The super-connectivity of Johnson graphs

Gülnaz Boruzanlı Ekinci¹ John Baptist Gauci²

¹ Ege University, Turkey
² University of Malta, Malta

received 26th June 2019, revised 25th Feb. 2020, accepted 26th Feb. 2020.

For positive integers \(n, k \) and \(t \), the uniform subset graph \(G(n, k, t) \) has all \(k \)-subsets of \(\{1, 2, \ldots, n\} \) as vertices and two \(k \)-subsets are joined by an edge if they intersect at exactly \(t \) elements. The Johnson graph \(J(n, k) \) corresponds to \(G(n, k, k-1) \), that is, two vertices of \(J(n, k) \) are adjacent if the intersection of the corresponding \(k \)-subsets has size \(k-1 \). A super vertex–cut of a connected graph is a set of vertices whose removal disconnects the graph without isolating a vertex and the super–connectivity is the size of a minimum super vertex–cut. In this work, we fully determine the super–connectivity of the family of Johnson graphs \(J(n, k) \) for \(n \geq k \geq 1 \).

Keywords: connectivity, super–connectivity, Johnson graph, uniform intersecting families

1 Introduction

Let \(n \) and \(k \) be integers such that \(n \geq k \geq 1 \) and let \([n] \) denote the set \(\{1, 2, \ldots, n\} \). The Johnson graph \(J(n, k) \) is the graph with vertex set \(V(J(n, k)) \) consisting of all the \(k \)-subsets of \([n] \) and with edge set \(E(J(n, k)) = \{\{u, v\} : u, v \in V(J(n, k)) \text{ and } |u \cap v| = k-1\} \). It is well-known that \(J(n, k) \) is regular of degree \(k(n-k) \) and that \(J(n, 1) \) is isomorphic to the complete graph on \(n \) vertices.

Johnson graphs appear in the theory of association schemes (see Moon (1984)) and are a particular instance of the more general uniform subset graphs \(G(n, k, t) \) introduced by Chen and Lih (1987) corresponding to the case when \(t = k-1 \). Special cases of the uniform subset graphs have been investigated extensively for a variety of parameters, such as girth, diameter, Hamiltonicity and connectivity (see for example Agong et al. (2018); Boruzanlı Ekinci and Gauci (2019b); Chen and Wang (2008); Mütze and Su (2017); Simpson (1994)). The quasipolynomial algorithm for graph isomorphism by Babai (2016) has recently put Johnson graphs in the limelight, especially within the computer science community. This family of graphs present, in fact, the only obstructions to effective partitioning. Johnson graphs were also studied by Diego et al. (2018) for their isoperimetric function.

Let \(G \) be a graph with vertex set \(V(G) \) and edge set \(E(G) \). Harary (1983) proposed the notion of conditional connectivity which asks for the size of a minimum vertex–cut \(S \) of \(G \), if it exists, so that \(G-S \) is disconnected and every component of the resulting graph \(G-S \) has some graph theoretical property \(P \). We recall that a vertex–cut \(S \) of a graph \(G \) is a set of vertices of \(G \) whose deletion results in a disconnected graph or leaves an isolated vertex. A minimum vertex–cut is one of smallest cardinality over all vertex–cuts of \(G \) and the connectivity \(\kappa = \kappa(G) \) of \(G \) is the size of a minimum vertex–cut.

Motivated by Harary’s notion, many researchers studied various types of conditional connectivity. The case when the condition is that every resulting component is not an isolated vertex gave rise to what...
became to be known as the super–connectivity of a graph. More precisely, the super–connectivity \(\kappa' = \kappa'(G) \) of a graph \(G \) is the size of a minimum vertex–cut \(S \) such that \(G - S \) has no isolated vertices. If such a vertex–cut exists, it is referred to as a super vertex–cut; otherwise we write \(\kappa'(G) = +\infty \). The super–connectivity \(\kappa' \) is of particular interest in cases when \(G \) is super–connected, since otherwise \(\kappa' = \kappa \). An application-oriented motivation for such graphs is that the super–connectivity of \(G \) can be applied to network designs. This is the main reason why symmetric graphs are usually preferred when modelling interconnection networks (Heydemann (1997)). Another characteristic that is generally sought for in networks is regularity because this property simplifies the study of networks in terms of diameter and diameter vulnerability problems. Thus, our choice to study Johnson graphs has also a functional aspect as these graphs can be applied to network designs.

Watkins (1970) showed that if \(G \) is an edge–transitive graph and if the minimum degree of \(G \) is \(\delta \), then \(\kappa(G) = \delta \). Meng (2003) proved that a connected vertex–transitive and edge–transitive graph is not super–connected if and only if it is isomorphic to the lexicographic product of a cycle \(C_n (n \geq 6) \) or the line graph \(L(Q_3) \) of the cube \(Q_3 \) by a null graph \(N_m \). Furthermore, Brouwer and Koolen (2009) proved that for a non–complete distance–regular graph of degree \(k \), the connectivity is equal to \(k \), and the only disconnecting sets of size \(k \) are the sets of neighbours of a vertex. Note that Johnson graphs are distance–transitive and hence distance–regular. The previous two arguments imply that Johnson graphs are super–connected. Consequently, this class of graphs is more important for application purposes as it has been argued by many that a network is more reliable if it is super–connected (see, for example, Hsu and Lin (2008)). As \(\kappa'(G) > \kappa(G) \) for super–connected graphs, it is natural to ask what the super–connectivity of the Johnson graph \(J(n, k) \) is. Moreover, van Dam et al. (2014) asked about the minimum number of vertices that need to be deleted to disconnect a distance-regular graph with diameter at least three such that each resulting component has at least two vertices (Problem 41). In Theorem 10, we verify their claimed value in the case of Johnson graphs.

In the next section, we consider the class of Johnson graphs with the smallest value of \(k \) for which the super–connectivity exists, namely \(J(n, k) \) when \(k = 2 \). In Section 3, we determine the super–connectivity of \(J(n, k) \) when \(k \geq 3 \). The line of thought used in the former case cannot be generalised to prove the latter case; hence the reason why we present the two results separately. To avoid confusion, a vertex \(x \) of \(J(n, k) \) corresponding to the \(k \)-subset \(\{1, 2, \ldots, k\} \) will be denoted by \(x = z_1z_2\ldots z_k \), where \(z_1, \ldots, z_k \) are referred to as the entries of \(x \). The Hamming distance, denoted by \(H(x, y) \), is the number of entries that
The super-connectivity of Johnson graphs

do not have a super vertex–cut. Therefore, in this section we discuss the super–connectivity of \(J(n, 2) \), where \(n \geq 6 \).

