Thermodynamic properties of some isomeric 5-(nitrophenyl)-furyl-2 derivatives

Volodymyr Dibrivnyi1,4*, Andriy Marshalek1, Iryna Sobechko1, Yuriy Horak2, Mykola Obushak2, Nadiia Velychkivska3 and Lubomyr Goshko1

Abstract

Background: The aim of the current work was to determine thermodynamical properties of 5-(nitrophenyl)-2-furaldehyde oximes and 3-[5-(nitrophenyl)-2-furyl]acrylic acids.

Results: The temperature dependences of saturated vapor pressures of 5-(nitrophenyl)-2-furaldehyde oximes and 3-[5-(nitrophenyl)-2-furyl]acrylic acids were determined by the Knudsen effusion method. The results are presented by the Clapeyron–Clausius equation in linear form, and via this form, the standard enthalpies of sublimation of compounds were calculated at 298.15 K. The standard molar formation enthalpies of compounds in crystalline state at 298.15 K were determined indirectly from the corresponding standard molar combustion enthalpy, obtained using combustion bomb calorimetry. The non-nearest neighbour interactions (strain) in molecule were defined. The ideal-gas enthalpies of investigated compounds formation and the data available from the literature were used for calculation of group-additivity parameters and the correction terms useful in the application of the Benson correlation.

Conclusion: Determining the thermodynamic properties for these compounds will contribute to solving practical problems pertaining to optimization processes of their synthesis, purification and application. It will also provide a more thorough insight regarding the theoretical knowledge of their nature and are necessary for the application of the Benson group-contribution correlation for calculation of $\Delta_{f} H_{m}^{o}(298.15\text{K})_{\text{calc}}$.

Keywords: Arylfuran derivatives, Vapor pressure, Combustion enthalpy, Formation enthalpy, Sublimation enthalpy, Isomerization, Group-additivity correlation

Introduction

The rapid growth of pharmaceutical and chemical industries using nitrogen-containing heterocyclic compounds requires a continuous diversification of these products. New synthesized compounds with complex structure have no description of their thermodynamic properties. Recently, numerous reactions of synthesis of nitrogen-containing compounds with a phenyl furan fragment, which exhibit various types of biological activity, have been investigated. This allows them to be widely used in various fields of medical chemistry [1–10].

The furfural oximes are used as inhibitors of soil nitrification [1], as intermediates in the synthesis of anti-TB [11] and antifungal [12] drugs, and also as starting materials for the synthesis of disubstituted derivatives of furan [13]. Phenyl derivatives of furfural oxime show antispasmodic [14], vasodilator [15], cardiotropic [8] and antiviral [9] properties.

3-(2-Furyl)acrylic acids are widely used in the synthesis of polymeric materials for the production of polymeric glass, light stabilizers and luminophores [10], as well as for the synthesis of compounds with antimicrobial properties [16].

Previously, we have published several studies on thermodynamic properties of 5-(nitrophenyl)-2-furaldehydes and ethyl esters of cyan acrylic acids [17–19].

This paper follows this course and concerns the investigation of 5-(nitrophenyl)-2-furaldehyde oximes and 3-[5-(nitrophenyl)-2-furyl] acrylic acids.
The analysis of the properties of positional isomers of disubstituted benzene derivatives shows that a change in the functional group position in an aromatic ring can substantially change the applied properties of compounds, whereas the change in their thermodynamic properties is often unknown. Therefore, the aim of this work is to investigate enthalpy properties of 5-(nitrophenyl)-2-furaldehyde oximes and 3-[5-(nitrophenyl)-2-furyl] acrylic acids differ in the position of the nitro group.

Investigated 5-(2-nitrophenyl)-2-furaldehyde oxime (A), 5-(3-nitrophenyl)-2-furaldehyde oxime (B), 5-(4-nitrophenyl)-2-furaldehyde oxime (C), 3-[5-(2-nitrophenyl)-2-furyl] acrylic acid (D), 3-[5-(3-nitrophenyl)-2-furyl] acrylic acid (E) and 3-[5-(4-nitrophenyl)-2-furyl] acrylic acid (F) (Table 1) are crystalline substances under normal conditions.

Thermodynamic properties allow finding the most energetically favourable ways of synthesis and application of compounds with the maximum economic benefit.

Joint analysis of thermodynamic properties of 5-(nitrophenyl)-2-furaldehyde oximes and 3-[5-(nitrophenyl)-2-furyl] acrylic acids will reveal many theoretically important patterns of mutual influence of atoms in a molecule and enable to calculate the formation enthalpies of free radicals, energy relations, tension, cyclization, determine the group contributions to the additive schemes.

Table 1 Names and structural formulas of investigated compounds

Compound	Structural Formula
A	![Structure A](image)
B	![Structure B](image)
C	![Structure C](image)
D	![Structure D](image)
E	![Structure E](image)
F	![Structure F](image)

Results and discussion

Effusion measurements

Primary effusion measurement results, including the saturated vapor pressure P of the researched compounds, are shown in Table 2. The measurement results were processed by the least squares method and presented as a linear equation:

$$\ln P (\text{Pa}) = A + B/T$$

where A and B are constants determined by the least squares method. The equation was used to determine the group contributions to the additive schemes.

Primary effusion measurement results, including the saturated vapor pressure P of the researched compounds, are shown in Table 2. The measurement results were processed by the least squares method and presented as a linear equation:

$$\ln P (\text{Pa}) = A + B/T$$

where A and B are constants determined by the least squares method. The equation was used to determine the group contributions to the additive schemes.

ΔU_{carbon} was calculated by the equation:

$$\Delta U_{\text{carbon}} = \Delta U_{\text{carbon}}(T) + \Delta U_{\text{carbon}} \cdot ((T) - 298.15)$$

Heat capacities in solid state C_p^m were calculated by the additive method [20] and were equal: $C_p^m(A,B,C)(298.15 \text{ K}) = 260.4 \text{ J mol}^{-1} \text{ K}^{-1}$; $C_p^m(D,E,F)(298.15 \text{ K}) = 300.7 \text{ J mol}^{-1} \text{ K}^{-1}$. Standard enthalpies of sublimation at the mean experiment temperatures are shown in Table 3.

