Families of twisted tensor product codes

L. Giuzzi∗ V. Pepe

30th January 2013

Abstract

Using geometric properties of the variety \(V_{r,t} \), the image under the Grassmannian map of a Desarguesian \((t-1)\)-spread of \(PG(rt-1,q) \), we introduce error correcting codes related to the twisted tensor product construction, producing several families of constacyclic codes. We exactly determine the parameters of these codes and characterise the words of minimum weight.

Keywords: Segre Product, Veronesean, Grassmannian, Desarguesian spread, Subgeometry, Twisted Product, Constacyclic error correcting code, Minimum weight.

MSC(2010): 94B05, 94B27, 15A69, 51E20.

1 Introduction

Linear codes are one of the simplest, yet powerful, methods to add redundancy to a message in order to provide protection against transmission errors. For a general reference on coding theory, including standard notations, see \[15\]. As customary, we regard a \(q \)-ary linear code \(\mathcal{C} \) with parameters \([n, k, d]\) as a subspace of dimension \(k \) of \(\mathbb{F}_q^n \) whose non-zero vectors have Hamming weight at least \(d \). Recall that the correction capacity of a code, at least on a first approximation, depends on its minimum distance \(d \). Indeed, the most probable undetected errors are exactly those corresponding to words of minimum weight; thus, it is in practice quite important to be able to count and characterise such words. In general, the complexity of implementation of a code is tied to the size \(q \) of the field under consideration. This is one of the reasons why some of the most widely used codes are actually defined over the binary field \(\mathbb{F}_2 \), even if some the actual computations involved in the correction procedure are performed over algebraic extensions, as in the case of the BCH construction. On the other hand, some recent applications warrant for the use of non-binary codes in a ‘natural way’, as, in order to increase the storage density of data, addressable units larger than a single bit are often selected.

∗Part of this research has been performed while a guest of the Department of Mathematics of Ghent University.
A code C might be determined by either a generator matrix G, a matrix whose rows constitute a basis for the subspace C of F_q^n, or, dually, a parity check matrix H, that is a matrix providing a basis for the annihilator of C in $F_q^n \perp$. In this paper we shall adopt the latter approach; in particular, the code C is the kernel of the linear application induced by H.

The link between incidence structures and coding theory has been very fruitful. Possibly, it has been first pointed out in [16]; for a reference on on the development of the topic and some of the related problems we refer to the book [1]. Codes derived from geometries have proven themselves to be interesting for several reasons, not least the possibility of providing synthetic constructions and their usually large automorphism group.

In this paper we shall study some codes related to the Segre embedding and twisted tensor products; see [2–6]. Our constructions generalise and strengthen some of the results of [2], albeit using different techniques. In Section 2 we shall recall some properties of the algebraic variety $V_{r,t}$ and prove that any $t + 1$ of its points are in general position. In Section 3 using these results, some new families of codes $C_{r,t}$ will be introduced. We will determine their parameters and also characterise the words of minimum weight. All of these codes admit a large subgroup of monomial automorphisms, isomorphic to $P\Gamma L(r,q^{t})$ and they are always constacyclic in the sense of [3]. We shall also investigate some subcodes and show that by puncturing in a suitable way it is possible to obtain cyclic codes.

2 The variety $V_{r,t}$ and twisted tensor products

Let $PG(V,F)$ be the projective space defined by the lattice of subspaces of the vector space V over the field F and write $PG(n-1,q) := PG(V,F_q)$, where $\dim_q V = n$. Take $PG(r_1-1,q)$, $PG(r_2-1,q),\ldots,PG(r_t-1,q)$ to be t distinct projective spaces; the Segre embedding

$$\sigma : PG(r_1-1,q) \times PG(r_2-1,q) \times \cdots \times PG(r_t-1,q) \longrightarrow PG(r_1r_2\cdots r_t-1,q)$$

is the map such that $\sigma(x_1^1,\ldots,x_1^{r_1}) \times \cdots \times \sigma(x_t^{r_t}) = \sigma(x_1^{i_1},x_1^{i_2} \cdots x_t^{i_t})$, as $x^i = (x_1^{i_1},x_1^{i_2} \cdots x_t^{i_t})$ varies in $PG(r_t-1,q)$. The image of σ is the Segre variety $\Sigma_{r_1r_2\cdots r_t}$; it can be regarded, in some way, as a product of projective spaces; see [11] Chapter 25, [9] Chapter 9 and [8] Chapter 2. In the language of tensor products, σ is the natural morphism between the varieties

$$PG(V_1,q) \times PG(V_2,q) \times \cdots \times PG(V_t,q) \longrightarrow PG(V_1 \otimes V_2 \otimes \cdots \otimes V_t,q).$$

