ALFWORLD: ALIGNING TEXT AND EMBODIED ENVIRONMENTS FOR INTERACTIVE LEARNING

Mohit Shridhar† Xingdi Yuan♡ Marc-Alexandre Côté♡ Yonatan Bisk‡ Adam Trischler♡ Matthew Hausknecht♣
†University of Washington ♡Microsoft Research, Montréal ♠Carnegie Mellon University ‡Carnegie Mellon University ♣Microsoft Research

ABSTRACT

Given a simple request (e.g., Put a washed apple in the kitchen fridge), humans can reason in purely abstract terms by imagining action sequences and scoring their likelihood of success, prototypicality, and efficiency, all without moving a muscle. Once we see the kitchen in question, we can update our abstract plans to fit the scene. Embodied agents require the same abilities, but existing work does not yet provide the infrastructure necessary for both reasoning abstractly and executing concretely. We address this limitation by introducing ALFWORLD, a simulator that enables agents to learn abstract, text-based policies in TextWorld (Côté et al., 2018) and then execute goals from the ALFRED benchmark (Shridhar et al., 2020) in a rich visual environment. ALFWORLD enables the creation of a new BUTLER agent whose abstract knowledge, learned in TextWorld, corresponds directly to concrete, visually grounded actions. In turn, as we demonstrate empirically, this fosters better agent generalization than training only in the visually grounded environment. BUTLER’s simple, modular design factors the problem to allow researchers to focus on models for improving every piece of the pipeline (language understanding, planning, navigation, visual scene understanding, and so forth). Data, code, and videos are available at: alfworld.github.io

1 INTRODUCTION

Consider helping a friend prepare dinner in an unfamiliar house: when your friend asks you to clean and slice an apple for an appetizer, how would you approach the task? Intuitively, one could reason abstractly: (1) find an apple (2) wash the apple in the sink (3) put the clean apple on the cutting board (4) find a knife (5) slice the apple with the knife (6) put the slices in a bowl. Even in an unfamiliar setting, abstract reasoning can help accomplish the goal by leveraging semantic priors. Priors like locations of objects — apples are commonly found in the kitchen, as are implements for cleaning and slicing, object affordances — a sink is useful for washing an apple, a refrigerator is not, pre-conditions — better to wash an apple before slicing it, rather than the converse. We hypothesize that, learning to solve tasks using abstract language, unconstrained by the particulars of the physical world, enables agents to complete embodied tasks in novel environments by leveraging the kinds of semantic priors that are exposed by abstraction.

Figure 1: ALFWORLD: Interactive aligned text and embodied worlds. An example with high-level text actions (left) and low-level physical actions (right).
To test this hypothesis, we have created the novel ALFWorld framework, the first interactive, parallel environment that aligns text descriptions and commands with physically embodied robotic simulation. We build ALFWorld by extending two prior works: TextWorld (Côté et al., 2018) - an engine for interactive text-based games, and ALFRED (Shridhar et al., 2020) - a large scale dataset for vision-language instruction following in embodied environments. ALFWorld provides two views of the same underlying world and two modes by which to interact with it: TextWorld, an abstract, text-based environment, generates textual observations of the world and responds to high-level text actions; ALFRED, the embodied simulator, renders the world in high-dimensional images and responds to low-level physical actions as from a robot (Figure 1). Unlike prior work on instruction following (MacMahon et al., 2006; Anderson et al., 2018a), which typically uses a fixed corpus of cross-modal expert demonstrations, we argue that aligned parallel environments like ALFWorld offer a distinct advantage: they allow agents to explore, interact, and learn in the abstract environment of language before encountering the complexities of the embodied environment.

While fields such as robotic control use simulators like MuJoCo (Todorov et al., 2012) to provide infinite data through interaction, there has been no analogous mechanism – short of hiring a human around the clock – for providing linguistic feedback and annotations to an embodied agent. TextWorld addresses this discrepancy by providing programmatic and aligned linguistic signals during agent exploration. This facilitates the first work, to our knowledge, in which an embodied agent learns the meaning of complex multi-step policies, expressed in language, directly through interaction.

Empowered by the ALFWorld framework, we introduce BUTLER (Building Understanding in Textworld via Language for Embodied Reasoning), an agent that first learns to perform abstract tasks in TextWorld using Imitation Learning (IL) and then transfers the learned policies to embodied tasks in ALFRED. When operating in the embodied world, BUTLER leverages the abstract understanding gained from TextWorld to generate text-based actions; these serve as high-level subgoals that facilitate physical action generation by a low-level controller. Broadly, we find that BUTLER is capable of generalizing in a zero-shot manner from TextWorld to unseen embodied tasks and settings. Our results show that training first in the abstract text-based environment is not only 7× faster, but also yields better performance than training from scratch in the embodied world. These results lend credibility to the hypothesis that solving abstract language-based tasks can help build priors that enable agents to generalize to unfamiliar embodied environments.

Our contributions are as follows:

§ 2 ALFWorld environment: The first parallel interactive text-based and embodied environment.
§ 3 BUTLER architecture: An agent that learns high-level policies in language that transfer to low-level embodied executions, and whose modular components can be independently upgraded.
§ 4 Generalization: We demonstrate empirically that BUTLER, trained in the abstract text domain, generalizes better to the embodied setting than agents trained from corpora of demonstrations or from scratch in the embodied world.

2 ALIGNING ALFRED AND TEXTWORLD

The ALFRED dataset (Shridhar et al., 2020), set in the THOR simulator (Kolve et al., 2017), is a benchmark for learning to complete embodied household tasks using natural language instructions and egocentric visual observations. ALFRED involves a wide variety of 3D interactive environments and compositional tasks. As shown in Figure 1 (right), ALFRED tasks pose challenging interaction and navigation problems to an agent in a high-fidelity simulated environment. Tasks come annotated with a goal instruction that describes the objective (e.g., “put a pan on the dining table”). The dataset provides both template-based and human-annotated goals (see Appendix E). Agents observe the world through high-dimensional pixel images and interact using low-level action primitives: MOVEAHEAD, ROTATELEFT/RIGHT, LOOKUP/DOWN, PICKUP, PUT, OPEN, CLOSE, and TOGGLEON/OFF.

task-type	# train	# seen	# unseen
Pick & Place	790	35	24
Examine in Light	308	13	18
Clean & Place	650	27	31
Heat & Place	459	16	23
Cool & Place	533	25	21
Pick Two & Place	813	24	17
All	3,553	140	134

Table 1: Six ALFRED task types with heldout seen and unseen evaluation sets.

Note: Throughout this work, for clarity of exposition, we use ALFRED to refer to both tasks and the grounded simulation environment, but rendering and physics are provided by THOR (Kolve et al., 2017).
While ALFRED also provides low-level step-by-step language instructions on how to complete a particular goal, we tackle the challenge of completing tasks with only high-level goal descriptions. This task is harder than the instruction-following challenge posed in ALFRED, since the agent begins without any information about object locations or a sequential plan for solving the task.

Our aligned ALFWorld framework adopts six ALFRED task-types (Table 1) of various difficulty levels. These typically involve first finding a particular object, which often requires the agent to open and search receptacles like drawers or cabinets. Subsequently, all tasks other than Pick & Place require some interaction with the object such as heating (place object in microwave and start it) or cleaning (wash object in a sink). To conclude, the object must be placed in the designated location.

