Precursors and Laggards: An Analysis of Semantic Temporal Relationships on a Blog Network

Telmo Menezes
CREA & ISCPF
CNRS
ISC - 57-59, rue Lhomond
F-75005 Paris, France
Email: telmo@telmomenezes.com

Camille Roth
CAMS & ISCPF
CNRS-EHESS
54, bd Raspail
F-75006 Paris, France
Email: roth@ehess.fr

Jean-Philippe Cointet
INRA-SenS & ISCPF
INRA-SenS, Université Paris-Est, Bois de l’Etang
5, Bd Descartes, Champs sur Marne
F-77454 Marne-la-Vallée, France
Email: jean-philippe.cointet@polytechnique.edu

Abstract—We explore the hypothesis that it is possible to obtain information about the dynamics of a blog network by analysing the temporal relationships between blogs at a semantic level, and that this type of analysis adds to the knowledge that can be extracted by studying the network only at the structural level of URL links. We present an algorithm to automatically detect fine-grained discussion topics, characterized by n-grams and time intervals. We then propose a probabilistic model to estimate the temporal relationships that blogs have with one another. We define the precursor score of blog A in relation to blog B as the probability that A enters a new topic before B, discounting the effect created by asymmetric posting rates. Network-level metrics of precursor and laggard behavior are derived from these dyadic precursor score estimations. This model is used to analyze a network of French political blogs. The scores are compared to traditional link degree metrics. We obtain insights into the dynamics of topic participation on this network, as well as the relationship between precursor/laggard and linking behaviors. We validate and analyze results with the help of an expert on the French blogosphere. Finally, we propose possible applications to the improvement of search engine ranking algorithms.

I. INTRODUCTION

For cultural anthropologists, understanding fads, trends, or, generally, cultural similarity, essentially comes to explaining “the capacity of some representations to propagate until becoming precisely cultural, that is, revealing the reasons of their contagiosity” [1]. This type of research programme admittedly assumes the possibility of, on one hand, describing representations in a consistent manner, and, on the other hand, apprehending processes of social mediation. Defining consistent cultural items is indeed crucial to describe adoption of similar ideas, behaviors, opinions, topics, etc. — the literature proposes here a large variety of concepts, such as using same bags of terms, having identical opinion vectors, duplicating references (for instance to digital content such as online video or news articles, tagged by the same URL) or, more loosely, being “infected” by spreading “memes”. Second, describing social mediation requires to understand jointly how some types of social network configurations and some types of interactions may or may not favor the transmission, reproduction or adoption of behaviors, ideas, etc. Again, a vast amount of research has been concerned with normative models or descriptive protocols aimed at understanding which kind of individuals were more or less likely to pass on some pieces of information, and which type of network positions could favor the diffusion of some items.

By relying on large-scale datasets on which individuals talk about what and when, specifically in online communities, social computing has recently contributed to this broad research programme by intensively developing two pragmatic streams of study: detection of “topics”, and characterization of “informational cascades”. Studies focused on topic detection explore bursts and regularities of behavior or term use [e.g., 2], sometimes in order to infer trends in the general population [3, 4]. In all these studies, cultural representations are assumed to be extremely atomic, i.e. based on a single behavior (a vote), item (a reference, a URL), apprehending cultural contagion pretty much similarly to disease contagion — to the notable exception of [5] who gather similar sentences into clusters of quotes, getting closer to the polymorphism of cultural representations emphasized by anthropologists.

On the other hand, studies on informational cascades currently adopt a structural stance, migrating from the “two-step-model” to more recent arguments underlining the importance of more horizontal, less hierarchical patterns [6, 7]. Importantly, in this perspective, information flows and diffusion paths are characterized along a given social network, available a priori. In many cases however, and certainly in blogs in particular, much of the information regarding the whole underlying interaction infrastructure is simply missing (be it in terms of news media readership, email exchanges and broadly any type of non-blog-based online conversation, phone calls, etc.).

