Activation energies and information entropies of helium penetration through fullerene walls. Insights into the formation of endofullerenes \(nX@C_{60/70} \) (\(n = 1 \) and 2) from the information entropy approach†

Denis Sh. Sabirov,†a Anton O. Terentyeva and Viacheslav I. Sokolovb

In the present study, we calculate the activation barriers and information entropies of helium penetration into the \(C_{60} \) and \(C_{70} \) fullerenes resulting in the singly and doubly filled endofullerenes \(\text{He}_n@C_{60/70} \) (\(n = 1 \) and 2). The activation barriers of hexagon penetration of \(C_{60} \) and \(C_{70} \) are very high (~900 kJ mol\(^{-1}\)) and they slightly increase for the second insertion as compared to the first step. The activation parameters are linearly correlated with the squares of the penetrated hexagons. This allows the proposal that the other fullerene cages should reveal almost the same penetrability because the size of the hexagons do not significantly vary from one fullerene to another. We have found that the experimental ratios of the yields of \(\text{He}_1@C_{60/70} \) and \(\text{He}_2@C_{60/70} \) (and the other related endofullerenes \(\text{Ne}_n@C_{70} \), \(\text{H}_2@C_{70} \), and \(\text{NHe}_2@C_{60/70} \)) may be qualitatively described in terms of the information entropy approach using the respective changes in information entropy upon the formation of singly and doubly filled endofullerenes. This approach stresses the probabilistic nature of the penetration processes and may be used for qualitative prediction of the expected yields of endofullerenes with two encapsulated species.

The physical properties of \(X@C_{60} \) (\(X = \text{He–Xe} \)) have been studied both experimentally and theoretically. For example, the theoretical studies cover the aspects of their stability,18–20 exohedral reactivity,21 mechanical properties,22 dipole polarizability,23–25 and photoionization.26 Mechanistic studies on the formation of the endofullerenes with noble gas atoms inside are scarce.12,17–29 The relatively low activation barrier of the helium release by \(\text{He}_2@C_{60} \) (~3.5 eV) was the reason to consider that guest atoms should come into the fullerene interiors through the one-bond windows resulting from C–C bond cleavage. The activation barrier of the last process equals 3.5 eV according to the MNDO calculations of the triplet biradical \(C_{60} \) with one broken 5.6 bond (the bond common for pentagon and hexagon),27 and this value is lower compared with the penetration through hexagon (~10.7 eV, estimated for the helium passage through the benzene ring28 by MP2/6-31G** calculations). Furthermore, penetrations of helium through intact (via hexagon or pentagon) and damaged \(C_{60} \) cages (with one-bond and two-bond windows) have been thoroughly studied using the MNDO, HF/3-21G, BLYP/3-21G, and BP86/3-21G methods.28 This computational study revealed very high (more than 800 kJ mol\(^{-1}\)) and close activation barriers for all the studied pathways, thus it was difficult to select the most preferable route of the process. The authors29 considered that the activation barriers are decreased in the case of defected fullerene cages (with 4- and 8-membered cycles).

1 Introduction

Fullerenes due to their hollow structure are able to form endohedral complexes (endofullerenes), which are unique compounds encapsulating diverse atoms, molecules or clusters.1,2 Among them, noble gas endofullerenes \(X@C_{60} \) (\(X = \text{He–Xe} \)) are the most studied because these species have been obtained and identified in the earliest studies on the fullerene chemistry (see the exhaustive introduction of study7 and some key original studies10–12). Although some endohedral complexes of fullerenes have been proposed and tested as qubits of quantum computers (e.g., \(\text{N}@C_{60} \))14–16 and radiopharmaceuticals (\(\text{Ac}@C_{62} \)),17 the interest in noble gas endofullerenes is currently fundamental rather than applied. Indeed, the encapsulation of noble gases allows monitoring of the interactions between guest and host molecules with minimal accompanying and interfering effects such as significant cage deformations or charge transfer.

