Closed equations of the two-point functions for tensorial group field theory

Dine Ousmane Samary

Perimeter Institute for Theoretical Physics
31 Caroline St. N. Waterloo, ON N2L 2Y5, Canada

International Chair in Mathematical Physics and Applications
(ICMPA-UNESCO Chair), University of Abomey-Calavi,
072B.P.50, Cotonou, Republic of Benin
E-mails: dsamary@perimeterinstitute.ca

Abstract

In this paper we provide the closed equations that satisfy two-point correlation functions of the rank 3 and 4 tensorial group field theory. The formulation of the present problem extends the method used by Grosse and Wulkenhaar in [arXiv 0909.1389] to the tensor case. Ward-Takahashi identities and Schwinger-Dyson equations are combined to establish a nonlinear integral equation for the two-point functions. In the 3D case the solution of this equation is given perturbatively at second order of the coupling constant.

Pacs numbers: 11.10.Gh, 04.60.-m
Key words: Renormalization, tensorial group field theory, Ward-Takahashi identities, Schwinger-Dyson equation, two-point correlation functions.

1 Introduction

Random Tensor Models [1][2][3] extends Matrix Models [4] as promising candidates to understand Quantum Gravity in higher dimension, $D \geq 3$. The formulation of such models is based on a Feynman path integral generating randomly graphs representing simplicial pseudo manifolds of dimension D. The equivalent of the t’Hooft large N limit [5][6] for these Tensor Models has been recently discovered by Gurau [7][8][9]. The large N limit behaviour is a powerful tool which allows to understand the continuous limit of these models through, for instance, the study of critical exponents and phase transitions [10][11][12].

With the advent of the field theory formulation of Random Tensor Models, henceforth called Tensorial Group Field Theory (TGFT) [13][21], one addresses several different questions such as Renormalizability (for removing divergences) and the study UV behaviour of these models. It turns out that Renormalization can be consistently defined for TGFTs and most of them, for the higher rank $D \geq 3$ are UV asymptotically free [21]. This is of course very encouraging for the Geomeogenesis Scenario [15][23][24].

It becomes more and more convincing that Random Tensors and TGFT’s will take a growing role for giving answers for the Quantum Gravity conundrum. Despite all these
results, a lot of questions (both conceptual and technical) arise in this framework for obtaining a final and emergent theory of General Relativity [3]. Among other goals, it would be strongly desirable to establish more connections with other studies and important results around Gravity. This is the purpose of this paper which provides the first glimpses of the extension of the recent full resolution of the correlation functions in the Grosse-Wulkenhaar (GW) model [28][29][30].

One of the main purposes of a field theory is to find the exact value of the Green’s functions also called correlation functions. Obviously, this can be a highly nontrivial task. In almost scarce cases where this is successfully done, one calls the model exactly solvable. In a recent work, the renormalizable noncommutative scalar field theory called the GW model was solved [29]–[45]. This particular noncommutative field theory projects on a matrix model and then can be seen a model for QG in 2D. Let us review this model arising in Noncommutative Geometry. Grosse and Wulkenhaar modified the propagator of the noncommutative field theory by adding a harmonic term and showed that the resulting functional action is renormalizable at all orders of perturbation. The proof of this claim was given using the matrix basis dual to the Moyal space of functions. In [35][36][37] a new proof of the renormalizability was given in direct space using multiscale analysis [38]. The GW propagator breaks the $U(N)$ symmetry invariance in the infrared regime, but is asymptotically safe in the ultraviolet regime [39][40][41]. The model is also non invariant under translation and rotation of spacetime. The only known invariance satisfied by the model is the so-called Langman Szabo duality [42]. At the perturbative level, the associated Feynman graphs are ribbon graphs. In a recent remarkable contribution, Grosse and Wulkenhaar solve successfully all correlators in this model. Using both Ward-Takahashi identities and the Schwinger-Dyson equation, these authors provide, via Hilbert transform, a nonlinear integral equation for the two-point functions [30]. From this result, they were able to generate solutions for all correlators. Thus, the GW model is exactly nonperturbatively solvable. The question is whether or not this method may apply to other models, in particular to TGFTs dealing with higher rank tensors. We give a partial positive answer of this question. Indeed, as we will show in the following, the resolution method can be applied to find nonlinear equations for the correlations here as well. Due to the highly nontrivial equations and combinatorics, the full resolution of all correlators deserves more work which should be addressed elsewhere.

The present paper is organized as follows. In the section 2, we derive the Ward-Takahashi identities of arbitrary rank D TGFT. In section 3 we give the closed equation of the two-point correlation functions for the rank 3 TGFT. We also give the solution of this equation at second order of perturbation. In section 4 we provide the closed equation of rank 4 tensor field. We give a summary of our results and outlook of the paper in section 5.

2 Ward-Takahashi identities for arbitrary D-tensor field model

TGFT’s are generally defined by an action $S[\varphi, \bar{\varphi}]$, that depends on the field φ and its conjugate $\bar{\varphi}$ defined on the compact Lie group G i.e. $\varphi : G^D \to \mathbb{C}; (g_1, \cdots, g_D) \mapsto \varphi(g_1, \cdots, g_D)$. For simplicity, we will always consider $G = U(1)$. We are using the Fourier transformation of the field and are defining the momentum variable associated to the group el-
formed under \(U \otimes \) under the tensor product of \(\mathcal{U} \). Using the parametrization \(g_k = e^{i\theta_k} \) we write
\[
\varphi(g_1, \ldots, g_D) = \sum_{p_i \in \mathbb{Z}} \varphi(p_1, \ldots, p_D)e^{i\sum_k \theta_k p_k}, \quad \theta_i \in [0, 2\pi).
\]

The Fourier transform of the field \(\varphi \) is denoted by \(\varphi_{12\ldots D} =: \varphi(p_1, \ldots, p_D) =: \varphi[D] \) for simplicity. The functional action \(S[\varphi, \bar{\varphi}] \) is written in general case as
\[
S[\varphi, \bar{\varphi}] = \sum_{p_i} \varphi_{12\ldots D} C^{-1}(p_1, p_2, \ldots, p_D; p'_1, p'_2, \ldots, p'_D) \varphi_{12\ldots D} \prod_{i=1}^{D} \delta_{p_i p'_i} + S^{\text{int}}
\]

where \(C \) stands for the propagator and \(S^{\text{int}} \) collects all vertex contributions of the interaction.

Let \(d\mu_C \) be the field measure associated with the covariance \(C \), we have the relation
\[
C([p]; [p']) = \int d\mu_C \varphi_p \bar{\varphi}_{p'}, \quad d\mu_C = \prod_{[p]} d\varphi_p d\bar{\varphi}_{p} e^{-\varphi_p C^{-1}([p], [p]) \varphi_p}.
\]

The Green’s functions or \(N \)-point correlation functions are defined by the relation
\[
G([p]_1, [p]_2, \ldots [p]_N) = \frac{1}{Z} \int d\mu_C \varphi_{[p]_1} \bar{\varphi}_{[p]_1} \cdots \varphi_{[p]_N} \bar{\varphi}_{[p]_N} e^{-S^{\text{int}}},
\]

where \(Z \) is the normalization factor also called partition function given by
\[
Z = \int d\mu_C e^{-S^{\text{int}}}. \tag{5}
\]

Let us write the interaction term of the action \(S \) as \(S^{\text{int}} = \lambda V[\varphi, \bar{\varphi}] =: \sum_k \lambda_k V_k[\varphi, \bar{\varphi}] \). The main idea of the perturbative theory is to expand the Green’s functions as
\[
G([p]_1, [p]_2, \ldots [p]_N) = \sum_{n=0}^{\infty} \frac{(-\lambda)^n}{n!} \int d\mu_C V^n[\varphi, \bar{\varphi}] \varphi_{[p]_1} \bar{\varphi}_{[p]_1} \cdots \varphi_{[p]_N} \bar{\varphi}_{[p]_N} = \sum_{n=0}^{\infty} \lambda^n G^{(n)}_N. \tag{6}
\]

Using this formula, the Green’s functions can be computed order by order using Dyson’s theorem.

We consider the rank \(D \) tensor field \(\varphi \) and its conjugate \(\bar{\varphi} \), which are transformed under the tensor product of \(D \) fundamental representations of the unitary group \(\mathcal{U}^{N_D} := \mathcal{U}_1 \otimes \cdots \otimes \mathcal{U}_D \). Let \(\mathcal{U}^{(a)} \in \mathcal{U}(N_k), a = 1, 2, \ldots, D \). The field \(\varphi \) and its conjugate \(\bar{\varphi} \) are transformed under \(\mathcal{U}(N_a) \) as
\[
\varphi_{12\ldots D} \rightarrow [\mathcal{U}^{(a)} \varphi]_{12\ldots a'\ldots D} = \sum_{p'_a \in \mathbb{Z}} \mathcal{U}^{(a)}_{p_a p'_a} \varphi_{12\ldots a'\ldots D}, \tag{7}
\]
\[
\bar{\varphi}_{12\ldots D} \rightarrow [\bar{\varphi} \mathcal{U}^{(a)}]_{12\ldots a'\ldots D} = \sum_{p'_a \in \mathbb{Z}} \bar{\mathcal{U}}^{(a)}_{p_a p'_a} \bar{\varphi}_{12\ldots a'\ldots D}. \tag{8}
\]
p'_a or simply a' is the momentum index at the position a in the expression $\varphi_{12-a'...D}$. The kinetic action in (2) is re-expressed as follows

$$S^\text{kin}[\tilde{\varphi}, \varphi] = \sum_{p_1, \ldots, p_D} \varphi_{12...D}M_{12...D}\tilde{\varphi}_{12...D}, \quad M_{12...D} = C_{12...D}^{-1}. \quad (9)$$

$M_{12...D}$ is the inverse of propagator associated to the model. Rank D tensor fields are represented by half lines made with D segments called strands. A propagator is a D stranded line and as usual connects vertices. The variation of the action S^kin under infinitesimal $U(N_a)$ transformation is given by

$$\delta^{(a)}[S^\text{kin}] = -i \sum_{p_1, \ldots, p_D} M\left(\varphi [\tilde{B}^{(a)}\varphi] - [B^{(a)}\varphi]\tilde{\varphi}\right)_{12...D}. \quad (10)$$

where B is the infinitesimal Hermitian operator corresponding to the generator of unitary group $U(N_a)$ i.e.

$$U_{p}^{(a)} = \delta_{p}^{(a)} + iB_{p}^{(a)} + O(B^2), \quad U_{p'}^{(a)} = \delta_{p'}^{(a)} - i\tilde{B}_{p'}^{(a)} + O(\tilde{B}^2), \quad (11)$$

with $\tilde{B}_{p'}^{(a)} = B_{p'}^{(a)}$. Consider now the theory defined with external source $F[\varphi, \tilde{\varphi}; \eta, \tilde{\eta}]$ as

$$F[\eta, \tilde{\eta}] = \sum_{p_1, \ldots, p_D} \varphi_{12...D}\tilde{\eta}_{12...D} + \eta_{12...D}\varphi_{12...D}. \quad (12)$$

The partition function of the model is re-expressed as

$$Z[\eta, \tilde{\eta}] = \int d\varphi d\tilde{\varphi} e^{-S[\varphi, \tilde{\varphi}] + F[\varphi, \tilde{\varphi}; \eta, \tilde{\eta}].} \quad (13)$$

Under $U(N_a)$ infinitesimal transformation

$$\delta^{(a)}[F] = i \sum_{p_1, \ldots, p_D} \eta [B\varphi]^{(a)} - [B\varphi]^{(a)}\eta\tilde{\varphi}\right]_{12...D}. \quad (14)$$

Let $\delta^{(\otimes)}$ be the total variation under the action of the group element $U^{(1)} \otimes U^{(2)} \otimes \cdots \otimes U^{(D)} \in U^{N_D}_{\otimes}$. Then we get the following proposition

Proposition 1. The kinetic term of the action (2), i.e. S^kin and F are respectively transformed linearly as

$$\delta^{(\otimes)} S^\text{kin} = \sum_{a=1}^{D} \delta^{(a)} S^\text{kin}, \quad \delta^{(\otimes)} F = \sum_{a=1}^{D} \delta^{(a)} F. \quad (15)$$

Then $\delta^{(\otimes)} S = 0$ if and only if $\delta^{(a)} S = 0$ for all functional quantity S, which depends on φ, $\tilde{\varphi}$, η and $\tilde{\eta}$.

