Comparative evaluation of three methods to measure working length - Manual tactile sensation, digital radiograph, and multidetector computed tomography: An in vitro study

Kaushik Dutta, Priti D. Desai¹, Utapal Kumar Das², Soumayabrata Sarkar³

Departments of Oral Medicine and Radiology, ¹Conservative Dentistry and Endodontics, ²Professor and head, Department of Conservative Dentistry and Endodontics, Guru Nanak Institute of Dental Sciences and Research, Kolkata, ³Department of Oral Medicine and Radiology, Haldia Institute of Dental Science, Haldia, West Bengal, India

Abstract

Aim: Compare the measurement of working length with three different methods manual tactile sensation, digital radiography and Multidetector computed tomography(MDCT).

Materials and Method: 40 human premolar extracted for orthodontic purpose were selected. Teeth were store in sodium chloride (0.9%) during the study. Access cavity was prepared and canal patency was seen with no 10 file in each tooth. Manually no 15 K file was inserted from access cavity until the tip was visible at the foramen, a silicon stopper was adjusted to the corresponding buccal cusp tip and the root canal length was measured. After that in each tooth with no-15 K file inserted from access cavity with stop at tip of buccal cusp until tip appear at foramen and x-ray was taken with digital radiograph (RVG,Satelac) and canal length was measured. After that all teeth are mounted in wax block,MDCT scan was done and in the scan images of teeth, root canal length is measured from buccal cusp tip to root end. After taking measurement of working length with all three methods and the data was stastically analyzed with One Way Analysis of variance (ANOVA) followed by Turkey’s Test.

Results: ANOVA and turkeys test showed that there was no significant difference in the measurements by the three procedures (p>0.05).

Conclusion: Working length measurement with MDCT scan and other two conventional methods does not show significant difference in measurement. Use of newer 3D imaging technique is useful in root canal treatment for measuring working length.

Keywords: Digital radiograph; multidetector computed tomography; root canal; tactile sensation; working length

INTRODUCTION

Working length determination is an important step in endodontic therapy. Success of endodontic treatment depends on perfection in the negotiation of working length. Conventionally, working length of a tooth means “the distance from a coronal reference point to that point at which canal preparation and obturation should terminate.” Hence, cement-enamel junction and apical constriction are two most crucial anatomical landmarks of a tooth a clinician must negotiate to achieve success in endodontic treatment.

Various methods are used to determine endodontic working length. Manual tactile sensation, being the oldest and most common technique in working length determination, requires a learning curve to achieve expertise. Conventional intraoral imaging is another commonly used modality for working

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Dutta K, Desai PD, Das UK, Sarkar S. Comparative evaluation of three methods to measure working length - Manual tactile sensation, digital radiograph, and multidetector computed tomography: An in vitro study. J Conserv Dent 2017;20:76-80.
length determination, however, has its own shortcomings such as two-dimensional replication of a three-dimensional object, possibilities of size and shape distortion; most recently, introduction of digital intraoral imaging though reported to be superior by providing the operator convenience and reducing patient radiation exposure, accuracy of the modality still remains a controversy.[3] According to the study conducted by Martínez-Lozano et al. proved in their study, accuracy of conventional and digital imaging was 50.6% and 61.4%, respectively, in establishing the true working length.[3]

Determination of working length by apex locator has also been reported to have met with great success, and it also omits the need of radiation and thereby its hazards. Smadi in his study concluded that apex locators are capable of producing working length without any statistical difference from the radiographic method and thereby useful for working length determination.[4,5]

Through past few decades, the field of modern medical imaging is changing their dimension from conventional sectional imaging to advanced cross-sectional and volumetric imaging. Adaptation of these advanced imaging in the field of maxillofacial sciences has also been reported to have met with great success in diagnosis and treatment. In the field of endodontics, advanced radiological modalities such as micro-computed tomography (CT) and cone beam CT have proved their potential superiority in usefulness in the determination of working length without the need of any surgical modification of the tooth and thereby reducing the patient compliance.[4,5]

Thereby, we would like to conduct an *in vitro* study to compare the accuracy of multidetector CT (MDCT) with conventional radiography and manual tactile sensation in the determination of working length.

MATERIALS AND METHODS

Forty human premolars extracted for orthodontic purpose were selected for this study. Teeth were cleaned and stored in sodium chloride (0.9%). Access cavity was prepared, and canal patency was seen with no. 10 K-file in each tooth.

Working length of each tooth is measured with three different methods:
- Manual tactile sensation
- Digital radiograph
- MDCT.