Within each task category there is significant variation: the embodied environment includes 120 rooms (30 kitchens, 30 bedrooms, 30 bathrooms, 30 living rooms), each dynamically populated with a set of portable objects (e.g., apple, mug), and static receptacles (e.g., microwave, fridge). For each task type we construct a larger train set, as well as seen and unseen validation evaluation sets:

1: seen consists of known task tuples \{task-type, object, receptacle, room\} in rooms seen during training, but with different instantiations of object locations, quantities, and visual appearances (e.g., two blue pencils on a shelf instead of three red pencils in a drawer seen in training).

2: unseen consists of new task tuples with known or unknown object-receptacle pairs, but always in an unseen room with different receptacles and scene layouts than in training tasks.

The seen set is designed to measure in-distribution generalization, whereas the unseen set measures out-of-distribution generalization. The scenes in ALFRED are visually diverse, so even the same task tuple can lead to very distinct tasks, e.g., involving differently colored apples, shaped statues, or textured cabinets. For this reason, purely vision-based agents often struggle to generalize to unseen environments and objects (see unimodal baselines in Section 5).

The TextWorld framework (Côté et al., 2018) procedurally generates text-based environments for training and evaluating language-based agents. We extend TextWorld to create text-based analogs of each ALFRED environment. Aligning text and embodied environments necessitates a common latent structure representing the state of the simulated world. ALFWorld uses PDDL - Planning Domain Definition Language (McDermott et al., 1998) to describe each scene from ALFRED and to construct an equivalent text game using the TextWorld engine. The dynamics of each game are defined by the PDDL domain (see Appendix C for additional details). We generate text that serves as a stand-in for visual observations by filling templates sampled from a context-sensitive grammar designed for the ALFRED environments. For interaction, TextWorld environments use the following high-level actions:

\[
\begin{align*}
goto{recep} & \quad \text{take } \{obj\} \text{ from } \{recep\} & \quad \text{put } \{obj\} \text{ in/on } \{recep\} \\
open{recep} & \quad \text{close } \{recep\} & \quad \text{toggle } \{obj\}/\{recep\} \\
\text{clean } \{obj\} \text{ with } \{recep\} & \quad \text{heat } \{obj\} \text{ with } \{recep\} & \quad \text{cool } \{obj\} \text{ with } \{recep\}
\end{align*}
\]

where \{obj\} and \{recep\} correspond to objects and receptacles. Note that heat, cool, clean, and goto are high-level actions that correspond to several low-level embodied actions.

Since TextWorld is an abstract representation of the world, transferring a TextWorld-trained agent to an embodied setting involves dealing with some domain gaps. For example, it is not possible to place objects inside a receptacle that is already full. Similarly, the physical size of objects and receptacles must be respected – it is not possible to put a large pot inside the microwave. The agent is also subject to visual challenges like occluded objects, misdetections, and inaccurate object relations.

3 INTRODUCING BUTLER: AN EMBODIED MULTI-TASK AGENT

We investigate learning in the abstract language modality before generalizing to the embodied setting. This requires an agent capable of spanning both modalities. BUTLER uses three components: BUTLER::Brain – the abstract text agent, BUTLER::Vision – the language state estimator, and BUTLER::Body – the low-level controller. An overview of BUTLER is shown in Figure 2.

\footnote{To start with, we focus on a subset of the ALFRED dataset for training and evaluation that excludes tasks involving slicing objects or using portable container (e.g., bowls), but we plan on supporting these in the future.}
3.1 BUTLER::Brain (Text Agent): $o_0, o_t, g \rightarrow a_t$

BUTLER::Brain is a novel text-based game agent that generates high-level text actions in a token-by-token fashion akin to Natural Language Generation (NLG) approaches for dialogue (Sharma et al., 2017) and summarization (Gehrmann et al., 2018). An overview of the agent’s architecture is shown in Figure 3. At game step t, the encoder takes the initial text observation o_0, current observation o_t, and the goal description g as input and generates a context-aware representation of the current observable game state. Here o_0 explicitly lists all the navigable receptacles in the scene. Since games are partially observable, the agent only has access to the observation describing the effects of its previous action and its present location. Therefore, we incorporate two memory mechanisms to imbue the agent with history: (1) a recurrent aggregator, adapted from Yuan et al. (2018), combines the encoded state with recurrent state h_{t-1} from the previous game step; (2) an observation queue feeds in the k most recent, unique textual observations. The decoder generates an action sentence a_t token-by-token to interact with the game. The encoder and decoder are based on a Transformer Seq2Seq model with pointer softmax mechanism (Gulcehre et al., 2016). We leverage pre-trained BERT embeddings (Sanh et al., 2019), and tie output embeddings with input embeddings (Press and Wolf, 2016). The agent is trained in an imitation learning setting with DAgger (Ross et al., 2011) using expert demonstrations. See Appendix A for complete details.

When playing a game, an agent might get stuck at certain states due to various failures (e.g., action is grammatically incorrect, wrong object name). The observation for a failed action does not contain any useful feedback, so a fully deterministic model tends to produce the same (wrong) action repeatedly. Since our decoder generates token-by-token and does not rely on templates, BUTLER::Brain is fully capable of leveraging search heuristics such as Beam Search (Reddy et al., 1977). During evaluation, BUTLER::Brain uses Beam Search to generate alternative action sentences in the event of a failed action, but otherwise greedily picks a sequence of best words.

3.2 BUTLER::Vision (State Estimator): $v_t \rightarrow o_t$

At test time, agents in the embodied world must operate purely from visual input without any PDDL-based scene descriptions. To this end, BUTLER::Vision’s language state estimator functions as a captioning module that translates visual observations v_t into textual descriptions o_t.

Figure 2: BUTLER Agent consists of three modular components. 1) BUTLER::Brain: a text agent pre-trained with the TextWorld engine (indicated by the dashed yellow box) which simulates an abstract textual equivalent of the embodied world. It is then fine-tuned or directly evaluated on new embodied tasks. 2) BUTLER::Vision: a state estimator that translates, at each time step, the visual frame v_t from the embodied world into a textual observation o_t using a pre-trained Mask R-CNN detector. The text agent uses the current observation o_t, the initial observation o_0, and the task goal g to predict the next high-level action a_t. 3) BUTLER::Body: a controller that translates the high-level action a_t into a sequence of low-level actions in the embodied environment.

Figure 3: BUTLER::Brain: The text agent takes the initial/current observations o_0/o_t, and goal g to generate a textual action a_t token-by-token.
We design experiments to answer the following questions: (1) Is it possible to learn robust generalizing policies in TextWorld that can solve a large variety of tasks? (2) Can these abstract policies provide suitable guidance to help agents solve physically embodied tasks? (3) In contrast to directly training in the embodied world, do abstract textual policies enable better task completion and generalization?

