Targeting PD-L1 in non-small cell lung cancer using CAR T cells

Ming Liu1,Xu Wang2, Wei Li2, Xinfang Yu2, Pedro Flores-Villanueva2, Zijun Y. Xu-Monette3, Ling Li4, Mingzhi Zhang4, Ken H. Young3, Xiaodong Ma5 and Yong Li2

Abstract
Antibodies against programmed cell death protein 1 (PD-1) and its ligand (PD-L1) have dramatically changed the landscape of therapies for non-small cell lung carcinoma (NSCLC); however, the majority of patients do not respond to these agents. In addition, hyperprogressive disease (HPD) develops in a larger portion of NSCLC patients treated with PD-1/PD-L1 inhibitors than in patients treated with standard chemotherapy. The use of chimeric antigen receptor (CAR) T cells has been successful to treat blood cancers but not for solid tumors like NSCLC. In this work, we constructed CAR T cells that target PD-L1 and evaluated their efficacy in NSCLC with either high or low PD-L1 expression. PD-L1-CAR T cells exhibited antigen-specific activation, cytokine production, and cytotoxic activity against PD-L1high NSCLC cells and xenograft tumors. Furthermore, the addition of a subtherapeutic dose of local radiotherapy improved the efficacy of PD-L1-CAR T cells against PD-L1low NSCLC cells and tumors. Our findings indicate that PD-L1-CAR T cells represent a novel therapeutic strategy for patients with PD-L1-positive NSCLC, particularly for those who are susceptible to HPD.

Introduction
Lung cancer is the leading cause of cancer-related death in the world1. In the United States, approximately 234,000 lung cancer cases are diagnosed with 154,050 deaths annually1,2. Approximately 85% of patients with lung cancers have non-small cell lung carcinoma (NSCLC), and more than 40% of them are diagnosed with metastatic disease1,3. Although significant progress in drug development against lung cancer has been made, the prognosis of lung cancer has not improved drastically over the past three decades4. Even with the current targeted therapies, most patients eventually experience disease relapse5,6.

Immunotherapy is a promising therapeutic approach for patients with refractory cancers. Checkpoint inhibitors that target programmed cell death protein 1 (PD-1) or its ligand (PD-L1) have demonstrated efficacy and safety in patients with NSCLC and are becoming a standard treatment for the management of locally advanced and metastatic lung cancer. However, only approximately 20% of unselected patients with advanced NSCLC benefit from this treatment7. Furthermore, NSCLCs harboring epidermal growth factor receptor (EGFR) mutations or anaplastic lymphoma receptor tyrosine kinase (ALK) rearrangements are associated with low overall response rates to PD-1/PD-L1 blockade8,9. In addition, hyperprogressive disease (HPD) represents a new pattern of progression that was recently described in cancer patients treated with PD-1/PD-L1 inhibition. A recent report shows that anti-PD-1/PD-L1 treatment accelerates tumor progression in 16% of patients with NSCLC across multiple histologies10,11. A potential mechanism is that the fragment crystallizable (Fc) receptor of tumor-associated macrophages engages with the Fc region of the anti-PD-1 antibody to induce HPD12. Furthermore, patients with cancers that harbor mouse double minute 2 homolog
(MDM2) amplification or EGFR mutations have increased the risk of HPD after anti-PD-1/PD-L1 treatment13. Therefore, there is an urgent need for alternative approaches to target PD-L1-positive tumors in NSCLC patients at high risk of HPD.

Chimeric antigen receptor (CAR) T-cell therapy has been successfully employed in blood tumors but not in solid tumors. The tumor microenvironment generated by myeloid-derived suppressor cells; regulatory T cells; immunosuppressive cytokines, such as interleukin (IL)-10 and transforming growth factor-β; and ligands for tumor-expressed T-cell inhibitory signaling receptors, such as PD-1 and CTLA-4, contribute to attenuated persistence and antitumor efficacy of CAR T cells in solid tumors14,15. The addition of checkpoint inhibitors has been applied to enhance CAR T cell efficacy16. It is shown that PD-L1 on tumor cells or on dendritic cells and macrophages in the tumor microenvironments exerts functionally significant suppressive effects on tumor immunity17–19.

