Orthospectra of Geodesic Laminations and Dilogarithm Identities on Moduli Space

Martin Bridgeman

March 4, 2009

Abstract

Given a measured lamination λ on a finite area hyperbolic surface we consider a natural measure M_λ on the real line obtained by taking the push-forward of the volume measure of the unit tangent bundle of the surface under an intersection function associated with the lamination. We show that the measure M_λ gives summation identities for the Rogers dilogarithm function on the moduli space of a surface.

1 Introduction

Let S be a closed hyperbolic surface and λ a geodesic lamination on S. We let Ω be the volume measure on the unit tangent bundle $T_1(S)$. We let $\alpha(v)$ be the longest geodesic arc containing v as a tangent vector and which does not intersect λ transversely in its interior. Generically $\alpha(v)$ will be a geodesic arc with endpoints on λ.

We define the function $L : T_1(S) \to \overline{\mathbb{R}}$ by letting $L(v) = \text{Length}(\alpha(v))$. We note that $L(v)$ is measurable but can be infinite. We define measure M_λ on the real line by $M_\lambda = L_*\Omega$. Then M_λ is a measure describing the distribution of the lengths of $\alpha(v)$.

We cut S along λ to obtain a surface with boundary denoted S_λ. A $\lambda-$cusp of S is an ideal vertex of a component of S_λ. We let N_λ be the number of $\lambda-$cusps of S. We denote by $\{\alpha_i\}$ the geodesic arcs in S_λ which have endpoints perpendicular to $\partial S_\lambda \subseteq \lambda$ and denote the length of α_i by l_i. We note that if a component of S_λ is an ideal $k-$gon then there are a finite number of geodesics α_i in this component. Otherwise there are an infinite number. We call the set $\{l_i\}$ (with multiplicities) the $\lambda-$orthospectrum. By doubling $S - \lambda$ we see that the $\lambda-$orthospectrum corresponds to a subset of the closed geodesics of a finite area surface and therefore is a countable set.

We prove the following length spectrum identity

$$\sum_i L\left(\frac{1}{\cosh^2 \frac{l_i}{2}}\right) = \frac{\pi^2}{12}(6|\chi(S)| - N_\lambda)$$

(1)

where L is a Rogers dilogarithm function (described below).
2 Dilogarithms and Polylogarithms

The k^{th} polylogarithm function Li_k is defined by the Taylor series

$$\text{Li}_k(z) = \sum_{i=1}^{\infty} \frac{z^n}{n^k}$$

for $|z| < 1$ and by analytic continuation to C. In particular

$$\text{Li}_0(z) = \frac{1}{1-z}, \quad \text{Li}_1(z) = -\log(1-z).$$

Also

$$\text{Li}'_k(z) = \frac{\text{Li}_{k-1}(z)}{z}, \quad \text{giving} \quad \text{Li}_k(z) = \int_0^z \frac{\text{Li}_{k-1}(z)}{z} \, dz.$$

Also the functions Li_k are related to the Riemann ζ function by $\text{Li}_k(1) = \zeta(k)$.

The dilogarithm function is the function $\text{Li}_2(z)$ and is given by

$$\text{Li}_2(z) = -\int_0^z \frac{\log(1-z)}{z} \, dz.$$

Below is a brief description of some properties of the dilogarithm function. They can all be found in 1991 survey "Structural Properties of Polylogarithms" by L. Lewin (see [3]). From the power series representation, it is easy to see that the dilogarithm function satisfies the functional equation

$$\text{Li}_2(z) + \text{Li}_2(-z) = \frac{1}{2} \text{Li}_2(z^2).$$

Other functional relations of the dilogarithm can be best described by normalizing the dilogarithm function. The (extended) Rogers \mathcal{L}–function (see [5]) is defined by

$$\mathcal{L}(x) = \text{Li}_2(x) + \frac{1}{2} \log |x| \log(1-x) \quad x \leq 1.$$

In terms of the Rogers \mathcal{L}–function, Euler’s reflection relations for the dilogarithm are

$$\mathcal{L}(x) + \mathcal{L}(1-x) = \mathcal{L}(1) = \frac{\pi^2}{6} \quad 0 \leq x \leq 1$$

$$\mathcal{L}(-x) + \mathcal{L}(-x^{-1}) = 2\mathcal{L}(-1) = -\frac{\pi^2}{6} \quad x > 0 \quad (2)$$

Also in terms of \mathcal{L}, Landen’s identity is

$$\mathcal{L} \left(\frac{-x}{1-x} \right) = -\mathcal{L}(x) \quad 0 < x < 1 \quad (3)$$

and Abel’s functional equation is

$$\mathcal{L}(x) + \mathcal{L}(y) = \mathcal{L}(xy) + \mathcal{L} \left(\frac{x(1-y)}{1-xy} \right) + \mathcal{L} \left(\frac{y(1-x)}{1-xy} \right) \quad (4)$$

Also a closed form for $\mathcal{L}(x)$ is known for certain values of x including

$$\mathcal{L}(1) = \frac{\pi^2}{6} \quad \mathcal{L} \left(\frac{1}{2} \right) = \frac{\pi^2}{12} \quad \text{(Euler)} \quad \mathcal{L}(\phi^{-1}) = \frac{\pi^2}{10} \quad \mathcal{L}(1 - \phi^{-1}) = \frac{\pi^2}{15} \quad \text{(Landen)}$$

where ϕ is the golden ratio.
3 Statement of Results

The main result of the paper is the following;

Main Theorem There exists a function $\rho : \mathbb{R}^2 \to \mathbb{R}$ such that infinitesimally

$$dM_\lambda = \left(\frac{4N_\lambda x^2}{\sinh^2 x} + \sum_i \rho(l_i, x)\right)dx$$

where N_λ is the number of λ-cusps of S. Furthermore the total mass of the measure $\rho(l, x)dx$ on the real line is given by

$$F(l) = \int_0^\infty \rho(l, x) \, dx = 8\mathcal{L}\left(\frac{1}{\cosh^2 \frac{l}{2}}\right)$$

In particular the measure M_λ depends only on the λ-orthospectrum.

4 Length Spectrum Identity

As $M_\lambda = L_*\Omega$, M_λ has total mass equal to the volume of $T_1(S)$. Therefore $M_\lambda(\mathbb{R}) = \Omega(T_1(S)) = 4\pi^2|\chi(S)|$. Summing up the masses of measures in the Main Theorem we immediately obtain the following.

Length Spectrum Identity Theorem Let λ be a geodesic lamination on a finite area hyperbolic surface S. Then the λ-orthospectrum satisfies the following

$$\sum_i \mathcal{L}\left(\frac{1}{\cosh^2 \frac{l_i}{2}}\right) = \frac{\pi^2(6|\chi(S)| - N_\lambda)}{12}$$

or equivalently

$$\sum_i \mathcal{L}\left(-\frac{1}{\sinh^2 \frac{l_i}{2}}\right) = \frac{\pi^2(6\chi(S) + N_\lambda)}{12}$$

By Landen’s identity (see equation 3) we have

$$\mathcal{L}\left(\frac{1}{\cosh^2 \frac{l}{2}}\right) = -\mathcal{L}\left(-\frac{1}{\sinh^2 \frac{l}{2}}\right).$$

Thus we can see that the second form of the Length Spectrum Identity corresponds to the first via Landen’s identity.
5 Length Spectrum Identity on Moduli Space

We note that if S is a connected hyperbolic surface of finite area with non-empty geodesic boundary, letting $\lambda = \partial S$ then the Length Spectrum Identity gives a summation identity on the Moduli space $\text{Mod}(S)$ of S. In this case the Euler characteristic $\chi(S)$ can be a fraction and is defined such that $2\pi\chi(S)$ is the negative of the area of S. This relation is an infinite relation except in the case when S is an ideal polygon. In this case we will show that these finite identities include the classical dilogarithm identities described above.

