Researching Diesel car CO₂ emissions in cold and warm-up transient test cycle

L Andrei¹, V Chindea² and D L Băldean²
¹ Infectious Disease Hospital of Cluj-Napoca, Cluj, Iuliu Moldovan 23, Romania
² Automotive and Transportation Dep., Technical University of Cluj-N., Cluj, Muncii 103, Ro.
doru.baldean@auto.utcluj.ro

Abstract. Research of CO₂ emissions is not only important, but it is standard practice for homologation, technical inspections, registration of vehicles and for environmental greenhouse effect. Different agencies are taking into consideration the fact that greenhouse emissions are seriously impacting the climate change and events on the planet. Road traffic and transportation are, beside animal agriculture, the most significant polluters in dense areas, with high values of emissions. For diminishing the impact of automotive sector in the emissions field, the present work approaches the practical side of this topic. During the testing, some results will allow the definition of those conditions in which the pollutant emissions fall into control and are drastically diminished. Main objective of the paper is to research the CO₂ emissions generated by a Diesel engine in a transient test cycle, both at cold operation and after warm-up phase. Second objective is to analyse the graphics from low speed and medium speed operation regimes. The CO₂ emission are influenced by fuel consumption, engine speed and coolant temperature. Highway testing of CO₂ emissions are to be made in further and advanced research.

1. Introduction
Internal combustion engines are those machines which transform the mixture of atmospheric O₂ and HC (hydrocarbons) fuel molecules through rapid oxidation reactions at high temperatures inside the combustion chamber in useful work and performance [1, 2].

Digital management system of the engine takes the data from sensors and determines the fuel quantity to be injected [3]. Combustion and exhaust emissions influence the air quality and health risk [4, 5, 6]. Electronic control for fuel supply in dynamic conditions increases the operational efficiency [7]. Health management and environmental risk are closely related to carbon (CO₂, CO, and HC) emissions [8]. Injection systems, fuel quantity and air intake mass are important factors to be considered within the electronic control unit [9, 10, 11]. Friction in the bearings and between the wheels and road surface makes it difficult for engine to overpass the resistance torque, thus it takes more fuel to create higher gas pressures in the cylinders and affects the carbon footprint [12, 13]. Advances in software interfaces are supporting the improvement of control and management even through the end-user adaptive interactions and information exchange [14,15]. Electronic Diesel Control and management system provides the data regarding injected fuel quantity on dash-board screen in real time to facilitate some adjustments in operation and command [16,17]. Development of automated systems with remote control capability is making a step further to optimize the fuel-efficient use and to decrease CO₂ level [18, 19]. Significant advancements and contributions have been made in development of the fuel supply, even through injectors in the combustion chamber, to diminish the losses and increase performance [20].

In the present work is determined CO₂ emissions level correlated with engine and vehicle speed.
2. Applied research

Applied method in the present work is supported by the experimental tests which were structured within 3 cycles: Cycle 1 – transient testing in urban traffic using first three gear ratios at 10-12°C; Cycle 2 – transient testing in mixt urban and metropolitan traffic using first four gear ratios at 90°C; Cycle 3 – transient testing using all five gear ratios at 90°C (engine temperature) and 15-17°C.

Figure 1 shows the main steps of the applied research methodology in determining CO₂ emissions.

![Flowchart](image)

Figure 1. Basic structure of method applied in the present research paper for CO₂ determination

Applied methodology in research is using a Diesel car with technical data given in table 1.

Platform	Actual value
Engine type	Diesel 1600 cm³/ 4 cylinders in line
Fuel supply	High pressure injection
Transmission	5-gear ratio
Powertrain	Front drive, 4x2/VW Golf 6

Figure 2 presents the transient cycles for 3 tests versus the gear ratio, showing the CO₂ and speeds.

![Graphs](image)

Figure 2. Applied measurement results in three cycles showing the most significant parameters.

