Integrated genomic analysis reveals mutated ELF3 as a potential gallbladder cancer vaccine candidate

Akhilesh Pandey, Eric W. Stawiski, Steffen Durinck, Harsha Gowda, Leonard D. Goldstein, Mustafa A. Barbhuiya, Markus S. Schröder, Sreelakshmi K. Sreenivasamurthy, Sun-Whee Kim, Sameer Phalke, Kushal Suryamohan, Kayla Lee, Papia Chakraborty, Vasumathi Kode, Xiaoshan Shi, Aditi Chatterjee, Keshava Datta, Aafaque A. Khan, Tejaswini Subbannayya, Jing Wang, Subhra Chaudhuri, Sanijiv Gupta, Braj Raj Shrivastav, Bijay S. Jaiswal, Satish S. Poojary, Shushruta Bhunia, Carolina Bizama, Lorena Rosa, Wooli Kwon, Hongbeom Kim, Youngmin Han, Thakur Deen Yadav, Vedam L. Ramprasad, Amitabha Chaudhuri, Zora Modrusan, Juan Carlos Roa, Pramod Kumar Tiwari, Jin-Young Jang, & Somasekar Seshagiri.

Gallbladder cancer (GBC) is an aggressive gastrointestinal malignancy with no approved targeted therapy. Here, we analyze exomes (n = 160), transcriptomes (n = 115), and low pass whole genomes (n = 146) from 167 gallbladder cancers (GBCs) from patients in Korea, India and Chile. In addition, we also sequence samples from 39 GBC high-risk patients and detect evidence of early cancer-related genomic lesions. Among the several significantly mutated genes not previously linked to GBC are ETS domain genes ELF3 and EHF, CTNNB1, APC, NSD1, KAT8, STK11 and NFE2L2. A majority of ELF3 alterations are frame-shift mutations that result in several cancer-specific neoantigens that activate T-cells indicating that they are cancer vaccine candidates. In addition, we identify recurrent alterations in KEAP1/NFE2L2 and WNT pathway in GBC. Taken together, these define multiple targetable therapeutic interventions opportunities for GBC treatment and management.
The gallbladder is an important part of the biliary tract system. Gallbladder cancer (GBC) is the most common of the biliary tract cancers1. GBC is a highly fatal malignancy with median survival of <1 year2–4. This is primarily due to non-specificity of symptoms during initial stages of the disease with patients generally presenting at an advanced stage of the cancer. GBC often occurs in the setting of gallstones (cholelithiasis) or chronic inflammation (cholecystitis) and is typically detected incidentally in patients undergoing treatment for these conditions1. The diagnosis is also confounded by the anatomic position of the gallbladder and the non-specificity of the symptoms during the initial stages of the disease1.

GBC is the 20th most common cancer worldwide with an estimated 178,100 new cases diagnosed annually4 (http://globocan.iarc.fr). In 2020, in the United States, an estimated 11,980 new cases and 4,090 deaths due to gallbladder cancer is expected (https://www.cancer.net/cancer-types/gallbladder-cancer). In contrast to the general population in the United States where GBC incidence is low, it is a more common gastrointestinal malignancy in both Southwestern Native Americans and in Mexican Americans5. Incidence of GBC is highest in South American countries that include Chile, Bolivia, and Ecuador and Asian countries such as Korea, India, Pakistan and Japan. Interestingly, GBC incidence is lowest in Africa1,4 (http://globocan.iarc.fr). In addition to race, GBC incidence increases with age and women are affected twice to six times more often than men. Other recognized risk factors for GBC development include the occurrence of gallstones and *Salmonella* infection4.

Previous molecular studies on GBC have focused on the assessment of mutations in few candidate genes such as *TP53* and *KRAS*1. Recent exome sequencing of nine GBC samples of Caucasian origin identified *TP53* as a significantly mutated GBC gene6. Another study examined exomes from 32 GBC samples of Chinese origin and identified *TP53*, *KRAS*, and *ERBB3* as significantly mutated GBC genes6. Further, exome sequencing and analysis of 28 GBC patients of Japanese origin and targeted sequencing of 51 samples of Chinese origin identified alterations in ERBB family members7. A recent follow-up study6 reported exome data from an additional 125 additional Chinese patients linking frequent *ERBB2/3* mutation and upregulation of *PD-L1* in GBC6. A recent study reported exome sequencing of 16 GBC samples of Japanese origin and targeted sequencing of 30 GBC samples that included 26 Italian and 4 Japanese patients9.

Given that GBC incidence shows strong geographic variation, in this study we perform a comprehensive analysis of 167 GBCs that includes patients from three geographically different regions namely, South Korea (*n* = 94), India (*n* = 64) and Chile (*n* = 9). We analyze 167 tumors from three geographically distinct parts of the world and identify *ELF3* to be a significantly mutated gene. Given our large sample size, we find several previously unreported significantly mutated GBC genes. The altered genes include *TP53*, *ELF3*, *ERBB3*, *CTNNB1*, *ARID2*, *CDKN2A*, *STK11*, *SMAD4*, *ARID1A*, *EHF*, *KRAS*, *NFE2L2*, *PIK3CA*, and *PSIP1*. We further identify a class of mismatch-repair-deficient gallbladder cancers with elevated mutation rates which are likely candidates for immunotherapy. The *ELF3* mutations are predominantly frame-shift alterations that result in several neoantigens that are able to activate CD8+ T-cells, confirming them as potential cancer vaccine candidates.

Results

Genomic analysis of GBC samples

We have performed a comprehensive genomic analysis of 213 samples that included 167 gallbladder (GBC) primary tumors, 7 GBC cell lines, 23 gallbladder tissue from cholecystitis cases (cholecystitis), 14 gallbladder tissue from gall stone cases (stone), and 2 gallbladder polyps (polyp). Overall, we have obtained whole exome (WES) from 206 samples (160 GBC, 23 cholecystitis, 14 stone, 2 polyps and 7 cell lines), RNA-seq from 120 samples (115 GBC and 5 cell lines) and low pass (<5x) whole-genome sequence (WGS) data from 184 samples (146 GBC, 15 cholecystitis, 14 stone, 2 polyps and 7 cell lines; Supplementary Table 1, Supplementary Data 1, and Supplementary Fig. 1).

