HyperMAML: Few-Shot Adaptation of Deep Models with Hypernetworks

Marcin Przewiezlikowski†, 1, 2, 3, * Przemysław Przybysz‡, 1
Jacek Tabor†, Maciej Zięba4, 5 Przemysław Spurek1, 3
1 Jagiellonian University, Faculty of Mathematics and Computer Science
2 Jagiellonian University, Doctoral School of Exact and Natural Sciences
3 IDEAS NCBR 4 Tooploox Ltd. 5 Wroclaw University of Science and Technology

Abstract

The aim of Few-Shot learning methods is to train models which can easily adapt to previously unseen tasks, based on small amounts of data. One of the most popular and elegant Few-Shot learning approaches is Model-Agnostic Meta-Learning (MAML). The main idea behind this method is to learn the general weights of the meta-model, which are further adapted to specific problems in a small number of gradient steps. However, the model’s main limitation lies in the fact that the update procedure is realized by gradient-based optimisation. In consequence, MAML cannot always modify weights to the essential level in one or even a few gradient iterations. On the other hand, using many gradient steps results in a complex and time-consuming optimization procedure, which is hard to train in practice, and may lead to overfitting. In this paper, we propose HyperMAML, a novel generalization of MAML, where the training of the update procedure is also part of the model. Namely, in HyperMAML, instead of updating the weights with gradient descent, we use for this purpose a trainable Hypernetwork. Consequently, in this framework, the model can generate significant updates whose range is not limited to a fixed number of gradient steps. Experiments show that HyperMAML consistently outperforms MAML and performs comparably to other state-of-the-art techniques in a number of standard Few-Shot learning benchmarks.

1 Introduction

In the typical Few-Shot learning setting, the aim is to adapt to new tasks under the assumption that only a few examples are given. As we know, people typically learn new tasks easily by using only a few training examples. On the contrary, a standard deep neural network must be trained on an extensive amount of data to obtain a similar accuracy. Thus, the aim of Few-Shot learning models is to bring neural networks closer to the human brain’s capabilities. The most famous and, in our opinion, the most elegant approach to Few-Shot learning is Model-Agnostic Meta-Learning (MAML) [7], where the model is trained to adapt universal weights to new Few-Shot learning tasks quickly. It seems that the brain’s neural networks can adapt to new tasks too, by applying the fact that during the process of evolution, some of its parts have developed universal weights which are easily adaptable to typical tasks we encounter in real life. Thus the idea behind MAML gives us a possible insight into the working of the brain.

The fascinating factor of human intelligence is that the human learning process, although still not understood, is clearly not based on the gradient descent algorithm, as we cannot in general backpropagate the information [18, 37, 44]. Thus, from the biological point of view, the main

† Corresponding author: marcin.przewiezlikowski@doctoral.uj.edu.pl
‡ – M.P. and P.P. contributed equally
We solve this problem by constructing HyperMAML, a model which replaces the gradient optimization in the update of weights by trainable update procedure with the use of the Hypernetwork paradigm. Hypernetworks, introduced in [12] are defined as neural models that generate weights for a separate target network solving a specific task. In our model, HyperMAML, the Hypernetwork aggregates the information from the support set and produces an update to the main model. Thanks to such an approach, we can create various types of updates that are not limited to a few gradient steps.

In practice, MAML works when there exist universal weights that are close enough to the optimal solution for each task. We visualize such a situation in the form of a simple 2D example, where a single gradient update fails to sufficiently adapt the model to a given task – see Fig. 1. We cannot effectively switch weight in one gradient step. On the other hand, when we use many gradient steps, we obtain a complex optimization procedure that uses an inner and outer loop. Such a procedure can be seen as second-order optimization, which is complex to train [7]. Contrary to MAML, HyperMAML does not need an inner loop in the optimization procedure, and consequently, we do not have second-order optimization. As a result, our algorithm obtains better results than the classical MAML algorithm and produces results comparable to other state-of-the-art algorithms.

We make our implementation available at https://github.com/gmum/few-shot-hypnets-public.
The contributions of our work can be summarized as follows:

- We introduce HyperMAML, a novel approach to the Few-Shot learning problem by aggregating information from the support set and directly producing weights updates.
- In HyperMAML, we do not use loss calculation or gradient backpropagation for the update to the new task, thus making the model more biologically feasible and computationally efficient.
- We significantly increase the update ability compared to the classical MAML algorithm, as evidenced by the increased accuracy in numerous benchmarks we perform.

2 Related Work

The problem of Meta-Learning and Few-Shot learning [13, 33, 3] has received a growing amount of attention from the scientific community over the recent years, with the abundance of methods emerging as a result. They can be roughly categorized into several groups:

Model-based methods aim to adapt to novel tasks quickly by utilizing mechanisms such as memory [31, 32, 19, 48], Gaussian Processes [29, 25, 43], or generating fast weights based on the support set with set-to-set architectures [26, 2, 45]. The fast weights approaches can be interpreted as using Hypernetworks [12] – models which learn to generate the parameters of neural networks performing the designated tasks.

Similarly, HyperMAML utilizes a Hypernetwork to generate weights updates for performing specific tasks. The key difference is that in HyperMAML, the Hypernetwork is not the sole source of model weights, but is used to generate the updates to the weights of the base model.

Metric-based methods learn a transformation to a feature space where the distance between examples from the same class is small. The earliest examples of such methods are Matching Networks [40] and Prototypical Networks [36]. Subsequent works show that metric-based approaches can be improved by techniques such as learnable metric functions [39], conditioning the model on tasks [24] or predicting the parameters of the kernel function to be calculated between support and query data with Hypernetworks [34]. HyperMAML does not consider relations between the support and query examples during inference and therefore does not fall into the category of metric-based models.

