On the Definitions of Fractional Sum and Difference on Non-uniform Lattices

Jinfa Cheng
School of Mathematical Sciences, Xiamen University,
Xiamen, Fujian, 361005, P. R. China
E-mail: jfcheng@xmu.edu.cn

Abstract
As is well known, the idea of a fractional sum and difference on uniform lattice is more current, and gets a lot of development in this field. But the definitions of fractional sum and fractional difference of \(f(z) \) on non-uniform lattices \(x(z) = c_1z^2 + c_2z + c_3 \) or \(x(z) = c_1q^z + c_2q^{-z} + c_3 \) seem much more difficult and complicated. In this article, for the first time we propose the definitions of the fractional sum and fractional difference on non-uniform lattices by two different ways. The analogue of Euler’s Beta formula, Cauchy’ Beta formula on on non-uniform lattices are established, and some fundamental theorems of fractional calculus, the solution of the generalized Abel equation and fractional central difference equations on non-uniform lattices are obtained etc.

Keywords: Difference equation of hypergeometric type; Non-uniform lattice; Fractional sum; Fractional difference; Special functions
MSC 2010: 33C45, 33D45, 26A33, 34K37

1 Introduction

The definition of non-uniform lattices date back to the approximation of the following differential equation of hypergeometric type:

\[
\sigma(z)y''(z) + \tau(z)y'(z) + \lambda y(z) = 0, \tag{1}
\]

where \(\sigma(z) \) and \(\tau(z) \) are polynomials of degrees at most two and one, respectively, and \(\lambda \) is a constant. Its solutions are some types of special functions of mathematical physics, such as the classical orthogonal polynomials, the hypergeometric and cylindrical functions, see G. E. Andrews, R. Askey, R. Roy \[6\] and Z. X. Wang \[12\], A. F. Nikiforov, V. B. Uvarov and S. K. Suslov \[35, 36\].
generalized Eq. (1) to a difference equation of hypergeometric type case and studied the Nikiforov-Uvarov-Suslov difference equation on a lattice \(x(s) \) with variable step size \(\Delta x(s) = x(s+1) - x(s) \), \(\nabla x(s) = x(s) - x(s-1) \) as

\[
\tilde{\sigma}[x(s)] \frac{\Delta}{\Delta x(s-1/2)} \left(\nabla y(s) \frac{\Delta}{\nabla x(s)} \right) + \frac{1}{2} \tilde{\tau}[x(s)] \left(\frac{\Delta y(s)}{\Delta x(s)} + \frac{\nabla y(s)}{\nabla x(s)} \right) + \lambda y(s) = 0, \tag{2}
\]

where \(\tilde{\sigma}(x) \) and \(\tilde{\tau}(x) \) are polynomials of degrees at most two and one in \(x(s) \), respectively, \(\lambda \) is a constant, \(\Delta y(s) = y(s+1) - y(s) \), \(\nabla y(s) = y(s) - y(s-1) \), and \(x(s) \) is a lattice function that satisfies

\[
\frac{x(s+1) + x(s)}{2} = ax(s) + \frac{1}{2} + \beta, \quad \alpha, \beta \text{ are constants}, \tag{3}
\]

\(x^2(s+1) + x^2(s) \) is a polynomial of degree at most two w.r.t. \(x(s+\frac{1}{2}) \). \(\tag{4} \)

It should be pointed out that the difference equation (2) obtained as a result of approximating the differential equation (1) on a non-uniform lattice is of independent importance and arises in a number of other questions. Its solutions essentially generalized the solutions of the original differential equation and are of interest in their own right \[7, 8, 9\].

Definition 1 \([35, 36]\) Two kinds of lattice functions \(x(s) \) are called non-uniform lattices which satisfy the conditions in Eqs. (3) and (4) are

\[
x(s) = \tilde{c}_1 s^2 + \tilde{c}_2 s + \tilde{c}_3, \tag{5}
\]

\[
x(s) = c_1 q^s + c_2 q^{-s} + c_3, \tag{6}
\]

where \(c_i, \tilde{c}_i \) are arbitrary constants and \(c_1 c_2 \neq 0, \tilde{c}_1 \tilde{c}_2 \neq 0 \). When \(c_1 = 1, c_2 = c_3 = 0 \), or \(\tilde{c}_1 = 1, \tilde{c}_1 = \tilde{c}_3 = 0 \), these two kinds of lattice functions \(x(s) \)

\[
x(s) = s \tag{7}
\]

\[
x(s) = q^s \tag{8}
\]

are called uniform lattices.

Let \(x(s) \) be a non-uniform lattice, where \(s \in \mathbb{C} \). For any real \(\gamma \), \(x_\gamma(s) = x(s + \frac{\gamma}{2}) \) is also a non-uniform lattice. Given a function \(F(s) \), define the difference operator with respect to \(x_\gamma(s) \) as

\[
\nabla_\gamma F(s) = \frac{\nabla F(s)}{\nabla x_\gamma(s)},
\]

and

\[
\nabla_\gamma^k F(z) = \frac{\nabla}{\nabla x_\gamma(z)} \left(\frac{\nabla}{\nabla x_{\gamma+1}(z)} \left(\ldots \frac{\nabla F(z)}{\nabla x_{\gamma+k-1}(z)} \right) \right), \quad (k = 1, 2, \ldots)
\]

The following equalities can be verified straightforwardly.
Proposition 2 Given two functions $f(s), g(s)$ with complex variable s, the following difference equalities hold

\[
\Delta_{\nu}(f(s)g(s)) = f(s + 1)\Delta_{\nu}g(s) + g(s)\Delta_{\nu}f(s) \\
= g(s + 1)\Delta_{\nu}f(s) + f(s)\Delta_{\nu}g(s),
\]

\[
\Delta_{\nu}\left(\frac{f(s)}{g(s)}\right) = \frac{g(s + 1)\Delta_{\nu}f(s) - f(s + 1)\Delta_{\nu}g(s)}{g(s)g(s + 1)} \\
= \frac{g(s)\Delta_{\nu}f(s) - f(s)\Delta_{\nu}g(s)}{g(s)g(s + 1)},
\]

\[
\nabla_{\nu}(f(s)g(s)) = f(s - 1)\nabla_{\nu}g(s) + g(s)\nabla_{\nu}f(s) \\
= g(s - 1)\nabla_{\nu}f(s) + f(s)\nabla_{\nu}g(s),
\]

\[
\nabla_{\nu}\left(\frac{f(s)}{g(s)}\right) = \frac{g(s - 1)\nabla_{\nu}f(s) - f(s - 1)\nabla_{\nu}g(s)}{g(s)g(s - 1)} \\
= \frac{g(s)\nabla_{\nu}f(s) - f(s)\nabla_{\nu}g(s)}{g(s)g(s - 1)}.
\]

The notions of fractional calculus date back to Euler, and in the last decades the fractional calculus had a remarkable development as shown by many mathematical volumes dedicated to it [37, 34, 39, 33, 38, 21, 32], but the idea of a fractional difference on uniform lattice (7) and (8) is more current.

Some of the more extensive papers on the fractional difference on uniform lattice (7), Diaz and Osler [20], Granger and Joyeux [27], Hosking [29] have employed the definition of the α-th order fractional difference by

\[
\nabla^{\alpha}f(x) = \sum_{k=0}^{\infty}(-1)^k \binom{\alpha}{k} f(x - k),
\]

(10)

where α is any real number and the notation ∇^{α} is used since this definition is natural extension of the backward difference operator.

H. H. Gray and N. F. Zhang [28] gave the following new definition of the fractional sum and difference:

Definition 3 ([28]) For α any complex number, and f defined over the integer set $\{a, a + 1, ..., x\}$, the α-th order sum over $\{a, a + 1, ..., x\}$ is defined by

\[
S_{a}^{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \sum_{k=a}^{x}(x - k + 1)_{\alpha-1}f(k).
\]

(11)
For any complex number \(\alpha \) and \(\beta \) let \((\alpha)\beta\) be defined as follows:

\[
(\alpha)\beta = \begin{cases}
\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)}, & \text{when } \alpha \text{ and } \beta \text{ are neither zero nor negative integers,} \\
1, & \text{when } \alpha = \beta = 0, \\
0, & \text{when } \alpha = 0, \beta \text{ is not zero or a negative integer} \\
\text{undefined otherwise}
\end{cases}
\]

and when \(n \in \mathbb{N} \), \((\alpha)n\) denotes the Pochhammer symbol.

Definition 4 \([28]\) For \(\alpha \) any complex number, the \(\alpha \)-th order difference over \(\{a, a+1, \ldots, x\} \) is defined by

\[
\nabla_{a}^{\alpha}f(x) = S_{a}^{-\alpha}f(x).
\] \hspace{1cm} (12)

J. F. Cheng \([16]\) independently gave the following definitions of the fractional sum and difference, which are consistent with Definition 3 and Definition 4, and are well defined for any real or complex number \(\alpha \).

Definition 5 \([16]\) For \(\alpha \) complex number, \(\text{Re}\alpha > 0 \) and \(f \) defined over the integer set \(\{a, a+1, \ldots, x\} \), the \(\alpha \)-th order sum over \(\{a, a+1, \ldots, x\} \) is defined by

\[
\nabla_{a}^{-\alpha}f(x) = \sum_{k=a}^{x} \left[\binom{\alpha}{x-k} f(k) \right],
\] \hspace{1cm} (13)

where \(\binom{\alpha}{n} = \frac{\alpha(\alpha+1)\ldots(\alpha+n-1)}{n!} \).

Definition 6 \([16]\) For \(\alpha \) any complex number, \(n-1 \leq \text{Re}\alpha < n \), the Riemann-Liouville type \(\alpha \)-th order difference over \(\{a, a+1, \ldots, x\} \) is defined by

\[
\nabla_{a}^{\alpha}f(x) = \nabla^{n}\nabla_{a}^{\alpha-n}f(x),
\] \hspace{1cm} (14)

and Caputo type \(\alpha \)-th order difference over \(\{a, a+1, \ldots, x\} \) is defined by

\[
\nabla_{a}^{\alpha}f(x) = \nabla_{a}^{\alpha-n}\nabla^{n}f(x).
\] \hspace{1cm} (15)

In the case of uniform lattice uniform \([8]\), a \(q \)-analogue of the Riemann-Liouville fractional sum operator is introduced in \([2]\) by Al-Salam through

\[
I_{q}^{\alpha}f(x) = x^{\alpha-1} \frac{d}{d_{q}} \frac{\Gamma(\alpha)}{\Gamma(q(\alpha))} \int_{0}^{x} (qt/x; q)_{\alpha-1} f(t) d_{q}(t). \] \hspace{1cm} (16)

The \(q \)-analogue of the Riemann-Liouville fractional difference operator is also given independently by Agarwal \([1]\), who defined the \(q \)-fractional difference to be

\[
D_{q}^{\alpha}f(x) = I_{q}^{-\alpha}f(x) = x^{-\alpha-1} \frac{d}{d_{q}} \frac{\Gamma(-\alpha)}{\Gamma(-q(\alpha))} \int_{0}^{x} (qt/x; q)_{-\alpha-1} f(t) d_{q}(t).
\] \hspace{1cm} (17)
Althought the discrete fractional calculus on uniform lattice (7) and (8) are more current, but great development has been made in this field. In the recent monographs, J. F. Cheng [16], C. Goodrich and A. Peterson [25] provided the comprehensive treatment of the discrete fractional calculus with up-to-date references, and the developments in the theory of fractional q-calculus had been well reported by M. H. Annaby and Z. S. Mansour [3].

But we should mention that, in the case of nonuniform lattices (7) or (8), even when \(n \in \mathbb{N} \), the formula of \(n \)-order difference on non-uniform lattices is a remarkable job, since it is very complicated and difficult to be obtained. In fact, in [35, 36], A. Nikiforov, V. Uvarov, S. Suslov obtained the formula of \(n \)-th difference \(\nabla_1^{(n)}[f(s)] \) as follows:

Definition 7 ([35, 36]) Let \(n \in \mathbb{N}^+ \), for nonuniform lattices (5) or (6), then

\[
\nabla_1^{(n)}[f(s)] = \sum_{k=0}^{n} \frac{(-1)^{n-k} \Gamma(n+1)}{\Gamma(k+1)\Gamma(n-k+1)} \sum_{l=0}^{n} \nabla x[s + k - (n - 1)/2] f(s - n + k)
\]

\[
= \sum_{k=0}^{n} \frac{(-1)^{n-k} \Gamma(n+1)}{\Gamma(k+1)\Gamma(n-k+1)} \sum_{l=0}^{n} \nabla x_n + 1(s - k) f(s - k),
\]

(18)

where \(\Gamma(s)_q \) is modified q-gamma function which is defined as

\[
\Gamma(s)_q = q^{-(s-1)(s-2)/4} \Gamma_q(s),
\]

and function \(\Gamma_q(s) \) is called the q-gamma function; it is a generalization of Euler’s gamma function \(\Gamma(s) \). It is defined by

\[
\Gamma_q(s) = \begin{cases}
\frac{\prod_{k=0}^{\infty} (1-q^k s^{(1-q^k)})^{-1}}{\prod_{k=0}^{\infty} (1-q^k s^{(1-q^k)}):} & \text{when } |q| < 1; \\
q^{-(s-1)(s-2)/2} \Gamma_1/s^{1/q}(s) & \text{when } |q| < 1.
\end{cases}
\]

(19)

After further transformations, A. Nikiforov, V. Uvarov, S. Suslov in [35] rewrittred the formula of \(n \)-th difference \(\nabla_1^{(n)}[f(s)] \) as follows:

Definition 8 ([35]) Let \(n \in \mathbb{N}^+ \), for nonuniform lattices (5) or (6), then

\[
\nabla_1^{(n)}[f(s)] = \sum_{k=0}^{n} \frac{([-n]_q)k}{[k]_q!} \frac{l^{(2s-k+c)}_q}{l^{(2s-k+n+1+c)}_q} f(s-k)\nabla x_{n+1}(s-k),
\]

where

\[
\mu_q = \begin{cases}
\frac{q^2 - q^{s+c}}{q^2 - q^s} & \text{if } x(s) = c_1 q^s + c_2 q^{-s} + c_3; \\
\mu, & \text{if } x(s) = c_1 s^2 + c_2 s + c_3,
\end{cases}
\]

(20)
and
\[c = \begin{cases}
\frac{\log \bar{c}_2}{\log q}, & \text{when } x(s) = c_1 q^s + c_2 q^{-s} + c_3, \\
\bar{c}_2, & \text{when } x(s) = \bar{c}_1 s^2 + \bar{c}_2 s + \bar{c}_3.
\end{cases} \]

Now there exist two important and challenging problems that need to be further discussed:

(1) Assume that \(g(s) \) be a known function, \(f(s) \) be an unknown function, which satisfies the following generalized difference equation on non-uniform lattices

\[\nabla^{[\alpha]}_s [f(s)] = g(s), \tag{21} \]

how to solve generalized difference equation (21)?

(2) However, the related definitions of \(\alpha \)-order fractional sum and \(\alpha \)-order fractional difference on non-uniform lattices are very difficult and interesting problems, they have not been appeared since the monographs [35, 36] were published. Can we give reasonable definitions of fractional sum and difference on non-uniform Lattices?

We think that as the most general discrete fractional calculus on non-uniform Lattices, they will have an independent meaning and lead to many interesting new theories about them. They are the important extension and development of Definition 7, 8 and the discrete fractional calculus.

It is the purpose of this paper to inquire into the feasibility of establishing a fractional calculus of finite difference on nonuniform lattices. In this article, for the first time we propose the definitions of the fractional sum and fractional difference on non-uniform lattices. Then give some fundamental theorems of fractional calculus, such as the analogue of Euler’s Beta formula, Cauchy’ Beta formula, Taylor’s formula on non-uniform lattices are established, and the solution of the generalized Abel equation and fractional central difference equations on non-uniform lattices are obtained etc. The results we obtain are essentially new and appeared in the literature for the first time only recently.

2 Integer sum and Fractional Sum on Non-uniform Lattices

Let \(x(s) \) be a non-uniform lattice, where \(s \in \mathbb{C} \). let \(\nabla x_F(s) = f(s) \). Then

\[F(s) - F(s - 1) = f(s) [x_s(s) - x_s(s - 1)] \]

Choose \(z, a \in \mathbb{C} \), and \(z - a \in \mathbb{N} \). Summing from \(s = a + 1 \) to \(z \), we have

\[F(z) - F(a) = \sum_{s=a+1}^{z} f(s) \nabla x_s(s). \]
Thus, we define
\[
\int_{a+1}^{z} f(s)dv x_\gamma(s) = \sum_{s=a+1}^{z} f(s)\nabla x_\gamma(s).
\]

It is easy to verify that

Proposition 9 Given two function \(F(z), f(z)\) with complex variable \(z, a \in C\), and \(z - a \in N\), we have

(1) \(\nabla_\gamma \left[\int_{a+1}^{z} f(s)dv x_\gamma(s) \right] = f(z)\),

(2) \(\int_{a+1}^{z} \nabla_\gamma F(s)dv x_\gamma(s) = F(z) - F(a)\).

A generalized power \([x(s) - x(z)]^{(n)}\) on nonuniform lattice is given by

\[[x(s) - x(z)]^{(n)} = \prod_{k=0}^{n-1} [x(s) - x(z - k)], (n \in N^+) \]

and a more formal definition and further properties of the generalized powers \([x_\nu(s) - x_\nu(z)]^{(\alpha)}\) on nonuniform lattice are very important, which are defined as follows:

Definition 10 (See [11, 12, 40]) Let \(\alpha \in C\), the generalized powers \([x_\nu(s) - x_\nu(z)]^{(\alpha)}\) are defined by

\[
[x_\nu(s) - x_\nu(z)]^{(\alpha)} = \begin{cases}
\Gamma(s+\alpha) \Gamma(s+z) / \Gamma(s+\alpha+z+1), & \text{if } x(s) = s, \\
\Gamma(s-z+\alpha) \Gamma(s+z+\nu+1) / \Gamma(s-z) \Gamma(s+z+\alpha+1), & \text{if } x(s) = s^2, \\
(q-1)^{\alpha} q^{\alpha(\nu-\alpha+1)/2} \Gamma(s+\alpha) / \Gamma(q(s-z)), & \text{if } x(s) = q^s, \\
\Gamma(\alpha) \prod_{n=1}^{\infty} \left(1 - \frac{s}{n}\right) \Gamma(n+s+\nu+1) / \Gamma(n+s+\alpha+1), & \text{if } x(s) = q^{s+\nu}.
\end{cases}
\]

For the quadratic lattices of the form \((2, 2)\), with \(c = \frac{c^2}{c^2}\),

\[
[x_\nu(s) - x_\nu(z)]^{(\alpha)} = c \alpha \Gamma(s-z+\alpha) \Gamma(s+z+\nu+1) / \Gamma(s-z) \Gamma(s+z+\nu-\alpha+1+1); \tag{22}
\]

For the \(q\)-quadratic lattices of the form \((2, 2)\), with \(c = \frac{\log q}{\log q}\),

\[
[x_\nu(s) - x_\nu(z)]^{(\alpha)} = c_1 (1-q)^{\alpha(\nu+1)/2} \Gamma(q(s-z+\alpha)) / \Gamma(q(s-z)) \Gamma(q(s+z+\nu-\alpha+1+1)); \tag{23}
\]

where \(\Gamma(s)\) is Euler Gamma function and \(\Gamma_q(s)\) is Euler \(q\)-Gamma function which is defined as \([13]\).
Proposition 11 \[11, 12, 40\]. For \(x(s) = c_1q^s + c_2q^{-s} + c_3 \) or \(x(s) = \tilde{c}_1s^2 + \tilde{c}_2s + \tilde{c}_3 \), the generalized power \([x_\nu(s) - x_\nu(z)]^{(\alpha)} \) satisfy the following properties:

\[
[x_\nu(s) - x_\nu(z)][x_\nu(s) - x_\nu(z - 1)]^{(\mu)} = [x_\nu(s) - x_\nu(z)]^{(\mu)}[x_\nu(s) - x_\nu(z - \mu)]
\]

\[= [x_\nu(s) - x_\nu(z)]^{(\mu + 1)}; \quad (25)\]

\[
[x_\nu-1(s + 1) - x_\nu-1(z)]^{(\mu)}[x_\nu-\mu(s) - x_\nu-\mu(z)]
\]

\[= [x_\nu-\mu(s + \mu) - x_\nu-\mu(z)][x_\nu-1(s) - x_\nu-1(z)]^{(\mu)} = [x_\nu(s) - x_\nu(z)]^{(\mu + 1)}; \quad (27)\]

\[
\frac{\Delta_z}{\Delta x_{\nu-\mu+1}(z)}[x_\nu(s) - x_\nu(z)]^{(\mu)} = -\frac{\nabla_z}{\nabla x_{\nu+1}(s)}[x_\nu+1(s) - x_\nu+1(z)]^{(\mu)}
\]

\[= -[\mu]_q[x_\nu(s) - x_\nu(z)]^{(\mu - 1)}; \quad (28)\]

\[
\frac{\nabla_z}{\nabla x_{\nu-\mu+1}(z)}\left\{ \frac{1}{[x_\nu(s) - x_\nu(z)]^{(\mu)}} \right\} = -\frac{\Delta_z}{\Delta x_{\nu-1}(s)}\left\{ \frac{1}{[x_\nu-1(s) - x_\nu-1(z)]^{(\mu)}} \right\}
\]

\[= \frac{[\mu]_q}{[x_\nu(s) - x_\nu(z)]^{(\mu + 1)}}, \quad (30)\]

where \([\mu]_q\) is defined as \([20]\).

