Roots of Modular Units

A. Beeson

May 2, 2014

Abstract

Let p be a prime. We prove that if a modular unit has a p^{th} root that is again a modular unit then the level of that root is at most p times the level of the original unit.

1 Introduction

We prove the result in section 2, but because the literature contains inconsistent definitions, in section 3 we give a summary of the relevant definitions. The reader interested in learning more about the theory of modular functions should see [DS05].

Our main result is that the p^{th} root of a modular unit, if it is again a modular unit, has the level that one would expect. The source of this question was the study of the Siegel functions and their square roots. See [Kub81]. The result could likely be extended using similar techniques to the general case of a cyclic Galois group.

2 On the level of a root of a modular function

Theorem 2.1. Let \mathcal{F}_N be the field of modular functions of level N with Fourier coefficients in $\mathbb{Q}(\zeta_N)$; that is, \mathcal{F}_N is the fixed field of $\Gamma(N)$ inside \mathcal{F}, the full field of modular functions. If p is a rational prime and $f(z) \in \mathcal{F}_N \setminus \mathcal{F}_N^p$ is a modular unit and $f(z)^{1/p}$ has level M for some $M \in \mathbb{N}$ with $N | M$ then, in fact, $f(z)^{1/p}$ has level pN.

Proof. We assume \(f(z)^{1/p} \) is known to be invariant under the subgroup \(\Gamma(M) \subseteq \Gamma(N) \). We will show that \(f(z)^{1/p} \) is invariant under \(\Gamma(pN) \).

Let \(\Gamma_1 \) be the subgroup of \(\Gamma(N) \) that fixes \(f(z)^{1/p} \); i.e., for all \(A \in \Gamma_1 \) and \(z \in \mathcal{H}^* \),

\[
f(A \circ z)^{1/p} = f(z)^{1/p}.
\]

Because \(\mathcal{F}_N(f(z)^{1/p}) \) is a degree \(p \) extension of \(\mathcal{F}_N \), the index \([\Gamma(N) : \Gamma_1] = p \), and, thus, \(\Gamma_1 \) is a finite index subgroup of \(\Gamma \) as well. Furthermore, because \(f(z)^{1/p} \) is of level \(M \), \(\Gamma(M) \subseteq \Gamma_1 \). So we have the linear ordering of fields

\[
\mathbb{Q}(j(z)) \subseteq \mathcal{F}_N \subseteq \mathcal{F}_{\Gamma_1} \subseteq \mathcal{F}_M \subseteq \mathcal{F}
\]

where \(\mathcal{F}_{\Gamma_1} \) denotes the fixed field of \(\Gamma_1 \) inside \(\mathcal{F} \).

Let \(D \) be a fundamental domain for \(\Gamma \); so \(D \) is a simply connected subset of \(\mathcal{H}^* \) such that \(D \) contains precisely one point from each \(\Gamma \)-orbit. If \(D_1 \) is a fundamental domain for the subgroup of finite index \(\Gamma_1 \subseteq \Gamma \) then it is made up of translates of \(D \) by a full set of coset representatives for \(\Gamma_1 \) inside \(\Gamma \). Such a translate is called a modular triangle. Define the fan width of a fundamental domain at a cusp \(\alpha \) to be the order of the cyclic group that permutes the \(\Gamma_1 \)-inequivalent modular triangles meeting at \(\alpha \). Schoeneberg proves in [Sho74] that the conductor of a group \(\Gamma_1 \) is equal to the least common multiple of the fan widths at the rational cusps.

The index of \(\Gamma(N) \) in \(\Gamma \) is the size of \(SL_2(\mathbb{Z}/N\mathbb{Z})/\{\pm I\} \), which is

\[
l = [\Gamma : \Gamma(N)] = \frac{1}{2} N^3 \prod_{p|N} \left(1 - \frac{1}{p^2} \right).
\]

As observed above, \([\Gamma(N) : \Gamma_1] = p \), hence the group of automorphisms of \(\mathcal{F}_{\Gamma_1} \) fixing \(\mathcal{F}_N \) is cyclic. If we let \(\sigma \) be a generator then \(\Gamma(N) \) decomposes as the disjoint union

\[
\Gamma(N) = \Gamma_1 \cup \sigma \Gamma_1 \cup \sigma^2 \Gamma_1 \cup \cdots \cup \sigma^{p-1} \Gamma_1.
\]

