Interactions Between the Pathogenic Bacterium \textit{Vibrio parahaemolyticus} and Red-tide Dinoflagellates

Kyeong Ah Seong1* and Hae Jin Jeong2

1Saemankeum Environmental Research Center, Kunsan National University, Kunsan 573-701, Korea
2School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea

Received 29 May 2011; Revised 8 June 2011; Accepted 21 June 2011

© KSO, KORDI and Springer 2011

Abstract – \textit{Vibrio parahaemolyticus} is a common pathogenic bacterium in marine and estuarine waters. To investigate interactions between \textit{V. parahaemolyticus} and co-occurring red-tide dinoflagellates, we monitored the daily abundance of 5 common red tide dinoflagellates in laboratory culture: \textit{Amphidinium carterae}, \textit{Cochlodinium polykrikoides}, \textit{Gymnodinium impudicum}, \textit{Prorocentrum micans}, and \textit{P. minimum}. Additionally, we measured the ingestion rate of each dinoflagellate on \textit{V. parahaemolyticus} as a function of prey concentration. Each of the dinoflagellates responded differently to the abundance of \textit{V. parahaemolyticus}. The abundances of \textit{A. carterae} and \textit{P. micans} were not lowered by \textit{V. parahaemolyticus}, whereas that of \textit{C. polykrikoides} was lowered considerably. The harmful effect depended on bacterial concentration and incubation time. Most \textit{C. polykrikoides} cells died after 1 hour incubation when the \textit{V. parahaemolyticus} concentration was 1.4×10^7 cells ml$^{-1}$, while cells died within 2 days of incubation when the bacterial concentration was 1.5×10^6 cells ml$^{-1}$. With increasing \textit{V. parahaemolyticus} concentration, ingestion rates of \textit{P. micans}, \textit{P. minimum}, and \textit{A. carterae} on the prey increased, whereas that on \textit{C. polykrikoides} decreased. The maximum or highest ingestion rates of \textit{P. micans}, \textit{P. minimum}, and \textit{A. carterae} on \textit{V. parahaemolyticus} were 55, 5, and 2 cells alga$^{-1}$ h$^{-1}$, respectively. The results of the present study suggest that \textit{V. parahaemolyticus} can be both the killer and prey for some red tide dinoflagellates.

Key words – algicidal bacteria, feeding, harmful algal bloom, ingestion, red tide

1. Introduction

Bacteria and red-tide dinoflagellates are major components of marine ecosystems (Azam 1998; Doucette et al. 1998). They usually co-occur, thus most studies have investigated their joint interactions (Lee 1990; Doucette et al. 1999; Mayali and Azam, 2004). Some bacteria are known to kill red tide dinoflagellates such as algicidal bacteria (Kitaguchi et al. 2001; Amaro et al. 2005). A number of algicidal bacteria have been reported since the 1990s (Imai et al. 1993, 2001; Doucette et al. 1998; Park et al. 1998; Kim et al. 1999; Byun et al. 2002; Mayali and Azam 2004; Imai and Kimura 2008). Lysis of algae by algicidal bacteria is known to play an important role in terminating red tides (Skerratt et al. 2002). On the contrary, bacteria have been revealed to be eaten by red-tide dinoflagellates (Nygaard and Tobiesen, 1993; Seong et al. 2006). Additionally, some bacteria are known to live inside red tide dinoflagellates in a symbiotic relationship (Green et al. 2004; Hackett et al. 2004; Jasti et al. 2005). Thus, interactions between bacteria and red tide dinoflagella can be complicated.

\textit{Vibrio parahaemolyticus} is a common pathogenic bacterium in marine and estuarine waters (Hervio-Heath et al. 2002; Makino et al. 2003; Yeung and Boor 2004). This bacterium, when ingested, causes watery diarrhea often with abdominal cramping, nausea, vomiting, fever, and chills (Dadisman et al. 1972). \textit{V. parahaemolyticus} can also cause an infection of the skin when an open wound is exposed to warm seawater (Wright et al. 2009). \textit{V. parahaemolyticus} is sometimes abundant during red tides dominated by dinoflagellates (Romalde et al. 1990; Eiler et al. 2006). However, there are very few studies on interactions between \textit{V. parahaemolyticus} and red-tide dinoflagellates (Bienfang et al. 2011), which makes the exploration of this topic worthwhile.

