The role of spin noise in the detection of nanoscale ensembles of nuclear spins

C.L. Degen1,, M. Poggio1,2, H.J. Mamin1, and D. Ruger1*

1IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95129, USA.
2Center for Probing the Nanoscale, Stanford University, 476 Lomita Hall, Stanford, CA 94305, USA.

(Dated: February 2, 2008)

When probing nuclear spins in materials on the nanometer scale, random fluctuations of the spin polarization will exceed the mean Boltzmann polarization for sample volumes below about (100 nm)3. In this work, we use magnetic resonance force microscopy to observe nuclear spin fluctuations in real time. We show how reproducible measurements of the polarization variance can be obtained by controlling the spin correlation time and rapidly sampling a large number of independent spin configurations. A protocol to periodically randomize the spin ensemble is demonstrated, allowing significant improvement in the signal-to-noise ratio for nanometer-scale magnetic resonance imaging.

PACS numbers: 05.40.-a, 76.60.-k, 07.55.-w

Magnetic resonance signals detected in conventional magnetic resonance imaging (MRI) experiments originate from the slight alignment of nuclear spins induced by an external magnetic field. This thermal equilibrium (“Boltzmann”) polarization gives rise to a mean fractional spin polarization that is typically quite small, $\overline{\Delta N}/N < 10^{-4}$. For the large ensembles of nuclear spins detected in MRI experiments, usually $N > 10^{15}$ spins, the Boltzmann polarization is the dominant source of spin alignment. However, as new techniques, such as magnetic resonance force microscopy (MRFM) \cite{1,2}, push detectable volumes below (100 nm)3, another type of polarization becomes increasingly important: the “statistical” polarization.

Statistical polarization arises from the incomplete cancellation of randomly oriented spins. The instantaneous polarization, \textit{i.e.} the difference ΔN between spin-up and spin-down populations, can be either positive or negative and will fluctuate on a time scale that depends on the random flip rate of the spins (for example, due to spin-lattice relaxation). For a random ensemble of spin-1/2 nuclei, it follows from the properties of the binomial distribution that the statistical fluctuations have variance $\sigma^2_{\Delta N} = N[1 - (\overline{\Delta N}/N)^2]$, where the overbar indicates mean value. In the limit of small mean polarization, which is representative of most experiments, the variance simplifies to $\sigma^2_{\Delta N} = N$. The existence of statistical polarization was pointed out by Bloch in his seminal paper on nuclear induction \cite{3}, and has been observed experimentally by a number of techniques, including superconducting quantum interference devices \cite{4}, conventional magnetic resonance detection \cite{5,6,7}, optical techniques \cite{8}, and MRFM \cite{2,9}.

As detection volumes enter the nanometer-scale regime, the standard deviation of the polarization fluctuations $\sigma_{\Delta N}$ can easily exceed the Boltzmann polarization $\overline{\Delta N} = N\mu B/k_B T$, where μ is the magnetic moment of the spin, B is the polarizing magnetic field and T is the temperature \cite{10}. The dominance of statistical polarization, as defined by $\sigma_{\Delta N} > \Delta N$, occurs for sample volumes $V < (\mu B/k_B T)^{-1} \rho_N^{-1}$, where $\rho_N = N/V$ is the spin number density. Assuming conditions representative of high-field MRI microscopy of protons in water ($B = 10$ T, $T = 295$ K and $\rho_N = 7 \cdot 10^{28}$ m-3), the volume corresponds to $\approx (230 \text{ nm})^3$. For MRFM detection of 19F nuclei in calcium fluoride, as considered in this paper ($B = 2.9$ T, $T = 4.5$ K and $\rho_N = 5 \cdot 10^{28}$ m-3), the volume for statistical polarization dominance is $\approx (37 \text{ nm})^3$.

Given that statistical polarization is such a strong feature of nanoscale nuclear spin detection, it is worthwhile to consider efficient methods to harness it for imaging applications. In order to generate a signal that is proportional to the spin density of the sample, it is natural to consider using the variance as the “signal”. If the polarization ΔN is measured for n independent configurations of the spin ensemble, the sample variance $s^2_{\Delta N}$ is estimated as

$$s^2_{\Delta N} = \frac{1}{n-1} \sum_{j=1}^{n} (\Delta N_j - \overline{\Delta N})^2.$$

The symbol s^2 is used to denote the true or theoretical variance, while s^2 is the estimated or “sample” variance.