High expression of PD-L1 has been found in cancer cells of NSCLC patients, and CAR T cells that secrete the anti-PD-L1 antibody have demonstrated promising efficacy in humanized mouse models20–22. In this study, we demonstrated that PD-L1-CAR T cells have substantial antitumor activity in vitro and lead to prolonged remission for PD-L1high NSCLC xenograft tumors in mice. In addition, radiotherapy exhibited synergistic activity with PD-L1-CAR T cells, potentially by allowing the migration of CAR T cells to tumors generated from PD-L1low NSCLC cells. Our findings provide preclinical evidence to support PD-L1 targeting by CAR T cells to treat NSCLC and potentially other types of solid malignancies.

Material and methods

Cell lines and culture

Human NSCLC EGFR-wild type cell lines A549 and H1299, EGFR-mutant cell lines HCC827 (del E746-A750) and H1975 (L858R and T790M), and normal bronchial epithelial cell line (BEAS-2B) were purchased from ATCC (Manassas, VA). The NSCLC EGFR-mutant cell line PC9 (del E746–A750) was obtained as described previously23. These cell lines were maintained in RPMI-1640 (Gibco, Gaithersburg, MD) supplemented with 10% heat-inactivated fetal bovine serum (Gibco) and 1% (v/v) penicillin/streptomycin in a humidified incubator with 5% CO\textsubscript{2} at 37°C. All cells were transduced with firefly luciferase (Fluc) via lentiviral transduction, and blasticidin selection was utilized to set up stable luciferase-expressing cell lines.

CAR construction, lentiviral vector production, and T cell transduction

The PD-L1-CAR, encoding single-chain variable fragment (scFv) against the human PD-L1, a CD8 hinge and transmembrane domain, 4-1BB co-stimulatory domain, and CD3ζ signaling domain, were totally synthesized and cloned into a third-generation lentiviral plasmid backbone with a human elongation factor 1α (EF-1α) promoter. PD-L1 scFv is derived from atezolizumab, a fully humanized, engineered monoclonal antibody of IgG1 isotype against PD-L1 (sold as Tecentriq® by Roche). A CD19-CAR with the same structure was used as a control. CD19 scFv is derived from mouse monoclonal antibody FMC-63 (GenBank ID: HM852952.1). PD-L1-CAR-encoding and CD19-CAR-encoding lentiviral supernatants were produced via transient transduction of the 293T cell line as described24. CD3+/CD4+/CD8+ T cells were isolated from leukopaks of healthy volunteer donors (Gulf Coast Regional Blood Center, Houston, TX) using EasySep™ Human CD3/CD4/CD8 Positive Selection Kit (Stem Cell Technologies, Vancouver, Canada). Isolated human T cells were then activated by anti-CD3/CD28 beads (Life Technologies, Carlsbad, CA) in a cell-to-bead ratio of 1:3 with 200 IU/ml IL-2 in CTS™ OpTmizer™ T Cell Expansion medium (Life Technologies). After 24 h, activated T cells were transduced by the PD-L1-CAR or CD19-CAR. Medium with IL-2 was refreshed every 2–3 days. Each ensuing cellular or animal experiment was performed using T cells from at least two different donors. In all figure legends, the data were obtained using T cells from one donor only with technical triplicates.

Cellular cytotoxicity assay

The cytotoxicity of T cells was assessed using a luciferase-based assay as previously described25. Stable Fluc-expressing tumor cells (20,000 cells per well) were co-incubated with PD-L1- or CD19-CAR T cells for 4 or 20 h at effector-to-target (E:T) ratios from 10:1 to 1:4. The one-step glow assay kit (Thermo Fisher Scientific, Waltham, MA) was used to measure residual luciferase activity from the remaining tumor target cells, and lysis was calculated as follows: % lysis = 100 – (Fluc from CAR-T-treated wells) / (Fluc from untreated target cells) × 100.

