SYSTEMS & CONTROL | RESEARCH ARTICLE

Artificial neural networks for predicting the demand and price of the hybrid electric vehicle spare parts

Wafa’ H. AlAlaween, Omar A. Abueed, Abdallah H. AlAlawin, Omar H. Abdallah, Nibal T. Albashabsheh, Esraa S. Abdellatif, and Yousef A. Al-Abdallat

Abstract: The hybrid electric vehicles (HEVs) market has grown tremendously in the past few years which, as a result, has led to an exponential growth in the spare parts (SPs) market. Therefore, there is a strong need, nowadays, to predict the demand as well as the price of these SPs. However, ascertaining such an aim is not as easy as it may seem, this being due to the facts that (i) the demand is highly uncertain as it depends on many uncertain variables, and (ii) the price does not follow the normal value chain methods. In this research work, the artificial neural network (ANN) is utilized to develop models that can map 15 vehicles and SPs-related variables to the demand and the price of the HEV SPs. It has been demonstrated that the ANN models have the ability to predict both the demand and the price of the HEV SPs. In addition, the developed ANN models outperform the linear regression models by minimizing the root mean square error values by approximately 4 and 5 times for the demand and the price, respectively. Neural network-based models have been employed to accurately predict the demand as well as the price of the HEV SPs by mapping them to 15 vehicles and SPs-related variables.

Subjects: Artificial Intelligence; Plant Engineering & Maintenance; Production

Keywords: Artificial neural network; demand; hybrid electric vehicles; price; spare parts

ABOUT THE AUTHOR

Wafa’ H. AlAlaween is currently an Assistant Professor at The University of Jordan. She received her PhD degree from The University of Sheffield, the UK in 2018, and since then she has been teaching various courses related to artificial intelligence and deterministic and stochastic optimization. Her research interests include artificial intelligence, biologically inspired computing and optimization, and fuzzy and neuro fuzzy systems in various applications including manufacturing, pharmaceuticals as well as healthcare. She has published many research papers in reputable journals and conferences. She has been recently working on various projects. One of these projects aims at developing systems-engineering models to predict the demand and the price of the spare parts for the hybrid electric vehicles in Jordan. Researchers from different institutions collaborated to perform such a project.

PUBLIC INTEREST STATEMENT

The hybrid electric vehicles (HEVs) and their spare parts (SPs) markets have grown tremendously in the past few years. Therefore, predicting the demand and the price of these SPs is advantageous. In this research work, the artificial neural network (ANN) is thus utilized to develop models that can map vehicles and SPs-related variables to the demand and the price of the HEV SPs. It has been demonstrated that the ANN models can predict both the demand and the price of the HEV SPs. The developed models represent a promising development in the automotive industry, where such models can be employed to (i) accurately predict the demand and the price of the HEV SPs; (ii) support activities related to warehouse management and inventory control; (iii) support budgeting and procurement planning activities; and (iv) improve the performance of the SPs supply chain.
1. Introduction

Recently, hybrid electric vehicles (HEVs) have attracted a lot of interest, this being due to the fuel economy and the preservation of the environment via minimizing greenhouse emissions. In general, the HEVs are powered by an internal conventional combustion engine and an electric propulsion system (Alalawin et al., 2020). The governments of developed countries have been regarded as pioneers in the promotion of HEVs by enacting legislation to limit the gas emissions of new vehicles (Bennett et al., 2016). Jordan, like many other nations across the world, promotes the use of hybrid vehicles not just to protect the environment but also to reduce the use of fossil fuels (Alalawin et al., 2020). Therefore, the HEVs market has recently grown tremendously which, as a result, has led to an exponential growth in the HEV spare parts (SPs) market (Lorentz et al., 2011). In addition, the availability of the HEV SPs and their reasonable price play a vital role in estimating the demand of the HEVs. Thus, there is a strong need for efficient and effective management of the HEV SPs by being able to predict the demand and the price. However, achieving such a target is considered to be a challenging task. This can be attributed to (i) the uncertainties in predicting the demand of the HEV SPs as it depends on many uncertain factors; and (ii) the fact that the price does not follow the normal value chain methods, this being due to the fact that it is estimated by the different types of maintenance (e.g., preventive and corrective maintenance) (Au-Yong et al., 2016; Goossens & Basten, 2015; Hassan et al., 2012; Roda et al., 2014; Syntetos et al., 2009; Wang, 2012). This has, therefore, urged the need to (i) systematically collect and analyze the HEV SPs; and (ii) develop predictive modelling paradigms that have the ability to successfully predict the demand and the price of the HEV SPs. Predicting the demand and the price of the HEV SPs can be seen in the light of (i) minimizing the logistic cost; (ii) satisfying customer demand; and (iii) reducing the inventory cost of SP companies, in particular (Eachempati et al., 2021; Gu et al., 2015; Zhu et al., 2017).