4
We assume that \(N_i = N, \ i = 1, 2 \cdots D \), and we take the interaction terms such that there are invariant under the transformation \(U^{(a)} \) i.e. \(\delta^{(a)} S^{\text{int}} = 0 \). This is the new input in TGFT’s: the \(U(N_a) \) tensor invariance must be the one defining the interaction \([1]\). Note that the measure \(d\varphi d\bar{\varphi} \) is also invariant under \(U^{(a)} \). The variation of the partition function can be performed for \(a = 1 \) and the results for all value of \(a \in \{1, 2, \cdots, D\} \) may be deduced using proposition \([1]\). We write

\[
\frac{\delta^{(1)} \ln Z[\eta, \bar{\eta}]}{\delta B_{p_m p_n}} = \frac{1}{Z[\eta, \bar{\eta}]} \int d\varphi d\bar{\varphi} \left\{ i \sum_{p_2 \cdots p_D} \left(M_{n_2 \cdots D} \varphi_{n_2 \cdots D} \varphi_{m_2 \cdots D} - M_{m_2 \cdots D} \varphi_{m_2 \cdots D} \varphi_{n_2 \cdots D} \right) \right\} e^{-S[\varphi, \bar{\varphi}]+F[\varphi, \bar{\varphi}; \eta, \bar{\eta}]} = 0. \tag{16}
\]

Now take \(\partial_\eta \partial_\eta \) of the above expression, we get only the connected components of the correlation functions as

\[
\sum_{[p]} \left(M_{m_2 \cdots D} - M_{n_2 \cdots D} \right) \left\langle \frac{\partial (\bar{\eta} \varphi)}{\partial \bar{\eta}} \frac{\partial (\bar{\varphi} \eta)}{\partial \eta} \right\rangle \varphi_{n_2 \cdots D} \varphi_{m_2 \cdots D} \right\rangle_c \\
= \sum_{[p]} \left\langle \frac{\partial (\bar{\eta} m_2 \cdots D \varphi_{n_2 \cdots D} - \varphi_{m_2 \cdots D} \eta_{n_2 \cdots D})}{\partial \eta} \right\rangle_c \\
\times \left[\frac{\partial \bar{\eta} \varphi}{\partial \eta} \right] - \left[\frac{\partial \bar{\varphi} \eta}{\partial \eta} \right] \left[\frac{\partial (\bar{\eta} \varphi)}{\partial \eta} \right] \right\rangle_c, \tag{17}
\]

which can be simply written as

\[
\sum_{[p]} \left(M_{m} - M_{n} \right) \left\langle \frac{\partial (\bar{\eta} \varphi)}{\partial \bar{\eta}} \frac{\partial (\bar{\varphi} \eta)}{\partial \eta} \right\rangle \varphi_{n} \varphi_{m} \right\rangle_c \\
= \sum_{[p]} \left\langle \frac{\partial (\bar{\eta} m \varphi_{n})}{\partial \bar{\eta}} \frac{\partial (\bar{\varphi} \eta)}{\partial \eta} \right\rangle_c - \sum_{[p]} \left\langle \frac{\partial (\bar{\eta} m \eta_{n})}{\partial \bar{\eta}} \frac{\partial (\bar{\varphi} \varphi)}{\partial \eta} \right\rangle_c. \tag{18}
\]

Note that the equation \([18]\) is valid for all positions indices \(a = 1, 2, \cdots, D \). Let us also remark that for \(m = n \) the left hand side (lhs) of the equation \([18]\) vanishes. In the double derivative \(\partial_\eta \partial_\eta \), we fix the indices such that \(\bar{\eta}_{[\alpha]} \eta_{[\beta]} \). Then comes the following proposition:

Proposition 2. For index \(a = 1 \) (corresponding to \(U^{(1)} \)), we get the Ward-Takahashi identity

\[
\sum_{p_2 \cdots p_D} \left(M_{n_2 \cdots D} - M_{n_2 \cdots D} \right) \left\langle \varphi_{[a]} \bar{\varphi}_{[\beta]} \varphi_{n_2 \cdots D} \varphi_{m_2 \cdots D} \right\rangle_c \\
= \delta_{\alpha_1} \left\langle \varphi_{n_2 \cdots -a_D} \bar{\varphi}_{\beta_1 \cdots \beta_D} \right\rangle_c - \delta_{\beta_1} \left\langle \varphi_{m_2 \cdots -\beta_D} \varphi_{\alpha_1 \cdots -a_D} \right\rangle_c, \tag{19}
\]

which can be re-expressed for arbitrary position \(a \) taking any value in \(\{1, 2, \cdots, D\} \) as

\[
\left(M_{m} - M_{n} \right) \left\langle [\varphi_{m} \varphi_{n}] \varphi_{n} \varphi_{m} \right\rangle_c = \left\langle \varphi_{n} \varphi_{n} \right\rangle_c - \left\langle \varphi_{m} \varphi_{m} \right\rangle_c, \quad \left[\varphi_{m} \varphi_{n} \right] = \sum_{p_2 \cdots p_D} \varphi_{n_2 \cdots D} \varphi_{m_2 \cdots D}. \tag{20}
\]

We emphasize that the position taken by the indices \(m \) and \(n \) in the relation \([20]\) are the position of the momentum index \(p_a \) used in the transformation \(U^{(a)} \). In conclusion, there are exactly \(D \) Ward-Takahashi identities for the rank \(D \) TGFT’s associated with this type of invariance. Note that the Ward-Takahashi identities for Boulouvat model can be found
in reference [48]. The result obtained therein radically differs from the present identities found in [20]. Furthermore, we mention that we are not considering the TGFT with gauge invariance condition on the fields like in the works [18][19]. We consider here the simplest the TGFT as treated in [13][14]. Most of the result of this work might be extended to this different framework with not much work since only the propagator will be modified. Thus, one expects similar Ward identities in that gauge invariant framework.

3 Two-point functions of rank 3 TGFT

In this section we consider the just renormalizable rank 3 TGFT on compact $U(1)$ group, addressed firstly in [15]. The rank 3 tensor field is defined by $\varphi : U(1)^{3} \to \mathbb{C}$, and we expand in Fourier modes as

$$\varphi(g_1, g_2, g_3) = \sum_{p_j \in \mathbb{Z}} \varphi_{123} e^{ip_1 \theta_1} e^{ip_2 \theta_2} e^{ip_3 \theta_3}, \quad \theta_i \in [0, 2\pi).$$ \hfill (21)

We write as usual $\varphi_{123} := \varphi_{p_1p_2p_3}$. The renormalizable 3D tensor model is defined by the action S_{3D}, in which the kinetic term takes the form

$$S_{\text{kin}}^{3D} = \sum_{[p]} \varphi_{123} C_{123}^{-1} \varphi_{123},$$ \hfill (22)

where C_{123} is the propagator. We write the resulting action for the bare quantities which involves the bare mass m_{bar} and the three wave functions renormalizations $Z_{p=1,2,3}$, each of which is associated with a strand index $a = 1, 2, 3$. The field strength can be modified as follows:

$$\varphi \longrightarrow (Z_1 Z_2 Z_3)^{1/2} \varphi = Z^{1/2} \varphi, \quad Z_p = 1 - \partial_{b_p} \Gamma_{b_1b_2b_3} \bigg|_{b_{1,2,3}=0},$$ \hfill (23)

where $\Gamma_{b_1b_2b_3}$ is the self-energy or one particle irreducible (1PI) two-point functions. Then, the renormalized propagator takes the form

$$C_{abc} = Z^{-1}(|a| + |b| + |c| + m^2)^{-1}, \quad a, b, c \in \mathbb{Z}.$$ \hfill (24)

m is the renormalized mass parameter. The interaction of the model is defined by the three contributions V_1, V_2, and V_3 expressed in momentum space as

$$S_{\text{int}}^{3D} = \lambda_1 Z^2 \sum_{1,2,3} \varphi_{123} \bar{\varphi}_{321} \varphi_{1'2'3'} \bar{\varphi}_{3'2'1'} + \lambda_2 Z^2 \sum_{1,2,3} \varphi_{123} \bar{\varphi}_{321} \varphi_{1'2'3'} \bar{\varphi}_{3'2'1'} + \lambda_3 Z^2 \sum_{1,2,3} \varphi_{123} \bar{\varphi}_{321} \varphi_{1'2'3'} \bar{\varphi}_{3'2'1'} = \lambda_1 V_1 + \lambda_2 V_2 + \lambda_3 V_3,$$ \hfill (25)

and are represented in the figure \[.\]
Figure 1: The vertices of rank 3 tensor model

Figure 2: Ward-Takahashi identities
The Ward-Takahashi identities \([20]\) now find the form after reducing some constraints

\[
\sum_{p_{2,p_{3}}} (M_{m23} - M_{n23}) \langle \varphi_{m23} \bar{\varphi}_{n23} \varphi_{nab} \bar{\varphi}_{mab} \rangle_c = \langle \varphi_{nab} \bar{\varphi}_{nab} \rangle_c - \langle \bar{\varphi}_{mab} \varphi_{mab} \rangle_c
\]
(26)

\[
\sum_{p_{1,p_{3}}} (M_{1m3} - M_{1n3}) \langle \varphi_{1m3} \bar{\varphi}_{1n3} \varphi_{anb} \bar{\varphi}_{amb} \rangle_c = \langle \varphi_{anb} \bar{\varphi}_{anb} \rangle_c - \langle \bar{\varphi}_{amb} \varphi_{amb} \rangle_c
\]
(27)

\[
\sum_{p_{1,p_{2}}} (M_{12m} - M_{12n}) \langle \varphi_{12m} \bar{\varphi}_{12n} \varphi_{nab} \bar{\varphi}_{mab} \rangle_c = \langle \varphi_{nab} \bar{\varphi}_{nab} \rangle_c - \langle \bar{\varphi}_{mab} \varphi_{mab} \rangle_c
\]
(28)

with \(M_{abc} = C_{abc}^{-1}\). Graphically the equations \([26], [27]\) and \([28]\) are given in figure 2. Let \(G_{[mn]ab}^{\text{ins}}\) be the two-point functions with insertion \((2, 3)\) i.e.

