Cosmological neutrino simulations at extreme scale

J. D. Emberson1,2,3, Hao-Ran Yu4,1,5, Derek Inman1,6, Tong-Jie Zhang5,7, Ue-Li Pen1,8,9,10, Joachim Harnois-Déraps11,12, Shuo Yuan13, Huan-Yu Teng5, Hong-Ming Zhu14, Xuelei Chen14, and Zhi-Zhong Xing15,16

1 Canadian Institute for Theoretical Astrophysics, University of Toronto, M5S 3H8, ON, Canada; emberson@astro.utoronto.ca
2 Department of Astronomy & Astrophysics, University of Toronto, Toronto, ON M5S 3H4, Canada
3 ALCF Division, Argonne National Laboratory, Lemont, IL 60439, USA
4 Kavli Institute for Astronomy & Astrophysics, Peking University, Beijing 100871, China
5 Department of Astronomy, Beijing Normal University, Beijing 100875, China; tjzhang@bnu.edu.cn
6 Department of Physics, University of Toronto, Toronto, ONtario M5S 1A7, Canada
7 School of Physics and Electric Information, Shandong Provincial Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China
8 Dunlap Institute for Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4, Canada
9 Canadian Institute for Advanced Research, Program in Cosmology and Gravitation
10 Perimeter Institute for Theoretical Physics, Waterloo, ON, N2L 2Y5, Canada
11 Department of Physics & Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
12 Scottish University Physics Alliance, Institute for Astronomy, University of Edinburgh, EH9 3HJ, Scotland, UK
13 Key Laboratory for Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
14 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
15 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Received 2016 November 2; accepted 2017 April 15

Abstract Constraining neutrino mass remains an elusive challenge in modern physics. Precision measurements are expected from several upcoming cosmological probes of large-scale structure. Achieving this goal relies on an equal level of precision from theoretical predictions of neutrino clustering. Numerical simulations of the non-linear evolution of cold dark matter and neutrinos play a pivotal role in this process. We incorporate neutrinos into the cosmological N-body code CUBEP3M and discuss the challenges associated with pushing to the extreme scales demanded by the neutrino problem. We highlight code optimizations made to exploit modern high performance computing architectures and present a novel method of data compression that reduces the phase-space particle footprint from 24 bytes in single precision to roughly 9 bytes. We scale the neutrino problem to the Tianhe-2 supercomputer and provide details of our production run, named TianNu, which uses 86% of the machine (13 824 compute nodes). With a total of 2.97 trillion particles, TianNu is currently the world’s largest cosmological N-body simulation and improves upon previous neutrino simulations by two orders of magnitude in scale. We finish with a discussion of the unanticipated computational challenges that were encountered during the TianNu runtime.

Key words: cosmology: theory — large-scale structure of universe — methods: numerical

1 INTRODUCTION

The standard model of particle physics predicts the existence of three neutrino flavors: electron, muon and tau. These flavors exist as superpositions of three mass eigenstates, with the generic prediction of the standard model claiming each eigenstate has identically zero
mass. However, various extensions of the standard model exist for which the mass eigenstates can be non-zero (Lesgourgues & Pastor 2006). In this case, Pontecorvo (1958) showed it is possible that flavor is not conserved, allowing neutrinos to oscillate between flavor with time. This phenomenon was firmly established by observations of the flux of electron neutrinos from the Sun that were roughly three times smaller than expected based on solar models (Ahmad et al. 2002). The resolution is such that electron neutrinos, the only flavor produced in the Sun, oscillate between muon and tau during their passage through the Sun, leading to a suppressed flux of electron neutrinos when they arrive at Earth (Wolfenstein 1978; Mikheyev & Smirnov 1985). The existence of neutrino oscillations has also been verified from the flux of electron and muon neutrinos produced from cosmic ray collisions in Earth’s atmosphere (Fukuda et al. 1998). Efforts related to understanding these atmospheric and solar neutrino oscillation experiments were awarded the 2015 Nobel Prize in physics for their confirmation of massive neutrinos.

Constraining the absolute mass hierarchy of neutrinos is a challenging problem in physics. Oscillation experiments imply that at least two of the three neutrino eigenstates are massive, with minimum masses of roughly 10 and 50 meV (Capozzi et al. 2016). Unfortunately, these experiments are only sensitive to the mass-squared splittings between mass eigenstates and cannot be used to infer the hierarchy of individual neutrino masses. This leaves many open questions into the nature of these fundamental particles. To this end, particle physicists have devised numerous experiments that aim to place constraints on individual neutrino masses including observations of the β decay of tritium (Kraus et al. 2005; KATRIN collaboration 2001), or from the possibility of neutrinoless double-β decay (Agostini et al. 2013; The Exo-200 Collaboration et al. 2014) in the event that neutrinos are Majorana particles.

