SpinT structure and Dirac operator on Riemannian manifolds

Şenay BULUT
(Department of Mathematics, Anadolu University, Eskisehir, TURKEY)
skarapazar@anadolu.edu.tr
Ali Kemal ERKOCA
(Department of Mathematics, Anadolu University, Eskisehir, TURKEY)
ake@anadolu.edu.tr

Abstract

In this paper, we describe the group Spin$^T(n)$ and give some properties of this group. We construct SpinT spinor bundle \mathcal{S} by means of the spinor representation of the group Spin$^T(n)$ and define covariant derivative operator and Dirac operator on \mathcal{S}. Finally, Schrödinger-Lichnerowicz-type formula is derived by using these operators.

Key Words Spinor bundle, the group Spin$^T(n)$, Dirac operator, Schrödinger-Lichnerowicz-type formula.

2000 MR Subject Classification 15A66, 58Jxx.

1 Introduction

Spin and Spinc structures is effective tool to study the geometry and topology of manifolds, especially in dimension four. Spin and Spinc manifolds have been studied extensively in \cite{2,3,4,5}. For any compact Lie group G the SpinG structure have been studied in \cite{1}. However, the spinor representation is replaced by a hyperkahler manifold, also called target manifold. In this paper, we define the Lie group Spin$^T(n)$ as a quotient group by taking $G = S^1 \times S^1$. The groups Spin(n) and Spin$^c(n)$ are the subset of Spin$^T(n)$. We define SpinT structure on any Riemannian manifold. The spinor representation of Spin$^T(n)$ is defined by the help of the spinor representation of Spin(n). By using the spinor representation of Spin$^T(n)$ we construct the SpinT spinor bundle \mathcal{S}. Finally, we give Schrödinger-Lichnerowicz-type formula by using covariant derivative operator and Dirac operator on \mathcal{S}.

This paper is organized as follows. We begin with a section introducing the group Spin$^T(n)$. In the following section, we define SpinT structure on any Riemannian manifold. The final section is dedicated to the construction of
the spinor bundle S, the study of the Dirac operator associated to Levi-Civita connection ∇ and Schrödinger-Lichnerowicz-type formula.

2 The group $\text{Spin}^T(n)$

Definition 1 The Spin^T group is defined as

$$\text{Spin}^T(n) := (\text{Spin}(n) \times S^1 \times S^1)/\{\pm 1\}.$$

The elements of $\text{Spin}^T(n)$ are thus classes $[g, z_1, z_2]$ of pairs $(g, z_1, z_2) \in \text{Spin}(n) \times S^1 \times S^1$ under the equivalence relation

$$(g, z_1, z_2) \sim (-g, -z_1, -z_2).$$

We can define the following homomorphisms:

a. The map $\lambda^T : \text{Spin}^T(n) \longrightarrow \text{SO}(n)$ is given by $\lambda^T([g, z_1, z_2]) = \lambda(g)$ where the map $\lambda : \text{Spin}(n) \rightarrow \text{SO}(n)$ is the two-fold covering given by $\lambda(g)(v) = gvg^{-1}$.

b. $i : \text{Spin}(n) \longrightarrow \text{Spin}^T(n)$ is the natural inclusion map $i(g) = [g, 1, 1]$.

c. $j : S^1 \times S^1 \longrightarrow \text{Spin}^T(n)$ is the inclusion map $j(z_1, z_2) = [1, z_1, z_2]$.

d. $l : \text{Spin}^T(n) \longrightarrow S^1 \times S^1$ is given by $l([g, z_1, z_2]) = (z_1^2, z_1z_2)$.

e. $p : \text{Spin}^T(n) \longrightarrow \text{SO}(n) \times S^1 \times S^1$ is given by $p([g, z_1, z_2]) = (\lambda(g), z_1^2, z_1z_2)$.

Hence, $p = \lambda^T \times l$. Here p is a 2-fold covering.

Thus, we obtain the following commutative diagram where the row and the column are exact.

\[
\begin{array}{ccccccccc}
1 & \rightarrow & \mathbb{Z}_2 & \rightarrow & \text{Spin}^T(n) & \rightarrow & \text{SO}(n) & \rightarrow & 1 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
S^1 \times S^1 & \rightarrow & \text{Spin}(n) & \rightarrow & S^1 \times S^1 & \rightarrow & 1 \\
\downarrow & & \downarrow_j & & \downarrow_i & & \downarrow_l & & \downarrow_{\lambda^T} \\
1 & \rightarrow & 1 & \rightarrow & \text{Spin}(n) & \rightarrow & S^1 \times S^1 & \rightarrow & 1 \\
\end{array}
\]

Moreover, we have the following exact sequence:

$$1 \rightarrow \mathbb{Z}_2 \rightarrow \text{Spin}^T(n) \rightarrow \text{SO}(n) \times S^1 \times S^1 \rightarrow 1.$$
Theorem 2 The group Spin⁰(n) is isomorphic to Spin⁺(n) × S¹.

