Methylprednisolone Treatment Versus Standard Supportive Care for Adult Covid19 Mechanically Ventilated, Acute Respiratory Distress Syndrome Patients

Masood Ur Rahman
Tawam Hospital

Satish Chandra Nair (schandra@seha.ae)
Tawam Hospital https://orcid.org/0000-0003-2095-1893

Mehraj Ud Din
Tawam Hospital

Mohd Dar
Tawam Hospital

Murriam Masood
Tawam Hospital

Jayadevan Sreedharan
Gulf Medical College: Gulf Medical University

Alreem Almenhali
Tawam Hospital

Mouza Alnuaimi
Tawam Hospital

Huda Gasmelseed
Al Ain Hospital

Asad Khan
Tawam Hospital

Research Article

Keywords: Acute Respiratory Distress Syndrome, Gulf, Middle East, Steroids, Survival, Therapeutic

Posted Date: June 30th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-609419/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

A myriad of symptoms presented by severely ill mechanically ventilated Covid19 patients has added pressure on the caregivers to explore therapeutic options. Systemic steroids have been reported to therapeutically benefit patients with elevated inflammatory markers, during the severe acute respiratory syndrome, and the Middle East respiratory syndrome outbreak. Covid19 disease is characterized by inflammation of the respiratory system and acute respiratory distress syndrome. Given the lack of specific treatment for Covid19, the aim of the current study was to evaluate the therapeutic benefit of methylprednisolone as an add-on treatment for mechanically ventilated hospitalized COVID19 patients with severe covid pneumonia. Data was collected retrospectively from the electronic patient medical records, and inter-rater reliability was determined to limit selection bias. Descriptive and inferential statistical methods were used to analyze the data. The variables were cross-tabulated with the clinical outcome and the Chi-Square test used to determine association between the outcomes and other independent variables. Patients. Sixty-one percent (43/70) of the Covid19 ARDS patients received standard supportive care, and the remainder were administered methylprednisolone (40 mg daily to 40 mg q 6 hours). A 28-day all-cause mortality rate, in the methylprednisolone group was 18% (5/27, p < 0.01) significantly lower, compared to the group receiving standard supportive care (51%, 22/43). The median number of days, for the hospital length of stay (18 days), ICU-length of stay (9.5 days), and the number of days intubated (6 days) for the methylprednisolone treated group was significantly lower (p < 0.01), when compared with the standard supportive care group. Methylprednisolone treatment also reduced the C-reactive protein levels, compared to the standard care group on day 7. Our results strengthen the evidence for the role of steroids in reducing mortality, ICU LOS, and ventilator days in mechanically ventilated Covid 19 patients with respiratory distress syndrome.

Introduction

The pandemic of a novel coronaviruses-induced respiratory illness named coronavirus disease 2019 (COVID-19) has engulfed the world [1]. The Covid19 has infected millions, caused a significant fatality, and harmed the function of the immune system [2]. Acute Respiratory Distress Syndrome (ARDS), cytokine storm, and elevated plasma levels of inflammatory cytokines correlate with disease severity, and poor prognosis [3–4]. Given the lack of specific treatment for Covid19, glucocorticoids and immunosuppressive treatment has been used to reduce the inflammation of the respiratory system, and prevent acute respiratory syndrome induction [4]. Methylprednisolone is a glucocorticoid used to suppress the autoimmune and inflammatory responses in rheumatic diseases and was administrated to patients during the earlier, Severe Acute Respiratory Syndrom (SARS), and the Middle East Respiratory Syndrome, outbreak [5–6]. A reduction in the all-cause 28-day mortality for Covid19 patients, compared with standard care, was observed following the administration of systemic corticosteroids [7]. During the first wave of the contagion, between April 15 and June 15, 2020, the two public Covid19 referral hospitals, in the city of Al Ain, United Arab Emirates, adopted different protocols in the management of critically ill Covid19 patients. The Tawam hospital Intensive Care Unit (TICU) opted to treat patients with
methylprednisolone, in contrast, the Al Ain Hospital Intensive Care Unit (AICU) opted against steroid treatment and provided standard supportive care. The purpose of this study is to evaluate the therapeutic benefit of methylprednisolone as an add-on treatment in addition to standard supportive care for hospitalized COVID19 patients with severe covid pneumonia requiring mechanical ventilation. The therapeutic benefit was determined as the reduction in the 28-day all-cause mortality (primary outcome), and the secondary outcomes such as the number of days on mechanical ventilation, intensive care unit length of stay, hospital length of stay, and the levels of inflammatory markers, in comparison to those patients that were provided standard supportive care.