† Electronic supplementary information (ESI) available: Results of the B3LYP/A1 calculations; Cartesian coordinates of endofullerenes and transition states of their formation. See DOI: 10.1039/c6ra12228k
Although the mentioned studies were a breakthrough in understanding the formation of endohedral structures, these, however, operate with some assumptions such as the similarity of the input and output processes for moving an He atom through the fullerene cage and application of the one mechanistic model to different noble gases. It was also considered that C60 is reversibly damaged under the extreme conditions endofullerene synthesis (e.g., 5 h, 600 °C, 2500 atm [ref. 12]). At the same time, it is known that this highly symmetric molecule is synthesized, of C60 and C70 with up to two trapped helium atoms are synthesized,33,34 whereas the C60-based endofullerenes have been widely investigated by theoretical methods, the endohedral complexes of C70, the second abundant fullerene, are less studied. Previously, we studied the chemical transformations of H2O@C60,35 CH4@C60,36 and the C70 endohedral complexes with hydrocarbons37 using DFT methods. In the present study, we use the proven computational methodology to study the formation of He@C60 and He@C70 (n = 1 and 2) focusing on intact C60 and C70 as starting structures.

2 Computational details

The scanning of potential energy surface (PES) and all optimizations were performed using the density functional theory method PBE/3ζ38 implemented in the Priroda program.39 The 3ζ basis set describes the electronic configurations of molecular systems by the orbital basis sets of contracted Gaussian-type functions [5s1p]/[3s1p] for He and [11s6p2d]/[6s3p2d] for C, which have been used in combination with the density-fitting basis sets of uncontracted Gaussian-type functions [5s1p] for He and [10s3p3d1f] for C atoms. The PBE/3ζ method reproduces structures and physicochemical characteristics of fullerenes and their derivatives with high accuracy (see reviews40,41 and key works on its application in computational thermochemistry42–47 and transition theory calculations of fullerene-containing systems48–50). Although the PBE/3ζ method was tested and efficiently used for endofullerene studies, we performed a recalculations of the key processes using the B3LYP/A1 method51,52 to ensure the reliability of the obtained results (the A1 basis set includes the contracted Gaussian-type functions [6s2p]/[2s1p] for He and [10s7p3d]/[3s2p1d] for C combined with the uncontracted functions [6s3p]/[2s1p] for He and [10s9p7d4f]/[6s4p3d1f] for C atoms). This method was previously applied to the theoretical studies of fullerene derivatives. In all cases, the B3LYP/A1 results qualitatively mimic the regularities obtained by the main method, and these are presented in the ESI Materials.† The hessians of the minima of PESs (endofullerenes molecules) contain no imaginary frequencies; the transition states (TSs) of their formation reveal one imaginary frequency with the main contribution corresponding to the motion of the helium atom through the fullerene wall. The correctness of the found TSs was confirmed by the intrinsic reaction coordinate calculations.

The heat effects of the insertion processes were calculated as the differences between the total energies E of the final endofullerene and its isolated components before the insertion, taking into account the zero-point vibrational energy corrections, ε_{ZPV}, and the temperature corrections, $H_{\text{corr}} (T = 298 K)$:

$$\Delta H = (E_{\text{tot}} + \varepsilon_{\text{ZPV}} + H_{\text{corr}})_{\text{endofullerene}} - \sum_{\text{He and fullerene}} (E_{\text{tot},i} + \varepsilon_{\text{ZPV},j} + H_{\text{corr},i})$$

Analogously, the activation energies were calculated as the differences between the mentioned energetic parameters of the transition states of the processes and the initial endohedral complexes ($T = 298 K$):

$$E_{\text{act}} = (E_{\text{tot}} + \varepsilon_{\text{ZPV}} + H_{\text{corr}})_{\text{TS}} - \sum_{\text{He and fullerene}} (E_{\text{tot},i} + \varepsilon_{\text{ZPV},j} + H_{\text{corr},i})$$

Unfortunately, the Priroda program does not implement facilities to take into account basis set superposition errors since they are usually included in similar calculations of endohedral complexes (see, e.g., ref. 18–20). However, the error with respect to their neglect is substantially lower than the calculated activation energies (orders of magnitudes are $\sim 10^{0–1}$ vs. $\sim 10^2$ kJ mol$^{-1}$), thus the calculated values are suitable for qualitative mechanistic considerations. Such neglect was previously used in the studies of highly energetic physical32,53 and chemical processes.36,54

To analyze the relation between the activation parameters and fullerene geometry, we calculated squares of the penetrated hexagons, which are auxiliary structural parameters. For this purpose, we divided the hexagons into four triangles, calculated their squares (substituting internuclear distances from the optimized geometries in Heron’s equation), and summed them.

