Abstract

ATM and ATR are two redundant checkpoint kinases essential for the stable maintenance of telomeres in eukaryotes. Previous studies have established that MRN (Mre11-Rad50-Nbs1) and ATRIP (ATR Interacting Protein) interact with ATM and ATR, respectively, and recruit their partner kinases to sites of DNA damage. Here, we investigated how Tel1 ATM and Rad3 ATR recruitment to telomeres is regulated in fission yeast. Quantitative chromatin immunoprecipitation (ChIP) assays unexpectedly revealed that the MRN complex could also contribute to the recruitment of Tel1 ATM to telomeres independently of the previously established Nbs1 C-terminal Tel1 ATM interaction domain. Recruitment of Tel1 ATM to telomeres in nbs1Δ cells, which lack the C-terminal 60 amino acid Tel1 ATM interaction domain of Nbs1, was dependent on Rad3 ATR-Rad26 ATRIP, but the kinase domain of Rad3 ATR was dispensable. Thus, our results establish that the Rad3 ATR-Rad26 ATRIP complex contributes to the recruitment of Tel1 ATM independently of Rad3 ATR kinase activity, by a mechanism redundant with the Tel1 ATM interaction domain of Nbs1. Furthermore, we found that the N-terminus of Nbs1 contributes to the recruitment of Rad3 ATR-Rad26 ATRIP to telomeres. In response to replication stress, mammalian ATR–ATRIP also contributes to ATM activation by a mechanism that is dependent on the MRN complex but independent of the C-terminal ATM interaction domain of Nbs1. Since telomere protection and DNA damage response mechanisms are very well conserved between fission yeast and mammalian cells, mammalian ATR–ATRIP may also contribute to the recruitment of ATM to telomeres and to sites of DNA damage independently of ATR kinase activity.

Introduction

ATM (Ataxia Telangiectasia Mutated) and ATR (ATM and Rad3-related), members of the phosphoinositol-3-kinase like kinase (PIKK) family, are central players in coordinating cellular responses to various forms of DNA damage, such as DNA double-stranded breaks (DSBs) and problems that are encountered by DNA replication forks, in eukaryotic cells [1,2]. ATM and ATR both preferentially recognize and phosphorylate Serine (S) or Threonine (T) amino acid residues followed by Glutamate (Q), and over 900 sites in more than 700 proteins have been identified as potential replication fork response sites in mammalian cells [3].

Previous studies have identified the Mre11-Rad50-Nbs1 (MRN) DNA repair complex as a key player in the activation of ATM kinase in response to DSBs [1,4]. The MRN complex interacts with ATM through an evolutionarily conserved C-terminal motif in its Nbs1 subunit, and this interaction is critical for recruitment of ATM to DSBs and phosphorylation of downstream targets by ATM [5,6]. Likewise, ATRIP (ATR-Interacting Protein) interacts with ATR through its evolutionarily conserved extreme C-terminal motif and promotes recruitment of ATR to sites of DNA damage [6]. RPA (Replication Protein A)-coated single-stranded DNA (ssDNA) serves as a platform for recruitment of the ATR-ATRIP complex, where phosphorylation of various downstream targets can take place [7]. Besides its role in activation of ATM, the MRN complex has also been shown to contribute to ATR signaling in mammalian cells [8].

Initial studies have suggested that ATM is particularly important for recognition of DSBs, while ATR is more important for recognition of replication stress and ultraviolet radiation (UV)-induced DNA damage [1,2]. However, recent studies have uncovered an intimate crosstalk between the ATM and ATR signaling pathways in response to DNA damage. For example, ATM-MRN can act upstream of ATR-ATRIP in cellular responses to DSBs by promoting recruitment of ATR-ATRIP through its contribution to generate RPA-coated ssDNA at DSBs [9–11]. Conversely, ATR contributes to the activation of ATM in response to DNA replication stress by converting inactive ATM dimers into active monomers through direct phosphorylation of ATM [12]. However, it is currently unknown if ATR-ATRIP may also contribute to the recruitment of ATM to stalled replication forks. In contrast to DSB-induced ATM activation, the C-terminal ATM interaction domain of Nbs1 is not required for ATR-dependent activation of ATM in response to DNA replication stress; however, the Nbs1 N-terminus is essential for ATR-dependent activation of ATM [12].
ATM and ATR kinases are two evolutionarily conserved sensors of DNA damage, responsible for maintaining stable genomes in all eukaryotic cells. These two kinases safeguard eukaryotic genomes against undesired double-stranded DNA breaks (DSBs) and errors during duplication of genomic DNA. Furthermore, ATM and ATR are redundantly required for stable maintenance of telomeres, protective structures at ends of linear eukaryotic chromosomes. Our current study in fission yeast demonstrates that the previously defined C-terminal Tel1 ATM interaction domain of the DNA repair protein Nbs1, which contributes to recruitment of Tel1 ATM to DSBs, is dispensable for recruitment of Tel1 ATM to telomeres, due to a previously unrecognized kinase-independent role of ATR in recruitment of Tel1 ATM to telomeres. Furthermore, the N-terminus of Nbs1 was found to be critical for recruitment of both ATR and ATM to telomeres. Regulators of telomere maintenance have recently emerged as potentially important therapeutic targets against tumorigenesis and aging in mammalian cells. Since proteins responsible for proper maintenance of telomeres and cellular responses to DNA damage are highly conserved between fission yeast and mammalian cells, a newly uncovered molecular crosstalk between ATM and ATR might also play critical roles in telomere maintenance and DNA damage responses in mammalian cells.

ATM-MRN and ATR-ATRIP are redundantly required for the maintenance of telomeres, stable DSBs at ends of chromosomes, in a wide variety of eukaryotic species [13] (Figure 1A). Studies in yeasts and mammalian cells have shown that ATM-MRN and ATR-ATRIP are recruited to functional telomeres during S/G2 phases of the cell cycle [14–16]. In budding yeast, Tel1 ATM and Mec1 ATR have been shown to phosphorylate several Serine residues within the telomerase-recruitment domain of the telomere capping protein Cdc13, and these phosphorylation events have been proposed to promote efficient telomere recruitment to telomeres [14,17]. In fission yeast, we have recently shown that Tel1 ATM and Rad3 ATR redundantly promote interaction between the Pot1 telomere capping complex (consisting of Pot1, Tpz1, Pot1l and Ceq1 subunits) and telomerase, and thereby help to recruit telomerase to telomeres [18]. On the other hand, the telomeric GT-rich repeat DNA binding factors TRF2 and POT1, essential for protection of telomeres against degradation and recombination, play critical roles in attenuating DNA damage checkpoint activation mediated by ATM and ATR in mammalian cells [19–21]. Therefore, it has been suggested that telomeres transiently become de-protected during S- and G2-phases, and can thus be recognized as DSBs by ATM/ATR to allow the timely recruitment of telomerase [22].