In this paper, we are interested in the case $r_1 = r_2 = \ldots, r_t = r$; for brevity we shall write Σ_r instead of $\Sigma_{r_1r_2\cdots r_t}$. Clearly, $\Sigma_r \subseteq PG(r^{t}-1,q)$.

The Veronese variety $V(n,d)$ is an algebraic variety of $PG({n+d \choose d} - 1,q)$, image of the injective map

$$v_{n,d} : PG(n,q) \longrightarrow PG({n+d \choose d} - 1,q),$$

2
where $v_{n,d}(x_0, x_1, \ldots, x_n)$ is the vector of all the monomials of degree d in x_0, \ldots, x_n; for $d = 2$, see [11], Chapter 25; for general d, see [8] Chapters 2, 9 and also [3]. It is useful to remember that $V(1,d)$ is a normal rational curve of PG (d,q) and any $d+1$ of its points happen to be in general position. The Veronese variety $V(r,t)$ and $\Sigma_{r,t}$ are closely related, in the sense that $V(r,t)$ is the image under σ of the diagonal of $PG(r-1,q) \times PG(r-1,q) \times \cdots \times PG(r-1,q)$.

Take now the projective space $PG(r-1,q^t)$ and let $v \mapsto v^t$ be the \mathbb{F}_q-linear collineation of order t induced by the by the Frobenius automorphism of the extension $[\mathbb{F}_{q^t} : \mathbb{F}_q]$. For any $P \in PG(r-1,q^t)$, write

$$P^\alpha = \sigma([P, P^0, \ldots, P^{q^t-1}]).$$

The image of this correspondence is the variety $\mathcal{V}_{r,t}$. It is immediate to see that the \mathbb{F}_q-linear collineation of order t given by

$$(p_0 \otimes p_1 \otimes \cdots \otimes p_{t-1}) \mapsto (p_0^{q^t} \otimes p_1^{q^t} \otimes \cdots \otimes p_{t-2}^{q^t})$$

fixes $\mathcal{V}_{r,t}$ point-wise; hence, $\mathcal{V}_{r,t}$ is contained in a subgeometry $\Omega = PG(r^t-1,q)$ of $PG(r^t-1,q^t)$. It turns out that $\mathcal{V}_{r,t}$ is, in fact, the complete intersection of the Segre product $\Sigma_{r,t}$ with Ω.

As an algebraic variety $\mathcal{V}_{r,t}$ first appeared in [19]; it has then been described in [14] and therein extensively studied. Recently, in [17], an explicit parametrisation for $\mathcal{V}_{r,t}$ has been determined, leading to the discovery of some new properties. It is convenient to recall here this parametrisation. Take $\mathcal{F} = \{ f : \{0, \ldots, t-1\} \to \{0, \ldots, r-1\}\}$ and write $P = (x_0, \ldots, x_{r-1}) \in PG(r-1,q^t)$. Then, there is an injective map $\alpha : PG(r-1,q^t) \to \mathcal{V}_{r,t} \subseteq PG(r^t-1,q^t)$ sending any $P \in PG(r-1,q^t)$ to the point $P^\alpha \in PG(r^t-1,q^t)$ whose coordinates consist of all products of the form

$$\prod_{i=0}^{t-1} x_{f(i)}^{q^t}$$

as f varies in \mathcal{F}.

There is a strong affinity between the Veronese variety and $\mathcal{V}_{r,t}$: take $\psi \in \text{PTL}(r,q^t)$ so that $\psi^t = id$ and let \mathcal{V} be the image under σ of the elements of type $(v, v^t, \ldots, v^{q^t-1})$; clearly \mathcal{V} is a variety; furthermore, when $\psi = id$, then $\mathcal{V} = \Sigma_{r,t} \cap PG((r^t-1)^t-1, q^t)$ is a Veronese variety; if, on the contrary, ψ is a \mathbb{F}_q-linear collineation of order t, ultimately determining a subgeometry $\Omega = PG(r^t-1, q)$, then $\mathcal{V} = \Sigma_{r,t} \cap \Omega$ and $\mathcal{V} = \mathcal{V}_{r,t}$.

