Background: Transcriptional regulation of the SHOX gene is highly complex. Much of our understanding has come from the study of copy number changes of conserved non-coding sequences both upstream and downstream of the gene. Downstream deletions have been frequently reported in patients with Leri–Weill dyschondrosteosis or idiopathic short stature. In contrast, there are only four cases in the literature of upstream deletions that remove regulatory elements. Although duplications flanking the SHOX gene have also been reported, their pathogenicity is more difficult to establish. To further evaluate the role of flanking copy number variants in SHOX-related disorders, we describe nine additional patients from a large SHOX diagnostic cohort.

Results: The nine cases presented here include five with duplications (two upstream of SHOX and three downstream), one with a downstream triplication and three with upstream deletions. Two of the deletions remove a single conserved non-coding element (CNE-3) while the third does not remove any known regulatory element but is just 4 kb upstream of SHOX, and the deleted region may be important in limb bud development. We also describe six families with novel sequence gains flanking SHOX. Three families had increased dosage of a proposed regulatory element approximately 380 kb downstream of SHOX (X:970,000), including one family with the first ever reported triplication of this region. One family had two in cis downstream duplications co-segregating with LWD, and the two others had a duplication of just the upstream SHOX regulatory element CNE-5.

Conclusions: This study further extends our knowledge of the range of variants that may potentially cause SHOX-related phenotypes and may aid in determining the clinical significance of similar variants.

Keywords: SHOX, Regulatory element, Deletion, Duplication
a small mandible plus thickening and curvature of the radius and tibia [2, 3, 9–11].

The characterisation of deletions downstream of SHOX identified putative DNA elements that act as long-range enhancers [12, 13]. Parallel comparative genomic studies identified multiple conserved non-coding DNA elements (CNEs) downstream of SHOX, four of which have been demonstrated to have transcriptional activity, namely CNE4 (X:714,085–714,740 (hg19)), CNE5 (X:750,825–751,850), CNE7 (ECRI; X:780,700–781,220) and CNE9 (ECS4; X:834,746–835,567) [14–17]. However, regions with regulatory activity are not always highly conserved [18, 19]; therefore, characterising novel copy number variants (CNVs) in individuals with a SHOX-related phenotype is important to try and identify further potential regulatory elements. This approach identified a potential additional regulatory element at approximately X:970,000 [20, 21]. The most recent cis-regulatory element to be identified was ZED (Zeugopodal Enhancer Downstream of SHOX) located at X:827,128–827,691 [19] which was shown to be the critical region within the common downstream 47.5 kb X:780,550–828,092 deletion [17, 22].

There are three known CNEs upstream of SHOX which have transcriptional activity: CNE-5 (X:398,357–398,906), CNE-3 (X:460,279–460,664) and CNE-2 (516,610–517,229) [23]. Deletions upstream of SHOX are infrequently reported compared to downstream deletions with only four previously reported probands with upstream CNE deletions, all in individuals with ISS [24–26]. Upstream SHOX duplications are also comparatively rare with only four reported to date, all in patients with ISS. One of these duplications involved all three upstream CNEs [27] while two other reported cases involved two of the upstream elements (CNE-5/CNE-3 and CNE-3/CNE-2) [28]. The only patient reported to date with a duplication of a single upstream CNE had a duplication of CNE-2 [29].

It is accepted that SHOX downstream deletions that remove regulatory elements can result in SHOX haplo-insufficiency, but other, rarer flanking dosage abnormalities are more difficult to interpret, in part due to their rarity in the literature. In this paper, we describe five individuals with a SHOX upstream dosage abnormality from a large SHOX cohort, including two deletions and two duplications of a single upstream CNE, plus an additional upstream deletion that contains no known CNE but removes part of a region that may be involved in limb bud development. We also present four probands with SHOX downstream dosage abnormalities: three short stature probands with unique CNV gains containing the proposed X:970,000 regulatory element, including the first reported case of a triplication of this region, and an LWD family with two in cis downstream duplications.