The application of the information theory approach35–41 to endofullerenes was performed by distinguishing the inequivalent atoms in their structures, as in our previous studies.62,63 Accordingly, the probability, p_i, of finding an atom of i type equals N_i/N where N_i is the number of i atoms and $N = \sum N_i$ is the total number of atoms in the molecule. Then, the information entropy (in bits) of the structure under consideration equals:

$$h = -\sum_{i} \frac{N_i}{N} \log_2 \frac{N_i}{N}$$

3 Results and discussion

3.1 Formation of He@C60 endofullerene

Previously, it has been shown that the helium atom is able to penetrate the fullerene cage through the window formed by the 5.6 C–C bond cleavage.27,28 Moreover, according to calculations

$$\Delta H = (E_{\text{tot}} + \varepsilon_{\text{ZPV}} + H_{\text{corr}})_{\text{endofullerene}} - \sum_{\text{He and fullerene}} (E_{\text{tot},i} + \varepsilon_{\text{ZPV},j} + H_{\text{corr},i})$$

Analogously, the activation energies were calculated as the differences between the mentioned energetic parameters of the transition states of the processes and the initial endohedral complexes ($T = 298 K$):

$$E_{\text{act}} = (E_{\text{tot}} + \varepsilon_{\text{ZPV}} + H_{\text{corr}})_{\text{TS}} - \sum_{\text{He and fullerene}} (E_{\text{tot},i} + \varepsilon_{\text{ZPV},j} + H_{\text{corr},i})$$

Unfortunately, the Priroda program does not implement facilities to take into account basis set superposition errors since they are usually included in similar calculations of endohedral complexes (see, e.g., ref. 18–20). However, the error with respect to their neglect is substantially lower than the calculated activation energies (orders of magnitudes are $\sim 10^{0–1}$ vs. $\sim 10^2$ kJ mol$^{-1}$), thus the calculated values are suitable for qualitative mechanistic considerations. Such neglect was previously used in the studies of highly energetic physical32,53 and chemical processes.36,54

To analyze the relation between the activation parameters and fullerene geometry, we calculated squares of the penetrated hexagons, which are auxiliary structural parameters. For this purpose, we divided the hexagons into four triangles, calculated their squares (substituting internuclear distances from the optimized geometries in Heron’s equation), and summed them.

The application of the information theory approach35–41 to endofullerenes was performed by distinguishing the inequivalent atoms in their structures, as in our previous studies.62,63 Accordingly, the probability, p_i, of finding an atom of i type equals N_i/N where N_i is the number of i atoms and $N = \sum N_i$ is the total number of atoms in the molecule. Then, the information entropy (in bits) of the structure under consideration equals:

$$h = -\sum_{i} \frac{N_i}{N} \log_2 \frac{N_i}{N}$$

3 Results and discussion

3.1 Formation of He@C60 endofullerene

Previously, it has been shown that the helium atom is able to penetrate the fullerene cage through the window formed by the 5.6 C–C bond cleavage.27,28 Moreover, according to calculations
by the semiempirical MNDO method, the structure with one broken 5.6 bond (in which the distance between the carbon atoms becomes 2.48 Å) corresponds to a local minimum of the triplet PES. We performed similar PES scanning via the DFT methods PBE/3Z and B3LYP/A1 and found no local minima on the triplet PES: the total energy of the molecular system monotonously grows when the 5.6 bond is extended up to 5 Å (Fig. 1; the results of the B3LYP/A1 are presented in the ESI Materials†). Optimization of the triplet open-C_{60} structures with the bond elongated up to 2.694 and 3.857 Å led to restoration (we chose these distances because they have some “hints” to be the inflection points of the PES obtained by PBE/3Z; note that there are no such “hints” in the case of the B3LYP/A1 scanning). This propensity for restoration of the initial structure was previously noted upon quantum chemical modelling of the compression of the endofullerenes H_{2}O@C_{60} and CH_{4}@C_{60}. The cited studies demonstrate that the C_{60} fullerene is able to restore its initial structure even from the deeper deformed (flattened) states, in which the topology of the carbon skeleton is broken and chemical bonds with fragments of the encapsulated molecules are formed.

