ABSTRACT

The purposes of this study were to formulate and evaluate the efficacy of Angelica keiskei (AK) leaf extract in serum gel as an antioxidant and tyrosinase enzyme inhibitor.

Methods: The AK leaves were extracted using the maceration method, while the antioxidant and tyrosinase enzyme inhibitory activities were determined using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and L-Tyrosine as assay and substrate, respectively. Subsequently, the extract was formulated into serum gel and evaluated for physical stability, antioxidant and inhibitory activity to tyrosinase enzyme.

Results: The results showed that AK leaf extract has antioxidant activity, with an IC50 value of 7.73 µg/ml, while the tyrosinase inhibitory power had an IC50 value of 500 µg/ml. Based on the physical stability, the serum gel was stable after 28 days of storage. The serum gel of AK leaf extract also showed antioxidant activity and tyrosinase enzyme inhibition with IC50 values of 16.68 µg/ml and 741.62 µg/ml, respectively.

Conclusion: This study demonstrated that the serum gel of AK leaf extract has potential as a skin lightening agent and is safe for use as a topical preparation.

Keywords: Angelica keiskei extract, Serum gel, Antioxidant, Tyrosinase enzyme inhibitor

INTRODUCTION

Generally, the skin as an organ protects the body from harmful effects and damage from the external environment, such as ultraviolet (UV) rays since their effect causes faster skin aging and sunburn [1, 2]. However, the use of Angelica keiskei (AK) leaf extracts as antioxidants and photoprotective help in preventing the effects of UV rays. This leaf contains a pigment known as melanin, which acts as a defence mechanism against harmful factors [3]. It also affects abnormal pigmentation and melanoma, such as hyperpigmentation. Also, the overproduction and accumulation of this pigment could be a serious aesthetic problem affecting the skin resulting in melasma or age spots. To synthesize this substance, the body requires tyrosinase enzyme to mediate the conversion of tyrosine to dihydroxyphenylalanine (DOPA), which converts to dopaquinone and eventually melanin. Inhibiting tyrosinase enzyme activity becomes an important step to controlling its biosynthesis, which helps in preventing hyperpigmentation disorders [4, 5].

In addition, there are various topical products used as antioxidants and tyrosinase enzyme inhibitors, which are either from natural sources or synthesized. Some of these are prepared during cosmetic production, and the use of the synthetic types in high doses causes harmful side effects [1, 2, 4]. However, AK occurs naturally and could serve as an alternative to these synthetic products.

This AK is a native plant from Japan. The dark green leaves of this plant have been recognized as a medicinally important herb in Asia. Previous studies have shown that the ethanol extract of AK is an excellent antioxidant, which also inhibits melanin production with low cytotoxic effects [1, 6]. One of the groups of compounds contained in AK which have many biological activities including being an antioxidant and a melanin inhibitor are chalcones. Also, these two activities are attributed to the two aromatic rings with an unsaturated chain contained in these compounds [7].

Furthermore, the serum gel is the popular topical dosage form used to enhance the quality of the skin because it acts as a moisturizer, thereby enhancing the effects of these compounds in the epithelium [8]. Therefore, a serum gel of AK leaf extract was prepared and evaluated for antioxidant and tyrosinase enzyme inhibitory activities.

MATERIALS AND METHODS

Materials

Plant material

The leaf of AK was collected from Lombok, West Nusa Tenggara and was authenticated by School of Life Sciences and Technology, Bandung Institute of Technology (ITB) No. 401/11. COD 22/PL/2019.

Chemicals

The tyrosinase enzyme, L-Tyrosine, 1,1-diphenyl-2-picrylhydrazyl (DPPH), Gallic acid, Quercetin and Vitamin C were purchased from Sigma Aldrich. All other chemicals were of pharmaceutical and technical grades.

Methods

Preparation of plant extracts

The leaves of AK were dried at room temperature and ground in a mortar. Two hundred g of AK leaves powder were extracted in 2000 ml 96% ethanol using maceration method for three x 24 h at room temperature. The ethanol was removed by a rotary evaporator, IKA Company, Germany (IKA RV 10) at 40-50 °C to obtain the crude extract [9].

Phytochemical screening extract

Phytochemical screening was carried out to determine the presence of secondary metabolites in AK leaf extract, including alkaloids, flavonoids, tannins, polyphenols, quinones, steroids/triterpenoids, saponins, monoterpenes and sesquiterpenes [9].

