VTC4 Is a Bifunctional Enzyme That Affects Myoinositol and Ascorbate Biosynthesis in Plants\(^1,2\)\(^{[W]}\)[OA]

Javad Torabinejad, Janet L. Donahue, Bhadra N. Gunasekera, Matthew J. Allen-Daniels, and Glenda E. Gillaspy\(^*\)

Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061

Myoinositol synthesis and catabolism are crucial in many multicellular eukaryotes for the production of phosphatidylinositol signaling molecules, glycerophosphoinositide membrane anchors, cell wall pectic noncellulosic polysaccharides, and several other molecules including ascorbate. Myoinositol monophosphatase (IMP) is a major enzyme required for the synthesis of myoinositol and the breakdown of myoinositol (1,4,5)trisphosphate, a potent second messenger involved in many biological activities. It has been shown that the VTC4 enzyme from kiwifruit (Actinidia delicosa) has similarity to IMP and can hydrolyze L-galactose 1-phosphate (L-Gal 1-P), suggesting that this enzyme may be bifunctional and linked with two potential pathways of plant ascorbate synthesis. We describe here the kinetic comparison of the Arabidopsis (Arabidopsis thaliana) recombinant VTC4 with \(\text{L-}\text{myoinositol 3-phosphate (L-Ins 3-P)}\) and \(\text{L-Gal 1-P}\). Purified VTC4 has only a small difference in the \(V_{\text{max}}/K_{\text{m}}\) for \(\text{L-Gal 1-P}\) as compared with \(\text{L-Ins 3-P}\) and can utilize other related substrates. Inhibition by either \(\text{Ca}^{2+}\) or \(\text{Li}^+\), known to disrupt cell signaling, was the same with both \(\text{L-Gal 1-P}\) and \(\text{L-Ins 3-P}\). To determine whether the VTC4 gene impacts myoinositol synthesis in Arabidopsis, we isolated T-DNA knockout lines of \(\text{vtc4}\) that exhibit small perturbations in abscisic acid, salt, and cold responses. Analysis of metabolite levels in \(\text{vtc4}\) mutants showed that less myoinositol and ascorbate accumulate in these mutants. Therefore, VTC4 is a bifunctional enzyme that impacts both myoinositol and ascorbate synthesis pathways.

\(^1\) This work was supported by the National Science Foundation (grant no. MCB 0316705 to G.E.G.) and the Hatch Project (grant no. VA–135583).

\(^2\) This paper is dedicated to the memory of Jocelyne Couture-Nowak, a lover of plants.

\(^*\) Corresponding author; e-mail gillaspy@vt.edu.

The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: Glenda E. Gillaspy (gillaspy@vt.edu).

\(^{[W]}\) The online version of this article contains Web-only data.

\(^{[OA]}\) Open Access articles can be viewed online without a subscription.

www.plantphysiol.org/cgi/doi/10.1104/pp.108.135129

Plant Physiology, June 2009, Vol. 150, pp. 951–961, www.plantphysiol.org © 2009 American Society of Plant Biologists
Prokaryotic IMPs are known to dephosphorylate (Neuwald et al., 1992; Peng and Verma, 1995) proteins. et al., 1995; Chen and Roberts, 2000) and CysQ to the prokaryotic IMPs, such as the SuhB (Matsuhisa as IMP-like (IMPL), because of their greater homology to the prokaryotic IMPs, such as the SuhB (Matsuhisa et al., 2006). Two other genes (At1g31190 and At4g39120) encode proteins that we have classified as IMP-like (IMPL), because of their greater homology to IMP. At4g39120 contains one potential IMP gene (At3g02870), which was previously identified as functioning in ascorbate synthesis and named VTC4 (Laing et al., 2004; Conklin et al., 2006). Two other genes (At1g31190 and At4g39120) encode proteins that we have classified as IMP-like (IMPL), because of their greater homology to the prokaryotic IMPs, such as the SuhB (Matsuhisa et al., 1995; Chen and Roberts, 2000) and CysQ (Neuwald et al., 1992; Peng and Verma, 1995) proteins. Prokaryotic IMPs are known to dephosphorylate d-Ins 1-P and other substrates in vitro; however, the function of these IMPs is currently unknown (for review, see Roberts, 2006).

Intriguing data suggest that animal IMP is a bifunctional enzyme. The animal IMP hydrolyzes d-Gal 1-P, which is involved in Gal metabolism (Parthasarathy et al., 1997). Furthermore, expression of human IMP can suppress Gal toxicity in yeast (Mehta et al., 1999). Efforts to isolate an l-Gal 1-P phosphatase required for ascorbate synthesis in plants revealed that the kiwi (Actinidia delicosa) and Arabidopsis VTC4 can hydrolyze l-Gal 1-P (Laing et al., 2004). This fact prompted the proposal that VTC4 functions mainly to hydrolyze l-Gal 1-P during ascorbate synthesis and that other, unidentified enzymes might be responsible for de novo myoinositol synthesis in plants. This idea is supported by the fact that a vtc4 loss-of-function mutant contains lower ascorbate levels (Conklin et al., 2006).

Since VTC4 and the IMPLs are the best candidates for enzymes with IMP activity, it is crucial to understand whether these enzymes impact myoinositol synthesis in plants in vivo. To determine whether VTC4 is bifunctional and functions during InsP hydrolysis as well as l-Gal 1-P hydrolysis, we expressed recombinant Arabidopsis VTC4 protein and compared the kinetic constants for both d-Ins 3-P and l-Gal 1-P. In contrast to previously reported results, we report here that VTC4 hydrolyzes both substrates well and thus should be considered a bifunctional enzyme. We investigated loss-of-function vtc4 mutant plants and confirm that these plants contain lower ascorbate levels. We also find reduced myoinositol levels in vtc4 mutants, supporting a direct role for VTC4 in InsP hydrolysis in plants.

