Superior mesenteric artery syndrome: A rare complication of scoliosis corrective surgery

Weng Hong Chung¹, Amir Arif Anuar¹, Keong Joo Lee¹, Mohd Shahnaz Hasan², Chee Kidd Chiu¹, Chris Yin Wei Chan¹ and Mun Keong Kwan¹

Abstract
Superior mesenteric artery (SMA) syndrome is a rare but serious complication following scoliosis surgery. Early diagnosis and management are key factors for successful conservative treatment to avoid the need for emergency laparotomies which causes higher morbidity or even mortality. We report two adolescent idiopathic scoliosis patients with Cobb angle of 49° and 132°, respectively, and low body mass index who presented with SMA syndrome following posterior spinal fusion from T2 to L3 and were treated successfully with conservative management. Abdominal radiographs showed distended gastric shadow. Computed tomography angiography of the abdomen showed decreased aortomesenteric angle and SMA-aorta distance. Both patients were treated successfully with conservative treatment which included three principles: gastric decompression with nasogastric tube, correction of electrolytes imbalance, and nutritional support with low volume, high calorie nutritional supplement. Both patients were started with small but frequent meals. Surgeries were not required in both cases. Early diagnosis and management are the key factors to successful treatment in SMA syndrome. Patients with SMA can be treated successfully with conservative treatment comprising of nasogastric decompression, electrolyte correction, and nutritional support with small but frequent meals.

Keywords
adolescent idiopathic scoliosis (AIS), aortomesenteric angle, posterior spinal fusion (PSF), SMA-aorta distance, small frequent meals, superior mesenteric artery (SMA) syndrome, vomiting, weight loss

Date received: 5 March 2020; Received revised 4 June 2020; accepted: 6 July 2020

Introduction
Superior mesenteric artery (SMA) syndrome is a rare complication following scoliosis surgery. It is due to vascular compression of the third part of the duodenum between the SMA and the abdominal aorta when the duodenum traverses the aorta in the axilla of SMA.¹⁻⁴ The incidence was reported to be from 0.013% to 4.7%.⁵⁻⁹ Early diagnosis and management should be emphasized as emergent laparotomies which would be required if diagnosis is delayed had a mortality rate of 33%.⁶ We aimed to report two cases of SMA syndrome following posterior spinal fusion (PSF) for
adolescent idiopathic scoliosis (AIS) who were managed successfully with conservative treatment comprising of nasogastric decompression, nutritional support, and correction of electrolytes.

Case presentation

Case 1

A 15-year-old girl with AIS Lenke 6C (left T2–T8, apex T5, Cobb angle: 45°; right T8–L3, apex T12/L1, Cobb angle: 49°, SB Cobb angle: 7°) underwent PSF from T2–L3 level (Figure 1(a) and (b)). Preoperative height, weight, and body mass index (BMI) were 158 cm (27.4th percentile), 41 kg (5.48th percentile), and 16.4 kg/m² (6th percentile), respectively. The surgery was uneventful. Postoperative Cobb angle was 15° and correction rate (CR) was 69.4% (Figure 1(b)). Preoperative height gain was 2.5 cm. She was discharged well on postoperative day (POD) 3. On POD 12, she developed recurrent vomiting. She had weight loss of 4 kg (41–37 kg). Abdominal radiograph showed a distended gastric shadow (white arrows) and fluid level (black arrow). Computed tomography angiography (CTA) confirmed the diagnosis of SMA syndrome (aortomesenteric angle: 10°, SMA-aorta distance: 3.2 mm, and constriction of the third part of the duodenum by the superior mesenteric artery. She was managed conservatively with correction of electrolyte imbalances and nutritional support with small, frequent meals. Low volume but high calorie nutritional supplements were added. She was discharged after 12 days. She had complete resolution of symptoms on POD 35 and regained her preoperative weight (41 kg) at 12 weeks.

