INFINITELY MANY RADIAL SOLUTIONS FOR A SUPER-CUBIC KIRCHHOFF TYPE PROBLEM IN A BALL

ALFONSO CASTRO
Department of Mathematics, Harvey Mudd College
Claremont CA 91711, USA

SHU-ZHI SONG
School of Mathematics and Statistics, Chongqing Technology and Business University
Chongqing 400067, China

Abstract. We prove the existence of infinitely many radial solutions to a Kirchhoff type problem in a ball with a super-cubic nonlinearity. Our methods rely on bifurcation analysis and energy estimates.

1. Introduction. We consider the Kirchhoff type problem

\(- \left(a + b \int_{\Omega} |\nabla u|^2 \,dx \right) \Delta u = f(u) \text{ in } \Omega, \]
\(u = 0 \text{ on } \partial \Omega \)

where \(a > 0, b > 0, \Omega \) is the unit ball in \(\mathbb{R}^N, N = 1,2,3\) and

\[f(u) = \begin{cases} u^p + u & \text{if } u \geq 0, \\ -|u|^q + u & \text{if } u < 0, \end{cases} \]

with

\[3 < p, q < \frac{N+2}{N-2} < \infty. \]

That is, \(f\) has super-cubic and subcritical growth. Let \(\lambda_1 < \lambda_2 < \cdots < \lambda_k < \cdots \to +\infty\) denote the eigenvalues of

\[u'' + \frac{N-1}{r} u' + \lambda u = 0 \quad r \in (0,1], \]

\[u'(0) = u(1) = 0. \]

Our main result is the following theorem.

Theorem 1.1. If \(f\) satisfies (1.2)-(1.3), then for each \(k\) with \(a\lambda_k > 1\) the equation (1.1) has two radial solutions with \(k\) nodal sets. In particular, (1.1) has infinitely many radial solutions.

2010 Mathematics Subject Classification. Primary: 35J62, 34C23; Secondary: 34B16, 35J25.

Key words and phrases. Kirchhoff elliptic equation, infinitely radial solutions, bifurcation, Pohozaev identity.

Supported by the Science and Technology of Chongqing Educational Commission(Grant No. KJ16000618), the Research Funds of Chongqing Technology and Business University (Grant no.1756001) and China Scholarship Council.
Remark 1.1. It is easily verified that the hypotheses in Theorem 1.1 may be weakened to
\[f \text{ is increasing, } a\lambda_k > f'(0) > 0, 3 < p, q < \frac{N + 2}{N - 2}, \]
\[\lim_{u \to \pm \infty} \frac{f(u)}{u^p} > 0, \text{ and } \lim_{u \to \pm \infty} \frac{f(u)}{-|u|^q} > 0. \]

Remark 1.2. Unlike other results on the existence of infinitely many solutions, we do not assume \(f \) to be odd. Our assumption \(f'(0) > 0 \) plays a crucial role in the bifurcation analysis of radial solutions to be used in this paper.

For \(\Omega \) a general smooth bounded domain, the existence and multiplicity of solutions for (1.1) has been extensively studied. In [14], Perera and Zhang proved the existence of a nontrivial solution using the Yang index and critical groups for \(f \) asymptotically cubic and not resonant with the nonlinear spectrum. In [24], they revisited (1.1) via invariant sets of descent flow and found the existence of a positive, a negative solution and a sign changing solution for \(f \) sub-cubic, asymptotically cubic and super-cubic. In [16], Song, Tang and Chen proved the existence of three solutions for \(f \) nearly resonant to the first nonlinear eigenvalue from below based on Ekeland’s variational principle and the mountain pass lemma. In [15] the same authors proved the existence of solutions for \(f \) resonant to higher nonlinear eigenvalues.

