Nonreciprocal transport in gate-induced polar superconductor SrTiO$_3$

Yuki M. Itahashi1, Toshiya Ideue1*, Yu Saito$^{1, 2}$, Sunao Shimizu$^{3, 4}$, Takumi Ouchi5, Tsutomu Nojima5, Yoshihiro Iwasa$^{1, 3*}$

Polar conductors/superconductors with Rashba-type spin-orbit interaction are potential material platforms for quantum transport and spintronic functionalities. One of their inherent properties is the nonreciprocal transport, where the rightward and leftward currents become inequivalent, reflecting spatial inversion/time-reversal symmetry breaking. Such a rectification effect originating from the polar symmetry has been recently observed at interfaces or bulk Rashba semiconductors, while its mechanism in a polar superconductor remains elusive. Here, we report the nonreciprocal transport in gate-induced two-dimensional superconductor SrTiO$_3$, which is a Rashba superconductor candidate. In addition to the gigantic enhancement of nonreciprocal signals in the superconducting fluctuation region, we found kink and sharp peak structures around critical temperatures, which reflect the crossover behavior from the paraconductivity origin to the vortex origin, based on a microscopic theory. The present result proves that the nonreciprocal transport is a powerful tool for investigating the interfacial/polar superconductors without inversion symmetry, where rich exotic features are theoretically prognosticated.

INTRODUCTION

Two-dimensional electron system (2DES) realized at the oxide surface or interface is a promising candidate for emergent physical properties and functionalities (1). Since it naturally hosts the spatial inversion symmetry breaking due to the structural asymmetry or crystal symmetry, characteristic spin-split bands with the spin-momentum locking emerge due to spin-orbit interaction (SOI), offering rich spintronic functionalities (2, 3). Although 2DES is also an important platform for the exotic quantum phases such as quantum Hall effect (4) and superconductivity (5, 6), the effect of the symmetry breaking on such quantum phases has been elusive.

One of the previously unidentified probes for broken inversion symmetry is the nonreciprocal electrical transport (7–23), which represents the directional dichroism of magnetoresistance and has been observed via DC measurement or AC lock-in technique (second harmonic resistance; see Materials and Methods) in several noncentrosymmetric crystals (17, 18) or interfaces (16, 19, 20). In a polar semiconductor with Rashba-type SOI, the warped Fermi surface under in-plane magnetic field can cause the nonreciprocal transport (18). Recently, this experimental technique has been extended to the superconducting state, in which a large nonreciprocal response has been observed, while reports are limited in a few systems (9–13) and detailed mechanism has not been fully unveiled (10, 14, 15). According to the recent theoretical considerations (14, 15), the nonreciprocal transport is an effective tool for probing the parity mixing of Cooper pairs (24, 25) or vortex dynamics in noncentrosymmetric superconductors. Therefore, it is highly desired to examine the nonreciprocity around superconducting transition using a simple electron system with the broken inversion symmetry. The 2D superconductor with strong Rashba-type SOI can be a good candidate.

Here, we studied the nonreciprocal superconducting transport in a 2DES realized at the surface of SrTiO$_3$, which is an archetypal Rashba superconductor. We first observed a gigantic enhancement of the nonreciprocal response in the superconducting fluctuation region, which is six orders of magnitude larger than that in the normal state. With decreasing the temperature from the normal state to the superconducting fluctuation region, we found peculiar kink and sharp peak behavior in the nonreciprocal resistance, which can be understood in terms of crossover of nonreciprocal superconducting transport between the two distinct regions, i.e., nonreciprocal paraconductivity and the vortex-induced rectification effect. Our results unveil an unprecedented aspect of 2D polar superconductor, induced by vortex motion in noncentrosymmetric background around the Berezinskii–Kosterlitz-Thouless (BKT) transition.

RESULTS

To realize a 2D Rashba superconductor, we used an ion-gating technique on the surface of SrTiO$_3$. After fabricating Cr/Au electrodes on the atomically flat surface of SrTiO$_3$ (26, 27), ionic liquid was placed on the top to form the electric double-layer transistor (EDLT) structure (Fig. 1A). Note that we did not use Ca-doped nor strained SrTiO$_3$ with a bulk ferroelectricity (28–30). We measured the first and second harmonic electric transport by a standard lock-in technique (see Materials and Methods).

