Does hardcore interaction change absorbing type critical phenomena?

Sungchul Kwon¹, Jysoo Lee² and Hyunggyu Park¹

¹ Department of Physics, Inha University, Inchon 402-751, Korea
² National Creative Research Initiative Center for Neurodynamics and Department of Physics, Korea University, Seoul 136-701, Korea
(March 21, 2002)

It has been generally believed that hardcore interaction is irrelevant to absorbing type critical phenomena because the particle density is so low near an absorbing phase transition. We study the effect of hardcore interaction on the N species branching annihilating random walks with two offspring and report that hardcore interaction drastically changes the absorbing type critical phenomena in a nontrivial way. Through Langevin equation type approach, we predict analytically the values of the scaling exponents, $\nu_\perp = 2, \gamma = 2, \alpha = 1/2, \beta = 2$ in one dimension for all $N > 1$. Direct numerical simulations confirm our prediction. When the diffusion coefficients for different species are not identical, ν_\perp and β vary continuously with the ratios between the coefficients.

The study of nonequilibrium systems with trapped (absorbing) states has been very active in recent years. Models displaying absorbing phase transitions describe a wide range of phenomena, in particular, epidemic spreading, catalytic chemical reactions, and transport in disordered media. Furthermore, the absorbing transition is one of the simplest and natural extensions of the well-established equilibrium phase transition to nonequilibrium systems, which are still poorly understood.

The concept of universality, which plays a key role in equilibrium critical phenomena, was shown to be applicable also to nonequilibrium absorbing transitions. Critical behavior near an absorbing transition is determined by properties such as dimensionality and symmetry, and is not affected by details of the system. Finding a new universality class is difficult, and only a few classes of absorbing transitions are known.

Hardcore interaction between particles or kinks has been believed to be irrelevant to absorbing type critical phenomena, because the particle density is so low near an absorbing transition that the probability of multiple occupations at a site should be too small to be significant. This conventional belief leads to recent successes of field theoretical techniques using bosonic type operators. However, it is well known that hardcore interaction does change the asymptotic decay behavior of the particle density in many multi-species diffusion-reaction models near an annihilation fixed point. Since many absorbing transition models can be mapped onto diffusion-reaction ones, it may seem natural to ask a question whether hardcore constraint changes the absorbing type universality classes in multi-species models. Despite recent efforts using fermionic formulation incorporating hardcore interactions, the effect of hardcore interactions is barely understood both analytically and numerically.

In this Letter, we study the N species branching annihilating random walks with two offspring (N-BAW(2)), introduced recently by Cardy and Täuber. The model was solved exactly for all $N > 1$, using renormalization group techniques in bosonic type formulation which ignores hardcore interactions. We employ Langevin equation type approach incorporating hardcore interactions and obtain analytically the values of critical exponents associated with the absorbing transition. It turns out that hardcore interaction drastically changes the universality class in a nontrivial way and the critical exponents vary continuously with the ratio of diffusion constants of different species. Direct numerical simulations confirm our predictions.

The N-BAW(2) model is a classical stochastic system consisting of N species of particles, A_i ($i = 1, \ldots, N$). Each particle diffuses on a d-dimensional lattice with two competing dynamic processes: pair annihilation and branching. Pair annihilation is allowed only between identical particles ($A_i + A_j \to \emptyset$). In the branching process, a particle A_i creates two identical particles in its neighborhood ($A_i \to A_i + 2A_j$), with rate σ for $i = j$ and rate $\sigma/(N - 1)$ for $i \neq j$.

For $N = 1$, this model exhibits an absorbing transition of directed Ising type (Z_2 symmetry) at finite branching rate. The N species generalization imposes the permutation symmetry S_N between species. Like in the Potts type generalization of the absorbing transition models, this model for $N > 1$ is always active except at the annihilation fixed point of zero branching rate.

