The Inflammatory Prognostic Index; A Potential Predictor In Stage-4 Gastric Cancer

Ahmet Ozveren (ahmet_ozveren@yahoo.com)
Izmir Private Kent Hospital

Atike Erdogan
Manisa Celal Bayar Üniversitesi Hafsa Sultan Hastanesi

Ferhat Ekinci
Manisa Celal Bayar Üniversitesi Hafsa Sultan Hastanesi

Research Article

Keywords: inflammatory prognostic index, stage-4 gastric cancer, Prognostic factor

Posted Date: February 3rd, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1264323/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Clinical researches regarding the determination of effective and simple prognostic markers for gastric cancer are still being carried out effectively. Inflammatory prognostic index (IPI) has been accepted as a promising prognostic marker in patients with Non-Small Cell Lung Cancer.

Aims: To evaluate the usability of the inflammatory prognostic index in stage 4 gastric cancer, which has been shown to be effective in lung cancer.

Methods: A total of 152 patients with stage 4 gastric cancer, whose laboratory progression-free survival and overall survival data could be accessed, were evaluated. Kaplan Meier analysis was used to show survival curves. Hazard ratios (HRS) were expressed as 95% CIs in the analyses. All methods were performed in accordance with the relevant guidelines and regulations.

Results: Median age at diagnosis is 63 (range: 32 to 88 years). The number of patients who received first-line chemotherapy was 129 (84.9%). Progression-free survival in first line treatment was median 5.3 months, Progression-free survival in second line treatment was 3.3 months, and median overall survival (os) was 9.4 months. Median IPI score was 22.2. We evaluated overall survival in the roc analysis and set the threshold value for the IPI score as 14.6. Low IPI score was significantly associated with longer PFS and OS compared with high IPI (PFS in high vs low IPI, 3.6 vs 7 months; p<0.001) (OS in high vs low IPI, 6.6 vs 14.2 months; p<0.001).

Conclusions: IPI score can be an independent prognostic index that is inexpensive, easy to access and evaluate for metastatic gastric cancer patients, and may be useful in predicting survival in daily practice.

Introduction

Gastric cancer is the 5th most common cancer and the 3rd among cancer-related deaths.[1, 2] Cancer-associated systemic inflammatory response is triggered by tumor microenvironment and is associated with tumor development, invasion, and metastasis.[3] Systemic inflammatory response is clinically reflected in the predisposition to cachexia and deterioration of the patient's performance.[4] Some inflammatory biomarkers generated using hematological and biochemical parameters may predict some adverse effects such as decreased overall survival or resistance to chemotherapy. Therefore, these inflammatory biomarkers have been investigated in a number of tumor types.[5, 6] The link between inflammation and cancer is closely related and just as complex. The interaction of cells responsible for inflammation and tumor cells varies with the effect of suppressors or activators at various steps. Inflammation plays an important function in tumor development, invasion and metastasis. CRP produced by liver cells; is an acute phase protein regulated by IL-1, IL 6 and tumor necrosis factor.[7] Many studies have shown that increased CRP negatively affects the prognosis. And many previous studies have shown that the neutrophil/lymphocyte ratio (NLR) is associated with poor prognosis in various cancers. It has been confirmed that NLR is a reliable marker in this respect.
Significant variation in this association has been observed between studies, and the sources of this variation are poorly understood. NLR strikes a balance between the harmful effects of neutrophil and the beneficial effects of adaptive immunity. [8] The prognostic potential of NLR may not be the same in all patient subgroups and in all solid tumors. [9]

Clinical researches regarding the determination of effective and simple prognostic markers for gastric cancer are still being carried out effectively. Various combinations of parameters such as neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR) or the Glasgow prognostic score (GPS) have been used, as in our investigation of the role of the IPI score in metastatic gastric cancer.[10, 11] Subsequently, increasing evidence showed that prognostic markers could be used as an independent prognostic index in various malignant tumors. Inflammatory prognostic index (IPI), a measure based on CRP, NLR and serum albumin, has been accepted as a promising prognostic marker in patients with Non-Small Cell Lung Cancer and has been shown in various publications. [12]

In our study, we aimed to investigate the effects of inflammatory prognostic index on results such as PFS and OS in patients with stage-4 gastric cancer.

