ON THE FAREY FRACTIONS WITH DENOMINATORS IN ARITHMETIC PROGRESSION

CRISTIAN COBELI AND ALEXANDRU ZAHARESCU

Abstract. Let F^Q be the set of Farey fractions of order Q. Given the integers $d \geq 2$ and $0 \leq c \leq d - 1$, let $F^Q(c, d)$ be the subset of F^Q of those fractions whose denominators are $\equiv c \pmod{d}$, arranged in ascending order. The problem we address here is to show that as $Q \to \infty$, there exists a limit probability measuring the distribution of s-tuples of consecutive denominators of fractions in $F^Q(c, d)$. This shows that the clusters of points $(q_0/Q, q_1/Q, \ldots, q_s/Q) \in [0, 1]^{s+1}$, where q_0, q_1, \ldots, q_s are consecutive denominators of members of F^Q produce a limit set, denoted by $D(c, d)$. The shape and the structure of this set are presented in several particular cases.

1. Introduction

This is a continuation of a series of papers dedicated to the study of the distribution of neighbor denominators of Farey fractions whose denominators are in arithmetic progression. Previously, we have treated in [3], [4] the cases of pairs of odd and even denominators, respectively, while here we deal with tuples of consecutive denominators of fractions in $F^Q(c, d)$, the set of Farey fractions with denominators $\equiv c \pmod{d}$. (Here c, d are integers, with $d \geq 2$ and $0 \leq c \leq d - 1$.) The motivation for their study comes from their role played in different problems of various complexities, varying from applications in the theory of billiards to questions concerned with the zeros of Dirichlet L-functions. Although the present work is mostly self-contained, the reader may refer to the authors [4] and the references within for a wider introduction of the context and the treatment of some calculations.

Two generic neighbor fractions from F^Q, the set of Farey fractions of order Q, say a'/q' and a''/q'', have two intrinsic properties. Firstly, the sum $q' + q''$ is always greater than Q and secondly, $a''q' - a'q'' = 1$. None of these two properties is generally true for

CC is partially supported by the CERES Programme of the Romanian Ministry of Education and Research, contract 4-147/2004.

2000 Mathematics Subject Classification. Primary 11B57.

Keywords and Phrases: Farey fractions, arithmetic progressions, congruence constraints.
consecutive members of $\mathfrak{F}^Q(c, d)$, but we shall see that they may be recovered as initial instances of some more complex connections.

Given a positive integer $s \geq 1$, our main interest lies on the set of tuples of neighbor denominators of fractions in $\mathfrak{F}^Q(c, d)$:

$$D_s^Q(c, d) := \left\{ (q^0, q^1, \ldots, q^s) : q^0, q^1, \ldots, q^s \text{ denominators of consecutive fractions in } \mathfrak{F}^Q(c, d) \right\}.$$

(Notice that due to some technical constraints, in our notations, the dimension is $s + 1$ and not s.) In fact our aim is to show that there is a limiting set $D_s(c, d)$ of the scaled set of points $D_s^Q(c, d)/Q \subset [0, 1]^{s+1}$, as $Q \to \infty$. Strictly speaking, this is the set of limit points of sequences $\{x_Q\}_{Q \geq 2}$, where each x_Q is picked from $D_s^Q(c, d)/Q$.

More in depth information on $D_s(c, d)$ is revealed if one knows the concentration of points across its expanse. The answer is given by Theorem 2 below, which shows that there exists a local density function on $D_s(c, d)$ and gives an explicit expression for it. Next, let us see the formal definition. Let $x = (x_0, \ldots, x_s)$ be a generic point in $[0, 1]^{s+1}$ and denote by $g_s(x) = g_s(x; c, d)$ the function that gives the local density of points $(q_0/Q, q_1/Q, \ldots, q_s/Q)$ in the $s + 1$-dimensional unit cube, as $Q \to \infty$, where q_0, q_1, \ldots, q_s are consecutive denominators of fractions in $\mathfrak{F}^Q(c, d)$. At any point $u = (u_0, \ldots, u_s) \in [0, 1]^{s+1}$, we define $g_s(u)$ by

$$g_s(u) := \lim_{\eta \to 0} \lim_{Q \to \infty} \frac{\#(\square \cap D_s^Q(c, d)/Q)}{\#D_s^Q(c, d)/Q},$$

where $\square \subset \mathbb{R}^{s+1}$ are cubes of edge 2η centered at u.

A consequence of the fact that any sequence of consecutive denominators in \mathfrak{F}^Q is uniquely determined by its first two terms is the framework of $D_s(c, d)$, built as a union of two dimensional compact surfaces in \mathbb{R}^{s+1}. This is the reason for which we have divided in (1) by the area of a square of edge 2η only, and not by $(2\eta)^{s+1}$.

Thus, in reality $g_s(u) = g_s(u, v)$ is a function of two variables. Here (u, v) will run over a domain that embodies the Farey series, the Farey triangle with vertices $(0, 1); (1, 0); (1, 1)$ denoted by T.

Suppose now that $s = 1$, that is, we are in dimension two. We conclude this introduction with some remarks on the shape of $D_1(c, d)$, for different c and d that we have tested (see details, tables and pictures in Section 10). It is likely that our observations extend over all c and $d \geq 2$.
The first thing to be remarked is the fact that for any $d \geq 2$, $D_1(c, d)$ is a polygon obtained as a union of some sequences of polygons with constant local density on each of them, one of them always including all the others. But the most noteworthy property is that each of these constant density polygons has a vertex at $(1, 1)$ and looks like a mosaic composed by polygonal pieces, most of them being quadrangles. The fact that the mosaics exist is not just an accidental occurrence; on the contrary, more and more pieces fit into mosaics with a larger and larger number of components as d increases. The mosaics are either symmetric with respect to the first diagonal or they appear in pairs, whose components are symmetric to each other with respect to the first diagonal.

It is not true, as one would guess from tests with many acceptably small d’s and different c’s, that the larger mosaic (most likely equal to $D_1(c, d)$) is always a quadrangle. The first counter-example is $D_1(3, 12)$, which is a hexagon (see Fig. 13). The shape of the mosaics is more regular when d has fewer prime factors. In particular, for each prime modulus d, the exterior frame of all the mosaics is the same with that from the case $d = 2$, $c = 0$ (cf. [4, Fig. 5, 6]), which in turn was the same in the case $d = 2$, $c = 1$ (cf. [3, Fig. 2]). Mosaics having exactly the same form appear, for example, also when $d = 4$, $c = 0$, merely than each of them occurs twice. As opposed to the prime modulus instance, we have included in Section 10 the pictures that appear in the case $d = 12$, $c = 3$. One may appreciate these mosaics for their unexpected shape and beauty.

