SOME HADAMARD AND SIMPSON TYPE INTEGRAL INEQUALITIES VIA s-CONVEXITY AND THEIR APPLICATIONS

MEVLÜT TUNÇ

Abstract. In this study, we establish and generalize some inequalities of Hadamard and Simpson type based on \(s \)-convexity in the second sense. Some applications to special means of positive real numbers are also given and generalized. Examples are given to show the results. The results generalize the integral inequalities in [11] and [13].

1. Introductions

To establish analytic inequalities, one of the most efficient way is the property of convexity of a dedicated function. Notedly, in the theory of higher transcendental functions, there are many significant applications. We can use the integral inequalities in order to study qualitative and quantitative properties of integrals (see [8, 9, 12]). Things continuing to bewilder us by indicating new inferences, new difficulties and also new open questions are a major mathematical outcome.

The Hermite-Hadamard inequality: Let \(f : I \subseteq \mathbb{R} \rightarrow \mathbb{R} \) be a convex function and \(u, v \in I \) with \(u < v \). The following double inequality:

\[
\left. \begin{array}{c}
f \left(\frac{u + v}{2} \right) \leq \frac{1}{v - u} \int_{u}^{v} f(x) \, dx \leq \frac{f(u) + f(v)}{2} \end{array} \right\} \quad (\text{HH})
\]

is known in the literature as Hadamard’s inequality (or Hermite-Hadamard inequality) for convex functions. Keep in mind that some of the classical inequalities for means can come from (HH) for convenient particular selections of the function \(f \). If \(f \) is concave, this double inequality hold in the inversed way. See [3, 9] for details.

The Simpson inequality: The following inequality is well known in the literature as Simpson’s inequality;

\[
\left. \begin{array}{c}
\left| \frac{1}{3} \left[f(u) + f(v) + 2f \left(\frac{u + v}{2} \right) \right] - \frac{1}{v - u} \int_{u}^{v} f(x) \, dx \right| \leq \frac{1}{1280} \| f^{(4)} \|_{\infty} (v - u)^{4},
\end{array} \right\} \quad (S)
\]

where the mapping \(f : [u, v] \rightarrow \mathbb{R} \) is assumed to be four times continuously differentiable on the interval and \(f^{(4)} \) to be bounded on \((u, v) \), that is, \(\| f^{(4)} \|_{\infty} = \sup_{t \in (u, v)} |f^{(4)}(t)| < \infty \). See [11, 14, 16] for details.

In [6], Hudzik and Maligranda considered among others the class of functions which are \(s \)-convex in the second sense. This class is defined in the following way:
a function \(f : \mathbb{R}_+ \to \mathbb{R} \), where \(\mathbb{R}_+ = [0, \infty) \), is said to be \(s \)-convex in the second sense if
\[
 f (\alpha \lambda + (1 - \alpha) \mu) \leq \alpha^s f (\lambda) + (1 - \alpha)^s f (\mu)
\]
for all \(\lambda, \mu \in [0, \infty), \alpha \in [0, 1] \) and for some fixed \(s \in (0, 1] \). This class of \(s \)-convex functions is usually denoted by \(K^s_2 \). It can be smoothly seen that for \(s = 1 \), \(s \)-convexity reduces to the ordinary convexity of functions defined on \([0, \infty)\).

Recently, in [10, 11], Sarikaya et al. presented the important integral identity including the first-order derivative of \(f \) to establish many interesting Simpson-type inequalities for convex and \(s \)-convex functions.

Meanwhile, in [13], Xi et al. presented the following two important integral identities including the first-order derivatives to establish many interesting Hermite-Hadamard-type inequalities for convex functions.

In this study, some new Hadamard and Simpson type integral inequalities for differentiable functions are established, and are applied to produce some inequalities of special means. Examples are given to show the results. The results generalize the integral inequalities in [11] and [13].

2. Main results for \(s \)-convex functions

In order to demonstrate our main results, we need the following lemmas that have been derived in [13].

Lemma 1. [13] Let \(f : I \subseteq \mathbb{R} \to \mathbb{R} \) be differentiable function on \(I^o \), \(u, v \in I \), with \(u < v \). If \(f' \in L [u, v] \) and \(\lambda, \mu \in \mathbb{R} \) then
\[
 (2.1) \quad \frac{\lambda f (u) + \mu f (v)}{2} + \frac{2 - \lambda - \mu}{2} f \left(\frac{u + v}{2} \right) - \frac{1}{v - u} \int_u^v f (x) \, dx
\]
\[
 = \frac{v - u}{4} \int_0^1 \left[(1 - \lambda - \alpha) f' \left(\alpha u + (1 - t) \frac{u + v}{2} \right) + (\mu - \alpha) f' \left(\alpha \frac{u + v}{2} + (1 - \alpha) v \right) \right] \, d\alpha
\]