Many research studies have been devoted to analyzing and classifying the SPs demand (Van der Auweraer et al., 2019). For instance, the SP demand patterns were classified into four categories based on the demand regularity and the various quantities. Such categories are intermittent, lumpy, smooth and erratic (Van der Auweraer et al., 2019). Based on such a classification, various demand forecasting models (e.g., Croston’s, bootstrapping and judgmental forecasting) have hitherto been suggested by literature in this field (Pennings et al., 2017). In general, the forecasting approaches can be categorized into (i) qualitative approaches which, as the name indicates, are based on participant perceptions, experiences and personal judgments; and (ii) quantitative approaches, which are based on numerical calculations (Jonsson & Mattsson, 2009). In addition, the quantitative approaches can also be classified into time-based and casual-based approaches. The former depends on historical data; while the latter depends on explanatory factors (Boylan & Syntetos, 2008). In addition to additive and multiplicative Winter’s approaches, moving average, exponential smoothing as well as double exponential smoothing paradigms have, for instance, been widely utilized in the related literature (Alalaween et al., 2021; Lindsey & Pavur, 2008). Furthermore, the Croston approach, as a powerful method, was also employed to predict the occurrence of the demand at a specific interval via the deployment of the well-known Bernoulli process (Croston, 1972; Rao et al., 1973). Such an approach was, then, improved and revised to consider various cases (Pennings et al., 2017; Syntetos & Boylan, 2005; Teunter et al., 2011).

Recently, Artificial Intelligence (AI) has found its way into many areas including, but not limited to, manufacturing, supply chain, energy efficiency and pharmaceutics (Alalaween et al., 2020). This can be attributed to the recent advances in computing abilities which allow companies to employ such models in their processes such as maintenance planning, budgeting, supply chain and inventory (Alalaween et al., 2021). Moreover, hybrid machine learning algorithms including, but not limited to, the integration of particle swarm optimization and genetic algorithm with the artificial neural network (ANN), have facilitated the development of several industrial domains due to their massive
scalability and reliability at a lower cost (Ahmadi & Chen, 2020; Moosavi et al., 2019). Their applications have expanded beyond the creation of power transformer protection schemes and the petroleum sector, to predicting pandemic outbreaks (Ahmadi, Bahadori, et al., 2015; Ahmadi, Soleimani, et al., 2015; Gambhir et al., 2017; Geethanjali et al., 2008). Therefore, it has also been utilized in the automotive SPs industry. For instance, linear regression was also employed to anticipate the demand and the price of the HEV SPs in Jordan (Alalawin et al., 2020). Likewise, the SPs were classified and evaluated objectively based on their degree of importance, which was a function of eight factors (Zhang et al., 2020). Furthermore, various models (e.g., the autoregressive integrated models of moving average (ARIMA) and the ANN) were employed to predict the monthly demand of the SPs where the results of such models were compared for a transitional company in order to minimize the predicted error (Vargas & Cortés, 2017). Likewise, ANN-based hybrid models (e.g., a radial basis function) were also utilized to anticipate stock prices (Chandar, 2021). Moreover, 8-years time-series data for the logistic department of Bosch Automotive Electronics in Portugal were utilized to develop several models (e.g., support vector regression, AI models, ARIMA and random forest) to predict the automobile demand shifts (Gonçalves et al., 2021). It was shown that the accuracy of the AI models was superior in the long run when compared to the one of the traditional models (e.g., ARIMA). In addition, a faster and simpler model based on machine learning was proposed in order to forecast the intermittent demand of the automotive industry (Lolli et al., 2017). Although it was not computationally expensive, the predictive performance of the proposed model was not as good as the one of the well-known ANN. In addition, a hybrid two-stage model was proposed to predict the lumpy demand of SPs in order to deal with the required computational efforts of the ANN (Rosienkiewicz et al., 2017). In such a model, the simple linear regression model was used in the first stage to predict the demand. When the predictive performance was not as expected, in other words, the error was high, an ANN model was employed in the second stage.

