Does antecolic reconstruction decrease delayed gastric emptying after pancreatoduodenectomy?

Nadia Peparini, Piero Chirletti

Nadia Peparini, Azienda Sanitaria Locale Roma H, 00043 Rome, Italy
Piero Chirletti, Department of Surgical Sciences, Sapienza University of Rome, 00161 Rome, Italy

Author contributions: Peparini N conceived and drafted the manuscript, critically revised the manuscript and gave the final approval; Chirletti P critically revised the manuscript and gave its final approval.

Correspondence to: Nadia Peparini, MD, PhD, Azienda Sanitaria Locale Roma H, via Mario Calò, 5-Ciampino, 00043 Rome, Italy. nadiapeparini@yahoo.it
Telephone: +39-339-2203940 Fax: +39-765-488423
Received: September 17, 2012 Revised: November 4, 2012 Accepted: November 11, 2012 Published online: December 7, 2012

Abstract

Delayed gastric emptying (DGE) is a frequent complication after pylorus-preserving pancreatoduodenectomy (PpPD). Kawai and colleagues proposed pylorus-resecting pancreatoduodenectomy (PrPD) with antecolic gastrojejunostomy to obviate DGE occurring after PpPD. Here we debate the reported differences in the prevalence of DGE in antecolic and retrocolic gastro/duodeno-jejunostomies after PrPD and PpPD, respectively. We concluded that the route of the gastro/duodeno-jejunal anastomosis does not have an influence on the prevalence of DGE or on the postoperative development of DGE after pancreatoduodenectomy (PD).

Key words: Antecolic reconstruction; Retrocolic reconstruction; Pancreatoduodenectomy; Pylorus-preserving pancreatoduodenectomy; Delayed gastric emptying

INVITED COMMENTARY ON HOT ARTICLES

Delayed gastric emptying (DGE) is a major cause of early morbidity following pancreatoduodenectomy (PD). Although it has been recently reported that pylorus-preserving pancreatoduodenectomy (PpPD) and classical Whipple's PD are equal operations regarding the postoperative development of DGE[1], the occurrence of this complication is usually considered to be associated with PpPD. DGE after PpPD was first described by Warshaw et al[2] in 1985. DGE implies a state of postoperative gastroparesis and gastric stasis for which prolonged gastric drainage is necessary with delay to return to solid food intake. However, the pathogenesis of DGE is still unclear. Postoperative decrease in plasma motilin stimulation after duodenal resection[3], devascularization and denervation of the pylorus with subsequent pylorospasm in PpPD[4] and other operative factors such as the route of gastro-
duodeno-enteric reconstruction (antecolic vs retrocolic)\(^{[8]}\) and the type of reconstructive technique (Billroth I vs Billroth II reconstruction)\(^{[7]}\) may contribute to the occurrence of DGE. Moreover, intra-abdominal postoperative complications such as pancreatic fistula, peripancreatic collections, intraabdominal abscess or postoperative pancreatitis may increase the prevalence of DGE\(^{[8-13]}\). The reported prevalence of DGE after pancreatic surgery is remarkably variable due to different adopted definitions of DGE\(^{[10,14,15]}\). In fact, a consensus definition of DGE based on the impact on the clinical course and on postoperative management was proposed by the International Study Group of Pancreatic Surgery only in 2007\(^{[16]}\). Kawai et al\(^{[17]}\) reported a prospective randomized controlled trial (RCT) on the prevalence of DGE in pylorus-preserving pancreaticoduodenectomy (PPD) vs PpPD. The authors proposed PrPD, in which the stomach is nearly entirely preserved and divided just adjacent to the pyloric ring, to obviate DGE occurring after PpPD and avoid the impairment of nutritional status occurring after classical Whipple’s PD. They highlighted that the results of their RCT significantly favored PrPD over PpPD, considering the prevalence of DGE (4.5% vs 17.2%): in these procedures an antecolic gastro- or duodeno-jejunal reconstruction was adopted\(^{[18]}\).