Optimization-based methods such as MetaOptNet [16] are based on the idea of an optimization process over the support set within the Meta-Learning framework. Arguably, the most popular of this family of methods is Model-Agnostic Meta-Learning (MAML) [7], which inspired a multitude of research and numerous extensions to the original algorithm. This includes various techniques for stabilizing its training and improving performance, such as Multi-Step Loss Optimization, and scheduling the learning rate of the meta-optimizer [11], or using the Bayesian variant of MAML [47].

Due to a need for calculating second-order derivatives when computing the gradient of the meta-training loss, training the classical MAML introduces a significant computational overhead. The authors show that in practice the second-order derivatives can be omitted at the cost of small gradient estimation error and minimally reduced accuracy of the model [7, 23]. Methods such as iMAML and Sign-MAML propose to solve this issue with implicit gradients or Sign-SGD optimization [28, 6]. The optimization process can also be improved by training not only the base initialization of the model but also the optimizer itself – namely, training a neural network that transforms gradients calculated w.r.t. loss of the support set predictions into weight updates [20, 21, 17, 27].

HyperMAML shares a key characteristic with the optimization-based methods – namely, it also utilizes a base set of weights, which are updated to obtain a model fit for a given task. The key difference between HyperMAML and MAML is that while MAML adapts to novel tasks through multiple steps of gradient-based optimization, HyperMAML generates the updates in a single step using a Hypernetwork. This makes HyperMAML more similar to methods like [17, 20], which generate weight updates through trained meta-optimizers. However, contrary to those approaches, in HyperMAML the Hypernetwork predicts the weight updates based on (i) latent representation of the support set, (ii) predictions of the base model for the support set, (iii) ground-truth labels
Algorithm 1: MAML - Model-Agnostic Meta-Learning

Require: \(\mathcal{D} = \{ \mathcal{T}_n \}_{n=1}^N \): set of training tasks
Require: \(\alpha, \beta \): step size hyper parameters

1: randomly initialize \(\theta \)
2: while not done do
3: Sample batch of tasks \(\mathcal{B} \) from \(\mathcal{D} \)
4: for each task \(\mathcal{T}_i = \{ S_i, Q_i \} \) from batch \(\mathcal{B} \) do
5: Evaluate \(\nabla \theta L_{S_i}(f_\theta) \) with respect to examples from \(S_i \) given loss by (2)
6: Compute adapted parameters \(\theta'_i \) with gradient descent using formula given by eq. (1)
7: end for
8: Update the global parameters of the model \(\theta \) with formula given by eq. (4).
9: end while

of the support examples (see Fig. 2). Thus HyperMAML does not require calculating either the loss function or its gradients during generating of the task-specific weight updates, making it more computationally efficient.

3 HyperMAML: Hypernetwork for Few-Shot learning

In this section, we present our HyperMAML model for Few-Shot learning. First, we start by presenting background and notations for Few-Shot learning. Then we describe how the MAML algorithm works. Finally, we present HyperMAML, which can be understood as an extension of the classical MAML.

3.1 Background

The terminology describing the Few-Shot learning setup is dispersive due to the colliding definitions used in the literature. Here, we use the nomenclature derived from the Meta-Learning literature, which is the most prevalent at the time of writing. Let \(S = \{ (x_i, y_i) \}_{i=1}^L \) be a support-set containing input-output pairs, with \(L \) examples with the equal class distribution. In the one-shot scenario, each class is represented by a single example, and \(L = K \), where \(K \) is the number of the considered classes in the given task. Whereas, for Few-Shot scenarios, each class usually has from 2 to 5 representatives in the support set \(S \).

Let \(Q = \{ (x_m, y_m) \}_{m=1}^M \) be a query-set (sometimes referred to in the literature as a target-set), with \(M \) examples, where \(M \) is typically one order of magnitude greater than \(K \). For clarity of notation, the support and query sets are grouped in a task \(\mathcal{T} = \{ S, Q \} \). During the training stage, the models for Few-Shot applications are fed by randomly selected examples from training set \(\mathcal{D} = \{ \mathcal{T}_n \}_{n=1}^N \), defined as a collection of such tasks.

During the inference stage, we consider task \(\mathcal{T}_* = \{ S_*, \mathcal{X}_* \} \), where \(S_* \) is a support set with the known class values for a given task, and \(\mathcal{X}_* \) is a set of query (unlabeled) inputs. The goal is to predict the class labels for query inputs \(x \in \mathcal{X}_* \), assuming support set \(S_* \) and using the model trained on \(\mathcal{D} \).

Model-Agnostic Meta-Learning (MAML) is one of the current standard algorithms for Few-Shot learning, which learns the parameters of a model so that it can adapt to a new task in a few gradient steps.