**Methodology**

In our study, patients who were diagnosed with metastatic gastric cancer (GC) between 2013 and 2020 in Manisa Celal Bayar University and İzmir City Hospital Oncology Center were retrospectively analyzed. Clinicopathological findings such as performance status (PS), age, gender, laboratory parameters and treatments received were recorded with the electronic medical record system. Since it is easier to implement, The performance status of the patients was evaluated with ECOG performance scoring. A total of 152 patients with stage 4 gastric cancer, whose laboratory progression-free survival and overall survival data could be accessed, were evaluated. This retrospective study was approved by the ethics committee of Manisa Celal Bayar University. The present study was approved by the Manisa Celal Bayar University Faculty of Medicine ethics committee/institutional review board and was exempted from informed consent requirements owing to its retrospective design.

Laboratory data included hemogram data such as neutrophil, lymphocyte, platelet count, hemoglobin level, and biochemical parameters such as serum albumin, creatinine, lactate dehydrogenase (LDH), serum calcium, CRP and CEA, CA19-9. As in the original study, IPI was calculated using the formula: CRP × NLR / serum albumin.

Kaplan Meier analysis was used to show survival curves. Univariate and multivariate analyzes were performed using the Cox proportional hazards model to assess the survival difference. Hazard ratios (HRS) were expressed as 95% CIs in the analyses. Overall survival (OS) was calculated from the date of diagnosis to the date of death or the date of last follow-up. Progression-free survival (PFS) was calculated as the interval between the date of diagnosis and progression or death.
A total of 152 patients were included for analysis in the present study. All patients were staged 4. Median age at diagnosis is 63 (range: 32 to 88 years). 30.9% (47) of the patients were female, 69.1% (105) were male. Demographic data are given in Table-1 and clinical features are given in Table-2.

83.6% (127) of the patients had de novo metastatic disease. The patients with an ECOG performance score of 3-4 was 23 (15.1%). None of the patients with an ECOG performance score of 3-4 received chemotherapy. The number of patients who received chemotherapy as 1st line was 129 (84.9%). The number of patients who could receive chemotherapy as 2nd was 67 (44.1%). In our retrospective study, 143 (94.1%) of the patients died during data collection.

There were 45 (29.6%) patients who had previously been operated palliatively or curatively for gastric cancer, and 107 (70.4%) were not operated. The number of Cerbb2 positive cases was 14 (9.2%). All of these cases received trastuzumab together with chemotherapy in the first-line treatment.

Progression-free survival 1 (PFS1) was median 5.3 months, Progression-free survival 2 (PFS2) was 3.3 months, and median overall survival (os) was 9.4 months. OS was 2.2 months in patients with ECOG 3-4, and OS was 11 months in patients with ECOG 0-1-2. (p:<0.0001) (mOS) is 11.9 months in patients with 2 or less metastatic areas, and 7.5 months in patients with 3 or more. (p:0.028)

The IPI ratio ranged from 0.238,7 (median, 22.2), and NLR ranged from 0.4136.00 (median, 3.61)

We evaluated overall survival in the ROC analysis and set the threshold value for the IPI score as 14.6. Low IPI score was significantly associated with longer OS and PFS compared with high IPI score (median OS in high vs low IPI, 6.6 vs 14.2 months; p<0.001) (median PFS in high vs low IPI, 3.6 vs 7 months; p<0.001). Survival function patterns by IPI low and IPI high group has shown in figure - 1

We evaluated overall survival in the ROC analysis and set the threshold value for the NLR score as 3. Low NLR score was significantly associated with longer OS compared with high NLR score (median OS in high vs low IPI, 7.2 vs 13.6 months; p<0.001) (median PFS in high vs low NLR, 3.5 vs 6.6 months; p<0.001). Survival function patterns by NLR low and NLR high group has shown in figure - 2

Notably, IPI and NLR classification were identified as an independent prognostic factor for OS and PFS. Univariate and multivariate analysis of overall survival and progression free survival by prognostic factors are given in Table-3 and Table-4.
Discussion

Three inflammatory markers are very important for prediction of survival in gastric cancer. These are NLR, CRP and serum albumin level. [13]. There are several prognostic marker systems that allow us to interpret the prognosis based on inflammation in solid malignant tumors.

