Identification of an algal xylan synthase indicates that there is functional orthology between algal and plant cell wall biosynthesis

Jensen, Jacob Kruger; Busse-Wicher, Marta; Poulsen, Christian Peter; Fangel, Jonatan Ulrik; Smith, Peter James; Yang, Jeong-Yeh; Pena, Maria-Jesus; Dinesen, Malene Hessellund; Martens, Helle Juel; Melkonian, Michael; Wong, Gane Ka-Shu; Moremen, Kelley W.; Wilkerson, Curtis Gene; Scheller, Henrik Vibe; Dupree, Paul; Ulvskov, Peter; Urbanowicz, Breeanna Rae; Harholt, Jesper

Published in:
New Phytologist

DOI:
10.1111/nph.15050

Publication date:
2018

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Jensen, J. K., Busse-Wicher, M., Poulsen, C. P., Fangel, J. U., Smith, P. J., Yang, J-Y., ... Harholt, J. (2018). Identification of an algal xylan synthase indicates that there is functional orthology between algal and plant cell wall biosynthesis. New Phytologist, 218(3), 1049-1060. https://doi.org/10.1111/nph.15050
Identification of an algal xylan synthase indicates that there is functional orthology between algal and plant cell wall biosynthesis

Jacob Krüger Jensen1,2, Marta Busse-Wicher3, Christian Peter Poulsen4, Jonatan Ulrik Fangel4, Peter James Smith5,6, Jeong-Yeh Yang5, Maria-Jesus Peña5,6, Malene Hesselund Dinesen4, Helle Juel Martens7, Michael Melkonian8, Gane Ka-Shu Wong9, Kelley W. Moremen5, Curtis Gene Wilkerson1,2,10, Henrik Vibe Scheller11,12, Paul Dupree8, Peter Ulvskov5, Breeanna Rae Urbanowicz5,6 and Jesper Harholt4

1Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; 2DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48823, USA; 3Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK; 4Carlsberg Research Laboratory, 1799, Copenhagen V, Denmark; 5Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA; 6BioEnergy Science Center, Oak Ridge National Lab Laboratory, Oak Ridge, TN 37831, USA; 7Department of Plant and Environmental Sciences, University of Copenhagen, 1971, Frederiksberg C., Denmark; 8Botanical Institute, Department of Biological Sciences, Universität zu Köln, Köln D-50674, Germany; 9BGI-Shenzhen, Beishan Industrial Zone, Yantian District Shenzhen 518083, China; 10Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; 11Joint BioEnergy Institute, Emeryville, CA 94608, USA; 12Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Summary
- Insights into the evolution of plant cell walls have important implications for understanding these diverse and abundant biological structures. In order to understand the evolving structure-function relationships of the plant cell wall, it is imperative to trace the origin of its different components.
- The present study is focused on plant 1,4-β-xylan, tracing its evolutionary origin by genome and transcriptome mining followed by phylogenetic analysis, utilizing a large selection of plants and algae. It substantiates the findings by heterologous expression and biochemical characterization of a charophyte alga xylan synthase.
- Of the 12 known gene classes involved in 1,4-β-xylan formation, XYS1/IRX10 in plants, IRX7, IRX8, IRX9, IRX14 and GUX occurred for the first time in charophyte algae. An XYS1/IRX10 ortholog from Klebsormidium flaccidum, designated K. flaccidum XYLAN SYNTHASE-1 (KfXYS1), possesses 1,4-β-xylan synthase activity, and 1,4-β-xylan occurs in the K. flaccidum cell wall.
- These data suggest that plant 1,4-β-xylan originated in charophytes and shed light on the origin of one of the key cell wall innovations to occur in charophyte algae, facilitating terrestrialization and emergence of polysaccharide-based plant cell walls.

Introduction
A large diversity of cell wall structural variations exist within the plant kingdom (Domozycz et al., 2007; Harholt et al., 2012). One important avenue for understanding this diversity is by studying wall evolution and the rise of new architectural solutions and principles. Intriguingly, all plant cell walls are largely based on the same limited number of polysaccharide classes. At the same time, it is clear that some cell wall functions can be fulfilled by different architectural solutions, for example involving different groups of polysaccharides (Carpita & Gibeaut, 1993; Harholt et al., 2012). This suggests that simple carbohydrate composition gives a limited perspective of wall structure, whereas the combinatorial aspects of polymer–polymer interactions are the key players that define architectural complexity. How and why these different interactions evolved, including their specific relationships to wall architecture and function, remain enigmatic. However, before we can answer these questions it is necessary to establish the key routes of cell wall evolution by determining the evolutionary origins of the different cell wall polysaccharide classes to fill in current gaps in our knowledge.

A direct ancestor of land plants (embryophytes) has not been identified, but the Zygnematophyceae (Fig. 1) have been proposed as the closest extant relatives (Wickett et al., 2014). The cell walls of charophytes (streptophyte green algae) vary between taxonomic groups in a similar manner to the taxonomic group variation of land plants (Fangel et al., 2012). Polysaccharide-based cell walls typical of land plants can be detected in...
Klebsormidiophyceae (Fig. 1), marking the transition from a wall centered on mineralized organic scales in the basal charophyte *Mesostigma viride* to one based on polysaccharides (Becker et al., 1991; Domozycz et al., 1991; Sørensen et al., 2011). Cell wall complexity is found to increase in the more recently diverged classes, such as Coleochaetophyceae and Zygmenatomatoaceae, seemingly presenting an all-polysaccharide wall with the full complement of wall glycolytes typical of plants, that is, cellulose, xylan, xylloglucan, mannan, mixed-linkage glucan, and pectin. Hence, it has been proposed that what is often conceptualized as a ‘plant cell wall’, based on material composition and organization, emerged in a distant algal ancestor, most likely a common ancestor of Klebsormidiophyceae and plants (Sørensen et al., 2011; Mikkelsen et al., 2014).

Cellulose biosynthesis in plants is orthologous to that in prokaryotic organisms, but the origin of the biosynthetic activities for the remaining cell wall polysaccharides in higher plants is less clear. Xylloglucan and pectin putatively originated within charophyte algae (streptophyte green algae), while xylan, mannan, and mixed-linkage glucan also exist in some noncharophyte algae and bacteria (Painter, 1983; Fangel et al., 2012; Salméan et al., 2017). Hence, direct proof of functional orthology between algal and plant cell wall biosynthetic activities has been missing. This increases uncertainty as a result of the plausible convergent evolution of the different polymers, exemplified by the multiple occurrences of mixed-linkage glucans throughout the tree of life. Identification of putative cell wall biosynthetic genes based on a de novo transcriptome assembly in charophytes has previously been published (Mikkelsen et al., 2014); however, this study utilized a limited transcriptome collection of insufficient quality, and carried out no biochemical confirmation of enzyme function, resulting in ambiguous conclusions. The completion of the *Klebsormidium flaccidum* genome sequence (Hori et al., 2014), in combination with the 1000 Plants (1KP) Initiative (Matasci et al., 2014), now provides the opportunity to identify full-length *K. flaccidum* gene sequences, resolve their phylogeny by comparison with algae and plants across the kingdom, and characterize the biochemical activities of gene products.

