Training Logistic Regression and SVM on 200GB Data Using b-Bit Minwise Hashing and Comparisons with Vowpal Wabbit (VW)

Ping Li
Dept. of Statistical Science
Cornell University
Ithaca, NY 14853
pingli@cornell.edu

Anshumali Shrivastava
Dept. of Computer Science
Cornell University
Ithaca, NY 14853
anshu@cs.cornell.edu

Arnd Christian König
Microsoft Research
Microsoft Corporation
Redmond, WA 98052
chrisko@microsoft.com

Abstract

Our recent work on large-scale learning using b-bit minwise hashing [21, 22] was tested on the webspam dataset (about 24 GB in LibSVM format), which may be way too small compared to real datasets used in industry. Since we could not access the proprietary dataset used in [31] for testing the Vowpal Wabbit (VW) hashing algorithm, in this paper we present an experimental study based on the expanded rcv1 dataset (about 200 GB in LibSVM format).

In our earlier report [22], the experiments demonstrated that, with merely 200 hashed values per data point, b-bit minwise hashing can achieve similar test accuracies as VW with 10^6 hashed values per data point, on the webspam dataset. In this paper, our new experiments on the (expanded) rcv1 dataset clearly agree with our earlier observation that b-bit minwise hashing algorithm is substantially more accurate than VW hashing algorithm at the same storage. For example, with 2^{14} (16384) hashed values per data point, VW achieves similar test accuracies as b-bit hashing with merely 30 hashed values per data point. This is of course not surprising as the report [22] has already demonstrated that the variance of the VW algorithm can be order of magnitude(s) larger than the variance of b-bit minwise hashing. It was shown in [22] that VW has the same variance as random projections.

At least in the context of search, minwise hashing has been widely used in industry. It is well-understood that the preprocessing cost is not a major issue because the preprocessing is trivially parallelizable and can be conducted off-line or combined with the data-collection process. Nevertheless, in this paper, we report that, even merely from the perspective of academic machine learning practice, the preprocessing cost is not a major issue for the following reasons:

- The preprocessing incurs only a one-time cost. The same processed data can be used for many training experiments, for example, for many different “C” values in SVM cross-validation, or for different combinations of data splitting (into training and testing sets).
- For training truly large-scale datasets, the dominating cost is often the data loading time. In our 200 GB dataset (which may be still very small according to the industry standard), the preprocessing cost of b-bit minwise hashing is on the same order of magnitude as the data loading time.
- Using a GPU, the preprocessing cost can be easily reduced to a small fraction (e.g., $< 1/7$) of the data loading time.

The standard industry practice of minwise hashing is to use universal hashing to replace permutations. In other words, there is no need to store any permutation mappings, one of the reasons why minwise hashing is popular. In this paper, we also provide experiments to verify this practice, based on the simplest 2-universal hashing, and illustrate that the performance of b-bit minwise hashing does not degrade.

1 Introduction

Many machine learning applications are faced with large and inherently high-dimensional datasets. For example, [29] discusses training datasets with (on average) 10^{11} items and 10^9 distinct features. [31] experimented with a dataset of potentially 16 trillion (1.6×10^{13}) unique features. Interestingly, while large-scale learning has become a very urgent, hot topic, it is usually very difficult for researchers from universities to obtain truly large, high-dimensional datasets.
from industry. For example, the experiments in our recent work [21, 22] on large-scale learning using b-bit minwise hashing [23, 24, 20] were based on the webspam dataset (about 24 GB in LibSVM format), which may be too small.

To overcome this difficulty, we have generated a dataset of about 200 GB (in LibSVM format) from the rcv1 dataset, using the original features + all pairwise combinations of features + 1/30 of the 3-way combinations of features. We choose 200 GB (which of course is still very small) because relatively inexpensive workstations with 192 GB memory are in the market, which may make it possible for LIBLINEAR [11, 15], the popular solver for logistic regression and linear SVM, to perform the training of the entire dataset in main memory. We hope in the near future we will be able to purchase such a workstation. Of course, in this “information explosion” age, the growth of data is always much faster than the growth of memory capacity.

Note that the our hashing method is orthogonal to particular solvers of logistic regression and SVM. We have tested b-bit minwise hashing with other solvers [17, 27, 3] and observed substantial improvements. We choose LIBLINEAR [11] as the work horse because it is a popular tool and may be familiar to non-experts. Our experiments may be easily validated by simply generating the hashed data off-line and feeding them to LIBLINEAR (or other solvers) without modification to the code. Also, we notice that the source code of LIBLINEAR, unlike many other excellent solvers, can be compiled in Visual Studio without modification. As many practitioners are using WINDOWS we use LIBLINEAR throughout the paper, for the sake of maximizing the repeatability of our work.

