Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Emergence of additive manufacturing in global scale during the crisis of 2019-nCoV (novel corona virus)

Vijay Tambrallimath *, R. Keshavamurthy, Abhinandan Badari, Lohith Ramesh, Gagan Raj
Dayananda Sagar College of Engineering, Bangalore, India

A R T I C L E I N F O

Article history:
Received 16 November 2020
Received in revised form 16 November 2020
Accepted 26 December 2020
Available online 20 January 2021

Keywords:
Additive manufacturing
COVID-19
Manufacturing
Medical kit
Corona virus

A B S T R A C T

The global pandemic COVID-19 has emerged as a bane for the human race. The emergence of this disease was initially noted in Wuhan, China and slowly spreading to large number of countries. The greater number of positive cases and increasing mortality rate clubbed with no prescribed medication to cure has led to greater impact on global society and has badly hit the manufacturing sector. Additive Manufacturing (AM) is considered to be primary source of manufacturing in meeting the supply chain towards medical devices and protection kits. This paper discusses the response of global AM community in development of essential products in the desired time span for greater cure.

© 2020 Elsevier Ltd. All rights reserved.
Selection and peer-review under responsibility of the scientific committee of the International Conference on Mechanical, Electronics and Computer Engineering 2020: Materials Science.

1. Introduction

The emergence of new epidemic disease named as 2019-nCoV (novel corona virus) has reportedly seen its advancement to world through its origin from Hubei Province of China from the city of Wuhan during December 2019 [1]. The initial identification of this disease relates to severe pneumonia symptoms and the reported patients had a history of visit to Hunan seafood and live animal market in the city of Wuhan. The identified samples of patients from Hunan seafood market after testing had the similarity index greater than 90% of bat corona virus and greater than 70% homology to SARS-CoV (Severe Acute Respiratory Syndrome – Corona Virus) that had emerged in 2002–2003 in Guangdong Province of China with its origin from bat mammals and transferred to humans through intermediary palm civet cats [2,3]. Hence 2019-nCoV is also known as SARS-CoV-2 (Severe Acute Respiratory Syndrome Corona Virus 2). The electron microscopy analysis of this novel corona virus depicts its structure to be spherical in nature with diameter ranging from 60 to 140 nm and having tentacle like projections [4]. The global impact of this virus spread has seen an exponential upsurge in the number of people being affected. As on April 6, 2020 the global corona virus cases stands to 16,82,160 with total deaths of 1,01,975 and the total recovered cases to be 3,72,093 [5]. The effect of control of disease by reducing the mortality rate and in the same time upholding the economy of the country is impossible. Certain key factors like social distancing, quarantine and isolation of the infected community at larger scale would reduce the impact of spread. The primary decision of any government agency is to reduce the rate of mortality and in-turn restructures the economic goals in meeting the needs of individuals [6].

The analysis of this 2019-nCoV disease spread to global community has an ill effect on manufacturing sector with both market distribution and supply chain. The increased number of cases reported has led to incremental requirement of hospital treatments that are working to the fullest of their capacity. Impact of these admissions to hospitals has seen a upsurge requirement of certain equipments for healthcare workers. Ventilators, face masks and face shields along with testing kits and diagnostic tools has seen great shortage in global scale, which acts as necessity for health workers to treat the epidemic cases [7]. The impact of this on global manufacturing and precisely on India has seen an unprecedented degradation. The dependency of India on electronic goods and raw materials on China market has given a strong blow. The Indian pharmaceuticals are 70% dependent on China for Active Pharmaceutical Ingredients (API). Tourism and aviation are yet other sectors that have had a huge blow on their smooth functioning [8]. Major automotive manufacturers in India like Maruti, Hyundai, Honda, Suzuki, TVS & Tata Motors had been in-line with nationwide lockdown and have stopped the manufacturing which would lead to revenue loss of 13,000–15,000 crores [9].
Throughout the history the spread of pandemics, disease and war has led to embrace of technology, the movement from conventional system to advanced and innovative technology. Amid all these concerns the government has urged all the manufacturing sectors to help in production of parts that help in mitigation of this virus at the earliest without greater spread. The world of Additive Manufacturing (AM) has emerged to this need and has given an unprecedented support in development of required parts and necessity equipments. The advancement of Additive manufacturing has seen an usage increment in industrial space since 2018. The process of AM is a versatile method in meeting the specified demands of variety of industries. It provides most suitable and fastest results to meet the demand. The norm of the time in evolution of digital storage of parts is more suitable than physical storages [10]. This paper effectively discusses the various parts developed by the process of AM during this crisis and also the emergence of this technology to greater impact.

2. Emergence of additive manufacturing

Additive Manufacturing (AM) is the process of development of parts by addition of material layer wise. The process of AM involves the development of CAD model and conversion the same to STL file and using this file in slicing software in which the optimal parameters of build would be stated along with layer thickness. According to ISO/ASTM52900-15 the classification of AM is done into seven categories viz, binder jetting, direct energy deposition, material extrusion, material jetting, powder bed fusion, sheet lamination and vat polymerization [11]. Emergence of AM was initially used in development of prototypes in manufacturing industry, with advent of time the impact of this utilization has seen large utilization in medical field, education, design and many more. The development of new organs, custom fit mask, operation practice and dentistry application has seen large use through AM [12].

