Construction of an ultra-high-density consensus genetic map and analysis of recombination rate variation in *Sorghum bicolor*

RIZKY DWI SATRIO1,2, ISNA AROFATUN NIKMAH1, MIFTAHLU HUDA FENDIYANTO1, MENTARI PUTRI PRATAMI1, MO AWWANAH1, NASTITI INTAN PERMATA SARI1, NADYA FARAH1, NURHADIYANTA1,2

1Department of Biology, Faculty of Military Mathematics and Natural Sciences, Universitas Pertahanan Indonesia. Komplek Indonesia Peace and Security Center (IPSC) Sentul, Bogor 16810, West Java, Indonesia. Tel. +62-21-87951555, *email: rizky.satrio@idu.ac.id, rizkydwisatrio@yandex.com*
2Indonesia Department of Cell Cure, Gatot Soebroto Army Central Hospital. Jl. Abdul Rahman Saleh Raya No.24, Senen, Central Jakarta 10410, Jakarta, Indonesia

Manuscript received: 31 October 2021. Revision accepted: 12 March 2022.

Abstract. Satrio RD, Nikmah IA, Fendiyanto MH, Pratami MP, Awwanah M, Sari NIP, Farah N, Nurhadiyanta. 2022. Construction of an ultra-high-density consensus genetic map and analysis of recombination rate variation in Sorghum bicolor. Asian J Agric 6: 47-54. Sorghum is one of the most widely grown cereal crops on a global scale. A consensus map is a method for combining genetic information from multiple populations, and it is an effective way to increase genome coverage and marker density. This study constructed a consensus map by combining publicly available marker data from four mapping populations. A total of 3449 non-redundant polymorphic markers at the nucleotide level were used to construct a single consensus map on 10 sorghum chromosomes. This study generated an ultra-high-density sorghum consensus map consisting of a large number of markers spanning 1571.68 cM and averaging one marker per 0.46 cM. Due to the high density of the markers, it is only 0.06% of the markers had an interval greater than 5 cm. The rates of local recombination were estimated using a set of all markers genetic and physical positions along each of the 10 chromosomes. The analysis of the recombination rate on 10 sorghum chromosomes revealed that it decreased as the centromere position was getting closer. The consensus map generated in this study can be used to integrate information related to sorghum genetic resources and QTLs to the genome sequence, thereby accelerating the discovery of novel potential genes in sorghum.

Keywords: Genetic map, linkage, recombination rate, single nucleotide polymorphism, *Sorghum bicolor*

INTRODUCTION

Sorghum is a major cereal crop on a global scale, often placing fifth in terms of yearly volume (FAOSTAT 2021). Due to the crop resistance to a broad range of biotic and abiotic stressors, sorghum is widely planted in marginal cropping zones and water-scarce conditions in developed and developing countries (Leff et al. 2004). Sorghum is a staple food and source of fodder in underdeveloped countries for the impoverished. In industrialized nations, it is mostly utilized as animal feed. Sorghum cultivars adapted in tropical regions have generated significant relation as a potential cellulosic biofuel-producing plant (Vermerris 2011). Sorghum genetic improvement projects worldwide are attempting to increase varieties quality, disease resistance, drought tolerance, and agronomic features (Bernardino et al. 2019, 2021). Molecular-assisted breeding techniques are broadly used to construct linkage maps and discover chromosomal regions associated with essential sorghum traits like stay-green, disease resistance, abiotic stress tolerance, high yield productivity, and photoperiod insensitivity (Harris et al. 2007; Morris et al. 2013; Girma et al. 2019).

High-density genetic or linkage maps are necessary to investigate the inheritance of qualitative and quantitative traits, design markers for molecular breeding, perform map-based gene cloning, and conduct comparative genomic investigations. Molecular breeding is more effective when densely-marked molecular map (Hufnagel et al. 2018). The consensus genetic map increases the diversity and quality of markers and the frequency of polymorphic markers at important chromosomal intervals. In the early 1990s, the sorghum genome was genetically mapped using DNA markers, and multiple genetic linkage maps were published during the previous decade (Mace et al. 2009, 2019). Early maps were constructed using Restriction Fragment Length Polymorphism (RFLP) markers, but more recent maps have incorporated Amplified Fragment Length Polymorphism (AFLP), Simple Sequence Repeat (SSR), Diversity Array Technology (DArT), and, more recently, microarray and sequencing-based Single Nucleotide Polymorphism (SNP) markers (Pennisi 2017; Miftahudin et al. 2021b).

