Analysis of complete mitochondrial genomes from extinct and extant rhinoceroses reveals lack of phylogenetic resolution

Willerslev, Eske; Gilbert, Tom; Binladen, Jonas; Ho, Simon Y W; Campos, Paula F; Ratan, Aakrosh; Tomsho, Lynn P; da Fonseca, Rute R; Sher, Andrei; Kuznetsova, Tatanya V; Nowak-Kemp, Malgosia; Roth, Terri L; Miller, Webb; Schuster, Stephan C

Published in:
BMC Evolutionary Biology

DOI:
10.1186/1471-2148-9-95

Publication date:
2009

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Willerslev, E., Gilbert, T., Binladen, J., Ho, S. Y. W., Campos, P. F., Ratan, A., Tomsho, L. P., da Fonseca, R. R., Sher, A., Kuznetsova, T. V., Nowak-Kemp, M., Roth, T. L., Miller, W., & Schuster, S. C. (2009). Analysis of complete mitochondrial genomes from extinct and extant rhinoceroses reveals lack of phylogenetic resolution. BMC Evolutionary Biology, 9, 95. https://doi.org/10.1186/1471-2148-9-95
Analysis of complete mitochondrial genomes from extinct and extant rhinoceroses reveals lack of phylogenetic resolution

Eske Willerslev*1, M Thomas P Gilbert1, Jonas Binladen1, Simon YW Ho2, Paula F Campos1, Aakrosh Ratan3, Lynn P Tomsho3, Rute R da Fonseca4, Andrei Sher5, Tatanya V Kuznetsova6, Malgosia Nowak-Kemp7, Terri L Roth8, Webb Miller3 and Stephan C Schuster*3

Address: 1Centre for Ancient Genetics, University of Copenhagen, Universitetsparken 15, DK-2100, Denmark, 2Centre for Macroevolution and Macroecology, School of Biology, Australian National University, Canberra, ACT 0200, Australia, 3Pennsylvania State University, Center for Comparative Genomics and Bioinformatics, 310 Wartik Building, University Park, PA 16802, USA, 4Department of Integrative Biology, University of California, Berkeley, CA 9472-3140, USA, 5Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninsky Prospect, 119071 Moscow, Russia, 6Department of Paleontology, Faculty of Geology, Lomonosov Moscow State University, Leninskiye Gory, 119992 Moscow, Russia, 7Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, UK and 8Center for Conservation and Research of Endangered Wildlife (CREW), Cincinnati Zoo & Botanical Garden, 3400 Vine St, Cincinnati, OH 45220, USA

E-mail: Eske Willerslev* - ewillerslev@bio.ku.dk; M Thomas P Gilbert - mtpgilbert@gmail.com; Jonas Binladen - jbinladen@gmail.com; Simon YW Ho - simon.ho@anu.edu.au; Paula F Campos - pcampos@bi.ku.dk; Aakrosh Ratan - ratan@cse.psu.edu; Lynn P Tomsho - lap153@psu.edu; Rute R da Fonseca - rute.r.da.fonseca@gmail.com; Andrei Sher - mtpgilbert@gmail.com; Tatanya V Kuznetsova - tatkuz@orc.ru; Malgosia Nowak-Kemp - malgosia.nowak-kemp@oum.ox.ac.uk; Terri L Roth - terri.roth@cincinnatizoo.org; Webb Miller - webb@bx.psu.edu; Stephan C Schuster* - scs@bx.psu.edu

*Corresponding author

Published: 11 May 2009
Received: 3 October 2008
Accepted: 11 May 2009

This article is available from: http://www.biomedcentral.com/1471-2148/9/95
© 2009 Willerslev et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: The scientific literature contains many examples where DNA sequence analyses have been used to provide definitive answers to phylogenetic problems that traditional (non-DNA based) approaches alone have failed to resolve. One notable example concerns the rhinoceroses, a group for which several contradictory phylogenies were proposed on the basis of morphology, then apparently resolved using mitochondrial DNA fragments.

Results: In this study we report the first complete mitochondrial genome sequences of the extinct ice-age woolly rhinoceros (Coelodonta antiquitatis), and the threatened Javan (Rhinoceros sondaicus), Sumatran (Dicerorhinus sumatrensis), and black (Diceros bicornis) rhinoceroses. In combination with the previously published mitochondrial genomes of the white (Ceratotherium simum) and Indian (Rhinoceros unicornis) rhinoceroses, this data set putatively enables reconstruction of the rhinoceros phylogeny. While the six species cluster into three strongly supported sister-pairings: (i) The black/white, (ii) the woolly/Sumatran, and (iii) the Javan/Indian, resolution of the higher-level relationships has no statistical support. The phylogenetic signal from individual genes is highly diffuse, with mixed topological support from different genes. Furthermore, the choice of outgroup (horse vs tapir) has considerable effect on reconstruction of the phylogeny. The lack of resolution is suggestive of a hard polytomy at the base of crown-group Rhinocerotidae, and this is supported by an investigation of the relative branch lengths.

Conclusion: Satisfactory resolution of the rhinoceros phylogeny may not be achievable without additional analyses of substantial amounts of nuclear DNA. This study provides a compelling
demonstration that, in spite of substantial sequence length, there are significant limitations with single-locus phylogenetics. We expect further examples of this to appear as next-generation, large-scale sequencing of complete mitochondrial genomes becomes commonplace in evolutionary studies.

