SYMMETRIC RECOLLEMENTS INDUCED BY BIMODULE EXTENSIONS

PU ZHANG

Department of Mathematics, Shanghai Jiao Tong University
Shanghai 200240, P. R. China

Abstract. Inspired by the work of Jørgensen [J], we define a (upper-, lower-) symmetric recollements; and give a one-one correspondence between the equivalent classes of the upper-symmetric recollements and one of the lower-symmetric recollements, of a triangulated category. Let \(\Lambda = \left(\begin{array}{cc} A & M \\ 0 & B \end{array} \right) \) with bimodule \(A_M = B_M \). We construct an upper-symmetric abelian category recollement of \(\Lambda\text{-}\text{mod} \); and a symmetric triangulated category recollement of \(\Lambda\text{-}\text{Gproj} \) if \(A \) and \(B \) are Gorenstein and \(A_M \) and \(M_B \) are projective.

Key words and phrases. abelian category, triangulated category, symmetric recollement, Gorenstein-projective modules

Introduction

A triangulated category recollement, introduced by A. A. Beilinson, J. Bernstein, and P. Deligne [BBD], and an abelian category recollement, formulated by V. Franjou and T. Pirashvili [FV], play an important role in algebraic geometry and in representation theory ([MV], [CPS], [K], [M]).

Recently, P. Jørgensen [J] observed that if a triangulated category \(C \) has a Serre functor, then a triangulated category recollement of \(C \) relative to \(C' \) and \(C'' \) can be interchanged in two ways to triangulated category recollements of \(C \) relative to \(C'' \) and \(C' \). Inspired by [J] we define in Section 2 a (upper-, lower-) symmetric recollement; and prove that there is a one-one correspondence between the equivalent classes of the upper-symmetric triangulated category recollements of \(C \) relative to \(C' \) and \(C'' \), and the ones of the lower-symmetric triangulated category recollements of \(C \) relative to \(C'' \) and \(C' \). Let \(A \) and \(B \) be Artin algebras, \(M \) an \(A\text{-}B \)-bimodule, and \(\Lambda = \left(\begin{array}{cc} A & M \\ 0 & B \end{array} \right) \) the upper triangular matrix algebra. We construct an upper-symmetric abelian category recollement of \(\Lambda\text{-}\text{mod} \), the category of finitely generated \(\Lambda \)-modules.

An important feature of Gorenstein-projective modules is that the category \(A\text{-Gproj} \) of Gorenstein-projective \(A \)-modules is a Frobenius category, and hence the stable category \(A\text{-Gproj} \) is a triangulated category ([Hap]). Iyama-Kato-Miyachi ([IKM], Theorem 3.8) prove that if \(A \) is a Gorenstein algebra, then \(T_2(A)\text{-Gproj} \) admits a triangulated category recollement, where \(T_2(A) = \left(\begin{array}{cc} A & A \\ 0 & A \end{array} \right) \). In Section 3, if \(A \) and \(B \) are Gorenstein algebras and \(A_M \) and \(M_B \) are projective, we extend this result by asserting that \(\Lambda\text{-Gproj} \) admits a symmetric triangulated category recollement, and by explicitly writing out the involved functors.

Supported by the NSF of China (10725104), and STCSM (09XD1402500).
pzhang@sjtu.edu.cn.
1. An equivalent definition of triangulated category recollements

1.1. Recall the following

Definition 1.1. (1) ([BBD]) Let C', C and C'' be triangulated categories. The diagram

\[
\begin{array}{ccc}
C' & \xrightarrow{i^*} & C & \xrightarrow{j_!} & C'' \\
\downarrow{i_*} & & \downarrow{j_*} & & \\
C & \xrightarrow{j^*} & C''
\end{array}
\]

(1.1)

of exact functors is a triangulated category recollement of C relative to C' and C'', if the following conditions are satisfied:

(R1) (i^*, i_*), $(i_*, i^!)$, $(j_!, j^*)$, and (j^*, j_*) are adjoint pairs;

(R2) i_*, $j_!$ and j_* are fully faithful;

(R3) $j^*i_* = 0$;

(R4) For each object $X \in C$, the counits and units give rise to distinguished triangles:

\[
\begin{align*}
& j_!j^*X \xrightarrow{\epsilon_X} X \xrightarrow{\eta_X} i_*i^*X \quad \text{and} \quad i_*i^!X \xrightarrow{\omega_X} X \xrightarrow{\kappa_X} j_*j^*X.
\end{align*}
\]

(2) ([FV]) Let C', C and C'' be abelian categories. The diagram (1.1) of additive functors is an abelian category recollement of C relative to C' and C'', if (R1), (R2) and (R5) are satisfied, where

(R5) $\text{Im} i_* = \text{Ker} j^*$.

Remark 1.2. (1) Let (1.1) be an abelian category recollement. If all the involved functors are exact, then one can prove that there is an equivalence $C \cong C' \times C''$ of categories. This explains why Franjou-Pirashvili [FV] did not require the exactness of the involved functors in Definition 1.1(2).

(2) For any adjoint pair (F, G), it is well-known that F is fully faithful if and only if the unit $\eta: \text{Id} \to GF$ is a natural isomorphism, and G is fully faithful if and only if the counit $\epsilon : FG \to \text{Id}$ is a natural isomorphism; and that if F is fully faithful then $G\epsilon_X$ is an isomorphism for each object X, and if G is fully faithful then $F\eta_Y$ is an isomorphism for each object Y.

(3) In any triangulated or abelian category recollement, under the condition (R1), the condition (R2) is equivalent to the condition (R2'): the units $\text{Id}_{C'} \to i^!i_*$ and $\text{Id}_{C''} \to j^*j_!$, and the counits $i^*i_* \to \text{Id}_{C'}$ and $j^*j_* \to \text{Id}_{C''}$, are natural isomorphisms.

(4) In an abelian category recollement one has $i^*j_! = 0$ and $i^!j_* = 0$; and in a triangulated category recollement one has $\text{Im} i_* = \text{Ker} j^*$, $\text{Im} j^! = \text{Ker} i^*$ and $\text{Im} j_* = \text{Ker} i^!$.

(5) In any abelian category recollement (1.1), the counits and units give rise to exact sequences of natural transformations $j_!j^* \to \text{Id}_{C'} \to i_*i^* \to 0$ and $0 \to i_*i^! \to \text{Id}_{C''} \to j_*j^*$; and if C', C, and C'' have enough projective objects, then i^* is exact if and only if $i^!j_! = 0$; and dually, if C', C, and C'' have enough injective objects, then $i^!$ is exact if and only if $i^*j_* = 0$. See [FV].
1.2. We will need the following equivalent definition of a triangulated category recollement, which possibly makes the construction of a triangulated category recollement easier.

Lemma 1.3. Let (1.1) be a diagram of exact functors of triangulated categories. Then it is a triangulated category recollement if and only if the conditions (R1), (R2) and (R5) are satisfied.

Proof. This seems to be well-known, however we did not find an exact reference. For the convenience of the reader we include a proof.