A recent RCT comparing the occurrence of DGE after subtotal stomach-preserving pancreaticoduodenectomy in pancreaticogastrostomy with retrocolic gastro-jejunal anastomosis reconstruction and in pancreaticogastrostomy with antecolic gastro-jejunal reconstruction concluded that antecolic reconstruction, and not retrocolic reconstruction, decreases DGE prevalence. However, in this study, Billroth I (retrocolic) reconstructions were compared with Billroth II (antecolic) reconstructions\(^{[19]}\). After subtotal stomach-preserving pancreaticoduodenectomy with pancreaticogastrostomy, Oida et al\(^{[20,21]}\) considered retrocolic gastrojejunal reconstruction preferable to antecolic reconstruction for preventing DGE because pancreaticogastric anastomosis is located behind the stomach and the retrocolic route in gastroenteric reconstruction enables the gastric contents to easily reach the jejunum. In the study by Eshuis et al\(^{[22]}\), DGE was more frequent in retrocolic reconstructions, but in multivariable analysis no association between the route of reconstruction and DGE was found.

After PD, Billroth I reconstruction is considered to have a higher incidence of DGE than Billroth II reconstruction\(^{[3]}\), but Billroth I is considered to be a more physiologic procedure than Billroth II because Billroth I preserves the proximal jejunum in the alimentary circuit and maintains the hormonal stimuli on the remnant pancreas\(^{[23]}\). In evaluation of the prevalence of DGE in antecolic and retrocolic reconstruction in gastro- and duodeno-jejunal anastomosis after classical Whipple’s PD and PpPD, respectively, the two compared procedures should differ only in the manner in which the jejunum is brought up in respect to the transverse colon. Kawai participated in a previously reported prospective RCT in which the adopted reconstructive procedures after PpPD were different only regarding the route; i.e., antecolic or retrocolic, for Billroth II type duodeno-jejunal anastomosis. The prevalence of DGE was significantly lower in the antecolic duodeno-jejunal anastomosis group than in the retrocolic duodeno-jejunal anastomosis group\(^{[6]}\). However, another recent RCT showed no difference in the prevalence of DGE between antecolic and retrocolic gastro/duodeno-jejunal anastomosis following classical Whipple’s PD/PpPD after standardization of both the antecolic and retrocolic types of Billroth II gastro/duodeno-jejunal anastomosis with respect to the distance from the hepatico-jejunostomy and angulation of the jejunal loop. In this study, the occurrence of DGE was not affected by the type of performed PD; i.e., classical Whipple’s PD vs PpPD, or the type of adopted reconstruction of the gastro/duodeno-jejunal anastomosis; i.e., antecolic vs retrocolic\(^{[23]}\). Ueno et al\(^{[26]}\) indicated that the transient torsion or angulation in the reconstruction of the alimentary tract is the main cause of DGE after PpPD. Several methods were proposed to promote the alimentary transit from the stomach through the jejunal loop, such as alignment of the stomach contour to avoid angulation of the jejunal loop distally to the duodeno-jejunal anastomosis in a Billroth II type of reconstructive procedure\(^{[25]}\), and straight antecolic duodeno-jejunal anastomosis twisting the jejunum 30° counterclockwise to preserve the potency of the effenter jejunum and placing the stomach in the left subcolic fossa to straighten it in a Billroth II type of reconstruction\(^{[25]}\). In the RCT by Chi-jiwa et al\(^{[23]}\), no significant difference in the prevalence of DGE was found between retrocolic vertically performed duodenojejunalostomy and antecolic duodenojejunos-tomy (Table 1).

