Search for neutral supersymmetric Higgs bosons in multijet events at $\sqrt{s} = 1.96$ TeV

V.M. Abazov,35 B. Abbott,72 M. Abolins,63 B.S. Acharya,29 M. Adams,50 T. Adams,48 M. Agelou,18 J.-L. Agram,19 S.H. Ahn,31 M. Ahn,57 G.D. Alexeev,35 G. Alkhazov,39 A. Alton,62 G. Alvers,61 G.A. Alves,2 M. Anastasiou,34 T. Andeen,52 S. Anderson,44 B. Andrieu,17 Y. Arnoud,14 A. Askew,48 B. Åsman,40 A.C.S. Assis Jesus,3 O. Atramentov,55 C. Autermann,21 C. Avila,8 F. Badaud,13 A. Baden,59 B. Baldin,49 P.W. Balm,33 S. Banerjee,29 E. Barberis,61 P. Bargassa,76 P. Baringer,56 C. Barnes,42 J. Barreto,3 J.F. Bartlett,49 U. Bassler,17 D. Bauer,53 A. Bean,56 S. Beauceron,17 M. Begel,58 A. Bellavance,65 S.B. Beri,27 G. Bernardi,17 R. Bernhard,49,* I. Bertram,41 M. Besançon,18 R. Beuselinck,42 V.A. Bezzubov,38 P.C. Bhat,49 V. Bhatnagar,27 M. Binder,25 C. Biscarrot,41 K.M. Black,60 I. Blackler,42 G. Blazey,51 F. Blekman,33 S. Blessing,48 D. Bloch,19 U. Blumenschein,23 A. Boehnlein,49 O. Boeriu,34 T.A. Bolton,57 F. Borcharding,49 G. Borissov,41 K. Bos,33 T. Bose,77 A. Brandt,74 R. Brock,63 G. Brooijmans,67 A. Bross,49 N.J. Buchanan,48 D. Buchholz,52 M. Buehler,50 V. Buescher,23 S. Burdin,49 T.H. Burnett,78 E. Busato,17 C.P. Buszello,42 J.M. Butler,60 J. Cammin,68 S. Caron,33 W. Carvalho,3 J.C.K. Casey,73 N.M. Cason,54 H. Castilla-Valdez,32 S. Chakrabarti,29 D. Chakraborty,51 K.M. Chan,68 A. Chandra,29 D. Chapin,73 F. Charles,19 E. Cheu,44 D.K. Cho,60 S. Choi,47 B. Choudhary,28 T. Christiansen,26 L. Christofek,56 D. Claes,85 B. Clément,19 C. Clément,40 Y. Coadou,5 M. Cooke,76 W.E. Cooper,49 D. Coppage,36 M. Cornoar,76 A. Cothenet,15 M.-C. Cousinou,15 B. Cox,33 S. Crépez-Renaudin,14 D. Cutts,37 H. da Motta,2 B. Davies,41 G. Davies,42 G.A. Davis,52 K. De,74 P. De Jong,33 E.S. de Jong,34 E. De La Cruz-Burelo,32 C. De Oliveira Martins,3 S. Dean,43 J.D. Degenhardt,62 F. Déliot,18 M. Demarteau,49 R. Demina,68 P. Demine,18 D. Denisov,49 S.P. Denissenov,38 S. Desai,69 H.T. Diehl,49 M. Diesburg,49 M. Doidge,41 H. Dong,69 S. Doula,61 L.V. Dudo,37 L. Dufour,18 S.R. Dugad,9 A. Duperrin,15 J. Dyer,63 A. Dyshlov,51 M. Eads,51 D. Edwards,43 J. Ellison,47 J. Elmsheuser,25 V.D. Elvira,49 S. Eno,59 P. Ermolov,37 O.V. Eroshin,38 J. Estrada,49 H. Evans,67 A. Evdokimov,38 V.N. Evdokimov,38 J. Fast,49 S.N. Fatkina,60 L. Feligioni,60 A.V. Feraudmont,38 T. Fiedler,68 F. Fiedler,25 F. Filthaut,34 W. Fisher,66 H.E. Fisk,49 I. Fleck,23 M. Fortner,51 H. Fox,23 S. Fu,49 S. Fuess,49 T. Gadfort,78 C.F. Galea,34 E. Gallas,49 E. Galyaev,54 C. Garcia,68 A. Garcia-Bellido,78 J. Gardner,56 V. Gavrilov,36 P. Gay,13 D. Gelé,19 R. Gelhaus,47 K. Genser,49 C.E. Gerber,50 Y. Gershtein,38 D. Gillberg,5 G. Gimbel,68 T. Golling,22 N. Gollub,40 B. Gómez,8 K. Gouder,49 A. Goussiou,54 P.D. Grannis,69 S. Greder,3 H. Greenlee,49 Z.D. Greenwood,58 E.M. Greig,4 Ph. Gris,13 J.F. Grivaz,16 L. Groer,67 S. Grünendahl,49 M.W. Grünewald,30 S.N. Gurzhiev,38 G. Gutierrez,49 P. Gutierrez,72 A. Haas,67 N.J. Hadley,59 S. Hagopian,48 I. Hall,72 R.E. Hall,46 C. Han,62 L. Han,7 K. Hanagaki,49 K. Harder,57 A. Harel,26 R. Harrington,61 J.M. Hauptman,55 R. Hauser,65 J. Hayes,52 T. Hebbeker,21 D. Hedin,51 J.M. Heinmiller,50 A.P. Heinson,47 U. Heintz,60 C. Hensel,56 G. Hesketh,61 M.D. Hildreth,54 