We only need to prove the sufficiency. Embedding the counit morphism ϵ_x into a distinguished triangle $j_! j^* X \xrightarrow{\epsilon_x} X \xrightarrow{h} Z \rightarrow$. Applying j^* we get a distinguished triangle $j^* j_! j^* X \xrightarrow{j^* \epsilon_x} j^* X \xrightarrow{j^* h} j^* Z \rightarrow$. Since $j^* \epsilon_x$ is an isomorphism by Remark 1.2(2), we have $j^* Z = 0$. By $\text{Im} i_! = \text{Ker} j^*$ we have $Z = i_! Z'$. Applying i^* to the distinguished triangle $j_! j^* X \xrightarrow{\epsilon_x} X \xrightarrow{h} i_! Z' \rightarrow$, by $i^* j_! = 0$ we know that $i^* h : i^* X \rightarrow i^* i_! Z'$ is an isomorphism. Since the counit morphism $i^* i_! Z' \xrightarrow{\epsilon_x} Z'$ is an isomorphism, we have isomorphism $i_! ((i^* h)^{-1}) i_! (\epsilon_x^{-1}) : i_! Z' \rightarrow i_! i^* X$, and hence we get a distinguished triangle of the form $j_! j^* X \xrightarrow{\epsilon_x} X \xrightarrow{f} i_! i^* X \rightarrow$ with $f = i_! ((i^* h)^{-1}) i_! (\epsilon_x^{-1}) h$, which also means $\text{Im} j_! = \text{Ker} i^*$. Since $i^* h$ is an isomorphism, $i^* f$ is an isomorphism.

In order to complete the first distinguished triangle in (R4), we need to show that f can be chosen to be the unit morphism. Embedding the unit morphism η_X into a distinguished triangle $Y \rightarrow X \xrightarrow{\eta_X} i_! i^* X \rightarrow$. By the similar argument (but this time we use $\text{Im} j_! = \text{Ker} i^*$) we get a distinguished triangle of the form $j_! j^* X \xrightarrow{g} X \xrightarrow{\eta_X} i_! i^* X \rightarrow$. By the following commutative diagram given by the adjoint pair $(i^*, i_!)$

\[
\begin{array}{ccc}
\text{Hom}_C(i^* i_! X, i^* X) & \xrightarrow{\sim} & \text{Hom}_C(i_! i^* X, i_! i^* X) \\
\downarrow{(i^* f, -)} & & \downarrow{(f, -)} \\
\text{Hom}_C(i^* X, i^* X) & \xrightarrow{\sim} & \text{Hom}_C(X, i_! i^* X)
\end{array}
\]

we see that $\text{Hom}_C(f, i_! i^* X)$ is also an isomorphism, and hence there is $u \in \text{Hom}_C(i_! i^* X, i_! i^* X)$ such that $uf = \eta_X$. Since $(i^*, i_!)$ is an adjoint pair and $i_!$ is fully faithful, it follows that $i^* \eta_X$ is an isomorphism. Replacing f by η_X we get $v \in \text{Hom}_C(i_! i^* X, i_! i^* X)$ such that $v \eta_X = f$. Thus we have morphisms of distinguished triangles

\[
\begin{array}{ccc}
j_! j^* X \xrightarrow{\epsilon_X} X & \xrightarrow{f} & i_! i^* X \\
\downarrow{\eta_X} & = & \downarrow{uv} \\
j_! j^* X \xrightarrow{\epsilon_X} X & \xrightarrow{f} & i_! i^* X
\end{array}
\]

and

\[
\begin{array}{ccc}
j_! j^* X \xrightarrow{g} X & \xrightarrow{\eta_X} & i_! i^* X \\
\downarrow{\eta_X} & = & \downarrow{uv} \\
j_! j^* X \xrightarrow{g} X & \xrightarrow{\eta_X} & i_! i^* X
\end{array}
\]
So uv and vu, and hence u and v, are isomorphisms. By the isomorphism of triangles

\[
\begin{array}{ccc}
 j^* W & \xrightarrow{\varepsilon} & X \\
 \downarrow{=} & & \downarrow{=} \\
 j^* W & \xrightarrow{\varepsilon} & X
\end{array}
\]

we see that $j^* X \xrightarrow{\varepsilon} X \xrightarrow{\eta} i_* i^* X$ is a distinguished triangle.

In order to obtain the second distinguished triangle, we embed the unit morphism ζ_X into a distinguished triangle $W \xrightarrow{v} X \xrightarrow{\eta} j_* j^* X \to$. Applying j^* we get a distinguished triangle $j^* W \xrightarrow{j^* w} j^* X \xrightarrow{j^* \zeta_X} j^* j_* j^* X \to$. Since $j^* \zeta_X$ is an isomorphism by Remark 1.2(2), we have $j^* W = 0$. By $\text{Im} i_* = \text{Ker} j^*$ we have $W = i_* X'$. Applying $i^!$ to the distinguished triangle $i_* X' \xrightarrow{\eta_i} X' \xrightarrow{\zeta} j_* j^* X \to$ and by $i^! j_* = 0$ we know that $i^! w : i^! i_* X' \to i^! X$ is an isomorphism. Using the unit isomorphism $X' \to i^! i_* X'$, we get a distinguished triangle of the form $i_* i^! X' \xrightarrow{\eta_i} X' \xrightarrow{\zeta} j_* j^* X \to$ with $i^! a$ an isomorphism. It follows that $\text{Im} j_* = \text{Ker} j^!$.

Now since $\text{Im} j_* = \text{Ker} j^!$ and $\text{Im} i_* = \text{Ker} j^*$, it follows that we can replace (i^*, i_*) by (j^*, j_*), and replace $(j_!*, j_!)$ by $(i_!, i_!)$, in the distinguished triangle $j^* j_* X \xrightarrow{\varepsilon} X \xrightarrow{\eta} i_* i^* X \to$. In this way we get the second distinguished triangle $i_* i^! X' \xrightarrow{\varepsilon} X \xrightarrow{\zeta} j_* j^* X \to$.

\[\blacksquare\]

2. Upper-symmetric recollements

2.1. Given a recollement of \mathcal{C} relative to \mathcal{C}' and \mathcal{C}'', one usually can not expect a recollement of \mathcal{C} relative to \mathcal{C}'' and \mathcal{C}'. Inspired by [J] we define

Definition 2.1. ([J]) A triangulated category recollement

\[
\begin{array}{ccc}
 \mathcal{C}' & \xrightarrow{i^*} & \mathcal{C} \\
 & & \\
 \mathcal{C} & \xrightarrow{j^*} & \mathcal{C}''
\end{array}
\]

(2.1)

of \mathcal{C} is upper-symmetric, if there are exact functors j^* and i^* such that

\[
\begin{array}{ccc}
 \mathcal{C}'' & \xrightarrow{j^*} & \mathcal{C} \\
 & & \\
 \mathcal{C} & \xrightarrow{i^*} & \mathcal{C}'
\end{array}
\]

(2.2)

is a recollement; and it is lower-symmetric, if there are exact functors $j^!$ and $i^!$ such that

\[
\begin{array}{ccc}
 \mathcal{C}'' & \xrightarrow{j^!} & \mathcal{C} \\
 & & \\
 \mathcal{C} & \xrightarrow{i^!} & \mathcal{C}'
\end{array}
\]

(2.3)

is a recollement. A recollement is symmetric if it is upper- and lower-symmetric.