Methods

Study cohort

Patients 1–8 were identified from a SHOX cohort of 1963 referrals to the Wessex Regional Genetics Laboratory (WRGL). All patients referred specifically for SHOX analysis were included in the cohort, regardless of the referral reason. The deletions, duplications or triplication identified below were not detected in 22,017 array comparative genome hybridisation (aCGH) referrals to the WRGL (predominantly referred with developmental delay) or two cohorts of anonymised healthy controls totalling over 800 individuals [22, 27]. Patient 9 was identified after referral to the Switzerland Health Service. The probands presented here were consented for SHOX analysis as part of their routine clinical care within the UK National Health Service (Patients 1–8) and the Switzerland Health Service (Patient 9).

Purified genomic DNA obtained from blood samples was extracted according to standard protocols. Analysis of SHOX and its flanking regions was carried out using the following techniques:

SHOX multiplex ligation-dependent probe amplification (MLPA) analysis

MLPA [30] was performed using the current SHOX kit at the time of testing according to the manufacturer's protocol (P018-G1; MRC-Holland, Amsterdam, The Netherlands). Abnormal MLPA data were repeated on a separate run in order to confirm the results.

Sequencing of the SHOX coding region

Direct sequencing of all the coding exons (isoform A, NM_000451.3, exons 2 to 6a) was carried out to exclude the presence of single-nucleotide variants and small deletions/insertions in the SHOX coding sequences and intron/exon boundaries (primer sequences available upon request).

aCGH analysis

The sizes of the SHOX flanking region duplications in the probands 1–4 and 6 were further defined in the Salisbury laboratory using aCGH analysis. The aCGH was performed using Oxford Gene Technologies (OGT, Oxford, UK) 60-mer oligo-array printed in 8 × 60 K International Standard Cytogenomic Array (ISCA) Consortium configuration, according to manufacturer's instructions, using Kreatech’s pooled control DNA as a reference (Kreatech Diagnostics, Amsterdam, Holland). Slides were scanned using a G2539A Agilent microarray scanner (Agilent Technologies, Wokingham, UK) and analysed using OGT’s CytoSure Interpret (v3.6) microarray software. The duplications in Patient 5 and 9 were confirmed and
sized using single-nucleotide polymorphism array (SNP array) testing in external laboratories.

Long-range PCR
As Patient 3 had a deletion below the detection limits of aCGH, long-range PCR of the deletion region was carried out in order to define the breakpoints. Essentially, PCR forward primers were designed at approximately 1-kb intervals across the potentially deleted region, and these were used in conjunction with a reverse primer situated immediately downstream of the maximum extent of the deletion as defined by aCGH. One primer pair produced a PCR product that was not present in normal controls, and this was subsequently Sanger sequenced to determine the breakpoints. Long-range PCR was also required for patient 2, but that involved a single pre-determined primer pair.

All chromosomal location data are based on the Ensembl hg19 assembly. As the *SHOX* gene lies within the pseudo-autosomal region, the dosage abnormalities may be on the X or the Y chromosome in males, but the locations given here refer to the X chromosome for all individuals to aid comparison.

Results
All patients underwent *SHOX* diagnostic testing, comprising sequencing of the *SHOX* coding exons and MLPA. All variants were initially detected by MLPA and then further defined using aCGH, SNP array testing and Sanger sequencing where applicable. The minimum and maximum breakpoints of the CNVs are shown in Fig. 1 and Table 1. We cannot rule out that the additional material is located elsewhere in the genome, and the exact location and orientation of the triplicated and duplicated segments could not be determined.

Sanger sequencing excluded the presence of a *SHOX* pathogenic coding sequence variant in all individuals. Although some individuals had additional molecular or biochemical testing, none underwent whole exome sequencing so other potential causes of short stature have not been excluded. The Z-score (standard deviation) given for all patient heights is based on the relevant World Health Organisation length-for-age charts.