Unsurprisingly, our experimental results agree with our prior studies [22] that b-bit minwise hashing is substantially more accurate than the Vowpal Wabbit (VW) hashing algorithm [31] at the same storage. Note that in our paper, VW refers to the particular hashing algorithm in [31], not the online learning platform that the authors of [31, 28] have been developing. For evaluation purposes, we must separate out hashing algorithms from learning algorithms because they are orthogonal to each other.

All randomized algorithms including minwise hashing and random projections rely on pseudo-random numbers. A common practice of minwise hashing (e.g., [4]) is to use universal hashing functions to replace perfect random permutations. In this paper, we also present an empirical study to verify that this common practice does not degrade the learning performance.

Minwise hashing has been widely deployed in industry and b-bit minwise hashing requires only minimal modifications. It is well-understood at least in the context of search that the (one time) preprocessing cost is not a major issue because the preprocessing step, which is trivially parallelizable, can be conducted off-line or combined in the data-collection process. In the context of pure machine learning research, one thing we notice is that for training truly large-scale datasets, the data loading time is often dominating [32], for online algorithms as well as batch algorithms (if the data fit in memory). Thus, if we have to load the data many times, for example, for testing different “C” values in SVM or running an online algorithms for multiple epochs, then the benefits of data reduction algorithms such as b-bit minwise hashing would be enormous.

Even on our dataset of 200 GB only, we observe that the preprocessing cost is roughly on the same order of magnitude as the data loading time. Furthermore, using a GPU (which is inexpensive) for fast hashing, we can reduce the preprocessing cost of b-bit minwise hashing to a small fraction of the data loading time. In other words, the dominating cost is the still the data loading time.

We are currently experimenting b-bit minwise hashing for machine learning with \gg TB datasets and the results will be reported in subsequent technical reports. It is a very fun process to experiment with b-bit minwise hashing and we certainly would like to share our experience with the machine learning and data mining community.

2 Review Minwise Hashing and b-Bit Minwise Hashing

Minwise hashing [4, 5] has been successfully applied to a very wide range of real-world problems especially in the context of search [4, 5, 2, 13, 7, 6, 30, 16, 10, 8, 14, 18, 26], for efficiently computing set similarities.

Minwise hashing mainly works well with binary data, which can be viewed either as 0/1 vectors or as sets. Given

\[^1\]Note that the current version of Cygwin has a very serious memory limitation and hence is not suitable for large-scale experiments, even though all popular solvers can be compiled under Cygwin.
two sets, \(S_1, S_2 \subseteq \Omega = \{0, 1, 2, ..., D - 1\} \), a widely used (normalized) measure of similarity is the resemblance \(R \):

\[
R = \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|} = \frac{a}{f_1 + f_2 - a}, \quad \text{where } f_1 = |S_1|, \ f_2 = |S_2|, \ a = |S_1 \cap S_2|.
\]

In this method, one applies a random permutation \(\pi : \Omega \rightarrow \Omega \) on \(S_1 \) and \(S_2 \). The collision probability is simply

\[
\Pr(\min(\pi(S_1)) = \min(\pi(S_2))) = \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|} = R.
\]

One can repeat the permutation \(k \) times: \(\pi_1, \pi_2, ..., \pi_k \) to estimate \(R \) without bias, as

\[
\hat{R}_M = \frac{1}{k} \sum_{j=1}^{k} 1\{\min(\pi_j(S_1)) = \min(\pi_j(S_2))\},
\]

\[
\Var(\hat{R}_M) = \frac{1}{k} R(1 - R).
\]

The common practice of minwise hashing is to store each hashed value, e.g., \(\min(\pi(S_1)) \) and \(\min(\pi(S_2)) \), using 64 bits [12]. The storage (and computational) cost will be prohibitive in truly large-scale (industry) applications [25]. In order to apply minwise hashing for efficiently training linear learning algorithms such as logistic regression or linear SVM, we need to express the estimator (1) as an inner product. For simplicity, we introduce

\[
z_1 = \min(\pi_j(S_1)), \quad z_2 = \min(\pi_j(S_2)),
\]

and we hope that the term \(1\{z_1 = z_2\} \) can be expressed as an inner product. Indeed, because

\[
1\{z_1 = z_2\} = \sum_{t=0}^{D-1} 1\{z_1 = t\} \times 1\{z_2 = t\}
\]

we know immediately that the estimator (1) for minwise hashing is an inner product between two extremely high-dimensional \((D \times k)\) vectors. Each vector, which has exactly \(k \) 1’s, is a concatenation of \(k \) \(D \)-dimensional vectors. Because \(D = 2^{64} \) is possible in industry applications, the total indexing space \((D \times k)\) may be too high to directly use this representation for training.

