Image Fusion Based on Transformation and Optimization Techniques

Rajendra Kumar Patel, Jyoti Sarup, Ruchi Khare

Abstract: Digital image processing is very promising research area for the researchers; image fusion is one of them. Image fusion is the process of improvements in the results for scene by combining information captured by multiple sources or modality sensors. The objective of image fusion is to extract the required important data from the multiple different image to generate a combine image that contain a improvement image than individual image. In this paper we presents the image fusion techniques with the wavelet transform and particle swarm optimization and our simulation shows that the our proposed method gives better results than the existing techniques.

Keywords: Image fusion, PSNR, Optimization, Gray image.

I. INTRODUCTION

With the recent developments in the field of multimedia computing information or digital image processing, image fusion process used for various visual applications, image fusion provide the possibility for combining the images an enhanced the representation of combining image where captured from various sources or modality sensors. In fusion process combine information the multiple image for the same scene, these image may be captured by different time, different devices, different spatial or other image characteristics, and objective of image fusion is to retain the most required characteristics of the image. The image fusion process generally classified into three different levels such as the pixel level, which works either in the time domain or in the spatial domain, the another classification is features or middle level, which works with the image features such as the image color, size, texture, shape etc. the last classification is decision or high level, which works with object detection and classification and finally integrate to them.

Wavelet Transform is faster and developed in multi-resolution pattern. It has various characteristics of time-frequency level. Wavelet transform holds time as well as frequency features in any image and provides best picture. Wavelet transform is such kind of tools that divides the data into various frequency parts. These frequencies can be high and low and further this process is called as a decomposition process where frequency images low and high frequency images exists.

Fig 1: Wavelet based image fusion.

The above figure shows the image fusion process with the help of wavelet transformation techniques, where the image A and image B is process by wavelet transformation and fused with the some fusion rules and coefficient value of image fusion, and finally we obtain required fused image.

Fig 2: DWT Decomposition Level.

II. PROPOSED METHODOLOGY

In this section we mention that our proposed methodology for the image fusion process, Here we present a hybrid approach for the image fusion which is a combination of the wavelet transformation and the optimization methods i.e. particle swarm optimization techniques. In the below diagram for the proposed work we select two image one as an input image and another one as a reference image then we apply the wavelet transformation for both the input image using some fusion rules and coefficient factors and process further for the optimization techniques with the image fusion types such as the feature level image fusion.
Here our obtain results are compared in between existing and proposed techniques, and our proposed method gives better performance parameters value for the desired results and enhance the performance of image fusion process.

Fig 3: Proposed method block diagram.

III. PROPOSED ALGORITHM

The above diagram present the basic procedure we have to follow in image fusion process, initially we take an input image and combine with the another input image i.e. references image, after the combination of both input image we apply the procedure for the particle swarm optimization to combine the image into another image i.e. result image or fused image.

Fig 4: Illustration of proposed algorithm.

IV. RESULT ANALYSIS

In this section we discuss the about simulation results and comparative performance evaluation for the existing and proposed approach. In this section we discussed about the region based image fusion techniques, which are comparatively evaluate the performance for the both approach previous approach and the proposed approach, all the performance parameters are measured by the both approach and here we found that the our proposed approach gives better results than the previous approach. There are different number of parameters such as the peak signal noise ratio, information entropy and standard deviation etc.
Here we used the different number of input image and with the original image and the reference image and then finally fused into result image, the fused images are the result image which is basically combination of an image one and image two in an efficient manner.

Fig 6: This image shows that the experimental simulation window.

Fig 7: The above figure shows the experimental result for the previous and proposed techniques.

IMA Name of method	Information Entropy	Standard Deviation	Fusion Symmetry	PSNR	
A1	Previous	11.84	16.26	1.96	9.84

Table 1: The above table shows that the comparative study for the image A1 and image A2 for the different number of performance parameters and we found that the proposed methods gives better results than the existing techniques.

