Ferroelectric and magnetic properties of Nd-doped Bi$_4$–$_x$FeTi$_3$O$_{12}$ nanoparticles prepared through the egg-white method

Khalid Mujasam Batoo1*, Joselito Puzan Labis1, Ritu Sharma2 and Mahavir Singh2

Abstract

Multiferroic behavior of Bi$_4$–$_x$Nd$_x$FeTi$_3$O$_{12}$ (0.0 ≤ x ≤ 0.25, x = 0.05) ceramic nanoparticles prepared through the egg-white method was investigated. The dielectric properties of the samples show normal behavior and are explained in the light of space charge polarization. Room temperature polarization-electric field (P-E) curves show that the samples are not saturated with maximum remanence polarization, P_r = 0.110 μC/cm2, and a relatively low coercive field, E_c = of 7.918 kV/cm, at an applied field of 1 kV/cm was observed for 5% Nd doping. The room temperature M-H hysteresis curve shows that the samples exhibit intrinsic antiferromagnetism with a weak ferromagnetism. These properties entitle the grown nanoparticles of BNFT as one of the few multiferroic materials that exhibit decent magnetization and electric polarization.

Keywords: Nanoparticles, Multiferroic, Dielectric constant, dc magnetization

Background

Recently, there has been an extensive study in the direction of search for the materials possessing magnetic as well as the ferroelectric properties because of the richness of physics involved in the system as well as their potential applications in memory devices and functional sensors [1-6]. These materials exhibit phenomena such as the control of electrical polarization by the application of an external magnetic field or vice versa, providing an additional degree of freedom for the design of new devices. Materials can be considered as multiferroic where ferroelectricity and ferromagnetism make mutually exclusive group [3] with the interaction of electric and magnetolectric effects [4,7] and the effect of mutual influence of the polarization and magnetization. These phenomena are of practical interest for microelectronics, magnetic memories, sensors, and nonvolatile ferroelectric random access memory applications [3,8,9]. In order to be used as microelectronics and sensor techniques, magnetoelectric materials should satisfy this criterion: the magnetic and electric ordering temperature must exceed the room temperature. However, up to now, multiferroic materials for room temperature applications are very few [10]. Taking into account the recent literature, most of the published articles are referring to perovskite structures as potential multiferroics [3,11]. However, only BiFeO$_3$ has proved multiferroic properties at room temperature [7,12], and its complex properties are not yet well understood. Numerous studies for the search of multiferroic properties of BiFeO$_3$ system substituted with PbTiO$_3$, La, Co, Nd, and Gd have been carried out in order to improve its ferroelectric and ferromagnetic properties [13,14]. In the light of continued search for the multiferroic materials, the substitution of Nd was used to enhance the electrical resistivity of Ba$_4$Ti$_3$FeO$_{12}$ (BNFT) system. This paper reports the synthesis of Nd-substituted nanomaterials through the egg-white method and their dielectric, ferroelectric, and magnetic studies.

Methods

Material preparation

Nanoparticles of BNFT were prepared through egg-white method. The starting materials Bi(NO$_3$)$_3$·5H$_2$O, Nd(NO$_3$)$_3$·6H$_2$O, TiCl$_3$, and FeCl$_3$ were mixed together in proper stoichiometric proportions. Extracted egg
white (60 ml), dissolved in 40 ml of double distilled water through vigorous stirring, was added to the metal mixture at room temperature. After constant stirring for 30 min, the resultant sol–gel was evaporated at 80°C until a dry precursor was obtained. The dried precursor was sintered at 700°C for 10 h. The final material obtained was ground for 1 h using mortar and pestle.

The powder samples obtained were characterized for structural phase and nanosize formation using PANalytical X'Pert Pro X-ray diffractometer (The Netherlands) with Cu Kα (λ = 1.54 Å) in the range of 20° to 80° with a sweeping rate of 2°/min.