RESULTS

Expression of Recombinant AtVTC4 Protein

To examine whether VTC4 is a bifunctional enzyme, the open reading frame of the VTC4 gene (At3g02870) was cloned into a plasmid construct containing the T7 viral promoter, an N-terminal polyhistidine (6xHis) peptide, an Xpress epitope, and an EK cleavage site (pAtIMPH). Overexpression of soluble VTC4 protein in Escherichia coli strain pREP4/BL21(DE3)* transformed with pAtIMPH was facilitated by the coexpression of GroES and GroEL. After cell lysis, the 6xHis region of the protein bound to the Qiagen nickel-nitritotriacetic acid agarose column in the presence of phosphate, myoinositol, and Triton X-100 and was eluted with buffer containing 100 mM imidazole. The eluted fraction of VTC4 was greater than 95% pure as observed by 12% SDS-PAGE (Fig. 2), yielding a total of 0.77 mg. By polyacrylamide gel fractionation, the molecular mass of the protein is estimated to be 39.7 kDa. Therefore, VTC4 migrates slightly slower than one would expect for a recombinant protein with a predicted molecular mass of 33.1 kDa. The eluted fraction was dialyzed in the presence of buffer with 1 mM dithiothreitol to maintain activity and used for biochemical assays.

It has been reported that Mg$^{2+}$ is necessary for maximal activity of IMP and that a pH of 7.5 is optimal (Gumber et al., 1984; Laing et al., 2004; Islas-Flores and Villanueva, 2007). Selected concentrations from 0 to 50 mM MgCl$_2$ were added to reactions with d-Ins 3-P to determine the optimum MgCl$_2$ for enzyme activity (Fig. 3A). We conclude that 3 to 4 mM MgCl$_2$ is the most effective concentration, activating the enzyme to approximately 3-fold higher activity, compared with the reaction without MgCl$_2$. Additionally, we verified that a pH of 7.5 produced maximal activity (Fig. 3B).

VTC4 has recently been proposed to be an l-Gal 1-P-specific phosphatase (Laing et al., 2004). Since the issue of substrate preference is crucial to understanding myoinositol synthesis in plants, we analyzed the ability of VTC4 to utilize other substrates (Table I). As expected, the substrate derived from d-Ins(1,4,5)P$_3$ second messenger breakdown, d-Ins 1-P (Fig. 1), is an equally effective substrate for VTC4 as compared...
with D-Ins 3-P (Table I). The best substrate, however, is L-Gal 1-P, with a 1.6- to 2.4-fold difference in activity between L-Gal 1-P and either InsP. Thus, under our reaction conditions, D-Ins 3-P, D-Ins 1-P, and L-Gal 1-P are all likely to be good substrates for VTC4. β-Glycerophosphate is also a good substrate (52% of the D-Ins 3-P rate of reaction). In contrast, D-Gal 1-P, D-Glc 1-P, D-mannitol 1-P, and adenosine 2’-monophosphate serve less well as substrates (Table I). In addition, Fru 1-P, Fru 1,6-bisP, Glc 6-P, D-α-glycerophosphate, sorbitol 6-P, and myo-inositol 2-P are not good substrates for VTC4, as seen by little to no hydrolysis in assays (Table I). Together, these data indicate that VTC4 is a somewhat promiscuous enzyme and that the C1 phosphate position in a six-member ring substrate is important for catalysis, as was noted previously by others (Gumber et al., 1984; Laing et al., 2004; Islas-Flores and Villanueva, 2007). In contrast to what has been reported previously (Laing et al., 2004), we conclude that VTC4 has a minor (1.6- to 2.4-fold) difference in substrate hydrolysis of L-Gal 1-P as compared with D-Ins 3-P or D-Ins 1-P. We also note the difference between VTC4 and human IMP regarding D-Gal 1-P. The human IMP hydrolyzes D-Gal 1-P as effectively as D-Ins 1-P (Parthasarathy et al., 1997), whereas VTC4 appears to be selective for L-Gal 1-P.

Catalytic properties of enzymes are also important factors in substrate preference. In reaction mixtures of pH 7.5, 4 mM MgCl₂, and 1.5 μg of enzyme, the apparent Kₘ for D-Ins 3-P was 191 μM (Fig. 4A) and that for L-Gal 1-P was 107 μM (Fig. 4B). Substrate or product inhibition of activity was observed with greater than 0.6 to 0.8 mM D-Ins 3-P. The apparent Vₘₐₓ for VTC4 with D-Ins 3-P was 4.0 units and that for L-Gal 1-P was 5.4 units. In general, these kinetic parameters are comparable to those found for the Lilium IMP (Kₘ of 78 μM for D-Ins 3-P; Loewus and Loewus, 1982) and kiwifruit VTC4 (Kₘ of 150 μM for L-Gal 1-P and 330 μM for D-Ins 3-P; Laing et al., 2004; Table II), yet they differ from the previously reported values for the Synechocystis (Patra et al., 2007) and barley (Hordeum vulgare) enzymes (Fu et al., 2008), which have lower Kₘ values (Table II). Furthermore, the ratio of Vₘₐₓ to Kₘ provides one measure of discriminating substrate preference, and we found that there is a 1.7-fold difference in the ratios, indicating a small difference between L-Gal 1-P and D-Ins 3-P (Table II).

It was important to determine the inhibition of VTC4 for both substrates by the cations that affect other IMPs. LiCl inhibition of activity with D-Ins 3-P exhibited a linear noncompetitive inhibition, with a Kᵢ of 6.3 mM (data not shown). In addition, the inhibition of activity by LiCl or CaCl₂ was similar for either substrate (Fig. 4C). The half-maximal inhibitory concentration (IC₅₀) of VTC4 with CaCl₂ as an inhibitor of
the reaction containing 0.5 mM substrate was 0.08 to 0.1 mM, while the IC₅₀ for LiCl was 3.5 to 5 mM. This compares favorably with the inhibition of IMP from soybean (Kᵢ with LiCl of 1 mM; Islas-Flores and Villanueva, 2007), kiwi (Kᵢ with LiCl of 3.7 mM; Laing et al., 2004), tomato (IC₅₀ with LiCl of 0.01–0.05 mM; Gillaspy et al., 1995), and mammalian brain (IC₅₀ with Ca²⁺ of 0.05–0.1 mM; Parthasarathy et al., 1994). Inhibition was also tested in similar reactions utilizing D-Ins 3-P and L-Gal 1-P with 0.01, 0.03, 0.1, 0.3, 1.0, and 3.0 mM ascorbate. There was no appreciable difference in activity in these assays; thus, we conclude that ascorbate is not an inhibitor of VTC4.

