Research on Secondary Cold Chain Inventory Strategy of Fresh Meat Products

Qiming Wang¹, Yuzhong Yang¹*

¹School of Energy Science & Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China
*Corresponding author’s e-mail: jityyz@hpu.edu.cn

Abstract: The inventory of cold chain logistics has always been a bottleneck restricting the development of cold chain enterprises. Temperature has a significant impact on cold chain logistics. Taking the secondary cold chain inventory composed of one supplier and one retailer as the research object, the inventory holding cost model of Weibull function with temperature-dominated metamorphism with three-parameter distribution was constructed. The optimal inventory strategy was determined from the perspective of minimum system cost. Through the case analysis, the correctness of the inventory strategy was verified, and the decision-making reference for the inventory decision makers in this mode was provided.

1. Introduction

With the improvement of people's living standards and the improvement of consumption structure, more and more cold chain products have entered the public's field of vision. Consumers are not only demanding more volume, but also increasingly demanding quality. The freshness of cold products has become one of the core competitive factors of similar products. Due to the short shelf life and perishable quality of cold chain products, certain deterioration or loss will occur even if stored in a suitable temperature environment. Temperature can not only affect the product's deterioration rate, but also affect the company's inventory costs. Therefore, the study of the rate of deterioration of temperature effects is very important.

For the cold chain inventory research, the deterioration rate is one of the important factors that must be considered. Wagner and Whitin [1] first introduced metamorphic rate into inventory strategy research in 1958. In 1963, Ghare and Schrder [2] studied the order quantity of perishable goods and derived the inventory model of perishables, which laid the foundation for later research. However, most of the cold chain inventory models are dominated by constant metamorphism. Dave U et al. [3] constructed a single-level inventory model with a constant metamorphism rate under time-varying demand, and proposed an inventory management strategy for (T, Sₜ). Huang Y.S. et al. [4] constructed a two-level inventory model with a constant metamorphism constant, a supplier and a retailer, and gave a price discount coordination mechanism based on lead time. In 2006, Yang [5] constructed two warehouse perishables models with constant metamorphism rate. The model considered inflation and partial delays, and proved the correctness and uniqueness of the optimal solution. An Qia and Luo Jianwen [6] constructed a two-stage cold chain inventory system with distributors as the lead, price discount as the coordination mechanism, and a deterioration rate and demand rate are constant. Zhao Zhong [7] constructed a two-stage cold chain inventory with a metamorphism constant, a distributor and a retailer, and obtained the best order cycle and batch based on credit payment. Hao Xiuju, Qi Jinjin [8]...
studied the coordination mechanism of integrated inventory cold chain investment apportionment mechanism, quantity elasticity mechanism, revenue sharing and repurchase mechanism. Huo Jiazhen et al. [9] studied the joint pricing and production strategy of perishable products with partially delayed ordering under the condition of constant productivity and metamorphism rate.

However, the fixed deterioration rate does not reflect well the deterioration of cold products. Chang et al. [10], Yang et al. [11] proposed a perishable inventory model with exponential metamorphic rate. Skouria et al. [12], Fariborz et al. [13], and Wee [14] studied the perishable inventory model with metamorphic rate obeying the two-parameter Weibull distribution. Chakrabarty T. et al. [15] constructed a single-level inventory model with a three-parameter distribution of metamorphic rate, and obtained the best EOQ in the case of out-of-stock. On the basis of his 2006 work, Yang [16] established a perishable product inventory model with a metamorphic rate obeying the three-parameter Weibull distribution and two warehouses, which made the original model more perfect. Wang Daoping [17] also studied the problem of perishable product inventory strategy with metamorphic rate obeying the three-parameter Weibull distribution, but its model is limited to single-level retailer inventory. Wang Shuyun et al. [18] constructed an integrated three-stage cold chain inventory model with metamorphic rate obeying the three-parameter Weibull distribution, and obtained the best replenishment strategy for each member of the supply chain in a limited period.

By considering the influence of temperature and deterioration trend on the deterioration rate, this paper analyzes the change of inventory cost, constructs a secondary cold chain inventory model consisting of one supplier and one retailer, and analyzes its inventory strategy.

2. Problem Description

Weibull distribution is commonly used for reliability analysis and life testing, and is widely used in the research of mechanical and electronic engineering products. In 1975, Gacula first introduced the concept of engineering failure into the food field to describe the deterioration of food and was fully verified.