4.1 BUTLER::Brain (Text Agent) Pre-training

To answer the first question, we train BUTLER::Brain in abstract TextWorld environments spanning the six tasks in Table 1 as well as All Tasks, a simple union of all 6. Because of the strong diversity
across task types, the All Tasks setting shows the extent to which a single policy can learn and generalize on the large set of 3,553 different text-based tasks. After finding that current reinforcement learning approaches were not successful on our set of training tasks (see Appendix I), we turned to DAgger (Ross et al., 2011) assisted by a rule-based expert (detailed in Appendix G). BUTLER::BRAIN is trained for 50k episodes using data collected by interacting with the set of training games.

Results in Table 2 show (i) Training success rate varies from 16-60% depending on the category of tasks, illustrating the challenge of solving hundreds to thousands of training tasks within each category. (ii) Transferring from training to heldout test games typically reduces performance, with the unseen rooms leading to the largest performance drops. Notable exceptions include heat and cool tasks where unseen performance exceeds training performance. (iii) Beam search is a key contributor to test performance; its ablation causes a performance drop of 21% on the seen split of All Tasks. (iv) Further ablating the DAgger strategy and directly training a Sequence-to-Sequence (Seq2Seq) model with pre-recorded expert demonstrations causes a bigger performance drop of 30% on seen split of All Tasks. These results suggest that online interaction with the environment, as facilitated by DAgger learning and beam search, is essential for recovering from mistakes and sub-optimal behavior.

Table 3: Zero-shot Domain Transfer. Left: Success percentages of best-performing BUTLER::BRAIN agents evaluated in TextWorld. Mid-Left: Success percentages after zero-shot transfer to embodied environments. Mid-Right: Success percentages of BUTLER with an oracle state-estimator and controller, an upper-bound. Right: Success percentages of BUTLER with human-annotated goal descriptions, an additional source of generalization difficulty. Successes are averaged across three evaluation runs. Goal-condition success rates (Shridhar et al., 2020) are given in parentheses.

4.2 TextWorld to Embodied Generalization

To understand whether abstract policies can provide guidance for agents to solve physically embodied tasks, we study the zero-shot domain transfer of BUTLER to novel tasks in embodied environments. Table 3 presents results for agents trained independently on individual tasks and also jointly on all 6 tasks. For each category of task, we select the agent with best evaluation performance in TextWorld (from 8 random seeds). This is done separately for each split: seen and unseen. These best-performing agents are then evaluated on the heldout seen and unseen ALFRED tasks.

The Seq2Seq baseline is trained in TextWorld from pre-recorded expert demonstrations using standard supervised learning. BUTLER is our main model using the Mask R-CNN detector and A* navigator. BUTLER::ORACLE uses an oracle state-estimator with ground-truth object detections and an oracle controller that directly teleports between locations. In Human Goals, instead of templated goal descriptions, we evaluate BUTLER using human-annotated ALFRED goals, which contain 66 unseen verbs (e.g., ‘wash’, ‘grab’, ‘chill’) and 189 unseen nouns (e.g., ‘rag’, ‘lotion’, ‘disc’; see Appendix E for full list). For embodied evaluations, we also report goal-condition success rates, a metric proposed in ALFRED (Shridhar et al., 2020) to measure partial goal completion.

Overall, TextWorld training generalizes well to unseen embodied tasks. The drop in performance from TextWorld to BUTLER::ORACLE is often a result of the inability of TextWorld-trained agents to understand physical constraints and infeasibilities, e.g., placing a plate inside a full microwave. Future works could address this issue by trying to reduce the domain gap between the two environments, or fine-tuning the agent in the embodied setting with reinforcement learning. The further drop in performance with BUTLER is a result of misdetections from Mask R-CNN and navigation failures caused by collisions. The Mask R-CNN detector struggles with unseen environments which are

1For instance, the task “put a hot potato on the countertop” is composed of three goal-conditions: (1) heating some object, (2) putting a potato on the countertop, (3) heating a potato and putting it on the countertop. If the agent manages to put any potato on the countertop, then 1/3 = 0.33 goal-conditions are satisfied, and so on.
visually very distinct from training scenes. Finally, even though the agents were trained only with templated language, they are able to handle some human-annotated goals in Human Goals.

The supplementary video contains qualitative examples of the BUTLER agent solving tasks in unseen environments. It showcases 3 successes and 1 failure of a TextWorld-only agent trained on All Tasks. In “put a watch in the safe”, the agent has never seen the ‘watch’-‘safe’ combination as a goal.

4.3 Training Strategies

Given the domain gap between TextWorld and the embodied world, a natural question is Why not eliminate this gap by training from scratch in the embodied world? To answer this question, we investigate three training strategies: (i) EMBODIED-ONLY: pure embodied training, (ii) TW-ONLY: pure TextWorld training followed by zero-shot embodied transfer and (iii) HYBRID training that switches between the two environments with 75% probability for TextWorld and 25% for embodied world. Table 3 presents success rates for these agents trained and evaluated on the Pick & Place task. All evaluations were conducted with an oracle state-estimator and controller. For a fair comparison, each agent is trained for 50K episodes and training speed is recorded for each strategy. We report peak performance for each split.

Results indicate that TW-ONLY training has higher performance and better generalization to unseen environments than HYBRID or EMBODIED-ONLY. We hypothesize that the abstract TextWorld environment allows the agent to focus on quickly learning tasks without having to deal with execution-failures and expert-failures caused by physical constraints inherent to embodied environments. TextWorld training is also 7× faster since it does not require running a rendering or physics engine like the embodied setting.

5 Ablations

Unimodal Baselines: Table 3 presents results for unimodal baseline comparisons to BUTLER. For all baselines, the action space and controller are fixed, but the state space is substituted with different modalities. To study the agents’ capability of learning a single policy that generalizes across various tasks, we train and evaluate on All Tasks. In Vision (ResNet18), the textual observation from the state-estimator is replaced with ResNet-18 fc7 features [He et al., 2016] from the visual frame. Similarly, Vision (MCNN-FPN) uses the pre-trained Mask R-CNN from the state-estimator to extract FPN layer features for the whole image. Action-only acts without any visual or textual feedback. We report peak performance for each split.

The visual models tend to overfit to seen environments and generalize poorly to unfamiliar environments. Operating in text-space allows better transfer of policies without needing to learn state representations that are robust to visually diverse environments. The zero-performing Action-only baseline indicates that memorizing action sequences is an infeasible strategy for agents.

Model Ablations Figure 4 illustrates more factors that affect the performance of BUTLER::Brain. The three rows of plots show training curves, evaluation curves in seen and unseen settings, respectively. All experiments are run on the Pick & Place task with 8 random seeds.

In the first column, we show the effect of using different observation queue lengths k as described in Section 3.1 in which size 0 refers to not providing any observation information to the agent. In the second column, we examine the effect of explicitly keeping the initial observation o0, which lists all the receptacles in the scene. Keeping the initial observation o0 facilitates the pointer softmax mechanism in the decoder by guiding it to generate receptacle words more accurately.

Training Strategy	train (succ %)	seen (succ %)	unseen (succ %)	train speed (eps/s)
EMBODIED-ONLY	36.5	48.6	41.7	0.9
TW-ONLY	58.7	57.1	62.5	6.1
HYBRID	31.0	42.9	41.7	0.7

Table 4: Training Strategy Success. Trained on Pick & Place Tasks for 50K episodes with embodied evaluations using an oracle state-estimator and controller.