Calorimetric measurements

Combustion energy ΔU_{cpd} of the investigated substances was calculated by the equation:

$$\Delta U_{\text{cpd}} = \Delta U_{\text{carbon}} + \Delta U_{\text{HNO}} + \Delta U_{\text{E}} - \Delta U_{\text{fus}} - \Delta U_{\text{HNOx}}$$

where $m(\text{cpd})$—compound weight determined using gas analysis; $\Delta U_{\text{E}} = W \cdot \Delta T$—total heat released in the experiment, W—energy equivalent of the calorimetric system, ΔT—real increase in temperature. Calculations were performed taking into account corrections for the combustion of cotton thread ΔU_{fus}, terylene container ΔU_{fus}, soot to carbon dioxide ΔU_{carbon}, and also for formation in a bomb nitric acid solution ΔU_{HNO}. The results of determination of the compounds combustion energies ΔU_{cpd} are listed in Table 4.
Table 2 Results of effusion measurements of investigated substances

T, K	τ, s	m·10$^{-3}$, g	P, Pa	m·10$^{-3}$, g	P, Pa	m·10$^{-3}$, g	P, Pa		
	Membrane № 1	Membrane № 2	Membrane № 3	Membrane № 1	Membrane № 2	Membrane № 3	Membrane № 1	Membrane № 2	Membrane № 3
5-(2-Nitrophenyl)-2-furaldehyde oxime									
382.6	7350	1.50	0.097	1.60	0.100	1.50	0.097		
386.1	7355	2.45	0.161	2.60	0.165	2.40	0.158		
391.4	3655	1.90	0.250	2.00	0.255	2.00	0.264		
393.3	2645	2.65	0.350	2.50	0.320	2.50	0.332		
396.4	3645	4.05	0.538	4.15	0.534	3.90	0.520		
402.1	3660	6.05	0.805	6.55	0.845	6.30	0.842		
405.3	3640	10.2	1.37	10.4	1.35	9.70	1.31		
5-(3-Nitrophenyl)-2-furaldehyde oxime									
390.0	10,827	2.50	0.111	2.60	0.112	2.60	0.116		
394.1	10,828	3.90	0.174	4.00	0.173	3.90	0.174		
395.7	10,822	4.70	0.210	4.90	0.212	4.80	0.215		
399.4	10,821	6.70	0.301	6.80	0.296	6.70	0.302		
402.1	10,825	8.90	0.401	9.00	0.392	8.70	0.393		
406.0	7240	8.20	0.555	8.40	0.550	8.10	0.550		
410.2	10,830	19.6	0.891	21.0	0.924	20.0	0.912		
414.0	10,838	27.5	1.25	28.5	1.26	27.7	1.27		
419.8	7222	30.2	2.08	29.9	2.00	29.5	2.04		
5-(4-Nitrophenyl)-2-furaldehyde oxime									
414.8	3619	1.75	0.239	1.80	0.238	1.75	0.240		
417.6	3619	2.40	0.296	2.50	0.322	2.40	0.330		
419.6	3620	2.95	0.406	3.05	0.406	2.95	0.407		
421.9	3696	3.75	0.506	3.85	0.504	3.75	0.508		
423.1	3622	4.20	0.579	4.25	0.568	4.15	0.575		
427.6	3622	6.60	0.915	6.80	0.914	6.55	0.912		
429.8	3626	7.70	1.07	7.90	1.06	7.60	1.06		
430.2	3600	8.35	1.17	8.55	1.16	8.30	1.17		
432.1	3618	10.2	1.42	10.7	1.45	10.3	1.44		
3-[5-(2-Nitrophenyl)-2-furyl]acrylic acid									
422.8	14,418	4.30	0.141	4.40	0.140	4.40	0.145		
426.2	7218	3.30	0.217	3.50	0.223	3.30	0.218		
426.6	7219	3.55	0.234	3.60	0.229	3.50	0.231		
428.9	3620	2.30	0.302	2.40	0.306	2.30	0.304		
429.7	7218	5.30	0.350	5.40	0.345	5.30	0.351		
430.8	7218	6.20	0.410	6.30	0.404	6.00	0.398		
432.2	7220	7.20	0.477	7.60	0.487	7.10	0.472		
433.9	3619	4.60	0.609	4.70	0.603	4.50	0.598		
434.7	7226	10.0	0.663	10.2	0.656	9.70	0.646		
437.2	7223	13.5	0.899	13.9	0.896	13.7	0.915		
3-[5-(3-Nitrophenyl)-2-furyl]acrylic acid									
438.6	10,820	1.55	0.069	1.55	0.067	1.50	0.067		
442.3	14,420	3.20	0.107	3.20	0.104	3.25	0.109		
444.7	14,428	4.15	0.139	4.35	0.142	4.20	0.142		
447.8	14,418	6.10	0.206	5.80	0.190	5.90	0.200		
448.4	14,422	6.50	0.219	6.10	0.199	6.00	0.203		
449.3	14,416	7.00	0.237	6.90	0.226	6.70	0.227		
451.1	10,836	6.40	0.288	6.60	0.288	6.55	0.296		
454.7	14,418	11.6	0.394	12.2	0.402	11.0	0.376		
Table 2 (continued)

Compound	Tm, K	τ, s	m-10^3, g Membrane № 1	P, Pa	m-10^3, g Membrane № 2	P, Pa	m-10^3, g Membrane № 3	P, Pa
A	394.0	14.0	0.477	13.9	0.459	13.1	0.448	
B	404.9	14.43	0.08	0.65	0.027	0.80	0.026	0.80
C	441.4	21.624	0.65	0.037	1.20	0.039	1.15	0.039
D	446.2	14.435	1.10	0.061	1.90	0.062	1.70	0.058
E	448.6	14.40	0.30	0.30	0.65	0.014	0.65	0.015
F	452.9	14.427	1.95	0.066	1.95	0.064	1.95	0.067
G	458.1	14.422	2.35	0.080	2.35	0.077	2.30	0.079
H	457.8	14.423	3.10	0.106	3.10	0.102	2.90	0.099
I	460.2	14.422	3.95	0.135	4.00	0.132	3.85	0.132
J	463.7	14.422	6.00	0.206	6.30	0.209	6.10	0.210

Table 3 Coefficients of a linear equation: In P (Pa) = A + B/T. Standard sublimation enthalpy of investigated substances

Compound	Tm, K	A	−B, K	p	ΔfH^0_m(⟨T⟩), kJ mol⁻¹
A	394.0	43.2±1.8	17.394±726	0.9934	144.6±6.0
B	404.9	38.83±0.61	15.990±248	0.9988	132.9±2.4
C	423.5	42.9±0.36	18.367±152	0.9996	152.7±1.3
D	430.0	54.38±0.50	23.793±216	0.9992	197.8±2.0
E	447.5	46.3±1.5	21.475±673	0.9951	178.5±5.6
F	452.5	50.2±1.3	24.011±579	0.9971	199.6±4.8

Δ_fH^0_m(298.15K)(cr)=a−Δ_fH^0_m(298.15K)(CO_2(g))+b/2Δ_fH^0_m(298.15K)(H_2O(l))−Δ_fH^0_m(cr)(C_6H_5NO_2(g))

The gaseous state standard formation enthalpies of the investigated compounds were determined by the summation of the corresponding solid state formation enthalpies and their sublimation enthalpies according to the Eq. (5).

