The $b \rightarrow sgg$ decay in the general two Higgs doublet model

E. O. Iltan

Physics Department, Middle East Technical University
Ankara, Turkey

Abstract

We study the decay width of the inclusive process $b \rightarrow sgg$ in the two Higgs doublet model with three level flavor changing neutral currents (model III). We analyse the dependencies of the differential decay width to the s- quark energy E_s and model III parameters, charged Higgs mass m_{H^\pm} and Yukawa coupling $\xi^D_{N,bb}$. We observe that there exist a considerable enhancement in the decay width for the relevant process. This enhancement can be reduced by choosing C_7^{eff} as negative and increasing the lower bound of m_{H^\pm} to the large values, such as 800 GeV. This is an interesting result which gives an idea on the mass m_{H^\pm} and sign of C_7^{eff}.

*E-mail address: eiltan@heraklit.physics.metu.edu.tr

1 Introduction

The B-meson system is interesting and rich phenomenologically, providing a comprehensive information on the theoretical models. With the forthcoming experiments at SLAC, KEK B-factories, HERA-B and possible future accelerators, the large number of events can take place and various branching ratios of events, CP-violating asymmetries, polarization effects, etc... can be measured [1,2]. This will lead to test the models underconsideration and to determine corresponding free parameters.

Loop induced processes are sensitive to the parameters of the models used. Therefore, they open a window for the determination of these parameters and investigation of new models. Among these type of decays, inclusive $b \to sg$ reached a great interest since it is theoretically clean and sensitive to new physics beyond SM, like two Higgs doublet model (2HDM) [3], minimal supersymmetric Standard model (MSSM) [4], etc... . The Branching ratio Br of $b \to sg$ decay in the SM is $Br(b \to sg) \sim 0.2\%$ for on-shell gluon [3] and the enhancement of this ratio brings an advantage [4] to decrease the averaged charm multiplicity η_c [5] and to increase kaon yields [6]. This enhancement can be obtained by including the QCD corrections or looking for new models beyond the SM. In the literature, there are number of theoretical calculations on the Br of the corresponding process beyond the SM. In [10,11], $Br(b \to sg)$ was calculated in the 2HDM (Model I and II) for $m_{H^\pm} \sim 200\, GeV$ and $tan \beta \sim 5$ and it was found that there was an enhancement less than one order. This decay was studied in the supersymmetric models [12] and further, the Br was calculated in the framework of the model III [13], resulting with the enhancement at least one order compared to the SM one. This make it possible to describe the results coming from experiments [14].

In the case of time-like gluon, namely $b \to sg^*$ decay, Br should be consistent with the CLEO data [15]

$$Br(b \to sg^*) < 6.8\%$$ (1)

and in [13], it was showed that the model III enhancement was not contradict with this data for light-like gluon case.

As a further process, g^* can decay into quark-quark $\bar{q}q$ or gluon-gluon (gg) pairs. Inclusive three body decay $b \to sgg$ is another interesting one which is studied in the literature extensively [16,17,18]. It becomes not only from the chain process $b \to sg^*$ followed by $g^* \to gg$ but also from the emission of on-shell gluons from the quark lines to obey gauge invariance. In [17], the complete calculation was done in the SM and Br ratio was found at the order of 10^{-3}.

In [13, 18] the additional contribution of gluon penguins in the Model III was estimated as negligible.

This work is devoted to the study of the complete calculation for \(b \to sgg \) decay in the model III and we find that the decay width (\(\Gamma \)) is strongly sensitive to the charged Higgs mass \(m_{H^\pm} \). Therefore, it is possible to get a considerable enhancement in \(\Gamma \) even 2 orders larger compared to the SM case.

The paper is organized as follows: In Section 2, we give a brief summary for the model III. Further, we calculate the matrix element and decay width of the inclusive \(b \to sgg \) decay in the framework of the model III. Section 3 is devoted to discussion and our conclusions. In Appendix, we present the form factors appearing in the SM.