Manual tactile sensation method - in this method, no. 15 K-file was inserted from access cavity until the tip was visible at the foramen, a silicon stopper was adjusted to the corresponding buccal cusp tip, and the length was measured (from buccal cusp tip to apical foramen) [Figure 1]. Digital radiograph (RVG: radio visual graphy) method - in this method, no. 15 K-file was inserted from access cavity with rubber stop at tip of buccal cusp until it appears at foramen in each tooth and radiograph was taken (RVG, Satelec, Germany). Canal length was measured in the same way [Figure 2].
MDCT - in MDCT method, all teeth were mounted in wax block and MDCT scan was done. In scan images of teeth, root canal length was measured from buccal cusp tip to root end with different slice at all levels (slice thickness - 0.625 mm) [Table 1 and Figures 3, 4].

After taking measurement of working length with all three methods, statistical analysis was performed (with the help of Epi Info™ 3.5.3.) (Epi Info is a trademark of the Centers for Disease Control and Prevention [CDC] Atlanta, GA, USA, 2011).

Statistical analysis

Statistical analysis was performed with the help of Epi Info™ 3.5.3 (Epi Info is a trademark of the CDC.)

Descriptive statistical analysis was performed to calculate the means with corresponding standard deviations. One-way analysis of variance (ANOVA) followed by Tukey’s test was performed with the help of critical difference or least significant difference at 5% and 1% level of significance to compare the mean values. \(P \leq 0.05 \) was considered statistically significant.

RESULTS

ANOVA showed that there was no significant difference in the measurements by the three procedures \((F_{2,123} = 3.05; P > 0.05) \). Tukey’s test confirmed that there was no significant difference in the mean values of the measurements of the three methods \((P > 0.05) \) [Tables 2, 3 and Figure 5].

DISCUSSION

Improper working length determination often meets with the failure of root canal therapy and may even cost the patient with sacrificing the tooth. Hence, determination of working length is vital in order to achieve the best outcome of the therapy.

Table 1: All measurements with three methods

Specimenblock-1	Manual tactile sensation (mm)	Digital radiograph (mm)	MDCT (mm)
1	24	23	23.125
2	20	20	19.375
3	26	25	23.75
4	20	20	19.375
5	22	22	20.625
6	21	20	19.375
7	23	23	21.875
8	21	21	20
9	23	23	21.875
10	24	24	23.75
11	21	21	20.625
12	22	22	21.25
13	22	22	21.25
14	21	21	20.625
15	21	21	20.625
16	20	20	19.375
17	22	22	20.625
18	21	21	21.875
19	21	21	20.625
20	22	22	21.25
21	20	19	19.375
22	24	23	23.625
23	22	22	22.125
24	23.5	24	23.625
25	24	23	23.625
26	26	25	25.625
27	22	22	21.250
28	24	24	24.125
29	22.0	22	21.875
30	20	20	20
31	24	24	23.875
32	21	21	21.125
33	24	24	24.125
34	22	21	21.875
35	24	24	24.250
36	23	23	23.375
37	22	21	21.875
38	22	22	22.125
39	22	22	22.250
40	23	23	23.125

MDCT: Multidetector computed tomography

Table 2: Mean±standard deviation, median, and range of measurements by the three methods

Values of descriptive statistics	Mean±SD Manual tactile sensation measurement	Mean±SD Digital radiograph measurement	Mean±SD MDCT measurement
Mean±SD	22.30±1.58	22.00±1.46	21.50±1.47
Median	22.00	22.00	21.25
Range (minimum-maximum)	20.00–26.00	19.00–25.00	18.75–25.00

SD: Standard deviation, RVG: Radiovisography, MDCT: Multidetector computed tomography

Table 3: Analysis of variance table

Source	df	Sums of squares	Mean sum of squares	F	P
Between groups	2	13.91	6.95	3.05	>0.05 (NS)
Residual	123	260.08	2.27	6.62	<0.05
Total	125	293.99	-		

df: Degrees of freedom, F: F-statistics, NS: Statistically not significant

![Figure 4: Working length in multidetector computed tomography scan image](image-url)
length holds the key to achieve optimal healing and thereby successful endodontic treatment. Hamed Saeed has found it often difficult to identify and prepare the anatomical landmark accuracy where obturation actually terminated. According to Huang, anatomical factors affect the success rate of endodontic treatment. Neena et al. also commented that accuracy in determination of working length is one of the determining factors for success in root canal treatment.

Manual working length determination is an age-old method. Dohaithem had shown in his block randomization trial study that treatment outcome may vary between working length determination by tactile sensation and radiographic method, where tactile sensation turned out to be a more accurate method. Yet, it should also be considered that accuracy in tactile working length determination requires a learning curve and may vary depending on operator tactile perception as well as the morphology of the root canal system.

