On Disjoint Golomb Rulers

Baoxin Xiu, Changjun Fan, and Meilian Liang

Abstract

A set \(\{a_i | 1 \leq i \leq k\} \) of non-negative integers is a Golomb ruler if differences \(a_i - a_j \), for any \(i \neq j \), are all distinct. A set of \(I \) disjoint Golomb rulers (DGR) each being a \(J \)-subset of \(\{1, 2, \cdots, n\} \) is called an \((I, J, n) - \text{DGR} \). Let \(H(I, J) \) be the least positive \(n \) such that there is an \((I, J, n) - \text{DGR} \). In this paper, we propose a series of conjectures on the constructions and structures of DGR. The main conjecture states that if \(A \) is any set of positive integers such that \(|A| = H(I, J) \), then there are \(I \) disjoint Golomb rulers, each being a \(J \)-subset of \(A \), which generalizes the conjecture proposed by Komlós, Súlyok and Szemerédi in 1975 on the special case \(I = 1 \). These conjectures are computationally verified for some values of \(I \) and \(J \) through modest computation. Eighteen exact values of \(H(I, J) \) and ten upper bounds on \(H(I, J) \) are obtained by computer search for \(7 \leq I \leq 13 \) and \(10 \leq J \leq 13 \). Moveover for \(I > 13 \) and \(10 \leq J \leq 13 \), \(H(I, J) = IJ \) are determined without difficulty.

Index Terms

Golomb ruler, Sidon set, disjoint Golomb rulers.

I. INTRODUCTION

A \(k \)-mark Golomb ruler is a set of \(k \) distinct non-negative integers, also called marks, \(\{a_i | 1 \leq i \leq k\} \) such that all differences \(a_i - a_j, i \neq j \) are distinct. The difference between the maximal and minimal integer is referred to as the length of the Golomb ruler. Golomb rulers give various important applications in engineering, for example, the radio-frequency allocation for avoiding third-order interference[1], [2], the construction of convolutional or LDPC codes[3], [4], the design of recovery schemes for faulty computers[5], etc.

With wide applications in the real world and an inherent mathematical interest, Golomb rulers have been extensively studied by mathematicians and computer scientists. Various algebraic methods have been proposed to construct Golomb rulers as densely populated with marks as possible[6], [7], [8], [9], [10]. However, Optimal Golomb Rulers, each of which is the shortest Golomb ruler possible for a given number of marks, can only be discovered or verified by exhaustive computer search. For the highly combinatorial nature of Golomb rulers, lengths of \(k \)-mark optimal rulers have been determined only for \(k \leq 27 \) so far[11]. The Golomb ruler problem has been used as a standard benchmark for Artificial Intelligence research[12]. Dual to Golomb rulers in a certain way, Sidon Sets which are subsets of \(\{1, 2, \cdots, n\} \) with distinct pairwise sums of elements[13], have been studied independently in combinatorial number theory for decades, producing a large amount of results, among which a few seem little known to the Golomb ruler community.

The problem of finding disjoint Golomb rulers (abbreviated as DGRP), a generalization of the Golomb ruler problem, was first considered by Chen[14] in mobile radio-frequency allocation for a collection of areas avoiding third-order interference within each area. We say that a set of \(I \) disjoint Golomb rulers (abbreviated as DGR) each being a \(J \)-subset of \(\{1, 2, \cdots, n\} \) is an \((I, J, n) - \text{DGR} \). \(H(I, J) \) is defined to be the least positive integer \(n \) such that there is an \((I, J, n) - \text{DGR} \). To determine \(H(I, J) \) for all \(I \) and \(J \) is an extremely challenging task. Kløve[15] proposed a number of constructions for DGR and gave a table

Baoxin Xiu and Changjun Fan are with the School of Information System and Management, National University of Defense Technology, Changsha 410073, P.R.China.
Meilian Liang is with the School of Mathematics and Information Science, Guangxi University, Nanning 530004, P.R.China. (Corresponding author, E-mail: ElaineGXU@gmail.com)
This work is Partially supported by the NSF of China (11361008).
of exact values and bounds on $H(I,J)$ for $11 \leq I \leq 9$, which was improved and extended through computer search by Shearer [16].

In [16], DGRP was transformed into a problem of finding independent sets in a graph with J-mark Golomb rulers from $\{1, 2, \cdots, n\}$ as vertices and edges between pairs of joint rulers, and thus had been solved perfectly for small I and J. But due to the huge amount of such Golomb rulers for large J and n (for example, there are already more than 8 million 10-mark Golomb rulers chosen from $\{1, 2, \cdots, 80\}$), constructing a graph with all rulers as vertices may lead to high or even unaffordable storage and time consumption. Besides, the independent determination of $H(I,J)$ will leave out some useful information hidden in $(I',J,H(I',J))$-DGR ($I' < I$), which may speed up the search process. For large I and J, an imitation of the method without much innovation is inadequate to determine $H(I,J)$, and to determine lower bounds on $H(I,J)$ by complete search is extremely difficult. For a partial search to determine upper bounds on $H(I,J)$, it is quite critical to specify the starting vertices and the traversing order of the vertices, and to restrict the search radius and time, which depend on our knowledge or speculation about the existence and the distribution of DGR.