Xylan is an abundant and complex cell wall component in plants, particularly in commelinid primary walls and in secondary cell walls of all angiosperms (Scheller & Ulvskov, 2010). It consists of a polymeric backbone of 1,4-β-linked D-xylose (Xyl) decorated mainly with acetyl groups, and is further substituted by 1-arabinofuranose (Araf) in commelinins or methylated or unmethylated D-glucuronic acid (GlcA) in noncommelinid angiosperms (Scheller & Ulvskov, 2010; Smith et al., 2017; Fig. 2). The elucidation of the fine structure of xylans found outside angiosperms is less complete and based only on a few species: gymnosperms produce methyl-glucurono-arabinoxylan (Busse-Wicher et al., 2016), lycophytes and pteridophytes contain both methylated and unmethylated GlcA substitutions (Kulkarni et al., 2012), and the bryophyte *Physcomitrella patens* only contains unmethylated GlcA substituents (Kulkarni et al., 2012).

Proteins from eight protein families have been implicated in xylan biosynthesis, and based on their functions, 12 protein classes can be defined (Table 1; Fig. 2). For some of these classes, biochemical function has been established in vitro using recombinant proteins, including IRX10 and IRX10-L, which are 1,4-β-xylan xylosyltransferases producing the 1,4-β-xylan backbone polymer (Jensen et al., 2014; Urbanowicz et al., 2014). In the case of IRX10-L, long 1,4-β-xylan oligomers were produced in vitro and the protein was accordingly renamed XYLAN SYNTHASE-1 (XYS1) (Urbanowicz et al., 2014). *P. patens* encodes one IRX10/XYS1 ortholog, *PpIRX10*, which produces
1,4-β-xylan polymers that are of a similar size to those made by XYS1 in vitro (Jensen et al., 2014). Other putative glycosyltransferases from families GT8, GT43, and GT47 also affect xylan backbone formation when knocked out in Arabidopsis; however, their specific functions have remained unclear. Enzyme activities that contribute to 1,4-β-xylan backbone decorations include acetyl-, methyl-, and glycosyltransferases, and genes encoding the main enzyme activities have all been identified and characterized in angiosperms (Table 1).

Of the different plant cell wall polysaccharides, three in particular lend themselves to having their emergence in evolution pinpointed, that is, 1,4-β-xylan, xyloglucan, and the pectic polysaccharide homogalacturonan. We chose to focus on xylan and its biosynthesis in K. flaccidum, as this polymer was the earliest to emerge of the three and involves a number of biosynthetic activities that have been amenable to biochemical characterization (Sørensen et al., 2011; Rennie et al., 2012; Urbanowicz et al., 2012, 2014; Jensen et al., 2014). Our analysis points to the evolutionary appearance of the various xylan synthesis-specific genes identified to date, describing innovations of this complex biocatalytic process as they occurred in two major phases over the course of plant evolution. Further, we demonstrated xylan synthase activity for one of the members of the earliest xylan synthesis-specific gene homologs identified to date: a K. flaccidum IRX10/XYS1 ortholog (KfXYS1). Finally, we identified and characterized the xylan in the cell walls of K. flaccidum, which is probably the product of the KfXYS1. The enzymatic activity of KfXYS1, combined with its evolutionary relatedness to modern IRX10/XYS1 xylan synthases, highlights the functional orthology between algal and plant cell wall biosynthesis.

Materials and Methods

Bioinformatics

The proteome files of the relevant divisions were obtained from the 1000 Plants (1KP) Initiative (Matasci et al., 2014). Relevant sequences for phylogenetic analysis from P. patens, Selaginella
moellendorffii, Arabidopsis and rice were obtained using Harholt et al. (2012) as guide. A positive/negative list was made for identification of xylan-related biosynthetic enzymes and the closest nonxylan related ortholog (Supporting Information Table S1). Sequences from this list were used as a database for blasting proteins from the 1KP dataset as previously described (Mikkelsen et al., 2014), substituting the CAZy database with our positive list and eliminating false positives by substituting the Arabidopsis GT-depleted database with our negative list. Phylogenetic analysis was performed as previously described (Ulvsikov et al., 2013). Newick format tree files and sequences used in this manuscript are available in Notes S1. Evaluation of evolutionarily conserved protein motifs was performed using the SALAD website with their interactive service (Mihara et al., 2010; http://salad.dna.affrc.go.jp/salad/en/).

Heterologous protein expression in *Saccharomyces cerevisiae*: purification and activity assays

For heterologous protein expression in *S. cerevisiae*, YFP was cloned into pESC-URA by moving it from pPICZ A-YFP (Jensen et al., 2014) using EcoRI and NotI. *KfXYS1* was obtained by *de novo* DNA synthesis (IDT, Coralville, IA, USA) with codon optimization for *S. cerevisiae* and cloned into the pESC-URA-YFP using EcoRI and PflMI restriction sites, generating pESC-URA-KfXYS1-YFP. The sequence GTAATGCGGT was engineered around the start codon for proper initiation of translation.

Saccharomyces cerevisiae YPH499 harboring pESC-URA-KfXYS1-YFP was grown in SC synthetic minimal medium (3.4 g Yeast Nitrogen Base l−1 media; ThermoFisher, Waltham, MA, USA), 2.8 g Yeast Synthetic Drop-out Media (ThermoFisher), 10 g aluminum sulfate, 0.2 g leucine, 0.2 g tryptophan, 0.1 g histidine, and 0.2 g alanine plates with 2% glucose for 24 h at 30°C. Next, scrapes of these plates were used to inoculate 250 ml of liquid SC medium with 2% glucose and incubated overnight in baffled flasks at 30°C in an orbital shaker at 180 rpm. At an OD600 of c. 2, the cells were collected by centrifugation (20 min at 2451 g) and resuspended in SC medium with 2% galactose, and then incubated at 18°C as before. Expression levels were monitored by fluorescence microscopy and cells were harvested by centrifugation 11 h after induction of recombinant protein expression. At the time of harvest, OD600 was c. 2, corresponding to c. 0.75 g of cells. Cell pellets were stored at −80°C. Protein purification and assays involving the fluorescently labeled xylooligosaccharide acceptor were performed as previously described (Jensen et al., 2014) and were based on c. 0.75 g of cells per batch.

