq x} \|f - f^\nu\|_r.\)

In the very recent paper [8], the generalized BMO martingale space is introduced as the dual of Hardy–Lorentz martingale space. Strongly motivated by [8], Definition 1.1, we introduce the following new weak BMO martingale space by stopping time sequences.

Definition 1.2. Let \(1 \leq r < \infty\) and \(\alpha \geq 0\). The weak BMO martingale space \(wBMO_r(\alpha)\) is defined by
\[wBMO_r(\alpha) = \{ f \in L_r : \|f\|_{wBMO_r(\alpha)} < \infty \}, \]
where
\[\|f\|_{wBMO_r(\alpha)} = \sup_{\nu \in T: \mathbb{P}(\nu < \infty) \leq 1} \sum_{k \in \mathbb{Z}} 2^k \mathbb{P}(\nu_k < \infty)^{1-1/r} \|f - f^{\nu_k}\|_r \]
and the supremum is taken over all stopping time sequences \(\{\nu_k\}_{k \in \mathbb{Z}}\) such that \(2^k \mathbb{P}(\nu_k < \infty)^{1+\alpha} \in \ell_\infty\).

It is a very natural question: what is the relationship between \(wBMO_r(\alpha)\) and \(wBMO_r(\alpha)\)? The paper fully answers this question. Our main result can be described as follows. We simply put \(wBMO = wBMO(0)\) and \(wBMO = wBMO(0)\).
Weaker BMO martingale spaces

Theorem 1.1. Let $1 \leq r < \infty$ and $\alpha \geq 0$. If the stochastic basis $\{F_n\}_{n \geq 0}$ is regular, then

$$wBMO_r(\alpha) = wBMO_r(\alpha)$$

with equivalent norms. In particular,

$$wBMO_r = wBMO_r$$

with equivalent norms.

In this paper, the set of integers and the set of nonnegative integers are always denoted by \mathbb{Z} and \mathbb{N}, respectively. We use C to denote a positive constant which may vary from line to line. The symbol \subset means the continuous embedding.

2. Preliminaries

Firstly, we give the definition of Lorentz spaces. We denote by $L_{0}(\Omega, \mathcal{F}, \mathbb{P})$, or simply $L_{0}(\Omega)$, the space of all measurable functions on $(\Omega, \mathcal{F}, \mathbb{P})$. For any $f \in L_{0}(\Omega)$, we define the distribution function of f by

$$\lambda_s(f) = \mathbb{P}\{\omega \in \Omega : |f(\omega)| > s\}, \quad s \geq 0.$$

Moreover, denote by $\mu_t(f)$ the decreasing rearrangement of f defined by

$$\mu_t(f) = \inf\{s \geq 0 : \lambda_s(f) \leq t\}, \quad t \geq 0,$$

with the convention that $\inf\emptyset = \infty$.

Definition 2.1. Let $0 < p < \infty$ and $0 < q \leq \infty$. Then, the Lorentz space $L_{p,q}(\Omega)$ consists of measurable functions such that $\|f\|_{p,q} < \infty$, where

$$\|f\|_{p,q} = \left[\int_0^\infty (t^{1/p} \mu_t(f))^q \frac{dt}{t}\right]^{1/q}, \quad 0 < q < \infty,$$

and

$$\|f\|_{p,\infty} = \sup_{0 \leq t < \infty} t^{1/p} \mu_t(f), \quad q = \infty.$$

Remark 2.1. We refer the reader to [2] for the following basic properties.

1. If $p = q$, then $L_{p,q}(\Omega)$ becomes $L_p(\Omega)$.

2. If $0 < p_1 \leq p_2 < \infty$ and $0 < q \leq \infty$, then $\|f\|_{p_1,q} \leq C \|f\|_{p_2,q}$, where C depends on p_1, p_2 and q. This is due to $\mathbb{P}(\Omega) = 1$.

3. If $0 < p < \infty$ and $0 < q_1 \leq q_2 < \infty$, then $\|f\|_{p,q_2} \leq C \|f\|_{p,q_1}$, where C depends on q_1, q_2 and p.