On the other hand, we have recently found that the arrival of lagging strand DNA polymerases (α and δ) to telomeres is significantly delayed compared to the arrival of the leading strand DNA polymerase ε in fission yeast, and that significant quantities of RPA and Rad26 ATRIP transiently accumulate at replicating telomeres [15]. These observations thus raised the possibility that replicating telomeres may be primarily recognized as unusual/ stressed replication forks by Rad3 ATRIP-Rad26 ATRIP rather than being recognized as DSBs in fission yeast [15]. In mammalian cells, recruitment of ATR and MRN to telomeres precedes recruitment of ATM to telomeres [16], and replication of lagging-strand telomeres also appears to be significantly delayed compared to leading-strand telomeres [23]. Thus, replicating mammalian telomeres might also accumulate unusually high levels of RPA on the lagging strand and activate ATR, and ATR might subsequently contribute to the activation of ATM signaling at telomeres to promote stable telomere maintenance.

Here, we investigated inter-dependencies among Tel1 ATM, Nbs1, and Rad3 ATRIP-Rad26 ATRIP for their recruitment to telomeres in fission yeast. Our studies uncovered a surprising kinase-independent role of the Rad3 ATRIP-Rad26 ATRIP complex, which is redundant with the C-terminal Tel1 ATM-interacting domain of Nbs1, for the recruitment of Tel1 ATM to telomeres. We also demonstrate that the N-terminal domain of Nbs1 contributes to Rad3 ATRIP-Rad26 ATRIP function by promoting recruitment of Rad3 ATRIP-Rad26 ATRIP to telomeres. Thus, our findings provide mechanistic insights into how recruitment of Tel1 ATM and Rad3 ATRIP to telomeres is regulated, and define a novel molecular crosstalk between Rad3 ATRIP and Tel1 ATM in recognition of fission yeast telomeres, potentially resembling the ATR-ATM crosstalk in response to DNA replication stress in mammalian cells.

Results

Tel1 ATM interaction domain of Nbs1 is dispensable for telomere maintenance in rad3-kd Δ cells

The C-terminus of Nbs1 is important for its interaction with Tel1 ATM in fission yeast Schizosaccharomyces pombe [5] (Figure 1B). This interaction is evolutionarily conserved, since the corresponding region of Nbs1 is also required for its interaction with ATM in Xenopus and humans [5,6]. Mutating or truncating the Nbs1 C-terminus in fission yeast cells lacking functional Rad3 ATRIP eliminates DNA damage-induced histone H2A phosphorylation (γ-H2A) and foci formation of the checkpoint mediator protein Cdc2/Rhp9 [5], since Tel1 ATM and Rad3 ATRIP are redundantly required for DNA damage-induced histone H2A phosphorylation and Cdc2/Rhp9 foci formation [24]. Tel1 ATM-MRN (Rad3 ΔNbs1, Rad50-Nbs1) and Rad3 ATRIP-Rad26 ATRIP pathways are also redundantly required for stable telomere maintenance, and simultaneous inactivation of these two pathways results in chromosome circularization in fission yeast [25] (Figure 1A). Thus, it was previously hypothesized that disruption of Tel1 ATM, Nbs1 interaction in fission yeast cells lacking functional Rad3 ATRIP would lead to telomere dysfunction and chromosome circularization [5].

We tested this hypothesis by combining the most commonly used rad3 deletion allele (rad3 Δaws4Δ), hereafter referred to as rad3-kdΔ with the Nbs1 C-terminal 60 amino acid deletion allele nbs1-e060A that disrupts Tel1 ATM-Nbs1 interaction [5,26] (Figure 1B and 1C). After extensive restreaking of fission yeast cells on agar plates, we examined the status of telomeres by separating NotI-digested chromosomal DNA by pulsed-field gel electrophoresis (PFGE), and then performing Southern blot analysis with telomeric NotI fragment-specific probes C, I, L and M bands, corresponding to the fused telomeric fragments from chromosomes I and II.

We were surprised to find that the double mutant nbs1-e060A rad3-kdΔ cells stably maintained telomeres (Figure 1D). By contrast, combining tel1Δ or nbs1Δ with rad3-kdΔ caused complete loss of telomeres and chromosome circularization, as previously shown [25,27] (Figure 1D). Thus, while Nbs1 and Tel1 ATM are both essential for telomere maintenance in rad3-kdΔ cells, the Nbs1-Tel1 ATM interaction is dispensable for telomere maintenance in rad3-kdΔ cells. The mutant Nbs1-e060A protein retains its ability to interact with Rad3 ΔNbs1, and both rad3Δ rad3-kdΔ and
rad50Δ rad3-kdΔ cells are unable to maintain telomeres [5,27]. Thus, the N-terminus of Nbs1 is required for the MRN (Rad32Mre11-Rad50-Nbs1) complex to fulfill its essential telomere maintenance function(s) in rad3-kdΔ cells.

The N-terminal non-kinase domain of Rad3ATR and its regulatory subunit Rad26ATRIP are both required for telomere maintenance in the absence of the Nbs1-Tel1ATM interaction domain

The rad3-kdΔ allele does not completely delete the rad3Δ coding region and only removes a C-terminal portion of the Rad3ATR protein including its kinase domain [26] (Figure 1C). We found that the truncated Rad3ATR protein (Rad3-kdΔATR) expressed stably, and retained its ability to interact with its regulatory subunit Rad26ATRIP in co-immunoprecipitation (co-IP) experiments and yeast 2-hybrid assays (Figure 1E and 1F). Similarly, the N-terminal regions of mammalian ATR and budding yeast Mec1, outside of their C-terminal kinase domains, interact with their respective regulatory subunits ATRIP and Ddc2 [28,29]. Furthermore, when the fission yeast rad3Δ gene was originally cloned, a truncated Rad3ATR protein lacking its kinase domain was found to fully suppress UV, IR and HU hypersensitivities and a G2-checkpoint defect of rad3-136 cells [30]. In addition, over-expression of the N-terminal non-kinase domain of ATR in mammalian cells leads to increased survival following exposure to UV and IR [31].

Figure 1. Kinase-independent function of Rad3ATR-Rad26ATRIP contributes to telomere maintenance in the absence of the Nbs1-Tel1ATM interaction domain of Nbs1. (A) Tel1ATM-MRN (Rad32Mre11-Rad50-Nbs1) and Rad3ATR-Rad26ATRIP represent two redundant pathways essential for telomere maintenance in fission yeast. (B) Schematic representation of Nbs1 protein expressed in nbs1+ and nbs1-c60Δ. Conserved motifs and functional domains [5,27] are indicated. (C) Schematic representation of various Rad3 constructs tested. Amino acids 1477–2386 are deleted in rad3-kdΔ, while amino acids 1–2363 are deleted in rad3Δ. Conserved motifs and functional domains are indicated [26,58]. The Leucine zipper (LZ) and putative PCNA-interaction site (P-site) were previously implicated in protein-protein interaction [59]. (D) Characterization of telomere status by pulsed-field gel electrophoresis (PFGE) for indicated strains. Cells with defects in telomere maintenance show C+M and I+L bands, corresponding to the fused telomeric fragments. Bottom, NotI restriction map of fission yeast chromosomes, shown with telomeric C, I, L, and M fragments marked as black boxes. (E) Rad3-kdΔ forms a stable complex with Rad26 in vivo. Anti-myc immunoprecipitation was performed using extracts from strains expressing YFP-Rad26 and either wild-type myc-Rad3 or myc-Rad3-kdΔ, and co-immunoprecipitated Rad26 was visualized by anti-GFP western blot. (F) Two-hybrid assays of S. pombe Rad26 with full-length Rad3 (Rad3+), C-terminal truncation of Rad3 (Rad3-kdΔ), or the N-terminal 191 amino acids of Rad3. A positive two-hybrid interaction is identified by growth on -His plates.
doi:10.1371/journal.pgen.1000839.g001
terminal fragments of *Xenopus* ATR or budding yeast Mec1ATR lacking the kinase domain has been shown to partially suppress the DNA damage sensitivity of *mec1-1* budding yeast cells by activating the spindle checkpoint [31]. Therefore, we next examined if a complete deletion allele of rad3BD (rad3Δ:LEU2, hereafter referred to as *rad3Δ*), deletes genomic DNA corresponding to amino acids 1-2363 of Rad3ATR [25]) would show a different genetic background effect.