Cytokine secretion assay

Cytokine production by CAR T cells in vitro was evaluated following the co-incubation of CAR T cells with tumor cells at a 2:1 ratio for 20 h. Supernatants were harvested, and cytokine levels were measured using Human DuoSet ELISA kits (IL-2, tumor necrosis factor [TNF]-α, and interferon [IFN]-γ, R&D Systems, Minneapolis, MN).

Flow cytometry

Expression levels of PD-L1 and other cell surface markers on tumor cells and T cells were measured using flow cytometry. CAR T cells were collected from cultures and detected with monoclonal antibodies against human CD3, CD4, CD8, TIM3, CD45RA, CD62L, PD-L1, and PD-1.
(Biolegend, San Diego, CA) according to the manufacturers’ instructions. PD-L1-CAR expression was detected using an indirect method with biotinylated protein L and a streptavidin-coupled PE antibody (Becton Dickinson, Franklin Lakes, NJ). Fluorescence was assessed using BD Accuri™ C6 Plus or LSRFortessa instruments (BD Biosciences, San Jose, CA), and the data were analyzed using FlowJo v10 (Tree Star, Ashland, OR).

Xenograft mouse model
All animal procedures were performed in accordance with our Institutional Animal Care and Use Committee requirements under an approved protocol. Female NOD. Cg-Prkdc^{scid} IlyZ^{tm1Wj}/SjI (NSG, The Jackson Laboratory, Bar Harbor, ME) mice aged 6–8 weeks were maintained in a pathogen-free barrier facility. Mice were inoculated subcutaneously with 1.0 × 10⁶ H1975-Fluc cells, 3 × 10⁶ HCC827-Fluc cells, 5.0 × 10⁶ A549-Fluc cells, or 2.0 × 10⁶ H1299-Fluc cells. Animals were treated with 5 × 10⁶ CAR T cells twice via tail vein injection on day 7 and 10 post-tumor cell inoculation. Tumor progression was monitored by serial palpation of tumors by the observers who were blind to the experimental groups. Tumor volumes were calculated using an IVIS Spectrum in vivo Imaging System (Perkin Elmer, Waltham, MA). A primary tumor was induced by a single inoculation of H1975-Fluc cells per mouse, and the volumes of the tumors were measured daily using the formula: V = ½ (length × width²). For statistical analysis, tumor volumes were compared by the Ultrascope Detection System (Thermo Fisher Scientific, Waltham, MA).

Histology immunohistochemistry analyses
Tissue samples were collected and stained followed the manufacturer’s protocol. In brief, deparaffinized and rehydrated sections were treated for antigen retrieval using sodium citrate buffer, blocked with normal goat serum for 30 min at room temperature, and then incubated with primary antibody against CD3 (ab16669, Abcam, Cambridge, UK), PD-L1(ab228462, Abcam), Ki67 (D2H10, Cell Signaling Technology, Danvers, MA) at 4°C overnight. Slides were incubated with secondary antibodies, counterstained with hematoxylin, and visualized by the Ultra Vision Detection System (Thermo Fisher Scientific). Signal intensity was scored by two independent observers who were blind to the experimental groups.

Statistical analysis
The data were presented as means ± standard error (SEM). Two independent groups were analyzed using Student’s t-test, while the statistical comparison between multiple groups was performed using two-way repeated-measures ANOVA. p-values ≤ 0.05 were considered statistically significant. All statistical analyses were performed using GraphPad Prism v7.0 (GraphPad Software, San Diego, CA).