Similarly, we have a (upper-, lower-) symmetric abelian category recollement, and note that in abelian situations, all the involved functors, in particular j^*, i^*, $j^!$ and $i^!$, are only required to be additive functors, not required to be exact.
Let k be a field. P. Jørgensen [J] observed that if a Hom-finite k-linear triangulated category \mathcal{C} has a Serre functor, then any recollement of \mathcal{C} is symmetric: his proof does not use any triangulated structure of \mathcal{C} and hence also works for a Hom-finite k-linear abelian category having a Serre functor. For a similar notion of symmetric recollements of unbounded derived categories we refer to S. König [K], and also Chen-Lin [CL].

2.2. Given two triangulated or abelian category recollements

$$
\begin{array}{ccc}
C' & \xrightarrow{i^*} & \mathcal{C} & \xrightarrow{j^*} & \mathcal{C}'' \\
\downarrow{i_!} & & \downarrow{j_!} & & \downarrow{j_!}
\end{array}
$$

and

$$
\begin{array}{ccc}
C' & \xrightarrow{i'^*} & \mathcal{D} & \xrightarrow{j'^*} & \mathcal{D}'' \\
\downarrow{i'_!} & & \downarrow{j'_!} & & \downarrow{j'_!}
\end{array}
$$

if there is an exact functor $f: \mathcal{C} \to \mathcal{D}$ such that there are natural isomorphisms

$$
i^* \cong i^*_D f, \quad f i_* \cong i^*_D, \quad i^! \cong i'^*_D f, \quad f j_! \cong j^!_D, \quad j^* \cong j'^*_D f, \quad f j_* \cong j^*_D,$$

then we call f a comparison functor. Two (triangulated or abelian category) recollements are equivalent if there is a comparison functor f which is an equivalence of categories. According to Parshall-Scott [PS, Theorem 2.5], a comparison functor between triangulated category recollements is an equivalence of categories. However, Franjou-Pirashvili [FV] pointed out that this is not necessarily the case for abelian category recollements.

2.3. In this subsection we only consider triangulated category recollements. If (2.1) is an upper-symmetric recollement, then we call (2.2) a upper-symmetric version of (2.1); and if (2.1) is an lower-symmetric recollement, then we call (2.3) a lower-symmetric version of (2.1).

Lemma 2.2. (1) Any two upper-symmetric versions of a upper-symmetric recollement are equivalent.

(1') Any two lower-symmetric versions of a lower-symmetric recollement are equivalent.

(2) Equivalent upper-symmetric recollements have equivalent upper-symmetric versions.

(2') Equivalent lower-symmetric recollements have equivalent lower-symmetric versions.

Proof. (1) Let (2.2) and

$$
\begin{array}{ccc}
\mathcal{C}'' & \xrightarrow{j^*} & \mathcal{C} & \xrightarrow{i^*} & \mathcal{C}' \\
\downarrow{j_!} & & \downarrow{i_!} & & \downarrow{i_!}
\end{array}
$$

be two upper-symmetric versions of a upper-symmetric recollement (2.1). Then $j_! i_! = 0$. In fact, for $Y \in \mathcal{C}'$ we have

$$
\text{Hom}_{\mathcal{C}''}(j_! i_! Y, j_! i_! Y) \cong \text{Hom}_{\mathcal{C}}(j_! j_! i_! Y, i_! Y) \cong \text{Hom}_{\mathcal{C}''}(i_! j_! j_! i_! Y, Y) = 0.
$$

For $X \in \mathcal{C}$, by (2.2) and (R4) we have distinguished triangle $j_! j_! X \xrightarrow{\eta} X \xrightarrow{\eta} i_! i_! X \to$. Applying exact functor $j_!$ and using the unit $\text{Id}_{\mathcal{C}''} \to j_! j_!$, we have

$$
j_! X \cong j_! j_! i_! X \cong j_! X.
$$
which means that \(j \alpha \) is naturally isomorphic to \(j \gamma \). Similarly one can prove that \(i \gamma \alpha \) is naturally isomorphic to \(i \gamma \). Thus \(\text{Id}_C \) is an equivalence between (2.2) and (2.4). This proves (1).

(1′) can be similarly proved.

(2) Given two equivalent upper-symmetric recollements

\[
\begin{array}{ccccccc}
\mathcal{C}' & \xrightarrow{i'} & \mathcal{C} & \xrightarrow{j} & \mathcal{C}'' & \xrightarrow{i''} & \mathcal{C}' \\
\mathcal{C}' & \xrightarrow{i'} & \mathcal{D} & \xrightarrow{j'} & \mathcal{C}'' & \xrightarrow{i''} & \mathcal{C}'
\end{array}
\]

with comparison functor \(f \), let (2.2) as an upper-symmetric version of the first recollement. By Lemma 1.3 we know that

\[
\begin{array}{ccccccc}
\mathcal{C}'' & \xrightarrow{j''} & \mathcal{D} & \xrightarrow{i''} & \mathcal{C}'
\end{array}
\]

is a triangulated category recollement, and that \(f \) is an equivalence between (2.2) and (2.5). Note that (2.5) is an upper-symmetric version of the second given upper-symmetric recollement, and hence the assertion follows from (1).

(2′) can be similarly proved.

Let \(\mathcal{C}', \mathcal{C}, \mathcal{C}'' \) be triangulated categories. Denote by \(\text{USR}(\mathcal{C}', \mathcal{C}, \mathcal{C}'') \) the class of equivalence classes of the upper-symmetric recollements of triangulated category \(\mathcal{C} \) relative to \(\mathcal{C}' \) and \(\mathcal{C}'' \); and denote by \(\text{LSR}(\mathcal{C}', \mathcal{C}, \mathcal{C}'') \) the class of the lower-symmetric recollements of triangulated category \(\mathcal{C} \) relative to \(\mathcal{C}' \) and \(\mathcal{C}'' \).

Theorem 2.3. There is a one-one correspondence between \(\text{USR}(\mathcal{C}', \mathcal{C}, \mathcal{C}'') \) and \(\text{LSR}(\mathcal{C}'', \mathcal{C}, \mathcal{C}') \).

