Quantum Interference Effects in Electronic Transport through Nanotube Contacts

Calin Buia, Alper Buldum, and Jian Ping Lu

Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599

(Dated: October 30, 2018)

Quantum interference has dramatic effects on electronic transport through nanotube contacts. In optimal configuration the intertube conductance can approach that of a perfect nanotube ($4e^2/h$). The maximum conductance increases rapidly with the contact length up to 10 nm, beyond which it exhibits long wavelength oscillations. This is attributed to the resonant cavity-like interference phenomena in the contact region. For two concentric nanotubes symmetry breaking can reduce the maximum intertube conductance from $4e^2/h$ to $2e^2/h$. The phenomena discussed here can serve as a foundation for building nanotube electronic circuits and high speed nanoscale electromechanical devices.

Carbon nanotubes have electronic and mechanic properties [1] that make them excellent candidates for nanoscale electronic circuits. Simple devices such as diodes [2], single electron transistors [3, 4], field effect transistors [5, 6] and elementary electronic circuits [7] have been built. Understanding the electronic transport through nanotube contacts will be essential for more complex nanotube circuits. Several nanotube/nanotube contacts [8, 9, 10, 11] and intra-nanotube junctions [12, 13, 14, 15, 16, 17, 18, 19] have been studied theoretically and experimentally. The possibility of using nanotube/nanotube contacts for electronic devices has been suggested [20, 21, 22, 23, 24]. In this paper we examine the electronic transport between two nanotubes, in parallel and in concentric geometries. The variation of conductance with the tube chirality and the contact length is investigated. Characteristic rapid oscillations in conductance, related to the nanotube atomic structure and the Fermi wavelength of the conduction band, are found [21]. In general the inter-tube conductance is small when two tubes have different chirality. However, for armchair/armchair or zigzag/zigzag the contact conductance is significant and can approach $4e^2/h$ (the conductance of a perfect nanotube) when the contact length is of the order of 10 nm. Further increase in contact length reveals long wavelength oscillations. This is attributed to the quantum interference of the wavefunction in the contact region, which creates resonant cavity-like states. Such oscillations were found in a recent STM experiment [21]. For two concentric nanotubes it is found that the maximum intertube conductance is either $4e^2/h$ or $2e^2/h$ depending on the symmetry of the nanotubes.

The electronic structure of the nanotubes is modeled by a simple π-orbital tight binding hamiltonian [1], taking into account the nanotube curvature. The quantum conductance is calculated using the Landauer-Büttiker formula, with a recursive Green-functions technique [15, 21]. This approach has been shown to provide good agreement with experimentally measured electronic structure and transport properties [15, 21, 22, 23]. Electron-electron interactions play an important role in electronic transport through carbon nanotubes [24], however they have little effect on conductance when the contacts with the leads are highly transparent [25]. In our model the leads are perfect nanotubes to insure good contact with the structure being investigated, therefore electron-electron interactions are not included in the present calculations.

For the case of two nanotubes in parallel contact [26], the distance between nanotubes is fixed to 3.1 Å from molecular dynamics simulations. The conductance is not sensitive to small changes in the intertube distance around this value.

Various combinations of metallic nanotubes with different tube size and chirality were investigated. The size of nanotubes is found to have no substantial effect on the conductance, however it depends sensitively on chirality. Shown in Fig. 1 are typical examples of intertube conductance as a function of energy. The best conductance is achieved for armchair/armchair or zigzag/zigzag configurations. For armchair/armchair contacts the conductance can approach that of a perfect nanotube, $4e^2/h$ (Fig. 1 (a)). In contrast, it is an order of magnitude smaller when the two tubes have different chirality (Fig. 1 (c)). This is due to the fact that only zigzag/zigzag and armchair/armchair contacts allow optimal configurations in which delocalized states are present across the contact (see also Fig 3 (a)). As a function of energy, the...
conductance exhibits a series of minima. Examination of electronic structure revealed that these minima correspond to peaks in the density of states (DOS) of the contact region. This suggests that resonant backscattering due to the quasi bound states formed in the contact area is responsible for the conductance dips (see also Fig. 2, 3). Similar effects have been found for nanotubes with defects [28, 51, 32].

When examining the dependence of conductance on the contact length we found two types of characteristic oscillations [Fig. 2]. At atomic length scale rapid oscillation of conductance with the contact length is related to the unit cell length \((a_0 = 2.46 \text{ Å}) \) for armchair and \(a_0 = 4.26 \text{ Å} \) for zigzag nanotubes and is due to the resonant backscattering on the quasibound states [32] (notice the same correlation between minima in conductance and maxima in DOS as in the case of energy dependence). In armchair/armchair contacts additional modulation related to the Fermi wavelength is also present [32, 34, 35].