Results
Generation of PD-L1-CAR-expressing T cells
To generate anti-PD-L1-CAR T cells, we constructed a CAR expression plasmid that encodes an anti-PD-L1 scFv, a CD8 hinge, a transmembrane domain in tandem with 4-1BB intracellular signaling domain, and a CD3ζ motif (Fig. 1a). A CD19-CAR with an anti-CD19 scFv was used as a control. The expression level of the CAR was evaluated by flow cytometry 5 days of post-transduction. An average of 55.6% of the PD-L1-CAR T cells and 59.3% of the CD19-CAR T cells were scFv-positive, indicating a high transduction efficiency (Fig. 1b, Supplementary Fig. 1a). There was no significant difference in cell viability between PD-L1-CAR T and CD19-CAR T cells on day 7 and 14 post-transduction (Fig. 1c). CD19-CAR and PD-L1-CAR T cells displayed a similar expansion tendency after priming with anti-CD3/CD28 beads for 14 d (>50-fold expansion; Fig. 1d). Importantly, both CD4⁺ and CD8⁺ PD-L1-CAR T cells, upon anti-CD3/CD28 bead stimulation, were expanded to more than 5 × 10⁷ cells from an initial 1 × 10⁶ transduced primary T cells (Supplementary Fig. 2a). To investigate the expression level of different cell markers at an early and late stage of culture, we examined T-cell markers for lineage, immunosuppression, and memory phenotypes. On day 7, both PD-L1-CAR and CD19-CAR T cells were positive for CD3 (96.8 and 97.8%, respectively), CD4 (68.3 and 66.8%, respectively), and CD8 (26.4 and 29.1%, respectively). For PD-L1-CAR T cells, 28.5%, 3.9%, and 1.4% of them were positive for CD-1, CD-L1, and TIM3, respectively, on day 7. During PD-L1-CAR T cell expansion, the expression of PD-L1 on these cells was higher at day 14 than that at day 7 (Fig. 1e, Supplementary Fig. 1b); however, there was no differences in fractions of central memory T cells (CD45RA[−]CD62L[−], T_{cem}), stem cell-like memory T cells (CD45RA[−]CD62L⁺, T_{stem}), and effector memory T cells (CD45RA[−]CD62L[−], T_{em}) between day 14 and day 7 (Fig. 1f, Supplementary Fig. 1c). In summary, after 14 days of culture, CD3⁺, CD4⁺, and CD8⁺ PD-L1-CAR T cells expanded well and contained both effector and central memory cell populations.

PD-L1-CAR T cells exhibit robust effector functions against PD-L1^{high} NSCLC cells in vitro
PD-L1 was highly expressed on H1975, HCC827, and PC9 cells, which carry mutant EGFR, whereas A549, H1299 (both with wild-type EGFR), and an immortalized bronchial cell line (BEAS-2B) showed lower PD-L1 expression (Fig. 2a). To assess the antitumor efficacy of PD-L1-CAR T cells, we performed cytotoxicity assays against these NSCLC cell lines and BEAS-2B. PD-L1-CAR T cells and CD19-CAR T cells were co-cultured at selected effector-to-target ratios for 4 or 20 h. Compared to CD19-CAR T cells, PD-L1-CAR T cells showed significantly stronger cytotoxic activity for PD-L1^{high} cell lines (H1975, HCC827, and PC9) but not for PD-L1^{low} cell lines (A549, H1299, and BEAS-2B; Fig. 2b). Furthermore, both CD4⁺ and CD8⁺ PD-L1-CAR T cells...
exhibited efficient cytotoxicity against PD-L1high tumor cells (Supplementary Fig. 2b). PD-L1-CAR T cells also demonstrated antigen-specific production of cytokines IL-2, IFN-γ, and TNF-α when incubated with PD-L1high tumor cell lines HCC827 and H1975 in vitro (Fig. 2c).

PD-L1-CAR T cells eradicate PD-L1high NSCLC tumors in vivo

To determine the efficacy of PD-L1 CAR T cells in vivo, we inoculated NSG mice subcutaneously with H1975-Fluc followed by two doses of PD-L1-CAR or CD19-CAR T cells via tail vein on day 7 and 10. Tumor xenografts were monitored via bioluminescence imaging weekly (Fig. 3a). Serial imaging of luminescence showed that PD-L1-CAR T cells dramatically decreased tumor burden compared with CD19-CAR T cells (Fig. 3b). The control CD19-CAR T cells exhibited no tumorcidic activity. We re-challenged the mice treated with PD-L1-CAR T cells by injecting another dose of HCC827-Fluc cells on day 70 on the contralateral flank of the animals. Comparable and sustained antitumor activity was observed in the re-challenged group (Fig. 4b, d), while tumor growth was observed in a new control animal cohort treated with CD19-CAR T cells. This suggests that PD-L1-CAR T cells had sustained antitumor activity. Collectively, these results demonstrated that PD-L1-CAR T cells exhibited a significant antitumor effect against PD-L1high NSCLC cells in vivo.
Evaluation of the role of IFN-γ and irradiation in promoting the antitumor activity of PD-L1-CAR T cells against PD-L1low NSCLC cells