Now let us first define the integer sum on non-uniform lattices \(x_\gamma(s) \) in detail, which is very helpful for us to define fractional sum on non-uniform lattices \(x_\gamma(s) \).

For \(\gamma \in R \), the 1-th order sum of \(f(z) \) over \(\{a + 1, a + 2, ..., z\} \) on non-uniform lattices \(x_\gamma(s) \) is defined by

\[
y_1(z) = \nabla^{-1}_\gamma f(z) = \int_{a+1}^{z} f(s) d\nabla x_\gamma(s), \quad (32)\]

then by Proposition \[9\] we have

\[
\nabla^1_\gamma \nabla^{-1}_\gamma f(z) = \frac{\nabla y_1(z)}{\nabla x_\gamma(z)} = f(z), \quad (33)\]

and 2-th order sum of \(f(z) \) over \(\{a + 1, a + 2, ..., z\} \) on non-uniform lattices \(x_\gamma(s) \) is defined by
Meanwhile, we have

\[y_2(z) = \nabla_{\gamma}^{-2} f(z) = \nabla_{\gamma+1}^{-1} [\nabla_{\gamma}^{-1} f(z)] = \int_{a+1}^{z} y_1(s) \, d\varphi x_{\gamma+1}(s) \]
\[= \int_{a+1}^{z} d\varphi x_{\gamma+1}(s) \int_{a+1}^{z} f(t) \, d\varphi x_{\gamma}(t) \]
\[= \int_{a+1}^{z} f(t) \, d\varphi x_{\gamma}(t) \int_{t}^{z} d\varphi x_{\gamma+1}(s) \]
\[= \int_{a+1}^{z} [x_{\gamma+1}(z) - x_{\gamma+1}(t-1)] \, f(s) \, d\varphi x_{\gamma}(s). \] \quad (34)

and 3-th order sum of \(f(z) \) over \(\{a+1, a+2, \ldots, z\} \) on non-uniform lattices \(x_{\gamma}(s) \) is defined by

\[y_3(z) = \nabla_{\gamma}^{-3} f(z) = \nabla_{\gamma+2}^{-1} [\nabla_{\gamma}^{-2} f(z)] = \int_{a+1}^{z} y_2(s) \, d\varphi x_{\gamma+2}(s) \]
\[= \int_{a+1}^{z} d\varphi x_{\gamma+2}(s) \int_{a+1}^{z} [x_{\gamma+1}(s) - x_{\gamma+1}(t-1)] \, f(t) \, d\varphi x_{\gamma}(t) \]
\[= \int_{a+1}^{z} f(t) \, d\varphi x_{\gamma}(t) \int_{t}^{z} [x_{\gamma+1}(s) - x_{\gamma+1}(t-1)] \, d\varphi x_{\gamma+2}(s). \]

In View of Proposition \([1]\) one has

\[\nabla_{\gamma+2}(z) [x_{\gamma+2}(s) - x_{\gamma+2}(t-1)](2) = [2]_{q} [x_{\gamma+1}(s) - x_{\gamma+1}(t-1)], \] \quad (36)

then by the use of Proposition \([9]\) we have

\[\frac{[x_{\gamma+2}(z) - x_{\gamma+2}(t-1)](2)}{[2]_{q}} = \int_{t}^{z} [x_{\gamma+1}(s) - x_{\gamma+1}(t-1)] \, d\varphi x_{\gamma+2}(s). \] \quad (37)

Therefore, we obtain that 3-th order sum of \(f(z) \) over \(\{a+1, a+2, \ldots, z\} \) on non-uniform lattices \(x_{\gamma}(s) \) is

\[y_3(z) = \nabla_{\gamma}^{-3} f(z) = \nabla_{\gamma+2}^{-1} [\nabla_{\gamma}^{-2} f(z)] \]
\[= \frac{1}{[1(3)]_{q}} \int_{a+1}^{z} [x_{\gamma+2}(z) - x_{\gamma+2}(t-1)](2) \, f(s) \, d\varphi x_{\gamma}(s). \] \quad (38)
Mean while, it is easy to know that
\[
\nabla_\gamma^3 \nabla_\gamma^{-3} f(z) = \frac{\nabla}{\nabla x_\gamma(z)} \left(\frac{\nabla}{\nabla x_{\gamma+1}(z)} \left(\frac{\nabla y_3(z)}{\nabla x_{\gamma+2}(z)} \right) \right) = f(z).
\]

(39)

More generally, by the induction, we can define the \(k \)-th order sum of \(f(z) \) over \(\{a + 1, a + 2, \ldots, z\} \) on non-uniform lattices \(x_\gamma(s) \) as
\[
y_k(z) = \nabla_\gamma^{-k} f(z) = \nabla_\gamma^{-1}(\nabla_\gamma^{-(k-1)} f(z)) = \int_{a+1}^{z} y_{k-1}(s) d\nabla x_{\gamma+k-1}(s)
\]
\[
= \frac{1}{[\Gamma(k)]_q} \int_{a+1}^{z} [x_{\gamma+k-1}(z) - x_{\gamma+k-1}(t-1)]^{(k-1)} f(t) d\nabla x_\gamma(t), (k = 1, 2, \ldots)
\]
(40)

where
\[
[\Gamma(k)]_q = \left\{ \begin{array}{ll}
q^{-(k-1)(k-2)} \Gamma_q(k), & \text{if } x(s) = c_1 q^s + c_2 q^{-s} + c_3; \\
\Gamma(\alpha), & \text{if } x(s) = \tilde{c}_1 s^2 + \tilde{c}_2 s + \tilde{c}_3,
\end{array} \right.
\]
which satisfies the following
\[
[\Gamma(k+1)]_q = [k]_q [\Gamma(k)]_q, \quad [\Gamma(2)]_q = [1]_q [\Gamma(1)]_q = 1.
\]

And then we have
\[
\nabla_\gamma^k \nabla_\gamma^{-k} f(z) = \frac{\nabla}{\nabla x_\gamma(z)} \left(\frac{\nabla}{\nabla x_{\gamma+1}(z)} \left(\frac{\nabla y_k(z)}{\nabla x_{\gamma+k-1}(z)} \right) \right) = f(z), (k = 1, 2, \ldots)
\]
(41)

It is noted that the right hand side of (40) is still meaningful when \(k \in C \), so we can give the definition of fractional sum of \(f(z) \) on non-uniform lattices \(x_\gamma(s) \) as follows

Definition 12 (Fractional sum on non-uniform lattices) For any \(\Re \alpha \in \mathbb{R}^+ \), the \(\alpha \)-th order sum of \(f(z) \) over \(\{a + 1, a + 2, \ldots, z\} \) on non-uniform lattices \(x_\gamma(s) \) and (3) is defined by
\[
\nabla_\gamma^\alpha f(z) = \frac{1}{[\Gamma(\alpha)]_q} \int_{a+1}^{z} [x_{\gamma+\alpha-1}(z) - x_{\gamma+\alpha-1}(t-1)]^{(\alpha-1)} f(s) d\nabla x_\gamma(s),
\]
(42)

where
\[
[\Gamma(\alpha)]_q = \left\{ \begin{array}{ll}
q^{-(s-1)(s-2)} \Gamma_q(\alpha), & \text{if } x(s) = c_1 q^s + c_2 q^{-s} + c_3; \\
\Gamma(\alpha), & \text{if } x(s) = \tilde{c}_1 s^2 + \tilde{c}_2 s + \tilde{c}_3,
\end{array} \right.
\]
which satisfies the following
\[
[\Gamma(\alpha+1)]_q = [\alpha]_q [\Gamma(\alpha)]_q.
\]
3 The Analogue of Euler Beta Formula on Non-uniform Lattices

Euler Beta formula is well known as

\[
\int_0^1 (1-t)^{\alpha-1} t^{\beta-1} dt = B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}, \quad (\text{Re} \alpha > 0, \text{Re} \beta > 0)
\]

or

\[
\int_a^z (z-t)^{\alpha-1} (t-a)^{\beta-1} \frac{dt}{\Gamma(\alpha)} = \frac{(z-a)^{\alpha+\beta-1}}{\Gamma(\alpha + \beta)} \quad (\text{Re} \alpha > 0, \text{Re} \beta > 0)
\]

In this section, we obtain the analogue Euler Beta formula on non-uniform lattices. It is very crucial for us to propose several definitions in this manuscript. And it is also of independent importance.

Theorem 13 (Euler Beta formula on non-uniform lattices) For any \(\alpha, \beta \in \mathbb{C}\), then for non-uniform lattices \(x(s)\), we have

\[
\int_a^z \frac{[x_{\beta}(z) - x_{\beta}(t-1)]^{(\beta-1)} [x(t) - x(a)]^{(\alpha)}}{[\Gamma(\beta)]_q [\Gamma(\alpha + 1)]_q} d\gamma x_1(t) = \frac{[x_{\beta}(z) - x_{\beta}(a)]^{(\alpha+\beta)}}{[\Gamma(\alpha + \beta + 1)]_q}.
\]

The proof of **Theorem 13** should use some lemmas.

Lemma 14 For any \(\alpha, \beta\), we have

\[
[\alpha + \beta]_q x(t) - [\alpha]_q x_{\beta}(t) - [\beta]_q x_{\alpha}(t) = \text{const.}
\]

Proof. If we set \(x(t) = \tilde{c}_1 t^2 + \tilde{c}_2 t + \tilde{c}_3\), then left hand side of Eq.(44) is

\[
\text{LHS} = \frac{\tilde{c}_1 [(\alpha + \beta) t^2 - \alpha (t - \beta)^2 - \beta (t + \frac{\alpha}{2})^2]}{\tilde{c}_2 [(\alpha + \beta) t - \alpha (t - \beta) - \beta (t + \frac{\alpha}{2})]} = \frac{-\alpha \beta}{4} (\alpha + \beta) \tilde{c}_1 = \text{const.}
\]

If we set \(x(t) = c_1 q^t + c_2 q^{-t} + c_3\), then left hand side of Eq.(44) is

\[
\text{LHS} = c_1 \left[\frac{q^{\frac{\alpha+\beta}{2}} - q^{-\frac{\alpha+\beta}{2}}}{q^t - q^{-\frac{1}{2}}} q^t - \frac{q^{\frac{\alpha}{2}} - q^{-\frac{\alpha}{2}}}{q^t - q^{-\frac{1}{2}}} q^{t - \frac{t}{2}} - \frac{q^{\frac{\beta}{2}} - q^{-\frac{\beta}{2}}}{q^t - q^{-\frac{1}{2}}} q^{t + \frac{t}{2}} \right] + c_2 \left[\frac{q^{\frac{\alpha+\beta}{2}} - q^{-\frac{\alpha+\beta}{2}}}{q^t - q^{-\frac{1}{2}}} q^{-t} - \frac{q^{\frac{\alpha}{2}} - q^{-\frac{\alpha}{2}}}{q^t - q^{-\frac{1}{2}}} q^{-t - \frac{t}{2}} - \frac{q^{\frac{\beta}{2}} - q^{-\frac{\beta}{2}}}{q^t - q^{-\frac{1}{2}}} q^{-t + \frac{t}{2}} \right] = 0.
\]
Lemma 15. For any α, β, we have

$$[\alpha + 1]q[x_\beta(z) - x_\beta(t - \beta)] - [\beta]q[x_{1-\alpha}(t + \alpha) - x_{1-\alpha}(a)]$$

$$= [\alpha + 1]q[x_\beta(z) - x_\beta(a - \alpha - \beta)]$$

$$- [\alpha + \beta + 1]q[x(t) - x(a - \alpha)].$$

(49)

Proof. (49) is equivalent to

$$[\alpha + \beta + 1]q[x(t) - [\alpha + 1]q x_\beta(t - \beta) - [\beta]q x_{1-\alpha}(t + \alpha)$$

$$= [\alpha + \beta + 1]q x(a - \alpha) - [\alpha + 1]q x_\beta(a - \alpha - \beta) - [\beta]q x_{1-\alpha}(a).$$

(50)

Set $\alpha + 1 = \bar{\alpha}$, we only to prove that

$$[\bar{\alpha} + \beta]q x(t) - [\bar{\alpha}]q x_\beta(t - \beta) - [\beta]q x_{2-\bar{\alpha}}(t + \bar{\alpha} - 1)$$

$$= [\bar{\alpha} + \beta]q x(a - \bar{\alpha} + 1) - [\bar{\alpha}]q x_\beta(a - \bar{\alpha} + 1 - \beta) - [\beta]q x_{2-\bar{\alpha}}(a).$$

(51)

That is

$$[\bar{\alpha} + \beta]q x(t) - [\bar{\alpha}]q x_{-\beta}(t) - [\beta]q x_{-\bar{\alpha}}(t)$$

$$= [\bar{\alpha} + \beta]q x(a - \bar{\alpha} + 1) - [\bar{\alpha}]q x_{-\beta}(a - \bar{\alpha} + 1) - [\beta]q x_{-\bar{\alpha}}(a).$$

(52)

By Lemma 14, Eq. (52) holds, and then Eq. (49) holds. □

Using Proposition 11 and Lemma 15, now it is time for us to prove Theorem 13.

Proof of Theorem 13. Set

$$\rho(t) = [x(t) - x(a)]^{(\alpha)}[x_\beta(z) - x_\beta(t - 1)]^{(\beta-1)},$$

(53)

and

$$\sigma(t) = [x_{1-\alpha}(t + \alpha) - x_{1-\alpha}(a)] [x_\beta(z) - x_\beta(t)].$$

(54)

By Proposition 11 since

$$[x_{1-\alpha}(t + \alpha) - x_{1-\alpha}(a)] [x(t) - x(a)]^{(\alpha)} = [x_{1}(t) - x_{1}(a)]^{(\alpha+1)}$$

(55)

and

$$[x_\beta(z) - x_\beta(t)] [x_\beta(z) - x_\beta(t - 1)]^{(\beta-1)} = [x_\beta(z) - x_\beta(t)]^{(\beta)},$$

(56)

so that we obtain

$$\sigma(t) \rho(t) = [x_{1}(t) - x_{1}(a)]^{(\alpha+1)} [x_\beta(z) - x_\beta(t)]^{(\beta)}.$$

(57)

Making use of

$$\nabla_t [f(t)g(t)] = g(t - 1) \Delta_t [f(t)] + f(t) \nabla_t [g(t)],$$

where

$$f(t) = [x_{1}(t) - x_{1}(a)]^{(\alpha+1)}, g(t) = [x_\beta(z) - x_\beta(t)]^{(\beta)},$$

(58)
let’s calculate the $\frac{\nabla_{x_1(t)} \sigma(t)}{\nabla x_1(t)}$.

From Proposition [11] we have

$$\frac{\nabla_t}{\nabla x_1(t)} [x_1(t) - x_1(a)]^{(\alpha + 1)} = [\alpha + 1]_q [x(t) - x(a)]^{(\alpha)},$$

and

$$\frac{\nabla_t}{\nabla x_1(t)} [x_\beta(z) - x_\beta(t)]^{(\beta)}$$

$$= \frac{\Delta_t}{\Delta x_1(t - 1)} [x_\beta(z) - x_\beta(t - 1)]^{(\beta)}$$

$$= -[\beta]_q [x_\beta(z) - x_\beta(t - 1)]^{(\beta - 1)}.$$

These yield

$$\frac{\nabla_t}{\nabla x_1(t)} [x_1(t) - x_1(a)]^{(\alpha + 1)} [x_\beta(z) - x_\beta(t)]^{(\beta)}$$

$$= [\alpha + 1]_q [x(t) - x(a)]^{(\alpha)} [x_\beta(z) - x_\beta(t - 1)]^{(\beta)}$$

$$- [\beta]_q [x_1(t) - x_1(a)]^{(\alpha + 1)} [x_\beta(z) - x_\beta(t - 1)]^{(\beta - 1)}$$

$$= ([\alpha + 1]_q [x_\beta(z) - x_\beta(t - \beta)] - [\beta]_q [x_1 - \alpha(x + \alpha) - x_1 - \alpha(a)]) \rho(t)$$

$$\equiv \tau(t) \rho(t),$$

(58)

where

$$\tau(t) = [\alpha + 1]_q [x_\beta(z) - x_\beta(t - \beta)] - [\beta]_q [x_1 - \alpha(x + \alpha) - x_1 - \alpha(a)].$$

(59)

This is due to

$$[x_\beta(z) - x_\beta(t - 1)]^{(\beta)} = [x_\beta(z) - x_\beta(t - \beta)][x_\beta(z) - x_\beta(t - 1)]^{(\beta - 1)}.$$

Then from Lemma [13] it yields

$$\tau(t) = [\alpha + 1]_q [x_\beta(z) - x_\beta(a - \alpha - \beta)] - [\alpha + \beta + 1]_q [x(t) - x(a - \alpha)].$$

(60)

So that one gets

$$\frac{\nabla_t}{\nabla x_1(t)} [x_1(t) - x_1(a)]^{(\alpha + 1)} [x_\beta(z) - x_\beta(t)]^{(\beta)}$$

$$= ([\alpha + 1]_q [x_\beta(z) - x_\beta(a - \alpha - \beta)]$$

$$- [\alpha + \beta + 1]_q [x(t) - x(a - \alpha)]) \rho(t).$$

Or

$$\nabla_t [x_1(t) - x_1(a)]^{(\alpha + 1)} [x_\beta(z) - x_\beta(t)]^{(\beta)}$$

$$= ([\alpha + 1]_q [x_\beta(z) - x_\beta(a - \alpha - \beta)]$$

$$- [\alpha + \beta + 1]_q [x(t) - x(a - \alpha)])$$

$$\cdot [x(t) - x(a)]^{(\alpha)} [y_\beta(z) - x_\beta(t - 1)]^{(\beta - 1)} \nabla x_1(t).$$

