Stimulation of Dmc1-mediated DNA strand exchange by the human Rad54B protein

Naoyuki Sarai1,2, Wataru Kagawa1, Takashi Kinebuchi1, Ako Kagawa1, Kozo Tanaka3, Kiyoshi Miyagawa4, Shukuko Ikawa5, Takehiko Shibata5, Hitoshi Kurumizaka1,6,* and Shigeyuki Yokoyama1,2,7,*

1RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan, 2Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, 3School of Life Sciences, University of Dundee, Wellcome Trust Biocentre, Dundee DD1 5EH, UK, 4Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, 5RIKEN Discovery Research Institute, Wako-shi, Saitama 351-0198, Japan, 6Graduate School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan and 7RIKEN Harima Institute at SPring-8, 1-1-1 Kohto, Mikazuki-cho, Sayo, Hyogo 679-5148, Japan

Received May 2, 2006; Revised July 18, 2006; Accepted July 19, 2006

ABSTRACT

The process of homologous recombination is indispensable for both meiotic and mitotic cell division, and is one of the major pathways for double-strand break (DSB) repair. The human Rad54B protein, which belongs to the SWI2/SNF2 protein family, plays a role in homologous recombination, and may function with the Dmc1 recombinase, a meiosis-specific Rad51 homolog. In the present study, we found that Rad54B enhanced the DNA strand-exchange activity of Dmc1 by stabilizing the Dmc1–single-stranded DNA (ssDNA) complex. Therefore, Rad54B may stimulate the Dmc1-mediated DNA strand exchange by stabilizing the nucleoprotein filament, which is formed on the ssDNA tails produced at DSB sites during homologous recombination.

INTRODUCTION

Chromosomal DNA is exposed to various DNA-damaging agents and sustains damage that induces genomic instability. A double-strand break (DSB) is caused by ionizing radiation, cross-linking reagents, oxidative stress and DNA replication failure. If the DSB is left unrepaired, then cell death occurs (1–4). Homologous recombination is one of the major DSB repair pathways. This repair pathway is essentially error-free, since a homologous region of the undamaged sister chromatid is used as the template for repair. In contrast to the mitotic DSB repair pathway, meiotic cell division involves homologous recombination between homologous chromosomes, but not between sister chromatids. This preferential recombination between homologous chromosomes is initiated by the formation of a programmed DSB and ensures correct chromosomal segregation at meiosis I through the formation of chiasmata, which physically connect homologous chromosomes (5,6). Thus, homologous recombination is important to maintain the integrity of the chromosome in both mitotic and meiotic cells.

In homologous recombination, a single-stranded DNA (ssDNA) tail, produced at the DSB site, is incorporated into a nucleoprotein complex called the presynaptic filament. This presynaptic filament catalyzes homologous pairing and strand exchange with an intact homologous region of the double-stranded DNA (dsDNA) molecule. The bacterial RecA protein is known to form helical presynaptic filaments and to play central roles in homologous recombination (7–12). In eukaryotes, two homologs of RecA, the Rad51 and Dmc1 proteins, which are conserved from yeast to human, are assumed to fulfill this role. Rad51 is expressed in both meiotic and mitotic cells, whereas the expression of Dmc1 is restricted to meiotic cells (13–16). Although previous biochemical studies demonstrated that Rad51 and Dmc1 have recombinational activities similar to those of RecA (17–22), other studies have also revealed that many ancillary factors, such as replication protein A (RPA), Rad52 and Rad54, significantly affect the activities of Rad51 and Dmc1 (23,24).

Rad54 is a member of the SWI2/SNF2 family of proteins, which have DNA-dependent ATPase activities and are involved in chromatin remodeling (25–31). Genetic studies revealed that Rad54-deficient cells are sensitive to DNA-damaging agents, such as ionizing radiation, methyl methane-sulfonate (MMS) and mitomycin C (32). Rad54 utilizes the free energy from ATP hydrolysis to generate superhelical
torsion into dsDNA by translocating on the DNA (33,34). Furthermore, yeast Rad54 promotes the assembly and disassembly of the Rad51 nucleoprotein filament, and both yeast and human Rad54 stimulate the Rad51-mediated homologous pairing activity by directly binding to Rad51 (35–37).