The clinical information, inheritance patterns and molecular results are summarised in Table 1, and the relevant pedigrees of the four families where samples from additional family members were available are shown in Fig. 2.

Discussion
Deletions flanking the *SHOX* gene are an established cause of *SHOX*-related phenotypes. However, CNVs near the *SHOX* gene should be interpreted with caution as the PAR1 region is highly repetitive and prone to structural rearrangements. The difficulty in distinguishing between a benign CNV and a clinically relevant CNV with variable phenotypic expression is demonstrated by the common 47.5 kb *SHOX* downstream deletion where six of the 14 probands with the X:780,550–828,092 deletion (43%) in one cohort had inherited the variant from a phenotypically normal parent [22]. Nevertheless, the study of such cases is important to increase our understanding of *SHOX* regulation and to try to identify the aetiology of these rearrangements.

We present nine novel CNVs flanking the *SHOX* gene in probands referred specifically for diagnostic *SHOX* testing; the frequency was 8/1963 for patients tested in the WRGL SHOX cohort. None of these CNVs were identified in 22,017 patients referred to the WRGL for diagnostic aCGH testing (although only eight of the nine variants are detectable by aCGH), and no comparable deletion or duplication has been reported in the Database of Genomic Variants (http://projects.tcag.ca/variation/) or in over 800 anonymised healthy controls analysed by MLPA [22, 27]. While it is not possible to unequivocally demonstrate causality, the identification of rare novel
Proband	Referral centre	Proband details	Inheritance	Variant type	Variant size
Patient 1	Paediatric endocrinology	14-year-old female of Bangladeshi origin with ISS (height 141.7 cm; −2.84 SD) and poor weight gain. Karyotyping, thyroid function, coeliac screen, full blood count, renal liver, bone profile and IGF1 were all normal.	Unknown	Deletion of CNE-3	X:449,110–498,890 X:446,596–499,211
Patient 2	Paediatric endocrinology	7-year-old British Caucasian male with ISS (height 106.4 cm; −3.27 SD). Skeletal survey, investigations for bone age, IGF1 and growth hormone provocation were all normal. His mother's height is 160.8 cm (−0.36 SD)	Maternal	Deletion of CNE-3	Not applicable (sequenced) X:458,739–460,800
Patient 3	Clinical genetics	5-year-old female with “a diagnosis of ISS”. The family did not consent to further assessment	Unknown	Deletion	Not applicable (sequenced) X:579,123–580,912
Patient 4	Paediatric endocrinology	12-year-old British Caucasian female. Normal weight, length, hearing, vision and development at birth. Had ISS at age 5 (height < −2 SD) but height at age 12 was 138.5 cm (−1.87 SD). IGF1, karyotype and celiac investigations were all normal. Mother’s height is 157 cm (−1.13 SD). Her 7-year-old brother has a height of 119 cm (−1.22 SD)	Maternal, and also present in her brother	Triplication of X:970,000	X:907,457–1,232,802 X:899,389–1,327,688
Patient 5	Paediatrics	6-year-old female of South Asian origin with ISS (height 101.2 cm; −2.48 SD)	Unknown	Duplication of CNE-5	X:307,417–399,032 X:300,000–400,000
Patient 6	Paediatrics	8-year-old British Caucasian female. Short stature compared to parental heights (121.1 cm; −1.1 SD). Karyotyping, growth hormone stimulation, cortisol, prolactin, IGF1, IGFBP-3 and parathyroid hormone investigations were all normal. Her bone age was 1.5 years delayed	Unknown	Duplication of CNE-5	X:387,593–446,596 X:380,503–449,110
Patient 7	Paediatric endocrinology	11-year-old Caucasian male of Eastern European origin with ISS (132.9 cm; −2.03 SD). His bone age was <1 year delayed. Baseline endocrinology tests were normal	Unknown	Duplication of X:970,000	X:845,095–1,110,229 X:836,131–1,113,655
Table 1 (continued)

