Complete genome sequence of *Geodermatophilus obscurus* type strain (G-20^T^)

Natalia Ivanova^1^, Johannes Sikorski^2^, Marlen Jando^2^, Christine Munk^3^, Alla Lapidus^1^, Tijana Glavina Del Rio^1^, Alex Copeland^3^, Hope Tice^1^, Jan-Fang Cheng^1^, Susan Lucas^1^, Feng Chen^1^, Matt Nolan^1^, David Bruce^1^, Lynne Goodwin^1^, Konstantinos Movromatis^1^, Natalia Mikhailova^1^, Amrita Pathi^1^, Amy Chen^4^, Krishna Palaniappan^4^, Miriam Land^1^, Loren Hauser^1^, Yun-Juan Chang^1^, Cynthia D. Jeffries^1^, Linda Meinicke^1^, Thomas Brettin^1^, John C. Detter^1^, Manfred Rohde^1^, Markus Göker^2^, Jim Bristow^1^, Jonathan A. Eisen^1^, Victor Markowitz^4^, Philip Hugenholtz^1^, Nikos C. Kyrpides^1^, and Hans-Peter Klenk^2^*

^1^ DOE Joint Genome Institute, Walnut Creek, California, USA
^2^ DSMZ – German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
^3^ Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
^4^ Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
^5^ Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
^6^ Lawrence Livermore National Laboratory, Livermore, California, USA
^7^ HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany
^8^ University of California Davis Genome Center, Davis, California, USA

*Corresponding author: Hans-Peter Klenk

Keywords: aerobic, non-pathogenic, soil and rock varnish, morphogenetic growth cycle of C-form and R-form, Frankineae, Actinobacteria, GEBA

Geodermatophilus obscurus Luedemann 1968 is the type species of the genus, which is the type genus of the family *Geodermatophilaceae*. *G. obscurus* is of interest as it has frequently been isolated from stressful environments such as rock varnish in deserts, and as it exhibits interesting phenotypes such as lytic capability of yeast cell walls, UV-C resistance, strong production of extracellular functional amyloid (FuBA) and manganese oxidation. This is the first completed genome sequence of the family *Geodermatophilaceae*. The 5,322,497 bp long genome with its 5,161 protein-coding and 58 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

Introduction

Strain G-20^T^ (= DSM 43160 = ATCC 25078 = JCM 3152) is the type strain of the species *Geodermatophilus obscurus*, which is the type genus in the family *Geodermatophilaceae* [1, 2]. The species name derives from the Latin word 'obscurus' meaning dark, obscure, indistinct, unintelligible [1]. The genus *Geodermatophilus* and family *Geodermatophilaceae* were originally proposed in 1968 by Luedemann [1].

The genus *Geodermatophilus* was first described as a genus closely related to genus *Dermatophilus*, but being isolated from soil, as indicated by the prefix ‘geo’, which derives from Greek ‘Gea’ meaning Earth [1]. In contrast, members of the genus *Dermatophilus* originated from skin lesions of cattle, sheep, horses, deer, and man [3], as the meaning of the genus name is ‘skin-loving’. Yet, on the basis of 16S rRNA gene sequences, *Geodermatophilus* proved to be only distantly related to *Dermatophilus* [4] and was thus included in 1989 in the family *Frankiaceae* [5], together with the genera *Blastococcus* and *Frankia*. In 1996, the genera *Dermatophilus* and *Blastococcus* were excluded again from the family *Frankiaceae* [6] and finally formally combined with the genus *Modestobacter* in the family *Geodermatophilaceae* again [2]. *G. obscurus* is the only validly described species in the genus *Geodermatophilus* [7], and consists of four subspecies [1] which have never been validly published [8].
The type strain G-20T, together with other strains, has been isolated from soil in the Amargosa Desert of Nevada, USA [3]. Further Geodermatophilus strains were isolated from limestone [8,9] and rock varnish [10] in the Negev Desert, Israel, from marble in Delos, Greece [8,9], from chestnut soil in Gardabani, Central Georgia [11], from rock varnish in the Whipple Mountains, California, USA [12], from orange patina of calcarenite in Noto, Italy [13], from gray to black patinas on marble in Ephesus, Turkey [13], and from high altitude Mount Everest soils [14,15]. Here we present a summary classification and a set of features for G. obscurus G-20T, together with the description of the complete genomic sequencing and annotation.