Identification of Loss-of-Function vtc4 Mutants

The bifunctionality of VTC4 observed in vitro suggests that both myo-inositol and ascorbate synthesis could be affected by this gene. To determine whether both pathways are affected, we isolated three independent T-DNA insertion mutants. Seeds for vtc4-2 (SAIL_105_D11), vtc4-3 (SAIL_843_G10), and vtc4-4 (SALK_077222) were identified from the SALK T-DNA mutant database and were verified by sequencing of amplified PCR products. The vtc4-2 mutant contains two tandem T-DNA insertions occurring 1,341 nucleotides from the start site of translation. The vtc4-3 and vtc4-4 mutants contain T-DNA insertions within the seventh exon and second intron, respectively (Fig. 5A). The insertion in vtc4-3 occurs 1,037 nucleotides from the start site of translation, and vtc4-4 contains two tandem T-DNA insertions at the end of exon 2 (Fig. 5A).

A lack of VTC4 expression was verified in the mutants by reverse transcription (RT)-PCR (Fig. 5B). Primers specific for an actin gene (ACT8) were used as a positive control (Fig. 5B). From this analysis, we conclude that these mutants are suitable for examining the consequences of eliminating VTC4 expression. We examined the growth and development of vtc4-2 and vtc4-4 mutant lines grown in soil and present data for these mutants in

### Table 1. Substrate preference of VTC4

| Substrate                          | Rate (%) |
|------------------------------------|----------|
| L-Gal 1-P                          | 166–240  |
| d-Myoinositol 1-monophosphate      | 100      |
| β-Glycerophosphate (glycerol 2-P)  | 52       |
| α-d-Glc 1-P                        | 19.3     |
| d-Gal 1-P                          | 16.6     |
| d-Mannitol 1-P                     | 10.5     |
| Adenosine 2’-monophosphate         | 9.6      |
| d-α-Glycerophosphate (glycerol 3-P)| 4.9      |
| d-Fru 1-P                          | 2.3      |
| d-Sorbitol 6-P                     | 1.7      |
| d-Myoinositol 2-monophosphate      | 0.94     |
| Fru 1,6-bisP                       | 0.30     |
| d-Glc 6-P                          | 0.25     |

*aConcentrations of substrates were 0.4 mM. bEnzyme activity was determined under standard reaction conditions as defined in “Materials and Methods” using the phosphate release assay, 1.5 µg of enzyme, and the indicated substrate. Reaction rates were compared with the rate of activity with 0.4 mM d-Ins 3-P (3.0 units).
the following sections. Under standard laboratory conditions, vtc4 mutants did not exhibit any major abnormalities in plant growth or development.

**Metabolite Levels in vtc4 Mutants**

It has been suggested that VTC4 encodes an L-Gal 1-P phosphatase that functions exclusively during ascorbate synthesis (Laing et al., 2004). Our biochemical data support a bifunctional role of VTC4 in both L-Gal 1-P and D-Ins 3-P hydrolysis. Thus, it is of interest to examine the levels of both products (L-Gal and myo-inositol) in mutant plants to determine if in vivo, VTC4 is hydrolyzing both substrates. We extracted metabolites from control, vtc4-4, and vtc4-2 leaves and subjected them to gas chromatography to quantify myoinositol, D,L-Gal, and ascorbate (Fig. 6). The data indicate that a loss of function in VTC4 results in 22.4% and 34% decreases in mass myoinositol contents in vtc4-4 and vtc4-2 mutants, respectively. In these same mutants, D,L-Gal levels increase 1.4- and 2.3-fold, respectively. In addition, ascorbate levels decline to 75% and 61% of wild-type leaf values. We conclude that a loss of function in the imp mutants reduces the myo-inositol product but increases the D,L-Gal product levels. This supports our in vitro data that indicate that VTC4 is capable of hydrolyzing InsPs and the general role of VTC4 in myoinositol recycling and/or synthesis. Furthermore, we note that the decline in myoinositol in these plants mirrors the decline in ascorbate also seen in these plants (Fig. 6).

**Growth of vtc4 Mutants**

We have shown that a loss of function in the VTC4 gene leads to a decrease in myoinositol contents. Since a reduction in myoinositol synthesis could affect many processes such as myoinositol phosphate signaling or ascorbate synthesis (Fig. 1), we tested whether known stress physiological pathways that utilize myoinositol signaling (for review, see Xiong et al., 2002; Taji et al., 2006) were altered in vtc4 mutants. We produced age-matched seed populations that had been harvested from plants grown at the same time. Control and mutant age-matched seeds were plated on Murashige

### Table II. Catalytic properties of VTC4

| Sample                  | $K_m$ (μM) | $V_{max}$ (μmol min$^{-1}$ mg$^{-1}$ protein) | $V_{max}/K_m$ Ratio | Reference          |
|-------------------------|------------|----------------------------------------------|---------------------|--------------------|
| Arabidopsis (recombinant) | 191        | 4.0                                          | 0.029               | This work          |
| D-Ins 3-P               | 107        | 5.4                                          | 0.050               | This work          |
| Arabidopsis (partially pure) | 44$^a$   |                                              |                     | Laing et al. (2004)   |
| L-Gal 1-P               |            |                                              |                     | Fu et al. (2008)    |
| Barley (recombinant)   | 9.7        | NR                                           |                     | Laing et al. (2004) |
| Kiwifruit (partially pure) | ND        | NR                                           |                     | Laing et al. (2004) |
| D-Ins 3-P               | 41$^b$     |                                             |                     | Laing et al. (2004) |
| L-Gal 1-P               | 330        | NR                                           |                     | Laing et al. (2004) |
| Kiwifruit (recombinant) |            |                                              |                     | Laing et al. (2004) |
| D-Ins 3-P               | 78         | 36.8                                         |                     | Loewus and Loewus (1982) |
| Human                   |            |                                              |                     | Laing et al. (2004) |
| L-Gal 1-P               | 75         | 36.8                                         |                     | McAllister et al. (1992) |

$^a$Assays performed in 2 mM MgCl$_2$. $^b$Assays performed in 1.8 mM MgCl$_2$.

