Short Communication

Potential spreading risks of Covid-19 and chemical-based disinfection challenges to the environment, ecosystem and human health

Hafeez Ur Rahim1* and Tariq Rahim2

1Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road-2, Dalian 116024, China
2Department of Development Studies, Shahid Zulfikar Ali Bhutto Institute of Science and Technology, Islamabad, Pakistan

Received: 25 July, 2020
Accepted: 03 August, 2020
Published: 04 August, 2020

*Corresponding author: Hafeez Ur Rahim, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road-2, Dalian 116024, China, Tel: 13124282032,+92332-9697820; E-mail: hafeez.kalpani@aup.edu.pk hafeez@mail.dlut.edu.cn
ORCID: https://orcid.org/0000-0002-8469-8308

Keywords: Covid-19; Chlorine-based disinfectants; Environment; Agricultural production; Soil; Water; Ecosystem; Human health; Ecological integrity assessments

Abstract

Because of the current situation regarding the Covid-19 pandemic in more than 200 countries and territories, an early discussion is proposed on the use of chlorine-based disinfectants as an important precautionary measure to disinfect the surfaces and kill the Covid-19. However, the excessive use of chlorine-based disinfectants will surely make the highest residual concentrations in the water, soil, and other environmental components by various means such as surface runoff and leaching, etc. Crossing the permissible limits in water and soil system and in other environmental components will pose risks to human health in the form of skin, eyes, cancer, and other associated diseases. Similarly, it may also decline the agricultural production by excessive salt (Cl−) accumulations (salinization) and will also threaten the aquatic and wild ecosystems. Therein, the ecological integrity assessments regarding the use of chlorine-based disinfectants in the current situation are very much important. Meanwhile, this will open a new area of interest for the researcher and would be of great importance to investigate its critical levels in the environmental components and its potentially toxic effects.

Graphical Abstract
Discussion

From Covid–19 epidemic in Wuhan to the pandemic in more than 200 countries and territories through mostly of travelers and deaths increases in seconds [1]. It is huge pressure on the governments, leaders, and stakeholders of every country to control the spread of Covid–19 outbreak by different ways such as lockdowns of countries, travel restrictions, social distancing, isolation, quarantine, hand washing, face masks and using chemical-based disinfectants [2]. Till date, each control measurement is discussed by various researchers in details with its merits and demerits. However, concerns with the application of chemical-based disinfectants, there is still a huge gap exists and need to be identified and addressed on an urgent basis, applicable now and in the future.

It is reported that China has dispensed more than 5000 tons of disinfectants in Wuhan city alone [3]. Similarly, almost every country around the world is using a huge amount (in tons) of chlorine-based surface disinfectants to control the spread of Covid–19, which has a very prominent role in the disinfection process; however, most of these countries especially developing countries can’t take the Environmental Protection Agencies (EPAs) guidelines and directives in priority before the application of disinfectants. Pakistan has installed several sanitizing gates that will spray chlorine disinfectants on people before entering the areas [4]. Disinfecting surface should be rapid, simple, easy handling, and without any worry to kill the coronavirus. What happens, when these disinfectants begin to leave behind residues on surfaces? Once these chlorine-based chemicals come in contact with the surface, it’s completely killing or inactivating the coronavirus; however, it remains on the surface for a long time which causes the formation of chemical residues build-up that hereafter refers to the residual disinfection levels and move into the water reservoirs of chemical residues build-up that hereafter refers to the disinfection process; however, most of these countries especially developing countries can’t take the Environmental Protection Agencies (EPAs) guidelines and directives in priority before the application of disinfectants. The guidelines and directives based on ecological assessments recommended by EPAs should take the use of chemical-based disinfectants in priority as soon as possible and to make sure the ecological integrity assessments before the application of disinfectants. The guidelines and directives based on ecological assessments recommended by EPAs regarding the use of chemical-based disinfectants will save the overall ecosystem and subsequently, human health from cancer, skin, eyes infections and other associated diseases.

Chlorine-based disinfectants threaten human health, agricultural production, environmental quality and aquatic ecosystem health in a variety of ways by (1) reaction with Natural Organic Matter (NOM) or bromide in raw–water leads to the formation of DBPs such as Trihalomethanes (THMs), bromates, effluent and other chemical compounds which poses acute toxicity to human health, aquatic ecosystem and other consumers [13–17]. (2) The direct toxic effect of chlorine-based chemicals on the aquatic organisms including vegetative bacteria, mycobacteria, viruses, and fungi by destroying their cell membranes, the cell hydrophobicity, as well as total Adenosine Triphosphate (ATP) [18,19]. (3) Formation of carcinogenic nitrosamines and chloramine from chlorine have been observed in drinking water and human blood in Washington, DC, and other cities [20]. (4) The environmental risk of chlorine-based products for soil and plants appears to be small, and any toxicity is usually short term, as these products are easily neutralized by soil organic matter [21]. However, in the current Covid–19 pandemic environmental considerations of chlorine-based products must take into account because of its excessive applications.

