Polymerization in a Ferromagnetic Spin Model with Threshold

Emilio N. M. Cirillo and Sebastiano Stramaglia
Dipartimento di Fisica dell’Università di Bari and
Istituto Nazionale di Fisica Nucleare, Sezione di Bari
via Amendola 173, 70126 Bari, Italy
E-mail: cirillo@axpba0.ba.infn.it, stramaglia@axpba5.ba.infn.it

Abstract

We propose a spin model with a new kind of ferromagnetic interaction, which may be called ferromagnetic coupling with threshold. In this model the contribute of a given spin to the total energy has only two possible values and depends on the number of parallel spins among its nearest and next to the nearest neighbors. By mapping the model onto the Ising version of the isotropic eight vertex model, we obtain some evidence of a low temperature phase made of alternate parallel pluses and minuses polymers.

PACS numbers: 05.50.+q (Ising problems); 64.60.-i (General studies of phase transitions).
1. Introduction.

Ising–like spin systems are deeply studied statistical models which have a surprising richness of critical behaviour (see, e. g., [1]). The axial next nearest neighbor Ising (ANNNI) model is the simplest model which describes modulated structures; experimental evidences for such phases are furnished by binary alloys (see, e. g., [2] and [3]). Modulated ordering in ANNNI model is the effect of the competition between ferromagnetic couplings (between nearest neighbor spins) and antiferromagnetic couplings (between second–neighbor spins along one lattice direction). This competition leads to series of commensurate and incommensurate modulated phases of arbitrarily long wavelength (see, e. g., [4]).

In this paper we show that a system where the spins tend to be aligned to the majority of neighbor spins has a low temperature striped phase; this phenomenon is not pointed out by the ANNNI model and might lend some insight to the problem of the formation of striped–like patterns.

The model we propose here is an Ising model where the contribution of a given spin to the hamiltonian is $-\beta$ if the spin is aligned to the majority of its neighbors and $+\beta$ if it is not. In the following we give the definition of the model that we are going to discuss. Let us consider the infinite bidimensional square lattice $\Lambda = \mathbb{Z}^2$ and define a \mathbb{Z}_2 spin variable $s_i \in \{-1, +1\}$ on each site $i \in \Lambda$. We denote by $s \in \Omega = \{-1, +1\}^\Lambda$ a configuration of the system and define the formal hamiltonian

$$H(s) = -\beta \sum_{i \in \Lambda} s_i \phi_i(s) \ ,$$

(1)
where β is a positive real number and

$$\phi_i(s) = \text{sign} \{ \sum_{j=1}^{9} s_{i,j} \} \ \forall i \in \Lambda,$$

(2)

where we have denoted by $s_{i,j}$ $j = 1, \ldots, 9$ the nine spins in the 3×3 squared block B_i centered on the site i. All the equilibrium properties of the model can be obtained from the partition function $Z_{\Lambda}(\beta) = \sum_{s \in \Omega} \exp(-H(s))$.

We remark that $\beta > 0$ induces a sort of ferromagnetic coupling among the spin variables, but model (1) is ferromagnetic in a different fashion with respect to the Ising model $H_I = -\beta \sum_{<i,j>} s_i s_j$, where the sum runs over the pairs of nearest neighbors sites in Λ. We call this kind of coupling ferromagnetic coupling with threshold.

Indeed, let us suppose $s_i = +1$: in the Ising model the contribute of the spin s_i to the total energy of the system decreases when the number of nearest neighbor plus spins increases, hence by increasing the number of plus spins among s_i nearest neighbors we get more and more energetically preferable situations. In our model the contribute of the spin s_i to the total energy has only two possible values: $+\beta$ if the number of plus spins in B_i is less than five, $-\beta$ if it is greater than or equal to five; hence, from the point of view of the spin s_i, the best situation is reached when four of the eight spins in $B_i \setminus \{i\}$ are equal to $+1$ and there is no further energetic gain if the number of plus spins in $B_i \setminus \{i\}$ increases up to eight.