2 The inclusive process \(b \to sgg \) in the framework of the model III

The Yukawa interaction in the model III can be defined as

\[
\mathcal{L}_Y = \eta_{ij}^U \bar{Q}_i L \tilde{\phi}_1 U_{jR} + \eta_{ij}^D \bar{Q}_i L \phi_1 D_{jR} + \xi_{ij}^U \bar{Q}_i L \tilde{\phi}_2 U_{jR} + \xi_{ij}^D \bar{Q}_i L \phi_2 D_{jR} + h.c. ,
\]

(2)

where \(L \) and \(R \) denote chiral projections \(L(R) = 1/2(1 \mp \gamma_5) \), \(\phi_i \) for \(i = 1, 2 \), are the two scalar doublets. The Yukawa matrices \(\eta_{ij}^{U,D} \) and \(\xi_{ij}^{U,D} \) have in general complex entries. With the choice of \(\phi_1 \) and \(\phi_2 \),

\[
\phi_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H^0 \end{pmatrix} + \begin{pmatrix} \sqrt{2} \chi^+ \\ i \chi^0 \end{pmatrix} ; \phi_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} H^+ \\ H_1 + i H_2 \end{pmatrix} ,
\]

(3)

and the vacuum expectation values,

\[
< \phi_1 >= \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} ; < \phi_2 >= 0 ,
\]

(4)

the SM particles are collected in the first doublet and particles due to new physics in the second one. The part of Yukawa interaction which is responsible for physics beyond the SM is the Flavor Changing (FC) interaction and can be written as

\[
\mathcal{L}_{Y,FC} = \xi_{ij}^U \bar{Q}_i L \tilde{\phi}_2 U_{jR} + \xi_{ij}^D \bar{Q}_i L \phi_2 D_{jR} + h.c. ,
\]

(5)

where the couplings \(\xi^{U,D}_{ch} \) for the FC charged interactions are

\[
\xi_{ch}^U = \xi_N V_{CKM} , \quad \xi_{ch}^D = V_{CKM} \xi_N ,
\]

(6)
and $\xi^{U,D}_N$ is defined by the expression (more details see [19])

$$\xi^{U,D}_N = (V_L^{U,D})^{-1}\xi^{U,D}V_R^{U,D}.$$

(7)

Note that the index "N" in $\xi^{U,D}_N$ denotes the word "neutral".

Now we start with the decay amplitude of the decay $b \to sgg$

$$M(b \to sgg) = i \frac{\alpha_s G_F}{\sqrt{2\pi}} \epsilon^\mu(k_1) \epsilon^\nu_b(k_2) \bar{s}(p') T_{\mu\nu}^{ab} b(p),$$

(8)

where $\epsilon^\mu(k)$ are polarization vectors of the gluons with color a and momentum k. Using the same parametrization for $T_{\mu\nu}^{ab}$ as in [17], we have

$$T_{\mu\nu}^{ab} = T_{\mu\nu}^E \frac{\lambda^a}{2} + T_{\mu\nu}^E \frac{\lambda^b}{2},$$

(9)

and $T_{\mu\nu}^E$ can be obtained by the replacements $k_1 \leftrightarrow k_2$ and $\mu \leftrightarrow \nu$ in the function $T_{\mu\nu}$. Here $\frac{\lambda^a}{2}$ are the Gell-Mann matrices. The functions $T_{\mu\nu}$ in general, contain masses of internal quarks u, c, t in the SM and also d, s, b in the model III, since the process under consideration takes place at least at one loop level. Therefore, at this stage, we take into account two different possibilities,

- the mass of internal quark is heavy (namely, t-quark),
- the mass of internal quark is light (namely, d, s, b, u, c-quarks).

In the heavy internal quark case, the terms $k^2_{\text{external}}/m_t^2$ and $k^2_{\text{external}}/m_t^2 (m_W^2, m_{H^\pm}^2)$ are neglected and the form factors are obtained as functions of $x_t = m_t^2/m_W^2$ and $y_t = m_t^2/m_{H^\pm}^2$ where m_{H^\pm} is the mass of charged Higgs boson in the model III. Neglecting s-quark mass, $T_{\mu\nu}$ for the heavy internal quark is given by

$$T^{\text{heavy}}_{\mu\nu} = -i \lambda_t F_2^{2\text{HDM}} \left\{ \frac{2p'_\nu + \gamma'_\nu}{2p'.k_2} \sigma_{\mu a}k_1^a + \sigma_{\nu a}k_2^a - \frac{2p_\mu k_1^a}{2p'_a k_2} \right\} + \frac{1}{q^2} (2 \sigma_{\alpha\beta} k_1^\alpha k_2^\beta g_{\mu\nu} + 2 \sigma_{\nu a}k_2^\mu q^a - 2 \sigma_{\mu a}k_1^\nu q^a + \sigma_{\mu\nu}q^2) m_b R.$$

