Homological Aspects of the Dual Auslander Transpose

Xi Tang
College of Science, Guilin University of Technology, Guilin 541004, Guangxi Province, P.R. China
E-mail: tx3259@sina.com.cn

Zhaoyong Huang
Department of Mathematics, Nanjing University, Nanjing 210093, Jiangsu Province, P.R. China
E-mail: huangzy@nju.edu.cn

Abstract

As a dual of the Auslander transpose of modules, we introduce and study the cotranspose of modules with respect to a semidualizing module C. Then using it we introduce n-C-cotorsionfree modules, and show that n-C-cotorsionfree modules possess many dual properties of n-torsionfree modules. In particular, we show that n-C-cotorsionfree modules are useful in characterizing the Bass class and investigating the approximation theory for modules. Moreover, we study n-cotorsionfree modules over artin algebras and answer negatively an open question of Huang and Huang posed in 2012.

Key Words: Cotranspose; n-C-cotorsionfree modules, n-C-cospherical modules, n-syzygy modules, Cograde.

2000 Mathematics Subject Classification: 16E05, 16E30, 16E10.

1. Introduction

It is well known that the Auslander-Reiten theory plays a very important role in representation theory of artin algebras and homological algebra. One of the most powerful tools in this theory is the Auslander transpose. With the aid of the Auslander transpose, as a special case of n-syzygy modules over left and right noether rings, Auslander and Bridger [1] introduced n-torsionfree modules and obtained an approximation theory for finitely generated modules when n-syzygy modules and n-torsionfree modules coincide. Ever since then many authors have studied the homological properties of these modules and related modules; see [1], [2], [3], [4], [11], [12], [13], [16], [17], [18], [20], and so on. Based on these references, two natural questions arise: (1) How to dualize the Auslander transpose of modules appropriately? (2) Does the notion of n-torsionfree modules have its dual as many notions in classical homological algebra do? The aim of this paper is to study these two questions,
and we will define and investigate the cotranspose of modules and \(n\)-cotorsionfree modules.

The paper is organized as follows.

In Section 2 we give some terminology and some preliminary results, and we also introduce the notions of cotorsionless modules and coreflexive modules.

In Section 3 we introduce the cotranspose of modules with respect to a semidualizing bimodule \(C\), and using it we introduce \(n\)-\(C\)-cotorsionfree modules as a dual of \(n\)-(\(C\)-)torsionfree modules in [1] and [20]. We show that \(n\)-\(C\)-cotorsionfree modules possess many dual properties of \(n\)-(\(C\)-)torsionfree modules. For example, we prove that a module is \(n\)-\(C\)-cotorsionfree if and only if it admits some special proper resolutions of length at least \(n\). Then, as an application, we deduce that the Bass class with respect to \(C\) coincides with the intersection of the class of \(\infty\)-(\(C\)-)cotorsionfree modules and that of \(\infty\)-(\(C\)-)cospherical modules. As another application, we get a dual version of the approximation theorem for finitely generated modules over left and right noetherian rings in [1] Proposition 2.21] and its semidualizing version in [20, Theorem A].

In Section 4 we generalize the cograde of finitely generated modules in [14] to general modules, and prove that for a ring \(R\), the \(n\)-cosyzygy of a left \(R\)-module \(M\) is \(n\)-\(C\)-cotorsionfree if and only if the cograde of \(\text{Ext}^i_R(C, M)\) is at least \(i - 1\) for any \(1 \leq i \leq n\). This result can be regarded as a dual version of [1, Proposition 2.26].

In Section 5, we focus on studying some special finitely generated \(n\)-\(C\)-cotorsionfree modules (called \(n\)-cotorsionfree modules) over artin algebras. In this case, we first show that the ordinary Matlis duality induces a duality between the cotranspose (resp. \(n\)-cotorsionfree modules) and the transpose (resp. \(n\)-torsionfree modules). Then we obtain an equivalent characterization when \((\mathcal{G}I, \mathcal{GI})\) forms a cotorsion pair, where \(\mathcal{GI}\) denotes the class of finitely generated Gorenstein injective modules and \(\mathcal{G}I\) is its left orthogonal class. Finally, we give an example to illustrate that the class of \(\infty\)-torsionfree modules is not closed under kernels of epimorphisms in general. It answers negatively an open question of Huang and Huang ([11]).

2. Preliminaries

Throughout this paper, \(R\) and \(S\) are fixed associative rings with unites. We use \(\text{Mod} \ R\) (resp. \(\text{Mod} \ S^{op}\)) to denote the class of left \(R\)-modules (resp. right \(S\)-modules).

Definition 2.1. ([10]). An \((R-S)\)-bimodule \(_R\mathcal{C}_S\) is called semidualizing if

(a1) \(_R\mathcal{C}\) admits a degreewise finite \(R\)-projective resolution.

(a2) \(_S\mathcal{C}\) admits a degreewise finite \(S\)-projective resolution.
(b1) The homothety map $R R R R R \rightarrow \text{Hom}_S(C, C)$ is an isomorphism.
(b2) The homothety map $S S S S S \rightarrow \text{Hom}_R(C, C)$ is an isomorphism.
(c1) $\text{Ext}^{\geq 1}_R(C, C) = 0$.
(c2) $\text{Ext}^{\geq 1}_S(C, C) = 0$.

From now on, $R C_S$ is a semidualizing bimodule. We write $(-)^* = \text{Hom}(-, C)$ and $(-)_* = \text{Hom}(C, -)$. For a module $M \in \text{Mod } R$, we have the following two canonical valuation homomorphisms:

$\sigma_M : M \rightarrow M^{**}$
defined by $\sigma_M(x)(f) = f(x)$ for any $x \in M$ and $f \in M^*$, and

$\theta_M : C \otimes_S M_* \rightarrow M$
defined by $\theta_M(x \otimes f) = f(x)$ for any $x \in C$ and $f \in M_*$.

Definition 2.2. ([11]). The *Bass class* $B_C(R)$ with respect to C consists of all left R-modules M satisfying

(B1) $\text{Ext}^{\geq 1}_R(C, M) = 0$,
(B2) $\text{Tor}^{\geq 1}_R(C, \text{Hom}_R(C, M)) = 0$, and
(B3) θ_M is an isomorphism in $\text{Mod } R$.

Let M be a finitely presented left R-module and

$$P_1 \xrightarrow{f_0} P_0 \rightarrow M \rightarrow 0$$
a finitely generated projective presentation of M. Then $\text{Tr}_C M := \text{Coker } f_0^*$ is called the *Auslander transpose with respect to C* ([12]). When $R = S$ and $R C_S = R R R R R$, the Auslander transpose with respect to C is just the *Auslander transpose* ([11]).

Proposition 2.3. ([1] Proposition 2.6] and [12 Lemma 2.1]). Let M be a finitely presented left R-module. Then there exists an exact sequence:

$$0 \rightarrow \text{Ext}^1_S(\text{Tr}_C M, C) \rightarrow M \xrightarrow{\sigma_M} M^{**} \rightarrow \text{Ext}^2_S(\text{Tr}_C M, C) \rightarrow 0.$$

Recall that a module $M \in \text{Mod } R$ is called *C-torsionless* if σ_M is a monomorphism, and M is called *C-reflexive* if σ_M is an isomorphism. As the duals of C-torsionless modules and C-reflexive modules, we introduce the following

Definition 2.4. A module $M \in \text{Mod } R$ is called *C-cotorsionless* if θ_M is an epimorphism, and M is called *C-coreflexive* if θ_M is an isomorphism.

For a module $M \in \text{Mod } R$, we denote by $\text{Add}_R M$ the subclass of $\text{Mod } R$ consisting of all direct summands of direct sums of copies of M.

3
Lemma 2.5. The following statements hold.

(1) For any $W \in \text{Add}_R C$, W is C-coreflexive, W_* is a projective left S-module and $\text{Ext}_R^{\geq 1}(C, W) = 0$.

(2) For any injective left R-module I, I is C-coreflexive and $\text{Tor}_S^{\geq 1}(C, I_*) = 0$.

Proof. (1) follows from [10, Lemma 5.1(b)], and (2) follows from [10, Lemma 5.1(c)]. □

Definition 2.6. ([19]) Let \mathcal{X} be a subclass of Mod_R.

(1) An exact sequence E in Mod_R is called $\text{Hom}_R(\mathcal{X}, -)$-exact (resp. $\text{Hom}_R(-, \mathcal{X})$-exact) if $\text{Hom}_R(X, E)$ (resp. $\text{Hom}_R(E, X)$) is exact for any $X \in \mathcal{X}$.

(2) An exact sequence $X := \cdots \rightarrow X_1 \rightarrow X_0 \rightarrow X^0 \rightarrow X^1 \rightarrow \cdots$ in Mod_R with $X_i, X^i \in \mathcal{X}$ is called totally \mathcal{X}-acyclic if it is $\text{Hom}_R(\mathcal{X}, -)$-exact and $\text{Hom}_R(-, \mathcal{X})$-exact.

