The White-Spotted Bamboo Shark Genome Reveals Chromosome Rearrangements and Fast-Evolving Immune Genes of Cartilaginous Fish

Zhang, Yaolei; Gao, Haoyang; Li, Hanbo; Guo, Jiao; Ouyang, Bingjie; Wang, Meiniang; Xu, Qiwu; Wang, Jiahao; Lv, Meiqi; Guo, Xinyu

Total number of authors: 39

Published in: iScience

Link to article, DOI: 10.1016/j.isci.2020.101754

Publication date: 2020

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA): Zhang, Y., Gao, H., Li, H., Guo, J., Ouyang, B., Wang, M., Xu, Q., Wang, J., Lv, M., Guo, X., Liu, Q., Wei, L., Ren, H., Xi, Y., Guo, Y., Ren, B., Pan, S., Liu, C., Ding, X., ... Liu, X. (2020). The White-Spotted Bamboo Shark Genome Reveals Chromosome Rearrangements and Fast-Evolving Immune Genes of Cartilaginous Fish. iScience, 23(11), [101754]. https://doi.org/10.1016/j.isci.2020.101754

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The White-Spotted Bamboo Shark Genome Reveals Chromosome Rearrangements and Fast-Evolving Immune Genes of Cartilaginous Fish

Chromosome level genome assembly of bamboo shark

HIGHLIGHTS

- Inferred ancestral chromosome karyotypes of cartilaginous fish
- Chromosome rearrangements resulted in fast-evolving chromosomes and immune genes
- Chromosome rearrangements led to deletion of bone formation-related genes
- Proved that single-domain antibodies in shark have great potential application

Zhang et al., iScience 23, 101754 November 20, 2020 © 2020 The Authors. https://doi.org/10.1016/j.isci.2020.101754
The White-Spotted Bamboo Shark Genome Reveals Chromosome Rearrangements and Fast-Evolving Immune Genes of Cartilaginous Fish

Yaolei Zhang,1,4,8,10 Haoyang Gao,1,4,10 Hanbo Li,1,4,10 Jiao Guo,1,4,10 Bingjie Ouyang,1,4 Meiniang Wang,2,4 Qiwu Xu,1,4 Jiahao Wang,1,4 Meiqi Lv,1,4 Xinyu Guo,1,4 Qun Liu,1,4 Likun Wei,5 Han Ren,2,4 Yang Xi,2,4 Yang Guo,1,4 Bingzhao Ren,1,4 Shanshan Pan,1,4 Chuxin Liu,2,4 Xiaoyan Ding,1,4 Haitao Xiang,2,4 Yingjia Yu,1,4 Yue Song,1,4 Lingfeng Meng,1,4 Shanshan Liu,1,4 Jun Wang,1,4 Yuan Jiang,2,6 Jiahai Shi,5 Shiping Liu,2,4 Jamal S.M. Sabir,9 Mumdooh J. Sabir,9 Muhummad Khan,9 Nahid H. Hajrah,9 Simon Ming-Yuen Lee,3 Xun Xu,2,4 Huanming Yang,2,7 Jian Wang,2,7 Guangyi Fan,1,3,4,* Naibo Yang,2,6,* and Xin Liu1,2,4,11,*

SUMMARY

Chondrichthyan (cartilaginous fish) occupies a key phylogenetic position and is important for investigating evolutionary processes of vertebrates. However, limited whole genomes impede our in-depth knowledge of important issues such as chromosome evolution and immunity. Here, we report the chromosome-level genome of white-spotted bamboo shark. Combing it with other shark genomes, we reconstructed 16 ancestral chromosomes of bamboo shark and illustrate a dynamic chromosome rearrangement process. We found that genes on 13 fast-evolving chromosomes can be enriched in immune-related pathways. And two chromosomes contain important genes that can be used to develop single-chain antibodies, which were shown to have high affinity to human disease markers by using enzyme-linked immunosorbent assay. We also found three bone formation-related genes were lost due to chromosome rearrangements. Our study highlights the importance of chromosome rearrangements, providing resources for understanding of cartilaginous fish diversification and potential application of single-chain antibodies.

INTRODUCTION

The white-spotted bamboo shark, Chiloscyllium plagiosum, (hereinafter referred to as bamboo shark) belongs to the class of Chondrichthyes, which is one of the oldest extant jawed vertebrate groups (McKenna, 1988). Cartilaginous fishes including Elasmobranchii and Holocephali shared a common ancestor with other vertebrates about 460–520 Ma, and then evolved independently to distinct lineages (Inoue et al., 2010). The phylogenetic evolution of cartilaginous fishes has been disputed for a long time (Cao et al., 1998; Janvier, 1996; Rasmussen and Arnsen, 1999; Zardoya et al., 1998), especially the evolutionary relationships with bony fishes. Furthermore, most cartilaginous fishes have various chromosome karyotypes (2n = 66–104) (Rocco et al., 2003; Schwartz and Maddock, 1986), revealing interesting chromosome evolution processes. As known, immunoglobulins or lymphocyte receptors-based adaptive immunity is restricted to vertebrates (Litman et al., 2010). And as one of the extant early branching jawed vertebrates, cartilaginous fishes developed special immunity (for example, sharks comprise heavy-chain immunoglobulins, which are different from canonical antibodies consisting of both heavy and light chains, Körnig et al., 2017), which makes them “immunologist’s delight.”

The bamboo shark is a nocturnal reef-dwelling species and widely distributed in the Indo-West Pacific from India to Indonesia, southern China, and Japan (Kyne and Burgess, 2006). Its biological features, including docile nature, small body size (24–37 inches in length), convenient reproducibility, and longevity make it ideal for research. Its special immunoglobulins are superior in biological and medical applications and have been proposed for developing antibody drugs (Wesolowski et al., 2009; Zielonka et al., 2014). Despite its biological and application importance, previous researchers mostly focused on addressing its biology of...
hematology, reproduction, muscle activity, liver regeneration, and anatomy (Alexander et al., 2016; Maia and Wilga, 2013; Straube et al., 2016). Limited whole-genome sequencing of cartilaginous fishes including elephant shark (2014) (Venkatesh et al., 2014), whale shark (2017) (Read et al., 2017), brownbanded bamboo shark (2018) (Hara et al., 2018), cloudy catshark (2018) (Hara et al., 2018), and white shark (2019) (Marra et al., 2019) prevents our further understanding of genetic mechanisms for these species. Furthermore, these five genomes were all assembled to scaffold level, which also limits our investigation of chromosome rearrangements.

To better understand the evolution and special immunity of cartilaginous fishes, we sequenced and assembled a chromosome-level genome of a female bamboo shark, identifying dynamic chromosome rearrangement events and related evolutionary consequences. We carefully analyzed evolution of immune-related genes, which will provide new resources to understand their biology and applications in immunology. We also found that chromosome rearrangements delete three important bone formation-related genes, which may interpret chondrified endoskeleton of cartilaginous fishes.

RESULTS

Genome Assembly and Annotation

We assembled a 3.85-Gb genome assembly with 51 chromosomes supported by chromatin interaction relationships with Hi-C sequencing data (Figure 1A and Tables S1 and S2) and karyotype analysis (Ma et al., 2008), and we annotated 19,595 protein coding genes (Table S3) and 63.53% of repeat content (Table S4) in this genome assembly. Comparison of repeat content among cartilaginous fishes and bony fishes shows that cartilaginous fish genomes contain higher proportion of repeated sequences (Table S5). The GC content and repeat and gene density distributed in 51 chromosomes are shown in Figures S1 and S2. And ~95.8% of the Benchmarking Universal Single-Copy Orthologs (BUSCOs) (Simao et al., 2015) were identified to be complete in this genome (Table S6). Syntenic relationships revealed unambiguous alignments of 41 bamboo shark chromosomes to 29 chromosomes of chicken (the tetrapod species with most stable karyotypes, Ellegren, 2010, Figure S3), whereas the alignments between bamboo shark and zebrafish chromosomes (Figure S4) are disordered. Extensive inter-chromosomal rearrangements have been described previously in zebrafish genome (Kasahara et al., 2007). Therefore, these results suggest the bamboo shark genome also kept relatively conserved chromosome karyotypes without many inter-chromosomal rearrangements.

The assembled genome size of bamboo shark is ~3.85 Gb, larger than elephant shark (~0.974 Mb) (Venkatesh et al., 2014), whale shark (~2.93 Gb) (Read et al., 2017), and most bony fishes (340 Mb–2.97 Gb). Whole-genome duplication (WGD) is one of reasons that result in larger genome sizes (Grover and Wendel, 2010). Thus we investigate whether there is a third WGD event in bamboo shark apart from the common two rounds of WGD of vertebrates (Grover and Wendel, 2010). First, we found only one peak on the 4-
fold synonymous third-codon transversion rates (4DTv) distribution of bamboo shark genome, which represented the recent common WGD event of all vertebrates (Figure S5). We also checked the 4DTv distribution of elephant shark and zebrafish, finding that elephant shark also has only one peak, which is similar to bamboo shark, but zebrafish has another peak representing the third WGD of teleost fish (Glasauer and Neuhauss, 2014), indicating the reliability of our results. Second, we checked HOX (homeobox) genes, which are highly conserved in vertebrates and always clustered together (Santini et al., 2003) and thus have become reliable markers of WGD events (Kuraku, 2011). We only identified three HOX clusters in bamboo shark, compared with seven clusters in zebrafish, which experienced a third WGD. Similar HOX clusters were also found in cattle, whale shark and elephant shark genomes (Figure S6). These two results suggest that bamboo shark genome did not experience a third WGD event. Therefore, the larger genome size of bamboo shark should result from the burst of repeated sequences.

Molecular Phylogeny

In consideration of the important evolutionary position of cartilaginous fishes, we inferred phylogenetic relationship of bamboo shark with other five cartilaginous fishes, five representative bony fishes (four ray-finned fishes and one lobe fin fish), and humans. Based on coding sequences of 823 single-copy orthologous genes identified using TreeFam (Li et al., 2006), we constructed phylogenetic trees using both maximum-likelihood and Bayesian methods and generated identical results (Figure 1B). The tree topology for cartilaginous and bony fishes is consistent with previous researches (Hara et al., 2018; Marra et al., 2019). And we estimated divergence times of cartilaginous and bony fishes, Elasmobranchii and Holocephali; white spotted bamboo shark; and brownbanded bamboo shark to be about 485.0, 382.3, and 20.9 Ma, respectively.

Reconstruct Ancestral Chromosome

This chromosome-level genome makes it possible to study chromosome evolution of cartilaginous fishes. Thus we reconstructed ancestral chromosome karyotypes of cartilaginous fishes by identifying paralogous and orthologous genes between the bamboo shark and elephant shark genomes (Venkatesh et al., 2014) following a previously described method (Salse et al., 2009) (Table S7). Finally, we constructed 16 putative ancestral chromosomes and illustrated an evolutionary scenario during which eight fission and five fusion events occurred (Figure 2A, colored arrows), possibly for all cartilaginous fishes. As for the bamboo shark, nine fission and four fusion events (black and dotted arrows) occurred, resulting in six candidate daughter chromosomes (Chr8, Chr29, Chr38 and Chr39, Chr45, Chr48) (Figures 2A and S7 and Table S7). All these rearrangements ultimately gave rise to 51 chromosomes of the bamboo shark genome.

