ON QUASICONFORMAL CLOSE-TO-CONVEX HARMONIC MAPPINGS INVOLVING STARLIKE FUNCTIONS

ZHI-GANG WANG, XIN-ZHONG HUANG, ZHI-HONG LIU AND RAHIM KARGAR

Abstract. In the present paper, we discuss several basic properties of a class of quasiconformal close-to-convex harmonic mappings with starlike analytic part, such results as coefficient inequalities, an integral representation, a growth theorem, an area theorem, and radii of close-to-convexity of partial sums of the class, are derived.

CONTENTS

1. Introduction 1
2. Non-univalency of the class $G(\alpha)$ for $\alpha \in (3/2, +\infty)$ 3
3. Properties and characteristics of the class $F(\alpha, \lambda, n)$ 5
References 13

1. Introduction

A planar harmonic mapping f in the open unit disk D can be represented as $f = h + g$, where h and g are analytic functions in D. We call h and g the analytic part and co-analytic part of f, respectively. Since the Jacobian of f is given by $|h'|^2 - |g'|^2$, by Lewy's theorem (see [23]), it is locally univalent and sense-preserving if and only if $|g'| < |h'|$, or equivalently, if $h'(z) \neq 0$ and the dilatation $\omega = g'/h'$ has the property $|\omega| < 1$ in D. Let H denote the class of harmonic functions $f = h + g$ normalized by the conditions $f(0) = f_z(0) = 0$, which have the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k + \sum_{k=1}^{\infty} b_k z^k \quad (z \in D). \quad (1.1)$$

Denote by S_H the class of harmonic functions $f \in H$ that are univalent and sense-preserving in D. Also denote by S_H^0 the subclass of S_H with the additional condition $f_z(0) = 0$. We observe that Clunie and Sheil-Small [8] have proved several fundamental characteristics for the class S_H, but other basic problems such as Riemann mapping theorem for planar harmonic mappings, harmonic analogue of Bieberbach conjecture, sharp coefficient inequalities and radius of covering theorem for the class S_H^0 are still open (see [9]). The classical family S of analytic univalent and normalized functions in D is a subclass of S_H^0 with $g(z) \equiv 0$.

Date: February 26, 2020.

2010 Mathematics Subject Classification. Primary 58E20; Secondary 30C55.

Key words and phrases. Analytic function; univalent function; starlike function; close-to-convex harmonic mapping; quasiconformal harmonic mapping.
If a univalent harmonic mapping \(f = h + g \) satisfies the condition
\[
|\omega(z)| = \left| \frac{g'(z)}{h'(z)} \right| \leq k \quad (0 \leq k < 1; \ z \in \mathbb{D}),
\]
then \(f \) is said to be a \(K \)-quasiconformal harmonic mapping, where
\[
K = \frac{1 + k}{1 - k} \quad (0 \leq k < 1).
\]

A domain \(\Omega \) is said to be close-to-convex if \(\mathbb{C} \setminus \Omega \) can be represented as a union of non-crossing half-lines. Following the result due to Kaplan (see [15]), an analytic function \(f \) is called close-to-convex if there exists a univalent convex function \(\phi \) defined in \(\mathbb{D} \) such that
\[
\text{Re} \left(\frac{f'(z)}{\phi'(z)} \right) > 0 \quad (z \in \mathbb{D}).
\]

Furthermore, a planar harmonic mapping \(f : \mathbb{D} \rightarrow \mathbb{C} \) is close-to-convex if it is injective and \(f(\mathbb{D}) \) is a close-to-convex domain. We denote by \(\mathcal{S}_H^0 \) the class of close-to-convex harmonic mappings.

The theory and applications of planar harmonic mappings are presented in the recent monograph by Duren [9]. Furthermore, Bshouty et al. [2–4], Chen et al. [5], Chuaqui and Hernández [7], Kalaj [12], Mocanu [26, 27], Nagpal and Ravichandran [28, 29], Partyla et al. [31], Ponnusamy and Sairam Kaliraj [34, 35], Sun et al. [40, 41], Wang et al. [42, 44] derived several criteria for univalency, or quasiconformality, involving planar harmonic mappings.

Let \(\mathcal{A} \) denote the class of functions \(h \) of the form
\[
h(z) = z + \sum_{k=2}^{\infty} a_k z^k,
\]
which are analytic in \(\mathbb{D} \). Also let \(\mathcal{G}(\alpha) \) be the subclass of \(\mathcal{A} \) whose members satisfy the inequality
\[
\text{Re} \left(1 + \frac{zh''(z)}{h'(z)} \right) < \alpha \quad (\alpha > 1; \ z \in \mathbb{D}).
\]

For convenience, we write \(\mathcal{G}(3/2) =: \mathcal{G} \). The class \(\mathcal{G} \) plays an important role in the analytic function theory.

We observe that the function class \(\mathcal{G}(\alpha) \) was studied extensively by Kargar et al. [16], Kanas et al. [14], Maharana et al. [25], Obradović et al. [30], Ponnusamy and Sahoo [33] and Ponnusamy et al. [38] for differential purposes. It is known that the functions in \(\mathcal{G}(\alpha) \) are starlike in \(\mathbb{D} \) for \(\alpha \in (1, 3/2) \) (see Ponnusamy and Rajasekaran [32], Singh and Singh [39]), whereas not univalent in \(\mathbb{D} \) for \(\alpha \in (3/2, +\infty) \) (see [30]).

Recently, Mocanu [27] posed the following conjecture.

Conjecture 1. Let
\[
\mathcal{M} = \left\{ f = h + g \in \mathcal{H} : g' = zh' \text{ and } \text{Re} \left(1 + \frac{zh''(z)}{h'(z)} \right) > -\frac{1}{2} \ (z \in \mathbb{D}) \right\}.
\]

Then \(\mathcal{M} \subset \mathcal{S}_H^0 \).

