ABSTRACT & REFERENCES

DOI: 10.15587/2519-4852.2021.249312

INTERACTION OF SURFACTANTS WITH POLYOXAMERS 338 AND ITS EFFECT ON SOME PROPERTIES OF CREAM BASE

p. 4–19

Elena Bezuglaya, PhD, Senior Researcher, Head of Laboratory, Laboratory of Technology and Analysis of Medicinal Products, State Scientific Institution “Institute for Single Crystals” of National Academy of Sciences of Ukraine, Nauky ave., 60, Kharkiv, Ukraine, 61072

E-mail: bezuglaya.op@gmail.com

ORCID: https://orcid.org/0000-0002-3629-7059

Nikolay Lyapunov, Doctor of Pharmaceutical Sciences, Professor, Leading Researcher, Laboratory of Technology and Analysis of Medicinal Products, State Scientific Institution “Institute for Single Crystals” of National Academy of Sciences of Ukraine, Nauky ave., 60, Kharkiv, Ukraine, 61072

ORCID: https://orcid.org/0000-0002-5036-8255

Oleksii Lysokobylka, Junior Researcher, Laboratory of Technology and Analysis of Medicinal Products, State Scientific Institution “Institute for Single Crystals” of National Academy of Sciences of Ukraine, Nauky ave., 60, Kharkiv, Ukraine, 61072

ORCID: https://orcid.org/0000-0003-2071-9955

Oleksii Liapunov, PhD, Researcher, Laboratory of Technology and Analysis of Medicinal Products, State Scientific Institution “Institute for Single Crystals” of National Academy of Sciences of Ukraine, Nauky ave., 60, Kharkiv, Ukraine, 61072

ORCID: https://orcid.org/0000-0001-6103-7489

Volodimir Klochko, PhD, Senior Researcher, Department of Nanostructured Materials, State Scientific Institution “Institute for Scintillation Materials” of National Academy of Sciences of Ukraine, Nauky ave., 60, Kharkiv, Ukraine, 61072

ORCID: https://orcid.org/0000-0002-8080-1195

Hanna Grygorova, PhD, Senior Researcher, Department of Nanostructured Materials, State Scientific Institution “Institute for Scintillation Materials” of National Academy of Sciences of Ukraine, Nauky ave., 60, Kharkiv, Ukraine, 61072

ORCID: https://orcid.org/0000-0002-6585-3632

Anna Liapunova, PhD, Researcher, Laboratory of Technology and Analysis of Medicinal Products, State Scientific Institution “Institute for Single Crystals” of National Academy of Sciences of Ukraine, Nauky ave., 60, Kharkiv, Ukraine, 61072

ORCID: https://orcid.org/0000-0001-7997-3929

The aim. Study of the interaction of surfactants with poloxamer 338 (P338) and the effect of P338 on the properties of cream bases.

Materials and methods. Solutions of the surfactants and P338 as well as cream bases were under study. The average hydrodynamic diameter (Dh) and zeta potential (ζ-potential) were determined by the light scattering intensity and electrophoretic mobility of micelles. The electron paramagnetic resonance (EPR) spectra of spin probes in micelles, solvents and bases were obtained; the type of spectrum, isotropic constant (A1), rotational correlation times (τ) and anisotropy parameter (ε) were determined. liquids and cream bases were studied by capillary and rotational viscometry; the flow behaviour and yield stress (γ0), dynamic and apparent viscosity (η) as well as the hysteresis (thixotropic) area (Aγ) were determined. The microstructure of the bases was examined by optical microscopy. The strength of adhesion (Sω) was assessed by the pull-off test, and the absorption of water was studied by dialysis.

Results. Under the impact of P338 the hydrodynamic diameters of micelles formed by cationic, anionic and nonionic surfactants decreased as well as the absolute values of their ζ-potential became lower, but the microviscosity of the micelle nuclei increased. There was also a change in the structure of the aggregates of surfactant with fatty alcohols; EPR spectra, which were superpositions characteristic for the lateral phase separation, converted into triplets that indicated the uniform distribution of lipopholic probes in the surfactant phase. When the content of P338 increased to 17 %, the rheological parameters of the bases increased drastically, the flow behaviour and the microstructure changed. The bases had the consistency of cream within temperature range from 25 °C to 70 °C and completely restored their apparent viscosity, which had decreased under shear stress. P338 enhances the adhesive properties of the bases. Due to their microstructure, cream bases have a lower ability to absorb water compared to a solution and gel containing 17 % and 20 % P338, respectively.

Conclusions. The structure of surfactant micelles and aggregates of surfactants with fatty alcohols changed under impact of P338 due to the interaction of surfactants with P338. As a result of this interaction, at a sufficiently high concentration of P338, the microstructure and flow behaviour of bases changed, their rheological parameters, which remain high at temperatures from 25 °C to 70 °C, increased significantly, and water absorption parameters decreased. The bases with P338 were more adhesive.

Keywords: poloxamer 338 (P338), surfactant, micelle, cream base, spin probe, rotational correlation time (τ), rheological parameters

References

1. The European Pharmacopoeia (2019). European Directorate for the Quality of Medicines & HealthCare of the Council of Europe. Strasbourg, 5224.
2. Sheskey, P. J., Hancock, B. C., Moss, G. P., Goldfarb, D. J. (Eds.) (2020). Handbook of Pharmaceutical Excipients, London: Pharm. Press, 1296.
3. Derzhavnyi reestr lekarstvennykh sredstv Ukrainy. Available at: http://www.drlz.kiev.ua/
4. Gosudarstvenniy reestr lekarstvennykh sredstv (GRLS). Available at: http://grls.rozminzdrazr.ru/
5. Liapunov, N. A., Bezuglaya, E. P., Fadeikina, A. G., Lysokobylka, A. A., Stolper, Iu. M. (1999). Sosadanie mioglikikh lekarstvennykh sredstv na razlichnykh osnovakh. Soobschenie 1. Issledovanie reologicheskikh svoistv mazi na vodorastvorimykh osnovkah. Farmakom, 6, 10–16.
6. Datsenko, B. M. (Ed.) (1995). Teoriya i praktyka mestnoho lecheniya hnoinikh ran. Kyiv: Zdorovia, 384.
7. Da Silva, J. B., Cook, M. T., Bruschi, M. L. (2020). Thermoresponsive systems composed of poloxamer 407 and HPMC or NaCMC: mechanical, rheological and sol-gel transi-
The aim of the work was to obtain essential oil from the leaves and flowers of the genus Hawthorn Crataegus monogyna L. and study its component composition to justify the possibility of expanding the use of this herbal drugs in medicine.

Materials and methods. The leaves and flowers of Crataegus monogyna L., which were used to obtain essential oil, were harvested in the western region of Ukraine in 2019. The quantitative content of essential oil in the herbal drugs was determined by hydrodistillation. By used chromato-mass spectrometry method determined the component composition of essential oil of leaves and flowers of Crataegus monogyna L. The obtained spectra were compared with the library of mass spectra NIST05 and WILEY 2007 with a total number of spectra over 470000 in combination with programs for identification AMDIS and NIST.

Results. The essential oil of leaves and flowers of Crataegus monogyna L. was obtained and its quantitative content was determined, which was 0.15±0.02 % for flowers and 0.11±0.03 % for leaves. By used chromato-mass spectrometric method in the essential oil of flowers of Crataegus monogyna L. revealed 37 compounds, leaves – 33. In the essential oil of flowers found monoterpenoids, the content of which was 0.44 % of the total, triterpenoids 7.17 %, aromatic compounds 12.61 %. In the essential oil of leaves were found monoterpenoids, the content of which was 0.44 % of the total, triterpenoids 7.17 %, aromatic compounds 12.61 %. In the essential oil of leaves and flowers of Crataegus monogyna L. the obtained spectra were compared with the library of mass spectra NIST05 and WILEY 2007 with a total number of spectra over 470000 in combination with programs for identification AMDIS and NIST.

Conclusions. Due to the defined component composition of the essential oil of flowers and leaves of Crataegus monogyna L., we consider its use to create drugs of external action for the treatment of skin diseases of various etiologies caused by staphylococcus and fungal microflora.

Keywords: hawthorn, leaves, flowers, essential oil, quantitative content, chemical composition

References
1. Derzhavna Farmakopeia Ukrainy (2016). Kharkiv: Derzhavne pidpriemstvo «Ukrainskyi naukovyi farmakopeinyi tsentr yakosti likarskykh zasobiv», 360.
2. European Pharmacopoeia. Vol. 1 (2010). Strasbourg: Council of Europe, 3307.
3. Rababa’h, A. M., Al Yacoub, O. N., El-Elmat, T., Rabab’ah, M., Altarabsheh, S., Deo, S. et. al. (2020). The effect of hawthorn flower and leaf extract (Crataegus Spp.) on cardiac hemostasis and oxidative parameters in Sprague Dawley rats. Helyon, 6 (8). doi: http://doi.org/10.1016/j.helyon.2020.e04617
4. Sydora, N. V., Kovaleva, A. M., Iakovenko, V. K. (2016). Phytochemical research of Crataegus submollis Sarg. leaves lipophilic complex and study of its antibacterial activity. Der Pharmacia Lettre, 8 (21), 19–23.
5. Halver, J., Wenzel, K., Sendker, J., Carrillo Garcia, C., Erdelmeier, C. A. J., Willems, E. et. al. (2019). Crataea Extract WS®1442 Stimulates Cardiomyogenesis and Angiogenesis From Stem Cells: A Possible New Pharmacology for Hawthorn? Frontiers in Pharmacology, 10. doi: http://doi.org/10.3389/fphar.2019.01357
6. Wang, X., Liang, Y., Shi, J., Zhu, H., Bleske, B. (2018). Crataea Special Extract WS 1442 Effects on eNOS and microRNA 155. Planta Medica, 84 (15), 1094–1100. doi: http://doi.org/10.1055/a-0601-7083
7. Khokhlova, K. O., Zdoryk, O. A., Sydora, N. V., Shatrovska, V. I. (2019). Chromatographic Profiles Analysis of Fruits of Crataea L. Genus by High-Performance Thin-Layer Chromatography. European Pharmaceutical Journal, 66 (2), 45–51. doi: http://doi.org/10.2478/afpuc-2019-0020
8. Abuashwashi, M. A., Palomino, O. M., Gómez-Serratillos, M. P. (2016). Geographic origin influences the phenolic composition and antioxidant potential of wild Crataea monogyna from Spain. Pharmaceutical Biology, 54 (11), 2708–2713. doi: http://doi.org/10.1080/13880209.2016.1179769
9. Belabelli, F., Bektli, N., Piras, A., Benhafsa, F. M., Illham, M., Adil, S., Anes, L. (2021). Chemical composition, antioxidant and antibacterial activity of Crataea monogyna leaves’ extracts. Natural Product Research, 1–6. doi: http://doi.org/10.1080/14786419.2021.1958215
10. Lis, M., Szczypka, M., Suszko-Pawłowska, A., Sokól-Lętowska, A., Kucharska, A., Obmińska-Mrukowicz, V. (2019). Hawthorn (Crataea monogyna) Phenolic Extract Modulates Lymphocyte Subsets and Humoral Immune Response in Mice. Planta Medica, 86 (2), 160–168. doi: http://doi.org/10.1055/a-1045-5437
11. Rababa’h, A. M., Altarabsheh, S. E., Haddad, O., Deo, S. V., Obeidat, Y., Al-Azzam, S. (2016). Hawthorn Herb Increases the Risk of Bleeding after Cardiac Surgery: An Evidence-Based Approach. The Heart Surgery Forum, 19 (4), 175–179. doi: http://doi.org/10.1532/hfs.1570
12. Kuhn, T., Jancso, B., Ruprecht, E. (2021). Hawthorn (Crataea L.) Taxa and their hybrids in North-Western Romania: a recommendation for national identification keys based on morphometric analyses. Contribuţii Botanice, 55, 7–26. doi: http://doi.org/10.24193/ contrib.bot.55.1
13. Phipps, J. B. (2016). Studies in Mespilus, Crataegus, and ×Crataemespilus (Rosaceae), II. The academic and folk taxonomy of the mediolar, Mespilus germanica, and hawthorns, Cra- taegus (Rosaceae). Phyto taxa, 260 (1), 25–35. doi: http://doi.org/10.11646/phyto taxa.260.1.3
14. Sydora, N. (2018). Morphological and taxonomic study of oxyacanthae Zbl. section of crataea L. genus by vegetative characteristics. ScienceRise: Pharmaceutical Science, 1 (11), 36–41. doi: http://doi.org/10.15587/2519-4852.2018.124432
15. Derzhavna Farmakopeia Ukrainy. Vol. 1 (2015). Kharkiv: Derzhavne pidpriemstvo «Ukrainskyi naukovyi farmakopeinyi tsentr yakosti likarskykh zasobiv», 1128.
16. Chernogorod, L. B., Vinogradov, B. A. (2006). Erythraea masla nekotorykh vidov roda Achillea L., soderzhashcie fragranol. Rastitelnye resursy, 42 (2), 61–68.
17. Sydora, N. V., Kovalova, A. M. (2016). Gas-chromato- graphic-mass spectrometric studies the volatile compounds and organic acids the leaves of Crataea macrantha Loud. American Journal of Science and Technologies, 3 (1 (21)), 1041–1045.
The aim of the work is to choose the optimal parameters for YIELD DETERMINATION OF PHYTOSTEROLS OE by gas capillary chromatography.