As previously shown theoretically, helium may take two positions inside the C_{60} cage, resulting in two structures of He@C_{60} with I_{h} (central position) and C_{3v} (off-center) symmetry point groups. The calculated differences in the total energies and mean polarizabilities of He@C_{60} with center and off-center positions are negligible. X-ray experiments reveal that helium in He@C_{60} is located at the center of the fullerene cage. In our study, we focus on the of formation of the I_{h}-symmetrical He@C_{60}:

\[
\text{He} + \text{C}_{60} \rightarrow \text{He@C}_{60} \quad (4)
\]

This process is slightly endothermic: the calculated heat effect equals +5.3 kJ mol^{-1} (PBE/3Z). The scanning of two possible helium penetrations (via hexagon or pentagon) into the fullerene cage without breaking chemical bonds was performed (Fig. 2). The structures, corresponding to the maxima of the singlet PESs, were used to search for the transition states (Table 1, Fig. 3). The hessian of the transition state of the penetration via the hexagon (TS_{hex}) contains the only imaginary frequency 1139.91 cm^{-1}, corresponding to the passage of the helium atom through the hexagon. In TS_{hex}, the helium atom lies in the plane of the 6-membered ring, and is equidistant from the carbon atoms (L_{HeC} = 1.578 Å). The lengths of the 6.6 and 5.6 bonds of the penetrable hexagon are equal to 1.500 and 1.653 Å (in the pristine fullerene structure, they are 1.399 and 1.453 Å, respectively). The structure of TS_{hex} has a C_{3v} group point symmetry and the activation energy of this process is very high (939.7 kJ mol^{-1}).

The transition state of the alternative mode of helium penetration via the pentagon (TS_{pen}) has lower symmetry (C_{3}). Its carbon skeleton is more distorted compared to TS_{hex}, and the helium atom protrudes from the pentagon plane. The imaginary frequency and activation energy are 869.5 cm^{-1} and 1114.6 kJ mol^{-1}, respectively. Thus, the passage of the He atom through the hexagon is energetically more favorable because it has a lower activation barrier.

3.2 Formation of He@C_{70} endofullerene. A correlation between the activation energies of helium penetration into fullerenes and squares of the hexagons

The C_{70} fullerene molecule has a D_{3h} symmetry point group, thus there are inequivalent atoms of 5 types (a\text{-}e)^{2} and the number of possible modes of helium insertion increases. Taking into account the more favorable penetration through the hexagon obtained in the previous section, we have considered that the higher process

\[
\text{He} + \text{C}_{70} \rightarrow \text{He@C}_{70} \quad (5)
\]

probably occurs through the hexagons abcba, cceded, and ddedde (Fig. 4). Note that reaction (5) in contrast to the similar process (4) is slightly exothermic with the calculated heat effect of −5.4 kJ mol^{-1}. In the He@C_{70} endofullerene, the helium atom lies at the center of the fullerene skeleton, which retains its initial D_{3h} symmetry. The PBE/3Z-calculated structural
parameters, imaginary frequencies, and activation energies are shown in Table 2. Their comparison indicates that helium more favorably penetrates through the hexagon ccedd (the B3LYP/\(L_1\) calculations lead to qualitatively similar results; these values are given in the ESI Materials†).

We found a correlation between the activation energies of the second helium insertion into the \(C_{60}\) fullerene as calculated by the PBE/3\(z\) method and the squares of the hexagons penetrated (Fig. 5). As expected, the larger squares correspond to lower activation barriers. In the aspect of endofullerene chemistry, this correlation means that the activation barriers of the penetration into the fullerene cages do not vary significantly because the hexagons in the molecules of different fullerenes are characterized with almost the same bond lengths and therefore squares.