Lemma 2. [13] For \(x > 0 \) and \(0 \leq y \leq 1 \), one has
\[
 (2.2) \quad \int_0^1 |y - \alpha|^r \, d\alpha = \frac{y^{x+1} + (1 - y)^{x+1}}{x + 1},
\]
\[
 \int_0^1 \alpha |y - \alpha|^r \, d\alpha = \frac{y^{x+2} + (x + 1 + y) (1 - y)^{x+1}}{(x + 1) (x + 2)}.
\]

Theorem 1. Let \(f : I \subseteq \mathbb{R} \to \mathbb{R} \) be differentiable function on \(I^o \), \(u, v \in I \), \(0 \leq \lambda, \mu \leq 1 \), and \(f' \in L [u, v] \). If \(|f' (x)|^r \) is \(s \)-convex function in the second sense on \([u, v]\) for some fixed \(s \in (0, 1] \), \(p, r > 1 \), \(1/p + 1/r = 1 \), then
\[
 (2.3) \quad \left| \frac{\lambda f (u) + \mu f (v)}{2} + \frac{2 - \lambda - \mu}{2} f \left(\frac{u + v}{2} \right) - \frac{1}{v - u} \int_u^v f (x) \, dx \right|
\]
\[
 \leq \frac{v - u}{4} \left(\frac{1 - \lambda)^{p+1} + \lambda^{p+1}}{p + 1} \right)^{\frac{1}{p}} \left(\frac{2^{s+1} - 1}{2^s (s + 1)} |f' (u)|^r + \frac{1}{2^s (s + 1)} |f' (v)|^r \right)^{\frac{1}{p}}
\]
\[
 + \frac{v - u}{4} \left(\frac{\mu^{p+1} + (1 - \mu)^{p+1}}{p + 1} \right)^{\frac{1}{p}} \left(\frac{1}{2^s (s + 1)} |f' (u)|^r + \frac{2^{s+1} - 1}{2^s (s + 1)} |f' (v)|^r \right)^{\frac{1}{p}}.
\]
Proof. Assume that $p > 1$, by Lemma \[1\] and using the well known Hölder inequality, we have

\[
\left| \frac{\lambda f(u) + \mu f(v)}{2} + \frac{2 - \lambda - \mu}{2} f\left(\frac{u + v}{2} \right) - \frac{1}{v - u} \int_u^v f(x) \, dx \right|
\]

\[
\leq \frac{v - u}{4} \left[\int_0^1 |1 - \lambda - \alpha| \left| f' \left(\alpha u + (1 - \alpha) \frac{u + v}{2} \right) \right| \, d\alpha + \int_0^1 |\mu - \alpha| \left| f' \left(\alpha \frac{u + v}{2} + (1 - \alpha) v \right) \right| \, d\alpha \right]
\]

\[
\leq \frac{v - u}{4} \left(\int_0^1 |1 - \lambda - \alpha| \, d\alpha \right)^{\frac{1}{p}} \left(\int_0^1 \left| f' \left(\alpha u + (1 - \alpha) \frac{u + v}{2} \right) \right|^r \, d\alpha \right)^{\frac{1}{r}}
\]

\[
+ \frac{v - u}{4} \left(\int_0^1 |\mu - \alpha| \, d\alpha \right)^{\frac{1}{p}} \left(\int_0^1 \left| f' \left(\alpha \frac{u + v}{2} + (1 - \alpha) v \right) \right|^r \, d\alpha \right)^{\frac{1}{r}}.
\]

Since $|f'(x)|^r$ is s-convex in the second sense on $[u, v]$, then we get

\[
\int_0^1 \left| f' \left(\alpha u + (1 - \alpha) \frac{u + v}{2} \right) \right|^r \, d\alpha \leq \int_0^1 \left(\left(\frac{1 + \alpha}{2} \right)^s \left| f'(u) \right|^r + \left(\frac{1 - \alpha}{2} \right)^s \left| f'(v) \right|^r \right) \, d\alpha
\]

\[
= \frac{2^{s+1} - 1}{2^s (s + 1)} \left| f'(u) \right|^r + \frac{1}{2^s (s + 1)} \left| f'(v) \right|^r
\]

and

\[
\int_0^1 \left| f' \left(\alpha \frac{u + v}{2} + (1 - \alpha) v \right) \right|^r \, d\alpha \leq \int_0^1 \left(\left(\frac{\alpha}{2} \right)^s \left| f'(u) \right|^r + \left(\frac{2 - \alpha}{2} \right)^s \left| f'(v) \right|^r \right) \, d\alpha
\]

\[
= \frac{1}{2^s (s + 1)} \left| f'(u) \right|^r + \frac{2^{s+1} - 1}{2^s (s + 1)} \left| f'(v) \right|^r
\]

where we have used the fact that

\[
\int_0^1 |1 - \lambda - \alpha|^p \, d\alpha = \frac{(1 - \lambda)^{p+1} + \lambda^{p+1}}{p + 1}
\]

and

\[
\int_0^1 |\mu - \alpha|^p \, d\alpha = \frac{\mu^{p+1} + (1 - \mu)^{p+1}}{p + 1}.
\]

This completes the proof. \(\square\)

If taking $\lambda = \mu$ in Theorem \[1\] we derive the following corollary.

