Ab initio neutrinoless double-beta decay matrix elements for 48Ca, 76Ge, and 82Se

A. Belley,1,2,3 C. G. Payne,1,3,∗ S. R. Stroberg,4 T. Miyagi,1 and J. D. Holt1,2

1TRIUMF 4004 Wesbrook Mall, Vancouver BC V6T 2A3, Canada
2Department of Physics, McGill University, 3600 Rue University, Montréal, QC H3A 2T8, Canada
3Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
4Department of Physics, University of Washington, Seattle, WA 98195, USA

We calculate basis-space converged neutrinoless $\beta\beta$ decay nuclear matrix elements for the lightest candidates: 48Ca, 76Ge and 82Se. Starting from initial two- and three-nucleon forces, we apply the ab initio in-medium similarity renormalization group to construct valence-space Hamiltonians and consistently transformed $\beta\beta$-decay operators. We find that the tensor component is non-negligible in 76Ge and 82Se, and resulting nuclear matrix elements are overall 25–45% smaller than those obtained from the phenomenological shell model. While a final matrix element with uncertainties still requires substantial developments, this work nevertheless opens a path toward a true first-principles calculation of neutrinoless $\beta\beta$ decay in all nuclei relevant for ongoing large-scale searches.

Neutrinoless double-beta ($0\nu\beta\beta$) decay is a hypothesized nuclear-weak process in which two neutrons transform into two protons by emitting two electrons [1]. The key feature of this decay is that it produces two leptons (the electrons) without any anti-leptons, thus violating lepton-number conservation. For such a decay to occur, the neutrino must be Majorana, i.e. its own anti-particle [2, 3]. Furthermore, under standard light-neutrino exchange, the rate of the process can be related to the effective neutrino mass $\langle m_{\nu} \rangle$ [4]:

$$[T_{1/2}^{\beta\beta}]^{-1} = G_{\beta\beta}^0 |M_{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e} \right)^2,$$

where $G_{\beta\beta}^0$ is a phase-space factor whose value is generally agreed upon [5, 6]. Thus an observation could determine the absolute neutrino mass, its Majorana/Dirac character, and most importantly, provide an observation of lepton-number violation, which would have deep implications for the matter-antimatter asymmetry puzzle [7].

From Eq. 1, we see that the rate cannot be directly connected to neutrino masses without first having knowledge of the non-observable nuclear matrix element (NME), $M_{0\nu}$, governing the decay. As large-scale searches worldwide will soon enter a ton-scale era probing the inverted neutrino mass hierarchy [8–12], a reliable NME with rigorous theoretical uncertainty estimates is imperative not only to pin down $m_{\beta\beta}$, should a discovery be made, but also to interpret evolving experimental lifetime limits in terms of excluded neutrino mass scales.

Calculations of the NME have proven to be tremendously challenging for nuclear theory, as they require a consistent treatment of nuclear and electroweak forces, as well as an accurate solution of the nuclear many-body problem in heavy systems. To date, almost all calculations of $0\nu\beta\beta$ decay have been based on uncontrolled nuclear models, but since no $0\nu\beta\beta$-decay data exist, unsurprisingly a spread in results (up to factors of three) has emerged [4, 13–17]. This spread is not a true uncertainty, however, as all models are known to neglect essential physics. Since experimental expectations for material and timescale requirements are based on the currently available spread, they may need to be reevaluated should improved values lie well outside the existing range. Therefore it is crucial to have next-generation NMEs for the most prominent experimental candidates – 76Ge, 136Te and 136Xe – to guide next-generation searches.

Chiral effective field theory [18, 19] in principle provides a prescription for the consistent treatment of nuclear forces and electroweak currents relevant for $0\nu\beta\beta$ decay [20–22]. While first calculations have been carried out in the lightest nuclei [23, 24], the only calculations of experimental $0\nu\beta\beta$-decay candidates from chiral forces have been in a perturbative shell-model effective-interaction framework [25–28]. While results were encouraging, order-by-order convergence was unclear. With the advent of nonperturbative theories capable of reaching at least $A = 100$ [29–32], the primary bottleneck has been the computational resources needed to obtain converged results and the treatment of deformed systems. With ongoing advances in the field, the first ab initio calculations of $0\nu\beta\beta$-decay are within reach, and indeed very recently NMEs were reported for 48Ca in the medium generator coordinate method (IM-GCM) [33].