We consider a model represented by a function \(f_\theta \) with parameters \(\theta \). In the Few-Shot problems \(f_\theta \) models discriminative probabilities for the classes, \(f_\theta(x) = p(y|x, \theta) \). The standard MAML model is trained with the procedure given by Algorithm 1 in each of the training iterations the batch of tasks \(\mathcal{B} \) is sampled from \(\mathcal{D} \). Further, for each task \(\mathcal{T}_i = \{ S_i, Q_i \} \) from \(\mathcal{B} \) MAML adapts the model’s parameters \(\theta'_i \) that are specific for a given task. The actual values of \(\theta'_i \) are calculated using one or more gradient descent updates. In the simplest case of one gradient iteration, the parameters are updated as follows:

\[
\theta'_i = \theta - \alpha \nabla \theta L_{S_i}(f_\theta),
\]
where α is the step size that may be fixed as a hyperparameter or meta-learned, and the loss function for a set of observations Z is defined as L_Z for the few shot scenario is represented as a simple cross-entropy:

$$L_Z(f_\theta) = \sum_{(x_i,y_i) \in Z} \sum_{k=1}^{K} -y_{i,k}^k \log f_{\theta,k}(x_{i,j}), \tag{2}$$

where $f_{\theta,k}(x_{i,j})$ denotes k-th output of the model f_θ, for a given input $x_{i,j}$, and $y_{i,j}$ is corresponding class in one-hot coding. For simplicity of notation, we will consider one gradient update for the rest of this section, but using multiple gradient updates is a straightforward extension. After calculating the tasks-specific updates θ^*_t the general model parameters are trained by optimizing for the performance of $f_{\theta^*_t}$ with respect to θ across tasks from batch B. More concretely, the meta-objective used to train the general parameters of the models is as follows:

$$L_{MAML}(f_\theta) = \sum_{T_i \in B} L_{Q_i}(f_{\theta^*_t}) = \sum_{T_i \in B} L_{Q_i}(f_{\theta - \alpha \nabla_{\theta} L_{\beta_i}(f_{\theta}))}, \tag{3}$$

Note that the meta-optimization is performed over the model parameters θ, whereas the objective is computed using the updated model parameters θ^*. In effect, our proposed method aims to optimize the model parameters such that one or a small number of gradient steps on a new task will produce maximally effective behavior on that task.

The meta-optimization across tasks is performed via stochastic gradient descent (SGD) such that the model parameters θ are updated as follows:

$$\theta \leftarrow \theta - \beta \nabla_{\theta} L_{MAML}(f_{\theta}), \tag{4}$$

where β is the meta step size.

During the inference stage, in order to perform predictions for newly observed task $T_e = \{S_e, X_e\}$ the loss function $L_{S_e}(f_{\theta})$ is calculated first using eq. (2). Next, the parameters θ^*_t for task T_e are calculated from eq. (1). The final predictions for query examples X_e are performed by the model $f_{\theta^*_t}$, where for selected query example $x_q \in X_e$ we have $p(y|x_q, \theta^*_t) = f_{\theta^*_t}(x_q, \theta^*_t)$.

The main limitation of the approach is that it produces the general weights for all possible tasks, and the adjustment is performed via a gradient-based approach performed on the support set. For some non-trivial challenging tasks, the dedicated parameters θ^*_t may be located far from the base weights, θ. Consequently, the adaptation procedure would require significantly more gradient steps, the training may be unstable, and the model will tend to overfit to support set. To overcome this limitation, we propose to replace the gradient-based adaption with the Hypernetwork approach, where the update step is returned by an additional deep model that extracts the information from the support set (see toy example in Fig. [1]).

3.2 HyperMAML - overview

We introduce our HyperMAML – a model that utilizes Hypernetworks for modeling weights updates in the classical MAML algorithm. The main idea of the proposed updating scenario is to use information extracted from support examples and predictions given by universal weights to find optimal updates dedicated to a given task. Thanks to this approach, we can switch the classifier’s parameters between completely different tasks based on the support set and existing prediction of the universal weights.

The architecture of the HyperMAML is provided in Fig. [2]. In this section we present the model for one-shot scenario, we further discuss, how to extend it to Few-Shot problems. We aim at predicting the class distribution $p(y|x_q, S)$, assuming given single query example x_q, and the set of support examples S. Following the idea from MAML we consider the parameterized function f_θ, that models the discriminative distribution for the classes. In addition, in our architecture we distinguish the trainable encoding network $E(\cdot)$, that transforms data to low-dimensional representation. We postulate to calculate $p(y|x_q, \theta') = f_{\theta'}(e_q)$, where e_q is the query example x_q transformed using encoder $E(\cdot)$, and θ' represents the updated parameters for a considered task, $\theta' = \theta + \Delta_\theta$. Compared
to gradient-based adaptation step described by eq. (1) used to calculate \(\Delta\theta \) we propose to predict the values using hypernetwork, directly from support set.

Each of the inputs from support set \(X_S \) is transformed by Encoder \(E(\cdot) \) in order to obtain low-dimensional matrix of embeddings \(E_S = [e_{S1}, \ldots, e_{SK}]^T \). Next, the corresponding class labels for support examples, \(Y_S = [y_{S1}, \ldots, y_{SK}]^T \) are concatenated to the corresponding embeddings stored in the rows of matrix \(E_S \). In addition, we also calculate the predicted values for the examples from the support set using the general model \(f_\theta(E_S) = \hat{Y}_S \), and also concatenate them to \(E_S \). The matrix transformed support inputs \(E_S \), together with true support labels \(Y_S \), and corresponding predictions \(\hat{Y}_S \) returned by general model are delivered as an input to the hypernetwork \(H(\cdot) \) that returns the update \(\Delta\theta \). The parameters for final target model are calculated with the following formula:

\[
\theta' = \theta + \Delta\theta = \theta + H(E_S, \hat{Y}_S, Y_S).
\]

Practically, the Hypernetwork observes the support examples with the corresponding true values and decides how the global parameters \(\theta \) should be adjusted to the considered task. In addition, the predictions from global model \(f_\theta \) are also delivered to the model in order to identify the misclassifications and try to correct them during the update state.