Corollary 1. Let $f : I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be differentiable function on I°, $u, v \in I$, $0 \leq \lambda \leq 1$, and $f' \in L[u, v]$. If $|f'(x)|^r$ is s-convex function in the second sense on $[u, v]$ for some fixed $s \in (0, 1]$, and $1/p + 1/r = 1$, then

\[
(2.4)
\]

\[
\left| \frac{\lambda f(u) + f(v)}{2} + (1 - \lambda) f\left(\frac{u + v}{2} \right) - \frac{1}{v - u} \int_u^v f(x) \, dx \right|
\]

\[
\leq \frac{v - u}{4} \left(\frac{(1 - \lambda)^{p+1} + \lambda^{p+1}}{p + 1} \right)^{\frac{1}{p}} \times \left\{ \left(\frac{2^{s+1} - 1}{2^s (s + 1)} \left| f'(u) \right|^r + \frac{1}{2^s (s + 1)} \left| f'(v) \right|^r \right)^{\frac{1}{r}} \right\}
\]

\[
+ \left(\frac{1}{2^s (s + 1)} \left| f'(u) \right|^r + \frac{2^{s+1} - 1}{2^s (s + 1)} \left| f'(v) \right|^r \right)^{\frac{1}{r}}
\]

Remark 1. In Theorem \[1\], if we take $\lambda = \mu = 1/3$, then Theorem \[1\] reduces to Theorem 9. Hence, the result in Theorem \[1\] is generalizations of the results of Sarikaya et al. in \[11\].
If we take $s = 1$ and $\lambda = \mu = 1/2, 2/3, 1/3$, respectively, in Theorem [1] the following inequalities can be deduced.

Corollary 2. Let $f : I \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable function on I, $u, v \in I$ with $u < v$, and $f' \in L[u, v]$. If $|f'(x)|^r$ is convex function on $[u, v]$ for $1/p + 1/r = 1$, then

$$
(2.5)
\begin{align*}
&\frac{1}{2} \left[f(u) + f(v) \right] + f \left(\frac{u + v}{2} \right) - \frac{1}{v - u} \int_u^v f(x) \, dx \\
&\leq \frac{v - u}{8 (p + 1)^{1/p} 4^{1/r}} \left[(3 |f'(u)|^r + |f'(v)|^r)^{1/p} + (|f'(u)|^r + 3 |f'(v)|^r)^{1/p} \right]
\end{align*}
$$

$$
(2.6)
\begin{align*}
&\frac{1}{3} \left[f(u) + f(v) + f \left(\frac{u + v}{2} \right) \right] - \frac{1}{v - u} \int_u^v f(x) \, dx \\
&\leq \frac{v - u}{4^{1/r}} \left(\frac{1 + 2^{p+1}}{3^{p+1} (p + 1)} \right)^{1/p} \left[(3 |f'(u)|^r + |f'(v)|^r)^{1/p} + (|f'(u)|^r + 3 |f'(v)|^r)^{1/p} \right]
\end{align*}
$$

$$
(2.7)
\begin{align*}
&\frac{1}{6} \left[f(u) + f(v) + 4f \left(\frac{u + v}{2} \right) \right] - \frac{1}{v - u} \int_u^v f(x) \, dx \\
&\leq \frac{v - u}{4^{1/r}} \left(\frac{1 + 2^{p+1}}{3^{p+1} (p + 1)} \right)^{3/p} \left[(3 |f'(u)|^r + |f'(v)|^r)^{3/p} + (|f'(u)|^r + 3 |f'(v)|^r)^{3/p} \right]
\end{align*}
$$

If taking $\lambda = \mu = 1/2$, in Theorem [1] the following inequalities can be deduced.

Corollary 3. Let $f : I \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable function on I, $u, v \in I$, and $f' \in L[u, v]$. If $|f'(x)|^r$ is s-convex function in the second sense on $[u, v]$ for some fixed $s \in (0, 1]$, and $1/p + 1/r = 1$ and

$$
\frac{f(u) + f(v)}{2} = f \left(\frac{u + v}{2} \right)
$$

then

$$
(2.8)
\begin{align*}
&\left| \frac{f(u) + f(v)}{2} - \frac{1}{v - u} \int_u^v f(x) \, dx \right| \\
&= \left| f \left(\frac{u + v}{2} \right) - \frac{1}{v - u} \int_u^v f(x) \, dx \right| \\
&\leq \frac{v - u}{8 (p + 1)^{1/p} 2^{s+1}} \left[\frac{2^{s+1} - 1}{2^s (s + 1)} |f'(u)|^r + \frac{1}{2^s (s + 1)} |f'(v)|^r \right]^{1/p} \\
&+ \left(\frac{1}{2^s (s + 1)} |f'(u)|^r + \frac{2^{s+1} - 1}{2^s (s + 1)} |f'(v)|^r \right)^{1/p}
\end{align*}
$$