Heterologous protein expression and purification of KfXYS1 in HEK293 cells

KfXYS1 was cloned in a manner similar to that described in Urbanowicz et al. (2014). Briefly, to create Gateway entry clones, the truncated coding region of *KfXYS1* (amino acids 27–445) was PCR-amplified (KfXYS1_27F, 5′-AACATTGTACCTTC AAGGCAGATCCCTCTTTTGTGTTGTTGGT-3′ and KfXYS1_445F, 5′-ACAAAGAGCTGGTGTTCAATTTTCATCATCACCAC G-3′) from pESC-URA-KfXYS1-YFP plasmid DNA. A second set of universal primers (attrB_Adapter-F, 5′-GGGGACAAAGTT TGTACAAAAAGCAGGCTCTGAAAACCTGTACTTTTCA AGGC-3′ and attrB_Adapter_R, 5′-GGGGACACTTTGTAC AAGAAAGCTGGGTC-3′) was used to complete the attrB recombination site and append a tobacco etch virus (TEV) protease cleavage site (Urbanowicz et al., 2014). The attrB-PCR product was cloned into the pDONR221 plasmid vector (Life Technologies, Carlsbad, CA, USA) using Gateway BP Clonase II Enzyme Mix (Life Technologies) to create an entry clone. To generate an expression clone of KfXYS1 (pGEn2-EXP-KfXYS1), the entry clone was recombined into a Gateway-adapted version of the pGEn2 mammalian expression vector (pGEn2-DEST) (Meng et al., 2013), using Gateway LR Clonase II Enzyme Mix (Life Technologies). The resulting expression construct (His-GFP-KfXYS1) encodes a fusion protein comprising an amino-terminal signal sequence, an 8xHis tag, an AviTag recognition site, the ‘superfolder’ GFP (sfGFP) coding region, the recognition sequence of TEV protease, and residues 27–445 of *KfXYS1*.

Recombinant expression and purification were performed by transient transfection of suspension culture HEK293-F cells with pGEn2-EXP-KfXYS1 and a HisTap HP 1 ml column (GE Healthcare, Little Chalfont, UK), as previously described (Meng et al., 2013; Urbanowicz et al., 2014). Protein purity was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Fig. S1). Purified His-GFP-KfXYS1 was concentrated to 0.45 mg ml−1 using an Amicon Ultra Centrifugal Filter Device (30000 MWCO; Merck Millipore; http://www.merckmillipore.com) and dialyzed (3500 MWCO) into HEPES sodium salt-HCl buffer (75 mM, pH 6.8) or sodium phosphate buffer (75 mM, pH 6.8) and used directly for reactions, or stored at 4 or −80°C in aliquots.

MALDI-TOF-MS analysis of KfXYS1 reaction products

Enzyme reactions (20 μl) consisted of 3 mM UDP-xylose (UDP-Xyl; Carbosource, Athens, GA, USA), 0.5 mM xyloptenate (Megazyme, Bray, Ireland), labeled at the reducing terminus with 2-amino benzamide as previously described (Ishii et al., 2002; Urbanowicz et al., 2014), and 4.5 μg of purified His-GFP-KfXYS1 in HEPES sodium salt-HCl buffer (75 mM, pH 6.8). Reactions were allowed to persist for 4 h before being prepared for analysis by matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis on an LT Bruker LT Microflex spectrometer (Bruker, BillERICA, MA, USA) as described previously (Urbanowicz et al., 2014). Positive-ion spectra were recorded with a minimum of 200 laser shots summed to generate each spectrum.

Nuclear magnetic resonance (NMR) analysis of KfXYS1 reaction products

Products of a scaled-up reaction were structurally characterized by NMR analysis. Reactions (300 μl) were carried out at 25°C in sodium phosphate buffer (75 mM, pH 6.8), containing 5 mM UDP-Xyl, 1.5 mM xylobiose (Sigma) and 10 μg of purified...
Monosaccharide composition analysis

Cell wall material was prepared by grinding aliquots of 50 mg *K. flaccidum* cells in a TissueLyser MM 200 (Qiagen, Hilden, Germany) for 2 min at 30 s⁻¹. Each sample was then extracted using 1.5 ml 70% ethanol for 5 d at 55°C, followed by four cycles of 1.5 ml 70% ethanol, one cycle of 1.5 ml acetone, and then air-dried overnight. Monosaccharide composition was performed on cell wall material as previously described (Øbro et al., 2004) using a Dionex ICS 5000 + DC system (ThermoFisher) equipped with a high-performance anion exchange chromatograph with pulsed amperometric detection and a 4 μm SA-10 column (2 × 250 mm and guard column). Run conditions were 40°C column temperature, 0.3 ml min⁻¹ eluent flow rate, 1 mM NaOH for 0–8 min, followed by 100 mM NaOH from 8 to 20 min, and subsequently 10 min equilibration at 1 mM NaOH.

Polysaccharide analysis using carbohydrate gel electrophoresis

Polysaccharide analysis using carbohydrate gel electrophoresis (PACE) was performed as previously described (Goubet et al., 2002) using GH10 xylanase (Brown et al., 2007), GH11 xylanase (Brown et al., 2011), GH115 α-glucuronosidase (Rogowski et al., 2014), β-xylidosidase (Uniprot: Q92458) and arabinofuranosidase (NS39128). The last two enzymes were kindly provided by Novozymes (Novozymes, Bagsværd, Denmark).

Comprehensive microarray and polymer profiling

Samples of 10 mg *K. flaccidum* cell wall material were extracted with 300 μl of 50 mM dianinocyclohexanetetraacetic acid (CDTA; pH 7.5), and subsequently with 300 μl of 4 M NaOH with 0.1% w/w NaBH₄. Extracts were spotted, probed and analyzed as previously described (Pedersen et al., 2012). Antibodies BS-400-2 (Meikle et al., 1991; Biosupplies, Bundoora, Australia), and LM10 (McCartney et al., 2005), LM11 (McCartney et al., 2005), LM12 (Pedersen et al., 2012), LM23 (Pedersen et al., 2012), LM27 (Cornuault et al., 2015) and LM28 (Cornuault et al., 2015; PlantProbes, Leeds, UK) were used for the analysis.