2. Notations and Prerequisites

Suppose the integer Q is sufficiently large, but fixed. We also fix $d \geq 2$, the modulus, $0 \leq c \leq d - 1$, the residue class, and an integer $s \geq 1$ ($s + 1$ is the dimension).

Then, we define recursively the following objects. For $0 < x, y \leq 1$, let $x^c_j(x, y) = x^c_j$ be given by $x^c_{-1} = x$, $x^c_0 = y$ and $x^c_j = k_j x^c_{j-1} - x^c_{j-2}$, for $j \geq 1$, where $k_j = k_j(x, y) := \frac{1 + x^c_{j-2}}{x^c_{j-1}}$. We say that x, y are generators of x^c, and of k also, or that x^c and k are generated by x, y.

In order to get a sequence of consecutive denominators of fractions in \mathfrak{F}^Q it suffices to know only the first two of them. Moreover, any two coprime integers $1 \leq q', q'' \leq Q$, with $q' + q'' > Q$, appear exactly once in the sequence of consecutive denominators of fractions in \mathfrak{F}^Q. Then, the subsequent denominators are obtained as follows. Given two neighbor denominators $1 \leq q', q'' \leq Q$, they are succeeded by q^c_1, q^c_2, \ldots, where $a_j^c(q', q'') = a_j^c := k_j(a^c_{j-1} - q^c_{j-2})$, for $j \geq 1$, and $k_j = k_j(q', q'') = \left\lfloor \frac{Q + q^c_j - 2}{q^c_{j-1}} \right\rfloor$. We put
for $q_{-1}^L = q'$, $q_0^L = q''$. Notice that this values of k_j coincide with those defined above if $x = q'/Q$ and $y = q''/Q$. Then, in order to simplify the notation, we write $k(q', q'')$ instead of $k(q'/Q, q''/Q)$. As before, we say that q', q'' are generators of q^L and of k or that q^L and k are generated by q', q''.

A good way to look at a tuple $k = (k_1, \ldots, k_n)$ is to think that it is associated to the whole $(n + 2)$-tuple $q = (q', q'', q_1, \ldots, q_n)$ of consecutive denominators in \mathfrak{F}^Q. We remark that the link between k and q is also made by the relations: $k_1 = (q' + q_1)/q''$, $k_2 = (q'' + q_2)/q_1$, $k_3 = (q_1 + q_3)/q_2$, $k_4 = (q_2 + q_4)/q_3$, etc.

It is plain that $k_j \geq 1$, for $j \geq 1$. Additionally, we need to extend the definition of k to the case $n = 0$. Then k is empty, that is it has no components, and we say that its order is zero.

In general, consecutive fractions in $\mathfrak{F}^Q(c, \mathfrak{D})$ are not necessarily consecutive in \mathfrak{F}^Q, but have intercalated in-between several other fractions from \mathfrak{F}^Q. We remark also that, in general, consecutive denominators of fractions in $\mathfrak{F}^Q(c, \mathfrak{D})$ are not necessarily coprime. Let $r = (r_1, \ldots, r_s)$ be an s-tuple of positive integers, and denote $|r| = r_1 + \cdots + r_s$. We say that $q = (q_0, \ldots, q_s)$, a tuple of consecutive denominators of fractions in $\mathfrak{F}^Q(c, \mathfrak{D})$, is of type $T(r)$ if $q \equiv c \pmod{\mathfrak{D}}^a$ and there exists (q', q'') a pair of consecutive denominators in \mathfrak{F}^Q with $q_{-1}^L(q', q'') = q_0$, $q_{-1+r_1}^L(q', q'') = q_1$, \ldots, $q_{-1+r_1+\cdots+r_s}^L(q', q'') = q_s$, and $q_j^L(q', q'') \equiv c \pmod{d}$, for $j \in \{0, \ldots, |r| - 1\} \setminus \{r_1 - 1, \ldots, r_1 + \cdots + r_s - 1\}$. In this case we also say that the tuple $k(q', q''; |r| - 1) = (k_1, \ldots, k_{|r|-1})$, with $k_j = k_j(q', q'')$ is of type T_r. To select the components that are $\equiv c \pmod{d}$, we define the choice application $F^Q_r : \mathbb{N}^2 \to \mathbb{N}^{s+1}$, with

$$F^Q_r(q', q'') := (q_{-1}^L, q_{-1+r_1}^L, \ldots, q_{-1+r_1+\cdots+r_s}^L) .$$

Similarly, for $x, y \in (0, 1]$, with $x + y > 1$, we also put

$$F_r(x, y) := (x_{-1}^L, x_{-1+r_1}^L, \ldots, x_{-1+r_1+\cdots+r_s}^L) .$$

Let $A_r(c, \mathfrak{D})$ be the set of all $k(q', q''; |r| - 1)$ of type r, for any q', q''. We remark that the generators of such a k are, in general, not unique. Then, for any $k \in A_r(c, \mathfrak{D})$, we consider the set of residues relatively prime to c, given by

$$\mathcal{M}_{k,r}(c, \mathfrak{D}) = \{1 \leq e \leq \mathfrak{D} : k(c, e; |r| - 1) = k\} .$$

We write $q \equiv c \pmod{\mathfrak{D}}$ if all the components of q are $\equiv c \pmod{\mathfrak{D}}$.

\[\cdots]
For example, suppose $Q = 25$, $c = 1$, $d = 5$. One can find in \mathfrak{F}^{25} the following series of consecutive fractions:

$$\ldots, \frac{7}{16}, \frac{11}{25}, \frac{4}{9}, \frac{9}{20}, \frac{5}{11}, \frac{11}{24}, \frac{6}{13}, \frac{15}{17}, \frac{19}{21}, \ldots$$