Corollary 4. In Theorem [1] when s, λ, μ, p, r are taken like in the following, we obtain
i) For $s = 0.3, \lambda = 0.3, \mu = 0.3, p = 2, r = 2$ in \mathcal{C}_3,
\[
\left| \frac{3}{10} f(u) + f(v) \right| + \frac{14}{20} f \left(\frac{u+v}{2} \right) - \frac{1}{b-u} \int_u^b f(x) \, dx \leq \frac{0.351 (v-u)}{4} \left[(0.914 |f'(u)|^2 + 0.625 |f'(v)|^2)^{\frac{1}{2}} + (0.625 |f'(u)|^r + 0.914 |f'(v)|^r)^{\frac{1}{2}} \right]
\]

ii) Taking $s = 0.5, \lambda = 0.5, \mu = 0.5, p = 2, r = 2$ in \mathcal{C}_3 gives;
\[
\left| \frac{1}{2} \left[f(u) + f(v) \right] + f \left(\frac{u+v}{2} \right) - \frac{1}{v-u} \int_u^v f(x) \, dx \right| \leq \frac{0.289 (v-u)}{4} \left[(0.862 |f'(u)|^2 + 0.471 |f'(v)|^2)^{\frac{1}{2}} + (0.471 |f'(u)|^2 + 0.862 |f'(v)|^2)^{\frac{1}{2}} \right]
\]

iii) Taking $s = 0.75, \lambda = 0.3, \mu = 0.7, p = 10, r = 10/9$ in \mathcal{C}_3 gives;
\[
\left| \frac{3}{20} f(u) + f(v) \right| + \frac{1}{2} f \left(\frac{u+v}{2} \right) - \frac{1}{v-u} \int_u^v f(x) \, dx \leq \frac{0.531 (v-u)}{4} \left[(0.803 |f'(u)|^{10/9} + 0.34 |f'(v)|^{10/9})^{\frac{1}{3}} + (0.34 |f'(u)|^{10/9} + 0.803 |f'(v)|^{10/9})^{\frac{1}{3}} \right]
\]

iv) Taking $s = 0.4, \lambda = 0.2, \mu = 0.8, p = 3, r = 3/2$ in \mathcal{C}_3 gives;
\[
\left| \frac{1}{10} f(u) + f(v) \right| + \frac{1}{2} f \left(\frac{u+v}{2} \right) - \frac{1}{v-u} \int_u^v f(x) \, dx \leq \frac{0.468 (v-u)}{4} \left[(0.887 |f'(u)|^{3/2} + 0.541 |f'(v)|^{3/2})^{\frac{2}{3}} + (0.541 |f'(u)|^{3/2} + 0.887 |f'(v)|^{3/2})^{\frac{2}{3}} \right]
\]

v) Taking $s = 0.4, \lambda = 0.2, \mu = 0.8, p = e, r = e/(e-1)$ in \mathcal{C}_3 gives;
\[
\left| \frac{1}{10} f(u) + f(v) \right| + \frac{1}{2} f \left(\frac{u+v}{2} \right) - \frac{1}{v-u} \int_u^v f(x) \, dx \leq \frac{0.455 (v-u)}{4} \left[(0.887 |f'(u)|^{e/(e-1)} + 0.541 |f'(v)|^{e/(e-1)})^{\frac{2}{e}} + (0.541 |f'(u)|^{e/(e-1)} + 0.887 |f'(v)|^{e/(e-1)})^{\frac{2}{e}} \right]
\]

vi) Taking $s = 1, \lambda = 1/3, \mu = 2/3, p = r = 2$ in \mathcal{C}_3 gives;
\[
\left| \frac{1}{6} f(u) + f(v) \right| + \frac{1}{2} f \left(\frac{u+v}{2} \right) - \frac{1}{v-u} \int_u^v f(x) \, dx \leq \frac{v-u}{12} \left[\left(\frac{3}{4} |f'(u)|^2 + \frac{1}{4} |f'(v)|^2 \right)^{\frac{1}{2}} + \left(\frac{1}{4} |f'(u)|^2 + \frac{3}{4} |f'(v)|^2 \right)^{\frac{1}{2}} \right]
\]

etc.

Theorem 2. Let $f : I \subseteq \mathbb{R} \to \mathbb{R}$ be differentiable function on I^o, $u, v \in I$, $0 \leq \lambda$, $\mu \leq 1$, and $f' \in L[u, v]$. If $|f'(x)|^r$ is s-convex function in the second sense on
[u, v] for r ≥ 1, then

\[(2.9) \quad \left| \frac{\lambda f(u) + \mu f(v)}{2} + \frac{2 - \lambda - \mu}{2} f \left(\frac{u + v}{2} \right) - \frac{1}{v - u} \int_u^v f(x) \, dx \right| \]

\[\leq \frac{v - u}{8} \left(\frac{1}{2s - 1 (s + 1) (s + 2)} \right)^{1/r} \]

\[\left\{ \left((2\lambda^2 - 2\lambda + 1) \right)^{1 - 1/r} \times [E f'(u)]^r + L f'(v) \right\}^{1/r} \]

\[+ \left((2\mu^2 - 2\mu + 1) \right)^{1 - 1/r} \times [I f'(u)]^r + F f'(v) \right\}^{1/r} \]

where

\[E = \left(2 (2 - \lambda)^{s+2} + (\lambda - 1) (s + 2^{s+2} + 2) + 2^{s+1} s \lambda - 1 \right) \]

\[L = \left(2 \lambda^{s+2} + s (1 - \lambda) - 2 \lambda + 1 \right) \]

\[I = \left(2 \mu^{s+2} + s (1 - \mu) - 2 \mu + 1 \right) \]

\[F = \left(2 (2 - \mu)^{s+2} + (\mu - 1) (s + 2^{s+2} + 2) + 2^{s+1} s \mu - 1 \right) . \]