3.3 Formation of endofullerenes in terms of information entropy

Currently, the dihelium endofullerenes \(\text{He}_2@C_{60}\) and \(\text{He}_2@C_{70}\) have been synthesized, thus the ratios \([\text{He}@C_{60}] : [\text{He}_2@C_{60}]\) and \([\text{He}@C_{70}] : [\text{He}_2@C_{70}]\) measured are 200 : 1 and 20 : 1, respectively.\(^{33,34}\) We calculated the activation energies of the second helium insertion into the \(C_{60}\) and \(C_{70}\) fullerene cages similarly to the first step. We found that the second processes are characterized with insignificantly higher activation energies (Tables 1 and 2; the calculated heat effects of formation of \(\text{He}_2@C_{60}\) and \(\text{He}_2@C_{70}\) from the respective mono-helium endofullerenes equal +44.5 and +18.5 kJ mol\(^{-1}\)). In the case of the \(C_{70}\) fullerene, the activation barriers of the second penetration mimic the first step and decrease in the series: \(\text{abccba} \gg \text{ccdeed} \gg \text{ddedde}\). However, as follows from experimental studies,\(^{33,34}\) the endofullerenes \(\text{He}_2@C_{60/70}\) are formed in substantially lower amounts than their mono-encapsulated analogs. Therefore, the calculated energetic parameters cannot explain the experimentally observed regularities since the lowest activation energies of the first and second steps are related as \(\sim 1 : 1\).

To solve this problem, we paid attention to the volumes of fullerene cages as different volume considerations (based on nuclear\(^{65,66}\) and van der Waals volumes\(^{65}\)) were previously used to explain the processes in fullerene-containing systems. We propose that the efficiency of the insertion process should correlate with the volume of the inner cavity. Therefore, when

Table 1 Structures of the transition states, imaginary frequencies, and activation energies of helium insertion into the \(C_{60}\) fullerene as calculated by the PBE/3\(z\) method

Transition state	\(L_{56}\) \((\text{Å})\)	\(L_{66}\) \((\text{Å})\)	\(L_{\text{He}-C}\) \((\text{Å})\)	\(E_{\text{act}}\) \((\text{kJ mol}^{-1})\)	\(\nu_{\text{imag}}\) \((\text{cm}^{-1})\)
\(\text{TSshex(He + C}_{60}\)	1.653	1.5	1.578	939.7	1139.9i
\(\text{TSpent(He + C}_{60}\)	1.533–2.248	—	1.571–1.591	1114.6	869.5i
\(\text{TSshex(He + He@C}_{60}\)	1.654	1.5	1.578	1143.6i	1143.6i

\(a\) \(L\) is the carbon–carbon bond lengths in the penetrated polygon. \(b\) Hereinafter, the \(L_{\text{He}-C}\) values are the internuclear distances between the helium atoms and the carbon atoms of the polygons being penetrated.

Fig. 3 Schematic of the transition states of helium penetration into the \(C_{60}\) fullerene through its hexagon (left) and pentagon (right).

Fig. 4 Schematic of the transition states of helium penetration into the \(C_{70}\) fullerene through the hexagons abccba (left), ccdeed (center), and ddedde (right).
the first helium atom gets inside, the inner cavity volume becomes smaller, and consequently, the yields of the dihelium endofullerenes are decreased. The abovementioned numerical results corresponding to the considerations are shown in Table 3. In the table, indices 1 and 2 designate the first and the second steps of insertion. The V_1 values are the values of the inner cavities of C$_{60}$ and C$_{70}$ taken from the study of Adams et al. and $V_2 = V_1 - V_{\text{He}}$ (where V_{He} is the van der Waals volume of helium deduced from ref. 67). Unfortunately, the $V_1 : V_2$ ratios are quite close for different endofullerenes; therefore, the inner cavity volumes do not reproduce the experimental ratios [He@C$_{60}$] : [He$_2$@C$_{60}$] and [He@C$_{70}$] : [He$_2$@C$_{70}$].

Previously, the proposition has been made that the stochastic processes (which are not defined by the energetic factor) in fullerene-containing systems may be described in terms of information entropy. This is a structural index that shows the diversity of the molecular system deduced from the number of inequivalent atoms. Within such approach, the molecule is considered a message and its atoms symbols. The atoms of one element located in the same positions belong to one type. This index increases with the number of different atom types in the molecules and its lower molecular structure values are associated with the higher likelihood of their formation in non-equilibrium conditions. Indeed, the use of this quantity allows us to discriminate 14 experimentally achievable fullerenes (including C$_{60}$ and C$_{70}$) from 2079 possible fullerene structures. Later, the information-entropy approach was extrapolated to oxygen allotropes. This encouraged us to analyze the complexity of the title endofullerenes and their analogs with other fillings. For this purpose, we considered together the endofullerenes produced with “hard” (pressure induced) and “gentle” (molecular surgery) synthetic methodologies. Although these approaches essentially differ in their implementations, the underlying processes of insertion have a probabilistic nature.