3.3 HyperMAML - training

For training the model we assume that encoder \(E(\cdot) \) is parametrized by \(\gamma \), \(E := E_\gamma \), and the hypernetwork \(H(\cdot) \) by \(\eta \), \(H := H_\eta \). The training procedure is described in Algorithm 2. First, we sample the batch of tasks \(B \) from the given dataset \(D \). Next, for each task \(T_i \) in batch \(B \) we calculate the update \(\Delta\theta_i \) using the support set \(S_i \), and provide the updated parameters \(\theta' \) according to the rule given by eq. (5). Finally, the objective to train the parameters of the system is calculated using the query sets from the batch tasks \(T_i \):

\[
L_{\text{HyperMAML}}(f_\theta) = \sum_{T_i \in B} L_{Q_i}(f_{\theta'}) = \sum_{T_i \in B} L_{Q_i}(f_{\theta + \Delta\theta}),
\]

where \(L_{Q_i}(f_{\theta'}) \) is given by eq. (2). The parameters of the encoder, hypernetwork, and global parameters \(\theta \) represent the meta parameters of the system, and they are updated with stochastic gradient descent (SGD) by optimizing \(L_{\text{HyperMAML}}(f_\theta) \).

Adaptation to the Few-Shot scenario

The proposed method can be easily extended for Few-Shot scenarios following the aggregation technique from [34]. For our approach, we aggregate the
Algorithm 2 HyperMAML

Require: \(\mathcal{D} = \{ T_n \}_{n=1}^N \): set of training tasks
Require: \(\beta \): step size hyper parameter

1: randomly initialize \(\theta, \gamma, \eta \)
2: while not done do
3: Sample batch of tasks \(\mathcal{B} \) from \(\mathcal{D} \)
4: for each task \(T_i = \{ S_i, Q_i \} \) from batch \(\mathcal{B} \) do
5: Compute adapted parameters \(\theta'_i \) from \(S_i \) using formula given by eq. (5)
6: end for
7: Calculate the loss \(\mathcal{L}_{\text{HyperMAML}}(f_\theta) \) given by eq. (6).
8: \(\theta \leftarrow \theta - \beta \nabla_\theta \mathcal{L}_{\text{HyperMAML}}(f_\theta) \) \(\triangleright \) Update the global target parameters \(\theta \)
9: \(\eta \leftarrow \eta - \beta \nabla_\eta \mathcal{L}_{\text{HyperMAML}}(f_\theta) \) \(\triangleright \) Update parameters of the hypernetwork \(H_\eta \)
10: \(\gamma \leftarrow \gamma - \beta \nabla_\gamma \mathcal{L}_{\text{HyperMAML}}(f_\theta) \) \(\triangleright \) Update the parameters of the Encoder \(E_\gamma \)
11: end while

embedding values of the support examples from the same class using mean operation. In addition, the corresponding predictions within the class are also averaged and concatenated to the averaged per class embedding together with the true class label, and further processed via hypernetwork.

Warming-up universal weights In practice, it is not trivial to initialize the universal weights of HyperMAML. Classical initialization does not allow to update the universal weights and only the Hypernetwork’s parameters are changing. To solve this problem we use a smooth transition from gradient to Hypernetwork update:

\[
\theta' = \theta + \lambda \cdot H(E_S, \hat{Y}_S, Y_S) - (1 - \lambda) \cdot \alpha \nabla_\theta \mathcal{L}_{S_i}(f_\theta)
\]

where \(\lambda \) is changing from zero to one in a few initial training epochs.

4 Experiments

In this section, we first demonstrate the differences between MAML and HyperMAML on a toy 2D example showcased in Figure 1. Next, we compare HyperMAML to a variety of other Few-Shot learning approaches on classical Few-Shot benchmarks, as well as cross-domain Few-Shot learning.

We next compare MAML and HyperMAML in terms of computational efficiency, as well as the magnitude of parameter updates. We conclude this section with an ablation study of two mechanisms we employ for training HyperMAML, namely switching and embedding enhancement, as well as its hyperparameters.

In the typical Few-Shot learning setting, making a valuable and fair comparison between proposed models is often complicated because of the existence of the significant differences in architectures and implementations of known methods. In order to limit the influence of the deeper backbone (feature extractor) architectures, we follow the unified procedure proposed by [5].

In all of the experiments reported in sections 4.2-4.4, the tasks consist of 5 classes (5-way) and 1 or 5 support examples (1 or 5-shot). Unless indicated otherwise, all compared models use a known and widely utilized backbone consisting of four convolutional layers (each consisting of a 2D convolution, a batch-norm layer, and a ReLU non-linearity; each layer consists of 64 channels) and have been trained from scratch [5]. In all experiments, the query set of each task consists of 16 samples for each class (80 in total). We split the datasets into the standard train, validation, and test class subsets, used commonly in the literature [31, 5, 25]. For each setting, we report the performance of HyperMAML averaged over three training runs. We provide the additional training details in the Appendix.

4.1 2D example

To visualize the fact that the MAML algorithm is significantly limited by the weight update procedure based on the gradient method, we will analyze a simple 2D example. Let us consider a data set

3Our code is available at https://github.com/gmum/few-shot-hypernets-public
We next consider the classical Few-Shot learning scenario. We benchmark the performance of the CUB MAML model with one gradient step in the inner loop (see the first row in Fig. 1) cannot update all four tasks. On the other hand, when we use five gradient updates, the model gives a reasonable solution (see the second row in Fig. 1). In practice, for MAML, we cannot effectively use many steps in inner loop in the case of really high dimensional data.

The MAML model with one gradient step in the inner loop (see the first row in Fig. 1) cannot update all four tasks. On the other hand, when we use five gradient updates, the model gives a reasonable solution (see the second row in Fig. 1). In practice, for MAML, we cannot effectively use many steps in inner loop in the case of really high dimensional data.

