АННОТАЦИЯ
dиссертации Бакириева Серика Бакирулы
на присуждении степени доктора философии (PhD) по образовательной
программе 8D05101 – «Биология» на тему «Идентификация генотипов
пшеницы устойчивых к твердой головне (Tilletia spp.) адаптированной к
условиям юго-востока Казахстана»

Тема исследования: Идентификация генотипов пшеницы устойчивых к
tвердой головне (Tilletia spp.) адаптированной к условиям юго-востока
Казахстана.

Цель исследования: Выявление образцов пшеницы, обладающих
устойчивостью к популяциям Tilletia caries (D.C.) Tul в Алматинской области, а
также идентификация источников устойчивости Bt-генов.

Задачи исследования:
- Провести мониторинг и тестирование устойчивости образцов пшеницы к
патогену Tilletia caries (D.C.) Tul путем создания искусственного инфекционного
фона в лабораторных и полевых условиях;
- Выявить источники генов (Bt8, Bt9, Bt10, Bt11, Bt12) устойчивых к твердой
головне из образцов пшеницы методом молекулярной ПЦР;
- Произвести расчет показателей индекса биомассы по стадиям онтогенеза
образцов пшеницы;
- Провести структурный анализ хозяйственно-ценных признаков
устойчивых и восприимчивых к болезни образцов пшеницы в коллекции;
- Предложить для производства образцы пшеницы, отобранные в
результате исследований, как устойчивые к твердой головне (Tilletia caries (D.C.)
Tul.) и высокоурожайные.

Методы исследования:
Для реализации задач, поставленных в исследовательской работе,
использовались следующие методы. Был использован один из наиболее
эффективных методов инокуляции образцов пшеницы спорами твёрдой головни
– метод Богардта-Анпилоговой, при котором семена за несколько дней до посева
заражают спорами гриба. При фитопатологической оценке образцов пшеницы,
зараженных возбудителем Tilletia caries (D.C.) Tul., в искусственно созданном
инфекционном фоне применялась шкала В.И. Кривченко (1984). При
определении источников Вt- ген, устойчивых к твёрдой головне, был применен
метод молекулярного ПЦР-анализа. Определение индекса биомассы растений
Нормализованного Относительного Индекса растительности (Normalized
Difference Vegetation Index (NDVI)) проводилось с помощью использования
прибора Green Seeker (Trimble Navigation Limited, США). Определения
показателей продуктивности образцов пшеницы осуществлялось методом
структурного анализа признаков. Полученные данные были скорректированы
путем математических исчислений по методике Б.А. Доспехова (1985).
Статистическая обработка проводилась с использованием программ Excel и Mini
TAV (Anova) 21.
Основные положения выносимые на защиту (доказанные научные гипотезы и другие выводы, являющиеся новыми знаниями):

− Местные сорта мягкой пшеницы и зарубежные образцы пшеницы (Болгария, Венгрия, Румыния, CIMMYT) были протестированы на устойчивость к твёрдой головне в условиях естественного и искусственно-инфекционного фона.

− Показатели индекса биомассы Нормализованного Относительного Индекса Растительности (Normalized Difference Vegetation Index (NDVI) учитывались на этапах вегетативного развития образцов пшеницы (колошение, цветение, молочная спелость). Индикаторы Нормализованного Относительного Индекса Растительности (NDVI) используются для мониторинга состояния посевов, определения потенциальной урожайности, выявления факторов стресса и определения воздействия вредителей и болезней.

− Проведен фенологический контроль в течение вегетационного периода товарных сортов пшеницы и зарубежных образцов пшеницы, допущенных к производственному посеву в Казахстане, и проведен структурный анализ хозяйственно-ценных признаков. Показатели зараженности сортов пшеницы болезнями, другие свойства, определяющие урожайность и качество, непосредственно связаны со стадиями вегетативного развития.

− Из образцов пшеницы с помощью молекулярных методов были определены Bt-гены, устойчивые к патогену. Во всем мире были идентифицированы источники генов Bt-1, Bt-2, Bt-3, Bt-4, Bt-5, Bt-6, Bt-7, Bt-8, Bt-9, Bt-10, Bt-11, Bt-12, Bt-13, Bt-14 и Bt-15, считающимися устойчивыми к твердой головне. Но вышеназванные источники генов не одинаково эффективны во всех регионах земного шара. Поэтому необходимо определить, какие источники генов эффективны в нашем регионе.

− В результате фитопатологического и молекулярного скрининга были предложены отборочные образцы пшениц, устойчивых к твердой головне для хозяйственного посева.