Proof. Given an upper-symmetric recollement (2.1), observe that an upper-symmetric version (2.2) of (2.1) is lower-symmetric: in fact, (2.1) could be a lower-symmetric version of (2.2). Similarly, a lower-symmetric recollement could be an upper-symmetric version of a lower-symmetric version of itself. Thus by Lemma 2.2 we get a one-one correspondence between \(\text{USR}(\mathcal{C}', \mathcal{C}, \mathcal{C}'') \) and \(\text{LSR}(\mathcal{C}'', \mathcal{C}, \mathcal{C}') \). □

2.4. We consider Artin algebras over a fixed commutative artinian ring, and finitely generated modules. Let \(A \) and \(B \) be Artin algebras, and \(M \) an \(A-B \)-bimodule. Then \(\Lambda = (\begin{array}{c} \Lambda \\ \frac{A}{B} \end{array}) \) is an Artin algebra with multiplication given by the one of matrices. Denoted by \(A \)-mod the category of finitely generated left \(A \)-modules. A left \(\Lambda \)-module is identified with a triple \((X, Y, f) \), or simply \((X) \) if \(\phi \) is clear, where \(X \in A \)-mod, \(Y \in B \)-mod, and \(\phi : M \otimes_B Y \rightarrow X \) is an \(A \)-map. A \(\Lambda \)-map \((X) \rightarrow (Y) \) is identified with a pair \((f, g) \), where \(f \in \text{Hom}_A(X, X') \), \(g \in \text{Hom}_B(Y, Y') \), such that \(\phi f (\text{Id} \otimes g) = f \phi \). The indecomposable projective \(\Lambda \)-modules are exactly \((\begin{array}{c} \Lambda \\ X \end{array}) \) and \((\frac{M}{Q} \otimes_B P \otimes Q, \text{id}) \), where \(P \) runs over indecomposable projective \(A \)-modules, and \(Q \) runs over indecomposable projective \(B \)-modules. See [ARS], p.73.

For any \(A \)-module \(X \) and \(B \)-module \(Y \), denote by \(\alpha_{X,Y} \) the adjoint isomorphism

\[
\alpha_{X,Y} : \text{Hom}_A(M \otimes_B Y, X) \rightarrow \text{Hom}_B(Y, \text{Hom}_A(M, X))
\]
given by
\[\alpha_{X,Y}(\phi)(y)(m) = \phi(m \otimes y), \forall \phi \in \text{Hom}_A(M \otimes_B Y, X), \, y \in Y, \, m \in M. \]

Put \(\psi_X \) to be \(\alpha_{X,\text{Hom}(M,X)}^{-1}(\text{Id}_{\text{Hom}(M,X)}) \). Thus \(\psi_X : M \otimes_B \text{Hom}_A(M,X) \to X \) is given by \(m \otimes f \mapsto f(m) \).

Theorem 2.4. Let \(A \) and \(B \) be Artin algebras, \(A_M \) an \(A-B \)-bimodule, and \(\Lambda = (\begin{smallmatrix} A & M \\ M & B \end{smallmatrix}) \). Then we have an upper-symmetric (but non lower-symmetric) abelian category recollement

\[
\begin{array}{ccc}
A\text{-mod} & \xrightarrow{i^*} & \Lambda\text{-mod} & \xleftarrow{i^!} \& B\text{-mod} \\
\xrightarrow{j_*} & \Lambda\text{-mod} & \xleftarrow{j^*} \& B\text{-mod}
\end{array}
\]

(2.6)

where

- \(i^* \) is given by \(\left(\begin{smallmatrix} X \\ \phi \end{smallmatrix} \right)_\phi \mapsto \text{Coker}\phi; \) \(i_* \) is given by \(X \mapsto \left(\begin{smallmatrix} X \\ 0 \end{smallmatrix} \right); \) \(i^! \) is given by \(\left(\begin{smallmatrix} X \\ \phi \end{smallmatrix} \right)_\phi \mapsto X; \)

- \(j_i \) is given by \(Y \mapsto \left(\begin{smallmatrix} M \otimes Y \\ \phi \end{smallmatrix} \right) \text{Id}; \) \(j^* \) is given by \(\left(\begin{smallmatrix} X \\ \phi \end{smallmatrix} \right)_\phi \mapsto Y; \) \(j_* \) is given by \(Y \mapsto \left(\begin{smallmatrix} Y \\ \phi \end{smallmatrix} \right); \)

- \(j_! \) is given by \(\left(\begin{smallmatrix} X \\ \phi \end{smallmatrix} \right)_\phi \mapsto \text{Ker}\alpha_{X,Y}(\phi); \) and \(i_! \) is given by \(X \mapsto \left(\begin{smallmatrix} X \\ \phi \end{smallmatrix} \right)_{\psi_X}. \)

Proof. By construction \(i_*, \ j_! \) and \(j_* \) are fully faithful; \(\text{Im} i_* = \text{Ker} j^* \), and \(\text{Im} j_* = \text{Ker} i^! \). For \(\left(\begin{smallmatrix} X \\ \phi \end{smallmatrix} \right) \in \Lambda\text{-mod}, \ X' \in A\text{-mod}, \) and \(Y' \in B\text{-mod}, \) we have the following isomorphisms of abelian groups, which are natural in both positions

\[
\text{Hom}_A(\text{Coker}\phi, X') \cong \text{Hom}_A(\left(\begin{smallmatrix} X \\ \phi \end{smallmatrix} \right), \left(\begin{smallmatrix} X' \\ 0 \end{smallmatrix} \right)) \tag{2.7}
\]

given by \(f \mapsto \left(\begin{smallmatrix} f \pi \\ 0 \end{smallmatrix} \right) \), where \(\pi : X \to \text{Coker}\phi \) is the canonical \(A \)-map;

\[
\text{Hom}_A(\left(\begin{smallmatrix} X' \\ 0 \end{smallmatrix} \right), \left(\begin{smallmatrix} X \\ \phi \end{smallmatrix} \right)) \cong \text{Hom}_A(X', X); \tag{2.8}
\]

\[
\text{Hom}_A\left(\left(\begin{smallmatrix} M \otimes Y' \\ \phi \end{smallmatrix} \right) \text{Id}, \left(\begin{smallmatrix} X \\ \phi \end{smallmatrix} \right) \right) \cong \text{Hom}_B(Y', Y) \tag{2.9}
\]

given by \(\left(\phi(\text{Id} \otimes g) \right) \mapsto g; \) and

\[
\text{Hom}_B(Y, Y') \cong \text{Hom}_A(\left(\begin{smallmatrix} X \\ \phi \end{smallmatrix} \right), \left(\begin{smallmatrix} Y' \\ 0 \end{smallmatrix} \right)).
\]

Thus \((i^*, i_*), \ (i_*, i'^!), \ (j_i, j^*), \) and \((j_!, j_*) \) are adjoint pairs, and hence (2.6) is a recollement. It is not lower-symmetric since \(\text{Im} j_! \neq \text{Ker} i^! \).