And if \(\{A_1, \ldots, A_l\} \) is a complete set of representative for \(\Gamma/\Gamma(N) \) then

\[
\{A_1, \ldots, A_l, \sigma A_1, \ldots, \sigma A_l, \sigma^2 A_1, \ldots, \sigma^2 A_l, \ldots, \sigma^{p-1} A_1, \ldots, \sigma^{p-1} A_l\}
\]

is a complete set of representatives for \(\Gamma/\Gamma_1 \). Recalling our notation \(C(\Gamma(N)) \) for the cusps of \(\mathcal{H}/\Gamma(N) \), we see that

\[
C(\Gamma(N)) \subset C(\Gamma_1)
\]
and if \(\alpha \) is a cusp of \(\Gamma_1 \) then \(\sigma^i \alpha \in C(\Gamma(N)) \) for some \(i \) with \(1 \leq i \leq p \).

Choose \(\{A_1, \ldots, A_l\} \) to be a complete set of representatives for \(\Gamma/\Gamma(N) \) such that
\[
\mathcal{D}_N = \cup_i A_i(\mathcal{D})
\]
is a fundamental domain for \(\mathcal{H}/\Gamma(N) \). Let \(\mathcal{D}_1 \) be a fundamental domain for \(\mathcal{H}/\Gamma_1 \).

Schoeneberg’s theorem implies that the least common multiple of the fan widths for \(\mathcal{D}_N \), \(\Gamma \) is \(N \). We will use this to show that, for any cusp \(\alpha \) of \(\Gamma_1 \), the fan width of \(\mathcal{D}_1 \) at \(\alpha \) divides \(pN \) so, by Schoeneberg’s theorem, the conductor of \(\Gamma_1 \) divides \(pN \). Because \(f(z)^{1/p} \notin \mathcal{F}_N \), \(f(z)^{1/p} \) must have level \(pN \).

Let \(\alpha \) be a cusp of \(\Gamma_1 \). As observed above, this implies \(\sigma^i \alpha \) is a cusp of \(\Gamma(N) \) for at least one \(i \) with \(1 \leq i \leq p \). Letting \(\beta = \sigma^i \alpha \) be a translate of \(\alpha \) that is a cusp of \(\mathcal{D}_N \), we see that multiplication by \(\sigma^i \) is a homeomorphism between a neighborhood of \(\alpha \) and a neighborhood of \(\beta \). Thus, it suffices to prove the result for the cusps of \(\mathcal{D}_1 \) that are also cusps of \(\mathcal{D}_N \).

Lemma 2.2. If \(\alpha \) is a cusp of \(\Gamma_1 \) and of \(\Gamma(N) \) that is of fan width \(n \) for \(\mathcal{D}_N \) then its width for \(\mathcal{D}_1 \) is \(n \) or \(pn \).

Proof. Recall \(\Gamma_1 \subseteq \Gamma(N) \) so \(\Gamma \backslash \Gamma(N) \subseteq \Gamma \backslash \Gamma_1 \) and that the fan width \(n \) of \(\mathcal{D}_1 \) at the cusp \(\alpha \) is the order of the cyclic group that permutes the \(n \) \(\Gamma_1 \)-inequivalent triangles meeting at \(\alpha \).

If two triangles are \(\Gamma_N \)-inequivalent then they are \(\Gamma_1 \)-inequivalent so, assuming the width for \(\mathcal{D}_N \) is \(n \), the width for \(\Gamma_1 \) is at least \(n \). Then since \([\Gamma(N) : \Gamma_1] = p \), we see that the width of a triangle for \(\Gamma_1 \) is no more than \(pn \).

This concludes the proof of the theorem so any \(p \text{th} \) root of a level \(N \) modular function that has a level, in fact, has level \(N \) or \(pN \). As \(f(z)^{1/p} \) is not level \(N \) by assumption, it must be level \(pN \).

The special case we are currently most interested in is when \(p = 2 \), in which case we have the following theorem and its corollary.

Theorem 2.3. If \(f(z) \in \mathcal{F}_N \setminus \mathcal{F}_N^2 \) is a modular unit and \(\sqrt{f(z)} \) has level \(M \) for some \(M \in \mathbb{N} \) with \(N|M \) then, in fact, \(\sqrt{f(z)} \) has level \(2N \).

Theorem 2.4. If \(f(z) \in \mathcal{F}_N \setminus \mathcal{F}_N^2 \) is a modular unit with \(\sqrt{f(z)} \notin \mathcal{F}_N(\sqrt{j(z)} - 1728) \) then \(\sqrt{f(z)} \) is not level \(M \) for any \(M \in \mathbb{N} \).
Proof. By the index, there is a unique quadratic extension between F_N and F_{2N}. We observe that $F_N(\sqrt{j(z) - 1728})$ is such an extension since $j(z) - 1728$ has a holomorphic $PSL_2(\mathbb{Z})$-invariant square root on H.