Probability and Mathematical Statistics 38, z. 2, 2018
© for this edition by CNS
Denote by \mathcal{M} the set of all martingales $f = (f_n)_{n \geq 0}$ relative to $\{\mathcal{F}_n\}_{n \geq 0}$ such that $f_0 = 0$. For $f \in \mathcal{M}$, denote its martingale difference by $d_nf = f_n - f_{n-1}$ ($n \geq 0$, with the convention $f_{-1} = 0$). Then the maximal function and the conditional quadratic variation of a martingale f are respectively defined by

$$f_n^* = \sup_{0 \leq i \leq n} |f_i|, \quad f^* = \sup_{n \geq 0} |f_n|, \quad s_n(f) = \left(\sum_{i=1}^n \mathbb{E}_{i-1}|d_i f|^2 \right)^{1/2}, \quad s(f) = \left(\sum_{i=1}^{\infty} \mathbb{E}_{i-1}|d_i f|^2 \right)^{1/2}.$$

Then we define martingale Hardy–Lorentz spaces as follows.

Definition 2.2. Let $0 < p < \infty$ and $0 < q \leq \infty$. Define

$$H_{p,q}^s = \{ f \in \mathcal{M} : \|f\|_{H_{p,q}^s} = \|f^*\|_{p,q} < \infty \},$$

$$H_{p,q}^s = \{ f \in \mathcal{M} : \|f\|_{H_{p,q}^s} = \|s(f)\|_{p,q} < \infty \}.$$

If $p = q$, then the martingale Hardy–Lorentz spaces recover the martingale Hardy spaces H_p^s and H_p^s (see [16]).

Recall that the stochastic basis $\{\mathcal{F}_n\}_{n \geq 0}$ is said to be regular if there exists a positive constant $R > 0$ such that

$$(2.1) \quad f_n \leq R f_{n-1}, \quad \forall n > 0,$$

holds for all nonnegative martingales $f = (f_n)_{n \geq 0}$. Condition (2.1) can be replaced by several other equivalent conditions (see [14], Chapter 7). We refer the reader to [14], p. 265, for examples for regular stochastic basis. Here, we give a special case.

Example 2.1. Let $((0,1], \mathcal{F}, \mu)$ be a probability space such that μ is the Lebesgue measure and subalgebras $\{\mathcal{F}_n\}_{n \geq 0}$ are generated as follows:

$$\mathcal{F}_n = \text{a } \sigma\text{-algebra generated by atoms } \left(\frac{j}{2^n}, \frac{j+1}{2^n} \right], \quad j = 0, \ldots, 2^n - 1.$$

Then $\{\mathcal{F}_n\}_{n \geq 0}$ is regular. And all martingales with respect to such $\{\mathcal{F}_n\}_{n \geq 0}$ are called dyadic martingales.

The method of atomic decompositions plays an important role in martingale theory (see, for example, [3]–[5], [15], [17]). The atomic decompositions of Hardy–Lorentz martingale spaces $H_{p,q}^s$ and martingale inequalities are given in [6] and [8]. We also mention that Hardy–Lorentz spaces with variable exponents were investigated very recently in [9] and [10]. Let us first introduce the concept of an atom (see [16], p. 14).

Definition 2.3. Let $0 < p < \infty$ and $p < r \leq \infty$. A measurable function a is called a $(1,p,r)$-atom (or $(3,p,r)$-atom) if there exists a stopping time $\nu \in T$ such that $a_\nu = \mathbb{E}_\nu(a) = 0$ if $\nu \geq n$, and

$$\|s(a)\|_r \leq \mathbb{P}(\nu < \infty)^{1/r-1/p}.$$
Remark 2.2. Let $0 < p < r \leq \infty$ and $0 < q < r$. If a is a $(1, p, r)$-atom, then $\|a\|_{H_{p, q}^*} \leq C$. Choose p_1, p_2 such that $\frac{1}{p} = \frac{1}{r} + \frac{1}{p_1}, \frac{1}{q} = \frac{1}{r} + \frac{1}{q_1}$. By Hölder's inequality, we have (ν is the stopping time corresponding to the atom a)

$$\|a\|_{H_{p, q}^*} = \|s(\nu)\|_{p, q} \leq C\|s(\nu)\|_{r, r} \|\chi_{\{\nu < \infty\}}\|_{p_1, q_1} \leq CT(\nu < \infty)^{1/r-1/p} \left(\int_0^\infty t^{q_1/p_1-1} \chi_{(0, \infty)}(\nu < \infty) \, dt \right)^{1/q_1} \leq C.$$