By making use of the classical results of close-to-convexity (see Kaplan [15]) and harmonic close-to-convexity (see Clunie and Sheil-Small [8]), Bshouty and Lyzzaik [8] have proved Conjecture [1] by established the following stronger result.
Theorem A. $M \subset C_H^0$.

For more recent general results on the convexity, starlikeness and close-to-convexity of harmonic mappings, we refer the readers to [1, 2, 10, 11, 13, 17, 18, 24, 27, 36, 43].

Recall the following criterion for harmonic close-to-convexity due to Abu Muhanna and Ponnusamy [1, Corollary 3].

Theorem B. Let h and g be normalized analytic functions in D such that

$$\text{Re} \left(1 + \frac{zh''(z)}{h'(z)} \right) < \frac{3}{2};$$

and

$$g'(z) = \lambda z^n h'(z) \quad \left(0 < |\lambda| \leq \frac{1}{n+1}; \ n \in \mathbb{N} := \{1, 2, 3, \ldots\} \right).$$

Then the harmonic mapping $f = h + g$ is univalent and close-to-convex in D.

Motivated essentially by Theorem B and the definition of quasiconformal harmonic mappings, we introduce and investigate the following subclass $F(\alpha, \lambda, n)$ of quasiconformal close-to-convex harmonic mappings.

Definition 1. A harmonic mapping $f = h + g \in H$ is said to be in the class $F(\alpha, \lambda, n)$ if h and g satisfy the conditions

$$\text{Re} \left(1 + \frac{zh''(z)}{h'(z)} \right) < \alpha \quad \left(1 < \alpha \leq \frac{3}{2} \right),$$

and

$$g'(z) = \lambda z^n h'(z) \quad \left(\lambda \in \mathbb{C} \text{ with } |\lambda| \leq \frac{1}{n+1}; \ n \in \mathbb{N} \right).$$

For simplicity, we denote the class $F(\alpha, \lambda, 1)$ by $F(\alpha, \lambda)$. The image of D under the mapping

$$f(z) = z - \frac{1}{2} z^2 + \frac{1}{4} z^2 - \frac{1}{6} z^3 \in F(3/2, 1/2)$$

is presented as Figure 1.

This paper is organized as follows. In Section 2, we provide a counterexample to illustrate the non-univalency of the class $G(\alpha)$ for $\alpha \in (3/2, 2)$. In Section 3, we prove several basic properties of the class $F(\alpha, \lambda, n)$ of quasiconformal close-to-convex harmonic mappings with starlike analytic part, such results as coefficient inequalities, an integral representation, a growth theorem, an area theorem, and radii of close-to-convexity of partial sums of the class, are derived.

2. Non-univalency of the class $\mathcal{G}(\alpha)$ for $\alpha \in (3/2, +\infty)$

Obradović et al. [30] stated that the class $\mathcal{G}(\alpha)$ is not univalent in D for $\alpha \in (3/2, +\infty)$, but they did not give detailed proof about the non-univalency. We note that Kargar et al. [16] given a counterexample to prove the class $\mathcal{G}(\alpha)$ is not univalent in D for $\alpha \in [2, +\infty)$, in this section, we shall give a counterexample to illuminate the non-univalency of the class $\mathcal{G}(\alpha)$ for $\alpha \in (3/2, 2)$.

Theorem 1. $\mathcal{G}(\alpha) \nsubseteq S$ for $\alpha \in (3/2, +\infty)$.
Figure 1. The image of \mathbb{D} under the mapping $f(z) = z - \frac{1}{2}z^2 + \frac{1}{3}z^2 - \frac{1}{6}z^3$.

Proof. We consider the analytic function $h_\beta \in \mathcal{A}$ given by

$$h_\beta(z) = \frac{1}{\beta} \left[1 - (1 - z)\beta \right] \quad (2 < \beta < 3; \ z \in \mathbb{D}).$$

It follows that

$$1 + \frac{zh''_\beta(z)}{h'_\beta(z)} = \frac{1 - \beta z}{1 - z},$$

and therefore,

$$\text{Re} \left(1 + \frac{zh''_\beta(z)}{h'_\beta(z)} \right) < \frac{1 + \beta}{2} \quad \left(\frac{3}{2} < \frac{1 + \beta}{2} < 2 \right),$$

which implies that

$$h_\beta \in \mathcal{G}(\frac{1 + \beta}{2}) = \mathcal{G}(\alpha) \quad \left(\frac{3}{2} < \alpha < 2 \right).$$

In what follows, we shall prove that the function h_β is not univalent in \mathbb{D}. It easily to verify that h_β have real coefficients, and thus, $h_\beta(z) = \overline{h_\beta(\overline{z})}$ for all $z \in \mathbb{D}$. In
particular, we see that
\[
\Re \left(h_\beta \left(r e^{i\theta} \right) \right) = \Re \left(h_\beta \left(r e^{-i\theta} \right) \right)
\]
for some \(r \in (0, 1) \) and \(\theta \in (-\pi, 0) \cup (0, \pi) \).

It is sufficient to show that there exist \(r_0 \in (0, 1) \) and \(\theta_0 \in (-\pi, 0) \cup (0, \pi) \) such that \(\Im \left(h_\beta \left(r_0 e^{i\theta_0} \right) \right) = \Im \left(h_\beta \left(r_0 e^{-i\theta_0} \right) \right) = 0 \).

