On Carnot algebra
with the growth vector \((2, 3, 5, 8)\)

Yuri Sachkov
Program Systems Institute
Russian Academy of Sciences
Pereslavl-Zalessky, Russia
E-mail: sachkov@sys.botik.ru

April 1, 2013

Dedicated to Andrei Aleksandrovich Agrachev, with gratitude

Abstract
We compute two vector field models of the Carnot algebra with the growth vector \((2, 3, 5, 8)\), and an infinitesimal symmetry of the corresponding sub-Riemannian structure.

Contents

1 Introduction
2 Free nilpotent and Carnot Lie algebras
 2.1 Free nilpotent Lie algebras
 2.2 Carnot algebras and groups
3 Lie algebra with the growth vector \((2, 3, 5, 8)\)
 3.1 Hall basis
 3.2 Asymmetric vector field model for \(L_2^{(4)}\)
 3.3 Symmetric vector field model of \(L_2^{(4)}\)
4 Conclusion and future work
1 Introduction

Carnot groups provide a nilpotent approximation to generic sub-Riemannian manifolds [8, 11, 3, 2, 5]. The free nilpotent sub-Riemannian structures are a natural first subject of study in sub-Riemannian geometry starting from the growth vector (2, 3) — the left-invariant sub-Riemannian structure on the Heisenberg group [4, 16]. The next free rank 2 case — the growth vector (2, 3, 5) — was studied in [12, 13, 14, 15].

In this work we start to study the next free rank 2 case — the growth vector (2, 3, 5, 8). We compute two vector field models of the corresponding Carnot algebra, and an infinitesimal symmetry of the corresponding sub-Riemannian structure (see Sec. 3).

2 Free nilpotent and Carnot Lie algebras

2.1 Free nilpotent Lie algebras

Let L_d be the real free Lie algebra with d generators [6]; L_d is the Lie algebra of commutators of d variables. We have $L_d = \oplus_{i=1}^{\infty} L_d^i$, where L_d^i is the space of commutator polynomials of degree i. Then

$$L_d^{(r)} := L_d / \oplus_{i=r+1}^{\infty} L_d^i$$

is the free nilpotent Lie algebra of step r (or of length r).

Denote

$$l_d(i) := \dim L_d^i, \quad l_d^{(r)} := \dim L_d^{(r)} = \sum_{i=1}^{r} l_d(i).$$

The classical expression of $l_d(i)$ is

$$il_d(i) = d^i - \sum_{j|i, 1 \leq j < i} j l_d(j).$$

In this work we will be interested in free nilpotent Lie algebras with 2 generators. Dimensions of such Lie algebras for small step are given in Table 1.

2.2 Carnot algebras and groups

A Lie algebra L is called a Carnot algebra if it admits a decomposition

$$L = \oplus_{i=1}^{r} L_i$$
Table 1: Dimensions of free nilpotent Lie algebras with 2 generators

i	1	2	3	4	5	6	7	8	9	10
$l_2(i)$	2	1	2	3	6	9	18	30	56	99
$l_2^{(i)}$	2	3	5	8	14	23	41	71	127	226

as a vector space, such that

$[L_i, L_j] \subset L_{i+j}$,

$L_s = 0$ for $s > r$,

$L_{i+1} = [L_1, L_i]$.

A free nilpotent Lie algebra $\mathcal{L}_d^{(r)}$ is a Carnot algebra with $L_i = \mathcal{L}_d^i$.

A Carnot group G is a connected, simply connected Lie group whose Lie algebra L is a Carnot algebra. If L is realized as the Lie algebra of left-invariant vector fields on G, then the degree 1 component L_1 can be thought of as a completely nonholonomic (bracket-generating) distribution on G. If moreover L_1 is endowed with a left-invariant inner product $\langle \cdot, \cdot \rangle$, then $(G, L_1, \langle \cdot, \cdot \rangle)$ becomes a nilpotent left-invariant sub-Riemannian manifold [5]. Such sub-Riemannian structures are nilpotent approximations of generic sub-Riemannian structures [8, 11, 3, 2].