Immunohistochemistry

Klebsormidium flaccidum cells were embedded in medium-grade LR White (Polysciences, Hirschberg an der Bergstrasse, Germany) as previously described (Bell et al., 2013) and sectioned on a Reichert-Jung/LKB Supernova ultramicrotome (2 μm; Reichert, Depew, NY, USA). Sections were treated with 5% skimmed milk in 100 mM PBS solution for 30 min and labeled using LM11 antibody (PlantProbes). A goat anti-rat antibody conjugated to Alexa Fluor 555 was used to visualize the binding of LM11. Calcofluor White was applied to stain cell wall β-glucans. Images were recorded on a Leica CLSM SP5 microscope (Leica, Heidelberg, Germany) using 405 nm excitation and 419–534 nm emission (Calcofluor White), and 543 nm excitation and 582–700 nm emission (Alexa Fluor 555). Negative controls using only the secondary antibody showed no nonspecific binding.

Results

Evolutionary appearance of genes involved in xylan biosynthesis

Utilizing the phylogenetic span of the 1KP dataset (Matasci et al., 2014) and genomic sequences from plants and *K. flaccidum* (Hori et al., 2014), we obtained phylogenetic trees with ample evolutionary width and resolution. These enabled us to study clade structures of protein families implicated in xylan biosynthesis, and to pinpoint the earliest orthologs for several of them (Table 1; Figs 3, S2–S9). These analyses suggest that xylan evolution occurred in two major phases, one in algae and a second in higher plants.

The early algal phase involves charophyte algae and the GT8, GT43, GT47 and DUF579/GXMT protein families. These represent candidate genes implicated in 1,4-β-xylan backbone formation, GlcA addition to the backbone, and subsequent GlcA methylation (Fig. 2). The second phase most probably involves flowering plants, specifically basal flowering plants and commelinid monocots, and the DUF231, GT61 and BAHD protein families (Fig. 2). Genes from these families have been implicated in xylan backbone acetylation, addition of arabinosyl and xylosyl substituents to the xylan backbone, and coumaric and ferulic acid transferase activity, respectively. Hence the second phase involves further diversification of xylan structure and probably reflects new functional role(s) of this glycopolymer in wall architecture.

The specific steps of the second phase of xylan evolution appear complex and remained unresolved. The DUF231, GT61 and BAHD protein families are each highly diversified in higher plants, and only a few members from each family have been linked to xylan synthesis. While ancient members of the families...
exist, none are closely related to the modern xylan-specific members. Interestingly, we observed a high degree of diversification in basal flowering plants, and then later in commelinid monocots, particularly for GT61 and BAHD. One hypothesis is that xylan-specific activities developed from different but related catalytic specificities. The time of diversification of these large protein families could in this way indicate the emergence of new specificities towards polymers such as xylan.

A charophyte IRX10/XYS1 ortholog displays β-1,4-xylan synthase activity in vitro

Pinpointing early orthologs by sequence analysis primarily defines the oldest possible origin of the individual xylan-specific activities. However, enzymatic activity of such orthologs is required to unambiguously determine if the modern activities are a result of catalytic conservation or if they evolved from a related enzyme that does not act in the xylan synthesis pathway. IRX10/XYS1 orthologs of the early algal phase are particularly interesting. While other proteins involved in 1,4-β-xylan backbone formation exist in plants, the IRX10/XYS1 orthologs are the only group of proteins that have been enzymatically implicated in 1,4-β-xylan backbone synthesis, and therefore play a central role among the proteins attributed to this process in plants.

In *K. flaccidum*, four full-length sequences showed sequence homology to IRX10/XYS1 and the closely related FRA8 (Table S2). Moreover, one of these proteins, designated *K. flaccidum* XYLANSYNTHASE-1 (*Kf*XYS1), showed a high degree of sequence conservation to IRX10/XYS1. BLAST protein alignment showed that *Kf*XYS1 and *At*XYS1 share a 0.75 identity score (75% amino acid sequence identity across 376 continuous residues of the 415 amino acid *At*XYS1 sequence; Table S3). This is a higher score than for the proven 1,4-β-xylan xylosyltransferase *PoIRX10_4* from *Plantago ovata*, an herbaceous dicot that is phylogenetically much closer to Arabidopsis than to charophyte algae. In comparison, the *K. flaccidum* IRX8, IRX9 and IRX14 orthologs were all below 0.50 in identity scores with their respective Arabidopsis orthologs (Table S3), suggesting that these have been less well preserved. Furthermore, protein motif hierarchical clustering showed that all protein motifs shared among the four known 1,4-β-xylan xylosyltransferases (with the exception of a protein motif that is unique to *PoIRX10_4*) are conserved in *Kf*XYS1 (Fig. 4).

A high degree of conservation is supportive of xylan synthase activity; however, to provide biochemical evidence we heterologously expressed *Kf*XYS1 and characterized its enzymatic activity. Initially, we expressed *Kf*XYS1 in *S. cerevisiae* with a C-terminal YFP protein tag to facilitate affinity purification.
Purified KfXYS1-YFP was incubated in the presence of UDP-Xyl and 1,4-β-xylotetraose fluorescently labeled with anthranilic acid, and the reaction products were analyzed by normal-phase high-performance liquid chromatography. Xylan xylotransferase activity was evident by the appearance of multiple new peaks, relative to the control containing only 1,4-β-xylotetraose (Fig. 5a). These data suggested that up to nine successive Xyl transfer events occurred under these conditions. Activity levels and peak retention times are comparable to reactions previously reported for AXYS1 and PpIRX10 (Jensen et al., 2014; Urbanowicz et al., 2014). A partial digestive of the KfXYS1-YFP reaction products with a 1,4-β-xylan-specific xylanase further supported the idea that the linkages catalyzed by KfXYS1 are indeed β-1,4-Xyl linkages (Fig. S10a). No activity was detected when using UDP-glucose, UDP-arabinopyranose (UDP-Arap) or UDP-arabinofuranose (UDP-Araf) as donor substrates (Fig. S10b).