In view of
\[
\Im \left(h_\beta (z) \right) = \Im \left(\frac{1 - (1 - z)^\beta}{\beta} \right) = -\Im \left(\frac{e^{\beta \log(1-z)}}{\beta} \right),
\]
we see that
\[
\Im \left(h_\beta \left(r e^{i\theta} \right) \right) = -\Im \left(\frac{e^{\beta \log(1-re^{i\theta})}}{\beta} \right) = -\frac{e^{\beta \log|1-re^{i\theta}|}}{\beta} \sin \left[\beta \arg \left(1 - re^{i\theta} \right) \right],
\]
and
\[
-\Im \left(h_\beta \left(re^{-i\theta} \right) \right) = \frac{e^{\beta \log|1-re^{-i\theta}|}}{\beta} \sin \left[\beta \arg \left(1 - re^{-i\theta} \right) \right] = \Im \left(h_\beta \left(re^{i\theta} \right) \right).
\]

By noting that
\[
\arg \left(1 - re^{i\theta} \right) \in \left(-\frac{\pi}{2}, 0 \right) \cup \left(0, \frac{\pi}{2} \right),
\]
we deduce that for each \(\beta \in (2, 3) \), there exist \(r_0 \in (0, 1) \) and \(\theta_0 \in (-\pi, 0) \cup (0, \pi) \) such that
\[
\sin \left[\beta \arg \left(1 - r_0 e^{i\theta_0} \right) \right] = 0.
\]

It follows that
\[
\Im \left(h_\beta \left(r_0 e^{i\theta_0} \right) \right) = \Im \left(h_\beta \left(r_0 e^{-i\theta_0} \right) \right) = 0.
\]

Therefore, we see that there exist two distinct points \(z_1 = r_0 e^{i\theta_0} \) and \(z_2 = r_0 e^{-i\theta_0} \) in \(\mathbb{D} \) such that \(h_\beta(z_1) = h_\beta(z_2) \), which shows that the function \(h_\beta(z) \) is not univalent in \(\mathbb{D} \). Thus, we deduce that the class \(G(\alpha) \) always contains a non-univalent function for each \(\alpha \in (3/2, 2) \).

Moreover, by noting that the class \(G(\alpha) \) is not univalent in \(\mathbb{D} \) for \(\alpha \in [2, +\infty) \) (see [16, Example 2.1]), we deduce that the assertion of Theorem 1 holds.

To illustrate our counterexample, we present the image domain of \(\mathbb{D} \) under the function \(h_{5/2}(z) = 2/5 \left[1 - (1 - z)^{5/2} \right] \) (see Figure 2).

3. Properties and Characteristics of the Class \(\mathcal{F}(\alpha, \lambda, n) \)

Let us recall the following lemma, due to Obradović et al. [30], in a slightly modified form, which will be required in the proof of Theorem 2.
Figure 2. The image of \mathbb{D} under the function $h_{5/2}(z) = 2/5 \left[1 - (1 - z)^{5/2}\right]$.

Lemma 1. If $h(z) = z + \sum_{k=2}^{\infty} a_k z^k$ satisfies the condition (1.2) with $1 < \alpha \leq 3/2$, then

$$|a_k| \leq \frac{2(\alpha - 1)}{(k - 1)k} \quad (k \geq 2),$$

with the extremal function given by

$$h(z) = \int_0^z \left(1 - t^{k-1}\right)^{2(\alpha-1)/k} \, dt \quad (k \geq 2).$$

Theorem 2. Let $f = h + g \in \mathcal{F}(\alpha, \lambda, n)$ be of the form (1.1). Then the coefficients a_k ($k \geq 2$) of h satisfy (3.1), furthermore, the coefficients b_k ($k = n+1, n+2, \ldots; n \in \mathbb{N}$) of g satisfy

$$|b_{n+1}| \leq \frac{\lambda}{n + 1} \quad (n \in \mathbb{N}) \quad \text{and} \quad |b_{k+n}| \leq \frac{2\lambda(\alpha - 1)}{(k - 1)k(k + n)} \quad (k \in \mathbb{N} \setminus \{1\}; n \in \mathbb{N}).$$

(3.2)
The bounds are sharp for the extremal function given by
\[
f(z) = \int_0^z \left(1 - t^{k-1}\right)^{\frac{2(\alpha-1)}{k-1}} \, dt + \int_0^z \lambda t^n \left(1 - t^{k-1}\right)^{\frac{2(\alpha-1)}{k-1}} \, dt \quad (n \in \mathbb{N}).
\]

Proof. Comparing the coefficients of \(z^{k+n-1}\) of both sides in (1.4), we obtain
\[
(k + n)b_{k+n} = \lambda k a_k \quad (k, n \in \mathbb{N}; a_1 = 1).
\]
Combining Lemma 1 with (3.3), we readily get the desired coefficient inequalities (3.2) of Theorem 2.

The bounds are sharp for the extremal function given by
\[
f(z) = \int_0^z \left(1 - t^{k-1}\right)^{\frac{2(\alpha-1)}{k-1}} \, dt + \int_0^z \lambda t^n \left(1 - t^{k-1}\right)^{\frac{2(\alpha-1)}{k-1}} \, dt \quad (n \in \mathbb{N}).
\]

Proof. Comparing the coefficients of \(z^{k+n-1}\) of both sides in (1.4), we obtain
\[
(k + n)b_{k+n} = \lambda k a_k \quad (k, n \in \mathbb{N}; a_1 = 1).
\]
Combining Lemma 1 with (3.3), we readily get the desired coefficient inequalities (3.2) of Theorem 2.

The Fekete-Szegö functional for \(|a_3 - \delta a_2^3|\) of the class \(G(\alpha)\) with \(\alpha \in (1, 3/2]\) was discussed by Obradović et al. [30], which will be useful in the proof of the upper bounds for \(|b_3 - \delta b_2^3|\) of functions in the class \(F(\alpha, \lambda)\). We here present its modified form.

