Observational Study

Comparative study between bowel ultrasound and magnetic resonance enterography among Egyptian inflammatory bowel disease patients

Shimaa Kamel, Mohamed Sakr, Waleed Hamed, Mohamed Eltabbakh, Safaa Askar, Ahmed Bassuny, Rasha Hussein, Ahmed Elbaz

ORCID number: Shimaa Kamel 0000-0002-7997-0653; Mohamed Sakr 0000-0002-2741-2967; Waleed Hamed 0000-0002-5640-8182; Mohamed Eltabbakh 0000-0003-2836-307X; Safaa Askar 0000-0002-0393-0487; Ahmed Bassuny 0000-0001-9740-9168; Rasha Hussein 0000-0001-6599-1237; Ahmed Elbaz 0000-0003-0502-0046.

Author contributions: Kamel S completed study design, bowel ultrasound examination, data collection and data analysis; Sakr M, Hamed W, Eltabbakh M and Askar S reviewed the manuscript for important scientific content; Bassuny A finished data collection; Hussein R reviewed the magnetic resonance imaging scans as an expert radiologist with high experience in inflammatory bowel disease, reviewed and edited radiological part of the manuscript; ElBaz A completed literature search, data analysis and writing the manuscript; all authors have read and approved final manuscript.

Institutional review board statement: The study was reviewed and approved by the Ain Shams University, Faculty of Tropical Medicine, Gastroenterology and Hepatology, Ain Shams University, Cairo 11566, Egypt.

Abstract

BACKGROUND
Bowel ultrasound and magnetic resonance enterography (MRE) are decisive medical imaging modalities for diagnosing and locating bowel lesions with its extramural extent and complications. They assess the degree of activity, help clinicians to identify patients in need of surgery, and can be used for patient follow-up.

AIM
To compare the role of MRE and bowel ultrasound in diagnosis and follow-up of inflammatory bowel disease (IBD) patients in Egypt.

METHODS
The study was conducted on 40 patients with IBD. All patients were subjected to clinical assessment, laboratory investigations, bowel ultrasound, MRE, and colonoscopy up to the terminal ileum with biopsies for histopathological examination.

RESULTS
This study was conducted on 14 patients (35%) with ulcerative colitis and 26 patients (65%) with Crohn's disease; 34 (85%) of these patients had active disease. Bowel ultrasound detected different bowel lesions with the following accuracies: ileum (85%), large bowel (70%), fistula (95%), stricture and proximal dilatation (95%) and abscesses (100%). Also, it showed that statistically significance of bowel...
ultrasound in differentiation between remission and activity of IBD in comparison to MRE and colonoscopy.

CONCLUSION
In comparison to MRE, bowel ultrasound is a useful, non-invasive, and feasible bedside imaging tool for the detection of inflammation, detection of complications, and follow-up of IBD patients when performed by the attending physician.

Key Words: Bowel ultrasound; Colonoscopy; Crohn's disease; Magnetic resonance enterography; Ulcerative colitis; Inflammatory bowel disease

Core Tip: Crohn’s disease and ulcerative colitis are chronic, relapsing inflammatory bowel diseases (IBD). Medical imaging is decisive for diagnosis bowel lesions with its complications. Magnetic resonance enterography (MRE) is one of these imaging techniques. Also, bowel ultrasound is becoming progressively important in management of IBD. Our aim of work in our study is to compare between the role of MRE and bowel ultrasound in diagnosis and follow up of Egyptian IBD patients.

INTRODUCTION
Crohn’s disease and ulcerative colitis are chronic, relapsing inflammatory bowel diseases (IBD). Medical imaging is decisive for diagnosis and locating the bowel lesion with its extramural extent and complications. It assesses its degree of activity, assigning patients in need for surgery and can be used for their follow-up.

Magnetic resonance enterography (MRE) is one specific imaging technique for such diseases\(^1\). T2W and T1W images after intravenous gadolinium have high accuracy for diagnosis and assessment of disease activity\(^2\).

Bowel ultrasound is also becoming progressively important in IBD management. Ultrasonography is a noninvasive, non-radiating, cheap, and very available technique that is acceptable and tolerated by patients and can be used repeatedly for follow-up examinations. Ultrasonography for these patients needs higher frequency linear array probes (5-15 MHz) for assessment of the five-layer wall of the bowel\(^3\).

Up until now, no previous comparative studies between bowel ultrasound and MRE for Egyptian patients who suffered/are suffering from IBD, either ulcerative colitis or Crohn’s disease, have been published.

MATERIALS AND METHODS
Study population
Our study enrolled 40 patients who presented to our IBD center at Ain Shams University Hospital during the period from September 2017 to September 2018.

