Supporting information for
The control of red color by a family of MYB transcription factors in octoploid strawberry (*Fragaria × ananassa*) fruits

Wang et al.

Figures: S1-S7

Tables: S1-S7
Figure S1 Fruit developmental stages of white and red octoploid strawberry

(a) Based on the seed (lower row) and fruit colors (upper row) of the white octoploid strawberry, six visual developmental stages were defined as: small green fruit stage (G1), large green fruit stage (G2), white fruit stage (W), turning fruit stage (T), ripe fruit stage (R), and over-ripe fruit stage (OR) at 13, 17, 24, 30, 46, and 50 d after anthesis. (b) Based on the seed (lower row) and fruit colors (upper row) of red octoploid strawberry, six visual developmental stages were defined at 7, 12, 17, 19, 26, and 30 d after anthesis. Scale bars in (a, b), Fruit, 1 cm, Seed, 5mm.
Figure S2 Chromatographs of anthocyanins, flavonols, and proanthocyanins. Chromatographic peaks were identified as shown in Table 1.
Figure S3 Transcript levels of structural genes and regulatory genes not included in Figure 3 in the white and red strawberry varieties. Asterisks (*) represent that the values of the corresponding transcript levels (n=3, ±SE) are significantly different at $p < 0.05$ as determined using independent t-test.
Figure S4 Transcript levels of regulatory genes in the white and red strawberry varieties. RT-PCR products were examined for *FaMYB1*, *FaMYB10*, *FaMYB9*, and *FaMYB11* transcripts on 1% (w/v) agarose gels, stained with EtBr. *Actin* was used as loading control. At the top, the corresponding developmental stages are shown as G1, G2, W, T, R, and OR with the fruit images of corresponding stages at the left, white strawberry variety and at the right, red strawberry variety.
Figure S5 The constructs and results from yeast two-hybrid assay of FaMYB10-1 or FaMYB10-2 with two regulators (FaWD40 and PavbHLH) for the formation of MBW ternary complex. (a) Schematics of FaMYB10-1, FaMYB10-2, FaWD40, and PavbHLH constructs used in yeast two-hybrid assays. (b) The results of interaction of FaMYB10-2, the different regions of FaMYB10-1 protein (the full-length coding region, the R2R3 MYB domain-containing N-terminal region, the C-terminal region) with FaWD40, PavbHLH.
Figure S6 Genomic sequence analysis for *FaMYB1* alleles in red and white strawberry varieties. (a) The agarose gel of *FaMYB1* alleles. (b) Schematic graph for gene structure of *FaMYB1* alleles. Open and filled black circles represent start codon and stop codon; light gray and dark gray boxes represented R2 and R3 domains in the schematic graph.
Figure S7 PCA analysis of key flavonoid components against flavonoid biosynthetic structural genes and transcription-related genes. Two PCA components ‘anthocyanidin index’ and ‘proanthocyanin index’ explained 80.32% of the variance in fruit coloration of red and white strawberry varieties.
Flavonoid Components	W-T (µg/g)	R-T (µg/g)	W-R (µg/g)	R-R (µg/g)	W-T/R-T (%)	W-R/R-R (%)
PA	1584.76	2123.50	922.83	1716.64	74.63%	53.76%
AC	189.93	447.65	188.47	126418.85	42.43%	0.15%
FL	25.47	260.28	13.50	52.29	9.79%	25.82%
PP	1623.32	983.71	166.94	209.51	165.02%	79.68%

Note: PA: proanthocyanins, AC: anthocyanins, FL: flavonols, PP: the precursors of proanthocyanidins, catechin, and epi-catechin, W-T: White strawberry turning fruit stage, R-T: Red strawberry turning fruit stage, W-R: White strawberry ripe fruit stage, R-R: Red strawberry ripe stage.
Table S2 The expression of structural genes, *FaANS*, *FaUFGT*, and *FaDFR* in flavonoid biosynthesis in red and white strawberry varieties.

