Structural and Kinetic Analysis of Miscoding Opposite the DNA Adduct 1, N⁶-Ethenodeoxyadenosine by Human Translesion DNA Polymerase η

Amritraj Patra, Yan Su, Qianqian Zhang, Kevin M. Johnson, F. Peter Guengerich, and Martin Egli

From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146

1, N⁶-Ethenodeoxyadenosine (1, N⁶-edA) is the major etheno lesion formed in the reaction of DNA with epoxides substituted with good leaving groups (e.g. vinyl chloride epoxide). This lesion is also formed endogenously in DNA from lipid oxidation. Recombinant human DNA polymerase η (hpol η) can replicate oligonucleotide templates containing 1, N⁶-edA. In steady-state kinetic analysis, hpol η preferred to incorporate dATP and dGTP, compared with dTTP. Mass spectral analysis of incorporation products also showed preferred purine (A, G) incorporation and extensive −1 frameshifts, suggesting pairing of the inserted purine and slippage before further replication. Five x-ray crystal structures of hpol η ternary complexes were determined, three at the insertion and two at the extension stage. Two insertion complexes revealed incoming non-hydrolyzable dATP or dGTP analogs not pairing with but instead in a staggered configuration relative to 1, N⁶-edA in the anti conformation, thus opposite the 5′-T in the template, explaining the proclivity for frameshift misincorporation. In another insertion complex, dTTP was positioned opposite 1, N⁶-edA, and the adduct base was in the syn conformation, with formation of two hydrogen bonds. At the extension stage, with either an incorporated dA or dT opposite 1, N⁶-edA and 2′-deoxythymidine-5′-[(α,β)-imidazolyl]triphosphate opposite the 5′-A, the 3′-terminal nucleoside of the primer was disordered, consistent with the tendency not to incorporate dTTP opposite 1, N⁶-edA. Collectively, the results show a preference for purine pairing opposite 1, N⁶-edA and for −1 frameshifts.

Chemical or physical damage to DNA can lead to replication blockage and miscoding, which in turn can cause death or mutation of cells (1). Such changes can be associated with aging (2), cancer, and other diseases (3–6). Chemical damage to DNA can be the result of either exogenous (e.g. vinyl chloride (7)) or endogenous origin (e.g. oxygen radicals (8)). Some specific types of DNA damage can result from either exogenous or endogenous sources, as exemplified by the etheno (e) adducts (9).

The etheno adducts are so named because they have an extra two carbons attached to DNA bases in an exocyclic arrangement (10). The history goes back to the chemistry of some unusual natural nucleosides found in tRNA, e.g. wybutosine and ywosine (11, 12), and also synthetic work by Leonard and co-workers, who utilized fluorescent etheno analogs to monitor biochemical phenomena (12–15). Barbin et al. (16) and Laib et al. (17) provided evidence that etheno adducts might be involved in the carcinogenicity of vinyl chloride, a known liver carcinogen in humans. Subsequent work showed the presence of etheno DNA adducts in rats that had never been exposed to vinyl chloride (or related vinyl monomers) (18) and that the adducts are the result of lipid peroxidation (19, 20). The reaction of the primary vinyl chloride oxidation product 2-chloro-1,3-cyclohexadiene with DNA yields 1, N⁶-ethenoxyadenosine (1, N⁶-edA) as the major etheno adduct (21), although the repair of this adduct is faster than that of some others, such that the N⁵,3′-ethenoxyguanosine levels become higher (22).

1, N⁶-edA has been incorporated into extrachromosomal vectors (23) and studied in cells. The adduct was reported not to be very mutagenic in Escherichia coli (23, 24), but this result may be due to extensive repair by the dioxygenase AlkB, which was later discovered to convert this lesion to deoxyadenosine (25). 1, N⁶-edA has been reported to be mutagenic in simian COS7 (24) and human HeLa, HCT116, and HEK293 cells (26, 27) and miscoding in human HeLa and XPV cell extracts (28). The bases A, C, and G have all been reported to be misinserted in these systems (24, 26–28) as well as T (i.e. no miscoding).

Structural studies (NMR and x-ray) have been reported on oligonucleotides (in the absence of polymerases), with non-planar pairing between 1, N⁶-edA and dT and anti configurations of
both bases (29). 1,N6-εdA:G pairing involved a syn configuration of 1,N6-εdA and anti configuration of G (30). An x-ray crystallography study of 1,N6-εdA:G pairing was interpreted to involve three H-bonds, with distortion of the oligonucleotide backbone to accommodate the pair (31).

Studies of misincorporation at 1,N6-εdA have yielded varying results with individual DNA polymerases (pols). Singer et al. (32) reported that *E. coli* pol I and avian myelovirus reverse transcriptase inserted Gt into some extent, but that dTTP incorporation was not blocked. When 1,N6-εdA was incorporated into an oligoribonucleotide, it was a complete block to avian myelovirus and Moloney murine leukemia virus reverse transcriptases (33). Human pol η (hpol η) was reported to bypass this lesion (34).

Levine *et al.* (34) reported that hpol η was 100-fold more active than hpol κ in replication past 1,N6-εdA. We analyzed incorporation events using steady-state kinetics and LC-MS analysis of primers extended opposite 1,N6-εdA by hpol η in different sequence contexts. The results show hpol η bypass past 1,N6-εdA in a highly error-prone manner, with a proclivity for incorporation of purines and generation of frameshifts. We also describe five x-ray crystal structures of hpol η ternary complexes, three containing 1,N6-εdA paired with dTTP, dAMPNPP, or dGMPNPP (non-hydrolyzable dATP/dGTP analogs) at the insertion stage and two further structures of complexes at the extension stage, with either dA or dT opposite 1,N6-εdA followed by a nascent pair between template A and an incoming dTMPNPP.