The existence of infinitely many solutions for problem (1.1) in general bounded domains and \(f \) odd can be found in [8, 18, 22, 21]. In [21] the existence of infinitely many sign-changing solutions was proved using a combination of invariant sets of descent flow and Ljusternik-Schnirelman type minimax method for \(f(u) = |u|^{p-2}u, p \in (2, 2^*) \). In [8] infinitely many large energy solutions were found via the fountain theorem under Ambrosetti-Rabinowitz’s 4-super quadratic condition or general 4-super quadratic at infinity with the global monotonicity condition:
\[\frac{f(x,t)}{t^3} \text{ is an increasing function of } t \geq 0 \text{ for every } x \in \Omega. \] (1.5)

These results were extended in [18, 22]. In [18], (1.5) was replaced by the following condition:

There exists \(\theta \geq 1 \) such that \(\theta G(x,t) \geq G(x,st) \) for all \((x,t) \in \Omega \times \mathbb{R} \) and \(s \in [0,1] \),

where \(G(x,t) = f(x,t)t - 4F(x,t) \) and \(F(x,t) = \int_{0}^{1} f(x,s)ds \). In [22], Ye replaced (1.5) with

there exists \(r > 0 \) such that for all \(x \in \Omega \), \(\frac{f(x,t)}{t^3} \) is increasing in \(t \geq r \).

For \(\Omega = \mathbb{R}^N \) and \(f \) odd, the problem
\[- \left(a + b \int_{\Omega} |
abla u|^2 dx \right) \Delta u = V(x)u + f(u) \quad \text{in } \mathbb{R}^N, \]
\[u \to 0 \quad \text{as } x \to \infty. \]

has been extensively studied. See, [2, 6, 9, 10, 13, 1, 5, 11, 17, 19, 23, 7, 12, 20, 25].

Since the Sobolev embedding \(H^1(\mathbb{R}^N) \hookrightarrow L^s(\mathbb{R}^N)(2 \leq s \leq 2^*) \) is not compact, it is usually difficult to prove the Palais-Smale condition for the problem in \(\mathbb{R}^N \). In order to overcome this difficulty, some conditions have been imposed on the potential function \(V \). For \(V \) constant or radial, see [2, 6, 9, 10, 13]; for \(V \) bounded
from below, see [2, 1, 5, 11, 17, 19, 23] and for V’s such that Palais-Smale sequences converge while the the corresponding Sobolev embedding may not be compact, see [7, 12, 20, 25]. It is worth pointing out that assuming f to be odd is a key ingredient in the aforementioned references on the existence of infinitely many solutions for (1.1) for both Ω bounded and \mathbb{R}^N.

We base our arguments on the fact that if u is a solution to the singular ordinary differential equation

$$u_{rr} + \frac{N-1}{r} u_r + \lambda f(u(r)) = 0 \quad r \in (0,1]$$

$$u'(0) = u(1) = 0$$

with

$$\lambda = \frac{1}{a + b \int_0^1 r^{N-1}(u'(r))^2 dr},$$

i.e., $\lambda(a + b \int_0^1 r^{N-1}(u'(r))^2 dr) = 1,$

then u is a solution to (1.1). We investigate the solutions to (1.6) by considering the initial value problem

$$u_{rr} + \frac{N-1}{r} u_r + \lambda f(u(r)) = 0 \quad r \in (0,1]$$

$$u(0) = d, \; u'(0) = 0$$

and the bifurcation properties of (1.6).

2. Bifurcation analysis of radial solutions. Since each eigenvalue λ_k of (1.4) is simple, $f(0) = 0, f'(0) = 1$, by Theorem 1.7 of [4], for each positive integer k there exists a continuum of solutions to (1.8) bifurcating from $(\lambda_k,0)$ with $u(0) > 0$. Let such a continuum be Γ_k. By uniqueness of solutions to initial value problems, if $(\lambda, u) \in \Gamma_k$ then $u'(x) \neq 0$ for $u(x) = 0$. This and the connectedness of Γ_k imply that if $(\lambda, u) \in \Gamma_k$ then u has exactly k zeros in $(0,1]$. Hence $\Gamma_k \cap \Gamma_j$ is empty for $k \neq j$. Thus, by global bifurcation theory (see Theorem 8.2, [3]), Γ_k is unbounded. Since $p < (N+2)/(N-2)$, a priori estimates for elliptic equations imply that if $\{(\lambda_j, u_j)\}_j$ is a sequence in Γ_k and $\{\|u_j\|\}_j$ converges to $+\infty$ then λ_j converges to zero. Similarly, for each positive integer k, there exists an unbounded continuum $\tilde{\Gamma}_k$ of solutions to (1.8) bifurcating from $(\lambda_k,0)$ with $u(0) < 0$. Figure 1 below provides a sketch of the above analysis.