In figures 3 to 8 are shown the graph variations for average values of vehicle speed, fuel consumption, engine speed, oil temperature, coolant temperature and CO₂ emissions versus gear ratio determine and compared for the 3 cycles. The figures 9 to 14 present the CO₂ and engine speed vs. the vehicle speed.
Figure 3. Vehicle speed versus gear ratio values.

Figure 4. Fuel consumption versus gear ratio.

Figure 5. Average engine speed versus gear ratio.

Figure 6. Oil temperature versus gear ratio.

Figure 7. Coolant temperature versus gear ratio.

Figure 8. CO2 emissions versus gear ratio.

Figure 9. CO2 value vs. vehicle speed - Cycle 1.

Figure 10. CO2 vs. vehicle speed - Cycle 1.

Figure 11. CO2 value vs. vehicle speed - Cycle 2.

Figure 12. CO2 vs. vehicle speed - Cycle 2.

Figure 13. CO2 value vs. vehicle speed - Cycle 3.

Figure 14. CO2 vs. vehicle speed - Cycle 3.
The CO2 emissions were calculated based on fuel consumption and partial combustion model. All the rest of parameters were measured using the electronic Diesel control system sensors and capabilities.

The average hourly CO2 emissions versus the vehicle speed is given in figure 15. In the rest of graphics from 16 to 20 are presented the engine speed, gear ratio, fuel consumption, oil and coolant temperatures average values versus vehicle speed.

![Figure 15. Average CO2 values vs. vehicle speed.](image1.png)

![Figure 16. Engine speed vs. vehicle speed.](image2.png)

![Figure 17. Gear ratios vs. vehicle speed values.](image3.png)

![Figure 18. Oil temperature vs. vehicle speed.](image4.png)

![Figure 19. Fuel consumption vs. vehicle speed.](image5.png)

![Figure 20. Engine temperature vs. car speed.](image6.png)

CO2 calculation is supported by air and fuel consumption measured values with the following equation:

$$\text{CO}_2 = 0.2306 \cdot 10^{-2} \cdot v^2 - 37.013 \cdot v + 1074.1; \text{CO}_2 = C_h \cdot E_c, \text{[g/km]}$$

where \(v\) is the vehicle speed, in [km/h]; \(\text{CO}_2\) – carbon dioxide, in [kg/h] or [g/km]; \(C_h\) – fuel consumption, in [l/100]; \(E_c\) – emission concentration, in [g/l/100km].

3. Observations and conclusions

Density of supplied diesel fuel is 838 g/litre. This type of fuel has 86% Carbon. There are almost 720 g of C chemical element in each litre of diesel fuel. To combine the available carbon molecules to CO2 are required around 1920 grams of O2. Addition of the two numbers results in 2640 g/l of CO2. Taking into consideration the average consumption of tested car being 6 l/100 km, it leads to 6x2640 g/l/100 (per km) = 158.4 CO2 g/km. Temperature in the cycle 1 was 10 ± 1°C. Temperatures in the cycle 2 and 3 were 90°C for engine coolant, and 16±1°C for the intake air. CO2 research indicated that level of emissions is affected by the engine temperature, engine, and vehicle speed.

In cycle 1, at cold start and operation, the average CO2 value was 5 kg/h, average speed was 21 km/h, average engine speed was 1578 rpm, fuel consumption (Ch) was 2 l/h, average temperature of coolant and oil was 14°C. In cycle 2, the average CO2 was 5.216 kg/h, average speed 30.8 km/h, average engine speed was 1402 rpm, Ch was 2.35 l/h, 90°C coolant temperature and 88.8°C temperature oil. In cycle 3, the average CO2 was 6.88 kg/h, v=44.97 km/h, n=1430 rpm, Ch=3 l/h, T_engine=90°C, and T_air=88.8°C. Measurements allow the researcher to determine trendlines of CO2 emissions in different operational regimes. Those trends line to be defined need more tests and research.
References

