Gaussian random projections for Euclidean membership problems

Vu Khac Ky, Pierre-Louis Poirion, Leo Liberti

CNRS LIX, École Polytechnique, F-91128 Palaiseau, France
Email: vu, poirion, liberti@lix.polytechnique.fr

November 19, 2015

Abstract

We discuss the application of random projections to the fundamental problem of deciding whether a given point in a Euclidean space belongs to a given set. We show that, under a number of different assumptions, the feasibility and infeasibility of this problem are preserved with high probability when the problem data is projected to a lower dimensional space. Our results are applicable to any algorithmic setting which needs to solve Euclidean membership problems in a high-dimensional space.

1 Introduction

Random projections are very useful dimension reduction techniques which are widely used in computer science [7, 13]. We assume we have an algorithm A acting on a data set X consisting of n vectors in \mathbb{R}^m, where m is large, and assume that the complexity of A depends on m and n in a way that makes it impossible to run A sufficiently fast. A random projection exploits the statistical properties of some random distribution to construct a mapping which embeds X into a lower dimensional space \mathbb{R}^k (for some appropriately chosen k) while preserving distances, angles, or other quantities used by A.

One striking example of random projections is the famous Johnson-Lindenstrauss lemma [9]:

1.1 Theorem (Johnson-Lindenstrauss Lemma)

Let X be a set of m points in \mathbb{R}^m and $\varepsilon > 0$. Then there is a map $F: \mathbb{R}^m \to \mathbb{R}^k$ where k is $O(\frac{\log m}{\varepsilon^2})$, such that for any $x, y \in X$, we have

$$(1 - \varepsilon)\|x - y\|_2^2 \leq \|F(x) - F(y)\|_2^2 \leq (1 + \varepsilon)\|x - y\|_2^2.$$

(1)

Intuitively, this lemma claims that X can be projected in a much lower dimensional space whilst keeping Euclidean distances approximately the same. The main idea to prove Thm. 1.1 is to construct a random linear mapping T (called JL random mapping onwards), sampled from certain distribution families, so that for each $x \in \mathbb{R}^m$, the event that

$$(1 - \varepsilon)\|x\|_2^2 \leq \|T(x)\|_2^2 \leq (1 + \varepsilon)\|x\|_2^2$$

(2)

Supported by a Microsoft Research Ph.D. fellowship.
occurs with high probability. By Eq. (2) and the union bound, it is possible to show the existence of a map F with the stated properties (see [2, 4]).

In this paper we employ random projections to study the following general problem:

Euclidean Set Membership Problem (ESMP). Given $p \in \mathbb{R}^m$ and $X \subseteq \mathbb{R}^m$, decide whether $p \in X$.

This is a fundamental class consisting of many problems, both in \mathbf{P} (e.g. the Linear Feasibility Problem (LFP)) and \mathbf{NP}-hard (e.g. the Integer Feasibility Problem (IFP), which can naturally model sat, and also see [15]).

In this paper, we use a random linear projection operator T to embed both p and X to a lower dimensional space, and study the relationship between the original membership problem and its projected version:

Projected ESMP (PESMP). Given p, X, T as above, decide whether $T(p) \in T(X)$.

Note that, when $p \in X$, the fact that $T(p) \in T(X)$ follows by linearity of T. We are therefore only interested in the case when $p \notin X$, i.e. we want to estimate $\text{Prob}(T(p) \notin T(X))$, given that $p \notin X$.

1.1 Previous results

Random projections applying to some special cases of membership problems have been studied in [11], where we exploited some polyhedral structures of the problem to derive several results for polytopes and polyhedral cones. In the case X is a polytope, we obtained the following result.

1.2 Proposition ([11])

Given $a_1, \ldots, a_n \in \mathbb{R}^m$, let $C = \text{conv}\{a_1, \ldots, a_n\}$, $b \in \mathbb{R}^m$ such that $b \notin C$, $d = \min_{x \in C} \|b - x\|$ and $D = \max_{1 \leq i \leq n} \|b - a_i\|$. Let $T : \mathbb{R}^m \rightarrow \mathbb{R}^k$ be a JL random mapping. Then

$$\text{Prob}(T(b) \notin T(C)) \geq 1 - 2n^2e^{-C(\varepsilon^2 - \varepsilon^3)k}$$

for some constant C (independent of m, n, k, d, D) and $\varepsilon < \frac{d^2}{2n}$. If X is a polyhedral cone, we obtained the following result.