5.1 Classical Identities and the Moduli space of ideal polygons

For S an ideal n-gon, the Length Spectrum Identity is a finite summation relation. We will show that the associated relations give an infinite list of finite relations including the classical identities stated in the previous section.

If $\{l_i\}$ is a λ–orthospectrum, we will define two parameterizations by letting

$$a_i = -\frac{1}{\sinh^2 \frac{l_i}{2}}, \quad b_i = \frac{1}{\cosh^2 \frac{l_i}{2}}.$$

We now consider the Poincaré disk model and let $x_i, i = 1, \ldots, n$ be the vertices in anticlockwise cyclic ordering around the circle. Let s_i be the side $x_i x_{i+1}$. Let l_{ij} be the length of the diagonal between s_i and s_j for $|i - j| \geq 2$. We define the cross-ratio by

$$[z_1, z_2, z_3, z_4] = \frac{(z_1 - z_2)(z_4 - z_3)}{(z_1 - z_3)(z_4 - z_2)}.$$

As the cross ratio is invariant under Möbius transformations, we map the quadruple $(x_i, x_{i+1}, x_j, x_{j+1})$ to $(-1, 1, e^{l_{ij}}, -e^{l_{ij}})$. Then

$$[x_i, x_{i+1}, x_j, x_{j+1}] = [-1, 1, e^{l_{ij}}, -e^{l_{ij}}] = \frac{-1 - 1}{(1 - e^{l_{ij}})(1 - e^{l_{ij}})} = \frac{4e^{l_{ij}}}{(e^{l_{ij}} + 1)^2} = \frac{1}{\cosh^2 \frac{l_{ij}}{2}}.$$

As S has area $(n-2)\pi$ and n cusps, $\chi(S) = (n-2)/2$ and $N_\lambda = n$. Thus the Length Spectrum identity becomes

$$\sum_{i,j} L([x_i, x_{i+1}, x_j, x_{j+1}]) = \frac{(n-3)\pi^2}{6}$$

where the sum is over all ordered pairs i, j such that the sides s_i, s_j are disjoint (at infinity). In terms of dilogarithms we get

$$\sum_{i,j} \text{Li}_2([x_i, x_{i+1}, x_j, x_{j+1}]) = \frac{(n-3)\pi^2}{6} - \frac{1}{2} \sum_{i,j} \log (1 - [x_i, x_{i+1}, x_j, x_{j+1}]) \log ([x_i, x_{i+1}, x_j, x_{j+1}])$$

(6)
5.2 Some Cases

Quadrilateral: The ideal quadrilateral has 4 cusps and two ortholengths \(l_1, l_2 \). By elementary hyperbolic geometry we have \(\sinh(l_1/2) \sinh(l_2/2) = 1 \). Therefore \(a_1 a_2 = 1 \) and letting \(a = a_1 \) the Length Spectrum identity is equivalent to the classical reflection identity of Euler.

\[
\mathcal{L}(a) + \mathcal{L}(a^{-1}) = -\frac{\pi^2}{6}.
\]

(7)

Also we have

\[
b_2 = \frac{1}{\cosh^2(l_2/2)} = \frac{1}{1 + \sinh^2(l_2/2)} = \frac{1}{1 + \frac{1}{\sinh^2(l_1/2)}} = \frac{\sinh^2(l_1/2)}{\cosh^2(l_1/2)} = 1 - \frac{1}{\cosh^2(l_1/2)} = 1 - b_1
\]

Thus letting \(b = b_1 \), the Length Spectrum identity is equivalent to the Euler reflection identity

\[
\mathcal{L}(b) + \mathcal{L}(1 - b) = \frac{\pi^2}{6}.
\]

(8)

Pentagon and Abel’s Identity: If we choose a general ideal pentagon then there are 5 diagonals and therefore 5 parameters \(a_i \). We send three of the vertices to 0, 1, \(\infty \) and the other two to \(u, v \) with \(0 < u < v < 1 \). Then the cross ratios in terms of \(u, v \) are

\[
u, 1 - v, \quad \frac{v - u}{v}, \quad \frac{v - u}{1 - u}, \quad \frac{u(1 - v)}{v(1 - u)}.
\]

Putting into the equation we obtain the following equation.

\[
\mathcal{L}(u) + \mathcal{L}(1 - v) + \mathcal{L}\left(\frac{v - u}{v}\right) + \mathcal{L}\left(\frac{v - u}{1 - u}\right) + \mathcal{L}\left(\frac{u(1 - v)}{v(1 - u)}\right) = \frac{\pi^2}{3}.
\]

(9)

Letting \(x = u/v, y = v \), then we get

\[
\mathcal{L}(xy) + \mathcal{L}(1 - y) + \mathcal{L}(1 - x) + \mathcal{L}\left(\frac{y(1 - x)}{1 - xy}\right) + \mathcal{L}\left(\frac{x(1 - y)}{1 - xy}\right) = \frac{\pi^2}{3}.
\]

(10)

Now by applying Euler’s reflection identities for \(x, y \), we obtain Abel’s identity for the Rogers \(\mathcal{L} \)–function.

\[
\mathcal{L}(x) + \mathcal{L}(y) = \mathcal{L}(xy) + \mathcal{L}\left(\frac{y(1 - x)}{1 - xy}\right) + \mathcal{L}\left(\frac{x(1 - y)}{1 - xy}\right).
\]

(11)

General equation: We obtain similar finite identities in the general ideal \(n \)--gon case. In general we note that equation \([5] \) will have \((n - 3) \) independent variables and will be given by the summation of evaluating \(\mathcal{L} \) on \(\frac{n(n - 3)}{2} \) rational functions in the \((n - 3) \) variables.
5.3 Regular Ideal n-gon relation

We now consider the dilogarithm equation for the specific case of a regular ideal n-gon. In this case the cross ratios can be calculated and the dilogarithm formulas for specific values of the dilogarithm function.

We consider a regular ideal \(n \)-gon in with center 0 in the Poincaré disk model and vertices at \(v_k = u_k, k = 0, \ldots, n - 1 \) for \(u = e^{2\pi i/n} \). Then equation 5 can be thought of as an equation on the roots of the polynomial \(z^n = 1 \). We have

\[
[v_0, v_1, v_r, v_{r+1}] = -\frac{(1 - u)(u^{r+1} - u^r)}{(1 - u^r)(u^{r+1} - u)} = \frac{u^r(u - 1)^2}{u.(u^r - 1)^2} = \frac{\sin^2\left(\frac{\pi}{n}\right)}{\sin^2\left(\frac{r\pi}{n}\right)}
\]

For \(r < n/2 \) there are exactly \(n \) distinct perpendiculars between sides separated by \(r \) sides and for \(r = n/2 \) there are \(n/2 \) such sides. To take care of the even and odd case simultaneously we let \(e_n \) be 1 if \(n \) is even and 0 if \(n \) is odd. Therefore we have

\[
\sum_{r=2}^{[n/2]-1} n.L\left(\frac{\sin^2\left(\frac{\pi}{n}\right)}{\sin^2\left(\frac{r\pi}{n}\right)}\right) + e_n n/2.L\left(\sin^2\left(\frac{\pi}{n}\right)\right) = \frac{(n - 3)\pi^2}{6n}
\]

