Beyond the particular case of circuits with geometrically distributed components for approximation of fractional order models: Application to a new class of model for power law type long memory behaviour modelling

Jocelyn Sabatier
IMS Laboratory, Bordeaux University, UMR CNRS 5218, 351 Cours de la libération, 33400 Talence, France

GRAPHICAL ABSTRACT
Power law type behaviour of $T_0(s)$.

ARTICLE INFO
Article history:
Received 20 February 2020
Revised 1 April 2020
Accepted 4 April 2020
Available online 23 April 2020

Keywords:
Power law type long memory behaviours
Fractional models
Cauer networks
Foster networks
Heat equation
Poles and zeros geometric distributions

ABSTRACT
In the literature, fractional models are commonly approximated by transfer functions with a geometric distribution of poles and zeros, or equivalently, using electrical Foster or Cauer type networks with components whose values also meet geometric distributions. This paper first shows that this geometric distribution is only a particular distribution case and that many other distributions (an infinity) are in fact possible. From the networks obtained, a class of partial differential equations (heat equation with a spatially variable coefficient) is then deduced. This class of equations is thus another tool for power law type long memory behaviour modelling, that solves the drawback inherent in fractional heat equations that was proposed to model anomalous diffusion phenomena.

https://doi.org/10.1016/j.jare.2020.04.004
2090-1232/© 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction
It is well known that the diffusion equation of the form

$$\frac{\partial \phi(x,t)}{\partial t} = D \frac{\partial^2 \phi(x,t)}{\partial x^2}$$

(1)
produces power law type long memory behaviours of order 0.5 (\(D_f\) is a diffusion coefficient). That is why the Warburg impedance, defined in the frequency domain (variable \(\omega\)) by \(Z(\omega) = (j\omega)^{-1/2}\), was introduced to model numerous diffusion-controlled processes in many domains such as electrochemistry [44,23,42,36,3], solid-state electronics and ionics [15,41,2]. However, it is also well-known that there are processes whose behaviour cannot be modelled by the Warburg impedance as they exhibit a power law type behaviour of the form

\[
Z(\omega) = (j\omega)^{-v} \quad 0 < v < 1 \quad \forall \omega \in \mathbb{R} \tag{2}
\]

at least in a limited frequency range. These behaviours are connected to anomalous diffusion-based processes [10]. To model this kind of behaviour, "fractionalizations" of the diffusion equation were introduced [4]. These fractional (in time) diffusion equations are defined by

\[
\frac{\partial^v \phi(x, t)}{\partial t^v} = D_f \frac{\partial^2 \phi(x, t)}{\partial x^2} \quad 0 < v < 1 \tag{3}
\]

However, this class of equations has similar drawbacks to those recently highlighted for fractional differential equations [34,35] and for the resulting fractional models such as pseudo state space descriptions [28]. First, in relation (3), the fractional differentiation operator \(\frac{\partial^v}{\partial t^v}\) is not defined uniquely. More than 30 definitions were listed in [9]. Results presented in the literature are obtained by choosing the most convenient definition to obtain them. In most cases, it is the Caputo definition that is chosen, as it can take into account the initial conditions without taking into account all the past of the system. However it was demonstrated in [25,30] that all the system past \((t \rightarrow -\infty)\) must be taken into account to ensure a proper initialisation, thus leading to difficulties in the definition of this past. This reflects the fact that the fractional differentiation operator \(\frac{\partial^v}{\partial t^v}\) (but also the fractional integration operator) has an infinite memory, and exhibits infinitely slow and infinitely fast time constants. Such a situation excludes the possibility of linking the model internal variables to physical variables, even if fractional models remain accurate fitting models. Along the same lines, there is no proof for the physical meaning of parameter units associated to relation (3) (parameter \(D_f\)). To conclude this list of drawbacks, fractional differentiation and fractional integration operators are defined using singular kernels [32,34], thus leading to difficulties in the solution/simulation of the fractional diffusion equation (3).

For all these reasons, alternative models must be found to model anomalous diffusion processes that exhibit power law type long memory behaviours, as was done recently for fractional differential equations [35,37]. To reach this goal, this paper first reminds several solution that can be found in the literature for the approximation of fractional integration operator. The approximation based on a transfer function whose poles and zeros (frequency modes) are geometrically distributed is used in the sequel. This approximation method is efficient but two limitations must be mentioned:

- the resulting transfer function behaves exactly as a limited frequency band fractional integration operator with an infinite number of poles and zeros [20] but becomes sub-optimal for a limited number of poles and zeros [31],
- the geometric distribution of poles and zeros is a particular case, as an infinite number of distributions is possible.

The latter limitation is demonstrated in this paper on the integral form of the impulse response of a fractional integrator. This integral form also permits a direct approximation with a Foster network with resistors and capacitors whose values are linked with defined functions.

For a geometric distribution for the resistor and capacitor values, it is also demonstrated in the paper that a Cauer network impedance also exhibits a power law type behaviour. From this geometric distribution, it is then shown that an infinity of other distributions is permitted to produce a power law type behaviour in the case of a Cauer network, reducing the geometric distribution to a particular case.

As a Cauer network can be viewed as the discrete form of a diffusion equation, the last part of the paper deduces diffusion equations with spatially variable coefficients that can model power law type behaviours to be produced. It is argued that this class of equations is a possible alternative to fractional diffusion equations for anomalous diffusion process modelling.

The main contributions of this paper are found in Sections ‘Beyond geometric distribution, Extension to Cauer type networks, Heat equation with spatially variable coefficients for power law type long memory behaviour modelling and Discussions around some other distributions for further’ Section ‘Prior art on the approximation of fractional order integrators and the resulting electrical networks’ is dedicated to reminders on the approximation of a fractional order integrator and to the resulting electrical networks, results which will be used in the sequel of the paper. As a first contribution, Section ‘Beyond geometric distribution’ shows that a geometric distribution of poles and zeros for the approximation of a fractional order integrator is only a particular distribution and that an infinity of other distributions are permitted. The analytic way to obtain these new distributions had never been presented before in the literature. Due to the close link between the approximations obtained and Foster type networks, Section ‘Beyond geometric distribution’ also demonstrates as a new contribution that an infinity of Foster type networks can be used to produce power law type behaviours. Section ‘Extension to Cauer type networks’ is dedicated to Cauer type networks. It is well-known that a geometric distribution of the parameters in these networks produces power law type behaviours. But the present work proposes an analytical proof never published and uses it to produce other distributions (an infinity exist) of parameters that also lead to the same kind of behaviour. As a Cauer type network can be obtained through the discretisation of a heat equation, Section ‘Heat equation with spatially variable coefficients for power law type long memory behaviour modelling’ proposes a class of heat equation with spatially varying coefficients that produce power law type behaviours. This is another contribution of the paper that can be viewed as an alternative solution to fractional diffusion equation for anomalous diffusion modelling, without the limitations and drawbacks associated to fractional differentiation. The paper ends with a discussion and propositions for finding other spatially varying coefficients for the heat equation leading to power law type long memory behaviours.

Prior art on the approximation of fractional order integrators and the resulting electrical networks

Fractional models and consequently fractional order integrator are infinite dimensional, thus their simulations or their implementations require their approximations. Many methods were proposed in the literature to obtain approximate models and many have overlaps so that it is not easy to categorize them. 28 methods are analysed in [39]. Some of them are implemented in digital tools, a comparison of which is proposed in [14]. Note also that discussions about power law in electrical circuits and some power-law relations in Laplace transforms can be found in [38,40,9].

