The Goldman-Rota identity and the Grassmann scheme

Murali K. Srinivasan
Department of Mathematics
Indian Institute of Technology, Bombay
Powai, Mumbai 400076, INDIA
mks@math.iitb.ac.in
murali.k.srinivasan@gmail.com
Mathematics Subject Classifications: 05B25.

Abstract

We inductively construct an explicit (common) orthogonal eigenbasis for the elements of the Bose-Mesner algebra of the Grassmann scheme. The main step is a constructive, linear algebraic interpretation of the Goldman-Rota recurrence for the number of subspaces of a finite vector space. This interpretation shows that the up operator on subspaces has an explicitly given recursive structure. Using this we inductively construct an explicit orthogonal symmetric Jordan basis with respect to the up operator and write down the singular values, i.e., the ratio of the lengths of the successive vectors in the Jordan chains. The collection of all vectors in this basis of a fixed rank forms a (common) orthogonal eigenbasis for the elements of the Bose-Mesner algebra of the Grassmann scheme. We also pose a bijective proof problem on the spanning trees of the Grassmann graphs.

1 Introduction

This paper presents constructive and explicit proofs of two basic linear algebraic results on the subspace lattice.

The first result concerns the recursive structure of the up operator on subspaces. It is an elementary observation that the up operator (or equivalently, incidence matrices) on subsets of a $n+1$-set can be built from two copies of the up operator on subsets of a n-set. The main purpose of this paper is to extend this inductive approach to the subspace lattice. A classical identity of Goldman and Rota suggests that the up operator on subspaces of a $n+1$-dimensional vector space over \mathbb{F}_q can be built from two copies of the up operator in dimension n and q^n-1 copies of the up operator in dimension $n-1$. Let us make this precise.

Let $B(n)$ denote the collection of all subsets of the set $\{1, 2, \ldots, n\}$. Partially order $B(n)$ by inclusion (our poset terminology follows [21]). Then $|B(n)| = 2^n$ and the identity $2^{n+1} = 2 \cdot 2^n$ has the following poset theoretic interpretation: we can write $B(n+1)$ as a disjoint union $B(n+1) = B(n) \cup \{\{n+1\}, \{1, \ldots, n+1\}\}$, where the interval $\{\{n+1\}, \{1, \ldots, n+1\}\}$ is order isomorphic to $B(n)$.

Let \mathbb{F}_q^n denote the n-dimensional vector space of all column vectors of length n over \mathbb{F}_q and let $B_q(n)$ denote the collection of all subspaces of \mathbb{F}_q^n. Partially order $B_q(n)$ by inclusion. The
The number of subspaces in $B_q(n)$ having dimension k is the q-binomial coefficient $\binom{n}{k}_q$, and the total number of subspaces is the Galois number

$$G_q(n) = \sum_{k=0}^{n} \binom{n}{k}_q.$$

The Goldman-Rota identity [8, 12, 14] is the recursion

$$G_q(n + 1) = 2G_q(n) + (q^n - 1)G_q(n - 1), \quad n \geq 1, \quad G_q(0) = 1, \quad G_q(1) = 2. \quad (1)$$

We identify \mathbb{F}_q^n with the subspace of all vectors in \mathbb{F}_q^{n+1} with last component zero. Put $t = q^n - 1$. Motivated by the $B(n)$ case we can ask for the following poset theoretic interpretation of (1): is it possible to write $B_q(n + 1)$ as a disjoint union

$$B_q(n + 1) = B_q(n) \cup S_0 \cup S_1 \cup \cdots \cup S_t, \quad (2)$$

where S_0, \ldots, S_t are intervals in $B_q(n + 1)$, with S_0 order isomorphic to $B_q(n)$ and S_1, \ldots, S_t order isomorphic to $B_q(n - 1)$. At least for $q = 2$ and $n \geq 4$ the answer is no, as shown in [9].

We show that we can get a poset theoretic interpretation of (1) by considering a linear analog of (2). Moreover, the linear analog of the decomposition (2) can be explicitly given.

Let P be a finite graded poset with rank function $r : P \to \mathbb{N} = \{0, 1, 2, \ldots\}$. The rank of P is $r(P) = \max\{r(x) : x \in P\}$ and, for $i = 0, 1, \ldots, r(P)$, P_i denotes the set of elements of P of rank i. For a subset $S \subseteq P$, we set $\text{rankset}(S) = \{r(x) : x \in S\}$.

For a finite set S, let $V(S)$ denote the complex vector space with S as basis. Let $v = \sum_{x \in S} \alpha_x x$, $\alpha_x \in \mathbb{C}$ be an element of $V(S)$. By the support of v we mean the subset $\{x \in S : \alpha_x \neq 0\}$.

Let P be a graded poset with $n = r(P)$. Then we have $V(P) = V(P_0) \oplus V(P_1) \oplus \cdots \oplus V(P_n)$ (vector space direct sum). An element $v \in V(P)$ is homogeneous if $v \in V(P_i)$ for some i, and if $v \neq 0$, we extend the notion of rank to nonzero homogeneous elements by writing $r(v) = i$. Given an element $v \in V(P)$, write $v = v_0 + \cdots + v_n$, $v_i \in V(P_i)$, $0 \leq i \leq n$. We refer to the v_i as the homogeneous components of v. A subspace $W \subseteq V(P)$ is homogeneous if it contains the homogeneous components of each of its elements. For a homogeneous subspace $W \subseteq V(P)$ we set $\text{rankset}(W) = \{r(v) : v \text{ is a nonzero homogeneous element of } W\}$.

The up operator $U : V(P) \to V(P)$ is defined, for $x \in P$, by $U(x) = \sum_y y$, where the sum is over all y covering x. We denote the up operator on $V(B_q(n))$ by U_n. For a finite vector space X over \mathbb{F}_q we denote by $B_q(X)$ the set of all subspaces of X and we denote by U_X the up operator on $V(B_q(X))$.

Let \langle , \rangle denote the standard inner product on $V(P)$, i.e., $\langle x, y \rangle = \delta(x, y)$ (Kronecker delta), for $x, y \in P$. The length $\|v\|$ of $v \in V(P)$ is denoted $\|v\|$.

Let (V, f) be a pair consisting of a finite dimensional vector space V (over \mathbb{C}) and a linear operator f on V. Let (W, g) be another such pair. By an isomorphism of pairs (V, f) and (W, g) we mean a linear isomorphism $\theta : V \to W$ such that $\theta(f(v)) = g(\theta(v))$, $v \in V$.

We give $V(B_q(n))$ (and $V(B_q(X))$) for a finite vector space X over \mathbb{F}_q the standard inner product. In Section 2 we prove the following result on the recursive structure of the pair $(V(B_q(n)), U_n)$. Taking dimensions we get [11].

2
Theorem 1.1 Set \(t = q^n - 1 \). There is an explicit orthogonal direct sum decomposition
\[
V(B_q(n+1)) = V(B_q(n)) \oplus W(0) \oplus W(1) \oplus \cdots \oplus W(t),
\]
where

(i) \(W(0), \ldots, W(t) \) are \(U_{n+1} \)-closed (i.e., closed under the action of \(U_{n+1} \)) homogeneous subspaces of \(V(B_q(n+1)) \) with rankset \(W(0) = \{1, \ldots, n+1 \} \) and rankset \(W(i) = \{1, \ldots, n \} \), for \(i = 1, \ldots, t \).

