Evolutionary history of the flora of Mexico: Dry forests cradles and museums of endemism

Victoria Sosa1*, J. Arturo De-Nova2, and Marilyn Vásquez-Cruz1

1Biología Evolutiva, Instituto de Ecología AC, Antigua carretera a Coatepec 351, 91070 Xalapa, Veracruz, Mexico
2Instituto de Investigación de Zonas Desérticas—Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78377, Mexico
*Author for correspondence. E-mail: victoria.sosa@inecol.mx

Abstract Mexico is considered an exceptional biogeographic area with a varied endemic flora, however spatial phylogenetic measures of biodiversity have not yet been estimated to understand how its flora assembled to form the current vegetation. Patterns of species richness, endemism, phylogenetic diversity, phylogenetic endemism and centers of neo- and paleo-endemism were determined to examine differences and congruence among these measures, and their implications for conservation. Of 24 360 vascular plant species 10 235 (42%) are endemic. Areas of endemism and phylogenetic endemism were associated with dry forests in zones of topographic complexity in mountain systems, in deserts, and in isolated xeric vegetation. Every single locality where seasonally tropical dry forests have been reported in Mexico was identified as an area of endemism. Significant phylogenetic diversity was the most restricted and occurred in the Trans-Mexican Volcanic Belt and in the Sierra de Chiapas. Notably, the highest degree of phylogenetic clustering comprising neo-, paleo-, and super-endemism was identified in the most restricted and occurred in the Trans-Mexican Volcanic Belt and the Sierra de Chiapas. Notably, the highest degree of phylogenetic clustering comprising neo-, paleo-, and super-endemism was identified in southernmost Mexico. Most vascular plant lineages diverged in the Miocene (5–20 mya) when arid environments expanded across the world. The location of Mexico between two very large landmasses and the fact that more than fifty percent of its surface is arid favored the establishment of tropical lineages adapted to extreme seasonality and aridity. These lineages were able to migrate from both North and South America across Central America presumably during the Miocene and to diversify, illustrating the signature of the flora of Mexico of areas of endemism with a mixture of neo- and paleo-endemism.

Key words: aridification, dry forest, highlands, phylogenetic endemism, phylogenetic niche conservatism, seasonally tropical dry forest, topographical complexity.

1 Introduction

Advanced biodiversity estimates for understanding the spatial components of evolution are increasingly utilized to identify priority areas for conservation and highly endangered groups of organisms. Analytical methods for these measures coincide in the phylogenetic approximations used to identify evolutionary and ecological patterns in the tree of life from a spatiotemporal perspective (e.g., Kozak & Wiens, 2012; González-Orozco et al., 2015; Laffan et al., 2016). The prevailing means of assessment—i.e., endemism, phylogenetic diversity and phylogenetic endemism—characterize the assembly of evolutionary history in geographical space. Similarly, lineage differentiation, lineage subsistence through time and confinement to certain areas, whether attributable to biotic or abiotic factors, are the main mechanisms contributing to patterns of endemism and phylogenetic diversity (Carnaval et al., 2014; Veron et al., 2017). Furthermore, estimating these measures helps to determine whether conservation areas are actually protecting the different aspects of biodiversity or not (Tucker & Cadotte, 2013; González-Orozco et al., 2016).

Endemism, phylogenetic diversity and phylogenetic endemism have been assessed in a number of regions around the world and for different lineages of organisms (e.g., Laffan et al., 2013; Pyron & Wiens, 2013; González-Orozco et al., 2015; Irl et al., 2015; Mráz et al., 2016; Zhang et al., 2016; Baldwin et al., 2017; Heenan et al., 2017; Scherson et al., 2017). Methods for identifying areas of endemism seek geographic spaces that include at least two endemic taxa with non-random spatial congruence (see criteria for areas of endemism in Harold & Mooi, 1994). Diverse methods have been proposed to assess areas taking into account the extent of the distribution of endemic species such as weighted endemism (Linder, 2001). Phylogenetic diversity identifies the parts of a phylogenetic tree that are restricted to a certain geographic area (Faith, 1992; Faith et al., 2004), while weighted phylogenetic endemism combines phylogenetic diversity and weighted endemism measures to identify the geographic areas to which considerable phylogenetic diversity is confined, thus the latter emphasizes the spatial restriction of phylogenetic diversity (Rosauer et al., 2009). Furthermore, categorical analyses based on these measures allow us to identify centers...
of neo- and paleo-endemism based on inferred branch lengths in a phylogram (Mishler et al., 2014). Neo-endemics, i.e., recently diverged species, are endemic because of their lack of dispersal/migration out of their ancestral area (short branches in the phylogram in terms of amount of genetic change), whereas paleo-endemics are ancient taxa that were perhaps more widespread in the past, but are now restricted to a local region (long branches in the phylogram in terms of genetic change) (Mishler et al., 2014).

Endemic species are distributed unequally across the world (Kier et al., 2009) and among abiotic factors influencing the ecological and evolutionary mechanisms responsible for generating areas of endemism and phylogenetic diversity are climate, geology and topography (Linder, 2008), with historical climate stability having been proposed as one of the most crucial factors (Harrison & Noss, 2017). The historical climate stability hypothesis proposes that taxa have differing abilities to adapt to climate changes and that the areas with a stable climate allow for the persistence of species for long periods of time, decreasing extinction events (Svenning et al., 2015). Another crucial factor mentioned is topographical complexity, which generates heterogeneous environments and facilitates short displacements in elevation and limited expansions making easier for species to survive even with limited migration rates (Fine, 2015 and references therein).

There are evolutionary biodiversity estimates for biogeographic areas with unique floras such as Australia, California, Chile, China, and New Zealand, among others (Weber et al., 2014; Thornhill et al., 2016, 2017; Baldwin et al., 2017; Heenan et al., 2017; Scherson et al., 2017, Lu et al., 2018). Although Mexico is considered another exceptional biogeographic area owing to its highly diverse unique endemic vascular flora, with almost half of the global total of ca. 24,500 species (CONABIO, 2009; Villaseñor, 2016), measures of evolutionary biodiversity have not yet been estimated for the country. Diversity in Mexico and Central America is high because together they form a transition zone between the Nearctic and Neotropical biotas (Halffter, 1987; Marshall & Liebherr, 2000). Furthermore, Mesoamerica and the Madrean pine-oak woodlands are two biodiversity hotspots partially located in Mexico, identified because of their notable number of endemic species (Conservation International, 2004). Additionally, the North American Deserts are considered to be among the last remaining high-biodiversity wilderness areas (Mittermeier et al., 2003) as well as important areas for diversification of xerophytic floras (Wilson & Pitts, 2010) and most of the Chihuahuan Desert and part of the Sonoran Desert are located in Mexico.

The elevated plant diversity of Mexico flourishes in a country with complex geological and climate histories. Mexico is crossed by large mountain systems corresponding to different geological provinces that differ vastly in age. The Baja California Peninsula holds a mosaic of small north-south chains; the Sierra Madre Oriental and the Sierra Madre Occidental are north-south mountain systems; the Trans-Mexican Volcanic Belt is a complex assemblage of hundreds of volcanoes that run west to east; the Sierra Madre del Sur and the Sierra de Chiapas are southern mountain conglomerates (Fig. 1A). These highlands have elevations from 1000 to 1800 m a.s.l. with their highest peaks over 5000 m a.s.l. (Fig. 1B). Two deserts in the north, the Sonoran Desert and the Chihuahuan Desert occupy extensive areas (Fig. 1A). Biogeographic areas in the south include a region drained by the Balsas River, the Balsas River Basin, and a depression in Chiapas, the Chiapas Central Depression (Fig. 1A).

