Rebecca A. Kraimer, William C. Lindemann¹, and Esteban A. Herrera
Department of Agronomy and Horticulture, MSC 3Q, New Mexico State
University, P.O. Box 30003, Las Cruces, NM 88003-8001

Received for publication 10 Sept. 2002. Accepted
1To whom reprint requests should be addressed.
E-mail address:wlindema@nmsu.edu

The recovery of late-season ¹⁵N-labeled
Fertilizer Applied to Pecan

Abstract. The recovery of late-season ¹⁵N-labeled fertilizer (N at 55 kg·ha⁻¹) was followed in mature pecan trees [Carya illinoinsis (Wangh.) K. Koch] and soil (0-270 cm) from 1996 (application year) through 2001 (end of study). Recovery of late-season applied ¹⁵N was compared to the recovery of six ¹⁵N applications (March through June, N at 221 kg·ha⁻¹) of a previously reported study. By Nov. 1996, both fertilizer schedules exhibited considerable ¹⁵N accumulation below the rooting zone and just above the water table (280 cm), with 43.4% and 35.3% ¹⁵N recovered from the soil sampling profile of the September and March–June schedules, respectively. ¹⁵N recoveries from perennial storage tissues (root and wood) were 20.6% and 10.1% under the September and March–June schedules, respectively. The ¹⁵N recoveries from annual abscission tissues (leaf, shuck, and nut) were 1.4% and 10.6% under the September and March–June schedules, respectively. The soil following the September and March–June applications, respectively. Under both fertilizer schedules, >80% of the fertilizer-N was lost to the environment through natural processes and very little was removed during harvest. Nearly 6 years following application, perennial storage of ¹⁵N remained greater in the September application (4.3% of the ¹⁵N applied) than in the March–June application (2.7% of the ¹⁵N applied). Late-season application of fertilizer-N during the kernel filling stage was stored in perennial tissues for the following year; very little was used for current year growth of annual tissues. Increased accumulation of perennial storage N by late-season application may reduce the depletion of N caused during a heavy-cropping on-year and may moderate the alternate-bearing trend in pecan by providing a greater reservoir of N the following year.

The fate of fertilizer-N depends, in part, upon the timing of its application relative to the nutritional demands of the plant. Because N is mobile in both the soil and plant tissues, proper timing of N fertilizer application serves to optimize N use efficiency while meeting plant demands. Although late winter or early spring are traditional times to apply N to fruit plant demands. Although late winter or early spring application of fertilizer-N during the kernel filling stage of reproductive growth in the following year. Others (Grasmanis and Nicholas, 1971; Tromp and Ovaa, 1973) concluded that early spring growth in apple (Malus pumila) was heavily dependent on the movement of newly absorbed N to the growing tissues and that the total N of storage tissues was not significantly depleted. McEachern (1993) postulated that the late-season application of N to pecan [Carya illinoinsis (Wangh.) K. Koch] could stimulate growth and cause serious freeze damage, but Smith et al. (1995) found that the amount of cold damage sustained by two pecan cultivars was unaffected by the timing of N application. Previous recommendations emphasized timing N application to meet the current-year pecan tree growth requirement (Kilby, 1982). However, the nutritional status of the tree and soil from the previous year may be just as important in determining pecan yield as is the nutritional status during the current growing season as in apples and grapes (Vitis vinifera) (Conradie, 1983; Oland, 1959).

Some researchers have suggested that nutrient uptake is dependent on tree demand rather than the concentration of the nutrient in the soil (Imsande and Touraine, 1994; Millard, 1996; Weinbaum et al., 1994). This demand can be met, in part, from storage pools in perennial tree organs (Weinbaum, 1994). A large N demand during pecan kernel filling, about mid-August through September, may reduce current-year allocation of N to pecan storage tissues and, therefore, limit the availability of N to annual tissues the subsequent season. Nitrogen fertilization during kernel filling, especially during an on-year in the alternate-bearing cycle, could mitigate storage-N depletion and better prepare the tree for the following season’s growth. In light of the demand-driven nutrient uptake hypothesis, application of N during flowering and biomass accumulation and especially during kernel filling would be compatible with both the current season and the following season’s production. In addition, it is both environmentally and economically desirable to apply N that is adjusted to the actual need of the plant (Läng, 1996). That is, the movement of fertilizer-N, in the form of nitrate, from the root zone represents an economic loss to the grower while the entry of nitrate to the underlying groundwater may present an environmental hazard (Timmons and Dylla, 1981).