R. Hirosky,77 J.D. Hobbs,69 B. Hoeneisen,12 M. Hollifield,24 S.J. Hong,31 R. Hooper,73 P. Houben,33 Y. Hu,69 J. Huang,53 V. Hynek,9 I. Iashvili,47 R. Illingworth,49 A.S. Ito,49 S. Jabeen,56 M. Jaffré,16 S. Jain,72 V. Jain,70 K. Jakobs,23 A. Jenkins,23 R. Jesik,22 K. John,44 M. Johnson,49 A. Jonckheere,49 P. Jonsson,42 A. Juste,49 D. Käfer,21 S. Kahl,79 E. Kajfasz,15 A.M. Kalinin,37 J. Kalk,63 D. Karmanov,37 J. Kasper,60 D. Kau,48 R. Kaur,72 R. Kehoe,75 S. Kermiche,15 S. Kesisoglou,73 A. Khanov,68 A. Kharchilava,54 Y.M. Kharchzeev,35 H. Kim,74 T.J. Kim,31 B. Klima,49 J.M. Kohli,27 M. Kopel,72 V.M. Korablev,38 J. Kotcher,70 B. Kothari,67 A. Koubarovsky,37 A.V. Kozlov,48 J. Kozminski,63 A. Kryemadhi,77 S. Krzywdzinski,49 Y. Kulik,49 A. Kumar,28 S. Kunori,59 A. Kupco,11 T. Kurca,20 J. Kvita,9 S. Lager,10 N. Lahriri,18 G. Landsberg,73 J. Lazlofores,48 A.-C. Le Bihan,19 P. Lebrun,20 W.M. Lee,48 A. Leflat,37 F. Lehner,49,* C. Leonidopoulos,67 J. Leveque,44 P. Lewis,52 J. Li,74 Q.Z. Li,49 J.G.R. Lima,51 D. Lincoln,49 S.L. Linn,48 J. Linnemann,63 V.V. Lipaev,38 R. Lipton,49 L. Lobo,42 A. Lobdenko,39 M. Łokajwicki,11 A. Lounis,19 P. Love,41 H.J. Lubatti,78 L. Lueking,49 M. Lynker,54 A.L. Lyon,49 A.K.A. Maciel,51 R.J. Madaras,45 P. Mättig,26 C. Magass,21 A. Magerkurth,62 A.-M. Magnan,14 N. Makovec,16 P.K. Mal,29 H.B. Malbouisson,3 S. Malik,48 V.L. Malyshiev,35 H.S. Mao,6 Y. Maravin,49 M. Martens,49 S.E.K. Mattingly,73 A.A. Mayorov,38 R. McCarthy,69 R. McCroskey,44 D. Meder,24 A. Melnitchouk,64 A. Mendes,15 M. Merkin,37 K.W. Merritt,49 A. Meyer,21 J. Meyer,22 M. Michaut,18 H. Miettinen,76 J. Mitrevski,67 J. Molina,39 N.K. Mondal,29 R.W. Moore,5 G.S. Munzana,20 M. Mulders,49 Y.D. Mutaf,69 E. Nagy,15 M. Narain,60 N.A. Naumann,34 H.A. Neal,62 J.P. Negret,8 S. Nelson,48 P. Neustroev,3 C. Noedding,23 A. Norometski,49 S.F. Novaes,4 T. Nummenmaa,25 E. Nurse,43 V. O’Dell,49 D.C. O’Neill,5 V. Oguri,3
N. Oliveira, N. Oshima, G.J. Otero y Garzón, P. Padley, N. Parasarh, S.K. Park, J. Parsons, R. Partridge, N. Parua, A. Patwa, G. Pawloski, P.M. Perea, E. Perez, P. Pérot, M. Petteni, R. Piegai, M.A. Pleier, P.L.M. Pedosta-Lerma, V.M. Podstavkov, Y. Pogorelov, A. Pomposi, B.G. Pope, W.L. Prado da Silva, H.B. Prosper, S. Protopopescu, J. Qian, A. Quadt, B. Quinn, K.J. Rani, R. Ranjan, P.A. Rapidis, P.N. Ratoff, S. Reucroft, M. Rijssenbeek, I. Ripp-Baudot, F. Rizatdinova, S. Robinson, R.F. Rodrigues, C. Royon, P. Rubinov, R. Ruchti, V.I. Rud, G. Sajot, A. Sánchez-Hernández, M.P. Sanders, A. Santoro, G. Savage, L. Sawyer, T. Scanlon, D. Schaile, R.D. Schamberger, H. Schellman, P. Schieferdecker, C. Schmitt, C. Schwanenberger, A. Schwartzman, R. Schwienhorst, S. Sengupta, H. Severini, E. Shabalina, M. Shamim, V. Shary, A.A. Shchukin, W.D. Shephard, R.K. Shvipv, D. Shpakov, R.A. Sidwell, V. Simak, V. Sirotenko, P. Skubic, P. Slattery, R.P. Smith, K. Smolek, G.R. Snow, J. Snow, S. Söldner-Rembold, X. Song, L. Sonnenschein, A. Sopczak, M. Sosebee, K. Soustruznik, M. Souza, B. Spurlock, N.R. Stanton, J. Stark, J. Steele, K. Stevenson, V. Stolin, A. Stone, D.A. Stoyanov, J. Strandberg, M. Strassler, R. Ströhmer, D. Strom, M. Strovink, S. Stoynev, J. Sudano, R. Suzuki, M. Talby, P. Tamburello, L. Uvarov, A. Vartapetian, W.L. Prado da Silva, 49