![Fig. 1. A, Main bioregions, mountain systems and deserts of Mexico. B, Elevation map of Mexico. Maps were generated from the GIS website of the Mexican Commission for the Knowledge and Use of Biodiversity (CONABIO) under a CC BY license.](image-url)
Endemism in the Mexican flora has been linked to dry current climates distinctive of xeric vegetation (Rzedowski, 1993; Sosa & De-Nova, 2012). Among the outstanding wild vascular groups distributed in Mexico with exceptional life forms are cacti, copal trees, agaves and agave-like forms, and among the most diverse families in this country (Asteraceae, Fabaceae, Orchidaceae and Poaceae) the Asteraceae are by far the group with the most endemic species (Rzedowski, 1993). Additionally, Setchellanthaceae is the only family comprising the Asteraceae, Orchidaceae and Poaceae) the Asteraceae are by far the group with the most endemic species (Rzedowski, 1993). Additionally, Setchellanthaceae is the only family encompassing cacti, copal trees, agaves and agave-like forms, and a number of studies have focused on patterns of species richness and endemic taxa in certain regions of Mexico (Dávila-Aranda et al., 2004; Contreras-Medina & Luna-Vega, 2007; Riemann & Ezcurra, 2007; Hernández & Gómez-Hinoostrosa, 2011; De-Nova et al., 2012; Gámez et al., 2014; Rodríguez-Correa et al., 2015; Sanginés-Franco et al., 2015; Munguía-Lino et al., 2016; Sosa & Loera, 2017; De-Nova et al., 2018). The majority of these studies identified the southern regions of the Sierra Madre Oriental and Sierra Madre Occidental mountain ranges, the Trans-Mexican Volcanic Belt and the Tehuacán Valley as having high degrees of endemism.

Here, we consider the vascular plant species distributed in Mexico and by assessing their main phylogenetic measures we characterize their assembly and evolutionary history, identifying the spatiotemporal divergence patterns of their lineages. Based on previous research on plant endemism in the country and based on the heterogeneity of habitats that mountains encompass we expect that centers of endemism and phylogenetic diversity will be located in dry forests in the southern mountain chains of the country.

The aims of this study are to: (i) map and identify patterns of endemism, phylogenetic diversity and phylogenetic endemism for the vascular plant species distributed in Mexico; (ii) map and identify areas of neo- and paleo-endemism; and (iii) examine differences and congruence among the centers of phylogenetic diversity and phylogenetic endemism and explore the implications for conservation.

2 Material and Methods

2.1 Spatial data

The vascular plant checklist included ferns and fern allies, gymnosperms and angiosperms distributed all across Mexico based on CONABIO (2009), Villaseñor (2016) and complemented with information from the literature. Taxonomy was standardized using Taxonstand v.2.0 (Taxonomic Standardization of Plant Species Names, Cayuela et al., 2012). Families follow APG (Angiosperm Phylogeny Website version 14, Stevens, 2001). Georeferences were obtained following two approaches. For the vascular non-endemic species we consulted the Global Biodiversity Information Facility (GBIF) (www.gbif.org), and for endemic species, records were supplemented with: (i) our previous research (Sosa & De-Nova, 2012; Gándara & Sosa, 2014; Sosa & Loera, 2017); (ii) consulting specimens from Mexican herbaria (ANSM, ENCB, IBUG, IEB, MEXU, and XAL; acronyms based on Thiers, 2017, sweetgum.nybg.org/science/jih/); and (iii) consulting additional biodiversity databases such as SEINet (swbiodiversity.org/seinet), and Tropicos (www.tropicos.org). The identity of records was verified prior to their inclusion in the database.

2.2 Phylogenetic tree

To estimate phylogenetic diversity and weighted phylogenetic endemism, we constructed a phylogenetic tree for the vascular plant species utilizing the mega-phylogeny PhytoPhylo from S.PhyloMaker (Qian & Jin, 2016). It is based on the phylogeny of Zanne et al. (2014) that was expanded to include all extant families of seed plants comprising 32,223 species of land plants. This was done using R 3.4.0 software (R Development Core Team, 2018). S.PhyloMarker associates plant names of your interest to those in PhytoPhylo and add them to the mega-phylogeny based on three scenarios: as basal polytomies within their families or genera, randomly among existing taxa within their parental taxa, or as polytomies within their parental taxa and assigned with branch lengths using BLADJ. The latter is an application developed by Webb et al. (2008) that takes as its input the phylogeny, with named internal nodes, and a simple table of interior node names and ages returning a new phylogeny with adjusted branch lengths. BLADJ has the advantage that even with only a few nodes dated, the resulting phylogenetic distances are improved (Qian & Jin, 2016). BLADJ scenario was used for constructing the phylogenetic tree of the vascular plants distributed in Mexico.

2.3 Biodiversity indices

A grid with a pixel size of 0.5 decimal degree was overlaid on a map of Mexico (614 grids in total to cover all of Mexico) and records of species were mapped on the grids. Species richness (SR) was estimated directly using the occurrence points considering each species as absent or present on each grid. For endemism, we used the measure of weighted endemism (WE) proposed by Linder (2001), which is “the sum of the reciprocal of the total number of cells in which each species is found” (Linder, 2001). The study area is divided into grid squares georeferenced with their latitude and longitude, and the occurrence points mapped onto each grid. Weighted endemism is divided by grid diversity; every species in each cell is weighted by the inverse of its distribution range such that a species found in only one grid is scored as 1. Weighted endemism emphasizes areas with a higher proportion of species that have restricted ranges (Crisp et al., 2001). Phylogenetic diversity (PD) was estimated as the sum of branch lengths on the spanning path linking a set of taxa to the root of the tree, as a proportion of the total length of the tree (Faith, 1992; Faith et al., 2004). Weighted phylogenetic endemism (WPE) incorporates the ranges of all the branches of the tree connecting the species, not only the terminal branches (Rosauer et al., 2009). WPE takes into account the distribution range size of the taxa occurring in an area along with all taxa in the phylogeny no matter what their distribution range is. WPE takes into account not only the range of each taxon, but also of each branch, and it is the sum of branch length/clade range for each branch on the connecting path linking a set of taxa to the root of the tree (Rosauer et al., 2009). The four measures (species richness,
Fig. 2. Representative endemic vascular plant species of Mexico. A, *Ephedra compacta* (Ephedraceae). B, *Agave gracielae* (Asparagaceae). C, *Agave victoriae-reginae* (Asparagaceae). D, *Laelia gouldiana* (Orchidaceae). E, *Olmeca reflexa* (Poaceae). F, *Setchellanthus caeruleus* (Stechellanthaceae). G, *Echeveria heterosepala* (Crassulaceae). H, *Thompsonella minutiflora* (Crassulaceae). I, *Pachyphytum oviferum* (Crassulaceae). J, *Beiselia mexicana* (Burseraceae). K, *Bursera rupicola* (Burseraceae). L, *Enriquebeltraniana disjuncta* (Euphorbiaceae). M, *Euphorbia (Pedilanthus) coalecanensis* (Euphorbiaceae). N, *Calochortus cernuus* (Liliaceae). O, *Nissolia microptera* (Fabaceae). P, *Coursetia* sp. (Fabaceae). Q, *Lophophora diffusa* (Cactaceae). R, *Ariocarpus kotschoubeyanus* (Cactaceae). S, *Leuchtenbergia principis* (Cactaceae). T, *Aztekium hintonii* (Cactaceae). U, *Fouquieria columnaris* (Fouquieriaceae). V, *Viscainoa geniculata* (Zygophyllaceae). W, *Dahlia sherffii* (Asteraceae). X, *Matelea pilosa* (Apocynaceae). Y, *Stenandrum nanum* (Acanthaceae).
weightsEndemism, phylogenetic diversity and weighted phylogenetic endemism were estimated using Biodiverse v.1.1 software (Laffan et al., 2010). In addition, a Pearson’s correlation coefficient analysis was carried out to assess spatial congruence between patterns of species richness and phylogenetic diversity across grid cells. Since the results indicated spatial autocorrelation ($r = 0.86$), a randomization test was further run to identify grid cells with values significantly different from those expected from a random assemblage of the same number of taxa. Only significant PD values (those that fell in the 2.5% upper tail of the two-tailed test) were mapped. The analyses were run in Biodiverse v.1.1. software as well (Laffan et al., 2010).

