Sequence- and activity-based screening of microbial genomes for novel dehalogenases

Wing Yiu Chan,1,2 Max Wong,3 Jennifer Guthrie,4 Alexei V. Savchenko,4 Alexander F. Yakunin,4 Emil F. Pai1,2,5** and Elizabeth A. Edwards3*

1Department of Biochemistry, University of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 1A8, Canada.
2Division of Cancer Genomics and Proteomics, Ontario Cancer Institute, University Health Network, 101 College Street, MaRS/TMDT, Toronto, Ontario M5G 1L7, Canada.
3Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada.
4Structural Proteomics in Toronto, Banting and Best Department of Medical Research, University of Toronto, C.H. Best Institute, 112 College Street, Toronto, Ontario M5G 1L6, Canada.
5Departments of Medical Biophysics and Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 1A8, Canada.

Summary

Dehalogenases are environmentally important enzymes that detoxify organohalogens by cleaving their carbon-halogen bonds. Many microbial genomes harbour enzyme families containing dehalogenases, but a sequence-based identification of genuine dehalogenases with high confidence is challenging because of the low sequence conservation among these enzymes. Furthermore, these protein families harbour a rich diversity of other enzymes including esterases and phosphatases. Reliable sequence determinants are necessary to harness genome sequencing-efforts for accelerating the discovery of novel dehalogenases with improved or modified activities. In an attempt to extract dehalogenase sequence fingerprints, 103 uncharacterized potential dehalogenase candidates belonging to the a/b hydrolase (ABH) and haloacid dehalogenase-like hydrolase (HAD) superfamilies were screened for dehalogenase, esterase and phosphatase activity. In this first biochemical screen, 1 haloalkane dehalogenase, 1 fluoroacetate dehalogenase and 5 L-2-haloacid dehalogenases were found (success rate 7%), as well as 19 esterases and 31 phosphatases. Using this functional data, we refined the sequence-based dehalogenase selection criteria and applied them to a second functional screen, which identified novel dehalogenase activity in 13 out of only 24 proteins (54%), increasing the success rate eightfold. Four new L-2-haloacid dehalogenases from the HAD superfamily were found to hydrolyse fluoroacetate, an activity never previously ascribed to enzymes in this superfamily.

Introduction

Dehalogenases catalyse the cleavage of carbon-halogen bonds and are critical to the detoxification and biodegradation of organohalogens. Of all types of dehalogenases discovered over the past few decades (Fetzner and Lingens, 1994; Hill et al., 1999; de Jong and Dijkstra, 2003), the hydrolytic dehalogenases are particularly attractive research targets (and have thus been studied the most) because they are cytosolic proteins, generally do not require cofactors, and use water as the sole co-substrate. A large number of hydrolytic dehalogenases belong to two large enzyme superfamilies: the a/b hydrolases (ABH; 22 133 sequences in databases, July 2009) and the haloacid dehalogenase-like hydrolases (HAD; 25 048 sequences). The ABH superfamily includes a variety of hydrolytic enzymes with carboxylesterase, thioesterase, peptidase, haloalkane dehalogenase and fluoroacetate dehalogenase activities (Holmquist, 2000). The vast majority of HAD members have unknown function; those with known function display one of five activities: ATPase, phosphatase, phosphoglucomutase, phosphonoxydrolase or L-2-haloacid dehalogenase (Koonin and Tatusov, 1994; Allen and Dunaway-Mariano, 2004). Collectively, the dehalogenases from the ABH and HAD superfamilies transform a relatively broad variety of substrates, which is an advantageous property for bioremediation as well as industrial biocatalysis (Table 1) (Swanson, 1999). Interestingly, despite the absence of any sequence similarities between the ABH and HAD dehalogenases, they all employ a similar two-step
dehalogenation mechanism that involves an aspartate nucleophile and a covalent ester intermediate (Fig. 1) (Verschueren et al., 1993; Liu et al., 1998; Schmidberger et al., 2007).

Proteome analysis of sequenced microbial genomes revealed that many organisms harbour multiple (occasionally more than 20) genes that share amino acid sequence similarity to ABH and HAD dehalogenases. Unfortunately, their high sequence diversity (e.g. less than 30% sequence identity for HADs) and the lack of robust sequence motif information prevent confident separation of dehalogenases from the much more commonly occurring family members such as esterases, peptidases and phosphatases (Heikinheimo et al., 1999; Nardini and Dijkstra, 1999; Holquist, 2000; Allen and Dunaway-Mariano, 2004). To our knowledge, only the following hydrolytic dehalogenases have been sequenced and biochemically characterized to date: 9 ABH haloalkane dehalogenases (Keuning et al., 1985; Newman et al., 1999; Jesenska et al., 2002; Jesenska et al., 2005; Kmunicek et al., 2005; Sato et al., 2005; Prudnikova et al., 2009); 2 ABH fluorooacetate dehalogenases (Kawasaki et al., 1991; van der Ploeg et al., 1991; Jones et al., 1992; Kawasaki et al., 1992; 1994; Murdiyatmo et al., 1992; Liu et al., 1994; Cairns et al., 1996; Hill et al., 1999; Rye et al., 2009); 2 D- and 9 DL-2-haloacid dehalogenases (Barth et al., 1992; Liu et al., 1994; Brokamp et al., 1996; Cairns et al., 1996; Nardi-Dei et al., 1997; Stringfellow et al., 1997; Hill et al., 1999); 1 cis- and 1 trans-3-chloroacrylate dehalogenase (de Jong et al., 2004; 2007); and 3 4-chlorobenzoyl-CoA dehalogenases (Schmitz et al., 1992; Benning et al., 1996; Chae et al., 1999).

To facilitate the discovery of novel dehalogenases with potential for broader applicability, we selected for biochemical characterization 163 potential ABH and HAD dehalogenase candidates from the sequenced genomes of five common soil bacteria using a sequence-similarity criterion. Improved dehalogenase prediction criteria were developed and validated using a second screen on potential dehalogenase candidates from additional microbial genomes. Finally, we explore the use of E-values from database searches as an additional tool for assisting in the identification of novel microbial dehalogenases.

Results and discussion

Selection of dehalogenase genes from sequenced genomes

The potential dehalogenase candidates in the initial screen were selected from sequenced genomes of five common soil microorganisms with direct environmental relevance (Pseudomonas aeruginosa PAO1, Pseudomonas putida KT2440, Rhodospseudomonas palustris CGA009, Streptomyces avermitilis MA-4680 and Sinorhizobium meliloti 1021). A total of 110 genes from the ABH superfamily were selected using the described procedures (Table S1A). For the HAD superfamily, a total of 53 target genes were selected (Table S2A). In the second screen, we selected 30 additional putative dehalogenases from 14 different microbial genomes (see Experimental procedures) using refined search criteria identified from the initial screen (Tables S1B and S2B).

Overexpression in E. coli and protein purification

Of the 163 gene sequences (110 ABH and 53 HAD) selected in the initial screen, 155 (95%) were cloned successfully, 111 (68%) expressed well and 85 clones
(52%) produced soluble recombinant protein with high yields between 5 and 110 mg l\(^{-1}\) of bacterial culture. The remaining 70 cloned but poorly expressed and/or insoluble (i.e. primarily expressed as inclusion bodies) proteins yielded less than 5 mg l\(^{-1}\) of bacterial culture. The purity of high-yield preparations was 75–95%, and that of the low-yield samples was less than 35% (Fig. S1).