Proof. For r ≥ 1, from Lemma 11 by using the s-convexity of \(|f'(x)|^r\) on [u, v], and the famous power mean inequality, we can write

\[\left| \frac{\lambda f(u) + \mu f(v)}{2} + \frac{2 - \lambda - \mu}{2} f \left(\frac{u + v}{2} \right) - \frac{1}{v - u} \int_u^v f(x) \, dx \right| \]

\[\leq \frac{v - u}{4} \left[\int_0^1 |1 - \lambda - \alpha| f' \left(\alpha u + (1 - \alpha) \frac{u + v}{2} \right) \, d\alpha + \int_0^1 |\mu - \alpha| f' \left(\frac{\alpha u + v}{2} + (1 - \alpha) v \right) \, d\alpha \right] \]

\[\leq \frac{v - u}{4} \left\{ \left(\int_0^1 |1 - \lambda - \alpha| \, d\alpha \right)^{1 - 1/r} \left[\int_0^1 |\mu - \alpha| \left(\left(\frac{\alpha}{2} \right)^s |f'(u)|^r + \left(\frac{1 - \alpha}{2} \right)^s |f'(v)|^r \right) \, d\alpha \right]^{1/r} \]

\[+ \left(\int_0^1 |\mu - \alpha| \, d\alpha \right)^{1 - 1/r} \left[\int_0^1 |\mu - \alpha| \left(\left(\frac{\alpha}{2} \right)^s |f'(u)|^r + \left(\frac{1 - \alpha}{2} \right)^s |f'(v)|^r \right) \, d\alpha \right]^{1/r} \}

By direct calculation, we obtain

\[\int_0^1 |1 - \lambda - \alpha| \left(\left(\frac{1 + \alpha}{2} \right)^s |f'(u)|^r + \left(\frac{1 - \alpha}{2} \right)^s |f'(v)|^r \right) \, d\alpha \]

\[= \left(\frac{1}{2s} \right)^r \int_0^1 |1 - \lambda - \alpha| (1 + \alpha)^s \, d\alpha + \left(\frac{1}{2s} \right)^r \int_0^1 |1 - \lambda - \alpha| (1 - \alpha)^s \, d\alpha \]

\[= \left(\frac{1}{2s} \right)^r \left(\frac{2 (2 - \lambda)^{s+2} + (\lambda - 1) (s + 2^{s+2} + 2) + 2^{s+1} s \lambda - 1}{2s (s + 1) (s + 2)} \right) \]

\[+ \left(\frac{1}{2s} \right)^r \left(\frac{2 \lambda^{s+2} + s (1 - \lambda) - 2 \lambda + 1}{2s (s + 1) (s + 2)} \right) \]
Similarly, we have

\begin{align*}
\int_0^1 & |\mu - \alpha| \left(\left(\frac{\alpha}{2} \right)^s |f'(u)|^r + \left(\frac{2 - \alpha}{2} \right)^s |f'(v)|^r \right) \, d\alpha \\
= & \frac{|f'(u)|^r}{2^s} \int_0^1 |\mu - \alpha| \alpha^s \, d\alpha + \frac{|f'(v)|^r}{2^s} \int_0^1 |\mu - \alpha| (2 - \alpha)^s \, d\alpha \\
= & \frac{|f'(u)|^r}{2^s (s + 1) (s + 2)} (2\mu^{s+2} + s (1 - \mu) - 2\mu + 1) \\
& + \frac{|f'(v)|^r}{2^s (s + 1) (s + 2)} (2 (2 - \mu)^{s+2} + (\mu - 1) (s + 2^{s+2} + 2) + 2^{s+1} s\mu - 1)
\end{align*}

\begin{align*}
\int_0^1 & |1 - \lambda - \alpha| \, d\alpha = \frac{1}{2} (2\lambda^2 - 2\lambda + 1) \\
\int_0^1 & |\mu - \alpha| \, d\alpha = \frac{1}{2} (2\mu^2 - 2\mu + 1)
\end{align*}

Replace with the above four equalities into the inequality and the proof is finished.

□

Remark 2. In Theorem 2, if we take \(s = 1 \), then Theorem 2 reduces to [13, Theorem 3.1]. Hence, the result in Theorem 2 is generalizations of the results of Xi et al. in [13, Theorem 3.1].

If taking \(\lambda = \mu \) in (2.9), we derive the following corollary.