Critical properties near the annihilation fixed point have been explored exactly by Cardy and Täuber for $N > 1$ in the framework of bosonic field theory. The upper critical dimension d_c is 2. Using a perturbation expansion, they showed that the branching process associated with σ is irrelevant. For $\sigma = 0$, it was found that the models for all $N > 1$ are active for $\sigma' \neq 0$ and their scaling behavior near the annihilation fixed point ($\sigma' = \sigma'' = 0$) forms a new universality class independent of N. For $d < d_c$, the critical behavior is characterized...
by the exponents
\[\nu_\perp = 1/d, \ z = 2, \ \alpha = d/2, \ \beta = 1. \]
(1)

Here, the exponents are defined as
\[\xi \sim \Delta^{-\nu_\perp}, \ \tau \sim \xi^z, \]
\[\rho(t) \sim t^{-\alpha}, \ \rho_s \sim \Delta^\delta, \]
(2)

where \(\Delta = \sigma' - \sigma'_s, \ \xi \) is the correlation length, \(\tau \) the characteristic time, \(\rho(t) \) the particle density at time \(t \), and \(\rho_s \) the steady-state particle density.

Even in the presence of hardcore interaction, the scaling exponents \(\alpha \) and \(z \) should follow from the simple random walk exponents: \(z = 2 \) and \(\alpha = d/z \) for \(d < d_c \).

Near the annihilation fixed point, elementary scaling theory ensures \(\beta = \nu_\perp z \alpha, \) which leads to \(\beta = \nu_\perp d \). We determine the value of \(\nu_\perp \) through Langevin equation type approach.

The particle density can change by branching processes and pair annihilation processes. If we start with a configuration of very low particle density, the particle density initially grows by branching processes, \((A_i \rightarrow A_i + 2A_j) \). In this growth regime, a newly created pair of offspring and its parent are far more likely to annihilate against each other than other particles in the system. Dynamics of such three particle configurations or “triplet” governs the growth behavior of the particle density and the interparticle interactions can be ignored. The particle density growth will be finally capped by pair annihilations processes of independent particles and the system reaches a steady state.

We focus on the growth regime dominated by triplet dynamics, from which \(\nu_\perp \) can be evaluated. We only consider the case of \(\sigma = 0 \), where a newly created pair is always dissimilar to its parent. The survival probability \(S(t) \) of the triplet of the same species decays much faster \((\sim t^{-3/2}) \) than that of different species, so the branching process associated with \(\sigma \) is irrelevant. Near \(\sigma' = 0 \), the time evolution of the particle density of \(i \)-th species, \(\rho_i(t) \), is written as
\[\frac{d\rho_i}{dt} = 2 \frac{\sigma'}{N-1} \sum_{j \neq i} \left[\rho_j(t) - \int_0^t L_{ij}(t-t')\rho_j(t')dt' \right], \]
(3)

where \(L_{ij}(t-t')dt \) is the probability that an \(i \)-th species pair created by an \(j \)-th species particle at time \(t' \), annihilates in an interval between \(t \) and \(t + dt \). The two terms in the right-hand side represent the creation and annihilation process of a triplet, respectively. Pair annihilation contribution from independent particles is \(O(\rho^2) \), which is ignored in the growth regime.

The kernel \(L_{ij}(t) \) is simply related to the survival probability \(S_{ij}(t) \) of the triplet \((A_i + 2A_j) \) as \(L_{ij}(t) = -dS_{ij}(t)/dt \). To keep the lowest order of \(\sigma' \) in Eq. 3, we evaluate \(S_{ij}(t) \) at \(\sigma' = 0 \). When hardcore interaction is not present, a pair of \(A_i \)'s does not see its parent \(A_j \), so annihilate each other freely by random walks. In that case, it is well known that \(S(t) = S_{ij}(t) \) decays asymptotically as \(S(t) \sim t^{-\delta} \) with \(\delta = 1 - d/2 \) for \(d < 2 \) and becomes finite \((\delta = 0) \) for \(d > 2 \), irrespective of their diffusion constants. However, with hardcore interaction, the pair annihilation process changes significantly due to an effective bias in their diffusive behavior, generated by their parent particle \(A_i \). The motion of \(A_i \) near \(A_j \) picks up a convective component with velocity proportional to \(t^{-1/2} \), so the convective displacement is of the same order of diffusive displacement \(t^{1/2} \). In this case, the competition between the convection and diffusion becomes nontrivial and the scaling exponent \(\delta \) depends continuously on the parameters of the system.

We calculate the survival probability \(S(t) \) of a triplet in one dimension. With hardcore interaction, \(S(t) \) depends crucially on where to create two offspring with respect to their parent. When two offspring are divided by their parent (static branching), they have no chance to meet each other. The survival probability never decays \((\delta = 0) \). When two offspring are placed both to the left or both to the right side of the parent particle with equal probability (dynamic branching), \(S(t) \) decays with a nontrivial scaling exponent.

