GPS 搭載位置追跡システムによる鳥類の個体移動経路の取得
Application of GPS Tracking System to Moving Path Acquisition of Birds

Mayuko NISHIO 井上美樹*2 藤野陽三*3 樋口広芳*4
Mayuko NISHIO Miki INOUE Yozo FUJINO Hiroyoshi HIGUCHI
時田賢一*5 今井金美*6 矢澤正人*7
Ken-ichi TOKITA Kanemi IMAI Masato YAZAWA

SUMMARY

This study examined the applicability of a GPS tracking system for birds in prospect of future requirements to consider the symbiosis with the bird life in the construction and operation of wind turbines on the coastal area or on the ocean. The target here to apply the GPS tracking system was the crow in the Yokohama-city, which was expected to show complex moving paths in the urban area. Six crows were caught in the Yokohama National University campus, and the GPS device was put on each of their backs before releasing. The positional data were then acquired every 30 minutes for 14 days with the success rate of 90% or more in five out of six crows. The data were applicable to understand the characteristic moving path of each crow.

key words: bird life symbiosis, wind turbine, GPS tracking sensor, crows, moving path
1. まえがき

人間が社会生活を営む上で必要不可欠であるインフラ構造物の建設は、周囲の自然環境とりわけ野生動物の生息とも共生を行うべきものである。筆者らが特に着目しているのが、自然エネルギーへの関心の高まりを背景として建設が進められ風力発電施設と野生鳥類との共生である。風車の建設台数が増加していくことが予想される一方で、その主な建設場所となる沿岸部や洋上地域が渡り鳥をはじめ多種多様な鳥類の飛行経路の一部、もしくは餌場や住みかとなる場所でもあり得ることから、それらの生態が施設の建設や運用に与える影響が懸念されている。風力発電の導入が進む欧州では、風車への衝突により死亡する鳥類の総数は数百羽と推定されている1)。

国内の風車における鳥類衝突事故は、2001年から2014年の報告で年間平均50件に満たないが、タカ科やカモメ科、カラス科の鳥類の衝突事故数が特に多く、特にタカ科の中で天然記念物および絶滅危惧種に登録されているオジロワシの事故が多いことが報告されている2)。その他、ミサゴやイヌワシなどの希少種も含まれており、死亡事故による個体数の変化が種の存続に影響を及ぼす恐れがある3)。さらに風車建設が鳥類の生息地の変化や移動ルートの壁となることも懸念されており、自然生態への影響は無視できないといえる。風車建設は鳥類の生息地を破壊したり、飛行経路を妨げたりすることもあるため、鳥類との共生を考える時、風車の建設段階で飛行経路を考慮することが重要である。

2. GPS端末装着によるカラス個体移動経路取得

2.1 GPS搭載位置追跡システムの概要

本研究では、横浜市内で生息するカラスを対象に移動経路データの取得を行った。動物のリアルタイム移動経路を把握しながら、鳥類生態の観察を行っていることが可能である。GPS搭載位置追跡システムは、動物個体に装着して位置情報を収集し、その情報をもとに動物の行動を解析する技術である。GPSは、グローバルポジショニングシステム（Global Positioning System, GPS）と英語で呼ばれる。GPSは、地球を囲む8つの衛星から位置情報を受信して、地球上の任意の地点の座標を計算することができるシステムである。これにより、動物の活動範囲や行動パターンを詳細に把握することが可能になる。

本研究では、横浜市内で生息するカラスの移動経路を把握するために、GPS搭載位置追跡システムを使用した。カラスを対象に移動経路データを取得し、鳥類生態の観察を行っていることが可能である。この研究では、GPSデータをもとに鳥類の行動パターンを解析し、鳥類生態の特徴を明らかにすることを目的とした。
もとの送信される電波を受信する基地局からなる。GPSの測位精度は6m (CEP, 50%), 25m (2dRMS, 95%) の仕様である。基地局で受信した緯度経度の位置情報は、GPS-TXシステム専用の地図可視化システムTMS(Trace Mapping System)によってスマートフォンやタブレット端末からリアルタイムで確認できる。このシステムは既往研究において、岩手県盛岡市のカラスを対象に個体の移動経路特性の把握に用いられた実績があった15）。本研究は横浜市内のカラスの対象としたことで、高層ビル群を含む大都市部での初めての適用事例となった。

