Circulating CD36 and oxLDL levels are associated with cardiovascular risk factors in young subjects

Luz E Ramos-Arellano1, José F Muñoz-Valle2, Ulises De la Cruz-Mosso2, Aralia B Salgado-Bernabé1, Natividad Castro-Alarcón1 and Isela Parra-Rojas1*

Abstract

Background: Cardiovascular disease (CVD) results from a combination of abnormalities in lipoprotein metabolism, oxidative stress, chronic inflammation, and susceptibility to thrombosis. Atherosclerosis is the major cause of CVD. CD36 has been shown to play a critical role in the development of atherosclerotic lesions by its capacity to bind and promote endocytosis of oxidized low-density lipoprotein (oxLDL) and is implicated in the formation of foam cells. The purpose of this research was to evaluate whether there is an association of sCD36 and oxLDL levels with cardiovascular risk factors in young subjects.

Methods: A total of 188 subjects, 18 to 25 years old, 133 normal-weight and 55 obese subjects from the state of Guerrero, Mexico were recruited in the study. The lipid profile and glucose levels were measured by enzymatic colorimetric assays. Enzyme-linked immunosorbent assays (ELISA) for oxLDL and sCD36 were performed. Statistical analyses of data were performed with Wilcoxon- Mann Whitney and chi-square tests as well as with multinomial regression.

Results: TC, LDL-C, TG, oxLDL and sCD36 levels were higher in obese subjects than in normal-weight controls, as well as, monocyte and platelet counts (P < 0.05). Obese subjects had 5.8 times higher risk of sCD36 in the third tertile (>97.8 ng/mL) than normal-weight controls (P = 0.014), and 7.4 times higher risk of oxLDL levels in third tertile (>48 U/L) than control group. The subjects with hypercholesterolemia, hypertriglyceridemia, fasting impaired LDL-C had a higher risk of oxLDL levels in the third tertile (>48 U/L) than the control group (P < 0.05).

Conclusions: Circulating CD36 and oxLDL levels are associated with cardiovascular risk factors in young subjects and may be potential early markers for cardiovascular disease (CVD).

Keywords: CD36, OxLDL, Cardiovascular risk factors, Obesity

Background
Cardiovascular disease (CVD) risk factors such as advanced age, obesity, smoking, hyperlipidemia, diabetes, and hypertension, account for 30–40% of the worldwide prevalence of this disease [1]. The pathological basis of CVD results from a combination of abnormalities in lipoprotein metabolism, oxidative stress, chronic inflammation, and susceptibility to thrombosis [2]. Atherosclerosis is the major cause of CVD [3], it is considered a chronic inflammatory disease of the arterial wall that underlies many of the common causes of cardiovascular morbidity and mortality, including myocardial infarction (MI), cerebrovascular and peripheral vascular disease [4].

A key process in the pathogenesis of atherosclerosis is the deposition of cholesterol in the arterial wall. Lipoproteins are involved in this process, including cholesterol carried by very low-density (VLDL), remnant lipoproteins and low-density lipoproteins (LDL), particularly the small and dense forms; conversely, cholesterol is carried away from the arterial wall by high-density lipoprotein (HDL) [5].

Oxidative modification of LDL (oxLDL) in the arterial wall is central to the pathogenesis of atherosclerosis [6]. OxLDL is associated with carotid intimal-media thickness, unstable plaques in the coronary and carotid arteries, impaired brachial and coronary endothelial

* Correspondence: iprojas@yahoo.com
1Laboratorio de Investigación en Obesidad y Diabetes, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
Full list of author information is available at the end of the article

© 2014 Ramos-Arellano et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
function, and coronary artery disease [7]. When oxLDL loses its ability to bind to LDL receptors, this interferes with its normal processing and as a result gains affinity for a family of proteins called scavenger receptors [8]. This leads to macrophage activation, foam-cell formation, secretion of growth factors and proinflammatory cytokines, thereby promoting plaque formation [9,10].