Lemma 2. Let \(f \in G(\alpha)\) with \(\alpha \in (1, 3/2]\). Then
\[
|a_3 - \delta a_2^3| \leq \begin{cases}
\frac{\alpha-1}{3} |3 + \delta - (2 + \delta)\alpha| \quad \left(\left|\delta - \frac{3 - 2\alpha}{3(\alpha-1)}\right| \geq \frac{1}{3(\alpha-1)}\right), \\
\quad \frac{\alpha-1}{3} \quad \left(\left|\delta - \frac{3 - 2\alpha}{3(\alpha-1)}\right| < \frac{1}{3(\alpha-1)}\right).
\end{cases}
\]

Equality in the Fekete-Szegö functional is attained in each case.

Theorem 3. Let \(f \in F(\alpha, \lambda)\) be of the form (1.1). Then
\[
|b_3 - \delta b_2^3| \leq \frac{2(\alpha - 1)|\lambda|}{3} + \frac{|\delta||\lambda|^2}{4}.
\]

The inequality is sharp.

Proof. By noting that \(g'(z) = \lambda z h'(z)\) for \(f \in F(\alpha, \lambda)\), we have
\[
\sum_{k=2}^{\infty} kb_k z^{k-1} = \lambda \sum_{k=1}^{\infty} ka_k z^k \quad (a_1 = 1).
\]
Clearly, we see that
\[
b_2 = \frac{1}{2}\lambda a_1 = \frac{1}{2}\lambda \quad \text{and} \quad b_3 = \frac{2}{3}\lambda a_2.
\]
Therefore, by virtue of (3.4) and (3.6), we obtain
\[
|b_3 - \delta b_2^3| = \left|\frac{2}{3}\lambda a_2 - \frac{1}{4}\delta \lambda^2\right| \leq \frac{2|\lambda||a_2|}{3} + \frac{|\delta||\lambda|^2}{4} \leq \frac{2(\alpha - 1)|\lambda|}{3} + \frac{|\delta||\lambda|^2}{4}.
\]
The proof of Theorem 3 is thus completed.

By setting \(\delta = 1\) in Lemma 2 respectively Theorem 3 we get the Zalcman type coefficient inequalities of the class \(F(\alpha, \lambda)\) for the case \(k = 2\). For recent developments on this topic (see Li and Ponnusamy [22] and the references therein).

Corollary 1. Let \(f \in F(\alpha, \lambda)\) be of the form (1.1). Then
\[
|a_3 - a_2^3| \leq \begin{cases}
\frac{\alpha-1}{3} |4 - 3\alpha| \quad \left(\left|\delta - \frac{3 - 2\alpha}{3(\alpha-1)}\right| \geq \frac{1}{3(\alpha-1)}\right), \\
\quad \frac{\alpha-1}{3} \quad \left(\left|\delta - \frac{3 - 2\alpha}{3(\alpha-1)}\right| < \frac{1}{3(\alpha-1)}\right).
\end{cases}
\]
and
\[|b_3 - b_2^2| \leq \frac{2(\alpha - 1)|\lambda|}{3} + \frac{|\lambda|^2}{4} \leq \frac{11}{48}. \]

The inequalities are sharp.

Now, we give an integral representation of the mapping \(f \in \mathcal{F}(\alpha, \lambda, n) \).

Theorem 4. Let \(f \in \mathcal{F}(\alpha, \lambda, n) \). Then
\[
f(z) = \int_0^z \exp \left(2(1 - \alpha) \int_0^\zeta \frac{\varpi(t)}{t(1 - \varpi(t))} \, dt \right) \, d\zeta
+ \lambda \int_0^z \zeta^n \cdot \exp \left(2(1 - \alpha) \int_0^\zeta \frac{\varpi(t)}{t(1 - \varpi(t))} \, dt \right) \, d\zeta,
\]
where \(\varpi \) is the Schwarz function with \(\varpi(0) = 0 \) and \(|\varpi(z)| < 1 \) \((z \in \mathbb{D})\).

Proof. Suppose that \(f \in \mathcal{F}(\alpha, \lambda, n) \). It follows from (1.3) that
\[
1 + \frac{zh''(z)}{h'(z)} \prec \frac{1 - (2\alpha - 1)z}{1 - z} \quad (z \in \mathbb{D}), \tag{3.7}
\]
where “\(\prec \)” denotes the familiar subordination of analytic functions. By virtue of (3.7), we see that
\[
1 + \frac{zh''(z)}{h'(z)} = \frac{1 - (2\alpha - 1)\varpi(z)}{1 - \varpi(z)} \quad (z \in \mathbb{D}), \tag{3.8}
\]
where \(\varpi \) is the Schwarz function with \(\varpi(0) = 0 \) and \(|\varpi(z)| < 1 \) \((z \in \mathbb{D})\). From (3.8), we have
\[
\frac{(zh'(z))'}{zh'(z)} - \frac{1}{z} = \frac{2(1 - \alpha)\varpi(z)}{z(1 - \varpi(z))},
\]
which, upon integration, yields
\[
\log(h'(z)) = 2(1 - \alpha) \int_0^z \frac{\varpi(t)}{t(1 - \varpi(t))} \, dt. \tag{3.9}
\]
We thus find from (3.9) that
\[
h(z) = \int_0^z \exp \left(2(1 - \alpha) \int_0^\zeta \frac{\varpi(t)}{t(1 - \varpi(t))} \, dt \right) \, d\zeta. \tag{3.10}
\]
Combining (1.4) with (3.10), we obtain
\[
g(z) = \lambda \int_0^z \zeta^n \cdot \exp \left(2(1 - \alpha) \int_0^\zeta \frac{\varpi(t)}{t(1 - \varpi(t))} \, dt \right) \, d\zeta. \tag{3.11}
\]
Thus, the assertion of Theorem 4 follows from (3.10) and (3.11). \(\square \)

Remark 1. Theorem 4 provides a direct integration method for constructing quasi-conformal close-to-convex harmonic mappings by choosing suitable Schwarz functions \(\varpi \).