GPS-TX 個体装着装置の内蔵バッテリーの性能では計500回程度の位置情報発信が可能である。ただし、基地局側でデータ受信に失敗しても端末側では1回分の送信としてバッテリーは消耗されるため、基地局からの電波状況が悪ければ取得データ数は減少する。また個体がGPS測位の困難な箇所、例えば建物等の陰に滞在していると、1回のデータ取得で位置情報発信を2-3分間継続するため、通常1分未満で完了する開けた箇所での測位と比較して2-3倍のバッテリー消費となる。本研究では、大学構内で最も高い標高に位置して横浜市街地も広く見通せる高層建物（9階建て）の屋上に基地局を設置した。図1は、この基地局設置箇所でのデータ受信性能を事前確認するために実施した電波伝搬シミュレーションの結果である。基地局から15km範囲のほぼ全域が着色範囲、すなわちGPX-TX仕様上の電波受信可能範囲であった。

都市部に生息するカラスの移動距離はおよそ10kmまでとの報告もあり16）、この基地局設置箇所で大学構内を拠点とするカラスの行動経路を概ね捉えることができた。ただし、このシミュレーション結果は建造物の影響を考慮しきれず、目安としての受信性能把握に用いた。

2.2 対象個体の捕獲と装着
GPS搭載装置を装着するカラス個体の捕獲は、2014年12月18日から2015年1月14日にかけて行った。横浜国立大学構内ではカラスが特に多くみられるエリアの建物の屋上に、一旦外から入ると出られない仕掛けのある木製小屋（約3.0m×3.9m×2.7m）を設置し、小屋の内側に餌を撒いて小屋内に誘い込んだ。捕獲できた10羽のうち平均的な体長50-60cmの6羽のカラスに、個体装着装置をテフロン加工された布製のハーネスで背上に取り付け（図2）、放鳥した。ハーネスは肩ひも同士の縫い合わせ方を調整することにより、1-2か月後には鳥体から脱落するようになっている。機器とハーネスは合わせて約30gであり、平均的なカラスの体重550-750gの5%程度におさまる重量であった。

2.3 データ取得状況
本研究ではGPS-TXシステムのデータ取得間隔を30分に設定し、2週間程度の追跡期間を目指した。表1に、放鳥した6羽各個体（ID-1～ID-6）のデータ取得状況をまとめる。「開始日時」は放鳥を行った日時であり、「終了日時」は最後のデータが得られた日時である。実際に得られたデータ数を「総受信数」とし、この中でエラーと認められたデータを除いたデータの数を「有効データ数」とした。「有効データ取得率」は、「総受信データ数」に対する「有効データ数」の割合である。

表1 各個体のデータ取得状況

	ID-1	ID-2	ID-3	ID-4	ID-5	ID-6
開始日時	1/14 13:45	1/14 13:49	1/14 13:53	1/14 13:58	1/14 14:05	1/14 14:09
終了日時	1/21 18:15	1/18 12:25	1/22 20:01	1/23 18:04	1/28 4:03	1/27 22:13
総受信データ数	343	169	378	436	632	638
有効データ数	301	66	336	424	615	620
有効データ取得率	88%	39%	89%	97%	97%	97%
個体の移動を追跡できた期間は、最短がID-2での約4日間、ID-5とID-6は目標通り14日間で総数600を超える位置情報データが受信できた。一方、ID-1からID-4の4台は、センサの仕様上可能な500回の受信に届かなかったまま途切れていました。これは、個体がGPS測位の困難な箇所に滞在する頻度が多く位置情報発信を繰り返したことで、著しくバッテリーを消耗したことが主な原因と考えられる。また受信できた位置情報の中にも、カラスの生態から考えて明らかに移動できないような箇所の緯度経度データ、例えば遠方の海洋上の緯度経度が数点受信される、というようなエラーが認められた。この原因にも、個体がGPS測位環境の悪い地点に滞在したことによる測位不良が主に考えられる。特にデータ取得率が39%と他の個体と比較して極端に低かったID-2は、このようなエラーデータの割合も多かった。しかし、本研究で初めてGPS-TXシステムを大都市部の鳥類移動経路計測に適用したなかで、横浜市の中心部（保土ヶ谷区・横浜駅周辺など）行動範囲に包含されながらネムの行動範囲を概ねおさまっていたことがわかった。そしてデータ取得期間中で5個体のうち5個体で移動経路の分析に用いることができるデータが取説できた。ID-2以外の5羽では1週間以上のリアルタイム行動追跡に成功しており、また有効データ率も90%程度であった。そこで次章の移動経路分析はID-2を除く5羽について行うこととした。なお、分析では上記の明らかなエラーデータを生データから取り除いて用いた。