Total phenols determination

0.5 ml AK leaf extract was dissolved in methanol (770 PPM) and mixed with aqueous Na2CO3 (4 ml, 1 M) and Folin Gocaltre reagent
Antioxidant activity test of AK prepared with various concentrations and mixed with the solution of DPPH (1:1) was determined. The sample solution was solvent. The sample solution and DPPH (1:1) were mixed and the solution of DPPH (50 ppm) was prepared using methanol as a solvent. The absorbance of the mixture was measured at 410 nm. The curve of the standard was prepared using quercetin solutions with various concentrations in methanol. Total flavonoids values were expressed in terms of quercetin equivalent as the reference compound.

Total flavonoids determination

0.5 ml AK leaf extracts (500 mg/ml) in methanol were mixed with 1.5 ml of methanol, 0.1 ml of 1 M potassium acetate, 0.1 ml of 10% aluminium chloride and 2.8 ml of distilled water. This was then incubated for 15 min. The absorbance of the mixture was measured at 410 nm. The curve of the standard was prepared using quercetin solutions with various concentrations in methanol. Total flavonoids values were expressed in terms of quercetin equivalent, as the reference compound.

Antioxidant activity test of AK leaf extract

The solution of DPPH (50 ppm) was prepared using methanol as a solvent. The sample solution and DPPH (1:1) were mixed and the solution was prepared with various concentrations and mixed with the solution of DPPH (1:1), stored during an operating time and then measured for absorbance at λmax. The absorbance value was calculated for the value of % inhibition by the following equation:

\[\% \text{Inhibition} = \left(1 - \frac{A_{\text{sample}}}{A_{\text{DPPH}}} \right) \times 100 \]

Where, % Inhibition is the percentage capacity of the free radical inhibition, \(A_{\text{sample}} \) is absorbance of the sample at 515 nm, and \(A_{\text{DPPH}} \) is the absorbance of DPPH solution at 515 nm. Linear regression curve between % inhibition and sample concentration were made, the linear equation and IC\(_{50}\) were obtained.

In vitro testing of tyrosinase enzyme inhibitory activity

Extracts were dissolved in phosphate buffer (pH 6.5) containing 1% of dimethyl sulfoxide (DMSO) to obtain solution concentrations of 500 µg/ml. A total of 70 µl of the extract solution of each dilution was added to 30 µl of the enzyme tyrosinase (Sigma, 333 units/ml in phosphate buffer). Plates were incubated for 5 min at room temperature, to which were added 110 µl of substrate 1 mmol L-tyrosine and incubated for 30 min at room temperature. The solution in each well was measured using a microwell plate reader at a wavelength of 492 nm to determine the percent inhibition and the value of 50% inhibitory concentration (IC\(_{50}\)). The percentage of tyrosinase activity inhibition was calculated as inhibition% = \([(A - B) / A] \times 100 \), where A is the absorbance of the control at 492 nm and B is the absorbance of the samples at 492 nm. Kojic acid was used as a positive control.

Formulation of serum gel from AK leaf extract

The serum gel consisting of AK leaf extract and all other ingredients were prepared according to the formula presented in table 1. Hydroxyethylcellulose (HEC) was dispersed into distilled water (50 °C) with constant stirring using a mechanical stirrer. The Extract and all ingredients were dissolved in distilled water before adding to the HEC solution. The mixtures were stirred until homogeneity was achieved. The physical stability of serum gel containing AK leaf extract was evaluated for organoleptic property, homogeneity, pH, viscosity, and spreadability, after 28 d of storage.

Table 1: Formulation of serum gel containing AK leaf extract
Ingredients
AK leaf extract
HEC
Propylene glycol
DMSO
Methylparaben
Distilled water added

Statistical analysis

The data of the experiment were analyzed by the one-way analysis of variance (ANOVA) at the level of (P<0.05) and all data results were measured as a mean of samples±standard deviation (SD).

RESULTS AND DISCUSSION

The results obtained at School of Life Sciences and Technology, Bandung Institute of Technology (ITB) demonstrated Angelica keiskei as the specie used in this study. 96% ethanol was used as a solvent due to its universal dissolution characteristics for both polar and non-polar compounds, producing a percent recovery of 21.83% [13]. In the extraction process, maceration method was used to protect compounds contained in AK leaf, which are responsible for the inhibition of tyrosinase enzyme and for the antioxidant activity [4].

The phytochemical screening was carried out to evaluate the presence of secondary metabolites in the AK leaf extract. Alkaloids, flavonoids, polyphenols, quinones, tannins, steroids and triterpenoids were detected. This result supports the assumption that tyrosinase enzyme inhibitory compounds and antioxidant compounds exist in AK leaf extracts, as flavonoids and phenols [14, 15].

