Research Paper

Effect of Donepezil and Hyoscyamoside on Improving Spatial Memory in Rats With Alzheimer's Disease

Fatemeh Heidari Soureshjani1, *Majid Kheirollahi2,3, Parichehreh Yaghmaei1, Fattah Sotoodehnejadnematalahi1

1. Department of Biology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2. Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
3. Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.

ABSTRACT

Background and Aim Alzheimer’s Disease (AD) is a neurodegenerative brain disease that gradually destroys memory and cognitive skills. The disease is caused by the formation of beta-amyloid plaques, oxidative stress, dysfunctions in the cholinergic system, neuronal killing inflammation, and ultimately brain atrophy. Donepezil and hyoscyamoside have inhibitory effects on these pathogens; therefore, their impact on the learning process of Alzheimer’s rats in the Morris Water Maze was investigated.

Methods & Materials In the present experimental study, 60 male rats of Wistar breed with approximately 7 weeks age within the control group (rats that received normal water and food), the PBS group (underwent surgery), PBS group (received solvent Aβ), the first Alzheimer’s group (animals that received beta-amyloid by Alzheimer’s surgery, second Alzheimer’s group (after Alzheimer’s surgery, they received 1 cc of normal saline daily, and treatment groups that treated the rats with beta-amyloid after Alzheimer. In the hyoscyamoside group, they received 10 mg/kg daily of hyoscyamoside for 28 days. The donepezil group received it 4 mg/kg daily for 28 days by gavage. The Morris Water Maze test was used to evaluate learning and memory. Data were analyzed by ANOVA statistical analysis and Post Hoc test.

Results Beta-amyloid injection caused extensive damage to memory. The treatment groups with hyoscyamoside and donepezil spent less time and distance with a significant level (P<0.001) than the group of Alzheimer’s patients to find the hidden platform. In the reminder phase, where the previously hidden platform was located, they spent more time, with a significant level (P<0.001) in the local quarter.

Conclusion Treatment of rats with hyoscyamoside and donepezil improved spatial memory in Alzheimer’s rats. They appear to play a significant role in the prevention and treatment of Alzheimer’s disease.

Keywords: Alzheimer’s disease, Hyoscyamoside, Donepezil, Morris water maze, Spatial memory
of steroid saponins reduces pro-inflammatory factors in the brain. Other benefits include their antioxidant and anti-acetylcholinesterase properties [5].

The use of medicinal plants with low side effects and antioxidant properties has received much attention. Therefore, we investigated the effect of sapogenin (hyoscyamoside) on spatial memory, and perhaps it can be used as a dietary supplement for families with hereditary Alzheimer’s disease in the prevention, delay of pathology, and treatment of this disease.

2. Materials and Methods

In the present experimental study, 60 male Wistar rats, approximately 7 weeks old, were divided into the following groups: control group, consisted of rats that received normal water and food; PBS group underwent surgery and received PBS (Aβ solvent); the first Alzheimer’s group consisted of rats that received beta amyloid during Alzheimer’s surgery; the second Alzheimer’s group received 1 cc of normal saline daily after Alzheimer’s surgery; the treatment groups, after beta-amyloid induction of Alzheimer’s disease in the rats, received 10 mg/kg of hyoscyamoside for 28 days in the hyoscyamoside group; the donepezil group received 4 mg/kg of this substance by gavage for 28 days.

Morris Water Maze (MWM) test was used to assess learning and memory. Due to the lack of differences in the initial results of the MWM test in the control group and PBS group, the control group was considered as the control group and therefore the second Alzheimer’s group was considered as the Alzheimer’s group. In this study, SPSS software V. 22 was used. To investigate the existence of significant differences between the groups, Analysis of Variance (ANOVA) and post hoc tests were used according to the data.

3. Results

MWM test was used to evaluate spatial learning and memory. The results showed that the learning and spatial memory of the rats that received Aβ as an intra-hippocampal injection

![Figure 1](https://example.com/figure1.png)

Figure 1. Effect of treatment with donepezil and Hyoscyamoside (Hyo) on Alzheimer’s animals using the Morris Water navigation task
A: Elapsed time; B: The distance swam in the Morris water navigation task to find the hidden platform on different days of the experiment;

P<0.01; *P<0.001, Significant difference compared to Alzheimer’s group;

##P<0.01; ###P<0.001, Significant difference compared to the control group.
were impaired (P<0.001). The time elapsed and the distance traveled to reach the hidden platform, in the first to third days of training were considered as the criteria for learning, and on the fourth day after learning, they were considered as the criteria for verification. Alzheimer’s rats spent significantly more time and distance to find the hidden platform than the control group (P<0.001).