For 98 of the 167 GBC cases in this study we have exome, RNA-seq and low pass WGS data, making this a comprehensive GBC genomic data set (Supplementary Table 1, Supplementary Data 1 and Supplementary Fig. 1).

GBC mutational profile

We obtained WES data on 160 GBC (152 patient-matched paired tumor/normal GBC and 8 unpaired GBC) from India (60), Korea (91), and Chile (9). Also, we obtained WES data for 7 GBC cell lines. In addition, we surveyed pre-cancerous gallbladder tissue samples from 23 cholecystitis cases, 14 gallbladder stones, and 2 gallbladder polyps by WES (Supplementary Table 2 and Supplementary Data 2–8). Samples were sequenced at an average coverage of 93x and tumor/normal relationships were confirmed using exome sequence data (Supplementary Data 2 and Methods). Principal component analysis (PCA) using the germline variants from the matched normal revealed that the samples clustered into groups based on their population of origin (Fig. 1a and Supplementary Fig. 2). The six-cell lines derived from patients of Japanese ancestry and one from a Korean patient clustered with the Korean samples consistent with a north east-Asian genetic profile (Fig. 1a and Supplementary Fig. 2). Amongst the patient-matched paired tumor-normal GBC samples, a total of 21,439 protein-altering somatic mutations were identified, including 17,475 missense, 1215 nonsense, 26 stop loss, 22 start lost, 419 essential splice-site mutations, and 2282 indels (Supplementary Table 2 and Supplementary Fig. 3). A majority of the mutations (92%; 19,757/21,439) were novel and were not reported in COSMIC-v7010 (Supplementary Table 2). Using RNA-seq data, we confirmed the expression of 8,706 protein-altering somatic variants identified by WES (Methods, Supplementary Table 2, Supplementary Data 3 and 4).

Both cholecystitis and gallstones (cholelithiasis) are believed to lead to precancerous lesions by inducing dysplastic changes in the pathogenesis of GBC1. We sequenced tissue from areas surrounding the inflamed sites in the gallbladder tissue from patients with chronic cholecystitis (*n* = 23), or gallbladder stones (*n* = 14) and gallbladder polyps (*n* = 2) together designated ‘GB-other’. We found significantly fewer somatic protein-altering mutations with a median of 1 (range 0–90) for cholecystitis and a median of 0.5 (range 0–2) for GB-other compared to a median of 65 (range 0–4,867) in GBCs (Fig. 1b and Supplementary Data 5).

We next looked for cancer-associated somatic alterations using a combination of exome and low pass WGS data and found mutations or copy loss in 30% (7/23) of cholecystitis samples (Fig. 1c). The alterations included *PIK3R2*, *CHD1*, *TP53*, and *CDKN2A*. Consistent with this, we found alterations in *TP53*, *CDKN2A*, *PIK3R2*, and *CHD1* in GBC (Supplementary Data 3 and Supplementary Fig. 4). Previously, *TP53* and *CDKN2A* have been implicated as GBC drivers5–7. Though not previously implicated in GBC, *CHD1* is a known gastric cancer driver and *PIK3R2* is frequently mutated in endometrial cancers11–13. In contrast to cholecystitis samples, somatic alterations in the ‘GBC-other’ group were not detected.

We found the median mutation rate in GBC to be between that of hepatocellular carcinoma (HCC) and colorectal cancers (COADREAD; Fig. 1d). However, we found three outlier samples with very high mutation burden. We tested these samples for
microsatellite instability (MSI) using the MANTIS (see Methods) and found that they were positive for MSI. Consistent with this, all the three samples had a high mutation burden (>1000 protein-altering mutations) (Fig. 1e). We confirmed that these samples carried deleterious mutations in known mismatch repair (MMR) genes (Fig. 1e). Interestingly, the outlier mutational status of the MSI positive samples was similar to that of mismatch repair-deficient colorectal cancer (COADREAD), endometrial carcinoma (UCEC), and stomach adenocarcinoma (STAD) (Fig. 1e).

To understand the mutational processes that contribute to the development of GBC we identified and cataloged the possible 96 base substitution types taking into account the possible eight base pair somatic changes (C > T, T > C, C > A, C > G, T > A, and T > G) and the flanking 5’ and 3’ base context, as previously described. The substitution frequencies between GBC samples from India, Chile and Korea were similar and was consistent with the frequency pattern observed in a set of 29 GBCs from Japan (Supplementary Fig. 5). Using non-negative matrix factorization, as described previously (see Methods), we identified six prominent mutational signatures (Supplementary Figs. 5 and 6a, b). The strongest correlates included age (C > T mutations at NpCpG sites), an APOBEC signature (dominated by C > T and C > G mutations at TpCpN sites), and an MSI signature. These findings are consistent with previously identified processes in gallbladder and ampullary cancers. When we compared the mutation profile to 8 other cancer types, we found it clustered most closely to head and neck squamous cell carcinoma (Supplementary Fig. 7).

Mutated genes and their significance in GBC. Exome sequencing identified protein-altering somatic mutations in 10,224 genes and of these 4750 (46%) were mutated in at least two patients. We found recurrent mutations in 102 chromatin-modifying genes, including NSD1, ARID1A, SETD2, and PBRM1, 187 protein kinases, including TTN, ERBB2, ERBB3, STK11, and LATS1, and 73 G-protein coupled receptors including CELSR1/2/3, CHRM3, and GRM1. Using Polyphen, we found that 55% (11,716/21,439) of protein-altering mutations were predicted to be deleterious or high impact mutations. In contrast, only 11% (233,524/21,439) of protein-altering mutations were predicted to be deleterious or high impact mutations.
Fig. 2 Significantly mutated genes in GBC. a Plot showing the significantly mutated GBC genes and their q-score. Each gene is represented as a circle, where the size of the circle is proportional to the observed mutation frequency. Genes are arranged along the x axis in alphabetical order. Significant q-score genes with FDR < 0.1 are indicated. Dotted orange line, FDR = 0.05; dotted red line, FDR = 0.1. Schematics showing alterations in ETS family members (b) ELF3 and (c) EHF. d ELF3 splicing defects observed in two GBC samples. Each column represents a sample. e Kaplan-Meier survival plot of patients with tumor double positive for ELF3 and TP53 vs others. Log-rank test p values are presented for each group. f Schematic showing alterations observed in PSIP1 in GBCs.