Cosmologists have also been working hard to constrain the neutrino mass hierarchy. Relic neutrinos produced shortly after the Big Bang are second only to photons as the most abundant particle in the universe. As such, they have the potential to impact cosmological phenomena including the cosmic microwave background (CMB) and large-scale structure (LSS). Currently, the best constraints on neutrino mass come from the Planck CMB satellite, with an upper bound on the sum of neutrino mass of $\sum m_\nu < 194$ meV (Planck Collaboration et al. 2016). Future LSS experiments such as Euclid (Amendola et al. 2013) and LSST (LSST Dark Energy Science Collaboration 2012) are expected to reduce this upper bound to the ~ 40 meV level using precision measurements of the matter power spectrum (Costanzi Alunno Cerbolini et al. 2013). Another potential LSS probe involves measuring the dipole asymmetry in the matter density field that results from the relative flow between cold dark matter (CDM) and neutrinos (Zhu et al. 2014, 2016; Inman et al. 2015).

In preparation of these upcoming probes, theorists must make predictions about the effect of massive neutrinos on LSS within the non-linear regime where analytic calculations regarding the growth of structure break down. They are thus forced to rely on the use of cosmological structure formation simulations. Such simulations have a mature history in cosmology, with the earliest N-body schemes being implemented in the 1970s (e.g., Peebles 1970; Miyoshi & Kihara 1975; White 1976; Aarseth et al. 1979). The general picture is that of a set of point particles evolving under their mutual gravitational interaction with some combination of particle-mesh (PM), particle-particle (PP) and tree algorithms used for the force calculation. Since their first inception, cosmological N-body simulations have been widely adopted and optimized for high performance computing (HPC) environments, with the current state-of-the-art simulations now reaching the trillion-particle scale for the pure CDM case (Skillman et al. 2014; Habib et al. 2016).

Cosmological N-body simulations that self-consistently coevolve CDM and neutrino particles have only recently begun to mature in scale (e.g., Brandbyge et al. 2008; Viel et al. 2010; Bird et al. 2012; Villaescusa-Navarro et al. 2013; Inman et al. 2015; Castorina et al. 2015). The main technological challenge in this case is that neutrinos are thermally hot, having velocity dispersions several orders of magnitude greater than that of CDM. This thermal motion suppresses the ability of neutrinos to gravitationally clump on small scales and tends to distribute them more uniformly throughout the simulation volume compared to CDM. As a result, a tremendous amount of shot noise exists on small scales that can only be reduced by increasing the particle count to large numbers. Any attempt to simulate the non-linear interaction between CDM and neutrinos in a large cosmological volume must overcome this computational burden. Fortunately, some of this burden is alleviated when scaled to a large number of parallel tasks since the near homogeneity of neutrinos leads to a computational load that is significantly more balanced than the pure CDM case. Hence, the cosmological neutrino problem is perfectly suited for modern HPC.
We focus here on optimizing the cosmological N-body code CUBEPROM (Harnois-Déraps et al. 2013) for the extreme scale demanded by the neutrino problem. We highlight specific code changes relevant for both the neutrino case as well as the more general class of cosmological simulations. Our method is applied to Tianhe-2 which, as of submission, ranks second on the Top 500 list of supercomputers\(^1\). Our production run uses 13824 compute nodes of Tianhe-2 (86% of the machine) to evolve 6912\(^3\) CDM particles and 13824\(^3\) neutrino particles in a cubic volume of width 1200\(h^{-1}\) Mpc. We name this simulation TianNu, or “Neutrino Sky.” With a total of 2.97 trillion particles, TianNu is the largest cosmological N-body simulation performed to date and is two orders of magnitude larger than previous cosmological neutrino simulations. As TianNu was hitherto the most computationally ambitious simulation performed on Tianhe-2, we were given two weeks of dedicated access to scale our problem and debug any potential issues with the machine. We discuss here the unforeseen challenges that were uncovered as we pushed to the current limit of scientific computing.

This paper is organized as follows. In Section 2 we provide an overview of the cosmological N-body problem and document the optimizations made to CUBEPROM to adapt its usage for extreme-scale HPC. These include the implementation of an MPI pencil decomposition in the long-range PM force solver, the addition of memory-efficient nested OpenMP parallelism in the short-range PM and PP force evaluations, and a novel method of data compression relevant for cosmological simulations. Section 3 presents a weak scaling analysis on the Tianhe-2 and provides details of our production run. We finish with a discussion of the various technical challenges that were encountered while utilizing 86% of the machine. The conclusions of our work are summarized in Section 4.

2 NUMERICAL METHOD AND OPTIMIZATIONS

2.1 Code Overview

We begin with a brief overview of the methodology employed by the cosmological code CUBEPROM used in this study. The text presented here is meant to provide background information that will augment the code optimizations described in the proceeding subsections. We refer the reader to previous works (Harnois-Déraps et al. 2013; Inman et al. 2015) for a more thorough analysis of the code structure and technical algorithms relevant to both the pure CDM and neutrino cases.