Results

Steady-state Kinetics of dNTP Incorporation Opposite A and 1,N6-εdA—To determine the efficiency and fidelity of translesion synthesis 1,N6-εdA adducts by hpol η, steady-state kinetic analysis was performed. With an unmodified template (substrate A, Table 1), hpol η incorporated a single dNTP opposite A in the order of preference T > A > G > C (Table 2), as expected. However, incorporation of dTTP opposite 1,N6-εdA was very unfavorable, with a drastically decreased catalytic efficiency (1000-fold) compared with that of dTTP insertion opposite A (Table 2). In this study, dATP and dGTP were inserted more efficiently (3.7- and 2.5-fold, respectively, Table 2) than dTTP opposite 1,N6-εdA. These results indicated that hpol η catalyzes translesion synthesis opposite 1,N6-εdA in a very error-prone manner. Another sequence context containing 1,N6-εdA (substrate C, Table 1), which had been used in a previous study by Levine *et al.* (34), was also included in our steady-state kinetic studies. Consistently, a high error rate for incorporation opposite 1,N6-εdA by hpol η was observed, with preference for dGTP and dATP incorporation compared with dTTP (33- and 4.2-fold higher, respectively) (Table 3 and supplemental Fig. S1).

Pre-steady-state Kinetics—dNTP incorporation opposite 1,N6-εdA was also examined in the sequence context of substrate A using a rapid quench method. However, no burst phase was observed with any of the four dNTPs, indicating that a step preceding nucleotidyl transfer is rate-limiting in all four cases (supplemental Fig. S2).

LC-MS/MS Analysis of Primer Extension Products—In the steady-state kinetic analysis, hpol η showed a high misinsertion frequency opposite 1,N6-εdA during single nucleotide extension (Tables 2 and 3). To gain insight into the ability of hpol η to

TABLE 1

Oligonucleotides used in this study

Substrate A	Oligonucleotides
3’-TGCGTCAT	3’-AGCATT (εdA)ATT
3’-AGGCTCA	3’-AGGCTCA
T-3’	T-3’

Oligonucleotides used in kinetic studies

Substrate A-U	Oligonucleotides
3’-TGCGTCAT	3’-AGCATT (εdA)ATT
3’-AGGCTCA	3’-AGGCTCA
T-3’	T-3’

Oligonucleotides used in LC-MS studies

Structure name	Oligonucleotides
dA:dTTP	3’-TGCGTCAT
3’-AGGCTCA	
T-3’	T-3’

TABLE 2

Steady-state kinetics of incorporation of individual dNTPs opposite 1,N6-εdA and A (Substrates A and B)

DNA Substrate	dNTP	Km, μM	kcat, min⁻¹	kcat/Km (μM⁻¹ min⁻¹)	f
Substrate A	dATP	29 ± 3	11.8 ± 0.02	0.041 ± 0.94	3.7
Substrate B	dATP	36 ± 2	0.99 ± 0.01	0.027 ± 0.25	2.5
Substrate A	dGTP	433 ± 24	1.35 ± 0.03	0.0031 ± 0.28	0.28
Substrate B	dGTP	243 ± 36	2.61 ± 0.14	0.011 ± 10	1

Substrate A

DNA Substrate	dNTP	Km, μM	kcat, min⁻¹	kcat/Km (μM⁻¹ min⁻¹)	f**
Substrate A	dATP	29 ± 3	11.8 ± 0.02	0.041 ± 0.94	3.7
Substrate B	dATP	36 ± 2	0.99 ± 0.01	0.027 ± 0.25	2.5
Substrate A	dGTP	433 ± 24	1.35 ± 0.03	0.0031 ± 0.28	0.28
Substrate B	dGTP	243 ± 36	2.61 ± 0.14	0.011 ± 10	1

* Misinsertion frequency, f = (Kcat/Km)ATTP/(Kcat/Km)ATTP The S.E. (5) is from the fit in Prism software.
extend beyond the lesion, an LC-MS/MS method previously developed in this laboratory (33–36) and applied extensively (37–43) was used for sequence analysis of the extension products. dU-containing primers were extended by hpol \(\eta \) in the presence of all four dNTPs, followed by treatment with UDG and piperidine to cleave the fully extended products into shorter fragments for LC-MS/MS analysis (35, 36). Sequences of full-length extension products and relative yields were determined by LC-MS/MS analysis (Fig. 1 and Tables 4–6). The \(-1\) frameshift products accounted for 37% of total products in a sequence with a T positioned 5’ of the 1,N\(^6\)-edA (substrate D-U, Tables 1 and 4). The fraction of extension products with a G incorporated opposite the lesion was 27% and with an A 25%. Small amounts of products with T (11%) and C (1%) incorporated were also observed in the mass spectra. The formation of the \(-1\) frameshift products may be the result of the incoming dATP skipping the lesion and pairing with the neighboring base T (Table 4).

The T on the 5’ side of 1,N\(^6\)-edA in the template was replaced with a C, to evaluate the effect of substitution of the (5’)-pyrimidine (substrate A-U, Table 1). LC-MS/MS results revealed 14 sequences of full-length products corresponding to nine peaks of M \(-2H\) ions (Table 5). With this template, 70% of the products were due to \(-1\) frameshifts, followed by 16% A and 14% T incorporation opposite the lesion. Extension products containing a G opposite 1,N\(^6\)-edA were not observed in this setting, presumably because the dGTP skipped 1,N\(^6\)-edA and paired with the C positioned 5’ to the lesion to yield a frameshift. Human pol \(\eta \), like many other DNA polymerases (35), can also catalyze blunt-end addition of dATP or dGTP. Some extension oligonucleotides were added to the second nucleotide following the blunt end in this experiment (Table 5).

