Constraints on the correlation between QSO luminosity and host halo mass from high-redshift quasar clustering

Martin White,1 Paul Martini2,3 and J. D. Cohn4★

1Departments of Physics and Astronomy, University of California, Berkeley, CA 94720, USA
2Department of Astronomy, The Ohio State University, Columbus, OH 43210, USA
3Center for Cosmology and Astroparticle Physics, The Ohio State University, Columbus, OH 43210, USA
4Space Sciences Laboratory, University of California, Berkeley, CA 94720, USA

Accepted 2008 August 11. Received 2008 August 9; in original form 2007 November 26

ABSTRACT
Recent measurements of high-redshift quasar (QSO) clustering from the Sloan Digital Sky Survey indicate that QSOs at \(z \sim 4 \) have a bias \(\langle b \rangle \simeq 14 \). We find that this extremely high clustering amplitude, combined with the corresponding space density, constrains the dispersion in the \(L-M_\text{b} \) relation to be less than 50 per cent at 99 per cent confidence for the most conservative case of a 100 per cent duty cycle. This upper limit to the intrinsic dispersion provides as strong a constraint as current upper limits to the intrinsic dispersion in the local \(M_{\text{bH}}-\sigma \) relation and the ratio of bolometric to Eddington luminosity of luminous QSOs.

Key words: quasars: general – dark matter – large-scale structure of Universe.

1 INTRODUCTION
It has recently been accepted that quasar (QSO) activity and black hole growth are an integral part of galaxy evolution; however a detailed understanding of what triggers quasar activity and how they are fuelled still eludes us. The leading contender for the identity of luminous, high-redshift QSOs is that they are black holes fed by major mergers of gas-rich galaxies (Carlberg 1990). Recent incarnations of such models (Haiman & Loeb 1998; Cavaliere & Vittorini 2000; Kauffmann & Haoehnelt 2000; Wyithe & Loeb 2002; Hopkins et al. 2006) provide a good description of many observed properties of the quasi-stellar object (QSO) population.

The situation is particularly interesting at high redshift, where the population of supermassive black holes that powers the QSOs is growing rapidly (see e.g. Fan 2006, for a recent review). To further understand this important phase of black hole and galaxy evolution, we would like to build a model in which QSO activity is tied to the evolving cosmic web of dark matter haloes. The relationship between QSOs and dark matter haloes, their environments and duty cycles, can be constrained via observations of their space density and large-scale clustering (Cole & Kaiser 1989; Haiman & Hui 2001; Martini & Weinberg 2001). These constraints become particularly sensitive if the QSOs inhabit the rarest, most massive haloes for which the spatial clustering depends strongly on halo mass (Kaiser 1984; Bardeen et al. 1986; Efstathiou et al. 1988; Cole & Kaiser 1989).

At redshifts \(z < 3 \), the advent of large optical surveys for QSOs has led to firm constraints on the clustering as a function of luminosity and redshift (Porciani, Magliocchetti & Norberg 2004; Croom et al. 2005; Hennawi et al. 2006; Porciani & Norberg 2006; Myers et al. 2007a,b; da Angela et al. 2008; Myers et al. 2008; Padmanabhan et al. 2008). With the Sloan Digital Sky Survey (SDSS), we are now able to measure the clustering of QSOs well even at \(z > 3 \) (Shen et al. 2007, see also earlier work by Kundic 1997; Stephens et al. 1997). Interestingly, the correlation length of the QSO population increases rapidly with redshift, from \(r_0 = 16.90 \pm 1.73 \) at \(z \simeq 3 \) to \(r_0 = 24.30 \pm 2.36 \) at \(z \simeq 4 \). Shen et al. (2007) demonstrated that they can fit the observed clustering and space density of \(z \sim 4 \) QSOs with the model of Martini & Weinberg (2001) provided the \(z \sim 4 \) QSOs are relatively long lived (\(t_0 \sim 160 \) Myr) and inhabit haloes more massive than about \(5 \times 10^{12} h^{-1} M_\odot \). For this calculation, Shen et al. (2007) assumed that there is a monotonic relationship between instantaneous QSO luminosity and halo mass, with no scatter. The actual relation between instantaneous QSO luminosity and host halo mass is expected to include some scatter. Scatter is expected in several of the relationships linking the QSO luminosity and the host halo mass, such as the relationships between the host halo mass and galaxy bulge, galaxy bulge and black hole mass, black hole mass and peak luminosity and peak and instantaneous QSO luminosity.