Similarly, we have $\|a\|_{H_{p, q}^{**}} \leq C$ for a $(3, p, r)$-atom a. If $p = q$, then $C = 1$.

The following result is from [8]. And the result about the Hardy space $H_{p, q}^*$ follows from the combining of Theorem 3.3 and Lemma 5.1 in [8].

Theorem 2.1. If $f = (f_n)_{n \geq 0} \in H_{p, q}^*$ for $0 < p < \infty$, $0 < q < \infty$, then there exist a sequence $(a^k)_{k \in \mathbb{Z}}$ of $(1, p, \infty)$-atoms and a positive number A satisfying $\mu_k = A \cdot 2^k \mathbb{P}(\nu_k < \infty)^{1/p}$ (where ν_k is the stopping time corresponding to a^k) such that

$$(2.2) \quad f_n = \sum_{k \in \mathbb{Z}} \mu_k a_n^k \text{ a.e., } n \in \mathbb{N},$$

and

$$\|\{\mu_k\}\|_{l_q} \leq C \|f\|_{H_{p, q}^*}.$$

Conversely, if the martingale f has the above decomposition, then $f \in H_{p, q}^*$ and $\|f\|_{H_{p, q}^*} \approx \inf \|\{\mu_k\}\|_{l_q}$, where the infimum is taken over all the above decompositions.

Moreover, if the stochastic basis $\{\mathcal{F}_n\}_{n \geq 0}$ is regular and if we replace $H_{p, q}^*$ by $H_{p, q}^*$, $(1, p, \infty)$-atoms by $H_{p, q}^*$, $(3, p, \infty)$-atoms, then the conclusions above still hold.

Lemma 2.1 ([II], Lemma 1.2). Let $0 < p < \infty$ and let the nonnegative sequence $\{\mu_k\}$ be such that $\{2^k \mu_k\} \in l^q$, $0 < q \leq \infty$. Further, suppose the nonnegative function φ satisfies the following property: there exists $0 < \varepsilon < \min(1, q/p)$ such that, given an arbitrary integer k_0, we have $\varphi \leq \psi_{k_0} + \eta_{k_0}$, where ψ_{k_0} and η_{k_0} satisfy

$$2^{k_0 p} \mathbb{P}(\psi_{k_0} > 2^{k_0})^\varepsilon \leq C \sum_{k=-\infty}^{k_0-1} (2^k \mu_k)^p,$$

$$2^{k_0 p} \mathbb{P}(\eta_{k_0} > 2^{k_0}) \leq C \sum_{k=k_0}^{\infty} (2^k \mu_k)^p.$$

Then $\varphi \in l_{p, q}$ and $\|\varphi\|_{p, q} \leq C \|\{2^k \mu_k\}\|_{l_q}$.
3. A JOHN–NIRENBERG THEOREM

In this section, we prove a John–Nirenberg theorem when the stochastic basis \(\{F_n\}_{n \geq 0} \) is regular. The main idea and method are similar to those of [8]. The following lemma can be found in [5], [16]. In fact, it follows from Theorem 7.14 in [5] and Corollary 5.13 in [16].

Lemma 3.1. Suppose that \(0 < q \leq \infty \) and the stochastic basis \(\{F_n\}_{n \geq 0} \) is regular.

If \(0 < p < \infty \), then \(\mathcal{H}^s_{p,q} \) and \(\mathcal{H}^s_{p,q} \) are equivalent.

