Dataset on the change of postharvest quality of Physalis peruviana L. as an effect of ethylene inhibitor

Syariful Mubarok*, Salma Dahlania, Nursuhud Suwali

Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Bandung, 45363 Indonesia

1. Data

Data were represented the postharvest fruit quality of P. peruviana L. as an effect of various 1-MCP concentrations and exposure durations. Several parameter related to the postharvest quality, namely fruit shelf life, total soluble solid (TSS), fruit firmness, fruit pH and titratable acidity (TA) were analyzed. Table 1 presented data on fruit shelf life as the effect of concentration and duration of 1-MCP. Table 2 presented data on fruit firmness. Table 3 presented data on TSS. Table 4 presented data on fruit pH. Table 5 presented data on fruit TA.

* Corresponding author.

E-mail addresses: syariful.mubarok@unpad.ac.id (S. Mubarok), salma.dahlania@gmail.com (S. Dahlania), nursuhud@unpad.ac.id (N. Suwali).

https://doi.org/10.1016/j.dib.2019.103849
2352-3409/© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
2. Experimental design, materials, and methods

2.1. Fruit preparation

The sample of *P. peruviana* L. fruits were obtained and harvested from Waida Farm in Sumedang, West Java, Indonesia. Similar fruit maturation at mature green (MG) fruits were chosen to be harvested according Baumann and Meier [3] and Trinchero et al. [4] with the criteria of yellowish green berry in color with greenish to pale yellow calyx and harvested from the same plant. Harvested fruit was kept at ambiance temperature (23 ± 4 °C) and 80% of humidity for postharvest quality analysis. The experiment consisted of nine treatments: (combination from three of concentrations and three exposure duration application) and control repeated third times.

2.2. Fruit shelf life

The shelf life is one the important fruit character for *P. peruviana* L. fruit. It was counted from the initial day of storage when the fruit was still yellowish green berry in color with greenish to pale yellow calyx and harvested from the same plant. Harvested fruit was kept at ambiance temperature (23 ± 4 °C) and 80% of humidity for postharvest quality analysis. The experiment consisted of nine treatments: (combination from three of concentrations and three exposure duration application) and three control replicates.

Table 1

Treatments	Fruit Shelf Life (Days)
Control	17.0^a
0.5 μL L^{−1}, 6 h	21.3^e
0.5 μL L^{−1}, 12 h	21.7^c
0.5 μL L^{−1}, 24 h	20.7^b
1.0 μL L^{−1}, 6 h	21.7^c
1.0 μL L^{−1}, 12 h	21.0^c
1.0 μL L^{−1}, 24 h	20.0^c
2.0 μL L^{−1}, 6 h	20.0^c
2.0 μL L^{−1}, 12 h	20.3^b
2.0 μL L^{−1}, 24 h	20.7^b

Note: No significant differences are detected in mean value followed by same alphabetic annotation according to Duncan’s Multiple Range Test (DMRT) at p < 0.05.
calyx, up until quality lost characteristics were detected such as yellowish orange in color and flesh softens [3].

2.3. Fruit firmness

Fruit firmness was assayed in accordance to Mubarok et al. [5]. Briefly, four fruits in each replication were penetrated on two opposite side of the equatorial axes of fruit using a hand penetrometer of

Treatments	Fruit Firmness (kgf)			
	0 DAS	7 DAS	14 DAS	21 DAS
Control	4.33a	3.52a	3.10a	2.73a
0.5 μL L⁻¹, 6 h	4.39a	4.20d	3.44bc	3.22cd
0.5 μL L⁻¹, 12 h	4.69a	3.75ab	3.43bc	3.37d
0.5 μL L⁻¹, 24 h	4.36a	4.17cd	3.29ab	3.06bc
1.0 μL L⁻¹, 6 h	4.26a	3.74ab	3.22ab	3.18cd
1.0 μL L⁻¹, 12 h	5.04a	3.88bc	3.65c	3.02abc
1.0 μL L⁻¹, 24 h	4.82a	3.68ab	3.22ab	2.84ab
2.0 μL L⁻¹, 6 h	4.57a	3.64ab	3.30ab	2.87ab
2.0 μL L⁻¹, 12 h	4.85a	3.78ab	3.33ab	2.98abc
2.0 μL L⁻¹, 24 h	4.96a	3.74ab	3.33ab	3.08bc

Note: No significant differences at the same storage time are detected in mean value followed by same alphabetic annotation according to Duncan's Multiple Range Test (DMRT) at p < 0.05. DAS = days after storage.

Treatments	Fruit Firmness			
	TSS (°Brix)			
	0 DAS	7 DAS	14 DAS	21 DAS
Control	14.10a	15.07cd	15.60d	14.93b
0.5 μL L⁻¹, 6 h	14.20a	14.60a	15.13a	15.50bc
0.5 μL L⁻¹, 12 h	14.00a	14.70ab	15.17a	15.50bc
0.5 μL L⁻¹, 24 h	13.60a	14.87bc	15.23a	14.77b
1.0 μL L⁻¹, 6 h	12.60a	15.00cd	15.33bc	15.27cd
1.0 μL L⁻¹, 12 h	14.20a	15.07cd	15.30bc	15.17c
1.0 μL L⁻¹, 24 h	14.10a	15.03cd	15.27ab	14.53a
2.0 μL L⁻¹, 6 h	14.10a	15.30d	15.47cd	14.90b
2.0 μL L⁻¹, 12 h	14.20a	15.23d	15.47cd	15.43de
2.0 μL L⁻¹, 24 h	14.00a	15.00cd	15.50cd	15.53e

Note: No significant differences at the same storage time are detected in mean value followed by same alphabetic annotation according to Duncan's Multiple Range Test (DMRT) at p < 0.05. DAS = days after storage.