University of Science and Technology of China, Hefei, People’s Republic of China

Institute of Physics, Academy of Sciences, Center for Particle Physics, Prague, Czech Republic

University of San Francisco de Quito, Quito, Ecuador

Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil

University of Alberta, Edmonton, Alberta, Canada, Simon Fraser University, Burnaby, British Columbia, Canada, York University, Toronto, Ontario, Canada, and McGill University, Montreal, Quebec, Canada

Institute of High Energy Physics, Beijing, People’s Republic of China

University of Science and Technology of China, Hefei, People’s Republic of China

Universidad de los Andes, Bogotá, Colombia

Center for Particle Physics, Charles University, Prague, Czech Republic

Czech Technical University, Prague, Czech Republic

University San Francisco de Quito, Quito, Ecuador

Laboratoire de Physique Corpusculaire, IN2P3-CNRS, Université Blaise Pascal, Clermont-Ferrand, France

Laboratoire de Physique Subatomique et de Cosmologie, IN2P3-CNRS, Université de Grenoble 1, Grenoble, France

CPPM, IN2P3-CNRS, Université de la Méditerranée, Marseille, France

Laboratoire de l’Accélérateur Linéaire, IN2P3-CNRS, Orsay, France

LPNHE, IN2P3-CNRS, Universités Paris VI and VII, Paris, France

DAPNIA/Service de Physique des Particules, CEA, Saclay, France

JReS, IN2P3-CNRS, Université Louis Pasteur, Strasbourg, France, and Université de Haute Alsace, Mulhouse, France

Institut de Physique Nucléaire de Lyon, IN2P3-CNRS, Université Claude Bernard, Villeurbanne, France