The microstructural and morphological analysis of the samples were carried out using a field emission scanning...
electron microscope (FESEM, JSM 7600 F, JEOL Ltd., Akishima, Tokyo, Japan) and field emission transmission electron microscope (HRTEM, JEOL 2010 F, JEOL Ltd.) with the energy dispersive X-ray (EDX) facility attached. For electrical measurements, a fixed amount of powder sample was taken, and a few drops of PVA were added to it. The mixture was left overnight, dried at room temperature, and pressed into disc-shaped pellets (12 mm × 12 mm) with the help of hydraulic press. The pellets were heated at 500°C for 1 h, and silver paste coating was applied on opposite flat faces of the pellets to make parallel plate capacitor geometry. The dielectric measurements were performed in the frequency range 1 kHz to 1 MHz using Wayne Kerr 6500B impedance analyzer (Wayne Kerr Electronics Ltd., Woburn, MA, USA). The polarization versus electric field hysteresis measurements were carried out using Lake Shore VSM (Lake Shore Cryotronics Inc., OH, USA) with a field of 20 kOe.

Results and discussion

Structural and morphological studies

The powder samples of BNTF were characterized for structural and phase analysis through X-ray diffraction shown in Figure 1. The XRD patterns for annealed samples reveal the characteristic well-crystallized pattern with a few signatures of secondary phase corresponding to pure Bi$_4$Ti$_3$O$_{12}$ compound and alpha-Fe$_2$O$_3$. Figure 2 shows the EDX pattern of the pure sample confirming the chemical formation of the polycrystalline BNTF nanoparticles. Figure 3a,b shows the FE-SEM microstructure of the fracture surfaces of pristine and 5% doped Nd sample. Interestingly, with Nd doping, the densification is promoted in the grown nanoparticles. Figure 4a shows the FE-TEM micrograph with inset showing the average grain size plot and selective area electron diffraction pattern for the composition $x = 0.0$. The micrograph shows irregular-shaped highly agglomerated nanoparticles with an average grain size of 50 nm for the composition $x = 0.05$. The average crystallite sizes calculated through FE-TEM show a broad size distribution from 50 to 72 nm as shown in Figure 5. A high crystalline order is observed in the grown nanoparticles. Figure 4b shows lattice pattern for the composition $x = 0.05$ with inset showing the d spacing value of 0.240 Å. The d value obtained collaborated well with the value obtained from X-ray diffraction pattern.

Dielectric study

The high resistivity and low dielectric loss (tanδ ≈ 1.6 at 42 Hz at RT) in Nd-substituted specimens allowed the dielectric constant (ε_r) to be determined, as shown in Figure 6. The room temperature dielectric constant was found 515 at 1 kHz maximum for 5% Nd concentration. The obtained dielectric constant is higher than the values of thin films (≈107) [15,16] and Nb-doped BiFeO$_3$ ceramics [17] reported earlier. Both the dielectric constant and loss tangent (Figure 7) are found to decrease rapidly in low-frequency region and show frequency independent response above 22 kHz. These variations can be explained in the light of space charge polarization as discussed by Maxwell [18] and Wagner [19] and is in good agreement with Koop’s phenomenological theory [20]. At low frequencies, the space charges are able to follow the frequency of the applied field, while at high frequencies, they may not have time to build up and undergo relaxation. The low loss values at higher frequencies show potential applications of these materials in high-frequency microwave devices. Moreover, the dielectric loss factor also depends on a number
of factors, such as stoichiometry and structural homogeneity, which in turn, depend upon the composition and sintering temperature of the samples [21]. The room temperature resistivity measurements as a function of composition x are presented in Figure 8. It is seen that the resistivity of the samples increases with the increasing percentage Nd doping. The behavior may be attributed to the decreasing number of the conduction ions.