(ii) \(V(B_q(n)) \oplus W(0) \) is \(U_{n+1} \)-closed and there is an explicit linear map \(\theta_n : V(B_q(n)) \to W(0) \) that is an isomorphism of pairs \((V(B_q(n)), qU_n) \) and \((W(0), U_{n+1}) \), sending homogeneous elements to homogeneous elements, increasing rank by one and satisfying
\[
U_{n+1}(v) = U_n(v) + \theta_n(v), \quad v \in V(B_q(n)),
\]
\[
\langle \theta_n(w), \theta_n(v) \rangle = q^{n-k} \langle w, v \rangle, \quad w, v \in V(B_q(n)_k), \quad 0 \leq k \leq n.
\]

(iii) For \(i = 1, \ldots, t \) there is an explicit linear map \(\gamma_{n-1}(i) : V(B_q(n-1)) \to W(i) \) that is an isomorphism of pairs \((V(B_q(n-1)), U_{n-1}) \) and \((W(i), U_{n+1}) \), sending homogeneous elements to homogeneous elements, increasing rank by one and satisfying
\[
\langle \gamma_{n-1}(i)(w), \gamma_{n-1}(i)(v) \rangle = q^{n+k} \langle w, v \rangle, \quad w, v \in V(B_q(n-1)_k), \quad 0 \leq k \leq n-1.
\]

Our second main result is concerned with explicit construction of orthogonal symmetric Jordan bases. Let \(P \) be a finite graded poset with rank function \(r \). A graded Jordan chain in \(V(P) \) is a sequence
\[
s = (v_1, \ldots, v_h)
\]
of nonzero homogeneous elements of \(V(P) \) such that \(U(v_{i-1}) = v_i \), for \(i = 2, \ldots, h \), and \(U(v_h) = 0 \) (note that the elements of this sequence are linearly independent, being nonzero and of different ranks). We say that \(s \) starts at rank \(r(v_1) \) and ends at rank \(r(v_h) \). A graded Jordan basis of \(V(P) \) is a basis of \(V(P) \) consisting of a disjoint union of graded Jordan chains in \(V(P) \). The graded Jordan chain \(\{7\} \) is said to be a symmetric Jordan chain (SJC) if the sum of the starting and ending ranks of \(s \) equals \(r(P) \), i.e., \(r(v_1) + r(v_h) = r(P) \) if \(h \geq 2 \), or \(2r(v_1) = r(P) \) if \(h = 1 \). A symmetric Jordan basis (SJB) of \(V(P) \) is a basis of \(V(P) \) consisting of a disjoint union of symmetric Jordan chains in \(V(P) \).

Using Theorem \[1.1\] we prove the following result in Section 3.

Theorem 1.2 There is an algorithm to inductively construct an explicit orthogonal SJB \(J_q(n) \) of \(V(B_q(n)) \). When expressed in the standard basis the vectors in \(J_q(n) \) have coefficients that are integral multiples of \(q \)th roots of unity. In particular, the coefficients are integral when \(q = 2 \).

Let \(0 \leq k \leq n/2 \) and let \((x_k, \ldots, x_{n-k}) \) be any SJC in \(J_q(n) \) starting at rank \(k \) and ending at rank \(n - k \). Then we have, for \(k \leq u < n - k \),
\[
\frac{\|x_{u+1}\|}{\|x_u\|} = q^{k/u+1-k}q[n-k-u]q.
\]
A standard argument (recalled in Section 3) shows that the set \(\{ v \in J_q(n) : r(v) = m \} \) forms a common orthogonal eigenbasis for the elements of the Bose-Mesner algebra of the Grassmann scheme of \(m \)-subspaces.

The numbers on the right hand side of (8) are called the singular values of the up operator. These are important for applications. The existence of an orthogonal SJB of \(V(B_q(n)) \) satisfying (8) was first stated explicitly in \([22] \), with a proof based on [7]. See [18] for a proof based on the \(\mathfrak{sl}(2, \mathbb{C}) \) method \([15] \). Very closely related results are shown in \([6, 20, 13, 1] \). The existence of an orthogonal SJB satisfying (8) has several applications: in \([19] \) we showed that the commutant of the \(GL(n, \mathbb{F}_q) \)-action on \(V(B_q(n)) \) block diagonalizes with respect to the orthonormal basis given by the normalization of \(J_q(n) \) and we used (8) to make this block diagonalization explicit, thereby obtaining a \(q \)-analogs of the formula from \([16] \) for explicit block diagonalization of the commutant of the symmetric group action on \(V(B(n)) \). This includes, as a special case, a formula for the eigenvalues of the elements of the Bose-Mesner algebra of the Grassmann scheme \([5, 4] \). For other approaches to explicit block diagonalization see \([13, 1] \), the latter of which also gives applications to bounds on projective codes using semidefinite programming. In \([18] \) we used (8) to give a positive combinatorial formula for the number of spanning trees of the \(q \)-analogs of the \(n \)-cube and to show that the Laplacian eigenvalues of the Grassmann graphs, known in principle since \([5] \), admit an elegant closed form. For another approach to the Laplacian eigenvalues of the Grassmann graphs see \([13] \). At the end of this paper we pose a bijective proof problem on spanning trees of the Grassmann graphs.

From the point of view of applications (and especially that of polynomial time computation) explicit construction of the basis \(J_q(n) \) is not important as even to write down \(J_q(n) \) takes exponential time. But it is of interest from a mathematical standpoint yielding useful additional insight into the linear structure of the subspace lattice. The situation is similar to bijective versus nonbijective proofs in enumeration. Substituting insight into the linear structure of the subspace lattice. The situation is similar to bijective versus nonbijective proofs in enumeration. Substituting insight into the linear structure of the subspace lattice.

2 Goldman-Rota recurrence

In this section we prove Theorem 1.1. As stated in the introduction, we identify \(\mathbb{F}_q^n \), for \(k < n \), with the subspace of \(\mathbb{F}_q^n \) consisting of all vectors with the last \(n-k \) components zero. We denote by \(e_1, \ldots, e_n \) the standard basis vectors of \(\mathbb{F}_q^n \). So \(B_q(k) \) consists of all subspaces of \(\mathbb{F}_q^n \) contained in the subspace spanned by \(e_1, \ldots, e_k \).

Define \(A_q(n) \) to be the collection of all subspaces in \(B_q(n) \) not contained in the hyperplane \(\mathbb{F}_q^{n-1} \)

\[
A_q(n) = B_q(n) - B_q(n-1) = \{ X \in B_q(n) : X \not\subset \mathbb{F}_q^{n-1} \}, \quad n \geq 1.
\]

For \(1 \leq k \leq n \), let \(A_q(n)_k \) denote the set of all subspaces in \(A_q(n) \) with dimension \(k \). We consider \(A_q(n) \) as an induced subposet of \(B_q(n) \).

Define a map

\[
\mathcal{H}(n) : A_q(n) \to B_q(n-1)
\]
by \(\mathcal{H}(n)(X) = X \cap \mathbb{F}_q^{n-1} \), for \(X \in A_q(n) \). Define an equivalence relation \(\sim \) on \(A_q(n) \) by \(X \sim Y \) iff \(\mathcal{H}(n)(X) = \mathcal{H}(n)(Y) \). Denote the equivalence class of \(X \in A_q(n) \) by \([X]\).

For \(X \in B_q(n-1) \), define \(\hat{X} \) to be the subspace in \(A_q(n) \) spanned by \(X \) and \(e_n \).

Lemma 2.1 Let \(X,Y \in A_q(n) \) and \(Z,T \in B_q(n-1) \). Then

(i) \(\dim \mathcal{H}(n)(X) = \dim X - 1 \) and \(\mathcal{H}(n)(X) \subseteq [X] \).

(ii) \(Z \leq T \) iff \(\hat{Z} \leq \hat{T} \).

(iii) \(Y \) covers \(X \) iff \(\mathcal{H}(n)(Y) \) covers \(\mathcal{H}(n)(X) \) and \(Y = \text{span}(\mathcal{H}(n)(Y) \cup \{v\}) \) for any \(v \in X - \mathbb{F}_q^n \).

(iv) \(|\mathcal{H}(n)^{-1}(Z)| = q^l \), where \(l = n - \dim Z - 1 \). Thus, \(|[X]| = q^n - k \), where \(k = \dim X \).