In the scenario of world affected with COVID 19, with total lockdown on major manufacturing countries, increased number of positive COVID 19 cases has led to larger requirement of large amount of personal protection equipments (PPE) for healthcare workers, ventilators and certain essential parts for treatment of affected persons would not be met with conventional dependency of manufacturing system. Additive Manufacturing, has responded in positive affirmation towards manufacture of essential parts. Global communities of AM have come forward in lending the required help for development of the above mentioned equipments [13]. Among many active participants, world’s largest steel producer ArcelorMittal has pledged in support of development of prototype of ventilator using AM. The requirement of large number of ventilators during this time is of utmost important and this prototyped model would be extensively tested and if found successful would be developed at rapid rate [14]. Towards the better preparedness of the country to fight the COVID epidemic the government of United Kingdom (UK) has urged the manufacturing companies to develop as much as possible ventilators for the treatment of positive COVID people. The present number of ventilators present with UK government stands to 5,900.

With this call from the UK government large numbers of AM companies have pledged their support. One of the ISO 13,485 certified company, 3 T Additive Manufacturing from Berkshire, has quoted its facility to be well suited for development of metal and polymer devices using various materials required for medical industry. The advent of this AM technology consumes less time for production of parts and its delivery towards usage. The involvement of cost in development of support structures and other post processing can be nullified using laser sintering technology. In the similar lines British engineering and metal additive manu-

![Fig. 1. Ventilator valve alongside valve built using FDM.](Image)
Fig. 2. Valves built used powder bed fusion.

Fig. 3. Houses developed for isolation in Xianning, China.

Fig. 4. Spectacle frame being developed by Vanguard Group Co., Ltd using FDM.

Fig. 5. Hands free door handle developed by Materialise.
have supported the global community for through lending their AM process for development of validated designs for medical help.

Giant automobile manufacturers like Volkswagen have come up in their manufacturing facility to develop medical devices and ventilators for the greater cause. The manufacturing facility has almost 125 industrial grade 3D printers. Stratasys, an industry with foremost experience in AM has developed face shields to be used by medical workers. Fig. 6 shows the full face mask developed by Stratasys. Boston based AM company, Formlabs are efficiently working on producing 3D printed test swabs for conducting COVID-19 tests. They aim at producing 75,000–1,50,000 test swabs on daily basis that would provide the hospitals with sufficient kits for testing. Fig. 7 shows the test swabs developed by AM [19].

3. Challenges

The responses of global Additive Manufacturing companies are appreciably at this juncture of time, however, there emerges the fundamental criteria of CAD design sharing for the process of manufacturing to start at global scale. Various government bodies has urged for development of medical equipments and safety kits at faster rate, yet the necessity to develop these require stringent guidelines for manufacturing, towards its validation and the environment hygiene to be maintained during the print.

The necessity actions have to be moved at a greater speed in coordinating the necessary parameters to be followed by the developers. This kind of necessary developments will lead in ensuring the usage of the developed medical part for required purpose. Also, the product needs to developed with only approved materials and designs, along with greater reliability and quality [20].

4. Future of additive manufacturing

The utilization of AM during COVID-19 has seen as an important unit of manufacturing that has enables the supply chain management to the greater extent. With this advent the utilization of AM has a greater scope to provide medical supplies at greater speed, accurate strength and enhanced flexibility. The dependency of certain parts on manufacturing a product will be greatly reduced and enables the development of required part at the remote location. Time to market parts will be greatly enhanced as the necessity to wait for global supplier is nullified. The ability of one’s own economy and policies of warranty of parts can be feasibly altered with in-house development.

The scope of the manufacturers would be in identification of parts imported and working on them in development of better part according to need. The overall scenario of the process of AM will greatly enable and change the manufacturing industry for good cause.

5. Conclusion

The advent of COVID-19 epidemic has made to rethink the human and nature relations in the broader perspective. The dependency of economy, globally, plays a very important role in manufacturing sector and its supply chain. The planet has also seen the dearth of required medical equipments for better cause and safety. Additive Manufacturing has played a major role in meeting the required necessary devices in curing the positive cases of COVID-19 and also in protecting the health workers.
CRediT authorship contribution statement

Vijay Tambrallimath: Conceptualization, Methodology, Validation, Writing - review & editing.
R. Keshavamurthy: Conceptualization, Methodology, Validation, Writing - review & editing.
Abhinandan Badari: Conceptualization, Methodology, Validation, Writing - review & editing.
Lohith Ramesh: Conceptualization, Methodology, Validation, Writing - review & editing.
Gagan Raj: Conceptualization, Methodology, Validation, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020. https://doi.org/10.1016/S0140-6736(20)30185-9.
[2] Chan-Yeung M, Xu RH. SARS: epidemiology. Respirology. 2003;8:S9–14.
[3] Xinhua. China’s CDC detects a large number of new coronaviruses in the South China seafood market in Wuhan. Available at: https://www.xinhuanet.com/2020-01/27/c_1125504355.htm. Accessed 6 April, 2020.
[4] D.D. Richman, R.J. Whitley, F.G. Hayden, Clinical Virology, 4th ed., ASM Press, Washington, 2016.
[5] WHO. Coronavirus disease 2019 (COVID19) situation report—44. March 4, 2020. https://www.who.int/docs/defaultsource/coronaviruse/situationreports/20200304sitrep44covid19.pdf?sfvrsn=783b4c9d_2 Accessed 7 April, 2020.
[6] https://www.metal-am.com/the-global-additive-manufacturing-community-responds-to-coronavirus/ Accessed 7 April, 2020.