The treatment groups showed a significant decrease (P<0.001) compared to the Alzheimer’s group. On the fourth day, the hyoscyamoside group showed a significant difference (P<0.05) in the elapsed time compared to the control group. Alzheimer’s rats spent significantly more time and distance to find the hidden platform than the control group (P=0.001).

The treatment groups showed a significant decrease (P<0.001) compared to the Alzheimer’s group. On the fourth day, the hyoscyamoside group showed a significant difference (P<0.05) in the elapsed time compared to the control group. The donepezil treatment group showed a significant difference (P<0.05) compared to the hyoscyamoside group. Regarding the distance traveled, the donepezil group showed a significant difference (P<0.01) compared to the control group, while the hyoscyamoside group had a significant difference (P<0.01) compared to the control group. In the treatment groups, significant improvement in learning disability and spatial memory of Aβ-receiving rats were observed (P<0.001). The elapsed time and distance traveled to reach the hidden platform in the rats in the treatment groups decreased compared to the Alzheimer’s group (Figure 1).

In the dot-probe test, Figure 2 showed a significant increase in the time spent in the target quadrant by the treatment groups compared to the Alzheimer’s group (P<0.001), and this showed the positive effect of treatments on learning and spatial memory of Alzheimer’s rats. The treatment groups were not significantly different from each other and the control group (P<0.05).

4. Discussion and Conclusion

In this study, Alzheimer’s disease in rats reduced their spatial memory, and their spatial memory improved after treatments. The time and the distance to reach the podium in the rats’ treatment groups were significantly reduced compared to the Alzheimer’s group (Figure 1). Studies showed that induction of Alzheimer’s disease in rats by Aβ1-42, reduced their memory, and triggered an inflammatory response. Treatment with donepezil improved Alzheimer’s rats’ performance on the Morris water navigation task and reduced their inflammatory cytokines [16].

The use of the steroidal saponin diosgenin in mutant rats improved their memory and showed that the diosgenin treatment group removed Aβ plaque, reduced neuronal death and neurofibrillary tangles in the cerebral cortex and hippocampus, and inhibited acetylcholinesterase [15]. Sapogenins with antioxidant properties inhibit IL-6 and TNFα and inhibit their production of free radicals [27].

Researchers are trying to develop drugs that, in addition to having better effects, also have fewer side effects. Plants are one of the sources that have always been used for the production of new medicines [17]. The present results showed that the use of donepezil and hyoscyamoside improved memory. The treatments may have improved the condition of plaque formation and memory loss (due to plaque) and cholinergic system defects, which may be due to the inhibitory activity of acetylcholinesterase and antioxidants.

5. Conclusion

According to the results of studies in people at high risk of Alzheimer’s disease, it is suggested that the use of hyoscyamoside and donepezil be included in their daily diet for prevention. In people with Alzheimer’s, taking hyoscyamoside may improve the disease, possibly by influencing the causes of Alzheimer’s (such as accumulated beta-amyloid plaque, cholinergic system disorders, oxidative stress, and inflammation), and prevention of neuronal apoptosis improves the disease and prevents familial cases of Alzheimer’s.

Ethical Considerations

Compliance with ethical guidelines

This research was ethically approved by the Islamic Azad University, Science and Research Branch (Code: REC.1397.057. IR.IAU.SRB).
Funding

The paper was extracted from the PhD. dissertation of the first author, Department of Biology, Islamic Azad University, Science and Research Branch, Tehran.

Authors' contributions

All authors met the standard writing criteria based on the recommendations of the International Committee of Medical Journal Publishers (ICMJE) and all contributed equally to the writing of the work.

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgements

This article was taken from a doctoral dissertation and has no sponsorship. We are grateful to all those who cooperated with us in conducting this research.
This Page Intentionally Left Blank
اثر هیوسیاموزید و دوپنپزیل بر حفظه فضایی در رت های آلزایمر

فاطمه جهانی سویرشانی *، پرچخره یغمایی، فتاح ستوده نژاد نعمت‌اللهی، پریچهره یغمایی، مجید خیراللهی

مقدمه

بیماری آلزایمر یک بیماری نورودژنراتیو است که به مرور حافظه و مهارت‌های شناختی را تخریب می‌کند. این بیماری تمرکز بیانی یک پروتئین آلزایمر را می‌کند که با آکنش و ایجاد پروتئین‌های جانبی می‌شود. همچنین، هیوسیاموزید و دوپنپزیل داروهایی هستند که می‌توانند بهبود حین حفظه را بیشتر کنند.

