Unconventional anomalous Hall effect from magnetization parallel to the electric field

Hengxin Tan, Yizhou Liu, and Binghai Yan

Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel

(Dated: May 27, 2021)

In the anomalous Hall effect (AHE), the magnetization, electric field and the Hall current are presumed to be mutually vertical to each other. In this work, we propose an unconventional AHE where the magnetization, electric field and Hall current stay inside the same plane. Such an AHE is odd under time-reversal and exists even when the magnetization is parallel to the electric field or Hall current, different from the planar Hall effect which is even under time-reversal. Here, we term it parallel anomalous Hall effect (PAHE). We reveal that the PAHE exists when all the point group rotational and reflection symmetries are broken where the Berry curvature field is not necessarily parallel to the magnetization axis. We further demonstrate the PAHE in a ferrimagnetic Weyl semimetal FeCr$_2$Te$_4$.

INTRODUCTION

The intrinsic anomalous Hall effect (AHE)\cite{1} is established on the Berry phase theory\cite{2} and provides a powerful probe on the time-reversal breaking and the band topology. In general, it is presumed that three vectors – magnetization, electric field and the Hall current – are mutually perpendicular to each other, which is like the conventional Hall effect in an external magnetic field. However, the recent discovery of giant AHE in noncollinear antiferromagnets\cite{3,4,5,6} questioned this assumption, in which the net magnetization vanishes. Furthermore, the quantized AHE was theoretically proposed to exist with these three vectors being co-planar in some two-dimensional (2D) films that break all reflection symmetries\cite{7,8,9,10}. It is elusive how this in-plane AHE is generalized to three-dimensional (3D) materials and what symmetry condition is required.

Here, we express the anomalous Hall current as $\mathbf{J}^{AHE} = \frac{e}{\hbar} \mathbf{Ω} \times \mathbf{E}$, where $\mathbf{Ω}$ is the total Berry curvature of the band structure, \mathbf{E} the applied electric field and $\frac{e}{\hbar}$ the conductance quantum. If any rotational or reflection symmetry exists, both $\mathbf{Ω}$ and the magnetization \mathbf{m} lie parallel to the rotational axis or the reflection plane normal, because $\mathbf{Ω}$ is a pseudo-spin-type vector. Therefore, \mathbf{J}^{AHE}, \mathbf{E} and \mathbf{m} are mutually orthogonal in this case. However, if all rotational and reflection symmetries are broken, $\mathbf{Ω}$ unnecessarily aligns along \mathbf{m}. Then the orthogonal relation may get violated. Three vectors, \mathbf{J}^{AHE}, \mathbf{E} and \mathbf{m} can be coplanar and \mathbf{m} may even be parallel to \mathbf{J}^{AHE} or \mathbf{E}, as schematically shown in Fig. 1. We note this unconventional AHE as parallel anomalous Hall effect (PAHE). Like the conventional AHE, PAHE changes sign as reversing the \mathbf{m} direction. It is distinct from the planar Hall effect\cite{11,12,13,14}, which remains the same when flipping the magnetic field and originates in the anisotropic magnetoresistance.

In this work, we investigate the PAHE in general 3D materials. We demonstrate the misalignment between magnetization and Berry curvature if anisotropic spin-orbit coupling (SOC) exits. Unlike the 2D case, we need to break all rotational and reflection symmetries except the spatial inversion to generate PAHE in 3D. We analyze all thirty-two point groups (PGs) and identify the allowed PAHE. Further, we propose the experimental available magnetic Weyl semimetal FeCr$_2$Te$_4$ as a candidate to realize PAHE.

A TOY MODEL

We first illustrate the PAHE by a simple two-band toy model in this section. The two-band anisotropic model Hamiltonian can be written as,

$$H = H_0 + H_Z + H_{SO},$$

where H_{SO} and H_Z are SOC and Zeeman-like terms, respectively. $\lambda = (\lambda_x, \lambda_y, \lambda_z)$ is the spin Pauli matrix and $\mathbf{m} = (m_x, m_y, m_z)$ is the magnetization. If $\lambda_x = \lambda_y = \lambda_z = \lambda$, H_{SO} is reduced to the ordinary isotropic form $\lambda k \sigma$. The Hamiltonian in Eq. (1) can be rewritten into a compact form $H = d_0 \sigma_0 + \mathbf{d} \cdot \sigma$ (σ_0 is a 2×2 identity matrix) whose energy band dispersion is given by $\varepsilon_{sk} = d_0 + s \sqrt{|\mathbf{d}|^2}$ ($s = \pm 1$) with $d_0 = \hbar^2 k^2/(2m^*)$, and $d_0 = \lambda_{x}k_{x} + gm_{x}$ ($\alpha = x, y, z$). The total Berry curvature $\mathbf{Ω}$ can be calculated as