Among DGR, we are, in particular, interested in those (I,J,n)-DGRs such that $n = H(I,J) = IJ$, which we call regular. In [15], Kløve proved that there exists a bound $\nu(J)$ such that regular DGR exist for all $I \geq \nu(J)$. He also gave values of $\nu(J)$ for $J \leq 6$ and bounds on $\nu(J)$ for $7 \leq J \leq 16$, among which exact values of $\nu(J)(J = 7,8,9)$ later were determined by Shearer [16]. Although new constructions for regular DGR were proposed in [17], bounds on $\nu(J)$ have not been substantially improved.

This paper proposes a series of conjectures on DGR, based on which eighteen exact values of $H(I,J)$ and ten upper bounds on $H(I,J)$ are obtained, where $7 \leq I \leq 13, 10 \leq J \leq 13$. Some exact values of $H(I,J)$ for $I > J$ are also determined, narrowing the bounds on $\tau(J)$. Deduced from a conjecture on DGR, a conjecture on optimal Golomb rulers is given as an incidental finding.

The remainder of the paper is organized as follows. Section II proposes a series of conjectures on DGR. Section III gives one more conjecture on DGR, which deduces a conjecture on optimal Golomb rulers. Section IV proposes a novel method of determining upper bounds on $H(I,J)$ and presents computational results of verification of these conjectures. We conclude with a summary in Section V.

II. SOME CONJECTURES ON DISJOINT GOLOMB RULERS

We propose some conjectures on disjoint Golomb rulers in this section.

A. The Main Conjecture

The Golomb ruler problem can be generalized to arbitrary n integers (not necessarily the first n). Let $A = \{a_1, \cdots, a_n\}$ be an arbitrary finite set of positive integers. Komlós, Sulyok and Szemerédi argued in [18] that A may contain an m-mark Golomb ruler with $m = (1 + o(1))n^{1/2}$. They further proved that $m > cn^{1/2}$ for a certain positive constant c. The constant was improved in [19].

As pointed out in [18], one can expect that the case of the first n positive integers is “the worst case”, which can be generalized to the following conjecture.

Conjecture 1: Suppose that I and J are positive integers. If A is any set of positive integers such that $|A| = H(I,J)$, then there are I disjoint Golomb rulers, each being a J-subset of A.

It is not difficult to see that if $I = 1$, then Conjecture 1 coincides with the idea in [18].

B. More Conjectures on Disjoint Golomb Rulers

If we can prove Conjecture 1 then we can prove more interesting results based on it. The idea of the following conjecture will be used in computing upper bounds on $H(I,J)$ for small I and J in this paper.

Conjecture 2: If I and J are integers, and $I \geq 1, J \geq 3$, then $H(I+1,J) \leq H(I,J) + J$.

It seems interesting to show whether the inequality $H(I + 1, J) \leq H(I, J) + J$ in Conjecture 2 strictly holds when $H(I, J) > IJ$.

Among DGR, we are very interested in regular ones. For $I_0 \geq 2$, we may propose the following Conjecture 3:

Conjecture 3: If $H(I_0, J) = I_0J$, then $H(I, J) = IJ$ for any integer $I > I_0$.

If Conjecture 1 holds, then the following conjecture holds too.

Conjecture 4: For any Golomb ruler $A_1 \subseteq \{1, 2, \cdots, (I + 1)J\}$ such that $|A_1| = J$, if $H(I, J) = IJ$ then there exists a regular $(I + 1, J, (I + 1)J)$-DGR containing A_1.

We can see that if Conjecture 4 holds then Conjecture 3 holds too.

C. Theorems on Conjectures

In the following two theorems, we will prove some results on conjectures previously proposed.

Theorem 1: If Conjecture 2 holds, then Conjecture 3 holds.

Proof: If Conjecture 2 holds and $H(I_0, J) = I_0J$, then $(I_0 + 1)J \leq H(I_0 + 1, J) \leq H(I_0, J) + J = I_0J + J = (I_0 + 1)J$. So $H(I_0 + 1, J) = (I_0 + 1)J$. Thus by Mathematical Induction we can see that if Conjecture 2 holds, then Conjecture 3 holds too.

Theorem 2: If Conjecture 1 holds, then Conjecture 2 holds.

Proof: Suppose that $H(I, J) = n$ and $A = \{1, 2, \cdots, n+J\}$. Let A_0 be any subset of A such that A_0 is a Golomb ruler and $|A_0| = J$. So $|A - A_0| = n$. If Conjecture 1 holds, then $A - A_0$ is the union of I disjoint J-mark Golomb rulers. Suppose that these Golomb rulers are $\{A_j \mid 1 \leq j \leq I\}$. So $\{A_j \mid 0 \leq j \leq I\}$ are I disjoint J-mark Golomb rulers, all of which are subsets of A. Thus $H(I + 1, J) \leq H(I, J) + J$.

Based on Theorem 1 and Theorem 2, it is not difficult to see that the following theorem holds.

Theorem 3: If Conjecture 1 holds, then Conjecture 5 holds.

Imitating the definition of $H(I, J)$, we define $Y(I, J)$ to be the smallest n such that any set of positive integers with n elements, contains I disjoint J-mark Golomb rulers.

