Supporting Information:
• Supporting Information S1

Correspondence to:
B. H. Mauk,
Barry.Mauk@jhuapl.edu

Citation:
Mauk, B. H., Clark, G., Allegrini, F., Bagenal, F., Bolton, S. J., Connerney, J. E. P., et al. (2020). Juno energetic neutral atom (ENA) remote measurements of magnetospheric injection dynamics in Jupiter's Io torus regions. Journal of Geophysical Research: Space Physics, 125, e2020JA027964. https://doi.org/10.1029/2020JA027964

Received 2 MAR 2020
Accepted 7 APR 2020
Accepted article online 14 APR 2020

Abstract In planetary magnetospheres, singly charged energetic particles, trapped by the planet's magnetic field, can steal electrons from cold gas atoms and become neutralized. These new energetic neutral atoms (ENAs), no longer confined by the magnetic field, can travel out of the system similar to photons leaving a hot oven. ENAs have been used to image magnetospheric processes at Earth, Jupiter, and Saturn. At Jupiter, the opportunities to image the magnetosphere have been limited and always from the perspective of the near-equatorial plane at distance >139 RJ. The polar-orbiting Juno mission carries the Jupiter Energetic particle Detector Instrument that is serendipitously sensitive to ENAs with energies >50 keV, provided that there are no charged particles in the environment to mask their presence. Here we report on the first ENA observations of Jupiter's magnetosphere from a nonequatorial perspective. In this brief report we concentrate on emissions seen during Perijove 22 (PJ22) during very active conditions and compare them with emissions during the inactive Perijove 23 (PJ23). We observe, and discriminate between, distinct ENA signatures from the neutral gases occupying the orbit of Io (away from Io itself), the orbit of Europa (away from Europa), and from Jupiter itself. Strong ENA emissions from Io's orbit during PJ22 are associated with energetic particle injections observed near Io's orbit several hours earlier. Some injections occurred planetward of Io's L-shell (magnetic position), somewhat of a surprise given that injections are thought to be driven by outward transport of plasmas generated by Io.

Plain Language Summary In the space environments of magnetized planets (magnetospheres), magnetic fields trap and confine energetic charged particles like protons and singly charged heavier ions. These ions can neutralize themselves by stealing electrons from cold gas atoms within the same environment. They become energetic neutral atoms (ENAs), and no longer confined by the magnetic field, can travel out of the system in a fashion similar to light leaving a hot oven. ENAs have been used to image magnetospheric processes at Earth, Jupiter, and Saturn. At Jupiter, the opportunities to image the magnetosphere have been limited and always from the perspective of the near-equatorial plane at large distances (>139 RJ). The polar-orbiting Juno mission carries the Jupiter Energetic particle Detector Instrument that is serendipitously sensitive to ENAs with energies >50 keV, provided that there are no charged particles in the environment to mask their presence. Here we report on the first ENA observations of Jupiter's magnetosphere from a nonequatorial perspective. That perspective allows us to observe distinct ENA signatures from the neutral gases occupying the orbit of the moon Io (away from Io itself), the gases in the orbit of the moon Europa (away from Europa), and from Jupiter itself.

1. Introduction and Background

Energetic neutral atoms (ENAs) have been directly observed coming from the magnetosphere of Jupiter by Voyager (Kirsch et al., 1981) and by the Cassini spacecraft as it flew by Jupiter on its way to Saturn (Krimigis et al., 2002; Mauk et al., 2003, 2004; Mitchell et al., 2004). Because of the spatial extent of the admittedly poorly imaged structures, Mauk et al. (2003, 2004) concluded that neutral gases in the orbit of Europa contributed greatly to the hydrogen ENAs observed with energies between 50 and 80 keV. The independent
determination of the presence of substantial neutral gases in Europa’s orbit by Lagg et al. (2003) and Kollmann et al., 2016), and the recent evaluation of the role of neutral gases relative to plasmas by Smith et al. (2019), gives additional confidence to this conclusion. Mitchell et al. (2004) showed that both neutral hydrogen (H) and neutral heavy atoms (presumably O and S) were emitted by the magnetosphere. These authors showed that the emissions varied very little over an 80-day period. Plainaki et al. (2018) provided additional reconstruction of the Cassini-observed ENA emissions from Jupiter and showed substantial azimuthal (around Jupiter) asymmetry in the emissions. Roelof (1987) initiated the concept of using ENAs to image magnetospheric structures.

These previous ENA observations of Jupiter were made under conditions that were quite limiting. The equatorial perspective led to ambiguity in identification of the source, since emissions from Io’s orbit or from Jupiter itself had to be viewed through Europa’s environment. While Mauk et al. (2003, 2004) concluded that an observed central structure represented emissions from Jupiter itself (i.e., from Jupiter’s exosphere interacting with nearly precipitating ions), that conclusion has been challenged in subsequent informal discussions given the possibility that that structure came from nonuniform gas distributions around Europa’s orbit. The ENA emission studies performed subsequently at Saturn, with a highly capable ENA camera situated at ideal positions relative to the Saturnian system, made it clear how valuable ENA studies can be for characterizing the dynamics of a magnetosphere (Mitchell et al., 2005; Mitchell, Krimigis, et al., 2009; Mitchell, Kurth, et al., 2009).

