Leptonic and semileptonic decays of heavy mesons

C. D. Robertsa, M. A. Ivanovb, Yu. L. Kalinovskyc and P. Marisa

aPhysics Division 203, Argonne National Laboratory, Argonne IL 60439-4843, USA
bBogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Russia
cLaboratory of Computing Techniques and Automation, JINR, 141980 Dubna, Russia

The leptonic decay of a pseudoscalar meson with total momentum \(P \) is described by

\[
\langle 0|\bar{q}_f \gamma_\mu q_i |\Phi_M(P)\rangle := f_M P_\mu = N_c \int \frac{d^4k}{(2\pi)^4} \text{tr}_D [\gamma_\mu S_f(k)\Gamma_M(k; P)S_b(k - P)] ,
\]

which defines the leptonic decay constant, \(f_M \). (With this normalisation, \(f_\pi \simeq 131 \text{ MeV} \).

In \((1) \), \(S_f \) is the dressed quark propagator and \(\Gamma_M(k; P) \) is the Bethe-Salpeter amplitude for the bound state; \(M \) labels the meson whose flavour content is made explicit by the quark flavour labels, \(f_i \). For example, for the \(B^- \)-meson: \(f_1 = u \) and \(f_2 = b \).

The calculation of \(f_M \) requires a knowledge of \(S_f \) and \(\Gamma_M \). The dressed-quark propagator has the general form \(S_f(p) = 1/[i\gamma \cdot pA_f(p^2) + B_f(p^2)] \): a bare-quark is described by \(A(p^2) \equiv 1 \) and \(B(p^2) = m \), where \(m \) is the current-quark mass. As described in Ref. [3], it is a characteristic of QCD elucidated in Dyson-Schwinger equation studies that for light-quarks; i.e., \(u \)-, \(d \)- and \(s \)-quarks, \(A_f(p^2) \) and particularly \(B_f(p^2) \) have a strong momentum-dependence for \(p^2 < 1 \text{ GeV}^2 \). This momentum-dependence is nonperturbative in origin.

For the \(b \)-quark, however, the momentum-dependence of \(A_b(p^2) \) and \(B_b(p^2) \) for all spacelike-\(p^2 \) is weak and mainly perturbative in origin. This suggests that, in phenomenological applications, it is a good approximation to write the dressed-\(b \)-quark propagator as

\[
S_b(p) = \frac{1}{i\gamma \cdot p + \hat{M}_b} ,
\]

where \(\hat{M}_b \) is approximately the Euclidean constituent-quark mass.[4] As observed in Ref. [3], this is the origin of “heavy-quark symmetry” in the Dyson-Schwinger equation [DSE] approach. For the \(c \)-quark, \(A_c(p^2) \) and \(B_c(p^2) \) have a stronger momentum-dependence. Hence representing \(S_c \) analogously to \((2) \) is only, at best, a first, exploratory step in the study of heavy meson properties. To proceed we write the heavy-meson total-momentum as \(P := (\hat{M}_{fQ} + E) v_H \), where \(E = M_H - \hat{M}_{fQ} \) and \(v^2 = -1 \). It follows that the heavy-quark propagator in \((1) \) becomes

\[
S_{f_2} = \delta(k - P) = \left(\frac{1}{2} \frac{1 + i\gamma \cdot v}{k \cdot v + E} + O \left(\frac{|k|}{\hat{M}_{fQ}}, \frac{E}{\hat{M}_{fQ}} \right) \right) .
\]

The Bethe-Salpeter amplitude, \(\Gamma_M(k; P) \), in \((1) \) is a function of the light-quark’s momentum, \(k \). It can be obtained as the solution of a Bethe-Salpeter equation.[5] These studies have not yet been completed hence herein we employ the Ansatz

\[
\Gamma_{B,D}(k; P) = \gamma_5 \left(1 - \frac{1}{2} i\gamma \cdot v \right) \frac{\varphi(k^2)}{\mathcal{N}_{B,D}} ,
\]

whose Dirac structure is motivated by Ref. [4]. Here \(\mathcal{N}_H \) is the canonical normalisation constant for the Bethe-Salpeter amplitude. In this study we interpret an insensitivity of our results to details of the form of \(\varphi(k^2) \) as indicating that they are robust.
At this point the calculation of the leptonic decay constants and \(\phi \) includes specification of the light-quark propagators and the function \(\phi \) and \(\sigma \). One quantity characterising the function \(\phi \) in impulse approximation the hadronic matrix element for the \(B^0 \to D^- \ell \nu \) decay is:

\[
\langle D^- (k) | \bar{b} \gamma_{\mu} c | B^0 (P) \rangle := f_+(t)(K + P)_\mu - f_-(t)(K - P)_\mu
\]