The result of the following theorem was also obtained by Cioabă et al. (2012). The reason why we are including the proof below is two-fold. First, the proof by Cioabă et al. (2012) uses a different approach than the one adopted below, in that they conduct a case analysis based on cliques. Secondly, the proof below should assist the reader in getting accustomed to the notation being used in the subsequent proofs.

Theorem 1 \(\kappa'(J(n, 2)) = 3(n - 3) \), where \(n \geq 6 \).

Proof: Let \(\mathcal{G} = J(n, 2) \), where \(n \geq 6 \). Let \(S \) be a super vertex–cut of \(\mathcal{G} \) and suppose, for contradiction, that \(|S| < 3(n - 3) \).

Since \(S \) is a super vertex–cut, each component of \(\mathcal{G} \setminus S \) contains at least two adjacent vertices sharing a common entry. Without loss of generality, assume that a component, say \(C_1 \), contains the two adjacent vertices \(z_1z_2 \) and \(z_1z_3 \). The two adjacent vertices of another component, say \(C_2 \), cannot share any common entries with the vertices of \(C_1 \), so, without loss of generality, let \(z_{n-2}z_{n-1} \) and \(z_{n-2}z_n \) be two adjacent vertices in \(C_2 \). Note that every vertex–cut contains the common neighbours of the vertices in different components. Letting \(S' = \{z_\alpha z_\beta : \alpha \in \{1, 2, 3\} \text{ and } \beta \in \{n - 2, n - 1, n\}\} \), then \(S \) contains \(S' \). If \(n = 6 \), then \(|S'| = 9 > |S| \) and we get the required contradiction. Thus, in the sequel we can assume that \(n \geq 7 \).

We now consider the vertices in the following two sets:

\[
A = \left\{z_\alpha z_\gamma : \alpha \in \{1, 2, 3\} \text{ and } \gamma \notin \{1, 2, 3, n - 2, n - 1, n\}\right\}, \\
B = \left\{z_\delta z_\beta : \delta \notin \{1, 2, 3, n - 2, n - 1, n\} \text{ and } \beta \in \{n - 2, n - 1, n\}\right\}.
\]

For every \(i \in \{4, 5, \ldots, n - 3\} \), let \(A_i \subseteq A \) and \(B_i \subseteq B \) be such that \(A_i = \{z_\alpha z_i : \alpha \in \{1, 2, 3\}\} \) and \(B_i = \{z_i z_\beta : \beta \in \{n - 2, n - 1, n\}\} \). Thus \(|A_i| = |B_i| = 3 \), for all \(i \in \{4, 5, \ldots, n - 3\} \) and \(|A| = |B| = 3(n - 6) \). We note that each vertex of \(A \) not in \(S \) is adjacent to some vertex in \(C_1 \) and, similarly, each vertex of \(B \) not in \(S \) is adjacent to some vertex in \(C_2 \). Also, each vertex of \(A_i \) is adjacent to each vertex of \(B_i \).

If at least \(3(n - 6) \) vertices of \(A \cup B \) are in \(S \), then \(|S| \geq |S'| + 3(n - 6) = 3(n - 3) \), a contradiction. Thus, at most \(3(n - 6) - 1 \) vertices of \(A \cup B \) are in \(S \), implying that at least \(3(n - 6) + 1 \) vertices of \(A \cup B \) are in \(\mathcal{G} \setminus S \). Thus, there is at least one \(i \in \{4, 5, \ldots, n - 3\} \) for which at least a vertex of both \(A_i \) and \(B_i \) is in \(\mathcal{G} \setminus S \), and hence there is an edge connecting \(C_1 \) and \(C_2 \), a contradiction. Therefore, \(|S| \geq 3(n - 3) \).

Finally, if we consider any three distinct entries \(\{z_i, z_j, z_k\} \) for \(i, j, k \in [n] \), the set \(\{z_\alpha z_\beta : \alpha \in \{i, j, k\} \text{ and } \beta \in [n] \setminus \{i, j, k\}\} \) is a vertex–cut of \(\mathcal{G} \) which does not create isolated vertices, and hence forms a super vertex–cut of \(\mathcal{G} \) of cardinality \(3(n - 3) \).
The super–connectivity of \(J(n, k) \) for \(k \geq 3 \)

Daven and Rodger (1999) gave a proof that does not rely on the edge–transitivity property of Johnson graphs to show that the connectivity of \(J(n, k) \) is equal to the degree. This proof involves induction and is based on the observation that the graph \(J(n, k) - \beta_r \) is isomorphic to \(J(n-1, k) \) for any \(r \in [n] \), where \(\beta_r \) is the set of all vertices containing the entry \(z_r \). We adopt the general approach used by Daven and Rodger (1999) to establish \(\kappa'(J(n, k)) \), although in our case the work required is more involved due to the nature of the parameter being studied. To simplify the notation used, in the sequel we shall denote by \(x^j \) the vertex obtained from the vertex \(x \) by removing the entry \(z_i \) from \(x \) and introducing a new entry \(z_j \) which is not in \(x \). For instance, if \(x = z_1z_2 \ldots z_k \), then \(x^1_{k+1} = z_2 \ldots z_kz_{k+1} \). This process can be repeated iteratively in such a way that \(x^j_{k+1} = (x^j)_k \), where the entry \(z_h \) is in \(x^j \) and the entry \(z_k \) is not in \(x^j \).

It is useful to note that a minimum super vertex–cut \(S \) of a connected graph \(G \) contains a vertex \(v \) which has at least one neighbour in some component of \(G - S \), since otherwise \(G \) is disconnected. Suppose now that there is a component of \(G - S \) that does not contain any neighbour of this vertex \(v \). Then the set of vertices \(T = S \setminus \{v\} \) is also a super vertex–cut of \(G \) because \(G - T \) is disconnected and contains no isolated vertices. However, this contradicts the minimality of \(S \), and hence the following remark follows immediately.

Remark 2 A minimum super vertex–cut \(S \) of \(G \) contains a vertex having at least one neighbour in every component of \(G - S \). Moreover, if a vertex \(v \) in a minimum super vertex–cut \(S \) of \(G \) has a neighbour in one component of \(G - S \), then it has at least one neighbour in every component of \(G - S \).

We require Lemmas 3, 4 and 5 in the rest of this work, the proofs of which can be adapted from Daven and Rodger (1999) and hence we omit them. Although these results were originally proved for the connectivity of \(J(n, k) \), we observe that the proofs are very similar in the case of the super–connectivity. Whereas in the original connectivity version the argument used in the proofs revolves around the fact that every vertex in the vertex–cut \(S \) has a neighbour in each of the components of \(G - S \), in the case of super–connectivity the main tool required is given by Remark 2 above, but the rest of the proof then follows. For the sake of consistency, we have also changed the notation in the statements to be in line with ours.

Lemma 3 If \(S \) is a minimum super vertex–cut of \(J(n, k) \), where \(k \geq 3 \) and \(n \geq k + 3 \), then the entry \(z_r \) is contained in at least one vertex of \(S \) for every \(r \in [n] \).

