Prevention of childhood unintentional injuries in low- and middle-income countries: A systematic review

Anna Tupetz1,2*, Kaitlyn Friedman1*, Duan Zhao1, Huipeng Liao1, Megan Von Isenburg1, Elizabeth M. Keating4, Joao Ricardo Nickenig Vissoci1,2, Catherine A. Staton1,2*

1 Duke Global Health Institute, Durham, North Carolina, United States of America, 2 Department of Emergency Medicine, Duke University Medical Center, Durham, North Carolina, United States of America, 3 Duke Kunshan University, Kunshan, Suzhou, Jiangsu, China, 4 Division of Pediatric Emergency Medicine, Division of Public Health, University of Utah, Salt Lake City, Utah, United States of America

* These authors contributed equally to this work.

Citation: Tupetz A, Friedman K, Zhao D, Liao H, Isenburg MV, Keating EM, et al. (2020) Prevention of childhood unintentional injuries in low- and middle-income countries: A systematic review. PLoS ONE 15(12): e0243464. https://doi.org/10.1371/journal.pone.0243464

Abstract

Injuries are a leading cause of death and disability among children. Numerous injury prevention strategies have been successful in high-income countries, but the majority of unintentional injuries happen to children living in low- and middle-income countries (LMICs). This project aims to delineate the childhood injury prevention initiatives in LMICs. For inclusion, peer-reviewed articles needed to address unintentional injury, include children <18, assess a prevention-related intervention, contain a control group, and be published after 1988. Two pairs of reviewers evaluated articles independently to determine study eligibility. 74 articles were included. 30 studies addressed road traffic injuries, 11 drowning, 8 burns, 3 falls, 8 poisonings, and 21 an unspecified injury type. The findings show positive effects on injury outcome measures following educational interventions, the need for longer follow-up periods after the intervention, the need for effectiveness trials for behavior change, and the need for an increase in injury prevention services in LMICs. This is the first systematic review to summarize the prevention initiatives for all types of childhood unintentional injuries in LMICs. Increased attention and funding are required to go beyond educational initiatives with self-reported measures and little follow-up time to robust interventions that will reduce the global burden of unintentional injuries among children.

Introduction

Five million deaths are attributed to injury globally every year, and 12% of these are among children [1]. Globally, injuries are a leading cause of death and disability among children [2]. Over 900,000 children under the age of 18 die every year due to unintentional injuries [2]. With this review, we identified the current state of childhood injury prevention programs in low and middle-income countries (LMICs), including seemingly effective intervention methods as well as challenges and gaps in current research efforts.
While most reports focus on injury mortality rates, morbidity is another important factor to consider when estimating the impact of injuries on the individual, the society, and the health care system. It is well established that children who have disabilities are generally more likely “to die young, or be neglected, malnourished and poor” [3]. The Child Injury Pyramid is a known concept that visualizes the enormous number of children being injured and requiring medical attention for each death reported [2]. In a sample of 250,000 people in 5 different Southeast Asian countries, UNICEF and the Alliance for Safe Children found that for each reported death in children, 12 children were admitted to the hospital or were permanently disabled, while 34 children required medical care or were unable to attend work/school due to the injury [4]. Therefore, the prevention of childhood injuries in LMICs is critical to decrease the global burden and limit the detrimental impact childhood injuries can have on individuals, their families, and health care systems [5].

The World Health Organization (WHO) released a report on child injury prevention in 2008, detailing the main injury types and ways of prevention, since we cannot assume that prevention strategies that are successful in high-income countries (HICs) will be equally effective and realizable in LMIC settings [6]. The five major categories defined by the WHO include road traffic injuries (RTI), drowning, burns, falls, and poisonings [2].

Ninety-three percent of all child mortality due to RTI occurs in LMICs [2]. By 2030, RTIs are predicted to be the fifth leading cause of death and the seventh leading cause of loss of disability-adjusted life years (DALYs) worldwide. In regard to drowning, 98% of incidents occur in LMICs, particularly in rural areas with open bodies of water [2]. Children under the age of five are at the greatest risk for drowning and drowning survivors can suffer permanent neurological damage [7, 8]. For burns, the mortality rate varies greatly between LMICs and HICs, at 4.3 per 100,000 vs. 0.4 per 100,000, respectively. Burns are the only category of unintentional injuries in which females are at higher risk than males. While understudied, reports have found higher rates of self-harm in young females as a result of domestic violence, as well as a direct form of interpersonal violence towards females, which could have been reported as unintentional injuries instead [9, 10]. The increased risk in Southeast Asia specifically is associated with open cooking equipment and low socioeconomic status [11]. In a review on burns in SSA, the leading cause of burns was scalds with 59%, followed by flames in 33%. The male-to-female ratio was almost equal, and burns disproportionately affected children below the age of 10 years with 83% of reported burns [12].

The majority of mortality caused by falls is seen in older adults, but non-fatal falls are a major cause of loss of DALYs in children under the age of 15 [2]. There is a strong association with fall mortality and socioeconomic status, as many prevention initiatives are more widely used in HICs [13, 14]. Fatal poisoning rates are more than four times higher in LMICs compared with HICs, with acute poisonings often related to fuels commonly used in households for cooking and lighting like paraffin or kerosene [2]. Poisonings as a result of domestic violence may also be reported as “unintentional” in hospital settings [15].

More than 10 years after this WHO report, much work remains to be done, particularly in LMICs. Numerous cost-effective injury prevention strategies have been proven successful in HICs, but the majority of these unintentional injuries happen to children living in LMICs [15].

While injuries are often predictable and preventable, due to many existing effective and low-cost prevention initiatives, they are not widely evaluated among children in LMICs, who are particularly vulnerable to risk factors for injury [16–19]. It is therefore necessary to increase research in and awareness of effective prevention initiatives for childhood injuries that are applicable in LMIC settings [18, 20]. This must be done to decrease the substantial economic burden on society, the individual, and health care and health insurance systems.
[21]. There is a great need for coordination between and among countries facing this burden to create solutions that are scalable and context appropriate.

A systematic review by Vecino-Ortiz et al. assessed effective interventions for unintentional injuries among the world’s poorest billion [22]. While this review identifies interventions to reduce mortality, our systematic review included a variety of outcomes and focused exclusively on interventions for children. Rather than assessing the poorest billion from all countries, our review examined interventions from all countries classified as LMIC, allowing for the consideration of geopolitical structures and opportunities for implementing interventions. This systematic review aggregates and summarizes the prevention initiatives for all types of childhood unintentional injuries in LMICs and is inclusive of primary research and additional injury types. With this review we will present what strategies have been proven to be most effective for 5 different injury types and different geographical locations, as well as current gaps in the knowledge of injury prevention strategies.

Methods

Protocol and registration

This systematic review is reported in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) Statement (S3 Appendix) and is registered in the PROSPERO database (International Prospective Register of Systematic Reviews) under the number CRD42018091453 [23].

Eligibility criteria

Our main criteria for article inclusion were assessment of a prevention initiative for unintentional injuries in children in LMICs. LMIC status and categories of unintentional injuries (RTIs, drowning, burns, falls, and poisonings) were decided according to World Bank and WHO criteria, respectively [24, 25]. As of the 2021 fiscal year, countries with a gross national income (GNI) lower than $1,035 were classified as low-income countries (LICs), and LMICs include countries with a GNI between $1,036 and $4,045 [24]. For inclusion, articles needed to be related to unintentional injury, target or include children under the age of 18, assess a prevention-related intervention, contain a control or comparison group (including pre-post designs), and be peer-reviewed and published after 1988. 1988 was chosen as the cut-off date to capture as many as studies as possible within a reasonable timeframe (30 years). Injuries resulting from self-harm behavior were not included. Articles were excluded if they were abstracts, literature or systematic reviews, meta-analysis, unpublished theses, or commentaries.

Information sources

We searched the electronic databases PubMed, Scopus, Embase, and Global Index Medicus (formerly Global Health Library). No exclusions were made based on the language of the article. Reference analysis was conducted manually, and citation analysis was conducted using Web of Science and Google Scholar.

Search

B1 in S2 Appendix shows the search terms used in the electronic databases in February 2018. After initial data analysis, electronic databases were re-screened for articles published between February 2018 and April 2019 (B2 in S2 Appendix) and April 2019 and May 2020 (B3 in S2 Appendix).
Study selection and data collection

We found a total of 3960 articles in our initial search. Two reviewers independently screened the titles and abstracts. Abstracts not providing sufficient information concerning the eligibility criteria were accessed for full-text review. Two pairs of reviewers then evaluated full-text articles independently to determine study eligibility in the original study language. Reference and citation analysis were done on the articles meeting inclusion criteria. Sixty articles were included from this search (Fig 1).

We updated the same search criteria to include studies published after the initial search (between February 2018 and April 2019. This resulted in an additional 344 articles. These articles went through the same inclusion and screening process as the initial search. Nine articles were included from this search. A third search was conducted for studies published between April 2019 and May 2020, resulting in an additional 397 articles to be screened. Following the same inclusion and screening process, five articles were added from this search.

Fig 1. PRISMA flow diagram.

https://doi.org/10.1371/journal.pone.0243464.g001
Quality of studies
To assess data quality we used the Cochrane RoB 2 tool (A1 in S1 Appendix). The Cochrane RoB 2 tool [26] assesses risk of bias by asking questions about the study design, aim of the study, randomization process, deviation from intended interventions, missing outcome data, measurement of the outcome, and selection of reported result. The randomized control trials RCTs were also assessed using the Consolidated Standards of Reporting Trials (CONSORT) (A2 in S1 Appendix). However, in order to have a standardized classification of bias for all studies, we classified studies as low, moderate, or high risk of bias as outlined in the Cochrane handbook [27]. No studies were excluded from data extraction based on their assigned quality.

Data extraction
Two pairs of reviewers conducted data extraction on articles independently, and disagreements were resolved through discussion. The data extraction included year of publication, geographic region of author, location of study, objective, study design, setting, intervention type, sample size, participant characteristics and inclusion criteria, data collection and analysis methods, reported outcomes and values, results, and main conclusions. For non-English articles, data extraction was conducted by a bilingual researcher that was a fluent or native speaker in English and the language of the article.

Data analysis
Upon screening the articles for this review, it was concluded that a meta-analytical approach of all of the articles would not be feasible given the high level of variability in study designs. We thus conducted a qualitative metasummary. Thematic analysis was done by aggregating the main outcomes of the articles by categories of injury and type of intervention.

Results
Study characteristics
In total, 74 articles were included in this review (Table 1). Fifty articles were in English, 13 in Chinese, 5 in Portuguese, and 6 in Spanish (Table 1).

Although we only included studies conducted in LMIC, the geographic regions of first authors included Argentina, Bangladesh, Brazil, China, Colombia, Cuba, Denmark, Germany, Indonesia, Iran, Kenya, Mexico, The Netherlands, Pakistan, Peru, Saudi Arabia, South Africa, Sweden, Uganda, the United Kingdom, the United Republic of Tanzania, the United States, and the West Indies. The LMIC countries in which the studies were conducted included Argentina, Bangladesh, Brazil, Cambodia, China, Colombia, Cuba, Grenada, India, Indonesia, Iran, Kenya, Mexico, Pakistan, Peru, Serbia, South Africa, Sri Lanka, Turkey, Uganda, the United Republic of Tanzania, and Zambia.

The studies were classified as having low (n = 39), moderate (n = 29), or high (n = 6) risk of bias (Table 1, S1 Appendix).

The study characteristics, including the geographic regions of the interventions, the risk of bias, and the location of the first authors are shown in Fig 2.

Qualitative summary of results
In our review, 30 studies dealt with RTIs, 11 with drowning, 8 with burns, 3 with falls, 7 with poisonings, and 21 did not specify the injury type (Fig 3). Some studies addressed multiple injury types or used more than one intervention category. A widely used framework to reduce accidents and unintentional injuries is the 5 E’s—engineering, education, encouragement,
Authors	Year	Language of Article (Location of Study)	Study Design	Risk of Bias	Intervention Type	Study Follow up time (post-test)	Targeted Population & Setting	Sample Size	Outcome Measures (Tool Used)	Author Conclusions
Abreu, D. R. O. M., De Souza, E. M. & Mathias, T. A. F.	2018	Portugese (Brazil)	Ecological time series	Low	Legislation	N/A	State of Paraná, Brazil—residents aged 15–49	Not reported	Mortality (Mortality Information System)	“Following enactment of the Drinking and Driving Law, the data displayed variability and the trends were not significant. However, there was a decrease in overall and pedestrian mortality. The rates for motorcyclists and vehicle occupants stabilized. The results showed an impact on traffic accident mortality after enactment of the new Brazilian Traffic Code and Drinking and Driving Law, followed by an increase in the rates.”
Ahmad H, Naeem R, Feroze A, Zia N, Shakoor A, Khan UR, Mian, AI	2018	English (Pakistan)	Pretest-Posttest, one group	Moderate	Education	0–2 months	Students 8–16 years old in Pakistan	410 students, 17 schools	Knowledge of prevention measures (multiple choice questionnaire in English & Urdu)	“Bilingual pictorial story books can help helped primary school children to learn about RTI prevention and may be incorporated into school curricula, possibly adaptable in different languages and communities.”