Case 2

A 16-year-old girl presented with severe AIS Lenke 2AR (left T2–T6, apex T4, Cobb angle: 83°, SB Cobb angle: 59°; right T6–L2, apex T10, Cobb angle: 132°, SB Cobb angle: 97°; left L2–L5, apex L5, Cobb angle: 57°, SB Cobb angle: 8°) underwent PSF from T2–L3 level (Figure 2(a) and (b)). Preoperative height, weight, and BMI were 161 cm (40.5th percentile), 42.3 kg (3.75th percentile), and 16.3 kg/m² (2.6th percentile), respectively. The surgery was uneventful. Postoperative Cobb angle was 63° and CR was 52.3% (Figure 2(b)). Preoperative weight, height, and BMI were 161 cm (40.5th percentile), 42.3 kg (3.75th percentile), and 16.3 kg/m² (2.6th percentile), respectively. The surgery was uneventful. Postoperative Cobb angle was 63° and CR was 52.3% (Figure 2(b)). Preoperative weight, height, and BMI were 161 cm (40.5th percentile), 42.3 kg (3.75th percentile), and 16.3 kg/m² (2.6th percentile), respectively. The surgery was uneventful. Postoperative Cobb angle was 63° and CR was 52.3% (Figure 2(b)). Preoperative weight, height, and BMI were 161 cm (40.5th percentile), 42.3 kg (3.75th percentile), and 16.3 kg/m² (2.6th percentile), respectively. The surgery was uneventful. Postoperative Cobb angle was 63° and CR was 52.3% (Figure 2(b)). Preoperative weight, height, and BMI were 161 cm (40.5th percentile), 42.3 kg (3.75th percentile), and 16.3 kg/m² (2.6th percentile), respectively. The surgery was uneventful. Postoperative Cobb angle was 63° and CR was 52.3% (Figure 2(b)). Preoperative weight, height, and BMI were 161 cm (40.5th percentile), 42.3 kg (3.75th percentile), and 16.3 kg/m² (2.6th percentile), respectively. The surgery was uneventful. Postoperative Cobb angle was 63° and CR was 52.3% (Figure 2(b)). Preoperative weight, height, and BMI were 161 cm (40.5th percentile), 42.3 kg (3.75th percentile), and 16.3 kg/m² (2.6th percentile), respectively. The surgery was uneventful. Postoperative Cobb angle was 63° and CR was 52.3% (Figure 2(b)). Preoperative weight, height, and BMI were 161 cm (40.5th percentile), 42.3 kg (3.75th percentile), and 16.3 kg/m² (2.6th percentile), respectively. The surgery was uneventful. Postoperative Cobb angle was 63° and CR was 52.3% (Figure 2(b)). Preoperative weight, height, and BMI were 161 cm (40.5th percentile), 42.3 kg (3.75th percentile), and 16.3 kg/m² (2.6th percentile), respectively. The surgery was uneventful. Postoperative Cobb angle was 63° and CR was 52.3% (Figure 2(b)). Preoperative weight, height, and BMI were 161 cm (40.5th percentile), 42.3 kg (3.75th percentile), and 16.3 kg/m² (2.6th percentile), respectively. The surgery was uneventful. Postoperative Cobb angle was 63° and CR was 52.3% (Figure 2(b)).
and SMA-aorta distance of 2.6 mm (Figure 2(f) and (g)). She was also treated conservatively with similar protocols mentioned above. As her condition was more severe, her treatment regime was slightly different. She was kept nil per oral for 5 days and was given clear fluids once nausea and vomiting resolved. Total parenteral nutrition was then administered. On POD 21, nourishing fluid was started. On POD 26, she resumed normal diet.

Discussion

Symptoms of SMA syndrome usually occur after 5–7 days following scoliosis surgery. The patients often presented with persistent, recurrent vomiting in addition to abdominal distension and epigastric tenderness. Postoperative paralytic ileus secondary to general anesthesia, analgesia, or electrolyte imbalance often develop earlier in the postoperative period and resolve spontaneously in 3–5 days. In this case report, both patients presented with persistent, recurrent vomiting 1 week after scoliosis surgery (POD 12 in case 1 and POD 7 in case 2). Delayed onset of persistent, recurrent vomiting following scoliosis surgery should raise suspicion of SMA syndrome especially in higher risk patients. In the plain radiographs of the abdomen, the classical sign indicates gas in the distended stomach and in the dilated proximal duodenum with air-fluid levels. In scoliosis patients following surgery, the presence of this sign should raise the suspicion of SMA syndrome.