Definition 2.7. ([8]) A module $M \in \text{Mod}_R$ is called Gorenstein injective, if there exists a totally acyclic complex of injective modules $I := \cdots \rightarrow I_1 \rightarrow I_0 \rightarrow I^0 \rightarrow I^1 \rightarrow \cdots$ in Mod_R such that $M \cong \text{Im}(I_0 \rightarrow I^0)$.

3. The cotranspose and n-C-cotorsionfree modules

In this section, we introduce and study the cotranspose of modules and n-cotorsionfree modules with respect to the given semidualizing bimodule RC_S.

Let $M \in \text{Mod}_R$. We use

$$0 \rightarrow M \rightarrow I^0(M) \xrightarrow{f^0} I^1(M) \xrightarrow{f^1} \cdots \xrightarrow{f^{i-1}} I^i(M) \xrightarrow{f^i} \cdots$$ (3.1)

to denote a minimal injective resolution of M in Mod_R. For any $n \geq 1$, $\text{co}\Omega^n(M) := \text{Im} f^{n-1}$ is called the n-th cosyzygy of M, and in particular, put $\text{co}\Omega^0(M) = M$. A module in Mod_R is called n-cosyzygy if it is isomorphic to the n-th cosyzygy of some module in Mod_R. We introduce the dual notion of the Auslander transpose of modules as follows.

Definition 3.1. For a module $M \in \text{Mod}_R$, $c\text{Tr}_C M := \text{Coker} f^0_*$ is called the cotranspose of M with respect to RC_S.

The following result is a dual version of Proposition 2.3.
Proposition 3.2. Let $M \in \text{Mod } R$. Then there exists an exact sequence:
\[0 \to \text{Tor}^S_2(C, \text{cTr}_C M) \to C \otimes_S M \xrightarrow{\theta_M} M \to \text{Tor}^S_1(C, \text{cTr}_C M) \to 0. \]

Proof. By applying the functor $(-)_*$ to the minimal injective resolution (3.1) of M, we get an exact sequence:
\[0 \to M_* \to I^0(M)_* \xrightarrow{f^0_*} I^1(M)_* \to \text{cTr}_C M \to 0 \]
in $\text{Mod } S$. Let $f^0_s = \alpha \cdot \pi$ (where $\pi : I^0(M) \to \text{Im } f^0$ and $\alpha : \text{Im } f^0 \to I^1(M)$) and $f^0_* = \alpha' \cdot \pi'$ (where $\pi' : I^0(M)_* \to \text{Im } f^0_*$ and $\alpha' : \text{Im } f^0_* \to I^1(M)_*$) be the natural epic-monic decompositions of f^0 and f^0_*, respectively. Since $\text{Tor}^S_1(C, I^0(M)_*) = 0$ and $\theta_{\text{Tor}(M)}$ is an isomorphism by Lemma 2.5(2), we have the following commutative diagram with exact rows:

\[
\begin{array}{ccccccc}
0 & \to & \text{Tor}^S_1(C, \text{Im } f^0_*) & \xrightarrow{\theta_M} & C \otimes_R M_* & \xrightarrow{1_C \otimes \pi'} & C \otimes_S I^0(M)_* & \xrightarrow{\theta_{I^0(M)}} & C \otimes_S \text{Im } f^0_* & \to & 0 \\
0 & \to & \text{Im } f^0_* & \xrightarrow{\alpha_*} & I^1(M)_* & \xrightarrow{\text{cTr}_C M} & \text{cTr}_C M \to 0, \\
\end{array}
\]

where h is an induced homomorphism. Then $\pi \cdot \theta_{\text{Tor}(M)} = h \cdot (1_C \otimes \pi')$. In addition, by the snake lemma, we have $\text{Ker } \theta_M \cong \text{Tor}^S_1(C, \text{Im } f^0_*)$ and $\text{Coker } \theta_M \cong \text{Ker } h$.

On the other hand, since $\text{Tor}^S_1(C, I^1(M)_*) = 0$ by Lemma 2.5(2), by applying the functor $C \otimes_S -$ to the exact sequence:
\[0 \to \text{Im } f^0_* \xrightarrow{\alpha_*} I^1(M)_* \to \text{cTr}_C M \to 0, \]
we get the following exact sequence:
\[0 \to \text{Tor}^S_1(C, \text{cTr}_C M) \to C \otimes_S \text{Im } f^0_* \xrightarrow{1_C \otimes \pi'} C \otimes_S I^1(M)_* \to C \otimes_S \text{cTr}_C M \to 0 \]
and the isomorphism:
\[\text{Tor}^S_1(C, \text{Im } f^0_*) \cong \text{Tor}^S_2(C, \text{cTr}_C M). \]

Because
\[
\begin{array}{ccccccc}
C \otimes_S I^0(M)_* & \xrightarrow{1_C \otimes f^0_*} & C \otimes_S I^1(M)_* \\
\downarrow \theta_{I^0(M)} & & \downarrow \theta_{I^1(M)} \\
I^0(M) & \xrightarrow{f^0} & I^1(M) \\
\end{array}
\]
is a commutative diagram, $f^0 \cdot \theta_{I^0(M)} = \theta_{I^1(M)} \cdot (1_C \otimes f^0_*)$. Because $f^0_* = \alpha' \cdot \pi'$, $1_C \otimes f^0_* = 1_C \otimes (\alpha' \cdot \pi') = (1_C \otimes \alpha') \cdot (1_C \otimes \pi')$. Thus we have $\alpha \cdot h \cdot (1_C \otimes \pi') = \alpha \cdot \pi \cdot \theta_{I^0(M)} = f^0 \cdot \theta_{I^0(M)} = \theta_{I^1(M)} \cdot (1_C \otimes f^0_*) = \theta_{I^1(M)} \cdot (1_C \otimes \alpha') \cdot (1_C \otimes \pi')$. Because $1_C \otimes \pi'$ is epic, $\alpha \cdot h = \theta_{I^1(M)} \cdot (1_C \otimes \alpha')$. Notice that α is monic and $\theta_{I^1(M)}$ is an isomorphism (by Lemma 2.5(2)), so $\text{Coker } \theta_M \cong \text{Ker } h \cong \text{Ker } (1_C \otimes \alpha') \cong \text{Tor}^S_1(C, \text{cTr}_C M)$. Consequently we obtain the desired exact sequence. \qed
For any $n \geq 1$, recall from [20] that a finitely presented left R-module M is called n-C-torsionfree if $\text{Ext}_i^S(\text{Tr}_C M, C) = 0$ for any $1 \leq i \leq n$. When $R = S$ and $RC_S = RC_R$, an n-C-torsionfree module is just an n-torsionfree module ([I]). We introduce the dual notion of n-C-torsionfree modules as follows.

Definition 3.3. Let $M \in \text{Mod } R$ and $n \geq 1$. Then M is called n-C-cotorsionfree if $\text{Tor}_i^S(C, \text{cTr}_C M) = 0$ for any $1 \leq i \leq n$; and M is called ∞-C-cotorsionfree if it is n-C-cotorsionfree for all n. In particular, every left R-module is 0-C-cotorsionfree.

It is trivial that a left R-module is n-C-cotorsionfree if it is m-cotorsionfree for some $m \geq n$. It is easy to verify that the class of n-C-cotorsionfree R-modules is closed under direct summands and finite direct sums.

Note that for any $M \in \text{Mod } R$, there exists an exact sequence:

$$0 \rightarrow M_* \rightarrow I^0(M)_* \xrightarrow{f^0} I^1(M)_* \rightarrow \text{cTr}_C M \rightarrow 0.$$

The following corollary is an immediate consequence of Proposition 3.2.

Corollary 3.4. Let $M \in \text{Mod } R$. Then we have

1. M is 1-C-cotorsionfree if and only if it is C-cotorsionless.
2. M is 2-C-cotorsionfree if and only if it is C-coreflexive.
3. For any $n \geq 3$, M is n-C-cotorsionfree if and only if it is C-coreflexive and $\text{Tor}_i^S(C, M_*) = 0$ for any $1 \leq i \leq n - 2$.

Proposition 3.5. Let $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ be a $\text{Hom}_R(C, -)$-exact exact sequence in $\text{Mod } R$ with L n-C-cotorsionfree. Then M is n-C-cotorsionfree if and only if so is N.

