The outcome of gynecologic cancer patients with Covid-19 infection: A systematic review and meta-analysis [version 1; peer review: awaiting peer review]

I Gde Sastra Winata1, Januar Simatupang2, Arie A Polim3,4, Yakob Togar2, Advenny Elisabeth Tondang2

1Gynecology & Oncology, Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
2Obstetric & Gynecology, Faculty of Medicine, Christian University of Indonesia, Jakarta, Indonesia
3Reproductive Endocrinology and Infertility, School of Medicine and Health Sciences, Atmajaya Catholic University of Indonesia, Jakarta, Indonesia
4Reproductive Endocrinology and Infertility, Morula IVF, Jakarta, Indonesia

Abstract

\textbf{Background:} Cancer is a comorbidity that leads to progressive worsening of coronavirus disease 2019 (Covid-19) with increased mortality. This is a systematic review and meta-analysis to yield evidence of adverse outcomes of Covid-19 in gynecologic cancer.

\textbf{Methods:} Searches through PubMed, Google Scholar, ScienceDirect, and medRxiv to find articles on the outcome of gynecologic cancer with Covid-19 (24 July 2021–19 February 2022). The Newcastle-Ottawa Scale tool was used to evaluate the quality of included studies. Pooled odds ratio (OR), 95% confidence interval (CI) and random-effects model were presented.

\textbf{Results:} We accepted 51 studies (a total of 1991 gynecologic cancer patients with Covid-19). Covid-19 infection cases were lower in gynecologic cancer vs hematologic cancer (OR 0.71, CI 0.56-0.90, \textit{p} 0.005). Severe Covid-19 infection and death were lower in gynecologic cancer vs lung and hematologic cancer (OR 0.36, CI 0.16-0.80, \textit{p} 0.01), (OR 0.52, CI 0.44-0.62, \textit{p} <0.0001), (OR 0.26, CI 0.10-0.67 \textit{p} 0.005), (OR 0.63, CI 0.47-0.83, \textit{p} 0.001) respectively. Increased Covid death was seen in gynecologic cancer vs population with breast cancer, non-Covid cancer, and non-cancer Covid (OR 1.50, CI 1.20-1.88, \textit{p} 0.0004), (OR 11.83, CI 8.20-17.07, \textit{p} <0.0001), (OR 2.98, CI 2.23-3.98, \textit{p} <0.0001) respectively.

\textbf{Conclusion:} Gynecologic cancer has higher Covid-19 adverse outcomes compared to non-cancer, breast cancer, non-metastatic, and Covid-19 negative population. Gynecologic cancer has fewer
Covid-19 adverse outcomes compared to other cancer types, lung cancer, and hematologic cancer. These findings may aid health policies and services during the ongoing global pandemic.

PROSPERO Registration: CRD42021256557 (22/05/21)

Keywords
COVID-19, Critical care outcome, Female genital neoplasms, Hospitalization, Morbidity, Mortality

This article is included in the Emerging Diseases and Outbreaks gateway.

This article is included in the Coronavirus collection.

Corresponding author: Yakob Togar (vincentharlingcute@gmail.com)

Author roles: Winata IGS: Conceptualization, Investigation, Methodology, Supervision, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Simatupang J: Conceptualization, Investigation, Methodology, Supervision, Validation, Visualization; Polim AA: Conceptualization, Investigation, Methodology, Supervision, Validation, Visualization; Togar Y: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Project Administration, Resources, Software, Writing – Original Draft Preparation, Writing – Review & Editing; Tondang AE: Data Curation, Investigation, Methodology, Project Administration, Resources, Software

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2022 Winata IGS et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Winata IGS, Simatupang J, Polim AA et al. The outcome of gynecologic cancer patients with Covid-19 infection: A systematic review and meta-analysis [version 1; peer review: awaiting peer review] F1000Research 2022, 11:525 https://doi.org/10.12688/f1000research.111349.1

First published: 16 May 2022, 11:525 https://doi.org/10.12688/f1000research.111349.1
Introduction
The Covid-19 pandemic has changed the way health care providers around the world manage care provided to their patients. The pandemic has also proven to shift the attitude of standard practice and procedure between providers and patients, for example, to reduce gynecologic cancer patients visiting the hospital as possible because the risk of getting infected with Covid-19 is increased regarding their comorbidities.1 Despite this circumstance, gynecologic cancer patients are still often required to perform routine hospital visits for treatments or other medical procedures under guidance made by gynecological cancer societies during the Covid-19 pandemic.2 The cancer incidence and mortality are still increasing around the world. According to Global Cancer Statistic: 2020 for gynecologic cancer, there are 604,127, 417,367, 313,959, 45,240, and 17,908 new cases of cancer of the cervix uteri, corpus uteri, ovary, vulva, and vagina respectively. 3 Most concerns are coming from these patients about how they may proceed to seek or continue their cancer treatment and surveillance during the Covid-19 pandemic.4 Studies are showing various results on increased mortality and severity among cancer patients infected with Covid-19. Systematic review and meta-analysis studying the outcome of cancer patients with Covid-19 show 2.1–4% proportion of cancer patients among those infected with Covid-19, additionally compared to non-cancer with Covid-19 greater amount of mortality and severity are observed in cancer population with Covid-19.5–7 However studies and data on the outcome of gynecologic cancer patients with Covid-19 are still lacking. Several SARS-CoV-2 variants of concern listed by WHO (World Health Organization) pose challenges in mitigating the pandemic as these variants often increase transmission rate and severity.8 The world has been experiencing a wave of active case surges by these variants and on 26 November 2021 the WHO designated the variant Omicron (B.1.1.529) as an addition to the list.9 Thus we attempt to review the literature and quantify the effect of the SARS-CoV-2/ Covid-19 infection among gynecologic cancer patients to assess whether the risk of infection, hospitalization, severity, and mortality are increased than non-gynecologic cancer population.

Methods
We conducted this systematic review and meta-analysis according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses/PRISMA statement.10,82 This study and its protocol were registered to PROSPERO (CRD42021256557).

Eligibility criteria
We took into consideration of studies with observational cohort studies, case-control, cross-sectional, case report, and case series designs that evaluate the outcome of gynecologic cancer patients infected with Covid-19 from the year 2019. Each study ought to report Covid-19 associated infection, hospital admission, mortality, severity, or admission to the intensive care unit (ICU); a summary of eligible studies and its extracted outcome of interest were managed in the Microsoft Excel spreadsheet provided in the Underlying data.82 We exclude studies other than the English language, reviews or guidelines, and inconceivable results of the sought outcome.

Comparator(s)/control
Non-cancer Covid-19 patients, non-Covid-19 cancer patients, other cancer types/non-gynecological cancer with Covid-19.