We assessed the mutated genes for their significance using a q-score metric\(^\text{15}\). Our analysis identified 25 significantly mutated GBC genes that included CTNNB1, ELF3, TP53, ERBB2, ARID2, ERBB3, STK11, CDKN2A, SMAD4, ARID1A, KRAS, EHF, PIK3CA, BRAF, ACVR2A, PSIP1, NFE2L2, CHRM3, ZNF107, SMARCA4, APC, NF1, KAT8, MAP2K4, and HIST1H2AG (Fig. 2a; q-score ≥ 1.1; FDR ≤ 8%; Supplementary Table 2 and Supplementary Fig. 8a–d). This list includes well-known oncogenes, CTNNB1, ERBB2, ERBB3, KRAS, PIK3CA, BRAF, and NFE2L2, tumor suppressors, TP53, ARID2, STK11, CDKN2A, SMAD4, SMARCA4, ARID1A, APC, NF1, and MAP2K4, and less well-established cancer-associated genes such as ELF3, EHF, ACVR2A, PSIP1, CHRM3, HIST1H2AG, KAT8, and ZNF107. Previous studies on GBC reported TP53, KRAS and ERBB3 as significantly mutated GBC genes (SMG)\(^\text{9}\), though low-frequency mutations were observed in other SMG GBC genes reported in this study\(^\text{6,7,20}\).

The ELF3, ETS-domain transcription factor, identified as significantly mutated gallbladder cancer gene was altered in 21% of samples (34/160) (Fig. 2b). Previously, ELF3 was reported as a frequently mutated gene in biliary tract (3–9.5%) and ampullary carcinomas (15%)\(^\text{6,9,16,17}\). ELF3 is also known to be mutated in cervical adenocarcinomas (13%)\(^\text{21}\), bladder cancers (8%)\(^\text{22}\), gastric cancers (4%)\(^\text{23}\), and colorectal cancers (3%)\(^\text{24,25}\). In addition to ELF3, EHF\(^\text{26}\), another member of the ETS transcription factor subfamily, was also found significantly mutated in 4% of the GBC samples (7/160) (Fig. 2c).

A majority of ELF3 mutations we observed were frame-shift, stop gained and essential splice-site mutations (73% 27/37 mutations) and they clustered in the C-terminal ETS-domain (Fig. 2b). In addition, two essential splice-site mutations that result in a RNA transcript that codes for a truncated ELF3 (Fig. 2d) were found. Interestingly, ELF3 mutations were more frequent in Korean (31% 28/91) and Chilean patients (22% 2/9) compared to GBC patients from India (7% 4/60; p value 0.0003 India vs non-Indian; Fisher’s exact test).

We observed that the ELF3 mutations co-occurred significantly with TP53 mutations (p value = 0.01; Fig. 2e). Patients carrying both ELF3 and TP53 mutations had a worse overall survival that showed a trend towards significance (p value 0.0547; Fig. 2f) as...
opposed to nothing in survival with individuals with mutations in just either one of the genes (Supplementary Fig. 8d).

In addition to the WNT pathway genes CTNNB1 and APC, the significantly mutated genes included the chromatin-modifying gene KAT8, tumor suppressor STK11, oncogene NEU2L2, and ZNF107 that codes for a zinc finger protein. In addition, ACVRA2A, a serine-threonine kinase and a member of the TGF-beta superfamily was also found to be mutated. The chromatin-associated protein gene, PSIP1, also showed a distinct mutation pattern with 5 of the 6 mutations (4% of samples) showing high impact frame-shift mutations (n = 4) or a premature stop codon (n = 1). These mutations preserved the PSIP1 H3K36me3 interacting ‘Pro-Tyr-Pro-Pro’ (PWYP) domain while leading to the loss of the region coding for the C-terminal ‘integrase binding’ (IBD) domain (Fig. 2f). Interestingly, p52 PSIP1 is a well-characterized isoform that lacks the IBD and has been associated with transcriptional activation and alternative splicing and its relevance in GBC requires further investigation. Another significantly mutated gene, CHRM3 encodes a GPCR, a nicotinic acetylcholine receptor. Interestingly, CHRM3 was recently shown to mediate gallbladder contraction through a voltage-gated Ca2+ channel. However, the exact relevance of the CHRM3 mutations in GBC needs further studies.

Recurrent of somatic mutations is an indication of its cancer relevance. We examined our data for recurrent hotspot mutations and found 89 hotspot mutations across 73 genes (see Methods; Supplementary Data 8). Included in the genes with hotspots included 11 significantly mutated GBC genes. Genes with most hotspots included TP53 (11 in 53 samples), ERBB2 (3 in 18 samples), CTNNB1 (3 in 16 samples), and ELF3 (3 in 9 samples). The ELF3 hotspot mutations included frame-shift mutations at codons 55 (2 samples), 320 (5 samples), and 324 (2 samples, including 1 missense).

To further understand specific mutation patterns, we performed a meta-analysis by comparing all the somatic mutations identified against a list of high confidence hotspot mutations identified in a comprehensive pan-cancer analysis. We identified 65 meta-hotspot mutations across 22 genes (Supplementary Data 9). The most common genes identified in GBC were TP53 (22 in 40 samples), ERBB2 (5 in 19 samples), and CTNNB1 (5 in 18 samples, primarily concentrated around codons 32–45). Amongst the most common mutations across all cancers that also occurred in GBCs were KRAS G12/G13 (5 samples), PIK3CA H1047R/E545K/E542 (6 samples) and NRAS Q61 (1 sample). Other mutations of interest included ERBB3 (2 meta-hotspots in 7 samples) carrying activating mutations at V104 and D297. Interestingly, the four BRAF meta-hotspots, G466A (1), G469V (1), D594G (2), G596R (1), observed in 5 samples did not involve the canonical V600 codon. The NFE2L2 (5 meta-hotspots in 5 samples) mutations were primarily concentrated around amino acid positions 29–34. We also found samples containing CDK4 R242C, BCL2L12 R18W, RAC1 A178E, and XPO1 E571K mutations, previously reported in other tumor types.