The Juno spacecraft, now in a polar orbit around Jupiter, does not carry an instrument designed to measure ENAs. However, its energetic particle instrument, the Jupiter Energetic particle Detector Instrument (JEDI), can measure ENAs with energies >50 keV provided there are no charged particles around to mask the presence of the ENAs. We report here that JEDI does indeed observe ENAs coming from Jupiter’s inner magnetosphere. Juno obtains these observations from high Jovigraphic latitudes when the spacecraft is on magnetic field lines that connect to Jupiter’s polar cap, where the energetic charged particle populations are very sparse. Several different ENA components are observed as reported here, but the most unique measurements are of the Io plasma torus regions, emissions that are tied here directly to the dynamical state of the Io orbital regions.

In the sections that follow, we discuss the Juno and the JEDI measurement capabilities, analyze the observed ENA emissions, discuss the relationship between the ENA measurements and in situ measurements within the remotely sensed regions, and conclude with a discussion and summary.

2. Juno and JEDI Configurations

The Juno mission was launched in 2011, and was inserted into Jupiter orbit in July of 2016 with the following characteristics: 1.05 × 112 RJ polar (~90° inclination), ~53.5-day period elliptical orbit with the line of apsides close to the dawn equatorial meridian. Following insertion, the line of apsides has been slowly precessing southward (~1° per orbit) and toward the nightside (~4° per orbit). Juno targets multiple disciplines including Jupiter’s interior, atmosphere, polar space environment, and its powerful aurora (Bagenal et al., 2017; Bolton et al., 2017). Bolton et al. (2017) and Connerney et al. (2017) presented initial findings for all disciplines.

We focus in this study on measurements from the JEDI (Mauk et al., 2017). JEDI was designed to measure energy, angular, and compositional distributions of electrons (~25 to ~1,200 keV) and ions (protons: ~10 keV to >1.5 MeV; oxygen and sulfur from ~145 keV to >10 MeV). It uses solid-state detectors (SSDs), thin foils, and Microchannel Plate detectors to measure electron SSD singles rates (SSDs shielded by 2 μAl), time of flight by energy (TOFxE) for higher-energy ions, and time of flight by Microchannel Plate detector pulse height (TOFxPH) for lower-energy ions. It is critical to note that JEDI measures atoms whether or not they are charged. The first material interaction that a particle makes with the JEDI is the penetration of a very thin foil within the collimator. That foil redistributes the charge state of the particle, and so the initial charge state of the particle is lost in any case. Mauk et al. (2020) provide an overview of the findings of the JEDI investigation over Jupiter’s polar regions.

JEDI is a complement to the lower-energy Jupiter Auroral Distributions Experiment (JADE) instrument. JADE measures distributions of electrons from 100 eV to 100 keV and of ions with composition up to
46 keV/q, where q is electric charge (McComas et al., 2017). Allegrini et al., 2017 and Szalay et al., 2017 published initial results from JADE over Jupiter’s polar regions. However, unlike JEDI, JADE does not detect neutral atoms because electrostatic deflection is a critical aspect of the JADE measurements.

JEDI consists of three independent instruments, each of which has six telescopes arranged in an ~160° fan. Figure 1b shows the configuration of these three instruments (J90, J180, and J270) that comprise the Jupiter Energetic particle Detector Instrument (JEDI). This figure also defines the angle called “azimuth.” See the text for further details of both (a) and (b).

The 12 different telescopes oversample the structure by cutting through it with different rotational phasing with respect to the structure as the sensors accumulates over 3° intervals every 6°. An important element in determining whether JEDI is measuring charged particles or ENAs is an examination of how ordered or disordered the particle angular distributions are with respect to the local magnetic field. Hence, the magnetometer measurements on Juno (MAG; Connerney et al., 2017) are critical to the ENA sensing reported here.

Figure 1a shows the particular Juno orbit that will be the focus of this paper. Here the perspective is from infinity along the dawn axis. For this particular time frame, the orbit resides roughly within the noon-midnight meridian. The observations that we will highlight are those made at the positions on Juno’s orbit shown with purple bulges (the first and last of which are labeled with the times 0512 and 0815). At those times, Juno does not reside within the intense charge particle environments of Jupiter. It resides, rather, on magnetic field lines that connect to Jupiter’s polar cap, where the charged particle
populations are often very sparse. The spin axis of Juno points roughly toward the Sun (toward Earth to be more precise), and the JEDI ion and ENA measurement all take place roughly (although not exactly) within a plane that is perpendicular to the Sun line. In essence, JEDI obtains a one-dimensional, 360° image in a direction roughly normal to the Sun line.

3. JEDI ENA Measurements

Figure 2 shows selected JEDI measurements along the trajectory shown in Figure 1a. The data shown are JEDI measurements of the combined oxygen (O) and sulfur (S) channels (>144 keV). The top panel is a standard survey pitch angle versus intensity distribution plot, with 30-s time averaging. Here, pitch angle is the angle between the local magnetic field direction and the velocity vector of the particles that are measured. Prior to about the time of 0450, Juno is within the "Charge Particle Domain" identified schematically in Figure 1a. After that time, Juno enters the Polar Cap Domain. Even though the charged particles are sparse within the Polar Cap Domain, there are distinctive and repeatable charged particle signatures. Specifically, in the top panel, there is a feature labeled “ions” which corresponds to O and S ions accelerated downward onto the atmosphere by magnetic field-aligned electric potentials that are at the megavolt level (Clark et al., 2017; Mauk et al., 2020). However, the speckled feature within this top panel, labeled “ENAs,” is clearly not a...
charged particle feature. If this feature is attributed to charged particles, it would correspond to O and S ions with hundreds of keV coming up from Jupiter’s low altitude regions in the absence of a substantial downgoing component. Additionally, this feature shows no perturbation as it crosses the time of the ion feature mentioned above. Given that that ion feature corresponds to megavolts of downward electrostatic potential above the spacecraft, there is no way that one could observe upgoing ions of several hundred keV without seeing the downward reflection of those ions. The broader feature to the right (labeled “T”) may have had charged particles mixed in with the ENA feature.