Database and literature search
Study articles were systematically searched through PubMed/Medline, ScienceDirect, Google Scholar, and medRxiv. Relevant articles had been screened from 24 July 2021 to 19 February 2022. Reference searches from retrieved articles citation lists were identified if any were needed. Boolean operators technique used for Pubmed/Medline search with (“COVID-19” or “2019-nCoV” or “SARS-CoV” or SARS-CoV2 or 2019-nCov or “2019 coronavirus” or covid19) AND (gynecology or gynaecology) AND (tumor or malignancy or cancer) AND (outcomes or outcome) AND (gyn* tum* or gyn *malign* or gyn* cancer) AND (cancer surgery or oncolog* surger*) AND (brachytherapy or radiotherapy). We used “Gynecologic cancer AND Covid-19” with Google Scholar, Science Direct, and medRxiv. Two authors separately handled the literature search. Findings were accumulated and stored in Mendeley and Zotero for management and automated duplicate identification. Thorough stepwise screening from title and abstract was then conducted to determine possible article inclusion. Potentially eligible studies were then evaluated for in-depth full-text review. Each author would consult senior authors to resolve any differences found during the literature’s selection process.

Data extraction and quality assessment
The data was extracted independently by two authors and stored them in the Microsoft Excel spreadsheet. Data was then discussed for an agreement. Name of authors, year of publication, country, type of studies, study period, number of patients, comparators, and target conditions was collected. The NOS/Newcastle-Ottawa Scale was used by authors to assess the quality of the cohort and case-control study, and The Joanna Briggs Institute (JBI) Critical Appraisal Checklist for an analytical cross-sectional study.11 The assessment was performed by two authors and the results were discussed with the first author.
Meta-analysis outcome

The main outcome of interest was Covid-19 mortality and severity. Covid-19 severity is defined as either ICU admission, acute respiratory distress syndrome (ARDS), or need for mechanical ventilation. Covid-19 infection and hospitalization were decided as secondary outcomes.

Data analysis & synthesis

We performed data analysis mainly using Review Manager 5.4.1 (RevMan 5.4.1) by Cochrane collaboration.12 If needed, additional synthesis was then performed with STATA-16. We synthesized the dichotomous outcome from each study with an odds ratio (OR). The random-effects model (DerSimonian and Laird) was used to present pooled OR with 95% CI (confidence interval) and the result of overall effect (p). We addressed the presence of heterogeneity with I^2 as 0% to 40%: might not be important; 30% to 60%: may represent moderate heterogeneity; 50% to 90%: may represent substantial heterogeneity; 75% to 100%: considerable heterogeneity according to the Cochrane Handbook for Systematic Reviews of Interventions. We performed subgroup analysis by age, gender, other comorbidities status, cancer type, cancer stage, presence of metastatic disease, and active cancer treatment. Sensitivity analysis was performed by dividing multi-center/ single-center studies and removing/including the latest study period if concerns were raised of patients population duplication thus we could present robust pooled evidence.13

Results

All supplementary files can be found in the Extended data.82

A total of 51 studies involving the Covid-19 positive population were identified; among them were 1991 gynecologic cancer patients, 221465 non-cancer patients, and 28138 other cancer type patients. In total, 3,717,078 cancer patients were found to be Covid-19 free. Study selection and summary of included studies were presented in Figure 1 and Table 1. The risk of bias in each study was shown in Figures S1 and S2. Due to high heterogeneity found in adverse Covid-19 outcomes (Covid-19 death \(I^2 82\% \)), (Covid-19 hospitalization \(I^2 92\% \)), (Covid-19 infection case \(I^2 72\% \)), we decided to perform subgroup analysis.

![Figure 1. Study flow diagram.](image-url)
Author	Location	Type of study	Time of study	Publication year	Non-cancer Covid patients	Gynecology Oncology Covid patients	Other Oncology Covid patients	Cancer non Covid patients	Gender	Gender stage	Comorbidities	Cancer treatment	Age	Outcome
Angelis V et al.	United Kingdom	Multi center, prospective cohort	March-April 2020	2020	NA	6	107 (Lung 15, Breast 18, Hematological 18)	13376 (Gynecological 967)	Male63, Female50	NA	Hypertension 39, Diabetes 18, Ischemic heart disease 13, COPD 6	SACT 85, Radiotherapy 11	Median 66, IQR: 54–69, range 21–91	Covid infection & Covid death
Ayhan A et al.	Turkey	Multi center, prospective cohort	March-April 2020	2020	NA	46	642 (Gynecological)	Female688	NA	Hypertension 29, Diabetes 16, Chronic pulmonary disease 11, Coronary heart disease 6, CKD 1	Major/Complex Cancer Surgery 688	<65: 34, >65: 12	Covid death	
Ayhan M et al.	Turkey	Single center, retrospective cohort	March-June 2021	2021	NA	4 (Ovarian 1, Endometrium 3)	80 (Lung 27, Breast 18)	Female33, Male51	1, 2, 7, 11, 13, Metastasis 57, Non-metastasis 27	Hypertension 12, Diabetes 16, Coronary artery disease 3, COPD 3, CKD 1	SACT 84	Median 61, IQR: 21–84	Covid infection & Covid hospitalization	
Ayhan M et al.	Turkey	Single center, retrospective cohort	March-May 2021	2021	2289	7 (Cervix 3, Endometrial 2, Ovarian 2)	85 (Lung 26, Breast 17)	Female41, Male51	Metastasis 53, Non-metastasis 39	Hypertension 31, Diabetes 16, COPD 14, Coronary artery disease 13, CKD 4, Chronic liver disease 2, Cerebrovascular disease 2	SACT 62	<67: 45, >67: 47	Covid death	
Basse C et al.	France	Single center, prospective cohort	March 2020	2020	NA	12	129 (Lung 18, Breast 57, Hematological 19)	Female102, Male39	NA	Hypertension 15, Diabetes 24, Hypertension 48, Other heart disease 21, Systemic disease 6	Surgery 11, Radiotherapy 13, SACT 120, None 17	>70: 141	Covid death	
Bernard A et al.	France	Multi center, prospective cohort	March-April 2020	2021	83329	185	5537 (Lung 873, Breast 561, Hematological 1389)	Female39919, Male45079	Metastasis 1775, Non-metastasis 2558	Hypertension 28163, Heart failure 6641, Chronic respiratory disease 1334, COPD 6948, Diabetes 1626, COPD 4516, Obesity 8289, Crohn 673	NA	With cancer: mean 72, Without cancer: mean 65	Covid death	
Bersanelli M et al.	Italy	Multi center, prospective cohort	January-April 2020	2020	NA	1 (Endometrial)	13 (Lung 9, Breast 1)	Female3, Male10	N: 9	Splenectomy 1, Hypertension 8, HIV 1, Diabetes 1	IC13, IC13 + Chemotherapy 1	<65: 5, >65: 9	Covid death	
Bogni G et al.	Italy	Single center, retrospective cohort	February-March 2020	2020	NA	190(Ovarian 14, Endometrial 3, Cervical 1, Ovarian + Endometrial 1)	NA	Female19	NA	Cardiomyosaromal disease 5, COPD 1, Hypothyroidism 2, Plummer disease 1	Surgery 5, SACT 8, Planned treatment 6	<65: 9, >65: 10	Covid death	
Cavanna L et al.	Italy	Single center, retrospective cohort	April–June 2020	2021	NA	0	10 (Lung 2)	Female2, Male8	NA	SACT 7, Hormonal 1	Mean 69.2, Range 54–80	Covid infection		
Chai C et al.	China	Multi center, prospective cohort	January-March 2020	Pre-prints	498	16 (Gynecological 9, Ovarian 4, Endometrial 3)	150 (Lung 25, Breast 19, Hematological 17)	Female336, Male328	NA	Hypertension 226, Diabetes 128, Hyperlipidemia 109, Heart disease 79, Cerebrovascular disease 22, COPD 36, CKD 14, Chronic liver disease 12	NA	Median 65, IQR 59–70	Covid infection	
Table 1. Continued