As it will be explained below, due to the freedom in the choice of number and location of the plus (minus) spins around a fixed plus (minus) one, our model shows a very peculiar behaviour at low temperatures. In the following we give some evidence of a critical phase transition to a low temperature phase, which is a sort of “polymer phase” made of alternate
stripes with fluctuating boundaries.

The occurrence of a striped phase does not depend on the geometry of the blocks B_i, which appear in the definition of model (1). We find a striped phase also for the model

$$\tilde{H}(s) = -\beta \sum_{i \in \Lambda} s_i \tilde{\phi}_i(s) \quad \forall s \in \Omega,$$

(3)

where β is the inverse temperature and

$$\tilde{\phi}_i(s) = \text{sign} \left\{ \sum_{j=1}^{5} s_{i,j} \right\} \quad \forall i \in \Lambda,$$

(4)

where we have denoted by $s_{i,j}$ $j = 1, \ldots, 5$ the five spins in the “cross” block C_i containing the site i and its four nearest neighbors.

The hamiltonian (1) is not strictly ferromagnetic, we mean that it does not satisfy the conditions under which Griffiths’s inequalities hold [5]. Indeed by expanding H as a linear combination of products of the spin variables it can be shown that in model (1) the couplings between nearest and next to the nearest neighbor spins are ferromagnetic, but antiferromagnetic terms are present, as well; in the case of model (3) the coupling between nearest neighbors is ferromagnetic, while the coupling between next to the nearest neighbors is antiferromagnetic. In both the two models a competition between ferromagnetic and antiferromagnetic couplings occurs, this is similar to what happen in the case of the ANNNI model.

Due to this competition it is not surprising to find striped phases in our model. We remark that this competition is essentially an “entropic” effect. The spin s_i prefers to have just four parallel spins in $B_i \setminus \{i\}$: this is energetically equivalent to the situation with eight parallel spins in $B_i \setminus \{i\}$, but the former can be realized in many different ways, while the
latter just in one way. The phase transition has been studied by a Renormalization Group Transformation known as “majority rule” (see, e. g., [6, 7]); this is suggested by the structure of hamiltonian (1).

The model (1) has also an interesting interpretation as a “model of atoms”, indeed, it can be seen as a model of a binary alloy, namely a mixture of two species of atoms (say A and B), such as the Ising model (see, e. g., [8]). But in the present case the configurations which are energetically preferred are those in which an A (B) atom has at least four A (B) atoms among its nearest and next to the nearest neighbors, no matter if the number of such atoms is greater than four. Due to this fact the ordered phase is an alternate sequence of stripes of A and B atoms.

The transformation (2) is widely used for the recovering of noisy images and it is known as the median filter (see, e. g., [9]). It follows that the hamiltonian (1) provides a stochastic version of the median filter.

Finally, we observe that in our model each spin is coupled to a boolean function of its neighbors spins; this fact resembles the dynamical rules in the random networks of automata, where each spin is updated according to a random boolean function of its neighbors (finite dimensional case) or to a random boolean function of a certain number k of random spins of the whole network (mean field case, see [10]).

Random network of automata exhibit dynamical phase transitions which can be studied by the “distance method” (see, e. g., [10]). Our results suggest that, in the finite dimensional case, equilibrium phase transitions may arise if one properly chooses the statistical ensemble of the boolean functions.
The paper is organized as follows: in the next section the expansion of hamiltonians (1) and (3) in terms of products of spin variables is performed. In section 3 the phase transition is studied by mapping the model onto the Ising version of the isotropic 8–vertex model. Section 4 summarizes the conclusions.

2. Some properties of the hamiltonian.

In this section we discuss some properties of the model introduced above; in particular we describe its ground states, we give a rough evaluation of its residual entropy and we expand its hamiltonian as sums of products of the spin variables.

Model (1) has an infinite number of ground states, which are the configurations satisfying the constraint

\[s_i = \phi_i(s) \quad \forall i \in \Lambda ; \quad (5) \]

such configurations are called median roots, that is configurations invariant under the median filtering.

