pSTM6-275, a conjugative IncHI2 plasmid of Salmonella that confers antibiotic and heavy metal resistance under changing physiological conditions

Helen Billman-Jacobe a,b,c#, Yuhong Liu a, Ruth Haitez a, Tom Weaver a, Lily Robinson a, Marc Mareda a, and Mike Dyall-Smith a

Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia a; Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia b; National Centre for Antimicrobial Stewardship, Peter Doherty Institute, Parkville, Victoria, Australia c.

Running Head: IncHI2 plasmid structure, transfer and resistance

#Address correspondence to Helen Billman-Jacobe hbj@unimelb.edu.au.

H.B-J and M.D-S contributed equally to this work

Abstract word count: 66
Manuscript word count: 1390
Abstract. Detailed annotation of an IncHI2 plasmid, pSTM6-275, from *Salmonella enterica* serotype 1,4,5,12:i:- TW-Stm6 revealed a composite structure including antimicrobial resistance genes on mobile genetic elements. The plasmid was thermosensitive for transfer to *E.coli* and conferred reduced susceptibility to antibiotics, copper sulphate and silver nitrate. Metal ion susceptibility was dependent on physiological conditions, giving an insight into the environments where this trait might confer a fitness advantage.
Salmonella enterica is a common enteric pathogen of humans and animals, and is found in many environmental and animal reservoirs with zoonotic potential. Distinct clones of multi-drug resistant S. enterica serovar Typhimurium have emerged and dominated in succession (1, 2). A recent clone of S. Typhimurium (SO4698-09) carries a genomic island which contributes to enhanced resistance to copper sulphate, a common animal feed additive (3). We recently reported the genome sequence of S. Typhimurium (SO4698-09), which has the same antigenic formula, phage type and sequence type as strain SO4698-09, and also carries the genomic island, SGI-4 (3-5). The assembled genome of TW-Stm6 comprised a 4,999,862 bp chromosome, a 4 kb MOB0 plasmid (pSTM6-4); and a 275.8 kb IncHI2 plasmid (pSTM6-275). Here we report the detailed annotation of pSTM6-275, its genetic structure, function and transmission of antibiotic and heavy metal resistance genes to other bacteria.

Annotations were revised using EcoGene v3 (www.ecogene.org), UniProt (www.uniprot.org), RFAM (rfam.xfam.org), BLAST (blast.ncbi.nlm.nih.gov) and literature searches. Plasmid typing was performed using PlasmidFinder (cge.cbs.dtu.dk/services/PlasmidFinder-1.3), Plasmid MLST database (pubmlst.org/plasmid), and local searches of custom database sequences and IncHI typing (7). IS elements were typed using ISFinder (https://www-is.biotoul.fr). A diagram of the 275,801 bp plasmid pSTM6-275 (CP019647.1) is shown in Fig. 1A. Many genes were clustered in functional units, such as the ter operon (tellurium resistance); the sil locus (silver efflux), the pco locus (copper efflux) and the transfer regions Tra1/Tra2. Tra2 has an origin of plasmid transfer, oriT; a potential replication terminus (ter) site and a tus gene encoding the replication-termination protein Tus. The plasmid copy number, determined by normalising sequence depth relative to the chromosome was 1.4. In silico typing of plasmid pSTM6-275 indicated it belonged to the IncHI2 (subtype 3), and was...
similar to plasmid IncHI2 reference plasmid R478 (NP_941280.1) (Fig. 1B). BLASTN searches of the GenBank database (Oct 4, 2017) failed to find any other plasmid that matched (≥99% nt identity) more than about 70% of pSTM6-275. Figure 2A depicts regions that are rich in mobile genetic elements, including IS elements, transposons and integrons, and containing multiple resistance genes (blaTEM, strA, strB, sul3, aadA1, aadA2, cmlA, aphA2 and two copies of tetA) encoding resistance to ampicillin, streptomycin, spectinomycin, sulphonamide, trimethoprim, chloramphenicol, kanamycin and tetracycline. Copies of blaTEM, strA, strB, tetB and sul2 occur on the chromosome in SGI-4 (5). The class I integron In27 (dfrA12_gcuF_aadA2_AqacE), encoding resistance to trimethoprim and streptomycin/spectinomycin, also contains a truncated sul1 gene, disrupted by IS26. A second integron, In1412, classified as a novel class I integron (8), was 9240 bp and contained the array estX3_psp_aadA2_cmlA1_aadA1_qacHD4::IS1203 conferring resistance to streptomycin/spectinomycin and chloramphenicol (Fig. 2). A fragment of the macrolide efflux MFS gene mefB (9) and a sul3-element/domain (10) lie proximal to qacH and are flanked by divergent IS26 elements.