Author	Location	Type of study	Time of study	Publication year	Non cancer Covid patients	Gynecology Oncology Covid patients	Other Oncology Covid patients	Cancer non Covid patients	Gender*	Cancer stage*	Comorbidities*	Cancer treatment*	Age*	Outcome			
Dai M et al.	China	Multi center, prospective cohort	January–February 2020	2020	105	8 (Cervical: 6, Ovarian: 1, Endometrial: 1)	97 (Lung: 22, Breast: 11, Hematological: 8)	NA	Female: 46	Male: 59	Hypertension: 160, Cardiovascular disease: 51, Diabetes: 36, Cerebrovascular disease: 26, CKD: 28, Chronic liver disease: 42	Surgery: 8, SACT: 27, Radiotherapy: 13	<65: 54, >65: 51	Covid death and Severe Covid			
de Mello AC et al.	Brazil	Single center, retrospective cohort	April–May 2020	2020	NA	22 (Cervical: 12, Ovarian: 3, Endometrial: 5, Vulvar: 2)	159 (Lung: 7, Breast: 40, Hematological: 34)	NA	Female: 110	Male: 71	Hypertension: 77, Diabetes: 31, CKD: 10, COPD/Asthma: 7	Surgery: 12, Radiotherapy: 10, SACT: 88, Palliative: 32, Hormonal: 20	<60: 89, 60–74: 67, >75: 25	Covid death and Severe Covid			
DeToro G et al.	OOnCovid-Europe	Multi center, prospective cohort	February–June 2020	2021	NA	57	1014 (Lung: 154, Breast: 177, Hematological: 87)	NA	Female: 231	Male: 296	Hypertension: 251, Diabetes: 115, Cardiovascular disease: 128, Chronic pulmonary disease: 80, CKD: 62, Cerebrovascular disease: 87, Liver impairment: 11, Immunosuppression: 16	Ongoing treatment at diagnosis: 516, Surgery: 510, SACT: 319, Radiotherapy: 319, Palliative: 277	Mean: 67.9	Covid death			
Duarte M et al.	Brazil	Multi center, prospective cohort	January–September 2020	2020	38468	75 (Cervix: 47, Uterine: 6, Ovaries: 22)	696 (Lung: 51, Breast: 90, Hematological: 155)	NA	Female: 374	Male: 307	Heart disease: 143, Diabetes: 104, Neurologic disease: 13, Chronic lung disease: 29, Nephropathy: 39	SACT: 431	<65: 441, >65: 240	Covid death			
Fang M et al.	China	Single center, retrospective cohort	February–April 2020	pre-prints	NA	4	52 (Lung: 9, Breast: 4, Hematological: 10)	NA	Female: 24	Male: 32	Hypertension: 23, Diabetes: 7, Cardiovascular disease: 5, Chronic pulmonary disease: 1, Cytosis: 2, CKD: 4	NA	Median: 64, IQR: 54–71	Covid death			
Fernandes G et al.	Brazil	Cross sectional	April–August 2020	2021	NA	26	385 (Lung: 18, Breast: 93, Hematological: 47)	NA	Female: 234	Male: 177	NA	NA	<60: 215, >60: 196	Covid death			
Gladissy J et al.	International	Multi center, prospective cohort	April–June 2020	2020	NA	25	263 (Lung: 25, Breast: 24, Other: 214)	8683 (Gynecological: 1057)	Female: 119	Male: 169	Pre-existing respiratory condition: 45, Obese: 56	Minor surgery: 36, Major surgery: 252	<50: 30, 50–59: 39, 60–69: 87, 70–79: 96, >80: 36	Covid infection			
Grines P et al.	CCC19-International	Multi center, prospective cohort	March–November 2020	2021	NA	322	4796 (Lung: 409, Breast: 967, Hematological: 1097)	NA	Female: 2527	Male: 2436	Cardiovascular: 1582, Pulmonary: 1091, Renal disease: 831, Diabetes: 1385	Chemotherapy: 802, Immunotherapy: 248, Targeted therapy: 693, Endocrine therapy: 483, Locoregional therapy: 422	<65: 2282, 65–74: 1309, >75: 1375	Covid hospitilization & Covid death			
Hathout L et al.	United States of America	Multi center, retrospective cohort	February–June 2020	2020	NA	3 (Cervical)	0	44 (Endometrial: 24, Cervical: 12)	Female: 3	NA	Respiratory disease: 1, Vascular disease: 23, Respiratory-Vascular: 4, HIV: 3	Brachytherapy: 3	NA	Covid infection			
Author	Location	Type of study	Time of study	Non cancer Covid patients	Gynecology Oncology Covid patients	Other Oncology Covid patients	Cancer non Covid patients	Gender*	Cancer stage*	Comorbidities*	Cancer treatment*	Age*	Outcome				
-----------------	-----------------------	-----------------------------	----------------------------	--	----------------------------------	--------------------------------	----------------------------	---------	---------------	------------------	-------------------	-------	-----------------------------				
Jee J et al.	United States of America	Single center, retrospective cohort	March–April 2020	NA	15 (Cervical 2, Endometrial 6, Ovarian 5, Vaginal 1, Vulvar 1)	294 (Lung 29, Breast 56, Hematological 71)	NA	Female 150, Male 159	Metastasis 168	Pulmonary disease 35, Cardiовascular disease 221, Metabolic disease 156, Neurologic disease 29, HIV 3, Liver disease 4	NA	Covid death and Severe Covid					
Johannesen T et al.	Norway	Multi center, retrospective cohort	January–May 2020	NA	33	514 (Lung 13, Breast 85, Hematological 54)	NA	Localized 36, Distant disease 6	NA	SACT 71, Surgery 90, Radiotherapy 7	NA	Covid infection					
Kulle C et al.	Turkey	Single center, retrospective cohort	March–June 2020	NA	0	1	NA	NA	NA	Surgery 1	NA	Covid infection					
Kuru B et al.	Turkey	Single center, retrospective cohort	March–October 2020	2	1 (Ovarian)	0	Female 3	NA	Hypertension 2	Surgery 1	>65: 1 <65: 2	Covid infection					
Kovon D et al.	United States of America	Multi center, retrospective cohort	February–December 2020	NA	119	1662 (Lung 33, Breast 241, Hematological 321)	NA	Female 950, Male 831	NA	Heart disease 321, Pulmonary disease 294, CKD 273, Diabetes 474, Obese 481	SACT 601, Hormonal therapy 86	18–65: 104, 65–75: 420, >75: 317	Covid infection				
Lara O et al.	United States of America	Multi center, prospective cohort	March–June 2020	NA	193 (Uterine 87, Epithelial Ovarian 62, Cervical 24, Vulva 8, Non-Epithelial Ovarian 3, Vaginal 3)	NA	NA	Female 193	IIB: 74, IIIb: 100	Hypertension 115, Diabetes 70, Asthma 21, COPD 5, Coronary artery disease 13, Autoimmune disease 18, CKD 21	Surgery 12, Radiotherapy 8, SACT 98	Median 65, IQR 54–73	Covid hospitalization, Severe Covid & Covid death				
Lee L et al.	United Kingdom	Multi center, retrospective cohort	March–April 2020	NA	45	755 (Lung 90, Breast 241, Hematological 321)	NA	Female 349, Male 449	Localized 149, Metastatic 347, Advanced stage 78	Cardiovascular disease 109, COPD 61, Diabetes 131, Hypertension 247	SACT 461, Surgery 29, Radiotherapy 76	Median 69, IQR 59–76	Covid death				
Lei S et al.	China	Multi center, retrospective cohort	January–February 2020	25	1 (Ovarian)	8	NA	Female 20, Male 14	NA	Hypertension 13, Diabetes 8, Cardiovvascular disease 7, Cerebrovascular disease 2, COPD 1, CKD 1	Surgery 9	Median 55, IQR 43–63	Covid death				
Li H et al.	United Kingdom	Multi center, retrospective cohort	March–October 2020	275	17 (Uterine 7, Ovarian 10)	272 (Lung 18, Breast 102, Hematological 53)	4161 (Uterine 107, Ovarian 115)	Female 120, Male 168	NA	NA	50–59: 28, 60–69: 62, 70–79: 159, 80–84: 39	Covid infection & Covid death					
Liang et al.	China	Single center, retrospective cohort	January–April 2020	NA	10 (Uterine 4, Cervical 5, Ovarian 1)	99 (Lung 14, Breast 11, Hematological 12)	NA	Female 52, Male 57	P/I: 86, N: 23	Hypertension 38, Diabetes 18, Cardiovascular disease 10, Cerebrovascular disease 4, Chronic pulmonary disease 18, COPD 3, Chronic liver disease 10	Surgery 69, Adjuvant 79, Chemo-radiation 71, Targeted Immuno-therapy 12	>65: 55, <65: 54	Covid death				
Author	Country	Type of study	Time of study	Other Oncology Covid patients	Carcinoma Non Covid patients	Gender Non Cancer Patients	Gender Cancer Patients	Other Oncology Covid patients	Carcinoma Covid patients	Gender	Other Oncology Covid patients	Cancer stage	Comorbidities*	Treatment*	Age*	Outcome	
-------------------------	--------------------------	------------------------	---------------	--------------------------------	----------------------------	-----------------------------	-------------------------	-------------------------------	--------------------------	---------	---------------------------	------------------------	--------------------------	------------	-------	---------	
Liu C et al.	China	Multi center, prospective cohort	December 2019 - March 2020	NA	NA	Female 103, Male 13	NA	NA	NA	NA	NA	I-II: 83, III-IV: 85	Diabetes, Hypertension, Cardiovascular, Cerebrovascular, COPD, Chronic liver disease	Radiotherapy, Surgery	Median 63, IQR 57-70	Covid death	
Mehta V et al.	United States of America	Single center, retrospective cohort	March - April 2020	NA	1090	Female 91, Male 127	NA	NA	12	1090	NA	Metastasis 42, Active cancer 92	DM 80, Hypertension, Chronic lung disease, CKD, Coronary artery disease, CHF	Chemotherapy, Immunotherapy, Radiotherapy	Median 63, IQR 57-70	Covid death	
Modi C et al.	United States of America	Multi center, prospective cohort	April-July 2020	NA	NA	Female 3, Male 2	NA	NA	1	331	(Gynecologic) 20	I-II: 3, III-IV: 2	Female, Male	NA	Surgery 16	NA	NA
Modi C et al.	United States of America	Multi center, prospective cohort	May 2020	NA	NA	Female 15, Male 18	NA	NA	1	304	(Gynecologic) 300	Female, Male	NA	NA			
Monroy-Iglesias M J et al.	Italy	Multi center, prospective cohort	March - September 2020	NA	NA	Female 2	NA	NA	2	114	(Gynecologic) 12	Female 2	NA	NA			
Mousavi S et al.	Iran	Single center, retrospective cohort	February - April 2020	NA	NA	Female 15, Male 12	NA	NA	1	5(Breast 1)	(Gynecologic) 7	Female 2	NA	NA			
Nakamura S et al.	Japan	Single center, prospective cohort	January - May 2020	NA	NA	Female 15, Male 12	NA	NA	2	31	(Breast 1)	Female 2	NA	NA			
Ning M et al.	China	Single center, prospective cohort	March - April 2020	NA	NA	Female 15, Male 12	NA	NA	1	115	(Gynecologic) 12	Female 2	NA	NA			
Roel E et al.	Spain	Single center, retrospective cohort	March - May 2020	NA	NA	Female 15, Male 12	NA	NA	13	NA	(Gynecologic) 31	Female 2	NA	NA			