The development of innovative marker technologies enables rapid and sequence-independent whole-genome analyses of any plant species. Due to the massively parallel and automated nature of the high-throughput sequencing (HTS) technique, the cost per data point is lowered massively compared to earlier technologies (Elshire et al. 2011). Moreover, the HTS-based marker permits direct incorporation into the reference sequence for the sorghum genome (Bouchet et al. 2012). Integration of the constantly growing number of genetic linkage data generated by various novel marker technologies is essential. Aside from
that, the vast majority of published sorghum genetic linkage maps were constructed using wider crossovers than the number of crossings generated in sorghum breeding projects (Mester et al. 2015; Bouchet et al. 2017). However, genetic linkage maps derived from large crossings are typically insufficient for molecular breeding methods because they do not adequately represent the genome architecture and gene function of the gene pool. In addition to providing an invaluable reference resource, the construction of a consensus map by combining data from several mapping populations with various genetic constitutions also provides for the mapping of a greater number of loci than is possible in most single crosses; thus, the number of potentially usable markers is increased across a range of genetic backgrounds and genome coverage levels, while simultaneously offering chances to confirm marker order (Mace et al. 2009; Qu et al. 2021).

On a genetic map, the distance between markers is proportional to the frequency of recombination. Meiotic homologous recombination is crucial in plant breeding because it results in the generation of novel combinations of preexisting genetic diversity. Over the past decade, our knowledge of meiotic recombination and genomic diversity in plants has evolved dramatically (Lambing et al. 2017). The advent of DNA sequencing technology has permitted the discovery of high-resolution genetic information in plant genomes, boosting plant breeding methods via high-throughput genotyping, linkage analysis, and association mapping. The genetic distance was divided by the physical distance to determine the recombination rate using linkage disequilibrium mapping and molecular marker-based linkage mapping (Apuli et al. 2020). Understanding the genome distribution of recombination rates helps forecast the population potential response to environmental change in quantity and breeding strategy (Shen et al. 2017).

The research aimed to integrate the linkage maps obtained from four distinct maps in sorghum and construct them into a single consensus genetic map. Additionally, the rate of local recombination of the chromosomes was evaluated. The consensus genetic map constructed in this study can be linked to a well-annotated reference physical map that may be accelerating the gene discovery in sorghum.

MATERIALS AND METHODS

Data collection

A total of four *Sorghum bicolor* (L.) Moench mapping populations were utilized to incorporate approximately 5000 individual loci (Table 1), predominantly consisting of SNP markers, into a single consensus map. The BTx623 was chosen as one of the population parents for the sorghum genome sequencing research by Kong et al. (2018). The usage of BTx623 streamlines the process of integrating the consensus genetic map generated in this work with the publicly accessible physical map sequence. Three additional mapping populations with a varied parental line were employed in this analysis, including the F₂ population used by Ji et al. (2017), the RIL population used by Lopez et al. (2017) and Phuong et al. (2019).

Consensus map integration

We constructed a consensus map for sorghum using four different genetic maps based on SNP, SLAF, DArT, and SSR markers, which combined to form a single map. Prior to integrating SLAF, DArT, and SSR markers into a single consensus map, they were converted to SNP markers. The nucleotide sequences of all primers from those markers were compared using an automated batch BLASTN search (Altschul et al. 1990), with E < 1e-10 against the BTx623 sequence as the reference genome (McCormick et al. 2018). The best hit for each marker was chosen in order to derive the map position by integrating the positions of adjacent markers. The average of each marker start and end coordinates was used to determine its physical location throughout the genome. The actual marker locations relative to the reference genome were identified using a custom Perl script. Additionally, numerous markers were removed from the downstream analysis since their physical position could not be determined. Consensus maps for each sorghum chromosome were generated using the LPmerge package (Endelman and Plomion 2014), of R software. This tool extensively uses linear programming to reduce the mean absolute error associated with the integration of many genetic or linkage maps.