Splicing, expression and copy number alterations in GBC. We performed t-SNE analysis of RNA-seq data from 115 GBCs and identified two main clusters designated as cluster A and B (Supplementary Fig. 9). Cluster A is characterized by high expression of mitochondrial genes and also showed high levels of apoptosis-related gene such as BAX, BAD, FASTK, and NOXA1. Further, expression of PTEN, SMAD4, NF1, and NF2 was low in cluster A compared to samples in cluster B. Interestingly, samples in cluster B had marked upregulation of oncogenes such as BRAF, KRAS, and CBL. Several histone encoding genes were also upregulated in cluster B. We also found upregulation of NPAT and GONL4 in cluster B. NPAT is a key co-activator of histone transcription and GONL4 is involved in biogenesis of the histone locus bodies and a known NPAT binding partner. Additionally, cell cycle regulators such as SPYDE1 and SPYDE2 were also highly expressed in cluster B. Also upregulated in cluster B were transcripts for TP53 modulators ATM and MDM4.

We performed de novo prediction of splice variants from 115 GBCs and 4 cholecytitis samples to identify tumor-specific splicing events. We considered 835 candidate cancer-associated genes and filtered out splice variants expressed in a dataset of 9155 normal samples. We identified 62 candidate protein-altering splice variants in 24 samples. They included recurrent variants in ELF3 (n = 2) (Fig. 2d), an alteration each in KEAP1 and NFE2L2 (exon 2 deletion) (Supplementary Data 10). The exon 2 deletion in NFE2L2 variant was previously described in squamous cell carcinoma and is known to result in the loss of interaction with the negative regulator KEAP1. NFE2L2 stabilization, induction of a NFE2L2 transcriptional response, and KEAP1/NFE2L2 pathway dependence.

We performed copy number analysis using low pass WGS data from 146 GBC samples. ERBB2 was frequently amplified in 13% (19/146) of the GBCs. We confirmed overexpression of ERBB2 in 68% (13/19) of the GBCs with amplification (Supplementary Fig. 10). Furthermore, we found one sample (GBC138) with EGFR amplification and corresponding increased EGFR expression (Supplementary Fig. 10). We also found amplification of MET (GBC061), KRAS (GBC090), and NRAS (GBC001). These genes also showed elevated expression in the corresponding samples (Supplementary Fig. 10). Chromosome 12 showed a distinct recurrent amplification in 6 samples involving YEATS4, RAB3IP, and FRS2. We found expression of these genes to be elevated in these samples (Supplementary Figs. 11 and 12). Among genes that showed copy loss were CDKN2A/B (14/146), SMAD4 (3/146), FHIT (11/146), BAP1 (7/146), PBRM1 (3/146) and PTEN (2/146) and this correlated with lower expression of these genes in the corresponding samples (Supplementary Fig. 13).

Gene fusions in GBC. Analysis of RNA-seq data identified 23 gene fusion events in our GBCs (Supplementary Table 3). In one sample, we found a fusion involving PTPRK and RSPO (Supplementary Fig. 14) that led to overexpression of RSPO3. This gene fusion product is known to promote and potentiate WNT signaling. Also, we found a recurrent fusion involving two patient tumors where exon 1 of GSK3A was fused-in-frame to exon 3 of CDC42EP1, resulting in a transcript coding for GSK3A lacking the kinase domain (Supplementary Fig. 15a). A gene fusion involving PTEN and LIPA (LIPA-PTEN) leading to removal of the sequence encoding the PTEN Tensin C2 domain was identified in a patient tumor (Supplementary Fig. 15b). Another GBC sample carried an SLCL2A7-TERT fusion that resulted in overexpression of TERT (Supplementary Fig. 15c). We also found an in-frame GRB7-LASPI fusion resulting in elevated LASPI expression (Supplementary Fig. 15). Upregulated LASPI has been linked to malignant phenotype in cholangiocarcinoma.

Mutated ELF3 neoantigen peptides activate CD8+ T-cells. Recent advances in cancer immunotherapy have led to impressive survival benefit for patients in some cancers. Understanding the neoantigens arising from somatic mutations and the composition of tumor immune microenvironment will provide opportunities for immunotherapy in GBC. With this as a goal, from a set of 1301 somatic single nucleotide variants (SNVs) and 240 somatic indels expressed in our GBC samples we predicted high-affinity MHCl Class I binding neoantigen peptides (IC50 <
Fig. 3 Neoantigens in GBC. a Box plot of neoantigens predicted in GBC samples (n = 110). Boxes indicate the interquartile range (IQR); center line, median; whiskers, lowest and highest values within 1.5x IQR from the median; outliers, beyond 1.5x IQR. Peptides with predicted MHC I affinity ≤ 500 nm (yellow) and <500 nm (strong binder; orange) are shown. Schematic of ERBB2 (c) or ELF3 (d) neoantigen generating mutations and CD8+ T-cell activation measured by IFN-γ expression level for the indicated mutant peptides. Stars above the mutation represent peptides tested and solid stars indicate binders. b Stacked bar plot of genes with the highest number of predicted neoantigens plotted as a percentage of total number of patient tumors with a mutation in that gene (n = 43). Peptides with predicted MHC I affinity ≤ 500 nm (yellow) and <500 nm (strong binder; orange) are shown. Genes with the highest number of predicted neoantigens corresponding to mutated TP53, ELF3, CTNNB1, ERBB2, ARID1A, and CDKN2A were predicted. These genes were mutated in at least 4% of the GBC patients (range 4–17%, n = 5–19 from 115 exome/RNA-seq samples; Fig. 3b). Among these, ELF3 had the highest number (n = 9) of predicted neoantigens resulting from frame-shift mutations in GBC. A similar trend was observed for TP53 in which 5 of the 9 high affinity HLA binders were frame-shift mutations. Additionally, recurrent mutations in ERBB2 also contributed to potential neoantigenic peptides. The presence of potential antigenic peptides from recurrent somatic mutations in GBC suggests that these peptides can serve as potential common cancer vaccine candidates.