Recent studies showed that the human Rad54B protein, a homolog of Rad54, interacts with the human Rad51 and Dmc1 proteins, and stimulates the homologous pairing activity mediated by these proteins (22,28). Similar to Rad54, human Rad54B is a DNA-dependent ATPase (39) and is expressed in both mitotic and meiotic cells (40). However, genetic studies revealed that human Rad54B-deficient cells are not overly sensitive to ionizing radiation, MMS and cisplatin (41). Furthermore, the human Rad54B-deficient cells are also proficient in mitotic sister chromatid exchange (41). On the other hand, a severe reduction in targeted integration frequency was detected in the Rad54B-deficient cells (41). These characteristics are different from those of Rad54, indicating that Rad54B may have a unique role in homologous recombination.

To understand the function of Rad54B in homologous recombination, in the present study, we purified the human Rad54B protein, which was overexpressed in insect cells and biochemically characterized it. The purified Rad54B protein bound to the ATPase domain of Dmc1. Furthermore, Rad54B stimulated the DNA strand exchange mediated by Dmc1 and stabilized the Dmc1–ssDNA complex. Therefore, Rad54B may stimulate the Dmc1-mediated strand exchange by stabilizing the Dmc1–ssDNA nucleoprotein filament during homologous recombination.

MATERIALS AND METHODS

Protein purification

The human Rad54B cDNA was subcloned from pFastBac HTC (Invitrogen) into pFastBac 1 (Invitrogen), and a recombinant human Rad54B baculovirus was generated as described previously (39). High Five insect cells were infected with human Rad54B at a multiplicity of infection of 1, and were harvested after 72 h. The cells were resuspended in buffer A (pH 7.5), containing 50 mM Tris–HCl, 0.6 M KCl, 2 mM 2-mercaptoethanol (2ME), 10% sucrose and 10 mM EDTA, and were disrupted by sonication. The cell debris was removed by centrifugation for 40 min at 100,000 g, and the lysate was treated with ammonium sulfate (0.21 g/ml). The protein precipitate was redissolved in 50 ml of buffer B (pH 7.5), containing 20 mM HEPES–KOH, 0.5 mM EDTA, 2 mM 2ME, 10% glycerol and 0.01% NP-40, and was loaded on to a 1 ml hydroxyapatite column. The column was washed with 20 CV of buffer D and was eluted with a 20 CV linear gradient from 20 to 300 mM potassium phosphate. The peak fractions of the Rad54B proteins were collected, dialyzed against buffer B and stored at −80°C.

The human Rad54B protein was purified as described previously (42), with the inclusion of a spermidine precipitation purification step. Briefly, after the removal of the His6-tag, the Rad51 protein was dialyzed at 4°C against buffer E (pH 7.5), containing 100 mM Tris–acetate, 7 mM spermidine HCl and 5% glycerol. The Rad51 precipitate was collected by centrifugation and resuspended in buffer F (pH 7.0), which contained 100 mM potassium phosphate, 0.15 M NaCl, 1 mM EDTA, 2 mM 2ME and 10% glycerol, and was purified on a 1 ml Mono Q column (GE Healthcare) as described previously.

The human Dmc1, Dmc182–340 and RPA proteins were purified as described previously (43–45). The concentrations of the purified proteins were determined with a Bio-Rad protein assay kit, using BSA as the standard.

DNA substrates

The φX174 circular ssDNA (5386 bases) and replicative form I DNA were purchased from New England Biolabs and Life Technologies. For the assays of strand exchange and protein transfer between DNA molecules, the replicative form I DNA was linearized with ApaLI. To perform the gel mobility shift assay for the protein transfer between ssDNA molecules, the φX174 circular ssDNA was cut to ~500 base fragments by an incubation at 98°C. The 120mer oligonucleotide, called SAT-120 (5'–ATTTC TTCTT TTCTT GCTAG ACAGA AGAAT TCTCA GTAAC TTCTT TGTGC TGTGT GTATT CAACT 3'), was used in the pull down assay for the protein transfer between ssDNA molecules. All DNA concentrations are expressed as molar nucleotide concentrations.

Protein–protein binding assay

Rad51, Dmc1, Dmc182–340 and BSA were covalently conjugated to Affi-Gel 15 beads (100 µl; Bio-Rad), according to the manufacturer’s instructions. The unbound proteins were removed by washing the beads for five times with binding buffer G (pH 7.5), which contained 20 mM HEPES–KOH, 0.15 M KCl, 0.5 mM EDTA, 2 mM 2ME, 10% glycerol and 0.05% Triton X-100. To block the residual active ester sites, ethanolamine (pH 8.0) was added to a final concentration of 100 mM, and the resin was incubated at 4°C for 1 h. After washing the resin three times with 500 µl of buffer G, the Affi-Gel 15-protein matrices were adjusted to 50% slurries with buffer G and were stored at 4°C.

