Supplementary Information

Virulence Profiles of *Vibrio vulnificus* in German Coastal Waters, a Comparison of North Sea and Baltic Sea Isolates

Geographical Region	Sampling Site No.	Sampling Site	No. of Strains	Classification (Coastal Waters)	Bathing Water Quality
North Sea	1	Borkum	1	euhaline open coastal waters	excellent
	2	Dyksterhusen	3	mesohaline inner coastal waters	good
	3	Jemgum	1	mesohaline inner coastal waters	no designated beach
	4	Burhave	8	mesohaline inner coastal waters	excellent
	5	Dedesdorf	9	mesohaline inner coastal waters	no designated beach
	6	Kleinensiel	2	mesohaline inner coastal waters	no designated beach
	7	Bremerhaven	16	mesohaline inner coastal waters	no designated beach
	8	Wremen	5	mesohaline inner coastal waters	excellent
	9	Altenbruch	3	mesohaline inner coastal waters	excellent
		k.A.	2		
Baltic Sea	10	Mönkeberg	1	mesohaline inner coastal waters	Excellent
	11	Kiel-Dietrichsdorf	1	mesohaline inner coastal waters	no designated beach
	12	Wohlenberger Wiek	2	mesohaline inner coastal waters	good
	13	Kühlungsborn	1	mesohaline inner coastal waters	excellent
	14	Warnemünde	6	mesohaline open coastal waters	excellent
	15	Darss-Zingster Bodden chain, station 9	2	mesohaline inner coastal waters	no designated beach
	16	Darss-Zingster Bodden chain, station 8	2	mesohaline inner coastal waters	no designated beach
	17	Darss-Zingster Bodden chain, station 7	4	mesohaline inner coastal waters	no designated beach
	18	Greifswalder Bodden, station 5	2	mesohaline inner coastal waters	no designated beach
	19	Greifswalder Bodden, station 4	3	mesohaline inner coastal waters	no designated beach
	20	Greifswalder Bodden, station 3	5	mesohaline inner coastal waters	no designated beach
Table S1. Cont.

Geographical Region	Sampling Site No.	Sampling Site	No. of Strains	Classification (Coastal Waters)	Bathing Water Quality
Baltic Sea	21	Greifswalder Bodden, station 2	4	mesohaline inner coastal waters	no designated beach
	22	Lubmin	4	mesohaline inner coastal waters	excellent
	23	Karlshagen	3	mesohaline open coastal waters	excellent
	24	Trassenheide	1	mesohaline open coastal waters	excellent
	25	Greifswalder Bodden, station 1	2	mesohaline inner coastal waters	no designated beach
	26	Binz	7	mesohaline open coastal waters	excellent
	27	Rügen	1	mesohaline inner coastal waters	no designated beach

\(^\text{a}\) according to the European Water Framework Directive 2000/60/EC. \(^\text{b}\) according to the requirements of the European Bathing Water Directive 2006/7/EC; results from 2011.

Table S2. Detailed sampling information of *V. vulnificus* isolates examined in this study.

