2D transport and screening in topological insulator surface states

S. Adam,1 E. H. Hwang,2 and S. Das Sarma2
1Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
2Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, MD 20742-4111
(Dated: December 21, 2013)

We study disorder effects on the surface states of the topological insulator Bi_2Se_3 close to the topologically protected crossing point. Close to charge neutrality, local fluctuations in carrier density arising from the random charged disorder in the environment result in electron and hole puddles that dominate the electronic properties of these materials. By calculating the polarizability of the surface state using the random phase approximation, and determining the characteristics of puddles using the self-consistent approximation, we find that band asymmetry plays a crucial role in determining experimentally measured quantities including the conductivity and the puddle autocorrelation length.

Topological insulators (TIs) are a new class of materials [1–4] that are typically distinguished by their robust metallic surface state encapsulating a non-conducting bulk. From this perspective, a major shortcoming of the early experiments was that carrier doping levels were sufficiently high, resulting in the bulk bands being metallic, as opposed to insulating. This made it almost impossible to definitively separate the properties of the surface state from that of the bulk, and the system did not behave as a TI because the bulk is conducting rather than insulating. This leads to the problem that while spectroscopic measurements such as ARPES demonstrate the clear existence of the expected surface topological bands, transport measurements have been difficult to interpret due to the coexistence of both bulk and surface conduction.

It is, therefore, encouraging that several recent experimental studies [5–8] report the direct observation of 2D surface states in transport measurement. These reports claim to observe the electronic properties of the surface state with energy close to the topologically protected band crossing point (also called the Dirac point). Our previous work on the electronic properties of graphene [9] would lead us to expect that close to the Dirac point the energy landscape and the spatial electronic structure would become highly inhomogeneous, breaking the surface into puddles of electrons and holes. The charge inhomogeneity would also result in a low density plateau in the conductivity with a non-vanishing minimum conductivity near the Dirac point [10]. When disorder making it difficult to access the physics of the Dirac point.

The starting point for our calculation is to make some reasonable approximation for the band structure of the topological surface state. One approach [16, 17] would be to perform $ab\text{ initio}$ calculations and fit data to the most general model Hamiltonian allowed by symmetry. However, we find significant discrepancy between the electronic structure calculations and the photoemission (ARPES) experiments. As a result, a reasonable comparison with experiment would require us fine-tuning a model Hamiltonian with 12 parameters. While this procedure could be done, it would be unnecessarily cumbersome and obscure any physical insight. Instead, we follow the minimal model proposed earlier [18] in the literature mimicking the full $ab\text{ initio}$ band structure

$$\mathcal{H}(k) = \frac{\hbar^2 k^2}{2m^*} + \hbar v_F (k_x \sigma_y - k_y \sigma_x), \quad (1)$$

where (σ_x, σ_y) is a 2D vector of Pauli matrices, $k = (k_x, k_y)$ is the 2D wave vector, v_F is the Fermi velocity of the Dirac bands, and effective mass m^* characterizes the degree of asymmetry between the electron and hole bands. Estimates for the values of these two parameters for Bi_2Se_3 vary widely in the experimental literature. For example, values for v_F vary from 2×10^5 m/s [19] to 6.4×10^5 m/s [20], and measured values for m^* vary from 0.11 m_e [20] (m_e is the electron mass) to 0.32 m_e [21]. This situation should be contrasted with graphene, where v_F is the single band parameter, and most experimental reports agree on its value to within 5 percent [22]. We use the two parameter $(m^* \text{ and } v_F)$ model of Eq. (1) in the
current work.

Since we are concerned with the screening properties of electrons, it is useful to define an interaction parameter \(r_s = e^2/(\pi \hbar v_F) \), where we reiterate that throughout this work, \(v_F \) is the parameter in Eq. (1) characterizing the Dirac-like bands; only at low carrier density does it coincide with the Fermi velocity. Here \(\kappa \) is approximately half the dielectric constant of the bulk Bi$_2$Se$_3$ insulator (whose reported value varies from around 30 to 55). We certainly expect that as more experiments on TI materials become available, these parameters will become better known both for Bi$_2$Se$_3$ and other related materials. To make our theory more compact, we formulate everything in terms of \(r_s \) and a characteristic density \(n_0 = (m^* v_F)^2/(4\pi \hbar^2) \), where reasonable values of \(r_s \) are in the range 0.05 to 0.5, and reasonable values of \(n_0 \) are from \(10^{11} \) cm\(^{-2} \) to \(3 \times 10^{13} \) cm\(^{-2} \). We note that \(n_0 \) is an important parameter characterizing the deviation of the system (for \(n > n_0 \)) from purely Dirac-like behavior — in graphene, \(n_0 \) is very large.