Proband	Referral centre	Proband details	Inheritance	Variant type	Variant size	Minimum	Maximum
Patient 8	Clinical genetics	9-year-old Caucasian female of mixed British and South American origin with LWD (height 124.5 cm; −1.53 SD, and bilateral Madelung deformities with a typical thickened Vicker’s ligament). Father has LWD (bilateral Madelung deformities, height 175 cm; −0.21 SD) as does her 11 year-old sister (bilateral Madelung deformities, height 140 cm; −1 SD)	Both paternal, and both also present in her sister	Duplication of ZED and CNE9	X:694,790–694,862	X:675,012–714,223	
Patient 9	Paediatric endocrinology	4-year-old Caucasian female of Central European origin with ISS (height 98.1 cm; −2.5 SD). Karyotype, glucose, cortisol and somatotropin investigations were all normal. Her bone age was delayed by 1 year and 3 months. Her father has a height of 175 cm (−0.25 SD) and her paternal grandmother has a height of 170 cm (+1.5 SD)	Paternal, and also present in her paternal grandmother	Duplication of X970,000	X:809,260–963,755	X:781,231–970,703	

Note: LWD = Legoism, ISS = Isolated Short Stature, ZED = ZED, CNE9 = CNE9.
CNVs provides evidence for the importance of this class of abnormality and may help to define critical regulatory regions.

In this study, we describe three patients with small deletions upstream of SHOX, all in individuals with ISS. All of the four previously reported upstream deletions were also seen in patients with ISS [24–26]; therefore, upstream deletions may be associated with a more subtle phenotype than downstream deletions which can often result in LWD. The deletions in Patients 1 and 2 remove part or all of CNE-3. All four previously reported upstream deletions involved the loss of CNE-3, plus CNE-2 and/or CNE-5 [24–26]. Therefore, CNE-3 appears to be the critical upstream element with the loss of CNE-3 sufficient to cause ISS.

In contrast, the deletion in Patient 3 does not contain any known regulatory elements. However, the deleted interval contains a segment strongly conserved down to zebrafish, and a predicted layered H3K27Ac mark, often found near active regulatory elements or chromatin loops [31], is located close to the deletion. Figure 3 shows the UCSC genome browser output (http://genome-euro.ucsc.edu) from CNE-5 to X:970,000 including sequence conservation and predicted layered H3K27Ac marks. The layered H3K27Ac mark approximately 10 kb upstream of the deletion in Patient 3 does not correspond to any known regulatory element. Enriched H3K27 acetylated regions in developing human limbs [31] are shown in greater detail in the lower half of Fig. 3. The deleted region removes part of region that is acetylated at three of the four developmental stages for which data are available (E33, E41, E44 and E47 datasets) [31]. Therefore, the deleted interval may be essential for normal SHOX expression.

The two duplications in Patient 8 segregate with LWD in the proband and two other affected family members. In contrast, assignation of causality for the duplications in Patients 4–7 and 9 is more difficult; they were

Fig. 2 Pedigrees and inheritance patterns of the four families where samples from additional family members were available.

Fig. 3 UCSC output showing the conservation and H3K27Ac mark predictions for the SHOX flanking regions (above), with a more detailed view (below) of the deleted region in Patient 3 (X:579,123–580,912), showing the conserved region at approximately X: 579,783–579,973 and the E33, E41, E44 and E47 datasets [31] which show the H3K27 acetylation enrichment in four different limb developmental stages.
ascertained through their short stature which is a common phenotype with multiple causes. Since flanking CNVs are generally associated with mild SHOX-related phenotypes, they could result in reduced expression rather than complete haploinsufficiency. Within SHOX cohorts, duplications of upstream CNEs have previously been reported exclusively in individuals with ISS [25, 28], although a duplication of all three upstream CNEs has been reported in one control individual from a study of the SHOX region [29] and one individual from a study of genome-wide CNVs [32]. Similarly, duplication of the proposed X:970,000 regulatory element [20] has also been reported as a copy number variant in another large study [33]. However, as the common 47.5 kb downstream deletion [17, 22] is associated with a highly variable phenotypic effect ranging from normal to Leri–Weill dyschondrosteosis (with 43% of carrier parents being phenotypically normal [22]), the presence of a SHOX flanking variant in a phenotypically normal individual does not preclude that variant from being causative but with a variable phenotype. SHOX phenotypic variability may also be influenced by modifier genes such as CYP26C1 [34].

