Community Health Risk Assessment of Total Suspended Particulates near a Cement Plant in Maros Regency, Indonesia

Background. Cement plants generate particulate matter (PM) across processes from raw material preparation to packaging. The presence of total suspended particulates (TSP) coming out of the stack causes a high accumulation of dust in residential areas. Human exposure to TSP could affect human health and wellbeing.

Objectives. The present study aims to evaluate concentrations of TSP and to estimate the health risks of TSP exposure through the inhalation pathway in communities surrounding a private cement industry in Maros regency, Indonesia.

Methods. Total suspended particulates were collected using a high-volume air sampler (HVAS) at five locations. Samples were taken by grab sampling for 24 hours. The SCREEN3 program was used to view the maximum range and distribution of pollutants based on the geographical, stack profiles and meteorological factors in the study area. Hazard quotient (HQ) was used to estimate non-carcinogenic risks of TSP in surrounding communities.

Results. Total suspended particulate concentrations were measured with a maximum value of 133.24 mg/m³ and a minimum value of 18.48 mg/m³. This maximum value exceeds the minimum acceptable level from Canadian National Ambient Air Quality Objectives (C-NAAQOs). The non-carcinogenic risks from the inhalation pathway were low except for location 3 (HQ>1) across all locations.

Conclusions. The cement plant may significantly contribute to total TSP concentrations in air and may potentially have adverse effects on human health. Communities near the cement plant are vulnerable to TSP exposure and measures are needed to reduce TSP in Maros regency, Indonesia.

Participant Consent. Obtained
Ethics Approval. This study was approved by the Health Research Ethics Committee of Hasanuddin University with protocol number 28920093022.
Competing Interests. The authors declare no competing financial interests.

Keywords. air pollution, cement plant, hazard quotient, total suspended particulates

Received February 16, 2021. Accepted April 17, 2021.
J Health Pollution 30: (210616) 2021
© Pure Earth
study in China calculated exposure to PM in size <2.5 μm (PM$_{2.5}$) and PM<10 μm (PM$_{10}$) in terms of years of life lost (YLL) and estimated 5.2% and 6.9% of total YLL due to PM$_{2.5}$ and PM$_{10}$ respectively. Another study in Pakistan revealed a high rate of premature mortality associated with high concentrations of PM, with 105 000 deaths per year.12

The Maros-Pangkep karst ecosystem is an area with a wealth of natural resources for raw materials to supply the cement plant.13,14 The largest private cement plant in Maros regency produces 2.4 million tons of cement annually. A previous study of PM$_{2.5}$ in the vicinity of the cement industry has been conducted but did not characterize the health risks to the community.15 Moreover, monitoring of water pollution in this area found that the pollution load as evidenced by total suspended solid (TSS) and chemical oxygen demand (COD) levels were extremely high.16 Anthropogenic activities in industrial areas have a correlation between air quality and public health status.17 Meteorological aspects also contribute to TSP distribution,18 transporting particulate matter hundreds of kilometers depending upon meteorological conditions.19,20

The study area was located near a cement plant in Baruga village, Maros regency, South Sulawesi Province, Indonesia. The cement plant is located close to residential areas (<50 m). The present study aimed to measure TSP concentrations and distribution and estimate the non-carcinogenic risk of long-term exposure of TSP to communities surrounding the cement plant. This study is expected to be a preliminary study for environmental mitigation management, monitoring and creating a plan for reducing health risks to residents in this area.

Abbreviations

Abbreviation	Description
ADD	Average daily dose
HQ	Hazard quotient
HVAS	High-volume air sampler
RfC	Reference concentration
TSP	Total suspended particulates
C-NAAQO	Canada’s National Ambient Air Quality Objectives

Methods

Maros regency is located in the western part of South Sulawesi at 5°01'04.0” and 119°34'35.0” with an area of 1619.11 km2, consisting of 14 sub-districts and 103 villages. This location has sufficient rainfall, so agricultural lands are fertile. The average wind speed is 2–3 knots/hour. The highest rainfall intensity occurs in February (839 mm). The average air temperature in Maros regency is 29°C and the lowest temperature in Maros is usually recorded in May (21°C). Geographically, Maros regency is surrounded by karst which enriches this area with limestone, basalt, coal, silica sands/quartz and many other rock types.21 There are many mining and industrial operations in this area, such as cement industry and limestone mining.

Sampling

An ambient air test sample was taken in November 2020. The maximum and dominant winds were blowing towards the residential areas in this month over the last 5 years (2015-2019). October-March is the rainy season in Maros and is also windy. Air sampling cannot be handled in October because of the high frequency of rainfall. Taking into consideration weather, rainfall and wind data, November is a representative time to collect the study data. This sampling time represents the rainy season for TSP exposure. Sampling was performed over 5 days from 23-27 November 2020 (weekdays), assuming the activity of cement factory is nonstop for 24 hours and dust is continually generated from the stacks. Measurements were carried out around the residential area of the private cement plant. The ambient air quality analysis used the Indonesian National Standard (SNI) 7119-3: 2017.22 Sampling was performed with a high-volume air sampler (HVAS) (TFlA 2 HVAS Staplex) placed 1.5 meters above the ground. The device was placed at each sampling site and connected to a power source. Average flow rate was set at a speed of 1.5 m3/minute. Collection time and coordinates were recorded. All locations are the closest residential areas to the cement factory. The distance of location 1 from the cement factory is 2520 m, location 2 is 817 m, location 3 is 642.9 m, location 4 is 2210 m and location 5 is 5317 m.