Figure 5. T-DNA insertions and loss of gene expression in mutant lines. A, Schematic of the T-DNA insertion sites in the vtc4-2, vtc4-3, and vtc4-4 mutants. Exons in At3g02870 are shown as dark gray boxes; the gray arrows indicate primers used to amplify the right border (RB) and left border (LB) of the T-DNA; black arrows indicate the positions of gene-specific primers. B, Verification of the loss of VTC4 expression in mutant lines. Total RNA was isolated from leaves of 14-d soil-grown mutant and wild-type (WT) plants. RT-PCR was carried out with gene-specific primers for VTC4 and actin. Primer sequences can be found in “Materials and Methods.”
and Skoog (MS) medium and stratified for 3 d at 4°C in the dark. To determine if a loss of function in VTC4 alters abscisic acid (ABA), NaCl, or osmotic sensitivity during germination, we germinated mutants in the presence of 1.25 μM ABA, 150 mM NaCl, or 300 mM sorbitol and measured the impact on germination over 60 h. Our results (Fig. 7) indicate that vtc4 mutants germinate slower under control conditions and are also slightly hypersensitive to ABA and NaCl during seed germination, as seen by the reduction in seed germination over time. In contrast, vtc4 mutant seeds do not differ from wild-type seeds in their response to sorbitol, an osmotic stress (Fig. 7).

Myo-inositol phosphate signaling is also involved in the response to cold (Xiong et al., 2001; for review, see Zhu et al., 2007), so we tested whether vtc4 mutants had alterations in cold responses. Seeds from wild-type and mutant plants were plated on MS medium and stratified for 3 d at 4°C. After stratification, plates were placed at 23°C (room temperature) or 4°C in the light, and germination was measured over a period of 14 d. No differences in germination rate were noted at 23°C; however, we found that vtc4 mutants lag in germination when placed at 4°C as compared with wild-type seeds (Fig. 8A). To examine whether growth is also affected by the loss of function in the VTC4 gene, we germinated seeds at 23°C on vertical plates and allowed root growth to proceed for 2 d before transfer to 4°C. New root growth of mutants was significantly decreased as compared with wild-type seedlings (Fig. 8B). Together, these experiments indicate that vtc4 mutants have slower germination and root growth in the cold, which is indicative of cold sensitivity. Along with the alterations in ABA and salt sensitivity, these data indicate an overall increase in sensitivity to abiotic stresses known to involve myo-inositol signaling and may be related to the decrease in myo-inositol contents found in these plants.

Examination of IMPL Enzymes

We have shown that a loss of function in VTC4 can impact myo-inositol and ascorbate levels. However, vtc4 mutants retain 66% to 78% of wild-type myo-inositol contents, suggesting that other redundant enzymes function during myo-inositol synthesis. The two IMPL proteins are good candidates for such enzymes, as they are the two most closely related proteins in the Arabidopsis genome as determined by a BLAST search. IMPL1 (At1g31190) and IMPL2 (At4g39120) contain the conserved inositol P domain found in all
characterized IMPs and have sequence homology to the so-called bacterial IMPase domain.

To determine whether these are expressed genes, we analyzed the microarray data available in the Genetigator database (Zimmermann et al., 2004) and found that both IMPL1 and IMPL2 are expressed in most Arabidopsis tissues (Supplemental Fig. S1A). To determine the phylogenetic relationship between the IMPL proteins and the plant and animal IMPs, we used ClustalW and PAUP4.0b to produce an unrooted, bootstrapped phylogenetic tree with 34 microbial, plant, and animal proteins containing the conserved inositol P domain (Supplemental Fig. S1B). As reported by others, we found that VTC4 and IMPL proteins are more related to other proteins than to one another, as seen by their presence on distinct branches of the tree (Supplemental Fig. S1B). VTC4 (At3g02870) is most related to the other plant IMPs and is found on a main branch containing the eukaryotic IMPs from animals, slime mold, and yeast. Many of these enzymes have been characterized biochemically. In contrast, IMPL1 (At1g31190) and IMPL2 (At4g39120) are contained within the prokaryotic portion of the tree, indicating a closer relationship with the prokaryotic IMPs or SubB proteins (Matsuhisa et al., 1995; Chen and Roberts, 2000). Specifically, IMPL1 is found on a branch with an uncharacterized Aquifex aeolicus protein, while IMPL2 is grouped with an uncharacterized Halobacterium protein.

