Two-dimensional Fourier transformations and Mordell integrals

Martin Nicholson

Several Fourier transformations of functions of one and two variables are evaluated and then used to derive some integral and series identities. It is shown that certain two-dimensional Mordell integrals factorize into product of two integrals and that the square of the absolute value of the Mordell integral can be reduced to a single one-dimensional integral. Some connections to elliptic functions and lattice sums are discussed.

I. Introduction: self-reciprocal Fourier transformations

Define the cosine and sine Fourier transformations by the usual formulas

\[f_c(t) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \cos tx \, dx, \]

\[f_s(t) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin tx \, dx. \]

Functions that are equal to their own cosine Fourier transform, i.e. that satisfy the equation \(f(x) = f_c(x) \), are called self-reciprocal functions of the first kind, and functions that are equal to their own sine Fourier transform \(f(x) = f_s(x) \), are called self-reciprocal functions of the second kind. Some examples of the functions of the first kind include

\[\frac{1}{\cosh \sqrt{\frac{\pi}{2}} x}, \quad \frac{\cosh \frac{\sqrt{\pi} x}{2}}{\cosh \sqrt{\pi} x}, \quad \frac{1}{1 + 2 \cosh \sqrt{\frac{2\pi}{3}} x}, \quad \frac{\cosh \frac{3\sqrt{\pi} x}{2}}{2 \cosh \sqrt{\frac{4\pi}{3}} x - 1}, \quad \frac{\cosh \sqrt{\frac{5\pi}{2}} x}{\cosh \sqrt{2\pi} x - \cos \sqrt{3\pi}}. \]

And here are some functions of the second kind

\[\frac{\sinh \sqrt{\frac{\pi}{2}} x}{\cosh \sqrt{\frac{\pi}{2}} x}, \quad \frac{\sinh \sqrt{\frac{\pi}{6}} x}{2 \cosh \sqrt{\frac{2\pi}{3}} x - 1}, \quad \frac{\sinh \sqrt{\frac{2\pi}{3}} x}{\cosh \sqrt{\frac{2\pi}{3}} x}, \quad \frac{\sinh \sqrt{\pi} x}{\cosh \sqrt{2\pi} x - \cos \sqrt{2\pi}}. \]

The first three functions of (3) and the first two functions of (4) were known to Ramanujan and their detailed study can be found in the book [3]. The third function in (4) is taken from the article [2] where many other hyperbolic self reciprocal functions are given along with a general method for generating them. The last two functions in (3) and the last function in (4) appear to be new. One can show that (3) are the only self reciprocal functions of the form \(\frac{\cosh ax}{\cosh ax + c} \).

There is a well known general recipe to find self reciprocal functions ([4, ch. 9]). Since \((f_c)_c = f \), the sum

\[f(x) + f_c(x) \]

is a self-reciprocal function of the first kind for an arbitrary function \(f(x) \). Obviously this approach works also for functions of the second kind.

It might seem that this settles the question of finding all self-reciprocal functions completely. However this is not so because this approach is not helpful in finding interesting particular self-reciprocal functions.
It is much more gratifying to now that the functions in (3) are self-reciprocal as opposed to knowing that
the function
\[e^{-x} + \sqrt{\frac{2}{\pi} \frac{1}{1 + x^2}} \]
is self-reciprocal. A more useful general theory suitable for these purposes of finding particular trans-
mformations has been developed by Goodspeed, Hardy and Titchmarsh (see [4] for a nice account of this
theory).

One might ask, what are these particular transformations useful for? The answer is they lead to some
interesting integral and series transformation formulas, among other things. For example, Hardy and
Ramanujan [15] used self reciprocal functions to obtain transformation formulas such as

\[\sqrt{\alpha} \int_{0}^{\infty} \frac{e^{-x^2}}{\cosh \alpha x} \, dx = \sqrt{\beta} \int_{0}^{\infty} \frac{e^{-y^2}}{\cosh \beta y} \, dy, \quad \alpha \beta = \pi, \quad (5) \]

\[\sqrt{\alpha} \int_{0}^{\infty} \frac{\cosh \frac{\alpha x}{2} e^{-x^2}}{\cosh \alpha x} \, dx = \sqrt{\beta} \int_{0}^{\infty} \frac{\cosh \frac{\beta y}{2} e^{-y^2}}{\cosh \beta y} \, dy, \quad \alpha \beta = 2\pi, \quad (6) \]

\[\sqrt{\alpha} \int_{0}^{\infty} \frac{\sinh \frac{\alpha x}{2} xe^{-x^2}}{\sinh \alpha x} \, dx = \sqrt{\beta} \int_{0}^{\infty} \frac{\sinh \frac{\beta y}{2} ye^{-y^2}}{\sinh \beta y} \, dy, \quad \alpha \beta = 2\pi. \quad (7) \]