Of the 30 gene sequences selected in the second round screen, 24 clones produced soluble recombinant protein (1–180 mg l\(^{-1}\) of bacterial culture). These results are provided in Table S3 and summarized in Table S4.

Enzymatic assays of purified proteins

Every protein preparation in the initial screen (155 samples) was assayed on every substrate regardless of protein family and sample purity. Enzyme assays were designed to test for dehalogenase, carboxylesterase, thioesterase and phosphatase activities. Proteins purified for the second screen were only assayed for dehalogenase activity. The organohalogen substrates used for the dehalogenase assays are listed in the experimental section.

Overall, the initial enzymatic screen identified seven novel dehalogenases from 155 tested protein preparations: two from the ABH and five from the HAD superfamilies. The overall success rate of the initial screen was 7% (7/103). The 52 low-yield samples with no activity were not counted because these negative results may have been caused by insufficient levels of recombinant protein in the assays.

Specifically, of the 110 selected ABH targets, 102 were successfully cloned (and thus assayable), and only one (SAV4779) dehalogenated the haloalkanes 1,2-dibromoethane, 1,3-dichloropropane and chlorocyclohexane (Table 2). One (RPA1163) could hydrolyse fluoroacetate, and more slowly chloroacetate. Nineteen proteins hydrolysed palmitoyl-CoA (Fig. S2) and two of these were also active on \(p\)-nitrophenyl palmitate (both are substrates for carboxylesterases and thioesterases) (Table 3). No other protein samples displayed multiple activities and none were active in the phosphatase activity screen. Representative assay data are shown in Table S2.

Of the 53 protein preparations of the HAD candidates, five possessed haloacid dehalogenase activity and 31 displayed phosphatase activity (Tables 2 and 3). These HAD dehalogenases exhibited a substrate profile similar to that of the previously characterized L-2-haloacid dehalogenases; they can hydrolyse various 2-haloacids, but none were capable of hydrolysing fluoroacetate (van der Ploeg et al., 1991; Liu et al., 1994). However, the substrate specificity of PA0810 was restricted to the short haloacetates only. No HAD dehalogenases displayed phosphatase activity (and vice versa), and no HAD proteins were active against the tested haloalkanes and esters.

Table 2. Substrate profile of all identified dehalogenases.

Enzyme	1,2-Dichloroethane	1,3-Dichloropropane	Chlorocyclohexane	1,2-Dibromoethane
Haloalkane dehalogenase				
SAV4779	(1)	+	+	+
JANN2620	(2)	+	+	+
Fluoroacetate dehalogenase				
RPA1163	(1)	+	+	-
Ato039	(2)	+	-	-
L-2-haloacid dehalogenase				
PA0810	(1)	-	+	+
RPA4199	(1)	+	-	+
RPA2507	(1)	+	+	+
SAV737	(1)	-	+	+
Smc00103	(1)	-	+	+
Aden3811	(2)	+	+	-
Fluoroacetate dehalogenase				
RPA4199	(1)	+	+	-
RPA2507	(1)	+	+	-
SAV737	(1)	+	+	+
Smc00103	(1)	+	+	+
Aden3811	(2)	+	+	-
Bcen2424–2051	(2)	+	+	-
Jann1658	(2)	+	+	-
Bpro0530	(2)	+	+	-
Bpro4516	(2)	+	+	-
RSc1362	(2)	+	+	-
RHA1_ro00230	(2)	+	+	-
SCO3446	(2)	+	+	-

Dehalogenases identified in the first and second screens are labelled by (1) and (2), respectively.
Using the results from these enzymatic assays, additional search criteria were sought by comparing the sequence alignments of biochemically confirmed dehalogenases with those of esterases or phosphatases. A detailed analysis of all sequences is presented in the Supporting Information; the main conclusions are provided below.

Table 3. Relative absorbance of active proteins in esterase and phosphatase activity screens.

Superfamily	Gene locus	Purity	Substrates	pNPP-palmitate	Palmitoyl-CoA	pNPP + Mg²⁺	pNPP + cations	Identified activity
ABH	PA5513	High	0.76	3.2	1.0	1.2	Thioesterase	
ABH	PA2949	Low	2.6	2.2	0.92	0.92	Esterase	
ABH	PP4164	High	0.83	2.8	0.90	0.95	Thioesterase	
ABH	PP2587	High	0.88	2.4	0.95	0.99	Thioesterase	
ABH	PP2083	High	0.74	2.1	0.92	0.96	Thioesterase	
ABH	RPA4646	High	1.2	1.8	0.81	0.94	Thioesterase	
ABH	RPA3430	Low	0.89	2.0	0.85	0.98	Thioesterase	
ABH	RPA1568	High	0.86	4.3	0.87	0.89	Thioesterase	
ABH	RPA0348	Low	1.7	3.1	0.88	0.94	Esterase	
ABH	RPA1212	Low	0.85	2.7	0.82	0.90	Thioesterase	
ABH	RPA0996	Low	0.86	2.7	0.88	0.89	Thioesterase	
ABH	SAV1548	Low	0.73	1.7	1.0	0.95	Thioesterase	
ABH	SAV298	Low	0.89	2.4	0.94	1.1	Thioesterase	
ABH	Smc03810	High	0.92	2.5	0.86	0.91	Thioesterase	
ABH	Smc01273	High	0.82	2.7	0.88	0.91	Thioesterase	
ABH	Smc00361	High	0.95	2.8	0.88	0.90	Thioesterase	
ABH	Smc00147	Low	0.87	2.2	1.1	Thioesterase		
ABH	Smc02818	Low	0.87	1.8	0.90	0.92	Thioesterase	
HAD	PA4458	High	0.73	1.1	1.4⁺	2.6⁺	Phosphatase	
HAD	PA0335	High	0.94	1.1	2.5	2.6⁺	Phosphatase	
HAD	PA1777	High	0.91	0.96	1.6	1.9⁺	Phosphatase	
HAD	PA0562	High	1.0	1.0	5.1	1.7	Phosphatase	
HAD	PA3172	High	1.0	0.98	16	3.2	Phosphatase	
HAD	PA2974	High	1.0	1.1	16	17	Phosphatase	
HAD	PA0608	High	0.96	1.1	7.0	2.2	Phosphatase	
HAD	PA3886	High	1.1	1.1	16	17	Phosphatase	
HAD	PA4960	High	0.92	1.1	16	17	Phosphatase	
HAD	PP0956	High	0.90	0.39	6.3	3.2	Phosphatase	
HAD	PA4761	High	0.87	1.1	16	17	Phosphatase	
HAD	PP0094	High	0.86	0.86	13	4.8	Phosphatase	
HAD	PA1721	Low	0.80	1.0	2.5	1.9	Phosphatase	
HAD	PA5147	High	0.86	1.3	9.7	2.5⁺	Phosphatase	
HAD	PA0259	Low	0.79	1.3	16	7.5	Phosphatase	
HAD	PA1764	High	0.80	0.91	16	10	Phosphatase	
HAD	PA1907	Low	0.56	0.95	3.6	2.0	Phosphatase	
HAD	PA1789	High	0.84	1.2	1.8	1.4⁺	Phosphatase	
HAD	PP5231	Low	0.73	0.8	2.8	1.3⁺	Phosphatase	
HAD	PP5146	Low	0.85	1.1	16	7.4	Phosphatase	
HAD	PA4909	Low	0.54	0.92	16	11	Phosphatase	
HAD	RPA4522	High	1.1	1.3	2.3	1.7	Phosphatase	
HAD	SAV4726	High	1.1	1.2	2.0⁺	1.4⁺	Phosphatase	
HAD	SAV6660	High	1.0	0.95	1.7	3.4⁺	Phosphatase	
HAD	Smc01781	High	0.86	1.2	16	10	Phosphatase	
HAD	Smc01276	Low	0.83	1.1	7.1	6.6	Phosphatase	
HAD	Smc00079	Low	0.88	1.1	8.3	2.3	Phosphatase	
HAD	Smc01617	High	0.96	1.2	1.6	1.7⁺	Phosphatase	
HAD	Smc00910	High	1.0	1.1	16	17	Phosphatase	
HAD	Smc01494	Low	0.99	1.2	9.1	3.9	Phosphatase	
HAD	Smc04299	High	0.97	0.99	1.5⁺	0.94	Phosphatase	