Treatments	Fruit pH			
	0 DAS	7 DAS	14 DAS	21 DAS
Control	5.1a	5.17a	5.30a	5.67a
0.5 μL L⁻¹, 6 h	5.1a	5.13a	5.17a	5.47a
0.5 μL L⁻¹, 12 h	5.1a	5.10a	5.13a	5.37a
0.5 μL L⁻¹, 24 h	5.0a	5.03a	5.20a	5.57a
1.0 μL L⁻¹, 6 h	5.2a	5.27a	5.30a	5.40a
1.0 μL L⁻¹, 12 h	5.2a	5.20a	5.30a	5.60a
1.0 μL L⁻¹, 24 h	5.1a	5.13a	5.23a	5.57a
2.0 μL L⁻¹, 6 h	5.2a	5.23a	5.27a	5.43a
2.0 μL L⁻¹, 12 h	5.2a	5.30a	5.37a	5.60a
2.0 μL L⁻¹, 24 h	5.1a	5.17a	5.27a	5.67a

Note: No significant differences at the same storage time are detected in mean value followed by same alphabetic annotation according to Duncan's Multiple Range Test (DMRT) at p < 0.05. DAS = days after storage.
Ultrasonic Hardness Tester (Nippon Optical Works, Tokyo, Japan). Fruit firmness was measured for 7 until 21 days after storage (DAS).

2.4. Total soluble solid (TSS)

Sugar content were estimated by the value of TSS. TSS was measured every 7 days until 21 DAS based on method described in Mubarok et al. [5]. Briefly, P. peruviana L. fruit were blended and centrifugated for 10 mins at 13,000 × g. Obtained supernatant were used to determine TSS by using PAL-J refractometer (Atago, Tokyo, Japan).

2.5. Fruit TA and pH

The TA and pH were measured every 7 days until 21 DAS according to methods described by Garner et al. [6] and Dalal et al. [7] with modification. pH meter (Mettler-Toledo AG, Schwerzenbach, Switzerland) was used to determine pH value from fruit juice. For TA analysis, briefly, 10 g of fresh fruit were homogenized by 100 mL distilled water and centrifugated for 10 mins at 13,000 × g. The supernatant was titrated with NaOH 0.1 N until pH reached 8.1. TA was represented as percentage of citric acid and calculated with the following equations:

\[
\% \text{TA} = \left(\frac{V_{\text{NaOH}} \times N_{\text{NaOH}} \times 0.064 \times 100}{V_{\text{sample}}} \right)\]

Acknowledgments

The authors thank the Waida Farm for the fruit samples provided in this study. We also thank all Horticulture Laboratory members for helpful discussions throughout the work.

Transparency document

Transparency document associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2019.103849.

References

[1] M.L. Olivares-Tenorio, M. Dekker, M.A.J.S. van Boekel, R. Verkerk, Evaluating the effect of storage conditions on the shelf life of cape gooseberry (*Physalis peruviana* L.), LWT — Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.) 80 (2017) 523–530. https://doi.org/10.1016/j.lwt.2017.03.027.
[2] H.E. Balaguera-López, M. Espinal-Ruiz, L. Zacarías, A.O. Herrera, Effect of ethylene and 1-methylcyclopropene on postharvest behavior of cape gooseberry fruits (*Physalis peruviana* L.), Food Sci. Technol. Int. 23 (2017) 86–96. https://doi.org/10.1177/1082013216658581.

[3] T.W. Baumann, C.M. Meier, Chemical defense by withanolides during fruit development in *Physalis peruviana*, Phytochemistry 33 (1993) 317–321.

[4] G.D. Trinchero, G.O. Sozzi, A.M. Cerri, F. Vilella, A.A. Fraschina, Ripening-related changes in ethylene production, respiration rate and cell-wall enzyme activity in goldenberry (*Physalis peruviana* L.), a solanaceous species, Postharvest Biol. Technol. 16 (1999) 139–145.

[5] S. Mubarok, Y. Okabe, N. Fukuda, T. Ariizumi, H. Ezura, Potential use of a weak ethylene receptor mutant Sletr1-2, as breeding material to extend fruit shelf life of tomato, J. Agric. Food Chem. 63 (2015) 7995–8007. https://doi.org/10.1021/acs.jafc.5b02742.

[6] D. Garner, C.H. Crisosto, P. Wiley, G.M. Crisosto, Measurement of pH and Titratable Acidity, 2003. Retrieved from, http://fruitandnuteducation.ucdavis.edu/files/162035.pdf. (Accessed 20 December 2018). Accessed.

[7] K.B. Dalal, D.K. Salunkhe, A.A. Boe, L.E. Olsen, Certain physiological and biochemical changes in the developing tomato fruit (*Lycopersicon esculentum* Mill.), J. Food Sci. 30 (1965) 504–508.