In order to see that it is upper-symmetric, it remains to prove that \((j_!, j^!) \) and \((i', i^!) \) are adjoint pairs, and that \(i^! \) is fully faithful. For \(g \in \text{Hom}_B(Y, Y') \) and \(\left(\begin{smallmatrix} X' \\ \phi \end{smallmatrix} \right) \in \Lambda\text{-mod}, \) we have

\[
\left(\begin{smallmatrix} 0 \\ g \end{smallmatrix} \right) \in \text{Hom}_A(\left(\begin{smallmatrix} 0 \\ X' \end{smallmatrix} \right), \left(\begin{smallmatrix} X \\ \phi \end{smallmatrix} \right)) \iff \phi'(\text{Id} \otimes g) = 0 \iff \phi'(m \otimes g(y)) = 0, \forall \ y \in Y, \forall \ m \in M
\]
\[
\iff \alpha_{X',Y'}(\phi')(g(y)) = 0, \forall \ y \in Y \iff g(Y) \subseteq \text{Ker} \alpha_{X',Y'}(\phi') \iff g \in \text{Hom}_B(Y, \text{Ker} \alpha_{X',Y'}(\phi')).
\]

It follows that \(\left(\begin{smallmatrix} 0 \\ g \end{smallmatrix} \right) \mapsto g \) gives an isomorphism \(\text{Hom}_A(\left(\begin{smallmatrix} 0 \\ X' \end{smallmatrix} \right), \left(\begin{smallmatrix} X \\ \phi \end{smallmatrix} \right)) \to \text{Hom}_B(Y, \text{Ker} \alpha_{X',Y'}(\phi')) \) of abelian groups, which is natural in both positions, i.e., \((j_!, j^!) \) is an adjoint pair. Let \(\left(\begin{smallmatrix} f \\ g \end{smallmatrix} \right) \in \text{Hom}_A(\left(\begin{smallmatrix} X' \\ \phi \end{smallmatrix} \right), \left(\begin{smallmatrix} X \\ \phi \end{smallmatrix} \right)_{\psi_X}). \) By \(\psi_X(\text{Id} \otimes g) = f \phi \) we have

\[
\alpha_{X',Y'}(f \phi)(y)(m) = f \phi(m \otimes y) = \psi_X(\text{Id} \otimes g)(m \otimes y)
\]
\[
= \psi_X(m \otimes g(y)) = g(y)(m), \forall \ y \in Y, \forall \ m \in M,
\]
which means \(g = \alpha_{X',\psi}(f\phi) \). Thus \(f \mapsto (\alpha_{X',\psi}(f\phi)) \) gives an isomorphism

\[
\text{Hom}_A(X, X') \rightarrow \text{Hom}_A((\psi_X)^{-1}((X)'_{\phi})),
\]

of abelian groups, which is natural in both positions, i.e., \((i^! , i^?)\) is an adjoint pair. Since \(\alpha_{X',\text{Hom}(M,X)}(f\psi_X) = \text{Hom}_A(M,f) \), this isomorphism also shows that \(i^? \) is fully faithful. This completes the proof.

By Theorem 2.4 we have

Corollary 2.5. Let \(A \) be a Gorenstein algebra, and \(T_2(A) = (\begin{array}{cc} A & A \\ 0 & A \end{array}) \). Then we have an upper-symmetric (but non lower-symmetric) abelian category recollement

\[
\begin{array}{ccc}
A\text{-mod} & \xrightarrow{i_*} & \text{T}_2(A)\text{-mod} & \xleftarrow{i^!} & A\text{-mod} \\
\end{array}
\]

Remark 2.6. As we see from (2.6) and its upper symmetric version, in an abelian category recollement, the following statement may not be true:

1. \(\text{Im} j_! = \text{Ker} i^*; \ \text{Im} j_* = \text{Ker} i^!; \)

2. The counits and units give rise to exact sequences of natural transformations:

\[
0 \rightarrow j_! j^* \rightarrow \text{Id}_C \rightarrow i_* i^* \rightarrow 0 \quad \text{and} \quad 0 \rightarrow i_* i^! \rightarrow \text{Id}_C \rightarrow j_* j^* \rightarrow 0.
\]

3. \(i^! j_! = 0; \text{ and } i^* j_* = 0. \)

In triangulated situations, (1) and the corresponding version of (2) always hold; but (3) is also not true in general.

3. Symmetric recollements induced by Gorenstein-projective modules

3.1. Let \(A \) be an Artin algebra. An \(A \)-module \(G \) is \emph{Gorenstein-projective}, if there is an exact sequence \(\cdots \rightarrow P^{-1} \rightarrow P^0 \xrightarrow{d^0} P^1 \rightarrow \cdots \) of projective \(A \)-modules, which stays exact under \(\text{Hom}_A(-, A) \), and such that \(G \cong \text{Ker} d^0 \). Let \(A\text{-Gproj} \) be the full subcategory of \(A\text{-mod} \) consisting of the Gorenstein-projective modules. Then \(A\text{-Gproj} \subseteq A\text{-proj} \), where \(A\text{-proj} = \{ X \in A\text{-mod} | \text{Ext}_i^A(X,A) = 0, \forall i \geq 1 \}; \) and \(\text{Hom}_A(-, A) \) induces a duality \(A\text{-Gproj} \cong A\text{-proj} \) with a quasi-inverse \(\text{Hom}_A(-, A) \) ([B], Proposition 3.4). An important feature is that \(A\text{-Gproj} \) is a Frobenius category with projective-injective objects being projective \(A \)-modules, and hence the stable category \(A\text{-Gproj} \) modulo projective \(A \)-modules is a triangulated category ([Hap]).

An Artin algebra \(A \) is \emph{Gorenstein}, if \(\text{inj.dim } A < \infty \) and \(\text{inj.dim } A \) \(< \infty \). We have the following well-known fact (E. Enochs - O. Jenda [EJ], Corollary 11.5.3).

Lemma 3.1. Let \(A \) be a Gorenstein algebra. Then

1. If \(P^\bullet \) is an exact sequence of projective left (resp. right) \(A \)-modules, then \(\text{Hom}_A(P^\bullet, A) \) is again an exact sequence of projective right (resp. left) \(A \)-modules.
(2) A module G is Gorenstein-projective if and only if there is an exact sequence $0 \to G \to P^0 \to P^1 \to \cdots$ with each P^i projective.

(3) $A\text{-Gproj} = \perp A$.

Proof. For convenience we include an alternating proof.

1. Let $0 \to K \to I_0 \to I_1 \to 0$ be an exact sequence with I_0, I_1 injective modules. Then $0 \to \text{Hom}_A(P^*, K) \to \text{Hom}_A(P^*, I_0) \to \text{Hom}_A(P^*, I_1) \to 0$ is an exact sequence of complexes. Since $\text{Hom}_A(P^*, I_i)$ ($i = 0,1$) are exact, it follows that $\text{Hom}_A(P^*, K)$ is exact. Repeating this process, by $\text{inj.dim }_A A < \infty$ we deduce that $\text{Hom}_A(P^*, A)$ is exact.

2. This follows from definition and (1).

3. Let $G \in \perp A$. Applying $\text{Hom}_A(-, A)$ to a projective resolution of G we get an exact sequence. By (2) this means that $\text{Hom}_A(G, A)$ is a Gorenstein-projective right A-module, and hence G is Gorenstein-projective by the duality $\text{Hom}_A(-, _A A): A\text{-Gproj} \cong A^{\text{op}}\text{-Gproj}$.

We need the following description of Gorenstein-projective Λ-modules.

Proposition 3.2. Let A and B be Gorenstein algebras, M an A-B-bimodule such that AM and MB are projective, and $\Lambda = (A \ M B)$. Then $(\begin{smallmatrix} A & M \\ \phi & B \end{smallmatrix})$ is a Gorenstein-projective Λ-module if and only if $\phi: M \otimes Y \to X$ is monic, X and $\text{Coker } \phi$ are Gorenstein-projective Λ-modules, and Y is a Gorenstein-projective B-module. In this case $M \otimes Y$ is a Gorenstein-projective A-module.