We isolated and established a clonal culture of \textit{V. parahaemolyticus} in laboratory culture; \textit{Amphidinium carterae}, \textit{Cochlodinium polykrikoides}, \textit{Gymnodinium impudicum}, \textit{Prorocentrum micans}, and \textit{P. minimum}. Additionally, we measured the ingestion rate of each dinoflagellate on \textit{V. parahaemolyticus} as a function of prey concentration.
parahaemolyticus from seawater to investigate interactions between *V. parahaemolyticus* and co-occurring red-tide dinoflagellates. In particular, we monitored the abundance of 5 common red tide dinoflagellates and measured the growth and ingestion rates of the dinoflagellates on *V. parahaemolyticus* as a function of the prey concentration on the daily basis. The results of the present study provide a basis for understanding interactions between *V. parahaemolyticus* and red tide dinoflagellates and dynamics of these two components in marine ecosystems.

2. Materials and Methods

Preparation of experimental organisms

Red-tide dinoflagellates were grown at 20 °C in enriched f/2 seawater media (Guillard and Ryther, 1962) without silicate under a 14h light:10h dark cycle of 30 µE m⁻² s⁻¹. The mean equivalent spherical diameter (ESD) ± standard deviation was measured by an electronic particle counter (Coulter Multisizer II, Coulter Corporation, Miami, Florida, USA) (Table 1).

For isolation of *Vibrio parahaemolyticus*, water samples were collected from surface waters of Shiwha Bay, Korea, in September 2005. Samples were immediately transferred to the laboratory with a temperature of below 4 °C. Subsequently, 0.2 ml of each diluted sample was inoculated on to Marine agar plate (Difco 2216, Franklin lakes, NJ). Samples in the plate were incubated at 37 °C for a week under dark condition. To isolate the colony separately, each colony was streaked on the new plate. Again, each colony was isolated and transferred to 50 ml of Na broth (Andersen et al. 1974). Isolated bacterial cultures were incubated until the stationary phase (approximately 2-3 d) on a shaker at 70 rpm at 37 °C. *V. parahaemolyticus* was identified by analyzing the sequence of 16S rDNA. Its sequence shows 99% similarity with species of *V. parahaemolyticus*.

Harmful effects of *Vibrio parahaemolyticus*

Experiment 1 was designed to assess whether dense culture or filtrate of *V. parahaemolyticus* is able to kill red-tide dinoflagellates *Amphidinium carterae*, *Cochlodinium polykrikoides*, *Gymnodinium impudicum*, *Prorocentrum micans*, and *P. minimum* in laboratory culture.

A dense culture of the target dinoflagellate (20,000-400,000 cells) was added to each well of 6 well plate chambers. A dense culture of *V. parahaemolyticus* (ca, 8×10⁵-8×10⁸ cells) was added to each well of the chambers (Two final concentrations = 10⁶ and 10⁷ cells ml⁻¹). Triplicate experimental wells for each *V. parahaemolyticus* final concentration (mixture of target dinoflagellate and *V. parahaemolyticus*) and triplicate control wells (target dinoflagellate only) were set up. After 0.5, 1, 2, 4, and 6 h of incubation, swimming behaviors of target dinoflagellate cells in each well were examined under an inverted light...
microscope.

To test the harmful effects of the filtrate from *V. parahaemolyticus* culture on each dinoflagellate, dense cultures (10^6 and 10^7 cells ml^-1) of exponentially growing *V. parahaemolyticus* were transferred to centrifuge tubes. After 20 min of centrifugation at 20,000 g, the supernatant (suspended aliquot) was filtered through a 0.2 μm pore-sized filter (Whatmann, Polycarbonate, Maidstone, UK) to remove bacteria cells. Filtered supernatants (0.01-0.1 ml^-1) were transferred into each of the triplicate wells containing the target dinoflagellate. Additionally, triplicate control wells (target dinoflagellate only without added filtrate) were set up. After 0.5, 1, 2, 4, and 6 h of incubation, swimming behaviors of target dinoflagellate cells were examined as described above.

Numerical response by dinoflagellates to Vibrio concentration

Experiment 2 was designed to investigate numerical responses by red-tide dinoflagellates *Amphidinium carterae*, *Cochlodinium polykrikoides*, *Gymnodinium impudicum*, *P. minimum*, and *Prorocentrum micans* to the concentration of *V. parahaemolyticus* as a function of elapsed incubation time. Dense cultures of each red tide alga (80,000-1,600,000 cells) and/or *V. parahaemolyticus* (ca. 8×10^5-8×10^6 cells) were transferred to 80 ml PC bottles. Triplicate experimental bottles (mixture of target dinoflagellate and *V. parahaemolyticus*) and triplicate control bottles (target dinoflagellate only) were established at each *V. parahaemolyticus* concentration. The initial concentrations of *V. parahaemolyticus* were 1×10^4, 1×10^5, 1×10^6, 1×10^7 cells ml^-1. The bottles were filled to capacity with freshly filtered seawater, and then placed on the shelf (30 μE m^-2 s^-1). From day 0 to day 6, a 4 ml aliquot was removed from each bottle everyday and fixed with 5% Lugol’s solution, while another 4 ml aliquot were fixed with 4% formalin. All or >300 predator cells, fixed in Lugol’s solution, in three 1 ml Sedgewick-Rafter counting chambers were enumerated. The aliquots fixed with formalin were filtered onto 0.2 μm pore sized, 25 mm PC black membrane filters and then the concentrated cells on the membranes were observed under an epifluorescence microscope (Olympus BX51) with UV-light excitation at a magnification of 1000x to determine the concentration of bacteria stained using 4′6′-diamidino-2-phenylindole (DAPI. final con.: 1 μM).