We also included a template containing 1,N\(^6\)-edA in another sequence context with a C in the 5’ position (substrate C-U, Table 1), one that had been used in a previous study of 1,N\(^6\)-edA by Levine et al. (34) (Table 6, Fig. 1B, supplementary Table S1). Again we found \(-1\) frameshifts (39%, dominated by an A in the next position) and incorporation of A (29%) and G (23%) opposite 1,N\(^6\)-edA, instead of T (8%) and C (<1%), consistent with our results from the steady-state study with this sequence (Table 3 and supplementary Fig. S1).

Crystal Structures of Insertion-stage Ternary Human pol \(\eta \) Complexes— We determined five crystal structures of ternary human hpol \(\eta \)-DNA-dNTP complexes with template strands containing 1,N\(^6\)-edA, three of which were trapped at the insertion stage. The resolution of these three structures varied between 2.12 and 2.26 Å (Table 7), and representative images of the quality of the final electron density are provided in Fig. 2, A–C. The first two complexes are of incoming dAMPNPP and dGMPNPP opposite 1,N\(^6\)-edA, the nucleoside triphosphates preferentially incorporated according to the steady-state kinetic data (edA:dAMPNPP and edA:dGMPNPP, see Tables 1–3 and 7). The structures revealed that the purines of incoming nucleotides adopt a staggered orientation relative to 1,N\(^6\)-edA in the anti conformation. This arrangement leads to extensive cross-strand stacking between the adducted base and A or G (Fig. 3). Stacking interactions between 1,N\(^6\)-edA and adenosines from the incoming nucleotide and 3’-adjacent template residue appear to be slightly more favorable (Fig. 3B) compared with the structure with incoming G (Fig. 3D). In the latter, the adduct base appears to have shifted slightly into the major groove, whereas the relative positions of the base portions of incoming nucleotides relative to the template A located 3’ to the adduct are very similar in the two structures. In both, Gln-38 forms an H-bond to the sugar O4’ of 1,N\(^6\)-edA (Fig. 3). In the structure with dGMPNPP, guanine N2 and Gln-38 are also engaged in an H-bond (Fig. 3B), although this interaction is absent in the insertion-stage complex with incoming dAMPNPP (Fig. 3D). Shared properties of the two structures are the conformation of the template nucleotide situated 5’ to 1,N\(^6\)-edA, in that this T is directed away from the active site and is not engaged in a stacking interaction with the adduct (Fig. 3, A and C). Furthermore, the A:T base pair at the \(-1\) position displays strong buckling in both complexes, with the thymine plane tilted relative to 1,N\(^6\)-edA. However, this orientation of the 3’-terminal primer nucleotide still leaves its O3’ at an optimal position to carry out a nucleophilic attack at the \(\alpha \)-phosphate of the incoming nucleotide (AMPNPP or GMPNPP). The \(\alpha \)- and \(\beta \)-phosphate groups of the latter are engaged in an electrostatically favorable interaction with Arg-61 from the hpol \(\eta \) finger domain.

An additional structure of an insertion stage hpol \(\eta \) complex was determined for incoming dTTP opposite 1,N\(^6\)-edA (edA: dTTP, Tables 1 and 7). In this complex, thymine and the adduct base are coplanar, with the former in the standard anti configuration and the adduct flipped into the syn conformation (Fig. 4). Unlike the structures with incoming purine nucleoside triphosphates, the \(-1\) base pair is devoid of buckling and the T 5’-adjacent to the adduct is now rotated into the active site and stacked on 1,N\(^6\)-edA. However, the syn orientation of the latter results in diminished overlap with the 3’-adjacent template A compared with the above complexes with incoming AMPNPP or GMPNPP (Figs. 3 and 4). The syn-1,N\(^6\)-edA:anti-dT base pair features virtually equidistant spacings between the (edA)N\(_6\)-…(H)N\(_2\)-T (and (edA)N\(_6\)-(H)-O\(_2\)-T) atom pairs. In the first contact, N\(_6\) of 1,N\(^6\)-edA is an acceptor, and N\(_6\) of T is a donor. Conversely, N\(_6\) of 1,N\(^6\)-edA and O\(_2\) of T are both acceptors. Rather than a clash between the two latter functionalities, the 2.8 Å separation might be indicative of protonation at N\(_6\) of 1,N\(^6\)-edA. The pK\(_a\) of N\(_6\) in 1,N\(^6\)-edA is 4.1 (44, 45), and under the conditions used for crystallization (pH 5.5), the N\(_6\) nitrogen
Human pol η and 1,N⁶-Ethenodeoxyadenosine

TABLE 4

Product Sequence	m/z (-2)	m/z (-3)	Peak Area (relative units)	% Frameshifts	% A	% C	% G	% T
CAT TAT GA	1243.31	828.54	270631					11
CAT ATT GA	1247.81	831.54	581078					25
CAT GAT GA	1255.81	830.87	638435					27
CAT CAT GA	1259.8	823.53	12912		1			
CAT ATG GA	1091.21	727.18	493346					
CAT TT GA	1088.7	724.13	203169					
CAT GT GA	1099.21	732.47	167426					
CAT CT GA	1079.2	719.33	9800					

FIGURE 1. LC-MS analysis of products of extension of primer (opposite template 1,N⁶-edA, substrate C-U, Table 1) by hpol η in the presence of all four dNTPs. A, denaturing PAGE image showing hpol η extension across the 1,N⁶-edA adduct: lane 1, 18-mer oligonucleotide primer containing a 5'-FAM label (from substrate C-U, Table 1); lane 2, TLS polymerase extension reaction with hpol η and 18-mer primer/23-mer template duplex (substrate C-U, Table 1); lane 3, cleavage of hpol η extension reaction products with UDG and piperidine. B, mass spectra of frameshift product pAT_GAGG (relative abundance of total ion current measured; underscore denotes frameshift): panel a, LC chromatograms of product ions m/z 967 (-2 charge) and m/z 644 (-3 charge); panel b, mass spectrum of peak eluted at tᵢ₅ 4.53 min in panel b (product mixture); panel c, CID spectrum of m/z 967. See supplemental Table S1 for assignments.
Human pol η and 1,N⁶-Ethenodeoxyadenosine