$$\mathbf{Ω}_k = \frac{\lambda_x \lambda_y \lambda_z}{2|\mathbf{d}|^3} (\mathbf{k} + g \mathbf{m}_\lambda)$$

$$\mathbf{Ω} = \sum_{s = \pm} \int \frac{dk}{(2\pi)^3} \mathbf{Ω}_{sk} f_{sk}$$

$$= \left(- \sum_{s = \pm} \int \frac{dk}{(2\pi)^3} \frac{g \lambda_x \lambda_y \lambda_z}{2|\mathbf{d}|^3} m_{\lambda}, \right.$$

where $\mathbf{m}_{\lambda} = (m_{x}/\lambda_{x}, m_{y}/\lambda_{y}, m_{z}/\lambda_{z})$. μ is the chemical potential.

Equation (2) indicates that the direction of Berry curvature $\mathbf{Ω}$ is parallel to the magnetization \mathbf{m} only in the
isotropic case \((m_\lambda = m/\lambda) \). For generic low-symmetry anisotropic SOC, \(m_\lambda \) or \(\Omega \) is not necessarily collinear with \(m \).

A similar conclusion also applies to the conventional Hall effect. Based on the Boltzmann transport theory the conventional Hall current \((J_{HE}) \) due to Lorentz force can be derived as

\[
J_{HE} = -e^2 \tau \int \frac{dk}{(2\pi)^3} \mathbf{v} \cdot \left[\mathbf{B} \times \left(\frac{1}{m^*} \right) \mathbf{E} \right] \frac{\partial f_0}{\partial \varepsilon},
\]

where \(\frac{1}{m^*} \) is the inverse effective mass matrix and \(\mathbf{v} = \frac{1}{\hbar} \nabla_{\mathbf{k}} \varepsilon_\mathbf{k} \) is the group velocity. \(f_0 \) is the equilibrium Fermi distribution function. In the case of isotropic parabolic band with a constant effective mass \(\varepsilon_\mathbf{k} = \frac{\hbar^2 k^2}{2m^*} \), the \(J_{HE} \) can be calculated as

\[
J_{HE} = \sigma_H \mathbf{B} \times \mathbf{E}
\]

with \(\sigma_H = \frac{e^2 n_F}{m^*} \) \((n_F \) is the carrier density at Fermi level). However, in the case of anisotropic effective mass model \(\varepsilon_\mathbf{k} = \frac{\hbar^2 k_x^2}{2m_{x^*}^2} + \frac{\hbar^2 k_y^2}{2m_{y^*}^2} + \frac{\hbar^2 k_z^2}{2m_{z^*}^2} \), the Hall current becomes

\[
J_{HE} = \frac{e^2 n_F}{m_{x^*} m_{y^*} m_{z^*}} \mathbf{B}_{m^*} \times \mathbf{E}
\]

with \(\mathbf{B}_{m^*} = (m_{x^*} B_x, m_{y^*} B_y, m_{z^*} B_z) \), so that \(J_{HE} \) is not necessarily perpendicular to \(\mathbf{B} \).

SYMMETRY RESTRICTIONS ON ANOMALOUS HALL EFFECT

Our above discussions indicate that symmetry is a decisive factor for the appearance of PAHE. Let’s now consider from a generic aspect how the symmetry restricts the AHE. In the experiment, the AHE is generally measured with magnetization \(m \) or magnetic field \(\mathbf{H} \) along the high-symmetry directions. For this reason, and also for the sake of simplicity, we start from the thirty-two PGs and apply the magnetization \(m \) along the three orthogonal axes of the Cartesian coordinate systems conventionally used for all crystal systems \[15\], as summarized in SM[16]. Note that for the trigonal crystal system, we employ the hexagonal lattice settings. The elements of the anomalous Hall conductivity (AHC) tensor \(\sigma \) that allow PAHE are summarized in Table I after considering the symmetry broken by \(m \) (more details can be found

TABLE I. Anomalous Hall conductivity tensor components of three-dimensional point groups that allow PAHE.