In most of these methods the fractional model is replaced by a classical integer model under various forms: continuous time model, discrete time model, electrical network (it is often simple
to go from one form to another). Some apply to the full fractional model such as frequency domain fitting based methods [1]. But, as a fractional integrator chain appears in a fractional model, a large part of the proposed methods concentrates on the approximation of the fractional integrator of transfer function s^{-r}. Among all these methods, the following are the most common

- power series expansion (PSE) techniques based on Taylor series, Maclaurin series, etc. [40,21,6],
- continued fractional expansion based methods [43],
- impulse response based method [29],
- time moments based approaches [12],
- Carlson method based approaches [7],
- optimisation based methods [5],
- frequency distribution mode approach [16,11,19,24,8,45].

In this last class of method, a widely used is the one known in the literature as the Oustaloup method [20] although a similar approach was proposed by Manabe [16]. This method, based on a geometric distribution of mode is widespread because it comes in the form of a simple algorithm, given below.

Algorithm 1. In the frequency band $[\omega_0, \omega_\beta]$, the limited frequency band fractional integrator of transfer function $I^\nu(s)$ defined in (4) can be approximated by the transfer function $I^\nu(s)$

$$I^\nu_{1\beta}(s) = C_0 \left(\frac{1 + \frac{s}{\omega_\beta}}{1 + \frac{s}{\omega_0}} \right)^r \approx I^\nu(s) = C_0 \prod_{k=1}^{N} \left(\frac{1 + \frac{s}{\omega_k}}{1 + \frac{s}{\omega_0}} \right)^N$$

As shown in [20], the corner frequencies ω_0 and ω_β (respectively the poles and zeros of the transfer function $I^\nu(s)$) are geometrically distributed to obtain the required frequency behaviour:

$$r = \left(\frac{\omega_\beta}{\omega_0} \right)^\alpha \Rightarrow \alpha = r^\beta \eta = r^{1-\beta}$$

$$\omega_0 = \eta^{1/\beta} \omega_\beta \quad \alpha' = \omega_0 \alpha \quad \omega'_{k+1} = r\omega_k \quad \omega_{k+1} = r\omega_k \quad k \in [1..N].$$

Remark 1. As shown in [20] this algorithm is exact as N tends towards infinity:

$$I^\nu_{1\beta}(s) = C_0 \lim_{N \to \infty} \prod_{k=1}^{N} \left(\frac{1 + \frac{s}{\omega_k}}{1 + \frac{s}{\omega_0}} \right) \text{ and thus } r \to 1$$

but becomes sub-optimal [31] with a finite number of corner frequencies ω_0 and ω_β. In this case, the sub optimality relates to the absolute and relative error between $I^\nu_{1\beta}(s)$ and $I^\nu(s)$ for a given N.

Using fraction expansion, approximation (4) can be rewritten as:

$$I^\nu(s) = \sum_{k=1}^{N} \frac{R_k}{1 + \frac{s}{\omega_k}}$$

If it is assumed that the transfer function $I^\nu(s)$ links an input current $I(s)$ to an output voltage $U(s)$, then, from relation (8) the following relation holds:

$$U(s) = \sum_{k=1}^{N} U_k(s) \text{ with } U_k(s) = \frac{R_k}{1 + \frac{s}{\omega_k}} I(s).$$

The transfer function $I^\nu(s)$ can thus be represented by the electrical network of Fig. 1 by introducing parameters C_k such that $R_k C_k = \omega_k$. Corner frequencies ω_k are linked by the ratio r so that $\omega_{k+1} = r\omega_k$. For large values of N, Fig. 2 shows that the following relations also hold:

$$R_{k+1} = \alpha R_k \quad \text{with} \quad C_{k+1} = \eta C_k$$

and the transfer function $I^\nu(s)$ exhibits a power law behaviour.

This geometric distribution of corner frequencies or of components in the electrical network of Fig. 1 (electrical networks with resistors and inductors are also possible), now admitted by all, is however a particular case among an infinity of other possible distributions. Other distributions are presented in the next section: some can improve the optimality problem mentioned in remark 1 [31], and can be applied to more complex transfer functions such as the one given by relation (4) (see Appendix A.1).

Beyond geometric distribution.

Using the Cauchy method, the impulse response $h(t)$ of a fractional model of transfer function $H(s)$ can be written under the form

$$h(t) = L^{-1}\{H(s)\} = \int_{0}^{\infty} \mu(x)e^{-sx}dx.$$

As an example, consider the transfer function $H(s) = \frac{1}{s^\beta}$.

It can be shown that [22]

$$h(t) = \int_{0}^{\infty} \mu(x)e^{-sx}dx \quad \text{with} \quad \mu(x) = \frac{\sin(\sqrt{\pi x})}{\pi x^\beta}$$

and thus

$$H(s) = \int_{0}^{\infty} \frac{\mu(x)}{s+x}dx.$$

Remark 2. If $h(t)$ is the impulse response of a model whose input is $u(t)$, the convolution product of relation (11) with an input $u(t)$ means that the model output can be written as:

$$y(t) = \int_{0}^{\infty} \mu(x)w(t,x)dx \quad \text{with} \quad w(t,x) = -xw(t,x) + u(t)$$

which is in fact the diffusive representation introduced by [18] and [17].

From the discretization of integral (14), it is easy to deduce an electrical network whose transfer function is an approximation of $H(s)$ on a given frequency range $[\omega_{1m}, \omega_{1M}]$. Using the Euler approximation method (but many other methods of higher order can be used), integral (14) can be approximated as follows:

![Electrical network](image)

*Fig. 1. Electrical network (Foster type) whose impedance is $I^\nu(s)$.***
\[H(s) = \int_0^\infty \frac{\mu(x)}{s+x} \, dx \approx \sum_{k=0}^N \frac{\mu(x_k)\Delta x}{s+x_k}, \text{ with } x_0 = x_{\text{min}} \]

\[\Delta x = \frac{x_{\text{max}} - x_{\text{min}}}{N}, \quad x_k = x_{\text{min}} + k\Delta x. \]

(16)

(17)

Applied to transfer function (12), the following approximation can be obtained

\[H(s) \approx H_a(s) = \frac{\sin(\sqrt{\pi}v)}{\pi} \sum_{k=0}^N \frac{X_k^{v-1}}{s+x_k} \Delta x. \]

(18)

For \(v = 0.4 \), on the frequency range \([\omega_l, \omega_h]\) with \(\omega_l = 0.001 \text{ rd/s} \) and \(\omega_h = 1000 \text{ rd/s} \) the approximation \(H_a(s) \) Bode diagrams are shown in Fig. 3 with several values of \(N \), \((N = 10^2, N = 5 \times 10^2, N = 10^3) \), showing that a large number \(N \) is required for the power law type behaviour appears.

Fig. 2. Logarithm of ratios \(\frac{\sin(\sqrt{\pi}v)}{\pi} \) and \(\frac{1}{\Delta x} \) in relation (10) for \(\omega_l = 1, \omega_h = 10^2; v = 0.3 \) with \(\pi = 1.0208, \eta = 1.0493 \) and \(N = 200 \) (a) or \(\pi = 1.0021, \eta = 1.0048 \) and \(N = 2000 \) (b).

Fig. 3. Bode diagram of \(H_a(s) \) (given by relation (18)).

