Effect of cation substitution on bridgmanite elasticity: A key to interpret seismic anomalies in the lower mantle

Hiroshi Fukui1,2, Akira Yoneda3, Akihiko Nakatsuka4, Noriyoshi Tsujino3, Seiji Kamada5,6, Eiji Ohtani5,7, Anton Shatskiy7, Naohisa Hirao8, Satoshi Tsutsui8, Hiroshi Uchiyama2,8 & Alfred Q. R. Baron2,8

Seismological observations show that, in some regions of the lower mantle, an increase in bulk sound velocity, interestingly, occurs in the same volume where there is a decrease in shear velocity. We show that this anti-correlated behavior occurs on cation substitution in bridgmanite by making single crystal elasticity measurements of MgSiO3 and (Mg,Fe,Al)(Si,Al)O3 using inelastic x-ray scattering in the ambient conditions. Cation substitution of ferrous iron and aluminum may explain large low shear velocity provinces in the lower mantle.

Bridgmanite, or, Pbnm-type magnesium-silicate perovskite, is the dominant mineral in the Earth’s lower mantle. Materials with perovskite or related structures also attract broad attention since they can display novel physical properties such as colossal magnetoresistance1, multiferroicity2, and high-temperature superconductivity3. At pressures over 125 GPa (corresponding to depths more than ~2700 km) and at temperature greater than 2500 K, bridgmanite transforms to a post-perovskite (pPv) phase4 with the Cmcm-type CaIrO3 structure. It is widely believed that pPv is the main component of the D″ layer at the bottom of the lower mantle, which is 200 km thick just above the core mantle boundary (~2900 km depth).

In the deep mantle, between 2000 and 2891 km in depth, some regions show an increase in bulk sound velocity ($V_B = \sqrt{K/G\rho}$), and a decrease in shear wave velocity ($V_S = \sqrt{G/\rho}$): $\Delta V_B > 0 > \Delta V_S$, and others show a decrease in $V_B$ and an increase in $V_S$: $\Delta V_B < 0 < \Delta V_S$ ($K$, G, and $\rho$ are adiabatic bulk modulus, shear modulus, and density, respectively). This feature is called an anti-correlated seismic velocity anomaly. It is reported that the phase transformation of (Mg,Fe,Al)(Si,Al)O3 from Pbnm-type to Cmcm-type can explain the increase in $V_S$ and decrease in $V_B$ from the average ($\Delta V_B < 0 < \Delta V_S$) in some deeper regions5. However, this cannot explain the anomaly in the shallower part of the mantle where the pPv phase is not stable. More importantly, it is difficult to interpret the anti-correlated nature of the anomaly where $\Delta V_B$ and $\Delta V_S$ have opposite signs. The regions showing this anomaly, which are beneath Africa and the central Pacific, attract attention as large low shear velocity provinces (LLSVPs).

The origin of the LLSVPs is under debate. Thermal heterogeneity has been considered8, but exclusively thermal effects are insufficient to explain the LLSVPs because usually both $V_B$ and $V_S$ decrease with temperature. It is thus suggested that the LLSVPs have very different chemical composition from that of the average mantle9 due to accumulations of subducted oceanic slabs10, remnants of Earth’s early magma ocean11, or even chemical reactions

1Center for Novel Material Science under Multi-Extreme Conditions, Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Hyogo 678-1297, Japan. 2Materials Dynamics Laboratory, RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 689-5148, Japan. 3Institute for Planetary Materials, Okayama University, 827 Yamada, Misasa, Tottori 682-0193, Japan. 4Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan. 5Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba, Sendai, Miyagi 980-8578, Japan. 6Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki, Aoba, Sendai, Miyagi 980-8578, Japan. 7V. S. Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia. 8Research and Utilization Division, Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 689-5198, Japan. Correspondence and requests for materials should be addressed to H.F. (email: fukuih@sci.u-hyogo.ac.jp)
with the core\textsuperscript{12}. Recently primordial metallic melt trapped in the mantle was suggested as the nature of LLSVPs\textsuperscript{13}. A complicated model\textsuperscript{2}, including multiple chemical and thermal effects, can reproduce the distribution of the LLSVPs. But this model requires rather a specific distribution of effects that are not internally well correlated. House\textsuperscript{14} suggested that slow $V_s$ might be correlated with temperature and chemical anomaly using the parameter set for bridgmanite\textsuperscript{15}, as was used in ref. 6, but did not discuss the anti-correlated anomaly between $V_s$ and $V_p$. The theoretical result\textsuperscript{16} used in both seismological studies\textsuperscript{6,14} shows anti-correlation only in elastic moduli but not in velocities, and, more importantly, has not yet been experimentally verified.

In order to address these issues, we investigated the elastic properties of single-crystal bridgmanite at ambient conditions. Although Brillouin light scattering (BLS) is frequently used to determine elastic properties of high-pressure minerals, the elasticity of iron-bearing bridgmanite has not been determined by BLS due to its opacity, and its instability against strong optical laser irradiation. We used inelastic x-ray scattering (IXS) technique in this study. We prepared two types of bridgmanite: MgSiO$_3$ (Mg-Bdg, hereafter) and Mg$_{0.943}$Fe$_{0.045}$Al$_{0.023}$Si$_{0.988}$O$_3$ ((Fe,Al)-Bdg hereafter). Iron in (Fe,Al)-Bdg was confirmed by synchrotron Mössbauer spectroscopy to be in high-spin ferrous state and to occupy a large A site of perovskite structure. The sample characterization and more detail of the IXS measurements are given in the Methods section. Elastic stiffness tensors ($C_{ij}$) for Mg-Bdg and for (Fe,Al)-Bdg was obtained from analysis of IXS spectra based on Christoffel’s equation\textsuperscript{18}. A typical set of IXS spectra is shown in Fig. 1. The elastic moduli obtained are listed in Table 1 together with literature values\textsuperscript{15,17–23}. The velocity surface plots of Mg-Bdg from the present $C_{ij}$ determined from two sets of IXS measurements are similar to each other: the longitudinal velocity is the fastest along about $b$ axis and minimum along $c$ axis, etc. The absolute values determined using IXS are generally smaller than those from BLS.