The following lemma due to Maharana et al. \[25\] will play a crucial role in the proof of our last three results.

Lemma 3. If \(h \in \mathcal{G} \), then for \(|z| = r < 1 \), the following statements are true.
\[\left| \frac{zh''(z)}{h'(z)} \right| \leq \frac{r}{1 - r}. \]

The inequality is sharp and equality is attained for the function

\[h(z) = z - \frac{z^2}{2}. \tag{3.12} \]

(2)

\[1 - r \leq |h'(z)| \leq 1 + r. \tag{3.13} \]

The inequalities are sharp and equalities are attained for the function given by

(3)

If \(h(z) = S_n(z) + \Sigma_n(z) \), with \(\Sigma_n(z) = \sum_{k=n+1}^{\infty} a_k z^k \), then

\[\left| \Sigma_n'(z) \right| \leq r^n \phi(r, 1, n) \quad \text{and} \quad \left| z \Sigma_n''(z) \right| \leq \frac{r^n}{1 - r}, \]

where \(\phi(r, 1, n) \) is the unified zeta function which is defined by the series

\[\phi(z, s, a) = \sum_{k=0}^{\infty} \frac{z^k}{(k + a)^s} \quad (|z| < 1; \Re(s) > 1; a \neq 0, -1, -2, \ldots). \]

We now give the growth theorem for the class \(F(\alpha, \lambda, n) \).

Theorem 5. Let \(f \in F(\alpha, \lambda, n) \). Then

\[r \left[|\lambda| \left(\frac{r}{n + 2} - \frac{1}{n + 1} \right) r^n - \frac{r}{2} + 1 \right] \leq |f(z)| \leq r \left[|\lambda| \left(\frac{r}{n + 2} + \frac{1}{n + 1} \right) r^n + \frac{r}{2} + 1 \right]. \tag{3.14} \]

The inequalities are sharp.

Proof. Assume that \(f = h + \overline{g} \in F(\alpha, \lambda, n) \). By observing that \(h \in \mathcal{G} \), we know that (3.13) holds. Also, let \(\Gamma \) be the line segment joining 0 and \(z \), then

\[|f(z)| = \left| \int_{\Gamma} \frac{\partial f}{\partial \xi} d\xi + \frac{\partial f}{\partial \xi} d\xi \right| \]

\[\leq \int_{\Gamma} \left| |h'(\xi)| + |g'(\xi)| \right| |d\xi| \]

\[= \int_{\Gamma} \left(1 + |\lambda| |\xi|^n \right) |h'(\xi)| |d\xi| \]

\[\leq \int_0^r (1 + \xi)(1 + |\lambda| |\xi|^n) d\xi \]

\[= \frac{1}{2} r \left[2|\lambda| \left(\frac{r}{n + 2} + \frac{1}{n + 1} \right) r^n + r + 2 \right]. \tag{3.15} \]
Moreover, let $\tilde{\Gamma}$ be the preimage under f of the line segment joining 0 and $f(z)$, then we obtain

$$|f(z)| = \int_{\tilde{\Gamma}} \left| \frac{\partial f}{\partial \xi} d\xi + \frac{\partial f}{\partial \bar{\xi}} d\bar{\xi} \right|$$

$$\geq \int_{\tilde{\Gamma}} (|h'(\xi)| - |g'(\xi)|) |d\xi|$$

$$= \int_{\tilde{\Gamma}} (1 - |\lambda||\xi|^n) |h'(\xi)| |d\xi|$$

$$\geq \int_0^r (1 - \xi)(1 - |\lambda|\xi^n)d\xi$$

$$= \frac{1}{2}r \left[2|\lambda| \left(\frac{r}{n+2} - \frac{1}{n+1} \right) r^n - r^2 \right].$$

It follows from (3.15) and (3.16) that the assertion (3.14) of Theorem 5 holds. \square

Denote by $A(f(D_r))$ the area of $f(D_r)$, where $D_r := rD$ for $0 < r < 1$. We now consider the area theorem of mappings f belong to the class $F(\alpha, \lambda, n)$.

Theorem 6. Let $f \in F(\alpha, \lambda, n)$. Then for $0 < r < 1$, we have

$$2\pi \int_0^r (1 - |\lambda|^2\xi^{2n}) (1 - \xi)^2\xi d\xi \leq A(f(D_r)) \leq 2\pi \int_0^r (1 - |\lambda|^2\xi^{2n}) (1 + \xi)^2\xi d\xi. \quad (3.17)$$

Proof. Suppose that $f = h + \bar{g} \in F(\alpha, \lambda, n)$. Then for $0 < r < 1$, we get

$$A(f(D_r)) = \iint_{D_r} (|h'(z)|^2 - |g'(z)|^2) \, dx \, dy = \iint_{D_r} (1 - |\lambda|^2|z|^{2n}) |h'(z)|^2 \, dx \, dy. \quad (3.18)$$

In view of (3.13) and (3.18), we obtain the result of Theorem 6 \square

Finally, we shall discuss the radius problems of mappings $f \in F(\alpha, \lambda)$. The largest value of r so that the partial sums of $f \in F(\alpha, \lambda)$ are close-to-convex in $|z| < r$ are considered. For recent results on partial sums of univalent harmonic mappings (see, e.g., Chen et al. [6], Ghosh and Vasudevarao [11], Li and Ponnusamy [19–21], Ponnusamy et al. [37], Sun et al. [40]).