For \(v = 0.4 \), the following approximation can be obtained

\[H_a(s) = \sum_{k=0}^N \frac{\sin(\sqrt{\pi}v)X_k^{v-1}}{s+x_k} \Delta x. \]

(19)

it permits a realization using an RC network like the one in Fig. 1 with

\[R_k = \frac{\sin(\sqrt{\pi}v)}{\pi}X_k^{v-1} \Delta x, \quad C_k = \frac{1}{\frac{\sin(\sqrt{\pi}v)}{\pi}X_k^{v-1} \Delta x} \]

\[\omega_k = \frac{1}{R_kC_k} = X_k \]

(20)

as the circuit impedance in Fig. 1 is

\[G(s) = \sum_{k=0}^N \frac{R_k}{R_kC_k}s + 1 \]

(21)

Note that an RL (resistor-self) circuit can also be designed. Also note that this approximation method can be applied to many other transfer functions of which a non-exhaustive list is given in Appendix A.1, Table A1. For instance, the impulse response of transfer function (4) is defined by (see Appendix A.1)
As a first try, the following change of variable is used in relation (14):
\[x = a^z \] with \(a \in \mathbb{R}_+^* \) thus \(dx = (\ln(a)) a^{\ln(a)} dz \). (27)

This transfer function can be rewritten as:
\[H(s) = \int_{-\infty}^{\infty} \frac{\mu(e^{\ln(a)} \Gamma)}{s + e^{\ln(a)}} dz = \int_{-\infty}^{\infty} \ln(a) \frac{\mu(e^{\ln(a)})}{\text{lo}p + 1} dz \] (28)

Such a discretisation permits the realization of Fig. 1 with:
\[R_k \sin(\pi \frac{x_{\text{min}}}{a}) e^{\ln(a) k} \Delta z \]
\[C_k = \frac{1}{\sin(\pi \frac{x_{\text{min}}}{a}) e^{\ln(a) (k + 1) \Delta z}} \] (31)
and
\[\frac{\text{o}_{k+1}}{\text{o}_k} = e^{\ln(a)} \] (32)

Remark 3. Whatever the value of \(a \), and as:
\[z_{k+1} - z_k = \frac{\ln(x_{\text{min}})}{\ln(a)} + (k + 1) \Delta z - \frac{\ln(x_{\text{min}})}{\ln(a)} - k \Delta z = \Delta z \] (33)

It can be noticed that
\[R_k + \frac{R_k e^{-x_{\text{min}} \ln(a)}}{\mu e^{-x_{\text{min}} \ln(a)}} \]
\[C_k = \frac{1}{\text{ln}(a) e^{x_{\text{min}} \ln(a)}} e^{x_{\text{min}} \ln(a)}} = e^{x_{\text{min}} \ln(a)}} \] (34)

And
\[\frac{\text{o}_k + 1}{\text{o}_k} = \frac{1}{R_k C_k} = e^{E_{\text{lo}p}} \] (35)

The previous relation highlights a geometric distribution of the values of resistors, capacitors and corner frequencies, defined by the following ratios:
\[\alpha = e^{-x_{\text{min}} \ln(a)} \] \[\eta = e^{x_{\text{min}} \ln(a)} \] (36)

This geometric distribution generalises the one introduced by Oustaloup [19,20]. The latter is indeed a particular case obtained with \(a = 10 \), among the infinite number of distributions obtained for all the other values of \(a \), and for other changes of variable that can be proposed instead of relation (27). Among this infinity, the following one is interesting as it also makes it possible to contract the frequency domain.

Using the following change of variable
\[z^n = x \]
\[z = x^{1/n} \]
with \(n \in \mathbb{N}^* \) thus \(dx = n z^{n-1} dz \) (37)
relation (14) can be rewritten as:
\[H(s) = \frac{\sin(\pi \frac{z^n}{a})}{\pi} \int_0^{\infty} z^{n-1} \frac{sz^n}{s + z^n} dz = \frac{\sin(\pi \frac{z^n}{a})}{\pi} \int_0^{\infty} z^{n-1} \frac{dz}{s + z^n} \] (38)

Fig. 4. Comparison of coefficients \(a_k \) and \(a'_k \), with \(N = 2000 \) and \(v = 0.3 \), \(\text{o}_k = 1 \) rd/s, \(\text{o}_h = 10^6 \) rd/s (zoom inside the figure).
and permits the network of Fig. 1 with:

\[
R_k = \frac{\sin(\pi n)}{\pi n} \Delta z, \quad C_k = \frac{1}{\sin(\pi n) n \Delta z}.
\]

and

\[
\omega_k = \frac{1}{R_k C_k} = z_k^2.
\]

If \(v = 0.4, n = 60, N = 10, \omega_0 = 0.001 \text{ rd/s}, \omega_n = 1000 \text{ rd/s} \) is the Bode diagrams of the approximation \(H_a(s) \) obtained by discretisation of integral (38) and change of variable (37) are shown in Fig. 6. They are compared with the Bode diagrams obtained with change of variable (27). The comparison reveals that the two changes of variable are of equivalent quality with the same complexity (\(N = 10 \)).

As an infinity of changes of variable can be proposed, an infinity of Foster type networks can be used to generate a power law behaviour. The following section shows that Cauer networks can also generate this type of behaviour with an infinity of different distributions.

Extension to Cauer type networks

The Cauer network of Fig. 7 is considered.

For the geometric distribution, such as the one defined by relations (5) and (6), an analytical result can be obtained to show that a Cauer type network generates a power law behaviour. Considering the network in Fig. 7, the following relations hold

\[
\frac{1}{sC_k} (I_{k-1}(s) - I_k(s)) = U_k(s)
\]

and

\[
U_{k+1}(s) - U_k(s) = -R_k U_k(s).
\]

From relations (41) and (42) respectively, it can be written that

\[
\frac{U_k(s)}{U_{k-1}(s)} = \frac{1}{1 + \frac{1}{sC_k} \frac{I_k(s)}{U_k(s)}}
\]

and
If the network results from an infinitesimal slicing of a continuous medium of abscissa \(z \), the ratio of two consecutive components (capacitor or resistor) denoted \(F \) is given by:
\[
\frac{F_{k+1}}{F_k} = \frac{F(kdz + dz)dz}{F(kdz)dz}
\]
(52)
where \(dz \) denotes the thickness of the considered slices, with \(dz \to 0 \).

Given that
\[
F(kdz + dz) - F(kdz) = F'(kdz) \quad dz \to 0
\]
(53)
where \(F' \) denotes the derivative of \(F \) and thus
\[
F(kdz + dz) = F(kdz) + F'(kdz)dz
\]
(54)
the ratio of relation (52) becomes
\[
\frac{F_{k+1}}{F_k} = 1 + \frac{F'(kdz)dz}{F(kdz)}.
\]
(55)

If this ratio, only a function of \(dz \), is assumed constant \(\forall k \) as in relation (46) and equal to \(\Lambda \), using relation (55),
\[
\Lambda = 1 + \frac{F'(kdz)}{F(kdz)}dz = 1 + \lambda_i dz
\]
(56)
with
\[
\frac{F'(kdz)}{F(kdz)} = \lambda_i
\]
(57)

