Response of Asparagus to Repeated Application of Residual Herbicides

Bernard H. Zandstra¹, Sylvia Morse, Rodney V. Tocco, and Jarrod J. Morrice

ADDITIONAL INDEX WORDS. Asparagus officinalis, clomazone, diuron, flumioxazin, halosulfuron, mesotrione, metribuzin, terbacil

SUMMARY. Asparagus (Asparagus officinalis) is a perennial crop that has a 12- to 20-year production life in the field. Herbicides are applied in the spring each year and again after final harvest in early summer. Asparagus yield declines with age, and herbicides may contribute to yield decline. An experiment was established in 2004 and maintained for seven years with the same herbicide treatments applied each spring to determine herbicide effects on marketable spear yield. Spring-applied diuron, metribuzin, terbacil, sulflurazon, halosulfuron, mesotrione, and clomazone had no adverse effect on yield or quality over the seven years of the experiment. Flumioxazin reduced yearly average marketable yield compared with standard treatments, and some spears developed lesions early in the season after rainfall. Asparagus yield from most treatments declined more than 50% from 2004 to 2010.

Asparagine is a perennial crop that normally is established from one-year-old crowns and maintained for 12 to 20 years until the yield declines beyond profitability (Zandstra et al., 1992). Before introduction of all-male hybrids, volunteer asparagus was a serious weed problem. Traditional asparagus production included one or two tillings of asparagus fields each year for weed control and to incorporate previous year crop residue. However, it has been demonstrated that tillage reduces yield (Wilcox-Lee and Drost, 1991). In the 1970s, most Michigan growers converted to nontillage production of asparagus (Putnam, 1972; Putnam and Lacy, 1977).

Perennial weeds such as Canada thistle (Cirsium arvense) and field bindweed (Convolvulus arvensis) often become serious problems in asparagus (Ogg, 1975). Other common biennial and perennial weeds in asparagus are quackgrass (Elytrigia repens), dandelion (Taraxacum officinale), common milkweed (Asclepias syriaca), spotted knapweed (Centauera maculosa), and wild carrot (Daucus carota). Herbicide resistance in annual weeds is always a potential problem, and resistance to Herbicides targeting photosystem II (PS II) has been confirmed for redroot pigweed (Amaranthus retroflexus) and powell amaranth (Amaranthus powellii) in Michigan asparagus fields (Heap, 2012). Other common annual weeds found in asparagus fields include field sandbur (Cenchrus incertus), large crabgrass (Digitaria sanguinalis), fall panicum (Panicum dichotomiflorum), common lambsquarters (Chenopodium album), Russian thistle (Salsola iberica), horseweed (Coneevia canadensis), hairy vetch (Vicia villosa), and common groundsel (Senecio vulgaris) (Zandstra et al., 2010).

Asparagus weed control programs have been based on herbicides that inhibit PS II for over 50 years. Simazine and monuron were registered for asparagus in the 1960s, followed by diuron, linuron, metribuzin, and terbacil (Boydston, 1995; Welker and Brogdon, 1972). Now, most fields in Michigan are treated with flumioxazin that may facilitate Fusarium infection (Morrison et al., 2011) potentially leading to decreased yields. In addition, growers in Michigan have reported the development of lesions on spears from fields treated with flumioxazin that may be related to yield decline (J. Bakker, personal communication).

Welker and Brogdon (1972) conducted research on long-term effects of repeated herbicide applications on asparagus production and quality over a seven-year period. At the time of their research, there were few herbicides registered for weed control in asparagus. They concluded that some of the herbicides might have an adverse effect on spear quality but did not affect total yield.

Because the primary mechanism of preemergence herbicide selectivity in asparagus is differential placement (Monaco et al., 2002), there is a potential for crop injury if the herbicides leach into the crop root zone after heavy rainfall or flooding. This is a serious potential problem on light sandy soils, which are typical of Michigan asparagus growing regions. Several of the preemergence herbicides labeled for asparagus fields are moderately or highly soluble, so there is

¹Corresponding author. E-mail: zandstra@msu.edu.

