Error Processing of Sparse Identification of Nonlinear Dynamical Systems via L_∞ Approximation

Yuqiang Wu

School of Artificial Intelligence and Automation, Huazhong University of Science and Technology

(Dated: July 14, 2021)

Sparse identification of nonlinear dynamical systems (SINDy) is a recently presented framework in the reverse engineering field. It soon gains general interests due to its interpretability and efficiency. Error processing, as an important issue in the SINDy framework, yet remains to be an open problem. To date, literature about error processing focuses on data processing methods which aim to improve the accuracy of data. However, the relationship between data and the identification framework is largely ignored. In this paper, error processing is studied from an optimization perspective. In detail, L_∞ approximation is introduced to the objective function in SINDy framework in place of the former L_2 approximation. This is especially appropriate for dealing with the derivative approximation error in SINDy because the derivative approximation error has no exact distribution. To verify the effectiveness of L_∞ approximation, identification scenarios with different types of derivative approximation error are tested. The results indicate that L_∞ approximation could become an alternative of L_2 approximation especially when lacking prior knowledge of derivative approximation error. The performances of L_∞ approximation and L_2 approximation are evaluated in the cases where the measurement noise of system state is considered. Experimental results show that L_∞ approximation has equal performance compared to L_2 approximation under the assumption of Gaussian measurement noise, which is promising in applications.

I. INTRODUCTION

Reverse engineering, referring to extracting certain information from observed data of an unknown system, is an important topic in physics\cite{1} and many other disciplines\cite{2, 3}. With various data, models and tasks, a lot of mathematical methods developed in data science have been employed to reverse engineering such as statistical models\cite{4}, information theory\cite{5} and deep learning\cite{6}. Although these methods largely enrich the knowledge of system modeling, they conclude with black-box models of the system, which has no capability of revealing inner mechanisms in physical level. Towards better interpretability of the identified model, sparse identification of nonlinear dynamical systems (SINDy) was presented\cite{7} which searches for a parsimonious mathematical expression of the unknown system. In detail, at first, a large dictionary containing plenty of possible items of system dynamics is constructed according to professional information or prior knowledge. Then, regression is performed with additional sparsity to select few proper items. Because SINDy model owns interpretability and the algorithm is of high efficiency, it rapidly becomes popular and gains researchers’ attention\cite{8-12}.

Although SINDy successfully discovers many systems governed by different types of differential equations, this framework has an intrinsic defect that the successful discovery relies greatly on the accuracy of data, mainly consists of the system states and the approximated derivatives\cite{7}. Hence, error processing becomes a fairly important task in the SINDy framework. In this field, recent studies mainly focus on advanced numerical difference method\cite{13, 14}, which aims at improving the accuracy of approximating derivative. Despite modification from data perspective, it is still unknown whether the modified data is closer to the true value or not. Obviously, it is far from enough to study error processing only in data aspect.

In this paper, error processing is tackled from an optimization perspective. Specifically, L_∞ approximation is introduced to the objective function in place of the former L_2 approximation. The motivation is that L_∞ approximation bounds the fitting error (or the residual) in an interval without considering its distribution, which is intuitively more appropriate to describe derivative approximation error in general conditions. For evaluating the performance of L_∞ approximation, several identification scenarios are considered in this paper with the change of derivative approximation error. The results of L_2 approximation and L_∞ approximation are compared and some conclusions are drawn. Moreover, further issues of L_∞ approximation in applications are discussed. The remaining parts of this paper are organized as follows. Section II introduces SINDy and L_∞ approximation. Section III thoroughly shows the comparative experiments of L_2 approximation and L_∞ approximation in different derivative approximation error scenarios. Section IV talks about L_∞ approximation in the presence of the measurement noise of system states. Section V concludes this paper.
II. PROBLEM STATEMENT

A. SINDy framework

For convenience, the dynamical system of 1-D ordinary differential equation (ODE) is considered, which is described as follow:

\[\frac{dx}{dt} = f(x), \]