From these only $\frac{7}{16}, \frac{5}{11}, \frac{10}{21}$ survive, and are consecutive, in $\mathfrak{F}^{25}(1, 5)$. Then, in our terminology, the tuple of denominators $(16, 11, 21)$ is of type $T(r)$, with $r = (4, 6)$. In particular, we see that $r_1 - 1, \ldots, r_s - 1$ are, respectively, the number of denominators of consecutive fractions in \mathfrak{F}^Q that are $\not\equiv c \pmod{d}$ intercalated between the fractions with denominators that are $\equiv c \pmod{d}$. Also, $k(16, 25; 9) = (1, 5, 1, 4, 1, 3, 2, 2, 2) \in A_r(1, 5)$ has $|r| - 1 = 4 + 6 - 1 = 9$ components, and

$$F_r^Q(16, 25) = (16, 11, 21).$$

3. Lattice Points in Plane Domains

Given a set $\Omega \subset \mathbb{R}^2$ and integers $0 \leq a, b < d$, let $N_{a,b;d}(\Omega)$ be the number of lattice points in Ω with relatively prime coordinates congruent modulo d to a, b, respectively, that is,

$$N_{a,b;d}(\Omega) = \#\{(m, n) \in \Omega : m \equiv a \pmod{d}; n \equiv b \pmod{d}; \gcd(m, n) = 1\}.$$

Lemma 1. Let $R > 0$ and let $\Omega \subset \mathbb{R}^2$ be a convex set of diameter $\leq R$. Let d be a positive integer and let $0 \leq a, b < d$, with $\gcd(a, b) = 1$. Then

$$N_{a,b;d}(\Omega) = \frac{6}{\pi^2 d^2} \prod_{p|d} \left(1 - \frac{1}{p^2}\right)^{-1} \text{Area}(\Omega) + O(R \log R). \tag{2}$$

The proof follows by a standard argument, as in the proof of [1, Lemma 3.1].

As a corollary of Lemma 1, we obtain an asymptotic formula for the cardinality of $\mathfrak{F}^Q(c, d)$. For this we use (2) and two more facts. Firstly, the area of the Farey triangle is $\text{Area}(\mathcal{T}^Q) = Q^2/2$ and secondly, the number of residue classes $1 \leq c \leq d$ that are relatively prime to c is $d \cdot \varphi(\gcd(c, d))/\gcd(c, d)$. (Here $\varphi(\cdot)$ is the Euler totient function). Then, we have

$$\#\mathfrak{F}^Q(c, d) = \frac{3Q^2}{\pi^2} \cdot \frac{\varphi(\gcd(c, d))}{d \cdot \gcd(c, d)} \prod_{p|d} \left(1 - \frac{1}{p^2}\right)^{-1} + O(dQ \log Q). \tag{3}$$
4. The Density of Points of Type T_r

We count separately the contribution to $g_s(x; c, d)$ of points of the same type. Thus, we denote by $g_r(x) = g_r(x; c, d)$, the local density in the unit cube $[0, 1]^{s+1}$ of the points $(q_0/Q, q_1/Q, \ldots, q_s/Q)$ of type T_r, as $Q \to \infty$. At any point $u = (u_0, \ldots, u_s) \in [0, 1]^{s+1}$, this local density $g_r(u)$ is defined by

$$g_r(u) := \lim_{Q \to \infty} \frac{\#(\Box \cap D_r^Q(c, d))/Q}{\#D_r^Q(c, d)}/4\eta^2,$$

where $\Box \subset \mathbb{R}^{s+1}$ are cubes of edge 2η centered at u. Then, we have

$$g_s(u) = \sum_r g_r(u),$$

provided we show that each local density $g_r(u)$ exists, as $Q \to \infty$. In the following we find each $g_r(u)$.

5. The Witness Set

Let $\eta > 0$ be small and let $x^0 = (x_0^0, \ldots, x_s^0) \in [0, 1]^{s+1}$ be the point around which we check the density. We consider the parallelepiped centered at x^0 and edge 2η given by $\Box = \Box_{Q}(x^0) = (x_0^0 - \eta, x_0^0 + \eta) \times \cdots \times (x_s^0 - \eta, x_s^0 + \eta)$. Then, given $r = (r_1, \ldots, r_s)$, we need to estimate the cardinality of

$$B_r^Q(c, d) = \left\{(q', q'') \in \mathbb{N}^2: 1 \leq q', q'' \leq Q, \gcd(q', q'') = 1, q' + q'' > Q, k(q', q'', |r| - 1) \in A_r(c, d), F_r^Q(q', q'') \in Q \cdot \Box \right\}.$$

This reduces to an area estimate if we put

$$\Omega_r^Q(c, d) = \left\{(x, y) \in [1, Q]^2: x + y > Q, k(x, y; |r| - 1) \in A_r(c, d), F_r(x, y) \in Q \cdot \Box \right\}.$$

Then, by Lemma [1]

$$\#B_r^Q(c, d) = \sum_{e \in \mathcal{M}_{k,r}(c, d)} \mathcal{N}_{c; e, d}(\Omega_r^Q(c, d))$$

$$= \frac{6}{\pi^2 \delta^2} Q^2 \prod_{p \mid d} \left(1 - \frac{1}{p^2}\right)^{-1} \sum_{e \in \mathcal{M}_{k,r}(c, d)} \text{Area}(\Omega_r(c, d)) + O(dQ \log Q),$$

where

$$\Omega_r(c, d) = \left\{(x, y) \in (0, 1]^2: x + y > 1, k(x, y; |r| - 1) \in A_r(c, d), F_r(x, y) \in \Box \right\}.$$
For any \(k \), we denote
\[
\mathcal{T}_k := \{(x, y) \in (0, 1]^2: x + y, k(x, y; |r| - 1) = k\}
\]
and
\[
\mathcal{P}_k(\eta) := \{(x, y) \in (0, 1]^2: F_r(x, y) \in \square\}.
\]
(7)

Also, we put \(\mathcal{T}_0 := \mathcal{T} \), the Farey triangle.

Then, we have
\[
\text{Area}(\Omega_r(c, d)) = \sum_{k \in \mathcal{A}_r(c, d)} \text{Area}(\mathcal{T}_k \cap \mathcal{P}_k(\eta)).
\]
(8)

By a compactness argument it follows that only finitely many terms of the series are non-zero, although \(\mathcal{A}_r(c, d) \) may be infinite. Next we need to see the shape of \(\mathcal{P}_k(\eta) \), since we are mainly interested to know Area\((\mathcal{P}_k(\eta)) \). This is the object of the next section.