The pattern of the velocity surface of (Fe,Al)-Bdg is basically similar to that of Mg-Bdg (red and blue lines in Fig. 2). The present cation substitution affected the velocity surface as follows: 1. $V_p$ along the $b$ and $c$ axes is increased; 2. the average $V_s$ along the $b$ axis is decreased; 3. the difference of $V_s$ along the $a$ and $c$ axes is increased and decreased, respectively. Crystallographic studies\textsuperscript{24} report that iron substitution enlarges the $a$ axis more than other axes, which is consistent with the present result (see Method section). The large elongation of the $a$ axis probably results in the least change in $V_p$ along $a$ axis. Thus qualitatively the velocity surfaces indicate that elastic anisotropy in bridgmanite increases with the present cation substitution. More quantitatively, the acoustic anisotropy defined by $2 \times (V_{\text{max}} - V_{\text{min}})/(V_{\text{max}} + V_{\text{min}})$ increases from 8.81% to 8.92% for longitudinal waves, and from

![Figure 1](https://www.nature.com/scientificreports/)
Table 1. Elastic moduli and density of bridgmanite at ambient conditions. The units are GPa, km/s, and g/cm³ for elastic moduli, velocities and density, respectively. *Present study (Mg-Bdg). †Present study ((Fe,Al)-Bdg). ‡MgSiO₃. §Mg₈₀.₇₅Fe₀.₂₅SiO₃. ¶Mg₈₀.₉₅Fe₀.₀₅SiO₃.

| Method | C₁₁ (GPa) | C₁₂ (GPa) | C₁₃ (GPa) | C₄₄ (GPa) | C₅₅ (GPa) | C₆₆ (GPa) | Kᵣ (GPa) | G (GPa) | Vₚ (km/s) | Vₛ (km/s) | ρ (g/cm³) |
|--------|-----------|-----------|-----------|-----------|-----------|-----------|----------|---------|-----------|-----------|-----------|
| IXS⁴  | 450 (7)   | 498 (9)   | 420 (8)   | 190 (6)   | 168 (5)   | 148 (4)   | 117 (8)  | 125 (8) | 137 (9)   | 236 (4)   | 166 (2)   | 7.58 (6)  | 6.37 (4) | 4.103 |
| IXS⁵  | 448 (6)   | 519 (5)   | 435 (8)   | 178 (3)   | 180 (4)   | 124 (5)   | 113 (8)  | 160 (5) | 244 (3)   | 165 (1)   | 7.66 (5)  | 6.32 (2)  | 4.140 |
| BLS⁷   | 515 (4)   | 525 (5)   | 435 (15)  | 179 (4)   | 202 (3)   | 175 (4)   | 117 (5)  | 119 (6) | 246.4     | 184.2     | 7.74      | 6.69      | 4.108 |
| BLS⁸   | 482 (4)   | 537 (3)   | 485 (5)   | 204 (2)   | 186 (2)   | 147 (3)   | 114 (6)  | 146 (7) | 264.0     | 177.3     | 8.02      | 6.57      | 4.108 |
| BLS⁹   | 481 (4)   | 528 (3)   | 456 (4)   | 200 (2)   | 182 (2)   | 147 (2)   | 125 (3)  | 139 (3) | 253 (3)   | 175 (2)   | 7.84      | 6.52      | 4.112 |
| LDA¹⁰  | 491       | 554       | 474       | 203       | 176       | 153       | 134      | 159     | 263       | 178       | 7.94      | 6.53      | 4.174 |
|        | 488       | 543       | 469       | 193       | 173       | 147       | 148      | 164     | 268       | 168       | 7.74      | 6.13      | 4.471 |
| GGA-DFPT²³ | 494 (2) | 511 (2) | 426 (2) | 193 (1) | 176 (1) | 151 (1) | 109 (1) | 137 (1) | 149 (1) | 247       | 172       | 7.88      | 6.56      | 3.973 |
| RUS²⁴  | 438       | 488       | 422       | 182       | 163       | 134       | 118      | 122     | 233       | 160       | 7.65      | 6.34      | 3.985 |
| UI¹¹   | 448       | 488       | 422       | 182       | 163       | 134       | 118      | 122     | 233       | 160       | 7.65      | 6.34      | 3.985 |
| LDA¹²  | 491       | 554       | 474       | 203       | 176       | 153       | 134      | 159     | 263       | 178       | 7.94      | 6.53      | 4.174 |

12.4% to 13.4% for transverse waves. The present results experimentally demonstrate that the degree of anisotropy is increased by the present cation substitution.