The recent development of \(b \)-bit minwise hashing [23, 24, 20] provides a strikingly simple solution by storing only the lowest \(b \) bits (instead of 64 bits) of each hashed value. For convenience, we define

\[
e_{1,i} = \text{ith lowest bit of } z_1, \quad e_{2,i} = \text{ith lowest bit of } z_2.
\]

Theorem 1 [23] Assume \(D \) is large (i.e., \(D \rightarrow \infty \)).

\[
P_b = \Pr\left(\prod_{i=1}^{b} 1\{e_{1,i} = e_{2,i}\} \right) = C_{1,b} + (1 - C_{2,b}) R,
\]

\[
r_1 = \frac{f_1}{D}, \quad r_2 = \frac{f_2}{D}, \quad f_1 = |S_1|, \ f_2 = |S_2|,
\]

\[
C_{1,b} = A_{1,b} \cdot \frac{r_2}{r_1 + r_2} + A_{2,b} \cdot \frac{r_1}{r_1 + r_2}, \quad C_{2,b} = A_{1,b} \cdot \frac{r_1}{r_1 + r_2} + A_{2,b} \cdot \frac{r_2}{r_1 + r_2},
\]

\[
A_{1,b} = r_1 \frac{[1 - r_1]^{2^b-1}}{1 - [1 - r_1]^{2^b}}, \quad A_{2,b} = r_2 \frac{[1 - r_2]^{2^b-1}}{1 - [1 - r_2]^{2^b}}.
\]

As \(r_1 \rightarrow 0 \) and \(r_2 \rightarrow 0 \), the limits are

\[
A_{1,b} = A_{2,b} = C_{1,b} = C_{2,b} = \frac{1}{2^b}
\]

\[
P_b = \frac{1}{2^b} \left(1 - \frac{1}{2^b} \right) R
\]

3
The case $r_1, r_2 \to 0$ is very common in practice because the data are often relatively highly sparse (i.e., $r_1, r_2 \approx 0$), although they can be very large in the absolute scale. For example, if $D = 2^{64}$, then a set S_1 with $f_1 = |S_1| = 2^{54}$ (which roughly corresponds to the size of a small novel) is highly sparse ($r_1 \approx 0.001$) even though 2^{54} is actually very large in the absolute scale. One can also verify that the error by using (5) to replace (3) is bounded by $O(r_1 + r_2)$, which is very small when $r_1, r_2 \to 0$. In fact, [24] extensively used this argument for studying 3-way set similarities.

We can then estimate P_b (and R) from k independent permutations: $\pi_1, \pi_2, ..., \pi_k$,

$$
\tilde{R}_b = \frac{\hat{P}_b - C_{1,b}}{1 - C_{2,b}},
$$

$$
\hat{P}_b = \frac{1}{k} \sum_{j=1}^{k} \left\{ \prod_{i=1}^{b} 1\{e_{1,i,\pi_j} = e_{2,i,\pi_j}\} \right\},
$$

$$
\text{Var} \left(\tilde{R}_b \right) = \frac{\text{Var} \left(\hat{P}_b \right)}{[1 - C_{2,b}]^2} = \frac{1}{k} \left[C_{1,b} + (1 - C_{2,b})R \right] \frac{[1 - C_{1,b} - (1 - C_{2,b})R]}{[1 - C_{2,b}]^2}
$$

Clearly, the similarity (R) information is adequately encoded in P_b. In other words, often there is no need to explicitly estimate R. The estimator \hat{P}_b is an inner product between two vectors in $2^b \times k$ dimensions with exactly k 1’s. Therefore, if b is not too large (e.g., $b \leq 16$), this intuition provides a simple practical strategy for using b-bit minwise hashing for large-scale learning.

3 Integrating b-Bit Minwise Hashing with (Linear) Learning Algorithms

Linear algorithms such as linear SVM and logistic regression have become very powerful and extremely popular. Representative software packages include SVMperf [17], Pegasos [27], Bottou’s SGD SVM [3], and LIBLINEAR [11].

Given a dataset $\{(x_i, y_i)\}_{i=1}^{n}$, $x_i \in \mathbb{R}^D$, $y_i \in \{-1, 1\}$, the L_2-regularized linear SVM solves the following optimization problem:

$$
\min_w \frac{1}{2} w^T w + C \sum_{i=1}^{n} \max \left\{ 1 - y_i w^T x_i, 0 \right\},
$$

and the L_2-regularized logistic regression solves a similar problem:

$$
\min_w \frac{1}{2} w^T w + C \sum_{i=1}^{n} \log \left(1 + e^{-y_i w^T x_i} \right).
$$

Here $C > 0$ is an important penalty parameter. Since our purpose is to demonstrate the effectiveness of our proposed scheme using b-bit hashing, we simply provide results for a wide range of C values and assume that the best performance is achievable if we conduct cross-validations.