"The human factor in classification is nowhere more evident than in dealing with this superfamily (Rhinoceroidea)." G. G. Simpson (1945)

Background
Despite being a long-standing target of scientific research, resolution of the phylogeny of the five living rhinoceroses using traditional (non-DNA) approaches has been controversial. At the root of the problem is the placement of the Sumatran rhinoceros (*Dicerorhinus sumatrensis*), a species that has retained many ancestral morphological characters, among the broadly accepted sub-clades of the black (*Diceros bicornis*) and white (*Ceratotherium simum*) rhinoceroses, and the Javan (*Rhinoceros sondaicus*) and Indian (*Rhinoceros unicornis*) rhinoceroses. For example, on the one hand, the two horns of the Sumatran rhinoceros suggest that it should be placed with the similarly two-horned black and white rhinoceroses, rather than with the single-horned Javan and Indian rhinoceroses [1,2]. On the other hand, the geographic distribution of the Sumatran rhinoceros, and its close proximity with the two other living Asian species, would indicate that they form a natural clade [3]. Third, a hard trichotomy has been proposed, reflecting an effectively simultaneous divergence of the three lineages [4-6]. Attempts to resolve such questions can be made by including fossil taxa, for example the woolly rhinoceros in this case. However, this has proven to be similarly problematic. Although it seems clear that the woolly and Sumatran are closely related (for example both have two horns and a hairy pelt), the addition of morphological information from the woolly rhinoceros has failed to produce a convincing resolution of the relationships among the three pairs.

In response to these problems, several DNA-based studies have been undertaken on the rhinoceroses in an attempt to resolve the phylogeny. The first such study used restriction-digest mapping of mitochondrial DNA (mtDNA) ribosomal region to find weak support (maximum parsimony bootstrap support of 57%) for the extant rhinoceros phylogeny as outlined on the basis of horn morphology [7]. As larger amounts of data were incorporated into the analyses, however, this picture was modified – using complete 12S rRNA and cytochrome b sequences, Tougard et al. [8] found high support (maximum likelihood bootstrap support of 97%) for the phylogeny as outlined by geography (although they could not, using a Kishino-Hasegawa test, reject outright the horn topology). More recently, Orlando et al. [9] analysed ancient DNA to confirm the monophyly of the woolly-Sumatran rhinoceros pairing using complete 12S rRNA and partial cytochrome b gene sequences (maximum likelihood bootstrap support between 93–100%). Furthermore, in agreement with the work of Tougard et al. [8], their inferred phylogeny groups the woolly-Sumatran pair with the Javan-Indian pair, but with <50% bootstrap support. Thus the results of these later studies appeared to be an excellent illustration of the advantages of molecular sequence analysis over more traditional approaches, when resolving subtle phylogenetic questions.

Despite the successful results, however, one of the key lessons of the above is that even when using DNA data, results can still be misleading without sufficiently large amounts of sequence. It has previously been advocated that phylogenies based on single genes can sometimes yield falsely supported results [10]. The variation in phylogenetic signal among mitochondrial genes in elephantids provides a compelling illustration of this problem [11]. In addition, Cummings et al. [12] analysed complete genomes and subsamples of them, concluding that small increases in sequence length will greatly increase the chance of finding the correct whole-genome tree when sequence lengths are below 3,000 base-pairs (bp). In light of this, the clearly controversial phylogeny of the Rhinocerotidae, and the fact that previous studies have maximally been based on the 2,146 bp of the combined 12S rRNA and cytochrome b genes, we have revisited the molecular analysis using six complete mtDNA genome sequences of the five extant, and extinct woolly, rhinoceroses. Specifically, we have generated, using our previously published approach of utilising keratinous tissues as a high-quality source of mtDNA for sequencing on the FLX platform [13-15], four novel complete mitochondrial genomes (from the black, woolly, Javan, and Sumatran rhinoceroses). With the addition of the published mtDNA genomes of the white [GenBank:Y07726] [16] and Indian [Genbank: X97336.1] [17] rhinoceroses, the six genomes cover all the living and one extinct member of the rhinocerotid family. We demonstrate that phylogenetic analysis of the complete mtDNA genomes, as well as individual analyses of the constituent genes, questions the findings of the previous molecular reports.
Results

Mitochondrial genome sequences

The four newly sequenced mitochondrial genomes are similar to the two previously published rhinoceros mitochondrial genomes, consisting of 13 protein-coding genes, 22 tRNA genes, two ribosomal RNA genes, and a control region. The exact length is difficult to determine due to the presence of variable tandem repeats in the control; the consecutive repeats are longer than the read length of the Roche FLX, so we are unable characterise them. The sequences have been submitted to GenBank with accession numbers FJ905813 (woolly rhinoceros), FJ905814 (black rhinoceros), FJ905815 (Javan rhinoceros) and FJ905816 (Sumatran rhinoceros).

An obvious power of complete mtDNA genome sequencing is that it enables functional assessment and comparison of the genes between the taxa [14,18]. Mitochondrial protein-coding genes are involved in oxidative phosphorylation, which is responsible for the production of up to 95% of the energy of eukaryotic cells, and modifications in these genes have been associated with the improvement of aerobic capacity and adaptation to new thermal environments [19,20]. Furthermore, mutations in mitochondrial genes have been implicated in exercise intolerance in humans [21]. We have mapped the amino acid differences between the rhinoceroses on the available crystallographic structures for mitochondrial-encoded proteins, those for cytb [22] and co1, co2, and co3 [23].

Despite some of the differences occurring in functionally relevant sites (boxed residues in the alignment, orange spheres in the structure; Figures S1 and S2: Additional Files 1 and 2), we were unable to observe any direct relationship between them and the markedly different environments inhabited by the woolly, in contrast to the extant rhinoceroses.