The Thomas-Fermi screening theory for electrons specifies that all external potentials are screened by a surface 2D dielectric function \(\varepsilon(q) = 1 + q_{TF}/q \). For the Hamiltonian in Eq. (1), we find

\[
q_{TF} = \frac{r_s k_F}{1 + \text{sgn}(n)\sqrt{|n|/n_0}} = \eta_s k_F, \quad (2)
\]

where \text{sgn} is the signum function, and we use the convention that electrons have \(\text{sgn}(n) = +1 \) while holes have \(\text{sgn}(n) = -1 \). For both electrons and holes, we have \(k_F = \sqrt{4\pi n} \). Note that \(q_{TF} \) diverges for \(n \to -n_0 \), implying perfect screening associated with the diverging density of states in Eq. (1) arising from the quadratic dispersion and the band asymmetry. It turns out that the theory can be completely characterized by the two parameters \(r_s \) and \(n_0 \), rather than the three microscopic parameters \(m^*, v_F, \) and \(\kappa \).

Our numerical analysis using the full random phase approximation (RPA) shows that the Thomas-Fermi analysis is accurate provided we restrict the carrier density for holes to \(|n| < |n_0| \). No such restriction is required for electrons. Within the Boltzmann transport approximation, the conductivity \(\sigma = (k_F \ell)(e^2/2\hbar) \), where \(\ell = v_F \tau/\eta \) is the mean-free path. The scattering time is calculated within Born approximation as

\[
\frac{\hbar}{\tau} = \pi n_{\text{imp}} \sum_{k'} \left| \frac{v(q)}{\varepsilon(q)} \right|^2 \sin^2[\theta_{kk'}] \delta(\varepsilon_k - \varepsilon_{k'}), \quad (3)
\]

where \(n_{\text{imp}} \) is the surface density of random charged impurities, \(\varepsilon_k \) is the carrier energy, \(\theta_{kk'} \) is the scattering angle between wave vectors \(k \) and \(k' \), and \(v(q)/\varepsilon(q) \) is the Fourier transform of the screened impurity potential. For the purpose of this calculation we assume that the dominant scatterers are long-ranged Coulomb impurities (with an average 2D density of \(n_{\text{imp}} \) placed an average distance of \(d \) away from the TI surface) although our formalism can easily be generalized to other types of impurities. For these charged impurities, the conductivity
can be calculated analytically, giving

$$\sigma_B[n, n_0, r_s] = \frac{1}{8} \frac{e^2}{\hbar} \frac{n}{n_{imp}} \frac{1}{F_1[\eta r_s/2]}$$

$$F_1[x] = \pi + 3x - \frac{3x^2 \pi}{2} + x(3x^2 - 2) \frac{\arccos[1/x]}{\sqrt{x^2 - 1}}$$

$$\eta[n/n_0] = \frac{\sqrt{n_0}}{\sqrt{n_0 + \text{sgn}(n) \sqrt{|n|}}}$$

The results for the Boltzmann transport theory are shown in Fig. 1. One immediately observes that the asymmetry in the conductivity is quite pronounced compared to a linear Dirac dispersion ($m^* = \infty$; also shown). The electron branch has a much larger conductivity with $\sigma_B(n)$ being super-linear, while the hole branch has a much lower sub-linear $\sigma_B(n)$. This pronounced asymmetry between electron and hole transport, following directly from the band asymmetry of Eq. 1, is a characteristic feature of 2D TI transport.

At low carrier density, the disorder induced fluctuations in carrier density become larger than the average carrier density. In particular, when the average carrier density vanishes with the chemical potential at the Dirac point, one might expect that the electronic properties of the system are determined by the typical carrier density inside the electron and hole puddles. For example, one could define a carrier density distribution function $P[n]$, and the condition of zero average carrier density implies the vanishing of the first moment of $P[n]$. The second moment of the carrier density distribution n_{rms} would then determine how the carriers in this inhomogeneous system screen any external potential, including the impurity potential that induced the fluctuations to begin with. This implies that the density fluctuations need to be calculated self-consistently. We calculate the properties of this inhomogeneous system by assuming a global screening function that depends on the impurity profile only through an effective carrier density n_{eff} (where knowing n_{eff}, one can then calculate all moments of $P[n]$ including n_{rms}, e.g. for Dirac fermions, $n_{\text{rms}} \approx \sqrt{3} n_{\text{eff}}$).