Due to the content of phytosterols, extractive preparations of -case of external therapy of men and women with androgenic alopecia roots, it is important to choose the optimal extraction parameters, which are based on the quantitative determination of the peculiarities of extraction with oil extractant and the studied samples of extracts. Determination of phytosterol content in experimental samples was carried out by gas capillary chromatography (chromatography “Crystal 2000”, manufacturer – research and production company “Analytics”).

Results. 5 different compounds of steroid structure (stigmasterol, β-sitosterol, etc.) were identified in sunflower oil by gas liquid chromatography, and 10 (campesterol, 2-a-stigmasterol, β-sitosterol, Δ5-avenosterol, etc.) were identified in sunflower oil. The quantitative content of β-sitosterol in the sum of sterols of corn oil was significantly higher compared to the content of this substance in sunflower oil and amounted to 59.33 %. Optimal technological parameters were established considering the peculiarities of extraction with oil extractant and quantitative determination of the amount of phytosterols and β-sitosterol in experimental samples of OE. The total content of plant sterols in OE, including considering their amount in the extractant, was in the range of 7880 mg/kg; the amount of β-sitosterol was 4638 mg/kg.

Conclusion. The choice of optimal parameters for obtaining OE from UDR based on determination of phytosterol yield by gas capillary chromatography was experimentally substantiated, namely: extractant – corn oil, raw material-extract ratio – 1:5, extraction time – 6 h, extraction method – maceration

Keywords: Urtica dioica root, androgenic alopoeia, oil extract, extraction parameters, phytosterols, gas capillary chromatography

References

1. Tryneeva, O. V., Safonova, E. F. (2013). The comparative characteristic of vegetable oils and the oil extracts applied in pharmacy. Chemistry of Plant Raw Material, 4, 77–82. doi: http://doi.org/10.14258/jcprm.1304077

2. Nkachuk, O. Y., Vyshnevska, L. I., Zubchenko, T. M. (2016). The study of the effect of the critical parameters on the manufacturing process of the oil phytoextract with the hepatoprotective action. News of Pharmacy, 1 (85), 45–49. doi: http://doi.org/10.24959/nphj.16.2102

3. Saraf, S., Jharaniya, M., Gupta, A., Jain, V., Shailendra (2014). Herbal hair cosmetics: advancements and recent findings. World Journal of Pharmaceutical Research, 2, 3278–3294.

4. Sudheer Kumar, K., Gomathi, S., Seetarm Swamy, S. (2016). Formulation and evaluation of polyherbal hair oil – an economical cosmetic. International Journal of Advanced Research in Medical & Pharmaceutical Sciences, 1 (2), 10–14.

5. Usha Kiran Reddy, T., Sindhu, G., Rajesh, S., Aruna, B., Sandhya Rani, K. S. (2017). Preparation and evaluation of herbal hair oil. Indo American Journal of Pharmaceutical Sciences, 4 (6), 1540–1546.

6. Kashyap, R., Shukla, K., Mahajan, S. C., Sharma, A. (2016). Formulation and evaluation of hair oil for hair loss disorders. Journal of Medicinal Plants Studies, 4 (3), 13–17.

7. Demchuk, M. B., Ivashkiv, Yu. I., Hrovostovy, T. A. (2012). Doslidzhennia vitlychnytsianoho rynku likarskykh preparativ i zasobiv likuvalnoi kosmetky, shcho vykorystuvuetsia pri zovnishnii korektstii alopetsii. Zaporozhskyi medytsynskyi zhurnal, 3 (72), 23–25.

8. Mank, V. V., Polonska, T. A. (2016). Vegetable oils compositions for cosmetic products. Naukovyi pratsi NUKhT, 3 (22), 217–223.
Screening Study of the Antihyperglycemic Action of New Solid Quercetin Dispersions

P. 37–42

Olena Ruban, Doctor of Pharmaceutical Sciences, Professor, Head of Department, Department of Industrial Technology of Drugs, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002

ORCID: http://orcid.org/0000-0002-2456-8210

Nadiia Kononenko, Doctor of Medical Sciences, Professor, Head of Department, Department of Physiology and Pathological Physiology, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002

ORCID: http://orcid.org/0000-0002-3850-6942

Inna Kovalevska, Doctor of Pharmaceutical Sciences, Associate Professor, Department of Industrial Technology of Drugs, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002

E-mail: valentina.chikitkina@gmail.com

ORCID: http://orcid.org/0000-0002-8277-0388

The aim — to screen new solid dispersions of quercetin for the presence of antihyperglycemic action and to identify the most active substances that are promising for the creation of antidiabetic drugs.

Materials and methods. The object of the study was 4 new solid dispersions of quercetin, developed at the National University of Pharmacy. Solid dispersions of quercetin were prepared by the liquid-phase method; hydroxypropyl methylcellulose (HPMC) or polyvinylpyrrolidone (PVP) in ratios of 1:1 and 1:2 were used as a carrier. The antihyperglycemic effect of the studied substances at a dose of 50 mg/kg was assessed in rats by the ability to lower blood glucose levels after carbohydrate loading in a model of impaired glucose tolerance induced by dexamethasone and in experimental type 2 diabetes mellitus induced by dexamethasone.

Results. It was found that with impaired glucose tolerance, a solid dispersion of quercetin with HPMC (1:1) showed a pronounced antihyperglycemic effect — the glucose level 30 minutes after glu-
cose load significantly decreased by 28% and did not differ from the action of metformin, which was confirmed by the value of the area under glycemic crooked. When solid dispersions with PVP (1:1 and 1:2) were used, the antihyperglycemic effect was less pronounced. In a model of type 2 diabetes mellitus, a significant antihyperglycemic effect was found only in a solid dispersion of quercetin with HPMC (1:1) at the metformin level, which indicates an increase in the solubility and absorption of quercetin.

Conclusions. A pronounced antihyperglycemic effect at the metformin level was found in a solid dispersion of quercetin with HPMC in a 1:1 ratio with impaired glucose tolerance and type 2 diabetes mellitus. It has been proven that a solid dispersion of quercetin with HPMC is a promising substance for creating a monocomponent drug or for inclusion in a new antiabetic combined drug

Keywords: quercetin, solid dispersion, hydroxypropyl methylcellulose, polyvinylpyrrolidone, diabetes mellitus, screening, antihyperglycemic action

References
1. International diabetes federation Diabetes Atlas. Available at: http://www.diabetesatlas.org
2. Dedov, I. I., Shestakova, M. V., Mayorov, A. Y., Vikutlova, O. K., Galstyan, G. R., Kuraeva, T. L. et. al. (2017). Standards of specialized diabetes care. Edited by Dedov II, Shestakova MV, Mayorov AY. 8th edition. Diabetes Mellitus, 20 (1S), 1–121. doi: http://doi.org/10.14341/dm20171s8
3. Unuofin, J. O., Lebelo, S. L. (2020). Antioxidant Effects and Mechanisms of Medicinal Plants and Their Bioactive Compounds for the Prevention and Treatment of Type 2 Diabete: An Updated Review. Oxidative Medicine and Cellular Longevity, 2020, 1–36. doi: http://doi.org/10.1155/2020/1356893
4. Pang, G.-M., Li, F.-X., Yan, Y., Zhang, Y., Kong, L.-L., Zhu, P. et. al. (2019). Herbal medicine in the treatment of patients with type 2 diabetes mellitus. Chinese Medical Journal, 132 (1), 78–85. doi: http://doi.org/10.1097/cmr.00000000000000006
5. Savka, I. I., Savka, T. B. (2020). Mechanisms of Macro-, Micro- and Ultrasmicroscopic Transformation of Bodies in Type 2 Diabetes. Ukrainian Journal of Medicine, Biology and Sport, 5 (2), 36–42. doi: http://doi.org/10.26693/jmbs05.02.036
6. Shaaraefedinov, K. K., Plotnikova, O. A., Pilipenko, V. V., Nikitjuk, D. B. (2020). Oxidative stress and increasing antioxidant defence in type 2 diabetes. Clinical Nutrition and Metabolism, 1 (3), 127–136. doi: http://doi.org/10.17816/ clinut50340
7. Tarakhovskii, Iu. S., Kim, Iu. A., Abdrasilov, B. S., Muzafarov, E. N. (2013). Flavonoidy: biokhimia, biofizika, meditsina. Puschino: Sunchrobook, 310.
8. Shi, G.-J., Li, Y., Cao, Q.-H., Wu, H.-X., Tang, X.-Y., Gao, X.-H. et. al. (2019). In vitro and in vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature. Biomedicine & Pharmacotherapy, 109, 1085–1099. doi: http://doi.org/10.1016/j.biopharm.2018.10.130
9. Riva, A., Ronchi, M., Petrangolini, G., Bossio, S., Allegreni, P. (2018). Improved Oral Absorption of Quercetin from Quercetin Phytosome®, a New Delivery System Based on Food Grade Lecithin. European Journal of Drug Metabolism and Pharmacokinetics, 44 (2), 169–177. doi: http://doi.org/10.1007/s13318-018-0517-3
10. Chen, X., McClements, D. J., Zhu, Y., Chen, Y., Zou, L., Liu, W. et. al. (2018). Enhancement of the solubility, stability and bioaccessibility of quercetin using protein-based excipient emulsions. Food Research International, 114, 30–37. doi: http://doi.org/10.1016/j.foodres.2018.07.062
11. Kononenko, N. M., Ruban, O. A., Chikitkina, V. V., Kovalevska, I. V. (2020). The influence of antiabetic combined medicinal product glik verin based on voglibose and quercetin on lipid e xchange indices under conditions of experimental metabolic syndrome. Problems of Endocrine Pathology, 74 (4), 124–130. doi: http://doi.org/10.21856/j.pep.2020.4.16
12. Kovalevska, I. V., Ruban, E. A., Kutsenko, S. A., Kutova, O. V., Kovalev, Sv. M. (2017). Study of physical and chemical properties of solid dispersions of quercetin. Asian Journal of Pharmaceutics, 11 (4), 805–809.
13. Stefanova, O. V. (Ed.) (2001). Doklinichni doslidzhennia likarskykh zasobiv. Kyiv: Avitsenna, 528.
14. Kovalevska, I., Ruban, O. (2018). Development of the methodological approach of obtaining preparations based on solid dispersions. ScienceRise: Pharmaceutical Science, 4 (14), 4–8. doi: http://doi.org/10.15587/2519-4852.2018.140756
15. Portiad provedennia naukovymy ustanovamy doslidiv, eksperymentiv na tvarynah (2012). Nakaz Ministerstva osvity, nauky, modoli ta sportu Ukrainy. Nakaz No. 249. 01.03.2012. Oftisiinyi visnyk Ukrainy, 24, 82.
16. Rybolovlev, Iu. R., Sidiarirov, D. P., Afonin, N. I. (1981). Prognosticheskaia otsenka bezopasnosti veschestv dlia cheloveka po konstantam ikh biologicheskoi aktivnosti. Toksikologicheskie aspekty bezopasnosti gotovykh lekarstvennykh form. Moscow, 9–10.
17. Nasri, H., Rafieian-Kopaei, M. (2014). Metformin: Current knowledge. International Journal of Research in Medical Sciences, 19 (7), 658–664.
18. Mauvais-Jarvis, F. (2018). Gender differences in glucose homeostasis and diabetes. Physiology & Behavior, 187, 20–23. doi: http://doi.org/10.1016/j.physbeh.2017.08.016
19. Zand, A., Ibrahim, K., Patham, B. (2018). Prediabetes: Why Should We Care? Methodist DeBakey Cardiovascular Journal, 14 (4), 289–297. doi: http://doi.org/10.14797/ mdcj-14-4-289
20. Sakoda, H., Oghara, T., Anai, M., Funaki, M., Inukai, K., Katagiri, H. et. al. (2000). Dexamethasone-induced insulin resistance in 3T3-L1 adipocytes is due to inhibition of glucose transport rather than insulin signal transduction. Diabetes, 49 (10), 1700–1708. doi: http://doi.org/10.2337/diabetes.49.10.1700
21. Bardy, G., Vrsolvy, A., Quignard, J. F., Ravire, M. A., Bertrand, G., Dalle, S. et. al. (2013). Quercetin induces insulin secretion by direct activation of L-type calcium channels in pancreatic beta cells. British Journal of Pharmacology, 169 (5), 1102–1113. doi: http://doi.org/10.1111/bpj.12194
22. Eitah, H. E., Maklad, Y. A., Abdelkader, N. F., Gamal el Din, A. A., Badawi, M. A., Kenawy, S. A. (2019). Modulating impacts of quercetin/sitagliptin combination on streptozotocin-induced diabetes mellitus in rats. Toxicology and Applied Pharmacology, 365, 30–40. doi: http://doi.org/10.1016/j.taap.2018.12.011
The aim of the work: Currently, a large number of cases of non-medical use of benzydamine hydrochloride have been described. The identification of benzydamine and its metabolite, benzydamine N-oxide, in the presence of some non-steroidal anti-inflammatory drugs, has been insufficiently studied. Therefore, the development of a method for its identification in biological material is an urgent task.