Phylogeny and speciation times of the rhinoceros

The mitochondrial genomes of the six rhinoceros species were analysed using Bayesian and likelihood-based phylogenetic methods. In order to infer the position of the root, the sequences of two perissodactylan outgroup species were included in the analyses (tapir, Tapirus terrestris; and horse, Equus caballus). We find very strong support for each of the three sister-species pairings among the rhinoceroses (100% Bayesian posterior probability and maximum-likelihood bootstrap support, regardless of the choice of outgroup). This is in agreement with previous molecular findings and most morphological reports.

Split decomposition produced a graph with good representation of the phylogenetic signal (fit value = 89.64), but with an obvious lack of resolution among the three pairs of rhinoceros species (Figure 1). Similar graphs were produced using split decomposition with other distance measures, including LogDet-transformed distances (results not shown).

Bayesian and maximum-likelihood phylogenetic analyses of the concatenated data set revealed mixed support for three candidate topologies (Table 1). The relative topological support varied according to outgroup choice, although support was generally weak. In only one case (Bayesian analysis with horse outgroup) was there significant support for a particular tree topology. Likelihood-based tree topology tests, performed using the concatenated alignment with both outgroups, yielded no significant support for any particular tree topology. There was slight (but non-significant) support in favour of the topology in which the white, black, Sumatran, and woolly rhinoceroses group together to the exclusion of the Indian and Javan rhinoceroses (approximately-unbiased test p = 0.716, Kishino-Hasegawa test p = 0.663, Shimodaira-Hasegawa test p = 0.802). There was low support for the grouping of the white, black, Indian, and Javan rhinoceroses (AU-test p = 0.398, KH-test p = 0.337, SH-test p = 0.473), and for the grouping of the Indian, Javan, Sumatran, and woolly rhinoceroses (AU-test p = 0.154, KH-test p = 0.151, SH-test p = 0.245). Regardless of the topology test used, all three candidate topologies were always included in the 95% confidence set.

Analyses using individual components of the mitochondrial genome revealed wide variations in relative support for the three candidate topologies (Figures 2, 3, 4).
Table 1: Support for three candidate topologies estimated using Bayesian and maximum-likelihood phylogenetic analysis

Outgroup	Bayesian posterior probability	Maximum-likelihood bootstrap support
	Indian + Javan	Black + White
Horse	0.961	0.035
Tapir	0.050	0.469
Both	0.032	0.244
Both^a	0.165	0.474
Both^b	0.003	0.820
Both^c	0.013	0.938

^aControl region excluded.
^bAll third codon sites excluded.
^cControl region and all third codon sites excluded.

Figure 2
Column graph showing posterior probability support for three candidate tree topologies. Each column represents the posterior probability of the favoured tree for each component of the mitochondrial genome (13 protein-coding genes, loop regions of two rRNA genes, and the D-loop). The three shades of grey correspond to the three tree topologies shown above the graph. The line graph indicates the number of variable sites in each component.

Figure 3
Ternary plot showing the relative Bayesian posterior probabilities of three candidate tree topologies. The estimated support is shown for individual components of the mitochondrial genome (13 protein-coding genes, loop regions of two rRNA genes, and the D-loop). Relative support is also shown for a concatenated data set comprising these components, with results from three analyses using different outgroup taxa (H = horse, T = tapir, B = both).
Several genes exhibited strong support for particular topologies: \textit{nd2}, \textit{cox3}, and \textit{cytb} in the Bayesian analyses, and \textit{cox3} in the maximum-likelihood analyses.

Bayesian estimates of divergence times within Rhinocerotidae, calculated using two fossil-based calibrations, were similar across different tree topologies (Table 2). The estimated age of the common ancestor of the six rhinoceros taxa was around 30 Myr, with a 95% highest posterior density (HPD) interval of about 28–33 Myr. The next divergence within the group occurred only around 1.0–1.5 Myr afterwards, with a very considerable overlap in the 95% HPD intervals of these two adjacent nodes (nodes A and B in Table 2). On average across the three topologies, the mean time separating these two nodes represents only 3.78% of the total tree height.

Discussion

As ancient DNA techniques have advanced, the complete mitochondrial genomes of extinct taxa are now regularly being included in DNA analyses. Initial complete ancient mtDNA genomes were generated using conventional overlapping-PCR and Sanger sequencing techniques, yielding the mtDNA genomes of three moa species (\textit{Emeus crassus}, \textit{Anomalopteryx didiformis}, and \textit{Dinornis giganteus}) [24,25], several woolly mammoths (\textit{Mammuthus primigenius}) [26,27], and the mastodon (\textit{Mammut americanum}) [11]. These genomes were successfully used to resolve long-standing phylogenetic questions, including the ratite and Elephantidae phylogenies. Notably, both questions were those for which prior analysis of smaller mitochondrial and nuclear fragments had yielded contradicting results [28-33]. In light of these

Table 2: Rhinocerotid divergence times estimated using Bayesian phylogenetic analysis with a relaxed molecular clock, assuming each of three candidate tree topologies

Divergence event	Date estimate (mean and 95% HPD*)											
	Indian + Javan	Black + White	Sumatran + Woolly	Indian + Javan	Black + White	Sumatran + Woolly	Black + White	Indian + Javan	Sumatran + Woolly	Black + White	Indian + Javan	Sumatran + Woolly
Indian-Javan	13.2	(11.7 – 14.6)	13.4	(11.7 – 15.2)	12.9	(11.5 – 14.2)						
Black-White	15.3	(13.5 – 17.4)	15.9	(13.5 – 18.5)	15.1	(13.6 – 16.7)						
Woolly-Sumatran	19.8	(17.8 – 21.9)	20.6	(18.4 – 22.8)	19.6	(17.5 – 21.5)						
Node A	30.6	(28.0 – 33.3)	30.5	(27.7 – 33.4)	30.4	(28.0 – 33.0)						
Node B	31.6	(29.2 – 34.3)	32.0	(29.1 – 34.8)	31.5	(29.0 – 34.0)						

*95% highest posterior density interval.
Time is in millions of years before the present.
successes, therefore, our inconclusive findings come as a surprise. Previous morphological studies, along with restriction enzyme mapping studies, have supported the horn-based topology grouping the black and white rhinoceroses with the Sumatran and woolly rhinoceroses [1,2,7]. More recent studies of morphological and DNA data have favoured the geography-based topology, grouping all the Asian species together to the exclusion of the African species [3,8]. With the complete mitochondrial genomes, however, the third possible candidate grouping (the African species together with the Indian and Javan rhinoceroses) cannot be statistically rejected.