Lemma 4 If \(S \) is a minimum super vertex–cut of \(J(n, k) \), where \(k \geq 3 \) and \(n \geq k + 3 \), then no entry \(z_r \) is contained in every vertex of \(S \), where \(r \in [n] \).

Lemma 5 Let \(S \) be a minimum super vertex–cut of \(G = J(n, k) \), where \(k \geq 3 \) and \(n \geq k + 3 \). Denote a smallest component of \(G - S \) by \(C \) and let \(C_* = (G - S) - C \). There exists an entry \(z_r \), for \(r \in [n] \), such that \(C - \beta_r \neq \emptyset \) and \(C_* - \beta_r \neq \emptyset \).

The upper bound for the super–connectivity of \(J(n, k) \) is given in Lemma 6 which will then be used in Theorems 9 and 10 to establish the equality.

Lemma 6 \(\kappa'(J(n, k)) \leq (2k - 1)(n - k) - k \) for \(k \geq 3 \) and \(n \geq k + 3 \).
The super-connectivity of Johnson graphs

Proof: Consider any two adjacent vertices in $J(n, k)$, say $x = z_1z_2\ldots z_k$ and x^{k+1}, and let S be the set of all their neighbours. Then S is the union of the following mutually disjoint sets of vertices:

- the set S_1 composed of the common neighbours of x and x^{k+1}, that is
 $$S_1 = \{x_{i,k}^{k+1} : i \in \{1, \ldots, k-1\}\} \cup \{x_{j}^{j} : j \in \{k+2, \ldots, n\}\};$$
- the set S_2 composed of the neighbours of x which are not also neighbours of x^{k+1}, that is
 $$S_2 = \{x_{i}^{j} : i \in \{1, \ldots, k-1\} \text{ and } j \in \{k+2, \ldots, n\}\};$$
- the set S_3 composed of the neighbours of x^{k+1} which are not also neighbours of x, that is
 $$S_3 = \{x_{i,k}^{k+1,j} : i \in \{1, \ldots, k\} \text{ and } j \in \{k+2, \ldots, n\}\}.$$

Thus,
$$|S| = |S_1| + |S_2| + |S_3| = ((k-1) + (n-k-1)) + 2(k-1)(n-k-1) = (2k-1)(n-k) - k.$$

It is easy to see that there is no vertex in $J(n, k) - S$ that is adjacent to $k(n-k)$ vertices in S, and hence $J(n, k) - S$ has no isolated vertices. Thus, S is a super vertex-cut and the bound follows. \qed

The following two lemmas provide the essential tools required in proving the two main theorems in this section, namely Theorems 9 and 10.

Lemma 7 Let S be a minimum super vertex–cut of $G = J(n, k)$, where $k \geq 3$ and $n \geq k+3$. If there is a vertex $x \in V(G - S) - \beta_r$, for some $r \in [n]$, such that $N_{G - S}(x) - \beta_r = \emptyset$, then $|S| \geq (2k-1)(n-k) - k$.

Proof: For $k \geq 3$ and $n \geq k+3$, let S be a minimum super vertex–cut of $G = J(n, k)$. We fix a value of r, say $r = n$ and let $x = z_1z_2\ldots z_k \in V(G - S) - \beta_n$. We note that if $N_{G - S}(x) - \beta_n = \emptyset$, then all the neighbours of x in the graph $G - S$ contain the entry z_n, that is,
$$N_G(x) - \beta_n \subseteq S. \quad (1)$$

Also, since $|N_G(x) \cap \beta_n| = k$, then $1 \leq |N_{G - S}(x) \cap \beta_n| \leq k$. We may thus assume that, without loss of generality, $x_{n}^{n} \in V(G - S)$, and hence x_{n}^{n} is in the same component of $G - S$ as x, say C_1.

We let S_1 be the set of all the neighbours of x that do not contain the entry z_n, that is, $S_1 = N_G(x) - \beta_n$. Therefore,
$$|S_1| = |N_G(x)| - |N_G(x) \cap \beta_n| = k(n-k) - k = k(n-k-1). \quad (2)$$

We remark that $S_1 = \{x_{j}^{j} : i \in \{1, \ldots, k\} \text{ and } j \in \{k+1, \ldots, n-1\}\}$, and that by (1), we have $S_1 \subseteq S$. From Remark 8, it follows that all the vertices in S_1 have at least one neighbour in each component of $G - S$. In particular, consider the vertex $x_{i,k}^{k+1} \in S_1 \subseteq S$ and take one of its neighbours w in $G - S$ which is not in C_1. The vertex w contains the entry z_{k+1}, for otherwise it would be in S_1. Also, w contains an
entry z_h for $h \in \{k + 2, \ldots, n - 1\}$, for otherwise, if $w = x_i^{k+1}$ for $i \in \{1, \ldots, k - 1\}$ then $w \in S_1$, and if $w = x_i^{k+1,n}$ for $i \in \{1, \ldots, k - 1\}$, then w is adjacent to x_k^n in C_1, a contradiction. Without loss of generality, we can thus assume that $w = x_{k-1,k}^{k+1,k+2}$ and that w is in the component C_2 of $G - S$.

We now consider the neighbours of w which are not in S_1. These are given by

$$N_{G - S_1}(w) = \left\{ x_{k-1,k}^{k+1,j} : j \in \{k + 3, \ldots, n\} \right\} \cup \left\{ x_{k-1,k}^{k+2,j} : j \in \{k + 3, \ldots, n\} \right\}$$

$$\cup \left\{ x_{i,k}^{k+1,k+2,j} : i \in \{1, \ldots, k - 2\} \text{ and } j \in \{k - 1, k, k + 3, \ldots, n\}\right\}.$$

We partition this set of $k(n - k) - 4$ vertices into four sets, as follows:

$I.$ For the neighbours of w which are in A_1,

$$A_1 = \left\{ v \in N_{G - S_1}(w) : H(v, x_k^n) = 1 \right\} = \left\{ x_{k-1,k}^{k+1,n}, x_{k-1,k}^{k+2,n} \right\},$$

implying that $|A_1| = 2$.

$$A_2 = \left\{ v \in N_{G - S_1}(w) : H(v, x_k^n) = 2 \right\} \setminus \left\{ x_{k-1,k}^{k+1,j} : j \in \{k + 3, \ldots, n - 1\} \right\}$$

$$= \left\{ x_{k-1,k}^{k+2,j} : j \in \{k + 3, \ldots, n - 1\} \right\} \cup \left\{ x_{i,k}^{k+1,k+2} : i \in \{1, \ldots, k - 2\} \right\}$$

$$\cup \left\{ x_{i,k}^{k+1,k+2,n} : i \in \{1, \ldots, k - 2\} \right\},$$

implying that $|A_2| = n + k - 7$.

$$A_3 = \left\{ v \in N_{G - S_1}(w) : H(v, x_k^n) = 3 \right\}$$

$$= \left\{ x_{i,k}^{k+1,k+2,j} : i \in \{1, \ldots, k - 2\} \text{ and } j \in \{k + 3, \ldots, n - 1\}\right\},$$

implying that $|A_3| = (k - 2)(n - k - 2)$.