(12)

Limiting case: We let \(n \) go to infinity and obtain the equation

\[
\lim_{n \to \infty} \sum_{r=2}^{[n/2]-1} L\left(\frac{\sin^2\left(\frac{\pi}{n}\right)}{\sin^2\left(\frac{r\pi}{n}\right)}\right) + e_n n/2.L\left(\sin^2\frac{\pi}{n}\right) = \lim_{n \to \infty} \frac{(n - 3)\pi^2}{6n} = \frac{\pi^2}{6}
\]

This gives a Rogers \(L \)-function series relation due to Lewin (see p. 298 of [3])

\[
\sum_{r=2}^{\infty} L\left(\frac{1}{r^2}\right) = \frac{\pi^2}{6}
\]

Regular ideal quadrilateral: This case is trivial \(a_1 = a_2 = -1, b_1 = b_2 = 1/2 \) and equations 7,8 give the classical evaluations

\[L(-1) = -\frac{\pi^2}{12} \quad \text{and} \quad L\left(\frac{1}{2}\right) = \frac{\pi^2}{12}. \]

Regular ideal pentagon, Golden Mean: For the regular ideal pentagon, the orthospectrum consists of 5 geodesics each of the same length \(l \). Using the formula above for \(n = 5, r = 2 \) we obtain that \(l \) satisfies

\[
cosh^2\left(\frac{l}{2}\right) = \frac{2}{\sqrt{5} + 3} = \phi^2
\]
where ϕ is the golden mean. Therefore as $\phi^2 = \phi + 1$

$$\sinh^2\left(\frac{l}{2}\right) = \phi^2 - 1 = \phi$$

and we have $a = -\phi^{-1}$. Thus the Length Spectrum Identity gives the classical relations of Landen

$$\mathcal{L}(-\phi^{-1}) = -\frac{\pi^2}{15}, \quad \mathcal{L}(\phi^{-2}) = \frac{\pi^2}{15}.$$

Applying the quadrilateral relations \[7, 8\] we also get

$$\mathcal{L}(\phi) = -\frac{\pi^2}{6} - \mathcal{L}(-\phi^{-1}) = -\frac{\pi^2}{10}.$$

Regular ideal Hexagon: For a regular ideal hexagon, there are 9 elements of the orthospectrum, with the 6 being perpendicular to sides one apart and three being perpendicular to opposite sides. Putting $n = 6$ into equation \[12\] above then gives

$$6\mathcal{L}(\frac{1}{3}) + 3\mathcal{L}(\frac{1}{4}) = \frac{\pi^2}{2}.$$

Before we prove the main theorem, we first consider the geometry of ideal quadrilaterals in the hyperbolic plane.

6 Intersections with ideal quadrilaterals

Given two disjoint geodesics g_1, g_2 with perpendicular distance l between them, let Q be the ideal quadrilateral with opposite sides g_1, g_2. Then we can map Q by a M"obius transformation to the ideal quadrilateral Q_a in the upper half-plane with vertices $a, 0, 1, \infty \in \mathbb{R}$ where $a < 0$. Similarly we can map Q to the ideal quadrilateral Q_b in the upper half-plane with vertices $0, b, 1, \infty \in \mathbb{R}$ where $b > 0$. Using cross-ratios we have that

$$a = -\frac{1}{\sinh^2 \frac{l}{2}}, \quad b = \frac{1}{\cosh^2 \frac{l}{2}} \quad \text{(13)}$$

The choice of normalization Q_a, Q_b leads to the equivalent forms of the Length Spectrum Identity. We choose normalization Q_a for our calculations.

If $x, y \in \mathbb{R}, x \neq y$, we let $g(x, y)$ be the geodesic in the upper half plane with end points x, y. Then for $(x, y) \in (a, 0) \times (1, \infty)$, the geodesic $g(x, y)$ intersects Q_a in a definite length denoted $L(x, y)$.

7
Lemma 1 The map \(L : (a,0) \times (1,\infty) \rightarrow \mathbb{R} \) is given by the formula

\[
L(x,y) = \frac{1}{2} \ln \left(\frac{y(y-a)(x-1)}{x(x-a)(y-1)} \right) = \frac{1}{2} \ln \left(\frac{f(y)}{f(x)} \right).
\]

where \(f(x) = \frac{x(x-a)}{x-1} \).

Proof: Let \(T \) be the ideal triangle with vertices 0,1,\(\infty \). Let \(l_1 : (-\infty,0) \times (0,1) \rightarrow \mathbb{R} \) and \(l_2 : (-\infty,0) \times (1,\infty) \rightarrow \mathbb{R} \) be given by letting \(l_1(x,y) \) be the length of the intersection of \(g(x,y) \) with \(T \) and \(l_2(x,y) \) be the length of the intersection of \(g(x,y) \) with \(T \). By a previous paper (see [1]) the functions \(l_i \) are given by

\[
l_1(x,y) = \frac{1}{2} \ln \left(\frac{1-x}{1-y} \right) \quad l_2(x,y) = \frac{1}{2} \ln \left(\frac{y(x-1)}{x(y-1)} \right).
\]

To calculate \(L \), we split the quadrilateral \(Q_a \) by the vertical line at \(x = 0 \) into two ideal triangles \(T_1, T_2 \) where \(T_1 \) has vertices 0,1,\(\infty \) and \(T_2 \) has vertices \(a,0,\infty \). Then \(T_1 = T \) and \(f_2(z) = z/a \) sends \(T_2 \) to \(T \). Therefore

\[
L(x,y) = l_2(x,y) + l_1(y/a,x/a)
\]

Therefore

\[
L(x,y) = \frac{1}{2} \ln \left(\frac{y(x-1)}{x(y-1)} \right) + \frac{1}{2} \ln \left(\frac{1-y/a}{1-x/a} \right) = \frac{1}{2} \ln \left(\frac{y(x-1)(a-y)}{x(y-1)(a-x)} \right).
\]
We consider the rational function \(f(x) \) defined above. Differentiating we have

\[
 f'(x) = \frac{(2x - a)(x - 1) - 1.(x^2 - ax)}{(x - 1)^2} = \frac{x^2 - 2x + a}{(x - 1)^2}
\]

Therefore \(f(x) \) has two critical points \(1 \pm \sqrt{1 - a} \). We label the critical points \(x_0 = 1 - \sqrt{1 - a} \) and \(y_0 = 1 + \sqrt{1 - a} \) and note that \(x_0 \) is a maximum and \(y_0 \) a minimum.

7 Proof of Summation Identity

By definition

\[
 (L_\star \Omega)(\phi) = \int_{T_1(S)} \phi(L(v)) \, d\Omega.
\]

Let \(\alpha, \beta \) be two arcs in \(S_l \) with endpoints on \(\partial S_l \). Then we say \(\alpha \sim \beta \) if they are homotopic relative to the boundary \(\partial S_l \).