(10)

Here q is the momentum transfer, $q = k_1 + k_2$, λ_t is the CKM matrix combination $\lambda_t = V_{tb}V^*_{ts}$ and $F_2^{2\text{HDM}}$ is the form factor

$$F_2^{2\text{HDM}} = F_2^{\text{SM}} (x_t) + F_2^{\text{Beyond}} (y_t)$$

(11)

where $F_2^{\text{SM}} (x_t)$ is the magnetic dipole form factor of $b \to s g^* \ell^\pm$ vertex (see Appendix). $F_2^{\text{Beyond}} (y_t)$ is the contribution coming from the charged Higgs boson in the model III:

$$F_2^{\text{Beyond}} (y_t) = \frac{1}{m_t^2} \left(\xi_N^{U,t} + \bar{\xi}_N^{U,t} V_{ts}^* V_{ts}^* (\xi_N^{U,t} + \bar{\xi}_N^{U,t} V_{tb}^* V_{tb}^*) G_1(y_t) \right) - \frac{1}{m_t m_b} \left(\bar{\xi}_N^{U,t} + \bar{\xi}_N^{U,t} V_{ts}^* (\xi_N^{D,bb} + \bar{\xi}_N^{D,bb} V_{tb}^* V_{tb}^*) G_2(y_t) \right).$$

(12)
and

\begin{align*}
G_1 (y_t) &= \frac{y_t}{12 (-1 + y_t)^4}((-1 + y_t) (-2 - 5 y_t + y_t^2) + 6 y_t \ln y_t)), \\
G_2 (y_t) &= \frac{1}{2 (-1 + y_t)^4} (y_t (3 - 4 y_t + y_t^2) + 2 (-1 + y_t) y_t \ln y_t).
\end{align*}

(13)

In eq. (12) we used the redefinition

\[\xi^U,D = \sqrt{4 G_F} \sqrt{\bar{\xi}^U,D}. \]

(14)

Note that we neglect the chiral partner of the form factor \(F_2^{Beyond} (y_t) \) and the neutral Higgs boson effects which should be very small due to the discussion given in [20] (see also Discussion part).

If the internal quark is light (u or c), the first additional contribution comes from \(m_i^2/m_W^2 \) and \(m_i^2/m_{H^\pm}^2 \) terms. In the approximation \(m_i^2/m_W^2 (H^\pm) \rightarrow 0 \), it is enough to replace \(F_2^{SM} (x_i) \) with ” − \(F_2 (0)" \) since \(\lambda_c = -\lambda_t \) by unitarity, namely \(\sum_{i=a,c,t} \lambda_i = 0 \). There is no additional term coming from light quark for \(F_2^{Beyond} (y_t) \), since \(F_2^{Beyond} (0) \) almost vanishes. For light internal quark, the second additional contribution comes from \(k_{external}^2/m_i^2 \) term which can not be neglected as in the heavy internal quark case. This contribution was calculated in the literature [17] and we give its explicit form in Appendix. Therefore, the resulting amplitude can be written as

\[T_{\mu\nu} = T_{\mu\nu}^{heavy} + T_{1\mu\nu}^{light} + T_{2\mu\nu}^{light}, \]

(15)

and \(T_{\mu\nu}^{heavy} \) is given in eq. (10), \(T_{1\mu\nu}^{light} \) can be obtained from \(T_{\mu\nu}^{heavy} \) with the replacement \(F_2^{2HDM} \rightarrow - F_2^{SM} (0) \) and \(T_{2\mu\nu}^{light} \) is given in Appendix.