$I.$ For the neighbours of w which are in A_1, the paths are as follows:

$$w \sim x_{k-1,k}^{k+1,n} \sim x_k^n \quad \text{and} \quad w \sim x_{k-1,k}^{k+2,n} \sim x_k^n.$$

$II.$ For the neighbours of w which are in A_2, the paths are as follows:

(i) for $j \in \{k + 3, \ldots, n - 1\}$,

$$w \sim x_{k-1,k}^{k+2,j} \sim x_{k-1,k}^{n,j} \sim x_k^n;$$

(ii) for $i \in \{1, \ldots, k - 2\}$,

$$w \sim x_{i,k}^{k+1,k+2} \sim x_{i,k}^{k+1,n} \sim x_k^n;$$

(iii) for $i \in \{1, \ldots, k - 2\}$,

$$w \sim x_{i,k}^{k+1,k+2,n} \sim x_{i,k}^{k+2,n} \sim x_k^n.$$
(III) For the neighbours of \(w \) which are in \(A_3 \), then for \(i \in \{1, \ldots, k-2\} \) and \(j \in \{k, k+3, \ldots, n-1\} \), the paths are given by

\[
w \sim x_{i, k-1,k}^{k+1,1,k+2,j} \sim x_{i, k-1,k}^{k+1,n,j} \sim x_{i, k}^{n,j} \sim x_{k}^{n}.
\]

(IV) Finally, we consider one of the vertices in \(A_4 \), say \(x_{k-1,k}^{k+1, k+3} \), and construct a path between \(x \) and \(w \) as follows

\[
w \sim x_{k-1,k}^{k+1, k+3} \sim x_{2, k-1}^{k+1, k+3} \sim x_{2, k-1}^{k+3, n} \sim x_{k-1}^{n} \sim x.
\]

It is easy to check that the vertices utilised in constructing all the above paths are not in \(S \) and are all distinct. Thus, the number of vertex disjoint paths constructed from the vertices \(x \) and \(x_k^n \) in \(C_1 \) to the vertex \(w \) in \(C_2 \) is given by

\[
|A_1| + |A_2| + |A_3| + 1 = 2 + (n + k - 7) + (k - 2)(n - k - 2) + 1 = (k - 1)(n - k).
\]

Hence, \(S \) contains an additional \((k - 1)(n - k)\) vertices and from (3), we get that \(|S| \geq (n - k)(2k - 1) - k\), as required. \(\square \)

We remark that the assumptions made in the following lemma will seem artificial for the time being, however their relevance will become clear when Lemma 3 is used in the proof of Theorem 3.

Lemma 8 Let \(S \) be a minimum super vertex-cut of \(G = J(n, k) \), where \(k \geq 3 \) and \(n \geq k + 3 \). Let \(C_1 \) and \(C_2 \) be two components of \(G - S \) such that \(C_1' = C_1 - \beta_r \) and \(C_2' = C_2 - \beta_r \), for some \(r \in \{1, n\} \).

Assume that the vertex \(u \) is in \(C_1' \) and that the vertex \(v \) is in \(C_2' \) such that \(H(u, v) = 2 \), and assume that \(u \) is adjacent to \(\bar{u} \) in \(C_1' \) and that \(v \) is adjacent to \(\bar{v} \) in \(C_2' \). Then there are at least \((2k-1)\) internally disjoint paths between \(C_1' \) and \(C_2' \) such that all the internal vertices on these paths contain the entry \(z_r \).

Proof: Since by our assumption \(H(u, v) = 2 \), we consider a common neighbour of \(u \) and \(v \), which for ease of notation, we denote by \(x = z_1 z_2 \ldots z_k \). This implies that \(r \in \{1\} \setminus \{k\} \), for otherwise \(u \) and \(v \) are adjacent. Without loss of generality, let \(r = n \). Thus, \(u = x_{h_1}^{h_1} \) where \(h_1 \in \{k\} \) and \(\ell_1 \in \{n-1\} \setminus \{k\} \) and \(v = x_{h_2}^{h_2} \) where \(h_2 \in \{k\} \) and \(\ell_2 \in \{n-1\} \setminus \{k\} \), such that \(h_1 \neq h_2 \) and \(\ell_1 \neq \ell_2 \). For simplicity, in the following work, whenever we require to remove an entry of \(x \) or add an entry which is not in \(x \), we shall choose the smallest entry available. Thus, we let \(u = x_{h_1}^{k+1} \) and \(v = x_{h_2}^{k+2} \). Consequently, when the entry \(z_{k+3} \) is added at some stage in sequel, it is being implicitly assumed that this was chosen without loss of generality to represent \(z_\zeta \) where \(\zeta \in \{n - 1\} \setminus \{k \} \).

For \(j \in \{k \} \setminus \{1, 2\} \), consider the vertices

\[
x_{1,j}^{k+1,n}, x_{2,j}^{k+1,n} \text{, and } x_{2,j}^{k+2,n}.
\]

For \(k \geq 5 \), let the paths \(P_j \), where \(j \in \{5, \ldots, k\} \), be given by

\[
P_j := u \sim x_{1,j}^{k+1,n} \sim x_{2,j}^{k+1,n} \sim x_{2,j}^{k+2,n} \sim v.
\]

We remark that for \(k \in \{3, 4\} \), no paths are constructed thus far. Also, in the cases discussed below, we shall refer again to (3) to construct the path \(P_3 \) by taking \(j = 3 \) when \(k = 3 \), and the paths \(P_3 \) and \(P_4 \) by taking \(j \in \{3, 4\} \) when \(k \geq 4 \). For ease of writing, it will thus be assumed that when we say that we put \(j = 3 \) and \(j = 4 \) in (3) to construct paths \(P_3 \) and \(P_4 \), these paths are actually constructed for each of the
cases $k = 3$ and $k \geq 4$ by substituting the corresponding values of j in $[3]$ according to the explanation given above.

Furthermore, define the paths T_1 and T_2 as follows:

$$T_1 := u \sim x_1^n \sim x_{1,2}^{k+2,n} \sim v$$

$$T_2 := u \sim x_1^{k+1,n} \sim x_2^n \sim v.$$

Then the paths P_j for $j \in \{5, \ldots, k\}$ (if any), together with the two paths T_1 and T_2 are internally disjoint paths. We note that the pairs of entries $\{z_1, z_2\}$, $\{z_{k+1}, z_{k+2}\}$, and $\{z_2, z_{k+2}\}$ do not feature in any of the internal vertices of the paths constructed thus far. In the sequel, we refer to these pairs of entries as “the missing pairs of entries”. Also, all the internal vertices of these paths contain the pair of entries $\{z_3, z_4\}$. These two observations make it easier to verify that the internal vertices that are used to construct any further paths are different from those already availed of.

