Opportunities to improve diabetes care in the hemodialysis unit: A cohort study in Ontario, Canada

Kristin K Clemens1-5, Alexandra M Ouédraogo3, Amit X Garg2,3,5,6, Samuel A Silver3,7, Danielle M Nash2,3

1. Division of Endocrinology and Metabolism, Western University, London Ontario Canada
2. Department of Epidemiology and Biostatistics, Western University, London Ontario Canada
3. ICES, Ontario Canada
4. Center for Diabetes, Endocrinology and Metabolism, St. Joseph’s Health Care London, London Ontario Canada
5. Lawson Health Research Institute, London Ontario Canada
6. Division of Nephrology, Western University, London Ontario Canada
7. Division of Nephrology, Queen’s University, Kingston Health Sciences Centre, Kingston Ontario Canada

Corresponding Author: Kristin K Clemens, Centre for Diabetes Endocrinology and Metabolism, St. Joseph’s Healthcare London, 268 Grosvenor Street, PO Box 5777 STN B, London Ontario Canada, N6A 4V2, Phone: 519-646-6316, Fax: 519-646-6212, Email: kristin.clemens@sjhc.london.on.ca
Key Points:

- Little is known about diabetes care gaps and predictors in patients using in-centre hemodialysis.
- In Ontario, almost half of patients with diabetes on hemodialysis have diabetes care gaps; most commonly, suboptimal retinopathy screening.
- Significant predictors of care gaps include younger age, female sex, shorter duration of diabetes, dementia, and fewer physician visits.

Abstract

Background: Patients with diabetes receiving chronic in-centre hemodialysis face healthcare challenges. We examined the prevalence of gaps in their diabetes care, explored regional differences, and determined predictors of care gaps.

Methods: We conducted a population-based retrospective study between January 1 2016 and January 1 2018 in Ontario Canada. We included adults with prevalent diabetes mellitus receiving in-centre hemodialysis as of January 1 2018 and examined the proportion with 1) insufficient or excessive glycemic monitoring, 2) suboptimal screening for diabetes-related complications (retinopathy and cardiovascular screening), 3) hospital encounters for hypo- or hyperglycemia, and 4) hospital encounters for hypertension in the 2 years prior (January 1 2016-January 1 2018). We then identified patient, provider and health system factors associated with >1 care gap and used multivariable logistic regression to determine predictors. Further, we used Geographic Information Systems to explore spatial variation in gaps.

Results: There were 4,173 patients with diabetes receiving in-centre hemodialysis. Mean age was 67 years, 39% were women and the majority were of lower socioeconomic status.
Approximately 42% of patients had >1 diabetes care gap, the most common being suboptimal retinopathy screening (53%). Significant predictors of more than one gap included younger age, female sex, shorter duration of diabetes, dementia, fewer specialist visits and not seeing a physician for diabetes. There was evidence of spatial variation in care gaps across our region.

Conclusions: There are opportunities to improve diabetes care in patients receiving in-centre hemodialysis, particularly screening for retinopathy. Focused efforts to bring diabetes support to high-risk individuals might improve their care and outcomes.
Introduction

Approximately 11,000 patients with diabetes receive dialysis treatment for end-stage kidney disease across Canada. These individuals experience numerous health and healthcare challenges. Patients on hemodialysis are among the highest at risk of diabetes-related complications including hypoglycemia, cardiovascular disease, retinopathy, and amputation. They have a high burden of medical appointments and diagnostic tests, and juggle health care visits with dialysis treatments three-times per week. They are frequently hospitalized, take many medications, have difficulty with adherence, and often feel poorly. With lower levels of education and income, they frequently struggle with diabetes self-management. These individuals are at risk of gaps in their diabetes healthcare.

Although diabetes care gaps have been examined in the general chronic kidney disease (CKD) population and small studies have investigated glycemic control in those using hemodialysis, there has yet to be a comprehensive examination of diabetes care gaps in in-centre hemodialysis patients with publicly funded healthcare. Knowledge of care gaps in this unique, high-risk population can support the creation of targeted interventions to improve patient care and outcomes. For example, if gaps in hypoglycemia are identified, patients might receive targeted education and self-management support about hypoglycemia avoidance. If it is observed that patients are not receiving diabetes-related laboratory testing, best practices might be reviewed with care professionals who manage this patient population. If patients using dialysis are not visiting physicians for diabetes care, outreach opportunities might be explored (e.g. remote diabetes support).
In this study, we examined diabetes care gaps in patients receiving chronic in-centre hemodialysis in Canada’s most populous province (Ontario, Canada), and identified modifiable predictors of care gaps. We hypothesized that patients receiving in-centre hemodialysis would experience gaps in their diabetes care, and that those with sociodemographic challenges and less frequent healthcare might be at higher risk of gaps.

Materials and Methods

Design and setting

We conducted a population-based retrospective study in Ontario Canada between January 1 2016 and January 1 2018. Ontario has over 14 million residents who have universal access to hospital and physician services. Those 65 years and older have universal access to medications covered by the Ontario Drug Benefits (ODB) Program. Information on their use of health services is held in secure administrative databases available for access at ICES.

ICES is an independent, non-profit research institute whose legal status under Ontario’s Information and Privacy Commissioner allows it to collect and analyze healthcare and demographic data without individual-level patient consent for health system evaluation and improvement. The use of data in this project was authorized under section 45 of Ontario’s Personal Health Information Protection Act, which does not require review by a Research Ethics Board. Our study followed the Reporting of studies Conducted using the Observational Routinely-collected Data (RECORD) Statement (Table 1 of the Supplemental Material). (13)

Patients
We identified adults age 18 years or older with prevalent diabetes who were receiving in-centre hemodialysis on our index date (Jan 1 2018). We excluded non-Ontario residents, those older than 105 years, and those who had evidence of death, withdrawal from dialysis or transplant before the index date. To facilitate a 2-year lookback for care gaps, we also excluded those with a diabetes diagnosis less than 2 years and those who used in-centre hemodialysis for less than 2 years from the index date.

Data sources

We used databases available at ICES to conduct our study. These datasets were linked using unique encoded identifiers and analyzed at ICES. We captured vital statistics and demographics from the Registered Persons Database (RPDB) of Ontario. This database contains information for all those issued an Ontario health card. Diabetes status was ascertained from the Ontario Diabetes Database (ODD) which defines diabetes by receipt of two outpatient diagnostic codes for diabetes, one drug claim for a diabetes medication, or one hospitalization with diabetes within a one-year period.(14) Compared with medical chart review, this algorithm has a sensitivity of 90%, and specificity of 98% in adults.(15) We used the Ontario Renal Reporting System (ORRS) to capture use of in-centre hemodialysis and the characteristics of patients using dialysis. In Ontario, all dialysis providers submit activity data on the use of acute and chronic dialysis services to the ORRS to improve health system quality, performance and planning.(16)

We captured additional descriptors from the Ontario Marginalization Index (ON-MARG) database, a geographically-based index that quantifies degrees of marginalization. Measures include residential instability (e.g. living alone, multi-unit housing), material deprivation (e.g. low income, unemployment) dependency (e.g. age ≥65 years), and ethnic concentration (e.g.
recent immigrant, visible minority).(17,18) We used the Canadian Institute for Health Information’s Discharge Abstract Database (CIHI-DAD) and the National Ambulatory Care Reporting System Database (NACRS) for medical diagnoses and receipt of procedures during inpatient and emergency department (ED) visits respectively (via International Classification of Disease 10th Revision codes and Canadian Classification of Health Intervention Codes).

