New Constructions of a Family of 2-Generator Quasi-Cyclic Two-Weight Codes and Related Codes

Eric Zhi Chen
School of Engineering
Kristianstad University
291 88 Kristianstad
Sweden
eric.chen@tec.hkr.se

Abstract: Based on cyclic simplex codes, a new construction of a family of 2-generator quasi-cyclic two-weight codes is given. New optimal binary quasi-cyclic \([195, 8, 96]\), \([210, 8, 104]\) and \([240, 8, 120]\) codes, good QC ternary \([195, 6, 126]\), \([208, 6, 135]\), \([221, 6, 144]\) codes are thus obtained. Furthermre, binary quasi-cyclic self-complementary codes are also constructed.

I. INTRODUCTION

A code is said to be quasi-cyclic if every cyclic shift of a codeword by \(p\) positions results in another codeword [1]. Therefore quasi-cyclic (QC) codes are a generalization of cyclic codes with \(p = 1\).

A linear code is called projective if any two of its coordinates are linearly independent, or in other words, if the minimum distance of its dual code is at least three. A code is said to be two-weight if any non-zero codeword has a weight of \(w_1\) or \(w_2\). Two-weight codes are closely related to strongly regular graphs.

In this paper, a new construction of 2-generator quasi-cyclic (QC) two-weight codes is presented. Some new good QC codes are obtained, and binary self-complementary codes are constructed based on the 2-generator QC codes.

II. CYCLIC CODES AND QC CODES

A. Cyclic Hamming Codes and Simplex Codes

A q-ary linear \([n, k, d]\) code [2] is a \(k\)-dimensional subspace of an \(n\)-dimensional vector space over \(GF(q)\), with minimum distance \(d\) between any two codewords. A code is said to be cyclic if every cyclic shift of a codeword is also a codeword. A cyclic code is described by the polynomial algebra. A cyclic \([n, k, d]\) code has a unique generator polynomial \(g(x)\). It is a polynomial with degree of \(n - k\). All codewords of a cyclic code are multiples of \(g(x)\) modulo \(x^n - 1\).

It is well known that for any integer \(k\), there is a simplex \([n, k, d]\) code with distance \(d = q^{k-1}\), where \(n = (q^k - 1)/(q - 1)\). It should be noted that simplex codes are equidistance codes where \(q^k - 1\) non-zero codewords have weights of \(q^{k-1}\).

B. Quasi-Cyclic Codes

A code is said to be quasi-cyclic (QC) if a cyclic shift of any codeword by \(p\) positions is still a codeword. Thus a cyclic code is a QC code with \(p = 1\). The block length \(n\) of a QC code is a multiple of \(p\), or \(n = m \times p\).

Circulants, or cyclic matrices, are basic components in the generator matrix for a QC code. An \(m \times m\) cyclic or circulant matrix is defined as
and it is uniquely specified by a polynomial formed by the elements of its first row, \(c(x) = c_0 + c_1 x + c_2 x^2 + \ldots + c_{m-1} x^{m-1} \), with the least significant coefficient on the left.

A 1-generator QC code has the following form of the generator matrix \([3]\):

\[
G = \begin{bmatrix}
G_0 & G_1 & G_2 & \ldots & G_{p-1}
\end{bmatrix}
\]

(2)

where \(G_i \), \(i = 0, 1, 2, \ldots, p-1 \), are circulants of order \(m \). Let \(g_0(x), g_1(x), \ldots, g_{p-1}(x) \) are the corresponding defining polynomials.

A 2-generator QC \([m \times p, k]\) codes has the generator matrix of the following form:

\[
G = \begin{bmatrix}
G_{00} & G_{01} & \ldots & G_{0,p-1} \\
G_{10} & G_{11} & \ldots & G_{1,p-1}
\end{bmatrix}
\]

(3)

where \(G_{ij} \) are circular matrices, for \(i = 0, 1, \ldots, p-1 \).