\[
G_{[mn]ab}^{\text{ins}} = \sum_{p_{2,p_{3}}} \langle \varphi_{m23} \bar{\varphi}_{n23} \varphi_{nab} \bar{\varphi}_{mab} \rangle_c.
\]
(29)

The rest of this section is devoted to find perturbatively, the exact value of the renormalizable two- and four-point functions. We will use the Schwinger-Dyson equation, and then combine it with Ward-Takahashi identities to yield the closed equation that satisfies the connected two- and four-point functions. The Schwinger-Dyson equation is represented graphically in figure 3. In this figure the quantities \(T_{abc}^\rho\) and \(\Sigma_{abc}^\rho\) for \(\rho = 1, 2, 3\), are given in the figures 4 and 5.

\[
\Gamma_{abc} = \sum_{\rho=1}^{3} \left(T_{abc}^\rho + \Sigma_{abc}^\rho \right)
\]
(30)

In the figure 3 the quantity \(\Gamma_{abc}\) is the self-energy or 1PI two-point functions that expresses as

\[
\Gamma_{abc} = \sum_{\rho=1}^{3} \Gamma_{abc}^\rho, \quad \text{where} \quad \Gamma_{abc}^\rho = T_{abc}^\rho + \Sigma_{abc}^\rho.
\]
(30)

Also, in figures 3, 4 and 5 a single circle represents a connected graph and a double circle stands for a 1PI subgraph. Let us consider now the decomposition given in figure 4. The lhs
Figure 5:

\[\Sigma_{abc}^1 = \]

\[\Sigma_{abc}^2 = \]

\[\Sigma_{abc}^3 = \]

Figure 6: Decomposition of the two-point functions with insertion: Case where \(\rho = 1 \)
of this equation collects all connected graphs having the vertex insertion. Cutting this vertex out one gets a four-point functions, but the four-point functions can either be disconnected (first graph on the right hand side (rhs)), or connected (second graph on the rhs). The connected four-point functions must somewhere have a 1PI four-point functions as its core and then full connected two-point functions attached to its four legs. Now, multiplying this equation by G_{abc}^{-1} means on the rhs to remove in the first graph the upper (bc)-branch attached to the insertion vertex and in the second graph the (abc)-branch attached to the 1PI four-point functions. If one now sums over p and uses the fact that the newly created vertex is $\lambda_1 Z^2$ one gets precisely the function Σ_{abc}^ρ. Then the equation (30) can be written explicitly using the decomposition of figure 6 as

\[
\Sigma_{abc}^1 = Z^2 \lambda_1 \sum_p G_{abc}^{-1} G_{[ap]bc}^{\text{ins}}, \quad T_{abc}^1 = Z^2 \lambda_1 \sum_{p,q} G_{apq}.
\]

In the same manner we can obtain the decomposition of figure 7, which allows to obtain the

Figure 7: Decomposition of the two-point functions with insertion: Case where $\rho = 2$ and $\rho = 3$

relations

\[
\Sigma_{abc}^2 = Z^2 \lambda_2 \sum_p G_{abc}^{-1} G_{[bp]ca}^{\text{ins}}, \quad T_{abc}^2 = Z^2 \lambda_2 \sum_{p,q} G_{pbq}
\]

and

\[
\Sigma_{abc}^3 = Z^2 \lambda_3 \sum_p G_{abc}^{-1} G_{[cp]ab}^{\text{ins}}, \quad T_{abc}^3 = Z^2 \lambda_3 \sum_{p,q} G_{pqc}.
\]

Therefore using the last expressions (31), (32) and (33), the 1PI two-point functions take the form

\[
\Gamma_{abc} = Z^2 \lambda_1 \sum_{p,q} G_{apq} + Z^2 \lambda_2 \sum_{p,q} G_{pbq} + Z^2 \lambda_3 \sum_{p,q} G_{pqc}.
\]
\[Z^2 \lambda_1 \sum_p G_{abc}^{-1} G_{[ap]bc}^{\text{pins}} + Z^2 \lambda_2 \sum_p G_{abc}^{-1} G_{[bp]ca}^{\text{pins}} + Z^2 \lambda_3 \sum_p G_{abc}^{-1} G_{(cp)ab}^{\text{pins}} \]

\[= Z^2 \lambda_1 \sum_{p,q} G_{apq} + Z^2 \lambda_2 \sum_{p,q} G_{pbq} + Z^2 \lambda_3 \sum_{p,q} G_{pqc} + Z \lambda_1 \sum_p G_{abc}^{-1} \frac{G_{abc} - G_{pbc}}{|p| - |a|} \]

\[+ Z \lambda_2 \sum_p G_{abc}^{-1} \frac{G_{bca} - G_{pca}}{|p| - |b|} + Z \lambda_3 \sum_p G_{abc}^{-1} \frac{G_{cab} - G_{pab}}{|p| - |c|}. \tag{34} \]

We assume now that the function \(G_{abc} \) satisfy the condition

\[G_{abc} = G_{bca} = G_{cab} \tag{35} \]

and then, we get the following proposition:

Proposition 3. Symmetry properties: The connected two-point functions \(\Gamma_{abc}^2 \) can be obtained using \(\Gamma_{abc}^1 \) and replace respectively \(a \to b \) and \(b \to c \) and \(c \to a \). In the same manner \(\Gamma_{abc}^3 \) can be obtained using \(\Gamma_{abc}^1 \) and replacing respectively \(a \to c \), \(b \to a \) and \(c \to b \).

Now using the relation \(G_{abc}^{-1} = M_{abc} - \Gamma_{abc} \), we get

\[\Gamma_{abc}^1 = Z^2 \lambda_1 \left[\sum_{pq} \frac{1}{M_{apq} - \Gamma_{apq}} + \sum_p \frac{1}{M_{pbc} - \Gamma_{pbc}} - \sum_p \frac{1}{M_{pbc} - \Gamma_{pbc}} \frac{\Gamma_{abc} - \Gamma_{pbc}}{Z(|a| - |p|)} \right], \tag{36} \]

\[\Gamma_{abc}^2 = Z^2 \lambda_2 \left[\sum_{pq} \frac{1}{M_{pq} - \Gamma_{pq}} + \sum_p \frac{1}{M_{pca} - \Gamma_{pca}} - \sum_p \frac{1}{M_{pca} - \Gamma_{pca}} \frac{\Gamma_{bca} - \Gamma_{pca}}{Z(|b| - |p|)} \right], \tag{37} \]

\[\Gamma_{abc}^3 = Z^2 \lambda_3 \left[\sum_{pq} \frac{1}{M_{pqc} - \Gamma_{pqc}} + \sum_p \frac{1}{M_{pab} - \Gamma_{pab}} - \sum_p \frac{1}{M_{pab} - \Gamma_{pab}} \frac{\Gamma_{cab} - \Gamma_{pab}}{Z(|c| - |p|)} \right]. \tag{38} \]

For the rest of this section we consider the connected two-point functions \(\Gamma_{abc}^1 \) and finally \(\Gamma_{abc}^2 \) and \(\Gamma_{abc}^3 \) will be deduced using the proposition (3). Then we pass to renormalized quantities using the Taylor expansion as

\[\Gamma_{abc} = Z M_{abc}^{\text{bar}} - M_{abc}^{\text{phys}} + \Gamma_{abc}^{\text{phys}}, \quad \Gamma_{000}^{\text{phys}} = 0 = \partial \Gamma_{000}^{\text{phys}} \tag{39} \]

such that

\[M_{abc}^{\text{phys}} = |a| + |b| + |c| + m^2, \quad M_{abc}^{\text{bar}} = |a| + |b| + |c| + m_{\text{bar}}^2. \tag{40} \]

We get after replacing the expression of \(M_{abc} \),

\[\Gamma_{abc} = (Z - 1)(|a| + |b| + |c|) + Z m_{\text{bar}}^2 - m^2 + \Gamma_{abc}^{\text{phys}}, \tag{41} \]

which expresses the relation between renormalized and bare quantities. The equation (34) takes the form (we set \(\lambda_1 = \lambda \))

\[Z m_{\text{bar}}^2 - m^2 + (Z - 1)(|a| + |b| + |c|) + \Gamma_{abc}^{\text{phys}} = Z^2 \lambda \sum_{p,q} \frac{1}{|p| + |q| + |a| + m^2 - \Gamma_{pqa}^{\text{phys}}}. \]
simplify it and get explicit solution, we pass to the integral transforms. The process is to set

\[p \text{ with } Z \tilde{\lambda} \sum_p \frac{1}{|p| + |b| + |c| + m^2 - \Gamma_{pbc}^{\text{phys}}} - \frac{1}{|p| + |b| + |c| + m^2 - \Gamma_{pbc}^{\text{phys}}} \cdot \frac{\Gamma_{abc}^{\text{phys}} - \Gamma_{pbc}^{\text{phys}}}{(|a| - |p|)}. \]

(42)

For \(a = b = c = 0 \) the relation of mass variation after renormalization is written as

\[Zm_{\text{bar}}^2 - m^2 = Z^2 \lambda \sum_{p,q} \frac{1}{|p| + |q| + m^2 - \Gamma_{pq}^{\text{phys}}} + Z\lambda \sum_p \frac{1}{|p| + m^2 - \Gamma_{p00}^{\text{phys}}} \]

- \(Z\lambda \sum_p \frac{1}{|p| + m^2 - \Gamma_{pbc}^{\text{phys}}} \cdot \frac{\Gamma_{abc}^{\text{phys}} - \Gamma_{pbc}^{\text{phys}}}{|p|} \).

(43)

Inserting the equation (43) in (42), we get the closed equation of the two-point functions of renormalizable rank 3 TGFT as

\[
(Z - 1)(|a| + |b| + |c|) + \Gamma_{abc}^{\text{phys}} = Z^2 \lambda \sum_{p,q} \left[\frac{1}{|p| + |q| + |a| + m^2 - \Gamma_{pq}^{\text{phys}}} - \frac{1}{|p| + |q| + m^2 - \Gamma_{p00}^{\text{phys}}} \right]
\]

\[
+ Z\lambda \sum_p \left[\frac{1}{|p| + |b| + |c| + m^2 - \Gamma_{pbc}^{\text{phys}}} - \frac{1}{|p| + |b| + |c| + m^2 - \Gamma_{pbc}^{\text{phys}}} \cdot \frac{\Gamma_{abc}^{\text{phys}} - \Gamma_{pbc}^{\text{phys}}}{(|a| - |p|)} \right]
\]

\[
- \frac{1}{|p| + m^2 - \Gamma_{pbc}^{\text{phys}}} + \frac{1}{|p| + m^2 - \Gamma_{p00}^{\text{phys}}} \cdot \frac{\Gamma_{abc}^{\text{phys}} - \Gamma_{pbc}^{\text{phys}}}{|p|}. \]

(44)

The equation (44) is still very complicated compared to an equivalent one in [28]. To simplify it and get explicit solution, we pass to the integral transforms. The process is to set

\[
\sum_{p \in \mathbb{Z}} = 2 \int_0^\infty |p| d|p|, \quad \sum_{p,q \in \mathbb{Z}} = 2 \int_0^\infty |p| d|p|. \]

(45)