The sequence of numbers

$(\dim L_1, \dim L_1 + \dim L_2, \ldots, \dim L_1 + \cdots + \dim L_r = \dim L)$

is called the growth vector of the distribution L_1 [13].

For free nilpotent Lie algebras, the growth vector is maximal compared with all Carnot algebras with the bidimension $(\dim L_1, \dim L)$.

In this work we consider the Carnot algebra with the growth vector $(2, 3, 5, 8)$.

3 Lie algebra with the growth vector $(2, 3, 5, 8)$

The Carnot algebra with the growth vector $(2, 3, 5, 8)$

$\mathcal{L}_2^{(4)} = \text{span}(X_1, \ldots, X_8)$

is determined by the following multiplication table:

$[X_1, X_2] = X_3, \quad (1)$

$[X_1, X_3] = X_4, \quad [X_2, X_3] = X_5, \quad (2)$

$[X_1, X_4] = X_6, \quad [X_1, X_5] = [X_2, X_4] = X_7, \quad [X_2, X_5] = X_8, \quad (3)$
with all the rest brackets equal to zero.

3.1 Hall basis

Free nilpotent Lie algebras have a convenient basis introduced by M. Hall \[9\]. We describe it using the exposition of \[7\].

The Hall basis of the free Lie algebra L_d with d generators X_1, \ldots, X_d is the subset $\text{Hall} \subset L_d$ that has a decomposition into homogeneous components

$$\text{Hall} = \bigcup_{i=1}^{\infty} \text{Hall}_i$$

defined as follows.

Each element $H_j, j = 1, 2, \ldots$, of the Hall basis is a monomial in the generators X_i and is defined recursively as follows. The generators satisfy the inclusion

$$X_i \in \text{Hall}_1, \quad i = 1, \ldots, d,$$

and we denote

$$H_i = X_i, \quad i = 1, \ldots, d.$$

If we have defined basis elements

$$H_1, \ldots, H_{N_p-1} \in \bigoplus_{j=1}^{p-1} \text{Hall}_j,$$

they are simply ordered so that $E < F$ if $E \in \text{Hall}_k, F \in \text{Hall}_l, k < l$:

$$H_1 < H_2 < \cdots < H_{N_p-1}.$$

Also if $E \in \text{Hall}_s, F \in \text{Hall}_t$ and $p = s + t$, then

$$[E, F] \in \text{Hall}_p$$

if:

1. $E > F$, and
2. if $E = [G, K]$, hen $K \in \text{Hall}_q$ and $t \geq q$.

By this definition, one easily computes recursively the first components Hall_i of the Hall basis for $d = 2$:

- $\text{Hall}_1 = \{H_1, H_2\}$, $H_1 = X_1$, $H_2 = X_2$,
- $\text{Hall}_2 = \{H_3\}$, $H_3 = [X_2, X_1]$,
- $\text{Hall}_3 = \{H_4, H_5\}$, $H_4 = [[X_2, X_1], X_1]$, $H_5 = [[X_2, X_1], X_2]$,
- $\text{Hall}_4 = \{H_6, H_7, H_8\}$,
- $H_6 = [[[X_2, X_1], X_1], X_1]$, $H_7 = [[[X_2, X_1], X_1], X_2]$, $H_8 = [[[X_2, X_1], X_2], X_2]$.

\[4\]
Consequently,
\[\mathcal{L}_2^{(4)} = \text{span}\{H_1, \ldots, H_8\}. \]

In the sequel we use a more convenient basis
\[\mathcal{L}_2^{(4)} = \text{span}\{X_1, \ldots, X_8\} \]
with the multiplication table (1)–(3).