First, we discuss the first harmonic resistance R_{xx}, which corresponds to the linear resistance, near the superconducting transition for the gate voltage of $V_G = 5.0$ V. Figure 1B shows a temperature dependence of R_{xx} at the low-current limit ($I = 0.05 \mu$A). Superconducting transition is observed at 0.31 K using the midpoint of the normal-state resistance, which can be regarded as the mean-field transition temperature T_{c0} (31). Black dashed line shows a fitting curve using the Halperin-Nelson formula $R_{xx}^0 - R_N \exp\left(-2b\sqrt{\frac{T_{c0} - T}{T_{c0}}}\right)$, where...
Figure 2A shows temperature dependence of γ for both the normal state (purple circles and dots) and the superconducting fluctuation region (orange circles and dots). Note that superconductivity is quenched even below T_{c0} under the large current ($I = 20 \mu A$). Thus, obtained γ below T_{c0} (purple dots) agrees well with the data at the normal-state data (purple symbols) in Fig. 2E. In the normal state, γ increases as temperature decreases and lastly reaches the value of $\gamma \sim 10$, which is of the same order of magnitude as that reported for SrTiO$_3$ (111) surface (23). The saturation behavior at low temperature is also consistent with the previous study of BiTeBr (18). In marked contrast, γ in the superconducting fluctuation region with $I = 0.9 \mu A$ is largely enhanced as T decreases, becoming 10^4 times larger than that in the normal state. So far, nonreciprocal transport has been reported separately in the normal state (18–23) and superconducting fluctuation region (9–12) in any materials. The present result is the first simultaneous observation of the nonreciprocal responses, both in the normal and superconducting fluctuation region in an identical sample, clearly demonstrating the gigantic enhancement of γ in the superconducting fluctuation region.

We also measured the current I dependence of second harmonic signals in the normal state and superconducting fluctuation region. Figure 3A shows $R_{xx}^{2h}(B)$ at $T = 0.85 K$ (normal state) under various I values. R_{xx}^{2h} shows an almost linear B dependence for each current. In Fig. 3B, we plot the magnitude of $|R_{xx}^{2h}|$ at $B = 3 T$ as a function of I. It increases linearly with I, indicating the second-order nonlinear voltage of the current. For the superconducting fluctuation region ($T = 0.22 K$; Fig. 3C), R_{xx}^{2h} shows a peak structure as a function of B as discussed in Fig. 2D. Since the peak position depends on the current, we focus on the low-field region where R_{xx}^{2h} linearly increases with B. Current I dependence of $|R_{xx}^{2h}|$ at $B = 0.1 T$ is shown in Fig. 3D. It first linearly increases with I, reaches the maximum around $I = 1 \mu A$, and is largely suppressed, reflecting the suppression of the superconductivity by the high enough current. This behavior indicates that at the low-field and low-current region, the nonreciprocal response satisfies $R_{xx}^{2h} = BI$ also in the superconducting fluctuation region.

To further investigate the possible origin of nonreciprocal superconducting transport in the present system, we measured the temperature dependence of R_{xx}^{0h} and R_{xx}^{2h} around the superconducting transition. Figure 4 (A and B) shows the magnetic field dependence of R_{xx}^{0h} (Fig. 4A) and R_{xx}^{2h} (Fig. 4B) at various temperatures. In a wide temperature range, positive magnetoresistance (R_{xx}^{0h}) and peak structure of R_{xx}^{2h} have been observed similarly to Fig. 2 (C and D). Note that with further increasing B, R^{0h} approaches R_N without exceeding it, as shown in fig. S3. In particular, R_{xx}^{2h} is largely enhanced during the superconducting transition, which indicates that superconducting fluctuations in a 2D system remarkably affect the rectification effect. In 2D superconductors, it is well known that the resistive behavior around T_{c0} is governed by either amplitude or phase fluctuations of superconducting order parameter. For $T > T_{c0}$, the amplitude fluctuation (Aslamazov-Larkin type) causes the excess paraconductivity, while for $T_{BKT} < T < T_{c0}$ the phase fluctuation, which results in the motion of thermally excited vortex-antivortex pairs, plays a dominant role in the resistivity values.