Proof. By assumption we have an exact sequence:

$$0 \rightarrow L_* \rightarrow M_* \rightarrow N_* \rightarrow 0$$

in $\text{Mod } S$. Then we get the following commutative diagram with exact rows:

$$\begin{array}{cccccc}
C \otimes_S L_* & \rightarrow & C \otimes_S M_* & \rightarrow & C \otimes_S N_* & \rightarrow & 0 \\
\downarrow \theta_L & & \downarrow \theta_M & & \downarrow \theta_N & & \\
0 & \rightarrow & L & \rightarrow & M & \rightarrow & N & \rightarrow 0
\end{array}$$

and the following exact sequence:

$$\text{Tor}_i^S(C, L_*) \rightarrow \text{Tor}_i^S(C, M_*) \rightarrow \text{Tor}_i^S(C, N_*) \rightarrow \text{Tor}_{i-1}^S(C, L_*)$$

for any $i \geq 2$. Now the assertion follows easily from the snake lemma and Corollary 3.4. □
Let \mathcal{X} be a subclass of Mod R and $M \in$ Mod R. Following Enochs and Jenda \cite{8}, a homomorphism $\phi : X \to M$ in Mod R with $X \in \mathcal{X}$ is called a \mathcal{X}-precover of M if $\text{Hom}_R(X', \phi) : \text{Hom}_R(X', X) \to \text{Hom}_R(X', M)$ is epic for any $X' \in \mathcal{X}$. A \mathcal{X}-precover $\phi : X \to M$ is called a \mathcal{X}-cover if every endomorphism $g : X \to X$ such that $\phi g = \phi$ is an isomorphism. Dually the notion of an \mathcal{X}-(pre)envelope of M is defined. Recall from \cite{9} that an exact sequence (of finite or infinite length):

$$\cdots \to X_n \to \cdots \to X_1 \to X_0 \to M \to 0$$

in Mod R is called an \mathcal{X}-resolution of M if each $X_i \in \mathcal{X}$. Furthermore, such an \mathcal{X}-resolution is called proper if $X_i \to \text{Im}(X_i \to X_{i-1})$ is an \mathcal{X}-precover of $\text{Im}(X_i \to X_{i-1})$ (note: $X_{-1} = M$). Dually, the notion of an \mathcal{X}-coresolution of M is defined. The \mathcal{X}-injective dimension \mathcal{X}-id$_R(M)$ of M is defined as $\inf\{n \mid$ there exists an \mathcal{X}-coresolution $0 \to M \to X^0 \to X^1 \to \cdots \to X^n \to 0$ of M in Mod $R\}$.

In the following result we give an equivalent characterization of n-C-cotorsionfree modules in terms of proper Add$_R C$-resolutions of modules. It is dual to \cite{20} Corollary 3.3.

Proposition 3.6. Let $M \in$ Mod R and $n \ge 1$. Then M is n-C-cotorsionfree if and only if there exists a proper Add$_R C$-resolution $W_{n-1} \to \cdots \to W_1 \to W_0 \to M \to 0$ of M in Mod R.

Proof. We proceed by induction on n.

Let $n = 1$ and M be 1-C-cotorsionfree. Then θ_M is epic by Corollary 3.4. Since there exists an epimorphism $S^{(X)} \rightarrow M_*$, so we get an epimorphism $C^{(X)} \rightarrow C \otimes_S M_*$, which induces an epimorphism $C^{(X)} \rightarrow M$ because θ_M is epic. By \cite{10} Proposition 5.3, every module in Mod R admits an Add$_R C$-precover. It follows that M admits an epic Add$_R C$-precover. Conversely, let $W_0 \to M$ be an epic Add$_R C$-precover of M. Because θ_{W_0} is an isomorphism by Lemma 2.5(2), from the following commutative diagram with exact rows:

$$
\begin{array}{ccc}
C \otimes_S W_{0*} & \longrightarrow & C \otimes_S M_* \\
\downarrow \theta_{W_0} & & \downarrow \theta_M \\
W_0 & \longrightarrow & M \\
& & \longrightarrow \ 0
\end{array}
$$

we get that θ_M is epic and M is 1-C-cotorsionfree.
Let $n = 2$ and M be 2-C-cotorsionfree. By the above argument, there exists an exact sequence $0 \to N \to W_0 \to M \to 0$ in Mod R with $W_0 \to M$ an Add$_R C$-precover of M. Then we have the following commutative diagram with exact rows:

\[
\begin{array}{ccccccccc}
C \otimes_S N_* & \longrightarrow & C \otimes_S W_{0*} & \longrightarrow & C \otimes_S M_* & \longrightarrow & 0 \\
\downarrow \theta_N & & \downarrow \theta_{W_0} & & \downarrow \theta_M & & \\
0 & \longrightarrow & N & \longrightarrow & W_0 & \longrightarrow & M & \longrightarrow & 0.
\end{array}
\]

Because both θ_{W_0} and θ_M are isomorphisms by Lemma 2.5(1) and Corollary 3.4(2), θ_N is epic by the snake lemma, and hence N is 1-C-cotorsionfree by Corollary 3.4(1). It follows from the above argument that N admits an epic Add$_R C$-precover $W_1 \to N$. Then the spliced sequence $W_1 \to W_0 \to M \to 0$ is as desired. Conversely, let $W_1 \to W_0 \to M \to 0$ be a proper Add$_R C$-resolution of M. Put $N = \text{Ker}(W_0 \to M)$. Then N is 1-C-cotorsionfree by the above argument, and so θ_N is epic by Corollary 3.4(1). Now the commutative diagram above implies that θ_M is an isomorphism. Thus M is 2-C-cotorsionfree by Corollary 3.4(2).

Now suppose that $n \geq 3$ and M is n-C-cotorsionfree. Then θ_M is an isomorphism and $\text{Tor}^S_i(C, M_*) = 0$ for any $1 \leq i \leq n - 2$ by Corollary 3.4(3). In addition, by the induction hypothesis there exists an exact sequence $0 \to N \to W_0 \to M \to 0$ in Mod R with $W_0 \in \text{Add}_R C$ such that $0 \to N_* \to W_{0*} \to M_* \to 0$ is also exact with W_{0*} projective. Then $\text{Tor}^S_i(C, N_*) \cong \text{Tor}^S_{i+1}(C, M_*) = 0$ for $1 \leq i \leq n - 3$, and we have the following commutative diagram with exact rows:

\[
\begin{array}{ccccccccc}
0 & \longrightarrow & C \otimes_S N_* & \longrightarrow & C \otimes_S W_{0*} & \longrightarrow & C \otimes_S M_* & \longrightarrow & 0 \\
\downarrow \theta_N & & \downarrow \theta_{W_0} & & \downarrow \theta_M & & \\
0 & \longrightarrow & N & \longrightarrow & W_0 & \longrightarrow & M & \longrightarrow & 0.
\end{array}
\]

Because θ_{W_0} is an isomorphism by Lemma 2.5(1), θ_N is also an isomorphism. Thus N is $(n - 1)$-C-cotorsionfree by Corollary 3.4(3) and therefore the assertion follows from the induction hypothesis.

Conversely, assume that there exists a proper Add$_R C$-resolution $W_{n-1} \to \cdots \to W_1 \to W_0 \to M \to 0$ of M in Mod R. Put $N = \text{Im}(W_1 \to W_0)$. Then $0 \to N_* \to W_{0*} \to M_* \to 0$ is exact with W_{0*} projective. Because N is $(n - 1)$-C-cotorsionfree by the induction hypothesis, θ_N is an isomorphism and $\text{Tor}^S_i(C, N_*) = 0$ for any $1 \leq i \leq n - 3$ by Corollary 3.4(3).
Consider the following commutative diagram with exact rows:

\[
\begin{array}{c}
C \otimes_S N_* & \xrightarrow{\theta_N} & C \otimes_S W_0 & \xrightarrow{\theta_W} & C \otimes_S M_* & \rightarrow & 0 \\
0 & \xrightarrow{\theta_N} & N & \xrightarrow{\theta_W} & W_0 & \xrightarrow{\theta_M} & M & \rightarrow & 0.
\end{array}
\]

Because \(\theta_W\) is an isomorphism by Lemma 2.5(1), \(\theta_M\) is an isomorphism and \(0 \rightarrow C \otimes_S N_* \rightarrow C \otimes_S W_0 \rightarrow C \otimes_S M_* \rightarrow 0\) is exact. So \(\text{Tor}_1^S(C, M_*) = 0\) and \(\text{Tor}_{i+1}^S(C, M_*) \cong \text{Tor}_i^S(C, N_*) = 0\) for any \(1 \leq i \leq n - 3\), that is, \(\text{Tor}_i^S(C, M_*) = 0\) for any \(1 \leq i \leq n - 2\). Thus \(M\) is \(n\)-\(C\)-cotorsionfree by Corollary 3.4(3).

As an immediate consequence of Proposition 3.6 we have the following

Corollary 3.7. For a module \(M \in \text{Mod } R\), the following statements are equivalent.

1. \(M\) is \(1\)-\(C\)-cotorsionfree (that is, \(M\) is \(C\)-cotorsionless).
2. There exists an exact sequence \(0 \rightarrow N \rightarrow W \rightarrow M \rightarrow 0\) in \(\text{Mod } R\) with \(W \in \text{Add}_R C\) and \(\text{Ext}_1^R(C, N) = 0\).
3. There exists an epimorphism \(W \rightarrow M\) in \(\text{Mod } R\) with \(W \in \text{Add}_R C\).