2.4 Categorical analysis of Neo- and Paleo-endemism

“CANAPE” the categorical analysis of neo- and paleo-endemism that searches for centers of endemism, and classifies them by the branch lengths of the rare taxa within them was performed in this study; it was carried out in a two-step process run in Biodiverse v.1.1 (Laffan et al., 2010, based on Mishler et al., 2014). In the first step, for each grid, relative phylogenetic diversity (RPD) and relative phylogenetic endemism (RPE) were calculated. A two-tailed test was run as both indices might have values significantly higher or significantly lower than the null model. If the observed value fell into the highest 2.5% of the distribution for that grid cell it was judged significantly high; if the observed value fell into the lowest 2.5% of the distribution for that grid cell it was judged significantly low. In the second step, the grids identified with a significantly high α were compared using agglomerative clustering in Biodiverse version 1.1 (Laffan et al., 2010) to identify centers of endemism sharing similar sections of the phylogeny.

3 Results

3.1 Endemic taxa and phylogenetic tree

A total of 24,360 vascular plant species was recorded from which 10,235 are endemic to Mexico. Table 1 presents the plant families with the most elevated percentages of endemic species. The database comprised 650,825 georeferences. The phylogenetic tree, utilized to estimate PD and WPE, showed that in the majority of the clades divergence occurred during the Miocene (5–20 mya) (Fig. S1). Time of divergence for the most notable endemic groups of the flora of Mexico is indicated in Table 2. The vascular plant species checklist, database and phylogenetic tree were submitted to the Dryad Digital Repository (doi:10.5061/dryad.c6f7453).

3.2 Observed biodiversity estimates

Maps with estimates of SR, WE, PD and WPE are shown in Fig. 3. The highest species richness lies in the mountain chains located in the south of Mexico, in the northeastern and southernmost parts of the Sierra Madre Occidental, in the southernmost parts of the Sierra Madre Oriental, in the center of the Trans-Mexican Volcanic Belt, in the Sierra Madre del Sur, in Sierra de Juárez and in the northern area of the Sierra de Chiapas; the Tehuacán Valley and the Balsas Basin were also areas rich in species (Fig. 3A). The areas with the highest values of weighted endemism are restricted to the north of the Baja California Peninsula, a limited region in the north of the Sierra Madre Oriental, small areas in the central and eastern Trans-Mexican Volcanic Belt, the Tehuacán Valley and the Sierra of Chiapas (Fig. 3B). Significant phylogenetic diversity is confined to limited areas in the north of the Sierra Madre Oriental, the center and eastern parts of the Trans-Mexican Volcanic Belt, the Tehuacán Valley, the Central Depression of Chiapas and the Sierra Madre of Chiapas (Fig. 3C). The regions with high values for the indices of weighted phylogenetic endemism follow a pattern similar to that of weighted endemism, however areas are smaller (Fig. 3D).

3.3 Areas of Paleo- and Neo-endemism

The result of the first step of CANAPE analysis is displayed in Fig. 4 as areas of paleo- and neo-endemism. The majority of areas displayed mixed neo- and paleo-endemism. Paleo-endemic areas were identified in the north and south of the Baja California Peninsula, in the Sonoran Desert, in the north of the Chihuahuan Desert, in a restricted area of the Sierra Madre Oriental, in the westernmost area of the Trans-Mexican Volcanic Belt, in the Tehuacán Valley, in the Balsas River Basin, Sierra Madre del Sur and Sierra Madre de Chiapas. Neo-endemic areas were restricted to the Sonoran Desert (Fig. 4). Areas with super-endemism were the northern part of the Baja California Peninsula, isolated areas in the Chihuahuan and Sonoran Deserts, regions in the Mexican Plateau, Sierra Madre Oriental, Trans-Mexican Volcanic Belt and Balsas River Basin, the Sierra de Chiapas, the Chiapas Central Depression, and the northeastern part of the Yucatan Peninsula (Fig. 4). The result of the second step of CANAPE, the agglomerative clustering showed that neo- and paleo-lineages were not grouped into the same cluster (Fig. S2).

Genera and families with abundant endemic species such as Agave, Bursera, Amaryllidaceae and Asparagaceae are present in either neo- or paleo-endemic zones. Arid adapted groups

Vascular plant families with the most elevated percentages of endemic species to Mexico	Species (total)	% Endemic
Setchellanthaceae	1	100
Zamiaceae	57	86
Fouquieriaceae	11	82
Burseraceae	102	77
Crassulaceae	377	74
Asparagaceae	455	67
Amaryllidaceae	116	66
Cactaceae	689	61
Lamiastrum	763	59
Dioscoraceae	80	59
Asteraceae	3129	53
Euphorbiaceae	722	51
Acanthaceae	381	50
Orchidaceae	1347	49
Zygophyllaceae	31	48
Fabaceae	1969	45
Apocynaceae	444	43
with elevated percentages of endemism are located particularly in the areas of the Sonoran and Chihuahuan Deserts and in the Tehuacán Valley, such as Cactaceae, Yucca, and ferns in the Anemiaceae and Dryopteridaceae. Agave, a speciose endemic genus is present in several areas of endemism (neo-, paleo-, mixed and super endemism) as are monocots such as Calochortus, Hymenocallis and Milla. Most of the endemic Fabaceae are distinctive of the seasonally tropical dry forests (Fig. 4).

Areas of super endemism and paleo-endemism in the Sonoran and Chihuahuan Deserts, and in the limit of the Baja California Peninsula, in the Cape Region, share lineages in monocots such as Asparagaceae (Dichelostemma, Brodiaea), Amaryllidaceae (Habranthus), Liliaceae (Calochortus) as well as in Bursera (Burseraceae), and Viscainoa and Sericodes (Zygophyllaceae). Notable genera in the Cactaceae such as Aztekium, Ariocarpus, Leuchtenbergia or genera in Acanthaceae such as Holographis, Mirandea and Justicia, many Agave species, Asteraceae representatives in Dahlia, Cosmos and Coulterella were identified in areas of mixed endemism and super-endemism in the Mexican Plateau in the Chihuahuan Desert, and in restricted areas of the Sierra Madre Oriental. The small paleo-endemic area in the western extreme of the Trans-Mexican Volcanic Belt included orchid genera such as Bletia, and Asparagaceae species in genera like Agave, Yucca, Bessera, Milla and abundant representatives in the Asteraceae belonging to Aztecaster, Bolanosa, Digitacalia, Jaliscoa, Dahlia, Mexerion, and species in Dalea, Crotalaria and Mimoso in the Fabaceae.