¹⁵N-labeled fertilizer was used in this study in order to provide information about the fate of residual fertilizer-N from one growing season to the next, unconfounded with non-labeled fertilizer-N and mineralized organic N. The objectives of this study were to: 1) describe the fate of ¹⁵N in soil and pecan tissues following a single September application of ¹⁵N-labeled ammonium sulfate; and 2) compare the fate of ¹⁵N in soil and pecan tissues in a September application to that of March–June split applications.

Materials and Methods

The study was initiated in Sept. 1996 in a commercial orchard (6.1 ha) 12 km south of Las Cruces, N.M. The 15-year-old ‘Western’ trees were growing on a level, well-drained Aqua loam [fine-loamy over sandy, mixed (calcareous), thermic Typic Torrifluvent] that formed in mixed alluvium in the Rio Grande flood plain. The loam surface graded into a fine loamy sand at a depth of ~45 cm. The water table was ~280 cm below the surface.

Management of the orchard was typical for the area. Flood irrigation supplied ~150 cm of water per year and the area received ~20 cm of annual precipitation per year. Nonlabeled ammonium sulfate fertilizer (N at 373 kg·ha⁻¹) was applied in six split applications from March through mid-June. This annual rate of fertilizer-N application was greater than the recommended rate (N at 242 kg·ha⁻¹) for pecan in the Las Cruces area (Herrera, 1994). Additionally, the orchard was managed with foliar applications of phosphorus, potassium, and foliar applied zinc. Typical pesticide application practices were used to control weeds and insects. The average yield of the orchard from 1992 to 2001 was 2662 kg·ha⁻¹. With respect to the alternate-bearing trend in pecan, 1996 was an on-year.

Three research trees were selected in different rows and were representative of other trees in the orchard with respect to canopy cover, trunk diameter, height (average values of 116.8 m², 32.8 cm, and 14.2 m, respectively), and tree spacing (99 trees/ha). The three trees were managed as were those in the rest of the orchard except that a single application of ¹⁵N-labeled ammonium sulfate (N at 55 kg·ha⁻¹) was applied on 18 Sept. 1996. Trees in this study were in the same orchard and in close proximity to trees in a companion study (Kraimer et al., 2001). Each of the research trees was located at the center of a 9 × 9-m plot to which the ¹⁵N-fertilizer was uniformly hand-applied. Before ¹⁵N application, the three plots were rototilled to roughen the surface and to ensure quick entry of water and fertilizer. The labeled fertilizer was immediately raked in, and the orchard was flood-irrigated within 48 h to minimize ammonia volatilization. The

HortScience, Vol. 39(2), April 2004

HortScience 39(2):256–260, 2004.

Abbreviations

C. illinoiensis, Carya illinoiensis, biomass, alternate-bearing, ¹⁵N

References

Conradie, J. H. 1983. Applied soil and plant analysis. 2nd ed. Blackwell Scientific Publications, London.

Imsande, R. M. and Touraine, A. M. 1994. Influence of N fertilization during kernel filling on N efficiency while meeting plant demands. Although late winter or early spring are traditional times to apply N to fruit

© 2004 HortScience

256
15N-labeled ammonium sulfate (ISOTEC, Miamisburg, Ohio) had a total N content of 20.9% and a 15N content of 10.4 atom%.

Background 15N concentrations for soil and tissue samples were randomly collected from untreated areas within the same orchard. Prior to the start of the experiment and three times during the 1996 and 1997 growing seasons, background soil samples were collected and similar depths composited; concentrations of 15N were averaged at each depth for use in calculations. Background leaf samples were collected 15 times during the course of the experiment and their 15N concentrations were averaged for use in calculations. Background 15N concentrations for other tissues (shuck, shell, kernel, wood, and root) were collected when the respective tissue was sampled from the three research trees.