By the results in [18] we know that $Y(1, J)$ exists for any positive integer J, and we can obtain a better upper bound on $Y(1, J)$ by the results in [19]. Similar to the proof of Theorem 2 we can prove $Y(I + 1, J) \leq Y(I, J) + J$ for any integers $I \geq 1$ and $J \geq 3$.

III. More Conjectures on Disjoint Golomb Rulers and Optimal Golomb Rulers

Let $G(k)$ be the length of an optimal Golomb ruler with k marks. Singer proved that if q is a power of a prime, then there exist $q + 1$ integers that have distinct differences modulo $q^2 + q + 1$ and thus form a Golomb ruler[9], which implies that $G(n) < n^2 - n + 1$ if $n - 1$ is a prime power.

Based on the Singer construction, the following results were proved in [15].

Theorem 4: If p is a prime power, then $H(p + 1, p) = p^2 + p$, $H(p, p - 1) \leq p^2 - 2$, $H(p - 1, p) \leq p^2 - 1$.

The first equation in Theorem 4 is valid for regular DGR. We propose the following conjecture on $H(I, I + 2)$.

Conjecture 5: For any integer $I \geq 8$, $H(I, I + 2) = I(I + 2)$.

If both Conjecture 3 and Conjecture 5 hold, then we have that $H(I, J) = IJ$ for any integer $I \geq J - 2$.
Moreover, if both Conjecture 1 and Conjecture 5 hold, then for any two disjoint \(J \)-mark Golomb rulers from \(\{1, 2, \cdots \}, g_1 \) and \(g_2 \), we can always discover a regular \((I, J, IJ)\)-DGR where \(6 \leq J \leq I \) containing \(g_1 \) and \(g_2 \). Note that it may be time consuming to computationally verify this even for small \(I \) and \(J \).

Upper bounds given by Singer work only for a prime (or power of a prime) number of marks. But if Conjecture 5 holds, it is not difficult to see that the following bounds on \(G(k) \) hold for general situations.

Conjecture 6: \(G(k + 2) < k^2 + k \) for any \(k \geq 6 \).

It can be seen that Conjecture 6 is stronger than the old conjecture that \(G(k) < k^2 \) for all \(k > 0 \), which was first mentioned by Erdős in an equivalent form and is known to be true for \(k \leq 65000 \) up to now.

Conjecture 6 holds for any \(k \in \{8, \cdots, 150\} \), which was confirmed based on Golomb rulers shown in [21]. Additional computational verification of the conjecture is not conducted.

IV. Upper Bounds on \(H(I, J) \) and Computational Verification of Conjectures

A. Basic Notations

We first introduce some notations that will be used in this section.

Let \(D = \{\Delta_1, \Delta_2, \cdots, \Delta_I\} \) be an \((I, J, n)\)-DGR. Note that \(\Delta_i (i = 1, 2, \cdots, I) \) does not necessarily contain 1 or \(n \). Let \(\sigma(D) = \min\{a_{ij} \mid 1 \leq i \leq I, 1 \leq j \leq J, a_{ij} \in \Delta_i, \Delta_i \in D\} \), \(\lambda(D) = \max\{a_{ij} \mid 1 \leq i \leq I, 1 \leq j \leq J, a_{ij} \in \Delta_i, \Delta_i \in D\} \).

Definition 1: Define \(D + b = \{a_{ij} + b \mid 1 \leq j \leq J, a_{ij} \in \Delta_i\} \mid \Delta_i \in D, 1 \leq i \leq I \) to be the \(b \)-step transformation of \(D \).

Intuitively, \(D + b \) corresponds to shifting all Golomb rulers in \(D \) right (or left) by \(|b| \) when \(b \geq 0 \) (or \(b < 0 \)). Observe that \(D + b \) is an \((I, J, m)\)-DGR for any \(b \in \{1 - \sigma(D), \cdots, m - \lambda(D)\} \), where \(m \geq n \).

Definition 2: \(S(D, m) = \{D + i \mid 1 - \sigma(D) \leq i \leq m - \lambda(D)\} \) is the transformation set of \(D \) within \(m \).

Obviously, any \(k \)-subset of \(D(1 \leq k \leq I) \), denoted by \(A \), is a \((k, J, n)\)-DGR. We are more interested in the transformation set of \(A \) than that of \(D \).

Definition 3: Let \(\mathcal{R}_0 \) be the full set of all \((I, J, n)\)-DGR and \(\mathcal{R} \subseteq \mathcal{R}_0 \).

\(\mathcal{T}(\mathcal{R}, k, m) = \bigcup_{D \in \mathcal{R}} \bigcup_{A \in \mathcal{P}(D), |A| = k} S(A, m) \) is the \(k \)-sub transformation set of \(\mathcal{R} \) within \(m \), where \(\mathcal{P}(D) \) is the power set of the set \(D \).

The set \(\mathcal{R} \) is a collection of \((I, J, n)\)-DGR, and \(\mathcal{T}(\mathcal{R}, k, m) \) is a collection of \((k, J, m)\)-DGR transformed from elements in \(\mathcal{R} \).