We define the sets \(A_i = \{ v \in T_1(S) | \alpha(v) \sim \alpha_i \} \). Also for each \(\lambda \)-cusp \(c \) we define \(A_c = \{ v \in T_1(S) | \alpha(v) \sim c \} \) where \(\alpha(v) \sim c \) if \(\alpha(v) \) can be homotoped (rel boundary) out the cusp \(c \). Note that for \(v \in A_i \) or \(v \in A_c \), \(L(v) \) is finite. Finally we define the set \(A_\infty \) to be all \(v \) not in any \(A_i \) or \(A_c \). By definition, the sets \(A_i, A_c, A_\infty \) form a partition of \(T_1(S) \). If we double \(S_l \) along its boundary, the geodesic arcs \(\alpha_i \) correspond to a subset of the geodesics of the doubled surface. Therefore as the length spectrum of the doubled surface is countable, so is the collection of arcs \(\alpha_i \) in \(S_l \). Also, by ergodicity of geodesic flow on \(S \) (see [2]), the set \(A_\infty \) is a measure zero.
Therefore

$$(L_\ast \Omega)(\phi) = \sum_i \int_{A_i} \phi(L(v)) \, d\Omega + \sum_c \int_{A_c} \phi(L(v)) \, d\Omega.$$

We let

$$a_i = -\frac{1}{\sinh^2 \frac{l_i}{2}}.$$

Then setting $Q_i = Q_{\alpha_i}$, we have that Q_i is a quadrilateral with perpendicular of length l_i. We lift α_i to the upper half plane so that it is the perpendicular of length l_i in Q_i. We lift each $\lambda-$cusp c to the ideal vertex at infinity between the vertical geodesics $x = 0, x = 1$. Let T be the ideal triangle with vertices $0, 1, \infty \in \mathbb{R}$.

If $v \in T_1(\mathbb{H}^2)$ in the upper half plane, we define $g(v)$ to be the geodesic with tangent vector v. We also denote the endpoints of $g(v)$ by $(x(v), y(v))$.

We lift the set A_i to the set $A'_i \subseteq T_1(Q_i)$. Then for $v \in A'_i$ the geodesic arc $\alpha'(v) = Q_i \cap g(v)$ is a lift of $\alpha(v)$. Similarly we lift A_c to the set $A'_c \subseteq T_1(T).$ Then for $v \in A'_c$ the geodesic arc $\alpha'(v) = T \cap g(v)$ is a lift of $\alpha(v)$. By abuse of notation we also let Ω be the volume measure on $T_1(\mathbb{H}^2)$. We parameterize $T_1(\mathbb{H}^2)$ by $(x, y, l) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ where (x, y, l) corresponds to the vector v such that $g(v)$ has ordered endpoints (x, y) and v has basepoint on $g(v)$ a distance l from the highest point of $g(v)$ in the upper half-plane. Then the volume form Ω can be written as (see [4])

$$d\Omega = \frac{2dx dy dl}{(x - y)^2}.$$

Therefore

$$\int_{A_c} \phi(L(v)) \, d\Omega = \int_{A'_c} \frac{2\phi(L(v)) \, dx dy dl}{(x - y)^2}.$$

We note that $L(v)$ only depends on the endpoints and therefore we can write $L(v) = L(x, y)$. If $v \in A'_c$ then either (x, y) or $(y, x) \in (-\infty, 0) \times (1, \infty)$. Integrating over l we have

$$\int_{A'_c} \frac{2\phi(L(v)) \, dx dy dl}{(x - y)^2} = \int_{-\infty}^0 \int_1^\infty \frac{4\phi(L(x, y))L(x, y) \, dx dy}{(x - y)^2}.$$

By our previous paper [1]

$$\int_{-\infty}^0 \int_1^\infty \frac{4\phi(L(x, y))L(x, y) \, dx dy}{(x - y)^2} = \int_0^\infty \frac{4\phi(L)L^2 dL}{\sinh^2 L}.$$

Thus as there are $N_\lambda \lambda-$cusps we have

$$\sum_c \int_{A_c} \phi(L(v)) \, d\Omega = N_\lambda \int_0^\infty \frac{4\phi(L)L^2 dL}{\sinh^2 L} = M_\infty(\phi)$$

where M_∞ is the measure with infinitesimal

$$dM_\infty = \frac{4N_\lambda x^2 dx}{\sinh^2 x}.$$

10
Similarly we have by lifting \(A_i \) to \(A'_i \) that
\[
\int_{A_i} \phi(L(v)) \, d\Omega = \int_{A'_i} \frac{2 \phi(L(v)) \, dxdydl}{(x-y)^2}.
\]
If \(v \in A'_i \) then either \((x, y)\) or \((y, x)\) \(\in (a_i, 0) \times (1, \infty)\). Integrating over \(l \) we have
\[
\int_{A'_i} \frac{2 \phi(L(v)) \, dxdydl}{(x-y)^2} = \int_{a_i}^{\infty} \int_1^\infty \frac{4 \phi(L(x, y)) L(x, y) \, dxdy}{(x-y)^2}.
\]
For \(a < 0 \) we define \(M_a(\phi) \) to be the righthandside of the above equation. Then
\[
M_a(\phi) = \int_{a}^{\infty} \int_1^{\infty} \frac{4 \phi(L(x, y)) L(x, y) \, dxdy}{(x-y)^2}.
\]
Then
\[
M_{\lambda} = M_{\infty} + \sum_i M_{a_i}
\]
As \(M_{\lambda} = L_{\lambda} \Omega \) it has total mass equal to the volume of \(T_1(S) \) which is \(4 \pi^2 |\chi(S)| \). Therefore
\[
\Omega(T_1(S)) = 4 \pi^2 |\chi(S)| = M_{\lambda}(1) = M_{\infty}(1) + \sum_i M_{a_i}(1)
\]
(14)

By an elementary calculation (see [1])
\[
\int_{0}^{\infty} \frac{x^2 \, dx}{\sinh^2 x} = \frac{\pi^2}{6}.
\]
Therefore
\[
M_{\infty}(1) = \int_{0}^{\infty} \frac{4 N \lambda x^2 \, dx}{\sinh^2 x} = 4 N \lambda \int_{0}^{\infty} \frac{x^2 \, dx}{\sinh^2 x} = 4 N \lambda \cdot \frac{\pi^2}{6} = \frac{2 N \lambda \pi^2}{3}.
\]
Using lemma [4] we substitute the formula for \(L(x, y) \) to obtain
\[
M_{a}(1) = \int_{a}^{\infty} \int_1^\infty \frac{2 \log \frac{y(y-a)(x-1)}{x(x-a)(y-1)}}{(x-y)^2} \, dxdy.
\]
Then by equation [14] above we obtain
\[
4 \pi^2 |\chi(S)| = M_{\infty}(1) + \sum_i M_{a_i}(1) = \frac{2 N \lambda \pi^2}{3} + \sum_i F(l_i)
\]
giving the summation identity
\[
\sum_i F(l_i) = 4 \pi^2 |\chi(S)| - \frac{2 N \lambda \pi^2}{3} = \frac{2 \pi^2}{3} (6 |\chi(S)| - N \lambda)
\]
(15)
8 Integral Calculation

In this section we find a formula for $F(I)$ by calculating an integral. We note that by the previous section, we already know that the function F satisfies the functional equation \[15\]. We will make use of this to reduce F to the form we wish independent of using any classical dilogarithm relations.