The variance estimate $s^2_{\Delta N}$ is subject to some uncertainty since only a limited number of independent spin configurations can be sampled. Textbooks on statistics, \textit{e.g.} Ref. \cite{11}, show that the standard error of $s^2_{\Delta N}$ is

$$\sigma_{s^2_{\Delta N}} = \left(\frac{2}{n-1} \right)^{\frac{1}{2}} \sigma^2_{\Delta N} \approx \left(\frac{2}{n-1} \right)^{\frac{1}{2}} N.$$

If this “spin noise” is the only noise present, the overall signal-to-noise ratio (SNR) for the variance determination depends only on n,

$$\text{SNR} = \frac{\sigma^2_{\Delta N}}{\sigma^2_{s^2_{\Delta N}}} = \left(\frac{n-1}{2} \right)^{\frac{1}{2}}.$$

This equation reveals a basic strategy for statistical spin detection: one should rapidly sample as many independent spin configurations as possible. Independent
spin configurations can be obtained by periodically re-randomizing the ensemble.

The above analysis of the SNR represents an idealized case. In real experiments, the spin polarization is measured via an intermediate quantity, such as the magnetic force, and the measurements are corrupted by noise. In our experiments, the measurement noise, including the cantilever thermal noise, is significant, and the spin signals have a finite correlation time. These factors must be taken into account when analyzing the signal statistics.

As shown in Fig. 1, we observe the nuclear spin polarization using an ultra-sensitive cantilever to detect the attonewton magnetic force between spins in the sample and a nearby magnetic tip [1, 13]. The cantilever mechanical resonance is driven by cyclic adiabatic spin inversions induced by rf frequency sweeps, and by thermal noise. A fiber-optic interferometer monitors the resulting cantilever motion and the cantilever oscillation signal is synchronously detected by a two-channel lock-in amplifier. The phase of the lock-in amplifier is set so that the spin signal plus thermal noise appear in the in-phase (X) channel, while only thermal noise is present in the quadrature (Y) channel. The lock-in signals are digitized and low-pass filtered in software so as to control the overall measurement bandwidth. Since the spin signal and the measurement noise are statistically independent, the variance of the in-phase channel is given by \(\sigma_X^2 = \sigma_{\text{spin}}^2 + \sigma_{\text{noise}}^2 \). The quadrature channel measures only noise, so \(\sigma_Y^2 = \sigma_{\text{noise}}^2 \). The spin portion of the variance is then given by \(\sigma_{\text{spin}}^2 = \sigma_X^2 - \sigma_Y^2 \).

In the experiment, the in-phase and quadrature channels are recorded for a time \(\tau_{\text{total}} \) and the signal variance \(s_{\text{spin}}^2 \) is estimated from the measured sample variances according to \(s_{\text{spin}}^2 = s_X^2 - s_Y^2 \). We now seek an expression for the SNR associated with \(s_{\text{spin}} \) that is similar to Eq. (3), but also includes measurement noise. To obtain statistically independent spin configurations, the spins are periodically randomized at intervals separated by time \(\tau_i \) using bursts of short \((\pi/2) \) rf pulses. The spin polarization remains essentially constant between randomizations if \(\tau_i \ll \tau_m \), where \(\tau_m \) is the correlation time of the naturally fluctuating spin polarization. In order to keep the analysis simple we assume that the X and Y channels are filtered using convolution-type filters that average the signals in the intervals between the periodic randomizations. The actual experiment used first order low pass filters instead of the assumed averaging filters, resulting in a slight reduction of SNR performance [14].