Here, we demonstrate that the very high correlation length measured by Shen et al. (2007), when combined with the rapid increase in bias for the most massive haloes, strongly constrains the scatter between instantaneous QSO luminosity and halo mass. The essential idea is that any scatter increases the contribution from lower mass (and less highly biased) haloes, so that a measurement of large clustering amplitude limits the contribution from lower mass objects. This constraint is as strong as direct, observational constraints at lower redshift on the amount of scatter in the various relationships mentioned above.

★E-mail: mwhite@berkeley.edu
We will work throughout in the Λ cold dark matter (CDM) framework and adopt the following cosmological parameters: $\Omega_{\text{mat}} = 0.25$, $\Omega_{\Lambda} = 0.75$, $h = 0.72$ and $\sigma_8 = 0.8$. Where appropriate, we will comment on how our results depend on these particular choices. The next section outlines our formalism and applies it to the data of Shen et al. (2007), while Section 3 interprets our results and discusses future observations.

2 FORMALISM AND APPLICATION TO HIGH-REDSHIFT QSOS

2.1 The clustering and abundance of QSOs

We will focus our attention on the space density and large-scale bias of QSOs, as these are the easiest to interpret and observationally measurable properties of the population. If the mean number of QSOs in a halo of mass M_h is $N(M_h)$, then their number density and large-scale bias are

$$ \bar{n} = \int \frac{dM_h}{M_h} \frac{dn_h}{dM_h} N(M_h), \quad (1) $$

$$ \langle b \rangle = \bar{n}^{-1} \int \frac{dM_h}{M_h} \frac{dn_h}{dM_h} b_h(M_h) N(M_h), \quad (2) $$

where dn_h/dM_h is the (comoving) number density of haloes per mass interval and $b_h(M_h)$ is the bias associated with haloes of that mass. For dn_h/dM_h, we use the fitting function from Sheth & Tormen (1999). The large-scale bias is slightly more problematic, as our results depend upon massive haloes being biased, and different fits to $b_h(M_h)$ from simulations have appeared in the literature. Sheth & Tormen (1999) derived the bias appropriate to their mass function fit using the peak background split. A slightly higher bias at fixed mass comes from assuming an ellipsoidal collapse (Sheth, Mo & Tormen 1999). The largest bias for haloes of a given mass is given by the bias of the Press & Schechter (1974) mass function, as computed by Cole & Kaiser (1989), which is very similar to the fit of Jing (1998) for the masses of interest. These two forms give biases 30 per cent larger, in the mass and redshift range of interest, than the lowest fit (of Sheth & Tormen 1999). The fit of Tinker et al. (2005) lies between that of Sheth et al. (1999) and Sheth & Tormen (1999).

For mass-thresholded samples of dark matter haloes in a large N-body simulation, we found that the Press & Schechter (1974) and Sheth & Tormen (1999) forms bracketed the halo correlation function so this should represent the level of current uncertainty. As it provides the most conservative estimate of the maximum allowed scatter, and the numerical data lay closer to the form of Press & Schechter (1974), we adopt this as our fiducial bias. However, we caution that the statistics in the simulation are poor, and we also illustrate the effect of choosing the Sheth & Tormen (1999) form below. In several recent simulations at other redshifts and masses, the Press & Schechter (1974) form appears to be a worse fit (Sheth & Tormen 1999; Sheth et al. 1999; Seljak & Warren 2004; Tinker et al. 2005), but unfortunately there are few direct N-body calibrations of $b_h(M)$ at the number densities and redshifts of interest to us. One could imagine that for extremely rare peaks, whose collapse is much closer to spherical (Bardeen et al. 1986), these newer fits actually perform worse than the original formulation (see e.g. Cohn & White 2008; Dalal et al. 2008). This challenging numerical problem deserves further investigation.