Proof. If $(\begin{smallmatrix} A & M \\ \phi & B \end{smallmatrix})$ is a Gorenstein-projective Λ-module, then there is an exact sequence

$$0 \to (\begin{smallmatrix} A & M \\ \phi & B \end{smallmatrix}) \to \left(\begin{smallmatrix} P_{0} \oplus (M \otimes Q_{0}) \\ Q_0 \end{smallmatrix}\right)_{\phi_{0}} \to \left(\begin{smallmatrix} P_{1} \oplus (M \otimes Q_{1}) \\ Q_1 \end{smallmatrix}\right)_{\phi_{1}} \to \cdots$$

(3.1)

where P_i and Q_i are respectively projective A- and B-modules, $i \geq 0$, i.e., we have exact sequences

$$0 \to X \to P_{0} \oplus (M \otimes Q_{0}) \to P_{1} \oplus (M \otimes Q_{1}) \to \cdots$$

(3.2)

and

$$0 \to Y \to Q_{0} \to Q_{1} \to \cdots$$

(3.3)

such that the following diagram commutes

$$\begin{array}{ccccccccc}
0 & \longrightarrow & M \otimes_{B} Y & \longrightarrow & M \otimes_{B} Q_{0} & \longrightarrow & M \otimes_{B} Q_{1} & \longrightarrow & \cdots \\
\downarrow{\phi} & & \downarrow{(\phi_{0})} & & \downarrow{(\phi_{1})} & & & & \\
0 & \longrightarrow & X & \longrightarrow & P_{0} \oplus (M \otimes Q_{0}) & \longrightarrow & P_{1} \oplus (M \otimes Q_{1}) & \longrightarrow & \cdots
\end{array}$$

(3.4)

By Lemma 3.1(2) Y is Gorenstein-projective. Since AM and BM are projective, it follows that $M \otimes Q_i$ are projective A-modules, and hence X is Gorenstein-projective by Lemma 3.1(2). Since M_B is projective, by (3.3) the upper row of (3.4) is exact, and hence $M \otimes Y$ is Gorenstein-projective and ϕ is monic. By (3.4) we get exact sequence $0 \to \text{Coker } \phi \to P_{0} \to P_{1} \to \cdots$, thus $\text{Coker } \phi$ is Gorenstein-projective by Lemma 3.1(2).
Conversely, we have exact sequence (3.3) with \(Q_i\) being projective \(B\)-modules. Since \(M_B\) is projective and \(\text{Coker } \phi\) is Gorenstein-projective, we get the following exact sequences

\[
0 \to M \otimes Y \to M \otimes Q_0 \to M \otimes Q_1 \to \cdots
\]

\[
0 \to \text{Coker } \phi \to P_0 \to P_1 \to \cdots
\]

with \(P_i\) projective. Since \(M \otimes Q_i\) \((i \geq 0)\) are projective \(A\)-modules and projective \(A\)-modules are injective objects in \(\text{A-Gproj}\), it follows from the exact sequence \(0 \to M \otimes Y \to X \to \text{Coker } \phi \to 0\) and a version of Horseshoe Lemma that there is an exact sequence (3.2) such that the diagram (3.4) commutes. This means that (3.1) is exact. Since \(\Lambda\) is also Gorenstein (see e.g. [C], Theorem 3.3), it follows from Lemma 3.1(2) that \((\frac{X}{\lambda})_\phi\) is a Gorenstein-projective \(\Lambda\)-module.

3.2. The main result of this section is as follows.

Theorem 3.3. Let \(A\) and \(B\) be Gorenstein algebras, \(M\) an \(A\)-\(B\)-bimodule such that \(\Lambda M\) and \(M_B\) are projective, and \(\Lambda = (\Lambda^A M_B)\). Then we have a triangulated category recollement

\[
\begin{array}{ccc}
\text{A-Gproj} & \xrightarrow{i^*} & \Lambda \text{-proj} & \xleftarrow{i_*} & \text{B-Gproj} \\
\end{array}
\]

Moreover, if \(A\) and \(B\) are in additional finite-dimensional algebras over a field, then it is a symmetric recollement.

3.3. Before giving a proof, we construct all the functors in Theorem 3.3. If a \(\Lambda\)-map \((\frac{X}{\lambda})_\phi \to (\frac{X'}{\lambda'})_\phi\) factors through a projective \(\Lambda\)-module \((\frac{P}{\sigma}) \oplus (\frac{M \otimes Q}{\phi})\), then it is easy to see that the induced \(\Lambda\)-map \(\text{Coker } \phi \to \text{Coker } \phi\) factors through \(P\). By Proposition 3.2 this implies that the functor \(\Lambda \text{-proj} \to \text{A-Gproj}\) given by \((\frac{X}{\lambda})_\phi \mapsto \text{Coker } \phi\) induces a functor \(i^* : \text{A-Gproj} \to \text{A-Gproj}\).

By Proposition 3.2 there is a unique functor \(i_* : \text{A-Gproj} \to \Lambda \text{-proj} \) given by \(X \mapsto (\frac{X}{\lambda})_\phi\), which is fully faithful.

If a \(\Lambda\)-map \((\frac{f}{g}) : (\frac{X}{\lambda})_\phi \to (\frac{X'}{\lambda'})_\phi\) factors through a projective \(\Lambda\)-module \((\frac{P}{\sigma}) \oplus (\frac{M \otimes Q}{\phi})\), then \(f : X \to X'\) factors through a projective \(A\)-module \(P \oplus (M \otimes \phi)\). By Proposition 3.2 this implies that there is a unique functor \(i' : \text{A-Gproj} \to \text{A-Gproj}\) given by \((\frac{X}{\lambda})_\phi \mapsto X\).

By Proposition 3.2 there is a unique functor \(j^* : \text{B-Gproj} \to \Lambda \text{-proj}\) given by \((\frac{X}{\lambda})_\phi \mapsto Y\).

Let \(\text{B-Y}\) be a Gorenstein-projective module. Since \(M_B\) is projective, by Lemma 3.1(2) \(M \otimes Y\) is a Gorenstein-projective \(\Lambda\)-module. By Proposition 3.2 there is a unique functor \(j_* : \text{B-Gproj} \to \text{A-Gproj}\) given by \(Y \mapsto (\frac{M \otimes Y}{\lambda'})_\phi\), which is fully faithful.

Lemma 3.4. Let \(A, B, M,\) and \(\Lambda\) be as in Theorem 3.3. Then there exists a unique fully faithful functor \(j_* : \text{B-Gproj} \to \Lambda \text{-proj}\) given by \(Y \mapsto (\frac{Y}{\lambda'})_\phi\), where \(P\) is a projective \(A\)-module such that there is an exact sequence \(0 \to M \otimes Y \to P \to \text{Coker } \sigma \to 0\) with \(\text{Coker } \sigma \in \text{A-Gproj}\).