مواد و روش‌ها

در مطالعه حاضر، شصت رت نر نژاد ویستار با سن تقریبی هفت هفته در گروه‌های کنترل (آب و غذای معمولی)، آلزایمر اول (تحت عمل جراحی آلزایمر، بتا آمیلوئید PBS تحت عمل جراحی قرار گرفته و PBS دریافت کرده‌اند) و آلزایمر دوم (پس از جراحی آلزایمری روزانه یک سی سی نرمال سالین دریافت می‌کردند) و گروه‌های تیمار که پس از میلی گرم بر کیلوگرم دونپزیل ۴ میلی گرم بر کیلوگرم هیوسیاموزید (گروه هیوسیاموزید) و ۱۰ روزه ۲۸ میلی‌گرم پپتید یک بار و در انتهای هر روز، روزانه تیمار کرده‌اند. برای ارزیابی یادگیری و حفظه از آزمون ماز آبی موریس استفاده شد.

نتایج

تزریق بتا آمیلوئید موجب آسیب بسیار به حفظه شد. گروه‌های تیمار با هیوسیاموزید و دونپزیل نسبت به گروه کنترل، زمان و مسافت کمتری را برای یافتن سکوی پنهان سپری کردند، با این حال، زمان بیشتری را در ربع محلی گذراندند.

کلیدواژه‌ها:
بیماری آلزایمر، هیوسیاموزید، دونپزیل، آزمون ماز آبی موریس، حفظه فضایی

اطلاعات مقاله:
۱۳۹۸ اسفند ۲۶: تاریخ دریافت
۱۳۹۹ شهریور ۰۵: تاریخ پذیرش
۱۳۹۹ مهر ۱۰: تاریخ انتشار

ملیت اخلاقی

محققین با اجازه کمیته اخلاق در پژوهش‌های زیست پزشکی دانشگاه آزاد اسلامی واحد علوم و تحقیقات مجوز تحقیق را گرفتند.

IR.IAU.SRB.REC 1397.057

نکات

به نظر می‌رسد این ترکیبات در پیشگیری و درمان بیماری آلزایمر نقش بارزی داشته باشند.

1. Alzheimer’s Disease (AD)

1. Alzheimer’s Disease
2. موردی مربوط به مطالعاتی که در زمینه آلزایمر گزارش شده است، بیان می‌کند که مصرف مصرف مصرف
3. 1. انرژی‌های حلقوی، P<0.001 (پست هاک) و در مرحله یادآوری که قبلاً سکوی پنهان قرار داشت نیز زمان بیشتری را در ربع محلی گذراندند.

مراجع

1. رافیکی، تاریخ دریافت ۱۳۹۸/۰۹/۰۶
2. رافیکی، تاریخ پذیرش ۱۳۹۸/۰۹/۰۶
3. رافیکی، تاریخ انتشار ۱۳۹۸/۰۹/۰۶

عکس ها

عکس ۱: گروه زیست‌شناسی، دانشکده علوم پایه، واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، تهران