Estimation of recombination rates

After finding the physical placements of the markers and integrating them genetically, the rates of local recombination along each of the 10 chromosomes were assessed using MareyMap (Rezvoy et al. 2007). To demonstrate the relationship between genetic and physical positions, a scatter plot was used to compare the genetic (cM) and physical (Mb) locations of the markers (Shen et al. 2017). The Loess technique was used to create and show the recombination map for each marker through MareyMap. The centromere positions for each chromosome were determined using Evans et al. (2013) physical map. The correlation between the position of genetic markers and their physical map was evaluated using Spearman correlation (Sedgwick 2014).

Study	Type of Population	Number of individuals	Parental of population	Type of marker	Number of markers	Length of genetic map (cM)
Kong et al. (2018)	RIL	399	BTx623 × IS3620C	SNP	381	1408.8
Ji et al. (2017)	F₂	130	Keter × J204	SLAF	2246	2158.1
Phuong et al. (2019)	RIL	140	HYP × DYP	DArT, SSR	184.9	1212.0
Lopez et al. (2017)	RIL	135	Early Hegari-San × Bk7	SNP	2833	1559.9

Table 1. A summary of the mapping data used to construct the consensus map for sorghum.
RESULTS AND DISCUSSION

Consensus genetic map of Sorghum bicolor

Multiple mapping investigations of the sorghum genome using DNA markers have been conducted over the last decade, first using RFLP markers and, more recently using AFLPs, SSRs, DArT, and, most recently, SNP markers (Nadeem et al. 2018). Integrating the constantly expanding set of linkage data generated by SNPs with the numerous genetic linkage maps is important for sorghum gene identification. The objective of this article was to examine the collinearity of four independent sorghum component maps and integrate them into a single reference resource using a large number of markers. The maps with four components were generated using the LXmerge package of R software. The lengths of the published individual maps varied from 1212 to 2158 cM (Table 1). A weighted technique based on population size implemented in LXmerge was used to construct the framework consensus map. The Sorghum consensus map comprised 3449 markers covering 1571.68 cM and an average of one marker per 0.46 cM (Figure 2). The markers along with their genetic and physical position on 10 sorghum chromosomes were deposited in the Zenodo (DOI: 10.5281/zenodo.3474022). A total of 2204 markers were either omitted from the newly developed consensus map or were determined to be redundant with those generated across studies in this meta-analysis. These markers have been removed and were not be included in the process of developing the consensus map. The consensus map contains an average of 345 markers per chromosome. Non-random patterns were discovered in the distribution of DNA markers, with some locations being visibly rich with markers and others being sparse (Figure 1). The typical distance between markers was quite short; indeed, the majority of chromosomes were separated by less than 5 cM (Figure 2). On chromosome 7, however, there was still a 9.52 cM interval. The low rate of recombination may account for the region difficulty in mapping. Our result improves the consensus genetic linkage map previously constructed using combined RFLP, AFLP, SSR, and DArT markers (Mace et al. 2009). The number of markers increased from 2029 to 3449, while the mean of markers density was narrowed from 0.79 to 0.46 marker per cM. The genetical chromosome size was relatively similar, i.e., 1603.5 and 1571.7 cM in previous and current studies.

The sorghum genome has 818 Gb of DNA and is made up of 10 chromosomes (Paterson et al. 2009). Sorghum chromosomes have vast pericentromeric regions encompassing around 50% of the genome and were characterized by low gene density and low recombination rates. Euchromatic DNA has a higher number of genes since it covers the outermost section of each chromosome arm. The current reference Tx623 genome assembly spans 720 Mb of DNA, consisting of 10 sorghum chromosomes (683.65 Mb) and several small large-contigs that were not integrated into the reference genome sequence (Cooper et al. 2019; Ruperao et al. 2021). The final consensus map enabled us to map more markers than any individual map, get more comprehensive genome coverage, and complete several gaps in individual maps.

The final consensus map allowed us to map more markers than any individual map, acquire a more comprehensive coverage of the sorghum genome, and to complete multiple gaps in previously published maps (Ji et al. 2017; Lopez et al. 2017; Kong et al. 2018; Phuong et al. 2019). Apart from the fact that the sequence of markers was consistent across individual component maps, excellent agreement in the total distances between common marker pairs was discovered throughout the component maps utilized in this investigation using a different ratio approach (Zhang et al. 2018; Hu et al. 2021). The generated consensus genetic map may be used as a reference for genomic investigations in individuals with a variety of genetic origins and a framework for genetic data transfer across various marker technologies and for combining SNP markers with other genomic resources. The SNP markers are a low-cost, high-throughput marker technology that is especially beneficial in genetic mapping, through QTL mapping or association study, and molecular breeding efforts for crops such as sorghum.