Proof (i), (ii), and (iii) are clear.

(iv) Let \(\mathcal{H}(n)^{-1}(Z) = \{Y_1, \ldots, Y_t\} \). Then \(Y_i \cap Y_j = Z \), \(1 \leq i \neq j \leq t \). Let \(\dim (Z) = m \). Now \(|Y_i - Z| = q^{m+1} - q^m \) for all \(i \) and thus \(t = \frac{q^{n+1} - q^m}{q^n - q^m} = q^{n-m-1} \). \(\square \)

We have an orthogonal decomposition

\[
V(B_q(n+1)) = V(B_q(n)) \oplus V(A_q(n+1)).
\]
(9)

We shall now give a canonical orthogonal decomposition of \(V(A_q(n+1)) \).

Let \(H(n+1,q) \) denote the subgroup of \(GL(n+1,q) = GL(n+1,\mathbb{F}_q) \) consisting of all matrices of the form

\[
\begin{bmatrix}
 a_1 \\
 \vdots \\
 a_n \\
 0 \cdots 0 \\
 1
\end{bmatrix},
\]

where \(I \) is the \(n \times n \) identity matrix.

The additive abelian group \(\mathbb{F}_q^n \) is isomorphic to \(H(n+1,q) \) via \(\phi : \mathbb{F}_q^n \to H(n+1,q) \) given by

\[
\phi \left(\begin{bmatrix}
 a_1 \\
 \vdots \\
 a_n
\end{bmatrix} \right) \mapsto \begin{bmatrix}
 I \\
 a_1 \\
 \vdots \\
 a_n \\
 0 \cdots 0 \\
 1
\end{bmatrix}.
\]

There is a natural (left) action of \(H(n+1,q) \) on \(A_q(n+1) \) and \(A_q(n+1)_k \). For \(X \in A_q(n+1) \), let \(G_X \subseteq H(n+1,q) \) denote the stabilizer of \(X \).

Lemma 2.2 Let \(X,Y \in A_q(n+1) \). Then

(i) The orbit of \(X \) under the action of \(H(n+1,q) \) is \([X]\).

(ii) Suppose \(Y \) covers \(X \). Then the bipartite graph of the covering relations between \([Y]\) and \([X]\) is regular with degrees \(q \) (on the \([Y]\) side) and \(1 \) (on the \([X]\) side).

(iii) Suppose \(X \subseteq Y \). Then \(G_X \subseteq G_Y \).
Proof (i) This is clear.

(ii) Since the action of \(H(n+1, q) \) on \(A_q(n+1) \) is clearly order preserving it follows that the bipartite graph in the statement is regular. Let \(Y' \subseteq [Y] \) also cover \(X \). Then \(\mathcal{H}(n+1)(Y') = \mathcal{H}(n+1)(Y) \) and it follows from Lemma 2.1(iv) that \(Y = Y' \). So the degree on the \([X]\) side is 1. Let \(\dim (X) = k \). Then, by Lemma 2.1(iv), \(|[Y]| = q^{n-k} \) and \(|[X]| = q^{n+1-k} \) and hence, by regularity, the degree on the \([Y]\) side is \(q \).

(iii) We may assume that \(Y \) covers \(X \). If \(X \neq X' \subseteq [X] \) then clearly \(X \cap X' = \mathcal{H}(n+1)(X) \). So, by part (ii) and Lemma 2.1(iii), we can write \(Y \) as a union

\[
Y = X_1 \cup X_2 \cup \cdots X_q
\]

of subspaces \(X = X_1, \ldots, X_q \subseteq [X] \) with \(X_i \cap X_j = \mathcal{H}(n+1)(X) \), \(1 \leq i \neq j \leq q \).

Now the stabilizer of all the elements \(X_1, \ldots, X_q \) is \(G_X \) (since \(H(n+1, q) \) is commutative). It follows that \(G_X \subseteq G_Y \). \(\square \)

Let \(I_q(n) \) denote the set of all distinct irreducible characters (all of degree 1) of \(H(n+1, q) \) and let \(J_q(n) \) denote the set of all distinct nontrivial irreducible characters of \(H(n+1, q) \).

Let \(\psi_k \) (respectively, \(\psi \)) denote the character of the permutation representation of \(H(n+1, q) \) on \(V(A_q(n+1)_k) \) (respectively, \(V(A_q(n+1)) \)) corresponding to the left action. Clearly \(\psi = \sum_{k=1}^{n+1} \psi_k \). Below \([\cdot] \) denotes character inner product and the \(q \)-binomial coefficient \(\left[\begin{array}{c} n \\ k \end{array} \right] \) is taken to be zero when \(n \) or \(k \) is \(< 0 \).

Theorem 2.3 (i) For \(1 \leq k \leq n+1 \) and \(g \in H(n+1, q) \) we have

\[
\psi_k(g) = \begin{cases}
q^{n-k+1} \left[\begin{array}{c} n \\ k-1 \end{array} \right]_q & \text{if } g = I, \\
q^{n-k+1} \left[\begin{array}{c} n-1 \\ k-2 \end{array} \right]_q & \text{if } g \neq I.
\end{cases}
\]

(ii) Let \(\chi \in I_q(n) \) be the trivial character. Then \([\chi, \psi_k] = \left[\begin{array}{c} n \\ k-1 \end{array} \right] \), \(1 \leq k \leq n+1 \).

(iii) Let \(\chi \in J_q(n) \). Then \([\chi, \psi_k] = \left[\begin{array}{c} n-1 \\ k-1 \end{array} \right] \), \(1 \leq k \leq n+1 \).

(iv)

\[
\left[\begin{array}{c} n+1 \\ k \end{array} \right]_q = \left[\begin{array}{c} n \\ k \end{array} \right]_q + \left[\begin{array}{c} n \\ k-1 \end{array} \right]_q + (q^n - 1) \left[\begin{array}{c} n-1 \\ k-1 \end{array} \right]_q , \quad n, k \geq 1,
\]

with \(\left[\begin{array}{c} 0 \\ k \end{array} \right] \) = \(\delta(0, k) \) (Kronecker delta) and \(\left[\begin{array}{c} n \\ 0 \end{array} \right] = 1 \). Note that (i) follows by summing over \(k \).

Proof (i) From Lemma 2.1(iv),

\[
|A_q(n+1)_k| = q^{n-k+1} \left[\begin{array}{c} n \\ k-1 \end{array} \right]_q = \psi_k(I).
\]

Now assume \(g \in H(n+1, q) \), \(g \neq I \) and let \(X \in A_q(n+1)_k \). Let the last column of \(g \) be \((a_1, \ldots, a_n)^t \) (\(t \) = transpose), where not all the \(a_i \)'s are 0. Now note that
(a) For \(b_1, \ldots, b_n \in \mathbb{F}_q \),
\[
g(b_1, \ldots, b_n, 1)^t = (a_1 + b_1, \ldots, a_n + b_n, 1)^t.
\]

(b) From item (a) above it follows that \(gX = X \) iff the nonzero vector \((a_1, \ldots, a_n, 0)^t \in \mathcal{H}(n + 1)(X)\).

(c) From item (b) above, if \(gX = X \) then \(gY = Y \) for all \(Y \in [X] \). Thus \(g \) either fixes all elements of \([X]\) or no elements.

(d) The number of subspaces in \(B_q(n)_{k-1} \) containing the nonzero vector \((a_1, \ldots, a_n, 0)^t \) is \(\binom{n-1}{k-2}_q \).

It follows from items (b), (c), (d) above that \(\psi_k(g) = q^{n-k+1} \binom{n-1}{k-2}_q \).

(ii) This follows from the well known result that the multiplicity of the trivial representation in a permutation representation is the number of orbits, which in the present case is \(\binom{n}{k-1}_q \).

