Serial and parallel kernelization of Multiple Hitting Set parameterized by the Dilworth number, implemented on the GPU*

René van Beverna, Artem M. Kirilinb, Daniel A. Skachkova, Pavel V. Smirnovc, Oxana Yu. Tsidulkoa

aHuawei Technologies Co., Ltd.
bSiberian Federal University, Krasnoyarsk, Russian Federation
cRecraft

Abstract

The NP-hard Multiple Hitting Set problem is the problem of finding a minimum-cardinality set intersecting each of the sets in a given input collection a given number of times. Generalizing a well-known data reduction algorithm due to Weihe, we show a problem kernel for Multiple Hitting Set parameterized by the Dilworth number, a graph parameter introduced by Foldes and Hammer in 1978 yet seemingly so far unexplored in the context of parameterized complexity theory. Using matrix multiplication, we speed up the algorithm to quadratic sequential time and logarithmic parallel time. We experimentally evaluate our algorithms. By implementing our algorithm on GPUs, we show the feasibility of realizing kernelization algorithms on SIMD (Single Instruction, Multiple Data) architectures.

1. Introduction

The following fundamental combinatorial optimization problem arises in bioinformatics [44], medicine [42, 52], clustering [13, 37], automatic reasoning [17, 26, 49], feature selection [16, 31], radio frequency allocation [50], software engineering [48], and public transport optimization [15, 53].

Problem 1.1 (Multiple Hitting Set).

\textbf{Input:} A hypergraph $H = (V, E)$ with vertices $V = \{v_1, \ldots, v_n\}$ and hyperedges $E = \{e_1, \ldots, e_m\} \subseteq 2^V$, a demand function $f : E \to \{1, \ldots, \alpha\}$, and $k, \alpha \in \mathbb{N}$.

\textbf{Question:} Is there a hitting set $S \subseteq V$ of cardinality at most k such that $|e \cap S| \geq f(e)$ for each $e \in E$?

Already the special case with $f \equiv 1$, known as simply Hitting Set, is NP-complete [38]. Exact algorithms for NP-complete problems usually take time exponential in the input size. Thus, an important preprocessing step is data reduction, which has proven to significantly shrink real-world instances of NP-hard problems [2, 3, 11, 12, 14, 15, 42, 53]. In the context of public transport optimization, Weihe [53] introduced a simple but very effective in experiments [14, 15, 53] data reduction algorithm for Hitting Set. It exhaustively applies two data reduction rules that do not alter the answer to the input instance:

\textbf{(W1)} If there is a pair of distinct vertices v_i and v_j such that every hyperedge containing v_j also contains v_i, delete v_j.

\textbf{(W2)} If there is a pair of distinct hyperedges e_i and e_j such that $e_i \subseteq e_j$, then delete e_j.

Using kernelization from parameterized complexity theory, which is formally defined in Section 2, our work contributes to the understanding, generalizes and speeds up Weihe’s data reduction algorithm in the following ways.

*The results presented in this work are unrelated to the authors’ work at Huawei or Recraft, respectively.
*Corresponding author.

Email addresses: rene.van.bevern@huawei.com (René van Bevern), kirilinartem@gmail.com (Artem M. Kirilin), skachkov.daniel@huawei-partners.com (Daniel A. Skachkov), pavel.vl.smirnov@recraft.ai (Pavel V. Smirnov), tsidulko.oksana@huawei.com (Oxana Yu. Tsidulko)
Understanding. While the data reduction effect of Weihe’s algorithm is experimentally proven [14, 15, 53], finding theoretical explanations for its effectiveness is challenging [15, 27]. For example, Fellows [27] asks “Weihe’s example looks like an FPT kernelization, but what is the parameter?” We show that Weihe’s algorithm actually computes problem kernels for Hitting Set whose number of vertices and hyperedges is linear in the Dilworth number of the incidence graph of the input hypergraph (see Section 2.3 for a definition).

The Dilworth number has been introduced by Foldes and Hammer [30] in 1978, which led to a series of studies of the structure of graphs with small Dilworth number [18, 28, 36, among others]. However, the Dilworth number until now seems unexplored in a parameterized complexity context. For example, neither Gera et al. [35] nor Sorge and Weller [51] list it. This is surprising, since the Dilworth number is bounded from above by the neighborhood diversity (see Section 2.3), which is a well-established parameter in parameterized complexity studies [4, 32–34, 40], and it seems a logical step to analyze which parameterized algorithms for the neighborhood diversity can be strengthened to use the Dilworth number instead.

We note here that the Dilworth number of the incidence graph of a hypergraph \(H = (V, E) \) can be exponential in the number \(|V| \) of vertices; however, one in principle cannot expect problem kernels of size polynomial in \(|V| \) for Hitting Set unless the polynomial-time hierarchy collapses [22, 24]. Indeed, for problem kernels of size polynomial in \(|V| \) to exist, the cardinality of each input hyperedge must be bounded from above by a constant \(d \) [22]. In this case, problem kernels of size \(k^{O(d)} \) have been shown [1, 5, 7, 8, 14, 21, 25, 29, 39, 46, 47].

Generalization. Motivated by problems in feature selection, optimal cancer medication, and genome-wide association studies, attempts have been undertaken to generalize Weihe’s data reduction algorithm to Multiple Hitting Set [20, 41, 42]. However, Cotta et al. [20] only generalize the hyperedge deletion rule (W2). The generalization of the vertex deletion rule (W1) of Moscato et al. [45] is wrong: as shown in Appendix A, it does alter the answer to the input instance.

We provide a full generalization of Weihe’s algorithm in the sense that we obtain a problem kernel for Multiple Hitting Set whose number of vertices and hyperedges is linear in the Dilworth number of the incidence graph of the input hypergraph and in the maximum hyperedge demand \(\alpha \).

We provide additional data reduction rules that, in the case of Multiple Hitting Set and in contrast to (W2), allow for safe deletion even of hyperedges that are not contained within each other. While not provably lowering the size of problem kernels, we show their significant additional data reduction effect in experiments.

Speed-up. A comparison between Weihe’s algorithm and linear-time data reduction algorithms for Hitting Set has shown that the data reduction effect of Weihe’s algorithm is clearly superior when there are large hyperedges, yet the algorithm is significantly slower, even so much so as to make it inapplicable to large hypergraphs [14]. By looking at the algorithm through the lens of multiplying incidence matrices of the input hypergraph, we provide quadratic sequential-time and logarithmic parallel-time variants of our kernelization algorithms, thus contributing to parallel kernelization studies, which have recently gained increased interest [8, 10]. In contrast to previous, purely theoretic and proof-of-concept work on parallel kernelization, we implement our algorithm on GPUs and thus prove the feasibility of realizing kernelization algorithms on SIMD (Single Instruction, Multiple Data) architectures, in which all cores of a multiprocessor execute the same operation, yet on different (parts of) the data. Kernelization algorithms, which are often a set of data reduction rules applied on different parts of the input, seem to lend themselves to implementation on SIMD architectures.

Organization of this work. Section 2 introduces basic graph-theoretic, parameterized complexity, and kernelization terminology. Section 3 presents known and new data reduction rules for Multiple Hitting Set, and shows that they yield a problem kernel whose number of vertices and hyperedges is linear in the Dilworth number. Section 4 shows how to obtain fast serial and parallel implementations of the data reduction rules via matrix multiplication. Section 5 experimentally evaluates the effect and speed of our data reduction rules.

2. Preliminaries

In this section, we introduce basic graph-theoretic, parameterized complexity, and kernelization terminology.
2.1. Graphs and hypergraphs

Hypergraphs. A hypergraph is a pair \(H = (V, E) \), where \(V \) is a set of vertices and \(E \subseteq 2^V \) is a set of (hyper)edges. We will often denote the vertices and hyperedges as \(V = \{v_1, \ldots, v_n\} \) and \(E = \{e_1, \ldots, e_m\} \), respectively.

