A New Biological Definition of Alzheimer’s Disease: Introduction of 2018 National Institute on Aging-Alzheimer’s Association Research Framework

Jae-Won Jang, MD, SangYun Kim, MD, PhD

Department of Neurology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chouncheon, Korea

Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea

Diagnostic guidelines for the preclinical, mild cognitive impairment, and dementia stages of Alzheimer’s disease (AD) were released by the National Institute on Aging and Alzheimer’s Association (NIA-AA) in 2011. Promoted by the subsequent scientific progress, a unifying update, the ‘NIA-AA Research Framework’, was published in 2018. This new research framework shifts the definition of AD from syndrome to biological construct based on biomarkers in living people. The biomarkers were grouped into β-amyloid deposition (A), pathologic tau (T), and neurodegeneration (N) related, termed the ‘AT(N) classification system’, which could be extended with new biomarkers as they become available in the future. For the staging of cognitive impairment, three syndromal stages for observational studies and six numeric stages for clinical trials were also suggested. This biomarker-based classification combined with clinical staging is expected to enhance the understanding of AD as well as aid in precise targeting for interventional clinical trials. This review focused on the introduction of the new 2018 NIA-AA Research Framework. Although this framework has been proposed for research purposes, it is expected to be adopted into general clinical practice with thorough examination and validation in the future.

J Korean Neurol Assoc 37(1):1-7, 2019

Key Words: Alzheimer disease, Research, Biomarkers
생물표지자를 진단기준에 포함시켜 치매 상태뿐만 아니라 증상이 없는 임상증상 전 단계에서도 알츠하이머병을 진단하는 데 필요한 생물표지자로, 최근에 주목받고 있는 이는 뇌성원성이 뇌척수액, MRI, PET와 같은 뇌영상 및 생물학적 지표를 이용하여 진단과 분류를 하기 위한 새로운 방법이 소개되고 있다.

| Table 1. AT(N) biomarker grouping |
|----------------------------------|
| A: Aggregated $\beta$ or associated pathologic state |
| CSF $\beta_{42}$ or $\beta_{42}/\beta_{40}$ ratio |
| Amyloid PET |
| T: Aggregated tau (neurofibrillar tangles) or associated pathologic state |
| CSF phosphorylated tau |
| Tau PET |
| (N): Neurodegeneration or neuronal injury |
| Anatomical MRI |
| FDG PET |
| CSF total tau |

$\beta$-amyloid, CSF; cerebrospinal fluid, PET; positron emission tomography, MRI; magnetic resonance imaging, FDG; fluoro-deoxyglucose.

본론

1. AD 용어의 정의

알츠하이머병(Alzheimer’s disease, AD)이라는 용어는 신경병리학적 변화의 집합을 말하며, 이러한 변화를 생체 내(in vivo) 생물표지자나 사후 병리검사를 통하여 확인한 경우로 정의하였다. 따라서 인천의 임상증상에 기반하여 정의한 ‘probable AD’ 또는 ‘possible AD’라는 용어는 ‘알츠하이머 임상증후군(Alzheimer’s clinical syndrome)’으로 대체할 것을 권고하였다. 같은 알츠하이머병이라고 하더라도 임상증상은 다양하게 나타날 수 있고, 생물표지자의 변화에 비하여 증상은 상대적으로 집단이 진행된 후에 나타나게 되므로, 임상증상과 생물표지자로 구분하여 생물표지자의 변화만으로도 알츠하이머병을 정의한 부분은 기존의 임상증상에 기반한 진단기준과 비교하여 상당한 차이가 있다고 할 수 있다. 이로 인하여 AD는 특정 증상들이 있는 임상증후군에 특징적인 뇌기전을 가진 하나의 구체적인 질병이 되었다.