Soil samples were collected with a 3.8-cm bucket auger at depths of 0–30, 30–60, 60–90, 90–180, and 180–270 cm. Three sample holes were augered within each research plot at random distances (ranging from 1 m to 4 m) from each tree. Samples from the same depth from each of the three holes were composited.

Leaf samples were collected from the middle pair of leaves at the middle position of the compound leaf of current-season growth. Shuck, shell, leaf, and kernel samples were simultaneously collected within a few days prior to leaf drop. The wood (including bark) sample was collected by coring to the center of the trunk after harvest. Roots were removed from soil samples just before or after harvest and were washed with clean soil particles before grinding. Root samples of varying sizes were collected at various depths (0 to 270 cm) from each tree; no attempt was made to distinguish roots collected from different depths.

Soil samples were air-dried for 48 h, then ground to pass a 150-μm sieve. Tissue samples were oven-dried (65 °C) for 48 h, then ground to pass a 180-μm sieve. Ground soil and tissue samples were sent to the U.S. Dept. of Agriculture–Agricultural Research Service (USDA–ARS) laboratory at the Univ. of Nebraska in Lincoln and Isotope Services, Los Alamos, N.M. Atomic% 15N and total N were analyzed with the ThermoTrace Stable Isotope Mass Spectrometer (Europa Scientific, Crewe, Cheshire, U.K.) and included both inorganic N and organic N.

Recovery of fertilizer-15N in the soil and tissue samples (as a percentage of 15N applied) was determined at the end of each growing season and is described by the following equations:

\[
\text{% Recovery}_{\text{soil}} = \left(\frac{\text{Fertilizer}_\text{applied}}{\text{Fertilizer}_\text{applied}} \right) \times \left(\frac{\text{Soil}_\text{sample}}{\text{Soil}_\text{reference}} \right) \times 100\%
\]

\[
\text{% Recovery}_{\text{tissue}} = \left(\frac{\text{Tissue}_\text{sample}}{\text{Tissue}_\text{reference}} \right) \times 100\%
\]

where total N = mean total N of three research trees (%); 15N$_{\text{applied}}$ = mean 15N of three research trees (atom %); 15N$_{\text{sample}}$ = mean 15N of background samples (atom %); D_0 = bulk density (kg m$^{-3}$); V = soil volume of research plot (m3/plot); 15N$_{\text{application rate}}$ = 15N application rate (kg/plot); and Biomass = mean mass of each tissue component of three research trees (kg/plot).

The estimation of aboveground biomass was needed to determine the biomass of each aboveground tissue component. The following model (King and Schnell, 1972) for black oak (Quercus velutina Lam.) was used to estimate above- and belowground biomass.

Total biomass:

\[
\text{LOG wt} = 1.00005 + 2.10621 \text{LOG dbh};
\]

Root and stump biomass:

\[
\text{LOG wt} = 0.38000 + 2.12094 \text{LOG dbh};
\]

where dbh = diameter of trunk at breast height (1.37 m aboveground) in inches; wt = oven-dried weight in pounds.

To confirm the validity of this model for pecan, a tree similar in size to the research trees was sacrificed and all aboveground tissues were collected on a component basis. The leaf and shuck components were dried (65 °C) and weighed directly. The shell and kernel components were also weighed directly. To determine the dry biomass of the wood tissue, representative samples of trunk, large branches (>7.6 cm diameter), medium branches (2.5 to 7.6 cm), small branches (<2.5 cm), and twigs (<1.3 cm) were dried (65 °C) and weighed. The measured aboveground biomass of the sacrificed tree was 8.6% less than its calculated biomass when the dbh of the sacrificed tree was substituted into the model equations and the aboveground biomass determined by difference.