A complete characterization of bidimensional median roots is still missing, we refer to [9] for a related discussion and describe them heuristically: a median root is made of two typical kinds of structures, namely cluster–like structures and polymer–like structures. In Fig. 1a we show the smallest cluster which is a root, a 12–spins cluster called minroot while in Fig. 1b a typical polymer structure is depicted.

It follows that the model has a residual entropy; we obtain a rough estimate of it by
considering the model defined on a cylinder of $6 \times N$ sites with $N \to \infty$. On a $6 \times N$ strip (with periodic conditions in the 6–sites direction) we can classify the median roots by the configurations on the last two columns. Taking into account the symmetries of the problem (parity $s \to -s$ and invariance under rotations of the cylinder) leads to 30 not–equivalent classes. A 30×30 transfer matrix $T_{a,b}$ can be defined as the number of “a” roots on the $6 \times (N + 1)$ cylinder obtained by any “b” root on the $6 \times N$ cylinder by adding a column.

The largest eigenvalue of the transfer matrix provides the residual entropy. We do not report here the details, but only quote the result. The largest eigenvalue is found to be $\lambda_0 = 3.57477$ and the residual entropy for site $\frac{1}{6} \ln \lambda_0 = 0.21232$. To our knowledge there is not any estimate in literature for the entropy of the median roots to compare with ours.

In order to expand the hamiltonian (1) as a linear combination of products of the spin variables we recall that if $f(s)$ is function of the \mathbb{Z}_2 spin variables s_i where i ranges over some finite set V, then $f(s)$ may be written in a unique way as

$$f(s) = \sum_X c(X)s(X),$$

where $s(X) = \prod_{i \in X} s_i$, the sum runs over all the subsets $X \subset V$ and the numbers $c(X)$ are given by

$$c(X) = \frac{1}{2^{|V|}} \sum_{s \in \{-1,+1\}^V} s(X)f(s),$$

where $|V|$ is the cardinality of V, that is the number of sites in V.

Now, we observe that H can be written as follows

$$H(s) = -\beta \sum_{i \in \Lambda} f_i(s),$$
where the function \(f_i(s) = s_i \phi_i(s) \) is defined on the finite sets \(B_i \forall i \in \Lambda \). Hence, the function \(f_i(s) \) can be expanded as in equation (3): one has to calculate \(2^9 - 1 = 511 \) coefficients (that is one has to consider all the possible subsets of \(B_i \) except for the empty set). This number could be reduced taking properly into account the symmetries of the hamiltonian.

We have performed a computer assisted calculation of all the coefficients and, by working out the sums in equation (8), we have obtained

\[
H(s) = -\frac{\beta}{2^9} \sum_{i=1}^{15} \gamma_i \sum_{\zeta \in \Gamma_i} s(\zeta),
\]

where the families of clusters \(\Gamma_i \) and the related coefficients \(\gamma_i \) are given in Table 1. We remark that each \(\Gamma_i \) represents a family of a certain kind of cluster of \(\Lambda \) contained in a \(3 \times 3 \) block \(B \); for example, \(\Gamma_1 \) is the family of all the pairs of nearest neighbor sites, \(\Gamma_6 \) is the family of all the plaquettes.

This calculation shows that model (1) is not ferromagnetic (see Table 1) in the sense that it fulfills the hypothesis under which Griffith’s inequalities hold. This model is characterized by ferromagnetic and antiferromagnetic couplings: we observe that the 2–spins interactions are ferromagnetic if two adjacent columns or rows are involved (nearest and next to the nearest spins couplings), while they are antiferromagnetic if the involved columns or rows are at distance two lattice spacings. As in the case of ANNNI model, one may expect that the result of this competition could be a low temperature striped–phase.