The study was approved by the medical ethics committee of Ain Shams University. The study population included adolescents who were over 18 years old. All patients provided written informed consent before enrollment. Patients were excluded if they had severe or uncontrolled comorbidities, such as cardiac-respiratory, neurological, metabolic, liver, kidney diseases, claustrophobia, cardiac pacemaker, or implanted metal objects that prohibited use of MRE.

All patients reported a complete medical history, underwent thorough clinical examinations and laboratory investigations, including complete blood count, liver
profile tests, renal profile tests, C-reactive protein, erythrocyte sedimentation rate, MRE, bowel ultrasound, and colonoscopy up to the terminal ileum with biopsies for histopathological examination.

Clinical activity score for Crohn’s disease was assessed by The Crohn’s Disease Activity Index (CDAI). Clinical remission was determined if CDAI was < 150 points or no fistula drainage was found as assessed by the Fistula Drainage Assessment index4. Ulcerative colitis activity was assessed using the Truelove and Witts classification based on clinical and laboratory parameters, such as fever, frequency of bowel movements, rectal bleeding, tachycardia, anemia, and elevated erythrocyte sedimentation rate5.

Colonoscopies were performed with a videoscope system from Olympus Exera II CV-180 after colonic preparation and fasting for six hours.

Bowel ultrasound

Bowel ultrasound was done by one examiner who had performed several previous general ultrasound examinations. This examiner was trained for several bowel ultrasound exams under supervision of an ultrasound gastroenterologist specialist at Sacco Hospital, Italy. Bowel ultrasound assessment was reviewed blindly compared to MRE and colonoscopy.

Patients were examined via ultrasound after a six-hour fasting period to minimize intestinal air contents. Examination was done by ultrasound machine (Toshiba Xario, Japan) with a low frequency curved-array transducer (2.5-4.5 MHz) to determine any pathological bowel motility or distension and any para-intestinal structures, such as abscesses, in all abdominal quadrants. Examination with a high-frequency linear-array transducer (6.0-8.4 MHz) was used for bowel wall examination starting with examination of the proximal colon followed with the distal one and then the small bowel3. This examination assessed criteria of inflammation such as thickness of bowel wall, inflammatory mesenteric fat and lymph nodes, hyperemia on color Doppler flow, and complications, such as stenosis, fistulas or inflammatory masses.

In the longitudinal direction, the bowel wall was measured for bowel thickness at its anterior wall or in an area in which it was more visible in order to avoid mucosal folds and haustrations. The cursor was placed at the end of the interface echo between the serosa and proper muscle to the start of the interface echo between the lumen and the mucosa6,7.

Several criteria for stenosis diagnosis via ultrasound have been reported, such as thickened bowel wall, narrowing of the diameter of the lumen < 1 cm, hyperperistalsis of the pre-stenotic bowel, and proximal dilatation > 25-30 mm8-10.

An abscess was indicated by bowel ultrasound as an irregular, avascular hypoechoic area with a small amount of internal echoes or air in the form of hyperechoic streaks9.

MRE

The patient was instructed to have a low residue diet the day before the examination and was asked to fast at least 6 to 8 h before the onset of the procedure. Ingestion of 1 to 2 L of hyperosmolar oral contrast was performed for about 45 min before the magnetic resonance (MR) exam started. After full distension of the bowel, a spasmolytic medication was given to decrease bowel peristalsis to provide better bowel visualization. The examination was performed on 1.5-T MR machine, Achieva, Philips Medical System, Best, Netherlands in MRI Unit, Ain Shams University Hospital. The patient was laid in supine position using a multi-element phased array Torso coil (16 channels). A dedicated MR study was then performed as described in Table 1. Pixel-based apparent diffusion coefficient maps were generated on the off-line workstation (extended workspace “EWS”), Pride software (Philips Medical Systems). Intravenous gadolinium contrast was given (0.2 mmol/kg body weight) in dynamic fashion obtaining three-dimensional enhanced T1 isotropic volume excitation (3D-eTHRIVE) coronal scans at 10 s, 20 s, 60 s, 70 s, and 90 s. The total MRE procedure took about 30 to 45 min.

The images were interpreted by a radiologist with 12 years of experience in abdominal imaging and who was also blinded to the clinical and colonoscopy examination results.

The MRE evaluated bowel wall thickening, mural edema, enlarged mesenteric lymph nodes, restricted diffusion, peri-enteric vascularization (comb sign), peri-enteric fluid, and presence of complications, such as abscesses or fistulas.
Statistical analysis

Statistical analysis was performed using the SPSS software (22.0 version: SPSS Inc., Chicago, IL. United States). Description of quantitative variables was expressed in the form of mean ± standard deviation (mean ± SD) or median and inter-quartile range. A description of qualitative variables was expressed by frequency and percentage. Comparison of qualitative variables was carried out using the chi-square test. \(P < 0.05 \) was taken as significant. The sensitivity, specificity, overall correctness of prediction, and positive and negative predictive values were calculated. Correlations were calculated using Pearson’s correlation coefficient. The receiver operating characteristic (ROC) curves and areas under the ROC (AUROC) curves were applied to evaluate the prognostic values (specificity and sensitivity).