1.3 Proposition ([11])

Given $b, a_1, \ldots, a_n \in \mathbb{R}^m$ of norms 1 such that $b \notin C = \text{cone}\{a_1, \ldots, a_n\}$, let $d = \min_{x \in C} \|b - x\|$ and $T : \mathbb{R}^m \rightarrow \mathbb{R}^k$ be a JL random mapping. Then:

$$\text{Prob}(T(b) \notin T(C)) \geq 1 - 2n(n + 1)e^{-C(\varepsilon^2 - \varepsilon^3)k}$$

for some constant C (independent of m, n, k, d), where $\varepsilon = \frac{d^2}{\mu_A^2 + 2\sqrt{1 - d^2} \mu_A + 1}$,

$$\mu_A = \max\{\|x\|_A \mid x \in \text{cone}(a_1, \ldots, a_n) \land \|x\| \leq 1\},$$

and $\|x\|_A = \min\{\sum_i \theta_i \mid \theta \geq 0 \land x = \sum_i \theta_i a_i\}$ is the norm induced by $A = (a_1, \ldots, a_n)$.
We also recall the following Lemma, useful for the integer case.

1.4 Lemma ([11])
Let \(T : \mathbb{R}^m \to \mathbb{R}^k \) be a JL random mapping, let \(b, a_1, \ldots, a_n \in \mathbb{R}^m \) and let \(X \subseteq \mathbb{R}^m \) be a finite set. Then if \(b \neq \sum_{i=1}^{m} y_i a_i \) for all \(y \in X \), we have

\[
\text{Prob} \left(\forall y \in X \mid T(b) \neq \sum_{i=1}^{m} y_i T(a_i) \right) \geq 1 - 2|X|e^{-Ck};
\]

for some constant \(C > 0 \) (independent of \(m, k \)).

1.2 New results

In this paper, we consider the general case where the data set \(X \) has no specific structure, and use Gaussian random projections in our arguments to obtain some results about the relationship between ESMP and PESMP.

In the case when \(X \) is at most countable (i.e. finite or countable), using a straightforward argument, we prove that these two problems are equivalent almost surely. However, this result is only of theoretical interest due to round-off errors in floating point operations, which make its practical application difficult. We address this issue by introducing a threshold \(\delta > 0 \) with a corresponding Threshold ESMP (TESMP): if \(\Delta \) is the distance between \(T(p) \) and the closest point of \(T(X) \), decide whether \(\Delta \geq \delta \).

In the case when \(X \) may also be uncountable, we employ the doubling constant of \(X \), i.e. the smallest number \(\lambda_X \) such that any closed ball in \(X \) can be covered by at most \(\lambda_X \) closed balls of half the radius. Its logarithm \(\log_2 \lambda_X \) is called doubling dimension of \(X \). Recently, the doubling dimension has become a powerful tool for several classes of problems such as nearest neighbor [10, 8], low-distortion embeddings [3], clustering [12].

We show that we can project \(X \) into \(\mathbb{R}^k \), where \(k = O(\log_2 \lambda_X) \), whilst still ensure the equivalence between ESMP and PESMP with high probability. We also extend this result to the threshold case, and obtain a more useful bound for \(k \).

2 Finite and countable sets

In this section, we assume that \(X \) is either finite or countable. Let \(T \) be a JL random mapping from a Gaussian distribution, i.e. each entry of \(T \) is independently sampled from \(\mathcal{N}(0,1) \). It is well known that, for an arbitrary unit vector \(a \in S^{m-1} \), the random variable \(\| Ta \|^2 \) has a Chi-squared distribution \(\chi_k^2 \) with \(k \) degrees of freedom ([14]). Its corresponding density function is \(\frac{2^{-k/2}}{\Gamma(k/2)} x^{k/2-1} e^{k/2} \), where \(\Gamma(\cdot) \) is the gamma function. By [4], for any \(0 < \delta < 1 \), taking \(z = \frac{\delta}{k} \) yields a cumulative distribution function

\[
F_{\chi_k^2}(\delta) \leq (ze^{1-z})^{k/2} < (ze)^{k/2} = \left(\frac{e\delta}{k} \right)^{k/2}.
\]

Thus, we have

\[
\text{Prob}(\| Ta \| \leq \delta) = F_{\chi_k^2}(\delta^2) < (3\delta^2)^{k/2}
\]
or, more simply, \(\text{Prob}(\|Ta\| < \delta) < \delta^k \) when \(k \geq 3 \).