Δ_fH^0_m(298.15K)(g)=Δ_fH^0_m(298.15K)(cr)+Δ_fH^0_m(298.15K)(g)

(5)

Standard combustion − Δ_cH^0_m(cr) and formation (− Δ_fH^0_m(cr), − Δ_fH^0_m(g)) enthalpies of the investigated compounds are listed in Table 5.

The standard gaseous state formation enthalpies of compounds Δ_fH^0_m(298.15K)(g) are also calculated according to Benson additive scheme [26]. According to the scheme, the formation enthalpy of a compound in the gaseous state is the sum of the contributions of individual groups. Each group consists of a central atom and atoms of its first environment.

The calculation of formation enthalpies in condensed phase Δ_fH^0_m(298.15K) by Eq. (4) was based on the following key values of Δ_fH^0_m(298.15K)(k) mol⁻¹: −285.830±0.042 (H_2O(l)) and −393.514±0.046 (CO_2(g)) [25].
Table 4 Results of combustion energy determination for investigated compounds

m(cpd), g	ΔT, V	ΔU_{fusel}, J	ΔU_{HNO3}, J	ΔU_{carbon}, J	ΔU_{ter}, J	-ΔcU(cpd), J g⁻¹	m_{exp}/m_{cal}
5-(2-Nitrophenyl)-2-furaldehyde oxime							
0.13947	0.25347	106.7	7.7	22.3	412.4	23,464	0.9996
0.18548	0.33140	119.5	11.8	27.6	473.7	23,510	1.0002
0.16006	0.28787	106.2	4.1	20	434.6	23,520	0.9985
0.20085	0.35193	124.4	8.9	39.5	427.2	23,515	0.9961
0.17080	0.30603	118.1	8.9	23.6	441.8	23,507	0.9998
0.17019	0.30680	111.2	9.4	38.2	488	23,510	0.9987
0.19456	0.34651	121.3	11.2	43.5	505.5	23,483	0.9959
-ΔcU(cpd)\text{average} = 23,501 ± 17 J g⁻¹							
5-(3-Nitrophenyl)-2-furaldehyde oxime							
0.15358	0.31158	82.0	10.0	28.5	962.4	23,421	0.9968
0.26843	0.46052	94.5	14.8	28.2	499.8	23,400	0.9952
0.14936	0.27347	82.4	7.1	48.4	534.1	23,431	0.9998
0.14361	0.26148	121.2	7.1	25.1	424.5	23,456	1.0000
0.15737	0.28468	120.7	7.1	27.4	453.2	23,438	0.9978
0.18331	0.32799	99.5	8.9	28.2	510.2	23,400	0.9990
0.13068	0.24331	99.4	9.4	25.3	483.8	23,416	0.9991
-ΔcU(cpd)\text{average} = 23,429 ± 16 J g⁻¹							
5-(4-Nitrophenyl)-2-furaldehyde oxime							
0.20572	0.36079	106.5	14.2	27.7	486.0	23,319	1.0000
0.12488	0.23040	104.1	4.7	23.9	473.6	23,335	0.9989
0.17515	0.34180	117.1	8.3	32.3	902.4	23,395	0.9999
0.21358	0.40512	120.3	13.0	27.2	946.7	23,335	0.9992
0.18755	0.36144	136.0	9.4	21.3	884.7	23,338	0.9999
0.24203	0.44750	127.9	13.6	31.7	913.2	23,324	0.9987
0.16330	0.32067	120.1	8.9	23.6	858.2	23,360	0.9965
-ΔcU(cpd)\text{average} = 23,344 ± 22 J g⁻¹							
3-[5-(2-Nitrolphenyl)-2-furyl]acrylic acid							
0.31440	0.49265	82.0	3.5	29.9	-	23,172	0.9968
0.37839	0.59087	72.3	4.7	28.4	-	23,140	0.9992
0.33991	0.53119	85.7	8.9	53.3	-	23,165	0.9973
0.36358	0.56796	78.7	9.4	30.8	-	23,120	0.9965
0.41155	0.64234	74.8	9.4	30.8	-	23,127	0.9978
0.13428	0.21518	129.3	4.7	34.1	-	23,134	0.9995
0.12360	0.19809	113.3	4.1	28.2	-	23,160	0.9997
-ΔcU(cpd)\text{average} = 23,145 ± 20 J g⁻¹							
3-[5-(3-Nitrolphenyl)-2-furyl]acrylic acid							
0.21935	0.3439	97.3	7.1	46.9	-	23,100	0.9985
0.23066	0.36164	103.8	8.9	24.9	-	23,062	0.9962
0.19197	0.30458	110.9	7.7	21.3	-	23,135	1.0000
0.27004	0.42269	80.2	13.0	24.3	-	23,069	0.9998
0.24827	0.39045	97.7	10.6	22.8	-	23,090	0.9986
0.24804	0.38918	84.7	12.4	28.5	-	23,103	0.9991
0.24000	0.37684	91.5	10.0	24.4	-	23,076	0.9979
-ΔcU(cpd)\text{average} = 23,091 ± 22 J g⁻¹							
3-[5-(4-Nitrolphenyl)-2-furyl]acrylic acid							
0.16072	0.25432	106.7	5.9	22.8	-	23,020	0.9999
0.17773	0.27984	101.4	7.7	25.1	-	22,989	0.9999
0.23568	0.37014	115.7	10.0	27.2	-	22,985	0.9996
Comparison of the experimentally obtained formation enthalpies and those calculated according to the Benson additive scheme allows us to determine the contributions of unknown groups to the additive scheme. In case of experimental and calculated values coincidence, it is possible to calculate these values for other representatives of the investigated compounds. In case of differences, one can find the interaction between non-nearest atoms in a molecule, predict the peculiarities of the compound structure and correct these interactions in Benson additive scheme.