RESULTS

The demographic profile, clinical and laboratory parameters are shown in Table 2. Most of the patients were middle-age females who usually presented with abdominal pain and diarrhea. The result indicated that 14 (35%) of our patients had ulcerative colitis, and 26 (65%) had Crohn's disease while 34 (85%) of them were inactive. Four (4%) of studied patients had pancolitis, and 18 (45%) of the studied cases had ileal lesions.

Table 3 indicates that the bowel ultrasound appeared to be a good predictor for detection of ileal affection with sensitivity, specificity, and diagnostic accuracy of 93.8%, 50%, and 85%, respectively. With respect to the large bowel, bowel ultrasound detected large bowel affection with sensitivity, specificity, and accuracy of 37.5%, 91.7%, and 70%, respectively. Also, bowel ultrasound was a good predictor for detection of thickness of affected segment with sensitivity, specificity, and accuracy of 83.3%, 50%, and 60% respectively. Also, bowel ultrasound was a good predictor for detection of fistulous track with sensitivity, specificity, and accuracy of 85.7%, 100%, and 95%, respectively, while sensitivity, specificity, and accuracy of 100%, 94.4%, and 95%, respectively, for detection of stricture and proximal dilatation were found. Abscess was detected by bowel ultrasound in six patients with high specificity, sensitivity, and accuracy (100%). Also, bowel ultrasound showed that no statistically significant differences between bowel ultrasound and disease activity index, which indicates that bowel ultrasound can differentiate between remission and active disease (Figure 1).

Table 4 indicates that no statistically significant difference among bowel ultrasound, MRE, and colonoscopy for detection of activity of the disease was noted, indicating that bowel ultrasound and MRE can differentiate between remission and active IBD (Figure 2).

Table 5 compares between clinical symptoms and imaging modalities bowel ultrasound and MRE. It indicates that bleeding per rectum is statistically significant in patients with strictures and proximal dilatation during assessment by bowel ultrasound, while diarrhea is statistically significant to the extent of the lesions when assessed by MRE.
Table 2 Demographic characteristics, laboratory and colonscopic findings of the total 40 studied cases

Demographic characteristics, laboratory and colonscopic findings	n
Age (yr)	33.50 ± 8.19
Gender (male/female)	16/24
Symptoms	
Diarrhea	14 (35%)
Diarrhea and bleeding	10 (25%)
Bleeding	4 (10%)
Abdominal pain	36 (90%)
Total leukocyte count (10^3/cmm)	7.32 ± 2.22
Hemoglobin (g/dL)	11.22 ± 1.86
Total bilirubin (mg/dL)	0.97 ± 0.14
Alanine aminotransferase (IU/L)	25.75 ± 10.49
Total protein (g/dL)	7.16 ± 0.73
Albumin (g/dL)	3.76 ± 0.44
Blood urea nitrogen (mg/dL)	22.10 ± 9.86
Creatinine (mg/dL)	0.87 ± 0.22
Serum sodium (mmol/L)	136.65 ± 6.19
Serum Potassium (mmol/L)	3.96 ± 0.55
C-reactive protein (mg/L)	28 (6–55)
Erythrocyte sedimentation rate (mm/h)	45 (31.5–60)
Colonscopic findings	
Opacity of mucosa	28 (70%)
Excess exudate	24 (60%)
Cobble stone	26 (65%)
Bleeding on touch	20 (50%)
Aphthous ulcers	30 (75%)
Diffuse ulceration	20 (50%)
Pseudopolyps	20 (50%)
Polyps	30 (75%)
Site of involvement	
Rectum	4 (10%)
Pancolitis	4 (10%)
Descending colon	4 (10%)
Rectum and sigmoid colon	10 (25%)
Ileum	18 (45%)
Type of disease	
Ulcerative colitis	14 (35%)
Crohn's disease	26 (65%)
Activity	
Remission	6 (15%)
Activity	34 (85%)
Data are mean ± standard deviation, n (%) and median (inter-quartile range).