3.2 Asymmetric vector field model for \(\mathcal{L}_2^{(4)} \)

Here we recall an algorithm for construction of a vector field model for the Lie algebra \(\mathcal{L}_2^{(r)} \) due to Grayson and Grossman [7]. For a given \(r \geq 1 \), the algorithm evaluates two polynomial vector fields \(H_1, H_2 \in \text{Vec}(\mathbb{R}^N) \), \(N = \dim \mathcal{L}_2^{(r)} \), which generate the Lie algebra \(\mathcal{L}_2^{(r)} \).

Consider the Hall basis elements
\[\text{span}\{H_1, \ldots, H_N\} = \mathcal{L}_2^{(r)}. \]

Each element \(H_i \in \text{Hall}_j \) is a Lie bracket of length \(j \):
\[H_i = \ldots [[H_2, H_{k_j}], H_{k_{j-1}}], \ldots, H_{k_1}], \quad k_j = 1, \quad k_{n+1} \leq k_n \text{ for } 1 \leq n \leq j - 1. \]

This defines a partial ordering of the basis elements. We say that \(H_i \) is a direct descendant of \(H_2 \) and of each \(H_{k_l} \) and write \(i \succ 2, i \succ k_l, l = 1, \ldots, j \).

Define monomials \(P_{2,k} \) in \(x_1, \ldots, x_N \) inductively by
\[P_{2,k} = -x_j P_{2,i}/(\deg_j P_{2,i} + 1), \]
whenever \(H_k = [H_i, H_j] \) is a basis Hall element, and where \(\deg_j P \) is the highest power of \(x_j \) which divides \(P \).

The following theorem gives the properties of the generators.

Theorem 3.1 (Th. 3.1 [7]). Let \(r \geq 1 \) and let \(N = \dim \mathcal{L}_2^{(r)} \). Then the vector fields
\[H_1 = \frac{\partial}{\partial x_1}, \quad H_2 = \frac{\partial}{\partial x_2} + \sum_{i>2} P_{2,i} \frac{\partial}{\partial x_i} \]
have the following properties:

1. they are homogeneous of weight one with respect to the grading
\[\mathbb{R}^N = \text{Hall}_1 \oplus \cdots \oplus \text{Hall}_r; \]
2. Lie(H_1, H_2) = $\mathcal{L}_2^{(r)}$.

The algorithm described before Theorem 3.1 produces the following vector field basis of $\mathcal{L}_2^{(4)}$:

$$H_1 = \frac{\partial}{\partial x_1},$$
$$H_2 = \frac{\partial}{\partial x_2} - x_1 \frac{\partial}{\partial x_3} - \frac{x_1^2}{2} \frac{\partial}{\partial x_4} - x_1x_2 \frac{\partial}{\partial x_5} + \frac{x_1^3}{6} \frac{\partial}{\partial x_6} + \frac{x_1^2x_2}{2} \frac{\partial}{\partial x_7} + \frac{x_1x_2^2}{2} \frac{\partial}{\partial x_8},$$
$$H_3 = \frac{\partial}{\partial x_3} + x_1 \frac{\partial}{\partial x_4} + x_2 \frac{\partial}{\partial x_5} - \frac{x_1^2}{2} \frac{\partial}{\partial x_6} - x_1x_2 \frac{\partial}{\partial x_7} - \frac{x_2^2}{2} \frac{\partial}{\partial x_8},$$
$$H_4 = -\frac{\partial}{\partial x_4} + x_1 \frac{\partial}{\partial x_6} + x_2 \frac{\partial}{\partial x_7},$$
$$H_5 = -\frac{\partial}{\partial x_5} + x_1 \frac{\partial}{\partial x_7} + x_2 \frac{\partial}{\partial x_8},$$
$$H_6 = -\frac{\partial}{\partial x_6},$$
$$H_7 = -\frac{\partial}{\partial x_7},$$
$$H_8 = -\frac{\partial}{\partial x_8},$$

with the multiplication table

$$[H_2, H_1] = H_3, \quad [H_3, H_1] = H_4, \quad [H_3, H_2] = H_5,$$
$$[H_4, H_1] = H_6, \quad [H_4, H_2] = H_7, \quad [H_5, H_2] = H_8.$$