It follows from Proposition 3.6 that a module \(M \in \text{Mod } R\) is \(\infty\)-\(C\)-cotorsionfree if and only if \(M\) has an exact proper \(\text{Add}_R C\)-resolution \(\cdots \rightarrow W_2 \rightarrow W_1 \rightarrow W_0 \rightarrow M \rightarrow 0\) in \(\text{Mod } R\). A module \(M \in \text{Mod } R\) is called \(n\)-\(C\)-cospherical if \(\text{Ext}_i^R(C, M) = 0\) for and \(1 \leq i \leq n\), and \(M\) is called \(\infty\)-\(C\)-cospherical if it is \(n\)-\(C\)-cospherical for all \(n\). The following result shows that the Bass class with respect to \(C\) coincides with the intersection of the class of \(\infty\)-\(C\)-cotorsionfree modules and that of \(\infty\)-\(C\)-cospherical modules.

Theorem 3.8. For a module \(M \in \text{Mod } R\), the following statements are equivalent.

1. \(M\) is \(\infty\)-\(C\)-cotorsionfree and \(\infty\)-\(C\)-cospherical.
2. \(M \in B_C(R)\).

Proof. By Proposition 3.6 and [10, Theorem 6.1].

Auslander and Bridger obtained in [11, Proposition 2.21] an approximation theorem for finitely generated modules over left and right noetherian rings. Takahashi in [20, Theorem A] got a semidualizing version of this result. We dualize [20, Theorem A] as follows.

Theorem 3.9. Let \(M \in \text{Mod } R\) and \(n \geq 1\). Then the following statements are equivalent.

1. \(\text{co}^n_\Omega(M)\) is \(n\)-\(C\)-cotorsionfree.
(2) There exists an exact sequence $0 \to M \to X \to Y \to 0$ in $\text{Mod } R$ such that X is n-C-cospherical and $\text{Add}_R C \cdot \text{id}_R Y \leq n - 1$.

Proof. (1) \Rightarrow (2). By Proposition 3.6 and Corollary 3.7, the fact that $\co\Omega^n(M)$ is n-C-cotorsionfree implies that there exists an exact sequence $0 \to N_0 \to W_0 \to \co\Omega^n(M) \to 0$ in $\text{Mod } R$ with $W_0 \in \text{Add}_R C$, N_0 $(n-1)$-C-cotorsionfree and $\text{Ext}^1_R(C, N_0) = 0$. We get the following pullback diagram:

$$
\begin{array}{ccc}
0 & \to & N_0 \\
\downarrow & & \downarrow \\
0 & \to & X_0 \\
\downarrow & & \downarrow \\
0 & \to & I^{n-1}(M) \\
\downarrow & & \downarrow \\
0 & \to & \co\Omega^n(M) \\
\downarrow & & \downarrow \\
0 & & 0
\end{array}
$$

If $n = 1$, then the middle column is the desired sequence.

Let $n \geq 2$. Since $I^{n-1}(M) \in \mathcal{B}_C(R)$, $I^{n-1}(M)$ is ∞-C-cotorsionfree by Theorem 3.8. Note that N_0 is $(n-1)$-C-cotorsionfree and $\text{Ext}^1_R(C, N_0) = 0$. By Proposition 3.5, X_0 is $(n-1)$-C-cotorsionfree. Thus there exists an exact sequence $0 \to Z_0 \to U_0 \to X_0 \to 0$ in $\text{Mod } R$ with $U_0 \in \text{Add}_R C$, Z_0 $(n-2)$-C-cotorsionfree and $\text{Ext}^1_R(C, Z_0) = 0$ by Proposition 3.6. We construct the following pullback diagram:

$$
\begin{array}{ccc}
0 & \to & Z_0 \\
\downarrow & & \downarrow \\
0 & \to & Y_0 \\
\downarrow & & \downarrow \\
0 & \to & \co\Omega^{n-1}(M) \\
\downarrow & & \downarrow \\
0 & \to & X_0 \\
\downarrow & & \downarrow \\
0 & \to & W_0 \\
\downarrow & & \downarrow \\
0 & & 0
\end{array}
$$
such that $\text{Add}_R C \cdot \text{id}_R Y_0 \leq 1$ and $\text{Ext}^i_R(C, Z_0) = 0$ for $i = 1, 2$ because $\text{Ext}^1_R(C, X_0) = 0$. Using the leftmost column in this diagram, we also have the following pullback diagram:

$$
\begin{array}{c}
0 & \to & 0 \\
\downarrow & & \downarrow \\
\co\Omega^{n-2}(M) & \to & \co\Omega^{n-2}(M) \\
\downarrow & & \downarrow \\
0 & \to & Z_0 & \to & X_1 & \to & I^{n-2}(M) & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \to & Z_0 & \to & Y_0 & \to & \co\Omega^{n-1}(M) & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \to & 0 & \to & 0 & \to & 0 \\
\end{array}
$$

It follows from the middle row in the above diagram that $\text{Ext}^i_R(C, X_1) = 0$ for $i = 1, 2$. Therefore, if $n = 2$, then the middle column in the above diagram is the desired exact sequence.

Let $n \geq 3$. Since Z_0 is $(n-2)$-C-cotorsionfree and $\text{Ext}^1_R(C, Z_0) = 0$, X_1 is $(n-2)$-C-cotorsionfree by Proposition 3.5. We have an exact sequence $0 \to Z_1 \to U_1 \to X_1 \to 0$ in $\text{Mod} R$ with $U_1 \in \text{Add}_R C$, $Z_1 (n-3)$-C-cotorsionfree and $\text{Ext}^1_R(C, Z_1) = 0$ by Proposition 3.6 again. Iterating the above construction of pullback diagrams, we eventually obtain the desired exact sequence.

$(2) \Rightarrow (1)$. Since $\text{Add}_R C \cdot \text{id}_R Y \leq n-1$, there exists an exact sequence $0 \to Y \xrightarrow{d_0} W^0 \xrightarrow{d_1} W^1 \to \cdots \xrightarrow{d_{n-1}} W^{n-1} \to 0$ in $\text{Mod} R$ with all $W^i \in \text{Add}_R C$. Set $Y_i = \text{Im} d_i$ for each i. We have the following pushout diagram:

$$
\begin{array}{c}
0 & \to & 0 \\
\downarrow & & \downarrow \\
0 & \to & M & \to & I^0(M) & \to & \co\Omega^1(M) & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \to & X & \to & H_0 & \to & \co\Omega^1(M) & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
Y & \to & Y \\
\downarrow & & \downarrow & & \downarrow \\
0 & \to & 0 \\
\end{array}
$$
Then $H_0 \cong Y \oplus I^0(M)$. Adding $I^0(M)$ to the exact sequence $0 \to Y \to W^0 \to Y_1 \to 0$, we get an exact sequence $0 \to Y \oplus I^0(M) \to W^0 \oplus I^0(M) \to Y_1 \to 0$. Thus the following two pushout diagrams are obtained.

\[
\begin{array}{ccc}
0 & \to & X \\
\downarrow & & \downarrow \\
0 & \to & Y \oplus I^0(M) \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
& & co\Omega^1(M) \\
\downarrow & & \downarrow \\
& & 0 \\
\end{array}
\]

and

\[
\begin{array}{ccc}
0 & \to & X \\
\downarrow & & \downarrow \\
0 & \to & W^0 \oplus I^0(M) \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
Y_1 & \to & X_1 \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
0 & \to & 0 \\
\end{array}
\]

Repeating the procedure in this way yields the following exact sequence:

\[
0 \to X_i \to W^i \oplus I^i(M) \to X_{i+1} \to 0
\]

for any $0 \leq i \leq n - 1$, where $X_0 = X$. Since $\text{Ext}^i_R(C, X_0) = 0$ for any $1 \leq i \leq n$ by assumption, $\text{Ext}^i_R(C, X_i) = 0$ for any $1 \leq j \leq n - i$. Then there exists an exact sequence:

\[
0 \to X_{i+} \to (W^i \oplus I^i(M))_+ \to X_{i+1} \to 0
\]
for any $0 \leq i \leq n - 1$. By Lemma 2.5, each $\theta_{W^i \oplus I^i(M)}$ is an isomorphism. Now we have the following commutative diagram with exact rows:

$$
\begin{array}{c}
C \otimes_S (W^0 \oplus I^0(M))_* & \longrightarrow & C \otimes_S X_{1*} & \longrightarrow & 0 \\
\downarrow \theta_{W^0 \oplus I^0(M)} & & \downarrow \theta_{X_1} & & \\
W^0 \oplus I^0(M) & \longrightarrow & X_1 & \longrightarrow & 0.
\end{array}
$$