In the rest of the proof, we will show that we can construct the remaining required number of internally disjoint paths from $\{u, \bar{u}\}$ to $\{v, \bar{v}\}$ such that all the internal vertices of these paths contain the entry z_n. Since exactly one entry of u is not in \bar{u} and similarly one entry of v is not in \bar{v}, and noting that there are no edges from the vertices of C_1 to the vertices of C_2, then the following properties hold:

(i) $1 \leq H(\bar{u}, x) \leq 2$ and $1 \leq H(\bar{v}, x) \leq 2$; and

(ii) $2 \leq H(\bar{u}, \bar{v}) \leq 4$.

The above properties underlie the motivation behind the four separate cases that follow, in the sense that each depends on the entries of x that are present in the vertices \bar{u} and \bar{v}. We thus focus on the entries of x that are in both u and v, namely $\{z_3, \ldots, z_k\}$, and differentiate between the cases when these entries are or are not in \bar{u} and \bar{v}.

Case I. The entries $\{z_3, z_4, \ldots, z_k\}$ are in both \bar{u} and \bar{v}.

In this case, the vertex \bar{u} is given by $x_{1,2}^{\beta,k+3}$ where $\beta \in \{2, k+1\}$, and the vertex \bar{v} is given by $x_{1,2}^{\alpha,k+4}$ where $\alpha \in \{1, k+2\}$. We remark that, as explained above, the entries z_{k+3} and z_{k+4} were chosen without loss of generality to simplify the work done.

For $i \in \{3, \ldots, k\}$, let the paths Q_i be given by

$$Q_i := \bar{u} \sim x_{1,2,i}^{\beta,k+3,n} \sim x_{1,2,i}^{\alpha,k+3,n} \sim x_{1,2,i}^{\alpha,k+4,n} \sim \bar{v}$$

and the path T_3 be

$$T_3 := \bar{u} \sim x_{1,2}^{k+3,n} \sim x_{1,2}^{k+4,n} \sim \bar{v}.$$

Finally, we put $j = 3$ and $j = 4$ in $[3]$ to obtain the internally disjoint paths P_3 and P_4, which are also internally disjoint from the paths P_j for $j \in \{5, \ldots, k\}$ (if any).

We note that the paths Q_i and T_3 are $k-1$ internally disjoint paths, and since all their internal vertices contain either the entry z_{k+3} or z_{k+4}, they are also internally disjoint from the paths T_1, T_2 and P_j for $j \in \{3, \ldots, k\}$. We have thus constructed a total of $2k-1$ internally disjoint paths from the vertices in C_1 to the vertices in C_2, as required.

Case II. The entries $\{z_3, \ldots, z_k\}$ are in \bar{v} but not in \bar{u} (or vice-versa).

Since $H(\bar{u}, u) = 1$, then at most one of $\{z_3, \ldots, z_k\}$ is not in \bar{u}, say z_3. Thus, the vertex \bar{u} is given by $x_{1,3}^{\beta,i}$ where $\beta \in \{1, k+2, k+3\}$, and the vertex \bar{v} is given by $x_{1,2}^{\gamma,n}$ where $\gamma \in \{1, k+2\}$ and $\alpha \in \{k+3, k+4\}$.
The super-connectivity of Johnson graphs

For \(i \in \{4, \ldots, k\} \), let the paths \(Q_i \) (if any) be given by
\[
Q_i := \bar{u} \sim x_{1,3,i}^{k+1,\beta,n} \sim x_{1,3,i}^{k+1,\alpha,n} \sim x_{1,2,3,i}^{k+1,\alpha,\gamma,n} \sim x_{1,2,3,i}^{\alpha,\gamma,n} \sim \bar{v}.
\]

We remark that if \(\beta = k + 3 \) and \(\alpha = k + 3 \), then \(x_{1,3,i}^{k+1,\beta,n} = x_{1,3,i}^{k+1,\alpha,n} \), in which case the operation of going from \(x_{1,3,i}^{k+1,\beta,n} \) to \(x_{1,3,i}^{k+1,\alpha,n} \) is suppressed since the two vertices are the same. This procedure is also implicitly assumed and used in similar instances in the cases that follow.

Also, let the paths \(T_4 \) and \(T_5 \) be
\[
T_4 := \bar{u} \sim x_{1,3}^{\beta,n} \sim x_{1,3}^{\alpha,n} \sim x_{1,2,3}^{\alpha,\gamma,n} \sim \bar{v},
\]
\[
T_5 := \bar{u} \sim x_{1,2,3}^{k+1,\beta,n} \sim x_{1,2,3}^{k+1,\alpha,n} \sim x_{2,3}^{\alpha,n} \sim \bar{v}.
\]

We note that the paths \(Q_1, T_4 \) and \(T_5 \) are \(k - 1 \) internally disjoint paths, and all their internal vertices either contain the entries \(z_{k+3} \) or \(z_{k+4} \) or one of the pairs from the missing pairs of indices, or else they are lacking the pair of indices \(\{z_3, z_4\} \). Thus, they are also internally disjoint from the paths \(T_1, T_2 \) and \(P_j \) for \(j \in \{5, \ldots, k\} \) (if any).

Finally, to construct the last required paths which are internally disjoint from all the others obtained so far,
\begin{itemize}
 \item if \(\beta \in \{k + 2, k + 3\} \), we put \(j = 3 \) and \(j = 4 \) in (3) above to get the two paths \(P_3 \) and \(P_4 \);
 \item if \(\beta = 1 \), we put \(j = 4 \) in (3) to get \(P_4 \) and consider the path \(T_6 \) given by
 \[
 T_6 := u \sim x_{1,3}^{k+1,n} \sim x_{1,3}^{k+2,n} \sim x_{2,3}^{k+2,n} \sim v,
 \]
\end{itemize}

Thus, the required \(2k - 1 \) internally disjoint paths from the vertices in \(C_1 \) to the vertices in \(C_2 \) have been obtained.

Case III. The same entry from \(\{z_3, \ldots, z_k\} \) is missing in both \(\bar{u} \) and \(\bar{v} \).

Let the entry \(z_3 \) be missing from both vertices \(\bar{u} \) and \(\bar{v} \). Two different subcases can arise.