We shall also make use of the alternative description of $\mathcal{V}_{r,t}$ from [14]. A Desarguesian (also called normal) spread of PG $(r-1,q)$ is projectively equivalent to a linear representation of PG $(r-1,q^t)$ in PG $(r-1,q)$; see [19]. As such, it consists of a collection S of $(t-1)$-dimensional subspaces of PG $(r-1,q)$, each of them the linear representation of a point of PG $(r-1,q^t)$, partitioning the point set of PG $(r-1,q)$. When regarded on the Grassmannian of all the $(t-1)$-dimensional subspaces of PG $(r-1,q)$, the elements of S determine the
algebraic variety $V_{r,t}$. The best known example is for $r = t = 2$: indeed, the Grassmannian of the lines of a Desarguesian spread of $PG(3,q)$ is an elliptic quadric $V_{2,2} = Q^-(3,q)$; see, for instance, [10] Section 15.4.

More in general, if $\Pi_P \in S$ is linear representation of a point $P \in PG(r-1,q^t)$, then the image under the Grassmann map of Π_P is $P\alpha$. Using this correspondence, it has been possible to investigate several proprieties of $V_{r,t}$; see [13] [14] [17]. Here we will recall just some of them. As the group $PTL(r,q^t)$ preserves a Desarguesian $(t-1)$–spread S of $PG(rt-1,q)$, its lifting preserves $V_{r,t}$ and its action on the points of $V_{r,t}$ is isomorphic to the 2–transitive action of $PTL(r,q^t)$ on the elements of S; see [14]. We remark that the aforementioned action is actually 3–transitive for $r = 2$.

The group $G = PGL(r,q^t)$ acts in a natural way on $M = PG(r-1,q^t)$, which is both a G–module and an F_q–vector space. The twisted tensor product has been introduced in [21] to realise a new G-module, say M', defined over the subfield F_q form M; this induces a straightforward embedding of $PGL(r,q^t)$ in $PGL(r,q)$. We briefly recall the construction. Write the action of G on M as $g \cdot P \rightarrow gP$, where $g \in G$ and $P \in M$. For any automorphism ϕ of F_q, we can define a new G-module, M^ϕ with group action $g \cdot P \rightarrow g^\phi P$; when ϕ is the automorphism $g \rightarrow g^t$, we shall write $M^\phi = M^t$. Using this notation, the twisted tensor product of M over F_q is

$$M' = M \otimes M^q \otimes \cdots \otimes M^{q^{t-1}}.$$

Observe that as

$$PG(r^t - 1, q^t) \simeq PG(M', F_q)$$

we can regard the Segre product $\Sigma_{r,t}$ as embedded in the latter projective space. If we restrict our attention to the points of $V_{r,t}$, we see that for any $g \in G$ and $P \in PG(r-1,q^t)$

$$(gP)^\alpha = \sigma((gP, g^qP^q, \ldots, g^q^{t-1}P^q^{t-1})) = g\sigma([P, P^q, \ldots, P^q^{t-1}]) = gP^\alpha.$$

This is to say that $PGL(r,q^t)$, as embedded in $PGL(r^t,q)$, stabilises $V_{r,t}$ and its action on the points of the variety is the same way as on those of $PG(r-1,q^t)$. For this reason, we can consider $V_{r,t}$ as a geometric realisation of $PG(r-1,q^t)$ in the twisted tensor product; in brief we shall call it the twisted tensor embedding over F_q of $PG(r-1,q^t)$. In close analogy, the image under α of a subgeometry $PG(r-1,q^s)$ of $PG(r-1,q^t)$, where $s \mid t$, is the twisted tensor embedding of the Veronese variety $V(r-1,\frac{t}{s})$ defined on the field F_{q^s}: this turns out to be the complete intersection of $V_{r,t}$ with a suitable $PG((r-1+\frac{t}{s})^s - 1, q)$; in particular, for $s = 1$, we get a Veronese variety $V(r-1,t)$ defined on F_q; see [14] for $s = 1$ and $r = 2$ and [17] for the general case.