The discrepancy between the results of the present and previous studies led us to investigate the topologies supported by each individual mitochondrial gene. The signal varied considerably among genes, with 3–7 genes supporting each of the three candidate topologies (Figures 1, 2, 3, 4). The considerable heterogeneity in topological support among mitochondrial genes is unusual due to the non-recombining mode of genomic transmission, but echoes similar results obtained for elephantids [11] and for chloroplast genes in Asplenium ferns [34]. A possible explanation for the lack of resolution could be the short divergence time among the three sister-species pairings of only ~1 Myr, leaving little time to accumulate mutations in the ancestral branches; thus, the poor resolution might be indicative of a hard polytomy. The cause of the multiple defining speciation events of the rhinoceros family is unknown, but can be identified as having occurred during the early Oligocene (33.9 ± 0.1 – 28.4 ± 0.1 Myr ago). A less likely explanation for the lack of phylogenetic resolution, posited by Shepherd et al. [34] to explain the phylogenetic conflicts among chloroplast genes in ferns, is that recombination might have occurred in the rhinocerotid mitochondrial genome. Finally, it is possible that the mitochondrial tree does not provide an accurate reflection of the underlying species phylogeny, a question that will need to be addressed using data from multiple nuclear loci.

Furthermore, even when using complete mitochondrial sequences, we are unable to resolve the tree topology. Thus, for the rhinoceroses at least, DNA analyses have not yet been able to provide a solution to the evolutionary history of this challenging taxon. Several possible steps might be taken to resolve this problem. One would be the inclusion of DNA sequences recovered from a more closely related outgroup species, such as members of the Elasmotherium genus. Unfortunately however, the age of known specimens likely precludes the survival of DNA in them. Thus it is probable that satisfactory resolution of the phylogeny will instead require the incorporation of substantial amounts of nuclear DNA data.

Methods

Samples

In our previous studies [13-15,35,36], we have reported the benefit of using hair shaft as a source of enriched, pure mtDNA, from which complete mitochondrial genomes can be rapidly sequenced using the Roche FLX technology. We have previously argued that the benefits derive principally from the keratin structure of the material. In this study we have used hair shaft, and have explored the properties of a similarly keratinous tissue, nail. Specifically, ancient permafrost-preserved hair shaft was used for the woolly rhinoceros, while modern hair shaft was donated by Cincinnati Zoo (USA) for the Sumatran rhinoceroses. The woolly rhinoceros hair was excavated from the permafrost near the Taimylyr village, not far from the Arctic Ocean coast (Yakutia, Olenyok River valley, 72.61°N and 121.93°E) in 2002 and is kept in the Lena Delta Reserve in Tiksi; the age of this specimen is not known. For the black and Javan rhinoceroses (the latter not found in captivity) we used historic museum toenail samples, dated to approximately 100 years old, and provided by the Zoological Museum, University of Copenhagen (Denmark), and the Oxford University Museum of Natural History (England), respectively. In these cases, powdered nail was obtained by drilling directly into the nails. Full sample details are given in Table 3.

Extractions and sequencing

Prior to DNA extraction, hair shaft was thoroughly cleansed in 10% commercial bleach solution following Gilbert et al. [13]. The powdered nail was likewise incubated in 10% commercial bleach solution for 5 minutes, prior to pelleting through a centrifugation step. Subsequently the bleach was poured off, and the pellet was thoroughly washed three times in ddH2O to remove all traces of the bleach. Both hair and nail material were digested and DNA was subsequently purified following Gilbert et al. [13]. Specifically, digestion of the hair shafts...
was performed overnight at 55°C with rotation, using between 10 and 40 ml of the following digestion buffer: 10 mM Tris-HCl (pH 8.0), 10 mM NaCl, 2% w/v Sodium Dodecyl Sulfate (SDS), 5 mM CaCl₂, 2.5 mM Ethylene-Diamine-Tetra-Acetic acid (EDTA), pH 8.0), 40 mM Dithiothreitol (DTT; Cleland’s reagent) and 10% proteinase K solution (> 600 mAU/ml, Qiagen). Post digestion DNA was purified twice with phenol and once with chloroform following standard protocols. The aqueous, DNA-containing solution was concentrated to 200 μl using Amicon Ultra-15 Centrifugal Filter Units with a 10 kD filter (Millipore).

Library construction, DNA sequencing, and assembly
The DNA libraries from four rhinoceros species were constructed as previously described [37], by shearing genomic DNA into fragments which were blunt-ended and phosphorylated by enzymatic polishing using T4 DNA polymerase, T4 polynucleotide kinase, and E. coli DNA polymerase. The polished DNA fragments were then subjected to adapter ligation, followed by isolation of the single-stranded template DNA (sstDNA). The quality and quantity of the sstDNA library was assessed using the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA). Each sstDNA library fragment was captured onto a single DNA capture bead, and was clonally amplified within individual emulsion droplets. The emulsions were disrupted using isopropanol, the beads without an amplified sstDNA fragment were removed, and the beads with an amplified sstDNA fragment were recovered for sequencing. The recovered sstDNA beads were packed onto a 70 × 75 mm PicoTiterPlate™ and loaded onto the Roche FLX Sequencing System (Roche Applied-Sciences, Indianapolis, IN) as previously described. In total, 70,082 reads were generated for woolly rhinoceros, 565,065 for Sumatran rhinoceros, 251,087 for black rhinoceros, and 96,900 for Javan rhinoceros. Sequencing reads from each project were aligned using the complete mitochondrial genome from the white rhinoceros as a reference [GenBank: Y07726].

