ARC DISTANCE EQUALS LEVEL NUMBER

SANGBUM CHO, DARRYL MCCULLOUGH, AND ARIM SEO

(Communicated by Daniel Ruberman)

Abstract. Let K be a knot in 1-bridge position with respect to a genus-g Heegaard surface that splits a 3-manifold M into two handlebodies V and W. One can move K by isotopy keeping $K \cap V$ in V and $K \cap W$ in W so that K lies in a union of n parallel genus-g surfaces tubed together by $n-1$ straight tubes, and K intersects each tube in two arcs connecting the ends. We prove that the minimum n for which this is possible is equal to a Hempel-type distance invariant defined using the arc complex of the two-holed genus-g surface.

Introduction

A knot K in a closed orientable 3-manifold M is said to be in 1-bridge position with respect to a surface F if F is a Heegaard surface that splits M into two handlebodies V and W, and each of $K \cap V$ and $K \cap W$ is a single arc that is parallel into F. We denote the 1-bridge position of K with respect to F by (F,K), and the genus of (F,K) is the genus of F. A knot is called a $(g,1)$-knot if it can be put in a genus-g 1-bridge position.

There is a natural way to reposition a knot in 1-bridge position, called level position. In a neighborhood $F \times [0,1]$ of F in M, one may take n parallel copies of the form $F \times \{t\}$ and tube them together with $n-1$ unknotted tubes to obtain a surface G of genus gn in $F \times [0,1]$, where g is the genus of F. We say that K lies in n-level position with respect to F if $K \subset G$, and moreover K meets each of the $n-1$ tubes in two arcs, each of which connects the two ends of the tube. As we will see below, every 1-bridge position of K is isotopic keeping $K \cap V$ in V and $K \cap W$ in W into some n-level position. The minimum such n is an invariant of the 1-bridge position, called the level number. Of course, the minimum level number over all genus-g 1-bridge positions of a $(g,1)$-knot is an invariant of the knot.

Level position was used by M. Eudave-Muñoz [3, 4] to obtain closed incompressible surfaces in the complements of $(1,1)$-knots.

In this paper, we use an invariant of a 1-bridge position, called its arc distance. This is a version of a well-known complexity of a Heegaard splitting introduced by J. Hempel in [8] and defined using the curve complex of the Heegaard surface. D. Bachman and S. Schleimer have used a more general and somewhat different definition of arc distance to obtain information about bridge positions of knots [1]. To define our arc distance, write $K \cap F = \{x,y\}$. The isotopy classes of arcs in...
Let K be in 1-bridge position with respect to F. Let α_V be the minimum number of intersection points of shadows α_V of $K \cap V$ and $K \cap W$ respectively. Then K is Heegaard isotopic to a knot in k-level position with respect to F for some $k < n$.}

We will not give a direct proof of Proposition 1.1. Although such a proof is not difficult, it is somewhat cumbersome to explain and tedious to read. Also, it is
not needed, for as we will see, Proposition 1.1 follows directly from our main result, Theorem 3.2 together with the connectivity of the arc complex discussed in Section 2 below.

In view of Proposition 1.1, we may make the following definition for a knot \(K \) in genus-\(g \) 1-bridge position with respect to \(F \):

1. The level number of the 1-bridge position \((F,K)\) is the minimum \(n \) such that \(K \) is Heegaard isotopic to a knot in \(n \)-level position with respect to \(F \).
2. The genus-\(g \) level number of \(K \) is the minimum level number over all genus-\(g \) 1-bridge positions of \(K \).

2. The arc complex

Let \(\Sigma \) be a genus-\(g \) surface with two holes, \(g \geq 0 \), and denote by \(C_1 \) and \(C_2 \) the two boundary circles of \(\Sigma \). The arc complex \(A(\Sigma) \) of \(\Sigma \) is a simplicial complex defined as follows. The vertices are isotopy classes of properly embedded arcs in \(\Sigma \) connecting \(C_1 \) and \(C_2 \), and a collection of \(k+1 \) vertices spans a \(k \)-simplex if it admits a collection of representative arcs which are pairwise disjoint. In this section we will show that \(A(\Sigma) \) is connected. Indeed, as we will explain, it is contractible.

Arc complexes have been used in Teichmüller theory by J. Harer \([5,6]\) (see also A. Hatcher \([7]\)) and R. C. Penner \([11]\). In particular, many arc complexes are known to be contractible, although we have not found our particular case in the existing literature.