The majority of the predictive models proposed in the related literature have focused on predicting the demand of the SPs and its various types. Therefore, there is a strong need to predict not only the demand of the SPs but also the price as both can determine the demand of the HEVs. Thus, in this research work, a modelling paradigm based on the ANN is employed to predict both the demand and the price of the HEV SPs for the automotive industry in Jordan. Such a model is developed by mapping 15 vehicle types and SP-related variables related to the demand and the price of the HEV SPs. The rest of this paper is structured as follows: Section 2 defines the various ways employed to collect the required data from the automotive industry in Jordan. Section 3 briefly describes the background of the ANN model utilized in this research, whereas Section 4 discusses the results obtained for both the demand and the price of the HEV SPs for the automotive industry in Jordan. Finally, Section 5 concludes the whole paper and presents some future pointers to the research.

2. Research methodology

2.1. Data set

The main purpose of this research paper is to develop predictive models based on the ANN to anticipate the demand and price of the HEV SPs in Jordan. Therefore, the related data were collected from the automotive industry in Jordan. Approximately 65 various types of HEVs can be found in Jordan. However, only four types, namely, Hyundai Sonata, Toyota Camry, Toyota Prius and Ford Fusion, represent more than 66.3% of the total number of the HEVs in Jordan according to the “Drivers and Vehicles Licensing Department” (Alalawin et al., 2020). The collected data are related to the main systems of the HEVs which are the engine, transmission, electrical, chassis and service systems. The data set was collected via (i) questionnaires (i.e. interviewer-administered and online questionnaires); and (ii) data requisition from several resources such as Jordan Free Zone Corporation, local retail stores and repair shops and authorized HEVs spare parts websites. It is worth mentioning at this stage that the data can be divided into two categories; vehicle types and SPs-related variables. In addition to the sources used, Table 1 summarizes the various investigated variables, which represent the inputs of the ANN model developed in this research work.
It is worth emphasizing that the CR was estimated based on a conducted questionnaire, as described in (Saunders et al., 2016). It is worth emphasizing that the CR was estimated based on a conducted questionnaire, as described in (Saunders et al., 2016). The qualitative AHP classification model developed by (Li & Kuo, 2008) was employed to calculate criticality since it categorized spare parts based on a subjective weight. In addition, the FR for each HEV SP was estimated based on an online questionnaire conducted during January 2020 in Jordan. The FR was then estimated as described in (Alalaween et al., 2020), where The FR was estimated as follows:

Table 1. The types of the data collected.

Type of data	Abbreviations
Vehicle types related variables	
SPs type	SP
Original or imitator	OR
New or used	NoU
Selling location	SL
Repair or replacement cost	RC
Repair location	RL
Online price	OP
Criticality	CR
Failure rate in the electric system and consumables of the HEV SPs	FR
SPs related variables	
Country of origin	CO
Number of vehicles	NoV
Vehicle type	VT
Vehicle generation	VG
Vehicle price	VP
Total maintenance average cost	TMC

Table 2. The correlation coefficient values.

Inputs	Demand	Price
Vehicle types related variables		
SP	-0.070	0.441
OR	-0.048	0.102
NoU	0.030	0.180
SL	0.005	0.214
RC	-0.048	0.536
RL	0.005	0.146
OP	-0.026	0.876
CR	-0.033	-0.003
FR	0.210	-0.065
SPs related variables		
CO	0.123	-0.035
NoV	0.531	0.001
VT	-0.018	0.037
VG	-0.043	-0.024
VP	0.016	0.019
TMC	0.112	0.014
The schematic diagram of the artificial neural network.

\[\text{Failure rate} = \frac{x}{y+z} \times 100\% \quad (1) \]

where \(x \) represents the number of failures that occurred to each spare part, \(y \) represents the total number of HEV and \(Z \) represents the total number of years users owned the vehicle. It is noticeable that some of the variables defined in Table 1 are considered to be numerical variables (e.g., NoV, VG, RC, TMC, CR, OP, FR and VP), whereas some of them are considered to be nominal (e.g., VT, CO, OR, NoU, SP, SL and RL). Both the demand and the price of the HEV SPs, as dependent variables, are considered to be numerical variables. Because of the nature of the data, both the investigated variables, as the inputs of the ANN, and the demand and the prices of the SPs, as the outputs of the ANN, were normalized.