Materials and methods: The subjects of the study were benzydamine hydrochloride and its metabolite, as well as some non-steroidal anti-inflammatory drugs, which are its analogues in terms of pharmacological action. The studies were carried out by methods of thin layer chromatography and high-performance liquid chromatography.

Results: At the first stage a screening method for benzydamine identification was studied using the extraction in acidic and basic conditions. It was shown that benzydamine can be isolated in both medias with subsequent development with a solution of iodoplatinate and Dragendorff’s reagent according to Munier or with Mandelin reagent respectively. The mobile phase was selected and respective Rf for the target molecule were defined. After a preliminary identification of benzydamine a reference method for the final confirmation of the drug that had led to poisoning was proposed. A robust, specific and accurate reversed phase HPLC method was chosen. It was shown that benzydamine exists in biological material mainly in a form of metabolite – benzydamine N-oxide. The selected method was able to separate and determine key analytes in biological samples after a preparative isolation by TLC method. The comparison with UV spectra of the reference standard of benzydamine hydrochloride was proposed to avoid false positive conclusion of drug identification.

Conclusions: Proposed methodology can be applied for routine identification of benzydamine poisoning in toxicological laboratories.

Keywords: benzydamine hydrochloride, screening, benzydamine N-oxide, thin layer chromatography, high-performance liquid chromatography
9. Acar, Y. A., Kalkan, M., Çetin, R., Çevik, E., Çınar, O. (2014). Acute Psychotic Symptoms due to Benzydamine Hydrochloride Abuse with Alcohol. Case Reports in Psychiatry, 2014, 1–2. doi: http://doi.org/10.1155/2014/290365

10. Gürrü, M., Safak, Y., Cengiz, G. F., Kuru, E., Örsel, S. (2019). Chronic psychosis related to benzydamine hydrochloride abuse. Neurocase, 25 (3-4), 156–158. doi: http://doi.org/10.1080/13554794.2019.1617318

11. Schifano, F., Corazza, O., Marchi, A., Melchiorre, G. D., Sfrarizza, E., Enea, A. et al. (2013). Analysis of online reports on the potential misuse of benzydamine. Rivista di Psichiatria, 48 (3), 182–186. doi: http://doi.org/10.1708/1292.14286

12. Robinson, N. A., Scully, C. (2016). Oral health: Mouthwash abuse. British Dental Journal, 221 (6), 280–280. doi: http://doi.org/10.1038/sj bj.dj.2016.663

13. Chiappini, S., Guitrui, A., Corkery, J. M., Schifano, F. (2020). Misuse of prescription and over-the-count er drugs to obtain illicit highs: how pharmacists can prevent abuse. Pharmaceutical Journal. doi: http://doi.org/10.1211/ pj.2020.20208538

14. Pubchem. Benzydamine (Compound). Available at: https://pubchem.ncbi.nlm.nih.gov/compound/12555#section=Information-Sources

15. Naser, I. (2006). Izuchenie kromatograficheskogo povedeniya valproevoi kislotoy v smesi s drugimi veschestva mi kislogo karhakera. Teoriia ta praktika sudovoi ekspertiizi i kriminalistikii, 6, 302–305.

16. Nasser, I. (2008). Rozrozba metodiv analitychnoi diahnostyki otrovan valproyeyovu kislogo. Kyiv, 163.

17. Catanese, B., Lagana, A., Marino, A., Picollo, R., Rotatori, M. (1986). HPLC determination of benzydamine and its metabolite N-oxide in plasma following oral administration or topical application in man, using fluorometric detection. Pharmacological Research Communications, 18 (4), 385–403. doi: http://doi.org/10.1016/0031-6989(86)90091-3

18. Chemiy, V. A., Gureeva, S. N., Georgiyants, V. A. (2016). Development and Validation of Alternative Analytical Method for Determination of Related Substances of Benzydamine Hydrochloride in Oral Spray by HPLC. Journal of Drug Design and Medicinal Chemistry, 2 (6), 65–73.

19. Chernyi, V., Choma, O., Georgiyants, V. (2020). Development and validation of the method for simultaneous determination of Benzydamine hydrochloride and methylparaben in dosage form by HPLC. ScienceRise: Pharmaceutical Science, 3 (25), 12–19. doi: http://doi.org/10.15587/2519-4852.2020.206579

20. Moffat, A. C., Osselton, M. D., Widdop, B. (2011). Clarke’s Analysis of Drugs and Poisons. Pharmaceutical Press, 2736.

The aim of this work is to develop methods of synthesis of 3-arylaminomethyl-1-(2-oxo-2-arylethyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromides and aryl-(4-R'-phenyl-5,6,7,8-tetrahydro-2,2a,8a-triazacyclopenta[cd]azulen-1-ylmethyl)-amines and to study their antimicrobial activity against strains of gram-positive and gram-negative bacteria as well as yeast fungi.

Materials and methods. 1H NMR spectra were recorded on Bruker 400 spectrometer operating at frequency of 400 MHz. Antimicrobial activity of the compounds synthesized was evaluated by their minimum inhibitory concentration (MIC) values.

Results and discussion. The interaction of 3-arylaminomethyl-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepines with substituted phenacyl bromides produced novel 3-arylaminomethyl-1-(2-oxo-2-arylethyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromides. The latter when refluxed in 10% solution of NaOH gave aryl-(4-R'-phenyl-5,6,7,8-tetra-
The study of antimicrobial activity of the compounds obtained allowed to find derivatives which are active against C. albicans and S. aureus strains. Among the compounds tested 3-[(4'-bromophenylamino)-methyl]-1-2-(4'-methoxyphenyl)-2-oxoethyl]-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromide 5cd appeared to be more active than the reference drug Cefixime and displayed close antimicrobial activity as the antibiotic Linezolid.

Conclusions. It was found out that derivatives of 3-arylaminononyethyl-(2-oxo-2-aryl)ethyl]-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromides display broad spectrum of antimicrobial activity and are able to inhibit growth of both bacteria and fungi. S. aureus and C. albicans turned out to be the most sensitive strains to the compounds tested, MIC was in the range of 6.2-25.0 µg/mL. Gram-negative strains of microorganisms were less sensitive to the compounds evaluated and 5fa was the most active derivative displaying antimicrobial activity at the concentration of 50.0 µg/mL. Antimicrobial activity of triazoloazepinium bromide derivatives was similar to that of Linezolid and Fluconazole reference drugs and more pronounced than the activity of Cefixime.

Hence, the data gathered evidence the feasibility of further study of antimicrobial properties of the most active compounds in in vivo experiments aiming at assessment of the prospects for the creation of new effective and safe antimicrobial drugs based on them.

Keywords: 3-arylaminononyethyl-(2-oxo-2-aryl)ethyl]-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromides, antibacterial activity; in vitro tests, minimum inhibitory concentration in the range of 6.2-25.0 µg/mL.

References

1. Low, M., Balicer, R. D., Bitterman, H., Raz, R., Lieberman, N. (2014). Unwarranted Use Of Broad-Spectrum Antibiotics. Value in Health, 17 (3), A281. doi: http://doi.org/10.1016/j.jval.2014.03.1635
2. Antimicrobial resistance: no action today, no cure tomorrow (2011). WHO. Available at: https://www.who.int/dg/speeches/2011/WHD_20110407/en/2011 Last accessed: 18.04.2020
3. Fair, R. J., Tor, Y. (2014). Antibiotics and Bacterial Resistance in the 21st Century. Perspectives in Medicinal Chemistry, 6, 25–64. doi: http://doi.org/10.4137/pmc1.s41459
4. Melander, R. J., Zurawski, D. V., Melander, C. (2018). Narrow-spectrum antibacterial agents. MedChemComm, 9 (1), 12–21. doi: http://doi.org/10.1039/c7md00528h
5. Moellering, R. C. (2011). Discovering new microbial agents. International Journal of Antimicrobial Agents, 37 (1), 2–9. doi: http://doi.org/10.1016/j.ijantimicag.2010.08.018
6. Cully, M. (2014). Redesigned antibiotic combats drug-resistant tuberculosis. Nature Reviews Drug Discovery, 13 (4), doi: http://doi.org/10.1038/ndr4287
7. Demchenko, S., Lesyk, R., Zwegg, J., Elliott, A. G., Fedchenkova, Y., Suvorova, Z., Demchenko, A. (2020). Synthesis, antibacterial and antifungal activity of new 3-biphenyl-3H-Imidazo[1,2-a]azepin-1-ium bromides. European Journal of Medicinal Chemistry, 201. doi: http://doi.org/10.1016/j.ejmech.2020.112477
8. Demchenko, S. A., Sukhoveev, V. V., Mossalenko, O. V., Fedchenkova, Y. A., Potebnja, G. P., Demchenko, A. M. (2020). Synthesis and anti-tumor properties of derivatives [4-(1-chlorophenyl)-5,6,7,8-tetrahydro-2,2a,8a-triazacyclopenta[c,d]azulen-1-yl-metil]-para-tolymeth. Farmatsevtchnyi Zhurnal, 4, 69–77. doi: http://doi.org/10.32352/0367-3057.4.20.07
9. Demchenko, A. M., Nazarenko, K. G., Makei, A. P., Prikhodko, S. V., Kurnakova, I. N., Tretiak, A. P. (2004). Silver, protivokorrozionnaia i biotisidnaia aktivnost proizvodnykh triazoloazepina. Zhurnal priklinnoi khimii, 77 (5), 794–797.
10. Demchenko, S. A., Seredinska, N. M., Bukhtiarova, T. A., Bobkova, L. S., Demchenko, A. M. (2019). Pat. No. 119003 UA. 1-Aril-aminoamino-4-fenil,5,6,7,8-tetragidro-2,2a,8a-triazatsiklopenta[c]azulenli, scho proiavliaiut analgetichnu aktivnost. No. a201707645; declared: 19.07.2017; published: 10.04.2019, Bul. No. 7.
11. Metodicheskie ukazania MUK 4.2.1890-04 (2004). Opredelenie chuvstvitelnosti mikroorganizmov k antibakterialnym preparatam. Klinicheskaia Mikrobiologia i Antimikrobnaia Khimioterapiia, 6 (4), 306–359.
12. Arendrup, M. C., Cuenca-Estrella, M., Lass-Flörl, C., Hope, W. (2012). EUCAST technical note on the EUCAST definitive document EDef 7.2: method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts EDef 7.2 (EUCAST-AFST)*. Clinical Microbiology and Infection, 18 (7), 246–247. doi: http://doi.org/10.1111/j.1469-0691.2012.03880.x
13. Blaskovich, M. A. T., Zwegg, J., Elliott, A. G., Cooper, M. A. (2015). Helping Chemists Discover New Antibiotics. ACS Infectious Diseases, 1 (7), 285–287. doi: http://doi.org/10.1021/acsiinfed.5b00044
14. Desselle, M. R., Neale, R., Hansford, K. A., Zwegg, J., Elliott, A. G., Cooper, M. A., Blaskovich, M. A. (2017). Institutional profile: Community for Open Antimicrobial Drug Discovery – crowdsourcing new antibiotics and antifungals. Future Science OA, 3 (2), FS0171. doi: http://doi.org/10.4155/fsoa-2016-0093
15. Wayne P.A. (2017). CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 27th ed. CLSI supplement M100. Clinical and Laboratory Standards Institute, 250.
16. Open-access antimicrobial screening program. (2017). Open-access antimicrobial screening program. https://www.co-add.org/
17. Zhuang, Z., Wan, D., Ding, J., He, S., Zhang, Q., Wang, X. et. al. (2020). Synergistic Activity of Nitroimidazole-Oxazolidone Conjugates against Anaerobic Bacteria. Molecules, 25 (10), 2431. doi: http://doi.org/10.3390/molecules25102431
18. Saurabh, A., Kumar, V., Kalaiselvan, V., Kumar, Ap., Thota, P., Sidhu, S., Medhi, B. (2018). Cefixime-associated acute generalized exanthematus pustulosis: Rare cases in India. Indian Journal of Pharmacology, 50 (4), 204–207. doi: http://doi.org/10.4103/ijp.ijp_673_17
19. Aliaga, L., Moreno, M., Aomar, I., Moya, S., Ceballos, Á., Giner, P. (2017). Treatment of acute uncomplicated cystitis – A clinical review. Clinical and Medical Investigations, 2 (4). doi: http://doi.org/10.15761/cmi.1000142
20. Sid Ahmed, M. A., Hassan, A. A. I., Abu Jarir, S., Abdel Hadi, H., Bansal, D., Abdul Wahab, A. (2019). Emergence of Multidrug- and Pandrug- Resistant Pseudomonas aeruginosa from Five Hospitals in Qatar. Infection Prevention in Practice, 1 (3-4), 100027. doi: http://doi.org/10.1016/j.infpip.2019.100027
21. Ishida, K., Fernandes Rodrigues, J. C., Cammerer, S., Urbina, J. A., Gilbert, I., de Souza, W., Rozental, S. (2011). Syn-
The aim of the study was to investigate the influence of digoxin on the anticonvulsant potential of classical commonly used antiepileptic drugs with different neurochemical mechanisms of development, but also significantly enhances the anticonvulsant potential of carbamazepine (to a lesser extent – lamotrigine) regardless of the pathogenesis of experimental paroxysms.