The Measurement of Structural Genes’ Transcript Levels

Developmental stage	*FaANS*	*FaUFGT*	*FaDFR*															
	G1	G2	W	T	R	OR	G1	G2	W	T	R	OR	G1	G2	W	T	R	OR
Standardized Transcript Level in White Strawberry Variety	1.02 ± 0.07 ± 0.05 ± 0.03 ± 0.10 ± 1.00 ± 0.07 ± 0.12 ± 0.14 ± 0.05 ± 6.94×10⁻¹zl	0.03 ± 0.01 ± 0.01 ± 0.01 ± 0.00 ± 0.00 ± 1.02 ± 1.19 ± 8.59 ± 7.50 ± 5.22 ± 4.70 ±																
Standardized Transcript Level in Red Strawberry Variety	0.47 ± 0.01 ± 7.94×10⁻¹zl ± 0.23 ± 0.81 ± 0.83 ± 0.40 ± 0.13 ± 2.48 ± 6.29 ± 23.16 ± 38.69 ± 0.23 ± 5.16 ± 8.65 ± 9.98 ± 7.88 ± 10.32 ±	0.06 ± 0.00 ± 0.00 ± 0.07 ± 0.14 ± 0.19 ± 0.05 ± 0.01 ± 0.38 ± 0.97 ± 1.18 ± 2.97 ± 0.02 ± 0.58 ± 0.65 ± 1.67 ± 0.54 ± 1.20 ±																
Transcript Ratio between Red and White Strawberry Variety	0.46 ± 0.15 ± 0.17 ± 6.63 ± 25.23 ± 7.90 ± 0.40 ± 1.87 ± 21.40 ± 44.13 ± 449.61 ± 5572.49 ± 0.23 ± 4.33 ± 1.01 ± 1.33 ± 1.51 ± 2.20 ±																	

Note: *FaANS*: anthocyanidin synthase; *FaUFGT*: flavonol-O-glucosyltransferases; *FaDFR*: dihydroflavonol-4-reductase.
Table S3 The expression of structural genes, *FaLAR*, *FaANR*, and *FaFLS* in flavonoid biosynthesis in red and white strawberry varieties.

The Measurement of Structural Genes’ Transcript Levels

Developmental Stage	FaANR	FaLAR	FaFLS															
	G1	G2	W	T	R	OR	G1	G2	W	T	R	OR	G1	G2	W	T	R	OR
Standardized Transcript Level in White Strawberry Variety	1.00 ± 0.01	0.09 ± 0.01	0.05 ± 0.00	0.03 ± 1.38×10⁻³	1.32×10⁻³	1.00 ± 0.06	0.08 ± 0.01	0.11 ± 0.02	0.04 ± 6.40×10⁻³	0.00 ± 5.02×10⁻³	1.04 ± 0.20	1.09 ± 0.20	2.83 ± 0.57	1.60 ± 0.24	0.40 ± 0.07	0.07 ± 0.01		
Standardized Transcript Level in Red Strawberry Variety	0.17 ± 0.01	4.52±10⁻³	3.22±10⁻³	0.08 ± 0.36	0.10	0.36 ± 0.01	0.09	0.06 ± 0.04	0.06 ± 0.02	0.02 ± 0.02	0.71 ± 0.09	0.83	5.16 ± 0.74	0.10 ± 0.02	0.24 ± 0.04	0.08 ± 0.02		
Transcript Ratio between Red and White Strawberry Variety	0.16	0.05	0.07	2.32	259.43	274.45	0.21	0.75	0.39	1.41	2.47	3.41	0.69	4.73	0.26	0.06	0.60	1.22

Note: *FaANR*: anthocyanidin reductase; *FaLAR*: leucoanthocyanidin reductase; *FaFLS*: flavonol synthase.
Table S4 The expression of regulatory genes, FaMYB1, FaMYB10, and FaWD40 of flavonoid biosynthesis in red and white strawberry varieties.