3.3 Symmetric vector field model of $\mathcal{L}_2^{(4)}$

The vector field model of the Lie algebra $\mathcal{L}_2^{(4)}$ via the fields H_1, \ldots, H_8 obtained in the previous subsection is asymmetric in the sense that there is no visible symmetry between the vector fields H_1 and H_2. Moreover, no continuous symmetries of the sub-Riemannian structure generated by the orthonormal frame $\{H_1, H_2\}$ are visible, although the Lie brackets (4)–(6) suggest that this sub-Riemannian structure should be preserved by a one-parameter group of rotations in the plane span$\{H_1, H_2\}$.

One can find a symmetric vector field model of $\mathcal{L}_2^{(4)}$ free of such shortages as in the following statement.
Theorem 3.2. (1) The vector fields

\[X_1 = \frac{\partial}{\partial x_1} - \frac{x_2}{2} \frac{\partial}{\partial x_3} + \frac{x_2^2}{2} \frac{\partial}{\partial x_4} - \frac{x_1 x_2^2}{4} \frac{\partial}{\partial x_5} - \frac{x_2^3}{6} \frac{\partial}{\partial x_6} \]

(7)

\[X_2 = \frac{\partial}{\partial x_2} + \frac{x_1}{2} \frac{\partial}{\partial x_3} + \frac{x_2^2}{2} \frac{\partial}{\partial x_4} + \frac{x_1^3}{6} \frac{\partial}{\partial x_5} + \frac{x_1^2 x_2}{4} \frac{\partial}{\partial x_6} \]

(8)

\[X_3 = \frac{\partial}{\partial x_3} + x_1 \frac{\partial}{\partial x_4} + x_2 \frac{\partial}{\partial x_5} + \frac{x_1^2}{2} \frac{\partial}{\partial x_6} + x_1 x_2 \frac{\partial}{\partial x_7} + \frac{x_2^2}{2} \frac{\partial}{\partial x_8} \]

(9)

\[X_4 = \frac{\partial}{\partial x_4} + x_1 \frac{\partial}{\partial x_6} + x_2 \frac{\partial}{\partial x_7} \]

(10)

\[X_5 = \frac{\partial}{\partial x_5} + x_1 \frac{\partial}{\partial x_7} + x_2 \frac{\partial}{\partial x_8} \]

(11)

\[X_6 = \frac{\partial}{\partial x_6} \]

(12)

\[X_7 = \frac{\partial}{\partial x_7} \]

(13)

\[X_8 = \frac{\partial}{\partial x_8} \]

(14)

satisfy the multiplication table (1)-(3). Thus the fields \(X_1, \ldots, X_8 \in \text{Vec}(\mathbb{R}^8) \) model the Lie algebra \(\mathcal{L}_2^{(4)} \).

(2) The vector field

\[X_0 = x_2 \frac{\partial}{\partial x_1} - x_1 \frac{\partial}{\partial x_2} + x_5 \frac{\partial}{\partial x_3} - x_4 \frac{\partial}{\partial x_5} + P \frac{\partial}{\partial x_6} + Q \frac{\partial}{\partial x_7} + R \frac{\partial}{\partial x_8} \]

(15)

\[P = -\frac{x_4^4}{24} + \frac{x_2^2 x_2^2}{8} + x_7, \]

(16)

\[Q = \frac{x_1 x_2^2}{12} + \frac{x_1^3 x_2}{12} - 2x_6 + 2x_8, \]

(17)

\[R = \frac{x_2^4 x_2^2}{8} - \frac{x_4^4}{24} - x_7 \]