After resolution of the differential equation (57), function \(F(kdz) \) is given by
\[
F(kdz) = F_0e^{\lambda_i dz} \quad z \in [0, \infty[.
\]
(58)
This shows that the linear characteristics of the discretized medium that produces the network of Fig. 7 are defined by:
\[
R(z) = R_0x^{\lambda_i} \quad and \quad C(z) = C_0x^{\lambda_i} \quad z \in [0, \infty[.
\]
(59)
The ratio of two consecutive resistors and capacitors is thus defined by:
\[
\frac{R_{k+1}}{R_k} = \frac{R_0(k + 1)dx}{R_0(kdx)} = e^{\lambda_i dx} \quad and \quad \frac{C_{k+1}}{C_k} = \frac{C_0(k + 1)dx}{C_0(kdx)} = e^{\lambda_i dx}.
\]
(60)

Now consider the change of variable \(z = \log(x) \), \(x \in [1, \infty[\), then relation (59) becomes
\[
R(x) = R_0x^{\lambda_i} \quad and \quad C(x) = C_0x^{\lambda_i} \quad x \in [1, \infty[.
\]
(61)

With an infinitesimal slicing of the continuous medium, the system can be characterised by the network of Fig. 7 with:
\[
R_k = R(kdx) = R_0(kdx)^{\lambda_i}dx \quad and \quad C_k = C(kdx) = C_0(kdx)^{\lambda_i}dx
\]
(62)

The ratio of two consecutive resistors and capacitors is thus defined by:
\[
\frac{R_{k+1}}{R_k} = \frac{R_0(k + 1)dx^{\lambda_i}dx}{R_0(kdx)^{\lambda_i}dx} = \frac{(k + 1)^{\lambda_i}}{(k)^{\lambda_i}}
\]
and
\[
\frac{C_{k+1}}{C_k} = \frac{C_0(k + 1)dx^{\lambda_i}dx}{C_0(kdx)^{\lambda_i}dx} = \frac{(k + 1)^{\lambda_i}}{(k)^{\lambda_i}}
\]
(63)

These ratios are similar to those given by relation (26) for the Foster circuit of Fig. 1.

The following change of variable \(z = \log(x^n) \), \(x \in [1, \infty[\), \(n \in \mathbb{N}^*_1 \), is now considered. Relation (62) thus becomes
\(R(x) = Ra^{x/a} \) and \(C(x) = Ca^{x/c} \quad x \in [1, \infty]. \)

With an infinitesimal slicing of the continuous medium, the system can be characterised by the network of Fig. 7 with:
\[
R_k = R(kdx) = R_0(kdx)^{na} \quad \text{and} \quad C_k = C(kdx) = C_0(kdx)^{nc} \quad dx.
\]

The ratio of two consecutive resistors and capacitors is thus defined by:
\[
\frac{R_{k+1}}{R_k} = \frac{R_0((k+1)dx)^{na}}{R_0(kdx)^{na} dx} = \frac{(k+1)^{na}}{(k)^{na}} \quad \text{and}
\]
\[
\frac{C_{k+1}}{C_k} = \frac{C_0((k+1)dx)^{nc}}{C_0(kdx)^{nc} dx} = \frac{(k+1)^{nc}}{(k)^{nc}}.
\]

These ratios are similar to those given by relation (39) for the Foster circuit of Fig. 1.

These networks and the associated distributions are used in the next section to introduce a class of heat equation that exhibits a power law type long memory behaviour.

Heat equation with spatially variable coefficients for power law type long memory behaviour modelling

The following heat equation with spatially dependent parameters is now considered.
\[
\frac{\partial T(z,t)}{\partial t} = \gamma(z) \frac{\partial}{\partial z} \left(\beta(z) \frac{\partial T(z,t)}{\partial z} \right)
\]
with \(z \in \mathbb{R}^+ \).

This equation is a simplified form of the equation studied in [13]. Let
\[
\phi(z,t) = \beta(z) \frac{\partial T(z,t)}{\partial z}.
\]

Discretisation of equation (68) with a discretisation step \(\Delta z \) leads to:
\[
\phi(z,t) = \beta(z) \frac{T(z+dz,t) - T(z,t)}{\Delta z}
\]
and thus:
\[
T(z,t) - T(z+dz,t) = \frac{\Delta z}{\beta(z)} \phi(z,t).
\]

Using relation (69), relation (67) can be rewritten as:
\[
\frac{\partial T(z,t)}{\partial t} = \gamma(z) \frac{\partial \phi(z,t)}{\partial z}.
\]

Spatial discretisation of Eq. (71) with a discretisation step \(\Delta z \) leads to:
\[
\frac{\partial T(z,t)}{\partial t} = \gamma(z) \frac{\phi(z+dz,t) - \phi(z,t)}{\Delta z} = \frac{\gamma(z)}{\Delta z} \phi(z+dz,t) - \phi(z,t).
\]

For \(z = k\Delta z \) and if the following notations are introduced
\[
C_k = -\frac{\Delta z}{\gamma(z)\Delta z} = C(k\Delta z)\Delta z \quad \text{and} \quad R_k = -\frac{\Delta z}{\beta(z)\Delta z} = R(k\Delta z)\Delta z
\]
discretisation of Eq. (67) thus leads to the Cauer network of Fig. 8.

As \(C_k = C(k\Delta z)\Delta z \) and \(R_k = R(k\Delta z)\Delta z \), according to relations (46), (62) and (72), the transfer function \(\phi(0,s)/T(0,s) \) of the Cauer network of Fig. 8 exhibits a power law type long memory behaviour if
\[
\frac{R_{k+1}}{R_k} = e^{\frac{a}{s}} \quad \text{and} \quad \frac{C_{k+1}}{C_k} = e^{\frac{c}{s}} \quad \text{(relation (46))}
\]
\[
\frac{R_{k+1}}{R_k} = \frac{(k+1)^{na}}{(k)^{na}} \quad \text{and} \quad \frac{C_{k+1}}{C_k} = \frac{(k+1)^{nc}}{(k)^{nc}} \quad \text{(relation (62))}
\]
and according to the relations (59), (60) and (63), the heat equation (67) exhibits a power law type long memory behaviour if (as \(\gamma(z) = -1/C(z) \) and \(\beta(z) = -1/R(z) \) according to relation (73))
\[
-\gamma(z) - \frac{1}{C_0e^{c/s}} \quad \text{and} \quad \beta(z) = 1/R_0e^{a/s} \quad z \in [0, \infty]. \quad \text{(relation (59))}
\]
\[
-\gamma(z) = -\frac{1}{C_0z^{c/s}} \quad \text{and} \quad \beta(z) = -\frac{1}{R_0z^{a/s}} \quad z \in [1, \infty]. \quad \text{(relation (60))}
\]
\[
-\gamma(z) = -\frac{1}{C_0z^{c/s}} \quad \text{and} \quad \beta(z) = -\frac{1}{R_0z^{a/s}} \quad z \in [1, \infty]. \quad \text{(relation (63))}
\]

Of course, as previously explained, many other spatially varying coefficients can be obtained using other changes of variable than those proposed at the end of Section ‘Extension to Cauer type networks’.