In order to improve the efficacy of PD-L1-CAR T-cell treatment in PD-L1low NSCLC cells, we sought to induce PD-L1 expression in NSCLC cells. We treated cells with 5 ng/ml IFN-γ and analyzed PD-L1 expression. A significant increase in the expression of PD-L1 was observed in all NSCLC cell lines except BEAS-2B (Supplementary Fig. 3a). Next, A549 and HCC827 cells were pre-treated with 5 ng/ml IFN-γ for 24 h followed by PD-L1-CAR T cells or CD19-CAR T cells for an
additional 4 or 20 h. We found no significant difference in tumor cell lysis with or without IFN-γ pre-treatment (Supplementary Fig. 3b).

Radiotherapy, a lung cancer treatment option that directly induces tumor cell apoptotic death and enhances tumor-specific immunity, has been shown to upregulate
PD-L1 expression in tumor cells and improve the efficacy of anti-PD-1/PD-L1 therapy27,28. Incomplete tumor eradication by radiation-induced adaptive immunity is partially due to the engagement of negative regulatory pathways, such as the PD-L1/PD-1 axis29. We applied 5 Gy irradiation to BEAS-2B, A549, H1299, H1975, HCC827, and PC9 cell lines and found moderately and statistically significant increased expression of PD-L1 in PD-L1low A549 cells, but not in H1299 cells (Fig. 5a, b). However, radiation resulted in significant upregulation of PD-L1 in BEAS-2B cells. Irradiation with 5 Gy prior to the addition of PD-L1-CAR T cells significantly increased cytolysis of A549 cells, whereas no significant difference in cytolysis was found with CD19-CAR T cells (Fig. 5c). In mice xenografted with PD-L1low A549 and H1299 cells and then treated with CAR T cells and 5 Gy localized irradiation (Fig. 6a; Fig. S4a), irradiation alone had no effect on tumorigenesis but increased the antitumor activity of PD-L1-CAR T cells (Figs. 6b, c; S4b). Notably, increased PD-L1 expression was observed by IHC in A549 tumors 72 h post-irradiation (Fig. 6d). Irradiation also increased tumor-infiltrating CAR T cells and reduced cell proliferation for both A549 and H1299 tumors (Figs. 6e; S4c). The combination of radiation and PD-L1-CAR-T cells resulted in fewer proliferative tumor cells than either agent alone (Figs. 6f; S4c). The reduction of tumorigenesis for both A549 and H1299 treated by the combination is relatively moderate compared to that for H1975 and HCC827 by CAR T cells alone (Figs. 3, 4). Nonetheless, these data support the notion that the combination of localized irradiation and PD-L1-CAR T cells attenuates the growth of tumors from PD-L1low NSCLC cells.

Discussion

EGFR mutation is a frequent cancer-driving event in NSCLC, occurring in about 40–50% of cases in Asia and 20–30% in the United States30. In patients with advanced, EGFR-mutant NSCLC, PD-L1 expression is found in more than 50% of cases31, but EGFR-mutant NSCLC has a poor response to anti-PD-1/PD-L1 treatment32. In addition, a significant portion of NSCLC patients develop HPD after anti-PD-1/PD-L1 therapy10,11, and the EGFR mutation is a proposed risk factor for HPD13. In this work, we explored PD-L1-CAR T-cell therapy as an alternative treatment approach for NSCLC with PD-L1high and EGFR mutant phenotypes (for example, PD-L1 expression assessed to be $\geq 50\%$ tumor proportion score). We showed that EGFR-mutant NSCLC cells such as HCC827, H1975, and PC9 expressed high levels of PD-L1 and PD-L1-CAR T cells have strong cytotoxic activity against these cells and xenograft tumors.