The dbh of each research tree was used to calculate its aboveground dry biomass by using the above models. The proportions of leaf, shuck, and wood tissue of the sacrificed tree were applied to the calculated value of the mean aboveground biomass of the three research trees as described in the following example for the leaf component:

\[
\text{Biomass}_{\text{leaf}} = \frac{\text{AG Biomass}_{\text{model(sacrificed)}} \times \text{Biomass}_{\text{leaf(sacrificed)}}}{\text{Biomass}_{\text{leaf}}}
\]

where Biomass$_{\text{leaf(model)_{research}}}$ = mean estimated leaf biomass of three research trees (kg); AG Biomass$_{\text{model(sacrificed)}}$ = mean above ground biomass of three research trees (kg); and Biomass$_{\text{leaf(sacrificed)}}$ = leaf tissue in aboveground biomass of sacrificial tree (%). The mean aboveground biomass was calculated by substituting the mean dbh of the three research trees into the model equations and determining the aboveground biomass by difference. Estimations of root biomass relied solely on the model equation. The kernel and shell components of the research trees were directly weighed.

This study and an expansion of a companion study (Kraimer et al., 2001) were monitored from 1996 through 2001, allowing for the comparison of two different fertilizer application schedules within the same orchard under the same management conditions. In the companion study, 15N-labeled ammonium sulfate (N at 221 kg ha$^{-1}$) was applied in six split applications from 25 Mar through 15 June 1996, and the results have been expanded in the present report to include the years 1996 through 2001.

Results and Discussion

Fig. 1 A–D shows the 15N distribution in the soil at the end of the 1996 growing season and throughout the following year (1997) after of a single application (18 Sept. 1996) of 15N-labeled ammonium sulfate (N at 55 kg ha$^{-1}$). Table 1 shows 15N recoveries in both soil and tissue at the end of each growing season from 1996 through 2001. For comparison to a spring application schedule, Fig. 1 E–H and Table 2 refer to the companion study (Kraimer et al., 2001) which was extended in the present report to include 1996 through 2001.

At the end of the 1996 growing season (7 Nov. 1996), both fertilizer schedules (Sept.- and March–June) extended the recoverable 15N accumulation below the upper rooting zone (90-cm depth) of pecan and just above the water table (Fig. 1 A and F). About 43.4% of the 15N applied in a single September application remained in the sampling profile (Table 1), while 35.3% was recovered from the sampling profile following the split March–June applications (Table 2). We consider the upper 90 cm to be responsible for most nutrient sorption by pecan roots. Word (2002) states that N uptake by pecan is primarily in the top 30 cm of soil. Most N found below 90 cm is highly susceptible to leaching and will eventually be lost to the environment.

During the following winter (1997), the orchard was flood-irrigated with 11.3 cm of water and received an additional 1.5 cm precipitation. On 3 Mar. 1997, 46.4% of the fertilizer applied in Sept. 1996 was recovered to a depth of 270 cm (data not shown). Although 15N enrichment was evident in the 0–90-cm depth of both fertilizer schedules (Fig. 1, B and F), the March–June application resulted in much greater 15N enrichment at all depths throughout the profile. The 15N accumulation in the 0–90 cm depth probably resulted from the replenishment of 15N on the soil surface by the decomposition (recycling) of 1996 enriched leaves and shucks. Adams and Attiwell (1986) also observed the importance of nutrient cycling by litterfall in Australian eucalyptus (Eucalyptus pauciflora (Sieber) Sprengel and E. delegatensis (R.T. Baker)) forests and found that >80% of the N cycled from plant soil is in the form of litter.

The Sept. 1996 application produced a slight 15N enrichment in the soil profile on 26 May 1997 (Fig. 1C), the Mar.–June 1996 applications had pronounced 15N enrichment throughout the profile (Fig. 1G). The notable different levels of 15N enrichment reflect the different fertilizer rates of the two application schedules. However, in both application schedules, recycling of catkin, leaf, and shuck to the soil surface may have contributed to the 15N enrichment in the upper depths of the profile. This is especially true of the March–June applications since by the end of the 1996 growing season, leaves and shucks recovered over 15
Fig. 1. 15N distribution in the soil profile following (A–D) a single application of labeled (10.4 atom percent) (NH$_4$)$_2$SO$_4$ (N at 55 kg·ha$^{-1}$) on 18 Sept. 1996 and (E–H) six split applications of labeled (10.4 atom %) (NH$_4$)$_2$SO$_4$ (N at 221 kg·ha$^{-1}$) from 25 Mar. through 15 June 1996. Standard error of the mean (n = 3) is depicted by error bars.

