A Review of Mammarenaviruses and Rodent Reservoirs in the Americas

Gloria Tapia-Ramírez,1 Consuelo Lorenzo,1 Darío Navarrete,2 Arturo Carrillo-Reyes,3 Óscar Retana,4 and Rocío Carrasco-Hernández5

1Departamento de Conservación de la Biodiversidad, El Colegio de La Frontera Sur, Periférico Sur S/N María Auxiliadora, 29290 San Cristóbal de Las Casas, Chiapas, Mexico
2Departamento de Observación de la Tierra, Atmósfera y Oceano, El Colegio de La Frontera Sur, Periférico Sur S/N María Auxiliadora, 29290 San Cristóbal de Las Casas, Chiapas, Mexico
3Facultad de Ingeniería, Universidad de Ciencias y Artes de Chiapas, Av 1a. Sur Pte 1460, C.P., 29000 Tuxtla Gutiérrez, Chiapas, Mexico
4Centro de Estudios en Desarrollo Sustentable, Universidad Autónoma de Campeche, Avenida Héroe de Nacozari 480, C.P., 24079 San Francisco de Campeche, Campeche, Mexico
5Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Calz. de Tlalpan 4502, C. P., 14080 Ciudad de México, Mexico

Abstract: In the Americas, infectious viral diseases caused by viruses of the genus Mammarenavirus have been reported since the 1960s. Such diseases have commonly been associated with land use changes, which favor abundance of generalist rodent species. In the Americas—where the rates of land use change are among the highest worldwide—at least 1326 of all 2277 known rodent species have been reported. We conducted a literature review of studies between 1960 and 2020, to establish the current and historical knowledge about genotypes of mammarenaviruses and their rodent reservoirs in the Americas. Our overall goal was to show the importance of focusing research efforts on the American continent, since the conditions exist for future viral hemorrhagic fever (VHF) outbreaks caused by rodent-borne viruses, in turn, carried by widely distributed rodents. We found 47 species identified down to the species level, and one species identified only down to the genus level (Oryzomys sp.), reported in the Americas as reservoirs of mammarenaviruses, most these are ecological generalists. These species associate with 29 genotypes of Mammarenavirus, seven of which have been linked to VHFs in humans. We also highlight the need to monitor these species, in order to prevent viral disease outbreaks in the region.

Keywords: Arenaviridae, Mammarenavirus, Rodents, Ecology, LUC, Viral hemorrhagic fever, Gloria Tapia-Ramírez

INTRODUCTION

Nearly 60% of infectious diseases in humans are zoonotic (Taylor et al. 2001; Jones et al. 2008). Zoonoses are diseases caused by pathogens, including bacteria, helminths, fungi and viruses, transmitted between animals and humans. Mammalian viruses are of special concern because some scholars have considered them potential agents for global pandemics (Jones et al. 2008; Geoghegan et al. 2016; Carrasco-Hernández et al. 2017).
According to Carlson et al. (2019), 10,000 out of 40,000 viruses borne by mammals have zoonotic potential. The mammalian orders bearing the higher proportion of zoonotic viruses are bats, primates and rodents (Carlson et al. 2019). Specifically, rodents are reservoirs of 78 zoonotic viruses, belonging to the order Bunyavirales, comprised of species belonging to the Hantaviridae and Arenaviridae families (Laenen et al. 2019; Radoszitzky et al. 2019).

The Arenaviridae family consists of four genera: *Reptaretavirus*, *Hartmannavirus*, (both of them borne by reptiles), *Antennavirus*, (borne by fishes) and, *Mammarenavirus*, borne by mammals, specifically rodents (Radoszitzky et al. 2019); although, there are reports of mammarenaviruses (Tacaribe virus) found in frugivorous Antennavirus, (borne by fishes) and, *Mammarenavirus*, borne by mammals, specifically rodents (Radoszitzky et al. 2019); although, there are reports of mammarenaviruses (Tacaribe virus) found in frugivorous bat *Artibeus lituratus* and in ixioid ticks (Downs et al. 1963; Sayler et al. 2014). The International Committee on Taxonomy of Viruses (ICTV, https://talk.ictvonline.org/taxonomy/) recognize forty genotypes of mammarenaviruses worldwide distributed, twenty-five are found in the Americas (Radoszitzky et al. 2019), seven of which are zoonotic agents of viral hemorrhagic fevers (VHFs) which could be severe or—sometimes—fatal for humans (CDC 2013).

Mammarenaviruses are bi-segmented RNA viruses with a genome of approximately 11,000 bp contained in two single-stranded segments of RNA (S and L): 3,400 bp in segment S, and 7,200 bp in segment L (Bausch and Mills 2014). In the Americas, mammarenaviruses are carried by rodents of the Cricetidae family, which consists of 765 species in 142 genera and 5 subfamilies (Pardinas et al. 2017). The existence of rodent species reservoirs of mammarenaviruses have been reported in two subfamilies: Neotominae and Sigmodontinae (Sarute and Ross 2017).

Rodent reservoirs of mammarenaviruses have been described as generalists (Mills 2005) or having peridomestic habits (Charrel and de Lamberrie 2010). Their condition as generalists is important for viral transmission because it increases chances of contact between reservoirs and new hosts, promoting events of interspecies viral spillover (Charrel and de Lamberrie 2010). Their role as reservoirs is favored by their morphological, physiological, and behavioral characteristics; for example, they have a high reproductive potential and reach high population densities, which contributes to viral transmission (Mills et al. 2007).

Worldwide, there is evidence on the role of rodents in the emergence of VHFs caused by mammarenaviruses. In the Americas, the first VHF was reported in Argentina in 1955 (Arribalzaga 1955) where the responsible rodent transmitting the virus to humans was *Calomys musculinus*. Two other VHFs were later reported in South America, in Bolivia in 1959 (Mackenzie et al. 1964) and Venezuela in 1989 (Salas et al. 1991). Involved rodent species were *Calomys callosus* and *Zygodontomys brevicauda*, respectively. In Mexico, an epidemic outbreak in the state of Chiapas was reported in 1967 (Goldsmith and Shields 1971), with symptoms similar to those of South American VHFs. The rodent species involved was *Peromyscus mexicanus*. All aforementioned rodent species have the following characteristics in common: they are widely distributed, have a high reproductive rate and the ability to colonize a wide variety of habitats (Sarute and Ross 2017). The VHFs present in the Americas can reach human mortality rates between 5–30% (PAHO 2021).

After the first outbreak in Argentina, some light was shed on the main drivers of VHFs emergence. Land use change (LUC) was considered the main driver in the emergence (Mills et al. 1992; Charrel and de Lamberrie 2010), because it promotes habitat destruction and changes in the original landscape structure; which modifies community rodent structure (Suzan et al. 2008; Garcia-Pena et al. 2021), then, leading to greater numbers of generalists than specialists (Murphy and Romanuk 2014). Generalist species have the ability to rapidly colonize more than one habitat type and achieving high population densities, thereby favoring epidemic outbreaks (Mills 2005; Sarute and Ross 2017).