Our HyperMAML can solve the task by using the hypernetwork paradigm. We use only one update in our method, which can dramatically change weights. Notice that even for five steps, MAML cannot significantly update weight. In practice, it uses only rotations.

4.2 Classification

We next consider the classical Few-Shot learning scenario. We benchmark the performance of the HyperMAML and other methods on two challenging and widely considered datasets: Caltech-USCD Birds (CUB) and mini-ImageNet. In the case of the mini-ImageNet dataset, the models are initialized with pretrained weights, following [26]. We compare HyperMAML to several MAML-related and Hypernetwork-based methods, as well as the current state-of-the-art algorithms in the tasks of 1-shot and 5-shot classification, and report the results in Table 2.

In the 1-shot scenario, HyperMAML yields top-performing results (66.11\%) on the CUB dataset. On the mini-ImageNet dataset, HyperMAML is also the second-best performing approach, achieving an accuracy of 55.91\%, second only to DFSVLwF (9) (56.20\%). In the 5-shot setting, HyperMAML is among the top three best-performing models achieving both on the CUB and mini-ImageNet datasets, achieving 78.89\% and 71.72\% accuracies, respectively, with FEAT, HyperShot (34), and Unicorn-MAML (46) outperforming it by small margins. The obtained results show that HyperMAML achieves performance better or comparable to a variety of Few-Shot learning methods, in particular MAML (7), as well as techniques which derive from it [1, 28, 46, 56].

Method	CUB	mini-ImageNet		
	1-shot	5-shot	1-shot	5-shot
MAML	55.92 ± 0.95	72.09 ± 0.76	48.70 ± 1.75	63.11 ± 0.92
MAML++	–	–	52.15 ± 0.20	68.32 ± 0.44
MAML-HF	–	–	49.30 ± 1.88	–
SignMAML	–	–	42.90 ± 1.50	60.70 ± 0.70
Bayesian MAML	–	–	53.80 ± 1.46	64.23 ± 0.69
Unicorn-MAML	65.85 ± 0.48	76.63 ± 0.39	55.70 ± 0.20	72.68 ± 0.16
HyperShot	65.27 ± 0.24	79.80 ± 0.16	52.42 ± 0.46	68.78 ± 0.29
PPA	–	–	54.53 ± 0.40	–
DFSVLwF	–	–	56.20 ± 0.86	–
HyperMAML	66.11 ± 0.28	78.89 ± 0.19	55.91 ± 0.21	71.72 ± 0.16

Table 1: The classification accuracy results for the inference tasks on **CUB** and **mini-ImageNet** datasets in the 1-shot and 5-shot settings. The highest results are in bold and the second-highest in italics (the larger, the better).

4.3 Cross-domain adaptation

In the cross-domain adaptation setting, the model is evaluated on tasks coming from a different distribution than the one it had been trained on. To benchmark the performance of HyperMAML in cross-domain adaptation, we combine two datasets so that the training fold is drawn from the first dataset and validation and the testing fold – from another one. We report the results in Table 2.

We report the performance of baseline methods as measured with our codebase [5, 25] wherever possible, and otherwise as reported in the works they were introduced in. We include an expanded version of Table 1 with a comparison to a wider selection of models, as well as a comparison of models using a larger ResNet-12 backbone in the Appendix.
In the task of 1-shot Omniglot→EMNIST classification, HyperMAML achieves the second-best result (79.84%), with HyperShot+finetuning (80.65%) being the top one. Compared to the other methods, we observe relatively smaller performance growth as more data becomes available. In the 5-shot Omniglot→EMNIST classification task HyperMAML yields comparable results (89.22%) to HyperShot (90.81%) and DKT (90.30%), which are the state-of-the-art in this setting. In the most challenging task of mini-ImageNet→CUB classification, our method performs comparably to baseline methods such as MAML, Unicorn-MAML, ProtoNet, and Matching Net [7,46,40,36], particularly in the 1-shot setting.

4.4 Computational efficiency

Finally, we verify the hypothesis that HyperMAML offers an increased computational efficiency compared to MAML. To this end, we measure the times of processing the entire Omniglot→EMNIST test dataset (600 tasks in total) by MAML with different numbers of gradient steps and HyperMAML and report the results in Table 3. We provide additional results for other datasets in the supplementary material. We find that processing the test data with HyperMAML takes approximately the same time as using MAML with just 2 gradient updates. We also note that even given the budget of 100 gradient updates, MAML never matches the accuracy achieved by a single update generated by HyperMAML.

5 Conclusions

In this work, we introduced HyperMAML – a novel Meta-Learning algorithm strongly motivated by MAML [7]. The crucial difference between the two methods lies in the fact that in HyperMAML the update of the model is given not by the gradient optimization, but by the trainable Hypernetwork. Consequently, HyperMAML is more computationally efficient than MAML, as during adaptation it performs only a single parameter update. Moreover, HyperMAML is not only more biologically feasible as it does not use backpropagation, but it can adapt easier to different settings and has a smaller number of hyperparameters. Our experiments show that HyperMAML outperforms the classical MAML in a number of standard Few-Shot learning benchmarks and achieves results similar to various other state-of-the-art methods in most cases.
Limitations The main limitation of the method is the need for initialization of the universal weights by a continuous transition from gradient update to Hypernetwork. We plan to investigate this issue in future work.