We also assume that \(\Gamma_{abc} = \Gamma_{|a||b||c|}^{\text{phys}} \). Then we get the integral equation of (44) as

\[
(Z - 1)(|a| + |b| + |c|) + \Gamma_{abc}^{\text{phys}}
\]

\[
= 2Z^2 \lambda \int_0^\infty |p| d|p| \left[\frac{1}{2|p| + |a| + m^2 - \Gamma_{pq}^{\text{phys}}} - \frac{1}{2|p| + m^2 - \Gamma_{p00}^{\text{phys}}} \right]
\]

\[
+ 2Z\lambda \int_0^\infty d|p| \left[\frac{1}{|p| + |b| + |c| + m^2 - \Gamma_{pbc}^{\text{phys}}} - \frac{1}{|p| + m^2 - \Gamma_{pbc}^{\text{phys}}} \cdot \frac{\Gamma_{abc}^{\text{phys}} - \Gamma_{pbc}^{\text{phys}}}{(|a| - |p|)} \right]
\]

\[
- \frac{1}{|p| + |b| + |c| + m^2 - \Gamma_{pbc}^{\text{phys}}} + \frac{1}{|p| + m^2 - \Gamma_{p00}^{\text{phys}}} \cdot \frac{\Gamma_{abc}^{\text{phys}} - \Gamma_{pbc}^{\text{phys}}}{|p|}. \]

(46)

with \(p \in \mathbb{R}^+ \). We introduce a change of variables

\[
|a| = m^2 \frac{\alpha}{1 - \alpha}, \quad |b| = m^2 \frac{\beta}{1 - \beta}, \quad |c| = m^2 \frac{\gamma}{1 - \gamma}, \quad |p| = m^2 \frac{\rho}{1 - \rho}, \]

\[
\Gamma_{abc}^{\text{phys}} = m^2 \frac{\Gamma_{\alpha\beta\gamma}}{(1 - \alpha)(1 - \beta)(1 - \gamma)}. \]

(48)
We also take the cutoff Λ such that $p_\Lambda = m^2 \frac{\Lambda}{1-\Lambda}$. Let us now define the quantity $G_{\alpha\beta\gamma}$ as

\[
1 - \alpha\beta - \alpha\gamma - \beta\gamma + 2\alpha\beta\gamma - \Gamma_{\alpha\beta\gamma} = \frac{1 - \alpha\beta - \alpha\gamma - \beta\gamma + 2\alpha\beta\gamma}{G_{\alpha\beta\gamma}}.
\]

(49)

Let $J_{\alpha\beta\gamma}$, $L_{\alpha\beta\gamma}$ and K_α are three integrals relation given by

\[
J_{\alpha\beta\gamma} = \int_0^1 \frac{d\rho}{(\alpha - \rho)} \frac{G_{\rho\beta\gamma}}{(1 - \beta\rho - \gamma\rho - \gamma\beta + 2\rho\gamma\beta)},
\]

(50)

\[
L_{\alpha\beta\gamma} = \int_0^1 \frac{d\rho}{(1 - \rho)} \frac{G_{\rho\beta\gamma} - 1}{(\alpha - \rho)},
\]

(51)

\[
K_\alpha = m^2 \int_0^1 \frac{d\rho}{(1 - \rho)} \frac{(1 - \alpha) G_{\rho\rho0} - \frac{G_{\rho\rho0}}{1 - \rho^2}}{1 + 2\lambda m^2 \int_0^1 d\rho \left(\frac{G_{\rho\rho0}}{\rho} + G_{\rho00} \right)}.
\]

(52)

Then we get the following theorem

Theorem 1. The connected two-point functions $G_{\alpha\beta\gamma}$ of the renormalizable rank 3 TGFT on $U(1)$ satisfies the closed integral equation

\[
G_{\alpha\beta\gamma} = 1 + \chi' \left\{ \mathcal{Y} + \int_0^1 d\rho G_{\rho00} + (1 - \alpha)(1 - \beta)(1 - \gamma) J_{\alpha\beta\gamma} \right. \\
+ \frac{(1 - \alpha)(1 - \beta)(1 - \gamma) G_{\alpha\beta\gamma}}{1 - \alpha\beta - \alpha\gamma - \beta\gamma + 2\alpha\beta\gamma} \left[- \mathcal{Y} - \int_0^1 d\rho G_{\rho00} + K_\alpha \right] \\
+ \int_0^1 d\rho \frac{G_{\rho\beta\gamma} - G_{\rho00}}{1 - \rho} - \int_0^1 d\rho \frac{G_{\rho\beta\gamma}}{\alpha - \rho} + (1 - \alpha) L_{\alpha\beta\gamma} - L_{000} \right\}
\]

(53)

where

\[
\mathcal{Y} = \lim_{\epsilon \to 0} \int_0^1 d\rho \frac{G_{\rho00} - G_{\rho00}}{\epsilon \rho}, \quad \chi' = \frac{2\lambda}{m^2}.
\]

(54)

Proof. Using the transformations given in the equations (47) and (48), the expression (46) takes the form

\[
(Z - 1) \left(\frac{\alpha}{1 - \alpha} + \frac{\beta}{1 - \beta} + \frac{\gamma}{1 - \gamma} \right) + \frac{\Gamma_{\alpha\beta\gamma}}{1 - \alpha - \beta - \gamma} + \frac{(1 - \alpha)(1 - \beta)(1 - \gamma)}{1 - \rho^2 - 2\alpha\rho + 2\alpha\rho^2 - \Gamma_{\rho\rho0} - \frac{1}{1 - \rho^2 - \Gamma_{\rho\rho0}}} \\
= 2Z^2 \lambda \int_0^1 \frac{d\rho d\rho}{(1 - \rho)} \left[1 - \rho^2 - 2\alpha\rho + 2\alpha\rho^2 - \Gamma_{\rho\rho0} - \frac{1}{1 - \rho^2 - \Gamma_{\rho\rho0}} \right] \\
+ 2Z \lambda \int_0^1 \frac{d\rho}{(1 - \rho)} \left[1 - \beta\rho - \gamma\rho - \gamma\beta + 2\rho\gamma\beta - \Gamma_{\rho\beta\gamma} - \frac{1 - \Gamma_{\rho\beta\gamma}}{1 - \gamma\rho - \gamma\beta + 2\rho\gamma\beta - \Gamma_{\rho\beta\gamma} \alpha - \rho} \right] \\
+ \frac{1}{1 - \Gamma_{\rho\rho0}} \frac{\Gamma_{\rho\rho0}}{\rho}.
\]

(55)
Therefore the equation (57) reduces to

\[Z - 1 = 2Z^2 \lambda \int_0^\Lambda \frac{\rho d\rho}{(1 - \rho)} \frac{1 + 2\rho - \rho^2 + \Gamma_{\rho_00} + \Gamma_{\rho_00}}{(1 - \rho^2 - \Gamma_{\rho_00})^2} - \frac{2Z\lambda}{m^2} \int_0^\Lambda d\rho \frac{\rho^2}{(1 - \Gamma_{\rho_00})}, \]

and

\[Z - 1 = \frac{2Z\lambda}{m^2} \int_0^\Lambda \frac{d\rho}{(1 - \rho)} \left[-1 + \rho + \Gamma_{\rho_00} + \Gamma'_{\rho_00} \right] - \frac{(\rho + \Gamma'_{\rho_00})\Gamma_{\rho_00}}{\rho(1 - \Gamma_{\rho_00})^2} - \frac{\Gamma'_{\rho_00}}{\rho(1 - \Gamma_{\rho_00})} \].

Noting that \(\beta \) and \(\gamma \) are symmetric parameters in the equation (55). This implies that \(\Gamma_{\alpha\beta\gamma} = \Gamma_{\alpha\gamma\beta} \). Let us now take \(\frac{\partial}{\partial \alpha} \bigg|_{\alpha = \beta = \gamma = 0} \) and \(\frac{\partial}{\partial \beta} \bigg|_{\alpha = \beta = \gamma = 0} \) of the above equation. We come to the relations that satisfies the renormalized wave function \(Z \):

\[Z - 1 = 2Z^2 \lambda \int_0^\Lambda \frac{\rho d\rho}{(1 - \rho)} \frac{1 + 2\rho - \rho^2 + \Gamma_{\rho_00} + \Gamma_{\rho_00}}{(1 - \rho^2 - \Gamma_{\rho_00})^2} - \frac{2Z\lambda}{m^2} \int_0^\Lambda d\rho \frac{\rho^2}{(1 - \Gamma_{\rho_00})}, \]

where we take \(\Gamma'_{\rho_00} = \frac{\partial \Gamma_{\rho_00}}{\partial \beta} \bigg|_{\beta = \gamma = 0} \) or \(\Gamma''_{\rho_00} = \frac{\partial \Gamma_{\rho_00}}{\partial \gamma} \bigg|_{\beta = \gamma = 0} \) and \(\Gamma'_{\rho_00} = \frac{\partial \Gamma_{\rho_00}}{\partial \gamma} \bigg|_{\alpha = 0} \). Now let us pass to the new function \(G_{\alpha\beta\gamma} \) given in (49). We find the following relations

\[\rho + \Gamma'_{\rho_00} = \frac{\rho}{G_{\rho_00}} + \frac{G''_{\rho_00}}{G_{\rho_00}^2}, \quad 2\rho - \rho^2 + \Gamma'_{\rho_00} = \frac{2\rho(1 - \rho)}{G_{\rho_00}} + \frac{(1 - \rho^2)G''_{\rho_00}}{G_{\rho_00}}. \]

Therefore the equation (57) reduces to

\[Z^{-1} = 1 + \frac{2\lambda}{m^2} \int_0^\Lambda d\rho \left[\frac{G'_{\rho_00}}{\rho} + G_{\rho_00} \right], \]

and (55) takes the form

\[ZG_{\alpha\beta\gamma} - 1 - (Z - 1) \frac{(1 - \alpha)(1 - \beta)(1 - \gamma)}{1 - \alpha\beta - \alpha\gamma - \beta\gamma + 2\alpha\beta\gamma}G_{\alpha\beta\gamma} = \frac{(1 - \alpha)(1 - \beta)(1 - \gamma)}{1 - \alpha\beta - \alpha\gamma - \beta\gamma + 2\alpha\beta\gamma}G_{\alpha\beta\gamma} \left\{ 2Z^2 \lambda \int_0^\Lambda \frac{\rho d\rho}{(1 - \rho)} \frac{1 - \rho^2 - 2\alpha\rho + 2\alpha^2}{1 - \rho^2} - \frac{\rho^2}{1 - \rho^2} \right\} \]

\[+ \frac{2Z\lambda}{m^2} \int_0^\Lambda \frac{d\rho}{(1 - \rho)} \left[(1 - \beta)(1 - \gamma)G_{\rho_00} - G_{\rho_00} + \frac{(1 - \alpha)(G_{\beta\gamma\rho} - 1)}{(\alpha - \rho)(\alpha - \beta)(\alpha - \gamma)} \right]. \]