Crystal System	Point group	Direction of \(m \)
Hexagonal	C6h	\(\sigma_{xz} \) \(\sigma_{yz} \) \(\sigma_{yz} \)
	C3h	\(\sigma_{xz} \) \(\sigma_{yz} \) \(\sigma_{yz} \)
	C6	\(\sigma_{xz} \) \(\sigma_{yz} \) \(\sigma_{yz} \)
	D3d	\(\sigma_{xy} \) \(\sigma_{xy} \) \(\sigma_{xy} \)
	D3	\(\sigma_{xy} \) \(\sigma_{xy} \) \(\sigma_{xy} \)
Trigonal	C3v	\(\sigma_{xy} \) \(\sigma_{xy} \) \(\sigma_{xy} \)
	C3	\(\sigma_{xy} \) \(\sigma_{xy} \) \(\sigma_{xy} \)
Tetragonal	C4h	\(\sigma_{xz} \) \(\sigma_{yz} \) \(\sigma_{yz} \)
	S4	\(\sigma_{xz} \) \(\sigma_{yz} \) \(\sigma_{yz} \)
	C4	\(\sigma_{xz} \) \(\sigma_{yz} \) \(\sigma_{yz} \)
Monoclinic	C2h	\(\sigma_{xy} \) \(\sigma_{yz} \)
	C2	\(\sigma_{xy} \) \(\sigma_{yz} \)
	C2	\(\sigma_{xy} \) \(\sigma_{yz} \)
Triclinic	C1	\(\sigma_{xy} \) \(\sigma_{xy} \) \(\sigma_{xy} \)
	C1	\(\sigma_{xy} \) \(\sigma_{xy} \) \(\sigma_{xy} \)
in the SM[16]). The PAHE is not allowed for (i) the five cubic PGs, (ii) the dihedral PGs except for D_3 and D_{4d} and (iii) the C_{nv} PGs except for C_{4v}. One common feature of these PGs is that each of the three Cartesian axes shows at least one of the n-fold rotational ($n \geq 2$) and reflection symmetries upon applying the \mathbf{m}. For example for C_{4v}, the reflection \mathcal{M}_x (reflection plane yz) and \mathcal{M}_y (reflection plane xz) are maintained respectively with \mathbf{m} along x (i.e. [100] direction) and y (i.e. [010] direction). For D_{3h} the two-fold rotational symmetry along the in-plane lattice vector \mathbf{a} (i.e. x) is preserved with \mathbf{m} along x and the reflection symmetry \mathcal{M}_y (reflection plane xz) is preserved with \mathbf{m} along y. The synergy of these remaining rotational/reflection symmetries prohibits the PAHE in the PGs mentioned above. However, if there is at least one axis that shows no rotational and reflection symmetry upon applying \mathbf{m}, the PAHE is allowed, which comprise Table I. Let’s take D_3 as an example. We take one of the two-fold rotational axes along the x direction (i.e., along in-plane lattice vector \mathbf{a} [16]). No rotational symmetry is maintained when \mathbf{m} is along y, but the two-fold rotational symmetry along x is maintained when \mathbf{m} is along x. As a result, PAHE is allowed with \mathbf{m} along y in D_3.

The above discussions establish for PAHE the preconditions of breaking both rotational and reflection symmetries. But it is still not clear about the plane in which the PAHE appears. By analyzing the symmetries upon applying \mathbf{m}, we find that, while the reflection (rotational) symmetry is broken when \mathbf{m} is in the reflection plane (the plane perpendicular to the rotational axis), the combination of reflection \mathcal{M} (two-fold rotation C_2) and time-reversal symmetry T, i.e. $\mathcal{M}T$ (C_2T), is maintained. Such combinations of $\mathcal{M}T$ and C_2T impart additional restriction for the AHE. Let’s consider the most interesting in-plane component σ_{xy} (similar discussion below can be applied to the other components). For example for C_{3h} PG as shown in Table I, the PAHE is only allowed when \mathbf{m} lies in the xy plane. However, due to the maintained $\mathcal{M}T$ (\mathcal{M} here is the reflection σ_h along z axis), the AHE in xy plane (σ_{xy}) is forbidden. For C_n PG (n is even) now the C_2T plays the role of $\mathcal{M}T$ in C_{3h}. Similar discussions can be performed for other PGs. In short, the in-plane AHE is not allowed in the PGs with either even-fold rotational symmetry (the rotational axis is along z direction) or σ_h reflection when \mathbf{m} lies in the xy plane.