2. ‘AT(N) 분류 체계’를 이용한 AD 생물표지자의 분류

최근 알츠하이머병과 뇌의 노화 연구를 위하여 제안된 소위 ‘AT(N) 분류 체계’는 2018년도 Research Framework의 기본으로 하여 다양한 뇌성원성에 따라 생물표지자 중에서 타당성이 검증된 지표를 채택하였다(Table 1). 즉, 생물표지자 분류를 크게 3개의 병주로 나누었는데, ‘A (=Amyloidopathy)’는 베타아밀로이드 관련 지표로 뇌척수액에서의 $\beta_{42}$ 또는 $\beta_{42}/\beta_{40}$의 감소로 정의하였고, ‘T (=Tauopathy)’는 신경원섬유매듭 형태의 타우 관련 지표로 뇌척수액에서의 인산화 타우의 증가나 뇌피질의 tau-PET 리간드의 결합으로 정의하였고. ‘(N) (=Neurodegeneration or Neuronal injury)’는 신경퇴행의 지표로 뇌척수액에서의 증가 또는 MRI에서의 뇌위축과 FDG-PET에서의 뇌 대사저하를 포함하고 있다.

| Table 2. AT(N) biomarker profile |
|----------------------------------|
| A: $\beta$-amyloid, CSF, PET, MRI |
| T: phosphorylated tau, tau-PET |
| (N): MRI, FDG-PET |

이 두 가지 단계는 각각 알츠하이머병 연속체(Alzheimer’s continuum)의 초기와 후기 단계로 임상증상에 상관없이 적용하게 된다. 아밀로이드증(A), 베타 태우(T), 신경퇴행(N)에 해당하는 각각의 생물표지자의 값에 차단점을 기준으로 정상/비정상으로 구분하여 총 8개의 경우의 수를 가지는 생물표지자에 따른 분류(biomarker profile)
Table 2. Biomarker profiles and categories

| AT(N) profiles | Biomarker category |
|----------------|--------------------|
| A-T(N)-        | Normal AD biomarker |
| A+T(N)-        | Alzheimer’s pathologic change |
| A+T(N)+        | Alzheimer’s disease |
| A+T(N)+        | Alzheimer’s disease |
| A+T(N)+        | Alzheimer’s and concomitant suspected non-Alzheimer’s pathologic change |
| A-T(N)-        | Non-AD pathologic change |
| A-T(N)+        | Non-AD pathologic change |
| A-T(N)+        | Non-AD pathologic change |

A; aggregated Ab or associated pathologic state, T; aggregated tau (neurofibrillary tangles) or associated pathologic state, (N); neurodegeneration or neuronal injury, AD; Alzheimer’s disease.

물을 만들었다(Table 2). AT(N) 분류 체계를 이용한 알츠하이머 질병 정의를 고려하면 개개인은 생물표지자 분류에 의하여 알츠하이머 생물표지자의 이상이 없는 정상군(normal AD biomarker)와 Alzheimer’s continuum에 해당하는 경우, 그리고 알츠하이머가 아닌 다른 병리 소견(non-AD pathologic change)을 가지는 3개의 범주 중 하나에 속하게 된다. Alzheimer’s continuum 중 ‘A+T(N)+’는 알츠하이머 병리 소견과 다른 병리 소견이 섞여 있는 상태(Alzheimer’s and concomitant suspected non-Alzheimer’s pathologic change)로서 ‘T’ 생물표지자를 포함하면서 새로운 개념이라고 할 수 있다. 또한 알츠하이머가 아닌 다른 병리 소견에 해당하는 군은 기존의 ‘suspected non-Alzheimer’s pathophysiology (SNAP)’23에 해당하며, 베타아밀로이드 관련 지표가 음성시 하나 이상의 다른 신경병리의 증거가 확인된 군이다.