Methods

Study Design: A cross-sectional retrospective observational study design of patients who tested positive for SARS-CoV-2 (Covid19) was adopted [8].

Setting

Clinical data was collected from Covid19 patients hospitalized at the only two public hospitals in Al Ain, that catered to more than 98% of the total positive Covid19 caseload. Largely, these two public hospitals address the secondary and tertiary care needs of the population of the eastern region of the United Arab Emirates. The study period was between April 15 and June 15, 2020, during the peak of the contagion in the UAE [9].

Participants: All the patients hospitalized for Covid19 disease at the two public hospitals were selected for the study provided they met the inclusion criteria: a) hospitalized patients 18 years of age or older, b) all nationalities, c) had a confirmed positive COVID-19 RTPCR test result, d) both male and female, e) were initially seen at the emergency department, in-patient units, and the designated COVID-19 screening tents, f) presenting with Covid19 Pneumonia & Acute Respiratory Distress Syndrome (ARDS) per Berlin criteria [10], and g) on mechanical ventilation. The exclusion criteria comprised of: a) patients who died within twenty-four hours of admission, b) had a history of hypersensitivity to methylprednisolone, c) diagnosed and living with human immunodeficiency virus or AIDS, d) had a history of chronic use of corticosteroids or immunosuppressive agents, e) diagnosed with decompensated cirrhosis, and/or chronic renal failure, f) the patients on “Do Not Resuscitate” because of advanced age or morbid conditions, g) patients below the age of 18 years (pediatric), and h) with incomplete (demographic information) or missing (Rapid Antigen Test instead of the RT-PCR for SARS-Cov2) documentation.

Variables

The patients on the standard supportive care group (AICU) received the ARDS net protocol for ventilation, hydroxychloroquine along with standard Intensive Care Unit (ICU) protocols for sedation, weaning, and glycemic control. Patients in the other group (TICU), in addition to standard supportive care, were administered Methylprednisolone (0.5mg/kg per day), continuously for a minimum of 5 days, the maximum duration of treatment was left to the physician’s discretion. Serial measurements on days 0, 1,
3, and 7 following methylprednisolone administration included Ferritin, Interleukin 6, C-Reactive Protein, D-dimer, and blood glucose levels, and compared with the patients on standard supportive care [11]. In addition, the date of admission, the 28-day mortality, the total number of days stayed in the hospital (Hospital Length of Stay, hLOS), the total number of days stayed in the intensive care unit (iLOS), and the total number of days intubated were extracted from the electronic medical records of the hospitals patient information system.

Data Source

The required clinical progress and patient outcomes data were abstracted from the patient electronic medical records of the Hospital Information System (Cerner, USA). Cerner system has been validated and used by all of the Abu Dhabi Health Services Company-managed public hospitals in the UAE since 2008 [12]. The data collected was recorded in the Microsoft Excel sheets, secured for authorized access by using a password. Standard statistical tests were applied to estimate the difference between the various variables, and are described under the “statistical analysis”.

Bias

The Steroid Tawam & Alain Hospitals Research (STAR) group, consisting of physician-researchers, extracted data for the study from the patient medical records, but were blinded to the study hypothesis. Interrater reliability, Cohen's kappa coefficient, was used to assess the differences between the data abstractors [13]. Selection and operator bias were excluded by involving multiple data abstracters.