Fast-Evolving Chromosomes and Immune Genes

Plenty of chromosome rearrangements play a role in fast-evolving gene families and in fostering large-scale changes in gene order (Eichler and Sankoff, 2003). To identify potential causes and consequences of dynamic chromosome rearrangements in cartilaginous fishes, we further analyzed distribution of conserved protein-coding genes of cartilaginous fishes along bamboo shark chromosomes. We identified 2,323 orthologous genes (~12.90% of total genes) shared among bamboo shark, elephant shark, whale shark, brown-banded bamboo shark, cloudy catshark, and white shark (Figure S8). After exclusion of genes shared among these six cartilaginous fishes and representative bony fishes (medaka, Kasahara et al., 2007, Figure S9, and spotted gar Braasch et al. 2015, Figure S10), we finally identified 1,359 genes conserved only in cartilaginous fishes (Figure 2B). Interestingly, we found those genes to be unevenly distributed along bamboo shark chromosomes with conserved genes on chromosomes 8, 37, 39, 41, 43, 44, 45, 46, 47, 48, 49, 50, and 51—notably fewer than (average: 2.6 genes) those of other chromosomes (average: 34.9 genes, Mann-Whitney U test, p value < 0.001) (Figures 2B and Table S8). We then evaluated the evolutionary rate by calculating \(K_s \) (synonymous substitutions per synonymous site) values of orthologous genes on these 13 chromosomes (mean \(K_s \) value: 2.79), which was significantly higher than that of other chromosomes (mean \(K_s \) value: 1.54, Mann-Whitney U test, p value < 0.001, Figure 2C). In addition, we found heterozygous SNPs in the genome of this individual we sequenced to be notably more frequent on these 13 chromosomes (except Chr43) than other chromosomes (Mann-Whitney U test, p value < 0.001, Figure 2B). All these findings suggest that these 13 chromosomes are fast-evolving. Enrichment analysis (according to the Kyoto Encyclopedia of Genes and Genomes [KEGG]-assigned gene functions and pathways) showed that genes on these 13 fast-evolving chromosomes are significantly enriched in immune-related pathways with 171 immune-related genes (p value < 0.01, Tables S9 and S10). These include allograft rejection, antigen processing and presentation, as well as intestinal immune network for IgA production.
Analysis of MHC-Related Genes

Among these 13 fast-evolving chromosomes, we found that Chr37 and Chr44 likely underwent a special self-fusion event after a possible chromosome or large segment duplication event (Figure 2A). We also found that major histocompatibility complex (MHC) genes (11 class I and 3 class II genes) are notably enriched on Chr37 (11 genes, Figure 3A), except for those on unanchored scaffolds. MHC genes were not found in the amphioxus genome, whereas one fragment of a possible MHC class II gene was found in sea lamprey (Gene ID: PMZ_0007681-RA; KEGG function: K06752 MHC, class II) (Smith et al., 2018). Upon further investigation of MHC gene numbers in other species, we found both MHC class I and class II genes in cartilaginous fishes and bony fishes except for the elephant shark genome, which lacked MHC class II genes according to our analysis (Tables S11, S12, and S13 and Figure S11). These results suggest that the innate immune system accompanied with adaptive system based on variable lymphocyte receptors (Pancer et al., 2004; Saha et al., 2010) played a major role in defending against infections in amphioxus and sea lamprey, whereas cartilaginous and bony fishes evolved with acquiring a complete MHC-based adaptive immune system. The differences in these immune systems may have arisen from the fast-evolving chromosomes. Moreover, we suggest that MHC class II genes were likely acquired before MHC class I genes based on our identification of an MHC class II-like fragment in the starlet sea anemone genome (NCBI Accession: XP_001628845.1, identified by aligning PMZ_0007681-RA using BLAST, Altschul et al., 1990) and sea lamprey genome (Smith et al., 2018), potentially resolving a long debate about MHC evolution (Flajnik et al., 1991; Kaufman, 1988, 2011, 2018; Kaufman et al., 1984; Rock et al., 2016; Zhang et al., 2014). In addition, we found that tripartite motif-containing protein 69 (TRIM69) gene family was expanded significantly in cartilaginous fishes (average 18 copies) compared with ray-finned fishes (less than 3 copies) (Figure S12). Also, in bamboo shark genome, 13 copies of TRIM69 were also located on...
several human disease biomarkers: YKL40 (Kastrup, 2012; Rathcke and Vestergaard, 2009) for cardiovascular disease, CD64 for infectious disease (Hoffmann, 2009), and Ki67 for lung cancer (Li et al., 2015) as targets of vNARs, especially the complementarity-determining region 3 (CDR3) (Figure S14). We then chose display library. Sanger sequencing of randomly selected ~100 clones shows low repetition and high diversity of vNARs and specifically amplified the variable domain of New Antigen Receptors (vNARs) from peripheral blood leukocytes and spleen tissue of five bamboo shark individuals. Amplified vNARs were inserted into phagemid vector pMECS and then into E. coli TG1 competent cells to produce the vNAR-phage display library. Sanger sequencing of randomly selected ~100 clones shows low repetition and high diversity of vNARs, especially the complementarity-determining region 3 (CDR3) (Figure S14). We then chose several human disease biomarkers: YKL40, CD64, and Ki67 for lung cancer (Li et al., 2015) as targets of four rounds screened monoclonal vNARs. Monoclonal phage enzyme-linked immunosorbent assay (monoclonal phage ELISA) using optical density (OD450).

Figure 3. Specific Immune-Related Genes of Bamboo Shark

(A) Distribution of MHC genes on chromosome 37. The red and blue rectangles represent MHC class I and class II genes, respectively. The gray rectangles represent non-MHC genes. Here, we only show syntenic genes and shark MHC genes compared with chicken.

(B) Distribution of identified IgNAR loci on chromosome 44.

(C) Syntenic relationship of assemblies of IgNAR region by using shotgun WGS and stLFR data. The gray lines represent consistent region. The blue rectangles represent gaps. (D, E, and F) Binding efficiency of cloned vNARs to human disease markers (D) YKL40, (E) CD64, and (F) Ki67 by using monoclonal phage ELISA. NC represents negative control. The vertical axis represents the signal of binding measured using optical density (OD450).

Chr37. TRIM69 can function as an antiviral defense (Rihn et al., 2019; Wang et al., 2018), playing important roles in innate immune system and class I MHC-mediated antigen processing and presentation.

Identification and Amplification of IgNAR

In contrast to MHC genes found on Chr37, we identified that the immunoglobulin new antigen receptor (IgNAR) (Feige et al., 2014) gene loci (four complete IgNAR structure, V-CH1-CH2-CH3-CH4-CH5, and two incomplete IgNAR) was located on Chr44 (Figure 3B). To obtain and verify the complete sequence assembly of IgNAR region, we sequenced ~124-fold new single-tube long fragment reads (stLFR) (Wang et al., 2019) to re-assemble it. The good syntenic relationship (Figure 3C) and the distribution of paired-end reads (Figure S13) reveal high-quality assembly of IgNAR region. Because of the application potential of single-domain antibodies (sdAbs) in biotechnical and therapeutic use, we tried to check the diagnostic potential of IgNAR in bamboo shark. We first designed primers (Table S14) based on IgNAR sequences of bamboo shark and specifically amplified the variable domain of New Antigen Receptors (vNARs) from peripheral blood leukocytes and spleen tissue of five bamboo shark individuals. Amplified vNARs were inserted into phagemid vector pMECS and then into E. coli TG1 competent cells to produce the vNAR-phage display library. Sanger sequencing of randomly selected ~100 clones shows low repetition and high diversity of vNARs, especially the complementarity-determining region 3 (CDR3) (Figure S14). We then chose several human disease biomarkers: YKL40, CD64, and Ki67 for lung cancer (Li et al., 2015) as targets of four rounds screened monoclonal vNARs. Monoclonal phage enzyme-linked immunosorbent assay
CD64-binding clones with signal at least ~3-fold than NC (Figure 3E), and 3 unique Ki67-binding clones (sea lamprey, six sharks, and representative bony fishes) showed that this work is of significance for using genome data to develop sdAbs. With the affinity of those positive clones and their diagnostic function by using real samples, we believe that further study should be carried out to verify the affinity of those positive clones and their diagnostic function by using real samples, we believe that this work is of significance for using genome data to develop sdAbs.

P2X Gene Family

Chromosome rearrangements would remove genes that may first become pseudogenes because selective pressure acting on them was relaxed when new phenotypic traits arose or they may have very little effect on its adaptations. Syntenic comparison among chicken, zebrafish, medaka, and bamboo shark showed at least four possible genome rearrangement events occurred in bamboo shark that may result in the deletion of gene, p2rx5 (Purinergic Receptor P2X, Ligand-Gated Ion Channel, 5) after this gene became redundant or non-functional due to selective pressures acting on it (Figure 4A). The loss of this gene was also supported by checking RNA sequence data of 14 tissues including blood, eye, gill, heart, liver, muscle, spleen, stomach, dorsal fin, tail fin, pancreas, leptospira, two capsule glands, and two kidney samples. And this gene has been previously reported to be involved in bone development and homeostasis (Nicolaidou et al., 2012; Sitcheran et al., 2003; Solle et al., 2001; Sun et al., 2013; Syberg et al., 2012; Takahashi et al., 1988; Thaler et al., 2014). Furthermore, analysis of the whole gene family of purinergic receptor P2X in sea lamprey, six sharks, and representative bony fishes showed that p2rx3, p2rx5, and p2rx7 genes were lost in six cartilaginous fishes, whereas at least six paralogs (p2rx1, p2rx2, p2rx3, p2rx4, p2rx5, p2rx7) with multiple copies were found in bony fishes (Figure 4B and Tables S15 and S16). P2X receptors contain ligand-gated ion channels and activate receptor triggers signaling pathways associated with Ca²⁺ influx by (ELISA) shows high affinity to targets of those positive clones. In detail, we obtained 13 unique YKL40-binding clones with signal at least ~6-fold (highest: ~20-fold) than negative control (NC) (Figures 3D), 9 unique CD64-binding clones with signal at least ~3-fold than NC (Figure 3E), and 3 unique Ki67-binding clones with signal at least ~5-fold than NC (Figure 3F). Although further study should be carried out to verify the activity of those positive clones and their diagnostic function by using real samples, we believe that this work is of significance for using genome data to develop sdAbs.