Table 3 The diagnostic characteristics of the bowel ultrasound in the detection of small intestinal and large bowel disease and its correlation to disease activity index

Bowel ultrasound	Disease activity index							
	Sensitivity	Specificity	PPV	NPV	Accuracy	Remission	Activity	P value
Large bowel	37.5%	91.7%	75%	68.8%	0.700	0 (0)	8 (23.5%)	0.184
Ileum	93.8%	50%	88.2%	66.7%	0.850	6 (100%)	28 (82.4%)	0.264
Thickness (> 3 mm)	83.3%	50%	41.7%	87.5%	0.600	4 (66.7%)	20 (58.8%)	0.718
Extent	33.3%	85.7%	50%	75%	0.700	0 (0)	8 (23.5%)	0.184
Mesenteric lymphadenopathy	16.7%	71.4%	20%	66.7%	0.550	0 (0)	10 (29.4%)	0.125
Fistula	85.7%	100%	100%	92.9%	0.950	0 (0)	12 (35.3%)	0.082
Stricture and proximal dilatation	100%	94.4%	66.7%	100%	0.950	0 (0)	6 (17.6%)	0.264
Abscess	100%	100%	100%	100%	0.1	0 (0)	6 (17.6%)	0.264

Data are n (%). PPV: Positive predictive value; NPV: Negative predictive value

Table 4 Comparison between bowel ultrasound, magnetic resonance enterography and colonoscopy as regards the detection of disease activity and remission

Activity	Colonoscopy	Bowel ultrasound	MRE	P value
Remission	6 (15%)	6 (15%)	6 (15%)	1.000
Activity	34 (85%)	34 (85%)	34 (85%)	1.000

Data are n (%). MRE: Magnetic resonance enterography.

DISCUSSION

Endoscopy is still the most important diagnostic procedure as it permits taking biopsy for histological examination[11]. European guidelines have recommended imaging techniques, such as bowel ultrasound, computed tomography enterography, and MRE as complementary tools for IBD diagnosis that can help define its location, extension, and complications[12].

MRE is a cross-sectional non-ionizing imaging technique that can be used for IBD diagnosis and extraintestinal assessment of disease activity and followup of patients. But MRE is available at certain centers only and it takes long time during scanning with sedation in some cases such as children to avoid motion artefacts besides non-compliance to contrast intake and breath-hold technique[13].

Assessment of gastrointestinal tract in IBD patients by intestinal ultrasound was evolved nowadays due to development of ultrasound devices and rising skillfulness of their examiners as radiologists and gastroenterologists. Major parts of the small and large intestine can be easily examined by bowel ultrasound while proximal part of jejunum and the rectum may be difficult in their assessment due to overlying structures. Inspite of different advantages of bowel ultrasound as a rapid bedside, inexpensive and non-radiating tolerable test but its results are subjective to the examiner's expertise[14].

Our results showed similar sensitivity for detection of ileal IBD in comparison to one previous study (92.7%) but with lower specificity than this study (88.2%). Regarding colonic IBD, our results showed lower sensitivity than observed in this previous study (81.8%) but with similar specificity (95.3%), a finding which may be explained by interobserver variability between examiners[15]. This variability can explain why one study concluded that bowel ultrasound is more accurate for assessment of IBD patients if combined with colonoscopy[16].
Table 5 Comparison between clinical symptoms and imaging techniques; bowel ultrasound and magnetic resonance enterography

	Abdominal pain		Blending per rectum		Diarrhea	
	No, n (%)	Yes, n (%)	P value	No, n (%)	Yes, n (%)	P value
Bowel ultrasound						
Large bowel	0 (0)	8 (22.2%)	0.292	8 (25.0%)	0 (0)	0.114
Ileum	4 (100.0%)	30 (83.3%)	0.376	26 (81.2%)	8 (100.0%)	0.184
Thickness (> 3 mm)	4 (100.0%)	20 (55.6%)	0.085	18 (56.2%)	6 (75.0%)	0.333
Extent	0 (0)	8 (22.2%)	0.292	8 (25.0%)	0 (0)	0.114
Lymphadenopathy	0 (0)	10 (27.8%)	0.224	8 (25.0%)	2 (25.0%)	1.000
Fistula	0 (0)	12 (33.3%)	0.168	8 (25.0%)	4 (50.0%)	0.168
Stricture and proximal dilatation	0 (0)	2 (5.6%)	0.629	0 (0)	2 (25.0%)	0.004
Abscess	2 (50.0%)	6 (16.7%)	0.114	6 (18.8%)	0.693	2 (10.0%)
MRE						
Large bowel	0 (0)	16 (44.4%)	0.085	14 (43.8%)	2 (25.0%)	0.333
Ileum	4 (100.0%)	28 (77.8%)	0.292	24 (75.0%)	8 (100.0%)	0.114
Thickness (> 3 mm)	2 (50.0%)	10 (27.8%)	0.358	10 (31.2%)	2 (25.0%)	0.730
Extent	0 (0)	12 (33.3%)	0.168	10 (31.2%)	2 (25.0%)	0.730
Lymphadenopathy	0 (0)	12 (33.3%)	0.168	8 (25.0%)	4 (50.0%)	0.168
Fistula	0 (0)	14 (38.9%)	0.122	10 (31.2%)	4 (50.0%)	0.320
Stricture and proximal dilatation	0 (0)	4 (11.1%)	0.482	4 (12.5%)	0 (0)	0.292
Abscess	0 (0)	6 (16.7%)	0.376	6 (18.8%)	0 (0)	0.184

MRE: Magnetic resonance enterography.