Let \(v \) and \(w \) be vertices of \(A(\Sigma) \). Define \(v \cdot w \) to be the minimal cardinality of \(l \cap m \) where \(l \) and \(m \) are arcs in \(\Sigma \) which represent \(v \) and \(w \), respectively, and intersect transversely.

Lemma 2.1. Let \(v \) and \(w \) be vertices of \(A(\Sigma) \) and suppose \(v \cdot w > 0 \). Then there exists a vertex \(w' \) such that \(w \cdot w' = 0 \) and \(w' \cdot v < w \cdot v \).

Proof. Choose arcs \(l \) and \(m \) representing the vertices \(v \) and \(w \), respectively, so that \(|l \cap m| = v \cdot w \). Since \(v \cdot w > 0 \), we have at least one intersection point of \(l \) and \(m \). Let \(p \) be the intersection point for which the subarc of \(l \) connecting \(p \) and \(C_2 \) is disjoint from \(m \). Denote by \(m' \) the union of this subarc and the subarc of \(m \) connecting \(p \) and \(C_1 \) (see Figure 1). Then the arc \(m' \) is disjoint from \(m \) and has fewer intersections with \(l \) than \(m \) had (after a slight isotopy) since at least \(p \) intersectoins no longer count. Letting \(w' \) be the vertex represented by \(m' \), we have \(w' \cdot v < w \cdot v \) and \(v \cdot w' = 0 \). \(\square \)

Theorem 2.2. The arc complex \(A(\Sigma) \) is connected. In fact, if representative arcs of \(v \) and \(w \) intersect transversely in \(k \) points, then the distance from \(v \) to \(w \) is at most \(k+1 \).

Proof. Let \(v \) and \(w \) be any two vertices of \(A(\Sigma) \). If \(v \cdot w = 0 \), then \(v \) and \(w \) are connected by an edge of \(A(\Sigma) \), so lie at distance 1. If \(v \cdot w = k > 0 \), then Lemma 2.1 and induction give the result. \(\square \)

In fact, \(A(\Sigma) \) is contractible. This can be proven fairly quickly using Proposition 3.1 of \([2]\). Since we do not need this fact, we do not include the argument.
In Section 2, we showed that the arc complex $A(\Sigma)$ is connected. Thus, for any two vertices v and w of $A(\Sigma)$, we can define the distance $\text{dist}(v, w)$ to be the distance in the 1-skeleton of $A(\Sigma)$ from v to w with the usual path metric.

Keeping the notation of previous sections, let K be a $(g, 1)$-knot in 1-bridge position with respect to the Heegaard surface F. By removing from F a small open neighborhood of the two points $K \cap F$, we obtain a 2-holed genus-g surface Σ. Denote by k and k' the two arcs $V \cap K$ and $W \cap K$, and let s and s' be shadows of k and k', respectively. Then the arcs $s \cap \Sigma$ and $s' \cap \Sigma$ represent vertices of the arc complex $A(\Sigma)$. We will call $s \cap \Sigma$ and $s' \cap \Sigma$ shadows of k and k' again.

Definition 3.1. Let K be in genus-g 1-bridge position with respect to F.

1. The arc distance of (F, K) is the minimum of $\text{dist}(v, v')$ over all the vertices v and v' represented by shadows of $K \cap V$ and $K \cap W$, respectively.
2. The genus-g arc distance of K is the minimum of the arc distance of (F, K) over all genus-g 1-bridge positions (F, K) of K.

We observe that the trivial knot is the only knot of arc distance 0, and a knot in S^3 has genus-1 arc distance 1 if and only if it is a nontrivial torus knot. Figure 1 shows that the genus-1 arc distance of the figure-8 knot is at most 2, and hence is 2 since the figure-8 knot is not a torus knot.

Theorem 3.2. Let K be a nontrivial knot which is in 1-bridge position with respect to F. If K is in n-level position with respect to F, then the arc distance of (F, K) is at most n. Conversely, if the arc distance of (F, K) is n, then K is Heegaard isotopic to a knot in n-level position with respect to F. As a consequence, the arc distance of (F, K) equals the level number of (F, K).