Xylan polymers consisting solely of 1,3-β-Xyl linkages and mixed-linkage (1,3)(1,4)-β-xylans occur in chlorophytes and red algae (Painter, 1983). To further investigate the linkage composition of the KfXYS1 reaction products by NMR spectroscopy, we heterologously expressed the protein in HEK293 cells. A predicted transmembrane domain in the N-terminus of KfXYS1 was substituted with a His-GFP protein tag in the HEK293 heterologous expression system, and the recombinant KfXYS1 protein was expressed and purified (His-GFP-KfXYS1). Expression and secretion of the His-GFP-KfXYS1 fusion protein in transiently transfected HEK293F cells resulted in high amounts of enzyme secretion (c. 100 mg l⁻¹) as determined by measuring the relative fluorescence (GFP fluorescence/His-GFP-KfXYS1, 1380) of the recombinant protein secreted into the media (Meng et al., 2013; Urbanowicz et al., 2017), facilitating the large-scale reactions suitable for detailed product analyses. Expression in HEK293F cells resulted in highly active enzyme preparations capable of adding as many as 29 Xyl residues to a starting 2-aminobenzamide-xylotetraose acceptor (Fig. 5b). 1D ¹H NMR characterization of reaction mixtures containing xylobiase, UDP-Xyl and His-GFP-KfXYS1 showed depletion of UDP-Xyl and an increase in internal 1,4-β-Xyl linkages, relative to control reactions containing only xylobiase and UDP-Xyl (Fig. S11). To obtain a less complex spectrum derived from only the higher-order polysaccharide products, the reaction mixture was subjected to size exclusion chromatography to separate these from other reaction constituents, including UDP and xylobiase. This 1D ¹H NMR spectrum revealed prominent diagnostic signals of internal 1,4-β-Xyl linkages (Urbanowicz et al., 2014) (Fig. 5c), while 1,3-β-Xyl linkages, which would produce a clear signal at 4.68 ppm (Viana et al., 2011), were found to be absent.

These results show that KfXYS1 expressed in two separate heterologous expression systems using both N- and C-terminal protein tagging, displays 1,4-β-xylan synthase activity exclusively, consistent with a high level of protein homology to known plant xylan synthases. Hence, the enzymatic activity of this group of proteins has been conserved as far back as an extinct common ancestor of K. flaccidum and land plants, living c. 700 million yr ago (Douzery et al., 2004).

Klebsormidium flaccidum cell walls contain multiple species of substituted xylan

Having determined that KfXYS1 is a β-1,4-xylotransferase, we analyzed *K. flaccidum* cell walls to determine whether they contain 1,4-β-xylan. Monosaccharide compositional analysis of *K. flaccidum* cell wall material showed that they contain 59 µg Xyl mg⁻¹ cell wall material, making it one of the dominant monosaccharide constituents (Fig. 6a). To specifically confirm the presence of 1,4-β-xylan and to characterize its structure, we extracted *K. flaccidum* cell wall material with strong base and subjected these to 1,4-β-xylanase digestion. The resulting xylan oligosaccharides were analyzed by gel electrophoresis (PAGE).
was insensitive to β-xylosidase, indicating that it is not xylotriose, but probably a substituted oligosaccharide. The xylo-
oligosaccharides were insensitive to digestion with GH115 α-
glucuronosidase (Fig. 6b, lanes 6, 8 and 9). By contrast, digestion
with diagnostic xylan α-arabinofuranosidases (GH43 and GH62)
resulted in alterations in band patterning, indicating the presence
of α-Araf substituents (Fig. 6b, lane 7–9). The observation that
not all the bands were fully digested by these enzymes suggests
that there are other kinds of substitutions present in K. flaccidum
xylan and possibly linkages other than 1,4-β-Xyl in the backbone.
In conclusion, K. flaccidum cell wall material shows diagnostic
band patterns of 1,4-β-xylan with α-linked arabinosyl substi-
tutions and other additional unidentified modifications or linkages
in the backbone. Phylogenetic analysis of the known arabinosyl-
transferase from GT61 indicated that no orthologs are present in
K. flaccidum (Table 1). Therefore, this suggests that another class
of glycosyltransferases carries out this function in K. flaccidum,
representing a case of convergent evolution with regard to 1,4-β-
xylan α-arabinosyl decorations.

Sequential extraction of K. flaccidum cell wall material with
subsequent immobilization to nitrocellulose membranes and
probing with xylan-directed antibodies (comprehensive microar-
ray polymer profiling) resulted in substantial labeling by the 1,4-
β-xylan-specific antibody LM11 in both the CDTA and the
NaOH-soluble fractions (Fig. 6c). Additionally, by employing
antibodies directed at xylan with complex substitution patterns
(LM27, binding to xylan with complex substitution patterns such
as grass xylan, and LM28, binding to methylated and unmethyl-
ated glucuronosyl substituted xylan) we were able to confirm the
complex substitution pattern suggested by the PACE analysis.
LM27 and LM28 epitopes were present in separate fractions,
suggesting that at least two structurally different pools of xylan
are present in K. flaccidum. Immunohistochemical localization
with a xylan-specific antibody (LM11) showed that xylan was
present in the K. flaccidum cell wall in a punctate but distinct pat-
ttern on the luminal side of the cell, which may be interpreted to
be labeling of newly synthesized xylan immediately before inte-
gration into the wall matrix (Fig. 6d).

Discussion
The evolution of a polysaccharide-based cell wall was probably a
key event facilitating terrestrialization, making this a defining
moment in the evolution of life on land. A growing body of evi-
dence suggests that charophyte algae were the first to inhabit
land, and from these algae, land plants subsequently evolved c.
475 million yr ago (Harholt et al., 2016). In the present study,
we show enzymatic conservation between 1,4-β-xylan synthases
separated by c. 700 million yr of evolution. Interestingly, our
data-mining efforts did not identify any additional homologs
predating KfXYS1. Using specific antibodies and hydrolytic
enzymes, we also showed that K. flaccidum cell walls contain sub-
stituted 1,4-β-xylans. These xylans are probably the products of a
pathway involving KfXYS1. Our study therefore suggests that
charophyte algae are the evolutionary origin of the 1,4-β-xylans
of modern-day plants.
The xylan synthase activity of KfXYS1 is pivotal evidence in support of the hypothesis that the ‘plant cell wall’ emerged in charophyte algae. For instance, the biochemical orthology between KfXYS1 and embryophyte IRX10/XYS1 makes it likely that other seemingly functionally orthologous relationships in xyloglucan and pectin biosynthesis between charophyte algae and land plants are indeed genuine. With established functional orthology between early diverging charophyte alga and land plant cell wall biosynthetic processes, we can now establish with reasonable certainty that the land plant cell wall originated in an early ancestor in charophyte algae evolution.

Interestingly, IRX9 and IRX14, which are glycosyltransferase-like proteins required for xylan synthesis in planta, also appear in Klebsormidiophyceae (Figs 2, S4). These proteins do not seem to have essential catalytic functions in higher plants, and most likely have a role in anchoring IRX10 in the Golgi apparatus, as observed in Arabidopsis (Ren et al., 2014) and asparagus (Zeng et al., 2016). The function of IRX9 and IRX14 in Klebsormidiophyceae could be the same as in these higher plants, or they may be unrelated and were recruited later in evolution to participate in xylan synthesis. PARVUS and GXMT1 provide examples of the latter scenario as they are both implicated in xylan biosynthesis in Arabidopsis yet have orthologs in chlorophytes that do not produce xylan.

