Case Report

Raynaud’s phenomenon manifesting as progressive abnormal MRI bone marrow signal in the toes

Mason A. Brown, MD*, Douglas Handley, MD, Andrew Simon, MD

Aurora St. Luke’s Medical Center, Department of Radiology, 2900 W. Oklahoma Ave., Milwaukee, WI 53215 USA

Abstract

Objective: The purpose of this report is to discuss the presentation and the progressive magnetic resonance imaging (MRI) findings in a single patient with clinically-diagnosed Raynaud’s phenomenon (RP).

Conclusion: RP can present as non-specific toe pain and manifest as progressive abnormal MRI bone marrow signal in the toes. In addition to patient presentation and clinical assessment, this information could contribute to earlier diagnosis and treatment of RP and other coexisting rheumatologic disorders.

© 2019 The Authors. Published by Elsevier Inc. on behalf of University of Washington.

This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Introduction

Raynaud’s phenomenon (RP) is an episodic and recurrent disorder that involves microvascular vasospasm of digital arteries and subcutaneous arterioles in response to cold temperatures or emotional stress [1]. Clinically, patients often describe acute well-demarcated skin color changes of the fingers and toes in a triphasic pattern of pallor, cyanosis, and rubor. These color changes reflect stages of vasospasm including hypoperfusion, hypoxia, and reperfusion, respectively. Associated sensory symptoms are paresthesia, pain, and burning sensations. While the fingers and toes are most commonly affected, RP may also involve the ears, nose, nipples, and tongue [1-3].

Raynaud’s disease was initially used to describe these abnormal vascular presentations until it was proposed that multiple etiologic factors could be responsible, thus introducing the concept of RP [4]. While results can vary according to sex, climate, and work exposures, most population-based
surveys estimate a RP prevalence of 3%-5% [5–7]. Other associations with RP include connective tissue disease in 2%-6% and rheumatologic disorders in 10%-20% [3,8].

Given that RP is predominantly a clinical diagnosis, there is limited literature discussion of the imaging findings [9]. Additionally, there is no literature that provides follow-up imaging of the progression or resolution of RP involving the pedal distal phalanges. While radiologic modalities such as conventional angiography, magnetic resonance angiography, Doppler imaging, infrared thermography, and digital blood flow scintigraphy have supported the diagnosis, phalangeal bone marrow edema on magnetic resonance imaging (MRI) has also been observed in a small subset of patients [9–15]. As most cases lack radiologic correlation to the clinical diagnosis of RP, the purpose of this case report is to describe the progressive abnormal pedal distal phalanges MRI findings in a patient with known RP.

Case report

A 43-year-old Caucasian female with a significant past medical history of RP predominantly affecting the hands presented to an orthopedic surgery foot and ankle specialty clinic for chronic right great toe pain for 3 years after being stepped on. She had also been experiencing medial plantar pain with ambulation and constant generalized toe and medial forefoot pain at rest. Her symptoms were somewhat relieved by
physical therapy and acupuncture, but cortisone treatments provided no improvement. The patient refused neuropathic pain medication options. Physical examination of the right foot was significant for mild hallux valgus and tenderness to palpation of the medial first proximal phalanx.

Initial imaging demonstrated negative standing right foot x-rays and hyperintense short-T1 inversion recovery (Fig. 1a) and hypointense T1 (Fig. 2a) signal abnormalities within the distal first, third, and fourth phalanges on a noncontrast right foot MRI. Follow-up noncontrast right foot MRI 2.5 years later was significant for progressive diffuse signal abnormalities of the first through fifth distal phalanges (Figs. 1b and 2b). There was also a 4 mm ganglion cyst noted medial to the right first metatarsophalangeal joint.

At the next follow-up clinic appointment, imaging findings were formally discussed. The patient specifically expressed continued localized pain greatest at the right great toe, and goals were established to continue conservative management through an exercise program. If the pain persisted, the patient was recommended to schedule a diagnostic injection of the right plantar medial hallucal nerve branch.