(18)

satisfies the following relations:

\[[X_0, X_1] = X_2, \quad [X_0, X_2] = -X_1, \quad [X_0, X_3] = 0, \quad (19) \]

\[[X_0, X_4] = X_5, \quad [X_0, X_5] = -X_4, \quad (20) \]

\[[X_0, X_6] = 2X_7, \quad [X_0, X_7] = X_8 - X_6, \quad [X_0, X_8] = -2X_7. \quad (21) \]

Thus the field \(X_0 \) is an infinitesimal symmetry of the sub-Riemannian structure generated by the orthonormal frame \{X_1, X_2\}.
Proof. In fact, the both statements of the proposition are verified by the
direct computation, but we prefer to describe a method of construction of
the vector fields \(X_1, \ldots, X_8\), and \(X_9\).

(1) In the previous work \([12]\) we constructed a similar symmetric vec-
tor field model for the Lie algebra \(L_2^{(3)}\), which has growth vector \((2, 3, 5)\):

\[
L_2^{(3)} = \text{span}\{X_1, \ldots, X_5\} \subset \text{Vec}(\mathbb{R}^5),
\]

\[
X_1 = \frac{\partial}{\partial x_1} - \frac{x_2}{2} \frac{\partial}{\partial x_4} - \frac{x_1^2 + x_2^2}{2} \frac{\partial}{\partial x_5},
\]

\[
X_2 = \frac{\partial}{\partial x_2} + \frac{x_1}{2} \frac{\partial}{\partial x_3} + \frac{x_1^2 + x_2^2}{2} \frac{\partial}{\partial x_4},
\]

\[
X_3 = \frac{\partial}{\partial x_3} + x_1 \frac{\partial}{\partial x_4} + x_2 \frac{\partial}{\partial x_5},
\]

\[
X_4 = \frac{\partial}{\partial x_4},
\]

\[
X_5 = \frac{\partial}{\partial x_5},
\]

with the Lie brackets \([1], [2]\). Now we aim to “continue” these relationships
to vector fields \(X_1, \ldots, X_8 \in \text{Vec}(\mathbb{R}^8)\) that span the Lie algebra \(L_2^{(4)}\). So we seek for vector fields of the form

\[
X_1 = \frac{\partial}{\partial x_1} - \frac{x_2}{2} \frac{\partial}{\partial x_3} - \frac{x_1^2 + x_2^2}{2} \frac{\partial}{\partial x_5} + \sum_{i=6}^{8} a_i^1 \frac{\partial}{\partial x_i},
\]

\[
X_2 = \frac{\partial}{\partial x_2} + \frac{x_1}{2} \frac{\partial}{\partial x_3} - \frac{x_1^2 + x_2^2}{2} \frac{\partial}{\partial x_4} + \sum_{i=6}^{8} a_i^2 \frac{\partial}{\partial x_i},
\]

\[
X_3 = \frac{\partial}{\partial x_3} + x_1 \frac{\partial}{\partial x_4} + x_2 \frac{\partial}{\partial x_5} + \sum_{i=6}^{8} a_i^3 \frac{\partial}{\partial x_i},
\]

\[
X_4 = \frac{\partial}{\partial x_4} + \sum_{i=6}^{8} a_i^4 \frac{\partial}{\partial x_i},
\]

\[
X_5 = \frac{\partial}{\partial x_5} + \sum_{i=6}^{8} a_i^5 \frac{\partial}{\partial x_i},
\]

\[
X_j = \sum_{i=j}^{8} a_i^j \frac{\partial}{\partial x_i}, \quad j = 6, 7, 8,
\]

such that \(\text{span}\{X_1, \ldots, X_8\} = L_2^{(4)}\).
Compute the required Lie brackets:

\[
\begin{align*}
[X_1, X_2] &= \frac{\partial}{\partial x_3} + x_1 \frac{\partial}{\partial x_4} + x_2 \frac{\partial}{\partial x_5} + \left(\frac{\partial a_6^6}{\partial x_1} - \frac{\partial a_1^6}{\partial x_2} \right) \frac{\partial}{\partial x_6} \\
&\quad + \left(\frac{\partial a_2^7}{\partial x_1} - \frac{\partial a_1^7}{\partial x_2} \right) \frac{\partial}{\partial x_7} + \left(\frac{\partial a_2^8}{\partial x_1} - \frac{\partial a_1^8}{\partial x_2} \right) \frac{\partial}{\partial x_8}, \\
[X_1, X_3] &= \frac{\partial}{\partial x_4} + \frac{\partial a_6^6}{\partial x_1} \frac{\partial}{\partial x_6} + \frac{\partial a_7^7}{\partial x_1} \frac{\partial}{\partial x_7} + \frac{\partial a_8^8}{\partial x_1} \frac{\partial}{\partial x_8}, \\
[X_2, X_3] &= \frac{\partial}{\partial x_5} + \frac{\partial a_6^6}{\partial x_2} \frac{\partial}{\partial x_6} + \frac{\partial a_7^7}{\partial x_2} \frac{\partial}{\partial x_7} + \frac{\partial a_8^8}{\partial x_2} \frac{\partial}{\partial x_8}, \\
[X_1, X_4] &= \frac{\partial}{\partial x_6} + \frac{\partial a_6^6}{\partial x_1} \frac{\partial}{\partial x_7} + \frac{\partial a_7^7}{\partial x_1} \frac{\partial}{\partial x_8} + \frac{\partial a_8^8}{\partial x_1} \frac{\partial}{\partial x_6}, \\
[X_1, X_5] &= \frac{\partial}{\partial x_7} + \frac{\partial a_6^6}{\partial x_2} \frac{\partial}{\partial x_8} + \frac{\partial a_7^7}{\partial x_2} \frac{\partial}{\partial x_6} + \frac{\partial a_8^8}{\partial x_2} \frac{\partial}{\partial x_7}, \\
[X_2, X_4] &= \frac{\partial}{\partial x_8} + \frac{\partial a_6^6}{\partial x_3} \frac{\partial}{\partial x_7} + \frac{\partial a_7^7}{\partial x_3} \frac{\partial}{\partial x_8} + \frac{\partial a_8^8}{\partial x_3} \frac{\partial}{\partial x_6}, \\
[X_2, X_5] &= \frac{\partial}{\partial x_7} + \frac{\partial a_6^6}{\partial x_3} \frac{\partial}{\partial x_8} + \frac{\partial a_7^7}{\partial x_3} \frac{\partial}{\partial x_6} + \frac{\partial a_8^8}{\partial x_3} \frac{\partial}{\partial x_7}.
\end{align*}
\]

The vector fields \(X_1, \ldots, X_8\) should be independent, thus the determinant constructed of these vectors as columns should satisfy the inequality

\[
D = \det (X_1, \ldots, X_8) = \begin{vmatrix}
a_6^6 & a_7^6 & a_8^6 \\
a_6^7 & a_7^7 & a_8^7 \\
a_6^8 & a_7^8 & a_8^8
\end{vmatrix} \neq 0.
\]

We will choose \(a_j^i\) such that \(D = 1\). It follows from the multiplication table for \(X_1, \ldots, X_8\) that

\[
D = \begin{vmatrix}
d^2 a_3^6 & d^2 a_4^6 & d^2 a_5^6 \\
d x_4^6 & d x_1 d x_2 & d x_3^6 \\
d x_4^7 & d x_1 d x_2 & d x_3^7 \\
d x_4^8 & d x_1 d x_2 & d x_3^8
\end{vmatrix}.
\]

In order to get \(D = 1\), define the entries of this matrix as following symmetric way:

\[
a_3^6 = \frac{x_1^2}{2}, \quad a_3^7 = x_1 x_2, \quad a_3^8 = \frac{x_2^2}{2}.
\]
Then we obtain from the multiplication table for X_1, \ldots, X_8 that
\[
\frac{\partial a^6_2}{\partial x_1} - \frac{\partial a^6_1}{\partial x_2} = a^6_3 = \frac{x_1^2}{2},
\]
\[
\frac{\partial a^7_2}{\partial x_1} - \frac{\partial a^7_1}{\partial x_2} = a^7_3 = x_1 x_2,
\]
\[
\frac{\partial a^8_2}{\partial x_1} - \frac{\partial a^8_1}{\partial x_2} = a^8_3 = \frac{x_2^2}{2}.
\]