B. Upper Bounds on \(H(I, J) \) for Some Values of \(I \) and \(J \)

For the convenience of illustration, let \(G_n^J \) be the graph constructed by the method in [16], with \(J \)-mark Golomb rulers from \(\{1, 2, \cdots, n\} \) as vertices. Observe that for an independent set \(D \) of size \(I \) in \(G_n^J \), any \(\xi \in \mathcal{T}\{D\}, k, m \) is also an independent set in \(G_m^I \), where \(m > n \) and \(1 \leq k \leq I \). Starting from \(\xi \) and restricting the search on the common non-neighborhood of vertices in \(\xi \) may speed up the search for \((I + 1, J, m)\)-DGR. Furthermore, to obtain the upper bound on \(H(I + 1, J) \), we may assume the upper bound is \(H(I, J) + J \) (or even smaller) firstly, following the idea behind Conjecture 2 and then try to verify it and improve it.

Suppose that \(n \) is the best known upper bound on \(H(I, J) \) and \(\mathcal{R} \) is a set of selected \((I, J, n)\)-DGRs. Given an \(m > n \), the procedure of finding \((I + 1, J, m)\)-DGR is as follows. First, a \(k \in \{1, 2, \cdots, I - 1\} \)
is considerably selected. Then for every $\xi \in \mathcal{T}(\mathcal{R}, k, m)$, all Golomb rulers containing J elements chosen from $\{1, 2, \ldots, m\} - \bigcup_{\Delta \in \xi} \Delta$ are listed, on which an exhaustive search is performed to find a collection, denoted by A, of $I + 1 - k$ disjoint rulers. If A is not found, the same search process is repeated on $\mathcal{T}(\mathcal{R}, k', m)$ where $k' < k$ until A has been found or time is up. When A is found, m is determined to be the upper bound on $H(I + 1, J)$ and $\xi \cup A$ is an $(I + 1, J, m)$-DGR. Note that finding $I + 1 - k$ DGR is a hard and time consuming work if $I + 1 - k$ is large. We did not use the method of constructing graphs in [16]. However, we applied a number of small programming tricks to improve the efficiency of the search process, which are not special to be addressed in detail here.

The aforementioned procedure of finding DGR has to be repeated until an ideal upper bound on $H(I + 1, J)$ is determined. An $m_0 \in \{a, a + 1, \ldots, n + J\}$ is specified first, where $a = \max\{n + 1, (I + 1)J\}$. If an $(I + 1, J, m_0)$-DGR is found, $m \in \{a, a + 1, \ldots, m_0 - 1\}$ is checked one by one in a descending order until $m = a$ or no $(I + 1, J, m)$-DGR is found. If $m = a$, a is the exact value of $H(I + 1, J)$; otherwise, $m + 1$ is the best upper bound on $H(I + 1, J)$ we can obtain for a given \mathcal{R}. If no $(I + 1, J, m_0)$-DGR is found, values greater than m_0 are tried until an $(I + 1, J, m')$-DGR where $m' > m_0$ is found, bringing the upper bound on $H(I + 1, J)$. The upper bound can be verified as the exact value only through exhaustive computer search, which is only performed for a few cases in this paper.

Let us illustrate the procedure by the example of computing $H(7, 10)$ based on $(I - 1, 10, H(I - 1, 10))$-DGR $(I = 7, 8, 9, 10)$, with key details depicted in Table I. For that $H(6, 10) = 70$, to determine $H(7, 10)$ all distinct $(6, 10, 70)$-DGRs are first obtained by computer search in a very short time, which form the set \mathcal{R}. Then by the assumption of $H(8, 10) = 80$ based on Conjecture [5] m is initialized to be 75, which is the midpoint between 71 and 79. Note that the initial value of m can be chosen somewhat casually from the range. Given $k = 3$, a $(7, 10, 75)$-DGR is quickly discovered. The next search for $(7, 10, 74)$-DGR does not succeed until $k = 1$ (shown in the third column). A Golomb ruler $\Delta = \{12, 13, 18, 22, 35, 38, 46, 53, 65, 67\}$ is chosen (underlined and shown in the second column) and after it is shifted left by two (that is $b = -2$, shown in the fourth column), six DGR from $\{1, 2, \ldots, 74\} - \Delta$ are finally found. Thus a $(7, 10, 74)$-DGR is discovered, which is the second block shown in the second column, with the (2)-step transformation of $\{\Delta\}$ in bold. Then for the failure of the partial search for $(7, 10, 73)$-DGR, a complete search is performed but none is found, verifying $H(7, 10) = 74$. Again three Golomb rulers are chosen from the $(7, 10, 74)$-DGR just found and are shifted right by one. Through a similar process, an $(8, 10, 80)$-DGR is found, which is regular. So $H(8, 10)$ is determined to be 80. Thereafter, $H(9, 10) = 90$ and $H(10, 10) = 100$ are determined easily by the same way.

Note that some values of $H(I, J)$ can even be determined by an $(I - i, J, H(I - i, J))$-DGR where $i \geq 2$. For example, a $(10, 11, 110)$-DGR is obtained using an 11-step transformation of the set of the last four rulers of the $(6, 11, 85)$-DGR in [16].
TABLE I
Computing $H(I, 10)$ based on $(I-1, 10, H(I-1, 10))$-DGR ($I = 7, 8, 9, 10$).