Since the Americas are under an accelerated LUC process and neglected diseases occur—caused by rodent borne mammarenaviruses—the objective of the present study was to review and compile information published in digital media regarding the role of native rodents as reservoirs of *Mammarenavirus* in the Americas. Our overall goal was to show the importance of focusing research efforts on the American continent, since the conditions exist for future outbreaks of VHFs caused by rodent borne viruses of wide distribution.

Therefore, we compiled information bringing together up-to-date data on genotypes of mammarenaviruses and their rodent reservoirs. Likewise, we show areas of confluence of more than one species of reservoir rodent on the continent. We have synthesized the available data on the relationship between land use change and the emergence of viral hemorrhagic fevers, and how this relationship is linked to the species’ ecology and it is shaped by environmental factors. Finally, data on the phylogenetic and evolutionary relationships between mammarenaviruses and their rodent reservoirs were gathered.
METHODS

Using the search engines PubMed, Web of Science and Google Scholar we carried out a search of scientific articles published from 1960 to 2020 containing any combination of the following key words in the title or in the abstract: Arenavirus, Arenaviridae, Mammarenavirus, rodent reservoir, and the Americas. Year interval attending to the first outbreak reported in the Americas, in Argentina, near 1960. We also carried out a search of all arenaviruses recognized by the International Virus Taxonomy Committee (Radonzhitsky et al. 2019).

Additionally, using the IUCN platform (IUCN 2020), we obtained geographic distributions for all reservoir species reported in the present document. We then identified overlapping areas of these distributions to visualize areas of convergence of more than one rodent reservoir species, where it could be necessary to put efforts for future studies because the potential contact between people and rodents. IUCN geographic distributions are accessible data, curated by experts in each species and are available for all the rodent species in this study. Previously have been used to show the overlapping promotes the co-circulation of viruses in the Americas (Luis et al. 2015; Milholland et al. 2018; Shipley et al. 2019).

Finally, we generated a series of maps containing all the above-mentioned information using QGIS 3.10.14 (QGIS Development Team 2020).

With the available data on LUC, along with the ecological and environmental factors, a conceptual framework was built explaining the role that LUC plays in the emergence of viral hemorrhagic fevers on the continent; as well as how some ecological and environmental factors interact to shape the response of rodents to these changes. Additionally, we try to explain the transmission routes of mammarenaviruses among the rodent populations and between species. The present study incorporates data from the southern United States to central Argentina.

RESULTS

Our literature search generated 245 articles. In the first filter, all the reviews and chapter books were dismissed (28 items), because they were a compilation of previously published information and we were on the search of recent field publications. A second filter included reading the abstract of 217 articles, looking for the words of the search criteria described above. From 217 articles, 156 did not fulfill search criteria, that is, even though the arenaviridae was their main topic, there was no mention about rodent reservoirs or they were articles about Mammarenavirus of the Old World, with just a brief mention to the New World species; thus they were excluded. Finally, 61 articles were selected which had been published in 29 indexed journals.

Rodents Reservoirs and Mammarenaviruses

In the Americas, there are 47 species identified down to the species level, and one species identified only down to the genus level (Oryzomys sp.), of rodent reservoirs of mammarenaviruses. They are currently known to carry 27 of the 29 genotypes of Mammarenavirus. The remaining two genotypes have no rodent reservoir assigned yet (Table 1). Twenty-five genotypes are recognized by the International Committee on Taxonomy of Viruses (ICTV). There is a Mammarenavirus in the Americas not bearing by rodents but by bats, Tacaribe virus (TCV), included in Table 1 for the record.

Regarding rodent reservoirs, new mammarenaviruses have been isolated and described in 27 of 47 rodent reservoirs; 26 of which are from the Cricetidae family and one is from Muridae, which is a non-native rodent (Table 1). The remaining 20 rodents have been identified as having positive antibodies to some Mammarenavirus genotypes, but these viruses have not been isolated (Table 2). The 26 Cricetidae rodents reservoirs (where mammarenaviuses have been isolated) are widely distributed in the Americas, according to IUCN (IUCN 2020); eight of them are found in North America, and the remaining eighteen in Central and South America, from Panama to Chubut province, in Argentina [Insert Fig. 1a–d here]. Also, in smaller regions of the continent—like Mesoamerica (which includes the center of Mexico to Panama)—at least five other rodent reservoir species of mammarenaviruses are overlapping their distributions: Neotoma mexicana, Oryzomys couesi, Peromyscus melanophrys, Reithrodontomys sumichrasti, and Sigmodon toltecus, all of which are sympatric with P. mexicanus (Fig. 2).

Considering the genotypes of Mammarenavirus, the majority of them have been reported in South America than in North America, i.e. 19 versus. 9 [Insert Fig. 3 here], and nine of those found in South America have been reported in Brazil (Fernandes et al. 2019).

Contrary to prior considerations, a given rodent species may carry more than one virus species (Irwin et al.
Table 1. Mammal reservoir species of genotypes of *Mammarenavirus* in the Americas.