Theorem 7. Let $f \in F(\alpha, \lambda)$ be of the form (1.1). Then for each $m \geq 1$, $l \geq 2$,

$$S_{m,l}(f)(z) = \sum_{k=1}^m a_k z^k + \sum_{k=2}^l b_k z^k \quad (a_1 = 1)$$

is close-to-convex in $|z| < r_c \approx 0.503$, where r_c is the least positive real root in the interval $(0,1)$ of the equation:

$$2 + 2 \ln(1 - r) + r \ln(1 - r) - r + r^2 = 0. \quad (3.19)$$

The bound r_c is sharp.
Proof. Let \(f = h + \overline{g} \in \mathcal{F}(\alpha, \lambda) \) and \(\phi = h + \varepsilon \overline{g} \) with \(|\varepsilon| = 1 \). We observe that \(\text{Re}(\varphi'(z)) > 0 \) for \(\varphi \in \mathcal{A} \) implies that \(\varphi \) is a close-to-convex analytic function. Therefore, it is sufficient to show that each partial sums

\[
S_{m,l}(\phi)(z) = \sum_{k=1}^{m} a_k z^k + \varepsilon \sum_{k=2}^{l} b_k z^k
\]

satisfies the condition

\[
\text{Re}\left(\Gamma_{m,l}(\phi)(z)\right) > 0
\]

in the disk \(|z| < r_c\) for all \(|\varepsilon| = 1\) and \(m \geq 1, \ l \geq 2\), where

\[
\Gamma_{m,l}(\phi)(z) = \sum_{k=1}^{m} a_k z^k + \varepsilon \sum_{k=2}^{l} b_k z^k.
\]

In order to prove the radii of close-to-convexity for the partial sums \(S_{m,l}(f)(z) \), we split it into four cases to prove.

1. For \(m = 1, 2, \ l = 2 \), we have

\[
\Gamma_{1,2}(\phi)(z) = z + \varepsilon b_2 z^2,
\]

and

\[
\Gamma_{2,2}(\phi)(z) = z + a_2 z^2 + \varepsilon b_2 z^2,
\]

it follows that

\[
\Gamma'_{1,2}(\phi)(z) = 1 + \varepsilon \lambda z,
\]

and

\[
\Gamma'_{2,2}(\phi)(z) = 1 + 2a_2 z + \varepsilon \lambda z.
\]

Clearly, \(\text{Re}(\Gamma'_{1,2}(\phi)(z)) > 0 \) in \(|z| < r_1 = 2/3\). By Lemma \([1]\) we know that \(|a_2| \leq \alpha - 1\), thus,

\[
\text{Re}(\Gamma'_{2,2}(\phi)(z)) \geq 1 - 2|a_2||z| - |\lambda||z| \geq 1 - [2(\alpha - 1) + |\lambda||z|] \geq 1 - \frac{3}{2}|z| > 0 \quad (|z| < r_1).
\]

2. For \(m, l \geq 3 \), we find from \([1,3]\) and \([1,4]\) that

\[
\text{Re}(\Gamma'_{m,l}(\phi)(z))
= \text{Re}\left(\mathcal{S}_{m}(h)(z) + \varepsilon \lambda z \mathcal{S}'_{l-1}(h)(z)\right)
= \text{Re}\left((h'(z) - \Sigma_{m}(h)(z)) + \varepsilon \lambda z (h'(z) - \Sigma'_{l-1}(h)(z))\right)
\geq \text{Re}(h'(z)) - |\Sigma_{m}(h)(z)| - |\lambda||z||h'(z)| - |\lambda||z||\Sigma'_{l-1}(h)(z)|
\geq \text{Re}(h'(z)) - |\Sigma_{m}(h)(z)| - \frac{1}{2}|z||h'(z)| - \frac{1}{2}|z||\Sigma'_{l-1}(h)(z)|.
\]