PD-L1 is induced in tumors and in cultured tumor cells by IFN-\gamma exposure. However, in present work, IFN-\gamma failed to increase PD-L1-CAR T cells efficacy against PD-L1low NSCLC cells. This could be a result of deficiency of IFN-\gamma treatment dose and duration. Given the transient nature of PD-L1 induction by IFN-\gamma, future optimization by biologics or compounds should be considered for long-
term stimulation of PD-L1 expression without attenuating T cells function. Substantial evidence has shown that the combination of radiotherapy and immunotherapy is more effective than monotherapy. Preclinical studies have demonstrated that PD-L1 expression is upregulated on tumor cells after radiotherapy, resulting in a synergistically enhanced antitumor effect of irradiation and PD-L1 blockade. Patients receiving radiotherapy before anti-PD-1 treatment have a better prognosis than those that receive anti-PD-1 alone. Another study indicated that this synergy stems from type I interferon production induced by radiotherapy. Our results show that radiation improves the killing ability of PD-L1-CAR T cells against NSCLC xenograft tumors that otherwise express low levels of PD-L1. This is likely due to the increased CAR T cell infiltration into the tumors, rather than radiation-mediated elevation of PD-L1 expression on tumor cells. These data could broaden the potential clinical applications of PD-L1-CAR T cells for the treatment of NSCLC and other solid tumors.

Among main difficulties of targeting solid tumors using CAR T cells is the lack of tumor-specific membrane antigens or antigens that are shared by dispensable cell types such as B cells, which prompt many to use suboptimal targets such as PD-L1. Beyond placenta, tonsil, and macrophages in lung and liver, PD-L1 protein is not expressed in steady-state normal human tissues, although the mRNA of PD-L1 is present in many tissues or cells. In mice, CAR T cells targeting Pd-l1 were effective in slowing tumorigenesis in a B16 syngeneic mouse model; the toxicity of CAR T cells towards Pd-l1-expressing mouse tissues was not directly addressed, although Cd11b-positive cells were the most adversely effected lymphocytes by anti-Pd-l1 CAR T cells. In the present study, we only used the NSG model to test the anti-human PD-L1-CAR T cell therapies against human tumors without evaluating the on-target and off-target toxicity in vivo. Radiation may augment the on-target toxicity of PD-L1 CAR T cells in humans as it clearly increases the expression of PD-L1 in BEAS-2B cells. We plan to assess the safety of PD-L1-CAR-T cells by using immunocompetent mouse models before considering phase 1 clinical trials.

In conclusion, PD-L1-CAR T cells are a promising therapeutic strategy for NSCLC with PD-L1^{high} and EGFR mutation. Furthermore, the addition of radiation sensitizes PD-L1^{low} EGFR-wild type NSCLC to PD-L1-CAR T cells. PD-L1-CAR T cells thus represent a novel therapeutic option for NSCLC patients who are susceptible to HPD.

Fig. 5 Enhanced tumor PD-L1 expression after irradiation treatment. a Signal intensities of PD-L1 expression in cell lines treated with 5 Gy radiation as analyzed by flow cytometry. b Percentage of PD-L1-positive cells and cell viability in A549 cells treated with different doses of radiation for 24 or 48 h. c The effect of radiation treatment on anti-tumor efficacy of PD-L1-CAR T cells at different effector (E) : target (T) ratios. Data represented technical triplicates using T cells from one donor and were shown as mean ± SEM. *p ≤ 0.05, **p ≤ 0.01, ****p ≤ 0.0001, ns not significant.
Fig. 6 Synergistic efficacy of irradiation and PD-L1-CAR T-cell therapy in a PD-L1 low NSCLC xenograft model.

a) Experimental design of tumor cell xenograft model treated with CAR T cells and/or irradiation.

b) Serial bioluminescence imaging of tumor progression and regression in each group (n = 3 mice per group).

c) Bioluminescence kinetics of A549-Fluc (n = 3 mice per group) in each treatment group.

d) Representative IHC of PD-L1 in irradiation-treated NSCLC tumors. Scale bars, 100 µm.