The values represent the ratio of the measured absorbance for each protein relative to the no protein control, at the 3-hour time point. For the identification of phosphatase and carboxylesterase activities, a ratio of 1.3 was used as cut-off. For confirmation of thioesterase activity, a more stringent cut-off of 1.7 was used because contaminating expression host proteins in low-purity samples appeared to contribute to background signals. Signals emerging only at the 24-hour time point are marked by *+. The high (75–95%) and low (less than 35%) protein purities correspond to that of the high- and low-yield protein preparations respectively.

Refined criteria for identification of true dehalogenase sequences

Using the results from these enzymatic assays, additional search criteria were sought by comparing the sequence alignments of biochemically confirmed dehalogenases with those of esterases or phosphatases. A detailed analysis of all sequences is presented in the Supporting Information; the main conclusions are provided below.

© 2009 The Authors

Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd, *Microbial Biotechnology*, 3, 107–120
For the identification of haloalkane dehalogenases in the ABH superfamily, the Asp catalytic nucleophile serves as an important selection criterion because it is fully conserved and essential for dehalogenation (Fig. 2). The pair of primary halide-binding residues can act as an additional haloalkane dehalogenase indicator. It comprises: a Trp at the nucleophile + 1 position; and either a Trp that aligns with Trp175 of DhIA (a type I haloalkane dehalogenase) or an Asn equivalent to Asn28 of SAV4779 (a type II haloalkane dehalogenase) within the upstream His-Gly-Asn-Pro motif.

For the identification of fluorooacetate dehalogenases in the ABH superfamily, only a few active site residues are considered for distinguishing their activity. Such a restriction is imposed in order to reduce the number of false negatives during sequence screening given our current rather limited level of understanding. The residues comprise an Asp acting as nucleophile and two Arg at the nucleophile +1 and nucleophile +4 positions (Fig. 2).

For the identification of L-2-haloacid dehalogenases in the HAD superfamily, two motifs could serve as primary identifiers owing to the distinct functional requirements of such enzymes (Fig. 3). At the N-terminus, the dehalogenases harbour Asp-X-[Tyr/Phe] instead of the Asp-X-[Asp/Glu] found in phosphotriesterases. Near the C-terminus, the dehalogenases possess the oxyanion hole motif Gly-[Asp/Glu]-X2-[Asp/Glu]-Asp); the aligning residues are underlined in Fig. 3.

Table 1: Sequence alignments of ABH targets in the initial screen.

| Sequence analyses of ABH targets identified in the initial screen (*). The catalytic triad (Nuc-Acid-His) and several structural motifs are well conserved. In haloalkane and fluorooacetate dehalogenases, the nucleophile is a fully conserved Asp, while it is generally a Ser in such enzymes (Fig. 2). At the N-terminus, the dehalogenases possess the oxyanion hole motif Gly-[Asp/Glu]-X2-[Asp/Glu]-Asp); the aligning residues are underlined in Fig. 3. | | |

Table 2: For the identification of haloalkane dehalogenases in the ABH superfamily, the Asp catalytic nucleophile serves as an important selection criterion because it is fully conserved and essential for dehalogenation (Fig. 2). The pair of primary halide-binding residues can act as an additional haloalkane dehalogenase indicator. It comprises: a Trp at the nucleophile + 1 position; and either a Trp that aligns with Trp175 of DhIA (a type I haloalkane dehalogenase) or an Asn equivalent to Asn28 of SAV4779 (a type II haloalkane dehalogenase) within the upstream His-Gly-Asn-Pro motif.

For the identification of fluorooacetate dehalogenases in the ABH superfamily, only a few active site residues are considered for distinguishing their activity. Such a restriction is imposed in order to reduce the number of false negatives during sequence screening given our current rather limited level of understanding. The residues comprise an Asp acting as nucleophile and two Arg at the nucleophile +1 and nucleophile +4 positions (Fig. 2).

For the identification of L-2-haloacid dehalogenases in the HAD superfamily, two motifs could serve as primary identifiers owing to the distinct functional requirements of such enzymes (Fig. 3). At the N-terminus, the dehalogenases harbour Asp-X-[Tyr/Phe] instead of the Asp-X-[Asp/Glu] found in phosphotriesterases. Near the C-terminus, the dehalogenases possess the oxyanion hole motif Gly-[Asp/Glu]-X2-[Asp/Glu]-Asp); the aligning residues are underlined in Fig. 3.

© 2009 The Authors
Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd. *Microbial Biotechnology*, 3, 117–120.
labeled. These two carboxylate pair motifs may be applied to reliably filter out probable phosphoryl transfersases before further screening with dehalogenase-specific residues, because they were found in numerous phosphoryl transfersases (Koonin and Tatusov, 1994; Burroughs et al., 2006; Kuznetsova et al., 2006).

Retrospective analysis of sequences from the initial screen, using refined search criteria

Applying the Asp nucleophile and either pair of halide-binding residues (Trp and Trp/Asn) to filter the initial list of ABH sequences would have narrowed the list to only four
of the initial 110 candidates as true potential haloalkane dehalogenases (Fig. 4; only 61 sequences are shown because they correspond to high-yield and/or active protein samples), increasing the chances of finding SAV4779 to 1 in 4. However, the absence of dehalogenase activity in the remaining three (which all carry the halide-binding Trp pair of type I haloalkane dehalogenases) indicates that these features alone are not sufficient to pinpoint haloalkane dehalogenases. While the search may be refined by incorporating residues that line the active site or serve as supplementary halide binders, the low sequence conservation and the possibility of misalignment of true structural equivalents of the more diverse ABH proteins may lead to the dismissal of genuine dehalogenases. Nevertheless, the haloalkane dehalogenase search space could already be greatly reduced just by considering these catalytic residues. The criteria may be further customized to vary their stringency, such as by accommodating functional mutations as demonstrated in (Kennes et al., 1995; Damborsky et al., 1998).