In contrast with deletions, the causative mechanism(s) for duplications is less clear as there is no loss of sequence material. However, there is evidence to suggest that the duplication of only the downstream CNE9 regulatory element is sufficient to cause ISS [18, 28, 29]. There are a number of potential explanations that can be considered. Firstly, gene regulation depends not only on the presence of regulatory elements and associated complexes but also on the nuclear positioning, chromatin conformation and integrity of the flanking chromosomal segments [35, 36]. Insertion of duplicated material between SHOX and a given CNE would alter the normal chromatin structure and potentially affect gene expression. Similarly, the CNVs in patients 3, 4, 7 and 9 contain, or are close to, a predicted active H3K27Ac mark and could disrupt normal chromatin loop formation that links enhancers and promoters [37, 38].

Secondly, the presence of additional copies of a regulatory element may act to reduce the availability of transcription factors that bind to these elements. For example, as three copies of the X:970,000 region exist on one chromosome in Patient 4, transcription factors that bind to this region will only bind in the “optimal place” one third of the time. A similar mechanism could be postulated for Patients 5, 7 and 9.

Thirdly, although approximately 95% of large duplications genome-wide are reported to be tandem [39], there could be undetected complexity, particularly in Patient 8 who has two in cis downstream duplications. An inverted tandem duplication may allow single-stranded DNA to form a quasipalindromic loop which could block any enhancers contained within the region.

Fourthly, downstream duplications could disrupt the adjacent topologically associated chromatin domain (TAD) boundary. TADs are discrete compartments of approximately 1 Mb in size, which restrict regulatory chromosomal interactions [38, 40]. TAD boundary regions contain insulators that block interactions across adjacent TADs [41] and variants that disrupt TAD structures can cause malformation syndromes through de novo enhancer–promoter interactions and mis-expression [40]. The SHOX 3’ TAD boundary has been mapped immediately upstream of the CRLF2 gene (i.e. close to X:1,314,890) [38], although other publications describe the SHOX TAD as covering an approximate region of either X:284,600–1,355,600 [25] or X:350,001–1,035,000 [37]. The duplication in Patient 9, and possibly the triplication in Patient 4, spans the SHOX TAD and would create an extra copy of the TAD boundary. In addition, the duplications seen in Patients 7 and 8 are contained within the SHOX TAD, so they would move the TAD boundary further from SHOX which may alter essential 3-D genomic architecture.

Conclusions
Although the dosage abnormalities presented here were all formally classified and reported as variants of uncertain clinical significance, they are rare or absent in control populations. The results from Patient 3 suggest an additional SHOX critical region near X:581,000, and the deletions in Patients 1 and 2 provide further evidence that the loss of CNE-3 can cause ISS. Also, the triplication seen in Patient 4 and the two novel duplications in Patients 7 and 9 involving the X:970,000 region provide further evidence that copy number gains containing X:970,000 may be a cause of short stature. Therefore, this study further extends our knowledge of the range of variants that may potentially cause SHOX-related phenotypes.

Abbreviations
aCGH: Array comparative genome hybridisation; CNEs: Conserved non-coding DNA elements; CNVs: Copy number variants; ISS: Idiopathic short stature; LWD: Leri–Weill dyschondrosteosis; MLPA: Multiplex ligation-dependent probe amplification; PAR1: Pseudoautosomal region 1; SNP array: Single-nucleotide polymorphism array; WRGL: Wessex Regional Genetics Laboratory.

