SHORT COMMUNICATION

TREES USED FOR TUBE SUPPORT BY SPHODROS RUFIPES (LATREILLE 1829)(ARANEAE, ATYPIDAE) IN NORTHWESTERN LOUISIANA

Laurence M. Hardy: Museum of Life Sciences, Louisiana State University in Shreveport, One University Place, Shreveport, LA 71115-2399

ABSTRACT. Little information is available concerning the tree species preferred by the American red-legged purseweb spider, Sphodros rufipes (Latreille 1829), for supporting their webs. During a study of the spiders of northwestern Louisiana, 26 pursewebs of S. rufipes were found. All were on deciduous trees, with 58% found on sweetgum or oak. None of the webs were on conifers or herbaceous plants even though conifers made up 7–92% of the trees in the sampled areas. All pursewebs were within 20 m of a stream and were on trees with a trunk less than 70 cm dbh.

Keywords: Purseweb, habitat, hardwoods, habitat preference, web placement

Sphodros Walckenaer 1835 contains seven species which are collectively known as the American purseweb spiders. The genus is distributed in eastern North America, from southern Ontario, through the eastern United States to Texas and northeastern Mexico. The following six species have restricted geographic distributions: S. abbotti Walckenaer 1835 (restricted to southern Georgia and northern Florida in hammocks and mesic situations), S. atlanticus Gertsch & Platnick 1980 (found in Georgia, Illinois, North Carolina, and Virginia, forests), S. coylei Gertsch & Platnick 1980 (known only from South Carolina, mixed forest), S. fitchi Gertsch & Platnick 1980 (from Nebraska, Kansas, Oklahoma, and Arkansas, deciduous forest, grassland), S. niger (Hentz 1842) (northeastern U.S. and southern Ontario, habitat unknown [see below]), and S. paisano Gertsch & Platnick 1980 (southeastern Texas and northeastern Mexico, habitat unknown). Within the genus Sphodros, the first species described was Sphodros rufipes (Latreille 1829), which also has the largest geographic distribution (southeastern U.S. from Rhode Island into Louisiana and eastern Texas) and is the only species known from Louisiana. All of the specimens examined from northwestern Louisiana are S. rufipes.

Sphodros rufipes, the American red-legged purseweb spider, is usually found in mixed pine-deciduous forest and is uncommon throughout its geographic distribution in North America. While some information is available about the general biology of S. rufipes, such as its dramatic method of prey capture (Comstock 1965), few details are known about its habitat requirements and reproduction anywhere in its range. The pursewebs of S. rufipes are vertical tubes with the upper end of the tube attached to a tree, a rock, or even a concrete wall, and the lower end embedded several cm into the soil (McCook 1888).

The only information about the pursewebs of S. rufipes in Louisiana is from Gertsch & Platnick (1980), who collected a total of four specimens from four separate localities in Louisiana. The web of one of those specimens was on a cliff, one was on an oak tree (Quercus), and one was on a beech tree (Fagus grandifolia); no habitat was given for the fourth specimen. No other tree species was given for supporting the aerial web of S. rufipes out of 94 specimens (from throughout the geographic range) listed by Gertsch & Platnick (1980).

During a continuing survey of the spiders of northwestern Louisiana, several specimens of S. rufipes were found. The most effective search strategy for this rare species was to look for their very distinctive webs. It was quickly discovered that certain mixed pine-deciduous forest habitats produced many more pursewebs of S. rufipes than did others. There are few references concerning the tree species preferred by any species of Sphodros for the support of the pursewebs, and no references have reported the spider’s preferences for hardwoods versus pines as web support structures.

Poteat (1889) reported a large population of S. niger in a pine forest in Wake Forest, North Carolina, and described the attachment of a purseweb (2 cm wide at the ground, 15 cm tall) to a small pine. Of 30 pursewebs Poteat (1889) found in (or near) a 900 sq. yd. (754.8 sq. m) area during three years,
28 were attached to pines (3–35 cm diameter; species not given), one was on a very small persimmon (Diospyros virginiana) and the other was on a wild rose (Rosa sp.); all were vertical. The spiders studied by Poteat (1889) were well within the geographic range of the more common S. rufipes. The locality is also within the geographic range of the less common S. atlanticus, but is just southeast of the known geographic range of S. niger. Therefore, it is likely that Poteat’s population was S. rufipes. The current status of Poteat’s specimens is not known and they were not seen by Gertsch & Platnick (1980).

Bishop (1950) found only vertical pursewebs in Florida and agreed that the Poteat specimens were S. milberti Walckenaer (1837[= S. rufipes]); however, Bishop did not mention the species of plants used to support the webs of spiders in his study.