Cosmological simulations are parameterized by the physical volume they resolve and the number of particles they contain. The volume is generally represented as a periodic cube of side length \(L\) and the number of particles expressed as an integer cubed, \(N_p = n^3\).

In the case of CUBEPROM, the domain is decomposed into cubes of equal volume, with each cube assigned to a single MPI task. With this setup, the number of MPI tasks assigned to the problem is constrained to be a cubed integer, \(N_{\text{mpi}} = n^3_{\text{mpi}}\). We refer to this top level of cubic domain decomposition as nodes since the usual operation of the code assigns one MPI task per compute node. Within each node exists a second level of cubic subdivision, into equal volume elements called tiles. Calculations within each node’s volume are done simultaneously over tiles using OpenMP threads, as described in more detail below. The user is free to choose the number of tiles within each node, with the ideal strategy to make this an integer multiple of the number of threads available to each MPI task. Figure 1 shows a two-dimensional representation of the decomposition into tiles within a single MPI domain.

The objective of cosmological simulations is to evolve particles from an initial configuration at an early cosmic time to the present epoch. At each time step, the key quantity to compute is the three-dimensional gravitational force field. This is achieved in CUBEPROM using both PM and PP methods. Hybrid codes combining multiple force schemes like this are common in cosmological applications. Another common choice is to substitute a tree algorithm in place of the PM method used here. We opt for a PM method since it is much faster for nearly homogeneous particle distributions, as is especially the case with cosmological neutrinos. Additional advantages of the PM method over tree algorithms include reduced memory overhead and ease of parallelizability. The PP force increases resolution below the mesh scale where the PM force loses range.

In the PM scheme, the gravitational force is found by solving the Poisson equation

\[
\nabla^2 \phi (x) = 4\pi G \rho (x).
\]

Here \(\phi\) is the gravitational potential at spatial (comoving) coordinate \(x\), \(\rho\) is the matter density field and \(G\) is the gravitational constant. The density field is computed by interpolating particles onto a uniform cubic mesh containing \(N_g = n^3_g\) cells. The result is then Fourier transformed and the potential is solved via

\[
\hat{\phi} (k) = -\frac{4\pi G}{k^2} \hat{\rho} (k),
\]

\(^1\) https://www.top500.org/lists/2016/06/
where k is a Fourier mode. The gravitational force in Fourier space is related to the potential as

$$\tilde{F}(k) = -im\tilde{\phi}(k)k,$$

where m is the particle mass and i is the imaginary unit. The three components of force in real space are obtained from three inverse Fourier transforms of Equation (3).

CUBEP3M splits the PM force computation into two terms: a long-range force term and a short-range force term. The former is computed on a coarse mesh containing $n_g^3 = (n_p/2)^3$ cells while the latter uses a mesh that is a factor of 4 times finer in each dimension. The long-range force is solved over the global simulation volume using Fourier transforms evaluated in parallel over all MPI tasks while the latter is solved on the local mesh of each individual tile. This approach minimizes MPI communication where coarse resolution elements are sufficient in the long-range force calculation while maintaining high resolution on the small scales that depend only on rank-local shared memory.

The utility of the PM scheme is its speed, with the Fourier transforms being order $O(N_g \log N_g)$. The downside is the force is heavily suppressed below the mesh scale. In CUBEP3M, this is remedied by appending the short-range PM force with a PP force calculation below the grid scale. The PP force is evaluated using a direct pairwise summation

$$F_i = Gm_i \sum_{j \neq i} m_j \frac{x_j - x_i}{|x_j - x_i|^3},$$

where F_i is the force on particle i at spatial location x_i. The sum is performed over all particles within the same grid cell as particle i and is of order $O(\eta_p^2)$ where η_p is the typical number of particles within one cell of the short-range interpolation mesh. In order to avoid artificial scattering in the N-body problem, the PP force is truncated below some chosen scale called the softening length, r_{soft}.

In CUBEP3M, the softening length is normally chosen to be 0.05 times the average inter-particle spacing; that is, $r_{\text{soft}} = L/(20n_p)$.

2.2 MPI Pencil Decomposition

The first stage in our force evaluation is the long-range PM force. As described above, this is solved using MPI Fourier transforms evaluated on the global interpolation mesh containing $n_g^3 = (n_p/2)^3$ cells. Previously, this was achieved using the FFTW library (Frigo & Johnson

Fig. 1 Two-dimensional representation of the domain decomposition into tiles within a single node (i.e., MPI task) of the overall simulation. In this example, we split the node into two tiles per dimension, with boundaries of the tiles denoted by solid black lines. The extents of the short-range PM force and PP force (see text) are constrained within the range of an individual tile so that OpenMP threads can be used to cycle over all tiles on a node. A small buffer region (indicated by dotted grey lines) is used to ensure accurate force calculation near tile boundaries. The solid blue line highlights the bottom left tile with its corresponding buffer highlighted in red. MPI communications are minimized by requiring their use only during the long-range PM force calculation and at the end of each time step when particles are passed between neighboring nodes.
2005) with a one-dimensional MPI slab decomposition. This setup divides the global interpolation mesh into N_{MPI} planes of size

$$n_g \times n_g \times (n_g/n_{mpi}^3).$$

Hence, the problem becomes constrained by the requirement that the number of cells per side, n_g, be an integer multiple of the total number of MPI tasks, n_{mpi}^3. This constraint scales poorly since the number of MPI tasks is proportional to the three-dimensional problem size and can thus quickly exceed the number of interpolation cells in one dimension.