Corollary 5. Let \(f : I \subseteq \mathbb{R} \to \mathbb{R} \) be differentiable function on \(I^\circ \), \(u, v \in I \), \(0 \leq \lambda \leq 1 \), and \(f' \in L[u, v] \). If \(|f'(x)|^r \) is \(s \)-convex function in the second sense on \([u, v]\) for some fixed \(s \in (0, 1] \), and \(r \geq 1 \), then

\begin{equation}
(2.10) \quad \frac{\lambda f(u) + \lambda f(v)}{2} + \frac{2 - 2\lambda}{2} f \left(\frac{u + v}{2} \right) - \frac{1}{v - u} \int_u^v f(x) \, dx \leq \frac{v - u}{8 (2^{s-1} (s + 1) (s + 2))^{1/r}} \left((2\lambda^2 - 2\lambda + 1) \right)^{1-1/r} \\
\times \left\{ \left[|f'(u)|^r E \right]^{1/r} + \left[|f'(v)|^r L \right]^{1/r} \right\}
\end{equation}

where \(E \) and \(L \) are like above.

If taking \(\lambda = \mu = 1/2, 2/3, 1/3 \), respectively, in Theorem 2 the following inequalities can be deduced.

Corollary 6. Let \(s \in (0, 1] \) and \(f : I \subseteq \mathbb{R} \to \mathbb{R} \) be differentiable function on \(I^\circ \), \(u, v \in I \) with \(u < v \), and \(f' \in L[u, v] \). If \(|f'(x)|^r \) is \(s \)-convex function in the second
sense on \([u, v]\) for some fixed \(s \in (0, 1]\), and \(r \geq 1\), then

\[
(2.11) \quad \left| \frac{1}{2} \left[\frac{f(u) + f(v)}{2} + f\left(\frac{u + v}{2}\right) \right] - \frac{1}{v - u} \int_u^v f(x) \, dx \right|
\]

\[
\leq \frac{v - u}{8 \left(2^{s-1}(s + 1)(s + 2)\right)^{1/r}} \left(\frac{1}{2}\right)^{1-1/r}
\times \left\{ \left[\left(\frac{3s^2 + 2 + 2s - 2s^2s + 4}{2s^2} \right) |f'(u)|^r + \left(\frac{s + 1}{2s^2 + 1}\right) |f'(v)|^r \right]^{1/r}
\right.
\]

\[
+ \left[\left(\frac{3s^2 + 2 + 2s - 2s^2s + 4}{2s^2} \right) |f'(u)|^r + \left(\frac{s + 1}{2s^2 + 1}\right) |f'(v)|^r \right]^{1/r} \left\{ \right. \}
\]

\[
(2.12) \quad \left| \frac{1}{3} \left[f(u) + f(v) + f\left(\frac{u + v}{2}\right) \right] - \frac{1}{v - u} \int_u^v f(x) \, dx \right|
\]

\[
\leq \frac{v - u}{8 \left(2^{s-1}(s + 1)(s + 2)\right)^{1/r}} \left(\frac{1}{2}\right)^{1-1/r}
\times \left\{ \left[\left(\frac{9s^2 + 3 + 2s - 2s^2s + 5}{3s^2} \right) |f'(u)|^r + \left(\frac{s - 1}{3} + \frac{2s^3 + 3}{3s^2} \right) |f'(v)|^r \right]^{1/r}
\right.
\]

\[
+ \left[\left(\frac{9s^2 + 3 + 2s - 2s^2s + 5}{3s^2} \right) |f'(u)|^r + \left(\frac{s - 1}{3} + \frac{2s^3 + 3}{3s^2} \right) |f'(v)|^r \right]^{1/r} \left\{ \right. \}
\]

\[
(2.13) \quad \left| \frac{1}{6} \left[f(u) + f(v) + 4f\left(\frac{u + v}{2}\right) \right] - \frac{1}{v - u} \int_u^v f(x) \, dx \right|
\]

\[
\leq \frac{v - u}{8 \left(2^{s-1}(s + 1)(s + 2)\right)^{1/r}} \left(\frac{1}{2}\right)^{1-1/r}
\times \left\{ \left[\left(\frac{2 \times 5s^2 + 2}{3s^2} - \frac{2s^3 + 3 + 2s - 2s^2s + 7}{3} \right) |f'(u)|^r + \left(\frac{2s^3 + 1}{3} + \frac{2s^3 + 2}{3s^2 + 2} \right) |f'(v)|^r \right]^{1/r}
\right.
\]

\[
+ \left[\left(\frac{2 \times 5s^2 + 2}{3s^2} - \frac{2s^3 + 3 + 2s - 2s^2s + 7}{3} \right) |f'(u)|^r + \left(\frac{2s^3 + 1}{3} + \frac{2s^3 + 2}{3s^2 + 2} \right) |f'(v)|^r \right]^{1/r} \left\{ \right. \}
\]

Remark 3. If setting \(s = 1\) in above Corollary, then we obtain the inequalities in \([13]\) pp. 6 and 7.