Reservoir species	Habitat type	*Mammarenavirus* species (according to ICTV)	Virus name (Abbreviation)	Country occurrence of virus	Disease reported	References
Neotoma albigula	Desert, rocky areas	*Whitewater Arroyo mammarenavirus*	Whitewater Arroyo virus (WWAV)	US	Fatal illnesses associated	Fulhorst et al. (1996)
			Big Brushy Tank virus (BBTV)	US	NR	Milazzo et al. (2008)
			Tonto Creek virus (TTCV)	US	NR	Milazzo et al. (2008)
Neotoma leucodon	Shrubland, rocky areas, desert	NSND	*Real de Catorce virus* (RCTV)	MEX	NR	Inizan et al. (2010)
Neotoma macrotis	Desert, shrubland, forest	*Bear Canyon mammarenavirus*	Bear Canyon virus (BCNV)	US	NR	Fulhorst et al. (2002)
Neotoma mexicana	Pine-oak forest	*Whitewater Arroyo mammarenavirus*	Skinner Tank virus (SKTV)	US	NR	Cajimat et al. (2008)
Neotoma micropus	Shrubland		Catarina virus (CTNV)	US	NR	Cajimat et al. (2007)
Oryzomys palustris	Wetland, grassland	*Tamiami mammarenavirus*	Tamiami virus (TAMV)	US	NR	Calisher et al. (1970)
Peromyscus californicus	Coniferous and oak woodland	*Bear Canyon mammarenavirus*	Bear Canyon virus (BCNV)	US	NR	Fulhorst et al. (2002)
Peromyscus mexicanus	Semideciduous secondary forest, coffee groves, arable land	NSND	*Ocozocoautla de Espinosa virus* (OCEV)	MEX	NR	Cajimat et al. (2012)
Akodon azarae	Scrub meadows, wetland, shrubland	*Argentinian mammarenavirus*	Junin virus (JUNV)	ARG	Argentine Hemorrhagic Fever	Parodi et al. (1958)
Calomys laucha	Forest, grassland, arable land					
Calomys musculinus	Shrubland, pastureland, arable land					
Reservoir species	Habitat type	Mammarenavirus species (according to ICTV)	Virus name (Abbreviation)	Country occurrence of virus	Disease reported	References
---------------------------	--	---	---------------------------	-----------------------------	--------------------------------	-----------------------------
Calomys callosus	Shrubland, pastureland, arable land, rural gardens, heavily degraded forests	Machupo mammarenavirus	Machupo virus (MACV)	BOL	Bolivian Hemorrhagic Fever	Johnson et al. (1963)
Calomys callidus	Shrubland	Latino mammarenavirus	Latino virus (LATV)	BOL	NR	Webb et al. (1973)
Calomys tener	Shrubland, grassland, pastureland, arable land, urban areas, heavily degraded forests	NSND	*Pinhal virus (PINV)	BRA	NR	Bisordi et al. (2015)
Hylaeamys megacephalus	Primary, secondary, and degraded forests	Cupixi mammarenavirus	Cupixi virus (CPXV)	BRA	NR	Charrel et al. (2002)
Neacomys guianae	Forest subtropical	Serra do Navio mammarenavirus	Amapari virus (AMAV)	BRA	NR	Pinheiro et al. (1977)
Neacomys musseri	Tropical forests	Xapuri mammarenavirus	Xapuri virus (XAPV)	BRA	NR	Fernandes et al. (2018)
Necromys benefactus	Forests, savanna, grassland, heavily degraded forests	Oliveros mammarenavirus	Oliveros virus (OLVV)	ARG	NR	Bowen et al. (1996)
Necromys lasiurus	Forests, savanna, grassland, heavily degraded forests	Oliveros virus (OLVV)	BRA	NR		Fernandes et al. (2015)
Nephelomys albogularis	Tropical forests	Cali mammarenavirus	Pichindé virus (PICV)	COL	NR	Trapido and Sanmartin, (1971)
Oecomys bicolor	Tropical forests	Allpahuayo mammarenavirus	Allpahuayo virus (ALLV)	PER	NR	Moncayo et al. (2001)
Oecomys paricolus	Tropical forests	Galleries mammals	NSND	FGU	NR	Lavergne et al. (2015)
Oecomys sp.	Gallery forests, shrublands, grasslands	Piauí mammarenavirus	*Patawa virus (PATAV)	BRA	NR	Radoshitzky et al. (2015)

G. Tapia-Ramírez et al.
Reservoir species	Habitat type	Mammarenavirus species (according to ICTV)	Virus name (Abbreviation)	Country occurrence of virus	Disease reported	References
Oryzomys sp.	No information	*Flexal mammarenavirus*	Flexal virus (FLEV)	BRA	Febrile Illness in laboratorists	Pinheiro et al. (1977)
Sooretamys angouya	Tropical forests, savana, heavily degraded forests	*Paraguayan mammarenavirus*	Paraná virus (PARV)	PAR	NR	Webb et al. (1970)
Sigmodon alstoni	Shrublands, grasslands	*Guanarito mammarenavirus*	Guanarito virus (GTOV)	VEN	Venezuelan Hemorrhagic Fever	Salas et al. (1991)
Zygodontomys breviceps	Tropical forests, savanna, marshes, arable lands	*Guanarito mammarenavirus*	Guanarito virus (GTOV)	VEN	Venezuelan Hemorrhagic Fever	Salas et al. (1991)
Unknown	No information	*Chapare mammarenavirus*	Chapare virus (CHPV)	BOL	Bolivian Hemorrhagic Fever	Delgado et al. (2008)
Unknown	No information	*Brazilian mammarenavirus*	Sabiá virus (SABV)	BRA	Hemorrhagic Fever	Coimbra et al. (1994)
Family Muridae						
Subfamily Murinae						
Mus musculus	Urban	*Lymphocytic choriomeningitis mammarenavirus*	Lymphocytic Choriomeningitis virus (LMCV)	US, ARG, COL & FGU	Febrile illness	Childs et al. 1992; Riera et al. 2005; Lavergne et al. 2016; Castellar et al. 2017

Table 1. continued

Mammarenavirus genotypes which are not yet recognized by The International Committee in Taxonomy of Virus (ICTV). Abbreviations: Ref Reference, NSND No Species Name Designated, NR Not Registered, ARG Argentina, BOL Bolivia, BRA Brazil, COL Colombia, FGU French Guiana, MEX Mexico, PAR Paraguay, PER Peru, TRI Trinidad, US United States, VEN Venezuela.
Rodent species	Antibodies to	Diseases reported	Distribution of rodent reservoir species	Reference
Baiomys taylori	WWAV & AMAV	NR	US & MEX	Milazzo et al. (2010)
Megadontomys nelsoni	WWAV & AMAV	NR	MEX	Milazzo et al. (2010)
Neotoma fuscipes	WWAV, AMAV, TAMV & PICV	NR	US & MEX	Bennett et al. (2000)
N. lepida	WWAV, AMAV, TAMV & PICV	NR	US	Bennett et al. (2000)
N. leucodon	WWAV & AMAV	NR	US & MEX	Milazzo et al. (2010)
N. mexicana	WWAV & AMAV	NR	US, MEX, HON, GUA & SAL	Milazzo et al. (2010)
N. micropus	WWAV & AMAV	NR	US & MEX	Milazzo et al. (2010)
Onychomys leucogaster	WWAV & AMAV	NR	CAN, US & MEX	Milazzo et al. (2010)
Oryzomys couesi	WWAV & AMAV	NR	US, MEX, BEL, COL, CRI, SAL, GUA, HON, NIC & PAN	Milazzo et al. (2010)
O. palustris	WWAV & AMAV	NR	US	Milazzo et al. (2010)
Peromyscus attwateri	WWAV & AMAV	NR	US	Milazzo et al. (2010)
P. boylii	WWAV & AMAV	NR	US & MEX	Milazzo et al. (2010)
P. californicus	WWAV, AMAV, TAMV & PICV	NR	US & MEX	Bennett et al. (2000)
P. eremicus	WWAV, AMAV, TAMV & PICV	NR	US & MEX	Bennett et al. (2000)
P. leucopus	WWAV & AMAV	NR	CAN, US & MEX	Milazzo et al. (2010)
P. maniculatus	WWAV, AMAV, TAMV & PICV	NR	CAN, US & MEX	(Bennett et al. 2000)
P. megalops	WWAV & AMAV	NR	MEX	Milazzo et al. (2010)
P. melanophrys	WWAV & AMAV	NR	MEX	Milazzo et al. (2010)
P. melanotis	WWAV & AMAV	NR	US & MEX	Milazzo et al. (2010)
P. mexicanus	WWAV & AMAV	NR	MEX, GUA, HON, SAL, CRI, NIC & PAN	Milazzo et al. (2010)
Reithrodontomys	WWAV, AMAV, TAMV & PICV	NR	US & MEX	Bennett et al. (2000)
megalotis				
R. sumichrasti	WWAV & AMAV	NR	MEX, GUA, HON, SAL, CRI, NIC & PAN	Milazzo et al. (2010)
Sigmodon hispidus	WWAV & AMAV	NR	US	Milazzo et al. (2010)
S. toltecus	WWAV & AMAV	NR	MEX & GUA	Milazzo et al. (2010)
Zygodontomys brevicauda	PICV	NR	BRA, COL, CRI, FGU, GUY, PAN, SUR, TRT, VEN & BOL	Mattar et al. (2011)