III. Physikalisches Institut A, RWTH Aachen, Aachen, Germany

Physikalisches Institut, Universität Bonn, Bonn, Germany

Physikalisches Institut, Universität Freiburg, Freiburg, Germany

Institut für Physik, Universität Mainz, Mainz, Germany

Ludwig-Maximilians-Universität München, München, Germany

Fachbereich Physik, Universität of Wuppertal, Wuppertal, Germany

Panjab University, Chandigarh, India

Delhi University, Delhi, India

Korea Detector Laboratory, Korea University, Seoul, Korea

Tata Institute of Fundamental Research, Mumbai, India

University College Dublin, Dublin, Ireland

Korea Detector Laboratory, Korea University, Seoul, Korea
We have performed a search for neutral Higgs bosons produced in association with bottom quarks in $p \bar{p}$ collisions, using 260 pb$^{-1}$ of data collected with the DØ detector in Run II of the Fermilab Tevatron Collider. The cross sections for these processes are enhanced in many extensions of the standard model (SM), such as in its minimal supersymmetric extension at large $\tan \beta$. The results of our analysis agree with expectations from the SM, and we use our measurements to set upper limits on the production of neutral Higgs bosons in the mass range of 90 to 150 GeV.

PACS numbers: 12.38.Qk, 12.60.Fr, 13.85.Rm, 14.80.Cp

In two-Higgs-doublet models of electroweak symmetry breaking, such as the minimal supersymmetric extension of the standard model (MSSM), there are five physical Higgs bosons: two neutral CP-even scalars, h and H, with H being the heavier state; a neutral CP-odd state, A; and two charged states, H^\pm. The ratio of the
while in the four-flavor scheme [6], two performed a search for these events in data from Run I [4].

neutral Higgs bosons can be produced in association with h boson with mass $m_h < 92.9$ GeV [8]. At hadron colliders, neutral Higgs bosons can be produced in association with b quarks, leading to final states containing three or four b jets. The CDF experiment at the Tevatron Collider performed a search for these events in data from Run I [8].

Higgs boson production in association with b quarks in $p\bar{p}$ collisions can be calculated in two ways: in the five-flavor scheme f_5, only one b quark has to be present, while in the four-flavor scheme f_4, two b quarks are explicitly required in the final state. Both calculations are now available at next-to-leading order (NLO), and agree within their respective theoretical uncertainties δf_4. Figure 1 illustrates these processes for h production at leading order (LO), and analogous diagrams can be drawn for the H and A bosons.

In this Letter, we assume CP-conservation in the Higgs sector. The masses, widths, and branching fractions for the neutral Higgs bosons into bb pairs are calculated using the CPSUPERH program f_6, f_7. The current analysis is sensitive to $\tan \beta$ in the range $50 - 100$, and depends on the Higgs boson mass. In this region of $\tan \beta$, the A boson is nearly degenerate in mass with either the h or the H boson, and their widths are small compared to the di-jet mass resolution. Consequently, we cannot distinguish between the h/H and the A, and the total cross section for signal is assumed to be twice that of the A boson. In the region of m_A from 100 to 130 GeV, all three neutral Higgs bosons can be degenerate in mass and produced simultaneously f_11. Nevertheless, the total cross section still remains twice that of the A boson. Using data collected by the DØ detector from November 2002 to June 2004, corresponding to an integrated luminosity of about 260 pb$^{-1}$, we search for an excess in the invariant mass distribution of the two leading transverse momentum (p_T) jets in events containing three or more b quark candidates.

The DØ detector has a magnetic central tracking system surrounded by a uranium/liquid-argon calorimeter, contained within a muon spectrometer. The tracking system consists of a silicon microstrip tracker (SMT) and a central fiber tracker (CFT), both located within a 2 T solenoidal magnet f_{12}. The SMT and CFT have designs optimized for tracking and vertexing at pseudorapidities $|\eta| < 2.5$, where $\eta = -\ln(\tan(\theta/2))$ and θ is the polar angle with respect to the proton beam direction (z). The calorimeter has a central section (CC) covering up to $|\eta| \approx 1.1$, and two end calorimeters (EC) extending coverage to $|\eta| \approx 4.2$, all housed in separate cryostats f_{13}. The calorimeter is divided into an electromagnetic part followed by fine and coarse hadronic sections. Scintillators between the CC and EC cryostats provide additional sampling of developing showers for $1.1 < |\eta| < 1.4$. The muon system consists of a layer of tracking detectors and scintillation trigger counters in front of 1.8 T toroidal magnets, followed by two similar layers behind the toroids, which provide muon tracking for $|\eta| < 2$. The luminosity is measured using scintillator arrays located in front of the EC cryostats, covering $2.7 < |\eta| < 4.4$. The trigger system comprises three levels (L1, L2, and L3), each performing an increasingly detailed event reconstruction in order to select the events of interest.