Lemma 2 For $a < 0$

\[
\int_a^0 \int_1^\infty \frac{\log \left| \frac{y-a}{x-a} \right|}{x-y} \frac{dy}{x-y^2} = -4 \mathcal{L}(a)
\]

Proof: We let

\[
G(a) = \int_a^0 \int_1^\infty \frac{\log \left| \frac{y-a}{x-a} \right|}{x-y} \frac{dy}{x-y^2}
\]

Integrating by parts we get

\[
\int \frac{\log \left| \frac{y-a}{x-a} \right|}{x-y} dx = -\log \left| \frac{y-a}{x-a} \right| x-y + \int \frac{1}{x-y} \left(\frac{1}{x-1} - \frac{1}{x} - \frac{1}{x-a} \right) dx.
\]

Using

\[
\int \frac{1}{(x-a)(x-b)} dx = \frac{1}{a-b} \left(\log |x-a| - \log |x-b| \right)
\]

we get

\[
\int \frac{\log \left| \frac{y-a}{x-a} \right|}{x-y} dx = \log \left| \frac{y-a}{x-a} \right| \frac{x-y}{y-1} + \frac{1}{y-1} \left(\log |x-y| - \log |x-1| \right) + \frac{1}{y} \left(\log |x-y| - \log |x| \right) - \frac{1}{y-a} \left(\log |x-y| - \log |x-a| \right)
\]

\[
= \frac{\log \left| \frac{y-a}{x-a} \right|}{y-x} - \log |x-1| y-1 + \frac{\log |x|}{y-1} + \frac{\log |x-a|}{y-a} + \log |x-y| \left(\frac{1}{y-1} - \frac{1}{y} - \frac{1}{y-a} \right)
\]

We define

\[
I(y) = \int_a^0 \frac{\log \left| \frac{y-a}{x-a} \right|}{x-y^2} dx
\]

To evaluate the improper integral $I(y)$ we gather the divergent terms to find their limits. Therefore

\[
I(y) = \lim_{x \to 0^-} \log |x| \left(\frac{1}{y} - \frac{1}{y-x} \right) - \lim_{x \to a^+} \log |x-a| \left(\frac{1}{y} - \frac{1}{y-x} \right) + \\
\log \left| \frac{y-a}{y-1} \right| + \log |y| \left(\frac{1}{y-1} - \frac{1}{y} - \frac{1}{y-a} \right)
\]

\[
- \frac{\log \left| \frac{y-a}{y} \right|}{y-a} + \log |a-1| y-1 - \log |y| \left(\frac{1}{y-1} - \frac{1}{y} - \frac{1}{y-a} \right)
\]

\[
= \log \left| \frac{y-a}{y} \right| - \log |a-1| y-1 - \log |y| \left(\frac{1}{y-1} - \frac{1}{y} - \frac{1}{y-a} \right)
\]
By elementary calculus, both limits are zero. As \(y > 1 \) and \(a < 0 \), when we gather the remaining terms by common denominators and get

\[
I(y) = \frac{-2 \log(-a) + 2 \log(y-a) - \log(y-1)}{y} + \frac{\log(1-a) + \log(y) - \log(y-a)}{y-1} + \\
\frac{2 \log(-a) - \log(1-a) - 2 \log(y) + \log(y-1)}{y-a}
\]

We now rewrite in the following form

\[
I(y) = \left(\frac{\log(y)}{y-1} - \frac{\log(y-1)}{y} \right) + 2 \left(\frac{\log \left(\frac{y-a}{a} \right)}{y} - \frac{\log \left(\frac{y}{y-a} \right)}{y-a} \right) + \left(\frac{\log \left(\frac{y-1}{1-a} \right) - \log \left(\frac{y-a}{y-1} \right)}{y-a} \right).
\] \hspace{1cm} (16)

Before we calculate the integral of \(I(y) \) we note some properties of the dilogarithm. As the dilogarithm function \(\text{Li}_2 \) satisfies

\[
\text{Li}_2(z) = -\int_0^z \frac{\log(1-t)}{t} dt
\]

Then \(L \) has derivative

\[
L'(x) = \frac{d}{dx} \left(\text{Li}_2(x) + \frac{1}{2} \log |x| \log(1-x) \right) = -\frac{\log(1-x)}{x} + \frac{1}{2} \left(\frac{\log(1-x)}{x} - \frac{\log |x|}{1-x} \right) = -\frac{1}{2} \left(\frac{\log(1-x)}{x} + \frac{\log |x|}{1-x} \right)
\]

Now if \(a < b \), then on the interval \(x > b \), we have \((b-x)/(b-a) < 0 \). We define

\[
J(x, a, b) = 2L \left(\frac{b-x}{b-a} \right).
\]

Then differentiating \(J \) we get

\[
J'(x, a, b) = 2L' \left(\frac{b-x}{b-a} \right) \cdot \frac{-1}{b-a} = \left(\frac{\log \left(\frac{x-a}{b-a} \right)}{b-x} + \frac{\log \left(\frac{x-b}{b-a} \right)}{x-a} \right) \left(\frac{\log \left(\frac{x-b}{b-a} \right) - \log \left(\frac{x-a}{b-a} \right)}{x-b} \right)
\]

We set

\[
J(y) = -J(y, 0, 1) - 2J(y, a, 0) + J(y, a, 1).
\]

Then from equation \(16 \) we have that

\[
J'(y) = -J'(y, 0, 1) - 2J'(y, a, 0) + J'(y, a, 1) = I(y).
\]

Therefore we have an antiderivative for \(I \) and integrate to find \(G \) to get

\[
G(a) = \int_1^\infty I(y) dy = J(y)|_1^\infty = \lim_{y \to \infty} J(y) - \lim_{y \to 1^+} J(y).
\]

We let \(L_\infty \) be the limit if \(L(x) \) as \(x \) tends to \(-\infty \). Therefore

\[
\lim_{y \to 1^+} J(y) = -2L(0) - 4L(a^{-1}) + 2L(0) = -4L(a^{-1}) \quad \lim_{y \to \infty} J(y) = -4L_\infty.
\]

Thus

\[
G(a) = -4L_\infty + 4L(a^{-1}) = -4(L_\infty - L(a^{-1}))
\]

13
It follows immediately from Euler’s reflection identity that \(G(a) = -4L(a) \) but for completeness we derive it independently. From the formula we have \(G(0) = -4(L_\infty - L_\infty) = 0 \). Also by equation \[G(a) \] must satisfy a summation identity

\[
G(a) + G(a^{-1}) = G_\infty
\]

where \(G_\infty \) is the limit of \(G \) as \(a \) tends to \(-\infty\). Therefore

\[
G(a) = G_\infty - G(a^{-1}) = (G_\infty + 4L_\infty) - 4L(a)
\]

But as \(G(0) = 0 \) we have

\[
G(a) = -4L(a) \quad \text{and finally} \quad F(l) = -8L\left(-\frac{1}{\sinh^2(l/2)}\right).
\]

We note that by performing the integral over the quadrilateral \(Q_b \) where \(b = 1/\cosh^2(l/2) \), the above can be repeated to show

\[
F(l) = 8L\left(\frac{1}{\cosh^2(l/2)}\right).
\]

Equivalently we note it also follows from Landen’s identity.

9 Volume interpretation of \(L \)

Let \(g_1, g_2 \) be disjoint geodesics in \(\mathbb{H}^2 \) with perpendicular distance \(l \) and endpoints \(x_1, y_1 \) and \(x_2, y_2 \) respectively on \(S^1 \). Given \(v \in T_1(S) \) let \(g_v \) be the associated oriented geodesic with tangent \(v \). Then we define the set

\[
C(g_1, g_2) = \{ v \in T_1(S) \mid g_v \cap g_1 \neq \emptyset, \; g_v \cap g_2 \neq \emptyset \}
\]

Let \(t = [x_1, y_1, x_2, y_2] \), then depending on the ordering of the points on the circle we have

\[
t = [-1, 1, e^l, -e^l] = \frac{1}{\cosh^2(l/2)} \quad \text{or} \quad t = [-1, 1, -e^l, e^l] = -\frac{1}{\sinh^2(l/2)}.
\]

It follows from the invariance of volume on \(T_1(S) \), that the volume of \(C(g_1, g_2) \) in \(T_1(S) \) only depends on \(t \). We therefore define \(V(t) = \text{Volume}(S(g_1, g_2)) \).