Conclusion: Based on the results, it can be concluded that digoxin has a high potential as an adjuvant in complex epilepsy treatment because it enhances the efficiency of low-dose traditional anticonvulsants carbamazepine and lamotrigine.

Keywords: anti-epileptic drugs, digoxin, adjuvant, chemoinduced seizures, mice

References
1. Perucca, E. (2019). Antiepileptic drugs: evolution of our knowledge and changes in drug trials. Epileptic disorders, 21 (4), 319–329.
2. Löscher, W., Klein, P. (2021). The Pharmacology and Clinical Efficacy of Antiseizure Medications: From Bromide Salts to Cenobamate and Beyond. CNS Drugs, 35 (9), 935–963. doi: http://doi.org/10.1007/s40263-021-00827-8
3. Kalilani, L., Sun, X., Pelgrims, B., Noack-Rink, M., Villanueva, V. (2018). The epidemiology of drug-resistant epilepsy: A systematic review and meta-analysis. Epilepsia, 59 (12), 2179–2193. doi: http://doi.org/10.1111/epi.14596
4. Pérez-Pérez, D., Frias-Soria, C. L., Rocha, L. (2021). Drug-resistant epilepsy: From multiple hypotheses to an integral explanation using preclinical resources. Epilepsy & Behavior, 121. doi: http://doi.org/10.1016/j.yebeh.2019.07.031
5. Łukawski, K., Czuczwar, S. J. (2021). Understanding mechanisms of drug resistance in epilepsy and strategies for overcoming it. Expert Opinion on Drug Metabolism & Toxicology, 17 (9), 1075–1090. doi: http://doi.org/10.1080/17425255.2021.1959912
6. Borowicz, K. K., Banach, M. (2014). Antiarrhythmic drugs and epilepsy. Pharmacological Reports, 66 (4), 545–551. doi: http://doi.org/10.1016/j.pharep.2014.03.009
7. Zeiler, F. A., Zeiler, K. J., Kazina, C. J., Teitelbaum, J., Gillman, L. M., West, M. (2015). Lidocaine for status epilepticus in adults. Seizure, 31, 41–48. doi: http://doi.org/10.1016/j.seizure.2015.07.003
8. Elgarhi, R., Shehata, M. M., Abdelsameea, A. A., Salem, A. E. (2020). Effects of Diclofenac Versus Meloxicam in Pentylenetetrazol-Kindled Mouse. Neurochemical Research, 45 (8), 1913–1919. doi: http://doi.org/10.1007/s11064-020-03054-7
9. Scirecthan, F., Constanti, A., Citraro, R., Sarro, G., Russo, E. (2015). Statins and epilepsy: preclinical studies, clinical trials and statin-anticonvulsant drug interactions. Current Drug Targets, 16 (7), 747–756. doi: http://doi.org/10.2174/1389450116666150330114850
10. Markova, I. V., Mikhaliov, I. B., Guzeva, V. I. (1991). Digoksin-aktivnoe protivoépilepticheskoe sredstvo. Farmakologiya i toksikologiya, 54 (5), 52–54.
11. Shtrygol, S. Yu., Shtrygol, D. V. (2010). Digoksin kak protivoépilepticheskoe sredstvo u detei (kliniko-ekspertimentalnoe issledovanie) Ukrainskiy medychnyi almanakh, 13 (4), 164.
12. Tsyvunin, V., Shtrygol', S., Shtrygol', D. (2020). Digoxin enhances the effect of antiepileptic drugs with different neurochemical mechanisms of drug resistance in epilepsy and strategies for overcoming it. Expert Opinion on Drug Metabolism & Toxicology, 17 (9), 1075–1090. doi: http://doi.org/10.1080/17425255.2021.1959912

DOI: 10.15587/2519-4852.2021.249375

LOW-DOSE DIGOXIN ENHANCES THE ANTICONVULSIVE POTENTIAL OF CARBAMAZEPINE AND LAMOTRIGINE IN CHEMO-INDUCED SEIZURES WITH DIFFERENT NEUROCHEMICAL MECHANISMS

p. 58–65

Vadim Tsyvunin, PhD, Assistant, Department of Pharmacology and Pharmacotherapy, National University of Pharmacy
Pushkinska str., 53, Kharkiv, Ukraine, 61002
ORCID: https://orcid.org/0000-0002-9280-5035

Sergiy Shtrygol’, Doctor of Medical Sciences, Professor, Department of Pharmacology and Pharmacotherapy, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002
E-mail: shtrygol@ukr.net
ORCID: https://orcid.org/0000-0001-7257-9048

Ihnat Havrylov, Postgraduate Student, Department of Pharmacology and Pharmacotherapy, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002
ORCID: https://orcid.org/0000-0003-3483-1729

Diana Shtrygol’, PhD, Associate Professor, Department of Neurology, Psychiatry, Narcology and Medical Psychology, School of Medicine, V. N. Karazin Kharkiv National University, Svobody sq., 4, Kharkiv, Ukraine, 61022
ORCID: https://orcid.org/0000-0001-7346-2677

“Non-antiepileptic” drugs have a strong potential as adjuvants in multidrug-resistant epilepsy treatment. In previous study the influence of low doses of digoxin, which do not affect the myocardium, on the anticonvulsant potential of classical commonly used anti-epileptic drugs under conditions of seizures, induced by pentylentetrazole and maximal electroshock, has been investigated. The aim of the study was to investigate the influence of digoxin at a sub-cardiotonic dose on the anticonvulsant potential of carbamazepine and lamotrigine in experimental seizures with different neurochemical mechanisms.

Material and methods: A total of 192 random-bred male albino mice weighting 22–25 g were used. Carbamazepine and lamotrigine were administered intragastrically in conditionally effective (ED₉₀) and sub-effective (½ ED₉₀) doses: carbamazepine at doses of 100 and 50 mg/kg; lamotrigine at doses of 25 and 12.5 mg/kg. Digoxin was administered subcutaneously at a sub-cardio tonic dose of 0.8 mg/kg as an adjuvant to carbamazepine and lamotrigine in ½ ED₉₀ Picrotoxin (2.5 mg/kg subcutaneously); thiosemicarbazide (25 mg/kg intraperitoneally); strychnine (1.2 mg/kg subcutaneously); camphor (1000 mg/kg intraperitoneally) were used as convulsant agents.

Results: It was found that digoxin not only has its own permanent anticonvulsant effect on different models of paroxysms with different neurochemical mechanisms of development, but also significantly enhances the anticonvulsant potential of carbamazepine (to a lesser extent – lamotrigine) regardless of the pathogenesis of experimental paroxysms.
111
provenement of the educational brand, the interviewed NUPh employees noted the constant improvement of the quality of educational services (91 % of the respondents), the intensification of international cooperation (86 %), the active involvement of practitioners and scientists in the scientific, volunteer and cultural life of the institution (79 %).

Conclusions. It has been proven that an important component of the brand of a higher education institution is an educational service; image of educational services; the benefits to be provided by the brand owner to consumers of educational services. The most significant factors of popularity and positive attitude towards NUPh and the advantages received by graduates after graduation have been established. A conclusion was made about the high level of corporate culture in HEI, the important elements of which are the presence of the NUPh development strategy, the introduction of effective management technologies and the creation of conditions for the self-realization of employees

Keywords: brand, formation, assessment, results, factors of influence, institution of higher education, public

References
1. Organisation for economic cooperation and development. Statistics and publications. Available at: www.oecd.org
2. Melewar, T. C., Nguyen, B. (2014). Five areas to advance branding theory and practice. Journal of Brand Management, 21 (9), 758–769. doi: http://doi.org/10.1057/bm.2014.31
3. Zamerchenko, N. I. (2012). Branding in Education. IARoslavskii pedagogicheskii vestnik, 2 (2), 79–81.
4. Fernandes, T., Moreira, M. (2019). Consumer brand engagement, satisfaction and brand loyalty: a comparative study between functional and emotional brand relationships. Journal of Product & Brand Management, 28 (2), 274–286. doi: http://doi.org/10.1108/jpbb-08-2017-1545
5. Vera, J. (2016). Two paths to customer loyalty: the moderating effect of the differentiation level strategy in the performance-satisfaction-value-intentions relationship. Journal of Product & Brand Management, 25 (2), 171–183. doi: http://doi.org/10.1108/jpbb-01-2015-0789
6. Mills, A. J., Robson, K. (2019). Brand management in the era of fake news: narrative response as a strategy to insulate brand value. Journal of Product & Brand Management, 29 (2), 159–167. doi: http://doi.org/10.1108/jpbb-12-2018-2150
7. Zhadko, E. A., Kapustina, L. M., Romanova, N. Iu. (2016). Pozicisonirovanie i brending obrazovatelnoi organizatsii. Ekaterinburg: Izd-vo Ural. gos. ekon. un-ta, 204.
8. Wohlfeil, M., Whelan, S. (2012). “Saved!” by Jena Malone: An introspective study of a consumer’s fan relationship with a film actress. Journal of Business Research, 65 (4), 511–519. doi: http://doi.org/10.1016/j.jbusres.2011.02.030
9. Kandampully, J., Zhang, T., Bilgihan, A. (2015). Customer loyalty: a review and future directions with a special focus on the hospitality industry. International Journal of Contemporary Hospitality Management, 27 (3), 379–414. doi: http://doi.org/10.1108/ijchm-03-2014-0151
10. Mairty, M., Gupta, S. (2016). Mediating Effect of Loyalty Program Membership on the Relationship Between Advertising Effectiveness and Brand Loyalty. Journal of Marketing Theory and Practice, 24 (4), 462–481. doi: http://doi.org/10.1080/10696679.2016.1205450
11. Garipağaoglu, B. Ç. (2015). Branding in Higher Education: A Case Study from Turkey. Higher Education Policy, 29 (2), 254–271. doi: http://doi.org/10.1057/hep.2015.24
12. Alikperov, I. M., Zhadko, E. A., Timokhina, G. S. (2016). Model upravleniia brendom obrazovatelnoi organizatsii. Ekonomika i predprinimatelstvo, 11, 474–477.
13. Hwang, J., Kandampully, J. (2012). The role of emotional aspects in younger consumer-brand relationships. Journal of Product & Brand Management, 21 (2), 98–108. doi: http://doi.org/10.1108/106104212112115517
14. Kotvitska, A. A., Yakovleva, O. Y. (2021). The study of the theoretical approaches to the event management in order to form the brand of a higher education institution. Social Pharmacy in Health Care, 7 (2), 4–9. doi: http://doi.org/10.24959/spbhcj.21.225
15. National University of Pharmacy. Available at: https://nuph.edu.ua
16. Gong, T. (2017). Customer brand engagement behavior in online brand communities. Journal of Services Marketing, 32 (3), 286–299. doi: http://doi.org/10.1108/jsm-08-2016-0293
17. Bakasova, O. A. (2016). The impact of social expectations of students with regard to the university brand on development of academic motivation. Business. Education. Law. Bulletin of Volgograd Business Institute, 1 (34), 264–268.
18. Hollebeek, L. D., Glynn, M. S., Brodie, R. J. (2014). Consumer Brand Engagement in Social Media: Conceptualization, Scale Development and Validation. Journal of Interactive Marketing, 28 (2), 149–165. doi: http://doi.org/10.1016/j.intmar.2013.12.002
19. Alikperov, I. M., Zhadko, E. A., Timokhina, G. S. (2016). Model upravleniia brendom obrazovatelnoi organizatsii. Ekonomika i predprinimatelstvo, 11-2 (76-2), 474–477.
20. Dudarev, O. K., Kustitskaia, T. A., Ovchinnikova, E. V. (2016). Matematicheskia statistika. Krasnoiarsk, 156.
21. Chang, C.-T., Chu, X.-Y., Tsai, I.-T. (2020). How Cause Marketing Campaign Factors Affect Attitudes and Purchase Intention. Journal of Advertising Research, 61 (1), 58–77. doi: http://doi.org/10.2501/jar-2019-046

DOI: 10.15587/2519-4852.2021.249710

THE MAIN STAGES OF PHARMACEUTICAL DEVELOPMENT OF EMULGEL “PROBIOSKIN”

p. 75–84

Alina Soloviya, Postgraduate Student, Department of Biotechnology, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002
E-mail: alina.soloviya@gmail.com
ORCID: https://orcid.org/0000-0003-2593-0338

Olha Kaliuzhnaia, PhD, Associate Professor, Department of Biotechnology, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002
ORCID: https://orcid.org/0000-0002-8187-517X

Dmytro Lytkin, PhD, Vice-Director, Educational and Scientific Institute of Applied Pharmacy, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002
ORCID: https://orcid.org/0000-0002-4173-3046
The aim. To conduct research on the pharmaceutical development of a complex preparation with probiotic “Probioskin” in the form of an emulgel for the treatment of infectious and inflammatory dermatological diseases.

Methods. Uniformity was determined by visual inspection of the test samples using an XSP-128 ULAB biological microscope. The study of the rheological properties of the sample was carried out using a Rheolab QC rheovisimeter (Anton Paar, Austria) using a system of coaxial cylinders C-CC27/SS. Microbiological studies and biotesting on a biological model of ciliates were carried out in aseptic conditions of a laminar box (biological safety cabinet AC2-4E1 “Esco”, Indonesia) of the Department of Biotechnology of the National University of Pharmacy (completely). Pharmacological studies (determination of the parameters of acute toxicity and anti-inflammatory properties on the model of acute exudative inflammation of the foot in rats caused by zymosan and carrageenan) were carried out on the basis of the Central Research Laboratory of the NUPh.