500 nm (Supplementary Data 11). This resulted in an average of 15 (range 0–51) neoantigens per patient (Fig. 3a).
To test the relevance of these predicted neoantigens, we selected 13 mutant peptides and the corresponding wild-type (WT) sequences from ELF3 (6), CTNNB1 (2), ERBB3 (3), and TP53 (2). We tested these peptides for their ability to activate CD8+ T-cells using HLA-matched healthy donor PBMCs. Antigen-specific activation of CD8+ T-cells was assessed by intracellular IFN-γ production using FACS (IFNG-APC: 1:1000, Biolegend, Cat. No. 302512; Supplementary Fig. 16). Two mutant ERBB2 peptides, S310Y and S310F, and three ELF3 peptides, Y19fs, L73fs and V345fs were found to activate CD8+ T-cells (Fig. 3c, d).

To determine clonotypic changes and activation of CD8+ T-cells in response to the mutant peptides, we performed transcriptome-coupled single-cell T-cell receptor (sc-TCR) sequencing. In this experiment, ELF3 Y19fs was expressed as a minigene in dendritic cells and incubated with CD8+ T-cells (see Methods). TCR sequence analysis revealed CD8+ T-cell clonal expansion when incubated with ELF3 Y19fs mutant expressing dendritic cells. However, we did not detect these TCR sequences in the empty vector control treated cells, indicating that they were specific for the ELF3 Y19fs mutant. The clonally expanded T-cells identified contributed to 8% of the total T-cells in the assay (n = 670) (Fig. 3e and f). Overlaying the single-cell transcriptome data on the clonally expanded T-cells showed that ELF3 Y19fs induced 3-fold higher levels of IFN-γ transcript in the expanded T-cells compared to empty vector control (Fig. 3g–j). Though some clonal expansion of T-cells was observed in empty vector control, the most frequent clonal sequence represented 2% of the total T-cells (n = 178) (Fig. 3e and f; Supplementary Data 12). Importantly, the level of IFN-γ was undetectable in these cells (Fig. 3j). Consistent with these findings, the abundance of the CDR3 sequences identified by single-cell sequencing correlated well with those found in the PMBCs treated with the mutant ELF3 peptide (Fig. 3k).

In addition to the immunogenic ELF3 peptides detected in this study, we found TP53 G154V peptide to also be immunogenic as assessed by TCR sequencing (Supplementary Fig. 17). These findings taken together suggest that the neoantigenic peptides identified contributed to 8% of the total T-cells in the assay (n = 670). We tested these peptides for their ability to activate CD8+ T-cells using FACS (IFNG-APC: 1:1000, Biolegend, Cat. No. 302512; Supplementary Fig. 16). Two mutant ERBB2 peptides, S310Y and S310F, and three ELF3 peptides, Y19fs, L73fs and V345fs were found to activate CD8+ T-cells (Fig. 3c, d).

KEAP1/NFE2L2 pathway involvement in GBC. KEAP1/NFE2L2, a cellular pathway for sensing and responding to oxidative stress, is frequently mutated in human cancers. We identified several patients with alterations in the transcription factor NFE2L2 (n = 11) and its negative regulators KEAP1 (n = 3) and CUL3 (n = 3) (Fig. 5a–c). Most NFE2L2 alterations (6/11) were found in the N-terminal region required for interaction with KEAP1. Loss-of-function mutations in KEAP1 or activating mutations in NFE2L2 can result in the activation of 27 NFE2L2 downstream target genes, which can be used as a gene signature summarized in a pathway activation score. Application of the gene signature to tumors with available RNA-seq data identified a group of samples that showed elevated expression for most target genes, classifying patients into NRF2+ (score >15) and NRF2− patients. Hierarchical clustering based on the 27 signature genes segregated the two groups (Fig. 5d). Patients with mutations in pathway genes NFE2L2, KEAP1, and CUL3 were overrepresented in the NRF2+ group (n = 6/14 NRF2+ vs n = 2/87 NRF2− patients, P < 6 × 10−5, two-sided Fisher’s Exact Test). To search for additional genes that may be involved in pathway activation, we considered significantly mutated GBC genes or known cancer-associated genes recurrently mutated in our data set and tested for overrepresentation among NRF2+ patients. Among 232 genes tested ARID2 was the most enriched mutated gene (p = 0.00074, FDR = 0.13). A recent report has shown that KEAP1/NFE2L2 pathway activation, which leads to the reduction of reactive oxygen species, may help suppress macrophage inflammation response. Interestingly, we observed no difference in M1 macrophages but found a significantly higher level of M2 macrophages (Fig. 5c; p value = 0.016) in NRF2+ samples, consistent with a suppressed macrophage environment. We also found that KEAP1/NFE2L2 pathway activation, using RNA-seq, appears to be a significant prognostic predictor of survival (Fig. 5f; p value = 0.049).

Pathway alterations in GBC. We integrated exome, copy number variation and gene fusion data within pathways (Fig. 6a–f)
country of origin. The p53/RB1 pathway was the most commonly altered pathway in GBC (Fig. 6f). The WNT pathway was primarily being driven through activating CTNNB1 mutations (Fig. 6a) though we also found an activating RSPO3 fusion. The SWI/SNF pathway had frequent inactivating mutations in SMARCA4, ARID1A, and ARID2 (Fig. 6b). We found many therapeutically actionable mutations in the RAS/PI3K pathway involving frequent alterations involving ERBB2, ERBB3, BRAF, and PIK3CA (Fig. 6c). We also found frequent inactivation of the ETS family members ELF3 and EHF (Fig. 6d). Our data demonstrate a role for KEAP1/NFE2L2 pathway activation in GBC (Fig. 6e).

Discussion

We have performed a comprehensive integrative genomic analysis of 167 gallbladder primary tumors, and 7 GBC cell lines. Also, we have analyzed premalignant gallbladder tissue from 23 cholecystitis cases, 14 gallstones, and 2 gallbladder polyps. We found somatic mutations in cholecystitis that were indicative of a premalignant stage. Our study uncovered a class of hypermutated GBC that carried mutations in mismatch repair genes. We report 25 significantly mutated GBC genes that include several targetable driver genes such as ERBB2, ERBB3, KRAS, PIK3CA, and BRAF. Importantly, several of the ERBB2 mutations observed are known to be oncogenic and targetable\(^\text{15}\) and patients with such mutations are candidates for targeted HER2 therapy. Analysis of exome and RNA-seq data identified recurrent alterations in KEAP1/NFE2L2 and WNT pathways. Cancer vaccines or checkpoint inhibitors have not been approved for treating gallbladder cancers. We have identified neoantigens from several mutated GBC genes including ELF3, ERBB2, and TP53 and found that they were capable of T-cell activation indicating that they are potential cancer vaccine candidates. Further, we have identified GBC samples with MSI and they likely are candidates for checkpoint inhibitor therapy\(^\text{46}\). Together these findings provide an opportunity for testing immunotherapy in gallbladder cancer.

