Role of Dendritic Cells in Viral Brain Infections

Orianne Constant¹, Ghizlane Maarifi², Fabien P. Blanchet², Philippe Van de Perre¹, Yannick Simonin¹* and Sara Salinas¹*

¹ Pathogenesis and Control of Chronic and Emerging Infections, Institut national de la santé et de la recherche médicale (INSERM), University of Montpellier, Etablissement Français du Sang, Montpellier, France, ² Institut de Recherche en Infectiologie de Montpellier, Centre national de la recherche scientifique (CNRS), Université de Montpellier, Montpellier, France

To gain access to the brain, a so-called immune-privileged organ due to its physical separation from the blood stream, pathogens and particularly viruses have been selected throughout evolution for their use of specific mechanisms. They can enter the central nervous system through direct infection of nerves or cerebral barriers or through cell-mediated transport. Indeed, peripheral lymphoid and myeloid immune cells can interact with the blood–brain and the blood–cerebrospinal fluid barriers and allow viral brain access using the “Trojan horse” mechanism. Among immune cells, at the frontier between innate and adaptive immune responses, dendritic cells (DCs) can be pathogen carriers, regulate or exacerbate antiviral responses and neuroinflammation, and therefore be involved in viral transmission and spread. In this review, we highlight an important contribution of DCs in the development and the consequences of viral brain infections.

Keywords: viral infection, dendritic cell, blood–brain barrier, neuroinflammation, neuroinfections, blood–cerebrospinal barrier

INTRODUCTION

The central nervous system (CNS) is often considered as an immune-privileged organ because it is separated from the blood by specific cellular barriers. Nonetheless, pathogens, in particular neurotropic viruses, have been selected throughout evolution for their ability to reach the brain (1). Human pathologies following CNS viral infections can be due to direct virus invasion and elicited toxicity or indirectly by mediators of neuroinflammation. For instance, some virus-associated neuronal diseases can be due to direct infection of neurons or to indirect effects triggered by CNS-supporting cells and inflammatory mediators, causing damages and dysfunctions (paralysis, cognitive deficits, ocular problems) (2, 3). Different clinical symptoms may appear depending of the site of infection and/or inflammation: meningitis for inflammation of leptomeningeal structures, myelitis for the inflammation of the spinal cord, and encephalitis for inflammation of parenchymal brain tissue (4), the latter being most common upon viral neuroinfections. Viral brain infections are generally limited by in situ innate immune response of the host and by the physical protection exerted by the brain barriers. These are complex
multicellular structures forming an endothelium or an epithelium that separates the systemic circulation from the CNS. Depending on their location, the brain barriers exert different functions but they mostly control diffusion between CNS and blood and allow a precise regulation of CNS metabolism and immunity.

Importantly, immune cells have an ambivalent role during viral brain infections, as they are actors of the antiviral response but can also be viral carriers into the CNS and therefore participate in virus transmission, neuroinflammation, and associated deleterious effects. Moreover, because of the presence of viruses or inflammatory mediators in the brain, the release of cytokines and chemokines will further allow transmigration of immune cells such as monocytes, T lymphocytes, natural killer cells (NK), and dendritic cells (DCs) (5–7).

Immunosurveillance is provided by specific resident and incoming immune cell subsets. Their distribution varies depending on the nature of the epithelium and the inflammatory state of the tissue (8, 9). Among these immune cells, DCs are the very first responders following viral infection, as they are at the frontier between innate and adaptive immunity and acting as sentinels of the immune system, notably in the site of potential infection, including in the CNS. In this review, we try to shed some light on the pathogenesis of viral brain infections with a particular interest in the interactions with brain barriers and a focus on the role of DCs during viral brain invasion.

MECHANISMS OF VIRAL BRAIN ACCESS

Different viral CNS access mechanisms have been characterized, involving a neuronal-mediated spread mechanism (through axonal transport) and a hematogenous-mediated viral entry route (through interaction with brain barriers) (Table 1). Notably, entry mechanisms and viral tropism may determine neurological symptoms and clinical outcome (42, 43).

Axonal Transport

Neurons represent significant entry gates to the CNS for numerous pathogens (43). Indeed, cranial nerves from the olfactory system (Figure 1A) or peripheral nerves (Figure 1B) can be used for axonal transport by viruses such as rabies virus, herpes simplex virus (HSV), poliovirus, St. Louis encephalitis virus, West Nile virus (WNV), or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (10–12, 14–16, 18, 19, 23, 24). Viruses use also the host cell transport machinery, such as transport mediated by kinesins along microtubules in the anterograde direction or the interaction of dynactin and dynein with microtubules in the retrograde transport (44–46) (Figure 1B) and trans-synaptic trafficking that will enhance brain invasion as it was described for WNV (47) and Measles virus (25) (Figure 1A). This allows a direct access to the CNS while escaping from host immune response (17, 48, 49). For instance, some viruses can access the CNS via peripheral uptake because of limited host defense that did not control peripheral infection (1).

Entry Through the Blood–Brain Barrier

The blood–brain barrier (BBB), located between neuronal capillaries and the CNS, is constituted by pericytes and astrocytes closely interacting with a monolayer of endothelial cells to control exchanges with the blood through the high expression of tight junction proteins (Figure 1C) (50–52). This structure is found in cerebral blood vessels and is essential for the transport of lipid-soluble molecules or gaseous and liquid components by passive diffusion, while the transport of large and polar molecules is reduced (53). The BBB also has active transport mechanisms that regulate CNS homeostasis while avoiding neuroinvasion by leukocytes or pathogens (54). However, some molecules and pathogens can be transported in endocytic vesicles across the endothelial cells and pericytes, and transferred into the CNS, such as cells and pathogens upon secretion of chemoattractant molecules (28, 55).

Cell-free viruses, when in sufficient amount in the blood, can reach the CNS during the primary viremia (Figure 1C). Thereupon, endothelial cells can be susceptible and permissive to direct viral infection and replication, leading to brain invasion by basolateral viral particle release. Measles virus, for example, can productively infect BBB endothelial cells, allowing the release of viral particles and CNS invasion (26). Other studies on the interaction between human brain endothelial cells and flaviviruses have demonstrated CNS invasion by direct infection of these cells (Figure 1C) (28, 56). Moreover, the presence of viral particles such as WNV in the blood can also lead to BBB dysregulation with a decrease of tight junction protein expression, mostly zona occludens-1 (ZO-1) and claudin-5, after activation of Rho GTPases following the recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs). For instance, human T-cell lymphotrophic virus type 1 (HTLV-1) is also able to productively infect human brain endothelial cells, leading to a dysregulation of tight junction protein expression and subsequent transcellular virus spread into the CNS (27, 57).

Viral Interaction With Meninges and the Blood–Cerebrospinal Fluid Barrier

The blood–cerebrospinal fluid (CSF) barrier (BCSFB) limits the passage between the blood and the CSF produced by the choroid plexus (51) (Figure 1D). Located in the ventricular system of the brain, the choroid plexus complexed with endothelial cells and CSF form the BCSFB. The stroma, at the center of the choroid plexus, is composed of fibroblasts, immune cells, connective tissue, and blood microvessels (58). Similarly to the BBB, this barrier is an important interface between the peripheral circulation and the CNS. Indeed, the specialized cuboidal epithelial cells form a layer with a high expression of tight junctions to separate the blood from the CSF that they produce (51, 59). Some viruses display important choroid plexus tropism such as chikungunya virus, echovirus-30, JC virus (JCV), or Zika virus (ZIKV) (31–33, 60). Neuroinvasion
TABLE 1 | Different CNS mechanism access and symptoms for some neurotropic viruses.