Similarly, a 3-generator QC \([m \times p, k]\) codes has the generator matrix of the following form:

\[
G = \begin{bmatrix}
G_{00} & G_{01} & \ldots & G_{0,p-1} \\
G_{10} & G_{11} & \ldots & G_{1,p-1} \\
G_{20} & G_{21} & \ldots & G_{2,p-1}
\end{bmatrix}
\]

(4)

where \(G_{ij} \) are circular matrices, for \(i = 0, 1, 2 \), and \(j = 0, 1, \ldots, p-1 \).

III. CONSTRUCTIONS OF 2-GENERATOR QC TWO-WEIGHT CODES

A. Two-Weight Codes

A linear code is called projective if any two of its coordinates are linearly independent, or in other words, if the minimum distance of its dual code is at least three. A code is said to be two-weight if any non-zero codeword has a weight of \(w_1 \) or \(w_2 \), where \(w_1 \neq w_2 \). Two weight code is also written as the \([n, k; w_1, w_2]\) code. Two-weight codes are closely related to strongly regular graphs.

In the survey paper [4], Calderbank and Kantor presented many known families of two-weight codes. Among those families, there is a family of two-weight \([n, k; w_1, w_2]\) codes over GF(q) noted by SU2, that has the following parameters:

Block length \(n = i(q^t - 1)/(q - 1) \)

Dimension \(k = 2t \)

Weights \(w_1 = (i - 1) q^{t-1}, w_2 = iq^{t-1} \)

where \(2 \leq i \leq q^t \).

In this section, 2-generator QC two-weight codes with the same parameters as SU2 are constructed from cyclic simplex codes.

B. Binary 2-Generator QC 2-Weight Codes

Given any positive integer \(k \). If there exist a binary cyclic Hamming \([2^k - 1, 2^k - k - 1, 3]\) codes, then there exist a cyclic simplex \([2^k - 1, k, 2^{k-1}]\) code. Let \(g_1(x) \) be the generator polynomial of the simplex code, \(C_1 \). A binary 2-generator QC two-weight \([2^k - 1)p, 2k] \) code can be constructed with the following generator matrix:

\[
G = \begin{bmatrix}
g_1(x) & g_1(x) & \ldots & g_1(x) \\
0 & g_1(x) & \ldots & g_1(x)
\end{bmatrix}
\]

(5)

where \(2 \leq i \leq 2^k \), is an integer.

Based on the generator matrix structure, and property of the simplex code, it is obvious that any non-zero codeword has a weight \(w_1 = (i - 1) 2^{k-1} \), or \(w_2 = i2^{k-1} \). So the 2-generator QC codes defined by (5) are two-weight codes in the family SU2.

Example 1. \(n = 7, k = 3, x^7 - 1 = (x + 1)(x^3 + x + 1)(x^3 + x^2 + 1) \). So a cyclic simplex
[7, 3, 4] code is defined by \(g_1(x) = x^4 + x^2 + x + 1 \). With the construction, 2-generator QC two-weight [14, 6; 4, 8], [21, 6; 8, 12], [28, 6; 12, 16], [35, 6; 16, 20], [42, 6; 20, 24], [49, 6; 24, 28] and [56, 6; 28, 32] codes are obtained.

Among the QC two-weight codes obtained, some codes are optimal codes, in the sense that they meet the bound [5] on the minimum distance. Table I lists these optimal binary 2-generator QC codes constructed:

p	m	k	\(\mathbf{d} \)	\(\mathbf{w}_1 \), \(\mathbf{w}_2 \)
3	7	3	8	8, 12
4	7	3	12	12, 16
5	7	3	16	16, 20
6	7	3	20	20, 24
7	7	3	24	24, 28
8	7	3	28	28, 32
10	15	4	72	72, 80
11	15	4	80	80, 88
12	15	4	88	88, 96
13	15	4	96	96, 104
14	15	4	104	104, 112
15	15	4	112	112, 120
16	15	4	120	120, 128

Among those codes, QC [195, 8, 96], [210, 8, 104] and [240, 8, 120] codes are previously unknown[6].