The Voigt-Ruess-Hill average of bulk and shear moduli calculated from Cᵣ are listed in Table 1. We determine Kᵣ and G to be 236 and 166 GPa, respectively for Mg-Bdg. The value of Kᵣ in the present study is consistent with that determined from RUS²⁰ and that by a calculational study²⁰, but is lower than the other values by ~15 GPa (6%). G is also smaller by ~10 GPa (also 6%) than those in the previous results. These differences correspond to 3% in velocity. The origin of the differences in Kᵣ and G between two techniques should be further investigated. Nevertheless, this study experimentally demonstrated that the present cation substitution in bridgmanite increases Kᵣ and decreases G and Vₛ; an anti-correlated behavior.

This anti-correlated behavior in elastic moduli and velocities by cation substitution has not been reported. Bulk and shear moduli and velocities are summarized in Fig. 3 together with previous results. Previously, the effect of Fe substitution was investigated using ultrasonic interferometry²¹ (UI) and calculations²²,²³. The sample used in the UI study contained not only Fe⁺⁺ but also Fe⁺⁺. The results of the UI study disagree with one calculation¹⁵, where Fe⁺⁺ substituted for Mg⁺⁺, but rather agree with another²², where Fe⁺⁺ and Al¹⁺ substituted for Mg⁺⁺ and Si¹⁺. These results²¹,²² imply that Fe⁺⁺ substituting for Mg⁺⁺ degrades both Kᵣ and G. The effect of aluminum substitution was reported using BLS²⁵ and theoretical calculation⁴¹. An experimental study²⁵ reported that the substitution of only Al decreases both elastic moduli and slightly increases Vₛ. A theoretical study²² showed that the substitution of only Al decrease Vₚ and as well Kᵣ and G. This study²² also investigated the effect of coupled substitution of Fe⁺⁺ and Al, demonstrating that the effect of this pair substitution is qualitatively the same as that of the substitution of aluminum only.

Water content sometimes reduces elastic moduli. The present samples contain a certain amount of water (140 and 460 ppm). However, it is not known how much water content affects the elasticity of bridgmanite. If water content decreased shear modulus for bridgmanite, e.g. by 0.3 GPa/100 ppm or shear velocity by 0.02 km/s/100 ppm, the present cation substitution for dry bridgmanite would show a positive correlated behavior, or increase both Kᵣ and T₀ also depends on the pressure range of the measurement, sample conditions, etc. Nevertheless, the relative change in Kᵣ determined by the same technique is reliable. The effect of a small amount of Fe⁺⁺ substitution on Kᵣ is reported to be positive²⁶–²⁹. This is qualitatively consistent with the theoretical study¹⁵. In contrast, the effect of aluminum on Kᵣ is still controversial; a positive effect (increasing Kᵣ) is reported in some studies²⁰,³⁰ and negative effect (decreasing Kᵣ) in others³⁰–³². Based on the BLS studies¹⁷–¹⁹,²⁵ and the theoretical one²¹, the effect of aluminum substitution on Kᵣ can be considered negative. Note that the theoretical study²² also investigated the effect of coupling substitution of Fe⁺⁺ and Al, demonstrating that the effect of this pair substitution is qualitatively the same as that of the substitution of aluminum only. The effect of only Fe⁺⁺ on the velocities can be calculated from the present study by subtracting the effect of Al from the BLS results¹⁷–¹⁹,²⁵, assuming that the effects of Fe⁺⁺ and Al are independent. This analysis suggests that Fe⁺⁺ substitution increases both Vₚ and Vₛ (Table 2).

We apply the present results to a geochemical and geothermal model to estimate if this effect is sufficient to explain the LLSVPs. We assume a perovskitic lower mantle³³ for simplicity. The seismic anomaly observed in the LLSVPs (+1 and −1% of ΔVₚ/ΔVₛ and ΔVₛ/ΔVₛ, respectively)³⁴ may, then be explained by variation of Fe³⁺ and Al substitution into bridgmanite at temperature conditions for 2000–2891 km depth (2250–2450 K³⁴). The temperature effects on Vₚ and Vₛ were assumed to be independent of pressure and composition (Table 2). The observed anomaly of +/−1% for Vₚ and +/−1% for Vₛ corresponds to the compositional variation between MgSiO₃ and Mg₈₀.₇₅Fe₀.₂₅SiO₃, +/−2.0 atom% of ΔFe/(Mg + Fe + Si + Al) and +/−1.3 atom% of Δ
Al/(Mg + Fe + Si + Al) in temperature range of 2250–2450 K. This compositional heterogeneity of bridgmanite then explains the anti-correlated seismic anomaly (Figs 4 and 5AB). This model indicates that cation substitution of a few atomic percent causes an anti-correlated anomaly comparable to that observed in the LSSVPs.

We now consider to include the effect of temperature since the LLSVPs may correlate with local temperature changes. We assume the temperature difference ΔT between the regions with the highest VB and the average value, i.e. ΔT = T(ΔVB/VB = 1%) − T(ΔVB/VB = 0%). The chemical inhomogeneity, ΔX/(Mg + Fe + Si + Al) (X = Fe or Al), needed to explain the velocity anomaly is then shown in Fig. 4. Especially when ΔT is about 113 K, the LSSVPs can be explained by only 2.7 atom% of Fe2+ substitution without Al variation (Fig. 5AC). More detailed modeling requires ferropericlase and taking the effect of spin transition for these two materials into account.

We have experimentally demonstrated that cation substitutions in bridgmanite enhances elastic anisotropy and causes anti-correlated behavior in elastic wave velocities. This result indicates that seismic anomalies observed in the lower mantle could be explained by chemical heterogeneity in bridgmanite.