Inserting (59) into the left hand side of (60) and dividing by \(Z \), one gets

\[G_{\alpha\beta\gamma} = Z^{-1} - \frac{2\lambda}{m^2} \frac{(1 - \alpha)(1 - \beta)(1 - \gamma)}{1 - \alpha\beta - \alpha\gamma - \beta\gamma + 2\alpha\beta\gamma}G_{\alpha\beta\gamma} \int_0^\Lambda d\rho \left[\frac{G'_{\rho_00}}{\rho} + G_{\rho_00} \right] \]

\[- \frac{2\lambda}{m^2} \int_0^\Lambda d\rho \left[\frac{(1 - \alpha)(1 - \beta)(1 - \gamma)}{1 - \beta\rho - \gamma\rho - \beta\gamma + 2\rho\gamma\beta} - \frac{G_{\rho_00}}{(\alpha - \rho)} \right] \]

\[+ \frac{(1 - \alpha)(1 - \beta)(1 - \gamma)}{1 - \alpha\beta - \alpha\gamma - \beta\gamma + 2\alpha\beta\gamma} \left\{ \frac{2\lambda}{m^2} \int_0^\Lambda \frac{d\rho}{(1 - \rho)} \frac{1 - \rho^2 - 2\alpha\rho + 2\alpha^2}{1 - \rho^2} - \frac{G_{\rho_00}}{(\alpha - \rho)} \right\} \]

\[+ \frac{2\lambda}{m^2} \int_0^\Lambda \frac{d\rho}{(1 - \rho)} \left[\frac{(1 - \beta)(1 - \gamma)}{1 - \beta\rho - \gamma\rho - \beta\gamma + 2\rho\gamma\beta} - \frac{G_{\rho_00}}{(\alpha - \rho)} \right] \]

\[+ \frac{G_{\rho_00}(\alpha - 1)}{\rho}, \]

(61)
Replacing (59) (61) yields

\[
G_{\alpha\beta\gamma} = 1 + \frac{2\lambda}{m^2} \left\{ \int_0^\Lambda d\rho \left(\frac{G'_{\rho00}}{\rho} + G_{\rho00} \right) - \frac{(1 - \alpha)(1 - \beta)(1 - \gamma)}{1 - \alpha\beta - \alpha\gamma - \beta\gamma + 2\alpha\beta\gamma} G_{\alpha\beta\gamma} \right.
\]
\[
+ \int_0^\Lambda d\rho \left(\frac{G'_{\rho00}}{\rho} + G_{\rho00} \right) - \int_0^\Lambda d\rho \left(1 - \frac{1}{m^2} \right) \left\{ \int_0^\Lambda d\rho \left(\frac{G'_{\rho00}}{\rho} + G_{\rho00} \right) - \frac{(1 - \alpha)(1 - \beta)(1 - \gamma)G_{\rho\beta\gamma}}{1 - \beta\rho - \gamma\rho - \beta\gamma + 2\rho\beta\gamma} \right) (\alpha - \rho)
\]
\[
+ \frac{(1 - \alpha)(1 - \beta)(1 - \gamma)G_{\rho\beta\gamma}}{1 - \alpha\beta - \alpha\gamma - \beta\gamma + 2\alpha\beta\gamma} \left[\int_0^\Lambda d\rho \left(\frac{G'_{\rho00}}{\rho} + G_{\rho00} \right) - \int_0^\Lambda d\rho \left(1 - \rho \right) \right] \}
\]

(62)

Simplifying identical terms we get the result of Theorem 1.

Note that \(G_{000} = 1 \) and \(\partial G_{000} = 0 \). The equation (62) shows the occurrence of the singular integral kernel \(\int_0^\Lambda d\rho \left(\frac{G'_{\rho00}}{\rho} + G_{\rho00} \right) \) for \(\Lambda = 1 \), which needs to be removed. We will use the Cauchy principal value of the divergent integrals and also take the limit value at points 0 and 1 i.e.

\[
\int_0^1 = \lim_{\epsilon \to 0} \left[\int_0^{a-\epsilon} + \int_{a+\epsilon}^1 \right], \quad a \in (0, 1), \quad \int_0^1 = \lim_{\epsilon \to 0, \epsilon' \to 1} \int_\epsilon^\epsilon'
\]

(63)

The nonlinear integral equation (53) is of the form

\[
G_{\alpha\beta\gamma} = 1 + \lambda \int_0^1 f(G_{\alpha\beta\gamma}, G_{\rho\beta\gamma}, G_{\rho\alpha0}, G_{\rho00}, Y, \alpha, \beta, \gamma) d\rho.
\]

(64)

Now we can easily see that (53) suffers for the lack of symmetry. This inconvenience is due to the position of parameter \(\alpha \). So taken \(\alpha = 0 \) we get the symmetric solution given in the following proposition

Proposition 4. At first order in \(\lambda \) the solution of the equation (53) for \(\alpha = 0 \) is given by

\[
G_{0\beta\gamma} = 1 + \lambda' \left[1 + \frac{(1 - \beta)(1 - \gamma)}{1 - \beta\gamma} \left(\ln \frac{1 + \beta\gamma - \beta - \gamma}{1 - \beta\gamma} - 1 \right) \right] = 1 + \lambda' K_{0\beta\gamma}.
\]

(65)

Then, using the symmetry properties of proposition 3 we get the symmetric solution \(G_{\alpha\beta\gamma}^{\text{sym}} \) as

\[
G_{\alpha\beta\gamma}^{\text{sym}} = 1 + \lambda' K_{0\beta\gamma} + \lambda'_2 K_{0\alpha\gamma} + \lambda'_3 K_{0\alpha\beta}
\]

(66)

with \(\lambda'_p = \frac{2\lambda_p}{m^2}; \quad p = 1, 2, 3 \) and \(\alpha, \beta, \gamma \in [0, 1) \).

We use the symmetry relation (35) and get the following result
Theorem 2. The closed equation of the symmetric two-point functions $G_{\alpha\beta\gamma}$ satisfies the nonlinear integral equation

$$
G_{\alpha\beta\gamma} = 1 + \lambda' \left\{ \mathcal{Y} + \int_0^1 d\rho G_{\rho 00} + \frac{(1 - \alpha)(1 - \beta)(1 - \gamma)}{1 - \alpha \beta - \alpha \gamma - \beta \gamma + 2 \alpha \beta \gamma} \left[\int_0^1 d\rho \left(\frac{G_{\rho \beta \gamma}}{\alpha - \rho} \right) + \int_0^1 d\rho \left(\frac{G_{\rho \alpha 0}}{1 - \rho} \right) - \mathcal{Y} \right] \right\}.
$$

Proof. Using the relation (35) we can extract the quantity K_α after simplification as

$$
K_\alpha = -G_{\alpha\beta\gamma}^{-1} \left[\int_0^1 d\rho \frac{G_{\rho \alpha 0}}{\rho} - (2\alpha \beta - \alpha - \beta) \int_0^1 d\rho \frac{G_{\rho \alpha 0}}{1 - \alpha \beta \rho - \alpha \beta + 2 \alpha \beta \rho} \right] + \int_0^1 d\rho \frac{G_{\rho \alpha 0}}{1 - \beta \rho} - \beta \int_0^1 d\rho \frac{G_{\rho \beta 0}}{1 - \beta \rho} - \beta \int_0^1 d\rho \frac{G_{\rho \alpha \beta}}{1 - \beta \rho} - \beta \int_0^1 d\rho \frac{G_{\rho \alpha \beta}}{1 - \beta \rho} + \int_0^1 d\rho \frac{G_{\rho \alpha 0} - G_{\rho 00}}{1 - \rho} + \int_0^1 d\rho \left(\frac{1}{\rho} + \frac{1}{\alpha - \rho} \right).
$$

Then remark that K_α is function of only the parameter α. We then take $\beta = 0$ in the last equation and we get

$$
K_\alpha = -G_{\alpha\beta\gamma}^{-1} \left[\int_0^1 d\rho \frac{G_{\rho \alpha 0}}{\rho} + \alpha \int_0^1 d\rho \frac{G_{\rho \alpha 0}}{1 - \alpha \rho} + \int_0^1 d\rho \frac{G_{\rho 00}}{\alpha - \rho} \right] + \int_0^1 d\rho \frac{G_{\rho \alpha 0} - G_{\rho 00}}{1 - \rho} + \int_0^1 d\rho \left(\frac{1}{\rho} + \frac{1}{\alpha - \rho} \right).
$$

By replacing the relation (69) in expression (62) we get the desired result. \qed

Now we are reaching the point where it is possible to give the solution of the equation (67). Let us write the solution of this equation as

$$
G_{\alpha\beta\gamma} = 1 + \sum_{n=1}^{\infty} (\lambda')^n X_{\alpha\beta\gamma}^{(n)}
$$

The n order terms $X_{\alpha\beta\gamma}^{(n)}$ can be deduced by iteration. We give here the quantities $X_{\alpha\beta\gamma}^{(1)}$ and $X_{\alpha\beta\gamma}^{(2)}$ in the following statement

Proposition 5. Pertubatively, at second order in λ the symmetry solution of the equation (67) using the Cauchy principal value is given by

$$
G_{\alpha\beta\gamma} = 1 + \lambda' X_{\alpha\beta\gamma}^{(1)} + \lambda^2 \left\{ \frac{\pi^2}{6} - \frac{3}{2} + \frac{(1 - \alpha)(1 - \beta)(1 - \gamma)}{1 - \alpha \beta - \alpha \gamma - \beta \gamma + 2 \alpha \beta \gamma} \left[X_{\alpha\beta\gamma}^{(1)} \left(\ln \frac{(1 - \alpha)^2}{\alpha} - 1 \right) \right] \right\} + \sum_{n=1}^{\infty} (\lambda')^n X_{\alpha\beta\gamma}^{(n)} + O(\lambda^3),
$$

16
where $G_{000} = 1$ and where the first order term $\mathcal{X}^{(1)}_{\alpha\beta\gamma}$ is

$$
\mathcal{X}^{(1)}_{\alpha\beta\gamma} = 1 + \frac{(1 - \alpha)(1 - \beta)(1 - \gamma)}{1 - \alpha \beta - \alpha \gamma - \beta \gamma + 2 \alpha \beta \gamma} \left(\ln(1 - \alpha) - 1 + \ln \frac{\beta \gamma - \beta - \gamma + 1}{1 - \beta \gamma} \right). \tag{72}
$$