To interpret the large-scale clustering measurements of Shen et al. (2007), we must specify $N(M_h)$. We wish to choose as simple a model as possible to illustrate the effect of scatter on the $\langle b \rangle$ relation, so we assume that the probability that a QSO is seen with instantaneous luminosity L is lognormally distributed around a central value $L_0(M_h)$ with a width σ_L.

$$ P (L|M_h) \, d\ln L = \frac{1}{\sqrt{2\pi}\sigma_L} \exp \left[- \frac{\ln^2 (L/L_0)}{2\sigma_L^2} \right] \, d\ln L. \quad (3) $$

If a given halo hosts a QSO, the probability that it is above some luminosity threshold, L_{min}, is then the integral of this expression from L_{min} to infinity, which can be expressed as an error function. If we assume that at most a fraction f_{min} of haloes contain active QSOs at any epoch and that $L_0 \propto M_h^2$ in the region of the turn-on, the mean number of QSOs above L_{min} in haloes of mass M_h is

$$ N(M_h) = \frac{f_{\text{min}}}{2} \text{erfc} \left[\frac{\ln \left(M_h/M_i \right)}{\sqrt{2}\sigma} \right], \quad (4) $$

where M_i satisfies $L_0(M_i) = L_{\text{min}}$, $\sigma = \sigma_L / \alpha$ and we expect $\alpha \approx 1$. We will assume equation (4) in what follows and try to constrain σ. Fig. 1 shows $\langle b(> L) \rangle$ versus $\langle b(> L)/f_{\text{min}} \rangle$ for a range of M_i and σ. Larger the dispersion lower the bias at fixed space density, as a larger fraction of the QSOs are hosted in lower mass haloes. Similarly, a decrease in f_{min} must be compensated by a decrease in M_i to hold \bar{n} fixed, again leading to a lower $\langle b \rangle$. In our assumed cosmology, the Universe is $t_0 \approx 1.6$ Gyro old at $z = 4$. If we assume $L_{\text{bol}}/L_{\text{iso}} = 0.25$ (e.g. Kollmeier et al. 2006), then the e-folding time is $t_{\text{e}} \approx 0.1 t_0$, so $f_{\text{min}} \sim O(1)$ is not unexpected. While the inferred lifetimes are then weakly in conflict with the upper range of observational constraints (10^9–10^{10} yr; Martini 2004), these constraints largely stem from lower redshift QSOs.

1 The simulation evolved 10243 particles in a $1 \, h^{-1}$ Gpc box using the TreePM code described in White (2002). See Heitmann et al. (2007) for a recent comparison with other N-body codes.

2 We use natural logarithms throughout so that σ can be interpreted as a fractional scatter. The log-base 10 based σ would be $\ln(10) \approx 2.3$ times smaller.
Our model is not the most general one describing how QSOs inhabit dark matter haloes. In particular, there is no reason, in principle, why haloes could not host more than one QSO. To constrain the functional form of $N(M_h)$ would require modelling both the large- and small-scale clustering, and additional assumptions about the statistics of QSOs in haloes. This is beyond the scope of this paper, so we merely note that the mass function is very steeply falling in the range of halo masses that are of interest. Our statistics are thus dominated by the lowest mass haloes in our sample. In particular, the number density is approximately linear in $N(M_h)$. Simply allowing $f_{\text{on}} > 1$ has no impact on (b), but it would raise n and slightly weaken our constraints. However, to increase n significantly above that for $f_{\text{on}} = 1$ would require almost every halo of mass M_t to host more than one high-luminosity QSO, which would lead to an unacceptably high close pair fraction. For example, if every halo hosted two QSOs, the volume-averaged correlation function within the halo radius would be $\xi \sim n_b^{-1} r_b^{-3}$. Given the extreme rarity of these haloes, this would be in conflict with observations (Hennawi et al. 2006; Myers et al. 2007b, see e.g. fig. 17 in Hopkins et al. 2008).

At this point, it is also easy to see how a change in cosmological parameters affects $(b) - n$. For example, if we raise σ_s, haloes of a fixed mass correspond to less rare peaks. These haloes are therefore slightly less biased and significantly more numerous. To hold n fixed, we would need to increase M_t. To hold the bias fixed requires that we increase M_t yet further, and therefore to match both the (b) and n, the duty cycle must increase. For $\bar{n} \simeq 10^{-7} h^3 \text{Mpc}^{-3}$, a 10 per cent increase in σ_s leads to a 4 per cent decrease in (b), which is insignificant for our purposes. In general, for a power-law power spectrum with index n_q, the fractional change in number density at fixed bias is $6/(3 + n_q)$ times the fractional change in σ_s. Small changes in the other cosmological parameters have even smaller effects.

2.2 Comparison with observations

This formalism allows us to use the observations of high-z QSO clustering from Shen et al. (2007) to constrain σ and f_{on} in our model. To do so, we need to estimate the large-scale bias, (b), from the measurements provided in Shen et al. (2007) and this requires making several assumptions.