(1)

where \(x \in \mathbb{R} \) is the system state and \(f \) is the unknown system dynamics. Assume that only the observation of \(x \) is available and the derivatives of the state, \(\dot{x} \) is derived from \(x \) through numerical difference methods. In the time scale \([t_1, t_n]\), they are written as follow:

\[x(t) = [x(t_1) \ x(t_2) \ldots x(t_n)]^T, \]

(2)

and

\[\dot{x}(t) = [\dot{x}(t_1) \ \dot{x}(t_2) \ldots \dot{x}(t_n)]^T. \]

(3)

After the data is obtained, a dictionary of possible \(f \) items is constructed according to the prior knowledge of the system. For example, a polynomial dictionary is written as follow:

\[\Theta(t) = \begin{bmatrix} 1 & x(t_1) & x^2(t_1) & \ldots & x^m(t_1) \\ 1 & x(t_2) & x^2(t_2) & \ldots & x^m(t_2) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x(t_n) & x^2(t_n) & \ldots & x^m(t_n) \end{bmatrix}. \]

(4)

Then, the sparse regression is performed. The sparse weight vector \(\xi \) is written as follow:

\[\xi = [\xi_1 \ \xi_2 \ \ldots \ \xi_m]^T. \]

(5)

And the optimization problem is formulated as follow:

\[\xi^* = \arg \min \| \tilde{x}(t) - \Theta(t) \xi \|_2 + \lambda \| \xi \|_0, \]

(6)

where \(\xi^* \) is the optimal solution and \(\lambda \) is the regularization factor which controls the level of sparsity. Note that, equation (6) could be directly solved by SINDy algorithm [7] or be relaxed to the least absolute shrinkage and selection operator (LASSO) problem [12] and then solved by well-studied algorithms. Finally, according to \(\xi^* \), the relative items in the dictionary are consulted and the governing equation is recovered.

B. \(L_2 \) and \(L_\infty \)

In the following, \(L_2 \) norm and \(L_2 \) approximation are introduced with comparison of \(L_\infty \) norm and \(L_\infty \) approximation. For a vector \(x \in \mathbb{R}^n \), its \(L_2 \) norm and \(L_\infty \) norm are defined as follow:

\[\|x\|_2 = (x_1^2 + x_2^2 + \ldots + x_n^2)^{\frac{1}{2}}, \]

(7)

FIG. 1. Distribution of \(r \). The curve in (a) represents the normal distribution and the shadow in (b) means that the distribution is unknown in such area.

\[\|x\|_\infty = \max(|x_1|, |x_2|, \ldots, |x_n|). \]

(8)

In equation (6), \(L_2 \) norm is adopted to measure the distance between \(\tilde{x}(t) \) and \(\Theta(t) \xi \). Minimizing \(L_2 \)-norm distance in equation (6) is named \(L_2 \) approximation [?]. Similarly, using \(L_\infty \) norm to measure the distance between \(\tilde{x}(t) \) and \(\Theta(t) \xi \) in equation (6) is named \(L_\infty \) approximation. Define the distance between \(\tilde{x}(t) \) and \(\Theta(t) \xi \) as the residual \(r \) as follow:

\[r = \| \tilde{x}(t) - \Theta(t) \xi \| = [r_1 \ r_2 \ \ldots \ r_n]^T. \]

(9)

Then define the derivative approximation error \(e \) as follow:

\[e = \tilde{x} - \dot{x}, \]

(10)

where \(\dot{x} \) is the true derivative of the system state. If \(e \) is known of normal distribution \(\mathcal{N}(0, \sigma^2) \), \(L_2 \) approximation can exactly reveal \(r \) through dividing \(e \) into \(r \) by \(\mathcal{N}(0, \sigma^2) \). However, \(e \) is unknown of distribution in general conditions. In such cases, the revealed \(\xi \) of equation (6) is inaccurate. While in \(L_\infty \) approximation, \(r \) is bounded in the interval of \([-r_{max}, r_{max}]\), in which \(r_{max} \) is the maximum of \(|r|\). Here, the specific form of the distribution of \(|r|\) is unclear. In other words, it can be an arbitrary distribution. This characteristic gives a better description of the derivative approximation error. An intuitive illustration of \(L_2 \) approximation and \(L_\infty \) approximation is shown in FIG. 1.