The set $\mathcal{R} = \{\Pi_P | P \in PG(r-1,q)\}$ is a regulus. There are several equivalent descriptions for such a collection of spaces contained in a Desarguesian spread; for our purposes, the most useful is the following: suppose Σ to be a $(r-1)$–subspace of $PG(rt-1,q)$ such that Σ intersects every element of S in at most
one point; then, the elements of S with non-empty intersection with Σ form a regulus R.

As mentioned before, any $t + 1$ points of the normal rational curve $V(1, t)$ are in general position, that is they span a t–dimensional projective space; in $[17]$ it is proved that also any $t + 1$ points of $V_{2,t}$ are in general position. Recently, W. Kantor [12] has announced a proof of the same property for the Veronesean

$$\ell_{V}$$

perplane of $PG(1,q)$ containing the subspace Π. This completes the proof.

By construction, α evaluated on Π vanishes on Π but not in P. That is to say that $\ell_i = 0$ is the equation of a hyperplane of $PG(r − 1, q^t)$ containing the subspace Π but not the point P. Clearly, for $\ell_i = \sum_{j=0}^{r-1} a_{ij}x_j$, we have $\ell_i = \sum_{j=0}^{r-1} a_{ij}^q x_j$. Let

$$L = \prod_{i=0}^{t-1} \ell_i^{q^{t-1}}.$$

By construction, L vanishes on $\Pi_0, \Pi_1, \ldots, \Pi_{t-1}$ but not in P. By the parametrisation of $V_{r,t}$ of [17], L evaluated on Π_i is the same as a F_q–linear function evaluated on $\Pi_i^a \subset V_{r,t}$; hence, there exists a hyperplane Λ of $PG(r^t − 1, q^t)$ containing $\langle \Pi_i : i = 0, 1, \ldots, t-1 \rangle$ but not P^a. It is well known that any hyperplane of $PG(r^t − 1, q^t)$ intersects a subgeometry $PG(r^t − 1, q)$ in a (possibly empty) subspace. This completes the proof.

The case in which all of the subspaces reduce to a single projective point is of special interest for the geometry.

Corollary 2.2. Any $t + 1$ points of $V_{r,t}$ are in general position.

Corollary 2.3. Suppose $q > t$. Any set of $t + 2$ dependent points of $V_{r,t}$ is contained in the image under α of a subline $PG(1,q) \subset PG(r−1,q^t)$.

Proof. Take $t + 2$ distinct points P_0, P_1, \ldots, P_t, P forming a dependent system, and let

$$\Pi_i := P_i, \text{ for } i = 0, \ldots, t-2, \quad \Pi_{t-1} = \langle P_{t-1}, P_t \rangle.$$

If it were $P \notin \Pi_{t-1}$, then, by Theorem 2.1, $P^a \notin \langle P_{0}^a, P_{1}^a, \ldots, P_{t-1}^a \rangle$. However, by hypothesis, $P^a \in \langle P_0, P_1, \ldots, P_{t-1}, P_t \rangle$ and $\langle P_0, P_1, \ldots, P_{t-2}, P_{t-1}, P_t \rangle \subset \langle P_0^a, P_1^a, \ldots, P_{t-1}^a \rangle$ — a contradiction. It follows that the $t + 2$ points under consideration must all belong to the same line $PG(1,q') \subset PG(r−1,q^t)$. In particular, their image is contained in a $V_{2,t} \subseteq V_{r,t}$. By [13] Lemma 2.5, for $t < q$, any $t + 2$ linearly dependent points of $V_{2,t}$ which are $t + 1$ independent are the image of elements of the same regulus in the Desarguesian $(t−1)$–spread of $PG(2t−1,q)$; it follows that they are contained in the image under α of the same subline $PG(1,q)$.

\[5\]
3 The code $C_{r,t}$ and its automorphisms

Definition 3.1. Let q be any prime power. For any two integers r, t with $t < q$, denote by $C_{r,t}$ the code whose parity-check matrix H has as columns the coordinate vectors of the points of the variety $V_{r,t}$.