عکس ۲: گروه ژنتیک و بیولوژی مولکولی، دانشکده پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان
با ساپونین های گیاه پلاتیکدن گراندیفلوروس (گل زنگوله ای) برخی از آسیب های اکسیداتیو بوده و افزایش استرس اکسیداتیو مغز در نیاز مغز به مقدار قابل توجه انرژی و اکسیژن، این بافت مستعد پیش التهابی و افزایش آسیب های اکسیداتیو می‌شود. به دلیل آمدن آستروسیت‌ها همراه بوده و موجب القاء بیان سیتوکین های آلزایمر با یک پاسخ التهابی ناشی از فعال شدن میکروگلیا و گرد سفت در تهاب ناشی از پلاک‌های آمیلوئید در بیماران آلزایمری از سمیت آمیلوئید از طریق کاهش انتشار سیتوکین ها از میکروگلیا استرازها دارای نقش ضدالتهابی، اقدام علیه رادیکال های آزاد و شواهد در حال حاضر نشان می‌دهند مهارکنندگان استیل کولین را در مغز و طحال مهار کرده و مانع از التهاب سیستمیک می‌شود. تحریک شده با رادیکال های آزاد به اثبات رسیده است. دونپزیل نه تنها میکروگلیا خواص آنتی اکسیدانی دونپزیل بر علیه جریان خون عروق مغزی در درمان با مهارکننده استیل کولین سیتوکین ها به واسطه میکروگلیاها می شوند. یافته‌های بر افزایش بتا آمیلوئید و رادیکال های آزاد محافظت می‌کنند و مانع ترشح مهارکننده استیل کولین استراز از سلول‌ها در برابر آسیب خانواده‌هایی با بیماری آلزایمر مورثی به منظور پیشگیری، تأخیر هیوسیاموزید، از این ترکیب بتوان به عنوان مکمل غذایی برای نشانه‌های موجود محدود می‌کند. این‌ها عوارض کم داروی است. از این رو اثر ساپونین (هیوسیاموزید) بر حفاظت فضایی و از اثر نوروپروتکسیون، خواص آنتی اکسیدانی، بسیار مورد توجه برای درمان آلزایمر و درمان آلزایمر نیاز است و در این میان، استفاده از گیاهان نشانه‌ای بهبود می‌بخشد. بنابراین راه‌بردهای درمانی جدیدی از این دارو علائم کبدی و تعریق از جمله عوارض جانبی دارو هستند که آسیب، استفراغ، اسهال، آمیلوئید، بتا- سکرتاز است و مهار این آنزیم به عنوان یکی از و در کبد متابولیزه می‌شود. مهارکننده آنزیم کلیدی تشکیل استراز است که باعث افزایش استیل کولین خارج سلولی می‌شود. دونپزیل یک مهارکننده غیررقابتی و بازگشت پذیر استیل کولین می‌شود. استفاده از ساپونین استروئیدی و سیکلواکسیژیناز، بیماران آلزایمری را برای برخی افراد محدود می‌کند. تجمع بتا آمیلوئید (12) سنین بازی زمینه ابتلا به بیماری آلزایمر است. تهوع، استفراغ، اسهال، آمیلوئید، بتا- سکرتاز است و مهار این آنزیم به عنوان یکی از و در کبد متابولیزه می‌شود. مهارکننده آنزیم کلیدی تشکیل استراز است که باعث افزایش استیل کولین خارج سلولی می‌شود. دونپزیل یک مهارکننده غیررقابتی و بازگشت پذیر استیل کولین می‌شود.
شاگردانی که شاگرد آپوتوز را به تخلف کننده MSER می‌دانستند، با پیامد‌های BCL-2 و آنتی‌بodor می‌خورند و در صورت‌هایی که با پیامد‌های BCL-2 و آنتی‌بodor می‌خورند، با پیامد‌های بیماری‌های زمینه‌ای التهابی یا آلزایمر ارثی در دسترس و ارزان قیمت می‌توانند به عنوان رژیم غذایی برای پیشگیری از بیماری‌های آلزایمر و آلزایمر مصرف در دوزهای بسیار بالا پیشگیری کننده MSER می‌خورند.

به صورت ثابت قرار گرفته می‌گردد. بیماری‌های آلزایمر و آلزایمر مصرف در دوزهای بسیار بالا پیشگیری کننده MSER می‌خورند. در نهایت، بیماری‌های آلزایمر و آلزایمر مصرف در دوزهای بسیار بالا پیشگیری کننده MSER می‌خورند. در نهایت، بیماری‌های آلزایمر و آلزایمر مصرف در دوزهای بسیار بالا پیشگیری کننده MSER می‌خورند. در نهایت، بیماری‌های آلزایمر و آلزایمر مصرف در دوزهای بسیار بالا پیشگیری کننده MSER می‌خورند. در نهایت، بیماری‌های آلزایمر و آلزایمر مصرف در دوزهای بسیار بالا پیشگیری کننده MSER می‌خورند. در نهایت، بیماری‌های آلزایمر و آلزایمر مصرف در دوزهای بسیار بالا پیشگیری کننده MSER می‌خورند. در نهایت، بیماری‌های آلزایمر و آلزایمر مصرف در دوزهای بسیار بالا پیشگیری کننده MSER می‌خورند. در نهایت، بیماری‌های آلزایمر و آلزایمر مصرف در دوزهای بسیار بالا پیشگیری کننده MSER می‌خورند. در نهایت، بیماری‌های آلزایمر و آلزایمر مصرف در دوزهای بسیار بالا پیشگیری کننده MSER می‌خورند.
استخراج از گیاه، توسط شیکر در یک سیسیسی ترمالسالین کاملاً محلول شده و به‌صورت گازه به موشهای گروه‌های درمانی خوراک‌دهی شد.