(Continued)
Authors	Year	Language of Article (Location of Study)	Study Design	Risk of Bias	Intervention Type	Study Follow up time (post-test)	Study Population & Setting	Sample Size	Outcome Measures (Tool Used)	Author Conclusions		
Charry, JD, Ochoa, JD, Tejada, JH, Navarro-Parra, SL, Esquivel, N, & Vasques, Y [30]	2017	English (Colombia)	Pretest-Posttest, one group	Moderate	Education	Not specified	Adolescents in Colombia	160 high school seniors	Knowledge of vehicle safety devices and risks of alcohol consumption (pre and post interventional surveys on the use of vehicle safety devices and attitudes towards alcohol consumption and driving)	In conclusion, based on our experience, a prevention-oriented model for traffic accidents proves to be effective in generating changes in adolescents’ behavior regarding attitudes towards alcohol and road safety standards. However, it is necessary to conduct a more accurate study using multivariate analysis to define specific factors influencing young population’s decision-making regarding road safety behavior.		
Chen, X, Yang, J, Peek-Asa, C, Chen, K, Liu, X, & Li, L [31]	2014	English (China)	Prospective experimental case-control study	Low	Education	2 months	Mothers of newborn children, in hospital China	216 (114 intervention, 102 control)	Knowledge of child safety restraint use	This study evaluates a hospital-based education intervention to promote child safety restraint use, especially in infants. The program improved the birthing mothers’ knowledge and awareness, which could drive them to prepare CSS for their babies. This study has implications for future comprehensive intervention strategies that address specific age-related needs and promote car seat use among infants and children.		
Authors	Year	Language of Article	Location of Study	Risk of Bias	Study Design	Intervention Type	Study Follow-up Time (post-test)	Sample Size	Targeted Population & Setting	Study & Outcome Measures (Tool Used)	Outcome Measures (Tool Used)	Author Conclusions
-------------------------------	------	---------------------	-------------------	--------------	--------------	------------------	-------------------------------	-------------	-----------------------------	--	-----------------------------	--
Dorigatti, AE, Jimenez, LS, Redondano, BR, Carvalho, RBD, Calderan, TRA, & Fraga, GP [32]	2014	English	(Brazil)	Moderate	Pretest–Posttest, one group	Education	Not specified	High school students 14–18 in Brazil	Each hospital visit included a mean of 70 students. The complete questionnaire was answered by 1,025 students.	Knowledge of alcohol use and safety devices (Pre and post intervention questionnaire)	The emergence of prevention programs such as these enables a behavioral change in the participant population, especially when the program is performed by a multidisciplinary team, who can discuss the subject from different points of view, each according to their area of expertise. The P.A.R. T.Y. program exists as an option to help young people identify the risks of not using safety equipment in traffic, as well as the negative effects of the combination of drinking and driving.	
Ederer, DJ; Bui, TV; Parke, EM; Roehler, DR; Sidik, M; Florian, MJ; Kim, P; Sim, S; Ballesteros, M. [33]	2016	English	(Cambodia)	Low	Controlled trial (not randomized)	Education and provision of safety devices	1–2 weeks; 10–12 weeks; end of school year	Nine intervention schools (with a total of 6721 students) and four control schools (with a total of 3031 students)	School children grade 1–5 in Cambodia	Increase in helmet use on motorcycles and bicycles (Observation)	School-based helmet use programs that combine helmet provision and road safety education might increase helmet use among children.	
Erkoboni D, OZanne-Smith J, Rouxiang C, Winston FK [34]	2010	English	(China)	Moderate	Mixed methods, Pretest–Posttest, one group	Education	6 weeks	Parents of children 3–8 in China	n = 71 at baseline, n = 62 at 6-week follow-up	Self-reported knowledge and use of child seat restraints (short survey instrument)	This study shows the possibility of exporting US-designed prevention interventions dubbed into Mandarin without the need to alter their original context (in this case, an African American family in a US setting) into a Chinese context. Successful cultural translation involved ensuring that the behavioral antecedents targeted in the intervention (eg, barriers and benefits) were of relevance to the Chinese population.	
Table 1. (Continued)

Authors	Year	Language of Article (Location of Study)	Study Design	Risk of Bias	Intervention Type	Study Follow up time (post-test)	Targeted Population & Setting	Sample Size	Outcome Measures (Tool Used)	Author Conclusions
Falavigna A, Medeiros GS, Cannabarro CT, Barazzetti DO, Marcon G, Montiero CMC, Bossardi JB, Da Silva PG, Teles AR, Velho MC, Ferrari P.	2014	English (Brazil)	RCT	Low	Education	1.3, and 8 months	Primary and high school students in Brazil	535 students	Self-reported knowledge of prevention of neurotrauma and use of safety devices (Questionnaires)	"Multiple and different types of educational interventions, such as lectures, scenes from plays about trauma and its consequences, traffic and fire department intervention, and medical emergency intervention directed to preteens and adolescents from public and private schools did not modify most students’ attitudes toward injury prevention."
Falavigna, A, Teles AR, Velho MC, Medeiros GS, Cannabarro CT, de Braga GL, Barazzetti DO, Vedana VM, Kleber FD	2012	English (Brazil)	RCT	Low	Education	5 months	High school students in Brazil	1049 students (5 intervention n = 572, 5 control schools n = 477)	Self-reported knowledge of prevention of neurotrauma and use of safety devices (Questionnaires)	"An educational intervention based on a single lecture improved students’ knowledge of traumatic brain and spinal cord injuries, but this type of intervention did not modify most attitudes toward injury prevention."
FOROUTAN, A., HEYDARI, S. T., KARVAR, M., MOHAMMADI, L., SARIKHANI, Y., AKBARI, M. & LANKARANI, K. B.	2019	English (Iran)	pre-post intervention with control group	low	Education, provision of safety devices, community awareness, legislation/law enforcement	9 months (can you double check that?)	Motorcyclists (adolescents subgroup) in two cities (intervention and control)	396 students	pre-intervention questionnaire, ICU admission rates, hospital costs for patients who required ICU admission, rate of helmet usage, mortality and the duration of ICU care for patients admitted to Darab hospital due to motorcycle accidents (Questionnaire, ICU data)	Even a short period of intervention can have positive effects on increasing the safety of motorcycle drivers.
Table 1. (Continued)

Authors	Year	Language of Article (Location of Study)	Study Design	Risk of Bias	Intervention Type	Study Follow up time (post-test)	Targeted Population & Setting	Sample Size	Outcome Measures (Tool Used)	Author Conclusions		
Frandoloso, V., da Silva, F. T., & Magnabosco, C. D. [38]	2015	Portuguese (Brazil)	Longitudinal, observational cohort study	Moderate	Education	0–9 months	Children 9–11 in Brazil	117 children	Knowledge of prevention of traumatic brain injury (Standardized questionnaires)	"The high rate of experience with TBI coupled with the significant discrepancy between habits and knowledge regarding trauma prevention stress the need for effective measures leading to their actual implementation. The intervention increased awareness about the importance of helmet usage, suggesting partial effectivity from a theoretical standpoint."		
FREITAS, C., RODRIGUES, M. A., PARREIRA, P., SANTOS, A., LIMA, S., FONTES, V. S., FREITAS, J. P. A., SANTOS, J. M. J. & MOTA, E. C. H. [39]	2019	English (Brazil)	Pretest—posttest with control group	low	Education	1 month	Children from 3rd to 5th grade in two public schools in Northeastern Brazil	173 children	Knowledge, attitudes and preventive practices of traffic accidents (KAP questionnaire)	"The educational intervention increased the level of knowledge and maintained the preventive attitudes and practices on traffic accidents at the same level in 3rd-5th grade students."		
Hidalgo-Solórzano, E., Hijar, M., Mora-Flores, G., Treviño-Siller, S., & Inclán-Valadez, C. [40]	2008	Spanish (Mexico)	Pretest-Posttest, one group	Low	Community campaign	Not specified	Children 16–19 in Mexico	700 children	Knowledge of RTI prevention methods (Self-applied questionnaire)	"Educative interventions represent an initial strategy for changes in knowledge and population behaviours. The present study offers an appropriate methodology to measure short-term changes in knowledge about risk factors associated with a significant problem affecting Mexican youth."		
Authors	Year	Language of Article (Location of Study)	Study Design	Risk of Bias	Intervention Type	Study Follow up time (post-test)	Targeted Population & Setting	Sample Size	Outcome Measures (Tool Used)	Author Conclusions		
---	------	---	--------------	--------------	------------------	----------------------------------	---------------------------------------	-------------	--	---		
Hijar M, Perez-Nunez R, Santoyo-Castillo D, Lunnen JC, Chandran A, Celis A, Carmona-Lozano S [41]	2013	English (Mexico)	Cross-sectional	Low	Community campaign and law enforcement and education	N/A	Children 13–18 years old in Mexico	5115 total, 13–15 years old n = 617, 16–18 years n = 2252	Knowledge and attitude scores (KAS) (Self-applied questionnaire)	"Our results show a potential moderate impact, measured as self-reported attitude change, resulting from the three intervention approaches under study. Future studies should address the intensity of exposure as well as the translation of attitude change into safer behaviors. Information generated by this study could be useful for local authorities in the intervention areas to inform their activities."		
Ji, Y., Ye, Y., Liu, Y., Li, L., & Yang, G [42]	2017	English (China)	Cluster RCT	Low	Education	Not specified	Seventh grade students in China	1312 students in intervention group	Knowledge and attitudes of prevention of RTI (Questionnaire)	"Publicity and education intervention measures have certain short-term effects on the prevention of bicycle injuries among rural middle school students; we should approach intervention measures according to the characteristics of traffic injuries in different areas."		
Authors	Year	Language of Article (Location of Study)	Study Design	Risk of Bias	Intervention Type	Study Follow up time (post-test)	Targeted Population & Setting	Sample Size	Outcome Measures (Tool Used)	Author Conclusions		
---------------------------------	------	---	--------------	--------------	------------------	-----------------------------	-------------------------------	-------------	--------------------------------	---		
Jin, H. Q., Yingchun Li, Zhang, S. L., & Yu, W. S. [43]	2009	Chinese (China)	Cluster RCT	Low	Education	6 months	Middle school students in China	6784 (intervention) 1266 (control)	Incidence of bicycle injuries. (Survey)	“Program on road safety education significantly improved the relative knowledge for middle school student and it exerted positive effects in road safety attitude to some extent. However, no significant effect was found in the improvement on their behavior. Education on road safety should be carried out in the early stage of childhood with newer and more effective intervention approaches.”		
Li, Z.-Y.; Zhang, Y. Y.; Huang, H.T. [44]	2011	Chinese (China)	Cluster RCT	Low	Education	1 year	Students in 7th-11th grade in China	1823 (intervention) 2306 (control)	Knowledge of RTI prevention and frequency of traffic rule violations (Injury reports, injury knowledge survey)	“The intervention measures of health education, institutionalized management, strict enforcement, environmental improvement can prevent and control the occurrence of bicycle injury among middle school students.”		
Liu, X., Yang, J., Cheng, F., & Li, L. [45]	2016	English (China)	Cohort study, with control group	Moderate	Education and provision of safety devices	Not specified	Parents of newborns in China	Not reported	Knowledge of RTI prevention and self-reported use of safety devices (Interview via telephone)	“Education on safety, combined with a free CSS and professional installation training, were effective at increasing newborn parents’ knowledge and use of CSS. Future studies with larger sample sizes and longer follow-up are needed to determine a long-term effect of the intervention.”		
Authors	Year	Language of Article (Location of Study)	Study Design	Risk of Bias	Intervention Type	Study Follow up time (post-test)	Targeted Population & Setting	Sample Size	Outcome Measures (Tool Used)	Author Conclusions		
---	------	---	--------------	--------------	-------------------	-------------------------------	-------------------------------	-------------	--	--		
Muguku, E., Ouma, J., & Yitambe, A. [46]	2010	English (Kenya)	Retrospective pretest-post test	Low	Law enforcement	Children <18 in Kenya	Not reported	Number of hospital admissions due to RTI (Hospital admission records)	"The enforcement of the Traffic Act did not have any effect on injury severity among admitted PSV crash victims. Measures to lessen the burden of road traffic injury deserve greater attention."			
Mutto, M., Kobusingye, O. C., & Lett, R. R [47]	2002	English (Uganda)	Retrospective, cross-sectional, observational	Moderate	Environmental change	Children in Uganda	13,064 pedestrians	Use of pedestrian overpass and incidence of fatal and non-fatal crashes (Injury records, observation)	"The prevalence of pedestrian overpass use was low with adult males least likely to use it. Pedestrians had a high perception of risk, which did not seem to influence overpass use. Pedestrian were more likely to be injured during slow traffic flows. There were more traffic crashes, and pedestrian injuries, but fewer fatalities after the construction of the overpass."			
Nazif-munoz, J. I., Nandi, A. & Ruiz-casares, M. [48]	2018	English (Brazil)	Evaluation study with interrupted time series design	Low	Legislation	Children who were injured or died in vehicle collisions in Brazil between 2008 and 2014	Not reported	Number of child deaths and number of children injured in traffic collisions per child population, stratified by race (Various nation wide databases and census data)	"Socially advantaged populations were more likely to consistently adopt and employ restraint devices following the reform. Countries should also consider complementary policies that facilitate an equitable distribution of safety devices that reach vulnerable populations."			
Authors	Year	Language of Publication	Location of Study	Study Design	Risk of Bias	Intervention Type	Sample Size	Targeted Population & Setting	Study Follow-up Time (post-test)	Intervention (Tool Used)	Outcome Measures (Tool Used)	Author Conclusions
---------	------	--------------------------	-------------------	--------------	-------------	------------------	-------------	-----------------------------	-------------------------------	----------------------	--------------------------	-------------------------
Nazif-munoz, J. I. & Nikolic, N	2018	English	Serbia	Evaluation study with interrupted time series design	Low	Legislation	N/A	Child occupants aged 0–12	Not reported	Injury incidence pre and post intervention (Road Traffic Crashes Database by Serbian Road Traffic Safety Agency)	Injury incidence pre and post intervention (Road Traffic Crashes Database by Serbian Road Traffic Safety Agency)	“The case of Serbia suggests that the new law was effective in reducing injuries among children aged 0–3 in the short term and injuries among children aged 4–12 in both the short and long term.”
Poswayo, A., Kalolo, S., Rabonovitz, K., Witte, J. & Guerrero, A	2019	English	Tanzania	Pretest-Posttest, with control group	Low	Education, environmental change	12,957 school-aged children in the baseline period and 13,555 school-aged children in the post-intervention period	Households around 18 primary schools in Dar es Salaam	1 year	Injury Rates (Survey)	Injury Rates (Survey)	“The programme demonstrated a significant reduction in paediatric RTI after its implementation in very specific ways. This study suggests that for a reasonable investment, scientifically driven injury prevention programmes are feasible in resource-limited settings with high paediatric RTI rates.”
Rimal, R. N., Yilma, H., Ryskov, N. & Geber, S	2019	English	Serbia	Pretest-Posttest, with control group	Moderate	Education, environmental change	12,957 school-aged children in the baseline period and 13,555 school-aged children in the post-intervention period	Households around 18 primary schools in Dar es Salaam	6 months	Change in risk perception (In-classroom filled out surveys)	Change in risk perception (In-classroom filled out surveys)	“In order to reach male adolescents, who are at highest risk for automobile crashes and who have remained the most impervious to intervention effects, our findings suggest adopting an approach that improves their injunctive norms and, subsequently, exposes them to the safety-dove driving intervention.”
Authors	Year	Language of Article (Location of Study)	Intervention Type	Risk of Bias	Sample Size	Targeted Population & Setting	Study Duration (Pre–post test)	Study Design	Risk of Bias	Outcome Measures (Total Cases)	Outcomes	Author Conclusions
---------	------	--	-------------------	-------------	-------------	-----------------------------	-------------------------------	----------------	-------------	---------------------------------	---------	---------------------
Salvatori C.P., Coll, B.O., & Carlotti Junior, C.G.	2009	English (Brazil)	Community campaign	Low	Not reported	Adolescents in Brazil	1 year	Pretest-Posttest, one group	Low	Number and severity of road traffic accidents (hospital record data and extra-hospital data)	Number and severity of road traffic accidents (hospital record data and extra-hospital data)	"The adapted Think First was systematically implemented and its impact measured for the first time in Brazil, revealing the potential for reducing trauma and TBI severity in traffic accidents through public education and representing a validated model of implementing educational programs in developing countries."
Setyowati, D.L., Risva, Anwar A.	2019	English (Indonesia)	Education	High	25 students	High school seniors in Indonesia	Not specified	Pretest-Posttest, one group	Not specified	Knowledge and attitude of safe riding practices for motorcycles (Questionnaire)	Knowledge and attitude of safe riding practices for motorcycles (Questionnaire)	"The training would increase the knowledge about safety riding to the Safety Riding Ambassadors."
Treviño-Siller, S., Pérez-Magaña, L. E., Bonilla-Fernández, P., Rueda-Neria, C., & Arenas-Moreno, L.	2017	English (Mexico)	Mixed methods	Moderate	219 students	Students aged 10–15 years in Mexico	5 months	Pretest-Posttest	Mixed pretest-posttest	Knowledge and attitude scores of prevention of RTI (Observation, questionnaire)	Knowledge and attitude scores of prevention of RTI (Observation, questionnaire)	"Because safe practices depend not only on children and youth, but also on adults and the social environment surrounding them, it is essential to engage parents, teachers, and decision makers in efforts to reduce RTI. Establishing the establishment of commitments to impact social reality through consistent changes and mobilizing greater resources for creating more secure matters of road safety."