The ultra-high-density consensus genetic map constructed in this study could be used to facilitate QTL mapping to discover novel genes controlling valuable traits. The traits can be observed in agronomy (Satrio et al. 2021), morphology (Fendiyanto et al. 2019a; Mitahudin et al. 2021a), physiology (Fendiyanto et al. 2019b), metabolites (Fendiyanto et al. 2020, 2021b), or transcriptional level (Satrio et al. 2019; Fendiyanto et al. 2021a; Ratnadewi et al. 2021). Published QTL map from any previous study could be integrated with the consensus genetic linkage map constructed in this study as the meta-QTL analysis. QTLs detected from meta-QTL analysis generally have higher robustness than individual QTL studies, such as in the cases of wheat (Hu et al. 2021), rice (Khowaja and Price 2008; Trijatmiko et al. 2014), potato (Danan et al. 2011), and wheat (Qu et al. 2021).

Recombination rate estimates in sorghum genome

The collinearity of the consensus genetic map and the physical map depicted in Figure 2 were studied on all sorghum chromosomes. The findings suggested that these markers were quite useful for building a genomic map. The bulk of chromosomal markers overlapped significantly between the genetic and physical maps. The Spearman correlation coefficient was typically consistent with the degree of genetic collinearity between each genetic and physical location. On all chromosomes except for chromosomes 7 and 10, the Spearman correlation value was more than 0.95. A high Spearman correlation coefficient suggested a significant association (Shen et al. 2017).

The topography of recombination rate variation throughout the genome is shown in Figure 2, which gave a precise calculation of the rate of recombination per physical distance (Mb) along each of the 10 sorghum chromosomes. The consensus linkage map created in this research was used to calculate recombination estimates. The average genome-wide recombination rate did not follow a random distribution, and recombination occurred
at a greater rate in distal chromosomal areas than in proximal ones. Within chromosomes, one broad-scale and the persistent trend was a lower rate of recombination at centromeres. While this might be explained by selection against recombination in highly repeated areas, a repetitive sequence is not essential; species lacking or with few centromeric repeats also demonstrate decreased centromere recombination (Stapley et al. 2017). Suppression is probably definitely a function of chromatin shape; double-strand DNA breaks are less prevalent in condensed heterochromatin. The chromatin environment may affect the chance that a double-strand break is repaired without a crossover. A double-strand break and subsequent repair by a non-crossover may be widespread in centromeres, which might account for the accumulation of repetitive components and diversity of centromeres despite the apparent paucity of crossings (Talbert and Henikoff 2010).

Figure 1. Ultra-high-density consensus genetic map of 10 sorghum chromosomes constructed from a large number of markers
Table 2. Characteristics of the ultra-high-density consensus genetic map constructed from a large number of markers in sorghum

Chr.	Physical chr. size (Mb)	Genetical chr. size (cM)	Number of markers	Average distance between markers (cM)	Maximum distance between markers (cM)	Gap < 5 cM (%)
1	80.88	228.84	591	0.39	3.14	100
2	77.74	175.87	430	0.41	2.54	100
3	74.39	177.46	414	0.43	2.89	100
4	68.66	158.92	350	0.46	3.77	100
5	71.85	160.92	288	0.56	2.65	100
6	61.28	131.81	308	0.43	1.86	100
7	65.51	131.70	266	0.49	9.52	100
8	62.69	106.88	222	0.48	3.09	100
9	59.42	128.01	267	0.48	3.11	100
10	61.23	171.27	313	0.55	5.67	99.68
Whole	683.65	1571.68	3449	0.46	9.52	99.94

Note: Gap < 5 cM: the average distance between neighboring markers that is less than 5 cM; Chr. = chromosome