Proof We define the map ϕ in the following way:

\[
\begin{array}{ccc}
\text{Spin}(n) \times S¹ \times S¹ & \xrightarrow{\varphi} & \text{Spin}⁺(n) \times S¹ \\
(g, z₁, z₂) & \mapsto & ([g, z₁], z₁z₂)
\end{array}
\]

It can be easily shown that ϕ is a surjective homomorphism and the kernel of ϕ is \{(1, 1, 1), (−1, −1, −1)\}. Thus, the group Spin⁰(n) is isomorphic to Spin⁺(n) × S¹. □

Since Spin(n) is contained in the complex Clifford algebra \(\mathbb{C}l_n\), the spin representation κ of the group Spin(n) extends to a Spin⁰(n)-representation. For an element \([g, z₁, z₂] \in \text{Spin}(n)\) and any spinor \(ψ \in \Delta_n\), the spinor representation \(κ^T\) of Spin⁰(n) is given by

\[
κ^T[g, z₁, z₂]ψ = z₁π₂z₂κ(g)(ψ).
\]

Proposition 3 If \(n = 2k + 1\) is odd, then \(κ^T\) is irreducible.

Proof Assume that \(\{0\} \neq W \neq \Delta_{2k+1}\) is a Spin⁰ invariant subspace. Thus, we have \(κ^T[g, z₁, z₂](W) \subseteq W\). That is, \(z₁π₂z₂κ(g)(W) \subseteq W\). In this case, for every \(w \in W\) there exists a \(w' \in W\) such that \(z₁π₂z₂κ(g)(w) = w'\). As \(κ(g)(w) = \frac{1}{z₁π₂z₂}w' \in W\) and the representation \(κ\) of Spin(n) is irreducible if \(n\) is odd, this is a contradiction. The representation \(κ^T\) of Spin⁰(n) has to be irreducible for \(n = 2k + 1\).

□

Proposition 4 If \(n = 2k\) is even, then the spinor space \(\Delta_{2k}\) decomposes into two subspaces \(\Delta_{2k}^+ \oplus \Delta_{2k}^−\).

Proof We know that the Spin(n) representation \(\Delta_{2k}\) decomposes into two subspaces \(\Delta_{2k}^+ \oplus \Delta_{2k}^−\). Thus, we obtain \(z₁π₂z₂κ(g)(\Delta_{2k}^+) \subseteq \Delta_{2k}^+\) and \(z₁π₂z₂κ(g)(\Delta_{2k}^-) \subseteq \Delta_{2k}^−\). Namely, \(κ^T[g, z₁, z₂](\Delta_{2k}^+) \subseteq \Delta_{2k}^+\) and \(κ^T[g, z₁, z₂](\Delta_{2k}^-) \subseteq \Delta_{2k}^−\). Hence, the Spin⁰(2k) representation \(\Delta_{2k}\) decomposes into two subspaces \(\Delta_{2k}^+ \oplus \Delta_{2k}^−\).

It can be easily seen that the Spin⁰(2k) representation \(\Delta_{2k}^±\) is irreducible. □

The Lie algebra of the group Spin⁰(n) is described by

\[
\text{spin}⁰(n) = \mathfrak{m}_₂ \oplus i\mathbb{R} \oplus i\mathbb{R}.
\]

The differential \(p_* : \text{spin}⁰(n) \rightarrow \mathfrak{so}(n) \oplus i\mathbb{R} \oplus i\mathbb{R}\) is defined by

\[
p_*(e_\alpha e_\beta, λi, μi) = (2E_{αβ}, 2λi, (λ + μ)i)
\]

where \(λ\) and \(μ\) are any real numbers and \(E_{αβ}\) is the \(n \times n\) matrix with entries \((E_{αβ})_{αβ} = −1, (E_{αβ})_{βα} = 1\) and all others are equal to zero. The inverse of the differential \(p_*\) is given by

\[
p_*^{-1}(E_{αβ}, λi, μi) = (\frac{1}{2}e_α e_β, \frac{1}{2}λi, (μ - \frac{1}{2}λ)i).
\]
3 SpinT structure

