The impact of common dopamine D2 receptor gene polymorphisms on D2/3 receptor availability: C957T as a key determinant in putamen and ventral striatum

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation	Smith, C T, L C Dang, J W Buckholtz, A M Tetreault, R L Cowan, R M Kessler, and D H Zald. 2017. “The impact of common dopamine D2 receptor gene polymorphisms on D2/3 receptor availability: C957T as a key determinant in putamen and ventral striatum.” Translational Psychiatry 7 (4): e1091. doi:10.1038/tp.2017.45. http://dx.doi.org/10.1038/tp.2017.45.
Published Version	doi:10.1038/tp.2017.45
Citable link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:33029930
Terms of Use	This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
ORIGINAL ARTICLE

The impact of common dopamine D2 receptor gene polymorphisms on D2/3 receptor availability: C957T as a key determinant in putamen and ventral striatum

CT Smith¹, LC Dang³, JW Buckholtz², AM Tetreault¹, RL Cowan¹,⁴, RM Kessler⁵ and DH Zald¹,⁴

Dopamine function is broadly implicated in multiple neuropsychiatric conditions believed to have a genetic basis. Although a few positron emission tomography (PET) studies have investigated the impact of single-nucleotide polymorphisms (SNPs) in the dopamine D2 receptor gene (DRD2) on D2/3 receptor availability, these studies have often been limited by small sample size. Furthermore, the most commonly studied SNP in D2/3 BPND (Taq1A) is not located in the DRD2 gene itself, suggesting that its linkage with other DRD2 SNPs may explain previous PET findings. Here, in the largest PET genetic study to date (n=84), we tested for effects of the C957T and -141C Ins/Del SNPs (located within DRD2) as well as Taq1A on BPND of the high-affinity D2 receptor tracer [(18F)F-Fallypride]. In a whole-brain voxelwise analysis, we found a positive linear effect of C957T T allele status on striatal BPND bilaterally. The multilocus genetic scores containing C957T and one or both of the other SNPs produced qualitatively similar striatal results to C957T alone. The number of C957T T alleles predicted BPND in anatomically defined putamen and ventral striatum (but not caudate) regions of interest, suggesting some regional specificity of effects in the striatum. By contrast, no significant effects arose in cortical regions. Taken together, our data support the critical role of C957T in striatal D2/3 receptor availability. This work has implications for a number of psychiatric conditions in which dopamine signaling and variation in C957T status have been implicated, including schizophrenia and substance use disorders.

Translational Psychiatry (2017) 7, e1091; doi:10.1038/tp.2017.45; published online 11 April 2017

INTRODUCTION

Genetic variation in the dopamine (DA) D2 receptor (DRD2) gene or its neighbor, the ankyrin repeat and kinase domain containing 1 (ANKK1) gene, have been associated with risk for schizophrenia and its response to pharmacological treatment. As most antipsychotics used to treat the positive symptoms of schizophrenia – for example, clozapine, olanzapine, and risperidone – have similar efficacy in treating symptoms of negative schizophrenia, the presence or absence of the Taq1A allele can affect the efficacy of these treatments. In a meta-analysis of nearly 7000 participants (3000 schizophrenia cases), we tested for effects of the C957T and -141C Ins/Del SNPs (located within DRD2) as well as Taq1A on BPND of the high-affinity D2 receptor tracer [(18F)F-Fallypride]. In a whole-brain voxelwise analysis, we found a positive linear effect of C957T T allele status on striatal BPND bilaterally. The multilocus genetic scores containing C957T and one or both of the other SNPs produced qualitatively similar striatal results to C957T alone. The number of C957T T alleles predicted BPND in anatomically defined putamen and ventral striatum (but not caudate) regions of interest, suggesting some regional specificity of effects in the striatum. By contrast, no significant effects arose in cortical regions. Taken together, our data support the critical role of C957T in striatal D2/3 receptor availability. This work has implications for a number of psychiatric conditions in which dopamine signaling and variation in C957T status have been implicated, including schizophrenia and substance use disorders.

Translational Psychiatry (2017) 7, e1091; doi:10.1038/tp.2017.45; published online 11 April 2017
variant might be useful to understand whether these SNPs have additive effects on BPND. Multilocus dopaminergic scores have been used in a number of behavioral/clinical and functional magnetic resonance imaging studies, but have surprisingly not been conducted in dopamine imaging. A multilocus approach provides an added advantage of determining the relative impact of each SNP on D2/3 BPND. Furthermore, given that the majority of the previous studies used the positron emission tomography (PET) radiotracer [11C]-raclopride, which is not able to image extrastriatal BPND, little is known about the impact of these DRD2 SNPs on D2/3 receptor availability outside the striatum. Although one paper has investigated extrastriatal D2/3 BPND using [11C]-FLB-457 and found an effect of C957T, it was limited by low numbers of CC (n = 7) and TT (n = 8) individuals in the analysis. Considering that there is evidence that striatal and extrastriatal D2/3 receptors are differentially regulated, further exploration of the effects of DRD2 SNPs on receptor availability across the brain is needed. In the present study, we used [18F]-Fallypride, which is a D2/3 receptor tracer with favorable affinity to measure both striatal and extrastriatal receptors. We assessed the impact of C957T, Taq1A and -141C Ins/Del SNPs and multilocus effects of these SNPs in combination on D2/3 BPND in a sample of 84 healthy subjects.

MATERIALS AND METHODS

Subjects

Our data set consisted of 84 total participants (ages 18–37, m = 24.17 ± 5.05; 53.6% female; 69% Caucasian) who participated in three PET studies in the Zald Affective Neuroscience lab over the period of 10 years. Participants gave written informed consent, as approved by the Vanderbilt University Institutional Review Board.