Regarding the resection method, Kawai et al\(^{[17,18]}\) highlighted that PrPD preserves the capacity of the stomach and obviates to pylorospasm, denervation and devascularization of the pylorus ring, which can occur in PpPD, and demonstrated that PrPD decreases the incidence of DGE in respect to PpPD. Recently, these surgical procedures of subtotal stomach-preserving (or pylorus-preserving) pancreaticoduodenectomies have been adopted in surgical treatments of malignant tumors of the periampullary region and of the head of the pancreas. Our group has been adopting subtotal stomach-preserving pancreaticoduodenectomy since 1995 for several considerations. After pancreaticoduodenectomy, gastric preservation favors adequate weight gain due to higher caloric intake; moreover, and most of all, normal acid secretion acts as a physiologic stimulus promoting the intestinal secretion of secretin and CCK-PZ, as well as the subsequent stimulation of pancreatic exocrine secretion with better digestion of protein and fat (weight gain). Lastly, preservation of the stomach with resection of the pylorus favors better gastric emptying\(^{[28,29]}\). Regarding the impact of the reconstructive method on DGE, we think that the route of the gastro/duodeno-jejunal anastomosis with respect to the transverse colon (antecolic or retrocolic) or the type of reconstruction performed (Billroth I or Billroth II procedure) are not truly responsible for the differences in the prevalence of DGE after PD. We believe
that, after a PD, the impact of reconstructive methods on DGE is related mostly to the angulation or torsion of the reconstruction of the gastro-duodeno-jejunostomy because all the reported modified procedures associated with lower DGEs in Billroth I as well Billroth II types of reconstruction, are related to the reconstructive anatomy of the alimentary circuit and are aimed to facilitate the outflow of the ingests from the gastric/duodenal remnant. An antecolic gastro-duodeno-jejunostomy can favor a straight construction and gastric emptying by gravity in a Billroth II reconstruction after PD or PpPD24 as well as a retrocolic Billroth II gastrojejunostomy after a subtotal stomach-preserving pancreaticoduodenectomy with pancreaticogastrostomy reconstruction can favor the transit of the gastric contents towards the jejunum in consequence of the retrogastric site of pancreaticogastrostomy20,21. A Billroth II reconstruction can avoid the jejunal angulation produced by a Billroth I procedure in which the anastomosis of the proximal jejunum to the gastric/duodenal stump is performed at first, followed by pancreatic-jejunostomy and hepatico-jejunostomy22 (or by hepatico-jejunostomy in a case in which a pancreaticogastrostomy is carried out).

According to the ISGPS clinical criteria16, we have recently reported a prevalence of 8.9% (8 cases) of grade A DGE and 1.1% (1 case) of grade C DGE in a series of 89 subtotal stomach-preserving PD followed by Roux-en-Y retrocolic reconstruction with anastomosis of the isolated Roux limb (i.e., first jejunal loop) to the stomach and single Roux limb (i.e., second jejunal loop) to the pancreatic stump and hepatic duct30 (Figure 1).

We chose anastomosing the isolated proximal jejunum to the gastric remnant because, after removal of the duodenal source of CCK and secretin, preservation of the first jejunal loop in the reconstruction of the alimentary circuit maintains the physiologic jejunal secretion of secretin and CCK-PZ subsequent to alimentary transit and can compensate (at least in part) for the abolished duodenal hormonal release29. Then, the anastomosis of the isolated first jejunal loop to the gastric remnant, although retrocolic, avoided any angulation and torsion allowing the outflow of the gastric contents by gravity through a “straight route” (Figure 2). It is widely known that postoperative complications are related to the occurrence of DGE. Therefore, controlling the prevalence

![First jejunal loop](image1.png)

Figure 1 Retrocolic gastro-jejunal anastomosis in Roux-en-y reconstruction after subtotal stomach-preserving pancreaticoduodenectomy. M: Mesocolic window; GJ: Gastro-jejunal anastomosis. Dashed line indicates the level of jejunal division.
of other postoperative complications can contribute to reduce the occurrence of DGE. Postoperative pancreatic fistula occurred in seven patients (7.8%) of our series. Six cases of grade A fistula resolved spontaneously and in only one grade B fistula was percutaneous drainage necessary. Postoperative hemorrhage occurred in two of 89 (2.2%) patients, biliary fistula in eight (8.9%) patients and acute pancreatitis in one (1.1%). One patient with pre-existing stenosis of the hepatic artery developed thrombosis of the hepatic artery.

In conclusion, PrPD may contribute to a decrease in the prevalence of DGE due to pylorospasm, denervation and devascularization of the pylorus ring, which may occur after PpPD. A “straight” route, not necessarily an “antecolic” route, may obviate to the prevalence of DGE due to torsion or angulation in the reconstruction of the alimentary tract.