The investigated compounds are rather complex, therefore, some group contributions, necessary for the calculations of the formation enthalpies, are absent. Such contributions are marked with asterisks in Tables 6 and 7. They were calculated using reliable gaseous state formation enthalpies of the compounds. The contributions of the groups Cd−(Cd)2(O), C−(Cb)2(NO2) and Cd−(Cd)(O)(Cb) which are absent in the additive scheme were defined from the gaseous state formation enthalpy of vinylfuran [27], nitrobenzene [27] and ethyl-2-cyano-3-(furan-2-yl)-prop-2-enoate [18]. In addition, we had to use the contribution of the whole fragment (Cd)–CH=NOH for calculations. This contribution is the sum of contributions of Cd−(Cd)(N)(H), N−(Cd)(OH), and OH−(N). According to the results published in [24],

Table 4 (continued)

m(cpd), g	∆T, V	∆U valves, J	∆U_fus, J	∆U_carbon, J	∆U_int, J	∆U(cpd), J g^−1	m_exp/m_cal
0.16126	0.25492	101.1	5.9	23.3	–	23,036	0.9998
0.19640	0.30968	99.9	8.3	23.0	–	23,062	0.9997
0.16949	0.26797	112.3	6.5	23.5	–	22,997	0.9999
0.16084	0.25462	102.3	4.7	20.3	–	23,050	0.9995

− ΔU(cpd)_average = 23,020 ± 26 J g^−1

Table 5 Combustion and formation enthalpies of investigated compounds at 298.15 K (kJ/mol)

Compound	−Δ_rH^m_{298.15} (cr)	−Δ_rH^o_{298.15} (cr)	Δ_rH^o_m (g)	exp	calc
A	5458.8 ± 4.0	13.1 ± 4.0	148.4 ± 7.5	135.3 ± 8.5	108.3 ± 27.0
B	5442.0 ± 3.6	299.7 ± 3.6	1372 ± 3.9	1073 ± 5.3	−0.5 ± 0.3
C	5422.2 ± 5.2	497.5 ± 5.2	1577 ± 2.7	1080 ± 5.9	−3.0 ± 0.3
D	6003.0 ± 5.3	398.7 ± 5.3	2039 ± 2.3	−1948 ± 5.8	−256.7 ± 61.9
E	5989.0 ± 5.7	412.9 ± 5.7	1854 ± 6.5	−2275 ± 8.6	29.2 ± 32.1
F	5970.6 ± 6.8	431.3 ± 6.8	206.7 ± 5.6	−224.6 ± 8.8	32.1 ± 3.2

Table 6 Calculation of the formation enthalpies of the studied substances using the additive Benson scheme for 5-nitrophenyl-2-furaldehyde oxime isomers

\[\Delta fH_{298.15} = 4 \cdot \Delta fH_{298.15}(Cd–(Cd)2(H)) + \Delta fH_{298.15}(Cd–(Cd)2(Cd)) + \Delta fH_{298.15}(Cb–(Cb)2(NO2)) + \Delta fH_{298.15}(Cb–(Cb)2(O)) + 2 \cdot \Delta fH_{298.15}(Cb–(Cb)2(O)) + \Delta fH_{298.15}(Cb–(Cb)2(O))(OI) + \Delta fH_{298.15}(Cb–(Cb)2(O))(CH(N–OH)) + \Delta fH_{298.15}(Furan cycle) = 4 \cdot 13.8 + 23.8 - 0.5 + 59.7 + 2 \cdot 28.4 + 43.4 - 137.2 + 33.0 - 25.9 = 108.3 \text{kJ/mol} \]

7. Comparison of the experimentally obtained formation enthalpies and those calculated according to the Benson additive scheme allows us to determine the contributions of unknown groups to the additive scheme. In case of experimental and calculated values coincidence, it is possible to calculate these values for other representatives of the investigated compounds. In case of differences, one can find the interaction between non-nearest atoms in a molecule, predict the peculiarities of the compound structure and correct these interactions in Benson additive scheme.

The investigated compounds are rather complex, therefore, some group contributions, necessary for the calculations of the formation enthalpies, are absent. Such contributions are marked with asterisks in Tables 6 and 7. They were calculated using reliable gaseous state formation enthalpies of the compounds. The contributions of the groups Cd−(Cd)2(O), C−(Cb)2(NO2) and Cd−(Cd)(O)(Cb) which are absent in the additive scheme were defined from the gaseous state formation enthalpy of vinylfuran [27], nitrobenzene [27] and ethyl-2-cyano-3-(furan-2-yl)-prop-2-enoate [18]. In addition, we had to use the contribution of the whole fragment (Cd)–CH=NOH for calculations. This contribution is the sum of contributions of Cd−(Cd)(N)(H), N−(Cd)(OH), and OH−(N). According to the results published in [24],
the contribution of $N\ell-(OH)$ group is approximately -20.9 kJ/mol, but in the following works [28, 29] this group is absent at all. Contributions of the groups $C_\ell-(Cd)(N)(H)$ and $N-(Cd)(OH)$ in the Benson scheme are also absent. Therefore, the contribution of the fragment $(Cd)\ell-CH=N-OH$ was calculated from the formation enthalpy of furfural oxime, which we have defined in [30]. It is the optimal choice because the oximes A, B, C can be considered as its derivatives.

The values of the gaseous state standard formation enthalpies of the investigated compounds which were obtained experimentally $\Delta fH_{298.15}(g)$ and calculated theoretically $\Delta fH_{298.15}(g)$, as well as the difference between them δ are given in Table 5. The resulting difference cannot be explained by the errors of experiments or calculations.