Strain ID	Origin	Sampling Site No.	Sampling Site Name	Seawater Temperature (°C)	Seawater Salinity (psu)	Sampling Date
VN-0279	B-sw	12	Wohlenberger Wiek	15.5	13	06.09.2011
VN-2813	N-sw	-	n.s.	n.s.	n.s.	16.05.2011
VN-2814	N-sw	-	n.s.	n.s.	n.s.	16.05.2011
VN-2961	B-sw	11	Kiel-Dietrichsdorf	18	n.s.	25.07.2011
VN-2969	B-sw	10	Mönkeberg	17.4	n.s.	25.07.2011
VN-3363	N-sd	4	Burhave	25.6	21.7	12.07.2010
VN-3364	N-sd	4	Burhave	25.6	21.7	12.07.2010
VN-3366	N-sd	4	Burhave	25.6	21.7	12.07.2010
VN-3367	N-sd	7	Bremerhaven	24.8	17.0	12.07.2010
VN-3368	N-sd	7	Bremerhaven	24.8	17.0	12.07.2010
VN-3369	N-sd	7	Bremerhaven	24.8	17.0	12.07.2010
VN-3373	N-sd	5	Dedesdorf	20.4	8.2	12.07.2010
VN-3374	N-sd	5	Dedesdorf	20.4	8.2	12.07.2010
VN-3378	N-sw	2	Dyksterhusen	20.4	20.5	20.07.2010
Strain ID	Origin	Sampling Site No.	Sampling Site Name	Seawater Temperature (°C)	Seawater Salinity (psu)	Sampling Date
----------	--------	-------------------	-------------------	---------------------------	--------------------------	---------------
VN-3379	N-sw	2	Dyksterhusen	20.4	20.5	20.07.2010
VN-3394	N-sd	8	Wremen	21.7	22.5	10.08.2010
VN-3398	N-sw	8	Wremen	21.7	22.5	10.08.2010
VN-3403	N-sw	8	Wremen	21.7	22.5	10.08.2010
VN-3408	N-sw	2	Dyksterhusen	19	14.2	17.08.2010
VN-3410	N-sw	4	Burchave	18.7	25.1	18.08.2010
VN-3411	N-sd	4	Burchave	18.7	25.1	18.08.2010
VN-3412	N-sw	7	Bremerhaven	20.5	19.3	18.08.2010
VN-3415	N-sw	7	Bremerhaven	20.5	19.3	18.08.2010
VN-3418	N-sd	7	Bremerhaven	20.5	19.3	18.08.2010
VN-3419	N-sw	5	Dedesdorf	20.7	6.2	18.08.2010
VN-3426	N-sd	5	Dedesdorf	20.7	6.2	18.08.2010
VN-3442	N-sd	1	Borkum	16	29.8	24.08.2010
VN-3443	N-sd	4	Burchave	15	11.8	07.09.2010
VN-3444	N-sd	4	Burchave	15	11.8	07.09.2010
VN-3446	N-sd	7	Bremerhaven	15	11.8	07.09.2010
VN-3448	N-sw	7	Bremerhaven	17.5	14.6	07.09.2010
VN-3451	N-sw	7	Bremerhaven	17.5	14.6	07.09.2010
VN-3454	N-sd	7	Bremerhaven	17.5	14.6	07.09.2010
VN-3457	N-sd	7	Bremerhaven	17.5	14.6	07.09.2010
VN-3461	N-sw	5	Dedesdorf	17.7	1.9	07.09.2010
VN-3465	N-sd	5	Dedesdorf	17.7	1.9	07.09.2010
VN-3467	N-sd	5	Dedesdorf	17.7	1.9	07.09.2010
VN-3477	N-sw	7	Bremerhaven	14.1	14.9	05.10.2010
VN-3478	N-sd	7	Bremerhaven	14.1	14.9	05.10.2010
VN-3479	N-sd	5	Dedesdorf	15.6	5.3	05.10.2010
Strain ID	Origin	Sampling Site No.	Sampling Site Name	Seawater Temperature (°C)	Seawater Salinity (psu)	Sampling Date
-----------	--------	------------------	-------------------	--------------------------	-------------------------	---------------
VN-3494	N-sw	7	Bremerhaven	17.5	14.6	07.09.2010
VN-3496	N-sw	7	Bremerhaven	17.5	14.6	07.09.2010
VN-3498	N-sd	4	Burhave	15	11.8	07.09.2010
VN-3500	N-sd	7	Bremerhaven	20.5	12.4	11.07.2011
VN-3506	N-sw	5	Dedesdorf	17.7	1.9	07.09.2010
VN-3518	N-sw	9	Altenbruch	n.s.	n.s.	12.06.2012
VN-3529	N-sw	6	Kleinensiel	n.s.	n.s.	02.08.2012
VN-3533	N-sw	8	Wremen	n.s.	n.s.	07.08.2012
VN-3536	N-sw	9	Altenbruch	n.s.	n.s.	07.08.2012
VN-3538	N-sw	6	Kleinensiel	n.s.	n.s.	13.08.2012
VN-3539	N-sw	3	Jemgum	n.s.	n.s.	14.08.2012
VN-3541	N-sw	8	Wremen	n.s.	n.s.	21.08.2012
VN-3542	N-sw	9	Altenbruch	n.s.	n.s.	06.09.2012
VN-3904	B-sd	19	Greifswalder Bodden, station 4	19.0	6.6	05.07.2011
VN-3905	B-sd	19	Greifswalder Bodden, station 4	19.0	6.6	05.07.2011
VN-3906	B-sd	18	Greifswalder Bodden, station 5	19.3	7.2	05.07.2011
VN-3909	B-sd	17	Bodden chain, station 7	19.2	7.9	05.07.2011
VN-3910	B-sd	17	Bodden chain, station 7	19.2	7.9	05.07.2011
VN-3912	B-sd	16	Bodden chain, station 8	19.0	7.1	05.07.2011
Code	Format	Depth	Location	Temperature	Salinity	Date
----------	--------	-------	---------------------------------	-------------	----------	------------
VN-3914	B-sd	15	Darss-Zingster Bodden chain, station 9	18.4	7.3	05.07.2011
VN-3915	B-sd	15	Darss-Zingster Bodden chain, station 9	18.4	7.3	05.07.2011
VN-3919	B-sd	25	Greifswalder Bodden, station 1	18.4	6.7	06.07.2011
VN-3921	B-sd	21	Greifswalder Bodden, station 2	18.9	6.6	06.07.2011
VN-3922	B-sw	20	Greifswalder Bodden, station 3	19.1	6.4	06.07.2011
VN-3924	B-sd	20	Greifswalder Bodden, station 3	19.1	6.4	06.07.2011
VN-3925	B-sd	12	Wohlenberger Wick	18.9	10.7	01.08.2011
Table S2. *Cont.*