Statistical correlation analysis was executed between the vehicle types and the SPs-related variables and the demand and the price of the HEV SPs. In general, the correlation coefficient, as a statistical tool, indicates the strength of the association between two variables. The output values range from \(-1\) to \(1\), indicating a negative or positive association, respectively. A correlation value of \(1\) or \(-1\), or closer to them, indicates a strong linear relationship between the two variables, whereas a value of zero, or closer to zero, means a weak linear relationship between the two variables. Table 2 summarizes the correlation coefficient values. It is noticeable that the vehicle types and the SPs-related variables have different effects on both the demand and price of the HEV SPs. To illustrate, the correlation coefficient, for instance, that represents the strength of the linear relationship between the SP variable and the demand is smaller than the one that represents the strength of the linear relationship between the same variable and the price, in other words, the former linear relationship is weaker than the latter one. It is also apparent that some variables have different nature of the relationships. For example, the relationship between the FR and the demand is a direct one, whereas the relationship between the FR and the price is inverse.

2.2. The artificial neural network

The recent key development of computational efforts has been significantly utilized in several areas including, but not limited to, medicine, logistics and manufacturing (AlAlaween et al., 2021). Such a development has been utilized to employ the data available in developing data-based models that can either replace or complement physical ones in case they are too complex to use or they never exist (AlAlaween et al., 2016). The ANN, as a data-driven model, has been successfully utilized in various disciplines because of its ability to mimic the human way of thinking (Géron, 2019). In general, the ANN consists mainly of three layers, namely, an input layer, a hidden layer and an output layer, as shown in Figure 1. Each layer consists of at least one neuron. For instance, the input and the output layers, as the name indicates, consist of input neurons (i.e. the input variables of the ANN) and the output neurons (i.e. the outputs of...
the ANN), whereas the hidden layer consists of the hidden neurons that usually represent the transfer functions used to map the input variables to the outputs (Alshafiee et al., 2019). It is worth mentioning that various transfer functions (e.g., linear and tangential) have been employed in the related literature (Bishop, 2006). In this research work, the sigmoid function was employed as a transfer function for all the hidden neurons. Such a function can be written as follows (Bishop, 2006):

$$f_i(x) = \frac{1}{1 + e^{-\sum w_{ij}x + w_{oi}}}$$

(2)

where $f_i(x)$ represents the j^{th} transfer function of the j^{th} hidden neuron and x is an n-dimensional input vector (i.e., $x=[x_1, x_2, \ldots, x_n]$). The parameters w_{ij} and w_{oi} represent the coefficient connecting the i^{th} input neuron to the j^{th} hidden neuron and the bias of the j^{th} hidden neuron, respectively. It is worth mentioning that the l^{th} output of the ANN (i.e., the predicted output) is commonly represented as a linear function of the transfer functions in the hidden layer. Therefore, the l^{th} output of the ANN (y_l) can then be written as follows:

$$y_l(x) = \sum_{j=1}^{m} w_{lj}f_i(x) + w_{ol}$$

(3)

where w_{lj} and w_{ol} represent the coefficient connecting the j^{th} hidden neuron to the l^{th} output neuron and the bias, respectively. In this research work, and in order to improve the predictive performance of the ANN, a multi-input single-output (MISO) ANN is employed, in other words, two ANN models were developed for the demand and the price of the HEV SPs.

In general, the numbers of neurons in both input and output layers are usually determined by the under investigation case. However, the number of hidden neurons that need to be nominated is the optimal one that leads to the best predictive performance in terms of the minimum error between the predicted and the target output (AlAlaween et al., 2016). It is worth emphasizing at this stage that the coefficients connecting the input neurons with the hidden neurons and the coefficients connecting the hidden neurons with the output neurons are initialized randomly. Such coefficients are then optimized to minimize the predictive performance error via the use of optimization algorithms. Various optimization algorithms (e.g., Gradient Descent and Scaled Conjugate Gradient) have hitherto been developed and utilized in various disciplines (Bishop,

Figure 2. The root mean square error values at different numbers of epochs for training (—), validation (— —) and testing (— —) sets.
In this research work, Levenberg–Marquardt Algorithm was employed to optimize the ANN coefficients. Various predictive performance measures (e.g., mean square error) can be employed. The root mean square error (RMSE) and the coefficient of determination (R^2), as performance measures, were utilized in this research paper.