Results. On the basis of the complex of the carried out studies, the composition of the complex preparation for skin use “Probioskin” was substantiated. The analysis of the microbiological purity of the developed agent during the proposed shelf life of 12 months showed that the drug meets the requirements of the State Pharmacopoeia Monograph for cutaneous application in terms of the level of microbial contamination by foreign microflora. The complex of pharmacological studies carried out indicates that the drug “Probioskin” can be attributed to group 6 of class and classified as a “relatively harmless” agent. The study of the anti-inflammatory effect of the drug indicates that the drug exhibits moderate anti-inflammatory properties. Under the condition of zymosan inflammation, which is associated with the activation of leukotrienes as inflammatory mediators, the average antixudative activity of the drug is 33 %. The drug has a moderate antixudative effect under the condition of carrageenan edema, which is evidence of its effect on exudation processes mediated by prostaglandins. The mean AEA of the study drug was 24 %.

Conclusions. For the development of a soft preparation for skin use for the treatment of infectious and inflammatory dermatological diseases, the following components have been selected: active – lactobacilli, dexpanthenol, lactic acid; auxiliary – propylene glycol, peach oil, polysorbate-80, aristoplex, tocopherol, the concentration of which was substantiated on the basis of a complex of organoleptic, physicochemical, pharmacological, microbiological and biological studies. It has been experimentally established that the “Probioskin” emulgel meets the requirements of the SPhU in terms of the level of microbial contamination by extraneous microflora. Pharmacological studies allow the drug to be classified as “relatively harmless” with anti-inflammatory properties at a level not lower than the reference drug

Keywords: pharmaceutical development, probiotics, skin microbiome, dermatological diseases, emulgel, gelling agents

References
1. Mukherjee, S., Mitra, R., Maitra, A., Gupta, S., Kumaran, S., Chakraborty, A., Majumder, P. P. (2016). Sebum and Hydration Levels in Specific Regions of Human Face Significantly Predict the Nature and Diversity of Facial Skin Microbiome. Scientific Reports, 6 (1). doi: http://doi.org/10.1038/srep36062
2. Dréno, B., Aravisskaja, E., Berardesca, E., Gontijo, G., Sanchez Viera, M., Xiang, L. F. et al. (2016). Microbiome in healthy skin, update for dermatologists. Journal of the European Academy of Dermatology and Venereology, 30 (12), 2038–2047. doi: http://doi.org/10.1111/jdv.13965
3. Jo, J.-H., Kennedy, E. A., Kong, H. H. (2016). Topographical and physiological differences of the skin microbiome in health and disease. Virulence, 8 (3), 324–333. doi: http://doi.org/10.1080/21555944.2016.1249093
4. McLoughlin, I. J., Wright, E. M., Tagg, J. R., Jain, R., Hale, J. D. F. (2021). Skin Microbiome – The Next Frontier for Probiotic Intervention. Probiotics and Antimicrobial Proteins. doi: http://doi.org/10.1007/s12602-021-09824-1
5. Fuchs-Tarlovsky, V., Marquez-Barba, M. F., Srim, K. (2016). Probiotics in dermatologic practice. Nutrition, 32 (3), 289–295. doi: http://doi.org/10.1016/j.nut.2015.09.001
6. Yu, Y., Dunaway, S., Champer, J., Kim, J., Alikhán, A. (2019). Changing our microbiome: probiotics in dermatology. British Journal of Dermatology, 182 (1), 39–46. doi: http://doi.org/10.1111/bjd.18088
7. Li, X., Xing, L., Lai, R., Yuan, C., Humbert, P. (2020). Literature mapping: association of microscopic skin microflora and biomarkers with macroscopic skin health. Clinical and Experimental Dermatology, 46 (1), 21–27. doi: http://doi.org/10.1111/ced.14353
8. Requena, T., Velasco, M. (2021). The human microbiome in sickness and in health. Revista Clinica Española, 221 (4), 233–240. doi: http://doi.org/10.1016/j.rceng.2019.07.018
9. França, K. (2020). Topical Probiotics in Dermatological Therapy and Skincare: A Concise Review. Dermatology and Therapy, 11 (1), 71–77. doi: http://doi.org/10.1007/s13555-020-00476-7
10. Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M.-C. C., Charles, T. et. al. (2020). Correction to: Microbiome definition re-visited: old concepts and new challenges. Microbiome, 8 (1). doi: http://doi.org/10.1186/s40168-020-00905-x
11. Dmytriievskyi, D. I., Ruban, O. A., Khokhlova, L. M., Bobrytska, L. O., Hrytsenko, V. I., Spyrydonov, S. V., Kovalevska, I. V. (2016). Suchasniyi stan naukovykh znan spetsialnosti «Farmatsiia». Kharkiv, 98.
12. Nastanova ST–N MOZU 42-3.0:2011. Likarski zasoby farmatsiyochny rozborka (ICH Q8) (2011). Kyiv: Ministerstvo okhorony zdorovia Ukrainy.
13. Nastanova likarski zasoby doklinichni doslidzhennia bezpeky yak pidrunkui kliniknych vyprobuvan za uchastiu liudyny ta reiestratsii likarskykh zasobiv (ICH M3(R2)) ST–N MOZU 42 – 6.0:2014. Kyiv: Ministerstvo okhorony zdorovia Ukrainy, 55.
14. Soloviova, A., Kukhtenko, H., Kaliuzhnaia, O. (2021). Substantiation of the composition of a semi-solid dosage form with a probiotic component for use in dermatology. EUREKA: Health Sciences, 6, 54–63. doi: http://doi.org/10.21303/2504-5679.2021.002181

15. Drohovoz, S. M., Zapanets, I. A., Mokhort, M. A. et. al. (2001). Eksperimentalne (doklinichne) vyvchennia farmakolohichnykh rechovyn, yaki pronophoniasa yak nesteroidalni protyzapalni zasoby. Doklinichni doslidzhennia likarskykh zasobiv, 272–306.

16. Likarski zasoby. Nalezhna laboratorna praktyka (2009). Ministerstvo okhoryony zdorovia Ukrainy, 27.

17. Evsyniina, E. V., Taran, D. O., Stom, D. I., Saksonov, M. N., Balayant, A. E., Kirillova, M. A. et. al. (2016). Comparative assessment of toxic effects of surfactants using biotesting methods. Inland Water Biology, 9 (2), 196–199. doi: http://doi.org/10.1134/s1995082916020061

18. Peral, M. C., Huaman Martinez, M. A., Valdez, J. C. (2009). Bacteriotherapy with Lactobacillus plantarum burns. International Wound Journal, 6 (1), 73–81. doi: http://doi.org/10.1111/j.1742-481x.2008.00577.x

19. Soloviova, A., Kaliuzhnaia, O., Stelnikov, L. (2020). Primary selection of the prebiotic components in the complex dermatological therapeutic and preventive medicine with probiotic. ScienceRise: Pharmaceutical Science, 2 (24), 33–39. doi: http://doi.org/10.15587/2519-4852.2020.201104

20. Tavaria, F. K. (2017). Topical use of probiotics: The natural balance. Porto Biomedical Journal, 2 (3), 69–70. doi: http://doi.org/10.1016/j.pbj.2017.02.003

21. Soloviova, A. V., Kaliuzhnaia, O. S. (2021). Selection of auxiliary components for the development of a soft preparation for probiotic components. Fundamentalna ta prykladna doslidzhennia u haluzi farmatsevtychnoi tekhnolohii. Kharkiv: NaU, 28–31.

22. Derzhavna Farmakopeia Ukrainy (2021). Kharkiv: Derzhavne pidpryiemstvo «Ukrainskyi naukovyi farmats Center yakosti likarskykh zasobiv», 424.

23. Kovalenko, V. M., Stefanov, O. V., Maksymov, Yu. M., Trakhtenberh, I. M.; Stefanov, O. V. (Ed.) (2000). Eksperimentalne vyvchennia toksychnoi di potentsiynykh likarskykh zasobiv. Doklinichni doslidzhennia likarskykh zasobiv. Kyiv: Avitsena, 74–97.

DOI: 10.15587/2519-4852.2021.249836

STUDY OF EPILOBIUM ANGUSTIFOLIUM L. AMINO ACIDS CONTENT BY HPLC METHOD

p. 85–90

Halyna Feshchenko, PhD, Assistant, Department of Pharmacology and Clinical Pharmacology, I. Horbachevsky Ternopil National Medical University of Ministry of Health of Ukraine, Voli avc., 1, Ternopil, Ukraine, 46001

ORCID: https://orcid.org/0000-0001-9929-9505

Oleksandra Oleschuk, PhD, Professor, Department of Pharmacology and Clinical Pharmacology, I. Horbachevsky Ternopil National Medical University of Ministry of Health of Ukraine, Voli avc., 1, Ternopil, Ukraine, 46001

ORCID: https://orcid.org/0000-0002-1491-1935

Liudmyla Slobodaniuk, PhD, Assistant, Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University of Ministry of Health of Ukraine, Voli avc., 1, Ternopil, Ukraine, 46001

E-mail: husaklv@dmu.edu.ua

ORCID: https://orcid.org/0000-0002-0400-1305

Ivanna Milian, PhD, Assistant, Department of General Chemistry, I. Horbachevsky Ternopil National Medical University of Ministry of Health of Ukraine, Voli avc., 1, Ternopil, Ukraine, 46001

ORCID: https://orcid.org/0000-0002-8920-3941

The use of plant raw materials is one of the areas of modern pharmaceutical science in the production of herbal drugs. The genus Epilobium counts more than 200 species, many species of which are used in traditional medicine. Among the Epilobium species, Epilobium angustifolium is one of the well-known medicinal plants which have been used worldwide in habitual medicine. There is insufficient information in the literature on the biological active substances of Epilobium angustifolium L. The presence of three major polyphenol groups: phenolic acids, flavonoids, and ellagitannins were identified in E. angustifolium extracts. Traditionally, the infusion of leaves of this plant could be useful for headaches, cold and gastrointestinal disorder. The Epilobium angustifolium L. as an insufficiently studied plant is a promising object of study, including amino acids composition. To assess the relationship between the production of primary metabolites and their possible therapeutic properties, we analyzed the amino acid profile of the plant Epilobium angustifolium used in traditional medicine. The study of compounds generated by plants as a result of defense mechanisms permits an understanding of the molecular mechanism involved in their medicinal properties.

The aim. Thus, the aim of the study was to conduct an HPLC analysis of the amino acids of E. angustifolium to establish the prospects for the use of the raw materials in medical and pharmacological practice. The results of the current study will be used in further breeding programs aimed to obtain an industrial form of E. angustifolium suitable for pharmaceutical and food applications.

Materials and methods. The determination of amino acids composition of Epilobium angustifolium was conducted using Agilent 1200 (Agilent Technologies, USA).

Results. The HPLC method identified sixteen free amino acids and seventeen bound amino acids in the Epilobium angustifolium herb. The studies have shown that Epilobium angustifolium L. herb is mainly composed of free amino acids such as L-phenylalanine (1.65 µg/mg), L-glutamic acid (1.51 µg/mg), L-arginine (1.24 µg/mg), L-alanine (0.98 µg/mg) and L-aspartic acid (0.57 µg/mg), which were present in the greatest amount. The dominant bound amino acids in the studied raw material were L-glutamic acid, L-aspartic acid, L-leucine, and L-alanine, the content of which was 32.37 µg/mg, 10.59 µg/mg, 8.70 µg/mg, and 6.22 µg/mg respectively.

Conclusions. Using the HPLC method determined the amino acids in the herb of Epilobium angustifolium L. The concentrations of L-aspartic acid, L-glutamic acid, L-arginine, L-alanine and L-phenylalanine are predominately among free and bound amino acids in the Epilobium angustifolium L. herb. The result shows that Epilobium angustifolium L. is the source of amino acids, so the use of this plant raw material for new remedies is possible in the future.

Keywords: Epilobium angustifolium L., herb, free amino acids, bound amino acids, HPLC
The aim of the work is the development of a combined drug for use in alcohol intoxication based on the physicochemical properties and chemical compatibility of active pharmaceutical ingredients and excipients, and the study of the hepatoprotective effect in alcoholic hepatitis in rats.

Materials and methods. During the studies, physical and physicochemical methods were used, a Specord 200 spectrophotometer (Germany), analytical scales Sartorius (SARTORIUS, Germany), class A volumetric glassware and reagents that meet the requirements of the State Pharmacopoeia of Ukraine (SPu). Alcoholic hepatitis in rats was reproduced by intragastric administration of an aqueous 40 % ethanol solution at a dose of 7 ml/kg for 1 week.