The Measurement of Regulatory Genes’ Transcript Level

Developmental Stage	FaMYB1	FaMYB10	FaWD40															
	G1	G2	W	T	R	OR	G1	G2	W	T	R	OR						
Standardized Transcript Level in White Strawberry Variety	1.00 ± 0.06	0.78 ± 0.09	0.69 ± 0.10	0.25 ± 0.01	3.27 ± 0.18	1.53 ± 0.13	1.01 ± 0.11	4.33 ± 0.85	178.42 ± 33.92	120.57 ± 18.38	18245.68 ± 3809.03	7059.18 ± 1502.47	1.01 ± 0.11	2.93 ± 0.86	3.64 ± 0.78	1.56 ± 0.31	1.37 ± 0.31	1.31 ± 0.32
Standardized Transcript Level in Red Strawberry Variety	3.60 ± 0.52	3.28 ± 0.41	0.90 ± 0.06	1.62 ± 0.15	5.39 ± 0.55	7.71 ± 0.99	24.65 ± 9.77	62.78 ± 27.56	697.32 ± 21.21	5408.22 ± 487.18	22578.06 ± 1291.22	22472.76 ± 2072.94	2.74 ± 0.40	4.73 ± 0.79	1.49 ± 0.11	1.35 ± 0.08	1.33 ± 0.47	1.27 ± 0.23
Transcript Ratio between Red and White Strawberry Variety	3.58 ± 4.22	1.32 ± 6.57	1.64 ± 5.03	24.59 ± 14.50	3.91 ± 44.86	1.24 ± 3.19	2.70 ± 1.61	0.41 ± 0.86	0.98 ± 0.97									
Table S5 The expression of regulatory genes, *FaMYB9*, and *FaMYB11* of flavonoid biosynthesis in red and white strawberry varieties.