A Tn7-family transposon (32.4 kb) carrying silver and copper resistance loci, silESRCFBAGP and pcoGE/ABCDRSE2 (Fig. 2A), occurs between the integrons and is delimited by inverted terminal repeats and flanking 5bp direct repeats (Fig. 1.) Similar elements have been detected in other IncHI2 plasmids from animal-associated bacteria (11). Sil and Pco systems are comprised of metal ion-binding proteins and transporters (12-14). A sil-pco locus with the same gene arrangement also occurs on the TW-Stm6 chromosome in SGI-4, but unlike the plasmid version it lacks Tn7-like msABCD genes and inverted terminal repeats, suggesting a different evolutionary history.
Many IncHI2 plasmids are thermosensitive for transfer, with 27-33°C being the permissive temperature and >37°C non-permissive (15). Since pSTM6-275 has all the genes for proteins required for self-transmission, this function and its thermosensitive character were examined. Plasmid stability and conjugal transfer of pSTM6-275 from Salmonella to E. coli DH5α were tested according to published methods (15) and the results are from two experiments performed in duplicate. Transfer occurred at 1.3 x 10^5 transconjugants per donor at 27°C but no transfer was detected at 37°C. Transconjugants coinherited resistance to ampicillin, sulphonamide, streptomycin, spectinomycin, kanamycin, tetracycline, trimethoprim and chloramphenicol consistent with the plasmid structure. Colonies (n=112) derived from a culture of the transconjugants, grown at 44 °C for 24 hr without antibiotic selection retained all resistance markers, indicating the plasmid was not thermosensitive for maintenance in E. coli. In this respect, pSTM6-275 differs from the reported phenotype of plasmid R478 (15).

Minimum inhibitory concentrations of CuSO₄ and AgNO₃ were determined by agar dilution assays using LB agar (pH 7.2, 25mM HEPES) (11, 13) using Oxoid AnaeroGen™ sachets if required. The sensitivity to of Salmonella TW-Stm6; E. coli DH5α and two E. coli pSTM-275 transconjugants are shown in Table 1. Both transconjugants had the same MICs. The Salmonella donor had a higher AgNO₃ MIC at 27°C (800µM) than 37°C (50µM) and the MIC was not influenced by oxygen availability. The plasmid increased the MIC of AgNO₃ for E. coli from 200 to 800µM at 27°C however this effect was not seen at the higher temperature where the MIC for all strains was 50µM. The MIC to CuSO₄ for E. coli was affected by oxygen. E. coli was most sensitive to CuSO₄ under anaerobic conditions but plasmid-bearing transconjugants were less sensitive possibly due to more efficient efflux.
ST3 IncHI2 plasmids are widely spread in food producing animals (11) and despite their potential to disseminate antimicrobial resistance genes, few complete sequences have been characterised in detail. Our results suggest that transmission of pSTM6-275 is probably restricted to outside a mammalian host given the thermosensitive nature of transfer, suggesting it is well adapted for persistence in the environment. Furthermore, expression of at least some of the metal resistance traits were influenced by physiological conditions. Copper metabolism in enterobacteria is complex, as several genes can be involved, including those involved in transport, oxidation and regulation. In the present study, *E. coli* DH5α was sensitive to 1.56mM CuSO₄ without oxygen and acquisition of pSTM6-275 decreased the sensitivity to 6.25mM under anaerobic conditions. *E. coli* can regulate copper levels by expressing chromosomal genes encoding a periplasmic copper oxidase, CueO, a cytoplasmic copper transporter, CopA and the Cus efflux system (16). In the presence of oxygen and amino acids, copper homeostasis is achieved by CueO oxidation and CopA-mediated efflux. Cus is induced under anaerobic conditions or nutrient limitation and *E. coli* CueO and Cus are not sufficient to confer Cu(I) resistance under anaerobic conditions where nutrients are plentiful (17). *Salmonella* does not have a *cus*-encoded copper efflux pump and relies on CueO and CopA for copper homeostasis (16). CueO is sufficient for low level Cu(I) tolerance and is required for virulence in mice (18). The high level (800µM) and temperature dependence of silver sensitivity shown by TW-Stm6 and *E. coli* pSTM6-275 transconjugants was unexpected. To our knowledge, this has not been previously reported and the mechanism underlying this phenotype is unclear. It may be due to differences in thermoregulation of *sil* gene expression, the effect of temperature on the secondary structure of SilE/PcoE that alter the amount of ion binding or changes in the outer membrane composition (19, 20).
pSTM6-275 carries a novel class I integron, In1412, that is most similar to the sul3-integron type IIIc region of the *E. coli* plasmid pRYC306 (HQ875016.1). To evolve from pRYC306 to pSTM-275, one could hypothesise that (i), an IS440 element inserted into qacH/I; (ii), an IS26 element inserted in *mefB*, in the opposite orientation to the IS26 element near sul3, and (iii), an inversion occurred via the outward facing IS26 elements, splitting the 8bp direct repeats originally on the IS26 near the sul3 gene so they end up on two separate IS26 copies.