Viruses	CNS access	Main cells targeted	Symptoms	References
Rabies virus	Axonal transport (peripheral nerve and olfactory bulb)	Neurons	Encephalitis	(10–13)
Herpes simplex virus	Axonal transport (olfactory bulb)	Gial cells (astrocytes)	Encephalitis, persisting latent infection	(14)
Poliovirus	Axonal transport (peripheral nerve and olfactory bulb)	Neurons	Paralytic poliomyelitis, encephalitis, acute flaccid paralysis	(15, 16)
St. Louis encephalitis virus	Axonal transport (peripheral nerve and olfactory bulb)	Neurons	Meningitis, encephalitis, coma, agitation, confusion, tremors	(17)
West Nile virus	Axonal transport (peripheral nerve and olfactory bulb)	Neurons	Encephalitis, cognitive dysfunction, flaccid paralysis, ocular manifestations, muscle weakness	(18–22)
SARS-CoV-2	Axonal transport (olfactory bulb)	Neurons?	Seizures, encephalitis, loss of consciousness, anosmia, ageusia, Guillain–Barré syndrome, ischemic stroke	(23, 24)
Measles	Axonal transport (peripheral nerve and olfactory bulb)	Neurons	Encephalitis, encephalomyelitis, subacute sclerosing, panencephalitis	(25, 26)
HTLV-1	Axonal transport (peripheral nerve and olfactory bulb)	BBB endothelial cells	HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP)	(27)
Zika	Axonal transport (peripheral nerve and olfactory bulb)	Neurons	Guillain–Barré syndrome, congenital Zika syndrome, meningoencephalitis	(28–30)
Chikungunya virus	Entry via brain barrier	Neurons	Myalgia, arthralgia, encephalopathy, hemorrhagic fever, meningoencephalitis, myelitis, Guillain–Barré syndrome	(31)
Echovirus-30	Entry via brain barrier (infection choroid plexus)	Glial cells (astrocytes)	Meningitis, encephalitis, flaccid paralysis, myocarditis	(32)
JC virus	Entry via brain barrier (infection choroid plexus)	Oligodendrocytes	Encephalitis, meningoencephalitis, multifocal leukoencephalopathy	(33, 34)
HIV-1 (and SV)	Cell-mediated (CD4+ T cells, monocytes, DCs)	Macrophages	HIV-1-associated dementia (HAD), cognitive and motor disorders, HIV-1-associated neurocognitive disorders (HAND)	(35–37)
Coxackievirus	Cell-mediated (myeloid cells)	Neurons	Encephalomyelitis, meningitis	(38)
Toscana virus	Cell-mediated (infection choroid plexus)	Brain endothelial cells	Kernig sign, nuchal rigidity, photophobia, consciousness troubles, tremors, nyghtagmus, paresis, meningitis, meningoencephalitis, encephalitis	(39)
Varicella zoster virus	Cell-mediated (DCs and T cells)	Nerve cells	Postherpetic neuralgia, congenital varicella syndrome	(40)
Nipah virus	Axonal transport	Brain endothelial cells	Encephalitis, vasculitis, parenchymal necrosis drowsiness, headache, disorientation or confusion, reduced consciousness	(41)

BBB, blood-brain barrier; HIV, human immunodeficiency virus; HTLV, human T-cell lymphotrophic virus; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SV, simian immunodeficiency virus.

and/or spreading may also involve meninges and the CSF. Of note, the lymphatic transport system (lymphatic system and meningeal lymphatic vessels) is also a key actor in the regulation of CNS homeostasis due to its functions in immune monitoring and metabolite draining among others (61). It is also involved in pathological mechanisms, including brain infections (62). Because the lymphatic transport system is involved in CSF drainage (or outflow), it can also facilitate cell and viral CNS access. Indeed, evidence of close interaction between CSF and lymphatic vessels, notably for CSF drainage from subarachnoid space (63, 64), can support cell-mediated and viral particle circulation in the CNS.

The Trojan Horse Mechanism

Importantly, an exacerbated primary inflammatory response that alters brain barrier permeability can also facilitate transfer
through circulating infected immune cells (Figure 1C). The transfer of pathogens to the CNS through infected immune cells is called “Trojan horse” mechanism and is increasingly studied, as several viruses are now described to use this pathway to invade the CNS (65). CNS infection by human immunodeficiency virus (HIV)-1 can presumably occur in a cell-free manner (66), but virus transport across the brain barriers can be mediated by HIV-1-infected immune cells as monocytes or CD4+ T cells (35, 36, 66). HIV-1-infected CD14+/CD16+ monocytes were also reported to efficiently cross the BBB, thus placing the “Trojan horse” strategy as a main route of CNS infection (4, 67, 68). In non-human primates, it was also demonstrated in the role of simian immunodeficiency virus (SIV)-infected monocytes in neuroinvasion (37). Similarly, JCV can infect B cells, which transmigrate across the BBB (34). By its location at the interface of the blood, CSF, and brain, the choroid plexus is an important regulator of immune cell traffic and is also a target during infections and immune cell infiltration supporting neuroinflammation (59). For example, myeloid cells infected by coxsackievirus are suspected of being disseminators of the virus from the blood within the CNS via the choroid plexus (38).

Nonetheless, it seems that viral access through brain barriers and direct neuronal access to the CNS are not mutually exclusive and can occur concomitantly for instance during infection by rabies virus and WNV (1, 13, 17, 47, 69) (Table 1). Mediators released during infection can interact with and modulate the BBB permeability as vasogenic and growth factors, cytokines, and chemokines (70, 71). These examples illustrate how infections and pro-inflammatory factors lead to an increase in brain barrier permeability and an enhanced access across brain barriers, promoting the development of neuroinflammation (71–73) (Figure 2).

Upon cytokines, chemokines, and cellular adhesion molecule upregulation, different classes of immune cells can be recruited at brain barriers. Their transmigration into the CNS helps the antiviral response and control neuroinflammation or facilitate viral entry (Figure 2). In healthy context, macrophages and DCs can be found in the perivascular space at the BBB and choroid plexus, which ensure immunosurveillance. During pathological conditions, these cells and other antigen-presenting cells (APC) can recruit effector immune cells in these perivascular spaces (74). For example, in the context of SIV infection, SIV-infected immune cells are found in the perivascular space (37). This

FIGURE 1 | Different viral modes of access to the central nervous system (CNS). (A) Viruses can be up taken by nerve terminals at the olfactory bulb to gain access to the CNS. (B) They also can infect peripheral neurons and use long-range retrograde axonal transport. (C) At the blood-brain barrier (BBB), (1) viruses can directly cross the endothelium (by paracellular or transcellular ways), (2) they can infect and replicate in brain endothelial cells and be released in the CNS, and (3) finally they can pass through the BBB by infecting immune cells that cross the endothelium through the “Trojan horse” mechanism. (D) At the blood-cerebrospinal fluid barrier, (1) viruses can directly cross the endothelium, (2) they can also infect, replicate, and be released from endothelial cells, pericytes, or epithelial cells of the choroid plexus, (3) and finally infected immune cells can also cross this barrier and deliver viruses in the CNS. Created with SMART Servier Medical Art.
compartment should not be neglected during neuroinflammation studies, as immune cell recruitment at the BBB starts with a transmigration in the perivascular space before migration across glia limitans (75, 76).

A FOCUS ON DENDRITIC CELLS

Immunosurveillance is provided by specific resident and incoming immune cell subsets. Their distribution varies depending on the nature and the inflammatory state of the tissue (8, 9). Among these immune cells, DCs are the very first responders following viral infection, as they are at the frontier between innate and adaptive immunity and acting as sentinels of the immune system, including in the CNS.

DCs include different subsets with specific cellular and immunological properties: the myeloid/conventional DCs (DCs), the Langerhans cells (LCs) that are the unique DC subset located in mucosal stratified (intestine and oral mucosa) and pseudostratified epithelium (example: lung) as well as skin epidermis (8, 77), and the plasmacytoid DCs (pDCs), which are unconventional DCs characterized by their ability to produce large amounts of type I interferon (IFN-I) in response to viral pathogens (78, 79) (Table 2).