To determine if IMPL1 and IMPL2 proteins are capable of hydrolyzing InsPs, truncated versions of IMPL1 and IMPL2 genes were expressed as glutathione S-transferase fusion proteins. The resulting recombinant proteins were purified using glutathione-Sephadex and were greater than 95% pure as observed by 12% SDS-PAGE (Fig. 2). As was noted for recombinant VTC4, both IMPL1 and IMPL2 migrated slightly slower than expected given their predicted molecular masses of 55.5 and 55.4 kD, respectively (Fig. 2). With three independent sets of purifications and phosphatase assays containing 50 mM Tris-Cl, pH 7.5, 0.4 mM substrate, 1 mm MgCl2, and 0.5 μg of enzyme, IMPL1 catalyzed the reaction with D-Ins 1-P at 0.528 ± 0.105 units min⁻¹, with D-Ins 3-P at 0.0551 ± 0.0275 units min⁻¹, and with L-Gal 1-P at 0.0131 ± 0.0175 units min⁻¹. IMPL2 catalyzed the reaction with D-Ins 1-P at 0.361 ± 0.081 units min⁻¹, with D-Ins 3-P at 0.408 ± 0.001 units min⁻¹, and with L-Gal 1-P at 0.257 ± 0.004 units min⁻¹. These reactions show that IMPL2 may be more similar to VTC4 in its substrate preference, using the three substrates within a 2-fold difference in activity range. IMPL1, however, may be a D-Ins 1-P-specific enzyme, as it is 10-fold less active with D-Ins 3-P and 40-fold less active with L-Gal 1-P. We conclude that both IMPLs are capable of hydrolyzing InsP and could provide redundancy with respect to IMP function within the plant cell. Furthermore, IMPL2 is also a potential candidate for a plant L-Gal 1-phosphatase.

DISCUSSION

Since IMP traditionally occupies an integral role in both a metabolic synthesis pathway (the Loewus pathway) and in second messenger myoinositol (1,4,5)P3 recycling, it provides a critical link between specific metabolic and signaling events in plant cells. Thus, to resolve whether the previously identified VTC4 really functions in myoinositol pathways or functions mainly as a L-Gal 1-phosphatase used for ascorbate synthesis is an important issue. Our kinetic characterization of the Arabidopsis VTC4 protein, along with data on loss-of-function mutants, indicates that VTC4 is bifunctional and can act to hydrolyze D-Ins 3-P, D-Ins 1-P, and L-Gal 1-P and I-Gal 1-P in vitro. In addition, vtc4 mutant plants contain reduced myoinositol levels, indicating that a loss of VTC4 function impacts the supply of myoinositol in the plant cell.

Biochemical Evidence for IMP Bifunctionality

Previous reports of purified or recombinant kiwi-fruit VTC4 and partially purified AtVTC4 enzymes contained within the prokaryotic portion of the tree, indicating a closer relationship with the prokaryotic IMPs or SubB proteins (Matsuhisa et al., 1995; Chen and Roberts, 2000). Specifically, IMPL1 is found on a branch with an uncharacterized Aquifex aeolicus protein, while IMPL2 is grouped with an uncharacterized Halobacterium protein.

To determine if IMPL1 and IMPL2 proteins are capable of hydrolyzing InsPs, truncated versions of IMPL1 and IMPL2 genes were expressed as glutathione S-transferase fusion proteins. The resulting recombinant proteins were purified using glutathione-Sephadex and were greater than 95% pure as observed by 12% SDS-PAGE (Fig. 2). As was noted for recombinant VTC4, both IMPL1 and IMPL2 migrated slightly slower than expected given their predicted molecular masses of 55.5 and 55.4 kD, respectively (Fig. 2). With three independent sets of purifications and phosphatase assays containing 50 mM Tris-Cl, pH 7.5, 0.4 mM substrate, 1 mm MgCl2, and 0.5 μg of enzyme, IMPL1 catalyzed the reaction with D-Ins 1-P at 0.528 ± 0.105 units min⁻¹, with D-Ins 3-P at 0.0551 ± 0.0275 units min⁻¹, and with L-Gal 1-P at 0.0131 ± 0.0175 units min⁻¹. IMPL2 catalyzed the reaction with D-Ins 1-P at 0.361 ± 0.081 units min⁻¹, with D-Ins 3-P at 0.408 ± 0.001 units min⁻¹, and with L-Gal 1-P at 0.257 ± 0.004 units min⁻¹. These reactions show that IMPL2 may be more similar to VTC4 in its substrate preference, using the three substrates within a 2-fold difference in activity range. IMPL1, however, may be a D-Ins 1-P-specific enzyme, as it is 10-fold less active with D-Ins 3-P and 40-fold less active with L-Gal 1-P. We conclude that both IMPLs are capable of hydrolyzing InsP and could provide redundancy with respect to IMP function within the plant cell. Furthermore, IMPL2 is also a potential candidate for a plant L-Gal 1-phosphatase.
indicated a large substrate preference for L-Gal 1-P, with a 12-fold difference in hydrolysis of L-Gal 1-P as compared with D-Ins 3-P by the Arabidopsis enzyme (Laing et al., 2004). In contrast, we showed that our purified, recombinant AtVTC4 protein had pH and MgCl₂ optima similar to previous studies and hydrolyzed L-Gal 1-P only 1.6- to 2.4-fold better than either D-Ins 3-P or D-Ins 1-P (Table I). There are two experimental differences that might account for this disparity. First, we are using different buffer conditions (Tris-HCl in our studies versus BisTris propane buffer used previously) and our MgCl₂ optimum was slightly higher (4 mM as compared with 1.8–2 mM). Therefore, it is possible that D-Ins 3-P and D-Ins1-P hydrolysis is more robust under our conditions.

We also report here the catalytic constants of VTC4 for InsP and L-Gal 1-P, which can be informative about substrate preference. The $K_m$ values for L-Gal 1-P (107 μM) and D-Ins 3-P (191 μM) do not differ by more than 2-fold and are in good agreement with previously reported values (Table II; Loewus and Loewus, 1982; McAllister et al., 1992; Laing et al., 2004). As well, the $V_{max}/K_m$ ratios between these two substrates show a 1.7-fold difference. This indicates, once again, a small difference in the substrate preference of VTC4 with respect to L-Gal 1-P and D-Ins 3-P. Together with the substrate comparisons (Table I), these data support a bifunctional role for the plant IMP.