The calculated information entropies of the endofullerenes are shown in Table 4. We include in our study the cases for which the ratios of singly and doubly encapsulated fullerenes were measured. These are, in addition to helium endofullerenes, their analogs with encapsulated neon atoms,

$$E_{\text{act}} = 4163.9 - 608.84S \quad R^2 = 0.91$$

Fig. 5 Linear correlation between the activation energies of helium penetration into C$_{60}$ and C$_{70}$ through the hexagons and their squares S.

$$\Delta h = \sum_{\text{products}} h_i - \sum_{\text{reactants}} h_j \quad (6)$$

As previously shown, the lower information entropies correspond to a higher probability of chemical structure. In our

Table 3 | Ratios of the activation and volume parameters of the subsequent processes resulting in singly and doubly filled endofullerenes

Process	V_1 (Å3)	V_2 (Å3)	$V_1 : V_2$	E_{act1} (kJ mol$^{-1}$)	E_{act2} (kJ mol$^{-1}$)	$E_{\text{act1}} : E_{\text{act2}}$
Table 4 Symmetries, partitions, and information entropies of C_{60}, C_{70}, and their endohedral complexes

Molecule	Symmetry	Partition	h (bits)
C_{60}	I_h	1 × 60	0.000
He@C_{60}	I_h	1 × 60 + 1 × 1	0.121
He_2@C_{60}	D_{5d}	2 × 20 + 2 × 10 + 1 × 2	2.062
HeN@C_{60}	C_{2v}	9 × 6 + 2 × 3 + 2 × 1	3.549
C_{70}	D_{3h}	2 × 20 + 3 × 10	2.236
He@C_{70}	D_{3h}	2 × 20 + 3 × 10 + 1 × 1	2.311
He_2@C_{70}	D_{3h}	2 × 20 + 3 × 10 + 1 × 2	2.357
HeN@C_{70}	D_{3h}	2 × 20 + 3 × 10 + 1 × 2	2.357
HeN@C_{60}	C_{2v}	5 × 10 + 4 × 5 + 2 × 1	3.218
H_2@C_{70}	D_{3h}	2 × 20 + 3 × 10 + 1 × 2	2.357
(H_2)_{2}@C_{70}	C_{1}	74 × 1	6.209
(H_2O)_{2}@C_{70}	C_{1}	73 × 1	6.190
(H_2O)_{2}@C_{70}	C_{1}	76 × 1	6.248

a Small homoatomic species have zero h values; h = 1 and 0.918 in the case of He···N and H_2O, respectively (according to eqn (3)).

cases, all the calculated Δh values are positive, which reflects the lower probability of the encapsulated fullerenes as compared to the empty fullerenes. A lower Δh should correspond to higher yields of the endofullerenes:

\[\Delta h \sim \frac{1}{[\text{product}]} \]

or applied to our case:

\[\Delta h_1 \sim \frac{1}{[X@C_{60/70}]} \quad \text{and} \quad \Delta h_{tot} \sim \frac{1}{[2X@C_{60/70}]} \]

where Δh_{tot} = Δh_1 + Δh_2 and indices 1 and 2 correspond to the first and the second steps of insertion. Therefore, the following ratio should relate to the observed yields of endofullerenes:

\[[X@C_{60/70}] : [2X@C_{60/70}] \sim \Delta h_{tot} : \Delta h_1 \]

The results of the calculations are presented in Table 5. As observed from the table, the ratios Δh_{tot} : Δh_1 and [X@C_{60/70}] : [2X@C_{60/70}] do not precisely match. However, we may note that there is a qualitative relation between the calculated and experimental values. For example, the relation of the Δh_{tot} : Δh_1 values indicates a 10.6 times higher possibility of dihelium endofullerene formation in the case of C_{70} compared to C_{60} (this estimate is calculated by the division of the respective Δh_{tot} : Δh_1 values). The value deduced from the experimental ratio of [X@C_{70}] : [2X@C_{70}] /[X@C_{60}] : [2X@C_{60}] varies from 10 to 10.6. We additionally included in Table 5 helium–nitrogen endofullerenes although the ratios of the singly and doubly encapsulated species after formation are unknown. Nevertheless, ref. 64 demonstrated the lower probability of formation of HeN@C_{60} than HeN@C_{70} as compared with their singly filled precursors. Such ratio follows from the calculated Δh_{tot} : Δh_1 values (29 : 1 vs. 13 : 1).