The largest area of super-endemism was identified close to Guatemala, in the Sierra de Chiapas, Sierra Madre del Sur and the Central Depression of Chiapas. Here many endemic taxa coincided, some found in seasonally tropical dry forests and pine-oak forests, with many ferns in the Dryopteridaceae (Thelipteris, Phanerophlebia), and dominated by endemic Asteraceae (Digitacalia, Henricksonia, Iostephane, Loxothysanus, Villasenoria), Burseraceae, Fabaceae (Cannavalia, Coursetia, Dalea, Mimoso, Phaseolus, Piptadenia), coinciding with monocots like Nothoscordum, Zepyrhanthes, Milla, Agave, Calochortus, and some orchids (Govenia, Bletia).

Table 2	Approximate time of divergence of the most important Mexican endemic groups of vascular plants		
This study	**Previous**	**Reference**	
(mya)	(mya)		
Dryopteridaceae	41.05	14	Gutiérrez-Ortega et al., 2017
Polypodiaceae	29.41	11.5	Good-Avila et al., 2006
Zamiaceae	18.14	15.8	Gándara et al., 2014
Asparagaceae	24.5	13.5	Good-Avila et al., 2006
Agave	35.4	11.5	Gutiérrez-Ortega et al., 2017
Milla	14.86	15.8	Good-Avila et al., 2006
Yucca	15.8	13.5	Good-Avila et al., 2006
Orchidaceae	44.6	40	Sosa et al., 2016
Bletia	2.51	4.17	Angulo et al., 2012
Barkeria skinneri	49.89	15	Panero & Crozier, 2016
Magnoliaceae	53.75	11.94	Hernández-Hernández et al., 2014
Magnolia	45.83	62.4	De-Nova et al., 2012
Asteraceae	48.55	17.5	De-Nova et al., 2012
Dahlia	30.59	11.54	Hernández-Hernández et al., 2014
Biesella	4.98	5.47	De-Nova et al., 2012
Burkera microphylla	48.55	12	Cervantes et al., 2016
Bursera	48.55	14.71	Enriquebeltrania
Cactaceae	46.19	70.36	Hernández-Hernández et al., 2014
Aztekium	62.95–57.67	11.94	Hernández-Hernández et al., 2014
Astrophytum	5.54	63	Magallón et al., 2015
Crassulaceae	5.54	5.47	Hernández-Hernández et al., 2014
Euphorbiaceae	18.52	12	Cervantes et al., 2016
Fouquieriaceae	15.46	12	Tripp & McDade, 2014
Fabaceae	46.19	63	Magallón et al., 2015
Lamiaceae	46.19	63	Magallón et al., 2015
Setchellantaceae	77.52	78	Hernández-Hernández et al., 2013
Acanthaceae	77.52	78	Hernández-Hernández et al., 2013
Ruellia	2.39	12	Tripp & McDade, 2014

J. Syst. Evol. 56 (5): 523–536, 2018 www.jse.ac.cn
4 Discussion

4.1 Patterns of weighted endemism and weighted phylogenetic endemism

Patterns of WE and WPE were similar, and particularly for endemism are consistent with earlier research on a number of taxonomic groups: (i) ferns, in which species richness was identified in the SE and in Chiapas, and weighted endemism in several areas in the Sierra Madre Oriental, in the Trans-Mexican Volcanic Belt and Sierra Madre del Sur (Sanginés-Franco et al., 2015); (ii) gymnosperms, for which areas of endemism coincided in the Sierra Madre Oriental and a small area in Oaxaca (Contreras-Medina & Luna-Vega, 2007); (iii) the monocot tribe Tigridieae (Iridaceae), for which endemism coincided in the eastern part of the Trans-Mexican Volcanic Belt and the Sierra Madre Oriental, as well as in the Tehuacán Valley (Munguía-Lino et al., 2016); (iv) oaks, Quercus spp., for which areas of endemism were identified in the Sierra Madre Occidental and in the Trans-Mexican Volcanic Belt (Rodríguez-Correa et al. 2015); (v) the genus Bursera in which three areas of endemism were identified on the Central Mexican Pacific Coast, in the western Balsas River Basin and in the Tehuacán Valley (De-Nova et al., 2012; Gámez et al., 2014); and (vi) cacti from the Chihuahuan Desert where high degrees of endemism were identified on the Mexican Plateau, as well as in the southern area of the Sierra Madre Oriental (Hernández & Gómez-Hinostrrosa, 2011). In addition, for one functional group, the monocot geophytes, significant areas of endemism were identified in the Trans-Mexican Volcanic Belt, the Sierra Madre Oriental, and in the Tehuacán Valley, which also agrees with our results (Sosa & Loera, 2017). Moreover, the southernmost mountainous area in the Baja California peninsula was identified as having high degree of endemism (Riemann & Ezcurra, 2007).

In summary, the most important areas of endemism and phylogenetic endemism for the Mexican vascular plants are located in the main mountain systems (mountain chains in the Baja California Peninsula, Sierra Madre Oriental, Sierra Madre Occidental, Sierra Madre del Sur, Sierra de Chiapas and the Trans-Mexican Volcanic Belt), in desert areas (Chihuahuan and Sonoran Deserts, Tehuacán Valley), in the Balsas River Basin and in the Central Depression of Chiapas.

Thus, areas of endemism and phylogenetic endemism in the Mexican flora are associated with zones of topographical complexity as found for other floristic provinces across tropical and sub-tropical regions (e.g., Irl et al., 2015; Mráz et al., 2016; Steinbauer et al., 2016; Zhang et al., 2016; Thornhill et al., 2017). Our findings support the idea that tropical mountains are hotspots of biodiversity and endemism as a result of local and regional extinction, long-distance colonization, and local recruitment (Merckx et al., 2015).

With regard to areas of phylogenetic diversity, they were the most restricted compared with our assessments of endemism and phylogenetic endemism and occurred in dry forests of the Trans-Mexican Volcanic Belt and of the Sierra de Chiapas. It has been suggested that, with their complex climatic and geological history, the Mexican highlands represent focal areas that have driven diversification and
allowed for the persistence of Mexican biodiversity in a skylan pattern (Mastretta-Yanes et al., 2015). Vascular plant lineages accumulate in these areas of the mountains and survive climatic oscillations through short distance dispersal and by moving to different elevations (Mastretta-Yanes et al., 2015).

4.2 Neo- and paleo-endemism

Most areas identified by our analyses were found to have mixed neo- and paleo-endemism, and without exception (neo-, paleo-endemism, mixed endemism, and super areas of endemism) they occurred in dry forests (Fig. 4B) such as: (i) thorn forests of the Chihuahuan and Sonoran Deserts; (ii) dry xeric shrublands on the Baja California Peninsula; (iii) dry pine-oak forests in northern Baja California, the Trans-Mexican Volcanic Belt and western slopes of the Sierra Madre Oriental and Occidental; and (iv) in seasonally tropical dry forests (STDF). Remarkably, every single place that STDFs have been reported in Mexico (Lott & Atkinson, 2006) was identified as an area of endemism.

Figure 5 displays the landscapes of some of these forests.