CD36, an 88 kDa glycoprotein, was originally described as platelet receptor glycoprotein which belongs to the class B scavenger receptor family [11,12]. CD36 is expressed on an extensive range of cells and tissues, including microvascular endothelial cells, monocytes and macrophages, dendritic cells, adipocytes, keratinocytes, cardiac and skeletal muscle, retinal pigment epithelium, microglia, reticulocytes, breast, gut, renal epithelium, platelets, hepatocytes, smooth muscle cells and binds to a diverse array of ligands [13-16]. CD36 is best characterized as a free fatty acid transporter involved in different biological processes like angiogenesis, inflammation, lipid metabolism, atherosclerosis and platelet activation [17].

Monocyte/macrophage CD36 has been shown to play a critical role in the development of atherosclerotic lesions by its capacity to bind and promote endocytosis of oxLDL, and is also implicated in the formation of foam cells [18,19]. Moreover, the pathogenic role of oxLDL in atherosclerosis largely depends on CD36 [20].

A soluble form of CD36 (sCD36), a marker of altered tissue CD36 expression, was recently identified in human plasma, and elevated levels were found in obesity and type 2 diabetes. In this regard, sCD36 in plasma has been reported up to 4-fold higher in obese T2D-patients compared to lean healthy control subjects [21]. The circulating concentration of CD36 is also associated with markers of liver injury in subjects with altered glucose tolerance [22]. A recent study revealed that soluble CD36 in plasma correlates significantly with markers of atherosclerosis, insulin resistance and fatty liver in a non-diabetic healthy population [23]. Due to the widespread tissue expression of CD36 and its broad range of functions it is difficult to foresee which specific pathological processes may reflect alterations in sCD36 [24]. However, a recent study showed that sCD36 is not a proteolytic product, but it is associated with a specific subset of circulating microparticles (MPs) that can readily be analyzed and which originate mainly from platelets in normal subjects [25]. In this regard, the aim of this research was to evaluate whether there is an association of sCD36 and oxLDL levels with cardiovascular risk factors in young subjects.

Methods
Subjects
A total of 188 subjects were randomly selected, 18 to 25 years old, 133 normal-weight controls (BMI 18.5 to 24.9 kg/m2) and 55 obese subjects (BMI ≥30 kg/m2) from the state of Guerrero, Mexico. There were 117 women and 71 men; participants were not under any medication or had evidence of metabolic disease other than obesity. All subjects gave their written informed consent previous explanation of the purpose and nature of the study. The protocol was approved by the Research Ethics Committee of the University of Guerrero.

Blood pressure
Blood pressure was measured in the sitting position with the use of an automatic sphygmomanometer on the left arm after 10 min rest. The systolic blood pressure (SBP) and diastolic blood pressure (DBP) were calculated from two readings with a minimal interval of 10 min. Hypertension was defined as mean SBP ≥140 mmHg and/or DBP ≥90 mmHg [26].

Biochemical analysis
A venous blood sample of 5 mL was obtained from each subject after at least a 12 hours fasting. All serum lipid levels and glucose were determined by enzymatic methods with commercially available kits (Spinreact). Abnormal biochemical levels were identified when total-cholesterol (TC) ≥200 mg/dL, triglycerides (TG) ≥150 mg/dL, low-density lipoprotein cholesterol (LDL-C) >100 mg/dL, high-density lipoprotein cholesterol (HDL-C) <40 mg/dL, low-density lipoprotein cholesterol (LDL-C) >100 mg/dL, high-density lipoprotein cholesterol (HDL-C) <40 mg/dL, and glucose >100 mg/dL, based on the criteria of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) [27].

Determination of sCD36 and oxLDL levels
Enzyme-linked immunosorbant assays (ELISA) for oxLDL (Mercodia Oxidized LDL ELISA) and sCD36 (Human soluble CD36 ELISA, kit-Aviscera Bioscience) were performed, according to the manufacturer’s instructions, with an intra-assay CV <6% and interassay CV <7% for oxLDL ELISA assay, and an intra-assay CV <5% and interassay CV <9% for CD36 ELISA assay.