WWAV Whitewater Arroyo virus, AMAV Amapari virus, TAMV Tamiami virus and PICV Pichinde virus; NR not reported; ARG Argentina, BEL Belize, BOL Bolivia, BRA Brazil, CAN Canada, COL Colombia, CRI Costa Rica, FGU French Guiana GUA Guatemala, GUY Guyana, HON Honduras, MEX Mexico, NIC Nicaragua, PAN Panama, SAL El Salvador, SUR Suriname, TRI Trinidad, US United States and VEN Venezuela. Published reports of antibodies detected through ELISA tests, according each author’s criteria:

*Milazzo et al. (2010): A sample was considered positive if the AOD at 1:80 was > 0.200, the AOD at 1:320 was > 0.200, and the sum of the AOD for the series of fourfold dilutions (from 1:80 through 1:5120) was > 0.750.

*Bennett et al. (2000): A serum was considered to be positive to a test antigen if the OD adjusted at 1:80 and the OD adjusted at 1:320 both were ≥ 0.200, and the sum of the OD adjusted for the series of fourfold dilutions (from 1:80 through 1:5,120) was ≥ 0.750.
as it occurs with the rodent Neotoma albigula, which is a reservoir for Whitewater Arroyo virus (WWAV), Big Brushy Tank virus (BBTV), and Tonto Creek virus (TTCV) in the USA (Table 1) (Fulhorst et al. 1996; Milazzo et al. 2008). The same occurs with Calomys callosus, which is a reservoir for Machupo virus (MACV) and Latino virus (LATV) in South America (Table 1) (Johnson et al. 1963; Webb et al. 1973). These findings have been markedly fostered by new molecular and serum detection techniques for mammarenaviruses contributing to the discovery and knowledge of these viruses and their reservoirs. In the Americas, from the earliest report, in 1960, until the 1990’s, 12 genotypes had been described (Fig. 4), however, this number almost tripled in the following two decades. In the past 10 years, four new mammarenaviruses have been described in Brazil (Fernandes et al. 2019) and two in Mexico (Inizan et al. 2010; Cajimat et al. 2012).

All the mammarenaviruses cited here are considered exclusive to the Americas, except for the Lymphocytic choriomeningitis mammarenavirus (LCMV) (Table 1), an Old World mammarenavirus, considered the prototype of the Arenaviridae family. It is worldwide distributed due to its rodent reservoir: Mus musculus, a non-native and also worldwide distributed rodent (Albarán et al. 2010). LCMV in the Americas has been reported in US, Colombia and Argentina (Riera et al. 2005; Foster et al. 2006; Lavergne et al. 2016; Castellar et al. 2017). It can infect other rodent species members of Muridae family in the Old World and can cause disease in humans, which could be asymptomatic or severe (Riera et al. 2005).

Figure 1. Geographic distributions of rodent reservoir species of mammarenaviruses in the Americas: a North America, b, c & d South America
Source of data distributions: IUCN (2020).
Although, epidemic outbreaks and isolated deaths due to VHF from mammarenaviruses have been reported since the 1960s, their reservoir rodents have not been identified in all cases;—for example, those in the USA which have been attributed to WWAV (Byrd et al. 2000; Enserink 2000); those in Brazil, attributed to Flexal virus (FLEV) and Sabiá virus (SABV) (Barry et al. 1994; de Mello Malta et al. 2020); and those in Bolivia, attributed to Chaparé virus (CHAPV) (Escalera-Antezana et al. 2020).

Land use Change, Reservoir Rodent Ecology, and Hemorrhagic Fever Emergence

According to the information collected, mainly from the 70 s to the 90 s, the factors influencing the emergence of VHF in the continent are divided into anthropogenic, ecological and environmental, which are interconnected (Fig. 5).

Anthropogenic Factors

The main anthropogenic factor is land use change (LUC). The indiscriminate establishment of crops in the Americas shapes an agricultural landscape that changes the community structure and population dynamics of the original rodent species, which inhabited the area prior to the establishment of the agricultural landscape. Crops drive the loss of predators and specialist rodents and contribute to an increase in generalist species (Crespo 1966; de Villafañe et al. 1977; Kravetz et al. 1986; Carballal et al. 1988). The loss of some species is due—in part—to the fact that the structure of the rodent habitat is negatively affected as burrows are destroyed. Some individuals are killed, insects are eliminated and the availability of shelters is restricted (de Villafañe et al. 1977). On the other hand, it favors the disappearance of some predators (Kravetz et al. 1986), but also the arrival of others, e.g. dogs, cats or other larger rodents.

Once the agricultural landscape has been established, rodent populations will share that space following the local agricultural dynamics, generating a pulsation-like pattern of rodents' presence. That is, when a plot is in preparation for sowing, one species will occupy it, while, when it is planted there will be another species, and, yet another one, at harvest time (de Villafañe et al. 1977). A similar pattern
has been described for *Sigmodon alstoni* and *Zygodontomys brevicauda* in Venezuela, with species associated with the Venezuelan Hemorrhagic Fever (VHF) (Utrera and Duno 2007). Each rodent species utilizes the agricultural landscape during certain growth-stages of a crop according to its needs for food and protection. Because of this, certain species prove to be more abundant than others, potentially causing outbreaks of VHF (Ellis et al. 1997). In turn, VHF is related to seasonal population fluctuations and periods of higher rodent population density.