![Figure 4. The Loss of p2rx3, p2rx5, and p2rx7 Genes in Cartilaginous Fishes](image-url)
Moreover, $p2rx3$, $p2rx5$, and $p2rx7$ receptors have been shown to participate in differentiation and proliferation of osteoblast (Nakamura et al., 2000; Nicolaidou et al., 2012; Rodrigues-Ribeiro et al., 2015), bone formation, and resorption (Grol et al., 2009; Kim et al., 2018; Syberg et al., 2012). However, $p2rx1$ receptor negatively regulates bone mineralization (Lenertz et al., 2015). $P2rx2$ receptor, which mainly functions in sensory neurons, neuromuscular junction formation, and hearing (Yan et al., 2013), has nothing to do with bone formation. $P2rx4$ also functions in response to ATP binding, and there are few researches that show its role in bone formation to date. Thus, it is reasonable to infer that loss of those genes, together with loss of $spp1$ gene identified previously (Venkatessh et al., 2014), may further explain the establishment of chondrification of the endoskeleton in cartilaginous fishes.

DISCUSSION

Because of the therapeutic potential of single-domain antibodies, sharks have drawn scientists’ interest for many years. With ideal biological features of bamboo shark, we selected this species and were able to obtain high-quality samples for further research. Combining paired-end, mate-paired, stLFR, and Hi-C sequencing strategies, we successfully assembled a chromosome-level reference genome of bamboo shark. In the present study, we mainly focused chromosome evolution and t fast-evolving chromosomes and immune gene families of cartilaginous fishes. Also, we investigated that burst of repeat that caused larger genome size of bamboo shark and inferred phylogenetic topologies between sequenced cartilaginous fishes and bony fishes, which is important for exploring evolutionary process of vertebrates.

Using this genome, we inferred ancestral chromosomes of cartilaginous fishes and found dynamical rearrangements. Based on chromosome evolutionary processes and comparative genomic analysis, we were able to identify fast-evolving chromosomes and immune-related genes. Moreover, chromosome fusions and fissions would also cause DNA damages, deletion of genes, and formation of new genes that may be functionally important and closely associated to species-specific features. Based on this, we found gene loss events associated with phenotypic diversity, for example, chondrification of the endoskeleton. Thus, our study highlights the importance of chromosome rearrangements in the diversification of cartilaginous fishes. With effective methods described in this study, more chromosome-level genomes can be obtained in the future to further elucidate the early evolution of jawed vertebrates as well as extant jawed vertebrate lineages.

Shark-specific immunocompetence always attracts researchers. Investigating immune genes could help to understand evolutionary processes of immune system of cartilaginous fishes compared with jawless species. MHC-I-like and MHC-II-like genes found in cartilaginous fishes revealed the possible time of acquisition of MHC-based adaptive immunity. Bamboo shark chromosomes (Chr37 and Chr44) enriched with immune-related gene may play vital roles in its powerful immunity, and more chromosome-level genomes of cartilaginous fishes should be accomplished to further confirm this conclusion. Shark single-domain antibodies have shown prospects in therapeutic use and our ELISA experiments also proved their potential use in human diseases. Thus, assembly of IgNAR sequences will accelerate development of antibodies for future medicine. In summary, our results provide valuable resources and will be significant for future research about vertebrate evolution and pharmaceutical development.

Limitations of the Study

In this study, we assembled bamboo shark genome, analyzed chromosome rearrangements, and performed ELISA experiments. However, this genome is the only chromosome-level cartilaginous fish genome and more high-quality genomes should be assembled to further verify our chromosome evolution analysis. Besides, more functional experiments should be performed to further validate candidate functional genes.

Resource Availability

Lead Contact

Further information and requests for materials should be directed to and will be fulfilled by the lead contact, Xin Liu (liuxin@genomics.cn).

Materials Availability

This study did not generate new unique reagents.
Data and Code Availability

The accession numbers for the genome sequencing data, RNA sequencing data, and genome assembly reported in this paper NCBI: PRJNA478295. This Whole Genome Shotgun project has been deposited to National Center for Biotechnology Information (NCBI) under the accession: QPFF00000000 referring project: PRJNA478295. Raw RNA sequencing reads have also been uploaded to the SRA database under accession: SRP154403. The assembled genome can also be obtained from CNSA (CNGB Nucleotide Sequence Archive) by assembly ID: CNA00000025.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101754.

ACKNOWLEDGMENTS

We would like thank Dr. Lynn Fink for revising these manuscripts. This work was supported by National Key R&D Program of China (2018YFD0900301), Shenzhen-Hongkong Collaboration Fund JCYJ20170412152916724 (20170331), State Key Laboratory of Agricultural Genomics (No. 20110Q782025), and Strategic Priority Research Program of the Chinese Academy of Sciences (XDA19060403).

AUTHOR CONTRIBUTIONS

X.L., N.Y., G.F., and X.X. designed and managed this project. M.W., C.L., H.X., L.W., H.R., Y.X., Q.X., and S.P. were responsible for collecting samples, library construction, sequencing, and co-drafting the manuscript. Y.Z., H.G., and J.G. worked on genome assembly, annotation, chromosome evolution, gene family analysis, transcriptome, and co-drafting the manuscript. J.W., M.L., X.G., Q.L., and Y.S. performed data processing, whole-genome duplication, Hox gene clusters, and repeat analysis. H.L., B.O., Y.G., B.R., X.D., and Y.Y. performed ELSA experiment. S.L., J.W., Y.J., J.S., S.L., J.S.M.S., M.J., N.H.H., H.Y., J.W., and S.M.-Y.L. helped to revise the manuscript. All authors took part in the interpretation of data.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: January 16, 2020
Revised: September 17, 2020
Accepted: October 28, 2020
Published: November 20, 2020
features and therapeutic potential. Curr. Opin. Struct. Biol. 45, 10–16.

Lenertz, L.Y., Baughman, C.J., Waldschmidt, N.V., Thaler, R., and van Wijnen, A.J. (2015). Control of bone development by P2X and P2Y receptors expressed in mesenchymal and hematopoietic cells. Gene 570, 1–7.

Li, H., Coghill, A., Ruan, J., Cao, L.J., Heriche, J.K., Osmotherly, L., Li, R., Liu, T., Zhang, Z., Bolund, L., et al. (2006). TreeFam: a curated database of phylogenetic trees of animal gene families. Nucleic Acids Res. 34, D572–D580.

Li, L.T., Jiang, G., Chen, Q., and Zheng, J.N. (2015). K67 is a promising molecular target in the diagnosis of cancer. Mol. Med. Rep. 11, 1566–1572.

Litman, G.W., Rast, J.P., and Fugmann, S.D. (2010). The origins of vertebrate adaptive immunity. Nat. Rev. Immunol. 10, 543–553.

Ma, Q., Wang, S.-f., Wang, J., and Su, Y.-q. (2008). Analysis of the karyotype of Chiloscyllium plagiosum (J). J. Xiamen Univ. (Nat. Sci.) 6.

Maia, A., and Wilga, C.D. (2013). Anatomy and muscle activity of the dorsal fins in bamboo sharks and spiny dogfish during turning maneuvers. J. Morphol. 274, 1288–1298.

Marra, N.J., Stanhope, M.J., Jue, N.K., Wang, M., Sun, Q., Pavinski Bitar, P., Richards, V.P., Komissarov, A., Rayko, M., Kliver, S., et al. (2019). White shark genome reveals ancient elasmobranch adaptations associated with wound healing and the maintenance of genome stability. Proc. Natl. Acad. Sci. U S A 116, 4446–4455.

McKenna, M.C. (1998). The vertebrae updated: vertebrate paleontology and evolution. Science 239, 512–513.

Nakamura, E.I., Uezono, Y., Narusawa, K.I., Shibuya, I., Oishi, Y., Tanaka, M., Yanagihara, N., Nakamura, T., and Izumi, F. (2000). ATP activates the nurse shark, Ginglymostoma cirratum to bone loss in experimental periodontitis. BMB Rep. 33, 468.

Kuraku, S. (2011). Hox gene clusters of early vertebrates: do they serve as reliable markers for genome evolution? Genomics, proteomics bioinformatics 9, 97–103.

Kyne, P.M., and Burgess, G.H. (2006). Chiloscyllium plagiosum. The IUCN Red List of Threatened Species, 2006, eT00222A1225334.

Könning, D., Zielonka, S., Grzeschik, J., Empting, M., Valldörf, B., Krah, S., Schröter, C., Sellmann, C., Hock, B., and Kolmar, H. (2017). Camelid and shark single domain antibodies: structural

Read, T.D., Petit, R.A., Joseph, S.J., Alam, M.T, Weil, M.R., Ahmad, M., Bhimani, R., Vuong, J.S., Haase, C.P., and Webb, D.H. (2017). Draft sequencing and assembly of the genome of the world’s largest fish, the whale shark: rhincodon typus Smith 1828. BMC genomics 18, 532.

Rijn, S.J., Aziz, M.A., Stewart, D.G., Hughes, J., Turnbull, M.L., Varela, M., Sugrue, E, Herd, C.S., Stanfer, M., and Siniks, S.P. (2019). TRIM69 inhibits vesicular stomatitis Indiana virus. J. Virol. 93, e00951–00919.

Rock, L., Costagliola, D., Liguori, J., and Stingo, V. (2003). Cytogenetic and molecular studies in the nurse shark, Ginglymostoma cirratum (Galeomorphi, Heterodontiformes). Annales de Genetique 46, 98.

Saha, N.R., Smith, J., and Arnemiya, C.T. (2010). Evolution of adaptive immune recognition in jawless vertebrates. In Seminars in Immunology (Elsevier), pp. 25–33.

Salse, J., Abrouk, M., Murat, F., Quraishi, U.M., and Feuillet, C. (2009). Improved criteria and comparative genomics tool provide new insights into grass paleogenomics. Brief. Bioinformatics 10, 619–630.

Santini, S., Boore, J.L., and Meyer, A. (2003). Evolutionary conservation of regulatory elements in vertebrate Hox gene clusters. Genome Res. 13, 1111–1122.

Schwarz, F.J., and Maddock, M.B. (1986). Comparisons of karyotypes and cellular DNA contents within and between major lines of elasmobranchs (Indo-Pacific fish biology Ichthyological Society of Japan), pp. 148–157.

Simao, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V., and Zdobnov, E.M. (2015). BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212.

Sticheran, R., Cogswell, P.C., and Baldwin, A.S. (2003). NF-κB mediates inhibition of mesenchymal cell differentiation through a posttranscriptional gene silencing mechanism. Genes Dev. 17, 2368–2373.

Smith, J.J., Kuraku, S., Hult, C., Sauka-Spengler, T., Jiang, N., Campbell, M.S., Yandell, M.D., Manousaki, T., Meyer, A., and Bloom, O.E. (2013). Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nat. Genet. 45, 415.

Smith, J.J., Timoshkovskaia, N., Ye, C., Holt, C., Keinan, M.C., Parker, H.J., Cook, M.E, Hess, J.E., Narum, S.R., and Lamanna, F. (2018). The sea lamprey germline genome provides insights into programmed genome rearrangement and vertebrate evolution. Nat. Genet. 50, 270.