To remedy this issue, we have modified CUBEP3M so that the long-range parallel Fourier transforms are handled using the publicly available P3DFFT library (Pekurovsky 2012). P3DFFT employs a two-dimensional pencil decomposition where the interpolation mesh is divided into N_{mpi} pencils of size

$$n_g \times (n_g/n_{mpi}) \times (n_g/n_{mpi}^2).$$

The decomposition constraint is significantly alleviated with the requirement that n_g be an integer multiple of only n_{mpi}^3 rather than n_{mpi}^3. An added advantage of the pencil decomposition is that the number of MPI communications decreases by a factor of n_{mpi} when transforming data between cubic nodes and pencils. In particular, a slab (pencil) decomposition requires n_{mpi}^2 MPI communications corresponding to each of the individual nodes a given slab (pencil) intersects in the xy plane. The pencil decomposition thus requires larger but fewer MPI communications.

2.3 Nested OpenMP Parallelism

Unlike the long-range PM force, short-range PM and PP forces are local quantities that can ignore sufficiently distant parts of the simulation volume. The region within which these forces operate can be completely isolated within individual tiles. In this case, the short-range PM force is evaluated using an interpolation mesh and Fourier transforms local to each tile while the PP force is evaluated by looping over each cell in the mesh and identifying its constituent particle pairs. A small buffer region around each tile is used to ensure that the force is accurately computed for particles near the boundary of the tile (see Fig. 1). With this setup, no communication between tiles is necessary and we perform the loop over tiles using OpenMP threads with dynamic scheduling used to minimize load imbalance.

Previously, each tile would be assigned only one thread, meaning the number of active tiles at any moment equals the number of OpenMP threads. In the usual operation of the code, this number is equal to the number of cores on a single compute node, or an integer multiple of this if hyper-threading is possible. Since each active thread must store its local interpolation mesh (as well as other arrays dedicated to the PP force calculation), this approach can become expensive in modern HPC architectures where the strategy is to maximize the number of cores on a single node. To maximize parallel efficiency with finite memory, we have incorporated nested OpenMP parallelism into CUBEP3M so that each tile may be handled by multiple threads. The memory overhead of the tile is assigned to the master thread while nested threads perform the particle interpolations, Fourier transforms and PP forces in parallel. This change allows us to maximize core usage, especially at late times in the simulation when the PP force easily dominates the compute time as clustered objects form.

Figure 2 provides an overview of the nested OpenMP parallelism within each tile. The first stage is the calculation of a linked list defined on a mesh with the same resolution as the long-range PM interpolation mesh. The linked list is essential in accelerating particle access in the interpolation stages as well as the PP force evaluation. Next, we use “mt” master threads to perform the dynamic scheduling over all num_tile tiles. Each master thread initializes an array, rho, which is used to store the three-dimensional density interpolation on the local mesh of the tile containing n_g cells. Another set of arrays pertaining to the PP force evaluation is also initialized by each master thread. The balance between the number of master and nested threads is dictated by the memory overhead associated with each master thread. The short-range PM force calculation is composed of the density interpolation, three Fourier transform calls (one per dimension), and the inverse force interpolation. Each of these routines is parallelized using “nt” nested threads with data written only to the local arrays initialized by the master thread. More specifically, the density interpolation involves a threaded loop over all cells in the linked list with a stride in the outer loop used to prevent race conditions that may occur when writing to rho with a cloud-in-cell interpolation. The stride is important since it avoids potentially slow thread locks. The inverse force interpolation involves a similar threaded loop over all cells in the linked list. The Fourier transforms are evaluated using the threaded versions of the one-dimensional FFTW3 routines. The final stage in each tile is the PP
Fig. 2 Pseudocode showing the usage of nested OpenMP threading within each tile to maximize parallel efficiency on many-core systems with limited memory. Here “mt” represents the number of master threads while “nt” is the number of nested threads available to each master thread. The initialization of the “rho” array provides an example of the memory overhead associated with each master thread. Nested OpenMP loops exist in each of the subroutine calls with data written only to those arrays initialized by the master thread. All threaded regions employ dynamic scheduling to minimize load imbalance. The calculation of the linked list prior to looping over tiles accelerates particle lookup in the interpolation and PP stages.

force which again involves a loop over each cell in the linked list. Each stage shown in Figure 2 uses dynamic scheduling of OpenMP threads to minimize load imbalance.