IMA Name of method	Information Entropy	Standard Deviation	Fusion Symmetry	PSNR	
A11	Previous	17.07	19.98	0.85	15.07
A12	Proposed	28.78	23.80	0.92	28.26

Table 2: The above table shows that the comparative study for the image A11 and image A12 for the different number of performance parameters and we found that the proposed methods gives better results than the existing techniques.

Fig 8: The above figure shows the fused image as an output with performance parameters value.
IV CONCLUSION

In this dissertation, we discussed about the region-based image fusion techniques, which are comparatively evaluate the performance for both the approach previous approach and the proposed approach, all the performance parameters are measured by both approaches and here we found that the our proposed approach gives better results than the previous approach. For the quality measurement of our proposed methods and the previous method, we compare on some performance parameters such as the fusion symmetry, Information entropy, Standard deviation and Peak signal noise ratio. Our proposed methods increased the value of Information entropy, Standard deviation and Peak signal noise ratio, and also decrease the value of fusion symmetry.

REFERENCES:

1. Nirmala Paramanandham, Kishore Rajendiran, “A Simple and Efficient Image Fusion algorithm based on Standard Deviation in Wavelet Domain”, IEEE WISPNET 2016, pp 2207-2211.
2. Kapil Joshi, Madhu Kirola, Sumit Chaudhary, Manoj Dwakar, N.K. Joshi, “Multi-focus image fusion using Discrete Wavelet Transform method”, ICAESMT 2019, pp 1-8.
3. Varun Sharma, Narpate Singh, Swarn Singh Saini,” Optimistic Image Fusion Analysis on Wavelet and Curvelet Based Images”, Journal of Advanced Research in Computer Technology & Software Applications 2018, pp 17-20.
4. Bin Sun, Weidan Zhu, Chengwei Luo, Kai Hu, Yu Hu, Jingjing Gao,” Fusion of noisy images based on joint distribution model in Dual-Tree Complex Wavelet Domain”, WILEY May 2018, pp 29-41.
5. Anand R, Rahul JU, Jagadish VS, Bharath M,” Techniques for Pixel Based Image Fusion of Real Image”, PICES June 2018, pp 63-68.
6. Jianfang Dou & Qin Qin & Zimei Tu, “Image fusion based on wavelet transform with genetic algorithms and human visual system”, Springer October 2018, pp 1-27.

7. Min Wang, Shudao Zhou, Zhong Yang, Zhanhua Liu and Shangshu Ren, “Image fusion based on wavelet transform and gray-level features”, Journal Of Modern Optics, Sept 2018, pp 1-11.

8. Heena Patel and Kishor P. Upla, “Survey on Image Fusion: Hand Designed to Deep Learning Algorithms”, Asian Journal of Convergence in Technology 2018, pp 1-9.

9. Bikash Meher, Sanjay Agrawal, Rutuparna Panda, Ajith Abraham, “A survey on region based image fusion methods”, Information Fusion, July 2018, pp 1-34.

AUTHORS PROFILE

Rajendra Kumar Patel is currently pursuing PhD from MANIT Bhopal. He completed his M.Tech, from MANIT Bhopal in Remote Sensing & GIS, in the Department of Civil Engineering, he has 4 years of teaching experience and 3 years industry experience. He has published 07 research papers in reputed journal and conferences.

Dr. Jyoti Sarup is currently Associate Professor in Department of Civil Engineering in MANIT Bhopal, she has 18 years of teaching experience, she has published 9 research papers in international journal 4 papers in national journals and 5 papers in international conferences and 25 papers in national conferences etc. Her research areas are remote sensing and geographic information system.

Dr. Ruchi Khare is currently Associate Professor in Department of Civil Engineering in MANIT Bhopal, she has 27 years of teaching and research experience, she has published 33 research papers in international journal 3 papers in national journals and 13 papers in international conferences and 21 papers in national conferences etc. Her research areas are hydraulic machines, water resources engineering, remote sensing and geographic information system.