To clarify the effect of these fluctuations on the first and second harmonic responses, we scanned the temperature variation of R_{xx}^{0h} (Fig. 4C) and γ (Fig. 4D) at $B = 0.05 T$ and $I = 0.9 \mu A$, where R_{xx}^{0h} is proportional to both B and I. Since we applied the relatively large current in this measurement to probe the nonreciprocal transport clearly in
In (A) to (D), \(I \) perpendicular (red) or parallel (blue) to \(I \). In low-current region (\(T = 0.47 \) K and \(I = 20 \) µA) as a function of in-plane magnetic field \(B \) perpendicular (red) or parallel (blue) to \(I \). Insets in (A) and (B) show the magnified view of \(R_{2\text{xx}}^0 \) (B) and schematics of the measurement configuration (directions of \(B \) and \(I \)), respectively. (C) \(R_{2\text{xx}}^0 \) and (D) \(R_{2\text{xx}}^0 \) below \(T_{c0} \) (superconducting fluctuation region, \(T = 0.22 \) K and \(I = 1 \) µA) as a function of in-plane \(B \) perpendicular (red) or parallel (blue) to \(I \). In (A) to (D), \(R_{2\text{xx}}^0 \) is normalized by the normal-state resistance \(R_0 = 128 \) ohms, and \(R_{2\text{xx}}^0/R_0 \) is symmetrized/antisymmetrized as a function of \(B \) (see Materials and Methods). (E) Temperature dependence of \(\gamma = 2R_{2\text{xx}}^0/\mu_B \) in the normal state (\(I = 20 \) µA) and superconducting fluctuation region (\(I = 0.9 \) µA). Purple (normal state) and orange (superconducting fluctuation region) circles were extracted from the measurement of magnetic field scan of \(R_{2\text{xx}}^0 \) at low \(B \) below 0.1 T, while purple (normal state) and orange (superconducting fluctuation region) dots were plotted from the temperature scan of \(R_{2\text{xx}}^0 \) under \(B = 3 \) and 0.05 T, respectively.

Fig. 3. Current dependence of the second harmonic magnetoresistance in the normal and the superconducting fluctuation region. (A) Second harmonic magnetoresistance \(R_{2\text{xx}}^0 \) at \(T = 0.85 \) K under \(I = 3 \) µA (red), 5 µA (orange), 10 µA (green), 15 µA (blue), and 20 µA (purple). \(R_{2\text{xx}}^0 \) is antisymmetrized as a function of \(B \). (B) \(|R_{2\text{xx}}^0| \) at \(B = 3 \) T as a function of \(I \), which is extracted from (A). Black solid line shows linear fitting as a function of \(I \). (C) Magnetic field dependence of \(|R_{2\text{xx}}^0| \) at \(T = 0.22 \) K under \(I = 0.05 \) µA (red), 0.6 µA (orange), 1.2 µA (green), and 1.8 µA (blue). Each curve is shifted vertically by 0.5 ohms and antisymmetrized as a function of \(B \). (D) Current dependence of \(|R_{2\text{xx}}^0| \) at \(B = 0.1 \) T, where \(R_{2\text{xx}}^0 \) is regarded as a linear function of \(B \). In low-current region (\(I \leq 1 \) µA), \(R_{2\text{xx}}^0 \) linearly increases (black solid line) with \(I \). All temperature range, \(R_{2\text{xx}}^0 \) and \(\gamma \) are slightly different from those in the low-current limit. However, although relatively large current and in-plane magnetic field are applied, zero-resistance state is observed at the lowest temperature (Fig. 4C), implying the existence of the BKT transition. The characteristic structures appear in the temperature variation of \(\gamma \) (Fig. 4D), i.e., a kink structure around \(T = 0.24 \) K, followed by a prominent peak structure at \(T = 0.17 \) K.

DISCUSSION

In noncentrosymmetric 2D superconductors with in-plane magnetic field, two types of nonreciprocal charge transport are theoretically proposed (14, 15): (i) nonreciprocal paracconductivity in the amplitude fluctuation region and (ii) vortex-induced rectification effect in the phase fluctuation region. The former mechanism predicts the enhancement of \(\gamma \) toward \(T_{c0} \) (\(\gamma(T) = \gamma_s \left(1 - \frac{R(T)}{R_0}\right)^2 \)), where \(\gamma_s \) is \(\gamma \) at \(T_{c0} \) and \(R_N = 128 \) ohms is \(R_{2\text{xx}}^0 \) at \(T = 1.0 \) K. The latter is expected to show the divergence of \(\gamma \) toward \(T_{c0} \) (\(\gamma(T) \propto (T_{c0} - T)^{-1} \)) and \(T_{\text{BKT}} \) (\(\gamma(T) \propto (T - T_{\text{BKT}})^{-3/2} \)). Below \(T_{\text{BKT}} \), it is also predicted that both \(R_{2\text{xx}}^0 \) and \(R_{2\text{xx}}^0 \) disappear.