The specific growth rate of target dinoflagellate, μ (d^-1), was calculated by averaging the growth rates obtained at each interval as follows:

\[μ = \frac{[\text{Ln} (G_t/G_0)]}{t} \]

(1)

Where \(G_0 \) is the initial concentration of the dinoflagellate at the beginning of each day and \(G_t \) is the final concentration at the end of the day. The first and last days in this calculation were Day 2 and Day 5, respectively.

Ingestion rate of dinoflagellates on Vibrio

Experiment 3 was designed to measure the ingestion rates of *Amphidinium carterae*, *Cochlodinium polykrikoides*, *Gymnodinium impudicum*, *P. minimum* on *V. parahaemolyticus* as a function of the prey concentration.

One or two days before this experiment, *V. parahaemolyticus* cells collected from centrifugation were fluorescently labeled using the method of Sherr et al. (1987), and the fluorescently labeled bacteria (FLB) were added to triplicate 80 ml PC experimental bottles containing mixtures of *V. parahaemolyticus* (1×10^6-2×10^9 cells) and target dinoflagellate (80,000-1,600,000 cells). The abundance of the FLB was 30% of total bacteria. Triplicate control bottles containing only target dinoflagellate were also established. All bottles were filled to capacity with freshly filtered and autoclaved seawater, capped, placed on a shelf and incubated at 20 °C under continuous illumination of 30 μE m^-2 s^-1 of cool white fluorescent light. After 1, 5, 10, 20, and 30 min incubation periods, 8 ml aliquots were removed from each bottle, transferred 20 ml vials, and then fixed with borate-buffered formalin (final concentration=3%). The fixed samples were stained using 4′6′-diamidino-2-phenylindole (DAPI. final con.: 1 μM), and then filtered onto 3 μm pore size PC white-membrane filters. The FLB inside a dinoflagellate cell were enumerated under an epifluorescence microscope with blue light excitation. Bacteria (both FLB and non FLB) outside dinoflagellates were also enumerated under an epifluorescence microscope with UV light excitation for non-FLB and blue light excitation for FLB. After subsampling, the bottles were capped, placed on a shelf, and incubated again, as described above. Each value of the ingestion rate (cells alga^-1 h^-1) was obtained. The relationship of ingestion rates to prey abundance was fitted to a Michaelis-Menten equation:

\[IR = \frac{I_{max}(x)}{K_{IR} + (x)} \]

(2)
Where I_{max} is the maximum ingestion rate (cells alga$^{-1}$h$^{-1}$); x the prey concentration (cells ml$^{-1}$), and K_{IR} the prey concentration sustaining 1/2 I_{max}. The prey concentration is the sum of living bacteria and FLBs.

A feeding experiment of C. polikrikoides on V. parahaemolyticus was also performed for 30 min. However, C. polikrikoides was killed within 30 min in high density of V. parahaemolyticus during this experiment. Thus, we could not measure the ingestion rate at the V. parahaemolyticus concentrations $>10^5$ cells ml$^{-1}$.

Before these experiments were conducted, bacteria in the original dinoflagellate cultures were eliminated down to 1.4×10^4 cells ml$^{-1}$ with a dilution method using filtered and autoclaved seawater.

3. Results

Effects of V. parahaemolyticus concentration and incubation time

The red tide dinoflagellates tested in the present study responded differently to a dense culture of V. parahaemolyticus or its filtrate. The body of C. polikrikoides was decomposed within 20 min after the addition of either dense V. parahaemolyticus culture (1×10^7 cells ml$^{-1}$) or filtrate of the culture (Fig. 1). However, the shape of P. micans did not change by either V. parahaemolyticus nor the filtrate (Fig. 2). The shape of P. minimum and A. carterae did not change likewise. Gymnoninium impudicum, having a similar shape with C. polykrikoides was decomposed after 1 hour.