The mtDNA genomes of the taxa were assembled using the white rhinoceros mtDNA genome as a guide, analogous to the method of Gilbert et al. [13]. A frequently reported problem in conventional (i.e., PCR-based) ancient mtDNA studies (in particular for the woolly rhinoceros [9]) is the PCR amplification of numts, and their subsequent erroneous designation as true mtDNA sequences. This is not, however, a problem with FLX generated sequences for reasons argued previously [13], that principally relate to the differences between the shot-gun nature of FLX emPCR and sequencing and the targeted nature of PCR based amplification. Thus we are confident the data represents the true mtDNA sequence. The genomes could be assembled as single contigs for the woolly, Javan, and black rhinoceroses, while that of the Javan rhinoceros, which yielded the lowest levels of mtDNA in this data set, was initially assembled into 15 contigs. Traditional PCR and Sanger sequencing was thus applied to the extract, both to ensure the sequence accuracy of the regions that had low levels of FLX coverage (<3×), and to fill in the missing data (Table S1: Additional File 3).

Sequence alignment and partitioning
The mitochondrial genomes of the six rhinoceroses were aligned manually. The variable number tandem repeats (VNTRs) in the D-loop were removed, leaving a data set of 16,323 aligned sites. A matrix containing uncorrected pairwise distances for the six mitochondrial genomes is provided in Table S2 (Additional File 4), with details of informative sites given in Table S3 (Additional File 5).

To allow the position of the root to be inferred, mitochondrial genome sequences from the horse (Equus caballus [GenBank:X79547] [38]) and lowland tapir (Tapirus terrestris [GenBank:AJ428947],

Table 3: Details of the samples and sequencing efforts

Species	Sample ID	Material	Weight (g)	Age (years)	Bases sequenced	%mtDNA	Length	Coverage	Genbank
Black	#36	Nail	0.56	ca. 100	359,644	1.21	119.8	21.3	FJ905814
Woolly	COEL LDR P75	Hair	1.5	Not dated	498,748	6.6	91.5	30.8	FJ905813
Sumatran	Suci*	Hair	0.2	Fresh	199,235	1.14	88.2	12.1	FJ905816
Javan	4139	Nail	0.86	ca. 100	85,223	0.41	100.1	5.1	FJ905815

*Zoo studbook number 43.
unpublished data deposition in Genbank [39]), were added to the alignment. The resulting data set includes representatives from all three families of Order Perissodactyla: Rhinocerotidae, Tapiridae, and Equidae. Analyses including additional representatives of Laurasiatheria were performed, without yielding qualitatively different results, are not presented here but are summarised in Table S4 (Additional File 6).

We constructed a concatenated data set (13,714 bp), with the following five partitions: (i) first codon sites of the 13 protein-coding genes; (ii) second codon sites of protein-coding genes; (iii) third codon sites of protein-coding genes; (iv) loop regions of 12S and 16S rRNA genes; and (v) D-loop. The RNA loop regions were defined in accordance with the RNA secondary structural models of Ceratotherium simum available from the European Ribosomal RNA Database [40]. The D-loop was defined using the GenBank annotation of Ceratotherium simum. Other sections of the mitochondrial genomes, including the RNA stems, tRNA genes, and intergenic sites were not used for further study, except in the split decomposition analysis.

Split decomposition

To examine the overall phylogenetic signal, we analysed the alignment of complete mitochondrial genomes (excluding the VNTRs) using the software SplitsTree 4 [41]. Pairwise distances were estimated with the GTR+I +G model of nucleotide substitution, using maximum-likelihood estimates of model parameters. Using the split decomposition method [42], the data were canonically decomposed into a sum of weakly compatible splits and represented in the form of a splits graph.

Phylogenetic analysis

We performed a Bayesian phylogenetic analysis of the concatenated sequence alignment using MrBayes 3.1 [43]. A separate substitution model was assumed for each of the five data partitions, with substitution models selected by comparison of Bayesian information criterion scores (Table S3). Posterior distributions of parameters, including the tree topology, were estimated using Markov chain Monte Carlo (MCMC) sampling with two chains (one heated). Samples from the posterior were drawn every 1,000 MCMC steps over a total of 11,000,000 steps, with the first 1,000 samples discarded as burn-in. Acceptable mixing and convergence to the stationary distribution were checked using Tracer 1.4 [44].

To examine the effect of outgroup choice, we ran two further phylogenetic analyses, excluding the horse and tapir sequences in turn. All other settings were identical to those of the original analysis.

Maximum-likelihood phylogenetic analysis was also performed on the concatenated data sets, using the software PAUP* 4b10 [45]. As with the Bayesian analyses, different combinations of outgroup taxa were tested (horse, tapir, and both). The GTR+I+G model of nucleotide substitution was assumed, with six rate categories for the discrete gamma distribution. Each data partition was allowed to have a unique substitution rate. In each analysis, the maximum-likelihood tree was identified using a branch-and-bound search. To assess levels of support for different nodes in the tree, bootstrap analysis was conducted with 1,000 pseudoreplicates.