4. 생물표지자의 특징과 제한점

뇌척수액과 뇌영상 생물표지자가 각각 A, T, (N)의 같은 그룹 내에 분류되기는 하지만 뇌척수액은 특정한 시점에 병적 단백질이 생성되고 제거되는 속도를 반영한다면, 뇌영상은 시간을 두고 축적된 신경병리 소견을 반영한다. 따라서, 뇌척수액과 뇌영상의 결과가 한 시점에 정확하게 나올 수 있는 알츠하이머병의 반성 진행 양상을 고려한다면 결국 장기적 관점에서 알츠하이머의 진단이 필요할 것이다.32-34 뇌척수액에서 타우와 마찬가지로 뇌영상 체석(FDG-PET)와 같은 신경퇴행의 생물표지자는 알츠하이머병 외의 다른 원인에 의해서도 이상을 보일 수 있으므로, 알츠하이머병 동요와 같은 병리 소견이 있는 알츠하이머병에 해당하는 병리소견을 갖는 경우, 알츠하이머병을 방출하려는 아밀로이드병증(A)이나 병적 타우(T)와 구분하여 후속을 사용하여 표기하였다(‘AT(N)’).35-36

현재의 NIA-AA Research Framework에서는 AT(N) 체계를 기점으로 TAR DNA binding protein 43, 알파-시누클레인(alpha-synuclein), 은주화과립(argyrophilic grain), 해마경화증(hippocampal sclerosis), 혈관병증 등과 같이 고유한 병리 소견을 갖는 지표들도 추후 타당성이 검증되면 새로운 생물표지자 범주로 추가될 가능성이 예상된다. 이러한 새로운 생물표지자에 의한 확장 가능성을 ‘X’로 표기하여, AT(N)을 개념적으로는 ‘ATX(N)’ 체계로 받아들일 것을 제안하고 있다. 결국 앞으로의 연구는 여러 생물표지자에 의해 다양한 신경병리의 상호작용을 이해하는 방향으로 나아가야 할 것이다.37

5. 인지 단계

인지기능도 생물표지자처럼 연속적인 스펙트럼(cognitive continuum)으로 인식하고 접근하여야 하였으며, 관찰 연구(observational study)와 임상 연구(clinical trial), 두 가지 상황으로 나누어서 제안하였다.

1) 관찰 연구를 위한 증상 기반 범주형 인지 단계

관찰 연구는 알츠하이머병 외에도 정상 생물표지자 및 알츠하이머가 아닌 다른 병리 소견을 갖는 대상자(SNAP)를 포함되므로 전형적으로 사용하던 인지장애가 없는 군(cognitively unimpaired), 정도
이 장에서는 인지상태(mild cognitive impairment, MCI), 치매(dementia)의 세 단계로 나누는 '증상에 기반한 범주형 인지상 장애 단계'를 제안하였다 (Table 3). 각 연구 대상자들에게 이러한 범주형 인지 단계와 앞서 언급한 생물표지자에 의한 분류를 서로 독립적으로 적용하여, 같은 인지 단계-서로 다른 생물표지자를 갖는 경우와 같은 생물표지자-서로 다른 인지 단계를 갖는 모든 조합을 포함하고 있다 (Table 4).

### Table 3. Syndromal staging of cognitive continuum

| Cognitive stage | Biomarker profile |
|-----------------|-------------------|
| Cognitively unimpaired | A-T-(N)- |
| Mild cognitive impairment | A+T-(N)- |
| Dementia | A+T+(N)+ |

A subset of cognitively unimpaired individuals may report subjective cognitive decline and/or demonstrate subtle decline on serial cognitive testing.

Mild cognitive impairment

Cognitive performance below expected range for that individual based on all available information. This may be based on clinical judgement and/or on cognitive test performance (which may or may not be based on comparison to normative data, with or without adjustment for age, education, occupation, sex, etc.).

Cognitively performance is usually in impaired/abnormal range based on population norms, but this is not required as long as the performance is below the range expected for that individual.

In addition to evidence of cognitive impairment, evidence of decline in cognitive performance from baseline must also be present. This may be reported by the individual or by an observer (e.g., study partner) or assessments or by a combination of these.