If \(1 < p < \infty \), then \(\mathcal{H}^s_{p,q} \), \(\mathcal{H}^s_{p,q} \) and \(L_{p,q} \) are all equivalent.

Remark 3.1. (1) According to [7], Remark 2.2, we can conclude that \(\mathcal{H}^s_{p,\infty} = L_2 \) is dense in \(\mathcal{H}^s_{p,\infty} \).

(2) If the stochastic basis \(\{F_n\}_{n \geq 0} \) is regular, then, by the same argument of Remark 2.2 in [7], \(L_\infty \) is dense in \(\mathcal{H}^s_{p,\infty} \).

Lemma 3.2. Let \(0 < p \leq 1 \). If the stochastic basis \(\{F_n\}_{n \geq 0} \) is regular, then

\[
(\mathcal{H}^s_{p,\infty})^* = wBMO_1(\alpha), \quad \alpha = \frac{1}{p} - 1.
\]

Proof. Let \(g \in wBMO_1(\alpha) \). Define

\[
\phi_g(f) = \mathbb{E}(fg), \quad f \in L_\infty.
\]

Then, by Theorem [2,1], we find that \((\nu_k) \) is the stopping time corresponding to the
atom a_k for every $k \in \mathbb{Z}$)
\[|\phi_g(f)| \leq \sum_{k \in \mathbb{Z}} |\mu_k| E(a_k^*(g - g^{\nu_k})) \leq \sum_{k \in \mathbb{Z}} |\mu_k| ||a_k||\infty ||g - g^{\nu_k}||_1 \]
\[\leq C \sum_{k \in \mathbb{Z}} |\mu_k| ||a_k||\infty ||g - g^{\nu_k}||_1 \]
\[\leq C \sum_{k \in \mathbb{Z}} |\mu_k| \mathbb{P}(\nu_k < \infty)^{-1/p} ||g - g^{\nu_k}||_1 \]
\[= C \cdot A \sum_{k \in \mathbb{Z}} 2^k ||g - g^{\nu_k}||_1. \]

By the definition of $|| \cdot ||_{wBMO_r(x)}$, we obtain
\[|\phi_g(f)| \leq C \cdot A \sup_k 2^k \mathbb{P}(\nu_k < \infty)^{1/p} ||g||_{wBMO_1(x)} \]
\[\leq C ||f||_{H_{p,\infty}} ||g||_{wBMO_1(x)}. \]

Since the stochastic basis $\{\mathcal{F}_n\}_{n \geq 0}$ is regular, L_∞ is dense in $\mathcal{H}_{p,\infty}^*$ (see Remark 3.1(2)). Then ϕ_g can be uniquely extended to be a continuous linear functional on $\mathcal{H}_{p,\infty}^*$.

Conversely, let $\phi \in (\mathcal{H}_{p,\infty}^*)^*$. Since L_2 is dense in $\mathcal{H}_{p,\infty}^*$ (see Remark 3.1(2)), there exists $g \in L_2 \subset L_1$ such that
\[\phi(f) = E(fg), \quad f \in L_\infty. \]

Let $\{\nu_k\}_{k \in \mathbb{Z}}$ be a stopping time sequence satisfying $\{2^k \mathbb{P}(\nu_k < \infty)^{1/p}\}_{k \in \mathbb{Z}} \in l_\infty$ and let
\[h_k = \text{sign}(g - g^{\nu_k}), \quad a_k = \frac{1}{2}(h_k - h_k^{\nu_k}) \mathbb{P}(\nu_k < \infty)^{-1/p}. \]

Then a_k is a $(3, p, \infty)$-atom. Let $f^N = \sum_{k=-N}^N 2^{k+1} \mathbb{P}(\nu_k < \infty)^{1/p} a_k^{\nu_k}$, where N is an arbitrary nonnegative integer. By Theorem 2.4.1, we have $f^N \in H_{p,\infty}^*$ and
\[||f^N||_{H_{p,\infty}} \leq C \sup_k 2^k \mathbb{P}(\nu_k < \infty)^{1/p}. \]