By performing the same calculation in the case of model (3) we have obtained

\[
\tilde{H}(s) = -\frac{\beta}{2^5} \left[24 \sum_{<i,j>} s_i s_j - 8 \sum_{<<i,j>>} s_i s_j + 4 \sum_{<<<i,j>>>>} s_i s_j s_k s_l + 12 \sum_{\hat{\Diamond}_{i,j,k,l}} s_i s_j s_k s_l \right],
\]

(10)
where the five sums run respectively over the pairs of nearest neighbors, the pairs of next to
the nearest neighbors, the pairs of second neighbors along the lattice directions, the 4–sites
cluster containing a site i and three of its four nearest neighbors (T–shaped clusters), the
square 4–sites clusters with sides at 45° with respect to the lattice directions.

Even model (3) exhibits a competition between ferromagnetic and antiferromagnetic
couplings, hence we expect a low temperature striped phase in this case, as well.

3. The phase transition.

The structure of the hamiltonian (1) suggests to introduce a new set of dynamical variables
in order to investigate the phase diagram of our model.

Suppose to partition Λ into 3×3 squared blocks B_α where α is the site that is in the
centre of B_α, the collection of all these sites α is denoted by Λ'. On each of these sites α we
define the new variable

$$s'_\alpha = \phi_\alpha \ \forall \alpha \in \Lambda';$$

we have defined the new variables by “integrating” over the fluctuations of the old ones
on squared 3×3 blocks: we expect that the details of the configurations of the system on
the scale of three lattice spacings are inessential to describe the peculiarities of the ordered
phase.

We have, then, introduced a new model defined on the lattice Λ', with space of configu-
rations $\Omega' = \{-1, +1\}^{\Lambda'}$; the equilibrium (unnormalized) measure of this new model is given
by
\[\mu'(s') = \sum_{s \in \Omega} Z(s', s) e^{-H(s)} , \]
where it has been introduced the probability kernel \(Z(s', s) = \prod_{\alpha \in \Lambda'} \delta_{s'_\alpha, \phi_\alpha(s)} \). The formal hamiltonian of the new model is
\[H'(s') = -\log \mu'(s') + \text{const} \ \forall s' \in \Omega'. \]

In order to work out the sum in equation (12) we use the method of the cumulant expansion (see [11]) writing the hamiltonian (1) in the form \(H(s) = H_0(s) + V(s) \ \forall s \in \Omega \), where \(H_0(s) = -\beta \sum_{\alpha \in \Lambda'} s_\alpha \phi_\alpha(s) \) contains the interactions between spins within the same block \(B_\alpha \ \forall \alpha \in \Lambda' \), while \(V(s) = -\beta \sum_{i \in \Lambda \setminus \Lambda'} s_i \phi_i(s) \) contains the interactions between spins belonging to different blocks. By truncating the cumulant expansion at the first order, one can show that the new hamiltonian is in the form
\[-H'(s') = \text{const} + J_{\langle\rangle} \sum_{\langle\alpha\gamma\rangle} s'_\alpha s'_\gamma + J_{\langle\langle\rangle\rangle} \sum_{\langle\langle\alpha\gamma\rangle\rangle} s'_\alpha s'_\gamma + J_{\lbrace\rbrace} \sum_{\lbrace\alpha\gamma\rbrace} s'_\alpha s'_\gamma s'_\delta s'_\eta , \]
where the three sums run respectively over all the pairs of nearest neighbors, next to the nearest neighbors and over all the plaquettes in \(\Lambda' \); we remark that the new model is the Ising version of the isotropic eight vertex model [1]. With a computer assisted calculation we have obtained the new couplings \(J_{\langle\rangle}, J_{\langle\langle\rangle\rangle} \) and \(J_{\lbrace\rbrace} \) as functions of the original coupling \(\beta \) (see Fig. 3); their structure is \(J_\alpha(\beta) = \beta F_\alpha(e^{2\beta}) \), where \(F_\alpha \) are rational functions.

The variables transformation (11) and the calculation of the hamiltonian of the new model amount to perform the “majority rule” Renormalization Group Transformation (see [6, 7]). We remark that for \(\beta \) large enough, with a single step of renormalization, the model (1) is mapped into the eight vertex model (14) with “negative” nearest and next to the nearest
neighbors couplings; that is, starting from a model which is in some sense ferromagnetic, we
obtain a model with antiferromagnetic couplings.