Another type of identities are obtained by application of the Poisson summation formula, which for an
even function \(\phi(x) \) can be stated in the symmetric form [4]

\[\sqrt{\alpha} \sum_{n=-\infty}^{\infty} \phi(\alpha n) = \sqrt{\beta} \sum_{n=-\infty}^{\infty} \phi(\beta n), \quad \alpha \beta = 2\pi. \quad (8) \]

Similarly, for an odd function \(\psi(x) \)

\[\sqrt{\alpha} \sum_{n=1}^{\infty} \chi(n) \psi(\alpha n) = \sqrt{\beta} \sum_{n=1}^{\infty} \chi(n) \psi(\beta n), \quad \alpha \beta = \frac{\pi}{2}, \quad (9) \]

where \(\chi(n) = \sin \frac{\pi n}{2} \) is a primitive character of modulus 4. For example, application of (8) to the first
function in (3) gives

\[\sqrt{\alpha} \sum_{n=-\infty}^{\infty} \frac{1}{\cosh \pi \alpha n} = \sqrt{\beta} \sum_{n=-\infty}^{\infty} \frac{1}{\cosh \pi \beta n}, \quad \alpha \beta = 1. \quad (10) \]

Let \(q = e^{-\pi \alpha} \) be the base of elliptic functions with modulus \(k \), \(k' = \sqrt{1-k^2} \) the complementary modulus
and \(K = K(k) \), \(K' = K(k') \) the complete elliptic integrals of the first kind. Then [6, ch. 22.6] \(q' = e^{-\pi \beta} \)
is the base of elliptic functions with modulus \(k' \) and

\[K = \frac{\pi}{2} \sum_{n=-\infty}^{\infty} \frac{1}{\cosh \pi \alpha n}. \quad (11) \]

So (10) is nothing but \(q = e^{-\pi \frac{\alpha}{2}} \) in the more familiar notation of the theory of elliptic functions.

Functions (3), (4) imply certain symmetric relations for the Lerch zeta function (3), ch. 18.5). For example
the fourth function in (4) leads to the identity

\[\sum_{n=-\infty}^{\infty} \frac{\sin(\sqrt{2\pi n} p)}{n + \frac{p}{\sqrt{2}}} = \sum_{n=-\infty}^{\infty} \frac{\sin(\sqrt{2\pi n} q)}{n + \frac{q}{\sqrt{2}}} \quad \text{for} \quad pq = 1, \quad \frac{1}{\sqrt{2}} < p < \sqrt{2}. \quad (12) \]
II. Functions of two variables

One may also consider self reciprocal Fourier functions of two variables. Apart from the non-interesting factorizable functions of this form there are quite non-trivial functions. To find some of them we use the following observation: If \(f(x, y) = f(y, x) \) and
\[
\sqrt{\frac{2}{\pi}} \int_0^\infty f(x, y) \cos ax \, dx = g(a, y) = g(y, a),
\]
(in other words, if partial Fourier transform of a symmetric function is symmetric) then \(f(x, y) \) is a self-reciprocal Fourier function of two variables, i.e.
\[
\frac{2}{\pi} \int_0^\infty \int_0^\infty f(x, y) \cos ax \cos by \, dx \, dy = f(a, b).
\]

Example: Since \((7)\), formula 3.981.8
\[
\int_0^\infty \frac{\sin xy}{\sinh(\sqrt{\pi}x)} \cos ax \, dx = \frac{\sqrt{\pi}}{2} \frac{\sinh(\sqrt{\pi}y)}{\cosh(\sqrt{\pi}y) + \cosh(\sqrt{\pi}a)}
\]
we get a pair of self-reciprocal Fourier transformations
\[
\frac{2}{\pi} \int_0^\infty \int_0^\infty \frac{\cos ax \cos by}{\cosh(\sqrt{\pi}x) + \cosh(\sqrt{\pi}y)} \, dx \, dy = \frac{1}{\cosh(\sqrt{\pi}a) + \cosh(\sqrt{\pi}a)}, \tag{13}
\]
\[
\frac{2}{\pi} \int_0^\infty \int_0^\infty \frac{\sin xy}{\sinh(\sqrt{\pi}x) \sinh(\sqrt{\pi}y)} \cos ax \cos by \, dx \, dy = \frac{\sin ab}{\sinh(\sqrt{\pi}a) \sinh(\sqrt{\pi}b)}. \tag{14}
\]

Though not a self reciprocal function, note the curious transformation
\[
\frac{2}{\pi} \int_0^\infty \int_0^\infty \frac{\cos xy}{\cosh(\frac{1}{2}\sqrt{\pi}x) \cdot \cosh(\frac{1}{2}\sqrt{\pi}y)} \cos ax \cos by \, dx \, dy = \frac{\sin ab}{\sinh(\frac{1}{2}\sqrt{\pi}a) \cdot \sinh(\sqrt{\frac{1}{2}\pi}b)}, \tag{15}
\]

More self-reciprocal functions of one and two variables can be found in \([12]\).