IS26 is a frequently occurring and highly active insertion element in the genomes and plasmids of *Salmonella*, commonly mediating recombination events that generate new types or combinations of virulence determinants (21). Recently documented examples include novel plasmids and chromosomal loci (22-24).

The evolution of pSTM6-275 appears to be complex, and the function and regulation of many of its genes remain to be fully characterized, particularly accessory genes such as those involved in resistance, regulatory cross-talk and those specifying uncharacterized proteins with unknown function. Identification of other ST3 IncHI2 plasmids from human, veterinary and environmental sources may provide further insights into the evolution of these plasmids and their role in dissemination of resistance. This work adds to our understanding of the organisation and function of a ST3 IncHI2 plasmid which may confer a fitness advantage for persistence in agricultural effluent.

FUNDING INFORMATION
This research was funded by the NH&MRC through the Centres of Research Excellence programme, grant no. 1079625. Yuhong Liu received a Melbourne Research Scholarship. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

ACKNOWLEDGMENTS

HBJ and MDS designed the research; TW, LR, RH and YL performed the research; HBJ, MDS, YL and RH analysed the results; HBJ and MDS wrote the manuscript which was read, edited and approved by all authors. The authors acknowledge the contribution of the South Australia Research and Development Institute, and the Microbiological Diagnostic Laboratory, University of Melbourne.

REFERENCES

1. Soyer Y, Switt AM, Davis MA, Maurer J, McDonough PL, Schoonmaker-Bopp DJ, Dumas NB, Root T, Warnick LD, Grohn YT, Wiedmann M. 2009. Salmonella enterica serotype 4,5,12:i-: an emerging Salmonella serotype that represents multiple distinct clones. Journal of Clinical Microbiology 47:3546-3556.

2. Garcia P, Malorny B, Rodicio MR, Stephan R, Hachler H, Guerra B, Lucarelli C. 2016. Horizontal acquisition of a multidrug-resistance module (R-type ASSuT) is responsible for the monophasic phenotype in a widespread clone of Salmonella serovar 4,5,12:i-. Frontiers in Microbiology 7:680.

3. Petrovska L, Mather AE, AbuOun M, Branchu P, Harris SR, Connor T, Hopkins KL, Underwood A, Lettini AA, Page A, Bagnall M, Wain J, Parkhill J, Dougan G, Davies R, Kingsley RA. 2016. Microevolution of monophasic Salmonella Typhimurium
during epidemic, United Kingdom, 2005–2010. Emerging Infectious Diseases 22:617-624.