Using this estimation, we immediately obtain the following result.

2.1 Proposition

Given \(p \in \mathbb{R}^m \) and \(X \subseteq \mathbb{R}^m \), at most countable, such that \(p \notin X \). Then, for a Gaussian random projection \(T : \mathbb{R}^m \to \mathbb{R}^k \) with any \(k \geq 1 \), we have \(T(p) \notin T(X) \) almost surely, i.e. \(\text{Prob}(T(p) \notin T(X)) = 1 \).

Proof. First, note that for any \(u \neq 0, Tu \neq 0 \) holds almost certainly. Indeed, without loss of generality we can assume that \(\|u\| = 1 \). Then for any \(0 < \delta < 1 \):

\[
\text{Prob}(T(z) = 0) \leq \text{Prob}(\|Tz\| \leq \delta) = (3\delta^2)^{k/2} \to 0 \text{ as } \delta \to 0.
\]

Since the event \(T(p) \notin T(X) \) can be written as the intersection of at most countably many almost sure events \(T(p) \neq T(x) \) (for \(x \in X \)), it follows that \(\text{Prob}(T(p) \notin T(X)) = 1 \), as claimed. \(\square \)

Proposition 2.1 is simple, but it looks interesting because it suggests that we only need to project the data points to a line (i.e. \(k = 1 \)) and study an equivalent membership problem on a line. Furthermore, it turns out that this result remains true for a large class of random projections.

2.2 Proposition

Let \(\nu \) be a probability distribution on \(\mathbb{R}^m \) with bounded Lebesgue density \(f \). Let \(Y \subseteq \mathbb{R}^m \) be an at most countable set such that \(0 \notin Y \). Then, for a random projection \(T : \mathbb{R}^m \to \mathbb{R}^1 \) sampled from \(\nu \), we have \(0 \notin T(Y) \) almost surely, i.e. \(\text{Prob}(0 \notin T(Y)) = 1 \).

Proof. For any \(0 \neq y \in Y \), consider the set \(\mathcal{E}_y = \{T : \mathbb{R}^m \to \mathbb{R}^1 \mid T(y) = 0\} \). If we regard each \(T : \mathbb{R}^m \to \mathbb{R}^1 \) as a vector \(t \in \mathbb{R}^m \), then \(\mathcal{E}_y \) is a hyperplane \(\{t \in \mathbb{R}^m \mid y \cdot t = 0\} \) and we have

\[
\text{Prob}(T(y) = 0) = \nu(\mathcal{E}_y) = \int_{\mathcal{E}_y} f d\mu \leq \|f\|_\infty \int_{\mathcal{E}_y} d\mu = 0
\]

where \(\mu \) denotes the Lebesgue measure on \(\mathbb{R}^m \). The proof then follows by the countability of \(Y \), similarly to Proposition 2.1 \(\square \)

Proposition 2.2 is based on the observation that the degree \([\mathbb{R} : \mathbb{Q}] \) of the field extension \(\mathbb{R}/\mathbb{Q} \) is \(2^{80} \), whereas \(Y \) is countable; so the probability that any row vector \(T_i \) of the random projection matrix \(T \) will yield a linear dependence relation \(\sum_{j \leq m} T_{ij} y_j = 0 \) for some \(0 \neq y \in Y \) is zero. In practice, however, \(Y \) is part of the rational input of a decision problem, and the components of \(T \) are rational: hence any subsequence of them is trivially linearly dependent over \(\mathbb{Q} \). Moreover, floating point numbers have a bounded binary representation: hence, even if \(Y \) is finite, there is a nonzero probability that any subsequence of components of \(T \) will be linearly dependent by means of a nonzero multiplier vector in \(Y \).

This idea, however, does not work in practice: we tested it by considering the ESMP given by the IPF defined on the set \(\{x \in \mathbb{Z}_+^n \cap [L,U] \mid Ax = b\} \). Numerical experiments indicate that the corresponding PESMP \(\{x \in \mathbb{Z}_+^n \cap [L,U] \mid T(A)x = T(b)\} \), with \(T \) consisting of a one-row Gaussian projection matrix, is always feasible despite the infeasibility of the original IPF. Since Prop. 2.1
assumes that the components of T are real numbers, we think that the reason behind this failure is the round-off error associated to the floating point representation used in computers. Specifically, when $T(A)x$ is too close to $T(b)$, floating point operations will consider them as a single point. In order to address this issue, we force the projected problems to obey stricter requirements. In particular, instead of only requiring that $T(p) \notin T(X)$, we ensure that

$$\text{dist}(T(p), T(X)) = \min_{x \in X} \|T(p) - T(x)\| > \tau,$$

where dist denotes the Euclidean distance, and $\tau > 0$ is a (small) given constant. With this restriction, we obtain the following result.