Statistical analysis
The statistical analyses were performed with the statistical software package SPSS 15.0 and STATA software 9.0. Quantitative variables were expressed as medians and 25th to 75th percentiles and significant differences between groups were determined using the Wilcoxon-Mann Whitney test. Qualitative variables were expressed as percentages and the differences between groups were determined using the chi-square test. The association analysis between serum levels of oxLDL and sCD36 with lipid phenotypes was carried out with multinomial regression, where a P value <0.05 was considered statistically significant.

Results

General and biochemical characteristics

General and biochemical characteristics of the study subjects are shown in Table 1. Measurements of body weight, height, systolic and diastolic blood pressure, prevalence of hypertension, and TC, LDL-C, TG, sCD36 and oxLDL levels were higher in obese subjects than in normal-weight controls, as well as, the monocyte and platelet counts ($P < 0.05$). There were no significant differences by gender ($P = 0.162$).

Correlations between sCD36 and oxLDL levels with selected variables

In all subjects studied, sCD36 correlated significantly with weight, BMI, waist, hip, waist-to-hip ratio, % fat mass, LDL-C, oxLDL and monocyte count. Obese subjects showed a high correlation among BMI and sCD36 ($r = 0.50$, $P = 0.028$) (Table 2). The oxLDL levels correlated positively with weight, BMI, waist, hip, waist-to-hip ratio, % fat mass, and TC, TG, LDL-C, sCD36 and monocyte count in all subjects. In normal-weight and obese groups, oxLDL levels showed a high correlation with weight, BMI, waist, waist-to-hip ratio, % fat mass, and TG, LDL-C levels and monocyte count (Table 3).

Circulating CD36 and oxLDL levels according to metabolic abnormalities

Subjects with hypertriglyceridemia and hypertension had higher levels of sCD36, while oxLDL levels were higher in subjects with hypercholesterolemia, hypertriglyceridemia, LDL-C and hypertension compared to those subjects without these abnormalities ($P < 0.05$) (Table 4).

Association of cardiovascular risk factors with sCD36 and oxLDL levels

For the association analysis with cardiovascular risk factors, sCD36 was classified into tertiles (first tertile <23.3 ng/mL, second tertile 23.3 to 97.8 ng/mL and third tertile >97.8 ng/mL), since there are no established reference values. Obese subjects had 5.8 times higher risk of sCD36 in the third tertile than normal-weight controls, adjusted for age and gender ($P = 0.014$) (Table 5). The oxLDL levels were also classified into tertiles (first tertile <31.9 U/L, second tertile 31.9 to 48.0 U/L and third tertile >48.0 U/L) in order to analyze their association with cardiovascular risk factors. Table 5 shows that subjects with hypercholesterolemia had 7.5 times higher risk of oxLDL levels in the third tertile than subjects without these abnormalities. Individuals

Table 1 Anthropometric and biochemical variables by group

Variables	Normal weight	Obesity	P value
n	133	55	-
Age (years)	20 (19-22)	21 (20-23)	0.005
Gender			0.162
Female (%)	87 (65)	30 (55)	
Male (%)	46 (35)	25 (45)	
Weight (kg)	54.5 (49.2-59.4)	90.9 (79.1-99.9)	0.001
Height (cm)	158.7 (153.0-167.5)	163.5 (155-171)	0.036
BMI (kg/m²)	21.5 (20.0-23.4)	33.1 (31.3-35.3)	0.001
SBP (mmHg)	104 (98-112)	115 (112-121)	0.001
DBP (mmHg)	68 (61-73)	70 (67-77)	0.003
% Fat mass	0.35	0.22	0.058
Waist-to-hip ratio			0.0005
Glucose (mg/dL)	83 (75-89)	83 (77-90)	0.386
Monocytes (%)	7 (5-9)	9 (7-11)	
Platelets (10^3/mm³)	247 (215-289)	265 (232-307)	0.048
sCD36 (ng/mL)	32.3 (16.8-102.4)	146.3 (76.7-694.7)	0.002
oxLDL (U/L)	35.4 (27.9-47.1)	51.5 (38.0-59.7)	<0.001

BMI, Body Mass Index; SBP, Systolic Blood Pressure; DBP, Diastolic Blood Pressure; TC, Total Cholesterol; HDL-C, High-Density Lipoprotein Cholesterol; LDL-C, Low-Density Lipoprotein Cholesterol; TG, Triglyceride; oxLDL, oxidized Low-Density Lipoprotein. Values were presented as median (percentile 25-75th).