It seems that the above scenario is consistent with observed characteristic structures in the temperature dependence of \(\gamma \) (Fig. 4D). Considering the correspondence between the present results and theory, we regard the kink and peak positions in Fig. 4D as the effective superconducting transition temperature (\(T_{\text{eff}}^{\text{BKT}} \)) and BKT transition temperature (\(T_{\text{BKT}} \)), respectively, under the finite current and magnetic field.

With decreasing temperature from the normal to the superconducting state, the nonreciprocal transport originating from the
Fig. 4. Temperature dependence of the magneto-resistance and the nonreciprocal transport. Magnetic field dependence of (A) the first (R^x_{\parallel}) and (B) the second (R^x_{\perp}) harmonic magneto-resistance at $T = 0.16$ K (red), 0.19 K (orange), 0.22 K (green), 0.26 K (blue), 0.29 K (purple), 0.33 K (black), and 0.37 K (pink), respectively. In (B), each curve is shifted vertically by 0.5 ohms. $R^x_{\parallel}/R^x_{\perp}$ is symmetrized/antisymmetrized as a function of B. Temperature variation of C of (C) R^x_{\parallel} and (D) γ under $B = 0.05$ T and $I = 0.9 \mu$A. In this region, R^x_{\parallel} is linear as a function of B and I (Figs. 3D and 4B). R^x_{\parallel}/γ is symmetrized/antisymmetrized as a function of B. Characteristic structure (kink structure around $T = 0.24$ K and peak structure around $T = 0.17$ K) appears in (D), according to which we can identify two regions of the nonreciprocal transport of different origins, i.e., paracconductivity region and vortex region. At the lowest temperature, zero-resistance state is observed, where R^x_{\parallel} and γ becomes negligibly small. Magnification of γ in (E) paracconductivity region and (F) vortex region. Black dashed line in (E) shows fitting curve by $\gamma(T) = \gamma_s (1 - \frac{B}{B_{\text{c0}}})^{3/2}$, and black dashed line in (F) indicates fitting curve by $\gamma(T) = C(T - T_{\text{c0}}^{\text{eff}})^{3/2}$. Normal-state resistance $R_0 = 128$ ohms is defined as R^x_{\parallel} at $T = 1.0$ K.

amplitude fluctuation developed $(14, 15)$. Temperature dependence of γ far above $T_{\text{c0}}^{\text{eff}}$ can be well fitted by $\gamma(T) = \frac{\gamma_s}{1 - \frac{R(T)}{R_{\text{c0}}}}$ with fitting parameter γ_s of 1.0×10^5 T$^{-1}$ A$^{-1}$, as shown in Fig. 4E. The deviation below $T = 0.27$ K can be attributed to the evolution of the vortex-induced rectification effect as discussed below. According to the theory $(14, 15)$, emergence of the nonreciprocal paracconductivity in the Rashba superconductor manifests the parity mixing of the Cooper pairs. In the simplest Rashba system, γ_s is related with the ratio of the pairing interactions $\gamma_s = \frac{2\gamma_{xx} + \gamma_{yy}}{V^* + V^\theta}$ (V^θ and V^ϕ are an even and odd parity interaction, respectively). Estimated r_s is about 0.6 (see the Supplementary Materials), which is much larger than theoretically assumed value of $r_s \sim 0.1$ (15). To explain this discrepancy, we calculated the subband structure of electric field--induced 2DES at the surface of SrTiO$_3$ when $n = 2.0 \times 10^{14}$ cm$^{-2}$ (see the Supplementary Materials in detail). A simple calculation revealed that the Fermi surface locates around the crossing point of d_{xy} and d_{xz} orbital bands, where the Rashba effect is largely enhanced (36). The observed large r_s might have captured this enhancement of Rashba-type SOI. Quantitative argument of γ_s in such a highly nonparabolic region and its relation to the parity mixing should be further studied in the future.