Strain ID	Origin	Sampling Site No.	Sampling Site Name	Seawater Temperature (°C)	Seawater Salinity (psu)	Sampling Date
VN-3926	B-sd	25	Greifswalder Bodden, station 1	18.2	7.3	02.08.2011
VN-3927	B-sd	21	Greifswalder Bodden, station 2	19.5	6.2	02.08.2011
VN-3928	B-sw	20	Greifswalder Bodden, station 3	18.9	6.2	02.08.2011
VN-3929	B-sd	20	Greifswalder Bodden, station 3	18.9	5.9	02.08.2011
VN-3931	B-sd	20	Greifswalder Bodden, station 3	18.9	5.9	02.08.2011
VN-3932	B-sd	19	Greifswalder Bodden, station 4	19.7	6.3	02.08.2011
VN-3934	B-sd	17	Darss-Zingster Bodden chain, station 7	19.7	5.6	03.08.2011
VN-3935	B-sd	16	Darss-Zingster Bodden chain, station 7	19.7	5.6	03.08.2011
VN-3937	B-sd	16	Darss-Zingster Bodden chain, station 8	20.7	3	03.08.2011
VN-3946	B-sd	21	Greifswalder Bodden, station 2	13.4	6.7	11.10.2011
VN-3947	B-sd	21	Greifswalder Bodden, station 2	13.4	6.7	11.10.2011
VN-3948	B-sd	18	Greifswalder Bodden, station 5	12.6	7.6	11.10.2011
VN-3959	B-sw	22	Lubmin	26	6.5	05.07.2010
VN-3960	B-sw	23	Karshagen	21.1	5.4	19.07.2010
VN-3961	B-sw	23	Karshagen	21.1	5.4	19.07.2010
VN-3962	B-sw	22	Lubmin	20	6.4	19.07.2010
VN-3964	B-sw	26	Binz	n.s.	6.7	23.07.2010
VN-3965	B-sw	26	Binz	n.s.	6.7	23.07.2010
VN-3966	B-sw	26	Binz	n.s.	6.7	23.07.2010
VN-3968	B-sw	26	Binz	n.s.	6.7	23.07.2010
VN-3969	B-sw	26	Binz	n.s.	6.7	23.07.2010
VN-3970	B-sw	22	Lubmin	n.s.	6.3	02.08.2010
VN-3971	B-sw	24	Trassenheide	20.9	6.6	02.08.2010
VN-3972	B-sw	23	Karshagen	21.5	6.5	02.08.2010
VN-3973	B-sw	13	Kühlungsborn	20.2	8.3	02.08.2010
Table S2. Cont.

Strain ID	Origin	Sampling Site No.	Sampling Site Name	Seawater Temperature (°C)	Seawater Salinity (psu)	Sampling Date
VN-3974	B-sw	14	Warnemünde	22.8	8	04.08.2010
VN-3975	B-sw	14	Warnemünde	22.8	8	04.08.2010
VN-3976	B-sw	14	Warnemünde	22.8	8	04.08.2010
VN-3977	B-sw	14	Warnemünde	22.8	8	04.08.2010
VN-3978	B-sw	14	Warnemünde	22.8	8	04.08.2010
VN-3979	B-sw	14	Warnemünde	22.8	8	04.08.2010
VN-3980	B-sw	26	Binz	21	6.6	09.08.2010
VN-3981	B-sw	22	Lubmin	5.4	19.5	11.07.2011
VN-3982	B-sw	26	Binz	n.s.	6.7	23.07.2010
VN-5163	B-sw	27	Rügen	n.s.	n.s.	12.06.2011

N, North Sea; B, Baltic Sea; sw, seawater; sd, sediment; n.s., not specified. * Sampling site numbers shown in Figure 1.

Table S3. Allelic profiles of the 101 *V. vulnificus* isolates tested (new STs/alleles are displayed in red).