Основные результаты исследования:

Устойчивость отечественных сортов и зарубежных образцов пшеницы к патогену Tilletia caries (D.C.) Tul в Алматинской области были протестированы в полевых условиях путем создания искусственного инфекционного фона. В результате фитопатологической оценки выявлены 12 сортов отечественной пшеницы как высокоустойчивые к твёрдой головне. Среди зарубежных образцов пшеницы резистентность, то есть устойчивость к твёрдой головне проявилась у 6 болгарских образцов, 9 венгерских образцов, 8 румынских образцов и 7 турецких линий, взятых из центра CIMMYT.

В лаборатории генетики и селекции института биологии и биотехнологии растений молекулярно идентифицированы Bt-гены устойчивости к твёрдой головне у отечественных и зарубежных образцов пшеницы. В результате молекулярного скрининга выявлено сочетание пяти генов устойчивых к Tilletia Caries (D.C.) Tul у отечественных и зарубежных образцов пшениц Bt8, Bt9, Bt10, Bt11 и Bt12.
Показатели индекса биомассы (NDVI) образцов пшеницы учитывали в периоды колошение, цветения и молочная спелость. 12 отечественных сортов пшеницы разрешенных для производственного посева признаны с высоким индексом биомассы. Среди иностранных образцов по показателям NDVI высокая биомасса были обнаружены у 12 болгарских, 5 венгерских, румынских и 6 турецких.

В результате анализа структурных особенностей образцов пшеницы выделено 12 сортов отечественной пшеницы, имеющих высокую производительность и устойчивость к твёрдой головне. Среди иностранных образцов по показателям Нормализованного Относительного Индекса Растительности (Normalized Difference Vegetation Index (NDVI)) выскокая биомасса у 12 болгарских, 5 венгерских, 5 румынских и 6 турецких.

Обоснование новизны полученных результатов и их актуальности для направлений научных разработок или государственных программ:

– новизна первого результата – образцы пшеницы в рамках полевой искусственной эпидемии были проверены на устойчивость к патогену Tilletia caries (DC) Tul. Значимость полученных результатов заключается в том, что 32 % отечественных и зарубежных образцов пшеницы проявили устойчивость к твердой головне. В результате фитопатологической оценки 12 сортов отечественной пшеницы обособились высокой устойчивостью к твердой головне. А среди зарубежных образцов пшеницы: 6 болгарских образцов, 9 венгерских образцов, 8 румынских образцов и 7 турецких образцов, полученных из центра CYMMIT (CYMMIT - Международный центр улучшения кукурузы и пшеницы (на испанском языке: Centro Internacional de Mejoramiento de Maíz y Trigo; на английском языке: Международный центр улучшения кукурузы и пшеницы; CIMMYT) - некоммерческий научно-исследовательский институт сельскохозяйственных исследований. Расположен в Мексике), оказались устойчивыми к твердой головне.

– новизна второго результата – впервые в Казахстане на основе молекулярно-ПЦР-анализа из образцов пшеницы были выявлены генные образцы, устойчивые к твердой головне. Значимость полученных результатов заключается в том, что образцы пшеницы, защищенные геном Bt-устойчивости, устойчивы к заболеванию в течение длительного времени. Использование в сельском хозяйстве устойчивых сортов пшеницы препятствует использованию химических средств для борьбы с твердой головней и сохраняет экологический баланс окружающей среды. В ходе исследования в результате ПЦР-анализа было выявлено скрещивание пяти устойчивых семян сорта Каракай: Bt8, Bt11, Bt9, Bt10 и Bt12. А у сортов Динара, Егemen 20, Султан 2, Казахстанская 16 и Казахстанская 75 обнаружено скрещивание 3 семян (Bt8, Bt9, Bt10, Bt12), а также у 10 сортов (Алатыу, Ахарлы, Безостая 1, Жетису, Кокбидай, Мереке75, Наз, Султан 95, Сапалы 8, Сапалы) 3 семенных скрещивания (Bt8, Bt9, Bt10). 14 сортов казахстанской пшеницы (Акшибай, Адыр, Булана, Диана, Жылым, Красноводопадская, Карабалыкская остистая, Карлыкаш, Коксу, Кызылбидай, Матай, Мироновская 808, Стекловидная 24, Альма) были идентифицированы как носители семян Bt9 и Bt12. Молекулярная выборка образцов румынской пшеницы, протестированных на твердую головню, показала, что 2 образца
(02429GP-1, F08245G1) содержат Bt9. Скрещивание 4 семян (Bt8, Bt10, Bt11, Bt12) выявлено в румынском образце F08034G1. В результате молекулярной селекции 3 образца (Berény, Petur, Рáба) из образцов венгерской пшеницы оказались носителями Bt9 и 4 образца (Ati, Berény, Körös, Petur) оказались семенными носителями Bt10. Из образцов болгарской пшеницы сорта Klara, Demetra, Zlatitsa, Todora, Korona, Milena, Pobeda и Sadovo-1 были идентифицированы как носители семян Bt9. Устойчивыми были идентифицированы 5 семян (Bt8, Bt11, Bt9, Bt10, Bt12) из образцов пшеницы из Центра CIMMYT (SAULESKU#26/PARUS//F885K 1.1/SXL/3/BEZOSTAYA1) и (TREGO/BTYSIB//ZARGANA-6/4/AU/CO652337//2*CA8-155/3/).