First, we must convert from the clustering quoted by Shen et al. (2007) to large-scale bias. There are several ways to do this, and we have chosen to use the amplitude of their fits to r^{-2} power laws over the range $5 < r < 20 h^{-1}$ Mpc. At lower z, the bias is relatively constant over this range, and the slope of the dark-matter correlation function is close to -2, so converting the fit into a measurement of (b) is straightforward. However, at $z > 3$, the QSOs are hosted by increasingly rare haloes, whose bias is becoming more scale-dependent. Using the mass and halo catalogues from the N-body simulation described previously, we find that the mass correlation function is shallower than r^{-2} below $O(10^{-1} \text{Mpc})$ but the halo correlation function is still quite close to r^{-2} down to $5h^{-1}$ Mpc. We therefore convert from r_0 to (b) by matching

$$\xi_{\text{qq}} = \left(\frac{r_0}{r} \right)^2 = (b)^2 \xi_{\text{dm}}(r)$$

at $r = 20 h^{-1}$ Mpc, where the bias is close to constant. (This is also the scale where we compared the simulations to the Press & Schechter (1974) fitting form to obtain the bias.) For convenience, we use the non-linear power spectrum of Smith et al. (2003) when computing ξ_{dm}, but we checked that this agrees well with the results of the N-body simulation on the scales of interest, and the correction for non-linearity is relatively small.

The clustering measurements of Shen et al. (2007) are averaged over bins in redshift, over which the bias and mass correlations are evolving strongly. Fortuitously, the effects approximately cancel, leading to a slow evolution in ξ_{qq}. We estimate the effects of clustering evolution on our constant-time constraints by considering three models for the evolution: passive evolution (which for massive, rare haloes corresponds almost to $\xi_{\text{eq}} = \text{constant}$), constant bias and constant halo mass. Each model predicts $\xi_{\text{qq}}(r, z)$ from which we can compute the average value measured by Shen et al. (2007) as

$$\langle \xi(r) \rangle = \frac{\int dz \, (dN/\text{dz})^2 (H/\chi)^2 \xi(r, z)}{\int dz \, (dN/\text{dz})^2 (H/\chi)^2},$$

where dN/dz is the redshift distribution, H is the Hubble parameter at redshift z and χ is the comoving angular diameter distance to redshift z. Using dN/dz from table 1 of Shen et al. (2007) in the two bins $2.9 < z < 3.5$ and $z > 3.5$, we find that for the passive evolution model the correlation length inferred from $\xi(z)$ is within 1 per cent of that inferred from $\xi(z = 3)$ and $\xi(z = 4)$, respectively. For the constant halo mass case, $\xi(z)$ increases with z, but the inferred r_0 is still within 5 per cent of the constant z value for both the samples. For the constant bias case, $\xi(z)$ decreases with z, but the inferred r_0 is within 4 per cent of the constant z value for both the samples. Since the quoted errors on r_0 are larger than this, we will interpret the quoted correlation lengths as measured at $z = 3$ and 4, respectively.

Assuming $\xi_{\text{eq}} = (r_0/r)^2$, Shen et al. (2007) quoted $r_0 = (16.90 \pm 1.73) h^{-1}$ Mpc for their ‘good’ sample with $2.9 < z < 3.5$. Using the dark-matter correlation function for our cosmology at $z = 3$, this corresponds to $(b) = 7.9 \pm 0.8$. The quoted space density is $\bar{n} = 5.6 \times 10^{-7} h^3$ Mpc$^{-3}$. If we use the ‘all’ sample both r_0 and hence (b) are 14 per cent lower. We will find that this point is relatively unconstraining for either choice.

At $z = 4$, the best fit is $r_0 = (24.30 \pm 2.36) h^{-1}$ Mpc, again using the ‘good’ sample, corresponding to $(b) = 14.2 \pm 1.4$ and $\bar{n} = 10^{-7} h^3$ Mpc$^{-3}$. The other clustering fits provided by Shen et al. (2007) are discussed below. Note, however, as pointed out by Shen et al. (2007) that this space density is actually an underestimation of the true space density because the Richards et al. (2006) parametrization of the LF underestimates the measured space density from $z \sim 3$ to 4 (see fig. 20 of Richards et al. 2006). At $z \sim 4$, this underestimate is approximately a factor of 2, and we therefore use $\bar{n} = 2 \times 10^{-7} h^3$ Mpc$^{-3}$. Higher space density leads to a smaller predicted (b), requiring smaller dispersion σ between luminosity and halo mass, to fit the observed clustering (i.e. this provides a more stringent constraint).