The output of the averaging filters are assumed to be sampled synchronously with the randomizations, resulting in the measurement sequences \(X_i \) and \(Y_i \), where \(i = 1, ..., n \) and \(n = \tau_{\text{total}}/\tau_i \) is the number of independent spin configurations. From these samples, the variances \(s_X^2 \) and \(s_Y^2 \) are calculated as in equation (1). The associated standard errors are \(\sigma_{s_X}^2 = \left[2/(n-1) \right]^{1/2} \sigma_X^2 \) and \(\sigma_{s_Y}^2 = \left[2/(n-1) \right]^{1/2} \sigma_Y^2 \). The standard error of \(s_{\text{spin}}^2 \) is then given by \(\sigma_{s_{\text{spin}}} = \left(\sigma_{s_X}^2 + \sigma_{s_Y}^2 \right)^{1/2} \), or \(\sigma_{s_{\text{spin}}} = \left\{ \frac{2}{\pi f_2} \left[(\sigma_{\text{spin}}^2 + \sigma_{\text{noise}}^2)^2 + (\sigma_{\text{noise}}^2)^2 \right] \right\}^{1/2} \). The SNR can then be written as

\[
\text{SNR} = \frac{\sigma_{s_{\text{spin}}}^2}{\sigma_{s_{\text{spin}}}^2} = \left(\frac{\tau_{\text{total}}/\tau_i - 1}{2} \right)^{1/2} \left[1 + 2 \frac{\sigma_{\text{noise}}^2}{\sigma_{\text{spin}}^2} + 2 \frac{\sigma_{\text{noise}}^4}{\sigma_{\text{spin}}^4} \right]^{1/2} \tag{4}
\]

Note that in the absence of measurement noise, (4) is consistent with the previous result in (3).

To finish the analysis, we need to know how \(\sigma_{\text{noise}}^2 \) depends on the randomization interval \(\tau_i \). For a convolution filter that averages the signal over the randomization interval \(\tau_i \), the power transfer function is \(|G(f)|^2 = \sin^2(\pi f \tau_i)/\pi^2 f^2 \tau_i^2 \), which has an equivalent noise bandwidth of \(\Delta f = 1/2\tau_i \) (single-sided with units of Hz). The noise variance is given by \(\sigma_{\text{noise}}^2 = S_{\text{noise}}\Delta f = S_{\text{noise}}/(2\tau_i) \), where \(S_{\text{noise}} \) is the single-sided power spectral density of the measurement noise in each channel. We assume this spectral density to be independent of frequency within the bandwidth of the filter. This is the case in our exper-
FIG. 2: Cantilever tip oscillation amplitude as a function of time. (a) In-phase signal $X(t)$ in the presence of the 19F spins fluctuating naturally with a spin signal correlation time of $\tau_m \approx 3.5$s. (b) Quadrature signal $Y(t)$ due to thermal fluctuations of the cantilever. The observed thermal noise correlation time ($\tau \approx 200$ms) is set by cantilever and filter bandwidths. (c) Same as (a), but spins are periodically re-randomized every $\tau_r = 351$ ms. (d) Normalized autocorrelation function of spin signals obtained by analysis of an 8 min long record and after subtracting the measurement thermal noise autocorrelation function.

The periodic randomization allows us to make an improved estimate of the spin signal variance. Based on a randomization repetition period $\tau_r = 351$ms and the same total measurement time of 60s, the number of independent measurements is now $\tau_{\text{total}}/\tau_r = 171$, which results in an uncertainty in the variance of about 11%, an improvement of more than a factor of three.

To more concretely illustrate the impact of periodic randomization on the SNR, we show in Fig. 3(a) a one-dimensional lateral imaging scan over the CaF$_2$ object. Each point represents the estimated spin signal variance from a one minute data record. Two overall signal max-
also plots the theoretical SNR as predicted by Eq. (5) using known experimental parameters (no free fit parameters). At the optimum $\tau_r = 52$ ms, spin noise power equals $\sqrt{2}$-times the measurement noise power.

As indicated by Eq. (5) and shown in Fig. 4, we can vary τ_r in order to optimize the SNR. Here we measure the spin fluctuations at a position of large spin signal (the 670-nm position of the lateral scan shown in Fig. 3). To determine each SNR data point, 50 one-minute data records were acquired. The sample variance s_{spin}^2 from each record was calculated and the SNR was determined by SNR $= \frac{s_{\text{force}}^2}{s_{\text{spin}}^2}$, where s_{force}^2 is the mean of the sample variances and s_{spin}^2 is the standard deviation of the variances. As shorter randomization intervals are used, the SNR increases until it reaches a maximum around $\tau_r = 50$ ms. The SNR then drops for the shortest τ_r value tested, as expected, since the large associated measurement bandwidth is admitting more measurement noise than is optimal. Obtaining results for even shorter τ_r was hampered by the finite response time of the cantilever (12 ms for the cantilever damped by negative feedback). At the optimum point, the achieved SNR is 12, or about 6 times better than the SNR achieved without any forced spin randomization.