Difference between genders was determined by the Wilcoxon-Mann-Whitney test. Hypertension data were presented in (n) and percentages; the difference between genders was determined by chi-square test.

Table 2 Correlation between sCD36 and selected variables

Variables	All subjects	Normal weight	Obesity	r	p	r	p
Weight (kg)	0.29	0.14	0.217	0.41	0.073		
Height (cm)	0.03	0.04	0.724	0.15	0.534		
BMI (kg/m²)	0.32	0.17	0.150	0.50	0.028		
Waist (cm)	0.03	0.13	0.2474	0.30	0.210		
Hip (cm)	0.31	0.18	0.1190	0.30	0.201		
Waist-to-hip ratio	0.23	0.001	0.988	0.02	0.931		
% Fat	0.32	0.19	0.097	-0.02	0.009		
% Fat mass	0.35	0.22	0.058	0.30	0.203		
Glucose (mg/dL)	-0.15	-0.16	0.168	-0.01	0.954		
TC (mg/dL)	-0.05	-0.15	0.201	0.16	0.479		
TG (mg/dL)	0.15	-0.001	0.991	0.33	0.151		
HDL-C (mg/dL)	0.07	0.10	0.373	-0.06	0.771		
LDL-C (mg/dL)	0.21	0.02	0.803	0.23	0.334		
oxLDL (U/L)	0.25	0.06	0.623	0.29	0.334		
Monocytes (%)	0.33	0.22	0.056	0.20	0.376		
Platelets (10^3/mm³)	0.15	0.03	0.741	0.23	0.309		

$r = $Spearman correlation coefficient; $p = p$ value.
with impaired fasting LDL-C had 4.5 times higher risk of
oxLDL levels in the third tertile and subjects with hypertri-
glyceridemia had 17.9 times higher risk of oxLDL levels
in the third tertile, adjusted for age, gender and BMI. Likewise,
obese individuals had 7.4 times higher risk of oxLDL levels
in third tertile than controls, adjusted for age and gender.

Discussion
In this research, we found a higher prevalence of hyper-
tension in obese subjects (32.7%) than in normal weight
subjects (6.1%), with a prevalence of 13.6% in the total
study subjects. These findings are similar to those re-
ported in another study in U.S. teenagers; where hyper-
tension showed a prevalence of 30% in obese subjects
[28]. It is known that the increase sodium reabsorption
induced by angiotensin II produced by adipocytes affects
renal natriuresis, so that obese subjects need higher
blood pressure levels than normal weight subjects to
maintain a balance between the sodium intake and
renal diuresis [29].

In this study, as in previous studies the lipid profile
(TC, LDL-C and TG) was higher in obese subjects than
normal-weight controls. This may be due to increased
adiposity since adipose tissue undergoes morphological
and physiological changes which include the release of
proinflammatory cytokines such as tumour necrosis fac-
tor alpha (TNF-α), and in turn, decrease insulin sensitiv-
ity and increase lipolysis. These morphological changes
contribute to insulin resistance and dyslipidemia [30].

Table 3 Correlation between oxLDL levels and selected
variables

Variables	All subjects	Normal weight	Obesity			
	r	p	r	p	r	p
Weight (kg)	0.43	0.001	0.23	0.009	0.31	0.026
Height (cm)	0.05	0.438	−0.06	0.499	0.17	0.234
BMI (kg/m²)	0.51	0.0001	0.40	<0.001	0.37	0.009
Waist (cm)	0.52	0.0001	0.39	<0.001	0.38	0.007
Hip (cm)	0.36	0.0001	0.10	0.225	0.21	0.139
Waist-to-hip ratio	0.53	0.0001	0.42	<0.001	0.30	0.034
% Fat	0.32	0.0001	0.13	0.124	0.09	0.516
% Fat mass	0.41	0.0001	0.21	0.014	0.39	0.005
Glucose (mg/dL)	−0.10	0.182	−0.19	0.027	0.12	0.398
TC (mg/dL)	0.32	<0.001	0.17	0.053	0.67	<0.001
TG (mg/dL)	0.47	<0.001	0.38	<0.001	0.33	0.018
HDL-C (mg/dL)	0.04	0.557	0.04	0.621	0.11	0.422
LDL-C (mg/dL)	0.43	<0.001	0.33	0.0001	0.53	0.0001
sCD36 (ng/mL)	0.25	0.024	0.06	0.623	0.29	0.334
Platelets (10³/mm³)	0.40	<0.001	0.31	0.0003	0.34	0.020