Last, we focus on γ for $T_{\text{c0}}^{\text{eff}} < T < \gamma_{\text{c0}}^{\text{eff}}$, where the phase fluctuation, that is, the motion of thermally excited vortices and antivortices, gives a dominant contribution. Reflecting direction-dependent Cooper-pair density originating from symmetry breaking under the magnetic field, free vortices/antivortices produce the nonreciprocal magneto-resistance in this low-temperature region (15). This mechanism of vortex-induced rectification effect predicts the divergence of γ toward T_{BKT} and T_{c0} with the relation of $\gamma(T) \sim (T - T_{\text{BKT}})^{-3/2}$ and $\gamma(T) \sim (T - T_{\text{c0}})^{-1}$, respectively (15). We attribute the kink at $T_{\text{c0}}^{\text{eff}}$ in Fig. 4D to the latter anomaly. The former should correspond to the peak structure at $T_{\text{c0}}^{\text{eff}}$. Actually, temperature variation of γ is well described by $\gamma(T) = C(T - T_{\text{BKT}})^{-3/2}$ with a fitting parameter $C = 6200$ T$^{-1}$ A$^{-1}$ K$^{3/2}$ (Fig. 4F). Note that below T_{BKT}, non-ohmic resistance remains because large current dissociates vortex-antivortex pairs. However, γ rapidly decreases down to zero with decreasing temperature, and when R^x_{\parallel} is zero, R^x_{\perp} also becomes zero (see the Supplementary Materials), which is consistent with the theoretical consideration $(14, 15)$. Hence, the experimentally observed temperature dependence of γ in Fig. 4F agrees with the microscopic theoretical picture of free motion of thermally excited vortices and antivortices in polar 2D superconductors. This result proves that the nonreciprocal response is a powerful tool for the nature of noncentrosymmetric superconductors.

Another remarkable feature of the second harmonic magneto-resistance is the oscillating behavior as seen in Fig. 4B (for example, $T = 0.26, 0.19, \text{and} 0.16$ K) and even in the raw data (see the Supplementary Materials). It is well known that such an oscillating behavior
can appear in various physical quantities of superconductors such as
magnetoresistance and Nernst effect due to the vortex matching
effect, where the number of vortices matches the lattice constant
or artificial structures (37–40). However, the detailed origin of the
oscillating behavior in R_{xx} is the future problem.

We also note that in a recent study (13), the authors studied the non-
reciprocal superconducting transport at Bi$_2$Te$_3$/FeTe, which has the
similar interfacial symmetry breaking as the present system. They
discussed the potential effect of the interplay between the topological
surface state of Bi$_2$Te$_3$ and proximity-induced superconductivity.
Although the electronic states and possible microscopic mechanisms
are different in these two interfaces (the topological surface state at
Bi$_2$Te$_3$/FeTe and Rashba effect at the SrTiO$_3$ surface), we believe
that the nonreciprocal transport can universally appear at the inter-
facial superconductivity with polar symmetry, providing not only
a previously unknown functionality of superconductivity but also
important information of the electronic state and paring mecha-
nism in noncentrosymmetric superconductors. The study of the
nonreciprocal transport in other interfacial superconducting systems
is an interesting and important future topic.

In summary, we studied the nonreciprocal transport in gate-induced
2D superconductor SrTiO$_3$. We successfully probed the marked jump
of nonreciprocal transport from the normal to the superconducting
states, providing a direct proof of the giant enhancement of the
nonreciprocal transport in the superconducting fluctuation region.
Moreover, the temperature dependence of γ is well explained by
the recent microscopic theory, particularly in the phase fluctuation
region. The amplitude fluctuation region, which might signal the
parity mixture of the Cooper pairs, was left to be explained quanti-
tatively, considering the complexity of the conduction band, such as
multibands and strong nonparabolicity. In addition, doped SrTiO$_3$
shows the ferroelectricity (28–30), where bulk inversion symmetry
is broken, and the relation between the nonreciprocal transport and
the ferroelectric behavior should be further studied. The present
results offer an important insight into polar superconductors, paving
a new way of searching for the emergent properties and functionali-

ties in the 2D oxide interfaces and superconductors.