References

[1] A. Antoniou, H. Edwards, and A. Storkey. How to train your maml, 2018. URL https://arxiv.org/abs/1810.09502
[2] M. Bauer, M. Rojas-Carulla, J. B. Świątkowski, B. Schölkopf, and R. E. Turner. Discriminative k-shot learning using probabilistic models, 2017.
[3] S. Bengio, Y. Bengio, J. Cloutier, and J. Gecsei. On the optimization of a synaptic learning rule, 1992.
[4] L. Bertinetto, J. F. Henriques, P. Torr, and A. Vedaldi. Meta-learning with differentiable closed-form solvers. In International Conference on Learning Representations, 2018.
[5] W.-Y. Chen, Y.-C. Liu, Z. Kira, Y.-C. F. Wang, and J.-B. Huang. A closer look at few-shot classification. arXiv preprint arXiv:1904.04232, 2019.
[6] C. Fan, P. Ram, and S. Liu. Sign-maml: Efficient model-agnostic meta-learning by signsgd. CoRR, abs/2109.07497, 2021. URL https://arxiv.org/abs/2109.07497
[7] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In International Conference on Machine Learning, pages 1126–1135. PMLR, 2017.
[8] C. Finn, K. Xu, and S. Levine. Probabilistic model-agnostic meta-learning. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, pages 9537–9548, 2018.
[9] S. Gidaris and N. Komodakis. Dynamic few-shot visual learning without forgetting. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4367–4375, 2018.
[10] J. Gordon, J. Bronskill, M. Bauer, S. Nowozin, and R. Turner. Meta-learning probabilistic inference for prediction. In International Conference on Learning Representations, 2018.
[11] E. Grant, C. Finn, S. Levine, T. Darrell, and T. Griffiths. Recasting gradient-based meta-learning as hierarchical bayes. In International Conference on Learning Representations, 2018.
[12] D. Ha, A. Dai, and Q. V. Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.
[13] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey. Meta-learning in neural networks: A survey, 2020.
[14] G. Jerfel, E. Grant, T. L. Griffiths, and K. Heller. Reconciling meta-learning and continual learning with online mixtures of tasks. In Proceedings of the 33rd International Conference on Neural Information Processing Systems, pages 9122–9133, 2019.
[15] M. Kim and T. Hospedales. Gaussian process meta few-shot classifier learning via linear discriminant laplace approximation. arXiv preprint arXiv:2111.05392, 2021.
[16] K. Lee, S. Maji, A. Ravichandran, and S. Soatto. Meta-learning with differentiable convex optimization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10657–10665, 2019.
[17] Z. Li, F. Zhou, F. Chen, and H. Li. Meta-sgd: Learning to learn quickly for few-shot learning, 2017. URL https://arxiv.org/abs/1707.09835
[18] T. P. Lillicrap, A. Santoro, L. Marris, C. J. Akerman, and G. Hinton. Backpropagation and the brain. Nature Reviews Neuroscience, 21(6):335–346, 2020.
[19] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel. A simple neural attentive meta-learner. In International Conference on Learning Representations, 2018.
[20] T. Munkhdalai and H. Yu. Meta networks. In International Conference on Machine Learning, pages 2554–2563. PMLR, 2017.

[21] T. Munkhdalai, X. Yuan, S. Mehri, and A. Trischler. Rapid adaptation with conditionally shifted neurons. In International Conference on Machine Learning, pages 3664–3673. PMLR, 2018.

[22] C. Nguyen, T.-T. Do, and G. Carneiro. Uncertainty in model-agnostic meta-learning using variational inference. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 3090–3100, 2020.

[23] A. Nichol, J. Achiam, and J. Schulman. On first-order meta-learning algorithms. arXiv preprint arXiv:1803.02999, 2018.

[24] B. N. Oreshkin, P. Rodriguez, and A. Lacoste. Tadam: Task dependent adaptive metric for improved few-shot learning. arXiv preprint arXiv:1805.10123, 2018.

[25] M. Patacchiola, J. Turner, E. J. Crowley, M. O’Boyle, and A. J. Storkey. Bayesian meta-learning for the few-shot setting via deep kernels. Advances in Neural Information Processing Systems, 33, 2020.

[26] S. Qiao, C. Liu, W. Shen, and A. Yuille. Few-shot image recognition by predicting parameters from activations, 2017.

[27] J. Rajasegaran, S. H. Khan, M. Hayat, F. S. Khan, and M. Shah. Meta-learning the learning trends shared across tasks. CoRR, abs/2010.09291, 2020. URL https://arxiv.org/abs/2010.09291.

[28] A. Rajeswaran, C. Finn, S. M. Kakade, and S. Levine. Meta-learning with implicit gradients. Advances in Neural Information Processing Systems, 33:113–124, 2019.

[29] C. E. Rasmussen. Gaussian processes in machine learning. In Summer school on machine learning, pages 63–71. Springer, 2003.

[30] S. Ravi and A. Beatson. Amortized bayesian meta-learning. In International Conference on Learning Representations, 2018.

[31] S. Ravi and H. Larochelle. Optimization as a model for few-shot learning. In ICLR, 2017.

[32] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. Meta-learning with memory-augmented neural networks. In International conference on machine learning, pages 1842–1850. PMLR, 2016.

[33] J. Schmidhuber. Learning to Control Fast-Weight Memories: An Alternative to Dynamic Recurrent Networks. Neural Computation, 4(1):131–139, 01 1992.

[34] M. Sendera, M. Przewiżliowski, K. Karanowski, M. Zięba, J. Tabor, and P. Spurek. Hypershott: Few-shot learning by kernel hypernetworks. arXiv preprint arXiv:2203.11378, 2022.

[35] J. Snell and R. Zemel. Bayesian few-shot classification with one-vs-each pólya-gamma augmented gaussian processes. In International Conference on Learning Representations, 2020.