In this Letter we extend ab initio calculations of the NMEs to the three lightest $\beta\beta$-decay nuclei 48Ca, 76Ge and 82Se using the valence-space formulation of the in-medium similarity renormalization group (VS-IMSRG) [32, 34–38]. We first demonstrate convergence in terms of the single-particle basis size and truncations imposed on three-nucleon (3N) forces. In contrast to phenomenology, we find that the tensor operator is non-negligible for 76Ge and 82Se, and is approximately the same magnitude as the Fermi term. As seen in Fig. 1, the overall matrix elements are smaller than standard shell model calculations by approximately 25% in 48Ca, 30% in 76Ge, and 45% in 82Se, but in remarkably good agreement with IM-GCM in 48Ca when starting from the same input forces.

The $0\nu\beta\beta$-decay operator under light neutrino exchange is given by the sum of the allowed Gamow-Teller

arXiv:2008.06588v1 [nucl-th] 14 Aug 2020
M0

\[M^{0\nu} = M_{GT}^{0\nu} = \left(\frac{g_V}{g_A} \right)^2 M_T^{0\nu} \]

where \(g_V = 1 \) and \(g_A = 1.27 \) are the unquenched vector and axial coupling constants, respectively. Explicit expressions and details for the matrix elements can be found in Refs. [4, 22, 39–41]. To avoid explicit sums over intermediate states, we use the standard closure approximation, with “closure energy” \(\bar{E} \approx E_k - (E_i + E_f)/2 \). This approximation is accurate to 10% [42], and varying \(\bar{E} \) changes the NME by less than 1% per MeV [41]. To facilitate benchmarking with previous calculations, we used a value \(\bar{E} = 7.72 \) MeV for \(^{48}\)Ca and \(\bar{E} = 9.41 \) MeV for the heavier isotopes [40, 43]. We also use dipole form factors with cutoffs \(\Lambda_V = 850 \) MeV and \(\Lambda_A = 1086 \) MeV [44], and multiply the NMEs by the nuclear radius \(R = 1.2A^{1/3} \) fm to make them dimensionless [4]. The necessity of a leading-order short-range contact term has recently been discovered [21, 22]. Assessment of its importance is currently underway, and we will discuss the impact in a future publication.

We calculate NMEs from two-nucleon (NN) plus 3N forces inspired by chiral effective field theory. In particular we use 1.8/2.0(EM) from a well-established family of Hamiltonians [45–47], where 3N couplings are constrained only by the the binding energy of \(^3\)H and the charge radii of \(^4\)He. This interaction globally reproduces ground-state energies to the tin isotopes, including the proton and neutron driplines in the light- and medium-mass regions, albeit while giving radii that are systematically too small compared to experiment [31, 47, 48].

We begin in a harmonic-oscillator (HO) basis with \(\hbar \omega = 16 \) MeV and \(e = 2n + l \leq e_{\text{max}} \) with a cut of \(e_1 + e_2 + e_3 \leq E_{\text{max}} \) on 3N matrix elements. We transform the Hamiltonian and \(0\nu\beta\beta \)-decay operator to the Hartree-Fock (HF) basis, where we account for 3N forces between valence nucleons via ensemble normal-ordering (ENO) [38]. Previous limitations on \(E_{\text{max}} \) were roughly 16 or 18, but with recent advances, we are now able to routinely calculate with \(E_{\text{max}} = 24 \) or higher [49], putting heavy nuclei well within reach.

We then use the Magnus formulation of the IMSRG [35, 50] to derive an approximate unitary transformation to decouple a valence-space Hamiltonian [32, 34, 36], and obtain consistently-transformed operators [51]. We work in the IMSRG(2) approximation in which all operators are truncated at the normal-ordered two-body level. We take the standard \(pf\)-shell valence space for \(^{48}\)Ca and the \(p_{1/2}, p_{3/2}, f_{5/2}, g_{9/2} \) proton and neutron orbits outside a \(^{56}\)Ni core for \(^{76}\)Ge and \(^{82}\)Se. The valence-space diagonalization is done using the KSHELL shell model code [52].