(iii) Since \(\chi \) is nontrivial we have
\[
\sum_{g \in H(n+1,q)} \chi(g) = 0 \quad \text{and} \quad \sum_{g \in H(n+1,q), g \neq \mathbf{1}} \chi(g) = -1.
\]

Thus (below the sum is over all \(g \neq \mathbf{1} \) in \(H(n+1,q) \))
\[
[\chi, \psi_k] = \frac{1}{q^n} \left\{ \psi_k(I) + \sum_{g \neq \mathbf{1}} \chi(g) \psi_k(g) \right\}
\]
\[
= \frac{1}{q^n} \left\{ q^{n-k+1} \binom{n}{k-1}_q - q^{n-k+1} \binom{n-1}{k-2}_q \right\}
\]
\[
= q^{-(k-1)} \left\{ \binom{n}{k-1}_q - \binom{n-1}{k-2}_q \right\}
\]
\[
= \binom{n-1}{k-1}_q,
\]
where in the last step we have used \(q \)-Pascal’s triangle (see Section 1.7 in [21])
\[
\binom{n}{k-1}_q = \binom{n-1}{k-2}_q + q^{k-1} \binom{n-1}{k-1}_q.
\]

(iv) Let \(1 \leq k \leq n + 1 \). Restricting \(\mathfrak{g} \) to dimension \(k \) we get the following orthogonal decomposition
\[
V(B_q(n+1)_k) = V(B_q(n)_k) \oplus V(A_q(n+1)_k).
\]

Splitting \(V(A_q(n+1)_k) \) into \(H(n+1,q) \)-irreducibles and taking dimensions using parts (ii) and (iii) we get the result. The initial conditions are easily verified. \(\square \)

Let \(W(0) \) (respectively, \(W(0)_k \)) denote the isotypical component of \(V(A_q(n+1)) \) (respectively, \(V(A_q(n+1)_k) \)) corresponding to the trivial representation of \(H(n+1,q) \) and, for \(\chi \in \mathcal{N}_q(n) \), let \(W(\chi) \) (respectively, \(W(\chi)_k \)) denote the isotypical component of \(V(A_q(n+1)) \) (respectively, \(V(A_q(n+1)_k) \)) corresponding to the irreducible representation of \(H(n+1,q) \) with
character \(\chi \). We have the following orthogonal decompositions, the last of which is canonical (note that \(W(\chi)_{n+1} \) is the zero module, by Theorem 2.3(iii)).

\[
W(0) = W(0)_1 \oplus \cdots \oplus W(0)_{n+1},
\]

\[
W(\chi) = W(\chi)_1 \oplus \cdots \oplus W(\chi)_n, \quad \chi \in \mathcal{N}_q(n),
\]

\[
V(A_q(n+1)) = W(0) \oplus (\oplus_{\chi \in \mathcal{N}_q(n)} W(\chi)).
\]

Since \(U_{n+1} \) is \(GL(n+1,q) \)-linear, each of \(W(0) \) and \(W(\chi), \chi \in \mathcal{N}_q(n) \) is \(U_{n+1} \)-closed.

For \(\chi \in \mathcal{I}_q(n) \), define the following element of the group algebra of \(H(n+1,q) \):

\[
p(\chi) = \sum_g \chi(g) g,
\]

where the sum is over all \(g \in H(n+1,q) \). For \(1 \leq k \leq n+1 \), the map

\[
p(\chi) : V(A_q(n+1)_k) \to V(A_q(n+1)_k),
\]

given by \(v \mapsto \sum_{g \in H(n+1,q)} \overline{\chi(g)} g v \), is a nonzero multiple of the \(H(n+1,q) \)-linear projection onto \(W(\chi)_k \). Similarly for \(p(\chi) : V(A_q(n+1)) \to V(A_q(n+1)) \).

Lemma 2.4 Let \(X \in A_q(n+1) \) and \(\chi \in \mathcal{I}_q(n) \). Then \(p(\chi)(X) \neq 0 \) iff \(\chi : G_X \to \mathbb{C}^* \) is the trivial character of \(G_X \).

Proof Let \(\{h_0 = 1, h_1, \ldots, h_t\} \) be a set of distinct coset representatives of \(G_X \), i.e.,

\[
H(n+1,q) = G_X h_0 \cup G_X h_1 \cup \cdots \cup G_X h_t \quad \text{(disjoint union)}.
\]

Write \([X] = \{X = X_0, X_1, \ldots, X_t\} \) and assume without loss of generality that \(h_i X = X_i, \ 0 \leq i \leq t \). Note that \(G_X \) is the stabilizer of all the elements of \([X] \).

We have

\[
p(\chi)(X) = \sum_{g \in H(n+1,q)} \overline{\chi(g)} g X
\]

\[
= \left(\sum_{g \in G_X} \chi(g) \right) X + \sum_{i=1}^t \chi(h_i) \left(\sum_{g \in G_X} \overline{\chi(g)} \right) X_i.
\]

The result follows since \(\sum_{g \in G_X} \overline{\chi(g)} = 0 \) for every nontrivial character of \(G_X \). \(\square \)

Theorem 2.5 (i) Let \(\chi \in \mathcal{I}_q(n) \), \(X, Y \in A_q(n+1) \) with \(X \sim Y \). Then \(p(\chi)(X) \) is a nonzero multiple of \(p(\chi)(Y) \).

(ii) Let \(\chi \in \mathcal{I}_q(n) \). Then \(\{p(\chi)(\tilde{X}) : X \in B_q(n)_k, 1 \leq k \leq n+1, \ \text{with} \ p(\chi)(\tilde{X}) \neq 0 \} \) is a basis of \(W(\chi)_k \).

(iii) Let \(\chi \in \mathcal{I}_q(n) \) and let \(X, Y \in B_q(n) \) with \(X \) covering \(Y \). Then

\[
p(\chi)(\tilde{X}) \neq 0 \implies p(\chi)(\tilde{Y}) \neq 0.
\]
(iv) Define \(\theta_n : V(B_q(n)) \to W(0) \) by

\[
X \mapsto \sum_{Y \sim \hat{X}} Y, \ X \in B_q(n).
\]

Then \(\theta_n \) is an isomorphism of pairs \((V(B_q(n)), qU_n)\) and \((W(0), U_{n+1})\) and

\[
U_{n+1}(v) = U_n(v) + \theta_n(v), \ v \in V(B_q(n)),
\]

\[
\langle \theta_n(w), \theta_n(v) \rangle = q^{n-k} \langle w, v \rangle, \ w, v \in V(B_q(n)_k), \ 0 \leq k \leq n.
\]

(v) Let \(\chi \in N_q(n) \). From Theorem 2.3 (iii) we have \(\dim W(\chi)_n = 1 \). It thus follows from part (ii) that there is a unique element \(X = X(\chi) \in B_q(n)_{n-1} \) such that \(p(\chi)(\hat{X}) \neq 0 \). Define \(\lambda(\chi) : V(B_q(X)) \to W(\chi) \) by

\[
Y \mapsto p(\chi)(\hat{Y}), \ Y \in B_q(X).
\]

Then \(\lambda(\chi) \) is an isomorphism of pairs \((V(B_q(X)), U_X)\) and \((W(\chi), U_{n+1})\) and satisfies

\[
\langle \lambda(\chi)(w), \lambda(\chi)(v) \rangle = q^{n+k} \langle w, v \rangle, \ w, v \in V(B_q(X)_k), \ 0 \leq k \leq n - 1.
\]

(vi) For \(X \in B_q(n)_{n-1} \) the number of \(\chi \in N_q(n) \) such that \(p(\chi)(\hat{X}) \neq 0 \) is \(q - 1 \).

Proof

(i) By Lemma 2.2 (i), \(X = hY \) for some \(h \in H(n + 1, q) \). Then we have (below the sum is over all \(g \in H(n + 1, q) \))

\[
p(\chi)(X) = \sum_g \chi(g) ghY = \sum_g \chi(g h^{-1}) gY = \chi(h^{-1}) p(\chi)(Y).
\]

Since \(\chi(h^{-1}) \neq 0 \) (\(\chi \) being of degree 1) the result follows.