Flavonoids have been recognized as an antioxidant agent and their effects are considerable on human nutrition and health. Flavonoids are known to exert their action by a scavenging or chelating process. Phenolic compounds also are antioxidant agents that act as free radical terminators [16]. The total contents of flavonoids from AK leaf extract in terms of quercetin equivalent was 3.97 µg/ml, while the phenol contents of AK leaf in terms of gallic acid equivalent was 2.367 g GAE/100 g. According to our study, the high contents of flavonoids and phenol in AK leaf extract is responsible for its high radical scavenging activity [10]. This result further confirms that AK leaf extract has potential activity as a tyrosinase enzyme inhibitor.

DPPH method is one of the common methods used to determine the antioxidant activity for preliminary testing of extracts [2]. The result of antioxidant activity can be seen in table 2.

Table 2: The result of antioxidant activity from AK leaf extract
Sample
AK leaf extract
Kojic Acid

The antioxidant transfers the hydrogen content to DPPH, which is a free radical. When the free radicals are scavenged by antioxidants, the color of DPPH will be changed from purple to yellow. The observed IC\(_{50}\) value showed that AK leaf extract exhibits strong antioxidant activity with IC\(_{50}\) value below 10 µg/ml. The IC\(_{50}\) of AK leaf extracts is almost similar with kojic acid as a standard substance with IC\(_{50}\) of 3.97 µg/ml. The strong antioxidant activity of the extract could be attributed to its high levels of total flavonoids and polyphenols. Having OH at C-3, C-4 o xo, double bond at C-2 and C-3 and ortho di OH at C-3'-C-4', indicated that the flavonoids have very high antioxidant activity [17].
To determine the inhibitory activity of tyrosinase in the extract, the AK leaf extract were tested and compared with kojic acid as a control. The IC\textsubscript{50} values were evaluated by the dose-response curves through serial dilution of the AK leaf extract and kojic acid at various concentrations. The inhibition of tyrosinase enzyme by AK leaf extract can be seen in table 3.

Table 2: The results of tyrosinase enzyme inhibitory activity of AK leaf extract

Sample	IC\textsubscript{50} (µg/ml)
AK leaf extract	500
Kojic Acid	573

The results indicated that the ethanolic extract of AK leaf shows weak activity for tyrosinase enzyme inhibition. The previous article reported that the isoprenoid-substituted moiety contained in AK leaf extract can enhance the ability of flavonoids to inhibit melanin biosynthesis with less cytotoxicity [18]. The article also stated that xanthoangelol and 4-hydroxyderricin contained in AK leaf extract show tyrosinase enzyme inhibitory activity with IC\textsubscript{50} values of 15.87±1.21 µM and 60.14±2.29 µM, respectively [19]. Though the results in this study show weak activity, the extracts of AK leaf still have potential as tyrosinase inhibitors and the advantage of the low cytotoxicity makes it safer for topical usage in humans.

The gel was prepared with AK leaf extract because of the advantages it proffers. This includes being easy to use, having high water content and reduced contact time, all of which contribute to the reduction of the risk of inflammation. HEC is a polymer that has been used in the gel formulation due to its biosafety, efficacy, and stability [20]. Propylene glycol was used as a moisturizer and enhancer of gel, which could improve the solubility and diffusion of the active substance contained in AK through the skin [21]. Methylparaben was used as a preservative to prevent the gel damage caused by bacteria [22]. DMSO has been known as a permeation enhancer of hydrophilic and hydrophobic drugs. The properties of DMSO can make it an interesting excipient in topical dosage form due to its enhancement of drug permeability [23]. The serum gel formulation has a smooth texture that is homogeneous and characteristic of AK leaf extracts. The homogeneity of serum gel characteristics remained similar after 28 d of storage. The pH of serum gel containing AK leaf extract can be seen in the fig. 1.

![Fig.1: pH of serum gel containing Angelica keiskei leaf extract](image)

Fig. 1 indicates that the pH of serum gel containing AK leaf extract did not change significantly after 28 d storage and remained within the acceptable pH for topical preparations, which is between 4.5–6.5 [4].

The viscosity of the serum gel containing AK leaf extract can be seen in the fig. 2.

![Fig.2: Viscosity of serum gel containing AK leaf extract](image)

Fig. 2 indicates that the viscosity of serum gel containing AK leaf extract did not change significantly after 28 d storage and remained within the acceptable viscosity for serum gel. The acceptable viscosity value of serum gel is in the range of 230-1150 cPs.

The result of tyrosinase enzyme inhibitory activity and antioxidant activity of serum gel containing AK leaf extract are shown in table 4.