May be characterized by cognitive presentations that are not primarily amnestic.

Although cognitive impairment is the core clinical criteria, neurobehavioral disturbance may be a prominent feature of the clinical presentation.

Performs daily life activities independently, but cognitive difficulty may result in detectable but mild functional impact on the more complex activities of daily life, either self-reported or corroborated by as study partner.

Dementia

Substantial progressive cognitive impairment that affects several domains and/or neurobehavioral symptoms. May be reported by the individual or by an observer (e.g., study partner) or observed by change on longitudinal cognitive testing.

Cognitive impairment and/or neurobehavioral symptoms result in clearly evident functional impact on daily life. No longer fully independent/requires assistance with daily life activities. This is the primary feature differentiating dementia from MCI.

May be subdivided into mild, moderate, and severe

MCI, mild cognitive impairment.

### Table 4. Descriptive nomenclature: syndromal cognitive staging combined with biomarkers

| Biomarker profile | Cognitive stage |
|-------------------|-----------------|
| A-T-(N)-          | Normal AD biomarkers, cognitively unimpaired |
| A+T-(N)-          | Preclinical Alzheimer’s pathologic change |
| A+T+(N)-          | Preclinical Alzheimer’s disease |
| A+T+(N)+          | Alzheimer’s and concomitant suspected non Alzheimer’s pathologic change, cognitively unimpaired |
| A+T+(N)+          | Non-Alzheimer’s pathologic change, cognitively unimpaired |
| A+T-(N)+          | Normal AD biomarkers, with MCI |
| A+T+(N)+          | Alzheimer’s pathologic change with MCI |
| A+T+(N)+          | Alzheimer’s disease with MCI |
| A+T+(N)+          | Alzheimer’s’s and concomitant suspected non Alzheimer’s pathologic change with MCI |
| A+T+(N)+          | Non-Alzheimer’s pathologic change with MCI |
| A+T-(N)+          | Normal AD biomarkers with dementia |
| A+T+(N)+          | Alzheimer’s’s and concomitant suspected non Alzheimer’s pathologic change with dementia |
| A+T+(N)+          | Non-Alzheimer’s pathologic change with dementia |
| A+T+(N)+          | Alzheimer’s disease with MCI |
| A+T+(N)+          | Alzheimer’s disease with dementia |
| A+T+(N)+          | Alzheimer’s disease with dementia |

AD; Alzheimer’s disease, MCI; mild cognitive impairment.
알츠하이머병의 새로운 생물학적 정의: 2018 NIA-AA Research Framework 소개

2) 임상 연구를 위한 숫자형 임상 단계

임상 연구의 경우에는 생물표지자를 바탕으로 선별된 Alzheimer’s continuum [A+T-(N)-, A+T+(N)-, A+T-(N)+, A+T+(N)+]을 대상으로 중재적 임상 실험을 시행하게 되는 경우를 상정하여 6단계로 세분화한 임상 단계(numeric clinical staging)를 제안하였다(Table 5). 총 6단계 중 임상증상을 없는 1단계, 최초로 임상증상이 탐지되는 2 단계, 인지기능 저하는 있으나 기능의 소실은 없는 3단계와 다양한 인지장애인과 진행하는 기능저하를 포함하는 4-6단계로 나누었다. 인지 기능의 장애는 기억력 이외의 인지기능 장애도 포함하였으며 신경행 동증상만 있는 경우도 2단계에는 포함될 수 있고 3단계 이상에서는 인지기능 저하를 동반해야 한다. 모든 단계에 걸쳐 인지기능 저하를 규준 간단과 비교를 통하여 평가할 수 있으며 나이, 성별, 교육 등을 보정할지는 연구자의 선택에 맡겼다.