Ferroelectric hysteresis

The ferroelectric hysteresis loop measurement is always hampered by the high leakage current. Because of low resistivity of the samples, it is difficult to apply high electric fields to the bulk samples. The ferroelectric polarization hysteresis loops at room temperature for Nd-doped $\text{Bi}_4 - x\text{FeTi}_3\text{O}_{12}$ samples measured under an applied field (E) of about 10 kV/cm are presented in Figure 9. The loops are not really saturated and represent a partial reversal of the polarization almost elliptical-shaped [22,23]. The P_r and E_c values of the BNTF nanoparticles as a function of Nd composition are shown in Figure 10. The remanence polarization, P_r, increases first and then decreases with an increasing value of x. The highest value of $P_r = 0.110 \mu \text{C/cm}^2$ and...
Figure 5 Grain size distribution with composition.

Figure 6 Variation of dielectric constant with frequency.

Figure 7 Variation of dielectric loss with frequency.

Figure 8 Variation of resistivity with Nd composition.

Figure 9 Polarization-electric field loop for Bi$_4$Ti$_3$FeO$_{12}$ nanoparticles.

Figure 10 Variation of remanence polarization and coercive field with composition.
a relatively low coercive field \((E_c) \) of 7.918 kV/cm were observed for 5% Nd concentration. Similar behavior in \(E_c \) is also observed where it increases first and then follows a decreasing trend with increasing Nd content [24,25]. The remnant polarization of the samples is not too high. It is well known that most magnetic materials usually have high electrical conductivity. Thus, few multiferroic materials could exhibit the ferroelectric response properly. It is very critical for magnetic materials with high insulating resistivity to possess both ferroelectric and ferromagnetic properties simultaneously. Otherwise, an applied electric field would cause an increase in current for conducting samples rather than inducing electrical polarization.

M-H hysteresis

Figure 11 shows the magnetization versus magnetic field \((M-H)\) hysteresis loops for the BNTF nanoparticles at room temperature for the maximum applied field \((H)\) of 20 kOe. It is seen that all the samples show intrinsic antiferromagnetism and a weak ferromagnetism with a maximum value of remnant magnetization \((M_r)\) of 0.00107 emu/gm for sample \(x = 0.05\). Various authors have reported earlier similar results [24–26]. The \(M_r\) value decreases with increasing Nd doping percentage. The substitution of Nd at Bi site may lead to the effective suppression of the spiral spin structure of BNTF, resulting in the appearance of magnetization. In order to verify and evaluate further the source of magnetism in the grown nanoparticles, room temperature Mossbauer spectroscopy measurements were tried on the present samples, but due to low percentage of Fe\(^{57}\) in the pure and doped samples, no clear Mossbauer peaks were observed.

Conclusions

In summary, a series of nanoparticles of polycrystalline system \(\text{Bi}_4 - x \text{Nd}_x \text{FeTi}_3\text{O}_{12} \) were prepared through the egg-white method to investigate the presence of multiferroic properties. The dielectric properties show normal behavior with respect to the frequency. Room temperature unsaturated multiferroic properties were observed for the grown nanoparticles. All the samples show the intrinsic antiferromagnetism with very weak ferromagnetism. The remanence polarization \((P_r)\), and remanence magnetization \((M_r)\) values were found maximum for 5% Nd concentration. These properties entitle the grown nanoparticles of BNFT as one of the few multiferroic materials that exhibit decent magnetization and electric polarization.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The work in this paper has been mutually carried out by all authors. RS along with MS prepared and carried out the electrical and magnetic measurement of the samples. JPL carried out the FESEM, EDX, and FE-TEM measurements for the present work. KMB carried out the analysis of the data and write up of the paper. All authors read and approved the final manuscript.

Authors’ information

KMB is working as an assistant professor in King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia. He obtained his Ph.D. in Applied Physics from Aligarh Muslim University, India. His field of
specialization is magnetic nanomaterials. JPL is working as an assistant professor in King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia. He obtained his Ph.D. in Material Sciences from the Division of Quantum Materials Physics, Okayama University, Okayama, Japan. His field of specialization is structural and morphological studies of nanomaterials. RS is at present working as Ph.D. student in the Department of Physics, Himachal Pradesh University, Summer Hill, Shimla, India. Her field of specialization is ferite materials. MS is working as a professor in the Department of Physics, Himachal Pradesh University, Summer Hill, Shimla, India. He obtained his Ph.D. from Himachal Pradesh University in collaboration with the Indian Institute of Technology, Kanpur, India. His field of specialization is magnetic materials.