*Comorbidities: Diabetes, Hypertension, Cardiovascular, Cerebrovascular, COPD, Chronic liver disease, CKD, Coronary artery disease, CHF.
*Treatment: Chemotherapy, Immunotherapy, Radiotherapy.
*Age: Median, IQR.
*Outcome: Covid infection, Covid death.
Author	Location	Type of study	Time of study	Non-Cancer patients	Gynecology Cancer patients	Other Oncology Cancer patients	Comorbidities*	Gender*	Cancer stage*	Other Information	Cancer Treatment*	Time of Covid infection	Outcome	COVID-19 death & Severe COVID-19	
Russell B et al.	United Kingdom	Single center, retrospective cohort	March–June 2020	10	Female 107, Male 112	NA	NA	Male	I-II: 55, III-IV: 110	NA	SACT	92, Combination therapy	Covid infection & Covid death		
Shi Z et al.	United Kingdom	Multi center, prospective cohort	June 2020 pre-prints	86	Female 746, Male 816	409 (Lung 10, Breast 47, Hematological 49)	COPD 239, Asthma 1306, COPD 1306, Asthma 42, Heart Disease 120, Diabetes 232	Female 746, Male 816	Female	I-III: 2139, IV: 234	NA	Cancer: Mean 61.36, IQR 56.5–67.5, Non-cancer: Mean 56.11, IQR 47.5–64.5			
Song C et al.	China	Multi center, retrospective cohort	December 2019–March 2020	51	Female 107, Male 116	206 (Lung 29, Breast 31, Ovarian 15)	NA	Female 107, Male 116	I-II: 55, III-IV: 110	NA	SACT	92, Combination therapy	Covid infection & Covid death		
Song K et al.	China	Multi center, retrospective cohort	January–March 2020	52	Female 120, Male 128	307 (Lung 24, Breast 40, Hematological 22)	COPD 239, Asthma 1306, COPD 1306, Asthma 42, Heart Disease 120, Diabetes 232	Female 120, Male 128	Female	I-III: 2139, IV: 234	NA	Cancer: Mean 61.36, IQR 56.5–67.5, Non-cancer: Mean 56.11, IQR 47.5–64.5			
Tian J et al.	China	Multi center, retrospective cohort	January–March 2020	53	Female 379, Male 372	217 (Lung 23, Breast 31, Ovarian 15)	NA	Female 379, Male 372	I-III: 192, IV: 34	NA	Surgery 25, Radiation therapy 10, Combined therapy 15, Surgery 25, Radiation therapy 10, Combined therapy 15				
Villegas A et al.	Spain	Single center, retrospective cohort	March–April 2020	54	NA	138	NA	Female 2, Male 1	NA	NA	Surgery 25, Radiation therapy 10, Combined therapy 15				
Wang Q et al.	United America	Multi center, Case control cohort	August 2020	55	NA	140 (Lung 140, Hematological 220)	NA	Male 1	NA	NA	Surgery 25, Radiation therapy 10, Combined therapy 15				
Yang F et al.	China	Multi center, retrospective cohort	January–April 2020	56	Female 24, Male 28	307 (Lung 24, Breast 60, Hematological 22)	COPD 239, Asthma 1306, COPD 1306, Asthma 42, Heart Disease 120, Diabetes 232	Female 24, Male 28	Female	I-III: 2139, IV: 234	NA	Cancer: Mean 61.36, IQR 56.5–67.5, Non-cancer: Mean 56.11, IQR 47.5–64.5			
Yang G et al.	China	Multi center, retrospective cohort	January–March 2020	57	Female 109, Male 96	142 (Lung 24, Breast 40, Hematological 22)	Hypertension 67, Diabetes 22, Hypertension 67, Diabetes 22, Hypertension 67, Diabetes 22, Hypertension 67, Diabetes 22	Female 109, Male 96	Female	I-III: 2139, IV: 234	NA	Cancer: Mean 61.36, IQR 56.5–67.5, Non-cancer: Mean 56.11, IQR 47.5–64.5			
Yang S et al.	China	Single center, retrospective cohort	January–March 2020	58	Female 1, Male 1	2 (Ovarian 1, Endometrial 1)	NA	Male 1	NA	NA	Surgery 25, Radiation therapy 10, Combined therapy 15				
Yang Y et al.	China	Multi center, retrospective cohort	January–March 2020	59	Female 31	6 (Ovarian 1, Endometrial 1, Ovarian 1)	NA	Male 1	NA	NA	Surgery 25, Radiation therapy 10, Combined therapy 15				
Yang Z et al.	China	Multi center, retrospective cohort	January–March 2020	60	Female 3	6 (Ovarian 1, Endometrial 1, Ovarian 1)	NA	Male 1	NA	NA	Surgery 25, Radiation therapy 10, Combined therapy 15				
Author	Location	Type of study	Time of study	Publication year	Non cancer Covid patients	Time of study	Type of study	Other Oncology Covid patients	Cancer non Covid patients	Gender*	Cancer stage*	Comorbidities*	Cancer treatment*	Age*	Outcome
-----------------	----------	--------------------------------	--------------------	------------------	--------------------------	---------------	---------------	-----------------------------	--------------------------	-----------	---------------	----------------	----------------	---------	-----------------
Zhang L et al.	China	Multi-center, retrospective cohort	January-February 2020	2020	NA	February 2020	Multi-center, retrospective cohort	59 (Ovary 1, Endometrial 1, Cervix 1)	25 (Lung 7, Breast 3)	NA	Female 11, Male 17	Diabetes 4, Cardiovascular disease 4, Chronic pulmonary disease 1, Chronic liver disease 2	Surgery 21, Chemotherapy 25, Targeted Therapy 6	Median 65, IQR 66–70	Covid death and Severe Covid
Zhou K et al.	France	Multi-center, retrospective cohort	June-November 2020	2021	NA	March 2021	Multi-center, retrospective cohort	65 (Lung 8, Breast 36)	808 (Gynecological 81)	Female 56, Male 14	Localized 19, Locally advanced 9, Metastasis 32	Hypertension 18, Diabetes 6, COPD 3, Heart failure 2, Autoimmune disease 2	SACT 70, Radiotherapy 2, Surgery 4	Median 61, IQR 27–81	Covid infection