3. Analysis, results & discussion
The ANN models were developed, in this research work, to map the demand and the price of the HEV SPs to the vehicle types and SPs-related variables defined in Section 2. The ANN is considered to be one of the best paradigms to model the demand and the price of the HEV SPs in this research paper, this being due to the nature of the inputs investigated. To illustrate, the data set comprises of data for different vehicle types and generations, in addition to the unique parameters of both the vehicles and their spare parts which differ for diverse types and generations. Therefore, the data set is not considered as a time-series data set. Moreover, the seasonality behaviour of the demand was not included in this research study. Therefore, the ANN, as a powerful interpolator, was employed in this research work. For the price of the HEV SPs, the data collected were utilized to develop a MISO ANN model. The data that consist of approximately 7652 data points, were divided randomly into three data sets, namely, training (70%), validation (15%) and testing (15%) sets. Commonly, the training data are used so the model can learn the relationships between its inputs and outputs, and to, accordingly, adjust the connecting coefficients. The validation data are usually employed to evaluate the network generalization and, as a result, to stop the training when its performance stops improving, whereas the testing data are utilized to evaluate the network by assessing its performance on
data that are kept hidden during the training process (AlAlaween et al., 2021). Various numbers of hidden neurons that were in the range of 1 to 20 were tried. The best number of hidden neurons that was finally selected was the one that led to the optimal ANN predictive performance (i.e. minimum error) measured via the RMSE value. For the price of the HEV SPs, the optimal number of hidden neurons was 14. It is worth mentioning at this stage that the training was stopped at 286 epochs (i.e. iterations), where the best validation performance was obtained, as shown in Figure 2. It is noticeable that the RMSE values improved significantly for three data sets during the training process where the Levenberg–Marquardt algorithm was employed.

Figure 3 shows the ANN predictive performance for the price of the HEV SPs for training, validation and testing, where the RMSE values for the training, validation and testing sets are 98, 112 and 123, respectively. It is noticeable that the data points fit adequately around the best fit line. Furthermore, it is apparent that the RMSE values for the validation and testing sets are relatively higher than the training RMSE value, this can indicate an over-training case. However, in this research work, it does not seem to be the case, this is being due to the price values of the HEV SPs in these sets. To illustrate, the number of data points whose values are greater than 6000 to the total number of data points is relatively high in the testing and validation sets, thus, the RMSE value was slightly higher. However, the error values for these points are actually less than 10%. This can be proved by evaluating the R² values which are 0.96, 0.95 and 0.96 for the training, validation and testing sets, respectively.
Similarly, an ANN model was developed for the demand of the HEV SPs. The optimal number of hidden neurons was 9. The training process was stopped at 138 epochs where the best predictive performance was obtained. The ANN predictive performance for the demand of the HEV SPs for training, validation and testing is presented in Figure 4, where the RMSE values for the training, validation and testing sets are 43, 34 and 42, respectively. It is also apparent that the data points presented in Figure 4 fit adequately around the best fit line. Furthermore, it is noteworthy that the RMSE value for the validation set is smaller when it is compared to the ones for the training and testing sets, this being due to the demand values of the HEV SPs in the validation set. It is worth mentioning that the R^2 values for the training, validation and testing are 0.97, 0.97 and 0.96, respectively. Based on these values, the overfitting phenomenon was not noticed in this research paper.

For comparison purposes, the performance measures of the ANN models developed in this research work for the demand and the price of the HEV SPs were compared to the ones of the linear regression models developed in (Alalowin et al., 2020). Table 3 summarizes the performance measures represented by the RMSE and R^2 values of the ANN and linear regression models developed for both the demand and the price of the HEV SPs. For the price of the HEV SPs, it is demonstrated that the ANN model outperformed the linear regression model, with an overall improvement value of approximately 21% in R^2. In addition, the RMSE value of the ANN is approximately 5 times better than that of the linear regression. Such a significant improvement can indicate that the relationships between the 15 investigated inputs and the price of the HEV SPs can be nonlinear. It can also be noted that the linear regression model failed to represent the complex nonlinear relationships between the investigated inputs and the demand of the HEV SPs, and failed to take into account the interrelationships among the investigated inputs. This can be demonstrated by the estimated RMSE and R^2 values for such a model, where the R^2 is approximately zero.

In summary, the ANN was successfully employed to develop models that can map the variables that are related to the SPs and the types of vehicles to the price and demand of the HEV SPs. The developed models represent a promising development in the automotive industry, where such models can be employed to (i) accurately predict the demand and the price of the HEV SPs; (ii) support activities related to warehouse management and inventory control; (iii) support budgeting and procurement planning activities; and (iv) improve the performance of the SPs supply chain.