Discussions around some other distributions for further

Now, among the infinity of distributions that can be obtained using changes of variable as shown in Section ‘Beyond geometric distribution’, the following is studied:
\[
z = x^{-1}, \quad \text{or} \quad x = z^{-1/\gamma} \quad \text{thus} \quad dx = -\frac{1}{\gamma}z^{-1-1}dz
\]

Using this change of variable, relation (14) becomes:
\[
H(s) = \frac{\sin(\sqrt{\gamma} \pi)}{\sqrt{\gamma} \pi} \int_{1/\gamma}^{-1/\gamma} z \left(1 + \frac{1}{\sqrt{\gamma} z^{1-1/\gamma}} \right) dz
\]
\[
= \frac{\sin(\sqrt{\gamma} \pi)}{\sqrt{\gamma} \pi} \int_{0}^{\infty} \frac{1}{\sqrt{\gamma} z^{1/\gamma}} + \frac{1}{z} dz
\]
\[
= \frac{\sin(\sqrt{\gamma} \pi)}{\sqrt{\gamma} \pi} \int_{0}^{\infty} \frac{1}{\sqrt{\gamma} z^{1/\gamma}} dz
\]
\[
= \frac{\sin(\sqrt{\gamma} \pi)}{\sqrt{\gamma} \pi} \int_{0}^{\infty} \frac{1}{\sqrt{\gamma} z^{1/\gamma}} dz
\]
\[
= \frac{\sqrt{\gamma} \pi}{\gamma} \int_{0}^{\infty} \frac{1}{\sqrt{\gamma} z^{1/\gamma}} dz
\]
\[
= \frac{\sqrt{\gamma} \pi}{\gamma} \int_{0}^{\infty} \frac{1}{\sqrt{\gamma} z^{1/\gamma}} dz
\]
or after simplification
\[
H(s) = \frac{\sin(\sqrt{\gamma} \pi)}{\sqrt{\gamma} \pi} \int_{0}^{\infty} \frac{1}{\sqrt{\gamma} z^{1/\gamma}} dz
\]
and permits the realization of Fig. 1 with:
\[
H(s) = \sum_{k=0}^{N} \frac{R_k}{C_k} \int_{0}^{\infty} \frac{1}{\sqrt{\gamma} z^{1/\gamma}} dz
\]
\[
C_k = \frac{v_{\text{rad}}}{\gamma \omega_0} \quad \text{and} \quad \omega_0 = \frac{1}{\sqrt{\gamma} \omega_0}, \quad \omega_0 = 1000 \quad \text{rd/s}
\]

If \(\gamma = 0.4, N = 10,000, \omega_0 = 0.001 \text{ rd/s}, \omega_0 = 1000 \text{ rd/s} \) the Bode diagrams of the approximation \(H(s) \) are shown in Fig. 9. They are compared with the Bode diagrams of approximation (18) and the one obtained with change of variable (37). As for approximation (18), parameters must be very large to have an accurate approximation of \(\phi(s) \) on a large frequency band, but the interest of this change of variable is not there.

The distribution of resistors and capacitors of relation (83) is now used to build the Cauer network of Fig. 7, with \(v = 0.4 \), \(N = 1000 \), \(\Delta z = 2 \) and
The resulting Bode diagram of the transfer function \(I_0(s)/U_0(s) \) is represented by Fig. 10. This diagram shows yet again that a power law behaviour can be obtained without a geometric distribution of resistors and capacitors. In this circuit, all the resistors have the same values and the capacitors are linked by the following relation

\[
C_{k+1} = \frac{\sqrt[1-m]{\frac{N}{C_0}}}{(N-k-1)\Delta z^{1-m}} \left(\frac{N-k}{N} \right)^{1-m}.
\]

This class of components distribution, that cannot be deduced using a change of variable in relation (59), and the resulting class of spatially varying coefficients in relation (67) will be studied by the author in future work.

\[
C_0 = \frac{\sqrt{\pi}}{\sin(\sqrt{\pi})}.
\]
Conclusion

This paper shows that an infinity of

– pole and zero distributions (frequency modes) in classical integer transfer functions,
– passive component value distributions (such as capacitors or resistors) in Foster type networks,

can generate power law type long memory behaviours. Hence, the geometric distributions [19,20] often encountered in the literature are a particular case among an infinity of distributions.

For the Foster type network the proof is easy to establish using several changes of variables, as this network results directly from the discretisation of a filter transfer function that exhibits a power law behaviour. The proof for the Cauer type network is more tedious and is developed in the paper.

Due to the close link between Cauer type networks and heat equations (through discretisation), this paper also shows the ability of heat equations with a spatially variable coefficient to have a power law type long memory behaviour. This class of equation is thus another tool for power law type long memory behaviour modelling that solves the drawback inherent in fractional heat equations. This class of equation will be more deeply studied by the author.

Finally, this paper shows, without proof, that other distributions and thus heat equations with spatially variable coefficients also exhibit power law type long memory behaviours. Moreover, by increasing the number of components in each branch of the Cauer network, it is possible to keep a power law behaviour, which suggests that there are a very large number of partial differential equations, other than the heat equations, which can produce a power law type long memory behaviour, some were already proposed in [27].

With reference to other papers recently published by the author [33,35], this work is a new contribution to the dissemination of models not based on fractional differentiation but which exhibit power law type long memory behaviours.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Declaration of Competing Interest

The author has declared no conflict of interest.

Appendix A.1. Impulse response of some transfer functions that exhibit power law type long memory behaviours

The approximations given in Section ‘Beyond geometric distribution’ are made on the integral form of the impulse response of the transfer function \(H(s) = \frac{1}{s} \). The methodology used to derive the approximations and the change of variable used in Sections ‘Beyond geometric distribution’ and ‘Extension to Cauer type networks’ can be extended to other transfer functions. The following one is now considered:

\[
H_1(s) = C_1 \left(\frac{1}{\omega_h + 1} \right)^{r-1} \quad \text{with} \quad C_1 = \left(\frac{\omega_h^2 + 1}{\omega_h^2 + 1} \right)^{\frac{2}{r}}.
\]

The impulse response of \(H_1(s) \) is defined by

\[
h_1(t) = \frac{1}{2\pi j} \int_{c-i\infty}^{c+i\infty} H_1(s) e^{st} ds \quad \text{with} \quad c > -\omega_h. \quad (A1.2)
\]

For the computation of integral (A1.2), path \(\Gamma = \gamma_0 \cup \ldots \cup \gamma_4 \) of Fig. A1.1 is considered with \(c > -\omega_h \).

This path bypasses the negative axis around the branching point \(z = -\omega_h \) and \(z = -\omega_h \) for \(t > 0 \). It thus avoids the complex plane domain for which the transfer function \(H_1(s) \) is not defined, i.e. the segment \([-\omega_h, -\omega_h] \).

On path \(\Gamma \), the radii of sub-path \(\gamma_1 \) and \(\gamma_2 \) tend towards infinity, and the radius of sub-path \(\gamma_4 \) tends towards 0. Using Cauchy’s theorem with \(c > -\omega_h \):

\[
h_1(t) = \frac{1}{2\pi j} \int_{c-i\infty}^{c+i\infty} H_1(s) e^{st} ds = \frac{1}{2\pi j} \int_{\Gamma - \gamma_0} H_1(s) e^{st} ds
\]

\[
+ \sum_{\text{points in } \Gamma} \text{Res}[H_1(s)e^{st}].
\]

Since

\[
\text{Res}[H_1(s)e^{st}] = 0,
\]

operator \(H_1(s) \) being strictly proper, by Jordan’s lemma integrals on the large circular arcs of radius \(R, R \to \infty \) can be neglected:

\[
\int_{\gamma_1 + \gamma_3} H_1(s)e^{st} ds = 0 \quad (A1.5)
\]