Before addressing \(0\nu\beta\beta \) decay, we must first validate and benchmark in as many relevant electroweak processes as possible. For the longstanding puzzle of \(g_A \) quenching in nuclei, which still persists in discussions of \(0\nu\beta\beta \) de-
decay, we have recently shown that across a wide range of nuclei from light to heavy regions, when two-body currents consistent with input Hamiltonians are included in ab initio many-body treatments, experimental GT transitions are largely reproduced with no modification of g_A [55]. We have also calculated $2\nu\beta\beta$ decay without two-body currents and find a preliminary NME of 0.029 for ^{48}Ca, consistent with the experimental value, but an in-depth comparison is currently underway with coupled-cluster theory [56]. Finally we have benchmarked fictitious $0\nu\beta\beta$-decay rates in light nuclei with those from no-core shell model, coupled-cluster theory and IM-GCM, generally finding good agreement [57]. Therefore, it appears that the physics expected to be relevant for $0\nu\beta\beta$ decay is largely enough under control to begin first ab initio explorations in heavier experimental candidates.

In Fig. 2 we show the excitation spectra for both parent and daughter nuclei compared to the experimental values for the ^{48}Ca and ^{76}Ge transitions (the spectrum of ^{82}Se is similar to that of ^{76}Ge). We see that for the $A = 48$ cases, the computed spectra are in good agreement with experiment, similar to the IM-GCM [33]. Only the first excited state in ^{48}Ca is several hundred keV too high, but the IMSRG(2) approximation is known to produce too high first excited states in doubly magic systems [47, 58]. Otherwise the spectrum of ^{48}Ti is very well reproduced, implying the collective nature of the nucleus is adequately captured, similar to observations in the sd shell [37]. For the heavier cases, however, the computed spectra are too spread compared to experiment, likely due to missing collectivity. Further benchmarks are underway, but from IM-GCM studies, only a weak correlation was seen between NMEs and $(E2)$ strength [33]. For the $A = 48$ systems, the calculated ground-state energies agree with experiment to better than 1% and the Q-value to 300keV, while for $A = 76, 82$ the ground states agree to 2% and Q-values to 3 MeV and 4 MeV, respectively.

Turning to our $0\nu\beta\beta$-decay results, Fig. 1 shows the computed NMEs of ^{48}Ca, ^{76}Ge and ^{82}Se. Here we see clear convergence by $\epsilon_{\text{max}} = 14$ for the total matrix element as well as the three components of the decay. Since the ENO procedure takes a specific nucleus as the reference, we also examine this reference-state dependence. While it is negligible in ^{48}Ca, there can be changes of up to 10% in the heavier nuclei. We also note that ordering
of HF single-particle levels can change with increasing e_{max}, which changes the occupations taken for the ENO procedure, as observed between $e_{\text{max}} = 6 - 8$ for ^{82}Se. The reference-state dependence is expected to be reduced with the introduction of three-body operators in the VS-IMSRG(3). In Fig. 3 we show convergence with $E_{3\text{max}}$. While ^{48}Ca is well converged to better than 0.01 in the overall matrix element by $E_{3\text{max}} = 16$, perhaps somewhat unexpectedly $E_{3\text{max}} = 20$ is necessary to achieve the same level of convergence in both ^{76}Ge and ^{82}Se.

Taking a more detailed look at the NME values, we refer to Table I, where we break down the GT, F, and T components for the unevolved $0\nu\beta\beta$-decay operator in both the HO and HF bases with (albeit inconsistent) VS-IMSRG wavefunctions, as well as the final IMSRG-transformed operator consistent with the wavefunctions. In ^{48}Ca, we find that the tensor part of the NME, which has been largely neglected in the past [59] or found to be negligible by phenomenological methods [60], accounts for 20% of the total matrix element, a modest increase from its contribution in the HO and HF frames.

For ^{76}Ge and ^{82}Se we observe very similar patterns. In previous phenomenological studies, the tensor component is taken or shown to be negligible, which is what we find for HO and HF pictures. However, the IMSRG renormalization induces a significant tensor component, reducing the value of the total NME by roughly 15-20%. While the F part is largely unaffected in all cases, there is also a significant reduction in the GT component. Taken together these effects reduce the NME by a factor of more than two, and thus we see that correlations do not always have a consistent effect for different transitions.

The fact that the evolution of the two-body operator leads to such a significant change in the final NMEs highlights the need to investigate the effects of three-body operators. Indeed, we expect the contribution of many-body operators to diminish as we increase particle number, but since there is no one-body term to compare, due to the use of the closure energy approximation, estimating the magnitude of three-body terms is crucial to ensure that the two-body term is dominant. Therefore, before claiming final results for the NME, we must first assess the importance of three-body terms in IMSRG(3).