In our approach, we apply k independent random permutations on each feature vector x_i and store the lowest b bits of each hashed value. This way, we obtain a new dataset which can be stored using merely nbk bits. At run-time, we expand each new data point into a $2^b \times k$-length vector.

For example, suppose $k = 3$ and the hashed values are originally $\{12013, 25964, 20191\}$, whose binary digits are $\{010111011101101, 110010101101100, 100111011011111\}$. Consider $b = 2$. Then the binary digits are stored as $\{01, 00, 11\}$ (which corresponds to $\{1, 0, 3\}$ in decimals). At run-time, we need to expand them into a vector of length $2^b k = 12$, to be $\{0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0\}$, which will be the new feature vector fed to a solver:

Original hashed values ($k = 3$) :	12013	25964	20191
Original binary representations :	010111011101101	110010101101100	100111011011111
Lowest $b = 2$ binary digits :	01	00	11
Expanded $2^b = 4$ binary digits :	0010	0001	1000
New feature vector fed to a solver :	$\{0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0\}$		
4 Experimental Results of \(b\)-Bit Minwise Hashing on Expanded RCV1 Dataset

In our earlier technical reports \cite{21, 22}, our experimental settings closely followed the work in \cite{32} by testing \(b\)-bit minwise hashing on the webspam dataset (\(n = 350000, D = 16609143\)). Following \cite{32}, we randomly selected 20% of samples for testing and used the remaining 80% samples for training. Since the webspam dataset (24 GB in LibSVM format) may be too small compared by datasets used in industry, in this paper we present an empirical study on the expanded \(rcv1\) dataset by using the original features + all pairwise combinations (products) of features + \(1/30\) of 3-way combinations (products) of features.

We chose LIBLINEAR as the tool to demonstrate the effectiveness of our algorithm. All experiments were conducted on workstations with Xeon(R) CPU (W5590@3.33GHz) and 48GB RAM, under Windows 7 System.

Dataset	# Examples (\(n\))	# Dimensions (\(D\))	# Nonzeros Median (Mean)	Train / Test Split
Webspam (24 GB)	350000	16609143	3889 (3728)	80% / 20%
Rcv1 (200 GB)	677399	1010017424	3051 (12062)	50% / 50%

Note that we used the original “testing” data of \(rcv1\) to generate our new expanded dataset. The original “training” data of \(rcv1\) had only 20242 examples. Also, to ensure reliable test results, we randomly split our expanded \(rcv1\) dataset into two halves, for training and testing.

4.1 Experimental Results Using Linear SVM

Since there is an important tuning parameter \(C\) in linear SVM and logistic regression, we conducted our extensive experiments for a wide range of \(C\) values (from \(10^{-3}\) to \(10^3\)) with finer spacings in \([0, 1, 10]\).

We mainly experimented with \(k = 30\) to \(k = 500\), and \(b = 1, 2, 4, 8, 12,\) and 16. Figures 1 and 2 provide the test accuracies and train times, respectively. We hope in the near future we will add the baseline results by training LIBLINEAR on the entire (200 GB) dataset, once we have the resources to do so. Note that with merely \(k = 30\), we can achieve > 90% test accuracies (using \(b = 12\)). The VW algorithm can also achieve 90% accuracies with \(k = 2^{14}\).

For this dataset, the best performances were usually achieved when \(C \geq 1\). Note that we plot all the results for different \(C\) values in one figure so that others can easily verify our work, to maximize the repeatability.

4.2 Experimental Results Using Logistic Regression

Figure 3 presents the test accuracy and Figure 4 presents the training time using logistic regression. Again, just like our experiments with SVM, using merely \(k = 30\) and \(b = 12\), we can achieve > 90% test accuracies; and using \(k \geq 300\), we can achieve > 95% test accuracies.
Figure 2: Linear SVM training time on rcv1.

Figure 3: Logistic regression test accuracy on rcv1.

Figure 4: Logistic regression training time on rcv1.
5 Comparisons with Vowpal Wabbit (VW)

The two methods, random projections [1, 19] and Vowpal Wabbit (VW) [31, 28] are not limited to binary data (although for ultra high-dimensional used in the context of search, the data are often binary). The VW algorithm is also related to the Count-Min sketch [9]. In this paper, we use “VW” particularly for the hashing algorithm in [31].

Since VW has the same variance as random projections (RP), we first provide a review for both RP and VW.