4. Conclusions
The demand and the price of the spare parts (SPs) of the hybrid electric vehicles (HEV) play an important role in determining the demand of the HEVs. However, predicting the demand and the price of the HEV SPs is not a trivial task because the demand is affected by many uncertain variables and the price does not follow the normal value chain methods. In this paper, the artificial neural network (ANN) was, therefore, utilized to represent both the demand and the price of the HEV SPs as functions of 15 vehicles and SPs related variables. The two developed ANN models were able to successfully predict the demand and the price of the HEV SPs. In addition, they outperformed the linear regression models with

\begin{table}[h]
\centering
\caption{The models’ performances represented by RMSE and R^2}
\begin{tabular}{|l|c|c|}
\hline
\textbf{Models} & \textbf{Output} & \\
 & \textbf{Demand} & \textbf{Price} \\
\hline
Linear Regression & \\
R^2 & 0.03 & 0.79 \\
RMSE & 196 & 555 \\
\hline
Artificial Neural Network & \\
R^2 & 0.97 & 0.96 \\
& (0.97, 0.97, 0.96)* & (0.96, 0.95, 0.96)* \\
RMSE & 43 & 99 \\
& (43, 34, 42)* & (98, 112, 123)* \\
\hline
\end{tabular}
\footnotesize{*Represents the values of the training, validation and testing sets.}
\end{table}
a considerable overall improvement. Therefore, the developed ANN models can be considered to be a promising development in the automotive industry, as they can be utilized to (i) support activities related to warehouse management and inventory control; (ii) support budgeting and procurement planning activities; and (iii) improve the performance of the SPs supply chain.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author details
Wafa’ H. AlAlaween
E-mail: w.alalaween@ju.edu.jo
ORCID ID: http://orcid.org/0000-0001-8661-3606
Omar A. Abudeed
E-mail: amr180688@ju.edu.jo
Abdallah H. AlAlawin
E-mail: abdallah.ab@hu.edu.jo
Omar H. Abdallah
E-mail: ohalalaween@gmail.com
Nidal T. Albashabsheh
E-mail: n.albashabsheh@ju.edu.jo
Essa S. AbdelAll
E-mail: essaal@just.edu.jo
Yousef Al-Abdallat
E-mail: abdallat@ju.edu.jo
1 Department of Industrial Engineering, the University of Jordan, Amman, Jordan.
2 Department of Industrial Engineering, Jordan University of Science and Technology, Jordan.
3 Dnata, Queen Alia Airport, Amman, Jordan.
4 Department of Industrial Engineering, Jordan University of Science and Technology, Jordan.

Disclosure statement
No potential conflict of interest was reported by the author(s).

Citation information
Cite this article as: Artificial neural networks for predicting the demand and price of the hybrid electric vehicle spare parts, Wafa’ H. AlAlaween, Omar A. Abudeed, Abdallah H. AlAlawin, Omar H. Abdallah, Nibal T. Albashabsheh, Essa S. AbdelAll & Yousef A. Al-Abdallat, Cogent Engineering (2022), 9: 2075075.