Acknowledgements
We are grateful to all patients and clinicians who were involved in our SHOX cohort, and to the molecular cytogeneticists who assisted with the ACGH data.

Authors’ contributions
DJB and NST took part in conceptualisation; DJB, JIH, PJDF, RJH, LL, NST involved in validation; DJB, EG, JIH, PJDF, RJH, MHE, PK, RVH, LL, MTCR, ZM, AG, CRH, MA took part in investigation; EG, MHE, PK, RVH, MTCR, ZM, AG, CRH, MA involved in resources; DJB and NST involved in writing—original draft; DJB and
NST participated in writing—review & editing; NST took part in supervision. All authors read and approved the manuscript.

Funding
No funds, grants or other support was received.

Availability of data and materials
The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
The study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki. The probands presented here were consented for SHOX analysis as part of their routine clinical care within the UK National Health Service (Patients 1–8) and the Switzerland National Health Service (Patient 9), so research ethics committee approval is not applicable for this study according to the NHS Health Research Authority guidelines (hra.nhs.uk). Written informed consent was obtained from a parent or legal guardian of any participants under 16 years old prior to sample collection.

Consent for publication
Not applicable.

Competing interests
The authors have no relevant financial or non-financial interests to disclose.

Author details
1 Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury SP2 8BJ, Wiltshire, UK. 2 School of Medicine, University of Southampton, Southampton SO16 6DY, Hampshire, UK. 3 William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. 4 Department of Paediatric Endocrinology, Royal London Children’s Hospital, Whitechapel Road, Whitechapel, London E1 1BB, UK. 5 Department of Clinical Genetics, Guy’s Hospital, Borough Wing, 7th Floor, London SE1 9RT, UK. 6 Paediatric Endocrine and Diabetes Unit, Department of Pediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, Geneva, Switzerland. 7 Department of Medical Genetics, University Hospitals of Geneva, Geneva, Switzerland. 8 Laboratoire de Diagnostic Moléculaire et Génomique, University Hospitals of Geneva, Geneva, Switzerland. 9 Department of Paediatric Endocrinology and Diabetes, Birmingham Children's Hospital, Steelhouse Lane, Birmingham B4 6NH, West Midlands, UK. 10 Children's and Adolescent Services, Frimley Park Hospital, Portsmouth Road, Camberley GU16 7UJ, Surrey, UK. 11 Department of Paediatric Endocrinology, Evelina London Children’s Hospital, St Thomas’s Hospital, Westminster Bridge Road, London SE1 7EH, UK.