Substance	Increment	$\Delta H_{298.15}$, kJ mol$^{-1}$
1–4	$C_\ell-(Cd)_2(H)$	13.8
5	$C_\ell-(Cd)_2(Cd)$	23.8
6	$C_\ell-(Cd)_2(NO_2)$	-0.5
7	$C_\ell-(Cd)(Cd)(O)$	59.7
8, 9, 12	$C_\ell-(Cd)(H)$	28.4
10	$C_\ell-(Cd)(O)$	43.4
11	$O-(Cd)_2$	-137.2
13	$C_\ell-(Cd)(H)(CO)$	32.1
14	$CO-(Cd)(O)$	-140.2
15	$O-(CD)(H)$	-252.3
Furan cycle		-25.9

$\Delta H_{298.15} = 4 \Delta H_{298.15}(Cd) - (Cd)(H)(O) + \Delta H_{298.15}(O-(Cd)(O)) + \Delta H_{298.15}(O-(Cd)(H)) + \Delta H_{298.15}(Furan cycle)$

The assertion, we simulated the most energy-efficient spatial structures of the investigated molecules using the HyperChem software (PM3 geometry optimization method). Other computational calculations of different thermodynamical properties for various nitrogen-containing organical compounds can be found in [33–36]. The results confirmed that for the oximes A, B, C the flat configuration of the molecule is the most energy-efficient. However, for the acids D, E, F the minimum internal energy of the molecules is observed when the chain of atoms $-CH=CH-C(O)-OH$ is in a plane almost perpendicular to the furan cycle plane. An example of a geometric model for 3-(furan-2-yl) acrylic acid is shown in Fig. 1. Thus, the strain caused by the furan cycle rotation relative to the chain in the acids D, E and F may exist.

According to the above-mentioned data, we predicted the presence of three different strains in the investigated compounds. The first one is provided by the rotation of the side chain plane relative to the furan cycle in the derivatives of furanacrylic acids (X), the second one corresponds to the interaction of the furan cycle and nitro group in the ortho-position (Y), and the third one is the interaction of the benzene and furan cycles (Z). To calculate interaction corrections in Benson additive scheme a redefined system of six linear equations with two unknowns (X) and (Y) was composed of the corresponding experimentally obtained formation enthalpies and strain-free increments. The correction (Z) of 9 kJ/mol was taken from [31]. The same correction was used to determine the contribution of the group $C_\ell-(Cd)(O)(Cd)$ from the formation enthalpy of 3-substituted 2-cyanoacrylic acid ethyl ester [18]. As a result of the system solution, the correction terms (kJ/mol) were defined:
Materials

Furyl-2-oxime (A–C) derivatives were synthesized according to the following procedure. A mixture of appropriated furyl-2-carbaldehyde (0.023 mol), hydroxylamine hydrochloride (0.03 mol) and fused sodium acetate 2 g in 20 mL of ethanol was boiled for 4 h, 30 mL of water was added to the mixture under stirring and recrystallized from ethanol.

Synthesis of 3-[5-(2-nitrophenyl)-2-furyl] acrylic acids (D–F) was carried out according to the following procedure. 2–3 Drops of piperidine were added to a mixture consisting of appropriated furyl-2-carbaldehyde (0.01 mol) and malonic acid (0.01 mol) in 10 mL of pyridine. The reaction mixture was heated for 2–3 h in a boiling water bath, then cooled, diluted with water (20 mL) and acidified with diluted (1:1) hydrochloric acid. The solution was filtered off, washed with water and dried. The acids were recrystallized from ethanol or mixture of ethanol–DMF solvents. We used the samples obtained after 3- and 4-fold recrystallization.

The identification of substances was confirmed by NMR\(^1\)H spectroscopy data. NMR \(^1\)H spectra were recorded on Varian 600 (600 MHz) spectrometers in DMSO-\(d_6\) or acetone-\(d_6\). Chemical shifts (\(\delta\), ppm) were determined in regards to the signal of DMSO (2.50 ppm). Spectral data for the investigated substances are shown below:

X = −30.7, Y = −29.5

It is clear that the corrections were determined for a small set of substances, and will be defined more exactly as additional experimental material is gained.

Experimental

NMR 1H spectroscopy data. NMR 1H spectra were obtained after 3- and 4-fold recrystallization.

Materials

(a)–\(^1\)H NMR (600 MHz, Acetone-\(d_6\)), \(\delta\): 6.96 (d, \(J=3.5\) Hz, 1\(H\), furan), 7.41 (d, \(J=3.5\) Hz, 1\(H\), furan), 7.47 (s, 1\(H\), CH), 7.64 (t, \(J=8.4\) Hz, 1\(H\), C\(_6\)H\(_4\)), 7.78 (t, \(J=8.1\) Hz, 1\(H\), C\(_6\)H\(_4\)), 7.88 (d, \(J=8.1\) Hz, 1\(H\), C\(_6\)H\(_4\)), 7.91 (d, \(J=7.8\) Hz, 1\(H\), C\(_6\)H\(_4\)), 11.20 (s, 1\(H\), NOH).

(b)–\(^1\)H NMR (600 MHz, DMSO-\(d_6\)), \(\delta\): 7.32 (d, \(J=3.3\) Hz, 1\(H\), furan), 7.43 (d, \(J=3.3\) Hz, 1\(H\), furan), 7.68 (s, 1\(H\), CH), 7.74 (d, \(J=8.0\) Hz, 1\(H\), C\(_6\)H\(_4\)), 8.19 (d, \(J=7.7\) Hz, 1\(H\), C\(_6\)H\(_4\)), 8.24 (d, \(J=7.9\) Hz, 1\(H\), C\(_6\)H\(_4\)), 8.53 (s, 1\(H\), C\(_6\)H\(_4\)), 8.05 (s, 1\(H\), NOH).

(c)–\(^1\)H NMR (600 MHz, DMSO-\(d_6\)), \(\delta\): 7.36 (d, \(J=3.6\) Hz, 0.1\(H\), furan), 7.45 (d, \(J=3.6\) Hz, 1\(H\), furan), 7.67 (s, 1\(H\), CH), 8.00 (d, \(J=8.9\) Hz, 2\(H\), C\(_6\)H\(_4\)), 8.18 (d, \(J=8.9\) Hz, 2\(H\), C\(_6\)H\(_4\)), 12.10 (s, 1\(H\), COOH).

(d)–\(^1\)H NMR (600 MHz, DMSO-\(d_6\)), \(\delta\): 6.17 (d, \(J=15.8\) Hz, 1\(H\), CH=), 7.10 (d, \(J=3.6\) Hz, 1\(H\), furan), 7.17 (d, \(J=3.6\) Hz, 1\(H\), furan), 7.43 (d, \(J=15.8\) Hz, 1\(H\), CH=), 7.65 (t, \(J=7.8\) Hz, 1\(H\), C\(_6\)H\(_4\)), 7.79 (t, \(J=7.8\) Hz, 1\(H\), C\(_6\)H\(_4\)), 7.96 (d, \(J=7.8\) Hz, 1\(H\), C\(_6\)H\(_4\)), 8.00 (d, \(J=7.8\) Hz, 1\(H\), C\(_6\)H\(_4\)), 12.57 (s, 1\(H\), COOH).