Definition 5 A SpinT structure on an oriented Riemannian manifold (M^n, g) is a Spin$^T(n)$ principal bundle $P_{\text{Spin}^T(n)}$ together with a smooth map $\Lambda : P_{\text{Spin}^T(n)} \to P_{\text{SO}(n)}$ such that the following diagram commutes:

\[
\begin{array}{ccc}
P_{\text{Spin}^T(n)} \times \text{Spin}^T(n) & \xrightarrow{\Lambda \times \lambda^T} & P_{\text{Spin}^T(n)} \\
\downarrow & & \downarrow \\
P_{\text{SO}(n)} \times \text{SO}(n) & \xrightarrow{\Lambda} & P_{\text{SO}(n)}
\end{array}
\]

From above definition we can construct a two-fold covering map

$$\Pi : P_{\text{Spin}^T(n)} \to P_{\text{SO}(n)} \times P_{S^1 \times S^1}.$$

Given a SpinT structure $(P_{\text{Spin}^T(n)}, \Lambda)$, the map $\lambda^T : \text{Spin}^T(n) \to \text{SO}(n)$ induces an isomorphism

$$P_{\text{Spin}^T(n)} / S^1 \times S^1 \cong P_{\text{SO}(n)}.$$

In similar way, $\text{Spin}^T(n) / \text{Spin}(n) \cong S^1 \times S^1$ implies the isomorphism

$$P_{\text{Spin}^T(n)} / \text{Spin}(n) \cong P_{S^1 \times S^1}.$$

Note that on account of the inclusion map $i : \text{Spin}(n) \to \text{Spin}^T(n)$, every spin structure on M induces a SpinT structure. Similarly, since there exists a inclusion map $\text{Spin}^c(n) \to \text{Spin}^T(n)$, every Spinc structure on M induces a SpinT structure.

4 Spinor bundle and Dirac operator

Let (M^n, g) be an oriented connected Riemannian manifold and $P_{\text{SO}(n)} \to M$ the $\text{SO}(n)$–principal bundle of positively oriented orthonormal frames. The Levi-Civita connection ∇ on $P_{\text{SO}(n)}$ determine a connection 1–form ω on the principal bundle $P_{\text{SO}(n)}$ with values in $\mathfrak{so}(n)$, locally given by

$$\omega^e = \sum_{i<j} g(\nabla e_i, e_j) E_{ij}$$

where $e = \{e_1, \ldots, e_n\}$ is a local section of $P_{\text{SO}(n)}$ and E_{ij} is the $n \times n$ matrix with entries $(E_{ij})_{ij} = -1$, $(E_{ij})_{ji} = 1$ and all others are equal to zero.

We fix a connection

$$(A, B) : TP_{S^1 \times S^1} \to i\mathbb{R} \oplus i\mathbb{R}$$

on the principal bundle $P_{S^1 \times S^1}$. The connections ω and (A, B) induce a connection

$$\omega \times (A, B) : T(P_{\text{SO}(n)} \times P_{S^1 \times S^1}) \to \mathfrak{so}(n) \oplus i\mathbb{R} \oplus i\mathbb{R}$$
SpinT structure and Dirac operator

on the fibre product bundle $P_{SO(n)} \times P_{S^1 \times S^1}$. Now we can define a connection
1–form $\omega \times (A, B)$ on the principal bundle $P_{Spin^T(n)}$ such that the following
diagram commutes:

$$
\begin{array}{ccc}
TP_{Spin^T(n)} & \xrightarrow{\omega \times (A, B)} & \text{spin}^T(n) \\
\Pi_* & & p_* \\
T(P_{SO(n)} \times P_{S^1 \times S^1}) & \xrightarrow{\omega \times (A, B)} & \mathfrak{so}(n) \oplus i\mathbb{R} \oplus i\mathbb{R}
\end{array}
$$

That is, the equality

$$
p_* \circ \omega \times (A, B) = \omega \times (A, B) \circ \Pi_*
$$

holds.