Received: 1 June 2021 Accepted: 10 September 2021

Published online: 10 December 2021

References
1. Leri A, Weill J (1929) Une affection congenitale et symetrique du developpement osseux: la dyschondrosteose. Bull Mem Soc Med Hop (Paris) 53:1491
2. Belin V, Cusin V, Viot G, Girlich D, Toutain A, Moncla A, Vekemans M, Le Merrer M, Munnich A, Cormier-Daire V (1998) SHOX mutations in dyschondrosteosis (Leri–Weill syndrome). Nat Genet 19:67–69. https://doi.org/10.1038/ng0198-67
3. Shears DJ, Vassal HJ, Goodman FR, Palmer RW, Readon W, Superti-Furga A, Scambler PJ, Winter RM (1998) Mutation and deletion of the pseudoautosomal gene SHOX cause Leri–Weill dyschondrosteosis. Nat Genet 19:70–73. https://doi.org/10.1038/ng0198-70
4. Binder G, Ranke MB, Martin DD (2003) Auxology is a valuable instrument for the clinical diagnosis of SHOX haploinsufficiency in school-age children with unexplained short stature. J Clin Endocrinol Metab 88(10):4891–4896. https://doi.org/10.1210/jc.2003-030136
5. Stuppa L, Calabrese G, Gatta V, Pinter S, Morzio E, Fantasia D, Guanciali F, Huber C, Rosilio M, Munnich A, Cormier-Daire V (2006) High incidence of SHOX anomalies in individuals with short stature. J Med Genet 43:735–739. https://doi.org/10.1136/jmg.2006.040998
6. Jorge AA, Souza SC, Nishi MY, Blumberg RS, Kim CA, Ross JL, Niesler B (2007) Genotypes and phenotypes in children with short stature: clinical indicators of SHOX haploinsufficiency. J Med Genet 44:306–313. https://doi.org/10.1136/jmg.2006.046581
7. Langer LO Jr (1965) Dyschondrosteosis, a hereditable bone dysplasia in children. Technical Report nrs 11-153–157. https://doi.org/10.1002/ajmg.10421
8. Binder G, Ranke MB, Martin DD (2003) Auxology is a valuable instrument for the clinical diagnosis of SHOX haploinsufficiency in school-age children with unexplained short stature. J Clin Endocrinol Metab 88(10):4891–4896. https://doi.org/10.1210/jc.2003-030136
9. Shears DJ, Guillen-Navarro E, Semper-Miralles M, Domingo-Jimenez R, Scambler PJ, Winter RM (2002) Pseudodominant inheritance of Langer mesomelic dysplasia caused by a SHOX homeobox missense mutation. J Med Genet 39:128–132. https://doi.org/10.1136/jmg.2002.004926
10. Zinn AR, Wei F, Zhang L, Elder FF, Scott CI Jr, Marttila R, Ross JL (2002) Complete SHOX deficiency causes Langer mesomelic dysplasia. Am J Med Genet 110:158–163. https://doi.org/10.1002/ajmg.10422
11. Benito-Sanz S, Thomas NS, Huber C, Gorbenko del Blanco D, Aza-Carmona D, Crolla JA, Maloney V, Argente J, Campos-Barros A, Cormier-Daire V, Heath KE (2003) A novel class of pseudautosomal region 1 deletions downstream of SHOX is associated with Leri–Weill dyschondrosteosis. Am J Hum Genet 77:533–544. https://doi.org/10.1086/449313
12. Bortorello R, Capone L, Ambrosetti F, Garavelli L, Varriale L, Mazza V, Stanghellini I, Pescesce A, Forabosco A (2007) The homozygous deletion of the 3′ enhancer of the SHOX gene causes Langer mesomelic dysplasia. Clin Genet 27(5):490–491. https://doi.org/10.1111/j.1399-0009.2007.00108.x
13. Fujiwara M, Kato F, Tajima T, Yokota S, Ogata T (2006) Transactivation function of an approximately 800-bp evolutionarily conserved sequence at the SHOX 3′ region: implication for the downstream regulatory domain. J Med Genet 43:125–132. https://doi.org/10.1136/jmg.2005.038461
14. Sabherwal N, Bangs F, Roth R, Weiss B, Jantz K, Tiecke E, Hinkel GK, Spaich JL, Niesler B (2007) Genotypes and phenotypes in children with short stature: frequent cause of short stature: the essential role of a 250 kb downstream regulatory region with a mild phenotypic effect. J Med Genet 44:306–313. https://doi.org/10.1136/jmg.2006.046581
15. Bertorelli R, Capone L, Ambrosetti F, Garavelli L, Varriale L, Mazza V, Stanghellini I, Pescesce A, Forabosco A (2007) The homozygous deletion of the 3′ enhancer of the SHOX gene causes Langer mesomelic dysplasia. Clin Genet 27(5):490–491. https://doi.org/10.1111/j.1399-0009.2007.00108.x
16. Chen J, Wildhardt G, Zhong Z, Roth R, Weiss B, Steinberger D, Decker J, Blumberg RS, Rappold G (2009) Enhancer deletions of the SHOX gene as a frequent cause of short stature: the essential role of a 250 kb downstream regulatory domain. J Med Genet 46:834–839. https://doi.org/10.1136/jmg.2009.067785
17. Benito-Sanz S, Royo JL, Barros A, Paumard-Hernandez B, Barreda-Bonis AC, Liu P, Gracia R, Lupski JR, Campos-Barros A, Gomez-Skarmeta JL, Heath KE (2012) Identification of the first recurrent PAR1 deletion in Leri-Weill dyschondrosteosis and idiopathic short stature reveals the presence of a novel SHOX enhancer. J Med Genet 49:442–450. https://doi.org/10.1136/jmg.2011-100678
21. Tsuchiya T, Shibata M, Numabe H, Jinno T, Nakabayashi K, Nishimura G, Nagai T, Ogata T, Fukami M (2014) Compound heterozygous deletions in pseudautosomal region 1 in an infant with mild manifestations of Lenger mesomelic dysplasia. Am J Med Genet A 164A:505–510. https://doi.org/10.1002/ajmg.a.36284