(A) \(\bar{u} \) is given by \(x_{1,3}^{k+1,\beta} \) where \(\beta \in \{1, k + 2\} \), and \(\bar{v} \) is given by \(x_{2,3}^{k+2,k+3} \);

(B) \(\bar{u} \) is given by \(x_{1,3}^{k+1,k+3} \), and \(\bar{v} \) is given by \(x_{2,3}^{k+2,\alpha} \) where \(\alpha \in \{2, k + 1, k + 3, k + 4\} \).

Subcase III(A).

For \(i \in \{4, \ldots, k\} \), let the paths \(Q_i \) (if any) be given by
\[
Q_i := \bar{u} \sim x_{1,3,i}^{k+1,\beta,n} \sim x_{1,3,i}^{k+1,k+3,\beta,n} \sim x_{1,2,3,i}^{k+2,k+3,n} \sim \bar{v},
\]
and the paths \(T_7 \) and \(T_8 \) be defined as
\[
T_7 := \bar{u} \sim x_{1,3}^{\beta,n} \sim x_{1,3}^{k+3,n} \sim x_{1,2,3}^{k+2,k+3,n} \sim \bar{v},
\]
\[
T_8 := \bar{u} \sim x_{1,2,3}^{k+1,\beta,n} \sim x_{1,2,3}^{k+1,k+3,n} \sim x_{2,3}^{k+3,n} \sim \bar{v}.
\]

As before, these \(k - 1 \) new paths are mutually internally disjoint and are also internally disjoint from the paths \(T_1, T_2 \) and \(P_j \) for \(j \in \{5, \ldots, k\} \) (if any).

To conclude this subcase, we construct the last required paths which are internally disjoint from all the others obtained so far,
if \(\beta = k + 2 \), we put \(j = 3 \) and \(j = 4 \) in (3) above to get the two paths \(P_3 \) and \(P_4 \);

- if \(\beta = 1 \), we put \(j = 4 \) in (3) to get \(P_4 \) and take the path \(T_6 \) as in Case II above.

Subcase III(B).

For \(i \in \{4, \ldots, k\} \), let the paths \(Q_i \) (if any) be given by

\[
Q_i := \bar{u} \sim x_{1,i}^{k+1}, \sim x_{3,i}^{k+3,n} \sim x_{2,3,i}^{k+2}, \sim x_{2,3,i}^{k+2,\alpha.n} \sim \bar{v},
\]

which are mutually internally disjoint and are also internally disjoint from the paths \(T_1, T_2 \) and \(P_j \) for \(j \in \{5, \ldots, k\} \) (if any).

Finally, the last required paths are constructed as follows.

- If \(\alpha \in \{k + 3, k + 4\} \), put \(j = 3 \) and \(j = 4 \) in (3) above and consider the paths \(T_9 \) and \(T_{10} \) defined by:
 \[
 T_9 := \bar{u} \sim x_{1,3}^{k+3,n} \sim x_{1,3}^{\alpha.n} \sim x_{1,3}^{k+2,\alpha.n} \sim \bar{v}
 \]
 \[
 T_{10} := \bar{u} \sim x_{1,2,3}^{k+1, k+3,n} \sim x_{1,2,3}^{k+1, \alpha.n} \sim x_{2,3}^{\alpha.n} \sim \bar{v}
 \]

- If \(\alpha \in \{2, k + 1\} \), put \(j = 4 \) in (3) to get \(P_4 \), and consider the paths \(T_{11}, T_{12} \) and \(T_{13} \) defined by:
 \[
 T_{11} := \bar{u} \sim x_{1,2,3}^{k+3,n} \sim x_{1,2,3}^{k+1, \alpha.n} \sim x_{2,3}^{\alpha.n} \sim \bar{v}
 \]
 \[
 T_{12} := \bar{u} \sim x_{1,3}^{k+3,n} \sim x_{2,3}^{k+3,n} \sim x_{2,3}^{\alpha.n} \sim \bar{v}
 \]
 \[
 T_{13} := u \sim x_{1,3}^{k+3,n} \sim x_{2,3}^{\alpha.n} \sim x_{2,3}^{k+3,n} \sim v
 \]

where \(\bar{\alpha} = \{2, k + 1\} \setminus \{\alpha\} \).

Case IV. A different entry from \(\{z_3, \ldots, z_k\} \) is missing from \(\bar{u} \) and \(\bar{v} \).

Let the entry \(z_3 \) be missing from the vertex \(\bar{u} \) and the entry \(z_4 \) be missing from the vertex \(\bar{v} \). This gives rise to three different subcases.

(A) \(\bar{u} \) is given by \(x_{1,3}^{k+1, \beta} \) where \(\beta \in \{1, k + 2\} \), and \(\bar{v} \) is given by \(x_{2,4}^{k+2, k+3} \);

(B) \(\bar{u} \) is given by \(x_{1,3}^{k+1, \beta} \) where \(\beta \in \{1, k + 2\} \), and \(\bar{v} \) is given by \(x_{2,4}^{k+2, \alpha} \) where \(\alpha \in \{2, k + 1\} \);

(C) \(\bar{u} \) is given by \(x_{1,3}^{k+1, k+3} \), and \(\bar{v} \) is given by \(x_{2,4}^{k+2, \alpha} \) where \(\alpha \in \{2, k + 1, k + 3, k + 4\} \);

In each of the following subcases, it can be checked that the new paths constructed are mutually internally disjoint and are also internally disjoint from the paths \(T_1, T_2 \) and \(P_j \) for \(j \in \{5, \ldots, k\} \) (if any).

Subcase IV(A).

For \(i \in \{5, \ldots, k\} \), let the paths \(Q_i \) (if any) be given by

\[
Q_i := \bar{u} \sim x_{1,i}^{k+1, \beta,n} \sim x_{1,2,3,i}^{k+1, k+3, \beta,n} \sim x_{1,2,3,i}^{k+3, \beta,n} \sim x_{2,4,i}^{k+2, k+3,n} \sim \bar{v}
\]

and the paths \(T_{14}, T_{15} \) and \(T_{16} \) be defined as

\[
T_{14} := \bar{u} \sim x_{1,3,4}^{k+1, \beta,n} \sim x_{1,3,4}^{k+3, \beta,n} \sim x_{2,3,4}^{k+2, k+3,n} \sim \bar{v}
\]
\[
T_{15} := \bar{u} \sim x_{1,3}^{\beta,n} \sim x_{3}^{\beta,n} \sim x_{4}^{k+3,n} \sim x_{2,4}^{k+3,n} \sim \bar{v}
\]
\[
T_{16} := \bar{u} \sim x_{1,2,3}^{k+1, \beta,n} \sim x_{3}^{k+1, \beta,n} \sim x_{1,2,3}^{k+3, \beta,n} \sim x_{2,4}^{k+2, k+3,n} \sim \bar{v}
\]

To conclude this subcase,
The super-connectivity of Johnson graphs

- If $\beta = k + 2$, put $j = 3$ and $j = 4$ in (3) to get the paths P_3 and P_4;
- If $\beta = 1$, put $j = 4$ in (3) to get the path P_4, and take the path T_6 as in Case II above.