Agent	seen (succ %)	unseen (succ %)
BUTLER	18.8	10.1
VISION (ResNet18)	10.0	6.0
VISION (MCNN-FPN)	11.4	4.5
ACTION-ONLY	0.0	0.0

Table 5: Unimodal Baselines. Trained on All Tasks with 50K episodes and evaluated in the embodied environment.

For a fair comparison, all agents in Table 3 use a batch-size of 10. THOR instances use 100MB × batch-size of GPU memory for rendering, whereas TextWorld instances are CPU-only and are thus much easier to scale up.
The third column suggests that the recurrent component in our aggregator is helpful in making history-based decisions when the current observation contains insufficient information. Finally, in the fourth column, we see that using more training games can lead to better generalizability in both seen and unseen settings. Fewer training games achieve high training scores by quickly overfitting, which lead to zero evaluation scores.

6 RELATED WORK

The longstanding goal of grounding language learning in embodied settings has lead to substantial work on interactive environments. ALFWorld extends that work with fully-interactive environments that parallel textual interactions with photo-realistic renderings and physical interactions.

Interactive Text-Only Environments: We build on the work of text-based environments like TextWorld (Côté et al., 2018) and Jericho (Hausknecht et al., 2020). While these environment allow for textual interactions, they are not grounded in visual or physical modalities.

Vision and language: While substantial work exists on vision-language representation learning e.g., MAttNet (Yu et al., 2018b), CMN (Hu et al., 2017), VQA (Antol et al., 2015), CLEVR (Johnson et al., 2017), ViLBERT (Lu et al., 2019), they lack embodied or sequential decision making.

Embodied Language Learning: To address language learning in embodied domains, a number of interactive environments have been proposed: BabyAI (Chevalier-Boisvert et al., 2019), Room2Room (Anderson et al., 2018b), ALFRED (Shridhar et al., 2020), InteractiveQA (Gordon et al., 2018), EmbodiedQA (Das et al., 2018), and NetHack (Küttler et al., 2020). These environments use language to communicate instructions, goals, or queries to the agent, but not as a fully interactive modality.

Language for State and Action Representation: Others have used language for more than just goal-specification. Schwartz et al. (2019) use language as a state representation for VizDoom. Hu et al. (2019) use a natural language instructor to command a low-level executor, and Jiang et al. (2019) use language as an abstraction for hierarchical RL. However these works do not feature an interactive text environment, for pre-training the agent in an abstract textual space. Zhu et al. (2017) use high-level commands similar to ALFWorld to solve tasks in THOR with IL and RL-finetuning methods, but the policy only generalizes to a small set of tasks due to the vision-based state representation.

Game Engines as World Models: The concept of using TextWorld as a “game engine” to represent the world is broadly related to inverse graphics (Kulkarni et al., 2015) and inverse dynamics (Wu et al., 2017) where abstract visual or physical models are used for reasoning and future predictions.

7 CONCLUSION

We introduced ALFWorld, the first interactive text environment with aligned embodied worlds. ALFWorld allows agents to explore, interact, and learn abstract polices in a textual environment. Pre-training our novel BUTLER agent in TextWorld, we show zero-shot generalization to embodied tasks in the ALFRED dataset. The results indicate that reasoning in textual space allows for better generalization to unseen scenes and also faster training, compared to other modalities like vision.

BUTLER is designed with modular components which can be upgraded in future work. Examples include the template-based state-estimator and the A* navigator which could be replaced with learned modules, enabling end-to-end training of the full pipeline. Another avenue of future work is to learn “textual dynamics models” through environment interactions, akin to vision-based world models (Ha and Schmidhuber 2018). Such models would facilitate construction of text-engines for new domains, without requiring access to symbolic state descriptions like PDDL. Overall, we are excited by the challenges posed by aligned text and embodied environments for better cross-modal learning.
ACKNOWLEDGMENTS

The authors thank Cheng Zhang, Jesse Thomason, Karthik Desingh, Rishabh Joshi, Romain Laroche, Shunyu Yao, and Victor Zhong for insightful feedback and discussions.

REFERENCES

Adhikari, A., Yuan, X., Côté, M.-A., Zelinka, M., Rondeau, M.-A., Laroche, R., Poupart, P., Tang, J., Trischler, A., and Hamilton, W. L. (2020). Learning dynamic belief graphs to generalize on text-based games. In *Neural Information Processing Systems (NeurIPS)*.

Ammanabrolu, P. and Hausknecht, M. (2020). Graph constrained reinforcement learning for natural language action spaces. In *International Conference on Learning Representations*.

Anderson, P., Wu, Q., Teney, D., Bruce, J., Johnson, M., Sünnerhauf, N., Reid, I., Gould, S., and van den Hengel, A. (2018a). Vision-and-language navigation: Interpreting visually-grounded navigation instructions in real environments. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*.

Anderson, P., Wu, Q., Teney, D., Bruce, J., Johnson, M., Sünnerhauf, N., Reid, I., Gould, S., and van den Hengel, A. (2018b). Vision-and-Language Navigation: Interpreting visually-grounded navigation instructions in real environments. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.

Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Zitnick, C. L., and Parikh, D. (2015). VQA: Visual Question Answering. In *International Conference on Computer Vision (ICCV)*.

Ba, L. J., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. *CoRR*, abs/1607.06450.

Chevalier-Boisvert, M., Bahdanau, D., Lahlou, S., Willems, L., Saharia, C., Nguyen, T. H., and Bengio, Y. (2019). BabyAI: First steps towards grounded language learning with a human in the loop. In *International Conference on Learning Representations*.

Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y. (2014). Learning phrase representations using RNN encoder–decoder for statistical machine translation. In *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)*.

Côté, M.-A., Kádár, A., Yuan, X., Kybartas, B., Barnes, T., Fine, E., Moore, J., Tao, R. Y., Hausknecht, M., Asri, L. E., Adada, M., Tay, W., and Trischler, A. (2018). Textworld: A learning environment for text-based games. *CoRR*, abs/1806.11532.

Das, A., Dutta, S., Gkioxari, G., Lee, S., Parikh, D., and Batra, D. (2018). Embodied Question Answering. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.

Gehrmann, S., Deng, Y., and Rush, A. (2018). Bottom-up abstractive summarization. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*.

Gordon, D., Kembhavi, A., Rastegari, M., Redmon, J., Fox, D., and Farhadi, A. (2018). Iqa: Visual question answering in interactive environments. In *Computer Vision and Pattern Recognition (CVPR), 2018 IEEE Conference on*.

Gulcehre, C., Ahn, S., Nallapati, R., Zhou, B., and Bengio, Y. (2016). Pointing the unknown words. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*.

Ha, D. and Schmidhuber, J. (2018). Recurrent world models facilitate policy evolution. In *Advances in Neural Information Processing Systems 31*.

Hausknecht, M. and Stone, P. (2015). Deep recurrent q-learning for partially observable mdps. *arXiv preprint arXiv:1507.06527*.
Hausknecht, M. J., Ammanabrolu, P., Côté, M.-A., and Yuan, X. (2020). Interactive fiction games: A colossal adventure. In AAAI.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask r-cnn. In Proceedings of the IEEE international conference on computer vision.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition.

Helmert, M. (2006). The Fast Downward planning system. Journal of Artificial Intelligence Research.