Classification and features

Cells of Geodermatophilus produce densely packed cell aggregates [8], which are described as a muriform, tuber-shaped, noncapsulated, holocarpic thallus consisting of masses of cuboid cells averaging 0.5 to 2.0 µm in diameter (Table 1 and Figure 1) [1]. The thallus breaks up, liberating cuboid or coccolid nonmotile cells and elliptical to lanceolate zoospores [1]. The single cell can differentiate further into polar flagellated motile zoospores [15]. Thus, cells of Geodermatophilus may express a morphogenetic growth cycle in which it switches between a thalloid C-form and a motile zoosporic R-form [15]. It has been supposed that tryptose (Difco) contains an unidentified factor, M, which controls morphogenesis in Geodermatophilus [15], though others could not observe the motile, budding zoospores of the R-form [8]. As colonies, strains of Geodermatophilus strains exhibit usually a dark brownish, greenish, or black pigmentation with a smooth to rough surface and in most cases a solid consistency, including minor variations in colony shape [8]. Young colonies are almost colorless, having smooth edges which become distorted and lobed in older colonies, where the colony consistency becomes somewhat crumby [8]. The colonies become darkly pigmented immediately when they started to protrude upwards in the space above the agar [8]. Geodermatophilus does not produce hyphae, vesicles, outer membranous spore layers or capsules [5].

Strain G-20T utilizes L-arabinose, D-galactose, D-glucose, glycero, inositol, D-levulose, D-mannitol, sucrose, and D-xylene as single carbon sources for growth, but not D-arabinose, dulcitol, β-lactose, melezitose, α-melibiose, raffinose, D-ribose, and ethanol [1,23]. Growth with L-rhamnose is only poor [1]. Strain G-20T is negative for β-hemolysis of blood agar (10% human blood) [1]. Also, nitrate reduction occurs only sporadically with both inorganic or organic nitrate broth [1]. Strain G-20T hydrolyses starch, is weakly positive for gelatin liquefaction and negative for casein utilization [23]. Strain G-20T showed a remarkable production of extracellular functional bacterial amyloid (FuBA), which is accessible to WO2 antibodies without saponification [24]. The WO2 antibody has been shown to bind only to amyloid and not to other kinds of protein aggregates [20,24]. One strain of G. obscurus was described as having a lytic activity on yeast cell walls [12]. Another strain from rock varnish was shown to exhibit very strong resistance to UV-C light (220 J·m–2) [12]. Two strains from rock varnish in the Negev Desert were able to oxidize manganese [10].

Only three G. obscurus isolates have 16S rRNA gene sequences with >98% sequence similarity to strain G-20T: isolate G18 from Namibia, 99.1% [2], isolate 06102S3-1 from deep-sea sediments of the East Pacific and Indian Ocean (EU603760) 98.5%, and G. obscurus subspecies utahensis DSM 43162, 98.03% [8]. The highest degree of sequence similarity in environmental metagenomic surveys, 93.3% was reported from a marine metagenome (AACY020064011) from the Sargasso Sea [25]. (January 2010).

Figure 2 shows the phylogenetic neighborhood of for G. obscurus G-20T in a 16S rRNA based tree. The sequences of the three 16S rRNA gene copies in the genome of G. obscurus G-20T do not differ from each other, but differ by 24 nucleotides from the previously published 16S rRNA sequence obtained from DSM 43160 (X92356). These considerable discrepancies are most likely due to sequencing errors in the latter sequence. Genbank accession L40620, which was obtained from ATCC 25078, differs by only one single nucleotide from the 16S rRNA gene copies in the genome obtained from DSM 43160.