Participants had no known past or present neurological or psychiatric diagnoses, no history of substance use disorders and no current use of psychoactive medications or substances as assessed by Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders administered at screening.

PET Imaging

[18F]-Fallypride (S)-N-[(1-allyl-2-pyrrolidinyl)methyl]-5-(3-[18F]fluoropropyl)-2,3-dimethoxybenzamide was produced in the radiochemistry laboratory attached to the PET unit at Vanderbilt University Medical Center, following synthetic and quality control procedures described in the US Food and Drug Administration IND 47 245. All the data were collected on the same GE Discovery STE PET scanner.

Serial scan acquisition was started simultaneously with a 5.0 mCi (185 MBq) slow bolus injection of DA D2/3 tracer [18F]-Fallypride (specific activity > 3000 Ci mmol⁻¹). Computed tomographic scans were collected for attenuation correction before each of the three emission scans, which together lasted approximately 3.5 h with two breaks for subject comfort. Acquisition times for the dynamic PET scans were the same across all studies and have been reported previously.

PET Data Processing

After decay correction and attenuation correction, PET scan frames were corrected for motion using SPM8 (ref. 52) with the last dynamic image frame of the first series serving as the reference image. The mean PET image created from the realignment was then registered to each subject’s high-resolution T1 magnetic resonance image (FLIRT, 6 degrees of freedom), which was nonlinearly registered to MNI space (FNIRT) in FSL. Putamen and cerebellum reference regions of interest (ROIs) were created from the WFU Pickatlas with the cerebellum modified such that the anterior one-fourth of the ROI along with voxels within 5 mm of cortex were excluded to prevent contamination of the PET signal from nearby areas such as midbrain or occipital cortex. These ROIs were then warped to each subject’s PET space using the FLIRT and FNIRT FSL transform matrices (MNI → T1 → PET) and used in a simplified reference tissue model performed in PMOD software (PMOD Technologies, Zurich, Switzerland) to estimate Fallypride binding potential (\(BPND_{FD} \)), a ratio of specifically bound Fallypride to its nondisplaceable concentration. Specifically PMOD’s PXMOD tool was used to estimate BPND voxelwise using a published basis function fitting approach. Subject-specific BPND images were then warped to MNI space using the saved FSL transforms to create MNI-normalized BPND images (resampled to 2 mm isotropic voxels). These MNI-normalized images were then analyzed (using an explicit MNI brain mask) in SPM8 to test for their relation to SNPs in the DRD2 gene.

Genotyping of DRD2 SNPs

Blood samples from each subject were genotyped for Taq1A (rs1800497), C957T (rs6277) and -141C Ins/Del (rs1799732) SNPs via Sequenom analysis performed at Vanderbilt University’s VANTAGE Genomics Core (see ref. 57 for detailed Sequenom genotyping methods).

PET analyses for DRD2 SNP effects

In all the analyses, we controlled for age and sex as these have been found to affect dopamine signaling. We initially performed independent sample T-tests in SPM8 comparing BPND for Taq1A A2A2 versus A1 Carriers as well as -141C Ins/Ins vs Del Carriers as these groupings have often been used when analyzing these two SNPs. We also tested for a linear effect of A2 allele dosage given previously published data. For the C957T SNP, we tested for linear effects of T allele dosage via multiple regression analysis in SPM with number of T alleles as our independent variable of interest. We had a priori hypotheses that the three SNPs would affect striatal BPND, given previously published [11C]-raclopride PET data. Therefore, we also applied a small volume correction in all SPM8 analyses that consisted of a bilateral striatal ROI composed of caudate, putamen and ventral striatum as defined in Mawlawi et al. and used in prior PET studies, thus limiting significance testing to the striatum by masking the SPM T images in follow-up analyses. We also explored the effects of additive multilocus scores comprising our DRD2 SNPs (weighted as in previously published PET studies or based on our own single SNP analyses when our data did not conform to previous reports, which was the case with the Ins/Del SNP) via multiple regression of allelic dose with Fallypride BPND. To clarify the results, we investigated BPND extracted from the anatomical striatal ROIs post hoc analyses when significant effects were observed in the striatum during the primary voxelwise analyses. In supplemental analyses, we also extracted BPND from anatomical masks of extrastriatal regions (see Supplementary Information for details). We also calculated \(n^2\) effect sizes (controlling for age and sex) and 95% confidence intervals for BPND obtained from both our striatal and extrastriatal ROIs across genotype groups to allow for comparisons with previously published findings.

RESULTS

DRD2 SNP distributions and associations

All SNPs were present in expected ratios and did not violate Hardy–Weinberg equilibrium (max \(\chi^2 = 4.94, \min P = 0.09\) for Ins/Del; see Table 1). There were significant differences in the Taq1A distribution across the C957T individuals (\(\chi^2 = 14.66, df = 4, P = 0.005\)) with A1A1 being exclusively present in CC individuals and the majority of TT individuals expressing A2A2 (79%, 11/14). There was a trend toward differences in Taq1A distributions across Ins/Del groups (\(\chi^2 = 8.02, P = 0.091\)), but this was undoubtedly driven by the lack of individuals with two copies of either rare alleles (Del (~5%) and A1 (~7%)). When comparing distributions of Taq1A A1 Carriers vs A2A2, no difference in Ins/Del genotype distribution was present (\(\chi^2 = 0.31, df = 2, P = 0.86\)). There was, however, a significant difference in C957T distribution across Ins/Del individuals (\(\chi^2 = 12.77, df = 4, P = 0.012\)) with all TT individuals expressing Ins/Ins (14/14) and CC individuals being majority Del/Del (75%, 3/4).