We also used datasets derived from validated case definitions of comorbidities including the ICES Congestive Heart Failure,(19) Chronic Obstructive Pulmonary Disease (COPD),(20) Hypertension (21), and Dementia datasets.(22,23) We used the Canadian Organ Replacement Registry (CORR) to determine the transplant status of patients.

To present health services use, we used the Ontario Health Insurance Plan (OHIP) database, a collection of physician diagnostic and billing codes. For visits to physicians and family physician roster status (i.e. registration status with a family physician for the provision of health services), we used the ICES Physician’s Database, Corporate Provider Database (CPDB) and the Client Agency Program Enrollment (CAPE) Database. We used the Ontario Laboratories Information System Database for laboratory data including hemoglobin A1c levels (HbA1c).(24) For those 65 years and older, we also used the Ontario Drug Benefits (ODB) Database and the Drug Identification Number (DIN) database for prescription medications. A list of study variables, related administrative codes, and originating data sources is included in Table 2 of the Supplemental Material.

Primary Outcome

We captured measurable, intervenable diabetes care gaps in the 2 years prior to January 1 2018 (i.e. January 1 2016 to January 1 2018). While we recognize that best diabetes practices in
patients using hemodialysis is controversial, we drew upon clinical practice guidelines, (25–27) previous care quality assessments, (28, 29) and clinical expertise to define gaps. We structured gaps around Donabedian’s framework (structure, process and outcomes). (30). We chose a “look-back” rather than a “look-forward” period to define gaps, as we felt this to be most clinically relevant (care providers inquire about past diabetes screening and management during patient encounters).

We examined the following gaps over the 2-year period: 1) no evidence of at least annual HbA1c testing, 2) more than 8 HbA1c tests (excessive monitoring), 3) no evidence of at least one diabetes eye exam, 4) no evidence of at least one electrocardiogram or cardiac stress test, 5) hospital encounter with hypoglycemia, 6) hospital encounter with hyperglycemia, and 7) hospital encounter with hypertension. We defined hospital encounters as ED visits or hospitalizations where the outcome was captured as the primary diagnosis and we used validated coding algorithms where possible (Table 3 of the Supplemental Material). (31, 32) Although examined as a baseline measure, we did not include HbA1C value in our care gap analysis as most guidelines suggest individualized glycemic targets, particularly in vulnerable populations. (33, 34) We also did not include use of medications or glucose test strips, as this information was only available for a subpopulation (i.e. 65 years and older).

To facilitate our predictive analysis, we then calculated a care gap “score” for each patient. We did this by summing the total number of care gaps per person, over the 2-year period (Table 3 of the Supplemental Material). A higher gap score equated to lower quality of care.
Secondary Outcomes

As secondary outcomes, we identified predictors of diabetes care gaps. We focused on patient (age, sex, residential status, income, comorbidities, duration of diabetes), provider (type of physician seen for diabetes), and health system factors (roster status with family physician, visits to specialists and family doctors, diabetes-related visits with physicians). (30) We examined predictors in the one year prior to the care gap period. We also examined for spatial distribution in care gaps, aggregated to Local Health Integration Network or LHIN. Over the study period, LHINs were the geographical units used to plan, organize and integrate health services in our province. (35)

Statistical analysis

We present the characteristics of included patients descriptively using means (standard deviations), medians (interquartile ranges), numbers and percentages. We report individual diabetes care gaps using numbers and percentages. We describe the characteristics of those with care gap scores greater than and ≤ the median, and compared groups using standardized differences (differences >10% considered meaningful). (36) We used Poisson regression to determine predictors of a gap score above the median and present relative risks (RR) and 95% confidence intervals (CIs).

For our spatial analysis, we examined rates of care gap scores above the median by geographical location. Crude rates were obtained by dividing the number of patients with gap scores above the median by the total eligible study population as of January 1, 2018. Due to low counts (particularly in those younger than 49 years), there was instability in age-adjusted gap rates. As
such, we display gaps by age category (18-49, 50-65, 66-74, ≥75 years). Maps were created using ArcGIS software (version 10.3). All other analyses were conducted using SAS version 9.4 (SAS Institute, Cary, NC, USA).

Results

There were 4,173 patients included in the study (flow diagram in Figure 1 of the Supplemental Material). Baseline characteristics are detailed in Table 1. Mean (standard deviation) age was 67 ± 13 years and 39% were women. Patients received hemodialysis across 26 programs.

Over half of patients were in the lowest two income quintiles and had high levels of instability, deprivation, and dependency. In addition to using hemodialysis, patients had many other medical comorbidities including coronary artery disease and heart failure. Mean duration of diabetes was 17.6 ± 7.4 years. Mean HbA1c was 6.9 ±1.6% and the proportion with a mean HbA1c ≤7% was 51%.

We found that 42% of patients had >1 diabetes care gap evident (Table 2). The most common gap was suboptimal retinopathy screening (53%), followed by suboptimal glycemic monitoring as defined by at least annual HbA1c test (34% had no evidence of an annual HbA1c). Suboptimal glycemic monitoring was also observed by use of glucose test strips in a subpopulation of older adults (1,115/2,337 or 48% did not have at least an annual prescription for glucose test strips over 2 years). 308 or 7.4% of patients had no stress test or EKG in the 2 years prior. Only a small proportion of patients had hospital encounters for hypertension, hyperglycemia, or hypoglycemia (5.2%, 0.4% and 4.4% respectively).
The characteristics of patients by care gap score are shown in Table 3. There were 1,775 (42.5%) with a gap score above the median (i.e. 1) and 2,398 (57.5%) with a score ≤ median (i.e. ≤1).

Compared with those with a gap score ≤1, patients with a score >1 were more often not rostered to a family physician, had a shorter duration of diabetes and fewer comorbidities and hospitalizations. They also had fewer diabetes-related healthcare visits.

Significant predictors of more than one diabetes care gap are shown in Table 4. These included younger age (RR=0.997, 95% CI 0.994 to 0.999), female sex (1.084, 95% CI 1.011 to 1.163), shorter duration of diabetes (RR 0.985, 95% CI 0.981 to 0.990), dementia (RR 1.206, 95% CI 1.056 to 1.377), fewer specialist visits (RR 0.986, 95% CI 0.982 to 0.989) and no diabetes-related visit with a physician (RR 1.138, 95% CI 1.012 to 1.281). We note regional variation in gaps; across most age groups, Southern and Northern areas of our province appeared vulnerable. There was less geographic variation in care gaps in younger individuals, but in this group, overall gap rates were high (Figure 1).

Discussion

In this large population-based cohort study of patients with diabetes receiving in-centre hemodialysis in Ontario, we note opportunities to improve diabetes care. There is special need to improve retinopathy screening, which has also been described in the general diabetes population.(37,38) Efforts might also be made to improve glycemic monitoring. Further, there may be a need to “loosen” glycemic control given our cohort had a mean HbA1c of 6.9 ±1.6%, and the majority had an HbA1c ≤7%. It is generally recommended that tight control is avoided in
those with functional limitation and significant comorbidities, (27,39) due to a heightened risk of hypoglycemia.