Klebsormidium flaccidum xylan appears to be highly substituted, but no GT61 or GUX orthologs were identified in K. flaccidum (Table 1; Fig. 2). This suggests that other classes of glycosyltransferases are involved in decorating its xylan backbone. This includes the apparent α-arabinosyl substituents, which have been associated with GT61 enzymes in grasses (Anders et al., 2012), suggesting a case of convergent evolution. Other examples exist where backbone substitutions are apparently reinvented readily, for example in xyloglucan side chain evolution (Tuomivaara et al., 2015) and possibly in psyllium seed mucilaginous layers that produce a highly arabinosyl- and xylosyl-substituted heteroxylan and encode an unusually high number of GT61 orthologs (Jensen et al., 2013).

While no GUX orthologs were identified in the K. flaccidum genome (consistent with its xylan being insensitive to α-glucuronosidase and no observable GlcA in the sugar
composition analysis), we identified an ortholog in Zygnematophyceae, the most recent group of charophyte algae to have evolved (Fig. 1). The GUX proteins form three phylogenetic subgroups, that is, charophytes, mosses and vascular plants (Fig. S6), with glucuronoxylan isolated and characterized from the latter two subgroups of plants (Kulkarni et al., 2012; Rennie & Scheller, 2014; Busse-Wicher et al., 2016). This suggests that the GUX proteins function as xylan glucuronosyltransferases in mosses. The vascular plant GUX subgroup further shows division between subgroups of Arabidopsis GUX2/4/5 and GUX1/3 orthologs. In Arabidopsis, even spacing of GlcA residues along the xylan backbone in secondary cell walls is provided by GUX1 (Bromley et al., 2013) and in primary cell walls by GUX3 (Mortimer et al., 2015). The even GlcA spacing facilitates binding to cellulose microfibrils through a twofold helical screw ribbon conformation of the glucuronoxylan, which probably exerts an influence on microfibril aggregation and organization (Simmons et al., 2016). The phylogenetic analysis therefore suggests that this prominent architectural principle arose in basal vascular plants.

As we see the contours of a polysaccharide-based cell wall evolve in charophytic algae, and its further evolution throughout the plant kingdom, a number of questions become increasingly pressing. Why were these polysaccharide classes (i.e. cellulose, xylan, xyloglucan, mannan, and pectin) selected? Why are some occasionally expendable in some cell walls and cell types, while seemingly indispensable to the organism as a whole and maintained consistently in land plants throughout evolution? Why have so few new polysaccharide classes, such as Rhamnogalacturonan II, emerged during the course of plant evolution? Why does utilization of different polysaccharides change during evolution and what differences in cell wall functionality, architectural principles and solutions drive these evolutionary events? By having a firmer understanding of the evolutionary span and context of the plant cell wall, we are now poised to begin to answer these fundamental questions in plant biology.

In conclusion, using a multifaceted approach involving genome and transcriptome mining and phylogenetic and biochemical analysis, KfXYS1 was identified and shown to possess 1,4-β-xylan synthase activity. Immunolabeling and biochemical analysis of K. flaccidum cell walls identified a cell wall-localized, highly substituted 1,4-β-xylan. These findings, along with an evolutionary analysis of the occurrence of xylan pathway enzymes, link plant xylan evolution to an ancestral charophytic alga with a diverging point c. 700 million yr ago.

Acknowledgements
This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494) (J.K.J. and C.G.W.). Work by H.V.S. was part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy. The Carlsberg Foundation, The Innovation Fund Denmark (IFD) under File no. 5112-00006B, and the Villum Foundation’s Young Investigator Program are gratefully acknowledged for support to M.H.D., C.P.P., J.U.F. and J.H. Immunohistochemistry and confocal microscopy were performed at the Center of Advanced Bioimaging (CAB), SCIENCE KU DK. P.D. and M.B-W. were supported by the Leverhulme Natural Material Innovation Centre. P.J.S., M-J.P. and B.R.U. were supported by funding provided by The BioEnergy Science (BESC) and The Center for Bioenergy Innovation (CBI), a US Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. J-Y.Y. and K.W.M. were supported by NIH grant P41GM103390 and G.J.B. was supported by NIH grant P01 GM107012. P.U. was supported by the Innovation Fund Denmark. We thank the Center for Plant and Microbial Complex Carbohydrates (DE-SC0015662) for equipment support. The authors declare no conflict of interest.

Author contributions
J.K.J. and J.H. conceived and initiated the project. J.K.J., M-B.W., C.P.P., H.J.M., P.J.S., B.R.U. and J.H. designed experiments. J.K.J., M-B.W., C.P.P., J.U.F., M.H.D., H.J.M., K.W.M., P.J.S., B.R.U., J-Y.Y., M-J.P., C.G.W., P.D., H.V.S., P.U. and J.H. performed experiments and interpreted the results. M.M. and G.K-S.W. provided unpublished sequences. The manuscript was written by J.K.J., B.R.U. and J.H. All authors edited and commented on the manuscript.

References
Anders N, Wilkinson MD, Lovegrove A, Freeman J, Tryfona T, Pellny TK, Weinmar T, Mortimer JC, Stott K, Baker JM et al. 2012. Glycosyl transferases in family 61 mediate arabinofuranosyl transfer onto xylan in grasses. *Proceedings of the National Academy of Sciences*, USA 109: 989–993.
Bartley LE, Peck ML, Kim S-R, Ebert B, Manisseri C, Chiniquy DM, Sykes R, Gao L, Rautengarten C, Vega-Sánchez ME et al. 2013. Overexpression of a BAHD acyltransferase, OsAt10, alters rice cell wall hydroxycinnamic acid content and saccharification. *Plant Physiology* 161: 1615–1633.
Becker B, Becker D, Kamerling JP, Mellonian M. 1991. 2-keto-sugar acids in green flagellates: a chemical marker for Prasinophycean scales. *Journal of Phycology* 27: 498–504.
Bell K, Mitchell S, Pautre D, Posch M, Opara K. 2013. Correlative imaging of fluorescent proteins in resin-embedded plant material. *Plant Physiology* 161: 1595–1603.
Bromley JR, Busse-Wicher M, Tryfona T, Mortimer JC, Zhang Z, Brown DM, Dupree P. 2013. GUX1 and GUX2 glucuronyltransferases decorate distinct domains of glucuronoxylan with different substitution patterns. *Plant Journal* 74: 423–434.
Brown D, Wrightman R, Zhang Z, Gomez LD, Atanassov I, Bukowski J-P, Tryfona T, McQueen-Mason SJ, Dupree P, Turner S. 2011. Arabidopsis genes IRREGULAR XYLEM (IRX15) and IRX15L encode DUF579-containing proteins that are essential for normal xylan deposition in the secondary cell wall. *Plant Journal* 66: 401–413.
Brown DM, Goubet F, Wong VW, Goodacre R, Stephens E, Dupree P, Turner SR. 2007. Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis. *Plant Journal* 52: 1154–1168.
Busse-Wicher M, Li A, Silveira RL, Pereira CS, Tryfona T, Gomes TCF, Skaf MS, Dupree P. 2016. Evolution of xylan substitution patterns in gymnosperms.
and angiosperms: implications for xylan interaction with cellulose. *Plant Physiology* 171: 2418–2431.