For a vertex \(v \in V \), by \(E(v) := \{e \in E \mid v \in e\} \), we denote the set of hyperedges containing \(v \). By \(|H| = |V| + \sum_{e \in E} |e| \), we denote the size of the hypergraph. This notion of size is motivated by the fact that each incidence between a vertex and a hyperedge has to be encoded in some form. The incidence matrix \(A(H) \) of a hypergraph \(H = (V, E) \) is an \((m \times n)\)-matrix such that

\[
A_{ij} = \begin{cases}
1, & \text{if } v_j \in e_i \\
0, & \text{otherwise.}
\end{cases}
\]

Undirected graphs. A hypergraph whose hyperedges have cardinality two is an (undirected) graph. For a vertex \(v \in V \) of a graph \(G = (V, E) \), \(N(v) := \{u \in V \mid \{u, v\} \in E\} \) denotes the open neighborhood of \(v \) and \(N[v] := N(v) \cup \{v\} \) denotes the closed neighborhood. To avoid confusion, throughout this work, the notation \(N(v) \) is exclusively applied to graphs, whereas \(E(v) \) is exclusively applied to hypergraphs (that are not graphs).

A matching in a graph is a set of pairwise disjoint edges. The matching number \(\nu(G) \) of a graph \(G \) is the maximum cardinality of any matching in \(G \). The incidence graph \(I(H) \) of a hypergraph \(H = (V, E) \) is a bipartite graph with the vertex set \(V \cup E \) and an edge \(\{v, e\} \) for each \(v \in V \) and \(e \in E \) such that \(v \in e \). That is, for any hyperedge \(e \) of \(H \), we have \(N(e) = e \) in the incidence graph \(I(H) \).

Directed graphs. A directed graph \(G = (V, A) \) consists of vertices \(V = \{v_1, \ldots, v_n\} \) and arcs \(A = \{a_1, \ldots, a_m\} \subseteq V^2 \). If \((v_i, v_j) \in A\), we call \(v_j \) a parent of \(v_i \). We call \(v_i \) an ancestor of \(v_j \) if \(v_i = v_j \), if \(v_i \) is a parent of \(v_j \), or if \(v_i \) is a parent of an ancestor of \(v_j \). A vertex without parents is called a source, a vertex that is not a parent of any other vertex is a sink.

A cycle in a directed graph is a sequence of vertices \(v_1, v_2, \ldots, v_l \) such that \((v_i, v_{i+1}) \in A\) for \(i \in \{1, \ldots, l-1\} \) and \((v_l, v_1) \in A\). A directed graph is acyclic if it contains no cycles.

Observation 2.1. Let \(G = (V, A) \) be a directed acyclic graph and \(X \subseteq V \). Every \(v \in X \) has an ancestor \(u \) in \(X \), all of whose parents are not in \(X \) (possibly, \(u = v \) and that set of parents may be empty).

2.2. Complexity theory and kernelization

Formally, we study decision problems \(\Pi \subseteq \{0, 1\}^* \), where the task is to decide whether a given \(x \in \{0, 1\}^* \) belongs to \(\Pi \).

Parameterized complexity. A parameterized problem is a pair \((\Pi, \kappa)\) where \(\Pi \subseteq \{0, 1\}^* \) is a decision problem and \(\kappa : \{0, 1\}^* \rightarrow \mathbb{N} \) is a polynomial-time computable function called a parameterization.

A kernelization for a parameterized problem \((\Pi, \kappa)\) is a polynomial-time algorithm that maps any instance \(x \in \{0, 1\}^* \) to an instance \(x' \in \{0, 1\}^* \) such that \(x \in \Pi \iff x' \in \Pi \) and such that \(|x'| \leq g(\kappa(x))\) for some computable function \(g \). We call \(x' \) the problem kernel and \(g \) its size.

Circuit families. A Boolean circuit with \(n \) inputs and \(m \) outputs is a directed acyclic graph with \(n \) sources and \(m \) sinks; each of its non-source vertices \(v \) has one of the following three types:

- \(v \) is labeled “\(\neg \)” and has exactly one parent,
- \(v \) is labeled “\(\lor \)” and has exactly two parents,
- \(v \) is labeled “\(\land \)” and has exactly two parents.

Identifying \(1 \) with the Boolean value \(\text{true} \) and \(0 \) with the Boolean value \(\text{false} \), we can inductively define the value \(\text{val}(v) \) of each vertex \(v \) of the Boolean circuit on input \(x \in \{0, 1\}^n \) as follows.

- The value of the \(i \)-th source is \(x_i \),
- For any vertex \(v \) labeled “\(\neg \)” with parent \(u \), \(\text{val}(v) := \neg \text{val}(u) \),
- For any vertex \(v \) labeled “\(\lor \)” with parents \(u_1 \) and \(u_2 \), \(\text{val}(v) := \text{val}(u_1) \lor \text{val}(u_2) \).
We say that an NC when given vinical order. This relation is reflexive and transitive and is called the size of a Boolean circuit is its number of vertices. The depth of a Boolean circuit is the length of the longest path from any source to any sink.

An NC circuit family is a sequence \((C_n)_{n \in \mathbb{N}} \) of Boolean circuits, each with \(n \) inputs, \(O(\log n) \) depth, and \(\text{poly}(n) \) size. We say that an NC circuit family \((C_n)_{n \in \mathbb{N}} \) decides a problem \(\Pi \subseteq \{0, 1\}^{*} \) if \(x \in \Pi \) if and only if the circuit \(C_n \) outputs 1 when given \(x \) on the input. More generally, we say that an NC circuit family \((C_n)_{n \in \mathbb{N}} \) computes a function \(f : \{0, 1\}^{*} \rightarrow \{0, 1\}^{*} \) if, for any \(x \in \{0, 1\}^{*} \), the circuit \(C_n \) outputs \(f(x) \) on input \(x \).

The outputs of NC circuits can be computed in logarithmic time on a parallel computer with a polynomial number of processors, where each processor computes the value of one vertex, taking as input the values of its parents \([6, \text{Section 6.7}].\)

Input encoding. For our parallel hypergraph algorithms (or NC circuits), we will generally assume incidence matrices as input, so that each parallel processor gets one matrix entry as input. For sequential hypergraph algorithms, we assume a list of vertices and a list of hyperedges on the input.

2.3. Dilworth number and neighborhood diversity

Consider the relation \(\subseteq \) on the vertices of a graph \(G = (V, E) \) such that

\[
 u \subseteq v \iff N(u) \subseteq N[v].
\]

This relation is reflexive and transitive and is called the vinical order of \(G \) \([30].\) We call two vertices \(u \) and \(v \) incomparable if \(u \nsubseteq v \) and \(v \nsubseteq u \). A chain is a subset of pairwise comparable vertices, whereas an antichain is a subset of pairwise incomparable vertices. The Dilworth number \(\nabla(G) \) of \(G \) is the size of a largest antichain in \(\subseteq \) \([30].\) which, by Dilworth’s theorem \([23].\) is equivalent to the minimum number of chains whose union is \(V \).

A related frequently studied graph parameter is the neighborhood diversity \([4, 32–34, 40].\) To introduce it, consider the relation \(\sim \) on the vertices of a graph \(G = (V, E) \) such that

\[
 u \sim v \iff N(u) \setminus \{v\} = N(v) \setminus \{u\}.
\]

This is an equivalence relation \([40].\) and the neighborhood diversity \(\delta(G) \) of \(G \) is the number of equivalence classes of \(\sim \).

Foldes and Hammer \([30].\) relate the Dilworth number to many other graph parameters, yet not to the neighborhood diversity, which is frequently used for parameterized complexity analysis but was introduced much later \([40].\) It is not hard to show that the Dilworth number is upper-bounded by the neighborhood diversity, but the gap between the two can be arbitrarily large:

Lemma 2.2.

(i) For any graph \(G, \) one has \(\nabla(G) \leq \delta(G) \).

(ii) For any \(n \in \mathbb{N} \), there is a graph \(G \) on \(2n \) vertices with \(1 = \nabla(G) \leq \delta(G) = 2n - 1 \).

Proof. (i) Consider any pair of vertices \(u \) and \(v \) of \(G \). Then,

\[
 u \sim v \iff N(u) \setminus \{v\} \subseteq N(v) \setminus \{u\} \iff N(u) \setminus \{v\} \subseteq N(v) \iff N(u) \subseteq N(v) \cup \{v\} \iff u \subseteq v.
\]

By definition, the vinical order \(\subseteq \) of \(G \) has an antichain \(C \) of cardinality \(\nabla(G) \). For any pair of distinct vertices \(u \) and \(v \) in \(C \), we have \(u \nsubseteq v \) and thus \(u \sim v \). It follows that \(\sim \) has at least \(|C| \) equivalence classes, and thus \(\nabla(G) = |C| \leq \delta(G) \).