The theorem says that if the square root of a modular unit of level N is a modular function on a congruence subgroup then it is level $2N$. Thus, because the Siegel units $\phi_{u,v}$ for $(u, v) \in \frac{1}{N}\mathbb{Z}$ are level $12N^2$, it suffices to show the square roots of Siegel functions are not level $24N^2$ in order to conclude that they do not, in fact, have a level at all. For definitions and further discussion of the Siegel units see [KL81].

3 Background

3.1 Modular functions

Let $\mathcal{H} = \{z \in \mathbb{C} | \text{Im}(z) > 0\}$ denote the complex upper half plane; let $\mathcal{H}^* = \mathcal{H} \cup \mathbb{P}^1(\mathbb{Q})$ be the extended upper half plane and $\hat{\mathbb{C}}$ the compactified complex plane. Let Γ denote the (inhomogeneous) modular group, or the group of all fractional linear transformations mapping \mathcal{H} to itself. Then Γ is naturally identified with the matrix group

$$\Gamma = PSL_2(\mathbb{Z}) = SL_2(\mathbb{Z})/\{\pm I\} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \big| a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\}/\{\pm I\},$$

which is generated by $S = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $T = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. The action of Γ on an upper half-plane variable $z \in \mathcal{H}$ is given via fractional linear transformation:

$$A \circ z = \frac{az + b}{cz + d}.$$

A map $f : \mathcal{H}^* \to \hat{\mathbb{C}}$ is called a modular function (of level one) if

1. f is meromorphic on \mathcal{H},

2. $f(A \circ z) = f(z)$ for all $A \in \Gamma$ and $z \in \mathcal{H}^*$,
3. there is an $a > 0$ so that for $\text{Im}\{z\} > a$, $f(z)$ has an expansion in the local variable at $i\infty$, $q = e^{2\pi i z}$, of the form

$$f(z) = \sum_{n \geq n_0} a_n q^n, \ n \in \mathbb{Z}, \ a_{n_0} \neq 0.$$

so n_0 determines the behavior of f as $z \to \infty$. If $n_0 < 0$ then $f(i\infty) = \infty$; if $n_0 = 0$ then $f(i\infty) = a_0$; and if $n_0 > 0$ then $f(i\infty) = 0$. In the last case, we call f a cusp form.

Fix a natural number $N > 2$. Let $\Gamma(N) \leq \Gamma$ be the (inhomogeneous) principal congruence subgroup modulo N, or the kernel of the reduction mod N map. In other words,

$$\begin{array}{c}
1 \longrightarrow \Gamma(N) \longrightarrow \Gamma \longrightarrow PSL_2(\mathbb{Z}/N\mathbb{Z}) \longrightarrow 1
\end{array}$$

is a short exact sequence.

By convention, we take $\Gamma(1) = \Gamma$. The upper half-plane modulo the action of Γ (written, by abuse of notation, \mathcal{H}/Γ) is a singular surface whose one-point compactification by the image of the point $i\infty$ under the stereographic projection is homeomorphic to the Riemann sphere. The completed nonsingular curve is denoted $X(1)$. Similarly, $\mathcal{H}/\Gamma(N)$ can be compactified by adding finitely many points, the cusps of $\Gamma(N)$, or the translates of $i\infty$ under a full set of coset representatives for $PSL_2(\mathbb{Z}/N\mathbb{Z})$ in Γ. In this case, the curve is denoted $X(N)$.

If H is a finite index subgroup in Γ the set of cusps, or translates of $i\infty$ under a full set of coset representative for H in Γ, will hereafter be denoted $C(H)$. A finite index subgroup of Γ defined by congruence conditions is called a congruence subgroup. The conductor of a congruence subgroup H is the largest N for which $\Gamma(N) \subseteq H$.

3.2 Modular functions of level N

A modular function for a congruence subgroup $\Gamma(N)$ is a function, $f(z) : \mathcal{H}^* \to \hat{\mathbb{C}}$ such that

1. f is meromorphic on \mathcal{H},

2. $f(A \circ z) = f(z)$ for all $A \in \Gamma(N)$ and $z \in \mathcal{H}^*$,
3. \(f(z) \) has an expansion at each of the cusps in the local variable \(q = e^{2\pi iz} \) of the form

\[
f(z) = \sum_{n \geq n_0} a_n q^n, \quad n \in \mathbb{Z}, a_{n_0} \neq 0.
\]

If \(f \) is modular for \(\Gamma(N) \), we say \(f \) has level \(N \). A modular function of level \(N \) descends to a well-defined holomorphic function on \(X(N) \). As before, if \(n_0 > 0 \) for all \(\alpha \in C(\Gamma(N)) \) then \(f(z) \) is called a cusp form for \(\Gamma(N) \).