Table 5. Numeric clinical staging

| Stage 1 | Performance within expected range on objective tests. Cognitive test performance may be compared to normative data of the investigators choice, with or without adjustment (the choice of the investigators) for age, sex, education, etc. Does not report recent decline in cognition or new onset of neurobehavioral symptoms of concern. No evidence of recent cognitive decline or new neurobehavioral symptoms by report of an observer (e.g., study partner) or by longitudinal cognitive testing if available. |
| Stage 2 | Normal performance within expected range on objective tests. Transitional cognitive decline: decline in previous level of cognitive function, which may involve any cognitive domain(s) (i.e., not exclusively memory). May be documented through subjective report of cognitive decline that is of concern to the participant. Represents a change from individual baseline within past 1-3 years, and persistent for at least 6 months. May be corroborated by informant but required. Or may be documented by evidence of subtle decline on longitudinal cognitive testing but not required. Or may be documented by both subjective report of decline and objective evidence on longitudinal testing. Although cognition is the core feature, mild neurobehavioral changes-for example, changes in mood, anxiety, or motivation-may coexist. In some individuals, the primary complaint may be neurobehavioral rather than cognitive. Neurobehavioral symptoms should have a clearly defined recent onset, which persists and cannot be explained by life events. No functional impact on daily life activities. |
| Stage 3 | Performance in the impaired/abnormal range on objective cognitive tests. Evidence of decline from baseline, documented by the individual’s report or by observer (e.g., study partner) report or by change on longitudinal cognitive testing or neurobehavioral behavioral assessment. May be characterized by cognitive presentations that are not primarily amnestic. Performs daily life activities independently, but cognitive difficulty may result in detectable but mild functional impact on the more complex activities of daily life, that is, may take more time or be less efficient but still can complete, either self-reported or corroborated by a study partner. |
| Stage 4 | Mild dementia Substantial progressive cognitive impairment affecting several domains, and/or neurobehavioral disturbance. Documented by the individual’s report or by observer (e.g., study partner) report or by change on longitudinal cognitive testing. Clearly evident functional impact on daily life, affecting mainly instrumental activities. No longer fully independent/requires occasional assistance with daily life activities. |
| Stage 5 | Moderate dementia Progressive cognitive impairment or neurobehavioral changes. Extensive functional impact of daily life with impairment in basic activities. No longer independent and requires frequent assistance with daily life activities. |
| Stage 6 | Severe dementia Progressive cognitive impairment or neurobehavioral changes. Clinical interview may not be possible. Complete dependency due to severe functional impact of daily life with impairment in basic activities, including basic self-care. |
6. 기타

본 Research Framework에서는 생물표지자의 세부적인 내용을 규정하지는 않았다. 예를 들어, PET와 MRI의 이상 여부를 시각적 또는 정량 분석 중 어떤 방법으로 판정, 판단할지를 정한 데에이나를 고려하지 등 개별 생물표지자의 구체적인 내용에 대해서는 각각 진행 중인 연구 그룹이나 적절한 표준을 제시해줄 것을 기대하고 있다. 또한, 생물표지자로 검출할 수 있는 신경병리 소견에 초점을 맞추고 있기 때문에 유전자는 포함시키지 않고 있다. 그리고 Research Framework가 알츠하이머병의 생물학적 정의의 초점을 맞추고 있지만, 대규모 연구 집단 및 지역사회 기반 코호트 연구 등과 같이 임상증상에 기반한 연구인지를 갖는 연구에 있어서까지 고비용의 PET나 침습적인 뇌척수액 생물표지자가 반드시 필요할 것은 아니라는 점도 언급하고 있다. 앞으로 개발될 것으로 기대하고 있는 저비용, 비침습적인 생물표지자가 현재로서는 생물표지자 사용이 어려운 대상 집단에게도 적용 범위를 확대시킬 임상 증후의 활용도를 높일 것으로 예상하고 있다. 6.1 그리고 그 근거 우위에 따라 수정된 아밀로이드 가설(modified amyloid cascade hypothesis)에 기반하여 병합 연구를 위한 틀이지만, 생물표지자에 기반한 분류 체계를 이용하기만 하면 알츠하이머증을 아리바하는 다른 형태의 가설 검증에도 사용될 수 있는 유연성 있는 열린 연구의 틀이라는 점을 강조하고 있다.