6. The index \(p_r(k) \) and the polygon \(\mathcal{P}_k(\eta) \)

The integer values \(k_j \) defined in Section 2 satisfy the classical mediant property of the Farey series. For instance, if \(q', q'', q''' \) are consecutive denominators of three fractions in \(\mathcal{F}^Q \), then \(k := (q' + q''')/q'' \) is a positive integer. Hall and Shiu [6] called it the index of the fractions with denominators \(q', q'' \), respectively.

More generally, for a series of indices \(k_1, k_2, \ldots \), we consider a sequence of polynomials \(p_j(\cdot) \), defined as follows. Let \(p_{-1}(\cdot) = 0, p_0(\cdot) = 1 \), and then, for any \(j \geq 1 \),
\[
p_j(k_1, \ldots, k_j) = k_j p_{j-1}(k_1, \ldots, k_{j-1}) - p_{j-2}(k_1, \ldots, k_{j-2}).
\]
(9)

The first polynomials with nonempty argument are:

\[
p_1(k) = k_1;
\]
\[
p_2(k) = k_1 k_2 - 1;
\]
\[
p_3(k) = k_1 k_2 k_3 - k_1 - k_3;
\]
\[
p_4(k) = k_1 k_2 k_3 k_4 - k_1 k_2 - k_1 k_4 - k_3 k_4 + 1;
\]
\[
p_5(k) = k_1 k_2 k_3 k_4 k_5 - k_1 k_2 k_3 - k_1 k_2 k_5 - k_1 k_4 k_5 - k_3 k_4 k_5 + k_1 + k_3 + k_5.
\]

Often we write \(k \), meaning the sequence of indices starting with \(k_1 \), but notice that the polynomial of rank \(i \) depends only on the first variables \(k_1, \ldots, k_i \). In particular, one sees...
that \(p_1(k) = k_1 \) coincides with the index of Hall and Shiu. Also, we remark the symmetry property:

\[
p_j(k_j, \ldots, k_1) = p_j(k_1, \ldots, k_j), \quad \text{for } j \geq 1.
\]

(10)

The role played by these polynomials is revealed by the next relation, which shows that for any \(j \geq -1, x^\ell_j(x, y) \) is a linear combination of \(x \) and \(y \):

\[
x^\ell_j(x, y) = p_j(k_1, \ldots, k_j)y - p_{j-1}(k_2, \ldots, k_j)x.
\]

(11)

Turning now to the set \(P_k \) defined by (7), where \(k = k(x, y; |r| - 1) \), by (11) we see that this is the set of points \((x, y) \in \mathbb{R}^2 \) that satisfy simultaneously the conditions:

\[
\begin{align*}
x^0_0 - \eta &< x < x^0_0 + \eta, \\
x^0_1 - \eta &< p_{r_1-1}(k_1, \ldots, k_{r_1-1})y - p_{r_1-2}(k_2, \ldots, k_{r_1-1})x < x^0_1 + \eta, \\
x^0_2 - \eta &< p_{r_1+r_2-1}(k_1, \ldots, k_{r_1+r_2-1})y - p_{r_1+r_2-2}(k_2, \ldots, k_{r_1+r_2-1})x < x^0_2 + \eta, \\
&\quad \vdots \\
x^0_s - \eta &< p_{|r|-1}(k_1, \ldots, k_{|r|-1})y - p_{|r|-2}(k_2, \ldots, k_{|r|-1})x < x^0_s + \eta.
\end{align*}
\]

(12)

This shows that \(P_k(\eta) \) is the intersection of \(s + 1 \) strips and for \(\eta_1, \eta_2 > 0 \) the sets \(P_k(\eta_1) \) and \(P_k(\eta_2) \) are similar, the ratio of similarity being equal to \(\eta_1/\eta_2 \). Consequently, it follows that

\[
\text{Area}(P_k(\eta)) = \eta^2 \text{Area}(P_k(1)),
\]

(13)

and \(\text{Area}(P_k(1)) \) is independent of \(\eta \).

In particular, in the case \(s = 1 \), for \(k = (k_1, \ldots, k_{r_1-1}) \), the set \(P_k(\eta) \) is a parallelogram of center

\[
C_k = \left(x^0_0, \frac{p_{r_1-2}(k_2, \ldots, k_{r_1-1})x^0_0}{p_{r_1-1}(k_1, \ldots, k_{r_1-1})} + \frac{1}{p_{r_1-1}(k_1, \ldots, k_{r_1-1})}x^0_1 \right),
\]

(14)

and area

\[
\text{Area}(P_k(\eta)) = \frac{4\eta^2}{p_{r_1-1}(k)}.
\]

(15)
7. The Density of Points of Type T_r

The variable $\eta > 0$ is for now fixed, but eventually will tend to zero. When $\eta \downarrow 0$, for each k the polygons $P_k(\eta)$ are smaller and smaller and converge toward a point C_k, which we call the core of $P_k(\eta)$. If $s = 1$, $P_k(\eta)$ is a parallelogram and the core of $P_k(\eta)$ coincides with its center given by (14).

Suppose now that $k \in A_r(c, d)$ is fixed. The size of Area$(T_k \cap P_k(\eta))$ depends on the position of the core with respect to T_k. There are three cases.

If $C_k \in ^o T_k$, then, for η small enough, $P_k(\eta) \subset T_k$, so Area$(T_k \cap P_k(\eta)) = $ Area$(P_k(1))$. Then, by (13), we get

$$\text{Area}(T_k \cap P_k(\eta)) = \eta^2 \text{Area}(P_k(1)), \quad \text{if } C_k \in ^o T_k. \quad (16)$$

Suppose now that $C_k \in \partial T_k \setminus V(T_k)$. Then there exists a certain bound η_1 such that if $\eta < \eta_1$, the intersections $B_k(\eta) = T_k \cap P_k(\eta)$ are polygons similar to each other. Let B_k be the polygon similar to these ones for which the variable η equals 1 in all the equations of the boundaries of the strips from (12), whose intersection is $P_k(\eta)$. So, the size of B_k is independent of η. Notice that B_k is generally smaller than $P_k(1)$, and even smaller than $T_k \cap P_k(1)$. Then, we have

$$\text{Area}(T_k \cap P_k(\eta)) = \eta^2 \text{Area}(B_k), \quad \text{if } C_k \in \partial T_k \setminus V(T_k) \text{ and } \eta < \eta_1. \quad (17)$$