Alternatively, conventional radiographic working length determination though remains the most common method practiced till date, also necessitates radiation exposure to patients as well as it is technique sensitive. Introduction of digital technologies in intraoral radio imaging has helped us to overcome some shortfalls of conventional imaging such as lesser radiation exposure to the patient, elimination of film processing, modification of image by operator with ease, and by keeping the accuracy comparable to the conventional imaging. However, technical sensitivity and thereby accuracy remains still controversial.

Use of electronic apex locator for endodontic working length determination eliminates many disadvantages of radiographic method in terms of accuracy, ease, and patient convenience. Andrian in his comparative analysis study came to a conclusion that apex locators have highest accuracy in determination of working length as compared to tactile sensation and radiographic method. Bernardes commented that apex locators are able to produce good precession at 1 mm distance from the apical foramen. However, it is also reported that accuracy of apex locator is highly dependent on the establishment of electrical circuit and electrical conduction properties of canal. Some researches proved that electrical conductivity of solution also may affect the accuracy of apex locators. Moreover, apex locators cannot be used in a patient with pacemakers. Chakravarthy Pishipati et al. have observed that the apex locators are more efficient in working length determination than radiographs and thereby reduces the possibilities of overestimation. However, Mohan and Anand had concluded that apex locators are not superior in determination of working length. Moreover, Khursheed has indicated that highly electroconductive irrigating solution may affect the efficacy of apex locators.

Incorporation of isometric voxel in MDCT and CBCT allows the clinicians to see tooth is all possible direction without any dimensional changes and with higher sensitivity and specificity than conventional or digital radiography. There are fewer possibilities of iatrogenic errors in images, image distortion overestimation of length, and thereby less discomfort to patient and dentist, like in digital radiography. The sensitivity and specificity among MDCT and CBCT are reported to be similar. Connert et al. have recommended that CBCT if 0.2 mm voxel size can be used to determine the working length accurately. As MDCT does not necessitate endodontic access cavity preparation, so chances of pushing infected debris into apical region are minimal. Moreover, as this technique can be used in mentally or physically challenged individuals and patients with cardiac pacemaker, clinical time can be reduced, thereby increasing patient convenience. It is also useful to determine calcified canal, narrow canal, curved canal, and immature apex, thereby treatment planning for root canal system becomes much easy. Only disadvantages of working length measurement with MDCT are high radiation dose and cost-effectiveness as compared to conventional and digital intraoral radiography.

For the past few decades, there are controversies among researchers among the efficacy and usefulness of the advanced cross-sectional imaging modalities over conventional of digital intraoral radiographic modalities. Lucena et al. observed that electronic apex locators are more efficient than CBCT, in determining the major foramen than the minor apical constriction under the experimental setup but CBCT is good to find minor apical foramen. Kqiku and Städtler in their study concluded that results in a radiographic and electronic method of working length determination equally give good and comparable results. Alothmani recommended paralleling cone technique for working length determination and advocated use of combination technique of radiographic and tactile sensation techniques to reduce patient radiation exposure and clinical time.
till date limited CBCT scan machines can be used for working length determination and future studies are needed to evaluate whether preexisting CBCT scans could replace initial periapical radiographs and working length periapical radiographs. Janner et al. observed that CBCT scan of teeth to be endodontically treated can be useful to determine the endodontic working length in combination with clinical measurements such as the EAL. Among CBCT and MDCT as three-dimensional (3D) imaging, we choose MDCT because benefit of MDCT are it is painless, noninvasive, accurate, fast and simple procedure, allows to see image of bone and soft tissue at the same time, provides very detailed images of various types of tissue, reveals internal injuries quickly, and is cost-effective imaging tool for a wide range of clinical problem. Furthermore, availability of MDCT is more than CBCT. Only disadvantage of MDCT is slice thickness is more than CBCT. MDCT is an advanced imaging modality that provides multiple cross-sectional images along the 3D planes. 3D images are with minimal image distortion and thereby enabling endodontists’ accurate analysis of the morphology of the root canal system with minimal patient discomfort. In our study, we found no significant difference in between MDCT, conventional radiography, and manual tactile sensation in the accuracy of working length determination.

CONCLUSION

In the present study, comparison of working that length measurement with MDCT scan and other two convention methods does not show a significant difference in measurement. Keeping other potential advantages in consideration, we conclude that the use of MDCT imaging technique is useful in root canal treatment for measuring working length before doing instrumentation in clinical practice of dentistry.