2.3 Proposition

Given $\tau, \delta > 0$ and $p \notin X \subseteq \mathbb{R}^m$, where X is a finite set, let

$$d = \min_{x \in X} \|p - x\| > 0.$$

Let $T : \mathbb{R}^m \rightarrow \mathbb{R}^k$ be a Gaussian random projection with $k \geq \frac{\log(|X|)}{\log\left(\frac{d}{\delta}\right)}$. Then:

$$\text{Prob}\left(\min_{x \in X} \|T(p) - T(x)\| > \tau\right) > 1 - \delta.$$

Proof. We assume that $k \geq 3$. For any $x \in X$ we have:

$$\text{Prob}(\|T(p - x)\| \leq \tau) = \text{Prob}\left(T\left(\frac{p - x}{\|p - x\|}\right) \leq \frac{\tau}{\|p - x\|}\right) \leq \text{Prob}\left(T\left(\frac{p - x}{\|p - x\|}\right) \leq \frac{\tau}{d}\right) < \frac{\tau^k}{d^k},$$

due to (3). Therefore, by the union bound,

$$\text{Prob}(\min_{x \in X} \|T(p) - T(x)\| > \tau) = 1 - \text{Prob}(\min_{x \in X} \|T(p) - T(x)\| \leq \tau) \geq 1 - \sum_{x \in X} \text{Prob}(\|T(p) - T(x)\| \leq \tau) > 1 - |X| \left(\frac{\tau}{d}\right)^k.$$

The RHS is greater than or equal to $1 - \delta$ if and only if \(\left(\frac{d}{\tau}\right)^k \geq \frac{|X|}{\delta} \), which is equivalent to \(k \geq \frac{\log(|X|)}{\log\left(\frac{d}{\delta}\right)} \), as claimed.

Note that d is often unknown and can be arbitrarily small. However, if both p, X are integral, then $d \geq 1$ and we can select $k > \frac{\log(|X|)}{\log\left(\frac{d}{\delta}\right)}$ in the above proposition.

In many cases, the set X is infinite. We show that when this is the case, we can still overcome this difficulty under some assumptions. In particular, we prove that if $X = \{Ax \mid x \in \mathbb{Z}^n\}$ where A is an $m \times n$ matrix with integer coefficients which are all positive in at least one row, then for any bounded vector $b \in \mathbb{Z}^m$ the problem $b \in X$ is equivalent, with high probability, to its projection to a $O(\log n)$-dimensional space. The idea is to separate one positive row and apply random projection to the others.
Formally, let us denote by a^i the i-th row and by a^j the j-th column of A. Assume that all entries in the row a^i is positive and all entries of b are bounded by a constant $B > 0$. Remove the row i from A and b to obtain $\tilde{A} = (a_1', \ldots, a_n') \in \mathbb{Z}^{(m-1) \times n}$ and $\tilde{b} \in \mathbb{Z}^{m-1}$. Let $T : \mathbb{R}^{m-1} \to \mathbb{R}^k$ be a JL random mapping and denote by $Z = \{ x \in \mathbb{Z}_n^+ | a^i \cdot x = b_i \}$. Then we have:

2.4 Proposition
Assume that $b \notin X$, and let $0 < \delta < 1$. Using the terminology and given the assumptions above, if $k \geq \frac{1}{C} \ln\left(\frac{2}{\delta}\right) + \frac{B}{C} \log(n + B - 1)$ we have

$$\text{Prob}\left(T(b) \neq \sum_{j=1}^n x_j T(a^j) \text{ for all } x \in Z\right) \geq 1 - \delta$$

for some constant $C > 0$.

Proof. We first show that $|Z| \leq (n + B - 1)^B$. Since all the entries of A are positive integers, we have

$$|Z| \leq \left| \{ x \in \mathbb{Z}_n^+ | \sum_{j=1}^n x_j = b_i \} \right| \leq \left| \{ x \in \mathbb{Z}_n^+ | \sum_{j=1}^n x_j = B \} \right|.$$

The number of elements in the RHS corresponds to the number of combinations with repetitions of B items sampled from n, which is equal to $\binom{n+B-1}{n-1} = \binom{n+B-1}{B} \leq (n + B - 1)^B$.