Remark 3.2. In Definition 3.1 we did not specify the field over which the code is defined. Clearly, $C_{r,t}$ arises as a subspace of \mathbb{F}_{q^t} — however, by the considerations contained in the previous paragraph, it can be more conveniently be regarded as defined over \mathbb{F}_q, up to a suitable collineation; this is what we shall do.

Remark 3.3. The order of the columns in H is arbitrary, but once chosen, it determines an order for the points of $V_{r,t}$. In particular Definition 3.1 for $C_{r,t}$ makes sense only up to code equivalence, as a permutation of the columns is not usually an automorphism of the code. It will be seen in the latter part of this section, however, that the most useful orders for the code $C_{r,t}$ are those induced by the action of a cyclic collineation group of $\text{PG} (r - 1, q^t)$ — either a Singer cycle or an affine Singer cycle.

In view of Remark 3.3, it is possible to give the following definition.

Definition 3.4. The **support** of a word $w \in C_{r,t}$ is the set of points of the variety $V_{r,t}$ corresponding to the non-zero components of w.

In order to avoid degenerate cases, the condition $t < q$ shall always be silently assumed in the remainder of the paper.

Theorem 3.5. The code $C_{r,t}$ has length $n = \frac{(q^t - 1)}{(q - 1)}$ and parameters $[n, n - r^t, t + 2]$.

Proof. By construction

$$n = |V_{r,t}| = |\text{PG} (r - 1, q^t)|.$$

As $V_{r,t} \subseteq \text{PG} (r^t - 1, q)$ is not contained in any hyperplane, the rank of the $r^t \times n$ matrix H is maximal and, consequently, the dimension of the code is $n - r^t$. Corollary 2.2 guarantees that any $t + 1$ columns of H are linearly independent; thus, by [15, Theorem 10, page 33] the the minimum distance of $C_{r,t}$ is always at least $d \geq t + 2$.

The image under α of the canonical subline $\text{PG} (1, q)$ of $\text{PG} (r - 1, q^t)$ determines a submatrix H' of H with many repeated rows; indeed, the points represented in H' constitute a normal rational curve contained in a subspace of dimension t; see [13, Theorem 2.16]. It follows that any $t + 2$ such points are necessarily dependent. Hence, the minimum distance is exactly $t + 2$.

Remark 3.6. The code $C_{2,3}$ is also constructed in [2, Theorem 2].

We now characterise the words of minimum weight in $C_{r,t}$.
Theorem 3.7. A word \(w \in C_{r,t} \) has minimum weight if, and only if, its support consists of \(t + 2 \) points contained in the image of a subline \(PG(1,q) \).

Proof. By the proof of Theorem 3.5, the image of any \(t + 2 \) points in a subline \(PG(1,q) \) gives the support of a codeword of minimum weight.

Conversely, let \(w \in C_{r,t} \) be of weight \(t + 2 \); then, the support of \(w \) consists of \(t + 2 \) dependent points of \(V_{r,t} \). By Corollary 2.3 these are contained in the image under \(\alpha \) of a subline. The result follows.

We shall now introduce a second class of codes, also a generalisation of a construction in [2].

Definition 3.8. Let \(q \) be any prime power. For any three integers \(r, t, s \) with \(t < q \), \(1 < s < t \) and \(s \mid t \), denote by \(C^{(s)}_{r,t} \) the code whose parity-check matrix \(K \) has as columns the coordinate vectors of the points of the subvariety of \(V_{r,t} \) image of the points of a subgeometry \(PG(r-1, q^s) \), that is the twisted tensor embedding of a Veronese variety \(V(r-1, \frac{r}{2}) \) defined over \(\mathbb{F}_{q^s} \).

Remark 3.9. The matrix \(K \) is a submatrix of the matrix \(H \).

Theorem 3.10. Let \(m = m = (q^{r-1})/(q^{s-1}) \) and suppose \(t < m - 1 \). Then, the code \(C^{(s)}_{r,t} \) has length \(m \) and parameters \([m, m-(r-1+\frac{t}{s})^{s}, t+2] \).