REFERENCES

1. Paraskevas KI, Avgerinos C, Manes C, Lytras D, Dervenis C. Delayed gastric emptying is associated with pylorus-preserving but not classical Whipple pancreaticoduodenectomy: a review of the literature and critical reappraisal of the implicated pathomechanism. World J Gastroenterol 2006; 12: 5951-5958
2. Warshaw AL, Torchiana DL. Delayed gastric emptying after pylorus-preserving pancreaticoduodenectomy. Surg Gynecol Obstet 1985; 160: 1-4
3. Suzuki H, Mochiki E, Haga N, Shimura T, Itoh Z, Kuwano H. Effect of duodenectomy on gastric motility and gastric hormones in dogs. Ann Surg 2001; 233: 353-359
4. Gauvin JM, Sarmiento JM, Sarr MG. Pylorus-preserving pancreaticoduodenectomy with complete preservation of the pyloroduodenal blood supply and innervation. Arch Surg 2003; 138: 1261-1263
5. Kim DK, Hindenburg AA, Sharma SK, Suk CH, Gress FG, Staszewski H, Grendell JH, Reed WP. Is pylorospasm a cause of delayed gastric emptying after pylorus-preserving pancreaticoduodenectomy? Ann Surg Oncol 2005; 12: 222-227
6. Tani M, Terasawa H, Kawai M, Imae S, Hirono S, Uchiyama K, Yamau H. Improvement of delayed gastric emptying in pylorus-preserving pancreaticoduodenectomy: results of a prospective, randomized, controlled trial. Ann Surg 2006; 243: 316-320
7. Goel TH, van Berge Henegouwen MI, Slooff MJ, van Gulik TM, Gouma DJ. Erythromycin accelerates gastric emptying after pancreaticoduodenectomy. Hepatogastroenterology 2002; 49: 585-588
8. Miedema BW, Sarr MG, van Heerden JA, Nagorney DM, McIlrath DC, Istrup D. Complications following pancreaticoduodenectomy. Current management. Arch Surg 1992; 127: 945-949; discussion 949-950
9. Park YC, Kim SW, Jang JY, Ahn YJ, Park YH. Factors influencing delayed gastric emptying after pylorus-preserving pancreaticoduodenectomy: J Am Coll Surg 2003; 196: 859-865
10. van Berge Henegouwen MI, van Gulik TM, DeWit LT, Allema JH, Rauws EA, Obertop H, Gouma DJ. Delayed gastric emptying after standard pancreaticoduodenectomy versus pylorus-preserving pancreaticoduodenectomy: an analysis of 200 consecutive patients. J Am Coll Surg 1997; 185: 373-379
11. Kimura F, Suwa T, Sugitani S, Chinoda T, Miyazaki M, Itoh H. Sepsis delays gastric emptying following pylorus-preserving pancreaticoduodenectomy. Hepatogastroenterology 2007; 54-59
12. Riediger H, Makowiec F, Scharweck WD, Hopt UT, Adam U. Delayed gastric emptying after pylorus-preserving pancreaticoduodenectomy is strongly related to other postoperative complications. J Gastrointest Surg 2003; 7: 758-765
13. Ráty S, Sand J, Laneto E, Nordback I. Postoperative acute pancreatitis as a major determinant of postoperative delayed gastric emptying after pancreaticoduodenectomy. J Gastrointest Surg 2006; 10: 1131-1139
14. Yeo CJ, Barry MK, Sauter PK, Sostre S, Lillemo KD, Pitt HA, Cameron JL. Erythromycin accelerates gastric emptying after pancreaticoduodenectomy. A prospective, randomized, placebo-controlled trial. Ann Surg 1993; 218: 229-237; discussion 237-238
15. Fabre JM, Burgel JS, Navarro F, Boccatra G, Lemoine C, Domergue J. Delayed gastric emptying after pancreaticoduodenectomy and pancreaticogastrostomy. Eur J Surg 1999; 165: 560-565
16. Wente MN, Bassi C, Dervenis C, Fingerhut A, Gouma DJ, Izbicki JR, Neoptolemos JP, Padbury RT, Sarr MG, Traverso GJ. Delayed gastric emptying after pancreaticoduodenectomy: a suggested definition by the International Study Group of Pancreatic Surgery (ISGOPS). Surgery 2007; 142: 761-768
17. Kawai M, Tani M, Hirono S, Miyazawa M, Shimizu A, Uchiyama K, Yamau H. Pylorus ring resection reduces delayed gastric emptying in patients undergoing pancreaticoduodenectomy: a prospective, randomized, controlled trial of pylorus-resecting versus pylorus-preserving pancreaticoduodenectomy. Ann Surg 2011; 253: 495-501
18. Kawai M, Yamau H. Pancreaticoduodenectomy versus pylorus-preserving pancreaticoduodenectomy: the clinical impact of a new surgical procedure; pylorus-resecting pancreaticoduodenectomy. J Hepatobiliary Pancreat Sci 2011; 18: 755-761
19. Kurahara H, Shinchi H, Maemura K, Matakai Y, Iino S, Sakoda M, Ueno S, Takao S, Natsugoe S. Delayed gastric emptying after pancreaticoduodenectomy. J Surg Res 2011; 171: e187-e192
20. Oida T, Mimatsu K, Kano H, Kawasaki A, Fukino N, Kida K, Kuboi Y, Amano S. Antecolic and retrocolic route on delayed gastric emptying after mSSPPD. Hepatogastroenterology 2012; 59: 1274-1276
21. Oida T, Mimatsu K, Kano H, Kawasaki A, Kuboi Y, Fukino N, Amano S. Preventing delayed gastric emptying in pancreaticogastrostomy by a modified subtotal-stomach-preserving pancreaticoduodenectomy: Oida modification. Hepatogastroenterology 2011; 58: 1384-1388
22. Eshuis WJ, van Dalen JJW, Busch OR, van Gulik TM, Gouma DJ. Route of gastroenteric reconstruction in pancreaticoduodenectomy and delayed gastric emptying. HPB (Oxford) 2012; 14: 54-59
23. Inoue K, Tobe T, Suzuki T, Hoshitani R, Kogire M, Fuchi-
gami A, Miyashita T, Tsuda K, Seino Y. Plasma cholecystokinin and pancreatic polypeptide response after radical pancreaticoduodenectomy with Billroth I and Billroth II type of reconstruction. *Ann Surg* 1987; 206: 148-154