DC subsets originate from bone marrow CD34+ hematopoietic stem cells giving rise to common myeloid/lymphoid progenitors (CMLPs), which then differentiate toward common myeloid progenitor (CMP) or common lymphoid progenitor (CLP). Under specific environmental cytokine conditions, concomitantly with the expression of defined transcription factors, CMPs separate from the monocyte/macrophage axis and generate common DC progenitors (CDPs), which will give rise to pDCs and conventional DC subsets (8, 80). Various DC precursors (Pre-DCs) with selective functional features are characterized by the unique expression of AXL and SIGLEC6 along with myeloid and plasmacytoid markers like CD11c and CD123 (81, 82). However, this was recently challenged, since DC (Axl+ Siglec 6+), named AS DC, was described in 2017 as a potential new functional DC subset instead of being an exclusive pre-DC progenitor (81).
TABLE 2 | Phenotypic and functional markers of human blood and tissue dendritic cell subsets.

Plasmacytoid DCs (pDCs)	Myeloid DCs	Langerhans cells (LCs)	Conventional DCs	Monocyte-derived DCs (MoDCs)
Localization	Blood	Blood	Epidemis and other tissues	Dermis and other tissues
Phenotype	CD11c+CD1a+	CD11c+CD1a+	CD11c+CD123high+	CD11c+CD1a+
	BDCA2*	BDCA4*	BDCA1+	BDCA1+
TLR (toll like receptor) expression	TLR1, TLR6, TLR7, TLR9 and TLR10	TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR8 and TLR10	TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR8 and TLR8	TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR8 and TLR8
C-type lectin expression	BDCA2 and DCIR	DCIR, DC-SIGN and MR	Langerin/CD207	DC-SIGN and MR
				DCIR, DC-SIGN and MR

BDCA2, blood DC antigen 2 (also known as CLEC4C); DCIR, DC immunoreceptor (also known as CLEC4A); MR, mannose receptor; SIRPa, signal regulatory protein a; BDCA2, blood DC antigen 2 (also known as CLEC4C); CD, cluster of differentiation; cDC, conventional dendritic cells; CLEC, C-type lectin domain containing; DC-SIGN, dendritic cell-specific intercellular adhesion molecule-3-Grabbing Non-integrin; DCIR, DC immunoreceptor (also known as CLEC4A); MR, mannose receptor; pDC, plasmacytoid dendritic cells; SIRPa, signal regulatory protein a; TLR, Toll-like receptor; XCR, X-C motif chemokine receptor.

Nevertheless, DCs can be divided into three major DC subsets, pDC, conventional DC1 (cDC1), and conventional DC2 (cDC2), but other cell phenotypes can arise from those subsets particularly when considering tissue-resident DCs and inflammatory status (8, 80). Interestingly, LCs, which represent a DC subset exclusively present in the epidermis and upper mucosal layers, were shown to be functionally related to DCs but ontogenically closer to macrophages due to their reported embryonic origin and self-renewing capacities (83, 84). Indeed, the ontogeny of LCs has always been subject to intense debate, and new transcriptomic data suggest that LCs are rather closely related to tissue-resident macrophages. Nevertheless, LCs were recently reported to share ontogeny and transcriptional features with both macrophages and DCs (85). From a functional and phenotypic point of view, LCs have strong similarities with DCs (86). For example, LCs have the ability to capture pathogens and possess migratory abilities to initiate T-cell responses in lymph nodes. Moreover, LCs can be generated ex vivo from hematopoietic precursors in response to cytokines and cell membrane-associated ligands. Thus, LCs were found to share both macrophage and DC characteristics (85, 87), as particularly evidenced upon skin damage and inflammation or infection processes in vivo. All the current debates based on the different reported cell or animal models emphasize the importance to consider functional lineage plasticity besides ontogenetic data. Also, as LCs, other DC subsets were reported to develop under certain conditions like monocyte-derived DC (MoDC), arising in inflamed tissues and reminiscent of reported inflammatory DC subsets (88, 89). Importantly, the myeloid DC lineages (cDC1 and cDC2) are clearly distinguished from MoDCs, which are usually derived from monocytes predominantly under inflammatory conditions in vivo and in vitro (Table 2) (90), although the identification of new DC subsets evolves with the recent identification of new human anogenital MoDCs present in non-inflamed tissues that take up HIV and transmit virus to CD4+ T cells (91).

DCs are highly specialized professional APC populations through the expression of major histocompatibility complex (MHC) class II and costimulatory molecules that lead to naive T-cell stimulation (91–94). They have the capacity to capture antigen in the periphery and in the subepithelium to migrate to proximal lymph nodes where they prime naive T cells and engage the adaptive immune response. These cells express various pathogen sensors, including many specific PRRs and toll like receptors (TLRs), allowing major secretion of type I IFN that induces IFN-stimulated genes (ISGs) used to counteract infection (8, 95–97). However, their capacity to capture pathogens is mainly due to their expression of lectin and lectin-like receptors such as the sialic acid-binding immunoglobulin (Ig)-like lectins (Siglecs) family (98) and especially C-type lectins receptors (CLR). CLR bind carbohydrate structures associated with viruses, fungi, or bacteria expressed by LCs, Dendritic cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN) (CD209) and the CLR DC-associated C-type lectin-2 (Dectin-2/CLEC6A) expressed by DCs and macrophage, and galactose type C-type lectin (MGL, CD301) expressed by both DCs and macrophages (but not LCs), respectively (99, 100). Although CLRs have established antiviral functions, many viruses are capable of hijacking these receptors to their advantage. In particular, langerin escape or its hijacking by a virus seems to be much rarer in contrast to DC-SIGN that has been shown to bind the gp120 glycoprotein of HIV-1 and promotes efficient trans-infection of CD4+ T cells. DC-SIGN can also be used to infect certain DCs with many viruses, such as cytomegalovirus or Ebola.
virus but also several flaviviruses, including dengue virus and WNV (101). Thus, some DC subtypes may constitute the point of access of viruses, allowing their subsequent transmission and propagation through the body including the CNS. Although the contribution of different DCs is not clearly established, they may also represent a “Trojan horse” because they can migrate efficiently to the brain.

DENDRITIC CELLS IN NEUROINFLAMMATION AND BRAIN DISEASES

DCs are naturally present within the brain where they act as sentinels under steady-state conditions and during brain disease and neuroinflammation (102). They have been shown to efficiently interact with brain barriers in order to access the CNS.

During the leukocyte recruitment at the BBB, immune cells including DCs interact with various actors. First, cytokines and chemokines, released during CNS inflammation such as CCL2, can chemotactically circulating DCs at brain barriers. Then, contact between the upregulated cellular adhesion molecules (CAMs) P-selectin, E-selectin, vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-2 (ICAM-2) on endothelial cells with P-selectin glycoprotein ligand-1 (PSGL-1) and DC-SIGN on DCs allows rolling and adhesion on the BBB apical surface (103). These steps are followed by potential transmigration, facilitated by interaction of DC-SIGN with CAMs or tight junction proteins. Interestingly, DCs can also express tight junction proteins to facilitate this step without a deleterious effect on the BBB integrity (103) (Figure 3A).

Importantly, neuroinflammation may depend on the DC state. Indeed, during activation and arrest steps, migration of mature DCs across the BBB can be enhanced by interaction of CCR7 with CCL19 and CCL21 (Figure 3B), whereas immature DCs can also be attracted by CCR2, CCR3, and CCR5, which interact with CCL2, CCL3, and CCL5, respectively (Figure 3C) (6, 104). Interestingly, immature DCs have better capacity to cross the BBB than mature DCs in part because of the different expressions of specific traffic signals at their surface (105, 106). In vitro, the transmigration of granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced DCs across the BBB was shown to be increased in the presence of CCL3. In addition, GM-CSF-matured DCs secrete metalloproteinases, allowing transmigration across the BBB with redistribution of tight junction molecules (107). Regarding the BCSFB, molecular mechanisms of DC interaction are less well-defined (108, 109).