**Methods**

**Sample synthesis and characterizations.** The single crystals examined in this study were synthesized at 24 GPa and 1500 °C using a Kawai-type multi anvil press (USSA-5000) installed at ISEI, Okayama University. The isotope ratios of chemical reagents were at natural abundance.

The chemical compositions are confirmed as MgSiO3 and Mg0.943Fe0.045Al0.023Si0.988O3 by an electron microprobe analyzer. The number ratios of Fe/(Mg + Fe + Si + Al) and Al/(Mg + Fe + Al + Si) of this sample are 0.023 and 0.012, respectively. Assuming all Fe is bivalent, the sum of the charge estimated from the EPMA results is −0.003. This is negligible, taking the uncertainty of the chemical analysis into account. A typical amount of water content of single crystals in the run product was 140 ± 52 and 460 ± 45 ppm according to synchrotron IR absorption analyses.
The Fe$_3^+$/$\Sigma$Fe ratio of (Fe,Al)-Bdg was evaluated with synchrotron Mössbauer spectroscopy at BL10XU of SPring-8$^{36}$. An obtained spectrum were analyzed using program MossA37. Without any prejudice, the spectrum seems to consist of two absorption lines with different intensities (Fig. 6). They can be interpreted either as two singlets, as an asymmetric doublet, or as combination of a doublet and a singlet. If the spectrum consists of two singlets, an isomer shift of 1.96(9) mm/s corresponds to that of monovalent high-spin iron. Considering the charge neutrality of the system, it is difficult for Fe$_3^+$ to substitute for Mg or Si in perovskite structure. Therefore, the absorption line at 1.96 mm is the higher velocity one of a doublet. Analysis based on an asymmetric doublet gives the isomer shift of 1.05(6) mm/s and quadrupole splitting of 1.8(1) mm/s. These values indicate that iron in this sample was in a divalent high-spin state$^{38}$ and substitute for magnesium$^{39}$. The higher intensity at the lower velocity side is attributed either to that the sample was a single crystal or to that iron existed in another state. The former case is more plausible than the latter due to the following reasons: 1. The linewidths determined using two singlets (0.97(16) and 0.76(30) mm/s for lower and higher velocity lines) are consistent within the fitting uncertainty; 2. The line shape of the lower velocity signal looks symmetric and additional singlet/doublet to the lower velocity signal has not improved the fitting quality at all. We of course have paid much attention to possible existence of iron in a trivalent high-spin state$^{38}$ and substitute for magnesium$^{39}$. Since parameter fitting assuming two doublets (one for HS Fe$_2^+$ and another for HS Fe$_3^+$) was not converged, we were not able to detect the amount of ferric iron if existed. The asymmetric doublet is probably attributed to a certain angle between the principal electric field gradient in the Fe site and the incident X-ray beam direction because the sample was a single crystal. The intensity ratio (2.7:1) indicates the sign of the quadrupole splitting was negative. The linewidth assuming one doublet is 0.93(13) mm/s.

### Table 2. Parameters for elastic wave velocity modeling.

| Parameter | Value |
|-----------|-------|
| $\alpha$ | 1.98 |
| $\gamma$ | 0.80 |

The Fe$_3^+$/ΣFe ratio of (Fe,Al)-Bdg was evaluated with synchrotron Mössbauer spectroscopy at BL10XU of SPring-8$^{36}$. An obtained spectrum were analyzed using program MossA$^{37}$. Without any prejudice, the spectrum seems to consist of two absorption lines with different intensities (Fig. 6). They can be interpreted either as two singlets, as an asymmetric doublet, or as combination of a doublet and a singlet. If the spectrum consists of two singlets, an isomer shift of 1.96(9) mm/s corresponds to that of monovalent high-spin iron. Considering the charge neutrality of the system, it is difficult for Fe$^+$ to substitute for Mg or Si in perovskite structure. Therefore, the absorption line at 1.96 mm is the higher velocity one of a doublet. Analysis based on an asymmetric doublet gives the isomer shift of 1.05(6) mm/s and quadrupole splitting of 1.8(1) mm/s. These values indicate that iron in this sample was in a divalent high-spin state$^{38}$ and substitute for magnesium$^{39}$. The higher intensity at the lower velocity side is attributed either to that the sample was a single crystal or to that iron existed in another state. The former case is more plausible than the latter due to the following reasons: 1. The linewidths determined using two singlets (0.97(16) and 0.76(30) mm/s for lower and higher velocity lines) are consistent within the fitting uncertainty; 2. The line shape of the lower velocity signal looks symmetric and additional singlet/doublet to the lower velocity signal has not improved the fitting quality at all. We of course have paid much attention to possible existence of iron in a trivalent high-spin state$^{38}$ and substitute for magnesium$^{39}$. Since parameter fitting assuming two doublets (one for HS Fe$_2^+$ and another for HS Fe$_3^+$) was not converged, we were not able to detect the amount of ferric iron if existed. The asymmetric doublet is probably attributed to a certain angle between the principal electric field gradient in the Fe site and the incident X-ray beam direction because the sample was a single crystal. The intensity ratio (2.7:1) indicates the sign of the quadrupole splitting was negative. The linewidth assuming one doublet is 0.93(13) mm/s.
Figure 4. Required $\Delta X/(Mg+Fe+Si+Al)$ ($X = Fe$ or Al) to explain the velocity anomaly of $+1\%$ for $V_B$ and $−1\%$ for $V_S$ with temperature difference $\Delta T$. Solid and open circles are for Fe and Al, respectively. With increasing $\Delta T$, required $\Delta Fe$ and $\Delta Al$ increases and decreases respectively. When $\Delta T$ is around 110 K, the velocity anomaly can be explained only with $\Delta Fe$ and the distribution of Al should be uniform.