In this paper, we aim at bridging these rather separate streams by adopting (i) a looser view on representations, as stories or cultural attractors [8, 9] rather than atomic items and, (ii) by considering information sources, in our case bloggers, as sensors in a social system – in particular as representatives of topics discussed in the society – so as to suggest possible/implicit information diffusion flows or, at least, precedence relationships. As an aside, the current contribution also considers observed social networks as effects rather than just causes of information diffusion.

We thus propose to identify topic classes, exhibit temporal
precedence relations between sources based on significant plausibility for an individual to address a topic before others do, and eventually compare this structure with the partial network of interactions constituted by explicit links among bloggers. Classical authority measures are found to have only a weak correlation with our approach, which rather exhibits potential online whistleblowers. The next section presents an overview of the relevant literature, while Sec. III details the empirical protocol used to identify topics. Sec. IV then describes our approach to compute probable precedence relationships; results are discussed and reframed in Sec. V.

II. RELATED WORK

A. Temporal detection of topics/bursts.

Topic characterization from (online) text corpora generally relies on terms, n-grams (i.e. a basic linguistic unit of n terms) or sentence segments. Once basic text units have been defined and extracted, topics are appraised both quantitatively and temporally, essentially by describing “how much on which period of time they are being discussed”. This led to distinguishing bursts of interest (“spikes”) [2], as opposed to continuous discussions (“chatters”) around topics [10]. Models of the temporal [11] or spatial [12] regularities in the usage of topics have been subsequently developed, up to infering and predicting accurate information regarding the whole population behavior [3, 4].

Another stream of research has focused on improving the qualification of topics: for instance, by detecting whether issues are addressed in a positive light or not [the so-called field of “sentiment analysis”, see 13, among others]; or, closer to our issues, by managing to group portions of text into classes of similar content [5] — thereby implicitly addressing one common critique among social scientists regarding the atomism of “memes” as cultural items.

B. Precedence and influence

Empirical studies of influence generally rely on interaction networks, using relational information to characterize contagion paths, and following a long tradition in mathematical sociology of social network-based models of information diffusion. As regards blogspace in particular, after initial descriptions of the underlying social network structure [e.g. 14, who also discuss bursty behavior in link creation], 15 has been one of the first studies to specifically focus on the structure of link cascades. In a previous study, 16 describe more precisely local influence patterns such as the relationship between e.g. holistic patterns and the weakness of links, in Granovetter’s sense. 17, on the other hand, use various social network structures to show that possible influence of a given blog is best described by strictly structural page-rank-style measures.

Since influence is obviously related to precedence relationships, several papers focus rather on temporal behavioral precedence. For instance, the authors of 18 exhibit explicit temporal dependencies on a email transmission network by characterizing possible shortcuts in information paths, because a dyad (A,B) could communicate less quickly than (A,C) and (C,B) separately do.

In terms of intertwining social network structure and precedence/influence, the relationship between topology and precursors or laggards had also been explored in 19, but with the assumption that the social network is known a priori, and by monitoring the adoption of a unique yes-or-no behavior. As said before, it is likely that a lot of information about the social structure is missing in most of the above studies, which consider the (given) social network as the substrate of information propagation. By assuming that the social structure describes only a non-significant fraction of all possible interaction links and contagion paths in the context of (for instance) political discussions, we basically wish to suggest that, here, the social network could just be a secondary material in the study of contagion.

Some studies do exactly so and exhibit influence relationships from usage information only: for instance in 20 a Markov Chain Model is used to characterize which topics are most likely to transition into others, using data extracted from scientific bibliographic databases. Back to blogs, “probable” content diffusion paths could be exhibited in 21 by using classifiers based upon blog features: for instance, having similar citing and content posting patterns; however, the analysis does not seem to make use of topic dynamics per se. Another reference 22 introduces an analysis which integrates more semantics, essentially in order to design automatic feed recommenders — which appears nonetheless to be still based on structural features (in-degree statistics) even if a filter is applied over general topics (politics vs. IT, etc.).

On the whole, and in the context of partial social network information, the issue of the detection of implicit, non-structural influence flows using temporal precedence in addressing topics remains a pending question.