As in the blood compartment, DCs are mainly recruited in the CNS during immune responses, the number of DCs increases in sites of plasticity and neurogenesis, and where the BBB is absent to provide immunosurveillance (114). Through their innate properties, brain DCs can activate encephalitogenic T cells (self-antigen-reactive T cells) or release pro-inflammatory cytokines to the detriment of the CNS homeostasis; their loss leads to dysregulation of immune tolerance and excessive inflammatory response (115). Consequently, in a context of adaptive immune response, DCs are important potential inducers of primary T cells (113). For example, they are among the APCs, present in dural sinuses, one compound of the meninges, and they allow the presentation of antigen from CSF to T cells in cervical lymph nodes (115, 116).

During neuroinflammation, the number of DCs increases in the CNS and particularly in the CSF where they can more easily reach lymph nodes to activate the immune response. They participate indirectly to exacerbate neuroinflammation (74, 110). For example, they are involved in autoimmune diseases as in the murine model of multiple sclerosis (MS) named experimental autoimmune encephalomyelitis (EAE) (117). MS is a chronic CNS inflammatory disease, often studied with the EAE mouse model, based on the reactivity of T cells to endogenous myelin epitopes (encephalitogenic T cells). At the EAE onset, DCs from the CNS support inflammatory T cells at the peak of the disease, then become poor APC and prime the development of regulatory T cells (118–120). Notably, it was shown that DCs promote myelin-reactive T cells during the reactivation phase of EAE (121) leading to the proposition to target DCs for therapeutic approaches in MS. The accumulation of DCs during the neuroinflammation translating the EAE is becoming better understood. These immune cells can be mainly from peripheral bone marrow-derived precursors or from activation of resident microglia that will show DC characteristics, reflecting the wide range of DC precursors (120, 122). Another illustration is the role of DC during Guillain–Barré syndrome. They are the main APCs in the CSF, whether they are myeloid or plasmacytoid; they can present auto-antigen from spinal nerve, activate T and B cells, and finally lead to the autoimmune disease (123, 124).

Neuroinflammation can also be due to CNS injuries such as strokes or seizures. In these cases, different DC subpopulations can be recruited due to the release of various cytokines and chemokines by damaged cells. cDCs and pDCs have different sensitivities to chemokines according to their receptor expression (125). Studies have found peripheral derived DCs in the necrotic zone after stroke injury, but also resident DCs associated with T cells in the penumbral zone where they have a more immunomodulatory function after activation probably due to release of IFNγ (126). Others have shown the presence of DCs from bone marrow-derived population that exert pro-inflammatory actions with the production of cytokines after ischemic lesions (120, 127). Epilepsy is a consequence of infection or autoimmune disease, and during extended seizure,
there are glial cell activation and upregulation of CAM expression on endothelial cells (128, 129). Also, in epileptic experimentation on rats, DCs can be found in blood vessels until 24 h after the seizure (130). In humans, the study of chronic epileptic patients has found the presence of DCs and T cells in blood vessels (131). In this epileptic context, DCs seems to maintain the chronic inflammation, source of seizures (132).

DCs are also important players during brain infections. During protozoal infection of the brain, caused by *Toxoplasma gondii*, DCs are major factors of neuroinflammation. First, the intracellular parasite accesses the brain through "Trojan horse" mechanisms using migratory leukocytes, including DCs (120, 133, 134). Next, during *T. gondii*-induced encephalitis, DCs found in the brain are mature APCs, produce pro-inflammatory interleukin (IL)-12 cytokines, and can provide Th1 response from CD4+ T cells (135, 136). Here, DCs participate in the initiation of immune response against the parasite, but they also maintain neuroinflammation and can contribute in *T. gondii*-induced encephalitis chronicity. For bacterial meningitis, the more severe CNS infection etiology, DCs are in high concentration in patient CSF. They lead to neuroinflammation by Th1 immune response induction, but they also exert a key role in the regulation of the host immune evasion of some bacterial strains such as *Escherichia coli* K1 (120, 137).

IMPLICATION OF DENDRITIC CELLS IN VIRAL BRAIN INFECTIONS

Dendritic Cells as CNS Trojan Horses

DCs display also various roles in viral brain infections notably through their interaction with brain barriers. Indeed, especially mucosal and skin-resident DCs and LCs that are the first line of defense and an immune barrier against a multitude of external pathogens are also unexpectedly key actors of infection spread to the lymph nodes and other distal sites (8). Thereby, they can be viral carriers to the CNS by this inherent role as sentinel. These cells will also locally amplify the inflammatory response that, under certain conditions, can further aggravate infection outcome, and their activation can switch these protective cells to virus-transmitting cells (138, 139). However, there is currently a limited knowledge on the role of these cells in virus evasion, transmission, and systemic dissemination, especially when considering tissue-resident DCs and LCs upon flavivirus skin
infection for instance, and their potential role in viral brain spread.

Concerning the recruitment mechanisms of DCs during viral infection, the release of chemokines or cellular adhesion molecules initiate the process. For instance, WNV- and Japanese encephalitis virus-infected neurons can produce CCL2 (140), and in EAE models, CCL2 released by astrocytes and endothelial cells will lead to chemoattraction of DCs (105). In this same model, immature DCs migrate in the CNS by interaction of α4β1 integrin with endothelial VCAM-1 and then participate in inflammation (106). Ou et al. (141) have also highlighted the role of VCAM-1 in DC recruitment during lymphocytic choriomeningitis virus infection in mice (Figure 3). Furthermore, an important expression and production of pro-inflammatory IL-1α and IL-1β have been reported during neuroinflammation in viral encephalitis (142, 143); IL-1 participates in lymphocyte activation and leukocyte infiltration by increasing CAM expression and other cytokine and chemokine induction. Also, IL-1 can be released by microglia and brain endothelial cells, leading to the enhancement of BBB damage and leukocyte recruitment (Figure 3). In that way, studies have demonstrated that during WNV infection, the IL-1 receptor (IL-1R1) participates in the activation of two types of DC populations with APC functions: the lymphoid-derived DCs and migratory DCs (144–146). And following WNV infection, IL–1R1-deficient mice have shown fulminant encephalitis (147), indicating a possible correlation between DC recruitment and neurological symptoms via IL-1 release. The involvement of BBB permeability during Japanese encephalitis virus infection in CD11hiDCs-ablated mice also illustrates the importance of these cells during regulation of brain infections (148). CXCL10 is another important chemokine for leukocyte recruitment in the brain. In HSV-1-infected mouse brains with CXCL10 deletion, there is a lower and even absence of NK cells, CD8+ T cells, and DCs, which translate to important viral loads with consequent CNS defects (149).

An important role of CD4+ T cells and DCs was also demonstrated in the dissemination of varicella zoster virus (VZV) at the BBB (40). Resident DCs and LCs from the skin and mucosa are the main carriers of VZV and VZV viral antigens to the lymph nodes where they can activate T cells. But they can also participate in viral dissemination through a “Trojan horse” mechanism (40). This mechanism has been reported in the case of other infections such as ZIKV brain infection (29) and WNV neuroinfection (20–22) or in a more older case of Maedi–Visna virus dissemination (150). For Nipah virus brain infection, reports establish that the principal access occurs through the transfer of infected DCs from the blood to the CNS (41). Toscana virus (TOSV), an arbovirus from the Phlebovirus genus, has been found in DCs from blood circulation of infected animals and humans. It was shown that TOSV-infected DCs notably produce IL-6 and tumor necrosis factor (TNF)-α, pro-inflammatory cytokines able to dysregulate the BBB. Thus, TOSV-infected DCs can be a pathway to reach the CNS (39). From the BCSFB side, it was shown that HIV-infected monocytes and DCs can allow viral invasion of the brain after CP passage. Thus, studies have proposed that HIV encephalitis emerges mainly by CNS infection through the choroid plexus (151, 152).