3. Proof of main result. Let (λ, u) be a solution to (1.8) and

$$E(r) = \frac{(u'(r))^2}{2} + \lambda F(u(r))$$

be the energy function associated with problem (1.8). Multiplying (1.8) by $r^{N-1} u$ and integrating on $[s, t]$, then multiplying the same equation by $r^N u'$ and integrating also on $[s, t]$, one has

$$t^{N-1} H(t) - s^{N-1} H(s) = \int_s^t \lambda r^{N-1} \left(NF(u(r)) - \frac{N-2}{2} u(r)f(u(r)) \right) dr$$

where $F(u) = \int_0^u f(s) ds$ and $H(x) = x E(x) + \frac{N-2}{2} u^2(x) u(x)$. Identity (3.1) is known as a Pohozaev’s identity. Since $E''(r) = -\frac{N-1}{r} (u'(r))^2 \leq 0$, one has

$$E(r) \geq E(1) \quad \text{for all} \quad 0 < r \leq 1.$$
For $r \in [\frac{1}{2}, 1]$, we have

$$E'(r) \geq -\frac{N - 1}{2}(u'(r))^2 \geq -4(N - 1)E(r),$$

that is

$$\frac{E'(r)}{E(r)} \geq -4(N - 1).$$

Integrating (3.2) on $[r, 1]$ we have

$$\ln \frac{E(1)}{E(r)} \geq -4(N - 1)(1 - r) \geq -2(N - 1),$$

which implies

$$E(r) \leq E(1)e^{2(N - 1)}.$$ \hspace{1cm} (3.3)

Therefore,

$$F(u(r)) \leq \lambda^{-1}E(r) \leq \lambda^{-1}e^{2(N - 1)}\left(\frac{u'(1))^2}{2}\right).$$

Let $\rho = \max_{r \in [\frac{1}{2}, 1]} u(r)$. From (3.4) we infer

$$\rho \leq \left[\frac{p + 1}{2}e^{2(N - 1)}\right]^{\frac{1}{p+1}} \frac{|u'(1)|}{\lambda^{\frac{1}{p+1}}}. \hspace{1cm} (3.5)$$

Lemma 3.1. Let k be a positive integer, $\lambda \in (0, 1)$ and $|\sigma| > 2$ be such that

$$\lambda|\sigma|^{p-1} \geq (2^{\frac{p+10}{2}}k)^{p+1}(p + 1)e^{(p+1)(N - 1)}.$$ \hspace{1cm} (3.6)
Let \((\lambda, u)\) satisfy
\[
\frac{N-1}{r} u_r + N u_{rr} + \lambda f(u(r)) = 0 \quad r \in (0, 1)
\]
\[
u(1) = 0, u'(1) = \sigma.
\]
If \(u(t_0) = 0\) for some \(t_0 \in \left[\frac{1}{2}, \frac{1}{3} \cdot 1\right]\) and \(u'(t_0) < 0\) then there exists \(t_1 \in [t_0 - \frac{1}{3\varepsilon}, t_0]\) such that \(u(t_1) = 0\) and \(u > 0\) on \([t_1, t_0]\).