C. \(L_\infty \) approximation formulation

According to the discussions of \(L_2 \) approximation and \(L_\infty \) approximation, it is natural to introduce \(L_\infty \) approximation to equation (6) in place of \(L_2 \) approximation. Hence, the problem can be reformulated as follow:

\[\xi^* = \arg \min \| \tilde{x}(t) - \Theta(t) \xi \|_\infty + \lambda \| \xi \|_0. \]

(11)

Equation (11) is known as NP-hard problem, which has no rigorous mathematical solution. For efficiency, particle swarm optimization (PSO) [16, 17] is employed in
III. DEMONSTRATION EXAMPLE

To verify the effectiveness of \(L_\infty \) approximation, 3 different derivative approximation error scenarios are considered. Note that in this section, the measurement noise of system state \(x \) is not considered. Simulations are based on Lorenz system with the formulation:

\[
\begin{align*}
\dot{x} &= \sigma (y - x) \\
\dot{y} &= x (r - z) - y \\
\dot{z} &= xy - yz
\end{align*}
\] (12)

where \(\sigma = 10 \), \(r = 28 \), and \(\beta = 8/3 \). Initial state \(x(0) \) is \([-8, 8, 27]^T\) in the simulation of identification stage while \([1, 1, 1]^T\) in the simulation of reconstruction stage. Time interval \(\Delta t \) keeps the same in both two stages, and time scale is \([0, 50s]\) in all experiments.

A. Scenario: measurable derivative \(\dot{x} \)

Usually, derivative \(\dot{x} \) could not be obtained directly from observation. This scenario considers measurable derivative \(\dot{x} \) because it provides a clear explanation on the difference between \(L_2 \) approximation and \(L_\infty \) approximation. Assuming derivative \(\dot{x} \) is measurable and the measurement noise \(\varepsilon \) satisfies normal distribution \(\mathcal{N}(0, \sigma^2) \). Different noise levels are tested and the results of the reconstruction error are shown in Table I. In the noise-free case, error indicators of \(L_2 \) approximation are close to 0 and pretty smaller than \(L_\infty \) approximation. In other cases, error indicators of \(L_2 \) approximation and \(L_\infty \) approximation are close to each other and \(L_2 \) approximation performs slightly better than \(L_\infty \) approximation in most cases.

B. Scenario: different sampling interval \(\Delta t \)

Derivative \(\dot{x} \) needs to be approximated from state \(x \). In such a situation, sampling interval \(\Delta t \) plays an important role in the approximation since it controls the accuracy of approximation. For simplicity, the central difference technique is used here as an example which is a basic technique in derivative approximation. Different \(\Delta t \) is tested with reconstruction error as shown in Table II. It is observed that \(L_\infty \) approximation has a better performance in most cases.

C. Scenario: different derivative approximation techniques

In scenario B, the central difference is adopted as the derivative approximation technique. In this section, different derivative approximation techniques are tested with reconstruction error as shown in Table III.