III. UNIT OF ACTIVITY DETECTION

We are interested in identifying topics of discussion for which we can later analyse the temporal relationships of their participants. Such topics must have two characteristics to be relevant to our analysis: to have well defined time boundaries within our observation period and to be maintained by the participation of several blogs. If these two constrained are respected then we are observing what we will call a well defined “unit of activity”. We empirically define a method that identify bursty topics which meet these constraints.

In 5, research related to the problem of topic detection is classified into two main categories: probabilistic models to identify long-range trends in general topics and the use of rare named entities to study short information cascades. We are not interested in long-range, general topics, nor in having to rely on the occurrence of very specific, rare strings. Instead, our goal is to identify topics that can identified by a set of n-grams and a well bounded period of time, and that represent simple, self-contained units of activity.

We propose a rather holistic approach, that takes advantage of both the textual content of blogs posts, and the times at
which these posts where published.

The process of topic detection we propose consists of
a classical sequence of treatments that we perform on our
dataset:
1) Part-of-speech tagging and lemmatisation of each post’s
title and content in order to enumerate every relevant
n-grams in the corpus.
2) Detection and filtering of n-gram temporal bursts.
3) Merging of redundant n-gram bursts into unique topics.

A. linguistic treatment

We perform the first step using the TreeTagger tool [23].
In this step we generate a new version of each posts title and
textual content, where each word is lemmatised and augmented
with a part-of-speech tag.

We then divide the corpus of text generated by the previous
step into chunks, delimited by punctuation marks. Afterwords,
we find all the n-grams that occur in the chunks produced
by the previous step. This search is constrained by a set of
rules, as to not generate an intractable amount of n-grams, and
explore only cases we believe are likely to lead to meaningful
topics. The rules are the following:
- N-grams must have two or more words.
- An n-gram must contain at lease one noun.
- All words that are not nouns, verbs, adjectives or numbers are
discarded.
- All n-grams that contain words in a special set called stop-words list are rejected.

These rules are empirical, having been obtained by experimen-
tation with real datasets. The word set in the last rule contains
words that have a strong temporal meaning, and that would
later on lead to the detection of meaningless temporal bursts
of usage. We used a set containing names of months, days of
the week and holiday seasons (like Christmas), in both French
and English.

B. Temporal bursts detection

In the second phase, we analyse the pattern of occurrence
of each n-gram, dividing the period of observation into bursts
of activity. For this purpose, we devised an algorithm that
iteratively divides the timeline into intervals, aiming at the
maximization of a value we will call the burst ratio. Let us
consider an ordered set $T = \{t_0, t_1, \ldots, t_n\}$ (in ascending
order), where each element is the time of an occurrence of the
n-gram. Furthermore, any two consecutive elements of T must
originate from different blogs. This guarantees that a burst can
only be maintained by the participation of multiple blogs.

We are interested in partitioning T into subsets which
correspond to temporal bursts. Let us consider the ordered
set $\Theta = \{\theta_0, \theta_1, \ldots, \theta_n\}$ where $\theta_k = 1$ if element t_k
is the last element of a burst, and $\theta_k = 0$ otherwise. Each
time θ_k equals 1 it means that the burst ends at t_k. Given
a partition Θ of the sequence of a n-gram into bursts, it
is straightforward to compute the time-lag between the end
of a burst and the beginning of the next burst or the time-
lag between two occurrences inside the same burst. We can
compute the average time-lag between two consecutive bursts or
the average interval inside each burst on the whole timeline
as follows:

$$V_{\rightarrow}(T, \Theta) = \text{\texttt{sum}}_{i=1}^{\text{\texttt{|T|}}} (t_{i+1} - t_i)\theta_i,$$

if $$\sum_{i=1}^{\text{\texttt{|T|}}} \theta_i > 0$$
else (1)

$$V_{\leftarrow}(T, \Theta) = \text{\texttt{sum}}_{i=1}^{\text{\texttt{|T|}}} -1 (t_{i+1} - t_i)(1 - \theta_i),$$

if $$\sum_{i=1}^{\text{\texttt{|T|}}} \theta_i > 0$$
else (2)