The Rad26ATRIP complex has a kinase-independent function for the maintenance of stable telomeres in the absence of Nbs1-Tel1ATM interaction but and that the N-terminal domain of Rad3ATR contributes to the recruitment of Rad26ATRIP to telomeres.

Chk1 and Cds1CHK2 are not involved in telomere maintenance in *c60*-deficient cells. Conversely, both wild-type Rad3 ATR and Rad3-kdATR proteins associate with telomeric DNA in a Rad26ATRIP-dependent manner, although the precipitation efficiency for Rad3-kdATR was reduced compared to wild-type Rad3ATR (Figure 2B). Furthermore, by monitoring real-time PCR amplification cycle numbers for all ChIP input samples, we have ensured that mutant cells utilized in our experiments have not yet circularized their chromosomes, since the PCR primer-annealing sites would be completely lost upon chromosome circularization, resulting in a significant delay in PCR amplification.

In contrast to *nbs1-c60A* cells, *nbs1*D cells were able to recruit Tel1ATM to telomeres in both rad3-kdA and rad3Δ backgrounds (Figure 2D). Thus, our ChIP data also support the notion that the C-terminal Tel1ATM interaction domain of Nbs1. The apparent discrepancy in absolute requirement for the Rad3ATR kinase domain for DNA damage sensitivity versus telomere maintenance is plausible, since previous studies have established that the downstream checkpoint kinases Chkl and Chkl are not involved in telomere maintenance in fission yeast, while these kinases play critical roles in cell survival in response to DNA damage [25,32].

The N-terminal domain of Rad3ATR is required for recruitment of Rad26ATRIP to telomeres. To gain insights into how the Rad3-kdAATR-Rad26ATRIP complex contributes to telomere maintenance in *nbs1-c60A* cells, we next examined the association of the Rad3ATR-Rad26ATRIP complex with telomeric DNA by quantitative chromatin immunoprecipitation (ChIP) assays. While a significant amount of telomeric DNA was found to associate with Rad26ATRIP in rad3Δ and rad3-kdA cells, the amount of telomeric DNA precipitated by Rad26ATRIP in rad3Δ cells was reduced to background levels (Figure 2A). Conversely, both wild-type Rad3ATR and Rad3-kdAATR proteins associate with telomeric DNA in a Rad26ATRIP-dependent manner, although the precipitation efficiency for Rad3-kdAATR was reduced compared to wild-type Rad3ATR (Figure 2B). Taken together, these results are consistent with the notion that Rad26ATRIP is essential for recruitment of Rad3ATR to telomeres and that the N-terminal domain of Rad3ATR contributes to the recruitment of Rad26ATRIP to telomeres.

We also examined the recruitment of wild-type Nbs1 and Nbs1-c60A to telomeres in rad3Δ, rad3-kdA, and rad3Δ background by ChIP assays (Figure 2C). Since we were able to still detect a robust association of Nbs1-c60A with telomeres even in rad3Δ cells, we could exclude the possibility that the Rad3-kdAATR-Rad26ATRIP complex contributes to telomere maintenance by promoting recruitment of Nbs1-c60A to telomeres.

The Rad3-kdAATR-Rad26ATRIP complex and the N-terminal domain of Nbs1 are both required for recruitment of Tel1ATM to telomeres in the absence of Nbs1-Tel1ATM interaction. Since expression of Rad3-kdAATR allowed cells to maintain stable telomeres in the absence of Nbs1-Tel1ATM interaction but not in tel1A and nbs1A cells (Figure 1D), we hypothesized that Nbs1-c60A protein and the Rad3-kdAATR-Rad26ATRIP complex may function collaboratively to recruit Tel1ATM to telomeres and maintain telomeres. Indeed, we detected robust Tel1ATM recruitment to telomeres in *nbs1-c60A rad3-kdΔ* cells, but failed to detect Tel1ATM at telomeres in *nbs1-c60A rad3A* or *nbs1A rad3-kdA* cells (Figure 2D). The ability to recruit Tel1ATM to telomeres in rad3 mutant backgrounds (either rad3-kdΔ or rad3Δ) correlated perfectly with the telomere maintenance phenotypes of these mutant cells (Figure 1D and Figure 2D). Thus, our ChIP data establish that the N-terminal domain of Nbs1 and the telomere-bound Rad3-kdAATR-Rad26ATRIP complex must both be present, in order for Tel1ATM to be recruited independently of the C-terminal Tel1ATM-interaction domain of Nbs1.

It should be noted that for those mutant strains that are defective in telomere maintenance and ultimately circularize their chromosomes, ChIP assays were performed with early generation cells prior to chromosome circularization by utilizing our recently described Rad3 plasmid loss system [18]. This system allows us to harvest cells immediately after the loss of Rad3ATR, when the average telomere length is comparable or slightly longer than in rad3Δ or rad3-kdΔ cells. Furthermore, by monitoring real-time PCR amplification cycle numbers for all ChIP input samples, we have ensured that mutant cells utilized in our experiments have not yet circularized their chromosomes, since the PCR primer-annealing sites would be completely lost upon chromosome circularization, resulting in a significant delay in PCR amplification.

In order to better understand how the N-terminal domain of Nbs1 contributes to the recruitment of Rad3ATR-Rad26ATRIP to telomeres in *nbs1-c60A* cells, we next examined the recruitment of Rad3ATR and Rad3-kdAATR to telomeres in *nbs1D* cells, *nbs1-c60A* or *nbs1A* backgrounds by ChIP assays. As shown in Figure 3A, we found that *nbs1A* cells recruit significantly less wild-type Rad3 or Rad3-kdAATR proteins to telomeres compared to *nbs1D* or *nbs1-c60A* cells, suggesting that Nbs1-c60A protein contributes to the efficient recruitment of the Rad3ATR-Rad26ATRIP complex to telomeres. Accordingly, the loss of the Rad3-kdAATR-Rad26ATRIP complex from telomeres in *nbs1A* cells might explain why rad3-kdΔ nbs1A cells fail to recruit Tel1ATM to telomeres and circularize chromosomes (Figure 1D, Figure 2D, and Figure 3A). It should be noted that a substantial amount of wild-type Rad3ATR could still be recruited to

ATM Recruitment to Fission Yeast Telomeres

The N-terminal domain of Nbs1 contributes to the recruitment of Rad3ATR-Rad26ATRIP to telomeres. Since we detect Tel1ATM at telomeres only in cells carrying very short telomere-repeats (~180 bp in *rad3-kdA* and *rad3Δ* cells), but not in cells with wild-type telomere-repeat length (~280 bp in *rad3Δ* cells) (Figure 2D, Figure S1A), fission yeast Tel1ATM may be preferentially recruited to short telomeres. Alternatively, active Rad3ATR kinase might prevent association of Tel1ATM with telomeres. In any case, our results establish that the C-terminal 60 amino acids of fission yeast Nbs1 are not essential for the recruitment of Tel1ATM to critically short telomeres, due to a redundant non-kinase contribution of Rad3ATR-Rad26ATRIP to Tel1ATM recruitment.