Units

To convert U.S. to SI, multiply by	U.S. unit	SI unit
0.3048	ft	m
9.5540	gal/acre	L/ha¹
2.54	inch(es)	cm
25.4	inch(es)	mm
0.4536	lb	kg
1.1209	lb/acre	kg/ha¹
1.6093	mph	km/h¹
28,350	oz	mg
1	ppm	mg/L¹
6.8948	psi	kPa

\[(°F - 32) \div 1.8\] °F
\[(°C \times 1.8) + 32\] °C

To convert SI to U.S., multiply by

SI unit	U.S. unit
3.2808	ft
1.1069	gal/acre
0.3937	inch(es)
0.394	inch(es)
2.2046	lb
0.8922	lb/acre
0.6214	mph
3.5274 \times 10^{-5}	oz
1	ppm
0.1450	psi

© 2013 American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America
common commercial treatments for many years. An untreated, hand-weeded control was not included in the study because of the difficulty of maintaining sufficient weed control to avoid reduced yield from weed competition. Welker and Brogdon (1972) reported no yield loss from herbicide treatments but significant loss from weed competition. Each experimental plot was 5.3 ft wide by 50 ft long. The experimental design was randomized complete block with three replications. Herbicides were applied with a carbon dioxide–pressurized backpack sprayer at 20 gal/acre volume and 30 psi pressure and a walking speed of 3.2 mph. The boom had four flat fan 8002 nozzles (Spraying Systems, Wheaton, IL) to provide a 64-inch spray band over each row. Percent weed control was rated by species once or twice per season on a scale of 1 = no control to 100 = complete control. Weed density, stand, and vigor were included in the assignment of control values.

The crop was harvested 20 to 22 times each year from 2004 to 2010, a total of seven years. Six- to 10-inch spears were snapped at the soil surface two to four times per week as needed to obtain commercial-size spears. Spears longer than 10 inches were snapped again and the butts discarded. Spears less than 0.25 inch in diameter were discarded and not included in the yield evaluation.

The spears were graded as marketable or unmarketable. Marketable spears are 0.25 inch or more in diameter, 6 to 10 inches long, relatively straight, with no evidence of insect, disease, or physical damage. Spears that were misshapen, scarred, scored, bent, or had other defects were graded out as unmarketable. The spears in each category were counted and weighed. The harvest season lasted 6 to 7 weeks from early May through mid-June. Harvest ended each year when spear diameter declined after at least 20 harvests.

Immediately after the final harvest in each season, the entire field was treated with 0.25 lb/acre dicamba plus 0.19 lb/acre selloxynil, or 1 lb/acre glyphosate to suppress perennial weeds. During the final harvest, all spears that had emerged were snapped off at soil level to reduce exposure to these herbicides. The asparagus fern and weeds were allowed to grow for the rest of the season. Infestations of common asparagus beetle (Crioceris asparagi) were controlled with 1 lb/acre carbaryl as needed. The field was mowed in the spring each year before weeds emerged to clear dead fern, but the field was not tilled during the experiment. Following standard grower practices, 50 lb/acre of nitrogen was applied after harvest each year in the form of ammonium nitrate, and 51 lb/acre of potassium was applied every other year in the form of potassium chloride (Zandstra et al., 1992). All data were analyzed with PROC GLIMMIX in SAS (version 9.2; SAS Institute, Cary, NC). Repeated measures analysis of variance was used to determine differences among means between treatments for yield, spear counts, and weed control.

Herbicide	Rate (lb/acre)	2004'	2005'	2006'	2007'	2008'	2009'	2010'	Yearly avg	Decline (%) 2004–10
Diuron	1.2	7.56	6.32	5.54	4.68	3.18	4.78	3.04	4.86 ab	59.8
Metribuzin	0.5	8.93	6.06	7.15	6.27	4.23	5.78	3.74	5.87 a	58.1
Diuron + metribuzin	1.2	8.79	6.19	5.65	4.27	6.20	3.76	5.72 a	57.2	
Terbacil	1.2	6.66	5.59	6.50	5.42	4.18	6.32	3.33	5.32 ab	50.0
Flumioxazin	0.192	7.78	5.23	5.95	5.12	3.19	2.83	2.31	4.56 b	70.3
Sulfentrazole	0.375	8.98	6.35	6.92	6.14	4.17	6.02	3.74	5.86 a	58.4
Halosulfuron	0.047	7.41	5.14	5.26	5.37	3.94	5.33	3.08	4.97 ab	58.4
Mesotrione	0.094	8.95	6.24	6.68	5.11	3.96	5.39	3.82	5.60 ab	57.3
Diuron + S-metolachlor	1.2	8.02	4.86	5.54	4.94	3.57	5.73	4.66	5.21 ab	41.9
Clomazone	1.0	8.36	4.97	5.66	5.93	4.23	5.46	3.76	5.36 ab	55.0

1 kg/50-ft row = 0.0441 lb/ft = 0.0656 kg m⁻¹, 1 lb/acre = 1.1209 kg ha⁻¹.