Proof. Suppose that K is in n-level position with respect to F. The case of $n = 1$ is clear. We will assume that $n \geq 3$. (The case of $n = 2$ is similar but simpler.) We describe the surface G as in Section 1. In particular, recall that the tube T_j connects two surfaces F_j and F_{j+1}. By an isotopy, we may assume that the two arcs $K \cap T_j$ are vertical, that is, $K \cap T_j = (K \cap \partial D_j) \times [t_j, t_{j+1}]$. Denote the arcs $K \cap F_1$ and $K \cap F_n$ by k and k' respectively, and denote the two arcs of $F_j \cap K$...
Figure 2. A genus-1 2-level position of the figure-8 knot, having arc distance 2.

by α_j and β_j for each $2 \leq j \leq n - 1$. Choose an arc μ_j properly embedded in $D_j \times \{t_j\}$, connecting the two points $K \cap (\partial D_j \times \{t_j\})$ for each $1 \leq j \leq n - 1$ (see Figure 3).

Let $a = a \times \{t_1\}$ and $b = b \times \{t_1\}$ be the endpoints of k, with notation chosen so that $a \times \{t_2\} \in \alpha_2$ and $b \times \{t_2\} \in \beta_2$. There is an isotopy j_1 of F_2 that moves the endpoints of μ_2 along α_2 and β_2 until they reach $a \times \{t_2\}$ and $b \times \{t_2\}$, stretching μ_2 onto $\alpha_2 \cup \mu_2 \cup \beta_2$. Extend j_1 to the isotopy $J_1 = j_1 \times id_{[t_2, t_n]}$ on $F \times [t_2, t_n]$.

Consider the knot obtained from K by replacing $K \cap (F \times [t_2, t_n])$ by $J_1(K \cap (F \times [t_2, t_n]))$. The original K is isotopic to this new knot by an isotopy supported on a small neighborhood of $F \times [t_2, t_n]$ that resembles J_1 on $F \times [t_2, t_n]$. This isotopy pulls $\alpha_2 \cup \beta_2$ onto part of $K \cap T_1$ and stretches μ_2 onto $\alpha_2 \cup \mu_2 \cup \beta_2$, as J_1 did.

Figure 3
Calling the new knot K again, we may notionally replace each μ_2, \ldots, μ_{n-1} and κ' by its image under J_1, each D_2, \ldots, D_{n-1} by its image, and so on. The new α_3 and β_3 end at $a \times \{t_3\}$ and $b \times \{t_3\}$.

Repeat this process on each descending level. At the last stage (after renaming), K has been moved to $k \cup (a \cup b) \times [t_i, t_n] \cup k'$ and we have the sequence of arcs $k, \mu_1, \ldots, \mu_{n-1}, k'$, with endpoints lying in $a \times [t_1, t_n]$ and $b \times [t_1, t_n]$. After projecting $k, \mu_1, \ldots, \mu_{n-1}$, and k' to F, each intersects the next only in their endpoints. Therefore the vertices represented by the projected arcs k and k' have distance at most n in the arc complex.

The projected k and k' are shadows of $K \cap V$ and $K \cap W$, where V and W are the two handlebodies into which F cuts M. Thus the arc distance of (F, K) is at most n.

Conversely, suppose that the arc distance of (F, K) is n for $n \geq 3$ (again the case $n = 1$ is clear and we omit the case $n = 2$, which is similar to $n \geq 3$). Denote by p and q the two points $K \cap F$. Then we have a sequence of arcs $s_0, s_1, s_2, \ldots, s_{n-1}, s_n$ in F, each connecting p and q, such that s_0 and s_n are shadows of $V \cap K$ and $W \cap K$, and s_{j-1} meets s_j only in their endpoints p and q for $1 \leq j \leq n$.

Let N_p and N_q be disjoint regular neighborhoods of p and q in F respectively. By a Heegaard isotopy, we may assume that each of $N_p \cap (s_0 \cup s_1 \cup \cdots \cup s_n)$ and $N_q \cap (s_0 \cup s_1 \cup \cdots \cup s_n)$ is contractible. In particular, any s_i and s_j meet in N_p only at the point p, and in N_q only at the point q. For $1 \leq j \leq n - 1$, choose regular neighborhoods D_j of $s_j \cap F - (N_p \cup N_q)$ in $F - (N_p \cup N_q)$ so that s_0 is disjoint from D_1, s_n is disjoint from D_{n-1}, and D_{j-1} is disjoint from D_j. For $1 \leq j \leq n - 1$, denote the arcs $s_j \cap N_p$ and $s_j \cap N_q$ by α_j and β_j respectively, and the points $\alpha_j \cap \partial N_p$ and $\beta_j \cap \partial N_q$ by p_j and q_j respectively (see Figure 4).