— новизна третьего результата — учитывались показатели биомассы (NDVI) на стадиях роста и развития образцов пшеницы. Значимость полученных результатов заключается в сравнительном анализе показателей биомассы образцов пшеницы по стадиям созревания, цветения, налива колоса. Высокие показатели биомассы в эти периоды положительно сказываются на высокой непосредственной продуктивности растения. Соответственно, если показатель биомассы будет низким на этих трех стадиях, продуктивность растения будет низкой. В ходе полевых исследований среди отечественных образцов пшеницы, допущенных к посеву в производстве, по показателям биомассы были выделены сорта Жетісу, Раминал, Нуреке, Красноводопадская 25, Егемен 20, Карасай, Реке, Президент, Мереке 70, Мэншук, Казахстанская 16, Айай, Акмола 3, Шортандинская 2012, Шортандинская 95 және Казахстанская 10. По показателям NDVI из зарубежных образцов пшеницы, имеющими высокую биомассу, учитывались 12 болгарских сортов пшеницы (Демейфа, Антоновка, Неда, Карат, Свилена, Драгана, Енола, Кристи, Мерилин, Ласка, Корона, Боряна), 5 венгерских (Békés, Kalász, Göncöl, Szemes, Рáба), 5 румынских (F08245G1, 02429GP-1, F06659G-1, F06393GP10, F07270G2) и 6 турецких (338-K1-1//ANB/.../ZARGANA-4), (TX87V1613/...*3/AMI//BUC/CHR), (338-K1-1/...*3/AMI//BUC/CHR), (SAULESKU #26/.../3/BEZOSTAYA1), (TREGO/...//2*CA8-155/3/...), (TREGO/JGR 8W/4/AGRI/NAC/...).

— новизна четвертого результата — проведен анализ структурных особенностей образцов пшеницы и определены показатели хозяйственной ценности. Значимость полученных результатов заключается в том, что признаками, влияющими на продуктивность пшеницы, являются длина растения, длина колоса, число колосков в колосе, число зерен в основном колосе, масса зерна в основном колосе и масса 1000 зерен. При анализе особенностей строения определяли зависимость между количеством колосков в колосе, количеством зерен в основном колосе, массой зерна в основном колосе и массой 1000 зерен. В результате анализа структурных особенностей образцов пшеницы 12 отечественных сортов пшеницы оценены как обладающие высокой продуктивностью и устойчивостью к твердой головне. Это сорта: Жетісу, Сапалы, Раминал, Динара, Карасай, Кызылбидай, Наз, Мереке75, Казахстанская 25, Женіс, Астана және Казахстанская 10. В результате анализа хозяйственноценных признаков зарубежных образцов пшеницы были высоко оценены...
образцы пшеницы 7 болгарских (Демейфа, Айика, Карат, Тодора, Энола, Гея-1, Садова 1), 8 венгерских (Békés, Kőrös, Mentor, Pilis, Petur, Vitorlás, Rege, Rába), 6 румынских (PARTENER, F08347G8, F06659G-1, F08126G1, F08034G1, F07270G2). А из Центра CYMMIT (CYMMIT — Международный центр улучшения кукурузы и пшеницы (на испанском языке: Centro Internacional de Mejoramiento de Maíz y Trigo; на английском языке: Международный центр улучшения кукурузы и пшеницы; CIMMYT) — некоммерческий научно-исследовательский институт сельскохозяйственных исследований. Расположен в Мексике) из образцов пшеницы с более высокими показателями продуктивности оказались сорта (SUNR30 /…ZARGANA-3), (KATEA-1/…*CA8-155/3/F474S1-1.1), (KATEA-1/…/KAUZ), (338-K1-1/…MERCAN-1), (338-K1-1/…WELS-2) және (SAULESKU…BEZOSTAYA1).

