Restoration of the Knee Medial Collateral Ligament and Complete Soft-tissue Coverage After Medial Open-Wedge High Tibial Osteotomy

Mikiko Handa, M.D., Tsuneari Takahashi, M.D., Ph.D., Yukinori Hayashi, M.D., Ph.D., and Katsushi Takeshita, M.D., Ph.D.

Abstract: High tibial osteotomy (HTO) is used in the treatment of knee osteoarthritis. This surgical procedure is indicated in patients with medial osteoarthritis who are relatively young and active and have a good range of motion. In most medial open-wedge HTO cases, the fascia, medial collateral ligament (MCL), and part of the knee joint capsule are carefully separated and moved to expose the osteotomy site, but many patients experience postoperative swelling and pain in the affected limb due to bleeding from the osteotomy site and MCL failure. We have developed a method of osteotomy followed by a restoration of the MCL to its anatomic position and complete soft-tissue coverage of the osteotomy. This Technical Note aims to provide a comprehensive description of the employment of a soft-tissue envelope for the MOW-HTO protection.

Surgical Technique (With Video Illustration)

This technique can be carried out under local or general anesthesia and does not require a pneumatic tourniquet. The patient is placed in the supine position on a radiolucent table with lateral thigh support. The affected lower limb is sterilized, and standard anterolateral and anteromedial portals are created for
a routine arthroscopic evaluation. The concomitant meniscal and chondral injuries are treated. The knee joint line is identified by palpation and a curved oblique skin incision is made, extending from the posteromedial corner of the proximal tibia to the insertion site of the pes anserine tendon. The skin incision is curved rather than straight as this helps to reduce the risk of postoperative infection. Care is taken to detect all branches of the descending genicular artery. These are cauterized during the separation of subcutaneous tissue and sartorius fascia. The affected knee is placed in a slightly flexed position to maximize the visibility of the lateral joint line. The gracilis and semitendinosus tendons are then identified and scooped with a Kelly clamp and wet gauze. The distal attachments of these 2 tendons are left connected to the proximal tibia. The periosteum and medial collateral ligament (MCL) are partially detached dorsally from the border of the knee joint capsule to preserve them during the osteotomy (Fig 1). They will later be returned before plate fixation. A retractor is inserted between the MCL and the proximal tibia to protect the neurovascular bundles (Fig 2). The tip of the first Kirschner wire is inserted 4 to 4.5 cm below the medial joint line between the 2 tendons (Fig 3). A second Kirschner wire is inserted parallel to the first under fluoroscopic guidance (Fig 4). To create a lateral bone hinge, a cut is made with a bone saw that is 5 mm less than the depth of the wires. Furthermore, it is important to ensure that there is sufficient cranial space for the locking bolts of the plate fixator. At this point, an anterior ascending osteotomy is performed at an angle of 110° to the horizontal saw cut. The osteotomy ends behind the patellar tendon insertion. The width of the tuberosity segment is set to at least 1.5 cm (Fig 5). The horizontal osteotomy is gradually opened to the desired correction angle (Fig 6). To minimize tibial slope alteration, a spreader is inserted as close to the posterior cortex as possible. With the spreader in place, the Mikulicz line is checked using a long alignment rod to determine the correction angle. Axial pressure is applied to the calcaneus to reproduce loading conditions. A β-tricalcium phosphate (β-TCP) block is cut into a trapezoid shape to a size appropriate to the amount of correction needed at the osteotomy site (Fig 7). The detached MCL and the hamstring tendons are replaced in their original anatomical

Fig 1. The patient with left knee osteoarthritis is placed in the supine position on a radiolucent table. After skin incision, the sartorius fascia is unfolded, and the gracilis (G) tendon and semitendinosus (ST) tendon are identified. Wet gauze is applied over the G and ST tendons to expose the shallow layer of the medial collateral ligament (MCL) and the joint capsule. We enter the shallow layer of MCL at the border between the joint capsule and the MCL. White arrows indicate G and ST tendons. Dotted line indicates the border between the joint capsule and the MCL. Yellow arrow indicates entry point. Black arrows indicate MCL and joint capsule.

Fig 2. Avoiding the shallow layer of the left medial collateral ligament, a retractor is inserted dorsally into the posterior cortex of the left tibia. White arrows indicate G tendon and ST tendon. (G, gracilis; ST, semitendinosus.)

Fig 3. Under fluoroscopic guidance, a metal ruler is aligned with the joint plane to mark the point 45 mm distal to it. This will be the osteotomy line. White arrow indicates osteotomy point.
positions. The fascia and hamstring tendons are sutured in place to completely cover the osteotomy site (Fig 8). A TOMOFIX (DePuy Synthes) medial high tibial plate is applied to the medial side of the proximal tibia and the intraoperative mechanical axis of the lower limb is set at 55% and checked using a long alignment rod (Fig 9 and Video 1). Finally, each layer of soft tissue and skin is closed. The advantages and disadvantages of this technique are shown in Table 1.

Postoperative Rehabilitation

Subsequent to this procedure, a postoperative rehabilitation protocol must be instigated. This begins with muscle-strengthening exercises, including quadriceps settings and straight leg lifts. These are begun immediately and gradually increased over time. Range-of-motion exercises are allowed a day after surgery. Partial weight-bearing is allowed at 2 weeks and full weight-bearing without crutches 4 weeks postoperatively. Jogging is permitted after 12 weeks. Squatting and sporting activities are not permitted until at least 6 months after surgery.