22. Bunyan DJ, Baker KR, Harvey JF, Thomas NS (2013) Diagnostic screening identifies a wide range of mutations involving the SHOX gene, including a common 47.5kb deletion 160kb downstream with a variable effect on gene function. Am J Med Genet Part A 161A:1329–1338. https://doi.org/10.1002/ajmg.a.35919

23. Durand C, Bangs F, Signolet J, Decker E, Tickle C, Rappold G (2010) Enhancer elements upstream of the SHOX gene are active in the developing limb. Eur J Hum Genet 18:527–532. https://doi.org/10.1038/ejhg.2009.216

24. Benito-Sanz S, Aza-Carmona M, Rodríguez-Estevez A, Rica-Etxebarria I, De Baere E (2015) Profiling of conserved non-coding elements upstream of SHOX and functional characterisation of the SHOX cis-regulatory landscape. Sci Rep 5(5):17667. https://doi.org/10.1038/srep17667

25. Verdin H, Fernández-Mirán A, Benito-Sanz S, Janssens S, Callewaert B, De Waele K, De Schepper J, François I, Menten B, Heath KE, Gómez-Skarmeta JL, De Baere E (2015) Profiling of conserved non-coding elements upstream of SHOX and functional characterisation of the SHOX cis-regulatory landscape. Sci Rep 5(5):17667. https://doi.org/10.1038/srep17667

26. Shima H, Tanaka T, Kamimaki T, Dateki S, Muroya K, Horikawa R, Kanno J, Adachi M, Naki Y, Tanaka H, Mabe H, Yagasaki H, Kure S, Matsuba Y, Tajima T, Kashimada K, Ishii T, Asakura Y, Fujiwara I, Soneda S, Naigasaki K, Harajima T, Kanzaki S, Jinno T, Ogata T, Fukami M, SHOX The Japanese study group (2016) Systematic molecular analyses of SHOX in Japanese patients with idiopathic short stature and Leri-Weill dyschondrosteosis. J Hum Genet 61:585–591. https://doi.org/10.1038/jhg.2016.18

27. Benito-Sanz S, Barroso E, Heine-Suñer D, Hisado-Oliva A, Romanelli V, Aza-Carmona M, Rodríguez-Estevez A, Rica-Etxebarria I, Gracia R, Campos-Barros A, Heath KE (2012) Identification of the first PAR1 deletion encompassing upstream SHOX enhancers in a family with idiopathic short stature. Eur J Hum Genet 20(1):125–127. https://doi.org/10.1038/ejhg.2011.210

28. Verdin H, Fernández-Mirán A, Benito-Sanz S, Janssens S, Callewaert B, De Waele K, De Schepper J, François I, Menten B, Heath KE, Gómez-Skarmeta JL, De Baere E (2015) Profiling of conserved non-coding elements upstream of SHOX and functional characterisation of the SHOX cis-regulatory landscape. Sci Rep 5(5):17667. https://doi.org/10.1038/srep17667

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.