There have been limited studies to examine diabetes gaps in the hemodialysis population. In a small study (n=100) in Southeastern Ontario Canada in 2006, >50% of patients had “suboptimal” glycemic control, at that time defined as a HbA1c of >7%. (12) In a study of patients with diabetes and CKD in Australia (20% receiving dialysis), patients self-reported suboptimal use of statins, out-of-target blood pressures, and low rates of retinopathy screening. (40) In a 2018 United States Renal Data System report, 17% of patients with diabetes and end-staged kidney disease had not had an annual HbA1c, and 53% did not have a diabetes eye exam. (29)

Reasons for diabetes care gaps in hemodialysis are likely multifactorial and related to patient, provider, and health system factors. Low eye screening might relate to the need to schedule and attend separate outpatient appointments, lack of awareness of the need for eye screening, lower socioeconomic status, behavioral and cultural factors, or geographic barriers. (38,41,42) Suboptimal eye screening is concerning given those on dialysis are at very high risk of vision-threatening retinopathy. (43,44) Early detection and appropriate treatment can reduce vision impairment. (45)

Suboptimal glycemic monitoring may have been due to limitations in diabetes self-management skills or competing medical appointments making it difficult to attend the laboratory for testing. While we recognize that use of HbA1c for glycemic monitoring in CKD is controversial. (46) HbA1c remains a common clinical tool to assess glycemic control in this population. We also
observed a similar monitoring gap with use of glucose test strips. Glycemic monitoring is
important in diabetes to capture and act upon hyper and hypoglycemia. Hypoglycemia is
particularly common in patients on dialysis.(3)

In terms of predictors of care gaps, younger individuals, females, and those with a shorter
duration of diabetes had more gaps. Gaps in younger patients may have been due to suboptimal
education, personal/social influences, or treatment inertia in younger, more recently diagnosed
patients.(40,47) Sex disparities in both CKD,(48,49) and diabetes management have been
described previously.(50–52) The gaps observed in patients with dementia might have been due
to cognitive limitations or suboptimal access to care. We also found that patients who saw fewer
specialists or who did not have diabetes care visits faced more gaps. The importance of routine
diabetes follow-up and specialist care in diabetes has been described previously.(42,53)

Like our study, studies of other diabetes cohorts have noted spatial variation in care quality.
(54,55) A Canadian study of patients with diabetes and CKD in Alberta, found that remote
dwellers were less likely to have an HbA1c and urinary albumin-to-creatinine ratio measured,
and less likely to receive an angiotensin-converting-enzyme inhibitor, angiotensin-receptor
blocker or statin than those who lived closer to a nephrologist.(56) Geographic variation in care
gaps might be related to physician volumes in particular regions, lack of specialists, or the health
behaviours, beliefs, and socioeconomic characteristics of the populations who live in the
area.(54,56–59) It also remains possible that Northern and Southern residents of our province
might seek and receive care in other provinces or states, precluding full capture of healthcare
utilization.(60)
Our study has clinical and research implications. Where suboptimal diabetes healthcare has been linked with adverse outcomes for patients with CKD, (61) this study might inform targeted efforts to improve the care of this high-risk population. Interventions to improve rates of eye screening (e.g. patient education, assistance with appointment scheduling, ocular telemedicine strategies) might be helpful. (62,63) To support glycemic control, self-management and monitoring, there may be value in outreach diabetes support in the hemodialysis unit, or interdisciplinary care clinics.(64)

Our study has many strengths. We captured care gaps across several hemodialysis units across the province rather than focusing on a single centre. We conducted a comprehensive gap analysis, focusing upon those which are modifiable and targetable for intervention. Instead of relying upon patient self-report, we used healthcare data captured in administrative databases. In terms of limitations, care gaps had to be measurable using administrative data. As such, we could not examine for adequate foot screening or blood pressure control. However we did examine hospitalizations for hypertension in our gap analysis. Further, administrative codes can be limited in sensitivity,(31) and as such we missed outcome events that did not lead to hospital presentation (e.g. events which prompted emergency medical services only). We defined suboptimal glycemic monitoring using HbA1c tests, which is controversial given its measure can be influenced by uremia, anemia, and use of erythropoietic stimulating agents. (65) However we also examined monitoring by use of glucose test strips and noted consistent results. We could only examine prescription medications in those 65 years or older and did not incorporate into our care gap analysis. Further, guidelines for diabetes management in hemodialysis are sparse, necessitating use of other general CKD/diabetes guidelines and clinical expertise for our
analysis. Finally, our results are only fully generalizable to those receiving in-center hemodialysis in the province of Ontario.

In conclusion, there are opportunities to improve diabetes care in chronic in-centre hemodialysis patients. Focused efforts to increase patients’ access to diabetes health services might be considered to improve outcomes.

Disclosures

K. Clemens received a diabetes research award sponsored by Astra Zeneca. She has attended Merck sponsored conferences. She has received honoraria for delivering certified Continuing Medical Education talks from Sutherland Global Services Canada ULC and the Canadian Medical and Surgical Knowledge Translation Research Group. A. Garg reports Research Funding: Astellas; Scientific Advisor or Membership: Currently on the Editorial Boards of Kidney Int and AJKD; Other Interests/Relationships: Serve on the Data Safety and Monitoring Board for an Investigator Initiated Trial Program Funded by Glaxo Smith Kline, Medical Lead Role to Improve Access to Kidney Transplantation and Living Kidney Donation for the Ontario Renal Network (government funded agency located within Ontario Health). S. Silver reports Honoraria: Sanofi, Baxter; Scientific Advisor or Membership: Editorial board Canadian Journal of Kidney Health and Disease. All remaining authors have nothing to disclose.

Funding

This study was supported by ICES, which is funded by an annual grant from the Ontario Ministry of Health and Long-Term Care (MOHLTC). The study was completed at the ICES Western site, where core funding is provided by the Academic Medical Organization of
Southwestern Ontario, the Schulich School of Medicine and Dentistry, Western University, and the Lawson Health Research Institute.

K. Clemens received funding for this study from Diabetes Canada (Junior Investigator Award 2017) and the Department of Medicine at Western University. SS is supported by a Kidney Research Scientist Core Education and National Training (KRESCENT) Program New Investigator Award (co-funded by the Kidney Foundation of Canada, Canadian Society of Nephrology, and Canadian Institutes of Health Research). A. Garg was supported by the Dr. Adam Linton Chair in Kidney Health Analytics and a Clinician Investigator Award from the Canadian Institutes of Health Research.

Parts of this material are based on data and information compiled and provided by the MOHLTC, Canadian Institute of Health Information, and Cancer Care Ontario (CCO). The opinions, results, view, and conclusions reported in this paper are those of the authors and not reflect those of the funding or data sources; no endorsement is intended or should be inferred.

Acknowledgements

We thank IMS Brogan Inc. for use of their Drug Information Database.

Author contributions

K. Clemens conceptualized the study, drafted the protocol, interpreted results, and drafted the manuscript. A. Ouedraogo acquired study data, performed the analysis, interpreted results, and reviewed the manuscript critically. A. Garg conceptualized the study, reviewed the protocol, interpreted the results, and reviewed the manuscript. S. Silver reviewed the protocol, interpreted
results, and reviewed the manuscript. D. Nash conceptualized the study, reviewed the protocol, interpreted results, and reviewed the manuscript.