![Fig. 4 Tumor-infiltrating lymphocyte cluster (TIL) in GBC samples. a RNA-seq based determination of cell types and TIL clusters in GBC samples. TIL cluster and their CD8+ T-cell score (b, n = 115), LAG-3 expression (c, n = 115), and micro vascular (mv) endothelial cells score (d, n = 115). Boxes indicate the interquartile range (IQR); center line, median; whiskers, lowest and highest values within 1.5×IQR from the first and third quartiles, respectively. e Kaplan-Meier survival plot of GBC samples based on mv endothelial cell score quartiles (n = 21 each arm). Log-rank test p values are presented for each group (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001).](https://doi.org/10.1038/s41467-020-17880-4)
Overall, our study significantly expands on previous genomic studies providing a comprehensive genomic view of GBCs. Specifically, we identify actionable alterations in over 20% of our cases (Supplementary Fig. 20 and Supplementary Table 4). There are no targeted therapies approved for GBC and current standard-of-care for GBC involves surgery, chemotheraphy, and radiation-therapy. Incorporating genomic analysis as part of GBC patient care in the clinic will help improve outcomes through use of approved targeted therapies. Also, the GBC molecular alterations reported in this study and others5–9 are an opportunity for development of new therapies.

Methods

Samples, DNA and RNA preps. In this study, we analyzed 167 human primary GBC samples as well as 39 non-GBC samples and the corresponding matched normal tissue in most cases using exome-seq, and/or low-pass whole-genome sequencing and/or RNA-seq (Supplementary Table 1). Fresh frozen samples used in the study were obtained from patients undergoing extirpative surgery for GBC. This study was conducted with IRB approval (Pontificia Universidad Católica de Chile IRB, Institutional Human Ethics Committee of Jiwaji University (India) and Seoul National University Hospital IRB (Seoul)) and written patient informed consent. Human tissue samples were de-identified prior to their shipment and analysis and are not considered human subject research under the US Department of Human and Health Services regulations and related guidance (45 CFR Part 46). Basic demographic information for the patient samples in the study, where available, is included in Supplementary Data 1. Tissue processing as well as simultaneous extraction of high-quality genomic DNA and total RNA from the same samples were performed as previously described7. The study also included GBC cell lines TGBC2TKB, TGBC2TKB, G-415 (RIKEN Bio Resource Center, Ibaraki, Japan), OCUG-1 (Health Science Research Resources Bank, Osaka, Japan), SNU-308 (Korean Cell Line Bank, Seoul, Korea), GBC cell lines TGBC2TKB, TGBC2TKB, G-415 (RIKEN Bio Resource Center, Ibaraki, Japan), OCUG-1 (Health Science Research Resources Bank, Osaka, Japan), SNU-308 (Korean Cell Line Bank, Seoul, Korea), GB-d1 (From Dr. Masao Tanaka’s lab, Japan)8.

Exome capture and sequencing. Using the Agilent SureSelect Human All Exome kit (50 Mb), we generated libraries and sequenced them on HiSeq 2500/4000 (Illumina, CA) to generate 2 × 75 bp paired-end data. We obtained a targeted mean coverage of 93× with 93% bases covered at ≥10x (Supplementary Data 2).

Whole-genome sequencing. Low pass whole-genome sequencing (Illumina, CA) data (an average of 2.3x) for tumors and matched normal samples were obtained using whole-genome libraries were prepared according to manufacture’s instructions (Illumina, CA).

Sequence data processing. We evaluated all sequencing reads for quality using BioConductor ShortRead package49. Sample identities were confirmed by comparing exome and RNA-Seq data variants for concordance. We performed an

Fig. 5 KEAP1/NFE2L2 pathway activation in GBC. Schematics of alterations in NFE2L2 (a), KEAP1 (b), CUL3 (c) from exome, and RNA-seq splicing events (n = 166). d Hierarchical clustering of GBC samples based on 27 NFE2L2 downstream target genes. Color bars at top of heatmap indicate alterations in NFE2L2, KEAP1, CUL3, ARID2, pathway activation status, and pathway activation score for samples with RNA-seq and paried exome data (n = 101). e RNA-seq estimated levels for M2 and M1 macrophages for NRF2+/NRF2− samples (two-tailed Mann-Whitney test). f Kaplan–Meier survival plot of NRF2−/NRF2 + samples. Log-rank p values are represented for each group.
Nrf2 signaling (yellow) or copy number loss (black).

Using BWA software\(^5\) set to default parameters. Local realignment, variant calling tumor-normal pairing.

Signaling (\(N\)ATURE \(C\)OMMUNICATIONS| 2020) 11:4225 | https://doi.org/10.1038/s41467-020-17880-4 | www.nature.com/naturecommunications

Fig. 6 Integrated analysis of pathway alterations observed in GBC. Alterations in the WNT (a), SWI/SNF (b), RAS/Pi3K (c), ETS signaling (d), Nrf2 Signaling (e), and p53/Rb1 (f) pathways. Smooth edge rectangles indicate genomically altered genes; bars indicate frequency of genomic alterations by origin (blue, Korea \(n = 94\)); red, Chile \(n = 9\); green, India \(n = 64\)). Horizontal lines within bars indicate frequency of mutations (green), fusions (yellow) or copy number loss (black).

Evaluation of mutations using simulation. A database of all possible non-synonymous mutations (~70 million) within our exome targets was generated and classified into one of six mutation types, \(C\):\(G\) \(\rightarrow\) \(C\):\(G\), \(C\):\(G\) \(\rightarrow\) \(A\):\(T\), \(C\):\(G\) \(\rightarrow\) \(T\):\(A\), \(T\):\(A\) \(\rightarrow\) \(A\):\(T\), \(T\):\(A\) \(\rightarrow\) \(C\):\(G\) or \(T\):\(A\) \(\rightarrow\) \(G\):\(C\). We assessed the functional impact of each mutation using PolyPhen\(^5\), SIFT\(^5\), and Condel\(^6\). Mutations were classified as deleterious when at least two of the three methods employed showed that they had an adverse functional impact. Monte Carlo simulations were performed to assess if the observed ELF mutations differed from randomly generated mutations as described previously\(^4\).