Poisson summation formula \((5)\) is easily generalized to even functions of two variables as follows
\[
\sqrt{\alpha \beta} \sum_{m,n=-\infty}^{\infty} \phi(\alpha m, \beta n) = \sqrt{\gamma \delta} \sum_{m,n=-\infty}^{\infty} \phi_c(\gamma m, \delta n), \quad \alpha \gamma = \beta \delta = 2\pi, \tag{16}
\]
where
\[
\phi_c(t, s) = \frac{2}{\pi} \int_0^\infty \int_0^\infty \phi(x, y) \cos tx \cos sy \, dx \, dy.
\]

It is instructive to see what happens if \((16)\) is applied to \((15)\). Straightforward calculation shows that
\[
\sqrt{\alpha \beta} \sum_{m,n=-\infty}^{\infty} \frac{\cos \alpha \beta mn}{\cosh(\frac{1}{2}\sqrt{\pi} \alpha m) \cdot \cosh(\frac{1}{2}\sqrt{\pi} \beta n)} = \sqrt{\gamma \delta} \sum_{m,n=-\infty}^{\infty} \frac{\sin \gamma \delta mn}{\sinh(\frac{1}{2}\sqrt{\pi} \gamma m) \cdot \sinh(\frac{1}{2}\sqrt{\pi} \delta n)}, \quad \alpha \gamma = \beta \delta = 2\pi.
\]
Here it is assumed that the terms with \(m = 0 \) or \(n = 0 \) on the RHS of are understood as the limits \(\lim_{m \to 0}, \lim_{n \to 0} \). Setting \(\delta = \alpha, \gamma = \beta \) and making the replacement \(\alpha \to \sqrt{2\pi\alpha}, \beta \to \sqrt{2\pi\beta} \) one obtains (care should be taken to simplify the sum on the right)

\[
\sum_{n=-\infty}^{\infty} \frac{1}{\cosh \pi n \alpha} \sum_{n=-\infty}^{\infty} \frac{1}{\cosh \pi n \beta} = \frac{2}{\pi} + 4 \sum_{n=1}^{\infty} \frac{\alpha n}{\sinh \pi n \alpha} + 4 \sum_{n=1}^{\infty} \frac{\beta n}{\sinh \pi n \beta}, \quad \alpha \beta = 1. \quad (17)
\]

It is known that \([6, \text{ch. 22.735}]\)

\[
\sum_{n=1}^{\infty} \frac{n}{\sinh \pi n \alpha} = \frac{K(K - E)}{\pi^2},
\]

with the same notations as in (11) and \(E = E(k) \) complete elliptic integral of the second kind. Therefore (17) is Legendre’s relation \(EK' + E'K - KK' = \frac{\pi}{2} \) in disguise.

Hyperbolic functions provide many other transformations. Let’s start with the calculation of the integral

\[
J = \int_{0}^{\infty} \int_{0}^{\infty} \frac{\cos xy}{\cosh px \cosh(\pi y/p)} \cos ax \cos by \, dx \, dy.
\]

By formula 3.981.10 from \([7]\):

\[
J = \int_{0}^{\infty} \frac{\cos by}{\cosh(\pi y/p)} dy \int_{0}^{\infty} \frac{\cos xy}{\cosh px} \cos ax \, dx
\]

\[
= \int_{0}^{\infty} \frac{\cos by}{\cosh(\pi y/p)} \cdot \pi \cosh \frac{\pi a}{2p} \cosh \frac{\pi y}{2p} \cdot \frac{\cosh \frac{\pi a}{p} + \cosh \frac{\pi y}{p}}{\cosh(\pi y/p)} \, dy
\]

\[
= \frac{\pi}{\sqrt{2}} \cdot \frac{\cosh \frac{\pi a}{2p} \cosh \frac{\pi b}{2p}}{\cosh \frac{\pi a}{p} \cosh(\pi b)} - \frac{\pi}{2} \cdot \frac{\cos ab}{\cosh \frac{\pi a}{p} \cosh(\pi b)},
\]

so finally

\[
\frac{2}{\pi} \int_{0}^{\infty} \int_{0}^{\infty} \frac{\cos xy}{\cosh px \cosh(\pi y/p)} \cos ax \cos by \, dx \, dy = \sqrt{2} \cdot \frac{\cosh \frac{\pi a}{2p} \cosh \frac{\pi b}{2p}}{\cosh \frac{\pi a}{p} \cosh(\pi b)} - \frac{\cos ab}{\cosh \frac{\pi a}{p} \cosh(\pi b)}. \quad (18)
\]

We see that the right hand side is the original function (taken with the minus sign) up to an additional term, which a factorizable function.