Study Size

The study period was during the peak of the contagion in the UAE, therefore all the hospitalized adult Covid19 patients, at both the public hospitals were selected for the study. From a total of 83 patients, 70 patients that met the inclusion criteria were shortlisted and their data abstracted. The remainder of 16 patients were excluded from the study for the reasons listed under the “participants.”

Statistical Methods

Data were analyzed using SPSS (IBM, Chicago) Version 26. All hospitalized patients during the study period with Covid19 were selected for the study, and shortlisted based on the inclusion criteria. Interrater reliability test was applied to assess the agreement of the data collected between the data abstractors. The Cohen Kappa for the data abstractors was 0.72, indicating good agreement. Descriptive and inferential statistical methods were used to analyze the data. First, the frequency and percentages are taken for all variables, and then the important variables cross-tabulated with the outcome (Deceased/Survived). The Chi-Square test was used to find the association between the outcome variable and other independent variables. The level of significance was taken as $P < 0.05$.

Ethics Statement
The methods of the study were carried out per the International Conference for Harmonization (ICH), and Good Clinical Practice guidelines. Waiver of written informed consents for participation in this retrospective observational study was granted by the Abu Dhabi Technical and Scientific Human Research Ethics Committee, a central research ethics committee at the department of health Abu Dhabi, UAE.

Results

A total of eighty-three patients between the two hospitals, confirmed positive for Covid19 by RT-PCR, were shortlisted for the study. Elimination using the exclusion criteria resulted in a total of 70 patients. Sixty-one percent (43/70) of the Covid19 ARDS patients, were provided standard supportive care, per the standards of care protocol. Methylprednisolone was administered to thirty-nine percent of the Covid19 ARDS patients (27/70), at a variable dose, 40 mg daily to 40 mg q 6 hours at the discretion of the intensivist, for a minimum of five days, consecutively. A 28-day all-cause mortality rate, in the methylprednisolone, administered group (TICU) was significantly (p < 0.01) lower, compared to the group (AICU) receiving standard supportive care. Almost eighty-two percent (22/27) of the Covid19 ARDS patients treated with methylprednisolone survived (Table 1), as compared to 49% (21/43) in the standard supportive care group. Striking differences in the hospital length of stay, intensive care unit length of stay, and the number of days intubated were also noted between the groups. The median number of days, for the hospital length of stay (18 days, 11–60, Minimum-Maximum), ICU-length of stay (9.5 days, 5–34, Minimum-Maximum), and the number of days intubated (6 days, 2–22, Minimum-Maximum) for the methylprednisolone treated group was significantly lower (p < 0.01), when compared with the standard supportive care group [Table 2]. The blood glucose, ferritin, and D-dimer levels were not significantly different between the methylprednisolone treated, and the standard supportive care groups, on days 0 and 7 (data not shown). Almost all of the acute respiratory distress syndrome patients, irrespective of the assigned group, had high C-reactive protein levels on Day 0. More than half (52%) of methylprednisolone-treated ARDS Covid19 patients showed normal levels of the C-reactive protein on day 7, compared to 19% for the standard supportive care group (data not shown).

Methylprednisolone	Outcome	Total Patients	P Value			
	Survived	Deceased				
	n	%	n	%		
Yes	22	81.5	5	18.5	27	< 0.01
No	21	48.8	22	51.2	43	
Total	43	61.4	27	38.6	70	
Table 2

Improved secondary outcomes of mechanically ventilated Covid19 patients with ARDS, treated with methylprednisolone, in comparison to standard supportive care (n = 70)

Methylprednisolone	Primary Outcome	Secondary Outcome	Median (days)	Minimum	Maximum	P Value
Yes	Survived	Hospital Length of Stay (hLOS)	18	11	60	< 0.01
No			39	14	77	
Yes	Survived	ICU Length of Stay (iLOS)	9.5	5	34	< 0.01
No			21	4	58	
Yes	Survived	Days Intubated	6	2	22	< 0.01
No			12	1	27	