Figure 2. The relationship of genetic and physical maps as well as their estimated local recombination rates of the sorghum genome. The R^2 value represents the Spearman correlation coefficient between genetic and physical map. The light blue curves below the scatter plots represent the estimated local recombination rates. The dashed red line indicates the position of the centromere for each chromosome. The summary of the recombination rates in the whole genome of sorghum was represented as the violin and box plot.
The rate of recombination differed across chromosomes (Figure 2). For the summary, on chromosomes 4, 6, and 8, recombination rates varied from 0.01 cM/ Mb to 37.28 cM/ Mb. The calculated median rate of recombination was 4.83 cM/ Mb. The estimated mean rate of recombination was 5.44 cM/ Mb. Recombination rates computed using the consensus linkage map and polymorphism data revealed a large variance across all chromosomes on Mb basis (Figure 2). The majority of our observations fell within the range of 0-37.28 cM/ Mb for the consensus genetic map-based estimates, which is consistent with what was observed in other plants such as Arabidopsis thaliana (L.) Heynh. (Giraud et al. 2011), Populus trichocarpa Torr. & A.Gray ex. Hook. (Slavov et al. 2012), and Eucalyptus grandis W.Hill (Silva-Junior and Grattapaglia 2015). Additionally, recombination hot and cold spots have been observed in Zea mays L. and Oryza sativa L. (He and Dooner 2009). However, recombination hotspots or coldspots are typically reasonably modest in size, spanning just a few Kb (Choi and Henderson 2015). Sorghum average recombination rate is several times that of a number of other plant and animal species (Tiley and Burleigh 2015), meaning that it possesses one of the greatest recombination rates ever reported in the plant kingdom.

Our high-density sorghum consensus genetic map was a very useful resource for S. bicolor and comparative genomics investigations within the genus Sorghum. Recombination estimates rates generated from a consensus genetic map constructed from various linkage maps were generally consistent across studies. Our results imply that, since recombination estimates were based on population-scale variation, they may be especially helpful for discovering fine-scale recombination variation and identifying hot- or coldspots recombination in the genome. Thus, more study is necessary to ascertain the relative role of positive and negative selection in sculpting sorghum genome-wide diversity and having access to the tools produced here would aid these investigations.

ACKNOWLEDGEMENTS

This research was funded by the “Ministry of Defense of the Republic of Indonesia” on behalf of Dr. Rizky Dwi Satrio. In addition, the authors acknowledge the Bioinformatics Laboratory of the Universitas Pertahanan Indonesia for the computation facility.