We solve these equations in the following symmetric way:
\[
a^6_1 = 0, \quad a^6_2 = \frac{x_1^3}{6},
\]
\[
a^7_1 = -\frac{x_1 x_2^2}{4}, \quad a^7_2 = \frac{x_1^2 x_2}{4},
\]
\[
a^8_1 = -\frac{x_2^3}{6}, \quad a^8_2 = 0.
\]

Then we substitute these coefficients to (28), (29) and check item (1) of this theorem by direct computation.

Now we prove item (2). We proceed exactly as for item (1): we start from an infinitesimal symmetry
\[
X_0 = x_2 \frac{\partial}{\partial x_1} - x_1 \frac{\partial}{\partial x_2} + x_5 \frac{\partial}{\partial x_4} - x_4 \frac{\partial}{\partial x_5} \in \text{Vec}(\mathbb{R}^5)
\]
of the sub-Riemannian structure on \mathbb{R}^5 determined by the orthonormal frame (23), (24) and “continue” symmetry (34) to the sub-Riemannian structure on \mathbb{R}^8 determined by the orthonormal frame (7), (8).

So we seek for a vector field $X_0 \in \text{Vec}(\mathbb{R}^8)$ of the form (15) for the functions $P, Q, R \in C^\infty(\mathbb{R}^8)$ to be determined so that the multiplication table (19)–(21) hold.

The first two equalities in (19) yield
\[
X_1 P = -\frac{x_1^3}{6}, \quad X_2 P = \frac{x_1^2 x_2}{2}.
\]

Further,
\[
X_3 P = [X_1, X_2] P = X_1 X_2 P - X_2 X_1 P = X_1 \frac{x_1^2 x_2}{2} + X_2 \frac{x_2^3}{6} = x_1 x_2.
\]

Similarly it follows that
\[
X_4 P = x_2, \quad X_5 P = x_1, \quad X_6 P = 0, \quad X_7 P = 1, \quad X_8 P = 0.
\]
Since $X_6 P = X_8 P = 0$, then $P = P(x_1, x_2, x_3, x_4, x_5, x_7)$. Moreover, since $X_7 P = 1$, then $P = x_7 + a(x_1, x_2, x_3, x_4, x_5)$. The equality $X_8 P = x_1$ implies that $\frac{\partial a}{\partial x_3} = 0$, i.e., $a = a(x_1, x_2, x_3, x_4)$. Similarly, since $X_4 P = x_2$, then $a = a(x_1, x_2, x_3)$. It follows from the equality $X_3 P = x_1 x_2$ that $\frac{\partial a}{\partial x_3} = x_1 x_2$, i.e., $a = x_1 x_2 x_3$. Moreover, the equality $X_2 P = \frac{x_2 x_3}{2}$ implies that $\frac{\partial b}{\partial x_2} = -x_1 x_3 - \frac{x_1^2 x_2}{4}$, i.e., $b = -x_1 x_2 x_3 - \frac{x_1^2 x_2}{8} + c(x_1)$. Finally, the equality $X_1 P = -\frac{x_1^3}{2}$ implies that $\frac{dc}{dx_1} = -\frac{x_1^3}{6} + \frac{x_1 x_2^2}{2}$ i.e., $c = -\frac{x_1^3}{24} + \frac{x_1^2 x_2^2}{4}$. Thus equality (16) follows. Similarly we get equalities (17), (18).

Then multiplication table (19)–(21) for the vector field (15)–(18) is verified by a direct computation.