(Continued)
Authors	Year	Language of Article (Location of Study)	Study Design	Risk of Bias	Intervention Type	Study Follow up time (post-test)	Targeted Population & Setting	Sample Size	Outcome Measures (Tool Used)	Author Conclusions
Zare, H., Niknami, S., Heidarnia, A. & Hossein Fallah, M [55]	2019	English (Iran)	RCT	Low	Education, skills-based education	6 months	Two all-male elementary schools in Mehriz City, Iran	103 students	Rates of safe street-crossing behaviors (Observation)	“The results of the present study confirmed the positive effects of an active learning-based educational program with parental involvement on promoting safe street-crossing behaviors in 7-year-old children. Parental involvement is recommended as a useful strategy to consider while designing educational programs aiming at promoting positive street-crossing behaviors among school-aged children.”
Zimmerman, K., Jinadasa, D., Maegga, B., & Guerrero, A [56]	2015	English (Tanzania)	Pretest-Posttest, with control group	Low	Skills based education and provision of safety devices	9 months	Local Communities in Tanzania	Control n = 1,343, Intervention n = 2203	Incidence of RTI (Household survey)	“The incidence of RTIs in the low-volume rural setting is unacceptably high and most commonly associated with motorcycles. The change in incidence is unreliable due to logistic restraints of the project and more research is needed to quantify the impact of various RTI prevention strategies in this setting. This study provides insight into road traffic injuries on low-volume rural roads, areas where very little research has been captured. Additionally, it provides a replicable study design for those interested in collecting similar data on low-volume rural roads.”
Authors	Year	Language of Article (Location of Study)	Study Design	Risk of Bias	Intervention Type	Study Follow up time (post-test)	Targeted Population & Setting	Sample Size	Outcome Measures (Tool Used)	Author Conclusions
---------	------	---------------------------------------	--------------	--------------	------------------	-------------------------------	-----------------------------	-------------	--------------------------------	-------------------
Callaghan JA, Hyder AA, Khan R, Blum LS, Arifeen S, Baqui AH [57]	2010	English (Bangladesh)	Observational pilot study with 3 intervention arms	Moderate	Supervision and provision of safety devices	0–9 months	Households with 1–4 year old children in Bangladesh	343 to education only, 373 to door barrier, 472 households, 2694 observations	Percentage of devise usage (Observation)	“Households provided with supervision tools use them, and there are lower observations of children unprotected... Effectiveness trials are needed to establish the impact of these tools on under-five drowning-specific mortality rates.”
Davoudi-Kiakalayeh, A, Mohammadi, R, Yousefzade-Chabok, S, & Jansson, B [58]	2013	English (Iran)	Observational pretest-Posttest, two groups	Low	Supervision, education, environmental change and community campaign	0–2 years	0–9 and 10–19 year old children in Iran	Not reported	Incidence of drowning case, fatal and non-fatal (forensic medicine system and death registry for fatal cases; weekly ambulance excursion reports for non-fatal cases)	Reducing the risk of drowning is possible by raising community awareness, in partnership with relevant organizations.”
Guo, Q [59]	2010	Chinese (China)	Quasi-experimental trial with control group	Low	Community campaign and education	1.5 years	Students grades 4–6 in China	3015 students	Incidence of injury rate and knowledge of injury prevention (Survey)	“The school-based health education on drowning prevention is effective to improve children’s knowledge and decrease their risk behaviors”
Guo, Q., Ma, W., Xu, H., Nie, S., Xu, Y., Song, X., & Li, H [60]	2010	Chinese (China)	Pretest-posttest	Low	Education	1 year	Children in grades 3–5, 7–8, and 10–11 in China	8930 students	Rate of drownings and knowledge of drowning prevention (Pre and post intervention survey)	“Health education program could improve children’s perception on water safety and reduce their risk behaviors as well as on the incidence of non—fatal drowning in the rural areas.”
Rahman, F., Bose, S., Linman, M., Rahman, A., Mashreky, S., Haaland, B., & Finkelstein, E. [61]	2012	English (Bangladesh)	Retrospective cohort	Low	Skills-based education	4-year observation	Children aged 1–4 in Bangladesh	Anchal (daycare) n = 18 596 participants swimming lessons. (SwimSafe), n = 79,421 participants	Mortality rates due to drowning (Demographic Surveillance System)	“Based on World Health Organization criteria, PRECISE is very cost-effective and should be considered for implementation in other areas where drowning is a significant problem.”
Authors	Year	Language of Article (Location of Study)	Study Design	Risk of Bias	Intervention Type	Study Follow up time (post-test)	Targeted Population & Setting	Sample Size	Outcome Measures (Tool Used)	Author Conclusions
---------------------------------	------	---	--------------	--------------	-------------------	----------------------------------	------------------------------	--------------	-------------------------------	--------------------
Shen, J., Pang, S., & Schwebel, D. C. [62]	2016	English (China)	RCT	Low	Education	1 week	Third and fourth grade students in China	280 students (137 in intervention. Group)	Knowledge of prevention of drowning (Self-report questionnaires)	"The testimonial-based intervention’s efficacy appears promising, as it improved safety knowledge and simulated risk behaviors with water among rural Chinese children."
Solomon, R., Giganti, M. J., Weiner, A., & Akpinar-Elci, M. [63]	2013	English (Grenada)	Pretest-Posttest, one group	Moderate	Education	Not specified	Primary school students aged 5-12 in Grenada	92 enrolled, 56 participated	Knowledge of drowning prevention (Graded assessment)	"The findings from this study suggested that implementation of such a programme is effective. With cultural modifications and outsourcing, we believe this adapted programme would be successful in Grenada and other similar settings."
Turgut, T., Yaman, M., & Turgut, A [64]	2016	English (Turkey)	Pretest-posttest, one group	Moderate	Education and skills-based education	Not specified	Children 10–14 years old in Turkey	476 children	Knowledge of prevention of drowning (series of pre-post test surveys)	"We conclude that such a water safety education programme can help increasing knowledge and safe life-saving skills of children."
Zhang, P. B., Chen, R. H., Deng, J. Y., Xu, B. R., & Hu, Y. F. [65]	2003	Chinese (China)	Cluster RCT	Low	Education	1 year	Parents of children aged 1–4 in China	370 parents	Mortality rates and knowledge of drowning prevention (Survey and community-level monitoring)	"Health education to parents is an effective intervening measure for prevention of accidental suffocation and drowning. The goal of health education should be to change inadequate behavior and dangerous environment in which unintentional injury is easily happened. The interviewing measures that not sleeping with their infants in the same beds and not trying infants in a candle with blanket, and putting up fence beside pools and rivers are feasible and practicable."
Authors	Year	Language of Article (Location of Study)	Study Design	Risk of Bias	Intervention Type	Study Follow up time (post-test)	Targeted Population & Setting	Sample Size	Outcome Measures (Tool Used)	Author Conclusions
---------	------	--	--------------	--------------	-------------------	-------------------------------	-----------------------------	-------------	----------------------------	-------------------
Zhu, Y., Feng, X., Li, H., Huang, Y., Chen, J., & Xu, G. [66]	2017	English (China)	RCT	Moderate	Education	No follow up	Children aged 9–17 in China	752 children from three schools in Jiangbei district; (n = 380) or control (n = 372).	Knowledge of drowning prevention (Questionnaire)	"Use of ‘geo-located’ information added value to the effectiveness of a drowning prevention poster for enhancing awareness of drowning hotspots among children of migrant workers.”
Zhu, Y. C., Hui, L. I., Huang, Y. Q., Ding, K., Zhou, Y. F., & Wang, H., et al. [67]	2016	Chinese (China)	Cluster RCT	Low	Environmental change, education and community campaign	Not specified	Children in grades 1–9 in China	7736 and 7730 students from 1st - 9th grade	Incidence rate of non-fatal drowning (Survey)	"The model of integrated drowning interventions, based on the ecological approach and initiated by Ningbo, was proven to be effective and worth popularizing.”
Gimeniz-Paschoal SR, Pereira DM, Nascimento EM [68]	2009	English (Brazil)	Mixed methods, pretest-posttest, with control group	Moderate	Education	1 week	Families with children under 4 years old in Brazil	40 families	Knowledge of prevention of burn (Home interviews)	"It is concluded that the intervention carried out in this study favorably affected the increase of correct information declared about the subject.”
Gimeniz-Paschoal, S. R., Nascimento, E. N., Pereira, D. M., & Carvalho, F. F. [69]	2007	Portuguese (Brazil)	Pretest-Posttest, one group	Moderate	Education	No follow up	Relatives of hospitalized children aged 0–15 in Brazil	n = 37	Knowledge of prevention of burn (Structured questionnaires)	"The education action showed a good informative potential, suggesting its usefulness in the hospital context. This action should be tested in other places, such as primary and secondary attention health units and educational institutions.”