Proof. Let
\[
r_1 := \inf \{r > 0; |u'(s)| \geq \frac{|u'(t_0)|}{2} \text{ for all } s \in [r, t_0]\},
\]
and
\[
s_1 := \inf \{r > 0; u'(s) \leq 0 \text{ for all } s \in [r, s_1]\}.
\]
Without loss of generality we may assume that \(\sigma < 0\). Since \(E(t_0) \geq E(1), |u'(t_0)| \geq |\sigma|\). From the definition of \(r_1\), \(-u'(r) \geq \frac{2}{\sigma}\) for all \(r \in [r_1, t_0]\). Integrating on \([r_1, t_0]\), we obtain
\[
-u(r_1) = \int_{r_1}^{t_0} u'(s)ds \leq \int_{r_1}^{t_0} \frac{\sigma}{2} ds = \frac{\sigma}{2}(t_0 - r_1).
\]
Therefore, combining (3.5), (3.6) and (3.7), one has
\[
t_0 - r_1 \leq \frac{2u(r_1)}{-\sigma} \leq \frac{2}{\left[p + \frac{1}{2} e^{2(N-1)}\right]^{\frac{2}{p+1}}} \left(\frac{|\sigma|^{1-p}}{\lambda}\right)^{\frac{1}{p+1}} \leq \frac{1}{16\lambda}.
\]
Since \(E(t_0) \leq E(r_1), u'(r_1) = \frac{u'(t_0)}{2}, u(r_1) > 0, \) and \(|\sigma| > 2\), we have
\[
\frac{|u'(t_0)|^2}{2} \leq \left(\frac{u'(r_1)}{2}\right)^2 + \lambda F(u(r_1))
\]
\[
\leq \frac{|u'(t_0)|^2}{8} + \lambda \left[\frac{|u(r_1)|^{p+1}}{p+1} + \frac{|u(r_1)|^2}{2}\right]
\]
\[
\leq \frac{|u'(t_0)|^2}{8} + \lambda \left[\frac{1}{p+1} + \frac{1}{2}\right] |u(r_1)|^{p+1}
\]
\[
\leq \frac{|u'(t_0)|^2}{8} + \frac{3}{4} \lambda |u(r_1)|^{p+1}.
\]
Hence
\[
u(r_1) \geq \left(\frac{\sigma^2}{2\lambda}\right)^{\frac{1}{p+1}}.
\]
Let \(r \in [s_1, r_1]\). It follows from (3.9) that \(|u'(t_0)| \leq |\sigma|^{N-1}\) and then \(u'(r_1) = \frac{u'(t_0)}{2} \geq \frac{\sigma^{N-1}}{2}\). Multiplying (1.6) by \(r^{N-1}\) and integrating on \([r, r_1]\), one has
\[
0 \geq r^{N-1} u'(r) = r^{N-1} u'(r) + \int_r^{r_1} \lambda s^{N-1} f(u(s))ds
\]
\[
\geq \frac{1}{2} r_1^{N-1} \sigma e^{N-1} + \lambda \int_r^{r_1} s^{N-1} u^p(r_1)ds
\]
\[
\geq \frac{1}{2} r_1^{N-1} \sigma e^{N-1} + \lambda \left(r_1^{N} - r^{N}\right) u^p(r_1)
\]
\[
\geq \frac{1}{2} r_1^{N-1} \sigma e^{N-1} + \lambda \left(r_1^{N-2} r + \cdots + r^{N-1}\right) u^p(r_1).
\]
Thus, by inequality above and (3.9) we have
\[r_1 - r \leq \frac{1}{2} \sigma e^{N-1} \frac{r_1^{N-1}}{r_1^{N-2} + \ldots + r^{N-1}} \frac{N}{\lambda} u^{-p}(r_1) \]
\[\leq N e^{N-1} \left(\frac{|\sigma|^{1-p}}{\lambda} \right)^{\frac{1}{p+p-1}} \leq N e^{N-1} \frac{1}{2^{\frac{p+10}{p}} k} \left[\frac{1}{(p+1)e^{(p+1)(N-1)}} \right]^{\frac{1}{p+p-1}} \]
\[\leq \frac{1}{16k}. \]