(ii) Construct a graph \(G \) on \(2n \) vertices as follows. Start with an empty graph. Then, for each \(i \in \{1, \ldots, n\} \), add first an isolated vertex \(u_i \) and then add a vertex \(v_i \) that is adjacent to all previously added vertices. We get \(\delta(G) = 2n - 1 \) since each pair of vertices in \(G \), except for \(u_1 \) and \(v_1 \), are pairwise nonequivalent under \(\sim \):
— For any \(i, j \in \{1, \ldots, n\} \) such that \(i \neq j \), one has \(u_i \sim v_j \) since \(v_j \) is adjacent to \(u_j \) but \(u_i \) is not.
— For any \(i \in \{2, \ldots, n\} \), one has \(u_i \sim v_i \), since \(v_i \) is adjacent to \(v_1 \) but \(u_i \) is not.
— For \(1 \leq i < j \leq n \), one has \(v_i \sim v_j \) since \(v_j \) is nonadjacent to \(u_j \), and one has \(v_i \sim u_j \) since \(v_i \) is adjacent to \(u_i \) but \(u_j \) is nonadjacent to \(v_i \).

We also get \(\nabla(G) = 1 \) since each pair of vertices is comparable in the binomial order of \(G \): for \(1 \leq i \leq j \leq n \), one has \(N(v_i) \subseteq N[v_j] \) since any vertex added to \(G \) before \(v_j \) is obviously in \(N[v_j] \) and any vertex added to \(G \) after \(v_j \) is adjacent either to both of \(v_i \) and \(v_j \) or to none of them,

\[
N(u_i) \subseteq N[u_j] \quad \text{since any vertex added to } G \text{ before } u_j \text{ is nonadjacent to } u_j \text{ and any vertex added to } G \text{ after } u_j \text{ is adjacent either to all or none of } u_i \text{ and } u_j,
\]

Finally, one has \(N(u_1) \subseteq N[v_1] \), that is, one can cover all vertices by the single chain \(u_1 \subseteq u_{n-1} \subseteq \cdots \subseteq u_1 \subseteq v_1 \subseteq v_2 \subseteq \cdots \subseteq v_n \). Thus, \(\nabla(G) = 1 \).

3. A problem kernel for Multiple Hitting Set

In Section 3.1, we present several data reduction rules for Multiple Hitting Set that generalize Weihe’s rules (W1) and (W2). In Section 3.2, we show how problem kernels can be obtained by applying (subsets of) these data reduction rules. Later, in Section 5, we experimentally evaluate several combinations of these data reduction rules.

3.1. Data reduction rules

The following two data reduction rules were suggested by Cotta et al. [20]. The “full edge” rule (FE) exploits that all vertices in a hyperedge \(e_j \) with demand \(f(e_j) = |e_j| \) must belong to any feasible solution:

(FE) If there is a hyperedge \(e_j \in E \) such that \(|e_j| = f(e_j) \), then delete \(e_j \). Then delete each \(v \in e_j \), decrement \(k \) by \(|e_j| \), and decrement \(f(e_i) \) by one for each hyperedge \(e_i \) containing \(v \), deleting hyperedges \(e_i \) for which \(f(e_i) \) reaches 0.

The “supereedge” rule (SE) is a straightforward generalization of (W2) and exploits that the deleted hyperedge \(e_j \) will be hit whenever \(e_i \) is hit:

(SE) If there is a pair of distinct hyperedges \(e_i, e_j \in E \) such that \(e_i \subseteq e_j \) and \(f(e_i) \geq f(e_j) \), then delete \(e_j \).

Interestingly, one can further generalize (SE) so that it may delete even hyperedges that are \(not \) contained one in another. Assume, for example, two distinct yet intersecting hyperedges \(e_i, e_j \in E \). Any hitting set \(S \) must contain \(f(e_i) \) vertices of \(e_i \), yet there are only \(|e_i \setminus e_j| \) elements in \(e_i \) that are not also in \(e_j \). Thus, the remaining \(f(e_i) - |e_i \setminus e_j| \) elements of \(S \) must be in \(e_j \). We say that \(e_j \) pushes this amount of demand to \(e_i \). If \(e_i \) pushes at least \(f(e_i) \) units of demand to \(e_j \), then we know that \(e_j \) will be hit whenever \(e_i \) is, and can thus delete \(e_j \).

Definition 3.1. A hyperedge \(e_i \) supersedes a hyperedge \(e_j \) if \(f(e_i) - |e_i \setminus e_j| \geq f(e_j) \).

This gives rise to the following “demand pushing” rule (DP), which subsumes rule (SE) of Cotta et al. [20].

(DP) If there is a pair of distinct hyperedges \(e_i, e_j \in E \) such that \(e_i \supersede e_j \), then delete \(e_j \).

To further generalize the data reduction rule, one can exploit that, if a hyperedge \(e_j \in E \) intersects several hyperedges, then every hyperedge \(e_i \) intersecting \(e_j \) pushes some demand to \(e_i \cap e_j \). If satisfying these demands requires at least \(f(e_j) \) elements from \(e_j \), then one can delete \(e_j \). This leads to the following data reduction rule.

(LP) For a hyperedge \(e_j \in E \), consider the hypergraph \(H_j \) on the same vertex set as \(H \) yet containing, for each hyperedge \(e_i \in E \), a hyperedge \(e_i \cap e_j \) with demand \(f(e_i) - |e_i \setminus e_j| \) whenever this value is positive. Now, consider a lower bound \(L_j \) on the cardinality of any multiple hitting set for \(H_j \).\(^1\) If \(L_j \geq f(e_j) \), then delete \(e_j \).

\(^1\)The lower bound \(L_j \) can be obtained, for example, via an integer linear programming relaxation.
Theorem 3.4. (see Appendix A). To state the data reduction rule, we need the following definition.

To verify the correctness of (LP), observe that, even if the multiple hitting set in H contains $e_i \setminus e_j$ for each $e_i \in E$, it still needs to contain at least $f(e_i) - |e_i \setminus e_j|$ from $e_i \cap e_j$. If meeting these demands for all $e_i \cap e_j$ requires at least $f(e_j)$ vertices, that is, if the rule’s condition is satisfied, then e_j will be hit $f(e_j)$ times anyway, since $e_j \supseteq e_i \cap e_j$ for each $e_i \in E$.

Finally, to prove a problem kernel, we will also provide a generalization of Wehe’s data reduction rule (W1) to Multiple Hitting Set. Unfortunately, a previous generalization attempt of Moscato et al. [45] turned out to be wrong (see Appendix A). To state the data reduction rule, we need the following definition.

Definition 3.2. For a pair of distinct vertices $v_i, v_j \in V$, we say that v_i dominates (or is a dominator for) v_j if $E(v_i) \subseteq E(v_j)$. By $\text{Dom}(v_j)$, we denote all dominators for v_j.

Note that, if v_j dominates v_i, then v_j can be replaced by v_i in any hitting set. Thus, if $|\text{Dom}(v_j)| \geq \max_{e \in E(v_i)} f(e)$, then we can safely delete v_j from the hypergraph, since $\text{Dom}(v_j)$ contains a sufficient amount of vertices to satisfy the demand of any hyperedge containing v_j. This gives rise to the following “multiple domination” rule.

(MD) If there is a vertex v_j such that $|\text{Dom}(v_j)| \geq \max_{e \in E(v_i)} f(e)$, then delete v_j.

3.2. Problem kernel size

In this section, we show how to use the data reduction rules presented in Section 3.1 to obtain a problem kernel for Multiple Hitting Set.

For the kernel size analysis, we will use the following lemma, which relates vertex dominance and hyperedge inclusion within a hypergraph to comparability in the vinical order of the incidence graph.

Lemma 3.3. Let H be a hypergraph and \unlhd be the vinical order of its incidence graph $I(H)$. Then

(i) if, for two hyperedges e_i and e_j, one has $e_i \nsubseteq e_j$ and $e_j \nsubseteq e_i$, then e_i and e_j are incomparable with respect to \unlhd.

(ii) if, out of two vertices v_i and v_j, neither dominates the other, then v_i and v_j are incomparable with respect to \unlhd.

Proof. (i) Note that, in the incidence graph $I(H)$, one has $N(e_i) = e_i$ and $N(e_j) = e_j$. Towards a contradiction, assume $e_j \nsubseteq e_i$. Then, by the definition of the vinical order \unlhd, one has $e_i = N(e_i) \subseteq N[e_i] = e_j \cup \{e_i\}$. Since hyperedges do not contain other hyperedges as elements, we definitively have $e_j \notin e_i$, and thus, in fact, $e_i \nsubseteq e_j$, contradicting the assumption that $e_i \nsubseteq e_j$. Analogously, from $e_j \nsubseteq e_i$, following the contradiction $e_j \nsubseteq e_i$.