r = Spearman correlation coefficient; p = p value.

Table 4 sCD36 and oxLDL levels according to metabolic
abnormalities

Variables	n	sCD36 levels (ng/mL)	oxLDL levels (U/L)
Fasting glucose	No (176)	47.7 (18.4-219.9)	37.8 (29.5-50.6)
	Yes (12)	62.2 (16.7-200.4)	52.7 (30.1-60.5)
		P = 0.93	P = 0.20
Hypercholesterolemia	No (162)	44.9 (17.3-223.6)	36.7 (29.1-48.5)
	Yes (26)	74.8 (25.7-98.7)	54.5 (45.5-65.0)
		P = 0.55	P = 0.0002
Fasting LDL-C	No (95)	47.7 (17.2-208.2)	32.4 (27.8-45.6)
	Yes (93)	74.8 (21.8-270.4)	47.1 (35.8-57.1)
		P = 0.30	P = 0.0001
Hypertriglyceridemia	No (88)	61.1 (19.6-262)	45.6 (31.9-54.3)
	Yes (100)	46.7 (17.9-127.2)	34.6 (29.4-58.5)
		P = 0.49	P = 0.06
Hypertension	No (161)	43.1 (16.7-190.6)	36.1 (28.2-48.1)
	Yes (27)	180.3 (66.01-2295)	52.5 (48.5-59.7)
		P = 0.01	P = 0.0001
	No (161)	34.1 (16.7-190.6)	37.6 (29.1-119.0)
	Yes (27)	79.8 (66.01-200.4)	48.0 (31.5-58.8)
		P = 0.03	P = 0.1218

The values were presented as median (percentile 25-75th). The difference
between genders was determined by the Wilcoxon-Mann–Whitney test.

An interesting finding in this study was that obese subjects have a higher number of monocytes and platelets
that than normal-weight subjects. The leukocyte count is
considered as an indicator of inflammatory status in obesity [31]. In addition, research has shown that adults
and children with obesity have higher levels of leukocytes,
mainly monocytes, compared with adults and children of
normal weight [32-34]. Regarding increased platelet count
in subjects with obesity, similar findings have been shown
in other studies, where the platelet count is higher in teen-
agers and adults with obesity than normal weight subjects [35,36]. In relation to cytokines, it has been shown that
interleukin-6 (IL-6) induces differentiation of megakary-
ocytes into platelets and that IL-6 is produced by adipose tissue [37,38]. Furthermore, it has been reported
that obese individuals have increased levels of IL-6 [39], which may explain the increase in platelets in an obese state.

In this study, we observed that sCD36 was higher in obese subjects than in normal weight subjects (143.3 ng/mL vs. 32.3 ng/mL, \(P = 0.002 \)), these results are congruent with previous studies [21,40]. This may be due to the increased number of platelets and monocytes shown in obese subjects, as was recently reported that the circulating form of the CD36 receptor is associated with microparticles mainly originated of platelets, leukocytes and endothelial cells as a result of stimuli or apoptosis [8,25]. These microparticles have been found increased in subjects with insulin resistance and obese with type 2 diabetes, due to presence of a low-grade inflammation [41-43]. In this study, we observed that serum oxLDL levels were higher in obese subjects than in control group (51.5 U/L vs. 35.4 U/L), these results are consistent with those reported in other studies [44]. This may be due to the increase oxidative stress in an obese state, which favors the oxidation of LDL-C [45,46].