Hu, H., Yarats, D., Gong, Q., Tian, Y., and Lewis, M. (2019). Hierarchical decision making by generating and following natural language instructions. In Advances in Neural Information Processing Systems.

Hu, R., Rohrbach, M., Andreas, J., Darrell, T., and Saenko, K. (2017). Modeling relationships in referential expressions with compositional modular networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

Jiang, Y., Gu, S. S., Murphy, K. P., and Finn, C. (2019). Language as an abstraction for hierarchical deep reinforcement learning. In Advances in Neural Information Processing Systems.

Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Zitnick, C. L., and Girshick, R. (2017). Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In CVPR.

Johnson, J., Karpathy, A., and Fei-Fei, L. (2016). Densecap: Fully convolutional localization networks for dense captioning. In Proceedings of the IEEE conference on computer vision and pattern recognition.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Kolve, E., Mottaghi, R., Han, W., VanderBilt, E., Weihs, L., Herrasti, A., Gordon, D., Zhu, Y., Gupta, A., and Farhadi, A. (2017). Ai2-thor: An interactive 3d environment for visual ai. arXiv preprint arXiv:1712.05474.

Kulkarni, T. D., Whitney, W. F., Kohli, P., and Tenenbaum, J. (2015). Deep convolutional inverse graphics network. In Advances in neural information processing systems.

Küttler, H., Nardelli, N., Miller, A. H., Raileanu, R., Selvatici, M., Grefenstette, E., and Rocktäschel, T. (2020). The nethack learning environment.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In European conference on computer vision.

Lu, J., Batra, D., Parikh, D., and Lee, S. (2019). Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. In Advances in Neural Information Processing Systems.

MacMahon, M., Stankiewicz, B., and Kuipers, B. (2006). Walk the talk: Connecting language, knowledge, and action in route instructions. In Proceedings of the 21st National Conference on Artificial Intelligence (AAAI-2006).

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D., and Wilkins, D. (1998). Pddl-the planning domain definition language.

Press, O. and Wolf, L. (2016). Using the output embedding to improve language models. arXiv preprint arXiv:1608.05859.

Reddy, D. R. et al. (1977). Speech understanding systems: A summary of results of the five-year research effort. Department of Computer Science. Carnegie-Mell University, Pittsburgh, PA, 17.

Ross, S., Gordon, G., and Bagnell, D. (2011). A reduction of imitation learning and structured prediction to no-regret online learning. In Proceedings of the fourteenth international conference on artificial intelligence and statistics.
Sanh, V., Debut, L., Chaumond, J., and Wolf, T. (2019). Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.

Schwartz, E., Tennenholtz, G., Tessler, C., and Mannor, S. (2019). Language is power: Representing states using natural language in reinforcement learning.

Sharma, S., Asri, L. E., Schulz, H., and Zumer, J. (2017). Relevance of unsupervised metrics in task-oriented dialogue for evaluating natural language generation. arXiv preprint arXiv:1706.09799.

Shridhar, M., Thomason, J., Gordon, D., Bisk, Y., Han, W., Mottaghi, R., Zettlemoyer, L., and Fox, D. (2020). Alfred: A benchmark for interpreting grounded instructions for everyday tasks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10740–10749.

Sun, C., Myers, A., Vondrick, C., Murphy, K., and Schmid, C. (2019). Videobert: A joint model for video and language representation learning. In Proceedings of the IEEE International Conference on Computer Vision.

Tang, K., Niu, Y., Huang, J., Shi, J., and Zhang, H. (2020). Unbiased scene graph generation from biased training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco: A physics engine for model-based control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing Systems 30.

Wang, X., Huang, Q., Celikyilmaz, A., Gao, J., Shen, D., Wang, Y.-F., Wang, W. Y., and Zhang, L. (2019). Reinforced cross-modal matching and self-supervised imitation learning for vision-language navigation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

Wu, J., Lu, E., Kohli, P., Freeman, B., and Tenenbaum, J. (2017). Learning to see physics via visual de-animation. In Advances in Neural Information Processing Systems.

Yu, A. W., Dohan, D., Le, Q., Luong, T., Zhao, R., and Chen, K. (2018a). Fast and accurate reading comprehension by combining self-attention and convolution. In International Conference on Learning Representations.

Yu, L., Lin, Z., Shen, X., Yang, J., Lu, X., Bansal, M., and Berg, T. L. (2018b). Mattnet: Modular attention network for referring expression comprehension. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

Yuan, X., Côté, M.-A., Sordoni, A., Laroche, R., Combes, R. T. d., Hausknecht, M., and Trischler, A. (2018). Counting to explore and generalize in text-based games. arXiv preprint arXiv:1806.11525.

Zhu, Y., Gordon, D., Kolve, E., Fox, D., Fei-Fei, L., Gupta, A., Mottaghi, R., and Farhadi, A. (2017). Visual semantic planning using deep successor representations. In IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017.
A DETAILS OF BUTLER::BRAIN

NOTATIONS

In this section, we use o_t to denote text observation at game step t, g to denote the goal description provided by a game.

We use L to refer to a linear transformation and L^f means it is followed by a non-linear activation function f. Brackets $[\cdot;\cdot]$ denote vector concatenation, \odot denotes element-wise multiplication.

A.1 OBSERVATION QUEUE

As mentioned in Section 3.1, we utilize an observation queue to cache the text observations that have been seen recently. Since the initial observation o_0 describes the high level layout of a room, including receptacles present in the current game, we make it visible to BUTLER::BRAIN at all game steps, regardless of the length of the observation queue. Specifically, the observation queue has an extra space storing o_0, at any game step, we first concatenate all cached observations in the queue, then prepend the o_0 to form the input to the encoder. We find this helpful because it facilitates the pointer softmax mechanism in the decoder (described below) by guiding it to point to receptacle words in the observation. An ablation study on this is provided in Section 5.

A.2 ENCODER

We use a transformer-based encoder, which consists of an embedding layer and a transformer block (Vaswani et al., 2017). Specifically, embeddings are initialized by pre-trained 768-dimensional BERT embeddings (Sanh et al., 2019). The embeddings are fixed during training in all settings.

The transformer block consists of a stack of 5 convolutional layers, a self-attention layer, and a 2-layer MLP with a ReLU non-linear activation function in between. In the block, each convolutional layer has 64 filters, each kernel’s size is 5. In the self-attention layer, we use a block hidden size H of 64, as well as a single head attention mechanism. Layernorm (Ba et al., 2016) is applied after each component inside the block. Following standard transformer training, we add positional encodings into each block’s input.

At every game step t, we use the same encoder to process text observation o_t and goal description g. The resulting representations are $h_{o_t} \in \mathbb{R}^{L_{o_t} \times H}$ and $h_g \in \mathbb{R}^{L_g \times H}$, where L_{o_t} is the number of tokens in o_t, L_g denotes the number of tokens in g, $H = 64$ is the hidden size.

A.3 AGGREGATOR

We adopt the context-query attention mechanism from the question answering literature (Yu et al., 2018a) to aggregate the two representations h_{o_t} and h_g.