Strain ID	MLST ST	MLST-Cluster	Clonal Complex (SLV-Level)	Clonal Complex (TLV-Level)	glp	gyrB	mdh	metG	purM	dtdS	lysA	pntA	pyrC	tnaA		
VN-0279	217	IIB	Singleton	Singleton	12	39	42	57	27	41	77	13	11			
VN-2813	219	I	Singleton	Singleton	70	57	2	9	8	97	4	6	78	73		
VN-2814	219	I	Singleton	Singleton	70	57	2	9	8	97	4	6	78	73		
VN-2961	220	IIB	Singleton	Singleton	4	58	12	13	12	24	92	1	13	19		
VN-2969	220	IIB	Singleton	Singleton	4	58	12	13	12	24	92	1	13	19		
VN-3363	223	I	Singleton	Singleton	49	40	44	24	8	107	6	65	5	50		
VN-3364	223	I	Singleton	Singleton	49	40	44	24	8	107	6	65	5	50		
VN-3366	224	I	Singleton	Singleton	47	14	2	7	8	19	33	15	5	74		
VN-3367	219	I	Singleton	Singleton	70	57	2	9	8	97	4	6	78	73		
VN-3368	225	IIA	Singleton	Singleton	44	1	37	59	25	98	106	1	23	7		
VN-3369	225	IIA	Singleton	Singleton	44	1	37	59	25	98	106	1	23	7		
Strain ID	MLST ST	MLST-Cluster	Clonal Complex (SLV-Level)	Clonal Complex (TLV-Level)	glp	gyrB	mdh	metG	purM	dtdS	lysA	pntA	pyrC	tnaA		
-----------	---------	--------------	--------------------------	--------------------------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
VN-3373	227	I	Singleton	Singleton	7	23	22	2	8	22	4	66	56	18		
VN-3374	228	I	Singleton	Singleton	71	12	41	8	22	69	67	56	73			
VN-3378	229	I	1	Singleton	19	61	73	60	65	100	96	80	12	76		
VN-3379	171	IIA	Singleton	Singleton	55	1	4	5	30	66	42	10	37	53		
VN-3394	230	I	Singleton	Singleton	72	60	2	24	9	22	12	13	84	18		
VN-3398	231	I	Singleton	Singleton	19	42	13	12	8	22	12	13	84	18		
VN-3403	230	I	Singleton	Singleton	72	60	2	24	9	22	12	13	84	18		
VN-3408	232	I	Singleton	Singleton	24	23	70	12	9	35	68	80	30			
VN-3410	233	I	1	2	19	61	62	60	65	100	96	80	11	76		
VN-3411	234	I	Singleton	Singleton	19	42	13	62	40	82	12	13	64	15		
VN-3412	235	I	Singleton	Singleton	7	11	22	59	94	65	69	12	51			
VN-3415	236	I	Singleton	Singleton	8	62	2	13	19	75	5	9	18			
VN-3418	237	I	Singleton	Singleton	73	15	7	9	35	91	13	33	9			
VN-3419	238	I	Singleton	Singleton	9	23	11	24	8	96	56	11	12	9		
VN-3426	239	I	4	Singleton	74	11	2	22	60	103	12	20	81	50		
VN-3442	239	I	4	2	74	61	62	60	65	100	96	80	11	76		
VN-3443	240	I	1	2	19	61	73	60	65	100	96	80	11	76		
VN-3444	241	IIA	Singleton	Singleton	35	63	25	25	105	114	36	43	77			
VN-3446	242	I	Singleton	Singleton	75	42	12	9	22	12	70	82	78			
VN-3448	250	I	Singleton	Singleton	26	2	3	62	110	12	20	84	83			
VN-3451	243	I	Singleton	Singleton	76	64	60	8	106	98	13	83	79			
VN-3454	244	I	Singleton	Singleton	10	28	7	8	107	76	71	15	80	79		
VN-3457	234	I	Singleton	19	42	13	62	40	82	12	13	64	15			
VN-3461	244	I	Singleton	10	28	13	7	8	107	26	71	15	80			
VN-3465	245	I	Singleton	47	14	17	18	8	44	18	21	4	9			
VN-3467	246	I	Singleton	18	19	17	17	8	5	95	21	4	26			
Strain ID	MLST ST	MLST-Cluster	Clonal Complex (SLV-Level)	Clonal Complex (TLV-Level)	glp	gyrB	mdh	metG	purM	dtdS	lysA	pntA	pyrC	tnaA		
----------	---------	--------------	----------------------------	----------------------------	-----	------	-----	------	------	------	------	------	------	------	------	------
VN-3477	247	I	Singleton	Singleton	71	23	2	12	61	22	113	7	26	62		
VN-3478	248	IIA	Singleton	Singleton	77	65	71	63	23	108	41	72	59	81		
VN-3479	244	I	Singleton	Singleton	10	28	13	7	8	107	26	71	15	80		
VN-3494	249	I	Singleton	Singleton	71	66	44	64	59	109	100	69	11	82		
VN-3496	250	I	Singleton	Singleton	26	2	2	3	62	110	12	20	84	83		
VN-3498	240	I	Singleton	Singleton	19	61	73	60	65	100	96	80	11	76		
VN-3500	252	I	Singleton	Singleton	78	67	2	22	9	22	12	73	26	10		
VN-3506	253	I	Singleton	Singleton	52	28	11	23	8	34	60	21	5	52		
VN-3518	254	I	Singleton	Singleton	79	16	75	2	9	111	17	18	85	45		
VN-3529	255	I	Singleton	Singleton	80	23	9	12	63	111	64	74	9	84		
VN-3533	255	I	Singleton	Singleton	80	23	9	12	63	111	64	74	9	84		
VN-3536	256	I	Singleton	Singleton	81	43	9	12	63	22	93	74	86	85		
VN-3538	110	IIA	Singleton	Singleton	38	1	12	31	27	23	36	1	48	47		
VN-3539	257	I	Singleton	Singleton	13	14	15	40	9	40	6	25	5	4		
VN-3541	258	I	Singleton	Singleton	74	26	2	22	60	103	12	75	81	18		
VN-3542	259	I	Singleton	Singleton	68	73	2	22	65	112	112	25	11	18		
VN-3904	133	I	6	3	13	14	15	7	34	6	15	14	14			
VN-3905	287	I	2	5	47	14	11	61	8	64	53	23	17	41		
VN-3906	260	I	Singleton	Singleton	82	2	20	2	8	107	110	71	87	86		
VN-3909	261	I	Singleton	Singleton	47	12	74	22	8	2	6	76	50	87		
VN-3910	262	IIB	Singleton	Singleton	12	39	14	42	25	24	92	41	13	11		
VN-3912	263	IIB	Singleton	Singleton	6	4	13	14	7	25	27	61	77	13	11	
VN-3914	113	I	4	7	50	8	10	7	9	22	33	9	5	30		
VN-3915	264	I	Singleton	Singleton	69	14	11	7	9	113	105	78	88	39		
VN-3919	265	I	Singleton	Singleton	1	8	41	10	3	9	114	33	15	49	44	
VN-3921	266	I	Singleton	Singleton	84	38	11	23	9	34	110	5	17	49		
Strain ID	MLST ST	MLST-Cluster	Clonal Complex (SLV-Level)	Clonal Complex (TLV-Level)	glp	gyrB	mdh	metG	purM	dtdS	lysA	pntA	pyrC	tnaA		
-----------	---------	--------------	---------------------------	---------------------------	-----	------	-----	------	------	------	------	------	------	------	------	------
VN-3922	226	IIB	Singleton	Singleton	4	13	42	42	23	67	103	13	13	11		
VN-3924	268	I	Singleton		3	13	14	15	7	9	5	6	15	14	45	
VN-3925	217	IIB	Singleton	Singleton	12	39	42	29	57	27	41	77	13	11		
VN-3926	251	I	2	Singleton	5	47	14	11	61	8	99	53	23	17	41	
VN-3927	269	I	Singleton		1	8	8	10	3	9	5	6	15	14	45	
VN-3928	268	I	Singleton		3	13	14	15	7	9	5	6	15	14	45	
VN-3929	268	I	Singleton		3	13	14	15	7	9	5	6	15	14	45	
VN-3931	270	I	Singleton		1	8	40	10	3	9	22	33	15	14	45	
VN-3932	271	I	Singleton	Singleton	47	41	11	23	8	64	59	5	5	49		
VN-3933	226	IIB	Singleton	Singleton	4	13	42	42	23	67	103	13	13	11		
VN-3934	272	IIB	3	Singleton	4	13	14	15	7	9	5	6	15	14	45	
VN-3935	144	I	Singleton	Singleton	47	14	2	7	41	19	17	46	15	15	44	
VN-3936	273	I	5	Singleton	8	8	10	3	9	115	41	15	15	44		
VN-3947	274	I	Singleton	Singleton	85	40	2	65	13	81	1	46	5	44		
VN-3948	226	IIB	Singleton	Singleton	4	13	42	42	23	67	103	13	13	11		
VN-3959	275	I	Singleton	Singleton	18	14	11	2	3	116	62	5	53	25		
VN-3960	126	I	Singleton		1	8	8	10	3	9	22	55	15	49	44	
VN-3961	133	I	6	Singleton	3	13	14	15	7	9	34	6	15	14	44	
VN-3962	269	I	Singleton		1	8	8	10	3	9	115	17	15	49	44	
VN-3964	128	IIB	Singleton	Singleton	12	13	14	13	12	4	41	1	13	11		
VN-3965	113	I	4	Singleton	7	50	8	10	7	9	22	33	9	5	30	
VN-3966	276	I	4	Singleton	7	86	8	10	7	9	22	33	9	5	30	
VN-3968	128	IIB	Singleton	Singleton	12	13	14	13	12	4	41	1	13	11		
VN-3969	132	I	Singleton		8	49	40	44	7	8	22	57	15	5	50	
VN-3970	277	I	Singleton		8	49	40	44	2	8	22	57	5	5	50	
VN-3971	278	I	Singleton	Singleton	87	42	11	7	8	82	57	65	5	45		
Table S3. Cont.