(e)–\(^1\)H NMR (600 MHz, DMSO-\(d_6\)), \(\delta\): 7.05 (d, \(J=3.6\) Hz, 1\(H\), 3-H furan), 7.05 (d, \(J=15.8\) Hz, 1\(H\), CH=), 7.34 (d, \(J=3.6\) Hz, 1\(H\), 4-H furan), 7.51 (d, \(J=15.8\) Hz, 1\(H\), CH=), 7.63 (t, \(J=7.9\) Hz, 1\(H\), C\(_6\)H\(_4\)), 7.78 (d, \(J=7.7\) Hz, 1\(H\), C\(_6\)H\(_4\)), 7.90 (d, \(J=8.0\) Hz, 1\(H\), C\(_6\)H\(_4\)), 7.95 (s, \(J=7.8\) Hz, 1\(H\), C\(_6\)H\(_4\)), 12.06 (s, 1\(H\), COOH).

(f)–\(^1\)H NMR (600 MHz, DMSO-\(d_6\)), \(\delta\): 6.49 (d, \(J=15.8\) Hz, 1\(H\), CH=), 7.16 (d, \(J=3.6\) Hz, 1\(H\), furan), 7.46–7.51 (m, 2\(H\), CH= + furan), 8.13 (d, \(J=8.9\) Hz, 2\(H\), C\(_6\)H\(_4\)), 8.33 (d, \(J=8.9\) Hz, 2\(H\), C\(_6\)H\(_4\)), 12.55 (s, 1\(H\), COOH).

The compounds purity was confirmed by a high-performance liquid chromatography using an Agilent 1100 HPLC instrument with a diode matrix and a mass-selective detector on Zorbax SB-C18 column,
4.6 mm × 15 mm; eluent was acetonitrile–water with 0.1% TFA (95:5) under normal conditions. No admixtures in the samples were detected.

Effusion measurements

Taking into account low volatility of the analyzed substances, the temperature dependences of the saturated vapour pressures were determined by the integral Knudsen effusion method. The design of the apparatus has been adopted from [37]. Construction of the chamber, membranes and experimental procedure was conducted using the recommendations [38].

Three membranes with a diameter of holes № 1—2.050, № 2—2.100 and № 3—2.055 mm were used for effusional research presented in this paper. The membranes are made of nickel foil with a thickness of 0.09 mm.

The vacuum of 0.1 Pa was achieved for 25 ± 1 s. The weight of the effused substance \(m \) was determined using analytical scales VLR-20 \((± 5 \times 10^{-6} \text{ g})\) as the difference of the effusion camera weight before and after the experiment. The measurement accuracy of the temperature \(T \) and effusion time \(\tau \) was ±0.5 K and ±1 s, respectively. Effective time (estimated time of effusion in the steady state, in which the weight loss of the effused substance is equal to that in the transient regime), determined in separate experiments with benzoic acid, equals to 25 ± 5 s and added to the total time of the experiment.

The vapor pressure in the effusion cell \(P_k \) was calculated by equation [39]:

\[
P_k = \frac{m}{KS\tau \alpha \sqrt{\frac{2\pi RT}{M}}} \tag{6}
\]

where \(\tau \) is the time of effusion through a hole in the membrane with area \(S \); \(T \)—temperature, \(R \)—universal gas constant, \(M \)—molecular weight of the substance, \(\alpha \)—condensation coefficient.

Investigated nitrophenyl-furyl derivatives are molecular crystals that sublime without a change in their geometry and molecule weight, which allowed us to admit \(\alpha \) to be equal to 1 [40].

Claussing coefficient—\(K \), which stands for the membrane’s resistance to molecular flow of vapor for the hole in the membrane, with ratio of length \(l \) to radius \(r \) from 0 to 1.5, was determined by the empirical Kennard formula \(K = 1/[1 + 0.5(l/r)] \) [41].

The vapor pressure was calculated using correction factor according to the recommendations [42]. For three membranes used in the present work, the factors are equal to 5.12, 5.21 and 5.14 respectively.

Prior to this, the reliability of the effusion installation was checked by benchmark benzoic acid brand K — 1 (the major component content—99.995% mol) by a series of forty experiments.

The dependences of saturated vapor pressure on temperature have the forms:

\[
\Delta \text{sub} H_{340,2} = 88.0±3.8 \text{ kJ/mol}; ρ = 0.9967.
\]

The membrane No 1 \(\ln P \) equals \((33.1 ± 1.7) - (10519 ± 583) * 1/T\) \(\Delta \text{sub} H_{340,2} \) = 87.4±4.8 kJ/mol; \(ρ = 0.9944 \).

The membrane No 3 \(\ln P \) equals \((33.1 ± 1.2) - (10520 ± 350) * 1/T\) \(\Delta \text{sub} H_{340,2} \) = 87.5±2.9 kJ/mol; \(ρ = 0.9990 \).

The resulting dependence of saturated vapour pressure on temperature for three membranes has the form:

\[
\ln P = (33.18 ± 0.72) - (10542 ± 209) * 1/T \tag{10}
\]

The average value of the standard enthalpy of sublimation in the temperature range of (332.5–348.0) K was \(\Delta \text{sub} H_{340,2} = 87.6±1.7 \text{ kJ/mol} \). In order to adjust the standard enthalpy of sublimation to 298 K, from Eq. (1), the standard heat capacity of benzoic acid at 298.15 J/(mol K) in the solid \(C_{p,m}^* = 146.76 ± 0.32 \) [43] and gaseous \(C_{p,g}^* = 103.47 \) [43] state were utilized. Good coincidence of benzoic acid’s sublimation enthalpy and value of benzoic acid’s sublimation enthalpy adjusted to 298.15 K \(\Delta \text{sub} H_{340,2} = 87.4±3.8 \text{ kJ/mol} \).

The calorimetric measurements

The combustion enthalpies of the substances were determined by upgraded calorimeter V-08MA with the isothermal shell.