It follows that θ_{X_1} is epic and so X_1 is 1-C-cotorsionfree by Corollary 3.4(1). Also, there exists the following commutative diagram with exact rows:

$$
\begin{array}{c}
C \otimes_S X_{1*} & \longrightarrow & C \otimes_S (W^1 \oplus I^1(M))_* & \longrightarrow & C \otimes_S X_{2*} & \longrightarrow & 0 \\
\downarrow \theta_{X_1} & & \downarrow \theta_{W^1 \oplus I^1(M)} & & \downarrow \theta_{X_2} & & \\
0 & \longrightarrow & X_1 & \longrightarrow & W^1 \oplus I^1(M) & \longrightarrow & X_2 & \longrightarrow & 0.
\end{array}
$$

So θ_{X_2} is an isomorphism and hence X_2 is 2-C-cotorsionfree by Corollary 3.4(2). Furthermore, there exists the following commutative diagram with exact rows:

$$
\begin{array}{c}
0 & \longrightarrow & \text{Tor}_1^S(C, X_{3*}) & \longrightarrow & C \otimes_S X_{2*} & \longrightarrow & C \otimes_S (W^2 \oplus I^2(M))_* & \longrightarrow & C \otimes_S X_{3*} & \longrightarrow & 0 \\
\downarrow \theta_{X_2} & & \downarrow \theta_{W^2 \oplus I^2(M)} & & \downarrow \theta_{X_3} & & \\
0 & \longrightarrow & X_2 & \longrightarrow & W^2 \oplus I^2(M) & \longrightarrow & X_3 & \longrightarrow & 0.
\end{array}
$$

So θ_{X_3} is an isomorphism and $\text{Tor}_1^S(C, X_{3*}) = 0$, and hence X_3 is 3-C-cotorsionfree by Corollary 3.4(3). Repeating a similar argument, we eventually get that $\text{co}\Omega^n(M) \cong X_n$ is n-C-cotorsionfree.

The following result is an addendum to Theorem 3.9.

Proposition 3.10. Let $M \in \text{Mod } R$ and $n \geq 1$. If $\text{co}\Omega^n(M)$ is ∞-C-cotorsionfree, then there exists an exact sequence $0 \rightarrow M \rightarrow X \rightarrow Y \rightarrow 0$ in $\text{Mod } R$ with X ∞-cotorsionfree and $\text{Add}_R C \cdot \text{id}_R Y \leq n - 1$.

Proof. We proceed by induction on n.

Let $n = 1$. Since $\text{co}\Omega^1(M)$ is ∞-C-cotorsionfree by assumption, there exists an exact sequence $0 \rightarrow N_1 \rightarrow W_1 \rightarrow \text{co}\Omega^1(M) \rightarrow 0$ in $\text{Mod } R$ with $W_1 \in \text{Add}_R C$, N_1 ∞-C-cotorsionfree and $\text{Ext}_R^1(C, N_1) = 0$ by Proposition 3.6. Consider the following
It follows from Proposition 3.5 that the middle row in the above diagram is the desired sequence.

Now suppose $n \geq 2$. By the induction hypothesis, there exists an exact sequence \(0 \to \co\Omega^1(M) \to X' \to Y' \to 0 \) in \(\text{Mod} \ R \) with \(X' \) \(\infty \)-C-cotorsionfree and \(\text{Add}_R C - \text{id}_R Y' \leq n - 2 \). We also have an exact sequence \(0 \to X'' \to W' \to X' \to 0 \) in \(\text{Mod} \ R \) with \(W' \in \text{Add}_R C, X'' \infty \)-C-cotorsionfree and \(\text{Ext}_R^1(C, X'') = 0 \) by Proposition 3.6. We have the following pullback diagram:
Then \(\text{Add}_R C \)-id\(_R Y \leq n - 1 \). Consider the following pullback diagram:

\[
\begin{array}{cccccc}
0 & \rightarrow & M & \rightarrow & X & \rightarrow & Y & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \rightarrow & I^0(M) & \rightarrow & \text{co}\Omega^1(M) & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \rightarrow & 0 & \rightarrow & 0 & \rightarrow & 0.
\end{array}
\]

Note that the middle column in this diagram is \(\text{Hom}_R(C, -) \)-exact. So \(X \) is \(\infty \)-\(C \)-cotorsionfree by Proposition 3.5. Therefore the middle row in this diagram is as desired. \(\square \)

4. Cograde and Cotorsionfreeness

In this section, for a module \(M \in \text{Mod} R \) and a positive integer \(n \), we will give a criterion in terms of the properties of the cograde of modules for judging when \(\text{co\Omega}^i(M) \) is \(i \)-\(C \)-cotorsionfree for any \(1 \leq i \leq n \).

Let \(M \in \text{Mod} R \) and \(n \geq 1 \). From the exact sequence:

\[
0 \rightarrow \text{co\Omega}^{n-1}(M) \xrightarrow{\lambda^{n-1}} I^{n-1}(M) \xrightarrow{p^n} \text{co\Omega}^n(M) \rightarrow 0
\]

we get the following exact sequence:

\[
0 \rightarrow (\text{co\Omega}^{n-1}(M))_* \xrightarrow{\lambda^{n-1}_*} I^{n-1}(M)_* \xrightarrow{p^n_*} (\text{co\Omega}^n(M))_* \rightarrow \text{Ext}^n_R(C, M) \rightarrow 0.
\]

Set \(\text{Im} p^n_* = N \), and decompose this sequence into two short exact sequences:

\[
0 \rightarrow (\text{co\Omega}^{n-1}(M))_* \xrightarrow{\lambda^{n-1}_*} I^{n-1}(M)_* \xrightarrow{\beta} N \rightarrow 0
\]

and

\[
0 \rightarrow N \xrightarrow{\alpha} (\text{co\Omega}^n(M))_* \rightarrow \text{Ext}^n_R(C, M) \rightarrow 0.
\]
Then we get the following commutative diagram with exact rows:

\[
\begin{array}{ccccccc}
C \otimes_S (\co\Omega^{n-1}(M)) & \xrightarrow{1_c \otimes \lambda^{n-1}} & C \otimes_S I^{n-1}(M) & \xrightarrow{\theta_{\co\Omega^{n-1}(M)}} & C \otimes_S N & \xrightarrow{g} & 0 \\
0 & \xrightarrow{\lambda^{n-1}} & I^{n-1}(M) & \xrightarrow{\theta_{I^{n-1}(M)}} & \co\Omega^n(M) & \xrightarrow{p^n} & 0.
\end{array}
\]

Diagram (4.1)

Then it is straightforward to check that there exists the following commutative diagram with exact rows:

\[
\begin{array}{ccccccc}
C \otimes_S N & \xrightarrow{1_c \otimes g} & C \otimes_S (\co\Omega^n(M)) & \xrightarrow{\theta_{\co\Omega^n(M)}} & C \otimes_S \Ext^n_R(C, M) & \xrightarrow{g} & 0 \\
\co\Omega^n(M) & \xrightarrow{p^n} & \co\Omega^n(M).
\end{array}
\]

Diagram (4.2)

Lemma 4.1. For a module \(M \in \Mod R\), we have

1. \(\co\Omega^1(M)\) is 1-C-cotorsionfree.
2. For any \(n \geq 2\), \(\Ker \theta_{\co\Omega^n(M)} \cong C \otimes_S \Ext^n_R(C, M)\).

Proof. (1). Since \(I^0(M)\) is \(\infty\)-C-cotorsionfree by Theorem 3.8, the assertion follows from Corollary 3.7.

(2). If \(n \geq 2\), then \(\theta_{\co\Omega^{n-1}(M)}\) is an epimorphism by (1). Because \(\theta_{I^{n-1}(M)}\) is an isomorphism by Theorem 3.8, \(g\) is an isomorphism in the above two diagrams. So \(\Ker \theta_{\co\Omega^n(M)} \cong C \otimes_S \Ext^n_R(C, M)\). \(\square\)

The notion of the cograde of finitely generated modules was introduced in [14, Corollary 3.11]. The following definition generalizes it to a general setting.

Definition 4.2. For a module \(N \in \Mod S\), the cograde of \(N\) with respect to \(C\) is defined by \(\co\text{cograde}_C N := \inf \{i \mid \Tor^S_i(C, N) \neq 0\}\).

We are now in a position to give the main result in this section, which can be regarded as a dual version of [1, Proposition 2.26].

Theorem 4.3. Let \(M \in \Mod R\) and \(n \geq 1\). Then \(\co\Omega^i(M)\) is i-C-cotorsionfree for any \(1 \leq i \leq n\) if and only if \(\co\text{cograde}_C \Ext^i_R(C, M) \geq i - 1\) for any \(1 \leq i \leq n\).
Lemma 4.1(1).