5.1 Random Projections (RP)

For convenience, we denote two D-dim data vectors by $u_1, u_2 \in \mathbb{R}^D$. Again, the task is to estimate the inner product $a = \sum_{i=1}^D u_{1,i}u_{2,i}$.

The general idea is to multiply the data vectors, e.g., u_1 and u_2, by a random matrix $\{r_{ij}\} \in \mathbb{R}^{D \times k}$, where r_{ij} is sampled i.i.d. from the following generic distribution with [19]

$$E(r_{ij}) = 0, \quad \text{Var}(r_{ij}) = 1, \quad E(r_{ij}^2) = 0, \quad s \geq 1. \quad (10)$$

We must have $s \geq 1$ because $\text{Var}(r_{ij}^2) = E(r_{ij}^4) - E^2(r_{ij}^2) = s - 1 \geq 0$.

This generates two k-dim vectors, v_1 and v_2:

$$v_{1,j} = \sum_{i=1}^D u_{1,i}r_{ij}, \quad v_{2,j} = \sum_{i=1}^D u_{2,i}r_{ij}, \quad j = 1, 2, \ldots, k$$

The general distributions which satisfy (10) include the standard normal distribution (in this case, $s = 3$) and the “sparse projection” distribution specified as $r_{ij} = \sqrt{s} \times \begin{cases} 1 & \text{with prob. } \frac{1}{2s} \\ 0 & \text{with prob. } 1 - \frac{1}{s} \\ -1 & \text{with prob. } \frac{1}{2s} \end{cases}$ (11)

[19] provided the following unbiased estimator $\hat{a}_{rp,s}$ of a and the general variance formula:

$$\hat{a}_{rp,s} = \frac{1}{k} \sum_{j=1}^k v_{1,j}v_{2,j}, \quad E(\hat{a}_{rp,s}) = a = \sum_{i=1}^D u_{1,i}u_{2,i}, \quad (12)$$

$$\text{Var}(\hat{a}_{rp,s}) = \frac{1}{k} \left[\sum_{i=1}^D u_{1,i}^2 \sum_{i=1}^D u_{2,i}^2 + \left(\sum_{i=1}^D u_{1,i}u_{2,i} \right)^2 + (s - 3) \sum_{i=1}^D u_{1,i}^2u_{2,i} \right] \quad (13)$$

which means $s = 1$ achieves the smallest variance. The only elementary distribution we know that satisfies (10) with $s = 1$ is the two point distribution in $\{-1, 1\}$ with equal probabilities, i.e., (11) with $s = 1$.

5.2 Vowpal Wabbit (VW)

Again, in this paper, “VW” always refers to the particular algorithm in [31]. VW may be viewed as a “bias-corrected” version of the Count-Min (CM) sketch algorithm [9]. In the original CM algorithm, the key step is to independently and uniformly hash elements of the data vectors to buckets $\in \{1, 2, 3, \ldots, k\}$ and the hashed value is the sum of the elements in the bucket. That is $h(i) = j$ with probability $\frac{1}{k}$, where $j \in \{1, 2, \ldots, k\}$. For convenience, we introduce an indicator function:

$$I_{ij} = \begin{cases} 1 & \text{if } h(i) = j \\ 0 & \text{otherwise} \end{cases}$$

which allow us to write the hashed data as

$$w_{1,j} = \sum_{i=1}^D u_{1,i}I_{ij}, \quad w_{2,j} = \sum_{i=1}^D u_{2,i}I_{ij}$$
The estimate $\hat{a}_{vw} = \sum_{i=1}^{k} w_{1,i} w_{2,i}$ is (severely) biased for the task of estimating the inner products. [31] proposed a creative method for bias-correction, which consists of pre-multiplying (element-wise) the original data vectors with a random vector whose entries are sampled i.i.d. from the two-point distribution in $\{-1, 1\}$ with equal probabilities, which corresponds to $s = 1$ in (11).

[22] considered a more general situation, for any $s \geq 1$. After applying multiplication and hashing on u_1 and u_2 as in [31], the resultant vectors g_1 and g_2 are

$$
g_{1,j} = \sum_{i=1}^{D} u_{1,i} r_{i} I_{ij}, \quad g_{2,j} = \sum_{i=1}^{D} u_{2,i} r_{i} I_{ij}, \quad j = 1, 2, \ldots, k \tag{14}
$$

where r_i is defined as in (10), i.e., $E(r_i) = 0$, $E(r_i^2) = 1$, $E(r_i^3) = 0$, $E(r_i^4) = s$. [22] proved that

$$
\hat{a}_{vw,s} = \sum_{j=1}^{k} g_{1,j} g_{2,j}, \quad E(\hat{a}_{vw,s}) = \sum_{i=1}^{D} u_{1,i} u_{2,i} = a, \tag{15}
$$

$$
Var(\hat{a}_{vw,s}) = (s - 1) \sum_{i=1}^{D} u_{1,i}^2 u_{2,i}^2 + \frac{1}{k} \left[\sum_{i=1}^{D} u_{1,i}^2 \sum_{i=1}^{D} u_{2,i}^2 + \left(\sum_{i=1}^{D} u_{1,i} u_{2,i} \right)^2 - 2 \sum_{i=1}^{D} u_{1,i}^2 u_{2,i}^2 \right] \tag{16}
$$