We also define the minimum inter-burst interval $m_{\rightarrow}, (T, \Theta)$
as:

$$m_{\rightarrow}, (T, \Theta) = \text{\texttt{min}}_{\{i < |T|, \theta_i = 1\}} (t_{i+1} - t_i)$$

We then define the burst ratio, $\rho(T, \Theta)$ as:

$$\rho(T, \Theta) = \frac{V_{\rightarrow}(T, \Theta)}{V_{\leftarrow}(T, \Theta)}, \text{ if } V_{\leftarrow}(T, \Theta) > 0,$$

otherwise (0) 0 otherwise

Simply put, $\rho(T, \Theta)$ is the ratio of the mean time interval
between bursts to the mean time interval between elements
inside bursts.

On algorithm 1 we present the pseudo-code that describes
the clustering method. The process is started with all the
elements of Θ initialized to 0, meaning that in the initial state,
all n-gram occurrences are considered to belong to a single
burst. The algorithm iteratively tries to add new divisions to
Θ, keeping the ones that increase the burst ratio, until no
further improvement is possible.

Parameters α and β determine, respectively, the minimum
burst ratio and interval between bursts (in days) that are ac-
cepted. These parameters allow us to prevent the formation
of bursts that are not sufficiently separated, both in relation to the
average interval between n-gram occurrences and in absolute
value. For our purposes, we experimentally determined $\alpha = 5$
and $\beta = 5$ to be good values.

We devised our own burst detection algorithm instead of
using one of the available ones, due to the specific require-
ments of our approach. For example, the weighted automaton

![Figure 1. Example of a sequence of occurrences of a given ngram. The ordered sets T and Θ are depicted. Inter-bursts and intra-burst intervals are represented by arrows (respectively straight and curved).](image)
model described in [2] is very suitable for detecting bursts at quantifiable levels of intensity, but does not lend itself to the detection of bursts with well defined limits. For the probabilistic model we are going to describe in the following section, it is crucial that we consider bursts with well defined limits, as not to lose initial or late arrivals. Our algorithm detects cases where the activity on a certain n-gram set can be characterized by intervals with a sufficient level of activity, separated by large enough intervals of no activity.

Finally we filter the n-gram bursts, only accepting the ones that meet the following criteria:

- A minimum number of blogs participating in the burst of 4.
- A minimum average time between posts participating in the burst of 1 hour.
- A maximum average time between posts participating in the burst of 1 day.
- A minimum burst duration of 3 days.
- A maximum total duration of all the bursts of the n-gram of 1 month.

The purpose of these rules is to end up with n-gram bursts that are more likely related to a real topic. We discard bursts that are too sparse, too dense, too short lived or defined by an n-gram that is too common.

C. Merging n-gram bursts into topics

Finally, on the last phase, we extract a set of topics from the set of n-gram bursts that resulted from the previous step. We define a topic as a tuple \(\{g_0, g_1, ..., g_n\}, t, t' \), consisting of a set of n-grams occurring between times \(t \) and \(t' \). Topics are defined with the minimum possible set of n-grams for maximum generality. Figure 2 illustrates on a real example how the n-gram bursts are selected to define a topic. The underlying idea is the following: consider two n-gram bursts, defined by n-grams \(g_a \) and \(g_b \), occurring over time intervals \([t_a, t'_a]\) and \([t_b, t'_b]\). Furthermore, consider that the sequence of words in n-gram \(g_a \) is a sub-sequence of the sequence of words in n-gram \(g_b \), and that \(t_a \geq t_b \) and \(t'_a \leq t'_b \). Referring to figure 2 this could be exemplified by \(g_a = "région avoir apporter contribution débat" \) and \(g_b = "apporter contribution débat" \). We assume that, in this kind of situation, it is very likely that both bursts belong to the same topic. \(g_b \) is more general than \(g_a \), because it includes all the cases covered by \(g_a \), while the opposite is not necessarily true.