Conclusion

Taking altogether, it is concluded that the excessive use of chlorine-based disinfectants to control the spread of Covid–19 is a threat because of its toxic behavior and reactions in the water system. Before it gets worst, the leaders, stakeholders, and Environmental Protection Agencies (EPAs) should take the use of chemical-based disinfectants in priority as soon as possible and to make sure the ecological integrity assessments before the application of disinfectants. The guidelines and directives based on ecological assessments recommended by EPAs regarding the use of chemical-based disinfectants will save the overall ecosystem and subsequently, human health from cancer, skin, eyes infections and other associated diseases.

Highlights

1. First early discussion report on the use of chemical-based disinfection to the spread of Covid–19 control and challenges to agriculture, environment and human health.
2. Excessive use of Cl-based disinfectants will make the possible highest residual concentration in the environmental components.
3. Excessive residual concentration of Cl-based disinfectants will pose the potential risks.

References

1. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) (2020). Johns Hopkins University (JHU). Link: https://bit.ly/30qfUdu
2. WHO (2020) Q&A on Coronaviruses. Link: https://bit.ly/31eqjrP
3. Zhang H, Tang W, Chen Y, Yin W (2020) Disinfection threatens aquatic ecosystems. Science 368: 146-147. Link: https://bit.ly/3gEmcJH
4. International TN (2020) Walkthrough gates developed to check coronavirus spread. The News International. Link: https://bit.ly/2PoCBIQ

Citation: Rahim HU, Rahim T (2020) Potential spreading risks of Covid-19 and chemical-based disinfection challenges to the environment, ecosystem and human health. Ann Environ Sci Toxicol 4(1): 055-057. DOI: https://dx.doi.org/10.17352/aest.000027
5. Rhea Mahbubani Feb 21, 11:42 AM, More than 100 wild animals in China died from poisoning in a mass die-off seemingly triggered by coronavirus disinfectant. Business Insider. Link: https://bit.ly/39VMfFa

6. Bull RJ, Gerba C, Trussell RR (1990) Evaluation of the health risks associated with disinfection. Critical Reviews in Environmental Science and Technology 20: 77-113. Link: https://bit.ly/2EDO8Yz

7. Amy G (2000) Disinfectants and disinfectant by-products: World Health Organization. Link: https://bit.ly/2Dwu0RG

8. Crider Y, Sultana S, Unicombe L, Davis J, Luby SP, et al. (2018) Can you taste it? Taste detection and acceptability thresholds for chlorine residual in drinking water in Dhaka, Bangladesh. Sci Total Environ 613: 840-846. Link: https://bit.ly/3fvuXXr

9. Mintz E, Bartram J, Lochery P, Wegelin M (2001) Not just a drop in the bucket: expanding access to point-of-sale water treatment systems. Am J Public Health 91: 1565-1570. Link: https://bit.ly/39VMJC0

10. Mintz ED, Reiff FM, Tauxe RV (1995) Safe water treatment and storage in the home: a practical new strategy to prevent waterborne disease. JAMA 273: 948-953. Link: https://bit.ly/3i4r2Tf

11. Yadav S, Dhodpakar R, Kapley A (2020) Disinfection by-products and their effect on aquatic and agriculture ecosystem. in Disinfection By-products in Drinking Water Elsevier 205-233. Link: https://bit.ly/33n8ycx

12. Ioannou P, Charisiadis P, Andra SS, Makris KC (2016) Occurrence and variability of iodinated trihalomethanes concentrations within two drinking-water distribution networks. Science of the Total Environment 543: 505-513. Link: https://bit.ly/3i4rhxD

13. Xie Y, Reckhow DA (1992) Formation of ketoacids in ozonated drinking water. Link: https://bit.ly/31uYrQD

14. Murray CJ, et al. (2012) Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380: 2197-2223.

15. WHO (2005) Trihalomethanes in Drinking Water: Background Document for Development of WHO Guidelines for Drinking Water Quality. Link: https://bit.ly/2DAiryQ

16. Lee J, Ha KT, Zoh KD (2009) Characteristics of trihalomethane (THM) production and associated health risk assessment in swimming pool waters treated with different disinfection methods. Science of the total Environment 407: 1990-1997. Link: https://bit.ly/3k5a90D

17. Wang Y, Liu H, Liu G, Xie Y (2014) Oxidation of diclofenac by aqueous chlorine dioxide: identification of major disinfection byproducts and toxicity evaluation. Sci Total Environ 473: 437-445. Link: https://bit.ly/2D0cDN

18. Sedlak DL, von Gunten U (2011) The chlorine dilemma. Science 331: 42-43. Link: https://bit.ly/3ihNk

19. Wang J, Sui M, Yuan B, Li H, Lu H (2019) Inactivation of two Mycobacteria by free chlorine: Effectiveness, influencing factors, and mechanisms. Science of The Total Environment 648: 271-284. Link: https://bit.ly/2Dh3egi

20. Edwards M, Dudi A (2004) Role of chlorine and chloramine in corrosion of lead-bearing plumbing materials. Journal-American Water Works Association 96: 69-81. Link: https://bit.ly/2DI3p7Y

21. Kurzweg W, Steiger A, Profé D (1988) Ökologische Aspekte des Desinfektionsmittelteinsatzes in der Tierproduktion. Archiv für experimentelle Veterinarmedizin 42: 518-527. Link: https://bit.ly/3gQu0SA