Gertsch & Platnick (1980) doubted that all American Sphodros construct vertical tubes and suggested that S. niger does not. However, pursewebs that are horizontal to the ground surface, without a vertical aerial component, have not yet been documented in any species of Sphodros. Sarno (1973) described the tops of the pursewebs of Atypus snetsingeri Sarno 1973 in Pennsylvania as attached to lower stems and roots of a hedgerow, small magnolias, rhododendron, and a concrete foundation. Her references to the “tops” of the pursewebs attached to the plants and their lengths of 150–175 mm “above the surface of the soil, and the burrows from 100–150 mm below” clearly indicate a vertical aerial tube. Her mention of horizontal pursewebs is only for captive specimens in containers (Sarno 1973). Gertsch & Platnick (1980) incorrectly comment that although Sarno (1973) reported that her captive specimens of Atypus snetsingeri Sarno 1973 “resemble their European counterparts in building horizontal tubes along the surface of the ground, her description of the tubes in nature does not specify their orientation.” Sarno never mentioned any comparison with European counterparts.

The excellent work by McCook (1888) on the pursewebs of S. abboti reports only vertical pursewebs and that S. abboti had no preference for any special tree. Gertsch (1936) reported only vertical pursewebs of S. abboti on sweet gums, oaks, and magnolias in Florida. Chamberlin and Ivie (1944) reported pursewebs on trees and that S. abboti tends to occur in colonies in Georgia. Muma & Muma (1945) studied 33 pursewebs of S. bicolor (= S. rufipes) in Maryland; there was no mention of any horizontal tube nor of the identity of the trees used.

The paucity of details on the species of trees used for web support and the confusions noted above concerning the webs of American purseweb spiders indicated the need for additional information. The objectives of this project were to, 1) document the species and size of trees used as web supports for Sphodros rufipes in northwestern Louisiana, and 2) to determine if pine trees or hardwood trees are equally utilized by S. rufipes in northwestern Louisiana.

Specimens and pursewebs of S. rufipes were studied in several locations in Caddo, Winn and Grant Parishes, Louisiana, during 1996–2000 (see Specimens Examined). Purseweb spiders in northwestern Louisiana are found in contiguous mixed pine-deciduous secondary forest in bottomland areas, often in the vicinity of temporary or permanent water. In this region they are uncommon; however, due to the more durable web structure, the webs were found during all seasons of the year. When pursewebs were found, each was checked for a resident spider. The tree species and DBH (diameter at 4.5 feet from the base of the trunk, cm) were determined. The distance between the tree and the nearest stream was measured in some cases. All specimens examined are in the spider collection of the Museum of Life Sciences of Louisiana State University in Shreveport (LSUS).

To determine if individuals of Sphodros rufipes were selecting hardwoods over pines, it was necessary to determine the relative availability of pines and hardwoods in the forests that contained S. rufipes. To determine if pines and hardwoods were equally available for purseweb construction in the immediate vicinity of active pursewebs, I recorded the numbers of pines and hardwoods (15 cm DBH or larger) in four transects from each of five different localities (a total of 20 transects) that were at locations where 11 spiders were collected. At each locality the census transects consisted of four 2 m wide lanes, 50 m long, radiating at 0, 90, 180 and 270 degrees from the center (a total of 400 sq. m censused per locality).

A total of 26 pursewebs were found on 24 trees of 11 species (Table 1). The mean DBH of the 21 trees that were measured and that supported pursewebs was 20.9 cm (range = 3–65; median = 13). Fifty-four percent (13 of 24) of the trees containing pursewebs and 58% (15 of 26) of all pursewebs were on Liquidambar or Quercus (Table 1). However, 50% (7 of 14) of all spiders were found on the other nine species of trees and only 21% (3 of 14) were found on Quercus (Table 1). Fifteen pursewebs (68% of the 22 tubes) did not contain spiders. The only trees with two pursewebs were one Liquidambar and one Quercus. All spiders were in pursewebs on trees less than 36 cm DBH. The mean tree DBH for occupied pursewebs was 17.3 cm (range = 3–35; median = 13; n = 10). The trees bearing empty pursewebs were as large as 65 cm and at one time were used by a resident spider. Most of the trees that supported pursewebs were less than 0.5 m dbh, but all were well rooted saplings or larger (Fig. 1). None of the pursewebs was on grass or other herbaceous plants, even...
Table 1.—Characteristics of support trees for 26 pursewebs of *Sphodros rufipes* from northwestern Louisiana.1,2 Two pursewebs were on the same tree.3 25 cm is the maximum size of 3 different trees, other measurements were not recorded; this was counted as one tree in calculations.

Tree	DBH (cm)	Date	Notes
Liquidambar styrraciiflua	13	10 Nov. 1996	Spider in tube 10–15 cm long
Liquidambar styrraciiflua	30	10 Nov. 1996	Spider in flat tube 24 mm wide
Liquidambar styrraciiflua	111	21 Nov. 1996	
Liquidambar styrraciiflua	16	21 Nov. 1996	
Liquidambar styrraciiflua	10	21 Nov. 1996	Tube forked
Liquidambar styrraciiflua	12.5	20 May 1999	Spider in tube
Quercus falcata	32²	21 Nov. 1996	
Quercus falcata	32²	21 Nov. 1996	
Quercus falcata	56	21 Nov. 1996	
Quercus velutina	65	21 Nov. 1996	
Quercus alba	—	13 July 1999	Spider in tube
Quercus nigra	23	21 Nov. 1996	
Quercus sp.	35	16 May 2000	Spider in tube
Quercus/Elmus (3 trees)	25¹	3 Nov. 1996	4 spiders, 1 tube/tree, 1 tube w/2 spiders
Acer saccharum	24	21 Nov. 1996	Spider in tube
Acer saccharum	5	21 Nov. 1996	Spider in tube
Carpinus carolineanus	3	21 Nov. 1996	Spider in tube
Carpinus carolineanus	6	21 Nov. 1996	
Cornus florida	5	21 Nov. 1996	
Ilex opaca	—	10 May 2000	Spider found in tube
Ostrya virginiana	12	21 Nov. 1996	Spider found in tube
Small tree		21 June 2000	
Unknown	13	29 Nov. 2000	Spider found in tube