(ii) Note that, in the incidence graph $I(H)$, one has $N(v_i) = E(v_i)$ and $N(v_j) = E(v_j)$. Towards a contradiction, assume that $v_j \nsubseteq v_i$, that is, $E(v_j) = N(v_j) \subseteq N[v_i] = E(v_i) \cup \{v_i\}$. Since definitively $v_i \notin E(v_j)$, we in fact have $E(v_j) \subseteq E(v_i)$, contradicting the assumption that v_i does not dominate v_j. Analogously, the assumption that $v_i \nsubseteq v_j$ contradicts the assumption that v_i does not dominate v_j.

Theorem 3.4. Given an instance of Multiple Hitting Set $H = (V, E)$ with $f : E \rightarrow \{1, \ldots, \alpha\}$, a problem kernel $H' = (V', E')$ with $|V'| + |E'| \leq 2\alpha \sqrt{\nabla(I(H))}$ and hyperedge demands $f' = f$ can be computed as follows:

Step 1. Apply (SE) as long as possible.

Step 2. Apply (MD) as long as possible.

Proof. Let $H' = (V, E')$ be the hypergraph obtained from H by exhaustive application of (SE), that is, H' is H after Step 1. Consider $E_i^* := \{e \in E^* : f(e) = i\}$ for $i \in \{1, \ldots, \alpha\}$. Then, $\bigcup_{i=1}^\alpha E_i^* = E^*$. By the pigeonhole principle, $|E_i^*| \geq |E^*/\alpha|$ for some $i^* \in \{1, \ldots, \alpha\}$. Since the hyperedges in $e \in E_i^*$ have equal demand and survived (SE), they are not contained in each other, neither in H' nor in H. Thus, by Lemma 3.3(i), $\nabla(I(H)) \geq |E_{i^*}^*| \geq |E^*/\alpha \geq |E^*/\alpha|$, since the second step does not increase the number of hyperedges.

We have shown $|E^*| \leq \alpha \sqrt{\nabla(I(H))}$. It remains to show $|V'| \leq \alpha \sqrt{\nabla(I(H))}$. To this end, let $D \subseteq V'$ be of maximal cardinality such that no vertex in D dominates any other vertex in V'. Then, we can write

$$V' = D \cup \bigcup_{u \in D} \text{Dom}(u).$$

Moreover, since (MD) is inapplicable to H', we have $|\text{Dom}(u)| \leq \alpha - 1$ for any $u \in D$. Also, by Lemma 3.3(ii), the vertices in D are incomparable in the vinical order of $I(H')$. Therefore, $|V'| \leq \alpha |D| \leq \alpha \sqrt{\nabla(I(H'))} \leq \alpha \sqrt{\nabla(I(H))}$. □
We point out that there are graphs for which the analysis provided in Theorem 3.4 is tight: consider the hypergraph \(H = (V, E) \) with \(n \) vertices \(\{v_1, \ldots, v_n\} \) and \(n \) hyperedges of the form \(\{v_i\} \) for \(i \in \{1, \ldots, n\} \). Its incidence graph is a disjoint union of \(n \) copies of \(K_2 \). Its Dilworth number is \(n \), none of (SE) and (MD) is applicable, and one has \(|V| + |E| = 2n = 2\alpha \sqrt{\mathcal{I}(H)} \).

4. Efficient implementation using matrix multiplication

In this section, we show efficient parallel and sequential implementations of (MD) and (DP), the latter of which supersedes (SE). The algorithms presented in this section thus yield problem kernels for Multiple Hitting Set via Theorem 3.4.

Actually, they go even further: Theorem 3.4 tells us a two-step recipe for computing problem kernels for Multiple Hitting Set. However, after Step 2, Step 1 may become applicable again and shrink the input hypergraph further. The algorithms presented in this section thus yield problem kernels for Multiple Hitting Set via Theorem 3.4. In this section, we prove the following theorem.

In this section, we show e cient parallel and sequential implementations of (MD) and (DP), the latter of which supersedes (SE). The algorithms presented in this section thus yield problem kernels for Multiple Hitting Set via Theorem 3.4. Actually, they go even further: Theorem 3.4 tells us a two-step recipe for computing problem kernels for Multiple Hitting Set. However, after Step 2, Step 1 may become applicable again and shrink the input hypergraph further. The algorithms presented in this section thus yield problem kernels for Multiple Hitting Set via Theorem 3.4. In this section, we prove the following theorem.

4.1. Parallel algorithm

In this section, we prove the following theorem.

Theorem 4.1. Given an instance of Multiple Hitting Set \(H = (V, E) \) with hyperedge demands \(f : E \to \{1, \ldots, \alpha\} \).

(i) a problem kernel \(H' = (V', E') \) with \(|V'| + |E'| \leq 2\alpha \sqrt{\mathcal{I}(H)} \) can be computed by an NC\(^1 \) circuit family and

(ii) \(H \) can be exhaustively reduced with respect to both (DP) and (MD) in \(O(\nu(\mathcal{I}(H)) \log |H|) \) time on poly(|H|) processors, where \(\nu(\mathcal{I}(H)) \) is the matching number of \(\mathcal{I}(H) \).

The proof of Theorem 4.1 works as follows. Algorithm 1 exhaustively applies (DP), thus realizes Step 1 of Theorem 3.4. Algorithm 2 exhaustively applies (MD), thus realizes Step 2 of Theorem 3.4. Thus, implementing Algorithm 1 and Algorithm 2 as NC\(^1 \) circuit families, we will prove Theorem 4.1(i). Then, we will prove Theorem 4.1(ii) using Algorithm 3, which applies Algorithms 1 and 2 until the hypergraph does not change.

The main challenge with the proof of Theorem 4.1 is that, although the data reduction rules in Section 3.1 are correct when applied sequentially, their independent parallel application may be wrong: for example, the algorithm may find that a hyperedge \(e_j \) supersedes a hyperedge \(e_i \) and vice versa, and delete both.

Algorithm 1 applies (DP) using matrix multiplication and (1) to compute which hyperedges are superseded. Herein, the algorithm contains a tie breaker: if the algorithm finds two hyperedges superseding each other, it deletes only the hyperedge with higher index. We still have to show that an application of (DP) in this form is correct and exhaustive.

Lemma 4.2. Algorithm 1 is correct.
We have shown a parallel algorithm for exhaustively applying (DP). To prove a parallel kernelization algorithm using

Adding up the two inequalities, we get

That is, if

Theorem 3.4, we still need to exhaustively apply (MD), for which we apply Algorithm 2. It checks vertex dominance
vice versa, then the vertex with lower index is considered to dominate the vertex of higher index.

Algorithm 1: Parallel algorithm for exhaustive application of (DP).

- **Input:** Incidence matrix of a hypergraph and hyperedge demands
- **Result:** Incidence matrix of the hypergraph obtained via exhaustive application of (DP) to

1.
2.
3.

4.

5.

6.

7.

8.

Proof. Let be the input hypergraph and the output hypergraph. We prove that
(i) every multiple hitting set for is one for
(ii) every multiple hitting set for is one for
(iii) is exhaustively reduced with respect to (DP).

Claim (i) is trivial since is a sub-hypergraph of and the algorithm does not change edge demands. For (ii), we first prove that hyperedge supersedence is transitive. Let and and that contains an arc

Observing that
and thus,

Adding up the two inequalities, we get

Adding up the two inequalities, we get

Thus,

In other words, in Line 5 of Algorithm 1, we have that

Now, consider the directed graph whose vertices are the hyperedges of and that contains an arc whenever, in Line 7,

That is, if may cause the deletion of in then is an arc. Due to (4), this directed graph is acyclic.

Finally, let be a multiple hitting set for and let be a hyperedge in that is not in . Then has some source as ancestor in Nothing causes the deletion of so it exists in and, moreover, supersedes Thus, since satisfies the demand of it also satisfies the demand of

Assume that contains two hyperedges and such that supersedes Then there is an arc between and in the directed acyclic graph contradicting the fact that contains only hyperedges that are sources in .

We have shown a parallel algorithm for exhaustively applying (DP). To prove a parallel kernelization algorithm using Theorem 3.4, we still need to exhaustively apply (MD), for which we apply Algorithm 2. It checks vertex dominance using matrix multiplication and (2). Again, a tie breaker is applied: if it finds that a vertex dominates a vertex and vice versa, then the vertex with lower index is considered to dominate the vertex of higher index.