Let \(s = xe^{i\pi}, x \in]-\infty, \omega_h[\) on \(\gamma_2 \) and thus \(ds = e^{i\pi}dx \). Let also \(s = xe^{-i\pi}, x \in [\omega_h, \infty[\) on \(\gamma_5 \) and thus \(ds = e^{-i\pi}dx \). Then

\[
\int_{\gamma_2, \gamma_3, \gamma_5} H_1(s)e^{st} ds = \frac{\omega_h}{\omega_h - 1} \int_{\omega_h}^{\infty} \frac{(xe^{i\pi} + \omega_h)^{r-1}}{(xe^{i\pi} + \omega_h)} e^{-st} e^{i\pi} dx
\]

\[
+ \frac{\omega_h}{\omega_h + 1} \int_{\omega_h}^{\infty} \frac{(xe^{-i\pi} + \omega_h)^{r-1}}{(xe^{-i\pi} + \omega_h)} e^{-st} e^{-i\pi} dx = J_{\gamma_2 + \gamma_5}(t)
\]

(A1.6)

Fig. A1.1. Integration path considered.
or
\[
\int_{t_2+\gamma_6} f(s) e^{st} ds = \frac{\omega_0^v}{\omega_0^{v-1}} \int_{t_2}^{t_2+\gamma_6} e^{(v-1)s} (x - \omega_0 t)^{-1} e^{sXe^{-st}} dx
\]
and thus
\[
\int_{t_2+\gamma_6} f(s) e^{st} ds = 0. \tag{A1.8}
\]

Let \(s = -\omega_t + \rho e^{\theta t}, \theta \in [-\pi, \pi] \) and thus \(ds = j\rho e^{\theta t}d\theta \) with \(\rho \to 0 \), then
\[
\int_{t_4} H_1(s) e^{st} ds = \frac{\omega_0^v}{\omega_0^{v-1}} \int_{\gamma_4} e^{sXe^{-st}} dx
\]
and thus
\[
\int_{t_4} H_1(s) e^{st} ds = 0. \tag{A1.10}
\]

Let \(s = xe^{\theta}, \ x \in [\omega_0, \omega_0] \) on \(\gamma_4 \) and thus \(ds = e^{st} dx \). Also let \(s = xe^{-\theta}, \ x \in [\omega_0, \omega_0] \) on \(\gamma_5 \) and thus \(ds = e^{-st} dx \). Then
\[
\int_{\gamma_4} H_1(s) e^{st} ds = \frac{\omega_0^v}{\omega_0^{v-1}} \int_{\omega_0}^{\omega_0} e^{sXe^{-st}} dx
\]
and then
\[
\int_{\gamma_4} H_1(s) e^{st} ds = \frac{\omega_0^v}{\omega_0^{v-1}} \int_{\omega_0}^{\omega_0} (e^{sX} - e^{-sX}) e^{st} dx
\]
\[
= 2jsin(\sqrt{\pi t}) \frac{\omega_0^v}{\omega_0^{v-1}} \int_{\omega_0}^{\omega_0} (e^{sX} - e^{-sX}) e^{st} dx. \tag{A1.12}
\]

As
\[
h_t(t) = -\frac{1}{2\pi t} \int_{-\gamma_t} H_1(s) e^{st} ds \tag{A1.13}
\]
using relations (A1.3), (A1.4), (A1.10) and (A1.12), the impulse response of \(H_1(s) \) is given by, for \(t > 0 \):
\[
h_t(t) = \frac{\sin(\sqrt{\pi t})}{\pi} \frac{\omega_0^v}{\omega_0^{v-1}} \int_{\omega_0}^{\omega_0} (e^{sX} - e^{-sX}) e^{st} dx. \tag{A1.14}
\]

The same calculation can be done, with other transfer functions, giving Table A1.1.

Appendix A.2. Demonstration of theorem 1

Suppose that the function \(g(Z(s), \sigma, \rho) \) is given by:
\[
g(Z(s), \sigma, \rho) = K(\sigma, \rho)Z(s)^{v(\rho, \sigma)} \times \frac{1 + \sum_{k=1} a_{k,2k-1}(\sigma, \rho)Z(s)^{-1} + a_{2k}(\sigma, \rho)Z(s)^{-2k}}{1 + \sum_{k=1} b_{k,2k-1}(\sigma, \rho)Z(s)^{-1} + b_{2k}(\sigma, \rho)Z(s)^{-2k}}, \tag{A2.1}
\]
where \(0 < v(\sigma, \rho) < 1 \) and \(0 < v(\rho, \sigma) < 1 \).

To make the demonstration easier to read, the following notations are used: \(v(\sigma, \rho), v(\rho, \sigma), K(\sigma, \rho), a_{k}(\sigma, \rho), b_{2k}(\sigma, \rho) \). Relation (A2.1) can thus be rewritten:
\[
g(Z(s), \sigma, \rho) = KZ(s)^{v(\rho, \sigma)} \left[\sum_{k=1} a_{2k-1}(\sigma, \rho)Z(s)^{-1} + a_{2k}(\sigma, \rho)Z(s)^{-2k} \right]. \tag{A2.2}
\]

Also, let \(K', a'_k, b'_k \) denote the functions \(K(\rho, \sigma), a_k(\rho, \sigma), b_k(\rho, \sigma) \).
The function \(g(Z(s), \rho, \sigma) \) is thus defined by:
\[
g(Z(s), \rho, \sigma) = K'Z(s)^{v(\rho, \sigma)} \left[\sum_{k=1} a'_{2k-1}Z(s)^{-1} + a'_{2k}Z(s)^{-2k} \right]. \tag{A2.3}
\]

Now using \(Z = \frac{\sigma}{\rho} \), the function \(g(Z(s), \rho, \sigma) \) is defined by:
\[
1 + g(Z(s), \rho, \sigma) = \frac{1 + \sum_{k=1} b'_{2k-1}Z(s)^{-1} + b'_{2k}Z(s)^{-2k} + K'Z(s)^{-v(\rho, \sigma)} \sum_{k=1} b'_{2k-1}Z(s)^{-1} + b'_{2k}Z(s)^{-2k}}{1 + \sum_{k=1} b'_{2k-1}Z(s)^{-1} + b'_{2k}Z(s)^{-2k}}. \tag{A2.4}
\]

or
\[
1 + g(Z(s), \rho, \sigma) = K'Z(s)^{-v(\rho, \sigma)} \left[\sum_{k=1} b'_{2k-1}Z(s)^{-1} + b'_{2k}Z(s)^{-2k} \right]. \tag{A2.5}
\]

Taking into account property 1,
\[
g(Z(s), \sigma, \rho) = \frac{Z(s)}{1 + g(Z(s), \rho, \sigma)} \tag{A2.6}
\]
and using relation (A2.5), the function \(g(Z(s), \sigma, \rho) \) is given by:
\[
g(Z(s), \sigma, \rho) = \frac{\sigma'Z(s)^{v(\rho, \sigma)} \left[\sum_{k=1} b'_{2k-1}Z(s)^{-1} + b'_{2k}Z(s)^{-2k} \right] + K'Z(s)^{-v(\rho, \sigma)} \sum_{k=1} b'_{2k-1}Z(s)^{-1} + b'_{2k}Z(s)^{-2k}}{1 + \sum_{k=1} b'_{2k-1}Z(s)^{-1} + b'_{2k}Z(s)^{-2k}}. \tag{A2.7}
\]
Term-to-term identification of relations (A2.1) and (A2.7) leads to the following equations:
\[
v + v = 1 \text{ or } v(\sigma, \rho) + v(\rho, \sigma) = 1 \tag{A2.8}
\]
and
\[
K = \frac{\sigma'}{K'} \text{ or } K(\sigma, \rho)K(\rho, \sigma) = \sigma'^{v(\sigma, \rho)}. \tag{A2.9}
\]