REFERENCES

Alschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215: 403-410. DOI: 10.1016/S0022-2836(05)80360-2.
Apul RI, Bernhardsson C, Schiffthaler B, Robinson KM, Jansson S, Street NR. Ingvarsson PK. 2020. Inferred the genomic landscape of recombination rate variation in European aspen (Populus tremula). G3 (Bethesda) 10: 299-309. DOI: 10.1534/g3.119.400504.
Bernardino KC, de Menezes CB, de Sousa SM, Guimarães CT, Carneiro PCS, Schaffert RE, Kochian L V, Hufnagel B, Pastina MM, Magalhães J V. 2021. Association mapping and genomic selection for sorghum adaptation to tropical soils of Brazil in a sorghum multiparental random mating population. Theor Appl Genet 134: 295-312. DOI: 10.1007/s00122-020-04369-8.
Bernardino KC, Pastina MM, Menezes CB, de Sousa SM, Maciel LS, Carvalho GJ, Guimarães CT, Barros BA, da Costa E Silva L, Carneiro PCS, Schaffert RE, Kochian L V, Magalhães J V. 2018. The genetic architecture of phosphorus efficiency in sorghum involves pleiotropic QTL for root morphology and grain yield under low phosphorus availability in the soil. BMC Plant Biol 19: 87. DOI: 10.1186/s12870-019-1689-y.
Bouchet S, Olatoye MO, Marla SR, Perumal R, Tesso T, Yu J, Tiusstra M, Morris GP. 2017. Increased power to dissect adaptive traits in global sorghum diversity using a nested association mapping population. Genetics 206: 573-585. DOI: 10.1534/g3.116.194899.
Bouchet S, Pot D, Deu M, Rami J-F, Billet C, Perrier X, Rivallan R, Gardes I, Xia L, Wenzl P, Kilian A, Glasmann J-C. 2012. Genetic structure, linkage disequilibrium and signature of selection in Sorghum: Lessons from physically anchored DARt markers. PLoS One 7: e34370. DOI: 10.1371/journal.pone.0034370.
Choi K, Henderson IR. 2015. Metotic recombination hotspots – a comparative view. Plant J 83: 52-61. DOI: 10.1111/pj.12870.
Cooper EA, Brenton ZW, Finn BS, Jenkins J, Su S, Flowers D, Luo F, Wang Y, Xia P, Barry K, Daum C, Lipzen A, Yoshinaga Y, Schmutz J, Sasaki C, Vemmeris W, Kresovich S. 2019. A new reference genome for Sorghum bicolor reveals high levels of sequence similarity between sweet and grain genotypes: Implications for the genetics of sugar metabolism. BMC Genom 20: 420. DOI: 10.1186/s12864-019-5734-x.
Danan S, Veyrieras JB, Lefebvre V. 2011. Construction of a potato consensus map and QTL meta-analysis offer new insights into the genetic architecture of late blight resistance and plant maturity traits. BMC Plant Biol 11(1): 16. DOI: 10.1186/1471-2229-11-16.
Elshrie RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6: 1-10. DOI: 10.1371/journal.pone.0019621.
Endelman JB, Pionon C. 2014. lPmerge: An R package for merging genetic maps by linear programming. Bioinformatics 30: 1623-1624. DOI: 10.1093/bioinformatics/btu091.
Evans J, McCormick RF, Morishige D, Olson SN, Weers B, Hillye J, Klein P, Rooney W, Mullet J. 2013. Extensive variation in the density and distribution of DNA polymorphism in sorghum genomes. PLoS One 8: e79192. DOI: 10.1371/journal.pone.0079192.
FAOSTAT. 2021. UN Food and Agriculture Organization Statistics [Online]. (accessed October 25, 2021).
Fendiyanto MH, Satrio RD, Darmadi D. 2020. Metabolic profiling and pathway analysis in red arilus of Staplema sumatranae demonstrate significant pyruvate, sulfur, and fatty acid metabolisms. Biodiversitas 21: 4361-4368. DOI: 10.13057/biodiv/d210955.
Fendiyanto MH, Satrio RD, Pratami MP,nikmah IA, Sari NIP, Widana IDKK, Darmadi D. 2021a. Analysis of superoxide dismutase (SOD) gene expression using qRT-PCR, its morphophysiological characters and path analysis in rice variety IR64 under aluminum stress. Int J Agric Biol 26: 546-554. DOI: 10.17957/IBAB/15.1866.
Fendiyanto MH, Satrio RD, Suharsono, Tjahjoleksono A, Hanarida I, Miftahudin. 2019a. QTL for aluminum tolerance on rice chromosome 3 based on root length characters. Sabrao J Breed Genet 51: 451-469.
Fendiyanto MH, Satrio RD, Suharsono, Tjahjoleksono A, Miftahudin. 2019b. Correlation among Snpb11 markers, root growth, and physiological characters of upland rice under aluminum stress. Biodiversitas 20: 1243-1254. DOI: 10.13057/biodiv/d200514.
Fendiyanto MH, Satrio RD, Widana IDKK, Pratami MP, Nikmah IA, Darmadi D. 2021b. Differential hierarchical metabolites expression of red/white Staplema sumatranae arilus and its molecular docking studies. Biodiversitas 22: 1014-1024. DOI: 10.13057/biodiv/d220258.
Giraut L, Falque M, Drouaud J, Pereira L, Martin OC, Mézard C. 2012. Genome-wide-crossover distribution in Arabidopsis thaliana meiosis reveals sex-specific patterns along chromosomes. J Genet 90: 451-469.
Giraud L, Falque M, Drouaux J, Pereira L, Martin OC, Mézard C. 2011. Genome-wide-crossover distribution in Arabidopsis thaliana meiosis reveals sex-specific patterns along chromosomes. J Genet 90: 451-469.
Girma G, Nida H, Seyoum A, Mekonen M, Nega A, Lule D, Dessalegn K, Bekele A, Gebreyohannes A, Adeyanju A, Tirfessa A, Ayana G, Taddese T, Mekbib F, Belete K, Tesso T, Ejeta G, Mengiste T. 2019. A large-scale genome-wide association analyses of Ethiopian sorghum landrace collection reveal loci associated with important traits. Front Plant Sci 10: 691. DOI: 10.3389/fpls.2019.00691.
Harris K, Subudhi PK, Borrell A, Jordan D, Rosenow D, Nguyen H, Klein P, Klein R, Mullet J. 2007. Sorghum stay-green QTL individually reduce post-flooding drought-induced leaf senescence. J Exp Bot 58: 327-338. DOI: 10.1093/jxb/erz225.