Numerous factors are implicated and are key regulators during the recruitment of DCs in the CNS, but the consequences of this recruitment must be discussed.

Dendritic Cells and Brain Antiviral Response

Numbers of studies reveal the role of DCs in neuroinflammation during viral brain infections. DCs have major roles in antiviral responses, particularly through the regulation of T-cell responses. In a mouse model of viral encephalitis, the depletion of peripheral DCs led to a decrease of the viral presentation to CD8+ T cells and a delay in viral clearance from the brain, illustrated by an increasing death rate (103). Moreover, there is a complex role of DCs during HIV infection: they are at the entry site of the virus (mainly in mucosal areas) and can be infected and recruit CD4+ T cells, the main HIV reservoir (80). In the choroid plexus, they can also provide a CNS reservoir in HIV brain infection as mentioned earlier (153). During vesicular stomatitis virus infection, a model of acute encephalitis, DCs are the first responders at the olfactory bulb, the site of infection by this virus. Here, DCs activate and participate in the differentiation of T cells at early steps of neuronal infection (120). Similarly, in the Théler’s murine encephalomyelitis virus-induced demyelinating disease mouse model, T cells are activated against endogenous myelin epitope due to an antigen presentation by DCs directly in the CNS (154). Epstein–Barr virus preferentially infects B cells and immortalizes them, but DCs play a role during this infection. Indeed, they can initiate innate and adaptive immune responses notably by viral antigen detection. Then, DCs can activate NK, CD4+, or CD8+ cells (155). However, a dysregulated CD8+ T-cell response against EBV can be at the origin of CNS impairments, and a link with MS development and recurrence is increasingly suggested (156, 157). From these last examples, DCs are clearly the activator of T-cell responses that will participate in viral clearance but consequently in neuroinflammation.

In response to viral infection and because they express high TLR7, TLR9, and interferon regulatory factor7 (IRF7), pDCs are the main IFN type I producers (158). They recognize PAMPs as viral antigens through their PRRs leading to a production of type I IFN and transcription of ISGs. For instance, when DENV particles or DENV-infected cells are brought into contact with peripheral blood mononuclear cells (PBMCs), the first response is a secretion of IFNα by pDCs (159). It has been shown that direct DC infection by the neurotropic arbovirus Usutu virus (USUV) induces strong IFNα production and, in comparison to WNV-infected DCs, USUV seems to be more sensitive to this type I IFN response. This can partly explain that the percentage of neurological clinical disorder in human following WNV infection is higher than USUV infection (160). Nonetheless, during WNV infection, DCs are mostly found in brain tissue of mouse models where there is a predominance of IFNα mRNA (161).
As already noted, DCs have an important function during epileptic seizure, and some viral infection of the CNS can lead to epileptic syndrome such as SARS-CoV-2 infection (162), arbovirus infection (30, 163–165) or during HIV infection and HSV encephalitis. Incidentally, studies reveal that a large proportion of epileptic seizures could be from infectious etiology and that a lot of work needs to be done in that domain (166). Notably, during epilepsy studies on guinea pig brains, the release of neuroinflammatory factors was described at the BBB (129). These are selectins and CAMs, known to attract leukocytes as DCs. In this context, it appears that DCs could be an interesting target for therapy (167).

Finally, various DC phenotypes are recruited depending on the virus and host immune responses. In vivo, the mouse hepatitis virus model shows two DC populations of which the most predominant expresses co-stimulatory molecules (CD40, CD80, and CD86). This DC population is responsible for effector CD8+ T-cell activation upon CCL3 modulation (168). The two distinct pDC and cDC populations can be detected in the brain of HSV-1-infected mice, and it was shown that respective CCR knockout models have increased susceptibility to the virus, indicating a complementary role (149). In a cohort study of coronavirus disease 2019 (COVID-19) patients with neurological impairments, it appears that DCs found in the CSF have a different profile compared to the normal DC subset found in the CSF of healthy controls. They are more susceptible to interaction with CD8 and CD4 T cells and have a critical role during the emergence of neuronal symptoms (169). More generally, each DC subtype can be recruited during CNS infection following specific neuroinflammatory mediators (170).

In these examples, DCs are important to control virus spread in the systemic circulation, but they are also transporters of virus to the CNS or promoters of neuroinflammation. In addition, several DC subpopulations can have a role during the same infection. Hence, the importance of their study to boost antiviral response and control virus spread and neuroinflammation that can have serious and long-term consequences.

DISCUSSION

In conclusion, it appears that 1) viral brain infection can be mediated by several mechanisms and lead to neuroinflammation with various consequences including leukocyte recruitment; 2) as a result, immune cells and particularly DCs can interact with brain barriers and invade the CNS to act against the viral infection; 3) they can also support neuroinflammation; 4) and they can be a “Trojan horse” during virus CNS entry. Indeed, a viral infection can lead to general inflammation as seen with a cytokine storm that can have a deleterious effect on the CNS with chronic neuroinflammation leading to various sequelae (171, 172). This inflammation, as well as by DC innate properties, can lead to recruitment of DCs in the CNS (125), sometimes also carrying the virus itself in the brain (40, 72). Once in the CNS, DCs can directly act against viruses, for example, with IFN production (173), they also contribute to neuroinflammation by T-cell activation for instance (170). For each of these conditions, different DC populations can be recruited (120). However, to tackle these pathological manifestations, we need a better characterization of CNS inflammation following infections. Thus, there is a major need to better dissect the role of each cell type in the establishment of neuroinflammation processes by considering both neuronal and immune cells including DCs. Novel technologies allowing quantitative single-cell mRNA sequencing and proteomic profiling of inflammatory markers may reveal specific DC characteristics linking these cells with the establishment of inflammation and CNS disorders. These data will critically contribute to deepen our current knowledge on brain viral infection. Moreover, DCs are known for their role in priming T-cell responses. It will be, therefore, of interest to further characterize how DC-dependent antiviral T responses can lead to neuroinflammatory pathologies and what are the antigenic drivers of such conditions. Clarifying the role of DCs as major players in neuroinflammation as well as deeper investigations on how they are carrying viruses to distal organs will undoubtedly render the possibility to consider them as a therapeutic target in order to rapidly control the possible pathological outcomes of infections. Gathering more data on metabolic and immunobiological features of DC subsets at sites of primary viral infection will also allow to transpose and adapt novel antiviral therapies, for example, by a topical drug-based application targeting early events of skin DC infection.

Moreover, a flavonoid, apigenin, was proposed to regulate inflammation by a reduction of α4-chain expression by DC and limiting the BBB cross (174). In the context of MS, there are some studies as the use of prestimulation of DC TLR9 to increase neuroinflammation control and immune regulation of the course of the disease in EAE (175). The use of DC-vaccine was also proposed to support the treatment of neurodegenerative disease as Alzheimer’s disease (176). Nonetheless, in the context of viral brain infection, there is a lack of evidence for the use of DC in care. Also, the regulation or the blocking of DC entry into the CNS should be explored, for example, to limit viral carrying. Increasing work on different subsets of DCs depending on the viral infection etiology could be a key issue to understand and treat neuroinfections that are considerable public health concerns.

AUTHOR CONTRIBUTIONS

SS conceived the study. OC, GM, FB, YS, and SS wrote the review. PVD corrected and amended the article. All authors contributed to the article and approved the submitted version.