Comparing our NMEs to those from the phenomenological shell model, we see an overall reduction: 25% in ^{48}Ca, 30% in ^{76}Ge, and 45% in ^{82}Se, making the NMEs presented here among the smallest ever reported for these three nuclei. This appears to be an emerging picture from complementary ab initio theories. Starting from the same 1.8/2.0(EM) interaction, and employing the same IM-SRG(2) approximation, our NME for ^{48}Ca is completely consistent with the IM-GCM findings in Ref. [33] (seen in Fig. 1), as well as upcoming results from coupled cluster theory [61]. Furthermore the NME for ^{76}Ge again appears to be consistent with preliminary IM-GCM results at the same level of many-body approximation [62].

In conclusion, we have computed $0\nu\beta\beta$-decay NMEs for ^{48}Ca, ^{76}Ge and ^{82}Se, finding convergence by $e_{\text{max}} = 14$ and $E_{3\text{max}} = 20$ with overall smaller values compared to the phenomenological shell model by 25-45%. While ^{48}Ca is not a primary experimental candidate, its relatively light mass and doubly magic nature make it a valuable benchmark for various ab initio theories going forward. With the VS-IMSRG advances presented here we have now provided ab-initio NME computations of the first of three major players in experimental searches: ^{76}Ge. With capabilities to perform calculations at high $E_{3\text{max}}$, we are already poised to provide NMEs for ^{130}Te and ^{136}Xe at the same level as in this work.

Significant work remains to be done assessing all relevant sources of theoretical uncertainty before any claims to a final NME can be made. We must first study a wide range of input $NN+3N$ forces and corresponding currents to establish an interaction uncertainty, including an estimation of the leading order contact [21]. We have implemented consistent free-space SRG evolution of the $0\nu\beta\beta$-decay operator and are currently investigating the possible importance of induced three-body terms [49]. Finally development of the IMSRG(3) is underway, which will provide handle on many-body uncertainties and bring the IMSRG to the analogous level of approximation as in coupled-cluster theory. Only once this has been accomplished and complementary many-body approaches can each produce independent predictions with uncertainty estimates, can the field give a firm statement on NMEs for experimental $0\nu\beta\beta$ searches.

	^{48}Ca		^{76}Ge		^{82}Se	
	HO	HF	IMSRG	HO	IMSRG	HO
GT	0.51(1)	0.46(1)	0.54(1)	4.2(2)	3.5(2)	2.04(1)
F	0.13(1)	0.13(1)	0.16(1)	0.47(1)	0.42(1)	0.46(2)
T	-0.07(1)	-0.08(1)	-0.12(1)	-0.04(1)	-0.02(1)	-0.37(2)
Total	0.57(1)	0.51(1)	0.58(1)	4.6(2)	3.9(2)	2.14(9)

TABLE I. Decomposition of the NMEs for ^{48}Ca, ^{76}Ge, ^{82}Se into their Gamow-Teller (GT), Fermi (F) and tensor (T) part at $e_{\text{max}} = 14$ and $E_{3\text{max}} = 20$ for ^{48}Ca and $E_{3\text{max}} = 24$ for ^{76}Ge and ^{82}Se. For the Fermi part, the factor of $-(\frac{g}{v})^2$ as been included. We present the values for the operator in the HO and HF bases with the IMSRG-evolved wavefunctions as well as the fully evolved IMSRG results (IMSRG). The uncertainty represents the range due to the choice of reference state.
We thank J. Engel, G. Hagen, H. Hergert, M. Horoi, B. Hu, J. Menéndez, P. Navrátil, S. Novario, T. Papenbrock, N. Shimizu, and J. M. Yao for enlightening discussions and extensive benchmarking, and K. Hebeler for providing momentum-space inputs for generation of the 3N forces used in this work. The IMSRG code used in this work makes use of the Armadillo C++ library [63]. TRIUMF receives funding via a contribution through the National Research Council of Canada. This work was further supported by NSERC, the Arthur B. McDonald Canadian Astroparticle Physics Research Institute, the Canadian Institute for Nuclear Physics, and the US Department of Energy (DOE) under contract DE-FG02-97ER41014. Computation were performed with an allocation of computing resources on Cedar at WestGrid and Compute Canada, and on the Oak Cluster at TRIUMF managed by the University of British Columbia department of Advanced Research Computing (ARC).