Proof. We proceed by induction on $\otimes C$ hence cograde S by Corollary 3.4(3) we have $\text{Tor}_n S C, M$ is monic. But $\text{Ker} \theta_{\text{co}\Omega^2(M)} \cong C \otimes_S \text{Ext}^2_R(C, M)$ by Lemma 4.1(2). So co$\Omega^2(M)$ is 2-C-cotorsionfree if and only if $C \otimes_S \text{Ext}^2_S(C, M) = 0$, that is, cograde$_C$ $\text{Ext}^2_S(C, M) \geq 1$.

Now suppose $n \geq 3$.

If co$\Omega^i(M)$ is i-C-cotorsionfree for $1 \leq i \leq n$, then by the induction hypothesis, it suffices to show that cograde$_C$ $\text{Ext}^n_S(C, M) \geq n - 1$. By Lemma 4.1(2), $C \otimes_S \text{Ext}^n_R(C, M) \cong \text{Ker} \theta_{\text{co}\Omega^n(M)} = 0$. From the exact sequence (4.1), we get the following exact sequence:

$$\text{Tor}^S_1(C, (\text{co}\Omega^n(M))_*) \to \text{Tor}^S_1(C, \text{Ext}^n_R(C, M)) \to C \otimes_S N \xrightarrow{1_C \otimes \alpha} C \otimes_S (\text{co}\Omega^n(M))_* \to C \otimes_S \text{Ext}^n_R(C, M) \to 0.$$

Because both $\theta_{\text{co}\Omega^{n-1}(M)}$ and $\theta_{I^{n-1}(M)}$ are isomorphisms, the homomorphism g in the diagram behind (4.2) is also an isomorphism. Then from Diagram (4.2) we know that $1_C \otimes \alpha$ is monic. By Corollary 3.4(3) we have $\text{Tor}^S_1(C, (\text{co}\Omega^n(M))_*) = 0$ for any $1 \leq i \leq n - 2$. So $\text{Tor}^S_1(C, \text{Ext}^n_R(C, M)) = 0$, and hence cograde$_C$ $\text{Ext}^n_R(C, M) \geq 2$.

From the exact sequence (4.1) get the following exact sequence:

$$0 \to (\text{co}\Omega^{n-1}(M))_* \xrightarrow{\lambda^{n-1}_*} I^{n-1}(M)_* \xrightarrow{\nu^n_*} (\text{co}\Omega^n(M))_* \to \text{Ext}^n_S(C, M) \to 0.$$

By Theorem 3.8 and Corollary 3.4(3), $\text{Tor}^S_1(C, I^{n-1}(M)_*) = 0$ for any $i \geq 1$. Again by Corollary 3.4(3) we have $\text{Tor}^S_1(C, (\text{co}\Omega^{n-1}(M))_*) = 0$ for any $1 \leq i \leq n - 3$. So by the dimension shifting, $\text{Tor}^S_1(C, \text{Ext}^n_R(C, M)) = 0$ for any $3 \leq i \leq n - 2$, and hence cograde$_C$ $\text{Ext}^n_R(C, M) \geq n - 1$.

Conversely, if cograde$_C$ $\text{Ext}^n_R(C, M) \geq i - 1$ for any $1 \leq i \leq n$, then by the induction hypothesis, it suffices to show that co$\Omega^n(M)$ is n-C-cotorsionfree. Since co$\Omega^{n-1}(M)$ is $(n - 1)$-C-cotorsionfree by the induction hypothesis, $\theta_{\text{co}\Omega^{n-1}(M)}$ is an isomorphism. Notice that $\theta_{I^{n-1}(M)}$ is also an isomorphism, so is the homomorphism g in Diagram (4.1). Because cograde$_C$ $\text{Ext}^n_R(C, M) \geq n - 1$ by assumption, $1_C \otimes \alpha$ in Diagram (4.2) is an isomorphism. It implies that $\theta_{\text{co}\Omega^n(M)}$ is also an isomorphism and co$\Omega^n(M)$ is C-coreflexive. On the other hand, similar to the above argument, using the dimension shifting, from the exact sequence (4.3) we get that $\text{Tor}^S_1(C, (\text{co}\Omega^n(M))_* = 0$ for any $1 \leq i \leq n - 2$. Then we conclude that co$\Omega^n(M)$ is n-C-cotorsionfree by Corollary 3.4(3). \qed
5. Special cotorsionfree modules over artin algebras

Throughout this section, Λ is an artin R-algebra over a commutative artin ring R. Let $\text{mod } \Lambda$ be the class of finitely generated left Λ-modules. We denote by D the ordinary Matlis duality between $\text{mod } \Lambda^{\text{op}}$ and $\text{mod } \Lambda$, that is, $D(-) := \text{Hom}_R(-, I^0(R/J(R)))$, where $J(R)$ is the Jacobson radical of R and $I^0(R/J(R))$ is the injective envelope of $R/J(R)$. It is easy to verify that (Λ, Λ)-bimodule $D(\Lambda)$ is semidualizing. We use $\text{add } D(\Lambda)$ to denote the subclass of $\text{mod } \Lambda$ consisting of modules isomorphic to direct summands of finite direct sums of copies of $D(\Lambda)$. We use abbreviation $c\text{Tr}(\cdot)$ for $c\text{Tr}_{D(\Lambda)}(\cdot)$.

Let $A \in \text{mod } \Lambda$ and $n \geq 1$. Then A is called n-cotorsionfree if $\text{Tor}^{\Lambda}_i(D(\Lambda), c\text{Tr}_A) = 0$ for any $1 \leq i \leq n$, and A is called ∞-cotorsionfree if it is n-cotorsionfree for all n; in particular, every module in $\text{mod } \Lambda$ is 0-cotorsionfree. In addition, A is called n-cospherical if $\text{Ext}^i_{\Lambda}(D(\Lambda), A) = 0$ for any $1 \leq i \leq n$, and A is called ∞-cospherical if it is n-cospherical for all n.

Put $(-)^* := \text{Hom}_\Lambda(-, \Lambda)$. The following result establishes the dual relation between the cotranspose (resp. n-cotorsionfree modules) and the transpose (resp. n-torsionfree modules).

Proposition 5.1. Let $A \in \text{mod } \Lambda$ and $n \geq 1$. Then we have

1. $\text{Tr } A \cong c\text{Tr } D(A)$.
2. $c\text{Tr } A \cong \text{Tr } D(A)$.
3. A is n-torsionfree if and only if $D(A)$ is n-cotorsionfree.
4. A is n-cotorsionfree if and only if $D(A)$ is n-torsionfree.

Proof. Because (2) and (4) are duals of (1) and (3) respectively, it suffices to prove (1) and (3).

(1) Let

$$P_1 \to P_0 \to A \to 0$$

be a minimal projective presentation of A in $\text{mod } \Lambda$. Then we have the following exact sequence:

$$0 \to A^* \to P_0^* \to P_1^* \to \text{Tr } A \to 0,$$

and a minimal injective presentation:

$$0 \to D(A) \to D(P_0) \to D(P_1)$$

of $D(A)$. Now we obtain another exact sequence:

$$0 \to \text{Hom}_\Lambda(D(A), D(A)) \to \text{Hom}_\Lambda(D(A), D(P_0)) \to \text{Hom}_\Lambda(D(A), D(P_1)) \to c\text{Tr } D(A) \to 0.$$

Since $P_i^* \cong \text{Hom}_\Lambda(D(A), D(P_i))$ for $i = 1, 2$, $\text{Tr } A \cong c\text{Tr } D(A)$.

(3) For any $i \geq 1$, we have
\[
\text{Ext}_\Lambda^i(\text{Tr} A, \Lambda) \\
\cong \text{Ext}_\Lambda^i(\text{Tr} A, \text{Hom}_\Lambda(D(\Lambda), D(\Lambda))) \\
\cong \text{Hom}_\Lambda(\text{Tor}_\Lambda^i(\text{Tr} A, D(\Lambda)), D(\Lambda)) \quad \text{(by [6, Chapter VI, Proposition 5.1]).}
\]

Note that $D(\Lambda)$ is an injective cogenerator for Mod Λ. So, for any $i \geq 1$ we have that $\text{Ext}_\Lambda^i(\text{Tr} A, \Lambda) = 0$ if and only if $\text{Tor}_\Lambda^i(\text{Tr} A, D(\Lambda)) = 0$, and if and only if $\text{Tor}_\Lambda^i(c\text{Tr} D(A), D(\Lambda)) = 0$ by Proposition 5.1(1). It follows that A is n-torsionfree if and only if $D(A)$ is n-cotorsionfree.

Note that a module in mod Λ^{op} is Gorenstein flat (see [8] for the definition) if and only if it is Gorenstein projective by [5, Proposition 1.3]. So the ordinary Matlis duality D between mod Λ^{op} and mod Λ induces a duality between Gorenstein projective modules in mod Λ^{op} and Gorenstein injective modules in mod Λ (c.f. [9, Theorem 3.6]). Then by [8, Proposition 10.2.6] and Proposition 5.1, we immediately have the following

Corollary 5.2. For a module $A \in \text{mod } \Lambda$, the following statements are equivalent.