Solle, M., Labasi, J., Perregaugs, D.G., Stam, E., Petrushova, N., Koller, B.H., Griffiths, R.J., and

iScience 23, 101754, November 20, 2020 9
Gabel, C.A. (2001). Altered cytokine production in mice lacking P2X7 receptors. J. Biol. Chem. 276, 125–132.

Straube, N., Lampert, K.P., Geiger, M.F., Weiss, J.D., and Kirchhauser, J.X. (2016). First record of second-generation facultative parthenogenesis in a vertebrate species, the whitespotted bamboo shark Chiloscyllium plagiosum. J. fish Biol. 88, 668–675.

Sun, D., Junger, W.G., Yuan, C., Zhang, W., Bao, Y., Qin, D., Wang, C., Tan, L., Qi, B., and Zhu, D. (2013). Shockwaves induce osteogenic differentiation of human mesenchymal stem cells through ATP release and activation of P2X7 receptors. Stem Cells 31, 1170–1180.

Syberg, S., Petersen, S., Beck Jensen, J.-E., Garland, A., Teilmann, J., Chessell, I., Steinberg, T.H., Schwartz, P., and Jørgensen, N.R. (2012). Genetic background strongly influences the bone phenotype of P2X7 receptor knockout mice. J. Osteoporos. 2012, 391097.

Takahashi, N., Akatsu, T., Udagawa, N., Sasaki, T., Yamaguchi, A., Moseley, J.M., Martin, T.J., and Suda, T. (1988). Osteoblastic cells are involved in osteoclast formation. Endocrinology 123, 2600–2602.

Wang, K., Zou, C., Wang, X., Huang, C., Feng, T., Pan, W., Wu, Q., Wang, P., and Dai, J. (2018). Interferon-stimulated TRIM69 interrupts dengue virus replication by ubiquitinating viral nonstructural protein 3. PLoS Pathog. 14, e1007287.

Zielonka, S., Weber, N., Becker, S., Doerner, A., Christmann, A., Christmann, C., Uth, C., Fritz, J., Schäfer, E., and Steinmann, B. (2014). Shark attack: high affinity binding proteins derived from shark vNAR domains by stepwise in vitro affinity maturation. J. Biotechnol. 191, 236–245.
Supplemental Information

The White-Spotted Bamboo Shark Genome Reveals Chromosome Rearrangements and Fast-Evolving Immune Genes of Cartilaginous Fish

Yaolei Zhang, Haoyang Gao, Hanbo Li, Jiao Guo, Bingjie Ouyang, Meiniang Wang, Qiwu Xu, Jiahao Wang, Meiqi Lv, Xinyu Guo, Qun Liu, Likun Wei, Han Ren, Yang Xi, Yang Guo, Bingzhao Ren, Shanshan Pan, Chuxin Liu, Xiaoyan Ding, Haitao Xiang, Yingjia Yu, Yue Song, Lingfeng Meng, Shanshan Liu, Jun Wang, Yuan Jiang, Jiahai Shi, Shiping Liu, Jamal S.M. Sabir, Mumdooh J. Sabir, Muhammad Khan, Nahid H. Hajrah, Simon Ming-Yuen Lee, Xun Xu, Huanming Yang, Jian Wang, Guangyi Fan, Naibo Yang, and Xin Liu
Supplemental information for:

The white-spotted bamboo shark genome reveals chromosome rearrangements and fast-evolving immune genes of cartilaginous fish

Yaolei Zhang1,4,†, Haoyang Gao1,4,†, Hanbo Li1,4,†, Jiao Guo1,4,†, Bingjie Ouyang1,4, Meiniang Wang2,4, Qiwu Xu1,4, Jiahao Wang1,4, Meiqi Lv1,4, Xinyu Guo1,4, Qun Liu1,4, Likun Wei3, Han Ren2,4, Yang Xi2,4, Yang Guo1,4, Bingzhao Ren1,4, Shanshan Pan1,4, Chuxin Liu2,4, Xiaoyan Ding1,4, Haitao Xiang2,4, Yingjia Yu1,4, Yue Song1,4, Lingfeng Meng1,4, Shanshan Liu1,4, Jun Wang1,4, Yuan Jiang2,6, Jiahai Shi5, Shiping Liu2,4, Jamal S. M. Sabir9, Mumdooh J. Sabir9, Muhummad Khan9, Nahid H. Hajrah9, Simon Ming-Yuen Lee3, Xun Xu2,4, Huanming Yang2,7, Jian Wang2,7, Guangyi Fan1,3,4,* Naibo Yang2,6,* & Xin Liu1,2,4,10,*

This file includes: Transparent Methods, Figures S1–S14, Tables S1-S9 and S12-S16.
Transparent Methods ... 4
DNA, RNA extraction .. 4
Library construction .. 4
Sequencing for all libraries ... 6
Genome assembly and annotation .. 6
Construction of phylogenetic tree .. 8
Evolution of chromosomes ... 9
MHC genes and P2X gene family analysis .. 9
Identification of IgNAR .. 10
Bamboo shark vNAR phage display library construction .. 10
Bamboo shark vNAR phage display library screening ... 11
Phage ELISA .. 12
Supplementary Figures .. 13

Figure S1. GC content of the assembled bamboo shark, elephant shark, and whale shark genomes, Related to Figure 1. ... 13
Figure S2. Circos plot of the genomic landscape, Related to Figure 1. .. 14
Figure S3. Circos plot of comparisons between bamboo shark and chicken, Related to Figure 1 .. 15
Figure S4. Synteny relationship of bamboo shark and zebrafish, Related to Figure 1. 16
Figure S5. Whole genome duplication in elephant shark, bamboo shark and zebra fish genomes as revealed through 4DTv analyses, Related to Figure 1. 17
Figure S6. HOX gene clusters identified in five species, Related to Figure 1. 18
Figure S7. Distribution of shared paralogous genes of bamboo shark and elephant shark, Related to Figure 2. ... 19
Figure S8. Distributions of conserved regions of six cartilaginous fishes (bamboo shark, elephant shark, whale shark, brownbanded bamboo shark, cloudy catshark and white shark) on 51 chromosomes of the bamboo shark, Related to Figure 2. 20
Figure S9. Distributions of conserved regions between bamboo shark and medaka on 51 chromosomes of the bamboo shark, Related to Figure 2. ... 21
Figure S10. Distributions of conserved regions between bamboo shark and spotted gar on 51 chromosomes of the bamboo shark, Related to Figure 2. ... 22
Figure S11. Hypothetical model of MHC genes evolution, Related to Figure 3. 23
Figure S12. Gene tree of TRIM69, Related to Figure 3... 24
Figure S13. Re-assembled IgNAR region supported by paired-end reads, Related to Figure 3

Figure S14. Sequence alignment of the randomly picked clones from the bamboo shark vNAR-phage display library that represent sequences have different CDR3, Related to Figure 3

Supplementary Tables ... 27

Table S1. Summary of the sequencing data from WGS libraries and Hi-C libraries, Related to Figure 1 .. 27

Table S2. Basic statistics of the assembled bamboo shark genome, Related to Figure 1.

Table S3. Summary of the functional annotation of genes in bamboo shark genome, Related to Figure 1 .. 27

Table S4. Summary of the repeat content in bamboo shark genome, Related to Figure 1.

Table S5. Summary of the TE content in three cartilaginous fishes and seven bony fishes, Related to Figure 1 .. 28

Table S6. Evaluation of the final gene set by using BUSCO, Related to Figure 1.

Table S7. Distribution of paralogous genes in the bamboo shark genome. The yellow highlighted numbers represent gene pairs more than 20, Related to Figure 2. 29

Table S8. Summary of conserved genes among six cartilaginous fishes distributed on each chromosome, Related to Figure 2 .. 30

Table S9. Enrichment analysis for genes in chromosomes 8, 37, 39, 41, 43, 44, 45, 46, 47,48,49, 50 and 51, Related to Figure 2.. 32

Table S12. List of MHC class II genes in analyzed species, Related to Figure 3.

Table S13. MHC class II fragments detected by using BLAST in the elephant shark genome, Related to Figure 3 .. 36

Table S14. Designed primers for amplifying vNARs, Related to Figure 3.

Table S15. Ancestral P2X gene found in amphioxus and ascidiacea genomes, Related to Figure 4 .. 37

Table S16. Protein length of P2X genes in bony fishes and sea lamprey, Related to Figure 4

Table S17. Ancestral P2X gene found in amphioxus and ascidiacea genomes, Related to Figure 4

Table S18. Designed primers for amplifying vNARs, Related to Figure 3

Table S19. Protein length of P2X genes in bony fishes and sea lamprey, Related to Figure 4
Transparent Methods

DNA, RNA extraction

Fourteen tissue types including blood, eye, gill, heart, liver, muscle, spleen, stomach, dorsal fin, tail fin, pancreas, leptospira, 2 capsulogenous gland and 2 kidney samples were collected from a female bamboo shark individual. Genomic DNA was extracted from one blood sample using the phenol-chloroform method and its quality and quantity were assessed by pulsed field gel electrophoresis and Qubit Fluorometer. 14 RNAs from these 14 tissue types were extracted by using TRIzol® Reagent and were assessed by Agilent 2100 bioanalyzer system.

Library construction

Firstly, for WGS libraries with average insert sizes of 180 bp and 350 bp, a Covaris E220 ultrasonicator (Covaris, Brighton, UK) was used to shear the extracted high-quality DNA and AMPure XP beads (Agencourt, Beverly, USA) were used to select target fragments. Then, fragment end-repairing and A-tailing were performed by T4 DNA polymerase, T4 polynucleotide kinase and rTaq DNA polymerase. Next, PCR amplification of eight cycles was carried out and the single-strand circularization process was performed using T4 DNA Ligase, generating a single-stranded circular DNA library for sequencing.

Secondly, for mate-pair libraries, a Covaris E220 was used to acquire ~2 kb DNA fragments and Hydroshear (GeneMachines, CA, USA) was used to acquire ~5 kb, ~10 kb and ~20 kb DNA fragments. After further selection and purification of DNA, fragments were end-repaired and biotin-labeled. The modified fragments were circularized and re-fragmented using a Covaris E220. Biotin-labeled DNA fragments were captured on M280 streptavidin beads (Invitrogen, CA, USA), end-repaired, A-tailed and adaptor-ligated. Biotin-labeled fragments were PCR-amplified, purified on streptavidin-coated magnetic beads, size-selected by agarose gel
electrophoresis and column purification, single-stranded and re-circularized. The purified PCR products were heat-denatured together with an adapter that was a reverse-complement to a particular strand of the PCR product, and the single-stranded molecule was then ligated using DNA ligase to get a single-stranded circular DNA library.