Then it follows from the main theorem that

\[
L(t) = \pm \frac{1}{8} V(t)
\]

where the sign is given by the sign of \(t \). Therefore we can interpret the Rogers \(L \)–function as a signed volume function on \(T_1(S) \) for the sets \(G(g_1, g_2) \).
10 Integral Formula for ρ

We let

$$L(x, y) = \frac{1}{2} \log \left(\frac{y(y-a)(x-1)}{x(x-a)(y-1)} \right) = \frac{1}{2} \log \left(\frac{f(y)}{f(x)} \right) \quad \text{for} \quad f(x) = \frac{x(x-a)}{x-1}.$$

Taking derivatives of the length function $L(x, y)$ we have

$$\frac{\partial L}{\partial x} = -\frac{f'(x)}{2f(x)} \quad \frac{\partial L}{\partial y} = \frac{f'(y)}{2f(y)}.$$

By the previous section, the function f has critical points x_0, y_0. Furthermore on $(a, 0)$ the function $f(x)$ has global maximum at x_0 and on $(1, \infty)$, f has global minimum at y_0. Therefore fixing x, the function $u : (1, \infty) \to \mathbb{R}$ given by $u(y) = L(x, y)$ is decreasing on $(1, y_0)$ and increasing on (y_0, ∞). Therefore we make the change of variable $t = L(x, y), x = x$. Finding inverses for f we define the two function g_+, g_- by

$$g_{\pm}(x) = \frac{(a + x) \pm \sqrt{(a + x)^2 - 4x}}{2}.$$

Then solving $t = L(x, y)$ gives $f(y) = f(x)e^{2t}$. Therefore on $(1, y_0)$ we have $y = g_-(f(x)e^{2t})$ and on (y_0, ∞) we have $y = g_+(f(x)e^{2t})$. Therefore

$$M_\alpha(\phi) = \int_a^0 \left(\int_1^{y_0} + \int_{y_0}^{\infty} \frac{4.\phi(L(x, y))L(x, y) \, dy}{(x-y)^2} \right) \, dx.$$

and

$$\int_1^{y_0} \frac{4.\phi(L(x, y))L(x, y) \, dy}{(x-y)^2} = \int_{L(x,y_0)}^{L(x,y_0)} \frac{4.\phi(t)t.g_-'(f(x)e^{2t})2f(x)e^{2t}dt}{(x-g_-(f(x)e^{2t}))^2}$$

$$\int_{y_0}^{\infty} \frac{4.\phi(L(x, y))L(x, y) \, dy}{(x-y)^2} = \int_{L(x,y_0)}^{L(x,y_0)} \frac{4.\phi(t)t.g_+'(f(x)e^{2t})2f(x)e^{2t}dt}{(x-g_+(f(x)e^{2t}))^2}$$

Therefore combining we have

$$M_\alpha(\phi) = \int_a^0 \int_{L(x,y_0)}^{\infty} 8.\phi(t).t.e^{2t}.f(x) \left(\frac{g_-'(f(x)e^{2t})}{(x-g_-(f(x)e^{2t}))^2} - \frac{g_+'(f(x)e^{2t})}{(x-g_+(f(x)e^{2t}))^2} \right) \, dt \, dx.$$

We switch the order of integration. The function $L(x, y_0)$ is minimum at x_0 with minimum value $l = L(x_0, y_0)$ being the length of the perpendicular (see figure 2). Thus we integrate t from l to infinity. The integral in the x direction is between the two x solutions of $t = L(x, y_0)$ which are solutions to $f(x) = f(y_0)e^{-2t}$. Thus we integrate x from $g_-(f(y_0)e^{-2t})$ to $g_+(f(y_0)e^{-2t})$ giving

$$M_\alpha(\phi) = \int_{L(x,y_0)}^{\infty} 8.\phi(t).t.e^{2t}dt \left(\int_{g_-(f(y_0)e^{-2t})}^{g_+(f(y_0)e^{-2t})} \left(\frac{g_-'(f(x)e^{2t})}{(x-g_-(f(x)e^{2t}))^2} - \frac{g_+'(f(x)e^{2t})}{(x-g_+(f(x)e^{2t}))^2} \right) f(x) \, dx \right)$$

Therefore

$$M_\alpha(\phi) = \int_0^{\infty} \phi(t).\rho(l, t) \, dt.$$

where
\[\rho(l,t) = 8t e^{2t} x(l, \infty) \left(\int_{g^-(f(y_0)e^{-2t})}^{g^+(f(y_0)e^{-2t})} \left(\frac{g'_+(f(x)e^{2t})}{(x - g_+(f(x)e^{2t}))^2} - \frac{g'_-(f(x)e^{2t})}{(x - g_-(f(x)e^{2t}))^2} \right) f(x) dx \right) \]
and \(f(x) = \frac{x(x-a)}{x-1} \) where \(a = -\frac{1}{\sinh^2 l/2} \)

Therefore
\[(L_* \Omega)(\phi) = \int_0^\infty \phi(x) \rho(x) dx \]
where
\[\rho(x) = \frac{4N \lambda x^2}{\sinh^2 x} + \sum_i \rho(l_i, x) \]

11 Asymptotic behavior

In this section we study the asymptotic behavior of the function \(\rho(l,t) \) for large \(t \).

For functions of a single variable, we write \(f(x) \simeq g(x) \) as \(x \) tends to \(x_0 \) if
\[\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1. \]
Furthermore for functions of more than one variable, we write \(f(x,y) \simeq_x g(x,y) \) as \(x \) tends to \(x_0 \) if
\[\lim_{x \to x_0} \frac{f(x,y)}{g(x,y)} = 1. \]

Theorem 3 The measure \(\rho(l,t) dx \) on the real line satisfies
\[\lim_{t \to \infty} \frac{\rho(l,t)}{16t^2 e^{-2t}} = r(l) \]
uniformly on compact subsets of \((0, \infty)\) where
\[r(l) = \frac{-2a^2 + 5a - 2}{a(1-a)} \quad \text{for} \quad a = -\frac{1}{\sinh^2 \left(\frac{l}{2} \right)} \]

Proof: We now show \(\lim_{t \to \infty} \rho(l,t) = r(l) \) converges uniformly on compact subsets of \((0, \infty)\). Let \(I \subseteq (0, \infty) \) be a compact interval. Now let \(t \in I \). As before we let \(a = -1/\sinh^2(l/2) \) and define \(f(x) = x(x-a)/(x-1) \) with inverses \(g_{\pm} \) and critical values \(x_0, y_0 \). Let
\[G(t,x) = 8te^{2t} \left(\frac{g'_+(f(x)e^{2t})}{(x - g_+(f(x)e^{2t}))^2} - \frac{g'_-(f(x)e^{2t})}{(x - g_-(f(x)e^{2t}))^2} \right) f(x) \]
Then for \(t > l \) we have

\[
\rho(l, t) = \int_{g_-(f(y_0)e^{-2t})}^{g_+(f(y_0)e^{-2t})} G(t, x) \, dx
\]

For \(C > 0 \), we further define

\[
\rho(C, l, t) = \int_{g_-(f(y_0)Ce^{-2t})}^{g_+(f(y_0)Ce^{-2t})} G(t, x) \, dx
\] (17)