2.4 Data Compression

Our final consideration involves data compression. It is generally important for any application to store snapshots at various stages during runtime for both checkpointing and data analysis. In cosmological simulations, the relevant information usually involves the position and velocity of each particle. This amounts to 24 bytes per particle for a three-dimensional problem represented in single precision. Simulations now reaching the trillion-particle scale thus require tens of TB for a single particle snapshot. This is a formidable challenge from the standpoint of both runtime I/O as well as data storage and handling.

We have devised a new method of data compression relevant for cosmological simulations. The first stage is to construct a linked list based on particle positions in the global simulation volume. We use a cubic mesh containing \(n_g^3 = (n_p/2)^3 \) cells for this purpose. In our case, this step is already done prior to the force evaluations (see Fig. 2) and thus requires no additional work. Particle information is written for each cell in the linked list in an ordered fashion, as follows. First, we write the number of particles in the given cell as an unsigned 1-byte integer\(^3\). Next, for each particle in the cell, we write its three components of position and velocity. Positions are compressed by converting them to unsigned 1-byte integers that represent their digitized offset from the local origin of that cell. Since particles are written in a cell-ordered format this guarantees that positions are stored with a precision of \(L/(256n_g) = L/(128n_p) \). This truncation is roughly six times finer than the force resolution of the simulation specified by \(r_{soft} \) so that it should have minimal impact on subsequent dynamics when used as a restart. Velocities are more difficult to compress due to their unstructured distribution within the simulation volume. We choose to compress velocities into 2-byte integers representing their index within a histogram containing \(2^{16} \) equally spaced bins ranging from \(-v_{max}\) to \(v_{max}\). Here \(v_{max}\) is the maximum (absolute) particle velocity across all ranks and is stored in the header of the output file.

This process reduces the particle footprint from 24 bytes to roughly 9 bytes. In our method, each MPI task writes its local volume to separate files in the cell-ordered format described above. In addition, different particle species (i.e., CDM, neutrinos) are written to separate files so the species type of each particle does not need to be stored. In this case, it is important to compute \(v_{max}\) for each species separately since they may have vastly different characteristic velocities. For our purposes here, it is sufficient to store only position and velocity information. More sophisticated compression algorithms would need to be devised for storing additional quantities (e.g., particle identification tags).

We have tested the error associated with a single compression as well as the accumulation of error that results from restarting multiple times from compressed

\(^3\) If the number of particles in the cell is equal to or larger than 255, we first write 255 and then write the actual number as a 4-byte integer.
data. For this purpose, we performed two simulations with identical initial conditions pertaining to a cosmological setup with 576^3 CDM and 1152^3 neutrino particles in a box of side length $100\ h^{-1}\ Mpc$. The first simulation ran to completion without any data compression. The second simulation repeatedly wrote and restarted from compressed data in order to gauge the total accumulation of error at the final output. In this case, we tested 10 compressed restarts occurring at redshifts

$$z = \{5, 4.5, 4, 3.5, 3, 2.5, 2, 1.5, 1, 0.5\}.$$

Figure 3 compares density and velocity power spectra between the two simulations for the final output at redshift $z = 0$. The left panels correspond to CDM and show sub-percent agreement in the density power spectra for the entire range in k which extends to half the Nyquist frequency, $k_{\text{Nyq}}/2 = 18\ h/Mpc$, of the 1152^3 mesh used to sample power. The CDM velocity power is also sub-percent up to about $k_{\text{Nyq}}/3$ with 2% fluctuations on the smallest scales. For comparison, the dotted blue line shows the relative difference in power that results from compressing the final output of the uncompressed simulation. The shaded grey regions highlight the scales for which fluctuations in the neutrino measurements are dominated by shot noise rather than compression error.

Neutrino power spectra are shown in the right panels of Figure 3. The agreement on the largest scales is similar to the CDM case, but large deviations clearly dominate on small scales. However, these deviations are not related to the compression itself, but are rather attributed to neutrino shot noise. The dashed grey regions highlight the scales for which $k > k_{\text{noise}}$ where k_{noise} is the scale at which the Poisson power, $P_{\text{noise}} = 1/\bar{n}$, overtakes the cosmological density power, P_δ. Here \bar{n} is the mean number density of neutrinos. Density and velocity power spectra are intrinsically noisy on scales smaller than k_{noise} meaning that deviations seen in the compressed data are not particularly meaningful. Note that CDM does not run into this issue since the CDM density power is larger than P_{noise} on all scales resolved by the simulation. As discussed before, the high level of neutrino shot noise is precisely what makes these simulations expensive.