Discussion

The kinetic results presented here for insertion by hpol η at the 1,N⁶-edA adduct demonstrate that this lesion is significantly miscoding (Tables 2 and 3; supplemental Fig. S1). Under steady-state conditions, incorporation of T opposite 1,N⁶-edA is strongly attenuated relative to insertion of T opposite A, and both purines are preferred over T (Tables 2 and 3). However, all four possible insertions opposite the adduct lack a burst phase as evidenced by our pre-steady-state analysis (supplemental Fig. S2). Therefore, it is unnecessary to invoke impediments during the extension step as the main reason for the low efficiency of bypass past the 1,N⁶-edA adduct by hpol η, and the LC-MS/MS results (Tables 4–6) are consonant with the kinetic insertion results (Tables 2 and 3).

Our misincorporation results may be compared with previous literature. Incorporation of A, C, and G opposite 1,N⁶-edA has been reported in different mammalian cell lines and extracts, in varying ratios (24, 26–28). T incorporation is reflected in a lack of mutation, but the mutagenic frequency is a function of the DNA repair status of each cell line. Pandya and co-workers (24, 27) reported a 70% mutation frequency for 1,N⁶-edA in (monkey) COS7 cells, utilizing a single-stranded vector. Of these mutations, 63% corresponded to C incorporation (i.e. A → G transition), 6% to A incorporation, and 1% to G incorporation. No frameshift analysis was reported. In 2000, the same laboratory (26) utilized a double-stranded vector with HeLa, HCT116, and (HEK) 293 cells, derived from human cervical cancer, colon cancer, and embryonic kidney epithelium, respectively. High percentages of large deletions were reported in the 1,N⁶-edA-plasmid cells (16–89%), with deletion of several hundred to 2000 bases. The number of targeted single mutations was low in the HCT116 cells and higher in the HeLa cells (HEK293 not reported). Of the 25 HeLa cell mutants analyzed with 1,N⁶-edA, 36% corresponded to G insertion, 16% correspond to C insertion, and 48% corresponded to A inser-

TABLE 5
LC-MS analysis of products of hpol η replication past template 1,N⁶-edA (C 5'-adjacent to adduct, Substrate A-U)
Products were cut at the U and begin at the 3' T. An underscore represents a frameshift (deletion). See Supplemental Data Fig. S3 for LC-MS data. The relative units differ from Tables 4 and 6 due to instrumental settings.

Product sequence	m/z (-2)	Peak area (relative units)	% Frameshifts
T_G TGA	798.01	935	70%
T_G TGA A	954.62	8466	
T_G TGA G	962.62	2409	
T_G TGA C	942.60	624	
T_G TGA T	950.11	817	
T_G TGA AA	1111.22	1316	
T_G TGA AG	1119.22	200	
TAG TGA	954.62	1734	16%
TAG TGA A	1111.22	1076	
TAG TGA G	1119.22	542	
TCG TGA	942.60	617	<1%
TTG TGA	950.11	62	14%
TTG TGA A	1106.72	2051	
TTG TGA G	1114.71	792	

TABLE 6
LC-MS analysis of products of hpol η replication past template 1,N⁶-edA (T 5'-adjacent to adduct, Substrate C-U) (34)
Products were cut at the U and begin at the 3' AT. An underscore represents a frameshift (deletion). See Fig. 1 and Supplemental Data Table S1 for LC-MS data.

Product sequence	m/z (-2)	Peak Area (relative units)	% Frameshifts	%A	%C	%T
ATT GAGG	1119.22	745.84	91506	8		
ATG GAGG	1123.73	748.82	340591	29		
ATG GAGG	1131.73	754.15	268590	23		
ATC GAGG	1111.715	740.81	9427		1	
AT_G AAGG	987.12	644.41	394409			
AT_T AAGG	954.62	630.08	22783			
AT_A AAGG	959.12	639.08	29754			
AT_C AAGG	947.11	631.07	3966			

template nucleotide is not T) opposite the 1,N⁶-edA adduct and its preference for purines (Tables 2–6) with concomitant –1 frameshifts (Tables 4–6).
tion. One- and two-base frameshifts were not reported. In 2008 Tolentino et al. (28) used a double-stranded vector containing 1,N6-εdA with extracts of HeLa cells and XPV cells. The misincorporation frequency was very low, and with the HeLa cells only 2–3 mutants were seen for A, G, and C insertion, making any conclusions about preferences untenable.

At the time that some of the previous cellular mutation results were reported (24, 26, 27), the repair of 1,N6-εdA by glycosylases (46, 47) was known but repair by AlkB (25) and its mammalian orthologs was not recognized yet. The compositions of the DNA polymerase pools in these cell lines are largely uncharacterized, and the assignment of actions of the individual polymerases is not possible based on that information. As Levine et al. (26) state in comparing their results with cells of human origin with (monkey) COS7 cells (24): “...there are several differences in the design of these two studies, including single-stranded versus double-stranded vector, sequence context, location of the DNA adduct relative to replication origin, and host cells. One or several of these factors could have contributed to the differences observed.” Ultimately, the contribution of hpol η to mutations should be evaluated in cells equiv-

Our results with several sequences, including that used by Levine et al. (34), clearly show that hpol η bypasses 1,N6-εdA in a highly error-prone manner, dominated by purine incorporations or generation of −1 frameshifts instead of insertion of T. This conclusion is based on both the kinetic analyses (Tables 2 and 3; supplemental Fig. S1) and LC-MS/MS analysis of the extended products (Tables 4–6), including sequences used previously by others (substrate C, Table 1) (34). These misincorporation patterns are also consistent with the results obtained in mammalian cells (26–28), although there is considerable variation among cell lines (26). Although A, C, and G insertions have all been reported opposite 1,N6-εdA in many systems, the presence of frameshifts in cells replicating past 1,N6-εdA has not been addressed. Levine et al. (26) listed a −1 deletion probe to be used for detecting frameshifts in cells but did not report any analyses for such events. In that study, large deletions (several hundred to 2000 bp) were observed in 16–89% of the mutants, depending on the cell line (26).