I	Disjoint Golomb Rulers	k	b	$H(I, 10)$
6	12, 13, 18, 22, 35, 38, 46, 53, 65, 67; 7, 9, 24, 31, 34, 50, 54, 62, 63, 68; 5, 8, 19, 21, 41, 42, 47, 51, 59, 66; 4, 6, 14, 20, 23, 43, 44, 48, 55, 70; 3, 10, 15, 25, 29, 52, 58, 60, 69; 1, 2, 11, 16, 37, 39, 45, 57, 61, 64.	1	-2	70
7	17, 19, 31, 38, 46, 49, 62, 66, 67, 72; 10, 11, 16, 20, 33, 36, 44, 51, 63, 65; 5, 6, 8, 12, 23, 35, 43, 48, 57, 67; 4, 14, 21, 26, 32, 34, 55, 58, 59, 74; 3, 7, 9, 25, 30, 37, 45, 56, 69, 70; 2, 13, 22, 28, 29, 47, 50, 52, 60, 64; 1, 15, 18, 24, 40, 42, 53, 61, 68, 73.	3	1	74
8	18, 20, 32, 39, 47, 50, 63, 67, 72, 73; 11, 12, 17, 21, 34, 37, 45, 52, 64, 66; 8, 10, 19, 25, 26, 46, 49, 54, 68, 80; 6, 9, 16, 27, 35, 40, 60, 62, 76, 77; 5, 7, 15, 22, 28, 31, 56, 70, 74, 75; 4, 13, 36, 38, 42, 43, 55, 58, 69, 79; 3, 14, 23, 29, 30, 48, 51, 53, 61, 65; 1, 2, 24, 33, 41, 44, 47, 59, 71, 78.	4	0	80
9	29, 34, 37, 48, 52, 61, 73, 83, 89, 90; 18, 21, 23, 32, 39, 47, 59, 72, 78, 82; 8, 10, 19, 25, 26, 46, 49, 54, 68, 80; 6, 9, 16, 27, 35, 39, 60, 62, 67, 76, 77; 5, 7, 15, 22, 28, 31, 56, 70, 74, 75; 4, 13, 36, 38, 42, 43, 55, 58, 69, 79; 3, 12, 17, 30, 33, 41, 45, 64, 84, 86; 2, 11, 14, 44, 50, 57, 63, 67, 81, 85; 1, 20, 24, 51, 53, 63, 66, 71, 87, 88.	5	0	90
10	36, 46, 55, 60, 68, 80, 91, 95, 97, 98; 31, 35, 40, 43, 54, 56, 76, 93, 94, 100; 29, 34, 37, 48, 52, 61, 73, 83, 89, 90; 18, 21, 23, 32, 39, 47, 59, 72, 78, 82; 8, 13, 16, 22, 26, 38, 49, 75, 77, 96; 5, 7, 10, 19, 25, 58, 62, 69, 79, 92; 4, 6, 9, 15, 27, 28, 42, 70, 74, 99; 3, 12, 17, 30, 33, 41, 45, 64, 84, 86; 2, 11, 14, 44, 50, 57, 65, 67, 81, 85; 1, 20, 24, 51, 53, 63, 66, 71, 87, 88.	100		

Exact values of $H(I, J)$ and upper bounds on $H(I, J)$ for $7 \leq I \leq 13$, $10 \leq J \leq 13$ are listed in Table [II], which are obtained without much difficulty. Upper bounds on $H(9, 11)$, $H(10, 12)$ and $H(12, 13)$ are very close to the estimated exact values. Although longer computation may prompt more better upper bounds, we stopped because that getting better computation results is not our major concern in this paper. But note that, it seems not easy to improve these upper bounds without much computation. DGR achieving the upper bounds on $H(I, J)$ in Table [III] for $I \leq J$, are shown in Table IV in the Appendix.

TABLE II
Upper bounds on $H(I, J)$

I/J	7	8	9	10	11	12	13
10	74	80	90	100	110	120	130
11	88	94	100	110	121	132	143
12	105	109	115	122	132	144	156
13	124	130	135	141	148	158	169

Exact values of $H(I, J)$ are in bold.
C. Bounds on $\tau(J)$

Since a number of exact values of $H(I, J)$ have been determined for regular cases, only a little more effort should be made to improve the bounds on $\tau(J)$. Observe that if $H(I_0, J) = I_0J$ has been determined, a $(2I_0, J, 2I_0J)$-DGR can be constructed by a union of an (I_0, J, I_0J)-DGR and its (I_0J)-step transformation. As a consequence, $H(I, J)$ need only to be determined for $I \in \{I_0 + 1, \ldots, 2I_0 - 1\}$. For example, since it has been proved that $\tau(10) \in \{7, 8, \cdots , 20\}$, $H(7, 10) = 74$ and $H(10, 10) = 10I$ where $8 \leq I \leq 13$, only $H(I, 10)$ for $14 \leq I \leq 15$ need to be determined. Applying the method mentioned in the previous subsection, $H(14, 10) = 140$ and $H(15, 10) = 150$ are obtained without difficulty. Therefore $\tau(10) = 8$. Bounds on $\tau(J)$ for $J \in \{11, 12, 13\}$ are improved by the same way, which are shown in Table III.

J	10	11	12	13
$\tau(J)$	8	9-10	9-11	10-13

By Table III and known values of $\tau(J)$, both Conjecture 3 and Conjecture 5 hold for $J \leq 10$, and Conjecture 3 holds for $J = 11$. It is still a pity, however, that values of $H(I, I + 2)$ for $I \in \{9, 10, 11\}$ have not been determined yet.