The variance (16) says we do need $s = 1$, otherwise the additional term $(s - 1) \sum_{i=1}^{D} u_{1,i}^2 u_{2,i}^2$ will not vanish even as the sample size $k \to \infty$. In other words, the choice of random distribution in VW is essentially the only option if we want to remove the bias by pre-multiplying the data vectors (element-wise) with a vector of random variables. Of course, once we let $s = 1$, the variance (16) becomes identical to the variance of random projections (13).

5.3 Comparing b-bit Minwise Hashing with RP and VW in Terms of Variances

Each sample of b-bit minwise hashing requires exactly b bits of storage. For VW, if we consider the number of bins k is smaller than the number of nonzeros in each data vector, then the resultant hashed data vectors are dense and we probably need 32 bits or 16 bits per hashed data entry (sample). [22] demonstrated that if each sample of VW needs 32 bits, then VW needs $10 \sim 100$ (or even 10000) more space than b-bit minwise hashing in order to achieve the same variance. Of course, when k is much larger than the number of nonzeros in each data vector, then the resultant hashed data vector will be sparse and the storage would be similar to the original data size.

One reason why VW is not accurate is because the variance (16) (for $s = 1$) is dominated by the product of two marginal squared l_2 norms $\sum_{i=1}^{D} u_{1,i}^2, \sum_{i=1}^{D} u_{2,i}^2$ even when the inner product is zero.

5.4 Experiments

We experiment with VW using $k = 2^5, 2^6, 2^7, 2^8, 2^9, 2^{10}, 2^{11}, 2^{12}, 2^{13}$, and 2^{14}. Note that $2^{14} = 16384$. It is difficult to train LIBLINEAR with $k = 2^{15}$ because the training size of the hashed data by VW is close to 48 GB when $k = 2^{15}$.

Figure 5 and Figure 6 plot the test accuracies for SVM and logistic regression, respectively. In each figure, every panel has the same set of solid curves for VW but a different set of dashed curves for different b-bit minwise hashing. Since k ranges very large, here we choose to present the test accuracies against k. Representative C values (0.01, 0.1, 1, 10) are selected for the presentations.

From Figures 5 and 6 we can see clearly that b-bit minwise hashing is substantially more accurate than VW at the same storage. In other words, in order to achieve the same accuracy, VW will require substantially more storage than b-bit minwise hashing.

Figure 7 presents the training times for comparing VW with 8-bit minwise hashing. In this case, we can see that even at the same k, 8-bit hashing may have some computational advantages compared to VW. Of course, as it is clear that VW will require a much larger k in order to achieve the same accuracies as 8-bit minwise hashing, we know that the advantage of b-bit minwise hashing in terms of training time reduction is also enormous.
Figure 5: SVM test accuracy on rcv1 for comparing VW (solid) with b-bit minwise hashing (dashed). Each panel plots the same results for VW and results for b-bit minwise hashing for a different b. We select $C = 0.01, 0.1, 1, 10$.

Figure 6: Logistic Regression test accuracy on rcv1 for comparing VW with b-bit minwise hashing.

Figure 7: Training time for SVM (left) and logistic regression (right) on rcv1 for comparing VW with 8-bit minwise hashing.
Note that, as suggested in [22], the training time of b-bit minwise hashing can be further reduced by applying an additional VW step on top of the data generated by b-bit minwise hashing. This is because VW is an excellent tool for achieving compact indexing when the data dimension is (extremely) much larger than the average number of nonzeros. We conduct the experiments on rcv1 with $b = 16$ and notice that this strategy indeed can reduce the training time of 16-bit minwise hashing by a factor 2 or 3.

6 Preprocessing Cost

Minwise hashing has been widely used in (search) industry and b-bit minwise hashing requires only very minimal (if any) modifications. Thus, we expect b-bit minwise hashing will be adopted in practice. It is also well-understood in practice that we can use (good) hashing functions to very efficiently simulate permutations.