We observed a high correlation of sCD36 with BMI in obese subjects (\(r = 0.50, \ P = 0.028 \)), similar results have been reported in previous studies [47]. In addition, oxLDL levels showed a strong correlation with BMI, TG and LDL-C in subjects with and without obesity. Such correlations are similar to those reported in other studies [48,49].

In this research, sCD36 in the third tertile (>97.8 ng/mL) were associated with obesity, although there is a lack of studies that support this association, sCD36 have been correlated with BMI [47,50]. Higher sCD36 in obese subjects than in normal weight subjects have also been reported in other studies [21,43]. Furthermore, it is proposed that high CD36 levels may be a marker of increased CD36 expression known from a number of tissues that are associated with the metabolic syndrome; macrophage infiltration and low-grade inflammation in abdominal obesity, which may lead to dyslipidemia and peroxidation of lipoproteins [24].

We also found that oxLDL levels in third tertile (>48.0 U/L) were associated with hypercholesterolemia, impaired fasting LDL-C, hypertriglyceridemia and obesity. The association between dyslipidemia and oxidation of LDL has been demonstrated in individuals in the pre-diabetic state [48]. It has also been observed in middle-aged people that obesity and dyslipidemia are the strongest predictors of oxLDL levels [51]. The association between cardiovascular disease (CVD) and oxLDL has been demonstrated in others studies [52-55]. Considering the associations shown in this study (sCD36 and oxLDL levels with traditional cardiovascular risk factors such as obesity, hypercholesterolemia, hypertriglyceridemia and impaired fasting LDL-C), measuring sCD36 and oxLDL levels can be incorporated into cardiovascular risk factors in young subjects for early diagnosis of cardiovascular disease.

Our research has some limitations. We could not study the associations between sCD36 and oxLDL levels with early atherosclerosis. As our study is comprised of young subjects without clinical atherosclerotic diseases, we were only able to study associations between traditional cardiovascular risk factors with sCD36 and oxLDL levels. Whether the increase of these markers in young subjects is associated with the silent phase of atherosclerosis remains to be elucidated. The authors believe that a greater obese group is desirable to improve the power of the study.

Conclusions

In this research, sCD36 and oxLDL levels are associated with cardiovascular risk factors, particularly with obesity, hypercholesterolemia, impaired fasting LDL-C and HDL-C and hypertriglyceridemia. Therefore, sCD36 and oxLDL levels may be potential early markers for CVD. However, these associations should be investigated in further studies.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

LERA performed ELISA assays, statistical analysis and writing the manuscript. UDCM carried out the immunoassays. ABSB performed biochemical measurements and quality control. JFMV and NCA participated in the critical revision of the manuscript. IPR conceived the study and participated in manuscript preparation. All authors read and approved the final manuscript.
Acknowledgements

We are grateful to Citalli Torrez Benítez, Zulema Quinto Flores and José Alberto González de la Cruz that participated in the patient enrollment and data collection. This study was supported by grants to IPR of the Fondo SEP-CONACYT (No. 106734) and Programa de Fortalecimiento Académico del Posgrado de Alta Calidad (0104/655/2013 C-677/2013). LERA received a fellowship of CONACYT (No. 236905).

Author details

1Laboratorio de Investigación en Obesidad y Diabetes, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guadalajara, Chilpancingo, Guerrero, México. 2Departamento de Biología Molecular y Genómica, Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México.