For the binding assay, the Affi-Gel 15-protein slurry (20 µl) was mixed with 20 µg of Rad54B at room temperature for 2 h. The Affi-Gel 15-protein beads were then washed five
times with 500 μl of buffer G. SDS–PAGE sample buffer (2-fold) was mixed directly with the washed beads. After heating the mixture at 98°C for 5 min, the proteins were fractionated by 4–20% gradient SDS–PAGE. Bands were visualized by Coomassie brilliant blue staining.

Immunoprecipitation experiments
The human Dmc1 and Rad54B cDNA were subcloned into the same pFastBac Dual vector (Invitrogen), and a recombinant baculovirus containing both the Dmc1 and Rad54B genes was generated as described previously. S9 insect cells were infected with this baculovirus, and were harvested after 48 h. The cells were then resuspended in buffer G, and were disrupted by sonication. The resulting cell lysate was incubated with 10 μl of anti-Dmc1 or Rad54B antibody conjugated to rProtein A–Sepharose Fast Flow (GE Healthcare) at 4°C for 1 h. The beads were washed five times with 500 μl of phosphate-buffered saline containing 1% NP-40, and were eluted by the addition of SDS–PAGE sample buffer (2-fold). The eluted fractions were separated by 4–20% gradient SDS–PAGE, and were blotted on to a polyvinylidene fluoride membrane. The proteins transferred on the membrane were analyzed by immunoblotting. The rabbit anti-Dmc1 antibody was prepared in this study, and the preparation of the rabbit anti-Rad54B antibody was described previously (46).

DNA strand exchange assay
All of the experiments were performed in a final volume of 10 μl of buffer H, containing 35 mM Tris–HCl (pH 7.8), 1 mM DTT, 2 mM ATP, 2.5 mM MgCl₂, 20 mM creatine phosphate and 75 μg/ml creatine kinase. The reactions were started by incubating 7.5 μM Dmc1 with 30 μM ψX174 circular ssDNA at 37°C for 5 min. Then, 2 μM RPA and 200 mM KCl were added, and after a 5 min incubation at 37°C, 22 μM ψX174 linear dsDNA and 0.025–1.6 μM Rad54B were incorporated to initiate the reaction. After incubations at 37°C for the indicated times, the reactions were terminated by the addition of 0.5% SDS and 750 μg/ml proteinase K, followed by an incubation at 37°C for 20 min. After 10-fold loading dye was added, the products were resolved by 1% agarose gel electrophoresis in TAE buffer at 3.3 V/cm for 2.5 h, and were visualized by staining with ethidium bromide.

Protein transfer assay (1): using biotinylated-ssDNA molecules and streptavidin beads
Dmc1 (5 μM) was incubated for 5 min at 37°C with 20 μM SAT-120 (120mer) labeled with biotin at the 5’ end, in 80 μl of buffer I, containing 35 mM Tris–HCl (pH 7.8), 1 mM DTT, 2 mM ATP and 2.5 mM MgCl₂. The reaction mixture was then divided in two, and a 5 μl aliquot of Rad54B (200 nM) or buffer B was added. After an incubation at 37°C for 5 min, a 5 μl aliquot of ψX174 circular ssDNA (2 mM) was added, and the reaction was incubated at 37°C for 2 h. The DNA–protein complexes were captured with 50 μl of ImmunoPure Immobilized Streptavidin Gel (PIERCE) equilibrated with buffer 1 with 0.1% Triton X-100. After an incubation at 4°C for 1 h, the reaction mixture was divided into the beads and the supernatant by centrifugation. After adding 2-fold SDS–PAGE sample buffer and heating the mixture at 98°C for 5 min, the supernatant was fractionated by 4–20% gradient SDS–PAGE. Bands were visualized by Coomassie brilliant blue staining.

Protein transfer assay (2): resolving protein–DNA complexes on agarose gels
For the assay, 10 μM Dmc1 was incubated with 20 μM ψX174 circular ssDNA at 37°C for 5 min, in 80 μl of buffer H. The reaction mixture was then divided in two, and a 5 μl aliquot of Rad54B (200 nM) or buffer B was added. After an incubation at 37°C for 5 min, these mixtures were incubated with various concentrations of ψX174 ssDNA fragments (0–200 μM) at 37°C for 2 h. After 10-fold loading dye was added, the products were resolved by 1% agarose gel electrophoresis in TAE buffer at 3.3 V/cm for 2.5 h and were visualized by staining with ethidium bromide.