Compared with the two-parameter Weibull distribution, the three-parameter Weibull function can describe the metamorphic rate relatively comprehensively from different angles. The mathematical expressions of the density function and the distribution function can be written as:

\[f(t) = \alpha(c)\beta(t-\gamma)^{\beta-1}e^{-\alpha(c)(t-\gamma)^{\beta}} \]
\[F(t) = 1-e^{-\alpha(c)(t-\gamma)^{\beta}} \]

where the deterioration of the product as a function of temperature is the same within a certain range. Therefore, it is a piecewise function of temperature with a constant value of the function. For different products, the function values are different and the range of the variables is different. Its function [21] for the deterioration rate is:

\[\theta(t) = \frac{f(t)}{1-F(t)} = \alpha(c)\beta(t-\gamma)^{\beta-1} \]

\[\theta(t) \] is the deterioration trend of the product at time \(t \). \(\alpha(c) \), \(\beta \), and \(\gamma \) are the temperature factor, shape factor and trend factor of the Weibull function, respectively.

When \(\alpha(c)=0 \), \(\theta(t)=0 \), the product does not deteriorate; when \(\alpha(c)>0 \), the product deteriorates. In Figure 1 [21], the \(\beta \) value is greater than 0. Different values of \(t \) makes the \(\theta(t) \) curve shows different rising or falling trend. When \(\beta=1 \), the deterioration rate is constant. The state factor \(\gamma \) describes the state of the product when it is put into storage. When \(\gamma=0 \), the time when the goods are put into storage begins to deteriorate. At time \(\gamma>0 \), there is still a certain shelf life after the goods are put into storage, and at the time \(\gamma<0 \), it indicates that the trend of deterioration after storage is obvious or deteriorates drastically.
3. Model assumptions and parameters

According to Goyal and Giri [19], the literature on perishable inventory research found that there are two ways to define the rate of deterioration. One is the proportion of the amount of commodity deterioration to its total inventory, and the other is the degree of deterioration of the unit commodity relative to its intact condition. Among them, most of the studies use the first definition. That is to say, the commodity with a small proportion of deterioration rate is completely corrupted or invalid, and other commodities are still in a relatively intact state. To simplify the computational complexity, this model uses the first definition.

The research content of this model is based on the following basic assumptions: (1) the final customer's demand is randomly distributed; (2) the system is not allowed to be out of stock; (3) the target product is a single fresh product, and the product's deterioration rate obeys the function; (4) the loading and unloading activities of the products during the handling process are not considered for loss; (5) in the transportation activities of the system, the same type of refrigerated vehicles are used, and there is only a difference in the rated cargo load between the vehicles; (6) the products are in the transportation process. In the case of deterioration, the deterioration is in accordance with the deterioration of the supplier; (7) when the product is stored at the supplier, the parameters of the deterioration rate are written as $\alpha(c) > 0 \ 1 < \beta \leq 2 \ \gamma_1 > 0$; (8) when the product is stored at the retailer, the parameters of the deterioration rate are written as $\alpha(c) > 0 \ 1 < \beta \leq 2 \ \gamma_2 < 0$; (9) the inventory management mode is the inventory mode under the management of the supplier, regardless of the retailer's ordering cost and the supplier's production cost; (10) when the commodity is distributed to the supply chain node, the deteriorated commodity is destroyed, so that it is no longer in circulation.

It is assumed that retailers and suppliers adopt a fixed-cycle ordering inventory strategy with no fixed ordering costs. The h and p are the storage cost and loss cost of the retailer unit product respectively; H and P are the storage cost and the loss cost of the supplier unit product, respectively, and are constant. Assume that the retailer's order period is TR, the supplier's order period is TS, and the retailer and supplier's lead time are LR and LS, respectively, each of which has a lead time that is less than the respective order period; Unit vehicle is described as vc_j, vm_j is unit vehicle transportation cost.

4. Order model

Consider a two-tier supply chain model consisting of one supplier and one retailer [20], which sets the external customer demand D_t faced by the retailer at the time t, satisfying the process (1), i.e.,

$$D_t = d + \rho D_{t-1} + \varepsilon_t \quad (1)$$

Where d is a constant, and $d > 0$, ρ is an autocorrelation parameter, where $-1 < \rho < 1$. ε_t is a random error term, which obeys a normal distribution with a mean of 0 and a variance of σ^2. The

![Figure 1. Curve of metabolite function of three-parameter Weibull distribution](image)

Figure 1. Curve of metabolite function of three-parameter Weibull distribution
mean and variance of D_t are $\frac{d}{1-\rho}$ and $\sigma^2 / (1 - \rho^2)$ respectively. Product at the supplier, the rate of deterioration is θ_s, and at the retailer, the rate of deterioration is θ_r. At time t, the retailer forecasts the total demand for the next order cycle. According to the demand of the previous cycle, the customer demand of this period is determined, so as to determine the corresponding order quantity Z_t. The corresponding goods will arrive at the end of the $t + L_R$ period and will be used to meet the market demand for the $L_R + T$ period. As shown in Fig. 2.