Eq. (A2.9) is symmetric in relation to \(\rho \) and \(\sigma \). It is thus possible to write that
\[
\sigma'^{v(\sigma, \rho)} = K(\sigma, \rho)K(\rho, \sigma) = K(\sigma, \rho)K(\sigma, \rho) = \rho^{v(\sigma, \rho)} \tag{A2.10}
\]
and thus
\[
\sigma'^{v(\rho, \sigma)} = \rho^{v(\rho, \sigma)}. \tag{A2.11}
\]
or taking the logarithm of relation (A2.10)
\[
v(\rho, \sigma)\log v(\sigma, \rho) = v(\sigma, \rho) \log(\rho). \tag{A2.12}
\]

Using relation (A2.8), relation (A2.12) permits the following equations
\[
v(\sigma, \rho) = -\frac{\log(\sigma)}{\log(\sigma) + \log(\rho)} \text{ and } v(\rho, \sigma) = \frac{\log(\rho)}{\log(\sigma) + \log(\rho)}. \tag{A2.13}
\]

Term-to-term identification of relations (A2.1) and (A2.7) also permits the following equations:

\[a_{2k-1} = b_{2k-1} \sigma^{\nu+k-1} \quad \text{with} \quad k \in \mathbb{N}^* \]
\[b_{2k-1} = \left(a_{2k-1} + b_{2k-1} \right) \sigma^{\nu+k-1} \quad \text{with} \quad k \in \mathbb{N}^* \quad \text{and} \quad b'_0 = 1 \]
\[a_{2k} = b_{2k} \sigma^\nu \quad \text{with} \quad k \in \mathbb{N}^* \]
\[b_{2k} = \left(a'_{2k} + b_{2k-1} \right) \sigma^\nu \quad \text{with} \quad k \in \mathbb{N}^* . \]
Eq. (A2.14) being symmetric in relation to \(\rho \) and \(\sigma \), it can be rewritten as

\[a'_{2k-1} = a_{2k-1} \sigma^{\nu+k-1} \quad \text{with} \quad k \in \mathbb{N}^* \]
\[b_{2k-1} = b_{2k-1}(\rho \sigma)^{\nu+k-1} + b_{2k-2} \sigma^\nu \quad \text{with} \quad k \in \mathbb{N}^* \quad \text{and} \quad b'_0 = 1 \]
\[a_{2k} = b_{2k} \sigma^\nu \quad \text{with} \quad k \in \mathbb{N}^* \]
\[b_{2k} = \frac{Kb_{2k-2} \sigma^\nu}{1 - (\rho \sigma)^{\nu+k-1}} \quad \text{with} \quad k \in \mathbb{N}^* \quad \text{and} \quad b'_0 = 1. \]

Eq. (A2.20) being symmetric in relation to \(\rho \) and \(\sigma \), it can be rewritten as

\[b'_{2k-1} = \frac{Kb_{2k-2} \sigma^\nu}{1 - (\rho \sigma)^{\nu+k-1}} \quad \text{with} \quad k \in \mathbb{N}^* \quad \text{and} \quad b'_0 = 1. \]

Also, Eq. (A2.16) being symmetric in relation to \(\rho \) and \(\sigma \), it can be rewritten as

\[a'_{2k} = b_{2k} \rho^k \quad \text{with} \quad k \in \mathbb{N}^* \]
\[b_{2k} = b_{2k-1}(\rho \sigma)^k + \frac{b_{2k-1}}{K} \sigma^k \quad \text{with} \quad k \in \mathbb{N}^* \]
and thus

\[b_{2k} = \frac{b_{2k-1} \sigma^k}{K' \left(1 - (\rho \sigma)^{\nu+k-1}\right)} \quad \text{with} \quad k \in \mathbb{N}^* \quad \text{and} \quad b'_1 = \frac{K'}{1 - \sigma} \]
\[b_{2k} = \frac{b_{2k-2} \rho^k \sigma^k}{1 - (\rho \sigma)^{\nu+k-1}} \quad \text{with} \quad k \in \mathbb{N}^* \quad \text{and} \quad b'_0 = 1. \]

The symmetric form of relation (A2.25) in relation to \(\rho \) and \(\sigma \) permits to write

\[b'_{2k} = \frac{b'_{2k-2} \rho^k \sigma^k}{1 - (\rho \sigma)^{\nu+k-1}} \quad \text{with} \quad k \in \mathbb{N}^* \quad \text{and} \quad b'_0 = 1. \]

The set of relations (A2.13), (A2.21) and (A2.25) thus prove that the function \(g(Z(s), \sigma, \rho) \) meets the relation

\[g(Z(s), \sigma, \rho) = K(\sigma, \rho)Z(s)^\nu \left[1 + \sum_{k=1}^{\infty} C_{2k-1}(\rho, \sigma)C_{2k}(\rho, \sigma)Z(s)^{-\nu+k-1} \right] + C_{2k}(\rho, \sigma)Z(s)^{-\nu+k-1} + C_{2k}(\sigma, \rho)Z(s)^{-\nu+k-1} \]

with

\[v(\sigma, \rho) = \frac{\log(\sigma)}{\log(\sigma) + \log(\rho)} \quad 0 < v(\sigma, \rho) < 1 \]
\[c_{2k}(\sigma, \rho) = \frac{\sigma^k \rho^k}{1 - (\rho \sigma)^{\nu+k-1}} \quad \text{with} \quad k \in \mathbb{N}^* \quad \text{and} \quad c_0(\sigma, \rho) = 1 \]
\[c_{2k-1}(\sigma, \rho) = \frac{\sigma^k}{1 - (\rho \sigma)^{\nu+k-1}} \quad \text{with} \quad k \in \mathbb{N}^* \quad \text{and} \quad c_1(\sigma, \rho) = \frac{1}{1 - \rho} \]

In relation (A2.27), only coefficient \(K(\sigma, \rho) \) remains to be computed. It is possible to give an expression of \(K(\sigma, \rho) \) in the form of a ratio of two series as Eq. (A2.27) can be rewritten as:
\[
g(Z(s), \sigma, \rho) = K(\sigma, \rho) Z(s)^{r} \left[1 + \frac{1}{1 + K(\sigma, \rho) h_1(Z(s), \sigma, \rho) + h_2(Z(s), \sigma, \rho)} \right] \quad \text{(A2.31)}
\]

or using relation \((A2.9)\):

\[
g(Z(s), \sigma, \rho) = K(\sigma, \rho) Z(s)^{r} \left[1 + \frac{1}{1 + K(\sigma, \rho) h_1(Z(s), \sigma, \rho) + h_2(Z(s), \sigma, \rho)} \right] \quad \text{(A2.32)}
\]

with

\[
h_1(Z(s), \sigma, \rho) = \sum_{k=1}^{\infty} C_{2k-1}(\sigma, \rho) Z(s)^{-\nu-k-1},
\]

and

\[
h_2(Z(s), \sigma, \rho) = \sum_{k=1}^{\infty} C_{2k}(\sigma, \rho) Z(s)^{-k}.
\]

Now using \(Z(s) = \text{in relation (A2.32)}, \) coefficient \(K(\sigma, \rho)\) is given by:

\[
K(\sigma, \rho) = \frac{g(1, \sigma, \rho) + h_1(1, \sigma, \rho) - \sigma h_1(1, \sigma, \rho)}{1 - h_1(1, \sigma, \rho) + h_2(1, \sigma, \rho)}.
\]