Proof. By construction

\[m = |PG(r-1, q^s)|. \]

By [17, Theorem 2], the subvariety under consideration spans a space of rank \((r-1+\frac{t}{s})^{s} \); hence, the rank of \(K \) is \((r-1+\frac{t}{s})^{s} \); consequently, the dimension of the code is \(m - (r-1+\frac{t}{s})^{s} \). The variety under consideration is a linear subvariety of \(V_{r,t} \), that is a section of \(V_{r,t} \) with a suitable subspace. Therefore, by Corollary 2.2 any \(t + 1 \) of its columns are linearly independent — this shows that the minimum distance of the code is always at least \(t + 2 \). On the other hand, since \(PG(r-1, q^s) \) contains the points of a subline \(PG(1,q) \), there are also examples of \(t + 2 \) columns which are linearly dependent; thus the minimum distance is exactly \(t + 2 \).

Remark 3.11. Both the codes \(C_{r,s} \) and \(C^{(s)}_{r,t} \) correspond to a \(\mathbb{F}_q \)-representation of \(PG(r-1, q^s) \); as such they have the same length. They clearly differ in their minimum distance \(d \), larger in the case of the latter code. Indeed, the construction of Theorem 3.10 might be used to produce codes over \(\mathbb{F}_q \) with prescribed minimum distance and length. As a way to compare the two codes more in detail, consider the function

\[\eta(C) = (d - 1)/(n - k). \]

By Singleton bound, \(0 < \eta(C) \leq 1 \) for any code, and \(\eta(C) = 1 \) if and only if the code is maximum distance separable (MDS). Thus, \(\eta \) provides an insight on the
cost in redundancy per error (either detected or corrected). Under this criterion, in general, the codes $C_{r,s}$ perform much better than $C_{r,t}$. For example, consider the case $r = 3$, $s = 3$ and $t = 6$. Then, $\eta(C_{3,3}) = 0.14$, while $\eta(C_{3,6}^{(3)}) = 0.032$. For reference, observe that $\eta(C_{3,6}) = 0.10$.

An automorphism of a linear code C is a isometric linear transformation of C — in other words, a linear transformation of C preserving the weight of every word. The set of all the automorphisms of a code is a group, denoted as $\text{Aut} C$. We shall now focus on automorphisms of a restricted form.

Definition 3.12. An automorphism θ of C is called monomial if it is induced by a matrix which has exactly one non-zero entry in each row and in each column.

It is straightforward to see that any monomial transformation $C \rightarrow C$ is weight preserving and, thus, an automorphism; clearly, there might also be automorphisms which are not monomial.

Theorem 3.13. Any collineation $\gamma \in \text{PGL}(r,q^t)$ lifts to a monomial automorphism of $C_{r,t}$. In particular, there is a group $G \cong \text{PGL}(r,q^t)$ such that $G \leq \text{Aut} C_{r,t}$.

Proof. Let $H_0, H_1, \ldots, H_{n-1}$ be the columns of H, the parity check matrix of $C_{r,t}$, and suppose $\gamma \in \text{PGL}(r,q^t)$. Take $w = (w_0, \ldots, w_{n-1}) \in C$. As γ acts on the points of the variety $\mathcal{V}_{r,t}$ as a permutation group, there exists a permutation $\bar{\gamma}$ of $I = \{0, \ldots, n-1\}$ and elements $[\gamma, i] \in \mathbb{F}_q$ with $i \in I$ such that $\gamma(H_i) = [\gamma, i]H_{\bar{\gamma}(i)}$ as vectors; hence

$$H_i = [\gamma, \bar{\gamma}^{-1}(i)]^{-1}H_{\bar{\gamma}^{-1}(i)}.$$

In particular,

$$0 = \sum_{i} H_i w_i = \sum_{i} [\gamma, \bar{\gamma}^{-1}(i)]^{-1}H_{\bar{\gamma}^{-1}(i)} w_i = \sum_{j} H_j [\gamma, j]^{-1}w_{\bar{\gamma}(j)}.$$

Thus, γ induces a monomial transformation $\hat{\gamma} : C \rightarrow C$.

We now focus our attention on the special case of cyclic automorphisms and constacyclic codes.

Definition 3.14. A q-ary code C is constacyclic if there exists $\beta \in \mathbb{F}_q$ such that for any $w = (w_0 \ w_1 \ldots w_n) \in C$,

$$w^\beta := (\beta w_n \ w_0 \ldots w_{n-1}) \in C.$$

Constacyclic codes have been introduced in [3] as a generalisation of cyclic codes; for some of their properties see, for instance, [18]. In [2] it is shown that the codes $C_{2,3}$ are constacyclic. Here, we extend the result to all $C_{r,t}$.