As can be seen from Fig. 2, at the initial moment, the retailer still has the remaining inventory, which satisfies the demand for waiting for the lead time. At the time of L_R, the goods arrive and meet the demand for the next order period T. As can be seen from the graph, the order cycle of the model is fixed, but the order quantity is not necessarily the same. This figure also applies to the description of the supplier's order status. For the convenience of calculation, the starting point of calculation of this model is the replenishment time point of the retailer.

4.1. Retailer's ordering strategy

Considering the problem of metamorphic rate, the following equation is satisfied throughout the model:

Retailer order quantity = statistics of customer demand / (1 - deterioration rate)

Retailer order quantity = actual shipment quantity × (1 - deterioration rate)

The retailer predicts the total demand from the t to the $t + T_R$ periods during the t period, and determines the order quantity at the end of the TR period [20]. Reusing the iterative relationship in equation (1), the total demand that can be predicted as:

$$
\sum_{i=0}^{T_R} D_{t+i} = \frac{1}{1-\rho} \left[d \sum_{i=0}^{T_R} (1-\rho) + \rho (1-\rho^{T_R}) D_t \right] + \sum_{i=0}^{T_R} \sum_{k=0}^{T_R} \rho^{k-1} v_{t+i-k+1}.
$$

(2)

The retailer estimates the mean and variance of D_{t+i} in equation (2), as following shows, respectively.

$$
M_i = \frac{d}{1-\rho} (T_R - \sum_{i=0}^{T_R} \rho^i) + \rho (1-\rho^{T_R}) D_t
$$

$$
v_i = \frac{\sum_{i=0}^{T_R} (1-\rho)^i}{1-\rho^2} \sigma^2.
$$

During the time that LR of the retailer waiting for the replenishment of the goods, the deterioration rate of the goods is taken as the average value, which can be written as

$$
E(\theta_R) = \int_0^L \theta_R(t) dt
$$

Then, according to this inventory strategy, the retailer’s next cycle order quantity is

$$
Z_t = M_i / (1 - E(\theta_R))
$$

Actual quantities of shipments are $Q = Z_t / (1 - E(\theta_S))$, during transportation, the loss quantities of supplier are $Q^S = Q \times E(\theta_S)$, and the loss of the retailer in one cycle is $Q^S = Z_t E(\theta_R)$.

![Figure 2. Inventory changes of retailers in each cycle T](image-url)
4.2. Supplier’s ordering strategy

For the supplier, the retailer’s order is the external demand. When \(T_S \geq T_R \), the supplier predicts the period from \(t \) to \(t+TS \) in the \(t \) period, and the order quantity of the retailer is as shown in equation (4):

\[
Q^R_t = \sum_{i=0}^{t} Q_i
\]

(4)

\[x = a\left[\frac{T_S}{T_R}\right] \]

In equation (4), \(x \) is a rounded up function. The supplier calculates the corresponding order quantity based on the information situation at the end of the \(t \) period. As shown in the equation (5).

\[
Z^S_t = \frac{Q^S}{1-E(\theta_s)}
\]

(5)

\[E(\theta_s) = \int_0^{\theta_s} \theta \phi(t) dt \]

In this equation, \(\phi(t) \).

At the time of \(T_S < T_R \), the supplier predicts the period from \(t \) to \(t+TS \) period in the \(t \) period, and the order quantity of the supplier is as shown in equation (6).

\[
Z^S_t = \frac{Q}{1 - E(\theta_s)}
\]

(6)

And the amount of loss of the supplier during this period is \(Z^S_t E(\theta_s) \).

4.3. Cost Estimation

Due to the special nature of cold chain logistics, temperature requirements and costs are inextricably linked. In this model, the inventory holding cost per unit of product is a decreasing function that decreases with increasing temperature. Storage cost of supplier unit products can be written as

\[H(c) = A(1 - e^{Bc}) \]

where the \(A \), \(B \), and \(\omega \) are constant, and the \(\omega \) is the number of segments of function of \(\alpha(c) \). The storage cost of the retailer’s unit product can be expressed as \(h(c) = 2H(c) \).

For retailers, the cost includes the following aspects.

The holding cost: \(C^{R_t} = hZ^R_t / 2 \).

The losing cost: \(C^{S_t} = pQ^R_t \).

The total cost: \(TC^{R_t} = C^{R_t} + C^{S_t} \).