The Rad3-kdAATR-Rad26ATRIP complex and the N-terminal domain of Nbs1 are both required for recruitment of Tel1ATM to telomeres in the absence of Nbs1-Tel1ATM interaction. Since expression of Rad3-kdAATR allowed cells to maintain stable telomeres in the absence of Nbs1-Tel1ATM interaction but not in *tel1A* and *nbs1A* cells (Figure 1D), we hypothesized that Nbs1-c60A protein and the Rad3-kdAATR-Rad26ATRIP complex may function collaboratively to recruit Tel1ATM to telomeres and maintain telomeres. Indeed, we detected robust Tel1ATM recruitment to telomeres in *nbs1-c60A rad3-kdΔ* cells, but failed to detect Tel1ATM at telomeres in *nbs1-c60A rad3A* or *nbs1A rad3-kdΔ* cells (Figure 2D). The ability to recruit Tel1ATM to telomeres in rad3 mutant backgrounds (either rad3-kdΔ or rad3Δ) correlated perfectly with the telomere maintenance phenotypes of these mutant cells (Figure 1D and Figure 2D). Thus, our ChIP data establish that the N-terminal domain of Nbs1 and the telomere-bound Rad3-kdAATR-Rad26ATRIP complex must both be present, in order for Tel1ATM to be recruited independently of the C-terminal Tel1ATM-interaction domain of Nbs1.
Figure 2. The C-terminal Tel1ATM interaction domain of Nbs1 and the non-kinase domain of Rad3ATR redundantly contribute to recruitment of Tel1ATM to telomeres. (A) Recruitment of Rad26ATRIP to telomeres in rad3+, rad3-kdΔ, and rad3Δ, monitored by quantitative ChIP assays. Mean values plus or minus one standard deviation for two to nine independent experiments are plotted. Compared to untagged control, Rad26ATRIP showed significant telomere binding in rad3+ and rad3-kdΔ (P values < 0.00003), but not in rad3Δ (P = 0.282). Based on anti-myc western blot, comparable level of Rad26 was expressed. Anti-Cdc2 western blots were used as loading controls. (B) Recruitment of wild-type Rad3ATR or Rad3-kdΔ to telomeres in rad26+ or rad26Δ, monitored by quantitative ChIP assays. Mean values plus or minus one standard deviation for three to eleven independent experiments are plotted. Compared to untagged control, both wild-type Rad3 and Rad3-kdΔ showed significant telomere binding in rad26+ (P values < 0.0003) but not in rad26Δ (P values < 0.154). Based on anti-myc western blot, expression levels of wild-type or truncated Rad3ATR are not affected by deletion of rad26. Anti-Cdc2 western blots were used as loading controls. (C) Recruitment of wild-type Nbs1 or Nbs1-c60Δ to telomeres in rad3+, rad3-kdΔ, or rad3Δ, monitored by quantitative ChIP assays. Mean values plus or minus one standard deviation for three to seven independent experiments are plotted. Compared to untagged control, both wild-type Nbs1 and Nbs1-c60Δ showed significant telomere binding in all genetic backgrounds tested (P values < 0.0001). Telomere binding of wild-type Nbs1 was significantly increased in rad3-Δ cells (P = 0.004) but not rad3Δ cells (P = 0.295), compared to rad3+ cells. For Nbs1-c60Δ, there was no significant change in telomere association in rad3-ΔΔ (P = 0.214) or rad3Δ cells (P = 0.952), compared to rad3+ cells. Based on anti-myc western blot, expression levels of wild-type or truncated Nbs1 are not affected by mutations in Rad3. Anti-Cdc2 western blots were used as loading controls. (D) Recruitment of Tel1ATM to telomeres in various mutant combinations among nbs1 and rad3, monitored by quantitative ChIP assays. Mean values plus or minus one standard deviation for two to four independent experiments are plotted. Only rad3-kdΔ, rad3Δ and rad3-ΔΔ nbs1-c60Δ showed higher mean % precipitated DNA (% ppt DNA) values compared to untagged control. Tel1 binding to telomeres in rad3-ΔΔ and rad3Δ cells was deemed statistically insignificant (P values 0.155 and 0.139, respectively) compared to untagged control, due to large standard deviation in % ppt DNA values among four independent ChIP experiments. However, we consistently found that % ppt DNA values for rad3-kdΔ and rad3Δ cells are higher than untagged control or rad3+ cells for a given set of ChIP experiment performed the same day. Tel1 binding to telomeres in rad3-ΔΔ nbs1-c60Δ cells, compared to untagged control, was statistically significant (P = 0.016). Since myc-Tel1 expressed from its endogenous promoter could not be detected in whole cell extracts by anti-myc western blot, anti-myc immunoprecipitation (IP) was performed to enrich for myc-Tel1. Based on anti-myc western blot, comparable amounts of Tel1 were pulled down in different mutant backgrounds. Anti-Cdc2 western blots were used as loading controls.

doi:10.1371/journal.pgen.1000839.g002
telomeres in nbs1Δ cells. In fact, since nbs1Δ, rad50Δ, rad32Δmns11 and tel1Δ cells all maintain essentially wild-type length or only slightly shorter telomeres in fission yeast [27,33], it appears that the MRN complex and Tel1ATM do not make significant contributions to telomere maintenance as long as cells express the wild-type Rad3ATR-Rad26ATRIP complex.

The ATR-ATRIP complex preferentially binds to RPA-coated ssDNA, and the MRN complex promotes formation of 3′ ssDNA at DSBs and telomeres [10,34–36]. Thus, we considered the possibility that the fission yeast MRN complex, independently of its Nbs1 C-terminal Tel1ATM interaction domain, might promote recruitment of Rad3ATR-Rad26ATRIP to telomeres by promoting accumulation of RPA-coated ssDNA at telomeres. However, we found comparable level of RPA (Rad11) associated with telomeric DNA in rad3-kdΔ nbs1-c60ΔA and rad3-kdΔA nbs1ΔA cells (Figure 3B). We also considered the possibility that the N-terminal of Nbs1 might contribute to the recruitment of Rad3ATR-Rad26ATRIP to telomeres by promoting association between the MRN complex and the Rad3ATR-Rad26ATRIP complex, since it was previously shown that mammalian MRN interacts with ATR-ATRIP [37]. However, we could not detect a direct interaction between Nbs1 and Rad3ATR or between Nbs1 and Rad26ATRIP by yeast 2-hybrid assays, and failed to detect an interaction between Nbs1 and Rad26ATRIP by co-IP experiments (data not shown). Thus, further investigations are necessary to fully understand how the N-terminal domain of Nbs1 contributes to efficient recruitment of the Rad3ATR-Rad26ATRIP complex to telomeres.