Observe first that whenever there is a cyclic group acting regularly on the columns of the parity check matrix of a code, then the code is cyclic.
Corollary 3.15. Let C be a code of length ℓ with parity-check matrix H. Suppose that there is a cyclic group acting regularly on the columns of H. Then, C is cyclic.

Proof. Let γ be the generator of the group. Under the assumptions, $[\gamma, j] = 1$ for any j. The result follows.

Let now ω be a generator for a Singer cycle of $\text{PG}(r-1, q^t)$ and order the columns H_0, H_1, \ldots, H_n of the parity check matrix H so that

$$H_{i+1} = \omega(H_i), \quad i = 0, \ldots, n-1.$$

By construction, $[\omega, i] = 1$ for $i < n$, while, in general, $\omega(H_n) = [\omega, n]H_0$ with $[\omega, n] \neq 1$. Thus, we have the following theorem.

Theorem 3.16. The codes $C_{r,t}$ are all constacyclic.

Remark 3.17. The automorphism group $G = \text{PGL}(r, q^t)$ of the subgeometry $\text{PG}(r-1, q^t)$ acts as a permutation group on $\mathcal{V}(r-1, q^t)$; furthermore it induces a linear collineation group of the ambient space; see [5, Theorem 2.10]. Thus, the arguments leading to Theorems 3.13 and 3.16 apply in an almost identical way to the codes $C_{r,t}^{(s)}$. In particular, all of the codes $C_{r,t}^{(s)}$ are equivalent to constacyclic codes and they admit a monomial automorphism group isomorphic to G.

As observed above, $C_{r,t}$ is not, in general, cyclic; see also [2]. None the less, we can always determine a smaller code which is cyclic and still related with our geometries. To this purpose, we shall make use of the affine Singer cyclic group S of $\text{PG}(r-1, q^t)$; see [1, 20]. This is a linear collineation group which has exactly 3 orbits in $\text{PG}(r-1, q^t)$: an hyperplane Σ, a single point O with $O \notin \Sigma$ and the points of $\text{AG}(r-1, q^t) = \text{PG}(r-1, q^t) \setminus \Sigma$ different from O. The action on the latter orbit is regular. These groups turn out to be quite useful in a coding theory setting; see, for instance, [7].

We recall that puncturing a code C means deriving a new code C^* from C by deleting some of its coordinates; in general, this procedure decreases the minimum distance; see [15] page 28).

Let $\xi_i : x_i = 0$ be a coordinate hyperplane in $\text{PG}(r-1, q^t)$; with this choice, the image under α of ξ_i is the full intersection of $\mathcal{V}_{r,t}$ with a suitable hyperplane Ξ_i of $\text{PG}(r^t-1, q)$.

Definition 3.18. Take $O \in \text{PG}(r-1, q^t)$ and suppose $O \notin \xi_i$. Write $\tilde{C}_{r,t,i}$ for the code obtained by puncturing $C_{r,t}$ in the positions corresponding to O^α and Ξ_i.

The columns of $\tilde{C}_{r,t,i}$ correspond to points in an affine geometry $\text{AG}(r^t-1, q) = \text{PG}(r^t-1, q) \setminus \Xi_i$.

Theorem 3.19. The code $\tilde{C} = \tilde{C}_{r,t,i}$ is equivalent to a cyclic code.
Proof. Clearly, the length of \tilde{C} is $m = q^{r^t-t} - 1$. Write $\tilde{H} = (\tilde{H}_1, \ldots, \tilde{H}_\ell)$ for its parity-check matrix. Recall that the columns of \tilde{H} correspond to the points of an affine geometry $\mathfrak{A} = AG(r - 1, q^t)$ with a point removed. By construction, the image of \mathfrak{A} under α is contained in an affine subspace $AG(r^t - 1, q) = PG(r^t - 1, q) \setminus \Xi_i$. In particular, the affine cyclic Singer group with generator θ lifts to an affine group of $AG(r^t - 1, q)$ which acts cyclically on the columns of \tilde{H}. We can assume, up to code equivalence, $\theta(\tilde{H}_i) = H_{i+1}$ for $i < \ell$ and $\theta(\tilde{H}_\ell) = H_0$. By Corollary 3.15, \tilde{C} is cyclic.