Applying the Asp nucleophile and the Arg pair at positions nucleophile + 1 and nucleophile + 4 as additional fluoroacetate dehalogenase search criteria to filter the initial list of ABH sequences would have narrowed the list to only 2 of the initial 110 candidates as true potential fluoroacetate dehalogenases, increasing the hit rate for RPA1163 from 1 in 110 to 1 in 2 (Fig. 4). Only PA2086 would be falsely recognized as a potential fluoroacetate dehalogenase among all selected ABH sequences; further investigation should identify additional functionally important residues suitable to refine the search criteria for these enzymes to achieve even higher prediction accuracy.

Applying reliable HAD phosphoryl transferase sequence motifs to filter the initial list of HAD sequences would have narrowed the list to only 6 of the initial 53 candidates (Fig. 5, sum of the last two entries), eliminating the bulk of non-dehalogenase HAD sequences; only the 42 sequences that correspond to high-yield and/or active protein samples are shown in Fig. 5. The search space could be further reduced to 5 by dismissing the

© 2009 The Authors
Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd, Microbial Biotechnology, 3, 107–120
proteins lacking the Asp nucleophile. Interestingly, all sequences remaining after filtering for phosphoryl transferase sequence motifs emerge as genuine L-2-haloacid dehalogenases even before any dehalogenase fingerprints are applied. In principle, one may further screen these sequences using the conserved dehalogenase motifs. However, this may discard novel dehalogenases with undiscovered sequence variations such as the Ala-Ala-His oxyanion motif observed in PA0810, RPA2507 and SAV737 (Fig. 3). Therefore, it may be more beneficial to apply the more stringent criteria in cases where a large number of sequences still remain after eliminating the putative phosphoryl transfersases.

Second screen to validate new search criteria

To further demonstrate the effectiveness of the identification criteria developed in this work, they were applied to screen 14 additional microbial genomes. The procedure began with the same BLASTP sequence similarity searches, followed by a screen using some of the identified sequence fingerprints: an Asp nucleophile and a Trp at position nucleophile + 1 for haloalkane dehalogenases; an Asp nucleophile and an Arg at position nucleophile + 1 for fluoroacetate dehalogenases; and the absence of both carboxylate pair motifs for L-2-haloacid dehalogenases. However, this may discard novel dehalogenases with undiscovered sequence variations such as the Ala-Ala-His oxyanion motif observed in PA0810, RPA2507 and SAV737 (Fig. 3). Therefore, it may be more beneficial to apply the more stringent criteria in cases where a large number of sequences still remain after eliminating the putative phosphoryl transfersases.

Novel defluorinating L-2-haloacid dehalogenases in the HAD superfamily

Intriguingly, 4 novel L-2-haloacid dehalogenases (Adeh3811, Bpro0530, Bpro4516 and RHA1_ro00230) were able to hydrolyse fluoroacetate. This is the first report of HAD dehalogenases with such capabilities, as the direct hydrolytic cleavage of the aliphatic carbon-fluorine bond was previously thought to be exclusive to the fluoroacetate dehalogenases of the ABH superfamily. With respect to sequence similarities, the HAD defluorinases did not appear to be distinct from the non-defluorinating HAD members (Table S7). Investigations are currently underway to elucidate their structural features that enable defluorination.

Evaluation of E-values obtained from BLASTP

This work has developed sequence screening procedures for reliably discriminating against non-dehalogenases. Obviously, however, dehalogenases can only be discovered if they exist within the genomes of interest. E-values measure the statistical significance of the hits returned in a BLASTP search and are calculated from their overall sequence similarity with query sequences. They were thus examined in an attempt to identify prominent signs that may indicate the presence of dehalogenases within a list of BLASTP results. A detailed discussion is presented in Supporting Information.

In the genome-wide BLASTP searches for haloalkane dehalogenases, the true positives possessed highly significant E-values (less than 10^{-45}) compared with proteins that were inactive against the screening substrates (greater than 10^{-25}) (Fig. 6A). This suggests that E-values may serve as reliable indicators for the activity of these enzymes.

In the fluoroacetate dehalogenase searches, the E-values were also clearly divided into two clusters: they were either highly significant (smaller than 10^{-45}), or much less significant (larger than 10^{-25}) (Fig. 6B). All five identified fluoroacetate dehalogenases belong to the former group. However, an additional five proteins with similar E-values were inactive on the tested haloacetates. Meeting the very small E-value requirement thus appears to be necessary but not sufficient for confirming the presence of fluoroacetate dehalogenases in microbial genomes.

In the L-2-haloacid dehalogenase searches, 8 of the confirmed enzymes possessed highly significant E-values (less than 10^{-25}) while the remaining 5 had E-values (from 10^{-14} to 10^{-20}) that were only marginally smaller than those of the non-dehalogenases (Fig. 6C). Such E-value distribution suggests that there are at least two sequence subfamilies among the HAD dehalogenases, which appears to correlate with their oxyanion hole motifs (Ser-Ser-Asn versus Ala-Ala-His). However, the E-values of the four defluorinating members are not distinct from those of the non-defluorinating members. Taken together, our results show that E-values may serve as reliable indicators for detecting L-2-haloacid dehalogenases, and the analyses should be made using sequences from different subfamilies as search query.

Dehalogenase kinetics

The kinetic parameters for several dehalogenases were determined for comparison with previously characterized
enzymes (Table 4). The novel fluoroacetate dehalogenases displayed significantly lower maximum specific activity for both fluoroacetate and chloroacetate, compared with DehH1 and FAc-Dex FA1. However, the substrate affinity constants (K_M) for fluoroacetate of RPA1163 and FAc-Dex FA1 were of the same order of magnitude. The specific activities of the novel L-2-haloacid dehalogenases towards chloroacetate, which ranged from 1.5 to 100 μmol min$^{-1}$ per mg of protein, were comparable to those of the previously studied family members. The K_M values for chloroacetate were generally in the μM range. For those that exhibited the novel defluorination capability, a strong preference (i.e. higher specific activity as well as lower K_M) for chloroacetate hydrolysis was generally observed. Compared with the novel ABH fluoroacetate dehalogenases, these novel HAD defluorinases possessed a much higher K_M for fluoroacetate even though their maximum specific activities were in the same order of magnitude (Table 4).

Conclusions

This work has significantly increased the sequence pool of microbial hydrolytic dehalogenases through the biochemical confirmation of 20 novel dehalogenases from diverse organisms. The discovery of four HAD defluorinases highlights the importance of carrying out broader functional screens to mine natural diversity. Additionally, the identification of numerous esterases and phosphatases should assist genomic annotations of sequences in the ABH and
HAD superfamilies. Most importantly, the developed sequence-based selection methods will facilitate the identification of hydrolytic dehalogenases from these superfamilies of proteins. These findings will accelerate the discovery of novel and potentially more powerful dehalogenases from the rapidly expanding genome sequence database. Knowledge of the ability and diversity of dehalogenating enzymes is vital for developing effective detoxification methods at organohalogen-contaminated sites, and for guiding regulations for industrial production and use of organohalogen chemicals.