Lemma 4.3. Algorithm 2 is correct.

Proof. Let be the input hypergraph and the output hypergraph. We prove that
(i) for any multiple hitting set for there is a multiple hitting set of at most the same size for

We have proved the correctness of Algorithms 1 and 2. Together with a complexity analysis of these algorithms, this will yield Theorem 4.1(i). We will apply them repeatedly as long as possible to prove Theorem 4.1(ii).

Proof of Theorem 4.1. (i) By Theorem 3.4 and Lemmas 4.2 and 4.3, one application of Algorithm 1 followed by one application of Algorithm 2 is enough to produce a problem kernel of the desired size. We argue that both algorithms...
can be realized by an NC¹-circuit family. The key point is that integer multiplication, addition, subtraction, comparison, and integer matrix multiplication can be realized as NC¹-circuits [19]. The parallel for loops can also be realized by NC¹-circuits, using one subcircuit for each pair i, j. Herein, the only thing noteworthy is that the “∧”-operator in Line 8 of Algorithm 2 can be realized by a tree of binary “∧”-operators of depth log m.

(ii) It remains to analyze the number of iterations of Algorithm 3. Each iteration exhaustively applies first (DP), then exhaustively applies (MD). If, during the ℓ-th iteration, some hyperedge e_j ∈ E is removed, then this is due to some hyperedge e_i superseding e_j, at iteration ℓ but not at iteration ℓ − 1. Thus, at iteration ℓ − 1, some vertex v contained in e_i \ e_j was removed, so as to satisfy the condition f(e_i) − |e_i \ e_j| ≥ f(e_j) at iteration ℓ.

Consequently, for any iteration ℓ, except the first one, there is a pair p_ℓ = (v_ℓ, e_ℓ) of a vertex v_ℓ and a hyperedge e_ℓ ∈ E such that v_ℓ \ e_ℓ are disjoint. Consequently, the pairs p_ℓ form a matching in the incidence graph I(H) and the number of iterations cannot exceed v(I(H)) + 1. □

4.2. Sequential algorithm
In this section, we present a sequential algorithm that exhaustively reduces hypergraphs with respect to both (DP) and (MD). Its running time is quadratic at worst and matches the running time that one would expect from first applying (DP) exhaustively and then applying (MD) exhaustively, which may be required to be repeated v(I(H)) times for an exhaustive application of both, as we have seen in the proof of Theorem 4.1. Also note that the running time is subquadratic for sparse hypergraphs.

Theorem 4.4. (DP) and (MD) can be exhaustively applied in O(∥H∥ · (|V| + |E|)) time.

To prove the theorem, we first show that Algorithms 4 and 5 exhaustively apply (DP) and (MD), respectively. These algorithms are applied in a loop in Algorithm 6. We show that running time of Algorithm 6 satisfies the requirements of Theorem 4.4, which proves the theorem.

Each of the Algorithms 4 and 5 implements the exhaustive application of one of the reduction rules (DP) and (MD) in the same way as its parallel counterpart, Algorithm 1 or Algorithm 2, respectively, sequentializing the parallel loops. There are two important differences, however. Firstly, Algorithms 4 and 5 do not compute the matrices I^E and I^V from (1) and (2), but get them as input along with two Boolean arrays R^E and R^V such that

\[
\begin{align*}
R^E_i &= 0 \iff e_i \in E \text{ is removed, and} \\
R^V_i &= 0 \iff v_i \in V \text{ is removed.}
\end{align*}
\]

It is the responsibility of Algorithms 4 and 5 to update I^E, I^V, R^E and R^V in place after any hyperedge or vertex removal.

Secondly, while the parallel algorithms check all pairs of hyperedges for supersedence and all pairs of vertices for dominance, the sequential algorithms save time by narrowing their search. When Algorithm 4 removes a hyperedge e, it stores the indices of e’s vertices in a list P^E. Then, Algorithm 5 searches dominators only for the vertices in P^E. Similarly, Algorithm 5 stores indices of hyperedges from E(v) for any removed vertex v in a list P^V. Then, Algorithm 4 only searches for hyperedges that are superseded by those in P^E. More formally, Algorithms 4 and 5 ensure the following invariant:

Algorithm 3: Algorithm for the proof of Theorem 4.1(ii).

Input: Incidence matrix A of a hypergraph H = (V, E) and hyperedge demands f : E → N.

Result: Incidence matrix of the hypergraph obtained from H via exhaustive application of (DP) and (MD).

1. do
2. A’ ← apply Algorithm 1 to A.
3. A ← apply Algorithm 2 to A’.
4. while A changes.
5. return A.
Invariant 4.5. \(I^E, I^V \) satisfy (1) and (2); \(R^E, R^V \) satisfy (5) and (6); \(P^E \) contains the indices of a superset of hyperedges that supersede others in the sense of (DP); \(P^V \) contains the indices of a superset of vertices that can be removed by (MD).

Algorithm 4: Sequential algorithm for exhaustive application of (DP).

Input: A demand function \(f \); and \(I^E, I^V, R^E, R^V, P^E, P^V \) satisfying Invariant 4.5 for some hypergraph \(H \).

Result: All inputs are updated in-place so as to satisfy Invariant 4.5 for the hypergraph obtained from \(H \) by exhaustive application of (DP).

1. \(Q \leftarrow \text{empty list} \) // \(Q \) stores indices of removed hyperedges
2. \(\text{for } j \in \{1, \ldots, m\} \text{ such that } R_j^E = 1 \) do // iterate through all possibly superseding hyperedges
 3. \(D_{ij} \leftarrow \text{if } f(e_i) - (I_{ji}^E - I_{ji}^F) \geq f(e_j) \text{ then } 1 \text{ else } 0 \)
 4. \(D_{ji} \leftarrow \text{if } f(e_j) - (I_{jj}^E - I_{jj}^F) \geq f(e_i) \text{ then } 1 \text{ else } 0 \)
 5. \(\text{if } (D_{ij} = 1) \land ((D_{ji} = 0) \lor (i < j)) \text{ then } \)
 6. \(Q \leftarrow Q \cup \{j\} \) // apply rule (DP) to \(e_i \) and \(e_j \)
 7. \(\text{break} \)
3. \(\text{for } j \in Q \) do
4. \(R_j^E \leftarrow 0 \)
5. \(\text{for } (v_i, v_k) \in e_j \times e_j \) do
6. \(I_{ik}^V \leftarrow I_{ik}^V - 1 \) // update \(I^V \) after \(e_j \)’s removal
7. \(P^V \leftarrow P^V \cup \{i \in \{1, \ldots, n\} \mid v_i \in e_j\} \) // Removal of \(e_j \) may make (MD) applicable to vertices in \(e_j \)
8. \(P^E \leftarrow \text{empty list} \)

Lemma 4.6. Algorithm 4 is correct.

Proof. We prove the algorithm correctness by showing that it removes exactly those hyperedges that Algorithm 1 removes. In order to simulate the parallel run of Algorithm 1, the sequential algorithm uses nested loops in Lines 2 and 3 applying the rule (DP) in Line 6 exactly as in Algorithm 1. Since Invariant 4.5 guarantees that \(P^E \) contains the indices of all hyperedges that can supersede others, these loops iterate through all pairs of hyperedges to check for supersedence. Therefore, in Line 7, the list \(Q \) contains the indices of all hyperedges that would be removed by Algorithm 1.

We now show that, after execution of the algorithm, the data structures satisfy Invariant 4.5 with respect to the hypergraph obtained by removing the hyperedges in \(Q \). The update happens in Line 9. First, each removed hyperedge \(e_j \) is marked as removed in \(R^E \) in Line 10. Then, in Line 11, the matrix \(I^V \) is updated using the fact that, by removing \(e_j \), we delete it from any intersection \(E(v_i) \cap E(v_k) \) for each \(v_i, v_k \subseteq e_j \). Although, the matrix \(I^E \) should also be updated in the \(j \)-th row and the \(j \)-th column, these row and column will never be accessed since \(R_j^E = 0 \), so we do not do this update. To see why the update of \(P^V \) in Line 13 is correct, consider a vertex \(v \in V \) that becomes removable by (MD) after hyperedges from \(Q \) were removed. Then \(|\text{Dom}(v)| \geq \max_{e \in E(v)} f(e) \) is true after the removal, but not before it. Thus, \(E(v) \) must contain at least one edge from \(Q \). Therefore, we populate \(P^V \) with all vertices contained in hyperedges from \(Q \). Finally, \(P^E \) is cleared in Line 14, since no hyperedge can supersede another after (DP) is applied exhaustively.