Daily meteorological supporting data were accessed at the Meteorological, Climatological and Geophysical Agency (BMKG) Online Database Center. Data included temperature, humidity, rainfall, and wind direction. Sampling was conducted in open areas within 500 m-850 m of the road to reduce bias from vehicle fumes. Ambient air dust was collected in the...
form of total suspended particulates (TSP) for 24 hours. Samples were stored and coated with aluminum foil before being moved to the laboratory. Samples were analyzed at Center of Plantation-Based Industry (BBIHP), in Makassar, South Sulawesi Province Indonesia. The particulates trapped in the HVAS were then weighed.

Dispersion modeling

Dispersion models are commonly run through a computer program with user interfaces for entering and viewing data. Gaussian plume modeling is most commonly used. Based on mathematical equations and fundamental assumptions, the model is able to estimate plume behavior. In a rural environment, stack emissions to air and their impact on ambient air quality are important. The necessary variables are emission rate, stack height, stack inside diameter, gas exit temperature and ambient air temperature. The probability of pollutant dispersion from the two stacks were collected from stack profiles. A receptor is defined as any receptor located above the ground level. In the present study, receptors were humans living near the cement plant.

Wind speed and stability class affect maximum ground level concentrations. Meteorological and supporting data were obtained from the BMKG and internal data from the cement plant. Wind is a major factor in the distribution of TSP in this study, so it is important to visualize its direction. A wind rose is a graphical tool used by meteorologists to provide an overview of wind speeds and direction in a particular location. Color bands indicate wind speed ranges. The longest spoke shows the wind direction with the greatest frequency. The wind rose plot was processed with Microsoft Excel software and WRPlot 4.0.1. For TSP concentration, data were visualized using ArcGIS 10.8. To estimate the distance over pollutant concentration, the SCREEN3 air dispersion model was used.

Human data sampling

Human data were obtained through individual interviews by going door to door at respondents’ houses. The research implementation permit was obtained from local authorities and the Health Research Ethics Committee of Hasanuddin University with protocol number 28920093022. Anthropometric measurement data (weight and height) were taken from 250 respondents. Human sampling was carried out by random cluster sampling. All respondents were residents who had been living, working or studying in the study area for at least a year as several factories and schools are located in the vicinity of the sampling area. All participants provided written informed consent prior to enrollment in the study.

Health risk assessment

Health risk assessment of TSP exposure through the inhalation route was performed among communities in residential areas from <50 m – 5,000 m near the private cement plant. Five locations were chosen according to residential location and wind direction. The United States Environmental Protection Agency (USEPA) method was applied to obtain average daily dose (ADD) and hazard quotient (HQ) in Equations 1 and 2.

\[HQ = \frac{ADD}{RfC} \]

where HQ is the hazard quotient of TSP, RfC is the reference concentration for TSP in this study, and ADD is average daily dose (mg/kg/day).

Results

Meteorological data, including air temperature, humidity, rainfall, wind direction, and wind speed are
Table 1 — Human Health Risk Assessment Variables

Parameters	Location 1	Location 2	Location 3	Location 4	Location 5
Mean of body weight (kg)	55.84	54.90	56.70	54.39	57.44
Mean of TSP concentration (µg/m³)	42.90	37.74	133.24	31.77	18.48
IR (m³/hour)			0.83²⁴		
ED (years)			24²⁶		
ET (hours/day)			20²⁶		
EF (day/year)			360²⁶		
AT (days)				30 x 365	10965 days (30 years for non-carcinogenic risk)

Abbreviations: AT, average time; C, TSP concentration; ED, exposure duration; EF, frequency of annual exposure; ET, length of time cement plant has been in operation (20 years); IR, inhalation rate.

Table 2 — Total Suspended Particulate Concentration, Temperature, Humidity, Rainfall and Wind Speed

Location	TSP concentration in 24 hours (µg/m³)	Temperature (°C)	Humidity (%)	Rainfall (mm)	Wind Speed (m/s)
1	42.90	28.40	86	1.20	2.20
2	37.74	27.20	88	1.00	2.20
3	133.24	26.60	88	1.20	2.00
4	31.77	27.10	90	1.40	2.40
5	18.48	28.20	85	0.80	2.80
Mean	52.82	27.50	87.4	1.12	2.32
Min	18.48	26.60	85	0.80	2.00
Max	133.24	28.40	91	1.40	2.40
shown in Table 2. Concentration and meteorological data were obtained at five locations. Site selection was made according to ground level of emissions and wind direction. The highest concentration was recorded at Location 3 and the lowest at Location 5.