Applying Poisson summation (16) to (18) one finds

\[
\sqrt{2} \sum_{m=-\infty}^{\infty} \frac{1}{\cosh \pi a m} \sum_{n=-\infty}^{\infty} \frac{1}{\cosh \pi b n} = \sum_{m=-\infty}^{\infty} \frac{\cosh \pi a m}{\cosh \pi a m} \sum_{n=-\infty}^{\infty} \frac{\cosh \pi b n}{\cosh \pi b n}, \quad \alpha \beta = 2. \quad (19)
\]

(19) is equivalent to the modulus transformation of Landen’s transform, i.e. \((1 + k_1)(1 + k') = 2\) in the notation of the book \([6]\). Indeed, if \(\alpha = \frac{K(k')}{K(k)} \), \(\beta = \frac{\Lambda(k_1)}{\Lambda(k_1')} \), then

\[
\Lambda' = \frac{\pi}{2} \sum_{n=-\infty}^{\infty} \frac{1}{\cosh \pi b n}.
\]
Eqs. (21), (22) lead to identities.

More complicated pair of integrals:

\[
\frac{2}{\pi} \int_0^\infty \int_0^\infty \frac{\sin xy}{\cosh px \cosh(\pi y/p)} \sin ax \sin by \, dx \, dy = \sqrt{2} \cdot \frac{\sin \frac{\pi a}{p} \sinh \frac{\pi b}{p}}{\cosh \frac{\pi a}{p} \cosh \frac{\pi b}{p}}.
\]

(20)

More complicated pair of integrals:

\[
\frac{4}{\pi} \int_0^\infty \int_0^\infty \frac{\cos xy \cos ax \cos by}{(1 + 2 \cosh x)(1 + 2 \cosh \frac{2\pi y}{3})} = \sqrt{3} \sin ab \cosh b \cosh \frac{\pi a}{3} \sinh \frac{\pi a}{2} - \frac{1 + \cos ab}{(1 + 2 \cosh \frac{2\pi a}{3})(1 + 2 \cosh b)}.
\]

(21)

\[
\frac{4}{\pi} \int_0^\infty \int_0^\infty \frac{\sin xy \sin ax \sin by}{(1 + 2 \cosh x)(1 + 2 \cosh \frac{2\pi y}{3})} = \sqrt{3}(1 - \cos ab) \cosh b \cosh \frac{\pi a}{3} \sinh \frac{\pi a}{2} \sinh \frac{\pi a}{2} - \frac{\sin ab}{(1 + 2 \cosh \frac{2\pi a}{3})(1 + 2 \cosh b)}.
\]

(22)

Eqs. (21), (22) lead to identities

\[
\alpha \sum_{n=1}^{\infty} \frac{n \cosh \frac{\pi a n}{\sqrt{3}}}{\sinh (\pi a \sqrt{3})} + \frac{1}{\alpha} \sum_{n=1}^{\infty} \frac{n \cosh \frac{\pi b n}{\sqrt{3}}}{\sinh (\pi b \sqrt{3}/\alpha)} = -\frac{1}{2\pi \sqrt{3}} + \frac{1}{4} \left(\sum_{n=-\infty}^{\infty} \frac{1}{\cosh \frac{2\pi a n}{\sqrt{3}} + 1/2} \right)^2,
\]

(23)

\[
\sqrt{3} \sum_{n=0}^{\infty} \frac{1}{2} + \cosh \frac{2\alpha(2n+1)}{\sqrt{3}} \sum_{n=0}^{\infty} \frac{1}{2} + \cosh \frac{2\beta(2n+1)}{\sqrt{3}} = \sum_{n=1}^{\infty} \frac{\chi(n)}{\sinh \frac{\pi a \sqrt{3}}{2} \sinh \frac{\pi b \sqrt{3}}{2}},
\]

(24)

Of course it is possible to derive both (23) and (24) from the theory of elliptic functions. However it is not at all obvious that such symmetric relations exist in the first place and moreover the methodology developed in this section is useful in derivation of identities that probably can not be obtained from the theory of elliptic functions in a straightforward manner. One such identity is

\[
f_{\beta}^2(\theta) - 2 \cos \theta f_{\beta}(\theta) f_{\beta}(2\theta) + \frac{\cos \theta}{\sin^2 \theta} f_{\beta}(\theta) = \sum_{n=-\infty}^{\infty} \frac{1}{(\cosh \beta n - \cos \theta)^2} + 4 \sum_{n=1}^{\infty} \frac{n \coth \frac{\beta n}{2}}{\cosh \beta n - \cos 2\theta}
\]

where

\[
f_{\beta}(\theta) = \sum_{n=-\infty}^{\infty} \frac{1}{\cosh \beta n - \cos \theta}.
\]