Ecological Factors

Rodent populations that remain in this agricultural landscape are distributed according to their habitat and food preferences. For example, in Pergamino, Argentina, the species involved in the transmission of the Junin virus (*Akodon azarae, Calomys musculinus* and *C. laucha*) occupy agricultural plots differentially (de Villanafé et al., 1977), according to their eating habits, (i.e. if rodent eat grains or grasses). Therefore, the populations of *C. musculinus* and *C. laucha* occupy the complots. While *Akodon azarae* and *Necromys obscurus* occupy those of soybeans or alfalfa (de Villafafé et al. 1977; Kravetz et al. al. 1986; Mills et al. 1991). Additionally, these preferences are reinforced by interspecific competition between *Akodon azarae* and *C. musculinus*, which ends up displacing and confining the former to the edges of agricultural plots where the vegetation cover is more diverse and abundant (Carballal et al. 1988). This type of interaction has not been recorded between *Calomys musculinus* and *C. laucha* (de Villafafé et al. 1977), suggesting their coexistence in agricultural plots. This should favor their role in the transmission of the Junin virus to rural workers (Mills et al. 1991). The occupation of the species—in these habitats—is a direct function of the dispersal ability and the capacity of the rodent species to

![Figure 3. Geographic locations of Mammarenavirus genotypes in the Americas. Abbreviations: ARG Argentina, BOL Bolivia, BRA Brazil, COL Colombia, FGU French Guiana, MEX Mexico, PAR Paraguay, PER Peru, US United States, VEN Venezuela.](image-url)
reproduce, since they are R strategists (i.e., having numerous litters in short periods of time) (de Villafáñe et al. 1977).

A relationship has been suggested between density of reservoir rodents (in those cases *Calomys musculinus*) and incidence of disease (Crespo 1966; Mills et al. 1992). For example, Mills et al. (1991), Crespo (1966) and de Villafáñe et al. (1977) reported that the population density of *Calomys musculinus* is higher from spring to early southern autumn (between September and March), while *Akodon azarae* is not very abundant at that time and increases its population density between March and April, after harvest.

Environmental Factors

A bottom-up effect has been suggested causing increased population sizes of reservoir rodents due to changes in precipitation; thus, leading to increased food availability and, in turn, numerous cases of VHF (Mills et al. 1992). Changes in temperature have also been associated to resource availability. For example, Mills et al. (1992) associated low temperatures to low resource availability, because of decreased rain. In turn, sites with temperate climates, less temperature variations and more rain accommodate a larger diversity of rodents, as well higher abundance of *Calomys musculinus* (Mills and Childs 1998; Chiappero et al. 2018).

Other factors influencing spatial patterns and rates of dispersion of VHF in a given territory include the genetics of the rodent populations involved, geographic boundaries, local extinctions of rodents or viruses, environmental variables, and intrinsic properties of a reservoir community which allow it to support long-term maintenance of a virus (Polop et al. 2008). According to Polop et al. (2008), the prevalence of Junin virus in Argentinian rodents could be greater in the area of endemism than in sites far from it, under certain conditions. In the endemic area, reservoir rodent populations are large and genetic flow occurs among them. These areas may favor the presence of generalist rodents given the abundance of food (Polop et al. 2007). However, outside the endemic area reservoir rodent populations are separated from each other, and little or no genetic flow occurs among them; thus, these areas act as islands (Delgado et al. 2008). Environmental conditions and local vegetation determine which rodent populations makes use of these “islands”, as well as when and where. While viruses may infect a local population, if such population does not become abundant after a certain time period, the infectious cycle may be stopped. Nevertheless, this hypothesis requires further study.

![Figure 4. Cumulative number of genotypes registered in the Americas since 1960.](image-url)
Transmission of mammarenaviruses

The way in which mammarenaviruses keep circulating in the population of reservoir rodents is key in determining the preservation of the virus, and its transmission to other members of the population, to other populations and to humans. In rodent populations there are two routes of transmission. The first of them—the horizontal route—occurs through the aerosolized particles secreted through feces, urine, saliva or sexual route (Sabattini et al. 1977). It has been suggested that the infection also occurs by rodent-rodent contact, specifically among adult male individuals exhibiting aggressive behaviors; thus, causing wounds through which the pathogen is transmitted (Mills et al. 1992). This can increase prevalence of infection in dense populations, since, the prevalence of infection is density-dependent and this, in turn, is associated to seasonal changes. The other route is vertical, which occurs from parent to progeny. It is known that—at least in the case of the Junin virus—the offspring becomes infected after being born, so it is believed that infection occurs via breast milk (Pinheiro et al. 1977; Sabattini et al. 1977). According to Pinheiro et al. (1977) and Vitullo and Merani (1988), the vertical path does not play an important role in the transmission of Mammarenavirus under normal circumstances; however, it could be important for the maintenance of the virus in the population in the long term.

Figure 5. Conceptual model of ecology of rodent reservoirs of mammarenaviruses and their relationship with conservation of virus and transmission of it.

Phylogenetic Studies of Mammarenaviruses and Rodents

The Arenaviridae family is divided into two groups—or “complexes”—based on their antigenic properties: i) the Lassa-Lymphocytic Choriomeningitis complex, present in the Old World, and ii) the Tacaribe complex, in the New World (Queen et al. 2015). These complexes are also differentiated based on the family of rodents carrying them: Muridae in the Old World and Cricetidae in the New World (Arata and Gratz 1975).

The Tacaribe complex is divided into three lineages: A, B, and C. Lineage A is the oldest, containing the viruses FLEV, PARV, PICV, and TAMV. Lineage B contains AMAV, GUAV, JUNV, MACV, SAB, and TCRV and includes all pathogenic viruses except Tacaribe (Bowen et al. 1996). Lineage C contains LATV and OLVV.
Regarding the phylogeny of these viruses, until 2018, researchers have suggested that, since the time of origin of rodents, these viruses evolved in parallel with their reservoirs (Zapata and Salvato 2013; Shi et al. 2018). The first contact between a viral prototype of the Arenaviridae family and a rodent likely occurred in Asia 23 million years ago with rodents from the Muridae family (González et al. 2007). They expanded from Asia to Africa and Europe and, 20 million years ago, they crossed the Bering Strait to North America; where they diverged into the ancestors of the Neotominae and Sigmodontinae subfamilies. The latter probably already carried the ancestors of the mammarenaviruses of the Americas (González et al. 2007; Zapata and Salvato 2013). Researchers previously thought that each viral species was associated with a single rodent species and therefore the rodent’s distribution determined that of the virus (Charrel et al. 2001).

However, based on the complete phylogeny of the Cricetidae rodent family and the currently-known mammarenaviruses in the Americas, it has been suggested that the supposed parallel relationship is rather a co-divergence (Irwin et al. 2012). Mammarenaviruses of the Americas are randomly distributed within the phylogenetic tree of Cricetidae rodents, and therefore a randomly distributed group of pathogenic viruses could infect a variety of rodent species and even other orders of mammals (host-switching) (Irwin et al. 2012). Over time, some Mammarenavirus genotypes have been found in more than one rodent species; for example, BCNV infects both Neotoma microtis and Peromyscus californicus (Irwin et al. 2012). Similarly, LATV, originally found in Calomys callosus in Bolivia, was recently detected in C. callidus in Brazil (Fernandes et al. 2018).

Still, some authors suggest that the probability of a virus successfully colonizing a new reservoir species is greater if the new species is a close relative of the primary reservoir (Cuthill and Charleston 2013). Therefore, in the evolutionary history of vertebrate RNA viruses, spillovers in reservoirs may have been more common than co-divergence; particularly, among reservoirs sharing a given environment (Shi et al. 2018). Thus, the evolution of arenaviruses appears to be the product of a relationship between co-divergence of a virus and its reservoir, on the one hand, and frequent transmission among sympatric rodent species on the other (Geoghegan et al. 2017).