FUNDING

This work was publicly funded through ANR (the French National Research Agency) under the “Investissements d’avenir” program with the reference ANR-16-IDEX-0006 » and by la Région Occitanie through the PhD funding program with the reference R19068FF.
REFERENCES

1. Koyuncu OO, Hogue IB, Enquist LW. Virus Infections in the Nervous System. *Cell Host Microbe* (2013) 13(4):379–93. doi: 10.1016/j.chom.2013.03.010

2. van den Pol AN. Viral Infection Leading to Brain Dysfunction: More Prevalent Than Appreciated? *Neuron* (2009) 64(1):17–20. doi: 10.1016/j.neuron.2009.09.023

3. Cassidy KA, Whitley RJ. *Infections of the Central Nervous System* Vol. 44. New York: Lippincott Williams & Wilkins (2004). p. 57–74.

4. Scheld MW, Whitley RJ, Marra CM. *Infections of the Central Nervous System*. Philadelphia, Pennsylvania, USA:Lippincott Williams & Wilkins (2014).

5. Meeker RB, Williams K, Killebrew DA, Hudson LC. Cell Trafficking Through the Choroid Plexus. *Cell Adh Migr* (2012) 6(5):390–6. doi: 10.4161/cam.21054

6. Marchetti L, Engelhardt B. Immune Cell Trafficking Across the Blood-Brain Barrier: The Absence and Presence of Neurontal Invasion. *Vasc Biol* (2020) 2(1):H1–18. doi: 10.1530/VB-19-0033

7. Meeker RB, Bragg DC, Poulton W, Hudson L. Transmigration of Macrophages Across the Choroid Plexus Epithelium in Response to the Feline Immunodeficiency Virus. *Cell Tissue Res* (2012) 347(2):443–55. doi: 10.1007/s00441-011-1301-8

8. Collin M, Bigley V. Human Dendritic Cell Subsets: An Update. *Immunology* (2018) 154(1):3–20. doi: 10.1111/imm.12888

9. Haniffa M, Shin A, Bigley V, McGovern N, Teo P, See P, et al. Human Tissues Contain CD141 Hi Cross-Presenting Dendritic Cells With Functional Homology to Mouse CD103 + Nonlymphoid Dendritic Cells. *Immunity* (2012) 37(2):60–73. doi: 10.1016/j.jimmunol.2012.04.012

10. Riel DV, Verdijk R, KuiKEN T. The Olfactory Nerve: A Shortcut for Infection Crossing the Blood Brain Barrier. *Neuron* (2010) 67(1):15–26. doi: 10.1016/j.neuron.2009.09.023

11. Nagata N, Iwasaki T, Ami Y, Tano Y, Harashima A, Suzaki Y, et al. Olfactory Transmucosal SARS-CoV-2 Invasion as a Port of Central Nervous System Entry in Individuals With COVID-19. *Nat Neurosci* (2021) 24(2):168–75. doi: 10.1038/s41598-020-00758-5

12. Salinas S, Simonin Y. Les Atteintes Neurologiques Liées Au SARS-CoV-2 Et Autres Coronavirus Humains. *Med Sci* (2020) 36(8–9):775–82. doi: 10.1051/medsci/2020122

13. Const et al. Viral Neuroinfections and Dendritic Cells

14. Esiri MM. Herpes Simplex Encephalitis. An Immunohistological Study of the Distribution of Viral Antigen Within the Brain. *Acta Neuropathol Commun* (2012) 37(1):60

15. Samuel MA, Diamond MS. Pathogenesis of West Nile Virus Infection: A Balance Between Virulence, Innate and Adaptive Immunity, and Viral Evasion. *J Virol* (2006) 80(19):9349–60. doi: 10.1128/JVI.01122-06

16. Fredrickensen BL. The Neuroimmune Response to West Nile Virus. *J Neurovirol* (2014) 20(2):113–21. doi: 10.1007/s13365-013-0180-z

17. Roe K, Ortillo B, Verma S. West Nile Virus-Induced Cell Adhesion Molecules on Human Brain Microvascular Endothelial Cells Regulate Leukocyte Adhesion and Modulate Permeability of the In Vitro Blood-Brain Barrier Model. *PloS One* (2014) 9(7):1–12. doi: 10.1371/journal.pone.0102598

18. Clay CC, Rodrigues DS, Ho YS, Fallert BA, Janatpour K, Reinhart TA, et al. Neutrophil Osteopontin Facilitates West Nile Virus Neuroinvasion. *PLoS Pathog* (2012) 8(4):e1002479. doi: 10.1371/journal.ppat.1002479

19. Wang S, Welte T, McGargill M, Town T, Thompson J, Anderson JF, et al. Drak2 Contributes to West Nile Virus Entry Into the Brain and Lethal Encephalitis. *J Immunol* (2008) 181(3):2084–91. doi: 10.4049/jimmunol.181.3.2084

20. Meinhardt J, Radke J, Dittmayer C, Franz J, Thomas C, Mothes R, et al. Olfactory Transmucosal SARS-CoV-2 Invasion as a Port of Central Nervous System Entry in Individuals With COVID-19. *Neurosci (2021) 24 266–75. doi: 10.1038/s41598-020-00758-5
39. Cusi MG, Gandolfo C, Terrosi C, Savelini GG, Belmonte G, Miracco C. Toscana Virus Infects Dendritic and Endothelial Cells Opening the Way for the Central Nervous System. J Neurovirol (2016) 22(3):307–15. doi: 10.1007/s13365-015-0395-2

40. Schönrich G, Raftery MJ. Dendritic Cells as Achilles’ Heel and Trojan Horse During Varicella Zoster Virus Infection. Front Microbiol (2015) 6(MAY):417. doi: 10.3389/fmicb.2015.00417

41. Tiong V, Shu MH, Wong WF, Abubakar S, Chang LY. Nipah Virus Infection of Immature Dendritic Cells Increases its Transendothelial Migration Across Human Brain Microvascular Endothelial Cells. Front Microbiol (2018) 9(NOV):2747. doi: 10.3389/fmicb.2018.02747

42. Neal JW. Flaviviruses are Neurotropic, But how do They Invade the CNS? J Infect (2014) 69:203–15. doi: 10.1016/j.jinf.2014.05.010

43. Salinas S, Schiavo G, Kremer EJ. A Hitchhiker Guide to the Nervous System: The Complex Journey of Viruses and Toxins. Nat Rev Microbiol (2010) 8(9):645–55. doi: 10.1038/nrmicro2395

44. Berth SH. Virus-Induced Neuronal Dysfunction and Degeneration. Front Neurosci (2019) 14(1):5239. doi: 10.3751/jnnp.2009.79.11.7377

45. Sodeik B. Mechanisms of Viral Transport in the Cytoplasm. Trends Microbiol (2000) 8(10):465–72. doi: 10.1016/S0929-866X(00)01824-2

46. Döhner K, Nagel CH, Sodeik B. Viral Stop-and-Go Along Microtubules: A System: The Complex Journey of Viruses and Toxins. Trends Microbiol (2005) 13(7):320–7. doi: 10.1016/j.tim.2005.05.010

47. Maximova OA, Bernbaum JG, Pletnev AG. West Nile Virus Spreads Transynaptically Within the Pathways of Motor Control: Anatomical and Ultrastructural Mapping of Viral Neuron Infection in the Primate Central Nervous System. PLoS Negl Trop Dis (2010) 4(10):1–23. doi: 10.1371/journal.pntd.0004980

48. Solomon T. Neurological Aspects of Tropical Disease: Japanese Encephalitis. J Neurol Neurosurg Psychiatry (2000) 68(4):405–15. doi: 10.1136/jnnp.86.4.405

49. Shives KD, Tyler KL, Beckham JD. Molecular Mechanisms of Neuroinflammation and Injury During Acute Viral Encephalitis. J Neuroimmunol (2017) 308:102–11. doi: 10.1016/j.jneuroim.2017.03.006