The decay amplitude for the process \(b \rightarrow sgg \), \(T_{\mu\nu}^{ab} \), can be parametrized by seperating color symmetric and antisymmetric parts [17] as

\[T_{\mu\nu}^{ab} = T_{\mu\nu}^+ \{ \frac{\lambda^b}{2}, \frac{\lambda^a}{2} \} + T_{\mu\nu}^- \{ \frac{\lambda^b}{2}, \frac{\lambda^a}{2} \}, \]

(16)

with

\[T_{\mu\nu}^+ = \frac{1}{2} (T_{\mu\nu} + T_{\mu\nu}^E), \]

\[T_{\mu\nu}^- = \frac{1}{2} (T_{\mu\nu} - T_{\mu\nu}^E). \]

(17)

Finally we get the differential decay width of the process using the expression

\[\frac{d^2 \Gamma}{dE_s dE_1} = \frac{1}{2\pi^3} \frac{1}{8 m_b} |M|^2, \]

(18)
where E_s is the s-quark energy and E_1 is the energy of photon with polarization $\epsilon_\mu^a(k_1)$. Here \bar{M} is the average decay amplitude $\bar{M} = \frac{1}{2J+1} \frac{1}{N_c} M$ and $J = \frac{1}{2}$, $N_c = 3$. Now, we divide the differential decay width into sectors as follows:

- Symmetric sector, (Γ^{Sym}),
- Antisymmetric sector, (Γ^{Asym}),

or

- Right sector, (Γ^R),
- Left sector, (Γ^L),
- Left-right mixed sector, (Γ^{LR}).

Antisymmetric and symmetric sectors do not mix and they enter into decay width as

$$\Gamma^{Sym(Asym)} \sim Tr(T^{\pm}(\bar{p}') (p' + m_b)) \bar{T}^{\pm}(\bar{p}') P^{\mu\nu} P^{\mu'\nu'},$$

with the corresponding color factors $C_+ = \frac{(N_c^2 - 1)(N_c^2 - 2)}{2N_c}$ and $C_- = \frac{N_c(N_c^2 - 1)}{2}$ respectively. Here we choose the polarization sum of the on-shell gluons as

$$P^{\mu\nu} = -g^{\mu\nu'} + \frac{k_1^\mu k_2^{\nu'} + k_1^\nu k_2^{\mu'}}{k_1 \cdot k_2},$$

and $T^{\pm(\bar{p}')}_{\mu\nu'} = \gamma_0 (T^{\pm(\bar{p}')}_{\mu\nu'})^\dagger \gamma_0$. Right sector contains form factors which are functions of $x_i = m_i^2/m_W^2$ and $y_i = m_i^2/m_H^2$ where $i = u, c, t$. Left one have the form factors which are created by the nonvanishing $k^2_{\text{external}}/m^2_{\text{right}}$ terms. Left-right sector contains mixed terms and its contribution is negligible.

Since there are collinear divergences at the boundary of the kinematical region, we follow the procedure given in [17], namely taking a cutoff c in the integration over phase space:

$$\frac{-2 E_s m_b + m_b^2 + m_s^2}{2 m_b} + c m_b \leq E_1 \leq \frac{-2 E_s m_b + m_b^2}{2 (2 E_s - m_b)},$$

with $c = 0.01$. Note that these limits are used in the integration over E_1 and to get differential decay width $\frac{d\Gamma}{dE_s}$.

5
3 Discussion

There are many free parameters in the model III such as Yukawa couplings, $\xi_{ij}^{U,D}$ where i, j are flavor indices, masses of charged and neutral Higgs bosons. The procedure is to restrict these parameters using the experimental measurements. Since the contributions of the neutral Higgs bosons h_0 and A_0 to the Wilson coefficient C_7^{eff} should not contradict with the CLEO measurement \[21\],

$$Br(B \rightarrow X_s\gamma) = (3.15 \pm 0.35 \pm 0.32) \times 10^{-4},$$

(21)