Subcase IV(B).
For $i \in \{5, \ldots, k\}$, let the paths Q_i (if any) be given by

$$Q_i := \bar{u} \sim x_{1,3,i}^{k+1,\beta,n} \sim x_{1,3,i}^{k+1,k+2,n} \sim x_{1,4,i}^{k+2,\alpha,n} \sim v$$

and the paths T_17, T_18, T_19 and T_20 be defined as

$$T_17 := \bar{u} \sim x_{1,3,4}^{k+1,\beta,n} \sim x_{1,3,4}^{k+1,k+2,n} \sim x_{2,3}^{k+2,\alpha,n} \sim v$$
$$T_18 := \bar{u} \sim x_{1,2,3}^{k+1,\beta,n} \sim x_{1,2,3}^{k+1,k+2,n} \sim x_{1,2,4}^{k+2,\alpha,n} \sim v$$
$$T_19 := \bar{u} \sim x_{1,3}^{\beta,n} \sim x_{3}^{n} \sim x_{4}^{n} \sim x_{2,4}^{\alpha,n} \sim v$$

To conclude this subcase,

- If $\alpha = 2$ and $\beta = 1$, put $j = 4$ in (3) to get P_4 and consider the path T_20 defined by:

$$T_20 := u \sim x_{1,3}^{k+1,n} \sim \omega \sim x_{2,3}^{k+2,n} \sim v$$

where $\omega = x_{1,3}^{k+2,n}$ when $\beta = 1$ and $\omega = x_{2,3}^{k+1,n}$ when $\beta = k + 2$.

- If $\alpha = k + 1$ and $\beta = k + 2$, put $j = 3$ in (3) to get P_3 and consider the path T_21 defined by:

$$T_21 := u \sim x_{1,4}^{k+1,n} \sim x_{1,4}^{k+2,n} \sim x_{2,4}^{k+2,n} \sim v.$$

- If $\alpha = k + 1$ and $\beta = 1$, consider the paths T_6 and T_21.

Subcase IV(C).
For $i \in \{5, \ldots, k\}$, let the paths Q_i (if any) be given by

$$Q_i := \bar{u} \sim x_{1,3,i}^{k+1,\beta+k+3,n} \sim x_{1,3,i}^{k+2,\beta+k+3,n} \sim x_{1,4,i}^{k+2,k+3,n} \sim x_{2,4,i}^{k+2,\alpha,n} \sim v$$

and the path T_{22} be defined as

$$T_{22} := \bar{u} \sim x_{1,3}^{k+3,n} \sim x_{2,3}^{\alpha,n} \sim x_{2,4}^{\alpha,n} \sim v$$

To conclude this last subcase,

- If $\alpha \in \{k + 3, k + 4\}$, put $j = 3$ and $j = 4$ in (3) to get the paths P_3 and P_4, and consider the paths T_{23} and T_{24} defined below:

$$T_{23} := \bar{u} \sim x_{2,3}^{k+1,\beta+k+3,n} \sim x_{2,3}^{k+1,\alpha,n} \sim x_{2,3}^{k+2,\alpha,n} \sim v$$
$$T_{24} := \bar{u} \sim x_{1,2,3}^{k+1,\beta+n} \sim x_{1,2,3}^{k+1,\alpha,n} \sim x_{1,2,4}^{k+1,\alpha,n} \sim x_{1,2,4}^{k+2,\alpha,n} \sim v$$
Thus, \(|G - S| \geq n|y|\). The upper bound follows from Lemma 6. For the lower bound, we use induction on \(n\).

\[T_{25} := \bar{u} \sim x_{2,3,4}^{k+1,k+3,n} \sim x_{2,3,4}^{k+2,\alpha,n} \sim \bar{v} \]
\[T_{26} := \bar{u} \sim x_{1,2,3}^{k+1,k+3,n} \sim x_{1,2,4}^{k+3,\alpha,n} \sim x_{1,2,4}^{k+2,\alpha,n} \sim \bar{v}. \]

○ if \(\alpha = k + 1\), consider the paths \(T_{0}, T_{21}, T_{25}\) and \(T_{26}\).

\(\Box\)

In Theorem 9 we use induction on \(n\) to show that the super-connectivity of \(J(n, 3)\) is equal to \(5n - 18\) for \(n \geq 6\). This will serve in establishing the base case for the inductive argument used in proving our main result given in Theorem 10.

Theorem 9 \(\kappa'(J(n, 3)) = 5n - 18\), where \(n \geq 6\).

Proof: The upper bound follows from Lemma 3. For the lower bound, we use induction on \(n\), where \(n \geq 6\). To establish the base case, it can be readily checked that \(\kappa'(J(6, 3)) = 12\). We assume that \(\kappa'(J(t, 3)) \geq 5t - 18\) for \(7 \leq t \leq n - 1\).

The proof of the inductive step is the same as that in Theorem 11 by taking \(k = 3\), and hence we omit it here. Letting \(S\) be a minimum super vertex of \(J(n, 3)\), we have \(\kappa'(J(n, 3)) \geq |S| \geq 5n - 18\), as required.

\(\Box\)

We conclude this section by proving our main result.

Theorem 10 \(\kappa'(J(n, k)) = (2k - 1)(n - k) - k\) for \(k \geq 3\) and \(n \geq k + 3\).

Proof: The upper bound follows from Lemma 3. For the lower bound, we use induction on \(n\), where \(n \geq k + 3\) and \(k \geq 3\). To establish the base case, we note that \(J(n, k)\) is isomorphic to \(J(n - k, k)\), and thus \(\kappa'(J(k + 3, k)) = \kappa'(J(k + 3, 3)) = 5k - 3 = (2k - 1)(n - k) - k\) for \(n = k + 3\) by Theorem 8.

We assume that \(\kappa'(J(t, k)) \geq (2k - 1)(t - k) - k\) for \(k + 3 \leq t \leq n - 1\).

Let \(\mathcal{G} = J(n, k)\). Let \(S\) be a minimum super vertex–cut of \(\mathcal{G}\). Let \(C\) be a smallest component of \(\mathcal{G} - S\) and let \(C_\alpha = (\mathcal{G} - S) - C\). By Lemma 9, there is an entry \(z_r\) for \(r \in [n]\) that is not contained in every vertex of both \(C\) and \(C_\alpha\). Let \(x \in V(C)\) and let \(y \in V(C_\alpha)\) such that the vertices \(x\) and \(y\) do not contain the entry \(z_r\).