Strain ID	MLST ST	MLST-Cluster	Clonal Complex (SLV-Level)	Clonal Complex (TLV-Level)	glp	gyrB	mdh	metG	purM	dtdS	lysA	pntA	pyrC	tnaA	
VN-3972	277	I	Singleton	Singleton	49	40	44	2	8	22	58	5	5	50	
VN-3973	268	I	Singleton	3	13	14	15	7	9	5	6	15	14	45	
VN-3974	279	I	Singleton	Singleton	47	69	46	7	3	107	108	79	5	88	
VN-3975	280	I	5	Singleton	1	8	8	10	66	9	115	41	15	15	44
VN-3976	281	IIB	Singleton	Singleton	4	13	14	29	43	24	109	32	13	11	
VN-3977	281	IIB	Singleton	Singleton	4	13	14	29	43	24	109	32	13	11	
VN-3978	282	I	Singleton	Singleton	52	42	2	7	8	35	4	5	4	4	
VN-3979	128	IIB	Singleton	Singleton	12	13	14	13	12	4	41	1	13	11	
VN-3980	269	I	Singleton	1	8	8	10	3	9	115	17	15	15	49	44
VN-3981	283	I	Singleton	Singleton	45	2	20	2	8	60	26	20	17	43	
VN-3982	284	I	6	3	13	14	15	7	9	34	6	15	14	39	
VN-5163	65	I	7	9	13	14	15	7	9	40	6	25	5	4	

MLST, multilocus sequence typing; ST, sequence type; SLV, single locus variant; TLV, triple locus variant.
Table S4. Primers and probes used for PCR amplification and sequencing.