III. Two-dimensional Mordell integrals

Let’s multiply (1x) by \(e^{-\frac{\pi^2}{p} - \frac{\pi^2}{q}}\) and integrate with respect to \(a\) and \(b\)

\[
\int_0^\infty \int_0^\infty \frac{\cos xy}{\cosh px \cosh(\pi y/p)} e^{-\frac{\pi^2}{p} - \frac{\pi^2}{q}} \, dx \, dy =
\]

\[
\sqrt{2} \cdot \int_0^\infty \int_0^\infty \frac{\cosh \frac{\pi a}{p} \cosh \frac{\pi b}{q}}{\cosh \frac{\pi a}{p} \cosh \frac{\pi b}{q}} e^{-\frac{\pi^2}{p} - \frac{\pi^2}{q}} \, da \, db - \int_0^\infty \int_0^\infty \frac{\cos ab}{\cosh \frac{\pi a}{p} \cosh \frac{\pi b}{q}} e^{-\frac{\pi^2}{p} - \frac{\pi^2}{q}} \, da \, db.
\]
This can be written in the following symmetrical form
\[\sqrt{2} \cdot \int_0^\infty \int_0^\infty \frac{\cos 2xy}{\cosh \alpha x \cosh \beta y} e^{-x^2-y^2} \, dx \, dy = \int_0^\infty \frac{\cosh \alpha x}{\cosh \alpha x} e^{-x^2} \, dx \cdot \int_0^\infty \frac{\cosh \beta y}{\cosh \beta y} e^{-y^2} \, dy, \quad \alpha \beta = 2\pi. \] (25)

Note the similarity of (25) with the Landen transform (19). Since Mordell integrals can be understood as continuous analogs of theta functions \[3\], (25) can be understood as Landen’s transform for Mordell integrals. However, the factorization on the left side of (25) does not occur because of the function \(\cos 2xy \) in the integrand (in the discrete case, it was possible to choose the parameters so that \(\cos 2xy \) didn’t have any mixing effect on the two series, so the double series factorized; unfortunately, this is not possible for an integral).

Combining (25) with (6) leads to
\[\int_0^\infty \int_0^\infty e^{-x^2-y^2} \cos 2xy \cosh \alpha x \cosh \left(\frac{2\pi y}{\alpha}\right) \, dx \, dy = \frac{\alpha}{2\sqrt{\pi}} \left(\int_0^\infty \frac{\cosh \alpha x}{\cosh \alpha x} e^{-x^2} \, dx \right)^2. \] (26)

Corollary 1.
\[\int_0^\infty \int_0^\infty \cos \frac{\pi x}{2} \left(\frac{n x^2 - y^2}{n} \right) \cos \pi x y \cosh \pi x \cosh \pi y \, dx \, dy = \frac{\sqrt{n}}{2} I_1^2 - \frac{\sqrt{n}}{2} I_2^2 + \sqrt{n} I_1 I_2, \]
\[\int_0^\infty \int_0^\infty \sin \frac{\pi x}{2} \left(\frac{n x^2 - y^2}{n} \right) \cos \pi x y \cosh \pi x \cosh \pi y \, dx \, dy = \frac{\sqrt{n}}{2} I_3^2 - \frac{\sqrt{n}}{2} I_2^2 + \sqrt{n} I_1 I_2, \]
where \(I_1 = \int_0^\infty \frac{\cosh \frac{\pi x}{2}}{\cosh \pi x} \cos \frac{\pi x}{2} \, dx, \quad I_2 = \int_0^\infty \frac{\cosh \frac{\pi x}{2}}{\cosh \pi x} \sin \frac{\pi x^2}{2} \, dx, \quad n > 0. \)

In analogous manner (20) and (7) give
\[\int_0^\infty \int_0^\infty x y e^{-x^2-y^2} \sin 2xy \cosh \alpha x \cosh \left(\frac{2\pi y}{\alpha}\right) \, dx \, dy = \frac{\alpha}{2\sqrt{\pi}} \left(\int_0^\infty \frac{\sinh \frac{\pi x}{2}}{\cosh \alpha x} e^{-x^2} \, dx \right)^2. \] (27)

Corollary 2.
\[\int_0^\infty \int_0^\infty \cos \frac{\pi x}{2} \left(\frac{n x^2 - y^2}{n} \right) \sin \pi x y \cosh \pi x \cosh \pi y \, x \, dy = \frac{\sqrt{n^3}}{2} \left(I_4^2 - I_2^2 + 2I_3 I_4 \right), \]
\[\int_0^\infty \int_0^\infty \sin \frac{\pi x}{2} \left(\frac{n x^2 - y^2}{n} \right) \cos \pi x y \cosh \pi x \cosh \pi y \, x \, dy = \frac{\sqrt{n^3}}{2} \left(I_3^2 - I_4^2 + 2I_3 I_4 \right), \]
where \(I_3 = \int_0^\infty \frac{x \sinh \frac{\pi x}{2}}{\cosh \pi x} \cos \frac{\pi x^2}{2} \, dx, \quad I_4 = \int_0^\infty \frac{x \sinh \frac{\pi x}{2}}{\cosh \pi x} \sin \frac{\pi x^2}{2} \, dx, \quad n > 0. \)