(ii) The map (15) is a projection onto \(W(\chi)_k \), so \(G = \{ p(\chi)(X) : X \in A_q(n + 1)_k \} \) spans \(W(\chi)_k \). By part (i), the subset \(G' = \{ p(\chi)(\hat{X}) : X \in B_q(n)_{n-1} \text{ with } p(\chi)(\hat{X}) \neq 0 \} \) also spans \(W(\chi)_k \). Now, for distinct \(X, Y \in B_q(n)_{n-1} \), \(p(\chi)(\hat{X}) \) and \(p(\chi)(\hat{Y}) \) have disjoint supports, so \(G' \) is a basis.

(iii) This follows from Lemma 2.2 (iii) and Lemma 2.4.

(iv) By Theorem 2.3 (ii) the dimensions of \(V(B_q(n)) \) and \(W(0) \) are the same. For \(X_1 \neq X_2 \in B_q(n) \) the supports of \(\theta_n(X_1) \) and \(\theta_n(X_2) \) are disjoint. It follows that \(\theta_n \) is a vector space isomorphism.

Let \(X \in B_q(n) \) with \(\dim (X) = k \). Then (17) is clear and \(|\hat{X}| = q^{n-k} \) by Lemma 2.1 (iv), showing (18).

We have (below the sum is over all \(Z \) covering \(X \) in \(B_q(n) \))

\[
\theta_n(qU_n(X)) = \theta_n \left(q \left(\sum Z \right) \right) = q \left\{ \sum_{Y \sim \hat{Z}} Y \right\}.
\]

9
Similarly (in the second step below T varies over all subspaces covering Y and in the third step Z varies over all subspaces in $B_q(n)$ covering X. We have used Lemma 2.1(ii) and Lemma 2.2(ii) to go from the second to the third step)

\[U_{n+1}(\theta_n(X)) = U_{n+1} \left(\sum_{Y \sim X} Y \right) \]

\[= \sum_{Y \sim X} \sum_T T \]

\[= q \left\{ \sum_Z \sum_{Y \sim Z} Y \right\}. \]

(v) By part (iii) it follows that $\lambda(\chi)(Y) \neq 0$ for all $Y \in B_q(X)$. By Theorem 2.3(iii) the dimensions of $V(B_q(X))$ and $W(\chi)$ are the same. For $Y_1 \neq Y_2 \in B_q(X)$ the supports of $\lambda(\chi)(Y_1)$ and $\lambda(\chi)(Y_2)$ are disjoint. It follows that $\lambda(\chi)$ is a vector space isomorphism.

Now, for $Y \in B_q(X)$, we have (below the sum is over all Z covering Y in $B_q(X)$)

\[\lambda(\chi)(U_X(Y)) = \lambda(\chi) \left(\sum_Z \right) \]

\[= \sum_Z p(\chi)(\hat{Z}). \]

Let $Y \in B_q(X)$. Before calculating $U_{n+1}\lambda(\chi)(Y)$ we make the following observation. By Lemma 2.1(ii) every element covering \hat{Y} is of the form \hat{Z}, for some Z covering Y in $B_q(n)$. Suppose $Z \in B_q(n) - B_q(X)$. Since $\dim(W(\chi)) = G_q(n-1)$ (by Theorem 2.3(iii)), it follows by parts (ii) and (iii) that $p(\chi)(\hat{Z}) = 0$.

We now calculate $U_{n+1}\lambda(\chi)(Y)$. In the second step below we have used the fact that U_{n+1} is $H(n+1,q)$-linear and in the third step, using the observation in the paragraph above, we may restrict the sum to all Z covering Y in $B_q(X)$.

We have

\[U_{n+1}(\lambda(\chi)(Y)) = U_{n+1} \left(p(\chi)(\hat{Y}) \right) \]

\[= p(\chi)(U_{n+1}(\hat{Y})) \]

\[= \sum_Z p(\chi)(\hat{Z}). \]

We will now show that $\| p(\chi)(\hat{Y}) \| = \sqrt{q^{n+k}}$ if $Y \in B_q(X)$ with $\dim(Y) = k$. This will prove (19).

By Lemma 2.1(iv), $|\hat{Y}| = q^{n+1-(k+1)} = q^{n-k}$ and so $|G_{\hat{Y}}| = q^k$. It now follows from (16) (since the restriction of χ to $G_{\hat{Y}}$ must be trivial) that $p(\chi)(\hat{Y}) = \sqrt{q^{n-k}(q^k)^2} = \sqrt{q^{n+k}}$.

(vi) By Theorem 2.3(iii), $\sum_{\chi \in N_q(n)} \dim(W(\chi)n) = q^n - 1 = (q - 1)(1 + q + \cdots + q^{n-1})$. Now $|B_q(n)_{n-1}| = \left[\begin{array}{c} n \\ n-1 \end{array} \right]_q = 1 + q + \cdots + q^{n-1}$ and by Lemma 2.1(iv), $|\hat{X}| = q$ for $X \in B_q(n)_{n-1}$.

10
Since, for $\chi \in \mathcal{N}_q(n)$ and $X \in B_q(n)_{n-1}$, the support of $p(\chi)(\tilde{X})$ is contained in $[\tilde{X}]$ and $p(\chi)(\tilde{X})$ is orthogonal to $p(\pi)(\tilde{X})$ (where π is the trivial character), the result now follows by part (ii).

To use Theorem 2.5 for computations we need the character table of $H(n + 1, q)$, which is easy to write down explicitly since $H(n + 1, q)$ is direct sum of n cyclic groups of order q. We now give a small example to illustrate part (v) of Theorem 2.5

Example Let $q = 3$, $n = 2$, and $\omega = e^{2\pi i/3}$. Consider $A_3(3)$ with the $H(3, 3)$-action. We write the elements of \mathbb{F}_3 as $\{0, 1, 2\}$ and define $\chi \in \mathcal{N}_3(2)$ by $\chi(\phi((a_1, a_2))) = \omega^{a_1 + 2a_2}$, where $a_1 + 2a_2$ is computed as an integer.

We have

$$p(\chi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \omega^2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} + \omega \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} + \omega \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} + \omega^2 \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} + \omega^2 \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \omega \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

Given a finite set of vectors v_1, v_2, \ldots, v_m we shall denote the subspace spanned by them by $S(v_1, \ldots, v_m)$.

The four subspaces in $B_3(2)_1$ are

$$X_1 = S \left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right), \ X_2 = S \left(\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right), \ X_3 = S \left(\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right), \ X_4 = S \left(\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \right).$$

It can be checked that

$$p(\chi)(\tilde{X}_1) = S \left(\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} \right) + \omega^2 S \left(\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right) + \omega S \left(\begin{bmatrix} 1 \\ 0 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right)$$

$$+ \omega S \left(\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right) + S \left(\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right) + \omega^2 S \left(\begin{bmatrix} 1 \\ 0 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \right)$$

$$+ \omega^2 S \left(\begin{bmatrix} 1 \\ 0 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) + \omega S \left(\begin{bmatrix} 1 \\ 0 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \right) + S \left(\begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right).$$

Using $\omega^3 = 1$ and $1 + \omega + \omega^2 = 0$ we see that $p(\chi(\tilde{X}_1)) = 0$.