Definition 6 The spinor bundle of a SpinT manifold is defined as the associated
vector bundle

$$
\mathcal{S} = P_{Spin^T(n)} \times_{\kappa^T} \Delta_n
$$

where $\kappa^T : Spin^T(n) \to GL(\Delta_n)$ is the spinor representation of Spin$^T(n)$. In
the case of $n = 2k$ the spinor bundle splits into the sum of two subbundles \mathcal{S}^+ and \mathcal{S}^- such that

$$
\mathcal{S} = \mathcal{S}^+ \oplus \mathcal{S}^-, \quad \mathcal{S}^\pm = P_{Spin^T(n)} \times_{\kappa^T} \Delta^\pm_n.
$$

Any spinor field ψ can be identified with the map $\psi : P_{Spin^T(n)} \to \Delta_n$ satisfying
the transformation rule $\psi(pg) = \kappa^T(g^{-1}) \psi(p)$. The absolute differential of a
section ψ with respect to $\omega \times (A, B)$ determines a covariant derivative

$$
\tilde{\nabla} : \Gamma(\mathcal{S}) \to \Gamma(T^*M \otimes \mathcal{S})
$$

given by

$$
\tilde{\nabla} \psi = d\psi + \kappa^T_{*,1}(\omega \times (A, B))\psi
$$

where $\kappa^T_{*,1} : \text{spin}^T(n) \to \text{End}(\Delta_n)$ is the derivative of κ at the identity
$1 \in Spin^T(n)$. It can be also shown that

$$
\kappa^T_{*,1}(e_\alpha e_\beta, \lambda i, \mu i) = \kappa(e_\alpha e_\beta) + (2\lambda i + \mu i)Id
$$

where λ and μ are any real numbers and κ is the spin representation of the
group Spin(n).

Now we give the local formulas for connections. Fix a section $s : U \to P_{S^1 \times S^1}$
of the principal bundle $P_{S^1 \times S^1}$. Then, we obtain the local connection form

$$
(A^*, B^*) : TU \to i\mathbb{R} \oplus i\mathbb{R}
$$

where $A^*, B^* : TU \to i\mathbb{R}$. $e \times s : U \to P_{SO(n)} \times P_{S^1 \times S^1}$ is a local section
of the fiber product bundle $P_{SO(n)} \times P_{S^1 \times S^1}$. $e \times s$ is a lift of this section to the
two-fold covering $\Pi : P_{Spin^c(n)} \to P_{SO(n)} \times P_{S^1 \times S^1}$. The local connection form $\omega \times (A, B)$ on the principal bundle $P_{Spin^c(n)}$ is given by the formula

$$\omega \times (A, B) = \left(\frac{1}{2} \sum_{i<j} g(\nabla e_i, e_j) e_i e_j, \frac{1}{2} A^s, B^s - \frac{1}{2} A^s \right)$$

Hence, this connection form induces a connection $\tilde{\nabla}$ on the spinor bundle S. We can locally describe $\tilde{\nabla}$ by

$$\tilde{\nabla}_X \psi = d\psi(X) + \frac{1}{2} \sum_{i<j} g(\nabla_X e_i, e_j) e_i e_j \psi + \frac{1}{2} A^s \psi + B^s \psi \quad (1)$$

where $\psi : U \to \Delta_n$ is a section of the spinor bundle S.

Definition 7 The first order differential operator

$$D = \mu \circ \tilde{\nabla} : \Gamma(S) \to \Gamma(T^* M \otimes S) \to \Gamma(S)$$

where μ denotes Clifford multiplication, is called the Dirac operator.

The Dirac operator D is locally given by

$$D\psi = \sum_{i=1}^n e_i \cdot \tilde{\nabla}_{e_i} \psi \quad (2)$$

where $\{e_1, \ldots, e_n\}$ is a local orthonormal frame on the manifold M.

The Dirac operator has the following property:

Theorem 8 Let f be a smooth function and $\psi \in \Gamma(S)$ be a spinor field. Then,

$$D(f \cdot \psi) = (\text{grad} f \cdot \psi) + f D\psi.$$

Proof By using the definition of the Dirac operator D we can compute $D(f \cdot \psi)$ as follows:

$$D(f \cdot \psi) = \sum_{i=1}^n e_i \cdot \tilde{\nabla}_{e_i} (f \cdot \psi)$$

$$= \sum_{i=1}^n e_i \cdot (e_i(f) \cdot \psi + f \tilde{\nabla}_{e_i} \psi)$$

$$= \sum_{i=1}^n e_i(f) e_i \cdot \psi + f \sum_{i=1}^n e_i \cdot \tilde{\nabla}_{e_i} \psi$$

$$= (\text{grad} f) \cdot \psi + f D\psi$$

□

Now we can define the Laplace operator on the spinor bundle S.