Now we discuss the two-dimensional case. Previous works[7–10] revealed the possibility to realize in-plane quantized AHE effect with in-plane magnetization on the precondition of breaking all the reflection symmetries. However, rotational symmetry is no well considered before. This may be because that the materials or models considered therein have no two-fold rotational and reflection symmetries along the out-of-plane direction, thus do not suffer from C_2T or $\mathcal{M}T$ with in-plane magneti-

![FIG. 2. Crystal and band structures of FeCr$_2$Te$_4$. (a) Crystal and magnetic structure of FeCr$_2$Te$_4$ with the red vectors on Cr and Fe atoms showing the experimentally confirmed ferromagnetic configuration, where the local moments are aligned ferromagnetically along c-axis in each sublattice but antiferromagnetically aligned between the two sublattices. (b) The first Brillouin zone of the primitive cell together with the high-symmetry points used in (c) are shown. The blue dots represent a pair of Weyl points near the Fermi level. (c) The band structure under the experimental ferrimagnetic configuration including SOC (the energy is referenced to the Fermi level). The band crossing on ΓF_1 at the energy of -44 meV forms a type-I Weyl point (WP) and the inset shows the dispersion relation near the WP on the k_x-k_y plane. Yellow (Blue) color stands for higher (lower) band weight of Fe.](image-url)
MATERIAL PREDICTION

We now demonstrate by first-principles calculation the PAHE in the ferrimagnetic Weyl semimetal FeCr$_2$Te$_4$, which has been reported recently about the ferrimagnetism and general AHE from experiment [17, 18]. The crystal structure of FeCr$_2$Te$_4$, as shown in Fig. 2(a), can be regarded as the Fe-intercalated AA-stacking of 1T phase of a transition-metal dichalcogenide (CrTe$_2$) with distortions. It has a monoclinic structure with a space group of $I2/m$ (C_{2h}), and the angle between the lattice vectors a and c is 90.01$^\circ$ (the small deviation from 90$^\circ$ will be ignored below). The two-fold rotational symmetry C_2 is along lattice vector b and reflection M is with respect to ac plane. The experimentally confirmed ferrimagnetic configuration with the easy axis along c is shown in Fig. 2(a). Within such a magnetic configuration, both the C_2 and M are broken, but the combined C_2T and MT symmetries are maintained.

The Perdew-Burke-Ernzerhof [19] level band structure, as calculated by the Density Functional Theory as implemented in Vienna ab initio simulation package [20, 21], is shown in Fig. 2(c) where SOC is included. FeCr$_2$Te$_4$ is metallic which is different from its isostructural FeCr$_2$Se$_4$, who is an antiferromagnetic insulator [22, 23]. There are many band crossing points in the band structure, some of which are potential Weyl points (WPs). For example, by employing WannierTools software [24], we identify that the band crossing point on ΓF at -44 meV is a type-I WP as shown in Fig. 2(c). Due to the maintained inversion symmetry, there is another WP corresponding to the one on ΓF. The positions of this pair of WPs in the Brillouin zone are shown in Fig. 2(b) by blue dots. Such WPs (and other band crossing points) generally contribute much to the Berry curvature and thus to the intrinsic AHC who is the integral of Berry curvature over all the occupied bands. But be aware that the WP is not a prerequisite of AHE according to the symmetry analyses above.

Based on a tight-binding Hamiltonian as obtained with the maximally localized Wannier functions[25], we calculate the intrinsic AHC by using the Kubo formula approach. Figure 3 shows the calculated AHC under the experimental ferrimagnetic configuration. The component σ_{xy} (magnetization along z) which represents the general AHE, shows a value of about 130 ($\Omega \cdot cm$)$^{-1}$ at the Fermi energy. This intrinsic AHC is larger than the experimental value where the extrinsic contribution dominates the AHE of FeCr$_2$Te$_4$ as discussed in literature [18]. Here we focus on the intrinsic part. While the experiment had reported the σ_{xy}, the PAHE has not been reported. According to our calculation, the most intriguing component σ_{yz}, where the electric field or the Hall current is in the same direction of the intrinsic magnetization (i.e. z direction), is non-zero, which confirms our above proposal of the PAHE as depicted in Fig. 1(b) and (c). Notice that the WP shown in Fig. 2(c) is purely an unexpected surprise and it is not a requirement of PAHE (σ_{yz}). The value of σ_{yz} at the Fermi energy is ~ 50 ($\Omega \cdot cm$)$^{-1}$, in the same order of σ_{xy}. If the system is slightly doped by hole, σ_{yz} can even reach a value of as large as 500 ($\Omega \cdot cm$)$^{-1}$. The σ_{xx} is always zero because of the maintained C_2T and MT symmetries.