Consider three random walkers on a line, labeled as A, B and C. A is a parent particle that created two offspring, B and C, to the right side of A. Two offspring B and C are of the same species, which is different from its parent A. Hardcore repulsion is present between A and B, B and C annihilate instantaneously upon collision. The calculation of \(S(t) \) belongs to the class of problems known as “capture process”.

Let the coordinates of the walkers be \(x_A, x_B \) and \(x_C \), and their diffusion coefficients \(D_A, D_B \) and \(D_C \), respectively. In our case, \(D_B = D_C \). It is useful to introduce the scaled coordinates \(y_i = x_i/\sqrt{D_i} \), where \(i = A, B, C \). Then we can map this triplet system to a single walker system with isotropic diffusion in three dimensional space \((y_A, y_B, y_C)\). The walker survives inside the wedge bounded by two planes: a reflecting plane \(P_r \) of \(\sqrt{D_A y_A} = \sqrt{D_B y_B} \) and an absorbing plane \(P_a \) of \(\sqrt{D_B y_B} = \sqrt{D_C y_C} \).

The survival probability \(S(t) \) of an isotropic random walker in a \(d \) dimensional cone with absorbing boundary is known. In particular, \(S(t) \) in a wedge with an opening angle \(\Theta \) asymptotically decays as \(t^{-\pi/2\Theta} \). In our case, one of the boundary planes, \(P_r \), is not absorbing but reflecting. The probability of the walker at \(P_r \) is nonzero and there is no net flux across this plane. Using this fact, one can easily show that our system should be equivalent to the system in a wedge bounded by two absorbing planes with twice bigger opening angle.

We find that the survival probability of the triplet decays with the exponent
\[\delta = \frac{\pi}{4\Theta} = \left[\frac{4}{\pi} \cos^{-1} \left(\frac{1}{\sqrt{2(1 + r)}} \right) \right]^{-1}, \quad (4) \]

where \(\Theta \) is an opening angle of the wedge and \(r = D_A/D_B \). The exponent \(\delta \) monotonically decreases from 1 to 1/2 as the diffusivity ratio \(r \) varies from 0 to \(\infty \). At \(r = 1 \) (the same diffusivity for all walkers), \(\delta = 3/4 \).

First, we consider the case that diffusion coefficients are identical for all species. The \(N \) coupled Langevin equations, Eq. (\[3\]), can be simplified in terms of the total particle density, \(\rho(t) = \sum_i \rho_i(t) \), as

\[\frac{d\rho}{dt} = 2\sigma'\rho(t) - 2\sigma' \int_0^t L(t - t')\rho(t')dt', \quad (5) \]

where \(L(t) = L_{ij}(t) \) is independent of \(i \) and \(j \). Taking Laplace transformation, we find

\[s\tilde{\rho}(s) - \rho(0) = 2\sigma'(1 - \tilde{L}(s))\tilde{\rho}(s) = 2\sigma's\tilde{S}(s)\tilde{\rho}(s), \quad (6) \]

where \(\tilde{\rho}(s) = \int_0^\infty \rho(t)e^{-st}dt \) and similarly \(\tilde{L}(s) \) and \(\tilde{S}(s) \) are the Laplace transform of \(L(t) \) and \(S(t) \), respectively. With \(S(t) \sim t^{-\delta}, \) one can show that \(\tilde{S}(s) \sim s^{\delta - 1} \) for \(\delta > 0 \).

The function \(\tilde{\rho}(s) \) has a pole in the positive real axis at \(s_o \sim \sigma'^{1/(1 - \delta)} \). When the initial density \(\rho(0) \) is small, the density \(\rho(t) \) increases exponentially as \(\exp(s_o t) \). Using the definition of the characteristic time \(\tau \) (Eq. (\[2\])), we find

\[\tau = \sigma'^{-\nu_z} = 1/s_o = \sigma'^{-1/(1 - \delta)}. \quad (7) \]

With \(\delta = 3/4 \) for the dynamic branching model, we arrive at \(\nu_z = 1/(1 - \delta) = 4 \). Therefore we predict that the critical exponents for the dynamic branching \(N \)-BAW(2) model with hardcore interaction in one dimension are

\[\nu = 2, z = 2, \alpha = 1/2, \beta = 2. \quad (8) \]

which should be valid for all \(N > 1 \). For the static branching \(N \)-BAW(2) model, \(\delta = 0 \) and \(\nu_z = \beta = 1/2 \). Without hardcore interactions, branching methods do not matter and \(\delta = 1/2 \), which leads to Eq. (\[4\]).