Once one concludes that the particles are neutral, pitch angle ordering is no longer appropriate. Figure 2b is an “azimuth” versus intensity distribution plot with 300 s averaging. Azimuth is an angle within the Jupiter-Sun Orbit (JSO)-Y and JSO-Z plane, defined in Figure 1b. Here we see some very distinctive features, labeled in the left side of the panel. The lowest feature is the ion feature that was also labeled ions in the top panel. However, three other features have emerged, labeled “Feature A,” “Feature B,” and “Feature C.” Feature B does not really resolve itself until we do more averaging. In the third panel, we average over 600 s (10 min) and change over from a color scale showing intensity to one showing counts per bin. Here the resolution of Feature C is becoming a little clearer. A detailed, digital, and formal examination of the counts corresponding to these features shows that there is a very consistent count minimum between Features A and B. Figure 3a shows the results of that formal examination. Here we have generated running centroid positions for the three features. This examination uses 10-min averages at a cadence of 5 min. We will return to Figure 3 in section 4.

Figure 2d shows the energy distribution for the “mostly ENA” features. For this panel we extracted the energy distributions from the data in the top panel by selecting only pitch angles greater than 110°. Because this averaging process includes a lot of the empty space between the features of interest (given limitations in our software), we renormalized the labels on the color scale by a factor of 10 to yield the approximate peak intensity for the lowest-energy channel for Feature A. We see finite intensities up to several MeV. We assume that the ENAs result from charge exchange interactions between heavy ions (O⁺ and S⁺) and heavy neutral gases (O and S; we discuss in section 7 the possibility that cold ions in additions to cold neutrals are involved). Figure S1 in the supporting information repeats a charge exchange cross section plot published by McEntire and Mitchell (1989). We see there that for O⁺ interacting with O, finite interactions occur at energies as high as several MeV, qualitatively consistent with our observations.

Figure 4 shows a plot similar to Figure 2 but for >50 keV hydrogen. While the strongest ENA features previously identified are still in evidence, there appears to be a greater amount of charged H⁺ particle contamination of the hydrogen ENA measurements. We will say little more about the hydrogen ENAs in this first publication.

4. JEDI ENA Viewing Analysis

The scatter plots in Figure 3a represent the average or centroid of the azimuth locations of each of the three features identified at each time (5-min cadences are used with 10-min averaging). The scatter within each feature is a reflection of the counting statistics uncertainties engendered by the very low number of counts within each bin. Feature A has a lower amount of scattering because the counts per bin are higher. To average out the scattering, we have generated analytic fits to each of the features, as shown on the figure. The fits are derived by choosing an appropriate analytic functional form and then optimizing the free parameters of those functional forms by minimizing the sum of the squared differences between the data and the function (i.e., a chi²-type procedure). The fits are as follows:

![Figure 3](image-url)
A: Azimuth ° \(\langle \text{TH} \rangle = 36.93 \tan(0.667 (\text{TH} - 4.679))^{0.5058} \) (1)

B: Azimuth ° \(\langle \text{TH} \rangle = -1.9038 (\text{TH}^2) + 20.79 \text{TH} + 19.166 \) (2)

C: Azimuth ° \(\langle \text{TH} \rangle = -1.6588 (\text{TH}^2) + 14.275 \text{TH} + 130.38 \) (3)

Here TH is the time in hours for Day 255, 2019. These fits are used to evaluate the look directions of JEDI within the context of the Jovian system. Figure 5 shows the results of that analysis. The figure shows the look directions associated with Feature A with green lines starting from the Juno orbital position at each of several different times along the trajectory. It shows the look directions of Features B and C with gray and dashed blue lines, respectively.

We conclude that the strongest Feature A is associated with emissions from the vicinity of Io’s orbit. The weaker Features B and C appear to be coming, respectively, from Jupiter itself and from the orbit of Europa (or slightly inside of the orbit of Europa). With regard to the emissions coming from the orbits of Io and Europa, one must recognize that the energetic particle populations might be just as intense, or indeed more intense, between the two orbits, or otherwise away from the two orbits.

The orbital positions of Io and Europa are favored for the emissions because the neutral gas populations (and cold ion populations) maximize at just those orbits (Smyth & Marconi, 2006). Figure 6 shows what kinds of shifts in the fits one would need to alter the interpretations. For Feature A...
at the bottom of the figure, the shift shown would move the fields of view from the Io orbit to the Europa orbit. For Feature B at the middle, the shift shown would move the fields of view by 1 RJ at Jupiter with respect to where they are now. For Feature C, the shift shown would move the fields of view from the Europa orbit to the Io orbit. Features A and C are well constrained. The most uncertainty is with Feature B.