The distribution of TSP concentrations in the study location are shown in Figure 1. The highest concentration of TSP was recorded in Tukamasea village, located southeast of the cement plant. Furthermore, the lowest concentration of TSP was recorded in Leang-Leang village.

Dispersion modeling

Figure 2 is a wind rose visualization created by dominant wind direction using data from November data over a period of five years (2015-2019) in Maros regency. The resultant vector was out the southwest at 106-117°. Although the wind direction might change from day to day, generally, wind patterns were fairly stable from 2015-2019. The locations chosen were Salenrang village, Baruga village, Tukamasea village, Bungaeja village and Leang-Leang village. These are residential areas around the cement operation.

The cement plant has two stacks using coal to operate, Raw mill 1 and Raw mill 2. Raw mills are the place where crushed raw materials are mixed and stored for homogenization. We used data from raw mills to measure emission sources. As the point of emission sources, important information such as coordinates to locate its position, height from the ground, released gas, emission rate, internal stack diameter and output temperature are presented in Table 3.

Figure 3 shows the results of the data interpretation of the air dispersion model obtained from variables in...
Figure 2 — Rose diagrams based on wind frequencies in November (2015-2019)
Table 3 — Cement Factory Stack Profiles

Variables	Raw Mill 1	Raw Mill 2
Coordinates	S: 04°56’37.4” E: 119°37’37.1”	S: 04°56’41.75” E: 119°37’32.01”
Elevation	19 m	24 m
Stack height	60 m	155 m
Temperature	130.30°C	81°C
Gas exit velocity	7.53 m³/s	6.49 m³/s
Diameter	5.74 m	4.80 m
Debit	194.93 m³/s	117.58 m³/s
Total Suspended Particulates (TSP)	56.64 mg/Nm³	31.93 mg/Nm³
Emission rate	0.43 g/s	0.21 g/s

Abbreviation: TSP, total suspended particulates

Figure 3 — Automated distance and concentration levels in raw mill 1 (a) and raw mill 2 (b)
Table 2. The results indicated that the farther the particulate distribution, the lower the particulate concentrations. The range of 500-600 m showed the highest particulate accumulation from both stacks. Dispersion model prediction is sensitive to changes in height and wind shear.23

Health risk assessment

The risk level is expressed in terms of the HQ. Previously, it was necessary to calculate the intake via the inhalation pathway (ADD). Intake is the inhaled concentration of pollutants per kilogram of body weight28 and RfC is baseline data for no health effects due to lifetime exposure. Figure 4 shows that the highest risk was in Location 3 (HQ>1), in Tukamasea village. Meanwhile, in Locations 1, 2, 4 and 5, no health adverse effects were indicated (HQ<1). High concentrations of TSP were found at Location 3 due to the fact that this area is the closest to the wind blowing to the southeast.

Discussion

In Table 4, the results of the present study are compared to existing standards and previous studies. Total suspended particulate measurements in all locations showed that Location 3 (max) had the highest level of TSP which can not to be tolerated according to maximum daily exposure limits, while other locations were below the threshold limit of the Canadian National Ambient Air Quality Objectives (C-NAAQOs).29 A previous study found that heavy metals were present in the soil surface close to the cement plant.14,30,31 The concentration of TSP in Maros was slightly similar to the concentration of TSP in the nearest area around the Khouzestan cement company in Iran,32 and less than the average TSP concentration in Mexico.31 A previous study around a cement plant in Jordan also found 142.8 μg/m3 of TSP concentration over 24 hours.33 Higher particulate matter concentrations may indicate increased concentrations of bounded heavy metals. In a study in China, TSP contained lead (Pb), cadmium (Cd), chromium (Cr), manganese (Mn), zinc (Zn), arsenic (Ar), nickel (Ni) and copper (Cu).34

TSP Concentration (present study)	WHO 24 hours16	C-NAAQO 24 hours29	Jordanian Standard 24 hours37	González et al31	Sobhanardakani and Suedi32
mean: 52.82 μg/m3	PM\textsubscript{2.5}: 25 μg/m3	120 μg/m3	84.73 ± 12.85 μg/m3	137.17 ± 16.45 μg/m3	
min: 18.48 μg/m3	PM\textsubscript{10}: 50 μg/m3	260 μg/m3			
max: 133.24 μg/m3					

Table 4 — Comparison of Total Suspended Particle Concentrations to Standards and Previous Studies

Abbreviations: TSP, total suspended particulates, WHO, World Health Organization, Canadian National Ambient Air Quality Objectives, C-NAAQOs

Rauf et al
Diseases occurring from human particulate matter exposure are asthma, bronchiolitis and chronic obstructive pulmonary disease.\(^{35}\)

Dispersion modeling

Figure 2 shows the wind direction distribution. Based on wind distribution data in November for five years (2015-2020), the average wind direction is to the east and southeast with an average speed of 2.56 m/s. Due to weather conditions, dominant winds in this study area were heading to the east, east-southeast, and southeast directions. Location 3 and 4 are categorized as locations with high wind frequencies to the east and east-southeast. The winds around Location 1 and 2 followed the direction of the west wind. The western part of this area was less affected by wind distribution. On the other hand, Location 5 is away from the main emission source. Wind direction greatly affects transport and dispersion processes.\(^{20,38}\) Apart from meteorological and anthropogenic factors, other factors, such as natural vegetation, have a strong influence.\(^{35}\) Total suspended particle levels are possibly higher when the wind is blowing to the southeast compared to wind from other directions.