(61)
Summing from $a + 1$ to z, we have

$$
\sum_{t=a+1}^{z} \nabla_t \left\{ [x_1(t) - x_1(a)]^{(\alpha+1)} [x_\beta(z) - x_\beta(t)]^{(\beta)} \right\}
$$

$$
= \int_{a+1}^{z} \left\{ (\alpha + 1)_q [x_\beta(z) - x_\beta(a - \alpha - \beta)]
- [\alpha + \beta + 1]_q [x(t) - x(a - \alpha)] \right\}
\cdot [x(t) - x(a)]^{(\alpha)} [x_\beta(z) - x_\beta(t - 1)]^{(\beta-1)} d_\varphi x_1(t).
$$

(62)

Set

$$
I(\alpha) = \int_{a+1}^{z} [x_\beta(z) - x_\beta(t - 1)]^{(\beta-1)} [x(t) - x(a)]^{(\alpha)} d_\varphi x_1(t),
$$

and

$$
I(\alpha + 1) = \int_{a+1}^{z} [x_\beta(z) - x_\beta(t - 1)]^{(\beta-1)} [x(t) - x(a)]^{(\alpha+1)} d_\varphi x_1(t).
$$

(63)

(64)

Then from (62) and by the use of Proposition III, one has

$$
\sum_{t=a+1}^{z} \nabla_t \left\{ [x_1(t) - x_1(a)]^{(\alpha+1)} [x_\beta(z) - x_\beta(t)]^{(\beta)} \right\}
$$

$$
= [\alpha + 1]_q [x_\beta(z) - x_\beta(a - \alpha - \beta)] \int_{a+1}^{z} [x(t) - x(a)]^{(\alpha)} [x_\beta(z) - x_\beta(t - 1)]^{(\beta-1)} d_\varphi x_1(t)
- [\alpha + \beta + 1]_q \int_{a+1}^{z} [x(t) - x(a - \alpha)] [x(t) - x(a)]^{(\alpha)} [x_\beta(z) - x_\beta(t - 1)]^{(\beta-1)} d_\varphi x_1(t)
$$

$$
= [\alpha + 1]_q [x_\beta(z) - x_\beta(a - \alpha - \beta)] \int_{a+1}^{z} [x(t) - x(a)]^{(\alpha)} [x_\beta(z) - x_\beta(t - 1)]^{(\beta-1)} d_\varphi x_1(t)
- [\alpha + \beta + 1]_q \int_{a+1}^{z} [x(t) - x(a)]^{(\alpha+1)} [x_\beta(z) - x_\beta(t - 1)]^{(\beta-1)} d_\varphi x_1(t)
$$

$$
= [\alpha + 1]_q [x_\beta(z) - x_\beta(a - \alpha - \beta)] I(\alpha) - [\alpha + \beta + 1]_q I(\alpha + 1).
$$

Since

$$
\sum_{t=a+1}^{z} \nabla_t \left\{ [x_1(t) - x_1(a)]^{(\alpha+1)} [x_\beta(z) - x_\beta(t)]^{(\beta)} \right\} = 0,
$$

(65)

therefore, we have prove that

$$
\frac{I(\alpha + 1)}{I(\alpha)} = \frac{[\alpha + 1]_q [x_\beta(z) - x_\beta(a - \alpha - \beta)]}{[\alpha + \beta + 1]_q}.
$$

(66)

From (66), one has

$$
\frac{I(\alpha + 1)}{I(\alpha)} = \frac{\frac{\Gamma(\alpha+2)}{\Gamma(\alpha+\beta+2)}_q [x_\beta(z) - x_\beta(a)]^{(\alpha+\beta+1)}}{\frac{\Gamma(\alpha+1)}{\Gamma(\alpha+\beta+1)}_q [x_\beta(z) - x_\beta(a)]^{(\alpha+\beta)}}.
$$
So that we can set
\[
I(\alpha) = k \frac{[\Gamma(\alpha + 1)]_q}{[\Gamma(\alpha + \beta + 1)]_q} [x_\beta(z) - x_\beta(a)]^{(\alpha + \beta)},
\]
(67)
where \(k \) is undetermined.

Set \(\alpha = 0 \), then
\[
I(0) = k \frac{1}{[\Gamma(\beta + 1)]_q} [x_\beta(z) - x_\beta(a)]^{(\beta)},
\]
(68)
From (63), one has
\[
I(0) = \int_{a+1}^{z} [x_\beta(z) - x_\beta(t - 1)]^{(\beta - 1)} d_{\nabla} x_1(t)
\]
\[
= \frac{1}{[\beta]_q} [x_\beta(z) - x_\beta(a)]^{(\beta)},
\]
(69)
From (68) and (69), one gets
\[
k = \frac{[\Gamma(\beta + 1)]_q}{[\beta]_q} = [\Gamma(\beta)]_q.
\]
Hence, we obtain that
\[
I(\alpha) = \frac{[\Gamma(\beta)]_q [\Gamma(\alpha + 1)]_q [x_\beta(z) - x_\beta(a)]^{(\alpha + \beta)}},
\]
(70)
and the proof of Theorem 13 is completed.

4 Generalized Abel Equation and Fractional Difference on Non-uniform Lattices

The definition of fractional difference of \(f(z) \) on non-uniform lattices \(x_\gamma(s) \) seems more difficult and complicated. Our idea is to start by solving the generalized Abel equation on non-uniform lattices. In detail, an important question is: Let \(m - 1 < \text{Re}\alpha \leq m \), \(f(z) \) over \(\{a + 1, a + 2, ..., z\} \) be a known function, \(g(z) \) over \(\{a + 1, a + 2, ..., z\} \) be an unknown function, which satisfies the following generalized Abel equation
\[
\nabla^{-\alpha} g(z) = \int_{a+1}^{z} \frac{[x_{\gamma+a-1}(z) - x_{\gamma+a-1}(t - 1)]^{(\alpha - 1)} \Gamma(t)}{[\Gamma(\alpha)]_q} g(t) d_{\nabla} x_\gamma(t) = f(t),
\]
(71)
how to solve generalized Abel equation (71)?

In order to solve equation (71), we should use the fundamental analogue of Euler Beta Theorem 13 on non-uniform lattices.
Theorem 16 (Solution 1 for Abel equation) Set functions $f(z)$ and $g(z)$ over \(\{a + 1, a + 2, \ldots, z\} \) satisfy

\[
\nabla_{\gamma}^{-\alpha} g(z) = f(z), 0 < m - 1 < \text{Re } \alpha \leq m,
\]

then

\[
g(z) = \nabla_{\gamma}^m \nabla_{\gamma + \alpha}^{-m+\alpha} f(z) \tag{72}
\]

holds.

Proof. We only need to prove that

\[
\nabla_{\gamma}^{-m} g(z) = \nabla_{\gamma + \alpha}^{-m-\alpha} f(z).
\]

That is

\[
\nabla_{\gamma + \alpha}^{-[m-\alpha]} f(z) = \nabla_{\gamma + \alpha}^{-[m-\alpha]} \nabla_{\gamma}^{-\alpha} g(z) = \nabla_{\gamma}^{-m} g(z).
\]

In fact, by **Definition 12** we have

\[
\nabla_{\gamma + \alpha}^{-[m-\alpha]} f(z) = \int_{a+1}^{z} \frac{[x_{\gamma+m-1}(z) - x_{\gamma+m-1}(t-1)]^{[m-\alpha-1]}}{[\Gamma(m-\alpha)]_q} f(t) d_{\gamma} x_{\gamma+\alpha}(t)
\]

\[
= \int_{a+1}^{z} \frac{[x_{\gamma+m-1}(z) - x_{\gamma+m-1}(t-1)]^{[m-\alpha-1]}}{[\Gamma(m-\alpha)]_q} d_{\gamma} x_{\gamma+\alpha}(t)
\]

\[
\cdot \int_{a+1}^{z} \frac{[x_{\gamma+\alpha-1}(t) - x_{\gamma+\alpha-1}(s-1)]^{[\alpha-1]}}{[\Gamma(\alpha)]_q} g(s) d_{\gamma} x_{\gamma}(s)
\]

\[
= \int_{a+1}^{z} g(s) \nabla_{\gamma} x_{\gamma}(s) \int_{s}^{z} \frac{[x_{\gamma+m-1}(z) - x_{\gamma+m-1}(t-1)]^{[m-\alpha-1]}}{[\Gamma(m-\alpha)]_q} d_{\gamma} x_{\gamma+\alpha}(t)
\]

\[
\cdot \frac{[x_{\gamma+\alpha-1}(t) - x_{\gamma+\alpha-1}(s-1)]^{[\alpha-1]}}{[\Gamma(\alpha)]_q} d_{\gamma} x_{\gamma+\alpha}(t).
\]

In **Theorem 13**, replacing $a+1$ with s; α with $\alpha - 1$; β with $m-\alpha$, and replacing $x(t)$ with $x_{\nu+a-1}(t)$, then $x_{\beta}(t)$ with $x_{\nu+m-1}(t)$, we can obtain the following equality

\[
\int_{s}^{z} \frac{[x_{\gamma+m-1}(z) - x_{\gamma+m-1}(t-1)]^{[m-\alpha-1]}}{[\Gamma(m-\alpha)]_q} \frac{[x_{\gamma+\alpha-1}(t) - x_{\gamma+\alpha-1}(s-1)]^{[\alpha-1]}}{[\Gamma(\alpha)]_q} d_{\gamma} x_{\gamma+\alpha}(t)
\]

\[
= \frac{[x_{\gamma+m-1}(z) - x_{\gamma+m-1}(s-1)]^{[-m-1]}}{[\Gamma(m)]_q},
\]

therefore, we have

\[
\nabla_{\gamma + \alpha}^{-[m-\alpha]} f(z) = \int_{a+1}^{z} \frac{[x_{\gamma+m-1}(z) - x_{\gamma+m-1}(s-1)]^{[-m-1]}}{[\Gamma(m)]_q} g(s) d_{\gamma} x_{\gamma}(s) = \nabla_{\gamma}^{-m} g(z),
\]

which yields

\[
\nabla_{\gamma}^m \nabla_{\gamma + \alpha}^{-[m-\alpha]} f(z) = \nabla_{\gamma}^m \nabla_{\gamma}^{-m} g(z) = g(z).
\]

16
Inspired by Theorem 16, this is natural that we give the α-th order ($0 < m - 1 < \text{Re}\alpha \leq m$) Riemann-Liouville difference of $f(z)$ as follows:

Definition 17 (Riemann-Liouville fractional difference 1) Let m be the smallest integer exceeding $\text{Re}\alpha$, α-th order Riemann-Liouville difference of $f(z)$ over \{a + 1, a + 2, ..., z\} on non-uniform lattices is defined by

$$\nabla^\alpha f(z) = \nabla^m(\nabla^\alpha f(z)). \tag{73}$$

Formally, in Definition 12 if α is replaced by $-\alpha$, then the RHS of (42) become

$$\int^z_{a + 1} \frac{[x_{\gamma - \alpha - 1}(z) - x_{\gamma - \alpha - 1}(t - 1)]^{(-\alpha - 1)}}{\Gamma(-\alpha)_q} f(t) d\nabla x_\gamma(t) \tag{74}$$

$$= \nabla^\alpha \nabla^{\alpha + n - 1} f(z) = \nabla^\alpha f(z). \tag{75}$$

From (74), we can also obtain α-th order difference of $f(z)$ as follows

Definition 18 (Riemann-Liouville fractional difference 2) Let $\text{Re}\alpha > 0$, α-th order Riemann-Liouville difference of $f(z)$ over \{a + 1, a + 2, ..., z\} on non-uniform lattices can be defined by

$$\nabla^\alpha_{\gamma - \alpha} f(z) = \int^z_{a + 1} \frac{[x_{\gamma - \alpha - 1}(z) - x_{\gamma - \alpha - 1}(t - 1)]^{(-\alpha - 1)}}{\Gamma(-\alpha)_q} f(t) d\nabla x_\gamma(t). \tag{76}$$

Replacing $x_{\gamma - \alpha}(t)$ with $x_\gamma(t)$. Then

$$\nabla^\alpha f(z) = \int^z_{a + 1} \frac{[x_{\gamma - 1}(z) - x_{\gamma - 1}(t - 1)]^{(-\alpha - 1)}}{\Gamma(-\alpha)_q} f(t) d\nabla x_{\gamma + \alpha}(t), \tag{77}$$

where $\alpha \not\in \mathbb{N}$.

5 Caputo fractional Difference on Non-uniform Lattices

In this section, we give suitable definition of Caputo fractional difference on non-uniform lattices.
Theorem 19 (Sum by parts formula) Given two functions \(f(s), g(s) \) with complex variable \(s \), then
\[
\int_{a+1}^{z} g(s)\nabla_{\gamma} f(s) d\varphi x_{\gamma}(s) = f(z)g(z) - f(a)g(a) - \int_{a+1}^{z} f(s-1)\nabla_{\gamma} g(s) d\varphi x_{\gamma}(s),
\]
where \(z, a \in C \), and \(z - a \in N \).

Proof. Make use of Proposition\(^2\) one has
\[
g(s)\nabla_{\gamma} f(s) = \nabla_{\gamma} [f(z)g(z)] - f(s-1)\nabla_{\gamma} g(s),
\]
it yields
\[
g(s)\nabla_{\gamma} f(s)\nabla x_{\gamma}(s) = \nabla_{\gamma} [f(z)g(z)]\nabla x_{\gamma}(s) - f(s-1)\nabla_{\gamma} g(s)\nabla x_{\gamma}(s).
\]
Summing from \(a+1 \) to \(z \) with variable \(s \), then we get
\[
\int_{a+1}^{z} g(s)\nabla_{\gamma} f(s) d\varphi x_{\gamma}(s) = \int_{a+1}^{z} \nabla_{\gamma} [f(z)g(z)]\nabla x_{\gamma}(s) - \int_{a+1}^{z} f(s-1)\nabla_{\gamma} g(s) d\varphi x_{\gamma}(s)
\]
\[
= f(z)g(z) - f(a)g(a) - \int_{a+1}^{z} f(s-1)\nabla_{\gamma} g(s) d\varphi x_{\gamma}(s).
\]

The idea of the definition of Caputo fractional difference on non-uniform lattices is also inspired by the the solution of generalized Abel equation \([71]\). In section 4, we have obtained that the solution of the generalized Abel equation
\[
\nabla_{\gamma}^{-\alpha} g(z) = f(z), 0 < m - 1 < \alpha \leq m,
\]
is
\[
g(z) = \nabla_{\gamma}^{\alpha} f(z) = \nabla_{\gamma}^{m} \nabla_{\gamma}^{-m+\alpha} f(z).
\]
Now we will give a new expression of \((78)\) by parts formula. In fact, we have
\[
\nabla_{\gamma}^{\alpha} f(z) = \nabla_{\gamma}^{m} \nabla_{\gamma}^{-m+\alpha} f(z) = \nabla_{\gamma}^{m} \nabla_{\gamma}^{m-\alpha} f(z)
\]
\[
= \nabla_{\gamma}^{m} \int_{a+1}^{z} \frac{[x_{\gamma+m-1}(z) - x_{\gamma+m-1}(s-1)]^{m-\alpha}}{[\Gamma(m-\alpha)]_{q}} f(s) d\varphi x_{\gamma+m-1}(s).
\]

In view of the identity
\[
\nabla_{(s)}[x_{\gamma+m-1}(z) - x_{\gamma+m-1}(s-1)]^{(m-\alpha)} \nabla x_{\gamma+m-1}(s) = \Delta_{(s)}[x_{\gamma+m-1}(z) - x_{\gamma+m-1}(s-1)]^{(m-\alpha)} \Delta x_{\gamma+m-1}(s-1)
\]
\[
= -[m-\alpha]_{q}[x_{\gamma+m-1}(z) - x_{\gamma+m-1}(s-1)]^{(m-\alpha-1)},
\]
then the expression
\[
\int_{a+1}^{z} \frac{[x_{\gamma+m-1}(z) - x_{\gamma+m-1}(s-1)]^{(m-\alpha-1)}}{[\Gamma(m-\alpha)]_{q}} f(s) d\varphi x_{\gamma+m-1}(s)
\]
can be written as

\[
\int_{a+1}^{\gamma} f(s) \nabla_{(s)} \left\{ \frac{-[x_{\gamma} m - 1(z) - x_{\gamma} m - 1(s)](m-\alpha)}{[\Gamma(m - \alpha + 1)]_q} \right\} d\varphi x_{\gamma} m - 1(s).
\]

Further, consider

\[
\int_{a+1}^{\gamma} f(s) \nabla_{\gamma m - 1} \left\{ \frac{-[x_{\gamma} m - 1(z) - x_{\gamma} m - 1(s)](m-\alpha)}{[\Gamma(m - \alpha + 1)]_q} \right\} d\varphi x_{\gamma} m - 1(s).
\]

Summing by parts formula, we get

\[
\int_{a+1}^{\gamma} f(s) \nabla_{\gamma m - 1} \left\{ \frac{-[x_{\gamma} m - 1(z) - x_{\gamma} m - 1(s)](m-\alpha)}{[\Gamma(m - \alpha + 1)]_q} \right\} d\varphi x_{\gamma} m - 1(s)
= f(a) \frac{[x_{\gamma} m - 1(z) - x_{\gamma} m - 1(a)](m-\alpha)}{[\Gamma(m - \alpha + 1)]_q}
+ \int_{a+1}^{\gamma} \left\{ \frac{[x_{\gamma} m - 1(z) - x_{\gamma} m - 1(s - 1)](m-\alpha)}{[\Gamma(m - \alpha + 1)]_q} \right\} \nabla_{\gamma m - 1}[f(s)] d\varphi x_{\gamma} m - 1(s).
\]

Therefore, it reduce to

\[
\int_{a+1}^{\gamma} \left\{ \frac{[x_{\gamma} m - 1(z) - x_{\gamma} m - 1(s - 1)](m-\alpha)}{[\Gamma(m - \alpha + 1)]_q} \right\} \nabla_{\gamma m - 1}[f(s)] d\varphi x_{\gamma} m - 1(s).
\] (80)

Further, consider

\[
\int_{a+1}^{\gamma} \left\{ \frac{[x_{\gamma} m - 1(z) - x_{\gamma} m - 1(s - 1)](m-\alpha)}{[\Gamma(m - \alpha + 1)]_q} \right\} \nabla_{\gamma m - 1}[f(s)] d\varphi x_{\gamma} m - 1(s).
\] (81)