(Continued)
Authors
Heard JP, Latenser BA, Liao J [70]
Jetten P, Chamania S, van Tulder, M [71]
Kebriaee-Za deh, J., Safaeian, L., Salami, S., Mashhadian, F., & Sadeghian, G. H. [72]

Year
2013
2011
2014

Location of Study
Zambia
India
Iran

Study Design
Pretest-posttest with control group
Pilot pretest-posttest, three groups
Pretest-posttest one group

Study Follow up time (post-test)
11 months
1.5 months
1 month

Targeted Population & Setting
Elementary school students in Zambia
Families with children under 4 years in India
Students 10-11 year old in Iran

Intervention Type
Education
Education and provision of safety devices
Education

Risk of Bias
Moderate
Moderate
Low

Outcome Measures (Tool Used)
Knowledge of prevention of burns (10-question survey)
Knowledge and self-reported use of safety device (Questionnaires)
Knowledge of prevention of poisoning (Questionnaire)

Sample Size
550 at first survey, 2197 at follow up
42 families, 34 received intervention
250 students

Author Conclusions

- This study represents one of the few reports on the effectiveness of a burn prevention program in an LMIC. Future epidemiological data from nearby health facilities will determine whether this program decreased burn morbidity and mortality at the hospital level.
- The prevention program seems an effective method in the reduction of burns of young children. Additionally, most families were satisfied with the intervention and would like to use it for a longer period of time. However, a large study with multiple evaluation moments would be needed to provide evidence of the effectiveness of this prevention program.
- The school-based educational programs provide a good opportunity to poison information centers in preventing poisoning.
| Authors | Year | Language of Article (Location of Study) | Study Design | Risk of Bias | Intervention Type | Study Follow up time (post-test) | Targeted Population & Setting | Sample Size | Outcome Measures (Tool Used) | Author Conclusions |
|-------------------------------|------|--|-------------------------------|--------------|-------------------|---------------------------------|-----------------------------|--------------|--------------------------------|--|
| Konradsen, F., Pieris, R., Weerasinghe, M., van der Hoek, W., Eddleston, M., & Dawson, A. H [73] | 2007 | English (Sri Lanka) | Pretest-Posttest, one group | Moderate | Provision of safety devices | 7 months | Households with children in Sri Lanka | 172 households at follow up | Usage of safety devices (Questionnaire) | “The farming community appreciated the storage boxes and made storage of pesticides safer, especially for children. It seems that additional, intensive promotion is needed to ensure that pesticide boxes are locked. The introduction of in-house safe storage boxes resulted in a shift of storage into the farmer’s home and away from the field and this may increase the domestic risk of impulsive self-poisoning episodes. This increased risk needs attention in future safe storage promotion projects.” |
| Krug, A., Ellis, J. B., Hay, I. T., Mokgabudi, N. F., & Robertson, J. [74] | 1994 | English (South Africa) | Pilot study, pretest-posttest, with control group | Low | Education and provision of safety devices | Not specified | Families with children under 5 years old in South Africa | 20,000 CRCs distributed | Incidence of poisonings (Hospital and clinic records, semi-structured questionnaire) | “We recommend that paraffin be sold in CRCs, and suggestions are made for improving health education to prevent paraffin poisoning.” |
| Makhubalo, O., Schulman, D., Rode, H. & Cox, S. [75] | 2018 | English (South Africa) | Controlled Trial | High | Community Awareness and provision of safety devices | 1 month | Households with children 1–76 months | 50 caregivers | Acceptability of device (post intervention phone interview and questionnaire) | “All participants had informed neighbors about the Kettle Strap and burn safety. The participants were prepared to pay ZAR 44 for the complete apparatus. The Kettle Strap is an acceptable, affordable device to improve kettle safety in the home.” |
| Authors | Year | Language of Article (Location of Study) | Study Design | Risk of Bias | Intervention Type | Study Follow up time (post-test) | Targeted Population & Setting | Sample Size | Outcome Measures (Tool Used) | Author Conclusions |
|-------------------------------------|------|--|--------------|--------------|------------------|-------------------------------|--------------------------------|--------------|--------------------------------|--|
| Odendaal, W., van Niekerk, A., Jordaan, E., & Seedat, M. [76] *(burns, falls, poisonings)* | 2009 | English (South Africa) | RCT | Low | Education and provision of safety devices | 1 week | Households with children under 10 years old in South Africa | Baseline: 211, 91 control households, 101 intervention households analyzed | Knowledge of general safety practice and change in risk assessment index (Observations and questionnaires) | “This study confirmed that a multi-component HVP effectively reduced household hazards associated with electrical and paraffin appliances and poisoning among children in a low-income South African setting.” |
| Rehmani, R., & LeBlanc, J. C. [77] *(falls and poisoning)* | 2010 | English (Pakistan) | Non-blinded randomized controlled trial design | Low | Education | 6 months | Families with children 3 years and older in Pakistan | "340 families, 304 (90%) completed follow up' | Observed change in risk factors and knowledge and attitude scores of injury prevention methods (Observation and questionnaire) | “Our study demonstrates the effectiveness of an educational intervention aimed at improving the home safety practices of families with young children.” |
| Schwebel, D. C., Swart, D., Simpson, J., Hui, S. K. A., & Hobe, P. [78] | 2009 | English (South Africa) | Case-control | Low | Education | 4 weeks | Households with children under 18 in South Africa | 206 households | Self-reported knowledge of risk of poisonings and observed safety behaviors (Assessment and home inspection) | “The intervention was successful. A train-the-trainers model might be an effective educational tool to reduce kerosene-related injury risk in low-income communities within low- and middle-income countries.” |
| Sinha, I., Patel, A., Kim, F.-S., Maccorkle, M. L., & Watkins, J. F. [79] | 2011 | English (India) | Pretest-Posttest | Moderate | Education | No follow up | Children aged 5–7 in India | n = 39 | Knowledge of burn prevention (Administered tests) | “This study demonstrates that a comic book has value in teaching children about burn awareness. Comic books may be a cost-effective method as an outreach tool for children.” |
| Authors | Year | Language of Article (Location of Study) | Study Design | Risk of Bias | Intervention Type | Study Follow up time (post-test) | Targeted Population & Setting | Sample Size | Outcome Measures (Tool Used) | Author Conclusions |
|---------|------|--|--------------|-------------|------------------|-------------------------------|--------------------------------|-------------|----------------------------|-----------------|
| Swart, L., van Niekerk, A., Seedat, M., & Jordaan, E. [80] | 2008 | English (South Africa) | Cluster RCT | Low | Education and provision of safety devices | 2 weeks | Households with children under 10 years old South Africa | baseline questionnaire 410 households, 189 households intervention included in analysis, 188 controls | Observation of risk factors (Household survey) | "Our findings suggest that home visits by trained lay workers who provide education, home inspection, and safety devices may contribute to child injury risk reduction in LMICs. However, the improvements in burn- and poisoning-related injury risk reduction over time between intervention and control groups were modest. Furthermore, no reduction in injury risks due to falls was noted." |
| Non-specific/ All Injuries |
| Cao BL, Shi XQ, Qi YH, Hui Y, Yang HJ, Shi SP, Luo, LR, Zhang H, Wang X, Yang YP [82] | 2015 | English (China) | Cluster randomized trial | Low | Education | 16 months | School children 8–16 in China | n = 2342, randomly divided into intervention and control | Knowledge and attitude scores (KAS) (Survey) | "The SFI multi-level education intervention could significantly increase KASs for accidental injuries, which should improve children’s prevention-related knowledge and attitudes about such injuries. Our results highlight a new intervention model of injury prevention among school-aged children." |
| Fonseca, E., de la Caridad, R., Mendoza Molina, A., Castillo Rivera, J. A., & Martínez Rodriguez, M. D. L. A. [83] | 2014 | Spanish (Cuba) | Mixed methods, pretest-posttest, one group | Moderate | Education | 18 months | Parents of children 0–18 months in Cuba | 39 families | Knowledge of potential household injuries (Observation, Questionnaire) | "When families are approached with simple and accessible instruments, and with a community group work it is possible to make favorable changes in terms of awareness of the problem in the same place where it emerged." |
| (Continued) |
| Authors | Year | Language of Article | Location of Study | Study Design | Risk of Bias | Intervention Type | Sample Size | Targeted Population & Setting | Study Follow-Up Time (post-test) | Outcome Measures (Tool Used) | Author Conclusions |
|---------|------|---------------------|-------------------|-------------|-------------|------------------|-------------|-------------------------------|-------------------------------|---------------------------|------------------------|
| Hernández Sánchez, M., García Roche, R., Vinardell Espín, P., & Mercedes, R. E. | 2017 | Spanish | Cuba | Pretest-Posttest, one group | Moderate | Education | 331 | Health workers and educators of adolescents in Cuba | Not specified | Knowledge of prevention of unintentional injury (Questionnaires) | “The training is useful since the knowledge about unintentional injuries and their prevention was increased rapidly, for their subsequent replication in the different areas of action.” |
| Kahriman, I. & Karadeniz, H. | 2018 | English | Turkey | Pretest-Posttest, one group | Low | Education | 300 mothers | Mother with children 0–6 | Not specified | Awareness of prevention methods for pediatric injuries (33-item questionnaire) | “The training provided to mothers to prevent pediatric injuries was effective in improving the awareness of the mothers.” |
| Khatlani, K., Alonge, O., Rahman, A., Hoque, D. M. E., Bhuiyan, A. A., Agrawal, P., & Rahman, F. | 2017 | English | Bangladesh | Nested, matched, one-control study | High | Supervision | 504 (126 cases and 378 controls) | Caregivers of children under 5 years old in Bangladesh | One-year recall period | Mortality from unintentional injuries (Questionnaire, supervision) | “Children under five experiencing intentional or accidental injuries, including drowning, had 6.6 times increased odds of being unsupervised at home compared with alive children (MOR = 6.6, 95% CI: 1.6–7.0), while adjusting for children’s sex, age, socioeconomic index, and adult caregivers’ age, education, occupation, and marital status. These findings are concerning and call for concerted efforts to design community-level prevention strategies. Public awareness and promotion of appropriate adult supervision strategies are needed.” |

(Continued)
Authors	Year	Language of Article (Location of Study)	Study Design	Risk of Bias	Intervention Type	Study Follow up time (post-test)	Targeted Population & Setting	Sample Size	Outcome Measures (Tool Used)	Author Conclusions
Liu, S., Luo, J., Xiang, B., Li, J., Yin, B., Zhu, K., Du, Y.	2015	Chinese (China)	Cluster RCT	Low	Education and environment-tal change	No follow up	Students in grades 3–5 and 7–8 in China	pre-prevention: n = 1828; post-prevention: n = 1768 in total	Incidence of injury (Survey)	“Educational interventions can significantly reduce the incidence of injury among rural school-age children, and improve the cognitive level of children in rural school age to reduce the incidence of injury among rural school-age children in China.”
Mock, C., Arreola-Risa, C., Trevino-Perez, R., Almazan-Saavedra, V., Zozaya-Paz, J. E., Gonzalez-Solis, R., . . . Hernandez-Torre, M. H.	2003	English (Mexico)	Pretest-Posttest, with control group	Moderate	Education	4–6 months	Families with children aged 0–12 in Mexico	1124 children before counselling took place and on 625 after it had been given.	Knowledge about prevention of unintentional injuries (Questionnaires)	“Brief educational interventions targeting parents’ practice of childhood safety improved safe behaviours. Increased attention should be given to specific safety-related devices and to the safety of pedestrians. Educational efforts should be combined with other strategies for injury prevention, such as the use of legislation and the improvement of environmental conditions.”
Muñante-Nima, N., Majuan-López, K., & Farro-Peña, G.	2012	Spanish (Peru)	Pretest-Posttest, one group	Moderate	Education	1 week	Children 10–12 in Peru	72 children	Knowledge of unintentional injury prevention (Questionnaire)	The average knowledge level before the educational intervention was 12.46 points, to increase after intervention to 13.72 points, which can affirm, that the educational intervention was effective.

(Continued)
Authors	Year	Language of Article (Location of Study)	Study Design	Risk of Bias	Intervention Type	Study Follow up time (post-test)	Targeted Population & Setting	Sample Size	Outcome Measures (Tool Used)	Author Conclusions
Muniz LAMA, Gonçalves Campos C, Caetano Romano MC, Pinto Braga P. [81]	2020	Portuguese (Brazil)	post intervention, qualitative study	moderate	Education	1 week	state school students who work	19 students	knowledge about the risks of work accidents (Questionnaire and interview)	It is concluded that this work is important for adolescents, because it created the construction of a new knowledge about the risks of work accidents to which they may be exposed and thus, be able to make decisions about the care with their health.
NING, P., CHENG, P., SCHWEBEL, D. C., YANG, Y., YU, R., DENG, J., LI, S. & HU, G. 2019. [90]	2019	English (China)	Cluster RCT	low	Education	3 and 6 months	Caregivers of preschoolers aged 3–6 years from 20 preschools in Changsha, China	2920 caregivers	Unintentional injury incidences and caregivers’ self-reported attitudes and behaviors concerning child supervision (Online care-giver report)	“The app-based intervention did not reduce unintentional injury incidence among preschoolers but significantly improved caregivers’ safety behaviors. This app-based intervention approach to improve caregiver behaviors surrounding child injury risk offers promise to be modified and ultimately disseminated broadly.”
Pérez, R. R. G., Pérez, N. T., & Martinez, M. U. [91]	2017	Spanish (Cuba)	Cohort Pretest-Posttest	Low	Education	6 months	Households with children under 5 years old in Cuba	112 households	Frequency of risk factors observed (Survey)	“It is considered that the communitarian intervention was successful. It is recommended the used classification of risk of the study and keep on performing interventions with this methodology.”
Authors	Year	Language of Article (Location of Study)	Study Design	Risk of Bias	Intervention Type	Study Follow up time (post-test)	Targeted Population & Setting	Sample Size	Outcome Measures (Tool Used)	Author Conclusions
--	------	--	-----------------------------------	--------------	--	---------------------------------	-------------------------------	--------------	------------------------------	-------------------
Rahman, A.F., Rahman, A., Mashreky, S.R., & Linnan, M. [92]	2009	English (Bangladesh)	Pretest-Posttest, with control group	Low	Education and skills-based education	3 years	Children aged 0-17 in Bangladesh		Injury mortality and morbidity and knowledge of injury prevention methods (Baseline, ISS, and endline surveys, qualitative household interviews)	"The overarching conclusion is that child injury prevention works in rural Bangladesh. For the first time, there is evidence that injury, a leading cause of child death and serious morbidity in an LMIC such as Bangladesh can be prevented with the same reductions seen in the classical child survival interventions such as immunizations, breastfeeding and micronutrient supplementation."
Silva, F. B. E., Gondim, E. C., Henrique, N. C. P., Fonseca, L. M. M. & Mello, D. F. D. [93]	2018	Portuguese (Brazil)	Pretest-Posttest, with one group	High	Education	5 months	Mothers aged 16–25 with children <3 years old	20 mothers	Mother’s knowledge of health education and prevention of injury (Graded assessment)	"The acquisition of knowledge of mothers points out that educational intervention through games is a satisfactory strategy in health education on child health care. However, the results suggest the importance of continuing educational actions at various times and contexts to ensure the sustainability of knowledge and practices, contributing to the integralty of health care."
Tan, L.Z.; Peng, A. A.; Chen, Z.; Chen, J.; Guo, D.; Zhang, B. [94]	2012	Chinese (China)	Pretest-posttest	Moderate	Education	6 months	Parents of children aged 3–6 in China	181 children with their parents	Knowledge of injury prevention (Survey)	"Health education can significantly improve cognitive and behavioral of children and their parents on unintentional injuries."