Identifying patients at risk for SMA syndrome is important. Risk factors are staged procedures, lumbar modifier of B and C, height >50th percentile, weight <25th percentile, BMI <25th percentile, sagittal kyphosis, increased thoracic rigidity, and acute spinal lengthening. Zhu and Qiu reported seven cases of SMA syndrome in their series of 640 scoliosis patients following surgery. Among them, four cases had thoracic hyperkyphosis and two had thoracolumbar kyphosis. Braun et al., in a case–control study comparing 17 patients with SMA syndrome and 34 control subjects, reported a higher percentage of patients with positive thoracic kyphosis (based on Lenke classification) in the group with SMA syndrome (23.5%) than in the control group (14.3%) \((p = 0.07)\). Patients with increased thoracic curve rigidity (<60% SB flexibility) had an odds ratio of 6.67 of developing SMA syndrome following scoliosis surgery \((p = 0.006)\). Both patients had risk factors, that is, increased height but low weight for age and low BMI, although BMI of around 16 kg/m\(^2\) was not particularly low for the Asian population. Case 1 had a long thoracolumbar curve which could probably be a risk factor for SMA syndrome because correction of a long curve may predispose the viscera to more stretching. The second patient had 7.5 cm lengthening.
Study	Year	Patient profile	POD	Type of curve	Surgical procedure	Postoperative Cobb's angle	Presentation	Investigation	Treatment and outcome
Kennedy et al.24	1983	14/M Thin	40	Thoracic 73°	PSF	54°	Vomiting, circulatory collapse	Diagnosis made at autopsy	Total gastrectomy with esophagojejunal anastomosis
Amy et al.23	1985	16	16	T4–T11: 54°	PSF T4–L1	N/A	Vomiting, abdominal pain	UGI	Ladd procedure
Moskovich et al.21	1986	16.5/F	9	T5–T12: 65°	PSF T4–L3	21°	Bilious vomiting	UGI	Duodenojunostomy
Tsirikos et al.5	2005	14/F 38.5 kg	6	T12–L4: 52°	Anterior-posterior fusion T4–L1	15°, 22°	Distended abdomen, abdominal pain, vomiting	UGI	Nasojejunal tube feeding
Pan et al.14	2007	12/F 15.6 kg, 127 cm	3	T4–L1: 83°	Two-staged surgery (ASF T7–T11 and PSF T3-L3)	48°, 15°	Abdominal pain, distended abdomen	NG aspirate (bile-stained) AUS Serum amylase and lipase	Conservative treatment, nasogastric tube decompression
Smith et al.18	2009	13/F 39.9 kg, 155 cm BMI 16.6	7	T3–T10: 42°	PSF	N/A	Vomiting, anorexia	None (clinical diagnosis)	Nasojejunal tube feeding
Lam et al.13	2014	12/F 42.8 kg, 165.3 cm BMI 15.1	10	T1–T5: 34°	PSF T3–L1	N/A	Vomiting, anorexia	None (clinical diagnosis)	Nasojejunal tube feeding
		16/M 44.1 kg, 157.1 cm	6	Lenke 2AN	PSF T5–L3	T8–L1: 7°	Nausea, vomiting	None (clinical diagnosis)	Nasojejunal tube feeding
				T6–T12: 45°	PSF T4–L3	T6–T12: 9°	Bilious vomiting, LOW	UGI	Nasojejunal tube feeding; 1 week Oral liquid diet: 1 week Soft diet: 1 week
				T12–L4: 2°		T12–L4: 2°	Bilious vomiting, LOW	UGI	Nasojejunal tube feeding; 1 week Oral liquid diet: 1 week Soft diet: 1 week
				Lenke 2CN		T7–T12: 6°	Bilious vomiting, LOW	UGI	Nasojejunal tube feeding; 1 week Oral liquid diet: 1 week Soft diet: 1 week
				T12–L4: 21°		T12–L4: 5°	Bilious vomiting, abdominal pain, LOW	UGI	Nasojejunal tube feeding; 1 week Oral liquid diet: 1 week Soft diet: 1 week