If $C_k \in V(T_k)$, the reasoning from the previous case shows that there exists $\eta_2 > 0$, with the property that for $\eta_2 < \eta$ the polygons $V_k(\eta) = T_k \cap P_k(\eta)$ are similar to each other. Then, we denote by V_k the polygon similar to these ones for which $\eta = 1$ in all the equations of the boundaries of the strips from (12). Let us observe that the size of V_k is independent of η, and although we use the same notation, the polygons V_k are distinct for different vertices of T_k. These yield

$$\text{Area}(T_k \cap P_k(\eta)) = \eta^2 \text{Area}(V_k), \quad \text{if } C_k \in V(T_k) \text{ and } \eta < \eta_2. \quad (18)$$

For a polygon $P \subset \mathbb{R}^2$, we denote by $^o P$, ∂P and $V(P)$, the topological interior, the boundary, and the set of vertices of P, respectively.
Inserting the evaluations from (16), (17) and (18) into (8), for 0 < η < max(η_1, η_2) it yields

\[
\text{Area}(Ω_ℓ(c, d)) = η^2 \sum_{C_k ∈ T_k} \text{Area}(P_k(1)) + η^2 \sum_{C_k ∈ ∂T_k \setminus V(T_k)} \text{Area}(B_k) + η^2 \sum_{C_k ∈ V(T_k)} \text{Area}(V_k)\]

(19)

Since the number of tuples \((q_0, ..., q_s)\) of consecutive denominators of fractions in \(\mathcal{H}^Q(c, d)\) is \#\(\mathcal{H}^Q(c, d)\) + \(O(1)\), making use of (6) and (3), it follows that

\[
\int_{Ω(ξ(0))} \frac{1}{2} \sum_{\ell ∈ \mathcal{A}_r(c, d)} \sum_{C_k ∈ T_k} \text{Area}(P_k(1)) + \frac{1}{2} \sum_{C_k ∈ ∂T_k \setminus V(T_k)} \text{Area}(B_k) + \frac{1}{2} \sum_{C_k ∈ V(T_k)} \text{Area}(V_k)\]

(20)

By Lebesgue differentiation, combining (20) and (19), we get the following result.

Theorem 1. Let \(d ≥ 2\) and \(0 ≤ c ≤ d - 1\) be integers. Then, for any \(x^0 = (x_0^0, x_1^0, ..., x_s^0) ∈ [0, 1]^{s+1}\), we have:

\[
g_r(x^0) = \frac{1}{2\varphi(d)} \sum_{c ∈ M_{k,c}(c, d)} \sum_{C_k ∈ T_k} \text{Area}(P_k(1)) + \frac{1}{2\varphi(d)} \sum_{C_k ∈ ∂T_k \setminus V(T_k)} \text{Area}(B_k) + \frac{1}{2\varphi(d)} \sum_{C_k ∈ V(T_k)} \text{Area}(V_k)\]

(21)

where the sums run over tuples \(k ∈ \mathcal{A}_r(c, d)\).

We remark that in (21), the first term is essential, since it gives the local density on \([0, 1]^{s+1}\), except on a set of area zero.

8. The existence of \(g_s(x)\) and of \(D_s(c, d)\)

Putting together the contribution of points of all types, by (21) and Theorem 1 we get the main result below.
Theorem 2. Let $d \geq 2$ and $0 \leq c \leq d - 1$ be integers. Then, for any $x = (x_0, x_1, \ldots, x_s) \in [0, 1]^{s+1}$, we have

$$g_s(x) = \frac{1}{2\varphi(d)} \sum_r \sum_{k \in A_r(c, d)} \sum_{e \in M_{k,r}(c, d)} \sum_{C_k \in \mathcal{T}_k} \text{Area}(P_k(1))$$

$$+ \frac{1}{2\varphi(d)} \sum_r \sum_{k \in A_r(c, d)} \sum_{C_k \in \partial \mathcal{T}_k \setminus V(\mathcal{T}_k)} \text{Area}(B_k)$$

$$+ \frac{1}{2\varphi(d)} \sum_r \sum_{k \in A_r(c, d)} \sum_{C_k \in V(\mathcal{T}_k)} \text{Area}(V_k).$$

As a consequence, we obtain as a natural object the support set.

Corollary 1. There exists a limiting set $D_s(c, d) := \lim_{Q \to \infty} D_s(c, d)/Q$, as $Q \to \infty$.

When $s = 1$, the theorem can be stated more precisely using (15).

Corollary 2. Let $d \geq 2$ and $0 \leq c \leq d - 1$ be integers. Then, for any $(x, y) \in [0, 1]^2$, we have

$$g_1(x, y) = \frac{2}{\varphi(d)} \sum_{e \in M_{k,r}(c, d)} \sum_{C_k \in \mathcal{T}_k} \frac{1}{p_{r-1}(k)} + \frac{1}{\varphi(d)} \sum_{C_k \in \partial \mathcal{T}_k \setminus V(\mathcal{T}_k)} \frac{1}{p_{r-1}(k)}$$

$$+ \frac{1}{2\varphi(d)} \sum_{C_k \in V(\mathcal{T}_k)} \text{Area}(V_k),$$

where the sums run over all $r \geq 1$ and $k \in A_r(c, d)$.

Corollary 2 with $d = 2$ retrieves the authors [4, Theorem 3] as a particular instance.

9. **The Mosaics**

The noteworthy thing hidden in the background of Theorem 2 is the geometry of the arrangements of the domains $F_r(\mathcal{T}_k)$, which we call pieces or tiles. It is easier to see this in the bidimensional case, $s = 1$, assumed in what follows. Then the tiles are polygons included in $[0, 1]^2$ and the choice application becomes

$$F_n(x, y) = (x, x_n^E(x, y)), \text{ for } n \geq 1.$$
are either symmetric with respect to the first diagonal or they appear in pairs, symmetric to each other with respect to the first diagonal. Most of them are quadrangles, but their shape may vary a lot with d, c and the value of the kernel.