*CCC19: the clinical impact of Covid-19 patients with cancer study, CKD: chronic kidney disease, COPD: chronic obstructive pulmonary disease, IQR: interquartile range, NA: not addressed, SACT: systemic anti-cancer therapy.
*Covid-19 population.
*Charlson comorbidity index.
Gynecologic cancer VS other cancer

Covid-19 infection was equivalent between gynecologic cancer and other cancer patients gathered from eight studies (OR 1.02, CI 0.84–1.22, p = 0.87, I^2 57%) Figure S3. Gynecologic cancer patients had fewer Covid-19 associated deaths compared to other cancers according to 30 studies (OR 0.82, CI 0.71–0.94, p = 0.006, I^2 0%) Figure 2. Covid-19 associated severity was not significant from six studies between gynecologic cancer and other cancer types (OR 0.56, CI 0.30–1.03, p = 0.06, I^2 0%) Figure S4. Data from two studies also showed no significant difference in Covid-19 hospitalizations between gynecologic cancer patients than other cancers (OR 0.73, CI 0.50–1.06, p = 0.10, I^2 82%) Figure S5.

Gynecologic cancer VS non-cancer

Covid-19 infection among gynecologic cancer patients and the non-cancer population was not significant from six studies (OR 1.55, CI 0.81–2.95, p = 0.18, I^2 90%) Figure S6. Data from 11 studies revealed death from Covid-19 was higher in gynecologic cancer than non-cancer patients (OR 2.98, CI 2.23–3.98, p < 0.0001, I^2 30%) Figure 3. However, severe Covid-19 cases showed no significant difference between gynecologic cancer than non-cancer patients from two studies (OR 1.85, CI 0.77–4.44, p = 0.17, I^2 0%) Figure S7.

Gynecologic cancer VS non-covid

Data represented from five studies revealed that gynecologic cancer patients were experiencing higher Covid-19 associated death in comparison to other cancer patients without Covid-19 infection (OR 11.83, CI 8.20–17.07, p < 0.0001, I^2 5%) Figure 4.

Cancer treatment group

We analyzed the effect of active cancer treatment comprising SACT (systemic anti-cancer therapy), radiotherapy, cancer surgery, and hormonal therapy. Data from nine studies showed that, among those who receive active cancer treatment, Covid-19 infection was not significant in gynecologic cancer patients compared to other cancer types (OR 0.75, CI 0.55–1.02, p = 0.07, I^2 0%) Figure S8. Covid-19 death was not significant among cancer treatment between gynecologic cancer and other cancer types gathered from nine studies (OR 0.86, CI 0.41–1.78, p = 0.68, I^2 0%) Figure S9. Severe Covid-19 cases among those who were receiving active cancer treatment showed no significant difference between gynecologic cancer than other cancer according to six studies (OR 0.63, CI 0.18–2.25,

![Figure 2. Gynecologic cancer VS other cancer, Covid-19 death. M-H: mantel-haenszel, CI: confidence interval.](image-url)
According to five studies, Covid-19 associated death was comparable in gynecologic cancer with active cancer treatment compared to those who were not receiving cancer treatment (OR 1.06, CI 0.57–1.98, \(p = 0.86, I^2 = 0\%\)).

Lastly, five studies showed severity from Covid-19 was not significant in gynecologic cancer patients who had active cancer treatment compared to those who had none (OR 0.45, CI 0.17–1.20, \(p = 0.11, I^2 = 26\%)\).