The large cross section for multijet production necessitates a specialized trigger to maximize signal acceptance while providing reasonable rates. This trigger at L1 requires signals in at least three calorimeter towers of size $\Delta\eta \times \Delta\phi = 0.2 \times 0.2$ (where ϕ is the azimuthal angle), each with transverse energy $E_T > 5$ GeV; three clusters and $H_T^3 > 50$ GeV at L2 (H_T^2 = scalar sum of the L2 clusters E_T with $E_T > 5$ GeV), and three jets with $p_T > 15$ GeV at L3. A total of 87 million events were selected off-line with one jet of $p_T > 20$ GeV and at least two more jets with $p_T > 15$ GeV. Jets are reconstructed using a Run II cone algorithm f_{14} with radius $\Delta R = \sqrt{(\Delta\eta)^2 + (\Delta\phi)^2} < 0.5$, and are then required to pass a set of quality criteria. To be accepted for further analysis, jets with $p_T > 15$ GeV must have $|\eta| < 2.5$. The jet energies are corrected to the particle level using η-dependent scale factors. Events with up to five jets are selected if they have a primary vertex position $|z| < 35$ cm and at least three jets with corrected $p_T > 35, 20$, and 15 GeV. Depending on the hypothesized Higgs boson mass, the final selections are chosen to optimize the expected signal significance, defined as S/\sqrt{B},
where S (B) refers to the number of signal (background) events. Jets containing b quarks are identified using a secondary vertex (SV) tagging algorithm. A jet is tagged as a b-jet if it has at least one SV within $\Delta R < 0.5$ of the jet axis and a transverse displacement from the primary vertex that exceeds five times the displacement uncertainty. Jets are b tagged up to $|\eta| < 2.5$, although the b tagging is about twice as efficient in the central region ($|\eta| < 1.1$) because of the CFT coverage. The b tagging efficiency is $\approx 55\%$ for central b-jets of $p_T > 35$ GeV, with a light quark (or gluon) tag rate of about 1%.

Signal events were simulated using the PYTHIA event generator followed by the full DØ detector simulation and reconstruction chain. PYTHIA minimum-bias events were added to all generated events, using a Poisson probability with a mean of 0.4 events to match the instantaneous luminosities at which the data were taken ($1 - 6 \times 10^{31}$ cm$^{-2}$s$^{-1}$). The $b\bar{b}$ events, with $h \rightarrow b\bar{b}$, were generated for Higgs boson masses from 90 to 150 GeV. Reconstructed jets in simulated events were corrected to match the jet reconstruction and identification efficiencies in data. The energy of simulated jets was smeared to match the measured jet energy resolution. The p_T and rapidity spectra of the Higgs bosons from PYTHIA were compared to those from the NLO calculation. The shapes were similar, indicating that the PYTHIA kinematics are approximately correct. The simulated events were weighted to match the p_T spectrum of the Higgs boson given by NLO, resulting in a 10% reduction of the overall signal efficiency.

Of all SM processes, multijet production is the major source of background. This background is determined from data by normalizing distributions outside of the signal region. As a cross-check, we also compare data with simulations. ALPGEN is used to generate three samples of events for $b\bar{b}jj$ and $bbjj$ with j corresponding to up, down, strange or charm quarks, or gluons, and $b\bar{b}jj$ final states with generator-level requirements: $p_T^b > 25$ GeV, $p_T^j > 15$ GeV, $|\eta| < 3.0$, and $\Delta R > 0.4$ between any two final-state partons. These selections do not introduce significant bias because the final sample contains much harder jets, after the application of trigger and b-tagging requirements. Samples of $b\bar{b}jj$ and $bbjj$ are added together, but the $bbjj$ sample is weighted by 0.85 to match the jet multiplicity observed in doubly b-tagged data. The cross sections obtained from ALPGEN are 8.9 nb, 3.9 nb, and 60 pb, for the respective three states.