C. \(q \)-ary 2-Generator QC 2-Weight Codes

For any prime power \(q \), there exist a \(q \)-ary cyclic simplex \([(q^k - 1)/(q - 1), k, q^{k-1}] \) code, if \(q - 1 \) and \(k \) are relatively prime. Let \(g_1(x) \) be the generator polynomials. Let \(m = (q^k - 1)/(q - 1) \). In the same way as the binary 2-generator QC code construction, we can construct a \(q \)-ary 2-generator QC two-weight \([m \times p, 2k] \) code with the following generator matrix:

\[
G = \begin{bmatrix}
 g_1(x) & g_1(x) \\
 0 & a_j x^i g_1(x)
\end{bmatrix}
\]

where \(0 \leq i < m \), is an integer, and \(a_j \) is any non-zero element in GF(q).

Example 2. \(n = 13, k = 3 \). \(g_1(x) = x^{10} - x^9 + x^8 - x^7 - x^5 + x^4 + x^3 + 1 \) defines a cyclic simplex \([13, 3, 9]\) code over GF(3). So 2-generator QC two-weight \([195, 6, 126], [208, 6, 135], [221, 6, 144]\) codes can be obtained by following generator matrices:

\[
G = \begin{bmatrix}
g_1(x) g_1(x) \\
0 g_1(x)
\end{bmatrix},
\]

\[
G = \begin{bmatrix}
g_1(x) g_1(x) g_1(x) \\
0 g_1(x) - g_1(x)
\end{bmatrix}
\]

Also 2-generator QC two-weight \([195, 6, 126], [208, 6, 135], [221, 6, 144]\) codes over GF(3) are obtained, that reach the lower bound on the minimum distance [5].

IV. CONSTRUCTIONS OF BINARY SELF-COMPLEMENTARY CODES

A binary \([n, k, d]\) code is said to be self-complementary if it has the property that the complementary codeword \((x_1+1, x_2+1, \ldots, x_n+1)\) is also a codeword, for any codeword \((x_1, x_2, \ldots, x_n)\). For a self-complementary \([n, k, d]\) code \(C\), Grey-Rankin bound holds [7]:

\[
|C| \leq \frac{8d(n-d)}{n-(n-2d)^2}
\]

McGuire [9] has shown that the parameters for a binary linear self-complementary codes meeting the Grey-Rankin bound are

\[
\begin{align*}
[2^{2k-1} - 2^{k-1}, 2k + 1, 2^{2k-2} - 2^{k-1}] & \quad \text{(8)} \\
[2^{2k-1} + 2^{k-1}, 2k + 1, 2^{2k-2}] & \quad \text{(9)}
\end{align*}
\]

These self-complementary codes are closely related to quasi-symmetric designs[8, 9]. In [7], Gulliver and Harada investigated 1-generator QC self-complementary \([120, 9, 56], [135, 9, 64], [496, 11, 240] \) and \([528, 11, 256]\) codes. In this section, 3-generator QC self-complementary codes of the parameters as given in (8) and (9) are constructed.

A. \([2^{2k-1} - 2^{k-1}, 2k + 1, 2^{2k-2} - 2^{k-1}]\) Codes
Given a cyclic simplex \([2^k - 1, k, 2^{k-1}]\) code, that is defined by the generator polynomial \(g_1(x)\). Choose \(i = 2^{k-1}\). Then a 2-generator QC two-weight \([2^{2k-1} - 2^{k-1}, 2k; 2^{2k-2} - 2^{k-1}, 2^{2k-2}]\) code can be constructed by (). So, the sum of two non-zero weights is \((2^{2k-2} - 2^{k-1}) + 2^{2k-2} = 2^{2k-1} - 2^{k-1}\), the block length of the code. By extending one more information digit, a 3-generator QC self-complementary \([2^{2k-1} - 2^{k-1}, 2k + 1, 2^{2k-2} - 2^{k-1}]\) Code is obtained by the following generator matrix:

\[
G = \begin{bmatrix}
g_1(x) & g_1(x) & g_1(x) & g_1(x) \\
0 & g_1(x) & xg_1(x) & \ldots x^{i-2} g_1(x) \\
1(x) & 1(x) & 1(x) & 1(x)
\end{bmatrix}
\]

where \(1(x)\) is a vector of all 1’s of length \(2^{k-1} - 1\).

B. \([2^{2k-1} + 2^{k-1}, 2k + 1, 2^{2k-2}]\) Codes

Given a cyclic simplex \([2^k - 1, k, 2^{k-1}]\) code, that is defined by the generator polynomial \(g_1(x)\). Choose \(i = 2^{k-1} + 1\). Then a 2-generator QC two-weight \([2^{2k-1} + 2^{k-1} - 1, 2k; 2^{2k-2}, 2^{2k-2} + 2^{k-1}]\) code can be constructed by (). So, the sum of two non-zero weights is \(2^{2k-2} + (2^{2k-2} + 2^{k-1}) = 2^{2k-1} + 2^{k-1}\). By extending one more information digit, and one parity check digit, a 3-generator QC self-complementary \([2^{2k-1} + 2^{k-1}, 2k + 1, 2^{2k-2}]\) Codes is obtained by the following generator matrix:

\[
G = \begin{bmatrix}
g_1(x) & g_1(x) & g_1(x) & g_1(x) & 0 \\
0 & g_1(x) & xg_1(x) & \ldots x^{i-2} g_1(x) & 0 \\
1(x) & 1(x) & 1(x) & 1(x) & 1
\end{bmatrix}
\]

where \(1(x)\) is a vector of all 1’s of length \(2^{k} - 1\).

V. CONCLUSION

In this paper, a new construction method for a family of two-weight codes is presented. With this construction, some new optimal and good QC codes are obtained, and binary self-complementary codes are constructed by extending the 2-generator QC two-weight codes.

REFERENCES

[1] C. L. Chen and W.W. Peterson, “Some results on quasi-cyclic codes”, Infom. Contr., vol. 15, pp.407-423, 1969.
[2] F. J. MacWilliams and N.J.A. Sloane, The theory of error-correcting codes, North Holand, Amsterdam, 1977.
[3] G. E. Séguin and G. Drolet, “The theory of 1-generator quasi-cyclic codes”, manuscript, Dept of Electr. and Comp. Eng., Royal Military College of Canada, Kingston, Ontario, June 1990.
[4] R. Calderbank and W. M. Kantor, “The geometry of two-weight codes”, Bull. London Math. Soc., vol. 18, pp.97—122, 1986.
[5] A. E. Brouwer, “Bounds on the minimum distance of linear codes (http://www.win.tue.nl/~aeb/voorlincod. html)”.
[6] Eric Zhi Chen, Web database of binary QC codes, http://www.tec.hkr.se/~chen/research/codes/searchqc2.htm
[7] T. A. Gulliver, and M. Harada, “Codes of Lengths 120 and 136 Meeting the Grey-Rankin Bound and Quasi-Symmetric Designs”, IEEE Trans. On Inform. Theory, vol. 45, pp. 703—706, March 1999
[8] D. Jungnickel and V. D. Tonchev, “Exponential number of quasi-symmetric SDP designs and codes meeting the Grey-Rankin bound”, Des., Codes, Cryptogr., vol. 1, pp.247-253, 1991
[9] G. McGuire, “Quasi-Symmetric designs and codes meeting the Grey-Rankin bound”, J. Combin. Theory Ser. A, vol. 79, pp.280 – 291, 1997