We found that the higher rate of incorporation of purine nucleoside triphosphates is in large part dependent on the availability of the matching template nucleotide 5’-adjacent to 1,N6-εdA (i.e. T and C for incoming dATP and dGTP, respect-

The structures of insertion-stage complexes with incoming non-hydrolyzable dNTP analogs (dAMPNPP and dGMPNPP) in the presence of Mg2+ reveal that the 1,N6-εdA and adenine (guanine) bases are offset at the active site and, instead of direct pairing, engaged in stacking interactions across the template and primer strands (Fig. 3). Thus, unlike the structures of isolated oligonucleotide duplexes (30, 31), where the adduct switches into a syn orientation to accommodate pairing with a purine, 1,N6-εdA remains in the favored anti orientation and the incoming purines adopt the observed staggered orientation.

From the states seen in the two insertion-stage complex structures, the replication process can proceed in two distinct ways. (i) The incoming purine is accommodated opposite the adduct (Tables 4 and 6). (ii) Alternatively, the template T(C) 5’-adjacent to the adduct, seen outside the active site in the
structures (Fig. 3), rotates inward and above the adduct and then pairs with dAMPNPP (dGMPNPP), thus resulting in the −1 frameshift products that constituted the majority of the extended oligonucleotides according to the LC-MS/MS analysis. The actual configurations by which A or G are accommodated opposite 1,N^6-EA in the template-primer duplex remain unclear from the two structures at the insertion stage, although it is possible that the adduct and purine nucleotides are stacked in a cross-strand fashion.

The structure of the extension complex with dA opposite 1,N^6-EA is useful in addressing this question. Rather than in the staggered configuration, the 1,N^6-EA:dA pair is wedged
between A:T(TP) pairs at the −2 and 0 positions that are separated by ~7 Å in an axial direction (Fig. 5, A and C). The staggered orientation following insertion can thus be discarded, but the nucleobase portion of primer dA is completely disordered, suggesting a position of the adduct partner either inside the major or the minor groove.
Even the smaller thymine moiety of dT is disordered in the second extension-stage complex (Fig. 5, C and D). However, the anti orientation of 1,N⁶-edA is common to both complexes and is likely preferred because it allows for more optimal stacking interactions with flanking bases, even if it results in a suboptimal arrangement of the pairing partner and loss of H-bonds. This conclusion is supported by the structural and kinetic data for T incorporation opposite 1,N⁶-edA. The structure of the corresponding insertion complex shows the adduct in the syn conformation and therefore has diminished stacking with the 3'-adjacent template base (A; Fig. 5). The incoming T and 1,N⁶-edA are in the same plane, and it is possible, based on the relative orientation and taking into account pKₐ data for the adduct and the acidic pH of the crystallization solution, that two H-bonds are established between the pairing partners. However, the 1000-fold lower efficiency of T incorporation opposite 1,N⁶-edA relative to T opposite A (steady-state results, Table 2) renders it unnecessary to envision an optimal structural context for the 1,N⁶-edA:T pair at the insertion step. Moreover, the incoming C can form a bifurcated H-bond with its N4 amino group to the N6 and N7 acceptors of the adduct or, alternatively (envisioning a protonated state of C (pKₐ 4.6) under pH 5.5 crystallization conditions), two H-bonds. However, these assumptions are mute as the efficiency of C incorporation is further reduced compared with T (4-fold) and considerably below the levels of efficiency for A or G incorporation and frameshifting.

The structures of incoming dAMPNPP and dGMPNPP in a staggered orientation relative to 1,N⁶-edA and the kinetic data manifesting preferred incorporation of purines opposite the adduct, accompanied with frameshifts offer some parallels to our observations of hpol η-catalyzed bypass reactions opposite an abasic site. Specifically, we invoke a “purine rule,” meaning that dATP and dGTP are preferred over dCTP and dTTP by this polymerase opposite an abasic lesion (48). Structures of the preferred dNTPs opposite the abasic site in ternary hpol η-complexes offered insight into this preference, in that the longer purine bases could be linked to the phosphate group of the abasic residue via water bridges. By comparison, the smaller pyrimidines were at a disadvantage, both because of the reduced level of stacking interactions and the inability to tether

FIGURE 5. Active site conformations in two ternary hpol η extension step complexes with primer dA or dT opposite 1,N⁶-edA, followed by dTMPNPP across template dA. A, ternary extension stage complex with dA opposite 1,N⁶-edA, viewed into the major groove, and B, rotated by 90° and viewed perpendicular to the best plane through the nascent base pair (edA:dA extension, Tables 1 and 7). C, ternary extension stage complex with dT opposite 1,N⁶-edA viewed into the major groove; D, rotated by 90° and viewed perpendicular to the best plane through the nascent base pair (edA:dT extension, Tables 1 and 7). The 3' terminal primer nucleoside (dA/dT) is disordered in both complexes. Residues shown with dark gray bonds represent idealized stacked positions of primer dA (A and B) and primer dT (C and D). The conformational disorder of these residues in the two complex structures might arise from a clash between dA or dT in the modeled orientation with anti 1,N⁶-edA. Selected active site residues are colored by atom with carbon atoms shown in maroon (1,N⁶-edA), orange (incoming nucleotide), light blue (template nucleotide 5’-adjacent to 1,N⁶-edA), purple (Arg-61 and Gln-38 from the finger domain), or magenta (Asp/Glu coordinating to Mg²⁺; cyan spheres).
them to the template strand via solvent molecules in the active site. Similarly, purines opposite the 1,N⁶-ε-A adduct at the hpol η active site exploit cross-strand stacking interactions that result in facilitated error-prone bypass. In addition, at least in the case of incoming dGMPNPP, the side chain of Gln-38 mediates an interaction between guanine (N2) and the backbone of the template strand (sugar ring of the adduct, Fig. 3, C and D).