Primer Name	Specificity/Gene Target/Designation	Sequence (5’ to 3’)	Amplicon (bp)	T_a (ºC)	Reference
SerE-F	specific for serovar E	TGTTGTTCTTGCCCACTTC	665	64	[1]
SerE-R	specific for serovar E	CGCGCTTAGATTTGTCTCAC	[1]		
Bt2-F	specific for biotype 2	AGAGATGGAAAGAAACAGGCG	344	[1]	
Bt2-R	specific for biotype 2	GGACAGATAAAGGGCAATGG	[1]		
vvHA-F	V. vulnificus-specific hemolysin	CGCCACCCACTTTGGGCGCC	519	[1]	
vvHA-R	V. vulnificus-specific hemolysin	CGCGGTACACGGTGGCGCG	[1]		
UtoxF		GASTTTGTGTTGCGGGAACGGAAC	435	60	[2]
VvtoxR	V. vulnificus-specific toxR	AAGCGGAACGAAGACTCCGAC	[2]		
vcg-typeC-F	virulence correlated gene clinical allele	AGCTGGCGATAGCGATCT	277	56	[3]
vcg-typeE-F	virulence correlated gene environmental allele	CTCAATTGACAATGATCT	47		[3]
vcg-typeC/E-R	virulence correlated gene	CGCTTAGGATGATCGGTG	[2]		
VVA1612F	Region XII, 5’flanking region	ACCCTGATCGTGGGCTATCT	2.257	65	[4]
VVA1613R	Region XII, chondroitinase AC lyase	GGAGCGGTGATGATCGGTG	[4]		
VVA1634F	Region XII, arylsulfatase A	TGGACCGCAACCTAGACAC	1.364	55	[4]
VVA1634R	Region XII, arylsulfatase A	ATGATGCCAAGCTGAGAGAAGAAGCTGAGATGATCGGTG	[4]		
VVA1612bF	Region XII, 5’flanking region	TGGAGAGCGCAACAGAATGAC	1.200	65	[4]
VVA1637R	Region XII, 3’flanking region	AACATCAACCAACGAGATCGAGATGATCGGTG	[4]		
VVA1633a_F	Region XII	CGTATCATCAGCATGTAAGAAGC	2483	60	this study
VVA1635c_R	Region XII	GGTTCATCGTCCCCAAATGG	this study		
VVA1633b_F	Region XII	TCGAGATTGCAAACGCCGACC	this study		
VVA1635a_R	Region XII	CGGCGTAGAGAATGATAACG	this study		
VVA1635b_R	Region XII	CTGACATCATCAGACACAGTTC	this study		
VVA1634a_F	Region XII, arylsulfatase A	GGCACGGTCCAGAATTGG	this study		
VVA1634a_R	Region XII, arylsulfatase A	TGATCGAAACGTGCCATAGCC	this study		
VVA1634b_F	Region XII, arylsulfatase A	TCTATTCGGCAACGTTGAC	this study		
VVA1634b_R	Region XII, arylsulfatase A	GCAAGAATCATCGGGCATCTTTG	this study		
Primer Name	Specificity/Gene Target/Designation	Sequence (5′ to 3′)	Amplicon (bp)	T_a (°C)	Reference
-------------	------------------------------------	---------------------	--------------	----------	-----------
VVA1634c_F	Region XII, arylsulfatase A	CCCCTATCAAAACCAACAAC	this study		
VVA1634d_F	Region XII, arylsulfatase A	GCTGCTTTACCGATGTGCTC	this study		
Vvu16S51-F	16S rRNA gene	CAAGTCGAGCGGCAGCA	171	62	[5]
Vvu16S221-R	16S rRNA gene	TCCTGACGCGAGAGGCC			[5]
Vvu16SA-P	16S rRNA gene type A allele	6-FAM-TGATAGCTTCGGCTCAAT-MGBNFQ	probe		[5]
Vvu16SB-P	16S rRNA gene type B allele	VIC-CCCGTAGGCATATGC-MGBNFQ	probe		[5]
nanA-F	sialic acid catabolism (SAC) cluster, aldolase,	TKATCGCCGCTCCYCATACA	745	58	[6]
nanA-R	sialic acid catabolism (SAC) cluster, aldolase,	GCAACGCGCCACCTATTCAAC			[7]
Man IIA F	mannitol fermentation operon, enzyme IIA	GATGTTGGTGAACAACCTTCTGC	243	61	[8]
Man IIA R	mannitol fermentation operon, enzyme IIA	TCTGAGCCTGTTGGATGCC			[8]

T_a, annealing temperature. a used for gene sequencing; b used for Real-Time PCR.
Table S5. Genotypic and phenotypic characteristics of *V. vulnificus* strains from the Baltic Sea and North Sea.

