ABSTRACT

Introduction: Cervical cancer can be successfully prevented by effective treatment. Aim: Analyse of success of cryotherapy in LSIL and ASCUS. Materials et methods: In retrospective study between January 2016 to March 2017, 3244 PAP test were analysed. 257 patients who had been diagnosed with LSIL and ASCUS from PAP smear were divided in two groups: women who had HPV positive, colposcopic positive and cytologic finding of LSIL or ASCUS treated with cryotherapy and women with LSIL, ASCUS and negative colposcopy. X² test was used for statistical analysis of data. Results: Analysis of 3244 PAP smears showed negative for intraepithelial lesion or malignancy (NILM) in 90,10% (N-2923), and abnormal in 9,8% (N-321) of women. ASCUS was found in 4,8% (N-156) and ASC-H in 0,2% (N-6), LSIL in 3,1% (N-101), HSIL in 0,64% (N-21). The average age of patients with ASCUS lesion was 41 ± 12 years. After cryotherapy, HSIL had progression in 1,5% (N-1), persistence in 6,3% (N-4) and regression in 91,7% (N-58). Progression occurred in 10,5% (N-4) of HSIL, persistence in 52,6% (N-20) and regression in 36,7% (N-14) in 38 women with LSIL lesion after repeated PAP test. Progression occurred in 8% (N-10) of LSIL and 4% HSIL (N-5), persistence in 58% (N-72) and regression in 29,8% (N-37) in 124 women with ASCUS lesion after treatment and repeated PAP test. Difference in progression lesions in HSIL between women with cryotherapy (1,5%) and follow-up (10,5%) after LSIL is not significant, but progression to CIN II occurred after cryotherapy. CIN III or cervical cancer was not found. Conclusion: Cryotherapy prevents progression of LSIL in HSIL and in cervical cancer. Because of that cryotherapy is successful method in prevention of cervical cancer.

Keywords: cryotherapy, HPV, ASCUS, LSIL.

1. INTRODUCTION

Cervical cancer can be successfully prevented if timely identification of precancerous lesions is followed by effective treatment (1). Women with low squamous grade (LSIL) have minimal potential for developing cervical malignancy, while those with high grade lesions are at high risk of progression to malignancy (2). In managing women with LSIL, the goal is to prevent possible progression to invasive cancer while avoiding overtreatment of lesions that are likely to regress. Management of LSIL is based upon correlation of the cervical cytology findings, colposcopic impression, cervical biopsy results, and individual patient characteristics, such as age, pregnancy, and the likelihood of compliance with treatment recommendations (3).

Untreated LSIL has a risk of 13% for diagnosis of High grade squamous lesion (HSIL) at two-year follow-up, which is the same as the risk for ASC HPV-positive or LSIL cytology results following a negative colposcopy. However, most cases of LSIL will remit spontaneously over time (4). The decision for treatment or observation should be based on the preferences of the patient and the physician. For most women, especially younger women, observation provides the best balance between risk and benefit and should be encouraged. Follow-up of untreated LSIL should include two cytology screening tests six months apart, with colposcopy for an ASC or higher-grade result, or a single HPV test with colposcopy if the test result is positive (5).

Cryotherapy is a method for the treatment of cervical precancerous lesions (6) that is considered the most suitable option to use in low-resource settings with underserved populations because it is low cost, requires no anesthesia or electricity, and has low complications rate (7). If the final diagnosis in a woman is a LSIL, the clinical management may take one of
the following courses; either to (a) immediately treat the lesion or (b) follow the woman cytologically or colposcopically and then treat if the lesion is persistent or progressive after 18 to 24 months, and if regression occurs (8, 9, 10). After cryotherapy, healing of the cervix is grossly apparent by three or four weeks, cytological and colposcopic appearances will continue to reflect healing or regenerative effects for approximately three months (11, 12). Local cervical immunity in women with LSIL after cryotherapy is increased, an increase of IgA may partly support the clearance rate of HPV infection (13). If the follow-up visit reveals no evidence of persistent disease, the woman is advised to participate in the screening programme. If persistent disease is found during the follow-up visit, appropriate investigations and appropriate treatment should be carried out.