MATERIALS AND METHODS

Device fabrication

A single crystal of SrTiO$_3$ was annealed at 1000°C for 3 hours to
obtain an atomically flat (100) surface with a step-terrace structure
(26). The surface termination is considered to be TiO$_2$ (26). After
an Ar ion milling treatment, which makes the SrTiO$_3$ underneath
the electrodes conductive (27), Au (90 nm)/Cr (5 nm) electrodes
and a gate pad were patterned by a standard e-beam lithography
process. After that, droplet of N,N-diethyl-N-(2-methoxyethyl)-N-
methylammonium bis(trifluoromethylsulphonyl)imide (DEME-TFSI)
was placed on the top to form the EDLT structure. Except for the
channel and the gate electrode, the surface of the SrTiO$_3$ was covered
by poly(methyl methacrylate) to avoid the contact of the ionic liquid.

Transport measurements

The first and second harmonic resistance was measured using AC
lock-in amplifiers (Stanford Research Systems Model SR830 DSP)
with a frequency of 13 Hz in a dilution refrigerator (see also below).
The gate voltage was applied by a Keithley 2400 source meter at 260 K,
which is above the glass transition temperature of DEME-TFSI, under
high vacuum condition (less than 10^{-4} torr). Transport measurement
was performed in a dilution refrigerator system (Triton, Oxford
Instruments NanoScience) with a base temperature of 10 mK. Tem-
perature was calibrated by Cernox and RuO$_2$ sensor.

As discussed in the previous works (7–23), the resistance of
the noncentrosymmetric system can be written as

$$R = R^{(1)}(1 + \gamma BI)$$

where the first and second terms represent the linear resistance and
nonreciprocal magnetoresistance, which is proportional to B and I,
respectively. γ is a coefficient of nonreciprocal magnetoresistance.
Output voltage then becomes

$$V = R^{(1)}(I + \gamma BI^2)$$

When the AC bias current with a frequency of ω ($I = I_0 \sin \omega t$) is
applied, it leads to

$$V = R^{(1)}I_0 \sin \omega t + R^{(1)}\gamma BI_0 \sin^2 \omega t$$

Thus, by probing the first and the second harmonic resistance, we
obtain

$$R^{(2)} = \frac{V^{(2)}_\omega}{I_0} = R^{(1)} + \frac{1}{2} \gamma R^{(1)}BI_0$$

The coefficient γ, which indicates the strength of the nonreciprocal
transport, can be calculated by

$$\gamma = \frac{2 R^{(2)}_{\omega}}{R^{(1)}_{xx} BI}$$

as described in Results and Discussion.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/13/eaay9120/DC1

Calculation of the subband structure and the Fermi energy
Symmetrization and antisymmetrization
Magnetoresistance under high magnetic field
γ in paracconductivity region and relation with the parity mixing
Nonreciprocal resistance at zero-resistance state
Fig. S1. Density of states and subband structures at the surface of SrTiO$_3$
Fig. S2. Raw and antisymmetrized data of the second harmonic resistance.
Fig. S3. Temperature dependence of the magnetoresistance.
Fig. S4. The temperature variation of the second harmonic magnetoresistance.

REFERENCES AND NOTES

1. H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, Y. Tokura, Emergent
phenomena at oxide interfaces. *Nat. Mater.*, 11, 103–113 (2012).
2. E. Lesne, Y. Fu, S. Oyarzun, J. C. Rojas-Sánchez, D. C. Vaz, H. Naganuma, G. Sicoli,
J.-P. Attané, M. Jamet, E. Jacquet, J.-M. George, A. Barthélémy, H. Jaffrès, A. Fert, M. Bibes,
L. Vila, Highly efficient and tunable spin-to-charge conversion through Rashba coupling
at oxide interfaces. *Nat. Mater.*, 15, 1261–1266 (2016).
3. R. Oshima, Y. Ando, K. Matsuoka, T. Susaki, M. Weiler, S. Klingler, H. Huebl, E. Shikoh,
T. Shinjo, S. T. B. Goennenwein, M. Shiraishi, Strong evidence for d-electron spin
transport at room temperature at a LaAlO$_3$/SrTiO$_3$ interface. *Nat. Mater.*, 16, 609–614
(2017).
Itahashi et al., Sci. Adv. 2020; 6 : eaay9120 27 March 2020

6 of 6