Figure 5. Schematic image of regional variation of seismic velocities, chemical composition of bridgmanite, and temperature variation at depth between 2000 and 2891 km. (A) Red color indicate the anomaly of $\Delta V_B > 0 > \Delta V_S$. The map outline was made using CraftMAP (http://www.craftmap.box-i.net/). (B) The case of $\Delta T$ (difference from the average temperature) = 0. Fe and Al contents are the highest in the red regions. (C) The case of $\Delta Al/(Mg+Fe+Si+Al) = 0$. Fe content is the highest in the red regions, where temperature is higher than the average temperature by 113 K. The map was colored based on ref. 6.
which is much broader than a typical energy resolution of the Mössbauer spectrometer at BL10XU (0.43 mm/s). This is perhaps due to variation of the local environment around Fe in this sample given by Mg/Al/Si distribution in neighboring sites, hydrogen, and/or oxygen vacancy. The results of the synchrotron Mössbauer measurement conclude that most iron atoms were in a divalent high-spin state and occupied a magnesium site. Consequently, the simplest substitution model, where the iron substitutes for magnesium and aluminum substitutes for both magnesium and silicon in perovskite structure is consistent with the results of these analyses.

The investigated grains were confirmed to be single domains using a four-circle diffractometer with a laboratory x-ray source at room temperature. The lattice constants $a$, $b$, and $c$ were 4.7784(3), 4.9306(4), 6.9005(8) Å and 4.787(1), 4.934(1), 6.904(1) Å for the Mg-Bdg and (Fe,Al)-Bdg, respectively. It was reported that the unit cell volume of MgSiO$_3$ bridgmanite does not change even with 100 ppm water content. An analytical curve drawn by fitting a linear function to literature values is shown in Fig. 7. The obtained analytical line for iron substitution is consistent with literature. The unit cell volumes of Mg-Bdg is larger than the present analytical line by only 0.05%. Since these differences are comparable to the experimental error, the water content of

**Figure 6.** Mössbauer spectrum of $^{57}$Fe in (Fe,Al)-Bdg. Blue circles are raw data from which the backgrounds have been subtracted. The red and green lines indicate one doublet fitted to the data and fitting residuals. The isomer shift of 1.05 mm/s and the quadrupole splitting of 1.8 mm/s indicate that the sample contains high-spin Fe$^{2+}$ in the magnesium site.

**Figure 7.** An analytical curves between unit cell volume of bridgmanite and chemical substitutions (a) by iron and (b) by aluminum. The solid (red) circles are the present results. The dotted lines were fitted to literature values shown by open circles. (a) $11.741x + 162.5$ and (b) $12.926x + 162.5$, where $x$ is (Fe + Al)/(Mg + Fe + Si + Al) and V at $x = 0$ is fixed to 162.5 Å$^3$. 
140 ppm seems to give a negligible effect. In contrast, the unit cell volume of the (Fe-Al)-Bdg is larger than those of the analytical lines by 0.29%. This excess volume may be explained by effect of aluminum and water content. It is known that aluminum incorporation increases the unit cell volume \(^26,30–32\). Estimating from the previous results, the value of 0.012 for \(\frac{Al}{Mg + Fe + Al + Si}\) makes the unit cell volume larger by 0.09%. Although the degree of water effect on the unit cell volume of magnesium silicate perovskite is uncertain, the water content of 460 ppm probably made the unit cell volume larger by 0.20%. The densities of the Mg-Bdg and (Fe,Al)-Bdg are 4103.3 and 4139.5 g/cm\(^3\), respectively.

IXS measurement and data analysis. Inelastic X-ray scattering with a single crystal sample in conjunction with an analysis based on Christoffel's equation has been recently used for accurate determination of elastic moduli \(^16,54–56\). This technique has been adopted to data along high-symmetry directions about samples at high-pressure and high-temperature conditions \(^55,56\). In this study, we did not limit data along high-symmetry directions, but measured rather redundant data at off-symmetry positions to determine \(C_{ij}\) precisely and to utilize all measured data with an analyzer array \(^16,54\) (see Fig. 1). We performed IXS measurements at BL35XU of SPring-8 \(^57\) at 21.747 and 17.794 keV, with which typical energy resolutions were 1.5 and 3.0 meV full-width-half-maximum (FWHM), respectively. 21.747 keV x-ray was used for Mg-Bdg and 17.794 keV for (Fe,Al)-Bdg. The size of the incident X-ray beam was ~70 μm in diameter. We performed another measurement for Mg-Bdg to insure the quality of our results. We measured another grain from the same sample growth run at BL43LXU of SPring-8 \(^58\). At BL43LXU, x-ray beam with size of ~20 μm and energy of 17.794 keV was used. The energy resolution was 3.0 meV (FWHM).

For each observed phonon mode, the elastic wave velocity was calculated assuming a linear relationship between phonon energy and momentum. Single crystal elasticity at ambient conditions was determined by least-square fitting to the observed velocities using the measured densities. Details of the fitting are given in ref. \(^16\). Phonons with momentum transfers, \(|q|\) from 1 to 3 nm\(^{-1}\) away from Bragg peaks were used for analysis.