In summary, we find sub-percent agreement in density power spectra for scales $k \lesssim k_{\text{noise}}$. Velocity power exhibits a similar level of agreement, but only up to scales $k \lesssim k_{\text{Nyq}}/3$, with percent-level deviations emerg-
ing on smaller scales. The algorithm presented here is well suited for both CDM and neutrinos though other factors such as shot noise must be combated in the latter case. The agreement between the single-compression case and the test case containing 10 compressed restarts indicates that compression has little effect on subsequent measurements of statistical quantities such as density and velocity power spectra. While individual particle trajectories are likely to be more discrepant, cosmological observations are statistical in nature and thus afford relatively relaxed constraints on compression. This motivates the question of how much precision is required for storing positions and velocities within simulation memory. We note that a memory-light version of CUBEP3M has been developed (Yu & Pen 2017, in prep.) that can use adjustable precision (8- or 16-bit) for position and velocity.

3 RESULTS

3.1 Weak Scaling

We begin this section with an investigation of the scaling performance of our cosmological neutrino simulations on Tianhe-2. We compare our scaling analysis to a single-node simulation that coevolves 288^3 CDM particles and 576^3 neutrino particles in a periodic box of side length $50\,\text{h}^{-1}\,\text{Mpc}$. We assign a single MPI task to this node with 24 OpenMP threads implemented to utilize each of the 24 CPU cores available on the node. Four of these threads are assigned as master threads that cycle over tiles (see Fig. 2), with each master thread spawning six nested threads to handle the inner force computations local to the tile. The MPI domain is divided into 6^3 tiles with each assigned a mesh containing $(192 + 2n_{\text{buf}})^3$ cells for computing the short-range PM force and PP force. Here $n_{\text{buf}} = 24$ is the size of the buffer region used to ensure correct forces near the boundary of the tile. The long-range PM force is computed on the global 288^3 mesh.

CUBEP3M is designed for weak scaling: if we hold the workload per process fixed, the wall-clock time required per time step should be roughly the same when we increase the number of processors in proportion to the problem size.

Figure 4 shows the scaling efficiency as we weakly scale the single-node job described above. The weak scaling efficiency is defined to be $\frac{t_0}{t_{\text{step}}} / \frac{t_{\text{step}}}{t_{\text{step}}} = \frac{t_0}{t_{\text{step}}} / \frac{t_{\text{step}}}{t_{\text{step}}} = \frac{t_0}{t_{\text{step}}} / \frac{t_{\text{step}}}{t_{\text{step}}}$, where t_{step} is the average wall-clock time of each time step and t_0 is the value of t_{step} for the single-node case.

3.2 TianNu Simulation

The rightmost point in Figure 4 corresponds to our production simulation, TianNu, containing 6912^3 CDM particles and $13\,824^3$ neutrino particles in a periodic box of side length $1200\,\text{h}^{-1}\,\text{Mpc}$. TianNu was run on 13,824 compute nodes with an equal number of MPI ranks and 24 OpenMP threads per rank. This work is primarily focused on the computational aspects of preparing our code and running at scale on Tianhe-2. However, since large-scale neutrino simulations have emerged only relatively recently in the field, we will provide here some further background information in regards to our neutrino implementation. We point the interested reader to Inman et al. (2015) for more details about our initialization strategies and for a validation of our methods.

The most important difference in our strategy compared to pure CDM setups is the fact that neutrinos are initialized at a later time than CDM. This is done entirely from a practical standpoint and is sourced by safeguards in the code that limit the maximum distance a particle can travel in a single time step. At the time of CDM initialization, neutrinos in the mass range of interest are highly relativistic, meaning they move much faster than CDM and their inclusion would slow down the simulation by an enormous amount. Our solution is to remove neutrinos in the early stages of the simulation while including...
Fig. 4 Weak scaling efficiency of our cosmological neutrino simulations on Tianhe-2. In these trials, each node initially contains 288^3 CDM particles and 576^3 neutrino particles in a periodic box of side length $50\,h^{-1}\,\text{Mpc}$. CDM is first evolved in isolation from $z = 100$ to $z = 5$ with neutrinos added next. In each trial, we record the mean time step, \bar{t}_{step}, of the first 400 steps after neutrinos are added and compare the results to the single-node case. We find a weak scaling efficiency of 72% on 13,824 nodes (86% of the machine), corresponding to our production run, TianNu.

their contribution to the background expansion as a relativistic species.

In the case of TianNu, CDM particles were initialized at $z = 100$ and evolved in isolation to $z = 5$ for a total of 549 time steps. Neutrinos were then added into the mixture and the two components evolved together until $z = 0$ for a total of 1918 time steps. The choice of the neutrino initialization redshift is justified by the fact that, on the scales of interest, neutrinos are still within the linear regime of structure formation at $z = 5$, so their initial displacements and velocities are properly computed at that time. The majority of the simulation was spent in the co-evolution stages ($z \leq 5$), accounting for 87% of the total wall-clock time. TianNu consumed an effective runtime of 52 hours though the actual amount of human time that elapsed from start to finish was much longer, due to various obstacles addressed in the next subsection.