50. Kneaney J, Campbell M. The Dynamic Blood-Brain Barrier. FEBS (2015) 282(21):4067–79. doi: 10.1111/feb.13412

51. Tietz S, Engelhardt B. Brain Barriers: Crosstalk Between Tight Junctions and Adherens Junctions. J Cell Biol (2015) 209(4):493–506. doi: 10.1083/jcb.201411247

52. Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-Endothelial Interactions at the Blood-Brain Barrier. Nat Rev Neurosci (2006) 7(4):11–23. doi: 10.1038/nrn1822

53. Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and Function of the Blood-Brain Barrier. Neurobiol Dis (2010) 37(1):13–25. doi: 10.1016/j.nbd.2009.07.030

54. Rustenhoven J, Janson D, Smyth LC, Dragunow M. Brain Pericytes As Mediators of Neuroinflammation. Trends Pharmacol Sci (2017) 38(3):291–304. doi: 10.1016/j.tips.2016.12.001

55. Li W, Chen D, Liu N, Luan Y, Zhu S, Wang H. Modulation of Lymphatic System: The Complex Journey of Viruses and Toxins. PLoS Negl Trop Dis (2016) 10(3):e0002990. doi: 10.1371/journal.pntd.0002990.2006.00737.x

56. McGavern DB, Kang SS. Illuminating Viral Infections in the Nervous System. Nat Rev Immunol (2011) 11(5):318–29. doi: 10.1038/nri2971

57. Spudich S, Gonzalez-Scarano F. HIV-1-Related Central Nervous System Disease: Current Issues in Pathogenesis, Diagnosis, and Treatment. Cold Spring Harb Perspect Med (2012) 2(6):a007120–a007120. doi: 10.1101/cshperspect.a007120

58. Canel G, Dias C, Gabelle A, Simonin Y, Gasselet F, Marchi N, et al. HIV Neuroinfection and Alzheimer’s Disease: Similarities and Potential Links? Front Cell Neurosci (2018) 12(September):307. doi: 10.3389/fncel.2018.00307

59. Souaig K, Klein RS. Viral Encephalitis and Neurologic Diseases: Focus on Astrocytes. Trends Mol Med (2018) 24(11):950–62. doi: 10.1016/j.trends.2018.09.001

60. Diamond MS, Klein RS. West Nile Virus: Crossing the Blood-Brain Barrier. Nat Med (2004) 10(12):1294–5. doi: 10.1016/j.nwnm.2004.11.005

61. Spadaccini C, Keep R, Andjelkovic A. Brain Endothelial Cell-Cell Junctions: How to “Open” the Blood Brain Barrier. Curr Pharmaceuticul (2008) 6(3):179–92. doi: 10.2174/175590878577210

62. Azzouz M, Skolnik L, Josset L, Gagnot M, Chedid M, et al. The Olfactory Route for Brain Barrier Disruption and Tight Junction Proteins. J Neuroinfection and Alzheimer’s Disease: Similarities and Potential Links? Front Cell Neurosci (2018) 12(September):307. doi: 10.3389/fncel.2018.00307

63. Mustafa YM, Meuren LM, Coelho SVA, de Arruda LB. Pathways Exploited by Flaviviruses to Counteract the Blood-Brain Barrier and Invade the Central Nervous System. Front Microbiol (2019) 10(MAR):525. doi: 10.3389/fmicb.2019.00525

64. Kooij G, Kopplin K, Blasig R, Stuiver M, Koning N, Goverse G, et al. Perivascular Spaces and the Two Steps How to Neuroinfection and Alzheimer’s Disease: Similarities and Potential Links? Front Cell Neurosci (2018) 12(September):307. doi: 10.3389/fncel.2018.00307

65. Owens T, Bechmann I, Engelhardt B. Perivascular Spaces and the Two Steps to Neuroinflammation. J Neuropath Exp Neurol (2008) 67(12):1113–21. doi: 10.1097/NEN.0b013e318189fca8

66. Savarin C, Stohlman SA, Atkinson R, Ransohoff RM, Bergmann CC. Monocytes Regulate T Cell Migration Through the Glia Limitans During Acute Viral Encephalitis. J Viral (2010) 84(10):4878–88. doi: 10.1126/TVID00051-10

67. Daniels TE. Human Mucosal Langerhans Cells: Postmortem Identification of Regional Variations in Oral Mucosa. J Invest Dermatol (1984) 82(1):21–4. doi: 10.1111/j.1523-1747.ep12259038

68. Reizis B. Plasmacytid Dendritic Cells: Development, Regulation, and Function. Immunity (2019) 50(1):37–50. doi: 10.1016/j.immuni.2018.12.027

69. Alcumbre S, Raieli S, Hoffmann C, Chelbi R, Danlos F-X, Soumelis V. Plasmacytoid Dendritic Cells: Development, Regulation, and Function. Immunity (2019) 50(1):37–50. doi: 10.1016/j.immuni.2018.12.027

70. Alcumbre S, Raieli S, Hoffmann C, Chelbi R, Danlos F-X, Soumelis V. Plasmacytid Dendritic Cells (pDC): From Molecular Pathways to Function and Disease Association. Semin Cell Dev Biol (2019) 86:24–35. doi: 10.1016/j.semcdb.2018.02.014

71. Rhodes JW, Tong O, Harman AN, Turville SG. Human Dendritic Cell Subsets, Ontogeny, and Impact on HIV Infection. Front Immunol (2019) 10:1088/full(May). doi: 10.3389/fimmu.2019.01088/full
118. Bailey SL, Schreiner B, McMahon EJ, Miller SD. CNS Myeloid DCs Presenting Endogenous Myelin Peptides “Preferentially” Polarize CD4+ T H-F Cells in Relapsing EAE. Nat Immunol (2007) 8(2):172–80. doi: 10.1038/nn1430

119. Miller SD, McMahon EJ, Schreiner B, Bailey SL. Antigen Presentation in the CNS by Myeloid Dendritic Cells Drives Progression of Relapsing Experimental Autoimmune Encephalomyelitis. Ann N Y Acad Sci (2007) 1103(1):179–91. doi: 10.1196/annals.1399.023

120. D’Agostino PM, Gottfried-Blackmore A, Anandasabapathy N, Bulloch K. Brain Dendritic Cells: Biology and Pathology. Acta Neuropathol (2012) 124(5):599–614. doi: 10.1007/s00401-012-1018-0

121. Greter M, Heppner FL, Lemos MP, Odermatt BM, Goebels N, Laufer T, et al. Dendritic Cells Permit Immune Invasion of the CNS in an Animal Model of Multiple Sclerosis. Nat Med (2005) 11(3):328–34. doi: 10.1038/nrn1197

122. Hessek L, Vincenzetti C, Heikenwalder M, Prinz M, Reith W, Fontana A, et al. Induction of Inhibitory Nervous System-Derived and Stimulatory Blood-Derived Dendritic Cells Suggests a Dual Role for Granulocyte-Macrophage Colony-Stimulating Factor in Central Nervous System Inflammation. Brain (2010) 133(6):1637–54. doi: 10.1093/brain/awp081

123. Press R, Nennesmo I, Kouwenhoven M, Huang Y-M, Link H, Pashenkov M. A Trojan Horse of Cortical Development, With a Review of the Spectrum of Chronic Inflammatory Epileptic Encephalopathy. J Neuroimmunol (2015) 283(1–2):165–72. doi: 10.1016/j.jneuroim.2015.03.019

124. De Laer M, Berneman ZN, Cools N. To the Brain and Back: Migratory Paths of Dendritic Cells in Multiple Sclerosis. J Neuropathol Exp Neurol (2018) 77(3):178–92. doi: 10.1093/jnen/nlx114