Importantly, there were no significant differences in sex distributions or age across our genotype groups (Table 1), whereas differences in ethnicity across C957T and Taq1A were expected given previously reported allelic distributions by ethnic group. Covarying for participant ethnicity (Caucasian, African American, Asian, or Hispanic), however, did not alter the statistical significance or lack thereof of any reported results.
Demographic breakdowns of age, sex and ethnicity across the three DRD2 single-nucleotide polymorphisms (SNPs) investigated. Although age and sex did not differ across the SNPs, they were controlled for in all the analyses. Although the Taq1A and C957T allelic distributions differed by ethnic group (as expected based on previous work), the addition of ethnicity as a covariate did not alter the significance of any reported genetic results.

SNP	n	Age (s.d.)	Age F, P	Sex (%) male	Sex χ², P	Ethnicity (% Caucasian)	Ethnicity χ², P
C957T	2.23		1.31, 0.52		21.51, < 0.001		
CC	30	23.1 (4.8)	53.3		40.0		
CT	40	24.2 (5.0)	40.0		82.1		
TT	14	26.5 (5.1)	50.0		100.0		
Taq1A							
A2A2	48	24.2 (5.0)	45.8		77.1		9.27, 0.010
A1A2	30	23.5 (4.6)	43.3		69.0		
A1A1	6	27.2 (6.9)	66.7		16.7		
-141C Ins/Del	0.34, 0.68	44.1	1.84, 0.40	74.1	2.17, 0.34		
InsIns	59	24.1 (4.6)	57.1		57.1		
InsDel	21	24.7 (6.6)	40.0		75.0		
DelDel	4	22.3 (2.9)	25.0				

Demographic breakdowns of age, sex and ethnicity across the three DRD2 single-nucleotide polymorphisms (SNPs) investigated. Although age and sex did not differ across the SNPs, they were controlled for in all the analyses. Although the Taq1A and C957T allelic distributions differed by ethnic group (as expected based on previous work), the addition of ethnicity as a covariate did not alter the significance of any reported genetic results.

Figure 1. C957T T allele dosage is associated with increased striatal BPND. Results from a regression analysis run in SPM8 identified areas where Fallypride BPND was positively correlated with number of T alleles in the C957T SNP. Large clusters were observed in the striatum with both left and right clusters surviving an FDR cluster-level correction for multiple comparisons. A small (k = 39) midbrain/thalamic cluster (peak at 2, −10, −2) is visible on the axial slice. In all figures, data are displayed in neurological convention (image on left represents left side of brain). Data are displayed using a P < 0.005, uncorrected threshold. BPND, nondisplaceable binding potential; FDR, false discovery rate; SNP, single-nucleotide polymorphism.

Translational Psychiatry (2017), 1 – 9
DRD2 multilocus analyses: C957T alone explains BP\textsubscript{ND} effect in striatum

Given that all of the DRD2 SNPs that we examined are believed to be in high linkage disequilibrium,2,13,17,38 we tested whether the addition of either Taq1A or -141C Ins/Del genotype, or both, increased the prediction of BP\textsubscript{ND} beyond the observed effects of the C957T SNP. The addition of Taq1A genotype to C957T did not provide additional benefit in predicting Fallypride BP\textsubscript{ND} (Supplementary Table S5). The addition of Ins/Dels in Ins/dels vs Del Carrier status to C957T T allele dose (T allele #+Ins/del status (0,1)) increased the spatial extent of right striatal voxels in which BP\textsubscript{ND} was associated with genotype (k went from 528 to 1019) but not the strength of the association (max T value went from 4.48 to 4.20 (P\textsubscript{FDR} = 0.002 at 26, 8, -4); Supplementary Table S6). The lack of improvement in strength of association was confirmed by ROI analysis (see Supplementary Materials). The left striatum effect decreased in both spatial extent (k went from 516 to 488) and strength (max T value went from 3.86 to 3.41; P\textsubscript{FDR} = 0.018 to 0.043 at -20, 8, -8). In addition, the combined C957T+Ins/del score was associated with higher BP\textsubscript{ND} in a large midbrain/pons area (k = 353, T = 4.30 (global max from this analysis) at 2, -26, -28), though it did not survive corrections for multiple comparisons (P\textsubscript{FDR} = 0.087), and did not conform to the location and shape of a specific anatomical structure (Figure 2; Supplementary Table S6), although it is notable that part of the focus was in the vicinity of the raphe nuclei. Furthermore, a small midbrain/thalamic area was identified (k = 144, T = 3.70 at 8, -22, -4) but did not reach significance (P\textsubscript{FDR} = 0.53; Figure 3, Supplementary Figure S1).

Investigating the effect of a combined multilocus score with number of C957T T alleles, 141C Ins/del status (1,0) and number of Taq1A A2 alleles on Fallypride BP\textsubscript{ND} resulted in qualitatively similar results in the striatum as our C957T analysis alone (Supplementary Table S7). Furthermore, stepwise regression, with age and sex in the first step, and C957T in the second step, revealed that there was no significant improvement in predictive power in the identified left (F-change = 0.333, P = 0.566) or right (F-change = 0.775, P = 0.381) striatum, above the effects of C957T, when Ins/dels status or number of Taq1A A2 alleles were added in the third and fourth steps. We also conducted anatomically based striatal ROI stepwise regression analyses that confirmed that C957T explains more of the variance in BP\textsubscript{ND} than the Taq1A and -141C Ins/Del SNPs, particularly in ventral striatum and putamen (see Supplementary Materials).