**Genetic Evidence for IMP Bifunctionality**

To determine if a loss of IMP function impacts myoinositol synthesis, we isolated two independent T-DNA mutants defective in VTC4 gene expression (vtc4-1 and vtc4-2) and found reductions in both ascorbate and myoinositol levels in these mutants (Fig. 6). This indicates that loss of VTC4 impacts myoinositol as well as ascorbate synthesis. The reduction in ascorbate is similar to that noted previously for the vtc4-1 mutant, which was identified in a screen for ascorbate-deficient mutants. These authors found that vtc4-1 mutants contained 42% of wild-type ascorbate levels along with reduced L-Gal 1-phosphatase activity (Conklin et al., 2006), which is in good agreement with the reduction we report here (Fig. 6). By measuring $[^{3}H]$Man incorporation in vtc4-1 mutants, these authors found that the vtc4-1 mutation also disturbs L-Gal metabolism. They found an approximate doubling (from 11% to 24%) of label in L-Gal incorporated into polysaccharides and speculate that the VTC4 loss of function stimulates an increase in GDP-L-Gal incorporation into polysaccharides (Conklin et al., 2006). We also found evidence for a disturbance in Gal metabolism in vtc4 mutants, namely an increase in free mass Gal levels (Fig. 6). Under the conditions we used for gas chromatography analyses, we cannot separate D-Gal and L-Gal; thus, we can only draw a limited conclusion. However, the trend of an increase in L-Gal in polysaccharides of vtc4-1 mutants (Conklin et al., 2006) and in the soluble fraction of our vtc4 mutants is similar. Thus, one possibility to explain these results is that L-Gal 1-P accumulates in vtc4 mutants and breaks down during derivatization for gas chromatography.

To determine if loss of VTC4 function alters physiology, we examined vtc4 mutants for germination and root growth responses to ABA, salt, osmotic, and cold stress. We found small alterations in vtc4 mutant responses to ABA, salt, and cold but no differences in response to osmotic stress (Figs. 7 and 8). These alterations could result from the small decrease in myoinositol contents, which could affect either myoinositol signaling or the production of downstream metabolites such as pinitol, a myoinositol derivative involved in osmoprotection (for review, see Taji et al., 2006). Alternatively, since ascorbate is important for detoxifying ROS generated from stress (for review, see Noctor, 2006), alterations in vtc4 mutants may result from their lowered ascorbate levels.

**Redundancy in L-Gal 1-P and InsP Phosphatases**

Given that vtc4 mutants still contain appreciable levels of myoinositol and ascorbate, it was important to determine whether other enzymes could function in myoinositol and/or ascorbate synthesis. IMPL1 and IMPL2 are the closest plant protein relatives of IMP, and phylogenetic analysis indicated their close relationship to the prokaryotic IMPs as well (Supplemental Fig. S1). Analysis of IMPL1 and IMPL2 activity with L-Gal 1-P, D-Ins3-P, and D-Ins 1-P identifies IMPL2 as another potential L-Gal 1-phosphatase from plants. In addition, both IMPL1 and IMPL2 provide potential redundancy in de novo myoinositol synthesis from D-Ins 3-P, while IMPL2 may also function in second messenger recycling pathways utilizing D-Ins 1-P. To resolve these issues, we need to determine the catalytic constants for these enzymes with different substrates. The purified IMPL2, in our hands, is unstable and efforts are under way to address this. In addition, we have not been able to recover a viable, homozygous, loss-of-function mutant for either the AtIMPL1 or AtIMPL2 gene, so we cannot currently test whether loss of these genes affects myoinositol or ascorbate synthesis. It is important to note that other plants, such as rice (Oryza sativa) and grape (Vitis vinifera), contain IMPL genes; thus, their contribution to myoinositol and ascorbate pathways could be conserved in all plants.

**The Impact of IMP on Ascorbate Synthesis**

The bifunctionality of VTC4 and IMPLs has important implications for understanding the synthesis of ascorbate in plants. Close inspection of the ascorbate pathway reveals two potential routes for VTC4 and IMPLs to influence ascorbate synthesis: one through L-Gal 1-P hydrolysis within the Smirnoff-Wheeler pathway (Smirnoff and Wheeler, 2000; Smirnoff, 2001; Smirnoff et al., 2001) and the other through D-Ins 3-P hydrolysis (Fig. 1). Frank Loewus pioneered studies in the myoinositol oxidation pathway, which contributes
to D-GluUA synthesis via myoinositol oxidation to ascorbate synthesis pathways in animals (for review, see Loewus, 2006). However, studies on strawberry (Fragaria species) and parsley (Petroselinum crispum) indicated that radiolabeled myoinositol did not undergo conversion into ascorbate (Loewus et al., 1962; Loewus, 1963). Data from ectopic expression of the myoinositol oxygenase gene in Arabidopsis indicates that this manipulation results in a 2- to 3-fold increase in ascorbate in transgenic plants, suggesting that myoinositol can act as a precursor for ascorbate synthesis in a specific gain-of-function context (Lorence et al., 2004). In addition, InsP₆ hydrolysis by the phytase-like enzyme (AtPAP15) may also contribute myoinositol for ascorbate synthesis, as shown by recent analyses of AtPAP15 mutants (Zhang et al., 2008). The impact of myoinositol on ascorbate synthesis, however, is not sufficient to mitigate loss of the Smirnoff-Wheeler pathway, as seen by recent work on GDP-L-Gal phosphorylase (Dowdle et al., 2007; Laing et al., 2007; Linster et al., 2007) double mutants (Dowdle et al., 2007). Double mutants in the two GDP-L-Gal genes are defective in postgermination seedling growth and can be rescued by exogenous ascorbate application (Dowdle et al., 2007).

From our work presented here, we show that vtC4 mutants have reduced myoinositol and ascorbate levels, which may indicate dual action of VTC4 on both L-Gal 1-P and D-Ins3-P. While it is intriguing to note that VTC4 could theoretically act with two different substrates (L-Gal 1-P and D-Ins 3-P) to affect ascorbate synthesis, rigorous radiotracer experiments are needed to determine whether the reduction in myoinositol contents directly affects ascorbate synthesis.