Discussion

The infectivity and the associated fatality associated with Covid19 disease have resulted in a global public health crisis and devastated economies [9]. The spectrum of symptoms presented by the severely ill Covid19 patients enhanced pressure on the caregivers to explore different therapeutic options [14]. A series of dysregulated host responses following inflammatory responses and subsequent organ injury has been reported to be the mechanism of severity for COVID19 patients [15]. Patients with markedly elevated levels of the inflammatory markers are the potential candidates to benefit from systemic corticosteroids, as the therapeutic option to enhance anti-inflammation and immunosuppression [16]. Systemic corticosteroids have been postulated to possess anti-cytokine activity, particularly methylprednisolone, which is associated with good lung penetration [17, 18, 19]. As opposed to the other target-specific immunomodulating therapies, corticosteroids act broadly, inhibiting multiple inflammatory pathways [18]. The COVID19 is associated with a cytokine profile depicted by activation of multiple inflammatory pathways involving interleukins, and other cytokines [4, 20]. The methylprednisolone dose used in our study, was higher when compared with the randomized control RECOVERY trial [21]. Additionally, unlike the randomized control trial, treatment was continued for a minimum of five consecutive days, the dosing was pragmatic and was left to the discretion of the attending physicians, and the dose-tapering was decided by the treating physician. A significant reduction in the all-cause 28-day mortality was observed in our study using methylprednisolone. Greater than 80% of the patients survived, compared to the subgroup where 48.8% survival for the patients on standard supportive care (Table 1), better than reported for the RECOVERY trial [21]. The exact reason for the improvement in survival rate in our study is not known, partly it may be attributed to the drug (methylprednisolone vs dexamethasone), the pragmatic dosing, the pharmacokinetic and pharmacodynamic advantages over dexamethasone, immunosuppressive effects, and the differential lung penetration [19]. In patients with severe COVID-19 pneumonia, early administration of prolonged, low-dose methylprednisolone treatment was associated with a significantly lower hazard of death and decreased ventilator dependence [14].
Methylprednisolone pulse administration at the beginning of the early pulmonary phase of illness has been reported to decrease the mortality rate and improve pulmonary involvement, oxygen saturation and downregulate inflammatory markers in COVID19 patients [5]. Additionally, in our study, the mechanically ventilated Covid19 patient with severe illness, treated with methylprednisolone had shorter hospital length of stay, shorter ICU length of stay, and significantly reduced days of mechanical ventilation as compared with the standard supportive care group. There were no significant differences in the blood glucose level between the two groups. Neither, there was any significant increase in the overall adverse events between the groups. The C-reactive protein levels were lower in the methylprednisolone-treated group than the standard supportive care control group. The striking difference in the hospital LOS between the two treatment groups can be explained by the fact that only mechanically ventilated patients were included in both groups. It is possible steroids are more effective in mechanically ventilated patients when compared to non-intubated patients with severe Covid19 pneumonia [22]. Incidentally, the MetCovid trial [23] using methylprednisolone as an adjuvant (0.5 mg/kg for five days) found no evidence of improved survival in the overall population in patients hospitalized for COVID-19. A delay in the start of methylprednisolone treatment, and the duration of treatment, may have been the potential factors that limited the survival of patients [23]. However, subgroup analysis for the same study indicated a lower mortality rate in patients treated with methylprednisolone, over 60 years old who presented a more pronounced systemic inflammatory status, as documented by high C-reactive protein values [23]. Uniquely, our study also included only Covid19 patients on invasive ventilatory support following Covid pneumonia [24].

Our results are encouraging, especially in the light of the fact that there are limited therapeutic interventions in the arsenal for Covid19 management. Reduced mortality, lesser number of days on mechanical ventilation, and the shorter length of hospital and ICU stay, reinforce the evidence in favor of using methylprednisolone in patients with severe covid pneumonia with severe respiratory failure requiring mechanical ventilation. The retrospective nature of the study has limitations; such as data is static in the records, smaller sample size in each group, and potential inclusion biases. Data abstraction by multiple extractors have limited inclusion biases for the study.