Table 1. Mean 15N recovery at the end of the 1996–2001 growing seasons following a single application of labeled (10.4 atom percent) (NH$_4$)$_2$SO$_4$ (N at 55 kg·ha$^{-1}$) on 18 Sept. 1996.

Component	1996	1997	1998	1999	2000	2001
Soil (0–270 cm)	43.4	4.1	7.9	4.5	2.9	4.1
Tree (by tissue component)						
Leaf (recycled)	0.6	6.3	1.5	0.8	1.1	0.4
Shuck (recycled)	0.2	0.3	0.1	0.1	0.1	0.0
Nut (harvested)	0.6	1.1	0.4	0.3	0.3	0.1
Root (stored)	11.5	6.7	2.2	2.3	2.0	1.7
Wood (stored)	9.1	7.3	5.0	2.2	2.7	2.6
Total tree	22.1	21.7	9.2	5.7	6.1	4.7
Previous harvest	---	0.6	1.8	2.2	2.5	2.8
Total (soil + tree)	65.5	26.4	18.9	12.4	11.5	11.6
Lost to environment	34.5	73.6	81.1	87.6	88.5	88.4

Table 2. Mean 15N recovery at the end of the 1996–2001 growing seasons following six split applications of labeled (10.4 atom percent) (NH$_4$)$_2$SO$_4$ (N at 221 kg·ha$^{-1}$) from 25 Mar. through 15 June 1996.

Component	1996	1997	1998	1999	2000	2001
Soil (0–270 cm)	35.3	12.5	11.7	11.2	11.3	9.1
Tree (by tissue component)						
Leaf (recycled)	5.6	2.7	1.2	1.2	0.7	0.4
Shuck (recycled)	1.0	0.2	0.1	0.1	0.1	0.0
Nut (harvested)	4.0	0.9	0.4	0.2	0.2	0.1
Root (stored)	3.7	2.9	2.2	1.4	0.7	1.4
Wood (stored)	6.4	4.8	3.4	2.0	1.7	1.3
Total tree	20.8	11.4	7.3	4.9	3.4	3.2
Previous harvest	---	4.0	4.9	5.2	5.4	5.7
Total (soil + tree)	56.1	27.9	23.9	21.3	20.1	18.0
Lost to environment	43.9	72.1	76.1	78.7	79.8	82.0

times more 15N per hectare than following the single September application (calculated from Tables 1 and 2).

After the Sept. 1996 application, 15N concentrations in the soil on all subsequent sample dates through Fall 2001 (data not shown) was very similar to the 15N background level and to the 21 Oct. 1997 soil profile (Fig. 1D). By Fall 1997, most of the 15N applied in Sept. 1996 was leached or absorbed by the tree. By contrast, greater 15N enrichment occurred with the March–June applications (Fig. 1H), particularly in the upper profile. This distinction between the two application schedules was still pronounced nearly 6 years later (Tables 1 and 2). By the end of 2001, over 9% of the 15N applied in the March–June applications remained in the soil, while ≈4% 15N remained in the soil following the September application. Some of this difference in soil 15N accumulation may be attributed to biological activity. From September to November, the biological activity in both soil and tree is approaching dormancy, while March through June is a period of increasing biological activity in the soil and tree. We suggest that 15N was immobilized into organic matter in the upper soil profile during this time of increased biological activity. Also, the recycled plant tissues (leaves and shucks) retained much more of the 15N applied in the spring (6.6%) than applied in the fall (0.8%).
Thus, soil accumulation of 15N reflects both the timing of fertilizer application and the amount of recycled N incorporated into the soil surface.