There are two main categories of multijet background. One contains genuine heavy-flavor (HF) jets, while the other has only light-quark or gluon jets that are mistakenly tagged as b-quark jets, or correspond to gluons that branch into nearly collinear $b\bar{b}$ pairs. Using the selected data sample, before the application of b-tagging requirements, the probability to b-tag a jet is measured as a function of its p_T in three $|\eta|$ regions. These functions are called “mis-tag” functions. They are corrected for the contamination from true HF events by subtracting the estimated fraction of $b\bar{b}jj$ events in the multijet data sample (1.2%), obtained from an initial fit to the doubly b-tagged data. These corrected mis-tag functions are then used to estimate the mis-tagged background, by applying them to every jet reconstructed in the full data sample.

In order to test the modeling of the mis-tag background, the high statistics doubly b-tagged data is compared to simulations first, before extrapolating to the triply b-tagged background. The expected signal contribution to the doubly b-tagged data is negligible. The comparison in invariant mass spectrum of the two jets of highest p_T (not necessarily the two b-tagged jets) in the doubly b-tagged data with the expected background is shown in Fig. 2. The b-tagging in this analysis does not distinguish between contributions from bottom and charm events. However, the efficiency for tagging a c-jet is known from simulations to be about 1/4 of that for tagging a b-jet. Therefore, when two b-tags are required, the fraction of $c\bar{c}jj$ events relative to $b\bar{b}jj$ events will be a factor of ≈ 16 lower after tagging. We have estimated the fractions of $c\bar{c}jj$ to $bbjj$ prior to b-tagging using the MADGRAPH Monte Carlo generator. The $c\bar{c}jj$ cross section is 22% higher than $bbjj$ for the same generator-level selections. Therefore, the contribution of $c\bar{c}jj$ in the doubly b-tagged data sample is expected to represent about 8% of the events. Thus, when we refer to the $b\bar{b}jj$ normalization, it should be understood that approximately 8% of the events are from the $c\bar{c}jj$ process. After these corrections for $c\bar{c}jj$ events, the HF multijet processes are only a factor of 1.08 higher in data than predicted by ALPGEN. The shape of the estimated background agrees well with the data over the entire invariant mass region.

To estimate the background for triply b-tagged events, the mis-tag function is applied to the non-b-tagged jets in the doubly b-tagged events. This provides the shape of the multijet background distribution with at least three b-tagged jets. This neglects any contributions from processes with more than two true b-jets, such as from $b\bar{b}bj$ and $Z(\rightarrow b\bar{b})\ell\ell$ production. However, the shapes of these backgrounds from simulations are similar to those of the doubly b-tagged spectra, and their rates are small. The overall background normalization is therefore determined by fitting the leading two jets invariant mass spectrum in triply b-tagged events outside of the hypothesized signal region to the estimated shape for triply b-tagged background. The systematic effect on the normalization of the background from any signal contributing outside the search window was studied and found to be small relative to other uncertainties, as described below.
The accuracy in modeling the shape of the background distribution can be estimated from the χ^2/dof between the estimated background and the data. The statistical error associated with the uncertainty in the normalization of the background (from the fit outside the signal region) is multiplied by $\sqrt{\chi^2}$/dof. The background uncertainty is estimated to be $\lesssim 3\%$. The systematic uncertainty arising from the width chosen for the search window is evaluated by varying it from less than the resolution to ± 1.8 sd, centered on the peak value. The resulting change in background normalization is much smaller than from other sources of background uncertainties.

A modified frequentist method is used to set limits on the production of signal. The di-jet invariant mass distributions in triply b-tagged events of data, simulated signal, and the normalized background were used as inputs. The value of $\tan \beta$ was varied until the confidence level for signal (CL_S) was $<5\%$. Figure 4 shows the data, background, and simulated signal at the exclusion limit, for $m_A = 120$ GeV. This is converted to a cross section limit for signal production in Fig. 3, which also shows the expected MSSM Higgs boson production cross section as a function of m_A for $\tan \beta = 80$, and the median expected limit with the background-only hypothesis along with its ± 1 sd range. The NLO cross sections and their uncertainties from parton distribution functions (PDF)}
FIG. 5: The 95% C.L. upper limit on $\tan \beta$ as a function of m_A for two scenarios of the MSSM, “no mixing” and “maximal mixing.” Also shown are the limits obtained by the LEP experiments for the same two scenarios of the MSSM.

and scale dependence are taken from Refs. [5, 8]. The MSSM cross section shown in Fig. 4 corresponds to no mixing in the scalar top quark sector \(X_t = 0 \), or \(X_t = A_t - \mu \cot \beta \), \(A_t \) is the tri-linear coupling, and the Higgsino mass parameter \(\mu = -0.2 \) TeV. We also interpret our results in the “maximal mixing” scenario with \(X_t = \sqrt{6} \times M_{\text{SUSY}} \), where \(M_{\text{SUSY}} \) is the mass scale of supersymmetric particles, taken to be 1 TeV.