Thirdly, a blood sample was used for constructing the Hi-C library. The fresh blood cells (5 x 10^6) were collected by centrifugation and re-suspended in 1 ml of 1x PBS by repetitive pipetting. The cells were cross-linked by adding 37% formaldehyde (SIGMA, USA) to obtain a 1% final concentration, to which was added a 2.5M glycine solution (SIGMA, USA) to a final concentration of 0.2M to quench the reaction. To prepare nuclei, the formaldehyde-fixed powder was resuspended in nuclei isolation buffer (10 mM Tris-HCl pH 8.0 (SIGMA, USA), 10 mM NaCl (BEYOTIME, Shanghai, China), 1× PMSF (SIGMA, St. Louis, USA)) and then incubated in 0.5% SDS for 10 min at 62 °C. SDS was immediately quenched with 10% Triton X-100 (SIGMA, St. Louis, USA) and the nuclei were collected by brief centrifugation. DNA was digested by restriction enzyme (Mbo I) (NEB, Ipswich, USA) and the 5' overhang was repaired using a biotinylated residue (0.4 mM biotin-14-Datp (INVITROGEN, USA). The resulting blunt-end fragments were ligated in situ (10X NEB T4 DNA ligase buffer (NEB, Ipswich, USA), 10% Triton X-100 (SIGMA, St. Louis, USA), 10 mg/ml BSA (NEB, Ipswich, USA), T4 DNA ligase (NEB, Ipswich, USA)). Finally, the isolated DNA was reverse-crosslinked (adding 10 mg/ml proteinase K (NEB, Ipswich, USA) and 1% SDS (AMBION, Waltham, USA) to the tube followed by incubation at 56°C overnight) and purified (by putting the reverse-crosslinked DNA liquid into three tubes equally, adding 1.5x volumes of AMPure XP (AGENCOURT, Brea, USA) mixture to each tube, vortexing and spinning down briefly, incubating for 10 min. at room temperature, placing on the MPS (INVITROGEN, Waltham, USA) for 5 min. at room temperature, discarding supernatant, washing the beads twice with 1 ml of freshly made 75% ethanol (SINOPHARM, Shanghai, China), air-drying the beads completely and resuspending
the beads in 30 µl of ddH2O). The Hi-C library was created by shearing 20 ug of DNA and capturing the biotin-containing fragments on streptavidin-coated beads using Dynabeads MyOne Streptavidin T1 (INVITROGEN, Waltham, USA). Then DNA fragments were end-repaired and adaptor ligation was performed. After PCR (95°C 3 min.; [98°C 20 sec., 60°C 15 sec., 72°C 15 sec.] (8 cycles); 72°C 10 min.), the standard circularization step required for the BGISEQ-500 platform was carried out and DNBs were prepared as previously described.

Fourthly, for RNA library construction, mRNA was extracted from different tissues using TRIzol® Reagent, fragmented, and then reverse-transcribed into cDNA by using Hiscript II Reverse Transcriptase (Vazyme Biotech, Nanjing City, P.R. China). Then, all single-stranded circular DNA libraries were constructed by using the same strategy described as above.

Last, the stLFR library was constructed by its standard protocol that was published recently (Wang et al., 2019).

Sequencing for all libraries

All sequencing data were generated using the BGISEQ-500 platform. Libraries with an average insert size of 180 bp and 350 bp were sequenced yielding paired-end reads with 100 bp in length. Mate-pair libraries with average insert sizes of 2k, 5k, 10k and 20k and Hi-C library were sequenced yielding reads with 50 bp in length. RNA libraries were sequenced yielding paired-end reads with 100 bp in length. StLFR reads was also sequenced generating paired-end reads with 100 bp in length.

Genome assembly and annotation

Firstly, we filtered raw sequencing data by discarding low-quality reads (defined as >10% bases with quality values less than 10 and >5% unidentified (N) bases), adaptor-contaminated reads and PCR duplicate reads. We trimmed a few bases at the start and end of reads according to the FastQC (v0.11.2) (Andrews and FastQC, 2015) results. Secondly, we randomly selected about 40X clean reads to carry out k-mer analysis to estimate the
genome size. Thirdly, we used Platanus (v1.2.4) (Kajitani et al., 2014) to perform the initial assembly with WGS clean data with parameters “assemble –k 29 –u 0.2, scaffold -1 3 -u 0.2 -v 32 -s 32 and gap_close –s 34 –k 32 –d 5000”. We filled gaps using KGF (v1.19) and GapCloser (v1.10) (Luo et al., 2012) with default parameters. Fourthly, to obtain a chromosome-level genome, HIC-Pro (v2.8.0) (Servant et al., 2015) was used for quality control of Hi-C sequencing data with parameters \[
\text{BOWTIE2_GLOBAL_OPTIONS} = \text{--very-sensitive}\ -L\ 30 \ --score-min\ L\ -0.6\ -0.2 \ --end-to-end \ --reorder; \text{BOWTIE2_LOCAL_OPTIONS} = \text{--very-sensitive}\ -L\ 20 \ --score-min\ L\ -0.6\ -0.2 \ --end-to-end \ --reorder; \text{IGATION_SITE} = \text{GATC}; \text{MIN_FRAG_SIZE} = 100; \text{MAX_FRAG_SIZE} = 100000; \text{MIN_INSERT_SIZE} = 50; \text{MAX_INSERT_SIZE} = 1500\]. Finally, the software packages Juicer (Durand et al., 2016) and 3d-dna (v170123) (Dudchenko et al., 2017) were employed to generate contact matrices of chromatin and constructed chromosomes with parameter \[-m\ \text{haploid}\ -s\ 4\ -c\ 5\] based on the karyotype information supplied previously (MA et al., 2008).

After obtaining the final chromosome-level genome, we proceeded with genome annotation including repeat contents, gene models and gene function. For repeat section, both homolog-based and de novo prediction strategies were carried out. In detail, RepeatMasker (v 4.0.5) (Tarailo-Graovac and Chen, 2009) and RepeatProteinMasker (v 4.0.5) (Tarailo-Graovac and Chen, 2009) were used to detect interspersed repeats and low complexity sequences against the Repbase database (Jurka et al., 2005) at the nuclear and protein levels, respectively. Then RepeatMasker was further used to detect species-specific repeat elements using a custom database generated by RepeatModeler (v1.0.8) and LTR-FINDER (v1.0.6) (Xu and Wang, 2007). In addition, Tandem Repeat Finder (v4.0.7) (Benson, 1999) was dispatched to predict tandem repeats. The final repeat content result was integrated using in-house scripts. Before gene model construction, we masked the repeat sequences because of their negative effect on gene model prediction. We downloaded protein sets of 13 species
including *Homo sapiens, Mus musculus, Gallus gallus, Xenopus tropicalis, Ornithorhynchus anatinus, Danio rerio, Oryzias latipes, Strongylocentrotus purpuratus, Ciona intestinalis, Rhincodon typus* and *Callorhinchus milii* from RefSeq (release 82), *Petromyzon marinus* from Ensembl (release 84) and *Branchiostoma floridae* from JGI Genome Portal (http://genome.jgi-psf.org/Brafl1/Brafl1.home.html) and aligned them to the masked genome with BLAT (Kent, 2002) to identify positive match regions. GeneWise (v2.2.0) (Birney et al., 2004) was then used to do accurate alignments for target regions and to predict homolog-based gene models.

Transcriptome reads from 14 tissues including blood, eye, gill, heart, liver, muscle, spleen, stomach, dorsal fin, tail fin, pancreas, leptospira, 2 capsulogenous gland and 2 kidney samples were mapped to the genome with HISAT2 (Pertea et al., 2016) and StringTie (Pertea et al., 2016) was used to assemble gene transcripts.

TransDecoder (Haas et al., 2013) was then used to predict the candidate complete ORFs. Further, for *de novo* gene prediction, we employed AUGUSTUS (v3.1) (Stanke et al., 2006) to scan the whole genome with a custom training set generated by using 2,000 high quality genes. Subsequently, we combined the homology-based and *de novo*-predicted gene sets using GLEAN (Elsik et al., 2007) and integrated the GLEAN and transcriptome results with in-house scripts to generate a representative and non-redundant gene set. The final gene set was assigned with a potential function by aligning proteins to databases including KEGG, Swissprot, TrEMBL and InterPro.

Construction of phylogenetic tree

To infer phylogenetic tree of bamboo shark, we selected other five published shark genome including elephant shark (2014), whale shark (2017), brownbanded bamboo shark (2018), cloudy catshark (2018) and white shark (2019), five representative bony fishes including four ray-finned fishes and one lobefin fish as well as human to identify single copy orthologous genes. We used TreeFam (Li et al., 2006), defining 33,306 gene families.
including 823 single copy orthologous genes. Based on coding sequences of these 823 genes, we constructed trees using both Maximum-likelihood and Bayesian methods with GTR+gamma model, which generated identical trees. Next we estimated divergence time of important branches using PAML mcmctree programme (Yang, 2007; Yang and Rannala, 2006) with the approximate likelihood calculation method.

Evolution of chromosomes

For ancestral chromosomes construction, we identified paralogous genes and orthologous genes by using criteria defined by *Salse et al* (Salse et al., 2009) with both Cumulative Identity Percentage (CIP) and Cumulative Alignment Length Percentage (CALP) value of 0.5 and selected genes pairs defined as A match B best and B match A best. Then MCSCAN (Tang et al., 2008) was used to generate synteny blocks with default parameters. We first noted 54 shared duplications (with 414 paralogous gene pairs) on all the chromosomes. After further integration of these duplications and gene pairs, we found 16 duplicated chromosome pairs and 5 single chromosomes. For identification of conserved genes among bamboo shark, elephant shark, whale shark, brownbanded bamboo shark, cloudy catshark and white shark, spot gar, and medaka, the same criteria with both CIP and CALP value of 0.3 were used. The best hit of multiple matches was selected. Ks values of single copy genes were calculated by KaKs Calculator with default parameter. Heterozygosity of each chromosome was calculated by calling heterozygous SNPs generated by BWA (Li and Durbin, 2009) and SAMtools package (Li, 2011).

MHC genes and P2X gene family analysis

We downloaded coding sequences (CDS) and proteins of *Callorhinchus milii* (NCBI Accession: GCF_000165045.1), *Rhincodon typus* (NCBI Accession: GCF_001642345.1), *Fugu rubripes* (NCBI Accession: GCF_000180615.1) and *Larimichthys crocea* (NCBI Accession: GCF_000972845.1) from NCBI database, and
Danio rerio, Latimeria chalumnae, Oryzias latipes and Gasterosteus aculeatus from Ensembl database (release 84), and sea lamprey from (https://genomes.stowers.org/organism/Petromyzon/marinus) and Branchiostoma floridae from JGI Genome Portal (http://genome.jgi-psf.org/Brafl1/Brafl1.home.html). Next we carried out initial filtering by discarding sequences less than 30 amino acids and kept the longest transcript if one gene contains multiple transcripts. Subsequently, gene function annotation of these gene sets was performed by using the same method to bamboo shark by using BLAST (Altschul et al., 1990). Then we summarized the MHC genes and P2X gene families by integrating the above information. The P2X-like genes were searched against NCBI database.