Topology tests were performed in a maximum-likelihood framework using the program Consel [46]. This program implements the approximately-unbiased test [47], the Kishino-Hasegawa test [48], and the Shimodaira-Hasegawa test [49], among others. We used these to assess the relative confidence in three competing topological hypotheses (see Table 2). Site-wise log likelihoods were calculated using PAUP, with the same settings as for the analysis of the concatenated data described above.

To investigate variations in phylogenetic signal among different genes, Bayesian and maximum-likelihood phylogenetic analyses were performed for each protein-coding gene, rRNA gene (loops only), and the D-loop. Both outgroup taxa (horse and tapir) were included. Substitution models were chosen by comparison of Bayesian information criterion scores (Table S3). The same settings were used as for the analyses of the concatenated data set.

Divergence time estimation

Rhinocerotid divergence times were estimated by Bayesian phylogenetic analysis of the concatenated sequence alignment, using both horse and tapir as the outgroup. The alignment was analysed using an uncorrelated lognormal relaxed-clock model in BEAST 1.4.7 [50,51]. As with the MrBayes analysis, a separate substitution model was assumed for each of the five data partitions, with substitution models selected by comparison of Bayesian information criterion scores (Table S3). The tree topology was fixed, with a separate analysis performed for each of the three candidate trees (see Table 2). Posterior distributions of parameters were estimated using Markov chain Monte Carlo (MCMC) sampling. Samples from the posterior were drawn every 1,000 MCMC steps over a total of 5,500,000 steps, with the first 500 samples discarded as burn-in. Acceptable mixing and convergence to the stationary distribution were checked using Tracer.

In order to place a geological time-scale on the phylogenetic tree, two calibrations were taken from the fossil record. First, a lognormal prior (minimum 56 Myr,
mean 60 Myr, standard deviation 1.51 Myr) was specified for the age of the root [52,53]. This is probably the most appropriate summarisation of paleontological information because the probability density of the nodal age has a mode that is older than the age of the oldest fossil belonging to either of the lineages descending from the node [54]. Second, a minimum age constraint of 16 Myr was placed on the Dicerorhinus lineage [55].

Authors’ contributions

EW, MTPG and SCS conceived the study. MTPG, PFC, LPT and SCS carried out the molecular genetic studies. MTPG, SYWH, AR, RRdF, WM and SCS carried out data analysis. AS, TVK, MN-K and TLR coordinated sampling of biological material. JB, AS, TVK, MN-K and TLR interpreted the results in the biological context. All authors wrote, read and approved the final manuscript.

Additional material

Additional file 1

Figure S1. Nonsynonymous sites in mitochondrial cytb sequences of rhinoceroses, mapped onto the bovine structure [PDF:1PPJ] [22]. The nonsynonymous sites are shown in white, with those located in functionally relevant areas represented as orange spheres, and surrounded by boxes in the alignment. The prosthetic groups are represented in black, and bound inhibitors in brown (ant: antimycin; stig: stigmatellin). Sites that, when mutated in humans, are responsible for exercise intolerance, are depicted in red. Click here for file

http://www.biomedcentral.com/content-supplementary/1471-2148-9-95-S1.pdf

Additional file 2

Figure S2. Nonsynonymous sites in mitochondrial co1/co2/co3 sequences of rhinoceroses, mapped onto the bovine structure [PDF:1V54] [23]. The nonsynonymous sites are shown in white, with those located in a functionally relevant area represented as orange spheres, and surrounded by a box in the alignment. Prosthetic groups are represented as grey spheres. Click here for file

http://www.biomedcentral.com/content-supplementary/1471-2148-9-95-S2.pdf

Additional file 3

Table S1. Details of the primers used for gapfilling of the Javan rhinoceros mitochondrial genome. Click here for file

http://www.biomedcentral.com/content-supplementary/1471-2148-9-95-S3.doc

Additional file 4

Table S2. Matrix of uncorrected p-distances for the whole mitochondrial genomes of six rhinoceros species, with distances between sister species given in bold. Click here for file

http://www.biomedcentral.com/content-supplementary/1471-2148-9-95-S4.doc

Additional file 5

Table S3. Details of the components of the aligned mitochondrial genomes from six rhinoceroses, tapir, and horse. Click here for file

http://www.biomedcentral.com/content-supplementary/1471-2148-9-95-S5.doc

Additional file 6

Table S4. Support for three candidate topologies estimated using Bayesian and maximum-likelihood phylogenetic analysis, using nine laurasiatherian outgroup species. In addition to the six rhinoceros sequences, the following outgroup taxa were included: Tapirus terrestris [GenBank:AJ428947], Equus caballus [GenBank:X79547], Hippopotamus amphibius [GenBank:NC_000888], Equus asinus [GenBank:NC_001788], Artibusia jamacis [GenBank:NC_002009], Ursus arctus [GenBank:NC_003427], Manis tetradoxyla [GenBank:NC_0040027], Bos taurus [GenBank:NC_006863], and Sorex unguiculatus [GenBank:NC_005435]. Phylogenetic analyses were performed on first and second codon positions only, using an unpartitioned GTR+I+G substitution model. Other settings in the Bayesian and likelihood-based analyses were as described in the main text, the only exceptions being the use of the heuristic tree-bisection-reconnection instead of a branch-and-bound search in the maximum-likelihood analysis, and the calculation of the bootstrap support values from 200 pseudoreplicates rather than 1,000. Click here for file

http://www.biomedcentral.com/content-supplementary/1471-2148-9-95-S6.doc

Acknowledgements

We thank the Lena Delta Reserve, and the University of Copenhagen Museum of Zoology for providing sampling access to the woolly and black rhinoceros samples. Financial support is gratefully acknowledged from: The Danish National Science Research Council (EW and MTPG), The Danish National Research Foundation (EW, JB), GENETIME – a Marie Curie Training Site (EW and PFC), The Australian Research Council (SYWH), NHGRI grant HG02238 (WM), and The Russian Foundation for Basic Research grant 07-04-01612 (AS and TK). This project is funded in part (SCS) with the Pennsylvania Department of Health with the use of Tobacco Settlement Funds appropriated by the legislature. The Department specifically disclaims responsibility for any analyses, interpretations, or conclusions.