(Continued)
Authors	Year	Language of Article (Location of Study)	Study Design	Risk of Bias	Intervention Type	Study Follow up time (post-test)	Targeted Population & Setting	Sample Size	Outcome Measures (Tool Used)	Author Conclusions	
Waisman, I., Rodriguez, M. I., Malamud, B., Zabala, R., Echegaray, L., & Bornoroni, G. E. [95]	2005	Spanish (Argentina)	Pretest-posttest	Moderate	Education	5 months	Mothers of children 1 month old in Argentina	205 mothers enrolled, 144 completed survey	Knowledge of accident and injury prevention (Survey)	"1) The educational program contributed to improve the risk and accident prevention knowledge and behaviors in the studied population. 2) Changes were more significant in the group of mothers who initially had the lowest level of information. 3) The areas with greatest difficulties were surveillance behaviors and unsafe behaviors related with electrical accidents prevention and use of baby car seats."	
Wang, H., Liu, Y. X., Deng, W. J., Yang, W. J., & Wang, F. [96]	2015	English (China)	Case-Control	Low	Education	1 year	Families with children in kindergarten in China	2271 children, 904 intervention and 1367 control	Injury incidence rate (Household survey)	"Injury interventions can effectively prevent and control the occurrence of injury."	
Wang, X., Zhang, H., He, H., Ma, H. [97]	2008	Chinese (China)	Cluster RCT	Low	Education, community campaign and skills-based education	1 month	Kindergarten students in China	Not reported (12 kindergartens)	Incidence rate and severity of injury (Survey, medical diagnosis)	"The interventions can significantly reduce the incidence rate of unintentional injuries of before-school-age children."	
Wang, X., & Zhu, Y. [98]	2009	Chinese (China)	Cluster RCT	Low	Education	Not specified	7th-12th grade students aged 12-18 in China	1236 (intervent.), 1320 (control)	Knowledge of accidental injury prevention and rates of injury (including RTI specific outcomes) (Survey, medical diagnosis)	"Peer education plays a important role on preventing accidental injuries in the middle school students."	
Xiao, Z.H. [99]	2013	Chinese (China)	Cluster RCT	Moderate	Education	1 year	Parents with children in kindergarten in China	189 children and parents (intervention), 167 (control)	Knowledge of unintentional injury prevention and injury rate (Survey)	"Health education is an effective, rapid and economic intervention to reduce the incidence of unintentional injuries in children."	(Continued)
Authors	Year	Language of Article (Location of Study)	Study Design	Risk of Bias	Intervention Type	Study Follow up time (post-test)	Targeted Population & Setting	Sample Size	Outcome Measures (Tool Used)	Author Conclusions	
---------------------------------	------	--	--------------	--------------	------------------	---------------------------------	---------------------------------	--------------	--------------------------------	---	
Zhao, C.-H., Qiu, H.-S., & Qiu, H.-X. [100]	2006	Chinese (China)	Cluster RCT	Low	Education	1 year; 2 years	Parents of elementary school children in China	5727 parents	Incidence of injury rate (Survey, hospital records)	"Injury prevention strategies and child and parent safety education can reduce risks of accidental injury in children."	
Zhou X. [101]	2013	Chinese (China)	Pretest-posttest	Moderate	Education and skills-based education	1 year	Parents and teachers of kindergarten students aged 3-6 in China	62,922 children registered at 182 kindergartens	Incidence rate of injury (Self-administered questionnaire)	"Health education interventions to reduce the occurrence of accidental injury in children are effective and feasible. Children accidental injuries are controllable. In different regions, child-care workers should take the corresponding health education interventions to reduce the incidence of children accidental injury according to the regional situation."	
enforcement, and evaluation [1]. We built upon the 5 E framework by classifying interventions as one or more of the following categories: Education interventions were classified as skills-based education (e.g., driving course, swimming lessons) and theory-based education and provision of information (e.g., lectures, videos, pamphlets without practical skill-based component). Engineering interventions included environmental change (e.g., pedestrian overpass, water barriers) and the provision of safety devices (e.g., helmets, pesticide storage boxes). Enforcement interventions included law enforcement (e.g., roadside sobriety checks) and legislation (e.g., new laws). Finally, Encouragement interventions included community campaigns or awareness programs (e.g., television or radio messages) as well as supervision (e.g., observing adult presence).

Many studies assessed more than one intervention type. Seven studies used skills-based educational interventions, 5 changed environmental factors, 3 examined the effectiveness of law enforcement, 11 raised community awareness, 3 observed adult supervision as an intervention, 14 provided safety devices, 3 evaluated legislation, and 65 studies used an educational intervention. The follow-up time after each intervention ranged from 0 to 3 years, with most interventions (n = 42) having a follow-up period of less than 6 months, no follow-up at all, or not specified (Table 1).

A summary of the outcomes of these interventions, stratified by injury type, can be found in Tables 2–6. For RTIs, the studies used interventions in skills-based education, environmental change, law enforcement, community awareness, provision of safety devices, legislation, and education (Table 2). The majority of these studies found an increase in road safety knowledge and self-reported safety behaviors. All studies that reported injury related outcomes (incidence, risk, severity, mortality) showed a decrease in numbers, except one study from Tanzania [56] that...
reported a 3% increase in RTI incidence on the intervention site with no change in incidence at the control site.

For drowning, the studies used interventions in skills-based education, environmental change, community awareness, supervision, provision of safety devices, and education (Table 3). The majority of these studies found an increase in knowledge of the prevention of drowning. Most studies found a reduction in the incidence of non-fatal and fatal drowning [58, 67, 92]. One study did not find a significant decrease in injury rates (11.1% to 11.0%), but did find a positive increase in knowledge following a community awareness program and education materials [59].

For burns, the studies used interventions in the categories of community awareness, provision of safety devices, legislation, and education (Table 4). A reduction in the incidence of burns and hospitalizations as a result of burns was found following the provision of safety devices [71, 76]. While one study did not find statistically significant intervention effects on electrical and paraffin burn–related hazard reduction, they did report a significant change in burn-related safety practices and behaviors [80]. An increase in knowledge of the prevention of burns was reported in the studies using educational interventions [68–70, 75, 76, 78, 79].

In the fall category, the studies used interventions including the provision of safety devices and education, combined with interventions about poisonings and burns. There was no significant decline in hazards or injury risk [76, 77, 80].
Table 2. Summary of intervention outcomes for injury types: Road traffic injuries.

Intervention Type (Component of the 5 E Framework)	Intervention Description	Injury-Related Outcomes	Other Outcomes
Road Traffic Injuries			
Skills-based education (Education)	One-week driving course	Increase in RTIs perhaps due to changing climate conditions [56]	
Practical training of safe street-crossing behaviors		Observed improvement of safe street crossing behaviors [55]	
Environmental change (Engineering)	A pedestrian overpass was constructed	Fewer fatalities but more pedestrian injuries and traffic crashes [47]	
Infrastructure enhancements designed to lower vehicle speeds and separate pedestrians from traffic		Reduced incidence of RTI [50]	
Law enforcement (Enforcement)	Additional sobriety checkpoints	Decrease in hospital admissions, decrease in ICU admission due to head trauma (significant) increase in helmet use (significant), decreased mortality (not significant) (combined with other interventions) [37]	Increased awareness of road safety measures [41]
Confiscation of motorcycle for riders not wearing helmets			
Traffic Act that increased arrests and surveillance		No changes in injury severity pre- and post-enforcement [46]	
Community awareness (Encouragement)	Radio messages, banners and posters	Decrease in hospital admissions, decrease in ICU admission due to head trauma (significant) increase in helmet use (significant), decreased mortality (not significant) (combined with other interventions) [37]	Increase in level of knowledge [40].
Social marketing campaign			Reported awareness of road safety messages [41]
Media resources, videos, t-shirts			Reduction in injury severity, mainly for traumatic brain injuries [52]
Provision of safety devices. (Engineering)	Provision of motorcycle and bicycle helmets	Decrease in hospital admissions, decrease in ICU admission due to head trauma (significant) increase in helmet use (significant), decreased mortality (not significant) (combined with other interventions) [37]	Increased observed helmet use [33]
Provision of child safety seats			Increased self-reported use of child safety seats [45]
Provision of reflector vests and motorcycle helmets			
Legislation (Enforcement)	Zero blood-alcohol limit and higher penalties for drinking and driving	Decrease in overall and pedestrian mortality [28]	
Law requiring helmets be worn on motorcycles		Decrease in hospital admissions, decrease in ICU admission due to head trauma (significant) increase in helmet use (significant), decreased mortality (not significant) (combined with other interventions) [37]	
Child restraint legislation		Reduction in the rate of child injuries [48]	

(Continued)
Intervention Type (Component of the 5 E Framework)	Intervention Description	Summary of Outcomes
Education (Education)	Storybooks	Increase in knowledge of road safety [29].
Pamphlets and videos for child safety seats		Increase in knowledge and purchase of child safety seat [31]
Lectures	Decrease in incidence of bicycle injuries [42]; decrease in hospital admissions, decrease in ICU admission due to head trauma (significant) increase in helmet use (significant), decreased mortality (not significant) (combined with other interventions) [37]	Increase in knowledge of drink driving risk; [32] change in knowledge about brain and spinal cord injuries but no change in attitudes toward prevention; [36] increased knowledge on helmet usage only; [38] no change in reported attitudes about injury prevention; [35] increase in knowledge and safety practices; [54] change in self-reported attitude; [41] decrease in self-reported drink driving; [30] reduced incidence of RTI; [50] change in risk perception [51]
In-school training on the importance of helmets and proper fit		Increase in observed helmet use [33]
Promotional videos		Increase in knowledge and self-reported use of booster seats [34]
Education materials	No change in traffic violations or accidents [43, 44]	Change in knowledge; [43] increase in knowledge; [44] education alone did not increase use of child safety seats; [45] observed improvement of safe street crossing behaviors [55]
Lectures, posters and guidebooks	Decrease in incidence of injury [87]	Increase in knowledge of safety [53]
Peer education		Increased level of knowledge and maintained the preventive attitudes and practices of traffic accidents [39]
Educational program using the educational therapeutic method		Increase in knowledge [96]
Seminars and videos	Decrease in injury [96]	Increase in knowledge [96]

The outcomes reported may be a summary of more than one intervention type.

https://doi.org/10.1371/journal.pone.0243464.t002
For poisonings, the studies used interventions in the categories of community awareness, provision of safety devices, and education (Table 5). Most studies reported an increase in observed safety behaviors [73, 76, 78], and an increase in self-reported knowledge of prevention methods [72]. Krug et al. reported a decrease in the incidence by 47.4% of poisonings by ingestion after the distribution of child restraint containers for paraffin [74]. Swart (2008), who also provided safety devices and conducted several home visits, did not find a significant intervention effect for poisoning and falls, but for burn safety practices (p-value 0.021 intervention effect -0.41 (-0.76 to -0.07)) [80].

The intervention types used for non-specified injury categories included skills-based education, environmental change, community awareness, supervision, and education (Table 6).
These studies mainly reported an increase in caregiver knowledge of injury prevention methods. Nine studies reported positive outcomes directly related to injury rates, incidence, mortality, and severity [86, 91, 92, 96, 97, 99, 100, 102].

Interestingly, 2 studies conducted in LICs evaluated implemented environmental changes, as recommended by the WHO, and found varying results. While infrastructure enhancements to reduce vehicle speed and create spatial separation from pedestrians and vehicles resulted in a reduction of injuries [50] the construction of a pedestrian overpass resulted in an increase of pedestrian injuries and traffic crashes, albeit reducing fatality rates [47].

Among the 19 RCTs included, 84% (n = 16) used educational interventions, with the remaining studies using a combination of education and other interventions (Fig 4A).

Additionally, 26% (n = 5) of the RCTs addressed RTIs, 37% (n = 7) non-specific or all injury categories, 21% (n = 4) addressed drowning, and 16% (n = 4) examined burns, falls, or poisonings (Fig 4B).

Discussion

This is the first systematic review evaluating all types of childhood unintentional injury prevention initiatives in LMICs published within the past 30 years, building on the 2008 WHO report on Child Injury Prevention. It is also the first to summarize the available evidence in English and non-English studies on LMIC childhood prevention interventions by injury.
geographic location, and intervention type. This systematic review confirms that despite having the highest global burden of childhood unintentional injuries, LMICs have a disproportionately limited amount of research in this area compared to HICs [2, 18]. The findings reveal that 1) there is an unequal distribution of research regarding each injury type and a lack of injury-specific research, 2) there is an uneven geographical coverage, and 3) the general quality of the included studies was low, often due to the study design and the failure to be sensitive to or relevant for local cultures.