We check the above predictions for the \(N \)-BAW(2) model by direct numerical simulations for \(N = 2, 3 \) and 4. We start with a pair of particles. With probability \(p_c \), a randomly chosen particle \(A_i \) creates two offspring (2\(A_j \)) on two nearest neighboring sites (dynamic/static branching). The branching probability \(p \) is distributed as \(\gamma p \) for \(i = j \) and \((1 - \gamma)p/(N - 1) \) for \(i \neq j \). Otherwise, the particle hops to a nearest neighboring site. Two particles of the same species at a site annihilate instantaneously. In case of models with hardcore interactions, branching/hopping attempts are rejected when two particles of different species try to occupy the same site. Critical probability \(p_c = 0 \) for all models considered here.

We measure the total particle density \(\rho_s \) in the steady state, averaged over \(5 \times 10^2 \sim 5 \times 10^4 \) independent samples for several values of \(\Delta = p - p_c \) (0.001 \(\sim 0.05 \)) and lattice size \(L \) \((2^5 \sim 2^{11}) \). We set \(\gamma = 1/2 \). Using the finite-size scaling theory [20]

\[\rho_s(\Delta, L) = L^{-\beta/\nu_z}F(\Delta L^{1/\nu_z}), \quad (9) \]

the value of \(\nu_z \) is determined by “collapsing” data of \(\rho_s \) with \(\beta/\nu_z = 1 \) (Fig. 1). Numerical data show that \(\nu_z \) does not depend on \(N \) in all models as expected. We find \(\nu_z = 1.00(5) \) for models without hardcore interactions, which agrees with the result by Cardy and Täuber [3]. With hardcore interactions, we find \(\nu_z = 1.9(1) \) for the dynamic branching models and \(\nu_z = 0.50(3) \) for the static branching models, which confirm our predictions within statistical errors.

When the diffusion coefficients are not identical for different species, \(S_{ij}(t) \) decays with the exponent \(\delta \) depending on the diffusivity ratio \(r = D_j/D_i \). Instead of a single Langevin equation, we are then forced to deal with the \(N \) coupled Langevin equations. The solution of the system of equations is difficult in general, but the equations become quite simple for \(N = 2 \).

Laplace-transformed coupled equations for \(N = 2 \) become

\[s\tilde{\rho}_1(s) - \rho_1(0) = 2\sigma's\tilde{S}_{12}(s)\tilde{\rho}_2(s), \]
\[s\tilde{\rho}_2(s) - \rho_2(0) = 2\sigma's\tilde{S}_{21}(s)\tilde{\rho}_1(s). \quad (10) \]

We take \(\rho_2(0) = 0 \) as an initial condition and solve the equations for \(\tilde{\rho}_1(s) \):

\[s\tilde{\rho}_1(s) - \rho_1(0) = 4\sigma'^2s\tilde{S}_{12}\tilde{S}_{21}\tilde{\rho}_1(s). \quad (11) \]

Note that \(S_{12}(t) \) decays with exponent \(\delta(r) \) with \(r = D_2/D_1 \) and \(S_{21}(t) \) with \(\delta(1/r) \), see Eq. (\[4\]). From the pole position of \(\tilde{\rho}_1(s) \), we arrive at

\[\nu_z(r) = \frac{1}{2 - \delta(r) - \delta(1/r)}. \quad (12) \]

The exponent \(\delta(r) \) ranges from 1/2 to 1, but \(\delta(r) + \delta(1/r) \) varies only slightly with \(r \). It ranges from 3/2 to 1.5255, so \(\nu_z(r) \) varies only within a few percent. Due to rather large statistical errors (~ 10%), we could not confirm numerically the \(r \) dependence of \(\nu_z \). However, it is clear from our derivation that \(\nu_z \) should vary continuously with diffusivity ratio. Although we were not able to obtain a similar expression for \(\nu_z \) for general \(N \), we expect that \(\nu_z \) varies continuously but only slightly with \(r \) for all \(N > 1 \).
the dynamic branching models with hardcore interaction form a new universality class, different from the models without hardcore interaction. Especially, the scaling exponents vary continuously with the diffusivity ratios. The static branching models with hardcore interaction form yet another new universality class. Numerical simulations confirm most of our predictions, but large scale simulations are necessary to measure the diffusivity ratio dependence of the scaling exponents.