Received: 8 December 2013 Accepted: 23 April 2014

References

1. Lin CM, Li CY. Prevalence of Cardiovascular Risk Factors in Taiwanese Health Workers. Ind Health 2000, 38(4):397–402.
2. Cadiot G, Charron PM, Hognon A, Bonanno E, Bara A, Dierckx RA, Signore A. Molecular imaging in atherosclerosis. Eur J Nucl Med Mol Imaging 2010, 37(12):2381–2397.
3. Lakshmy R, Ahmad D, Abrahma RA, Sharma M, Vempala K, Das S, Reddy KS, Prabhakaran D. Paraoxonase gene Q192R & L55M polymorphisms in Indians with acute myocardial infarction & association with oxidized low density lipoprotein. J Biol Biochem (Pathophysiological) Research 2009, 29(5):470–476.
4. Rosolski RM, Wolociker N, Nasser M, Zerstor AE, Gidlund M, Puech-Leohi P: Oxidized low-density lipoprotein and anke-brachial pressure index in patients with clinically evident peripheral arterial disease. Clinics 2010, 65(4):383–387.
5. Silverstein RL. Inflammation, atherosclerosis, and arterial thrombosis: role of the scavenger receptor CD36. Olive Clin Med J 2009, 76(2):527–530.
6. Racouil N, Yao-Borengasser A, Varma V, Spencer HJ, McGregor RE, Jr., Peterson CA, Mehta JL, Kern PA. Association of scavenger receptors in adipose tissue with insulin resistance in nondiabetic humans. Arterioscler Thromb Vasc Biol 2009, 29(9):1326–1335.
7. Cuccur M, Wizit SJ, Spielmann P, Lüscher TF, Wenger RH, Matter CM. Hypoxia enhances lipid uptake in macrophages: Role of the scavenger receptors Lox, SRA, and CD36. Atherosclerosis 2013, 229(110–117).
8. Cho S, Kim E: CD36 as a multi-modal target for acute stroke therapy. J Neurochem 2009, 109(1):126–132.
9. Cho S: CD36 as a therapeutic target for endothelial dysfunction in stroke. Curr Pharm Des 2012, 18(25):3721–3730.
10. Feibablo M, Silvestr RL: CD36: Implications in Cardiovascular Disease. Int J Biochem Cell Biol 2007, 39(11):2012–2030.
11. Erdman UK, Cosio G, Helmers AJ, Gowda DC, Grinstein S, Kain KC. CD36 and TLR interactions in inflammation and phagocytosis: implications for malaria. J Immunol 2009, 183(10):4642–4659.
12. Gintborg D, Hjalgrim K, Andersen M, Henriquez KE, Beck-Nielsen H, Handberg A. Soluble CD36 and risk markers of insulin resistance and atherosclerosis are elevated in polycystic ovary syndrome and significantly reduced during pioglitazone therapy. Diabetes Care 2008, 31(2):328–334.
13. Ghoash A, Li W, Febbraro M, Espinola RG, McCrae KR, Cockrell E, Silverstein RL. Platelet CD36 mediates interactions with endothelial cell-derived microparticles and contributes to thrombosis in mice. J Clin Invest 2008, 118(10):3743–3752.
14. Petta S, Handberg A, Marchesini G, Camma C, Di Marco V, Cabbib D, Macaluso FS, Ciani A: High sCD36 plasma level is associated with steatosis and its severity in patients with genotype 1 chronic hepatitis C. J Viral Hepat 2013, 20(3):174–182.
15. Collot-Telieta S, Martin J, McDermott-Roe C, Poston R, McGregor XL: CD36 and macrophages in atherosclerosis. Cardiovasc Res 2007, 7(5):468–477.
41. Handberg A, Lopez-Bermejo A, Bassols J, Vendrell J, Ricart W, Fernandez-Real JM: Circulating soluble CD36 is associated with glucose metabolism and interleukin-6 in glucose-intolerant men. Diabetes Vasc Dis Res 2009, 6(1):15–20.

42. Liani R, Halvorsen B, Sestili S, Handberg A, Santilli F, Vazzana N, Formoso G, Aukrust P: Plasma levels of soluble CD36, platelet activation, inflammation, and oxidative stress are increased in type 2 diabetic patients. Free Radic Biol Med 2012, 52(8):1318–1324.

43. Alkhatatbeh MJ, Enjeti AK, Acharya S, Thorne RF, Lincz LF: The origin of circulating CD36 in type 2 diabetes. Nutr Diabetes 2013, e59. doi:10.1038/nutd.2013.1.

44. Neuparth MJ, Brandão J, Santos A, Coimbra S: Adipokines, Oxidized Low-Density Lipoprotein, and C-Reactive Protein Levels in Lean, Overweight, and Obese Portuguese Patients with Type 2 Diabetes. ISRN Obesity 2013, 142097:7. doi:10.1155/2013/142097.