(continued)
Study	Year	Patient profile	POD	Type of curve	Surgical procedure	Postoperative Cobb's angle	Presentation	Investigation	Treatment and outcome
Keskin et al.\(^{22}\)	2014	17/F	5	Thoracic: 50°	PSF T3–L3	Complete resolution of spinal curvature	Vomiting, abdominal distension, LOW	Contrast-enhanced CT	Nasogastric decompression, duodenojunostomy
				Lumbar 49°					
Oyoun et al.\(^{16}\)	2015	12/F	4 years	Lumbar 49°	PSF	N/A	LOW	UGI	Nutritional diet up to 2000–3000 cal/day
Present study	2020	15/F	12	Lenke 6C	PSF T2–L3	T8–L3: 15°	Recurrent vomiting, LOW	CTA	Small, frequent meals—Nutritional supplementation—low volume high calorie
				T8–L3: 49°					
			7	Lenke 2AR	PSF T2–L3	T6-L2: 63°	Recurrent vomiting, abdominal distension, LOW	CTA	Nasogastric decompression, Small, frequent meals Nutritional supplementation—low volume high calorie
				T6-L2: 132°					

M: male; F: female; N/A: not applicable; UGI: upper gastrointestinal imaging; AUS: abdominal ultrasound; PSF: posterior spinal fusion; ASF: anterior spinal fusion; NG: nasogastric; TPN: total parenteral nutrition; LOW: loss of weight; BMI: body mass index; CTA: computed tomography angiography.
after correction. In addition, the patient also had a rigid thoracic curve (SB flexibility of 26.5%) which may also predispose to SMA syndrome after scoliosis surgery.

The literature review on SMA syndrome following scoliosis surgery is illustrated in Table 1. Most patients can be treated conservatively based on three principles, that is, gastric decompression, electrolyte correction, and nutritional support. Tsirikos et al. proposed oral restriction and commencement of nasojejunal feeding. Mandarry et al. suggested frequent meals of pureed or blenderized food about 180–240 ml given four hourly. Lam et al. proposed a treatment algorithm in managing SMA syndrome following AIS surgery. Our patients had low volume but high calorie supplements.

Failure of conservative treatment might result in life-threatening conditions such as metabolic alkalosis, electrolyte imbalance, and aspiration pneumonia. Surgery such as gastrojejunostomy, duodenoejunostomy, Ladd procedure, and total gastrectomy with esophagojejunal anastomosis may be required. Our patients had responded well to conservative management and no additional surgeries were required. They eventually achieved good weight gain with the treatment regime.

Conclusion

Early diagnosis and management are key factors to successful treatment in SMA syndrome. We report two patients who were treated successfully with conservative treatment comprising of nasogastric decompression, electrolyte correction, and nutritional support with small and frequent meals.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iDs

Amir Arif Anuar https://orcid.org/0000-0002-6359-5115
Chee Kidd Chiu https://orcid.org/0000-0002-4198-1541
Chris Yin Wei Chan https://orcid.org/0000-0001-7245-0295
Mun Keong Kwan https://orcid.org/0000-0002-9512-3155