In Fig. 2, we show $(b>(L))$ as a function of lognormal scatter, σ, at fixed n for $f_{\text{on}} = 1$, 0.3 and 0.1. The 68 and 95 per cent confidence ranges in (b) (above) are also shown. As can be seen, in order to get the large (b) seen by Shen et al. (2007), the scatter at $z \sim 4$ has to be less than 80 per cent and the fraction of haloes containing quasars, f_{on}, must be larger than ~ 10 per cent.

The constraints will change if different fits to the clustering measurements, different fits to b_h or different number densities are used. As the constraints are coming from $z = 4$, we focus on this case. Shen et al. (2007) gave four fits to the power-law correlation functions, for ‘all’ or ‘good’ QSOs, with fixed power law $(r_0/r)^2$ or varying power law. The fiducial calculation above was for the ‘good’ QSOs sample fit to $(r_0/r)^2$, which has a χ^2/d.o.f. $= 0.32$. The other combinations give: (sample, power-law index, χ^2, $\delta b/ b$) = (‘all’, 2.00, 0.52,
For simplicity, we did not correct the Richards et al. (2006) LF parametrization range of bias for $\langle b \rangle$, and hence tighter σ was calculated to match the QSO space constraints on σ was chosen to give the $\langle b \rangle$ and minimal scatter is a reasonable approximation. For example, the ratio of $\langle b \rangle(\sigma = 0.1)$ to $\langle b \rangle(\sigma = 1.0)$ increases by less than 10 per cent from $z = 4$ to 5, while $\langle b \rangle(\sigma = 0.1)$ to $\langle b \rangle(\sigma = 1.0)$ increases by less than 10 per cent from $z = 4$ to 5, while $\langle b \rangle(\sigma = 0.1)$ to $\langle b \rangle(\sigma = 1.0)$ increases by less than 10 per cent from $z = 4$ to 5, while $\langle b \rangle(\sigma = 0.1)$ to $\langle b \rangle(\sigma = 1.0)$ increases by less than 10 per cent from $z = 4$ to 5, while $\langle b \rangle(\sigma = 0.1)$ to $\langle b \rangle(\sigma = 1.0)$ increases by less than 10 per cent from $z = 4$ to 5, while $\langle b \rangle(\sigma = 0.1)$ to $\langle b \rangle(\sigma = 1.0)$ increases by less than 10 per cent from $z = 4$ to 5, while $\langle b \rangle(\sigma = 0.1)$ to $\langle b \rangle(\sigma = 1.0)$ increases by less than 10 per cent from $z = 4$ to 5, while $\langle b \rangle(\sigma = 0.1)$ to $\langle b \rangle(\sigma = 1.0)$ increases by less than 10 per cent from $z = 4$ to 5, while $\langle b \rangle(\sigma = 0.1)$ to $\langle b \rangle(\sigma = 1.0)$ increases by less than 10 per cent from $z = 4$ to 5, while $\langle b \rangle(\sigma = 0.1)$ to $\langle b \rangle(\sigma = 1.0)$ increases by less than 10 per cent from $z = 4$ to 5, while $\langle b \rangle(\sigma = 0.1)$ to $\langle b \rangle(\sigma = 1.0)$ increases by less than 10 per cent from $z = 4$ to 5, while $\langle b \rangle(\sigma = 0.1)$ to $\langle b \rangle(\sigma = 1.0)$ increases by less than 10 per cent from $z = 4$ to 5, while $\langle b \rangle(\sigma = 0.1)$ to $\langle b \rangle(\sigma = 1.0)$ increases by less than 10 per cent from $z = 4$ to 5, while

3 DISCUSSION

It appears that the most luminous, highest redshift QSOs have instantaneous luminosities which are well correlated with their host halo masses. The already strong constraint shown here should be improved by measurements of high-redshift QSO clustering with yet larger samples. New observations will broadly improve the constraint in two ways: through wider area observations to identify a larger number of QSOs similar in redshift to the SDSS sample and through deeper observations over the same area. Deeper observations will identify slightly fainter QSOs at all redshifts and may provide a sufficient sample to measure the clustering amplitude at even higher redshift than $z \approx 4$, where we expect the bias to be even larger. Going wider in area will decrease the fractional error on $\langle b \rangle$ for high-redshift QSOs. As these measurements of high-redshift QSO bias will remain Poisson limited, the fractional error on $\langle b \rangle$ will scale as $1/N_{QSO}$ for a survey of N_{QSO} QSOs. Going deeper to measure luminous QSOs at yet higher redshifts is also expected to be useful, as the data indicate strong evolution in the clustering amplitude with redshift.