With regard to the time of divergence for the Mexican lineages of vascular plants estimated here, the majority originated in the Miocene, corroborating divergence time estimates established for either certain important groups such as Bursera (De-Nova et al., 2012), groups of monocots (Gándara et al., 2014), cacti (Hernández-Hernández et al., 2014), Fouquieria (De-Nova et al., 2018) or for microfossil floras (Graham, 1987) (See Table 2). Mixed endemism was identified because lineages of recent and ancient divergence coincided in the same areas of endemism. Some of the most ancient lineages in the flora of Mexico such as fern taxa in the Dryopteridaceae, the monotypic dicot family Setchellanthaceae, the genus Beiselia (Burseraceae), and some Apiaceae such as Coulterophytum, for example, occurred in areas of mixed endemism.

In summary, the areas of endemism and weighted phylogenetic endemism identified here confirm what previous research had hypothesized, i.e., that endemism in the Mexican flora is associated with drylands (Rzedowski, 1993). Our study also corroborated that most of the Neotropical flora originated in the Miocene (Graham, 1987). Furthermore, time of divergence of the endemic flora of Mexico supports the conclusions of a radiation of the major succulent plant lineages and arid-adapted gymnosperms in the Miocene when arid environments expanded across the world (Arakaki et al., 2011; Hernández-Hernández et al., 2014; Gutiérrez-Ortega et al., 2017; De-Nova et al., 2018). More than fifty percent of the Mexican territory consists of super-arid, arid and semi-arid regions formed in the Miocene when thus offered many suitable areas for colonization by arid-adapted plants that later diversified in these areas (Fig. 4).

4.3 Implications for conservation

A number of methods have been established recently for estimating phylogenetic diversity and phylogenetic endemism (e.g., Rosauer et al., 2009; Guerin & Lowe, 2015), some based on the presence of taxa in grid cells (e.g., Laffan et al., 2013) and others based on overlapping distribution ranges (e.g., Oliveira et al., 2015). We followed the method based on the presence of taxa in grids because it assesses endemism consistently, independently of taxonomic status level and of previously defined political or biological regions. These results can be directly compared between areas because they are based on equivalent spatial units and thus any congruence in endemism, phylogenetic diversity and phylogenetic endemism can be singled out (Rosauer et al., 2009). Following this approach these biodiversity measures can be used to see whether highly important areas or taxonomic groups are under conservation in protected areas. Figure 6 shows the centers of neo- and paleo-endemism overlaid on the map of the protected natural areas of Mexico (CONANP, 2017). The majority of these centers are within protected areas with the
following exceptions that need attention: (i) areas in the Sonoran and Chihuahuan Deserts; (ii) areas in the Sierra Madre del Sur and Sierra de Chiapas; and (iii) the western part of the Yucatan Peninsula.

4.4 Areas of endemism, dispersal directionality and diversification
The most substantial areas of endemism identified by our study are located at the northern and southern extremes of the Mexican territory. In some way the establishment of the northernmost and the southernmost areas might be linked with the directionality of dispersal of vascular plant lineages.

Axelrod (1975) proposed that especially warm-adapted woody taxa of the Madro-Tertiary Geoflora, a fossil flora from the southwestern United States and northern Mexico, migrated to the south and remained isolated in dry areas. A number of taxa have been reported following this migration pattern (e.g., Boraginaceae: Moore & Jansen, 2006; Rosaceae: Vásquez-Cruz & Sosa, 2016; Asteraceae: Soto-Trejo et al., 2017). Moreover it has been demonstrated in lineages that migrated from the north such like Fouquieria, that vicariance was a crucial driver of speciation (De-Nova et al., 2018). Speciation of this tropical lineage was driven by tectonic events during the Miocene related to the early
development of the North American deserts, to the formation of the Gulf of California that isolated the Baja California peninsula, to the uplifting of the Sierra Madre Oriental and the Trans-Mexican Volcanic Belt (De-Nova et al., 2018). These migrations and vicariant speciation events might explain the important areas of neo-endemism in the Sonoran Desert and the paleo-endemic and super-endemic areas in the Chihuahuan Desert.

Regarding directionality from the south, there are examples showing that during the Mid-Miocene, dispersal rates between South America and Mexico increased and that Central America was an important corridor for migration for certain angiosperms from seasonally tropical dry forests such like the Malpighiaceae (Willis et al., 2014). Furthermore, migration of one of the most important elements of these forests, the genus *Bursera* from South America to Mexico and its posterior diversification has been established (De-Nova et al., 2012).

Migration of certain lineages from South America across Central America might explain the most important area of super-endemism in southern Mexico at the border with Guatemala. This area is very complex, with mountain systems such as the Sierra Madre del Sur, the Sierra Madre de Chiapas and an isolated dry area flanked by these mountain chains, the Central Depression of Chiapas. Thus, it is likely that plants pre-adapted to dry climates and extreme seasonality were able to subsist and diversify associated with tectonic events in the Miocene in the Sierra Madre de Chiapas linked with uplifting of the Trans-Mexican Volcanic Belt (Morán-Zenteno et al., 1999; Ferrari et al., 2012). Furthermore, the presence of this super-endemic area coincides with the findings of Steinbauer et al. (2016); they determined that endemism around the world consistently increased with elevation and suggested that isolation caused by topography maximizes speciation rates in the highlands, across all elevations and progressively towards the equator.

4.5 Dry forests as cradles and museums of endemism and phylogenetic diversity

For some groups, like ants and beetles, it has been suggested that Neotropical forests have acted as both museums (paleo-endemic areas) and cradles (neo-endemic areas) of diversity (McKenna & Farrell, 2006; Moreau & Bell, 2013). For the vascular flora of Mexico not every type of tropical forest has acted as a cradle or museum for endemic taxa, but our findings suggest that it is dry forests that have played this role. Furthermore, among dry forests, seasonally tropical dry forests have the highest degree of endemism, neo-, paleo-, and super-endemism. Seasonally tropical dry forests are said to be composed of plant lineages that were pre-adapted to precipitation seasonality and that had high rates of dispersal, thus migration accounts for the elevated phylogenetic diversity in these forests to a greater extent than in situ diversification does (Pennington & Lavin, 2016). Moreover, it has been pointed out that it is difficult for new lineages to immigrate to these forests because the resident lineages persisted and are adapted to a stable, seasonally dry ecology (Pennington et al., 2009). This explanation may apply to the other dry forests, scrublands, thorn forests and dry pine-oak forests, where lineages of plants pre-adapted to xeric conditions migrated and remained in these forests supporting the hypothesis of niche conservatism. Niche conservatism refers to the tendency of related species to occupy similar habitats implying that adaptations to major climate changes were not easily accomplished in all vascular plant lineages (Donoghue, 2008). In this case, it is possible that endemic vascular species and lineages maintained their adaptation to seasonal or dry conditions just as their ancestors did.

Spatial phylogenetics of flora of Chile and China recognized areas of neo-endemism or paleo-endemism concentrated in certain geographic areas (Scherson et al., 2017; Lu et al., 2018).
In contrast, our spatial phylogenetic analyses identified mixed areas of endemism containing significant concentrations of both neo- and paleo-endemism in many geographic areas of Mexico. We suggest that the location of Mexico between two very large landmasses and the fact that more than fifty percent of its surface is arid or semi-arid favored the establishment and diversification of tropical lineages adapted to extreme seasonality and aridity, and were able to migrate from both North and South America across Central America during the Miocene contributing to the signature of the flora of Mexico of mixed endemism.

In this paper we identified the areas with elevated diversity, endemism and phylogenetic diversity for the flora of Mexico and we anticipate that our findings should be of broad interest to evolutionary and conservation biologists and serve to stimulate better-informed conservation planning and research.