In many real-world scenarios, the preprocessing step is not critical because it requires only one scan of the data, which can be conducted off-line (or on the data-collection stage, or at the same time as n-grams are generated), and it is trivially parallelizable. In fact, because b-bit minwise hashing can substantially reduce the memory consumption, it may be now affordable to store considerably more examples in the memory (after b-bit hashing) than before, to avoid (or minimize) disk IOs. Once the hashed data have been generated, they can be used and re-used for many tasks such as supervised learning, clustering, duplicate detections, near-neighbor search, etc. For example, a learning task may need to re-use the same (hashed) dataset to perform many cross-validations and parameter tuning (e.g., for experimenting with many C values in logistic regression or SVM).

For training truly large-scale datasets, often the data loading time can be dominating [32]. Table 2 compares the data loading times with the preprocessing times. For both webspam and rcv1 datasets, when using a GPU, the preprocessing time for $k = 500$ permutations is only a small fraction of the data loading time. Without GPU, the preprocessing time is about 3 or 4 times higher than the data loading time, i.e., they are roughly on the same order of magnitudes. When the training datasets are much larger than 200 GB, we expect that difference between the data loading time and the preprocessing time will be much smaller, even without GPU. We would like to remind that the preprocessing time is only a one-time cost.

Table 2: The data loading and preprocessing (for $k = 500$ permutations) times (in seconds).

Dataset	Data Loading	Preprocessing	Preprocessing with GPU
Webspam (24 GB)	9.7×10^2	41×10^2	0.49×10^2
Rcv1 (200 GB)	1.0×10^4	3.0×10^4	0.14×10^4

7 Simulating Permutations Using 2-Universal Hashing

Conceptually, minwise hashing requires k permutation mappings $\pi_j : \Omega \rightarrow \Omega$, $j = 1$ to k, where $\Omega = \{0, 1, \ldots, D - 1\}$. If we are able to store these k permutation mappings, then the operation is straightforward. For practical industrial applications, however, storing permutations would be infeasible. Instead, permutations are usually simulated by universal hashing, which only requires storing very few numbers.

The simplest (and possibly the most popular) approach is to use 2-universal hashing. That is, we define a series of hashing functions h_j to replace π_j:

$$h_j(t) = \{c_{1,j} + c_{2,j} \cdot t \mod p\} \mod D, \quad j = 1, 2, \ldots, k,$$

where $p > D$ is a prime number and $c_{1,j}$ is chosen uniformly from $\{0, 1, \ldots, p - 1\}$ and $c_{2,j}$ is chosen uniformly from $\{1, 2, \ldots, p - 1\}$. This way, instead of storing π_j, we only need to store $2k$ numbers, $c_{1,j}, c_{2,j}$, $j = 1$ to k. There are several small “tricks” for speeding up 2-universal hashing (e.g., avoiding modular arithmetic). An interesting thread might be http://mybiasedcoin.blogspot.com/2009/12/text-book-algorithms-at-soda-guest-post.html

Given a feature vector (e.g., a document parsed as a list of 1-gram, 2-gram, and 3-grams), for any nonzero location t in the original feature vector, its new location becomes $h_j(t)$, and we walk through all nonzeros locations to find...
the minimum of the new locations, which will be the jth hashed value for that feature vector. Since the generated parameters, $c_{1,j}$ and $c_{2,j}$, are fixed (and stored), this procedure becomes deterministic.

Our experiments on webspam can show that even with this simplest hashing method, we can still achieve good performance compared to using perfect random permutations. We can not realistically store k permutations for the rcv1 dataset because its $D = 10^9$. Thus, we only verify the practice of using 2-universal hashing on the webspam dataset, as demonstrated in Figure 8.

![Figure 8: Test accuracies on webspam for comparing permutations (dashed) with 2-universal hashing (solid) (averaged over 50 runs), for both linear SVM (left) and logistic regression (right). We can see that the solid curves essentially overlap the dashed curves, verifying that even the simplest 2-universal hashing method can be very effective.](image)

8 Conclusion

It has been a lot of fun to develop b-bit minwise hashing and apply it to machine learning for training very large-scale datasets. We hope engineers will find our method applicable to their work. We also hope this work can draw interests from research groups in statistics, theoretical CS, machine learning, or search technology.

References

[1] Dimitris Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary coins. *Journal of Computer and System Sciences*, 66(4):671–687, 2003.

[2] Michael Bendersky and W. Bruce Croft. Finding text reuse on the web. In *WSDM*, pages 262–271, Barcelona, Spain, 2009.

[3] Leon Bottou, http://leon.bottou.org/projects/sgd

[4] Andrei Z. Broder. On the resemblance and containment of documents. In *the Compression and Complexity of Sequences*, pages 21–29, Positano, Italy, 1997.

[5] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig. Syntactic clustering of the web. In *WWW*, pages 1157 – 1166, Santa Clara, CA, 1997.