In particular, taking \(r = s_1 \) in inequality above we have
\[r_1 - s_1 \leq \frac{1}{16k}. \quad (3.10) \]

Let
\[\hat{r}_1 := \inf \{ r > 0 ; u(s) \geq \frac{u(s_1)}{2} \text{ for all } s \in [r, s_1] \} \]
and
\[t_1 := \inf \{ r > 0 ; u(s) \geq 0 \text{ for all } s \in [r, \hat{r}_1] \}. \]

Let \(r \in [\hat{r}_1, s_1] \). Multiplying (1.6) by \(r^{N-1} \) and integrating on \([r, s_1]\), one has
\[r^{N-1} u'(r) = \int_r^{s_1} \lambda s^{N-1} f(u(s)) ds \geq \frac{\lambda}{N} (s_1^{N-1} - r^{N-1}) u^p(r), \]
which yields
\[s_1 - r \leq \frac{1}{\lambda} u'(r) \frac{u'(r)}{u^p(r)}. \]

Then, integrating on \([\hat{r}_1, s_1]\), one has
\[\frac{(s_1 - \hat{r}_1)^2}{2} \leq \frac{1}{\lambda(1-p)} (u_1^{1-p}(s_1) - u_1^{1-p}(\hat{r}_1)) = \frac{(2^{p-1} - 1)}{\lambda(p-1)} u_1^{1-p}(s_1). \]

Combining the inequality above, (3.6), (3.9) and the fact \(u(s_1) \geq u(r_1) \), we have
\[s_1 - \hat{r}_1 \leq \left[\frac{2(2^{p-1} - 1)}{p-1} \right]^{\frac{1}{2}} \left(\frac{1}{\lambda} \right)^{\frac{1}{2}} \left(\frac{\sigma^2}{2\lambda} \right)^{\frac{1}{p+p-1}} \]
\[\leq \left[\frac{2(2^{p-1} - 1)}{p-1} \right]^{\frac{1}{2}} \left(\frac{1}{2} \right)^{\frac{1}{p+p-1}} \left(\frac{|\sigma|^{1-p}}{\lambda} \right)^{\frac{1}{p+p-1}} \]
\[\leq \frac{2^{\frac{5}{2}}}{2^{\frac{p+10}{p}} k} \left[\frac{1}{(p+1)e^{(p+1)(N-1)}} \right]^{\frac{1}{p+p-1}} \leq \frac{1}{16k}. \quad (3.11) \]

For \(r \in [t_1, \hat{r}_1] \). It follows from \(E(r) \geq E(s_1) \) that
\[\frac{[u'(r)]^2}{2} + \frac{\lambda}{p+1} u^{p+1}(r) + \frac{\lambda}{2} u^2(r) \geq \frac{\lambda}{p+1} u^{p+1}(s_1) + \frac{\lambda}{2} u^2(s_1), \]
which yields
\[\frac{[u'(r)]^2}{2} \geq \left(\frac{\lambda}{p+1} u^{p+1}(s_1) - \frac{\lambda}{p+1} u^{p+1}(\hat{r}_1) \right) + \left(\frac{\lambda}{2} u^2(s_1) - \frac{\lambda}{2} u^2(\hat{r}_1) \right) \]
\[\geq \frac{\lambda}{p+1} \left(u^{p+1}(s_1) - \left(\frac{u(s_1)}{2} \right)^{p+1} \right). \]
Hence,
\[u'(r) \geq \left(\frac{2}{p+1} \left(1 - \frac{1}{2^p+1} \right) \right)^{\frac{1}{2}} \lambda^{\frac{1}{2}} u^{\frac{p+1}{2}}(s_1). \]