Areas where wind is persistent will possibly experience higher pollutant concentrations even though other areas are within the same distance from the pollutant source.\(^{39,39}\) Tukamasea and Bungaeja village are located in the prevailing southeast wind direction. If the wind speed is stronger, the distribution will reach further, with decreasing concentration.\(^{39,21}\) Pollutant concentrations were positively correlated with humidity.\(^{60}\) Wind distribution can cause particulates to move and spread over the area and accumulate over a long duration.\(^{49}\) Seasonal change is the main factor in TSP distribution, as the rainy season is characterized by lower dust concentrations than the dry season. In addition, the rainy season is significantly associated with other factors, such as humidity and temperature. The high kinetic energy of raindrops is able to remove a significant amount of particulate matter.\(^{44}\) In Johannesburg, winds blowing from the source of the pollutant to surrounding communities increased the likelihood of higher dust exposure compared to winds blowing in the opposite direction.\(^{42}\) The wind conditions which blow towards the settlement can be combined with the pollutant dispersion model to estimate the range of pollutants in the study area using a mathematical model simulation. By entering the specific characteristics of the study area such as local topography, fumigation and receptor height, accurate results can be obtained.

The Gaussian air pollution model from the SCREEN3 program was used to view the predicted concentration of air pollutants and the possible range of dust distribution. The maximum pollutant concentration was in the peak range about 500-700 m from the stacks (Figure 3). The present study chose a range between 1 m-5000 m from the stack to determine the effect of distance on TSP accumulation. Areas that are more distant from pollutant sources (>1500 m) will be safer to live in. This is consistent with the findings from similar studies in the vicinity of other cement factories. In a study around the cement industry in Amman, Jordan, it was found that TSP concentrations at less than 500 m exceeded the Jordanian Standard (JS 1140/2006).\(^{37}\) Another study by Gholampour reported that wind direction and season played an important role. In winter, the concentration of particulate matter will be higher due to the influence of thermal inversion, decrease in temperature, or increase in the frequency of calm wind.\(^{20}\) The maximum radius of air pollutant dispersion around the cement industry using AERMOD is up to 3 kilometers.\(^{43}\)

Modeling results can be used for planning new facilities in an appropriate area.\(^{33}\) Companies can adjust initial stack height, coal use and monitor the surrounding environment. In the present study, the most likely action involves designing mitigation strategies and evaluating existing policies. Maros-Pangkep is a karst area with abundant sources of limestone, basalt and alluvial deposits.\(^{44}\) Associated industrial activities can lead to production of byproducts that are harmful to the environment. In this situation, an advanced deployment model may be more suitable for the situation and get better results. Long-term exposure to TSP is harmful to human health, especially dust directly inhaled by local residents next to the industrial area.\(^{20}\)

Health risk assessment from nearby communities

In determining the level of health risk, a higher hazard quotient value indicates health risks to the surrounding population. In Figure 4, the highest HQ was in Location 3 (HQ 1.54), followed by Location 1 (HQ 0.50), Location 2 (HQ 0.45), location 4 (HQ 0.38), and Location 5 (HQ 0.10). Total suspended particulates, both PM\(_{2.5}\) and PM\(_{10}\), are able to penetrate the respiratory system.\(^{35}\) Frequent exposure can cause respiratory problems, decreased lung capacity, cardiovascular disease and mortality.\(^{35,44}\) Some studies have shown a relationship between TSP and adverse health effects.\(^{32}\) Location 5 was an area with the lowest hazard quotient.
value. This may be influenced by distance from the emission source and having the lowest TSP concentration. In this area, vegetation might play an important role, even though activities of the population may be similar to other locations.

Total suspended particulates often accumulate in environmental media such as soil and water bodies. In plants, TSP will interfere in the plant photosynthesis process. The accumulation of TSP from the cement industry is dangerous because it potentially contains harmful particulates that are carcinogenic elements. The accumulation of dust around the cement industry in Brazil was found to cause physical and chemical changes in cactus and Cenchrus ciliaris L. They found chlorotic spot, shorter stem, cells thickening, and leaf curling. The cement crust, becoming a phytotoxic pollutant, blocked 30-50% light onto C. fissilis. In this research, the farther the particulate distribution, the lower the amount of particulates in the air. Furthermore, supporting meteorological factors, such as wind direction played an important role.