By the use of the identity

\[
\nabla_{(s)}[x_{\gamma} m - 1(z) - x_{\gamma} m - 1(s)](m-\alpha + 1) = \frac{\Delta_{(s)}[x_{\gamma} m - 1(z) - x_{\gamma} m - 1(s - 1)](m-\alpha + 1)}{\Delta x_{\gamma} m - 1(s - 1)} = -[m - \alpha + 1]_q [x_{\gamma} m - 1(z) - x_{\gamma} m - 1(s - 1)](m-\alpha),
\]

the expression (81) can be written as

\[
\int_{a+1}^{\gamma} \nabla_{\gamma m - 1}[f(s)] \nabla_{(s)} \left\{ \frac{[x_{\gamma} m - 1(z) - x_{\gamma} m - 1(s - 1)](m-\alpha + 1)}{[\Gamma(m - \alpha + 2)]_q} \right\} d\varphi s
= \int_{a+1}^{\gamma} \nabla_{\gamma m - 1}[f(s)] \nabla_{\gamma m - 2} \left\{ \frac{[x_{\gamma} m - 1(z) - x_{\gamma} m - 1(s - 1)](m-\alpha + 1)}{[\Gamma(m - \alpha + 2)]_q} \right\} d\varphi x_{\gamma} m - 2(s).
\]
Summing by parts formula, we have

\[
\int_{a+1}^{z} \nabla_{\gamma+\alpha-1}[f(s)]\nabla_{\gamma+\alpha-2}\left(\frac{x_{\gamma+m-1}(z) - x_{\gamma+m-1}(s-1)}{\Gamma(m - \alpha + 2)}\right) d\nabla_{\gamma+\alpha-2}(s) \\
= \nabla_{\gamma+\alpha-1}f(a)\frac{[x_{\gamma+m-1}(z) - x_{\gamma+m-1}(a)](m-\alpha+1)}{\Gamma(m - \alpha + 2)} + \\
+ \int_{a+1}^{z} \frac{[x_{\gamma+m-1}(z) - x_{\gamma+m-1}(s-1)](m-\alpha+1)}{\Gamma(m - \alpha + 2)} \nabla_{\gamma+\alpha-1}f(s)d\nabla_{\gamma+\alpha-1}(s) \\
= \nabla_{\gamma+\alpha-1}f(a)\frac{[x_{\gamma+m-1}(z) - x_{\gamma+m-1}(a)](m-\alpha+1)}{\Gamma(m - \alpha + 2)} + \\
+ \int_{a+1}^{z} \frac{[x_{\gamma+m-1}(z) - x_{\gamma+m-1}(s-1)](m-\alpha+1)}{\Gamma(m - \alpha + 2)} \nabla_{\gamma+\alpha-2}^2f(s)d\nabla_{\gamma+\alpha-2}(s) \\
\quad \quad (82)
\]

Therefore, we conclude that

\[
\int_{a+1}^{z} \frac{[x_{\gamma+m-1}(z) - x_{\gamma+m-1}(s-1)](m-\alpha)}{\Gamma(m - \alpha + 1)} \nabla_{\gamma+\alpha-1}f(s)d\nabla_{\gamma+\alpha-1}(s) \\
= \nabla_{\gamma+\alpha-1}f(a)\frac{[x_{\gamma+m-1}(z) - x_{\gamma+m-1}(a)](m-\alpha+1)}{\Gamma(m - \alpha + 2)} + \\
+ \int_{a+1}^{z} \frac{[x_{\gamma+m-1}(z) - x_{\gamma+m-1}(s-1)](m-\alpha+1)}{\Gamma(m - \alpha + 2)} \nabla_{\gamma+\alpha-2}^2f(s)d\nabla_{\gamma+\alpha-2}(s) \\
\quad \quad (82)
\]

In the same way, by mathematical induction we can obtain

\[
\int_{a+1}^{z} \frac{[x_{\gamma+m-1}(z) - x_{\gamma+m-1}(s-1)](m-\alpha+k-1)}{\Gamma(m - \alpha + k)} \nabla_{\gamma+\alpha-k}f(s)d\nabla_{\gamma+\alpha-k}(s) \\
= \nabla_{\gamma+\alpha-k}f(a)\frac{[x_{\gamma+m-1}(z) - x_{\gamma+m-1}(a)](m-\alpha+k)}{\Gamma(m - \alpha + k + 1)} + \\
+ \int_{a+1}^{z} \frac{[x_{\gamma+m-1}(z) - x_{\gamma+m-1}(s-1)](m-\alpha+k)}{\Gamma(m - \alpha + k + 1)} \nabla_{\gamma+\alpha-(k+1)}^2f(s)d\nabla_{\gamma+\alpha-(k+1)}(s). \\
\quad \quad (83)
\]

\[(k = 0, 1, \ldots, m - 1)\]
Substituting (80), (82) and (83) into (79), we get

\[
\begin{align*}
\nabla_\gamma^\alpha f(z) &= \nabla_\gamma^m \left\{ f(a) \frac{[x_{\gamma+m-1}(z) - x_{\gamma+m-1}(a)]^{(m-\alpha)}}{\Gamma(m - \alpha + 1)} \right\} + \\
&+ \nabla_\gamma^{\alpha - 1} f(a) \frac{[x_{\gamma+m-1}(z) - x_{\gamma+m-1}(a)]^{(m-\alpha+1)}}{\Gamma(m - \alpha + 2)} + \\
&+ \nabla_\gamma^{\alpha - k} f(a) \frac{[x_{\gamma+m-1}(z) - x_{\gamma+m-1}(a)]^{(m-\alpha+k)}}{\Gamma(m - \alpha + k + 1)} + \\
&+ \ldots + \nabla_\gamma^{m-1} f(a) \frac{[x_{\gamma+m-1}(z) - x_{\gamma+m-1}(a)]^{(2m-\alpha-1)}}{\Gamma(2m - \alpha)} + \\
&+ \int_a^z \frac{[x_{\gamma+m-1}(z) - x_{\gamma+m-1}(s-1)]^{(2m-\alpha-1)}}{\Gamma(2m - \alpha)} \nabla_\gamma^{m} f(s) d\nabla x_{\gamma+m}(s) \\
&= \nabla_\gamma^m \left\{ \sum_{k=0}^{m-1} \nabla_\gamma^{\alpha - k} f(a) \frac{[x_{\gamma+m-1}(z) - x_{\gamma+m-1}(a)]^{(m-\alpha+k)}}{\Gamma(m - \alpha + k + 1)} + \\
&+ \nabla_\gamma^{\alpha - 2m} \nabla_\gamma^{m} f(z) \right\} \\
&= \sum_{k=0}^{m-1} \nabla_\gamma^{\alpha - k} f(a) \frac{[x_{\gamma-1}(z) - x_{\gamma-1}(a)]^{(-\alpha+k)}}{\Gamma(-\alpha + k + 1)} + \nabla_\gamma^{\alpha - m} \nabla_\gamma^{m} f(z).
\end{align*}
\]

As a result, we have the following

Theorem 20 (Solution for Abel equation) Set functions \(f(z) \) and \(g(z) \) over \(\{a + 1, a + 2, \ldots, z\} \) satisfy

\[
\nabla_\gamma^{-\alpha} g(z) = f(z), \quad 0 < m - 1 < \text{Re} \alpha \leq m,
\]

then

\[
g(z) = \sum_{k=0}^{m-1} \nabla_\gamma^{\alpha - k} f(a) \frac{[x_{\gamma-1}(z) - x_{\gamma-1}(a)]^{(-\alpha+k)}}{\Gamma(-\alpha + k + 1)} + \nabla_\gamma^{\alpha - m} \nabla_\gamma^{m} f(z)
\]

(84)

holds.

Inspired by **Theorem 20** This is also natural that we give the \(\alpha \)-th order Caputo fractional difference of \(f(z) \) as follows:

Definition 21 (Caputo fractional difference) Let \(m \) be the smallest integer exceeding \(\text{Re} \alpha \), \(\alpha \)-th order Caputo fractional difference of \(f(z) \) over \(\{a + 1, a + 2, \ldots, z\} \) on non-uniform lattices is defined by

\[
C^\alpha \nabla_\gamma^m f(z) = \nabla_\gamma^{\alpha - m} \nabla_\gamma^{m} f(z).
\]

(85)
6 Some Propositions and Theorems

Some fundamental Propositions, Theorems and Taylor formula on non-uniform lattices are very important. We will take effort to establish it in this section. First, it is easy to prove that

Lemma 22 Let \(\alpha > 0 \), then

\[
\nabla^{-\alpha_1} = \frac{[x_{\gamma+\alpha-1}(z) - x_{\gamma+\alpha-1}(a)]^{(\alpha)}}{[\Gamma(\alpha + 1)]_q}.
\]

Proof. By the use of Proposition 11, one has

\[
\nabla_{-t} \left[x_{\gamma+\alpha-1}(z) - x_{\gamma+\alpha-1}(t) \right]^{(\alpha)} \nabla_{x_{\gamma}} f(t) = -[\alpha]_q [x_{\gamma+\alpha-1}(z) - x_{\gamma+\alpha-1}(t-1)]^{(\alpha-1)}. \quad (86)
\]

It is easy to know that

\[
\nabla^{-\alpha_1} = \sum_{t=a+1}^{z} \frac{[x_{\gamma+\alpha-1}(z) - x_{\gamma+\alpha-1}(t-1)]^{(\alpha-1)}}{[\Gamma(\alpha)]_q} \nabla_{x_{\gamma}} f(t)
\]

\[
= - \sum_{t=a+1}^{z} \nabla_{t} [x_{\gamma+\alpha-1}(z) - x_{\gamma+\alpha-1}(t)]^{(\alpha)}
\]

\[
= \frac{[x_{\gamma+\alpha-1}(z) - x_{\gamma+\alpha-1}(a)]^{(\alpha)}}{[\Gamma(\alpha + 1)]_q}. \quad (87)
\]

Theorem 23 (Taylor Theorem) Let \(k \in \mathbb{N} \), then

\[
\nabla^{-k} \nabla_{x_{\gamma}}^k f(z) = f(z) - f(a) - \nabla_{\gamma}^1 f(a) [x_{\gamma+1}(z) - x_{\gamma+1}(a)]
\]

\[
- \frac{1}{[2]_q!} \nabla_{\gamma+2}^k f(a) [x_{\gamma+2}(z) - x_{\gamma+2}(a)]^{(2)}
\]

\[
- \cdots - \frac{1}{[k-1]_q!} \nabla_{\gamma+k-1}^1 f(a) [x_{\gamma+k-1}(z) - x_{\gamma+k-1}(a)]^{(k-1)}
\]

\[
= f(z) - \sum_{j=0}^{k-1} \frac{1}{[j]_q!} \nabla_{\gamma+k-j}^j f(a) [x_{\gamma+k-j}(z) - x_{\gamma+k-j}(a)]^{(j)}. \quad (88)
\]

Proof. When \(k = 1 \), we should prove that

\[
\nabla_{\gamma}^{-1} \nabla_{x_{\gamma}}^1 f(z) = f(z) - f(a). \quad (89)
\]

In fact, one has

\[
LHS = \sum_{s=a+1}^{z} \nabla_{\gamma}^1 f(s) \nabla_{x_{\gamma}} f(s) = \sum_{s=a+1}^{z} \nabla f(s) = f(z) - f(a).
\]
When $k = 2$, we should prove that
\[
\nabla^2_\gamma \nabla^2_\eta f(z) = f(z) - f(a) - \nabla^1_\eta f(a)[x_{\gamma+1}(z) - x_{\gamma+1}(a)].
\]
(90)

Actually, we have
\[
\nabla^2_\gamma \nabla^2_\eta f(z) = \nabla^1_\gamma \nabla^1_\eta \nabla^1_\gamma \nabla^1_\eta f(z) = \nabla^1_\gamma [\nabla^1_\gamma \nabla^1_\eta] \nabla^1_\gamma \nabla^1_\eta f(z),
\]
by the use of (89) and Lemma 22 we have
\[
\nabla^{-1}_{\gamma+1}[\nabla^{-1}_{\gamma} \nabla^1_{\gamma+1}] \nabla^1_{\gamma+1} f(z) = \nabla^{-1}_{\gamma+1}[\nabla^1_{\gamma+1} f(z) - \nabla^1_{\gamma+1} f(a)]
= f(z) - f(a) - \nabla^{-1}_{\gamma+1}[\nabla^1_{\gamma+1} f(a)]
= f(z) - f(a) - \nabla^1_{\gamma+1} f(a)[x_{\gamma+1}(z) - x_{\gamma+1}(a)].
\]
(91)

Assume that when $n = k$, (88) holds, then for $n = k + 1$, we should prove that
\[
\nabla^{-(k+1)} \nabla^1_{\gamma} f(z) = f(z) - \sum_{j=0}^{k} \frac{1}{[j]!q^j} \nabla^j_{\gamma+k-j} f(a)[x_{\gamma+k}(z) - x_{\gamma+k}(a)]^{[j]}.
\]
(92)

In fact, we have
\[
\nabla^{-(k+1)} \nabla^1_{\gamma} f(z) = \nabla^{-1}_{\gamma+k} \nabla^1_{\gamma} \nabla^1_{\gamma+k} \nabla^1_{\gamma+k} f(z) = \nabla^{-1}_{\gamma+k} [\nabla^{-1}_{\gamma} \nabla^1_{\gamma+k}] \nabla^1_{\gamma+k} f(z)
= \nabla^{-1}_{\gamma+k} [\nabla^1_{\gamma+k} f(z) - \sum_{j=0}^{k-1} \frac{1}{[j]!q^j} \nabla^j_{\gamma+k-j} \nabla^1_{\gamma+k} f(a)[x_{\gamma+k-1}(z) - x_{\gamma+k-1}(a)]^{[j]}]
= f(z) - f(a) - \sum_{j=0}^{k-1} \frac{1}{[j+1]!q^j} \nabla^j_{\gamma+k-j} \nabla^1_{\gamma+k} f(a)[x_{\gamma+k-1}(z) - x_{\gamma+k-1}(a)]^{[j+1]}
\]
(93)
\[
= f(z) - \sum_{j=0}^{k} \frac{1}{[j]!q^j} \nabla^j_{\gamma+k-j} f(a)[x_{\gamma+k}(z) - x_{\gamma+k}(a)]^{[j]},
\]
(94)
the last equation holds is due to
\[
\frac{\nabla}{\nabla x_{\gamma+k}(z)} \nabla^{-1}_{\gamma+k} [x_{\gamma+k-1}(z) - x_{\gamma+k-1}(a)]^{[j]} = [x_{\gamma+k-1}(z) - x_{\gamma+k-1}(a)]^{[j]}
\]
\[
= \frac{1}{[j+1]q} \frac{\nabla}{\nabla x_{\gamma+k}(z)} [x_{\gamma+k}(z) - x_{\gamma+k}(a)]^{[j+1]},
\]
(95)
hence it holds that
\[
\nabla^{-1}_{\gamma+k} [x_{\gamma+k-1}(z) - x_{\gamma+k-1}(a)]^{[j]} = \frac{1}{[j+1]q} [x_{\gamma+k}(z) - x_{\gamma+k}(a)]^{[j+1]}.
\]
(96)
Proposition 24 For any $\Re \alpha, \Re \beta > 0$, we have

$$\nabla_{\gamma + \alpha}^{-\beta} \nabla_{\gamma}^{-\alpha} f(z) = \nabla_{\gamma + \alpha}^{-\beta} f(z) = \nabla_{\gamma}^{-(\alpha + \beta)} f(z). \quad (97)$$

Proof. By Definition [12] we have

$$\nabla_{\gamma + \alpha}^{-\beta} \nabla_{\gamma}^{-\alpha} f(z) = \sum_{t=\alpha+1}^{z} \frac{[x_{\gamma + \alpha + \beta - 1}(z) - x_{\gamma + \alpha + \beta - 1}(t - 1)]^{(\beta - 1)}}{[\Gamma(\beta)]_q} \nabla_{\gamma}^{-\alpha} f(t) \nabla_{\gamma + \alpha}(t)$$

$$= \sum_{t=\alpha+1}^{z} \frac{[x_{\gamma + \alpha + \beta - 1}(z) - x_{\gamma + \alpha + \beta - 1}(t - 1)]^{(\beta - 1)}}{[\Gamma(\beta)]_q} \nabla_{\gamma + \alpha}(t)$$

$$+ \sum_{s=\alpha+1}^{t} \frac{[x_{\gamma + \alpha - 1}(t) - x_{\gamma + \alpha - 1}(s - 1)]^{(\alpha - 1)}}{[\Gamma(\alpha)]_q} f(s) \nabla_{\gamma}(s)$$

$$= \sum_{s=\alpha+1}^{z} \frac{[x_{\gamma + \alpha - 1}(t) - x_{\gamma + \alpha - 1}(s - 1)]^{(\alpha - 1)}}{[\Gamma(\alpha)]_q} f(s) \nabla_{\gamma + \alpha}(t).$$

In Theorem [13], replacing $a + 1$ with $s; \alpha$ with $\alpha - 1$; and replacing $x(t)$ with $x_{\nu + \alpha - 1}(t)$, then $x_{\beta}(t)$ with $x_{\nu + \alpha + \beta - 1}(t)$, we get that

$$\sum_{s=\alpha+1}^{z} \frac{[x_{\gamma + \alpha + \beta - 1}(z) - x_{\gamma + \alpha + \beta - 1}(t - 1)]^{(\beta - 1)}}{[\Gamma(\beta)]_q} \nabla_{\gamma + \alpha}(t)$$

$$\cdot \frac{[x_{\gamma + \alpha - 1}(t) - x_{\gamma + \alpha - 1}(s - 1)]^{(\alpha - 1)}}{[\Gamma(\alpha)]_q} \nabla_{\gamma + \alpha}(t)$$

$$= \frac{[x_{\gamma + \alpha + \beta - 1}(z) - x_{\gamma + \alpha + \beta - 1}(s - 1)]^{(\alpha + \beta - 1)}}{[\Gamma(\alpha + \beta)]_q}$$

it yields

$$\nabla_{\gamma + \alpha}^{-\beta} \nabla_{\gamma}^{-\alpha} f(z) = \sum_{s=\alpha+1}^{z} \frac{[x_{\gamma + \alpha + \beta - 1}(z) - x_{\gamma + \alpha + \beta - 1}(s - 1)]^{(\alpha + \beta - 1)}}{[\Gamma(\alpha + \beta)]_q} f(s) \nabla_{\gamma}(s)$$

$$= \nabla_{\gamma}^{-(\alpha + \beta)} f(z).$$

Proposition 25 For any $\Re \alpha > 0$, we have

$$\nabla_{\gamma}^{\alpha} \nabla_{\gamma}^{-\alpha} f(z) = f(z). \quad (98)$$

Proof. By Definition [12] we have

$$\nabla_{\gamma}^{\alpha} \nabla_{\gamma}^{-\alpha} f(z) = \nabla_{\gamma}^{m(\nabla_{\gamma}^{-m})} \nabla_{\gamma}^{-\alpha} f(z). \quad (99)$$
In view of Proposition 24, one gets
\[\nabla_{\gamma}^{m-m} \nabla_{\gamma}^{-\alpha} f(z) = \nabla_{\gamma}^{-m} f(z). \]
Therefore, we obtain
\[\nabla_{\gamma}^{\alpha} \nabla_{\gamma}^{-\alpha} f(z) = \nabla_{\gamma}^{m} \nabla_{\gamma}^{-m} f(z) = f(z). \]

\[\textbf{Proposition 26} \]
Let \(m \in N^+ \), \(\alpha > 0 \), then
\[\nabla_{\gamma}^{m} \nabla_{\gamma+m}^{-\alpha} f(z) = \begin{cases} \nabla_{\gamma}^{m-\alpha} f(z), & \text{when } m - \alpha < 0 \\ \nabla_{\gamma}^{-\alpha} f(z), & \text{when } m - \alpha > 0 \end{cases} \] (100)

\[\textbf{Proof.} \] If \(0 \leq \alpha < 1 \), set \(\beta = m - \alpha \), then \(0 \leq m - 1 < \beta \leq m \). By Definition 17, one has
\[\nabla_{\gamma}^{\beta} f(z) = \nabla_{\gamma}^{m} \nabla_{\gamma+\beta}^{-\alpha} f(z), \]
that is
\[\nabla_{\gamma}^{m} \nabla_{\gamma+m-\alpha}^{-\alpha} f(z) = \nabla_{\gamma}^{-\alpha} f(z). \] (101)
If \(k \leq \alpha < k + 1 \), \(k \in N^+ \), set \(\tilde{\alpha} = \alpha - k \), then \(0 \leq \tilde{\alpha} < 1 \), one has
\[\nabla_{\gamma}^{m} \nabla_{\gamma+m-\alpha}^{-\alpha} f(z) = \nabla_{\gamma}^{m} \nabla_{\gamma+m-k-\tilde{\alpha}}^{-\tilde{\alpha}} f(z) = \nabla_{\gamma}^{m} \nabla_{\gamma+m-k}^{-k} \nabla_{\gamma+m-k-\tilde{\alpha}}^{-\tilde{\alpha}} f(z) \]
When \(m - k > 0 \), we have
\[\nabla_{\gamma}^{m} \nabla_{\gamma+m-k}^{-k} \nabla_{\gamma+m-k-\tilde{\alpha}}^{-\tilde{\alpha}} f(z) = \nabla_{\gamma}^{m-k} \nabla_{\gamma+m-k-\tilde{\alpha}}^{-\tilde{\alpha}} f(z), \]
since \(m - k - \tilde{\alpha} = m - \alpha > 0 \), From (101), one has
\[\nabla_{\gamma}^{m-k} \nabla_{\gamma+m-k-\tilde{\alpha}}^{-\tilde{\alpha}} f(z) = \nabla_{\gamma}^{-\alpha} f(z) = \nabla_{\gamma}^{m-\alpha} f(z). \]
When \(m - k < 0 \), we have
\[\nabla_{\gamma}^{m-k} \nabla_{\gamma+m-k}^{-k} \nabla_{\gamma+m-k-\tilde{\alpha}}^{-\tilde{\alpha}} f(z) = \nabla_{\gamma}^{m-k} \nabla_{\gamma+m-k-\tilde{\alpha}}^{-\tilde{\alpha}} f(z), \]
since \(m - k - \tilde{\alpha} = m - \alpha < 0 \), From (101), we obtain
\[\nabla_{\gamma}^{m-k} \nabla_{\gamma+m-k-\tilde{\alpha}}^{-\tilde{\alpha}} f(z) = \nabla_{\gamma}^{m-\alpha} f(z) = \nabla_{\gamma}^{m-\alpha} f(z). \]
Obviously, \(m - k > 0 \) or \(m - k > 0 \) is equivalent to \(m - \alpha > 0 \) or \(m - \alpha > 0 \), hence it yields
\[\nabla_{\gamma}^{m} \nabla_{\gamma+m-\alpha}^{-\alpha} f(z) = \begin{cases} \nabla_{\gamma}^{m-\alpha} f(z), & \text{when } m - \alpha < 0 \\ \nabla_{\gamma}^{-\alpha} f(z), & \text{when } m - \alpha > 0 \end{cases} \]
Proposition 27 Let $\alpha > 0, \beta > 0$. We have

$$\nabla_\gamma^\beta \nabla_\gamma^{\alpha} f(z) = \begin{cases} \nabla_\gamma^{\beta-\alpha} f(z), & (\text{when } \beta - \alpha < 0) \\ \nabla_\gamma^{-\alpha} f(z), & (\text{when } \beta - \alpha > 0) \end{cases}$$