Figure 3. Nbs1 N-terminal domain is required to promote recruitment of the Rad3ATR-Rad26ATRIP complex to telomeres. (A) Recruitment of wild-type Rad3ATR or Rad3-kdΔ to telomeres in nbs1Δ, nbs1-c60.1A or nbs1.1A was monitored by quantitative ChIP assays. Averages and standard deviations from three to five independent ChIP experiments are plotted. Compared to untagged control, wild-type Rad3 was detected at telomeres in all genetic backgrounds tested (P values<0.0003). Compared to nbs1Δ cells, wild-type Rad3 binding to telomeres was significantly reduced in nbs1.1A (P = 0.011) but not in nbs1-c60.1Δ (P = 0.316). Compared to untagged control, Rad3-kdΔ showed telomere recruitment in nbs1Δ and nbs1-c60.1Δ (P values<0.0002) but not in nbs1.1Δ (P = 0.118). Based on anti-myc western blot, expression levels of wild-type or truncated Rad3ATR are not affected by mutations in nbs1. Anti-Cdc2 western blots were used as loading controls. (B) Recruitment of RPA largest subunit Rad11 to telomeres, monitored by quantitative ChIP assays, did not change greatly among strains mutated for nbs1 and rad3. Averages and standard deviations from three to six independent experiments are plotted. Compared to untagged control, Rad11 binding to telomeres was significant in all genetic backgrounds tested (P values<0.001). Strains carrying rad3-kdΔ showed significantly higher telomere recruitment of Rad11 compared to rad3Δ cells for all nbs1 alleles tested (P values<0.01). No significant change in recruitment of Rad11 to telomeres among rad3-kdΔ, nbs1-c60.1Δ rad3-kdΔA, and nbs1.1Δ rad3-kdΔA cells was detected (P values<0.06). Based on anti–FLAG western blot, expression levels of Rad11 are not affected by mutations in nbs1 or rad3. Western blots with anti-Cdc2 were used as loading controls.

do1:10.1371/journal.pgen.1000839.g003

Over-expression of Tel1ATM can bypass the requirement for the Nbs1 C-terminal domain and Rad3ATR-Rad26ATRIP complex in telomere maintenance

Over-expression of Tel1ATM results in MRX (Mre11-Rad50-Xrs2) complex-dependent elongation of telomeres in budding yeast [14,38,39], consistent with the notion that recruitment of Tel1ATM to telomeres represents the critical rate limiting step in regulating telomere length in budding yeast. By contrast, over-expression of Tel1ATM was unable to increase telomere length in wild-type fission yeast cells (Figure 4A), even though over-expressed Tel1ATM can be detected at telomeres by ChIP assays (Figure 4D). However, we did observe a partial suppression of telomere shortening in rad3-kdΔA and rad3ΔA cells upon Tel1ATM over-expression (Figure 4A), suggesting that the level of Tel1ATM recruitment to short telomeres becomes a critical limiting factor in telomere length determination in the absence of the functional Rad3ATR-Rad26ATRIP complex. Interestingly, we also found that the Nbs1 C-terminal Tel1ATM interaction domain is essential for over-expressed Tel1ATM to associate with telomeres in rad3Δ cells, but dispensable in rad3-kdΔA and rad3ΔA cells (Figure 4D). Thus, it appears that the presence of the kinase active Rad3ATR, Rad26ATRIP complex can prevent recruitment of over-expressed Tel1ATM to telomeres if cells are missing the C-terminal Tel1ATM interaction domain of Nbs1.

We reasoned that over-expression of Tel1ATM might be able to suppress chromosome circularization caused by simultaneous mutations in Nbs1 and Rad3ATR-Rad26ATRIP, if the essential telomere maintenance function, redundantly provided by the
Nbs1 C-terminal Tel1ATM interaction domain and the kinase-inactive Rad3ATR-Rad26ATRIP complex, were to promote efficient recruitment of Tel1ATM to telomeres. Indeed, over-expression of Tel1ATM allowed recruitment of Tel1ATM in \textit{nbs1-c60D} and \textit{rad3D} cells (Figure 4D) and suppressed chromosome circularization in \textit{nbs1-c60D} and \textit{rad26D} cells (Figure 4B and 4C). However, over-expression of Tel1ATM was unable to suppress chromosome circularization in \textit{rad3-kdA}, \textit{nbs1A}, and \textit{rad26A} cells, indicating that the expression of Nbs1 (and likely other subunits of the MRN complex) is essential for telomere maintenance in the absence of kinase-active Rad3ATR. Tel1ATM was detected at telomeres in all genetic backgrounds tested (P values ≤0.019), except in \textit{rad3D} and \textit{nbs1-c60D} (P = 0.81). Tel1ATM was transiently over-expressed by growing cells in minimal media lacking thiamine for 21 hr prior to harvest. Based on anti-HA western blot, expression levels of over-expressed Tel1ATM are comparable among all genetic backgrounds tested. Anti-Cdc2 western blots were used as loading controls.

Over-expression of Rad3ATR can bypass the requirement for Rad26ATRIP and Nbs1, but not Tel1ATM in telomere maintenance

Our ChIP data indicated that both the Rad26ATRIP regulatory subunit and the N-terminal domain of Nbs1 play critical roles in promoting recruitment of Rad3ATR to telomeres (Figure 2B, Figure 3A). Therefore, we next investigated if over-expression of Rad3ATR might be able to bypass the requirement for Rad26ATRIP and/or Nbs1 in telomere maintenance. Based on ChIP analysis,
over-expression of Rad3^{ATR} bypassed the requirement for Rad26^{ATRIP} in recruitment of Rad3^{ATR} to telomeres (Figure 5C). However, over-expression of Rad3^{ATR} was not able to suppress telomere shortening observed in rad26^d cells (Figure 5A). Thus, in the presence of wild-type Nbs1 (and thus intact Nbs1-Tel1^{ATM} interaction), forced recruitment of Rad3^{ATR} to telomeres by over-expression is not sufficient to elongate telomeres in rad26^d cells. On the other hand, we found that Rad3^{ATR} over-expression completely suppressed chromosome circularization in rad26^{d nbs1-c60^d} cells (Figure 5B), consistent with the notion that the essential telomere maintenance function contributed by Rad26^{ATRIP} in nbs1-c60^d is to promote recruitment of Rad3^{ATR} to telomeres.