Fig. 4 illustrates how $\langle b \rangle$ increases with redshift for three values of the scatter between QSO luminosity and host, halo mass assuming $f_{\text{on}} = 1$. At each redshift, $\langle b \rangle$ was calculated to match the QSO space density evolution parametrized by Richards et al. (2006), although converted to our cosmological parameters. The steepest relation between $\langle b \rangle$ and redshift is for the case of the smallest scatter. If $f_{\text{on}} = 1$ and the scatter is minimal, the relative value of $\langle b \rangle$ for different values of the dispersion is a good measure of the fractional uncertainty in $\langle b \rangle$ required to improve on our constraint. These ratios demonstrate that the most effective constraint from clustering arises from the lowest redshift at which $f_{\text{on}} = 1$ and minimal scatter is a reasonable approximation. For example, the ratio of $\langle b \rangle(\sigma = 0.1)$ to $\langle b \rangle(\sigma = 1.0)$ increases by less than 10 per cent from $z = 4$ to 5,

Figure 2. The large-scale bias, $\langle b \rangle$, versus lognormal dispersion, σ, for all QSOs brighter than a given L_{min} chosen such that $h = 5.6 \times 10^{-7} h^3 \text{Mpc}^{-3}$ (lower, dotted lines) or $2 \times 10^{-7} h^3 \text{Mpc}^{-3}$ (upper, dashed lines). The shaded bands indicate the ± 1 and 2σ range of bias measured by Shen et al. (2007), as described in the text. For each triple of lines, the upper line assumes f_{on} of equation (4) is unity while the lower lines assume $f_{\text{on}} = 0.3$ and 0.1.

Figure 3. The same range of measured bias for $z = 4$ as shown in Fig. 2, but now for two different analytic fits to the theoretical bias. The Press–Schechter (top panel, solid) bias fit is as before, and the Sheth–Tormen (bottom panel, dashed) is shown below. Again, the shaded bands indicate the ± 1 and 2σ range of bias measured by Shen et al. (2007), as described in the text. For each triple of lines, the upper line assumes f_{on} of equation (4) is unity while the lower lines assume $f_{\text{on}} = 0.3$ and 0.1. If the Sheth–Tormen bias is used, there is no overlap within the 2σ range of the clustering measurement.
the N_{QSO} above the SDSS flux limit drops by approximately an order of magnitude. Therefore, while the clustering amplitude increases, the decline in N_{QSO} for a flux-limited, high-redshift survey more than offsets this gain. By contrast, colour selection of just very high redshift (e.g. $z > 5$) QSOs could produce a substantial improvement for a given total number of spectra.

The immediate prospect for improvement in this constraint is the completion of the SDSS observations beyond the 4000 deg2 employed by Shen et al. (2007). These observations will simply increase N_{QSO}, and the error bars should scale as N_{QSO}^{-1}. On a somewhat longer time-scale, the proposed Baryon Oscillation Spectroscopic Survey (BOSS) should approximately double the number of $z > 3.5$ QSOs, although it will mostly achieve this by going deeper. Provided $f_{\text{obs}} = 1$ and small scatter are still reasonable approximations to this slightly fainter population (that will still be well above the break in the QSO LF), the BOSS factor of 2 improvement in sample size should decrease the error bars by approximately a factor of 2 and produce a powerful improvement in the constraint. For example, if the measured bias stayed fixed and the error bars decreased by a factor of 2, the upper limit on the observed scatter would improve to less than 0.5 (i.e. 0.2 dex) for $f_{\text{obs}} = 1$. There are also upcoming photometric surveys that go even wider in area and deeper: Pan-STARRS5, the Dark Energy Survey6 and the Large Synoptic Survey Telescope (LSST7). While these surveys do not include a dedicated plan for spectroscopic observations of QSOs, they will provide the necessary candidate data base of these extremely rare objects for spectroscopy.