결 론

2018년 NIA-AA Research Framework는 알츠하이머병을 생물학적으로 정의하고 있고 인지기능의 손상은 이러한 질병에 의하여 야기된 증상/징후로서 분리하여 다룬다. 연구 그룹들이 알츠하이머병을 동일한 기준으로 정의하고 의사소통을 할 수 있도록 용어를 통일하려는 노력을 하였으며, 이를 통해 알츠하이머병의 이해를 증진시키고 치료의 다양한 원인에 대한 생물학적인 접근을 촉진할 것이라고 기대하고 있다. 아직까지는 오직 연구를 위한 분류라는 점을 강조하고 있으나, 알츠하이머병을 정의하는데 사용되는 생물표지자들의 저속적인 타당성 검증 및 기존의 단점을 보완한 새로운 생물표지자의 개발을 통하여 임상 분야에서의 적용이 가능해질 것으로 기대한다.

REFERENCES

1. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011;7:263-269.
2. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011;7:270-279.
3. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011;7:280-292.
4. Jack CR, Albert MS, Knopman DS, McKhann GM, Sperling RA, Carrillo MC, et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011;7:257-262.
5. Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 2012;367:795-804.
6. Fleisher AS, Chen K, Quiroz YT, Jakimovich LJ, Gutierrez Gomez M, Langlois CM, et al. Associations between biomarkers and age in the presenilin 1 E280A autosomal dominant Alzheimer disease kindred: a cross-sectional study. JAMA Neurol 2015;72:316-324.
7. Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O, et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol 2013;12:357-367.
8. Villemagne VL, Fodero-Tavoletti MT, Masters CL, Rowe CC. Tau imaging: early progress and future directions. Lancet Neurol 2015;14:114-124.
9. Villemagne VL, Furumoto S, Fodero-Tavoletti MT, Mulligan RS, Hodges J, Harada R, et al. In vivo evaluation of a novel tau imaging tracer for Alzheimer’s disease. Eur J Nucl Med Mol Imaging 2014;41:816-826.
10. Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement 2018;14:533-562.
11. Serrano-Pozo A, Qian J, Monsell SE, Blacker D, Gómez-Isla T, Betensky RA, et al. Mild to moderate Alzheimer dementia with insufficient neuropathological changes. Ann Neurol 2014;75:597-601.
12. Murray ME, Graff-Radford NR, Ross OA, Petersen RC, Duara R, Dickson DW. Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: a retrospective study. Lancet Neurol 2011;10:785-796.
13. Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Feldman HH, Frisoni GB, et al. A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 2016;87:539-547.
14. Villain N, Chételat G, Grassiot B, Bourgeat P, Jones G, Ellis KA, et al. Regional dynamics of amyloid-β deposition in healthy elderly, mild cognitive impairment and Alzheimer’s disease: a voxelwise PiB-PET longitudinal study. Brain 2012;135:2126-2139.
15. Visser PJ, Verhey F, Knol DL, Scheltens P, Wahland LO, Freund-Levi Y, et al. Prevalence and prognostic value of CSF markers of Alzheimer’s disease pathology in patients with subjective cognitive impairment or mild cognitive impairment in the DESCRIPA study: a prospective co-
hort study. *Lancet Neurol* 2009;8:619-627.

16. Chhatwal JP, Schultz AP, Marshall GA, Boot B, Gomez-Isla T, Damurgier J, et al. Temporal T807 binding correlates with CSF tau and phospho-tau in normal elderly. *Neurology* 2016;87:920-926.

17. Brier MR, Gordon B, Friedriehsen K, McCarthy J, Stern A, Christensen J, et al. Tau and Aβ imaging, CSF measures, and cognition in Alzheimer’s disease. *Sci Transl Med* 2016;8:338ra66.