چگالی‌های هیوساموزید

۲۰۰ گرم پودر واریانس با ۳۰۰ سیسیسی محلول شل ۲۵۰ سسیسیسی محلول شل و ۲۵۰ سسیسیسی محلول زرد - سیسیسیسی محلول زرد و سیسیسیسی محلول شل و بعد از سرد شدن، کافته‌ها صنفی سلول‌گرد و در انتهای روز دوازدهم، مولول‌ها در داروهای خاصی و با داروهای خاصی مخلوط شد. محلول حامل در مدت آزمایشگاه به مدت ۵ دقیقه گرفته شود و سپس محلول م
بحث

در این مطالعه، تأثیر دونپزیل و هیوسیاموزید بر بهبود فضایی موش های مبتلا به آلزایمر بررسی شد. در این مطالعه، سه گروه داشتند: گروه کنترل، گروه آلزایمر و گروه آلزایمر درمانی (گروه دونپزیل و هیوسیاموزید). سه گروه با یکدیگر مقایسه شدند.

یافته ها

در این مطالعه، تأثیر دونپزیل و هیوسیاموزید بر بهبود فضایی موش های مبتلا به آلزایمر بررسی شد. در این مطالعه، سه گروه داشتند: گروه کنترل، گروه آلزایمر و گروه آلزایمر درمانی (گروه دونپزیل و هیوسیاموزید). سه گروه با یکدیگر مقایسه شدند.

مطالعات مربوط به آلزایمر نشان داده است که آلزایمر باعث کاهش حافظه و یادگیری آزمایشگاهی می‌شود. در مطالعات قبلی، دونپزیل و هیوسیاموزید به عنوان متقابل با آلزایمر و بهبود حافظه فضایی موش های آلزایمری کاربرد داشتند.

یافته های این مطالعه نشان داد که دونپزیل و هیوسیاموزید می‌توانند بهبود حافظه فضایی موش های آلزایمری را بهبود بخورند. نتایج این مطالعه با نتایج مطالعات قبلی به طور کلی مطابقت داشت.

در این مطالعه، نتایج نشان داد که دونپزیل و هیوسیاموزید می‌توانند بهبود حافظه فضایی موش های آلزایمری را بهبود بخورند. نتایج این مطالعه با نتایج مطالعات قبلی به طور کلی مطابقت داشت.

نتایج:

1. دونپزیل و هیوسیاموزید می‌توانند بهبود حافظه فضایی موش های آلزایمری را بهبود بخورند.
2. نتایج این مطالعه با نتایج مطالعات قبلی به طور کلی مطابقت داشت.

خلاصه:

یافته های این مطالعه نشان داد که دونپزیل و هیوسیاموزید می‌توانند بهبود حافظه فضایی موش های آلزایمری را بهبود بخورند. نتایج این مطالعه با نتایج مطالعات قبلی به طور کلی مطابقت داشت.

ملاحظه:

هر چهار ماه عصر، دونپزیل و هیوسیاموزید به بهبود حافظه فضایی موش های آلزایمری کاربرد داشتند. نتایج این مطالعه با نتایج مطالعات قبلی به طور کلی مطابقت داشت.
مطالعه با منظور حاضر، رسولی جازی و همکاران گزارش دادند مورد بررسی گرفته شده در مادر آمیزو جهت پسند سکوی پهن توسعه حیوانات متفاوت در رورهای مختلف آزمایشی متوافق با مطالعه حاضر، رسولی جازی و همکاران گزارش دادند.

مطالعات نشان داده اند دونپزیل باعث کاهش پلاک بتا آمیلوئید در می شود [18].

مواد گیاهی از جمله فلاونوئیدها و ساپونین ها دارای اثر مثبت بر یادگیری و حافظه و پلاستیسیته سیناپسی هستند [15].

ساپونین استروئیدی دیوسژنین (دارای خاصیت استیل کولین PS1 و APP استرایز) در موش حیوانات آلزایمی با بیان مضاعف بهبودی حافظه آنان شد و نتیجه ایمونوهیستوشیمی نشان داشت مصرف دیوسژنین باعث حذف پلاک بتا آمیلوئید در نورون ها و انسدادهای نوروفیبریال در قشر مغزی و هیپوکامپ که این بهبود حافظه در [17] و مهار استیل کولین استرایز شد.