Chemotaxonomy

The major fatty acids of strain G-20T are iso-C15:0 (19.0%), iso-C16:0 (16.2%), C16:1 ω9c (13.0%), C17:1 (10.4%), C18:1 ω9c (6.6%), and anteiso-C15:0 (5.7%). All other fatty acids (iso-C14:0, C15:0, C15:1, C16:0, C17:0, iso-C17:0, and anteiso-C17:0) were each below 4% [33]. Qualitatively, these values are largely congruent with other sources [4,34]. Strain G-20T contains tetrahydro-menaquinones with nine isoprene units [MK-9(H4)] as sole component [4]. No whole cell wall sugar was found in strain G-20T, which contains only small amounts of galactose, glucose, and ribose [4,35]. The cell wall type is IIIc, and contains meso-2,6-diaminopimelic acid [35].
Geodermatophilus obscurus type strain (G-20T)

Figure 1. Scanning electron micrograph of *G. obscurus* G-20T

Figure 2. Phylogenetic tree highlighting the position of *G. obscurus* G-20T relative to the other type strains within the suborder *Frankineae*. The tree was inferred from 1,364 aligned characters [26,27] of the 16S rRNA gene sequence under the maximum likelihood criterion [28] and rooted with the type strain of the order *Actinomycetales*. The branches are scaled in terms of the expected number of substitutions per site. Numbers above branches are support values from 350 bootstrap replicates [29] if larger than 60%. Lineages with type strain genome sequencing projects registered in GOLD [30], such as the GEBA organism *Nakamurella multipartita* [31] are shown in blue. Important non-type strains are shown in green [32], and published genomes in bold.
Table 1. Classification and general features of G. obscurus G-20T according to the MIGS recommendations [16]

MIGS ID	Property	Term	Evidence code
	Domain	Bacteria	TAS [17]
	Phylum	Actinobacteria	TAS [18]
	Class	Actinobacteria	TAS [19]
	Subclass	Actinobacteridae	TAS [19]
	Order	Actinomycetales	TAS [19]
	Suborder	Frankineae	TAS [19]
	Family	Geodermatophilaceae	TAS [2]
	Genus	Geodermatophilus	TAS [1]
	Species	Geodermatophilus obscurus	TAS [1]
	Type strain	G-20	TAS [1]
	Gram stain	gram positive	TAS [1]
	Cell shape	cuboid or coccolid nonmotile cells and	TAS [1]
		elliptical to lanceolate zoospores	
	Motility	motile zoospores	TAS [1]
	Sporulation	unknown	TAS [1]
	Temperature range	18°C–37°C	TAS [20]
	Optimum temperature	24°C-28°C	TAS [20]
	Salinity	does not grow at 3% or more NaCl	TAS [20]
	MIGS-22	Oxygen requirement	aerobic
		Carbon source	soluble sugars
		Energy source	chemooorganotroph
	MIGS-6	Habitat	worldwide distribution in soil, on rock surfaces, and deep sea marine sediments
	MIGS-15	Biotic relationship	free-living
	MIGS-14	Pathogenicity	no
		Biosafety level	1
		Isolation	soil
	MIGS-4	Geographic location	Amargosa Desert, Nevada, USA
	MIGS-5	Sample collection time	1968, or before
	MIGS-4.1	Latitude	36.48
	MIGS-4.2	Longitude	-116.50
	MIGS-4.3	Depth	unknown
	MIGS-4.4	Altitude	unknown

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from of the Gene Ontology project [22]. If the evidence code is IDA, then the property was directly observed by one of the authors or an expert mentioned in the acknowledgements.

Genome sequencing and annotation

Genome project history

This organism was selected for sequencing on the basis of its phylogenetic position, and is part of the Genomic Encyclopedia of Bacteria and Archaea project. The genome project is deposited in the Genome OnLine Database [30] and the complete genome sequence is deposited in GenBank. Sequencing, finishing and annotation were performed by the DOE Joint Genome Institute [JGI]. A summary of the project information is shown in Table 2.
Table 2. Genome sequencing project information

MIGS ID	Property	Term
MIGS-31	Finishing quality	Finished
	Libraries used	One 8kb pMCL200 genomic library and one Illumina library
MIGS-28	Libraries used	One 454 pyrosequencing standard library
MIGS-29	Libraries used	One Illumina GA
MIGS-30	Assemblers	Newbler version 1.1.02.15, phrap
MIGS-31.2	Sequencing coverage	8.0× Sanger; 21.8× pyrosequencing
MIGS-32	Gene calling method	Prodigal, GenePRIMP
	INSDC ID	CP001867
	Genbank date of release	January 19, 2010
	GOLD ID	Gc01190
	NCBI project ID	29547
MIGS-13	Source material identifier	DSM 43160
	Project relevance	Tree of Life, GEBA

Growth conditions and DNA isolation

G. obscurus G-20T, DSM 43160, was grown in DSMZ medium 65 [36] at 28°C. DNA was isolated from 0.5-1 g of cell paste using Qiagen Genomic 500 DNA Kit (Qiagen, Hilden, Germany) with a modified protocol for cell lysis, (procedure st/L), and one hour incubation at 37°C, according to Wu et al. [37].