This effective carrier density n_{eff} is nothing other than a measure of the typical carrier density inside the electron and hole puddles. After obtaining n_{eff}, we can then compute other properties of the Dirac point including its conductivity (that can be measured in a transport experiment) or its density-density correlation function (measured in STM). Calculating n_{eff} is therefore a central result of this work. We do this by requiring that the density induced by the second moment of the screened disorder potential is precisely the same as the density entering the global screening function. Applying this procedure to Eq. 1, and defining the dimensionless variable $y = |n_{\text{eff}}|/n_0$, we derive a system of equations that can be easily solved numerically

$$\frac{y^2}{4} + y + s y^{3/2} = A C_0 \left[\frac{B \sqrt{\pi}}{1 + s \sqrt{y}} \right],$$

$$C_0[x] = \partial_x \left[x e^x \int_x^{\infty} t^{-1} e^{-t} dt \right],$$

$$A = \frac{1}{2} \frac{n_{\text{imp}}}{n_0} r_s^2, \quad B = 2 r_s d \sqrt{4 \pi n_0}.$$
plify the theory we assume that tunneling is suppressed due to spin conservation. To simplify the analysis and interpretation of experiments.

We now proceed to calculate the electronic transport in this inhomogeneous puddle-dominated carrier density landscape. The procedure is to first assume that the local conductivity can be calculated from the local carrier density using Eq. (4). Then, an effective medium theory (EMT) can be used to calculate the global conductivity from the distribution of spatially fluctuating local conductivities $\sigma_{\text{min}} = \frac{\sigma_B(\bar{\nu}) - \sigma_{\text{EMT}}}{\sigma_B(\bar{\nu}) + \sigma_{\text{EMT}}} = 0$.

The EMT assumes that the dominant contribution to the resistivity arises from scattering inside the electron and hole puddles, and not across the puddles. This is a reasonable assumption because the cross puddle backscattering is suppressed due to spin conservation. To simplify the theory we assume that $P[n]$ is Gaussian, with variance $\sqrt{3n^*}$, where $n^* = \sqrt{n_e n_{\text{eff}}}$ is the geometric mean of the electron and hole density fluctuations (see Fig. 2). Our results are shown in Fig. 1. An important result of performing the EMT average using an asymmetric conductivity is that the carrier density at which the conductivity is minimum is distinct from both the charge neutrality point and Dirac point, further complicating the analysis and interpretation of experiments. This is illustrated dramatically in the right-hand panel, where there is no conductivity minimum in the vicinity of the Dirac point. Rather, the conductivity increases monotonically from $\sigma = 0$, for $n = -n_0$ to $\sigma_B(|n|)$ for $n \gtrsim n_0$. Indeed, in the experiments of Ref. [3], the most disordered sample does not show a (clear) minimum conductivity, while other devices do have a local σ_{min} close to the Dirac point, similar to that shown in the left-hand panel of Fig. 1. The possible non-existence of a conductivity minimum in 2D TI transport is a new qualitative prediction of our theory.

We have explored how σ_{min} depends on a variety of physical parameters. In most cases, we find that the minimum conductivity increases with increasing κ, v_F, n^* and sample purity (n_{imp}^{-1}). However, there is also a large range of parameter space where there is no conductivity minimum associated with the Dirac point (we denote this case as $\sigma_{\text{min}} = 0$). We illustrate our results in Fig. 3, where we show the dependence of σ_{min} on κ, v_F, and d. As seen in the figure, in each of these cases, the crossover between the presence or absence of a well defined σ_{min} occurs quite sharply as a function of the parameter being varied.

The analytic results provided in Eq. 6 were done using the Thomas-Fermi (TF) approximation. We have also done calculations using the full static RPA. We find in general, as shown in Fig. 2, very good agreement between the TF and RPA results with the RPA results being obtained completely numerically.

Finally, we turn our attention to the recent experiments which have directly observed the electron-hole puddles on the Bi$_2$Se$_3$ surface [12]. In addition to being a local probe, by tuning the bias voltage between the tip and the sample, these experiments can probe features in the density of states away from the Fermi energy.

FIG. 3. (Color online) Minimum conductivity as a function of system parameters (a) impurity concentration n_{imp}, (b) dielectric constant κ, (c) low energy Fermi velocity v_F, and (d) impurity distance d. The values for the parameters not being varied are: $n_{\text{imp}} = 5 \times 10^{13}$ cm$^{-2}$, $v_F = 4.5 \times 10^6$ m/s, $\kappa = 50$, $d = 0.1$ nm, and $m^* = 0.2$. A zero value for σ_{min} means that there was no local minimum in the conductivity in the vicinity of the Dirac point. Solid curves are a guide to the eye.