References

1. Simpson GG: *The principles of classification and a classification of mammals*. Bull Am Mus Nat Hist 1945, 85:1–350.
2. Loose H: *Les Rhinocerotidae (Mammalia, Perissodactyla) based on mitochondrial cytochrome sequences of rhinoceroses, mapped onto the bovine structure* [PDF:1PPJ] [22].
3. Prothero DR and Scoch RM: *The Evolution of Perissodactyls*. New York: Oxford University Press; 1989.
4. Guérin C: *Molecular systematics of the living species of Rhinoceros*. Zeit Zool Syst Evol 1983, 21:293–313.
5. Groves CP: *Phylogeography of the living species of Rhinoceros*. Zeit Zool Syst Evol 1983, 21:293–313.
6. Guérin C: *Les Rhinocerotidae (Mammalia, Perissodactyla) du Miocene terminal au Pleistocene superieur d’Europe occidentale comparés aux espèces actuelles: Tendances évolutives et relations phylétiques*. Geobios 1982, 15:599–605.
7. Prothero DR and Scoch RM: *The Evolution of Perissodactyls*. New York: Oxford University Press; 1989.
8. Cerdeño E: *Cladistic analysis of the family Rhinocerotidae (Perissodactyla)*, Am Mus Nov 1995, 3134:1–24.
9. Morales JC and Melnick DJ: *Molecular systematics of the living rhinoceroses*. Mol Phylogenet Evol 1994, 3:128–134.
chromosome b and 12S rRNA genes. Mol Phylogenet Evol 2001, 19(1):9–44.
9. Orlando L, Leonard JA, Thenot A, Lauder V, Guerin C and Hanni C: Ancient DNA analysis reveals woolly rhino evolutionary relationships. Mol Phylogenet Evol 2003, 3:485–499.
10. Cao Y, Adachi J, Janke A, Païbo S and Hasegawa M: Phylogenetic relationships among eutherian orders estimated from inferred sequences of mitochondrial proteins: Instability of a tree based on a single gene. J Mol Evol 1994, 39:519–527.
11. Rohland N, Malaspina A-S, Pollack JL, Slakmín M, Matheus P and Hofreiter M: Proboscidean mitogenomics: Chronology and mode of elephant evolution using mastodon as outgroup. PLoS Biol 2007, 5:e207.
12. Cummings MP, Otto SP and Wakeley J: Sampling properties of DNA sequence data in phylogenetic analysis. Mol Biol Evol 1995, 12:814–822.
13. Gilbert MTP, Tomsho LP, Rendulic S, Packard M, Drautz DI, Sher A, Alonso A, Hsu C-H, Sher A, Dänen L and Goetherström A, et al: Intraspecific phylogenetic analysis of Siberian woolly mammoths using complete mitochondrial genomes. Proc Nat Acad Sci USA 2008, 105:8327–8332.
14. Gilbert MTP, Kivisild T, Greenow B, Andersen PK, Metspalu E, Rickets M, Tuv T, Axelsson E, Goetherström A and Campos PF, et al: Paleo-Eskimo mtDNA genome reveals matrilineral discontinuity in Greenland. Science 2008, 320:1787–1789.
15. Xu X and Arnaud U: The complete mitochondrial DNA sequence of the white rhinoceros, Rhinoceros unicornis. Mol Phylogenet Evol 1997, 7:189–194.
16. Xu X, Janke A and Arnaud U: The complete mitochondrial DNA sequence of the greater Indian rhinoceros, Rhinoceros unicornis, and the Phylogenetic relationship among Carnivora, Perisodactyla, and Artiodactyla (+ Cetacea). Mol Biol Evol 1996, 13:1167–1173.
17. da Fonseca RR, Johnson WE, O'Brien SJ, Ramos MJ and Antunes A: Mitochondrial evolution of the mammalian mitochondrial genome. BMC Genomics 2008, 9:119.
18. Jobson RW, Nielsen R, Laaksoenen L, Wikstrom M and Albert BA: Adaptive evolution of cytochrome c oxidase: Infrastructure for a carnivorous plant radiation. Proc Natl Acad Sci USA 2004, 101:18064–18068.
19. Olde V, Nakamura K, Overbeek CD, Fredriksson E and C.LS: Molecular evolution of cytochrome c oxidase in high-performance fish (teleostei: Scombroidei). J Mol Evol 2006, 62:319–331.
20. Rankinen T, Bray MS, Hagberg JM, Perusse L, Roth SM, Wolfarth B and Bouchard C: The human gene map for performance and health-related fitness phenotypes: The 2005 update. Med Sci Sports Exer 2006, 38:1863–1888.
21. Huang LS, Cobessi D, Tung EY and Berry EA: Binding of the respiratory chain inhibitor antimycin to the mitochondrial bcl complex: a new crystal structure reveals an altered intramolecular hydrogen-bonding pattern. J Mol Biol 2005, 351:573–597.
22. Tsukihara T, Shimokata K, Katsuyama T, Shimada H, Muramoto K, H A, Mochizuki M, Shizawa-Itoh K, Yamashita E and Yao M, et al: The low-spin heme of cytochrome c oxidase as the driving element of the proton-pumping process. Proc Natl Acad Sci USA 2003, 100:15304–15309.
23. Carapito A, Lalewa-Fox C, Anderson S, Rambaut A, Austin J and Ward R: Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature 2001, 409:704–707.
24. Haddrath O and Baker AJ: Complete mitochondrial DNA genome sequences of extinct birds: ratite phylogenetics and the vicariance biogeography hypothesis. Proc R Soc Lond B 2001, 268:941–945.