Of course, we should note the disadvantages of the information entropy approach. It implies isostuctural endofullerenes (having the same symmetry but differing in the type of encapsulated atoms) demonstrate the same h and Δh_{tot} : Δh_1 values, and according to the approach, the same experimental ratios of singly and doubly filled endofullerenes. This does not take into account the size of the guest. The size should not be neglected: for example, the experiments suggest that the probability of He_2@C_{70} formation is higher than Ne_2@C_{70}^{33,70} which is a consequence of the larger volume of the neon atom.

Another case, which is not described within our approach, is water molecules inside the C_{70} fullerene. The information entropy calculations predict the almost equiprobable formation of H_2O@C_{70} and (H_2O)_2@C_{70} (or even somewhat more probable formation of the doubly filled compound with the ratio 1 : 1.4).

This, unfortunately, contradicts the experimental results of ref. 72, in which the water dimer inside the C_{70} cage is synthesized in substantially smaller amounts. We will analyze the reasons for this mismatch in further studies.

Despite the mentioned disadvantage and qualitative nature of the obtained relations, the information entropy approach demonstrates agreement with the experimental data better than the other approaches based on activation parameters and volume considerations.

4 Conclusions

In the present study, we calculated the activation barriers of helium penetration into the C_{60} and C_{70} fullerenes resulting in...
singly and doubly filled endofullerenes. For the example of C_{60}, we demonstrated the higher favorability of the hexagon than pentagon to be penetrated. The barriers of hexagon penetration of C_{60} and C_{70} are comparably high (~900 KJ mol^{-1}) and do not significantly differ for the two subsequent steps of insertion. Their correlation with the square of the penetrated hexagons has been found. This correlation allows the proposal that the other fullerene cages should reveal almost the same penetrability since the size of the hexagons do not significantly vary from one fullerene to another.

We have shown that the experimental ratios of the yields of X@C_{60/70} and 2X@C_{60/70} are qualitatively described in terms of the information entropy approach using the respective changes in information entropy upon the formation of singly and doubly filled fullerenes. Despite some disadvantages, this approach takes into account the probabilistic nature of the penetration processes. We think that the information approach may be used in future for better understanding of the processes underlying endofullerene formation.

Acknowledgements

The authors are grateful to Russian Foundation for Basic Research (Russia) for financial support (projects 14-03-00467 and 16-03-00822).