2. AIM

Analyse of success of cryotherapy in women with LSIL and ASCUS.

3. PATIENTS AND METHODS

In retrospective study which was conducted between January 2016 to March 2017, 3244 PAP test were analysed. Total amount of 257 patients who had been diagnosed with LSIL and ASCUS from PAP smear were divided in two groups:

a) Women who had HPV positive, colposcopic positive and cytologic finding of LSIL or ASCUS treated with cryotherapy and
b) Women with LSIL, ASCUS and negative colposcopy.

Cryotherapy was done using compressed N₂O refrigerant with the aim of creating an ice ball with a depth of freeze denoted by a peripheral margin of 4-5 mm of frost. The hypothermia produced by ice ball, results in ice crystal formation within cervical tissue leading to tissue destruction. To freeze the lesion, the cryoprobe is placed on the cervix, covering the entire lesion but not touching the vaginal wall. The coolant gas is allowed to flow through the metal tip of the cryoprobe.

Cryotherapy treatment is performed using cryosurgical unit (model MGC-200) and double-freeze technique. The double-freeze technique involves applying the coolant continuously for 3-min freeze, followed immediately by 5-min thaw, followed by another 3-min freeze. Results of study were gained comparing LSIL and ASCUS after cryotherapy and LSIL and ASCUS after observation (follow-up). X² test was used for statistical analysis of data.

4. RESULTS

Analysis of 3244 PAP smears showed negative for intraepithelial lesion or malignancy (NILM) in 90,10% (N=2923), and abnormal in 9,9% (N=321) of women. ASCUS was found in 4,8% (N=156) and ASC-H in 0,2% (N=6), LSIL in 3,1% (N=101), HSIL in 0,64% (N=21). The average age of patients with ASCUS lesion was 41 ± 12 years (Table 1).

Table 1. Demographic data of our sample

Demographic Data	Results
Age	41±12
BW	68±10,2
Result of PAP smears	3244 (100%)
NILM	2923 (90,10%)
Abnormal PAP smears	321 (9,8%)

Table 2. Women follow-up 12 months after cryotherapy and observation

Cryotherapy LSIL NIML ASCUS CIN I CIN II	63 55 3 4 1
100%	87,3% 4,7% 6,3% 1,5%
Results	87,3% 12,5%

Table 3. Follow-up results of women with LSIL 12 months after cryotherapy. NIML: negative for intraepithelial lesion or malignancy

After cryotherapy, HSIL had progression in 1,5% (N-1), persistence in 6,3% (N-4) and regression in 91,7% (N-58) in this period of time (Table 3).

Observation LSIL NIML ASCUS LSIL HSIL	38 11 3 20 4
100%	28,9% 7,8% 52,6% 10,5%
Results	28,9% 7,8% 52,6% 10,5%

Table 4. Follow-up results of women with LSIL 12 months after observation

Progression of LSIL to HSIL occured in 10,5% (N=4), persistence in 52,6% (N=20) and regression in 36,7% (N=14) in 38 women after repeated PAP test (Table 4).

Cryotherapy ASCUS NIML ASCUS	32 30 2
100%	93,7% 6,2%
Results	93,7% 6,2%

Table 5. Follow-up results of women with ASCUS 12 months after cryotherapy

After cryotherapy there was no progression into LSIL and HSIL, persistence occurred in 6,2% (N-2) and regression in 93,7% (N-30) in this period of time (Table 5).

Progression occured in 8% (N=10) LSIL and 4% HSIL (N-5), persistence in 58% (N-72) and regression in 29,8% (N=37) in 124 women with ASCUS lesion after treatment and repeated PAP test (Table 6).
Patients with ASC-H lesion 0.2% (N-6) were transferred to biopsy of cervix where PH results showed 33% (N-2) Carcinoma in situ (CIS), 33% (N-2) HSIL and 33% (N-2) LSIL. High risk of HPV was found by 51% (N-80) women with ASCUS and 71% (N-72) women with LSIL.