One important point worth noting is that unphysical particle coupling can occur in multi-species simulations when unlike particle pairs are placed initially close together (e.g., Yoshida et al. 2003; Angulo et al. 2013). This could have a potential impact on our simulation since some neutrinos may by chance be placed initially close to CDM particles at $z = 5$; however, we expect this to be rare, given that CDM has evolved away from its initial lattice configuration at $z = 5$. In addition, the large initial velocities of neutrinos should provide thermal support that protects them against artificial coupling. In any case, our targeted science is focused on moderately large scales which should remain robust to any such issues. To date, the analysis of TianNu resulted in two companion papers (Yu et al. 2016; Inman et al. 2016) that present results on non-linear cosmological neutrino physics.

3.3 Computational Challenges

One of the difficulties associated with performing extreme-scale simulations is the unanticipated technical setbacks that inevitably occur when a large fraction of the machine is used coherently at once. Some problems are relatively easy to overcome with software changes while others involve external factors that require more careful consideration. We present here the main technical challenges that we encountered as we scaled our simulation to use 86% of Tianhe-2. These problems are not specific to the cosmological problem at hand and are thus relevant to the general field of scientific computing.

Our first setback involved an apparent bug in the MPI library. We discovered this bug during an MPI_Alltoall call used to transpose data in the long-range PM force calculation. The bug was discovered early in our scaling tests and seemed to be related to a single precision in-
teger overflow within the MPI library. In our particular case, we were attempting to send and receive \(n \) elements of type \texttt{MPIReal} where \(n > 2^{29} - 1 \). This resulted in a segmentation fault on Tianhe-2 as well as various other machines we tested using different MPI implementations (i.e., Intel MPI, Open MPI and MVAPICH). We deduced that this error was caused by an internal calculation of the number of bytes being sent/received represented as a single precision integer. This was checked by changing the data type to \texttt{MPIDouble} which failed for \(n > 2^{28} - 1 \). We were unable to remedy the problem by compiling in double precision and found this bug to be a generic feature of all MPI routines, not just \texttt{MPIAlltoall}. Presently, the bug seems to be fixed, at least with Intel MPI v4, which we have explicitly checked at the time of writing.

At the time, our workaround was to manually replace the \texttt{MPIAlltoall} call with pairwise send/receive communications using \texttt{MPISend} and \texttt{MPIRecv}. The message buffers were broken into pieces such that no individual piece exceeded \(2^{31} - 1 \) bytes. Initially, we attempted to use multiple non-blocking communications with \texttt{MPISend} and \texttt{MPIRecv}, but found this created too much network strain, leading to frequent system crashes when running TianNu. Blocking pairwise communication resulted in much more stable data transmission, especially when using a large number of MPI ranks. For this reason, we suspect our workaround is still better suited for extreme-scale applications, despite the fact that the initial bug prompting us to abandon \texttt{MPIAlltoall} has since been fixed. This, of course, depends on how internal communications are handled in \texttt{MPIAlltoall}, though we now prefer the option of being able to explicitly make this choice in our code. In any event, we urge computational scientists to think carefully about communications when scaling their code, as this was one of our main sources of grief.

The next setback we encountered involved runtime I/O. While we were only mainly interested in storing particle data at the final output for analysis purposes, it was important to checkpoint frequently during runtime to ensure that progress was maintained in the event of system crashes. Using our compressed data format, each TianNu checkpoint was roughly 25 TB in total size, with this divided into several files for each MPI task. We experienced a variety of issues while attempting to checkpoint in TianNu. The most common was a system crash when one or more nodes failed during write, resulting in an incomplete checkpoint. In more insidious cases, the checkpoint was seemingly successful and the code evolved forward, but further inspection showed some files to be incompletely written. These were particularly difficult problems to debug since they required a large problem size to occur frequently.

Our attempt to circumvent these issues involved writing checkpoints to shared memory. This was achieved by writing to the local \texttt{dev/shm} temporary filesystem on each node. After all nodes completed this write, we used 100 background processes to sequentially log into each of the 13,824 compute nodes and offload their checkpoint to the main filesystem while the simulation proceeded forward. This process is somewhat analogous to the operation of a burst buffer. Indeed, we found that using effectively only 100 processes to checkpoint put considerably less pressure on the filesystem, resulting in much more reliable I/O. This also significantly reduced the amount of time spent checkpointing since writing to shared memory is a relatively quick operation. Obviously, this is not a robust solution in all cases since it requires having sufficient memory to store a full checkpoint, and that the time between subsequent checkpoints is longer than the time required to offload to the filesystem. In the end, we still encountered problems with this implementation, notably having trouble logging into some of the compute nodes at times. We are still working to perfect our I/O implementation for future runs.