The elastic moduli determined from data at BL35XU and BL43LXU are consistent in contrast to different BLS studies which are not so consistent. The individual results are listed in Tables 1 and 3. The different IXS measurement agree to better than 14% (the maximum deviation) whereas those from three BLS studies are spread more (26%, the maximum deviation). Therefore these two sets of IXS data for Mg-Bdg were analyzed as one set (giving 461 modes) to obtain more reliable elastic properties. For (Fe,Al)-Bdg, 319 modes were used. The residuals of the fitting are shown in Fig. 8. There is a slightly linear relationship between \(\Delta E\) and \(|q|\) observed, probably meaning the assumed linear relationship between \(\Delta E\) and \(|q|\) is not completely valid at this \(q\) range.

### Table 3. Elastic moduli and density of Mg-Bdg at ambient conditions determined by IXS. The units are the same as those in Table 1.

|       | \(C_{11}\) | \(C_{12}\) | \(C_{13}\) | \(C_{44}\) | \(C_{55}\) | \(C_{66}\) | \(K_{0}\) | \(G\) | \(V_b\) | \(V_g\) | \(\rho\) |
|-------|-----------|-----------|-----------|-----------|-----------|-----------|---------|------|-------|-------|------|
| BL35XU | 445 (6)   | 489 (9)   | 417 (6)   | 187 (4)   | 159 (3)   | 148 (5)   | 117 (8) | 122 (5) | 137 (7) | 233 (3) | 163 (2) | 7.54 (5) | 6.30 (4) | 4.103 |
| BL43LXU| 452 (4)   | 502 (4)   | 428 (6)   | 185 (4)   | 181 (4)   | 142 (2)   | 122 (4) | 127 (6) | 140 (8) | 240 (2) | 167 (1) | 7.64 (4) | 6.38 (3) | 4.103 |
| Whole data | 450 (7)   | 498 (9)   | 420 (8)   | 190 (6)   | 168 (5)   | 148 (4)   | 117 (8) | 125 (8) | 137 (9) | 236 (4) | 166 (2) | 7.58 (6) | 6.37 (4) | 4.103 |

### Figure 8. Residuals of the fitting (\(\Delta E = E_{\text{model}} - E_{\text{obs}}\)). Red diamonds and black circles are for Mg-Bdg and (Fe,Al)-Bdg, respectively.

References

1. Ramirez, A. P. Colossal magnetoresistance. J. Phys. Cond. Mat. 9, 8171 (1997).
2. Kimura, T. et al. Magnetic control of ferroelectric polarization. Nature 426, 55 (2003).
3. Bednorz, J. G. & Müller, K. A. Perovskite-type oxides -The new approach to high-\(T_c\) superconductivity. Rev. Mod. Phys. 60, 585 (1998).
4. Murakami, M., Hirose, K., Kawamura, K., Sata, N. & Ohishi, Y. Post-perovskite phase transition in MgSiO\(_3\), Science 304, 855 (2004).
5. Masters, G., Laske, G., Bolton, H. & Dreizewski, A. The Relative Behavior of Shear Velocity, Bulk Sound Speed, and Compressional Velocity in the mantle: Implications for Chemical and Thermal Structure. In Earth’s deep interior. Mineral Physics and tomography from the atomic to the global scale vol. 117, edited by Karato, S.-I., Forte, A., Liebermann, R. C., Masters, G. & Stixrude, L. pp. 63–87, American Geophysical Union, Washington, DC (2000).

6. Trampert, J., Deschamps, F., Rosovsky, J. & Yuan, D. Probabilistic Tomography Maps Chemical Heterogeneities Throughout the Lower Mantle. Science 306, 853–856 (2004).

7. Hutko, A. R., Lay, T., Revenaugh, J. & Garner, E. J. Anticorrelated seismic velocity anomalies from post-perovskite in the lowermost mantle. Science 320, 1070 (2008).

8. Davies, D. R., Goes, S., Davies, J. H., Schuberth, B. S. A., Bunge, H. P. & Ritsema, J. Reconciling dynamic and seismic models of Earth’s lower mantle: The dominant role of thermal heterogeneity. Earth Planet. Sci. Lett. 353, 253–269 (2012).

9. Kennett, B. L. N., Widianto, S. & van der Hilst, R. D. Joint seismic tomography for bulk sound and shear wave speed in the Earth’s mantle. J. Geophys. Res. 103 B6, 12469–12493 (1998).

10. Tackley, P. J. Living dead slabs in 3-D: The dynamics of compositionally-stratified slabs entering a “slab graveyard” above the core-mantle boundary. Phys. Earth Planet. Inter. 188, 150–162 (2011).

11. Labrosse, S., Hernlund, J. W. & Collice, N. A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450, 866–869 (2007).

12. Kellogg, L. H. & King, S. D. Effect of mantle plumes on the growth of D² by reaction between the core and mantle. Geophys. Res. Lett. 20, 379 (1993).

13. Zhang, Z. et al. Primordial metallic melt in the deep mantle. Geophys. Res. Lett. 43, 3693 (2016).

14. Houser, C. Constraints on the Presence or Absence of Post-Perovskite in the Lowermost Mantle From Long-Period Seismology. In Post-Perovskite: The Last Mante Phase Transition Geophysical Monograph Series 174, pp. 191–216 (2007).

15. Kiefer, B., Stixrude, L. & Wentzcovitch, R. M. Elasticity of (Mg,Fe)SiO₃ Perovskite at high pressure. Geophys. Res. Lett. 29, 1539 (2002).

16. Fukui, H. et al. Precise determination of elastic constants by high-resolution inelastic X-ray scattering. J. Synchro. Radiat. 15, 618 (2008).