Next, by Lemma 1.4, we have:

$$\text{Prob}\left(T(b) \neq \sum_{j=1}^n x_j T(a^j) \text{ for all } x \in Z\right) \geq 1 - 2(n + B - 1)^B e^{-Ck}, \quad (5)$$

which is greater than $1 - \delta$ when taking any k such that $k \geq \frac{1}{C} \ln\left(\frac{2}{\delta}\right) + \frac{B}{C} \log(n + B - 1)$. The proposition is proved. \(\square\)

Note that in Prop. 2.4 we can choose the JL random mapping T as a matrix with \{-1, +1\} entries (Rademacher variables). In this case, there is no need to worry about floating point errors.

3 Sets with low doubling dimension

In this section, we denote by $B(x,r)$ the closed ball centered at x with radius $r > 0$, and $B_X(x,r) = B(x,r) \cap X$. We will also assume that X is a doubling space, i.e. a set with bounded doubling dimension. One example of doubling spaces is a Euclidean space \mathbb{R}^m, we can show that the doubling dimension $\log_2(\lambda_X)$ of X can be shown to be a constant factor of m (16 6). However, many sets of low doubling dimensions are contained in high dimensional spaces (17). Note that computing the doubling dimension of a metric space is generally NP-hard (15). We shall make use of the following simple lemma.

3.1 Lemma
For any $p \in X$ and $\varepsilon, r > 0$, there is a set $S \subseteq X$ of size at most $\lambda_X^{\log_2(\frac{r}{\varepsilon})}$ such that

$$B_X(p,r) \subseteq \bigcup_{s \in S} B(s, \varepsilon).$$
Proof. By definition of the doubling dimension, \(B_X(p, r) \) is covered by at most \(\lambda_X \) closed balls of radius \(\frac{r}{2} \). Each of these balls in turn is covered by \(\lambda_X \) balls of radius \(\frac{r}{4} \), and so on: iteratively, for each \(k \geq 1 \), \(B_X(p, r) \) is covered by \(\lambda_X^k \) balls of radius \(\frac{r}{2^k} \). If we select \(k = \lceil \log_2(\frac{r}{\epsilon}) \rceil \) then \(k \geq \log_2(\frac{r}{\epsilon}) \), i.e. \(\frac{r}{2^k} \leq \epsilon \). This means \(B_X(p, r) \) is covered by \(\lambda_X^{\lceil \log_2(\frac{r}{\epsilon}) \rceil} \) balls of radius \(\epsilon \).

We will also use the following lemma, which is proved in [8] using a concentration estimation for sum of squared gaussian variables (Chi-squared distribution).

3.2 Lemma
Let \(X \subseteq B(0, 1) \) be a subset of the \(m \)-dimensional Euclidean unit ball. Then there exist universal constants \(c, C > 0 \) such that for \(k \geq C \log \lambda_X + 1 \) and \(\delta > 1 \), the following holds:

\[
\Pr(\exists x \in X \text{ s.t. } \|Tx\| > \delta) < e^{-c_1 k \delta^2}.
\]

In the proof of the next result (one of the main results in this section), we use the same idea as that in [8] for the nearest neighbor problem.

3.3 Theorem
Given \(0 < \delta < 1 \) and \(p \notin X \subseteq \mathbb{R}^m \). Let \(T : \mathbb{R}^m \to \mathbb{R}^k \) be a Gaussian random projection. Then

\[
\Pr(T(p) \notin T(X)) = 1
\]

if \(k \geq C \log_2(\lambda_X) \), for some universal constant \(C \).

Proof. Let \(\epsilon > 0 \) and \(0 = r_0 < r_1 < r_2 < \ldots \) be positive scalars (their values will be defined later). For each \(j = 1, 2, 3, \ldots \) we define a set

\[
X_j = X \cap B(p, r_j) \setminus B(p, r_{j-1}).
\]

Since \(X_j \subseteq B_X(p, r_j) \), by Lemma [3.1] we can find a point set \(S_j \subseteq X \) of size \(|S_j| \leq \lambda_X^{\lceil \log_2(\frac{r_j}{\epsilon}) \rceil} \) such that

\[
X_j \subseteq \bigcup_{s \in S_j} B(s, \epsilon).
\]