Mutational signatures. GBC exome sequence data was analyzed for the frequency of the possible 96 mutation types as described recently\(^1\). TCGA exome data for 2437 samples from 8 other cancer from SomaticCancerAlterations Bioconductor package and two small cell lung cancer studies\(^6\) was also included in the analysis. We detected a set of six common signatures using Non-Negative Matrix Factorization across the combined data set. Using the mutSignature\(s\) (https://cancer.sanger.ac.uk/cosmic/signatures)\(^{\chi 2}\) package\(^6\) we compared our signatures to that reported in COSMIC\(^{\chi 2}\) version 2. We also repeated the analysis after removing the MSI samples (Supplementary Fig. 5).

Mutational significance and hotspot meta-analysis. We evaluated the mutational significance of genes using MusiC\(^6\). Given their outlier mutation rate, MSI samples were excluded from this calculation. \(Q\)-scores were calculated by taking the negative log\(_{10}\) of the CRT \(q\)-values produced by MusiC and SMGs were selected with a minimum \(q\)-score of 1. Germline variants of interest were considered for the following genes: \(BRC\)A1, \(BRC\)A2, \(TP\)53, \(MEN\)1, \(ML\)H1, \(MS\)H2, \(MS\)H6, \(PM\)51, and \(PM\)62. Hotspot meta-analysis was performed as previously described\(^6\). For the hotspot meta-analysis, we compared GBC mutations to a previous pan-cancer analysis identifying high-confidence recurrent somatic mutations in
cancer. Hotspot mutations within the data set were matched by codon position within a gene.

RNA-seq data analysis. RNA-seq reads aligned to the human genome version GRCh38 using GSNAP were used to compute the gene level expression counts. This involved counting the number of reads aligning concordantly within a pair and uniquely to each gene locus using gene models defined by NCBI and Ensembl gene annotations, and ReSeq mRNA database. Variance stabilized expression values for plotting the expression heatmaps were computed using DESeq2. Unsupervised consensus clustering of top 400 most variable genes was performed using the variance stabilized expression values as input to the ConsensusPlus method implemented by the R package ConsensusClusterPlus.

Identification of transcript alterations. Analysis of splice variants was performed using the R/Bioconductor software package SGeQc version 1.8.1(D). We performed de novo prediction of gene models from aligned RNA-seq reads for 115 tumors and 4 cholangiocytes using default parameters. Splice variants were identified from gene models and quantified in terms of FPKM and relative usage PSI (percent spliced-in). PSI estimates with denominator < 10 were set to NA. Splice variants detected in gallbladder samples were also quantified in 9153 normal human tissue samples from the Genotype-Tissue expression (GTex) project15. To identify transcript alterations, we considered splice variants in 835 candidate genes and selected those with FPKM > 2 and PSI > 0.1 in at least one gallbladder sample, and FPKM = 0 in >99.8% of GTEx samples. Identified variants were called in gallbladder samples for which FPKM ≥ 2. FPKM-based criteria were required at both start and end of the splice variant. Alternative starts, ends and retained introns were excluded. Effect on protein-coding potential was assessed with respect to canonical transcript isoforms.

Low pass whole-genome copy number analysis. The genome was divided in 10 kb bins and the number of reads in each bin provided a count for the genomic bins. This was used to estimate copy number ratio by computing the log2 ratio of the tumor counts with the corresponding normal sample counts and adjusting for total number of reads for each sample. The copy number ratios were then segmented using circular binary segmentation (CBS) and the segments were used to prepare the pvcut R package16 using the parallel feature and running hclust with method ward.D2 using euclidean distance measurements. We then cut the tree for 5 clusters after visual inspection of the heatmap.

Gene fusion detection and validation. Putative fusions were identified using the computational pipeline we have developed called GSTRUCT-fusion15. Only fusion events that had at least 4 reads mapping to the fusion junction were included for further consideration. We then further manually curated the fusion results by removing events that are likely false positives.

Neoantigen prediction and immune editing. The seq2HLA program17 was used to assign HLA genotypes based on RNA-seq data using a P value cutoff of 0.01. Predicted neoantigens expression was confirmed using the RNA-seq data. The NetMHCcons algorithm from the IEDB software suite was used to perform simulations in which we randomly selected a single observed ELF3 mutation as non-binders between the two simulations using a two-sided Fisher test. Approximately 10,000 cells from each sample were sequenced using a 10x Genomics Chromium platform. Sequencing data was processed using CellRanger 1.1.0. xCell incorporates a novel method to remove dependencies between similar cell types and utilizes gene signatures for over 60 immune and stroma cell types to estimate the enrichment of each cell type in a tissue sample. We then performed hierarchical clustering using the pvcut R package using the parallel feature and running hclust with method ward.D2 using euclidean distance measurements. We then cut the tree for 5 clusters after visual inspection of the heatmap.

TCR repertoire analysis. Fastq files were trimmed to remove adapter sequences and low-quality reads using Trimmomatic. The clean fastq files were then analyzed using MiXCR to identify TCR clonotypes. Based on TCR clones, Shannon index was calculated using the R package vegan (https://cran.r-project.org/web/packages/vegan/).

Data availability

The Exome, RNA-Seq and WGS data are available through the European Genome Archive under accession EGAS00001003004 (TCR sequencing/expression data reported in Fig. 3k, e–i) can be obtained by contacting the Institutional data access committee gDAC:gbc@gene.com under an MTA that will allow the use of the TCR sequences for non-commercial research studies. All other relevant data are available in the article, supplementary information, or from the corresponding author upon reasonable request.

Received: 23 January 2020; Accepted: 23 July 2020; Published online: 24 August 2020
11. Cancer Genome Atlas Research, N. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014).

12. Cheung, L. W. et al. High frequency of PIK3R1 and PIK3R2 mutations in endometrial cancer elucidates a novel mechanism for regulation of PTEN protein stability. Cancer Discov. 1, 170–185 (2011).