References

1. Access Data and Reports | CIHI [Internet]. Available from: https://www.cihi.ca/en/access-data-reports/results?query=Treatment+of+End-Stage+Organ+Failure+in+Canada%2C+Canadian+Organ+Replacement+Register%2C+2007+to+2016%3A+Data+Tables%2C+End-Stage+Kidney&Search+Submit= [cited 2021 Jan 22]

2. Clemens KK, Getchell L, Robinson T, Ryan BL, O’Donnell J, Reichert SM: Clinical care gaps and solutions in diabetes and advanced chronic kidney disease: a patient-oriented qualitative research study. CMAJ Open (2):E258-E263. doi: 10.9778/cmajo.20180177, 2019

3. Hodge, M; McArthur E; Garg, AX, Tangri NCK: Hypoglycemia risk by estimated glomerular filtration rate. Am J Kidney Dis 70(1):59-68, 2016

4. Pugliese G, Solini A, Bonora E, Orsi E, Zerbini G, Fondelli C, Gruden G, Cavalot F, Lamacchia O, Trevisan R, Vedovato M, Penno G, Pugliese, Giuseppe; Solini A; Bonora, E; Orsi,E; Zerbini, G; Fondelli, C; Gruden, G, Cavalot, F; Lamacchia, O; Trevisan, R; Vedovato, M; Penno GRSG: Distribution of cardiovascular disease and retinopathy in patients with type 2 diabetes according to different classification systems for chronic kidney disease: a cross-sectional analysis of the renal insufficiency and cardiovascular events (RIACE) Itali. Cardiovasc Diabetol 13: 59, 2014

5. Otte J, van Netten JJ, Wouttiez A-JJ: The association of chronic kidney disease and dialysis treatment with foot ulceration and major amputation. J Vasc Surg 62: 406–11, 2015

6. Chan L, Chauhan K, Poojary P, Saha A, Hammer E, Vassalotti JA, Jubelt L, Ferket B, Coca SG, Nadkarni GN: National Estimates of 30-Day Unplanned Readmissions of Patients on Maintenance Hemodialysis. Clin J Am Soc Nephrol 12: 1652–1662, 2017

7. Tohme F, Mor MK, Pena-Polanco J, Green JA, Fine MJ, Palevsky PM, Weisbord SD: Predictors and outcomes of non-adherence in patients receiving maintenance hemodialysis. Int Urol Nephrol 49: 1471–1479, 2017

8. Murali KM, Mullan J, Roordenrys S, Hassan HC, Lambert K, Lonergan M: Strategies to improve dietary, fluid, dialysis or medication adherence in patients with end stage kidney disease on dialysis: A systematic review and meta-analysis of randomized intervention trials. PLoS One 14: e0211479, 2019

9. Shirazian S, Crnosića N, Weinger K, Jacobson AM, Park J, Tanenbaum ML, Gonzalez JS, Mattana J, Hammock AC: The self-management experience of patients with type 2 diabetes and chronic kidney disease: A qualitative study. Chronic Illn 12: 18–28, 2016
10. Rucker D, Hemmelgarn BR, Lin M, Manns BJ, Klarenbach SW, Ayyalasomayajula B, James MT, Bello A, Gordon D, Jindal KK, Tonelli M: Quality of care and mortality are worse in chronic kidney disease patients living in remote areas. Kidney Int 79: 210–217, 2011

11. Mark P, McNally M, Jones GC: Deficiencies in foot care of diabetic patients on renal replacement therapy. Pract Diabetes Int 20: 294–296, 2003

12. Tascona DJ, Morton AR, Toffelmire EB, Holland DC, Iliescu EA: Adequacy of glycemic control in hemodialysis patients with diabetes. Diabetes Care 29: 2247–51, 2006

13. Benchimol EI, Smeeth L, Guttmann A, Harron K, Moher D, Petersen I, Sørensen HT, von Elm E, Langan SM: The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) statement. PLoS Med 12: e1001885, 2015

14. Hux JE, Ivis F, Flintoft V, Bica A: Diabetes in Ontario: Determination of prevalence and incidence using a validated administrative data algorithm. Diabetes Care 25: 512–516, 2002

15. Lipscombe LL, Hwee J, Webster L, Shah BR, Booth GL, Tu K: Identifying diabetes cases from administrative data: a population-based validation study. BMC Health Serv Res 18: 316, 2018

16. About the Data – Ontario Renal Network [Internet]. Available from: https://www.ontariorenalnetwork.ca/en/renal-network-data/about-data [cited 2020 Jun 1]

17. Matheson FI, Dunn JR, Smith K, Moineddin R, Glazier RH: Development of the Canadian Marginalization index: A new tool for the study of inequality. Can J Public Heal 103: 3–5, 2012

18. Public Health Ontario: 2011 Ontario Marginalization Index: Technical Document [Internet]. Available from: https://www.publichealthontario.ca/en/data-and-analysis/health-equity/ontario-marginalization-index

19. Schultz SE, Rothwell DM, Chen Z, Tu K: Identifying cases of congestive heart failure from administrative data: A validation study using primary care patient records. Chronic Dis Inj Can 33(3):160-6, 2013. Gershon AS, Wang C, Guan J, Vasilevska-Ristovska J, Cicutto L, To T: Identifying Individuals with Physician Diagnosed COPD in Health Administrative Databases. COPD J Chronic Obstr Pulm Dis 6: 388–394, 2009

20. Tu K, Campbell NR, Chen Z-L, Cauch-Dudek KJ, McAlister FA: Accuracy of administrative databases in identifying patients with hypertension. Open Med 1: e18-26, 2007

21. Gershon AS, Wang C, Guan J, Vasilevska-Ristovska J, Cicutto L, To T: Identifying Patients with Physician-Diagnosed Asthma in Health Administrative Databases. Can Respir J 16: 183–188, 2009

22. Jaakkimainen RL, Bronskill SE, Tierney MC, Herrmann N, Green D, Young J, Ivers N, Butt D, Widdifield J, Tu K: Identification of Physician-Diagnosed Alzheimer’s Disease and Related Dementias in Population-Based Administrative Data: A Validation Study Using Family Physicians’ Electronic Medical Records. J Alzheimers Dis 54: 337–49,
24. Iskander C, McArthur E, Nash DM, Gandhi-Banga S, Weir MA, Muanda FT, Garg AX: Identifying Ontario geographic regions to assess adults who present to hospital with laboratory-defined conditions: a descriptive study. CMAJ Open 7: E624–E629, 2019

25. Molitch ME, Adler AI, Flyvbjerg A, Nelson RG, So W-Y, Wanner C, Kasiske BL, Wheeler DC, de Zeeuw D, Mogensen CE: Diabetic kidney disease: a clinical update from Kidney Disease: Improving Global Outcomes. Kidney Int 87: 20–30, 2015

26. Frankel A, Kazempour-Ardebili S, Bedi R, Chowdhury TA, De P, El-Sherbini N, Game F, Gray S, Hardy D, James J, Kong MF, Ramlan G, Southcott E, Winocour P: Management of adults with diabetes on the haemodialysis unit: summary of new guidance from the Joint British Diabetes Societies (JBDS) and the Renal Association. Br J Diabetes Vasc Dis 16: 69–77, 2016

27. Diabetes Canada | Clinical Practice Guidelines - 2018 Full Guidelines [Internet]. Available from: http://guidelines.diabetes.ca/cpg [cited 2020 May 20]

28. Cheung A, Stukel TA, Alter DA, Glazier RH, Ling V, Wang X, Shah BR et al. Primary Care Physician Volume and Quality of Diabetes Care. Ann Intern Med 137: 511–20, 2016

29. Previous ADRs | USRDS [Internet]. Available from: https://www.usrds.org/annual-data-report/previous-adrs/ [cited 2020 Sep 11]

30. Donabedian A: The quality of care. How can it be assessed? JAMA 260: 1743–8, 1988

31. Hodge MC, Dixon S, Garg AX, Clemens KK: Validation of an International Statistical Classification of Diseases and Related Health Problems 10th Revision Coding Algorithm for Hospital Encounters with Hypoglycemia. Can J Diabetes 41: 322–328, 2017

32. Quan H, Khan N, Hemmelgarn BR, Tu K, Chen G, Campbell N, Hill MD, Ghali WA, McAlister FA, Hypertension Outcome and Surveillance Team of the Canadian Hypertension Education Programs: Validation of a case definition to define hypertension using administrative data. Hypertens (Dallas, Tex 1979) 54: 1423–8, 2009