Results. A new combined agent is proposed for use in alcohol intoxication in the form of an effervescent powder for the preparation of an oral solution, which contains glycine, L-glutamic acid, acetylsalicylic acid, ascorbic acid, fructose/sorbitol and sodium bicarbonate and citric acid to accelerate the dissolution of medicinal substances. To study the compatibility of the components, experimental studies of hygroscopicity, chemical interaction/chemical stability and an assessment of the redox potential of the proposed active pharmaceutical ingredients were carried out. To study the stability of the API, studies were carried out on sugaramine condensation due to

DOI: 10.15587/2519-4852.2021.249880

STUDY OF COMPATIBILITY OF COMPONENTS OF A NEW COMBINED DRUG FOR TREATMENT OF ALCOHOLIC INTOXICATION AND ITS HEPATOPROTECTIVE EFFECT ON A MODEL OF ALCOHOLIC LIVER INJURY

p. 91–100

Olha Rudakova, Postgraduate Student, Department of Pharmaceutical Chemistry, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002, Lecturer, Cyclic Committee of Pharmaceutical Chemistry and Pharmacognosy, Professional College of National University of Pharmacy, O. Nevskogo str., 18, Kharkiv, Ukraine, 61140

E-mail: rudakovaolha@gmail.com

ORCID: https://orcid.org/0000-0003-4216-0590

Svitlana Guban, PhD, Associate Professor, Department of Pharmaceutical Chemistry, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002

ORCID: http://orcid.org/0000-0002-3434-9502

Natalia Smirolev, PhD, Assistant, Department of Pharmaceutical Chemistry, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002

ORCID: https://orcid.org/0000-0001-5878-5072

Dmytro Lytkin, PhD, Vice-director, Educational and Scientific Institute of Applied Pharmacy, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002

ORCID: https://orcid.org/0000-0001-4733-3046

Tatiana Bruihankova, PhD, Assistant, Department of Biochemistry, Kharkiv National Medical University, Nauky ave., 4, Kharkiv, Ukraine, 61022

ORCID: http://orcid.org/0000-0002-8042-9063

Elena Bezhashnyuk, PhD, Head of Laboratory, State Research Laboratory for Quality Control of Medicines, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002

ORCID: http://orcid.org/0000-0003-3923-4755

Nataliya Bevz, PhD, Associate Professor, Department of Pharmaceutical Chemistry, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002

ORCID: http://orcid.org/0000-0002-7259-8908

Victoriya Georgiyants, Doctor of Pharmaceutical Sciences, Professor, Head of Department, Department of Pharmaceutical Chemistry National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002

ORCID: http://orcid.org/0000-0001-8794-8010

STUDY OF COMPATIBILITY OF COMPONENTS OF A NEW COMBINED DRUG FOR TREATMENT OF ALCOHOLIC INTOXICATION AND ITS HEPATOPROTECTIVE EFFECT ON A MODEL OF ALCOHOLIC LIVER INJURY

p. 91–100

Olha Rudakova, Postgraduate Student, Department of Pharmaceutical Chemistry, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002, Lecturer, Cyclic Committee of Pharmaceutical Chemistry and Pharmacognosy, Professional College of National University of Pharmacy, O. Nevskogo str., 18, Kharkiv, Ukraine, 61140

E-mail: rudakovaolha@gmail.com

ORCID: https://orcid.org/0000-0003-4216-0590

DOIs:

1. 10.1007/s00726-009-0269-0
2. 10.1016/j.chroma.2009.01.068
3. 10.4314/tjpr.v13i4.17
4. 10.1007/s00726-008-0152-4
5. 10.3390/foods9101382
6. 10.1201/b14661
7. 10.1093/jn/137.6.1539s
the choice of amino acids and ascorbic acid in the composition of drugs. Based on the research results, it was decided to divide the API into 2 packages, separating sodium bicarbonate and glycine, which can interact with ascorbic acid/acetylsalicylic acid and ascorbic acid, respectively. In an in vivo experiment, it was found that the use of the new drug is accompanied by the normalization of the antioxidant-proxidant status of the liver due to a likely decrease in the TBA-AP level and an increase in the RG index in the liver homogenate relative to the control group.

Conclusions. Evaluation of the physicochemical properties of API allowed us to propose a new combined drug (TS-PP) for alcoholic hepatitis, effervescent powder, compatibility, physical and chemical properties, hepatoprotective effect

Keywords: alcoholic hepatitis, effervescent powder, compatibility, physical and chemical properties, hepatoprotective effect

References
1. Global status report on alcohol and health (2014). Geneva: WHO Press. Available at: https://apps.who.int/iris/bitstream/10665/112736/1/9789240692763_eng.pdf
2. Shield, K. D., Parry, C., Rehm, J. (2006). Chronic diseases and conditions related to alcohol use. Alcohol research: current reviews, 35 (2), 155–171.
3. Jesse, S., Bräthen, G., Ferrara, M., Keindl, M., Ben-Menachem, E., Tanasescu, R. et. al. (2016). Alcohol withdrawal syndrome: mechanisms, manifestations, and management. Acta Neurologica Scandinavica, 135 (1), 4–16. doi: http://doi.org/10.1111/an.12671
4. Attilia, F., Perciballi, R., Rotondo, C., Capriglione, I., Iannuzzi, S., Attilia, M. L. (2018). Alcohol withdrawal syndrome: diagnostic and therapeutic methods. Rivista di psichiatria, 53 (3), 118–122. doi: http://doi.org/10.1708/2925.29413
5. Verster, J. C., Stephens, R., Penning, R., Roosneven, D., McGearry, J., Levy, D. et. al. (2010). The Alcohol Hangover Research Group Consensus Statement on Best Practice in Alcohol Hangover Research. Current Drug Abuse Reviews, 3 (2), 116–126. doi: http://doi.org/10.2174/1874473711003020116
6. Adams, B., Ferguson, K. (2017). Pharmacologic Management of Alcohol Withdrawal Syndrome in Intensive Care Units. AACN Advanced Critical Care, 28 (3), 233–238. doi: http://doi.org/10.4037/aaanc2017574
7. Stefanova, A. V. (2002). Doklincheskie issledovaniia lekarstvennykh sredstv. Kyiv: Avitsena, 528.
8. Mironova, A. N., Buniatian, N. D., Vasileva, A. N. et. al. (Eds.) (2012). Rukovodstvo po provedenii doklinicheskikh issledovaniia lekarstvennykh sredstv. Part. 1. Moscow: Grif i K, 944.
9. Pro zatverdzhennia Poriadku provedennia doklinichnogo vcvchenia likarskikh zasobiv (2009). Nakaz MOZ Ukrainy No. 944. 14.12.2009. Available at: https://zakon.rada.gov.ua/laws/show/z0053-10#Text
10. Likarski zasoby. Nalezhna laboratorna praktyka (2009). Kyiv: Ministerstvo okhorony zdorovia Ukrainy, 27.
11. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 (2010). OJ L 276, 33–79.
12. Kozhemiakin, Yu. M., Khromov, O. S., Filonenko, M. A., Saifetdinova, H. A. (2002). Naukovo-praktichni rekomendatsii z utyrmanня laboratornykh tvaryn ta roboty z nymy. Kyiv: Avitsena, 196.
13. Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M., Altman, D. G. (2010). Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research. PLoS Biology, 8 (6), e1000412. doi: http://doi.org/10.1371/journal.pbio.1000412
14. Nair, A., Jacob, S. (2016). A simple practice guide for dose conversion between animals and human. Journal of Basic and Clinical Pharmacy, 7 (2), 27–31. doi: http://doi.org/10.4103/0976-0105.177703
15. Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82 (1), 70–77. doi: http://doi.org/10.1016/0003-9861(59)90090-6
16. Stalnai, I. D., Garishvili, T. G. (1977). Metod opredelenii malonovogo dialdegida s pomoschiu tiobarbituurovoi kisloty. Sovremenneye metody v biokhimii, Moscow: Meditsina, 66–68.
17. Khalafian, A. A. (2007). Statistica 6. Statisticheskii analiz dannyykh. Moscow: OO Oxin «Binom-Press», 512.
18. Shokri-Kojori, E., Tomasi, D., Wiers, C. E., Wang, G.-J., Volkow, N. D. (2016). Alcohol affects brain functional connectivity and its coupling with behavior: greater effects in male heavy drinkers. Molecular Psychiatry, 22 (8), 1185–1195. doi: http://doi.org/10.1038/mp.2016.25
19. Chourpiliadis, M., Mohiuddin, S. S. (2021). Biochemistry, Glucosegenesis. Available at: https://www.ncbi.nlm.nih.gov/books/NBK544346/
20. Ezequiel Leite, L., Nobre, M. J. (2012). The negative effects of alcohol hangover on high-anxiety phenotype rats are influenced by the glutamate receptors of the dorsal midbrain. Neuroscience, 213, 93–105. doi: http://doi.org/10.1016/j.neuroscience.2012.04.009
21. Wilson, D. F., Matschinsky, F. M. (2020). Ethanol metabolism: The good, the bad, and the ugly. Medical Hypotheses, 140, 109638. doi: http://doi.org/10.1016/j.mehy.2020.109638
22. Razvodovsky, Y. (2021). Hangover Syndrome: Pathogenesis and Treatment. International Archives of Sub stance Abuse and Rehabilitation, 3 (1). doi: http://doi.org/10.23937/2690-263x/1710009
23. Marik, P. E., Liggett, A. (2019). Adding an orange to the banana bag: vitamin C deficiency is common in alcohol use disorders. Critical Care, 23 (1). doi: http://doi.org/10.1186/s13054-019-2435-4
24. Lim, D. J., Sharma, Y., Thompson, C. H. (2018). Vitamin C and alcohol: a call to action. BMJ Nutrition, Prevention & Health, 1 (1), 17–22. doi: http://doi.org/10.1136/bmjph-2018-000010
25. Spoelstra-de Man, A. M. E., Elbers, P. W. G., Oudemans-van Straaten, H. M. (2018). Making sense of early high-dose intravenous vitamin C in ischemia/reperfusion injury. Critical Care, 22 (1). doi: http://doi.org/10.1186/s13054-018-1996-y
26. Royle, S., Owen, L., Roberts, D., Marrow, L. (2020). Pain Catastrophising Predicts Alcohol Hangover Severity and Symptoms. Journal of Clinical Medicine, 9 (1), 280. doi: http://doi.org/10.3390/jcm9010280

27. Roze, M., Cruecean, D., Diler, G., Rannou, C., Cataneo, C., Jonchere, C. et. al. (2021). Impact of Maltitol and Sorbitol on Technological and Sensory Attributes of Biscuits. Foods, 10 (11), 2545. doi: http://doi.org/10.3390/foods10112545

28. Xiang, J., Liu, F., Wang, B., Chen, L., Liu, W., Tan, S. (2021). A Literature Review on Maillard Reaction Based on Milk Proteins and Carbohydrates in Food and Pharmaceutical Products: Advantages, Disadvantages, and Avoidance Strategies. Foods, 10 (9), 1998. doi: http://doi.org/10.3390/foods10091998

29. Khoder, M., Ghormoi, H., Ryan, A., Karam, A., Alany, R. (2019). Potential Use of the Maillard Reaction for Pharmaceutical Applications: Gastric and Intestinal Controlled Release Alginate-Albumin Beads. Pharmaceutics, 11 (2), 83. doi: http://doi.org/10.3390/pharmaceutics11020083

30. Newton, D. W. (2011). Maillard reactions in pharmaceutical formulations and human health. International Journal of Pharmaceutical Compounding, 15 (1), 32–40.

31. Jayawardena, R., Thejani, T., Ranasinghe, P., Fernando, D., Verster, J. C. (2017). Interventions for treatment and/ or prevention of alcohol hangover: Systematic review. Human Psychopharmacology: Clinical and Experimental, 32 (5), e2600. doi: http://doi.org/10.1002/hup.2600

32. Dunn, W., Shah, V. H. (2016). Pathogenesis of Alcoholic Liver Disease. Clinics in Liver Disease, 20 (3), 445–456. doi: http://doi.org/10.1016/j.cld.2016.02.004

33. Nagy, L. E., Ding, W.-X., Cresci, G., Saikia, P., Shah, V. H. (2016). Linking Pathogenic Mechanisms of Alcoholic Liver Disease With Clinical Phenotypes. Gastroenterology, 150 (8), 1756–1768. doi: http://doi.org/10.1053/j.gastro.2016.02.035

34. Staudinger, H., Krisch, K., Leonhäuser, S. (1961). Role of ascorbic acid in microsomal electron transport and the possible relationship to hydroxylation reactions. Annals of the New York Academy of Sciences, 92 (1), 195–207. doi: http://doi.org/10.1111/j.1749-6632.1961.tb46119.x

35. Defeng, W., Cederbaum, A. I. (2003). Alcohol, oxidative stress, and free radical damage. Alcohol Research & Health, 27 (4), 277–284.

36. Cederbaum, A. I., Lu, Y., Wu, D. (2009). Role of oxidative stress in alcohol-induced liver injury. Archives of Toxicology, 83 (6), 519–548. doi: http://doi.org/10.1007/s00204-009-0432-0

37. Cederbaum A. I. (2017). Role of Cytochrome P450 and oxidative stress in alcohol-induced liver injury. Reactive Oxygen Species, 4 (11), 303–319. doi: http://doi.org/10.20455/ros.2017.851

38. Hausladen, A., Ruth, G. A. (2017). Glutathione. Antioxidants in higher plants. CRC Press, 1–30. doi: http://doi.org/10.1201/9781315149899-1
Пориценьне дослідження складу ефірної олії квіток та листя Crataegus monogyna L.
(с. 20–26)

Н. В. Сидора, О. Ю. Коновалова, С. С. Зуйкіна, К. В. Семченко, А. М. Рудник, І. О. Гуртовенко

Мета. Дослідити взаємодію поверхнево-активних речовин (ПАР) з полоксамером 338 (Р338) та вплив Р338 на властивості кремових основ.