High NLR has been identified as an unfavorable prognostic factor in various cancers.

IL-1, IL-6 and tumor necrosis factor (TNF)-α are at the root of the increase in CRP, an acute phase inflammation protein. Therefore, CRP contributes to aggressive cancer behavior. CRP is known as an independent negative prognostic factor in various solid tumor types.[14]

Hypoalbuminemia, another important variable, has been shown to be significantly associated with short survival time in cancer patients. Hypoalbuminemia and high CRP levels are frequently observed in advanced cancer patients and are generally reported to be associated with worse survival.[15] The protein digestion and absorption were decreased in patients with gastric cancer, resulting in a negative nitrogen balance [16]

For this reason, it is thought that the inflammatory prognostic index, which is the combination of these three important parameters, can serve as a more effective scoring system in predicting the prognosis of cancer patients. A higher IPI score indicates more severe inflammation and a weaker immune response in patients.

In this analysis of 152 gastric cancer patients, we confirmed that NLR and IPI correlated with overall survival. We demonstrated that IPI score and NLR correlates with poor progression free survival in stage 4 gastric cancer patients. The NLR is a reproducible, cost-effective and available prognostic marker for gastric cancer patients.[17]

Several prognostic scores have been developed to aid in the assessment of cancer prognosis based on serum CRP and albumin levels, such as the Glasgow prognostic score (GPS) inflammatory prognostic index (IPI). Like IPI, GPS scores showing high inflammation and poor immune response have also been shown to be associated with worse prognosis for a variety of different tumor types.[12, 18] We propose that patients with a high NLR and high IPI score should thus be recognized as a high-risk group in terms of progression and survival.

An important previously published study demonstrated that CRP/Albumin and NLR score serve as independent prognostic factors for overall survival in patients with gastric cancer.[19]

Cox regression analysis demonstrated that the IPI score could be used as a predictor for both OS and PFS.

Since this study was a retrospective two-center study with a relatively small number of patients, it would be appropriate to confirm these results with prospective studies with larger patient participation.
Conclusion

As a result of cox regression analysis, it was determined that IPI score could be a parameter predicting overall survival. The IPI score can be an independent prognostic index that is inexpensive, easy to access and evaluate for metastatic gastric cancer patients, and may be useful in predicting survival in daily clinical practice.

Declarations

ETHICAL APPROVAL: Study was approved by the Manisa Celal Bayar University’s Non-Invasive Clinical Research Ethics Committee (approval No. E-85252386-050.04.04-49119, date: 22.03.2021).

PATIENTS’ CONSENT: Since the study was a retrospective archive search, informed consent was not obtained from the patients.

CONFLICT OF INTEREST: The authors declared no conflict of interest.

AUTHORS’ CONTRIBUTION: A.O, A.P.E. and F.E. collected the patients data, A.O. had done the statistical analysis and wrote the main manuscript text. All authors reviewed the manuscript.

DATA AVAILABILITY STATEMENT: The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