Acknowledgment
Herewith, we would like to acknowledge Dr. Syam Sundermondal (statistician) continuously helping me in this study.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES

1. Pascon EA, Marrelli M, Congi O, Ciancio R, Miceli F, Versiani MA. An in vivo comparison of working length determination of two frequency-based electronic apex locator. Int Endod J 2009;42:1026-31.
2. Martínez-Lozano MA, Forner-Navarro L, Sánchez-Cortés JL, Llena-Puy C. Methodological considerations in the determination of working length.
3. Smadi L. Comparison between two methods of working length determination and its effect on radiographic extent of root canal filling: A clinical study [ISRCTN71486641]. BMC Oral Health 2006;6:4.
4. Liang YH, Jiang L, Chen C, Gao XJ, Wesselink PR, Wu MK, et al. The validity of cone-beam computed tomography in measuring root canal length using a gold standard. J Endod 2013;39:1607-10.
5. Metska ME, Liem VM, Parsa A, Koolstra JJH, Wesselink PR, Ozok AR. Cone-beam computed tomographic scans in comparison with periapical radiographs for root canal length measurement: An in situ study. J Endod 2014;40:1206-9.
6. Gurru A, Singhal A, Singhal P A. tactile tool for canal length determination in teeth with open apices – A case report. Ann Essences Dent 2010;2:36.
7. Hamed Saaded M, Luke AM, Abtaha NA, Pradeep AP. An in vitro comparison of root canal measurement in permanent teeth by electronic apex locator, conventional and digital radiography. World J Dent 2011;2:312-5.
8. Huang DM. Tooth anatomy risk factors influencing root canal working length accessibility. Int J Oral Sci 2011;3:135-40.
9. Neena IE, Ananthraj A, Praveen P, Karkth V, Rani P. Comparison of digital radiography and third generation apex locator in root length determination of primary teeth. J Indian Soc Pedod Prev Dent 2011;29:300-4.
10. Dohathem AJ, Bakarman EO, Veitz-Keenan A. Tactile working length determination for root canal therapy in underserved settings. Evid Based Dent 2014;15:56-7.
11. Farida A, Maryam E, Ali M, Ehsan M, Saijad Y, Soraya K. A comparison between conventional and digital and digital imaging in root canal working length determination. Indian J Dent Res 2013;24:229-33.
12. Khedmat S, Rouhi N, Drage N, Shokouhinejad N, Nekoofar MH. Evaluation of three imaging techniques for the detection of vertical root fractures in the absence and presence of gutta-percha root fillings. Int Endod J 2012;45:1004-9.
13. Mandalik J, Shah N, Pawar K, Gupta P, Singh S, Shalik BA. An in vivo evaluation of different methods of working length determination. J Contemp Dent Pract 2013;14:844-8.
14. Andrian S, Iovan G, Georgescu A, C. Arn. Chakravartyishivati KV. An in vitro comparison of propex II apex locator to standard radiographic method. Iran Endod J 2013;8:114-7.
15. Bernardes RA, Duarte MA, Vasconcelos BC, Moraes IG, Bernardinelli N, Garcia RB, et al. Evaluation of precision of length determination with 3 electronic apex locators: Root ZX, Elements Diagnostic Unit and Apex Locator, and RomiAPex D-30. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;104:691-4.
16. Mohan GM, Anand VS. Accuracy of different methods of working length determination in endodontics. IOSR J Dent Med Sci 2013;12:25-38.
17. Khanseefed I, Bansal R, Bansal T, Singh HP, Yadav M, Reddy KJ. A comparative evaluation of working length with digital radiography and third generation apex locator (ProPex) in the presence of various intracanal irrigants: An in vivo/ex vivo study. Dent Res J (Isfahan) 2014;11:56-60.
18. Hassan B, Metska ME, Ozok AR, van der Steil P, Wesselink PR. Detection of vertical root fractures in endodontically treated teeth by a cone beam computed tomography scan. J Endod 2009;35:719-22.
19. Conne R, Hülber-JM, Göid A, Löst C, ElAyouti A. Accuracy of endodontic working length determination using cone beam computed tomography. Int Endod J 2014;47:696-703.
20. Lucena C, López JM, Martín JA, Robles V, González-Rodríguez MP. Accuracy of working length measurement: Electronic apex locator versus cone-beam computed tomography. Int Endod J 2014;47:246-56.
21. Kipiku L, Städtler P. Radiographic versus electronic root canal working length determination. Indian J Dent Res 2011;22:777-80.
22. Al-Amin OS, Friedlander LT, Chandler NP. Radiographic assessment of endodontic working length (Review article). Soudi Endodontic Journal 2013;3:57-64.
23. Jeger FB, Janner SF, Bornstein MM, Lussi A. Endodontic working length measurement and its effect on radiographic extent of root canal filling: A clinical study [ISRCTN71486641]. BMC Oral Health 2006;6:4.
24. Janner SF, Jayant SN, Bornstein MM, Lussi A. Endodontic working length measurement: A pilot investigation comparing cone-beam computed tomography scanning with standard measurement techniques. J Endod 2011;37:1046-51.
25. Desai PD, Dutta K, Sarkar S. Multidetector computed tomography dentascan analysis of root canal morphology of maxillary canine. Indian J Dent Res 2015;26:31-7.