Proof. Let m be the smallest integer exceeding β, then by Definition 17 we have

$$\nabla_\gamma^m \nabla_\gamma^{\alpha-m} f(z) = \begin{cases} \nabla_\gamma^{\beta-\alpha} f(z), & (\text{when } \beta - \alpha < 0) \\ \nabla_\gamma^{-\alpha} f(z), & (\text{when } \beta - \alpha > 0) \end{cases}$$

Proposition 28 (Fractional Taylor formula) Let $\alpha > 0$, k be the smallest integer exceeding α, then

$$\nabla_\gamma^{-\alpha} \nabla_\gamma^{\alpha} f(z) = f(z) - \sum_{j=0}^{k-1} \nabla_\gamma^{j-k+\alpha} f(a) \frac{[x_{\gamma+a-1}(z) - x_{\gamma+a-1}(a)]^{(a-k+j)}}{[\Gamma(\alpha - k + j + 1)]_q}.$$

Proof. By Definition 24 Definition 17 and Proposition 23 we obtain

$$\nabla_\gamma^{-\alpha} \nabla_\gamma^{\alpha} f(z) = \nabla_\gamma^{-\alpha+k} \nabla_\gamma^{-k} \nabla_\gamma^{\alpha-k} f(z)$$

$$= \nabla_\gamma^{-\alpha+k} \{ \nabla_\gamma^{\alpha-k} f(z) - \frac{1}{[j]_q} \sum_{j=0}^{k-1} \nabla_\gamma^{j} \nabla_\gamma^{k-j+1} \nabla_\gamma^{\alpha-k} f(a) [x_{\gamma+k-1}(z) - x_{\gamma+k-1}(a)]^{(j)} \},$$

From Lemma 26 the use of

$$\nabla_\gamma^{j} \nabla_\gamma^{k-j+1} \nabla_\gamma^{\alpha-k} f(a) = \begin{cases} \nabla_\gamma^{\alpha-k} f(a), & (\text{when } j = 0) \\ \nabla_\gamma^{j-k+\alpha} f(a). & (\text{when } j > 0) \end{cases}$$

and

$$\nabla_\gamma^{-\alpha+k} \frac{[x_{\gamma+k-1}(z) - x_{\gamma+k-1}(a)]^{(j)}}{[\Gamma(j+1)]_q} = \nabla_\gamma^{-\alpha+k} \nabla_\gamma^{-j} f(1) = \nabla_\gamma^{-\alpha+k-j} f(1)$$

$$= \frac{[x_{\gamma+k-1}(z) - x_{\gamma+k-1}(a)]^{(a-k+j)}}{[\Gamma(\alpha - k + j + 1)]_q},$$

reduce to

$$\nabla_\gamma^{-\alpha} \nabla_\gamma^{\alpha} f(z) = f(z) - \sum_{j=0}^{k-1} \nabla_\gamma^{j-k+\alpha} f(a) \frac{[x_{\gamma+a-1}(z) - x_{\gamma+a-1}(a)]^{(a-k+j)}}{[\Gamma(\alpha - k + j + 1)]_q}.$$

(102)

26
Theorem 29 (Caputo type Fractional Taylor formula) Let $0 < k - 1 < \alpha \leq k$, then
\[
\nabla_{\gamma}^{-\alpha} [C \nabla_{\gamma}^\alpha] f(z) = f(t) - \sum_{j=0}^{k-1} (a \nabla_{\gamma+a-j}^k) f(a) \frac{[x_{\gamma+a-(j+1)}(z) - x_{\gamma+a-(j+1)}(a)]^{(j)}}{\Gamma(j+1)}.
\]
(103)

Proof. By Definition 21 and Proposition 23 we have
\[
\nabla_{\gamma}^{-\alpha} [C \nabla_{\gamma}^\alpha] f(z) = \nabla_{\gamma}^{-\alpha} \nabla_{\gamma+\alpha-k}^{\alpha-k} \nabla_{\gamma+\alpha-k}^k f(z)
\]
\[
= \nabla_{\gamma+\alpha-k}^k f(z)
\]
\[
= f(t) - \sum_{j=0}^{k-1} (a \nabla_{\gamma+a-j}^j) f(a) \frac{[x_{\gamma+a-(j+1)}(z) - x_{\gamma+a-(j+1)}(a)]^{(j)}}{\Gamma(j+1)}.
\]
(104)

The relationship between Riemann-Liouville fractional difference and Caputo fractional difference is

Proposition 30 Let m be the smallest integer exceeding α, we have
\[
C a \nabla_{\gamma}^\alpha f(z) = [a \nabla_{\gamma}^\alpha] \{f(t) - \sum_{k=0}^{m-1} (a \nabla_{\gamma+\alpha-k}^k) f(a) \frac{[x_{\gamma+a-(k+1)}(z) - x_{\gamma+a-(k+1)}(a)]^{(k)}}{\Gamma(k+1)}\}.
\]

Proof. We have
\[
C a \nabla_{\gamma}^\alpha f(z) = [a \nabla_{\gamma+\alpha-m}^{\alpha-m} (a \nabla_{\gamma+\alpha-m}^{\alpha-m})] f(z) = [(a \nabla_{\gamma}^\alpha) (a \nabla_{\gamma+\alpha-m}^{\alpha-m})] f(z)
\]
\[
= [a \nabla_{\gamma}^\alpha] \{f(t) - \sum_{k=0}^{m-1} (a \nabla_{\gamma+\alpha-k}^k) f(a) \frac{[x_{\gamma+a-(k+1)}(z) - x_{\gamma+a-(k+1)}(a)]^{(k)}}{\Gamma(k+1)}\}.
\]
(105)

Proposition 31 Let $\alpha > 0$, we have
\[
(a \nabla_{\gamma}^\alpha) (a \nabla_{\gamma}^{-\alpha}) f(z) = f(z).
\]
(106)

Proof. Set
\[
g(z) = (a \nabla_{\gamma}^{-\alpha}) f(z) = \int_{a+1}^{z} \frac{[x_{\gamma+a-1}(z) - x_{\gamma+a-1}(t-1)]^{(\alpha-1)}}{\Gamma(\alpha)} f(t) d\varphi x_{\gamma}(t),
\]
then we have $g(a) = 0$.
And
\[
(a \nabla_{\gamma+a-1}) g(z) = \int_{a+1}^{z} \frac{[x_{\gamma+a-2}(z) - x_{\gamma+a-2}(t-1)]^{(\alpha-2)}}{\Gamma(\alpha-1)} f(t) d\varphi x_{\gamma}(t),
\]
then we have \((a\nabla_{\gamma+\alpha-1})g(a) = 0\).
In the same way, we have
\[(a\nabla_{\gamma+\alpha-k}^k)g(a) = 0, k = 0, 1, \ldots, m - 1.\]
Therefore, by Proposition 30 we obtain \((a\nabla_{\gamma}^\alpha)g(z) = (a\nabla_{\gamma}^\alpha)g(z) = f(z).\)

7 Complex Variable Approach for Riemann-Liouville Fractional Difference On Non-uniform Lattices

In this section, we represent \(k \in N^+\) order difference and \(\alpha \in C\) order fractional difference on non-uniform lattices in terms of complex integration.

Theorem 32 Let \(n \in N, \Gamma\) be a simple closed positively oriented contour. If \(f(s)\) is analytic in simple connected domain \(D\) bounded by \(\Gamma\) and \(z\) is any nonzero point lies inside \(D\), then
\[
\nabla^n_{\gamma-n+1}f(z) = \frac{[n]!}{2\pi i} \log q \int_\Gamma \frac{f(s)\nabla x_{\gamma+1}(s)ds}{q^{\frac{1}{2}} - q^{-\frac{1}{2}}} \int_\Gamma [x_{\gamma}(s) - x_{\gamma}(z)]^{(n+1)},
\]
where \(\Gamma\) enclosed the simple poles \(s = z, z - 1, \ldots, z - n\) in the complex plane.

Proof. Since the set of points \(\{z - i, i = 0, 1, \ldots, n\}\) lie inside \(D\). Hence, from the genaralized Cauchy’s integral formula, we obtain
\[
f(z) = \frac{1}{2\pi i} \int_\Gamma \frac{f(s)x'_{\gamma}(s)ds}{[x_{\gamma}(s) - x_{\gamma}(z)]},
\]
and it yields
\[
f(z - 1) = \frac{1}{2\pi i} \int_\Gamma \frac{f(s)x'_{\gamma}(s)ds}{[x_{\gamma}(s) - x_{\gamma}(z - 1)]}. \quad (109)
\]
Substituting with the value of \(f(z)\) and \(f(z - 1)\) into \(\nabla f(z) = \nabla x_{\gamma}(z)\), then we have
\[
\nabla f(z) \nabla x_{\gamma}(z) = \frac{1}{2\pi i} \int_\Gamma \frac{f(s)x'_{\gamma}(s)ds}{[x_{\gamma}(s) - x_{\gamma}(z)][x_{\gamma}(s) - x_{\gamma}(z - 1)]}
\]
\[
= \frac{1}{2\pi i} \int_\Gamma \frac{f(s)x'_{\gamma}(s)ds}{[x_{\gamma}(s) - x_{\gamma}(z)]^{(2)}}.
\]
Substituting with the value of \(\nabla f(z)\) and \(\nabla f(z - 1)\) into \(\nabla x_{\gamma}(z) - \nabla x_{\gamma}(z - 1)\), then we have
\[
\frac{\nabla f(z)}{x_{\gamma}(z) - x_{\gamma}(z - 2)} = \frac{1}{2\pi i} \int_\Gamma \frac{f(s)x'_{\gamma}(s)ds}{[x_{\gamma}(s) - x_{\gamma}(z)]^{(3)}}.
\]
In view of

\[x_\gamma(z) - x_\gamma(z - 2) = [2]_q \nabla x_{\gamma - 1}(z), \]

we obtain

\[\nabla \left(\frac{\nabla f(z)}{\nabla x_{\gamma - 1}(z)} \right) = \frac{[2]_q}{2\pi i} \oint_{|x_\gamma(s) - x_\gamma(z)|^3} f(s) x_\gamma'(s) ds. \]

More generally, by the induction, we can obtain

\[\nabla \left(\frac{\nabla \nabla \nabla x_{\gamma - n + 1}(z)}{\nabla x_{\gamma - n + 2}(z)} \right) = \frac{[n]_q!}{2\pi i} \oint_{|x_\gamma(s) - x_\gamma(z)|^{n+1}} f(s) x_\gamma'(s) ds. \]

where

\[[x_\gamma(s) - x_\gamma(z)]^{(n+1)} = \prod_{i=0}^{n} [x_\gamma(s) - x_\gamma(z - i)]. \]

And last, by the use of identity

\[x_\gamma'(s) = \frac{\log q}{q^\frac{1}{2} - q^{-\frac{1}{2}}} \nabla x_{\gamma + 1}(s), \]

we have

\[\nabla^{n}_{\gamma - n + 1} f(z) = \frac{[n]_q!}{2\pi i} \frac{\log q}{q^\frac{1}{2} - q^{-\frac{1}{2}}} \oint_{|x_\gamma(s) - x_\gamma(z)|^{(n+1)}} f(s) \nabla x_{\gamma + 1}(s) ds. \] \hspace{1cm} (110)

Inspired by formula (110), so we can give the definition of fractional difference of \(f(z) \) over \(\{a + 1, a + 2, ..., z\} \) on non-uniform lattices as follows

Definition 33 (Complex fractional difference on non-uniform lattices) Let \(\Gamma \) be a simple closed positively oriented contour. If \(f(s) \) is analytic in simple connected domain \(D \) bounded by \(\Gamma \), assume that \(z \) is any nonzero point inside \(D \), \(a + 1 \) is a point inside \(D \), and \(z - a \in N \), then for any \(\alpha \in R^+ \), the \(\alpha \)-th order fractional difference of \(f(z) \) over \(\{a + 1, a + 2, ..., z\} \) on non-uniform lattices is defined by

\[\nabla^{\alpha}_{\gamma - a + 1} f(z) = \frac{[\Gamma(\alpha + 1)]_q}{2\pi i} \frac{\log q}{q^\frac{1}{2} - q^{-\frac{1}{2}}} \oint_{|x_\gamma(s) - x_\gamma(z)|^{(\alpha+1)}} f(s) \nabla x_{\gamma + 1}(s) ds. \] \hspace{1cm} (111)

where \(\Gamma \) enclosed the simple poles \(s = z, z - 1, ..., a + 1 \) in the complex plane.

We can calculate the integral (111) by Cauchy’s residue theorem. In detail, we have

Theorem 34 (Fractional difference on non-uniform lattices) Assume \(z, a \in C, z - a \in N, \alpha \in R^+ \).
(1) Let \(x(s) \) be quadratic lattices \([3]\), then the \(\alpha \)-th order fractional difference of \(f(z) \) over \(\{a + 1, a + 2, \ldots, z\} \) on non-uniform lattices can be rewritten by

\[
\nabla_{\gamma+1-\alpha}^\alpha [f(z)] = \sum_{k=0}^{z-(a+1)} f(z-k) \frac{\Gamma(2z-k+\gamma+1-\alpha) \nabla x_{\gamma+1}(z-k)}{\Gamma(2z+\gamma+1-k)} k! ; \quad (112)
\]

(2) Let \(x(s) \) be quadratic lattices \([4]\), then the \(\alpha \)-th order fractional difference of \(f(z) \) over \(\{a + 1, a + 2, \ldots, z\} \) on non-uniform lattices can be rewritten by

\[
\nabla_{\gamma+1-\alpha}^\alpha [f(z)] = \sum_{k=0}^{z-(a+1)} f(z-k) \frac{\Gamma(2z-k+\gamma+1-\alpha) \nabla x_{\gamma+1}(z-k)}{\Gamma(2z+\gamma+1-k)} \left(\frac{1}{k}\right)_q. \quad (113)
\]

Proof. From \([11]\), in quadratic lattices \([5]\), one has

\[
\nabla_{\gamma+1-\alpha}^\alpha [f(z)] = \frac{\Gamma(a+1)}{2\pi i} \int_{\Gamma} \frac{f(s) \nabla x_{\gamma+1}(s)}{\Gamma(s-z+\alpha+1)\Gamma(s-z+\gamma+1)} ds
\]

According to the assumption of **Definition 33**, \(\Gamma(s-z) \) has simple poles at \(s = z-k, k = 0, 1, 2, \ldots, z-(a+1) \). The residue of \(\Gamma(s-z) \) at the point \(s = z-k \) is

\[
\lim_{s \to z-k} (s-z-k)\Gamma(s-z) = \lim_{s \to z-k} \frac{(s-z)(s-z+1)\ldots(s-z+k-1)(s-z-k)\Gamma(s-z)}{(s-z)(s-z+1)\ldots(s-z+k-1)\Gamma(s-z+k+1)} = \frac{1}{(-k)(-k+1)\ldots(-1)} = \frac{(-1)^k}{k!}.
\]

Then by the use of Cauchy’s residue theorem, we have

\[
\nabla_{\gamma+1-\alpha}^\alpha [f(z)] = \Gamma(a+1) \sum_{k=0}^{z-(a+1)} f(z-k) \frac{\Gamma(2z-k+\gamma+1-\alpha) \nabla x_{\gamma+1}(z-k)}{\Gamma(a+1-k)\Gamma(2z+\gamma+1-k)} (-1)^k k!.
\]

Since

\[
\frac{\Gamma(a+1)}{\Gamma(a+1-k)} = \alpha(\alpha-1)\ldots(\alpha-k+1),
\]

and

\[
\alpha(\alpha-1)\ldots(\alpha-k+1)(-1)^k = (-\alpha)_k,
\]

therefore, we get

\[
\nabla_{\gamma+1-\alpha}^\alpha [f(z)] = \sum_{k=0}^{z-(a+1)} f(z-k) \frac{\Gamma(2z-k+\gamma+1-\alpha) \nabla x_{\gamma+1}(z-k)}{\Gamma(2z+\gamma+1-k)} (-\alpha)_k k!.
\]

30
From (111), in quadratic lattices (6), we have
\[
\nabla_{\gamma - \alpha + 1} f(z) = \frac{[\Gamma(\alpha + 1)]_q}{2\pi i} \log q \frac{\log q}{q^z - q^{-\frac{1}{2}}} \oint f(s) \nabla x_{\gamma + 1}(s) ds
\]

Therefore, we obtain that
\[
\nabla_{\gamma - \alpha + 1} f(z) = \frac{[\Gamma(\alpha + 1)]_q}{2\pi i} \log q \frac{\log q}{q^z - q^{-\frac{1}{2}}} \oint f(s) \nabla x_{\gamma + 1}(s) [\Gamma(s - \alpha + 1)]_q [\Gamma(s + \gamma - \alpha + 1)]_q ds
\]

From the assumption of Definition 33, \([\Gamma(s - \alpha + 1)]_q\) has simple poles at \(s = z - k, k = 0, 1, 2, ..., z - (\alpha + 1)\). The residue of \([\Gamma(s - \alpha + 1)]_q\) at the point \(s - \alpha = -k\) is
\[
\lim_{s \to z - k} (s - z + k)[\Gamma(s - \alpha + 1)]_q
\]
\[
= \lim_{s \to z - k} \frac{s - z + k}{[s - z + k]_q}[s - z + k][\Gamma(s - \alpha + 1)]_q
\]
\[
= \frac{q^{\frac{1}{2}} - q^{-\frac{1}{2}}}{\log q} \lim_{s \to z - k} \frac{[s - z + k][s - z + 1]_q...[s - z + k - 1]_q[s - z + k - 1]_q[\Gamma(s - \alpha + 1)]_q}{(s - z)(s - z + 1)...(s - z + k)}
\]
\[
= \frac{q^{\frac{1}{2}} - q^{-\frac{1}{2}}}{\log q} \lim_{s \to z - k} \frac{[\Gamma(s - z + k + 1)]_q}{[s - z + 1]_q...[s - z + k - 1]_q} = \frac{q^{\frac{1}{2}} - q^{-\frac{1}{2}}}{\log q} [k + 1]_q^k.
\]

Then by the use of Cauchy’s residue theorem, we have
\[
\nabla_{\gamma + 1 - \alpha} f(z) = \frac{[\Gamma(\alpha + 1)]_q}{[\Gamma(\alpha + 1 - k)]_q} \sum_{k=0}^{z-(\alpha+1)} f(z-k)[\Gamma(2z - k + \gamma - \alpha)]_q \nabla x_{\gamma + 1}(z - k) (-1)^k
\]

Since
\[
\frac{[\Gamma(\alpha + 1)]_q}{[\Gamma(\alpha + 1 - k)]_q} = [\alpha]_q[\alpha - 1]_q...[\alpha - k + 1]_q,
\]
and
\[
[\alpha]_q[\alpha - 1]_q...[\alpha - k + 1](-1)^k = ([-\alpha])_k,
\]
therefore, we obtain that
\[
\nabla_{\gamma + 1 - \alpha} f(z) = \sum_{k=0}^{z-(\alpha+1)} f(z-k) \frac{[\Gamma(2z - k + \gamma - \alpha)]_q \nabla x_{\gamma + 1}(z - k) \frac{([\alpha]_k)_k}{k!}}{[\Gamma(2z + \gamma + 1 - k)]_q}.
\]
So far, with respect to the definition of the R-L fractional difference on non-uniform lattices, we have given two kinds of definitions, such as Definition 17 or Definition 18 in section 4 and Definition 33 or Definition 34 in section 7 through two different ideas and methods. Now let’s compare Definition 18 in section 4 and Definition 34 in section 7.