* Present address: Institut für Kernphysik and PRISMA+ Cluster of Excellence, Johannes Gutenberg-Universität at Mainz, 55128 Mainz, Germany

[1] F. T. Avignone, S. R. Elliott, and J. Engel, Rev. Mod. Phys. 80, 481 (2008).

[2] W. H. Furry, Phys. Rev. 54, 56 (1938).

[3] J. Schechter and J. W. F. Valle, Phys. Rev. D 25, 774 (1982).

[4] J. Engel and J. Menéndez, Rep. Prog. Phys. 80, 046301 (2017).

[5] J. Kotila and F. Iachello, Phys. Rev. C 85, 034316 (2012).

[6] J. Suhonen and O. Civitarese, Phys. Rep. 300, 123 (1998).

[7] M. Fukugita and T. Yanagida, Phys. Lett. B 174, 45 (1986).

[8] S. A. Kharusi et al. (nEXO), (2018), arXiv:1805.11142 [physics.ins-det].

[9] J. Mysik (LEGEND) (2018) arXiv:1812.08191 [physics.ins-det].

[10] J. Paton (SNO+), in Prospects in Neutrino Physics (NuPhys2018) London, United Kingdom, December 19-21, 2018 (2019) arXiv:1904.01418 [hep-ex].

[11] Y. Gando (KamLAND-Zen), in Prospects in Neutrino Physics (NuPhys2018) London, United Kingdom, December 19-21, 2018 (2019) arXiv:1904.06655 [physics.ins-det].

[12] R. Arnold et al., EPJ C 70, 927 (2010).

[13] J. Menéndez, A. Poves, E. Caurier, and F. Nowacki, Nucl. Phys. A 818, 139 (2009).

[14] F. Simkovic, V. Rodin, A. Faessler, and P. Vogel, Phys. Rev. C 87, 045501 (2013).

[15] R. A. Sen’kov and M. Horoi, Phys. Rev. C 90, 051301 (2014).

[16] N. López Vaquero, T. R. Rodríguez, and J. L. Egido, Phys. Rev. Lett. 111, 142501 (2013).

[17] J. Barea, J. Kotila, and F. Iachello, Phys. Rev. C 91, 034304 (2015).

[18] E. Epelbaum, H.-W. Hammer, and U.-G. Meißner, Rev. Mod. Phys. 81, 1773 (2009).

[19] R. Machleidt and D. R. Entem, Phys. Rep. 503, 1 (2011).

[20] J. Menéndez, D. Gazit, and A. Schwenk, Phys. Rev. Lett. 107, 062501 (2011).

[21] V. Cirigliano, W. Dekens, J. De Vries, M. L. Graesser, E. Mereghetti, S. Pastore, and U. Van Kolck, Phys. Rev. Lett. 120, 202001 (2018).

[22] V. Cirigliano, W. Dekens, E. Mereghetti, and A. Walker-Loud, Phys. Rev. C 97, 065501 (2018).

[23] V. Cirigliano, W. Dekens, J. De Vries, M. Graesser, E. Mereghetti, S. Pastore, M. Piarulli, U. Van Kolck, and R. Wiringa, Phys. Rev. C 100, 055504 (2019).

[24] X. B. Wang, A. C. Hayes, J. Carlson, G. X. Dong, E. Mereghetti, S. Pastore, and R. B. Wiringa, Phys. Lett. B 798, 134974 (2019).

[25] J. D. Holt and J. Engel, Phys. Rev. C 87, 064315 (2013).

[26] A. Kwiatkowski et al., Phys. Rev. C 89, 045502 (2014).

[27] C. F. Jiao, J. Engel, and J. D. Holt, Phys. Rev. C 96, 054310 (2017).

[28] L. Coraggio, A. Gargano, N. Itaco, R. Mancino, and F. Nowacki, Phys. Rev. C 101, 044315 (2020).

[29] G. Hagen, T. Papenbrock, M. Hjorth-Jensen, and D. J. Dean, Rep. Prog. Phys. 77, 096302 (2014).

[30] H. Hergert, S. K. Bogner, T. D. Morris, A. Schwenk, and K. Tsukiyama, Phys. Rept. 621, 165 (2016).