Consequently,
\[\sum_{k=-N}^N 2^k ||g - g^{\nu_k}||_1 = \sum_{k=-N}^N 2^k E(h_k(g - g^{\nu_k})) = \sum_{k=-N}^N 2^k E((h_k - h_k^{\nu_k})g) \]
\[= E(f^N g) = \phi(f^N) \leq ||f^N||_{H_{p,\infty}} ||\phi|| \]
\[\leq C \sup_k 2^k \mathbb{P}(\nu_k < \infty)^{1/p} ||\phi||. \]
Thus we have
\[\sum_{k=-N}^{N} 2^k \| g - g'^k \|_1 \sup_k 2^k \mathbb{P}(\nu_k < \infty)^{1/p} \leq C\|\phi\|. \]
This implies \(\|g\|_{wBMO_{1}(\alpha)} \leq C\|\phi\| \). The proof is complete. \(\blacksquare \)

Lemma 3.3. Let \(0 < p \leq 1, 1 < r < \infty \). If the stochastic basis \(\{ \mathcal{F}_n \}_{n \geq 0} \) is regular, then
\[(\mathcal{H}_{p,\infty})^* = wBMO_r(\alpha), \quad \alpha = \frac{1}{p} - 1. \]

Proof. By Hölder’s inequality, we have \(\|f\|_{wBMO_{1}(\alpha)} \leq \|f\|_{wBMO_r(\alpha)} \) for any \(f \in wBMO_r(\alpha) \). Let \(g \in wBMO_r(\alpha) \subset L_r \). We define
\[\phi_g(f) = \mathbb{E}(fg), \quad \forall f \in L_r. \]

Then, by Lemma 5.2, we have
\[|\phi_g(f)| \leq C\|f\|_{H_{p,\infty}} \|g\|_{wBMO_{1}(\alpha)} \leq C\|f\|_{H_{p,\infty}} \|g\|_{wBMO_r(\alpha)}. \]
It follows from Remark 5.1(2) that \(L_r^r \) is dense in \(\mathcal{H}_{p,\infty}^* \). Thus \(\phi_g \) can be uniquely extended to be a continuous linear functional on \(\mathcal{H}_{p,\infty}^* \).

Conversely, if \(\phi \in (\mathcal{H}_{p,\infty}^*)^* \), by Doob’s maximal inequality, we have \(L_r^r = H_{p,r,r}^r \subset \mathcal{H}_{p,\infty}^* \). Then \((\mathcal{H}_{p,\infty}^*)^* \subset (L_r^r)^* = L_r \). Thus there exists \(g \in L_r \) such that
\[\phi(f) = \phi_g(f) = \mathbb{E}(fg), \quad \forall f \in L_r. \]

Let \(\{ \nu_k \}_{k \in \mathbb{Z}} \) be a stopping time sequence such that \(\{ 2^k \mathbb{P}(\nu_k < \infty)^{1/p} \}_{k \in \mathbb{Z}} \subset l_\infty \) and \(N \) be an arbitrary nonnegative integer. Let
\[h_k = \frac{|g - g'^k|^{r-1}\text{sign}(g - g'^k)}{\|g - g'^k\|_{r}^{r-1}}, \quad f = \sum_{k=-N}^{N} 2^k \mathbb{P}(\nu_k < \infty)^{1/r'}(h_k - h'^k_k). \]

For an arbitrary integer \(k_0 \) which satisfies \(-N \leq k_0 \leq N \) (for \(k_0 \leq -N \), let \(G = 0 \) and \(H = f \); for \(k_0 > N \), let \(H = 0 \) and \(G = f \)), let
\[f = G + H, \]
where
\[G = \sum_{k=-N}^{k_0-1} 2^k \mathbb{P}(\nu_k < \infty)^{1/r'}(h_k - h'^k_k), \]
and
\[H = \sum_{k=k_0}^{N} 2^k \mathbb{P}(\nu_k < \infty)^{1/r'}(h_k - h'^k_k). \]
Thus we obtain
\[\Pr(G^* > 2^{k_0}) \leq \frac{1}{2^{k_0}} \|G^*\|_{r'} \leq C \frac{1}{2^{k_0}} \|G\|_{r'} \]
\[\leq C \frac{1}{2^{k_0}} \left(\sum_{k=-N}^{k_0-1} 2^k \Pr(\nu_k < \infty)^{1/r'} \right). \]