Experimental procedures

Strains, reagents and chemicals

The bacterial strains and genomic DNA were either purchased from ATCC (Manassas, VA) or obtained directly from research laboratories. The PCR primers were synthesized by Integrated DNA Technologies (Coralville, IA). Terrific Broth pellets were purchased from EMD Chemicals (Gibbstown, NJ) and the Bradford assay reagent from Bio-Rad (Hercules, CA). Lysozyme, proteinase K, agarose, glycerol, ampicillin, kanamycin, SDS and IPTG were obtained from BioShop (Burlington, ON, Canada) and all other chemicals from Sigma-Aldrich (St. Louis, MO). Ni-NTA resin and the QIAquick PCR Purification Kit were purchased from Qiagen (Mississauga, ON, Canada), the In-Fusion PCR Cloning Kit was purchased from Clontech (Palo Alto, CA). All chemicals were of the highest grade commercially available and all concentrations reported were the final concentrations in the reaction mixtures unless stated otherwise. The commercially available kits were used according to the manufacturers’ instructions.

Target selection

In the initial screening study, five microbial genomes were screened for dehalogenase sequences: *Pseudomonas aeruginosa* PAO1, *Pseudomonas putida* KT2440, *Rhodopseudomonas palustris* CGA009, *Streptomyces avermitilis* MA-4680 and *Sinorhizobium meliloti* 1021 (chromosomal genes only). The selected gene loci were prefixed by PA, PP, RPA, SAV and SMc respectively. The following dehalogenases only). The selected gene loci were prefixed by PA, PP, RPA, SAV and SMc respectively. The following dehalogenase loci were used as BLASTP (Altschul et al., 1990) search queries for each superfamily against the UniProt Knowledgebase: the ABH superfamily was searched with the haloalkane dehalogenase DhlA (UniProt accession number: P22643), LinB (P51698) and DhaA (P59336) and the fluoroacetate dehalogenase DehH1 (Q01398); and the HAD superfamily was searched with the L-2-haloacid dehalogenases DhlB (Q60099), HadL (Q52087) and DehH2 (Q01399). The following dehalogenases were screened for dehalogenase sequences: *Pseudomonas aeruginosa* PAO1, *Pseudomonas putida* KT2440, *Rhodopseudomonas palustris* CGA009, *Streptomyces avermitilis* MA-4680 and *Sinorhizobium meliloti* 1021 (chromosomal genes only). The selected gene loci were prefixed by PA, PP, RPA, SAV and SMc respectively. The following dehalogenase sequences were used as BLASTP (Altschul et al., 1990) search queries for each superfamily against the UniProt Knowledgebase: the ABH superfamily was searched with the haloalkane dehalogenases DhlA (UniProt accession number: P22643), LinB (P51698) and DhaA (P59336) and the fluoroacetate dehalogenase DehH1 (Q01398); and the HAD superfamily was searched with the L-2-haloacid dehalogenases DhlB (Q60099), HadL (Q52087) and DehH2 (Q01399). The E-value cut-offs ranged from 10⁻⁸ to 10⁻¹ depending on the overall alignment quality. An additional text search in the PEDANT database (Walter et al., 2009) was performed using ‘haloalkane dehalogenase’,

Table 4. Quantitative dehalogenase activity assays.

Substrates	Fluoroacetate	Chloracetate	Relative rate					
	Specific activity	K_M (µM)		Specific activity	K_M (µM)	K (mM)	Note	ClAc/FAc
Enzyme	(µmol min⁻¹ mg⁻¹)			(µmol min⁻¹ mg⁻¹)				
Fluoroacetate dehalogenase								
RPA1163	(1)	0.20 ± 0.01	3 300 ± 200	a,f	0.041 ± 0.002	1 400 ± 400	a,f	0.21
Apr0039	(2)	0.10 ± 0.008	n.d.	c,de	0.12	n.d.	c,de	1.1
Rcen2422–2964	(2)	0.102 ± 0.008	n.d.	c,de	n.d.	n.d.	c,de	0.11
Bpro4478	(2)	0.38 ± 0.04	n.d.	c,de	0.041	n.d.	c,de	0.11
DehH1	86.40	18	p	0.21				
Tac-DexFA1	11.00	5 100	q	0.43				
L-2-haloacid dehalogenase								
RPA4199	(1)	n.a.	25	28	1	a,f		
SMr00103	(1)	n.a.	52	88	40	b,g		
Ane3311	(2)	0.401 ± 0.008	13 500 ± 300	a,f	25 ± 3	10 ± 4	c,i	62
Rcen2422–2051	(2)	n.a.	12.0 ± 0.3	17 ± 2	c,f			
Jann1658	(2)	n.a.	10 ± 3	7 ± 4	c,g			
Bpro0530	(2)	0.48 ± 0.06	n.d.	c,de	29 ± 1	4 ± 1	c,f	61
Bpir4516	(2)	0.16 ± 0.02	19 000 ± 2000	a,f	64 ± 4	11 ± 2	c,h	400
RSc1362	(2)	n.a.	100 ± 10	34 ± 9	c,i			
RHA1_ro0230	(2)	0.678 ± 0.004	20 000 ± 2000	a,f	1.5 ± 0.2	19 000 ± 2000	a,f	2.2
DhIB	n.a.	55.5	r					
LDexY1	n.a.	78	1 100	s				

The activities for selected dehalogenases were quantified using different techniques; the specific activities represent the maximum values unless indicated otherwise. The enzymes identified in the initial and second screens are labelled by (1) and (2) respectively. The commercially available kits were purchased from Qiagen (Mississauga, ON, Canada), the In-Fusion PCR Cloning Kit was purchased from Clontech (Palo Alto, CA). All chemicals were of the highest grade commercially available and all concentrations reported were the final concentrations in the reaction mixtures unless stated otherwise. The commercially available kits were used according to the manufacturers’ instructions.

The activities for selected dehalogenases were quantified using different techniques; the specific activities represent the maximum values unless indicated otherwise. The enzymes identified in the initial and second screens are labelled by (1) and (2) respectively. The commercially available kits were purchased from Qiagen (Mississauga, ON, Canada), the In-Fusion PCR Cloning Kit was purchased from Clontech (Palo Alto, CA). All chemicals were of the highest grade commercially available and all concentrations reported were the final concentrations in the reaction mixtures unless stated otherwise. The commercially available kits were used according to the manufacturers’ instructions.

Notes

- a, calorimetry; b, spectrophotometry; c, ion chromatography; d, rate estimation using 10 mM substrate; e, HEPES pH 8; f, Tris-SO₄ pH 8.5; g, Tris-NO₃ pH 8.5; h, CHES pH 9.5; i, CAPS pH 10; j, CAPS pH 10.5; p, Liu et al., 1998; q, Kurihara et al., 2003; r, van der Ploeg et al., 1991; s, Liu et al., 1994; Kurhara et al., 1995; z, dechlorination activity on S-2-chloropropionate.
- n.a., no detectable activity; n.d., not determined.
'haloacetate dehalogenase' and 'haloacid dehalogenase' to append several more distantly related superfamily members to the activity screens. The target list of the initial screen, including the selection parameters, is found in Tables S1A and S2A.

In the second screening study, the following 14 genomes were screened and the parenthesized codes denote the gene loci prefixes: Anabaena sp. PCC7120 (Air or All), Anaeromyxobacter dehalogenans 2CP-C (Adeh), Azotobacter vinelandii AvOP (AvinDRAFT), Burkholderia cenocepacia H12424 (Bcen2424), Burkholderia vietnamiensis G4 (Bcep1808), Chromohalobacter salexigens DSM3043 (Csal), Dechloromonas aromatica RCB (Daro), Jannaschia sp. CCS1 (Jann), Polaromonas sp. JS666 (Bpro), Pseudomonas fluorescens PI-5 (PFL),Ralstonia eutropha JMP134 (Reut_A), Ralstonia solanacearum GMI1000 (Rsc), Rhodococcus sp. RHA1 (RHA1_ro) and Streptomyces coelicolor A3(2) (SCO). The BLASTP searches employed the same queries as the initial screen, but the resulting sequences were filtered using the refined criteria developed herein. Not all potential candidates were selected; the 30 targets that were chosen are listed in Table S1B and S2B.