On the theoretical side, the calculations presented here could also be improved. Better modelling could allow us to use a wider range of scales. As large-scale, high-resolution simulations become increasingly feasible, it will become possible to precisely measure both the bias of all haloes and the bias as a function of halo history. The scatter between these various relationships can also be measured in self-consistent numerical simulations of merger-driven black hole growth. Hopkins et al. (2007) presented a recent analysis of the observed and simulated scatter between black hole mass and various host (bulge) galaxy properties (σ, host galaxy mass, effective radius) at lower redshifts than we are considering here. They found that the intrinsic scatter is generally lower than the observed (upper limit) and as small as ~ 0.2 dex for combinations that produce a fundamental plane for black holes. However, they also note that the strong correlation of black hole mass with bulge properties implies that the connection with halo mass is only indirect and dominated by the evolution in the typical gas fractions. Measurement of the evolution of these quantities in full cosmological simulations (e.g. Di Matteo et al. 2008) could provide measurements of the expected scatter at the very high redshifts where QSOs are observed to be so strongly biased.

Regardless of these future prospects, the strength of the present constraint on scatter in a monotonic relation between QSO luminosity and halo mass is already surprising. As noted in the introduction, we expect scatter to be present because we expect scatter in at least four relationships that combine to determine the instantaneous luminosity of a QSO in a halo of a given mass: the relationships between instantaneous luminosity and peak luminosity; peak luminosity and black hole mass; black hole mass and bulge properties and bulge and halo mass. These expectations arise from the observed scatter in these individual relations at lower redshifts intriguingly, in all cases the observed scatter only sets an upper limit on the intrinsic scatter.

For the relation between black hole mass and bulge velocity dispersion known as the M_{BH}–σ relation (Ferrarese & Merritt 2000; Gebhardt et al. 2000), Tremaine et al. (2002) showed that the intrinsic dispersion is no larger than 0.25–0.3 dex (or 0.58–0.70 in our natural log notation). Ferrarese (2002) explored the relation between M_{BH}–M_{h} by using rotation curve data and argued that the dispersion between black hole and halo mass could be even less than the M_{BH}–σ dispersion, although she notes that the uncertainty in the transformation between circular velocity and halo mass is not well characterized. Finally, Kollmeier et al. (2006) measured the distribution in Eddington ratio, $L_{\text{bol}}/L_{\text{Edd}}$, for a sample of $z = 0.3$–4 QSOs and found that the distribution is well described as lognormal with a peak at 0.25 and a dispersion of 0.3 dex. As this observed dispersion must account for the uncertainty in the mass estimator and bolometric correction in addition to $L_{\text{bol}}/L_{\text{Edd}}$, this measurement also sets an upper limit to the intrinsic dispersion in $L_{\text{bol}}/L_{\text{Edd}}$.

In addition to the small scatter in L_{bol}, the data also suggest that the duty cycle is approximately unity. This may be less surprising, given their extremely high luminosities and masses of their supermassive black holes. If QSOs are limited to accreting at no more than the Eddington rate, the luminosities of $z > 6$ QSOs imply that their central, supermassive black holes already exceeded $M_{\text{BH}}/M_{\odot} > 10^9$ when the Universe was less than 1 Gyr old (Fan et al. 2001). Subsequent near-infrared spectroscopy provides further evidence that their central black holes are indeed massive (Barth et al. 2003; Jiang et al. 2007). To create such massive black holes at early times requires $f_{\text{obs}} \sim 1$, modulo the uncertainty in the initial seed mass. Together, these strong constraints on the duty cycle and scatter in L_{bol} for high-redshift QSOs provide important new information on how supermassive black holes and their host haloes grew at early times.

4 http://cosmology.lbl.gov/BOSS
5 http://pan-starrs.ifa.hawaii.edu
6 http://www.darkenergysurvey.org
7 http://www.lsst.org
ACKNOWLEDGMENTS

We thank Yue Shen and Cris Porciani for their helpful comments on an earlier draft of this paper. The simulations used in this paper were analysed at the National Energy Research Scientific Computing Center. We thank CCAPP at The Ohio State University and the participants in the quasar mini-workshop for a stimulating meeting. JDC and MW also are grateful to CCAPP for hosting them for an extended visit. MW is supported by NASA.

