Resolving the Inner Parsec of the Blazar J1924–2914 with the Event Horizon Telescope

Sara Issaoun 1,2,3, Maciek Wielgus 1, Svetlana Jorstad 4, Thomas P. Krichbaum 6, Lindy Blackburn 1,6, Michael Jansen 1,4, Chi-kwan Chan 7,8, Dominic W. Pesce 1,6, José L. Gómez 9, Kazunori Akiyama 6,10,11, Monika Mościobrodzka 1, Iván Martí-Vidal 12,13, Andrew Chael 1,14, Rocco Lico 4,15,16, Jun Liu (刘俊) 4,17, Venkatesh Ramakrishnan 18,19, Mikhail Lisakov 15, Antonio Fuentes 15, Guang-Yao Zhao 15, Kotaro Moriyama 15, Avery E. Broderick 22,23,24, Paul Tiede 1,6, Nicholas R. MacDonald 1, Youseke Muzuno 20,25,26, Ethalina Traianou 4,9,10, Laurent Loinard 29,30, Jordy Davelaar 1,30, Mark Gurwell 1, Ru-Sen Lu (路思霖) 15, Antxon Alberdi 15, Walter Alef 4, Juan Carlos Albagas 33, Richard Ananthu 3,6,4, Keichi Asada 35, Rebecca Azulay 4,12,13, Uwe Bach 1, Anne-Kathrin Baczko 1, David Ball 36, Mislaw Balokovic 36, John Barrett 10, Michi Bauböck 37, Bradford A. Benson 38,39, Dan Bintley 40,41, Raymond Blundell 1, Wilfred Boland 42, Katherine L. Bouman 43, Geoffrey C. Bower 44,45,46, Hope Boyce 46,47, Michael Bremer 48, Christiana D. Brinkerink 2, Roger Brissenden 1,6, Silke Britzen 4, Dominique Broguiere 48, Thomas Bronzwaer 2, Sandra Bustamante 49, Do-Young Byun 50,51, John E. Carlstrom 39,52,53,54, Chiara Ceccobello 55, Koushik Chatterjee 19, Shami Chatterjee 56, Ming-Tang Chen 44, Yongjun Chen (陈永军) 11,57, Ilje Cho 15, Pierre Christian 58, Nicholas S. Choun 59, John E. Conway 55, James M. Cordes 56, Thomas M. Crawford 49,52,40, Geoffery B. Crew 10, Alejandro Cruz-Osorio 50, Yuzhu Cui 20,60, Mariafelicia De Laurentiis 21,61,62, Roger Deane 63,64,65, Jessica Dempsey 40,41,66, Gregory Desvignes 67, Jason Dexter 68, Shepard S. Doielman 1,6, Vedant Dhruv 37, Sergio Abraham Dzib Quijano 4,48, Ralph P. Eaton 4,69, Razieh Emami 1, Heino Falcke 15, Joseph Farah 70,71, Vincent L. Fish 10, Ed Fomalont 72,73, A. Mary Fuchs 74, Arvid Furlan 75, William T. Freeman 76,77, Per Friesberg 40,41, Christian Fromm 22,23,24, A. C. G. Fernando 78,79, Roman Gold 21,80, Roberto García 18,48, Olivier Gentaz 40,41,81,82, Boris Georgiev 22,23,24, Ciriaco Goddi 78,79, Roman Gold 21,80, Arturo I. Gómez-Ruiz 81,82, Minfeng Gu (顾敏峰) 31,83, Kazuhiro Hada 20,60, Daryl Haggard 46,47, Michael H. Hecht 10, Ronald Hesper 44, Luis C. Ho (何子山) 85,86, Paul Ho 56,57, Mareki Honma 20,60,87, Paul Yamaguchi 1,58, Marieke Hulsbosch 11,88,90,91, C. M. Violette Impellizzeri 72,91, Makoto Inoue 12, David J. James 92, Buell T. Jannuzi 93, Britton Jeter 35, Wu Jiang (江伟) 31,40,41,57, Alejandra Jimenez-Rosas 6, Michael D. Johnson 18, Abhishek Joshi 7, Taehyun Jung 30,51, Mansour Karami 22,23, Ramesh Karuppusamy 4, Tomohisa Kawashima 93, Garrett Keating 1, Mark Kettenis 93, Dong-Jin Kim 4,40,41,50, Jungsoo Kim 40, Junhan Kim 7,43, Motoki Kino 11,56, Jun Yi Koay 33, Prashant Kocherlakota 21, Yutaro Kofuji 43, Patrick M. Koch 35, Shoko Koyama 31,57, Carsten Kramer 48, Michael Kramer 4, Cheng-Yu Kuo 15, Noemi La Bella 2, Tod R. Lauer 98, Daeyeong Lee 37, Sang-Sung Lee 50, Po Kin Leung 99, Aviad Levis 41, Zhiyuan Li (李志远) 100,101, Rocco Lico 4,15,16, Greg Lindahl 1, Michael Lindqvist 55, Kuo Liu 36, Elisabetta Liuzzo 100,101, Wen-Ping Lo 35,103, Andrei P. Lobanov 4, Colin Lonsdale 10, Jirong Mao (毛江波) 40,41,104,105,106,107, Nicola Marchili 40,108, Sera Markoff 1,2,3, Daniel P. Marrone 6, Alan P. Marscher 6, Satoki Matsushita 35, Lynn D. Matthews 6,10, Lina Medeiros 7,109, Karl M. Menten 39,110, Daniel Michael 39,110, Izumi Muzuno 34,41,94, Yusuke Muzuno 34,111, James M. Moran 1,6,10, Cornelia Müller 3,4, Alejandro Mus12,13, Gibwa Musoke 2,107, Ioannis Myserlis 111, Andrew Nadolski 59, Hiroshi Nagai 11,60, Neil M. Nagar 7, Masanori Nakamura 31,112, Ramesh Narayan 1,6, Gopal Narayanan 49, Inyian Natarajan 53,113, Antonios Nathaniel 21,114, Joel Neilson 115, Roberto Neri 48, Chunchong Ni 22,23,24, A. Mary Fuchs 74, Michael A. Nowak 116, Wu Jiang (吴江) 31,40,41,57, Ye-Fei Yuan (袁叶飞) 40,41,146, Zhiqiang Shen (沈志强) 31,40,41,57, Des Small 94, Bong Won Sohn 1,40,41,30,31,32, Jason SooHoo 10, Kamal Souccar 49, He Sun (孙鑫) 43, Fumie Tazaki 20, Richard Plambeck 12, Aleksandar PopStefanija 4,12,13, Oliver Porth 21,107, Felix M. Pätzold 12,13, Ben Prather 37, Jorge A. Preciado-López 48, Dimitrios Psaltis 1, Hung-Yi Pu 35,124,125, Ramprasad Rao 30,44, Mark G. Rawlings 10, Alexander W. Raymond 44,6, Luciano Rezzolla 1,2,3, Angela Ricarte 1,6, Bart Ripperda 30,129,40, Freek Roelofs 2,6,40, Alan Roger 10, Eduardo Ros 4, Cristina Romero-Canizales 35, Arash Roshanineshat 35, Helge Rottmann 4, Alan L. Roy 4, Ignacio Ruiz 111, Chet Ruszczyk 10, Kazi L. J. Rygi 102, Salvador Sánchez 111,112, David Sánchez-Arguelles 31,82,83, Miguel Sanchez-Portal 111,112, Mahito Sasa 20,31,18, Kuachak Satkapathy 7, Tuomas Savolainen 4,19,131, F. Peter Schloerb 4, Karl-Friedrich Schuster 48, Lijing Sha 2,86, Zhiquang Shen (沈志强) 31,40,41,57, Des Small 94, Bong Won Sohn 1,40,41,30,31,32, Jason SooHoo 10, Kamal Souccar 49, He Sun (孙鑫) 43, Fumie Tazaki 20, Alexandra J. Tetarenko 1,2,3, Paul Tiede 1,6, Remo P. Titus 7,115, Michael Titus 6, Pablo Torne 4,11, Tyler Trent, Sascha Trippe 30,44,135, Ilse van Bemmel 94, Huib Jan van Langevelde 1,2,3,116,136, Daniel R. van Rossum 4, Jese Vos 33, Jan Wagner 31, Derek Ward-Thompson 37, John Wardle 138, Jonathan Weintroub 1,6, Norbert Wex 4, Robert Wharton 4, Kaj Witt 139, Gunther Witzel 4, Michael Wondrak 2,140, George N. Wong 109,141, Qiongwen Wu (吴庆文) 40,141,142, Paul Yamaguchi 1, Doosoo Yoon 107, André Young 4,2, Ken Young 4, Ziri Young 21,143, Feng Yuan (袁峰) 31,40,41,83,144, Ye-Fei Yuan (袁叶飞) 40,41,145, J. Anton Zensus 4, Shuo Zhang 146, and Shan-Shan Zhao 31.
The blazar J1924–2914 is a primary Event Horizon Telescope (EHT) calibrator for the Galactic center’s black hole Sagittarius A*.