Electron microscopic analysis
Dmc1 (10 μM) was incubated with 15 μM SAT-120 (120mer) at 37°C for 5 min, in 10 μl of buffer J, containing 25 mM Tris–HCl (pH 7.5), 1 mM DTT, 2 mM ATP and 5 mM MgCl₂. Then, 200 mM KCl was added, and after a 5 min incubation at 37°C, 0.4 μM Rad54B was incorporated. The protein–DNA complexes were fixed with 0.2% glutaraldehyde at 37°C for 10 min. After a 100-fold dilution with buffer J, the reaction mixture was negatively stained with 2% uranyl acetate. The complexes were observed with a JEOL JEM 2000FX electron microscope.

RESULTS
Purification of Rad54B and its interactions with Rad51 and Dmc1
First, we examined whether Rad54B physically interacts with Rad51 and Dmc1, because recent studies revealed that Rad54B interacts with these proteins (22,38), in contrast to our previous results (39). To do so, we newly subcloned Rad54B into pFastBac1, which lacks a His₆-tag site, and employed an improved Rad54B purification method. Rad54B was expressed in baculovirus-infected High Five insect cells. The cell lysate was treated with ammonium sulfate (Figure 1A, lane 2). The precipitate was redissolved and further purified by phosphocellulose column chromatography (Figure 1A, lane 3), Q-Sepharose column chromatography (Figure 1A, lane 4), SP-Sepharose column chromatography (Figure 1A, lane 5) and hydroxyapatite column chromatography (Figure 1A, lane 6). About 1 mg of purified Rad54B was obtained from 3 liters of High Five insect cell suspension culture.

To examine the interaction, Rad51 and Dmc1, separately conjugated on Affigel 15 beads (Rad51-beads and Dmc1-beads, respectively), were incubated with purified Rad54B, and the protein bound to either the Rad51 beads or the Dmc1 beads was detected by SDS–PAGE. As shown in Figure 1B, Rad54B interacted with both Dmc1 and Rad51 (lanes 3 and 4). These results are consistent with the previous data (22,38,46). Furthermore, Rad54B interacted with a Dmc1 mutant (Dmc1Δ82-340) lacking 81 amino acid residues.
Dmc1 and lane 5 is the Affi-Gel 15 matrix conjugated with Dmc182–340. The conjugated with Rad51, lane 4 is the Affi-Gel 15 matrix conjugated with Affi-Gel 15 matrix conjugated with BSA, lane 3 is the Affi-Gel 15 matrix the molecular mass markers. (Rad54B was mixed with either Rad51, Dmc1 and Dmc1 82–340. Rad54B was co-precipitated (Figure 1C, lane 3). Similarly, Rad54B was co-precipitated by anti-Dmc1 antibody-conjugated beads (Figure 1C, lane 6). Therefore, these results demonstrate that Rad54B and Dmc1 can interact in living cells.

Stimulation of the Dmc1-mediated DNA strand exchange by Rad54B

We next examined whether Rad54B affects the DNA strand exchange activity of Dmc1. In this assay, ϕX174 circular ssDNA and homologous linear dsDNA were used as substrates (Figure 2A), and the reactions were conducted in the presence of RPA. Dmc1 was first incubated with ssDNA, and then dsDNA was added into the reaction mixture (standard procedure, Figure 2B, lane 2). A nicked circular duplex is generated when complete strand transfer takes place (Figure 2A). Rad54B itself did not promote strand exchange (Figure 2B, lane 7). When Rad54B was added to the reaction mixture along with the linear dsDNA substrate in the standard procedure, the Dmc1-mediated strand exchange was significantly enhanced (Figure 2B–E). In the experiments presented here, we observed that only sub-stoichiometric amounts of Rad54B (0.025 M) were required to stimulate the Dmc1-mediated strand exchange (7.5 μM Dmc1). Therefore, Rad54B may act as a trigger in the conversion of the Dmc1–DNA complex from an inactive to an active form.

Rad54B stabilizes the Dmc1–ssDNA complex

Mazin et al. (52) demonstrated that Rad51 filaments on ssDNA are stabilized by Rad54, and proposed that this is essential for the stimulation of the Rad51-mediated strand exchange. We therefore investigated whether Rad54B stabilizes the Dmc1–ssDNA complex, by monitoring the transfer of Dmc1 molecules preassembled on ssDNA to a competitor DNA, using two different experimental procedures.