The analysis shown in Figure 5 is strictly geometric based on the centroids of the observed ENA features. For that analysis there is no consideration of the nature of the environment from which the ENAs are coming. The apparent strong focusing of the green lines just on the orbit of Io may mislead some viewers. One expects that the cloud of neutrals and possibly cold plasmas that serve to convert the trapped ions into ENAs have vertical and radial extents that may be as large as ±1 RJ (e.g., Bagenal & Dols, 2020). It is likely that the ENAs are coming from an extended region around the Io orbit that reflects the distribution of these components. If JEDI were reading thousands of counts per accumulation rather than just 10−20, we could contemplate deconvolving the measurements from the distribution of emitters (using, e.g., a forward-model inversion process) to reveal the spatial structure of the emitting regions. Given the limitations of the counts available, the best that we can do right now is to determine the centroid of the emitting region. Given present knowledge about the emitting regions, the fact that the centroid focuses so closely on the orbit of Io means that the spatially extended emitting region must be roughly symmetric around that position.

Figure 7 shows other aspects of the JEDI viewing associated with the ENA emissions. Figure 7a confirms that Feature B is associated with views that roughly intersect Jupiter itself. Figure 7a shows the gray lines tilted (by 5°) because the JEDI sensors do not precisely view perpendicular to the Juno spin axis. Around each of these centroid lines is a range of angles that extends perhaps as much as 10° on either side, given the peculiar twists to the offsets. A more accurate determination of just where and if these views encounter the planet must await the development of new tools and future studies.

We expect that ENA emissions from Jupiter itself will be very complicated. Most such ENAs are generated roughly normal to the magnetic field lines within the upper atmosphere at certain positions where ions are...
nearly precipitating and locally mirroring within the exosphere. Because we are examining heavy ions from the magnetosphere rather than light ions from the atmosphere, it is most likely that these ENAs coming from Jupiter are not the result of ions locally accelerated by auroral processes as observed at Saturn (Mitchell, Kurth, et al., 2009). Because of the angle with which the magnetic field encounters the exosphere, there will be ions emitted with substantial polar components to their velocities. All of these considerations of Jupiter as a source of ENA emissions must await future studies. For now, all we can say is that the viewing analysis makes it likely that Feature B is a consequence of ENAs coming from the close vicinity of Jupiter.

Figure 7b shows that the ENA emissions associated with Io and Europa do not come from the vicinity of Io or Europa themselves. They truly are associated with charge exchange interactions occurring with gases distributed along the orbits of these moons and not with gases close to the moons themselves.

It is finally of interest that the emissions from the orbit of Io and Europa are asymmetric. The emissions do not come uniformly around the orbit of these moons. The Io emissions are observed only on one side, and the Europa emissions are observed only on the other side. While it is expected that there are azimuth asymmetries in the neutral gas populations (e.g., Smyth & Marconi, 2006; Smith et al., 2019), we suggest that the emission asymmetries are probably dominated by azimuthal asymmetries in the energetic particle populations, given that those populations are transported by azimuthally constrained dynamic injections.

5. ENA Emission Variability

One test of the role of dynamic injections in the generation of asymmetries in the ENA emissions is an examination of the time variability of the emissions. Figure 3b examines short-time variations. This panel shows the total counts associated with each component of the emissions. The error bars are the ±1 standard deviation error (N^{1/2}) based on the average counts within each component. For the Io component (A) there are hints of structure, but the maximum contrast at most local ups and downs corresponds to only two standard deviations. And so for the Io emissions, our data do not have the fidelity to identify local structures clearly. We do see significant variations for both the Jupiter component (B) and the Europa component (C). We believe that the variations in Feature C are likely associated with injection-induced variability in Europa’s orbit. The causes of the quasiperiodic variations in the Jupiter (Feature B) component are unknown. Is this structure a temporal variation of a localized emission hot spot, or is it the result of spatial structure viewed as the instrument scans across the planet? There are also variations in the azimuth centroid positions (Figure 3a), but analyses show that they have no distinct correlation with the total counts variations (Figure 3b). This issue may possibly be resolvable once we create proper tools for displaying the data in the Jupiter context.

Longer-term temporal dynamics are observable by examining orbit-to-orbit variations. Once we recognized the ENA emissions in Perijove 22 (PJ22) survey plots, an examination of other perijoves revealed that ENA emissions are present in the JEDI data for essentially all of the perijoves. But the intensities of the ENA emissions and the patterns of emission are quite variable. For this first study, we compare the ENAs from PJ22 with those of just one other perijove, PJ23. The value of using this particular perijove is that the orbital configuration is very similar to that of P22. The data from PJ23 for oxygen and sulfur are shown in Figure 8 with exactly the same plot parameters as those used for PJ22 in Figure 2. A casual glance at these two figures shows that the PJ23 emissions were substantially less intense than were the PJ22 emissions; the spatial configuration also seems very different.

In the next section, we address whether the variability in ENA emissions that we see between PJ22 and PJ23 makes sense from the perspective of the local environments of Io and Europa.

6. In Situ Characterization

A valuable aspect of the Juno observations of ENA emissions on the outbound legs of the trajectories is that the spacecraft passes through the remotely sensed environments on the inbound legs just several hours before. Figures 9 and 10 show the data taken by JEDI in the vicinity of the Io and Europa orbits during those inbound time frames. While there is much to discuss here, one immediate conclusion is that the environment near Io’s orbit is comparatively intense and dynamic during PJ22 (Figure 9) and relatively quiescent...
during PJ23 (Figure 10). This immediate observation is consistent with the fact that relatively intense ENA emissions occurred during PJ22 and not during PJ23.