Unequal distribution of injury types

The number of studies per injury type varied greatly, revealing an unequal distribution of research regarding each injury type. The highest burden of RTI in children is found in Africa, with 19.9 deaths per 100,000 people, followed by LMICs in the Eastern Mediterranean with 17.4 deaths per 100,000 people [105]. The majority of the studies focused on RTI, which may be warranted given their high burden among children in LMICs. However, we found that less than 15% of the included studies took place in SSA, representing only 3 out of the 48 SSA countries [46, 47, 50, 56]. Additionally, only one study was conducted in the Mediterranean [55], which demonstrates the need to focus future intervention programs on countries with the highest burden of RTI. The number of studies conducted for the other injury types were generally representative of the disease burden in the geographical locations. There is very little research on falls among children in LMICs, with the majority of this research targeted towards the elderly population in HIC [13]. Compared to other injury types, there is a low burden of fall injury among children in LMICs and this was consistent with the small number of studies focusing on falls included in this review. The included drowning prevention interventions were mostly conducted in Asian countries, where it is most prevalent, surpassing the highest reported injury rates for RTI (19.9 per 100,000 in Africa), with 30 per 100,000 in China, Philippines, Bangladesh, Vietnam, and Thailand. While the above findings show studies that mostly

Table 5. Summary of intervention outcomes for injury types: Poisonings.

Intervention Type (Component of the 5 E Framework)	Intervention Description	Summary of Outcomes
Poisonings		
Community Awareness (Encouragement)	Training community workers to deliver materials	Increase in self-reported knowledge and observed safety practices [78]
Provision of Safety Devices (Engineering)	Child-proof, lockable storage containers	Decrease in incidence of paraffin ingestion [74], Increase in pesticides kept safe from children; [73] reduction in poison hazards; [76] no significant decrease in hazards [80]
Education (Engineering)	Seminars	Increase in knowledge [72]
	Printed materials	Reduction in paraffin ingestion [74], Reduction in hazards [76]
	Counselling	Observed change in risk factors and knowledge and attitude scores of injury prevention methods [77]
Home education	No significant decline in injury risk [80]	

The outcomes reported may be a summary of more than one intervention type.

https://doi.org/10.1371/journal.pone.0243464.t005
Table 6. Summary of intervention outcomes for injury types: Non-specific/all injuries.

Intervention Type (Component of the 5 E Framework)	Intervention Description	Summary of Outcomes
Non-specific/All injuries		
Skills-based education (Education)	Emergency response training	Incidence rate and severity of injury decreased [97]
	First aid training	Reduction in injury rate among boys [101] Increase in caregiver knowledge [101]
Environmental change (Engineering)	Upgrade school environment	Reduction in incidence of injury [87]
Community Awareness (Encouragement)	Change in community regulations	Decrease in incidence of injuries [97].
Supervision (Encouragement)	Evaluation of supervision	Unintentional injury mortality 3x higher when unsupervised—mainly for drowning [86]
Education (Education)	Posters, letters, lectures, videos	Increased knowledge [103]
	Training of health workers	Increase in knowledge [84]
	Lectures, posters, guidebooks	Decrease in injury incidence [87] Increase in parental knowledge and safety behaviors [88]
	Counselling	Increase in knowledge [99] decrease in injury incidence rates [96] Increase in knowledge, decrease in risks in household; [83] increase in knowledge; [89] increase in knowledge; [99] increase in knowledge [94]
	Lectures	Decrease of injury rate; [99] decrease in injury incidence rates [96] Increase in knowledge, decrease in risks in household; [83] increase in knowledge; [89] increase in knowledge; [99] increase in knowledge [94]
	Communication from doctor	Decrease in accidents [91] Decrease in risk factors for injury [91] Increase in knowledge of risk factors [81]
	Education, conversation circles, dialogical relationship framework	Increased knowledge of risk factors [81]
	Brochures	Increase in knowledge [104]
	App-based parenting education	No change in unintentional injury incidence among preschoolers [90] Significantly improved caregivers’ safety behaviors [90]
	Guidebooks, peer education	Decrease in incidence rate and severity of injury; [97] decrease in injury rate (including RTI-specific) [98] Increase in knowledge [98]
	Games and posters	Decrease in the rate of injury (including RTI specific) [98] Increase in injury prevention knowledge [93, 98]
	Education of parents, teachers, and children	Decrease in injury rate among boys [101] Increase in knowledge among parents; [101] increase in mothers’ awareness of prevention methods for pediatric injuries [85]

The outcomes reported may be a summary of more than one intervention type

https://doi.org/10.1371/journal.pone.0243464.t006

corresponded with the associated disease burden, 33% studies focused on “all” or “non-specific” injury types. The WHO recommends research specific actions to decrease the burden of childhood injuries, namely to “enhance the quality and quantity of data for child injury
prevention” and “define priorities for research, and support research on the causes, consequences, costs and prevention of child injuries” [19].

Uneven geographical coverage

The geographical distribution of the studies also reveals uneven coverage as seen in Fig 2. In terms of authorship, 16 of the 74 included articles had first authors from HIC, and 51 out of 74 had first authors from upper middle-income countries (UMICs), leaving only 7 articles with first authors from low and lower middle income countries. Therefore, conducting
interventions in LMICs does not imply that local researchers were consulted or included in research design and application. 58 of the 74 (78%) included studies were conducted in 13 UMICs. However, 34 of the 58 (59%) were conducted in either Brazil or China. Latin America does not represent the highest burden of injury compared to Africa and Asia, yet is represented by 30% of the included studies, with more than half of the studies conducted in Brazil. While 22% of all UMICs are included in this review, 13% of all LMICs and only 6% of low-income countries (LICs) were the setting for childhood injury prevention program evaluations. LICs were not only the most underrepresented group, but also the least diverse group in terms of injury types and geographical locations, including only RTI interventions in SSA. While LICs face the highest injury burden [19], the limited number of interventions conducted could be due to a lack of available funding to invest in expensive prevention strategies that have been successful in HICs. However, in many LICs, the roads are shared by pedestrians, animals, cars, buses, motorcyclists, and bicyclists.

Lack of high-quality study designs and relevance to local culture

Lastly, the quality of the included studies varied greatly, and our findings support the need for implementing high-quality interventions that are culturally sensitive, relevant, and welcomed by the local culture [106]. The insufficient funding for research on injury prevention in LMICs has resulted in few randomized evaluations and few studies with control groups or significant follow-up periods [107]. In this review, only 19 RCTs were included, and 47% (n = 35) of the 74 studies had a moderate or high risk of bias. In many studies, a self-reported survey tool was used to determine injury rates. Among the RCTs included, the majority used educational interventions and addressed all or non-specific injury categories, leading to a lack of clearly defined, injury-related outcomes. Importantly, 6 of the 9 RCTs since 2008 have been conducted in China almost exclusively investigating the impact of education on all or non-specific injuries within the school setting. We only included studies that included a comparison group to assess the impact of the prevention intervention. Rothman et al. recently conducted a review on the study designs used to assess the quality of child injury prevention interventions that were published between 2013 and 2016 [108]. Their findings also suggest a lack of high quality, hypothesis-driven study designs. The evaluation of all of the studies in this review mainly showed a positive or desired self-reported change following educational interventions, a need for longer follow-up, the need for effectiveness trials to access behavior change, and the need for an increase in injury prevention services in low- and middle-income settings. While those recommendations are critical and in line with what other organizations have called for, they do not provide a strong indication on which of those recommendations will be most important to focus on going forward. Beyond improved study designs, higher quality interventions will be sensitive to the needs of specific populations, environments, and available resources [106].

A validation study by Kohrt et al. also points out the risk of doing more harm than good by providing interventions that have not been validated in comparable settings [109]. For example, although overpasses have been effective in other settings, one study that implemented an overpass for a busy street saw an increase in RTI, due to individuals’ perceptions that the overpass increased walking distance and its low visibility created a new space for crime [47].

Limitations

This review has certain limitations. Due to our inclusion of various methodologies, conducting a quantitative meta-analysis was not possible. There were 19 RCTs, but they reported non-similar outcomes for different injuries, and had varying study follow up times, making them not suitable for a meta-analysis. Additionally, including only a single type of study design would
not have produced a thorough representation of the present literature on the prevention of unintentional injuries of children in LMICs. Our inclusion criteria included a control group and peer-review, which adds to the cost of the studies, excludes unpublished theses and non-indexed journals that are common in LMICs, and does not account for researchers falling victim to predatory journals that do not lead to publication. Grey literature was not included in our analysis, which could lead to possible exclusion of presented intervention programs, but we ensured that only data of sufficient rigor was included in this review by making peer-reviewed publication part of our inclusion criteria. In order to categorize the injury types, we have followed the major categories of injury presented by WHO. While this may have resulted in the exclusion of some other types of injury, such as animal bites or sunburns, those injury types, while important to address in specific hotspots and high-risk populations, do not account for a significant burden of injuries globally. Additionally, some of the reported injuries could have been a result of violence against children and falsely identified as unintentional, which could impact the effectiveness of the investigated prevention methods for unintentional injuries. We have included countries based on their current income status rather than at the time of the publication of the study to identify the needs and intervention possibilities for current LMICs. While this likely does not exclude any countries in the low-income category, we may have excluded a few countries that moved from UMIC to HIC over time.

Conclusion

Childhood unintentional injury contributes to a significant amount of global mortality and morbidity. Children living in LMICs are especially vulnerable to injury. There have been numerous effective and low-cost solutions for injuries, but there is a lack of dispersal of these initiatives into the most affected settings. This requires significant political will and increased funding to go beyond educational initiatives with self-reported measures and little follow-up time, to robust research and interventions that will reduce the global burden of unintentional injuries among children. Low or non-existing funding is a significant and ongoing barrier for researchers from LMIC. International donors providing research funding should focus on LMIC, and particularly LIC, and provide assistance in writing grant proposals to allow for more rigorous study designs, thereby improving the quality of research relevant to LMIC. To significantly reduce the rates of injury and the associated negative health and social outcomes, future studies should focus on high-quality trials to assess targeted intervention strategies for areas with a high injury burden that are specifically tailored for the needs of specific cultural and geographical settings.

Supporting information

S1 Appendix. Data quality assessments.
(DOCX)

S2 Appendix. Search terms.
(DOCX)

S3 Appendix. PRISMA checklist.
(DOCX)

Author Contributions

Conceptualization: Anna Tupetz, Kaitlyn Friedman, Megan Von Isenburg, Joao Ricardo Nickenig Vissoci, Catherine A. Staton.
Data curation: Megan Von Isenburg.

Formal analysis: Anna Tupetz, Kaitlyn Friedman, Duan Zhao, Huipeng Liao, Joao Ricardo Nickenig Vissoci.

Methodology: Anna Tupetz, Kaitlyn Friedman, Joao Ricardo Nickenig Vissoci, Catherine A. Staton.

Supervision: Anna Tupetz, Kaitlyn Friedman, Joao Ricardo Nickenig Vissoci, Catherine A. Staton.

Validation: Duan Zhao, Huipeng Liao.

Visualization: Anna Tupetz, Kaitlyn Friedman.

Writing – original draft: Anna Tupetz, Kaitlyn Friedman, Elizabeth M. Keating.

Writing – review & editing: Anna Tupetz, Kaitlyn Friedman, Duan Zhao, Huipeng Liao, Megan Von Isenburg, Elizabeth M. Keating, Joao Ricardo Nickenig Vissoci, Catherine A. Staton.

References

1. Alonge O, Hyder AA. Reducing the global burden of childhood unintentional injuries. Arch Dis Child. 2014 Jan; 99(1):62–9. https://doi.org/10.1136/archdischild-2013-304177 PMID: 24187033

2. Peden M, Oyebite K, Ozanne-smith J, Hyder A a., Branch e C, Rahman FA, et al. World Report On Child Injury Prevention. 1st ed. Geneva, Switzerland: World Health Organization Unicef; 2008.

3. Paudel S, Bhandari L, Bhandari DB. Disability: A Case Screening Program Approach. Journal of Biosciences and Medicines. 2017; 5(02):10.