Матеріали та методи. Досліджували розчини ПАР і Р338, а також кремові основи. За інтенсивністю розсіювання світла та електрофотохімічною рухливістю міцел визначали їх середній гідродинамічний діаметр (D) та ζ-потенціал. Отримували спектри електронного парамагнітного резонансу (ЭПР) спінових зондів у розчинниках і основах, визначали тип спектра, ζ-потенціал константу (ζ), час кореляції обертальної дифузії (τ), параметр анізотропії (ε).

Результати. Під впливом Р338 зменшуються гідродинамічні діаметри міцел катіонної, аніонної та неіонної ПАР, знижується абсолютна величина їх ζ-потенціалу і підвищується мікроструктура від кремових основ.

Висновки. На основі різних методів дослідження виявлено, що Р338 має вплив на структуру міцел і мікроструктуру основ, що зумовлено взаємодією поверхнево-активних речовин з Р338.

Ключові слова: полоксамер 338 (Р338), ПАР, міцела, кремова основа, спіновий зонд, час кореляції обертальної дифузії (τ), реонітрологічний діаметр (D), ζ-потенціал.
Завдяки вмісту фітостеролів екстрактивні препарати кропиви дводомної корені здатні виявляти антиандрогенну дію у разі зовнішньої терапії холовів і жінок з андрогенною алопецією. Олійні екстракти (ОЕ) характеризуються низькою переваг при застосуванні на шкірі складно порівнюючи з водно-спиртовими витяжками. Для розробки технології ОЕ з кропиви дводомної корені важливим є вибір оптимальних параметрів екстрагування, які базуються на кількісному визначенні фітостеролів в екстрагентах і досліджуваних рахунку екстрактів. Мета роботи – вибір оптимальних параметрів одержання ОЕ з кропиви дводомної корені з урахуванням кількості фітостеролів в екстрактих. Висновки. Експериментально обґрунтовано вибір оптимальних параметрів отримання ОЕ з КДК на основі визначення виходу фітостеролів методом газової капілярної хроматографії, а саме: екстрагент – кропивдзяча олія, співвідношення сировина-екстракт – 1:5, час екстрагування – 6 год, метод екстрагування – мацерація. Ключові слова: кропива дводомна корені, андрогенна алопеція, олійний екстракт, параметри екстрагування, фітостероли, газова капілярна хроматографія.

DOИ: 10.15587/2519-4852.2021.249615

СКРИНІНГОВЕ ДОСЛІДЖЕННЯ АНТИГІПЕРГЛІКЕМІЧНОЇ ДІЇ НОВИХ ТВЕРДИХ ДИСПЕРСІЙ КВЕРЦЕТИНУ (с. 37–42)

О. А. Рубан, Н. М. Кононенко, І. В. Ковалевська, В. В. Чікіткіна

Мета – провести скринінг нових твердих дисперсій кверцетину на наявність антигіперглікемічної дії та виявити найактивніші субстанції, перспективні для створення антидіабетичного препарату. Матеріали і методи. Об’єктом дослідження були 4 нові тверді дисперсії кверцетину, які розроблено в Національному фармацевтичному університеті. Тверді дисперсії кверцетину отримували рідкофазним методом, як носій використовували гідроксипропілметилцелюлозу (ГПМЦ) або полівінілпіролідон (ПВП) у співвідношенні 1:1 та 1:2. Антигіперглікемічна дія проводилась тестирування кверцетину в стандарті концентраціях 1 мг/кг; сорбція кверцетину через 30 хвилин після глюкози. Результати. Встановлено, що за умови порушеного толерантності до глюкози нові тверді дисперсії кверцетину з ГПМЦ (1:1) – рівень глюкози через 30 хвилин після глюкозозного навантаження достовірно знижувається на 28 % та не відрізняється від дії метформіну, що було підтверджено значеннями площографічної кривої. При застосуванні твердих дисперсій з ПВП (1:1 та 1:2) антигіперглікемічна дія була менш виражена. На моделі цукрового діабету 2 типу достовірний антигіперглікемічний ефект виявлено лише у твердій дисперсії кверцетину з ГПМЦ, 1:1 на рівні метформіну, що свідчить про підвищення розчинності та всмоктування дії досліджуваних субстанцій у дозі 50 мг/кг оцінювали у щурів за здатністю знижувати рівень глюкози в крові після відновлення вмісту фітостеролів в експериментальних зразках ОЕ методом газової капілярної хроматографії. Методом газової рідинної хроматографії ідентифіковано у соняшниковій олії 5 різних сполук стероїдної структури (стігмастерин, β-ситостерин та ін.), а у кукурудзяної олії – 10 (кампестерин, 2-α стигмастерин, β-ситостерин, А3-авеностерин та ін.). При цьому кількісний вміст β-ситостерину в сумі стеринів кукурудзяної олії був значно вищим порівняно зв'язаною субстанції у кукурудзяної олії і становив 59,33 %. Оптимальні технологічні параметри встановлено, враховуючи особливості екстракції олійних екстрагентом і за кількісним визначенням суми фітостеролів і β-ситостерину в екстрактих з різних органічних солей ОЕ. Сумарний уміст рослинних смолідів в ОЕ, у тому числі з врахуванням їх кількості в екстрагентах, виконано в межах 7880 мг/кг; кількість β-ситостерину становила 4638 мг/кг. Висновки. Експериментально обґрунтовано вибір оптимальних параметрів отримання ОЕ з КДК на основі визначення виходу фітостеролів методом газової капілярної хроматографії, а саме: екстрагент – кропивдзяча олія, співвідношення сировина-екстракт – 1:5, час екстрагування – 6 год, метод екстрагування – мацерація. Ключові слова: кропива дводомна корені, андрогенна алопеція, олійний екстракт, параметри екстрагування, фітостероли, газова капілярна хроматографія.

DOИ: 10.15587/2519-4852.2021.247443

СКРИНІНГОВЕ ДОСЛІДЖЕННЯ АНТИГІПЕРГЛІКЕМІЧНОЇ ДІЇ НОВИХ ТВЕРДИХ ДИСПЕРСІЙ КВЕРЦЕТИНУ (с. 37–42)
ІДЕНТИФІКАЦІЯ БЕНЗИДАМІНУ ТА ЙОГО МЕТАБОЛІТУ В ПРИСУТНОСТІ ДЕЯКИХ ПРОТИЗАПАЛЬНИХ НЕСТЕРОЇДНИХ ПРЕПАРАТІВ (с. 43–50)

О. В. Чорна, В. А. Чорний, О. В. Чубенко, І. М. Грубник, В. А. Міщенко, М. Ю. Голік

Мета роботи. На теперішній час описана велика кількість випадків немедичного застосування бензидаміну гідрохлориду. Ідентифікація бензидаміну та його метаболіту – N-оксиду бензидаміну, в присутності деяких нестероїдних протизапальних засобів вивчена недостатньо. Тому розробка методу його ідентифікації в біологічному матеріалі є актуальним завданням.

Матеріали та методи. Предметами дослідження були бензидаміну гідрохлорид та його метаболіт, а також деякі нестероїдні протизапальні засоби, що є його аналогами за фармакологічною дією. Дослідження проводили методами тонкослізної хроматографії та високоефективної рідинної хроматографії.

Результати. На першому етапі вивчене скринінговий метод ідентифікації бензидаміну з використання екстракції в кислих і лужних умовах. Показано, що бензидамін можна виділити в обох середовищах, з подальшим проявом розчином йодоплатината та реактивом Драгендорфа за Мюньє або реактивом Манделіна відповідно. Була обрана рухома фаза для розділення та визначено відповідний hRf для цільової молекули.

Після попередньої ідентифікації бензидаміну було запропоновано метод остаточного підтвердження речовини. Було обрано надійний, специфічний і точний метод ВЕРХ з оберненою фазою. Показано, що бензидамін знаходиться в біологічному матеріалі переважно у формі метаболіту – N-оксиду бензидаміну. Обраний метод дозволив розділити та визначити ключові аналіти в біологічних зразках після препаративного виділення методом тонкослізної хроматографії. Запропоновано порівняння з УФ-спектрами еталонного стандарту бензидаміну гідрохлориду, щоб уникнути хибнопозитивного висновку про ідентифікацію лікарського засобу.

Висновки. Запропонована методика може бути використана для рутинної ідентифікації отруєнь бензидаміном у токсикологічних лабораторіях.

Ключові слова: бензидаміна гідрохлорид, скринінг, бензидаміну N – оксид, тонкошарова хроматографія, високоефективна рідинна хроматографія

СИНТЕЗ ТА АНТИМІКРОБНА АКТИВНІСТЬ 3-АРИЛАМІНОМЕТИЛ-1-(2-ОКСО-2-АРИЛЕТИЛ)-6,7,8,9-ТЕТРАГІДРО-5H-[1,2,4]ТРИАЗОЛО-[4,3-a]АЗЕПІНІЙ-1 БРОМІДІВ ТА АРИЛ-(4-R1-ФЕНІЛ)-5,6,7,8-ТЕТРАГІДРО-2,2а,8а-ТРИАЗАЦИКЛОПЕНТА-[cd]АЗУЛЕН-4-ІЛМЕТИЛ)-АМІНІВ (с. 51-57)

Н. Р. Демченко, З. С. Суворова, Ю. А. Федченкова, Т. В. Шпичак, О. С. Шпичак, Л. С. Бобкова, С. А. Демченко

Мета роботи. Полягає в розробці методів синтезу 3-ариламінометил-1-(2-оксо-2-арилетил)-6,7,8,9-тетрагідро-5H-[1,2,4]триазоло[4,3-a]азепіній-1 бромідів та арил-(4-R1-феніл)-5,6,7,8-тетрагідро-2,2а,8а-триазациклопента[cd]азулен-4-ілметил)-амінів та у вивченні їхньої антимікробної активності проти штамів грам-позитивних та грам-негативних бактерій, а також дріжджових грибів.

Матеріали та методи. ЯМР-спектри було виміряно на спектрометрі Bruker 400 (робоча частота 400 МГц). Антимікробну активність синтезованих сполук було оцінено за показником їхньої мінімальної інгібуючої концентрації (МИК).

Результати. Взаємодія 3-ариламінометил-6,7,8,9-тетрагідро-5H-[1,2,4]триазоло[4,3-a]азепіній-1 бромідів та арил-(4-R1-феніл)-6,7,8-тетрагідро-2,2а,8а-триазациклопента[cd]азулен-4-ілметил)-амінів відбувається у 10 % розчині NaOH утворюючи арил-(4-R1-феніл)-5,6,7,8-тетрагідро-2,2а,8а-триазациклопента[cd]азулен-4-ілметил)-амінів та у вичинений антимікробної активності проти штамів грам-позитивних та грам-негативних бактерій, а також дріжджових грибів.

Висновки. Запропоновані сполуками було виміряно на спектрометрі Bruker 400 (робоча частота 400 МГц). Антимікробну активність синтезованих сполук було оцінено за показником їхньої мінімальної інгібуючої концентрації (МИК).
Отметим, что в опытных группах введение низких доз дигоксина и его сочетание с другими препаратами, включая карбамазепин, ламотриджин и другие, позволяет улучшить антивезионный эффект на уровне нейрохимических механизмов.

Методы доссихедения и проведены в пределах 22–25 г. Карbamазепин применяли в дозах 100 и 50 мг/кг, ламотриджин — в дозах 25 и 12,5 мг/кг. Дигоксин вводили подкожно в субкардиотонической дозе 0,8 мг/кг на добавке в электрошоком.

Результаты. Было установлено, что дигоксин в низкой дозе усиливает антивезионный эффект карбамазепина и ламотриджина, независимо от патогенеза экспериментального судорожного. Однако, низкие дозы дигоксина не обладают самостоятельным антивезионным эффектом при индуцировании судорог пентилентетразолом.

Выводы. Однако, при использовании дигоксина в субкардиотонической дозе на моделях экспериментального судорожного эффект нейрохимических механизмов, а также значимо посредством антивезионного эффекта карбамазепина (менее эффективно — ламотриджину) и существенно недоспехен экспериментальным судорогам.

В. В. Цивун, С. Ю. Штриголь, И. О. Гаврилов, Д. В. Штриголь

Протез и нейрохимическими механизмами, а также значительно посредством антивезионного эффекта карбамазепина (менее эффективно — ламотриджину) и существенно недоспехен экспериментальным судорогам.

В. В. Цивун, С. Ю. Штриголь, И. О. Гаврилов, Д. В. Штриголь

DOИ: 10.15587/2519-4852.2021.249375

ДИГОСКИН ИЗ НИЗКИХ ДОЗ ПОСИЛЯЕ АНТИКОНВУЛЬСИВНЫЙ ПОТЕНЦИАЛ КАРБАМАЗЕПИНА ТА ЛАМОТРИДЖИНА СУМОЧКОМ РИЗНИМИ НЕЙРОХИМИЧНИМИ МЕХАНІЗМАМИ (с. 58–65)

А. А. Котвіцька, А. В. Волкова, О. Ю. Яковлєва

«Непротеин俐ны» препараты имеют выразный потенциал как допоміжні засоби у лікуванні поліфармакорезистентної

100 та 50 мг/кг; ламотриджин — у дозах 25 та 12,5 мг/кг. Дигоксин вводили підшкірно в субкардіотонічній дозі 0,8 мг/кг на додачу до електрошоком.