A bowel wall thickness cutoff value of 3 mm in our study showed sensitivity (83.3%), specificity (50%), and accuracy (60%) in comparison to other studies, which showed sensitivities of 88% to 94%; however, specificity (93%-97%,) and diagnostic accuracy (94%) were higher in previous studies than in our study\(^\text{[9,15]}\). This finding can be explained by the lack of international agreement about standardized measurement parameters, which leads to interobserver variability between examiners\(^\text{[18]}\).

Mesenteric lymph nodes detected by bowel ultrasound in our study were nonsensitive and nonspecific (16.7% and 71.4%, respectively) and insignificantly subsided during remission; therefore, lymph nodes detection was not a good parameter of activity in agreement with some previous studies\(^\text{[19,20]}\).

Our study agreed with different trials in which it was shown that detection rate of fistulas, depending on their localization, had sensitivity between 67% and 82% and specificity between 90% and 100%\(^\text{[8,9,21-23]}\). Stricture in our study as detected by bowel ultrasound showed sensitivity, specificity, and accuracy (100%, 94.4%, and 95%, respectively) were similar to other studies\(^\text{[15,24-26]}\).

The sensitivity for detecting abscesses in different studies varied between 80% and 100%, and specificity varied between 92% and 94%, which were similar results to...
Our study agreed with different trials in which it was shown that diagnosis of IBD and assessment of its activity cannot be dependent on clinical evaluation alone but should by combined with other investigations such as biomarkers, endoscopy, and imaging techniques such as bowel ultrasound and MRE\(^{[25,29]}.\)

Our results showed that aphthous ulcers at endoscopy, stricture and mesenteric lymphadenopathy at bowel ultrasound, thickness of bowel wall and proximal dilatation at MRE were significantly correlated to disease activity (Figure 3). Other studies showed that other different bowel ultrasound parameters such as bowel wall thickening and its extent showed a significant correlation with disease activity\(^{[26,31,32]}\). Regarding MRE results in our study agreed with some studies\(^{[33,34]}\) and disagree with another\(^{[35]}\).

This indicates that there is no clear gold standard imaging technique for IBD diagnosis including MRE or bowel ultrasound which could be used besides clinical
history, biomarkers, endoscopy for diagnosis of IBD as agreed with previous studies\cite{25,30,36}.

Bowel ultrasound can be more helpful in follow-up of IBD patients and monitoring of their response to treatment away from its role of diagnosis by ultrasound guided biopsy.

In Egypt, both MRE and colonoscopy are available tools with estimated total cost of $93 dollars and $125 dollars respectively. Bowel ultrasound costs only 18$ dollars which is considered as a low cost alternative and has prospects for widespread clinical use.

Limitations of our study were the relatively small number of included patients, and comparative assessments of clinical decisions with and without bowel ultrasound were not available.

CONCLUSION

In comparison to MRE and colonoscopy, bowel ultrasound is a useful non-invasive and feasible bedside imaging tool for the detection of inflammation, complications, as screening tool and follow-up of IBD patients when performed by the attending physician.

ARTICLE HIGHLIGHTS

Research background

Bowel ultrasound is a new tool for evaluation of inflammatory bowel.
Research motivation
Up until now, no previous published comparative studies between bowel ultrasound and magnetic resonance enterography (MRE) for Egyptian inflammatory bowel disease (IBD) patients.

Research objectives
Compare the role of bowel ultrasound and MRE in Egyptian IBD patients.

Research methods
The study was conducted on 40 patients presented to IBD center of Ainshams University Hospitals. The patients were subjected to clinical, laboratory, colonoscopic and radiological assessments including bowel ultrasound and MRE.

Research results
Bowel ultrasound was a good predictor of disease activity, fistula, stricture, and abscess formation with high sensitivity in ileum and more specificity in large bowel.

Research conclusions
Bowel ultrasound is a useful bedside cheap imaging tool that can be used for diagnosis and follow-up of IBD patients.

Research perspectives
Further studies to compare clinical decisions with and without bowel ultrasound.