These mosaics behave like successive layers of constant density put over $[0, 1]^2$. Then the local density $g_1(x, y)$ at a given point $(x, y) \in [0, 1]^2$ is the sum of the densities on the mosaics (the inverse of its kernel) stung by (x, y). The contribution to the sum is halved if (x, y) touches only an edge of a mosaic, and if the point touches a vertex of a mosaic, it adds to the sum the density reduced proportionally with the size of the angle of the mosaic at that vertex. The number of mosaics that lay over $(x, y) \neq (1, 1)$ is finite, and it is endless if $(x, y) = (1, 1)$.

For each given c, d, the number of the mosaics is unbounded, but their size has a certain rate of decay as their kernel increases. In the Appendix we have included the larger mosaics in two moduli: $d = 5$ and $d = 12$.

It seems that the set $D_1(c, d)$ is always equal to the first mosaic, which happens to be the largest. This is known to be true when d is small and in the cases $c = 0$ and d prime [5]. Many other intriguing questions are raised by these objects. Here, we conclude only by pointing out that each of these mosaics has an associated tree. In the nodes the tree has the tuples k that define the tiles and the arcs link nodes whose corresponding tiles are adjacent on the mosaic. The root node corresponds to the tile with a vertex at $(1, 1)$. As an example, in Figure 12, it is the tree associated to the mosaic $SQ_1[9]$ from Figure 10.

References

[1] F. P. Boca, C. Cobeli, A. Zaharescu, *On the distribution of the Farey sequence with odd denominators*, Michigan Math. J., 51 (2003), 557–573.

[2] C. Cobeli, A. Zaharescu, *The Haros-Farey sequence at two hundred years*, Acta Univ. Apulensis Math. Inform. 5 (2003), 1–38.

[3] C. Cobeli, A. Iordache, A. Zaharescu, *The relative size of consecutive odd denominators in Farey series*, Integers, 3 (2003), A7, 14 pp. (electronic).

[4] C. Cobeli, A. Zaharescu, *A density theorem on even Farey fractions*, Preprint.

[5] C. Cobeli, A. Zaharescu, *On the small neighbor denominators of the Farey series with denominators in arithmetic progression*, preprint.

[6] R. R. Hall and P. Shiu, *The index of a Farey sequence*, Michigan Math. J. 51 (2003), 209–223.
10. Appendix—The Plane-mosaics in the cases

$c = 1, 2, 3, 4; \vartheta = 5$ and $c = 3; \vartheta = 12$

We have assigned names to the mosaics using the following conventions. The first letter is either S or N, according to whether the mosaic is or not symmetric with respect to the first diagonal. Since the non-symmetric ones appear in pairs, symmetric to each other with respect to the first diagonal, we have included the picture of only one of them. The next letter or group of letters indicates the shape of the mosaic. The possible configuration are: triangle (T), quadrangle (Q), pentagon (P), hexagon (H), octagon (O) or concave hexagon–V-shape (V). The argument is the tuple k that gives the tile from the North-East corner. Finally, the subscript represents the number of components of k.

For example, the mosaic $NP_3[2, 2, 3]$ (see Figure 7) is a non-symmetric pentagon, whose tile from the N-E corner is the transformation of $T_{2,2,3}$ through $F_3(x, y)$, and $SQ_1[6]$ (Figure 15) is a symmetric quadrangle, whose piece from the N-E corner is the image of T_6 through $F_1(x, y)$.

As an exemplification, in Figure 12 we have included merely a tree associated to a mosaic. There, nodes are the tuples k defining the tiles of $NP_3[2, 2, 3]$ and the arcs connect k's that define adjacent tiles of the mosaic from Figure 7.

More data on the mosaics are entered in Tables 1 and 2. On the first column, one can find the kernel, the number whose inverse gives the local density on the layer given by that mosaic. The entry on the third column is the number of tiles arranged in the mosaic, while on the forth are the orders—the number of components—of k's (the smallest and the largest) that produce the tiles. In the last column are the coordinates of the vertices of the mosaic.

In the pictures we have used the same color to indicate the chains of tiles with k's of the same orders. There, always neighbor chains have orders of k's that differ by exactly one.

For the modulus $\vartheta = 5$, the mosaics are the same in any of the cases $c = 1, 2, 3$ or 4, but they are different when $c = 0$. When $\vartheta = 12$, the situation is more complex, mainly due to the larger number of factors of 12. Due to arithmetical constraints, there are no mosaics of kernel 2 when $\vartheta = 5$ and $c = 1, 2, 3$ or 4.
We remark that $D_1(c, 5) = SQ_0[\cdot]$, for $c = 1, 2, 3$ or 4 and $D_1(3, 12) = SH_1[3]$. In other words, this says that the limiting set of pairs of consecutive denominators from $\mathcal{F}(c, d)$ equals, as $Q \to \infty$, the largest of the mosaics.

Finally, we mention that $D_1(3, 12)$ is the first case in which $D_1(c, d)$ is an hexagon, as for any $d \leq 11$ and $0 \leq c \leq d$ the set $D_1(c, d)$ has a quadrangular form.
Table 1: The mosaics in the cases $d = 5$, $c = 1, 2, 3$ or 4.

Kernel	Name	No. of tiles	Orders	Vertices of the mosaic
1	$SQ_0[1]$	21	0–9	(1, 1); (0, 1); (1/6, 1/6); (1, 0)
2			−−	−−
3	$SQ_1[3]$	7	1–5	(1, 1); (2/7, 1); (3/8, 3/8); (1, 2/7)
4	$SQ_1[4]$	27	1–11	(1, 1); (3/13, 1); (2/7, 2/7); (1, 3/13)
5	$SHV_4[2, 2, 2]$	35	4–14	(1, 1); (1/6, 1); (8/43, 23/43); (1/2, 1/2); (23/43, 8/43); (1, 1/6)
6	$SH_1[6]$	51	1–11	(1, 1); (1/5, 1); (4/19, 14/19); (3/8, 3/8); (14/19, 4/19); (1, 1/5)
7	$NQ_2[2, 4]$	6	2–6	(1, 1); (6/11, 1); (3/5, 2/5); (1, 3/8)
7	$NQ_2[4, 2]$	6	2–6	(1, 1); (3/8, 1); (2/5, 3/5); (1, 6/11)
7	$NP_3[2, 2, 3]$	30	3–12	(1, 1); (3/13, 1); (7/17, 7/17); (4/5, 1/5); (1, 6/31)
7	$NP_3[3, 2, 2]$	30	3–12	(1, 1); (6/31, 1); (1/5, 4/5); (7/17, 7/17); (1, 3/13)
8	$SQ_1[8]$	21	1–9	(1, 1); (7/17, 1); (4/9, 4/9); (1, 7/17)
8	$SH_3[2, 3, 2]$	36	3–13	(1, 1); (7/37, 1); (6/31, 26/31); (4/9, 4/9); (26/31, 6/31); (1, 7/37)
9	$SQ_1[9]$	33	1–9	(1, 1); (2/7, 1); (9/19, 9/19); (1, 2/7)
9	$NP_3[2, 2, 2, 3]$	7	4–15	(1, 1); (8/43, 1); (7/37, 32/37); (1/3, 2/3); (1, 5/7)
9	$NP_3[3, 2, 2, 2]$	7	4–15	(1, 1); (5/7, 1); (2/3, 1/3); (32/37, 7/37); (1, 8/43)