References

1. Crew KD, Neugut AI: Epidemiology of gastric cancer. World journal of gastroenterology: WJG 2006, 12(3):354.
2. Hines RB, Jiban MJH, Choudhury K, Loerzel V, Specogna AV, Troy SP, Zhang S: Post-treatment surveillance testing of patients with colorectal cancer and the association with survival: protocol for a retrospective cohort study of the Surveillance, Epidemiology, and End Results (SEER)-Medicare database. BMJ open 2018, 8(4):e022393.
3. Grivennikov SI, Greten FR, Karin M: Immunity, inflammation, and cancer. Cell 2010, 140(6):883–899.
4. Allgayer H, Heiss M, Schildberg F: Prognostic factors in gastric cancer. Journal of British Surgery 1997, 84(12):1651–1664.
5. Gabay C, Kushner I: Acute-phase proteins and other systemic responses to inflammation. New England journal of medicine 1999, 340(6):448–454.
6. Mantovani A, Allavena P, Sica A, Balkwill F: Cancer-related inflammation. nature 2008, 454(7203):436–444.
7. Mocellin MC, Pastore e Silva JdA, Camargo CdQ, Fabre MEdS, Gevaerd S, Naliwaiko K, Moreno YMF, Nunes EA, Trindade EBSdM: Fish Oil Decreases C-Reactive Protein/Albumin Ratio Improving
8. Zahorec R: *Ratio of neutrophil to lymphocyte counts—rapid and simple parameter of systemic inflammation and stress in critically ill*. Bratislavske lekarske listy 2001, 102(1):5–14.

9. Templeton AJ, McNamara MG, Šeruga B, Vera-Badillo FE, Aneja P, Ocaña A, Leibowitz-Amit R, Sonpavde G, Knox JJ, Tran B: *Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis*. JNCI: Journal of the National Cancer Institute 2014, 106(6).

10. Jin J, Hu K, Zhou Y, Li W: *Clinical utility of the modified Glasgow prognostic score in lung cancer: A meta-analysis*. *PloS one* 2017, 12(9):e0184412.

11. Okada S, Shimada J, Kato D, Tsunezuka H, Teramukai S, Inoue M: *Clinical significance of prognostic nutritional index after surgical treatment in lung cancer*. The Annals of thoracic surgery 2017, 104(1):296–302.

12. Dirican N, Dirican A, Anar C, Atalay S, Ozturk O, Bircan A, Akkaya A, Cakir M: *A new inflammatory prognostic index, based on C-reactive protein, the neutrophil to lymphocyte ratio and serum albumin is useful for predicting prognosis in non-small cell lung cancer cases*. Asian Pacific journal of cancer prevention: APJCP 2016, 17(12):5101.

13. Formica V, Morelli C, Pàtrakidou A, Murias C, Butt S, Nardecchia A, Lucchetti J, Renzi N, Shiu K-K, Rosellì M: *Gastric Inflammatory Prognostic Index (GIPi) in patients with metastatic gastroesophageal Junction/Gastric Cancer treated with PD-1/PD-L1 Immune checkpoint inhibitors*. Targeted Oncology 2020, 15:327–336.

14. Yu Q, Yu X-F, Zhang S-D, Wang H-H, Wang H-Y, Teng L-S: *Prognostic role of C-reactive protein in gastric cancer: a meta-analysis*. Asian Pacific Journal of Cancer Prevention 2013, 14(10):5735–5740.

15. Crumley AB, Stuart RC, McKean M, McMillan DC: *Is hypoalbuminemia an independent prognostic factor in patients with gastric cancer?* World journal of surgery 2010, 34(10):2393–2398.

16. Heneghan HM, Zaborowski A, Fanning M, McHugh A, Doyle S, Moore J, Ravi N, Reynolds JV: *Prospective study of malabsorption and malnutrition after esophageal and gastric cancer surgery*. Annals of surgery 2015, 262(5):803–808.

17. Yamanaka T, Matsumoto S, Teramukai S, Ishiwata R, Nagai Y, Fukushima M: *The baseline ratio of neutrophils to lymphocytes is associated with patient prognosis in advanced gastric cancer*. Oncology 2007, 73(3-4):215–220.

18. Ishizuka M, Nagata H, Takagi K, Kubota K: *Influence of inflammation-based prognostic score on mortality of patients undergoing chemotherapy for far advanced or recurrent unresectable colorectal cancer*. Annals of surgery 2009, 250(2):268–272.