D. Computational Verification of Conjecture 4

We know that $H(4, 5) = 20$, that is, $(4, 5, 20)$-DGR is regular. By Conjecture 4, for any 5-mark Golomb ruler A, there exists a $(5, 5, 25)$-DGR containing A, which has been confirmed by computer search. Similar computation for $H(5, 5)$, $H(6, 5)$, $H(5, 6)$, $H(6, 6)$ and $H(6, 7)$ are also performed to confirm the conjecture. Note that there are more than 32 million 8-mark Golomb rulers from $\{1, 2, \cdots , 64\}$. It seems not easy to compute for the case of $H(7, 8)$.

Moreover, the difference of the difficulty of search for DGR in different cases also suggests the correctness of the conjecture. Determining $H(I, J)$ where $I > J - 2$ are much easier than determining $H(J - 3, J)$ and $H(J - 2, J)$. For example, we can prove that $H(13, 13) = 169$ by computer search without much difficulty, but to determine $H(11, 13) = 143$ is much more difficult, which is not achieved yet in this paper. For another example, $(I + 1, 12, 12(I + 1))$-DGRs where $11 < I < 21$ can be easily discovered by the proposed method, even when specifying $k = I - 2$.

V. Conclusions and Remarks

The Golomb Ruler Problem consists in finding a set of distinct non-negative integers such that all differences between pairs of integers are distinct, while minimizing the largest difference. Finding disjoint Golomb rulers is an interesting generalization of the Golomb ruler problem. We generalize the problem to arbitrary n positive integers and conjecture that there exist I disjoint Golomb rulers, each being a J-subset of any set A of positive integers such that $|A| = H(I, J)$. We have proved that the conjecture can deduce some more interesting conjectures, based on which upper bounds on $H(I, J)$ for $7 \leq I \leq 13$ and $10 \leq J \leq 13$ are obtained by computer search. Moreover, a conjecture about Golomb ruler is proposed, which is stronger than the old one mentioned first by Erdős. Theoretical proofs and computational verification of these conjecture are our future tasks.
APPENDIX
DISJOINT GOLOMB RULERS ACHIEVING UPPER BOUNDS ON $H(I, J)$

TABLE IV
SETS OF DISJOINT GOLOMB RULERS

J	I	Disjoint Golomb Rulers
10	7	17 19 31 38 46 49 62 66 71 72
10	11	16 20 33 36 44 51 63 65
5 6	8 12 23 35 43 48 57 67	
4 14	21 26 32 34 55 58 59 74	
3 7	9 25 30 37 45 56 69 70	
2 13	22 28 29 47 50 52 60 64	
1	15 18 24 40 42 53 61 68 73	
10	8	8 10 19 25 26 46 49 54 68 80
6 9	16 27 35 40 60 62 76 77	
5 7	15 22 28 31 56 70 74 75	
4 13	36 42 43 55 58 69 79	
1 2	24 33 41 44 57 59 71 78	
18	20	32 39 47 50 63 67 72 73
11	12	17 21 34 37 45 52 64 66
3	14 23 29 30 48 51 53 61 65	
10	9	29 34 37 48 52 61 73 83 89 90
18	21	23 32 39 47 59 72 78 82
3	12 17 30 33 41 45 64 84 86	
2	11 14 44 50 57 65 67 81 85	
1	20 24 51 53 63 66 71 87 88	
8	10 19 25 26 46 49 54 68 80	
6	9	16 27 35 40 60 62 76 77
5	7	15 22 28 31 56 70 74 75
4	13	36 38 42 43 55 58 69 79
10	10	36 46 55 60 68 80 91 95 97 98
31	35	40 43 54 56 76 93 94 100
8	13 16 22 26 38 49 75 77 96	
5	7	10 19 25 58 62 69 79 92
4	6	9 15 27 28 42 70 74 99
29	34	37 48 52 61 73 83 89 90
18	21	23 32 39 47 59 72 78 82
3	12	17 30 33 41 45 64 84 86
2	11	14 44 50 57 65 67 81 85
1	20 24	51 53 63 66 71 87 88
11	7	13 14 17 22 36 43 54 56 71 81 87
11	15	18 34 35 40 49 67 75 77 88
7	10	21 23 27 48 55 60 70 78 79
4	16	19 20 45 52 56 63 72 80 82
3	8	24 30 33 37 47 65 73 84 85
2	9	25 26 28 39 59 64 68 74 86
1	5	6 12 32 41 51 53 66 69 83
11	8	9 14 23 26 39 57 59 63 78 85 86
7	11	32 40 41 52 55 68 87 92 94
4	5	27 29 34 46 62 66 72 80 93
3	10	25 33 44 70 71 75 88 91
1	2	8 12 28 30 43 64 67 76 81
15	16	19 24 38 45 56 58 73 83 89
13	17	20 36 37 42 51 69 77 79 90
6	18	21 22 47 54 60 65 74 82 84
11	9	13 26 36 42 43 61 63 85 89 94 97
10	17	29 30 32 40 58 75 91 96 100