DISCUSSION

This review reports, to date, the existence of 47 species of reservoir rodents, bearing 26 genotypes of Mammarenavirus; seven of which can cause mild to severe hemorrhagic fevers (VHF) in humans. Two of those seven genotypes have not yet been associated with any known rodent. VHFs due to mammarenaviruses have occurred in Argentina, Bolivia, Venezuela and some isolated cases are known in Brazil and the USA. Twenty—out of the 47 species of rodents—have only tested antibody positive to mammarenaviruses, i.e. no novel mammarenaviruses have been isolated from these rodents. In this regard, the potential role of cross-reactivity—a relatively common phenomenon in heterologous viruses—must be recognized. In fact, Brehm et al. (2002) recognized this reactivity and suggested that it improves protection against subsequent viral stimuli, also, improving the pool of memory of T cells; which is why it is common to find reactivity to more than one type of virus in a single species of rodent. Moreover, rodent species where antibodies have been detected are also located in North America and they are mostly generalists, sympatric and with a wide distribution throughout the American Continent.

Regarding the factors related to the emergence of viral hemorrhagic fever (VHF), land use change has been mentioned repeatedly. In particular, the establishment of agricultural plots, which modifies the rodent community structure and abundance of reservoir species (de Villafañe et al. 1977, 1988; Villafañe and Bonaventura 1987; Mills et al. 1992). There are also mentions to an association with temperature and precipitation (Mills et al. 1992; Polop et al. 2008). In this regard, recent studies confirmed the hypothesis that human alterations in ecosystems create favorable habitats for reservoirs of zoonotic pathogens (Mendoza et al. 2020). In the American continent, this topic has been constantly investigated in cases of VHF emergence by Orthohantavirus (Suzán et al. 2008; Andrea et al. 2014; Rubio et al. 2014; Carver et al. 2015; Prist et al. 2021). The conclusions of these authors are important because some of the rodent species are reservoirs of both Orthohantavirus and Mammarenavirus; and the set of factors promoting transmission of viruses to humans are the same (Prist et al. 2021 and this work).

On the other hand, a concomitant factor that should be explored is climate change. Which, in turn, leads to increases and changes in meteorological patterns (Gubler
et al., 2001; Greer et al., 2008; Maroli et al., 2018; Tian and Stenseth, 2019). Climate and meteorological changes have often been studied in the Americas during outbreaks of Orthohantavirus-associated pulmonary syndrome (HPS), which has been associated with increases in temperature (Prist et al. 2016), precipitation (Yates et al. 2002), and humidity (EcoHealth Alliance 2019; Everard et al. 2020).

This work has found that—in the continent—certain geographic regions can present between six (Mesoamerica) and up to nine (Brazil, Bolivia, Peru and Panama) species of reservoirs. These areas are consistent with the regions, designated by Han et al. (2015), as areas of high diversity and, on the other hand, areas with high rates of zoonotic risk (García-Peña et al. 2021). These authors project risk scenarios based on anthropogenic factors such as land use, but they also consider the possible risk of exposure of the human population. For this reason, the authors consider it necessary to carry out research in these areas considered as areas prone to zoonotic risk scenarios.

CONCLUSION

In the past 60 years, 28 genotypes of Mammarenavirus have been described; seven of which are pathogenic to humans. In the past 60 years in the Americas, the number of identified rodent reservoir species of mammarenaviruses has increased from 10 to 47—including specialists and generalists—all of which are common generalist species in peridomestic environments and agricultural areas. The data show that there could be more than one risk spot for the emergency of a new hemorrhagic fever.

ACKNOWLEDGEMENTS

GTR was supported by a CONACYT PhD scholarship. We thank two anonymous reviewers for their comments to improve our manuscript.

DECLARATIONS

CONFLICT OF INTEREST The authors declare that they have no conflict of interest.

OPEN ACCESS

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

REFERENCES

Albarin˜o CG, Palacios G, Khristova ML, et al. (2010) High diversity and ancient common ancestry of Lymphocytic Choriomeningitis virus. *Emerging Infectious Diseases Journal* 16:1093–1100. https://doi.org/10.3201/eid1607.091902

Andreo V, Neteler M, Rocchini D, et al. (2014) Estimating hantavirus risk in Southern Argentina: A GIS-based approach combining human cases and host distribution. *Viruses* 6:201–222. https://doi.org/10.3390/v6010201

Arata AA, Gratz NG (1975) The structure of rodent faunas associated with arenaviral infections. *Bulletin of World Health Organization* 52:621–627

Arribalzaga RA (1955) Una nueva enfermedad epidémica a ger-men desconocido: Hipertermia nefrotóxica, leucopenía y enanitomática. *Dia Médico* 37:1204–1210

Barragán F, Retana OG, Naranjo EJ (2007) The rodent trade of tzeltal indians of Oxchuc, Chiapas, Mexico. *Human Ecology* 35:769–773. https://doi.org/10.1007/s10745-007-9116-7

Barry M, Bia F, Cullen M (1994) *Arenavirus Infection—Connecticut*. *Journal of American Medical Association* 272(13):998–999

Bausch DG, Mills JN (2014) Arenaviruses: Lassa Fever, Lujo Hemorrhagic Fever, Lymphocytic Choriomeningitis, and the South American Hemorrhagic Fevers. In: *Viral Infections of Humans*, Kaslow RA, Stanberry LR, LeDuc JW (editors), New York, US: Springer, pp 147–191

Bennett SG, Milazzo ML, Webb J, Fulhorst CF (2000) *Arenavirus antibody in rodents indigenous to coastal southern California*. *American Journal of Tropical Medicine and Hygiene* 62:626–630. https://doi.org/10.4269/ajtmh.2000.62.626

Bisordi I, Levis S, Maeda AY, Suzuki A, Nagasse-Sugahara TK, De Souza RP, Pereira LE, Garcia JB, Geroni MP, e Silva FDA, dos Santos CLS, da Fonseca BAL (2015) Pinhal virus, a new Arenavirus isolated from Calomys tener in Brazil. *Vector-Borne and Zoonotic Disease* 15:694–700
Bown MD, Clarence JP, Mills JB, Nichol ST (1996) Olivos virus: a novel Arenavirus from Argentina. Virology 217:362–366

Brehm MA, Pinto AK, Daniels KA, et al. (2002) T cell immunodominance and maintenance of memory regulated by unexpectedly cross-reactive pathogens. *Nature Immunology* 3:627–634. https://doi.org/10.1038/ni806