A study on the health impact of TSP exposure near the cement industry in Zambia, the incident rates of reported respiratory symptoms were higher than the control (uncontaminated area) and able to decrease lung function. In early childhood, exposure to TSP increases the risk of pneumonia, especially in PM2.5 form and its constituents. A study found a non-carcinogenic risk of dust exposure through hand-mouth intake to children in industrial areas in north China. If non-carcinogenic and carcinogenic risks occur from an early age, higher frequency and longer exposures will have more harmful effects. The values for non-carcinogenic risk were obtained using dose response data from epidemiological data standards and actual intake. This research could assess pollutant exposure events and probabilistic risks that might occur even with low concentrations and intakes which potentially have consequences for public health in the future. Carcinogenic factors from particulate matter exposure through inhalation can be influenced by the content of particulates containing harmful inorganic substances. An association was found in Kuwait between particulate matter and premature adult mortality.

The private cement factory in Maros regency, Indonesia potentially produces large amounts of pollutants such dust, fly ash, poisonous gas, and other hazardous substances which pose a threat to the environment. Cement companies should begin to replace coal combustion with the latest processes and cement production composition to reduce environmental pollution from particulate matter (PM), CO2, NOx and SO2. Cement industries are expected to manage existing emissions and determine appropriate stack heights. Meanwhile, local residents should reduce their outdoor activities when wind speed is high and dominant towards residential areas, especially those living in Location 3 (HQ>1). In addition, personal protection equipment such as masks should be used. Face masks have been shown to protect wearers from inhalation of fine particulate matter and viruses.

Study limitations

Calculated health risks only represent risk in the rainy season. We recommend further research on TSP exposure in the dry season to compare the risk between the rainy and dry season.

Conclusions

The present study was carried out to determine levels of TSP and the influence of distance variations in meteorological factors for TSP concentrations near a cement plant in Maros regency, Indonesia. In sampling locations, the 24-hour concentrations of TSP exceeded the C-NAAQOs in Location 3. The present study successfully combined an examination of the potential health risk of TSP exposure and provides information on the possible range of particulate distribution through Gaussian air dispersion modeling using SCREEN3. The results show that the modeling approach is a useful tool for estimating the distance of pollutant dispersion by using specific data such as pollution source position, meteorological status and geographic condition in residential areas. Cement production activities have possibly affected ambient air quality. Increasing TSP concentrations will elevate the non-carcinogenic risk of respiratory illness and other diseases for residents near the cement plant. The longer the duration of outdoor activities, the higher the health risk of TSP exposure through inhalation. This could lead to the emergence of chronic respiratory diseases with longer duration of exposure.

Acknowledgments

The authors would like to acknowledge the Directorate General of Higher Education, Ministry of Education and Culture Republic of Indonesia (DIKTI) for funding this research through the PMDSU Batch 4 Program.

Copyright Policy

This is an Open Access article distributed in accordance with Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/).
References

1. Sushono W, Adiatmika IPG. Assessment of inhaled dust by workers and suspended dust for pollution control change and ergonomic intervention in metal casting industry: A cross-sectional study. Helion. 2020; 6 (e04067):1-10. https://doi.org/10.1016/j.heleny.2020.e04067

2. Kushkabagi S, Ebrahimouz MH, Mirhosseiniechabadi SA. Assessment of role of concrete factories in particulate matter emissions, 2015-2016, using the AQI index and zoning by GIS software (Case study: Nasr Kashan Concrete Factory). Environ Heal Eng Manag J. 2017; 4(3): 149-155. https://doi.org/10.15171/EEHM.2017.21

3. Zhang S, Worrell E, Crijns-Grans W, et al. Modeling energy efficiency to improve air quality and health effects of China's cement industry. Appl Energy. 2016, 184: 574-593. https://doi.org/10.1016/j.apenergy.2016.10.030

4. Voicu G, Ciobanu C, Istrate IA, Tudor P. Emissions control of hydrochloric and fluorhydric acid in cement factories from Romania. Int J Env Res Pub He. 2020; 17(3): 1-13. https://doi.org/10.3390/ijerph17030109

5. Sagala G, Kristanto GA, Kusuma MA, Rizki S. Assessment of municipal solid waste as refuse derived fuel in the cement industry. Int J Adv Sci Technol. 2018; 8(4): 1062-1070. https://doi.org/10.18517/ijastel.8.4.3469

6. Barhoumi B, Tedetti M, Heimburger-Boavida O, Onrubia JAT, et al. Chemical composition and in vitro aryl hydrocarbon receptor-mediated activity of particulate matter at an urban, agricultural and industrial site in North Africa (Bizerte, Tunisia). Chemosphere. 2020; 258: 127312. https://doi.org/10.1016/j.chemosphere.2020.127312

7. Mallongi A, Stang, Manyullei S, Natsir MF, Astuti RDP, Rauf AU. Risks Assessment of silica contamination on the communities living around the cement industry, Pangkep Indonesia. Indian J Public Health Res Dev. 2019; 10 (10): 1619-1622. Accessed [2021 January 10] Available from: http://medicopublication.com/index.php/ijphrd/article/view/6056

8. Olatunde KA, Soyanspa PA, Bada BS, Ojekunle ZO, Abdussalaam SA. Distribution and ecological risk assessment of heavy metals in soils around a major cement factory, Ibese, Nigeria. Sci African. 2020; 9 (e00496): 1-9. https://doi.org/10.1016/j.sciaf.2020.e00496