First, we performed a pull down assay using biotinylated DNA and streptavidin beads. In this assay, Dmc1 was assembled on a biotinylated 120mer ssDNA (SAT-120), and was incubated in the presence or absence of Rad54B, followed by the addition of ϕX174 circular ssDNA as a competitor. After SAT-120 was immobilized on the streptavidin beads, the reaction mixture was divided into the beads and the supernatant (Figure 3A). The supernatant was fractionated on a 4–20% gradient SDS–PAGE gel (Figure 3B). When we performed this assay without competitor DNA, there was essentially no Dmc1 detected in the supernatant (data not shown), indicating that Dmc1 was bound to SAT-120. In the presence of competitor DNA, Dmc1 was detectable in the supernatant, indicating that Dmc1 transferred from the preassembled Dmc1–ssDNA complex to the competitor DNA. The amount of Dmc1 transferred in the presence of Rad54B was ~3-fold from the N-terminus (Figure 1B, lane 5). The region encompassing amino acids 82–340 of Dmc1 corresponds to the core ATPase domain (45), which is structurally conserved among the RecA-family proteins, such as eukaryotic Rad51 and Dmc1 (43,47,48), archaeal RadA (49,50) and bacterial RecA (51). Therefore, data suggest that the core ATPase domains of Rad51 and Dmc1 are a common target for Rad54B binding. Notably, when we performed this assay using His6-tagged Rad54B purified according to the present purification method, which differs from that described previously (39), the same results were observed (data not shown). Hence, our previous result was not related to the His6-tag fused to the N-terminus of Rad54B. Instead, the difference was probably due to the difference in the purification methods.

To gain further evidence that Rad54B actually interacts with Dmc1, Rad54B and Dmc1 were co-expressed in Sf9 insect cells, and immunoprecipitation was performed. When the cell lysate was mixed with anti-Rad54B antibody-conjugated beads, Dmc1 co-precipitated (Figure 1C, lane 3). Similarly, Rad54B was co-precipitated by anti-Dmc1 antibody-conjugated beads (Figure 1C, lane 6). Therefore, these results demonstrate that Rad54B and Dmc1 can interact in living cells.

Figure 1. Rad54B purification and complex formation. (A) SDS–PAGE of the column fractions containing Rad54B. The proteins precipitated by ammonium sulfate (lane 2), the phosphocellulose peak fraction (lane 3), the Q-Sepharose flow-through (lane 4), the SP-Sepharose peak fraction (lane 5) and the hydroxyapatite peak fraction (lane 6) were fractionated on a 4–20% SDS–PAGE gel and stained with Coomassie brilliant blue. Lane 1 indicates the molecular mass markers. (B) Protein–protein interaction assay of Rad54B with Rad51, Dmc1 and Dmc182–340. Rad54B was mixed with either Rad51, Dmc1 or Dmc182–340 that was covalently conjugated to an Affi-Gel 15 matrix. After an incubation at room temperature, the Affi-Gel 15 matrices were washed with binding buffer, directly mixed with 2-fold SDS–PAGE sample buffer and fractionated on a 4–20% gradient SDS–PAGE gel. Lane 1 is one-tenth (2 μg) of the input proteins, lane 2 is the negative control using the Affi-Gel 15 matrix conjugated with BSA, lane 3 is the Affi-Gel 15 matrix conjugated with Rad51, lane 4 is the Affi-Gel 15 matrix conjugated with Dmc1 and lane 5 is the Affi-Gel 15 matrix conjugated with Dmc182–340. The bands were visualized by Coomassie brilliant blue staining. Notably, the Rad51, Dmc1 and Dmc182–340 proteins form multimers and thus, these proteins can indirectly associate with the Affi-Gel matrix via interactions with proteins crosslinked to the matrix. Rad51, Dmc1 and Dmc182–340 detected in lanes 3–5 represent fractions that were not covalently conjugated to the Affi-Gel beads. In contrast, BSA was not detected (lane 2), since BSA does not form multimers, and all proteins were covalently conjugated to the beads. (C) Immunoprecipitation (IP) experiments of Rad54B and Dmc1. Sf9 insect cells were infected with a baculovirus containing both the Dmc1 and Rad54B genes. The cells were lysed and subjected to immunoprecipitation with anti-Rad54B antibody (lane 3) or anti-Dmc1 antibody (lane 6). The precipitates were analyzed by immunoblotting. As negative control experiments, the cell lysate (lane 1) and the supernatant (lane 2) were also analyzed by immunoblotting. As negative control experiments, the cell lysate (lane 1) and the supernatant (lane 2) were also analyzed by immunoblotting.
less than that in the absence of Rad54B (Figure 3C), implying that Rad54B prevented the Dmc1–ssDNA complex from dissociating.