3. 取得データからの個体移動経路の分析と考察
3.1 個体ごとの移動経路特性
本研究でGPS-TXシステムで取得したデータは、個体が行動している時間帯の経度と緯度を示したものを全てで、5個体で得られた計測期間中の移動経路データを全て

図3 5個体のデータ取得期間中移動経路プロット（ID-1:黄色、ID-3:薄青、ID-4:赤紫、ID-5:緑、ID-6:薄紫）

個体の行動を追跡できた期間は、最短がID-2での約4日間、ID-5とID-6は目標通り14日間で総数600を超える位置情報データが受信できた。一方、ID-1からID-4の4台は、センサの仕様上可能な500回の受信に届かなかったまま途切れていました。これは、個体がGPS測位の困難な箇所に滞在する頻度が多く位置情報発信を繰り返したことで、著しくバッテリーを消耗したことが主な原因と考えられる。また受信できた位置情報の中にも、カラスの生態から考えて明らかに移動できないような箇所の緯度経度データ、例えば遠方の海洋上の緯度経度が数点受信される、というようなエラーが認められた。この原因にも、個体がGPS測位環境の悪い地点に滞在したことによる測位不良が主に考えられる。特にデータ取得率が39%と他の個体と比較して極端に低かったID-2は、このようなエラーデータの割合も多かった。しかし、本研究で初めてGPS-TXシステムを大都市部の鳥類移動経路計測に適用したなかで、横浜市の中心部（保土ヶ谷区・横浜駅周辺など）行動範囲に包含されながらネムの行動範囲を概ねおさまっていたことがわかった。そしてデータ取得期間中で5個体のうち5個体で移動経路の分析に用いることができるデータが得られた。ID-2以外の5羽では1週間以上のリアルタイム行動追跡に成功しており、また有効データ率も90%程度であった。そこで次章の移動経路分析はID-2を除く5羽について行うこととした。なお、分析では上記の明らかなエラーデータを生データから取り除いて用いた。

3. 取得データからの個体移動経路の分析と考察
3.1 個体ごとの移動経路特性
本研究でGPS-TXシステムで取得したデータは、個体が行動している時間帯の経度と緯度を示したものを全てで、5個体で得られた計測期間中の移動経路データを全て

図3 5個体のデータ取得期間中移動経路プロット（ID-1:黄色、ID-3:薄青、ID-4:赤紫、ID-5:緑、ID-6:薄紫）

個体の行動を追跡できた期間は、最短がID-2での約4日間、ID-5とID-6は目標通り14日間で総数600を超える位置情報データが受信できた。一方、ID-1からID-4の4台は、センサの仕様上可能な500回の受信に届かなかったまま途切れていました。これは、個体がGPS測位の困難な箇所に滞在する頻度が多く位置情報発信を繰り返したことで、著しくバッテリーを消耗したことが主な原因と考えられる。また受信できた位置情報の中にも、カラスの生態から考えて明らかな移動できないような箇所の緯度経度データ、例えば遠方の海洋上の緯度経度が数点受信される、というようなエラーが認められた。この原因にも、個体がGPS測位環境の悪い地点に滞在したことによる測位不良が主に考えられる。特にデータ取得率が39%と他の個体と比較して極端に低かったID-2は、このようなエラーデータの割合も多かった。しかし、本研究で初めてGPS-TXシステムを大都市部の鳥類移動経路計測に適用したなかで、横浜市の中心部（保土ヶ谷区・横浜駅周辺など）行動範囲に包含されながらネムの行動範囲を概ねおさまっていたことがわかった。そしてデータ取得期間中で5個体のうち5個体で移動経路の分析に用いることができるデータが得られた。ID-2以外の5羽では1週間以上のリアルタイム行動追跡に成功しており、また有効データ率も90%程度であった。そこで次章の移動経路分析はID-2を除く5羽について行うこととした。なお、分析では上記の明らかなエラーデータを生データから取り除いて用いた。

3. 取得データからの個体移動経路の分析と考察
3.1 個体ごとの移動経路特性
本研究でGPS-TXシステムで取得したデータは、各個体が行動している時間帯の経度と緯度を示したものを全てで、5個体で得られた計測期間中の移動経路データを全て
ら各個体の行動パターンを視覚的に把握できた。さらに、各個体の滞在地点と移動経路を時系列で把握するため、取得データを図4のように整理した。30分毎のデータから滞在しているエリアを分類し、色に分けて記した。すると各個体のねぐらや、日中特に長い時間滞在する地点、そして日中の平均移動距離と時間を把握することができた。各個体の移動経路の特徴を、以下にまとめる。