19. Mao M, Wei X, Sheng H, Chi P, Liu Y, Huang X, Xiang Y, Zhu Q, Xing S, Liu W: *C–reactive protein/albumin and neutrophil/lymphocyte ratios and their combination predict overall survival in patients with gastric cancer*. Oncology letters 2017, 14(6):7417–7424.
Table-1 Demographic data and laboratory findings of the stage-4 gastric cancer patients

|        | N  | Median | Minimum | Maximum | Skewness | Std. Error of Skewness |
|--------|----|--------|---------|---------|----------|------------------------|
| Age    | 152| 63     | 32      | 88      | -0.319   | 0.197                  |
| Height | 152| 165    | 143     | 185     | -0.11    | 0.197                  |
| Weight | 152| 62     | 38      | 120     | 1.024    | 0.197                  |
| CEA    | 152| 4,275  | 0.1     | 1744    | 6.66     | 0.197                  |
| CA19-9 | 152| 33     | 0.5     | 9868    | 5.183    | 0.197                  |
| Creatinine | 152| 0.775 | 0.38    | 3.33    | 3.755    | 0.197                  |
| Albumin| 152| 3.7    | 2.08    | 4.7     | -0.619   | 0.197                  |
| CRP    | 152| 2.3    | 0.11    | 29      | 1.848    | 0.197                  |
| Neutrophil | 152| 5.84  | 1.3     | 26      | 1.848    | 0.197                  |
| Lymphocyte | 152| 1.52  | 0.15    | 4.63    | 1.099    | 0.197                  |
| Platelet | 152| 306.5 | 34      | 1157    | 2.242    | 0.197                  |
| Hemoglobin | 152| 11.4  | 4.5     | 16.4    | -0.518   | 0.197                  |

Table-2 Clinical features of stage-4 gastric cancer patients
| Characteristics | Frequency | Percent | Frequency | Percent |
|-----------------|-----------|---------|-----------|---------|
| sex             |           |         | Lung met. |         |
| Female          | 47        | 30,9    | no        | 124     | 81,6    |
| Male            | 105       | 69,1    | yes       | 28      | 18,4    |
| ECOG            | 0-1-2     | 84,9    | no        | 125     | 82,2    |
|                 | 3-4       | 15,1    | yes       | 27      | 17,8    |
| Surgery         | yes       | 45      | 29,6      |         |         |
|                 | no        | 107     | 70,4      |         |         |
| Denovo          | yes       | 127     | 83,6      |         |         |
|                 | No        | 25      | 16,4      |         |         |
| Liver met.      | no        | 86      | 56,6      |         |         |
|                 | yes       | 66      | 43,4      |         |         |

Table-3 Univariate and multivariate analysis of overall survival by prognostic factors

| Characteristics | Univariate Analysis | Multivariate Analysis |
|-----------------|---------------------|-----------------------|
|                 | OS HR (95%CI)       | P value               |
|                 |                     | OS HR (95%CI)         | P value |

IPI low vs high 2,21(1,56-3,13) 0,0001 1,1(0,47-1,77) 0,78

NLR low vs high 2(1,41-2,84) 0,0001 1,93(1,24-3,01) 0,004

PLR low vs high 1,16(0,83-1,61) 0,4 0,81(0,55-1,21) 0,3

Table-4 Univariate and multivariate analysis of progression free survival by prognostic factors
| Characteristics | Univariate Analysis | Multivariate Analysis |
|-----------------|---------------------|-----------------------|
|                 | PFS HR (95%CI)      | P value               | PFS HR (95%CI)      | P value |
| IPI low vs high | 2.13 (1.47-3.07)    | 0.0001                | 1.16 (0.59-2.29)    | 0.67    |
| NLR low vs high | 2 (1.4-2.89)        | 0.0001                | 1.89 (1.21-2.95)    | 0.005   |
| PLR low vs high | 1.18 (0.83-1.67)    | 0.36                  | 0.88 (0.59-1.33)    | 0.55    |

**Figures**

**Figure 1**

*Survival Function for patterns by IPI category*
Figure 2

Survival function patterns by NLR low and NLR high group

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- gastricipi.zip