Finally, the structure of the third insertion-stage complex with dTTP opposite 1,N⁶-ε-A and with the adduct adopting a syn orientation (Fig. 5) is reminiscent of the pairing between this lesion and incoming dTTP observed in the crystal structure of a ternary hpol η complex (49). However, this Y-family pol is more efficient and less error prone than hpol η in regard to bypass of 1,N⁶-ε-A and incorporates a T opposite the lesion with only about 10-fold reduced efficiency relative to T opposite A, consistent with a more narrow active site that forces base pairs into the normally less favorable Hoogsteen configuration.

In summary, bypass of the 1,N⁶-ε-A lesion by hpol η proceeds with relatively low efficiency and in an error-prone fashion by misinsertion of A and G or generation of −1 framenks. Thus, the outcomes of hpol η-catalyzed bypass of the bulky 1,N⁶-ε-A lesion and an abasic site (48) are surprisingly similar.

Experimental Procedures

Materials—The catalytic core (amino acids 1–432) of hpol η was expressed and purified as described previously (50). Unlabeled dNTPs, T4 polynucleotide kinase, and UDG were purchased from New England Biolabs (Ipswich, MA). A mixture of four dNTPs was purchased from Invitrogen. All non-hydroryzable dNMPNPPs were obtained from Jena Bioscience (Jena, Germany). [γ-32P]ATP (specific activity 3000 Ci/mmol) was purchased from PerkinElmer Life Sciences. Biospin columns were purchased from Bio-Rad. All oligonucleotides (purified by HPLC by the manufacturers) were obtained from Midland Certified Reagent Co. (Midland, TX), Integrated DNA Technologies (Coralville, IA), or TriLink Biotechnologies (San Diego). The oligonucleotides containing 1,N⁶-ε-A were from TriLink.

Steady-state Kinetics—A 13-mer primer was 5′-5′/6-carboxyfluorescein (FAM)-labeled and annealed to an 18-mer template at a 1:1.2 molar ratio (Table 1). The same procedure was used for the 18/23-mer pair, annealing the primer and template in a 1:1 molar ratio. Enzyme concentrations and reaction times for the 18/23-mer pair, annealing the primer and template in a 1:1.2 molar ratio (Table 1). The same procedure was used for the 18/23-mer pair, annealing the primer and template in a 1:1 molar ratio. Enzyme concentrations and reaction times for the 18/23-mer pair, annealing the primer and template in a 1:1.2 molar ratio (Table 1). The same procedure was used for the 18/23-mer pair, annealing the primer and template in a 1:1.2 molar ratio (Table 1). The same procedure was used for the 18/23-mer pair, annealing the primer and template in a 1:1.2 molar ratio (Table 1).

Pre-steady-state Kinetics—Rapid quench experiments were performed using a model RQF-3 KinTek quench flow apparatus (KinTek, Austin, TX). The 13-mer primer was 32P-labeled at the 5′ end by T4 polynucleotide kinase/[γ-32P]ATP and annealed to the 18-mer templates. Reactions were initiated by rapid mixing of 32P-primer-template/polymerase mixtures with dNTP and Mg²⁺ at 37 °C. The final concentrations of the reactants were 50 nM hpol η, 500 nM 32P-labeled primer-template complex, and 0.5 mM dNTP. Other reaction conditions are the same as described for steady-state kinetics. Reactions were quenched with 0.5 M EDTA at times varying from 5 ms to 5 s. Products were separated on 18% (w/v) polyacrylamide gels and scanned and quantitated using a PhosphorImaging system (Bio-Rad, Molecular Image FX) and Quantity One software as described previously (35).

LC-MS/MS Analysis of Full-length Extended Products—A 5′-FAM-labeled primer containing an appropriately positioned deoxyuridine (dU) (opposite A in some but not all cases) (Table 1) was annealed to the 18- or 23-mer templates at a 1:1 molar ratio. Reaction conditions were similar to those used in steady-state kinetics assays, except that the final concentrations were 3 μM hpol η and 25 μM primer-template duplex, in a total volume of 80 μl. Reactions were initiated by addition of a mixture of 1 mM each of dNTPs (A, G, C, and T) and terminated by spin-column separation to remove dNTP and Mg²⁺ after 1 h of incubation (37 °C). The resulting products were treated with 50 units of UDG and 0.25 μl hot piperidine, following a previous protocol (35, 36). The extent of the reaction was monitored by denaturing PAGE (Fig. 1A) prior to LC-MS analysis. The cleavage solution was lyophilized and reconstituted in 60 μl of H₂O.

LC-MS/MS analysis was performed on an Acquity ultra performance liquid chromatography (UPLC) system (Waters Associates) coupled to a Thermo Finnigan LTQ mass spectrometer (Thermo Scientific, San Jose, CA) with an electrospray ionization source. Samples were separated on an Acquity UPLC BEH octadecylsilane (C18) column (1.7 μm, 2.1 × 100 mm) at a flow rate of 0.3 ml/min. The column temperature was maintained at 50 °C. Eluent A contained 10 mM NH₄HCO₃ in 98% H₂O, 2% CH₃CN (v/v), and eluent B consisted of 10 mM NH₄CH₃CO₂ in 90% CH₃CN, 10% H₂O (v/v). A gradient program was run as follows: 0–3% B over 3 min, 3–20% B over 2 min, 20–100% B over 1 min, held at 100% B for 2 min, 100–0% B over 2 min, and held at 0% B for 3 min (all v/v). MS data were acquired in the negative mode and controlled by Xcalibur 2.1 software (Thermo). Electrospray ionization settings were as follows: source voltage 4 kV, source current 100 A, capillary voltage −49 V, capillary temperature 350, tube lens voltage −90 V. The most abundant species (−2 or −3 charged) were fragmented in the ion trap by collision-induced dissociation (CID) with a normalized collision energy of 35%. An activation Q of 0.25 and activation time of 30 ms were used. Oligonucleotide sequences can be identified by comparing the observed CID spectra and theoretical spectra of candidate oligonucleotide sequences calculated using Mongo Oligo Calculator 2.0 software (University of Utah, Salt Lake City). The relative yields of various DNA extension products were based on their respective peak areas in the extracted ion chromatograms.
Human pol η and 1,N6-Ethenodeoxyadenosine