4. Weaver T, Valcanis M, Mercoulia K, Sait M, Tuke J, Kiermeier A, Hogg G, Pointon A, Hamilton D, Billman-Jacobe H. 2017. Longitudinal study of Salmonella 1,4,5,12:i:- shedding in five Australian pig herds. Preventive Veterinary Medicine 136:19-28.

5. Dyall-Smith M, Liu Y, Billman-Jacobe H. 2017. Genome sequence of an Australian monophasic Salmonella enterica subsp. enterica Typhimurium Isolate (TW-Stm6) carrying a large plasmid with multiple antimicrobial resistance genes. Genome Announcements 5:e00793-00717.

6. Orlek A, Stoesser N, Anjum MF, Doumith M, Ellington MJ, Peto T, Crook D, Woodford N, Walker AS, Phan H, Sheppard AE. 2017. Plasmid classification in an era of whole-genome sequencing: Application in studies of antibiotic resistance epidemiology. Frontiers in Microbiology 8:182.

7. Liang QH, Yin Z, Zhao YC, Liang LQ, Feng J, Zhan Z, Wang H, Song YJ, Tong YG, Wu WL, Chen WJ, Wang JL, Lingxiao JAX, Zhou DS. 2017. Sequencing and comparative genomics analysis of the IncHI2 plasmids pT5282-mphA and p112298-cata and the IncHI5 plasmid pYNKP001-dfrA. International Journal of Antimicrobial Agents 49:709-718.

8. Moura A, Soares M, Pereira C, Leitao N, Henriques I, Correia A. 2009. INTEGRALL: a database and search engine for integrons, integrases and gene cassettes. Bioinformatics 25:1096-1098.

9. Curiao T, Canton R, Garcillan-Barcia MP, de la Cruz F, Baquero F, Coque TM. 2011. Association of composite IS26-sul3 elements with highly transmissible IncI1
plasmids in extended-spectrum-beta-lactamase-producing *Escherichia coli* clones from humans. Antimicrobial Agents and Chemotherapy **55:**2451-2457.

10. **Perreten V, Boerlin P.** 2003. A new sulfonamide resistance gene (*sul3*) in *Escherichia coli* is widespread in the pig population of Switzerland. Antimicrobial Agents and Chemotherapy **47:**1169-1172.

11. **Fang LX, Li XP, Li L, Li SM, Liao XP, Sun J, Liu YH.** 2016. Co-spread of metal and antibiotic resistance within ST3-IncHI2 plasmids from *E. coli* isolates of food-producing animals. Scientific Reports **6:**25312.

12. **Randall CP, Gupta A, Jackson N, Busse D, O’Neill AJ.** 2015. Silver resistance in Gram-negative bacteria: a dissection of endogenous and exogenous mechanisms. Journal of Antimicrobial Chemotherapy **70:**1037-1046.

13. **Gupta A, Matsui K, Lo JF, Silver S.** 1999. Molecular basis for resistance to silver cations in *Salmonella*. Nature Medicine **5:**183-188.

14. **Hernandez-Montes G, Arguello JM, Valderrama B.** 2012. Evolution and diversity of periplasmic proteins involved in copper homeostasis in gamma proteobacteria. BMC Microbiology **12:**249–263.

15. **Taylor DE, Levine JG.** 1980. Studies of temperature-sensitive transfer and maintenance of H incompatibility group plasmids Journal of General Microbiology **116:**475-484.

16. **Munson GP, Lam DL, Outten FW, O’Halloran TV.** 2000. Identification of a copper-responsive two-component system on the chromosome of *Escherichia coli* K-12. Journal of Bacteriology **182:**6799-6805.

17. **Fung DKC, Lau WY, Chan WT, Yan A.** 2013. Copper efflux is induced during anaerobic amino acid limitation in *Escherichia coli* to protect iron-sulfur cluster enzymes and biogenesis. Journal of Bacteriology **195:**4556-4568.
Achard MES, Tree JJ, Holden JA, Simpfendorfer KR, Wijburg OLC, Strugnell RA, Schembri MA, Sweet MJ, Jennings MP, McEwan AG. 2010. The multi-copper-ion oxidase CueO of *Salmonella enterica* serovar Typhimurium is required for systemic virulence. *Infection and Immunity* 78:2312-2319.