As in Section 1 let $0 = t_1 < t_2 < \cdots < t_n = 1$ be a sequence of values, put $F_j = F \times \{t_j\} \subset F \times [0, 1] \subset W$, and construct a closed surface G from the surfaces F_j and the tubes $T_j = \partial D_j \times [t_j, t_{j+1}]$. By a Heegaard isotopy, we may assume that $K = s_0 \times \{t_1\} \cup (p \cup q) \times [t_1, t_n] \cup s_n \times \{t_n\}$. Construct a knot K' contained in G so that:

1. $K' \cap F_1 = (s_0 \cup \alpha_1 \cup \beta_1) \times \{t_1\}$,
2. $K' \cap F_j = (\alpha_{j-1} \cup \alpha_j \cup \beta_{j-1} \cup \beta_j) \times \{t_j\}$, for $2 \leq j \leq n - 1$,
3. $K' \cap F_n = (s_n \cup \alpha_{n-1} \cup \beta_{n-1}) \times \{t_n\}$, and
4. $K' \cap T_j = (p_j \cup q_j) \times [t_j, t_{j+1}]$, for $1 \leq j \leq n - 1$.

![Figure 4](image-url)
By construction, K' lies in n-level position with respect to F. There is a Heegaard isotopy from K to K' that moves each $\{p\} \times [t_i, t_{i+1}]$ onto $\alpha_i \times \{p_i\} \times [t_i, t_{i+1}] \cup \beta_{i+1} \times \{t_{i+1}\}$ and similarly for $\{q\} \times [t_i, t_{i+1}]$.

As we mentioned in Section 1, Proposition 1.1 follows from Theorem 3.2. For if α_V and α_W intersect in n points, then as representative arcs of the vertices of the arc complex $\mathcal{A}(\Sigma)$ they intersect in $n - 2$ points. By Theorem 2.2 the distance from α_V to α_W is at most $n - 1$, so by Theorem 3.2, K is Heegaard isotopic to a knot in k-level position for some $k < n$.

From Theorem 3.2 we have our main objective.

Corollary 3.3. Let K be a nontrivial knot which can be put in genus-g 1-bridge position. Then the genus-g arc distance of K equals the genus-g level number of K.

References

1. D. Bachman, S. Schleimer, Distance and bridge position, *Pacific J. Math.* 219 (2005), 221–235. MR2175113 (2007a:57028)
2. S. Cho, Homeomorphisms of the 3-sphere that preserve a Heegaard splitting of genus two, *Proc. Amer. Math. Soc.* 136 (2008), 1113–1123. MR2391888
3. M. Eudave-Muñoz, Incompressible surfaces in tunnel number one knot complements, II, *Topology Appl.* 98 (1999), 167–189. MR1719999 (2000h:57010)
4. M. Eudave-Muñoz, Incompressible surfaces and (1,1)-knots, *J. Knot Theory Ramifications* 15 (2006), 935–948. MR2251034 (2007c:57006)
5. J. Harer, Stability of the homology of the mapping class groups of orientable surfaces, *Ann. of Math. (2)* 121 (1985), 215–249. MR786348 (87f:57009)
6. J. Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, *Invent. Math.* 84 (1986), 157–176. MR830043 (87c:32030)
7. A. Hatcher, On triangulations of surfaces, *Topology Appl.* 40 (1991), 189–194. MR1123262 (92f:57020)
8. J. Hempel, 3-manifolds as viewed from the curve complex, *Topology* 40 (2001), 631–657. MR1838999 (2002f:57044)
9. T. Kobayashi, Classification of unknotting tunnels for two bridge knots, in *Proceedings of the Kirbyfest (Berkeley, CA, 1998)*, 259–290, Geom. Topol. Monogr. 2, Geom. Topol. Publ., Coventry, 1999. MR1734412 (2000f:57023)
10. K. Morimoto, M. Sakuma, On unknotting tunnels for knots, *Math. Ann.* 289 (1991), 143–167. MR1087243 (92e:57015)
11. R. C. Penner, The simplicial compactification of Riemann’s moduli space, in *Topology and Teichmüller spaces (Katinkulta, 1995)*, 237–252, World Sci. Publ., River Edge, NJ, 1996. MR1659667 (99j:32023)

Department of Mathematics, University of California, Riverside, California 92521
E-mail address: scho@math.ucr.edu

Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019
E-mail address: dmccullough@math.ou.edu

Department of Mathematics, California State University, San Bernardino, California 92407
E-mail address: aseo@csusb.edu