Abstract

The blazar J1924–2914 is a primary Event Horizon Telescope (EHT) calibrator for the Galactic center’s black hole Sagittarius A*. Here we present the first total and linearly polarized intensity images of this source obtained with the unprecedented 20 µas resolution of the EHT. J1924–2914 is a very compact flat-spectrum radio source with strong optical variability and polarization. In April 2017 the source was observed quasi-simultaneously with the EHT (April 5–11), the Global Millimeter VLBI Array (April 3), and the Very Long Baseline Array (April 28), giving a novel view of the source at four observing frequencies, 230, 86, 8.7, and 2.3 GHz. These observations probe jet properties from the subparsec to 100 pc scales. We combine the multifrequency images of J1924–2914 to study the source morphology. We find that the jet exhibits a characteristic bending, with a gradual clockwise rotation of the jet projected position angle of about 90° between 2.3 and 230 GHz. Linearly polarized intensity images of J1924–2914 with the extremely fine resolution of the EHT provide evidence for ordered toroidal magnetic fields in the blazar compact core.

Unified Astronomy Thesaurus concepts: Active galactic nuclei (16); Active galaxies (17); Blazars (164); Jets (870); High energy astrophysics (739); Very long baseline interferometry (1769); Radio interferometry (1346)

1. Introduction

The radio source J1924–2914 (PKS 1921–293, OV–236) is a radio-loud quasar at a redshift $z = 0.353$ (Wills & Wills 1981; Jones et al. 2009). The source exhibits strong optical variability and is highly polarized (Wills & Wills 1981; Pica et al. 1988; Worrall & Wilkes 1990). While it is extremely compact at long radio wavelengths, very long baseline interferometry (VLBI) observations at centimeter wavelengths were able to resolve a persistent core–jet structure elongated in a northern direction (e.g., Presten et al. 1989; Shen et al. 1997; Tingay et al. 1998; Kellermann et al. 1998). The source is a part of the 15 GHz Monitoring Of Jets in Active galactic nuclei with VLBA Experiments (MOJAVE) source sample and shows a prominent 10 mas scale jet (see Lister et al. 2018). Imaging and Gaussian-component model fitting of observations at frequencies between 5 and 43 GHz conducted between 1994 and 2000 indicated a sharp bend of the inner jet from northeast to north with increasing frequency (Shen et al. 1999, 2002). Motions of individual components across multiple years were observed further downstream in the jet, but not yet in the VLBI core region on submilliarcsecond scales.

Early 230 GHz observations with the prototype Event Horizon Telescope (EHT) at three geographical sites (Hawai’i, California, and Arizona) provided a first model of the resolved structure in the inner jet of J1924–2914 via model fitting of amplitudes and closure phases (Lu et al. 2012). The individual components are extended in a direction consistent with the millimeter-wavelength inner jet morphology. However, without (quasi-)simultaneous multifrequency observations, these observations alone cannot link the compact millimeter structures to the large-scale centimeter jet. Furthermore, with a very limited (u,v) coverage, these observations were unable to reconstruct an image of the source and track its detailed time variability.

Recently, the highly sensitive Atacama Large Millimeter/submillimeter Array (ALMA) was equipped for millimeter VLBI via the ALMA Phasing Project (APP; Matthews et al. 2018; Goddi et al. 2019). In 2017, ALMA participated in its first VLBI science campaign jointly with the Global Millimeter VLBI Array (GMVA) at 86 GHz and the EHT at 230 GHz. In addition to its sensitivity, ALMA provides valuable north–south baselines to the predominantly east–west geometry of the GMVA. These observations enabled a first image of J1924–2914 at 86 GHz (project code MB007; Issaoun et al. 2019). With participation of ALMA at 230 GHz, the EHT Collaboration imaged the horizon-scale emission of M87* (EHTC et al. 2019a, 2019b, 2019c, 2019d, 2019e, 2019f), as well as central regions of the blazar 3C 279 (Kim et al. 2020) and the radio galaxy Cen A (Jansen et al. 2021). The first EHT millimeter images of linearly polarized emission in M87* were published recently (EHTC et al. 2021a, 2021b). In this paper, we present the first total-intensity and linear-polarization images of J1924–2914 at 230 GHz obtained with the EHT and make comparisons to the near-contemporaneous GMVA results from Issaoun et al. (2019) and Very Long Baseline Array (VLBA) observations at 2.3 and 8.7 GHz (Hunt et al. 2021).

The EHT array achieves a resolution of \sim20 µas. At the J1924–2914 redshift of $z = 0.353$ (Jones et al. 2009), this corresponds to a linear scale of 0.1 pc or, in Schwarzschild radius units $R_S = 2GM_\bullet/c^2$, about $10^3(M_\bullet/10^8 M_\odot)^{-1}R_S$. No robust mass estimate for J1924–2914’s central black hole was found in the literature. The EHT results reported in this paper are the highest-resolution images of a blazar’s linear polarization ever obtained at millimeter wavelengths, likely probing a region within the gravitational sphere of influence of the central supermassive black hole (e.g., Kormendy & Ho 2013).

The paper is structured as follows. In Section 2, we summarize the observations and data processing. We present our total-intensity and polarimetric images in Section 3 and discuss the theoretical implications in Section 4. A summary is given in Section 5.
2. Observations and Data Processing

2.1. 230 GHz EHT

Observations of J1924–2914 were carried out by the EHT on 2017 April 5, 6, 7, 10, and 11, interleaved among observations of Sagittarius A* (EHTC et al. 2022a), for which J1924–2914 was used as an active galactic nucleus (AGN) calibrator source, along with the blazar NRAO 530 (S. Jorstad et al. 2022, in preparation). Eight stations at six geographic sites took part in the observations: ALMA and the Atacama Pathfinder Experiment (APEX) telescope in Chile; the Large Millimeter Telescope Alfonso Serrano (LMT) in Mexico; the IRAM 30 m telescope (PV) in Spain; the Submillimeter Telescope (SMT) in Arizona; the James Clerk Maxwell Telescope (JCMT) and the Submillimeter Array (SMA) in Hawaii; and the South Pole Telescope (SPT) in Antarctica.

The signals were recorded onto Mark6 recorders at a rate of 32 Gbps in two ∼2 GHz subbands centered at 227.1 and 229.1 GHz (hereafter low and high bands, respectively), using dual right-hand and left-hand circularly polarized feeds (RCP ad LCP, respectively) for all stations except ALMA and JCMT. ALMA recorded dual linear polarization, which was subsequently converted at the correlation stage to a circular basis by PolConvert (Martí-Vidal et al. 2016; Goddi et al. 2019). The JCMT observed a single circular polarization component during the campaign (predominantly RCP for 2017 April 5 and 6 and LCP for 2017 April 7, 10, and 11). In Figure 1, we show the resulting EHT (u, v) coverage for each observing day. Good (u, v) coverage on 2017 April 5–7 and 11 facilitated a detailed VLBI imaging of the source at 230 GHz. Due to the very sparse snapshot coverage on 2017 April 10 and the static properties of the source on short timescales (see Section 3), observations on 2017 April 10 were combined with those of 2017 April 11 for analysis.

After observation, the data were shipped to the MIT Haystack Observatory and the Max-Planck-Institut für Radioastronomie in Bonn for correlation, see EHTC et al. (2019b) for details. The resulting data were calibrated using two separate VLBI data reduction pipelines (Blackburn et al. 2019; Janssen et al. 2019) to ensure robustness of the results. Their consistency has been studied in detail in EHTC et al. (2019c), and an example of cross-pipeline comparisons is presented in Appendix A. For the science results presented in this paper we use the EHT-HOPS pathway (Blackburn et al. 2019; EHTC et al. 2019c) complemented by updated postprocessing (most notably with revised a priori flux density calibration; EHTC et al. 2022b). For further information concerning the observations, data collection, processing, and validation, see EHTC et al. (2019b, 2019c).