There were two studies available for cancer stage analysis.\(^{23,24}\) Overall, adverse Covid-19 events (infection/hospitalization/severity/death) showed no significance between stage I-II gynecologic cancer against stage III-IV other cancer, stage III-IV gynecologic cancer against stage I-II other cancer, and among all cancer patients who had stage III-IV cancer (OR 0.78, CI 0.04–16.18, \(p = 0.88, I^2 = 0\%\)), (OR 0.48, CI 0.15–1.53, \(p = 0.21, I^2 = 0\%\)), (OR 0.59, CI 0.22–1.58, \(p = 0.29, I^2 = 0\%\)) respectively\(^{23,24,31,35}\). No significance on Covid-19 adverse events between stage III-IV and I-II gynecologic cancer was found in three studies (OR 0.72, CI 0.39–1.33, \(p = 0.29, I^2 = 0\%\)).

There were three studies that provided data on metastatic status.\(^{19,24,38}\) Gynecologic cancer with metastasis had increased Covid-19 associated death than those with localized cancer (OR 1.53, CI 1.06–2.21, \(p = 0.02, I^2 = 0\%\)).

Cancer stage and metastatic cancer

There were two studies available for cancer stage analysis.\(^{23,24}\) Overall, adverse Covid-19 events (infection/hospitalization/severity/death) showed no significance between stage I-II gynecologic cancer against stage III-IV other cancer, stage III-IV gynecologic cancer against stage I-II other cancer, and among all cancer patients who had stage III-IV cancer (OR 0.78, CI 0.04–16.18, \(p = 0.88, I^2 = 0\%\)), (OR 0.48, CI 0.15–1.53, \(p = 0.21, I^2 = 0\%\)), (OR 0.59, CI 0.22–1.58, \(p = 0.29, I^2 = 0\%\)) respectively\(^{23,24,31,35}\). No significance on Covid-19 adverse events between stage III-IV and I-II gynecologic cancer was found in three studies (OR 0.72, CI 0.39–1.33, \(p = 0.29, I^2 = 0\%\)).

There were three studies that provided data on metastatic status.\(^{19,24,38}\) Gynecologic cancer with metastasis had increased Covid-19 associated death than those with localized cancer (OR 1.53, CI 1.06–2.21, \(p = 0.02, I^2 = 0\%\)).
among those who had metastatic diseases, Covid-19 death was not significant between gynecologic cancer compared to other cancer types (OR 0.77, CI 0.54–1.11, p 0.17, I² 0%) Figure S17.

Gynecologic cancer vs lung cancer

A total of 13 studies provided data on Covid-19 infectivity, infection was not significant in gynecologic cancer than lung cancer (OR 0.86, CI 0.61–1.20, p 0.37, I² 73%) Figure S18.14,16,22,28,32,38,42,49,50,55,60 Data from 30 studies revealed that gynecologic cancer had fewer Covid-19 deaths than lung cancer patients (OR 0.52, CI 0.44–0.62, p < 0.0001, I² 0%) Figure 6A.14,17–20,23–27,29,31,36,38,39–41,44,45,47–49,51–53,56,57 Data from six studies showed that gynecologic cancer was having less severity from Covid-19 than lung cancer (OR 0.36, CI 0.16–0.80, p 0.01, I² 0%) Figure 6B.23,24,31,52,53,59 Lastly, two studies reported fewer hospitalizations associated with Covid-19 in gynecologic cancer than lung cancer (OR 0.54, CI 0.40–0.73, p < 0.0001, I² 0%) Figure 6C.16,20

Figure 6. Gynecologic cancer vs lung cancer, (A) Covid-19 death, (B) Severe Covid-19, (C) Covid-19 hospitalization. M-H; mantel-haenszel, CI; confidence interval.
Gynecologic cancer VS breast cancer

Data from 13 studies showed gynecologic cancer and breast cancer were equivalent on the rate of Covid-19 infection (OR 1.05, CI 0.94–1.17, p = 0.37, I^2 7%) Figure S19. Interestingly, from 25 studies, gynecologic cancer patients experience higher Covid-19 death compared to breast cancer patients (OR 1.50, CI 1.20–1.88, p = 0.0004, I^2 19%) Figure 7A. Covid-19 severity was not significant from seven studies between gynecologic cancer and breast cancer patients (OR 0.83, CI 0.40–1.72, p = 0.62, I^2 0%) Figure S20. Lastly, data from two studies showed gynecologic cancer patients experience higher hospitalization from Covid-19 compared to breast cancer (OR 1.52, CI 1.18–1.96, p = 0.001, I^2 0%) Figure 7B.

Gynecologic cancer VS hematologic cancer

Data available from eight studies revealed gynecologic cancer patients had less Covid-19 infections compared to hematologic cancer patients (OR 0.71, CI 0.56–0.90, p = 0.005, I^2 68%) Figure 8A. Data also showed that gynecologic cancer patients were experiencing fewer Covid-19 deaths compared to hematologic cancer from 24 studies (OR 0.63, CI 0.47–0.83, p = 0.001, I^2 46%) Figure 8B. Lastly, four studies also showed that gynecologic cancer patients were having less severity from Covid-19 compared to hematologic cancer (OR 0.26, CI 0.10–0.67, p = 0.005, I^2 0%) Figure 8C.

Gynecologic cancer VS men

Based on 10 studies available for synthesis, there was no significance on Covid-19 infection between gynecologic cancer population and men with cancer (OR 0.58, CI 0.27–1.22, p = 0.15, I^2 94%) Figure S21. Compared to men with cancer, the Covid-19 associated death retrieved from 23 studies showed no significant difference (OR 0.75, CI 0.54–1.05, p = 0.09, I^2 23%) Figure S22. According to six studies, severe Covid-19 was higher in men with cancer compared to gynecologic cancer patients (OR 0.47, CI 0.25–0.88, p = 0.02, I^2 0%)

Figure 7. Gynecologic cancer VS breast cancer, (A) Covid-19 death, (B) Covid-19 hospitalization. M-H; mantel-haenszel, CI; confidence interval.
Hospitalization from Covid-19 was also higher in men with cancer compared to gynecologic cancer patients synthesized from two studies (OR 0.71, CI 0.56–0.89, p 0.004, I² 0%) Figure 9A.

Data from four studies showed that among the gynecologic cancer population, those who were >65 compared to <65 years of age had comparable overall adverse Covid-19 outcomes (infection/hospitalization/severity/death), (OR 1.13, CI 0.48–2.62, p 0.78, I² 14%) Figure S2A. We performed a pairwise comparison of gynecologic cancer with <65 year old gynecologic cancer patients against other cancer with >65 years old, and gynecologic cancer with >65 years old against other cancer with <65 years old. Covid-19 adverse outcome was found to be lower in <65 year old gynecologic cancer than >65 years old other cancer population (OR 0.16, CI 0.06–0.47, p 0.0007, I² 0%) Figure 10. Contrary, there...
was an equivalent Covid-19 adverse outcome between gynecologic cancer with >65 years old and other cancer with <65 years old (OR 1.08, CI 0.36–3.26, p = 0.89, I² 0%) Figure S24.