Acknowledgements
We are grateful to Alexa Lópe, Manuel Cuéllar and Regina Cuevas for their help with compiling the databases. Funds for this project were provided to VS by the Instituto de Ecología, A. C. (20030/10296) and grants from CONACyT to VS (PDCPN-2015/1023) and to JAD-N (CB-2014/243454). We are grateful to the following colleagues for allowing us to use their images: Israel Loera, Phil Brewster, Pablo Carrillo-Reyes, Eduardo Ruiz-Sánchez, Arturo Castro, José Luis León de la Luz, Socorro González, Miguel Angel Pérez-Farrera, Etelvina Gándara, José Martínez-Nogués, Pedro Nájera Quezada, Jon P. Reban, Antonio García-Ménendez, Benjamín Valencia, Morgan Cantrell, Alexis López Hernández, José Alfredo Morales Ortiz, Antonio Moreno Talamantes, Maria G. Price, and Alfredo Dorantes Euan. We are grateful to Patricia Dávila for sharing her unpublished paper on Mexican Poaceae and to Andrew P. Vovides for his review on Zamiaceae. Authors declare that there is not conflict of interest.

References
Angulo DF, Ruiz-Sánchez E, Sosa V. 2012. Niche conservatism in the Mesoamerican seasonal tropical dry forest orchid Barkeria (Orchidaceae). Evolutionary Ecology 26: 999–1010.
Arakaki M, Christin P-A, Nyffeler R, Lendel A, Eggli U, Ogburn RM, Spriggs E, Moore MJ, Edwards EJ. 2011. Contemporaneous and recent radiations of major succulent plant lineages. Proceedings of the National Academy of Science USA 108: 8379–8384.
Axelrod DL. 1975. Evolution and biogeography of Madrean-Tethyan sclerophyll vegetation. Annals of the Missouri Botanical Garden 62: 280–334.
Baldwin BG, Thornhill AH, Freymen WA, Ackerly DD, Kling MM, Mouret-Holme N, Mishler BD. 2017. Species richness and endemism in the native flora of California. American Journal of Botany 104: 487–501.
Carnaval AC, Waltari E, Rodrigues MT, Rosauer DF, vanDerWal J, Damasceno R, Prates I, Strangas M, Spanos Z, Rivera D, Pie MR, Firkowski CR, Bornschein MR, Ribeiro LF, Moritz C. 2014. Prediction of phylogeographic endemism in an environmentally complex biome. Proceedings of the Royal Society B: Biological Sciences 281: 20141461.
Cayuela L, Granzow-de la Cerda I, Albuquerque FS, Gollner DJ. 2012. Taxonstand: An r package for species names standardisation in vegetation databases. Methods in Ecology and Evolution 3: 1078–1083.
Cervantes A, Fuentes S, Gutiérrez J, Magallón S, Borsch T. 2016. Successive arrivals since the Miocene shaped the diversity of the Caribbean Acalyphoidea (Euphorbiaceae). Journal of Biogeography 43: 1773–1785.
Comisión Natural de Areas Protegidas (CONANP). 2017. Areas Naturales Protegidas de México. Available from http://sig.conanp.gob.mx/website/pagsig/info_shape.html.
CONABIO. 2009. Catálogo taxonómico de especies de México. 1. Capital Natural de México. Mexico City: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad.
Conservation International. 2004. Biodiversity Hotspots Revisited. Available from www.biodiversityhotspots.org/Hotspots/.
Contreras-Medina R, Luna-Vega I. 2007. Species richness and conservation of Mexican gymnosperms. Biodiversity and Conservation 16: 1803–1821.
Crisp MD, Laffan SW, Linder HP, Monro A. 2001. Endemism in the Australian flora. Journal of Biogeography 28: 183–198.
Dávila-Aranda P, Lira-Saade R, Valdés-Reyna J. 2004. Endemic species of grasses in Mexico: A phytogeographic approach. Biodiversity and Conservation 13: 1101–1121.
De-Nova JA, Medina R, Montero JC, Weeks A, Rossel JA, Olson ME, Eguiarte LE, Magallón S. 2012. Insights into the historical construction of species-rich Mesoamerican seasonally dry tropical forests: The diversification of Bursera (Burseraceae, Sapindales). New Phytologist 193: 276–287.
De-Nova JA, Sánchez-Reyes LL, Eguiarte LE, Magallón S. 2018. Recent radiation and dispersal of an ancient lineage: the case of Fouquieria (Fouquieriaceae, Ericales) in North American deserts. Molecular Phylogenetics and Evolution. https://doi.org/10.1016/j.ympev.2018.03.026.
Donoghue MJ. 2008. A phylogenetic perspective on the distribution of plant diversity. Proceedings of the National Academy of Sciences USA 105: 1149–1155.
Faith DP. 1992. Conservation evaluation and phylogenetic diversity. Biological Conservation 61: 1–10.
Faith DP, Reid CAM, Hunter J. 2004. Integrating phylogenetic diversity, complementarity, and endemism for conservation assessment. Conservation Biology 18: 255–261.
Ferrari L, Orozco-Esquivel T, Manea V, Manea M. 2012. The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. Tecnophysics 522–523: 122–149.
Fine PVA. 2015. Ecological and evolutionary drivers of geographic variation in species diversity. Annual Review of Ecology and Evolution 46: 369–392.
Gámez N, Escalante T, Espinosa D, Eguiarte LE, Morrone JJ. 2014. Temporal dynamics of areas of endemism under climate change: A case study of Mexican Bursera (Burseraceae). Journal of Biogeography 41: 871–881.
Gándara E, Sosa V. 2014. Spatio-temporal evolution of Leucophyllum pringlei and allies (Scrophulariaceae): A group endemic to North American xeric regions. Molecular Phylogenetics and Evolution 75: 93–101.
Gándara E, Specht CD, Sosa V. 2014. Origin and diversification of the Millia clade (Brodiaeoideae, Asparagaceae): A neotropical group of six geophyte genera. Molecular Phylogenetics and Evolution 75: 118–124.
González-Orozco CE, Mishler BD, Miller JT, Laffan SW, Knerr NJ, Unmack P, Georges A, Thornhill AH, Rosauer DF, Gruber B. 2015. Assessing biodiversity and endemism using phylogenetic
methods across multiple taxonomic groups. Ecology and Evolution 5: 5177–5192.

González-Orozco CE, Pollock LJ, Thornhill AH, Mishler BD, Knerr NJ, Laffan SW, Miller JT, Faith DP, Nipperess DA, Kujala H, Linke S, Butt N, Kühlme C, Crisp MD, Gruber B. 2016. Phylogenetic approaches reveal biodiversity threats under climate change. Nature Climate Change 6: 1110–1114.

Good-Avila SV, Souza V, Gaut BS, Eguiarte LE. 2006. Timing and rate of speciation in Agave (Agavaceae). Proceedings of the National Academy of Science USA 103: 9124–9129.

Graham A. 1987. Tropical American Tertiary floras and paleoenvironments: Mexico, Costa Rica and Panama. American Journal of Botany 74: 1519–1531.

Guerin GR, Lowe AJ. 2015. Mapping phylogenetic endemism in R using georeferenced branch extents. SoftwareX 3–4: 22–26.

Gutiérrez-Ortega JS, Yamamoto T, Vovides AP, Pérez-Farrera MA, Martínez JF, Molina-Freaner F, Watano Y, Kajita T. 2017. Aridification as a driver of biodiversity: A case study for the cycad genus Dioon (Zamiaceae). Annals of Botany 122: 47–60.