17. Yeganeh-Haeri, A., Weidner, D. J. & Ito, E. Elasticity of MgSiO₃ in the Perovskite Structure. Science 243, 787 (1989).

18. Yeganeh-Haeri, A. A Synthesis and re-investigation of the elastic properties of single-crystal magnesium silicate perovskite. Phys. Earth Planet. Inter. 87, 111–121 (1994).

19. Sinogeikin, S. V., Zhang, J. & Bass, J. D. Elasticity of single crystal and polycrystalline MgSiO₃ perovskite by Brillouin spectroscopy. Geophys. Res. Lett. 31, L06620 (2004).

20. Aizawa, Y. et al. Temperature derivatives of elastic moduli of MgSiO₃ perovskite. Geophys. Res. Lett. 31, L01602 (2004).

21. Chantel, J., Frost, D. J., McCammon, C. A., Jing, Z. & Wang, Y. Acoustic velocities of pure and iron-bearing magnesium silicate perovskite measured to 25 GPa and 1200 K. Geophys. Res. Lett. 39, L19307 (2012).

22. Li, L. et al. Elasticity of (Mg, Fe)(Si, Al)O₃-perovskite at high pressure. Earth Planet. Sci. Lett. 240, 529 (2005).

23. Wehinger, B. et al. Dynamical and elastic properties of MgSiO₃ perovskite (bridgmanite). Geophys. Res. Lett. 43, 2568 (2016).

24. Kudoh, Y., Previtt, C. T., Finger, L. W., Darovskikh, A. & Ito, E. Effect of Fe on the crystal structure of (Mg,Fe)SiO₃ perovskite. Geophys. Res. Lett. 17, 1481–1484 (1990).

25. Jackson, J. M., Zhang, J. & Bass J. D. Sound velocities and elasticity of aluminous MgSiO₃ perovskite: Implications for aluminum heterogeneity in Earth’s lower mantle. Geophys. Res. Lett. 31, L16014 (2004).

26. Andrault, D., Bollán-Casanova, N. & Guignot, N. Equation of state of lower mantle (Al,Fe)-MgSiO₃ perovskite. Earth Planet. Sci. Lett. 193, 501 (2001).

27. Boba Ballaran, T. et al. Effect of chemistry on the compressibility of silicate perovskite in the lower mantle. Earth Planet. Sci. Lett. 333–334, 181 (2012).

28. Lundin, S. et al. Effect of Fe on the equation of state of mantle silicate perovskite over 1 Mbar. Phys. Earth Planet. Interiors 168, 97–102 (2008).

29. Dorfman, S. M., Meng, Y., Prakapenka, V. B. & Duffy, T. S. Effects of Fe-enrichment on the equation of state and stability of (Mg,Fe)SiO₃ perovskite. Earth Planet. Sci. Lett. 361, 249 (2013).

30. Yagi, T., Okabe, K., Nishiyama, N., Kubo, A. & Kikegawa, T. Complicated effects of aluminum on the compressibility of silicate perovskite. Phys. Earth Planet. Interiors 143–144, 81–91 (2004).

31. Daniel, L. et al. Effect of aluminum on the compressibility of silicate perovskite. Geophys. Res. Lett. 31, L15608 (2004).

32. Zhang, J. & Weidner D. J. Thermal Equation of State of Aluminum-Enriched Silicate Perovskite. Science 284, 782 (1999).

33. Murakami, M. et al. A perovskite lower mantle inferred from high-pressure, high-temperature sound velocity data. Nature 485, 90–94 (2012).

34. Brown, J. M. & Shankland, T. J. Thermodynamic parameters in the Earth as determined from seismic profiles. Geophys. J. Roy. Astron. Soc. 66, 579–596 (1981).

35. Shatskiy, A. et al. Growth of large (1 mm) MgSiO₃ perovskite single crystals: A thermal gradient method at ultrahigh pressure. Am. Min. 92, 1744 (2007).

36. Hirao, N. et al. Development of combination method with SR x-ray diffraction and Mössbauer spectroscopy for high-pressure research. Special issue of Rev. High Pressure Sci. Tech. 23, 2C08 (2013).

37. Prescher, C., McCammon, C. & Dubrovinsky, L. M.osa: a program for analyzing energy-domain Mössbauer spectra from conventional and synchrotron sources. J. Appl. Cryst. 45, 329–331 (2012).

38. Güttlich, P. Mössbauer Spectroscopy in Chemistry In Mössbauer Spectroscopy, Topics in Applied Physics Vol. 5 (eds Gonser, U.) (Springer-Verlag Berlin Heidelberg New York, 1975).

39. Hsu, H., Bhatla, P., Cococcioni, M. & Wentzcovitch, R. M. Spin-State Crossover and Hyperfine Interactions of Ferric Iron in MgSiO₃ Perovskite. Phys. Rev. Lett. 106, 115801 (2011).

40. Litasov, K. et al. Water solubility in Mg-perovskites and water storage capacity in the lower mantle. Earth Planet. Sci. Lett. 211,189 (2003).

41. Ito, E. & Matsui, Y. Synthesis and crystal-chemical characterization of MgSiO₃ perovskite. Earth Planet. Sci. Lett. 38, 433–450 (1978).

42. Yagi, T., Mao, H. K. & Bell, P. H. Structure and chemical composition of perovskite-type MδSiO₃. Phys. Chem. Minerals 3, 97–110 (1978).