EXPERIMENT SIGNATURE

Very recently, the in-plane AHE was reported in the potential Dirac or Weyl semimetal material ZrTe$_5$ [26] when the in-plane magnetic field \mathbf{H} is parallel and perpendicular to the electric field \mathbf{E}. ZrTe$_5$ has a PG of D_{2h}. According to the symmetry analyses above, this PG does not show PAHE when the \mathbf{H} is along any of the three crystallographic directions since there are always a reflection symmetry and a two-fold rotational symmetry left. However, in the experiment the electrodes are misaligned with the in-plane lattice vectors a as manifested in the literature. This misalignment leads to the misalignment between \mathbf{H} and the in-plane a or c axes when \mathbf{H} is parallel or perpendicular to \mathbf{E}, and thus breaks all the symmetry restrictions for PAHE we proposed above. Thus we think the antisymmetric part of the measured unconventional AHE is a signal of PAHE. This actually goes to the proposal above where \mathbf{H} is applied along a general direction for realizing PAHE.

CONCLUSION

We have explored the possibility of realizing an unconventional anomalous Hall effect—parallel anomalous Hall effect—where the magnetization (or magnetic moment)
is coplanar with the electric field and the Hall current. By symmetry analyses, we reveal that breaking the rotational and reflection symmetries is critical for realizing parallel anomalous Hall effect in three-dimensional. For two-dimensional cases, in addition to the above prerequisites, breaking the additional combinations of two-fold rotational symmetry C_2, reflection symmetry \mathcal{M} (both along out-of-plane direction) and time-reversal symmetry T (i.e. C_2T and $M\mathcal{T}$) is also essential. By first-principles calculation, we demonstrate this unconventional anomalous Hall effect in a realistic ferrimagnetic Weyl semimetal. Our symmetry discussions also apply to the conventional Hall effect.

ACKNOWLEDGEMENTS

We thank Cedomir Petrovic and Daniel Kaplan for inspiring discussions. B.Y. acknowledges the financial support by the Willner Family Leadership Institute for the Weizmann Institute of Science, the Benoziyo Endowment Fund for the Advancement of Science, Ruth and Herman Albert Scholars Program for New Scientists, the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant No. 815869).

* binghai.yan@weizmann.ac.il

[1] Naoto Nagaosa, Jairo Sinova, Shigeki Onoda, A. H. MacDonald, and N. P. Ong, “Anomalous hall effect,” Rev. Mod. Phys. 82, 1539–1592 (2010).

[2] Di Xiao, Ming-Che Chang, and Qian Niu, “Berry phase effects on electronic properties,” Rev. Mod. Phys. 82, 1950 (2010).

[3] Satoru Nakatsuji, Naoki Kiyohara, and Tomoya Higo, “Large anomalous hall effect in a non-collinear antiferromagnet at room temperature,” Nature 527, 212–215 (2015).

[4] A K Nayak, J E Fischer, Y Sun, B Yan, J Karel, A C Komarek, C Shekhar, N Kumar, W Schnelle, J Kbler, C Felser, and S S P Parkin, “Large anomalous hall effect driven by a nonvanishing Berry curvature in the noncollinear antiferromagnet Mn3Ge,” Sci. Adv. 2, e1501870–e1501870 (2016).

[5] Hua Chen, Qian Niu, and A. H. MacDonald, “Anomalous hall effect arising from noncollinear antiferromagnetism,” Phys. Rev. Lett. 112, 017205 (2014).

[6] Yang Zhang, Yan Sun, Hao Yang, Jakub ᾱeleziñý, Stuart PP Parkin, Claudia Felser, and Binghai Yan, “Strong anisotropic anomalous hall effect and spin hall effect in the chiral antiferromagnetic compounds Mn_xGe,” Physical Review B 95, 075128 (2017).