In summary, despite these limitations, our findings strengthen the evidence for the role of steroids in reducing mortality, ICU LOS, and ventilator days in mechanically ventilated Covid 19 patients with ARDS. Additionally, this is the first study in the Middle East region, that addressed the therapeutic potential of methylprednisolone to reduce mortality, more importantly the study was conducted during the peak of the first wave of the viral outbreak in the UAE. Further studies are needed to assess appropriate dosing, and the superiority of methylprednisolone over dexamethasone in the clinical outcomes for mechanically ventilated Covid19 patients with ARDS.

Declarations

Acknowledgements

The authors thank Tawam and Al Ain hospital management for their support to conduct the study.
Funding: This study was not supported by funds or grants. No funding sources to declare.

Conflict of interest/Competing interests: The authors declare that they have no conflict of interest/competing interests.

Ethics approval: The study was approved by Abu Dhabi COVID19 Research Ethics Committee. Approval Reference No. DOH/CVDC/2020/1196.

Consent to participate: It is a retrospective chart review. No consent is required.

Consent to publication: It is a retrospective chart review. No consent is required.

Availability of data and material (data transparency): The data that support the findings of this study are available on reasonable request from the corresponding author, [SN].

Code availability (software application or custom code): The data that support the findings of this study are available on reasonable request from the corresponding author, [SN].

Authors contributions: Equal contribution (SN, MR), Concept and design (SN). Feasibility Assessment (MR, AK), Patient Care (MR, AK, HQ, AM, MA, MM) Literature Search & Updates (SN), Data Acquisition & Organization (MD, MD, AA, MA), Data Analysis (JS), Data Interpretation (SN), Manuscript Preparation (SN, MR, AK), Manuscript Review & Approval (all authors).

References

1. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020 May;109:102433. doi:10.1016/j.jaut.2020.102433.

2. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020 Apr;30(18):1708–20. doi:10.1056/NEJMo2002032. 382) .

3. Iannaccone G, Scacciavillani R, Del Buono MG, Camilli M, Ronco C, Lavi CJ, et al. Weathering the Cytokine Storm in COVID-19: Therapeutic Implications. Cardiorenal Med. 2020;10(5):277–87. doi:10.1159/000509483.

4. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020 Mar;28(10229):1033–4. doi:10.1016/S0140-6736(20)30628-0. 395) .

5. Edalatifard M, Akhtari M, Salehi M, Naderi Z, Jamshidi A, Mostafaei S, et al. Intravenous methylprednisolone pulse as a treatment for hospitalised severe COVID-19 patients: results from a randomised controlled clinical trial. Eur Respir J. 2020 Dec 24;56(6):2002808. doi:10.1183/13993003.02808-2020.

6. Kovarsky J. Intermediate-dose intramuscular methylprednisolone acetate in the treatment of rheumatic disease. Ann Rheum Dis. 1983 Jun;42(3):308–10. doi:10.1136/ard.42.3.308.
7. Sterne JAC, Murthy S, Diaz JV, Slutsky AS, Villar J, Angus DC, et al. Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients With COVID-19: A Meta-analysis. JAMA. 2020 Oct 6;324(13):1330–1341. doi: 10.1001/jama.2020.17023.

8. Abubakar AR, Sani IH, Godman B, Kumar S, Islam S, Jahan I, et al. Systematic Review on the Therapeutic Options for COVID-19: Clinical Evidence of Drug Efficacy and Implications. Infect Drug Resist. 2020 Dec 29;13:4673–4695. doi: 10.2147/IDR.S289037.

9. Sreedharan J, Nair SC, Muttappallymyalil J, Gopakumar A, Eapen NT, Satish KP, et al. Case fatality rates of COVID-19 across the globe: are the current draconian measures justified? Z Gesundh Wiss. 2021 Mar 24:1–9. doi: 10.1007/s10389-021-01491-4.

10. Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012 Jun;20(23):2526–33. doi: 10.1001/jama.2012.5669.