REFERENCES
1. Lunder AK, Bakstad LT, Jahnsen J, Borthoe A, Hov JR, Vatn M, Negård A. Assessment of Bowel Inflammation and Strictures by Magnetic Resonance Enterography in Long-term Crohn’s Disease. J Crohns Colitis 2019; 13: 607-614 [PMID: 30541145 DOI: 10.1093/ecco-jcc/jjy208]
2. Maccioni F, Bruni A, Viscido A, Colaiacomo MC, Cocco A, Montesani C, Caprilli R, Marini M. MR imaging in patients with Crohn disease: value of T2- vs T1-weighted gadolinium-enhanced MR sequences with use of an oral superparamagnetic contrast agent. Radiology 2006; 238: 517-530 [PMID: 16371574 DOI: 10.1148/radiol.2381040246]
3. Strobel D, Goertz RS, Bernhatik T. Diagnostics in inflammatory bowel disease. World J Gastroenterol 2011; 17: 3192-3197 [PMID: 21912467 DOI: 10.3748/wjg.v17.i27.3192]
4. Best WR, Becktel JM, Singleton JW. Redefined values of the eight coefficients of the Crohn’s Disease Activity Index (CDAI). Gastroenterology 1979; 77: 843-846 [PMID: 467941]
5. TRUELOVE SC, WITTS LJ. Cortisone in ulcerative colitis; final report on a therapeutic trial. Br Med J 1955; 2: 1041-1048 [PMID: 13260656 DOI: 10.1136/bmj.2.4947.1041]
6. Nylund K, Hausken T, Ødegaard S, Eide GE, Gilja OH. Gastrointestinal wall thickness measured with transabdominal ultrasonography and its relationship to demographic factors in healthy subjects. Ultrasound Med Biol 2012; 38: E225-E232 [PMID: 22504939 DOI: 10.1016/j.ultras.2011.12.99329]
7. Nylund K, Maconi G, Hofferwer A, Ropolle T, Pallotta N, Higginson A, Serra C, Dietrich CF, Sporea I, Saffoia A, Dirks K, Hausken T, Calabrese E, Romainini L, Maaser C, Nuerenberg D, Gilja OH. EFSUMB Recommendations and Guidelines for Gastrointestinal Ultrason. Ultrasound Med Biol 2017; 43: e1-e15 [PMID: 27604552 DOI: 10.1055/s-0042-115853]
8. Calabrese E, Zorzi F, Onali S, Stasi E, Fiori R, Preciipe S, Bella A, Petruzziello C, Condino G, Lolli E, Simonetti G, Biancone L, Pallone F. Accuracy of small-intestine contrast ultrasonography, compared with computed tomography enteroclysis, in characterizing lesions in patients with Crohn’s disease. Clin Gastroenterol Hepatol 2013; 11: 950-955 [PMID: 23375998 DOI: 10.1016/j.cgh.2013.01.015]
9. Castiglione F, Mainennti PP, De Palma GD, Testa A, Bucci L, Pesce G, Camera L, Diener M, Rea M, Caporaso N, Salvador M, Rispa A. Noninvasive diagnosis of small bowel Crohn’s disease: direct comparison of bowel sonography and magnetic resonance enterography. Inflamm Bowel Dis 2013; 19: 991-998 [PMID: 23429465 DOI: 10.1097/MIB.0b013e3182802b87]
10. Coelho R, Ribeiro H, Maconi G. Bowel Thickening in Crohn’s Disease: Fibrosis or Inflammation? Inflamm Bowel Dis 2017; 23: 23-34 [PMID: 28002125 DOI: 10.1097/MIB.0000000000000997]
11. Annesse V, Daperno M, Rutter MD, Amiot A, Bossuyt P, East J, Ferrante M, Götz M, Katsanos KH, Kießlich R, Ordsí I, Repici A, Rosa B, Sebastian S, Kucharzik T, Eliakim R; European Crohn’s and Colitis Organisation. European evidence based consensus for endoscopy in inflammatory bowel disease. J Crohns Colitis 2013; 7: 982-1018 [PMID: 24184171 DOI: 10.1016/j.crohns.2013.09.016]
12. Gomméllon F, Dignass A, Annesse V, Tilg H, Van Assche G, Lindsay JO, Peyrin-Biroulet L, Cullen GJ, Daperno M, Kucharzik T, Rieder F, Almer S, Armauzi A, Harbord M, Langhorst J, Sans M, Chowers Y, Fierino G, Juillerat P, Mantzaris GJ, Rizzello F, Vavricka S, Giannetti L, ECCO. 3rd European Evidence-based Consensus on the Diagnosis and Management of Crohn’s Disease 2016: Part 1: Diagnosis and Medical Management. J Crohns Colitis 2017; 11: 3-25 [PMID: 27660341 DOI: 10.1093/ecco-jcc/jww188]
13. Ramos Llera L, Hernández Camba A, Rodríguez-Lago I, Carillo Palau M, Cejas Dorta L, Elorza A, Alonso Abreu I, Vela M, Hidalgo A, Hernández-Alvarez-Builla N, Rodríguez GE, Rodríguez Y, Tardillo C,
Kamel S et al. Bowel ultrasound vs MRE in IBD