Remark 4. If setting \(s = 1\) and \(r = 1\) in above Corollary, then we obtain the inequalities in \([13]\) (3.7)]. Hence, the results in above Corollary are generalizations of the results of Xi and Qi in \([13]\).
3. Applications

Let

\[
A(u,v) = \frac{u+v}{2}, \quad L(u,v) = \frac{v-u}{\ln v - \ln u} \quad (u \neq v),
\]

\[
L_p(u,v) = \left(\frac{v^{p+1} - u^{p+1}}{(p+1)(v-u)} \right)^{1/p}, \quad u \neq v, \quad p \in \mathbb{R}, \quad p \neq -1, 0
\]

be the arithmetic mean, logarithmic mean, generalized logarithmic mean for \(u, v > 0 \) respectively.

Criterion 1. Let \(g : \mathbb{R} \to \mathbb{R}_+ \) be a non-negative convex function on \(\mathbb{R} \). Then \(g^r(x) \) is \(s \)-convex on \(I \), for some fixed \(s \in (0,1) \) (see [11]).

Proposition 1. Let \(s \in (0,1] \), \(u,v > 0 \), \(1/p + 1/r = 1 \), \(0 \leq \lambda, \mu \leq 1 \), then

\[
\left| \frac{\lambda u^s + \mu v^s}{2} + \frac{2 - \lambda - \mu}{2} A^s(u,v) - L^s_s(u,v) \right|
\]

\[
\leq \frac{v-u}{4} \left(\frac{(1-\lambda)^{p+1} + \lambda^{p+1}}{p+1} \right)^{1/t} \left(\frac{s (2^{p+1} - 1) u^{r(s-1)}}{2^s (s+1)} + \frac{s v^{r(s-1)}}{2^s (s+1)} \right)^{1/r}
\]

\[
+ \frac{v-u}{4} \left(\frac{\mu^{p+1} + (1-\mu)^{p+1}}{p+1} \right)^{1/t} \left(\frac{s u^{r(s-1)}}{2^s (s+1)} + \frac{s (2^{p+1} - 1) v^{r(s-1)}}{2^s (s+1)} \right)^{1/r}
\]

In particular, when \(\lambda = \mu = 1 \), we have

\[
|A(u^s, v^s) - L^s_s(u,v)|
\]

\[
\leq \frac{v-u}{4} \left(\frac{1}{p+1} \right)^{1/t} \left(\frac{s (2^{p+1} - 1) u^{r(s-1)}}{2^s (s+1)} + \frac{s v^{r(s-1)}}{2^s (s+1)} \right)^{1/r}
\]

\[
+ \frac{v-u}{4} \left(\frac{1}{p+1} \right)^{1/t} \left(\frac{s u^{r(s-1)}}{2^s (s+1)} + \frac{s (2^{p+1} - 1) v^{r(s-1)}}{2^s (s+1)} \right)^{1/r}
\]

Proof. The claim follows from Theorem [11] applied to \(s \)-convex in the second sense mapping \(f(x) = x^s \).

Remark 5. In Proposition [11] if we take \(\lambda = \mu = 1/3 \), then Proposition [11] reduces to [11] pp. 2198. Hence, the results in Proposition [11] are generalizations of the results of Sarikaya et al. in [11].

Proposition 2. Let \(s \in (0,1] \), \(u,v > 0 \), \(r \geq 1 \), \(0 \leq \lambda, \mu \leq 1 \), then

\[
\left| \frac{\lambda u^s + \mu v^s}{2} + \frac{2 - \lambda - \mu}{2} A^s(u,v) - L^s_s(u,v) \right|
\]

\[
\leq \frac{s (v-u)}{8} \left(\frac{1}{2^{s-1} (s+1) (s+2)} \right)^{1/r}
\]

\[
\times \left\{ \left((2\lambda^2 - 2\lambda + 1) \right)^{1-1/r} \times \left[u^{r(s-1)} E + v^{r(s-1)} E \right]^{1/r}
\right.
\]

\[
+ \left((2\mu^2 - 2\mu + 1) \right)^{1-1/r} \times \left[v^{r(s-1)} I + u^{r(s-1)} F \right]^{1/r}
\}
\]
In particular, when $\lambda = \mu = 1$, we have
\[
|A(u^s, v^s) - L^s_-(u, v)| \leq \frac{s(v-u)}{8} \left(\frac{1}{2s-1} \right)^{1/r} \times \left\{ \left[u^{r(s-1)} \left(1 + s2^{s+1} \right) + v^{r(s-1)} \right]^{1/r} + \left[u^{r(s-1)} + v^{r(s-1)} \left(1 + s2^{s+1} \right) \right]^{1/r} \right\}
\]

Moreover, when $r = 1$, we have
\[
|A(u^s, v^s) - L^s_-(u, v)| \leq \frac{s^2 (1 + s2^s) (v-u)}{2s(s+1)(s+2)} \times A(u^{s-1}, v^{s-1})
\]

Proof. The claim follows from Theorem 2 applied to s-convex in the second sense $f(x) = x^s$.

\[\square\]