Specifically, a tri-linear similarity function is used to compute the similarity between each token in h_{o_t} with each token in h_g. The similarity between i-th token in h_{o_t} and j-th token in h_g is thus computed by (omitting game step t for simplicity):

$$\text{Sim}(i,j) = W(h_{o_t}, h_g, h_{o_t} \odot h_g),$$

where W is a trainable parameter in the tri-linear function. By applying the above computation for each h_{o_t} and h_g pair, we get a similarity matrix $S \in \mathbb{R}^{L_{o_t} \times L_g}$.

By computing the softmax of the similarity matrix S along both dimensions (number of tokens in goal description L_g and number of tokens in observation L_{o_t}), we get S_g and S_o, respectively. The two representations are then aggregated by:

$$h_{og} = [h_{o_t}; P; h_{o_t} \odot P; h_{o_t} \odot Q],$$

$$P = S_g h_g^\top,$n

$$Q = S_o S_o^\top h_{o_t},$$

where $h_{og} \in \mathbb{R}^{L_{o_t} \times 4H}$ is the aggregated observation representation.
Next, a linear transformation projects the aggregated representations to a space with size $H = 64$:

$$h_{og} = L^{\text{tanh}}(h_{og}).$$

(3)

To incorporate history, we use a recurrent neural network. Specifically, we use a GRU (Cho et al. 2014):

$$h_{RNN} = \text{Mean}(h_{og}),$$

(4)

$$h_t = \text{GRU}(h_{RNN}, h_{t-1}),$$

in which, the mean pooling is performed along the dimension of number of tokens, i.e., $h_{RNN} \in \mathbb{R}^H$. h_{t-1} is the output of the GRU cell at game step $t - 1$.

A.4 Decoder

Our decoder consists of an embedding layer, a transformer block and a pointer softmax mechanism (Gulcehre et al. 2016). We first obtain the source representation by concatenating h_{og} and h_t, resulting $h_{src} \in \mathbb{R}^{L_s \times 2H}$.

Similar to the encoder, the embedding layer is frozen after initializing it with pre-trained BERT embeddings. The transformer block consists of two attention layers and a 3-layer MLP with ReLU non-linear activation functions inbetween. The first attention layer computes the self attention of the input embeddings h_{self} as a contextual encoding for the target tokens. The second attention layer then computes the attention $\alpha^{src}_{i} \in \mathbb{R}^{L_s}$ between the source representation h_{src} and the i-th token in h_{self}. The i-th target token is consequently represented by the weighted sum of h_{src}, with the weights α^{src}_{i}. This generates a source information-aware target representation $h^{tgt}_i \in \mathbb{R}^{L_t \times H}$, where L_{tgt} denotes the number of tokens in the target sequence. Next, h^{tgt}_i is fed into the 3-layer MLP with ReLU activation functions inbetween, resulting $h_{tgt} \in \mathbb{R}^{L_{tgt} \times H}$. The block hidden size of this transformer is $H = 64$.

Taking h_{tgt} as input, a linear layer with tanh activation projects the target representation into the same space as the embeddings (with dimensionality of 768), then the pre-trained embedding matrix E generates output logits (Press and Wolf 2016), where the output size is same as the vocabulary size. The resulting logits are then normalized by a softmax to generate a probability distribution over all tokens in vocabulary:

$$p_{a}(y^i) = E^{\text{softmax}}(L^{\text{tanh}}(h_{tgt})),

(5)$$

in which, $p_{a}(y^i)$ is the generation (abstractive) probability distribution.

We employ the pointer softmax (Gulcehre et al. 2016) mechanism to switch between generating a token y^i (from a vocabulary) and pointing (to a token in the source text). Specifically, the pointer softmax module computes a scalar switch s^i at each generation time-step i and uses it to interpolate the abstractive distribution $p_a(y^i)$ over the vocabulary (Equation 5) and the extractive distribution $p_e(y^i) = \alpha^{src}_{i}$ over the source text tokens:

$$p(y^i) = s^i \cdot p_a(y^i) + (1 - s^i) \cdot p_e(y^i),

(6)$$

where s^i is conditioned on both the attention-weighted source representation $\sum_j \alpha^{src}_{i,j} \cdot h^{src}_{j}$ and the decoder state h^{tgt}_i:

$$s^i = L_1^{\text{sigmoid}}(\tanh(L_2(\sum_j \alpha^{src}_{i,j} \cdot h^{src}_{j}) + L_3(h^{tgt}_i))).

(7)$$

In which, $L_1 \in \mathbb{R}^{H \times 1}$, $L_2 \in \mathbb{R}^{2H \times H}$ and $L_3 \in \mathbb{R}^{H \times H}$ are linear layers, $H = 64$.

B Implementation Details

In this section, we provide hyperparameters and other implementation details.

For all experiments, we use Adam (Kingma and Ba 2014) as the optimizer. The learning rate is set to 0.001 with a clip gradient norm of 5.
During training with DAgger, we use a batch size of 10 to collect transitions (tuples of \(\{o_t, o_t, g, \hat{a}_t\} \)) at each game step \(t \), where \(\hat{a}_t \) is the ground-truth action provided by the rule-based expert (see Section G). We gather a sequence of transitions from each game episode, and push each sequence into a replay buffer, which has a capacity of 500K episodes. We set the max number of steps per episode to be 50. If the agent uses up this budget, the game episode is forced to terminate. We linearly anneal the fraction of the expert’s assistance from 100% to 1% across a window of 50K episodes.

The agent is updated after every 5 steps of data collection. We sample a batch of 64 data points from the replay buffer. In the setting with the recurrent aggregator, every sampled data point is a sequence of 4 consecutive transitions. Following the training strategy used in the recurrent DQN literature \(\text{[Hausknecht and Stone, 2015; Yuan et al., 2018]} \), we use the first 2 transitions to estimate the recurrent states, and the last 2 transitions for updating the model parameters.

\text{BUTLER::BRAIN} learns to generate actions token-by-token, where we set the max token length to be 20. The decoder stops generation either when it generates a special end-of-sentence token \(\text{[EOS]} \), or hits the token length limit.

When using the beam search heuristic to recover from failed actions, we use a beam width of 10, and take the top-5 ranked outputs as candidates. We iterate through the candidates in the rank order until one of them succeeds. This heuristic is not always guaranteed to succeed, however, we find it helpful in most cases. Note that we do not employ beam search when we evaluate during the training process due to speed restrictions, e.g., in the seen and unseen curves shown in Figure 4 We take the best performing checkpoints and then apply this heuristic during evaluation and report the resulting scores in tables (e.g., Table 3).

By default unless mentioned otherwise (ablations), we use all available training games in each of the task types. We use an observation queue length of 5 and use a recurrent aggregator. The model is trained with DAgger, and during evaluation, we apply the beam search heuristic to produce the reported scores. All experiment settings in TextWorld are run with 8 random seeds. All text agents are trained for 50,000 episodes.

\text{C TEXTWORLD ENGINE}

Internally, the TextWorld Engine is divided into two main components: a planner and text generator.

Planner TextWorld Engine uses Fast Downward \(\text{[Helmert, 2006]} \), a domain-independent classical planning system to maintain and update the current state of the game. A state is represented by a set of predicates which define the relations between the entities (objects, player, room, etc.) present in the game. A state can be modified by applying production rules corresponding to the actions listed in Table 6. All variables, predicates, and rules are defined using the PDDL language.