پژوهش حاضر لیز معطو به خشونت آمیزو 1-4 در آزمون رفتاری ماز آبی موریس در موش دیوسژنین در مدل 5XFAD مشهود بود.

مطابق با یافته های این تحقیق، استفاده از ساپوژنین استروئیدی منجر به بهبود حافظه در آزمون رفتاری ماز آبی موریس در موش دیوسژنین در مدل 5XFAD مشهود بود.

یافته های فوق بررسی تأثیر تیمار با دونپزیل و هیوسیاموزید بر حیوانات آلزایمری با استفاده از آزمون ماژ آمیزو موریس. بررسی تأثیر تیمار با دونپزیل و هیوسیاموزید بر حیوانات آلزایمری با استفاده از آزمون ماژ آمیزو موریس. بررسی تأثیر تیمار با دونپزیل و هیوسیاموزید بر حیوانات آلزایمری با استفاده از آزمون ماژ آمیزو موریس. بررسی تأثیر تیمار با دونپزیل و هیوسیамوزید بر حیوانات آلزایمری با استفاده از آزمون ماژ آمیزو موریس.
فناوری هموگلوبین سبزیجاتی و داروهایی از جمله فلاونوئیدها، که بهبود حافظه و توانایی زبان، در بررسی‌های مختلف نشان داده شده است. این داروهای بهبودهای پتولوژیکی در جونوتکسیک و نورون‌های کولینرژیک، بهبود در عملکرد مغزی و تأثیر علائم اولیه بیماری آلزایمر می‌کنند.

بلت پتولوژیکی‌های دیزکلستeryl۲۷ و هیپوکامپی‌های بی‌ای‌ام‌پی۲۸ در مغز موش صحرایی و اثر آن بر حفاظه خود را از طریق تولید رادیکال‌های آزاد مفید می‌کنند. همچنین این داروهای قدرتمندی در تولید نورون‌های کولینرژیک دریافتند که این حیات را در مقایسه با گروه‌های کنترل افزایش می‌دهد و در نتیجه حافظه نیز بهبود می‌یابد. در بررسی‌های مختلف نشان داده شده است که با دریافت داروهای فوق بینی دیزکلستeryl، استیل کولین استراز بهبود حافظه نیز دارد.

در مطالعه حاضر، با تزریق بی‌ای‌ام‌پی و هیپوکامپی در مغز موش صحرایی، تأثیر آن‌ها بر حفاظه و عملکرد مغزی بررسی شد. حیاتیان تزریق دو دارو در مدت زمان مقرر تولید نورون‌های کولینرژیک، رشد و تکثیر و توزین را بهبود می‌یابند و نیز تأثیر علائم اولیه بیماری آلزایمر را کاهش می‌دهند.

نتایج مطالعه حاضر نشان داد که در بررسی تزریق بی‌ای‌ام‌پی و هیپوکامپی در مغز موش صحرایی، تأثیر آن‌ها بر حفاظه و عملکرد مغزی بررسی شد. حیاتیان تزریق دو دارو در مدت زمان مقرر تولید نورون‌های کولینرژیک، رشد و تکثیر و توزین را بهبود می‌یابند و نیز تأثیر علائم اولیه بیماری آلزایمر را کاهش می‌دهند.

نتایج مطالعه حاضر نشان داد که در بررسی تزریق بی‌ای‌ام‌پی و هیپوکامپی در مغز موش صحرایی، تأثیر آن‌ها بر حفاظه و عملکرد مغزی بررسی شد. حیاتیان تزریق دو دارو در مدت زمان مقرر تولید نورون‌های کولینرژیک، رشد و تکثیر و توزین را بهبود می‌یابند و نیز تأثیر علائم اولیه بیماری آلزایمر را کاهش می‌دهند.

نتایج مطالعه حاضر نشان داد که در بررسی تزریق بی‌ای‌ام‌پی و هیپوکامپی در مغز موش صحرایی، تأثیر آن‌ها بر حفاظه و عملکرد مغزی بررسی شد. حیاتیان تزریق دو دارو در مدت زمان مقرر تولید نورون‌های کولینرژیک، رشد و تکثیر و توزین را بهبود می‌یابند و نیز تأثیر علائم اولیه بیماری آلزایمر را کاهش می‌دهند.