**MATERIALS AND METHODS**

**Expression of Recombinant Protein**

The VTC4 gene (At3g02870) was amplified by PCR with primers 5'-ATGGCGGCAACTAATGCTCCTC-3' (forward) and 5'-TCGTCGGCCCTG-TAAGCCCA-3' (reverse). The template was generated by RT (Omniscript RT kit) of RNA extracted from wild-type plants using the RNAeasy Plant Mini kit (both kits from Qiagen) according to the manufacturer's instructions. The resulting PCR product was cloned into plasmid pCRT7/NT-TOPO using the pCR T7 TOPO TA Expression kit (Invitrogen). The newly created plasmid pAtIMPH contains the amplified At3g02870 gene (816 nucleotides) from the pCR T7 TOPO TA Expression kit (Invitrogen). The newly created plasmid pAtIMPH was used to transform TOP10F cells, and the gene sequence was verified. Similarly, plasmids pAtIMPL1AE and pAtIMPL2AE were constructed. Genes were amplified by PCR from pAtIMPL1H and pAtIMPL2H plasmid templates and primer pairs 5'-ATAGGCTATGCTGAACTACGGCAG-3' (forward)/5'-GGCCGaaactTAAAGCTCGATAGATAC-3' (reverse) and 5'-ATAGGCTATGCTGAACTACGGCAG-3' (forward)/5'-GGCCGaaactTAAAGCTCGATAGATAC-3' (reverse), respectively (lowercase letters indicate restriction sites). The products were restriction digested with BamHI and EcoRI and ligated to similarly digested pGEX2T (GE Healthcare). The plasmids were designed to express the truncated IMP1 and IMP2 fused to a C-terminal glutathione S-transferase. The plasmid sequences were verified by sequencing.

**Phosphatase Activity Assays**

Phosphatase activity was determined by the inorganic phosphate quantitation assay (Lanzetta et al., 1979) with minor modifications. Standard conditions were 50 mmoL Tris–Cl, pH 7.5, 4 mmoL MgCl₂, 0.4 mmoL substrate, and 1.5 μg of purified enzyme in a total reaction volume of 50 μL. Reactions were performed at room temperature (21°C–25°C) for 30 to 10 min, after which 800 μL of color reagent malachite green/ammonium molybdate solution was added to terminate the reaction. The A₅₆₂ was determined by spectrophotometry. Control reactions without enzyme or without substrate were used to determine background phosphate levels, which were subtracted from experimental values. Enzyme-specific activity units are in μmol of phosphate. The assays to verify the pH optimum of reactions were performed in mixtures containing 4 mmoL MgCl₂ while the assays to verify the optimum MgCl₂ concentration were performed in reaction mixtures of pH 7.5. Protein concentrations were determined as described by Bradford (1976) with bovine serum albumin as the standard.

Data from kinetic experiments were analyzed with Kaleidagraph software (version 4.0 Mac; Synergy Software). For Ins-1-P, data were fit to a nonlinear curve with a substrate inhibition equation based on the Michaelis-Menten equation. For Ins-1-G, data were fit to a Michaelis-Menten equation $v = \frac{k_{max}[S]}{K_m + [S]}$.

**Mutant Isolation**

Arabidopsis (Arabidopsis thaliana) ecotype Columbia plants were maintained in a 1:1 mixture of Pro Mix (BX) and Pro Mix (PGX) in a growth room
set at 22°C/24°C night/day temperature. Visible radiation (100–320 μmol m⁻² s⁻¹) was provided by either a mixture of fluorescent/metal halide, high-pressure sodium lamps or fluorescent lamps only. Potential totalUTC (At3g02870) mutants were identified from the SALK T-DNA lines (Alonso et al., 2003) through the analysis of the SIGnAL database (http://www.signal.salk.edu/cgi-bin/tnaexpress). Seeds for totalUTC-2 (SAIL_105_D11), totalUTC-3 (SAIL_843_G10), and totalUTC-4 (SALK_077222) were obtained from the Ohio State University Arabidopsis Biological Resource Center. Corresponding wild-type plants were sterilized and plated on 0.5% MS salts solution (pH 5.8) containing 0.8% agarose. Seeds were stratified on plates at 4°C to 25°C for 3 d and germinated at 23°C in the light (100 μE). Germination was scored as positive when the radicle protruded through the seed coat. For ABA sensitivity experiments, ABA in the light (100 μM) was dissolved in 100% ethanol and added to medium at a final concentration 200 μM. The injection port was set at 225°C. In the case of totalUTC-2, a second left border forward primer PCR product was also apparent. The resulting PCR fragments were sequenced and compared with the genomic sequence for each gene to map the T-DNA insertions.

**RT-PCR**

Total RNA was extracted from leaf tissue of 35-d soil-grown wild-type and totalUTC mutant plants using the RNeasy Plant Mini kit (Qiagen). One microgram of total RNA was reverse transcribed using the QIagen Omniscript RT kit according to the manufacturer’s instructions. Approximately one-tenth of the resulting mRNA eluate was used as template in each PCR, which was prepared in a 25-μL mixture. VTTC4 was amplified at 55°C with the AVTTC4 reverse primer listed above and an internal primer, 5'-TGACTGGCATGGTAACTGC-3' and 5'-TTCTAATACGACCATGAC-3', respectively, with annealing at 55°C. In the case of totalUTC-2, a second left border forward primer PCR product was also apparent. The resulting PCR fragments were sequenced and compared with the genomic sequence for each gene to map the T-DNA insertions.