Byrd RG, Cone LA, Commess BC, Williams-Hereman D, Rowland JM, Lee B, Fitzgibbons MW, Glaser CA, Jay MT, Fritz C, Ascher MS, Cheung M, Kramer VL, Reilly K, Vugia DJ, Fulhorst CF, Milazzo ML, Charrel RN (2000) Fatal illnesses associated with a New World Arenavirus, *California*, 1999–2000. *Journal of American Medical Association* 284:1237–1238. https://doi.org/10.1001/jama.284.10.1237

Cajimat MNB, Milazzo ML, Bradley LD, Fulhorst CF (2007) Ocozocozautla de Espinosa virus and Hemorrhagic Fever, Mexico. *Emerging Infectious Diseases Journal* 18:401–405

Calisher CH, Tzianabos AO, Lord RD, Coleman PH (1970) Tamiami virus, a new member of Tacaribe group. *American Journal of Tropical Medicine and Hygiene* 19:520–526

Carballal G, Videla CM, Merani MS (1988) Epidemiology of Argentine Hemorrhagic Fever. *European Journal of Epidemiology* 4:259–274

Carlson CJ, Zipfel CM, Garnier R, Bansal S (2019) Global estimates of mammalian viral diversity accounting for host sharing. *Nature Ecology & Evolution* 3:1070–1075. https://doi.org/10.1038/s41559-019-0910-6

Carrasco-Hernández R, Jácome R, López Vidal Y, Ponce de León S (2017) Are RNA viruses candidate agents for the next global pandemic? A *Review Institute for Laboratory Animal Research Journal* 58(3):343–358. https://doi.org/10.1093/ilar/ilx026

Carver S, Mills JN, Parmenter CA, et al. (2015) Toward a mechanistic understanding of environmentally forced zoonotic disease emergence: Sin Nombre Hantavirus. *Bioscience* 65:651–666. https://doi.org/10.1093/biosci/biv047

Castellar A, Guevara M, Rodas JD, Lodoño AF, Arroyave E, Díaz FJ, Levis S, Blanco PJ (2017) Primera evidencia de infección por el virus de la Coironinfectitis Linfocítica (Arenavirus) en roedores *Mys musculus* capturados en la zona urbana del municipio de Sincelejo, Sucre. *Colombia. Biología Medica* 37:75–85

CDC (2013) Old World/New World Arenaviruses. *Veterinary Microbiology* [accessed July 2, 2020]

Charrel RN, De Lambarrière X, Fulhorst CF (2001) The White-water Arroyo virus: Natural evidence for genetic recombination among Tacaribe serocomplex viruses (family Arenaviridae). *Virology* 283:161–166. https://doi.org/10.1006/viro.2001.0874

Charrel RN, Feldmann H, Fulhorst CF, Khelifa R, De Cheste R, de Lambarrière X (2002) Phylogeny of New World arenaviruses based on the complete coding sequences of the small genomic segment identified an evolutionary lineage produced by intraspecific recombination. *Biochemical and Biophysical Research Communications* 296:1118–1124

Charrel RN, de Lamberrie X (2010) Zoontic sites of Arenavirus infections. *Veterinary Microbiology* 140:213–220

Chiappero MB, Piacenza MF, Provensal MC, Calderón GE, Gar- denal CN, Polop JJ (2018) Effective population size differences in *Calomys musculus* the host of Junin virus: their relationship with the epidemiological history of Argentine Hemorrhagic Fever. *American Journal of Tropical Medicine and Hygiene* 99:445–450. https://doi.org/10.4269/ajtmh.17-0838

Childs JE, Glass GE, Korch GW, Ksiazek TG, Leduc JW (1992) Lymphocytic Choriomeningitis virus infection and house mouse (*Mus musculus*) distribution in urban Baltimore. *American Journal of Tropical Medicine and Hygiene* 47:27–34

Coimbra TLM, Nassa ES, Burattini MN, Madia de Souza LT, Ferreira IB, Rocco IM, Travassos da Rosa AP, Vasconcelos PFC, Pinheiro FP, LeDuc JW, Rico-Hesse R, Gonzalez JP, Jahrhing P, Tesh RB (1994) New arenaviruses isolated in Brazil. *Lancet* 343:391–392

Crespo JA (1966) Ecología de una comunidad de roedores silvestres en el Partido de Rojas, Provincia de Buenos Aires. Buenos Aires: Comisión Nacional Coordinadora para Estudio y Lucha contra la Fiebre Hemorrágica Argentina. Secretaria de Estado de Salud Pública

Cuthill JH, Charleston MA (2013) A simple model explains the dynamics of preferential host switching among mammal RNA viruses. *Evolution* 67:980–990. https://doi.org/10.1111/evol.12064

de Mello Malta F, Amgarten D, de Seixas Santos Nastri AC, Ho YL, Casadio LVB, Basqueira M, Selegatto G, Cervato MC, Duarte-Neto AN, Higashino HK, Medeiros FAF, Gendler JLPL, Levin AS, Pinho JRR (2020) Sabía virus-like *Mammarenavirus* in patient with fatal hemorrhagic fever, Brazil, 2020. *Emerging Infectious Diseases Journal* 26:1332–1334. https://doi.org/10.3201/EID2606.200099

de Villafañe G, Bonaventura SM, Belloq MI, Percich RE (1988) Habitat selection, social structure, density and predation in populations of Cricetine rodents in the Pampa region of Argentina and the effects of agricultural practices on them. *Mammalia* 52:339–360. https://doi.org/10.1515/mamm-1988-0305

de Villafañe G, Bonaventura SM (1987) Ecological studies in crop fields of the endemic area of Argentine Hemorrhagic fever. *Calomys musculus* movements in relation to habitat and abundance. *Mammalia* 51:233–248

de Villafañe G, Kravetz FO, Donald O, Percich R, Knecher L, Torres MP, Fernández N (1977) Dinámica de las comunidades de roedores en agroecosistemas Pampásicos. *Revista Medicina* 37:128–140

Delgado S, Erickson BR, Agudo R, Blair PJ, Vallejo E, Albaritio CG, Vargas J, Comer JA, Rollin PE, Ksiazek TG, Olson JG, Nichol ST (2008) Chapare virus, a newly discovered Arenavirus isolated from a fatal hemorrhagic fever case in Bolivia. *PLoS Pathogens* 4:1–6. https://doi.org/10.1371/journal.ppat.1000047

Downs WG, Anderson CR, Spence L, Aitken THG, Greenhall AH (1963) Tacaribe virus, a new agent isolated from *Artibeus bataris* bats and mosquitoes in Trinidad, West Indies. *American Journal of Tropical Medicine and Hygiene* 12:640–646

Ellis BA, Mills JN, Childs JE, Muzzini MC, McKee KT, Enria DA, Glass GE (1997) Structure and floristics of habitats associated with five rodent species in an agroecosystem in Central Ar-
Mackenzie RB, Beve HK, Valverde L, Garrón H (1964) Epidemic Hemorrhagic Fever in Bolivia I. A Preliminary report of the epidemiologic and clinical findings in a new epidemic area in South America. *American Journal of Tropical Medicine and Hygiene* 13:620–625