Lemma 4.7. Algorithm 5 is correct.

Proof. We prove the lemma by showing that the algorithm removes exactly the same vertices as Algorithm 2. To this end, the algorithm counts the dominators for a vertex in Line 6 and applies the rule (MD) in Line 7 exactly as in Algorithm 2. Since Invariant 4.5 guarantees that \(P^V \) contains the indices of all vertices that can be removed by (MD), the loops iterate through all removable vertices and for each of them — through all dominators. Therefore, all vertices that would be removed by Algorithm 2 are stored in the list \(Q \) due to Line 8.
Algorithm 5: Sequential algorithm for exhaustive application of (MD).

\textbf{Input}: a demand function \(f: P^I, I^V, R^E, R^V, P^E, P^V \) satisfying Invariant 4.5.

\textbf{Result}: All inputs are updated in-place so as to satisfy Invariant 4.5 for the hypergraph obtained from \(H \) by exhaustive application of (MD).

\begin{align*}
1 & \quad Q \leftarrow \text{empty list} \quad // \text{Q stores indices of removed vertices} \\
2 & \quad \text{for } j \in P^V \text{ such that } R^V_j = 1 \text{ do} \quad // \text{iterate through all potentially removable vertices} \\
3 & \quad c \leftarrow \max_{e \in E(v_j)} f(e) \quad // \text{how many dominators does } v_j \text{ need to apply (MD)} \\
4 & \quad \text{for } i \in [1, \ldots, n] \text{ such that } i \neq j \text{ and } R^V_i = 1 \text{ do} \quad // \text{iterate through all potential dominators of } v_j \\
5 & \quad \text{if } \left(I^V_j = I^V_i \right) \land \left(\left(I^V_j \neq I^V_k \right) \lor (i < j) \right) \text{ then} \quad // \text{check for domination, with tie breaker} \\
6 & \quad c \leftarrow c - 1 \\
7 & \quad \text{if } c = 0 \text{ then} \quad // \text{remove } v_j \text{ via (MD)} \\
8 & \quad Q \leftarrow Q \cup \{j\} \\
9 & \quad \text{break} \\
10 & \quad \text{for } j \in Q \text{ do} \\
11 & \quad R^V_j \leftarrow 0 \\
12 & \quad \text{for } (e_i, e_k) \in E(v_j) \times E(v_j) \text{ do} \\
13 & \quad I^E_{ik} \leftarrow I^E_{ik} - 1 \quad // \text{update } I^E \text{ after } v_j \text{'s removal} \\
14 & \quad P^E \leftarrow P^E \cup \{[i \in \{1, \ldots, m\} \mid e_i \in E(v_j)] \} \quad // \text{removal of } v_j \text{ may make (DP) applicable to hyperedges in } E(v_j) \\
15 & \quad P^V \leftarrow \text{empty list}
\end{align*}

We now show that after the algorithm, all data structures satisfy Invariant 4.5 with respect to the hypergraph obtained by removing the vertices in \(Q \). The data structures are updated in the loop in Line 10. First, for each \(j \in Q \), vertex \(v_j \) is marked as removed in \(R^V \). The matrix \(I^E \) is updated using the fact that, by removing \(v_j \), we extract it from any intersection \(e_i \cap e_k \) for each \(e_i, e_k \subseteq E(v_j) \). Although the matrix \(I^V \) should also be updated in the \(j \)-th row and the \(j \)-th column, this matrix entry will never be accessed since \(R^V_j = 0 \), so we do not update it. To see why \(P^E \) is updated correctly, consider two hyperedges \(e_i, e_j \in E \), such that \(e_j \)-supersedes \(e_i \) after removal of vertices in \(Q \) but not before the removal. Then, \(f(e_i) - |e_i \setminus e_j| \geq f(e_j) \) holds after removal, but not before removal. Thus, \(|e_i \setminus e_j| \) has decreased, and since hyperedge sizes cannot increase, at least one vertex in \(e_i \) must have been removed. The index of this vertex is contained in \(Q \). Thus, we populate \(P^E \) with all hyperedges containing any vertex whose index is in \(Q \) in Line 14. Finally, \(P^V \) is cleared in Line 15, since no vertex can be removed by (MD) after it is applied exhaustively.

\textbf{Proof of Theorem 4.4.} Algorithm 6 applies (DP) and (MD) as long as possible. We first prove correctness of the algorithm. To this end, we first show that Invariant 4.5 holds with respect to the input hypergraph \(H \) at the start of the loop in Line 11. The matrix \(I^E \) is computed in Line 2 using the following observation: each vertex \(v \in V \) is counted exactly once in each intersection of hyperedges in \(E(v) \). It thus satisfies Invariant 4.5.

Similarly, each hyperedge \(e \in E \) is counted exactly once in each intersection of vertices in \(e \), thus \(I^V \) satisfies Invariant 4.5 in Line 5. In Lines 9 and 10 we put the indices of all hyperedges into \(P^E \) and the indices of all vertices into \(P^V \), so that Invariant 4.5 is trivially satisfied. Lemmas 4.6 and 4.7 ensure that Invariant 4.5 holds after each iteration of the loop, in particular after the last iteration, after which none of the two algorithms reduces any more vertices or hyperedges.

Thus, according to Invariant 4.5, after the loop in Line 11, in Lines 15 and 16, from \(R^E \) and \(R^V \) we extract the hyperedges and vertices of a hypergraph \(H' \) that was obtained from \(H \) by exhaustive application of both (DP) and (MD).

We now analyze the running time of Algorithm 6. Before Line 11, the algorithm spends \(O(|H| \cdot (|V| + |E|)) \) time for establishing Invariant 4.5, in particular for filling the matrices \(I^E \) and \(I^V \). Indeed, to fill matrix \(I^E \) the algorithm spends \(O(|E|) \) time for each vertex \(v_k \in V \), which sums up to \(O(|H| \sum_{e \in E} |E(v_k)|) \in O(|E| \cdot |H|) \). Similarly, for filling \(I^V \) the running time is \(O(|H| \sum_{e \in E} |e|) \in O(|V| \sum_{e \in E} |e|) \in O(|V| \cdot |H|) \). Next, we analyze the accumulated running time of Algorithms 4 and 5 over all iterations.
Algorithm 5: Theorem 3.4 shows that an exhaustive application of (SE) followed by an exhaustive application of (MD) is enough to yield a problem kernel. It is easy to come up with examples where the additional data reduction rules have no additional data reduction effect, for example, in the case of unit demands. Also, we provided efficient implementations only of (DP) (which supersedes (SE)) and (MD), whereas application of the other data reduction rules, namely (FE) and (LP), is more time-consuming.

In Algorithm 4, the two nested loops in Lines 2 and 3 are executed in $O(|E| \cdot |P^E|)$ time. Any hyperedge e_j is placed into P^E once during the initialization of Algorithm 6 and when Algorithm 5 removes one of its vertices, which happens at most once per vertex in e_j. Thus, the accumulated running time of Algorithm 4 is $O(|E| \sum_{e_j \in E} (1 + |e_j|)) \subseteq O(|E| \cdot |H|)$. The next loop in Algorithm 4 is in Line 9. It runs in time $O(|Q| + \sum_{e_j \in Q} |e_j|^2)$. Since each hyperedge is deleted (that is, in Q) at most once, this is $O(|E| + \sum_{e_j \in Q} |e_j|^2) \subseteq O(|E| + |V| \sum_{e_j \in Q} |e_j|) \subseteq O(|E| \cdot |H|)$.