Developmental Stage	*FaMYB9*	*FaMYB11*					
Standardized Transcript Level in White Strawberry Variety	G1	G2	W	T	R	OR	
	1.00 ± 0.08	0.46 ± 0.07	0.51 ± 0.07	0.27 ± 0.04	0.07 ± 0.01	0.01 ± 0.00	
	1.03 ± 0.04	0.41 ± 0.01	0.94 ± 0.02	0.56 ± 0.01	0.08 ± 0.01	0.01 ± 0.00	
Standardized Transcript Level in Red Strawberry Variety	G1	G2	W	T	R	OR	
	1.02 ± 0.11	0.21 ± 0.03	0.02 ± 0.00	0.01 ± 0.00	0.03 ± 0.00	7.37×10^-3± 0.00	
	3.11 ± 0.48	0.36 ± 0.07	0.06 ± 0.02	0.01 ± 0.00	0.05 ± 0.00	0.01± 0.00	
Transcript Ratio between Red and White Strawberry Variety	G1	G2	W	T	R	OR	
	1.01 ± 0.01	0.45 ± 0.04	0.04 ± 0.00	0.05 ± 0.00	0.40 ± 0.00	0.53 ± 0.00	
	3.01 ± 0.30	0.88 ± 0.06	0.02 ± 0.00	0.06 ± 0.00	0.60 ± 0.00	1.39 ± 0.00	
Gene	Accession	PrimerSequence (5’→3’)					
----------	-----------	------------------------					
		F:ATGGAGGGTTTCGCTGAGAAAGGT GCATGGACTAAAGAGGAGATGACTTCTG R: TCATACGTAGAGATTGTA	Myb domain protein 10	Regulating anthocyanin biosynthesis	Cloning	Our results	
FaMYB10	MG456859	F:ATGAGGAAGCCCTGCTGCGA R: TTAAGCAACTTGAGGATCAG	Myb domain protein 1	Regulating anthocyanin biosynthesis	Cloning	Our results	
Actin	AB116565	F:GGGTCTGCTGAGATGAT R:CATCCCAGTTCGCTCAATA	Actin	Actin	qRT-PCR	Our results	
FaMYB1	AF401220	F:CCTGCTGCGAGAAGACGGAGAC R:CTTCTACACACGGACGCAACCTCT	Myb domain protein 1	Regulating anthocyanin biosynthesis	qRT-PCR	Aharoni et al., 2001	
FaMYB10	EU155162	F: TCAATCAGCTTAAACAGA R: TTAAGACCCACTGGTTTACCT	Myb domain protein 10	Regulating anthocyanin biosynthesis	qRT-PCR	Lin-Wang et al., 2010	
FaMYB9	JQ989281	F:CGGATCCTCAAGGAACGAG R:CTTATTGCTGGGTGGTTTACTT	Myb domain protein 9	Modifying PA content	qRT-PCR	Schaart et al., 2013	
FaMYB11	JQ989282	F:GATGGTCTTATAGCGGGTGAG R:TGGTGGTTTTGTGGTGATAAT	Myb domain protein 11	Modifying PA content	qRT-PCR	Schaart et al., 2013	
FabHLH3-delta	JQ989285	F:ACCAGTAGTAGACAGCCTGGTTAT R:CCATCTGCCCATATTAACTCGTTTG	Basic helix-loop- helix protein	Regulating anthocyanin biosynthesis	qRT-PCR	Schaart et al., 2013	
FaWD40	JQ989287	F:GACTTGAGGATCGTACAGGGAGGATGTTT R:TCATCCCACTGGAGCAATAT	W(Trp)D(Asp)-r epitope protein	Regulating anthocyanin biosynthesis	qRT-PCR	Schaart et al., 2013	
Gene	Accession	F Primer	R Primer	Product	Method	Reference	
-------	-----------	----------	----------	---------	---------------	---------------------------	
FaPAL	HM641823	F: TGCTTTGGGTCTGGTATGG	R: ACCTTCTTCGCTTCTTTCAC	Phenylalanine ammonia-lyase	Structural genes in flavonoid biosynthesis	Pombo et al., 2011	
FaC4H	DQ898278	F: TTGCAGAGTTTTGAGTATAATT	R: TCCTCATAGTTGAGCTGTGTGTC	Cinnamate 4-hydroxylase	Structural genes in flavonoid biosynthesis	Saud, et al., 2009	
Fa4CL	XM_004309901	F: AAACGCGACGGTTACGG	R: CAGTCCGTCAAGCAGTCACC	4-coumarate--C oA ligase	Structural genes in flavonoid biosynthesis	Saud, et al., 2009	
FaCHS	AY997297	F: CACTCCTCAAAGATTCTCTG	R: TGCTCGTGGCTTCTAATCTTCT	Chalcone synthase	Structural genes in flavonoid biosynthesis	Kadomura-Ishi kawa, et al., 2015	
FaCHI	AB201755	F: TTTCTCTCCCTCGTCAAGCC	R: ACTCAACCGACTTGCTCAACTCCT	Chalcone isomerase	Structural genes in flavonoid biosynthesis	Kadomura-Ishi kawa, et al., 2015	