DISCUSSION

C957T T allele is associated with heightened striatal D2/3 receptor availability

Here, we demonstrate that increasing number of C957T T alleles are associated with heightened D2/3 receptor availability (BP\textsubscript{ND}) in large portions of the striatum. Our results replicate the previous observation with 11C-raclopride PET that C957T T allele dosage is related to higher BP\textsubscript{ND} in the striatum.22,23 Such replications are critical in PET studies because the expense and inconveniences of PET radioligand research leave most studies substantially under-powered for genetic analysis. However, the directness of the links between genes for a given receptor and PET assessment of those same receptors makes SNPs such as C957T (in the DRD2 gene itself) more reasonable targets for genomic neuroimaging than most candidate polymorphisms. It is notable that we observed the C957T effect with a different D2/3 radiotracer (18F-Fallypride) than Hirvonen \textit{et al.}22,23 (11C-raclopride), further suggesting the robustness of this effect. We also report for the first time the effect of C957T in predicting D2/3 BP\textsubscript{ND} in specific subregions of the striatum53-62 and found support for the T allele being associated with higher bilateral putamen and ventral striatum BP\textsubscript{ND} (but only restricted impact in the caudate).

C957T and extrastriatal D2/3 receptor availability

A primary advantage of 18F-Fallypride over 11C-raclopride as a tracer is its ability to measure extrastriatal D2 receptors. We therefore sought to replicate the findings of Hirvonen \textit{et al.}24 who found that C alleles were associated with higher 11C-F18-FLB-457 binding in anatomically defined extrastriatal regions. However, our voxelwise analysis did not identify any significant extrastriatal clusters, and we found no evidence for differences in BP\textsubscript{ND} in extrastriatal ROIs chosen to approximate those of Hirvonen \textit{et al.}24

Although qualitatively BP\textsubscript{ND} in some cortical ROIs was higher with the C allele, as found by Hirvonen \textit{et al.}24 they did not reach statistical significance. Thus, C957T is not exerting a homogeneous global influence over both striatal and extrastriatal regions. This is consistent with evidence that individual differences in the striatal and cortical D2 BP\textsubscript{ND} are at least partially dissociable,49 which in turn suggests that some genetic and environmental influences on D2 receptor expression and functioning should be expected to be different across regions.

Reconciling PET and \textit{in vitro} data on C957T

One reason why our replication of the prior striatal findings of Hirvonen \textit{et al.}22,23 is important is that the direction of the C957T effect in the striatum is opposite of what would be predicted based on \textit{in vitro} data where the T allele in the synonymous C957T SNP in CHO-K1 cells is associated with less DRD2 protein synthesis and less stable DRD2 mRNA (due to folding).37 The source of the discrepancy between the \textit{in vitro} data and the striatal PET data is unclear. The CHO-K1 cell line used is nonhuman in origin (from hamsters), does not normally express DRD2, and may potentially be a poor proxy for human cells that naturally express D2 receptors in striatum (medium spiny neurons). Taken together, the human PET data strongly suggest that it is a mistake to extrapolate the \textit{in vitro} finding of Duan \textit{et al.}37 to human striatal D2 receptor expression \textit{in vivo}.
Moderate effect of Ins/Del SNP on striatal and midbrain/pons D2/3 receptor availability

The potential role of DRD2 SNPs in affecting D2/3 BPND in extrastriatal subcortical regions will require further study, as our results are somewhat equivocal and did not reach conservative levels of statistical significance. Our voxelwise data suggest the -141C Ins/Del SNP may affect BPND (Ins/Ins 4 Del carriers) in the midbrain/pons even though it had little effect in the striatum ($\eta^2 = 0.007$, $d = 0.17$ from ROI analysis, Supplementary Table S4). Previous work has found only minor or no effect of Ins/Del genotype on striatal BPND. Specifically, Jonsson et al. observed a small (P = 0.024; Cohen’s $d = 0.69$) effect of -141C Ins/Del with Del Carriers having higher striatal D2/3 BPND, opposite to the effect we observe here. Their data, however, were collected across two different PET scanners, which could have introduced systematic variance in the data (see the ‘Lack of Robust Effect of Taq1A’ section below). A similarly sized raclopride PET study observed no significant effect of Ins/Del on striatal BPND but the direction of difference was similar to what we observed (higher for Ins/Ins). One reason for this discrepancy may be that neither study reported data from the different striatal subdivisions. In contrast to the ventral striatum and putamen, we observed slightly higher BPND in the caudate of Del Carriers, suggesting that averaging across striatal subdivisions may mask the SNP’s effects. Finally, we note that our voxelwise results of increased D2/3 receptor availability (BPND) fits with in vitro data using two human-derived cell lines, including Y-79 cells demonstrated to express functional D2 receptors, showing that the Del variant in -141C results in reduced transcriptional efficiency of the DRD2 gene.