[36] J. Snell, K. Swersky, and R. S. Zemel. Prototypical networks for few-shot learning. arXiv preprint arXiv:1703.05175, 2017.

[37] Y. Song, T. Lukasiewicz, Z. Xu, and R. Bogacz. Can the brain do backpropagation?—exact implementation of backpropagation in predictive coding networks. Advances in neural information processing systems, 33:22566–22579, 2020.

[38] Z. Sun, J. Wu, X. Li, W. Yang, and J.-H. Xue. Amortized bayesian prototype meta-learning: A new probabilistic meta-learning approach to few-shot image classification. In International Conference on Artificial Intelligence and Statistics, pages 1414–1422. PMLR, 2021.

[39] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales. Learning to compare: Relation network for few-shot learning. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1199–1208, 2018.
In this section, we present two mechanisms we utilize when training HyperMAML.

Switching mechanism is a smooth transition between training the convolutional encoder through MAML and HyperMAML objective. We consider the MAML warm-up as a starting point of the training loop and then smoothly move towards HyperMAML training. During training, we define two "milestone" epochs (see Section D.3) between which the transition occurs. During the transition, we continuously decrease the participation of the MAML objective in the training process. It is done by multiplying MAML loss by \(p \), ranging from 1.0 to 0.0 for a given number of epochs, and multiplying the HyperMAML loss by \(1 - p \). Our motivation for this mechanism is to train a better universal optimizing the MAML objective during the warm-up part of the training and then Switch to the HyperMAML objective gradually.

Enhancement of the embeddings is another mechanism in our framework. When preparing the input to the Hypernetwork from the support set, we first obtain support embeddings from the encoder. Then, we forward those embeddings through the universal classifier and obtain its predictions for support examples. We concatenate those predictions to the support embeddings, as well as their respective ground-truth labels. The whole process is visualized in Figure 3. Our motivation to perform such an operation is to give the Hypernetwork the information about the current decision of the classifier, to better estimate the updates to its weights. We note that even though the Hypernetwork generates the weights of the classifier based on the enhanced support embeddings, the generated downstream classifier does not use enhancements when processing the query set. Instead, it only processes the raw embeddings obtained from the encoder (see Figure 2 from the main paper).

We perform an ablation study of both mechanisms on the task 5-shot 1-way *Omniglot*→*EMNIST* classification. The results, reported in Table A, indicate that both mechanisms utilized individually improve the performance of HyperMAML, and the combination of the two yields the best results.
Figure 3: Illustration of the embedding enhancement mechanism. The support embeddings (which serve as the input to the HyperMAML Hypernetwork) are enhanced with the predictions of the base classifier and their respective ground-truth labels.

Table 4: The classification accuracy of HyperMAML on Omniglot → EMNIST task in the 5-way 1-shot scenario. We consider different strategies by adding switch or embedding enhancement strategy to our model.

Model	Switch	Enhancement	Accuracy	Learning rate	Milestones
HyperMAML	no	no	74.39 ± 0.88	0.0001	-
	no	yes	75.28 ± 1.29	0.0001	-
	yes	no	76.89 ± 0.71	0.01	51, 550
	yes	yes	79.10 ± 1.43	0.01	51, 550

B Full classification results

In Table 5 we provide an expanded version of Table 1 with numerous additional baseline methods. We also report the performance of HyperMAML, and several baseline methods trained with ResNet-12 backbone on the mini-ImageNet dataset in Table 6.

C Computational efficiency – results on natural image datasets

In this section, we perform similar experiments to those described in Section 4.4 of the main paper and measure the inference time of HyperMAML and MAML with different numbers of gradient steps on CUB and mini-ImageNet datasets. We summarize the results in Table 7. Similarly to the benchmark performed on smaller images from the Omniglot → EMNIST dataset, the inference time of HyperMAML is comparable to MAML with two gradient steps. Likewise, MAML never achieves accuracy higher than HyperMAML.

As opposed to Section 4.4 of the main paper, we report the accuracies of MAML only up to seven gradient steps. This is due to an insufficient amount of GPU memory available for making more steps in the MAML implementation we used [5]. We also note that the accuracies of MAML reported here are significantly higher than the ones reported in Table 1 of the main paper. The MAML accuracies from that table were previously reported in the literature [23], whereas the results in Table 7 have been obtained by the MAML implementation in our codebase [5].

D Training details

In this section, we present details of the training and architecture overview.
Table 5: The classification accuracy results for the inference tasks on CUB and mini-ImageNet datasets in the 5-shot setting. The highest results are in bold and the second-highest in italics (the larger, the better).