Ramanujan showed that integrals \(I_1 - I_4 \) have closed form expressions for rational \(n \) \[3\]. So the corresponding two-dimensional integrals also have closed form expressions.
Examples.

\[
\int_0^\infty \int_0^\infty \frac{\cos \frac{\pi}{2} \left(3x^2 - \frac{y^2}{3} \right) \cos \pi xy}{\cosh \pi x \cosh \pi y} \, dx \, dy = \frac{\sqrt{3} - 1}{2\sqrt{6}},
\]

\[
\int_0^\infty \int_0^\infty \frac{\sin \frac{\pi}{2} \left(3x^2 - \frac{y^2}{3} \right) \cos \pi xy}{\cosh \pi x \cosh \pi y} \, dx \, dy = \frac{2 - \sqrt{3}}{4\sqrt{2}},
\]

\[
\int_0^\infty \int_0^\infty \frac{\cos \frac{\pi}{2} \left(x^2 - y^2 \right) \sin \pi xy}{\cosh \pi x \cosh \pi y} \, dx \, dy = \frac{1}{8\sqrt{2}\pi^2}.
\]

It is possible to calculate even more general integrals. In analogy with Ramanujan’s integral analogs of theta functions define

\[
\Phi_{\alpha,\beta}(\theta, \phi) = \int_0^\infty \int_0^\infty \frac{\cos \pi xy \cos \theta x \cos \phi y}{\cosh \pi x \cosh \pi y} \exp \left\{ -\frac{\pi}{2} \left(\alpha x^2 + \beta y^2 \right) \right\} \, dx \, dy.
\]

Then

\[
\sqrt{\alpha \beta} \exp \left\{ \frac{1}{2\pi} \left(\frac{\theta^2}{\alpha} + \frac{\phi^2}{\beta} \right) \right\} \Phi_{\alpha,\beta}(\theta, \phi) + \Phi_{\alpha,\beta} \left(i\frac{\theta}{\alpha}, i\frac{\phi}{\beta} \right)
= \sqrt{2} \int_0^\infty \frac{\cosh \frac{\pi x}{2} \cosh \frac{\theta y}{2}}{\cosh \pi x} \exp \left\{ -\frac{\pi x^2}{2\alpha} \right\} \, dx \cdot \int_0^\infty \frac{\cosh \frac{\pi y}{2} \cosh \frac{\phi y}{2}}{\cosh \pi y} \exp \left\{ -\frac{\pi y^2}{2\beta} \right\} \, dy.
\]

Equation (28) generalizes (26). Now one can apply the method developed by Ramanujan \[3\] to the function \(\Phi_{\alpha,\beta}(\theta, \phi)\). From the definition of \(\Phi_{\alpha,\beta}(\theta, \phi)\) it follows that

\[
\Phi_{\alpha,\beta}(\theta + \pi i, \phi) + \Phi_{\alpha,\beta}(\theta - \pi i, \phi) = \exp \left\{ -\frac{\theta^2}{2\pi} \right\} \sqrt{\frac{2}{\alpha}} \int_0^\infty \frac{\cosh \frac{\pi y}{2} \cosh \frac{\theta y}{\alpha}}{\cosh \pi y} \exp \left\{ -\frac{\pi y^2}{2\beta} \right\} \, dy.
\]

Now combine (28) and (29) to get

\[
\sqrt{\frac{\beta}{2}} \exp \left\{ \frac{\phi^2}{2\pi \beta} \right\} \left(\exp \left\{ \frac{(\theta + \pi \alpha)^2}{2\pi \alpha} \right\} \Phi_{\alpha,\beta}(\theta + \pi \alpha, \phi) + \exp \left\{ \frac{(\theta - \pi \alpha)^2}{2\pi \alpha} \right\} \Phi_{\alpha,\beta}(\theta - \pi \alpha, \phi) \right) = \]

\[
- \exp \left\{ \frac{\theta^2}{2\pi \alpha} \right\} \int_0^\infty \frac{\cosh \theta y \cosh \frac{\phi y}{\alpha}}{\cosh \pi y} \exp \left\{ -\frac{\pi}{2} \left(\alpha + \frac{1}{\beta} \right) y^2 \right\} \, dy + \]

\[
\sqrt{2} \exp \left\{ \frac{\pi \alpha}{8} + \frac{\theta^2}{2\pi \alpha} \right\} \cosh \frac{\theta}{2} \int_0^\infty \frac{\cosh \frac{\pi y}{2} \cosh \frac{\phi y}{\beta}}{\cosh \pi y} \exp \left\{ -\frac{\pi y^2}{2\beta} \right\} \, dy.
\]