11. Boytsov SA, Pogosova NV, Paleev FN, Ezhov MV, Komarov AL, Pevsner DV, et al. Clinical Characteristics and Factors Associated with Poor Outcomes in Hospitalized Patients with Novel Coronavirus Infection COVID-19. Kardiologiya. 2021 Mar 1;61(2):4–14. Russian, English. doi: 10.18087/cardio.2021.2.n1532.

12. Ibrahim H, Sorrell S, Nair SC, Al Romaithi A, Al Mazrouei S, Kamour A. Rapid Development and Utilization of a Clinical Intelligence Dashboard to Optimize Critical Resources During Covid-19. Acta Inform Med. 2020 Sep;28(3):209–13. doi:10.5455/aim.2020.28.209-213.

13. McHugh ML. Interrater reliability: the kappa statistic. Biochem Med (Zagreb). 2012;22(3):276–82.

14. Cano EJ, Fonseca Fuentes X, Corsini Campioli C, O’Horo JC, Abu Saleh O, Odeyemi Y, et al. Impact of Corticosteroids in Coronavirus Disease 2019 Outcomes: Systematic Review and Meta-analysis. Chest. 2021 Mar;159(3):1019–1040. doi: 10.1016/j.chest.2020.10.054.

15. Mudd PA, Remy KE. Prolonged adaptive immune activation in COVID-19: implications for maintenance of long-term immunity? J Clin Invest. 2021 Jan 4;131(1):e143928. doi: 10.1172/JCI143928.

16. Figliozzi S, Masci PG, Ahmadi N, Tondi L, Kouli E, Aimo A, et al. Predictors of adverse prognosis in COVID-19: A systematic review and meta-analysis. Eur J Clin Invest. 2020 Oct;50(10):e13362. doi:10.1111/eci.13362.

17. Arabi YM, Mandourah Y, Al-Hameed F, Sindi AA, Almekhlafi GA, Hussein MA, et al. Corticosteroid Therapy for Critically Ill Patients with Middle East Respiratory Syndrome. Am J Respir Crit Care Med. 2018 Mar;15(6):757–67. doi:10.1164/rccm.201706-1172OC. 197).

18. Salton F, Confalonieri P, Meduri GU, Santus P, Harari S, Scala R, et al. Prolonged Low-Dose Methylprednisolone in Patients With Severe COVID-19 Pneumonia. Open Forum Infect Dis. 2020 Sep 12;7(10):ofaa421. doi:10.1093/ofid/ofaa421.

19. Braude AC, Rebuck AS. Prednisone and methylprednisolone disposition in the lung. Lancet. 1983 Oct 29;2(8357):995–7.
20. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020 Apr;8(4):420–2. doi:10.1016/S2213-2600(20)30076-X.

21. Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, et al. Dexamethasone in Hospitalized Patients with Covid-19. N Engl J Med. 2021 Feb 25;384(8):693–704. doi: 10.1056/NEJMoA2021436.

22. Papamanoli A, Yoo J, Grewal P, Predun W, Hotelling J, Jacob R, et al. High-dose methylprednisolone in nonintubated patients with severe COVID-19 pneumonia. Eur J Clin Invest. 2021 Feb;51(2):e13458. doi:10.1111/eci.13458.

23. Jeronimo CMP, Farias MEL, Val FFA, Sampaio VS, Alexandre MAA, Melo GC, et al. Methylprednisolone as Adjunctive Therapy for Patients Hospitalized With Coronavirus Disease 2019 (COVID-19; Metcovid): A Randomized, Double-blind, Phase IIb, Placebo-controlled Trial. Clin Infect Dis. 2021 May 4;72(9):e373-e381. doi: 10.1093/cid/ciaa1177.

24. Fadel R, Morrison AR, Vahia A, Smith ZR, Chaudhry Z, Bhargava P, et al. Henry Ford COVID-19 Management Task Force. Early Short-Course Corticosteroids in Hospitalized Patients With COVID-19. Clin Infect Dis. 2020 Nov 19;71(16):2114–2120. doi: 10.1093/cid/ciaa601.