Here follows a theorem connecting the R-L fractional difference (77) and the complex generalization of fractional difference (111):

Theorem 35 For any \(\alpha \in \mathbb{R}^+ \), let \(\Gamma \) be a simple closed positively oriented contour. If \(f(s) \) is analytic in simple connected domain \(D \) bounded by \(\Gamma \), assume that \(z \) is any nonzero point inside \(D \), \(a + 1 \) is a point inside \(D \), such that \(z - a \in \mathbb{N} \), then the complex generalization fractional integral (111) equals the R-L fractional difference (77) or (78):

\[
\nabla_{\gamma+1-a}^\alpha [f(z)] = \sum_{k=a+1}^{z} \frac{[x_{\gamma-a}(z) - x_{\gamma-a}(k-1)]^{(a-1)}}{[\Gamma(-\alpha)]_q} f(k) \nabla_{\gamma+1}(k).
\]

Proof. By Theorem 34 we have

\[
\nabla_{\gamma+1-a}^\alpha [f(z)] = \sum_{k=0}^{z-(a+1)} \frac{(-\alpha)_k q [\Gamma(2z - k + \gamma - \alpha)]_q}{[\Gamma(2z - k + \gamma + 1)]_q} f(z - k) \nabla_{\gamma+1}(z - k).
\]

\[
\begin{align*}
&= \sum_{k=0}^{z-(a+1)} \frac{[\Gamma(k - \alpha)]_q}{[\Gamma(-\alpha)]_q} \frac{[\Gamma(2z - k + \gamma - \alpha)]_q}{[\Gamma(2z - k + \gamma + 1)]_q} f(z - k) \nabla_{\gamma+1}(z - k) \\
&= \sum_{k=0}^{z-(a+1)} \frac{[x_{\gamma-a}(z) - x_{\gamma-a}(z - k - 1)]^{(a-1)}}{[\Gamma(-\alpha)]_q} f(z - k) \nabla_{\gamma+1}(z - k) \\
&= \sum_{k=a+1}^{z} \frac{[x_{\gamma-a}(z) - x_{\gamma-a}(k-1)]^{(a-1)}}{[\Gamma(-\alpha)]_q} f(k) \nabla_{\gamma+1}(k).
\end{align*}
\]

So that the two Definition 18 and Definition 34 are consistent. \(\square \)

Set \(\alpha = \gamma \) in Theorem 34 we obtain

Corollary 36 Assume that conditions of Definition 33 hold, then

\[
\nabla_{\gamma}^1 [f(z)] = \frac{[\Gamma(\gamma + 1)]_q \log q}{2\pi i} \int_{C} f(s) \nabla_{\gamma+1}(s) ds
\]

\[
= \sum_{k=0}^{z-(\alpha+1)} f(z - k) \frac{[\Gamma(2z + \mu - k)]_q \nabla_{\gamma+1}(z - k) ([-\alpha]_q)_k}{[\Gamma(2z + \gamma + \mu + 1 - k)]_q}.
\]

where \(\Gamma \) enclosed the simple poles \(s = z, z - 1, ..., a + 1 \) in the complex plane.
Remark 37 When $\gamma = n \in N^+$, we have

$$\nabla_n^n[f(z)] = \frac{\Gamma(n+1)q}{2\pi i} \log q \frac{\Gamma(\beta + 1) - \Gamma(\alpha + 1)}{z - \beta} f(s)\nabla x_{\gamma+1}(s) ds$$

$$= \sum_{k=0}^{n} f(z - k) \frac{\Gamma(2z + \mu - k)q\nabla x_{n+1}(z - k) \left(\frac{-\mu - qk}{k!}\right)}{\Gamma(2z + n + \mu + 1 - k)q}, \quad (115)$$

where Γ enclosed the simple poles $s = z, z - 1, ..., z - n$ in the complex plane.

This is consistent with Definition 39 proposed by Nikiforov. A, Uvarov. V, Suslov. S in [35].

For complex integral of Riemann-Liouville fractional difference on non-uniform lattices, we can establish an important Cauchy Beta formula as follows:

Theorem 38 (Cauchy Beta formula) Let $\alpha, \beta \in C$, and assume that

$$\int_{\Gamma} \Delta \{\frac{1}{[x_\beta(z) - x_\beta(t)]^{(\beta)}}, \frac{1}{[x_{\alpha}(t) - x_{\alpha}(a)]^{(\alpha)}}\} dt = 0,$$

then

$$\frac{1}{2\pi i q^{\beta} - q^{\beta}} \int_{\Gamma} \frac{[\Gamma(\beta + 1)]_q}{[x_\beta(z) - x_\beta(t)]^{(\beta)}} \frac{[\Gamma(\alpha)]_q}{[x_{\alpha}(t) - x_{\alpha}(a)]^{(\alpha)}} = \frac{[\Gamma(\alpha + \beta)]_q}{[x_\beta(z) - x_\beta(a)]^{(\alpha + \beta)}},$$

where Γ be a simple closed positively oriented contour, a lies inside C.

In order to prove Theorem 38, we first give a lemma.

Lemma 39 For any α, β, then we have

$$[1 - \alpha]_q[x_\beta(z) - x_\beta(t - \beta)] + [\beta]_q[x_{\alpha}(t + \alpha - 1) - x_{\alpha}(a)]$$

$$= [1 - \alpha]_q[x_\beta(z) - x_\beta(a + 1 - \alpha - \beta)] + [\alpha + \beta - 1]_q[x(t) - x(a + 1 - \alpha)]. \quad (116)$$

Proof. (116) is equivalent to

$$[\alpha + \beta - 1]_q[x(t) + [1 - \alpha]_q x_\beta(t - \beta) - [\beta]_q x_{\alpha}(t + \alpha - 1)$$

$$= [\alpha + \beta - 1]_q x(a + 1 - \alpha) + [1 - \alpha]_q x_\beta(a + 1 - \alpha - \beta) - [\beta]_q x_{\alpha}(a). \quad (117)$$

Set $\alpha - 1 = \bar{\alpha}$, then (117) can be written as

$$[\bar{\alpha} + \beta]_q x(t) - [\bar{\alpha}]_q x_{-\beta}(t) - [\beta]_q x_{\bar{\alpha}}(t)$$

$$= [\bar{\alpha} + \beta]_q x(a - \bar{\alpha}) - [\bar{\alpha}]_q x_{-\beta}(a - \bar{\alpha}) - [\beta]_q x_{\bar{\alpha}}(a - \bar{\alpha}). \quad (118)$$

By the use of Lemma 15, then Eq. (118) holds, and then Eq. (116) holds.

Proof of Theorem 38 Set

$$\rho(t) = \frac{1}{[x_\beta(z) - x_\beta(t)]^{(\beta+1)}} \frac{1}{[x(t) - x(a)]^{(\alpha)}},$$

33
\[
\sigma(t) = [x_{\alpha-1}(t + \alpha - 1) - x_{\alpha-1}(a)][x_{\beta}(z) - x_{\beta}(t)],
\]

Since
\[
[x_{\beta}(z) - x_{\beta}(t)]^{(\beta + 1)} = [x_{\beta}(z) - x_{\beta}(t - 1)]^{(\beta)}[x_{\beta}(z) - x_{\beta}(t)],
\]

and
\[
[x(t) - x(a)]^{(\alpha)} = [x_{-1}(t) - x_{-1}(a)]^{(\alpha-1)}[x_{\alpha-1}(t + \alpha - 1) - x_{\alpha-1}(a)],
\]

these reduce to
\[
\sigma(t)\rho(t) = \frac{1}{[x_{\beta}(z) - x_{\beta}(t)]^{(\beta)}} \frac{1}{[x_{-1}(t) - x_{-1}(a)]^{(\alpha-1)}}.
\]

Making use of
\[
\Delta_t[f(t)g(t)] = g(t + 1)\Delta_t[f(t)] + f(t)\Delta_t[g(t)],
\]

where
\[
f(t) = \frac{1}{[x_{-1}(t) - x_{-1}(a)]^{(\alpha-1)}}, g(t) = \frac{1}{[x_{\beta}(z) - x_{\beta}(t - 1)]^{(\beta)}},
\]

and
\[
\frac{\Delta_t}{\Delta x_{-1}(t)} \left\{ \frac{1}{[x_{-1}(t) - x_{-1}(a)]^{(\alpha-1)}} \right\} = \frac{[1 - \alpha]_q}{[x(t) - x(a)]^{(\alpha)}},
\]

\[
\frac{\Delta_t}{\Delta x_{-1}(t)} \left\{ \frac{1}{[x_{\beta}(z) - x_{\beta}(t - 1)]^{(\beta)}} \right\}
\]

\[
= \nabla_t \left\{ \frac{1}{[x_{\beta}(z) - x_{\beta}(t)]^{(\beta)}} \right\}
\]

\[
= \nabla x_{1}(t) \left\{ \frac{1}{[x_{\beta}(z) - x_{\beta}(t)]^{(\beta)}} \right\}
\]

\[
= \frac{\Delta_t}{\Delta x_{-1}(t)} \left\{ [\beta]_q \right\}
\]

then, we have
\[
\frac{\Delta_t}{\Delta x_{-1}(t)} \left\{ \sigma(t)\rho(t) \right\}
\]

\[
= \frac{1}{[x_{\beta}(z) - x_{\beta}(t)]^{(\beta)}} \frac{[1 - \alpha]_q}{[x(t) - x(a)]^{(\alpha)}},
\]

\[
+ \frac{1}{[x_{-1}(t) - x_{-1}(a)]^{(\alpha-1)}[x_{\beta}(z) - x_{\beta}(t)]^{(\beta+1)}}
\]

\[
= \{[1 - \alpha]_q[x_{\beta}(z) - x_{\beta}(t - \beta)] + [\beta]_q[x_{1-\alpha}(t + \alpha - 1) - x_{1-\alpha}(a)]\}
\]

\[
\times \frac{1}{[x(t) - x(a)]^{(\alpha)}} \frac{1}{[x_{\beta}(z) - x_{\beta}(t)]^{(\beta+1)}}
\]

\[
= \tau(t)\rho(t),
\]

34
where

\[\tau(t) = [1 - \alpha]q[x_\beta(z) - x_\beta(t - \beta)] + [\beta]q[x_1-\alpha(t + \alpha - 1) - x_1-\alpha(a)], \]

this is due to

\[[x_\beta(z) - x_\beta(t)]^{(\beta+1)} = [x_\beta(z) - x_\beta(t)]^{(\beta)}[x_\beta(z) - x_\beta(t - \beta)]. \]

From Proposition 119 one has

\[
\frac{\Delta_t}{\Delta x_{-1}(t)} \{ \sigma(t)\rho(t) \} \\
= \{ [1 - \alpha]q[x_\beta(z) - x_\beta(a + 1 - \alpha - \beta)] + [\alpha + \beta - 1]q[x(t) - x(a + 1 - \alpha)] \} \\
\cdot \frac{1}{[x_\beta(z) - x_\beta(t)]^{(\beta+1)}} \frac{1}{[x(t) - x(a)]^{(\alpha)\cdot}}.
\]

Or

\[
\Delta_t \{ \sigma(t)\rho(t) \} \\
= \{ [1 - \alpha]q[x_\beta(z) - x_\beta(a + 1 - \alpha - \beta)] + [\alpha + \beta - 1]q[x(t) - x(a + 1 - \alpha)] \} \\
\cdot \frac{1}{[x_\beta(z) - x_\beta(t)]^{(\beta+1)}} \frac{1}{[x(t) - x(a)]^{(\alpha)}} \Delta x_{-1}(t).
\] (119)

Set

\[
I(\alpha) = \frac{1}{2\pi i} \frac{\log q}{q^\frac{1}{2} - q^{-\frac{1}{2}}} \oint_D \frac{1}{[x_\beta(z) - x_\beta(t)]^{(\beta+1)}} \frac{1}{[x(t) - x(a)]^{(\alpha)\cdot}} \nabla y_1(t) \, dt,
\] (120)

and

\[
I(\alpha - 1) = \frac{1}{2\pi i} \frac{\log q}{q^\frac{1}{2} - q^{-\frac{1}{2}}} \oint_D \frac{1}{[x_\beta(z) - x_\beta(t)]^{(\beta+1)}} \frac{1}{[x(t) - x(a)]^{(\alpha - 1)\cdot}} \nabla y_1(t) \, dt.
\]

Since

\[[x(t) - x(a)]^{(\alpha - 1)[x(t) - x(a + 1 - \alpha)]} = [x(t) - x(a)]^{(\alpha)}, \]

then

\[
I(\alpha - 1) = \frac{1}{2\pi i} \frac{\log q}{q^\frac{1}{2} - q^{-\frac{1}{2}}} \oint_D \frac{1}{[x_\beta(z) - x_\beta(t)]^{(\beta+1)}} \frac{[x(t) - x(a + 1 - \alpha)]\nabla y_1(t) \, dt}{[x(t) - x(a)]^{(\alpha)}}.
\]

Integrating both sides of equation (119), then we have

\[
\oint_D \Delta_t \{ \sigma(t)\rho(t) \} \, dt = [1 - \alpha]q[x_\beta(z) - x_\beta(a + 1 - \alpha - \beta)]I(\alpha) \\
- [\alpha + \beta - 1]qI(\alpha - 1).
\]

35
If
\[\oint_{\Gamma} \Delta_t \{ \sigma(t) \rho(t) \} dt = 0, \]
then we obtain that
\[\frac{I(\alpha - 1)}{I(\alpha)} = \frac{[\alpha - 1]_q}{[\alpha + \beta - 1]_q} [y_\beta(z) - y_\beta(a + 1 - \alpha - \beta)]. \]

That is
\[I(\alpha - 1) = \frac{[\Gamma(\alpha + \beta - 1)]_q}{[\Gamma(\alpha - 1)]_q} \frac{1}{x_\beta(z) - x_\beta(a)}^{(\alpha + \beta - 1)} \left(I(\alpha) \right). \tag{121} \]

From (121), we set
\[I(\alpha) = k \frac{[\Gamma(\alpha + \beta)]_q}{[\Gamma(\alpha)]_q} \frac{1}{x_\beta(z) - x_\beta(a)}^{(\alpha + \beta)}, \tag{122} \]
where \(k \) is undetermined.

Set \(\alpha = 1 \), one has
\[I(1) = k \frac{[\Gamma(1 + \beta)]_q}{[\Gamma(1)]_q} \frac{1}{x_\beta(z) - x_\beta(a)}^{(1 + \beta)}, \tag{123} \]
and from (120) and generalized Cauchy residue theorem, one has
\[
I(1) = \frac{1}{2\pi i} \frac{\log q}{q^\frac{1}{\beta} - q^{-\frac{1}{\beta}}} \oint_{\Gamma} \frac{1}{x_\beta(z) - x_\beta(t)}^{(\beta + 1)} \frac{\nabla x_1(t)}{x'(t)} dt
= \frac{1}{2\pi i} \oint_{\Gamma} \frac{1}{x_\beta(z) - x_\beta(t)}^{(\beta + 1)} \frac{1}{x(t) - x(a)} \frac{\nabla x_1(t) dt}{x'(t)}
= \frac{1}{[x_\beta(z) - x_\beta(a)]^{(\beta + 1)}}, \tag{124}
\]

From (123) and (124), we get
\[k = \frac{1}{[\Gamma(1 + \beta)]_q}. \]

Therefore, we obtain that
\[I(\alpha) = \frac{[\Gamma(\alpha + \beta)]_q}{[\Gamma(\beta + 1)]_q [\Gamma(\alpha)]_q} \frac{1}{x_\beta(z) - x_\beta(a)}^{(\alpha + \beta)}, \]
and Theorem 38 is completed.
8 Fractional Central Sum and Difference on Non-uniform Lattices

Next we will give the definition of fractional central sum and fractional central difference on Non-uniform Lattices. Let us first give the integral central sum of $f(z)$ on non-uniform lattices $x(s)$.

$1 - th$ central sum of $f(z)$ on non-uniform lattices $x(s)$ is defined by

$$
\delta_{-1}^{0} f(z) = y_1(z) = \sum_{s=a+\frac{1}{2}}^{z-\frac{1}{2}} f(s) \delta x(s) = \int_{a+\frac{1}{2}}^{z-\frac{1}{2}} f(s) d_\delta x(s),
$$

where $f(s)$ is defined in $\{a + \frac{1}{2}, \text{mod}(1)\}$ and $y_1(z)$ is defined in $\{a + 1, \text{mod}(1)\}$.