DOИ: 10.15587/2519-4852.2021.248050

РЕЗУЛЬТАТИ ОЦІНКИ ГРОМАДСЬКІСТЮ ФАКТОРІВ ВПЛИВУ НА ФОРМУВАННЯ БРЕНДУ ЗАКЛАДУ ВИЩОЇ ОСВІТИ РАМЦЕВТИЧНОГО СПРЯМУВАННЯ (с. 66–74)

А. А. Ковтюк, А. В. Волкова, О. Ю. Яковлєва

«Непротеїнічні» препарати мають виразний потенціал як допоміжні засоби у лікуванні поліфармакорезистентної епілепсії. Раніше було досліджено вплив низьких доз дигоксина, які не чинять ефекту на міокард, на антивезионний потенціал класичних широковживаних препаратів за умов судом, індукованих нептуніний та максимальним електрошоком.

Методи дослідження. Випускники, співробітники НФАУ, вибрання та освітні послуги. Встановлені найбільш вагомі чинники популяроності та конкурентоспроможності на ринку освітніх послуг.

Висновки. Доведено, що важливими компонентами бренду закладу є освітня послуга; імідж освітніх послуг; переваги, які отримують випускники після його закінчення. Зроблено висновок про високий рівень корпоративної культури у закладі, який досліджувався та доведено, що важливими елементами його ефективного

DOI: 10.15587/2519-4852.2021.248050

РЕЗУЛЬТАТИ ОЦІНКИ ГРОМАДСЬКІСТЮ ФАКТОРІВ ВПЛИВУ НА ФОРМУВАННЯ БРЕНДУ ЗАКЛАДУ ВИЩОЇ ОСВІТИ ФАРМАЦЕВТИЧНОГО СПРЯМУВАНЯ (с. 66–74)

А. А. Ковтюк, А. В. Волкова, О. Ю. Яковлєва

Методы дослідження. Випускники, співробітники НФАУ, вибрання та освітні послуги. Встановлені найбільш вагомі чинники популяроності та конкурентоспроможності на ринку освітніх послуг.

Висновки. Доведено, що важливими компонентами бренд вищої освіти з урахуванням особливостей наданих ним освітнього послуг та специфіки ринку освітніх послуг.

Методи дослідження. Теоретичні (аналіз та синтез наукової літератури і нормативних джерел, узагальнення, аналітичний, порівняльний та логічний); емпіричні (опису, порівняння, анкетування, математико-статистичні).

Матеріали та методи. Було використано 192 білих рандомбредних мишів-самців вагою 22–25 г. Карбамазепин та ламотриджин вводили внутрішньоочеревинно в умовно ефективних дозах: карбамазепин — у дозах 100 та 50 мг/кг; ламотриджин — у дозах 25 та 12,5 мг/кг. Ламотриджин вводили підшкірно в субкардіотонічній дозі 0,8 мг/кг на додачу до карбамазепину та ламотриджину в дозах 1/2 ED₅₀. Дигоксин вводили підшкірно в субкардіотонічній дозі 0,8 мг/кг на додачу до карбамазепину та ламотриджину в дозах 1/2 ED₅₀. Пікротоксин (2,5 мг/кг підшкірно), тіосемікарбазид (25 мг/кг внутрішньоочеревинно), стріптоксин (1,2 мг/кг підшкірно) та хіміїфікатор (1000 мг/кг внутрішньоочеревинно) використовували як судомі агенти.

Результати. Виявлено, що дигоксин не тільки чинить власну стабільну протисудомну дію на моделях судорожного, індукованих судорогам, але також значно посилює антивезионний потенціал карбамазепіну (меншою мірою — ламотриджину) незалежно від патогенезу експериментальних судорог.

Висновки. Доведено, що важливими компонентами бренд у комплексному лікуванні епілепсії, оскільки він підвіщує ефективність низьких доз традиційних протисудомних засобів карбамазепіну та ламотриджину.

Ключові слова: протиепілептичні препарати, дигоксин, допоміжні засоби, хемоіндуковані судоми, миші
Фармакологічні дослідження (визначення параметрів гострої токсичності та протизапальних властивостей на моделі емульгелю для лікування інфекційно-запальних дерматологічних захворювань. основи. Рід Epilobium нараховує понад 200 видів, багато видів яких використовуються в традиційній медицині. Серед видів склала 24 %.

Свідчення його впливу на процеси ексудації опосередковані простагландинами. Середня АЕА досліджуваної препарату А. В. Соловйова, О. С. Калюжная, О. П. Стрілець, Д. В. Литкін, О. XSP-128 ULAB. Дослідження реологічних властивостей здійснювали за допомогою реовіскозиметра Rheolab QC (Anton Paar, Австрія) з використанням системи коаксіальних циліндрів C-CC27/SS. Мікробіологічні дослідження та біотестування на біологічній моделі инфузорій проводили у асептичних умовах ламінарного боксу (кабінет біологічної безпеки АС2-4Е1 «Exco», Індонезія) кафедри біотехнології Національного фармацевтичного університету. Фармакологічні дослідження (вyzначення параметрів гострої токсичності та протизапальних властивостей на моделі гострого ексудативного запалення стопи у щурів, висказаного змозаном та карагеніном) здійснено на базі Центральної науково-дослідної лабораторії НФаУ.

Результати. На підставі комплекс проведеного дослідження було обґрунтовано склад комплексного препарату для нашіншого застосування «Пробіоскін». Аналіз мікробіологічної чистоти розробленого засобу протягом пропонованого терміну зберігання 12 міс показав, що за рівнем мікробного забруднення сторонньою мікрофлорою препарат відповідає вимогам ДФУ для препаратів для нашіншого застосування. Проведений комплекс фармакологічних досліджень свідчить, що препарат «Пробіоскін» можна віднести до групи 6 класу та класифікувати як «відносно нешкідливий» засіб. Вивчення протизапальної дії препарату свідчить, що препарат проявляє нерівні протизапальні властивості. За умови зимозанового запалення, що пов’язане з активацією лейкотрієнів як медіаторів запалення, середня антиексудативна активність препарату дорівнює 33 %.

Висновки. Для розробки м’якого препарату для нашіншого застосування для лікування інфекційно-запальніх дерматологічних захворювань, емульгель «Пробіоскін» за рівнем мікробного забруднення сторонньою мікрофлорою відповідає вимогам ДФУ. Фармакологічними дослідженнями дозволено класифікувати препарат як «відносно нешкідливий» із противапальними властивостями на рівні ніж препарат порівняння. Емульгель «Пробіоскін» можна віднести до групи 6 класу та класифікувати як «відносно нешкідливий» засіб. Висновки поточного дослідження свідчать, що препарат «Пробіоскін» можна віднести до групи 6 класу та класифікувати як «відносно нешкідливий» засіб. Висновки поточного дослідження свідчать, що препарат «Пробіоскін» можна віднести до групи 6 класу та класифікувати як «відносно нешкідливий» засіб.

Ключові слова: фармацевтична розробка, пробіотики, мікробіом шкіри, дерматологічні захворювання, емульгель, гелеутворюючі.
дослідження будуть використані в подальших селекційних програмах, спрямованих на отримання промислової форми E. angustifolium, придатної для фармацевтичного та харчового застосування.

Матеріали і методи. Визначення амінокислотного складу Epilobium angustifolium проводили за допомогою Agilent 1200 (Agilent Technologies, США).

Результати. Методом ВЕРХ у траві Epilobium angustifolium було виявлено шістьнадцять вільних та сімнадцять зв’язаних амінокислот. Дослідження показали, що трава Epilobium angustifolium L. в основному складається з вільних амінокислот, таких як L-фенілаланін (1,65 мкг/мг), L-глутамінова кислота (1,51 мкг/мг), L-аргінін (1,24 мкг/мг), L-аланін (0,98 мкг/мг) та L-аспарагінова кислота (0,57 мкг/мг), вміст яких становив в найбільшій кількості. Домінуючими зв’язаними амінокислотами у досліджуваній сировині були L-глутамінова кислота, L-аспарагінова кислота, L-лейцин та L-аланін, вміст яких становив 32,37 мкг/мг, 10,59 мкг/мг, 8,70 мкг/мг та 6,22 мкг/мг, відповідно.

Висновки. За допомогою методу ВЕРХ було визначено амінокислотний склад трави Epilobium angustifolium L. Встановлено, що серед вільних та зв’язаних амінокислот у траві Epilobium angustifolium переважають концентрації L-аспарагінової кислоти, L-глутамінової кислоти, L-аргініну, L-аланіну та L-фенілаланіну. Результат показує, що трава Epilobium angustifolium L. може бути джерелом амінокислот, тому перспективним є використання цієї рослинної сировини для одержання нових лікарських засобів у майбутньому.

Ключові слова: Epilobium angustifolium L., трава, вільні амінокислоти, зв’язані амінокислоти, ВЕРХ

DOI: 10.15587/2519-4852.2021.249880

ДОСЛІДЖЕННЯ СУМІСНОСТІ КОМПОНЕНТІВ НОВОГО КОМБІНОВАНОГО ЗАСОБУ ДЛЯ ЛІКУВАННЯ АЛКОГОЛЬНОЇ ІНТОКСИКАЦІЇ ТА ЙОГО ГЕПАТОПРОТЕКТОРНОГО ЕФЕКТУ НА МОДЕЛІ АЛКОГОЛЬНОГО УР АЖЕННЯ ПЕЧІНКИ В ЩУРІВ (с. 91–100)

О. В. Рудакова, С. М. Губарь, Н. М. Смєлова, Д. В. Литкін, Т. О. Брюханова, О. М. Безчаснюк, Н. Ю. Бевз, В. А. Георгіянц

Метою роботи є розробка комбінованого лікарського засобу (ЛЗ) для застосування при алкогольній інтоксикації на підставі даних фізико-хімічних властивостей та хімічної сумісності активних фармацевтичних інгредієнтів та допоміжних речовин і дослідження гепатопротекторного ефекту на тлі алкогольного гепатиту у цього виду.

Матеріали і методи. При виконанні досліджень використовували фізичні та фізико-хімічні методи, спектрофотометр Specord 200 (Німеччина), ваги аналітичні "Sartorius" (фірма "SARTORIUS", Німеччина), мірний посуд класу А і реактиви, що відповідають вимогам Державної Фармакопеї України (ДФУ). Алкогольний гепатит у щурів відтворювали внутрішньовідкритим введенням водного 40 % розчину етанолу в дозі 7 мл/кг протягом 1 тижня.

Результати. Новий комбінований засіб для застосування при алкогольній інтоксикації пропонується у формі порошку шипучого для приготування орального розчину, до складу якого входять гліцин, L-глутамінова кислота, ацетилсаліцилова кислота, аскорбінова кислота, фруктоза/сорбіт і для прискорення процесу розчинення лікарських речовин натрію гідрокарбонат і лимонна кислота. Для вивчення сумісності компонентів проведено експериментальні дослідження гігроскопічності, хімічної взаємодії/хімічної стабільності та оцінка окисно-відновного потенціалу запропонованих активних фармацевтичних інгредієнтів. Для виявлення стабільності АФІ проводили дослідження з цукроамінної конденсації за рахунок вибору до складу амінокислот та аскорбінової кислоти. За результатами досліджень було прийнято рішення про розподілення АФІ на 2 пакети, відділивши натрію гідрокарбонат та гліцин, що можуть взаємодіяти з аскорбіновою кислотою/ацетилсаліцильовою кислотою та аскорбіновою кислотою відповідно.

Висновки. Оцінка фізико-хімічних властивостей АФІ дозволила запропонувати новий комбінований ЛЗ (ТЗ-ПП) для застосування при алкогольній інтоксикації у формі порошку шипучого для приготування орального розчину, до складу якого входять гліцин, L-глутамінова кислота, ацетилсаліцилова кислота, аскорбінова кислота, фруктоза/сорбіт і для прискорення процесу розчинення лікарських речовин натрію гідрокарбонат і лимонна кислота. Для вивчення сумісності компонентів проведено експериментальні дослідження гігроскопічності, хімічної взаємодії/хімічної стабільності та оцінка окисно-відновного потенціалу запропонованих активних фармацевтичних інгредієнтів. Для виявлення стабільності АФІ проводили дослідження з цукроамінної конденсації за рахунок вибору до складу амінокислот та аскорбінової кислоти. За результатами досліджень було прийнято рішення про розподілення АФІ на 2 пакети, відділивши натрію гідрокарбонат та гліцин, що можуть взаємодіяти з аскорбіновою кислотою/ацетилсаліцильовою кислотою та аскорбіновою кислотою відповідно. В експерименті in vivo встановлено, що застосування нового ЛЗ супроводжується нормалізацією антиоксидантно-прооксидантного статусу печінки за рахунок вірогідного зниження рівня ТБК-АП та підвищення показників ВГ у гомогенаті печінки відносно контрольної групи.

Ключові слова: алкогольний гепатит, порошок шипучий, сумісність, фізико-хімічні властивості, гепатопротекторна дія