where \(t = -(P - K)^2 \) and \(\bar{\Gamma}_{B^0, D^-} (k; P)^T = C^\dagger \Gamma_{B^0, D^-} (k; P) C \), with \(C = \gamma_2 \gamma_4 \). In \((8)\) we have used the fact that in the heavy-quark limit the vector piece of the dressed-quark-W-boson vertex is \(V_{\mu}^{bc} = \gamma_{\mu} \). Substituting \((3)\) and \((4)\) into \((8)\) we obtain

\[
f_\pm (t) = \frac{1}{M_B} \frac{M_D \pm M_B}{2 \sqrt{M_D M_B}} \xi (w),
\]

with \(W = 1 + 2 \tau (1 - \tau) (w - 1) \) and \(z_W = u - 2 \sqrt{u/W} \). In \((9)\), \(w = \frac{M_B^2 + M_D^2 - t}{2M_B M_D} = v_B \cdot v_D \) and the physically accessible region is \(1.0 < w < 1.6 \). The canonical normalisation of the Bethe-Salpeter amplitude, \((9)\), ensures that \(\xi (w = 1) = 1 \).

One quantity characterising the function \(\xi (w) \) is its slope at \(w = 1 \), the point of minimal heavy meson recoil: \(\rho^2 := -\xi'(w) \big|_{w=1} \). It follows from \((10)\) that \(\rho^2 \geq 1/3 \) for any \(\varphi (z) \) and \(\sigma_{\mu/S} (z) \) non-negative, non-increasing, convex-up functions of their argument, which includes \(\varphi = \text{constant} \) and a free-particle propagator.

At this point the calculation of the leptonic decay constants and \(\xi (w) \) wants only the specification of the light-quark propagators and the function \(\varphi (k^2) \). The light-quark propagators have been fixed in Ref. [2]:

\[
\sigma_{S}^f (x) = 2 \bar{m}_{f} F (2 (x + \bar{m}_{f}^2)) + F (b_{1} x) F (b_{2} x) \left(b_{1}^2 + b_{2}^2 F (\epsilon x) \right), \tag{11}
\]

\[
\sigma_{V}^f (x) = \frac{2 (x + \bar{m}_{f}^2) - 1 + e^{-2 (x + \bar{m}_{f}^2)}}{2(x + \bar{m}_{f}^2)^2}, \tag{12}
\]
Fig. 1. Experiment: points, Ref. [7]; dashed line, (13); short-dashed line, the linear fit \[\xi(w) = 1 - \rho^2(w - 1), \] \[\rho^2 = 0.91 \pm 0.15 \pm 0.06. \] Our calculations using \(\varphi_{A-C} \) from (16) are represented by the solid line with the dot-dash line being the result we obtain assuming a point-like heavy-meson, \(\varphi_D \). Importantly, there is significant curvature in each case, which is a manifestation of the role played by the light-quarks. The light solid line is described in Fig. 2.

where \(F(y) \equiv (1 - e^{-y})/y, x = p^2/(2D) \) and: \(\sigma^f_V(x) = 2D \sigma_V^f(p^2); \sigma^f_S(x) = \sqrt{2D} \sigma_S^f(p^2); m_f = m_f/\sqrt{2D}, \) with \(D \) a mass scale. This form is motivated by extensive studies of the DSE for the dressed-quark propagator and combines the effects of confinement and dynamical chiral symmetry breaking with free-particle behaviour at large spacelike-\(p^2 \).

The parameters \(m_f, b_{0,3}^f \) in (11), (12) were determined in a \(\chi^2 \)-fit to a range of light-hadron observables, which is described in Ref. [4] and leads to the values in (13)

\[
\begin{align*}
u & : \quad 0.00897 \quad 0.131 \quad 2.90 \quad 0.603 \quad 0.185 \\
s & : \quad 0.224 \quad 0.105 \quad 2.90 \quad 0.740 \quad 0.185
\end{align*}
\]

The values of \(b_{1,3}^f \) are underlined to indicate that the constraints \(b_{1,3}^f = b_{1,3}^t \) were imposed in the fitting. The scale parameter \(D = 0.160 \text{ GeV}^2 \).

We consider the following four forms for \(\varphi(k^2) \):

\[
\begin{align*}
\varphi_A(k^2) &= \exp \left(-\frac{k^2}{\Lambda^2} \right) \\
\varphi_B(k^2) &= \frac{\Lambda^2}{k^2 + \Lambda^2} \left(\frac{\Lambda^2}{k^2 + \Lambda^2} \right)^2 \theta \left(1 - \frac{k^2}{\Lambda^2} \right)
\end{align*}
\]

and with this we have 2 parameters in our study: the “binding energy”, \(E := M_H - \hat{M}_{fQ} \), and the width, \(\Lambda \), of the heavy meson Bethe-Salpeter amplitude.