**Seedling Growth and Seed Germination Assays**

Age-matched seeds used for assays were harvested from plants grown in parallel on the same shelf in a growth room, and seeds were harvested on the same day and ripened for 42 d at room temperature. Seeds were surface sterilized and plated on 0.5× MS salts solution (pH 5.8) containing 0.8% agarose. Seeds were stratified on plates at 4°C for 3 d and germinated at 23°C in the light (100 μE). Germination was scored as positive when the radicle protruded through the seed coat. For ABA sensitivity experiments, ABA (Sigma) was dissolved in 100% ethanol and added to medium at a final concentration of 0.25, 0.5, 1.25, or 2 μM ABA. Hormone treatment experiments were repeated three times. For salt and osmotic sensitivity experiments, medium was supplemented with 150 mM NaCl or 300 mM sorbitol. Treatment experiments were repeated three times. For cold sensitivity tests, seeds were sown in a straight line on MS agar plates, and after stratification, plates were grown vertically for 3 d at 22°C under the light at 100 μE m⁻² s⁻¹. Root lengths were marked, and the plates were transferred to 4°C for 25 d. Measurements of change in root length were made every 2 d.

**Gas Chromatography Analysis**

Frozen seedlings and tissues were ground into a powder, and 1 mL of ethanol was mixed with the powder. Two milligrams of D-chiroinositol was added to the mixture as an internal standard. The mixture was incubated at 80°C for approximately 1.5 h. The insoluble portion was removed by centrifugation. Anal Biochem 248–254.

**LITERATURE CITED**

Alcazar-Roman AR, Wente SR (2007) Inositol polyphosphates: a new frontier for regulating gene expression. Chromosoma 117: 1–13

Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, et al. (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653–657

Berdy SE, Kudla J, Gruissem W, Gillaspy GE (2001) Molecular characterization of At1Pylase, an inositol phosphatase capable of terminating inositol trisphosphate signaling. Plant Physiol 126: 801–810

Boss WE, Davis AJ, Im YJ, Galvao RM, Perera IY (2006) Phosphoinositide metabolism: towards an understanding of subcellular signaling. Subcell Biochem 39: 181–205

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

Chen IW, Charalampous CF (1966) Biochemical studies on inositol. IX. α-Inositol 1-phosphate as intermediate in the biosynthesis of inositol from glucose 1-phosphate, and characteristics of two reactions in this biosynthesis. J Biol Chem 241: 2194–2199

Chen L, Roberts MF (2000) Overexpression, purification, and analysis of a second left border forward primer.

**Supplemental Data**

The following materials are available in the online version of this article.

**Supplemental Figure S1.** Expression of IMPL proteins and phylogenetic analysis.

**ACKNOWLEDGMENTS**

We are grateful to SIGnAL and the Arabidopsis Biological Resource Center for supplying mutant seeds and to Shannon Allford for assistance with metabolite analyses. We thank Mary Roberts for α-Ins 3-P, Kim Harich for the gas chromatography-mass spectrometry analyses, Daniel Ragheb for assistance with Kaleidagraph, and Tim Larson for critical comments on protein purification.

Received January 6, 2009; accepted March 26, 2009; published April 1, 2009.

**Supplemental Table S1.** Expression of IMPL proteins and phylogenetic analysis.

**Phylogenetic Analyses**

ClustalW was used to align amino acid sequences of representative proteins containing the inositol P domain. PAUP 4.0b was used to create an unrooted bootstrapped phylogenetic tree using maximum parsimony. Percentage confidence levels for branches (derived from 500 bootstrap trees) were determined.

Sequence data from this article can be found in the GenBank/EMBL data libraries under accession numbers NP_001118558, NP_195623, and NP_564376.
Myo-inositol and Ascorbate Synthesis

vulgaris L.) inositol monophosphatase: gene structure and enzyme characteristics. Plant Mol Biol 67: 629–642
Fujita M, Jigami Y (2007) Lipid remodeling of GPI-anchored proteins and its function. Biochim Biophys Acta 1780: 410–420
GhoshDastidar K, Chatterjee A, Majumder AL (2006) Evolutionary divergence of L-myo-inositol 1-phosphate synthase: significance of a “core catalytic structure.” Subcell Biochem 39: 315–340
Gillaspie GE, Keddie JS, Oda K, Gruissem W (1995) Plant inositol monophosphatase is a lithium-sensitive enzyme encoded by a multi-gene family. Plant Cell 7: 2175–2185
Gumber SC, Loewus MW, Loewus FA (2007) Inositol-1 (or 4)-monophosphatase is a lithium-sensitive enzyme encoded by a galactose 1-phosphate synthase with broad substrate specificity that includes phytate dephosphorylation. Biochim Biophys Acta 1770: 543–550
Karner U, Peterbauer T, Raboy V, Jones DA, Knowles MR, Atack JR, Bailey Loewus F (1963) Tracer studies of ascorbic acid formation in plants. J Biol Chem 282: 18879–18885
Linster CL, Yamauchi T, Shindo N, Imamura S, Takenaka-Kobayashi H, Wallace JL, Kamtekar S, Suzuki M, Tanaka K, Kuwano M, Yoshida KT (2007) Expression pattern of inositol phosphate-related enzymes in rice (Oryza sativa L.). implications for the phytic acid biosynthetic pathway. Gene 405: 55–64
Taji T, Takahashi S, Shinozaki K (2006) Inositol and its metabolites in abiotic and biotic stress responses. Subcell Biochem 39: 239–264
Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446: 640–645
Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446: 640–645
Torabinajed J, Gillaspie GE (2006) Functional genomics of inositol metabolism. Subcell Biochem 39: 47–70
Xiong L, Lee B, Ishitani M, Lee H, Zhang C, Zhu JK (2001) Fiery1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes Dev 15: 1971–1994
Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell (Suppl) 14: S165–S183
Zhang W, Gruszewski HA, Chevone BI, Nessler CL (2008) An Arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate. Plant Physiol 146: 431–440
Zhu J, Dong CH, Zhu JK (2007) Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr Opin Plant Biol 10: 290–295
Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) Genevestigator: Arabidopsis microarray database and analysis toolbox. Plant Physiol 136: 2621–2632

Plant Physiol. Vol. 150, 2009