— новизна пятого результата — для посева в хозяйства предложены образцы пшеницы, признанные устойчивыми к твердой головне (*Tilletia caries* (DC.) Tul.) и отобранные как высокопродуктивные в климатических условиях Алматинской области. Значимость полученных результатов заключается в том, что отечественные сорта пшеницы Жетісу, Егемен 20, Карасай, Кзызильбидай», Наз, Алмалы, Мереке75, Жалын, Казахстан 16 и Динара устойчивы к твердой головне и имеют высокие показатели продуктивности. Эти сорта пшеницы были предложены для посева на поле фермерского хозяйства «МӘНЕН», расположенного в Саркандском районе Алматинской области.

Испытанные на устойчивость к твердой головне семена пшеницы *Bt*8, *Bt*9, *Bt*10, *Bt*11 и *Bt*12 были выявлены в результате молекулярной селекции образцов зарубежной пшеницы 02429GP-1, F08245G1, F08034G1, Ati, Berény, Kőrös, Petur, Berény, Petur, Rába, Klara, Demetra, Zlatitsa, Todora, Korona, Milena, Pobeda и Sadovo-1 были переданы в отдел семенного фонда ТОО «Казахстанский научно-исследовательский институт земледелия и растениеводства». Они были включены в программу гибридизации как доноры, устойчивые к твердой головне.

Соответствие направлениям развития науки или государственным программам:
Научно-исследовательская работа соответствует государственной программе Республики Казахстан по развитию образования и науки на 2020 - 2025 годы, государственной программе «Цифровой Казахстан».

Описание вклада докторанта в подготовку каждой публикации (вклад автора диссертации выражается в процентах от общего текста)
По теме диссертации опубликовано 11 научных статей. Из них: 2 статьи опубликованы в изданиях, входящих в международные базы данных *Scopus*, *WoS*, 4 статьи в изданиях, рекомендованных Комитетом по обеспечению качества в сфере науки и высшего образования, 2 статьи в научных журналах Казахстана, 3 статьи в сборнике научных трудов международных научно-практических конференций, организованных в Республике Казахстан. Все публикации подготовлены на основе исследований.

*Публикации в научных журналах, включенных в международную базу данных *Scopus*, *WoS*:*
1. Screening of wheat genotypes for the presence of common bunt resistance genes // Saudi Journal of Biological Sciences. – 2021. – Volume 28, Issue 5. – P. 2816 – 2823. (Процентилі – 86 (Q2), (Bakirov S.B. 70%), (Co-authored by: Madenova A., Sapakhova Z., Galymbek K., Yernazarova G., Kokhmetova A. 30%). В данной статье представлена информация об идентификации источников Bt-гена, обладающих устойчивостью к твёрдой головне, полученных из образцов пшеницы, допущенных к производственному посеву в Казахстане, как отечественного, так и зарубежного происхождения.

2. Searching for resistance sources to wheat common bunt (Tilletia caries (D.C.)) // The Bulletin The national academy of sciences of the republic of Kazakhstan. – Almaty, NAS RK. – Vol. 1, №389.‒ P. 50 ‒57. (Bakirov S.B.). В статье приведены данные испытаний венгерских пшениц на устойчивость к патогену Tilletia caries (D.C.) Tul в условиях искусственно созданной инфекционной среды в Алматинской области.

3. Қоңыр тат (Puccinia tritici Erikss) популяциясына бидай үлгілерінің тәзімділігін анықтау // “Ғылым және білім” Жәңгір хан атындағы БҚАТУ ғылыми ‒ практическы журналы.‒ 2022.‒ №1. – Б 152‒162. (Bakirov S.B. 65%), (Соавторы: Галымбек К., Маденова А., Амангельдин кызы З., 35 %). В данной статье описываются результаты исследования, по итогам которых, в период проростка казахстанские сорта озимых пшениц проявили устойчивость к популяции турецких бурных ржавчин.

4. Identification the sources of resistance genes to common bunt from samples of romanian wheat. Bulletin of the Korkyt Ata Kyzylorda University. ‒ 2022. ‒ № 2 (61). – P 114 – 122. (Bakirov S.B. 70%), (Co-authored by: Galymbek K., Madenova A.K., Safarova N.S., Kulzhanova D.K. 30%). В статье представлены результаты исследования, проведенного для испытания устойчивости румынских образцов пшеницы к патогену Tilletia caries (D.C.) Tul в условиях искусственно созданной инфекционной среды в Алматинской области, а также оценки их показателей индекса биомассы.