References

[1] Bingi K, Ibrahim R, Karviti MN, Hassam SM, Rajah V. Frequency Response Based Curve Fitting Approximation of Fractional-Order PID Controllers. Int J Appl Math Comput Sci 2019;29(2):311–26.
[2] Bisquert J, Garcia-Belmonte G. Complex plane analysis of pn junction forward-voltage impedance. Electron Lett 1997;33(10):900–1.
[3] Bisquert J, Garcia-Belmonte G, Fabregat-Santiago F, Bueno RB. Theoretical dispersion. J Electroanal Chem 1999;475(2):152–63.
[4] Bourouba B, Ladaci S, Chaabi A. Reduced-order model approximation of fractional-order systems using differential evolution algorithm. J Control Interfacial Electrochem 1971;33:253–65.
[5] Caponetto R. Fractional order systems: modeling and control applications. Singapore: Word Scientific; 2010.
[6] Carlson GE, Halioua CA. Approximation of fractional capacitors (1/s)^n by a regular Newton process. IEEE Trans on Circuit Theory 1964;11(2):210–3.
[7] Charef A. Analogue realisation of fractional-order integrator, differentiator and fractional PI/ lambda/ mu/ controller. IEEE Proc Control Theory Appl 2006;153:714–26.
[8] De Oliveira E. C., Tenreiro Machado J. A. (2014), A review of definitions for fractional derivatives and integral, Math Prob Eng 2014, Article ID 238459.
[9] Evangelista LR, Leski EK. Fractional diffusion equations and anomalous diffusion. Cambridge University Press; 2018.
[10] Ichise M, Nagayama Y, Kojima T. An analog simulation of non-integer order transfer functions for analysis of electrode processes. J Electroanal Chem Interfacial Electrochem 1971;33:253–65.
[11] Khana M, Pal J, Biswas K. Rational approximation and analog realization of fractional order transfer function with multiple fractional powered terms. Asian J Control 2013;15(3):723–35.
[12] Levrone F, Sabatier J, Oustaloup A, Habteier L. From partial differential equations of propagative recursive systems to non integer differentiation. Fracti Calculus Appl Anal (FCAA); Int J Theory Appl 1999;2(3):246–64.
[13] Li Z, Liu J, Delghani S, Chen Y, Xue D. A review and evaluation of numerical tools for fractional calculus and fractional order controls. Int J Control 2017;90 (6).
[14] Lindmayer J, Wrigley C. Fundamentals of semiconductor devices. New York: Van Nostrand; 1965.
[15] Manabe S. The non-integer Integral and its Application to control systems. ETJ Jpn 1961:683–7.
[16] Matignon D. Stability properties for generalized fractional differential systems. ESAIM: Proc 1998;5:145–58.
[17] Montseny G. Diffusive representation of pseudo-differential time-operators. ESAIM: Proc 1998;5:159–75.
[18] Oustaloup A. Systèmes Asservis Linéaires d’ordre Fractionnaire. Paris (France): Masson; 1983.
[19] Oustaloup A, Levrone F, Mathieu B, Nanot F. Frequency-band complex non integer differentiator: characterization and synthesis. IEEE Trans Circ Syst I: Fundam Theory Appl 2000;47(1):25–39.
[20] Podlubny I. Fractional differential equations. fractional integrals, and fractional differential equations in MatLab. In: Assi A, editor. Engineering education and research using MATLAB. London: InTech; 2011. p. 239–64.
[21] Podlubny I. Fractional differential equations. Mathematics in sciences and engineering, Academic Press; 1999.
[22] Randles JEB. Kinetics of rapid electrode reactions. Discuss Faraday Soc 1947;1:11–9.
[23] Raynaud HF, Zergainoh A. State-space representation for fractional order controllers. Automatic 2000;36:1017–21.
[24] Sabatier J, Merveillaut M, Malti R, Oustaloup A. How to impose physically coherent initial conditions to a fractional system? Commun Nonlinear Sci Numer Simul 2010;15(5).
[25] Sabatier J, Farges C, Merveillaut M, Fenotene L. On observability and pseudo state estimation of fractional order systems. Eur J Control 2012;3:1–12.
[26] Sabatier J, Gueney HC, Moreau X, Oustaloup A. Fractional behaviour of partial differential equations whose coefficients are exponential functions of the space variable. Math Comput Model Dyn Syst 2013;19(5):434–50. doi: 10.1080/13873954.2013.768805.
[27] Sabatier J, Farges C, Trigeassou JC. Fractional systems state space description: some wrong ideas and proposed solutions. J Vib Control 2014;20(7):1767–84.
[28] Sabatier J, Farges C, Fadiga L. Approximation of a fractional order model by an integer order model: a new approach taking into account approximation error as an uncertainty. J Vib Control 2016;22(8):2069–82.
[29] Sabatier J, Farges C. Comments on the description and initialization of fractional partial differential equations using Rieman-Liouville’s and Caputo’s definitions. J Comput Appl Math 2018;339:30–9.
[30] Sabatier J. Solutions to the sub-optimality and stability issues of recursive pole and zero distribution algorithms for the approximation of fractional order models. Algorithms 2018;11(7):p.101.
[31] Sabatier J, Rodriguez Cadavid S, Farges C. Advantages of limited frequency band fractional integration operator in fractional models definition. Conference on control, decision and information technologies, CoDIT 2019, Paris, France, April 23–26, 2019.
[32] Sabatier J. Power law type long memory behaviors modeled with distributed time delay systems. Frac Fract 2020;4(1).
[33] Sabatier J. Non-singular kernels for modelling power law type long memory behaviours and beyond. Cybernetics 2020 (accepted for publication).
[34] Sabatier J, Farges C, Tartaglione V. Some alternative solutions to fractional models for modelling long memory behaviors. Mathematics 2020;8:1986. doi: 10.3390/math8121986.
[35] Yeager E, J.O.M. Bockris, B.E. Conway, S. Sarangapani, editors. Comprehensive treatise of electrochemistry, vol. 9. New York: Plenum Press; 1984.
[36] Tartaglione V, Farges C, Sabatier J. Dynamical modelling of random sequential adsorption. Paper proposed to the European Control Conference ECC 2020, St Petersburg, Russia, 2020.
[37] Tenreiro Machado JA. Jesus IS. A suggestion from the past? Fract Calculus Appl Anal 2009;4(4):301–7.
[38] Valeiro D, Sá da Costa J. Time-domain implementation of fractional order controllers. IEE Proc – Control Theory Appl 2005;152(5):539.
[39] Valeiro D, Trujillo JJ, Rivero M, Machado JT, Baleanu D. Fractional calculus: A survey of useful formulas. Eur Phys J Special Top 2013;222(8):1827–46.
[40] Van Herle J, McEvoy AJ. Oxygen diffusion through silver cathodes for solid oxide fuel cells. J Phys Chem Solids 1994;55(4):339–47.
[41] Vettor KJ. Electrochemical Kinetics. New York: Academic Press; 1967.
[42] Vinagre BB, Podlubny I, Hernandez A, Feliu V. Some approximations of fractional order operators used in control theory and applications. Fract Calculus Appl Anal 2000;3(1):231–48.
[43] Warburg E. Uber die Polarisationscapacitat des Platins. Ann Phys 1901;311 (9):125–35.
[44] Wei Y, Wang J, Liu T, Wang Y. Fixed pole based modeling and simulation schemes for fractional order systems. ISA Trans 2019;84:43-54.