The abundance of all dinoflagellates tested in the present study was affected by V. parahaemolyticus (Fig. 3-7). However, the degree of effectiveness (i.e. growth rate) was species-dependent. In addition, the concentrations of V. parahaemolyticus in which each of the red tide dinoflagellates was killed were also different among the species.

With increasing incubation time, the abundances of A. carterae in control and at all V. parahaemolyticus concentrations increased (Fig. 3A). However, the growth rate of A. carterae at all V. parahaemolyticus concentrations provided here were not significantly different from that in the control ($p>0.1$, one-tailed t test; Fig. 3B). This evidence suggests that the growth of A. carterae may be not significantly affected by V. parahaemolyticus.

With increasing incubation time, the abundances of Prorocentrum minimum increased at all V. parahaemolyticus concentrations, except the control and the highest concentration (Fig. 4A). The growth rate of P. minimum at V. parahaemolyticus concentration of 8.8×10^5 cells ml$^{-1}$ was significantly higher than that in the control ($p<0.05$, one-tailed t test). However, the growth rates of P. minimum at the other V. parahaemolyticus concentrations were not significantly different from that in the control ($p>0.1$, one-tailed t test; Fig. 4B). This evidence suggests that the growth of P. minimum may only be stimulated by V. parahaemolyticus at concentrations of 8.8×10^5 cells ml$^{-1}$.

With increasing incubation time, the abundances of Prorocentrum micans increased in the control and at all V.
parahaemolyticus concentrations, except at the highest concentration, (Fig. 5A). The growth rates of *P. micans* at all *V. parahaemolyticus* concentrations were not significantly different from that in the control (p > 0.1, one-tailed t test; Fig. 5B). This evidence suggests that the growth of *P. micans* may be not affected by *V. parahaemolyticus*.

With increasing incubation time, the abundances of *G. impudicum* increased in the control and at the *V. parahaemolyticus* concentrations ≤ 1.5×10⁶ cells ml⁻¹, but decreased at the *V. parahaemolyticus* concentration of 1.4×10⁷ cells ml⁻¹ (Fig. 6A). The growth rate of *G. impudicum* at the *V. parahaemolyticus* concentration of 1.4×10⁷ was significantly lower than that in the control (p<0.05, one-tailed t test), while growth rates at the other *V. parahaemolyticus* concentrations were higher than in the control (p<0.05, one-tailed t test; Fig. 6B). This evidence suggests that the growth of *G. impudicum* may be negatively affected by *V. parahaemolyticus* at the concentration of 1.4×10⁷ cells ml⁻¹, but it may be positively affected at lower bacterial concentrations.

With increasing incubation time, the abundances of *Cochlodinium polykrikoides* in control and at the *V. parahaemolyticus* concentration of 1.7×10⁴-8.8×10⁵ cells ml⁻¹ did not markedly change, while those at the higher concentrations decreased (Fig. 7A). Most *C. polykrikoides* cells died after 1 day of incubation when the *V. parahaemolyticus* concentration was 1.4×10⁷ cells ml⁻¹, while cells died within 2 days of incubation when the bacterial concentration was 1.5×10⁶ cells ml⁻¹. The growth rates of *C. polykrikoides* at the *V. parahaemolyticus* concentration of 1.7×10⁴-8.8×10⁵ cells ml⁻¹ was not significantly different from that in the control (p>0.1, one-tailed t test; Fig. 7B). However, the growth rates of *C. polykrikoides* at the *V. parahaemolyticus* concentrations of 1.5×10⁶ and 1.4×10⁷ cells ml⁻¹ were -0.6
Seong, K.A. and Jeong, H.J.

and -1.0 d⁻¹, respectively. This evidence suggests that the growth of *C. polykrikoides* may be negatively affected by *V. parahaemolyticus* at the bacterial concentrations ≥1.5×10⁶ cells ml⁻¹.

Ingestion rates of dinoflagellates on *V. parahaemolyticus*

The functional response of each of the 5 red tide dinoflagellates to *V. parahaemolyticus* concentration was different from that of the other dinoflagellates (Fig. 8). With increasing *V. parahaemolyticus* concentration, the ingestion rates of *A. carterae* and *P. minimum* increased rapidly at prey concentrations of < 1-3×10⁶ cells ml⁻¹ and slowly at higher prey concentrations (Fig. 8A,B). When the data were fitted to Eq. (2), the maximum ingestion rates of *A. carterae* and *P. minimum* on *V. parahaemolyticus* were 1.2 and 5.1 cells alga⁻¹ h⁻¹, respectively. The maximum clearance rates of *A. carterae* and *P. minimum* on *V. parahaemolyticus* were 0.1 and 0.3 nl alga⁻¹ h⁻¹, respectively.