5. Румыниялық бидай үлгілерінің қатты қара күйеге тәзімділігін сынау және биомасса индексін анықтау // С.Сейфуллин атындағы Қазақ агротехникалық университетінің Ғылым жаршысы. ‒ Нұрсұлтан, 2022. ‒ № 2(113). – Б. 217‒227. (Bakirov S.B. 70%), (Соавторы: Галымбек К., Маденова А.К., Сафарова Н.С., Амангельдинова М.Е., Калидилда А.М 30 %). В данной статье представлены результаты, по которым были определены показатели индекса биомассы у румынских образцов пшеницы и оценено влияние патогенов на их производственную ценность.

6. Identification of germoplasm of wheat resistant to common bunt (Tilletia caries (DC.) Tul) // “Ғылым және білім” Жәңгір хан атындағы БҚАТУ ғылыми ‒ практическы журналы, 2022. – № 3–3 (68). – Р 105‒113; (Bakirov S.B. 70%), (Co-authored by: Galymbek K., Madenova A.K., Kadir A. 30%). В данной статье представлены данные об исследовании 25 сортов пшеницы, испытанных на устойчивость к твердой головне, а также об устойчивости 23 эффективных
Bt-изогенных линий к патогену *Tilletia caries* (D.C.) Tul в условиях Алматинской области.

Публикации в научных журналах Казахстана:

7. Алматы областные *Tilletia caries* (D.C.) Tul популяции в венгерских бидаи линиярных тозымдилгі // «Ізденістер, нәтижелер», – Алматы, 2021.– № 1 (89).– Б. 184 – 193. (Бакиров С.Б. 70%), (Соавторы: Маденова А.К., Галымбек К., Кадир А., Сабденалиева Г.М. 30%). В статье содержится информация о фитопатологической оценке устойчивости венгерских образцов пшеницы к твердой головне.

8. **Қатты кара күйе** (*Tilletia caries* (D.C.) Tul.) патогеніне бидай үлгілерінің тозымдилгі сынау // **ҚР ҰҒА Баяндамалары.** – 2022.– Бөлім 1, № 341.– Б. 12 – 20. (Бакиров С.Б. 65%), (Соавторы: Галымбек К., Маденова А. К., Акан К., Сафарова Н. С. 35%). В данной статье представлены результаты исследования устойчивости отечественных сортов пшеницы и изогенных линий к патогену *Tilletia caries* (D.C.) Tul.

Публикации материалов международной научно-практической конференции, организованной в странах ближнего зарубежья:

9. Identification of wheat hermoplasma resistant to common bunt (*Tilletia caries* (DC.) // Педагогика гылымдарының докторы, профессор Шілдебаев Жұмәділ Бәйділдәұлының 75 жылдық мерейтойына арналған «Қазақстан тәуелсіздігінің 30 жылдығы: Орта және жоғары мектептерде биологиялық және экологиялық білім берудің өзекті мәселелері (инновация және тәжірибе)» атты халықаралық гылыми‒практикалық конференциясы, Алматы, 2021. – Б. 374–376; (Бакиров С.Б. 65%), (Косалкы автор: Акан К., Галымбек К., Маденова А. К., Сафарова Н. С. 35%). В данной статье описываются особо опасные заболевания пшеницы, вызываемые твердой головной в условиях Алматинской области.

10. Новые расы и образцы вирулентности изолятов твердой головни // «Семей зоотехникалық‒малдерігерлік институтының 70 жылдығына және ветеринариялық гылымдарының докторы, профессор Токаев Зейнолла Қалымбекұлының 80 жылдығына арналған «Қазақстан Республикасы агроенергетикалық қешенінді индустриалды инновациялық тамырлардың жағдайы мен келешегі» атты халықаралық гылымдық‒практикалық конференциясысы, Семей, 2022. – Б. 212 – 214 (Бакиров С.Б. 80%). (Косалкы автор: Галымбек К., Маденова А. К., 20 %). В данной статье описываются особо опасные заболевания пшеницы, вызываемые твердой головой, а также их новые расы.

11. Болезнь твердой головы пшеницы (*Tilletia caries* (D.C.) Tul) // Сборник материалов Международной научно-практической гибридной конференции «Актуальные вопросы естественных наук и современные способы биологического образования», организованной в честь 80-летия со дня рождения Жүнусбеков, почетного профессора Казахского национального женского педагогического университета Кожантаева Женис. – Алматы, 2023. – 51–54 стр. (Бакиров С.Б. 100 %). В работе приведены морфологические особенности телиоспор твердой головы пшеницы, а также обозначен ареал распространения данного заболевания.