The final computational challenge we faced involved environmental factors. During our time on Tianhe-2, we had teams in both China and Canada, which allowed for nearly continuous monitoring of TianNu. Interestingly, the team in Canada had systematically more success in evolving the simulation forward. The reason was an increased level of system instability during Chinese daytime hours which lead to frequent system crashes that hindered progress. Tianhe-2 technical staff speculated that this was due to increased ambient temperatures and more strain on the electric grid during Chinese daytime hours. Accordingly, system crashes were somewhat alleviated during our second week on Tianhe-2 when rainfall and cooler weather in Guangzhou seemed to be correlated with improved system stability. Regardless of the cause, external factors such as system instabilities are difficult to prepare for and have no clear solution. In our case, the only workaround was patience and persistence.

4 CONCLUSIONS

Pushing the cosmological neutrino problem to extreme scales is a nontrivial process. A number of modifications to the cosmological code CUBEP’M were required to maximize performance on Tianhe-2. These in-
cluded adopting a two-dimensional pencil decomposition for parallel MPI Fourier transforms and implementing nested OpenMP parallelism to maximize multicore usage while maintaining memory flexibility. With these modifications, we achieved 72% weak scaling efficiency on 13,824 nodes (331,776 CPU cores) of Tianhe-2. Our production simulation, named TianNu, consumed an effective runtime of 52 hours on 86% of the machine and pushed the cosmological neutrino problem forward by two orders of magnitude in scale.

Data compression has become an increasingly important factor from the standpoint of runtime performance as well as data storage and portability. We have devised a novel method of data compression relevant for cosmological particle simulations. Our scheme provides a compression factor of $4 \times$ and $2 \times$ in memory over single-precision positions and velocities, respectively, while maintaining sub-percent accuracy in density and velocity power spectra for the vast majority of scales resolved in the simulation. This is true when compressing a single snapshot and also when evolving particles forward in time from multiple previously compressed restarts.

Unanticipated challenges tend to emerge when scaling code to new limits. In our case, we encountered both software and hardware problems. Two of these fall into the group of usual suspects: communication and I/O. An initial bug in the MPI library discovered early in our scaling tests prompted us to break apart MPI Alltoall communications into buffers no larger than $2^{31} - 1$ bytes. This turned out to be beneficial during the TianNu runtime since we could explicitly enforce blocking and pairwise communication; other communication strategies were found to be unstable. Runtime I/O also proved finicky on extreme scales and required a makeshift burst-buffer approach where checkpoints were written to RAM and offloaded to disk in the background. We are still working on a more robust solution for future applications. Finally, we experienced a high degree of time variability in machine performance due to local external factors. This is a considerably intractable problem and cases like this should be kept in mind when preparing for extreme-scale simulations.

The main challenge facing cosmological neutrino simulations can be summed up by two competing effects. On the one hand, large cosmological volumes are needed to acquire sufficient statistics to detect subtle neutrino effects on LSS. On the other hand, the thermal motion of neutrinos demands high particle number density to suppress their shot noise on small scales. These factors can only be reconciled by running at extreme scale. This work attempted to highlight the challenges associated with exploiting modern scientific computing to elucidate our understanding of neutrinos.

Acknowledgements We acknowledge the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase). We thank Prof. Yifang Wang of IHEP for his great initial support of our project, and Prof. Xue-Feng Yuan for his kind and invaluable assistance during our time on Tianhe-2. JDE, DI and ULP gratefully acknowledge the support of the National Science and Engineering Research Council of Canada. Work at Argonne National Laboratory was supported under the U.S. Department of Energy contract DE-AC02-06CH11357. HRY acknowledges General Financial Grant No. 2015M570884 and Special Financial Grant No. 2016T90009 from the China Postdoctoral Science Foundation. JHD acknowledges support from the European Commission under a Marie-Sklodowska-Curie European Fellowship (EU project 656869). XC acknowledges support from MoST 863 program 2012AA121701, NSFC grant 11373030 and CAS grant QYZDJ-SSW-SLH017. TianNu was performed on the Tianhe-2 supercomputer at the National Super Computing Center in Guangzhou, at Sun Yat-Sen University. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11573006, 11528306, 10473002 and 11350009), the National Basic Research Program of China (973 program) under grant No. 2012CB821804 and the Fundamental Research Funds for the Central Universities. The simulations used in the error analysis of the data compression algorithm were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by: the Canada Foundation for Innovation under the auspices of Compute Canada; the Government of Ontario; the Ontario Research Fund - Research Excellence; and the University of Toronto.

References
Aarseth, S. J., Turner, E. L., & Gott, III, J. R. 1979, ApJ, 228, 664
Agostini, M., Allardt, M., Andreotti, E., et al. 2013, Physical Review Letters, 111, 122503
Ahmad, Q. R., Allen, R. C., Andersen, T. C., et al. 2002, Physical Review Letters, 89, 011301
Amendola, L., Appleby, S., Bacon, D., et al. 2013, Living Reviews in Relativity, 16, 6 (arXiv:1206.1225)
Angulo, R. E., Hahn, O., & Abel, T. 2013, MNRAS, 434, 1756