As one continuously increases the contact length, the rapid oscillation in conductance persists. The envelope of the oscillation shows smooth variation with the contact length (Fig. 2 (c)). Initially the maximum conductance increases rapidly with the contact length. The maximum value approaches \(4e^2/h \) (value for a perfect tube) for contact lengths of the order of 10nm. This is surprising considering that the number of quasibound states also increases with the contact length. The explanation is that the quasibound states are formed mainly for certain local arrangements of the atoms in the contact area for which the minima in conductance remain indeed very low at any contact length. For other arrangements delocalized states are formed which facilitate the conduction. In such cases the DOS has values close to those of the perfect tube (see also Fig. 3 (a),(b)). Further increase of the contact length shows unexpected long wavelength oscillation in conductance (Fig. 2 (c)). Resonant cavity-like interference is responsible for this interesting feature. To understand this phenomenon better in Fig. 3 we show 2D contour plots of the local density of states (LDOS) as a function of energy and position along the contact for fixed contact lengths. When the conductance is in the vicinity of a global maximum (marked 2 in Fig. 2 (c)) the LDOS is small and smooth along the contact (Fig. 3 (a),(b)) for most energies. In contrast, when the conductance is in the vicinity of a global minimum (marked 3 in Fig. 2 (c)), one can observe a clear interference pattern across the contact area (Fig. 3 (c)), due to the formation of a resonant cavity in such a configuration. Such resonance is very similar to that observed in a recent experiment [36].

In a semiinfinite tube resonant backscattering of the electrons takes place due to the finite end. The incoming wave and the reflected wave interfere producing a set of maxima and minima in the LDOS along the tube. When two nanotubes are in parallel contact, if the interference maxima in the two tubes overlap for a certain energy and contact length, the contact exhibits a resonant cavity-like behavior. A standing wave pattern in the LDOS along the contact can be observed in this case (Fig. 3 (c)) and the conductance has a global minimum (area 3 in Fig. 2 (c), Fig. 3(d)). When the interference maxima in one tube overlap with the minima in the other tube the LDOS in the two tubes are out of phase and the resonant cavity-like behavior is destroyed (Fig. 3 (a), (b)). The electrons can be easily transmitted through the contact, thus high conductance values (area 2 in Fig. 2 (c), Fig. 3(b)).

As a function of the contact length the long wavelength
FIG. 3: (a) 2D contour plot of the LDOS (in states/unit cell) along the contact as a function of energy and (b) conductance (in units of $G_0 = 2e^2/h$) as a function of energy for a $(6,6)/(6,6)$ contact when conductance has a global maximum ($L=12\text{nm}$, area 2 in Fig. 2c). Notice that when the conductance is $2G_0$ the LDOS has the same value along the nanotubes and across the contact, indicating the continuation of the conductance band from one tube to the other.

(c) 2D contour plot of the LDOS (in states/unit cell) along the contact as a function of energy and (d) conductance (in units of G_0) as a function of energy for a $(6,6)/(6,6)$ contact when conductance has a global minimum ($L=22\text{nm}$, area 3 in Fig. 2c). The standing wave pattern for specific values of the is very clear. The minima in conductance due to formation of quasibound states in the contact area are present in both cases.

The oscillation of the conductance depends on the energy: the further the energy is from 0 the smaller is the oscillation wavelength. In a crude approximation we can treat this phenomenon as a beat-like interference between the incoming wave (k_1) and the reflected one (k_2) when they are in different bands, resulting in a modulation of wavelength $\lambda_i = \frac{2\pi}{k_1-k_2}$. The dispersion relation for the two conduction bands of an armchair nanotube can be written as $\Delta E = \pm V_0(1 - 2\cos \frac{ka}{2}) \frac{V_0}{d}$. Thus the wavelength of the long range oscillation should be inverse proportional to the energy. This can be clearly seen in Fig. 3(c) where as one moves away from $E = 0$ the number of maxima increases with the energy across a given contact. Such long range oscillations in LDOS have been observed previously in low dimension electron gas systems. Recent experiments on nanotubes also suggest the existence of such long wave oscillations.