With prey concentrations of < 1.4×10⁷ cells ml⁻¹, the ingestion rate of *P. micans* on *V. parahaemolyticus* increased linearly (Fig. 8C). The highest value among the ingestion rates was 55 cells alga⁻¹ h⁻¹. The maximum clearance rate of *P. micans* on *V. parahaemolyticus* was 3.7 nl alga⁻¹ h⁻¹.

The ingestion rates of *Gymnodinium impudicum* on *V. parahaemolyticus* were between 1.5-2.5 cells alga⁻¹ h⁻¹ without any particular pattern (Fig. 8D).

With increasing prey concentrations, the ingestion rate of *C. polykrikoides* on *V. parahaemolyticus* decreased (Fig. 8E). The rate was not detected at prey concentrations of < 1.5×10⁶ cells ml⁻¹.

4. Discussion

Vibrio parahaemolyticus as a killer

The results of the present study show that the harmful pathogenic bacterium *V. parahaemolyticus* can be a killer and/or prey for red tide dinoflagellates. At *V. parahaemolyticus* concentrations of ≤1.5×10⁶ cells ml⁻¹, *C. polykrikoides* is a
Vibrio parahaemolyticus and Red-tide Dinoflagellates

Victim of V. parahaemolyticus. Additionally, at the V. parahaemolyticus concentration of 1.4×10⁷ cells ml⁻¹, G. impudicum was also a victim. However, A. carterae, P. minimum, and P. micans are mainly grazers on V. parahaemolyticus at V. parahaemolyticus concentrations of ≤1.5×10⁶ cells ml⁻¹, while they could be victims as well as grazers at the higher V. parahaemolyticus concentrations. Nayak et al. (2000) reported that the concentrations of Vibrio harveyi, V. alginolyticus, and V. parahaemolyticus, which was incubated with A. carterae, gradually decreased. A. carterae was likely to feed on these Vibrios, even though the authors did not mention this possibility.

Algicidal bacteria have been known to kill algae or inhibit their growth through direct contact with algal cells (Manage et al. 2000; Furusawa et al. 2003), or indirectly through release of toxic compounds into the ambient environment (Holmstrom and Kjelleberg, 1999; Nakashima et al. 2006). Psedomonas sp. Flavobacteria sp., Alteromonas spp., Pseudoalteromonas spp., Bacillus sp., and Hahella chejuensis spp. are known to produce extracellular algicidal substances (Kim et al. 2008). Most of them are able to secrete metabolic compounds and might be used as biological control agent in natural seawater (Fukami et al. 1992; Wang et al. 2005). C. polikrikoides was decomposed within 20 min after the addition of either dense V. parahaemolyticus culture or filtrate of the culture. Thus, C. polikrikoides may be killed by direct physical contact and/or potential extracellular substances. C. polikrikoides has a thin surface membrane, while A. carterae and G. impudicum have relatively thick surface membrane, so called amphiesmal vesicles (Fraga et al. 1995). Furthermore, P. minimum and P. micans have theca (Roberts et al. 1995). Thus, V. parahaemolyticus or its excreting materials may easily penetrate and kill C. polikrikoides cells, while it has difficulty in penetrating and killing the cells of the other dinoflagellates. V. parahaemolyticus may deter the outbreak of red tides dominated by C. polikrikoides and/or accelerate the decline of red tides. Differential harmful effects by V. parahaemolyticus on C. polikrikoides compared to the other dinoflagellates may cause predominance by the other dinoflagellates over C. polikrikoides.

Red tides dominated by C. polikrikoides have caused great losses in many countries (Gárate-Lizárraga et al. 2004; Kim et al. 2004; Kim et al. 2007; Richlen et al. 2010). For example, its red tides have caused losses of up to USD $60 million per year in the Korean aquaculture industry (NFRDI 1998). Thus, diverse methods of controlling the outbreak and persistence of red tides dominated by C. polikrikoides and thereby reducing their economic impacts have been suggested (Jeong et al. 2002, 2008). Use of algicidal bacteria is one of the methods widely suggested (e.g. Imai et al. 1995). The bacterium Micrococcus sp. LG-5 and Psedomonas sp. LG-2 have also been reported to kill C. polikrikoides (Jeong et al. 2000; Lee et al. 2008). However, these bacteria also killed several other red tide dinoflagellates. Thus, V. parahaemolyticus can be the only effective algicidal bacterium against C. polikrikoides, and not the other red tide dinoflagellates (i.e. semi-species specific).