FaF3H	AY691918	F: AGGGTGCTTCATCTGTCC	R: TCAGCTCGTCACTGTACTGTTG	Flavanone 3-hydroxylase	Structural genes in flavonoid biosynthesis	Almeida et al., 2007	
FaF3’H	AB665441	F: AAATCAACGGGTACTACAGGC	R: CCAGCACCACAGGATGTAC	Flavonoid 3’-hydroxylase	Structural genes in flavonoid biosynthesis	Kadomura-Ishi kawa, et al., 2015	
FaFLS	DQ087252	F: GCATGATCAAAATCGTGAA	R: ATCCACCACCCTTCTTCC	Flavonol synthase	Structural genes in flavonoid biosynthesis	Almeida et al., 2007	
FaGT3	AY663786	F: CTGCTGAGTGCGAAGGAAAT	R: AGGAAGTTATGACGAGACC	UDP-glucose glucosyltransferase	Structural genes in flavonoid biosynthesis	Lunkenbein et al. 2006	
Gene	Accession	Forward Primer	Reverse Primer	Function	Expression Assay	Reference	
----------	-----------	---------------------------------	---------------------------------	---	-----------------	---------------------------	
FaDFR	AF029685	F: AAGACAGTTCCGGAGGTTGGT	R: AGAGTTGGGATAATGTAATG	Dihydroflavonol 1 4-reductase	qRT-PCR	Moyano et al., 1998	
FaANS	AY695817	F: GAAAGTGCAGTACCAATACATCGT	R: ACGTTCTCTTGTTGAGCCGACC	Anthocyanidin synthase	qRT-PCR	Almeida et al., 2007	
FaUFGT	AY575056	F: TAGCCCTTTCCTTCCTCCTCA	R: GAAACGCAGTACGACGCTGTG	UDP glucose:flavonoidid-3-O-glucosyl transferase	qRT-PCR	Griesser et al., 2008	
FaANR	JX271492	F: ATGGCAATAGCTATCGGTTCC	R: ATGGTCTCTCGGCCTGATGG	Anthocyanidin reductase	qRT-PCR	Schaar et al., 2013	
FaLAR	DQ087253	F: GTGAGGGGTGGCAGGTTGAGA	R: TCGACGAAATGGGTATTAACC	Leucoanthocyanidin reductase	qRT-PCR	Schaar et al., 2013	
FaMYB10-2-AD-NdeI	MG456860	F: GAAATTCATATGGAGGGTTATTCGCTG	R: GAAATTCATATGGAGGGTTATTCGCTG	Myb domain protein 10	Yeast two-hybrid	Our results	
FaMYB10-2-AD-Xhol				Myb domain protein 10	Yeast two-hybrid	Our results	
FaMYB10-1-AD-NdeI	MG456859	F: GAAATTCATATGGAGGGTTATTCGCTG	R: GAAATTCATATGGAGGGTTATTCGCTG	Myb domain protein 10	Yeast two-hybrid	Our results	
FaMYB10-1-AD-Xhol				Myb domain protein 10	Yeast two-hybrid	Our results	
FaMYB10-1-N-AD-Xhol				Myb domain protein 10	Yeast two-hybrid	Our results	
FaMYB10-1-C-AD-Nd				Myb domain protein 10	Yeast two-hybrid	Our results	
Construct	Accession	Forward Primer	Reverse Primer	Protein Type	Function	Method	Notes
---------------------------	-----------	----------------	----------------	-------------------------------	---------------------------------	-------------------	------------------------
FaWD40-AD & BK-Ndel	JQ989287	F: GAAATTTCATATGATGGAGAATTCGACCCCTCGA	R: GAAATTTGGAATCCCTCAACCTTCAAGAGCTGCATC	WD-repeat protein	Regulating anthocyanin biosynthesis	Yeast two-hybrid	Our results
FaWD40-AD & BK-BamHI							
PavbHLH-AD & BK-EcoRI	KP126521	F: GAAATTGAAATTCATGGCTGCACCGCAAGCAGCA	R: GAAATTCTCGAGTCAGATTGGGGAATTTTGATTGA	Basic helix-loop-helix protein	Regulating anthocyanin biosynthesis	Yeast two-hybrid	Our results
PavbHLH-AD & BK-PstI							
FaMYB10-HT-AgeI	MG456859	F: GCGACCCGTTATGGAGGTTTCGGTGTGAGA	R: GCCCTCGAGTCATACGGAGAGATGGACTAGTA	Myb domain protein 10	Regulating anthocyanin biosynthesis	Transient expression	Our results
FaMYB10-HT-XhoI							