Asiani KR, Williams H, Bird L, Jenner M, Searle MS, Hobman JL, Scott DJ, Soultanas P. 2016. SilE is an intrinsically disordered periplasmic “molecular sponge”. *Molecular Microbiology* 101:731-742.

Lundrigan MD, Earhart CF. 1984. Gene *envY* of *Escherichia coli* K-12 affects thermoregulation of major porin expression. *Journal of Bacteriology* 157:262-268.

Doublet B, Praud K, Weill F-X, Cloeckaert A. 2009. Association of IS26-composite transposons and complex In4-type integrons generates novel multidrug resistance loci in *Salmonella* genomic island 1. *Journal of Antimicrob Chemother.* 63: 282-9

Boland C, Bertrand S, Mattheus W, Dierick K, Jasson V, Rosseel T, Van Borm S, Mahillon J, Wattiau P. 2015. Extensive genetic variability linked to IS26 insertions in the *fljB* promoter region of atypical monophasic variants of *Salmonella enterica* serovar Typhimurium. *Appl Environ Microbiol.* 81: 3169-75.

García V, García P, Rodríguez I, Rodicio R, Rodicio MR. 2016. The role of IS26 in evolution of a derivative of the virulence plasmid of *Salmonella enterica* serovar Enteritidis which confers multiple drug resistance. *Infect Genet Evol.* 45: 246-249.

Wong, Wong MH, Chan EW, Chen S. 2017. IS26-mediated formation of a virulence and resistance plasmid in *Salmonella* Enteritidis. *J Antimicrob Chemother.* 72: 2750-2754
FIG 1 A. Diagram of plasmid pSTM6-275 (275.8kb). Tracks show (from outermost to centre); a, scale in kbp; b, predicted coding sequences (CDS) of the top (blue) and bottom (black) strands; c, transposons and IS elements (red); d, integrons (green) and Tra regions (grey); e, GC%; f, GC-skew; and g, cumulative GC-skew.

B. Alignment of pSTM6-275 and the IncHI2 reference plasmid R478 (BX664015.1). Regions of nucleotide sequence similarity ≥85% are indicated in red. Backbone regions and some of the more important proteins and loci of pSTM6-275 are indicated at the top.

FIG 2. A, Gene map of the resistance regions of pSTM6-275. Antibiotic-, metal- and disinfectant-resistance genes are clustered into two, nearby regions, 87.1-151.4 kb (upper panel) and 162.1-173.7 kb (lower panel). In each panel, genes and operons are shown above the horizontal line, and IS elements, transposons and integrons are displayed under the line. Integron attC sites are shown as triangles within integron borders. The scale at the top indicates kbp.

B. Comparison of sul3-integron type IIIc region of the E.coli plasmid pRYC306 (HQ875016) with the corresponding region of pSTM6-275. Near identical sequences are shaded red, or grey (for IS26 elements). As indicated in the diagram, the flanking 8bp direct repeats (CTTAGGTC) of pRYC306 IS element IS26 (nt 7321 - 6502) are found split between the two leftmost copies of IS26 in pSTM6-275. A 49 bp sequence, depicted as solid blue arrows close to the horizontal lines, occurs twice in pRYC306 (near IS26 and near sul3) and once in pSTM6-275. Size scales, in kbp, are shown at the top and bottom.
Table 1. Minimal inhibitory concentrations of CuSO₄ (mM) and AgNO₃ (µM)

temp	37°C	37°C	27°C	27°C
oxygen	+	-	+	-
Donorᵃ	50	50	800	800
AgNO₃ Recipientᵇ	50	50	50	50
Transconjugantsᶜ	50	50	800	800
Donorᵃ	12.5	12.5	12.5	12.5
CuSO₄ Recipientᵇ	6.25	1.56	6.26	1.56
Transconjugantsᶜ	6.25	6.25	6.25	6.25

ᵃ Salmonella Typhimurium TW-Stm6,ᵇ E. coli DH5α,ᶜ 2 transconjugants