Second, a gel mobility shift assay was carried out to confirm that Rad54B actually stabilizes the Dmc1–ssDNA complex. Dmc1 was assembled on φX174 circular ssDNA, and was incubated in the presence or absence of Rad54B, followed by the addition of φX174 linear ssDNA fragments (~500 bases) as a competitor. In this assay, by monitoring the migration distance of the φX174 circular ssDNA, we investigated whether the transfer of Dmc1 occurred. In the absence of Rad54B, increasing the concentration of the competitor DNA resulted in the faster mobility of the Dmc1–ssDNA complex on the agarose gel (Figure 4, lanes 2–6). This result indicates that the Dmc1 had transferred from the preassembled Dmc1–ssDNA complex to the competitor DNA. In contrast, in the presence of Rad54B, the migration distances of the Dmc1–ssDNA–Rad54B complexes did not change upon titration with excess amounts of the competitor DNA, indicating that Rad54B inhibited the transfer of Dmc1 from the preassembled complex to the competitor DNA (Figure 4, lanes 7–11). Therefore, Rad54B stabilizes the Dmc1–ssDNA complex.

Rad54B associates with the terminus of the Dmc1–ssDNA helical filament

We next used electron microscopy to examine whether the nature of the Dmc1–ssDNA complex would change by the addition of Rad54B. In both the absence and presence of Rad54B, the Dmc1–ssDNA helical filament was observed (Figure 5A and B). However, in the presence of Rad54B, we observed Dmc1–ssDNA filaments with a mass of ~20 nm associated with the termini (Figure 5C, closed arrow). We did not detect such protein–DNA complexes without Rad54B, implying that Rad54B associated with the terminus of the Dmc1–ssDNA filament. Interestingly, Rad54 preferentially associates with the terminus of the
DISCUSSION

The yeast and human Rad54 proteins stimulate strand exchange by Rad51 (54,55), but, thus far, the activation of Dmc1-mediated strand exchange by the Rad54 homologs has not been reported. The present findings suggest that the human Rad54B protein stimulates the Dmc1-mediated strand exchange, probably through the stabilization of the presynaptic filament formed by ssDNA and Dmc1. Recent studies have shown that Rad54B enhances D-loop formation by Dmc1 (22,38). Taken together, Rad54B assists Dmc1 in the initial strand invasion step (homologous pairing), as well as in the extension of the heteroduplex region (strand exchange). To stabilize the Dmc1–ssDNA complex, catalytic amounts of Rad54B were sufficient. Consistent with this result, we observed that Rad54B associated with the termini of the Dmc1–ssDNA filament, by an electron microscopic analysis. These observations suggest that Rad54B may stabilize the Dmc1–ssDNA complex by interacting with the terminal region of the Dmc1–ssDNA complex.

How could Rad54B stabilize the Dmc1–ssDNA complexes? One possibility is that Rad54B could prevent the Dmc1–ssDNA nucleoprotein filament from disassembling by binding to one end of the filament. This may lead to the unidirectional assembly of the Dmc1–ssDNA nucleoprotein filament at the DSB site. The second possibility is that by physically interacting with Dmc1, Rad54B could alter the conformation of the Dmc1–ssDNA nucleoprotein filament from an inactive form to an active form. Multiple studies have indicated that the fundamental mechanism of Dmc1-mediated recombination is the same as that of the RecA homologs, suggesting that Dmc1 forms helical filaments when...
involved in the post-synaptic phase of recombination. Although the previous and present Rad54B results have suggested its involvement in the presynaptic phase of recombination, it is easy to imagine that Rad54B functions in the post-synaptic phase of recombination, such as Rad54. Further analyses of the effects of Rad54B on Dmc1 complexed with various DNA structures representing recombination intermediates may provide clues toward understanding the precise mechanism of the Rad54B-stimulated homologous recombination.

ACKNOWLEDGEMENTS

We thank R. Enomoto (RIKEN GSC), Y. Takizawa (Waseda University) and N. Nagashima (Waseda University) for technical assistance. This work was supported by the RIKEN Structural Genomics/Proteomics Initiative (RSGI), the National Project on Protein Structural and Functional Analyses, and Grants-in-Aid from the Japanese Society for the Promotion of Science (JSPS) and the Ministry of Education, Sports, Culture, Science, and Technology, Japan. Funding to pay the Open Access publication charges for this article was provided by RIKEN Genomic Sciences Center.