4. Linnan L, Weiner B, Graham A, Emmons K. Manager beliefs regarding worksite health promotion: findings from the Working Healthy Project 2. Am J Health Promot. 2007 Aug; 21(6):521–8. https://doi.org/10.4278/0890-1171-21.6.521 PMID: 17674640

5. Centers for Disease Control, Prevention. National action plan for child injury prevention. Washington, DC. 2012.

6. Griffith AK. Committee on the prevention of mental disorders and substance abuse among children, youth, and young adults, National Research Council and the Institute of Medicine: preventing mental, emotional, and behavioral disorders among young people: progress and possibilities. 2010;

7. Pearn JH, Bart RD, Yamaoka R. Neurologic sequelae after childhood near-drowning: A total population study from Hawaii. Pediatrics. 1979; 64(2):187–91. PMID: 471608

8. Al-Qurashi FO, Yousef AA, Aljoudi A, Alzahrani SM, Al-Jawder NY, Al-Ahmar AK, et al. A Review of Nonfatal Drowning in the Pediatric-Age Group. 2017;

9. Lama BB, Duke JM, Sharma NP, Thapa B, Dahal P, Bariya ND, et al. Intentional burns in Nepal: a comparative study. Burns. 2015 Sep; 41(6):1306–14. https://doi.org/10.1016/j.burns.2015.01.006 PMID: 25716765

10. World Health Organization. Burns [Internet]. World Health Organization. 2018 [cited 2020 Sep 6]. Available from: https://www.who.int/news-room/fact-sheets/detail/burns

11. Forjuoh SN. Burns in low- and middle-income countries: a review of available literature on descriptive epidemiology, risk factors, treatment, and prevention. Burns. 2006 Aug; 32(5):529–37. https://doi.org/10.1016/j.burns.2006.04.002 PMID: 16777340

12. Nhumbua PM. Burns in sub-Saharan Africa: A review. Burns. 2016 Mar; 42(2):258–66. https://doi.org/10.1016/j.burns.2015.04.006 PMID: 25981292

13. Reuben DB, Gazarian P, Alexander N, Araujo K, Baker D, Bean JF, et al. The Strategies to Reduce Injuries and Develop Confidence in Elders Intervention: Falls Risk Factor Assessment and Management, Patient Engagement, and Nurse Co-management. J Am Geriatr Soc. 2017 Dec; 65(12):2733–9. https://doi.org/10.1111/jgs.15121 PMID: 29044479

14. Verma SK, Willetts JL, Corns HL, Marucci-Wellman HR, Lombardi DA, Courtney TK. Falls and Fall-Related Injuries among Community-Dwelling Adults in the United States. PLoS One. 2016 Mar 15; 11 (3):e0150939. https://doi.org/10.1371/journal.pone.0150939 PMID: 26977599
15. Bartlett SN. The problem of children’s injuries in low-income countries: a review. Health Policy Plan. 2002 Mar; 17(1):1–13. https://doi.org/10.1093/heapol/17.1.1 PMID: 11861582

16. Forward KE, Loubani E. Predictable and preventable: historical and current efforts to improve child injury prevention. Curr Pediatr Rev. 2018; 14(1):48–51. https://doi.org/10.2174/1573993613666171010111722 PMID: 29032759

17. Zwi AB, Forjuoh S, Murugusampillai S, Odero W, Watts C. Injuries in developing countries: policy response needed now. Trans R Soc Trop Med Hyg. 1996 Nov; 90(6):593–5. https://doi.org/10.1016/s0035-9203(96)90399-5 PMID: 9015490

18. Hofman K, Primack A, Keusch G, Hrynkov S. Addressing the growing burden of trauma and injury in low- and middle-income countries. Am J Public Health. 2005 Jan; 95(1):13–7. https://doi.org/10.2105/ AJPH.2004.039354 PMID: 15623852

19. Hyder AA, Sugerman DE, Puvanachandra P, Razzak J, El-Sayed H, Isaza A, et al. Global childhood unintentional injury surveillance in four cities in developing countries: a pilot study. Bull World Health Organ. 2009 May; 87(5):345–52. https://doi.org/10.2471/blt.08.055798 PMID: 19551252

20. Bhalla K, Harrison JE, Shahraz S, Fingerhut LA. Global Burden of Disease Injury Expert Group. Availability and quality of cause-of-death data for estimating the global burden of injuries. Bull World Health Organ. 2010 Nov 1; 88(11):831–838C. https://doi.org/10.2471/BLT.09.068809 PMID: 21076564

21. Lao Z, Gifford M, Dalal K. Economic cost of childhood unintentional injuries. Int J Prev Med. 2012 May; (3):303–12. PMID: 22708026

22. Vecino-Ortiz AI, Rafati A, Hyder AA. Effective interventions for unintentional injuries: a systematic review and mortality impact assessment among the poorest billion. Lancet Glob Health. 2018; 6(5): e523–34. https://doi.org/10.1016/S2214-109X(18)30107-4 PMID: 29653626

23. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009 Jul 21; 6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097 PMID: 19621072

24. World Bank. World Bank country and lending groups. 2017.

25. Higgins JPT. Cochrane Handbook for Systematic Reviews of Interventions version 6.0 (updated July 2019). Cochrane. 2019;

26. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019 Aug 28; 366:i4898. https://doi.org/10.1136/bmj.i4898 PMID: 31462531

27. Higgins JPT. Cochrane Handbook for Systematic Reviews of Interventions version 6.0 (updated July 2019). Cochrane. 2019;

28. Abreu DR de OM, Souza EM de, Mathias TA de F. [Impact of the Brazilian Traffic Code and the Law Against Drinking and Driving on mortality from motor vehicle accidents]. Cad Saude Publica. 2018 Aug 20; 34(8):e00122117. https://doi.org/10.1590/0102-311X(2018)30107-4 PMID: 30133659

29. Ahmad H, Naeem R, Feroze A, Zia N, Shakoor A, Khan UR, et al. Teaching children road safety through storybooks: an approach to child health literacy in Pakistan. BMC Pediatr. 2018 Feb 7; 18(1):31. https://doi.org/10.1186/s12887-018-0982-5 PMID: 29415675

30. Chany J, Hyder AA, Ochoa JD, Tejada JH, Navarro-Parra SL, Esquivel N, Vasques Y. Education in trauma: An educational alternative that promotes injury prevention. Chin J Traumatol. 2017 Oct; 20(5):275–7. https://doi.org/10.1016/j.jchj.2017.04.006 PMID: 28684038

31. Chen X, Yang J, Peek-Asa C, Chen K, Liu X, Li L. Hospital-based program to increase child safety restraint use among birthing mothers in China. PLoS One. 2014 Aug 18; 9(8):e105100. https://doi.org/10.1371/journal.pone.0105100 PMID: 25133502

32. Dorigatti AE, Jimenez LS, Redondano BR, Carvalho RB de, Calderon TRA, Fraga GP. Importância de programa multiprofissional de prevenção de trauma para jovens. Revista do Colégio Brasileiro de Cirurgiões. 2014; 41(4):245–50. https://doi.org/10.1590/0100-699120140040004 PMID: 25295984

33. Ederer DJ, Bui TV, Parker EM, Roehler DR, Sidik M, Florian MJ, et al. Helmets for Kids: evaluation of a school-based helmet intervention in Cambodia. Inj Prev. 2016 Feb; 22(1):52–8. https://doi.org/10.1136/injuryprev-2014-041434 PMID: 2607107

34. Erkoboni D, Ozanne-Smith J, Rouxiang C, Winston FK. Cultural translation: acceptability and efficacy of a US-based injury prevention intervention in China. Inj Prev. 2010 Oct; 16(5):296–301. https://doi.org/10.1136/injuryprev-2009-023341 PMID: 20921561

35. Falavigna A, Medeiros GS, Canabarros CT, Barazzetti DO, Marcon G, Carneiro Monteiro GM, et al. How can we teach them about neurotrauma prevention? Prospective and randomized “Pense Bern-Caxias do Sul” study with multiple interventions in preteens and adolescents. J Neurosurg Pediatr. 2014 Jul; 14(1):94–100. https://doi.org/10.3171/2014.3.PEDS13295 PMID: 24766306

36. Falavigna A, Teles AR, Velho MC, Medeiros GS, Canabarros CT, de Braga GL, et al. Impact of an injury prevention program on teenagers’ knowledge and attitudes: results of the Pense Bern-Caxias do Sul
37. Foroutan A, Heydari ST, Karvar M, Mohammadi L, Sarikhany Y, Akbari M, et al. Results of a Campaign for Motorcycle Helmets Advocacy in a City in Southwest of Iran: A Population-Based Intervention Study. Bull Emerg Trauma. 2019 Oct; 7(4):404–10. https://doi.org/10.29252/bet-070410 PMID: 31858004

38. Frandoloso V, Magnab CD, Carvalho FTBG. O impacto de aulas expositivas (ministrada para crianças entre 09 e 11 anos) sobre o reconhecimento de situações de risco para ocorrência de TCE. Revista UNIPLAC. 2015; 3(1).

39. Freitas CKAC, Rodrigues MA, Parreira PMSD, Santos ACFSD, Lima SVMA, Fontes VS, et al. Educational program for the promotion of knowledge, attitudes and preventive practices for children in relation to traffic accidents: experimental study. Rev Paul Pediatr. 2019 Jul 4; 37(4):458–64. https://doi.org/10.1590/1984-0462/2019;37;4;00012 PMID: 31291444

40. Hidalgo-Solórzano E, Hijar M, Mora-Flores G, Treviño-Siller S, Inclán-Valadez C. Accidentes de tránsito de vehículos de motor en la población joven: evaluación de una intervención educativa en Cuernavaca, Morelos. salud pública de méxico. 2008; 50;6:60–8. https://doi.org/10.1590/s0036-36342008000600010 PMID: 18373011

41. Hijar M, Pérez-Núñez R, Santoyo-Castillo D, Lunnen JC, Chandran A, Celis A, et al. Attitude change in youths after being exposed to different road safety interventions in two Mexican cities. Injury. 2013 Dec; 44 Suppl 4:S4–10. https://doi.org/10.1016/S0020-1383(13)70206-7 PMID: 24377778

42. Ji Y, Ye Y, Lu Y, Li L, Yang G. An Intervention to Reduce Bicycle Injuries among Middle School Students in Rural China. Int J Environ Res Public Health. 2017 Jun 26; 14(7). https://doi.org/10.3390/ijerph14070690 PMID: 28672854

44. Jin HQ, Li YC, Zhang SL, Yu WS. [Evaluation on the effects of education regarding road safety among middle school students]. Zhonghua Liu Xing Bing Xue Za Zhi. 2009; 30(8):797–801. PMID: 20193201

45. Liu X, Yang J, Cheng F, Li L. Newborn parent based intervention to increase child safety seat use. International journal of environmental research and public health. 2016; 13(8):777. https://doi.org/10.3390/ijerph13080777 PMID: 27490562

46. Muguku E, Ouma J, Yitambe A. Effects of enforcement of the traffic act on injury severity among child pedestrians in Kampala—Uganda. Afr Health Sci. 2002 Dec; 2(3):89–93 . PMID: 12789091

48. Nazif-Munoz JI, Nikolic N. The effectiveness of child restraint and seat belt legislation in reducing child injuries: The case of Serbia. Traffic Inj Prev. 2018 Feb 28; 19(sup1):S7 –14. https://doi.org/10.1080/15389588.2017.1387254 PMID: 29931193

47. Mutto M, Kobusingye OC, Lett RR. The effect of an overpass on pedestrian injuries on a major highway in Kampala—Uganda. Afr Health Sci. 2002 Dec; 2(3):89–93 . PMID: 12789091

49. Nazif-Munoz JI, Nandi A, Ruiz-Casares M. Protecting only white children: the impact of child restraint legislation in Brazil. J Public Health. 2019 Jun 1; 41(2):287–95. https://doi.org/10.1093/pubmed/fdy105 PMID: 29931193

50. Poswoayo A, Kalolo S, Rabonovitz K, Witte J, Guerrero A. School Area Road Safety Assessment and Improvements (SARSAI) programme reduces road traffic injuries among children in Tanzania. Inj Prev. 2019; 25(5):414–20. https://doi.org/10.1136/injuryprev-2018-042786 PMID: 29778992

51. Rimal RN, Yilma H, Ryskulova N, Geber S. Driven to succeed: Improving adolescents' driving behaviors through a personal narrative-based psychosocial intervention in Serbia. Accid Anal Prev. 2019 Jan; 122:172–80. https://doi.org/10.1016/j.aap.2018.09.034 PMID: 30384087

52. Salvarani CP, Colli BO, Carlotti Júnior CG. Impact of a program for the prevention of traffic accidents in a Southern Brazilian city: a model for implementation in a developing country. Surg Neurol. 2009 Jul; 72(1):6–13; discussion 13. https://doi.org/10.1016/j.surneu.2007.10.008 PMID: 18328548

53. Setyowati DL, Risva, Anwar A. Duta safety riding: the actors of traffic accidents prevention in samarinda, east kalimantan, indonesia. Ind Jour of Publ Health Rese & Develop. 2019; 10(11):1709.

54. Treviño-Siller S, Pacheco-Magaña LE, Bonilla-Fernández P, Rueda-Neria C, Arenas-Monreal L. An educational intervention in road safety among children and teenagers in Mexico. Traffic Inj Prev. 2017 Feb 17; 18(2):164–70. https://doi.org/10.1080/15389588.2016.1224344 PMID: 27575522

55. Zare H, Niknani S, Heidarnia A, Hossein Fallah M. Traffic safety education for child pedestrians: A randomized controlled trial with active learning approach to develop street-crossing behaviors. Transportation Research Part F: Traffic Psychology and Behaviour. 2019 Jan; 60:734–42.
56. Zimmerman K, Jinadasa D, Maegga B, Guerrero A. Road traffic injury on rural roads in Tanzania: measuring the effectiveness of a road safety program. Traffic Inj Prev. 2015 Jan 28; 16(5):456–60. https://doi.org/10.1080/15389588.2014.973491 PMID: 25356935

57. Callaghan JA, Hyder AA, Khan R, Blum LS, Arifeen S, Baqui AH. Child supervision practices for drowning prevention in rural Bangladesh: a pilot study of supervision tools. J Epidemiol Community Health. 2010 Jul; 64(7):645–7. https://doi.org/10.1136/jech.2008.080903 PMID: 20547700

58. Davoudi-Kiaakalayeh A, Mohammadi R, Yousefzade-Chabok S, Jansson B. Evaluation of a community-based drowning prevention programme in northern Islamic Republic of Iran. East Mediterr Health J. 2013; 19(7):629–37. PMID: 24975308

59. Guo QZ. 广东省连平县小学生溺水健康教育干预近期效果评价 - 中国优秀硕士学位论文全文数据库 [Effect evaluation of water safety education on children nonfatal drowning prevention in Lianping County, Guangdong Province]. 暨南大学. 2010.