FIG. 4. (Color online) Theoretical calculations for potential correlation fluctuation $C(r) = \langle (V(r) - \bar{V})(V(0) - \bar{V}) \rangle$ for the electron band using the same parameters as in Fig. 1b. The y-axis is normalized by $(r_s \hbar v_F \sqrt{n_{\text{imp}}})^2$. From top to bottom, the curves represent average electron doping of $n = 0$, 10^{13} cm$^{-2}$, and 10^{15} cm$^{-2}$.
In current TI materials, this is especially important because unintentional doping pushes the Fermi energy far from the Dirac point. For each position in space, one can map out the energy of the Dirac point E_D. Shifts of E_D away from the average potential \bar{V} gives the screened disorder potential landscape whose autocorrelation function is $C(r) = \langle (V(r) - \bar{V}) (V(0) - \bar{V}) \rangle$. Theoretical calculations for the correlation function are shown in Fig. 4 for different (average) electron carrier densities n using the Thomas-Fermi approximation and solving for the total density $n_{\text{tot}} = n + n_{\text{eff}}$ self-consistently. The effect of electron doping is to slightly reduce both the magnitude of the potential fluctuations $C(0)$ as well as the spatial correlation length of the puddles.

Our predictions for screening and carrier transport in disordered 2D TI surface states should be testable in future experiments. In particular, the band asymmetry gives rise to interesting and qualitatively novel effects, e.g., causing the Dirac point, the charge neutrality point, and the minimum conductivity to occur at different carrier densities. In addition, electron and hole 2D transport in TIs should manifest strong asymmetry, and in some situations with strong disorder (i.e., large n_{imp} or small d) there may not be any minimum conductivity plateau associated with the Dirac point.

This work is supported by US-ONR and NRI-SWAN.

[1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[2] J. E. Moore, Nature 464, 194 (2010).
[3] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[4] D. Culcer, arXiv:1108.3076 (2011).
[5] D. Kim, S. Cho, N. P. Butch, P. Syers, K. Kirshenbaum, J. Paglione, and M. S. Fuhrer, arXiv e-prints (2011), 1105.1410.
[6] S. S. Hong, J. J. Cha, D. Kong, and Y. Cui, arXiv:1109.2660 (2011).
[7] D. Kong, Y. Chen, J. J. Cha, Q. Zhang, J. G. Analytis, K. Lai, Z. Liu, S. S. Hong, K. J. Koski, S. K. Mo, Z. Hussain, I. R. Fisher, Z. X. Shen, and Y. Cui, arXiv:1107.0535 (2011).
[8] H. Steinberg, J.-B. Laloe, V. Fatemi, J. S. Moodera, and P. Jarillo-Herrero, Phys. Rev. B 84, 233101 (2011).
[9] S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Rev. Mod. Phys. 83, 407 (2011).
[10] E. H. Hwang and S. Das Sarma, Phys. Rev. B 75, 205418 (2007).
[11] S. Adam, E. H. Hwang, V. M. Galitski, and S. Das Sarma, Proc. Natl. Acad. Sci. USA 104, 18392 (2007).
[12] E. Rossi, S. Adam, and S. Das Sarma, Phys. Rev. B 79, 245423 (2009).
[13] Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, Phys. Rev. Lett. 99, 246803 (2007).
[14] J. H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and M. Ishigami, Nature Phys. 4, 377 (2008).
[15] S. Adam, S. Jung, N. N. Klimov, N. B. Zhitenev, J. A. Stroscio, and M. D. Stiles, Phys. Rev. B 84, 235421 (2011).
[16] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Nature Phys. 5, 438 (2009).
[17] C.-X. Liu, X.-L. Qi, H. Zhang, X. Dai, Z. Fang, and S.-C. Zhang, Phys. Rev. B 82, 045122 (2010).
[18] D. Culcer, E. H. Hwang, T. D. Stanescu, and S. Das Sarma, Phys. Rev. B 82, 155457 (2010).
[19] H. Beidenkopf, P. Roushan, J. Seo, L. Gorman, I. Drozdov, Y. San Hor, R. J. Cava, and A. Yazdani, Nature Phys. 7, 939-943 (2011).
[20] J. G. Analytis, R. D. McDonald, S. C. Riggs, J.-H. Chu, G. S. Boebinger, and I. R. Fisher, Nature Phys. 6, 960 (2010).
[21] A. A. Taskin, Z. Ren, S. Sasaki, K. Segawa, and Y. Ando, Phys. Rev. Lett. 107, 016801 (2011).
[22] N. P. Butch, K. Kirshenbaum, P. Syers, A. B. Sushkov, G. S. Jenkins, H. D. Drew, and J. Paglione, Phys. Rev. B 81, 241301 (2010).