On the interval \([a, 0]\) \(f \) has maximum at \(x_0 \). Therefore \(\rho(C, l, t) \) is defined for all \(t \) such that \(f(y_0)Ce^{-2t} < f(x_0) \) or

\[
 t > K_0(C) = \frac{1}{2} \ln C + \frac{1}{2} \ln \left(\frac{f(y_0)}{f(x_0)} \right) = l + \frac{1}{2} \ln C
\]

Considering \(g_\pm(x) \) for large \(x \) we have

\[
g_\pm(x) = \frac{(a + x) \pm \sqrt{(a + x)^2 - 4x}}{2} \approx \frac{(a + x)}{2} \left(1 \pm \left(1 - \frac{2x}{(a + x)^2} \right) \right)
\]

Therefore

\[
g_-(x) \approx \frac{(a + x)}{2} \left(1 - \frac{2x}{(a + x)^2} \right) = \frac{x}{a + x} \approx 1 - \frac{a}{x}
\]

and

\[
g_+(x) \approx \frac{(a + x)}{2} \left(1 + \frac{2x}{(a + x)^2} \right) = (a + x) - \frac{x}{a + x} \approx (a - 1) + x + \frac{a}{x}
\]

Taking leading terms we have

\[
g_-(x) \approx 1 \quad g'_-(x) \approx \frac{a}{x^2} \quad g_+(x) \approx x \quad g'_+(x) \approx 1 \quad (18)
\]

We let \(I_C = [g_-(f(y_0)Ce^{-2t}), g_+(f(y_0)Ce^{-2t})] \). Then for \(x \in I_C \) we have \(f(x)e^{2t} \geq C \cdot f(y_0) \). Therefore for \(C \) sufficiently large we use the above approximations to approximate \(G(t, x) \) on \(I_C \). We substitute the approximations into the formula for \(G(t, x) \) to define

\[
G_1(t, x) = 8t e^{2t} \left(\frac{1}{x - f(x)e^{2t}} - \frac{a}{(f(x)e^{2t})^2} \right) f(x)
\]

Simplifying we have

\[
G_1(t, x) = 8t e^{-2t} \left(\frac{1}{(1 - \frac{x}{f(x)e^{2t}})^2} - \frac{a}{(x - 1)^2} \right) \frac{1}{f(x)}.
\]

Noting that \(f(x)e^{2t} > Cf(y_0) \) on \(I_C \), then for large \(C \) the quantity \(\frac{x}{f(x)e^{2t}} \) is small and we obtain the approximation

\[
G_2(t, x) = 8t e^{-2t} \left(1 - \frac{a}{(x - 1)^2} \right) \frac{1}{f(x)}.
\]

Therefore given an \(\epsilon > 0 \) we can find a \(K_1(\epsilon) \) such that

\[
\frac{G(t, x)}{G_2(t, x)} \in [1 - \epsilon, 1 + \epsilon] \quad \text{for all } C > K_1(\epsilon), t > K_0(C), x \in I_C.
\]
Therefore integrating
\[
\frac{1}{\rho(C, l, t)} \left(8te^{-2t} \cdot \int_{g_-(f(y_0)e^{-2t})}^{g_+(f(y_0)e^{-2t})} \left(1 - \frac{a}{(x-1)^2} \right) \frac{1}{f(x)} dx \right) \in [1 - \epsilon, 1 + \epsilon]
\]
for \(C > K_1(\epsilon) \) and \(t > K_0(C) \). We fix a \(K > K_1(\epsilon) \) and define
\[
\rho_K(l, t) = 8te^{-2t} \left(\int_{g_-(f(y_0)Ke^{-2t})}^{g_+(f(y_0)Ke^{-2t})} \left(1 - \frac{a}{(x-1)^2} \right) \frac{1}{f(x)} dx \right)
\]
\[
= 8te^{-2t} \left(\int_{g_-(f(y_0)e^{-2t})}^{g_+(f(y_0)e^{-2t})} \left(\frac{x-1}{x(x-a)} - \frac{a}{x(x-a)(x-1)} \right) dx \right)
\]
Integrating we have
\[
\int \left(\frac{x-1}{x(x-a)} - \frac{a}{x(x-a)(x-1)} \right) dx = \left(\frac{1-a}{a} \ln |x| - \frac{a}{1-a} \ln |x-1| - \frac{a^2-3a+1}{a(1-a)} \ln |x-a| \right)\bigg|_{g_+(f(y_0)e^{-2t})}^{g_+(f(y_0)Ke^{-2t})}
\]
Therefore
\[
\rho_K(l, t) = 8te^{-2t} \left(\frac{1-a}{a} \ln |x| - \frac{a}{1-a} \ln |x-1| - \frac{a^2-3a+1}{a(1-a)} \ln |x-a| \right)\bigg|_{g_+(f(y_0)e^{-2t})}^{g_+(f(y_0)Ke^{-2t})}
\]
For \(x \) small we have
\[
g_\pm(x) = (a+x) \pm \sqrt{(a+x)^2 - 4x} \approx \frac{(a+x)}{2} \left(1 + \left(1 - \frac{2x}{a+x} \right)^2 \right)
\]
Therefore
\[
g_-(x) \approx (a+x) - \frac{x}{a+x} \approx a - \frac{(1-a)x}{a} \quad \quad g_+(x) \approx \frac{x}{a+x} \approx \frac{x}{a}
\]
Therefore
\[
\rho_K(l, t) \approx t \cdot 8te^{-2t} \left(\frac{1-a}{a} \ln \frac{Kf(y_0)e^{-2t}}{a^2} - \frac{a}{1-a} \ln \frac{1}{a-1} - \frac{a^2-3a+1}{a(1-a)} \ln \frac{a^2}{(1-a)f(y_0)Ke^{-2t}} \right)
\]
Taking limits as we have
\[
\rho_K(l, t) \approx t \cdot (16t^2e^{-2t}) \left(-\frac{1-a}{a} - \frac{a^2-3a+1}{a(1-a)} \right) = (16t^2e^{-2t}) \cdot \frac{-2a^2+5a-2}{a(1-a)}
\]
Therefore given \(\epsilon > 0 \) there exists \(K_1(\epsilon) > 0 \) such that for any \(C > K_1(\epsilon) \) both
\[
\liminf_{t \to \infty} \frac{\rho(C, l, t)}{16t^2e^{-2t}r(a)} \quad \text{and} \quad \limsup_{t \to \infty} \frac{\rho(C, l, t)}{16t^2e^{-2t}r(a)} \quad \text{are in} \quad [1 - \epsilon, 1 + \epsilon].
\]
where
\[
r(a) = \frac{-2a^2+5a-2}{a(1-a)}
\]
We now define
\[
\rho_-(C, l, t) = \int_{g_-(f(y_0)e^{-2t})}^{g_-(f(y_0)Ce^{-2t})} G(t, x) dx \quad \text{and} \quad \rho_+(C, l, t) = \int_{g_+(f(y_0)e^{-2t})}^{g_+(f(y_0)Ce^{-2t})} G(t, x) dt.
\]
18
Then by definition
\[\rho(t, l) = \rho(C, l, t) + \rho_-(C, l, t) + \rho_+(C, l, t). \]
We now bound the functions \(\rho_\pm(C, l, t) \). Let \(I_-^C, I_+^C \) be the given intervals.