Genome sequencing and assembly

The genome was sequenced using a combination of Sanger and 454 sequencing platforms. All general aspects of library construction and sequencing performed at the JGI can be found at the JGI website (http://www.jgi.doe.gov/). 454 Pyrosequencing reads were assembled using the Newbler assembler version 1.1.02.15 (Roche). Large Newbler contigs were broken into 5,725 overlapping fragments of 1,000 bp and entered into assembly as pseudo-reads. The sequences were assigned quality scores based on Newbler consensus q-scores with modifications to account for overlap redundancy and adjust inflated q-scores. A hybrid 454/Sanger assembly was made using the parallel phrap assembler (High Performance Software, LLC). Possible misassemblies were corrected with Dupfinisher or transposon bombing of bridging clones [38]. A total of 1,530 Sanger finishing reads were produced to close gaps, to resolve repetitive regions, and to raise the quality of the finished sequence. Illumina reads were used to improve the final consensus quality using an in-house developed tool (the Polisher). The error rate of the completed genome sequence is less than 1 in 100,000. Together, the combination of the Sanger and 454 sequencing platforms provided 29.8× coverage of the genome. The final assembly contains 48,209 Sanger reads and 353,553 pyrosequencing reads.

Genome annotation

Genes were identified using Prodigal [39] as part of the Oak Ridge National Laboratory genome annotation pipeline, followed by a round of manual curation using the JGI GenePRIMP pipeline [40]. The predicted CDSs were translated and used to search the National Center for Biotechnology Information (NCBI) nonredundant database, UniProt, TIGR-Fam, Pfam, PRIAM, KEGG, COG, and InterPro databases. Additional gene prediction analysis and functional annotation was performed within the Integrated Microbial Genomes - Expert Review (IMG-ER) platform [41].

Genome properties

The genome is 5,322,497 bp long and comprises one main chromosome with a 74.0% GC content (Figure 3 and Table 3). Of the 5,219 genes predicted, 5,161 were protein coding genes, and 58 RNAs. In addition, 350 pseudogenes were also identified. The majority of the protein-coding genes (69.8%) were assigned with a putative function while those remaining were annotated as hypothetical proteins. The distribution of genes into COGs functional categories is presented in Table 4.
Comparison with closest related genomes

Table 5 provides an overall comparison of the genomes of *G. obscurus* strain G-20\(^\top\) with the closest available genomes, that is, *Acidothermus cellulolyticus* 11B\(^\top\), *Frankia alni* ACN14A and *N. multipartita* Y-104\(^\top\). The total length of (non-overlapping) high-scoring segment pairs (HSPs) and the number of identical base pairs within these HSPs were determined using the GGDC web server [42] by directly applying NCBI Blastn to the genomes represented as nucleotide sequences [43].

Number and proportion of shared homologs were determined using the 'Phylogenetic Profiler' function of the IMG system [41] using default values. While the relative order of 16S rRNA difference does not correspond to the genomic similarities, the four genome-based measures uniformly indicate that *N. multipartita* Y-104\(^\top\) possesses the genome most similar to the one of *G. obscurus* G-20\(^\top\), followed by *F. alni* ACN14A and *A. cellulolyticus* 11B\(^\top\).