11
Similarly we can check that

\[
p(\chi)(\overline{X}_2) = \mathcal{S} \left(\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right) + \omega^2 \mathcal{S} \left(\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right) + \omega \mathcal{S} \left(\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right) + \omega \mathcal{S} \left(\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right)
+ \omega^2 \mathcal{S} \left(\begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right) + \mathcal{S} \left(\begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} \right) + \mathcal{S} \left(\begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} \right)
+ \mathcal{S} \left(\begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} \right) + \mathcal{S} \left(\begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} \right)
\]

and

\[
p(\chi)(\overline{X}_4) = \mathcal{S} \left(\begin{bmatrix} 2 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} \right) + \omega^2 \mathcal{S} \left(\begin{bmatrix} 2 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right) + \omega \mathcal{S} \left(\begin{bmatrix} 2 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right) + \omega \mathcal{S} \left(\begin{bmatrix} 2 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right)
+ \omega^2 \mathcal{S} \left(\begin{bmatrix} 2 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right) + \mathcal{S} \left(\begin{bmatrix} 2 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right) + \mathcal{S} \left(\begin{bmatrix} 2 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right)
+ \mathcal{S} \left(\begin{bmatrix} 2 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right) + \mathcal{S} \left(\begin{bmatrix} 2 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right)
\]

are both equal to 0 and

\[
p(\chi)(\overline{X}_3) = \mathcal{S} \left(\begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right) + \omega^2 \mathcal{S} \left(\begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right) + \omega \mathcal{S} \left(\begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right) + \omega \mathcal{S} \left(\begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right)
+ \omega^2 \mathcal{S} \left(\begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right) + \mathcal{S} \left(\begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right) + \mathcal{S} \left(\begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right)
+ \mathcal{S} \left(\begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right) + \mathcal{S} \left(\begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right)
\]

is \(\neq 0\).

We have now proved most of Theorem 1.1 except for one small part. Let \(X \in B_q(n_{n-1})\). The pairs \((V(B_q(X)), U_X)\) and \((V(B_q(n - 1)), U_{n-1})\) are clearly isomorphic with many possible isomorphisms. We now define a canonical isomorphism, based on the concept of a matrix in Schubert normal form.

A \(n \times k\) matrix \(M\) over \(\mathbb{F}_q\) is in Schubert normal form (or, column reduced echelon form) provided

(i) Every column is nonzero.
We have already showed that each of W_n at rank n. Note that W_n also pose a bijective proof problem on the Grassmann graphs.

Proof (of Theorem 1.2) It is convenient to write the orthogonal decomposition (3) as follows

$$V(B_q(n + 1)) = V(B_q(n)) \oplus W(0) \oplus (\oplus_{\chi \in \mathcal{N}_q(n)} W(\chi)).$$

Note that $|\mathcal{N}_q(n)| = q^n - 1$.

(i) We have already showed that each of $W(0)$ and $W(\chi)$, $\chi \in \mathcal{N}_q(n)$ is U_{n+1}-closed. The rank sets of $W(0)$ and $W(\chi)$ are also easily seen to be as stated.

(ii) This follows from Theorem 2.5(iv).

(iii) Let $\chi \in \mathcal{N}_q(n)$. From Theorem 2.5(v) there is a unique $X \in B_q(n)_{n-1}$ with $p(\chi)(\widehat{X}) \neq 0$. It now follows, again by Theorem 2.5(v), that $\gamma_{n-1}(\chi) = \lambda(\chi)\mu(X)$ is an isomorphism of pairs $(V(B_q(n - 1)), U_{n-1})$ and $(W(\chi), U_{n+1})$ satisfying (6). \qed

3 Orthogonal symmetric Jordan basis

In this section we prove Theorem 1.2 and give an application to the Grassmann scheme. We also pose a bijective proof problem on the Grassmann graphs.

Proof (of Theorem 1.2) The proof is by induction on n, the result being clear for $n = 0, 1$.

Let $\chi \in \mathcal{N}_q(n)$ and let (x_k, \ldots, x_{n-1-k}) be a SJC in $J_q(n - 1)$ starting at rank k and ending at rank $n - 1 - k$. Then, by Theorem 1.1 applied to the decomposition (20), $(y_{k+1}, \ldots, y_{n-k})$, where $y_{u+1} = \gamma_{n-1}(\chi)(x_u)$, $k \leq u \leq n - 1 - k$, is a SJC in $W(\chi)$ (with respect to U_{n+1}) starting at rank $k + 1$, ending at rank $n - k$. By the induction hypothesis we have, for $k + 1 \leq u \leq n - k$,

$$\frac{\|y_{u+1}\|}{\|y_u\|} = \frac{\sqrt{q^{n+u}}}{\sqrt{q^{n-u+1}}} = \frac{\sqrt{q^{k+1}[u + 1 - (k + 1)]_q[n - k - u]_q}}{\sqrt{q^{k+1}[u + 1 - (k + 1)]_q[n - k - u]_q}}.$$

Doing the above procedure for every SJC in $J_q(n - 1)$ we get an orthogonal SJB of $W(\chi)$ satisfying (5). Note that, by definition of $\lambda(\chi)$, if the coefficients (in the standard basis) of the vectors in $J_q(n - 1)$ were integral multiples of qth roots of unity then so will be the coefficients of the vectors in the SJB of $W(\chi)$. Similarly, doing the above procedure for every $\chi \in \mathcal{N}_q(n)$ we get an orthogonal SJB, with respect to U_{n+1}, of $\oplus_{\chi \in \mathcal{N}_q(n)} W(\chi)$ satisfying (5).
Now we consider the subspace \(V(B_q(n)) \oplus W_0 \). Let \((x_k, \ldots, x_{n-k})\) be a SJC in \(J_q(n) \), starting at rank \(k \) and ending at rank \(n - k \), and satisfying (8). Set \(\overline{x_u} = \theta_n(x_u), \ k \leq u \leq n - k \). Then, by Theorem 1.1, \((w_{k+1}, \ldots, w_{n-k+1})\), where \(w_{u+1} = q^{u-k} \overline{x_u}, \ k \leq u \leq n - k \) is a graded Jordan chain in \(W_0 \) (with respect to \(U_{n+1} \)), starting at rank \(k + 1 \) and ending at rank \(n - k + 1 \). We have \(U_{n+1}(q^{u-k} \overline{x_u}) = q^{u+1-k} \overline{x_u+1} \) and so
\[
U_{n+1}(\overline{x_u}) = q \overline{x_{u+1}}, \ k \leq u < n - k. \tag{21}
\]
Also we have
\[
\langle \overline{x_u}, \overline{x_u} \rangle = q^{n-u} \langle x_u, x_u \rangle, \ k \leq u \leq n - k. \tag{22}
\]

For convenience we define \(x_{k-1} = \overline{x_{k-1}} = x_{n+1-k} = 0 \). Note that (22) also holds for \(u = k - 1 \).

Now, by (21), we have, for \(k \leq u \leq n - k \),
\[
U_{n+1}(x_u) = x_{u+1} + \theta_n(x_u) = x_{u+1} + \overline{x_u}. \tag{23}
\]

Let \(Z \) be the subspace spanned by \(\{x_k, \ldots, x_{n-k}\} \) and \(\{x_k, \ldots, x_{n-k}\} \). Clearly, by (21) and (23), \(Z \) is \(U_{n+1} \)-closed. We shall now get an orthogonal SJB of \(Z \) satisfying (8) by taking linear combinations of the vectors \(\{x_k, \ldots, x_{n-k}\} \) and \(\{\overline{x_k}, \ldots, \overline{x_{n-k}}\} \).

We consider two cases:
(a) \(k = n - k \): By (23), \((x_k, \overline{x_k}) \) is an orthogonal SJB of \(Z \) going from rank \(k \) to rank \(k + 1 \). We have, from (22),
\[
\frac{\langle \overline{x_k}, \overline{x_k} \rangle}{\langle x_k, x_k \rangle} = q^k,
\]
and thus (8) is satisfied.