6.1. JEDI Measurements in Jupiter’s Hard Radiation Regions

Before discussing the implications of Figures 9 and 10 more completely, we provide here more details about their contents. From top to bottom these figure show the following: (a) intensities from one or more of our oxygen and sulfur channels (note that below about 600 keV, JEDI cannot discriminate between O and S); (b) proton intensities in the form of energy-time-intensity spectrograms; (c) the corresponding electron intensities with the energy scale inverted (helpful when studying injection phenomena); and (d) singles rates from the small pixel ion SSDs from JEDI-A180.

JEDI was not designed to make measurements within this region containing Jupiter’s more intense radiation belts. The radiation belt electrons can compromise the electron measurements in particular. JEDI contains a feature to diagnose this condition. JEDI-A180 has two of its small-pixel ion SSDs covered with thin shields of titanium, and with three sister SSDs uncovered or bare (a sixth telescope is partially obscured by a Sun shield). Absent any radiation that penetrates the side shielding of the instrument, the unshielded detectors measure electrons with energies >25 keV, while the shielded detectors measure electrons with energies >500 keV. When side-penetrating radiation belt electrons dominate, the response of all of these detectors becomes essentially the same. On the left portions of both Figures 9 and 10 we see that the unshielded detectors are reading higher values than are the shielded detectors, indicating that a good measurement of the foreground electron population is being made. On the right sides of both figures, the responses pinch together indicating that side-penetrating electrons are dominating the responses.

The ion measurements are much cleaner because they depend on coincidences between three different signals, a start pulse generated by the penetration of a thin start foil by the ion, a corresponding stop pulse, and

Figure 8. (a–d) Various displays of the JEDI oxygen (O) plus sulfur (S) channels for the outbound leg of the Juno Perijove 23. Figure 2 caption describes the panels.
a SSD pulse. Nonetheless, intense electron radiation can compromise the ion measurements. The most vulnerable channels are those for heavy ions at the lowest energies because their times of flight are the longest. Electrons can generate what are termed "accidental" events. The red dashed curves in the top panels of Figures 9 and 10 represent the estimated accidental rates corresponding to the lowest-energy O + S channel (145–209 keV). We see that for PJ22 (Figure 9) the ion measurements are clean, whereas for PJ23 (Figure 10) there is a region just inside of Io's L-shell where the response of this channel is dominated by electrons. There are also features within the protons spectrogram of Figure 10 (labeled "e-") that show evidence of electron contamination.

6.2. Implications of the JEDI In Situ Measurements

The ENAs for PJ22 in Figure 2 are not coming from the same populations as those shown for PJ22 in Figure 9. Figure 7b shows approximately, where on Io's orbit Juno crossed Io's L-shell. That crossing occurred between 3.5 and 6 hr prior to the time of the ENA measurements. Given that transport is dominated by rigid Jovian rotation (with only small deviations coming from magnetic drifts), the particles observed by Juno on the inbound would be rotated to 12-hr clock positions between about 2 and 5 o'clock.
at the times of the ENA measurements. These positions were not within the field of view of JEDI. And, given that the ENA emissions themselves suggest that there are substantial azimuthal asymmetries, we cannot be assured that the in situ measurements are truly characterizing the populations that are being observed remotely.

But, what we can say is that during PJ22 (Figure 9), dynamic injections had recently populated the regions near and even inside Io’s orbit ($R = 5.9$ RJ). Dynamic injections have been characterized in more distant regions by Mauk et al. (1999) and in regions as planetward as $L = 7$ using Juno by Haggerty et al. (2019). One small-scale injection event studied by Thorne et al. (1997), and labeled an “interchange event,” occurred just outside of Io’s orbit, at about $L = 6.02$. And the auroral manifestations of such injections have been studied by Mauk et al. (2002), Dumont et al. (2015) and Bonfond et al. (2012), with the latter authors finding one rare apparent injection just at Io’s L-shell. Juno detected time-dispersed injections right at Io’s L-shell in Figure 9 in both the H$^+$ distributions and the O $+$ S distributions. That these are time-dispersed features and not spatially dispersed features is evident from the fact that, for the H$^+$ observations, the dispersion sense is the same when we cross inbound across Io’s orbit and when we cross outbound. And, for PJ23 in Figure 10, we can say that there was no evidence of recent injection phenomena in the vicinity of Io’s orbit. In fact, during PJ23, the regions near Io had been emptied substantially, presumably by persistent charge exchange interactions with the resident neutral gases. It is interesting, however, that there is evidence of recent injection phenomena during the PJ23 time frame further out, in the vicinity of Europa’s orbit.

The system can generate ENA emissions even in the absence of recent dynamic injections. Even in relatively quiet times there is often a “ledge” of ion intensities just outside of Io’s L-shell that can interact with the

Figure 10. (a–d) JEDI electron and ion channels data from the inbound leg of Juno Perijove 23. The caption of Figure 9 describes the panels.
iogenic gases and generate ENAs. That ledge is evident in observations reported by Kollmann et al. (2017) and Paranicas et al. (2019) and is apparent in Figure 10 (top) in the O + S ions just outside of Io’s L-shell. Over time, one expects that injections (thought to be the primary inward transport mechanisms for energetic particles) will populate the inner regions and that iogenic gases and the moon itself will sculpt the resulting distributions into the distribution observed during quieter times. For the PJ22 case, we believe that recent dynamic injections play a key role in the heightened intensity of the ENAs observed during that time frame.