Fig. 1: Kernel=1; $d = 5$, $c = 1, 2, 3$ or 4. The mosaic $SQ_0[1]$.

Fig. 2: Kernel=3; $d = 5$, $c = 1, 2, 3$ or 4. The mosaic $SQ_1[3]$.
Fig. 3: Kernel=4; $\vartheta = 5$, $c = 1, 2, 3$ or 4.
The mosaic $SQ_1[4]$.

Fig. 4: Kernel=5; $\vartheta = 5$, $c = 1, 2, 3$ or 4.
The mosaic $SHV_4[2, 2, 2]$.

Fig. 5: Kernel=6; $\vartheta = 5$, $c = 1, 2, 3$ or 4.
The mosaic $SH_1[6]$.

Fig. 6: Kernel=7; $\vartheta = 5$, $c = 1, 2, 3$ or 4.
The mosaic $NQ_2[2, 4]$.
Fig. 7: Kernel=7; $d = 5$, $c = 1, 2, 3$ or 4.
The mosaic $NP_3[2, 2, 3]$.

Fig. 8: Kernel=8; $d = 5$, $c = 1, 2, 3$ or 4.
The mosaic $SQ_1[8]$.

Fig. 9: Kernel=8; $d = 5$, $c = 1, 2, 3$ or 4.
The mosaic $SH_3[2, 3, 2]$.

Fig. 10: Kernel=9; $d = 5$, $c = 1, 2, 3$ or 4.
The mosaic $SQ_1[9]$.
Fig. 11: Kernel=9; $d = 5$, $c = 1, 2, 3$ or 4.

The mosaic $NP_4[2, 2, 2, 3]$.
Fig. 12: The tree of k's associated to the mosaic $NP_3[2, 2, 3]$ ($c = 1, 2, 3$ or 4 and $d = 5$).
Table 2: The mosaics in the case $d = 12$, $e = 3$.

Kernel	Name	No. of tiles	Orders	Vertices of the mosaic
3	$SH_1[3]$	∞	$1 \to \infty$	(1, 1); (0, 1); (1/13, 5/13); (1/5, 1/5); (5/13, 1/13); (1, 0)
3	$SQ_2[2, 2]$	∞	$2 \to \infty$	(1, 1); (0, 1); (1/5, 1/5); (1, 0)
6	$SQ_1[6]$	314	$1 \to 41$	(1, 1); (1/9, 1); (1/5, 1/5); (1, 1/9)
6	$SH_5[2, 2, 2, 2, 2]$	424	$5 \to 39$	(1, 1); (1/13, 1); (1/9, 5/9); (1/5, 1/5); (5/9, 1/9); (1, 1/13)
9	$SQ_1[9]$	63	$1 \to 13$	(1, 1); (1/5, 1); (3/7, 3/7); (1, 1/5)
9	$NQ_4[2, 2, 2, 3]$	56	$4 \to 18$	(1, 1); (1/5, 1); (1/4, 1/2); (1, 1/5)
9	$NQ_4[3, 2, 2, 2]$	56	$4 \to 18$	(1, 1); (1/5, 1); (1/2, 1/4); (1, 1/5)
12	$SO_3[3, 1, 6, 1, 3]$	142	$5 \to 29$	(1, 1); (1/5, 1); (3/11, 7/11); (4/13, 8/13); (1/3, 1/3); (8/13, 4/13); (7/11, 3/11); (1, 1/5)
12	$SQ_{11}[2, \ldots, 2]$	21	$11 \to 20$	(1, 1); (1/5, 1); (1/2, 1/2); (1, 1/5)
15	$SQ_{15}[15]$	38	$1 \to 11$	(1, 1); (3/7, 1); (5/9, 5/9); (1, 3/7)
15	$SH_7[2, 3, 1, 5, 1, 3, 2]$	173	$7 \to 29$	(1, 1); (1/4, 1); (3/11, 7/11); (5/13, 5/13); (7/11, 3/11); (1, 1/4)
15	$NQ_4[3, 2, 1, 10]$	117	$4 \to 27$	(1, 1); (3/11, 1); (5/13, 5/13); (1, 1/3)
15	$NQ_4[10, 1, 2, 3]$	117	$4 \to 27$	(1, 1); (1/3, 1); (5/13, 5/13); (1, 1/3)
15	$NQ_4[3, 2, 2, 2, 2, 2]$	35	$7 \to 20$	(1, 1); (1/3, 1); (7/19, 11/19); (1, 1/2)
15	$NQ_7[2, 2, 2, 2, 2, 2]$	35	$7 \to 20$	(1, 1); (1/2, 1); (11/19, 7/19); (1, 1/3)
18	$SQ_{18}[18]$	246	$1 \to 26$	(1, 1); (1/5, 1); (3/7, 3/7); (1, 1/5)
18	$NQ_6[2, 3, 1, 5, 1, 4]$	128	$6 \to 28$	(1, 1); (1/5, 1); (3/7, 3/7); (1, 5/13)
18	$NQ_6[4, 1, 5, 1, 3, 2]$	128	$6 \to 28$	(1, 1); (5/13, 1); (3/7, 3/7); (1, 1/5)
21	$SQ_{21}[21]$	36	$1 \to 11$	(1, 1); (5/9, 1); (7/11, 7/11); (1, 5/9)
21	$NT_3[3, 2, 2, 1, 14]$	64	$5 \to 28$	(1, 1); (1/3, 1); (1, 1/5)
21	$NT_3[14, 1, 2, 2, 3]$	64	$5 \to 28$	(1, 1); (1/5, 1); (1, 1/3)
21	$SQ_5[4, 1, 2, 1, 2, 4]$	16	$7 \to 13$	(1, 1); (5/9, 1); (7/11, 7/11); (1, 5/9)
21	$NQ_8[2, 2, 3, 1, 4, 2, 1, 7]$	12	$8 \to 14$	(1, 1); (3/5, 1); (7/11, 7/11); (1, 1/2)