(b) \(k < n - k \): Define the following vectors in \(Z \).
\[
y_l = x_l + [l-k]_q \overline{x_{l-1}}, \ k \leq l \leq n + 1 - k,
z_l = -q^n x_l + q^{l+k-1} [n - l - k + 1]_q \overline{x_{l-1}}, \ k + 1 \leq l \leq n - k.
\]

Note that, using the induction hypothesis, the coefficients of \(y_l, z_l \) are also integral multiples of \(q \)th roots of unity. We claim that \((y_k, \ldots, y_{n+1-k})\) and \((z_{k+1}, \ldots, z_{n-k})\) form an orthogonal SJB of \(Z \) satisfying (8).

We check orthogonality first, for which we need to show that \(\langle y_l, z_l \rangle = 0 \) for \(k + 1 \leq l \leq n - k \). Clearly \(\langle x_l, \overline{x_{l-1}} \rangle = 0 \) for \(k + 1 \leq l \leq n - k \). Thus
\[
\langle y_l, z_l \rangle = -q^n \langle x_l, x_l \rangle + q^{k+l-1} [l-k]_q [n - l - k + 1]_q \langle \overline{x_{l-1}}, \overline{x_{l-1}} \rangle.
\]

By the induction hypothesis \(\langle x_l, x_l \rangle = q^k [l-k]_q [n - l - k + 1]_q \langle x_{l-1}, x_{l-1} \rangle \) and by (22)
\[
\langle \overline{x_{l-1}}, \overline{x_{l-1}} \rangle = q^{n+1-l} \langle x_{l-1}, x_{l-1} \rangle. \]

Thus \(\langle y_l, z_l \rangle = 0 \).

Now we check the Jordan chain condition. Using (21) and (23), we have, for \(k \leq l < n + 1 - k \),
\[
U_{n+1}(y_l) = x_{l+1} + (1 + q[l-k]_q) \overline{x_l} \\
= x_{l+1} + [l + 1 - k]_q \overline{x_l} \\
= y_{l+1}.
\]
and clearly $U_{n+1}(y_{n+1-k}) = 0$.

Similarly, for $k + 1 \leq l \leq n - k$,

$$U_{n+1}(z_l) = -q^n x_{l+1} + q^{l+k} \left([n-l-k+1]_q - q^n \right) x_l$$

$$= -q^n x_{l+1} + q^{l+k} [n-l-k]_q x_l$$

$$= z_{l+1}.$$

Note that $z_{n-k+1} = 0$.

Now we check that condition (8) holds. For $k \leq u < n+1-k$ we have by the induction hypothesis (in the second step below we have used (22). Note the second term in the denominator after the fourth step below. This is a fraction with a term $|u-k|q$ in the denominator, which is zero for $u = k$. This is permissible here because of the presence of the factor $|u-k|q^2$ in the numerator

$$\frac{\langle y_{u+1}, y_u \rangle}{\langle y_u, y_u \rangle} = \frac{\langle x_{u+1}, x_{u+1} \rangle + [u+1-k]_q^2 \langle x_u, x_u \rangle}{\langle x_u, x_u \rangle + [u-k]q^2 \langle x_{u-1}, x_{u-1} \rangle}$$

$$= \frac{\langle x_{u+1}, x_{u+1} \rangle + q^{n-u} [u+1-k]_q^2 \langle x_u, x_u \rangle}{\langle x_u, x_u \rangle + q^{n-u+1} [u-k]q^2 \langle x_{u-1}, x_{u-1} \rangle}$$

$$= \frac{\langle x_{u+1}, x_{u+1} \rangle + q^{n-u} [u+1-k]_q^2}{1 + q^{n-u+1} [u-k]q^2 \langle x_{u-1}, x_{u-1} \rangle}$$

$$= q^k [u+1-k]_q [n-k-u+1]_q \left(\frac{[n-k-u]_q + q^{n-k-u} [u+1-k]_q}{[n-k-u+1]_q + q^{n-k-u+1} [u-k]_q} \right)$$

Similarly, for $k + 1 \leq u < n - k$, we have

$$\frac{\langle z_{u+1}, z_{u+1} \rangle}{\langle z_u, z_u \rangle} = \frac{q^{2n} \langle x_{u+1}, x_{u+1} \rangle + q^{2u+2k} [n-u-k]q^2 \langle x_u, x_u \rangle}{q^{2n} \langle x_u, x_u \rangle + q^{2u+2k-2} [n-u-k+1]q^2 \langle x_{u-1}, x_{u-1} \rangle}$$

$$= \frac{\langle x_{u+1}, x_{u+1} \rangle + q^{2k-n+u} [n-u-k]q^2 \langle x_u, x_u \rangle}{\langle x_u, x_u \rangle + q^{2k-n+u-1} [n-u-k+1]q^2 \langle x_{u-1}, x_{u-1} \rangle}$$

$$= \frac{\langle x_{u+1}, x_{u+1} \rangle + q^{2k-n+u} [n-u-k]q^2}{1 + q^{2k-n+u-1} [n-u-k+1]q^2 \langle x_{u-1}, x_{u-1} \rangle}$$

$$= q^k [u+1-k]_q [n-k-u]_q + q^{2k-n+u} [n-u-k]q^2$$

$$= q^{k+1} [u-k]_q [n-k-u]q \left(\frac{[n-k-u]_q + q^{n-k-u} [u+1-k]_q}{[n-k-u+1]_q + q^{n-k-u+1} [u-k]_q} \right)$$

$$= q^{k+1} [u-k]_q [n-k-u]_q.$$

15
Since θ_n is an isomorphism, doing the procedure above for every SJC in $J_q(n)$ we get an orthogonal SJB of $V(B_q(n)) \oplus W(0)$ satisfying (8). That completes the proof. \endproof

We now consider the application of Theorem 1.2 to the Bose-Mesner algebra of the Grassmann scheme of m-subspaces. For convenience we assume $0 \leq m \leq n/2$. We do not define this algebra here but instead work with the well known characterization that it equals the commutant of the $GL(n,q)$-action on $V(B_q(n)_m)$. For the proof of the following result see Chapter 29 of [10] where the $q = 1$ case is proven. The same proof works in general.

Theorem 3.1 Let $0 \leq m \leq n/2$. Then $V(B_q(n)_m)$ is a multiplicity free $GL(n,q)$-module with $m + 1$ distinct irreducible summands.

Thus $\text{End}_{GL(n,q)}(V(B_q(n)_m))$ is a commutative $*$-algebra with dimension $m + 1$ and so can be unitarily diagonalized.

Theorem 3.2 Let $0 \leq m \leq n/2$. Define

$$J_q(n,m) = \{v \in J_q(n) : r(v) = m\}.$$

Then $J_q(n,m)$ is a common orthogonal eigenbasis for the elements of $\text{End}_{GL(n,q)}(V(B_q(n)_m))$.

Proof For $i = 0,1,\ldots,m$ and $k = 0,1,\ldots,i$ define

$$J_q(n,i,k) = \{v \in J_q(n) : r(v) = i \text{ and the Jordan chain containing } v \text{ starts at rank } k\}.$$

Let $W_q(n,i,k)$ be the subspace spanned by $J_q(n,i,k)$. Then we have an orthogonal direct sum decomposition

$$V(B_q(n)_i) = \bigoplus_{k=0}^i W_q(n,i,k). \quad (24)$$

Clearly $\dim(W_q(n,i,k)) = \left[n\atop k\right]_q - \left[n\atop k-1\right]_q$.

We shall now show that, for $i = 0,1,\ldots,m$, $W_q(n,i,k), k = 0,1,\ldots,i$ are $GL(n,q)$-submodules of $V(B_q(n)_i)$. We do this by induction on i, the case $i = 0$ being clear.