Hence, for any \(x \in X_j \), there is \(s \in S_j \) such that \(\|x - s\| < \epsilon \). Moreover, by the triangle inequality, any such \(s \) satisfies \(r_{j-1} - \epsilon < \|s - p\| < r_j + \epsilon \), so without loss of generality we can assume that

\[
S_j \subseteq B(p, r_j + \epsilon) \setminus B(p, r_{j-1} - \epsilon).
\]

We denote by \(E_j \) the event that:

\[
\exists s \in S_j, \exists x \in X_j \cap B(s, \epsilon) \text{ s.t. } \|Ts - Tx\| > \epsilon \sqrt{j}.
\]

By the union bound, we have

\[
\Pr(E_j) \leq \sum_{s \in S_j} \Pr(\exists x \in X_j \cap B(s, \epsilon) \text{ s.t. } \|Ts - Tx\| > \epsilon \sqrt{j})
\]

\[
\leq \sum_{s \in S_j} e^{-c_1 kj} \quad \text{(for some universal constant } c_1 \text{ by Lemma 3.2)}
\]

\[
\leq \lambda_X^{\lceil \log_2(\frac{r_j+\epsilon}{\epsilon}) \rceil} e^{-c_1 kj}.
\]
Again by the union bound, we have:

\[
\Pr \left(\exists x \in X \text{ s.t. } T(x) = T(p) \right) = \Pr \left(\exists x \in \bigcup_{j=1}^{\infty} X_j \text{ s.t. } T(x) = T(p) \right)
\leq \sum_{j=1}^{\infty} \Pr \left(\exists x \in X_j \text{ s.t. } T(x) = T(p) \right).
\]

Now we will estimate the individual probabilities:

\[
\Pr \left(\exists x \in X_j \text{ s.t. } T(x) = T(p) \right) \\
\leq \Pr \left(\exists x \in X_j \text{ s.t. } T(x) = T(p) \right) \cap \mathcal{E}_j + \Pr(\mathcal{E}_j)
\leq \Pr \left(\exists x \in X_j, s \in S_j \cap B(x, \varepsilon) \text{ s.t. } T(x) = T(p) \cap \|T(s) - T(x)\| \leq \varepsilon \sqrt{j} \right) + \Pr(\mathcal{E}_j)
\leq \Pr(\exists s \in S_j \text{ s.t. } \|T(s) - T(p)\| < \varepsilon \sqrt{j}) + \lambda_X^{\log \frac{c_1 k j}{\varepsilon}} e^{-c_1 k j}.
\]

Next, we choose \(\varepsilon = \frac{\delta}{N} \) for some large \(N \); and for each \(j \geq 1 \), we choose \(r_j = (2 + j) \varepsilon \). For \(j < N - 2 \), by definition it follows that \(X_j = \emptyset \). Therefore

\[
\Pr \left(\exists x \in X_j \text{ s.t. } T(s) = T(p) \right) = 0.
\]

On the other hand, for \(j \geq N - 2 \),

\[
\Pr \left(\exists s \in S_j \text{ s.t. } \|T(s) - T(p)\| \leq \varepsilon \sqrt{j} \right)
\leq \lambda_X^{\log \frac{r_j + k \varepsilon}{\varepsilon}} \Pr \left(\|T(z)\| \leq \frac{\varepsilon \sqrt{j}}{r_j - 1} + \varepsilon \right) \text{ for an arbitrary } z \in S^{n-1}
\leq \lambda_X^{\log (3+j)} \Pr \left(\|T(z)\| \leq \frac{1}{\sqrt{j}} \right) \text{ for an arbitrary } z \in S^{n-1}
\leq \lambda_X^{\log (3+j)} j^{-k/2} \text{ by the estimation (4)}.
\]

Note that \(\lambda_X^{\log (3+j)} \leq \lambda_X^{\log (6+2j)} = (6 + 2j) \lambda_X < j^2 \lambda_X \) for large enough \(N \). Therefore, we have

\[
\Pr \left(\exists x \in X_j \text{ s.t. } T(x) = T(p) \right) \leq \lambda_X^{\log (3+j)} \left(j^{-k/2} + e^{-c_1 k j} \right)
\leq j^{-c_2 k} + e^{-c_3 k j}
\]

for some universal constants \(c_2, c_3 \), provided that \(k \geq c_1 \log \lambda_X \) for some large enough constant \(c_1 \). Finally, by the union bound,

\[
\Pr(T(p) \notin T(X)) = 1 - \Pr(T(p) \in T(X)) \\
\geq 1 - \sum_{i=N-2}^{\infty} \left(i^{-c_2 k} + e^{-c_3 k j} \right)
\]

which tends to 1 when \(N \) tends to infinity.