Carpiota NC, Gibeaut DM. 1993. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. *Plant Journal* 3: 1–30.

Chiniqy D, Sharma V, Schultluk A, Baidoo EE, Rautengarten C, Cheng K, Carroll A, Ulvskov P, Harholt J, Keasing JD et al. 2012. XAX1 from glycosyltransferase family 61 mediates xylosyltransfer to rice xylan. *Proceedings of the National Academy of Sciences, USA* 109: 17117–17122.

Cornuault V, Buffetfo F, Rydahl MG, Marcus SE, Torode TA, Xue J, Crépeau M-J, Faria-Blanc N, Willats WGT, Dupree P et al. 2015. Monoclonal antibodies indicate low-abundance links between heteroxylan and other glycans of plant cell walls. *Plants* 242: 1321–1334.

Domozych DS, Sefis A, Kiemi SN, Grett MR. 2007. The structure and biochemistry of charophycean cell walls: I. Pectins of *Penium maritimum*. *Protoplasma* 230: 99–115.

Domozych DS, Wells B, Shaw PJ. 1991. Basket scales of the green alga, *Mesostigma viride*: chemistry and ultrastructure. *Journal of Cell Science* 100: 397–407.

Douzery EJP, Snell EA, Bapteste E, Delsuc F, Philippe H. 2004. The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? *Proceedings of the National Academy of Sciences, USA* 101: 15386–15391.

Fangel JU, Ulvskov P, Knox JP, Mikkelsen MD, Harholt J, Popper ZA, Willats WGT. 2014. Biochemical and ultrastructural evidence that GH115 polysaccharide synthases are involved in cellulose synthesis in Arabidopsis. *PLoS ONE* 9: e35846.

Harsholt J, Moestrop O, Ulvskov P. 2016. Why plants were terrestrial from the beginning. *Trends in Plant Science* 21: 96–101.

Harsholt J, Sørensen I, Fangel J, Roberts A, Willats WGT, Scheller HV, Petersen BL, Banks JA, Ulvskov P. 2012. The glycans of the spikemoss *Selaginella moellendorffii* and a comparative study of its cell wall. *PLoS ONE* 7: e58546.

Harper AD, Bar-Peled M. 2002. Biosynthesis of UDP-xylene. Cloning and characterization of a novel Arabidopsis gene family, UXS, encoding soluble and putative membrane-bound UDP-glucuronic acid decarboxylase isoforms. *Plant Physiology* 130: 2188–2198.

Hori K, Maruyama F, Fujisawa T, Tagashi T, Yamamoto N, Seo M, Sato S, Yamada T, Mori H, Tajima N et al. 2014. *Klebsormidium flaccidum*: The location of the walls during growth. *Planta* 230: 397–407.

Ishii T, Ichiya J, Matsue H, Ono H, Maeda I. 2002. Fluorescent labeling of pectic oligosaccharides with 2-amino-benzamide and enzyme assay for pectin. *Carbohydrate Research* 337: 1023–1032.

Jensen JK, Johnson N, Willkerson CG. 2013. Discovery of diversity in xylan biosynthetic genes by transcriptional profiling of a heteroxylan containing mucilaginous tissue. *Frontiers in Plant Science* 4: 183.

Jensen JK, Johnson RR, Willkerson CG. 2014. Arabidopsis thaliana IRX10 and two related proteins from *Physcomitrella patens* are xylan xylosyltransferases. *Plant Journal* 80: 207–215.

Jensen JK, Kim H, Corcoron J-C, Orler R, Ralph J, Willkerson CG. 2011. The DUF579 domain containing proteins IRX15 and IRX15-L affect xylan synthesis in Arabidopsis. *Plant Journal* 66: 387–400.

Kulkarni AR, Peña MJ, Avci U, Mazumder K, Urbanowicz BR, Pattathil S, Yin Y, O’Neill MA, Roberts AW, Hahn MG et al. 2012. The ability of land plants to synthesize glucuronoxylans predates the evolution of tracheophytes. *Glycoconjugate Journal* 22: 439–451.

Matasci N, Hun L-H, Yan Z, Carpenter EJ, Wickett NJ, Mirzabz S, Nguyen N, Warnow T, Ayappalayam S, Barker M et al. 2014. Data access for the 1,000 plants (1KP) project. *GigaScience* 3: 17.

McCartney L, Marcus SE, Knox JP. 2005. Monoclonal antibodies to plant cell wall xylans and arabinoxylans. *Journal of Histochemistry and Cytochemistry* 53: 543–546.

Meikle PJ, Bonig I, Hoogenraad NJ, Clarke AE, Stone BA. 1991. The location of (1 → 3)-β-glucans in the walls of pollen tubes of *Nicotiana alata* using a (1 → 3)-β-glucan-specific monoclonal antibody. *Planta* 183: 1–8.

Meng L, Forouhar F, Thieker D, Gao Z, Ramiah A, Moniz H, Xiang Y, Seetharaman J, Milansina S, Su ET al. 2013. Enzymatic basis for N-glucan sialylation: structure of rat 92-kDa sialyltransferase (ST6GAL1) reveals conserved and unique features for glycan sialylation. *The Journal of Biological Chemistry* 288: 34680–34698.

Mikara M, Itoh T, Iwata T. 2010. SALAD database: a motif-based database of protein annotations for plant comparative genomics. *Nucleic Acids Research* 38: D835–D842.

Mikkelsen MD, Harholt J, Ulvskov P, Johansen IE, Fangel JU, Doblin MS, Bacic A, Willats WGT. 2014. Evidence for land plant cell wall biosynthetic mechanisms in charophyte green algae. *Annals of Botany* 114: 1217–1236.

Mortimer JC, Faria-Blanc N, Yu X, Tryftona T, Sorieul M, Ng YZ, Zhang Z, Stott K, Anders N, Dupree P. 2015. An unusual xylan in Arabidopsis primary cell wall synthesises by GUX3, IRX9L, IRX10L and IRX14. *Plant Journal* 83: 413–426.