Assume inductively that $W_q(n,i-1,0),\ldots,W_q(n,i-1,i-1)$ are $GL(n,q)$-submodules, where $i < m$. Since U_n is $GL(n,q)$-linear, $U_n(W_q(n,i-1,j)) = W_q(n,i,j), 0 \leq j \leq i - 1$ are $GL(n,q)$-submodules. Now consider $W_q(n,i,i)$. Let $u \in W_q(n,i,i)$ and $g \in GL(n,q)$. Since U_n is $GL(n,q)$-linear we have $U_n^{-2i+1}(gu) = gU_n^{-2i+1}(u) = 0$. It follows that $gu \in W_q(n,i,i)$.

We now have from Theorem 3.1 that (24) is the decomposition of $V(B_q(n)_i)$ into distinct irreducible modules. The result follows. \endproof

Using (8) we can also determine the eigenvalues of the elements of $\text{End}_{GL(n,q)}(V(B_q(n)_m))$. More generally, we can explicitly block diagonalize $\text{End}_{GL(n,q)}(V(B_q(n)))$. We refer to [19] for details.

Finally, we pose a bijective proof problem on the spanning trees of the Grassmann and Johnson graphs. Actually, this application only requires the existence of an orthogonal SJB satisfying (8) and not the actual construction from the present paper.
The number of spanning trees of a graph G is called the complexity of G and denoted $\tau(G)$. The number of rooted spanning trees (i.e., a spanning tree plus a choice of a vertex as a root) of G is denoted $\tau_c(G)$.

Let $0 \leq m \leq n/2$. The Johnson graph $C(n,m)$ is defined to be the graph with $B(n)_m$, the set of all subsets in $B(n)$ of cardinality m, as the vertex set and with two vertices $X,Y \in B(n)_m$ connected by an edge iff $|X \cap Y| = m - 1$.

Let $0 \leq m \leq n/2$. The Grassmann graph $C_q(n,m)$ is defined to be the graph with vertex set $B_q(n)_m$, and with two vertices $X,Y \in B_q(n)_m$ connected by an edge iff $\dim(X \cap Y) = m - 1$.

Let $T_q(n,m)$ and $T(n,m)$ denote, respectively, the set of rooted spanning trees of $C_q(n,m)$ and $C(n,m)$.

For $X \in B_q(n)_k$, $X' \in B_q(n)_{k-1}$, $1 \leq k \leq n$ define

$$UD(X) = \{(Y,Z) \in B_q(n)_{k-1} \times B_q(n)_k \mid X \supseteq Y \subseteq Z\},$$

$$DU(X') = \{(Y',Z') \in B_q(n)_k \times B_q(n)_{k-1} \mid X' \subseteq Y' \supseteq Z'\}.$$

Theorem 3.3 Let $0 \leq m \leq n/2$. The sets

$$T_q(n,m) \times \prod_{X \in B_q(n)_{m-1}} DU(X) \quad \text{and} \quad T_q(n,m-1) \times \prod_{X \in B_q(n)_m} UD(X)$$

have the same cardinality.

Proof We give an algebraic proof. For $X \in B_q(n)_k$, $X' \in B_q(n)_{k-1}$, $1 \leq k \leq n$ note that

$$|UD(X)| = |DU(X')| = [k]_q[n-k+1]_q.$$

Now, using the existence of an orthogonal SJB of $V(B_q(n))$ satisfying (8) it was proved in [18] that the Laplacian eigenvalues of $C_q(n,m)$ are $[k]_q[n-k+1]_q$, $k = 0,1,\ldots,m$ with respective multiplicities $[n]_k_q - [n-1]_k_q$. It now follows from the matrix-tree theorem (see [3]) that

$$\tau(C_q(n,m)) = \prod_{k=1}^{m} ([k]_q[n-k+1]_q)_{[n-1]_k_q}^{[n]_k_q}.$$

It follows that the sets in the statement of the theorem have the same cardinality. \qed

The following result is an immediate corollary of the theorem above. We use similar notations as above.

Theorem 3.4 Let $0 \leq m \leq n/2$. The sets

$$T(n,m) \times \prod_{X \in B(n)_{m-1}} DU(X) \quad \text{and} \quad T(n,m-1) \times \prod_{X \in B(n)_m} UD(X)$$

have the same cardinality.
For $m = 1$, Theorem 3.4 gives $n|T(n,1)| = n^n$, a result for which there is a celebrated bijective proof [11].

Problem Find bijective proofs of Theorems 3.3 and 3.4.

Recently, a related open problem, that of finding a combinatorial proof of the product formula for the complexity of the hypercube was solved in [2].

References

[1] C. Bachoc, F. Vallentin and A. Passuello, *Bounds for projective codes from semidefinite programming*, arXiv: 1205.6406 (2012).

[2] O. Bernardi, *On the spanning trees of the hypercube and other products of graphs*, Electronic J. Comb. 19(4), Paper 51 (16 Pages) (2012).

[3] A. E. Brouwer, and W. H. Haemers, *Spectra of graphs*, Springer, 2012.

[4] T. Ceccherini-Silberstein, F. Scarabotti, and F. Tolli, *Harmonic analysis on finite groups*, Cambridge University Press, 2008.

[5] P. Delsarte, *Association schemes and t-designs in regular semilattices*, J. Combinatorial Theory, Series A, 20 : 230-243 (1976).

[6] P. Delsarte, *Hahn polynomials, discrete harmonics, and t-designs*, SIAM J. Applied Math., 34 : 157-166 (1978).

[7] C. F. Dunkl, *An addition theorem for some q-Hahn polynomials*, Monatsh. Math., 85 : 5-37 (1978).

[8] J. Goldman and G. -C. Rota, *The number of subspaces of a vector space*, in Recent progress in Combinatorics (Proc. Third Waterloo Conf. on Combinatorics 1968), Academic Press : 75-83 (1969).

[9] S. Hitzemann and W. Hochstädtler, *On the combinatorics of Galois numbers*, Discrete Math., 310 : 3551-3557 (2010).

[10] G. James, and M.Liebeck, *Representations and Characters of Groups*, Cambridge University Press, 2001.

[11] A. Joyal, *Une théorie combinatoire des séries formelles*, Advances in Math., 42 : 1-82 (1981).

[12] V. Kac and P. Cheung, *Quantum Calculus*, Springer-Verlag, 2002.

[13] J. M. Marco and J. Parcet, *Laplacian operators and Radon transforms on Grassmann graphs*, Monatsh. Math., 150 : 97-132 (2007).

[14] A. Nijenhuis, A. E. Solow and H. S. Wilf, *Bijective methods in the theory of finite vector spaces*, J. Comb. Theory, Ser. A, 37 : 80-84 (1984).
[15] R. A. Proctor, *Representations of $\mathfrak{sl}(2,\mathbb{C})$ on posets and the Sperner property*, SIAM J. Alg. Discr. Methods, 3 : 275-280 (1982).

[16] A. Schrijver, *New code upper bounds from the Terwilliger algebra and semidefinite programming*, IEEE Tran. Information Theory, 51 : 2859-2866 (2005).

[17] M. K. Srinivasan, *Symmetric chains, Gelfand-Tsetlin chains, and the Terwilliger algebra of the binary Hamming scheme*, J. Algebraic Comb., 34 : 301-322 (2011).

[18] M. K. Srinivasan, *A positive combinatorial formula for the complexity of the q-analog of the n-cube*, Electronic J. Comb., 19(2) : Paper 34 (14 Pages) (2012).

[19] M. K. Srinivasan, *Notes on explicit block diagonalization*, in *Combinatorial Matrix Theory and Generalized Inverses of Matrices*, Springer: 13-31 (2013).

[20] R. P. Stanley, *Variations on differential posets*, in *Invariant Theory and Tableaux*, volume 19 of IMA Vol. Math. Appl., Springer: 145-165 (1990).

[21] R. P. Stanley, *Enumerative Combinatorics - Volume 1, Second Edition*, Cambridge University Press, 2012.

[22] P. Terwilliger, *The incidence algebra of a uniform poset*, in *Coding theory and design theory, Part I*, volume 20 of IMA Vol. Math. Appl., Springer: 193-212 (1990).