Suppose that all the neighbours of \(x\) in \(\mathcal{G} - S\) contain the entry \(z_r\). Then by Lemma 7, \(|S| \geq (2k - 1)(n - k) - k\), and we are done. Similarly, there is nothing more to prove if all the neighbours of \(y\) in \(\mathcal{G} - S\) contain the entry \(z_r\).

Thus, we can assume that at least one of the neighbours of \(x\) in \(C\) and at least one of the neighbours of \(y\) in \(C_\alpha\) do not contain the entry \(z_r\). We consider \(\mathcal{G}' = \mathcal{G} - \beta_r\), which is isomorphic to \(J(n - 1, k)\). If we let \(C' = C - \beta_r\) and \(C'_\alpha = C_\alpha - \beta_r\), then \(|C'| \geq 2\) and \(|C'_\alpha| \geq 2\). Also, by Lemma 7, the entry \(z_r\) cannot be contained in every vertex of \(S\). Thus, \(S' = S - \beta_r\) is not empty and we have \(S' \subset S\) by Lemma 8.

Thus, \(S'\) is a minimum super vertex-cut of \(\mathcal{G}\) since it is non-empty and there are no isolated vertices in \(\mathcal{G} - S'\). Hence, by the inductive hypothesis, \(|S'| \geq (2k - 1)(n - 1 - k) - k\). By Lemma 8, we have that \(|S \cap \beta_r| \geq 2k - 1\), implying that \(|S' \cap \beta_r| \geq 2k - 1\). This completes our proof.

Hence, \(\kappa'(J(n, k)) \geq |S| \geq (2k - 1)(n - k) - k\), as required.

\(\Box\)
4 Conclusion

As already discussed, the Johnson graph $J(n, k)$ is isomorphic to $J(n, n - k)$, and thus $J(k + 1, 1)$ and $J(k + 2, k) \cong J(k + 2, 2)$. Hence, the super–connectivity of the family of Johnson graphs is given by the proposition below.

Proposition 11 The super–connectivity of the Johnson graph $J(n, k)$ for $n \geq k \geq 1$ is given by

$$
\kappa'(J(n, k)) = \begin{cases}
3(n - 3) & \text{if } k = 2 \text{ and } n \geq 6, \\
3(k - 1) & \text{if } k \geq 4 \text{ and } n = k + 2, \\
(2k - 1)(n - k) - k & \text{if } k \geq 3 \text{ and } n \geq k + 3 \\
+\infty & \text{otherwise.}
\end{cases}
$$

In future work, it would be interesting to investigate the super–connectivity of the uniform subset graphs $G(n, k, t)$ for other values of the parameter t. It is worth noting that if $t = 1$, then $G(n, k, 1)$ is the Kneser graph $KG(n, k)$. [Boruzanlı Ekinci and Gauci (2019)] proved that the super–connectivity of $KG(n, 2)$ for $n \geq 5$ is equal to $\binom{n}{2} - 6$, and a related conjecture for the remaining cases was formulated.

Acknowledgements

The authors would like to thank the referees for their comments and suggestions which helped in improving this paper.

References

L. Agong, C. Amarra, J. Caughman, A. Herman, and T. Terada. On the girth and diameter of generalized Johnson graphs. *Discrete Mathematics*, 341(1):138–142, 2018.

L. Babai. Graph Isomorphism in Quasipolynomial Time. *arXiv:1512.03547*, 2016.

C. Balbuena and X. Marcote. The p-restricted edge-connectivity of Kneser graphs. *Applied Mathematics and Computation*, 343:258–267, 2019.

Z. Baranyai. On the factorization of the complete uniform hypergraph. *Colloq. Math. Soc. János Bolyai*, 10:91–108, 1975.

C. Bautista-Santiago, J. Cano, R. Fabila-Monroy, D. Flores-Peñaloza, H. González-Aguilar, D. Lara, E. Sarmiento, and J. Urrutia. On the connectedness and diameter of a geometric Johnson graph. *Discrete Mathematics & Theoretical Computer Science*, 15:21–30, 2013.

F. Boesch and R. Tindell. Circulants and their connectivities. *Journal of Graph Theory*, 8(4):487–499, 1984. ISSN 03649024.

F. T. Boesch. Synthesis of reliable networks - a survey. *IEEE Transactions on Reliability*, 35(3):240—246, 1986.

G. Boruzanlı Ekinci and J. Gauci. On the reliability of generalized Petersen graphs. *Discrete Applied Mathematics*, 252:2–9, 2019a.
G. Boruzanlı Ekinci and A. Kirklăngıç. Super connectivity of Kronecker product of complete bipartite graphs and complete graphs. *Discrete Mathematics*, 339(7):1950–195, 2016.

A. E. Brouwer and J. H. Koolen. The vertex-connectivity of a distance-regular graph. *European Journal of Combinatorics*, 30(3):668–673, 2009.

X. Cao and E. Vumar. Super edge connectivity of Kronecker products of graphs. *International Journal of Foundations of Computer Science*, 25(01):59–65, 2014.

G. Chartrand, L. Lesniak, and P. Zhang. *Graphs & digraphs*. Chapman and Hall/CRC, 2010.

L. Guo and X. Guo. Super connectivity of Kronecker products of some graphs. *Ars Combinatoria*, 123:65–73, 2015.

M. Heydemann. Cayley graphs and interconnection networks. In G. Hahn and G. Sabidussi, editors, *Graph Symmetry: Algebraic Methods and Applications*, pages 167–224. Springer Netherlands, Dordrecht, 1997. ISBN 978-94-015-8937-6.

M. Kneser. Aufgabe 360. *Jahresbericht der DMV*, 58:27, 1955.
The super-connectivity of Johnson graphs

J. Meng. Connectivity of vertex and edge transitive graphs. *Discrete Applied Mathematics*, 127(3):601–613, 2003.

A. Moon. The graphs $G(n, k)$ of the Johnson schemes are unique for $n \geq 20$. *Journal of Combinatorial Theory, Series B*, 37:173–188, 1984.

T. Mütze and P. Su. Bipartite Kneser graphs are Hamiltonian. *Combinatorica*, 37(6):1207–1219, 2017.

J. Simpson. On uniform subset graphs. *Ars Combinatoria*, 37:309–318, 1994.

E. R. van Dam, J. H. Koolen, and H. Tanaka. Distance-regular graphs. *arXiv:1410.6294*, 2014.

J. Van Lint and R. Wilson. *A course in combinatorics*. Cambridge University Press, Cambridge, 2 edition, 2001.

M. Watkins. Connectivity of transitive graphs. *Journal of Combinatorial Theory*, 8(1):23 – 29, 1970. ISSN 0021-9800.

W. Yang and J. Meng. Extraconnectivity of hypercubes. *Applied Mathematics Letters*, 22:887–891, 2009.

W. Yang and J. Meng. Extraconnectivity of hypercubes (II). *Australasian Journal of Combinatorics*, 47:189–195, 2010.