9. Cui X, Wang X, Liu B. The characteristic of heavy metal pollution in surface dust in Tangshan, a heavily industrialized city in North China, and an assessment of associated health risks. J Geochem Explor. 2020; 210 (106432). https://doi.org/10.1016/j. geoexpl.2019.106432

10. Rauf AU, Mallongi A, Astuti RDP. Heavy metal contributions on human skin disease near cement plant: a systematic review. Open Access Med J Sci. 2020; 8: 117-122. https://doi.org/10.3889/ oamjms.2020.4396

11. Laniyan TA, Adewumi AJ. Evaluation of contamination and ecological risk of heavy metals associated with cement production in Ewekoro, Southwest Nigeria. J Health Pollut. 2020; 10 (25): 203306. https://doi.org/10.5696/2156-9614-10.25.203306

12. Anjum MS, Ali SM, Imad-ud-din M, et al. An emerged challenge of air pollution and ever-increasing particulate matter in Pakistan: a critical review. J Hazard Mater. 2021; 402 (123943). https://doi.org/10.1016/j.jhazmat.2020.123943

13. Rauf AU, Mallongi A, Astuti RDP. Mercury and chromium distribution in soil near Maros Karst Ecosystem. Carpath J Earth Env. 2020; 15 (2): 453-460. https://doi.org/10.26471/cjees/2020/015/144

14. Astuti RDP, Mallongi A, Rauf AU. Natural enrichment of chromium and nickel in the soil surrounds the karst watershed. Glob J Environ Sci Manag. 2021; 7 (3): 1-18. http://doi.org/10.22034/GJESM.2021.03.05

15. Duppa A, Daud A, Bahar B. Kualitas udara ambien di sekitar industri Semen Bosowa Kabupaten Maros. Jurnal Kesehatan Masyarakat Maritim. 2020; 3 (1): 86-92. https://doi.org/10.30597/jkmmm.v3i1.10296

16. Syafrin S, Surya B, Ridwan R, Bahri S, Rasyidi ES, Sudarman S. Water quality pollution control and watershed management based on community participation in Maros City, South Sulawesi, Indonesia. Sustainability. 2020; 12 (24): 1-39. https://doi.org/10.3390/su122410260

17. Khamraev K, Cheriyani D, Choi J. A review on health risk assessment of PM in the construction industry – Current situation and future directions. Sci Total Environ. 2021; 758(143716). https://doi.org/10.1016/j.scitotenv.2020.143716

18. Chen L, Liu C, Zou R, Yang M, Zhang Z. Experimental examination of the effectiveness of vegetation as bio-filter of particulate matters in the urban environment. Environ Pollut. 2016; 208 (Part A): 198-208. https://doi.org/10.1016/j.envpol.2015.09.006

19. Abell GA, Diez SC, Pignata ML, Britch J. Particulate matter concentrations originating from industrial and urban sources: Validation of atmospheric dispersion modeling results. Atmos Pollut Res. 2016; 7(1): 180-189. https://doi. org/10.1016/j.apr.2015.08.009

20. Gholampour A, Nabiizadeh R, Nasiri S, Yunessian M, Taipbour H, et al. Exposure and health impacts of outdoor particulate matter in two urban and industrialized areas of Tabriz, Iran. J Environ Health Sci. 2014; 12 (27): 1-10. https://doi.org/10.1186/2052-336X-12-27

21. Husein S, Srijono S, Wijayanti HDK. Morfotektonik pembentukan Karst Maros, Sulawesi Selatan. Prosiding Seminar Indonesian Scientific Karst Forum I. 2008;19-20. Goeneng Sewoe Karst Forum, Yogyakarta. Available from: https://www.researchgate.net/publication/282609755_ Morfotektonik_pembentukan_Kars_Maros_Sulawesi_Selatan

22. Stanard Nasional Indonesia. Udara Ambien - Bagian 3: Cara Uji Partikel Tersuspensi Total Menggunakan Peralatan High Volume Air Sampler (HVAS) Dengan Metoda Gravimetri. Indonesia. 2017.

23. Ministry for the Environment New Zealand. Good practice guide for atmospheric dispersion modeling. Ministry for the Environment. 2004. Accessed [2021 April 18]. Available at: http://tools. envirolink.govt.nz/assets/Uploads/Good-Practice-Guide-MFE-atmospheric-dispersion-modelling-jun04.pdf

24. Siwasri D, Dinayak KC. Dust (Total Suspended Particulate) exposure risk assessment in unit packer PT. X. J Kesehat Lingkung. 2017; 9:100-110. https://doi.org/10.20473/jkl.v9i1.2017.100-101

25. United States Environmental Protection Agency (USEPA). Exposure Factors Handbook: 2011 Edition. EPA/660/R-090/052F; 2011.1-1466. Accessed [2021 April 18]. Available from: https://cfpub.epa.gov/ncea/ risk/recordisplay.cfm?deid=236252