e) Representative images of CD3 IHC in PD-L1-CAR T cell-treated and irradiation-treated NSCLC tumors. Scale bars, 100 µm.

f) Hematoxylin and eosin staining of tumors. Scale bars, 50 µm. *p ≤ 0.05.
Acknowledgements

M.L., X.W., and Y.L. designed the research. All authors performed experiments and/or contributed to data analyses. M.L., X.W., and Y.L. wrote the manuscript, and all authors provided critical review and revisions and approved the final version of the manuscript. All data and materials supporting the conclusion of this study have been included within the article and the supplemental data. Animal experiments are approved by our Institutional Animal Care and Use Committees. There is no human subject participation. This study is supported by National Natural Science Foundation of China (81773249 to X.M.), Key Realm R&D Program of Guangdong Province (2019B030335001 to X.M.). Y.L. is supported in part by the Cancer Prevention and Research Institute of Texas (RR190043) and by the Superfund Hazardous Substance Research and Training Program from National Institutes of Health (P42 ES027722).

Author details

1National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 510120 Guangzhou, China. 2Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA. 3Department of Pathology, Division of Hematopathology, Duke University Medical Center, Durham, NC, USA27708. 4Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Lymphoma Diagnosis and Treatment Center of Henan Province, 450052 Zhengzhou, China. 5Institute for Brain Research and Rehabilitation, South China Normal University, 510631 Guangzhou, China.

Conflict of interest

The authors declare that they have no conflict of interest.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

accompanies this paper at (https://doi.org/10.1038/s41389-020-00257-z).