*No statistical differences observed for this year.

*Modeled averages using a repeated measures generalized linear mixed effects model.
We attempted to perform a repeated measures analysis of covariance on the data (Ott and Longnecker, 2001); however, the data did not conform to model assumptions and, therefore, is not presented. For all other analyses, marketable yield weights were analyzed with a Gaussian distribution, whereas marketable spear counts and weed control data were modeled with Poisson distributions (Ott and Longnecker, 2001). Diagnostic plots of residuals and variances were used to assess Gaussian assumptions. Overdispersed Poisson models were corrected using a multiplicative overdispersion factor (SAS Institute, 2008). Akaike’s information criterion was used to compare correlation structures (Akaike, 1974). A standard variance components correlation structure was used for all models (SAS Institute, 2008). Significant differences were obtained using a post hoc Tukey’s test with a threshold of \(P \leq 0.05 \) (Ott and Longnecker, 2001). Square root transformations were used for yield data to conform to normality assumptions. Data presented in this article have been back-transformed for interpretation purposes.

Results and discussion

The weed control data presented (Fig. 1) is the modeled average rating taken 6 to 8 weeks after treatment each year. Differences among treatments did not vary through time (i.e., there was no statistically significant interaction between year and treatment); therefore, the treatments were compared for the entire study rather than for each year individually. When harvest concluded each year in late June, quackgrass, spotted knapweed, and wild carrot were present in most plots. The herbicide treatments provided various levels of control of the weeds present for \(\approx 8 \) weeks. None of the herbicide treatments provided complete weed control throughout the harvest season. Some weeds were present throughout the study area but are not reported because there was a lack of statistical difference between treatments or because the weed was not consistently present throughout the study.

The 1.2-lb/acre terbacil treatment consistently provided the best overall weed control (Fig. 1) for quackgrass, spotted knapweed, and wild carrot. Clomazone at 1 lb/acre suppressed quackgrass and spotted knapweed but did not control wild carrot sufficiently. Flumioxazin at 0.192 lb/acre did not control quackgrass, wild carrot, or spotted knapweed. Sulfentrazone at 0.375 lb/acre suppressed quackgrass by 64% but did not provide sufficient control of spotted knapweed or wild carrot. Halosulfuron at 0.047 lb/acre provided adequate control of wild carrot and spotted knapweed but did not provide sufficient overall weed control. Mestranol at 0.094 lb/acre suppressed wild carrot by 63%. The combination of 1.2 lb/acre diuron plus 1.3 lb/acre S-metolachlor did not provide sufficient control of any of the weeds. Diuron at 1.2 lb/acre provided \(< 50\%\) control of all these weeds. Metribuzin at 0.5 lb/acre provided \(\approx 75\%\) control of spotted knapweed and 50% to 60% control of quackgrass and wild carrot. The combination of diuron plus metribuzin provided 80% control of spotted knapweed and wild carrot and 60% control of quackgrass.

Trends were similar between the weight of spears and the number of spears harvested (Table 1 and Fig. 2). Again, differences among treatments did not vary through time; therefore,
Table 2. Average high and low temperatures and total precipitation for May and June 2004–10, Horticulture Teaching and Research Center, Holt, MI (Michigan State University, 2012).

	2004 May	2004 June	2005 May	2005 June	2006 May	2006 June	2007 May	2007 June	2008 May	2008 June	2009 May	2009 June	2010 May	2010 June
Avg high temp (°F)*	70	75	65	83	70	78	73	80	67	79	69	77	71	78
Avg low temp (°F)	48	54	42	61	47	54	47	56	42	57	46	56	50	59
Total precipitation (inches)	8.07	3.51	1.31	4.28	4.36	2.79	3.82	3.51	1.16	4.43	4.29	4.97	5.07	4.19

* (°F – 32) = 1.8 × °C, 1 inch = 25.4 mm.
Regional Project No. 4 (IR-4). Use of clomazone will improve control of annual grasses, common lambsquarters, Russian thistle, spotted knapweed, and quackgrass in asparagus.