26. United States Environmental Protection Agency (USEPA). Risk assessment guidance for superfund human health evaluation manual (Part A). Vol. I. Washington; 1989. Accessed [2021 April 20]. Available from: https://www.epa.gov/sites/production/files/2015-09/documents/rags_a.pdf

27. Okoji AI, Babatunde DE, Anozie AN, Omoleye JA. Thermodynamic analysis of raw mill in cement industry using Aspen Plus Simulator. IOP Conf Ser Mat Sci. 2018. https://doi.org/10.1088/1757-899X/413/1/012048

28. United Stated Environmental Protection Agency (USEPA). Ecological risk assessment guidance for...
Research

Total Suspended Particulates near a Cement Plant in Indonesia

Superfund: process for designing and conducting ecological risk assessments. USEPA 540-R; 1997. Accessed [2021 April 29]. Available from: https://semspub.epa.gov/work/HQ/157941.pdf

29. Canadian National Ambient Air Quality Objectives. Canada: Air Quality Standards. Published 2010. Accessed [2021 March 20]. Available from: https://www.transportpolicy.net/standard/canada-air-quality-standards/.

30. Astuti RDP, Mallongi A, Rauf AU. Risk identification of Hg and Pb in soil: a case study from Pangkep Regency, Indonesia. Soil Sci Ann. 2021;72(1):1-15. https://doi.org/10.37501/soilsa/135594

31. González LT, Rodríguez I, Domínguez M, et al. Determination of trace metals in TSP and PM2.5 materials collected in the Metropolitan Area of Monterrey, Mexico: A characterization study by XPS, ICP-AES and SEM-EDS. Atmos Res. 2017; 196: 8-22. https://doi.org/10.1016/j.atmosres.2017.05.009

32. Sobhanaradani S, Saedi M. Assessment of particulate matter, free silica and toxic gases emissions from Khouzestan Cement Company. University Med Sci. 2015; 25(125): 21-31. Accessed [2021 April 20]. Available from: http://jmums.mazums.ac.ir/article-1-5715-en.html

33. Abu-albanna M, Abu-qudais H. Impact assessment of ambient air quality by cement industry: A case study in Jordan. Aerosol Air Qual Res. 2011; 11(7): 802-810. https://doi.org/10.4209/aaq.2011.07.0090

34. Li P, Yu J, Bi C, et al. Health risk assessment for highway toll station workers exposed to PM 2.5-bound heavy metals. Atmos Pollut Res. 2019;10(4):1024-1030. https://doi.org/10.1016/j.apr.2019.01.011

35. Manalisid I, Stavropoulo E, Stavropoulos A, Bezirtzoglou E. Environmental and health impacts of air pollution: a review. Front Public Health. 2020;8(14):1-13. https://doi.org/10.3389/fpubh.2020.00014

36. World Health Organization. Ambient (outdoor) air pollution. WHO; 2018. Accessed [2021 April 20]. Available from: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health

37. Al Smadi BM, Aleboon KK, Shatanawi K. Assessment of air pollutants emissions from a cement plant: a case study in Jordan. Jordan J Civ Eng. 2009;3(3): 265-282. Available from: https://core.ac.uk/download/pdf/234698309.pdf

38. Davis W, Godish T, Fu J. Air Quality. Fifth Edition. CRC Press; 2014.

39. Yazdi MN. Modeling of cement factory air pollution dispersion by AERMOD- case study of Abeyk, Iran. In: A&WMA’s 109th Annual Conference & Exhibition. New Orleans; 2018:1-11.

40. Wen W, Ma X, Tang Y, Wei P, Wang J, Guo C. The impacts of meteorology on source contributions of air pollution in winter in Beijing , 2015-2017 climates. Atmos Pollut Res. 2020;11(11):1953-1962. https://doi.org/10.1016/j.apr.2020.07.029

41. Zhang L, Zhang Z, Chen L, McNulty S. An investigation on the leaf accumulation-removal efficiency of atmospheric particulate matter for five urban plant species under different rainfall regimes. Atmos Environ. 2019; 208:123-132. https://doi.org/10.1016/j.atmosenv.2019.04.010

42. Andreaos C, Utembwe W, Gulumian M. Exceedance of environmental exposure limits to crystalline silica in communities surrounding gold mine tailings storage facilities in South Africa. Sci Total Environ. 2018;619-620:504-516. https://doi.org/10.1016/j.scitotenv.2017.11.135

43. Jayadipraja EA, Risky S, Nofitassarai A, Usman AN. The relationship between the cement emission stacks dispersion model using AERMOD and the lung capacity of the surrounding community. Enferm Clin. 2020; 30:494-498. https://doi.org/10.1016/j.enfcli.2019.07.146

44. Stepanova N V, Fomina SF. Risks for population health from atmospheric air pollution in the City of Kazan. Proceedings. 2019; 6(3): 1-6. https://doi.org/10.3390/ijerph161115124