13. Cancer Genome Atlas Research, N. et al. Integrated genomic characterization of endometrial carcinoma. Nature 497, 67–73 (2013).

14. Kaur, E. S. et al. Performance evaluation for rapid detection of pan-cancer microsatellite instability with MANTIS. Oncotarget 8, 7452–7463 (2017).

15. Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Campbell, P. J., & Stratton, M. R. Deciphering signatures of mutational processes operative in human cancer. Cell Rep. 3, 246–259 (2013).

16. Yachida, S. et al. Genomic sequencing identifies ELF3 as a driver of ampuillary carcinoma. Cancer Cell 29, 229–240 (2016).

17. Gingras, M. C. et al. Ampullary cancers harbor ELF3 tumor suppressor gene mutations and exhibit frequent WNT dysregulation. Cell Rep. 14, 907–919 (2016).

18. Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nature 513, 105–109 (2014).

19. Cancer Genome Atlas Research, N. Comprehensive molecular characterization of endometrial carcinoma. Nature 497, 67–73 (2013).

20. Ojesina, A. I. et al. Landscape of genomic alterations in cervical carcinomas. Nat. Genet. 46, 573–582 (2014).

21. Wang, K. et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat. Genet. 46, 573–582 (2014).

22. Kobayashi, E. H. et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat. Commun. 7, 11624 (2016).

23. Kavuri, S. M. et al. HER2 activating mutations are targets for colorectal cancer treatment. Cancer Discov. 5, 832–841 (2015).

24. Ramensky, V., Bork, P. & Greenberg, P. D. Antigen-specific MHC class I peptide binding motif prediction. Immunogenetics 57, 225–233 (2005).

25. Riaz, N. et al. Tumor and microenvironment evolution during Immunotherapy with Nivolumab. Cell 171, 934–949 e916 (2017).

26. Aran, D., Hu, Z. & Butte, A. J. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 18, 229 (2017).

27. Kobayashi, E. H. et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat. Commun. 7, 11624 (2016).

28. Lee, M. C., Yang, Y. C., Chen, Y. C. & Huang, S. C. Muscarinic receptor M3 is a prognostic factor in epithelioid malignant pleural mesothelioma. J. Biol. Chem. 289, 3894–3900 (2014).

29. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 404–410 (2012).

30. Gao, J. et al. Integrative analysis of complex cancer genomes and clinical profiles using the cBioPortal. Sci. Signal. 6, p3 (2013).

31. Andreeva, A. et al. String 10: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 40, D424–D431 (2012).

32. Setubal, J. C. et al. Comparison of protein similarity search algorithms. J. Bioinform. Comput. Biol. 3, 811–832 (2005).

33. Zhong, H. et al. Upregulated LASP-1 correlates with a malignant phenotype and its potential therapeutic role in human cholangiocarcinoma. Tumour Biol. 37, 8305–8315 (2016).

34. Zhang, H. et al. Identification of a novel prognostic marker in invasive ductal breast cancer. Breast Cancer Res. Treat. 155, 941–954 (2016).

35. Andreeva, A. et al. String 10: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 40, D424–D431 (2012).

36. Wu, T. D. & Nacu, S. Fast and SNP-tolerant detection of complex variants and annotation and optimization of cell content in frozen tissue specimens. Biotechn. Histochem. 93, 1598–1609 (2018).

37. Kavuri, S. M. et al. HER2 activating mutations are targets for colorectal cancer treatment. Cancer Discov. 5, 832–841 (2015).

38. Ramensky, V., Bork, P. & Greenberg, P. D. Antigen-specific MHC class I peptide binding motif prediction. Immunogenetics 57, 225–233 (2005).

39. Riaz, N. et al. Tumor and microenvironment evolution during Immunotherapy with Nivolumab. Cell 171, 934–949 e916 (2017).

40. Aran, D., Hu, Z. & Butte, A. J. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 18, 229 (2017).

41. Cornelissen, R. et al. Ratio of intratumoral macrophage phenotypes is a prognostic factor in epithelioid malignant pleural mesothelioma. PLoS One 9, e106742 (2014).

42. Bolger, A. M., Lohse, M. & Usadel, B. Trimmmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Acknowledgements

The authors would like to acknowledge Genentech NGS lab and Bioinformatics groups for their help with the project. We also thank Dr. Ruchi Chaudhary, MedGenome, for bioinformatics support. A.P. was supported by NIH Grant R01CA184165 and NCI’s Clinical Proteomic Tumor Analysis Consortium Initiative U24CA210985. P.K.T was supported by grants from DST-SERB, Govt. of India.

Author contributions

A.P. and S.S. conceived the project. A.P. supervised sample processing, data interpretation and manuscript writing. E.W.S performed data analysis and wrote manuscript. S.D. performed RNA-seq, fusion, copy number analysis and co-wrote manuscript. H.G. supervised sample collection, processing, data interpretation and co-wrote manuscript. L.D.G. performed RNA-Seq splicing analysis and co-wrote the manuscript. M.S.S. performed variant analysis, immune microenvironment analysis and data QC. M.A.B. collected tumors and blood samples and extracted DNA and RNA. S.K.S extracted DNA, RNA and sample QC. S.-W.K. acquired cancer and normal tissue samples, clinical data collection. S. P. genomics data collection. K.S. analyzed actionable GBC alterations. K. L. performed TCR repertoire analysis. S.C. genomics data collection. K. D. collected tumor tissue and blood. A.A.K. sample collection, storage and shipping. T.S. sample collection, storage and shipping. J.W. performed TCR repertoire analysis. S.C. genomics data collection. S.G. macro- and microscopic examination of the tissue samples. B.S.J. wet lab support. S.S.P. assisted with tumors and blood sample collection. L.D.G. performed RNA-Seq splicing analysis and co-wrote manuscript. J.-Y. J. de MedGenome Labs Pvt. The remaining authors have no competing interests.

Competing interests

E.W.S., L.D.G., S.C., B.S.J., Z.M and S.S hold shares/options in Roche. E.W.S., A.C, and K.S hold options in MedGenome Labs Pvt. The remaining authors have no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-17880-4.

Correspondence and requests for materials should be addressed to A.P., E.W.S., J.-Y.J. or S.S.

Peer review information Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020