Discussion
RP is a highly-localized condition that affects arterial inflow to specific distal regions of skin. These sites are distinct from
other skin areas in that they contain high-density arteriovenous anastomoses which function as thermoregulatory structures. Cold temperatures can induce a sympathetic response that causes reflex cutaneous vasoconstriction, and this response can be amplified in people with RP [16]. While this pathogenesis is not completely understood, authors have proposed causes associated with overproduction of endothelin-1, enhanced platelet aggregation, a calcitonin gene-related peptide deficiency, altered blood viscosity, and augmented response alpha-2 sympathetic receptors [17].

Smitaman et al. described identical MRI findings where an observational cohort of 6 patients with RP demonstrated pedal phalangeal bone marrow edema [9]. Signal abnormalities in their study were most evident in the first through fourth toes and displayed a progressive distal-to-proximal distribution between patients. In our case, initial imaging demonstrated short-T1 inversion recovery hyperintense/T1 hypointense signal abnormalities predominantly within the distal first, third, and fourth pedal phalanges. Follow-up noncontrast right foot MRI 2.5 years later demonstrated progressive abnormal MRI bone marrow signal in the toes. In addition to the observational cohort study findings, the distribution pattern on follow-up imaging suggests a chronic progression pattern and supports the theory that terminal perfusion zones regulated by arteriovenous anastomoses may be more prone to vasospasm [18].

It is not conclusive whether these alterations in signal intensity are potentially reversible. These MRI findings also do not establish a disease severity. Distal phalangeal bone marrow edema-like changes can be nonspecific and are also demonstrated in a wide variety of diseases including fractures, crush injuries, insect stings or bites, osteomyelitis, serous bone marrow transformation pathologies, and seronegative spondyloarthropathies [19–26]. Other limitations of this case include presentation confirmation in correlation to known disease and lack of histopathologic correlation. The patient had a known history of RP predominantly affecting the hands but was presenting for medial plantar pain with ambulation and constant generalized toe and medial foot pain at rest. Pain was most pronounced at the right great toe following trauma, which corresponded to a 4 mm ganglion cyst medial to the right first metatarsophalangeal joint. Additionally, this likely represents an incidental presentation of RP as the etiology for the patient’s bone marrow edema demonstrates a suspected chronic progression pattern.

Our report provides the first follow-up imaging case of progressive RP manifesting as abnormal MRI bone marrow signal in the toes. In addition to history of presentation and clinical assessment, this information could contribute to earlier diagnosis and treatment of RP and associated rheumatologic disorders. Future case reports and studies could collectively provide greater insight into condition progression or resolution in the acute and chronic stages.