The polarimetric calibration follows the procedures described in EHTC et al. (2021a). Similarly to the M87 polarimetric analysis, JCMT has been flagged from the data for polarimetric imaging of J1924–2914 due to its single polarization configuration. This has no effect on the (u, v) coverage as all baselines to Hawaii are fulfilled by the co-located SMA, which observed in full polarization at all times. For the polarization leakage (D-term) calibration of the stations with a co-located site (ALMA & APEX, SMA & JCMT), we used the D-terms reported in Appendix D of EHTC et al. (2021a), which were obtained through a robust multisource fit to the EHT data using polsolve (Martí-Vidal et al. 2021). For the remaining stations (except SPT), the values adopted are derived based on the results reported in Appendix E of EHTC et al. (2021a) and are presented in Table 1. The SPT D-terms were fitted as part of analysis presented in this paper. A consistency test of the assumed leakage coefficients and constraints on the SPT D-terms are given in Appendix B.

Detections were obtained for J1924–2914 on all participating baselines of the EHT for all observing days. In Figure 2, we show an example of the signal-to-noise ratio (S/N) and correlated flux density on our EHT baselines for 2017 April 7 (low band), which corresponds to the observing day with the best (u, v) coverage. The baselines to ALMA provide extremely high S/N of several hundreds for data averaged in 5 min intervals, the corresponding APEX baselines offer a S/N about an order of magnitude lower. The data shown in the bottom panel of Figure 2 have been calibrated using a priori calibration information (system temperatures, antenna gains and opacities) provided for the telescopes. The consistency of measurements on the primary (to the sensitive ALMA or SMA) and redundant (to APEX or JCMT, co-located with ALMA and SMA, respectively) baselines verifies the 10%
The Astrophysical Journal, 934:145 (21pp), 2022 August 1

Issaoun et al.

amplitudes after a priori calibration, in units of Jansky. The circle additionally applied to obtain the consistency of the data set. A network calibration procedure was accuracy of the flux density calibration and indicates a good self-consistency of the data set. A network calibration procedure was additionally applied to obtain the final data set (Blackburn et al. 2019), further improving gain calibration of sites with a co-located station by assuming a total compact flux density provided by ALMA (Goddi et al. 2021).

2.2. 86 GHz GMVA+ALMA

Observations of J1924–2914 at 86 GHz (λ3.5 mm) were obtained with the GMVA+ALMA on 2017 April 3 in conjunction with observations of Sagittarius A* published in Issaoun et al. (2019). The array was composed of eight VLBA antennas, the Green Bank Telescope, the Yebes 40 m telescope, the IRAM 30 m telescope, the Effelsberg 100 m telescope, and ALMA. The data were recorded with a bandwidth of 256 MHz at a data rate of 4 Gbps over a 12 h track, of which 8 h included ALMA. The total recorded time on J1924–2914 was about 2 hr. In the left panel of Figure 3 we show the (u, v) coverage of these observations. These observations yield images with a beam size of $(122 \times 88)\mu$as at 36°. The data reduction, processing, and imaging followed a similar pathway to the EHT data, and are described in more detail in Issaoun et al. (2019). Analysis of this data set was challenging because of the large uncertainties in the amplitude gain calibration and low phase stability of the complex visibilities. The 86 GHz image of J1924–2914 presented in this work was reconstructed with the eht-imaging library using only closure quantities (Chael et al. 2016, 2018) to overcome the calibration problems and was originally published in Issaoun et al. (2019). Linear-polarization imaging at 86 GHz did not yield robust results that could be interpreted confidently.

Figure 2. Top: S/N for the EHT low-band observations of J1924–2914 on 2017 April 7, as a function of projected baseline length. Baselines are color-coded following Figure 1. The circle (diamond) markers denote primary (redundant) baselines. Bottom: Complementary plot for the visibility amplitudes after a priori calibration, in units of Jansky.

2.3. 2.3 and 8.7 GHz VLBA

Observations of J1924–2914 at 2.3 and 8.7 GHz were carried out as part of the International Celestial Reference Frame survey with the VLBA (Hunt et al. 2021). The observations were executed in astrometric and geodetic modes, thus providing high positional accuracy. The target was observed simultaneously at the two frequencies, as is customary for geodetic observations. To reduce any variability-induced offset, we select the observation that is closest in time to the EHT observations reported here, on 2017 April 28. The target was observed by all 10 stations of the VLBA, where 16 intermediate frequency subbands were recorded, with 4 centered at 2.3 GHz and 12 at 8.7 GHz, for a total bandwidth of 128 and 384 MHz at the respective frequencies. In the right panel of Figure 3 we show the (u, v) coverage of these observations. Observations were recorded in right-hand circular polarization mode only, at a data rate of 2 Gbps. For further information on observation and data calibration, refer to Hunt et al. (2021). The calibrated data were imaged using the CLEAN algorithm implemented in the DIFMAP software package (Shepherd 1997, 2011). The beam sizes are (9.58×3.58)mas at -5° and (2.45×0.94)mas at -3° for the 2.3 and 8.7 GHz observations, respectively. We iterated the reconstruction process using a hybrid imaging loop, consisting of CLEAN and a phase self-calibration cycle, with a stopping criterion of obtaining three times the noise floor of the residual image. The final images are presented in Section 4.1 as part of the multifrequency analysis.

3. EHT Image Analysis Results

3.1. Total Intensity

The total-intensity analysis was performed on four individual observing epochs, 2017 April 5, 6, 7, and 10+11. The three imaging software packages used for the analysis of the EHT observations of M87" (EHTC et al. 2019d) were employed to reconstruct total-intensity images of J1924–2914: the regularized maximum likelihood (RML) software eht-imaging (Chael et al. 2016, 2018) and SMILI (Akiyama et al. 2017b, 2017a); and the CLEAN algorithm implemented in the DIFMAP software package (Shepherd 1997, 2011). Following the development of posterior-exploration techniques for the M87" polarization results (EHTC et al. 2021a), we utilized two Markov chain Monte Carlo framework algorithms in addition to the imaging methods: DMC (Pesc 2021) and Themis (Broderick et al. 2020a, 2020b). The reconstructions typically combine both low- and high-band data sets, given the very
small fractional bandwidth difference and high inter-band consistency reported in EHTC et al. (2019c) and EHTC et al. (2021a).

The total-intensity structure of J1924–2914 at 230 GHz is very resilient to various user-based choices in the imaging process, leading to an easily recoverable three-component structure shown in Figures 4 and 5. While the reconstructed source morphology appears robust, the total compact flux density within the 200 μas field of view and in the three components is more ambiguous. An upper limit is provided by the simultaneous connected-element interferometric–ALMA measurements reported in Goddi et al. (2021), that is around 3.2 Jy, with small day-to-day variations below 0.1 Jy, within the calibration uncertainties. Different analysis pipelines recover anything between 2.0 and 3.2 Jy within the 200 μas field of view. Furthermore, the algorithms differ in their detailed approach to the image reconstruction. As an example, SMILI favors image sparsity, keeping brightness in a compact substructures, while DMC does not encourage sparsity in any way, possibly allowing for more flux density to be distributed throughout the field of view as a dynamic range-limited noise floor. Additionally RML methods typically assume compact imaging priors, discouraging emission further away from the core. For these reasons in Figure 4 SMILI and DMC have similar total brightness, but the main three-component structure appears significantly dimmer in the DMC reconstruction. Furthermore, the total compact flux density ambiguity is a particularly severe problem for the EHT array, which for the observations of J1924–2914 has no baselines in the range between 2 Mλ and 0.6 Gλ, a single SMT–LMT baseline in the range 0.6–1.5 Gλ and no coverage between 1.5 and 2.8 Gλ. Hence, constraining structures larger than ~100 μas is extremely challenging with EHT data.

Monitoring by the SMA149 shows that the total compact flux density at 1.3 mm remained in the 3.2 ± 1.0 Jy range since 2013 until the end of 2021; hence the EHT 2017 observations should correspond to a representative state of the source in this low luminosity period. In early 2009 the source went through a flaring phase, when the total flux density went up to about 10 Jy. The proto-EHT VLBI results reported by Lu et al. (2012) correspond to this period. Interestingly, while there is much more flux density in the 2009 data set on short baselines (about 6 Jy at 0.6 Gλ), the 2009 and 2017 data sets show a nearly consistent correlated flux of ~1 Jy on the shared Hawaii–SMT baseline (3–3.5 Gλ in both epochs). This suggests that the 2009 flare event could be related to a more extended region, possibly further downstream from the 1.3 mm VLBI core region.