ID-1: ねぐらは大学構内の中央広場の樹林であり、日中は羽沢エリアで過ごしていた。1/17, 19, 20には、必ず朝に横浜駅周辺を訪れる行動がみられた。1日の滞在地数は日によってばらつき、2-4箇所であった。

ID-3: 日中の多くの時間を羽沢エリアで過ごしており、ねぐらは大学構内の樹林であった。計測期間全体を通して、1日目に移動する距離が長い傾向にあった。1/19以降には必ず朝に東神奈川駅周辺に行く行動がみられた。1日の滞在地数は、平均3箇所であった。

ID-4: 大学近辺に滞在していたが、1/17以降は西側の今宿エリアから公園緑地エリアを活動圏としており、ねぐらも同エリアの樹林としていた。1日の滞在地数は平均で2箇所と、他の個体より少なかった。

ID-5: ねぐらを三ツ沢上町、日中の活動場所を三ツ沢下町としていた。またID-3と同様に東神奈川エリアを活動圏に含むが、訪れるのは朝ではなく、必ず昼前から午後であった。この個体も1日の滞在地点数は日によってばらつき、2-4箇所であった。

ID-6: 行動パターンはID-3と類似しており、ねぐらは大学構内の樹林、日中は羽沢エリアで過ごすことが多かった。しかし時折、5km以上の長距離移動を行う日もあった。1日の滞在地点数は2-3箇所であった。

いずれの個体も、1日におぐらを含めて2から4か所程度の地点を移動していた。日中の滞在地点数は個体ごとにしっかりとしており、各地点を見渡せる時間帯や順番にも個体ごとのパターンがみとめられた。

3.2 特徴的な滞在地点における現地調査

GPS-TX 位置追跡システムのリアルタイムデータ表示機能を活用して、各個体の位置情報を確認しながら滞在している地点の特徴を調べる現地調査を行った。以下に、各個体がねぐらと日中の活動地点としていた主要な5地点について、その特徴をまとめる。

(a) 横浜国立大学周辺エリア

構内には樹林が広がっている箇所が多く、夜間にねぐらとなっていることが確認できた。さらに滞在地点を詳細にみると、大学構内でも、ねぐらとしている地点は個体にほぼ決まっていった。

(b) 河津町エリア

ID-1, ID-3, ID-6の日中の活動拠点で、自然とまとまった樹林が多かった。また、それぞれの個体も特に頻繁に訪れていたのがこのエリアにある家畜小屋であり、観察調査でも多くのカラスが出入りする様子を確認した。施設管理者の話から、カラスは概ねトウモロコシなど牛の飼料を目当てに小屋の中に入っているとのことであった。

(c-1) 鶴ヶ峰・今宿町、(c-2) 公園緑地エリア

このエリアは活動拠点としていたのはID-4である。滞在地点は住宅地やゴルフ場で、周辺に樹林が茂っていた。またねぐらとしての利用があった北側の公園緑地は、比較的規模の大きな公園が集中していた。

(d-1) 三ツ沢上町、(d-2) 三ツ沢下町エリア

このエリアには樹林が多く、広く広がる寺社があり、ID-5はここをねぐらとしていた。住宅地の中にも採食が可能な樹林が存在している他、ゴミ収集場もカラスにより荒らされている箇所があった。

(e) 東神奈川駅周辺エリア

このエリアには公園と寺院が多くあり、住宅や駐車場では商業施設が立ち並んでおり、自然も多い地域であった。特筆すべき点は、ごみ収集場の状況で、収集日に現地調査に赴き多く訪れる箇所がカラスに荒らされていた。ID-3とID-5の訪れる頻度が高かったが、2個体ともそれぞれ早朝と正午後の2時間帯を訪れていた。

以上のようにGPS位置データ取得と合わせて現場調査を実施した結果、各個体が頻繁に訪れるエリアには共通する特徴があることがわかった。1つ目は「まとまった樹林」の存在であり、特にねぐらとしての利用が多かった。(a)大学周辺エリアや(d-1)三ツ沢上町、(c-2)公園緑地エリアには、広範囲で樹林のあるエリアがあった。2つ目がねぐらや家畜小屋、ごみ収集場といった「餌を確保できると考えられる地点」の存在であり、これは日中の滞在地点となっていた。

このようなGPS搭載位置追跡システムを活用して行動経路分析を実施することで、各個体の行動パターンを把握し、現地調査を合わせて実施することでその行動パターンの誘因要素となる各地点の特徴を分析できた。