Proof. Let \(\text{B-Y}\) be Gorenstein-projective. Then \(M \otimes Y\) is Gorenstein-projective, and hence there is an exact sequence \(0 \to M \otimes Y \to P \to \text{Coker } \sigma \to 0\) with \(P\) projective and \(\text{Coker } \sigma \in \text{A-Gproj}\). Let \(g : Y \to Y'\) be a \(B\)-map with \(Y, Y' \in \text{B-Gproj}\), and \(P'\) a projective \(A\)-module such that...
0 \to M \otimes Y' \xrightarrow{\sigma'} P' \to \text{Coker}\sigma' \to 0 \text{ is exact with } \text{Coker}\sigma' \in A\text{-proj}. \text{ Since projective } A\text{-modules are injective objects in } A\text{-proj}, \text{ it follows that there is a commutative diagram}

\[
\begin{array}{ccccccccc}
0 & \to & M \otimes Y & \xrightarrow{\sigma} & P & \xrightarrow{\pi} & \text{Coker}\sigma & \to & 0 \\
\downarrow{1 \otimes g} & & \downarrow{f} & & \downarrow{} & & \downarrow{} & & \\
0 & \to & M \otimes Y' & \xrightarrow{\sigma'} & P' & \to & \text{Coker}\sigma' & \to & 0.
\end{array}
\]

Taking \(g = \text{Id} \) we see \((\sigma')_\sigma \cong (\sigma')_{\sigma'} \) in \(A\text{-proj} \). If we have another map \(f' : P \to P' \) such that \(f' \sigma = \sigma'(1 \otimes g) \), then \(f - f' \) factors through \(\text{Coker}\sigma \). Since \(\text{Coker}\sigma \in A\text{-proj} \), we have a monomorphism \(\tilde{\sigma} : \text{Coker}\sigma \to \hat{P} \) with \(\hat{P} \) projective. Then we easily see that \((\sigma)_{\sigma} - (\sigma')_{\sigma} \) factors through projective \(\Lambda\) module \((\tilde{P})_0 \), and hence \((\sigma)_{\sigma} = (\sigma')_{\sigma} \). Thus we get a unique functor \(j_* : B\text{-proj} \to A\text{-proj} \) given by \(Y \mapsto (\sigma')_\sigma \) and \(g \mapsto (\sigma)_{\sigma} \).

Assume that \(g : Y \to Y' \) factors through a projective module \(bQ \) with \(g = g_2g_1 \). Since \(M \otimes Q \) is projective and hence an injective object in \(A\text{-proj} \), there is an \(A\)-map \(\alpha : P \to M \otimes Q \) such that \(1 \otimes g_1 = \alpha \sigma \). Since \((f - \sigma'(1 \otimes g_2)\alpha) \sigma = 0 \), there is an \(A\)-map \(\tilde{f} : \text{Coker}\sigma \to P' \) such that \(\tilde{f} \pi = f - \sigma'(1 \otimes g_2)\alpha \). Let \(\tilde{\sigma} : \text{Coker}\sigma \to \hat{P} \) be a monomorphism with \(\hat{P} \) projective. Then we get an \(A\)-map \(\beta : \hat{P} \to P' \) such that \(\tilde{f} = \beta \tilde{\sigma} \). Thus \((\sigma)_{\sigma} \) factors through projective \(\Lambda\) module \((M \otimes Q)_0 \oplus (\tilde{P})_0 \) with \((\sigma)_{\sigma} = \left(\begin{array}{c} (\sigma(1 \otimes g_1), \beta) \\ (\tilde{\sigma} \pi) \end{array} \right) \). Therefore \(j_* : B\text{-proj} \to A\text{-proj} \) induces a functor \(B\text{-proj} \to A\text{-proj} \), again denoted by \(j_* \), which is given by \(Y \mapsto (\sigma')_\sigma \) and \(g \mapsto (\sigma)_{\sigma} \).

By the above argument we know that \(j_* \) is full. If \((\sigma)_{\sigma} \) factors through projective \(\Lambda\) module \((M \otimes Q)_0 \oplus (\tilde{P})_0 \), then \(g \) factors through projective module \(bQ \). Thus \(j_* \) is faithful. \(\blacksquare \)

3.4. Let \(\mathcal{A} \) be a Frobenius category and \(\underline{\mathcal{A}} \) the corresponding stable category. Then \(\underline{\mathcal{A}} \) is a triangulated category with shift functor \([1] \) given by \(X[1] = \text{Coker}(X \to I(X)) \), where \(I(X) \) is a projective-injective object of \(\mathcal{A} \); each exact sequence \(0 \to X \xrightarrow{u} Y \xrightarrow{v} Z \to 0 \) in \(\mathcal{A} \) gives rise to a distinguished triangle \(X \xrightarrow{u} Y \xrightarrow{v} Z \to \text{in } \underline{\mathcal{A}} \), and each distinguished triangle in \(\underline{\mathcal{A}} \) is of this form up to an isomorphism. See D. Happel [H], Chapter 1, Section 2. It follows that we have

Lemma 3.5. All the functors \(i^* \), \(i_* \), \(i! \), \(j^* \), \(j_* \), \(j! \) constructed above are exact functors; and \(i_* \), \(j_* \) are full.

3.5. **Proof of Theorem 3.3.** By construction \(\text{Ker} j^* = \{(\tilde{X})_\phi \in A\text{-proj} | bQ \text{ is projective} \} \).

By Proposition 3.2 there is an exact sequence \(0 \to M \otimes Q \xrightarrow{\phi} X \to \text{Coker}\phi \to 0 \) in \(A\text{-proj} \). Since \(M \otimes Q \) is a projective \(A\) module, and hence an injective object in \(A\text{-proj} \), it follows that \(\phi \) splits and then \((\tilde{X})_\phi \cong (M \otimes Q)_0 \oplus (X'_0) \) in \(A\text{-proj} \). Thus \(\text{Im} i_* = \text{Ker} j^* \).

In the following \((\tilde{X})_\phi \in A\text{-proj} \), \(X' \in A\text{-proj} \), and \(Y' \in B\text{-proj} \).

It is easy to see that a \(A\)-map \((\tilde{f}) : (\tilde{X})_\phi \to (X'_0) \) factors through a projective \(A\)-module if and only if the induced \(A\)-map \(\text{Coker}\phi \to X' \) factors through a projective \(A\)-module. This implies that the isomorphism (2.7) induces the following isomorphism, which are natural in both positions

\[\text{Hom}_{A\text{-proj}}((\tilde{X})_\phi, (X'_0)) \cong \text{Hom}_{A\text{-proj}}(\text{Coker}\phi, X') \],

where \(\text{Hom}_{A\text{-proj}} \) denotes the morphisms in the category of \(A\)-modules.
i.e., \((i^*, i_*)\) is an adjoint pair.

It is easy to see that a \(\Lambda\)-map \(\left(\begin{array}{c} f \\ 0 \end{array} \right) : (X'_0) \to (X)_{\phi}\) factors through a projective \(\Lambda\)-module if and only if \(f : X' \to X\) factors through a projective \(A\)-module. This implies that the isomorphism (2.8) induces the following isomorphism, which are natural in both positions

\[
\Hom_{\text{-proj}}(X'_0, (X)_{\phi}) \cong \Hom_{\text{-proj}}(X', X),
\]

i.e., \((i^*, i_*)\) is an adjoint pair.