Then we have $2 - th$ central sum of $f(z)$ on non-uniform lattices $x(s)$ as follows

$$
\delta_{-2}^{0} f(z) = y_2(z) = \int_{a+\frac{1}{2}}^{z-\frac{1}{2}} \delta_{-1}^{0} f(s) = \int_{a+\frac{1}{2}}^{z-\frac{1}{2}} \int_{a+\frac{1}{2}}^{s-\frac{1}{2}} f(t) d_\delta x(t)
$$

$$
= \int_{a+\frac{1}{2}}^{z-\frac{1}{2}} \int_{a+\frac{1}{2}}^{\frac{s-1}{2}} f(t) d_\delta x(t) d_\delta x(s)
$$

$$
= \int_{a+\frac{1}{2}}^{z-1} \int_{a+\frac{1}{2}}^{\frac{s-1}{2}} \int_{a+\frac{1}{2}}^{x(s) - x(t)} f(t) d_\delta x(t) d_\delta x(s)
$$

$$
= \int_{a+\frac{1}{2}}^{z-2} \int_{a+\frac{1}{2}}^{\frac{s-1}{2}} \int_{a+\frac{1}{2}}^{\frac{(s-1)-1}{2}} \int_{a+\frac{1}{2}}^{x(s) - x(t)} f(t) d_\delta x(t) d_\delta x(s)
$$

where $y_1(z)$ is defined in $\{a + 1, \text{mod}(1)\}$ and $y_2(z)$ is defined in $\{a + \frac{3}{2}, \text{mod}(1)\}$.

and $3 - th$ central sum of $f(z)$ on non-uniform lattices $x(s)$ is

$$
\delta_{-3}^{0} f(z) = y_3(z) = \int_{a+\frac{3}{2}}^{z-\frac{1}{2}} \delta_{-2}^{0} f(s) = \int_{a+\frac{3}{2}}^{z-\frac{1}{2}} \int_{a+\frac{3}{2}}^{z-\frac{1}{2}} \int_{a+\frac{1}{2}}^{x(s) - x(t)} f(t) d_\delta x(t) d_\delta x(s)
$$

$$
= \int_{a+\frac{3}{2}}^{z-2} \int_{a+\frac{3}{2}}^{z-2} \int_{a+\frac{1}{2}}^{x(s) - x(t)} f(t) d_\delta x(t) d_\delta x(s)
$$

$$
= \int_{a+\frac{3}{2}}^{z-3} \int_{a+\frac{3}{2}}^{z-3} \int_{a+\frac{1}{2}}^{x(s) - x(t)} f(t) d_\delta x(t) d_\delta x(s)
$$

where $y_2(z)$ is defined in $\{a + \frac{3}{2}, \text{mod}(1)\}$ and $y_3(z)$ is defined in $\{a + 2, \text{mod}(1)\}$.

More generalaly, we have $k - th$ central sum of $f(z)$ on non-uniform lattices $x(s)$ as follows

$$
\delta_{-k}^{0} f(z) = y_k(z) = \int_{a+\frac{k}{2}}^{z-\frac{1}{2}} \delta_{-k+1}^{0} f(s) = \int_{a+\frac{k}{2}}^{z-\frac{1}{2}} \int_{a+\frac{k}{2}}^{z-\frac{1}{2}} \int_{a+\frac{k-1}{2}}^{x(s) - x(t)} f(t) d_\delta x(t) d_\delta x(s)
$$

$$
= \int_{a+\frac{k}{2}}^{z-k} \int_{a+\frac{k}{2}}^{z-k} \int_{a+\frac{k-1}{2}}^{x(s) - x(t)} f(t) d_\delta x(t) d_\delta x(s)
$$

$$
= \int_{a+\frac{k}{2}}^{z-k} \int_{a+\frac{k}{2}}^{z-k} \int_{a+\frac{k-1}{2}}^{x(s) - x(t)} f(t) d_\delta x(t) d_\delta x(s)
$$

where $y_k(z)$ is defined in $\{a + \frac{k}{2}, \text{mod}(1)\}$ and $y_3(z)$ is defined in $\{a + k, \text{mod}(1)\}$.

\[\delta^{-k}f(z) = y_k(z) = \int_{a + \frac{k}{2}}^{z - \frac{1}{2}} y_{k-1}(s) d\delta x(s) \]
\[= \int_{a + \frac{k}{2}}^{z - \frac{1}{2}} \frac{(x(z) - x_{k-2}(t))^{k-1}}{[\Gamma(k)]_q} f(t) d\delta x(t). \]
(125)

where \(y_{k-1}(s) \) is defined in \(\{ a + \frac{k}{2}, \text{mod}(1) \} \), and \(y_k(z) \) is defined in \(\{ a + \frac{k+1}{2}, \text{mod}(1) \} \).

Definition 40 For any \(\text{Re} \alpha \in \mathbb{R}^+ \), the \(\alpha \)-th fractional central sum of \(f(z) \) on non-uniform lattices \(x(s) \) is defined by

\[\delta^{-\alpha} f(z) = \int_{a + \frac{1}{2}}^{z - \frac{1}{2}} \frac{(x(z) - x_{\alpha-2}(t))^{(\alpha-1)}}{[\Gamma(\alpha)]_q} f(t) d\delta x(t). \]
(126)

where \(\delta^{-\alpha} f(z) \) is defined in \(\{ a + \frac{\alpha+1}{2}, \text{mod}(1) \} \), and \(f(t) \) is defined in \(\{ a + \frac{1}{2}, \text{mod}(1) \} \).

Definition 41 Let \(\delta f(z) = f(z + \frac{1}{2}) - f(z - \frac{1}{2}) \) and \(\delta x(z) = x(z + \frac{1}{2}) - x(z - \frac{1}{2}) \), the central difference of \(f(z) \) on \(x(z) \) is defined by

\[\delta_0 f(z) = \frac{\delta f(z)}{\delta x(z)} = \frac{f(z + \frac{1}{2}) - f(z - \frac{1}{2})}{x(z + \frac{1}{2}) - x(z - \frac{1}{2})}. \]
(127)

and

\[\delta_0^m f(z) = \delta_0[\delta_0^{m-1} f(z)], m = 1, 2, ... \]
(128)

Definition 42 Let \(m \) be the smallest integer exceeding \(\alpha \), the Riemann-Liouville central fractional difference is defined by

\[\delta_0^\alpha f(z) = \delta_0^m(\delta_0^{\alpha-m} f(z)). \]
(129)

where \(f(z) \) is defined in \(\{ a + \frac{1}{2}, \text{mod}(1) \} \), \((\delta_0^{\alpha-m} f(z)) \) is defined in \(\{ a + \frac{m-\alpha+1}{2}, \text{mod}(1) \} \), and \(\delta_0^\alpha f(z) \) is defined in \(\{ a + \frac{\alpha+1}{2}, \text{mod}(1) \} \).

Let us calculate the right hand of Eq. (129). First, by **Definition 40** and **Definition 41**, one has
Then, one gets further

\[
\delta_0(\delta_0^{\alpha-m} f(z)) = \frac{\delta}{\delta x(z)} \int_{a+\frac{1}{2}}^{z-m} \frac{[x(z) - x_{m-\alpha-2}(t)](m-\alpha-1)}{[\Gamma(m-\alpha)]} f(t) d_\delta x(t)
\]

\[
= \frac{1}{\delta x(z)} \left\{ \int_{a+\frac{1}{2}}^{z+\frac{1}{2}} \frac{[x(z+\frac{1}{2}) - x_{m-\alpha-2}(t)](m-\alpha-1)}{[\Gamma(m-\alpha)]} f(t) d_\delta x(t) \right\}
\]

\[
- \int_{a+\frac{1}{2}}^{z+\frac{1}{2}} \frac{[x(z - \frac{1}{2}) - x_{m-\alpha-2}(t)](m-\alpha-1)}{[\Gamma(m-\alpha)]} f(t) d_\delta x(t) \}
\]

\[
\delta_0^2(\delta_0^{\alpha-m} f(z)) = \delta_0[\delta_0(\delta_0^{\alpha-m} f(z))]
\]

\[
= \frac{\delta}{\delta x(z)} \int_{a+\frac{1}{2}}^{z-m-(\alpha+1)} \frac{[x(z) - x_{m-(\alpha+1)-2}(t)](m-(\alpha+1)-1)}{[\Gamma(m-(\alpha+1))]} f(t) d_\delta x(t),
\]

In the same way, we obtain

\[
\delta_0(\delta_0^{\alpha-m} f(z)) = \frac{\delta}{\delta x(z)} \int_{a+\frac{1}{2}}^{z-m-(\alpha+2)} \frac{[x(z) - x_{m-(\alpha+2)-2}(t)](m-(\alpha+2)-1)}{[\Gamma(m-(\alpha+2))]} f(t) d_\delta x(t).
\]

That is

\[
\delta_0(\delta_0^{\alpha-m} f(z)) = \int_{a+\frac{1}{2}}^{z-m-(\alpha+2)} \frac{[x(z) - x_{m-(\alpha+2)-2}(t)](m-(\alpha+2)-1)}{[\Gamma(m-(\alpha+2))]} f(t) d_\delta x(t).
\]

And, by induction, we conclude that

\[
\delta_0(\delta_0^{\alpha-m} f(z)) = \int_{a+\frac{1}{2}}^{z-m} \frac{[x(z) - x_{m-\alpha-2}(t)](m-\alpha-1)}{[\Gamma(m-\alpha)]} f(t) d_\delta x(t).
\]
\[
\delta^m_0 (\delta^{a-m}_0 f(z)) = \int_{a+\frac{1}{2}}^{z-\frac{m+1}{2}} \frac{[x(z) - x_{m-(\alpha+2)}(t)]^{(m-(\alpha+m)-1)}}{[\Gamma[m-(\alpha+m)]]q} f(t) d_3 x(t) \\
= \int_{a+\frac{1}{2}}^{z+\frac{1}{2}} \frac{[x(z) - x_{-\alpha-2}(t)]^{(-\alpha-1)}}{[\Gamma(-\alpha)]q} f(t) d_3 x(t). \tag{130}
\]

Therefore from Eq. (130), we can give the following equivalent definition of the \(\alpha\)-th Riemann-Liouville central fractional difference:

Definition 43 Assume that \(\alpha \notin N\), let \(m\) be the smallest integer exceeding \(\alpha > 0\), the \(\alpha\)-th Riemann-Liouville central fractional difference can be defined by

\[
\delta^a_0 f(z) = \int_{a+\frac{1}{2}}^{z+\frac{1}{2}} \frac{[x(z) - x_{-\alpha-2}(t)]^{(-\alpha-1)}}{[\Gamma(-\alpha)]q} f(t) d_3 x(t), \tag{131}
\]

where \(f(z)\) is defined in \(\{a+\frac{1}{2}\mod(1)\}\), \(\delta^a_0 f(z)\) is defined in \(\{a+\frac{-\alpha+1}{2}\mod(1)\}\).

We can also give the definition of the Caputo central fractional difference as follows:

Definition 44 Let \(m\) be the smallest integer exceeding \(\alpha\), the \(\alpha\)-th Caputo central fractional difference is defined by

\[
C \delta^a_0 f(z) = \delta^{a-m}_0 \delta^m_0 f(z). \tag{132}
\]

We should mention that it is also important to establish the analogue Euler Beta formula on non-uniform lattices with respect to the central fractional sum.

Theorem 45 For any \(\alpha, \beta\), we have

\[
\int_{a+\frac{1}{2}+\frac{\alpha}{2}}^{z-\frac{\beta}{2}} \frac{[x(z) - x_{\beta-2}(t)]^{(\beta-1)}}{[\Gamma(\beta)]q} \cdot \frac{[x(t) - x_{\alpha-1}(a)]^{(\alpha)}}{[\Gamma(\alpha+1)]q} d_3 x(t) = \frac{[x(z) - x_{\alpha+\beta-1}(a)]^{(\alpha+\beta)}}{[\Gamma(\alpha+\beta+1)]q}. \tag{133}
\]

Proof. Since

\[
a + \frac{1}{2} + \frac{\alpha}{2} \leq t \leq \frac{\beta}{2},
\]

we have

\[
a + 1 \leq t + \frac{1}{2} - \frac{\alpha}{2} \leq z + \frac{1}{2} - \frac{\alpha+\beta}{2}.
\]

Set

\[
\begin{cases}
t + \frac{1}{2} - \frac{\alpha}{2} = \overline{7} \\
z + \frac{1}{2} - \frac{\alpha+\beta}{2} = \overline{7}
\end{cases}
\]

then

40
The LHS of Eq. (133) is equivalent to

\[
\int_{a+1}^{\infty} \frac{[x(z + \frac{\alpha+\beta+1}{2}) - x_{\alpha+1}(a)](\alpha+\beta)}{[\Gamma(\alpha+\beta+1)]q} d\delta x(t + \frac{1}{2}),
\]

and the RHS is equivalent to

\[
\frac{[x(z + \frac{\alpha+\beta+1}{2}) - x_{\alpha+1}(a)](\alpha+\beta)}{[\Gamma(\alpha+\beta+1)]q} = \frac{[x_{\alpha+\beta-1}(z) - x_{\alpha+\beta-1}(a)](\alpha+\beta)}{[\Gamma(\alpha+\beta+1)]q}.
\]

By the use of Euler Beta Theorem [13] on non-uniform lattices, Theorem 45 is completed. ■

Proposition 46 For any Re $\alpha, \text{Re} \beta > 0$, we have

\[
\delta_0^{-\beta} \delta_0^{-\alpha} f(z) = \delta_0^{-(\alpha+\beta)} f(z).
\]

where $f(z)$ is defined in $\{a+\frac{1}{2}, \text{mod}(1)\}$, $\delta^{-\alpha} f(z)$ is defined in $\{a+\frac{\alpha+1}{2}, \text{mod}(1)\}$, and $(\delta^{\alpha} \delta^{-\beta}) f(z)$ is defined in $\{a + \frac{\alpha+\beta+1}{2}, \text{mod}(1)\}$.

Proof. By Definition [10] we have

\[
\int_{a+\frac{1}{2}}^{z} \frac{[x(z) - x_{\alpha-2}(t)](\beta-1)}{[\Gamma(\beta)]q} \nabla_{\gamma}^{-\alpha} f(t) d\delta(t) = \int_{a+\frac{1}{2}}^{z} \frac{[x(z) - x_{\alpha-1}(t)](\beta-1)}{[\Gamma(\beta)]q} f(t) d\delta(t) = \int_{a+\frac{1}{2}}^{t} \frac{[x(t) - x_{\alpha-2}(s)](\alpha-1)}{[\Gamma(\alpha)]q} f(s) d\delta(s) = \int_{a+\frac{1}{2}}^{z} \frac{f(s) d\delta(s)}{[\Gamma(\alpha)]q} \int_{s+\frac{1}{2}}^{z} \frac{[x(z) - x_{\alpha-2}(t)](\beta-1)}{[\Gamma(\beta)]q} d\delta(t).
\]
In viewer of Theorem 45, one has
\[
\int_{z+\frac{\beta}{2}}^{z-\frac{\beta}{2}} \frac{[x(z) - x_{\beta - 2}(t)]^{(\beta - 1)}}{[\Gamma(\beta)]_q} \frac{[x(t) - x_{\alpha - 2}(s)]^{(\alpha - 1)}}{[\Gamma(\alpha)]_q} d_\beta(t)
= \frac{[x(z) - x_{\alpha - \beta - 2}(s)]^{(\alpha + \beta - 1)}}{[\Gamma(\alpha + \beta)]_q},
\]
it yields
\[
\delta_0^\beta \delta_0^{-\alpha} f(z) = \int_{a+\frac{1}{2}}^{z+\frac{1}{2}} \frac{[x(z) - x_{\alpha + \beta - 2}(s)]^{(\alpha + \beta - 1)}}{[\Gamma(\alpha + \beta)]_q} f(s) \nabla x_\gamma(s)
= \delta_0^{-(\alpha + \beta)} f(z).
\]

Proposition 47 For any \(\Re \alpha > 0 \), we have
\[
\delta_0^\alpha \delta_0^{-\alpha} f(z) = f(z).
\]

Proof. By Definition 42, we have
\[
\delta_0^\alpha \delta_0^{-\alpha} f(z) = \delta_0^m (\delta_0^{\alpha - m}) \delta_0^{-\alpha} f(z).
\]
In view of Theorem 46, one has
\[
\delta_0^{\alpha - m} \delta_0^{-\alpha} f(z) = \delta_0^{-m} f(z),
\]
it yields that
\[
\delta_0^\alpha \delta_0^{-\alpha} f(z) = \delta_0^m \delta_0^{-m} f(z) = f(z).
\]

Proposition 48 Let \(k \in N \), then
\[
\delta_0^{-k} \delta_0^k f(z) = f(z) - \sum_{j=0}^{k-1} \frac{\delta_0^j f(a)}{[j]_q} [x(z) - x_{j-1}(a)]^{(j)}.
\] (135)

Proof. When \(k = 1 \), we have
\[
\delta_0^{-1} \delta_0^1 f(z) = \sum_{a+\frac{1}{2}}^{z+\frac{1}{2}} \delta_0^1 f(s) \delta x(s)
= \sum_{a+\frac{1}{2}}^{z+\frac{1}{2}} \delta^1 f(s) = f(z) - f(a).
\]
Assume that when \(n = k \), (135) holds, then for \(n = k + 1 \), we conclude that
\[
\delta_0^{-(k+1)} \delta_0^{k+1} f(z) = \delta_0^{-1} [\delta_0^{-k} \delta_0^{k+1} f(z)]
= \delta_0^{-1} \{ \delta_0^j f(a) - \sum_{j=0}^{k-1} \frac{\delta_0^j [\delta_0 f(a)]}{[j]_q!} [x(z) - x_{j-1}(a)]^{(j)} \}
= f(z) - f(a) - \sum_{j=0}^{k-1} \frac{\delta_0^j f(a)}{[j]_q!} [x(z) - x_{j-1}(a)]^{(j+1)}
= f(z) - \sum_{j=0}^{k} \frac{\delta_0^j f(a)}{[j]_q!} [x(z) - x_{j-1}(a)]^{(j)}.
\]

Therefore, by the induction, the proof of (135) is completed. \(\blacksquare \)

Proposition 50 Let \(0 < k - 1 < \alpha \leq k \), then
\[
\delta_0^{-\alpha} \delta_0^\alpha f(z) = f(z) - \sum_{j=0}^{k-1} \delta_0^{j-k+\alpha} f(a) \frac{[x(z) - x_{\alpha+j-k-1}(a)]^{(j+\alpha-k)}}{[\Gamma(j + \alpha - k + 1)]_q}.
\] (136)

Proof. Since
\[
\delta_0^{-\alpha} \delta_0^\alpha f(z) = \delta_0^{-\alpha+k} \delta_0^{-k} \delta_0^{k+\alpha} f(z),
\]
then by the use of (135), one has
\[
\delta_0^{-\alpha} \delta_0^\alpha f(z) = \delta_0^{-\alpha+k} \{ \delta_0^{j-k+\alpha} f(z) - \sum_{j=0}^{k-1} \frac{\delta_0^j \delta_0^{j-k+\alpha} f(a)}{[j]_q!} [x(z) - x_{j-1}(a)]^{(j)} \}
= f(z) - \sum_{j=0}^{k-1} \delta_0^{j-k+\alpha} f(a) \frac{[x(z) - x_{\alpha+j-k-1}(a)]^{(j+\alpha-k)}}{[\Gamma(j + \alpha - k + 1)]_q}.
\]
\(\blacksquare \)

Proposition 50 Let \(0 < k - 1 < q \leq k \), then
\[
\delta_0^{-p} \delta_0^q f(z) = \delta_0^{-p} f(z) - \sum_{j=1}^{k} \delta_0^{j} \frac{[x(z) - x_{p-j-1}(a)]^{(p-j)}}{[\Gamma(p-j+1)]_q}.
\] (137)