In Table 2, we show the reduced χ^2 calculated for the low-band data sets averaged in 120 s bins, as a metric of the fit quality to closure quantities (closure phases—χ^2_{CP}, log closure amplitudes—χ^2_{LCA}, Thompson et al. 2017; Blackburn et al. 2020) and visibility amplitudes (χ^2_{AMP}) for the final representative (or “fiducial”) images from all methods and all observing days. The best reconstructions from the imaging methods based on least-squares fitting to closure quantities and the mean images from the posterior-exploration methods were chosen as the fiducial images. The eht-imaging and DMC models exhibit the best values in the χ^2 metric with consistently good performance for all days, and hence we focus on those two software packages in the subsequent quantitative analysis. In Figure 4, we show the fiducial images for all methods for the 2017 April 7 observations, restored to a resolution of 20 μas. In Figure 5, we show the method-averaged images across our four observing epochs (2017 April 10 and 11 are combined). The method-averaging procedure reduces the impact of method-specific systematics and provides a more conservative image-domain representation of the source, highlighting image features consistently reconstructed across different algorithms. However, the averaged image may fit the visibility-domain observations to a lesser degree than the individual reconstructions, and hence more quantitative studies typically rely on the analysis of individual pipelines (e.g., EHTC et al. 2019d; Kim et al. 2020; EHTC et al. 2021a). The stability and robustness of the J1924–2914 image and derived amplitude gains were also confirmed in EHTC et al. (2022b) for the purpose of the calibrator gain transfer for the imaging of Sgr A* (EHTC et al. 2022c). We verified that imaging merged data sets from separate days generally leads to a decrease in the fit quality, which justifies the choice to analyze observing days separately.

The total-intensity structure of J1924–2914 is very stable across the duration of the EHT 2017 campaign. Examples of this consistency are shown in Figure 6, where we plot closure phases (Thompson et al. 2017; Blackburn et al. 2020) from the EHT observations of J1924–2914 on two triangles along with the fits obtained by the eht-imaging pipeline for different observing days. In particular, the left panel of Figure 6 presents closure phases on the sensitive ALMA–LMT–SMA triangle, showing good agreement of the models obtained for 2017 April 6, 7, and 11. The SMA–SMT–SPT closure phases (middle

149 http://sma1.sma.hawaii.edu/callist/callist.html?plot = 1924-292

![Figure 4](http://sma1.sma.hawaii.edu/callist/callist.html?plot = 1924-292)
panel of Figure 6) are consistent in the first part of the track, but about GMST = 4 h the models diverge, with 2017 April 5 and 10–11 indicating a rapid closure phase growth, and 2017 April 6 and 7 a rapid decrease in the closure phase. After GMST = 5 h, the models are consistent again, as the phase is wrapping with a 360° period. There is some evidence for structural evolution between 2017 April 5–7 and April 10–11: however, such phase degeneracies on triangles involving long baselines can be caused by small structural changes in the image domain, such as single microarcsecond-scale relative motion of the components (Kim et al. 2020). We quantify the image structure evolution in Section 3.4. Furthermore, we can track down the degeneracy seen in the middle panel of Figure 6 to the absolute phase ambiguity seen on baselines between SPT and SMT/LMT/Hawaii. In Figure 7 we show that the same degeneracy can be seen on a single day between our observing days and across methods. We can characterize the image-integrated linear polarization (over a 200 μas field of view) with the following metrics. First, the intensity-weighted average polarization fraction across the resolved EHT image (we blur models with a 15 μas circular Gaussian beam) is given by

$$m = \frac{\hat{Q} + i\hat{U}}{\hat{I}}$$

on the very sensitive ALMA–LMT baseline, where \hat{I}, \hat{Q}, and \hat{U} are Fourier-domain Stokes components of the radiation field. Given the rotation measure value of $\sim 4 \times 10^4$ rad m$^{-2}$ reported in Goddi et al. (2021), we expect that Faraday rotation effects do not affect the observed EVPA by more than 5 deg at the observing frequency of 230 GHz.

In Figure 8, we show the fiducial polarimetric images of J1924–2914 for the three days with ALMA and two analysis pipelines. The linearly polarized emission is localized in the VLBI core (the brightest and southernmost component C0; see Section 3.4) and inbetween the second and third total-intensity components along the jet direction. In these two regions, the resolved image-domain fractional polarization reaches $\sim 20\%$. While the EVPAs seen in the outer jet components are mainly aligned parallel to the jet axis, the EVPA pattern in the core region rotates in a fan-like pattern, causing depolarization in the image-integrated results. These features are persistent for all observing days and across methods.

We can characterize the image-integrated linear polarization (over a 200 μas field of view) with the following metrics. First, the intensity-weighted average polarization fraction across the resolved EHT image (we blur models with a 15 μas circular Gaussian beam) is given by

$$\langle |m| \rangle = \frac{\sum_k \sqrt{Q_k^2 + U_k^2}}{\sum_k I_k} = \frac{\sum_k P_k}{\sum_k I_k}. \quad (2)$$

Here I, Q, and U are the image-domain Stokes parameters, and the sums are taken over all pixels in the image. In the first panel of Figure 9 we show $\langle |m| \rangle$ across observing days and imaging pipelines to be about 20%–30%. In Figure 8 we see that the largest contribution to $\langle |m| \rangle$ comes from the core region.

A second metric is the coherently averaged polarization fraction m_{net}, representing the unresolved fractional polarization in the 200 μas field of view,

$$m_{\text{net}} = \frac{\sum_k Q_k + i\sum_k U_k}{\sum_k I_k}. \quad (3)$$

In the middle and bottom panels of Figure 9 we show the absolute values $|m_{\text{net}}|$ and EVPAs of m_{net} at about 6% and -50 deg, respectively. Comparing these results with the ALMA measurements reported by Goddi et al. (2021) we find overall good consistency, in particular with the DMC pipeline. This indicates that the polarized emission unresolved by ALMA with \sim arcsecond resolution is mostly confined to the narrow field of view of the EHT. The large difference between

Figure 5. Method-average images of J1924–2914 from the 2017 EHT observations. The results of three imaging methods (eht-imaging, SMILI, DIFMAP) and two posterior-exploration methods (DMC and Themis) were averaged for each of the four observing epochs. The lowest contour corresponds to 10% of the peak intensity, with increasing contours in steps of 10%. The CLEAN nominal beam of 20 μ as FWHM is shown as a representative resolution of the average images, hereafter referred to as the EHT beam.
Note. Reduced χ^2 are calculated using a total error budget containing thermal noise plus an additional complex systematic error corresponding to 2% of the observed visibility amplitude.

\[|m|_{\text{net}} \text{ and } \langle |m| \rangle \] is related to the large EVPA variation in the image, as seen in the core component in Figure 8.

3.3. Circular Polarization

As DMC is a posterior-exploration code performing full-Stokes modeling (Pesce 2021), we can use the recovered posterior distributions to determine whether the 230 GHz images contain statistically significant detections of circular polarization. Moreover, in contrast to other analysis methods that we consider, DMC explores relative R/L complex polarimetric station gains as parameters of the fitted image, thus providing more robustness against systematic uncertainties in the polarimetric a priori flux density calibration. We measure the detection confidence in the resolved image as the ratio between the local mean posterior and the local posterior standard deviation of the estimated circular polarization, evaluated based on 1000 images drawn from the posterior distribution. Our confidence does not exceed 2 σ at any location in the image on any observing day. The distribution of net (image-averaged) circular polarization is also consistent with zero, in agreement with the findings of Goddi et al. (2021). For comparison, the same procedure determines the confidence in the source structure corresponding to over 30 σ when applied to Stokes I images, and about 10 σ when applied to linear-polarization images.

3.4. Image Components Feature Extraction

In Figure 10 we show a diagram of the different components in total intensity and linear polarization on which image-domain-based feature extraction was performed across observing days and methods. We identify the brightest total-intensity component at the south-eastern end of the jet as the VLBI core C0, following the image morphology at lower frequencies, and the other total-intensity features as the first jet component C1, and the second jet component C2. The components showing the highest linear polarization are P0 in the core region and the jet component P1; the latter is located between C1 and C2.