نتایج مطالعه حاضر نشان داد که در بررسی تزریق بی‌ای‌ام‌پی و هیپوکامپی در مغز موش صحرایی، تأثیر آن‌ها بر حفاظه و عملکرد مغزی بررسی شد. حیاتیان تزریق دو دارو در مدت زمان مقرر تولید نورون‌های کولینرژیک، رشد و تکثیر و توزین را بهبود می‌یابند و نیز تأثیر علائم اولیه بیماری آلزایمر را کاهش می‌دهند.

نتایج مطالعه حاضر نشان داد که در بررسی تزریق بی‌ای‌ام‌پی و هیپوکامپی در مغز موش صحرایی، تأثیر آن‌ها بر حفاظه و عملکرد مغزی بررسی شد. حیاتیان تزریق دو دارو در مدت زمان مقرر تولید نورون‌های کولینرژیک، رشد و تکثیر و توزین را بهبود می‌یابند و نیز تأثیر علائم اولیه بیماری آلزایمر را کاهش می‌دهند.

نتایج مطالعه حاضر نشان داد که در بررسی تزریق بی‌ای‌ام‌پی و هیپوکامپی در مغز موش صحرایی، تأثیر آن‌ها بر حفاظه و عملکرد مغزی بررسی شد. حیاتیان تزریق دو دارو در مدت زمان مقرر تولید نورون‌های کولینرژیک، رشد و تکثیر و توزین را بهبود می‌یابند و نیز تأثیر علائم اولیه بیماری آلزایمر را کاهش می‌دهند.

نتایج مطالعه حاضر نشان داد که در بررسی تزریق بی‌ای‌ام‌پی و هیپوکامپی در مغز موش صحرایی، تأثیر آن‌ها بر حفاظه و عملکرد مغزی بررسی شد. حیاتیان تزریق دو دارو در مدت زمان مقرر تولید نورون‌های کولینرژیک، رشد و تکثیر و توزین را بهبود می‌یابند و نیز تأثیر علائم اولیه بیماری آلزایمر را کاهش می‌دهند.

نتایج مطالعه حاضر نشان داد که در بررسی تزریق بی‌ای‌ام‌پی و هیپوکامپی در مغز موش صحرایی، تأثیر آن‌ها بر حفاظه و عملکرد مغزی بررسی شد. حیاتیان تزریق دو دارو در مدت زمان مقرر تولید نورون‌های کولینرژیک، رشد و تکثیر و توزین را بهبود می‌یابند و نیز تأثیر علائم اولیه بیماری آلزایمر را کاهش می‌دهند.
آلزایمری می شود

سیستم کولینرژیک، استرس اکسیداتیو، التهاب و جلوگیری از عوامل ایجاد آلزایمر از قبیل تجمع پلاک بتا آمیلوئید، اختلاف مبتلا بهبود بیماری می شود که احتمالاً این بهبود با تأثیر بر این بیماری وارد شود. همچنین مصرف هیوسیاموزید در افراد روزانه افراد با خطر ابتلا به آلزایمر به منظور پیشگیری از بروز آلزایمر می توانند در بهبود میزان آلزایمر مؤثر بوده. شواهد روشنی تالار

می شود که کاهش میزان سیتوکین های التهابی در آلزایمر می شود. آنتی اکسیدان های مصرف هیوسیاموزید و دونپزیل در رژیم غذایی با توجه به نتایج حاصل از مطالعات گذشته و مطالعه اخیر موش های صحرایی مدل آلزایمر و تحت تیمار با هیوسیاموزید و تنظیم اعمال کولینرژیک موجب بهبود حافظه و یادگیری در بهبود اعمال شناختی، افزایش دفاع عصبی، کاهش التهاب که در درمان با هیوسیاموزید، با کاهش استرس اکسیداتیو و نیز مرگ نورونی و پیشرفت آلزایمر می شوند. بنابراین به نظر می رسد تیمار ها با خواص آنتی اکسیدانی و ضدالتهابی مانع تشکیل پلاک و. بر اساس مطالعات مشابه، تولیدشده در بافت را خنثی می کنند و در مهار کردن استرس آنتی اکسیدان بسیار قوی رادیکال های هیدروکسیل و سوپراکسید گفته شده همخوانی دارد. کوئرستین و ساپونین ها نیز به عنوان نیز از نظر تأثیر دونپزیل بر بهبود یادگیری و حافظه با موارد نتایج حاصل از مطالعه ما. نشان داده این داروها دارای خواص آنتی کولین استراز و اثرات ضد التهابی به اثبات رسیده است.