Díaz-Flórez L, Eiroa D, Aduna M, Garrido MS, Larena JA, Cabriada JL, Quintero Carrión E. Usefulness of magnetic resonance enterography in the clinical decision-making process for patients with inflammatory bowel disease. Gastroenterol Hepatol 2020; 40: 267-272 [PMID: 32280776 DOI: 10.1016/j.gastrohe.2020.03.007]

Rajagopalan A, Sathyananthan D, An YK, Van De Ven L, Martin S, Fon J, Costello SP, Hegun J, Bryant RV. Gastroduodenal ultrasound in inflammatory bowel disease care: Patient perceptions and impact on disease-related knowledge. JGHP Open 2020; 4: 267-272 [PMID: 32280776 DOI: 10.1016/j.jghopen.2020.02.004.1]

Calabrese E, Maaser C, Zorzi F, Kannengiesser K, Hanauer SB, Bruining DH, Iacucci M, Maconi G, Novak KL, Panaccione R, Strobel D, Wilson SR, Watanabe M, Pallone F, Ghosh S. Bowel Ultrasonography in the Diagnosis of Crohn's Disease. Inflamm Bowel Dis 2016; 22: 1168-1183 [PMID: 26959888 DOI: 10.1097/MIB.0000000000000706]

Maconi G, Bolzonzi E, Giussani A, Friedman AB, DaCP. Accuracy and cost of diagnostic strategies for patients with suspected Crohn's disease. J Crohns Colitis 2014; 8: 1684-1692 [PMID: 25179579 DOI: 10.1016/j.crohns.2014.08.005]

Fraquelli M, Colli A, Casazza G, Paggi S, Colucci A, Massironi S, Da Duca P, Conte D. Role of US in detection of Crohn disease meta-analysis. Radiology 2005; 236: 95-101 [PMID: 15987966 DOI: 10.1148/radiol.2361040799]

Calabrese E, Kucharzik T, Maaser C, Maconi G, Strobel D, Wilson SR, Zorzi F, Novak KL, Bruining DH, Iacucci M, Watanabe M, Lelli E, Chiaramonte C, Hanauer SB, Panaccione R, Pallone F, Ghosh S, Monteleone G. Real-time Interobserver Agreement in Bowel Ultrasonography for Diagnostic Assessment in Patients With Crohn's Disease: An International Multicenter Study. Inflamm Bowel Dis 2014; 20: 2001-2006 [PMID: 29718450 DOI: 10.1093/ibd/izy091]

Kucharzik T, Wittig BM, Helwig U, Börner N, Rössler A, Rath S, Maaser C; TRUST study group. Use of Intestinal Ultrasound to Monitor Crohn's Disease Activity. Clin Gastroenterol Hepatol 2017; 15: 535-542.e2 [PMID: 27856365 DOI: 10.1016/j.cgh.2016.10.040]

Maconi G, Di Sabatino A, Aridzzone S, Greco S, Colombo E, Russo A, Cassinotti A, Cassini V, Corazza GR, Bianchi Porrro G. Prevalence and clinical significance of sonographic detection of enlarged regional lymph nodes in Crohn's disease. Scand J Gastroenterol 2005; 40: 1328-1333 [PMID: 16243717 DOI: 10.1080/03005370510025746]

Onali S, Calabrese E, Petruzzello C, Zorzi F, Sica G, Fiori R, Ascolani M, Lelli E, Condino G, Palmieri G, Simonetti G, Pallone F, Biancec L. Small intestine contrast ultrasonography vs computed tomography enteroclysis for assessing ileal Crohn's disease. World J Gastroenterol 2012; 18: 6088-6095 [PMID: 23155337 DOI: 10.3748/wjg.v18.i42.6088]

Pallotta N, Vicinco G, Montesani C, Chirletti P, Prinio A, Carmona R, Picciacelli B, Romeo E, Marcheggiano A, Corazziari E. Small intestinal contrast ultrasonography (SICUS) for the detection of small bowel complications in Crohn's disease: a prospective comparative study vs intraoperative findings. Inflamm Bowel Dis 2012; 18: 74-84 [PMID: 21438995 DOI: 10.1002/ibd.21678]

Kumar S, Hakim A, Alexakis C, Chhaba Y, Tijs D, Polcker J, Vlahos J, Pollock R. Small intestinal contrast ultrasonography for the detection of small bowel complications in Crohn's disease: correlation with intraoperative findings and magnetic resonance enterography. J Gastroenterol Hepatol 2015; 30: 86-91 [PMID: 25168482 DOI: 10.1111/jgh.12724]

Parente F, Maconi G, Bollani S, Anderloni A, Sampietro G, Cristaldi M, Franceschelli N, Bianco R, Taschieri AM, Bianchi Porro G. Bowel ultrasound in assessment of Crohn's disease and detection of related small bowel strictures: a prospective comparative study versus X ray and intraoperative findings. Gut 2002; 50: 490-495 [PMID: 11890668 DOI: 10.1136/gut.50.4.490]