D. Summary

In summary, from Table I, Table II and Table III, the performances of \(L_2 \) approximation and \(L_\infty \) approximation are roughly on the same level because their error indicators are very close. \(L_2 \) approximation performs better than \(L_\infty \) approximation when derivative approximation error is more likely to be normal distribution. \(L_\infty \) approximation performs better than \(L_2 \) approximation when distribution of derivative approximation error is unknown, which is the general scenario in applications. Hence, it can be concluded that \(L_\infty \) approximation could become an alternative of \(L_2 \) approximation. Further, according to the illustration of \(L_2 \) and \(L_\infty \) in section II, \(L_\infty \) approximation is regarded as the baseline formulation of the identification problem. \(L_2 \) approximation is a modified version which additionally uses prior information of the derivative approximation error. The use of such extra information may induce more accurate results but may also induce less accurate results because it is actually unknown of the derivative approximation error. Hence, it is advisable to use \(L_\infty \) approximation in place of \(L_2 \) approximation when there is no prior knowledge of the derivative approximation error.

IV. MEASUREMENT NOISE OF \(x \)

Although the effectiveness of \(L_\infty \) approximation has been verified, there is still a gap towards application. Especially, in applications of the SINDy framework, the measurement noise \(\nu \) of the system state \(x \) always exists. When \(\nu \) is considered, the identification problem becomes more complex in theoretical aspect. Here, simulation experiments are carried out to test the performance of \(L_\infty \) approximation and \(L_2 \) approximation in noisy environment. For simplicity, the measurement noise is assumed to be additive \(\nu \sim \mathcal{N}(0, \sigma^2) \). Lorenz system and Chen system are tested with different levels of \(\sigma \). Lorenz system is formulated as equation (12) and Chen system is formulated as follow:

\[
\begin{align*}
\dot{x} &= a(y - x) \\
\dot{y} &= (c - a)x + cy - xz \\
\dot{z} &= xy - bz
\end{align*}
\] (13)

where \(a = 35 \), \(b = 3 \), and \(c = 28 \). Results are displayed in Table IV and Table V. It shows that \(L_\infty \) approximation and \(L_2 \) approximation almost have the equal perfor-
TABLE I. Reconstruction results in different noise levels in scenario A. The bold number is the better in the comparison between L_2 approximation and L_∞ approximation. Note that the sampling interval is 0.01s.

σ	Sub-system 1	Sub-system 2	Sub-system 3			
	RMSE	STD	RMSE	STD	RMSE	STD
0	0.2881 8.6895	0.2879 8.4919	0.4577 9.8529	0.4575 9.6780	0.5917 9.4325	0.5917 9.4244
0.001	0.5832 8.5985	0.5772 8.5786	0.9762 9.8542	0.9671 9.8343	0.9415 10.6614	0.9413 10.6622
0.005	0.6649 8.9438	0.3725 8.8966	0.9510 10.1695	0.6912 10.1287	0.8295 7.9664	0.9329 7.9633
0.01	0.6558 8.4965	0.9403 8.4974	10.1527 9.7571	10.0705 9.7581	10.8942 10.4300	10.8938 10.4311
0.05	0.9147 10.3681	0.9311 9.7319	10.3336 11.4948	10.1216 10.9034	10.5555 11.0698	10.5558 11.0670
0.1	0.2816 10.1375	0.2771 9.9941	10.4860 11.4029	10.4831 11.2798	10.1537 11.0649	10.1539 11.0639
0.5	0.8260 9.3277	0.8021 9.1752	10.2290 10.5119	10.2090 10.3786	0.9271 10.3269	0.9271 10.3277
1	0.0076 10.3535	0.0073 10.1637	0.9418 11.6793	0.9416 11.5084	0.9353 9.7219	0.9352 9.7192

TABLE II. Reconstruction results with different Δt in scenario B. The bold number is the better in the comparison between L_2 approximation and L_∞ approximation. Note that the derivative approximation technique is the central difference.