5. DISCUSSION

A systematic review of cryotherapy performed in 2004 showed that cryotherapy is approximately 90% effective for all grades of CIN when assessed 1 year after cryotherapy, based mainly on studies from developed countries (14). Our results present cure rates of 89.3% (N-55) by women who underwent cryotherapy. Authors from Kenya cited cure rates of 81%, cure rate of 88% was achieved by nurses in Southern India and 97% overall by physician in Peruvia and Ghanaian (15, 16). After cryotherapy, progression of LSIL lesions in HSIL occurred in 1.5% (N-1), persistence of lesion in 6.3% (N-4). Sasiens found progression rates of CIN in 1.5% of women treated for CIN II or CIN III at age 20–24 who would have developed cervical cancer (17). Some authors wrote that majority of LSIL lesions regress without medical intervention (18). Consequently, over–treatment at early stages should be avoided, especially in young women, and follow-up periods should be encouraged to make HPV clearance and avoid, especially in young women, and follow-up periods should be encouraged to make HPV clearance and regression of LSIL lesions in 57%, persistence in 32% and progression in 6% in 2-year follow-up. Other authors found regression rates of CIN in 1.5% of women treated for CIN II or CIN III at age 20–24 who would have developed cervical cancer (17). Some authors wrote that majority of LSIL lesions regress without medical intervention (18).

6. CONCLUSION

Cryotherapy prevents progression of LSIL in HSIL and in cervical cancer because in our study we found that there is a significantly less chance of LSIL progression after cryotherapy. In conclusion cryotherapy is a successful method in prevention of cervical cancer.

• Competing interests: The authors declare that they have no financial or personal relationship(s) that may have inappropriately influenced them in writing this article.
• Authors’ contribution: M.J., E.J, M.M, and A.H. were all directly involved in all aspects of research, from study design to reporting. All authors approved the final manuscript.

REFERENCES

1. Adewole IF, Babarinsa IA, Odeniyi GD. Cryotherapy in the management of cervical intraepithelial neoplasia in developing countries. Int J Gynaecol Obstet. 1998; 60: 69-70. doi: 10.1016/S0020-7292(97)00222-1.
2. Holowaty P, Miller A, Rohan T. Natural history of dysplasia of the uterine cervix. J Natl Cancer Inst. 1999; 91: 252-8.
3. Jacob M, Broekhuizen FF, Casto W, Sellers J. Experience using cryotherapy for treatment of cervical precancerous lesions in low-resource settings. Int J Gynaecol Obstet. 2005; 89 Suppl 2: S13-S20.
4. Castle PE, Sider M, Jornino J, Solomon D, Schiffman M. Risk assessment to guide the prevention of cervical cancer. Am J Obstet Gynecol. 2007; 197: 351-6.
5. Sasiens P, Castanon A, Parkin d. How many cervical cancers are prevented by treatment of screen-detected disease in young women? Int J Cancer. 2009; 124: 461-4.
6. Gaffikin L, Blumenthal PD, Emerson M, Limphaphayom K. Safety, acceptability, and feasibility of single-visit approach to cervical cancer prevention in rural Thailand a demonstration project. Lancet. 2003; 361: 816-20.
7. Jaha J. Infekcija grlica matrice i vagine i krioterapija, Identity Tuzla, 2017: 186-204.
8. Jaha J, Muladić M, Hadžimehmedvić A, Jaha E. Association between aerobic vaginitis, bacterial vaginoses and squamous intraepithelial lesion of low grade. Med Arch. 2013; 67(2): 94-6.
9. Barken S, Rebolj M, Lyne E, Junge J. Outcomes in cervical screening using various cytology technologies: what’s age got to do with it? Eur J Cancer Prev. 2014; 22(4): 367-73.
10. Sankaranarayanan R, Gaffikin L, Jakob M, Sellers J, Robles S. A critical assessment of screening methods for cervical neoplasia. Int J Gynaecol Obstet. 2005; 89 Suppl 2: 54-S12.
11. Sankaranarayanan R, Rajkumar R, Esmay P, Fayette J, Shanthakumary S, Frappart I. Effectiveness, safety and acceptability of cryotherapy by nurses in a cervical screening study in India. Br J Cancer. 2007; 96(5): 738-43.
12. Ekalaksanananan T, Malat P, Pientong C, Kangyingyoes B, Chumvorathayi B, Kleebakov P. Local cervical Immunity in Women with Low grade Squamous Intraepithelial Lesions and Immune Responses After Abrasion. Asian Pac Cancer Prev. 2014; 15(10): 4197-4201.
13. Luciani S, Gonzalez M, Munoz S, Jeronimo J, Robles S. Effectiveness of cryotherapy treatment for cervical intraepithelial neoplasia. Int J Gynaecol Obstet. 2008; 101(2): 172-117.
14. Alliance for Cervical Cancer Prevention (ACCP) Effective-