Lack of robust effect of Taq1A on D2/3 receptor availability

Although a Taq1A A2/A2 Carriers effect on striatal BPND has been observed in a recent meta-analysis of five studies and our dataset had ~80% power to observe the mean effect size of $d = 0.57$, we found no effect of Taq1A genotype on Fallypride BPND in our voxelwise analysis. Furthermore, our ROI analysis found only a very small A2/A2 > A1 BPND effect (Hedges $g = 0.12$, 95% confidence interval: −0.21, 0.28) in the striatum that was around 20% of that reported in the meta-analysis with the confidence interval including zero, suggesting that the effect was not robust.
The authors of the meta-analysis pointed out that certain moderators, including age and sex, might explain variation in PET/SPECT studies focused on the relationship between DRD2 genetics and D2/3 BPND. Importantly, when we controlled for sex and age effects in our ROI analyses, we observed no effect of Taq1A on striatal BPND (min $P = 0.24$; max $\eta^2 = 0.017$, $d = 0.26$; Supplementary Table S3). Earlier studies observing Taq1A effects have often not controlled for these potential confounds on BPND. Furthermore, not all imaging studies have found effects of Taq1A on BPND, including the study with the largest sample size to date ($n = 70$)$^{29-31}$ and at least one of the most-cited studies showing an effect has a methodological concern. That study, by Jonsson et al.25 consisted of half the sample being run on a different PET system, which they tried to correct for with a systematic multiplicity to their data (bound/free ratio). This approach could have introduced systematic error in the data as the paper does not provide the distribution of the genotypes across the two PET scanners used. Here, we limited our genetic analyses to data collected on the same PET system—a GE Discovery STE. The present study is also the largest ($n = 84$) single PET study on DRD2 genetic effects to date. Our systematic analysis suggests that Taq1A allele status does not robustly affect D2/3 BPND except in specific striatal subdivisions and, thus, raises caution in the use of this SNP as a proxy for global striatal D2 receptor levels (or for DA functioning more generally) as has been the case in some of the literature.22,33

Although this study utilized the D2/3 tracer 18F-Fallypride (vs 11C-raclopride in most prior studies), we do not have a reason to specifically predict that kinetic properties of the D2/3 tracer used would lead to a different result. That said, Fallypride has higher affinity for D2-like receptors and appears less sensitive to endogenous dopamine levels than raclopride.70,71 Thus, if there are indeed significant effects of Taq1A on raclopride binding but not Fallypride binding, it could suggest that Taq1A effects are due to an impact on endogenous dopamine levels, rather than DRD2 affinity or receptor density. In fact, an 18F-DOPA PET study has implicated the A1 allele of Taq1A (but no effect of C957T or -141C Ins/Del SNPs) with increased dopamine synthesis in the putamen.72 Interestingly, a recent PET study using the D2-specific radiotracer 11C-NMB, which is relatively insensitive to endogenous DA levels, did observe an effect of Taq1A on striatal BPND.73 However interpretation of this study is complicated by the fact that only 24 of the 57 participants studied were considered healthy controls and disease state may influence Taq1A effects on BPND.42 That paper also did not examine effects for SNPs other than Taq1A, and thus did not address whether C957T status affects striatal BPND. Clearly, further work is needed to determine the biological processes underlying differences in BPND observed with various PET tracers as well as the role of specific DRD2 SNPs on these processes.

Linkage of DRD2 SNPs

In our data, individuals expressing the Taq1A A2 allele were more likely to also express the C957T T and Ins/Del Ins alleles. Others have reported strong linkage disequilibrium between C957T, -141C Ins/Del and Taq1A5,17 or between C957T and Taq1A18 To follow up on this work, we used LDMatrix4 to search the 1000 Genomes population database across all HapMap ethnic strata and found linkage disequilibrium to be much higher between C957T and Taq1A ($D' = 0.76$) and C957T and -141C Ins/Del ($D' = 0.84$) than between Taq1A and -141C Ins/Del ($D' = 0.12$). Thus, there is strong empirical evidence that C957T is linked with two other SNPs where D2/3 BPND effects have been observed with PET/SPECT42,75 and, therefore, may have driven some of the effects observed with Taq1A (or -141C Ins/Del) in past studies. Given that most previous Taq1A studies did not report C957T status, it is not possible to determine the effects of one SNP from another in those studies. We note, however, that despite the observed linkage disequilibrium, we only observed modest, nonsignificant effects for Taq1A in the present study, suggesting that linkage disequilibrium only partially accounts for past Taq1A findings.

Multilocus DRD2 score effects on D2/3 receptor availability

When probing for additional effects of Taq1A and Ins/Del to our observed main effects of C957T, we found little evidence for additional explanatory power for either SNP on our BPND effects. C957T alone accounted for most of the genetic variance in striatal BPND whether we focused our analyses on clusters identified from our multilocus score regression analyses or anatomically defined putamen and ventral striatum ROIs. However, we identified in our C957T+Ins/Del multilocus score analysis a midbrain/pons cluster (peak at $P = 2$, $–26$, $–28$, $P_{\text{FDR}} = 0.087$) not present in the C957T analysis alone. The location of this cluster ventral to the dopaminergic midbrain as well as the failure of the effect to reach significance when controlling for multiple comparisons make it difficult to draw conclusions about Ins/Del in this region (Supplementary Figure S1).76 We also observed a smaller cluster in midbrain/thalamus ($k = 144$, at 8, $–22$, $–4$, $P_{\text{FDR}} = 0.53$). That variation in Fallypride BPND in midbrain and thalamus has been associated with schizophrenia.77 Further investigation of genetic polymorphisms that affect BPND in these regions could aid in understanding risk for the disease. In addition, it is notable that individual differences in thalamic D2/3 receptor availability have been associated with differences in responses to dopaminergic drugs.78 Thus, genetic variants that affect DRD2 in the thalamus (or its subregions) may have implications for determining optimum pharmacological treatments. However, these extrastriatal findings should be interpreted with some caution until they are replicated.