24 Gangavatiker R, Pal S, Javed A, Dash NR, Sahni P, Chat-topadhyay TK. Effect of antecolic or retrocolic reconstruction of the gastro/duodenojejunostomy on delayed gastric emptying after pancreaticoduodenectomy: a randomized controlled trial. *J Gastrointest Surg* 2011; 15: 843-852

25 Ueno T, Takashima M, Iida M, Yoshida S, Suzuki N, Oka M. Improvement of early delayed gastric emptying in patients with Billroth I type of reconstruction after pylorus preserving pancreaticoduodenectomy. *J Hepatobiliary Pancreat Surg* 2009; 16: 300-304

26 Masui T, Doi R, Kawaguchi Y, Uemoto S. Delayed gastric emptying improved by straight stomach reconstruction with twisted anastomosis to the jejunum after pylorus-preserving pancreaticoduodenectomy (PPPD) in 118 consecutive patients at a single institution. *Surg Today* 2012; 42: 441-446

27 Chijiiwa K, Inamura N, Ohuchida J, Hiyoshi M, Nagano M, Otani K, Kai M, Kondo K. Prospective randomized controlled study of gastric emptying assessed by (13)C-acetate breath test after pylorus-preserving pancreaticoduodenectomy: comparison between antecolic and vertical retrocolic duodenojejunostomy. *J Hepatobiliary Pancreat Surg* 2009; 16: 49-55

28 Caronna R, Cardi M, Sammartino P, Mangioni S, Pittau G, Scozzafava S, Catinelli S, Chirletti P, Stipa V. Functional results of a personal technique of reconstruction after pancreaticoduodenectomy. *J Exp Clin Cancer Res* 2003; 22: 187-189

29 Chirletti P, Peparini N, Caronna R, Papini F, Vietri F, Guali G. Monitoring fibrosis of the pancreatic remnant after a pancreaticoduodenectomy with dynamic MRI: are the results independent of the adopted reconstructive technique? *J Surg Res* 2010; 164: e49-e52

30 Caronna R, Peparini N, Cosimo Russillo G, Antonio Rogano A, Dinatale G, Chirletti P. Pancreaticejejunoo anastomosis after pancreaticoduodenectomy: brief pathophysiological considerations for a rational surgical choice. *Int J Surg Oncol* 2012; 2012: 636824

S- Editor Song XX L- Editor A E- Editor Li JY