Identification of IgNAR

We downloaded IgNAR (immunoglobin new antigen receptor from cartilaginous) nucleotide sequences from NCBI database and then aligned these sequences to the bamboo shark genome by using BLAST (v2.2.26) (Altschul et al., 1990) with parameters “-F F -m 8 -e 1e-05” to get high scoring pairs (HSPs). Then we clustered the HSPs by integrating the overlaps between HSPs to verify the IgNAR loci. To further verify the IgNAR loci, we re-assembled this region by using single tube long fragment reads (stLFR). Firstly, we mapped the stLFR reads to our initial IgNAR region using BWA (Li and Durbin, 2009) and selected these reads. Then we extracted all reads that were marked with the same barcodes as the mapped reads. Finally, we used Supernova (v2.1.1) (Mohr et al., 2017) to assemble these reads and got the re-assembled IgNAR region with default parameters.

Bamboo shark vNAR phage display library construction

Five bamboo shark individuals (3 male and 2 female, with body length ranging from ~31.50-39.37 inch) were bled and dissected out for spleen, which were submerged in RNAlater for subsequent storage at -80°C. Total
RNA was isolated using the TRIzol reagent (Thermo Fisher Scientific) according to the manufacturer’s instruction. We reverse-transcribed RNA into cDNA in a total of 20µl volume with the SuperScript III First-Strand Synthesis System (Thermo Fisher Scientific) according to the manufacturer’s instruction. Based on the IgNAR sequences of bamboo shark, we designed and synthesized four pairs of primers for four types of the γNAR domain to amplify the γNAR sequence from the cDNA product by PCR. All reactions were pooled on 1.5% TAE agarose gel and purified by QIAEX II Gel Extraction kit 500 (Qiagen). Purified PCR products and pMECS vector were digested by restriction enzyme Pst I and Not I (NEB). The digested PCR products and vector were purified by QIAEX II Gel Extraction kit 500 (Qiagen). Then the PCR products were inserted into the pMECS vector at a molar ratio of 3:1 using T4 ligase (NEB). Ligation products were purified and transformed into electrocompetent TG1 cells (Lucigen Corporation). The TG1 cells were stored at -80°C by addition of glycerol to a final concentration of 15% (v/v).

Bamboo shark vNAR phage display library screening

Nonadjacent wells of a Maxisorp 96-well were coated with 100µl of 5µg/ml human recombinant antigen Ki67, CD64 and YKL40 (Sino Biological). The plate was sealed by microplate sealing tape and was incubated overnight at 4°C. The following morning, the antigen-coated wells were washed three times with 200µl of PBST, then 200µl blocking solution of 0.5% BSA (Genview) was added in the plate which was incubated for 2h on a vibrating platform at RT. After the blocking solution removed from the antigen-coated wells, the plate was washed five times with 200µl of PBST. For each antigen, 100µl rescued phage library were dispensed into both a selection and a control well. The plate was incubated for 2h on a vibrating platform, then washed five times with 200µl PBST. 100µl triethylamine (1.4% v/v) was added into each selection well and control well for 15min at RT to elute phage bound on the wells. The phage solution was neutralized by 100µl of 1M Tris-HCl (pH 7.4).
The rescued phage were titrated to estimate the number by sequentially mixing 10 µl of the phage into 90 µl of LB to 10^6 fold in a low-binding 96-well plate. 10^2 and 10^3 fold infected TG1 were spread onto the other solid selective medium for single colonies.

Phage ELISA

96 individual clones per target in total were picked at 24 candidates per round and inoculated into wells of a 96-deep-well plate with 500 µl 2TY containing 100 µg/ml ampicillin and 2% glucose for 3h at 37°C and 180rpm. Sufficient volume of M13KO7 helper phage (1 µl) were added into each well at 37°C with shaking overnight. The plate was centrifuged at 3200rpm for 10min, and the supernatant was transferred to a clean 96-deep-well plate for ELISA. The antigens were used to coat a 96 well plate at 2 µg/ml in PBS buffer, 100 µl/well, at 4°C overnight. The antigen-coated wells were washed three times with 200 µl of PBST, then 200 µl blocking solution of 0.5% BSA was added in the plate which was incubated for 2h on a vibrating platform at RT. The each well supernatant of the deep-well plate were added into antigen-coated well and control well, respectively. The ELISA plate was incubated for 2h at RT, and then washed five times with 200 µl of PBST. Binding was detected by HRP conjugated mouse anti-M13 antibody (Sino Biological) at 1:5000 concentration and read at 450 nm with a microplate reader Mutiskan Go (Thermo Fisher Scientific).
Figure S1. GC content of the assembled bamboo shark, elephant shark, and whale shark genomes, Related to Figure 1.
Figure S2. Circos plot of the genomic landscape, Related to Figure 1.
A, Paralogous gene pairs of 51 chromosomes. B, 51 chromosomes of the assembled genome. C, GC content of the assembled genome at 100kb windows. D, gene density per Mb on each chromosome. E, histogram of DNA transposon ratios. F, histogram of retrotransposon ratios.
Figure S3. Circos plot of comparisons between bamboo shark and chicken, Related to Figure 1.

G-chr and C-chr represent chicken and bamboo shark chromosomes, respectively. The lines represent gene pairs identified with both CIP and CALP (defined by Salse et al. (Salse et al., 2009)) value of 0.3.
Figure S4. Synteny relationship of bamboo shark and zebrafish, Related to Figure 1.

D-chr and C-chr represent zebrafish and bamboo shark chromosomes, respectively. The lines represent gene pairs identified with both CIP and CALP (defined by Salse et al. (Salse et al., 2009)) value of 0.3.
Figure S5. Whole genome duplication in elephant shark, bamboo shark and zebra fish genomes as revealed through 4DTv analyses, Related to Figure 1.

We took zebra fish (DR), elephant shark (CS) and bamboo shark (BS) as examples, detected gene pair blocks by using Mcscan and calculated 4DTv values of gene pairs. From the figure we can clearly see that zebra fish has one extra WGD also supported by seven HOX gene clusters (the third WGD event). But in the elephant shark and bamboo shark genomes, we only detected one peak (the second WGD event) which indicates that the first WGD event cannot be detected possibly due to too old WGD event (too high divergence of the paralogous gene pairs) and only can be detected by some conserved genes (for example, HOX genes).
Figure S6. HOX gene clusters identified in five species, Related to Figure 1.

We identified four HOX gene clusters in elephant shark, three in bamboo shark and whale shark (HOXC lost) which suggest sharks have only two rounds of WGD events.
Figure S7. Distribution of shared paralogous genes of bamboo shark and elephant shark, Related to Figure 2.

The lines represent gene pairs obtained by using blastp with both CIP and CALP (defined by Salse et al. (Salse et al., 2009)) value of 0.5.
Figure S8. Distributions of conserved regions of six cartilaginous fishes (bamboo shark, elephant shark, whale shark, brownbanded bamboo shark, cloudy catshark and white shark) on 51 chromosomes of the bamboo shark, Related to Figure 2.
Figure S9. Distributions of conserved regions between bamboo shark and medaka on 51 chromosomes of the bamboo shark. Related to Figure 2.
Figure S10. Distributions of conserved regions between bamboo shark and spotted gar on 51 chromosomes of the bamboo shark. Related to Figure 2.
Figure S11. Hypothetical model of MHC genes evolution, Related to Figure 3.

The square numbers represent gene numbers. Green, elephant shark. Purple, whale shark. Red, bamboo shark. Orange, zebrafish. Blue, medaka. Yellow, coelacanth, magenta, three-spined sticklebacks. The green X mark represents there are no MHC class II genes found in the elephant shark genome. The red arrow and question mark represent the hypothesis that MHC class I molecules may be derived from MHC class II while more researches should be done in the future.
Figure S12. Gene tree of *TRIM69*. Related to Figure 3.

This tree was constructed with protein sequences of these genes by using software of MUSCLE (v3.8.31) (Edgar, 2004) and FastTree (v2.1.10) (Price et al., 2010).
Figure S13. Re-assembled IgNAR region supported by paired-end reads, Related to Figure 3. All of the non-N bases were supported by reads with average depth of ~33 times. The blue histogram represents sequencing depth of this region. The green curves represent relationship of pair-end reads.
Figure S14. Sequence alignment of the randomly picked clones from the bamboo shark vNAR-phage display library that represent sequences have different CDR3, Related to Figure 3.

The areas highlighted by yellow are the CDRs determined by IMGT database. The areas highlighted by red are the cysteines.
Supplementary Tables

Table S1. Summary of the sequencing data from WGS libraries and Hi-C libraries, Related to Figure 1.

Strategy	Insert Size (bp)	Reads Length (bp)	Total Data (Gb)
WGS			
170	100_100		383.98
350	100_100		387.24
2,000	50_50		65.36
5,000	50_50		142.20
10,000	50_50		71.34
20,000	50_50		57.56
HIC	\	50_50	71.95
Total	\	\	1179.63

Table S2. Basic statistics of the assembled bamboo shark genome, Related to Figure 1.

	WGS	HIC		
	Contig (bp)	Scaffold (bp)	Contig (bp)	Scaffold (bp)
N90	1,473	2,360	1,415	2,218
N80	9,471	172,678	8,377	20,708,781
N70	18,406	430,414	17,000	44,175,687
N60	27,604	684,074	25,851	49,995,320
N50	37,247	962,547	35,451	57,918,702
N40	48,650	1,251,191	46,889	71,834,548
N30	62,981	1,595,392	60,770	80,155,495
N20	82,569	2,081,779	80,154	93,009,420
N10	115,410	2,827,051	112,378	99,330,644
max_length	7,042,168	438,259	438,259	136,536,876
Total length	3,647,281,518	3,846,300,841	3,647,255,807	3,851,610,035

Table S3. Summary of the functional annotation of genes in bamboo shark genome, Related to Figure 1.

	Number	Percent (%)
Total	19,595	100
InterPro 16,938 86.44
GO 13,147 67.09
KEGG 17,171 87.63
Swiss-Prot 18,507 94.45
TrEMBL 15,622 79.72
Annotated 19,371 98.86
Unannotated 224 1.24

Table S4. Summary of the repeat content in bamboo shark genome, Related to Figure 1.

Type	Repeat Size	% of genome
Trf	193,033,335	5.01
Repeatmasker	945,921,870	24.56
Proteinmask	855,315,381	22.24
De novo	2,266,569,286	58.85
Total	2,447,074,981	63.53

Table S5. Summary of the TE content in three cartilaginous fishes and seven bony fishes, Related to Figure 1.