References
Ahmadi, M.-A., Bahadori, A., & Shadizadeh, S. R. (2015). A rigorous model to predict the amount of dissolved calcium carbonate concentration throughout oil field brines: Side effect of pressure and temperature. Fuel, 139, 154–159. https://doi.org/10.1016/j.fuel.2014.08.044
Ahmadi, M. A., Soleimani, R., Lee, M., Kashihao, T., & Bahadori, A. (2015). Determination of oil well production performance using artificial neural network (ANN) linked to the particle swarm optimization (PSO) tool. Petroleum, 1(2), 118–132. https://doi.org/10.1016/j.petlm.2015.06.004
Ahmadi, M., & Chen, Z. (2020). Machine learning-based models for predicting permeability impairment due to scale deposition. Journal of Petroleum Exploration and Production Technology, 10(7), 2873–2884. https://doi.org/10.1007/s13202-020-00941-1
AlAlaween, W. H., Mahfouf, M., & Salman, A. D. (2016). Predictive modelling of the granulation process using a systems-engineering approach. Powder Technology, 302, 265–274. https://doi.org/10.1016/j.powtec.2016.08.049
AlAlaween, W. H., Khorsheed, B., Mahfouf, M., Reynolds, G. K., & Salman, A. D. (2020). An interpretable fuzzy logic based data-driven model for the twin screw granulation process. Powder Technology, 364, 135–144. https://doi.org/10.1016/j.powtec.2020.01.052
AlAlaween, W. H., AlAlawin, A. H., Mahfouf, M., Abdallah, O. H., Shboul, M. A., Mustafa, M. F., & Keshavarz-Ghoraboe, M. (2021). A new framework for warehouse assessment using a Genetic-Algorithm driven analytic network process. PLOS ONE, 16(9), 1–16. https://doi.org/10.1371/journal.pone.0256999
Alalawin, A., Arabiyat, L. M., Alalaween, W., Qamar, A., & Mukattash, A. (2020). Forecasting vehicle spare parts price and demand. Journal of Quality in Maintenance Engineering, 27(3), 483–499. https://doi.org/10.1108/JQME-03-2020-0019
Alshofiee, M., Wafa’H. A., Markl, D., Soundaranathan, M., Almajaan, A., Wolsten, K., Blunt, L., & Asare-Addo, K. (2020). A predictive integrated framework based on the radial basis function for the modelling of the flow of pharmaceutical powders. International Journal of Pharmaceutics, 568, 118542. https://doi.org/10.1016/j.ijpharm.2019.118542
Au-Yong, C. P., Ali, A. S., & Ahmad, F. (2016). Enhancing building maintenance cost performance with proper management of spare parts. Journal of Quality in Maintenance Engineering, 22(1), 51–61. https://doi.org/10.1108/JQME-01-2015-0001
Bennett, R., Kotsas, R., & Shaw, S. (2016). Factors potentially affecting the successful promotion of electric vehicles. Journal of Social Marketing, 6(1), 62–82. https://doi.org/10.1108/JSOCM-08-2015-0039
Bishop, C. M. (2006). Pattern recognition. Machine Learning, 128(9).
Boylan, J. E., & Syntetos, A. A. (2008). Forecasting for inventory management of service parts. In Complex system maintenance handbook (pp. 479–506). London: Springer.
Chandar, S. K. (2021). Grey Wolf optimization-Elman neural network model for stock price prediction. Soft Computing, 25(1), 649–658. https://doi.org/10.1007/s00500-020-05174-2
Croston, J. D. (1972). Forecasting and stock control for intermittent demands. Journal of the Operational Research Society, 23(3), 289–303. https://doi.org/10.1057/jors.1972.50
Echempati, P., Srivastava, P. R., Kumar, A., Tan, K. H., & Gupta, S. (2021). Validating the impact of accounting disclosures on stock market: A deep neural network approach. Technological Forecasting and Social Change, 170, 120903. https://doi.org/10.1016/j.techfore.2021.120903
Gambhir, S., Malik, S. K., & Kumar, Y. (2017). PSO-ANN based diagnostic model for the early detection of dengue disease. New Horizons in Translational Medicine, 6(1–4), 1–8. https://doi.org/10.1016/j.nhtm.2017.10.001
Geethanjali, M., Slocchon, S. M. R., & Bhavani, R. (2008). PSO trained ANN-based differential protection scheme for power transformers. Neurocomputing, 71 (4–6), 904–918. https://doi.org/10.1016/j.neucom.2007.02.014
Géron, A. (2013). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. O'Reilly Media,
Goñiñaves, J. N., Cortez, P., Carvalho, M. S., & Frazão, N. M. (2021). A multivariate approach for multi-step demand forecasting in assembly industries: Empirical evidence from an automotive supply chain. Decision Support Systems, 142, 113452. https://doi.org/10.1016/j.dss.2020.113452

Goossens, A. J., & Basten, R. J. (2015). Exploring maintenance policy selection using the analytic hierarchy process; an application for naval ships. Reliability Engineering & System Safety, 142, 31–41. https://doi.org/10.1016/j.ress.2015.04.014

Gu, J., Zhang, G., & Li, K. W. (2015). Efficient aircraft spare parts inventory management under demand uncertainty. Journal of Air Transport Management, 42, 101–109. https://doi.org/10.1016/j.jairtraman.2014.09.006

Hasson, J., Khan, F., & Hasan, M. (2012). A risk-based approach to manage non-repairable spare parts inventory. Journal of Quality in Maintenance Engineering, 18(3), 344–362. https://doi.org/10.1108/13552511211265938

Jonsson, P., & Mattsson, S.-A. (2009). Manufacturing planning and control. Li, S., & Kuo, X. (2008). The inventory management system for automobile spare parts in a central warehouse. Expert Systems with Applications, 34(2), 1144–1153. https://doi.org/10.1016/j.eswa.2006.12.003

Lindsay, M., & Pavur, R. (2008). A comparison of methods for forecasting intermittent demand with increasing or decreasing probability of demand occurrences. In Advances in business and management forecasting. Emerald Group Publishing Limited.