The phase diagram of the eight vertex model is well known (see, e. g., [1, 7, 12]): at
$J_{<<} < 0$ and $|J_{<>}| < 2 |J_{<<}|$ this phase diagram is characterized by a critical surface
separating the paramagnetic and the super antiferromagnetic (SAF) phases, respectively the
high and the low temperature phases. We observe that as β increases from zero to infinity
the renormalized eight vertex model (14) undergoes a second order phase transition from
the paramagnetic to the SAF phase.

Hence, it there exists a value β_c such that at $\beta = \beta_c$ our original model is “critical”; the
high temperature phase is the usual paramagnetic phase: what about the low temperature
one? In terms of the new variables $s'_\alpha \in \Lambda'$ this phase can be characterized by a staggered
magnetization m' defined as the difference between the magnetization on even and odd
columns: $m' = 0$ in the paramagnetic phase, $m' \neq 0$ in the SAF phase. But a column of the
new model corresponds to a strip of length three lattice spacings in model (1); then, at low
temperature, model (1) exhibits an ordered phase made of an alternate sequence of parallel
pluses and minuses polymers, infinitely long and large three lattice spacings (see Fig. 2).
This suggests that the median roots are entropically dominated by polymer–like structures
developing parallel to one of the lattice directions.

We have studied model (3) following the scheme used for model (1); we have partitioned
the lattice Λ as in Fig. 4. The hamiltonian associated to the block variables is

$$
-\tilde{H}'(s') = \text{const} + \tilde{J}_{<>} \sum_{\langle\alpha\gamma\rangle} s'^\alpha s'^\gamma + \tilde{J}_{<<>} \sum_{\langle<\alpha\gamma\rangle>} s'^\alpha s'^\gamma
$$

(15)

with $\tilde{J}_{<>}$ and $\tilde{J}_{<<>}$ depending on β as in Fig. 5.
Even for model (3) the renormalized model exhibits a low temperature SAF phase. Due to the geometry of the cross blocks, in this case the polymers of the low temperature phase are parallel to the dashed lines depicted in Fig. 4.

4. Conclusions.

We have proposed an Ising–like spin model with a new kind of coupling in order to point out that a simple request, such as the tendency of each spin to be aligned to the majority of its neighbors, leads to low temperature striped–phases.

The expansion of the Hamiltonian in terms of products of spin variables pointed out the similarities between our model and ANNNI model; this suggests the hypothesis that the model undergoes a phase transition to a striped–phase.

We studied the model by Renormalization Group methods and at the level of approximation we have considered, first order of cumulant expansion, the phase transition is observed.

The parallel polymerization appears to be characteristic of a ferromagnetic coupling with threshold. In the spirit of the “atomic” interpretation, this implies that the clusters of A atoms, as well as B atoms, turn to be one–dimensional at low temperature, i. e. they loose one dimension.

Our estimations of critical couplings are $\beta_c \sim 25$ for model (1) and $\beta_c \sim 5$ for model (3). The cumulant expansion is known to be relevant near the critical point. A low–temperature series expansion would better describe the model in the limit $\beta \to \infty$; this is not a trivial task, since a rigorous analysis of the statistical properties of the ground states is needed.
This will be the topic of further work.

Acknowledgements

We like to acknowledge L. Angelini, D. Caroppo, G. M. Cicutà, G. Gonnella, G. Nardulli, E. Olivieri, I. Sardella and M. Villani for useful discussions.
References

[1] R. J. Baxter, *Exactly Solved Models in Statistical Mechanics* (Academic Press, London, 1982).

[2] J. Yeomans, *Solid State Physics*, Vol. 41 (Academic Press, Orlando, 1988).

[3] W. Selke, in “Phase Transitions and Critical Phenomena”, Vol. 15, Eds. C. Domb, J. L. Lebowitz (Academic Press, New York, 1992).

[4] M. E. Fisher and W. Selke, Phys. Rev. Lett. 44, 1502 (1980).