It is of interest to evaluate whether or not the intensities and neutral gasses within the Io regions are sufficient to account for the observed ENA intensities (Figure 2, bottom). To perform this calculation, we use the following parameters. The O + S 144- to 209-keV channel intensity close to Io from Figure 9 is \(J(\text{OS}^+) \sim 3 \times 10^3 \text{ 1/(cm}^2\text{s.sr.keV}).\) We combine that parameter with an Io neutral torus density of \(N = 35/\text{cm}^2\), a charge exchange cross section of \(\sigma = 7 \times 10^{-16} \text{ cm}^2\) (Figure S1 in the supporting information), and a neutral gas cloud thickness of \(s = 1–2 \text{ RJ}\) (Io torus parameters reviewed by Bagenal & Dols, 2020). One finds with \(J(\text{ENA}) = (\sigma N J(\text{OS}^+)) ds\), that \(J(\text{ENA})\) is expected to be about 0.5 to 1/(cm\(^2\).sr.keV). And indeed, that value is within a factor of 2 of what we find for the lowest-energy channel in the bottom panel of Figure 2. However, we acknowledge great uncertainty in the parameters used for these calculations.

One of the uncertainties in such calculations for Io is the possible role of cold plasma, in addition to cold neutral gases, in providing the neutralizing electrons for the energetic particles. Smith et al. (2019) showed for the Europa regions that cold ions can contribute to the neutralizing process even while neutral gases likely dominate. In Io’s environment, the ratio of charged ions to neutral gases is much larger than it is for Europa (Bagenal & Dols, 2020). Hence, it may turn out to be true that charged ions, rather than neutral gases, play a dominant role in the neutralization process. This uncertainty needs to be investigated.

6.3. Miscellanea

An interesting question is as follows: Why we do not see more substantial O + S ENA emissions from the Europa region during the PJ23 time frame, given that the O + S ion intensities are relatively high near Europa. We remind ourselves that Juno inbound is not looking at the same populations that are remotely sensed during Juno outbound. However, one other possible answer resides with the charge state of these ions. In their examination of the consequences of neutral gas in the vicinity of Europa on pitch angle distributions, Lagg et al. (2003) concluded that the heavy ions were multiply charged in the vicinity of Europa. Multiply charged heavy ions do not yield ENA emissions on interacting with neutral gas. As these ions are transported through the Europa regions and toward Io, the interactions with the neutral gases are thought to redistribute the charge states of these heavy ions, causing them to migrate toward singly charged states. More recently, Nénon and André (2019) showed evidence that the transition to singly charge states for heavy ions becomes significant just inside of Europa, as soon as 9.2 RJ as compared to the Europa position of 9.6 RJ. This finding is interesting given that the present observations of O + S ENAs from the Europa region during PJ22 seem to occur slightly inside of Europa’s orbit (Figure 5; although we do not trust the viewing accuracy to this level of detail). Clark et al. (2016), in their diagnosis of charge states using time dispersion from dynamic injections, also found multiply charged heavy ions (O and S) outside of Europa, but sometimes singly charged populations were observed, suggesting that the results can change over time. And more recently it has been found (George Clark, private communication, 1 March 2020) that heavy ions from the most distant portions of Jupiter’s magnetosphere (measured over Jupiter’s polar cap) have mostly singly charge O and doubly charged S. Much more work using many more Juno orbits will be required before we can hope to obtain a convergence between the in situ and remote sensing observations.

One interesting sidelight to the injections observed near Io is that they extend inside of Io’s L-shell. Here, in Figures 9 and 10, Io’s L-shell is determined not using the magnetic field models but by the local minima within the electron populations (bottom panels; however, these locations are consistent with the field models). Because of the tilt of Jupiter’s magnetic axis, a satellite like Io traverses a range of L-values as Jupiter rotates (\(dL/L \sim \pm 1.5\%\) for a pure dipole). The local minima in the energetic electron population provide a mean value. It is somewhat of a surprise that such clear injections occur inside of Io’s L-shell since outward transport of plasmas generated from Io are thought to drive the injection phenomena. Part of that surprise comes from comparisons with the work on the auroral manifestations of the injections by Dumont et al. (2015). These authors found no injection signatures inside of Io’s L-positions. While we do not know why we are seeing such injections and Dumont et al. (2015) did not, we do know that injections observed in...
situ do not necessarily show up in auroral images (Haggerty et al., 2019). Also, there may be something about the innermost environment that suppresses such auroral manifestations. For example, the Io regions may have the wrong plasma environment for growing the waves that scatter the electrons into the loss cone. Paranicas et al. (2019) reported similar features as we now report inside Io's orbit, and identified them as transient populations.

It may be of interest that electron injections were not observed in association with the near-Io ion injections close to Io. Unfortunately, the JEDI electron responses inside of Io’s orbit were dominated by electrons with >10- to 15-MeV energies that penetrated the sidewalls of the instrument. Modest electron injection signatures would not have been observed; however, strong ones might have been. Past experience (e.g., Mauk et al., 1999) shows that injections are not always visible in both ions and electrons. That earlier work concluded that the visibility of an injection signature was a function of the radial (L) gradient in the phase space density (for constant adiabatic invariants). This conclusion was based on the deduction that injections represent relatively sudden planetward displacements of populations over limited azimuthal extents. Injections are invisible when the radial gradient is small, even when the radial displacements are large. More events must be examined, and more work performed, before we know the reasons for the differences between electron and ion responses near Io.