the couplings $\tilde{\xi}_{N,is}^{D}(i = d, s, b)$ and $\tilde{\xi}_{N,db}^{D}$ should be negligible (see \[21\] for details). In addition, the constraints \[22\], coming from the $\Delta F = 2$ mixing, the ρ parameter \[23\], and the measurement by CLEO Collaboration results in the following restrictions: $\tilde{\xi}_{N,tc} < < \tilde{\xi}_{N,tt}^U$, $\tilde{\xi}_{N,bb}^D$ and $\tilde{\xi}_{N,ib}^D \sim 0$, $\tilde{\xi}_{N,ij}^D \sim 0$, where the indices i, j denote d and s quarks. Therefore, we can neglect all the couplings except $\tilde{\xi}_{N,tt}^U$ and $\tilde{\xi}_{N,bb}^D$. This leads to the cancellation of the contributions coming from primed coefficient F_2^{Beyond} and from the neutral Higgs bosons h_0 and A_0, having interactions which include the Yukawa vertices with the combinations of $\tilde{\xi}_{N,ss}^{D}$ and $\tilde{\xi}_{N,bb}^D$. Finally, we only take into account the multiplication of Yukawa couplings, $\tilde{\xi}_{N,tt}^U \tilde{\xi}_{N,bb}^D$ and $|\tilde{\xi}_{N,tt}^U|^2$ in our expressions.

In this section, we study the s quark energy E_s, Yukawa coupling $\tilde{\xi}_{N,bb}^D$ and charged Higgs mass m_{H^\pm} dependencies of the differential decay width $\frac{d\Gamma}{dE_s}$ for the inclusive decay $b \rightarrow sgg$. In our analysis, we restrict the parameters $\tilde{\xi}_{N,tt}^U$, $\tilde{\xi}_{N,bb}^D$ using the constraint of $|C_7^{eff}|$, $0.257 \leq |C_7^{eff}| \leq 0.439$ \[21\], where the upper and lower limits were calculated in \[22\] following the procedure given in \[24\]. Throughout these calculations, we take the charged Higgs mass $m_{H^\pm} = 400 \text{GeV}$, and we use the input values given in Table (1).

Parameter	Value
m_c	1.4 (GeV)
m_b	4.8 (GeV)
λ_t	0.04
m_t	175 (GeV)
m_W	80.26 (GeV)
m_Z	91.19 (GeV)
Λ_{QCD}	0.214 (GeV)
$\alpha_s(m_Z)$	0.117
c	0.01

Table 1: The values of the input parameters used in the numerical calculations.

In Fig. 1 we plot $\frac{d\Gamma}{dE_s}$ with respect to the s quark energy E_s, for $\tilde{\xi}_{N,bb}^D = 40m_b$, and $|r_{tb}| =$
$|\frac{g^{\mu}_{\xi D}}{g^{\mu}_{\xi N,bb}}| < 1$. $\frac{d\Gamma}{dE_s}$ is restricted in the region bounded by dotted (dashed) lines for $C_7^{eff} > 0$ ($C_7^{eff} < 0$). Solid line represents the SM contribution. There is a considerable enhancement in the differential decay width especially for $C_7^{eff} > 0$ case. Besides, the allowed region becomes larger for $C_7^{eff} > 0$.

Fig. 2 is devoted to the E_s dependence of color antisymmetric and symmetric part of $\frac{d\Gamma}{dE_s}$. The color antisymmetric part lies in the region bounded by dash-dotted (dotted) lines and the color symmetric part by dashed (solid) lines, for $C_7^{eff} > 0$ ($C_7^{eff} < 0$). This figure shows that, for $C_7^{eff} > 0$, the contribution of the color antisymmetric part is greater than that of color symmetric one. This is true also for $C_7^{eff} < 0$ case. However the contribution of the color symmetric part for $C_7^{eff} > 0$ exceeds that of the color antisymmetric one for $C_7^{eff} < 0$. The allowed region becomes narrower for $C_7^{eff} < 0$ (see dotted and solid lines). Note that the contributions due to the SM is presented by the solid and dashed lines which almost coincide with the x-axis.

Fig. 3 shows the E_s dependence of right, left and left-right mixed parts of $\frac{d\Gamma}{dE_s}$ in the SM. Solid line represents right, dashed line left and dotted line left-right contributions. The left one exceeds the right one up to almost $E_s = 1.6\, GeV$ since the $k_{\text{external}}/m_{\text{light}}^2$ contribution, responsible for left part, is comparable with the heavy internal quark, namely m_t, contribution. Left-right mixed part is very small and has also negative values. For the model III we have only right additional contributions since there is no left part beyond the SM in our approximation.