REFERENCES

[1] Block JA, Sequeira W. Raynaud’s phenomenon. Lancet (London, England) 2001;357(9273):2042–8.
[2] Bowling JC, Dowd PM. Raynaud’s disease. Lancet (London, England) 2003;361(9374):2078–80.
[3] Maveraakis E, Patel F, Kronenberg DG, Chung L, Fiorentino D, Alloare Y, et al. International consensus criteria for the diagnosis of Raynaud’s phenomenon. J Autoimmun 2014;48:49–60.
[4] Reggi M, Boccalon H. [Computerized records in vascular pathology. IV. Computer-assisted management in Raynaud’s phenomenon]. J Mal Vasc 1986;11(2):137–9.
[5] Garner K, Kumar R, Lanyon P, Doherty M, Zhang W. Prevalence, risk factors and associations of primary Raynaud’s phenomenon: systematic review and meta-analysis of observational studies. BMJ Open 2015;5(3):e006389.
[6] Plissonneau Duquene P, Pistorius MA, Pottier P, Aymard B, Planchon B. Cold climate could be an etiologic factor involved in Raynaud’s phenomenon physiopathology. Epidemiological investigation from 954 consultations in general practice. Int Angiol 2015;34(5):467–74.
[7] Roqueleure Y, Ha C, Le Manach’ AP, Bodin J, Bodere A, Bosseau C, et al. Risk factors for Raynaud’s phenomenon in the workforce. Arthritis Care Res 2012;64(6):898–904.
[8] Landry GJ, Edwards JM, McLafferty RB, Taylor LM Jr, Porter JM. Long-term outcome of Raynaud’s syndrome in a prospectively analyzed patient cohort. J Vasc Surg 1996;23(1):76–85 discussion-6.
[9] Smitaman E, Pereira BP, Huang BK, Zakhary MM, Fliszar E, Resnick DL. Abnormal bone marrow signal intensity in the phalanges of the foot as a manifestation of raynaud phenomenon: a report of six patients. AJR Am J Roentgenol 2016;207(6):1252–6.
[10] Chikui T, Izumi M, Eguchi K, Kawabe Y, Nakamura T. Doppler spectral waveform analysis of arteries of the hand in patients with Raynaud’s phenomenon as compared with healthy subjects. AJR Am J Roentgenol 1999;172(6):1605–9.
[11] Clark S, Campbell F, Moore T, Jayson MI, King TA, Herrick AL. Laser doppler imaging—a new technique for quantifying microcirculatory flow in patients with primary Raynaud’s phenomenon and systemic sclerosis. Microvasc Res 1999;57(3):284–91.
[12] Connell DA, Koulouri G, Thorn DA, Potter HG. Contrast-enhanced MR angiography of the hand. Radiographics 2002;22(3):983–99.
[13] Kim YH, Ng SW, See HS, Chang Ahn H. Classification of Raynaud’s disease based on angiographic features. J Plast Reconstr Aesthet Surg 2011;64(11):1503–11.
[14] Kwon SR, Lim MJ, Park SG, Hyun IY, Park W. Diagnosis of Raynaud’s phenomenon by (99m)Tc-hydroxyethylene diphosphonate digital blood flow scintigraphy after one-hand chilling. J Rheumatol 2009;36(8):1663–70.
[15] Lim MJ, Kwon SR, Jung HK, Joo K, Park SG, Park W. Digital thermography of the fingers and toes in Raynaud’s phenomenon. J Korean Med Sci 2014;29(4):502–6.
[16] Flavahan NA. A vascular mechanistic approach to understanding Raynaud phenomenon. Nat Rev Rheumatol 2015;11(3):146–58.
[17] Butendieck RR, Murray PM. Raynaud disease. J Hand Surg 2014;39(1):121–4.
[18] Heslop J, Coggon D, Acheson ED. The prevalence of intermittent digital ischaemia (Raynaud’s phenomenon) in a general practice. J R Coll Gen Pract 1983;33(247):85–9.
[19] Dalbeth N, Pui K, Lobo M, Doyle A, Jones PB, Taylor WJ, et al. Nail disease in psoriatic arthritis: distal phalangeal bone edema detected by magnetic resonance imaging predicts development of onycholysis and hyperkeratosis. J Rheumatol 2012;39(4):841–3.
[20] Fontaine C, Staumont-Salle D, Hatron PY, Cotten A, Couturier C. The hand in systemic diseases other than rheumatoid arthritis. Chirurgie Main 2014;33(3):155–73.
[21] Lo SL, Zoga AC, Elias I, Peterson JR, Chao W, Green J, et al. Stress fracture of the distal phalanx of the great toe in a professional ballet dancer: a case report. Am J Sports Med 2007;35(9):1564–6.

[22] Patel DB, Emmanuel NB, Stevanovic MV, Matcuk GR Jr, Gottsegen CJ, Forrester DM, et al. Hand infections: anatomy, types and spread of infection, imaging findings, and treatment options. Radiographics 2014;34(7):1968–86.

[23] Young PM, Bancroft LW, Peterson JJ, Roberts CC, Liu PT, Zaleski CG. Imaging spectrum of bites, stings, and their complications: pictorial review. AJR Am J Roentgenol 2009;193(3 Suppl):S31–41 Quiz S2-5.

[24] Boutin RD, White LM, Laor T, Spitz DJ, Lopez-Ben RR, Stevens KJ, et al. MRI findings of serous atrophy of bone marrow and associated complications. Eur Radiol 2015;25(9):2771–8.

[25] Hwang S, Lefkowitz R, Landa J, Akin O, Schwartz LH, Cassie C, et al. Local changes in bone marrow at MRI after treatment of extremity soft tissue sarcoma. Skeletal Radiol 2009;38(1):11–19.

[26] Vande Berg BC, Malghem J, Lecouvet FE, Lambert M, Maldague BE. Distribution of serouslike bone marrow changes in the lower limbs of patients with anorexia nervosa: predominant involvement of the distal extremities. AJR Am J Roentgenol 1996;166(3):621–5.