It remains to analyze the time spent in Algorithm 5 during all iterations. Algorithm 5 has two nested loops in Lines 2 and 4, which run in $O(|V| \cdot |P^V|)$ time. A vertex v_i is placed in P^V once during the initialization of Algorithm 5 and when Algorithm 4 removes a hyperedge containing v_i. Thus, the amortized running time of Algorithm 5 is $O(|V| \sum_{e_j \in Q} (1 + |E(v_i)|)) \subseteq O(|V| \cdot |H|)$. The loop in Line 10 runs in $O(|Q| + \sum_{e_j \in Q} |E_v(v_i)|^2)$ time. Over all executions of Algorithm 5, this sums up to $O(|V| + \sum_{e_j \in Q} |E_v(v_i)|^2) \subseteq O(|V| + |E| \sum_{e_j \in Q} |E_v(v_i)|) \subseteq O(|V| \cdot |H|)$, since no vertex is removed twice. The overall running time of Algorithm 6 is therefore $O(|H| \cdot (|V| + |E|))$. \hfill \qed

5. Experiments

In Section 3.1, we presented several data reduction rules for Multiple Hitting Set. Of these, Theorem 3.4 shows that an exhaustive application of (SE) followed by an exhaustive application of (MD) is enough to yield a problem kernel. It is easy to come up with examples where the additional data reduction rules have no additional data reduction effect, for example, in the case of unit demands. Also, we provided efficient implementations only of (DP) (which supersedes (SE)) and (MD), whereas application of the other data reduction rules, namely (FE) and (LP), is more time-consuming.

Thus, in this section, we experimentally evaluate the effect of various combinations of the data reduction rules presented in Section 3.1 and also analyze which combinations reach real speed-ups compared to the data reduction algorithms built into general optimization tools such as CBC.

First, in Section 5.1, we describe our experimental setup. Then, in Section 5.2, we describe experiments on real-world data arising in cancer drug design. Finally, in Section 5.3, we describe experiments on random hypergraphs modeling transportation network optimization tasks.
5.1. Experimental setup
Experiments were run on an AMD Ryzen 9 5950X 16-Core CPU, GeForce RTX 3090 GPU, on Ubuntu 18.04.6. We implemented our algorithms in C++ and compiled the code with GCC 9.2.1. The parallel algorithm was implemented on the GPU using OpenCL 2.2. All implemented algorithms are wrapped into a Python package.

ILP solving. We measure not only the data reduction effect, but also the effect that the data reduction has on the total time of solving Multiple Hitting Set instances. To this end, after data reduction, we solve Multiple Hitting Set instances using the CBC ILP solver with the following ILP model:

$$\min \sum_{v \in V} x_v \quad \text{s.t.} \quad \sum_{v \in e} x_v \geq f(e) \quad \text{for all } e \in E$$
$$x_v \in \{0, 1\} \quad \text{for all } v \in V$$

Here, x_v indicates whether v is taken into the hitting set or not.

Implementation details. The data reduction rule (FE) is implemented in a straightforward way. To implement (LP), we compute the required lower bounds L_e for each edge e using CBC on an LP relaxation of (7). The data reduction rules (DP) and (MD) have been implemented in the following three variants.

KernelGPU is an implementation of the parallel algorithm Algorithm 3 on the GPU using OpenCL.

KernelCPU is an implementation of the sequential Algorithm 6 on the CPU.

KernelGPU-FE alternatingly applies KernelGPU and (FE) until exhaustion.

The data reduction result of KernelGPU and KernelCPU is the same, only their running times may differ. In the OpenCL implementation of KernelGPU, as in the description of Algorithms 1 and 2, each pair of hyperedges (or vertices) is tested for supersedence (or dominance) independently. However, supersedence (or dominance) is checked by iterating over possibly common vertices (or hyperedges) sequentially. This does not pose a problem, since the GPU does not have enough processors for full parallelization anyway.

Before applying any of Algorithms 1 and 2 in Algorithm 3, the incidence matrix of the hypergraph is updated on the CPU, so as to keep only vertices and hyperedges that are not yet deleted. The $(m \times n)$-incidence matrix is stored in a space-efficient manner: if $n \gg m$, then the column for each vertex consists of $[m/32]$ integers of 32 bit, so that the bits in each integer indicate the incidence relation of the vertex with 32 consecutive hyperedges. This allows us not only to allocate the optimal amount of memory for the incidence matrix, but also apply efficient bitwise operations provided by the GPU. This speeds up the linear run through the hyperedges for each vertex pair, which is the more time-consuming step when $n \gg m$. If $m \gg n$, we would want to condense rows instead of columns.

5.2. Real-world data set
In this section, we present experimental results on a more recent version of the data set used by Vazquez [52] and Mellor et al. [42]: in these hypergraphs, each hyperedge corresponds to a line of cancer cells, each vertex corresponds to a chemical compound. A vertex is contained in a hyperedge if the corresponding chemical compound is observed to inherit the growth of the corresponding cancer cell line. Then, Hitting Set solves the problem of selecting a minimum set of compounds that inherit the growth of all cancer cell lines in the data set. Mellor et al. [42] motivate the use of Multiple Hitting Set by noise in the data: to be on the safe side, each cell line is hit not only once, but several times.

In more detail, we downloaded the 2020 version of the NCI60 human anti-cancer drug screen set. This data set contains response data of over 40,000 drugs against several cell lines. In the same way as Vazquez [52] and Mellor

2https://www.khronos.org/opencl/
3The source code is freely available at https://gitlab.com/PavelSmirnov/hs-dilworth-kernel.
4https://github.com/coin-or/Cbc
5http://dtp.nci.nih.gov/
Figure 1: Data reduction effect of various data reduction rules from Section 3.1 on the real-world data set. The data reduction rules specified in the legend are applied exhaustively. On the right, the graph for (MD)+(DP) coincides with the graph for (MD)+(SE).

Figure 2: Total running time for applying our data reduction algorithms to our Multiple Hitting Set instances from the real-world data set and solving them with CBC afterwards.
et al. [42], we add a chemical compound to a hyperedge, corresponding to a cell line, whenever its effect on the cell line is stronger than the mean by more than two standard deviations. As a result, we obtain a hypergraph with 152 hyperedges and 7124 vertices.

The hyperedge demands are governed by a parameter α and are $f(e) = \min(|\alpha|, |e|)$ for each $e \in E$. We run experiments for all $\alpha \in \{1, \ldots, 60\}$, since for larger α the instances turned out to be trivial.

We chose this data set since the resulting Multiple Hitting Set instances are easily solved by CBC and we can thus see the trade-offs between power and speed of our data reduction rules.

Results. Figure 1 shows the data reduction effect of various combinations of the data reduction rules in Section 3.1. We see that (DP) has a significantly stronger data reduction effect than its weaker version (SE). We also see that (FE) has a strong additional data reduction effect. This is because it causes many cascading effects: it can make (DP) and (MD) applicable again. In particular, the combinations with (FE) solve the problem instance optimally for $\alpha \geq 51$ and $\alpha \in \{1, 2, 3, 4\}$, whereas without (FE) the instances are solved optimally only for $\alpha \in \{1, 2, 3\}$.

Figure 2 shows how our data reduction algorithms influence the speed for solving our Multiple Hitting Set instances using CBC. We see that the parallel implementations of Algorithm 3 on GPUs are able to speed up CBC by a factor of more than 10. The speedup caused by KernelGPU-FE is comparable to that caused by KernelGPU, although it makes two to four (most commonly three) data reduction iterations. For $\alpha \geq 51$ the speed-up is exceptionally high because KernelGPU-FE solves the instance completely. The sequential algorithm KernelCPU speeds up CBC only by an observed factor of two. The data reduction rule (LP) slows CBC down on the considered data set. Thus, in practice, we can recommend (LP) only for hard Multiple Hitting Set instances, since solving an LP relaxation for each hyperedge in the input hypergraph is rather expensive (but takes polynomial time).

The fact that KernelGPU speeds up CBC by an order of magnitude, whereas KernelCPU gives yields speed-ups of only a factor of two, shows that, in practice, parallelization in kernelization can indeed make a significant difference. In cases where the GPU has too little memory to execute KernelGPU, it may still make sense to fall back to KernelCPU.

5.3. Generated data set

In this section, we present experimental results on a data set generated using a random hypergraph model proposed by Bläsius et al. [15]. According to their results, choosing the following values for the model parameters yields Hitting Set problem instances close to those arising in real-world public transportation optimization problems:

- $a = 4 \cdot 10^{-5}$. This value affects the average vertex degree, which will be close to 2 on average.
- $\beta = 3.5$. This value controls the heterogeneity of vertex degrees.
- $T = 0.5$. The temperature influences the locality of the network. In short, the geographic positions of a transportation network’s vertices seem to be the cause of similarities in the network’s connections (that is, hyperedges). For definitions and an in-depth analysis, we refer the reader to the original article of Bläsius et al. [15].