Crystallization—Crystals were obtained by the hanging drop vapor diffusion technique at 18 °C. 1,N6-edA-modified DNA templates and primer sequences used in the crystallization experiments are listed in Table 1. DNA solutions were prepared by mixing template and primer strands in a 1:1 molar ratio and annealing the mixture in the presence of 10 mM sodium HEPES buffer (pH 8.0), 0.1 mM EDTA, and 50 mM NaCl at 85 °C for 10 min, followed by slow cooling to room temperature. hpol η protein was mixed with the DNA duplex in a 1:1.2 molar ratio in the presence of 50 mM Tris-HCl (pH 7.5) containing 450 mM KCl and 3 mM DTT, followed by addition of either 5 μl of 100 mM MgCl₂ or 5 μl of 100 mM CaCl₂. Using a spin concentrator with an Amicon cutoff filter (Millipore, Billerica, MA), the mixture was centrifuged in liquid nitrogen for data collection. Crystals were obtained by the hanging drop method involving initial reaction with the endocyclic nitrogens. Evidence for a mechanism involving initial reaction with the endocyclic nitrogens. J. Am. Chem. Soc. 114, 1074–1080

Acknowledgments—We thank L. Lei for help with protein expression and K. Trisler for assistance in the preparation of the manuscript. Vanderbilt University is a member institution of the Life Sciences Collaborative Access Team at sector 21 of the Advanced Photon Source, Argonne, IL. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the United States Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357.

References

1. Friedberg, E. C., Walker, G. C., Siede, W., Wood, R. D., Schultz, R. A., and Ellenberger, T. (2006) DNA Repair and Mutagenesis. 2nd Ed., American Society for Microbiology, Washington, D. C.

2. Shigenaga, M. K., Hagen, T. M., and Ames, B. N. (1994) Oxidative damage and mitochondrial decay in aging. Proc. Natl. Acad. Sci. U.S.A. 91, 10771–10778

3. M’Cann, J., Choi, E., Yamasaki, E., and Ames, B. N. (1975) Detection of carcinogens as mutagens in the Salmovalia/microsome test: assay of 300 chemicals. Proc. Natl. Acad. Sci. U.S.A. 72, 5135–5139

4. Erickson, R. P. (2003) Somatic gene mutation and human disease other than cancer. Mutat. Res. 543, 125–136

5. Weismann, C. G., and Gelb, B. D. (2007) The genetics of congenital heart defects: a review of recent developments. Curr. Opin. Cardiol. 22, 200–206

6. Wessels, M. W., and Willems, P. J. (2010) Genetic factors in non-syndromic congenital heart malformations. Clin. Genet. 78, 103–123

7. Malavieille, C., Bartsch, H., Barbin, A., Camus, A. M., Montesano, R., Croisy, A., and Jacquinpon, P. (1975) Mutagenicity of vinyl chloride, chloroethylene oxide, chloroacetalddehyde and chloroethanol. Biochem. Biophys. Res. Commun. 63, 363–370

8. DeMott, M. S., and Dedon, P. C. (2010) in The Chemical Biology of DNA Damage (Gecinov, N. E., and Broyde, S. E., eds) pp. 21–51, Wiley-VCH Verlag GmbH, KGaA Weinheim, Germany

9. Swenberg, J. A., Lu, K., Moeller, B. C., Gao, L., Upton, P. B., Nakamura, I., and Starr, T. B. (2011) Endogenous versus exogenous DNA adducts: their role in carcinogenesis, epidemiology, and risk assessment. Toxicol. Sci. 120, 5130–5145

10. Leonard, N. J. (1992) Etheno-bridged nucleotides in structural diagnosis and carcinogenesis. Chemtracts-Biochem. Mol. Biol. 3, 273–297

11. Dudock, B. S., Katz, G., Taylor, E. K., and Holley, R. W. (1969) Primary structure of wheat germ phenylalanin transfer RNA. Proc. Natl. Acad. Sci. U.S.A. 62, 941–945

12. Sattasandi, P. D., Leonard, N. J., and Frihart, C. R. (1977) 1,N6-Ethenoguanine and N2,3-ethenoguanine. Synthesis and comparison of the electronic spectra of these linear and angular triheterocycles related to the Y bases. J. Org. Chem. 42, 3292–3296

13. Secrist, J. A., 3rd., Barrio, J. R., Leonard, N. J., and Weber, G. (1972) Fluorescent modification of adenosine-containing coenzymes. Biological activities and spectroscopic properties. Biochemistry 11, 3499–3506

14. Leonard, N. J. (1984) Etheno-substituted nucleotides and coenzymes: fluorescence and biological activity. CRC Crit. Rev. Biochem. 15, 125–199

15. Leonard, N. J. (1993) Etheno-bridged nucleotides in enzyme reactions and protein binding. Chembiochem. Biol. Mol. Biol. 4, 251–284

16. Barbin, A., Brésil, H., Croisy, A., Jacquinpon, P., Malavieille, C., Montesano, R., and Bartsch, H. (1975) Liver-microsome-mediated formation of alkylating agents from vinyl bromide and vinyl chloride. Biochem. Biophys. Res. Commun. 67, 596–603