In view of \([3.13]\), we obtain

\[
\min_{|z|=r<1} \{\text{Re}(h'(z))\} \geq \min_{|z|=r<1} \{\text{Re}(1 - z)\} \geq 1 - r.
\]
From Lemma 3, for \(|z| = r < 1\), we know that
\[
|\Sigma_n'(z)| \leq \sum_{k=0}^{\infty} \frac{r^{k+n}}{k+n} = -\ln(1-r) - \sum_{k=1}^{n-1} \frac{r^k}{k} =: \Delta(n),
\]
and
\[
\Delta(n + 1) - \Delta(n) = -\frac{r^n}{n} < 0 \quad (n \geq 2).
\]
Therefore, \(\Delta(n)\) is a decreasing function of \(n\). For all \(m, l \geq 3\), we see that
\[
\Delta(m) \leq \Delta(3) = -\ln(1-r) - r - \frac{r^2}{2}, \quad (3.22)
\]
and
\[
\Delta(l - 1) \leq \Delta(2) = -\ln(1-r) - r. \quad (3.23)
\]
Moreover, it follows from Lemma [3](2) that
\[
|h'(z)| \leq |(1 + |z|) = r(1 + r) \quad (|z| = r < 1). \quad (3.24)
\]
From the relationships (3.20), (3.21), (3.22), (3.23) and (3.24), it follows that
\[
\text{Re} \left(\Gamma_n'(\phi(z)) \right) \geq 1 + \ln(1-r) - \frac{r}{2} + \frac{1}{2} r \ln(1-r) + \frac{1}{2} r^2 > 0
\]
for all \(l \geq 3\) and \(|z| = r < r_2 \approx 0.503\), where \(r_2\) is the least positive root in the interval \((0, 1)\) of the equation:
\[
2 + 2 \ln(1-r) + r \ln(1-r) - r + r^2 = 0.
\]
(3) For \(m = 1, 2, l \geq 3\), we see that
\[
\text{Re} \left(\Gamma_1'(\phi(z)) \right) = \text{Re} \left(\Sigma'_1(h(z) + \varepsilon \Sigma'_1(g(z)) \right)
\]
\[
= \text{Re} \left(1 + 2a_2z + \varepsilon \lambda z \Sigma'_{l-1}(h(z)) \right)
\]
\[
\geq 1 - 2|a_2||z| - |\lambda||z||h'(z)| - |\lambda||z||\Sigma'_{l-1}(h(z))|
\]
\[
\geq 1 - \frac{1}{2} |z| - \frac{1}{2} |z||h'(z)| - \frac{1}{2} |z||\Sigma'_{l-1}(h(z))|.
\]
From (3.22) and (3.23), we know that
\[
\text{Re} \left(\Gamma_2'(\phi(z)) \right) \geq 1 - \frac{1}{2} r - \frac{r(1+r)}{2} + \frac{1}{2} r \ln(1-r) + r > 0
\]
for all \(l \geq 3\) and \(|z| = r < r_3 \approx 0.653575\), where \(r_3\) is the least positive root in the interval \((0, 1)\) of the equation:
\[
2 - 2r + r \ln(1-r) = 0.
\]
Similarly, for all \(l \geq 3\) and \(|z| = r < r_3\), we have
\[
\text{Re} \left(\Gamma_1'(\phi(z)) \right) \geq 1 - \frac{1}{2} |z||h'(z)| - \frac{1}{2} |z||\Sigma'_{l-1}(h(z))| \geq 1 - \frac{r}{2} + \frac{r}{2} \ln(1-r) > 0.
\]
(4) For $m \geq 3, l = 2$, we deduce from (3.21) and (3.22) that
\[
\text{Re} \left(\Gamma_{m,2}(\phi)(z) \right) = \text{Re} \left(S_m'(h)(z) + zS_2'(g)(z) \right)
\geq \text{Re} \left(h'(z) \right) - |S_m'(h)(z)| - |\lambda||z|
\geq 1 - \frac{1}{2}r + \ln(1-r) + \frac{r^2}{2} > 0,
\]
where $|z| = r < r_4 \approx 0.584628$, where r_4 is the least positive root in the interval $(0,1)$ of the equation:
\[
2 - r + 2 \ln(1-r) + r^2 = 0.
\]
By setting
\[
r_c := \min \{ r_1, r_2, r_3, r_4 \} = r_2,
\]
we see that $\text{Re} \left(\Gamma_{m,l}(\phi)(z) \right) > 0$ for all $|z| < r_c$ and $m \geq 1, l \geq 2$. The proof of Theorem 7 is thus completed. \qed

Acknowledgments

The present investigation was supported by the **Key Project of Education Department of Hunan Province** under Grant no. 19A097, and the **National Natural Science Foundation** under Grant no. 11961013 of the P. R. China.

References

[1] Y. Abu Muhanna and S. Ponnusamy, Extreme points method and univalent harmonic mappings, *Complex analysis and dynamical systems VI. Part 2*, 223–237, Contemp. Math., 667, Israel Math. Conf. Proc., *Amer. Math. Soc.*, Providence, RI, 2016.

[2] D. Bshouty, S. S. Joshi and S. B. Joshi, On close-to-convex harmonic mappings, *Complex Var. Elliptic Equ.* 58 (2013), 1195–1199.

[3] D. Bshouty and A. Lyzzaik, Close-to-convexity criteria for planar harmonic mappings, *Complex Anal. Oper. Theory* 5 (2011), 767–774.

[4] D. Bshouty, A, Lyzzaik and F. M. Sakar, Harmonic mappings of bounded boundary rotation, *Proc. Amer. Math. Soc.* 146 (2018), 1113–1121.

[5] S. Chen, S. Ponnusamy, A. Rasila and X. Wang, Linear connectivity, Schwarz-Pick lemma and univalency criteria for planar harmonic mapping, *Acta Math. Sin. (Engl. Ser.)* 32 (2016), 297–308.

[6] J. Chen, A. Rasila and X. Wang, Coefficient estimates and radii problems for certain classes of polyharmonic mappings, *Complex Var. Elliptic Equ.* 60 (2015), 354–371.

[7] M. Chuaqui and R. Hernández, Harmonic univalent mappings and linearly connected domains, *J. Math. Anal. Appl.* 332 (2007), 1189–1194.

[8] J. Chuiie and T. Sheil-Small, Harmonic univalent functions, *Ann. Acad. Sci. Fenn. Ser. A. I Math.* 9 (1984), 3–25.

[9] P. Duren, Harmonic mappings in the plane, Cambridge University Press, Cambridge, 2004.
[10] N. Ghosh and A. Vasudevarao, Some basic properties of certain subclass of harmonic univalent functions, *Complex Var. Elliptic Equ.* **63** (2018), 1687–1703.

[11] N. Ghosh and A. Vasudevarao, On a subclass of harmonic close-to-convex mappings, *Monatsh. Math.* **188** (2019), 247–267.

[12] D. Kalaj, Quasiconformal harmonic mappings and close-to-convex domains, *Filomat* **24** (2010), 63–68.

[13] D. Kalaj, S. Ponnusamy and M. Vuorinen, Radius of close-to-convexity and fully starlikeness of harmonic mappings, *Complex Var. Elliptic Equ.* **59** (2014), 539–552.

[14] S. Kanas, S. Maharana and J. K. Prajapat, Norm of the pre-Schwarzian derivative, Bloch’s constant and coefficient bounds in some classes of harmonic mappings, *J. Math. Anal. Appl.* **474** (2019), 931–943.

[15] W. Kaplan, Close-to-convex schlicht functions, *Michigan Math. J.* **1** (1952), 169–185.

[16] R. Kargar, N. R. Pascu and A. Ebadian, Locally univalent approximations of analytic functions, *J. Math. Anal. Appl.* **453** (2017), 1005–1021.