Note: F, forward; R, reverse. Underlines represent the digestion sites of enzymes.
Table S7 Information about the MYB protein sequences used for the construction of the neighbor joining tree.

Gene	Accession	Protein	Function	Identity	Reference(s)
AtMYB3	NP_564176.2	Myb domain protein 3	Repressors of phenylpropanoid pathway	51% ident with FaMYB1	Lin-Wang et al., 2010
AtMYB4	AAC83582.1	Myb domain protein 4	Repressors of phenylpropanoid pathway	50% ident with FaMYB1	Aharoni et al., 2001
AtMYB6	NP_192684.1	myb domain protein 6	Repressors of phenylpropanoid pathway	53% ident with FaMYB1	Lin-Wang et al., 2010
AtMYB24	NP_198851.1	myb domain protein 24	Anther development	100% ident with AtMYB24	Yang et al., 2007
AtMYB75	AAG42001.1	Myb domain protein 75	Regulating anthocyanin biosynthesis	41% ident with FaMYB10	Gonzalez et al., 2008
AtMYB90	NP_176813.1	Myb domain protein 90	Regulating anthocyanin biosynthesis	42% ident with FaMYB10	Gonzalez et al., 2008
FaMYB1	AAK84064.1	Myb domain protein 1	Regulating anthocyanin biosynthesis by	100% ident with FaMYB1	Aharoni et al., 2001
			interacting with other anthocyanin regulators		
FcMYB1	ADK56163.1	Myb domain protein 1	Regulating branching-point of the	100% ident with FaMYB1	Salvatierra et al., 2013
			anthocyanin/PA biosynthesis		
FaMYB1-1	MG456857	Myb domain protein 1	Regulating anthocyanin biosynthesis	100% ident with FaMYB1	Our results
FaMYB1-2	MG456858	Myb domain protein 1	Regulating anthocyanin biosynthesis	100% ident with FaMYB1	Our results
FaMYB9	AFL02460.1	Myb domain protein 9	Modifying PA content	100% ident with FaMYB9	Schaat et al., 2013
FaMYB10	ABX79947.1	Myb domain protein 10	Regulating anthocyanin biosynthesis	100% ident with FaMYB10	Lin-Wang et al., 2010
FaMYB10-1	ABX79948.1	Myb domain protein 10	Regulating anthocyanin biosynthesis	93% ident with FaMYB10	Lin-Wang et al., 2010
FaMYB10-2	MG456859	Myb domain protein 10	Regulating anthocyanin biosynthesis	98% ident with FaMYB10	Our results
FaMYB11	AFL02461.1	Myb domain protein 1	Regulating anthocyanin biosynthesis	100% ident with FaMYB11	Schaat et al., 2013
FvMYB305-like	XP_011468270.1	Myb domain protein 305	Probably anth development	61% ident with AtMYB24	NCBI database
MdMYB1	ABK58136.1	Myb domain protein 1	Regulating anthocyanin biosynthesis	46% ident with FaMYB10	Takos et al., 2006
MdMYB1-like	XP_008374828.1	Myb domain protein 6	Probably regulating anthocyanin biosynthesis	61% ident with FaMYB1	Gao et al., 2011
MdMYB9	NP_001280749.1	Myb domain protein 9	Regulating anthocyanin and PA biosynthesis	66% ident with FaMYB9	An et al., 2015
MdMYB10	ACQ45201.1	Myb domain protein 10	Regulating anthocyanin biosynthesis	46% ident with FaMYB10	Espley et al., 2007
Protein	Accession	Description	Identity with FaMYB	Reference	
----------	-------------	--------------------------------------	-----------------------	---------------	
MdMYB11	NP_001280958.1	Myb domain protein 11	Regulating anthocyanin and PA biosynthesis	62%	An et al., 2015
MdMYB16	ADL36756.1	Myb domain protein 16	Inhibiting anthocyanin synthesis	52%	Xu et al., 2017
MdMYB17	ADL36757.1	Myb domain protein 17	Inhibiting anthocyanin synthesis	56%	Lin-Wang et al., 2011
MdMYB21	NP_001280981.1	Myb domain protein 21	Probably anther development	43%	NCBI database
MdMYB111	ADL36754.1	Myb domain protein 111	Inhibiting anthocyanin synthesis	60%	Lin-Wang et al., 2011
MdMYB305-like	XP_008341440.1	Myb domain protein 305	Probably anther development	66%	NCBI database
MsMYB10	ABX71485.1	Myb domain protein 10	Regulating anthocyanin biosynthesis	46%	Wang et al., 2010
ParMYB10	ABX71490.1	Myb domain protein 10	Regulating anthocyanin biosynthesis	51%	Lin-Wang et al., 2010
PavMYB10.1	ALM31951.1	Myb domain protein 10	Regulating anthocyanin biosynthesis	55%	Jin et al., 2016
PavMYB11	ALH21142.1	Myb domain protein 10	Probably regulating PA biosynthesis	61%	NCBI database
PavMYB111	ALH21138.1	Myb domain protein 111	Probably regulating anthocyanin biosynthesis	61%	NCBI database
PavMYBR	ADY15315.1	Myb domain protein R	Regulating flavonoid biosynthesis	51%	NCBI database
PcfMYB10	ABX71495.1	Myb domain protein 10	Regulating anthocyanin biosynthesis	52%	Lin-Wang et al., 2010
PdmMYB10	ABX71492.1	Myb domain protein 10	Regulating anthocyanin biosynthesis	50%	Lin-Wang et al., 2010
PpyMYB10	ABX71488.1	Myb domain protein 10	Regulating anthocyanin biosynthesis	47%	Lin-Wang et al., 2010
VvMYBA1	BA96751.1	Myb domain protein A1	Regulating anthocyanin biosynthesis	44%	Yakushiji et al., 2006
VvMYB6	XP_002273328.1	Myb domain protein 6	Transcription repressor	61%	NCBI database
VvMYB24	NP_001268062.1	Myb domain protein 24	Probably regulating anther development	65%	NCBI database
VvMYB308	XP_010648383.1	Myb domain protein 308	Probably regulating PA biosynthesis	57%	NCBI database
References