33. Ramirez SPB, McCullough KP, Thumma JR, Nelson RG, Morgenstern H, Gillespie BW, Inaba M, Jacobson SH, Vanholder R, Pisoni RL, Port FK, Robinson BM: Hemoglobin A1c Levels and Mortality in the Diabetic Hemodialysis Population: Findings from the Dialysis Outcomes and Practice Patterns Study (DOPPS). Diabetes Care 35: 2527–2532, 2012

34. Diabetes Canada | Clinical Practice Guidelines - Chapter 8: Targets for Glycemic Control [Internet]. Available from: http://guidelines.diabetes.ca/cpg/chapter8 [cited 2020 Apr 28]

35. Local Health Integration Network (LHIN) [Internet]. Available from: http://www.lhins.on.ca/ [cited 2020 May 13]

36. Austin PC: Using the Standardized Difference to Compare the Prevalence of a Binary Variable Between Two Groups in Observational Research. Commun. Stat. - Simul. Comput. 38: 1228–1234, 2009
37. Kiran T, Kopp A, Moineddin R, Victor C, Campbell RJ, Shah BR, Glazier RH: Unintended consequences of delisting routine eye exams on retinopathy screening for people with diabetes in Ontario, Canada. CMAJ 185: 2013

38. Benoit SR, Swenor B, Geiss LS, Gregg EW, Saaddine JB: Eye Care Utilization Among Insured People With Diabetes in the U.S., 2010-2014. Diabetes Care 42: 427–433, 2019

39. Action to Control Diabetes in Cardiovascular Disease Study Group: Effects of Intensive Glucose Lowering in Type 2 Diabetes. N Engl J Med 358: 2545–2559, 2008

40. Lo C, Teede H, Fulcher G, Gallagher M, Kerr PG, Ranasinha S, Russell G, Walker R, Zoungas S: Gaps and barriers in health-care provision for co-morbid diabetes and chronic kidney disease: a cross-sectional study. BMC Nephrol 18: 80, 2017

41. Kashim RM, Newton P, Ojo O: Diabetic Retinopathy Screening: A Systematic Review on Patients’ Non-Attendance. Int J Environ Res Public Health 15: 2018

42. Shah BR: Utilization of physician services for diabetic patients from ethnic minorities. J Public Health (Oxf) [Internet] 30: 327–31, 2008

43. Grunwald JE, Alexander J, Ying G-S, Maguire M, Daniel E, Whittock-Martin R, Parker C, McWilliams K, Lo JC, Go A, Townsend R, Gadegbeku CA, Lash JP, Fink JC, Rahman M, Feldman H, Kusek JW, Xie D, Jaar BG: Retinopathy and chronic kidney disease in the Chronic Renal Insufficiency Cohort (CRIC) study. Arch Ophthalmol (Chicago, Ill 1960) [Internet] 130: 1136–44, 2012

44. Deva R, Alias MA, Colville D, Tow FKN-FH, Ooi QL, Chew S, Mohamad N, Hutchinson A, Koukouras I, Power DA, Savige J: Vision-threatening retinal abnormalities in chronic kidney disease stages 3 to 5. Clin J Am Soc Nephrol 6: 1866–71, 2011

45. Ting DSW, Cheung GCM, Wong TY: Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review. Clin Experiment Ophthalmol [Internet] 44: 260–277, 2016

46. Perkovic V, Agarwal R, Fioretto P, Hemmelgarn BR, Levin A, Thomas MC, Wanner C, Kasiske BL, Wheeler DC, Groop PH, Conference P: Management of patients with diabetes and CKD: conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) Controversies Conference. Kidney Int 90: 1175–1183, 2016

47. Strain WD, Paldanius PM: Clinical inertia affects younger and older adults with T2DM equally, with or without CKD. Diabetes64: A384, 2015

48. Carrero JJ, Hecking M, Chesnaye NC, Jager KJ: Sex and gender disparities in the epidemiology and outcomes of chronic kidney disease. Nat Rev Nephrol 14: 151–164, 2018

49. Brar A, Markell M: Impact of gender and gender disparities in patients with kidney disease. Curr Opin Nephrol Hypertens [Internet] 28: 178–182, 2019

50. Clemens KK, Woodward M, Neal B, Zimnan B. Sex Disparities in Cardiovascular Outcome Trials of Populations With Diabetes: A Systematic Review and Meta-analysis. Diabetes Care 43: 2020
51. Šekerija M, Poljicanin T, Erjavec K, Liberati-Cizmek A-M, Prašek M, Metelko Z: Gender Differences in the Control of Cardiovascular Risk Factors in Patients with Type 2 Diabetes -A Cross-Sectional Study. Intern Med 51: 161–166, 2012

52. Yu MK, Lyles CR, Bent-Shaw LA, Young BA: Sex Disparities in Diabetes Process of Care Measures and Self-Care in High-Risk Patients. J Diabetes Res 2013: 1–8, 2013

53. Shah BR, Hux JE, Laupacis A, Zinman B, van Walraven C: Clinical inertia in response to inadequate glycemic control: do specialists differ from primary care physicians? Diabetes Care 28: 600–6, 2005

54. Booth GL, Hux JE, Fang J, Chan BTB: Time trends and geographic disparities in acute complications of diabetes in Ontario, Canada. Diabetes Care 28: 1045–1050, 2005

55. Jani PD, Forbes L, McDaniel P, Viera A, Garg S: Geographic Information Systems Mapping of Diabetic Retinopathy in an Ocular Telemedicine Network. JAMA Ophthalmol 135: 715–721, 2017

56. Bello AK, Hemmelgarn B, Lin M, Manns B, Klarenbach S, Thompson S, James M, Tonelli M: Impact of remote location on quality care delivery and relationships to adverse health outcomes in patients with diabetes and chronic kidney disease. Nephrol Dial Transplant 27: 3849–3855, 2012

57. Harris SB, Naqshbandi M, Bhattacharyya O, Hanley AJG, Esler JG, Zinman B, CIRCLE Study Group: Major gaps in diabetes clinical care among Canada’s First Nations: results of the CIRCLE study. Diabetes Res Clin Pract 92: 272–9, 2011

58. Glasgow RE, Hampson SE, Strycker LA, Ruggiero L: Personal-model beliefs and social-environmental barriers related to diabetes self-management. Diabetes Care 20: 556–61, 1997

59. Brown AF, Gerzoff RB, Karter AJ, Gregg E, Safford M, Waitzfelder B, Beckles GLA, Brusuelas R, Mangione CM, TRIAD Study Group: Health behaviors and quality of care among Latinos with diabetes in managed care. Am J Public Health 93: 1694–8, 2003

60. Northern Policy Institute - Health care co-operation between Northwestern Ontario and Manitoba [Internet]. Available from: https://www.northernpolicy.ca/healthcarecooperation [cited 2021 Jan 22]

61. Li P-I, Wang J-N, Guo H-R: Long-term quality-of-care score predicts incident chronic kidney disease in patients with type 2 diabetes. Nephrol Dial Transplant 33: 2012–2019, 2018

62. Zangalli CS, Murchison AP, Hale N, Hark LA, Pizzi LT, Dai Y, Leiby BE, Haller JA: An Education- and Telephone-Based Intervention to Improve Follow-up to Vision Care in Patients With Diabetes: A Prospective, Single-Blinded, Randomized Trial. Am J Med Qual 31: 156–61, 2016