We transverse the entire set of n-gram bursts, in descending order of the number of words contained in their n-gram. For each burst, we look for bursts ahead in the set with n-grams that are a sub-sequence of the first one, and with time intervals that contain the interval of the first one. If such bursts are found, the original burst is discarded. If one of the bursts found is already assigned to a topic, we also assign the other bursts found to that topic, otherwise we assign all bursts found to a new topic.

IV. Probabilistic Precedence Scoring

After the process described in the previous section, we now have a set of topics, and know which blogs participated in each topic and at what time. We are now in the position of defining a probabilistic model that estimates the tendency that blogs have to participate in topics before other blogs.

We will start by defining a dyadic precursor score from blog \(b \) to blog \(b' \). We will call this score \(\gamma(b, b') \). Let us define \(A \) as the set of all topics where both blogs participate, and \(Y \) as the subset of \(A \) where the first participation of \(b \) precedes the first participation of \(b' \). We also define \(C \) as a vector of probabilities. Each element of \(C \) is the probability that \(b \) participates on a topic before \(b' \) by chance. We will detail later how these probabilities are computed. We know define the likelihood of \(\gamma(b, b') = p \), given \(A \), \(Y \) and \(C \):

\[
\gamma(b, b') = \sum_{c \in C} c \cdot \gamma(b, b')|c|,
\]

where \(\gamma(b, b')|c| \) is the likelihood of \(\gamma(b, b') \) given the probability distribution \(c \).
\[\lambda(\gamma(b, b')) = p|A, Y, C) = \sum_{Z \cup R = Y} \lambda(\gamma(b, b') = p|A, Y, C, Z, R) \quad (3) \]

The likelihood in equation (3) is defined as the sum of the likelihoods for all possible hypotheses of the appearances of \(b \) before \(b' \) being caused by a temporal relationship or by chance. The set \(Y \) of topics where the first participation of \(b \) precedes the first participation of \(b' \) can be decomposed as the union of the set \(Z \) of topics where \(b \) is assumed to display a behavior of precedence over \(b' \), and the set \(R \) of topics where \(b \) is assumed to precede \(b' \) by chance. We define the likelihood of each hypothesis as:

\[\lambda(\gamma(b, b') = p|A, Y, C, Z, R) = P_Z(A, Z, p) \cdot P_H(A, R, C) \quad (4) \]

\(P_Z(A, Z, p) \) is the probability that \(b \) precedes \(b' \) in the topics in \(Z \) and not in the topics in \(A \setminus Z \), given a probability of a precedence relationship of \(b \) over \(b' \) of \(p \). \(P_H(A, R, C) \) is the probability that \(b \) precedes \(b' \) by chance for the topics in \(R \), and not for the topics in \(A \setminus R \), given \(C \). These probabilities are defined as:

\[P_Z(A, Z, p) = p^{|Z|}(1 - p)^{|A| - |Z|} \quad (5) \]

\[P_H(A, R, C) = \prod_{r \in R} C_r \prod_{r \in A \setminus R} 1 - C_r \quad (6) \]

Now we have to define how to compute the probabilities \(C_r \) that topic \(r \) is mentioned by \(b \) before \(b' \). We compute these probabilities by taking into account the total number of posts published by each blog during the time interval of the topic, in the following way:

\[C_r = \frac{Np(b, [t_s(r); t_e(r)])}{Np(b, [t_s(r); t_e(r)]) + Np(b, [t_s(r); t_e(r)])} \quad (7) \]

\(t_s(r) \) is the time of the beginning of topic \(r \) and \(t_e(r) \) is the time of its end. \(Np(j, t, t') \) gives the number of posts published by blog \(j \) between times \(t \) and \(t' \). Simply, this expression reflects the idea that, the higher the number of posts of blog \(b \) as compared to the total number of posts from both blogs in the time interval, the more likely \(b \) is to publish the first post on the topic by chance. We do not consider the overall posting rates of the blogs, as these change over time.