Aharoni, A., De Vos, C.H.R., Wein, M., Sun, Z.K., Greco, R., Kroon, A., Mol, J.N.M. et al. (2001) The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. *Plant J.* 28, 319-332.

Almeida, J.R.M., D’Amico, E., Preuss, A., Carbone, F., de Vos, C.H.R., Deiml, B., Mourgues, F. et al. (2007) Characterization of major enzymes and genes involved in flavonoid and proanthocyanidin biosynthesis during fruit development in strawberry (*Fragaria × ananassa*). *Arch. Biochem. Biophys.* 465, 61-71.

An, X.H., Tian, Y., Chen, K.Q., Liu, X.J., Liu, D.D., Xie, X.B., Cheng, C.G. et al. (2015) MdMYB9 and MdMYB11 are Involved in the regulation of the JA-induced biosynthesis of anthocyanin and proanthocyanidin in apples. *Plant Cell Physiol.* 56, 650-662.

Espley, R.V., Hellens, R.P., Putterill, J., Stevenson, D.E., Kutty-amma, S. and Allan, A.C. (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. *Plant J.* 49, 414-427.

Gao, J.J., Shen, X.F., Zhang, Z., Peng, R.H., Xiong, A.S., Xu, J., Zhu, B. et al. (2011) The myb transcription factor MdMYB6 suppresses anthocyanin biosynthesis in transgenic *Arabidopsis*. *Plant Cell Tiss. Org.* 106, 235-242.

Gonzalez, A., Zhao, M., Leavitt, J.M. and Lloyd, A.M. (2008) Regulation of the anthocyanin biosynthetic pathway by the *TTG1/bHLH/Myb* transcriptional complex in *Arabidopsis* seedlings. *Plant J.* 53, 814-827.