Figure 3. Graphical circular map of the genome. From outside to the center: Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew.
Table 3. Genome Statistics

Attribute	Value	% of Total
Genome size (bp)	5,322,497	100.00%
DNA coding region (bp)	4,756,139	89.36%
DNA G+C content (bp)	3,937,802	73.98%
Number of replicons	1	
Extrachromosomal elements	0	
Total genes	5,219	100.00%
RNA genes	58	1.11%
rRNA operons	3	
Protein-coding genes	5,161	98.89%
Pseudo genes	350	6.71%
Genes with function prediction	3,640	69.75%
Genes in paralog clusters	896	17.17%
Genes assigned to COGs	3,408	65.30%
Genes assigned Pfam domains	3,584	68.67%
Genes with signal peptides	793	15.19%
Genes with transmembrane helices	1,105	21.17%
CRISPR repeats	0	

Table 4. Number of genes associated with the general COG functional categories

Code	Value	%age	Description
J	166	3.2	Translation, ribosomal structure and biogenesis
A	1	0.0	RNA processing and modification
K	309	6.0	Transcription
L	196	3.8	Replication, recombination and repair
B	1	0.0	Chromatin structure and dynamics
D	27	0.5	Cell cycle control, mitosis and meiosis
Y	0	0.0	Nuclear structure
V	51	1.0	Defense mechanisms
T	242	4.7	Signal transduction mechanisms
M	213	4.1	Cell wall/membrane biogenesis
N	43	0.8	Cell motility
Z	0	0.0	Cytoskeleton
W	0	0.0	Extracellular structures
U	52	1.0	Intracellular trafficking and secretion
O	96	1.9	Posttranslational modification, protein turnover, chaperones
C	277	5.4	Energy production and conversion
G	267	5.2	Carbohydrate transport and metabolism
E	313	6.1	Amino acid transport and metabolism
F	87	1.7	Nucleotide transport and metabolism
H	180	3.5	Coenzyme transport and metabolism
I	188	3.6	Lipid transport and metabolism
P	164	3.2	Inorganic ion transport and metabolism
Q	127	2.5	Secondary metabolites biosynthesis, transport and catabolism
R	552	10.7	General function prediction only
S	295	5.7	Function unknown
	1,811	35.1	Not in COGs
Table 5. Percent-wise 16S rRNA sequence divergence

Taxon	%GGD formula 1	%GGD formula 2	%GGD formula 3	Number of shared homologs	Percentage
A. cellulolyticus 11B¹	6.45%	0.930	0.231	2,309	44.7%
(NC_008578)					
F. alni ACN14A	5.81%	0.915	0.212	3,124	60.5%
(NC_008278)					
N. multipartita Y-104¹	6.76%	0.886	0.212	3,300	63.9%
(NC_013235)					

¹Percent-wise 16S rRNA sequence divergence compared to genomic similarity for the three closest available genomes to G. obscurus strain G -20¹. GGD formulas: formula 1, length of sequence fragments not in HSPs per average total genome length; formula 2, number of non-identical bases per total HSP length; formula 3, number of non-identical bases within HSPs per average total genome length.

Acknowledgements

We would like to gratefully acknowledge the help of Susanne Schneider (DSMZ) for DNA extraction and quality analysis. This work was performed under the auspices of the US Department of Energy’s Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, Los Alamos National Laboratory under contract No. DE-AC02-06NA25396, and Oak Ridge National Laboratory under contract DE-AC05-00OR22725, as well as German Research Foundation (DFG) INST 599/1-1 and SI 1352/1-2.