[7] Xin Liu, Hsiao-Chuan Hsu, and Chao-Xing Liu, “In-plane magnetization-induced quantum anomalous hall effect,” Phys. Rev. Lett. 111, 086802 (2013).

[8] Yafei Ren, Junjie Zeng, Xinzhou Deng, Fei Yang, Hui Pan, and Zhenhua Qiao, “Quantum anomalous hall effect in atomic crystal layers from in-plane magnetization,” Phys. Rev. B 94, 085411 (2016).

[9] Peichen Zhong, Yafei Ren, Yulei Han, Liyuan Zhang, and Zhenhua Qiao, “In-plane magnetization-induced quantum anomalous hall effect in atomic crystals of group-v elements,” Phys. Rev. B 96, 241103 (2017).

[10] Zhao Liu, Gan Zhao, Bing Liu, Z. F. Wang, Jinlong Yang, and Feng Liu, “Intrinsic quantum anomalous hall effect with in-plane magnetization: Searching rule and material prediction,” Phys. Rev. Lett. 121, 246401 (2018).

[11] H. X. Tang, R. K. Kawakami, D. D. Awschalom, and M. L. Roukes, “Giant Planar Hall Effect in Epitaxial (Ga,Mn)As Devices,” Phys. Rev. Lett. 90, 107201 (2003).

[12] A. A. Burkov, “Giant planar Hall effect in topological metals,” Phys. Rev. B 96, 041110 (2017).

[13] S. Nandy, Girish Sharma, A. Taraphder, and Sumanta Tewari, “Chiral Anomaly as the Origin of the Planar Hall Effect in Weyl Semimetals,” Phys. Rev. Lett. 119, 176804 (2017).

[14] Battilomo, Raffaele and Scopigno, Niccolò and Or- tix, Carmine, “Anomalous planar Hall effect in two-dimensional trigonal crystals,” Phys. Rev. Research 3, L012006 (2021).

[15] “Ieee standards on piezoelectric crystals, 1949,” IEEE Std 176-1949 (ANSI C83.3-1951), 1–20 (1949).

[16] See the Supplemental Material for more details.

[17] Battilomo, Raffaele and Scopigno, Niccolò and Or- tix, Carmine, “Anomalous planar Hall effect in two-dimensional trigonal crystals,” Phys. Rev. Research 3, L012006 (2021).

[18] Yu Liu, Hengxin Tan, Zhixiang Hu, Binghai Yan, and C. Petrovic, “Anomalous hall effect in the weak-itinerant ferrimagnet fecr2te$_4$, Phys. Rev. B 102, 085158 (2020).

[19] Yu Liu, Hengxin Tan, Zhixiang Hu, Binghai Yan, and C. Petrovic, “Anomalous hall effect in the weak-itinerant ferrimagnet fecr2te$_4$, Phys. Rev. B 103, 045106 (2021).

[20] John P. Perdew, Kieron Burke, and Matthias Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).

[21] G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996).

[22] G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Computational Materials Science 6, 15–50 (1996).

[23] G. Jeffrey Snyder, T. Caillat, and J.-P. Fleurial, “Thermoelastic, transport, and magnetic properties of the polaron semiconductor fe$_3$cr$_{3-x}$se$_4$, Phys. Rev. B 62, 10185–10193 (2000).

[24] BI Min, Seung Su Baik, HC Choi, SK Kwon, and JS Kang, “Electronic structures of magnetic semiconductors fecr$_2$se$_4$ and fe0. 5cu0. 5cr$_2$se$_4$, New J. Phys. 10, 055014 (2008).

[25] QuanSheng Wu, ShengNan Zhang, Hai-Feng Song, Matthias Troyer, and Alexey A Soluyanov, “Wannier-tools: An open-source software package for novel topological materials,” Comput. Phys. Commun. 224, 405 (2018).

[26] Nicola Marzari, Arash A. Mostofi, Jonathan R. Yates, Ivo Souza, and David Vanderbilt, “Maximally localized wannier functions: Theory and applications,” Rev. Mod. Phys. 84, 1419–1475 (2012).
[26] Jun Ge, Da Ma, Yanzhao Liu, Huichao Wang, Yanan Li, Jiawei Luo, Tianchuang Luo, Ying Xing, Jiaqiang Yan, David Mandrus, et al., “Unconventional hall effect induced by berry curvature,” National Science Review 7, 1879–1885 (2020).