For supplier, the cost includes the following aspects.

The holding cost: \(C^{S_t} = HZ^S_t / 2 \).

The losing cost: \(C^{S_t} = (Z^S_t E(\theta_s) + Q^S_t)P \).

The translation cost: \(VC = a[Z^S_t] \).

The total cost: \(TC^{S_t} = C^{S_t} + C^{S_t} + VC \).

The model determines the optimal inventory strategy from the perspective of minimizing system cost. Therefore, the objective function of the model is

\[\text{Min } TC = TC^{R_t} + TC^{S_t} \quad (\delta \leq c \leq \delta, \text{ the c is constant}) \]

The piecewise function can be shown as follow:
5. Case analysis

Y Company is a well-known cold chain logistics company in China. It mainly deals with cold meat products. It analyzes the data of a certain period as an example to explain the impact of temperature requirements on costs to select the optimal inventory strategy. The external demand parameters are: $d = 100$, $\rho = 0.6$, $\sigma = 30$. The value of the range of temperature c is $-18^\circ C$ $-$ $10^\circ C$. The two functions about c are shown as follows.

$$
\alpha(c) = \begin{cases}
\alpha_1 & [\delta_1, \delta_2] \\
\alpha_2 & [\delta_3, \delta_4] \\
\alpha_3 & [\delta_5, \delta_6]
\end{cases}
$$

$$
H(c) = 6(1 - e^{-\frac{c}{5}})
$$

For the convenience of calculation, each 10 kg of product is recorded as one unit. Other numerical specific parameters are shown in Table 1, Table 2, and Table 3.

Table 1. Vehicle model and price list
j
1
2
3

Table 2. Supplier's parameter table
parameters
value

Table 3. Retailer's parameter table
parameters
value

According to the constructed model, EXCEL is used to find its cost, and the total cost is the minimum temperature and model, which is the best inventory decision-making scheme. The calculation results are shown in Table 4 - Table 8.

Table 4. Supplier’s Parameter Calculation Table
c
-18
-17
-16
-15
-14
-13
-12
-11
-10

6
Table 5. Supplier’s Cost Results Table

\(\alpha(c)\)	\(Q_i^s\)	\(Z_i^s\)	\(Z_i^s E(\theta_s)\)	\(vm_1\)	\(vm_2\)	\(vm_3\)	\(C_s^s\)	\(C^s\)	min\((VC)\)	\(TC^s\)	\(j\)	
0.010	79	1702	201	150	200	300	1678	4937	7515	900	7430	3
								4766	7345	112269		
0.015	171	2630	465	150	200	300	3817	6839	1350	12006	3	
								6444	11611	22529		
0.020	392	4876	1150	150	200	300	9252	9264	2550	21066	3	
								7070	18872			

Table 6. Retailer Parameter Calculation Table

\(c\)	\(\alpha(c)\)	\(\beta\)	\(\gamma_2\)	\(T_R\)	\(L_R\)	\(h\)	\(p\)
-18	-18	1.4	11.6				
-17	0.010	1.4	11.4				
-16	-16	1.4	11.2				
-15	-15	1.4	10.8				
-14	0.015	1.4	-0.6	5	3	10.4	10
-13	-13	1.4	9.8				
-12	-12	1.4	8.8				
-11	0.020	1.4	7.6				
-10	-10	1.4	5.8				

Table 7. Retailer Cost Results Table

\(\alpha(c)\)	\(Z_t\)	\(Q_t^R\)	\(Q\)	\(C_t^R\)	\(C_s^R\)	\(TC_t^R\)
0.010	1423	518	1501	8108	5184	13292
				7966		21156
				10768		21668
0.015	1994	1090	2165	10369	10900	21269
				9771		20671
				14668		38964
0.020	3334	2430	3726	12668	24296	36964
				9668		33963

Table 8. Total Cost Table

\(c\)	-18	-17	-16	-15	-14	-13	-12	-11	-10
\(T_c\)	20949	20722	20494	33936	33275	32282	61493	58030	52836

The data in Table 8 is obtained from Table 5 and Table 7. The optimal solution is: when the temperature is controlled at -16 °C, the vehicle model is a refrigerated truck with a load of 300.

6. Conclusion

Through the study of the secondary cold chain inventory model and the case analysis of the Weibull distribution with the three parameters of the metamorphic rate, the following conclusions can be drawn:

1) With the goal of minimizing costs and considering the influence of temperature, an
An integrated secondary cold chain inventory model consisting of one supplier and one retailer is constructed.

2) The model's metamorphic rate obeys the three-parameter Weibull distribution of temperature, shape and state, which can reflect the actual situation of cold chain logistics.