Comorbidities
Cancer is a comorbidity, aside from which we tried to analyze other comorbidities (hypertension, diabetes, cardiovascular disease, pulmonary disease, renal disease, liver disease, immune disease, metabolic-endocrine disease) present within the cancer population. Among those with comorbidities, gynecologic cancer patients had fewer adverse Covid-19 outcomes than other cancer populations according to four studies (OR 0.31, CI 0.06–0.82, p = 0.02, I² 0%) Figure 11.20,23,24,59 Data from five studies showed there was no significant adverse Covid-19 outcome between gynecologic cancer patients with comorbidities against no comorbidities (OR 2.34, CI 0.59–9.79, p = 0.24, I² 79%) Figure S25.15,21,23,24,35 Gynecologic cancer patients without comorbidities against other cancer patients with comorbidities had no significant difference in
adverse Covid-19 outcomes, according to three studies (OR 0.29, CI 0.04–2.22, p 0.23, I² 56%) Figure S26. 23,24,59
Gynecologic cancer patients with comorbidities against other cancer patients without comorbidities also showed no
significant difference in adverse Covid-19 outcomes, according to four studies (OR 0.61, CI 0.22–1.72, p 0.35, I² 0%) Figure S27. 50,23,24,59

Sensitivity analysis
We performed sensitivity analysis by reproducing each outcome synthesis to pre-specified single center to multi-center
studies, furthermore excluding overlapped study periods associated with its study centers, thus only one center with the
most recent study period was included in Table S1. After exclusion of three studies, a difference of significance was
found in severe Covid-19 between gynecologic cancer and cancer men population (OR 0.47, CI 0.19–1.17, p 0.10,
I² 0%)52,31,52 Aside from that, the remainder of the calculated OR from reproducing each outcome synthesis by exclusion
were within good accordance.

Publication bias
We found no publication bias within our included studies though at first, we identified an asymmetrical funnel plot; it was
caused solely by heterogeneity nonetheless (Figures S28–31). After subgroup identification, the funnel plot was
corrected and the calculated Egger & Begg’s test for overall Covid death, severity, and hospitalization were p 0.15
and p 1.6. For data associated with Covid-19 infection, the values were p 0.17 and p 1.87.

Discussion
We believe this is the first comprehensive meta-analysis with a large population regarding the outcome of Covid-19 on
the gynecologic cancer population. With the 1991 Covid-19 positive gynecologic cancer, we hope we provide new
insight into how the global pandemic is affecting practice and services affecting gynecologic cancer. Several meta-
analyses showed the prevalence of cancer with Covid-19 infection was 2–4%, Covid-19 mortality was also higher in the
cancer patients cohort. 52–54,61–65 In this meta-analysis, it was found that gynecologic cancer patients are at an increased risk
of Covid-19 death compared to the non-cancer population (OR 2.98, CI 2.23–3.98, p < 0.0001, I² 50%), most studies also support this finding by providing evidence of greater Covid-19 adverse outcome in cancer patients.5

Further analysis shows that gynecologic cancer patients with Covid-19 have fewer adverse outcome compared to Covid-
19 lung and hematologic cancer. Our findings are (OR 0.52, CI 0.44
–17.07, p < 0.0001, I² 5%).66 Our finding shows gynecologic cancer with metastatic disease has an increased Covid-19
death compared to those whose cancer is localized (OR 1.53, CI 1.06–2.21, p 0.02, I² 0%), most studies also report
identical outcomes to ours.65,67,68 Our analysis also shows gynecologic cancer is associated with higher Covid-19 death
and hospitalization compared to breast cancer patients (OR 1.50, CI 1.20–1.88, p 0.0004, I² 19%), (OR 1.52, CI 1.18–
1.96, p 0.001, I² 0%) respectively. Other meta-analyses, as well as studies done by the clinical impact of Covid-19 patients
with cancer (CCC19) and the “N3C” also supported this finding.52,66,67 Our analysis presents that gynecologic cancer
patients have lower Covid-19 death compared to overall other cancer types (OR 0.82, CI 0.71–0.94, p 0.006, I² 0%).
Further analysis shows that gynecologic cancer patients with Covid-19 have fewer adverse outcome compared to Covid-
19 lung and hematologic cancer. Our findings are (OR 0.52, CI 0.44–0.62, p < 0.0001, I² 0%), (OR 0.36, CI 0.16–0.80,
p 0.01, I² 0%), (OR 0.54, CI 0.40–0.73, p < 0.0001, I² 0%) for Covid-19 associated death, severity, and hospitalization
versus lung cancer respectively. Hematologic cancer (OR 0.71, CI 0.56–0.90, p 0.005, I² 68%), (OR 0.63, CI 0.47–0.83,
p 0.001, I² 46%), (OR 0.26, CI 0.10–0.67, p 0.005, I² 0%) for Covid-19 infectivity, death, and severity respectively. The
“TERAVOLT” study and the one conducted by Luo et al. also support our finding of a high level of Covid-19 associated
adverse outcomes among lung cancer patients.69,70 Other meta-analyses show lung cancer with Covid-19 has a 32.9%
case fatality rate (378 lung cancer), compared to the non-lung cancer population the Covid-19 death among lung cancer
is also higher (92 lung cancer, 554 control, OR 1.83, p 0.05), (78 lung cancer, 482 control, RR 1.46, p 0.7),5,62,63 Lastly,
most studies also support our findings on the increased Covid-19 adverse outcome in the hematologic cancer population,
as their results are 34.2% case fatality rate (480 hematologic cancer), (120 hematologic cancer, 758 control, OR 2.39,
p 0.02).62,63,65–68 We believe our meta-analysis results correspond to several studies that present the safety of continuing
gynecologic cancer care and service during the global pandemic. Safety protocols have been published for gynecologic
cancer patients who are seeking treatment and some even recommend the implementation of ERAS (Enhanced Recovery
After Surgery).71,72 Data from the French Society for Pelvic and Gynecological Surgery (SCGP) and the French
(FRANCOCYGN) Group reveal there are changes in cancer management strategy during the pandemic time and from
181 gynecologic cancer patients, eight tested positive for Covid-19.73 A multicenter study from three New York City
hospitals also show a similar result; among 302 gynecologic cancer patients, 117 experienced a COVID-19-related
treatment modification, 19 had a positive Covid-19 result and among them three were asymptomatic, 11 had mild
symptoms, three were hospitalized, and two died.74 Lastly, data from the United Kingdom, Turkey, and Italy show that
while maintaining gynecologic cancer treatment during the pandemic time the Covid-19 infection rate is found at a
low level, 1/289 is Covid-19 positive and 1 post-operative death suspected of Covid-19 (UK), 2/200 is suspected with
Covid-19 but neither was positive for COVID-19 on polymerase chain reaction testing (Turkey), and 1/930 is Covid-19 positive (Italy).75–77 Other meta-analysis shows Covid-19 infection with existing comorbidities such as hypertension (OR 1.95, \(p < 0.0001 \)), diabetes (OR 1.97, \(p < 0.0001 \)), respiratory disease (OR 2.74, \(p < 0.0001 \)), cardiovascular disease (OR 3.05, \(p < 0.0001 \)), cerebrovascular disease (OR 4.78, \(p < 0.0001 \)), kidney disease (OR 4.90, \(p < 0.0001 \)), and cancer (OR 1.89, \(p < 0.0001 \)) increase the risk of mortality.78 Our analyzed population comprises cancer as the main comorbidity, however with comorbidities other than cancer, our study shows that the gynecologic cancer population with additional comorbidities has fewer adverse events than other cancer with comorbidities (OR 0.31, CI 0.12–0.82, \(p = 0.02, I^2 = 0\% \)). Other meta-analyses prove that men have increased Covid-19 severity and mortality.78,79 Our findings correspond by showing that severity and hospitalization from Covid-19 were higher in men with cancer compared to gynecologic cancer patients (OR 0.47, CI 0.25–0.88, \(p = 0.02, I^2 = 0\% \)), (OR 0.71, CI 0.56–0.89, \(p = 0.004, I^2 = 0\% \)) respectively. Age thresholds above 50 and 60 years old have an effect on Covid-19 mortality.78,80 In our study Covid-19 adverse outcome was lower in <65 years old gynecologic cancer than <65 years old other cancer patients (OR 0.16, CI 0.06–0.47, \(p = 0.0007, I^2 = 0\% \)). Other meta-analysis on Covid-19 with active cancer treatment shows that cancer surgery (OR 1.14, \(p < 0.01 \)), chemotherapy (OR 1.60, \(p < 0.01 \)), and overall cancer treatment type (OR 1.16, \(p = 0.004, I^2 = 0\% \)) have a higher risk of death.81 However in our study Covid-19 death is equivalent in gynecologic cancer with active cancer treatment compared to those who are not receiving cancer treatment (OR 1.06, CI 0.57–1.98, \(p = 0.86, I^2 = 0\% \)).