[6] Gregory Buehrer and Kumar Chellapilla. A scalable pattern mining approach to web graph compression with communities. In *WSDM*, pages 95–106, Stanford, CA, 2008.

[7] Ludmila Cherkasova, Kave Eshghi, Charles B. Morrey III, Joseph Tucek, and Alistair C. Veitch. Applying syntactic similarity algorithms for enterprise information management. In *KDD*, pages 1087–1096, Paris, France, 2009.

[8] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael Mitzenmacher, Alessandro Panconesi, and Prabhakar Raghavan. On compressing social networks. In *KDD*, pages 219–228, Paris, France, 2009.

[9] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-min sketch and its applications. *Journal of Algorithm*, 55(1):58–75, 2005.

[10] Yon Dourisboure, Filippo Geraci, and Marco Pellegrini. Extraction and classification of dense implicit communities in the web graph. *ACM Trans. Web*, 3(2):1–36, 2009.
[11] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. Liblinear: A library for large linear classification. *Journal of Machine Learning Research*, 9:1871–1874, 2008.

[12] Dennis Fetterly, Mark Manasse, Marc Najork, and Janet L. Wiener. A large-scale study of the evolution of web pages. In *WWW*, pages 669–678, Budapest, Hungary, 2003.

[13] George Forman, Kave Eshghi, and Jaap Suermondt. Efficient detection of large-scale redundancy in enterprise file systems. *SIGOPS Oper. Syst. Rev.*, 43(1):84–91, 2009.

[14] Sreenivas Gollapudi and Aneesh Sharma. An axiomatic approach for result diversification. In *WWW*, pages 381–390, Madrid, Spain, 2009.

[15] Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya Keerthi, and S. Sundararajan. A dual coordinate descent method for large-scale linear svm. In *Proceedings of the 25th international conference on Machine learning*, ICML, pages 408–415, 2008.

[16] Nitin Jindal and Bing Liu. Opinion spam and analysis. In *WSDM*, pages 219–230, Palo Alto, California, USA, 2008.

[17] Thorsten Joachims. Training linear svms in linear time. In *KDD*, pages 217–226, Pittsburgh, PA, 2006.

[18] Konstantinos Kalpakis and Shilang Tang. Collaborative data gathering in wireless sensor networks using measurement co-occurrence. *Computer Communications*, 31(10):1979–1992, 2008.

[19] Ping Li, Trevor J. Hastie, and Kenneth W. Church. Very sparse random projections. In *KDD*, pages 287–296, Philadelphia, PA, 2006.

[20] Ping Li and Arnd Christian König. Theory and applications b-bit minwise hashing. In *Commun. ACM*, 2011.

[21] Ping Li, Joshua Moore, and Arnd Christian König. b-bit minwise hashing for large-scale linear SVM. Technical report.

[22] Ping Li, Anshumali Shrivastava, Joshua Moore, and Arnd Christian König. Hashing algorithms for large-scale learning. Technical report.

[23] Ping Li and Arnd Christian König. b-bit minwise hashing. In *WWW*, pages 671–680, Raleigh, NC, 2010.

[24] Ping Li, Arnd Christian König, and Wenhao Gui. b-bit minwise hashing for estimating three-way similarities. In *NIPS*, Vancouver, BC, 2010.

[25] Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma. Detecting Near-Duplicates for Web-Crawling. In *WWW*, Banff, Alberta, Canada, 2007.

[26] Marc Najork, Sreenivas Gollapudi, and Rina Panigrahy. Less is more: sampling the neighborhood graph makes salsa better and faster. In *WSDM*, pages 242–251, Barcelona, Spain, 2009.

[27] Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos: Primal estimated sub-gradient solver for svm. In *ICML*, pages 807–814, Corvalis, Oregon, 2007.

[28] Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alex Smola, and S.V. N. Vishwanathan. Hash kernels for structured data. *Journal of Machine Learning Research*, 10:2615–2637, 2009.

[29] Simon Tong. Lessons learned developing a practical large scale machine learning system. http://googleresearch.blogspot.com/2010/04/lessons-learned-developing-practical.html, 2008.

[30] Tanguy Urvoy, Emmanuel Chauveau, Pascal Filoche, and Thomas Lavergne. Tracking web spam with html style similarities. *ACM Trans. Web*, 2(1):1–28, 2008.

[31] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh Attenberg. Feature hashing for large scale multitask learning. In *ICML*, pages 1113–1120, 2009.

[32] Hsiang-Fu Yu, Cho-Jui Hsieh, Kai-Wei Chang, and Chih-Jen Lin. Large linear classification when data cannot fit in memory. In *KDD*, pages 833–842, 2010.