Figure 5. Over-expression of Rad3^{ATR} can bypass the Rad3^{ATR} recruitment function provided by Rad26^{ATRIP} and Nbs1. (A) Southern blot analysis of EcoRI digested genomic DNA, hybridized to telomere repeat specific probe. Fission yeast cells were grown in minimal media in the presence or absence of thiamine (B1) to repress (−) or induce (+) expression of Rad3 under the control of the nmt⁺ promoter, respectively, for at least 150 cell divisions. See Figure S1A for a schematic drawing of the fission yeast telomere restriction map. (B) Characterization of telomere status by PFGE for indicated strains. Fission yeast cells were grown as in (A). Two independent clones of each genotype are shown. Rad3 over-expression in nbs1^{c60^d} rad26^d cells resulted in mixed telomere phenotypes, suggesting partial suppression of telomere dysfunction. (C) Recruitment of over-expressed Rad3^{ATR} to telomeres in rad26⁺ or rad26^d cells, monitored by quantitative ChIP assays. Averages and standard deviations from three independent ChIP experiments are plotted. Compared to untagged control, over-expressedRad3^{ATR} was detected at telomeres in both rad26⁺ (P = 0.0016) and rad26^d (P = 0.0087) cells. Rad3^{ATR} was transiently over-expressed by growing cells in minimal media lacking thiamine for 21 hr prior to harvest. Expression levels of over-expressed Rad3^{ATR} are comparable, based on anti-HA western blot. Anti-Cdc2 western blots were used as loading controls. (D) Recruitment of endogenous Tel1^{ATM} to telomeres in nbs1-c60^d rad26^d cells, with or without over-expressed Rad3^{ATR} was monitored by quantitative ChIP assays. Averages and standard deviations from three independent ChIP experiments are plotted. No significant binding of Tel1^{ATM} to telomeres above untagged control was observed. Rad3^{ATR} was transiently over-expressed as in (C). Anti-HA western blots were used to monitor expression levels of over-expressed Rad3^{ATR}. Since myc-Tel1 expressed from its endogenous promoter could not be detected in whole cell extracts by anti-myc western blot, anti-myc immunoprecipitation (IP) was performed to enrich for myc-Tel1. Anti-Cdc2 western blots were used as loading controls.

doi:10.1371/journal.pgen.1000839.g005
Even when Rad3^{ATR} is over-expressed, the N-terminus of Nbs1 still appears to contribute to telomere maintenance in rad26^A cells, since suppression of chromosome circularization by over-expression of Rad3^{ATR} was much more complete in rad26^A nbs1-c60^A cells than in rad26^A nbs1^A cells (Figure 5B). Since we observed a mixed telomere phenotype among survivor cells after extensive restreaking of nbs1^A rad26^A cells over-expressing Rad3^{ATR} on agar plates, we concluded that over-expression of Rad3^{ATR} can partially bypass the essential telomere function of Nbs1 in the absence of Rad26^{ATRIP} (Figure 5B). The observed partial suppression of chromosome circularization in nbs1^A rad26^A cells by over-expression of Rad3^{ATR} is consistent with the notion that the N-terminal domain of Nbs1 contributes to telomere maintenance by promoting recruitment of Rad3^{ATR} to telomeres.

By contrast, Rad3^{ATR} over-expression was unable to suppress chromosome circularization observed in rad26^A tel1^A cells (Figure 5B). Thus, it appears that over-expression of Rad3^{ATR} allows the Tel1^{ATM}-dependent mechanism to maintain telomeres in rad26^A nbs1-c60^A or rad26^A nbs1^A cells. One possible mechanism by which Rad3^{ATR} over-expression might promote Tel1^{ATM}-dependent telomere maintenance in rad26^A nbs1-c60^A or rad26^A nbs1^A cells is to promote recruitment of Tel1^{ATM} to telomeres. Therefore, we examined changes in Tel1^{ATM} recruitment to telomeres in nbs1-c60^A rad26^A cells with or without over-expression of Rad3^{ATR} by ChIP analyses. However, we were unable to detect Rad3^{ATR} over-expression dependent recruitment of Tel1^{ATM} to telomeres (Figure 5D). Thus, further investigations are necessary to fully understand how over-expression of Rad3^{ATR} contributes to the Tel1^{ATM}-dependent suppression of chromosome circularization in fission yeast cells simultaneously lacking functional Rad26^{ATRIP} and Nbs1.

Discussion

In the current study, we investigated how two PIKK-containing complexes, Tel1^{ATM}-MRN and Rad3^{ATR}-Rad26^{ATRIP}, contribute to telomere length regulation in fission yeast (summarized in Figure 6). We have demonstrated that fission yeast Tel1^{ATM} can

Figure 6. Summary of mechanisms controlling the recruitment of Rad3^{ATR}-Rad26^{ATRIP} and Tel1^{ATM} to telomeres in fission yeast. See main text for details. Over-expressed Tel1^{ATM} (C) and Rad3^{ATR} (D) are emphasized with thicker lines for their respective ovals.

doi:10.1371/journal.pgen.1000839.g006
be recruited to telomeres by two alternative and redundant mechanisms, which are either dependent or independent of the Nbs1 C-terminal TCellATM interaction domain (Figure 2A and 6B). Our analyses indicated that the Nbs1 C-terminal dependent mode of TCellATM recruitment to telomeres does not require the Rad3ATR-Rad26ATRIP complex, and in fact, it might be inhibited by the presence of wild-type Rad3ATR-Rad26ATRIP (Figure 2D). On the other hand, the Nbs1 C-terminal independent mode of TCellATM recruitment requires the presence of telomere bound kinase-inactive Rad3-kdATR-Rad26ATRIP complex (Figure 2A, 2B, and 2D). Since the N-terminal domain of Nbs1 is essential for recruitment of the Rad3-kdATR-Rad26ATRIP complex to telomeres (Figure 3A), all our results are consistent with the notion that association of Rad3-kdATR-Rad26ATRIP to telomeres is the crucial determinant that allows recruitment of TCellATM to telomeres in the absence of the Nbs1 C-terminal TCellATM interaction domain. The notion that the C-terminus of Nbs1 and the Rad3-kdATR-Rad26ATRIP complex redundantly contribute to the recruitment of TCellATM is also supported by our finding that over-expression of TCellATM can entirely bypass the requirement for Rad3ATR-Rad26ATRIP for telomere maintenance and TCellATM recruitment to telomeres in nbs1-c60A cells (Figure 4, Figure 6C). Moreover, the finding that over-expression of Rad3ATR was able to at least partially suppress the loss of Nbs1 protein (Figure 5B, Figure 6D) provided further support for the notion that the N-terminal domain of Nbs1 also contributes to the recruitment of Rad3ATR to telomeres.

Thus, our findings are generally consistent with the model that at least one PIKK activity needs to be localized at telomeres, in order to stably maintain telomeres in fission yeast, although we have not yet tested if TCellATM kinase activity is indeed required for telomere maintenance in nbs1-c60A rad3-kdA cells. It is currently unknown which telomere-associated protein(s) represent critical substrate(s) of TCellATM that are essential for telomere maintenance. However, we were able to demonstrate recently that TCellATM and Rad3ATR are redundantly required to prevent accumulation of homologous recombination DNA repair factors and RPA at telomeres, to promote efficient telomere recruitment of Tpz1 and Ccq1 (subunits of the Pot1 telomere capping complex), and to recruit telomerase to telomeres [18].