Discussion

In this Technical Note, we have described a MOW-HTO technique in which the osteotomy site is enveloped in soft tissue. This is achieved by

Fig 4. Two Kirschner wires are inserted to fix the guide to the marked osteotomy site. The wire is used to make a hole in the cortical bone to create the osteotomy line. Dotted line indicates osteotomy line.

Fig 5. The anterior ascending osteotomy line is marked 15 mm posterior to the left tibial ridge. Black dotted line indicates tibial tuberosity. White dotted line indicates anterior ascending osteotomy line.

Fig 6. The osteotomy is performed proximal to the guide pin. The guide pin is removed before using the bone saw. After confirming by fluoroscopy that the bone saw is correctly placed, the osteotomy is performed carefully. White dotted line indicates osteotomy line.
separating the shallow layer of the MCL before osteotomy, protecting it while the osteotomy is performed, and then suturing the MCL back into position, covering the osteotomy site.

The HTO is an effective surgical treatment for relatively young patients with knee osteoarthritis. The procedure uses osteotomy of the tibia to correct the Mikulicz line. This reduces medial compartment pressure on the knee joint and alleviates pain. In most MOW-HTO cases, the fascia, MCL, and part of the knee joint capsule are carefully separated and moved to expose the osteotomy site. Releasing or resecting the shallow layer of the MCL allows alignment to be corrected.16 Yet, despite the advantages, many patients experience postoperative swelling and pain in the affected limb due to bleeding from the osteotomy site. There have also been cases reported in which excessive intraoperative release of the MCL has resulted in postoperative MCL insufficiency and external deformity due to altered collateral ligament balance.17 Sasaki et al.18 have described a similar technique in which the osteotomy site is covered using the deep fascia. Our surgical technique involves repairing not only the deep fascia, but also the pes anserinus and the shallow MCL layer. Maximum possible soft-tissue repair reduces postoperative swelling of the affected limb and promotes long-term bone healing by preventing bleeding from the osteotomy site. This also helps to maintain periosteal blood flow.19,20 This method cannot be used in cases in which the soft tissue around the pes anserinus is severely damaged intraoperatively or the correction angle is great. In future research, we hope to determine the maximum correction angle at which soft tissue repair and full coverage are possible.

Fig 7. After the osteotomy, fluoroscopy was used with a long alignment rod to ensure correct alignment. Two β-TCP blocks of the appropriate size for the amount of correction required were inserted. White arrow indicates β-TCP. (β-TCP, β-tricalcium phosphate.)

Fig 7. After the osteotomy, fluoroscopy was used with a long alignment rod to ensure correct alignment. Two β-TCP blocks of the appropriate size for the amount of correction required were inserted. White arrow indicates β-TCP. (β-TCP, β-tricalcium phosphate.)

Fig 9. A cross-linked plate is placed over the periosteum and fixed with 8 locking screws. The osteotomy site is completely covered by the periosteum, and periosteal blood flow is preserved. White arrow indicates completely covered osteotomy site. Yellow arrow indicates TOMOFIX anatomical medial high tibial plate.

Fig 9. A cross-linked plate is placed over the periosteum and fixed with 8 locking screws. The osteotomy site is completely covered by the periosteum, and periosteal blood flow is preserved. White arrow indicates completely covered osteotomy site. Yellow arrow indicates TOMOFIX anatomical medial high tibial plate.

Table 1. Advantages and Disadvantages of Intraoperative Soft-Tissue Envelopment for the Preservation of Medial Open-Wedge High Tibial Osteotomies

Advantages	Disadvantages
Allows adequate dissection of the sartorius fascia	Soft-tissue damage may occur during osteotomy
Separates the shallow and deep layers of the MCL	Risk of postoperative MCL insufficiency
Sutures can be placed with the shallow layer of the MCL pulled up	
Maintains periosteal blood flow	
Reduces postoperative wound swelling and pain	

MCL, medial collateral ligament.
References
1. Amendola A, Bonasia DE. Results of high tibial osteotomy: Review of the literature. *Int. Orthop* 2010;34: 155-160.
2. Kumagai K, Akamatsu Y, Kobayashi H, Kusayama Y, Koshino T, Saito T. Factors affecting cartilage repair after medial opening-wedge high tibial osteotomy. *Knee Surg Sports Traumatol Arthrosc* 2017;25:779-784.
3. Jildeh TR, Comfort SM, Peebles AM, Powell SN, Provencher MT. Treatment of malalignment and cartilage injury: High tibial osteotomy with a concomitant osteochondral allograft to the medial femoral condyle and lateral and medial partial meniscectomy. *Arthrosc Tech* 2022;11:e623-e630.
4. Akiyama T, Sasaki A, Sugita T, Itaya N, et al. A right angle guide for distal tuberosity osteotomy with medial open wedge high tibial osteotomy for varus knee osteoarthritis. *Arthrosc Tech* 2021;10:e1007-e1016.
5. Grundnes O, Reikeras O. Blood flow and mechanical properties of healing bone. Femoral osteotomies studied in rats. *Acta Orthop Scand* 1992;63:487-491.
6. Smith SR, Bronk JT, Kelly PJ. Effect of fracture fixation on cortical bone blood flow. *J Orthop Res* 1990;8:471-478.