Type	DNA	LINE	SINE	LTR	Total			
Bamboo shark	Length (bp)	84,246,842	1,841,705,606	151,630,200	707,421,972	2,240,930,640		
	% in genome	2.19	47.88	3.94	18.39	58.26		
Elephant shark	Length (bp)	20,045,841	375,567,981	150,517,703	119,161,620	444,674,297		
	% in genome	2.06	38.54	15.45	12.23	45.63		
Whale shark	Length (bp)	44,888,512	1,482,979,651	102,877,514	120,791,609	1,608,053,993		
	% in genome	1.53	50.59	3.51	4.12	54.85		
Coelacanth	Length (bp)	682,694,273	654,465,678	345,675,101	219,465,253	1,253,477,861		
	% in genome	23.87	22.88	12.08	7.67	43.82		
Three-spined sticklebacks	Length (bp)	35,650,096	28,697,415	3,533,002	30,466,795	82,399,819		
	% in genome	7.72	6.22	0.77	6.6	17.85		
	Length (bp)	50,367,111	26,418,884	3,139,446	17,332,054	85,823,340		
	Length (bp)	% in genome						
----------------	------------------	-------------	------------------	-------------	------------------	-------------	------------------	-------------
Large yellow croaker	126,716,317	7.77	90,435,719	4.07	9,001,570	0.48	62,654,967	2.67
Medaka	21,275,275	5.43	22,316,804	5.7	1,056,847	0.27	15,374,370	3.93
Torafugu	599,266,189	43.69	59,287,717	4.32	36,817,925	2.68	79,463,691	5.79
Zebrasfish	36,780,534	7.82	17,599,748	3.74	1,876,835	0.4	11,627,464	2.47
Tongue soles								

Table S6. Evaluation of the final gene set by using BUSCO. Related to Figure 1.

Description	Gene number	Percent (%)
Complete BUSCOs (C)	2,477	95.78
Complete and single-copy BUSCOs (S)	2,372	91.72
Complete and duplicated BUSCOs (D)	105	4.06
Fragmented BUSCOs (F)	68	2.62
Missing BUSCOs (M)	41	1.59
Total BUSCO groups searched	2,586	100.00

Table S7. Distribution of paralogous genes in the bamboo shark genome. The yellow highlighted numbers represent gene pairs more than 20. Related to Figure 2.
Table S8. Summary of conserved genes among six cartilaginous fishes distributed on each chromosome.
Related to Figure 2.

Chr	Total gene number	Chr length (bp)	Conserved gene number	Conserved gene length (bp)	Percentage of conserved gene number	Percentage of conserved gene length
chr1	749	156,605,781	45	2,317,785	6.01%	1.48%
chr2	671	146,811,608	51	2,234,064	7.60%	1.52%
chr3	714	138,146,672	46	2,109,842	6.44%	1.53%
chr4	650	138,123,871	51	3,003,819	7.85%	2.17%
Chr						
-----	---	---	---	---	---	
chr5	575	124,146,585	23	4.00%	1,105,727	0.89%
chr6	585	121,738,290	50	8.55%	2,069,570	1.70%
chr7	622	118,101,210	47	7.56%	2,127,210	1.80%
chr8	243	107,642,081	12	4.94%	480,197	0.45%
chr9	558	105,880,166	39	6.99%	2,021,688	1.91%
chr10	538	95,765,976	42	7.81%	1,588,937	1.66%
chr11	572	94,731,789	61	10.66%	2,023,263	2.14%
chr12	518	88,215,905	39	7.53%	2,187,022	2.48%
chr13	528	84,432,200	50	9.47%	2,150,712	2.55%
chr14	412	82,264,610	29	7.04%	1,163,437	1.41%
chr15	397	81,258,972	39	9.82%	1,354,341	1.67%
chr16	394	76,207,864	30	7.61%	1,873,298	2.46%
chr17	441	73,167,756	38	8.62%	1,830,134	2.50%
chr18	404	72,140,527	31	7.67%	1,036,258	1.44%
chr19	430	69,975,007	35	8.14%	1,285,421	1.84%
chr20	362	64,470,864	34	9.39%	1,182,523	1.83%
chr21	446	60,475,494	47	10.54%	2,309,047	3.82%
chr22	366	59,434,692	23	6.28%	847,973	1.43%
chr23	350	58,390,607	43	12.29%	2,161,640	3.70%
chr24	357	56,061,091	36	10.08%	1,334,444	2.38%
chr25	386	54,600,476	55	14.25%	2,741,762	5.02%
chr26	325	53,348,395	26	8.00%	1,286,581	2.41%
chr27	303	51,668,882	32	10.56%	810,993	1.57%
chr28	348	51,251,456	35	10.06%	1,381,797	2.70%
chr29	249	49,130,325	21	8.43%	979,109	1.99%
chr30	324	47,581,304	26	8.02%	1,099,286	2.31%
chr31	389	45,411,694	34	8.74%	1,264,812	2.79%
chr32	255	45,129,243	20	7.84%	990,196	2.19%
chr33	307	43,998,411	27	8.79%	859,422	1.95%
chr34	311	43,401,492	37	11.90%	1,292,584	2.98%
chr35	217	42,304,929	29	13.36%	1,096,282	2.59%
chr36	239	38,655,811	16	6.69%	689,636	1.78%
chr37	360	35,007,441	1	0.28%	1,574	0.00%
Table S9. Enrichment analysis for genes in chromosomes 8, 37, 39, 41, 43, 44, 45, 46, 47, 48, 49, 50 and 51, related to Figure 2.

Pathway	Level	Gene number	Q-value
Systemic lupus erythematosus	Immune diseases	66	6.08E-23
Staphylococcus aureus infection	Infectious diseases:	47	1.40E-14
	Bacterial		
Asthma	Immune diseases	36	1.84E-14
Intestinal immune network for IgA production	Immune system	40	4.66E-14
Malaria	Infectious diseases:	37	1.05E-12
	Parasitic		
Measles	Infectious diseases:	59	2.02E-10
	Viral		
Mineral absorption	Digestive system	48	3.52E-10
Allograft rejection	Immune diseases	36	1.15E-09
Condition	Disease Category	Score	
--	---------------------------	--------	
NF-kappa B signaling pathway	Signal transduction	54	
Autoimmune thyroid disease	Immune diseases	37	
Graft-versus-host disease	Immune diseases	28	
Inflammatory bowel disease (IBD)	Immune diseases	32	
T cell receptor signaling pathway	Immune system	45	
Chagas disease (American trypanosomiasis)	Infectious diseases: Parasitic	43	
Type I diabetes mellitus	Endocrine and metabolic diseases	28	
Viral myocarditis	Cardiovascular diseases	40	
Rheumatoid arthritis	Immune diseases	41	
Antigen processing and presentation	Immune system	34	
Cell adhesion molecules (CAMs)	Signaling molecules and interaction	51	
Alcoholism	Substance dependence	39	
HTLV-I infection	Infectious diseases: Viral	63	
Transcriptional misregulation in cancer	Cancers: Overview	56	
Ras signaling pathway	Signal transduction	56	
Calcium signaling pathway	Signal transduction	52	
Leishmaniasis	Infectious diseases: Parasitic	22	
Rap1 signaling pathway	Signal transduction	57	
Viral carcinogenesis	Cancers: Overview	44	
Tuberculosis	Infectious diseases: Bacterial	37	
Table S12. List of MHC class II genes in analyzed species, Related to Figure 3.

Species	Gene ID	Description from KEGG					
Medaka	ENSORLT0000000027	HLA class II histocompatibility antigen, DP alpha 1 chain-like;					
	ENSORLT0000016063	rano class II histocompatibility antigen, A beta chain-like;					
	ENSORLT0000005537	CD74 molecule, major histocompatibility complex, class II invariant chain a					
	ENSORLT0000016021	Orla-DDA; RLA class II histocompatibility antigen, DP alpha-1 chain;					
	ENSORLT0000000030	Orla-DCB; H-2 class II histocompatibility antigen, E-S beta chain;					
	ENSORLT0000023575	Orla-DAA; mamu class II histocompatibility antigen, DR alpha chain;					
	ENSORLT0000023543	Orla-DAB; H-2 class II histocompatibility antigen, E-S beta chain;					
	ENSORLT0000011500	Orla-DEA; RLA class II histocompatibility antigen, DP alpha-1 chain-like;					
	ENSORLT0000016052	Orla-DDB; rano class II histocompatibility antigen, A beta chain;					
	ENSORLT0000024164	Orla-DFA; mamu class II histocompatibility antigen, DR alpha chain;					
	ENSORLT0000006056	H-2 class II histocompatibility antigen, A-U alpha chain-like;					
	ENSORLT0000024129	H-2 class II histocompatibility antigen, E-S beta chain-like;					
Coelacanth	ENSLACT0000001762	H-2 class II histocompatibility antigen, E-S beta chain-like;					
	ENSLACT0000000411	DLA class II histocompatibility antigen, DR-1 beta chain-like;					
	ENSLACT0000000328	SLA class II histocompatibility antigen, DQ haplotype C beta chain-like;					
	ENSLACT0000000754	HLA class II histocompatibility antigen, DP alpha 1 chain-like;					
	ENSLACT0000000891	rano class II histocompatibility antigen, D-1 beta chain-like;					
	ENSLACT0000003230	RLA class II histocompatibility antigen, DP alpha-1 chain-like;					
	ENSLACT000000197	H-2 class II histocompatibility antigen, A-D beta chain-like;					
	ENSLACT000000493	DLA class II histocompatibility antigen, DR-1 beta chain-like;					
	ENSLACT000000162	rano class II histocompatibility antigen, D-1 beta chain-like;					
	ENSLACT000002416	RLA class II histocompatibility antigen, DP alpha-1 chain-like;					
	ENSLACT000002328	DLA class II histocompatibility antigen, DR-1 beta chain-like;					
	ENSLACT0000009069	DLA class II histocompatibility antigen, DR-1 beta chain-like;					
	ENSLACT000004598	SLA class II histocompatibility antigen, DQ haplotype C beta chain-like;					
	ENSLACT000000968	H-2 class II histocompatibility antigen, A-B alpha chain-like;					
	ENSLACT000000721	H-2 class II histocompatibility antigen, A-U alpha chain-like;					
GenBank ID	Description						
--------------------	--						
ENSLACT00000000561	DLA class II histocompatibility antigen, DR-1 beta chain-like;						
ENSLACT00000008726	DLA class II histocompatibility antigen, DR-1 beta chain-like;						
ENSLACT0000000289	SLA class II histocompatibility antigen, DQ haplotype C beta chain-like;						
ENSLACT00000006607	H-2 class II histocompatibility antigen, E-S beta chain-like;						
ENSGACT00000000421	H-2 class II histocompatibility antigen, A-U alpha chain-like;						
ENSGACT00000025242	Orla-DAA; mamu class II histocompatibility antigen, DR alpha chain;						
ENSGACT0000000431	H-2 class II histocompatibility antigen, E-S beta chain-like;						
ENSGACT00000004860	rano class II histocompatibility antigen, A beta chain-like;						
ENSGACT000000025238	Orla-DAB; H-2 class II histocompatibility antigen, E-S beta chain;						
ENSGACT0000000450	Orla-DAB; H-2 class II histocompatibility antigen, E-S beta chain;						
ENSGACT0000000437	HLA class II histocompatibility antigen, DRB1-8 beta chain-like;						
ENSGACT0000023783	H-2 class II histocompatibility antigen, E-S beta chain-like;						
ENSGACT0000004910	H-2 class II histocompatibility antigen, A-U alpha chain-like;						
ENSGACT000000439	Orla-DAA; mamu class II histocompatibility antigen, DR alpha chain;						
ENSGACT000000434	Orla-DAA; mamu class II histocompatibility antigen, DR alpha chain;						
ENSDART0000006898	novel protein with a Class II histocompatibility antigen, alpha domain and a Immunoglobulin C1-set domain;						
ENSDART0000161194	MHCII, si:busm1-48c11.4, si:dz194e12.12, si:dz48c11.4, zgc:123061; si:busm1-194e12.12;						
ENSDART0000102847	si:dz48c11.3; si:busm1-48c11.3;						
ENSDART0000160609	mhc2dab, major histocompatibility complex class II DAB gene;						
ENSDART0000129901	novel protein with a Class II histocompatibility antigen, alpha domain and a Immunoglobulin C1-set domain;						
ENSDART0000109439	MHCII, si:busm1-160c18.10, si:dz160c18.10, si:dz194e12.8, zgc:101701; si:busm1-194e12.8;						
ENSDART0000099281	mhc2dcb, major histocompatibility complex class II DCB gene;						
ENSDART0000097932	MHCII, si:busm1-48c11.4, si:dz194e12.12, si:dz48c11.4, zgc:123061; si:busm1-194e12.12;						
ENSDART0000159361	MHCII, si:busm1-48c11.4, si:dz194e12.12, si:dz48c11.4, zgc:123061; si:busm1-194e12.12;						
ENSDART0000162877	si:dz48c11.3; si:busm1-48c11.3;						
Target scaffolds	Query sequences	Identity	Target Start	Target End	Query start	Query End	E value
-----------------	-----------------	----------	--------------	------------	-------------	-----------	---------
ORAN-DRA	ENSGACT00000025242	93.55	2641	2671	32	2	2.00E-06
DRB, DRB1, Mamu-DRB, Mamu-DRB1, Mane-DRB	XP_020390554.1	ORAN-DRA; MHC class II DR alpha					
DRB1-3 chain	XP_020390555.1	DRB, DRB1, Mamu-DRB, Mamu-DRB1, Mane-DRB; HLA class II histocompatibility antigen					
DR-1 beta chain-like	XP_020390954.1	DLA class II histocompatibility antigen, DR-1 beta chain-like					
DLA class II histocompatibility antigen, DR-1 beta chain-like	Chip12839						
DLA class II histocompatibility antigen, DP alpha-1 chain-like	Chip12840						
RLA class II histocompatibility antigen, DP alpha-1 chain-like	Chip12907						
class II histocompatibility antigen, B-L beta chain-like	Chip01708						
HLA class II histocompatibility antigen, DRB1-15 beta chain	Chip14140						
HLA class II histocompatibility antigen, DR alpha chain-like	Chip18694						