Fig. 2 summarizes the partitioning of 15N into perennial storage tissues (wood and root) and annual abscission tissues (leaf, shuck, and nut) under the two different fertilizer schedules. All samples were collected at the end of each growing season from 1996 through 2001. The data clearly indicate that 15N absorbed late in the season is preferentially stored in storage tissues as a reserve for the next season’s growth as well as growth for subsequent seasons, and 15N perennial storage remains higher in the September application than the March–June application through 2001. Perhaps more 15N would have been partitioned into annual abscission tissue if the N fertility status of the tree were lower when entering into the kernel filling stage. The trees in the orchard received fertilizer N at 373 kg·ha$^{-1}$ during the March–June application and 221 kg·ha$^{-1}$ during the September application than the March–June application. By the end of the 1996 growing season, 15N recovery from total tree tissues (Tables 1 and 2) was similar under both fertilizer schedules (22.1% in late- and 20.8% in early-season applications). However, 15N recovery by individual tissue components differed between the two application schedules. The 15N recoveries from perennial storage tissues (root and wood) were 20.6% and 10.1% under the September and March–June fertilizer schedules, respectively. In marked contrast, only 1.4% of the applied 15N was recovered by annual abscission tissues (leaf, shuck, and nut) following the single September application, whereas 10.6% of the applied 15N was recovered by annual abscission tissues following the March–June applications. Late-season absorption of 15N also increased the partitioning of N to roots, compared to spring-absorbed N, in almond (Weinbaum et al., 1984a), pear (Pyrus communis) (Sanchez et al., 1991), and peach (Prunus persica) (Munoz et al., 1993). Five years following the year of application, 15N recovery from perennial storage tissues was greater than that from annual abscission tissues and greater following the September than the March–June application schedules.

By the end of the 2001 growing season, a greater proportion of applied 15N was lost to the environment, less was cumulatively harvested, less was stored in the soil, and more was stored in the plant with a late season application than with early season split applications. Thus, pecan appears to allocate a greater proportion of fertilizer-N into storage tissues (root and wood) when N is applied late in the season than when applied early in the season. Under both application schedules, >80% of the fertilizer-N was lost through natural processes and very little was removed during harvest. Although fertilizer-N from some of the absorbed tissues is removed in harvest, a portion undergoes mineralization during decomposition on the orchard floor and is available for reabsorption by the tree or susceptible to leaching.

We conclude that, during an on-year, well-fertilized pecan strongly absorbs fertilizer-N applied at the kernel filling stage, and that fertilizer-N is used to replenish endogenous N reserve pools that are likely mobilized to fill the kernels. Under a high N fertilization rate, relatively little of the late-season N is used for current growth of leaves, shucks, or nuts and may have little influence on yield during the year of application. Instead, N fertilizer applied during kernel fill is stored in perennial tissue and used the following year. An ample reservoir of endogenous N at flowering the following year may benefit yields and moderate the alternate-bearing cycle of pecan.

Literature Cited

Adams, M.A. and P.M. Attiwell. 1986. Nutrient cycling and nitrogen mineralization in eucalypt forests of south-eastern Australia. Plant. Soil. 92:319–339.

Conradie, W.J. 1983. The uptake and distribution of 15N enriched nitrate by three rootstock cultivars grafted to Chennin blanc. S. Afr. J. Enol. Viticult. 4:45–47.

Dong, S., C.F. Scagel, L. Cheng, L.H. Fuchigami, and P.T. Rygiwicz. 2001. Soil temperature and plant growth stage influence nitrogen uptake and amino acid concentration of apple during early spring growth. Tree Physiol. 21:541–547.

Feigenbaum, S., H. Bielorai, Y. Erner, and S. Dasberg. 1987. The fate of 15N labeled nitrogen applied to mature citrus trees. Plant and Soil 97:197–189.

Grasmanis, V.O. and D.J.D. Nicholas. 1971. Annual uptake and distribution of 15N labeled ammonia and nitrate in young Jonathan/MM104 apple trees grown in solution cultures. Plant. Soil. 35:95–112.