Cloning, overexpression and purification of selected targets

The target genes were amplified by PCR using primers carrying 5′-overhangs (5′-TGT-TAT-TTC-AGG-GGC-3′ on the sense and 5′-CAA-GCT-TCG-TCA-TCA-3′ on the antisense primer) and cloned into a modified pET15b vector (Novagen, Madison, WI) (Zhang et al., 2001). Protein purification was carried out as described (Zhang et al., 2001), with the following modifications: overexpression in Terrific Broth was induced with 1 mM IPTG when OD600 reached approximately 1.2; no NP-40, PMSF and benzamidine were added; the centrifugal supernatant was directly passed through the Ni-NTA resin, washed with 300 ml of buffer containing 250 mM imidazole; excision of the His6-tag by the tobacco etch virus protease and the second pass through the Ni-NTA resin were omitted. The purified proteins were concentrated, flash frozen as beads in liquid nitrogen, and stored at −80°C.

Enzymatic screening assays

Screening was performed using 20 µg of protein in a 200 µl volume at 30°C using 96-well plates. All proteins were assayed twice. The assays were carried out as described (Holloway et al., 1998; Kuznetsova et al., 2005); they are summarized below.

The dehalogenase activity screen employed the following organohalogenes as substrates: 1,2-dichloroethane, 1,3-dichloropropane, chlorocyclohexane, 1,2-dibromomethane, fluorooacetate, chloroacetate, S-2-chloropropionate and bromoacetate. The reaction mixture was buffered at pH 7.0 using 1 mM HEPES. Detection was based on a pH decrease when hydrohalic acid is produced from the halogenated substrates (Holloway et al., 1998), and the colour transition of the pH indicator phenol red (from pink to orange to yellow) was monitored visually.

Two separate assays were developed in our laboratories to test for general esterase activity (Kuznetsova et al., 2005): one uses p-nitrophenyl palmitate (pNP-palmitate) to identify carboxylesterases, lipases and certain thioesterases through the release of p-nitrophenolate (pNP) detected by absorbance at 405 nm; the other uses palmitoyl-coenzyme A to identify thioester-specific esterases and certain carboxylesterases through the reaction between the released coenzyme A and Ellman's reagent monitored by absorbance at 412 nm.

The general phosphatase assay also developed in our laboratories uses p-nitrophenyl phosphate (pNPP) in the presence of divalent cations (either 5 mM Mg2+ alone or a cocktail containing 5 mM Mg2+, 0.5 mM each of Co2+, Mn2+ and Ni2+) (Kuznetsova et al., 2005). The hydrolytic activity is detected through the release of pNP by measuring the absorbance at 405 nm.

Dehalogenase activity was determined by visual inspection. All other activities were quantified spectrophotometrically 3 and 24 h after initiating the reaction using the plate reader SpectraMax M5 (Molecular Devices, Sunnyvale, CA). The absorbance values were converted into ratios by dividing them with the absorbance value of the control without enzyme.

Quantitative dehalogenase assays

Dehalogenase activity was confirmed and quantified using alternative techniques for a number of novel dehalogenases. The reaction was performed in 100 mM of different buffers as listed in Table 4. Turnover at 30°C was detected through either halide release (by spectrophotometry (Iwasaki et al., 1952) or ion chromatography coupled with conductivity) or reaction enthalpy (i.e. calorimetry) (Todd and Gomez, 2001). The steady-state kinetic parameters were extracted by non-linear regression using the software package GraphPad Prism (GraphPad Software Inc., La Jolla, CA). The procedures are described in detail in Supporting Information.

Sequence alignments

The sequences within an activity group were aligned using the CLUSTAL algorithm (Thompson et al., 1994) in the Biology Workbench at the San Diego Supercomputer Center (http://workbench.sdsc.edu/) (Subramaniam, 1998), with the default parameters. Manual adjustments were made for sequences that did not align properly due to insertions or deletions of large stretches of sequence. Comparisons between different sequence groups within the same protein families were made by using the profile alignment function in the Biology Workbench.

E-value analyses

For each category of BLASTP search (e.g. the search for haloalkane dehalogenases), the retrieved sequences were grouped according to their measured activities (e.g. dehalogenase, esterase or no activity) and their corresponding E-values were plotted. The E-values from the first and second screen were analysed separately. For target genes possessing several E-values (because they could be retrieved by
multiple search queries), all E-values were plotted individually without averaging. Targets with low protein yield that displayed no activity were excluded from this analysis because it was not known whether the inactivity was genuine, or caused by insufficient amounts of protein assayed.

Acknowledgements

We gratefully acknowledge support from the National Science and Engineering Research Council – Strategic Grant Program for this project. We thank the following scientists for kindly providing us with the respective bacterial strains or genomic DNA: Thomas Beatty (University of British Columbia) for Rhodopseudomonas palustris CGA009; Turlough Finan (McMaster University) for Sinorhizobium meliloti 1021; Stephanie Curtis (North Carolina State University) for Anaabaena sp. PCC7120; Robert Sanford (University of Illinois) and Frank Löffler (Georgia Institute of Technology) for Anaeromyxobacter dehalogenans 2CP-C; Christina Kennedy (University of Arizona) for Azotobacter vinelandii AvOP; James Tiedje (Michigan State University) for Burkholderia cenocepacia HI2424 and Burkholderia vietnamiensis G4; Kathleen O’Connor (Purdue University) for Chromohalobacter salexigens DSM3043; John Coates (University of California) for Dechloromonas aromatica RCB; Mary Ann Moran (University of Georgia) for Jannaschia sp. CCS1; James Gosssett (Cornell University) for Pseudomonas sp. JS666; Alejandro Rooney (United States Department of Agriculture) for Pseudomonas fluorescens Pf-5; Roberta Fulthorpe (University of Toronto) forRalstonia eutropha JMP134; Christian Boucher (Institut National de la Recherche Agronomique) for Rhodococcus sp. N85 and preliminary characterization of DhmA. We also acknowledge the Structural Genomics Consortium (Toronto, ON, Canada), Greg Brown, Yuri Korniyenko, Ekaterina Kuznetsova and Mike Proudfoot for their technical assistance.