Note that \(M \otimes Q\) is a projective \(A\)-module for any projective \(B\)-module \(Q\). It is easy to see that a \(\Lambda\)-map \(\left(\begin{array}{c} \phi(\text{Id}_{\Lambda} \otimes g) \\ g \end{array} \right) : \left(\begin{array}{c} M \otimes Y' \\ Y \end{array} \right)_{\phi} \to \left(\begin{array}{c} X \\ Y \end{array} \right)_{\phi}\) factors through a projective \(\Lambda\)-module if and only if \(g : Y' \to Y\) factors through a projective \(B\)-module. This implies that the isomorphism (2.9) induces the following isomorphism, which are natural in both positions

\[
\Hom_{\text{-proj}}(M \otimes Y', (X)_{\phi}) \cong \Hom_{\text{-proj}}(Y', Y),
\]

i.e., \((j^*, j_*)\) is an adjoint pair.

Let \(\left(\begin{array}{c} g \\ \sigma \end{array} \right) : \left(\begin{array}{c} X \\ Y \end{array} \right)_{\phi} \to \left(\begin{array}{c} Y' \\ X' \end{array} \right)_{\phi}\) be a \(\Lambda\)-map, \(0 \to M \otimes Y' \to P' \to \text{Coker}\sigma \to 0\) an exact sequence with \(P'\) projective and \(\text{Coker}\sigma \in \text{proj}\). In the proof of Lemma 3.4 we know that \(\left(\begin{array}{c} g \\ \sigma \end{array} \right)\) factors through a projective \(\Lambda\)-module if and only if \(g : Y \to Y'\) factors through a projective \(B\)-module. This implies that the map \(g \mapsto \left(\begin{array}{c} g \\ \sigma \end{array} \right)\) gives rise to the following isomorphism, which is natural in both positions

\[
\Hom_{\text{-proj}}(\left(\begin{array}{c} X \\ Y \end{array} \right)_{\phi}, (X')_{\phi}) \cong \Hom_{\text{-proj}}(Y, Y'),
\]

i.e., \((j^*, j_*)\) is an adjoint pair. Now the first assertion follows from Lemmas 3.5 and 1.3.

Assume that \(A\) and \(B\) are in additional finite-dimensional algebras over a field \(k\). Note that \(\Lambda\text{-proj}\) is a resolving subcategory of \(\Lambda\text{-mod}\) (see e.g. Theorem 2.5 in [Hol]). Since \(\Lambda\) is a Gorenstein algebra, it is well-known that \(\Lambda\text{-proj}\) contravariantly finite in \(\Lambda\text{-mod}\) (see Theorem 11.5.1 in [EJ], where the result is stated for arbitrary \(\Lambda\)-modules, but the proof holds also for finitely generated modules. See also Theorem 2.10 in [Hol]). Then by Corollary 0.3 of H. Krause and O. Solberg [KS], which asserts that a resolving contravariantly finite subcategory in \(\Lambda\text{-mod}\) is also covariantly finite in \(\Lambda\text{-mod}\), \(\Lambda\text{-proj}\) is functorially finite in \(\Lambda\text{-mod}\), and hence \(\Lambda\text{-proj}\) has Auslander-Reiten sequences, by Theorem 2.4 of M. Auslander and S. O. Smalø [AS]. Since each distinguished triangle in the stable category \(A\) of a Frobenius category \(A\) is induced by an exact sequence in \(A\), \(\Lambda\text{-proj}\) has Auslander-Reiten triangles. By assumption \(\Lambda\) is finite-dimensional \(k\)-algebra, thus \(\Lambda\text{-proj}\) is a Hom-finite \(k\)-linear Krull-Schmidt category, and hence by Theorem 1.2.4 of I. Reiten and M. Van den Bergh [RV] \(\Lambda\text{-proj}\) has a Serre functor. Now the second assertion follows from Theorem 7 of P. Jørgensen [J], which claims that any recollement of a triangulated category with a Serre functor is symmetric.

3.6. By Theorem 3.3 we have

Corollary 3.6. Let \(A\) be a Gorenstein algebra, and \(T_2(A) = \left(\begin{array}{c} A \\ 0 \end{array} \right)\). Then we have a recollement of triangulated categories
\[A\text{-Gproj} \quad \mathbb{T}_{2}(A)\text{-Gproj} \quad A\text{-Gproj}; \]

and it is symmetric if \(A\) and \(B\) are finite-dimensional algebras over a field.

For the first part of Corollary 3.6 see also Theorem 3.8 in [IKM].

References

[ARS] M. Auslander, I. Reiten, S. O. Smalø, Representation Theory of Artin Algebras, Cambridge Studies in Adv. Math. 36, Cambridge Univ. Press, 1995.

[AS] M. Auslander, S. O. Smalø, Almost split sequences in subcategories, J. Algebra 69(1981), 426-454.

[BBD] A. A. Beilinson, J. Bernstein, P. Deligne, Faisceaux prevers, Astérisque 100, Soc. Math. France, Paris, 1982.

[B] A. Beligiannis, Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras, J. Algebra 288(1)(2005), 137-211.

[C] X. W. Chen, Singularity categories, Schur functors and triangular matrix rings, Algebr. Represent. Theory (12)(2009), 18-191.

[CL] Q. H. Chen, Y. N. Lin, Recollement of extension algebras, Sci. China (Ser. A) 46(4)(2003), 530-537.

[CPS] E. Cline, B. Parshall, and L. Scott, Finite dimensional algebras and highest weight categories, J. reine. angew. Math. 391(1988), 85-99.

[EJ] E. E. Enochs, O. M. G. Jenda, Relative homological algebra, De Gruyter Exp. Math. 30. Walter De Gruyter Co., 2000.

[FV] V. Franjou, T. Pirashvili, Comparison of abelian categories recollement, Doc. Math. 9(2004) 41-56.

[Hap] D. Happel, Triangulated categories in representation theory of finite dimensional algebras, London Math. Soc. Lecture Notes Ser. 119, Cambridge Univ. Press, 1988.

[Hol] H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189(1-3)(2004), 167-193.

[IKM] O. Iyama, K. Kato, J-I. Miyachi, Recollement on homotopy categories and Cohen-Macaulay modules, available at arXiv: math. RA 0911.0172.

[J] P. Jørgensen, Reflecting recollements, available at: www.staff.ncl.ac.uk/peter.jorgensen/manus/rrecoll2.pdf

[K] S. König, Tilting complexes, perpendicular categories and recollements of derived module categories of rings, J. Pure Appl. Algebra 73(1991), 211-232.

[KS] H. Krause, Ø. Solberg, Applications of cotorsion pairs, J. London Math. Soc. 68(3)(2003), 631-650.

[MV] R. Macpherson, K. Vilonen, Elementary construction of perverse sheaves, Invent. Math. 84(1986), 403-436.

[M] J-I. Miyachi, Localization of triangulated categories and derived categories, J. Algebra 141(1991), 463-483.

[PS] B. Parshall, L. Scott, Derived categories, quasi-hereditary algebras and algebraic groups, Carlton University Math. Notes 3(1988), 1-104.

[RV] I. Reiten, M. Van den Bergh, Noether hereditary abelian categories satisfying Serre functor, J. Amer. Math. Soc. 15(2)(2002), 295-366 (electronic).