The bacterium Pseudoalteromonas haloplanktis AFMB-008041 has been known to kill P. minimum, while Micrococcus sp. LG-5 and Psedomonas sp. LG-2 kill P. micans (Jeong et al. 2000; Kim et al. 2009; Table 1). However, the bacterium Alteromonas sp. which killed Akashiwo sanguinea, C. polikrikoides, Gymnodinium catenatum, and Heterocapsa...
triquetra did not kill *P. minimum* and *P. micans* (Lee et al. 2008). Therefore, the impact of algicidal activities on red tide algae including *P. minimum* and *P. micans* is

Psedoalteromonas haloplankts AFMB-008041, *Micrococcus* sp. LG-5, and *Psedomonas* sp. LG-2 > *Alteromonas* sp. > *V. parahaemolyticus*.
Vibrio parahaemolyticus as prey

All red tide dinoflagellates tested in the present study were able to feed on *V. parahaemolyticus*. However, *C. polykrikoides* was not able to feed on this bacterium at bacterial concentrations of ≤1.5×10⁶ cells ml⁻¹ because the dinoflagellate was killed at this concentration.

The maximum ingestion rate of *P. minimum* on *V. parahaemolyticus* (5.1 cells alga⁻¹h⁻¹) was considerably lower than that on mixed bacteria, which originally lived in dinoflagellate culture (21.9 cells alga⁻¹h⁻¹; Seong et al. 2006). Furthermore, the maximum ingestion rate of *C. polykrikoides* on *V. parahaemolyticus* (1.3 cells alga⁻¹h⁻¹) was also much lower than that on mixed bacteria in Masan Bay (17.4 cells alga⁻¹h⁻¹; Seong et al. 2006). The size of *V. parahaemolyticus* used in the present study was similar to that of bacteria used in Seong et al. (2006). Thus, for the red tide dinoflagellate predators, *V. parahaemolyticus* may not be as good prey as mixed bacteria used in Seong et al. (2006).

The growth rate of *P. minimum* at the *V. parahaemolyticus* concentration of 8.8×10⁵ was significantly higher than that in the control. The daily acquired bacterial carbon by *P. minimum* from *V. parahaemolyticus* [8.2 pg C (5.1×24×0.067 pgC)] was only 6.3% of the body carbon of *P. minimum*. Thus, *V. parahaemolyticus* cannot only support the positive growth of *P. minimum*. However, *V. parahaemolyticus* may stimulate or partially support the growth of *P. minimum*. Another bacterium, *Alteromonas* sp. strain A14, was known to stimulate the growth of *P. minimum* at the prey concentration of ~10⁶ cell ml⁻¹ (Lee et al. 2008).

In conclusion, *V. parahaemolyticus* can be killer and simultaneous prey for all red tide dinoflagellates tested in the present study; *V. parahaemolyticus* induces the most harmful effects on *C. polykrikoides*; Bacterial concentration and incubation time were important factors; With increasing *V. parahaemolyticus* concentration, ingestion rates of *P. minimum*, *P. micans*, and *A. carterae* on the prey increased, whereas ingestion rates on *C. polykrikoides* decreased.

Acknowledgements

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2008-359-C00048).

References

Amaro AM, Fuentes MS, Ogalde SR, Venegas JA, Suarez BA (2005) Identification and characterization of potentially algal-lytic marine bacteria strongly associated with the toxic dinoflagella *Alexandrium catenella*. J Eukary Microb 52(3): 191-200

Andersen RJ, Wolfe MS, Faulkner DJ (1974) Autotoxic antibiotic production by a marine Chromobacterium. Mar Biol 27:281-285

Azam F (1998) Microbial control of oceanic carbon flux: the plot thickens. Science 280:694-696

Bienfang PK, DeFelice SV, Laws EA, Brand LE, Bidigare RR, Christensen S, Trapido-Rosenthal H, Hemscheidt TK, McGillicuddy Jr DJ, Anderson DM, Solo-Gabriele HM, Boehm AB, Backer LC (2011) Prominent human health impacts from several marine microbes: history, ecology, and public health implications. Int J Microb 2011:152815. doi:10.1155/2011/152815

Byun HG, Jeong SY, Park YT, Lee WJ, Kim SK (2002) Algicidal activity of substance purified from marine bacteria metabolites against *Cochlodinium polykrikoides*. J Fish Sci Tech 5(3):150-155

Dadsiman TA Jr, Nelson R, Molenda JR, Garber HJ (1972) *Vibrio parahaemolyticus* gastroenteritis in Maryland I. Clinical and epidemiologic aspects. Am J Epidemiol 96(6):414-426