Lolli, F., Gamberini, R., Regattieri, A., Balugani, E., Gatos, T., & Guci, S. (2017). Single-hidden layer neural networks for forecasting intermittent demand. International Journal of Production Economics, 183, 116–128. https://doi.org/10.1016/j.ijpe.2016.10.021

Lorentz, H., Shi, Y., Hilimola, O. P., Srai, J., de Souza, R., Tan, A. W. K., Othman, H., & Garg, M. (2011). A proposed framework for managing service parts in automotive and aerospace industries. Benchmarking: An International Journal, 18(6), 769–782. https://doi.org/10.1108/14635771111180699

Moosavi, S. R., Wood, D. A., Ahmadi, M. A., & Choubineh, A. (2019). ANN-based prediction of laboratory-scale performance of CO2-foam flooding for improving oil recovery. Natural Resources Research, 28(6), 1619–1637. https://doi.org/10.1007/s11053-019-09459-8

Pennings, C. L., Van Dolen, J., & van der Laan, E. A. (2017). Exploiting elapsed time for managing intermittent demand for spare parts. European Journal of Operational Research, 258(3), 958–969. https://doi.org/10.1016/j.ejor.2016.09.017

Rao, C. R., Rao, C. R., Statistikker, M., Rao, C. R., & Rao, C. R. (1973). Linear statistical inference and its applications (Vol. 2). Wiley New York.

Roda, L., Macchi, M., Fumagalli, L., Vivero, P., & Crespo Márquez, Benito J. Lung, Marco Macchi and Khairy Kobbacy, A. (2014). A review of multi-criteria classification of spare parts: From literature analysis to industrial evidences. Journal of Manufacturing Technology Management, 25(4), 528–549. https://doi.org/10.1108/JMTM-04-2013-0038

Rosiecinwicz, M., Chlebus, E., & Detyka, J. (2017). A hybrid spares demand forecasting method dedicated to mining industry. Applied Mathematical Modelling, 49, 87–107. https://doi.org/10.1016/j.apm.2017.04.027

Saunders, M., Lewis, P., & Thornhill, A. (2016). Research methods for business students (Seventh). Pearson Education.

Syntetos, A. A., & Boylan, J. E. (2005). The accuracy of intermittent demand estimates. International Journal of Forecasting, 21(2), 303–314. https://doi.org/10.1016/j.ijforecast.2004.10.001

Syntetos, A. A., Keyes, M., & Babai, M. (2009). Demand categorisation in a European spare parts logistics network. International Journal of Operations & Production Management, 29(3), 292–316. https://doi.org/10.1108/01443570910939005

Teunter, R. H., Syntetos, A. A., & Babai, M. Z. (2011). Intermittent demand: Linking forecasting to inventory obsolescence. European Journal of Operational Research, 214(3), 606–615. https://doi.org/10.1016/j.ejor.2011.05.018

Van der Auweraer, S., Boute, R. N., & Syntetos, A. A. (2019). Forecasting spare part demand with installed base information: A review. International Journal of Forecasting, 35(1), 181–196. https://doi.org/10.1016/j.ijfor.2018.09.002

Vargas, C. G., & Cortés, M. E. (2017). Automobile spare-parts forecasting: A comparative study of time series methods. International Journal of Automotive and Mechanical Engineering, 14(1), 3898–3912. https://doi.org/10.15282/ijame.14.2017.0317

Wang, W. (2012). A stochastic model for joint spare parts inventory and planned maintenance optimisation. European Journal of Operational Research, 216(1), 127–139. https://doi.org/10.1016/j.ejor.2011.07.031

Zhang, S., Qin, X., Hu, S., Zhang, Q., Dong, B., & Zhao, J. (2020). Importance degree evaluation of spare parts based on clustering algorithm and back-propagation neural network. Mathematical Problems in Engineering, 2020. https://doi.org/10.1155/2020/6161825

Zhu, S., Dekker, R., Van Jaarsveld, W., Renjie, R. W., & Koning, A. J. (2017). An improved method for forecasting spare parts demand using extreme value theory. European Journal of Operational Research, 261(1), 169–181. https://doi.org/10.1016/j.ejor.2017.01.053