References

1. Luedemann GM. Geodermatophilus, a new genus of the Dermatophilaceae (Actinomycetales). J Bacteriol 1968; 96:1848-1858. PubMed doi:10.1128/JB.96.11.1848-1858.00003-00000
2. Normand P. Geodermatophilaceae fam. nov., a formal description. Int J Syst Evol Microbiol 2006; 56:2277-2278. PubMed doi:10.1099/ijs.0.64298-0
3. Gordon MA. The genus Dermatophilus. J Bacteriol 1964; 88:509-522. PubMed
4. Stackebrandt E, Kroppenstedt RM, Fowler VJ. A phylogenetic analysis of the family Dermatophilaceae. J Gen Microbiol 1983; 129:1831-1838. PubMed
5. Hahn D, Lechevalier MP, Fischer A, Stackebrandt E. Evidence for a close phylogenetic relationship between members of the genera Frankia, Geodermatophilus and Blastococcus and emendation of the family Frankiaceae. Syst Appl Microbiol 1989; 11:236-242.
6. Normand P, Orso S, Cournoyer B, Jeannin P. Chapelon, Dawson J, Evtushenko L, Misra AK. Molecular phylogeny of the genus Frankia and related genera and emendation of the family Frankiaceae. Int J Syst Bacteriol 1996; 46:1-9. PubMed doi:10.1099/00207713-46-1-1
7. Garrity GM, Lilburn TG, Cole JR, Harrison SH, Euzéby J, Tindall BJ. Taxonomic outline of the Bacteria and Archaea, Release 7.7 March 6, 2007. Part 10 - The Bacteria: Phylum Actinobacteria: Class "Actinobacteria". http://www.taxonomicoutline.org.
8. Eppard M, Krumbein WE, Koch C, Rhiel E, Staley JT, Stackebrandt E. Morphological, physiological, and molecular characterization of actinomycetes isolated from dry soil, rocks, and monument surfaces. Arch Microbiol 1996; 166:12-22. PubMed doi:10.1007/s002030050350
9. Salazar O, Valverde A, Genilloud O. Real-Time PCR for the detection and quantification of Geodermatophilaceae from stone samples and identification of new members of the genus Blastococcus. Appl Environ Microbiol 2006; 72:346-352. PubMed doi:10.1128/AEM.72.1.346-352.2006
10. Hungate B, Danin A, Pellerin NB, Stemmler J, Kjellander P, Adams JB, Staley JT. Characterization of manganese-oxidizing (MnII->MnIV) bacteria from Negev Desert rock varnish: implications

<http://standardsingenomics.org>
in desert varnish formation. Can J Microbiol 1987; 33:939-943.

11. Kudukhashvili PG, Gurielegde MA, Pataraya DT. Study of the lytic activities of actinomycetes isolated from different soils in Georgia. Appl Biochem Microbiol 2001; 37:251-252. doi:10.1023/A:1010272900216

12. Kuhlman KD, Allenbach LB, Ball CL, Fusco WG, La Duc MT, Kuhlman GM, Anderson RC, Stuecker T, Erickson IK, Benardini J, et al. Enumeration, isolation, and characterization of ultraviolet (UV-C) resistant bacteria from rock varnish in the Whipple Mountains, California. Icarus 2005; 174:585-595. doi:10.1016/j.icarus.2004.11.022

13. Urzì C, Brusetti L, Salamone P, Sorlini C, Stackerbrandt E, Daffonchio D. Biodiversity of Geodermatophilaceae isolated from altered stones and monuments in the Mediterranean basin. Icarus 2005; 174:585-595. doi:10.1016/j.icarus.2004.11.022

14. Ishiguro EE, Fletcher DW. Characterization of Geodermatophilus strains isolated from high altitude Mount Everest soils. Mikrobiologija 1975; 12:99-108.

15. Ishiguro EE, Wolfe RS. Control of morphogenesis in Geodermatophilus: ultrastructural studies. J Bacteriol 1970; 104:566-580. PubMed

16. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angiuoli SV, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 2008; 26:541-547. PubMed doi:10.1038/nbt1360

17. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 1990; 87:4576-4579. PubMed doi:10.1073/pnas.87.12.4576

18. Garrity GM, Holt JG. The Road Map to the Manual. In: Garrity GM, Boone DR, Castenholz RW (eds), Bergey's Manual of Systematic Bacteriology, Second Edition, Springer, New York, 2001, p. 119-169.

19. Stackerbrandt E. rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997; 47:479-491. doi:10.1099/00207713-47-2-479

20. O’Nuallain B, Wetzel R. Conformational Abs recognizing a generic amyloid fibril epitope. Proc Natl Acad Sci USA 2002; 99:1485-1490. PubMed doi:10.1073/pnas.022662599

21. Classification of Bacteria and Archaea in risk groups www.baua.de TRBA 466.

22. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene Ontology: tool for the unification of biology. Nat Genet 2000; 25:25-29. PubMed doi:10.1038/75556

23. Mevs U, Stackebrandt E, Schumann P, Gallikowski C, Hirsch P. Modestobacter multiseptatus gen. nov., sp. nov., a budding actinomycete from soils of the Asgard Range (Transantarctic Mountains). Int J Syst Evol Microbiol 2000; 50:337-346. PubMed