45. Vídmár J, Zuliáni T, Novák P, Drinčić A, Ščančar M, Vidmar J, Zuliani T, Novak P, Drinčić A, Ščančar M. Health risk assessment of airborne particulate matter on respiratory health of winter haze over the Beijing-Tianjin-Hebei region tied to wind speed in the lower troposphere and particulate sources. Atmos Res. 2019; 215: 1-11. https://doi.org/10.1016/j.atmosres.2018.08.013

46. Zhang L, Zhang Z, Chen L, McNulty S. An investigation on the leaf accumulation-removal efficiency of atmospheric particulate matter for five urban plant species under different rainfall regimes. Atmos Environ. 2019; 208:123-132. https://doi.org/10.1016/j.atmosenv.2019.04.010

47. Jayadipraja EA, Risky S, Nofitassarai A, Usman AN. The relationship between the cement emission stacks dispersion model using AERMOD and the lung capacity of the surrounding community. Enferm Clin. 2020; 30:494-498. https://doi.org/10.1016/j.enfcli.2019.07.146

48. Stephenova N V, Fomina SF. Risks for population health from atmospheric air pollution in the City of Kazan. Proceedings. 2019; 6(3): 1-6. https://doi.org/10.3390/ijerph161115124

49. Al Faifi T, Shabasy E. Effect of heavy metals in the cement dust pollution on morphological and anatomical characteristics of Cerchus ciliaris L. , Saudi J Biol Sci. 2021; 28(1): 1069-1079. https://doi. org/10.1016/j.sjbs.2020.11.015

50. Siqueira-Silva AI, Gusmão E, Modolo LV, Filho JP, Paiva EAS. Impact of cement dust pollution on Cedrela fissilis Vell. (Meliaceae): A potential biomonitoring species. Chemosphere. 2016;158: 56-65. https://doi.org/10.1016/j.chemosphere.2016.05.047

51. Silva LFO, Schneider H., Artaxo P, et al. Particulate matter geochemistry of a highly industrialized region in the Caribbean: Basis for future toxicological studies. Geosci Front. 2020; 110115: 1-12. https://doi.org/10.1016/j.geoscifront.2020.11.012

52. Shi P, Zhang G, Kong F, Chen D, et al. Variability of winter haze over the Beijing-Tianjin-Hebei region tied to wind speed in the lower troposphere and particulate sources. Atmos Res. 2019; 213: 1-11. https://doi.org/10.1016/j.atmosres.2018.08.013

53. Nkhamè E, Ndhlovu M, Dvович JT, et al. Effects of airborne particulate matter on respiratory health in a community near a cement factory in Chilanga , Zambia: results from a panel study. Int J Environ Res Pub He. 2017; 14(11): 1351. https://doi.org/10.3390/ijerph14111351

54. Shi W, Liu C, Annesi-maesano I, et al. Ambient PM2.5 and its chemical constituents on lifetime-ever pneumonia in Chinese children: A multi-center study. Environ Int. 2021; 146: 106176. https://doi.org/10.1016/j.envint.2020.106176

55. Ricci PF. Environmental and health risk assessment and management, principles and practices. Dordrecht: Springer; 2006.

56. Ma Y, Wang Z, Tan Y, et al. Comparison of inorganic chemical compositions of atmospheric TSP, PM10 and PM2.5 in northern and southern Chinese coastal cities. J Environ Sci. 2017; 55: 1-15. https://doi.org/10.1016/j.jes.2016.05.045

57. Embiale A, Chandravanshi BS, Zegwe F, et al. Health risk assessment of total volatile organic compounds, particulate matters and trace elements in PM 10 in typical living rooms in Addis Ababa Ethiopia. Int J Environ An Ch. 2020:1-19. https://doi.org/10.1007/s10476-020-01426-6

58. Al-hemoud A, Gasana J, Al-dabbous AN, et al. Disability adjusted life years (DALYs) in terms of years of life lost (YLL) due to premature adult mortalities and postneonatal infant mortalities attributed to PM2.5 and PM10 exposures in Kuwait. Int J Environ Res Pub He. 2018; 1-15. https://doi.org/10.3390/ijerph15112609

Rauf et al

Journal of Health & Pollution Vol. 11, No. 30 — June 2021
59. Tun TZ, Bonnet S, Gheewala SH. Emission reduction pathways for a sustainable cement industry in Myanmar. Sus Prod Consum. 2021; 27: 449-461. https://doi.org/10.1016/j.spc.2021.01.016

60. Rodríguez J, Frías M, Tobón JI. Eco-efficient cement based on activated coal washing rejects with low content of kaolinite. Constr Build Mater. 2021; 274:122118. https://doi.org/10.1016/j.conbuildmat.2020.122118

61. Wang H, Qi T, Feng G, et al. Effect of partial substitution of corn straw fly ash for fly ash as supplementary cementitious material on the mechanical properties of cemented coal gangue backfill. Constr Build Mater. 2021; 280: 122553. https://doi.org/10.1016/j.conbuildmat.2021.122553

62. Xu J, Xiao X, Zhang W, et al. Air-filtering masks for respiratory protection from PM2.5 and pandemic pathogens. One Earth. 2020; 3(5): 574-589. https://doi.org/10.1016/j.oneear.2020.10.014