Acknowledgment

Authors KMB and JPL are thankful to the National Plan of Science and Technology (NPSST), King Saud University for providing the financial support under the project code: NANO-10-2012 for carrying this work.

Author details

1 King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2460, Riyadh 1151, Saudi Arabia. 2 Department of Physics, Himachal Pradesh University, Summer Hill, Shimla 171001, India.

Received: 25 May 2012 Accepted: 18 August 2012 Published: 18 September 2012

References

1. Smokovskii GA, Chupis IE: Ferroelectromagnets. Sov Phys Uspekhi 1982, 25:475.
2. Venkateswara Reddy K, Gagulin VV: Search, design and investigation of seignette magnetic oxides. Ferroelectrics 1994, 162:23.
3. Hill NA: Why are there so few magnetic ferroelectrics? J Phys Chem B 2000, 104:6694–6709.
4. Spaldin NA, Fiebig M: The renaissance of magnetoelectric multiferroics. Science 2005, 309:391–392.
5. Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, Viehland D, Vathyavanathan V, Schrom DG, Waghmare UV, Spaldin NA, Rabe KM, Wuttig M, Ramesh R: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 2003, 299:1719.
6. Hill NA, Filippetti A: Why are there any magnetic ferroelectrics? J Magn Magn Mater 2002, 242–245:876–979.
7. Fiebig M: Revival of the magnetoelectric effect. J Phys D: Appl Phys 2005, 38:R123.
8. Scott JF, Paz de Araujo CA: Ferroelectric memories. Science 1989, 246:1400.
9. Paz de Araujo CA, Cuchiaro JD, McMillan LD, Scott MC, Scott JF: Fatigue-free ferroelectric capacitors with platinum electrodes. Nature 1995, 374:627–629.
10. Takahashi K, Tonouchi M: Influence of manganese doping in multiferroic bismuth ferrite thin films. J Magn Magn Mater 2007, 310:1174.
11. Nitta, A; Zuma, M; Takano, M; Nishibori, E; Takata, M; Sakata, M: Crystal structure and dielectric and magnetic properties of BiCoO3 as a ferromagnetic solid. Solid State Ionics 2004, 172:557.
12. Kimura, T; Goto, T; Shintani, H; Iizuka, K; Arima, T; Tokura, Y: Magnetic control of ferroelectric polarization. Nature 2003, 426:55.
13. Wang, D-H; Goh, W-C; Ning, M; Ong, C-K: Effect of Ba doping on magnetic, ferroelectric, and magnetoelectric properties in multiferroic BiFeO3 at room temperature. Appl Phys Lett 2005, 88:1509.
14. Singh, K; Kotnala, R; Singh, M: Study of electric and magnetic properties of (Bi0.89Pb0.1)(Fe0.9Ti0.1)O3 nanomultiferroic system. J Appl Phys 2008, 108:71907.
15. Singh, K; Negi, N; Kotnala, R; Singh, M: Dielectric and magnetic properties of (BiFeO3)x(FeTiO3)y ferromagnetoelectric system. J Sol Stat Commun 2008, 148:18.
16. Palkar, V R; Jhon, J; Pinto, R: Observation of saturated polarization and dielectric anomaly in magnetoelectric BiFeO3 thin films. Appl Phys Lett 2002, 80:1628.
17. Hong, S-H; Homs, J H; Troler-McIntry, S; Messing, G L: Dielectric and ferroelectric properties of Ta-doped bismuth titanate. J Mater Sci Lett 2000, 19:1661.
18. Maxwell J C: Treatise on Electricity and Magnetism. Oxford: Clarendon Press; 1873.