The temperature in the thermostat was maintained ±0.03 K. The energy equivalent of the calorimetric systems \(W \) was estimated by combustion of the reference benzoic acid grade K — 1 (the major component content—99.995% mol, the heat of combustion, taking into account the Jessup factor—26,434.4 J g\(^{-1}\)) in a series of 12 experiments. The value of \(W \) was 14,901 ± 11 J V\(^{-1}\).

Before combustion beginning the crystalline A, B and C samples were grinded in chalcedony mortar, screened, placed in Terylene ampoules and ignited in the platinum cup. 1 mL of distilled water was added before combustion. The initial pressure of the oxygen, previously purified from the combustible impurities, carbon dioxide and water, was equal to 3.0 MPa. The
duration of the initial, main and end periods was—25, 40 and 30 counts, respectively. The initial temperature of the main period in all experiments was 298.15 K. The quantitative analysis of the combustion products for the presence of carbon oxide by the Rossini method [44] with the accuracy of ±2·10⁻⁴ g and nitric acid content by titration of the liquid phase in a bomb with a 0.1 M solution of NaOH was carried out after every experiment. The quantities of the carbon dioxide, formed from the combustion of 1 g of Terylene and the cotton thread, were equal to 2.2872 g and 1.6284 g respectively [45]. The anticipated carbon monoxide to be formed during the combustion of products by using detector tubes within ±5·10⁻⁶ g, was not encountered. The soot mass was determined by the weighting of the platinum cup before and after combustion with the accuracy of ±5·10⁻⁶ g. The reliability of gas analyses was controlled by benzoic acid combustion.

Combustion of the investigated compounds is represented by reaction:

$$\text{C}_2\text{H}_8\text{O}_2\text{N}_\text{D}(s) + (\text{A} + \text{B}/4\text{-C}/2) \text{O}_\text{g}(g) = \text{A CO}_\text{g}(g) + \text{B}/2 \text{H}_2\text{O}_\text{g}(g) + \text{D}/2 \text{N}_\text{D}(g)$$

(11)

A more detailed description of the diffusion unit and combustion calorimeter, experimental procedure and calculations of primary results are presented in [17].

Conclusions

The determined thermodynamic properties of these compounds will contribute to solving practical problems pertaining to optimization processes of their synthesis, purification and application.

Temperature dependences of vapor pressure have their own practical value for calculation of the parameters for individual stages of the synthesis.

Determining of the thermodynamic properties for these compounds also provides a more thorough insight regarding the theoretical knowledge of their nature.

Using Hyper Chem software (PM3 geometry optimization method) the flat configuration of the phenyl-furan oxime derivatives molecules was established.

Phenyl-furan acid derivatives molecules have the minimum internal energy of the molecule, when the chain of atoms —CH=CH—C(O)—OH is in a plane almost perpendicular to the furan cycle plane.

The comparison of the formation enthalpies of the investigated substances in a gaseous state obtained experimentally with the ones calculated by the Benson scheme allowed to determine the energy of the interaction of a furan ring with a nitro group in the ortho position of the benzene ring (−30 kJ/mol) as well as the energy of the chain —CH=CH—C(O)—OH rotation in the molecules of phenyl-furan acid derivatives (−31 kJ/mol).

The new group-additivity parameters and the correction terms for substituted nitrophenyl-furyl derivatives of oximes and acids allowed to apply the Benson group—contribution correlation to estimate $\Delta_f H_{298.15K}^\text{calc}$ of the compounds has not been investigated yet.

Additional file

Additional file 1: Appendix S1. Cartesian coordinates and computation results for the investigated compounds.

Acknowledgements

Not applicable.

Authors’ contributions

DV—guiding thermodynamic studies, analysis of the results; writing of the text; AM—performance of effusional and calorimetric measurements, processing of the results. IS—processing and analysis of thermodynamic measurements. LH—synthesis, purification and identification of substances. MO—synthesis and purification of substances. References. NV—performance of the NMR-spectroscopy. LG—statistical work with data. All authors read and approved the final manuscript.

Funding

Not applicable.

Availability of data and materials

All of the experimental data is available in the corresponding tables in this article (Additional file 1: Appendix S1).

Competing interests

The authors declare that they have no competing interests.

Author details

1 National University “Lviv Polytechnic”, S. Bandery Str, 12, Lviv 79013, Ukraine. 2 Ivan Franko National University of Lviv, Kryyla and Meofidiya Str, 6, Lviv 79005, Ukraine. 3 Institute of Macromolecular Chemistry, AS CR, Heyrovsky Sq. 2, Prague, Czech Republic. 4 Lviv, Ukraine.