Halfbergs G. 1987. Biogeography of the entomofauna of Mexico and the origin of Mexican Volcanic Belt. Nature 325: 401–404.

Harold AS, Mooi R. 1994. Areas of endemism: Definition and recognition criteria. Systematic Biology 43: 261–266.

Harrison S, Noss R. 2017. Endemism hotspots are linked to stable climatic refugia. Annals of Botany 119: 207–214.

Heenan PB, Millar TR, Smissen RD, McClone MS, Wiltin AD. 2017. Phylogenetic measures of neo- and palaeo-endemism in the indigenous vascular flora of the New Zealand archipelago. Australian Systematic Botany 30: 124–133.

Hernández HM, Gómez-Hinostrosa C. 2011. Areas of endemism of Cactaceae and the effectiveness of the protected area network in the Chihuahua Desert. Orx 45: 191–200.

Hernández-Hernández T, Brown JW, Schlumberger BO, Eguiarte LA, Magallón S. 2014. Beyond aridification: Multiple explanations for the elevated diversification of cacti in the New World Succulent Biome. New Phytologist 202: 1382–1397.

Hernández-Hernández T, Colorado WB, Sosa V. 2013. Molecular evidence for the origin and evolutionary history of the rare American desert monotypic family Setchellanthaceae. Organisms, Diversity and Evolution 13: 485–496.

Irl SDH, Harter DEV, Steinbauer MJ, Puyol DG, Fernández-Palacios JM, Jenstsch A, Beierkühllein C. 2015. Climate vs. topography: spatial patterns of plant species diversity and endemism on a high-elevation island. Journal of Ecology 103: 1621–1633.

Kier G, Kreft H, Lee TM, Jetz W, Ibsch PL, Nowici C, Mutke A, Barthlott W. 2009. A global assessment of endemism and species richness across island and mainland regions. Proceedings of the National Academy of Sciences USA 106: 9322–9327.

Kozak KH, Wiens JJ. 2012. Phylogeny, ecology, and the origin of climate-richness relationships. Ecology 93: S167–S181.

Laffan SW, Lubarsky E, Rosauer DF. 2010. Biodivere, a tool for the spatial analysis of biological and related diversity. Ecography 33: 643–647.

Laffan SW, Ramp D, Roger E. 2013. Using endemism to assess representation of protected areas: The family Myrtaceae in the Greater Blue Mountains World Heritage Area. Journal of Biogeography 40: 570–578.

Laffan SW, Rosauer DF, Di-Virgilio G, Miller JT, González-Orozco CE, Knerr NJ, Thornhill AH, Mishler BD. 2016. Range-weighted metrics of species and phylogenetic turnover resolve biogeographic transition zones. Methods in Ecology and Evolution 7: 580–588.

Linder HP. 2001. On areas of endemism, with an example from the African Restionaceae. Systematic Biology 50: 892–912.

Linder HP. 2008. Plant species radiations: Where, when, why? Philosophical Transactions of the Royal Society B: Biological Sciences 363: 3097–3105.

Lott E, Atkinson TH. 2006. Mexican and Central American seasonally dry tropical forests: Chamela-Cuixmala, Jalisco, as a focal point for comparison. In: Pennington TR, Lewis GP, Rater J eds. Neotropical savannas and seasonally dry forests: Plant diversity, biogeography and conservation. Boca Raton: The Systematics Association and Taylor and Francis Group. 319–342.

Lu LM, Mao L-F, Yang T, Ye J-F, Liu B, Li H-L, Sun M, Miller J, Mathews S, Hu N, Niu Y, Peng D-X, Chen Y, Smith SA, Chen M, Xiang K-L, Le C, Deng V, C, Lu A-M, Soltis PS, Soltis DE, Li J, Chen Z-D. 2018. Evolutionary history of the angiosperm flora of China. Nature 554: 334–338.

Magallón S, Gómez-Acevedo S, Sánchez-Reyes LL, Hernández-Hernández T. 2015. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytologist 207: 437–453.

McKenna DD, Farrell BD. 2006. Tropical forests are both evolutionary cradles and museums of leaf beetle diversity. Proceedings of the National Academy of Sciences USA 103: 10947–10951.

Marshall CJ, Liebherr JK. 2000. Cladistic biogeography of the Mexican Transition Zone. Journal of Biogeography 27: 203–216.

Mastretta-Yanes A, Moreno-Letelier A, Piñero D, Jorgensen TH, Emerson BC. 2015. Biodiversity in the Mexican highlands and the interaction of geology, geography and climate within the Trans-Mexican Volcanic Belt. Journal of Biogeography 42: 1585–1600.

Merckx VS, Hendriks KP, Beentjes KK, Mennes CB, Becking LE, Peijnenburg KT, Afendy A, Arumugam N, De Boer H, Biun A, Buang MM, Chen PP, Chung AYC, Dow R, Feijen FAA, Feijen H, Van Soest CF, Gemi J, Geurts R, Gravendeel B, Hovenkamp P, Imbun P, Ipor I, Janssens SB, Jocqué M, Kappes H, Khoo E, Koomen P, Lens F, Majaipur RJ, Morgado LN, Neupane S, Nieser N, Pereira JT, Rahman H, Sabran S, Sawang A, Schwaller RM, Shim PS, Smit H, Sol N, Spait M, Stech M, Stokvis F, Sugau JB, Suleiman M, Sumail S, Thomas DC, Van Tol J, Tuu FY, Yahya BE, Nais J, Repín R, Lakim M, Schiltzuizen M. 2015. Evolution of endemism on a young tropical mountain. Nature 524: 347–350.

Mishler BD, Knerr NJ, González-Orozco CE, Thornhill AH, Laffan SW, Miller JT. 2014. Phylogenetic measures of biodiversity and neo- and paleo-endemism in Australian Acacia. Nature Communications 5: 4473.

Mittermeier TZ, Mittermeier CG, Brooks TM, Pilgrim JD, Konstant WR, da Fonseca GAB, Korns C. 2003. Wilderness and biodiversity conservation. Proceedings of the National Academy of Science USA 10: 10309–10313.

Moore MJ, Jansen RK. 2006. Molecular evidence for the age, origin and evolutionary history of the American desert plant genus Tiquilia (Boraginaceae). Molecular Phylogenetics and Evolution 39: 668–687.

Morán-Zenteno DJ, Tolson G, Martínez-Serrano RG, Martiny B, Schaal P, Silva-Romo G, Macías-Romo G, Alba-Aldave L, Hernández-Bernal MS, Solís-Pichardo GN. 1999. Tertiary arc-magmatism of the Sierra Madre del Sur, Mexico, and its transition to the volcanic activity of the Trans-Mexican Volcanic Belt. Journal of South American Earth Sciences 12: 513–535.

Moreau CS, Bell DC. 2013. Testing the museum versus cradle tropical biological diversity hypothesis: Phylogeny, diversification and ancestral biogeographic range evolution in ants. Evolution 67: 2240–2257.

Mráz P, Barabas D, Lengyelová L, Turis P, Schmotzer A, Janišová M, Ronikier M. 2016. Vascular plant endemism in the Western
Carpathians: Spatial patterns, environmental correlates and taxon traits. Biological Journal of the Linnean Society 119: 630–648.

Munguia-Lino G, Escalante T, Morrone JJ, Rodriguez A. 2016. Areas of endemism in the North American species of Tigridieae. Australian Systematic Botany 29: 142–156.

Oliveira U, Brescovit A, Santos AJ. 2015. Delimiting areas of endemism through kernel interpolation. PloS ONE 10: e016673.