Conflict of interest statement. None declared.

REFERENCES

1. Whitaker, S.J. (1992) DNA damage by drugs and radiation: what is important and how is it measured? *Eur. J. Cancer*, 28, 273–276.
2. Cox, M.M., Goodman, M.F., Kreezer, K.N., Sherratt, D.J., Sandler, S.J. and Marians, K.J. (2000) The importance of repairing stalled replication forks. *Nature*, 404, 37–41.
3. Ward, J.F. (1994) The complexity of DNA damage: relevance to biological consequences. *Int. J. Radiat. Biol.*, 66, 427–432.
4. Caldecott, K.W. (2001) Mammalian DNA single-strand break repair: an X-rayed affair. *Bioessays*, 23, 447–455.
5. Kleckner, N. (1996) Meiosis: how could it work? *Proc. Natl Acad. Sci. USA*, 93, 8167–8174.
6. Keeney, S., Gitoux, C.N. and Kleckner, N. (1997) Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. *Cell*, 88, 375–384.
7. Shibata, T., DasGupta, C., Cunningham, R.P. and Radding, C.M. (1979) Purified *Escherichia coli* RecA protein catalyzes homologous pairing of superhelical DNA and single-stranded fragments. *Proc. Natl Acad. Sci. USA*, 76, 1638–1642.
8. McIntee, K., Weinstock, G.M. and Lehman, I.R. (1979) Initiation of general recombination catalyzed in vitro by the recA protein of *Escherichia coli*. *Proc. Natl Acad. Sci. USA*, 76, 2615–2619.
9. Cox, M.M. and Lehman, I.R. (1981) RecA protein of *Escherichia coli* promotes branch migration, a kinetically distinct phase of DNA strand exchange. *Proc. Natl Acad. Sci. USA*, 78, 3433–3437.
10. Cox, M.M. and Lehman, I.R. (1981) Directionality and polarity in RecA protein-promoted branch migration. *Proc. Natl Acad. Sci. USA*, 78, 6018–6022.
11. West, S.C., Cassuto, E. and Howard-Flanders, P. (1981) RecA protein promotes homologous-pairing and strand-exchange reactions between duplex DNA molecules. *Proc. Natl Acad. Sci. USA*, 78, 2100–2104.
12. Howard-Flanders, P., West, S.C. and Stasiak, A. (1984) Role of RecA protein spiral filaments in genetic recombination. *Nature*, 309, 215–219.
13. Bishop, D.K., Park, D., Xu, L. and Kleckner, N. (1992) DMC1: a meiosis-specific yeast homolog of *E.coli* RecA required for recombination, synaptonemal complex formation, and cell cycle progression. *Cell*, 69, 439–456.
14. Shinohara, A., Ogawa, H. and Ogawa, T. (1992) Rad51 protein involved in repair and recombination in *S.cerevisiae* is a RecA-like protein. *Cell*, 69, 457–470.
15. Shinohara,A., Ogawa,H., Matsuda,Y., Ushin,N., Ikeo,K. and Ogawa,T. (1997) Cloning of human, mouse and fission yeast recombination genes homologous to RAD51 and recA. *Nature Genet.*, 4, 239–243.

16. Habu,T., Taki,T., West,A., Nishimune,Y. and Morita,T. (1996) The mouse and human homologs of DMC1, the yeast meiosis-specific homologous recombination gene, have a common unique form of exon-skipped transcript in meiosis. *Nucleic Acids Res.*, 24, 470–477.

17. Sung,P. (1994) Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. *Science*, 265, 1241–1243.

18. Baumann,P., Benson,F.E. and West,S.C. (1996) Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in *vitro*. *Cell*, 87, 757–766.

19. Gupta,R.C., Bazemore,L.R., Golub,E.I. and Radding,C.M. (1997) Homologous recombination gene Rad51. *Proc. Natl Acad. Sci. USA*, 94, 463–468.

20. Li,Z., Golub,E.I., Gupta,R and Radding,C.M. (1997) Recombination of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. *Nature*, 385, 1175–1188.

21. Wesołowski,J., Agarwal,S., Sigurdsson,S., Bussen,W., Van Komen,S., Qin,J., Van Steeg,H., Van Benthem,J., Wessenaar,E., Baarends,W.M. et al. (2006) Differential contributions of mammalian Rad54 paralogs to recombination, DNA damage repair, and meiosis. *Mol. Cell. Biol.*, 26, 976–989.