1. A is ∞-cotorsionfree and ∞-cospherical.
2. There exists a totally add $D(\Lambda)$-acyclic complex I (as in Definition 2.7) such that $A \cong \text{Im}(I_0 \to I^0)$.
3. A is Gorenstein injective.

Recall that Λ is called Gorenstein if $\text{id}_\Lambda \Lambda = \text{id}_{\Lambda^{op}} \Lambda < \infty$.

Corollary 5.3. The following statements are equivalent for any $n \geq 0$.

1. Λ is Gorenstein with $\text{id}_\Lambda \Lambda = \text{id}_{\Lambda^{op}} \Lambda \leq n$.
2. The n-cosyzygy of a module in mod Λ and that of a module in mod Λ^{op} are ∞-cotorsionfree.
3. Every module in mod Λ and every module in mod Λ^{op} are quotient modules of a left Λ-module and a right Λ-module with injective dimension at most n respectively.

Proof. By Corollary 5.2 and [11, Theorem 1.4 and Lemma 3.8], using the duality functor D we get the assertion.

The following example illustrates that the condition “∞-cotorsionfree” in Corollary 5.3(2) can not be replaced by “n-cotorsionfree”.
Example 5.4. Let Λ be a finite-dimensional algebra over an algebraically closed field given by the quiver:

\[
\begin{array}{ccc}
\alpha & \circlearrowleft \\
\circlearrowright & & \circlearrowright \\
\beta & \circlearrowright \\
\end{array}
\]

modulo the ideal generated by $\{\alpha^2, \beta^2, \alpha\beta, \beta\alpha\}$. Then Λ is not Gorenstein, but for any $A \in \mod \Lambda$, $\co\Omega^1(A)$ is 1-cotorsionfree.

Corollary 5.5. If both R and Λ are local, then the following statements are equivalent.

(1) Λ is Gorenstein.

(2) Λ is self-injective.

(3) For $A \in \mod \Lambda$ and $B \in \mod \Lambda^{\op}$, $D(\Lambda) \otimes_\Lambda \cTr A$ and $\cTr B \otimes_\Lambda D(\Lambda)$ are Gorenstein injective.

(4) For $A \in \mod \Lambda$ and $B \in \mod \Lambda^{\op}$, $D(\Lambda) \otimes_\Lambda \cTr A$ and $\cTr B \otimes_\Lambda D(\Lambda)$ are ∞-cotorsionfree.

Proof. (1) \Rightarrow (2) follows from [15, Corollary 2.15], and (3) \Rightarrow (4) follows from Corollary 5.2.

Note that $D(\Lambda) \otimes_\Lambda \cTr A$ (resp. $\cTr B \otimes_\Lambda D(\Lambda)$) is isomorphic to the 2-cosyzygy of A (resp. B). So both (4) \Rightarrow (1) and (2) \Rightarrow (3) follow from Corollaries 5.3 and 5.2. □

Let \mathcal{GI} denote the class of finitely generated Gorenstein injective left Λ-modules. We write $\bot \mathcal{GI} = \{M \in \mod \Lambda | \Ext^1_\Lambda(M, X) = 0 \text{ for any } X \in \mathcal{GI}\}$ and $(\bot \mathcal{GI})^\perp = \{M \in \mod \Lambda | \Ext^1_\Lambda(X, M) = 0 \text{ for any } X \in \bot \mathcal{GI}\}$.

Lemma 5.6. Let $0 \to L \to M \to N \to 0$ be an exact sequence in $\mod \Lambda$. If $L, M \in \bot \mathcal{GI}$, then $N \in \bot \mathcal{GI}$.

Proof. By the dimension shifting, we have $\Ext^2_\Lambda(N, A) = 0$ for any $A \in \mathcal{GI}$. Now let $X \in \mathcal{GI}$. It suffices to prove $\Ext^1_\Lambda(N, X) = 0$. By Corollary 5.2 there exists an exact sequence $0 \to K \to I_0 \to X \to 0$ in $\mod \Lambda$ with $I_0 \in \add D(\Lambda)$ and $K \in \mathcal{GI}$. So $\Ext^1_\Lambda(N, X) \cong \Ext^2_\Lambda(N, K) = 0$. □

Let \mathcal{X} be a full subcategory of an abelian category \mathcal{A}. We write $\bot \mathcal{X} = \{M \in \mathcal{A} | \Ext^2_\Lambda(M, X) = 0 \text{ for any } X \in \mathcal{X}\}$ and $\mathcal{X}^\perp = \{M \in \mathcal{A} | \Ext^2_\Lambda(X, M) = 0 \text{ for any } X \in \mathcal{X}\}$. Recall that a pair of subcategories $(\mathcal{X}, \mathcal{Y})$ of an abelian category \mathcal{A} is called a cotorsion pair if $\mathcal{X} = \bot \mathcal{Y}$ and $\mathcal{Y} = \mathcal{X}^\perp$. We denote by $\mathcal{GInj}(\Lambda)$ the subclass of $\Mod \Lambda$ consisting of Gorenstein injective modules, and write $\bot \mathcal{GInj}(\Lambda) = \{M \in \Mod \Lambda | \Ext^2_\Lambda(M, X) = 0 \text{ for any } X \in \mathcal{GInj}(\Lambda)\}$. It is known
that $(\perp \text{GInj}(\Lambda), \text{GInj}(\Lambda))$ forms a cotorsion pair in $\text{Mod} \; \Lambda$ (\cite{5}). The following result gives an equivalent characterization when $(\perp \mathcal{G}I, \mathcal{G}I)$ forms a cotorsion pair in $\text{mod} \; \Lambda$.

Theorem 5.7. The following statements are equivalent.

1. $(\perp \mathcal{G}I) = \mathcal{G}I$ (that is, $(\perp \mathcal{G}I, \mathcal{G}I)$ forms a cotorsion pair).
2. Every module in $(\perp \mathcal{G}I)$ is 1-cotorsionfree.
3. Every module in $(\perp \mathcal{G}I)$ is ∞-cotorsionfree.

Proof.

$(1) \Rightarrow (2)$ follows from Corollary 5.2.

$(2) \Rightarrow (3)$ Let $A \in (\perp \mathcal{G}I)$. Then A is 1-cotorsionfree by assumption. So there exists a $\text{Hom}_\Lambda(\text{add} \; D(\Lambda), -)$-exact exact sequence $0 \to K \to I_0 \to A \to 0$ in $\text{mod} \; \Lambda$ with $I_0 \in \text{add} \; D(\Lambda)$ by Proposition 3.6. We claim that $K \in (\perp \mathcal{G}I)$. Let $Y \in (\perp \mathcal{G}I)$. Then $\text{Ext}^i_\Lambda(Y, K) \cong \text{Ext}^{i-1}_\Lambda(Y, A)$ for any $i \geq 2$. Note that $\text{co}\Omega^1(Y) \in (\perp \mathcal{G}I)$ by Lemma 5.6. Then from the exact sequence $\text{Ext}^1_\Lambda(I^0(Y), K) \to \text{Ext}^1_\Lambda(Y, K) \to \text{Ext}^2_\Lambda(\text{co}\Omega^1(Y), K)$ we get that $\text{Ext}^1_\Lambda(Y, K) = 0$. The claim follows. So K is 1-cotorsionfree by assumption, and hence A is 2-cotorsionfree by Proposition 3.6. By replacing A by K in the above argument, we get that K is 2-cotorsionfree and then A is 3-cotorsionfree. Continuing this process, we finally have that A is ∞-cotorsionfree.

$(3) \Rightarrow (1)$ Obviously $\mathcal{G}I \subseteq (\perp \mathcal{G}I)$. Now let $A \in (\perp \mathcal{G}I)$. It suffices to prove that A is Gorenstein injective. Because $D(\Lambda) \in (\perp \mathcal{G}I)$, $\text{Ext}^{i+1}_\Lambda(D(\Lambda), A) = 0$ and A is ∞-cospherical. Note that A is ∞-cotorsionfree by assumption. It follows from Corollary 5.2 that A is Gorenstein injective. \qed

Proposition 5.8. Let R be a commutative local artin ring and F a free R-module with $\text{rank}(F) = 2n$. If there exists an endomorphism f of F such that $f^2 = 0$ and $\text{rank}(\text{Im} \; f) = \text{rank}(\text{Im} \; f^*) = n$, then $(\text{Im} \; f)^\vee$ is ∞-cotorsionfree, where $(\cdot)^\vee = \text{Hom}_R(\cdot, I^0(R/J(R)))$.