He L, Dooner HK. 2009. Haplotype structure strongly affects recombinant inbred line genetic polymorphism for Helitron and retrotransposon insertions. Proc Natl Acad Sci USA 106: 8410-8416. DOI: 10.1073/pnas.0909272106.

Hu X, Zhang Y, Zhang J, Islam S, Mei Z, Hao T, Yang J, Yung R, Jiao M, Wa W. 2021. Consensus genetic linkage map construction based on one common parental line for QTL mapping in wheat. Agronomy 11 (9): 227. DOI: 10.3390/agronomy11092273.

Hufnagel B, Guimaraes CT, Craft EJ, Shaff JE, Schaffert RE, Kochian L V, Magalhaes JV. 2018. Exploiting sorghum genetic diversity for enhanced aluminum tolerance: Allele mining based on the Alt(Sb) locus. Sci Rep 8: 10094. DOI: 10.1038/s41598-018-27817-z.

Ji G, Zhang Q, Du R, LV P, Ma X, Fan S, Li S, Hou S, Han Y, Liu G. 2017. Construction of a high-density genetic map using specific-locus amplified fragments in sorghum. BMC Genom 18: 1-10. DOI: 10.1186/s12864-016-3430-7.

Kowajwa FS, Price AH. 2008. QTL mapping rolling, stomatal conductance and dimension traits of excised leaves in the Bala × Azucena recombinant inbred population of rice. F Crop Res 106: 245-257. DOI: 10.1016/j.fcr.2007.12.008.

Kong WQ, Kim C, Zhang D, Guo H, Tan X, Jin H, Zhou C, Shuang LS, Ji G, Zhang Q, Du R, Liang MD, Hu X, Zhang Y, Zhang J, Islam S, She M, Zhao Y, Tang G, Jiang Y, Rong LS. 2017. Construction of consensus genetic map with applications in gene mining and retrotransposon insertions. Proc Natl Acad Sci US 114: 11090-11095. DOI: 10.1073/pnas.1709040110.

Paterson AH, Bowers JE, Bruegmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Felts PA, Gowik U, Grigoriev I V, Lyons E, Maher CA, Martins M, Narechania A, Oikar RP, Penning BW, Salamon AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gloppe AR, Hash CT, Kell B, Klein P, Kresovich S, McCann CM, Ming R, Peterson DG, Mehboob-ur-Rahman, Ware D, Westhoff P, Mayer KF, Messing J, Rokhsar DS. 2009. The Sorghum bicolor genome and the diversification of grasses. Nature 457: 551-556. DOI: 10.1038/nature07723.

Pennisi E. 2017. New technologies boost genome quality. Science 357: 10-11. DOI: 10.1126/science.357.6346.10.

Phuong N, Afolayan G, Stütz E, Uptmore R, El-Soda M. 2019. Unraveling the genetic complexity underlying sorghum response to water availability. PLoS One 14: 1-15. DOI: 10.1371/journal.pone.0215519.

Pu Q, Wang J, Wen W, Gao F, Liu J, Xiao X, Pang H, Zhang L. 2021. Construction of consensus genetic map with applications in gene mapping of wheat (Triticum aestivum L.) using 90K SNP array. Front Plant Sci 12: 727077. DOI: 10.3389/fpls.2021.727077.

Rajasekhar D, Fendyani MD, Satrio RD, Mutfahudin M, Laili AN. 2021. Strictosidine synthase coding gene expression towards quinine biosynthesis and accumulation: Inconsistency in cultured cells and fresh tissues of Cinchona ledgeriana. Int J Agric Biol 26: 131-138. DOI: 10.17957/ijab/15.18198.

Rezvay C, Charif D, Guéguen L, Marais GAB. 2007. MapRay: An R-based tool with graphical interface for estimating recombination rates. Bioinformatics 23: 2188-2189. DOI: 10.1093/bioinformatics/btm315.