REFERENCES

Bardeen J., Bond J. R., Kaiser N., Szalay A. S., 1986, ApJ, 304, 15
Barth A. J., Martini P., Nelson C. H., Ho L. C., 2003, ApJ, 594, L94
Carlberg R., 1990, ApJ, 350, 505
Cavaliere A., Vittorini V., 2000, ApJ, 543, 599
Cohn J. D., White M., 2008, MNRAS, 385, 2025
Cole S., Kaiser N., 1989, MNRAS, 237, 1127
Croom S. M. et al., 2005, MNRAS, 356, 415
croton D. J., Gao L., White S. D. M., 2007, MNRAS, 374, 1303
da Angela J. et al., 2008, MNRAS 383, 565 (astro-ph/0612401)
Dalal N., White M., Bond J. R., Shirokov A., 2008, MNRAS, in press (arxiv:0803.3453)
Di Matteo T., Colberg J., Springel V., Hernquist L., Sijacki D., 2008, ApJ, 676, 33
Efstathiou G., Frenk C. S., White S. D. M., Davis M., 1988, MNRAS, 235, 715
Fan X., 2006, New Astron. Rev., 50, 655
Fan X. et al., 2001, AJ, 122, 2833
Ferrarese L., 2002, ApJ, 578, 90
Ferrarese L., Merritt D., 2000, ApJ, 539, L9
Gao L., White S. D. M., 2007, MNRAS, 377, L5
Gebhardt K. et al., 2000, AJ, 119, 1157
Haiman Z., Hui L., 2001, ApJ, 547, 27
Haiman Z., Loeb A., 1998, ApJ, 503, 505
Heitmann K. et al., 2007, Comput. Sci. Discovery, in press (arxiv/0706.1270)
Hennawi J. F. et al., 2006, AJ, 131, 1
Hopkins P. F., Hernquist L., Cox T. J. DiMatteo T., Robertson B., Springel V., 2006, ApJS, 163, 1
Hopkins P. F., Hernquist L. E., Cox T. J., Robertson B., Krause E., 2007, ApJ, 669, 45
Hopkins P. F., Hernquist L., Cox T. J., Keres D., 2008, ApJS, 175, 356
Jiang L., Fan X., Vestergaard M., Kurk J. D., Walter F., Kelly B. C., Strauss M. A., 2007, AJ, 134, 1150
Jing Y. P., 1998, ApJ, 503, L9
Jing Y. P., Suto Y., Mo H. J., 2007, ApJ, 657, 664
Kaiser N., 1984, ApJ, 284, L9
Kauffmann G., Haenelt M., 2000, MNRAS, 311, 576
Kollmeier J. A. et al., 2006, ApJ, 648, 128
Kundic T., 1997, ApJ, 482, 631
Martini P., 2004, in Ho L. C., ed., Coevolution of Black Holes and Galaxies. Cambridge Univ. Press, Cambridge, p. 235
Martini P., Weinberg D. H., 2001, ApJ, 547, 12
Myers A. D., Brunner R. J., Nichol R. C., Richards G. T., Schneider D. P., Bahcall N. A., 2007a, ApJ, 658, 85
Myers A. D., Brunner R. J., Nichol R. C., Richards G. T., Schneider D. P., Bahcall N. A., 2007b, ApJ, 658, 99
Myers A. D., Richards G. T., Brunner R. J., Schneider D. B., Strand N. E., Hall P. B., Blumquist J. A., York D. G., 2008, ApJ, 678, 635
Padmanabhan N., White M., Norberg P., Porciani C., 2008, MNRAS, in press (arXiv:0802.2105)
Porciani C., Norberg P., 2006, MNRAS, 371, 1824
Porciani C., Magliocchetti M., Norberg P., 2004, MNRAS, 355, 1010
Press W. H., Schechter P., 1974, ApJ, 187, 425
Richards G. T. et al., 2006, AJ, 131, 2766
Seljak U., Warren M. S., 2004, MNRAS, 355, 129
Shen Y. et al., 2007, AJ, 133, 2222 (astro-ph/0702214)
Sheth R., Tormen G., 1999, MNRAS, 308, 119
Sheth R., Tormen G., 2004, MNRAS, 350, 1385
Sheth R., Mo H.-J., Tormen G., 2001, MNRAS, 323, 1
Smith R. E. et al., 2003, MNRAS, 341, 1311
Stephens A. W., Schneider D. P., Schmidt M., Gunn J. E., Weinberg D. H., 1997, AJ, 114, 41
Tinker J. L., Weinberg D. H., Zheng Z., Zehavi I., 2005, ApJ, 631, 41
Tremaine S. et al., 2002, ApJ, 574, 740
Wechsler R. H., Zentner A. R., Bullock J. S., Kravtsov A. V., Allgood B., 2006, ApJ, 652, 71
Wetzel A., Cohn J. D., White M., Holz D. E., Warren M. S., 2007, ApJ, 656, 139
White M., 2002, ApJS, 579, 16
Wyithe J. S. B., Loeb A., 2002, ApJ, 581, 886

This paper has been typeset from a TeX/LaTeX file prepared by the author.