Strain ID	Source	Sampling Site No.	BT	Serum Resistance	Mannitol Fermentation	16S rRNA Type	vcg Type	Region XII	nanA	MLST ST	MLST Cluster	Risk Group
VN-0279	B-sw	12	1	R	−	AB	E	+	+	217	IIB	2
VN-2813	N-sw	–	1	R	+	A	E	−	+	219	I	2
VN-2814	N-sw	–	1	R	+	A	E	−	+	219	I	2
VN-2961	B-sw	11	1	R	+	B	E	+	−	220	IIB	2
VN-2969	B-sw	10	1	R	+	AB	E	+	−	220	IIB	2
VN-3363	N-sd	4	1	R	+	A	E	+	−	223	I	2
VN-3364	N-sd	4	1	R	+	A	E	+	−	223	I	2
VN-3366	N-sd	4	1	R	−	A	E	−	−	224	I	1
VN-3367	N-sw	7	1	R	+	A	E	−	+	219	I	2
VN-3368	N-sw	7	1	I	+	B	E	−	+	225	IIA	2
VN-3369	N-sw	7	1	R	+	B	C	−	+	225	IIA	2
VN-3373	N-sd	5	1	R	−	A	E	−	−	227	I	1
VN-3374	N-sd	5	1	R	+	A	E	−	+	228	I	2
VN-3378	N-sw	2	1	R	−	A	E	−	+	229	I	2
VN-3379	N-sw	2	1	R	+	B	C	+	+	171	IIA	2
VN-3394	N-sd	8	1	R	+	A	E	+	+	230	I	2
VN-3398	N-sw	8	1	R	+	A	E	+	+	231	I	2
VN-3403	N-sw	8	1	R	+	A	E	+	+	230	I	2
VN-3408	N-sw	2	1	R	+	A	E	+	+	232	I	2
VN-3410	N-sw	4	1	R	−	A	E	−	+	233	I	2
VN-3411	N-sd	4	1	I	+	A	E	−	+	234	I	2
VN-3412	N-sw	7	1	R	+	A	E	−	+	235	I	2
VN-3415	N-sw	7	1	R	−	A	E	−	+	236	I	2
Strain ID	Source	Sampling Site No.	BT	Serum Resistance	Mannitol Fermentation	16S rRNA Type	vcg Type	Region XII	nanA	MLST-Cluster	Risk Group	
----------	--------	-------------------	----	------------------	----------------------	---------------	-----------	------------	------	--------------	------------	
VN-3418	N-sd	7	1	R	+	A	E	+	+	237	I	2
VN-3419	N-sw	5	1	R	+	A	E	−	+	238	I	2
VN-3426	N-sd	5	1	R	+	A	E	+	+	239	I	2
VN-3442	N-sd	1	1	R	+	A	E	+	+	239	I	2
VN-3443	N-sd	4	1	R	−	A	E	−	+	240	I	2
VN-3444	N-sd	4	1	R	+	B	C	+	−	241	IIA	2
VN-3446	N-sd	7	1	I	+	A	E	−	+	242	I	2
VN-3448	N-sw	7	1	R	+	A	E	+	+	250	I	2
VN-3451	N-sw	7	1	I	−	A	E	−	−	243	I	1
VN-3454	N-sd	7	1	S	−	A	E	−	−	244	I	1
VN-3457	N-sd	7	1	R	+	A	E	−	+	234	I	2
VN-3461	N-sw	5	1	S	−	A	E	−	−	244	I	1
VN-3465	N-sd	5	1	R	−	A	E	−	−	245	I	1
VN-3467	N-sd	5	1	R	−	A	E	−	−	246	I	1
VN-3477	N-sw	7	1	I	+	A	E	+	+	247	I	2
VN-3478	N-sd	7	1	R	+	B	C	−	+	248	IIA	2
VN-3479	N-sd	5	1	S	−	A	E	−	−	244	I	1
VN-3494	N-sw	7	1	R	+	A	E	+	+	249	I	2
VN-3496	N-sw	7	1	R	+	A	E	−	+	250	I	2
VN-3498	N-sd	4	1	R	−	A	E	−	+	240	I	2
VN-3500	N-sd	7	1	R	+	A	E	+	+	252	I	2
VN-3506	N-sw	5	1	R	−	A	E	−	+	253	I	2
VN-3518	N-sw	9	1	R	−	A	E	−	−	254	I	1
Strain ID	Source	Sampling Site No.	BT	Serum Resistance	Mannitol Fermentation	16S rRNA Type	vcg Type	Region XII	nanA	MLST -ST	MLST Cluster	Risk Group
-----------	--------	------------------	----	-----------------	----------------------	---------------	----------	-----------	------	----------	-------------	------------
VN-3529	N-sw	6	1	R	+	A	E	+	+	255	I	2
VN-3533	N-sw	8	1	R	+	A	E	−	+	255	I	2
VN-3536	N-sw	9	1	R	+	A	E	+	+	256	I	2
VN-3538	N-sw	6	1	R	+	B	E	+	+	110	IIA	2
VN-3539	N-sw	3	1	S	−	A	E	−	−	257	I	1
VN-3541	N-sw	8	1	R	+	A	E	+	+	258	I	2
VN-3542	N-sw	9	1	R	−	A	E	−	−	259	I	1
VN-3904	B-sd	20	1	R	−	A	E	−	−	287	I	1
VN-3905	B-sd	20	1	I	−	A	E	−	−	260	I	1
VN-3906	B-sd	19	1	R	−	A	E	−	−	261	I	1
VN-3909	B-sd	18	1	R	−	A	E	−	−	262	IIB	2
VN-3910	B-sd	18	1	R	−	AB	E	+	+	263	IIB	2
VN-3912	B-sd	17	1	R	−	AB	E	+	−	113	I	1
VN-3914	B-sd	16	1	I	−	A	E	−	−	264	I	1
VN-3915	B-sd	16	1	R	−	A	E	−	−	265	I	1
VN-3919	B-sd	26	1	I	−	A	E	−	−	266	I	1
VN-3921	B-sd	22	1	I	−	A	E	−	−	226	IIB	2
VN-3922	B-sd	21	1	R	−	AB	E	+	+	217	IIB	2
VN-3924	B-sd	21	1	R	−	A	E	−	−	251	I	1
VN-3925	B-sd	13	1	R	−	AB	E	+	+	269	I	1
VN-3926	B-sd	26	1	R	−	A	E	−	−	268	I	1
VN-3927	B-sd	22	1	I	−	A	E	−	−	269	I	1
VN-3928	B-sw	21	1	R	−	A	E	−	−	268	I	1
Strain ID	Source	Sampling Site No.	BT	Serum Resistance	Mannitol Fermentation	16S rRNA Type	vcg Type	Region XII	nanA	MLST-ST	MLST Cluster	Risk Group
-----------	--------	------------------	----	------------------	-----------------------	--------------	----------	------------	------	---------	-------------	------------
VN-3929	B-sd	21	1	R	−	A	E	−	−	268	I	1
VN-3931	B-sd	21	1	R	−	A	E	−	−	270	I	1
VN-3932	B-sd	20	1	R	−	A	E	−	−	271	I	1
VN-3934	B-sd	18	1	R	−	AB	E	+	+	226	IIB	2
VN-3935	B-sd	17	1	R	−	AB	E	+	−	272	IIB	2
VN-3937	B-sd	17	1	R	−	A	E	−	−	144	I	1
VN-3946	B-sd	22	1	I	−	A	E	−	−	273	I	1
VN-3947	B-sd	22	1	R	−	A	E	−	−	274	I	1
VN-3948	B-sd	19	1	R	−	AB	E	+	+	226	IIB	2
VN-3959	B-sw	23	1	R	−	A	E	−	−	275	I	1
VN-3960	B-sw	24	1	S	−	A	E	−	−	126	I	1
VN-3961	B-sw	24	1	R	−	A	E	−	−	133	I	1
VN-3962	B-sw	23	1	S	−	A	E	−	−	269	I	1
VN-3964	B-sw	27	1	R	−	AB	E	+	+	128	IIB	2
VN-3965	B-sw	27	1	I	−	A	E	−	−	113	I	1
VN-3966	B-sw	27	1	I	−	A	E	−	−	276	I	1
VN-3968	B-sw	27	1	R	−	AB	E	+	+	128	IIB	2
VN-3969	B-sw	27	1	R	+	A	E	+	−	132	I	2
VN-3970	B-sw	23	1	R	+	A	E	+	−	277	I	2
VN-3971	B-sw	25	1	R	+	A	E	−	−	278	I	2
VN-3972	B-sw	24	1	R	+	A	E	+	−	277	I	2
VN-3973	B-sw	14	1	R	−	A	E	−	−	268	I	1
VN-3974	B-sw	15	1	I	−	A	E	−	−	279	I	1
Table S5. Cont.