An effective and safe weed control program for asparagus includes several residual herbicides applied in combination and rotation over several years. Selecting preemergence herbicides for the specific weeds they control and their longevity in the soil will help reduce weed populations. Growers have several herbicide options and should not use preemergence herbicides with the same mode of action more than once per year. There are 11 herbicides registered for preemergence application in asparagus (Zandstra, 2011). Even with a choice of several herbicides, some weeds remain difficult to control, e.g., field bindweed, common milkweed, and wild carrot. During the four months of asparagus fern growth (July to October), most preemergence herbicides, including those applied after harvest, dissipate and various annual and winter annual weeds germinate; so, asparagus is seldom completely weed free. In fact, many growers want the preemergence herbicides to lose activity by about 1 Sept. because they scatter rye (Secale cereale) as a cover crop to help hold the sandy soil over the winter and in the spring. If the herbicides remain active too long, the rye does not germinate.

Growers producing asparagus on light sandy soil should avoid repeated use of highly soluble residual herbicides. For example, metribuzin has water solubility of 1100 mg L\(^{-1}\) and terbacil has solubility of 710 mg L\(^{-1}\) (Senseman, 2007). Herbicide leaching into the root zone over several years may contribute to decline in vigor and productivity of the crop. By rotating herbicides and modes of action, development of weed resistance will be reduced greatly, and there will be less potential for crop injury and better overall weed control.

Literature cited

Akaie, H. 1974. A new look at the statistical model identification. Inst. Electrical Electronics Eng. Trans. Automatic Control 19:716–723.

Boydston, R.A. 1995. Effect of tillage level and herbicides on weed control and yield of asparagus (Asparagus officinalis) in the Pacific Northwest. Weed Technol. 9:768–772.

Heap, I. 2012. International survey of herbicide resistant weeds. 16 Jan. 2012. <http://www.weedsociety.org/ln.asp>.

Keulder, P.C. 1999. Asparagus decline and replant problem: A review of the current situation and approaches for future research. Acta Hort. 9:253–262.

Michigan State University. 2012. Environmental weather: MSU Horticulture Teaching & Research Center. 7 Dec. 2012. <http://www.agweather.geo.msu.edu/mawn/station.asp?id=msu&rt=24>.

Monaco, T.J., S.C. Weller, and F.M. Ashton. 2002. Weed science, principles and practices. Wiley, New York, NY.

Morrison, W.R., III, J.K. Tuell, M.K. Hausbeck, and Z. Szendrei. 2011. Constraints on asparagus production: The association of Ophiomyia simplex (Diptera: Agromyzidae) and Fusarium spp. Crop Sci. 51:1414–1423.

Ogg, A.A. 1975. Control of Canada thistle and field bindweed in asparagus. Weed Sci. 23:458–461.

Ott, R.L. and M. Longnecker. 2001. An introduction to statistical methods and data analysis. 5th ed. Duxbury, Pacific Grove, CA.

Putnam, A.R. 1972. Efficacy of a zero-tillage cultural system for asparagus produced from seed and crowns. J. Amer. Soc. Hort. Sci. 97:621–624.

Putnam, A.R. and M.L. Lacy. 1977. Asparagus management with no tillage. Michigan State Univ. Res. Rpt. 339.

SAS Institute Inc. 2008. SAS/STAT® 9.2 User’s guide. SAS Institute, Cary, NC.

Senseman, S.A. 2007. Herbicide handbook. Weed Sci. Soc. Amer., Lawrence, KS.

Welker, W.V. and J.L. Brogdon. 1972. Effects of continued use of herbicides in asparagus plantings. Weed Sci. 20:428–432.

Wilcox-Lee, D. and D.T. Drost. 1991. Tillage reduces yield and crown, fern, and bud growth in a mature asparagus planting. J. Amer. Soc. Hort. Sci. 116:937–941.

Zandstra, B.H. 2011. Weed control guide for vegetable crops. Michigan State Univ. Ext. Bul. E-433.

Zandstra, B.H., J.F. Kelly, M.K. Hausbeck, E.J. Grafix, and H.C. Price. 1992. Commercial vegetable recommendations: Asparagus. Michigan State Univ. Ext. Bul. E-1304.