The possibility of using multiwall carbon nanotubes as electric circuits components has been suggested since their discovery. Recent experiments show that building devices out of multiwall nanotubes is now possible, revealing new potential applications. We considered a contact built from a multiwall nanotube, consisting of two semiinfinite concentric tubes, such that the inner tube can telescope. The dependence of the intertube conductance on the size and the chirality of the tubes was examined. The best conductance is once again achieved by armchair/armchair and zigzag/zigzag contacts; the other combinations show a conductance at least an order of magnitude smaller. Both atomic scale and long wavelength oscillations are also present. For a given contact length the conductance maxima show a steeper initial increase with the contact length due to the larger contact area of the concentric geometry compared to the parallel case (Fig. 4). The conductance of the contact depends on the intertube distance. The maximum conductance is obtained when the intertube distance d_i is around 3.4 Å, the observed interwall distance in multiwall nanotubes.

Because in the concentric geometry the symmetry axes of the two nanotubes are aligned the angular momentum is a good quantum number. This means that an electron starting in one of the tubes must scatter to a state with the same symmetry in the other nanotube (this is not the case when the two nanotubes are in parallel contact, as they do not share a common axis and there-
fore angular momentum is not a good quantum number). Considering the case of \((n_1, n_1)/(n_2, n_2)\) nanotube contacts, the two nanotubes have a \(C_{n_1}\) and \(C_{n_2}\) symmetry respectively. Correspondingly the \(\pi\) bands have the angular quantum number 0 in both tubes \(12\), while the \(\pi^*\) bands have \(n_1\) and \(n_2\) respectively \(44\). As a consequence, the conduction channel due to the \(\pi^*\) band remains always open while the the conduction channel due to the \(\pi^*\) band is open only if the two nanotubes have compatible rotational symmetry. As an illustration, we show in Fig. 4 the conductance for \((5,5)/(10,10)\) (dotted line) and \((6,6)/(11,11)\) (full line) contacts. In the case of \((5,5)/(10,10)\) contact the \(\pi^*\) bands have compatible rotational symmetries and the conduction can reach \(4e^2/h\). For \((6,6)/(11,11)\) contact the rotational symmetries are incompatible hence the maximum value reached by the conductance is \(2e^2/h\). This may explain the observation of only one conductance channel in some multiwall nanotubes experiments 3.

In conclusion, nanotube/nanotube contacts exhibit a variety of novel interesting phenomena. We found that the best conductance is achieved for armchair/armchair and zigzag/zigzag contacts. The conductance maxima increase with the contact length and can reach the value for a perfect tube. For larger contact lengths a long wavelength oscillatory behavior is found. This is attributed to the resonant cavity-like interference phenomena in the contact region. For two concentric nanotubes symmetry breaking can reduce the maximum intertube conductance from \(4e^2/h\) to \(2e^2/h\). The phenomena discussed here can serve as a foundation for building nanotube electronic circuits and high speed nanoscale electromechanical devices.

This work is supported by the U.S. Army Research Office Grant No. DAAG55-98-1-0298, the Office of Naval Research Grant No. N00014-98-1-0597 and NASA Ames Research Center. We acknowledge computational support from the North Carolina Supercomputer Center.