The present analytic method to study the effect of hardcore interaction can be applied to a wide range of multi-species diffusion-reaction models near the annihilation fixed point. Our analysis implies that many multi-species models with hardcore interaction may exhibit a nontrivial absorbing phase transition with continuously varying exponents.

We thank the NEST group at Inha University for many useful discussions. This work was supported by the Korea Research Foundation for the 21st Century. J.L. acknowledges support from Creative Research Initiatives of the Korean Ministry of Science and Technology.

[1] For a review, see J. Marro and R. Dickman, Nonequilibrium phase transitions in lattice models (Cambridge University Press, Cambridge, 1996); H. Hinrichsen, cond-mat/9911095.
[2] M. Doi, J. Phys. A 9, 1479 (1976); L. Peliti, J. Phys. (Paris) 46, 1469 (1985).
[3] B. P. Lee, J. Phys. A 27, 2633 (1994).
[4] B. P. Lee and J. L. Cardy, J. Stat. Phys. 80, 971 (1995).
[5] J. L. Cardy and U. C. Täuber, Phys. Rev. Lett. 77, 4780 (1996); J. L. Cardy, cond-mat/9607162v2.
[6] J. L. Cardy and U. C. Täuber, J. Stat. Phys. 90, 1 (1998).
[7] S. Havlin and D. ben-Avraham, Adv. in Phys. 36, 695 (1987); J.-P. Bouchaud and A. Georges, Phys. Rep. 195, 127 (1990).
[8] P.-A. Bares and M. Mobilia, Phys. Rev. E 59, 1996 (1999).
[9] V. Brunel, K. Oerding, and F. van Wijland, cond-mat/9905293.
[10] H. Takayasu and A. Yu. Tretyakov, Phys. Rev. Lett. 68, 3060 (1992).
[11] D. ben-Avraham, F. Leyvraz, and S. Redner, Phys. Rev. E 50, 1843 (1994).
[12] S. Kwon and H. Park, Phys. Rev. E 52, 5955 (1995).
[13] M. H. Kim and H. Park, Phys. Rev. Lett. 73, 2579 (1994); W. Hwang, S. Kwon, H. Park, and H. Park, Phys. Rev. E 57, 6438 (1998).
[14] H. Hinrichsen, Phys. Rev. E 55, 219 (1997); S. Kwon, J. Lee, and H. Park (unpublished).
[15] See, e.g., M. Bramson and D. Griffeath, in Random Walks, Brownian Motion, and Interacting Particle Systems, edited by R. Durrett and H. Kesten (Birkhauser, Boston, 1991).
[16] P. Salminen, Adv. Appl. Prob. 20, 411 (1988); F. Iglói, I. Peschel, and L. Turban, Adv. Phys. 42, 683 (1993).
[17] B. P. Lee and J. L. Cardy, J. Phys. A 27, 2633 (1994).
[18] D. ben-Avraham, J. Chem. Phys. 88, 941 (1988); M. Fisher and M. Gelfand, J. Stat. Phys. 53, 175 (1988).
[19] H. Carslaw and J. Jaeger, Conduction of Heat in Solids, (Oxford University Press, Oxford, 1959); R. De Blassie, Z. Wahr. verw. Gebiete 74, 1 (1987).
[20] T. Aukrust, D. A. Browne, and I. Webman, Phys. Rev. A 41, 5294 (1990).

![Graph](image-url)

FIG. 1. Data collapse of $\rho_s L^{\beta/\nu_\perp}$ against $\Delta L^{1/\nu_\perp}$ with $\beta/\nu_\perp = 1$ for various system size $L = 2^5, \ldots, 2^{11}$ for $N = 2$ BAW(2) models (a) without hardcore interaction, (b) with hardcore interaction (dynamic branching), and (c) with hardcore interaction (static branching). Best collapses are achieved with (a) $\nu_\perp = 1.00(5)$, (b) 1.9(1), and (c) 0.50(3), respectively.