Now we ask the question: “Is the heavy-quark limit of the DSE framework capable of describing heavy meson observables?” To answer this we perform a \(\chi^2 \)-fit of \((E, \Lambda) \) to the following parametrisation of the experimental data on \(\xi(w) \):

\[
\xi(w) = \frac{2}{w+1} \exp \left(\frac{1 - 2\rho^2}{w+1} \right), \quad \rho^2 = 1.53 \pm 0.36 \pm 0.14,
\]

to \(f_D = 0.216 \pm 0.015 \text{ GeV} \) and \(f_B = 0.206 \pm 0.030 \text{ GeV} \), which, in the absence of experimental data, is our weighted average of lattice-QCD results. Using \(M_D = 1.87 \text{ GeV} \), \(M_{D_s} = 1.97 \text{ GeV} \) and \(M_B = 5.27 \text{ GeV} \), we obtain the results presented in Fig. 1 and (16), energies in GeV and \(\rho^2 \) dimensionless.
	E	A	f_D	f_{Ds}	f_B	ρ^2
A	0.640	1.03	0.227	0.245	0.135	1.55
B	0.567	0.843	0.227	0.239	0.135	1.56
C	0.612	1.32	0.227	0.242	0.135	1.55
D	0.643	1.02	0.272	0.296	0.162	1.21

Clearly, a good description is possible. The fitted values of E are consistent with contemporary estimates of this binding energy in Bethe-Salpeter equation studies and the values of Λ indicates that the heavy meson occupies a spacetime volume of only 4-20% that of the pion. We observe that $f_{Ds}/f_D = f_{Bs}/f_B \approx 1.07$. Comparing this with the value expected in the heavy-quark limit: $\sqrt{M_D/M_{Ds}} = 0.97$ and $\sqrt{M_B/M_{Bs}} = 0.99$, illustrates the influence that light-quarks have on real heavy-meson observables.

![Fig. 2. Calculated form of $f_+(q^2)$ for the decay $B \rightarrow \pi e \nu$ using φ_A, with $E = 0.47$ and $\Lambda = 1.1$ GeV, and Γ_π from Ref. [1]: $f_+(0) = 0.48$. This gives a branching ratio of 2.3×10^{-4} to be compared with the experimental value of $(1.8 \pm 0.4 \pm 0.3 \pm 0.2) \times 10^{-4}$. With this φ_A: $f_D = 0.224$, $f_{Ds} = 0.241$, $f_B = 0.133$ and $f_{Bs} = 0.146$ GeV. $\xi(w)$ is plotted as the thin solid line in Fig. 1, for which $\rho^2 = 1.0$. Requiring a simultaneous fit reduces ρ^2 and increases $\xi(w = 1.6)$. The data points are the results of the lattice simulations in Ref. [10].](image)

We are currently applying the formalism described herein to the simultaneous calculation of leptonic and heavy-to-heavy and heavy-to-light semileptonic decays. Our framework allows the calculation of each form factor at all q^2. The light-quark degrees of freedom are particularly important in heavy-to-light semileptonic decays, which probe the structure of the final-state light-meson Bethe-Salpeter amplitude and are inaccessible in heavy-quark effective theory. A uniformly good description of all these decays requires a refitting of the two parameters E and Λ. We illustrate what is possible in Fig. 2.

Acknowledgments. The work of P.M. and C.D.R. was supported by the US Department of Energy, Nuclear Physics Division, under contract number W-31-109-ENG-38, and benefited from the resources of the National Energy Research Supercomputer Center.

References.

1. P. Maris and C. D. Roberts. “Differences between heavy and light quarks”, these proceedings, e-print [nucl-th/9710062].
2. M. A. Ivanov *et al.*, e-print [nucl-th/9704039], to appear in Phys. Lett. B.
3. C. J. Burden *et al.*, Phys. Rev. C 55 (1997) 2649.
4. C. J. Burden, C. D. Roberts and M. J. Thomson, Phys. Lett. B 371 (1996) 163.
5. C. D. Roberts and A. G. Williams, Prog. Part. Nucl. Phys. 33 (1994) 477.
6. CLEO Coll. (J.E. Duboscq *et al.*), Phys. Rev. Lett. 76 (1996) 3899.
7. ARGUS Collaboration, Z. Phys. C 57 (1993) 249.
8. H. J. Munczek and P. Jain, Phys. Rev. D 46 (1992) 438.
9. CLEO Coll. (J. P. Alexander et al.), Phys. Rev. Lett. 77 (1996) 5000.
10. UKQCD Coll. (D. R. Burford et al.), Nucl. Phys. B 447 (1995) 425.