7. Summary

In this first brief report, we aspire to introduce the capability of Juno to make ENA observations and to report on the first such observations at Jupiter from a nonequatorial perspective. By doing so we have made the first definitive observation of ENAs with greater tens of keV energy coming from the Io torus regions. We will perform evaluations that are more comprehensive once we develop proper tools in the months to come for projecting the ENA emissions onto the Jovian geometric system. These observations and analyses are particularly relevant to the European Space Agency JUICE mission to orbit Jupiter, with a planned arrival data of 2029, which will carry proper ENA imagers (Brandt et al., 2018; Futaha et al., 2015).

To summarize our findings,

1. the first nonequatorial observations of ENA emissions from Jupiter have revealed distinct and distinguishable emissions coming from the orbit of Io, the orbit of Europa, and from Jupiter itself. No previous observation has reported ENA emissions uniquely identified with Io with energies tens to hundreds of keV, even to several MeV.
2. The emissions from the orbits of Io and Europa are azimuthally asymmetric. Specifically for the particular PJ22 orbit examined, Io orbit emissions were observed distinctly only on the duskside, and Europa orbit emissions were observed distinctly only on the dawnside. For at least the Europa emissions, time variability of the emissions over several hours reveals smaller-scale azimuthal structure.
3. ENA emissions are clearly coming from the direction of Jupiter itself, but the tools available now are too crude to determine the region and mechanisms of emission. The likely cause is the simple precipitation of ions.
4. In situ measurements made near the orbits of Io and Europa several hours in advance of the ENA emissions, observed during PJ22, showed clear evidence of dynamic energetic particle injections right in the Io regions, and substantial O + S ion intensities, consistent with seeing relatively intense ENA emissions during that periapse. No such injections, and relatively low O + S intensities, were observed during PJ23, for which the ENA intensities were much lower.
5. Dynamic injections were observed inside of Io’s L-shell, a modest surprise given that transport of plasmas outward from Io are thought to drive injections.

References

Allegrini, F., Bagenal, F., Bolton, S., Connerney, J., Clark, G., Ebert, R. W., et al. (2017). Electron beams and loss cones in the auroral regions of Jupiter. Geophysical Research Letters, 44, 7131–7139. https://doi.org/10.1002/2017GL073180
Bagenal, F., Adriani, A., Allegrini, F., Bolton, S. J., Bonfond, B., Bunce, E. J., et al. (2017). Magnetospheric science objectives of the Juno mission. Space Science Reviews, 213(1-4), 219–287. https://doi.org/10.1007/s11214-014-0036-8
Bagenal, F., & Dole, V. (2020). The space environment of Io and Europa. Journal of Geophysical Research: Space Physics, 125. https://doi.org/10.1029/2019JA027485

Acknowledgments

We are grateful to NASA and contributing institutions that played critical roles in making the Juno mission possible and particularly those numerous individuals at The Johns Hopkins University Applied Physics Laboratory (JHU/APL) who developed the JEDI. We are grateful to Lead Engineer Charles E Schlemm and David B. LaVallee for their continued support of JEDI operations. We are grateful to JHU/APL’s Lawrence E. Brown and James M. Peachey for their roles in developing and maintaining the data flow and display software used here. NASA’s New Frontiers Program funded this work for Juno via subcontract with the Southwest Research Institute. The data presented here are available from the Planetary Plasma Interactions Node of NASA’s Planetary Data System (https://pds-ppi.igpp.ucla.edu/). Also, ASCII dumps with header documentation have been performed for each panel of the JEDI data displayed in this paper and is accessible online (doi:10.5281/zenodo.3740786). The JEDI display software used here is available online and can be accessed by contacting the lead author. A 1-hr teleconference tutorial provided by the lead author or his designate is generally sufficient for a user to have sufficient expertise to proceed.
Bolton, S. J., Adriani, A., Adunmatooa, V., Allison, M., Anderson, J., Atreyia, S., et al. (2017). Jupiter's interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft. Science, 356(6340), 821-825. https://doi.org/10.1126/science.aal108

Bolton, S. J., Lunine, J., Stevenson, D., Connerney, J. E. P., Levin, S., Owen, T. C., et al. (2017). The Juno mission. Space Science Reviews, 213 (1-4), 5-37. https://doi.org/10.1007/s11214-017-0429-6

Bonfond, B., Grodent, D., Gérard, J.-C., Stallard, T., Clarke, J. T., Yoneda, M., et al. (2012). Auroral evidence of Io's control over the magnetosphere of Jupiter. Geophysical Research Letters, 39, L01310. https://doi.org/10.1029/2011GL050253

Brandt, P. C., Hisieh, S. Y., DeMaistre, R., & Mitchell, D. G. (2018). EVA imaging of planetary ring currents. In A. Keiling, O. Marghitu, & M. Wheatland (Eds.), Geophysical Monograph 235, chapter VI (pp. 139–154). Washington DC: American Geophysical Union. https://doi.org/10.1029/9781119324522