3.3 The full tower of modular functions \(\mathcal{F} \)

The set of modular functions invariant under the full modular group \(\Gamma \) is, in fact, a function field of genus one and is generated over \(\mathbb{C} \) by the classical \(j \)-function,

\[
j(z) = \frac{1}{q} + 744 + 196884q + 21493760q^2 + 864299970q^3 + O(q^4).
\]

We write \(\mathcal{F}_1 = \mathbb{Q}(j(z)) \) and note that \(\mathcal{F}_1 \) is the full field of rational functions on \(X(1) \) whose Fourier coefficients are rational. The \(j \)-function is normalized so that its \(q \)-expansion at \(i\infty \) (which is the only cusp of \(\mathcal{H}/\Gamma \)) has integral coefficients. Thus, it is reasonable to define the ring of integers in this field to be \(\mathbb{Z}[j] \).

Furthermore, the set of level \(N \) functions together with the \(N^{th} \) roots of unity generate a field extension of \(\mathcal{F}_1 \), denoted \(\mathcal{F}_N \), which is a finite Galois extension of \(\mathcal{F}_1 \) with Galois group \(\text{PGL}_2(\mathbb{Z}/\mathbb{N}\mathbb{Z}) \cong \Gamma/\Gamma(N) \times (\mathbb{Z}/\mathbb{N}\mathbb{Z})^\times \). The Galois action is given by writing \(\text{PGL}_2(\mathbb{Z}/\mathbb{N}\mathbb{Z}) \cong \text{PSL}_2(\mathbb{Z}/\mathbb{N}\mathbb{Z}) \times (\mathbb{Z}/\mathbb{N}\mathbb{Z})^\times \) and letting \(\text{PSL}_2(\mathbb{Z}/\mathbb{N}\mathbb{Z}) \) act as usual as fractional linear transformations on \(z \in \mathcal{H} \). A matrix in \(\text{PGL}_2(\mathbb{Z}/\mathbb{N}\mathbb{Z}) \) with determinant \(d \in (\mathbb{Z}/\mathbb{N}\mathbb{Z})^\times \) acts on a (not necessarily primitive) \(N^{th} \) root of unity \(\zeta \) via \(\sigma_d : \zeta \mapsto \zeta^d \). In other words, if \(f \) has Fourier expansion

\[
f(z) = \sum_{n \geq n_0} a_n q^n
\]

then elements of the form \(A = \begin{pmatrix} 1 & 0 \\ 0 & d \end{pmatrix} \in \text{PGL}_2(\mathbb{Z}/\mathbb{N}\mathbb{Z}) \) act as follows:

\[
f(A \circ z) = \sum_{n \geq n_0} \sigma_d(a_n) q^n
\]
and more general elements A of determinant d act as

$$f(A \circ z) = \sum_{n \geq n_0} \sigma_d(a_n)(A' \circ q)^n$$

where $A' = \frac{1}{\sqrt{d}} A \in PSL_2(\mathbb{Z}/N\mathbb{Z})$.

Taking the integral closure of $\mathbb{Z}[j]$ in \mathcal{F}_N, we get a ring R_N, whose units, U_N, are the modular units of level N. It is not uncommon, however, to extend scalars to \mathbb{C}, that is, to study $U_N \otimes \mathbb{C} \subseteq R_N \otimes \mathbb{C}$. In this setting the set of functions with multiplicative inverses coincide precisely with the set of function whose divisor of zeros and poles is supported at the cusps of $X(N)$.

Finally, the compositum of the \mathcal{F}_N over all N is called the full tower of modular functions \mathcal{F}. The set of units U in the full tower of modular functions is the direct limit of the U_N with respect to the natural inclusion maps.

References

[DS05] F. Diamond and J. Shurman. A First Course in Modular Forms, volume 228 of Graduate Texts in Mathematics. Springer, 2005.

[KL81] D. Kubert and S. Lang. Modular Units, volume 224 of Die Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, 1981.

[Kub81] D. Kubert. The square root of the siegel group. Proc. London Math. Soc., 43(2):193–226, 1981.

[Sho74] B. Shoeneberg. Elliptic Modular Functions: an Introduction, volume 203 of Die Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, 1974. Translated from the German by J. R. Smart and E. A. Schwandt.