(continued on the next page)
J	I	Disjoint Golomb Rulers
4	7	16 21 51 55 57 70 77 78 88
2	5	12 28 33 45 47 60 69 98 99
1	3	6 41 50 54 65 66 73 87 93
9	18	34 35 37 48 68 72 80 90 95
15	19	22 38 39 44 53 71 79 81 92
11	14	25 27 31 52 59 64 74 82 83
8	20	23 24 49 56 62 67 76 84 86
11	10	11 31 37 52 53 88 98 102 105 107
1	6	7 35 48 62 66 73 83 93 101 109
2	5	27 38 40 50 54 69 101 108 109
3	4	8 28 30 46 58 87 97 104 110
10	15	22 32 36 55 68 70 71 79 99
12	16	43 57 64 65 75 77 94 100 103
18	23	24 41 49 61 63 82 91 95
13	17	26 45 47 59 67 74 84 85 90
20	21	29 39 44 51 72 76 78 89 92
14	25	33 42 56 60 80 81 86 93 96
11	11	16 30 38 47 49 50 74 79 89 95 102
17	21	39 44 55 58 70 83 90 91 100
20	26	36 41 65 66 68 77 85 99 103
28	29	33 40 43 60 76 78 84 97 106
19	22	23 42 48 56 80 87 96 98 108
14	15	25 45 69 72 81 86 88 94 109
18	24	31 32 35 51 61 73 82 105 107
9	12	37 53 54 64 93 111 115 117
3	6	10 46 57 62 71 92 110 112 120
1	7	8 27 52 63 67 104 113 116 121
2	5	11 13 34 59 75 101 114 118 119
12	7	6 35 37 40 46 56 76 84 88 101 102
1	2	20 24 44 52 59 69 85 90 96 99
3	8	11 15 25 31 60 61 79 92 94 103
4	7	9 27 41 53 70 74 80 81 89 105
5	16	17 19 26 50 55 63 78 82 98 104
10	14	28 36 45 47 48 72 77 87 93 100
12	21	22 29 42 54 57 68 73 91 95 97
12	8	10 12 16 34 39 50 53 65 78 85 95 98
8	9	24 29 32 57 59 66 70 76 88 102
5	11	14 19 41 42 62 80 87 91 104 106
3	7	21 26 36 38 47 60 63 101 108 109
2	4	25 31 44 49 81 82 90 93 97 107
1	15	33 35 48 72 73 77 84 94 100 103
6	17	18 20 27 51 56 64 79 83 99 105
13	22	23 30 43 55 58 69 74 92 96 98
12	9	17 26 27 34 47 59 62 73 78 96 100 102
14	16	20 38 43 54 57 69 82 89 90 99
12	13	28 33 36 61 63 70 74 80 92 106
10	21	22 24 31 55 60 68 83 87 103 109
5	19	37 39 52 76 77 81 88 98 104 107
6	7	15 30 35 42 46 48 67 97 111 114
4	8	23 29 40 53 56 79 84 91 93 113
2	9	41 45 51 64 85 86 101 110 112 115
1	3	18 44 50 66 71 75 94 95 105 108

(continued on the next page)
J	T	Disjoint Golomb Rulers
17 18 33 38 41 66 68 75 79 85 97 111		
14 20 23 28 50 51 71 89 96 100 113 115		
12 16 30 35 45 47 56 69 72 110 117 118		
11 13 34 40 53 58 90 91 99 102 106 116		
12 14 16 20 38 43 54 57 69 82 89 90 99		
12 33 36 61 63 70 74 80 92 106		
11 15 18 23 45 46 66 84 91 95 108 110		
7 11 25 30 40 42 51 64 67 105 112 113		
6 8 29 35 48 53 85 86 94 97 101 111		
5 19 37 39 52 76 77 81 88 98 104 107		
27 34 49 62 73 87 103 120 124 129 130 132		
17 21 41 50 60 68 100 102 116 117 123 128		
4 24 32 47 56 58 72 109 114 127 131		
2 3 26 31 44 65 71 79 96 115 122 126		
1 10 22 55 59 75 78 83 93 118 119 125		
12 12 33 37 40 63 72 77 88 101 122 134 142 144		
1 4 5 23 32 61 75 86 109 133 139 141		
2 3 9 13 25 55 57 81 102 115 140 143		
7 15 22 24 34 48 87 103 107 132 137 138		
27 31 45 53 62 64 65 89 94 104 110 117		
29 38 46 59 71 74 85 90 108 112 114		
28 35 41 56 58 68 82 100 111 116 119 120		
16 17 21 43 52 64 66 98 105 113 123 126		
14 19 26 44 50 76 79 91 95 118 128 129		
10 11 42 49 51 67 70 78 84 121 131 136		
18 26 30 47 69 83 92 93 99 125 127 130		
6 8 12 20 60 73 80 96 107 124 135		
13 12 13 15 35 44 54 59 70 97 104 110 118 122		
7 8 20 24 27 51 53 62 87 101 109 119 124		
5 11 16 29 30 52 69 81 85 113 115 123		
4 19 25 33 45 55 58 89 93 98 100 116 117		
3 6 14 41 43 50 65 75 91 95 96 108 114		
2 9 23 26 28 34 64 68 84 99 111 112 121		
1 10 17 22 37 61 72 74 80 102 103 106 120		
13 8 15 16 32 34 39 43 74 77 87 99 107 113 128		
1 11 24 28 29 36 70 73 94 103 109 123 125		
2 3 6 27 40 46 69 76 91 96 108 122 124		
5 13 30 41 62 67 81 85 105 112 114 115 127		
7 19 21 22 26 51 59 72 90 100 106 117 126		
9 20 23 25 33 54 60 80 98 102 121 130		
4 10 18 31 35 42 61 64 79 84 119 120 129		
12 14 17 37 49 55 71 82 97 101 110 111 118		
13 9 21 26 30 38 48 59 62 85 101 116 129 135 136		
1 4 5 29 41 47 76 91 96 98 107 117 130		
2 9 32 45 46 49 67 95 100 115 124 126 134		
3 8 12 20 34 40 79 81 97 108 121 131		
6 13 27 37 53 55 56 88 110 118 122 127 133		
18 23 24 43 54 58 61 70 87 109 111 119 132		
10 15 17 25 31 64 65 82 93 102 106 125 128		
7 11 22 28 35 36 69 72 74 92 104 114 123		
14 16 19 39 51 57 73 84 99 103 112 113 120		
13 10 9 15 35 42 43 57 73 82 86 118 136 139 141		
1 4 5 28 40 69 78 84 89 103 121 129 131		
2 21 37 45 54 68 74 75 79 123 125 135 138		
3 18 22 31 39 53 77 95 97 100 107 134 140		
7 8 23 27 34 67 85 91 99 108 120 130 133		
6 14 32 41 47 61 66 83 104 111 114 115 127		
11 13 16 36 48 49 55 65 76 106 110 124 132		

