A Note on Kolmogorov-Uspensky Machines

Holger Petersen
Reinsburgstr. 75
70197 Stuttgart
Germany
May 5, 2014

Abstract
Solving an open problem stated by Shvachko, it is shown that a language which is not real-time recognizable by some variants of pointer machines can be accepted by a Kolmogorov-Uspensky machine in real-time.

1 Introduction
The Kolmogorov-Uspensky machine (KUM) is a very general model of sequential computation that was introduced in 1953. The article [KU63] gives a detailed description and shows that all recursive functions are computable by KUMs. A closely related model that was independently introduced by A. Schönhage [Sch70, Sch80] is the storage modification machine (SMM). While the KUM works on an undirected graph with bounded degree, the SMM is equipped with a directed graph of bounded out-degree but possibly unbounded in-degree.

Real-time computation will be understood in the sense of [Gur88]. The number of steps carried out by a machine between reading and writing successive symbols is bounded by a constant when working in real-time. This notion of real-time computation is preserved by a simulation between different classes of machines, if it satisfies the following definition due to Schönhage [Sch80]:

Definition 1 A machine M' is said to simulate in real-time another machine M, if there exists a constant c such that for every input x the following holds: if x causes M to read an input symbol, or to print an output symbol, or to halt at time steps $0 = t_0 < t_1 < \cdots < t_\ell$, respectively, then x will cause M' to act in the same way with regard to those external instructions at time steps $0 = t'_0 < t'_1 < \cdots < t'_\ell$, where $t'_i - t'_{i-1} \leq c(t_i - t_{i-1})$ for $1 \leq i \leq \ell$.

Shvachko [Shv91] defined the language

$$L = \bigcup_n \{b_0 \ldots \oplus b_1 \# x \# y \# | b_i \in \{0, 1\}^{\lfloor n/2 \rfloor}, x, y \in \{0, 1\}^n, b_x = b_y\}$$
and showed that there is an SMM recognizing L in real-time. The main idea is to represent every binary string i of length n as a path in a tree. From the leaf reached in the tree an edge points to a vertex that represents b_i. Equality of b_i’s can then be tested in constant time. Since there is no upper bound on the number of i’s with equal b_i this graph in general has unbounded in-degree. Shvachko established that three variants of pointer machines cannot accept L in real-time, but left open if KUMs are powerful enough to solve the problem in real-time. A negative answer would solve the long standing open problem about the possibility of a real-time simulation of SMMs by KUMs, since a real-time simulation according to the above definition together with the algorithm from [Shv91] for a SMM would yield a corresponding solution for a KUM.

2 The Result

In this section we present a real-time algorithm for language L defined above, that can be carried out by a KUM. This solves the open problem from [Shv91].

Theorem 1 There is a KUM that accepts L in real-time.

Proof. The KUM M accepting L keeps two trees and a number of auxiliary data structures while reading an input. The first tree A is a complete binary tree up to level n built by M while reading the portion of the input until the first #. Each node at level n represents an i and after forming the path to this node, the KUM attaches a newly created string encoding b_i to this node. Concurrently with building tree A the machine forms a binary tree B such that nodes at level $[n/2]$ represent the b_i. Beyond this level a possibly incomplete binary tree of depth n is formed. A path representing i is formed in this tree if b_i matches the value represented in the upper portion of B. Here we have to overcome a problem: The node in the upper tree is only determined if all of b_i has been read. Therefore the construction of the path in the lower part is done while reading b_{i+1} at twice the speed of reading bits from the input. For b_1, the construction is done while reading x.

We now describe the algorithm carried out by M in more detail. The computation on the base segment $B = b_0\, @ \ldots \, @ b_1$ is split into 2^n phases, where in phase i the string b_i is processed. For $1 \leq i < 2^n$ each phase consists of the following activities, which are carried out in an interleaved fashion in order to obtain a real-time solution:

- A counter consisting of n bit positions is incremented from $i-1$ (the value from the previous phase) to i handling two bits for each symbol read from the input. If the symbol $@$ is reached before or after the counter is completely processed, the input is rejected.

- A path representing $i - 1$ is constructed in B starting at the leaf corresponding to b_{i-1}, creating new nodes if necessary. Two levels are constructed for each symbol read from the input.
• A path for i is constructed in A, creating new nodes if necessary. Again two levels are processed for each symbol read from the input.

• A path for b_i is constructed in B.

• A string representing b_i is constructed.

Phase 0 deviates from the description above, since the counter has to be initialized and no path representing $i - 1$ is constructed in B.

At the end of phase i the leaf constructed in A is linked to the string representing b_i.

If M reaches x, it checks that the counter has reached the value $2^n - 1$ (this can be determined while incrementing the value). Then M traverses the path corresponding to x in tree A and concurrently constructs the missing path representing $2^n - 1$ starting at the leaf for b_{2^n-1}.

The computation on y is split into two phases. In the first phase M traverses the path corresponding to b_x (linked to the leaf of x in A) in the tree B. While doing so, M stores the first half of y on a queue. In the second phase it checks whether y is stored in the portion of B encoding all i with $b_i = b_x$. To this end M processes two bits from the queue while reading one input bit (which is appended to the queue). It is therefore possible to reach a leaf of B when the input has been completely consumed.

3 Discussion

We have shown that the language L from [Shv91] can be accepted by a KUM in real-time. It is essential for the approach presented that reading the “address” $y \in \{0,1\}^n$ leaves enough time for preparing the equality check. A natural modification, for which we do not have a real-time algorithm, would be to shuffle the bits of x and y. It remains open whether this modified language can separate KUM and SMM in real-time.

References

[Gur88] Yuri Gurevich. The logic in computer science column. Bulletin of the EATCS, 35:71–82, 1988.

[KU63] A. N. Kolmogorov and V. A. Uspensky. On the definition of an algorithm. American Mathematical Society Translations, 29:216–245, 1963. Translation of Uspekhi Mat. Nauk 13:3–28, 1958.

[Sch70] A. Schönhage. Universelle Turing Speicherung. In J. Dörr and G. Hotz, editors, Automatentheorie und formale Sprachen, volume 3 of Berichte aus dem mathematischen Forschungsinstitut Oberwolfach, pages 369–383, Mannheim, 1970. Bibliographisches Institut.
[Sch80] A. Schönhage. Storage modification machines. *SIAM Journal on Computing*, 9:490–508, 1980.

[Shv91] Konstantin V. Shvachko. Different modifications of pointer machines and their computational power. In Andrzej Tarlecki, editor, *Proceedings of Mathematical Foundations of Computer Science. (MFCS ’91)*, volume 520 of *LNCS*, pages 426–435, Berlin-Heidelberg-New York, 1991. Springer.