It follows from the inequality above that
\[u(\hat{r}_1) \geq \int_{r}^{\hat{r}_1} u'(s) ds \geq \left(\frac{2}{p+1} \left(1 - \frac{1}{2^p+1} \right) \right)^{\frac{1}{2}} \lambda^{\frac{1}{2}} u^{\frac{p+1}{2}}(s_1)(\hat{r}_1 - r). \tag{3.12} \]

It follows from \(u(s_1) \geq u(r_1) \) and (3.9) that
\[u(s_1) \geq \left(\frac{\sigma^2}{2\lambda} \right)^{\frac{1}{p+1}}. \tag{3.13} \]

Combining (3.6), (3.12) and (3.13), one has
\[\hat{r}_1 - r \leq \frac{1}{2} \left(\frac{2}{p+1} \left(1 - \frac{1}{2^p+1} \right) \right)^{-\frac{1}{2}} \left(\frac{1}{\lambda} \right)^{\frac{1}{2}} u^{\frac{1-p}{2}}(s_1) \]
\[\leq \left(\frac{2}{p+1} \left(1 - \frac{1}{2^p+1} \right) \right)^{-\frac{1}{2}} \left(\frac{|\sigma|^{1-p}}{\lambda} \right)^{\frac{1}{p+1}} \leq \frac{1}{16k} \leq \frac{1}{16k}. \tag{3.14} \]

Thus, taking \(r = t_1 \) in inequality above we have
\[\hat{r}_1 - t_1 \leq \frac{1}{16k}. \]

Thus, from (3.8), (3.10), (3.11), (3.14), we infer that \(t_0 - t_1 \leq \frac{1}{4k}. \)

For \(u(t_0) = 0 \) with \(u'(t_0) > 0 \), imitating the proof of Lemma 3.1, we have the following estimate for \(t_1 \) with \(u(t_1) = 0 \) and \(u < 0 \) on \([t_1, t_0]\).

Lemma 3.2. Let \(k \) be a positive integer, \(\lambda \in (0, 1) \) and \(|\sigma| > 2 \) be such that
\[\lambda |\sigma|^{q-1} \geq (2^{q-1+1} k)^{q+1}(q+1)e^{(q+1)(N-1)}. \tag{3.15} \]

Let \((\lambda, u)\) satisfy
\[u_{rr} + \frac{N-1}{r} u_r + \lambda f(u(r)) = 0 \quad r \in (0, 1) \]
\[u(1) = 0, u'(1) = \sigma. \]

If \(u(t_0) = 0 \) for some \(t_0 \in [\frac{1}{2} + \frac{1}{4k}, 1] \) and \(u'(t_0) > 0 \) then there exists \(t_1 \in [t_0 - \frac{1}{4k}, t_0] \) such that \(u(t_1) = 0 \) and \(u < 0 \) on \([t_1, t_0]\).

Lemma 3.3. Let \(k \) be a positive integer. If \(\{(\lambda_j, u_j)\} \) is a sequence in \(\Gamma_k \) and \(\lim_{j \to +\infty} \lambda_j = 0 \), then,
\[\lim_{j \to +\infty} \lambda_j^2 \int_0^1 r^{N-1} u_j(r)f(u_j(r))dr = 0. \]