Herrera, E.A. 1994. Pecan handbook. New Mexico State Univ. Coop. Ext. Ser. H-602. Las Cruces, N.M.

Imsande, J. and B. Touraine. 1994. N demand and the regulation of nitrate uptake. Plant Physiol. 105:5–7.

Kilby, M.W. 1982. Mineral nutrition of the pecan in the irrigated southwest. Western Pecan Conf. Proc. 16:35–40.

King, W.W. and R.L. Schnell. 1972. Biomass estimates of black oak tree components. TVA Div. of Forests, Fisheries, and Wildlife Mun. Technol. Note B1. Norris, Tenn.

Kraimer, R.A., W.C. Lindemann, and E.A. Herrera. 2001. Distribution of 15N labeled fertilizer applied to pecan: A case study. HortScience 36:308–312.

Läng I. 1996. Nutrient cycling and sustainability. Fert. Res. 43:31–35.

McEachern, G.R. 1993. Nitrogen yields profits. Pecan South 26:4–5.

Millard, P. 1996. Ecochemistry of the internal cycling of nitrogen for tree growth. J. Plant Nutri. Soil Sci. 159:1–10.

Murillo, N., J. Gierni, F. Legaz, and E. Primo-Millo. 1993. Seasonal uptake of 15N nitrate and distribution of absorbed nitrogen in peach trees. Plant. Soil. 150:263-269.

Oland, K. 1959. Nitrogenous reserves of apple trees. Physiol. Plant. 12:594–643.
Picchioni, G.A., P.H. Brown, S.A. Weinbaum, and T.T. Muraoka. 1997. Macronutrient allocation to leaves and fruit of mature, alternate-bearing pistachio trees: Magnitude and seasonal patterns at the whole-canopy level. J. Amer. Soc. Hort. Sci. 122:267–274.
Sanchez, E.E., T.L. Righetti, D. Sugar, and P.B. Lombard. 1991. Recycling of nitrogen in field-grown ‘Comice’ pears. J. Hort. Sci. 66:479–486.
Smith, M.W., R. Cheary, and B. Carroll. 1995. Time of nitrogen application and phosphorus effects on growth, yield, and fruit quality of pecan. HortScience 30:532–534.
Tagliavini, M., P. Millard, and M. Quartieri. 1998. Storage of foliarly-absorbed nitrogen and remobilization for spring growth in young nectarine (Prunus persica var. nectarina) trees. Tree Physiol. 18:203–207.
Timmons, D.R. and A.S. Dylla. 1981. Nitrogen leaching as influenced by nitrogen management and supplemental irrigation level. J. Environ. Qual. 10:421–426.
Titus, J.S. and S.M. Kang. 1982. Nitrogen metabolism, translocation, and recycling in apple trees. Hort. Rev. 4:204–246.
Troncon, J. and J.C. Veesa. 1973. Spring mobilization of protein nitrogen in apple bark. Physiol. Plant. 29:1–5.
Weinbaum, S.A., G.A. Picchioni, T.T. Muraoka, L. Ferguson, and P.H. Brown. 1994. Fertilizer nitrogen and boron uptake, storage, and allocation vary during the alternate-bearing cycle in pistachio trees. J. Amer. Soc. Hort. Sci. 119:24–31.
Weinbaum, S.A., I. Klein, F.E. Broadbent, W.C. Micke, and T.T. Muraoka. 1984a. Effects of time of nitrogen application and soil texture on the availability of isotopically labeled fertilizer nitrogen to reproductive and vegetative tissue of mature almond trees. J. Amer. Soc. Hort. Sci. 109:339–343.
Weinbaum, S.A., I. Klein, F.E. Broadbent, W.C. Micke, and T.T. Muraoka. 1984b. Use of isotopic nitrogen to demonstrate dependence of mature almond trees on annual uptake of soil nitrogen. J. Plant Nutr. 7:975–990.
Wood, B.W. 2002. Late nitrogen fertilization in pecan orchards: A review. Western Pecan Conf. Proc. 36:47–59.