Panero JL, Crozier BS. 2016. Macroevolutionary dynamics in the early diversification of Asteraceae. Molecular Phylogenetics and Evolution 99: 116–132.

Pennington RT, Lavin M. 2016. The contrasting nature of woody plant species in different neotropical forest biomes reflects differences in ecological stability. New Phytologist 201: 25–37.

Pennington RT, Lavin M, Oliveira-Filho A. 2009. Woody plant diversity, evolution, and ecology in the tropics: Perspectives from seasonally dry tropical forests. Annual Review of Ecology, Evolution and Systematics 40: 437–457.

Pyron RA, Wiens JJ. 2013. Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity. Proceedings of the Royal Society B: Biological Sciences 280: 20131622.

Qian H, Jin Y. 2016. An updated megaphylogeny of plants, a tool for generating phylogenies and analysis of community structure. Journal of Plant Ecology 2: 233–239.

R Development Core Team. 2018. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

Riemann H, Ezzurra E. 2007. Endemic regions of the vascular flora of the peninsula of Baja California, Mexico. Journal of Vegetation Science 18: 327–336.

Rodriguez-Correa H, Oyama K, MacGregor-Fors I, Gonzalez-Rodriguez A. 2015. How are seeds distributed in the Neotropics? A perspective from species turnover, areas of endemism, and climatic niches. International Journal of Plant Science 176: 222–231.

Rosauer DF, Laffan SW, Crisp MD, Donnellans SC. 2009. Phylogenetic endemism: A new approach for identifying geographical concentrations of evolutionary history. Molecular Ecology 18: 4061–4072.

Rzedowski J. 1993. Diversity and origins of the phanerogamic flora of Mexico. In: Ramamoorthy TP, Bye R, Lot A, Fa J eds. Patterns of rain forest plant endemism in subtropical Australia relate to stable mesic refugia and species dispersal limitations. Journal of Biogeography 41: 222–231.

Rivas-González M, Sosa V. 2016. New insights on the origin of the woody flora of the Chihuahuan Desert: the case of Lindleya. American Journal of Botany 103: 1694–1707.

Sangínés-Franco C, Luna-Vega I, Contreras-Medina R, Espinosa D, Tejero-Diez JD, Rivas G. 2015. Diversity, endemism and conservatism of ferns (Polypodiads) in the Mexican Mountain component. Journal of Mountain Science 12: 891–904.

Scheron RA, Thornhill AH, Urbina-Casanova R, Freyman WA, Pliscoff PA, Mishler BD. 2017. Spatial phylogenetics of the vascular flora of Chile. Molecular Phylogenetics and Evolution 112: 88–95.

Sosa V, Cameron K, Angulo DF, Hernández-Hernández T. 2016. Life form evolution in epiphydendroid orchids: Ecological consequences of the shift from epiphytism to terrestrial habit. Taxon 65: 235–248.

Sosa V, De-Nova JA. 2012. Endemic angiosperm lineages in Mexico: Hotspots for conservation. Acta Botanica Mexicana 100: 293–315.

Sosa V, Loera I. 2017. Influence of current climate, historical climate and topography on species richness and endemism in Mesoamerican geophytes. PeerJ 5: e3932.

Soto-Trejo F, Matzke NJ, Schilling EE, Massana KA, Oyama K, Lira R, Dávila P. 2017. Historical biogeography of Florestina (Asteraceae: Bahieae) of dry environments in Mexico: Evaluating models and uncertainty in low-diverse clades. Botanical Journal of the Linnean Society 185: 497–510.

Steinbauer MJ, Field R, Grytnes J-A, Trigas P, Ah-Peng C, Attorre F, Birks HJ, Borges PAV, Cardoso P, Chou C-H, de Sanctis M, de Sequeira MM, Duarte MC, Elias RB, Fernández-Palacios JM, Gabriel R, Gereau RE, Gillespie RG, Greilmer J, Harter DEV, Huan TJ, Irí SDH, Jeanninod D, Jentsh A, Jupp AS, Kueffer C, Nogué S, Otto R, Price J, Romeiras MM, Strasberg D, Stuessy T, Svenning J-C, Vetas OR, Beierkuhnlein C, Gillespie T. 2016. Topography-driven isolation, speciation and global increase of endemism with elevation. Global Ecology and Biogeography 25: 1097–1107.

Stevens PF. 2001 onwards. Angiosperm Phylogeny Website. Version 14. Available from http://www.mobot.org/MOBOT/research/APweb/

Thiers B. 2017. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. Available from http://sweetgum.nybg.org/science/ih/.

Thornhill AH, Baldwin BG, Freyman WA, Nosratinia S, Kling MM, Morueta-Holme M, Madsen TP, Ackerly DD, Mishler BD. 2017. Spatial phylogenetics of the native California flora. BMC Biology 15: 96.

Tucker CM, Cadotte MW. 2013. Unifying measures of biodiversity: Understanding when richness and phylogenetic diversity should be congruent. Diversity and Distributions 19: 845–854.

Vásquez-Cruz M, Sosa V. 2016. New insights on the origin of the woody flora of the Chihuahuan Desert: the case of Lindleya. American Journal of Botany 103: 1694–1707.

Veron S, Davies TJ, Cadotte MW, Clergeau P, Pavoine S. 2017. Predicting loss of evolutionary history: Where are we? Biological Reviews 92: 271–291.

Villasenor JL. 2016. Checklist of the native vascular plants of Mexico. Revista Mexicana de Biodiversidad 87: 559–902.

Webb CO, Ackery DD, Kembel SW. 2008. Phylocom: Software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24: 2098–2100.

Weber LC, Van Der Wal J, Schmidt S, McDonald WJF, Shoo LP. 2014. Patterns of rain forest plant endemism in subtropical Australia relate to stable mesic refugia and species dispersal limitations. Journal of Biogeography 41: 222–238.

Willis CG, Franzone BF, Xi Z, Davis CC. 2014. The establishment of Central American migration corridors and the biogeographic origins of seasonally dry tropical forests in Mexico. Frontiers in Genetics 5: 433.

Wilson JS, Pitts JP. 2010. Illuminating the lack of consensus among descriptions of earth history data in the North American deserts: A resource for biologists. Progress in Physical Geography 34: 419–441.

Zanne AE, Tanke DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McClinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IU, Aarsen L, Bertin RJ, Calaminus A, Govaerts R, Hemmings F, Leshman MR, Oleksyn J, Soltis PS,
Swenson NG, Warman L, Beaulieu JM. 2014. Three keys to the radiation of angiosperms into freezing environments. Nature 506: 89–92.

Supplementary Material
The following supplementary material is available online for this article at http://onlinelibrary.wiley.com/doi/10.1111/jse.12416/suppinfo:

Fig. S1. Phylogenetic tree of the vascular plants distributed in Mexico. The tree was generated pruning the mega-phylogeny PhytoPhylo from S.PhyloMaker (Qian & Jin, 2016) that uses the phylogeny of Zanne et al. (2014).

Fig. S2. Cluster displaying phylogenetic similarity among centres of neo- and paleo-endemism of the vascular plants in Mexico. The cluster analysis used PD-dissimilarity and a phylo-Jaccard metric with link-average linkage. Areas that cluster together indicate that they share many branches of their phylogenetic subtrees, and they are displayed in the same color.

Data S1. The vascular plant species checklist, database and phylogenetic tree, available from the Dryad Digital Repository: http://doi.org/10.5061/dryad.c6f7453