Received: 7 June 2018 Accepted: 31 July 2019 Published online: 14 August 2019

References

1. Datta A, Walia S, Parmar B (2001) Some furfural derivatives as nitrification inhibitors. J Agric Food Chem 49:4726–4731
2. Horak V, Matychuk VS, Obushak MD, Kutsyk RV, Lytvyn RZ, Kurovets LM (2008) 2-(3-Aryl-2-furyl)quinolin-4-carboxylic acids and their antimicrobial activity. Ukr Bioorg Acta 1:49–50
3. Lv W, Banerjee B, Molland KL, Seleem MN, Ghafoor A, Hamed MI, Wan B, Franzblau SG, Mesecar AD, Cushman M (2014) Synthesis of 3-(3-aryl-pyrrolidin-1-yl)-5-aryl-1,2,4-triazines that have antibacterial activity and also inhibit inorganic pyrophosphatase. Bioorg Med Chem 22:406–418
4. Gavande NS, Vere-Carozza PV, Mishra AK, Vernon TL, Pawelczak KS, Tsuchi JJ (2017) Design and structure-guided development of novel inhibitors of the xeroderma pigmentosum group A (XPA) protein–DNA interaction. J Med Chem 60:8055–8070
5. Hosoya T, Aoyama H, Ikemoto T, Kihara Y, Hiramatsu T, Endo M, Suzuki M (2003) Dantrolene analogues revisited: general synthesis and specific functions capable of discriminating two kinds of Ca²⁺ release from sarcoplasmic reticulum of mouse skeletal muscle. Bioorg Med Chem 11:663–673
6. Hansen SW, Erichsen MN, Fu B, Bjorn-Yoshimoto WE, Abrahamsen B, Hansen JC, Jensen AA, Bunch L (2016) Identification of a new class of selective excitatory amino acid transporter subtype 1 (EAAT1) inhibitors followed by a structure–activity relationship study. J Med Chem 59:8757–8770
7. Wang G, Wang X, Yu H, Wei S, Williams N, Holmes DL, Halfmann R, Naidoo J, Wang L, Li L, Chen S, Harran P, Levi X, Wang X (2013) Small-molecule activation of the TRAIL receptor DRS in human cancer cells. Nat Chem Biol 9:84–91
8. Laforest J. Germany Patent 2922799. 1979
9. Brouwer WC. Canada Patent 2163175. 1996
10. Anthony VM. Russian Federation Patent 2039044. 1995
11. Meltzer RI, Lewis AD, King JA (1955) Antitubercular substances. IV. Thioamides. J Am Chem Soc 77:4062–4066
12. Pandey OP, Sengupta SK, Chandra R (1970) Thermochemistry of organic and organometallic compounds. Academic Press, New York, p 75
13. Ager DJ (1983) The synthesis of 2,5-disubstituted furans. Tetrahedron Lett 24:5441–5444
14. Bessin AP, Laforest J, Thuillier G. U.S. Patent 4207319. 1980
15. Thuillier G, Laforest J, Bessin AP. Germany Patent 2922799. 1979
16. Považanec F, Kováč J (1979) Furan derivatives. CXXXV. Anhydrides of 5-(nitrophenyl)-furan-2-carbaldehyde isomers. Chem Commun J 73:978–982
17. Dibrivnyi V, Sobechko I, Punia M, Horak Yu, Obushak M, Van-Chin-Syan Yu, Marshalek A, Velychhviska N (2015) Thermodynamic properties of 5-(nitrophenyl)-furan-2-carbaldehyde isomers. Chem Cent J 9:66–7
18. Kos R, Sobechko I, Horak Y, Sergeev V, Dibrivnyi V (2017) Thermodynamic characteristics of ethyl-2-cyano-3-(furan-2-yl)-prop-2-enoat derivatives. Modern Org Chem Res 2:74–80
19. Kos RV, Sobechko IB, Horak YL, Sergeev VV, Goshko LV (2017) Thermodynamic properties of isomeric ethyl esters of 2-cyano-3-(5-[2,3,4-nitrophenyl]-2-furan). acryl acid. Issues Chem Chem Technol 2:25–30
20. Chickos JS, Acree WE (2003) Enthalpies of vaporization of organic and organometallic compounds 1880–2002. J Phys Chem Ref Data 32:519–878
21. Dibrivnyi VN, Mel'nik GV, Van-Chin-Syan YY, Yuvchenko AP (2006) The thermodynamic properties of four triphenylsilane acetylene peroxides. Russ J Phys Chem 80:330–334
22. Hubbard WN, Scott DW, Waddington G (1956) Experimental thermochemistry VI. In: Rossini FD (ed) Interscience. Academic Press, New York, p 75
23. Cox JD, Pitcher G (1970) Thermochemistry of organic and organometallic compounds. Academic Press, New York
24. Washburn EW (1933) Standard states for bomb calorimetry. J Res Nat Bur Stand (US). 10:525–546
25. Cox JD, Wagman DD, Medvedev VA (1978) CODATA recommended key values for thermodynamics 1977. J Chem Thermodyn 10:903–906
26. Benson SW (1976) Thermochemical kinetics, 2nd edn. Wiley, New York
27. Chemistry Web-book. http://webbook.NIST.gov. Accessed 18 March 2018.
28. Eigenmann HK, Golden DM, Benson SW (1973) Revised group additivity parameters for the enthalpies of formation of oxygen-containing organic compounds. J Phys Chem 77:1667–1691
29. Benson SW (1965) Bond energies. J Chem Educ 42:502–558
30. Marshall AS, Sobechko IB, Velychhviska NI, Horak YU, Dibrivnyi VM (2016) Thermodynamic properties of furfural oxime. Herald Lviv Nat Polytech Univ 841:26–31
31. Verevkin SP (1997) Thermochemistry of nitro compounds. Experimental standtd enthalpies of formation and improved group—additivity values. Thermochim Acta 307:17–25
32. Smith MB, March MJ (2007) Advanced organic chemistry. Reactions, mechanisms, and structure, 6th edn. Wiley, Hoboken
33. Blikelty G, Hærtel M, Stierstorfer J, Klapotke TM, Pimerzin AA, Verevkin SP (2017) Benchmark properties of 2-, 3- and 4-nitrotolueno: evaluation of thermochemical data with complementary experimental and computational methods. J Chem Thermodyn 111:271–278
34. Verevkin SP, Emel'yanenko VN, Dikiy V, Dorofoeva OV (2014) Enthalpies of formation of nitromethane and nitrobenzene: new experiments vs. quantum chemical calculations. J Chem Thermodyn 73:163–170
35. Miranda MS, Duarte DRJ, Liebman JF (2016) What is the enthalpy of formation of pyrazine-2-carboxylic acid? J Chem Thermodyn 97:261–263
36. Khan M, Dey AS, Sidder JAAK (2014) Calculation of enthalpies of formation and band gaps of polymeric binders. RSC Adv 4:32840–32846
37. Ribeiro Da Silva MAV, Monte MS (1990) The construction, testing and use of a new Knudsen diffusion apparatus. Thermochim Acta 171:69–183
38. Krasulin AP, Kozryo KA, Kabo GY (1987) Saturated vapor pressure of urea at 329–403 K. Zhurnal Prikl Him 6:104–108 (In Russian)
39. Nesmeyanov AN (1961) Vapour pressure of chemical elements. USSR Academy of Sciences Publishing, Moscow (In Russian)
40. De Kruif GG (1984) Thermochemistry and its application to chemical, biochemical system. In: Proceedings of NATO Advanced Study Institute Thermochim Acta 171:69–183
41. Kennard EH (1938) Kinetic theory of gases with an Introduction to statistical mechanics. Academic Press, New York
42. Lebedev YuA, Miroshnichenko EA (1981) Vapor formation thermochemistry of organic compounds containing oximes against fungal pathogens of sugarcane. Issues Chem Chem Technol 2:74–80
43. Sabbah R, An Xu-wu, Chickos JS, Planas Leitão ML, Roux MV, Torres LA (1999) Reference materials for calorimetry and differential thermal analysis. Thermochim Acta 331:93–204
44. Rossini FD (1931) J Res Nat Bur Standards 6:37–49
45. Gerasimov YaI, Akishin PA (1984) Chemical thermodynamics (Experimental research). (In Russian)

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.