[1] Apostolescu N et al 1967 Internal Combustion Engines / Motoare cu ardere internă Bucharest/București, Pedagogic and Didactic Publishing House / Edit. Did. si Ped., pp. 7-428.
[2] Barabas I et al 2010 Performance and emission characteristics of an CI engine fueled with diesel–biodiesel–bioethanol blends (Fuel 89(12), pp. 3827-3832) DOI: 10.1016/j.fuel.2010.07.011
[3] Băldean DL, Borzan AI 2018 Contributions on experimental research of fuel consumption and management system in K9K892 Diesel engine from Dacia-Renault, DOI: https://doi.org/10.1051/matecconf/201818401018
[4] Bec P et al 2020 Investigation of Failures and Vulnerabilities in Road Traffic Air Quality Management System during 2020 Pandemics, DOI: 10.1088/1757-898X/898/1/012009
[5] Borza EV et al 2018 Experimental research of CO2 emission in relation with traveled distance and fuel consumption for Mitsubishi L200 automobile on the Cluj-Pitești road, DOI: http://stiintasiinginerie.ro/34-61
[6] Borza EV et al 2019 Research Concerning Fuel Economy Coefficient and Carbon Foot-Print in Various Conditions for a City Compact Size Vehicle with Digital Control for a Green Solution and Method at Tech. Univ. from Cluj-N, DOI: https://doi.org/10.1007/978-3-319-94409-8_22
[7] Borzan AI et al 2020 The Development of a New Interface for Intelligent Control of Energy Supply in Dynamic Environment with Process Digitization, DOI: 10.1016/j.promfg.2020.05.008
[8] Cherecheș IA et al 2018 Contributions to experimental research and development of some advanced methods for analyze and report the carbon oxide for an optimized management of health and life, DOI: http://stiintasiinginerie.ro/34-69
[9] Cherecheș IA et al 2019 Research of Intelligent Control of Injection Systems for Subaru Competition Car, https://doi.org/10.1007/978-3-030-32564-0_10
[10] Ferenti I et al 2015 Experimental research regarding performances of engine supply systems from automobiles made for motorsport competitions (In I.A.T.A., vol. 45, CZU: 629.33.063) DOI: https://ibn.idsi.md/sites/default/files/imag_file/162-165_5.pdf
[11] Ferenti I et al 2019 Experimental research in mechanic’s field of control for further innovation in the hydraulic and electronic operated injection system, DOI: 10.1051/e3sconf/20198508006
[12] Gabrian C et al 2018 Experimental study of the possibility of increasing energy efficiency through the control of friction in roller bearings of the wheel train from Dacia Solenza, DOI: http://stiintasiinginerie.ro/33-57
[13] Gaspar F et al 2017 Contribution to the experimental research of environmental carbon footprint in the case of 1400 cmc engine from Skoda Fabia vehicle, DOI: http://stiintasiinginerie.ro/31-74
[14] Jovrea S et al 2017 Researching on-board display of essential information concerning technical conditions in operation and fuel-economy of a motor-vehicle in operation, DOI: http://stiintasiinginerie.ro/31-67
[15] Jovrea LD et al 2017 Study of the semiotic aspects concerning the hydraulics of the injection system in diagnosing 1.8 TDCI Ford Focus engine, DOI: http://stiintasiinginerie.ro/31-68
[16] Marincaș C et al 2017 Contributions to the experimental research of EDC module operation in relation with supply of the N47 engine from BMW 320D (E90) automobile, DOI: http://stiintasiinginerie.ro/31-82
[17] Moldovan A et al 2017 Experimental research of the management system from the Peugeot 4007 Sport Utility Vehicle, DOI: http://stiintasiinginerie.ro/31-71
[18] Odenie S et al 2018 Contributions to research of CO2 emissions in environment pollution management and life, DOI: http://stiintasiinginerie.ro/34-65
[19] Popescu D et al 2020 Development of an Automated System for Fuel Tank Level Checking and Machinery Location Management to Optimize Remote Accessibility and Mobile Tracking (In MDPI, Vol. 63, 1) DOI: https://doi.org/10.3390/proceedings2020063017
[20] Toader GV et al 2017 Contributions to the experimental research of injection fuel supply system from 3.0i engine of BMW X 5 road vehicles, DOI: http://stiintasiinginerie.ro/31-70