References

Allen, K.N., and Dunaway-Mariano, D. (2004) Phosphoryl group transfer: evolution of a catalytic scaffold. Trends Biochem Sci 29: 495–503.
Aitschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990) Basic local alignment search tool. J Mol Biol 215: 403–410.
Barth, P.T., Bolton, L., and Thomson, J.C. (1992) Cloning and partial sequencing of an operon encoding two Pseudomonas putida haloalkanoate dehalogenases of opposite stereospecificity. J Bacteriol 174: 2612–2619.
Benning, M.M., Taylor, K.L., Liu, R.O., Yang, G., Xiang, H., Wesenberg, G., et al. (1996) Structure of 4-chlorobenzoyle coenzyme A dehalogenase determined to 1.8 A resolution: an enzyme catalyst generated via adaptive mutation. Biochemistry 35: 8103–8109.
Brokamp, A., Happe, B., and Schmidt, F.R. (1996) Cloning and nucleotide sequence of a D,L-haloalkanoic acid dehalogenase encoding gene from Alcaligenes xylosoxidans ssp. denitrificans ABIV. Biodegradation 7: 383–396.
Burroughs, A.M., Allen, K.N., Dunaway-Mariano, D., and Aravind, L. (2006) Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes. J Mol Biol 361: 1003–1034.
Cairns, S.S., Cornish, A., and Cooper, R.A. (1996) Cloning, sequencing and expression in Escherichia coli of two Rhizobium sp. genes encoding haloalkanoate dehalogenases of opposite stereospecificity. Eur J Biochem 235: 744–749.
Chae, J.C., Kim, Y., Min, K.H., Kim, Y.C., and Kim, C.K. (1999) Cloning and sequencing of the fcB gene encoding 4-chlorobenzoate-dehalo-
genomic superfamily from Pseudomonas sp. DJ-12. Mol Cells 9: 225–229.
Damborsky, J., Bohac, M., Prokop, M., Kuty, M., and Koca, J. (1998) Computational site-directed mutagenesis of haloalkane dehalogenase in position 172. Protein Eng 11: 901–907.
Fetzner, S., and Lingens, F. (1994) Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications. Microbiol Rev 58: 641–685.
Hasan, A.K.M.Q., Takada, H., Esaki, N., and Soda, K. (1991) Catalytic action of L-2-halo acid dehalogenase on long-chain L-2-haloalkanoic acids in organic solvents. Biotechnol Bioeng 38: 1114–1117.
Heikinheimo, P., Goldman, A., Jeffries, C., and Ollis, D.L. (1999) Of barn owls and bankers: a lush variety of alpha/beta hydrolases. Structure 7: R141–R146.
Hill, K.E., Marchesi, J.R., and Weightman, A.J. (1999) Investigation of two evolutionarily unrelated halocarboxylic acid dehalogenase gene families. J Bacteriol 181: 2535–2547.
Holloway, P., Trevors, J.T., and Lee, H. (1998) A colorimetric assay for detecting haloalkane dehalogenase activity. J Microbiol Methods 32: 31–36.
Holmquist, M. (2000) Alpha/beta-hydrolase fold enzymes: structures, functions and mechanisms. Curr Protein Pept Sci 1: 209–235.
Iwasaki, I., Utsumi, S., and Ozawa, T. (1952) New colorimetric determination of chloride using mercuric thiocyanate and ferric ion. Bull Chem Soc Jpn 25: 226.
Jesenska, A., Bartos, M., Czernekova, V., Rychlík, I., Pavlík, I., and Damborsky, J. (2002) Cloning and expression of the haloalkane dehalogenase gene dhmA from Mycobacterium avium N85 and preliminary characterization of DhmA. Appl Environ Microbiol 68: 3724–3730.
Jesenska, A., Pavlova, M., Streuhal, M., Chaloupkova, R., Tesinska, I., Monincova, M., et al. (2005) Cloning, biochemical properties, and distribution of mycobacterial haloalkane dehalogenases. Appl Environ Microbiol 71: 6736–6745.
Jones, D.H., Barth, P.T., Byrom, D., and Thomas, C.M. (1992) Nucleotide sequence of the structural gene encoding a 2-haloalkanoic acid dehalogenase of Pseudomonas putida strain AJ1 and purification of the encoded protein. J Gen Microbiol 138: 675–683.
de Jong, R.M., and Dijkstra, B.W. (2003) Structure and mechanism of bacterial dehalogenases: different ways to cleave a carbon-halogen bond. Curr Opin Struct Biol 13: 722–730.
de Jong, R.M., Brugman, W., Poelarends, G.J., Whitman,
C.P., and Dijkstra, B.W. (2004) The X-ray structure of trans-3-chloroacrylic acid dehalogenase reveals a novel hydration mechanism in the tautomerase superfamily. *J Biol Chem* **279**: 11546–11552.

de Jong, R.M., Bazzacco, P., Poelarends, G.J., Johnson, W.H., Jr, Kim, Y.J., Burks, E.A., et al. (2007) Crystal structures of native and inactivated cis-3-chloroacrylic acid dehalogenase. Structural basis for substrate specificity and inactivation by (R)-oxirane-2-carboxylate. *J Biol Chem* **282**: 2440–2449.

Kawasaki, H., Tsuda, K., Matsuhashi, I., and Tomonura, K. (1992) Lack of homology between two haloalcohol dehalogenase genes encoded on a plasmid from *Moraxella* sp. strain B. *J Gen Microbiol* **138**: 1317–1323.

Kawasaki, H., Toyama, T., Maeda, T., Nishino, H., and Tomonura, M. (1994) Cloning and sequence analysis of a plasmid-encoded 2-haloacid dehalogenase gene from *Pseudomonas putida* No. 109. *Biosci Biotechnol Biochem* **58**: 160–163.

Kennes, C., Pries, F., Krooshof, G.H., Bokma, E., Kingma, J., and Janssen, D.B. (1995) Replacement of tryptophan residues in haloalcohol dehalogenase reduces halide binding and catalytic activity. *Eur J Biochem* **228**: 403–407.

Keuning, S., Janssen, D.B., and Witholt, B. (1985) Purification and characterization of hydrolytic haloalcohol dehalogenase from *Xanthobacter autotrophicus* GJ10. *J Bacteriol* **163**: 635–639.

Kmunicek, J., Hynkova, K., Jedlicka, T., Nagata, Y., Negri, A., Gago, F., et al. (2005) Quantitative analysis of substrate specificity of haloalcohol dehalogenase LinB from *Sphingomonas paucimobilis* UT26. *Biochemistry* **44**: 3390–3401.

Koonin, E.V., and Tatusov, R.L. (1994) Computer analysis of bacterial haloalcohol dehalogenases defines a large superfamily of hydrolases with diverse specificity. Application of an iterative approach to database search. *J Mol Biol* **244**: 125–132.

Kurthara, T., Liu, J.Q., Nardi-Dei, V., Koshikawa, H., Esaki, N., and Soda, K. (1995) Comprehensive site-directed mutagenesis of L-2-halo acid dehalogenase to probe catalytic amino acid residues. *J Biochem* (**Tokyo**) 117: 1317–1322.

Kurthara, T., Yamauchi, T., Ichiyama, S., Takahata, H., and Esaki, N. (2003) Purification, characterization, and gene cloning of a novel fluorooacetate dehalogenase from *Burkholderia* sp. FA1. *J Mol Catal B Enzym* **23**: 347–355.

Kuznetsova, E., Proudfoot, M., Sanders, S.A., Reinking, J., Savchenko, A., Arrowsmith, C.H., et al. (2005) Enzyme genomics: application of general enzymatic screens to discover new enzymes. *FEMS Microbiol Rev* **29**: 263–279.

Kuznetsova, E., Proudfoot, M., Gonzalez, C.F., Brown, G., Omelchenko, M.V., Borozan, I., et al. (2006) Genome-wide analysis of substrate specificities of the *Escherichia coli* haloacid dehalogenase-like phosphatase family. *J Biol Chem* **281**: 36149–36161.