18. Blennow K, Hampel H, Weiner M, Zetterberg H. Cerebrospinal fluid and plasma biomarkers in Alzheimer’s disease. *Nat Rev Neurosci* 2010;6:131-144.

19. Besson FL, Joie R, Dœuvre L, Gaubert M, Mézenge F, Egret S, et al. Associations between [F-18]-AV1451 tau PET and CSF measures of tau pathology in amyloid-negative Alzheimer’s disease. *JAMA Neurol* 2016;73:1030-1038.

20. Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Dickson DW, et al. Selective worsening of brain injury biomarker abnormalities in cognitively normal elderly persons with β-amyloidosis. *JAMA Neurol* 2013;70:1030-1038.

21. Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC, et al. The significance of medial temporal lobe atrophy: a practical approach. *Acta Neuropathol* 2012;123:1-11.

22. Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC, et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. *Acta Neuropathol* 2012;123:1-11.

23. Gordon BA, Friedriehsen K, Brier M, Blazy T, Su Y, Christensen J, et al. The relationship between cerebrospinal fluid markers of Alzheimer pathology and positron emission tomography tau imaging. *Brain* 2016;139:2249-2260.

24. La Joie R, Bejanin A, Fagan AM, Ayakta N, Baker SL, Bourakova V, et al. Associations between [F-18]-AV1451 tau PET and CSF measures of tau pathology in a clinical sample. *Neurology* 2018;90:e282-e290.

25. Landau SM, Breeze C, Jo RY, Pontecorvo M, Mathis CA, Jagust WJ, et al. Amyloid-β imaging with Pittsburgh compound B and florbetapir: comparing radiotracers and quantification methods. *J Nucl Med* 2013;54:70-77.

26. Makaretz SJ, Quinby M, Collins J, Makris N, McGinnis S, Schultz A, et al. Flortaucipir tau PET imaging in semantic variant primary progressive aphasia. *J Neurol Neurosurg Psychiatry* 2018;89:1024-1031.

27. Marquie M, Normandin MD, Vandenberg CR, Costantino IM, Bien EA, Rycyna LG, et al. Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. *Ann Neurol* 2015;78:787-800.

28. Marquie M, Normandin MD, Meltzer AC, Siao Tick Chong M, Andrea NV, Antón-Fernández A, et al. Pathological correlations of [F-18]-AV-1451 imaging in non-Alzheimer tauopathies. *Ann Neurol* 2017;81:117-128.

29. Hostetler ED, Walji AM, Zeng Z, Miller P, Bennacef I, Salinas C, et al. Preclinical characterization of 18F-MK-6240, a promising PET tracer for in vivo quantification of human neurofibrillary tangles. *J Nucl Med* 2016;57:1599-1606.

30. Skillbäck T, Rosen C, Asztely F, Mattsson N, Blennow K, Zetterberg H. Diagnostic performance of cerebrospinal fluid total tau and phosphorylated tau in Creutzfeldt-Jakob disease: results from the Swedish Mortality Registry. *JAMA Neurol* 2014;71:476-483.

31. van Rossum IA, Vos SJ, Burns L, Kalaria RN, Sulkava R, Aronen HJ, et al. Injury markers predict time to dementia in subjects with MCI and amyloid pathology. *Neurology* 2012;79:1809-1816.

32. Roe CM, Fagan AM, Grant EA, Hassenstab J, Moulder KL, Maue Drerys D, et al. Amyloid imaging and CSF biomarkers in predicting cognitive impairment up to 7.5 years later. *Neurology* 2013;80:1784-1791.

33. Chételat G, Ossenkoppele R, Villemagne VL, Perrotin A, Landeau B, Mémon F, et al. TEmporal T807 binding correlates with CSF tau and phosphorylated tau in Creutzfeldt-Jakob disease: results from the Swedish Mortality Registry. *JAMA Neurol* 2014;71:476-483.