Our final result in the section is an extension of Thm. 3.3 to the threshold case.
3.4 Theorem
Let \(p \notin X \subseteq \mathbb{R}^m \), \(T : \mathbb{R}^m \to \mathbb{R}^k \) be a Gaussian random projection, and \(d = \min_{x \in X} \| p - x \| \). Then for all \(0 < \delta < 1 \) and all \(0 < \tau < \kappa d \) for some constant \(\kappa < 1 \), we have
\[
\text{Prob}(\text{dist}(T(p), T(X)) > \tau) > 1 - \delta
\]
if \(k \) is \(O\left(\frac{\log \left(\frac{\lambda_X}{d}\right)}{\log \left(\frac{\epsilon}{\lambda_X}\right)}\right) \).

Proof. For \(j = 1, 2, \ldots \) we construct the sets \(X_j, S_j \) similarly as those in the proof of Thm. 3.3 (where the values of \(r_j \) and \(\epsilon \) will be defined later). Then we have
\[
\text{Prob}(\exists x \in X \text{ s.t } \|T(x) - T(p)\| < \tau) = \text{Prob}(\exists x \in \bigcup_{j=1}^{\infty} X_j \text{ s.t } \|T(x) - T(p)\| < \tau) \\
\leq \sum_{j=1}^{\infty} \text{Prob}(\exists x \in X_j \text{ s.t } \|T(x) - T(p)\| < \tau).
\]
For all \(j \geq 1 \), we have
\[
\text{Prob}(\exists x \in X_j \text{ s.t } \|T(x) - T(p)\| < \tau) \\
\leq \text{Prob}((\exists x \in X_j \text{ s.t } \|T(x) - T(p)\| < \tau) \land x \in \mathcal{E}_j) + \text{Prob}(\mathcal{E}_j) \\
\leq \text{Prob}(\exists x \in X_j, s \in S_j \cap B(x, \epsilon) \text{ s.t } \|T(x) - T(p)\| < \tau \land \|T(s) - T(x)\| \leq \epsilon \sqrt{j}) + \text{Prob}(\mathcal{E}_j) \\
\leq \text{Prob}(\exists s \in S_j \text{ s.t } \|T(s) - T(p)\| < \tau + \epsilon \sqrt{j}) + \lambda_X^{\left[\log_2 \left(\frac{r_j + \epsilon}{\epsilon}\right)\right]} e^{-c_1 k j}.
\]
Now we choose \(\epsilon = \frac{\tau}{N} \) for some \(N > 0 \) such that \(1 + \frac{1}{N} < \frac{1}{\kappa} \) and for each \(j \geq 1 \), we choose \(r_j = \tau \sqrt{j} + 1 + (2 + j) \epsilon \). For \(j = 1 \), by the union bound we have
\[
\text{Prob}(\exists s \in S_1 \text{ s.t } \|T(s) - T(p)\| \leq \tau + \epsilon \sqrt{1}) \\
\leq \lambda_X^{\left[\log_2 \left(\frac{r_j + \epsilon}{\epsilon}\right)\right]} \text{Prob}(\|T(z)\| \leq \frac{\tau + \epsilon}{d}) \quad \text{for an arbitrary } z \in S_{m-1} \\
= \lambda_X^{\left[\log_2 (4 + N \sqrt{j})\right]} \text{Prob}(\|T(z)\| \leq (1 + \frac{1}{N}) \frac{\tau}{d}) \quad \text{for an arbitrary } z \in S_{m-1} \\
< \lambda_X^{\left[\log_2 (4 + N \sqrt{j})\right]} \left(1 + \frac{1}{N}\right)^{\frac{k}{2}} \quad \text{by estimation (1)} \\
< \left(1 + \frac{1}{N}\right)^{\frac{k}{d}} (c_2)^k
\]
for some universal constant \(c_2 > 0 \), as long as \(k > C \log(\lambda_X) \) for some \(C \) large enough.