Observation	ASCUS	NIML	ASCUS	LSIL	HSIL
124	37	72	10	5	
100%	29.8%	58.0%	8.0%	4.0%	
Results	29.8%	58.0%	8.0%	4.0%	

Table 6. Follow-up results of women with ASCUS 12 months after observation

Cause	ASCUS (N-156)	LSIL (N-101)
High risk	80 (51%)	72 (71%)
Absent	76 (48%)	28 (27%)

Table 7. Distribution of patients in relation to HPV infection
ness, Safety, and Acceptability of Cryotherapy, a systematic literature review. 2003.

15. Lewis K, Sellors J, Dawa A, Tsu V, Kidula N. Report on a cryo-
therapy service for women with cervical intraepithelial neo-
plasia in a district hospital in western Kenya. African Health
Sciences. 2011; 11(3): 370-76.

16. Mosicicki AB, Hills N, Shiboski S, Powel K, Jay N, Hanson E.
Risk for incident human papilloma virus infection and low-
grade squamous intraepithelial lesion development in young
females. JAMA. 2001; 285: 2995-3002.

17. Sasieni PD, Cuzick J, Lynch-Farmery E. Estimating the effi-
cacy of screening by auditing smear histories of women with
and without cervical cancer. The National Co-ordinating
Network for Cervical Screening Working Group. Br J Can-
cer. 1996; 73: 1001-5.

18. Santos AL, Derchain SF, Sarian LO, et al. Performance of Pap
smear and human papilloma virus testing in the follow-up of
women with cervical intraepithelial neoplasia grade 1 man-
aged conservatively. Acta Obstet Gynecol Scand. 2006; 85: 444.

19. Ostör AG. Natural history of cervical intraepithelial neoplasia:
a critical review. Int J Gynecol Pathol. 1993; 12: 186.

20. Barken S, Rebolj M, Andersen E, Lynge B. Frequency of cervi-
cal intraepithelial neoplasia in well-screened population. Int J
Cancer. 2012; 130: 2438-44.

21. Cortes C, Gonzalez E, Morales J, Poblet E. Genotype as prog-
nostic factor in cervical intraepithelial neoplasia grade 1 le-
sions. J Turk Ger Gynecol Assoc. 2017; 18: 1-8.

22. Jahic M, Jahic E. Diagnostic approach to patients with atypi-
cal squamous cells of undetermined significance cytological
findings on cervix. Med Arch. 2016; 70 (4): 296-8.

23. Pretorius RG, Peterson P, Azizi F, Burchette RJ. Subsequent risk
and presentation of cervical intraepithelial neoplasia (CIN) 3
or cancer after a colposcopic diagnosis of CIN 1 or less. Am J
Obstet Gynecol. 2006; 195: 1260.