Figure 4 also plots the theoretical SNR as predicted by Eq. (5) using the following parameters determined from the experiment: $\sigma_{\text{spin}}^2 = 900$ aN2 and $S_{\text{noise}} = 66$ aN2/Hz. The theory predicts an optimal SNR of roughly 13 for a one-minute measurement time when $\tau_r = 52$ ms, in good agreement with the experimental results. Overall, the SNR values obtained experimentally are just slightly lower than predicted, probably because the filtering that was performed did not use the ideal convolution filter assumed in the analysis, but rather a first order low pass filter of equal noise bandwidth (time constant $t_c = \tau_r/2$).

In conclusion, we have shown that noise inherent in the measurement of small, statistically polarized spin ensembles can be mitigated by rapid re-randomization of the spins. Beyond the fundamental interest in the control and measurement of spin ensembles in the nanometer regime, the practical impact on nanoscale magnetic resonance imaging is significant: the demonstrated $6 \times$ improvement in SNR allows a $36 \times$ increase of imaging speed.

We thank C. Rettner, M. Hart and M. Farinelli for fabrication of microwire and magnetic tip, B. W. Chui for cantilever fabrication, and D. Pearson and B. Melior for technical support. We acknowledge support from the DARPA QUIST program administered through the US Army Research Office, and the Stanford-IBM Center for Probing the Nanoscale, a NSF Nanoscale Science and Engineering Center. C.L.D. acknowledges funding from the Swiss National Science Foundation.
* Electronic address: rugar@almaden.ibm.com

[1] J. A. Sidles, J. L. Garbini, K. J. Bruland, D. Rugar, O. Züger, S. Hoen, and C. S. Yannoni, Rev. Mod. Phys. 67, 249 (1995).

[2] H. J. Mamin, M. Poggio, C. L. Degen, and D. Rugar, Nature Nanotechnology 2, 301 (2007).

[3] F. Bloch, Phys. Rev. 70, 460 (1946).

[4] T. Sleator, E. L. Hahn, C. Hilbert and J. Clarke, Phys. Rev. Lett. 55, 1742 (1985).

[5] M. A. McCoy, and R. R. Ernst, Chem. Phys. Lett. 159, 587 (1989).

[6] M. Guéron, and J. L. Leroy, J. Magn. Reson. 85, 209 (1989).

[7] N. Müller, and A. Jerschow, Proc. Natl. Ac. Sci. 103, 6790 (2006).

[8] S. A. Crooker, D. G. Rickel, A. V. Balatsky and D. L. Smith, Nature 431, 49 (2004).

[9] H. J. Mamin, R. Budakian, B. W. Chui, and D. Rugar, Phys. Rev. B 72, 024413 (2005).

[10] A. Abragam, Principles of Nuclear Magnetic Resonance, (Oxford, New York, 1961), p. 133.

[11] E. L. Lehmann, Theory of point estimation, (Wiley, New York, 1983), p. 106.

[12] C. P. Slichter, Principles of Magnetic Resonance, 3rd edition, (Springer, Berlin, 1990), pp. 244-246.

[13] D. Rugar, O. Züger, S. Hoen, C. S. Yannoni, H.-M. Vieth, and R. D. Kendrick, Science 264, 1560 (1994).

[14] This predicted slight reduction in SNR is in agreement with a more general analysis we have performed that can accommodate all types of filtering. See S. O. Rice, Bell System Techn. J. 24, 46 (1945). See also R. A. Webb, R. P. Giffard, and J. C. Wheatley, J. Low Temp. Phys. 13, 383 (1973).

[15] O. Züger, S. T. Hoen, C. S. Yannoni, and D. Rugar, J. Appl. Phys. 79, 1881 (1996).

[16] M. Poggio, C. L. Degen, H. J. Mamin, and D. Rugar, Appl. Phys. Lett. 90, 263111 (2007).

[17] C. P. Slichter, Principles of Magnetic Resonance, 3rd edition, (Springer, Berlin, 1990), pp. 20-24.

[18] L. A. Madsen, G. M. Leskowitz, and D. P. Weitekamp, Proc. Nat. Acad. Sci. 101, 12804 (2004).