Our results also indicate that fission yeast TCellATM is recruited preferentially to short telomeres (Figure 2D). Due to the kinase-independent function of the Rad3ATR-Rad26ATRIP complex, the Nbs1 C-terminal 60 amino acid TCellATM interaction domain is dispensable for recruitment of TCellATM to short telomeres. TCellATM is also recruited preferentially to short telomeres in budding yeast [14,38,40]. Based on studies utilizing xrs2-664D mutant cells, which express the truncated Xrs2Nno1 protein lacking the C-terminal 190 amino acids (full length 884 amino acids), it was suggested that the Xrs2Nno1 C-terminal TCellATM interaction domain is essential for recruitment of TCellATM to critically short telomeres [14]. However, a recent study has shown that, while deleting as little as 20 amino acids from C-terminus of Xrs2Nno1 is sufficient to disrupt the interaction between TCellATM and Xrs2Nno1, xrs2 mutant cells lacking the C-terminal 20 amino acids maintain significantly longer telomeres than xrs2-664D or xrs2A cells [41]. Therefore, budding yeast Xrs2Nno1 also appears to contribute to telomere maintenance independently of its C-terminal TCellATM interaction domain. Thus, it would be interesting to test if the N-terminal domain of Xrs2Nno1 might also collaborate with the Mec1ATR-Ddc2ATRIP complex, perhaps independently of Mec1ATR kinase activity, in regulating TCellATM recruitment to telomeres in budding yeast.

Our ChIP data indicate that very little or no TCellATM is recruited to telomeres in wild-type fission yeast cells. On the other hand, Rad3ATR-Rad26ATRIP is specifically recruited to replicating telomeres and appears to act as the primary sensor of transiently “open” telomeres during S-phase [15]. Therefore, it makes sense that rad3A or rad26A cause a more severe shortening of telomeres than tel1A in fission yeast [25,27,42]. Thus, TCellATM is likely to function as a back-up mechanism to extend critically short telomeres in fission yeast. In contrast, budding yeast mec1A cells show very little shortening of telomeres [43], while tel1A or xrs2A cells carry extremely short telomeres [44,45]. It has also been reported that budding yeast Mec1ATR cannot be detected at telomeres by ChIP in wild-type cells [15]. However, simultaneous loss of Mec1ATR, Ddc2ATRIP and Tel1ATM-MRX pathways results in a severe defect in telomere maintenance [43,46], much like in fission yeast cells. Thus, available data suggest that budding yeast telomeres are primarily regulated by Tel1ATM-MRX, and Mec1ATR-Ddc2ATRIP fulfills a back-up role for maintaining telomeres.

There are intriguing similarities between our current findings and findings in mammalian cells, where ATR-ATRIP was found to act upstream of ATM. In response to replication stress or UV irradiation during S-phase, the Nbs1 C-terminal ATM interaction domain is dispensable, but the N-terminus of Nbs1 is essential, for ATM to activate in mammalian cells [12]. However, it is currently unknown whether ATR-ATRIP might also contribute to the recruitment of ATM to sites of stalled or distressed DNA replication forks in a kinase-independent manner, besides the previously established kinase-dependent role of ATR in converting active ATM dimers into active monomers [12]. However, the similar requirement for the N-terminus, but not the C-terminus, of Nbs1 for the ATR-ATM crosstalk in response to DNA replication stress in mammalian cells and telomere maintenance in fission yeast might suggest that fission yeast telomeres may be recognized primarily as stressed and/or abnormal replication forks by ATM/ ATR kinases.

Studies in mammalian cells have also established the existence of an ATM-ATR crosstalk in response to DNA DSBs, where ATM and the MRN complex contribute to the recruitment of ATR-ATRIP to DSBs by promoting the generation of RPA-coated ssDNA at DSB sites [9–11,47,48]. The Nbs1 C-terminal ATM interaction domain is required to recruit ATM to DSBs induced by ionizing radiation (IR) and to promote ATM-dependent phosphorylation events [5,6,49], and it is thus critical for the ATM-ATR crosstalk in response to DSBs. While the critical role of TCellATM in preferentially extending short telomeres in budding yeast has been well established [14,38], mouse ATM was found not to be critical for extending short telomeres [50]. This difference might indicate that mouse ATR-ATRIP and ATM-MRN pathways work redundantly in extending critically short telomeres. Alternatively, since recruitment of human ATR to telomeres was found to occur earlier in S-phase than recruitment of ATM to telomeres [16], mammalian ATR-ATRIP may function upstream of ATM in telomere length maintenance, and perhaps also possess kinase-independent functions in recruitment of ATM to telomeres. While further analyses are clearly needed to test these speculations, our current findings highlight a complex molecular crosstalk between ATM-MRN and ATR-ATRIP pathways in recognizing an “open” configuration of telomeres to allow their stable maintenance.

Materials and Methods

Reagents and general methods

Fission yeast strains used in this study were constructed by standard techniques [51] and are listed in Table S1. Primers listed in Table S2 were used to construct new strains. For nbs1-myc, nut-
HA-rad3, myc-rad26 and YFP-rad26, original strains were described previously [15, 24, 27, 52]. For myc-rad3, nbs1-v60A-myc, myc-tel1 and nmt-HA-tel1, PCR-based methods [53, 54] were used to generate tagged strains. For nbs1Δ:kanMX, nbs1-v60A:kanMX6, rad3-kd:swat*, rad3Δ:LEU2 and rad26Δ:swat*, original strains were described previously [5, 25–27, 55]. For nbs1Δ:swatMX5, PCR-based methods [53, 54] were used to generate deletion strains. Budding yeast strains used in yeast two-hybrid assays are also listed in Table S1. Plasmids used in this study are listed in Table S3. Yeast two-hybrid assays were performed by mating S. cerevisiae MATa strains harboring GAL4-DBD plasmids with MATa strains harboring GAL4-AD plasmids, as described in the MATCHMAKER system manual (Clontech). Positive two-hybrid interactions were identified by spotting mated cells onto SD-HTL plates. Sensitivities of fission yeast cells to IR, UV, HU (hydroxyurea) and CPT (camptothecin) were assayed as previously described [24].

Co-immunoprecipitation and western blot analyses
For most strains, cell extracts were prepared in lysis buffer 1 [50mM Tris pH8.0, 150mM NaCl, 10% glycerol, 5mM EDTA, 0.5% NP-40, 50mM NaF, 1mM DTT, 1mM PMSF, 1mM Na3VO4, ‘Complete’ protease inhibitor cocktail (Roche)], either by glass bead disruption using FastPrep homogenizer (MP Biomedical) or by cryogenic disruption using MM301 Ball Mill (Retsch). For strains expressing myc-Rad3, myc-Rad3-kdA or myc-Tel1, lysis buffer 2 [25mM Tris pH7.5, 100mM NaCl, 10% glycerol, 15mM EDTA, 0.1% NP40, 1% Triton, 15mM MgCl2, 0.1mM NaF, 0.5mM DTT, 1mM PMSF, 1mM Na3VO4, ‘Complete’ protease inhibitor cocktail] was used. For co-immunoprecipitation analyses, proteins were immunoprecipitated using either monoclonal anti-myc antibody (9B11, Cell Signaling) or monoclonal anti-HA antibody (12CA5, Roche), and protein G Dynabeads (Invitrogen) or protein G sepharose beads (GE) respectively. Proteins in whole cell extract or from immunoprecipitations were analyzed by western blots using monoclonal anti-HA antibody (12CA5, Roche), and protein G sepharose beads (GE) respectively. Proteins in whole cell extract or from immunoprecipitations were analyzed by western blots using monoclonal anti-HA antibody (12CA5, Roche), and protein G sepharose beads (GE) respectively. Proteins in whole cell extract or from immunoprecipitations were analyzed by western blots using monoclonal anti-HA antibody (12CA5, Roche), and protein G sepharose beads (GE) respectively.