Δt	Sub-system 1	Sub-system 2	Sub-system 3			
	RMSE	STD	RMSE	STD	RMSE	STD
0.001	10.4323 9.8680	10.4321 9.7612	11.9036 11.0866	11.9030 11.0963	0.1648 11.1678	0.1648 11.1642
0.0025	0.1264 9.5385	0.0210 9.5243	10.3349 10.9249	10.2441 10.9135	10.1341 7.6042	10.1361 7.5950
0.005	0.9645 9.5531	0.9573 9.5087	10.8999 10.5686	10.8155 10.5302	0.8923 8.9186	0.8927 8.9179
0.0075	9.4223 9.3537	9.3978 9.2677	10.7415 10.6525	10.7211 10.5818	0.9629 9.3519	0.9618 9.3514
0.01	10.4789 9.7742	10.0651 9.6871	11.6054 11.1438	11.1824 11.0698	11.2347 10.1744	11.2358 10.1752
0.02	9.8337 9.5330	9.5712 9.5060	11.1490 10.8641	10.9185 10.8417	10.6882 10.4970	10.6855 10.4990

V. CONCLUSION

This paper deals with the error processing problem in the SINDy framework from an optimization perspective. Derivative approximation error is concerned and L_∞ approximation is introduced to the identification problem in place of the former L_2 approximation. The characteristics of L_∞ approximation and L_2 approximation are illustrated in both theoretical and experimental aspects. It shows that L_∞ approximation could become an alternative of L_2 approximation and it is reasonable to use L_∞ approximation rather than L_2 approximation when no prior knowledge of derivative approximation error is available. Furthermore, experiments show that L_∞ approximation performs no worse than L_2 approximation even if the measurement noise of system state is under consideration. This shows great potential of L_∞ approximation in applications.

[1] J. Bongard and H. Lipson, Automated reverse engineering of nonlinear dynamical systems, Proceedings of the National Academy of Sciences 104, 9943 (2007).

[2] A. F. Villaverde and J. R. Banga, Reverse engineering and identification in systems biology: strategies, perspectives and challenges, Journal of the Royal Society Interface 11, 20130505 (2014).

[3] B. T. Martin, S. B. Munch, and A. M. Hein, Reverse-engineering ecological theory from data, Proceedings of the Royal Society B: Biological Sciences 285, 20180422 (2018).

[4] Y. Huang, I. M. Tienda-Luna, and Y. Wang, A survey of statistical models for reverse engineering gene regulatory networks, IEEE signal processing magazine 26, 76 (2009).

[5] A. F. Villaverde, J. Ross, and J. R. Banga, Reverse engineering cellular networks with information theoretic methods, Cells 2, 306 (2013).

[6] J. N. Kutz, Deep learning in fluid dynamics, Journal of Fluid Mechanics 814, 1 (2017).

[7] S. L. Brunton, J. L. Proctor, and J. N. Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proceedings of the national academy of sciences 113, 3932 (2016).

[8] M. Dam, M. Brøns, J. Juul Rasmussen, V. Naulin, and J. S. Hesthaven, Sparse reduced-order modeling: sensor-based dynamics to full-state estimation, arXiv preprint arXiv:1706.03531 (2017).

[9] J.-C. Loiseau, B. R. Noack, and S. L. Brunton, Sparse reduced-order modeling: sensor-based dynamics to full-state estimation, arXiv preprint arXiv:1706.03531 (2017).
Technique	Sub-system 1		Sub-system 2		Sub-system 3	
	RMSE L_2	STD L_∞	RMSE L_2	STD L_∞	RMSE L_2	STD L_∞
Central difference	10.4789	9.7742	10.0051	9.6871	11.6054	11.0698
Polynomial interpolation	9.8039	9.8283	9.7365	9.7220	11.1710	11.1118

| TABLE III. Reconstruction results with different derivative approximation techniques in scenario C. The bold number is the better in the comparison between L_2 approximation and L_∞ approximation. Note that the sampling interval is 0.01s. |

| TABLE IV. Reconstruction results in Lorenz system considering the measurement noise ν of the system state x. The bold number is the better in the comparison between L_2 approximation and L_∞ approximation. Note that the central difference is adopted. |