Doucette GJ, Kodama M, Fráncs G, Gallacher S (1998) Bacterial interactions with harmful algal bloom species: bloom ecology, toxigenesis, and cytology. In: Anderson DA, Cembella AD, Hallegaard GM (eds) Physiological ecology of harmful algal blooms, Vol 41. Springer-Verlag, Heidelberg, pp 29-48

Doucette GJ, McGovern ER, Babichak JA (1999) Algicidal bacteria active against *Gymnodinium breve*(Dinophyceae). I. Bacterial isolation and characterization of killing activity. J Phycol 35:1447-1457

Eiler A, Johansson M, Bertilsson S (2006) Environmental influences on vibrio populations in Northern temperate and boreal coastal waters (Baltic and Skagerrak Seas) Appl Environ Microb 72(9):6004-6011

Fraga S, Bravo I, Delgado M, Franco JM, Zapata M (1995) *Gyrodinium impudicum* sp.nov.(Dinophyceae), a non toxic, chain-forming, red tide dinoflagellate. Phycologia 34(6):514-521

Furusawa G, Yoshikawa T, Yasuda A, Sakata T (2003) Algicidal activity and gliding motility of *Saprospira* sp. SS98-5. Can J Microbiol 49:92-100

Fukami K, Yuzawa A, Nishijima T, Hata Y (1992) Isolation and properties of a bacterium inhibiting the growth of *Gymnodinium nagasakiense*. Nippon Suisan Gakkaishi 58(6):1073-1077

Gárate-Lizárraga I, López-Cortes DJ, Bustillos-Guzmán JJ, Hemández-Sandoval F (2004) Blooms *Cochlodinium*...
polykrikoides (Gymnodiniaceae) in the Gulf of California, Mexico. Rev Biol Trop 52(Suppl.1):51-58

Green DH, Llewellyn LE, Negri AP, Blackburn SI, Bolch CJ (2004) Phylogenetic and functional diversity of the cultivable bacterial community associated with the paralytic shellfish dinoflagellate Gymnodinium catenatum. FEMS Microbiol Ecol 47(3):345-357

Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana (Hustedt) and Detonula confervacea (Cleve). Can J Microbiol 8:229-239

Hackett JD, Anderson DM, Erdner DM, Bhattacharya D (2004) Dinoflagellates: a remarkable evolutionary experiment. Am J Bot 91:1523-1534

Hare CE, Demir E, Coyne JK, Cary SC, Hutchins JM, Pommepuy M (2002) Occurrence of pathogenic vibrios species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol 30:285-293

Imai I, Ishida Y, Hata Y (1993) Killing of marine phytoplankton by a gliding bacterium Cytophaga sp. isolated from the coastal sea of Japan. Mar Biol 116:527-532

Imai I, Ishida Y, Sakaguchi K, Hata Y (1995) Algalicidal marine bacteria isolated from northern Hiroshima Bay, Japan. Fish Sci Tokyo 61(4):628-636

Imai I, Sunahara T, Nishikawa T, Horii Y, Kondo R, Hiroishi S (2001) Fluctuation of the red tide flagellates Chattonella spp. (Raphidophyceae) and the algalicid bacterium Cytophaga sp. in the Seto Inland Sea. Mar Biol 138:1043-1049

Imai I, Kimura S (2008) Resistance of the fish-killing dinoflagellate Cochlodinium polykrikoides by the naked ciliate Strombidiopsis jeokjo in mesocosm enclosures. Harmful Algae 7:368-377

Kim MC, Yu HS, Ok MS, Kim CH, and Chang DS (1999) The activities and characteristics of algicidal bacteria in Chindong Bay. J Korean Fish Soc 32(3):359-367

Kim DI, Matsuyama Y, Mineo SN, Yoon YH, Oshima Y (2004) Effects of temperature, salinity and irradiance on the growth of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margalef(Dinophyceae). J Plankton Res 26:61-66

Kim CJ, Kim HG, Kim CH, Oh HM (2007) Life cycle of the ichthyotoxic dinoflagellate Cochlodinium polykrikoides in Korean coastal waters. Harmful algae 6(1):104-111

Kim D, Kim JF, Yim JH, Kwon SK, Lee CH (2008) Red to red-the marine bacterium Habella chejuensis and its product prodigiosin for mitigation of harmful algal blooms. J Microbiol Biotechnol 18(10):1621-1629

Kim JD, Kim JH, Park JK, Lee CG (2009) Selective control of the Procentrum minimum harmful algal blooms by a novel algal-Lytic bacterium Psedolateromonas haloplanktis AFMB-008041. Mar Biotechnol 11:463-472