Southern blot analyses
S. pombe genomic DNA samples were digested with EcoRI or ApaI, separated on 1.2% (EcoRI) or 2% (ApaI) agarose, transferred to Hybond-XL membrane (GE), and hybridized to telomere probe [57] in Church Buffer [0.25M sodium phosphate buffer pH7.2, 1mM EDTA, 1% BSA, 7% SDS] at 65°C overnight to monitor telomere length.

ChIP assays
Cells were processed for ChIP and analyzed as previously described [15], using either monoclonal anti-myc (9B11; Cell Signaling), anti-FLAG (M2, F1804, Sigma), or anti-HA (12CA5) antibodies. Percent precipitated DNA values (% ppt DNA) were calculated based on ΔCt between Input and IP samples after performing several independent triplicate SYBR Green-based real-time PCR (Bio-Rad) using telomere primers jk380 and jk381 [15]. For genetic backgrounds that cause eventual circularization of chromosomes due to a telomere maintenance defect, a Rad3 plasmid (pREP1H-rad3D) was utilized to maintain linear chromosomes during strain construction [18]. Prior to ChIP experiments, single colonies that had lost the Rad3 plasmid were selected based on lack of growth on media lacking histidine and sensitivity to HU, and immediately utilized in ChIP experiments. Based on Southern blot analysis, the early generation strains that have just lost the Rad3 plasmid carry comparable or slightly longer telomeres than rad3Δ cells [18] (data not shown).

Statistical analysis
In order to determine statistical significance of our data, two-tailed Student’s t-tests were performed, and P values ≤0.05 were considered as statistically significant differences.

Supporting Information
Figure S1 Similar telomere length and DNA damage sensitivities for rad3Δ-kdΔ and rad3Δ cells. (A) Southern blot analysis of ApaI digested genomic DNA, hybridized to telomere repeat specific probe. A fission yeast telomere restriction map for telomeric and sub-telomeric regions cloned in pNSU70 plasmid [Sugawara NF (1980) DNA sequences at the telomeres of the fission yeast S. pombe. Ph.D. Thesis. Cambridge, Massachusetts: Harvard University.] is shown on the right. (B) Five-fold serial dilutions of wild-type and various mutant strains for rad3 and nbs1 plated onto YES media with indicated concentrations of HU or CPT. Pictures were taken after 3 days at 32°C. (C–F) Survival of wild-type and various mutant cells after exposure to indicated doses of IR or UV. Surviving colonies on YES plates were counted after 3 days at 32°C.

Table S1 Yeast strains used in this study.

Table S2 DNA primers used in strain construction.

Table S3 Plasmids used in this study.

Acknowledgments
We thank Paul Russell (The Scripps Institute) for S. pombe strains and yeast two-hybrid reagents, and Antony M. Carr (University of Sussex) for critical reading of the manuscript.

Author Contributions
Conceived and designed the experiments: LS TMN. Performed the experiments: LS TMN. Analyzed the data: LS TMN. Contributed reagents/materials/analysis tools: LS TMN. Wrote the paper: TMN.
References

1. Lee JH, Paul TT (2007) Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene 26: 7741–7748.

2. Cappuccio KA, Cortez D (2008) ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 9: 616–627.

3. Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurv K, et al. (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 315: 1160–1166.

4. Williams RS, Williams JS, Tainer JA (2007) Mre11-Rad50-Nbs1 is a keystone complex connecting DNA repair machinery, double-strand break signaling, and the chromatin template. Biochem Cell Biol 85: 509–520.

5. Yusuf Z, Chalhoub C, Ballif J, Hunter T, Russell P (2003) ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1. Mol Cell Biol 23: 5365–5379.

6. Falck J, Coates J, Jackson SP (2005) Conserved mechanisms of recruitment of ATM, ATR, and DNA-PKcs to sites of DNA damage. Nature 434: 605–611.

7. Zou L, Elledge SJ (2003) Sensing DNA damage through ATRIP recognition of MRN complex DNA. Science 300: 1342–1348.

8. Stiff T, Cerosaletti K, Concannon P, O'Driscoll M, Jeggo PA (2000) Replication independent ATR signalling leads to G2/M arrest requiring Nbs1, 53BP1 and MDC1. Hum Mol Genet 10: 3247–3253.

9. Jazayeri A, Falck J, Lukas C, Bartek J, Smith GC, et al. (2006) ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Mol Cell Biol 26: 37–45.

10. Shiotani B, Zou L (2009) Single-stranded DNA orchestrates an ATM-to-ATR switch at DNA breaks. Mol Cell 33: 547–550.

11. Myers JS, Cortez D (2006) Rapid activation of ATR by ionizing radiation requires ATM and Tel1. J Biol Chem 281: 9456–9460.

12. Stiff T, Walker SA, Cerosaletti K, Goodarzi AA, Petermann E, et al. (2006) ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling. EMBO J 25: 5773–5782.

13. Sabourin M, Zakian VA (2006) ATM-like kinases and regulation of telomerase: lessons from yeast and mammals. Trends Cell Biol 18: 337–346.

14. Sabourin M, Tuzon CT, Zakian VA (2007) Telomerase and Tel1p preferentially associate with short telomeres in Saccharomyces cerevisiae. Mol Cell 27: 530–541.

15. Moser BA, Subramanian L, Chang YT, Nakamura TM (2009) Fission yeast Rad3p is a DNA damage checkpoint kinase. Mol Cell Biol 29: 5193–5202.

16. Viscardi V, Bonetti D, Cartagena Lirola H, Lucchini G, Longhese MP (2007) MRX-dependent DNA damage response to short telomeres. Mol Cell Biol 18: 3047–3058.

17. Alfa C, Fantes P, Hyams J, McLoed M, Warbrick E (1993) Experiments with Schizosaccharomyces pombe rad3, a gene involved in the DNA repair pathway. Mol Gen Genet 239: 13–20.

18. Ba¨hler J, Wu JQ, Longtine MS, Shah NG, McKenzie A 3rd, et al. (1998) Isolation and characterization of the schizosaccharomyces pombe rad3+ gene, involved in DNA and RNA synthesis checkpoints. Gene 119: 83–89.

19. Seaton BL, Yucel J, Sumnerhagen P, Subramani S (1992) Isolation and characterization of the Schizosaccharomyces pombe rad3+ gene. Mol Cell Biol 12: 2402–2409.

20. Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, et al. (1997) Telomerase catalytic subunit homologs from fission yeast and human. Science 277: 955–959.

21. Perry J, Klecker N (2008) The ATRs, ATM, and TOSs are giant HEAT repeat proteins. Cell 112: 151–153.

22. Chapman CR, Evans ST, Carr AM, Enoch T (1999) Requirement of sequences outside the conserved kinase domain of fission yeast Rad53p for checkpoint control. Mol Cell Biol 19: 3233–3240.