Proof. Since $f^2 = 0$, there exists a complex $0 \to \text{Im} \; f \to F \xrightarrow{f} F \xrightarrow{f} \cdots$. Now consider the short exact sequence $0 \to \text{Ker} \; f \to F \to \text{Im} \; f \to 0$. Because $\text{rank}(\text{Im} \; f) = \text{rank}(F)/2$ by assumption, $\text{rank}(\text{Im} \; f) = \text{rank}(\text{Ker} \; f)$. Observing that $\text{Im} \; f \subseteq \text{Ker} \; f$, so $\text{Im} \; f = \text{Ker} \; f$. Thus the above complex is exact. In a similar way, we also get that $\text{Im} \; f^* = \text{Ker} \; f^*$. Hence $\text{Im} \; f$ is ∞-torsionfree by [1, Theorem 2.17]. So $(\text{Im} \; f)^\vee$ is ∞-cotorsionfree by Proposition 5.1. \qed

We give an example to illustrate Proposition 5.8.
Example 5.9. Let k be a field and $S = k[[X]]$ and $R = S/(X^2)$, and let $F = R^2$ and $f : R^2 \to R^2$ a map given by the matrix:

\[
\begin{pmatrix}
x & 0 \\
x & x
\end{pmatrix}
\]

Then $(\text{Im } f)^\vee$ is a non-injective ∞-cotorsionfree module.

Proof. R has a basis consisting of the following 2 elements: 1, x, where x denotes the residue class of the variable X modulo the ideal $<X^2>$. It is easy to check that $\text{rank}(F) = 4$ and $f^2 = 0$. Since $\text{Im } f$ is generated by the elements: $f(1, 0) = (x, x)$, $f(0, 1) = (0, x)$. It is clear that $\text{rank}(\text{Im } f) = 2$. Similarly, the map f^* is given by the transpose of the matrix defining f. One can see that $\text{rank}(\text{Im } f^*) = 2$. Notice that $\text{Im } f$ is not isomorphic to a direct summand of R^2. So $\text{Im } f$ is not projective. Consequently one gets the assertion by Proposition 5.8. \hfill \Box

Huang and Huang raised in [11] an open question: Is the class of ∞-torsionfree modules closed under kernels of epimorphisms? We will give an example to show that for any $n \geq 2$, neither the class of n-torsionfree modules nor that ∞-torsionfree modules is closed under kernels of epimorphisms in general. Nevertheless, the class of 1-torsionfree modules is closed under kernels of epimorphisms, since every submodule of a 1-torsionfree module is also 1-torsionfree. The following example is due to Jorgensen and Šega (see [13]).

Example 5.10. Suppose that $R = \mathbb{Q}[V, X, Y, Z]/I$, where \mathbb{Q} is the field of rational numbers and $I = <V^2, Z^2, XY, VX + 2XZ, VY + YZ, VX + Y^2, VY - X^2>$. Let $f : R^2 \to R^2$ denote the map given by the matrix:

\[
\begin{pmatrix}
v & 2x \\
y & z
\end{pmatrix}
\]

where v, x, y, z denote the residue classes of the variables modulo I. Take $M = \text{Coker } f$ and $N = \text{Im } f$. Then there exists an exact sequence $0 \to N \to R^2 \to M \to 0$ such that M is ∞-torsionfree and N is not n-torsionfree for any $n \geq 2$.

Proof. From [13, Lemma 1.5] we know that M is ∞-torsionfree. By [13, Lemma 1.4] we have a free presentation $R^2 \xrightarrow{g} R^2 \to N \to 0$ of N, where g is given by the following matrix:

\[
\begin{pmatrix}
v & x \\
y & z
\end{pmatrix}
\]

Then $\text{Im } g^*$ is generated by the following elements:
\[g^*(1, 0) = (v, x), \quad g^*(z, 0) = (vz, -2^{-1}vx) \]
\[g^*(0, 1) = (y, z), \quad g^*(v, v) = (vy, vz) \]
\[g^*(v, 0) = (0, vx), \quad g^*(0, x) = (0, -2^{-1}vx) \]
\[g^*(x, 0) = (vx, vy), \quad g^*(0, y) = (-vx, -vy) \]
\[g^*(y, 0) = (vy, 0), \quad g^*(0, z) = (-vy, 0) \]

One can use a computer algebra software, like Singular (see [7]), to verify that \(\text{Ext}^1_R(\text{Im} g^*, R) \neq 0 \). Thus \(\text{Ext}^2_R(\text{Tr} N, R) \neq 0 \), and therefore \(N \) is not \(n \)-torsionfree for any \(n \geq 2 \). The computation of \(\text{Ext}^1_R(\text{Im} g^*, R) \) by Singular is as follows.

LIB "homolog.lib";
ring \(S = 0, (V, X, Y, Z), \text{dp}; \)
ideal \(I = V^2, Z^2, XY, VX + 2XZ, VY + YZ, VX + VY, VY - XZ; \)
qring \(R = \text{std}(I); // \text{define the ring } R \)
module \(F = [V, X], [2VZ, -VX], [Y, Z], [VY, VZ], [0, VX], [VX, VY], [VY, 0]; \)
module \(H = 1; \)
module \(E = \text{Ext}(1, \text{syz}(F), \text{syz}(H)); // \text{compute } \text{Ext}^1_R(\text{Im} g^*, R) \)
The output says that the dimension of \(\text{Ext}^1_R(\text{Im} g^*, R) \) as a vector space is 3. \(\square \)

By Example 5.10 and Proposition 5.1, we have that the class of \(\infty \)-cotorsionfree modules is not closed under cokernels of monomorphisms in general.

Acknowledgements. This research was partially supported by NSFC (Grant No. 11171142), Mathematical Tianyuan Fund of NSFC (Grant No. 11226058) and NSF of Guangxi Province of China (Grant No. 2013GXNSFBA019005).

References

1. M. Auslander and M. Bridger, *Stable Module Theory*. Memoirs Amer. Math. Soc. **94**, Amer. Math. Soc., Providence, RI, 1969.
2. M. Auslander and I. Reiten, *Syzygy modules for noetherian rings*. J. Algebra **183** (1996), 167–185.
3. M. Auslander and I. Reiten, *Representation theory of artin algebras III. Almost split sequences*. Comm. Algebra **3** (1975), 239–294.
4. M. Auslander and I. Reiten, *k-Gorenstein algebras and syzygy modules*. J. Pure Appl. Algebra **92** (1994), 1–27.
5. D. Bennis and N. Mahdou, *Strongly Gorenstein projective, injective, and flat modules*. J. Pure Appl. Algebra **210** (2007), 437–445.
6. H. Cartan and S. Eilenberg, *Homological Algebra*, Reprint of the 1956 original, Princeton Landmarks in Math., Princeton Univ. Press, Princeton, 1999.
7. G.-M. Greuel and G. Pfister, *A Singular Introduction to Commutative Algebra*. With contributions by Olaf Bachmann, Christoph Lossen and Hans Schönemann. With 1 CD-ROM (Windows, Macintosh, and UNIX). Springer-Verlag, Berlin, 2002.
[8] E.E. Enochs and O.M.G. Jenda, Relative Homological Algebra. de Gruyter Exp. in Math. 30, Walter de Gruyter, Berlin, New York, 2000.
[9] H. Holm, Gorenstein homological dimensions. J. Pure Appl. Algebra 189 (2004), 167–193.
[10] H. Holm and D. White, Foxby equivalence over associative rings. J. Math. Kyoto Univ. 47 (2007), 781–808.
[11] C.H. Huang and Z.Y. Huang, Torsionfree dimension of modules and self-injective dimension of rings. Osaka J. Math. 49 (2012), 21–35.
[12] Z.Y. Huang and G.H. Tang, Self-orthogonal modules over coherent rings. J. Pure Appl. Algebra 161 (2001), 167–176.
[13] D.A. Jorgensen and L.M. Şega, Independence of the total reflexivity conditions for modules. Algebr. Represent. Theory 9 (2006), 217–226.
[14] A. Ooishi, Matlis duality and the width of a module. Hiroshima Math. J. 6 (1976), 573–587.
[15] M. Ramras, Maximal orders over regular local rings of dimension two. Trans. Amer. Math. Soc. 142 (1969), 457-479.
[16] C.M. Ringel, The torsionless module of an artin algebra. Preprint, 2008.
[17] M. Salimi, E. Tavasoli, P. Moradifar and S. Yassemi, Syzygy and torsionless modules with respect to a semidualizing module. Algebr. Represent. Theory, DOI: 10.1007/s10468-013-9443-x, in press.
[18] M. Salimi, E. Tavasoli and S. Yassemi, k-torsionless modules with finite Gorenstein dimension. Czechoslovak Math. J. 137 (2012), 663–672.
[19] S. Sather-Wagstaff, T. Sharif and D. White, Stability of Gorenstein categories. J. London Math. Soc. 77 (2008), 481–502.
[20] R. Takahashi, A new approximation theory which unifies spherical and Cohen-Macaulay approximations. J. Pure Appl. Algebra 208 (2007), 617–634.