The exact value of the integrals in the rhs of (71) are given using the following relations

$$
\int_0^1 d\rho \frac{\mathcal{X}^{(1)}_{\rho a\gamma}}{a - \rho} = \ln \frac{a}{1 - a} + \frac{(1 - \beta)(1 - \gamma)}{1 - a \beta - a \gamma - \beta \gamma + 2 a \beta \gamma} \left(\ln \frac{\beta \gamma - \beta - \gamma + 1}{1 - \beta \gamma} \right) \\
\times \left((1 - a) \ln \frac{a}{1 - a} + \beta \gamma - \beta - \gamma + 1 \right) \\
\times \left((1 - a) \ln \frac{a}{1 - a} + \beta \gamma - \beta - \gamma + 1 \right) \\
+ \frac{(1 - a)(1 - \beta)(1 - \gamma)}{1 - a \beta - a \gamma - \beta \gamma + 2 a \beta \gamma} \left(\frac{\pi^2}{6} - Li_2 \ln \frac{a}{1 - a} + \ln(1 - a) \ln \frac{1 - a}{1 - a} - \frac{1}{1 - a} \right) \\
+ \frac{(\beta + \gamma - 2 \beta \gamma)(1 - a \beta - a \gamma - \beta \gamma + 2 a \beta \gamma)}{1 - \beta \gamma} \left(\frac{\pi^2}{6} - Li_2 \ln \frac{\beta \gamma - \beta - \gamma + 1}{1 - \beta \gamma} \right) \\
- \ln \frac{1 - \beta \gamma}{1 - \beta \gamma} \ln \frac{\beta \gamma - \beta - \gamma + 1}{1 - \beta \gamma} \tag{73}
$$

and

$$
\int_0^1 d\rho \frac{\mathcal{X}^{(1)}_{\rho a 0} - \mathcal{X}^{(1)}_{\rho 0 a} + \mathcal{X}^{(1)}_{0 a 0}}{\rho} = \frac{(1 - \alpha)^2}{\alpha} \ln(1 - \alpha) \left(\ln(1 - \alpha) - 1 \right) - (1 - \alpha) \left(\frac{\pi^2}{6} - 1 \right) \\
+ \frac{1 - \alpha}{\pi} \left(\ln \alpha \ln(1 - \alpha) + Li_2(1 - \alpha) - \frac{\pi^2}{6} \right) + \frac{\pi^2}{6} - 1 \tag{74}
$$

where

$$
Li_2(x) = \sum_{k=1}^{\infty} \frac{x^k}{k^2}, \quad Li_2(1) = \frac{\pi^2}{6}, \quad Li_2(-1) = -\frac{\pi^2}{12}, \quad Li_2(0) = 0. \tag{75}
$$

Let us immediately emphasize that the above solution is related to the coupling constant λ_1. To establish the full solution of the two-point functions of our model, which takes into account the three coupling constants λ_1, $\rho = 1, 2, 3$ we must use the symmetry condition of proposition 3. The end result is given by the sum of the three equations (36), (37) and (38). Therefore the two-point functions $G^{sym}_{\alpha\beta\gamma}$ of 3D tensor model is given by the relation

$$
G^{sym}_{\alpha\beta\gamma} = 1 + \lambda_1 X^{(1)}_{\alpha\beta\gamma} + \lambda_2 \left\{ \frac{\pi^2}{6} - \frac{3}{2} + \frac{(1 - \alpha)(1 - \beta)(1 - \gamma)}{1 - \alpha \beta - \alpha \gamma - \beta \gamma + 2 \alpha \beta \gamma} \left[X^{(1)}_{\alpha\beta\gamma} \left(\ln \frac{(1 - \alpha)^2}{\alpha} - 1 \right) \right] \right\} \\
+ \int_0^1 d\rho \frac{2 \beta \gamma - \beta - \gamma}{1 - \beta \gamma - \beta \gamma + 2 \beta \gamma} + \int_0^1 d\rho \frac{X^{(1)}_{\rho a 0} - X^{(1)}_{\rho 0 a}}{1 - \rho} - \alpha \int_0^1 d\rho \frac{X^{(1)}_{\rho 0 a}}{1 - \alpha \rho} \\
- \frac{\pi^2}{6} + \frac{3}{2} - \int_0^1 d\rho \frac{X^{(1)}_{\rho 0 a} - X^{(1)}_{\rho 0 a} + X^{(1)}_{0 a 0}}{\rho} \ln \frac{(1 - \alpha)^2}{\alpha} \right\} + O(\lambda_3^3) \\
+ \lambda_2 X^{(1)}_{\beta\gamma\alpha} + \lambda_2 \left\{ \frac{\pi^2}{6} - \frac{3}{2} + \frac{(1 - \alpha)(1 - \beta)(1 - \gamma)}{1 - \alpha \beta - \alpha \gamma - \beta \gamma + 2 \alpha \beta \gamma} \left[X^{(1)}_{\beta\gamma\alpha} \left(\ln \frac{(1 - \beta)^2}{\beta} - 1 \right) \right] \right\} \\
+ \int_0^1 d\rho \frac{2 \alpha \gamma - \alpha - \gamma}{1 - \alpha \rho - \alpha \gamma + 2 \alpha \gamma} + \int_0^1 d\rho \frac{X^{(1)}_{\rho 0 a} - X^{(1)}_{\rho 0 a}}{1 - \rho} - \beta \int_0^1 d\rho \frac{X^{(1)}_{\rho 0 a}}{1 - \beta \rho} \\
- \frac{\pi^2}{6} + \frac{3}{2} - \int_0^1 d\rho \frac{X^{(1)}_{\rho 0 a} - X^{(1)}_{\rho 0 a} + X^{(1)}_{0 a 0}}{\rho} \ln \frac{(1 - \beta)^2}{\beta} \right\} + O(\lambda_3^3)
$$
and an anomalous term, namely $V_{4,2}$

\[V_{4,2} = \left(\sum_{p_j \in \mathbb{Z}} \tilde{\varphi}_{1234} \varphi_{1} \right) \left(\sum_{p_j \in \mathbb{Z}} \tilde{\varphi}_{1} \varphi_{1234} \right). \]

where $\lambda'_\rho = 2\lambda_\rho/m^2$; $\rho = 1, 2, 3$, $\alpha, \beta, \gamma \in (0, 1)$ and $G_{000} = 1$. Noting that the solution (76) satisfies the condition (75) if and only if we set $\lambda'_1 = \lambda'_2 = \lambda'_3$. Let us also emphasize that the higher order solution can be get pertubatively by iteration.

4 Closed equation for two-point functions of rank 4 TGFT

The same method use in last section will be performed here to establish the renormalized two-point functions of rank 4 tensor field firstly given in [13]. We provide the master equation of the two-point functions. The action S_{4D} of the model is also subdivided into two terms as

\[S_{4D} = S_{4D}^{\text{kin}} + S_{4D}^{\text{int}}. \]

The kinetic term S_{4D}^{kin} is given by

\[S_{4D}^{\text{kin}} = \sum_{p_j \in \mathbb{Z}} \varphi_{1234} \left(\sum_{i=1}^{4} p_i^2 + m^2 \right) \tilde{\varphi}_{1234}. \]

Noting that in four dimensional case the renormalization is guaranteed by the presence of the propagator associated with the heat kernel [27]:

\[C([p]) = \left(\sum_{i=1}^{4} p_i^2 + m^2 \right)^{-1} = M_{1234}^{-1}. \]

S_{4D}^{int} is related to the interaction, which is divided into three fundamental contributions $V_{6,1}$, $V_{6,2}$ and $V_{4,1}$ given by

\[V_{6,1} = \sum_{p_j \in \mathbb{Z}} \varphi_{1234} \varphi_{1'} \varphi_{1'23'4'} \varphi_{1''} \varphi_{1''3'4''} \varphi_{12''3'4''} + \text{permutations} \]

\[V_{6,2} = \sum_{p_j \in \mathbb{Z}} \varphi_{1234} \varphi_{1'23'4'} \varphi_{1''3'4''} \varphi_{1''23'4'} \varphi_{12''3'4''} + \text{permutations} \]

\[V_{4,1} = \sum_{p_j \in \mathbb{Z}} \varphi_{1234} \varphi_{1'23'4'} \varphi_{1'23'4'} + \text{permutations} \]
This last vertex is not taken into account in the computation of the correlation functions due to the fact that it is disconnected and does not contribute to the melonic Feynman graph of the theory. This vertex could be interpreted as the generation of a scalar matter field out of pure gravity. The vertices are represented in figure 8.

Let us immediately emphasize that the vertices of the type $V_{6,1}$ and $V_{4,1}$ are parametrized by four indices $\rho \in \{1,2,3,4\}$, and the vertices contributing to $V_{6,2}$ are parametrized by six index values $\rho \rho' \in \{1,2,1,3,1,4,2,3,2,4,3,4\}$. The couple $\rho \rho'$ will be totally symmetric i.e., $\rho \rho' = \rho' \rho$. One can check that these interactions are invariant under $U(N_a)$ transformations.

Then the same procedure of finding the Ward-Takahashi identities applies. The Ward-Takahashi identities of the equation (20) is re-expressed as

$$\left(M_{m234} - M_{n234} \right) \left(\langle \bar{\varphi}_m \varphi_n \rangle_{234} - \langle \bar{\varphi}_n \varphi_m \rangle_{234} \right) = 0$$

(84)

$$\left(M_{1m34} - M_{1n34} \right) \left(\langle \bar{\varphi}_m \bar{\varphi}_n \rangle_{134} - \langle \bar{\varphi}_n \bar{\varphi}_m \rangle_{134} \right) = 0$$

(85)

$$\left(M_{12m4} - M_{12n4} \right) \left(\langle \bar{\varphi}_{12} \bar{\varphi}_{12} \rangle_{123} - \langle \bar{\varphi}_{12} \bar{\varphi}_{12} \rangle_{123} \right) = 0$$

(86)

$$\left(M_{123m} - M_{123n} \right) \left(\langle \bar{\varphi}_{123} \bar{\varphi}_{123} \rangle_{123} - \langle \bar{\varphi}_{123} \bar{\varphi}_{123} \rangle_{123} \right) = 0$$

(87)

The figure 9 gives the Schwinger-Dyson equation of the two-point functions. This figure collects the 1PI two-point functions. Let us discuss the contributions in this figure. The graphs of figure 10 are related to the graphs made with vertex $V_{6,1}$. The first graph of this figure is denoted by $T_{6,1}^{abcd}$ and the sum of the other two is $\Sigma_{6,1}^{abcd}$. The graphs of figure 11 are related to the graphs built with the vertex $V_{6,2}$. The first graph of this figure is called $T_{6,2}^{abcd}$ and the sum of the other two is $\Sigma_{6,2}^{abcd}$. In the same manner, the graphs of figure 12 take into account the graphs built with vertex $V_{4,1}$. The first graph is called $\Sigma_{4,1}^{abcd}$ and the sum of the
\[\Gamma_{abcd}^{6,1} = \]

Figure 10:

\[\Gamma_{abcd}^{6,2} = \]

Figure 11:

\[\Gamma_{abcd}^{4,1} = \]

Figure 12:
Proposition 6. All of the above quantities are obtained by using the following symmetry properties:

$$
\Gamma_{abcd}^{6,1} = \sum_\rho \Gamma_{abcd}^{6,1,\rho}, \quad \Gamma_{abcd}^{6,2} = \sum_{\rho\rho'} \Gamma_{abcd}^{6,2,\rho\rho'}, \quad \Gamma_{abcd}^{4,1} = \sum_\rho \Gamma_{abcd}^{4,1,\rho}
$$

(88)

with

$$
\Gamma_{abcd}^{6,1,\rho} = T_{abcd}^{6,1,\rho} + \sum_{\rho'} \Gamma_{abcd}^{6,1,\rho'}, \quad \Gamma_{abcd}^{6,2,\rho\rho'} = T_{abcd}^{6,2,\rho\rho'} + \sum_{\rho\rho'} \Gamma_{abcd}^{6,2,\rho\rho'}, \quad \Gamma_{abcd}^{4,1,\rho} = T_{abcd}^{4,1,\rho} + \sum_{\rho} \Gamma_{abcd}^{4,1,\rho}
$$

(89)

Therefore the equation on figure 9 takes the form

$$
\Gamma_{abcd} = \Gamma_{abcd}^{6,1} + \Gamma_{abcd}^{4,1} + \Gamma_{abcd}^{6,2}
$$

(90)

All of the above quantities are obtained by using the following symmetry properties:

- $\Gamma_{abcd}^{6,1,2}$ can be obtained using $\Gamma_{abcd}^{6,1,1}$ and replaced $a \to b$ and $b \to a$.
- $\Gamma_{abcd}^{6,1,3}$ is obtained using $\Gamma_{abcd}^{6,1,1}$ and replaced $a \to c$, $b \to a$ and $c \to b$.
- $\Gamma_{abcd}^{6,1,4}$ is obtained using $\Gamma_{abcd}^{6,1,1}$ and replaced $a \to d$, $b \to a$, $c \to b$ and $d \to c$.