3) The total cost of the system is minimized by performing an example application analysis of the constructed model at a temperature of -16 °C and a vehicle model of a refrigerated truck with a load of 300.

Acknowledgements

The authors thank the referee for the valuable suggestion. This work was sponsored by the National Natural Science Foundation of China (Nos. 51674102 and 51874121), the key scientific and technological research plan of Henan Province, China (No. 182102310002), and the funding for special research funds for colleges and universities in Henan Province, China (NSFRF180104).

References

[1] Wagner H M, Whitin T M. Dynamic Version of the Economic Lot Size Model[J]. Management Science, 1958, 5(1):89-96.
[2] Chare PN, Schrader GF. A model for an exponentially decaying inventory [J]. Journal of Industrial Engineering, 1963, 14(6): 238-243.
[3] Upendra Dave L K P . (T, Si) Policy Inventory Model for Deteriorating Items with Time Proportional Demand[J]. Journal of the Operational Research Society, 1981, 32(2):137-142.
[4] Huang Y S . A study on lead-time discount coordination for deteriorating products[J]. European Journal of Operational Research, 2011, 215(2):358-366.
[5] Yang H L . Two-warehouse partial backlogging inventory models for deteriorating items under inflation[J]. International Journal of Production Economics, 2006, 103(1):362-370.
[6] An Q, Luo L W. Study on Coordination in Supply Chain Inventory of Perishable Item with Price Discount [J]. JOURNAL OF INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT, 2007, 21(4):80-84.
[7] Zhao Z, Wang S Y, Li B. Optimal Ordering Model for Deteriorating Items with Time Varying Demand and Two-Level Trade Credit[J]. Journal of Systems & Management, 2016, 25(1):83-89.
[8] Hao X J, Mou J J. Study on Compensation Mechanism of Integrated Cold Chain Inventory Strategy[J]. Journal of Highway and Transportation Research and Development, 2017, 34(12):151-158.
[9] Huo J Z, Li G P, Duan Y R. Joint Pricing and Production Policy for Deterioration Items with Partial Backlogging[J]. OPERATIONS RESEARCH AND MANAGEMENT SCIENCE, 2015, 24(1):255-262.
[10] Chang C T, Teng J T, Goyal S K. Optimal replenishment policies for non-instantaneous deteriorating items with stock-dependent demand[J]. International Journal of Production Economics, 2010, 123(1):62-68.
[11] Yang H L, Teng J T, Chern M S. An inventory model under inflation for deteriorating items with stock-dependent consumption rate and partial backlogging shortages[J]. International Journal of Production Economics, 2010, 123(1):8-19.
[12] K Skouria, S Papachristos, I Ganas. Inventory models with ramp type demand rate, partial backlogging and Weibull deterioration rate[J]. European Journal of Operational Research, 2009, 192(1):79-92.
[13] Jolai F, Tavakkoli-Moghaddam R, Rabbani M, et al. An economic production lot size model with deteriorating items, stock-dependent demand, inflation, and partial backlogging[J]. Applied Mathematics & Computation, 2006, 181(1):380-389.
[14] Wee. Two-Warehouse Inventory Model with Partial Backordering and Weibull Distribution Deterioration under Inflation[J]. Journal of the Chinese Institute of Industrial Engineers,
2005, 22(6):451-462.

[15] Chakrabarty T, Giri B C, Chaudhuri K S. An EOQ model for items with Weibull distribution deterioration, shortages and trended demand: An extension of Philip's model[J]. Computers & Operations Research, 1998, 25(7–8):649-657.

[16] Yang H L. Two-warehouse partial backlogging inventory models with three-parameter Weibull distribution deterioration under inflation[J]. International Journal of Production Economics, 2012, 138(1):107-116.

[17] Wang D P, Yu J T. Research on Inventory Model of Deteriorating Items with Deterioration Rate in Weibull Distribution [C]// China Management Science Annual Conference. 2010.pp.442-446.

[18] Wang S Y, Jiang Y M, Wang X J. Research on Integrated Three-Level Cold Chain Inventory Strategy with Deterioration Rate in Weibull Distribution [J]. Journal of Industrial Engineering/Engineering Management, 2015, 29(2):229-239.

[19] Goyal S K, Giri B C. Recent trends in modeling of deteriorating inventory[J]. European Journal of Operational Research, 2001, 134(1):1-16.

[20] Dai H X, Zhang R Z, Zhang J. The Impacts of Information Sharing Degree on Chinese Apparel Supply Chain Inventory Cost [J]. Operations Research and Management Science, 2014(5):147-154.