Obro J, Harsholt J, Scheller HV, Orfila C. 2004. Rhamnogalacturonan I in *Solanum tuberosum* tubers contains complex arabinogalactan structures. *Trends in Plant Science* 65: 1429–1438.

Painter T. 1983. Algal polysaccharides. In: Aspinall G, ed. *The polysaccharides*. New York, NY: Academic Press, 195–285.

Pedersen HL, Fangel JU, McCleary B, Ruzanski C, Rydahl MG, Ralet M-C, Farkas V, von Schantz L, Marcus SE, Andersen MCF et al. 2012. Versatile high resolution oligosaccharide microarrays for plant glycobiology and cell wall research. *The Journal of Biological Chemistry* 287: 39429–39438.

Peña MJ, Zhong R, Zhou G-K, Richardson EA, O’Neill MA, Darvill AG, York WS, Ye Z-H. 2007. Arabidopsis irregular xylan8 and irregular xylan9: implications for the complexity of glucuronoxylan biosynthesis. *The Plant Cell* 19: 549–563.

Ren Y, Hansen SF, Ebert B, Lau J, Scheller HV. 2014. Site-directed mutagenesis of IRX9, IRX9L and IRX14 proteins involved in xylan biosynthesis: glycosyltransferase activity is not required for IRX9 function in Arabidopsis. *PLoS ONE* 9: e105014.

Rennie EA, Hansen SF, Baidoo EK, Hadi MZ, Keasing JD, Scheller HV. 2012. Three members of the Arabidopsis glycosyltransferase family 8 are xylan glucuronoxylans transferases. *Plant Physiology* 159: 1408–1417.

Rennie EA, Scheller HV. 2014. Xylan biosynthesis. *Current Opinion in Biotechnology* 26: 100–107.

Rogowski A, Basić A, Farinas CS, Solovoyova A, Mortimer JC, Dupree P, Gilbert HJ, Bolam DN. 2014. Evidence that GH115 γ-glucuronidase activity, which is required to degrade plant biomass, is dependent on conformational flexibility. *The Journal of Biological Chemistry* 289: 53–64.

Salmeán AA, Duffieux D, Harsholt J, Qin F, Michel G, Czjzek M, Willats WGT. 2010. The polysaccharides of *Klebsormidium flaccidum*: chemistry and ultrastructure. *Frontiers in Plant Science* 1: 286.

Sørensen I, Pettolino FA, Bacic A, Ralph J, Lu F, O’Neill MA, Friz Z, Rose JK, Domozych DS, Willats WGT. 2011. The charophycean green algae provide insights into the early origins of plant cell walls. *Plant Journal* 68: 201–211.

Tuomivaara ST, Yaki K, O’Neill MA, York WS. 2015. Generation and structural validation of a library of diverse xyloglucan-derived oligosaccharides, including an update on xyloglucan nomenclature. *Carbohydrate Research* 402: 56–66.
Ulvskov P, Paiva DS, Domozych D, Harholt J. 2013. Classification, naming and evolutionary history of glycosyltransferases from sequenced green and red algal genomes. PLoS ONE 8: e76511.

Urbanowicz BR, Bharadwaj VS, Alahuhta M, Peña MJ, Lunin VV, Bomble YJ, Wang S, Yang J-Y, Tuomivaara ST, Himmel ME et al. 2017. Structural, mutagenic and in silico studies of xyl glucan fucosylation in Arabidopsis thaliana suggest a water-mediated mechanism. Plant Journal 91: 931–949.

Urbanowicz BR, Peña MJ, Moniz HA, Moremen KW, York WS. 2014. Two Arabidopsis proteins synthesize acetylated xylan in vitro. Plant Journal 80: 197–206.

Urbanowicz BR, Peña MJ, Ratnaparkhe S, Avci U, Backe J, Steet HF, Foston M, Li H, O’Neill MA, Ragauskas AJ et al. 2012. 4-O-methylation of glucuronic acid in Arabidopsis glucuronoxylan is catalyzed by a domain of unknown function family 579 protein. Proceedings of the National Academy of Sciences, USA 109: 14253–14258.

Viana AG, Noseda MD, Gonçalves AG, Duarte MER, Yokoya N, Matulewicz MC, Cerezo AS. 2011. β-D-(1→4), β-D-(1→3) ‘mixed linkage’ xylans from red seaweeds of the order Nemaliales and Palmariales. Carbohydrate Research 346: 1023–1028.

Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci N, Ayyampalayam S, Barker MS, Burleigh JG, Gitzendanner MA et al. 2014. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proceedings of the National Academy of Sciences, USA 111: E4859–E4868.

Wisnart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau DD, Psychogios N, Dong E, Bouatra S et al. 2009. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Research 37: D603–D610.

Zeng W, Lampugnani ER, Picard KL, Song L, Wu A, Farion IM, Zhao J, Ford K, Doblin M, Bacic A. 2016. Asparagus IRX9, IRX10 and IRX14A are essential for xylan biosynthesis in the Golgi apparatus of asparagus. Plant Physiology 171: 93–109.

Supporting Information

Additional Supporting Information may be found online in the Supporting Information tab for this article:

Fig. S1 SDS gel of purified GFP-KfXYS1 expressed in HEK293 cell culture.

Fig. S2 Phylogenetic tree of PARVUS orthologs.

Fig. S3 Phylogenetic tree of IRX15/GXMT1 orthologs.

Fig. S4 Phylogenetic tree of IRX9 and IRX14 orthologs.

Fig. S5 Phylogenetic tree of IRX8 orthologs.

Fig. S6 Phylogenetic tree of GUX1-5 orthologs.

Fig. S7 Phylogenetic tree of ESK1 orthologs.

Fig. S8 Phylogenetic tree of GT61 orthologs.

Fig. S9 Phylogenetic tree of OsAT10 orthologs.

Fig. S10 Enzymatic specificity of KfXYS1.

Fig. S11 Characterization of reaction mixtures with or without KfXYS1 by 1D 1H NMR.

Table S1 Positive/negative list used for identification of xylan synthesis-related sequences

Table S2 Protein sequences of *Klebsormidium flaccidum* xylan gene orthologs

Table S3 Protein BLAST analysis of *Klebsormidium flaccidum* xylan gene orthologs

Notes S1 Newick tree files and sequences used for Figs 2 and S1–S8.

Please note: Wiley Blackwell are not responsible for the content or functionality of any Supporting Information supplied by the authors. Any queries (other than missing material) should be directed to the *New Phytologist* Central Office.