The matrix \tilde{H} contains the coordinates of affine points such that any $(t + 1)$ of them are in general position. This is to say that any t columns of \tilde{H} are independent; thus the minimum distance of the new code is $t + 1$. It is straightforward to see that \tilde{C} it admits a group of automorphisms isomorphic to $\Gamma L(r - 1, q^t)$.

As a special case, remark that as $\text{PGL}(2, q^t)$ acts 3-transitively on $\text{PG}(1, q^t)$, the code $\tilde{C}_{2, t}$ for $r = 2$ is the code $C_{2, t}$ punctured in any two of its positions.

Acknowledgement

The authors wish to thank W.M. Kantor, for having kindly shared an unpublished result which provided the insight necessary for obtaining the proof of Theorem 2.1 in the most general case.

References

[1] E.F. Assmus and J.D. Key, Designs and their codes, Cambridge Tracts in Mathematics (1992).
[2] A. Betten, Twisted Tensor Product Codes, Design Codes Cryptogr. 47 (2008), no. 1-3, 191-219.
[3] E.R. Berlekamp, Algebraic Coding Theory, Mc Graw-Hill (1968).
[4] R.C. Bose, An affine analogue of Singer’s theorem, J. Indian Math. Soc. 6 (1942), 1-15.
[5] A. Cossidente, D. Labbate, A. Siciliano, Veronese Varieties over Finite Fields and Their Projections, Design Codes Cryptogr. 22 (2001), 19-32.
[6] A. Couveur and I. Duursma, Evaluation codes from smooth Quadric Surfaces and Twisted Segre Varieties, arXiv 1101.4603v1.
[7] L. Giuzzi and A. Sonnino, LDPC codes from Singer Cycles, Discrete Appl. Math. 157 (8) (2009), 1723-1728.
[8] J. Harris, Algebraic geometry: a first course, GTM 133, Springer-Verlag.
[9] B. Hasset, *Introduction to algebraic geometry*, Cambridge University Press (2007).

[10] J.W.P. Hirshfeld, *Finite Projective Spaces of Three Dimension*, Oxford University Press, USA (1986).

[11] J.W.P. Hirshfeld and J.A. Thas, *General Galois Geometries*, Oxford University Press (1991).

[12] W.M. Kantor and E.E. Shult, *Veroneseans, power subspaces and independence*, in preparation.

[13] G. Lunardon, *Planar fibrations and algebraic subvarieties of the Grassmann variety*, Geom. Dedicata 16 (3) (1984), 291-313.

[14] G. Lunardon, *Normal spreads*, Geom. Dedicata 75 (1999), 245-261.

[15] F.J. MacWilliams and N.J.A. Sloane, *The theory of error correcting codes*, North-Holland (1977).

[16] L.J. Paige, *A note on the Mathieu groups*, Canad. J. Math. 9 (1957), 15-18.

[17] V. Pepe, *On the algebraic variety $V_{r,t}$*, Finite Fields App., 17 (2011), 343-349.

[18] D. Radkova and A.J. Van Zanten, *Constacyclic codes as invariant subspaces*, Linear Algebra Appl. 430 no. 2-3 (2009), 855-864.

[19] B. Segre, *Teoria di Galois, fibrazioni proiettive e geometrie non Desarguessiane*, Ann. Mat. Pura Appl. 64 (1964), 1-76.

[20] E. Snapper, *Periodic linear transformations of affine and projective geometries*, Canadian J. Math. 2 (1950), 149-151.

[21] R. Steinberg, *Representations of algebraic groups*, Nagoya Math. J. 22 (1963), 33-56.

Authors’ addresses:

Luca GIUZZI
Department of Mathematics
Facoltà di Ingegneria
Università degli Studi di Brescia
Via Valotti 9
I-25133 Brescia (Italy)
E–mail: giuzzi@ing.unibs.it

Valentina PEPE
Department of Mathematics
Universiteit Gent
Building S22
Krijgslaan 281
B-9000 Gent (Belgium)
E–mail: valepepe@cage.ugent.be