63. Mansberger SL, Sheppler C, Barker G, Gardiner SK, Demirel S, Wooten K, Becker TM: Long-term Comparative Effectiveness of Telemedicine in Providing Diabetic Retinopathy Screening Examinations: A Randomized Clinical Trial. JAMA Ophthalmol [Internet] 133: 518–25, 2015
64. Clemens KK, Kalatharan V, Ryan BL, Reichert S: Nonconventional diabetes-related care strategies for patients with chronic kidney disease: A scoping review of the literature. J Comorbidity 9: 2235042X19831918, 2019

65. Tuttle KR, Bakris GL, Bilous RW, Chiang JL, de Boer IH, Goldstein-Fuchs J, Hirsch IB, Kalantar-Zadeh K, Narva AS, Navaneethan SD, Neumiller JJ, Patel UD, Ratner RE, Whaley-Connell AT, Molitch ME: Diabetic Kidney Disease: A Report From an ADA Consensus Conference. Diabetes Care 37: 2864–2883, 2014

66. Best Advice Guide: Patient Rostering in Family Practice | The College of Family Physicians of Canada [Internet]. Available from: https://www.cfpc.ca/en/policy-innovation/health-policy-goverment-relations/cfpc-policy-papers-position-statements/best-advice-guide-patient-rostering [cited 2020 Sep 21]

Table 1. Characteristics of 4,173 patients with prevalent diabetes receiving chronic in-centre hemodialysis in Ontario, Canada on January 1 2018

Demographics		
Age, years	67 ± 13	
Mean ± SD		
Median (IQR)	68 (59-77)	
18 to 49	413 (9.9%)	
50 to 65	1,308 (31.3%)	
66 to 74	1,127 (27.0%)	
≥75	1,325 (31.8%)	
Women	1,627 (39.0%)	
Race		
Caucasian	2,401 (57.5%)	
Black/African origin	438 (10.5%)	
Other	1,320 (31.6%)	
Missing	14 (0.3%)	
Family physician roster status a		
Not rostered	293 (7.0%)	
Rostered	3,202 (76.7%)	
Virtually rostered	678 (16.2%)	
Income quintile b		
1 (lowest)	1,362 (32.6%)	
2	981 (23.5%)	
3	772 (18.5%)	
4	588 (14.1%)	
5 (highest)	470 (11.3%)	
Distance from primary residence to dialysis centre (km) c		
Mean ± SD	18.9 ± 64.2	
Median (IQR)	6.3 (3.3-13.1)	
Marginalization index		
-------------------------------	-------	
Instability Quintile		
1 - lowest instability	626 (15.0%)	
2	595 (14.3%)	
3	688 (16.5%)	
4	819 (19.6%)	
5 - highest instability	1,359 (32.6%)	
Missing	86 (2.1%)	
Deprivation Quintile		
1 - lowest deprivation	533 (12.8%)	
2	657 (15.7%)	
3	724 (17.3%)	
4	923 (22.1%)	
5 - highest deprivation	1,250 (30.0%)	
Missing	86 (2.1%)	
Dependency Quintile		
1 - lowest dependency	808 (19.4%)	
2	716 (17.2%)	
3	696 (16.7%)	
4	750 (18.0%)	
5 - highest dependency	1,117 (26.8%)	
Missing	86 (2.1%)	
Ethnic Concentration Quintile		
1 - lowest ethnic concentration	632 (15.1%)	
2	621 (14.9%)	
3	652 (15.6%)	
4	758 (18.2%)	
5 - highest ethnic concentration	1,424 (34.1%)	
Missing	86 (2.1%)	
Long term care		
b,d		
Rural location	263 (6.3%)	
Missing	446 (10.7%)	
Duration of diabetes prior to index date, years		
Mean ± SD	17.6 ± 7.4	
Median (IQR)	19.0 (11.9-24.5)	
Duration of ESKD prior to index date, years		
Mean ± SD	5.4 ± 5.2	
Median (IQR)	3.8 (2.4-6.6)	
Comorbidities		
Chronic obstructive pulmonary disease	1,275 (30.6%)	
Congestive heart failure	2,298 (55.1%)	
Dementia	379 (9.1%)	
Condition	Count	Percentage
---	---------	------------
Coronary artery disease	2,595	(62.2%)
Stroke	583	(14.0%)
Foot ulcer	489	(11.7%)
Amputation	294	(7.0%)
Retinopathy	473	(11.3%)
Depression and anxiety	374	(9.0%)
Hospital encounter with hypoglycemia	472	(11.3%)
Hospital encounter with hyperglycemia	18	(0.4%)
Cancer	618	(14.8%)
Chronic liver disease	608	(14.6%)

Charlson score

Category	Count	Percentage
Mean ± SD	4.9 ± 1.9	
Median (IQR)	5.0 (4.0-6.00)	
0	27 (0.6%)	
1	26 (0.6%)	
2	413 (9.9%)	
3	268 (6.4%)	
4+	3,363 (80.6)	
Missing	76 (1.8%)	

Healthcare utilization in the prior year

Number of specialist visits

Category	Count	Percentage
Mean ± SD	17.2 ± 14.0	
Median (IQR)	14.0 (7.0-24.0)	
0	135 (3.2%)	
1 to 2	222 (5.3%)	
3 to 5	450 (10.8%)	
6 to 11	885 (21.2%)	
12+	2,481 (59.5%)	

Number of primary care visits

Category	Count	Percentage
Mean ± SD	8.5 ± 11.9	
Median (IQR)	6.0 (2.0-11.0)	
0	524 (12.6%)	
1 to 2	687 (16.5%)	
3 to 5	842 (20.2%)	
6+	2,120 (50.8%)	

At least one outpatient visit for diabetes

Category	Count	Percentage
Mean ± SD	2.66 ± 4.35	
Median (IQR)	1.00 (0.00-4.00)	
0	1,824 (43.7%)	
1 to 2	839 (20.1%)	
3 to 5	817 (19.6%)	
6+	693 (16.6%)	
Physician seen for diabetes care	f,h	
----------------------------------	-----	
Family physician	1,291 (30.9%)	
Internal medicine	326 (7.8%)	
Endocrinology	719 (17.2%)	
Other	13 (0.3%)	
No visit for diabetes	1,824 (43.7%)	
Number of unique physician visits		
Mean ± SD	38.7 ± 25.0	
Median (IQR)	33.0 (21.0-51.0)	
All cause emergency department visits		
Mean ± SD	3.1 ± 5.0	
Median (IQR)	2.0 (1.0-4.0)	
All cause hospitalizations		
Mean ± SD	3.1 ± 3.1	
Median (IQR)	2.0 (1.0-4.0)	
At least one HbA1c value	3,454 (82.8%)	
HbA1c value		
Mean ± SD	6.9 ± 1.6	
≤7%	2,136 (51.2%)	
>7%	1,318 (31.6%)	
Medications (≥66 years, n= 2452)		
Insulin or oral antihyperglycemic medication	1,460 (59.5%)	
Insulin	1,168 (47.6%)	
Oral antihyperglycemic medication	564 (23.0%)	
Acarbose	0	
Other sulphonylurea	0	
Gliclazide	207 (8.4%)	
Glyburide	<=5	
Metformin	25 (1.0%)	
Thiazolidinedione	<=5	
Sodium glucose co-transporter 2 inhibitor	<=5	
Other diabetes medication	422 (17.2%)	
Glucose test strips	1,197 (48.8%)	
Last prescriber of diabetes medication		
Family physician	777 (31.7%)	
Internal medicine	186 (7.6%)	
Endocrinology	180 (7.3%)	
Nephrology	246 (10.0%)	
Other specialty	71 (2.9%)	
ACE/ARB	1,080 (44.0%)	
Statin	1,782 (72.7%)	
Other lipid medication	203 (8.3%)	
Table 2. Two-year diabetes care gaps in 4,173 patients using chronic in-centre hemodialysis in Ontario, Canada as of January 1 2018

Description	Count (Percentage)
No evidence of at least annual HbA1c	1410 (33.8%)
>8 HbA1c tests	1278 (30.6%)
No evidence of retinopathy screening	2201 (52.7%)
No electrocardiogram or cardiac stress test	308 (7.4%)
Hospitalization for hyperglycemia a	18 (0.4%)
Hospitalization for hypoglycemia a	182 (4.4%)
Hospitalization for hypertension a	217 (5.2%)
Age 67+ with no evidence of annual test strip prescription (n=2,334) b	1115 (47.7%)

a Recorded as main diagnosis
b Only patients aged 67+ were included to facilitate a 2-year look back for use of medications.