Method	CUB	mini-ImageNet		
	1-shot	5-shot	1-shot	5-shot
ML-LSTM [21]	–	–	34.44 ± 0.77	60.60 ± 0.71
SNAIL [19]	–	–	45.10	55.20
LLAMA [21]	–	–	49.40 ± 1.83	
VERSA [30]	–	–	48.53 ± 1.84	67.37 ± 0.86
Amortized VI [10]	–	–	44.13 ± 1.78	55.68 ± 0.91
Meta-Mixture [14]	–	–	49.60 ± 1.50	64.60 ± 0.92
SimpleShot [25]	–	–	49.69 ± 0.19	66.92 ± 0.17
Feature Transfer [49]	46.19 ± 0.64	68.40 ± 0.79	39.51 ± 0.23	60.51 ± 0.35
Baseline+ [5]	61.75 ± 0.95	78.51 ± 0.59	47.15 ± 0.49	66.18 ± 0.18
MatchingNet [20]	60.19 ± 1.02	75.11 ± 0.35	48.25 ± 0.65	62.71 ± 0.44
ProtoNet [35]	52.52 ± 1.90	75.93 ± 0.46	44.19 ± 1.30	64.07 ± 0.65
RelationNet [59]	62.52 ± 0.34	78.22 ± 0.07	48.76 ± 0.17	64.20 ± 0.28
DKT + CosSim [23]	63.37 ± 0.19	77.73 ± 0.26	48.64 ± 0.45	62.85 ± 0.37
DKT + BNCosSim [23]	62.96 ± 0.62	77.76 ± 0.62	49.73 ± 0.07	64.00 ± 0.09
GPLDLA [15]	63.40 ± 0.14	78.86 ± 0.35	52.58 ± 0.19	
VAMPIRE [22]	–	–	51.54 ± 0.74	64.31 ± 0.74
PLATIPUS [2]	–	–	50.13 ± 1.86	
ABMIL [30]	49.57 ± 0.42	68.94 ± 0.16	45.00 ± 0.60	
OVE PG GP (ML) [15]	63.98 ± 0.43	77.44 ± 0.18	50.02 ± 0.35	64.58 ± 0.31
OVE PG GP (PL) [55]	60.11 ± 0.26	79.07 ± 0.05	48.00 ± 0.24	67.14 ± 0.23
Reptile [23]	–	–	49.97 ± 0.32	65.99 ± 0.58
R2-D2 [4]	–	–	48.70 ± 0.60	65.50 ± 0.60
VSM [45]	–	–	54.73 ± 1.60	68.01 ± 0.90
PPA [25]	–	–	54.53 ± 0.40	
DFSN-LF [9]	–	–	56.20 ± 0.86	
HyperShot [34]	65.27 ± 0.24	79.80 ± 0.16	52.42 ± 0.46	68.78 ± 0.29
HyperShot + finetuning [24]	66.13 ± 0.26	80.07 ± 0.22	53.18 ± 0.45	69.62 ± 0.28
MAML [1]	56.11 ± 0.69	74.84 ± 0.62	45.39 ± 0.49	61.58 ± 0.53
MAML+ [4]	–	–	52.15 ± 0.26	66.32 ± 0.44
iMAML-HF [35]	–	–	49.30 ± 1.88	
SignMAML [2]	–	–	42.90 ± 1.50	60.70 ± 0.70
Bayesian MAML [47]	–	–	53.80 ± 1.46	64.23 ± 0.69
Unicorn-MAML [26]	65.85 ± 0.48	76.63 ± 0.39	55.70 ± 0.20	72.68 ± 0.16
Meta-SGD [17]	–	–	50.47 ± 1.87	64.03 ± 0.94
MetaNet [50]	–	–	49.21 ± 0.96	
PAMELA [25]	–	–	53.50 ± 0.89	70.51 ± 0.67
HyperMAML	66.11 ± 0.28	78.89 ± 0.19	55.91 ± 0.21	71.72 ± 0.16

Table 6: The classification accuracy results for the inference tasks in the mini-ImageNet dataset in the 5-way (1-shot and 5-shot) scenarios. We consider models using the ResNet-12 backbone. The highest results are in bold and the second-highest in italics (the larger, the better).

Method	1-shot	5-shot
cosine classifier [3]	55.43 ± 0.81	77.18 ± 0.61
TADAM [24]	58.50 ± 0.30	76.70 ± 0.30
HyperShot [34]	59.12 ± 0.26	76.53 ± 0.22
HyperShot + adaptation [24]	60.30 ± 0.31	76.21 ± 0.20
ProtoNet [35]	62.39 ± 0.21	80.53 ± 0.14
MetaOptNet [48]	62.64 ± 0.82	78.63 ± 0.46
MatchingNet [49]	63.08 ± 0.80	75.99 ± 0.60
MAML [4]	63.11 ± 0.92	80.81 ± 0.14
PPA [25]	–	73.34
HyperMAML	60.93 ± 0.22	75.74 ± 0.17

D.1 Architecture overview

The architecture of HyperMAML consists of the following parts (as outlined in the Fig. 2 in the main body of the work):

Encoder For each experiment described in the main body of this work, we utilize a shallow convolutional encoder (feature extractor), commonly used in the literature [4][5][25]. This encoder consists of four convolutional layers, each consisting of a convolution, batch normalization, and ReLU nonlinearity. Each of the convolutional layers has an input and output size of 64, except for the
In this section, we present details of the model architecture, training procedure, as well as implementation. We summarize the hyperparameters of architecture and training procedures used in each experiment in Table 8.

D.3 Hyperparameters

In this section, we present details of the model architecture, training procedure, as well as implementation. We summarize the hyperparameters of architecture and training procedures used in each experiment in Table 8.
Table 8: Hyperparameters for experiments conducted on each of the datasets.

hyperparameter	CUB	mini-ImageNet	mini-ImageNet → CUB	Omniglot → EMNIST
learning rate	0.001	0.0001	0.0001	0.01
Hypernetwork depth	3	3	3	3
Hypernetwork width	512	512	512	512
epochs no.	4000	4000	4000	2048
switching milestones	101, 1100	101, 1100	101, 1100	51, 550

E Implementation details

We implement HyperMAML using the PyTorch framework. We attach the zipped folder containing the source code with our experiments as a part of the supplementary material. We shall release the code publicly after the end of the review period.

Each experiment described in this work was run on a single NVIDIA RTX 2080 GPU. Typical HyperMAML model trained on the Omniglot → EMNIST and mini-ImageNet datasets takes about 2 and 100 hours, respectively.