Table S13. MHC class II fragments detected by using BLAST in the elephant shark genome. Related to Figure 3.
Table S14. Designed primers for amplifying vNARs, Related to Figure 3.

Forward primer	Reverse primer
1 F1:GGGTTGAACCACCGACAAACTGCAGGGGT TGAACAAACACCGACACAGAACAATAAC	R1:ATAAGAATGCGGCCGCAATCCATTTG CCCTCTGTTCTTTTCTTC
2 F2:AACTGCAGCCAAACACCGAGAACAATAACG	R2:ATAAGAATGCGGCCGAAATCCGTTTACTCTT
3 F3:AACTGCAGCCAAACACCGAAACGATAAT	R3:ATAAGAATGCGGCCAGAATCC
4 F4:AACTGCAGCCGAGATCAGCAACAAAAACTTC	R4:ATAAGAATGCGGCCCGCAATCGTGTTT

Table S15. Ancestral P2X gene found in amphioxus and ascidiacea genomes, Related to Figure 4.

Name/Gene ID	Description
LOC109481458	P2X purinoceptor 7-like [Branchiostoma belcheri (Belcher's lancelet)]
LOC109474372	P2X purinoceptor 7-like [Branchiostoma belcheri (Belcher's lancelet)]
LOC109472980	P2X purinoceptor 7-like [Branchiostoma belcheri (Belcher's lancelet)]
LOC109464342	P2X purinoceptor 4-like [Branchiostoma belcheri (Belcher's lancelet)]
LOC109462847	P2X purinoceptor 7-like [Branchiostoma belcheri (Belcher's lancelet)]
LOC109462011	P2X purinoceptor 7-like [Branchiostoma belcheri (Belcher's lancelet)]
BRAFLDRAFT_84310(P2RX4)	hypothetical protein [Branchiostoma floridae (Florida lancelet)]
BRAFLDRAFT_103732	hypothetical protein [Branchiostoma floridae (Florida lancelet)]
LOC101242976	P2X purinoceptor 7-like [Ciona intestinalis (vase tunicate)]
LOC101242780	P2X purinoceptor 7-like [Ciona intestinalis (vase tunicate)]
Table S16. Protein length of P2X genes in bony fishes and sea lamprey, Related to Figure 4.

Gene ID	Protein Length(aa)	Gene Name
ENSLACT00000004839	399	P2RX3
ENSLACT00000021101	403	P2RX1
ENSLACT00000019925	388	P2RX2
ENSLACT00000025971	134	P2RX7
ENSLACT0000001552	363	P2RX5
ENSLACT0000002031	419	P2RX6
ENSLACT00000024921	391	P2RX4
ENSDART00000167907	597	p2rx7
ENSDART0000002866	398	p2rx1
ENSDART00000098969	401	p2rx4b
ENSDART0000019461	400	p2rx2
ENSDART00000130628	398	p2rx4a
ENSDART00000171919	482	p2rx5
ENSDART00000163914	411	p2rx3a
ENSDART00000133926	412	p2rx3b
ENSDART0000029063	391	p2rx5
ENSORLT0000014760	397	p2rx1
ENSORLT0000004381	405	p2rx3
ENSORLT0000019713	392	p2rx4
ENSORLT0000015083	458	p2rx5
ENSORLT0000009830	412	p2rx2
PMZ_0041355-RA_PMZ	79	p2rx5.L
PMZ_0041356-RA_PMZ	205	P2RX5
PMZ_0048630-RA_PMZ	169	p2rx5.S
PMZ_0048646-RA_PMZ	160	p2rx5.S
PMZ_0046842-RA_PMZ	74	p2rx5
PMZ_0036668-RA_PMZ	99	p2rx5.S
PMZ_0037740-RA_PMZ	225	P2RX5
PMZ_0034936-RA_PMZ	160	p2rx5.S
PMZ_0048622-RA_PMZ	160	p2rx5.S
PMZ_0046842-RA_PMZ	74	p2rx5
PMZ_0036668-RA_PMZ	99	p2rx5.S
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local alignment search tool. J Mol Biol 215, 403-410.

Andrews, S., and FastQC, A. (2015). A quality control tool for high throughput sequence data. 2010. Google Scholar.

Benson, G. (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic acids research 27, 573.

Birney, E., Clamp, M., and Durbin, R. (2004). GeneWise and genomewise. Genome research 14, 988-995.

Dudchenko, O., Batra, S.S., Omer, A.D., Nyquist, S.K., Hoeger, M., Durand, N.C., Shamim, M.S., Machol, I., Lander, E.S., Aiden, A.P., et al. (2017). De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92-95.

Durand, N.C., Shamim, M.S., Machol, I., Rao, S.S., Huntley, M.H., Lander, E.S., and Aiden, E.L. (2016). Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. Cell Syst 3, 95-98.

Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research 32, 1792-1797.

Elsik, C.G., Mackey, A.J., Reese, J.T., Milshina, N.V., Roos, D.S., and Weinstock, G.M. (2007). Creating a honey bee consensus gene set. Genome biology 8, 1.

Haas, B.J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P.D., Bowden, J., Couger, M.B., Eccles, D., Li, B., Lieber, M., et al. (2013). De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8, 1494-1512.

Jurka, J., Kapitonov, V.V., Pavlicek, A., Klonowski, P., Kohany, O., and Walichiewicz, J. (2005). Repbase Update, a database of eukaryotic repetitive elements. Cytogenetic and genome research 110, 462-467.

Kajitani, R., Toshimoto, K., Noguchi, H., Toyoda, A., Ogura, Y., Okuno, M., Yabana, M., Harada, M., Nagayasu, E., Maruyama, H., et al. (2014). Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res 24, 1384-1395.

Kent, W.J. (2002). BLAT--the BLAST-like alignment tool. Genome Res 12, 656-664.
Li, H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987-2993.

Li, H., Coghlan, A., Ruan, J., Coin, L.J., Heriche, J.K., Osmotherly, L., Li, R., Liu, T., Zhang, Z., Bolund, L., et al. (2006). TreeFam: a curated database of phylogenetic trees of animal gene families. Nucleic Acids Res 34, D572-580.

Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754-1760.

Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., He, G., Chen, Y., Pan, Q., and Liu, Y. (2012). SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18.

MA, Q., WANG, S.-f., WANG, J., and SU, Y.-q.J.J.o.X.U. (2008). Analysis of the Karyotype of Chiloscyllium plagiosum [J]. 6.

Mohr, D.W., Naguib, A., Weisenfeld, N., Kumar, V., Shah, P., Church, D.M., Jaffe, D., and Scott, A.F. (2017). Improved de novo Genome Assembly: Synthetic long read sequencing combined with optical mapping produce a high quality mammalian genome at relatively low cost. bioRxiv, 128348.

Pertea, M., Kim, D., Pertea, G.M., Leek, J.T., and Salzberg, S.L. (2016). Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11, 1650-1667.

Price, M.N., Dehal, P.S., and Arkin, A.P. (2010). FastTree 2–approximately maximum-likelihood trees for large alignments. PloS one 5, e9490.

Salse, J., Abrouk, M., Murat, F., Quraishi, U.M., and Feuillet, C. (2009). Improved criteria and comparative genomics tool provide new insights into grass paleogenomics. Briefings in bioinformatics 10, 619-630.

Servant, N., Varoquaux, N., Lajoie, B.R., Viara, E., Chen, C.J., Vert, J.P., Heard, E., Dekker, J., and Barillot, E. (2015). HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol 16, 259.

Stanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S., and Morgenstern, B. (2006). AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic acids research 34, W435-W439.

Tang, H., Wang, X., Bowers, J.E., Ming, R., Alam, M., and Paterson, A.H. (2008). Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome research, gr. 080978.080108.

Tarailo-Graovac, M., and Chen, N. (2009). Using RepeatMasker to identify repetitive elements in genomic sequences. Current Protocols in Bioinformatics, 4.10. 11-14.10. 14.

Wang, O., Chin, R., Cheng, X., Wu, M.K.Y., Mao, Q., Tang, J., Sun, Y., Anderson, E., Lam, H.K., and Chen, D. (2019). Efficient and unique cobarcoing of second-generation sequencing reads from long DNA molecules enabling cost-effective and accurate sequencing, haplotyping, and de novo assembly. Genome research 29, 798-808.
Xu, Z., and Wang, H. (2007). LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic acids research 35, W265-W268.

Yang, Z. (2007). PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24, 1586-1591.

Yang, Z., and Rannala, B. (2006). Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Mol Biol Evol 23, 212-226.