C957T, BPND, and psychiatry

Our findings have implications for a variety of dopamine-linked psychiatric disorders. The C allele of C957T is more prevalent in patients with schizophrenia$^{79-82}$ and affects a variety of learning processes$^{79-82}$ as well as executive function.83,84 However, despite the C957T effects observed here, differences in striatal D2/3 receptor availability (BPND) have not been consistently observed in contrasts of schizophrenics and healthy controls.77 This could reflect the difficulty of measuring D2/3 receptor levels in patients who may possess heightened DA synthesis capacity,35 which may impact both competition of radiotracers with endogenous dopamine,86,87 and long-term regulation of D2/3 expression. Furthermore, additional short- and long-term impacts of antipsychotic medications on D2/3 receptor expression12,14,15 and dopamine regulation may impact PET measures in these patients. It is also conceivable that in the context of schizophrenia, C957T alters the impact of endogenous or exogenous perturbations of the dopamine system on D2/3 receptors. As such, it warrants particular attention in treatment research. Interestingly, the C allele has previously been associated with weight gain during treatment with antipsychotics.88

Furthermore, C957T has been associated with behavioral impulsivity89,90 and reward sensitivity,92 which may explain why the C allele has been associated with increased risk for alcohol dependence.19 The lower D2/3 BPND, we observed in the striatum of CC individuals fits with a wealth of data suggesting substance-dependent individuals display lower D2/3 BPND.93,94 Furthermore our C957T BPND effects were strongest in the VS (accounting for 13 and 17% of the variance in right and left VS BPND, respectively), a key area involved in reward processing and dopamine release associated with drugs of abuse.39 There is some evidence that the C957T and Ins/Del SNPs predict quit rates in smokers treated with either...
The authors declare no conflict of interest.

ACKNOWLEDGMENTS

This work was supported by the National Institute on Drug Abuse (R01DA019670 and R21DA033611 to DHZ; F32DA041157 to CTS; F32DA036979 to LCD), National Institute on Aging (R01AG044884 to DHZ), and CTSA award UL1TR000445 from the National Center for Advancing Translational Sciences.

REFERENCES

1. Arinami T, Gao M, Hamaguchi H, Toru M. A functional polymorphism in the promoter region of the dopamine D2 receptor gene is associated with schizophrenia. Hum Mol Genet 1997; 6: 577–582.

2. Betcheva ET, Mushiroda T, Takahashi A, Kubo M, Karachanak SK, Zaharieva IT et al. Case-control association study of 59 candidate genes reveals the DRD2 SNP rs6277 (C957T) as the only susceptibility factor for schizophrenia in the Bulgarian population. J Hum Genet 2009; 54: 98–107.

3. Hanninen K, Katila H, Kampman O, Anttila S, Illi A, Rontu R et al. Association between the C957T polymorphism of the dopamine D2 receptor gene and schizophrenia. Neurosci Lett 2006; 407: 195–198.

4. Lawford BR, Young RM, Swagell CD, Barnes M, Burton SC, Ward WK et al. The C/C genotype of the C957T polymorphism of the dopamine D2 receptor is associated with schizophrenia. Schizophr Res 2005; 73: 31–37.

5. Zhang JP, Lenz C, Malhotra AK. D2 receptor genetic variation and clinical response to antipsychotic drug treatment: a meta-analysis. Am J Psychiatry 2010; 167: 763–772.

6. Lenz C, Robinson DG, Xu K, Eholom J, Sevy S, Gunduz-Bruce H et al. DRD2 promoter region variation as a predictor of sustained response to antipsychotic medication in first-episode schizophrenia patients. Am J Psychiatry 2006; 163: 529–531.

7. Zhang JP, Robinson DG, Gallego JA, John M, Yu J, Addington J et al. Association of a schizophrenia risk variant at the DRD2 locus with antipsychotic treatment response in first-episode psychosis. Schizophr Bull 2015; 41: 1248–1255.

8. Reynolds GP, McGowan OD, Dalton CF. Pharmacogenomics in psychiatry: the relevance of receptor and transporter polymorphisms. Br J Clin Pharmacol 2014; 77: 654–672.

9. Arranz MJ, de Leon J. Pharmacogenetics and pharmacogenomics of schizophrenia: a review of last decade of research. Mol Psychiatry 2007; 12: 707–747.

10. Creese I, Burt DR, Snyder SH. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 1976; 192: 481–483.

11. Seeman P, Lee T, Chau-Wong M, Wong K. Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 1976; 261: 717–719.

12. Farde L, Wiesel FA, Nordstrom AL, Sedvall G. D1- and D2-dopamine receptor occupancy during treatment with conventional and atypical neuroleptics. Psychopharmacology 1989; 902: 531–539.

13. Howes OD, Egerton A, Allan V, McGuire P, Stokes P, Kapur S. Mechanisms underlying psychosis and antipsychotic treatment response in schizophrenia: insights from PET and SPECT imaging. Curr Pharm Des 2009; 15: 2550–2559.

14. Kapur S, Zipursky B, Jones C, Remington G, Houle S. Relationship between dopamine D2 (occupancy), clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am J Psychiatry 2000; 157: 514–520.

15. Nordstrom AL, Farde L, Wiesel FA, Forslund K, Pauli S, Hallidin C et al. Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects: a double-blind PET study of schizophrenia patients. Biol Psychiatry 1993; 33: 227–235.

16. Stockmeier CA, DiCarlo JJ, Zhang Y, Thompson P, Meltzer HY. Characterization of typical and atypical antipsychotic drugs based on in vivo occupancy of serotonin2 and dopamine2 receptors. J Pharm Exp Ther 1993; 266: 1374–1384.

17. Stone JM, Davis JM, Leucht S, Meltzer HY. Characterization of typical and atypical antipsychotic drugs based on in vivo occupancy of serotonin2 and dopamine2 receptors. J Pharm Exp Ther 1993; 266: 1374–1384.

18. Liu L, Fan D, Ding N, Hu Y, Cai G, Wang L et al. The relationship between DRD2 gene polymorphisms (C957T and C939T) and schizophrenia: a meta-analysis. Neurosci Lett 2014; 583: 43–48.