In case of DMC, similarly as in Section 3.3, we consider 1000 images drawn from the posterior distribution. For each image, we perform an image-domain brightness maxima search, identifying them with the maxima of components indicated in Figure 10. We then define binary masks around each extremum to compute the total flux density corresponding to each component (Figure 11), and the positions of the flux density centroids (Figure 12). The error bars reflect the 68% confidence intervals of individual measured quantities extracted from DMC posteriors. DMC enables parameter extraction for all epochs, apart from EVPA measurements on April 5, which is the day without ALMA participation and hence lacks the absolute EVPA calibration. Additionally we show a similar measurement obtained from a single eht-imaging reconstruction per day (markers without the error bars in Figures 11–12). The total-intensity eht-imaging results are available for all epochs, while polarization results are only available for the days with ALMA.

In Figure 11, we present the total-intensity and polarization properties of the components identified in Figure 10 across the four observing days. We show the variation in the total flux density, linear-polarization flux density, and EVPA integrated over each component across the EHT observing campaign extracted from the eht-imaging and DMC imaging results. The southernmost component C0 has the highest total flux density and is assumed to be the 230 GHz VLBI core. For the component-integrated EVPA, we also compare the results with the image-integrated EVPA measured from simultaneous interferometric-ALMA observations in Goddi et al. (2021).

We notice a bias between component flux densities identified with eht-imaging and DMC, with the former returning values larger by about 25% for C0 and C1 components. We attribute the effect to imaging algorithm systematics, particularly to sparsity-based regularization employed for the eht-imaging reconstructions (see the discussion in Section 3.1). Given the associated uncertainties, there are no strong indications of the time evolution of the component flux density on the timescale of our EHT observations. The core component C0 is about 2 times brighter than C1 and C2, the latter two showing similar flux densities. While P0 has a higher polarized flux density than P1, the EVPA varies by about 90 deg across the compact P0 core component, consistently between days and

Date	Data Product	DIFMAP χ^2	DMC χ^2	eht-imaging χ^2	SMILI χ^2	Themis χ^2	DMC \log_{10}CA	eht-imaging \log_{10}CA
2017 April 5	χ^2_{AMP}	0.346	0.343	0.551	0.342	0.485		
	χ^2_{CP}	1.211	1.087	1.338	1.802	1.264		
	χ^2_{logCA}	1.009	0.838	1.702	2.539	1.377		
2017 April 6	χ^2_{AMP}	1.226	0.579	2.13	0.791	1.143		
	χ^2_{CP}	1.850	0.910	0.935	1.074	1.350		
	χ^2_{logCA}	2.128	0.978	3.901	1.337	2.026		
2017 April 7	χ^2_{AMP}	1.018	0.663	1.00	0.545	1.115		
	χ^2_{CP}	2.013	0.674	2.912	0.828	2.024		
	χ^2_{logCA}	1.983	1.191	1.791	1.286	2.031		
2017 April 10+11	χ^2_{AMP}	1.994	1.171	1.111	0.914	1.671		
	χ^2_{CP}	2.895	1.123	1.437	1.211	3.592		
	χ^2_{logCA}	3.806	1.700	1.907	1.708	3.134		
Methods (see Figure 8), adding destructively in Figure 11. When we add absolute values of the linear polarization instead of coherently adding complex numbers, we find about 0.1 Jy in the P0 region for images blurred to a 15 μas resolution. There is also a notable EVPA rotation trend observed in both the P0 and P1 components and not observed in the ALMA-only data (bottom panel of Figure 11). While this feature is not very statistically significant and may be a statistical fluke, it may also indicate some systematic VLBI calibration bias. However, the bias in the absolute EVPA calibration, which follows the ALMA QA2 calibration (Goddi et al. 2021), would be expected to impact all EHT sources in a similar fashion, and an opposite trend in EVPA was found for M87* (EHTC et al. 2021a). As the net EVPA of VLBI images is consistent with the ALMA-only measurements (at least for the DMC images; see Figure 9), this implies that the EVPA shift of the components is compensated by the change in the residual net EVPA within the field of view. Hence, if the effect is systematic, it appears to be related to the imaging or parameter extraction algorithms, rather than to the data calibration. In any case, we conclude that a < 20 deg consistency between the ALMA-only data and the sum of the VLBI components is overall reassuring and constrains the contribution from the systematic errors.

In Figure 12, we present the relative distance of the individual total-intensity and polarization component centroids from the core C0 across the EHT observing campaign. There is no systematic offset between centroids of C0 and P0, indicating that most likely they correspond to the same physical core component. However, the peak brightness location of P0 is shifted to the east with respect to the peak brightness of C0 (see also the discussion in Section 4.3). We see no significant motion of the components between 2017 April 5 and 11, particularly C1 is well constrained and on all days and for both pipelines its distance from the core remains consistent within 2 μas. For J1924–2914, the observed motion of 1 μas/day corresponds to an apparent velocity of 8c, which translates to an upper limit on apparent velocity $\beta_{\text{app}}(C1) < 2.7c$. Kinematic analysis at 15 GHz (Lister et al. 2019) resulted in apparent velocities of three features, yielding $\beta = 7c$ at a distance of 5 mas from the core, and two features on the submilliarcsecond scale, moving with $\beta = 2.6c$ and $\beta = 0.2c$. While a direct comparison of the apparent velocities seen at 15 and 230 GHz is difficult in view of the bent jet morphology and different regions being probed, let us engage in some plausible speculation about this. The wider range of apparent velocity estimated in the innermost region may suggest jet bending and a smaller jet inclination of the innermost region (bending away from the line of sight). In this regime, $\beta_{\text{app}} \approx \theta/(1 - \beta)$ and thus small intrinsic variations of θ can result in relatively large variations of the apparent velocity. At present, the physical origin of the relative large variation of the component speeds along the jet is unclear. It could be due to component motion...
along spatially bent trajectories, but intrinsic jet acceleration combined with regions of slower velocity or even stationarity (shocks) also cannot be excluded. Future more detailed kinematic studies will be required to clarify this.

We also note a peculiarity seen in Figure 12, resulting mostly from the DMC analysis: there is marginal evidence that, while component C2 separates from the core and moves downstream, the motion of the P1 centroid goes in the opposite direction, approaching the VLBI core. Whether this is due to pattern motion or is a projection effect in a rotating jet remains at this time an open question. We can only place very loose upper limits on the apparent velocities with respect to C0, $\beta_{\text{app}}(C2) < 13 c$, $\beta_{\text{app}}(P1) < 27 c$ with a hint of acceleration, which may be related to the transverse shock discussed in Section 4.4, rather than to the overall acceleration pattern expected in the inner part of the ejected jet.

4. Discussion

4.1. Multifrequency Images of the Bent Jet

In Figure 13, we show multifrequency images of J1924–2914 from close in time observations in April 2017 with the VLBA (2.3 and 8.7 GHz), the GMVA+ALMA (86 GHz), and the EHT (230 GHz). Ranging two orders of magnitude in frequency, these images show jet structure spanning from subparsec to 100 parsec scales. The EHT image of J1924–2914 provides an unprecedented view of the inner parsec of this blazar.

The projected position angle (PA) of the jet gradually rotates counterclockwise with increasing distance from the jet base. In the 2.3 GHz VLBA image the PA is 50° ± 5° east of north at about 20 mas from the core and the jet bends toward the north–south direction closer to the core, consistently with the jet orientation in the nonsimultaneous 1.6 GHz image at 5–10 mas from the core (Shen et al. 1999). At 8.7 GHz we find a PA of 25° ± 5° at about 5 mas from the core, consistent with the archival VLBA monitoring results at 15 GHz, showing a persistent jet orientation at a PA of about 30° in the epochs from 1995 to 2013 at angular scales ~5 mas (Kellermann et al. 1998; Pushkarev et al. 2017). The same MOJAVE observations hint at more variability of the jet PA on the smallest resolved scales ~1 mas. Observations by Shen et al. (2002) with the VLBA between 1994 and 2000 across four frequencies (5, 12, 15, and 43 GHz) showed a consistent PA orientation of 30° ± 5° with a clockwise shift of about 51°–67° at 43 GHz. At 86 GHz a possible bent jet structure is seen, with the inner jet oriented with a PA of about ~40° less than 0.3 mas from the core, and an apparent transition to a northeast direction further out. The ~40° PA with respect to the core is consistent with the PA of the single jet component located ~400 µas from the core, imaged from 2018 April GMVA observations (see Figure 4 of Issaoun et al. 2021). 2018 images at 86 GHz do not indicate jet bending. At 230 GHz, the component C1 is located at a PA of ~45° and C2 at a PA of ~35° with respect to the core C0. This morphology can potentially be explained by a helical structure in the jet (Conway & Murphy 1993; Steffen et al. 1995). Such a helical jet structure
with respect to the black hole spin axis.