These formulas reduce the problem to the calculation of one-dimensional Mordell integrals. Similar formulas also exist for

\[
\Psi_{\alpha,\beta}(\theta, \phi) = \int_0^\infty \int_0^\infty \frac{\sin \pi xy \sin \theta x \sin \phi y}{\cosh \pi x \cosh \pi y} \exp \left\{ -\frac{\pi}{2} \left(\alpha x^2 + \beta y^2 \right) \right\} \, dx \, dy.
\]
IV. Absolute value of the Mordell integral

For real α one has for the square of the absolute value of the Mordell integral

$$4|I(\alpha)|^2 = \int_{-\infty}^{\infty} \frac{e^{i\alpha x^2}}{\cosh \pi x} \, dx \cdot \int_{-\infty}^{\infty} \frac{e^{-i\alpha(x+y)^2}}{\cosh \pi(x+y)} \, dy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{e^{-i\alpha x^2 - 2i\alpha xy}}{\cosh \pi x \cosh \pi(x+y)} \, dxdy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-2i\alpha xy} \cosh \pi(x-y/2) \cosh \pi(x+y/2) \, dxdy$$

$$= 2 \int_{-\infty}^{\infty} dy \int_{-\infty}^{\infty} \frac{e^{-2i\alpha xy}}{\cosh \pi x} \cosh \pi y \, dx$$

$$= 4 \int_{-\infty}^{\infty} \frac{\sin \alpha y^2}{\sinh \pi y \sinh \alpha y} \, dy.$$
by the way (34) implies the self reciprocal function \(\frac{1 - \cos xy}{\sinh(\sqrt{\pi x}) \sinh(\sqrt{\pi y})} \), we put \(b = \alpha a \) in both, take the sum of (14) multiplied by \(e^{\frac{i \pi}{a^2}} \) and (34) multiplied by \(ie^{\frac{i \pi}{a^2}} \), integrate from 0 to \(\infty \) using formulas

\[
\int_0^\infty \cos ax \cos \alpha ay \ e^{\frac{i \pi}{a^2}} \ da = \sqrt{\frac{\pi}{2\alpha}} \ e^{-\frac{1}{2\alpha}(x^2 + \alpha^2 y^2)} \cos xy,
\]

\[
\int_0^\infty \sin ax \sin \alpha ay \ e^{\frac{i \pi}{a^2}} \ da = i \sqrt{\frac{\pi}{2\alpha}} \ e^{-\frac{1}{2\alpha}(x^2 + \alpha^2 y^2)} \sin xy,
\]

to obtain

\[
0 = \frac{i}{2} \int_0^\infty \tanh \frac{\sqrt{\pi} a}{2} \tanh \frac{\sqrt{\pi} \alpha a}{2} \ e^{\frac{i \pi}{a^2}} \ da + \int_0^\infty -i(1 - \cos \alpha a^2) + \sin \alpha a^2 \ sinh(\sqrt{\pi a}) \ sinh(\sqrt{\pi a}) \ e^{\frac{i \pi}{a^2}} \ da.
\]

From this it is straightforward to deduce (33) and as a byproduct

\[
\int_0^\infty \frac{2 \sin \alpha x^2}{\sinh \pi x \ sinh \alpha x} \ dx = \int_0^\infty \tan \pi x \ tanh \alpha x \ sin 2\alpha x^2 \ dx.
\]

Compare (33) to the integral of Ramanujan ([8], generalizations are given in [9,10])

\[
\int_0^\infty \cosh \frac{\alpha x}{\cosh \pi x} \ cos \alpha x^2 \ dx = \frac{1}{2} \cos \frac{\alpha}{4}.
\]

(35)

They both contain trigonometric function of the argument \(\alpha x^2 \) and hyperbolic functions of the arguments \(\pi x \) and \(\alpha x \). However the crucial difference between them is that the integrand in (33) has poles not only at the zeroes of \(\cosh \pi x \), but also at the zeroes of \(\cosh \alpha x \). Integrals of this sort are related to integrals for the product of two hyperbolic self-reciprocal functions studied by Ramanujan ([8], formula (10)). Put in (18) and (20) \(b = \alpha a \) and integrate with respect to \(a \). The result is

\[
\sqrt{2} \int_0^\infty \frac{\cos \alpha x^2}{\cosh \pi x \ \cosh \alpha x} \ dx = \int_0^\infty \frac{\cosh \frac{\pi x}{2} \cosh \frac{\alpha x}{\cosh \pi x}}{\cosh \pi x \ \cosh \alpha x} \ dx,
\]