125. Falcone FC, Sun CA, Taubert P, Schmitt CA, O’Hagan J, Goebels N, et al. Dendritic Cells to the Brain by the Peripheral Circulation: A Novel Route in Multiple Sclerosis. Brain Res (2009) 1291:165–73. doi: 10.1016/j.brainres.2009.04.020

126. Wang YZ, Feng XG, Wang Q, Xing CY, Shi QG, Kong QX, et al. Increased Plasmacytoid Dendritic Cells in Guillain-Barré Syndrome. J Neuroimmunol (2015) 283(1–2):166–70. doi: 10.1016/j.jneuroim.2015.03.019

127. Newman TA, Galea I, Van Rooijen N, Perry VH. Blood-Derived Dendritic Cells Following Li-Pilocarpine Induced Status Epilepticus in Adult Rats. Brain Res Bull (2013) 91:8–15. doi: 10.1016/j.brainresbull.2012.11.007

128. Newman TA, Galea I, Van Rooijen N, Perry VH. Blood-Derived Dendritic Cells in an Acute Brain Injury. J Neuroimmunol (2005) 166(1–2):167–72. doi: 10.1016/j.jneuroim.2005.04.026

129. Vezzani A. Epilepsy and Inflammation in the Brain: Overview and Pathophysiology. Epilepsy Curr (2014) 14(1 Suppl):3–7. doi: 10.5698/1535-7511-14.s2.3

130. Librizzi L, Regondi MC, Pastori C, Frigerio S, Frassoni C, De Curtis M. Microglia in Central Nervous System Inflammation. J Immunol (2001) 166(4):2717–20. doi: 10.4049/jimmunol.166.4.2717

131. Fischer H-G, Reichmann G. Brain Dendritic Cells and Macrophages/ Microglia in Central Nervous System Inflammation. J Immunol (2001) 166(4):2717–26. doi: 10.4049/jimmunol.166.4.2717

132. van de Beek D, Brouwer MC, Kooi SL, Wall EC, Community-Acquired Bacterial Meningitis. Lancet (2021) 6736(21):1–13. doi: 10.1016/s0140-6736(21)00883-7

133. Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The Trinity of COVID-19: Immunity, Inflammation and Intervention. Nat Rev Immunol (2020) 20(6):363–74. doi: 10.1038/s41577-020-0311-8

134. Silvin A, Chaupis N, Dunsmore G, Goubet AG, Dubuisson A, Derosa L, et al. Elevated Calprotectin and Abnormal Myeloid Cell Subsets Discriminate Severe From Mild COVID-19. Cell (2020) 182(6):1401–1418.e18. doi: 10.1016/j.cell.2020.06.008

135. Falangola MF, Hanly A, Galvao-Castro B, Petito CK. HIV Infection of Human Dendritic Cells: Biology and Pathology. J Neuropathol Exp Neurol (2007) 66(8):798–838. doi: 10.1093/jnr/jem068

136. Fischer H-G, Reichmann G. Brain Dendritic Cells and Macrophages/ Microglia in Central Nervous System Inflammation. J Immunol (2001) 166(4):2717–26. doi: 10.4049/jimmunol.166.4.2717
157. Bjornevik K, Cortese M, Healy BC, Kuhle J, Mina MJ, Leng Y, et al. Longitudinal Analysis Reveals High Prevalence of Epstein-Barr Virus Associated With Multiple Sclerosis. Science 375(6578):296–301 (2022) 8222(1January). doi: 10.1126/science.abj8222

158. Swiecki M, Colonna M. The Multifaceted Biology of Plasmacytoid Dendritic Cells. Nat Rev Immunol (2015) 15(8):471–85. doi: 10.1038/nri3665

159. Décembre E, Assil S, Hillaire MLB, Dejmirattasi W, Mongolsapaya J, Scrayton GR, et al. Sensing of Immature Particles Produced by Dengue Virus Infected Cells Induces an Antiviral Response by Plasmacytoid Dendritic Cells. PloS Pathog (2014) 10(10):e1004434. doi: 10.1371/journal.ppat.1004434

160. Cacciotti G, Caputo B, Selvaggi C, la Sala A, Vitiello L, Diallo D, et al. Variations in Interferon Sensitivity and Induction Between Usutu and West Nile Lineages 1 and 2 Viruses. Virology (2015) 485/489–98. doi: 10.1016/j.viro.2015.07.015

161. Bréhin A-C, Mournié J, Frenkiel M-P, Dadaglio G, Desprès P, Lafon M, et al. Dynamics of Immune Cell Recruitment During West Nile Encephalitis and Identification of a New CD19 + B220 – BST-2 + Leukocyte Population. J Immunol (2008) 180(10):6760–7. doi: 10.4049/jimmunol.180.10.6760

162. Helms J, Kremer S, Merdihi H, Clerc-Jehl R, Schend M, Kummerlen C, et al. Neurologic Features in Severe SARS-CoV-2 Infection. N Engl J Med (2020) 382(23):2268–70. doi: 10.1056/NEJMc2008597

163. Clé M, Constant O, Barthelemy J, Desmetz C, Martin MF, Lapeyre L, et al. Differential Neurovirulence of Usutu Virus Lineages in Mice and Neuronal Cells. J Neuroinflammation (2021) 18(1):1–22. doi: 10.1186/s12974-020-02060-4

164. Bogovic P, Lotric-Furlan S, Strle F. What Tick-Borne Encephalitis may Look Like: Clinical Signs and Symptoms. Travel Med Infect Dis (2010) 8(4):246–50. doi: 10.1016/j.tmaid.2010.05.011

165. Ayhan N, Charrel RN. An Update on Toscana Virus Distribution, Genetics, Medical and Diagnostic Aspects. Clin Microbiol Infect (2020) 26(8):1017–23. doi: 10.1016/j.cmi.2019.12.015

166. Singh G, Prabhakar S. The Association Between Central Nervous System (CNS) Infections and Epilepsy: Epidemiological Approaches and Microbiological and Epileptological Perspectives. Epilepsia (2008) 49 (SUPPL.6):2–7. doi: 10.1111/j.1528-1167.2008.01749.x

167. Hussain A, Rafeeq H, Munir N, Jabeen Z, Afsheen N, Rehman K, et al. Infect of Interest: Thepmankorn P, Bach J, Lasfar A, Zhao X, Souayah S, Chong ZZ, et al. Cytokine Storm Induced by SARS-CoV-2 Infection: The Spectrum of its Neurological Manifestations. Cytokine (2021) 138:155404 (1-11). Academic Press. doi: 10.1016/j.cyt.2020.155404

168. By M, Kitazawa M, Medeiros R, Whitman L, Cheng D, Lane TE, et al. Inflammation Induced by Infection Potentiates Tau Pathological Features in Transgenic Mice. Am J Pathol (2011) 178(6):2811–22. doi: 10.1016/j.ajpath.2011.02.012

169. Varani S, Ghelosimino F, Baroletti M, Viale P, Mastroianni A, Briganti E, et al. Meningitis Caused by Toscana Virus is Associated With Strong Antiviral Response in the CNS and Altered Frequency of Blood Antigen-Presenting Cells. Viruses (2015) 7(11):5831–43. doi: 10.3390/v7112909

170. Clarkson BD, Hénninger E, Harris MG, Lee J, Sandor M, Fabry Z. Innate-Adaptive Crosstalk: How Dendritic Cells Shape Immune Responses in the CNS. In: Advances in Experimental Medicine and Biology (Springer; Berlin, Germany) (2012). p. 309–33. doi: 10.1007/978-1-4614-0106-3_18

171. Thapman korn P, Bach J, Lasfar A, Zhao X, Souayah S, Chong ZZ, et al. Cytokine Storm Induced by SARS-CoV-2 Infection: The Spectrum of its Neurological Manifestations. Cytokine (2021) 138:155404 (1-11). Academic Press. doi: 10.1016/j.cyt.2020.155404