Proof. We argue by contradiction. Suppose that there exists \(M > 0 \) such that
\[\lambda_j^2 \int_0^1 r^{N-1} u_j(r)f(u_j(r))dr \geq M \tag{3.16} \]
for any \(j = 1, 2, \ldots \). From (1.2)-(1.3) there exists \(M_1 > 0 \) such that \(2NF(x) \geq (N-2+M_1)xf(x) \) for all \(x \in \mathbb{R} \). Hence, from (3.1) and (3.16), we have
\[
\frac{|\sigma_j|^2}{2} = \frac{[u_j'(1)]^2}{2} = \lambda_j \int_0^1 r^{N-1} \left(NF(u_j(r)) - \frac{N-2}{2} u_j(r)f(u_j(r)) \right) \, dr \\
\geq \lambda_j \frac{M_1}{2} \int_0^1 r^{N-1} f(u_j(r))u_j(r)dr \geq \frac{MM_1}{2\lambda_j}.
\]
Since \(p, q > 3 \),
\[
\lambda_j |\sigma_j|^{p-1} \geq \lambda_j \left(\frac{MM_1}{\lambda_j} \right)^{\frac{p-1}{p}} \geq (MM_j)^{\frac{p-1}{p}} \lambda_j^{-\frac{2p}{p}} \rightarrow +\infty
\]
and
\[
\lambda_j |\sigma_j|^{q-1} \geq \lambda_j \left(\frac{MM_1}{\lambda_j} \right)^{\frac{q-1}{q}} \geq (MM_j)^{\frac{q-1}{q}} \lambda_j^{-\frac{2q}{q}} \rightarrow +\infty
\]
as \(\lambda_j \to 0 \). Hence, for \(j \) large enough, (3.6) and (3.15) are satisfied. This, Lemma 3.1, and Lemma 3.2 imply that \(u_j \) has at least \(2k \) zeroes, which contradicts that \(u \) has exactly \(k \) zeroes because of \((\lambda_j, u_j) \in \Gamma_k\).

Proof of Theorem 1.1. Let \(k_0 \) be such that \(a\lambda_k > 1 \) for all \(k \geq k_0 \). For \((\lambda, u) \in \Gamma_k\) as shown in Figure 1, \(\lim_{\|u\|_{\infty} \to 0} \lambda = \lambda_k = \frac{\lambda_k}{f(0)} \). Therefore, there exists \((\hat{\lambda}, \hat{u}) \in \Gamma_k\) such that \(a\hat{\lambda} > 1 \) and then
\[
\hat{\lambda} \left(a + b \int_0^1 r^{N-1}(\hat{u}'(r))^2dr \right) > 1. \quad (3.17)
\]
On the other hand, for \((\lambda, u) \in \Gamma_k\), from Lemma 3.3,
\[
\lambda^2 \int_0^1 r^{N-1}uf(u)dr \rightarrow 0 \quad \text{as} \ \lambda \to 0. \quad (3.18)
\]
Since \(\int_0^1 r^{N-1}(u'(r))^2dr = \lambda \int_0^1 r^{N-1}uf(u)dr \), one has, from (3.18), that
\[
\lambda \int_0^1 r^{N-1}(u'(r))^2dr \rightarrow 0 \quad \text{as} \ \lambda \to 0,
\]
which yields
\[
\lambda \left(a + b \int_0^1 r^{N-1}(u'(r))^2dr \right) \rightarrow 0 \quad \text{as} \ \lambda \to 0.
\]
Thus, there exists \((\hat{\lambda}, \hat{u}) \in \Gamma_k\) such that
\[
\hat{\lambda} \left(a + b \int_0^1 r^{N-1}(\hat{u}'(r))^2dr \right) < 1. \quad (3.19)
\]
From (3.17), (3.19) and the intermediate value theorem, there exists some \((\lambda, u) \in \Gamma_k\) such that
\[
\lambda \left(a + b \int_0^1 r^{N-1}(u'(r))^2dr \right) = 1.
\]
This proves (1.7) which shows (1.1) has a radial solution with \(k \) nodal sets. By analogy, we can find a second radial solution in \(\hat{\Gamma}_k\) with \(k \) nodal solution. Thus, Theorem 1.1 is proved. \(\square \)
REFERENCES

[1] P. Chen and X. H. Tang, Existence and multiplicity results for infinitely many solutions for Kirchhoff-type problems in \mathbb{R}^N, Math. Methods Appl. Sci., 37 (2014), 1828–1837.

[2] B. T. Cheng and X. H. Tang, Infinitely many large energy solutions for Schrödinger-Kirchhoff type problem in \mathbb{R}^N, J. Nonlinear Sci. Appl., 9 (2016), 652–660.

[3] S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], 251. Springer-Verlag, New York-Berlin, 1982.

[4] M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321–340.