Methods within the same day.

Horizontal shift has been added between the markers representing different ALMA measurements from Goddi et al.

Measurement from the eht-imaging posterior distributions. Green points without error bars correspond to a single point with error bars represent 68% confidence intervals from the DMC image-averaged linear-polarimetric properties of the source. Blue points with error bars represent 68% confidence intervals from the eht-imaging images. Red points correspond to ALMA measurements from Goddi et al. (2021). For the sake of clarity a small horizontal shift has been added between the markers representing different methods within the same day.

Figure 9. Image-averaged linear-polarimetric properties of the source. Blue points with error bars represent 68% confidence intervals from the DMC posterior distributions. Green points without error bars correspond to a single measurement from the eht-imaging images. Red points correspond to ALMA measurements from Goddi et al. (2021). For the sake of clarity a small horizontal shift has been added between the markers representing different methods within the same day.

can be caused by an orbiting lower-mass secondary black hole around a stable primary central black hole, as also proposed for 4C 73.18 (Roos et al. 1993) and OJ 287 (e.g., Dey et al. 2021; Gómez et al. 2022), precession caused by a wobbling disk (Britzen et al. 2018), or a large-scale accretion flow that is tilted with respect to the black hole spin axis (e.g., as in M81; Martí-Vidal et al. 2011).

Alternatively, the jet could be showing a sharp bend related to a collision between the jet and a dense cloud in the external medium (e.g., as in 3C 120; Gómez et al. 2000, 2001), although the lack of clear signatures of jet disruption render this interpretation less likely. Instabilities in a relativistic jet constitute another possible origin of the bent structure. There are two main types of instabilities that can be responsible for this bending: (1) the Kelvin–Helmholtz (KH) instability; and (2) the current-driven (CD) kink instability. KH instabilities develop through the shear between two different flow components, e.g., the fast jet spine and the slow jet sheath and/or the wind and external medium (Mizuno et al. 2007; Sironi et al. 2021). The nonaxisymmetric helical mode can produce bent structures in relativistic jets (Hardee 2000; Lobanov & Zensus 2001). This instability grows in the kinetic energy dominated region; therefore the region far from the jet base is a preferred site. The CD kink instability was also shown to generate helically twisted jet structures (McKinney & Blandford 2009; Mizuno et al. 2012; Davelaar et al. 2020). This instability is excited by the existence of a helical magnetic field, which is predicted by the jet formation theory and simulations (e.g., Pudritz et al. 2012), and is expected to grow in the magnetically dominated region near the jet base. The toroidal magnetic fields would create a twisted polarization pattern like the one we observe in the P0 component at the VLBI core in Figure 8.

4.2. Brightness Temperatures

We measure the observer frame brightness temperatures T_B of the VLBI core by performing Gaussian model fitting in DIFMAP at each frequency, and estimating the core size and flux density. The results are presented in Table 3, with T_B calculated as

$$T_B = 1.22 \times 10^{12} \frac{F_\nu}{\nu^2 \theta^2},$$

where the units of F_ν, ν, and θ are as given in Table 3. Apart from that, nonsimultaneous MOJAVE data at 15 GHz gave a core brightness temperature $\sim 10^{12}$ K in 2012, and an apparent brightness temperature in excess of 10^{12} K was found at 1.6 GHz (Shen et al. 1999). The reported brightness temperatures are generally lower limits if the cores are not resolved. Nevertheless, the trend of the brightness temperature decreasing with the frequency seems robust and consistent with signatures of an accelerating (sub)parsec-scale jet (Lee et al. 2016). However, this interpretation is only straightforward if the change in inclination angle in the bent jet does not cause significant changes in the Doppler factor. The 230 GHz brightness temperature is...
consistent with the visibility-domain brightness temperature limit obtained from the flux density values observed on the longest baselines (Lobanov 2015), which, in our case, reach about 8.5 G_λ, as well as with the prior estimates by Lu et al. (2012). The observed value is related to the fluid frame brightness temperature T_B' via
\[
T_B' = T_B \frac{1 + z}{\delta}
\]
with a Doppler factor δ and Lorentz factor Γ
\[
\delta = \frac{1}{\Gamma (1 - \beta \cos \theta)}; \quad \Gamma = (1 - \beta^2)^{-1/2}
\]
with velocity β and viewing angle θ. While we do not have strong limits on the jet velocity and inclination (which also varies with the angular scale as the jet is bent), Paliya et al. (2017) suggests $\Gamma = 12$ ($\beta > 0.996 c$), and it is enough that $\theta < 20$ deg and $\beta > 0.6 c$ in order to obtain $\delta > 2$. This implies that the intrinsic brightness temperature at 230 GHz is likely lower than the equipartition temperature $T_{eq}, T_B' < T_{eq} = 5 \times 10^{10} K$, indicating a magnetically dominated inner jet (Readhead 1994), likely dominated by the helical magnetic field. The brightness temperature T_B' is also significantly lower than the inverse-Compton limit of $\sim 5 \times 10^{11} K$ (Kellermann & Pauliny-Toth 1969). These findings are comparable to the ones reported for 3C 279 by Kim et al. (2020) from observations in the same EHT run. Low brightness temperatures at 230 GHz were also reported for other EHT sources, Cen A (resolved at about 200 R_S scale; Janssen et al. 2021) and M87* (resolved at about 3.5 R_S scale; EHTC et al. 2019a).

4.3. Superresolved Millimeter Core

With RML-based imaging methods we may expect to achieve superresolution in regularized fitted images (Honma et al. 2014). Indeed, with eht-imaging we consistently find the C0 component as an elliptical feature of major and minor
axes FWHMs equal to 15 μas and 10 μas, respectively, and a major axis PA of about 45 deg, perpendicular to the position angle of C1, which we associate with the PA of the subparsec-scale jet. Superresolved images obtained with an RML-based reconstruction method, with no subsequent blurring, are shown in Appendix A. In all images in Figure 8, the polarized component P0 appears to have a crescent-like shape around the core C0, with a large fractional polarization of about 15% and a depolarized intrusion on the west side of the core feature. Within the P0 structure, the EVPAs rotates by at least 90 deg around the core, consistently across days and methods (see Figure 8). We interpret this as a signature of the presence of toroidal magnetic fields in the core (Molina et al. 2014). The inner depolarization could be a resolution effect related to the size of the beam, averaging over the spatially varying EVPAs within the VLBI core region; however the depolarization toward the west requires a different explanation. It is possible that the innermost jet is launched in the western direction, and hence because the material in the jet is partially obscuring the view onto the jet base, the Faraday depth is greater on the west side of the core, causing depolarization. The western orientation of the inner jet is consistent with the trend of the bend direction seen across all angular scales. An alternative explanation is a conical shock (Lind & Blandford 1985), which can reproduce similar geometrical features in the EVPAs orientation, particularly in the presence of a tangle magnetic field component (Cawthorne 2006). In this interpretation the core in our images would need to be associated with the optically thin jet plasma.

Simultaneous interferometric-ALMA observations of J1924–2914 give spectral indices of -0.5 ± 0.10 at 93 GHz, and -0.75 ± 0.10 at 220 GHz (Goddet et al. 2021). These values suggest an optically thin source, and as the emission is dominated by the core component, this could imply an optically thin core, contrary to the standard model of a radio jet, in which the core emission corresponds to the photosphere of the optically thick region (Blandford & Königl 1979). Such optically thin emission is expected if the source is observed at a frequency higher than the synchrotron self-absorption turnover. In this case the VLBI core would appear resolved, and the polarization substructure would become observable.