4 Conclusion and future work

We plan to perform a further study of the nilpotent sub-Riemannian structure with the growth vector $(2, 3, 5, 8)$ using its model obtained in Th. 3.2:

• describe the multiplication rule on the corresponding Carnot group \mathbb{R}^8,
• characterize Casimir functions and orbits of the co-adjoint action,
• describe abnormal extremal trajectories and prove strict abnormality of some of them,
• study symmetries, integrals and integrability of the Hamiltonian system for normal extremals,
• describe normal extremal trajectories.

These results will be published elsewhere.

References

[1] A.A. Agrachev, Yu. L. Sachkov, Geometric control theory, Fizmatlit, Moscow 2004; English transl. Control Theory from the Geometric Viewpoint, Springer-Verlag, Berlin 2004.

[2] A. A. Agrachev, A. A. Sarychev, Filtration of a Lie algebra of vector fields and nilpotent approximation of control systems, Dokl. Akad. Nauk SSSR, 295 (1987), English transl. in Soviet Math. Dokl., 36 (1988), 104–108.
[3] A. Bellaïche, The tangent space in sub-Riemannian geometry, in: Sub-Riemannian geometry, vol. 144 of Progr. Math., Birkhäuser, Basel, 1996, pp. 1–78.

[4] R. Brockett, Control theory and singular Riemannian geometry, In: New Directions in Applied Mathematics, (P. Hilton and G. Young eds.), Springer-Verlag, New York, 11–27.

[5] R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications. American Mathematical Society (2002).

[6] Ch. Reutenauer, Free Lie algebras, London Mathematical Society Monographs. New Series, 7, The Clarendon Press Oxford University Press, 1993.

[7] M. Grayson, R. Grossman, Nilpotent Lie algebras and vector fields, Symbolic Computation: Applications to Scientific Computing, R.Grossman, Ed., SIAM, Philadelphia, 1989, pp. 77–96.

[8] M. Gromov, Carnot-Carathéodory spaces seen from within, in: Sub-Riemannian geometry, vol. 144 of Progr. Math., Birkhäuser, Basel, 1996, pp. 79—323.

[9] M. Hall, A basis for free Lie rings and higher commutators in free groups, Proc. Amer. Math. Soc., 1 (1950), 575—581.

[10] H. Hermes, Nilpotent approximations of control systems and distributions, SIAM J. Control Optim., 24 (1986), 731—736.

[11] J. Mitchell, On Carnot-Carathéodory metrics, J. Differential Geom., 21 (1985), pp. 35—45.

[12] Yu. L. Sachkov, Exponential mapping in generalized Dido’s problem, Mat. Sbornik, 194 (2003), 9: 63–90 (in Russian). English translation in: Sbornik: Mathematics, 194 (2003).

[13] Yu. L. Sachkov, Discrete symmetries in the generalized Dido problem (in Russian), Matem. Sbornik, 197 (2006), 2: 95–116. English translation in: Sbornik: Mathematics, 197 (2006), 2: 235–257.

[14] Yu. L. Sachkov, The Maxwell set in the generalized Dido problem (in Russian), Matem. Sbornik, 197 (2006), 4: 123–150. English translation in: Sbornik: Mathematics, 197 (2006), 4: 595–621.
[15] Yu. L. Sachkov, Complete description of the Maxwell strata in the generalized Dido problem (in Russian), *Matem. Sbornik*, **197** (2006), 6: 111–160. English translation in: *Sbornik: Mathematics*, **197** (2006), 6: 901–950.

[16] A.M. Vershik, V.Y. Gershkovich, Nonholonomic Dynamical Systems. Geometry of distributions and variational problems. (Russian) In: *Itogi Nauki i Tekhniki: Sovremennye Problemy Matematiki, Fundamental’nyje Napravleniya*, Vol. 16, VINITI, Moscow, 1987, 5–85. (English translation in: *Encyclopedia of Math. Sci.*, **16**, Dynamical Systems 7, Springer Verlag.)