This above symmetries is well satisfied for $\Gamma_{abcd}^{4,1,\rho}$. In the case of $\Gamma_{abcd}^{6,2,\rho\rho'}$ we get:

- $\Gamma_{abcd}^{6,2,13}$ can be obtained using $\Gamma_{abcd}^{6,2,14}$ and by replaced $a \to b$ and $b \to a$.
- $\Gamma_{abcd}^{6,2,12}$ is obtained by replaced in $\Gamma_{abcd}^{6,2,14}$, $a \to c$, $b \to a$ and $c \to b$.
- $\Gamma_{abcd}^{6,2,23}$ is obtained by replaced in $\Gamma_{abcd}^{6,2,14}$, $a \to b$, $b \to a$, $c \to d$ and $d \to c$.
- $\Gamma_{abcd}^{6,2,24}$ is obtained by replaced in $\Gamma_{abcd}^{6,2,14}$, $c \to d$ and $d \to c$.
- $\Gamma_{abcd}^{6,2,34}$ is obtained by replaced in $\Gamma_{abcd}^{6,2,14}$, $b \to c$, $c \to d$ and $d \to b$.

We then focus our attention to $\Gamma_{abcd}^1 = (\Gamma_{abcd}^{6,1,1} + \Gamma_{abcd}^{4,1,1}) + \Gamma_{abcd}^{6,2,14}$. We also call $G_{[mn]abc}^{ins}$ the two-point functions with insertion $(1,2,3)$ wherein the momentum indices p_1, p_2, p_3 are summed i.e.

$$
G_{[mn]abc}^{ins} = \sum_{p_1,p_2,p_3} \langle \varphi_{m123} \bar{\varphi}_{n123} \varphi_{nabc} \bar{\varphi}_{mabc} \rangle_c.
$$

(91)

The following relations are satisfied:

$$
\Sigma_{abcd}^{6,1,1} = Z^2 \lambda_{6,1,1} C_{abcd} \sum_p G_{[ap]bpc}^{-1} G_{[ap]bpc}^{ins}, \quad T_{abcd}^{6,1,1} = Z^2 \lambda_{6,1,1} C_{abcd} \sum_{p,q,r} G_{pqra},
$$

(92)

$$
\Sigma_{abcd}^{6,2,14} = Z^2 \lambda_{6,2,14} C_{abcd} \sum_p G_{[ap]bpc}^{-1} G_{[ap]bpc}^{ins}, \quad T_{abcd}^{6,2,14} = Z^2 \lambda_{6,2,14} C_{abcd} \sum_{p,q,r} G_{pqra},
$$

(93)

$$
\Sigma_{abcd}^{4,1,1} = Z^2 \lambda_{4,1,1} \sum_p G_{[ap]bpc}^{-1} G_{[ap]bpc}^{ins}, \quad T_{abcd}^{4,1,1} = Z^2 \lambda_{4,1,1} \sum_{p,q,r} G_{pqra}
$$

(94)
and then
\[\Gamma_{abcd}^1 = Z^2 C_{abcd} \lambda_{6,1,1} \left[\sum_p G_{abcd}^{-1} \frac{G_{pbc} - G_{abcd}}{Z(a^2 - p^2)} + \sum_{p,q,r} G_{pqra} \right] + Z^2 C_{abcd} \lambda_{6,2,14} \left[\sum_p G_{abcd}^{-1} \frac{G_{pbc} - G_{abcd}}{Z(a^2 - p^2)} + \sum_{p,q,r} G_{pqra} \right]. \]

We set \(\lambda_{6,1,\rho} = \lambda_{6,1}, \lambda_{6,2,\rho'} = \lambda_{6,2} \) and \(\lambda_{4,1,\rho} = \lambda_{4,1} \). Noting that the connected to point function can be expressed as \(G_{abcd}^{-1} = M_{abcd} - \Gamma_{abcd} \). Then we get
\[\Gamma_{abcd}^1 = Z^2 M_{abcd}^{-1} \lambda_{6,1} \left[\sum_p \left(\frac{1}{M_{pbc} - \Gamma_{pbc}} - \frac{1}{M_{abcd} - \Gamma_{abcd}} \frac{\Gamma_{abcd} - \Gamma_{pbc}}{Z(a^2 - p^2)} \right) + \sum_{p,q,r} \frac{1}{M_{pqra} - \Gamma_{pqra}} \right] + Z^2 M_{abcd}^{-1} \lambda_{6,2} \left[\sum_p \left(\frac{1}{M_{pbc} - \Gamma_{pbc}} - \frac{1}{M_{abcd} - \Gamma_{abcd}} \frac{\Gamma_{abcd} - \Gamma_{pbc}}{Z(a^2 - p^2)} \right) + \sum_{p,q,r} \frac{1}{M_{pqra} - \Gamma_{pqra}} \right] + Z^2 \lambda_{4,1} \left[\sum_p \left(\frac{1}{M_{pbc} - \Gamma_{pbc}} - \frac{1}{M_{abcd} - \Gamma_{abcd}} \frac{\Gamma_{abcd} - \Gamma_{pbc}}{Z(a^2 - p^2)} \right) + \sum_{p,q,r} \frac{1}{M_{pqra} - \Gamma_{pqra}} \right]. \]

Now we use the Taylor expansion that allows to pass to the renormalized quantity as
\[\Gamma_{abcd}^1 = Z m_{bar}^2 - m^2 + (Z - 1)(a^2 + b^2 + c^2 + d^2) + \Gamma_{abcd}^{\text{phys}}, \]
with condition \(\Gamma_{0000} = 0 \) and \(\partial \Gamma_{0000} = 0 \). This implies that
\[G_{abcd}^{-1} = a^2 + b^2 + c^2 + d^2 + m^2 - \Gamma_{abcd}^{\text{ren}}. \]

Then we get the following proposition

Proposition 7. The closed equation of the two-point functions of four dimension tensor model is given by
\[M_{abcd}^{-1} \lambda_{6,1} \left\{ \sum_p \left[\frac{(Z - 1)(a^2 + b^2 + c^2 + d^2) + \Gamma_{abcd}^{\text{phys}}}{Z} - \frac{1}{m^2 (p^2 + m^2 - \Gamma_{p000}^{\text{phys}})} \right] M_{abcd} \right\} - \left[\frac{Z}{p^2 + b^2 + c^2 + d^2 + m^2 - \Gamma_{abcd}^{\text{phys}}} - \frac{1}{m^2 (p^2 + m^2 - \Gamma_{p000}^{\text{phys}})} \right] \]
\[+ \sum_{p,q,r} \left[\frac{Z}{p^2 + q^2 + r^2 + a^2 + m^2 - \Gamma_{pqra}^{\text{phys}}} - \frac{1}{m^2 (p^2 + q^2 + r^2 + m^2 - \Gamma_{pq00}^{\text{phys}})} \right] \]
\[+ M_{abcd}^{-1} \lambda_{6,2} \left\{ \sum_p \left[\frac{(Z - 1)(a^2 + b^2 + c^2 + d^2) + \Gamma_{abcd}^{\text{phys}}}{Z} - \frac{1}{m^2 (p^2 + m^2 - \Gamma_{p000}^{\text{phys}})} \right] M_{abcd} \right\} - \left[\frac{Z}{p^2 + b^2 + c^2 + d^2 + m^2 - \Gamma_{abcd}^{\text{phys}}} - \frac{1}{m^2 (p^2 + m^2 - \Gamma_{p000}^{\text{phys}})} \right]. \]

22
The equation (99) is re-expressed as

\[\sum \frac{Z}{p^2 + b^2 + c^2 + d^2 + m^2 - \Gamma_{abcd}^{\text{phys}} (a^2 - p^2)} + \frac{1}{M_{abcd}} \frac{\Gamma_{p000}^{\text{phys}}}{p^2} \]

Now let us define the two quantities

Then (99) takes the form by replacing the relation (100) into the right hand side of equation (99).

Proof. The equation (99) can be simply obtained using the relation of \(Zm_{\text{bar}}^2 - m^2 \) in the same way of the last section as

\[
Zm_{\text{bar}}^2 - m^2 = ZM_{0000}^{-1}\lambda_{6,1} \left[\sum_p \left(\frac{1}{p^2 + m^2 - \Gamma_{p000}^{\text{phys}}} - \frac{1}{p^2 + m^2 - \Gamma_{p000}^{\text{phys}}} \Gamma_{p000}^{\text{phys}} \right) \right] \\
+ \sum_{p,q,r} \frac{Z}{p^2 + q^2 + r^2 + m^2 - \Gamma_{pqr}^{\text{phys}}} + ZM_{0000}^{-1}\lambda_{6,2} \left[\sum_p \left(\frac{1}{p^2 + m^2 - \Gamma_{p000}^{\text{phys}}} \right) \right] \\
- \frac{1}{p^2 + m^2 - \Gamma_{p000}^{\text{phys}}} + \sum_{p,q,r} \frac{Z}{p^2 + q^2 + r^2 + m^2 - \Gamma_{pqr}^{\text{phys}}} + Z\lambda_{4,1} \left[\sum_p \left(\frac{1}{p^2 + m^2 - \Gamma_{p000}^{\text{phys}}} \right) \right].
\]

(100)

Then (99) takes the form by replacing the relation (100) into the right hand side of equation (99).

Let us remark that the continuous limit of the equation (99) can be built. We identify the sum as \(\sum_p = 2 \int_0^\infty dp \) and \(\sum_{p,q,r} = 2 \int_0^\infty p^2 dp \). We also impose the cutoff \(p_\Lambda \) in the UV and changing the variables as

\[
a^2 = m^2 \frac{c}{1 - c}, \quad b^2 = m^2 \frac{\beta}{1 - \beta}, \quad c^2 = m^2 \frac{\gamma}{1 - \gamma}, \\
d^2 = m^2 \frac{\epsilon}{1 - \epsilon}, \quad p^2 = m^2 \frac{\rho}{1 - \rho}, \quad p^\Lambda = m^2 \frac{\Lambda}{1 - \Lambda}.
\]

(101)

Now let us define the two quantities \(s(\alpha, \beta, \gamma, \epsilon) \) and \(p(\alpha, \beta, \gamma, \epsilon) \) as

\[
s(\alpha, \beta, \gamma, \epsilon) = 1 - \alpha \beta + \alpha \gamma - \alpha \epsilon - \beta \gamma + \beta \epsilon - \gamma \epsilon + 2 \alpha \beta \gamma + 2 \alpha \beta \epsilon + 2 \alpha \gamma \epsilon + 2 \beta \gamma \epsilon - 3 \alpha \beta \gamma \epsilon
\]

(102)

and

\[
p(\alpha, \beta, \gamma, \epsilon) = (1 - \alpha)(1 - \beta)(1 - \gamma)(1 - \epsilon).
\]

(103)

The equation (99) is re-expressed as

\[
m^2(Z - 1) \frac{p(\alpha, \beta, \gamma, \epsilon)}{(1 - \alpha)(1 - \beta)(1 - \gamma)(1 - \epsilon)} + m^2 \frac{\Gamma_{\alpha\beta\gamma\epsilon}}{(1 - \alpha)(1 - \beta)(1 - \gamma)(1 - \epsilon)}
\]

(104)
and the appropriate closed equation. The closed equation in the 4D bining Ward-Takahashi identities and Schwinger-Dyson equations that allows to establish functions of rank 3 TGFT. As discussed earlier the correlation functions are given by com-

In the present paper, we have presented a perturbative calculation of two-point correlation functions in the continuous limit, which will also be fully addressed in forthcoming work.