45. Fernández-Sánchez A, Madrigal-Santillán E, Bautista M, Esquivel-Soto J, Morales-González A, Esquivel-Chirino C, Durante-Montiel I, Sánchez-Rivera G, Valadez-Vega C, Morales-González JA: Inflammation, Oxidative Stress, and Obesity. Int J Mol Sci 2011, 12(5):3117–3132.

46. Savini I, Catinari MV, Evangelista D, Gasperi V, Avigliano L: Obesity-associated oxidative stress: strategies finalized to improve redox state. Int J Mol Sci 2013, 14(5):10497–10538.

47. Himoto T, Tanii J, Miyoshi H, Morishita A, Yoneyama H, Kurokohchi K, Inukai H, Tani J, Miyoshi H, Morishita A, Yoneyama H, Kurokohchi K, Inukai H, Takano T, Tsukamoto Y, Yoshiyama M, Takeuchi K, Yoshikawa J, Shimamura K, Kimura J, Michishita I, Suzuki T, Nagai R: Oxidation of Circulating LDL in Impaired Glucose Tolerance. Free Radic Biol Med 2012, 52(4):1068–20.

48. Kopprasch S, Pietzsch J, Kuhlisch E, Fuecker K, Temelkova-Kurktschiev T, Beck-Nielsen H, RISC Investigators: Circulating soluble CD36 is associated with glucose metabolism and interleukin-6 in glucose-intolerant men. Diabetes Vasc Dis Res 2009, 6(1):15–20.

49. Handberg A, Mertens A, Verhamme P, Bogaerts K, Beyens G, Verhaeghe R, Handberg A, Højlund K, Gastaldelli A, Flyvbjerg A, Dekker JM, Petrie J, Piatti P, Ruiz-Hernández N, Espinoza-Zavala M, González JC, Leal-Herrera U, Reigosa-Yaniz A: Oxidized LDL and anti-oxidized LDL antibodies according uric acid levels in overweight women. Arch Cardiol Mex 2011, 81(3):188–96.

50. Handberg A, Hjälmund K, Gastañolli A, Flyvbjerg A, Dekker JM, Petrie J, Piatti P, Beck-Nielsen H, RISC Investigators: Plasma sCD36 is associated withmarkers of atherosclerosis, insulin resistance and fatty liver in a nondiabetic healthy population. J Intern Med 2012, 271(3):294–304.

51. Holvoet P, Mertens A, Verhamme P, Bogaerts K, Beyens G, Verhaeghe R, Handberg A, Højlund K, Gastaldelli A, Flyvbjerg A, Dekker JM, Petrie J, Piatti P, Ruiz-Hernández N, Espinoza-Zavala M, González JC, Leal-Herrera U, Reigosa-Yaniz A: Oxidized LDL and anti-oxidized LDL antibodies according uric acid levels in overweight women. Arch Cardiol Mex 2011, 81(3):188–96.

52. Holvoet P, Vanhaecke J, Janssens S, Van de Werf F: Circulating oxidized LDL is a useful marker for identifying patients with coronary artery disease. Arterioscler Thromb Vasc Biol 2001, 21(5):844–848.

53. Holvoet P, Vanhaecke J, Janssens S, Van de Werf F, Collen D: Oxidized LDL and malondialdehyde-modified LDL in patients with acute coronary syndromes and stable coronary artery disease. Circulation 1998, 98(15):1487–1494.

54. Toshima S, Hanefeld M, Kühne H, Julius U, Graessler J: Oxidation of Circulating LDL in Impaired Glucose Tolerance. Diabetol Metab Syndr 2013, 5(1):51.

55. Holvoet P, Kitchinovsky SB, Tracy RP, Mertens A, Rubin SM, Butler J, Goodpaster B, Harris TB: The metabolic syndrome, circulating oxidized LDL, and risk of myocardial infarction in well-functioning elderly people in the health, aging, and body composition cohort. Diabetes 2004, 53(4):1068–1073.

doi:10.1186/1471-2261-14-54
Cite this article as: Ramos-Arellano et al.: Circulating CD36 and oxLDL levels are associated with cardiovascular risk factors in young subjects. BMC Cardiovascular Disorders 2014 14:54.