Δt	σ	Sub-system 1		Sub-system 2		Sub-system 3	
		RMSE L_2	STD L_∞	RMSE L_2	STD L_∞	RMSE L_2	STD L_∞
0.01	0.01	9.2212	10.0033	9.0940	11.2324	11.2143	10.4182
	0.03	9.5975	9.3425	9.7365	10.9833	10.8940	10.7662
	0.05	10.3548	10.2667	9.9072	11.5361	11.4914	11.4145
0.01	0.01	8.8212	9.4977	8.7741	11.1075	10.8457	10.0436
	0.03	8.7960	8.5449	8.5759	10.2307	9.8823	9.8024
	0.05	10.1170	9.6095	9.8105	11.3654	10.0306	10.0259
0.01	0.01	9.7939	9.4977	8.7741	11.1075	10.8457	10.0436
	0.03	9.9642	9.5216	10.7341	11.3432	12.2733	10.9511
	0.05	10.4431	9.0049	9.1982	10.7483	9.8403	10.4040

(2017).

[10] M. Quade, M. Abel, J. Nathan Kutz, and S. L. Brunton, Sparse identification of nonlinear dynamics for rapid model recovery, Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 063116 (2018).

[11] L. Boninsegna, F. Nüske, and C. Clementi, Sparse learning of stochastic dynamical equations, The Journal of chemical physics 148, 241723 (2018).

[12] M. Hofmann, C. Fröhner, and F. Noé, Reactive sindy: Discovering governing reactions from concentration data, The Journal of Chemical Physics 150, 025101 (2019).

[13] K. Kaheman, S. L. Brunton, and J. N. Kutz, Automatic differentiation to simultaneously identify nonlinear dynamics and extract noise probability distributions from data, arXiv preprint arXiv:2009.08810 (2020).

[14] F. van Breugel, J. N. Kutz, and B. W. Brunton, Numerical differentiation of noisy data: A unifying multi-objective optimization framework, IEEE Access (2020).

[15] T. Hastie, R. Tibshirani, and M. Wainwright, Statistical learning with sparsity: the lasso and generalizations (CRC press, 2015).

[16] Y. Shi and R. Eberhart, A modified particle swarm optimizer, in 1998 IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence (Cat. No. 98TH8360) (IEEE, 1998) pp. 69–73.

[17] M. R. Bonyadi and Z. Michalewicz, Particle swarm optimization for single objective continuous space problems: a review (2017).

[18] Y. Wu, Y. Wu, and X. Liu, Couple-based particle swarm optimization for short-term hydrothermal scheduling, Applied Soft Computing 74, 440 (2019).

[19] Y. Wu, Reconstruction of delay differential equation via learning parameterized dictionary, arXiv e-prints, arXiv (2020).
TABLE V. Reconstruction results in Chen system considering the measurement noise ν of the system state x. The bold number is the better in the comparison between L_2 approximation and L_∞ approximation. Note that the central difference is adopted.

Δt	σ	Sub-system 1	Sub-system 2	Sub-system 3
		L_2 L_∞	L_2 L_∞	L_2 L_∞
0.01	0.01	11.661 11.5986	11.664 11.5944	12.6088 12.4503
0.05	0.03	12.8201 11.8909	12.2007 11.8909	13.0935 12.7406
0.01	0.03	11.8036 11.4879	11.8031 11.4876	12.6919 12.4162
0.05	0.03	12.1168 11.5378	12.1175 11.5359	13.0866 12.4665
0.01	0.03	12.2153 11.6783	12.1989 11.0736	13.1231 12.5253
0.05	0.03	10.9731 11.6689	10.9688 11.6700	11.8033 12.5719
0.01	0.03	11.4369 11.3026	11.4367 11.2973	12.3227 12.2262
0.02	0.03	11.2958 11.6028	11.2831 11.6032	12.1547 12.4993
0.05	0.03	11.7023 11.8192	11.6926 11.8158	12.5949 12.8017