Finally by replacing the expressions (105) and (106) in the equation (104), we obtain the closed equation in the 4D case is also given.

5 Conclusion

In the present paper, we have presented a perturbative calculation of two-point correlation functions of rank 3 TGFT. As discussed earlier the correlation functions are given by combining Ward-Takahashi identities and Schwinger-Dyson equations that allows to establish the appropriate closed equation. The closed equation in the 4D case is also given.

In this work, we proved that the nonperturbative techniques as developed in [29] [30] [28] can be reported to the tensor situation. Indeed, although, we only solve our closed form equations for the two-point functions at initial orders, it is very promising to see that we can obtain even solutions in this highly combinatoric case. As future investigations, we can now undertake a calculation of the general solution at all orders of the coupling constants for both rank 3 and 4 models.
Acknowledgements

Discussions with Joseph Ben Geloun, Raimar Wulkenhaar and Vincent Rivasseau are gratefully acknowledged. This research was supported in part by Perimeter Institute for Theoretical Physics and Fields Institute for Research in Mathematical Sciences (Toronto). Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research and Innovation.

References

[1] V. Rivasseau, “The Tensor Track, III,” arXiv:1311.1461 [hep-th].

[2] V. Rivasseau, “The Tensor Track: an Update,” arXiv:1209.5284 [hep-th].

[3] V. Rivasseau, “Quantum Gravity and Renormalization: The Tensor Track,” AIP Conf. Proc. 1444, 18 (2011) [arXiv:1112.5104 [hep-th]].

[4] P. Di Francesco, P. H. Ginsparg and J. Zinn-Justin, “2-D Gravity and random matrices,” Phys. Rept. 254, 1 (1995) [arXiv:hep-th/9306153].

[5] G. ’t Hooft, “On the Convergence of Planar Diagram Expansions,” Commun. Math. Phys. 86, 449 (1982).

[6] G. ’t Hooft, “A Planar Diagram theory for Strong Interactions,” Nucl. Phys. B 72, 461 (1974).

[7] R. Gurau, “The 1/N expansion of colored tensor models,” Annales Henri Poincare 12, 829 (2011) [arXiv:1011.2726 [gr-qc]].

[8] R. Gurau and V. Rivasseau, “The 1/N expansion of colored tensor models in arbitrary dimension,” Europhys. Lett. 95, 50004 (2011) [arXiv:1101.4182 [gr-qc]].

[9] R. Gurau, “The complete 1/N expansion of colored tensor models in arbitrary dimension,” Annales Henri Poincare 13, 399 (2012) [arXiv:1102.5759 [gr-qc]].

[10] S. Dartois, R. Gurau and V. Rivasseau, “Double Scaling in Tensor Models with a Quartic Interaction,” JHEP 1309, 088 (2013) [arXiv:1307.5281 [hep-th]].

[11] V. Bonzom, R. Gurau and V. Rivasseau, “The Ising Model on Random Lattices in Arbitrary Dimensions,” Phys. Lett. B 711, 88 (2012) [arXiv:1108.6269 [hep-th]].

[12] V. Bonzom, R. Gurau, A. Riello and V. Rivasseau, “Critical behavior of colored tensor models in the large N limit,” Nucl. Phys. B 853, 174 (2011) [arXiv:1105.3122 [hep-th]].

[13] J. Ben Geloun and V. Rivasseau, “A Renormalizable 4-Dimensional Tensor Field Theory,” Commun. Math. Phys. 318, 69 (2013) [arXiv:1111.4997 [hep-th]].
J. Ben Geloun and V. Rivasseau, “Addendum to ‘A Renormalizable 4-Dimensional Tensor Field Theory’,” Commun. Math. Phys. 322, 957 (2013) [arXiv:1209.4606 [hep-th]].

J. Ben Geloun and D. O. Samary, “3D Tensor Field Theory: Renormalization and One-loop β-functions,” Annales Henri Poincare 14, 1599 (2013) [arXiv:1201.0176 [hep-th]].

J. Ben Geloun and E. R. Livine, “Some classes of renormalizable tensor models,” J. Math. Phys. 54, 082303 (2013) [arXiv:1207.0416 [hep-th]].

D. O. Samary and F. Vignes-Tourneret, “Just Renormalizable TGFT’s on U(1)d with Gauge Invariance,” arXiv:1211.2618 [hep-th].

S. Carrozza, D. Oriti and V. Rivasseau, “Renormalization of an SU(2) Tensorial Group Field Theory in Three Dimensions,” arXiv:1303.6772 [hep-th].

S. Carrozza, D. Oriti and V. Rivasseau, “Renormalization of Tensorial Group Field Theories: Abelian U(1) Models in Four Dimensions,” arXiv:1207.6734 [hep-th].

S. Carrozza, “Tensorial methods and renormalization in Group Field Theories,” arXiv:1310.3736 [hep-th].

J. Ben Geloun, “Renormalizable Models in Rank d ≥ 2 Tensorial Group Field Theory,” arXiv:1306.1201 [hep-th].

J. B. Geloun, “On the finite amplitudes for open graphs in Abelian dynamical colored Boulatov-Ooguri models,” J. Phys. A 46, 402002 (2013) [arXiv:1307.8299 [hep-th]].

J. Ben Geloun, “Two and four-loop β-functions of rank 4 renormalizable tensor field theories,” Class. Quant. Grav. 29, 235011 (2012) [arXiv:1205.5513 [hep-th]].

D. O. Samary, “Beta functions of U(1)d gauge invariant just renormalizable tensor models,” Physical Review D 88 105003 (2013) arXiv:1303.7256 [hep-th].

D. Oriti, “The Group field theory approach to quantum gravity,” In *Oriti, D. (ed.): Approaches to quantum gravity* 310-331 [gr-qc/0607032].

V. Rivasseau, “Towards Renormalizing Group Field Theory,” PoS CNCFG 2010, 004 (2010) [arXiv:1103.1900 [gr-qc]].

J. Ben Geloun and V. Bonzom, “Radiative corrections in the Boulatov-Ooguri tensor model: The 2-point function,” Int. J. Theor. Phys. 50, 2819 (2011) [arXiv:1101.4294 [hep-th]].

H. Grosse and R. Wulkenhaar, “Progress in solving a noncommutative quantum field theory in four dimensions,” arXiv:0909.1389 [hep-th].

H. Grosse and R. Wulkenhaar, “Solvable limits of a 4D noncommutative QFT,” arXiv:1306.2816 [math-ph].
[30] H. Grosse and R. Wulkenhaar, “Self-dual noncommutative ϕ^4-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory,” arXiv:1205.0465 [math-ph].

[31] J. Ben Geloun, R. Gurau and V. Rivasseau, “Vanishing beta function for Grosse-Wulkenhaar model in a magnetic field,” Phys. Lett. B 671, 284 (2009) [arXiv:0805.4362 [hep-th]].

[32] V. Rivasseau, “Why renormalizable noncommutative quantum field theories?,” arXiv:0711.1748 [math-ph].

[33] H. Grosse and R. Wulkenhaar, “The beta function in duality covariant noncommutative phi**4 theory,” Eur. Phys. J. C 35, 277 (2004) [hep-th/0402093].

[34] R. Wulkenhaar, “Euclidean quantum field theory on commutative and noncommutative spaces,” Lect. Notes Phys. 668, 59 (2005).

[35] V. Rivasseau, F. Vignes-Tourneret and R. Wulkenhaar, “Renormalization of noncommutative phi**4-theory by multi-scale analysis,” Commun. Math. Phys. 262, 565 (2006) [hep-th/0501036].

[36] V. Rivasseau and F. Vignes-Tourneret, “Renormalisation of non-commutative field theories,” hep-th/0702068 [HEP-TH].

[37] R. Gurau, J. Magnen, V. Rivasseau and F. Vignes-Tourneret, “Renormalization of noncommutative phi(4)**4 field theory in x space,” Commun. Math. Phys. 267, 515 (2006) [hep-th/0512271].

[38] V. Rivasseau, From Perturbative to Constructive Renormalization. Princeton series in physics. Princeton Univ. Pr., 1991. 336 p.

[39] M. Disertori, R. Gurau, J. Magnen and V. Rivasseau, “Vanishing of Beta Function of Non Commutative Phi**4(4) Theory to all orders,” Phys. Lett. B 649, 95 (2007) [hep-th/0612251].

[40] M. Disertori and V. Rivasseau, “Two and three loops beta function of non commutative Phi(4)**4 theory,” Eur. Phys. J. C 50, 661 (2007) [hep-th/0610224].

[41] H. Grosse and R. Wulkenhaar, “The beta function in duality covariant noncommutative phi**4 theory,” Eur. Phys. J. C 35, 277 (2004) [hep-th/0402093].

[42] E. Langmann and R. J. Szabo, “Duality in scalar field theory on noncommutative phase spaces,” Phys. Lett. B 533, 168 (2002) [hep-th/0202039].

[43] H. Grosse and R. Wulkenhaar, “Renormalization of phi**4 theory on noncommutative R**4 in the matrix base,” Commun. Math. Phys. 256, 305 (2005) [hep-th/0401128].

[44] H. Grosse and R. Wulkenhaar, “Renormalization of phi**4 theory on noncommutative R**2 in the matrix base,” JHEP 0312, 019 (2003) [hep-th/0307017].
[45] H. Grosse and R. Wulkenhaar, “Power counting theorem for nonlocal matrix models and renormalization,” Commun. Math. Phys. 254, 91 (2005) [hep-th/0305066].

[46] R. Gurau and J. P. Ryan, “Colored Tensor Models - a review,” SIGMA 8, 020 (2012) [arXiv:1109.4812 [hep-th]].

[47] V. Bonzom, R. Gurau and V. Rivasseau, “Random tensor models in the large N limit: Uncoloring the colored tensor models,” Phys. Rev. D 85, 084037 (2012) [arXiv:1202.3637 [hep-th]].

[48] J. Ben Geloun, “Ward-Takahashi identities for the colored Boulatov model,” J. Phys. A 44, 415402 (2011) [arXiv:1106.1847 [hep-th]].

[49] R. Gurau, “The Schwinger Dyson equations and the algebra of constraints of random tensor models at all orders,” Nucl. Phys. B 865, 133 (2012) [arXiv:1203.4965 [hep-th]].

[50] R. Gurau, “The 1/N Expansion of Tensor Models Beyond Perturbation Theory,” arXiv:1304.2666 [math-ph].