4. 結論

本研究では、風力発電施設の建設や運用において鳥類生態との共生を検討する際に用いるデータとして、個体へのGPS搭載装着で得られる移動経路に着目し、カラス
を対象としてその適用性への検討を行った。得られた知見を以下にまとめる。

・ GPS 搭載装置を装着し放鳥した 6 羽のうち 5 羽で、行動分析に有効な位置情報データを取得できた。うち 3 羽では 10 日間以上にわたって 30 分毎の緯度経度データを受信成功率 97% で得られた。

・ 6 羽のうち 1 羽は、データ取得率 34% で受信が停止した。これは GPS 測位および基地局へのデータ送信でエラーが何度も発生し、個体装着装置のバッテリーを著しく消耗したためであると考えられる。

・ 取得データから各個体の行動範囲、ねぐら、日中の滞在地点や滞在時間など、行動経路のパターンを定量化的に把握できた。データと合わせて現地調査を実施した結果、各個体が頻繁に滞在するエリアには、ねぐらや休息場所となる樹林、および畑や家畜小屋など採食行動が可能な場所があることが把握された。

本研究で用いた GPS-TX システムのように、個体装着型の動物位置追跡システムではデバイスの小型化や位置情報の高精度化が進み、鳥類の個体移動経路把握に適用可能なデータ取得が可能であることがわかった。このようなシステムでは装着デバイスのバッテリー性能でデータの通信回数と容量が決まることから、対象とする鳥類の生態に応じて基地局の設置箇所やデータ取得間隔を設定する必要がある。例えば、データ取得間隔を長くして月・年単位の長期データを取得できれば、季節変化や気象条件の移動経路への影響も分析できる。また本研究では、緯度経度のみを取得して通信容量を抑え、データ取得期間と安定性を確保する。これに加えて高度データも取得すれば、離陸時に行動や飛行ルートの分布をより詳細に行うことができる。風力飛行施設の建設時に鳥類生態把握に用いるデータとして、より有用なものとなることが期待できる。

謝辞

本研究を実施するにあたり、東京大学名誉教授である板生清先生に、ウェアラブルセンサを用いた移動体位置情報データ取得についてご指導ご助言を賜りました。ここに記し、深く感謝いたします。

参考文献

1) 日本野鳥の会、「風力発電の鳥類に与える影響に関する評価」，pp. 111–161, (2004)
2) 浦達也, 「風力発電が鳥類に与える影響の国内事例」，野外鳥類学論文集, 31, pp. 3-30, (2015)
3) 松田裕之, 「日本における風力発電の可能性と鳥衝突問題」，風力エネルギー，32(2), pp. 31-37, (2008)
4) 島田泰夫, 松田裕之, 「風力発電事業における鳥類衝突リスク管理モデル」，保全生態学研究，12, pp. 126-142, (2007)
5) 松本真由美, 「生物多様性との両立を図る風力発電の開発」，風力エネルギー，38 (1), pp. 24-28, (2014)
6) Gauthreaux Jr, S. A., Belser, C. G., “Radar ornithology and biological conservation,” The Auk, 120 (2), pp. 266-277 (2003)
7) Gasteren, H. V., Holleman, I., Bouten, W., Loon, E. V., Shamoun-Baranes, J. U. D. Y., “Extracting bird migration information from C-band Doppler weather radars,” Ibis, 150 (4), pp. 674-686, (2008)
8) Dokter, A. M., Liechti, F., Stark, H., Delobbe, L., Tabary, P., Holleman, I., “Bird migration flight altitudes studied by a network of operational weather radars,” Journal of the Royal Society Interface, 8 (54), pp. 30-43 (2011)
9) 植田禎史, 島田泰夫, 有澤雄三, 椎口広実, 「気象レーダーとウィンドプロファイラ」による明らかになった全国的な渡り鳥の移動状況」，Bird Research, 5, A9-A18, (2009)
10) 森下英美子, 「都市におけるハシブトガラスの局地移動」，カラスの自然史（樋口広芳編，北海道大学出版）, pp. 53-69, (2010)
11) 板生清, 「ウェアラブルへの挑戦」，工業調査会, (2001)
12) 椎口広実, 「高度情報を伝送技術を利用した野生動物の移動追跡」，日本生態学会誌, 51, pp. 205-214, (2001)
13) 桜田暁, 「風力発電施設の建設時に鳥類生態把握に用いるデータとして、より有用なものとなることが期待できる。