References

1. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. https://doi.org/10.3332/caac.21492 (2018).
2. Boloker, G., Wang, C. & Zhang, J. Updated statistics of lung and bronchus cancer in United States (2018). J Thorac. Dis. 10, 1156–1161 (2018).
3. Tamura, T. et al. Specific organ metastases and survival in metastatic non-small cell lung cancer. Mol. Clin. Oncol. 3, 217–221 (2015).
4. Lanut, M. et al. Observations in lung cancer over multiple decades: an analysis of outcomes and cost at a single high-volume institution. Eur. J Cardio Thorac. Surg. 46, 254–261 (2014).
5. Bui, K. T., Cooper, W. A., Kao, S. & Boyer, M. Targeted molecular treatments in non-small cell lung cancer: a clinical guide for oncologists. J. Clin. Med. https://doi.org/10.3390/jcm7080019 (2018).
6. Pålkkala, S. & Ramalingam, S. S. Personalized therapy for lung cancer: striking a moving target. JCI Insight https://doi.org/10.1172/jci.insight.120858 (2018).
7. Socinski, M. A. et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N. Engl. J Med. 376, 2388–2390 (2018).
8. Gainor, J. F. et al. EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: a retrospective analysis. Clin. Cancer Res. 22, 4585–4593 (2016).
9. Dong, Z. Y. et al. EGFR mutation correlates with uninfarred phenotype and weak immunogenecity, causing impaired response to PD-1 blockade in non-small cell lung cancer. Oncimmunology 6, e1356147 (2017).
10. Ferrara, B. et al. Hyperprogressive disease in patients with advanced non-small cell lung cancer treated with PD-1/PD-L1 inhibitors or with single-agent chemotherapy. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2018.3676 (2018).
11. Champiat, S. et al. Hyperprogressive disease: recognizing a novel pattern to improve patient management. Nat. Rev. Clin. Oncol. https://doi.org/10.1038/s41571-018-0111-2 (2018).
12. Lo Russo, G. et al. Antibody-Fc/FRα interaction on macrophages as a mechanism for hyperprogressive disease in non-small cell lung cancer subsequent to PD-1/PD-L1 blockade. Cancer Clin. Res. 25, 989–999 (2019).
13. Kato, S. et al. Hyperprogressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate. Clin. Cancer Res. 23, 4242–4250 (2017).
14. Knochelmann, H. M. et al. CAR T cells in solid tumors: blueprints for building effective therapies. Front. Immunol. 9, 1740 (2018).
15. Moon, E. K. et al. Multifactorial T-cell hypofunction that is reversible can limit the efficacy of chimeric antigen receptor-transduced T cells in solid tumors. Clin. Cancer Res. 20, 4262–4273 (2014).
16. Rafiq, S. et al. Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nat. Biotechnol. 36, 847–856 (2018).
17. Juneja, V. R. et al. PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J. Exp. Med. 214, 895–904 (2017).
18. Lin, H. et al. Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade-mediated tumor regression. J. Clin. Invest. 128, 1708 (2018).
19. Tang, H. et al. PD-L1 on host cells is essential for PD-L1 blockade-mediated tumor regression. J. Clin. Invest. 128, 580–588 (2018).
20. Lin, S-Y. et al. Tumor PD-L1 expression and clinical outcomes in advanced-stage non-small cell lung cancer patients treated with nivolumab or pembrolizumab: real-world data in Taiwan. J. Cancer 9, 1813 (2018).
21. Tseikko, C., Villarino, N., Reyes, R. & Reguart, N. PD-L1 expression testing in non-small cell lung cancer. Ther. Adv. Med. Oncol. 10, 1758835918763493 (2018).
22. Suarez, E. R. et al. Chimeric antigen receptor T cells secreting anti-PD-L1 antibodies more effectively regress renal cell carcinoma in a humanized mouse model Oncotarget 7, 34341–34355 (2016).
23. Liu, M., Zhou, C. & Zheng, J. Cigarette smoking impairs the response of EGFR-TKIs therapy in lung adenocarcinoma patients by promoting EGFR signaling and epithelial-mesenchymal transition. Am. J. Transl. Res. 7, 2026 (2015).
24. Milone, M. C. et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol. Ther. 17, 1453–1464 (2009).
25. Huang, Q. et al. mIR-153 suppresses EDO1 expression and enhances CART cell immunotherapy. J. Hematol. Oncol. 11, 58 (2018).
26. Zheng, Z., Chinansay, N. & Morgan, R. A. Protein L: a novel reagent for the detection of chimeric antigen receptor (CAR) expression by flow cytometry. J. Transl. Med. 10, 29 (2012).
27. Hutter-Sprie, G. S. et al. Synergy of radiotherapy and PD-1 blockade in Kras-mutant lung cancer. J Clin. Invest. 1, e87415 (2016).
28. Kordbach, T., Honeychurch, J., Blackhall, F., Favre-Finn, C. & Illidge, T. Radiotherapy and anti-PD-1/PD-L1 combinations in lung cancer: building better translational research platforms. Ann. Oncol. 29, 301–310 (2017).
29. Hwang, W. L. et al. Clinical outcomes in patients with metastatic lung cancer treated with PD-1/PD-L1 inhibitors and thoracic radiotherapy. JAMA Oncol. 4, 253–255 (2018).
30. Midha, A., Dearden, S. & McCormack, R. EGFR mutation incidence in non-small-cell lung cancer of adenocarcinoma histology: a systematic review and global map by ethnicity (mutMapII). Am. J. Cancer Res. 8, 2106 (2018).
31. Cheung, T., Liu, S. & Wang, X. et al. Suppression of type I IFN signaling in tumors mediates resistance to anti-PD-1 treatment that can be overcome by radiotherapy. Cancer Res. 77, 839–850 (2017).
32. Dong, H. et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med. 8, 793–800 (2002).

Oncogenesis (2020) 9:72

Page 10 of 11
35. Petroff, M. G., Chen, L., Phillips, T. A. & Hunt, J. S. 87 family molecules: novel immunomodulators at the maternal-fetal interface. Placenta 23, S95–101 (2002).

36. Chen, L. & Flies, D. B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol. 13, 227–242 (2013).

37. Sanmamed, M. F. & Chen, L. A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell 175, 313–326 (2018).

38. Xie, Y. J. et al. Nanobody-based CAR T cells that target the tumor microenvironment inhibit the growth of solid tumors in immunocompetent mice. Proc. Natl Acad. Sci. 116, 7624–7631 (2019).