22. Henricksen,L.A., Umbricht,C.B. and Wold,M.S. (1994) Recombinant replication protein A: expression, complex formation, and functional characterization. *J. Biol. Chem.*, 269, 11121–11126.

23. Henricksen,L.A., Lo,T., Yu,D.S., Shivji,M.K., Hitomi,C., Arvai,A.S. et al. (2004) Crystal structure of a Rad51 recombinational DNA repair protein. *Nature*, 429, 433–437.

24. Alexiadis,V. and Kadonaga,J.T. (2002) Strand pairing by Rad54 and homologous recombination. *Nature Struct. Mol. Biol.*, 9, 366–374.

25. Alexiadis,V., Lusser,A. and Kadonaga,J.T. (2004) A conserved N-terminal motif in Rad54 is important for chromatin remodeling and control by BRCA2. *Nature Struct. Mol. Biol.*, 11, 791–796.

26. Henricksen,L.A., Umbricht,C.B. and Wold,M.S. (1994) Recombination protein A: expression, complex formation, and functional characterization. *Nature*, 385, 1175–1188.

27. Alexiadis,V. and Kadonaga,J.T. (2002) Strand pairing by Rad54 and homologous recombination. *Nature Struct. Mol. Biol.*, 9, 366–374.

28. Alexeev,A., Mazin,A. and Kowalczykowski,S.C. (2003) Rad51 protein possesses chromatin-remodeling activity stimulated by the Rad51-ssDNA nucleoprotein filament. *Nature Struct. Mol. Biol.*, 10, 182–186.

29. Alexiadis,V. and Kadonaga,J.T. (2002) Strand pairing by Rad54 and homologous strand exchange by yeast RAD51 protein. *Nature*, 420, 287–293.

30. Alexeev,A., Mazin,A. and Kowalczykowski,S.C. (2003) Rad54 protein possesses chromatin-remodeling activity stimulated by the Rad51-ssDNA nucleoprotein filament. *Nature Struct. Mol. Biol.*, 10, 182–186.

31. Alexiadis,V., Lusser,A. and Kadonaga,J.T. (2004) A conserved N-terminal motif in Rad54 is important for chromatin remodeling and homologous strand pairing. *J. Biol. Chem.*, 279, 27824–27829.

32. Alexeev,A., Mazin,A. and Kowalczykowski,S.C. (2003) Rad54 protein possesses chromatin-remodeling activity stimulated by the Rad51-ssDNA nucleoprotein filament. *Nature Struct. Mol. Biol.*, 10, 182–186.

33. Alexeev,A., Mazin,A. and Kowalczykowski,S.C. (2003) Rad54 protein possesses chromatin-remodeling activity stimulated by the Rad51-ssDNA nucleoprotein filament. *Nature Struct. Mol. Biol.*, 10, 182–186.

34. Alexeev,A., Mazin,A. and Kowalczykowski,S.C. (2003) Rad54 protein possesses chromatin-remodeling activity stimulated by the Rad51-ssDNA nucleoprotein filament. *Nature Struct. Mol. Biol.*, 10, 182–186.

35. Alexeev,A., Mazin,A. and Kowalczykowski,S.C. (2003) Rad54 protein possesses chromatin-remodeling activity stimulated by the Rad51-ssDNA nucleoprotein filament. *Nature Struct. Mol. Biol.*, 10, 182–186.
57. Bugreev, D.V., Golub, E.I., Stasiak, A.Z., Stasiak, A. and Mazin, A.V. (2005) Activation of human meiosis-specific recombinase Dmc1 by Ca2+. J. Biol. Chem., 280, 26886–26895.

58. Sauvageau, S., Stasiak, A.Z., Banville, I., Ploquin, M., Stasiak, A. and Mason, J.Y. (2005) Fission yeast rad51 and dmc1, two efficient DNA recombinases forming helical nucleoprotein filaments. Mol. Cell. Biol., 25, 4377–4387.

59. Passy, S.I., Yu, X., Li, Z., Radding, C.M., Masson, J.Y., West, S.C. and Egelman, E.H. (1999) Human Dmc1 protein binds DNA as an octameric ring. Proc. Natl Acad. Sci. USA, 96, 10684–10688.

60. Amitani, I., Baskin, R.J. and Kowalczykowski, S.C. (2006) Visualization of Rad54, a chromatin remodeling protein, translocating on single DNA molecules. Mol. Cell, 23, 143–148.