On the other hand, \(\{H^* > 0\} \subset \bigcup_{k=k_0}^{N} \{\nu_k < \infty\} \). Then, for each 0 < \(\varepsilon \) < 1, we have

\[2^{k_0} \varepsilon \Pr(H^* > 2^{k_0}) \leq 2^{k_0} \varepsilon \Pr(H^* > 0) \leq 2^{k_0} \varepsilon \sum_{k=k_0}^{N} \Pr(\nu_k < \infty) \]
\[\leq \sum_{k=k_0}^{N} 2^{k_0} \Pr(\nu_k < \infty) = \sum_{k=k_0}^{N} (2^{k_0} \Pr(\nu_k < \infty)^{1/p})^p \]
\[\leq \sum_{k=k_0}^{\infty} (2^{k_0} \Pr(\nu_k < \infty)^{1/p})^p. \]

By Lemma 2.1, we have \(f^* \in L_{p,\infty} \) and \(\|f^*\|_{p,\infty} \leq C \|\{2^k \Pr(\nu_k < \infty)^{1/p}\}_{k \in \mathbb{Z}}\|_{\infty}. \) Thus, \(f \in H^*_{p,\infty} \) and

\[\|f\|_{H^*_{p,\infty}} \leq C \sup_k 2^k \Pr(\nu_k < \infty)^{1/p}. \]

Consequently,
\[\sum_{k=-N}^{N} 2^k \Pr(\nu_k < \infty)^{1-1/r} \|g - g^{p_k}\|_r = \sum_{k=-N}^{N} 2^k \Pr(\nu_k < \infty)^{1/r'} \mathbb{E}(h_k(g - g^{p_k})) \]
\[= \sum_{k=-N}^{N} 2^k \Pr(\nu_k < \infty)^{1/r'} \mathbb{E}((h_k - h_k^{p_k})g) \]
\[= \mathbb{E}(fg) = \varphi(f) \leq \|f\|_{H^*_{p,\infty}} \|\varphi\| \]
\[\leq C \sup_k 2^k \Pr(\nu_k < \infty)^{1/p}. \]

Thus we obtain
\[\sum_{k=-N}^{N} 2^k \Pr(\nu_k < \infty)^{1-1/r} \|g - g^{p_k}\|_r \]
\[\leq C \|\varphi\|. \]

Taking \(N \to \infty \) and the supremum over all stopping time sequences satisfying \(\{2^k \Pr(\nu_k < \infty)^{1/p}\}_{k \in \mathbb{Z}} \subset \mathcal{L}_\infty \), we get \(\|g\|_{wBMO(\alpha)} \leq C \|\varphi\| \).
Now we formulate the weak version of the John–Nirenberg theorem, which directly follows from Lemmas 3.2 and 3.3.

Theorem 3.1. Let $0 < r < \infty$ and $\frac{1}{r} \leq \frac{1}{\alpha} < \frac{1}{\alpha} + 1 < \infty$. If the stochastic basis $\{F_n\}_{n \geq 0}$ is regular, then

$$wBMO_r(\alpha) = wBMO_1(\alpha)$$

with equivalent norms.

According to Lemma 3.1, Lemma 3.3 holds if we replace $H^s_{p, \infty}$ by $H^s_{p, \infty}$. Without regularity of stochastic basis $\{F_n\}_{n \geq 0}$, we also get a duality result.

Proposition 3.1. Let $0 < p < 1$. Then $(H^s_{p, \infty})^* = wBMO_2(\alpha)$ with $\alpha = 1/p - 1$.

Proof. Note that $H^2_p = L_2$ is dense in $H^s_{p, \infty}$ by Remark 3.1(1). The first part of the proof is similar to that of Lemma 3.2, and the converse part is similar to that of Lemma 3.3 with $r = 2$. We omit the proof. \qed

4. Proof of the Main Theorem

In this section we complete the proof of Theorem 1.1.