though such herbaceous plants were present in the immediate vicinity of active pursewebs.

Twenty 50 m transects contained 73 hardwoods and 34 pines. The mean frequency of pines per transect was 45.2% (range = 0–92.3%; n = 20). Within the five localities studied, pines represented 7.1–92.3% of the sampled trees. Therefore, pines (*Pinus taeda* L., Loblolly; *P. echinata* Miller, Shortleaf; *P. palustris* Miller, Longleaf; and *P. elliottii* Engel- man, Slash) were readily available at all localities, but were not used by *Sphodros rufipes* for web support.

If *Sphodros* was using hardwoods and pines with equal frequency, based on the relative abundance of each tree type, then the frequencies of pursewebs on pines should be the same as the frequency of pines in the forest surrounding the web.

In northwestern Louisiana the pursewebs of *S. rufipes* are on hardwoods of moderate size (less than a meter, DBH; Fig. 1). None was found on pines or herbaceous plants. The loose, flaky nature of pine bark is probably detrimental to the long-term survival of the pursewebs. All pursewebs were found in the vicinity of a stream (1–15 m from tree). In many of the examples reported here the pursewebs were found on the vertical back wall of the trunk between buttressed roots and the web below ground always curved under the center of the tree trunk.

![Figure 1.—Size (DBH in cm) distribution of trunks, from the smallest to the largest, that supported pursewebs of *S. rufipes*. Each bar represents an individual tree. The hatched bars represent unoccupied webs; the solid bars represent pursewebs that contained a spider.](image)

Specimens of Spiders Examined (*n* = 15).—All localities are in Caddo Parish, Louisiana unless noted otherwise and all specimens are in the spider collection of the Museum of Life Sciences of Lou-
isiana State University in Shreveport. 2.5 mi. W, 1.0
mi. S Blanchard, 3 Nov. 1996 (LMH 11708, ♀,
total length [TL] = 17 mm; 11709, ♂, TL = 11;
11710, ♂, TL = 8; 11711, ♀), 21 Nov. 1996 (LMH
11744, ♂, TL = 13; 11745, ♂, TL = 12; 11746,
♀, TL = 12; 11747, ♀, TL = 10); 0.6 mi. W, 3.0
mi. N Keithville, 10 Nov. 1996 (LMH 11720, ♀,
TL = 19, 11721, ♂, TL = 12); Winn Parish. 4.0
mi. E, 2.0 mi. S Goldonna, 10 May 2000 (LMH
12228, ♂, immature), 16 May 2000 (LMH 12244,
♀, TL = 11), 29 Nov. 2000 (LMH 12365, ♂, TL
= 23); 5.0 mi. S, 2.3 mi. W Brewton Mill, 20 May
1999 (LMH 11957, ♂, TL = 19); Grant Parish. 3.8
mi. W, 3.2 mi. S Packton, 13 July 1999 (LMH
12090, ♂, TL = 12).

LITERATURE CITED
Bishop, S.C. 1950. The purse-web spider, Atypus
abbotii (Walckenaer), with notes on related spe-
cies. (Arachnida: Atypidae). Entomological
News 61(5):121±124.
Chamberlin, R.V. & W. Ivie. 1944. Spiders of the
Georgia region of North America. Bulletin of the
University of Utah 35(9):1–267.
Comstock, J.H. 1965. The Spider Book. Comstock
Publishing Associates, New York, 729 p.
Gertsch, W.J. 1936. The nearctic Atypidae. Ameri-
can Museum Novitates 895:1–19.
Gertsch, W.J. & N.I. Platnick. 1980. A revision of
the American spiders of the family Atypidae
(Anurae, Mygalomorphae). American Museum
Novitates 2704:1–39.
McCook, H.C. 1888. Nesting habits of the Ameri-
can purseweb spider. Proceedings of the Academ-
y of Natural Sciences of Philadelphia, p. 203–
220.
Muma, M.H. & K.E. Muma. 1945. Biological notes
on Atypus bicolor Lucas (Arachnida). Entomo-
logical News 56:122–126.
Poteat, W.L. 1889. A tube-building spider. Journal
of the Elisha Mitchell Scientific Society 6(1):
134–147.
Sarno, P.A. 1973. A new species of Atypus (Ara-
.neae: Atypidae) from Pennsylvania. Entomologi-
cal News 84:37–51.

Manuscript received 24 June 2002, revised 18
March 2003.