In Fig. 4 and Fig. 5, we present the $\xi D_{N,bb}$ dependence of $\frac{d\Gamma}{dE_s}$ for fixed values of $E_1 = 2\, GeV$ and $E_s = 1\, GeV$. It is seen that there is almost no dependence on the parameter $\xi D_{N,bb}$ especially for its large values.

For completeness, we also present m_{H^\pm} dependence of $\frac{d\Gamma}{dE_s}$ for fixed values of $\xi D_{N,bb} = 40\, m_b$, $E_1 = 2\, GeV$ and $E_s = 1\, GeV$ for $C_7^{eff} < 0$ (Fig. 6). Here the restricted region is bounded by solid lines. This figure shows that there is a strong dependence on the mass m_{H^\pm}.

Now we would like to give some numerical results for our calculations. The total decay width for $b \to sX$ transition is

$$\Gamma_{tot} = (r|V_{ub}|^2 + s|V_{cb}|^2)\Gamma_0 ,$$

where $\Gamma_0 = \frac{m_b^5 G_F^2}{192\pi^3}$ and r, s are QCD sensitive parameters

$$6.46 \leq r \leq 7.55 ,$$

$$2.38 \leq s \leq 2.92$$

for $\alpha_s = 0.2$. Easy calculation shows that the total decay width is $\Gamma_{tot} = 3.50 \pm 1.50 \times 10^{-13}$.

In our calculation, we obtain the decay width for the SM as $\Gamma_{SM} = 5.1 \times 10^{-15} GeV$. For $m_{H^\pm} = 400 GeV$ and $\xi_{N,bb} = 40 m_b$, the model III result is four (three) orders larger for $C_7^{eff} > 0$ ($C_7^{eff} < 0$) compared to the SM result. This is a strong enhancement contradict with the total decay width given above. This forces us to choose the sign of C_7^{eff} as negative ($C_7^{eff} < 0$) and also to take large values of charged Higgs mass, m_{H^\pm}. For $m_{H^\pm} = 800 GeV$, $\xi_{N,bb} = 40 m_b$ and $C_7^{eff} < 0$ we get:

\begin{align}
8.58 \times 10^{-14} GeV & \leq \Gamma \leq 1.5 \times 10^{-13} GeV , \\
3.09 \times 10^{-14} GeV & \leq \Gamma^{Sym} \leq 2.70 \times 10^{-14} GeV , \\
5.49 \times 10^{-14} GeV & \leq \Gamma^{ASym} \leq 1.23 \times 10^{-13} GeV , \\
8.08 \times 10^{-14} GeV & \leq \Gamma^R \leq 1.45 \times 10^{-13} GeV , \\
4.93 \times 10^{-15} GeV & \leq \Gamma^L \leq 4.93 \times 10^{-15} GeV .
\end{align}

(23)

In conclusion, we get a considerable enhancement in the decay width of the process $b \rightarrow sgg$ in the model III. The enhancement can be suppressed by choosing $C_7^{eff} < 0$ and increasing lower bound of charged Higgs mass, m_{H^\pm}. Further, the decay width of the process under consideration is not sensitive to the parameter $\xi_{N,bb}$.

8
Appendix

A The form factors in the SM for $b \rightarrow sg^*$ decay

Here we present the magnetic dipole form factor $F_2^{SM}(x_t)$ and the additional form factors due to the non-vanishing $k_{external}^2/m_{light}^2$ terms. (for details see [17]). The vertex function for $b \rightarrow sg^*$ decay with on-shell quarks can be written as

$$
\Gamma_\mu(p, p', q) = F_1(x_t) (q^2 \gamma_\mu - q_\mu q_r) L - F_2(x_t) i \sigma_{\mu\nu} q^\nu (m_b R + m_s L) ,
$$

(24)

where p, p' and q are four-momentum of b-quark, s-quark and gluon respectively. The magnetic dipole form factor $F_2^{SM}(x_t)$ in the SM is

$$
F_2^{SM}(x_t) = \frac{-8 + 38 x_t - 39 x_t^2 + 14 x_t^3 - 5 x_t^4 + 18 x_t^2 \ln x_t}{12 (-1 + x_t)^4} ,
$$