Strain ID	Source	Sampling Site No.	BT	Serum Resistance	Mannitol Fermentation	16S rRNA Type	vcg Type	Region XII	nanA	MLST-ST	MLST Cluster	Risk Group
VN-3975	B-sw	15	1	R	−	A	E	−	−	280	I	1
VN-3976	B-sw	15	1	R	−	AB	E	+	+	281	IIB	2
VN-3977	B-sw	15	1	R	−	AB	E	+	+	281	IIB	2
VN-3978	B-sw	15	1	R	+	A	E	−	−	282	I	2
VN-3979	B-sd	15	1	R	−	AB	E	+	+	128	IIB	2
VN-3980	B-sw	27	1	R	−	A	E	−	−	269	I	1
VN-3981	B-sw	23	1	R	−	A	E	−	−	283	I	1
VN-3982	B-sw	27	1	R	−	A	E	−	−	284	I	1
VN-5163	B-sw	28	1	S	−	A	E	−	−	65	I	1

N, North Sea; B, Baltic Sea; sw, seawater; sd, sediment; R, resistant; I, intermediate resistant; S, susceptible; ST, sequence type.

a Sampling site numbers shown in Figure 1.
b Biotype assessed biochemically and by multiplex PCR.
c Mannitol fermentation tested biochemically and by presence of mannitol fermentation operon (PCR).
d Risk group 2 comprising strains with two or more pathogenicity markers, risk group 1 comprising strains without or with one pathogenicity marker.
Figure S1. Population structure of *V. vulnificus* biotype 1 isolates from the North Sea (▲) and Baltic Sea (●) based on concatenated MLST sequences of three housekeeping genes (gyrB, dtdS, and pyrC). Bootstrap values above 70% are shown next to the branches. Semicircles around the tree highlight the association of strains to MLST cluster I (white), IIA (grey), and IIB (black). Sequences from clinical (□) and environmental (○) Baltic Sea isolates from a previous study [6] were included for comparison.

References

1 Sanjuan, E.; Amaro, C. Multiplex PCR assay for detection of vibrio vulnificus biotype 2 and simultaneous discrimination of serovar e strains. *Appl. Environ. Microbiol. 2007*, 73, 2029–2032.

2 Bauer, A.; Roervik, L.M. A novel multiplex pcr for the identification of *vibrio parahaemolyticus*, *vibrio cholerae* and *vibrio vulnificus*. *Lett. Appl. Microbiol. 2007*, 45, 371–375.

3 Rosche, T.M.; Yano, Y.; Oliver, J.D. A rapid and simple PCR analysis indicates there are two subgroups of *vibrio vulnificus* which correlate with clinical or environmental isolation. *Microbiol. Immunol. 2005*, 49, 381–389.
4 Cohen, A.L.V.; Oliver, J.D.; DePaola, A.; Feil, E.J.; Boyd, E.F. Emergence of a virulent clade of *vibrio vulnificus* and correlation with the presence of a 33-kilobase genomic island. *Appl. Environ. Microbiol.* 2007, 73, 5553–5565.

5 Vickery, M.C.L.; Nilsson, W.B.; Strom, M.S.; Nordstrom, J.L.; DePaola, A. A real-time pcr assay for the rapid determination of 16s rRNA genotype in *vibrio vulnificus*. *J. Microbiol. Methods* 2007, 68, 376–384.

6 Bier, N.; Bechlars, S.; Diescher, S.; Klein, F.; Hauk, G.; Duty, O.; Strauch, E.; Dieckmann, R. Genotypic diversity and virulence characteristics of clinical and environmental *vibrio vulnificus* isolates from the baltic sea region. *Appl. Environ. Microbiol.* 2013, 79, 3570–3581.

7 Lubin, J.B.; Kingston, J.J.; Chowdhury, N.; Boyd, E.F. Sialic acid catabolism and transport gene clusters are lineage specific in *vibrio vulnificus*. *Appl. Environ. Microbiol.* 2012, 78, 3407–3415.

8 Froelich, B.; Oliver, J. Orientation of mannitol related genes can further differentiate strains of *vibrio vulnificus* possessing the vege allele. *Adv. Stud. Biol.* 2011, 3, 151–160.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).