Let $\overline{H}^s_{p, \infty}$ be the $H^s_{p, \infty}$ closure of H^s_{∞}. Since $H^s_{\infty} \subset H^s_{2} = L_2$, using Remark 3.1(1), we have $\overline{H}^s_{p, \infty} \subset H^s_{p, \infty}$. Then $(H^s_{p, \infty})^* \subset (\overline{H}^s_{p, \infty})^*$.

Lemma 4.1 ([17], Corollary 6). Let $0 < p < 2$. Then the dual space of $\overline{H}^s_{p, \infty}$ is $wBMO_2(\alpha)$ with $\alpha = 1/p - 1$.

Lemma 4.2 ([17], Corollary 8). Suppose that the stochastic basis $\{F_n\}_{n \geq 0}$ is regular and $1 \leq r < \infty$. If $\alpha r + 1 > 0$ for a fixed α, then

$$wBMO_r(\alpha) = wBMO_2(\alpha)$$

with equivalent norms.

Theorem 4.1. Suppose that $\alpha > 0$. Then

$$wBMO_2(\alpha) = wBMO_2(\alpha)$$

with equivalent norms.

Proof. Let $p = \frac{1}{1 + \alpha}$. Since $(H^s_{p, \infty})^* \subset (\overline{H}^s_{p, \infty})^*$, it follows from Proposition 3.1 and Lemma 4.1 that

$$wBMO_2(\alpha) \subset wBMO_2(\alpha).$$

To obtain

$$wBMO_2(\alpha) \supset wBMO_2(\alpha),$$
we shall show that
\[C \|f\|_{\text{wBMO}_2(\alpha)} \geq \|f\|_{\text{wBMO}_2(\alpha)} \]
for any \(f \in \text{wBMO}_2(\alpha) \). Suppose that \(\{\nu_k\}_{k \in \mathbb{Z}} \) is an arbitrary stopping time sequence such that \(\{2^k \mathbb{P}(\nu_k < \infty)^{1/p}\}_{k \in \mathbb{Z}} \in \ell_{\infty} \). Let
\[B = \sup_k 2^k \mathbb{P}(\nu_k < \infty)^{1/p}. \]

We can claim that
\[\sum_{k=-\infty}^{\infty} t_2^2(B^p 2^{-kp}) \leq C \|f\|_{\text{wBMO}_2(\alpha)}. \]

To this end, let \(C_k = B^p 2^{-kp} \). Then, for any \(x \in (C_{k+1}, C_k) \), we have
\[C_{k+1}^{1/2+\alpha} t_2^2(C_{k+1}) \leq x^{1/2+\alpha} t_2^2(x) \leq C_k^{1/2+\alpha} t_2^2(C_k). \]

We refer to [17], p. 144, for a more general case of the inequalities above. Hence,
\[\int_0^\infty \frac{t_2^2(x)}{x} dx = \sum_{k=-\infty}^{\infty} \int_{C_{k+1}}^{C_k} \frac{t_2^2(x)}{x} dx \geq (1 - 2^{-p}) 2^{-p(1/2+\alpha)} \sum_{k=-\infty}^{\infty} t_2^2(B^p 2^{-kp}). \]

On the other hand, since \(B^p 2^{-kp} \geq \mathbb{P}(\nu_k < \infty) \) for all \(k \), we have
\[\sum_{k=-\infty}^{\infty} t_2^2(B^p 2^{-kp}) \geq \sum_{k=-\infty}^{\infty} \frac{2^k (B^p 2^{-kp})^{1/2}\|f - f^{\nu_k}\|_2}{B} \geq \sum_{k=-\infty}^{\infty} \frac{2^k \mathbb{P}(\nu_k < \infty)^{1/2}\|f - f^{\nu_k}\|_2}{B}. \]

By the definition of \(\text{wBMO}_2(\alpha) \), we complete the proof. ■

Remark 4.1. If one proves the dual space of \(\mathcal{H}_{p,\infty}^s \) is \(\text{wBMO}(\alpha) \), then Theorem 4.1 holds. If one shows \(\mathcal{H}_{p,\infty}^s = \mathcal{H}_{p,\infty}^s \), then Proposition 3.1 implies Theorem 4.1. We leave the proofs to the interested reader.