(36)

\[
\sqrt{2} \int_0^\infty \frac{\sin \alpha x^2}{\cosh \pi x \ \cosh \alpha x} \ dx = \int_0^\infty \frac{\sinh \frac{\pi x}{2} \sinh \frac{\alpha x}{\cosh \pi x}}{\cosh \pi x \ \cosh \alpha x} \ dx.
\]

(37)

V. Connection to lattice sums

Multiplying (18) and (20) by \(\frac{1}{\sqrt{ab}} \) and integrating with respect to \(a \) and \(b \) leads to

\[
\sqrt{2} \int_0^\infty \int_0^\infty \frac{\cos \frac{x^2 y^2}{\pi}}{\cosh x^2 \ \cosh y^2} \ dxdy = \left(\int_0^\infty \frac{\cosh \frac{\pi x}{2}}{\cosh x^2} \ dx \right)^2,
\]

(38)

\[
\sqrt{2} \int_0^\infty \int_0^\infty \frac{\sin \frac{x^2 y^2}{\pi}}{\cosh x^2 \ \cosh y^2} \ dxdy = \left(\int_0^\infty \frac{\sinh \frac{\pi x}{2}}{\cosh x^2} \ dx \right)^2.
\]

(39)

The RHS of (38) and (39) contain integral representation of certain Dirichlet L-series, while the LHS are 2D-lattice sums of Bessel and Neumann functions, as shown below on a formal level. Evaluation of double sums of Bessel functions in terms of Dirichlet L-series is well known [11].
Consider the double integral on the LHS of (38). First, the functions sech x^2 are expanded into the powers of e^{-x^2}. This results in a double sum of double integrals

$$\int_0^\infty \int_0^\infty e^{-(2m+1)x^2-(2n+1)y^2} \cos\frac{x^2y^2}{\pi} \, dx \, dy,$$

where m and n are non-negative integers. The integral over y is easily calculated

$$\int_0^\infty e^{-(2n+1)y^2} \cos\frac{x^2y^2}{\pi} \, dy = \frac{\pi}{2} \left(\frac{1}{\sqrt{\pi(2m+1)+ix^2}} + \frac{1}{\sqrt{\pi(2m+1)-ix^2}} \right).$$

To calculate the integral over x we need formula 3.364.3 from [7]

$$\int_0^\infty \frac{e^{-(2n+1)x^2}}{\sqrt{\pi(2m+1) \pm ix^2}} \, dx = \frac{1}{2}(-1)^m e^{\frac{\pi i}{4} K_0 \left(\frac{\pi i}{2}(2m+1)(2n+1) \right)}.$$

Note that $K_0(ix) = -\frac{i}{2}(Y_0(x) + iJ_0(x)), \ x \in \mathbb{R}$. As a result the double integral in (38) reduces to a combination of double sums

$$\sum_{m,n=0}^\infty Z_0 \left(\frac{\pi}{2}(2m+1)(2n+1) \right),$$

where Z_0 is either Bessel J_0 or Neumann Y_0 function.

Acknowledgements. The author of this paper wish to thank Dr. Lawrence Glasser for valuable correspondence and comments.

1. G.H. Hardy, *Note on the function $\int_x^{\infty} e^{\frac{1}{2}(x^2-t^2)} \, dt$*, Quart. J. Pure Appl. Math., 35, 203 (1903).
2. B. Cais, *On the transformation of infinite series* (unpublished).
3. B. Berndt and G.E. Andrews, *Ramanujan’s lost notebook, part IV*, Springer New York (2005).
4. E.C. Titchmarsh, *Introduction to the Theory of Fourier Integrals*, 2nd ed., Oxford University Press (1948).
5. S. Ramanujan, *Some definite integrals*, Mess. Math., XLIV, 10 - 18 (1915).
6. E.T. Whittaker and G.N. Watson, *A Course of Modern Analysis*, Cambridge university press (1996).
7. I.S. Gradshteyn, and I.M. Ryzhik, *Table of Integrals, Series, and Products*, 6th ed., Academic Press, Boston (2000).
8. S. Ramanujan, *Some definite integrals*, J. Indian Math. Soc., XI, 81-87 (1919).
9. M. L. Glasser, *Generalization of a definite integral of Ramanujan*, J. Indian Math. Soc., 37, 351 (1973).
10. M. L. Glasser, *A Remarkable Definite Integral*, arXiv:1308.6361v2 (2013).
11. J.M. Borwein, M.L. Glasser, R.C. McPhedran, J.G. Wan, I.J. Zucker, *Lattice sums then and now*, Cambridge University Press (2013).
12. www.someformulas.blogspot.com