Kitaguchi H, Hiragushi N, Mitsutani A, Yamaguchi M, Ishida Y (2001) Isolation of an algicidal marine bacterium with activity against the harmful dinoflagellate Heterocapsa circularisquama (Dinophyceae). Phycologia 40(3):275-279

Lee WJ, Kim HG, Park YT, Seong HJ(1990) The role of marine bacteria in the dinoflagellate bloom. Bull Korean Fish Soc 23(4):303-309

Lee WJ, Park YT(1998) Isolation of marine bacteria killing red tide microalgae. II: isolation and algicidal properties of Psedomonas spp. LG-2 possessing killing activity for dinoflagellate, Procentrum micans. J Korean Fish Soc 31(6):852-858

Lee BK, Katano T, Kitamura SI, Oh MJ, Han MS (2008) Monitoring of algicidal bacterium, Alteromonas sp. Strain A14 in its application to natural Cochlodinium polykrikoides blooming seawater using fluorescence in situ hybridization. J Microbiol 46(3):274-282

 MAKINO K, OSHIMA K, KUROKAWA K, YOKOYAMA K, UDA T, TAGOMORI K, LIJIMA Y, NAIJIMA M, NAKANO M, YAMASHITA A, KUBOTA Y, KIMURA S, YASUNAGA T, HONDA T, SHINAGAWA H, HATTORI M, LIDA T (2005) Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V. cholera. The Lancet 361(9359):743-749

Manage PM, Kawabata Z, Nakano SI (2000) Algalicidal effect of the bacterium Alcaligenes denitrificans on Microcystis spp. Aquat Microb Ecol 22(2):111-117

Mayali X, AZAM F (2004) Algalicidal bacteria in the sea and their impact on algal blooms. J Eukaryot Microbiol 52(2):139-144

Nakashima T, Kim D, MIYAZAKI Y, YAMAGUCHI K, TAKESHITA S, ODA T (2006) Mode of action of an antialgal agent produced
by a marine gamma Proteobacterium against Chattonella marina. Aquat Microb Ecol 45:255-262
National Fisheries Research and Development Institute (NFRDI) (1998) Red tides in Korea. National Fisheries Research & Development Institute, Korea, 292 p
Nayak BB, Karunasagar I, Karunasagar I (2000) The survival of different Vibrios in association with a laboratory culture of the red-tide-causing organism Amphidinium carterae. World J Microbiol Biotechnol 16:99-101
Nygaard K, Tobiesen A (1993) Bacterivory in algae: a survival strategy during nutrient limitation. Limnol Oceanogr 38:273-279
Park YT, Park JB, Chung SY, Song BC, Lim WA, Kim CH, Lee WJ (1998) Isolation of marine bacteria killing red tide microalgae. I. Isolation and algicidal properties of Micrococcus sp. LG-1 possessing killing activity for harmful dinoflagellate, Cochlodinium polykrikoides. J Korean Fish Soc 31(5):767-773
Richlen MM, Morton SL, Jamali EA, Rajan A, Anderson DM (2010) The catastrophic 2008-2009 red tide in the Arabian gulf region, with observations on the identification and phylogeny of the fish-killing dinoflagellate Cochlodinium polykrikoides. Harmful algae 9:163-172
Roberts KR, Heimann K, Wetherbee R (1995) The flagellar apparatus and canal structure in Proorocentrum micans (Dinophyceae). Phycologia 34(4):313-322
Romalde JL, Torazo AE, Barja JL (1990) Changes in bacterial populations during red tides caused by Mesodinium rubrum and Gymnodinium catenatum in North-West coast of Spain. J Appl Bacteriol 68:123-132
Seong KA, Jeong HJ, Kim S, Kim GH, Kang JH (2006) Bacterivory by co-occurring red-tide algae, heterotrophic nanoflagellates, and ciliates on marine bacteria. Mar Eco Prog Ser 322:85-97
Sherr EB, Sherr EB, Fallon RD (1987) Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl Environ Microb 53(5):958-965
Skerratt JH, Bowman JP, Hallegraeff G, James S, Nichols PD (2002) Algicidal bacteria associated with blooms of a toxic dinoflagellate in a temperate Australian estuary. Mar Ecol Prog Ser 244:1-15
Wang X, Gong L, Liang S, Han X, Zhu C, Li Y (2005) Algicidal activity of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa. Harmful algae 4:433-443
Wright AC, Shneider RG, Hubbard MA, Schneider KR (2009) Preventing foodborne and non-foodborne illness: Vibrio parahaemolyticus. University of Florida IFAS Extension FSHN09-01
Yeung PS, Boor KJ (2004) Epidemiology, pathogenesis, and prevention of foodborn Vibrio parahaemolyticus infections. Foodborne Pathog Dis 1(2):74-88