[1] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical properties of carbon nanotubes (Imperial College Press, London, 1998).
[2] J. T. Hu, O. Y. Min, P. D. Yang, and C. M. Lieber, Nature 399, 48 (1999).
[3] S. J. Tans, M. H. Devoret, H. J. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, and C. Dekker, Nature 386, 474 (1997).
[4] M. Bockrath, D. H. Cobden, P. L. McEuen, N. G. Chopra, A. Zettl, A. Thess, and R. E. Smalley, Science 275, 1922 (1997).
[5] S. J. Tans, A. R. M. Verschueren, and C. Dekker, Nature 393, 49 (1998).
[6] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and P. Avouris, Appl. Phys. Lett. 73, 2447 (1998).
[7] A. Bachtold, P. Hadley, T. Nakashiji, and C. Dekker, Science 294, 1317 (2001).
[8] S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer, Science 280, 1744 (1998).
[9] A. Bachtold, M. Henny, C. R. Ray, A. Strunk, C. Schonenberger, J. P. Salvetat, J. M. Bonard, and L. Forro, Appl. Phys. Lett. 73, 274 (1998).
[10] M. P. Anantram, S. Datta, and Y. Q. Xue, Phys. Rev. B 61, 14219 (2000).
[11] S. Paulson, A. Helser, M. B. Nardelli, R. M. Taylor, M. Falvo, R. Superfine, and S. Washburn, Science 290, 1742 (2000).
[12] L. Chico, L. X. Benedict, S. G. Louie, and M. L. Cohen, Phys. Rev. B 54, 2600 (1996), vB249 PHYS REV B.
[13] M. Menon and D. Srivastava, Phys. Rev. Lett. 79, 4453 (1997).
[14] R. Tamura and M. Tsukada, Phys. Rev. B 55, 4991 (1997).
[15] M. B. Nardelli, Phys. Rev. B 60, 7828 (1999).
[16] G. Treboux, J. Phys. Chem. B 103, 10378 (1999).
[17] C. Papadopoulos, A. Rakitin, J. Li, A. S. Vedeneev, and J. M. Xu, Phys. Rev. Lett. 85, 3476 (2000).
[18] B. C. Satishkumar, P. J. Thomas, A. Govindaraj, and C. N. R. Rao, Appl. Phys. Lett. 77, 2530 (2000).
[19] M. S. Ferreira, T. G. Dargami, R. B. Muniz, and A. Latge, Phys. Rev. B 62, 16040 (2000).
[20] T. Rueckes, K. Kim, E. J. Joselevich, G. Y. Tseng, C. L. Cheung, and C. M. Lieber, Science 289, 94 (2000).
[21] A. Buldum and J. P. Lu, Phys. Rev. B 6316, 1403 (2001).
[22] M. S. Fuhrer, J. Nygard, L. Shih, M. Forero, Y. G. Yoon, M. S. C. Mazzoni, H. J. Choi, J. Ihm, S. G. Louie, A. Zettl, et al., Science 288, 494 (2000).
[23] T. W. Tombler, C. W. Zhou, J. Kong, and H. J. Dai, Appl. Phys. Lett. 76, 2412 (2000).
[24] H. W. C. Postma, M. de Jonge, Z. Yao, and C. Dekker, Phys. Rev. B 62, R10653 (2000).
[25] W. J. Liang, M. Bockrath, D. Bozovic, J. H. Hafner, M. Tinkham, and H. Park, Nature 411, 665 (2001).
[26] M. Ouyang, J. Huang, and C. M. Lieber, Phys. Rev. Lett. 88, 066804 (2002).
[27] M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Ballents, and P. L. McEuen, Nature 397, 598 (1999).
[28] J. Kong, E. Yenilmez, T. W. Tombler, W. Kim, H. Dai, R. B. Laughlin, L. Liu, C. S. Jayanthi, and S. Y. Wu, Phys. Rev. Lett. 87, 106801 (2001).
[29] Earlier calculations have shown that optimum conductance is achieved when two nanotubes are in parallel contact 21.
[30] Y. Kwon and D. Tomanek, Phys. Rev. B 58, R16001 (1998).
[31] G. Treboux, P. Lapstun, and K. Silverbrook, J. Phys. Chem. B 103, 1871 (1999).
[32] H. J. Choi, J. Ihm, S. G. Louie, and M. L. Cohen, Phys. Rev. Lett. 84, 2917 (2000).
[33] V. Meunier, P. Senet, and P. Lambin, Phys. Rev. B 60, 7792 (1999).
[34] A. Rubio, D. Sanchez-Portal, E. Artacho, P. Ordejon, and J. M. Soler, Phys. Rev. Lett. 82, 3520 (1999).
[35] L. C. Venema, J. W. G. Wilder, J. W. Janssen, S. J. Tans, H. L. J. T. Tuinstra, L. P. Kouwenhoven, and C. Dekker, Science 283, 52 (1999).
[36] S. G. Lemay, J. W. Janssen, M. van den Hout, M. Mooij,
M. J. Bronikowski, P. A. Willis, R. E. Smalley, L. P. Kouwenhoven, and C. Dekker, Nature 412, 617 (2001).

[37] T. Yokoyama, M. Okamoto, and K. Takayanagi, Phys. Rev. Lett. 81, 3423 (1998).

[38] J. T. Li, W. D. Schneider, R. Berndt, and S. Crampin, Phys. Rev. Lett. 80, 3332 (1998).

[39] M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 19, 122 (1993).

[40] R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 19, 185 (1993).

[41] J. Cumings and A. Zettl, Science 289, 602 (2000).

[42] Q. S. Zheng and Q. Jiang, Phys. Rev. Lett. 88, art. no. (2002).

[43] T. W. Ebbesen and P. M. Ajayan, Nature 358, 220 (1992).

[44] H. J. Choi, J. Ihm, Y. Yoon, and S. G. Louie, Phys. Rev. B 60, R14009 (1999).