25. Krause J, Dear PH, Pollack JL, Slakmín M, Sperios H, Barnes I, Lister AM, Ebersberger I, Païbo S and Hofreiter M: Multiplex amplification of the mammath mitochondrial genome and the Elephantidae. Nature 2006, 439:724–727.
26. Rogovei E, Golka YK, Malychuck BA, Kondrashov FA, Drenovek MV, Chumakov I and Grigorenko AP: Complete mitochondrial genome and phylogeny of Pleistocene mamm Mammutthus primigenius. PLoS Biol 2006, 4:e73.
27. Yang H, M GE and Shoshiha J: Phylogenetic resolution within the Elephantidae using fossil DNA sequence from the American mastodon (Mammut americanum) as an outgroup. Proc Natl Acad Sci USA 1996, 93:1190–1194.
28. Orzova T, Hayashi S and Mäkeläinen VM: Phylogenetic position of mammoth and Steller’s sea cow within Tethytheria demonstrated by mitochondrial DNA sequences. J Mol Evol 1997, 44:406–413.
29. Noro M, Masuda R, Dubrovo IA, Yoshida MC and Kato M: Molecular phylogenetic inference of the woolly mammoth Mammutthus primigenius, based on complete sequences of mitochondrial cytochrome b and 12S ribosomal RNA genes. J Mol Evol 1998, 46:314–326.
30. Greenwood AD, Capelli C, Possnert G and Païbo S: Nuclear DNA sequences from late Pleistocene megafauna. Mol Biol Evol 1999, 16:146–1473.
31. Debruyne R, Barriel V and Tassy P: Mitochondrial cytochrome b of the Lyakhov mammoth (Proboscidea, Mammalia): new data and phylogenetic analyses of Elephantidae. Mol Phylogenet Evol 2003, 26:421–434.
32. Thomas MG, Hagelberg E, Jones HB, Yang Z and Lister AM: Molecular and morphological evidence on the phylogeny of the Elephantidae. Proc R Soc Lond B 2000, 267:2493–2500.
33. Shepherd LD, Holland BR and Perrie LR: Conflict amongst chloroplast DNA sequences obscures the phylogeny of a group of Asplenium ferns. Mol Phylogenet Evol 2008, 48:176–187.
34. Miller W, Drautz DI, Janecka JE, Lesk AM, Ratan A, Tomsho LP, Packard M, Zhang Y, McClellan LR and Qi J, et al: The mitochondrial genome sequence of the Tasmanian tiger (Thylacine cynocephalus). Genome Res 2009.
35. Miller W, Drautz DI, Ratan A, Pusey B, Qi J, Lesk AM, Tomsho LP, Packard MD, Zhao F and Sher A, et al: Sequencing the nuclear genome of the extinct wooly mammoth. Nature 2008, 456:387–390.
36. Margulis L, Egholm M, Altman WE, Attiya S, Bader JS, Bemba L, Berka J, Braverman HS, Chen YJ and Chen Z, et al: Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005, 437:376–380.
37. Xu X and Arnaud U: The complete mitochondrial DNA sequence of the horse, Equus caballus: extensive heteroplasy of the control region. Gene 1994, 148:357–362.
38. Janke A, Gullberg A, Harley EH, Xu X and Arnaud U: The mitogenomic tree of mammalian orders. Unpublished.
39. Wuys J, Perrière G and Pea Van de V: The European ribosomal RNA database. Nucleic Acids Res 2004, 32:D101–D103.
40. Huson DH and Bryant D: Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 2006, 23:254–267.
41. Bandelt HJ and Dress AW: Split decomposition: A new and useful approach to the analysis of distance data. Mol Phylogenet Evol 1992, 1:242–252.
42. Huelsenbeck JP and Ronquist F: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17:754–755.
43. Rambaut A, and Drummond AJ: Tracer. Oxford: University of Oxford; 2004.
44. Swofford DL: PAUP* Phylogenetic Analysis Using Parsimony (*and Other Methods). Sunderland, Massachusetts: Sinauer Associates; 2003.
45. Shimodaira H and Hasegawa M: CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 2001, 17:1246–1247.
46. Shimodaira H: Another calculation of the p-value for the problem of regions using the scaled bootstrap resampling. Stanford University; 2000.
47. Kishino H and Hasegawa M: Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidae. J Mol Evol 1989, 29:170–179.
48. Shimodaira H and Hasegawa M: Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 1999, 16:1114–1116.
49. Drummond AJ and Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7:214.
50. Drummond AJ, Ho SYW, Phillips MJ and Rambaut A: Relaxed phylogenetics and dating with confidence. PLoS Biol 2006, 4:e88.
52. Scoch RM: A Review of the Tapiroids. The Evolution of Perissodactyls New York: Oxford University Press: Prothero DM, Scoch RM 1989, 298–320.
53. Benton MJ and Donoghue PC: Paleontological evidence to date the tree of life. Mol Biol Evol 2007, 24:26–53.
54. Ho SYW: Calibrating molecular estimates of substitution rates and divergence times in birds. J Avian Biol 2007, 38:409–414.
55. Carroll RL: Ungulates, Edentates, and Whales. Vertebrate Paleontology and Evolution New York: W. H. Freeman and Co: Carroll RL 1988, 502–568.