24. Jordal PB, Dueholm MS, Larsen P, Petersen SV, Enghild JJ, Christiansen G, Hojrup P, Nielsen PH, Otzen DE. Widespread abundance of functional bacterial amyloid in mycolata and other gram-positive bacteria. Appl Environ Microbiol 2009; 75:4101-4110. PubMed doi:10.1128/AEM.02107-08

25. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 2004; 304:66-74. PubMed doi:10.1126/science.1093857

26. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540-552. PubMed

27. Lee C, Grasso C, Sharlow MF. Multiple sequence alignment using partial order graphs. Bioinformatics 2002; 18:452-464. PubMed doi:10.1093/bioinformatics/18.3.452

28. Stamatakis A, Hoover P, Rougemont J. A Rapid Bootstrap Algorithm for the RAxML Web Servers. Syst Biol 2008; 57:758-771. PubMed doi:10.1080/10635150802429642

29. Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A. How Many Bootstrap Replicates Are Necessary? Lect Notes Comput Sci 2009; 5541:184-200. doi:10.1007/978-3-642-02008-7_13

30. Liolios K, Chen IM, Mavromatis K, Tavernarakis N, Hugenholtz P, Markowitz VM, Kyrpides NC. The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata. Nuclei
31. Tice H, Mayilraj S, Sims D, Lapidus A, Nolan M, Lucas S, Glavina Del Rio T, Copeland A, Cheng JF, Meincke L, et al. Complete genome sequence of *Nakamurella multipartita* type strain (Y-104T). *Stand Genomic Sci* 2010; 2:168-175.

32. Normand P, Lapierre P, Tisa LS, Gogarten JP, Alloisio N, Bagnarol E, Bassi CA, Berry AM, Bickhart DM, Choisne N, et al. Genome characteristics of facultatively symbiotic *Frankia* sp. strains reflect host range and host plant biogeography. *Genome Res* 2007; 17:7-15. PubMed doi:10.1101/gr.5798407

33. Mirza MS, Janse JD, Hahn D, Akkermans ADL. Identification of atypical *Frankia* strains by fatty acid analysis. *FEMS Microbiol Lett* 1991; 83:91-98. doi:10.1111/j.1574-6968.1991.tb04395.x

34. Wink JM. *Compendium of Actinobacteria*.

35. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. *Int J Syst Bacteriol* 1970; 20:435-443. doi:10.1099/00207713-20-4-435

36. List of growth media used at DSMZ: http://www.dsmz.de/microorganisms/media_list.php

37. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova N, Kunin V, Goodwin L, Wu M, Tindall BJ, et al. A phylogeny-driven genomic encyclopedia of *Bacteria* and *Archaea*. *Nature* 2009; 462:1056-1060. PubMed doi:10.1038/nature08656

38. Sims D, Brettin T, Detter J, Han C, Lapidus A, Copeland A, Glavina Del Rio T, Nolan M, Chen F, Lucas S, et al. Complete genome sequence of *Kyttococcus sedentarius* type strain (541T). *Stand Genomic Sci* 2009; 1:12-20. doi:10.4056/sigs.761

39. Hyatt D, Chen GL, Locascio PF, Land ML, Larsmer FW, Hauser LJ. Prodigal Prokaryotic Dynamic Programming Gene Finding Algorithm. *BMC Bioinformatics* 2010; 11:119. PubMed doi:10.1186/1471-2105-11-119

40. Pati A, Ivanova N, Mikhailova N, Ovchinikova G, Hooper SD, Lykidis A, Kyrpides NC. GenePRIMP: A Gene Prediction Improvement Pipeline for microbial genomes. *Nat Methods* (In press).

41. Markowitz VM, Ivanova NN, Chen IMA, Chu K, Kyrpides NC. IMG ER: a system for microbial genome annotation expert review and curation. *Bioinformatics* 2009; 25:2271-2278. PubMed doi:10.1093/bioinformatics/btp393

42. Auch AF, Klenk HP, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring sequence pairs. *Stand Genomic Sci* 2010; 2:142-148. doi:10.4056/sigs.541628

43. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. *Stand Genomic Sci* 2010; 2:117-134. doi:10.4056/sigs.531120