60. Guo QZ, Ma W-J, Xu H-F, Nie S-P, Xu Y-J, Song X-L, et al. 农村中小学生溺水健康教育干预近期效果评价 [Evaluation on the health education program regarding prevention of non-fatal drowning among school-aged children in Lianping county, Guangdong province]. 中国流行病学杂志 v. 2010; 31(1):22–6. PMID: 20302692

61. Rahman F, Bose S, Linnan M, Rahman A, Mashreky S, Haaland B, et al. Cost-effectiveness of an injury and drowning prevention program in Bangladesh. Pediatrics. 2012 Dec; 130(6):e1621–8. https://doi.org/10.1542/peds.2012-0757 PMID: 23147971

62. Shen J, Pang S, Schwebel DC. Evaluation of a drowning prevention program based on testimonial videos: A randomized controlled trial. J Pediatr Psychol. 2016 Jun; 41(5):555–65. https://doi.org/10.1093/jpepsy/jsv104 PMID: 26546476

63. Solomon R, Giganti MJ, Weiner A, Akpinar-Elci M. Water safety education among primary school children in Grenada. Int J Inj Contr Saf Promot. 2013; 20(3):266–70. https://doi.org/10.1080/17457300.2012.717083 PMID: 22950942

64. Turgut T, Yaman M, Turgut A. Educating children on water safety for drowning prevention. Soc Indic Res. 2016 Nov; 129(2):787–801.

65. Zhang PB, Chen RH, Deng JY, Xu BR, Hu YF. [Evaluation on intervening efficacy of health education on accidental suffocation and drowning of children aged 0–4 in countryside]. Zhonghua Er Ke Za Zhi. 2003; 41(7):497–500. PMID: 14746674

66. Zhu Y, Feng X, Li H, Huang Y, Chen J, Xu G. An effect evaluation on the model of integrated drowning interventions for the floating children in Ningbo City. Prev Med. 2016; 28 (11):1098–102.

67. Gimeniz-Paschoal SR, Pereira DM, Nascimento EN. Efect of an educative action on relatives’ knowledge about childhood burns at home. Rev Lat Am Enfermagem. 2009; 17(3):341–6. https://doi.org/10.1590/s0104-11692009000300010 PMID: 19669044

68. Gimeniz-Paschoal SR, Nascimento EN, Pereira DM, Carvalho FF. Ação educativa sobre queimaduras infantis para familiares de crianças hospitalizadas. Revista Paulista de Pediatria. 2007; 25 (4):331–6.

69. Heard JP, Latenser BA, Liao J. Burn prevention in Zambia: a work in progress. J Burn Care Res. 2013 Dec; 34(6):598–606. https://doi.org/10.1097/BCR.0b013e3182a1e91f PMID: 24043246

70. Jetten P, Chamania S, van Tulder M. Evaluation of a community-based prevention program for domestic burns of young children in India. Burns. 2011 Feb; 37(1):139–44. https://doi.org/10.1016/j.burns.2010.05.002 PMID: 20594760

71. Kebriaee-Zadeh J, Safaeian L, Salami S, Mashhadian F, Sadeghian G-H. A school-based education concerning poisoning prevention in Isfahan, Iran. J Educ Health Promot. 2014 Feb 21; 3:5. https://doi.org/10.4103/2277-9531.127551 PMID: 24741645

72. Konradsen F, Pieris R, Weerasinghe M, van der Hoek W, Eddleston M, Dawson AH. Community uptake of safe storage boxes to reduce self-poisoning from pesticides in Sri Lanka. BMC Public Health. 2007 Jan 26; 7:13. https://doi.org/10.1186/1471-2458-7-13 PMID: 17257415

73. Krug A, Ellis JB, Hay IT, Mokgabudi NF, Robertson J. The impact of child-resistant containers on the incidence of paraffin (kerosene) ingestion in children. S Afr Med J. 1994; 84(11):730–4. PMID: 7495007

74. Makhubalo O, Schulman D, Rode H, Cox S. Acceptability and functionality of the “Kettle Strap”: An attempt to decrease kettle related burns in children. Burns. 2018; 44(5):1361–5. https://doi.org/10.1016/j.burns.2018.04.013 PMID: 29776861
76. Odendaal W, van Niekerk A, Jordaan E, Seedat M. The impact of a home visitation programme on household hazards associated with unintentional childhood injuries: a randomised controlled trial. Accident Analysis & Prevention. 2009; 41(1):183–90. https://doi.org/10.1016/j.aap.2008.10.009 PMID: 19114153

77. Rehmani R, LeBlanc JC. Home visits reduce the number of hazards for childhood home injuries in Karachi, Pakistan: a randomized controlled trial. Int J Emerg Med. 2010; 3(4):333. https://doi.org/10.1007/s12245-010-0238-0 PMID: 21373302

78. Schwebel DC, Swart D, Simpson J, Hobé P, Hui S-KA. An intervention to reduce kerosene-related burns and poisonings in low-income South African communities. Health Psychol. 2009 Jul; 28(4):493–500. https://doi.org/10.1037/a0014531 PMID: 19594274

79. Sinha I, Patel A, Kim FS, MacCorkle ML, Watkins JF. Comic books can educate children about burn safety in developing countries. J Burn Care Res. 2011; 32(4):e112–7. https://doi.org/10.1097/BCR.0b013e3182223c6f PMID: 21593680

80. Swart L, van Niekerk A, Seedat M, Jordaan E. Paraprofessional home visitation program to prevent childhood unintentional injuries in low-income communities: a cluster randomized controlled trial. Inj Prev. 2008 Jun; 14(3):164–9. https://doi.org/10.1136/ip.2007.016832 PMID: 18523108

81. Muniz LAMA, Gonçalves Campos C, Caetano Romano MC, Pinto Braga P. Accidentes de trabajo: percepción del adolescente. Revenf. 2019 Jan 30;(36).

82. Cao B-L, Shi X-Q, Qi Y-H, Hui Y, Yang H-J, Shi S-P, et al. Effect of a multi-level education intervention model on knowledge and attitudes of accidental injuries in rural children in Zunyi, Southwest China. Int J Environ Res Public Health. 2015 Apr 8; 12(4):3903–14. https://doi.org/10.3390/ijerph12043903 PMID: 25856553

83. Fonseca E, de la Caridad R, Mendoza Molina A, Castillo Rivera JA, Martínez Rodríguez M de los Á. Intervención comunitaria para la prevención de accidentes en niños. Humanidades Médicas. 2014; 14 (2):423–41.

84. Hernández Sánchez M, García Roche R, Vinardell Espein P, Torres Hernández M, Ravelo Elvirez M. Formación de promotores para la prevención de lesiones no intencionales en adolescentes en Cuba entre 2008 y 2012. Revista Cubana de Higiene y Epidemiología. 2017; 55(1):24–33.

85. Kahriman IL, Karadeniz H. Effects of a Safety-Awareness-Promoting Program Targeting Mothers of Children Aged 0–6 Years to Prevent Pediatric Injuries in the Home Environment: Implications for Nurses. J Trauma Nurs. 2018; 25(5):327–35. https://doi.org/10.1097/JTN.0000000000000384 PMID: 30216265

86. Khattani K, Alonge O, Rahman A, Hoque DME, Bhuiyan A-A, Agrawal P, et al. Caregiver supervision practices and risk of childhood unintentional injury mortality in bangladesh. Int J Environ Res Public Health. 2017 May 11; 14(5). https://doi.org/10.3390/ijerph14050515 PMID: 28492502

87. Liu S, Luo J, Xiang B, Li J, Yin B, Zhu K, et al. 汉川市农村学龄儿童伤害教育干预效果评价. 卫生职业教育. 2015;(2015年 16):94–5, 96.

88. Mock C, Arreola-Risa C, Trevino-Perez R, Almazan-Saavedra V, Zozaya-Paz JE, Gonzalez-Solis R, et al. Injury prevention counselling to improve safety practices by parents in Mexico. Bull World Health Organ. 2003 Oct 14; 81(8):591–8. PMID: 14576891

89. Muñante-Nima N, Majuan-López K, Farro-Peña G. Efectividad de una intervención educativa en el nivel de conocimientos sobre prevención de riesgos físicos ante sismos en escolares de 10 a 12 años. Rev enferm herediana. 2012; 5(1):42–9.

90. Ning P, Cheng P, Schwebel DC, Yang Y, Yu R, Deng J, et al. An App-Based Intervention for Caregivers to Prevent Unintentional Injury Among Preschoolers: Cluster Randomized Controlled Trial. JMIR Mhealth Uhealth. 2019 Aug 9; 7(8):e13519. https://doi.org/10.2196/13519 PMID: 31400105

91. Pérez RR, Pérez NT, Martinez MU. Intervención sobre factores de riesgo de accidentes y accidentes en niños menores de cinco años. Medimay. 2017; 24(2):143–59.

92. Rahman A, Rahman A, Mashreky SR, Linnan M. Evaluation of PRECISE: A Comprehensive Child Injury Prevention Program in Bangladesh. The first Three Years (2006–2008) Bangladesh: Dhaka: Centre for Injury Prevention and Research, Bangladesh (CIPRB). 2009.

93. Silva FB e, Gondim EC, Henrique NCP, Fonseca LMM, Mello DF de. Intervenção educativa com mães jovens: aquisição de saberes sobre cuidados da criança. Acta Paul Enferm (Online). 2018 Feb; 31(1):32–8.

94. Tan LZ, Peng AA, Chen Z, Chen J, Guo D, Zhang B. The effect of health education to cognitive and behavioral of the kindergarten children and their parents on unintentional injuries. Mater Child Health Care Chin. 2012; 27:5049–51.
95. Waisman I, Rodríguez MI, Malamud B, Zabala R, Echegaray L, Bornoroni GE. Un proyecto para previsión de accidentes desde el consultorio del pediatra. Archivos argentinos de pediatría. 2005; 103 (1):23–30.

96. Wang H, Liu Y-X, Deng W-J, Yang W-J, Wang F. Case-Control Study of Injury Intervention for Pre-school Children in Henggang, Shenzhen. Pediatr Emerg Care. 2015 Oct; 31(10):708–10. https://doi.org/10.1097/PEC.0000000000000563 PMID: 26414640

97. Wang X, Zhang H, He H, Ma H. 社区“5Es”干预, 高危个体干预降低学龄前儿童意外损伤的效果研究. 中国儿童保健杂志. 2008; 16(2):224–6.

98. Wang X, Zhu Y. [Peer education's effects on preventing accidental injuries in middle school students]. Wei Sheng Yan Jiu. 2009; 38(4):449–51. PMID: 19689079

99. Xiao ZH. 健康教育对降低儿童意外伤害发生的作用的探讨 [To explore the effect of health education to reduce the occurrence of child injury effect.]. Guide Chin Med. 2011; 13:795–796.

100. Zhao C-H, Qiu HS, Qiu HX. Interventions to prevent accidental injuries in children between 7 and 13 years of age. Zhongguo dang dai er ke za zhi = Chinese journal of contemporary pediatrics. 2006; 8 (4):331–3. PMID: 16923370

101. Zhou X. 浙江中医药大学学报 [Intervention to Children Accidental Injury]. Journal of Zhejiang University of Traditional Chinese Medicine. 2013; 5:543–5.

102. Zhou H-H, Ongodia D, Liu Q, Yang R-T, Li Z-B. Incidence and pattern of maxillofacial fractures in children and adolescents: a 10 years retrospective cohort study. Int J Pediatr Otorhinolaryngol. 2013 Apr; 77(4):494–8. https://doi.org/10.1016/j.ijpedit.2012.12.017 PMID: 23318124

103. Meng F, Li S, Cao L, Li M, Peng Q, Wang C, et al. Driving fatigue in professional drivers: a survey of truck and taxi drivers. Traffic Inj Prev. 2015; 16(5):474–83. https://doi.org/10.1080/15389588.2014.973945 PMID: 25357206

104. Hemmo-Lotem M, Jinich-Aronowitz C, Endy-Finding L, Molcho M, Klein M, Waisman Y, et al. Child injury in Israel: emergency room visits to a children's medical center. ScientificWorldJournal. 2005 Mar 28; 5:523–63. https://doi.org/10.1100/tsw.2005.32 PMID: 15798885

105. Organization WH. The Global Burden Of Disease: 2004 Update. 1st ed. Geneva, Switzerland: World Health Organization; 2008.

106. Adeyemo WL, Iwegbu IO, Bello SA, Okoturo E, Olaitan AA, Ladeinde AL, et al. Management of mandibular fractures in a developing country: a review of 314 cases from two urban centers in Nigeria. World J Surg. 2008 Dec; 32(12):2631–5. https://doi.org/10.1007/s00268-008-9773-8 PMID: 18841410

107. Gosselin RA, Spiegel DA, Coughlin R, Zirkle LG. Injuries: the neglected burden in developing countries. Bull World Health Organ. 2009 Apr; 87(4):246–246a. https://doi.org/10.2471/blt.08.052290 PMID: 19551225

108. Rothman L, Clemens T, Macarthur C. Prevention of unintentional childhood injury: A review of study designs in the published literature 2013–2016. Prev Med Rep. 2019 Sep; 15:100918. https://doi.org/10.1016/j.pmedr.2019.100918 PMID: 31236322

109. Kohrt BA, Jordans MJ, Tol WA, Luitel NP, Maharjan SM, Upadhyaya N. Validation of cross-cultural child mental health and psychosocial research instruments: adapting the Depression Self-Rating Scale and Child PTSD Symptom Scale in Nepal. BMC Psychiatry. 2011 Aug 4; 11(1):127. https://doi.org/10.1186/1471-244X-11-127 PMID: 21816045