Notes and references

1 D. S. Bethune, R. D. Johnson, J. R. Salem, M. S. de Vries and C. S. Yannoni, Nature, 1993, 366, 123.
2 V. I. Sokolov, Russ. Chem. Bull., 1993, 42, 1.
3 S. Liu and S. Sun, J. Organomet. Chem., 2000, 599, 74.
4 S. Guha and K. Nakamoto, Coord. Chem. Rev., 2005, 249, 1111.
5 V. I. Sokolov and I. V. Stankevich, Russ. Chem. Rev., 1993, 62, 419.
6 A. A. Popov, S. Yang and L. Dunsch, Chem. Rev., 2013, 113, 5989.
7 S. Osuna, M. Swart and M. Solá, Chem.–Eur. J., 2009, 15, 13111.
8 T. Weiske, D. K. Boehme and H. Schwarz, J. Phys. Chem., 1991, 95, 8451.
9 T. Weiske, T. Wong, W. Krätschmer, J. K. Terlouw and H. Schwarz, Angew. Chem., Int. Ed. Engl., 1992, 31, 183–185.
10 R. Kleiser, H. Sprang, S. Furrer and E. E. B. Campbell, Z. Phys. D: At., Mol. Clusters, 1993, 28, 89.
11 M. Saunders, H. A. Jiménez-Vázquez, R. J. Cross, S. Mroczkowski, D. I. Freedberg and F. A. L. Anet, Nature, 1994, 367, 256.
12 M. Saunders, R. J. Cross, H. A. Jimenez-Vazquez, R. Shimsh and A. Khong, Science, 1996, 271, 1693.
13 M. Saunders, H. A. Jimenez-Vazquez, R. J. Cross and R. J. Poreda, Science, 1993, 259, 1428.
14 J. J. L. Morton, A. M. Tsyryshkin, A. Ardavan, S. C. Benjamin, K. Porfyrakis, S. A. Lyon and G. A. D. Briggs, Phys. Status Solidi B, 2006, 243, 3028.
15 S. C. Benjamin, A. Ardavan, G. A. D. Briggs, D. A. Britz, D. Gunlycke, J. Jefferson, M. A. G. Jones, D. F. Leigh, B. W. Lovett, A. N. Khlobystov, S. A. Lyon, J. J. L. Morton, K. Porfyrakis, M. R. Sambrook and A. M. Tsyryshkin, J. Phys.: Condens. Matter, 2006, 18, S867.
16 S. Schaefer, K. Huebener, W. Harneit, C. Boehme, K. Fostiropoulos, H. Angermann, J. Rappich, J. Behrends and K. Lips, Solid State Sci., 2008, 10, 1314.
17 K. Akiyama, H. Haba, K. Tsukada, M. Asai, A. Toyoshima, K. Sueki, Y. Nagame and M. Katada, J. Radioanal. Nucl. Chem., 2009, 280, 329.
18 J. Cioslowski and E. D. Fleischmann, J. Chem. Phys., 1991, 94, 3730.
19 W. Even, J. Smith and M. W. Roth, Mol. Simul., 2005, 31, 207.
20 A. A. Levin and N. N. Breslavskaya, Russ. Chem. Bull., 2005, 54, 1999.
21 S. Osuna, M. Swart and M. Solà, Phys. Chem. Chem. Phys., 2011, 13, 3585.
22 Z.-Y. Wang, K.-H. Su, X.-P. Yao, Y.-L. Li and F. Wang, Mater. Chem. Phys., 2010, 119, 406.
23 H. Yan, S. Yu, X. Wang, Y. He, W. Huang and M. Yang, Chem. Phys. Lett., 2008, 456, 223.
24 D. S. Sabirov and R. G. Bulgakov, JETP Lett., 2010, 92, 662.
25 A. V. Marenič, C. J. Cramer and D. G. Truhlar, Chem. Sci., 2013, 4, 2349.
26 J. A. Ludlow, T.-G. Lee and M. S. Pindzola, J. Phys. B: At., Mol. Opt. Phys., 2010, 43, 235202.
27 R. L. Murry and G. E. Scuseria, Science, 1994, 263, 791–793.
28 S. Patchkovskii and W. Thiel, J. Am. Chem. Soc., 1996, 118, 7164.
29 S. Patchkovskii and W. Thiel, J. Am. Chem. Soc., 1998, 120, 556.
30 J. Hrušák, D. K. Böhme, T. Weiske and H. Schwarz, Chem. Phys. Lett., 1992, 193, 97.
31 E. Osawa, Fullerenes, Nanotubes, Carbon Nanostruct., 2012, 20, 299.
32 D. Heymann, S. M. Bachilo and S. Aronson, Fullerenes, Nanotubes, Carbon Nanostruct., 2005, 13, 73.
33 A. Khong, H. A. Jiménez-Vázquez, M. Saunders, R. J. Cross, J. Laskin, T. Peres, C. Lifshitz, R. Strongin and A. B. Smith, J. Am. Chem. Soc., 1998, 120, 6380.
34 T. Sternfeld, R. E. Hoffman, M. Saunders, R. J. Cross, M. S. Syamala and M. Rabinovitz, J. Am. Chem. Soc., 2002, 124, 8786.
35 D. S. Sabirov, J. Phys. Chem. C, 2013, 117, 1178.
36 D. S. Sabirov, A. A. Tukhbatullina and R. G. Bulgakov, Fullerenes, Nanotubes, Carbon Nanostruct., 2015, 23, 835.
37 D. S. Sabirov, A. O. Terentyev, I. S. Shepelevich and R. G. Bulgakov, Comput. Theor. Chem., 2014, 1045, 86.
38 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.
39 D. N. Laikov and Y. A. Ustynyuk, Russ. Chem. Bull., 2005, 54, 820.
40 D. S. Sabirov, R. G. Bulgakov and S. L. Khursan, ARKIVOC, 2011, 8, 200.
41 D. S. Sabirov, RSC Adv., 2014, 4, 44996.
42 A. F. Shestakov, Russ. J. Gen. Chem., 2008, 78, 811.