Table 4: The result of tyrosinase enzyme inhibitory activity and antioxidant activity of serum gel containing AK leaf extract

Sample	IC\textsubscript{50} of tyrosinase enzyme inhibitory activity (µg/ml)	IC\textsubscript{50} of antioxidant activity (µg/ml)
Serum gel containing AK leaf extract	74.162	16.68
Serum gel containing Kojic Acid	68.912	12.20

Fig. 3 indicates that the spreadability of serum gel containing AK leaf extracts did not change significantly after 28 d storage and remained within the acceptable range of 5–7 cm [12, 27].

The result of tyrosinase enzyme inhibitory activity and antioxidant activity of serum gel containing AK leaf extract are shown in table 4.
The serum gel of AK leaf extract also showed antioxidant activity and tyrosinase enzyme inhibition with an IC50 value = 16.68 µg/ml and 741.62 µg/ml, respectively. This result is almost similar with that obtained with the serum gel of kojic acid as a positive control with an IC50 value = 12.20 µg/ml for antioxidant activity and IC50 value = 699.12 µg/ml for tyrosinase enzyme inhibitory activity. This indicated that the serum gel containing AK leaf extract has high levels of total flavonoids and polyphenols, which have strong antioxidant activity and tyrosinase enzyme inhibitory activity [10].

CONCLUSION
In this research, the AK leaf extract was found to have antioxidant activity with an IC50 value = 7.73 µg/ml while the activity of AK leaf extract against the tyrosinase enzyme showed inhibition with an IC50 value = 500 µg/ml. This result is almost similar with kojic acid as a positive control with an IC50 value = 3.97 µg/ml for antioxidant activity and IC50 value = 573 µg/ml for tyrosinase enzyme inhibitory activity. The serum gel of AK leaf extract also showed antioxidant activity and tyrosinase enzyme inhibition with IC50 value = 16.68 µg/ml and 741.62 µg/ml respectively. This indicated that serum gel containing AK leaf extract still has high levels of total flavonoids and polyphenols with strong antioxidant activity and tyrosinase enzyme inhibitory activity. Based on physical stability, the serum gel of AK leaf extract was stable after 28-day storage. It can be concluded that the serum gel of AK leaf extract has potential as a skin lightening preparation and is safe to be used as a topical preparation.

FUNDING
Nil

AUTHORS CONTRIBUTIONS
All the authors have contributed equally.