4.4. Jet Features

The two total-intensity jet features C1 and C2 appear at PAs of -47 deg and -36 deg, respectively, with a change consistent with the direction of the jet bending. Additionally, we find a polarized component P1, located between C1 and C2. The EVPAs in the P1 component is ordered and aligned in a pattern parallel to the jet. This is indicative of a transverse magnetic field component, implying a toroidal or helical magnetic field topology, and this provides a simple and natural explanation for the presence of the P1 offset from C1 and C2. It is possible that C2 is a relativistic transverse shock in the jet, which enhances the magnetic field in the plane of compression, perpendicularly to the shock propagation direction (Hughes et al. 1985). In this case, some of the polarization associated with P1 could be associated with this shock structure. The separation between the linearly polarized and total-intensity features could be a consequence of the presence of substructure within the shock, e.g., a forward and reverse shock, one being more polarized than the other (Gómez et al. 1997; Laskar et al. 2019). There is some weak indication of P1 and C2 motion in opposite directions supporting this interpretation (see Figure 12). Linear-polarization maps in 15 GHz with MOJAVE indicate that in the most upstream region the EVPAs is aligned with the 230 GHz jet PA (Lister et al. 2018). This suggests a similar origin of the 15 GHz polarization features as transverse shock features in the upstream jet, unresolved at 15 GHz. Further away from the core, the 15 GHz maps show the EVPAs aligning with the mas scale jet orientation, strengthening this interpretation.

5. Summary

In this paper, we presented the first 1.3 mm VLBI total-intensity and polarimetric images of the blazar J1924–2914 with the EHT. The EHT enabled the highest-resolution polarimetric imaging of a quasar to date, corresponding to a linear resolution of ~0.1 pc. These unprecedented images of the inner parsec of J1924–2914 reveal a compact total-intensity
structure of three distinct components oriented in a northwest direction, with a fan-like EVPA pattern in the VLBI core (the southernmost component). We did not find significant motion of component C1, closest to the core, with an upper limit of 2c on the apparent velocity. In the supersresolved core region, we notice a rotation of the EVPA, suggestive of the presence of toroidal magnetic fields in the core region. We have shown that J1924–2914 is a bright and very compact source at mm wavelengths, displaying very little variability on a timescale of several days—these features render it possibly the best available EHT calibrator positioned close to Sgr A* on the sky.

We compared our EHT images with quasi-simultaneous images of J1924–2914 at longer wavelengths obtained with the GMVA and the VLBA. We observed a clockwise rotation of the jet direction in J1924–2914 as we go from long to short observing wavelengths, with an apparent bend of the jet in 3.5 mm. The rotation of the PA with the frequency could be indicative of a helical jet structure. Several scenarios have been proposed for helical jets in other sources, such as a putative supermassive black hole binary in the core, or a tilted largescale accretion flow compared to the black hole spin axis, or shock regions as the jet interacts with the external medium. All these scenarios predict a time variability of the PA at individual frequencies, which we do not see in the ∼20 yr timescale of the MOJAVE 15 GHz observations on angular scales of ∼5 mas. Monitoring on longer timescales, particularly at higher frequencies, will be needed to further understand the helical structure.

The narrow fractional bandwidth of the EHT 2017 observations (∆ν/ν < 2%), and a scale separation between observations by different arrays prevented us from studying the spatially resolved spectral index and rotation measure. EHT observations in 2018 and later provide a wider bandwidth (∆ν/ν > 6%), alleviating this shortcoming (EHTC et al. 2019b). There are plans for expanding the EHT array and enabling 345 GHz observations (Doeleman et al. 2019), which should further improve both the resolution and the dynamic range of the J1924–2914 images.

Finally, J1924–2914 is a source of γ-ray radiation identified in the Fermi-LAT catalog (Abdollahi et al. 2020). Given that with the EHT at 1.3 mm we see detailed structure of the source total intensity and linear polarization on an extreme scale of ∼0.1 pc, the source may be an excellent target to study the relation between high-energy emission and jet morphology and kinematics at millimeter wavelengths. Interestingly, the most recent 230 GHz SMA monitoring data from the beginning of 2022 show a steep brightness rise to the largest values seen in a decade.

We thank the anonymous reviewer for their thoughtful and helpful comments. The Event Horizon Telescope Collaboration thanks the following organizations and programs: the Academy of Finland (projects 274477, 284495, 312496, 315721); the Agencia Nacional de Investigación y Desarrollo (ANID), Chile via NCN19_058 (TITANs) and Fondecyt 3190878, the Alexander von Humboldt Stiftung; an Alfred P. Sloan Research Fellowship; Allegro, the European ALMA Regional Centre node in the Netherlands, the NL astronomy research network NOVA and the astronomy institutes of the University of Amsterdam, Leiden University and Radboud University; the black hole Initiative at Harvard University, through a grant (60477) from the John Templeton Foundation; the China Scholarship Council; Consejo Nacional de Ciencia y Tecnología (CONACYT, Mexico, projects U0004-246083, U0004-259839, F0003-272050, M0037-279006, F0003-281692, 104497, 275201, 263356); the Delaney Family via the Delaney Family John A. Wheeler Chair at Perimeter Institute; Dirección General de Asuntos del Personal Académico-Universidad Nacional Autónoma de México (DGAPA-UNAM, projects IN112417 and IN112820); the European Research Council Synergy Grant “BlackHoleCam: Imaging the Event Horizon of Black Holes” (grant 610058); the Generalitat Valenciana postdoctoral grant APOSTD/2018/177 and GenT Program (project CIDEGENT/2018/021); MICINN Research Project PID2019-108995GB-C22; the Gordon and Betty Moore Foundation (grant GBMF-3561); the Istituto Nazionale di Fisica Nucleare (INFN) sezione di Napoli, iniziative specifiche TEONGRAV; the International Max Planck Research School for Astronomy and Astrophysics at the Universities of Bonn and Cologne; Joint Princeton/Flatiron and Joint Columbia/Flatiron Postdoctoral Fellowships, research at the Flatiron Institute is supported by the Simons Foundation; the Japanese Government (Monbukagakusho: MEXT) Scholarship; the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for JSPS Research Fellowship (J17H08829); the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS, grants QYZDJ-SSW-SLH057, QYZDJSW-SYS008, ZDBS-LY-SLH011); the Leverhulme Trust Early Career Research Fellowship; the Max-Planck-Gesellschaft (MPG); the Max Planck Partner Group of the MPG and the CAS; the MEXT/JSPS KAKENHI (grants 18KK0090, JP18K13594, JP18K03656, JP18H03721, 18K03709, 18H01245, 25120007); the Malaysian Fundamental Research Grant Scheme (FRGS) FRGS/1/2019/STG02/UM/02/6; the MIT International Science and Technology Initiatives (MISTI) Funds; the Ministry of Science and Technology (MOST) of Taiwan (105-2112-M-001-025-MY3, 106-2112-M-001-011, 106-2119-M-001-027, 107-2119-M-001-020, 107-2119-M-110-005, 108-2112-M-001-048, and 109-2124-M-001-005); the National Aeronautics and Space Administration (NASA, Fermi Guest Investigator grant 80NSSC20K1567, NASA Astrophysics Theory Program grant 80NSSC20K0527, NASA NuSTAR award 80NSSC20K0645); the National Institute of Natural Sciences (NINS) of Japan; the National Key Research and Development Program of China (grant 2016YFA0400704, 2016YFA0400702); the National Science Foundation (NSF, grants AST-0906454, AST-0352953, AST-0521233, AST-0705622, AST-0905844, AST-0922984, AST-1126433, AST-1140030, DGE-1144085, AST-1207740, AST-1207730, AST-1207752, MRI-1228509, OPP-1248097, AST-1310896, AST-1555365, AST-1615796, AST-1715061, AST-1716327, AST-1903847, AST-2034306); the Natural Science Foundation of China (grants 11573051, 11633006, 11650110427, 10625314, 11721303, 11725312, 11930072, 11991052, 11991053); a fellowship of China Postdoctoral Science Foundation (2020M671266); the Natural Sciences and Engineering Research Council of Canada (NSERC, including a Discovery Grant and the NSERC Alexander Graham Bell Canada Graduate Scholarships-Doctoral Program); the National Youth Thousand Talents Program of China; the National Research Foundation of Korea (the Global PhD Fellowship Grant; grants NRF-2015H1A2A1033752, 2015- R1D1A1A01056807, the Korea Research Fellowship Program: NRF-2015H1D3A1066561,
Basic Research Support Grant 2019R1F1A1059721; the Netherlands Organization for Scientific Research (NWO) VICI award (grant 639.043.513) and Spinoza Prize SPI 78-409; the New Scientific Frontiers with Precision Radio Interferometry Fellowship awarded by the South African Radio Astronomy Observatory (SARAO), which is a facility of the National Research Foundation (NRF), an agency of the Department of Science and Technology (DST) of South Africa; the Onsala Space Observatory (ÖSO) national infrastructure, for the provisioning of its facilities/observational support (ÖSO receives funding through the Swedish Research Council under grant 2017-00648) the Perimeter Institute for Theoretical Physics (research at Perimeter Institute is supported by the Government of Canada through the Department of Innovation, Science and Economic Development and by the Province of Ontario through the Ministry of Research, Innovation and Science); the Spanish Ministerio de Economía y Competitividad (grants FGC2018-098915-B-C21, AYA2016-80889-P, PID2019-108995GB-C21); the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award for the Instituto de Astrofísica de Andalucía (SEV-2017-0709); the Toray Science Foundation; the Consejería de Economía, Conocimiento, Empresas y Universidad of the Junta de Andalucía (grant P18-FR-1769), the Consejo Superior de Investigaciones Científicas (grant 2019AEP112); the US Department of Energy (USDOE) through the Los Alamos National Laboratory (operated by Triad National Security, LLC, for the National Nuclear Security Administration of the USDOE (Contract 89233218SCNA000001); the European Union’s Horizon 2020 research and innovation program under grant agreement No 730562 RadioNet; ALMA North America Development Fund; the Academia Sinica; Chandra DD7-18089X and TM6-17006X; the GenT Program (Generalitat Valenciana) Project CIDEGENT/2018/021. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), supported by NSF grant ACI-1548562, and CyVerse, supported by NSF grants DBI-0735191, DBI-1265383, and DBI-1743442. XSEDE Stampede2 resource at TACC was allocated through TG-AST170024 and TG-AST080026N. XSEDE JetStream resource at PTI and TACC was allocated through AST170028. The simulations were performed in part on the SuperMUC cluster at the LRZ in Garching, on the LOEWE cluster in CSC in Frankfurt, and on the HazelHen cluster at the HLRS in Stuttgart. This research was enabled in part by support provided by Compute Ontario (http://computeontario.ca), Calcul Québec (http://www.calculquebec.ca) and Compute Canada (http://www.computecanada.ca). We thank the staff at the participating observatories, correlation centers, and institutions for their enthusiastic support. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2016.1.01154.V and ADS/JAO.ALMA2016.1.00413.V. ALMA is a partnership of the European Southern Observatory (ESO; Europe, representing its member states), NSF, and National Institutes of Natural Sciences of Japan, together with National Research Council (Canada), Ministry of Science and Technology (MOST; Taiwan), Academia Sinica Institute of Astronomy and Astrophysics (ASIAA; Taiwan), and Korea Astronomy and Space Science Institute (KASI; Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, Associated Universities, Inc. (AUI)/NRAO, and the National Astronomical Observatory of Japan (NAOJ). The NRAO is a facility of the NSF operated under cooperative agreement by AUI. APEX is a collaboration between the Max-Planck-Institut für Radioastronomie (Germany), ESO, and the Onsala Space Observatory (Sweden). The SMA is a joint project between the SAO and ASIAA and is funded by the Smithsonian Institution and the Academia Sinica. The JCMT is operated by the East Asian Observatory on behalf of the NAOJ, ASIAA, and KASI, as well as the Ministry of Finance of China, Chinese Academy of Sciences, and the National Key R&D Program (No. 2017YFA0402700) of China. Additional funding support for the JCMT is provided by the Science and Technologies Facilities Council (UK) and participating universities in the UK and Canada. The LMT is a project operated by the Instituto Nacional de Astronomía, Óptica, y Electrónica (Mexico) and the University of Massachusetts at Amherst (USA). The IRAM 30 m telescope on Pico Veleta, Spain is operated by IRAM and supported by CNRS (Centre National de la Recherche Scientifique, France), MPG (Max-Planck- Gesellschaft, Germany) and IGN (Instituto Geográfico Nacional, Spain). The SMT is operated by the Arizona Radio Observatory, a part of the Steward Observatory of the University of Arizona, with financial support of operations from the State of Arizona and financial support for instrumentation development from the NSF. Support for SPT participation in the EHT is provided by the National Science Foundation through award OPP-1852617 to the University of Chicago. Partial support is also provided by the Kavli Institute of Cosmological Physics at the University of Chicago. The SPT hydrogen maser was provided on loan from the GLT, courtesy of ASIAA. The EHTC has received generous donations of FPGA chips from Xilinx Inc., under the Xilinx University Program. The EHTC has benefited from technology shared under open-source license by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER). The EHT project is grateful to T4Science and Microsemi for their assistance with Hydrogen Masers. This research has made use of NASA’s Astrophysics Data System. We gratefully acknowledge the support provided by the extended staff of the ALMA, both from the inception of the ALMA Phasing Project through the observational campaigns of 2017 and 2018. We would like to thank A. Deller and W. Brisken for EHT-specific support with the use of DifX. We acknowledge the significance that Maunakea, where the SMA and JCMT EHT stations are located, has for the indigenous Hawaiian people.