19. Swagell CD, Lawford BR, Hughes IP, Voisey J, Feeney GF, van Daal A et al. DRD2 C957T and TaqA polymorphism reveals gender effects and unique low-risk and high-risk genotypes in alcohol dependence. Alcohol Alcohol 2012; 47: 397–403.

20. Gelernter J, Yu Y, Weiss R, Brady K, Panhuysen C, Yang B et al. Haplotyping the DRD2 gene: an original patient data meta-analysis of the SPECT and PET in vivo imaging literature. Schizophr Bull 2009; 35: 789–797.

21. Liu L, Fan D, Ding N, Hu Y, Cai G, Wang L et al. The relationship between DRD2 gene polymorphisms (C957T and C939T) and schizophrenia: a meta-analysis. Neurosci Lett 2014; 583: 43–48.

22. Hirvonen M, Laakso A, Nagren K, Rinne J, Pohjalainen T, Hietala J. C957T polymorphism of the dopamine D2 receptor (DRD2) gene is associated with extrastriatal DRD2 availability in vivo. Mol Psychiatry 2005; 10: 889.

23. Hirvonen M, Laakso A, Nagren K, Rinne J, Pohjalainen T, Hietala J. C957T polymorphism of the dopamine D2 receptor (DRD2) gene is associated with extrastriatal DRD2 availability in vivo. Mol Psychiatry 2004; 9: 1060–1061.

24. Hirvonen MM, Lumme V, Hirvonen J, Pesonen U, Nagren K, Vahberg T et al. C957T polymorphism of the human dopamine D2 receptor gene predicts extrastriatal dopamine receptor availability in vivo. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33: 630–636.

25. Jonsson EG, Nothen MM, Grunhage F, Farde L, Nakashima Y, Propping P et al. Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Mol Psychiatry 1999; 4: 290–296.

26. Pohjalainen T, Nagren K, Syvalahti EK, Hietala J. The dopamine D2 receptor 5′-flanking variant, -141C Ins/Del, is not associated with reduced dopamine D2 receptor density in vivo. Pharmacogenetics 1999; 9: 505–509.

27. Pohjalainen T, Rinne JO, Nagren K, Lehikoinen P, Anttila K, Syvalahti EK et al. The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers. Mol Psychiatry 1998; 3: 256–260.
Kohno M, Nurmi EL, Laughlin CP, Morales AM, Gail EH, Hellemann GS
Nikolova YS, Ferrell RE, Manuck SB, Hariri AR. Multilocus genetic pro
Yokum S, Marti CN, Smolen A, Collins MT, Molon L, Nino-Murcia M et al. Functional genetic variation in dopamine signaling moderates prefrontal cortical activity during risky decision making. Neuropharmacology 2016; 101: 695–703.
Zald DH, Woodward ND, Cowan RL, Riccardi P, Ansari MS, Baldwin RM et al. The interrelationship of dopamine D2-like receptor availability in striatal and extrastriatal brain regions in healthy humans: a principal component analysis of [11C](+)-PHNO in vivo radioligand binding in the living human brain: a review on genetic neuroreceptor variation. J Cereb Blood Flow Metab 2015; 35: 1220–1239.
Zaid E, Yokum S, Burger K, Epstein L, Smolen A. Multilocus genetic composite reflecting dopamine signaling capacity predicts reward circuitry responsivity. J Neurosci 2012; 32: 10093–10100.
Yokum S, Marti CN, Smolen A, Stice E. Relation of the multilocus genetic composite reflecting high dopamine signaling capacity to future increases in BMI. Appetite 2015; 87: 38–45.
Kohno M, Numari EL, Laughlin CP, Morales AM, Gail EH, Hellermann GS et al. Functional genetic variation in dopamine signaling moderates prefrontal cortical activity during risky decision making. Neuropharmacology 2016; 101: 695–703.
Zald DH, Woodward ND, Cowan RL, Riccardi P, Ansari MS, Baldwin RM et al. The interrelationship of dopamine D2-like receptor availability in striatal and extrastriatal brain regions in healthy humans: a principal component analysis of [18F] fallypride binding. Neuroimage 2010; 51: 53–62.
First MB. Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Patient Edition. Biometrics Research Department Columbia University: New York, NY, USA, 2005.
Smith CT, Dang LC, Cowan RL, Kessler RM, Zald DH. Variability in paralimbic dopamine signaling correlates with subjective responses to d-amphetamine. Neuropharmacology 2016; 108: 394–402.
Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ. Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 1995; 2: 189–210.
Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004; 23(Suppl 1): S208–S219.
Maldjian JA, Laurieri PJ, Kraft RA, Burdette JH. An automated method for neuroanatomical and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 2003; 19: 1233–1239.
Lammertsma AA, Hume SP. Simplified reference model for PET receptor studies. Neuroimage 1996; 43 Pt 1: 153–158.
Gunn RN, Lammertsma AA, Hume SP, Cunningham JV. Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage 2006; 31: 28–37.
Ritchie MD, Denny JC, Crawford DC, Ramirez AH, Weiner JB, Pulley JM et al. Robust replication of genotype-phenotype associations across multiple diseases in an electronic medical record. Am J Hum Genet 2010; 86: 560–572.
Matuskey D, Worhunksy P, Correa E, Pittman B, Gallezot JD, Nabilus N et al. Age-related changes in binding of the D2/3 receptor radioligand ([11C]TIA) in healthy volunteers. Neuroimage 2016; 130: 241–247.
Mukherjee J, Christian BT, Dunigan KA, Shi B, Narayanwan TK, Satter M et al. Brain imaging of 18F-fallypride in normal volunteers: blood analysis, distribution, test-retest studies, and preliminary assessment of sensitivity to aging effects on dopamine D2-D3 receptors. Synapse 2002; 46: 170–188.
Pohjalainen T, Rinne JO, Nagren K, Sylvahtela E, Hietala J. Sex differences in the striatal dopaminergic D2 receptor binding characteristics in vivo. Am J Psychiatry 1997; 154: 768–773.
Riccardi P, Zald D, Li R, Park S, Ansari MS, Dawant B et al. Sex differences in amphetamine-induced displacement of [18F]fallypride in striatal and extrastriatal regions: a PET study. Am J Psychiatry 2006; 163: 1639–1641.
Savitz J, Hodgkinson CA, Martin-Sotelch C, Shen PH, Szczepanik J, Nugent AC et al. DRD2/ANK1 Taq1A polymorphism (rs1800497) has opposing effects on D2/D3 receptor binding in healthy controls and patients with major depressive disorder. Int J Neuropsychopharmacol 2014; 17: 2095–2101.
Mawlawi O, Martin D, Silfstein M, Broff A, Chatterjee R, Hwang DR et al. Imaging human mesolimbic dopamine transmission with positron emission tomography: I. Accuracy and precision of D2/D3 receptor parameter measurements in ventral striatum. J Cereb Blood Flow Metab 2001; 21: 1034–1057.
Dang LC, O’Neil JP, Jagust WJ. Genetic effects on behavior are mediated by neurotransmitters and large-scale neural networks. Neuroimage 2012; 66C: 203–214.
Dang LC, O’Neil JP, Jagust WJ. Dopamine supports coupling of attention-related networks. J Neurosci 2012; 32: 9582–9587.
Dang LC, Samanez-Larkin GR, Castrellon JJ, Perkins SF, Cowan RL, Zald DH. Associations between dopamine D2 receptor availability and BMI depend on age. Neuroimage 2016; 138: 176–183.
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MINI MRI single-subject brain. Neuroimage 2002; 15: 273–289.
International HapMap Consortium. A haplotype map of the human genome. Nature 2005; 437: 1299–1302.
Monksma FJ Jr, Barton AC, Sibley DR. Expression of functional D2 dopamine receptors following differentiation of Y-79 human retinoblastoma cells. J Neurochem 1990; 54: 1200–1207.
Morris ED, Yoder KK. Positron emission tomography displacement sensitivity: predicting binding potential change for positron emission tomography tracers based on their kinetic characteristics. J Cereb Blood Flow Metab 2007; 27: 606–617.
Silfstein M, Kegeles LS, Xu X, Thompson JL, Urban N, Castillion J et al. Striatal and extrastriatal dopamine release measured with PET and [18F]fallypride. Synapse 2010; 64: 350–362.
Laasko A, Pohjalainen T, Bergman J, Kajander J, Haaparanta M, Solin O et al. The A1 allele of the human D2 dopamine receptor gene is associated with increased activity of striatal L-amino acid decarboxylase in healthy subjects. Pharmacogenet Genomics 2005; 15: 387–391.
Eisenstein SA, Bogdan R, Love-Gregory L, Corral-Frias NS, Koller JM, Black JK et al. Prediction of striatal D2 receptor binding by DRD2/ANK1 Taq1A allele status. Neuroimage 2016; 119: 418–431.
Machiela MJ, Canoisten S. DLink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 2015; 31: 3555–3557.
Willett M, Praschak-Rieder N. Imaging the effects of genetic polymorphisms on radioligand binding in the living human brain: a review on genetic neuroreceptor imaging of monoaminergic systems in psychiatry. Neuroimage 2010; 53: 878–892.
C957T as a key determinant of striatal BP_{ND}
CT Smith et al