[5] R. B. Griffiths, Journal of Mathematical Physics 8, n. 6, 478 (1967) and R.B. Griffiths, Journal of Mathematical Physics 8, n. 6, 484 (1967).

[6] Sheng–Keng Ma, *Modern Theory of Critical Phenomena* (W. A. Benjamin, Inc., 1976).

[7] Th. Niemeijer, J. M. J. van Leeuwen, in “Phase Transitions and Critical Phenomena”, Vol. 6, Eds. C. Domb, M. S. Green (Academic Press, New York, 1976).

[8] K. Huang, *Statistical Mechanics* (John Wiley & Sons, 1987).

[9] T. S. Huang, *Two-Dimensional Digital Signal Processing II* (Springer–Verlag, 1981).

[10] B. Derrida, in *Fundamental Problems in Statical Mechanics VII* (Elsevier Science Publishers B.V., 1990).

[11] Th. Niemeijer, J. M. J. van Leeuwen, Physica 71, 17 (1974); Th. Niemeijer, J. M. J. van Leeuwen, Phys. Rev. Lett. 31, 1411 (1973).
[12] J. M. J. van Leeuwen, Phys. Rev. Lett. 34, 1056 (1975).
Figure Captions

Figure 1: In Fig. 1a the smallest cluster invariant to the transformation (2) is shown: black squares represent plus spins on a minuses background or, vice versa, minus spins on a pluses background. In Fig. 1b a portion of a polymer is depicted. The polymer is supposed to be infinitely long; it satisfies the constraint (3), as well.

Figure 2: The typical low temperature pattern for our model. The average distance between polymers of the same sign is six lattice spacings. The constraint (3) is almost satisfied.

Figure 3: Renormalized couplings as functions of β in the case of model (1). Solid, dashed and dotted lines represent respectively $J_{<<}$, $J_{<<>}$ and J_\square.

Figure 4: The partition of the lattice used to study model (3). The renormalized variables are defined on the blank circles, which form the new lattice.

Figure 5: Renormalized couplings as functions of β in the case of model (3). Solid and dashed lines represent respectively $\tilde{J}_{<>}$ and $\tilde{J}_{<<>}$.
Table Captions

Table 1: The coefficients γ_i, which are present in equation (8), are listed. In the third column the families of clusters Γ_i, to which each coefficient γ_i is related, are briefly described. In the fourth column a typical cluster $\zeta \in \Gamma_i$ is depicted: the grid represents the 3×3 block B in which ζ is contained, the sites of B belonging to ζ are represented by the black circles. We remark that just an example of cluster belonging to Γ_i is depicted in the fourth column; for example, in the case $i = 10$ one can consider the following clusters, as well:

![Clusters Example](image-url)
Table 1

i	γ_i	description of Γ_i	typical cluster in Γ_i
1	+200	pairs of nearest neighbors sites	
2	+240	pairs of next to the nearest neighbors sites	
3	-60	pairs of second-neighbor sites along the lattice directions	
4	-40	2-sites clusters with sites at distance $\sqrt{5}$ lattice spacings	
5	-20	pairs of second-neighbor sites along the lattice diagonals	
6	-80	plaquettes	
7	-40	4-sites clusters containing the center of the block B and occupying a 3×2 rectangular block	
8	-20	4-sites clusters containing the center of the block B and occupying the whole B	
9	+24	4-sites clusters not containing the center of the block B and occupying a 3×2 rectangular block	
10	+12	4-sites clusters not containing the center of the block B and occupying the whole B	
11	+12	6-sites clusters containing the center of the block B and occupying the whole B	
12	+24	6-sites clusters containing the center of the block B and occupying a 3×2 rectangular block	
13	-20	6-sites clusters not containing the center of the block B and, necessarily, occupying the whole block B	
14	-20	8-sites clusters containing the center of the block B	
15	+140	8-sites clusters not containing the center of the block B	
Fig. 1 - Cirillo et al.
Fig. 2 - Cirillo et al.
Fig. 3 - Cirillo et al.
Fig. 4 - Cirillo et al.
Fig. 5 - Cirillo et al.