On the interval \(I, g_\pm(f(x)e^{2t}) > 1 \) and \(x < 0 \) so \((x - g_\pm(f(x)e^{2t}))^2 > 1 \). Also as \(g'_-(f(x)e^{2t}) < 0 \) we have
\[
|G(t, x)| = (8t.e^{2t}). \left(\frac{g'_+(f(x)e^{2t})}{(x - g_+(f(x)e^{2t}))^2} - \frac{g'_-(f(x)e^{2t})}{(x - g_-(f(x)e^{2t}))^2} \right) f(x).
\leq 8t.e^{2t}. (g'_+(f(x)e^{2t}) - g'_-(f(x)e^{2t})) f(x).
\]
The derivative of \(g_\pm(x) \) is given by
\[g'_\pm(x) = \frac{1}{2} \pm \frac{1}{2} \frac{x + a - 2}{(x + a)^2 - 4x}. \]
Therefore
\[g'_+(x) - g'_-(x) = \frac{x + a - 2}{\sqrt{(x + a)^2 - 4x}}. \]
As \(f \) has critical values \(f(x_0) \) and \(f(y_0) \) we have that
\[g'_+(x) - g'_-(x) = \frac{x + a - 2}{\sqrt{(x - f(x_0))(x - f(y_0))}}. \]
We note that on \(I_\pm^C \) we have \(f(y_0) < f(x)e^{2t} < Cf(y_0) \) then
\[
g'_+(f(x)e^{2t}) - g'_-(f(x)e^{2t}) \leq \frac{Cf(y_0) + a - 2}{\sqrt{(f(y_0) - f(x_0))(f(x)e^{2t} - f(y_0))}}.
\leq \left(\frac{Cf(y_0) + a - 2}{\sqrt{f(y_0) - f(x_0)}} \right) \frac{e^{-t}}{\sqrt{f(x) - f(y_0)e^{-2t}}}
\]
The function \(f(x) = x(x-a)/(x-1) \) has maximum at \(x_0 \) on \((a, 0) \). Therefore for \(b < f(x_0) \)
\[f(x) - b = \frac{(x - g_-(b))(x - g_+(b))}{(x - 1)} \]
As \(x \in (a, 0) \) we have
\[f(x) - b \geq (x - g_-(b))(g_+(b) - x) \]
Therefore
\[
g'_+(f(x)e^{2t}) - g'_-(f(x)e^{2t}) \leq \left(\frac{Cf(y_0) + a - 2}{\sqrt{f(y_0) - f(x_0)}} \right) \frac{e^{-t}}{\sqrt{(x - g_-(f(y_0)e^{-2t}))(g_+(f(y_0)e^{-2t}) - x)}}
\]
Now restricting to \(I_+^C \) we have \(x > g_+(f(y_0)Ce^{-2t}) \). Therefore for \(x \in I_+^C \),
\[
g'_+(f(x)e^{2t}) - g'_-(f(x)e^{2t}) \leq \left(\frac{Cf(y_0) + a - 2}{\sqrt{(f(y_0) - f(x_0))(g_+(f(y_0)e^{-2t}) - g_-(f(y_0)e^{-2t}))}} \right) \frac{e^{-t}}{g_+(f(y_0)e^{-2t}) - x}
\]
Therefore we have
\[\rho_+(C, l, t) \leq \int_{t_C}^b |G(t, x)| dx \leq D(t)8e^t \int_{t_C}^b \frac{f(x)}{\sqrt{g_+(f(y_0)e^{-2t}) - x}} dt \]
where \(D(t) \) is the constant
\[D(t) = \left(\frac{Cf(y_0) + a - 2}{\sqrt{(f(y_0) - f(x_0))(g_+(f(y_0)Ce^{-2t}) - g_-(f(y_0)e^{-2t}))}} \right) \]
As \(f(x) = \frac{x(x - a)}{x - 1} \) then, \(0 < f(x) \leq ax \) on \((a, 0)\) we have
\[\rho_+(C, l, t) \leq \int_{t_C}^b |G(t, x)| dx \leq D(t)8e^t \int_{t_C}^b \frac{x}{\sqrt{g_+(f(y_0)e^{-2t}) - x}} dx \]
By integration we have
\[\int_a^b \frac{x}{\sqrt{b - a}} dx = \frac{2}{3}(2b + a)\sqrt{b - a} \]
Therefore
\[\rho_+(C, l, t) \leq 16D(t)8e^t \int_{t_C}^b \frac{x}{\sqrt{g_+(f(y_0)e^{-2t}) - x}} dx \]
Now for \(t \) large we have
\[\lim_{t \to \infty} D(t) = \left(\frac{Cf(y_0) + a - 2}{\sqrt{(f(y_0) - f(x_0)).|a|}} \right) = D. \]
We note for \(x \) small \(g_+(x) \approx x/a \). Therefore
\[\limsup_{t \to \infty} \left| \frac{\rho_+(C, l, t)}{t^2e^{-2t}} \right| \leq \limsup_{t \to \infty} \frac{16D.a.t.e^t \left(\frac{2(f(y_0)e^{-2t} + f(y_0)Ce^{-2t})}{a} \right) \sqrt{f(y_0)e^{-2t} - f(y_0)Ce^{-2t}}}{t^{2}e^{-2t}}. \]
\[\limsup_{t \to \infty} \left| \frac{\rho_+(C, l, t)}{t^2e^{-2t}} \right| \leq \limsup_{t \to \infty} \frac{16D.f(y_0)^{3/2}(C + 2)\sqrt{C - 1}}{t.\sqrt{-a} = 0.} \]
Thus
\[\lim_{t \to \infty} \frac{\rho_+(C, l, t)}{t^2e^{-2t}} = 0. \]
Similarly for \(\rho_-(C, l, t) \) we once again have that
\[\lim_{t \to \infty} \frac{\rho_-(C, l, t)}{t^2e^{-2t}} = 0. \]
Therefore given \(\epsilon > 0 \) we can find \(K(\epsilon) \) such that for \(C > K(\epsilon) \) by equations \[19\]
\[\limsup_{t \to \infty} \frac{\rho(l, t)}{16t^2e^{-2t}r(a)} = \limsup_{t \to \infty} \left(\frac{\rho_-(C, l, t)}{16t^2e^{-2t}r(a)} + \frac{\rho(C, l, t)}{16t^2e^{-2t}r(a)} \right) = \limsup_{t \to \infty} \frac{\rho(C, l, t)}{16t^2e^{-2t}r(a)} \in [1 - \epsilon, 1 + \epsilon] \]
As \(\epsilon \) is arbitrary we have
\[\limsup_{t \to \infty} \frac{\rho(l, t)}{16t^2e^{-2t}r(a)} = 1 \]
Similarly
\[\liminf_{t \to \infty} \frac{\rho(l, t)}{16t^2e^{-2t}r(a)} = 1 \]
References

[1] Martin Bridgeman, David Dumas, Distribution of intersection lengths of a random geodesic with a geodesic lamination. *Ergodic Theory and Dynamical Systems*, 27(4), 2007

[2] Eberhard Hopf. Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung. *Ber. Verh. Sächs. Akad. Wiss. Leipzig*, 91:261–304, 1939.

[3] L. Lewin, (Ed.). Structural Properties of Polylogarithms, *Mathematical Surveys and Monographs*, AMS, Providence, RI, 1991.

[4] Peter J. Nicholls. *The Ergodic Theory of Discrete Groups*, volume 143 of *London Mathematical Society Lecture Note Series*. Cambridge University Press, Cambridge, 1989.

[5] L.J. Rogers. On Function Sum Theorems Connected with the Series $\sum_{1}^{\infty} \frac{x^n}{n^2}$ *Proc. London Math. Soc.* 4, 169-189, 1907