(continued on the next page)
J	T	Disjoint Golomb Rulers										
19	25	30	38	52	56	80	81	96	116	119	126	128
20	24	26	29	51	64	72	87	88	98	105	117	137
10	12	17	33	44	50	58	70	94	109	112	113	122
11	30	34	48	59	60	83	99	105	134	135	136	146
20	24	26	33	55	66	71	96	110	141	142	143	184
10	17	35	44	50	58	69	86	107	114	115	116	166
14	16	19	39	51	55	60	83	99	103	126	127	138
23	27	29	32	54	67	75	90	101	147	148	149	150
13	15	20	36	47	53	61	73	97	112	115	116	161
16	17	25	42	71	78	81	94	108	113	124	127	157
9	11	14	46	55	65	79	91	104	118	130	133	134
12	21	42	45	62	74	96	111	129	147	150	151	152
5	6	31	40	43	57	70	72	78	124	128	147	148
5	18	24	26	33	55	66	71	96	110	122	123	136
22	27	32	33	74	75	90	97	112	125	126	127	128
23	27	32	33	50	52	64	90	97	112	125	126	127
20	21	35	42	44	61	72	88	92	117	120	123	124
19	36	37	45	60	65	87	99	118	120	124	125	126
25	40	46	54	66	76	79	110	114	129	130	131	132
7	10	14	15	53	71	82	95	107	116	122	142	144
8	9	17	34	63	72	96	105	143	145	146	147	148

REFERENCES

[1] W. C. Babcock, “Intermodulation interference in radio systems,” Bell System Technical Journal, vol. 32, no. 1, pp. 63–73, 1953.
[2] G. S. Bloom and S. W. Golomb, “Applications of numbered undirected graphs,” Proceedings of the IEEE, vol. 65, no. 4, pp. 562–570, 1977.
[3] J. P. Robinson and A. Bernstein, “A class of binary recurrent codes with limited error propagation,” IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 106–113, 1967.
[4] C. Chen, B. Bai, Z. Li, X. Yang, and L. Li, “Nonbinary cyclic LDPC codes derived from idempotents and modular Golomb rulers.” IEEE Transactions on Communications, vol. 60, no. 3, pp. 661–668, 2012.
[5] K. Klonowska, H. Lennerstad, L. Lundberg, and C. Svaahlberg, “Optimal recovery schemes in fault tolerant distributed computing,” Acta Informatica, vol. 41, no. 6, pp. 341–365, 2005.
[6] N. C. Meyer and P. A. Papakonstantinou, “On the complexity of constructing Golomb rulers,” Discrete Mathematics, vol. 157, no. 4, pp. 738–748, 2009.
[7] Wikipedia. (2014) Wikipedia’s entry on Golomb rulers. [Online]. Available: http://en.wikipedia.org/wiki/Golomb_ruler
Baoxin Xiu received the B.Sc. degree in applied mathematics in 2000, and the Ph.D. degree in management science and engineering in 2006, both from National University of Defense Technology (NUDT), Changsha, China. He is currently an associate professor in Information Systems Engineering Laboratory at NUDT. His research interests include algorithm design, granular computing and complex network.

Changjun Fan received the B.Sc. degree in command information system from National University of Defense Technology, Changsha, China, in 2013. He is currently a M.Sc. candidate in the College of Information System and Management at National University of Defense Technology, Changsha, China. His research interests include complex network and data mining.

Meilian Liang received her B.Sc. degree and M.Sc. degree in computer science from Guangxi University in 2002 and 2005, respectively. She is currently an associate professor of Computer Science at Guangxi University, Nanning. Her research interests include data mining and algorithm design.