(25)

and $x_t = m_t^2/m_W^2$. The non-vanishing $k_{external}^2/m_{light}^2$ terms for light quarks bring new additional contributions, $\Delta F_1, \Delta i_2,$ and Δi_5 (See [17] for details):

$$
\Delta F_1 = \frac{2}{9} - \frac{4}{3} Q_0(z) - \frac{2}{3} Q_0(z) ,
$$

$$
\Delta i_2 = \frac{5}{9} - \frac{2}{3} Q_-(z) + \frac{8}{3} Q_0(z) - \frac{2}{3} Q_0(z) ,
$$

$$
\Delta i_5 = -1 - \frac{2}{3} Q_-(z) ,
$$

(26)

where

$$
Q_0(z) = -2 - (u_+ - u_-)(\ln \frac{u_-}{u_+} + i\pi) ,
$$

$$
Q_-(z) = \frac{1}{2}(\ln \frac{u_-}{u_+} + i\pi)^2 ,
$$

(27)

with

$$
u_\pm = \frac{1}{2}(1 \pm \sqrt{1 - \frac{4}{z}}) ,
$$

(28)

and

$$
z = \frac{q^2}{m_t^2}, \ i = u, c .
$$

(29)

Finally, the contributions due to the non-vanishing $k_{external}^2/m_{light}^2$ terms are

$$
T_{2\mu
u}^{light} = -\lambda_t \{(\Delta i_2 - \Delta F_1)(k_1 - k_2) g_{\mu\nu} L + \Delta i_5 i \epsilon_{\alpha\mu\nu} \gamma^\beta (k_1^\alpha - k_2^\alpha) L
$$

$$
- 2 \Delta F_1 (\gamma^\nu k_{2\mu} - \gamma^\mu k_{1\nu}) L \}
$$

(30)
References

[1] The Babar Physics Book, Babar Collaboration, SLAC Report, No. SLAC-R 504, 1998
F. Takasaki, hep-ex/9912004;
P. Ecrola, Nucl. Instrum. Meth. A446 (2000) 407, hep-ex/9910067.

[2] J. Ellis, hep-ph/9910404; Y. F. Zhou and Y. L. Wu, Mod. Phys. Lett. A15 (2000) 185;
X. G. He, hep-ph/0001313; C. D. Lu. hep-ph/0001321.

[3] S. Glashow and S. Weinberg, Phys. Rev. D15 (1997) 1958.

[4] M. Misiak, S. Pokorski and J. Rosiek, hep-ph/9703442, to appear in “Heavy Flavor II”, eds.
A. J. Buras and M. Lindner, World Scientific Publishing Co. Singapore.

[5] S. A. Abel, W. N. Cottingham and I. B. Whittingham, Phys. Rev. D58 (1998) 073006.

[6] M. Ciuchini, E. Franco, G. Martinelli, L. Reina and L. Silverstini, Phys. Lett. B344 (1994)
137; C. S. Gao, C. D. Lu and Z. M. Qiu, Z. Phys. C69 (1995) 113.

[7] Weinberg, Phys. Rev. D19 (1979) 1277; L. S. Susskind, ibid D20 (1979) 2619; C. D. Lu,
Z. J. Xiao, Phys. Rev. D53 (1996) 2529; G. R. Lu, C. X. Yue Y. G. Cao, Z. H. Xiong and
Z. J. Xiao, Phys. Rev. D54 (1996) 5647; Z. J. Xiao, L. X. Lu, H. K. Guo and G. R. Lu,
Chin. Phys. Lett. 16 (1999) 88; Z. J. Xiao, et. al., Eur. Phys. J., C7 (1999) 487; G. R. Lu,
Z. J. Xiao, H. K. Guo and L. X. Lu, J. Phys., G25 (1999) L85.

[8] B. G. Grzadkowski and W. S. Hou, Phys. Lett. B272 (1991) 383.

[9] A. L. Kagan and J. Rathsman, hep-ph/9701300.

[10] Chao-Qiang Geng, P. Turcotte and W. S. Hou, Phys. Lett. B339 (1994) 317.

[11] A. L. Kagan, Phys. Rev. D51 (1995) 6196.