For instance, here is a simple state representing a player standing next to a microwave which is closed and contains a mug:

\[
 s_t = \text{at(player, microwave)} \otimes \text{in(mug, microwave)} \\
 \quad \otimes \text{closed(microwave)} \otimes \text{openable(microwave)},
\]

where the symbol \(\otimes \) is the linear logic \textit{multiplicative conjunction} operator. Given that state, a valid action could be \text{open microwave}, which would essentially transform the state by replacing \text{closed(microwave)} with \text{open(microwave)}.

Text generator The other component of the TextWorld Engine, the text generator, uses a context-sensitive grammar designed for the ALFRED environments. The grammar consists of text templates similar to those listed in Table 6. When needed, the engine will sample a template given some context, i.e., the current state and the last action. Then, the template gets realized using the predicates found in the current state.
D Observation Templates

The following templates are used by the state-estimator to generate textual observations o_t. The object IDs $\{\text{obj id}\}$ correspond to Mask R-CNN objects detection or ground-truth instance IDs. The receptacle IDs $\{\text{recep id}\}$ are based on the receptacles listed in the initial observation o_0. Failed actions and actions without any state-changes result in Nothing happens.

Actions	Templates
goto	(a) You arrive at $\{\text{loc id}\}$. On the $\{\text{recep id}\}$,
	you see a $\{\text{obj1 id}\}$, ... and a $\{\text{objN id}\}$.
	(b) You arrive at $\{\text{loc id}\}$. The $\{\text{recep id}\}$ is closed.
	(c) You arrive at $\{\text{loc id}\}$. The $\{\text{recep id}\}$ is open.
	On it, you see a $\{\text{obj1 id}\}$, ... and a $\{\text{objN id}\}$.
take	You pick up the $\{\text{obj id}\}$ from the $\{\text{recep id}\}$.
put	You put the $\{\text{obj id}\}$ on the $\{\text{recep id}\}$.
open	(a) You open the $\{\text{recep id}\}$. In it, you see a $\{\text{obj1 id}\}$, ... and a $\{\text{objN id}\}$.
	(b) You open the $\{\text{recep id}\}$. The $\{\text{recep id}\}$ is empty.
close	You close the $\{\text{recep id}\}$.
toggle	You turn the $\{\text{obj id}\}$ on.
heat	You heat the $\{\text{obj id}\}$ with the $\{\text{recep id}\}$.
cool	You cool the $\{\text{obj id}\}$ with the $\{\text{recep id}\}$.
clean	You clean the $\{\text{obj id}\}$ with the $\{\text{recep id}\}$.
inventory	(a) You are carrying: $\{\text{obj id}\}$.
	(b) You are not carrying anything.
examine	(a) On the $\{\text{recep id}\}$, you see a $\{\text{obj1 id}\}$, ...
	and a $\{\text{objN id}\}$.
	(b) This is a hot/cold/clean $\{\text{obj}\}$.

Table 6: High-level text actions supported in ALFWorld along with their observation templates.
E GOAL DESCRIPTIONS

E.1 TEMPLATED GOALS

The goal instructions for training games are generated with following templates. Here \texttt{obj}, \texttt{recep}, \texttt{lamp} refer to object, receptacle, and lamp classes, respectively, that pertain to a particular task. For each task, the two corresponding templates are sampled with equal probability.

task-type	Templates
Pick & Place	(a) put a \{obj\} in \{recep\}.
	(b) put some \{obj\} on \{recep\}.
Examine in Light	(a) look at \{obj\} under the \{lamp\}.
	(b) examine the \{obj\} with the \{lamp\}.
Clean & Place	(a) put a clean \{obj\} in \{recep\}.
	(b) clean some \{obj\} and put it in \{recep\}.
Heat & Place	(a) put a hot \{obj\} in \{recep\}.
	(b) heat some \{obj\} and put it in \{recep\}.
Cool & Place	(a) put a cool \{obj\} in \{recep\}.
	(b) cool some \{obj\} and put it in \{recep\}.
Pick Two & Place	(a) put two \{obj\} in \{recep\}.
	(b) find two \{obj\} and put them \{recep\}.

Table 7: Task-types and the corresponding goal description templates.

E.2 HUMAN ANNOTATED GOALS

The human goal descriptions from ALFRED contain 66 unseen verbs and 189 unseen nouns with respect to the templated goal instructions used during training.

Unseen Verbs: acquire, arrange, can, carry, chill, choose, cleaning, clear, cook, cooked, cooled, dispose, done, drop, end, fill, filled, frying, garbage, gather, go, grab, handled, heated, heating, hold, holding, inspect, knock, left, lit, lock, microwave, microwaved, move, moving, pick, picking, place, placed, placing, putting, read, relocate, remove, retrieve, return, rinse, serve, set, soak, stand, standing, store, take, taken, throw, transfer, turn, turning, use, using, walk, warm, wash, washed.

Unseen Nouns: alarm, area, back, baisin, bar, bars, base, basin, bathroom, beat, bed, bedroom, bedside, bench, bin, books, bottle, bottles, bottom, box, boxes, bureau, burner, butter, can, canteen, card, cardboard, cards, cars, cd's, cell, chair, chair, chest, chill, cistern, cleaning, clock, clocks, coffee, container, containers, control, controllers, controls, cooker, corner, couch, count, counter, cover, cream, credit, cupboard, dining, disc, discs, dishwasher, disks, dispenser, door, drawers, dresser, edge, end, floor, foot, freezer, game, garbage, gas, glass, glasses, gold, grey, hand, head, holder, ice, inside, island, item, items, jars, keys, kitchen, knives, knives, ladder, lamp, lap, left, lid, light, loaf, location, lotion, machine, magazine, maker, math, metal, microwaves, move, nail, newsletters, newspapers, night, nightstand, object, ottoman, oven, pans, paper, papers, pepper, phone, piece, pieces, pillows, place, polish, pot, pullout, pump, rack, rag, recycling, refrigerator, remote, remotes, right, rinse, roll, rolls, room, safe, salt, scoop, seat, sets, shaker, shakers, shelves, side, sink, sinks, skillet, soap, soaps, sofa, space, spatulas, sponge, spoon, spot, spout, spray, stand, stool, store, supplies, table, tale, tank, television, textbooks, time, tissue, tissues, toaster, top, towel, trash, tray, tv, vanity, vases, vault, vegetable, wall, wash, washcloth, watches, water, window, wine.

F MASK R-CNN DETECTOR

We use a Mask R-CNN detector [He et al. 2017] pre-trained on MSCOCO [Lin et al. 2014] and fine-tune it with additional labels from ALFRED training scenes. To generate additional labels, we replay the expert demonstrations from ALFRED and record ground-truth image and instance segmentation pairs from the simulator (THOR) after completing each high-level action e.g., goto,
pickup etc. We generate a dataset of 50K images, and fine-tune the detector for 4 epochs with a batch size of 8 and a learning rate of $5e^{-4}$. The detector recognizes 105 object classes where each class could vary up to 1-10 instances. Since demonstrations in the kitchen are often longer as they involve complex sequences like heating, cleaning etc., the labels are slightly skewed towards kitchen objects. To counter this, we balance the number of images sampled from each room (kitchen, bedroom, livingroom, bathroom) so the distribution of object categories is uniform across the dataset.