43. Yagi, T., Mao, H. K. & Bell, P. H. Stability relations of silicate spinels, ilmenites and perovskites. In Akimoto, S. & Manghani, M. H. Eds High-Pressure Research in Geochemistry p. 405–419. Center for Academic Publications, Tokyo, Japan (1982).

44. Kudoh, Y., Ito, E. & Takeda, H. Effect of Pressure on the Crystal Structure of Perovskite-type MδSiO₃. Phys. Chem. Minerals 14, 350 (1989).

45. Horiiuchi, H., Ito, E. & Weidner, D. J. Perovskite-type MgSiO₃ single crystal X-ray diffraction study. American Mineralogist 72, 357–360 (1987).

46. Parise, J. B., Wang, Y., Yeganeh-Haeri, A., Cox, D. E. & Fei, Y. Crystal structure and thermal expansion of (Mg,Fe)SiO₃ perovskite. Geophys. Res. Lett. 17, 2089–2092 (1990).

47. Ross, N. L. & Hazen, R. M. High-pressure crystal chemistry of MgSiO₃ perovskite. Phys. Chem. Minerals 17, 228–237 (1990).
49. Jephcoat, A. P. et al. High-resolution synchrotron X-ray powder diffraction and Rietveld structure refinement of two \((\text{Mg}_{0.95}\text{Fe}_{0.05})\) \(\text{SiO}_3\) perovskite samples synthesized under different oxygen fugacity conditions. *American Mineralogist*, 84, 214–220 (1999).

50. Dobson, D. P. & Jacobsen, S. D. The flux growth of magnesium silicate perovskite single crystals. *American Mineralogist* 89, 807–811 (2004).

51. Sugahara, M. et al. Reinvestigation of the \(\text{MgSiO}_3\) perovskite structure at high pressure. *American Mineralogist* 91, 533–536 (2006).

52. Katsura, T. et al. P-V-T relations of \(\text{MgSiO}_3\) perovskite determined by in situ X-ray diffraction using a large-volume high-pressure apparatus. *Geophys. Res. Lett.* 36, L01305 (2009).

53. Tange, Y., Takahashi, E., Nishihara, Y., Funakoshi, K. & Sata, N. Phase relations in the system \(\text{MgO-FeO-SiO}_2\) to 50 GPa and 2000°C: An application of experimental techniques using multianvil apparatus with sintered diamond anvils. *J. Geophys. Res.* 114, B02214 (2009).

54. Yoneda, A. et al. Elastic anisotropy of experimental analogues of perovskite and post-perovskite help to interpret \(D''\) diversity. *Nature Comm.* 5, 3453 (2014).

55. Antonangeli, D. et al. Elasticity of Cobalt at High Pressure Studied by Inelastic X-Ray Scattering. *Phys. Rev. Lett.* 93, 215505 (2004).

56. Antonangeli, D. et al. Elasticity of Hexagonal-Closed-Packed Cobalt at High Pressure and Temperature: A Quasiharmonic Case. *Phys. Rev. Lett.* 100, 085501 (2008).

57. Baron, A. Q. R. et al. X-ray scattering beamline for studying dynamics. *J. Phys. Chem. Solids* 61, 461 (2000).

58. Baron, A. Q. R. Status of the RIKEN Quantum NanoDynamics Beamline (BL43LXU): The Next Generation for Inelastic X-Ray Scattering. *SPring-8 Inf. Newsfl.* 15, 14 (2010).

59. Li, B. & Zhang, J. Pressure and temperature dependence of elastic wave velocity of \(\text{MgSiO}_3\) perovskite and the composition of the lower mantle. *Phys. Earth Planet. Interiors* 151, 143–154 (2005).

60. Li, B. Characteristics of lateral heterogeneities with thermal and chemical origins in the pyrolitic lower mantle. *Progress in Natural Science* 19, 1603–1611 (2009).

**Acknowledgements**

We appreciate help by Longjian Xie, Ryo Watanabe, and Tatsuya Hiratoko during IXS experiments. This work was performed using joint-use facilities of the Institute for Study of the Earth’s Interior, Okayama University and supported in part by Grants-in-Aid for Scientific Research (Grant Nos 22224008 and 15H021128 awarded to AY and Nos 22000022 and 15H05748 to EO) from the Japan Society for the Promotion of Science. Inelastic X-ray scattering measurements at BL35XU were done with the approval of JASRI (Proposal Nos 2012B1196, 2013A1047, 2013B1054, and 2014B1290). Measurements at RIKEN BL43LXU were made during commissioning time. The synchrotron Mössbauer spectroscopy was performed on the BL10XU at SPring-8 (Proposal No. 2014A0104).

**Author Contributions**

H.F. planned the present study. A.S. synthesized crystals. A.N. crystallographically characterized synthesized crystals. N.T. analyzed the chemical compositions of the samples. S.K., E.O. and N.H. performed the synchrotron Mössbauer measurements. S.K. analyzed the Mössbauer spectrum with input from S.T., H.F., A.Y., S.T., H.U. and A.Q.R.B. performed the IXS measurements at BL35XU and H.F., A.Y. and A.Q.R.B. at BL43LXU. H.F. analyzed the IXS data with input from A.Y. and A.Q.R.B., H.F., A.Y. and A.Q.R.B. wrote the manuscript.

**Additional Information**

**Competing financial interests:** The authors declare no competing financial interests.

**How to cite this article:** Fukui, H. et al. Effect of cation substitution on bridgmanite elasticity: A key to interpret seismic anomalies in the lower mantle. *Sci. Rep.* 6, 33337; doi: 10.1038/srep33337 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2016