17. Laib, R. J., Gwinner, L. M., and Bolt, H. M. (1981) DNA alklylation by vinyl chloride metabolites: etheno derivatives or 7-alkyl-derivatives of guanine? Chem. Biol. Interact. 37, 219–231

18. Fedtke, N., Boucheron, J. A., Walker, V. E., and Swenberg, J. A. (1990) Vinyl chloride-induced DNA adducts. II. Formation and persistence of 7-(2′-oxoethyl)guanine and N2,3-ethenoguanine in rat tissue DNA. Carcinogenesis 11, 1287–1292

19. Rindgen, D., Nakajima, M., Wehrli, S., Xu, K., and Blair, I. A. (1999) Covalent modifications to 2′-deoxyguanosine by 4-oxo-2-nonenal, a novel product of lipid peroxidation. Chem. Res. Toxicol. 12, 1195–1204

20. Carvalho, V. M., Asahara, F., Mascio, P. D., de Arruda Campos, I. P., Cadet, J., and Medeiros, M. H. (2000) Novel 1,N6-etheno-2′-deoxyadenosine adducts from lipid peroxidation products. Chem. Res. Toxicol. 13, 397–405

21. Guengerich, F. P., and Raney, V. M. (1992) Formation of etheno adducts of adenosine and cytidine from 1-halooxiranes. Evidence for a mechanism involving initial reaction with the endocyclic nitrogens. J. Am. Chem. Soc. 114, 1074–1080

22. Swenberg, J. A., Fedtke, N., Ciroussel, F., Barbin, A., and Bartsch, H. (1992) Etheno adducts formed in DNA of vinyl chloride-exposed rats are highly
Human pol η and 1,N⁶-Ethenodeoxyadenosine

sulfatataricus DNA polymerase Dpo4 is partially inhibited by “wobbly” pairing between O²-methylguanine and cytosine, but accurate bypass is preferred. J. Biol. Chem. 282, 1456–1467

39. Yuan, B., and Wang, Y. (2008) Mutagenic and cytotoxic properties of 6-thioguanine, S⁵-methylthioguanine, and guanine-S⁵-sulfonic acid. J. Biol. Chem. 283, 23665–23670

40. Zhao, L., Christov, P. P., Kozekov, I. D., Pence, M. G., Pallan, P. S., Rizzo, C. J., Egli, M., and Guengerich, F. P. (2012) Replication of N₂,3-ethenoguanine by DNA polymerases. Angew. Chem. Int. Ed. Engl. 51, 5466–5469

41. Chowdhury, G., and Guengerich, F. P. (2011) Liquid chromatography-mass spectrometry analysis of DNA polymerase reaction products. Curr. Protoc. Nucleic Acid Chem. Chapter 7, Unit 7.16.1–11

42. Wickramaratne, S., Boldry, E. J., Buehler, C., Wang, Y. C., Distefano, M. D., and Tret’yakova, N. Y. (2015) Error-prone translesion synthesis past DNA-peptide cross-links conjugated to the major groove of DNA via Cs of thymidine. J. Biol. Chem. 290, 775–787

43. Chowdhury, G., and Guengerich, F. P. (2016) Mass Spectrometry of Nucleic Acids, in Encyclopedia of Analytical Chemistry (Meyers, R. A., ed) Wiley Interscience, New York, in press

44. Spencer, R. D., Weber, G., Tolman, G. L., Barrio, J. R., and Leonard, N. J. (1974) Species responsible for the fluorescence of 1,N⁶-ethenoadenine. Eur. J. Biochem. 45, 429–429

45. Inoue, Y., and Kuramochi, T. (1979) Protonation and quaternization of 1,N⁶-ethenoadenine: what are the species responsible for the fluorescence of 1,N⁶-ethenoadenine? Biopolymers 18, 2175–2194

46. Singer, B., Antoccia, A., Basu, A. K., Dosanjh, M. K., Franek-Conrat, H., Gallagher, P. E., Kušmierk, I. T., Qiu, Z. H., and Rydberg, B. (1992) Both purified human 1,N⁶-ethenoadenine-binding protein and purified human 3-methyladenine-DNA glycosylase act on 1,N⁶-ethenoadenine and 3-methyladenine. Proc. Natl. Acad. Sci. U.S.A. 89, 9386–9390

47. Saparbaev, M., Kleibl, K., and Laval, J. (1995) Escherichia coli, Saccharomyces cerevisiae, rat and human 3-methyladenine DNA glycolases repair 1,N⁶-ethenoadenine when present in DNA. Nucleic Acids Res. 23, 3750–3755

48. Patra, A., Zhang, Q., Lei, L., Su, Y., Egli, M., and Guengerich, F. P. (2015) Structural and kinetic analysis of nucleoside triphosphate incorporation opposite an abasic site by human translesion DNA polymerase η. J. Biol. Chem. 290, 8028–8038

49. Nair, D. T., Johnson, R. E., Prakash, L., Prakash, S., and Aggarwal, A. K. (2006) Hoogsteen base pair formation promotes synthesis opposite the 1,N⁶-ethenodeoxyadenosine lesion by human DNA polymerase η. Nat. Struct. Mol. Biol. 13, 619–625

50. Biertümpfel, C., Zhao, Y., Kondo, Y., Ramón-Maíques, S., Gregory, M., Lee, J. Y., Masutani, C., Lehmann, A. R., Hanaoka, F., and Yang, W. (2010) Structure and mechanism of human DNA polymerase η. Nature 465, 1044–1048

51. Otwinowski, Z., and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326

52. Vagin, A., and Teplyakov, A. (2010) Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66, 22–25

53. Collaborative Computational Project No. 4 (1994) The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763

54. Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. N., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., et al. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221

55. Emsley, P., and Cowtan, K. (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132

56. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., and Ferrin, T. E. (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612