Proposition 3. Let $s \in (0,1], u, v > 0$, $r \geq 1$, $0 \leq \lambda, \mu \leq 1$, then
\[
(3.1) \quad \left| \frac{\lambda a^{-s} + \mu v^{-s}}{2} + \frac{2 - \lambda - \mu}{2}A^{-s}(u,v) - L^{-s}_-(u,v) \right|
\]
\[
\leq \frac{s(v-u)}{8} \left(\frac{1}{2s-1} \right)^{1/r} \times \left\{ ((2\lambda^2 - 2\lambda + 1))^{1-1/r} \times \left[u^{-r(s+1)} \left[E + v^{-r(s+1)}L \right]^{1/r} + ((2\mu^2 - 2\mu + 1))^{1-1/r} \times \left[u^{-r(s+1)}I + v^{-r(s+1)}F \right]^{1/r} \right\}
\]

In particular, when $\lambda = \mu = 1/3$, we have
\[
\left| \frac{1}{3} A(u^{-s}, v^{-s}) + \frac{2}{3} A^{-s}(u,v) - L^{-s}_-(u,v) \right| \leq \frac{s(v-u)}{8} \left(\frac{1}{2s-1} \right)^{1/r} \left(\frac{5}{9} \right)^{1-1/r}
\]
\[
\times \left\{ \left[\frac{2 \times 5^{s+2}}{3} - 2 + \frac{2^{s+3} + 2s - 2^{s+1} s + 7}{3} \right] \left| u^{-r(s+1)} \right| + \left[\frac{2s + 1}{3} + \frac{2^{s+2}}{3} \right] \left| v^{-r(s+1)} \right| \right\}^{1/r}
\]
\[
\times \left\{ \left[\frac{2s + 1}{3} + \frac{2^{s+2}}{3} \right] \left| u^{-r(s+1)} \right| + \left[\frac{2 \times 5^{s+2}}{3} - \frac{2^{s+3} + 2s - 2^{s+1} s + 7}{3} \right] \left| v^{-r(s+1)} \right| \right\}^{1/r}
\]

Moreover, when $s = r = 1$, we obtain
\[
\left| \frac{1}{3} A(u^{-1}, v^{-1}) + \frac{2}{3} A^{-1}(u,v) - L^{-1}_-(u,v) \right| \leq (v-u) \frac{5}{36} A(u^{-2}, v^{-2}),
\]

that is the inequality in [11] pp. 2199, line 2].

Proof. The claim follows from Theorem 2 applied to s-convex in the second sense mapping $f(x) = x^s$.

\[\square\]

Remark 6. If we take $\lambda = \mu = 1/3$ in Proposition 3 then inequality (3.1) reduces to [11] pp. 2199]. Hence, the results in Proposition 3 are generalizations of the results of Sarikaya et al. in [11].
References

[1] M. Alomari, M. Darus, S.S. Dragomir, New inequalities of Simpson’s type for s-convex functions with applications, RGMIA Res. Rep. Coll. 12 (4) (2009) Article 9. Online http://ajmaa.org/RGMIA/v12n4.php

[2] G.A. Anastassiou, Taylor Widder representation formulae and Ostrowski, Grüss, integral means and Csiszar type inequalities, Computers and Mathematics with Applications 54 (2007) 9–23.

[3] M. Bessenyei, Z. Páles, Characterization of convexity via Hadamard’s inequality, Math. Inequal. Appl. 9 (2006) 53–62.

[4] S.S. Dragomir, R.P. Agarwal and P. Cerone, On Simpson’s inequality and applications, J. of Ineq. and Appl., 5 (2000), 533-579.

[5] J. Hadamard, Étude sur les propriétés des fonctions entières en particulier d’une fonction considérée par Riemann, J. Math. Pures Appl. 58 (1893) 171–215.

[6] H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequationes Math. 48 (1994) 100-111.

[7] D.S. Mitrinović, I.B. Lacković, Hermite and convexity, Aequationes Math. 28 (1985) 229–232.

[8] D.S. Mitrinovic, J.E. Pecaric, A.M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, 1993.

[9] C.P. Niculescu, L.-E. Persson, Convex Functions and their Applications. A Contemporary Approach, in: CMS Books in Mathematics, vol. 23, Springer-Verlag, New York, 2006.

[10] M.Z. Sarikaya, E. Set, M.E. Özdemir, On new inequalities of Simpson’s type for convex functions, RGMIA Res. Rep. Coll. 13 (2) (2010) Article2.

[11] M.Z. Sarikaya, E. Set, M.E. Özdemir, On new inequalities of Simpson’s type for s-convex functions, Computers and Mathematics with Applications, 60 (2010) 2191–2199.

[12] S. Wu, L. Debnath, Inequalities for convex sequences and their applications, Computers and Mathematics with Applications 54 (2007) 525–534.

[13] B.-Y. Xi and F. Qi, Some Integral Inequalities of Hermite-Hadamard Type for Convex Functions with Applications to Means, Journal of Function Spaces and Appl., Volume 2012, Article ID 980438, 14 p., doi:10.1155/2012/980438.

University of Kilis 7 Aralık, Department of Mathematics, Turkey
E-mail address: mevluttunc@kilis.edu.tr