Clark, G., Mauk, B. H., Haggerty, D., Parianicas, C., Kollmann, P., Rymer, A., et al. (2017). Energetic particle signatures of magnetic field-aligned potentials over Jupiter's polar regions. Geophysical Research Letters, 44, 8703–8711. https://doi.org/10.1002/2017GL074366

Clark, G., Mauk, B. H., Parianicas, C., Kollmann, P., & Smith, H. T. (2016). Charge states of energetic oxygen and sulfur ions in Jupiter's magnetosphere. Journal of Geophysical Research: Space Physics, 121, 2264–2273. https://doi.org/10.1002/2015JA022557

Connerney, J. E. P., Adriani, A., Allegreini, F., Bagental, F., Bolton, S. J., Bonfond, B., et al. (2017). Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits. Science, 356(6340), 826–832. https://doi.org/10.1126/science.aam5928

Connerney, J. E. P., Benn, M., Bjarno, J. B., Denver, T., Espley, J., Jorgensen, J. L., et al. (2017). The Juno magnetic field investigation. Space Science Reviews, 213(1-4), 39–138. https://doi.org/10.1007/s11214-017-0334-2

Connerney, J. E. P., Kotsiaraos, S., Oliversen, R. J., Espley, J. R., Jorgensen, J. L., Jorgensen, P. S., et al. (2018). A new model of Jupiter's magnetic field from Juno's first nine orbits. Geophysical Research Letters, 45, 2590–2596. https://doi.org/10.1029/2018GL077312

Dumont, M., Grodent, D., Radioti, A., Bonfond, B., & Gérard, J.-C. (2015). Jupiter's equatorward auroral features: Possible signatures of magnetospheric injections. Journal of Geophysical Research: Space Physics, 119, 10,068–10,077. https://doi.org/10.1002/2014JA020527

Futaana, Y., Barabash, S., Wang, X. (2018). Voyager I results. Geophysical Research Letters, 8, 169-172. https://doi.org/10.1002/2018GL080016

Kollmann, P., Parianicas, C., Clark, G., Mauk, B. H., Haggerty, D. K., Rymer, A. M., et al. (2017). A heavy ion and proton radiation belt inside of Jupiter's rings. Geophysical Research Letters, 44, 5259–5268. https://doi.org/10.1002/2017GL073730

Krimigis, S. M., Mitchell, D. G., Hamilton, D. C., Dandouras, J., Armstrong, T. P., Bolton, S. J., et al. (2002). A nebula of gases from Io surrounding Jupiter. Nature, 415(6875), 994–998. https://doi.org/10.1038/415994a

McComas, D. J., Alexander, N., Allegreini, F., Bagental, F., Beebe, C., Clark, G., et al. (2017). The Juno Auroral Detector Instrument (JEDI) investigation for the Juno mission. Space Science Reviews, 213(1-4), 289–346. https://doi.org/10.1007/s11214-017-0429-6

Mauk, T. C.,驰援. J., Grodent, D., Waite, J. H. Jr., Parianicas, C. P., & Williams, D. J. (2002). Transient aurora on Jupiter from injections of magnetospheric electrons. Nature, 415(6875), 1003–1005. https://doi.org/10.1038/4151003a

Mitchell, D. G., Krimigis, S. M., Roelof, E. C., & Parianicas, C. P. (2003). Energetic neutral atoms from a trans-Jupiter magnetic field from Juno's first nine orbits. Geophysical Research Letters, 40, 9425–9433. https://doi.org/10.1029/2003GL017032

Mauk, B. H., Parianicas, C., Clark, G., Mitchell, D. G., & Krimigis, S. M. (2004). Energetic neutral atoms from Jupiter measured with the Voyager 1 spacecraft. Nature, 415(6875), 994–998. https://doi.org/10.1038/415994a

Mauk, B. H., Roelof, E. C., Mitchell, D. G., Krimigis, S. M., & Parianicas, C. P. (2003). Energetic neutral atoms from Jupiter measured with the Voyager 1 spacecraft. Nature, 415(6875), 994–998. https://doi.org/10.1038/415994a

Mauk, B. H., Parianicas, C., Clark, G., Mauk, B. H., Haggerty, D. K., Rymer, A. M., et al. (2017). A heavy ion and proton radiation belt inside of Jupiter's rings. Geophysical Research Letters, 44, 5259–5268. https://doi.org/10.1002/2017GL073730
Smith, T. D., Mitchell, D. G., Johnson, R. E., Mauk, B. H., & Smith, J. E. (2019). Europa neutral torus confirmation and characterization based on observations and modeling. *The Astrophysical Journal, 871*, 69. https://doi.org/10.3847/1538-4357/aaed38

Smyth, S. H., & Marconi, M. L. (2006). Europa’s atmosphere, gas tori, and magnetospheric implications. *Icarus, 181*(2), 510. https://doi.org/10.1016/j.icarus.2005.10.019

Szalay, J. R., Allegrini, F., Bagenal, F., Bolton, S., Clark, G., Connerney, J. E. P., et al. (2017). Plasma measurements in the Jovian polar region with Juno/IADE. *Geophysical Research Letters, 44*, 7122–7130. https://doi.org/10.1002/2017GL072837

Thorne, R. M., Armstrong, T. P., Stone, S., Williams, D. J., McEntire, R. W., Bolton, S. J., et al. (1997). Galileo evidence for rapid interchange transport in the Io torus. *Geophysical Research Letters, 24*(17), 2134. https://doi.org/10.1029/97GL01788