Patient rostering is a process by which patients register with a family practice, family physician, or team. It defines the population for which the primary care organization or provider is responsible. (66)

To avoid small cells from being re-calculated, missing income quintiles was recoded as ‘3’. Missing rural was also recoded as ‘no’ (urban)

distance from primary residence to dialysis centre was calculated using great circle distances (in km) based on latitudes and longitudes. Equations were obtained from Statistics Canada.

Rural definition was based on Statistics Canada definition (communities <10,000 population).

Outpatient visit for diabetes was defined by receipt of Ontario Health Insurance Plan (OHIP) diagnostic code 250 during an outpatient clinical encounter with a physician.

Physician seen for diabetes care was defined as the physician who billed OHIP code 250 during an outpatient physician encounter.

'Specialist visits’ include: dermatology, general surgery, neurosurgery, community medicine, orthopaedic surgery, geriatrics, plastic surgery, cardiothoracic surgery, emergency medicine, internal medicine, endocrinology, nephrology, vascular surgery, neurology, psychiatry, ob/gyn, gynaecology, genetics, ophthalmology, otolaryngology, physical medicine, urology, gastroenterology, medical oncology, infectious disease, respiratory disease, rheumatology, optometrists, osteopaths, chiropractors, cardiologist, cardiology, haematology, clinical immunology, nuclear medicine, thoracic surgery

Physicians seen for diabetes visits include internists, nephrologists, endocrinologists, general practitioners, geriatricians
Table 3. Characteristics of patients with diabetes using in-centre hemodialysis with a care gap score above and below the median as of Jan 1 2018

	Gap score >1	Gap score ≤1	Standardized difference			
	N=1,775	N=2,398				
Age (years)						
Mean ± SD	66.83 ± 14.16	67.54 ± 12.31	0.05			
Median (IQR)	68.00 (57.00-77.00)	68.00 (59.00-77.00)	0.02			
18-49 yrs.	213 (12.0%)	200 (8.3%)	0.12			
50 to 65 yrs.	541 (30.5%)	767 (32.0%)	0.03			
66 to 74	430 (24.2%)	697 (29.1%)	0.11			
75 and over	591 (33.3%)	734 (30.6%)	0.06			
Sex - females			0.1			
Caucasian	1,050 (59.2%)	1,351 (56.3%)	0.06			
Black/African origin	192 (10.8%)	246 (10.3%)	0.02			
Other	526 (29.6%)	794 (33.1%)	0.07			
Missing	7 (0.4%)	7 (0.3%)	0.02			
Rostered to family doctor						
0 - not rostered	153 (8.6%)	140 (5.8%)	0.11			
1 - rostered	1,361 (76.7%)	1,841 (76.8%)	0			
2 - virtually rostered	261 (14.7%)	417 (17.4%)	0.07			
Income quintile a						
1 (lowest)	577 (32.5%)	785 (32.7%)	0			
2	427 (24.1%)	554 (23.1%)	0.02			
3	326 (18.4%)	446 (18.6%)	0.01			
4	238 (13.4%)	350 (14.6%)	0.03			
5 (highest)	207 (11.7%)	263 (11.0%)	0.02			
Distance to dialysis center (km)						
Mean ± SD	17.85 ± 49.93	19.63 ± 72.92	0.03			
Median (IQR)	6.53 (3.21-13.87)	6.21 (3.28-12.57)	0.03			
Marginalization index						
Instability Quintile						
1 - lowest instability	265 (14.9%)	361 (15.1%)	0			
2	269 (15.2%)	326 (13.6%)	0.04			
3	308 (17.4%)	380 (15.8%)	0.04			
4	348 (19.6%)	471 (19.6%)	0			
5 - highest instability	552 (31.1%)	807 (33.7%)	0.05			
Missing	33 (1.9%)	53 (2.2%)	0.02			
Deprivation Quintile						
1 - lowest deprivation	218 (12.3%)	315 (13.1%)	0.03			
Dependency Quintile	1 - lowest dependency	2	3	4	5 - highest deprivation	Missing
---------------------	----------------------	---	---	---	------------------------	--------
2	274 (15.4%)	306 (17.2%)	405 (22.8%)	539 (30.4%)	33 (1.9%)	0.01
3	306 (17.2%)	418 (17.4%)	518 (21.6%)	711 (29.6%)	53 (2.2%)	0.03
4	405 (22.8%)	417 (17.4%)	420 (17.5%)	633 (26.4%)	53 (2.2%)	0.02
5 - highest deprivation	539 (30.4%)	711 (29.6%)	633 (26.4%)	711 (29.6%)	53 (2.2%)	0.02
Missing	33 (1.9%)	53 (2.2%)	53 (2.2%)	53 (2.2%)	53 (2.2%)	0.02

Ethnic Concentration Quintile	1 - lowest concentration	2	3	4	5 - highest concentration	Missing
1	273 (15.4%)	311 (17.5%)	279 (15.7%)	330 (18.6%)	484 (27.3%)	33 (1.9%)
2	311 (17.5%)	405 (16.9%)	417 (17.4%)	420 (17.5%)	633 (26.4%)	53 (2.2%)
3	279 (15.7%)	417 (17.4%)	420 (17.5%)	633 (26.4%)	53 (2.2%)	0.02
4	330 (18.6%)	420 (17.5%)	633 (26.4%)	53 (2.2%)	0.02	
5 - highest concentration	484 (27.3%)	633 (26.4%)	53 (2.2%)	0.02		
Missing	33 (1.9%)	53 (2.2%)	53 (2.2%)	53 (2.2%)	53 (2.2%)	0.02

Long term care	131 (7.4%)	132 (5.5%)	132 (5.5%)	132 (5.5%)	132 (5.5%)	0.08
Rural locationa	204 (11.5%)	242 (10.1%)	242 (10.1%)	242 (10.1%)	242 (10.1%)	0.05
Duration of diabetes (years)	Mean ± SD	16.5 ± 7.7	18.4 ± 7.0	20.0 (13.7-24.8)	0.26	
	Median (IQR)	17.2 (10.2-23.9)	20.0 (13.7-24.8)	0.24		