Now we are ready to prove the main result of the paper.

Proof of Theorem 1.1. It directly follows from Theorems 3.1 and 3.1 and Lemma 4.2. ■

Acknowledgments. The authors would like to thank the anonymous referee for helpful comments and suggestions to improve the paper.
REFERENCES

[1] W. Abu-Shammala and A. Torchinsky, The Hardy–Lorentz spaces $H^{p,q}(\mathbb{R}^n)$, Studia Math. 182 (3) (2007), pp. 283–294.
[2] L. Grafakos, Classical Fourier Analysis, second edition, Springer, New York 2008.
[3] Z. Hao, Y. Jiao, F. Weisz, and D. Zhou, Atomic subspaces of L_1-martingale spaces, Acta Math. Hungar. 150 (2) (2016), pp. 423–440.
[4] C. Herz, H_p-spaces of martingales, $0 < p \leq 1$, Z. Wahrsch. Verw. Gebiete 28 (1973/74), pp. 189–205.
[5] K. Ho, Atomic decompositions, dual spaces and interpolations of martingale Hardy–Lorentz–Karamata spaces, Q. J. Math. 65 (3) (2014), pp. 985–1009.
[6] Y. Jiao, P. Lihua, and L. Peide, Atomic decompositions of Lorentz martingale spaces and applications, J. Funct. Spaces 7 (2) (2009), pp. 153–166.
[7] Y. Jiao, L. Wu, and L. Peng, Weak Orlicz–Hardy martingale spaces, Internat. J. Math. 26 (8) (2015), 1550062.
[8] Y. Jiao, L. Wu, A. Yang, and R. Yi, The predual and John–Nirenberg inequalities on generalized BMO martingale spaces, Trans. Amer. Math. Soc. 369 (1) (2017), pp. 537–553.
[9] Y. Jiao, D. Zhou, F. Weisz, and L. Wu, Variable martingale Hardy spaces and their applications in Fourier analysis, submitted, 2018.
[10] Y. Jiao, Y. Zuo, D. Zhou, and L. Wu, Variable Hardy–Lorentz spaces $H^{p(\cdot),q(\cdot)}(\mathbb{R}^n)$, Math. Nachr. (to appear).
[11] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), pp. 415–426.
[12] K. Liu and D. Zhou, Dual spaces of weak martingale Hardy–Lorentz–Karamata spaces, Acta Math. Hungar. 151 (1) (2017), pp. 50–68.
[13] K. Liu, D. Zhou, and L. Peng, A weak type John–Nirenberg theorem for martingales, Statist. Probab. Lett. 122 (2017), pp. 190–197.
[14] R. L. Long, Martingale Spaces and Inequalities, Peking University Press, Beijing 1993.
[15] F. Weisz, Martingale Hardy spaces for $0 < p \leq 1$, Probab. Theory Related Fields 84 (3) (1990), pp. 361–376.
[16] F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier Analysis, Springer, Berlin 1994.
[17] F. Weisz, Weak martingale Hardy spaces, Probab. Math. Statist. 18 (1) (1998), pp. 133–148.
[18] R. Yi, L. Wu, and Y. Jiao, New John–Nirenberg inequalities for martingales, Statist. Probab. Lett. 86 (2014), pp. 68–73.

Dejian Zhou
School of Mathematics and Statistics
Central South University
Changsha 410075, China
E-mail: zhoudedian@csu.edu.cn

Weiwei Li
School of Mathematics and Statistics
Central South University
Changsha 410075, China
E-mail: liweiweionline@hotmail.com

Yong Jiao
School of Mathematics and Statistics
Central South University
Changsha 410075, China
E-mail: jiaoyong@csu.edu.cn

Received on 8.4.2015;
revised version on 15.3.2017