Definition 9 Let $\psi \in \Gamma(S)$ be a spinor field. The Laplace operator Δ on spinors is defined by

$$\Delta \psi = -\sum_{i=1}^n \left(\tilde{\nabla}_{e_i} \tilde{\nabla}_{e_i} \psi + \text{div}(e_i) \tilde{\nabla}_{e_i} \psi \right). \quad (3)$$
4.1 Schrödinger-Lichnerowicz type formula

The square D^2 of the Dirac operator and the Laplace operator Δ are second order differential operators. We derive Schrödinger-Lichnerowicz type formula by computing their difference $D^2 - \Delta$.

The curvature R^S of the spinor covariant derivative $\tilde{\nabla}$ is an $\text{End}(S)$ valued 2-form by

$$R^S(X,Y)\psi = \tilde{\nabla}_X \tilde{\nabla}_Y \psi - \tilde{\nabla}_Y \tilde{\nabla}_X \psi - \tilde{\nabla}_{[X,Y]} \psi$$

where $\psi \in \Gamma(S)$ and $X,Y \in \Gamma(TM)$. Now we want to describe R^S in terms of the curvature tensor R.

Let $\Omega^\omega : TP_{\text{SO}(n)} \times TP_{\text{SO}(n)} \to \mathfrak{so}(n)$ be the curvature form of the Levi-Civita connection with the components

$$\Omega^\omega_{ij} = \sum_{i<j} \Omega_{ij}^* E_{ij}$$

where $\Omega_{ij} : TP_{\text{SO}(n)} \times TP_{\text{SO}(n)} \to \mathbb{R}$. The commutative diagram defining the connection $\omega \times (A,B)$ implies that the curvature form of $\omega \times (A,B)$ is

$$\Omega^{\omega \times (A,B)} = \frac{1}{2} \sum_{i<j} \Pi^* (\Omega_{ij}) e_i e_j + \frac{1}{2} \Pi^* (dA) \oplus \Pi^* (dB).$$

Hence the 2-form R^S with values in the spinor bundle S is obtained by the following formula:

$$R^S(.,.)\psi = \frac{1}{2} \sum_{i<j} \Omega_{ij} e_i e_j \cdot \psi + \frac{1}{2} dA \cdot \psi + dB \cdot \psi.$$

Let $\{e_1, \ldots, e_n\}$ be orthonormal frame field, $\Omega_{ij}(X,Y) = g(R(X,Y)e_i, e_j)$ the components of the curvature form of the Levi-Civita connection,

$$X = \sum_{k=1}^{n} X^k e_k$$

and

$$Y = \sum_{l=1}^{n} Y^l e_l$$

be vector fields on the Riemannian manifold M. Then we have

$$\Omega_{ij}(X,Y) = g(R(X,Y)e_i, e_j) = \sum_{k,l=1}^{n} R_{klij} X^k Y^l$$

$$= \sum_{k,l=1}^{n} R_{klij} e^k(X) e^l(Y)$$

$$= \frac{1}{2} \sum_{k,l=1}^{n} R_{klij} (e^k \wedge e^l)(X,Y).$$

where $\{e^1, \ldots, e^n\}$ is the frame dual to $\{e_1, \ldots, e_n\}$. Thus, we obtain the following local formula for the curvature form

$$\Omega^{\omega \times (A,B)} = \frac{1}{4} \sum_{i<j} \sum_{k,l=1}^{n} R_{klij} (e^k \wedge e^l) e_i e_j + \frac{1}{2} dA + dB.$$
S. Bulut and A. K. Erkoca

and the 2-form $R^S(\cdot, \cdot)$ is calculated as follows:

$$R^S(\cdot, \cdot) = \frac{1}{4} \sum_{i<j,k,l=1}^n R_{klij} (e^k \wedge e^l) e_i e_j \cdot \psi + \frac{1}{2} dA \cdot \psi + dB \cdot \psi.$$

By using the above properties of the curvature form R^S on spinor bundle S we deduce the following result:

Proposition 10 Let Ric be the Ricci tensor. Then, the following relation holds:

$$\sum_{\alpha=1}^n e_\alpha \cdot R^S(X, e_\alpha) \psi = -\frac{1}{2} \text{Ric}(X) \cdot \psi + \frac{1}{2} (X \lrcorner dA) \cdot \psi + (X \lrcorner dB) \cdot \psi \quad (4)$$