Griesser, M., Hoffmann, T., Bellido, M.L., Rosati, C., Fink, B., Kurtzer, R., Aharoni, A. et al. (2008) Redirection of flavonoid biosynthesis through the down-regulation of an anthocyanidin glucosyltransferase in ripening strawberry fruit. *Plant Physiol.* 146, 1528-1539.

Lin-Wang, K.U.I., Micheletti, D., Palmer, J., Volz, R., Lozano, L., Espley, R. et al. (2011) High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. *Plant Cell Environ.* 34, 1176-1190.

Lunkenbein, S., Bellido, M., Aharoni, A., Salentijn, E.M.J., Kaldenhoff, R., Coiner, H.A., Muñoz-Blanco, J. et al. (2006) Cinnamate metabolism in ripening fruit. characterization of a UDP-Glucose:cinnamate glucosyltransferase from strawberry. *Plant Physiol.* 140, 1047-1058.

Moyano, E., Portero-Robles, I., Medina-Escobar, N., Valpuesta, V., Muñoz-Blanco, J. and Luis Caballero, J. (1998) A fruit-specific putative dihydroflavonol 4-reductase gene is differentially expressed in strawberry during the ripening process. *Plant Physiol.* 117, 711-716.

Pombo, M., Martinez, G. and Civello, P. (2011) Cloning of FaPAL6 gene from strawberry fruit and characterization of its expression and enzymatic activity in two cultivars with different anthocyanin accumulation. *Plant Sci.* 181, 111-118.

Salvatierra, A., Pimentel, P., Moya-León, M.A. and Herrera, R. (2013) Increased accumulation of
anthocyanins in *Fragaria chiloensis* fruits by transient suppression of *FcMYB1* gene. *Phytochemistry* **90**, 25-36.

Saud, G., Carbone, F., Perrotta, G., Figueroa, C.R., Moya, M., Herrera, R., Retamales, J.B. *et al.* (2009) Transcript profiling suggests transcriptional repression of the flavonoid pathway in the white-fruited Chilean strawberry, *Fragaria chiloensis* (L.) Mill. *Genet. Resour. Crop Ev.* **56**, 895–903.

Schaart, J.G., Dubos, C., De La Fuente, I.R., van Houwelingen, A.M.M.L., de Vos, R.C.H., Jonker, H.H., Xu, W.J. *et al.* (2013) Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (*Fragaria x ananassa*) fruits. *New Phytol.* **197**, 454-467.

Takos, A.M., Jaffe, F.W., Jacob, S.R., Bogs, J., Robinson, S.P. and Walker, A.R. (2006) Light-induced expression of a *MYB* gene regulates anthocyanin biosynthesis in red apples. *Plant Physiol.* **142**, 1216-1232.

Wang, Y., Zhang, Y., Feng, S., Tian, C., Wang, H., Liu, Z., Song, Y. and Chen, X. (2010) Cloning, sequence analysis and expression in *E. coli* of MsMYB10 gene from *Malus sieversii f. neidzwetzkyana*. *Scientia Agricultura Sinica* **43**, 2735-2743.

Xu, H., Wang, N., Liu, J., Qu, C., Wang, Y., Jiang, S., Lu, N. *et al.* (2017) The molecular mechanism underlying anthocyanin metabolism in apple using the MdMYB16 and MdbHLH33 genes. *Plant Mol. Biol.* **94**, 149-165.

Yakushiji, H., Kobayashi, S., Goto-Yamamoto, N., Tae Jeong, S., Sueta, T., Mitani, N. and Azuma, A. (2006) A skin color mutation of grapevine, from black-skinned pinot noir to white-skinned pinot blanc, is caused by deletion of the functional *VvmybA1* allele. *Biosci. Biotech. Bioch.* **70**, 1506-1508.

Yang, X., Li, J., Pei, M., Gu, H., Chen, Z. and Qu, L. J. (2007) Over-expression of a flower-specific transcription factor gene *AtMYB24* causes aberrant anther development. *Plant Cell Rep.* **26**, 219-228.