G RULE-BASED EXPERT

To train text agents in an imitation learning (IL) setting, we use a rule-based expert for supervision. A given task is decomposed into sequence of subgoals (e.g., for heat & place: find the object, pick the object, find the microwave, heat the object with the microwave, find the receptacle, place the object in the receptacle), and a closed-loop controller tries to sequentially execute these goals. We note that while designing rule-based experts for ALFWorld is relatively straightforward, experts operating directly in embodied settings like the PDDL planner used in ALFRED are prone to failures due to physical infeasibilities and non-deterministic behavior in physics-based environments.

H ACTION CANDIDATES VS ACTION GENERATION

BUTLER::BRAIN generates actions in a token-by-token fashion. Prior text-based agents typically use a list of candidate commands from the game engine (Adhikari et al., 2020) or populate a list of command templates (Ammanabrolu and Hausknecht, 2020). We initially trained our agents with candidate commands from the TextWorld Engine, but they quickly overfit without learning affordances, commonsense, or pre-conditions, and had zero performance on embodied transfer. In the embodied setting, without access to a TextWorld Engine, it is difficult to generate candidate actions unless a set of heuristics is handcrafted with strong priors and commonsense knowledge. We also experimented with populating a list of command templates, but found this to be infeasible as some scenarios involved 1000s of populated actions per game step.

I IMITATION LEARNING VS REINFORCEMENT LEARNING

We experimented with training BUTLER::BRAIN through reinforcement learning (RL) where the agent is rewarded after completing a goal. Due to the infeasibility of using candidate commands or command templates as discussed in Section H, the RL agent had to generate actions token-by-token. Since the probability of randomly stumbling upon a grammatically correct and contextually valid action is very low ($7.02e^{-44}$ for sequence length 10), the RL agent struggled to make any meaningful progress towards the tasks. Hence we resorted to imitation learning.

J ALFRED TASK DESCRIPTIONS

The following descriptions describe the processes involved in each of six task-types:

- **Pick & Place** (e.g., “put a plate on the coffee table”) - the agent must find an object of the desired type, pick it up, find the correct location to place it, and put it down there.
- **Examine in Light** (e.g., “examine a book under the lamp”) - the agent must find an object of the desired type, locate and turn on a light source with the desired object in-hand.
- **Clean & Place** (e.g., “clean the knife and put in the drawer”) - the agent must find an object of the desired type, pick it up, go to a sink or a basin, wash the object by turning on the faucet, then find the correct location to place it, and put it down there.
- **Heat & Place** (e.g., “heat a mug and put on the coffee table”) - the agent must find an object of the desired type, pick it up, go to a microwave, heat the object turning on the microwave, then find the correct location to place it, and put it down there.
- **Cool & Place** (e.g., “put a cool bottle on the countertop”) - the agent must find an object of the desired type, pick it up, go to a fridge, put the object inside the fridge and cool it, then find the correct location to place it, and put it down there.
• Pick Two & Place (e.g., “put two pencils in the drawer”) - the agent must find an object of
the desired type, pick it up, find the correct location to place it, put it down there, then look
for another object of the desired type, pick it up, return to previous location, and put it down
there with the other object.

K ALFWORLD TEXT GAME EXAMPLES

Three examples of ALFWorld text game walkthroughs:

You are in the middle of a room. Looking quickly around you, you see a towelholder 1,
a toilet 1, a bathtubbasin 1, a drawer 4, a handtowelholder 2, a drawer 6, a drawer 1,
a countertop 1, a sinkbasin 1, a drawer 2, a drawer 3, a toiletpaperhanger 1, a drawer 5,
a handtowelholder 1, a towelholder 2, a sinkbasin 2, and a garbagecan 1.

Your task is to: put a clean cloth in bathtubbasin.

> go to drawer 5
You arrive at loc 9. The drawer 5 is closed.
> open drawer 5
You open the drawer 5. The drawer 5 is open. In it, you see a candle 1.
> close drawer 5
You close the drawer 5.
> go to countertop 1
You arrive at loc 25. On the countertop 1, you see a cloth 2, a soapbottle 1, a cloth 1,
and a candle 3.
> take cloth 1 from countertop 1
You pick up the cloth 1 from the countertop 1.
> go to sinkbasin 1
You arrive at loc 20. On the sinkbasin 1, you see nothing.
> clean cloth 1 with sinkbasin 1
You clean the cloth 1 using the sinkbasin 1.
> go to bathtubbasin 1
You arrive at loc 14. On the bathtubbasin 1, you see a soapbar 1.
> put cloth 1 in/on bathtubbasin 1
You won!

You are in the middle of a room. Looking quickly around you, you see a drawer 15, a drawer 19,
a drawer 7, a armchair 1, a drawer 3, a drawer 16, a drawer 2, a drawer 17, a sidetable 3,
a sidetable 5, a drawer 4, a drawer 20, a sofa 1, a drawer 13, a drawer 12, a drawer 9,
a drawer 21, a sidetable 4, a sidetable 2, a drawer 5, a drawer 11, a drawer 1, a garbagecan 1,
a dresser 1, a cabinet 1, a drawer 8, a drawer 18, a sidetable 1, a drawer 14, a drawer 6,
and a drawer 10.

Your task is to: find two remotecontrol and put them in armchair.

> go to sidetable 2
You arrive at loc 34. On the sidetable 2, you see a remotecontrol 1.
> take remotecontrol 1 from sidetable 2
You pick up the remotecontrol 1 from the sidetable 2.
> go to armchair 1
You arrive at loc 1. On the armchair 1, you see nothing.
> put remotecontrol 1 in/on armchair 1
You put the remotecontrol 1 in/on the armchair 1.
> go to dresser 1
You arrive at loc 18. On the dresser 1, you see a creditcard 1, a television 1, a laptop 1,
a book 1, a statue 2, and a cellphone 2.
> go to sidetable 5
You arrive at loc 17. On the sidetable 5, you see a box 1, and a creditcard 2.
> go to sofa 1
You arrive at loc 2. On the sofa 1, you see a newspaper 1, a pillow 1, and a remotecontrol 2.
> take remotecontrol 2 from sofa 1
You pick up the remotecontrol 2 from the sofa 1.
> go to armchair 1
You arrive at loc 1. On the armchair 1, you see a remotecontrol 1.
> put remotecontrol 2 in/on armchair 1
You won!

You are in the middle of a room. Looking quickly around you, you see a safe 1, a shelf 4, a drawer 2,
a bed 1, a drawer 1, a shelf 5, a sidetable 2, a shelf 3, a drawer 3, a shelf 1, a sidetable 1,
a desk 1, and a garbagecan 1.

Your task is to: examine the alarmclock with the desklamp.

> go to desk 1
You arrive at loc 8. On the desk 1, you see a pen 1, a bowl 1, a alarmclock 2, a pencil 2, a pencil 3,
a creditcard 3, a book 1, a alarmclock 3, a keychain 2, and a book 2.
> take alarmclock 2 from desk 1
You pick up the alarmclock 2 from the desk 1.
> go to sidetable 2
You arrive at loc 1. On the sidetable 2, you see a desklamp 1, and a alarmclock 1.
> use desklamp 1
You won!