continued on next page
Kernel	Name	No. of tiles	Orders	Vertices of the mosaic
21	$NQ_8[7, 1, 2, 4, 1, 3, 2, 2]$	12	8 – 14	(1, 1); (1/2, 1); (7/11, 7/11); (1, 3/5)
21	$NQ_{10}[2, \ldots, 2, 3]$	22	10 – 21	(1, 1); (1/2, 1); (5/7, 3/7); (1, 5/13)
21	$NQ_{10}[3, 2, \ldots, 2]$	22	10 – 21	(1, 1); (5/13, 1); (3/7, 5/7); (1, 1/2)
24	$SQ_9[6, 1, 3, 1, 6, 1, 3, 1, 6]$	79	9 – 26	(1, 1); (5/13, 1); (1/2, 1/2); (1, 5/13)
24	$SHV_9[2, 2, 3, 1, 5, 1, 3, 2, 2]$	161	9 – 33	(1, 1); (1/5, 1); (5/13, 9/13); (2/3, 2/3); (9/13, 5/13); (1, 1/5)
24	$SH_{11}[4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4]$	94	11 – 27	(1, 1); (7/19, 1); (17/43, 29/43); (1/2, 1/2); (29/43, 17/43); (1, 7/19)
27	$SQ_1[27]$	36	1 – 11	(1, 1); (7/11, 1); (9/13, 9/13); (1, 7/11)
27	$NQ_6[10, 1, 2, 3, 1, 6]$	124	6 – 37	(1, 1); (1/5, 1); (11/19, 10/19); (1, 1/2)
27	$NQ_6[6, 1, 3, 2, 1, 10]$	124	6 – 37	(1, 1); (1/2, 1); (10/19, 11/19); (1, 1/5)
27	$NQ_8[2, 3, 2, 1, 8, 1, 2, 4]$	32	8 – 23	(1, 1); (5/13, 1); (7/15, 11/15); (1, 7/11)
27	$NQ_8[4, 2, 1, 8, 1, 2, 3, 2]$	32	8 – 23	(1, 1); (7/11, 1); (11/15, 7/15); (1, 5/13)

...
Fig. 13: Kernel=3; $d = 12$, $c = 3$.
The mosaic $SH_1[3]$.

Fig. 14: Kernel=3; $d = 12$, $c = 3$.
The mosaic $SQ_2[2,2]$.

Fig. 15: Kernel=6; $d = 12$, $c = 3$.
The mosaic $SQ_1[6]$.

Fig. 16: Kernel=6; $d = 12$, $c = 3$.
The mosaic $SQ_5[2,2,2,2,2]$.
Fig. 17: Kernel=9; \(d = 12, \ c = 3 \).
The mosaic \(SQ_1[9] \).

Fig. 18: Kernel=9; \(d = 12, \ c = 3 \).
The mosaic \(NQ_4[2, 2, 2, 3] \).

Fig. 19: Kernel=12; \(d = 12, \ c = 3 \).
The mosaic \(SO_5[3, 1, 6, 1, 3] \).

Fig. 20: Kernel=12; \(d = 12, \ c = 3 \).
The mosaic \(SQ_{11}[2, \ldots, 2] \).
Fig. 21: Kernel=15; \(d = 12, c = 3\).
The mosaic \(SQ_1[15]\).

Fig. 22: Kernel=15; \(d = 12, c = 3\).
The mosaic \(SH_7[2, 3, 1, 5, 1, 3, 2]\).

Fig. 23: Kernel=15; \(d = 12, c = 3\).
The mosaic \(NQ_4[3, 2, 1, 10]\).

Fig. 24: Kernel=15; \(d = 12, c = 3\).
The mosaic \(NQ_7[3, 2, 2, 2, 2, 2, 2]\).
Fig. 25: Kernel=18; \(d = 12, c = 3 \).
The mosaic \(SQ_1[18] \).

Fig. 26: Kernel=18; \(d = 12, c = 3 \).
The mosaic \(NQ_6[2, 3, 1, 5, 1, 4] \).

Fig. 27: Kernel=21; \(d = 12, c = 3 \).
The mosaic \(SQ_1[21] \).

Fig. 28: Kernel=21; \(d = 12, c = 3 \).
The mosaic \(NT_5[3, 2, 2, 1, 14] \).
Fig. 29: Kernel=21; $\vartheta = 12$, $\epsilon = 3$.
The mosaic $SQ_7[4, 2, 1, 7, 1, 2, 4]$.

Fig. 30: Kernel=21; $\vartheta = 12$, $\epsilon = 3$.
The mosaic $NQ_8[2, 2, 3, 1, 4, 2, 1, 7]$.

Fig. 31: Kernel=21; $\vartheta = 12$, $\epsilon = 3$.
The mosaic $NQ_{10}[2, \ldots, 2, 3]$.

Fig. 32: Kernel=24; $\vartheta = 12$, $\epsilon = 3$.
$SQ_9[6, 1, 3, 1, 6, 1, 3, 1, 6]$.
Fig. 33: Kernel=24; $d = 12$, $c = 3$.

$SHV_5[2, 2, 3, 1, 5, 1, 3, 2, 2]$.

Fig. 34: Kernel=24; $d = 12$, $c = 3$.

$SH_{11}[4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4]$.

Fig. 35: Kernel=27; $d = 12$, $c = 3$.

The mosaic $SQ_1[27]$.

Fig. 36: Kernel=27; $d = 12$, $c = 3$.

The mosaic $NQ_6[10, 1, 2, 3, 1, 6]$.
Fig. 37: Kernel=27; \(\vartheta = 12, \ c = 3 \).

The mosaic \(NQ_8[2,3,2,1,8,1,2,4] \).