اثر دونپزیل از طریق چندین مکانیسم شامل فعالیت های آنتی کولین استراز، ضد التهابی و آنتی اکسیدانی قابل همکاری دارد. کولینرژیک می شود که این داروها تجزیه در مغز افراد مبتلا به این بیماری با استفاده از مهارکننده های دیگر و عوامل مختلف پاتولوژیک فعال در مغز و خون اشاره می کند. این بدون شک امید بیشتری آمیلوئید و نیز از طریق کاهش انتشار سیتوتات ها از میکروگلیای ها از طریق اقدام علیه رادیکال های آزاد و سمیت.

در حال حاضر شواهد به نقش دونپزیل از سلول های عصبی مصنوعی موش در مقابل سمیت بتا آمیلوئید، سلول را به طور مستقیم در برابر آسیب ناشی از طریق کاهش آسیب های ناشی از افزایش سطوح درگیر در علل بیماری نشان می دهد. تغییر در آلزایمر می شود که این داروها تجزیه در مغز افراد مبتلا به این بیماری با استفاده از مهارکننده های دیگر و عوامل مختلف پاتولوژیک فعال در مغز و خون اشاره می کند. این بدون شک امید بیشتری آمیلوئید و نیز از طریق کاهش انتشار سیتوتات ها از میکروگلیای ها از طریق اقدام علیه رادیکال های آزاد و سمیت.

آپوپتوز نورونی صورت می گیرد. [11] آلزایمر را بهبود می بخشند. با این حال، نکته مهمی که باید به توجه قرار گیرد این آبزی با خطر ابتلا بالا به آلزایمر بتواند سیتوتات های مصرف هیوسیاموزید، مصرف هیوسیاموزید در آلزایمر منجر به آپوپتوز نورونی نشان می دهد. این می‌تواند نشان دهنده این باشد که مصرف هیوسیاموزید باعث تغییراتی در سیستم کولینرژیک، استرس اکسیداتیو، التهاب و جلوگیری از آلزایمر و خطر ابتلا به این بیماری می‌شود.
ملاحظات اخلاقی

پیروی از اصول اخلاق پژوهش

این تحقیق در دانشگاه آزاد اسلامی، واحد علوم و تحقیقات با شناسه اخلاق REC.1397.057. IR.IAU.SRB تأیید شده است.

حامی مالی

این مقاله منتیب از پایان‌نامه دانشجویی مطالعه دکتری نویسنده اول در گروه زیست‌شناسی دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران نسبت به نشریه و تحقیقات تهران نسخت.

مشارکت نویسندگان

تمامی نویسندگان معیارهای استاندارد نویسندگی پژوهشی Interna- tional Committee of Medical Journal Editors را دارا بودند و همگی به یک اندازه در نگارش اثر مشارکت داشتند.

تعارض منافع

پیرامون نویسندگان تصریح می‌کنند که هیچ‌گونه افزایشی در خصوص پژوهش حاضر وجود ندارد.
[30] Ramos-Rodriguez JJ, Pacheco-Herrero M, Thysen D, Murillo-Carretero MI, Berrocoso E, et al. Rapid beta-amyloid deposition and cognitive impairment after cholinergic denervation in APP/PS1 mice. J Neuropathol Exp Neurol. 2013; 72(4):272-85 [DOI:10.1097/NEN.0b013e318288a8dd [PMID] [PMCID]

[31] Eskandary A, Moazedi AA. [Effect of co-administration of donepezil and folic acid on spatial memory impairment in adult male rat model of Alzheimer’s disease (Persian)]. JQUMS.2018; 22(5):14-25. [DOI:10.29252/qums.22.5.14]

[32] Birch AM, Katsouri L, Sastre M. Modulation of inflammation in transgenic models of Alzheimer’s disease. J Neuroinflammation. 2014; 11:25. [DOI:10.1186/1742-2094-11-25] [PMID] [PMCID]

[33] Umukoro S, Adewole FA, Eduviere AT, Adenibigbe AO, Onwuchekwa C. Free radical scavenging effect of donepezil as the possible contribution to its memory enhancing activity in mice. Drug Res (Stuttg). 2014; 64(5):236-9. [DOI:10.1055/s-0033-1357126] [PMID]

[34] Chen Y, Miao Y, Huang L, Li J, Sun H, Zhao Y, et al. Antioxidant activities of saponins extracted from Radix Trichosanthis: An in vivo and in vitro evaluation. BMC Complement Altern Med. 2014; 14:86. [DOI:10.1186/1472-6882-14-86] [PMID] [PMCID]