Correction to ‘Blood does not buy goodwill: allowing culling increases poaching of a large carnivore’

Guillaume Chapron and Adrian Treves

Proc. R. Soc. B 283, 20152939. (2016; Published online 11 May 2016) (doi:10.1098/rspb.2015.2939)

We recently discovered an error in [1] due to a misalignment of rows between columns in the dataset. Specifically, we misaligned by 1 year the population size with the number of wolves culled and the policy signal. The correct results are slightly different than the ones we presented: the effect we report becomes slightly stronger and some parameters see minor adjustments of their posterior values. The conclusion of our paper is still supported by the correct results.

The correct results indicate that with no culling policy signal, the annual potential growth rate was $r = 0.17 \pm 0.02$ 95% credible interval (CI) = 0.13–0.21 in Wisconsin ($r = 0.15 \pm 0.02$ 95% CI = 0.11–0.19 in Michigan). However, with a year-long culling policy signal, we found annual growth rate had a 92% probability to be lower (figure 1 in this article) with $r = 0.12 \pm 0.03$ 95% CI = 0.06–0.18 in Wisconsin ($r = 0.10 \pm 0.03$ 95% CI = 0.04–0.16 in Michigan). Corrected prior and posterior values for all model parameters are given in table 1.

Two other typographical errors were not detected during the proof process.

Electronic supplementary material is available online at https://dx.doi.org/10.6084/m9.figshare.c.3634499.
prior choice	posterior distribution	median ± s.d.	95% credible interval
population dynamic			
$\alpha_{\text{proc}} \sim \text{unif}(0,0.5)$		0.06 ± 0.02	$0.03 - 0.09$
$\gamma \sim \text{Norm}(\mu = 1.06, \tau = 14^2)$		1.06 ± 0.07	$0.92 - 1.2$
$\beta_0 \sim \text{Norm}(\mu = 0, \tau = 10^{-6})$		0.17 ± 0.02	$0.13 - 0.21$
$\beta_1 \sim \text{Norm}(\mu = 0, \tau = 10^{-6})$		0.15 ± 0.02	$0.11 - 0.19$
$\alpha_{\text{proc}} \sim \text{unif}(0,100)$		4.38 ± 3.3	$0.17 - 12.29$
$\alpha_{\text{proc}} \sim \text{unif}(0,100)$		5.33 ± 4.4	$0.23 - 16.42$
$\omega_{\text{MIN}} \sim \text{Norm}(\mu = 1, \tau = 10^{-6})$		0.97 ± 0.02	$0.93 - 1$
$\omega_{\text{MAX}} \sim \text{Norm}(\mu = 1, \tau = 10^{-6})$		1.03 ± 0.02	$1 - 1.08$
$N_{\text{MIN}} \sim \text{Gamma}(10^{-6}, 10^{-6})$		91.10 ± 6.15	$79.43 - 103.57$
$N_{\text{MAX}} \sim \text{Gamma}(10^{-6}, 10^{-6})$		92.06 ± 7.4	$78.15 - 107.39$

References

1. Chapron G, Treves A. 2016 Blood does not buy goodwill: allowing culling increases poaching of a large carnivore. Proc. R. Soc. B 283, 20152939. (doi:10.1098/rspb.2015.2939)
2. Plummer M. 2003 JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. In Proc. of the 3rd International Workshop on Distributed Statistical Computing (eds K Hornik, F Leisch, A Zeileis). Vienna, Austria.
3. Yu-Sung S, Masanao Y. 2015 R2jags: Using R to Run ‘JAGS’. See https://cran.r-project.org/web/packages/R2jags/index.html.