For \(j \geq 2 \), we have
\[
\text{Prob}(\exists s \in S_j \text{ s.t } \|T(s) - T(p)\| \leq \tau + \epsilon \sqrt{j}) \\
\leq \lambda_X^{\left[\log_2 \left(\frac{r_j + \epsilon}{\epsilon}\right)\right]} \text{Prob}(\|T(z)\| \leq \frac{\tau + \epsilon \sqrt{j}}{r_{j-1} - \epsilon}) \quad \text{for an arbitrary } z \in S_{m-1} \\
= \lambda_X^{\left[\log_2 (3j + N \sqrt{j} + 1)\right]} \text{Prob}(\|T(z)\| \leq \frac{1}{\sqrt{j}}) \quad \text{for an arbitrary } z \in S_{m-1} \\
< \lambda_X^{\left[\log_2 (3j + N \sqrt{j} + 1)\right]} j^{-k/2} \quad \text{by estimation (1)} \\
< j^{-c_3 k}
\]
for some universal constant $c_3 > 0$, as long as $k > C \log(\lambda X)$ for some C large enough.

Similarly, for all $1 \leq j$, we have

$$
\lambda_X^{[\log_2 \left(\frac{r_j \epsilon}{2} \right)]} e^{-c_1 kj} \leq e^{-c_4 kj},
$$

for some universal constant $c_4 > 0$, as long as $k > C \log(\lambda X)$ for some C large enough.

From estimations (6), (7), (8) and by the union bound we have:

$$
\text{Prob}(\text{dist}(T(p), T(X)) \geq \tau) \geq 1 - \sum_{j=1}^{\infty} \text{Prob}(\text{dist}(T(p), T(X_j)) < \tau)
$$

$$
\geq 1 - \left(1 + \frac{1}{N} \right)^{\tau d} - \sum_{j=2}^{\infty} e^{-c_1 kj} - \sum_{j=1}^{\infty} e^{-c_4 kj}
$$

$$
\geq 1 - \delta \quad \text{for } k = O\left(\frac{\log(\lambda X)}{\log(\tau)}\right) \text{ large enough}.
$$

\[\square\]

References

[1] I. Abraham, Y. Bartal, and O. Neiman. Embedding metric spaces in their intrinsic dimension. In 19th Annual ACM-SIAM Symposium on Discrete Algorithms, page 363-372, 2008.

[2] D. Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary coins. Journal of Computer and System Sciences, 66:671–687, 2003.

[3] P. Agarwal, S. Har-Peled, and H. Yu. Embeddings on surfaces, curves, and moving points in Euclidean space. In Proceedings of the 23rd Symposium on Computational Geometry, pages 381–389. ACM, 2007.

[4] S. Dasgupta and A. Gupta. An elementary proof of a theorem by johnson and lindenstrauss. Random Structures and Algorithms, 22:60–65, 2002.

[5] L. Gottlieb and R. Krauthgamer. Proximity algorithms for nearly doubling spaces. SIAM Journal on Discrete Mathematics, 27(4):1759–1769, 2013.

[6] A. Gupta, R. Krauthgamer, and J.R. Lee. Bounded geometries, fractals, and low-distortion embeddings. In IEEE Symposium on Foundations of Computer Science, page 534543. IEEE, 2003.

[7] P. Indyk. Algorithmic applications of low-distortion geometric embeddings. In 42nd Annual Symposium on Foundations of Computer Science, pages 10–33. IEEE, 2001.

[8] P. Indyk and A. Naor. Nearest neighbor preserving embeddings. ACM Transactions on Algorithms, 3(3):Art. 31, 2007.
REFERENCES

[9] W. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space. In G. Hedlund, editor, *Conference in Modern Analysis and Probability*, volume 26 of *Contemporary Mathematics*, pages 189–206, Providence, 1984. AMS.

[10] R. Krauthgamer and J.R. Lee. Navigating nets: Simple algorithms for proximity search. In *Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 791–801, 2004.

[11] Vu Khac Ky, P.-L. Poirion, and L. Liberti. Using the Johnson-Lindenstrauss lemma in linear and integer programming. Technical Report 07/4985, Optimization Online, 2015.

[12] A. Magen. Dimensionality reductions in ℓ_2 that preserve volumes and distance to affine spaces. *Discrete and Computational Geometry*, 30(1):139–153, 2007.

[13] J. Matousek. *Lectures on Discrete Geometry*. Springer, New York, 2002.

[14] A. Mood, F. Graybill, and D. Boes. *Introduction to the Theory of Statistics*. McGraw-Hill, 1974.

[15] K. Murty and S. Kabadi. Some NP-complete problems in quadratic and nonlinear programming. *Mathematical Programming*, 39:117–129, 1987.

[16] J.-L. Verger-Gaugry. Covering a ball with smaller equal balls in \mathbb{R}^n. *Discrete Computational Geometry*, 33:143–155, 2005.