9

89 Colzato LS, van den Wildenberg WP, Van der Does AJ, Hommel B. Genetic markers of striatal dopamine predict individual differences in dysfunctional, but not functional impulsivity. *Neuroscience* 2010; **170**: 782–788.

90 White MJ, Lawford BR, Morris CP, Young RM. Interaction between DRD2 C957T polymorphism and an acute psychosocial stressor on reward-related behavioral impulsivity. *Behav Genet* 2009; **39**: 285–295.

91 Colzato LS, van den Wildenberg WP, Hommel B. The genetic impact (C957T-DRD2) on inhibitory control is magnified by aging. *Neuropsychologia* 2013; **51**: 1377–1381.

92 Davis C, Levitan RD, Kaplan AS, Carter J, Reid C, Curtis C et al. Reward sensitivity and the D2 dopamine receptor gene: A case-control study of binge eating disorder. *Prog Neuropsychopharmacol Biol Psychiatry* 2008; **32**: 620–628.

93 Martinez D, Broft A, Foltin RW, Silfstein M, Hwang DR, Huang Y et al. Cocaine dependence and d2 receptor availability in the functional subdivisions of the striatum: relationship with cocaine-seeking behavior. *Neuropsychopharmacology* 2004; **29**: 1190–1202.

94 Volkow ND, Fowler JS, Wang GJ, Swanson JM. Dopamine in drug abuse and addiction: results from imaging studies and treatment implications. *Mol Psychiatry* 2004; **9**: 557–569.

95 Pierce RC, Kumaresan V. The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? *Neurosci Biobehav Rev* 2006; **30**: 215–238.

96 Lerman C, Jepson C, Wileyto EP, Epstein LH, Rukstalis M, Patterson F et al. Role of functional genetic variation in the dopamine D2 receptor (DRD2) in response to bupropion and nicotine replacement therapy for tobacco dependence: results of two randomized clinical trials. *Neuropsychopharmacology* 2006; **31**: 231–242.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/

© The Author(s) 2017

Supplementary Information accompanies this paper on the Translational Psychiatry website (http://www.nature.com/tp)