Maroli M, Vadell MV, Padula P, Gómez Villafañe IE (2018) Rodent abundance and *Hantavirus* infection in protected area, east-central Argentina. *Emerging Infectious Diseases Journal* 24(1):131–134

Mattar S, Guzmán C, Arrazola J, Soto E, Barrios J, Pini N, Levis S, Salazar-Bravo J, Mills JN (2011) Antibody to arenaviruses in rodents Caribbean Colombia. *Emerging Infectious Diseases Journal* 17:1315–1317

Mendoza H, Rubio AV, García-Peña GE, Suzán G, Simonetti JA (2020) Does land-use change increase the abundance of zoonotic reservoirs? Rodents say yes *European Journal of Wildlife Research* 66:1–6. https://doi.org/10.1007/s10344-019-1544-9

Milazzo ML, Cajimat MNB, Haynie ML, Abbott KD, Bradley RD, Fulhorst CF (2008) Diversity among *Tacaribe* serocomplex viruses (Family Arenaviridae) naturally associated with the white-throated woodrat (*Neotoma albigula*) in the southwestern United States. *Vector-Borne and Zoonotic Diseases* 8:523–540

Milazzo ML, Barragán-Gomez A, Hanson JD, Estrada-Franco JG, Arellano E, González-Cozatl FX, Fernández-Salas I, Ramírez-Aguilar F, Rogers DS, Bradley RD, Fulhorst CF (2010) Antibodies to *Tacaribe* serocomplex viruses (Family Arenaviridae, Genus Arenavirus) in Cricetid rodents from New Mexico, Texas, and Mexico. *Vector-Borne and Zoonotic Diseases* 10:629–637

Milholland MT, Castro-Arellano I, Suzán G, García-Peña GE, Lee TE Jr, Rohude RE, Alonso Aguirre A, Mills JN (2018) Global diversity and distribution of *Hantavirus* and their hosts. *Ecohealth* 15:163–208

Mills JN (2005) Regulation of rodent-borne in the natural host: implications for human disease. In: Peters CJ, Calisher CH (eds) *Infectious diseases from nature: mechanisms of viral emergence and persistence*, Springer, Viena, pp 45–57. https://doi.org/10.1007/106073-211-29981-5_5

Mills JN, Schmidt K, Ellis BA, Calderón G, Enría DA, Ksiazeck TG (2007) A longitudinal study of *Hantavirus* infection in three sympatric reservoir species in agroecosystems on the Argentine Pampa. *Vector-Borne and Zoonotic Diseases* 7:229–240

Mills JN, Childs JE (1998) Ecologic studies of rodent reservoirs: Their relevance for human health. *Emerging Infectious Diseases* 4:529–537

Murphy GEP, Romanuk TN (2014) A meta-analysis of declines in local species richness from human disturbances. *Ecology and Evolution* 4:99–103. https://doi.org/10.1002/ece3.909

PAHO (2021) *Fiebres Hemorrágicas*. Viral Diseases Available:h https://www3.paho.org/hq/index.php?option=com_content&view=article&id=8304:2013-fiebre-hemorrágica-boliviana&Itemid=39844&lang=en accessed Aug 2, 2021

Pardiñas UFI, Myers P, León-Paniagua L, Ordóñez, Garza N, Cook JA, Krystufek B, Haslauer R, Bradley RD, Shnabot GI, Patton J (2017) Family Cricetidae (true hamsters, voles, lemmings and New World rats and mice). In: *Handbook of the Mammals of the World*, Wilson DE, Lacher TE, Mittermeier RA (editors), Barcelona: Lynx Edicions, pp 204–279

Parodi AS, Greenway DJ, Ruginero HR, Frigerio M, De La Barrera JM, Mettler N, Garzon F, Bocaxa M, Guerrero L, Nota N (1958) Concerning the epidemic outbreak in Junin. *Dia Médico* 30:2300–2301

Pinheiro FP, Woodall JP, Travasos da Rosa APA, Travasos da Rosa JF (1977) Studies in arenaviruses in Brazil. *Medicina* 37:175–181

Polop F, Provensal C, Scavuzzo M, Lamfri M, Calderón G, Polop J (2008) On the relationship between the environmental history and the epidemiological situation of Argentine Hemorrhagic Fever. *Ecological Research* 23:217–225. https://doi.org/10.1007/s11284-007-0371-2

Polop J, Calderón G, Feuillade MR, García J, Enría D, Sabattini M (2007) Spatial variation in abundance of the Junin virus host ends in endemic and nonendemic Argentine Haemorrhagic Fever zones. *Austral Ecology* 32:245–253. https://doi.org/10.1111/j.1442-9993.2007.01679.x

Prist PR, Prado A, Tambosi LR, et al. (2021) Moving to healthier landscapes: Forest restoration decreases the abundance of *Hantavirus* reservoir rodents in tropical forests. *Science of the Total Environment* 752:141967. https://doi.org/10.1016/j.scitotenv.2020.141967

Prist PR, Uriarte M, Tambosi RL, Prado A, Pardini R, D’Andrea PS, Metzger JP (2016) Landscape, environmental and social predictors of *Hantavirus* risk in São Paulo, Brazil. *PLoS One* 11:1–18. https://doi.org/10.1371/journal.pone.0163439

QGIS Development Team (2020) QGIS Geographic Information System. Open Source Geospatial Foundation Project

Queen K, Shi M, Anderson LJ, Tong S (2015) Other bat-borne viruses. In: *Bats and viruses: a new frontier of emerging infectious diseases*, Wang L, Cowled C (editors), New York: John Wiley and Sons, pp 217–247

Radoshitzky SR, Bao Y, Buchmeier MJ, Charrel RN, Clawson AN, Clegg CS, DeRisi JL, Emonet S, Gonzalez JP, Kuhn JH, Lukashevich IS, Peters CJ, Romanowski V, Salvato MS, Stenglein MD, de la Torre JC (2015) Past, present, and future of *Arenavirus* taxonomy. *Archives of Virology* 160:1851–1874

Radoshitzky SR, Buchmeier MJ, Charrel RN, Clegg CS, Gonzalez JP, Gunther S, Hepooji K, Kuhn JH, Lukash IS, Romanowski V, Salvato MS, Sironi M, Stenglein MD, de la Torre JC, ICTV RC (2019) *ICTV Virus Taxonomy Profile: Arenaviridae*. In: *Journal of General Virology*. Available: https://talk.ictvonline.org/ictv-reports/ictv_online_report/negative-sense-rna-viruses/bunyaviral/es/w/arenaviridae?Citation [accessed Jun 23 2020]

Riera L, Castillo E, Saavedra MC, Priotto J, Sottosanti J, Polop J, Ambrosio AM (2005) Serological study of the Lymphohori-omenigitis virus (LCMV) in an Inner City of Argentina. *Journal of Medical Virology* 76:285–289