Proof In [2] it is proved the following relation:

$$\sum_{\alpha=1}^n \sum_{i<j,k,l=1}^n R_{klij} (e^k \wedge e^l) e_\alpha e_i e_j \cdot \psi = -2 \text{Ric}(X) \cdot \psi \quad (5)$$

It can be easily seen the following two relations:

$$\sum_{\alpha=1}^n e_\alpha \cdot dA(X, e_\alpha) \cdot \psi = (X \lrcorner dA) \cdot \psi \quad (6)$$

and

$$\sum_{\alpha=1}^n e_\alpha \cdot dB(X, e_\alpha) \cdot \psi = (X \lrcorner dB) \cdot \psi. \quad (7)$$

Then, using (5), (6) and (7), we obtain the claimed equivalence. □

Now, we derive Schrödinger-Lichnerowicz-type formula in the following way:

Proposition 11 Let s be scalar curvature of the Riemannian manifold and let $dA = \Omega^A$ and $dB = \Omega^B$ be the imaginary-valued 2–forms of the connections (A, B) in the $(S^1 \times S^1)$–bundle associated with Spin^7 structure. Then, we have the following formula:

$$D^2 \psi = \Delta \psi + \frac{s}{4} \psi + \frac{1}{2} dA \cdot \psi + dB \cdot \psi.$$

Proof

$$D^2 \psi = \sum_{i,j} e_i \cdot \nabla_{e_i} (e_j \cdot \nabla_{e_j} \psi)$$

$$= \sum_{i,j} e_i \cdot \nabla_{e_i} e_j \cdot \nabla_{e_j} \psi + e_i e_j \cdot \nabla_{e_i} \nabla_{e_j} \psi$$

$$= \sum_{i,j,k} g(\nabla_{e_i} e_j, e_k) e_i e_k \cdot \nabla_{e_j} \psi + \sum_{i,j} e_i e_j \cdot \nabla_{e_i} \nabla_{e_j} \psi \quad (8)$$

$$= \Delta \psi + \sum_{j,i \neq k} g(\nabla_{e_i} e_j, e_k) e_i e_k \cdot \nabla_{e_j} \psi + \sum_{i \neq j} e_i e_j \cdot \nabla_{e_i} \nabla_{e_j} \psi$$
Spinc structure and Dirac operator

Now we can calculate the following sum:

$$\sum_{i \neq k} g(\nabla_{e_i} e_j, e_k) e_i e_k = -\sum_{i \neq k} g(e_j, \nabla_{e_i} e_k) e_i e_k$$

$$= -\sum_{i < k} g(e_j, \nabla_{e_i} e_k - \nabla_{e_k} e_i) e_i e_k$$

$$= \sum_{i < k} g(e_j, [e_k, e_i]) e_i e_k$$

From (8) we get

$$D^2 \psi = \Delta \psi + \sum_{j, i < k} g([e_j, e_k], e_i e_k) \nabla_{e_j} \nabla_{e_i} \psi + \sum_{i < j} e_i e_j \cdot (\nabla_{e_i} \nabla_{e_j} \psi - \nabla_{e_j} \nabla_{e_i} \psi)$$

$$= \Delta \psi + \sum_{i < j} e_i e_j (\nabla_{e_i} \nabla_{e_j} \psi - \nabla_{e_j} \nabla_{e_i} \psi - \nabla_{[e_i, e_j]} \psi)$$

$$= \Delta \psi + \frac{1}{2} \sum_{i, j} e_i e_j R^S(e_i, e_j) \psi.$$

Using the identity (4) and multiplying by e_i we deduce

$$D^2 \psi = \Delta \psi - \frac{1}{4} \sum_i e_i \text{Ric}(e_i) \cdot \psi + \frac{1}{4} \sum_i e_i \cdot (e_i \cup dA) \cdot \psi + \frac{1}{2} \sum_i e_i \cdot (e_i \cup dB) \cdot \psi$$

$$= \Delta \psi + \frac{s}{4} \psi + \frac{1}{2} dA \cdot \psi + dB \cdot \psi.$$

□

References

[1] Thakre, V., Dimensional reduction of non-linear Seiberg-Witten equations, arXiv:1502.01486v1.

[2] Friedrich, T., Dirac operators in Riemannian Geometry, AMS, 2000.

[3] Lawson, H. B., Michelsohn, M.L., Spin Geometry, Princeton Univ., 1989.

[4] Salamon, D.A., Spin Geometry and Seiberg-Witten invariants, in preparation.

[5] Nicolaescu, L. I., Lectures on the Geometry of Manifolds, World Scientific, 2007.