[5] L. Duan and L. H. Huang, Infinitely many solutions for Schrödinger-Kirchhoff-type equations with general potentials, Results Math., 66 (2014), 181–197.

[6] W. J. Feng and X. J. Feng, Multiple solutions for Kirchhoff equations under the partially sublinear case, J. Funct. Spaces, (2015), Art. ID 610858, 4 pp.

[7] Y. X. Guo and J. J. Nie, Existence and multiplicity of nontrivial solutions for p-Laplacian Schrödinger-Kirchhoff-type equations, J. Math. Anal. Appl., 428 (2016), 1054–1069.

[8] X.-M. He and W.-M. Zou, Existence and multiplicity for a class of Kirchhoff type problems, Acta Math. Sin. Engl. Ser., 26 (2010), 387–394.

[9] J. H. Jin and X. Wu, Infinitely many radial solutions for Kirchhoff-type problems in \mathbb{R}^N, J. Math. Anal. Appl., 369 (2010), 564–574.

[10] A. Li and J. B. Su, Existence and multiplicity of solutions for Kirchhoff-type equation with radial potentials in \mathbb{R}^3, Z. Angew. Math. Phys., 66 (2015), 3147–3158.

[11] L. Li and X. Zhong, Infinitely many small solutions for the Kirchhoff equation with local sublinear nonlinearities, J. Math. Anal. Appl., 435 (2016), 955–967.

[12] J. J. Nie, Existence and multiplicity of nontrivial solutions for a class of Schrödinger-Kirchhoff-type equations, J. Math. Anal. Appl., 417 (2014), 65–79.

[13] J. J. Nie and X. Wu, Existence and multiplicity of non-trivial solutions for Schrödinger-Kirchhoff-type equations with radial potential, Nonlinear Anal., 75 (2012), 3470–3479.

[14] K. Perera and Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations, 221 (2006), 246–255.

[15] S. Z. Song, S. J. Chen and C. L. Tang, Existence of solutions for Kirchhoff type problems with resonance at higher eigenvalues, Discrete Contin. Dyn. Syst., 36 (2016), 6453–6473.

[16] S.-Z. Song, C. L. Tang and S.-J. Chen, Multiple solutions for Kirchhoff type problem near resonance, Electron. J. Differential Equations, 2015, (2015), 7 pp.

[17] J. J. Sun, L. Li, M. Cencelj and B. Gabrovšek, Infinitely many sign-changing solutions for Kirchhoff problems in \mathbb{R}^3, Nonlinear Analysis, 186 (2019), 33–54.

[18] J.-J. Sun and C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type equations, Nonlinear Anal., 74 (2011), 1212–1222.

[19] X. Wu, Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in \mathbb{R}^N, Nonlinear Anal. Real World Appl., 12 (2011), 1278–1287.

[20] Q. L. Xie, S. W. Ma and X. Zhang, Infinitely many bounded state solutions of Kirchhoff problem in \mathbb{R}^3, Nonlinear Anal. Real World Appl., 29 (2016), 80–97.

[21] X. Z. Yao and C. L. Mu, Infinitely many sign-changing solutions for Kirchhoff type equations with power nonlinearity, Electron. J. Differential Equations, 2016 (2016), 7 pp.

[22] Y. W. Ye, Infinitely many solutions for Kirchhoff type problems, Differ. Equ. Appl., 5 (2013), 83–92.

[23] Y. W. Ye and C. L. Tang, Multiple solutions for Kirchhoff-type equations in \mathbb{R}^N, J. Math. Phys., 54 (2013), 081508, 16 pp.

[24] Z. T. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456–463.

[25] Q. Y. Zhang and B. Xu, Infinitely many solutions for Schrödinger-Kirchhoff-type equations involving indefinite potential, Electron. J. Qual. Theory Differ. Equ., 2017, (2017), 17 pp.

Received December 2018; revised March 2019.

E-mail address: castro@hmc.edu
E-mail address: sjrdj@ctbu.edu.cn