CONFLICT OF INTERESTS
None to declare

REFERENCES
1. Willis I, Klignman A, Epstein J. Effects of long ultraviolet rays on human skin: photoprotective or photopneuoplast? J Invest Dermatol 1972;59:416-20.
2. Budiman A, Praditbasari A, Rahayu D, Aulifa DL. Formulation of antioxidant gel from black mulberry fruit extract (Morus nigra L.), J Pharm Bioallied Sci 2019;11:216-22.
3. Di Pietro A, Gonzalez Paramas AM, Era B, Medda R, Pintus F, Santos Buelga C, Santos Buelga C, Asphodelus microcarpus extracts. BMC Complement Altern Med 2016;16:453.
4. Budiman A, Khaira N, Aulifa DL. Peel-off gel formulation from black mulberries (Morus Nigra L.) leaves extract as a tyrosinase inhibitor. Int J Drug Delivery Technol 2019;9:525-9.
5. Adhikari A, Devkota HP, Takano A, Masuda K, Nakane T, Basnet A, et al. Stability-indicating HPLC method for simultaneous determination of Ketoprofen, methylparaben and propylparaben in gel formulation. Int J Pharm Sci Drug Res 2009;1:13-8.
6. Li L, Ben Y, Yuan S, Jiang S, Xu J, Zhang X. Efficacy, stability, and biosafety of sifuvirtide gel as a microbicide candidate against HIV-1. PLoS One 2012;7:e37381.
7. Benson HA. Transdermal drug delivery: penetration enhancement techniques. Curr Drug Delivery 2005;2:23-33.
8. Li L, Ben Y, Yuan S, Jiang S, Xu J, Zhang X. Efficacy, stability, and biosafety of sifuvirtide gel as a microbicide candidate against HIV-1. PLoS One 2012;7:e37381.
9. Budiman A, Rusnawan DW, Yuliana A. Antibacterial activity of Piper betle L. extract in cream dosage forms against Staphylococcus aureus and Propionibacterium acnei. J Pharm Sci Res 2018;10:493-6.
10. Pourmorad S, Hosseinimehr, Shahabimajid N. Antioxidant activity, phenol and flavonoid contents of some selected iranian medical plants. Afr J Biotechnol 2006;5:1142-5.
11. Chang CC, Yang MH, Wen HM, Chern JC. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 2003;10:178-82.
12. Budiman A, Aulifa DL, Kusuma ASW, Kurniawan IS, Salaster A. Peel-off gel formulation from black mulberries (Morus nigra L.) extract as an anti-acne mask. Natl J Physiol Pharm Pharmacol 2017;7:1-8.
13. Shaalan EA, Canyon D, Younes MW, Abdel Wahab H, Mansour AH. A review of botanical phytochemicals with mosquitocidal potential. Environ Int 2005;31:1149-66.
14. de Freitas MM, Fonts PR, Souza PM, Fagg CW, Guerra EN, de Medeiro Nobregya YK, et al. Extracts of Morus nigra leaves standardized in chlorogenic acid, rutin and isoquercitrin: tyrosinase inhibition and cytotoxicity. PloS One 2016;11:e0163130.
15. Jin Q, Yang J, Ma L, Cai J, Li J. Comparison of polyphenol profile and inhibitory activities against oxidation and α-glucosidase in mulberry (genus Morus) cultivars from China. J Food Sci 2015;80:C2440-51.
16. Shahidi F, Wanurasunda PKPD. Phenolic antioxidants. Crit Rev Food Sci Nutr 1992;23:67-103.
17. Fidrianny I, Suhendy H, Inasun M. Correlation of phytochemical content with an antioxidant potential of various sweet potato (Ipomoea batatas) in West Java, Indonesia. Asian Pac J Trop Biomed 2018;8:25-30.
18. Arun ET, Furuta S, Sugamoto K, Shimizu K, Ishikawa H, Matsushita YL, et al. The inhibitory effects of representative chalcones contained in Angelica keiskei on melanin biosynthesis in B16 melanoma cells. Nat Prod Commun 2012;7:1007-10.
19. Lee JH, Mei HC, Kuo I, Lee TH, Chen YH, Lee CK. Characterizing tyrosinase modulators from the roots of Angelica keiskei using tyrosinase inhibition assay and UPLC-MS/MS as the combinatorial novel approach. Molecules 2019;24:3297.
20. Li L, Ben Y, Yuan S, Jiang S, Xu J, Zhang X. Efficacy, stability, and biosafety of sifuvirtide gel as a microbicide candidate against HIV-1. PloS One 2012;7:e37381.
21. Fidrianny I, Suhendy H, Inasun M. Correlation of phytochemical content with an antioxidant potential of various sweet potato (Ipomoea batatas) in West Java, Indonesia. Asian Pac J Trop Biomed 2018;8:25-30.
22. Arun ET, Furuta S, Sugamoto K, Shimizu K, Ishikawa H, Matsushita YL, et al. The inhibitory effects of representative chalcones contained in Angelica keiskei on melanin biosynthesis in B16 melanoma cells. Nat Prod Commun 2012;7:1007-10.
23. Lee JH, Mei HC, Kuo I, Lee TH, Chen YH, Lee CK. Characterizing tyrosinase modulators from the roots of Angelica keiskei using tyrosinase inhibition assay and UPLC-MS/MS as the combinatorial novel approach. Molecules 2019;24:3297.
24. Li L, Ben Y, Yuan S, Jiang S, Xu J, Zhang X. Efficacy, stability, and biosafety of sifuvirtide gel as a microbicide candidate against HIV-1. PloS One 2012;7:e37381.
25. Benson HA. Transdermal drug delivery: penetration enhancement techniques. Curr Drug Delivery 2005;2:23-33.
26. Patil PM, Wankhedke SB, Chaudhari PD. Stability-indicating HPLC method for simultaneous determination of Ketoprofen, methylparaben and propylparaben in gel formulation. Int J Pharm Res 2013;5:945-53.
27. Dey S, Mazumder B, Patel IR. Enhanced percutaneous permeability of acyclovir by DMSO from topical gel formulation. Int J Pharm Sci Drug Res 2009;1:13-8.
28. Shukr M, Metwally GF. Evaluation of topical gel bases formulated with various essential oils for antibacterial activity against methicillin-resistant staphylococcus aureus. Trop J Pharm Res 2013;12:877-84.
29. Lakshmana PS, Shriramkumar A, Shriram Kumar A. Evaluation of rosin as a cream base for topical ketocanazole preparation. Pharm Res 2009;8:89-92.
30. Sareen R, Bhardwaj V, Mehta V, Sharma A. Topical gel incorporated with non-ionic surfactant based solid lipid microspheres of ketoprofen: physicochemical analysis and anti-inflammatory evaluation. Int J Pharm Sci 2016;72:200-6.