Comorbidities

COPD	539 (30.4%)	736 (30.7%)	0.01
CHF	930 (52.4%)	1,368 (57.0%)	0.09
Dementia	169 (9.5%)	210 (8.8%)	0.03
CAD	1,016 (57.2%)	1,579 (65.8%)	0.18
Stroke	225 (12.7%)	358 (14.9%)	0.07
Foot ulcer	163 (9.2%)	326 (13.6%)	0.14
Amputation	95 (5.4%)	199 (8.3%)	0.12
Depression and anxiety	158 (8.9%)	216 (9.0%)	0
Hypoglycemia	209 (11.8%)	263 (11.0%)	0.03
Hyperglycemia	9 (0.5%)	9 (0.4%)	0.02
Retinopathy	118 (6.6%)	355 (14.8%)	0.27
Cancer	238 (13.4%)	380 (15.8%)	0.07
Liver	242 (13.6%)	366 (15.3%)	0.05
Charlson score			
Healthcare utilization in the prior year			
---	---	---	---
Mean ± SD	4.8 ± 2.0	5.1 ± 1.9	0.15
Median (IQR)	5.0 (4.0-6.0)	5.0 (4.0-6.0)	0.15
0	16 (0.9%)	11 (0.5%)	0.05
1	8 (0.5%)	18 (0.8%)	0.04
2	223 (12.6%)	190 (7.9%)	0.15
3	126 (7.1%)	142 (5.9%)	0.05
4+	1,344 (75.7%)	2,019 (84.2%)	0.21
Missing	58 (3.3%)	18 (0.8%)	0.18

Number of specialist visits

Mean ± SD	13.5 ± 12.1	20.1 ± 14.7	0.48
Median (IQR)	11.0 (5.0-19.0)	17.0 (10.0-27.0)	0.55
0	116 (6.5%)	19 (0.8%)	0.31
1 to 2	152 (8.6%)	70 (2.9%)	0.24
3 to 5	258 (14.5%)	192 (8.0%)	0.21
6 to 11	422 (23.8%)	463 (19.3%)	0.11
12+	827 (46.6%)	1,654 (69.0%)	0.47

Number of primary care visits

Mean ± SD	8.1 ± 12.4	8.7 ± 11.5	0.06
Median (IQR)	5.0 (2.0-11.0)	6.0 (2.0-11.0)	0.13
0	261 (14.7%)	263 (11.0%)	0.11
1 to 2	311 (17.5%)	376 (15.7%)	0.05
3 to 5	366 (20.6%)	476 (19.8%)	0.02
6+	837 (47.2%)	1,283 (53.5%)	0.13

At least one diabetes visit

Mean ± SD	2.3 ± 4.3	2.9 ± 4.4	0.13
Median (IQR)	0.0 (0.0-3.0)	1.0 (0.0-4.0)	0.24
0	910 (51.3%)	914 (38.1%)	0.27
1 to 2	311 (17.5%)	528 (22.0%)	0.11
3 to 5	294 (16.6%)	523 (21.8%)	0.13
6+	260 (14.6%)	433 (18.1%)	0.09

Physician seen for diabetes

General practitioner	496 (27.9%)	795 (33.2%)	0.11
Internal medicine	112 (6.3%)	214 (8.9%)	0.1
Endocrinology	248 (14.0%)	456 (19.0%)	0.14
Other	≤5	≤5	0.01
No visits	910 (51.3%)	914 (38.1%)	0.27

Number of unique physician visits

| **Mean ± SD** | 35.5 ± 25.2 | 41.0 ± 24.5 | 0.22 |
Median (IQR)

	29.0 (17.0-48.0)	36.0 (23.0-53.0)	0.29
All cause ED visits			
Mean ± SD	3.2 ± 5.6	3.1 ± 4.5	0.02
Median (IQR)	2.0 (0.0-4.0)	2.0 (1.0-4.0)	0.02
All cause hospitalization			
Mean ± SD	2.9 ± 3.2	3.3 ± 3.0	0.15
Median (IQR)	2.0 (1.0-4.0)	3.0 (1.0-5.0)	0.23

Labs

	1,272 (71.7%)	2,182 (91.0%)	0.51
At least one A1c			
A1c value (%)	6.8 ± 1.6	6.9 ± 1.6	0.08
Median (IQR)	6.5 (5.6-7.7)	6.6 (5.8-7.8)	0.11
≤7%	820 (46.2%)	1,316 (54.9%)	0.17
>7%	452 (25.5%)	866 (36.1%)	0.23
Missing	503 (28.3%)	216 (9.0%)	0.51

Cell sizes <6 suppressed for patient privacy, as per ICES privacy policies

a Fewer than 3% of patients had missing data. To avoid small cells from being re-calculated, missing income quintiles was recoded as ‘3’. Missing rural was also recoded as ‘no’ (urban)

b Selected specialties in ‘specialist visits’ include: dermatology, dermatology, general surgery, neurosurgery, community medicine, orthopaedic surgery, geriatrics, plastic surgery, cardiothoracic surgery, emergency medicine, internal medicine, endocrinology, nephrology, vascular surgery, neurology, psychiatry, obstetrics and gynecology, genetics, ophthalmology, otolaryngology, physical medicine, urology, gastroenterology, medical oncology, infectious disease, respiratory disease, rheumatology, optometrists, osteopaths, chiropractors, cardiology, hematology, clinical immunology, nuclear medicine, thoracic surgery

c Physicians seen for ‘diabetes visits’ include internists, nephrologists, endocrinologists, general practitioners, geriatricians

Abbreviations: ESKD, end-staged kidney disease; IQR, interquartile range; SD, standard deviation
Table 4. Predictors of >1 diabetes care gap in patients using chronic in-centre hemodialysis in Ontario, Canada

Predictor	Relative risk	Lower confidence interval	Upper confidence interval	P-value
Age, years	0.997	0.994	0.999	0.018
Sex - Female	1.084	1.011	1.163	0.023
Rostered to family doctor				
0 - not rostered	1.132	1.000	1.281	0.051
1 - rostered	REF	REF	REF	
2 - virtually rostered	0.951	0.862	1.049	0.315
Income quintilea				
1 - Lowest	0.950	0.845	1.069	0.396
2	0.981	0.868	1.110	0.764
3	0.987	0.869	1.122	0.842
4	0.897	0.780	1.030	0.124
5 - Highest	REF	REF	REF	
Rural location	1.086	0.979	1.206	0.119
Duration of diabetes	0.985	0.981	0.990	<0.001
Congestive heart failure	0.988	0.914	1.067	0.754
Chronic obstructive pulmonary disease	1.034	0.954	1.121	0.416
Dementia	1.206	1.056	1.377	0.006
Coronary artery disease	0.967	0.898	1.040	0.361
Stroke	1.005	0.896	1.129	0.927
Amputation	0.912	0.750	1.109	0.354
Anxiety/Depression	1.016	0.892	1.157	0.812
Cancer	1.054	0.950	1.169	0.320
Liver	0.926	0.829	1.035	0.176
Charlson score				
0 or no hospitalizations	REF	REF	REF	
1	0.660	0.353	1.236	0.194
2	1.072	0.882	1.304	0.484
3	1.005	0.809	1.250	0.961
4+	0.938	0.778	1.130	0.501
Specialist visits	0.986	0.982	0.989	<0.001
Primary care visits	1.001	0.997	1.004	0.751
Diabetic visits	1.010	1.000	1.020	0.063
-----------------	-------	-------	-------	-------
Physician seen for diabetes				
General/family physician	0.950	0.847	1.064	0.373
Internal medicine	0.880	0.744	1.040	0.134
Endocrinology	REF	REF	REF	
Other*	0.933	0.586	1.488	0.772
No visits	**1.138**	**1.012**	**1.281**	**0.032**

* Other physician included nephrologist, geriatrician
Figure 1. Geographic variation in diabetes gap scores over 1, by age group. Care gaps included: 1) insufficient or excessive glycemic monitoring, 2) suboptimal screening for diabetes-related complications (retinopathy and cardiovascular screening), and 3) hospitalizations for hypoglycemia, hyperglycemia, and hypertension. Results were sex-adjusted proportions per 1,000, aggregated to Local Health Integration Network.