References

1. Dorph MH. The cast syndrome: review of the literature and report of a case. N Engl J Med 1950; 243: 440–442.
2. Ahmed AR and Taylor I. Superior mesenteric artery syndrome. Postgrad Med J 1997; 73: 776–778.
3. Strong EK. Mechanics of arteriomesenteric duodenal obstruction and direct surgical attack upon etiology. Ann Surg 1958; 148: 725–730.
4. Wilkie DPD. Chronic duodenal ileus. Br Med J 1921; 2: 793–795.
5. Tsirikos AI and Jeans LA. Superior mesenteric artery syndrome in children and adolescents with spine deformities undergoing corrective surgery. J Spinal Disord Tech 2005; 18: 26371.
6. Hod-Feins R, Copeliovitch L, Abu-Kishl I, et al. Superior mesenteric artery syndrome after scoliosis repair surgery: a case study and reassessment of the syndrome’s pathogenesis. J Pediatr Orthop B 2007; 16: 345–349.
7. Braun SV, Hedden DM and Howard AW. Superior mesenteric artery syndrome following spinal deformity correction. J Bone Joint Surg Am 2006; 88: 2252–2257.
8. Wilkinson R and Huang CT. Superior mesenteric artery syndrome in traumatic paraplegia: a case report and literature review. Arch Phys Med Rehabil 2000; 81: 991–994.
9. Ylinen P, Kinnunen J and Hockerstedt K. Superior mesenteric artery syndrome. A follow-up study of 16 operated patients. J Clin Gastroenterol 1989; 11: 386–391.
10. Zhu ZZ and Qi Y. Superior mesenteric artery syndrome following scoliosis surgery: its risk indicators and treatment strategy. World J Gastroenterol 2005; 11: 3307–3310.
11. Schmidt H, Abolmaali N and Vogl T. Double bubble sign. Eur Radiol 2002; 12: 1849.
12. Crowther MA, Webb PJ and Eyre-Brook IA. Superior mesenteric artery syndrome following surgery for scoliosis. Spine (Phila Pa 1976) 2002; 27: E528–E533.
13. Lam DJ, Lee JZ, Chua JH, et al. Superior mesenteric artery syndrome following surgery for adolescent idiopathic scoliosis: a case series, review of the literature, and an algorithm for management. J Pediatr Orthop B 2014; 23: 312–318.
14. Pan CH, Tzeng ST, Chen CS, et al. Superior mesenteric artery syndrome complicating staged corrective surgery for scoliosis. J Formos Med Assoc 2007; 106: S37–S45.
15. Tsirikos AI, Anakwe RE and Baker AD. Late presentation of superior mesenteric artery syndrome following surgery for adolescent idiopathic scoliosis: a case report. J Med Case Reports 2008; 2: 9.
16. Oyoun NA, Kadhim M and Dormans JP. Late-onset superior mesenteric artery syndrome four years following scoliosis surgery—a case report. SICOT J 2015; 1: 12.
17. Van Brussel JP, Dijkema WP, Adhin SK, et al. Wilkie’s syndrome, a rare cause of vomiting and weight loss: diagnosis and therapy. Neth J Med 1997; 51: 179–181.
18. Smith BG, Hakim-Zargar M and Thomson JD. Low body mass index: a risk factor for superior mesenteric artery syndrome in adolescents undergoing spinal fusion for scoliosis. J Spinal Disord Tech 2009; 22: 144–148.
19. Li J, Chousleb E, Hidalgo J, et al. Laparoscopic Roux-en-Y duodenoejunostomy bypass for superior mesenteric artery syndrome: case reports and review of the literature. Surg Laparosc Endosc Percutan Tech 2011; 21: e344–e347.
20. Mandarry M, Zhao L, Zhang C, et al. A comprehensive review of superior mesenteric artery syndromeÜbersicht zum Arteria mesenterica superior-Syndrom. Eur Surg 2010; 42: 229–236.
21. Moskovich R and Cheong-Leen P. Vascular compression of the duodenum. *J R Soc Med* 1986; 79: 465–467.

22. Keskin M, Akgul T, Bayraktar A, et al. Superior mesenteric artery syndrome: an infrequent complication of scoliosis surgery. *Case Rep Surg* 2014; 2014: 263431.

23. Amy BW, Priebe CJ, Jr. and King A. Superior mesenteric artery syndrome associated with scoliosis treated by a modified Ladd procedure. *J Pediatr Orthop* 1985; 5: 361–363.

24. Kennedy RH and Cooper MJ. An unusually severe case of the cast syndrome. *Postgrad Med J* 1983; 59: 539–540.