For each demand $\alpha \in \{1, \ldots, 30\}$, we generated 10 random instances with the above parameters and an upper bound of 20 000 vertices and 2 000 hyperedges. We removed possible empty hyperedges and isolated vertices from the generated hypergraphs and thus obtained 10 instances with 15 014 vertices and 2 000 hyperedges. We removed possible empty hyperedges and isolated vertices from the generated hypergraphs and thus obtained 10 instances with 15 014.8 vertices and 1 903.2 hyperedges on average. The average size of a hyperedge was about 8, so we chose the maximum α to be 30. On the obtained 10 instances, we ran the implementations described in Section 5.1 for all values of α. For each particular value of α, we report the total numbers of vertices, the total number of hyperedges, the total data reduction time, and the total CBC solution time, over the 10 instances. The speed-up factor is reported with respect to the total solution time.

Results. Figure 3 shows the data reduction effect of various sets of data reduction rules. This figure is similar to Figure 1. Compared to Figure 1, the gap between (MD)+(DP) and (MD)+(DP)+(FE) is much larger. Whereas (MD)+(DP) reduces the number of hyperedges to 40% for $\alpha = 1$, and is almost useless for $\alpha \geq 10$, (MD)+(DP)+(FE) reduces the number of hyperedges to at most 10% and leaves at most 1% of the hyperedges for larger α. A similar behaviour can be seen for the vertex reduction.

Concerning the running time, Figure 4 shows that, generally speaking, among our data reduction algorithms, the KernelGPU-FE variant yields the highest speed-up, again showing the feasibility of implementing kernelization on the
Figure 3: Data reduction effect of various data reduction rules from Section 3.1 on the generated data set. The data reduction rules specified in the legend are applied exhaustively; the graphs for (MD)+(SE) and (MD)+(DP) are nearly identical.

Figure 4: Total running time for applying our data reduction algorithms to our Multiple Hitting Set instances from the generated data set and solving them with CBC afterwards.
We contributed to Weihe’s data reduction algorithm for Hitting Set in three ways: we proved that it yields a problem where as GPUs operate in terms of the SIMD (Single Instruction, Multiple Data) model: all cores of one multiprocessor Tsidulko were supported by Russian Foundation, project 18-501-12031 NNIO

References
Russian Federation, agreement No. 075-15-2019-167. Until the end of 2020, R. van Bevern, P. V. Smirnov, and O. Yu. held during July 13–17 and August 10–14, 2020, under support of the Ministry of Science and Higher Education of the Funding.

This work was initiated during the First Workshop of Mathematical Center in Akademgorodok, which was held during July 13–17 and August 10–14, 2020, under support of the Ministry of Science and Higher Education of the Russian Federation, agreement No. 075-15-2019-167. Until the end of 2020, R. van Bevern, P. V. Smirnov, and O. Yu. Tsidulko were supported by Russian Foundation for Basic Research, project 18-501-12031 NNIO.a.

6. Conclusion

We contributed to Weihe’s data reduction algorithm for Hitting Set in three ways: we proved that it yields a problem kernel with a number of vertices and hyperedges linear in the Dilworth number of the incidence graph; we presented efficient parallel and sequential realizations and experimentally evaluated them; and we generalized it to Multiple Hitting Set. However, the problem kernel with respect to the Dilworth number is just a first step to understanding the structure of hypergraphs that are well reducible by Weihe’s algorithm: the problem kernel is obtained already after one exhaustive application of (DP) and one exhaustive application of (MD), yet the data reduction rules can be applied repeatedly to shrink the hypergraph, even more so in combination with (FE). This naturally raises two questions: Which natural hypergraph parameter bounds the size of the reduced instance after exhaustive applications of all of (DP), (MD), and (FE)? Can the exhaustive application of all three of them be realized effectively, say, on NC^1 circuits, or in quadratic sequential time?

Besides this, we can draw three more general conclusions from our work. The first is that it seems worthwhile to study the parameterized complexity of problems with respect to the Dilworth number, rather than with respect to the neighborhood diversity, which is already well-studied.

The second is that, both, theoretical bounds on problem kernel sizes, as well as empirical kernel size measurements, are insufficient to make conclusions on the effect of data reduction on the running time of solving real problem instances. In the case where problem instances are already solved quite well, we have seen that quite some additional effort (in form of parallelization on GPUs) might be required to speed up the solution process.

The third is what made it feasible to implement our kernelization algorithms on GPUs: note that we have shown a parallel kernelization algorithm in terms of NC^1 circuits, where each gate executes its own instruction on its own data, whereas GPUs operate in terms of the SIMD (Single Instruction, Multiple Data) model: all cores of one multiprocessor perform the same operations, yet on different data. Data reduction algorithms seem to lend themselves well to realization on GPUs since, often, they consist of a fixed set of data reduction rules, applied to different parts of the data. We thus expect that, although previously more often studied in the context of attacking NP-hard problems [8–10], parallel kernelization will have a stronger real-world impact in the context of speeding up polynomial-time algorithms on large data sets, such as linear-time data reduction was applied to speed up matching algorithms [43], or in the context of designing parallel fixed-parameter algorithms [9] for P-complete problems, which do not give in to massive parallelization.

Funding. This work was initiated during the First Workshop of Mathematical Center in Akademgorodok, which was held during July 13–17 and August 10–14, 2020, under support of the Ministry of Science and Higher Education of the Russian Federation, agreement No. 075-15-2019-167. Until the end of 2020, R. van Bevern, P. V. Smirnov, and O. Yu. Tsidulko were supported by Russian Foundation for Basic Research, project 18-501-12031 NNIO.a.

References

[1] F. N. Abu-Khzam, A kernelization algorithm for d-Hitting Set, Journal of Computer and System Sciences 76 (2010), 524–531, doi:10.1016/j.jcss.2009.09.002.
[2] F. N. Abu-Khzam, S. Lamm, M. Mnich, A. Noe, C. Schulz, and D. Strash, Recent advances in practical data reduction, H. Bast, C. Korzen, U. Meyer, and M. Penschuck (eds.), Algorithms for Big Data, Springer, LNCS, vol. 13201, 2022, pp. 97–133, doi:10.1007/978-3-031-21534-6_6.
[3] T. Achterberg, R. E. Bixby, Z. Gu, E. Rothberg, and D. Weninger, Presolve reductions in mixed integer programming, INFORMS Journal on Computing 32 (2020), 473–506, doi:10.1287/ijoc.2018.0857.
[4] A. Agrawal, N. Aravind, S. Kalyanasundaram, A. S. Kare, J. Lauri, N. Misra, and I. V. Reddy, Parameterized complexity of happy coloring problems, Theoretical Computer Science (2020), doi:10.1016/j.tcs.2020.06.002.
[5] J. Alman, M. Mnich, and V. Vassilevska Williams, Dynamic parameterized problems and algorithms, ACM Transactions on Algorithms 16 (2020), doi:10.1145/3395037.
[6] S. Aroza and B. Barak, Computational Complexity: A modern approach, Cambridge University Press, 2009.
[7] M. Bannach, Z. Heinrich, R. Reischuk, and T. Tantau, Dynamic kernels for hitting sets and set packing, Algorithmica 84 (2022), 3459–3488, doi:10.1007/s00453-022-00986-0.
[8] M. Bannach, M. Skambath, and T. Tantau, Kernelizing the hitting set problem in linear sequential and constant parallel time, S. Albers (ed.), SWAT 2020, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, LIPIcs, vol. 162, 2020, pp. 9:1–9:16, doi:10.4230/LIPIcs.SWAT.2020.9.
Appendix A. Error in the data reduction of Moscato et al. [45]

Moscato et al. [45, Section 2.2, Rule 2] attempt to generalize (W2) to Multiple Hitting Set using the following data reduction rule: if there are two vertices v_i, v_j such that $E(v_j) \subseteq E(v_i)$, and for every $e \in E(v_j)$ one has $|e| > f(e)$, then delete v_j can be deleted. We now show that this rule, in fact, can change the cardinality of an optimal solution.

Consider the following hypergraph with three hyperedges $e_1 = \{v_1, v_2\}$, $e_2 = \{v_2, v_3, v_4\}$, and $e_3 = \{v_2, v_3, v_5\}$ with equal demands $f(e_1) = f(e_2) = f(e_3) = 2$. It has a multiple hitting set $\{v_1, v_2, v_3\}$, yet the rule suggested by Moscato et al. [45] could delete v_3 due to v_2. After deletion of v_2, however, the minimum multiple hitting set is $\{v_1, v_2, v_4, v_5\}$ and has cardinality four.