[31] T. D. Morris, J. Simonis, S. R. Stroberg, C. Stumpf, G. Hagen, J. D. Holt, G. R. Jansen, T. Papenbrock, R. Roth, and A. Schwenk, Phys. Rev. Lett. 120, 152503 (2018).

[32] S. R. Stroberg, S. K. Bogner, H. Hergert, and J. D. Holt, Ann. Rev. Nucl. Part. Sci. 69, 307 (2019).

[33] J. M. Yao, B. Bally, J. Engel, R. Wirth, T. R. Rodríguez, and H. Hergert, Phys. Rev. Lett. 124, 232501 (2020).

[34] K. Tsukiyama, S. K. Bogner, and A. Schwenk, Phys. Rev. C 85, 064304 (2012).

[35] H. Hergert, S. K. Bogner, T. D. Morris, A. Schwenk, and K. Tsukiyama, Phys. Rept. 621, 165 (2016).

[36] S. K. Bogner, H. Hergert, J. D. Holt, A. Schwenk, S. Binder, A. Calci, J. Langhammer, and R. Roth, Phys. Rev. Lett. 113, 142501 (2014).

[37] S. R. Stroberg, H. Hergert, J. D. Holt, S. K. Bogner, and A. Schwenk, Phys. Rev. C 93, 051301(R) (2016).

[38] S. R. Stroberg, A. Calci, H. Hergert, J. D. Holt, S. K. Bogner, R. Roth, and A. Schwenk, Phys. Rev. Lett. 118, 032502 (2017).

[39] M. Doi, T. Kotani, and E. Takasugi, PTP Supplement 83, 1 (1985).

[40] T. Tomoda, Rep. Prog. Phys. 54, 53 (1991).

[41] M. Horoi and S. Stoica, Phys. Rev. C 81, 024321 (2010).

[42] R. A. Sen’kov and M. Horoi, Phys. Rev. C 88, 064312 (2013).

[43] W. Haxton, Prog. Part. Nucl. Phys. 12, 409 (1984).

[44] F. Simkovic, A. Faessler, H. Mütther, V. Rodin, and M. Stauf, Phys. Rev. C 79, 055501 (2009).

[45] K. Hebeler, S. K. Bogner, R. J. Furnstahl, A. Nogga, and A. Schwenk, Phys. Rev. C 83, 031301 (2011).

[46] J. Simonis, K. Hebeler, J. D. Holt, J. Menéndez, and A. Schwenk, Phys. Rev. C 93, 011302 (2016).

[47] J. Simonis, S. R. Stroberg, K. Hebeler, J. D. Holt, and A. Schwenk, Phys. Rev. C 96, 044303 (2017).

[48] J. D. Holt, S. Stroberg, A. Schwenk, and J. Simonis, (2019), arXiv:1905.10475 [nucl-th].

[49] T. Miyagi et al., in preparation.

[50] T. D. Morris, N. M. Parzuchowski, and S. K. Bogner, Phys. Rev. C 92, 034331 (2015).
[51] N. M. Parzuchowski, S. R. Stroberg, P. Navrátil, H. Hergert, and S. K. Bogner, Phys. Rev. C 96, 034324 (2017).
[52] N. Shimizu, T. Mizusaki, Y. Utsuno, and Y. Tsunoda, Comput. Phys. Commun. 244, 372 (2019).
[53] M. Wang, G. Audi, F. G. Kondev, W. Huang, S. Naimi, and X. Xu, Chin. Phys. C 41, 030003 (2017).
[54] M. Wang, G. Audi, A. H. Wapstra, F. G. Kondev, M. MacCormick, X. Xu, and B. Pfeiffer, Chin. Phys. C 36, 1603 (2012).
[55] P. Gysbers et al., Nature Phys. 15, 428 (2019).
[56] A. Belley, S. Novario, et al., in preparation ().
[57] A. Belley, J. M. Yao, et al., in preparation ().
[58] R. Taniuchi et al., Nature 569, 53 (2019).
[59] M. Kortelainen and J. Suhonen, Phys. Rev. C 75, 051303 (2007).
[60] R. A. Sen’kov and M. Horoi, Phys. Rev. C 93, 044334 (2016).
[61] G. Hagen, private communication.
[62] J. M. Yao, private communication.
[63] C. Sanderson, Technical Report, NICTA (2010).