Ruperao P, Thirunavukkarasu N, Gandham P, Selvanayagam S, Govindaraj M, Nebie B, Manyesa E, Gupta R, Das RR, Odeny DA, Gandhi H, Edwards D, Deshpande SP, Rathore A. 2021. Sorghum pan-genome explores the functional utility for genomic-assisted breeding to accelerate the genetic gain. Front Plant Sci 12: 666342. DOI: 10.3389/fpls.2021.666342.

Satrio RD, Fendyani MH, Supena EDJ, Suharsono, Mutfahudin. 2019. Identification of drought-responsive regulatory genes by hierarchical selection of expressed sequence tags and their expression under drought stress in rice. Int J Agric Biol 22: 1524-1532. DOI: 10.17957/ijab/15.12305.

Satrio RD, Fendyani MH, Supena EDJ, Suharsono, Mutfahudin. 2021. Genome-wide SNP discovery, linkage mapping, and analysis of QTL for morpho-physiological traits in rice during vegetative stage under drought stress. Physiol Mol Biol Plants 27: 2635-2650. DOI: 10.1111/pmb.1201950.

Sedgwick P. 2014. Spearman’s rank correlation coefficient. BMJ 349: g3727. DOI: 10.1136/bmj.g3727.

Shen C, Li X, Zhang R, Lin Z. 2017. Genome-wide recombination rate variation in a recombinant mapping of coton. PLoS One 12: 1-15. DOI: 10.1371/journal.pone.0188682.

Silva-Junior OB, Grattapaglia D. 2015. Genome-wide patterns of recombination, linkage disequilibrium and nucleotide diversity from pooled sequencing and single nucleotide polymorphism genotyping unlock the evolutionary history of Eucalyptus grandis. New Phytol 208: 830-845. DOI: 10.1111/nph.13505.

Slavov GT, DiFazio SP, Martin J, Schackwitz W, Muchero W, Rodgers-Melmick E, Lipphardt MF, Pennacchio CP, Hellsten U, Pennacchio LA, Gunter LE, Ranjan P, Vining K, Ponnaram KR, Wilhelmi LJ, Pellegrini M, Molkier TC, Dang M, Geraldes A, El-Kassaby YA, Mansfield SD, Cron QC, Douglas CJ, Strauss SH, Rokhsar D, Tuskan GA. 2012. Genome resequencing reveals multiscale geographic structure and extensive linkage disequilibrium in the forest tree Populus trichocarpa. New Phytol 196: 713-725. DOI: 10.1111/j.1469-8137.2012.03258.x.

Stapley J, Feulner PGD, Johnston SE, Santure AW, Smadja CM. 2017. Variation in recombination frequency and distribution across eukaryotes: patterns and processes. Philos Trans R Soc B Biol Sci 372: 20160455. DOI: 10.1098/rspb.2016.0455.

Talbert PB, Henikoff S. 2010. Commerces convert but don’t cross. PLoS Biol 8: e1000326. DOI: 10.1371/journal.pbio.1000326.
Tiley GP, Burleigh JG. 2015. The relationship of recombination rate, genome structure, and patterns of molecular evolution across angiosperms. BMC Evol Biol 15: 194. DOI: 10.1186/s12862-015-0473-3.

Trijatmiko KR, Supriyanta, Prasetiyono J, Thomson MJ, Vera Cruz CM, Moeljopawiro S, Pereira A. 2014. Meta-analysis of quantitative trait loci for grain yield and component traits under reproductive-stage drought stress in an upland rice population. Mol Breed 34: 283-295. DOI: 10.1007/s11032-013-0012-0.

Vermerris W. 2011. Survey of genomics approaches to improve bioenergy traits in maize, sorghum and sugarcane. J Integr Plant Biol 53: 105-119. DOI: 10.1111/j.1744-7909.2010.01020.x.

Zhang J, Long Y, Wang L, Dang Z, Zhang T, Song X, Dang Z, Pei X. 2018. Consensus genetic linkage map construction and QTL mapping for plant height-related traits in linseed flax (Linum usitatissimum L.). BMC Plant Biol 18: 160. DOI: 10.1186/s12870-018-1366-6.