[17] N.-T. Koh, Hereditary convexity for harmonic homeomorphisms, *Indiana Univ. Math. J.* **64** (2015), 231–243.

[18] N.-T. Koh, Harmonic mappings with hereditary starlikeness, *J. Math. Anal. Appl.* **457** (2018), 273–286.

[19] L. Li and S. Ponnusamy, Injectivity of sections of univalent harmonic mappings, *Nonlinear Anal.* **89** (2013), 276–283.

[20] L. Li and S. Ponnusamy, Disk of convexity of sections of univalent harmonic functions, *J. Math. Anal. Appl.* **408** (2013), 589–596.

[21] L. Li and S. Ponnusamy, Sections of stable harmonic convex functions, *Nonlinear Anal.* **123-124** (2015), 178–190.

[22] L. Li and S. Ponnusamy, On the generalized Zalcman functional $\lambda a_n^2 - a_{2n-1}$ in the close-to-convex family, *Proc. Amer. Math. Soc.* **145** (2017), 833–846.

[23] H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, *Bull. Amer. Math. Soc.* **42** (1936), 689–692.

[24] B.-Y. Long and H.-Y. Huang, Radii of harmonic mappings in the plane, *J. Aust. Math. Soc.* **102** (2017), 331–347.

[25] S. Maharana, J. K. Prajapat and H. M. Srivastava, The radius of convexity of partial sums of convex functions in one direction, *Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci.* **87** (2017), 215–219.

[26] P. T. Mocanu, Three-cornered hat harmonic functions, *Complex Var. Elliptic Equ.* **54** (2009), 1079–1084.

[27] P. T. Mocanu, Injectivity conditions in the complex plane, *Complex Anal. Oper. Theory* **5** (2011), 759–766.

[28] S. Nagpal and V. Ravichandran, A subclass of close-to-convex harmonic mappings, *Complex Var. Elliptic Equ.* **59** (2014), 204–216.

[29] S. Nagpal and V. Ravichandran, Starlikeness, convexity and close-to-convexity of harmonic mappings, *Current topics in pure and computational complex analysis*, 201–214, Trends Math., Birkhäuser/Springer, New Delhi, 2014.

[30] M. Obradović, S. Ponnusamy and K.-J. Wirths, Coefficient characterizations and sections for some univalent functions, *Sib. Math. J.* **54** (2013), 679–696.
[31] D. Partyka, K. Sakan and J.-F. Zhu, Quasiconformal harmonic mappings with the convex holomorphic part, *Ann. Acad. Sci. Fenn. Math.* 43 (2018), 401–418.

[32] S. Ponnusamy and S. Rajasekaran, New sufficient conditions for starlike and univalent functions, *Soochow J. Math.* 21 (1995), 193–201.

[33] S. Ponnusamy and S. K. Sahoo, Norm estimates for convolution transforms of certain classes of analytic functions, *J. Math. Anal. Appl.* 342 (2008), 171–180.

[34] S. Ponnusamy and A. Sairam Kaliraj, On harmonic close-to-convex functions, *Comput. Methods Funct. Theory* 12 (2012), 669–685.

[35] S. Ponnusamy and A. Sairam Kaliraj, Univalent harmonic mappings convex in one direction, *Anal. Math. Phys.* 4 (2014), 221–236.

[36] S. Ponnusamy and A. Sairam Kaliraj, Constants and characterization for certain classes of univalent harmonic mappings, *Mediterr. J. Math.* 12 (2015), 647–665.

[37] S. Ponnusamy, A. Sairam Kaliraj and V. V. Starkov, Sections of univalent harmonic mappings, *Indag. Math. (N.S.)* 28 (2017), 527–540.

[38] S. Ponnusamy, N. L. Sharma and K.-J. Wirths, Logarithmic coefficients of the inverse of univalent functions, *Results Math.* 73 (2018), Article 160.

[39] R. Singh and S. Singh, Some sufficient conditions for univalence and starlikeness, *Collect. Math.* 47 (1982), 309–314.

[40] Y. Sun, Y.-P. Jiang and A. Rasila, On a subclass of close-to-convex harmonic mappings, *Complex Var. Elliptic Equ.* 61 (2016), 1627–1643.

[41] Y. Sun, A. Rasila and Y.-P. Jiang, Linear combinations of harmonic quasiconformal mappings convex in one direction, *Kodai Math. J.* 39 (2016), 366–377.

[42] Z.-G. Wang, Z.-H. Liu and Y.-C. Li, On the linear combinations of harmonic univalent mappings, *J. Math. Anal. Appl.* 400 (2013), 452–459.

[43] Z.-G. Wang, Z.-H. Liu, A. Rasila and Y. Sun, On a problem of Bharanedhar and Ponnusamy involving planar harmonic mappings, *Rocky Mountain J. Math.* 48 (2018), 1345–1358.

[44] Z.-G. Wang, L. Shi and Y.-P. Jiang, On harmonic K-quasiconformal mappings associated with asymmetric vertical strips, *Acta Math. Sin. (Engl. Ser.)* 31 (2015), 1970–1976.

Zhi-Gang Wang

School of Mathematics and Computing Science, Hunan First Normal University, Changsha 410205, Hunan, P. R. China.

E-mail address: wangmath@163.com

Xin-Zhong Huang

School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, Fujian, P. R. China.

E-mail address: huangxz@hqu.edu.cn

Zhi-Hong Liu

College of Science, Guilin University of Technology, Guilin 541004, Guangxi, P. R. China.

E-mail address: liuzhihongmath@163.com

Rahim Kargar

Department of Mathematics and Statistics, University of Turku, Turku, Finland.

E-mail address: rakarg@utu.fi