We hope these findings will be useful among gynecologist-oncologists in cancer centers or tertiary cancer referral centers who provide care to gynecologic cancer patients during the ongoing Covid-19 pandemic.

In several data syntheses with the statistically nonsignificant value, we analyze few data regarding severity, hospitalization, age, cancer stage/metastatic status, other comorbidities aside from cancer, and cancer treatment type due to limited data, however those aforementioned are well represented and distributed through other synthesis based on the patient’s characteristics available in Table 1.

Data availability

Underlying data

Figshare: Systematic review and Meta-analysis file. https://doi.org/10.6084/m9.figshare.19470131.82

This project contains the following underlying data:

- Outcome of Gynaecologic Cancer Patients With The Covid-19 Infection A Systematic Review And Meta Analysis (26.3.2022).rm5
- Meta Quilitative.xlsx
- Meta Data.xlsx
- Table 1.docx

Extended data

This project contains the following extended data:

- Supplementary Materials.docx

Reporting guidelines

Figshare: PRISMA checklist and flow diagram for ‘The outcome of gynecologic cancer patients with Covid-19 infection: A systematic review and meta-analysis’. https://doi.org/10.6084/m9.figshare.19470131.82

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Acknowledgments

We thank the staff of Gynecology Oncology (Sanglah Hospital, Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia), staff of Reproductive Endocrinology and Infertility (Morula IVF), (School of Medicine and Health Sciences, Atmajaya Catholic University of Indonesia, Jakarta, Indonesia), and staff of Department of Obstetrics and Gynecology (UKI Hospital, Faculty of Medicine, Christian University of Indonesia, Jakarta, Indonesia) to make this research collaboration possible.
71. Thomakos N, Pandraklakis A, Bisch SP, et al.: ERAS protocols in gynecologic oncology during COVID-19 pandemic. Int J Gynecol Cancer. 2020; 30(6): ijgc-2020-001439.

Publisher Full Text

72. Bisch SP, Jago CA, Kalogera E, et al.: Outcomes of enhanced recovery after surgery (ERAS) in gynecologic oncology – A systematic review and meta-analysis. Gynecol Oncol. 2021; 161(1): 46–55.

PubMed Abstract | Publisher Full Text

73. Jouen T, Gauthier T, Azais H, et al.: The impact of the COVID-19 coronavirus pandemic on the surgical management of gynecological cancers: Analysis of the multicenter database of the French SGCP and the FRANCOGYN group. J Gynecol Obstet Hum Reprod. 2021; 50(8): 102133.

PubMed Abstract | Publisher Full Text

74. Frey MK, Fowlkes RK, Badiner NM, et al.: Gynecologic oncology care during the COVID-19 pandemic at three affiliated New York City hospitals. Gynecol Oncol. 2020; 159(2): 470–475.

PubMed Abstract | Publisher Full Text

75. Leung E, Peraza Z, Lowe-Zinola J, et al.: Maintaining surgical care delivery during the COVID-19 pandemic: A comparative cohort study at a tertiary gynecological cancer centre. Gynecol Oncol. 2021; 160(3): 640–644.

PubMed Abstract | Publisher Full Text

76. Dursun P, Derisoglu H, Daggez M, et al.: Performing gynecologic cancer surgery during the COVID-19 pandemic in Turkey: A multicenter retrospective obser.

77. Palluzzi E, Corrado G, Marchetti C, et al.: Medical treatment of patients with gynecologic cancer during the COVID-19 pandemic. Int J Gynecol Cancer. 2021; 31(8): 1154–1158.

Publisher Full Text

78. Biswas M, Rahaman S, Biswas T, et al.: Association of Sex, Age, and Comorbidities with Mortality in COVID-19 Patients: A Systematic Review and Meta-Analysis. Intervirology. 2021; 64: 36–47.

PubMed Abstract | Publisher Full Text

79. Peckham H, de Gruijter NM, Raine C, et al.: Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat Commun. 2020; 11: 6317.

PubMed Abstract | Publisher Full Text

80. Bonanad C, Garcia-Blas S, Tarazona-Santabalbina F, et al.: The Effect of Age on Mortality in Patients With COVID-19: A Meta-Analysis With 611,583 Subjects. J Am Med Dir Assoc. 2020; 21(7): 915–918.

Publisher Full Text

81. Park R, Lee SA, Kim SY, et al.: Association of active oncologic treatment and risk of death in cancer patients with COVID-19: a systematic review and meta-analysis of patient data. Acta Oncol (Madrid). 2021; 60(1): 13–19.

PubMed Abstract | Publisher Full Text

82. Winata IGS, Simatupang J, Polim AA, et al.: One-Year and Consequences of COVID-19 in Cancer Patients: a Cohort Study. 18 May 2021; PREPRINT (Version 1) available at Research Square.

Publisher Full Text

83. Chai C, Feng X, Lu M, et al.: Clinical characteristics, outcomes and follow-up of COVID-19 infection in cancer patients. 08 June 2020; PREPRINT (Version 1) available at Research Square.

Publisher Full Text

84. Fang M, Ling J, Wu Y, et al.: Association of Cancer with Risk and Mortality of COVID-19: Results from the UK Biobank. medRxiv. Published online January 1, 2020: 2020.07.10.20151076.

Publisher Full Text
The benefits of publishing with F1000Research:

• Your article is published within days, with no editorial bias
• You can publish traditional articles, null/negative results, case reports, data notes and more
• The peer review process is transparent and collaborative
• Your article is indexed in PubMed after passing peer review
• Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com