[12] S. Bertolini, F. Borzumati and A. Masiero, Nucl. Phys. B294 (1987) 321; M. Ciuchini,
E. Gabrielli and G. F. Giudice, Phys. Lett. B388 (1996) 353; A. L. Kagan and M. Neubert,
Phys. Rev. D58 (1998) 094012.

[13] Zhenjun Xiao, Chong Sheng Li and Kuang-Ta Chao, Phys. Lett. B473 (2000) 148.

[14] A. Kagan, hep-ph/9806266, to appear Proceedings of the 7th International Symposium on
Heavy Flavor Physics, Santa Barbara, California, July 1997.
[15] CLEO Collaboration, T. E. Coan et. al., Phys. Rev. Lett. 80 (1998) 1150.

[16] W. S. Hou, A. Soni and H. Steger, Phys. Rev. Lett. 59 (1987) 1521; W. S. Hou Nucl. Phys. B308 (1988) 561.

[17] H. Simma and D. Wyler, Nucl. Phys. B344 (1990) 283.

[18] Zhenjun Xiao, Chong Sheng Li and Kuang-Ta Chao, hep-ph/0003073 (2000).

[19] D. Atwood, L. Reina and A. Soni, Phys. Rev. D53 (1996) 119.

[20] T. M. Aliev, and E. Iltan, Phys. Rev. D58 (1998) 095014.

[21] M. S. Alam Collaboration, to appear in ICHEP98 Conference (1998).

[22] T. M. Aliev, E. Iltan J. Phys. G25 (1999) 989.

[23] D. Atwood, L. Reina and A. Soni, Phys. Rev. D55 (1997) 3156.

[24] T. M. Aliev, G. Hiller and E. O. Iltan, Nucl. Phys. B515 (1998) 321.

[25] A. Pashos and U. Turke, Phys. Rep. 178 (1989) 145.
Figure 1: $\frac{d\Gamma}{dE_s}$ a function of E_s for fixed $\bar{\xi}_{N,bb}^D = 40 m_b$ and $|\tau_{tb}| = |\bar{\xi}_{N,tt}^U \bar{\xi}_{N,bb}^D| < 1$. Here $\frac{d\Gamma}{dE_s}$ is restricted in the region bounded by dotted (dashed) lines for $C_{7}^{eff} > 0$ ($C_{7}^{eff} < 0$). Solid line represents the SM contribution.
Figure 2: The color antisymmetric and symmetric part of $\frac{d\Gamma}{dE_s}$ as a function of E_s for fixed $\bar{\xi}_{N,bb}^D = 40 \text{ m}_b$, $m_{H^\pm} = 400 \text{ GeV}$ and $|r_{tb}| < 1$. Here the color antisymmetric part lies in the region bounded by dash-dotted (dotted) lines and the color symmetric part by dashed (solid) lines, for $C_T^{eff} > 0$ ($C_T^{eff} < 0$). The SM contribution almost coincides with x-axis.

Figure 3: Right, left and left-right mixed parts of $\frac{d\Gamma}{dE_s}$ as a function of E_s for fixed $\bar{\xi}_{N,bb}^D = 40 \text{ m}_b$, $m_{H^\pm} = 400 \text{ GeV}$ and $|r_{tb}| < 1$. Here solid line represents right, dashed line left and dotted line left-right contributions.
Figure 4: \[\frac{d\Gamma}{dE_s} \] as a function of $\xi_{N,bb}^D$ for fixed $\xi_{N,bb}^D = 40\, m_b$, $m_{H^\pm} = 400\, GeV$, $|r_{tb}| < 1$, $C_7^{eff} < 0$, $E_1 = 2\, GeV$ and $E_s = 1\, GeV$. Here $\frac{d\Gamma}{dE_s}$ lies in the region bounded by solid lines. Dashed line represents the SM contribution.

Figure 5: The same as Fig. 4 but for $C_7^{eff} > 0$. Dashed line represents the contribution for $C_7^{eff} < 0$.
Figure 6: The same as Fig. 4, but \(\frac{d\Gamma}{dE_s} \) as a function of \(m_{H^\pm} \) and for fixed \(\xi_{N,bb} = 40 \, m_b \).