Proof. Since
\[
\delta_0^{-p} \delta_0^q f(z) = \delta_0^{-p+q} \delta_0^{-q} \delta_0^q f(z),
\]
then by the use of (135), one has
\[
\delta_0^{-p+q} \delta_0^{-q} \delta_0^q f(z) = \delta_0^{-p+q} \{ f(z) - \sum_{j=1}^{k} \delta_0^{j-p+q} \frac{[x(z) - x_{p-j-1}(a)]^{(q-j)}}{[\Gamma(q-j+1)]_q} \}
= \delta_0^{-p+q} f(z) - \sum_{j=1}^{k} \delta_0^{j-p+q} \frac{[x(z) - x_{p-j-1}(a)]^{(p-j)}}{[\Gamma(p-j+1)]_q},
\]
the equality (137) is completed. \(\blacksquare \)
Proposition 51 Let \(0 < k - 1 < q \leq k, \ p > 0 \), then

\[
\delta_0^k \delta_0^q f(z) = \delta_0^{k+q} f(z) - \sum_{j=1}^{k} \delta_0^{q-j} f(a) \frac{[x(z) - x_{p-j-1}(a)]^{(p-j)}}{[\Gamma(-p-j+1)]_q}.
\]

(138)

Proof. Let \(m - 1 < p \leq m \), in view of

\[
\delta_0^m \delta_0^q f(z) = \delta_0^{m-q} \delta_0^q f(z),
\]

then by the use of (137), we have

\[
\delta_0^m \delta_0^q f(z) = \delta_0^{m-q} \delta_0^q f(z) - \sum_{j=1}^{k} \delta_0^{q-j} f(a) \frac{[x(z) - x_{m-p-j-1}(a)]^{(m-p-j)}}{[\Gamma(-p-j+1)]_q},
\]

the equality (138) is completed. ■

The relationship between Riemann-Liouville fractional difference and Caputo fractional difference is

Proposition 52 We have

\[
C \delta_0^\alpha f(z) = \delta_0^\alpha \left\{ f(z) - \sum_{j=1}^{m-1} \frac{\delta_0^j f(a)}{[j]_q!} [x(z) - x_{j-1}(a)]^{(j)} \right\}.
\]

Proof. According to Definition 44 and Proposition 48, we have

\[
C \delta_0^\alpha f(z) = \delta_0^{\alpha-m} \delta_0^m f(z) = \delta_0^\alpha \delta_0^{-m} \delta_0^m f(z)
\]

\[
= \delta_0^\alpha \left\{ f(z) - \sum_{j=1}^{m-1} \frac{\delta_0^j f(a)}{[j]_q!} [x(z) - x_{j-1}(a)]^{(j)} \right\}.
\]

■

Proposition 53 Let \(0 < m - 1 < \alpha \leq m \), then

\[
C \delta_0^\alpha \delta_0^{-\alpha} f(z) = f(z).
\]

(139)

Proof. Set

\[
g(z) = \delta_0^{-\alpha} f(z),
\]

then we know that

\[
g(a) = \delta_0 g(a) = ... = \delta_0^{m-1} g(a) = 0,
\]

44
Assume that when central difference on non-uniform, which is defined as

\[\text{Definition 55} \]

Proposition 54 Let \(0 < m - 1 < \alpha \leq m \), then

\[\delta_0^{-\alpha} f(z) = f(z) - \sum_{j=1}^{m-1} \frac{\delta^j f(a)}{j!} (x(z) - x_{j-1}(a))^{(j)}. \]

Pro. By Definition 54, one has

\[\delta_0^{-\alpha} [C \delta_0^\alpha] f(z) = \delta_0^{-\alpha} \delta_0^{-(m-\alpha)} \delta_0^{m} f(z) = \delta_0^{-m} \delta_0^m f(z) \]

Therefore, one has

\[\delta_0^{-\alpha} \delta_0^{-\alpha} f(z) = \delta_0^{-\alpha} f(z) = f(z). \]

\[\text{Proposition 54} \]

For sequential fractional central difference on non-uniform, we can obtain Taylor formula.

\[S \delta_0^{k\alpha} f(z) = \delta_0^{\alpha} \delta_0^{\alpha} \ldots \delta_0^{\alpha} f(z). (k - \text{multiple}) \]

Theorem 56 Let \(0 < \alpha \leq 1, k \in N \), then

\[\delta_0^{-\alpha} [S \delta_0^{k\alpha}] f(z) = f(z) - \sum_{j=0}^{k-1} \frac{S \delta_0^{j\alpha} f(a)}{[\Gamma(j + 1)]_q} (x(z) - x_{ja-1}(a))^{ja}. \]

Proof. When \(k = 1 \), from Proposition 54 we have

\[\delta_0^{-\alpha} \delta_0^\alpha f(z) = f(z) - f(a). \]

Assume that when \(n = k \), \(145 \) holds, then for \(n = k+1 \), we conclude that

\[r_{k+1}(z) = \delta_0^{-(k+1)\alpha} [S \delta_0^{(k+1)\alpha}] f(z) = \delta_0^{-\alpha} \delta_0^{-k\alpha} [S \delta_0^{k\alpha}] \delta_0^\alpha f(z) \]

\[= \delta_0^{-\alpha} \delta_0^\alpha f(a) - \sum_{j=0}^{k-1} \frac{S \delta_0^{j\alpha} \delta_0^{j\alpha} f(a)}{[\Gamma(j + 1)]_q} (x(z) - x_{ja-1}(a))^{ja} \]

\[= f(z) - f(a) - \sum_{j=0}^{k-1} \frac{S \delta_0^{j+1\alpha} f(a)}{[\Gamma(j + 1)\alpha + 1)]_q} (x(z) - x_j(a))^{(j+1)\alpha} \]

Therefore, by the induction, the proof of \(145 \) is completed. ■
Theorem 57 The following Taylor series:

\[f(z) = \sum_{k=0}^{\infty} \left[S^\frac{k\alpha}{\delta_0} f(a) \right] \frac{(x(z) - x_{ka-1}(a))^{(k\alpha)}}{\Gamma(k\alpha + 1)} \]

holds if and only if

\[\lim_{k \to \infty} r_k(z) = \lim_{k \to \infty} \delta_0^{k\alpha} \left[S^\frac{k\alpha}{\delta_0} f(z) \right] = 0. \]

Proof. This is a direct consequence of Theorem 56.

9 Applications: Series Solution of Fractional Difference Equations

Next we will give the solution of the fractional central difference equation on nonuniform lattices as follows:

\[C^\delta_0^\alpha f(z) = \lambda f(z), (0 < \alpha \leq 1) \]

(146)

Theorem 58 The solution of Eq. (146) is

\[f(z) = \sum_{k=0}^{\infty} \lambda^k \frac{(x(z) - x_{(k-1)\alpha}(a))^{(k\alpha)}}{\Gamma(k\alpha + 1)} \]

(147)

Proof. Using the generalized sequence Taylor’s series, assuming that the solution \(f(z) \) can be written as

\[f(z) = \sum_{k=0}^{\infty} c_k \frac{(x(z) - x_{(k-1)\alpha}(a))^{(k\alpha)}}{\Gamma(k\alpha + 1)} \]

(148)

From the equality

\[C^\delta_0^\alpha \frac{(x(z) - x_{(k-1)\alpha}(a))^{(k\alpha)}}{\Gamma(k\alpha + 1)} = [C^\delta_0^\alpha] \delta_{0}^{\alpha} \frac{(1)}{\delta_0^{k\alpha}} = \delta^{-1}_{0} \delta_{0}^{k\alpha} (1) \]

\[= \delta_{0}^{k\alpha} (1) \frac{(1)}{\delta_0^{(k-1)\alpha}} = \delta_{0}^{(k-1)\alpha} (1) \]

\[= \frac{(x(z) - x_{(k-1)\alpha}(a))^{(k\alpha)}}{\Gamma((k-1)\alpha + 1)} \]

we obtain

\[C^\delta_0^\alpha f(z) = \sum_{k=1}^{\infty} c_k \frac{(x(z) - x_{(k-1)\alpha}(a))^{((k-1)\alpha)}}{\Gamma((k-1)\alpha + 1)} \]

(149)
Substituting (148) and (149) into (146) yields
\[
\sum_{k=1}^{\infty} c_{k+1} \frac{[x(z) - x_{k\alpha-1}(a)]^{(k\alpha)}}{\Gamma(k\alpha + 1)}_q - \lambda \sum_{k=0}^{\infty} c_k \frac{[x(z) - x_{k\alpha-1}(a)]^{(k\alpha)}}{\Gamma(k\alpha + 1)}_q = 0. \tag{150}
\]
Equating the coefficient of
\([x(z) - x_{k\alpha-1}(a)]^{(k\alpha)}\) to zero in (150), we get
\[
c_{k+1} = \lambda c_k, \tag{151}
\]
that is
\[
c_k = \lambda^k c_0.
\]
Therefore, we obtain the solution of (146) is
\[
f(z) = c_0 \sum_{k=0}^{\infty} \lambda^k \frac{[x(z) - x_{k\alpha-1}(a)]^{(k\alpha)}}{\Gamma(k\alpha + 1)}_q.
\]

\begin{definition}
The basic \(\alpha\)-order fractional exponential function is defined by
\[
e(\alpha, z) = \sum_{k=0}^{\infty} \frac{[x(z) - x_{k\alpha-1}(a)]^{(k\alpha)}}{\Gamma(k\alpha + 1)}_q, \tag{152}
\]
and
\[
e(\alpha, \lambda, z) = \sum_{k=0}^{\infty} \lambda^k \frac{[x(z) - x_{k\alpha-1}(a)]^{(k\alpha)}}{\Gamma(k\alpha + 1)}_q. \tag{153}
\end{definition}

\begin{remark}
When \(\alpha = 1\) in (153), the basic 1-order fractional exponential function on a \(q\)-quadric lattices was originally introduced by Ismail, Zhang [31], and Suslov [41] with different notation and normalization, which was very important for Basic Fourier analytic. Definition 59 is an natural extension of it.
\end{remark}

\begin{example}
Let us consider a general \(n\alpha\)-order sequence fractional difference equation with coefficients on nonuniform lattices of the form:
\[
[a_n(S^{n\alpha}) + a_{n-1}(S^{(n-1)\alpha}) + \ldots + a_1(S^{\alpha}) + a_0(S^{0})]f(z) = 0 \tag{154}
\]
\end{example}

\begin{proof}
As in the classical case, substituting
\[
f(z) = e(\alpha, \lambda, z),
\]
into Eq. (154), one can obtain
\[
a_n \lambda^n + a_{n-1} \lambda^{n-1} + \ldots + a_1 \lambda + a_0 = 0. \tag{155}
\]
\]
Assume Eq. (155) have different roots \(\lambda_i, i = 1, 2, ..., n \), then one can get \(n \) linearly independent solutions

\[
f_i(z) = e(\alpha, \lambda_i, z), \quad i = 1, 2, ..., n
\]

Example 62 Let \(\omega > 0 \), consider \(2\alpha \)-order sequence fractional difference equation for harmonic motion of the form:

\[
S_0^\alpha S_0^\alpha f(z) + \omega^2 f(z) = 0, \quad (0 < \alpha \leq 1)
\]

and its solutions are related to the generalized basic trigonometric functions.

Proof. Set

\[
f(z) = e(\alpha, \lambda, z),
\]

substituting (157) into Eq. (156), then we have

\[
\lambda^2 + \omega^2 = 0,
\]

which has two solutions

\[
\lambda_1 = i\omega, \lambda_2 = -i\omega.
\]

So the solutions of Eq. (154) are

\[
f_1(z) = e(\alpha, i\omega, z) = \sum_{k=0}^{\infty} (i\omega)^k \frac{[x(z) - x_{k\alpha-1}(a)]^{k\alpha}}{[\Gamma(k\alpha + 1)]_q}
\]

\[
= \sum_{n=0}^{\infty} (-1)^n \omega^{2n} \frac{[x(z) - x_{2n\alpha-1}(a)]^{(2n\alpha)}}{[\Gamma(2n\alpha + 1)]_q} + \sum_{n=0}^{\infty} (-1)^n \omega^{2n+1} \frac{[x(z) - x_{2n\alpha+1\alpha-1}(a)]^{(2n+1)\alpha}}{[\Gamma((2n+1)\alpha + 1)]_q},
\]

and

\[
f_2(z) = e(\alpha, -i\omega, z) = \sum_{k=0}^{\infty} (-i\omega)^k \frac{[x(z) - x_{k\alpha-1}(a)]^{(k\alpha)}}{[\Gamma(k\alpha + 1)]_q}
\]

\[
= \sum_{n=0}^{\infty} (-1)^n \omega^{2n} \frac{[x(z) - x_{2n\alpha-1}(a)]^{(2n\alpha)}}{[\Gamma(2n\alpha + 1)]_q} - \sum_{n=0}^{\infty} (-1)^n \omega^{2n+1} \frac{[x(z) - x_{2n\alpha+1\alpha-1}(a)]^{(2n+1)\alpha}}{[\Gamma((2n+1)\alpha + 1)]_q},
\]

Using the notation of Euler, we denote
\[
\cos(\alpha, \omega, z) = \sum_{n=0}^{\infty} \frac{(-1)^n \omega^{2n} [x(z) - x_{2n\alpha-1}(a)]^{(2n\alpha)}}{\Gamma(2n\alpha + 1)}
\]

and
\[
\sin(\alpha, \omega, z) = \sum_{n=0}^{\infty} (-1)^n \omega^{2n+1} \frac{[x(z) - x_{(2n+1)\alpha-1}(a)]^{((2n+1)\alpha)}}{\Gamma((2n+1)\alpha + 1)}
\]

Then it holds that
\[
\cos(\alpha, \omega, z) = \frac{e(\alpha, i\omega, z) + e(\alpha, -i\omega, z)}{2},
\]
\[
\sin(\alpha, \omega, z) = \frac{e(\alpha, i\omega, z) - e(\alpha, -i\omega, z)}{2i},
\]

and
\[
\cos^2(\alpha, \omega, z) + \sin^2(\alpha, \omega, z) = e(\alpha, i\omega, z)e(\alpha, -i\omega, z).
\]

References

[1] R. P. Agarwal, Certain fractional q-integral and q-derivative. Proc. Camb. Phil. Soc. 66 (1969), 365-370.
[2] W. A. Al-Salam, Some fractional q-integral and q-derivatives. Proc. Edinb. Math. Soc. v.2, 15(1966/1967), 135-140.
[3] G. A. Anastassiou, Nabla discrete fractional calculus and nabla inequalities, Mathematical and Computer modelling, 51(2010) 562-571.
[4] M. H. Annaby, Z. S. Mansour, q-Fractional Calculus and Equations, Springer, 2012.
[5] G. E. Andrews, R. Askey, Classical orthogonal polynomials, in: Polynomes Orthogonaux et Applications, Springer-Verlag, Berlin-Heidelberg-New York, pp. 36-62, 1985.
[6] G. E. Andrews, R. Askey, R. Roy, Special functions. Encyclopedia of Mathematics and its Applications, 71. Cambridge University Press, Cambridge, 1999.
[7] R. Askey, J. A. Wilson, A set of orthogonal polynomials that generalize the Racah coefficients or 6j-symbols, SIAM J. Math. Anal. 10 (1979) 1008-1016.
[8] R. Askey, M. E. H. Ismail, Recurrence relations, continued fractions and orthogonal polynomials, Mem. Amer. Math. Soc. No. 300, 1984
[9] R. Askey, J. A. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. No. 319, 1985.
[10] N. M. Atakishiyev, S. K. Suslov, On the moments of classical and related polynomials, Revista Mexicana de Fisica, vol. 34, No. 2, (1988), p.147-151.

[11] N. M. Atakishiyev, S. K. Suslov, About one class of special function, Revista Mexicana de Fisica, vol. 34, No. 2, (1988), p.152-167.

[12] N. M. Atakishiyev, S. K. Suslov, Difference hypergeometric functions, In: Progress in Approximation Theory, Springer New York, 1992, pp.1-35.

[13] F. M. Atici, P. W. Eloe, Discrete fractional calculus with the nable operator, Electronic Journal of Qualitative Theory of Differential Equations, Spec. Ed. I, 3(2009) 1-12.

[14] F. M. Atici, P. W. Eloe, Initial value problems in discrete fractional calculus. Pro.Amer. Math. Soc., 137(2009), 981-989.

[15] J. Baoguo, L. Erbe, A. Peterson, Two monotonicity results for nabla and delta fractional differences. Arch. Math. (Basel) 1049 (2015), 589–597.

[16] Jinfa Cheng, Theory of Fractional Difference Equations, Xiamen University Press, Xiamen, 2011.

[17] L. Jia, J. Cheng, Z. Feng, A q-analogue of Kummer’s equation, Electron J. Differential Equations 2017(2017) 1-20.

[18] Jinfa Cheng and Weizhong Dai, Higher-order fractional Green and Gauss formulas, J. Math. Anal. Appl., 462 (2018), 157-171.

[19] J. Cheng, L. Jia, Hypergeometric Type Difference Equations on Nonuniform Lattices: Rodrigues Type Representation for the Second Kind Solution, Acta Mathematics Scientia, 2019, 39A(5), 1-19.

[20] J. B. Diaz, T. J. Osler, Differences of fractional order. Math.Comp. 1974, 28(125), 185-202.

[21] K. Diethelm and J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl. 265 (2002), 229-248.

[22] Rui A. C. Ferreira, Delfim F. M. Torres, Fractional h-differences arising from the calculus of variations, Appl. Anal. Discrete Math. 5 (2011), 110-121.

[23] M. Foupouagnigni, On difference equations for orthogonal polynomials on nonuniform lattices, J. Difference Equ. Appl. 14 (2008) 127174.

[24] M. Foupouagnigni, W. Koepf, K. Kenfack-Nangho, S. Mboutngam, On solutions of holonomic divided-difference equations on nonuniform lattices, Axioms 2 (2013) 404434.

[25] G. George, M. Rahman, Basic Hypergeometric Series. 2nd edition, Cambridge University Press, 2004.
[26] C. Goodrich, A. C. Peterson, Discrete Fractional Calculus, Springer International Publishing, Switzerland, 2015

[27] C. W. J. Granger, R. Joyeux, An introduction to long-memory time series models and fractional differencing, J. Time Ser. Anal., 1 (1980), 15-29.

[28] H. L. Gray, N. F. Zhang, On a new definition of the fractional difference, Mathematics of Computation, 1988, 50(182), 513-529.

[29] J. R. M. Hosking, Fractional differencing, Biometrika, 68 (1981), 165-176.

[30] M. E. H. Ismail, C. A. Libis, Contiguous relations, basic hypergeometric functions, and orthogonal polynomials I., Journal of Mathematical Analysis and Applications 141 (1989) 349-372.

[31] M. E. H. Ismail, R. Zhang, Diagonalization of certain integral operators, Advance in Math. Soc. 109 (1994), 1-33.

[32] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland mathematics Studies, Elsevier, 204 (2006).

[33] V. S. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Res. Notes on in Math., Wiley and Sons, New York, 301 (1994).

[34] S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, JohnWiley and Sons, USA, 1993.

[35] A. F. Nikiforov, S.K. Suslov, V.B. Uvarov, Classical orthogonal polynomials of a discrete variable, Translated from the Russian, Springer Series in Computational Physics. Springer-Verlag, Berlin, 1991.

[36] A. F. Nikiforov, V.B. Uvarov, Special functions of mathematical physics: A unified introduction with applications, Translated from the Russian by Ralph P. Boas, Birkhauser Verlag, Basel, 1988.

[37] K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.

[38] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, CA., 1999.

[39] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, London, 1993.

[40] S. K. Suslov, On the theory of difference analogues of special functions of hypergeometric type, Russian Math. Surveys 44 (1989) 227-278.

[41] S. K. suslov, An Introduction to Basic Fourier Series, Kluwer Academic Published, Springer-Science+business Media, B. V., 2003.
[42] Z. X. Wang, D. R. Guo, Special Functions, World Scientific Publishing, Singapore, 1989.