Results for both scenarios of the MSSM are shown in Fig. 5 as limits in the $\tan \beta$ versus m_A plane. The present DØ analysis, based on 260 pb$^{-1}$ of data, excludes a significant portion of the parameter space, down to $\tan \beta = 50$, depending on m_A and the MSSM scenario assumed.

We thank the authors of Refs. [5, 8, 20] for valuable discussions. We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA), CEA and CNRS/IN2P3 (France), FASI, Rosatom and RFBR (Russia), CAPES, CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil), DAE and DST (India), Colciencias (Colombia), CONACyT (Mexico), KRF (Korea), CONICET and UBAcYT (Argentina), FOM (The Netherlands), PPARC (United Kingdom), MSMT (Czech Republic), CRC Program, CFI, NSERC and WestGrid Project (Canada), BMBF and DFG (Germany), SFI (Ireland), A.P. Sloan Foundation, Research Corporation, Texas Advanced Research Program, Alexander von Humboldt Foundation, and the Marie Curie Fellowships.

[•] Visitor from University of Zurich, Zurich, Switzerland.

[1] H. P. Nilles, Phys. Rept. 110, 1 (1984); H. E. Haber and G. L. Kane, Phys. Rept. 117, 75 (1985).
[2] J. F. Gunion, H. E. Haber, G. L. Kane, and S. Dawson, “The Higgs Hunter’s Guide,” Addison-Wesley, 1990.
[3] The LEP Working Group for Higgs Boson Searches, LHWG-Note 2004-01.
[4] Results in Phys. Rev. Lett. 86, 4472 (2001) by the CDF Collaboration cannot be confirmed with our data. In addition, their analysis used PDFs that have been superseded, resulting in more stringent limits than would have been obtained with the more recent PDFs used in this analysis.
[5] J. Campbell, R. K. Ellis, F. Maltoni, and S. Willenbrock, Phys. Rev. D 67, 095002 (2003).
[6] S. Dawson, C. B. Jackson, L. Reina, and D. Wackeroth, Phys. Rev. D 69, 074027 (2004); S. Dittmaier, M. Krämer, and M. Spira, Phys. Rev. D 70, 074010 (2004).
[7] J. Campbell et al., [hep-ph/0405302]
[8] S. Dawson, C. B. Jackson, L. Reina, and D. Wackeroth, Phys. Rev. Lett. 94, 031802 (2005).
[9] J. S. Lee et al., Comp. Phys. Comm. 156, 283 (2004).
[10] M. Carena and H. E. Haber, Prog. Part. Nucl. Phys. 50, 63 (2003).
[11] E. Boos, A. Djouadi, M. Mühleitner, and A. Vologdin, Phys. Rev. D 66, 055004 (2002).
[12] DØ Collaboration, V. Abazov et al., in preparation for submission to Nucl. Instrum. Methods Phys. Res. A.
[13] DØ Collaboration, S. Abachi et al., Nucl. Instrum. Methods Phys. Res. A 338, 185 (1994).
[14] G. C. Blazey et al., in Proceedings of the Workshop: “QCD and Weak Boson Physics in Run II,” edited by U. Baur, R. K. Ellis, and D. Zeppenfeld, (Fermilab, Batavia, IL, 2000) p. 47; see Sec. 3.5 for details.
[15] T. Sjöstrand et al., Comp. Phys. Comm. 135, 238 (2001).
[16] M. L. Mangano et al., JHEP 0307, 001 (2003).
[17] J. Campbell, R. K. Ellis, F. Maltoni, and S. Willenbrock, Phys. Rev. D 69, 074021 (2004).
[18] F. Maltoni and T. Stelzer, JHEP 0302, 027 (2003).
[19] T. Junk, Nucl. Instrum. Methods Phys. Res. A 434, 435 (1999).
[20] M. Carena, S. Mrenna, and C. E. M. Wagner, Phys. Rev. D 60, 075010 (1999); ibid, D 62, 055008 (2000).