A female Rottweiler dog was presented with a history of intermittent vomiting and diarrhoea, dysorexia, weakness, and weight loss. Haemocytometry and biochemistry values were within normal ranges except for electrolyte analyses, that demonstrated hyponatremia and hyperkalemia with a decreased sodium/potassium ratio. A diagnosis of hypoadrenocorticism was suspected. Basal and post-ACTH stimulation cortisolemia were within the normal values. Electrocardiography was normal, and thoracic radiography showed no significant modifications. On abdominal ultrasonography, adrenal glands appeared normal, while the bowel was distended, and several thin linear hyperechoic objects floating in the lumen were observed. Two adult female whipworms (Trichuris vulpis) were collected following bowel irrigation. Anthelmintic treatment against the parasite was curative.

1. Introduction

Trichuris vulpis, commonly known as whipworm, is characterized by a direct life cycle and by the extremely resistant lemon-shaped eggs that can remain infective in the environment for several years. Usually, T. vulpis infections are asymptomatic, but the presence of high worm burdens in the large intestine may cause the occurrence of haemorrhagic colitis due to the continuous stimulation and damage to the mucosa, where the head of the worm is embedded and moves in search of blood and fluid. Electrolyte imbalance can be associated with helminth infection; however, T. vulpis seems to be the only nematode associated with pseudo-Addison disease, as the present case seems to demonstrate.

2. Case History

An 8-year-old, spayed female Rottweiler mixed breed dog was presented to our hospital with several weeks history of intermittent vomiting and diarrhoea (watery faeces with mucus and increased stool frequency) together with dysorexia, weakness, and weight loss.
carried out. Adrenal glands appeared normal both for dimension and morphology, while the bowel was distented by fluid, and several thin linear hyperechoic echoes floating within the bowel lumen were observed (Figures 2(a) and 2(b)). A bowel irrigation with warm saline solution was performed, and two adult female whipworms (Trichuris vulpis) were collected. Centrifugation flotation faecal analysis showed a few whipworm eggs with the characteristic “double plugs”, while the results of basal and post-ACTH stimulation cortisolemia were within the normal values.

The dog was treated with oral administration of milbemycin oxime (0.70 mg/kg bw; Interceptor Novartis AH) and i.v. administration of 800 mL of saline solution (Na⁺Cl⁻ 0.9%) and discharged.

Three day later, the dog appeared clinically improved, and electrolyte analyses were completely normal. One month later, the dog was rechecked and clinical hematological exams were within the normal range; faecal analysis was negative, and body condition was clearly improved (body condition score 3/5, 37 kg). Oral milbemycin oxime at the same dose as above was prescribed once a month for an entire year in order to avoid whipworm reinfection.

3. Discussion

Although uncommon, as general rule intestinal nematode infections should be considered as a possible cause of electrolyte imbalance [3]. To the authors’ knowledge, however, only T. vulpis infections are reported as causing hyponatremia and hyperkalemia [4–7]. Although this kind of syndrome (pseudo-Addison disease) due to T. vulpis infection has been reported, its pathogenesis is not well understood. The symptoms mimic those of Addison’s disease with waxing and waning weakness. Severe electrolyte disturbance ultimately creates dehydration. The syndrome mimics Addison’s disease in every way except that testing
for Addison’s disease is negative and deworming yields a complete recovery [4–7]. In this case, the first diagnostic suspicion was hyponatremia as a consequence of the gastrointestinal losses, exacerbated by continued drinking and nonosmotic stimulation of antidiuretic hormone (ADH) release in response to volume depletion and hyperkalemia related to metabolic acidosis and decreased urinary excretion of potassium caused by reduced distal renal tubular flow rate [4, 6]. To note that this seems to happen only in the case of *T. vulpis* infection and not in other parasite infections that cause severe diarrhoea such as *Giardia intestinalis* or severe *Ancylostoma caninum* infections. Previous studies have shown that *T. vulpis* is able to induce transmural ileocolitis with severe lesions to the intestine wall and local cellular inflammation and oedema during the prepatent period of infection and fibrosis and mixed cellular inflammation of the terminal ileum, cecum, and proximal colon in response to deep penetration of adult worms, all of which could be responsible for electrolyte imbalance [8, 9].

This case report indicates the need to perform accurate faecal examination even when the dog’s condition does not appear related to a parasitic infection and that dogs should be periodically monitored for helminth infection. In fact, the negative results of the fresh smear faecal examination confirmed the low sensitivity of this technique: 92.7% of whipworm false negatives when comparing direct smear to centrifugation [10].

This case report also suggests that whipworms in dogs, particularly in those cases where the bowel is distended by fluid allowing thorough examination, may be detected by ultrasonography as linear floating echoes, as previously demonstrated in humans [11].

References

[1] J. A. Adler, K. J. Drobatz, and R. S. Hess, “Abnormalities of serum electrolyte concentrations in dogs with hypocorticism,” *Journal of Veterinary Internal Medicine*, vol. 21, no. 6, pp. 1168–1173, 2007.

[2] J. W. Buchanan and J. Bücheler, “Vertebral scale system to measure canine heart size in radiographs,” *Journal of the American Veterinary Medical Association*, vol. 206, no. 2, pp. 194–199, 1995.

[3] S. I. Pak, “The clinical implication of sodium-potassium ratios in dogs,” *Journal of Veterinary Science*, vol. 1, no. 1, pp. 61–65, 2000.

[4] S. P. DiBartola, S. E. Johnson, and D. J. Davenport, “Clinicopathologic findings resembling hypocorticism in dogs with primary gastrointestinal disease,” *Journal of the American Veterinary Medical Association*, vol. 187, no. 1, pp. 60–63, 1985.

[5] T. K. Graves, W. D. Schall, K. Refsal, and R. F. Nachreiner, “Basal and ACTH-stimulated plasma aldosterone concentrations are normal or increased in dogs with trichuriasis-associated pseudohypoadrenocorticism,” *Journal of Veterinary Internal Medicine*, vol. 8, no. 4, pp. 287–289, 1994.

[6] S. P. DiBartola and H. A. De Morais, “Clinical cases,” in *Fluid Therapy in Small Animal Practice*, S. P. Di Bartola, Ed., pp. 548–597, WB Saunders, Philadelphia, Pa, USA, 2nd edition, 2000.

[7] N. Ruckstuhl, A. Hoerauf, K. Tomsa, and C. Reusch, “Pseudohypoadrenocorticism in two Siberian Huskies with intestinal parasitism,” *Schweizer Archiv für Tierheilkunde*, vol. 144, no. 2, pp. 75–81, 2002.

[8] R. Rubin, “Studies on the common whipworm of the dog, *Trichuris vulpis*,” *The Cornell Veterinarian*, vol. 44, no. 1, pp. 36–49, 1954.

[9] W. R. Widmer and H. J. van Kruiningen, “*Trichuris* induced transmural ileocolitis in a dog: an entity mimicking regional enteritis,” *Journal of the American Animal Hospital Association*, vol. 10, no. 6, pp. 581–585, 1974.

[10] M. W. Dryden, P. A. Payne, R. Ridley, and V. Smith, “Comparison of common fecal flotation techniques for the recovery of parasite eggs and oocysts,” *Veterinary Therapeutics*, vol. 6, no. 1, pp. 15–28, 2005.

[11] S. B. Vijayaraghavan, “Sonographic whipworm dance in trichuriasis,” *Journal of Ultrasound in Medicine*, vol. 28, no. 4, pp. 555–556, 2009.