We also thank Alexandra Elbakyan for her contributions to the open science initiative. This research has made use of data obtained with the Global Millimeter VLBI Array (GMVA), coordinated by the VLBI group at the Max-Planck-Institut für Radioastronomie (MPIfR). The GMVA consists of telescopes operated by MPIfR, IRAM, Onsala, Metsahovi, Yebeles, the Korean VLBI Network, the Green Bank Observatory, and the Very Long Baseline Array (VLBA). The VLBA and the GBT are facilities of the National Science Foundation under cooperative agreement by Associated Universities, Inc. The data were correlated at the DifX correlator of the MPIfR in Bonn, Germany. We thank the National Science Foundation (awards OISE-1743747, AST-1816420, AST-1716536, AST-1440254, AST-1935980) and the Gordon and Betty Moore Foundation (GBMF-5278) for financial support of this work. Support for this work was also provided by the NASA Hubble Fellowship grant HST-HF2-51431.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555.
Appendix A
Data Reduction Pipelines Comparison

In Figure 14 we compare the Stokes \(I \) (total intensity) 230 GHz images obtained from the two data reduction pipelines: EHT-HOPS (Blackburn et al. 2019), and CASA-based \textit{rPICARD} (Janssen et al. 2019). All images presented in Figure 14 were obtained using an identical \textit{eht-imaging} script (Chael et al. 2016). The images correspond to a direct fit to the observations, with no blurring or restoring beam applied.

![Figure 14. Total-intensity images of J1924–2914 for the four EHT observing epochs in April 2017, for two independent data calibration pipelines EHT-HOPS (upper panels) and CASA-\textit{rPICARD} (bottom panels). The color scale is the same for all images, with a peak value corresponding to 10 mJy/\(\mu \text{as} \). Contours correspond to 15, 30, 45, 60, 75, 90% of the peak flux density. There is a high level of consistency between the two calibration methods.](image)

Appendix B
Leakage Terms Consistency

Leakage coefficients can be estimated robustly for the telescopes with an intra-site station (ALMA, APEX, SMA, JCMT), where a point source model can be employed for a multsource fit (EHTC et al. 2021a; Martí-Vidal et al. 2021). For the remaining sites the leakage terms need to be modeled simultaneously with the source structure and the problem becomes degenerate. The values presented in Table 1 are representative values based on the analysis spanning multiple epochs and different image reconstruction algorithms (EHTC et al. 2021a). These values were used for the linear-polarization imaging with \textit{eht-imaging}, and only SPT D-terms were solved for in this framework. For imaging with \textit{DMC}, leakage terms were fitted within the software, providing a consistency test with the assumed values (see Figure 15). Systematic differences between days are seen for the \textit{DMC} fits. As D-terms are unlikely to significantly vary in time for stations other than ALMA (Goddi et al. 2019), this highlights the importance of using multiepoch fits to constrain the leakage coefficients. SPT

![Figure 15. Leakage terms estimated with \textit{DMC} for J1924–2914 data for 2017 April 6, 7, and 11, shown with 1\(\sigma \) error bars. The matching symbols without error bars correspond to the assumed leakage terms given in Table 1. Filled and open symbols denote right and left circular polarization D-terms, respectively. In case of the SPT, markers correspond to leakage terms estimated by \textit{eht-imaging}, separately for each observing day.](image)
leakage calibration is particularly challenging given the limited parallactic coverage and the relevant D-terms have not been estimated in EHTC et al. (2021a) because M87* is not observable from the south pole. Our fits to J1924–2914 data indicate that the magnitude of the SPT D-terms does not exceed 5%. Overall the D-terms have an acceptable degree of consistency and the residual uncertainties related to imperfect leakage calibration do not influence the overall morphology of the linear-polarization images (see Section 3.2).