Liu, J.Q., Kurthara, T., Hasan, A.K., Nardi-Dei, V., Koshikawa, H., Esaki, N., and Soda, K. (1994) Purification and characterization of thermostable and nonthermostable 2-haloacid dehalogenases with different stereospecificities from *Pseudomonas* sp. strain YL. *Appl Environ Microbiol* **60**: 2389–2393.

Liu, J.Q., Kurthara, T., Ichiyama, S., Miyagi, M., Tsunasawa, S., Kawasaki, H., et al. (1998) Reaction mechanism of fluorooacetate dehalogenase from *Moraxella* sp. B. *J Biol Chem* **273**: 30897–30902.

Murdyiatro, U., Asmara, W., Tsang, J.S., Baines, A.J., Bull, A.T., and Hardman, D.J. (1992) Molecular biology of the 2-haloacid halidohydrolase IVA from *Pseudomonas cepacia* MBA4. *Biochem J* **284**: 87–93.

Nardi-Dei, V., Kurthara, T., Park, C., Esaki, N., and Soda, K. (1997) Bacterial D,L-2-haloacid dehalogenase from *Pseudomonas* sp. strain 113: gene cloning and structural comparison with D- and L-2-haloacid dehalogenases. *J Bacteriol* **179**: 4232–4238.

Nardini, M., and Dijkstra, B.W. (1999) Alpha/beta hydrolase fold enzymes: the family keeps growing. *Curr Opin Struct Biol* **9**: 732–737.

Newman, J., Peat, T.S., Richard, R., Kan, L., Swanson, P.E., Affholter, J.A., et al. (1999) Haloalkane dehalogenases: structure of a *Rhodococcus* enzyme. *Biochemistry* **38**: 16105–16114.

van der Ploeg, J., van Hall, G., and Janssen, D.B. (1991) Characterization of the haloacid dehalogenase from *Xanthobacter autotrophicus* GJ10 and sequencing of the dhiB gene. *J Bacteriol* **173**: 7925–7933.

Pries, F., Wijngaard, A.J., Bos, R., Pentenga, M., and Janssen, D.B. (1994) The role of spontaneous cap domain mutations in haloalcohol dehalogenase specificity and evolution. *J Biol Chem* **269**: 17490–17494.

Prudnikova, T., Mozga, T., Rezacova, P., Chaloupkova, R., Sato, Y., Nagata, Y., et al. (2009) Crystalization and preliminary X-ray analysis of a novel haloalcohol dehalogenase DbeA from *Bradyrhizobium elkanii* USDA94. *Acta Crystallogr Sect F Struct Biol Cryst Commun* **65**: 353–356.

Rye, C.A., Isupov, M.N., Lebedev, A.A., and Littlechild, J.A. (2009) Biochemical and structural studies of a L-haloacid dehalogenase from the thermophilic archaeon *Sulfolobus tokodaii*. *Extremophiles* **13**: 179–190.

Sato, Y., Monincova, M., Chaloupkova, R., Prokop, Z., Ohitsubo, Y., Minamisawa, K., et al. (2005) Two rhizobial strains, *Mesorhizobium loti* MAFF303099 and *Bradyrhizobium japonicum* USDA110, encode haloalcohol dehalogenases with novel structures and substrate specificities. *Appl Environ Microbiol* **71**: 4372–4379.

Schmidberger, J.W., Wilce, J.A., Tsang, J.S., and Wilce, M.C. (2007) Crystal structures of the substrate free-enzyme, and reaction intermediate of the HAD superfamily member, haloacid dehalogenase DehIVa from *Burkholderia cepacia* MBA4. *J Mol Biol* **368**: 706–717.

Schmitz, A., Gartemann, K.H., Fiedler, J., Grund, E., and Eichenlaub, R. (1992) Cloning and sequence analysis of genes for dehalogenation of 4-chlorobenzoate from *Arthrobacter* sp. strain SU. *Appl Environ Microbiol* **58**: 4068–4071.

Schneider, B., Muller, R., Frank, R., and Lingens, F. (1991) Complete nucleotide sequences and comparison of the structural genes of two 2-haloalkanoic acid dehalogenases from *Pseudomonas* sp. strain CBS3. *J Bacteriol* **173**: 1530–1535.

Stringfellow, J.M., Cairns, S.S., Cornish, A., and Cooper, R.A. (1997) Haloalcanoate dehalogenase II (DehE) of a *Rhizobium* sp. – molecular analysis of the gene and formation of carbon monoxide from trihaloacetate by the enzyme. *Eur J Biochem* **250**: 789–793.
Subramaniam, S. (1998) The Biology Workbench – a seamless database and analysis environment for the biologist. *Proteins* 32: 1–2.

Swanson, P.E. (1999) Dehalogenases applied to industrial-scale biocatalysis. *Curr Opin Biotechnol* 10: 365–369.

Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucleic Acids Res* 22: 4673–4680.

Todd, M.J., and Gomez, J. (2001) Enzyme kinetics determined using calorimetry: a general assay for enzyme activity? *Anal Biochem* 296: 179–187.

Verschueren, K.H., Seljee, F., Rozeboom, H.J., Kalk, K.H., and Dijkstra, B.W. (1993) Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase. *Nature* 363: 693–698.

Walter, M.C., Rattei, T., Arnold, R., Guldener, U., Munsterkotter, M., Nenova, K., et al. (2009) PEDANT covers all complete RefSeq genomes. *Nucleic Acids Res* 37: D408–D411.

Zhang, R.G., Skarina, T., Katz, J.E., Beasley, S., Khachatryan, A., Vyas, S., et al. (2001) Structure of *Thermotoga maritima* stationary phase survival protein SurE: a novel acid phosphatase. *Structure* 9: 1095–1106.

Supporting information

Additional Supporting Information may be found in the online version of this article:

Fig. S1. Representative SDS-PAGE analysis of *P. aeruginosa* protein targets. The target proteins in well-expressed and soluble samples appear as large round patches on the gel (e.g., lanes C8, C10, A8 and C6). By inspection, the purity of these high-yield samples is generally above 75%. For samples that are poorly expressed or insoluble, a large number of expression host protein bands are detected. In such cases (e.g., lanes E1, E2, E5 and E7), the protein purity is approximately 35% at best. The identifiable target protein bands in low-yield samples have been circled. MW denotes molecular weight of the standards in kDa.

Fig. S2. Representative data in carboxylesterase and thioesterase screens. The upper and lower panels display representative data from the carboxylesterase and thioesterase screens respectively. Absorbance was measured 3 h (light bars) and 24 h (dark bars) after initiation of the reaction. Data from the 24-hour time point for the carboxylesterase screen was not interpretable due to high backgrounds. The dashed lines mark the cut-off used for confirming activities.

Table S1. All ABH superfamily targets selected for biochemical characterization.

Table S2. All HAD superfamily targets selected for biochemical characterization.

Table S3. Cloning and purification results.

Table S4. Summary of cloning and purification results.

Table S5. Sequence identity and similarity of all predicted haloalkane dehalogenases.

Table S6. Sequence identity and similarity of all predicted fluoroacetate dehalogenases.

Table S7. Sequence identity and similarity of all predicted L-2-haloacid dehalogenases.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.