Panes J, Bouchik Y, Reinsch W, Stoker J, Taylor SA, Baumbart DC, Danese S, Halligan S, Marineck B, Matos C, Peyrin-Biroulet L, Rimola J, Rogler G, van Afsche G, Aridzzone S, Ba-Saalham A, Ball MA, Bellini D, Biancone L, Castiglione F, Ehehalt R, Grassi R, Kucharzik T, Maccioni F, Maconi G, Magro F, Martin-Conin J, Morana G, Pendsé D, Sebastian S, Signore A, Tolan D, Tielbeck JA, Weihsaupt D, Wiarda B, Laghi A. Imaging techniques for assessment of inflammatory bowel disease. Inflammatory Bowel Disease 2013; 19: 556-585 [PMID: 23583097 DOI: 10.1002/ibd.21678]

Gasche C, Moser G, Turetsek K, Schober E, Moesch P, Oberhuber G. Transabdominal bowel sonography for the detection of intestinal complications in Crohn's disease. Gut 1999; 44: 112-117 [PMID: 9862836 DOI: 10.1136/gut.44.1.112]

Kohn A, Cerro P, Milite G, De Angelis E, Pranteria C. Prospective evaluation of transabdominal bowel sonography in the diagnosis of intestinal obstruction in Crohn's disease: comparison with plain abdominal film and small bowel enteroclysis. Inflamm Bowel Dis 1999; 5: 153-157 [PMID: 10453369 DOI: 10.1002/ibd.13789.153-157]

Maconi G, Sampietro GM, Parente F, Pompili G, Russo A, Cristaldi M, Arboario G, Aridzzone S, Matacena G, Taschieri AM, Bianchi Porrro G. Contrast radiology, computed tomography and ultrasonography in detecting internal fistulas and intra-abdominal abscesses in Crohn's disease: a prospective comparative study. Am J Gastroenterol 2003; 98: 1545-1555 [PMID: 12873576 DOI: 10.1111/j.1572-0241.2003.07521.x]

Kucharzik T, Petersen F, Maaser C. Bowel Ultrasonography in Inflammatory Bowel Disease. Dig Dis 2015; 33 Suppl 1: 17-25 [PMID: 26366707 DOI: 10.1159/000437035]

Ripollés T, Paredes Arquillo JM, Moreno-Onset E. Ultrasonography and Transmural Healing in Crohn's Disease. Clin Gastroenterol Hepatol 2015; 13: 1549-1551 [PMID: 25724705 DOI: 10.1016/j.cgh.2015.02.020]

Parente F, Molteni M, Marino B, Colli A, Aridzzone S, Greco S, Sampietro G, Foschi D, Gallus S. Are colonoscopy and bowel ultrasound useful for assessing response to short-term therapy and predicting disease outcome of moderate-to-severe forms of ulcerative colitis? Am J Gastroenterol 2010; 105: 1150-1157 [PMID: 19997096 DOI: 10.1038/ajg.2009.672]
Martínez MJ, Ripollès T, Paredes JM, Blanc E, Martí-Bonmatí L. Assessment of the extension and the inflammatory activity in Crohn's disease: comparison of ultrasound and MRI. *Abdom Imaging* 2009; **34**: 141-148 [PMID: 18214582 DOI: 10.1007/s00261-008-9365-y]

Rimola J, Ordás I, Rodriguez S, Garcia-Bosch O, Aceituno M, Llach J, Ayuso C, Ricart E, Panés J. Magnetic resonance imaging for evaluation of Crohn's disease: validation of parameters of severity and quantitative index of activity. *Inflamm Bowel Dis* 2011; **17**: 1759-1768 [PMID: 21744431 DOI: 10.1002/ibd.21551]

Ordás I, Rimola J, Rodriguez S, Paredes JM, Martinez-Pérez MJ, Blanc E, Arévalo JA, Aduna M, Andreu M, Radosevic A, Ramírez-Morros AM, Pino S, Gallego M, Jauregai-Amezaga A, Ricart E, Panés J. Accuracy of magnetic resonance enterography in assessing response to therapy and mucosal healing in patients with Crohn's disease. *Gastroenterology* 2014; **146**: 374-82.e1 [PMID: 24177375 DOI: 10.1053/j.gastro.2013.10.055]

Schreiber-Dietrich D, Chiorean L, Cui XW, Braden B, Kucharzik T, Jüngert J, Kosiak W, Stenzel M, Dietrich CF. Particularities of Crohn’s disease in pediatric patients: current status and perspectives regarding imaging modalities. *Expert Rev Gastroenterol Hepatol* 2015; **9**: 1313-1325 [PMID: 26377445 DOI: 10.1586/17474124.2015.1083420]