The computation of the likelihood expressed in (3) suffers from combinatorial explosion. In fact, the number of computations that have to be performed to calculate \(\lambda(\gamma(b, b') = p|A, Y, C, Z, R) \) scales exponentially with \(|Y| \). For this reason, when \(|Y| \) is above 15, we resort to an estimation based on sampling.

Finally, we estimate \(\gamma(b, b') \) by calculating the mean of the possible values it can take \((\gamma(b, b') \to [0, 1])\), weighted by their likelihood:

\[\gamma(b, b') = \int_0^1 \lambda(\gamma(b, b') = p|A, Y, C) \cdot p \cdot dp \]

Not having an analytical solution for equation (8), we use Monte Carlo integration.

Having a way to compute dyadic precursor scores, we are now interested in scoring the blogs according to their overall precursor/laggard behaviors over the entire network. For this purpose, we will define two metrics: the global precursor score \((P)\) and the laggard score \((L)\).

A dyadic precursor score \(\gamma(b, b') \) can be interpreted as the probability that a post from blog \(b' \) participates in a topic under a temporal relationship with blog \(b \), where \(b \) precedes \(b' \), given that both blogs are known to participate in that topic. We can remove the topic co-participation assumption using Bayes’ theorem. Considering \(M \) to be the event of the post participating in the topic under the temporal relationship, \(H \) to be the event of the post for blog \(b' \) participating in a topic where blog \(b \) also participates:

\[\gamma(b, b') = P_r(M|H) \quad (9) \]

\[P_r(M|H) = \frac{P_r(H|M)P_r(M)}{P_r(H)} \quad (10) \]

\[\omega(b, b') = P_r(M) = P_r(H|M)P_r(H) = \gamma(b, b')P_r(H) \quad (11) \]

We will call \(\omega(b, b') \) the adjusted dyadic precursor score. Notice that \(P_r(H|M) = 1 \), because if the post participates in a topic under a temporal relationship with the other blog, the blogs will necessary co-participate in that topic.

We define the global precursor score for a blog \(b \) \((P(b))\) as the mean of all adjusted dyadic precursor scores where \(b \) is the origin, and the laggard score \((L(b))\) as the mean of all adjusted dyadic precursor scores where \(b \) is the target. Being \(B \) the set of all blogs in the network:

\[P(b) = \frac{1}{|B| - 1} \sum_{b' \neq B \setminus \{b\}} \omega(b, b') \]

\[L(b) = \frac{1}{|B| - 1} \sum_{b' \neq B \setminus \{b\}} \omega(b', b) \]

V. RESULTS AND DISCUSSION

The protocol described in the previous sections was applied to a dataset generated from a crawl of the French political blogosphere, consisting of 916 blogs, between the days of October 1st 2009 and February 11th 2010. During this period, 40,191 posts were published, containing 16,909 citation links to other blogs in the network. We applied our topic detection process on this data and identified 2,619 different topics.

We then computed the global precursor and laggard scores according to the process described in the previous section for each blog that published at least 7 posts during the whole observation period. We discarded nearly 300 blogs with very
low posting rates because of the noise they may introduce into the computation of the global scores.

Figure 3 shows a scatter plot of the blogs, positioned in the plane according to their global precursor and laggard scores: \(P \) and \(L \). This plot gives us an overview of the structure of the network in terms of precursor/laggard behaviors. It can be observed that there is a dense cluster of blogs near the origin, with the distribution of blogs rarefying in both the \(x \) and \(y \) directions.

A blog may be situated in the low scores cluster for different reasons. It could be that it does not tend to participate in popular topics (which also means that the topics it discusses are not spread through the network), or it could be that it maintains relationships of influence with other blogs which are close to being symmetrical. This type of relationship between two blogs makes it approximately equally likely that each blog influences the other to enter a topic. Our scores are not capable of distinguishing a symmetrical influence relationship from an indirect relationship.

In the study of blog networks, it is common to establish popularity metrics based on the URL links that point to a blog. We compute the in-degree of a blog as the number of blogs that link to it at least once during the observation period, as well as the classical pagerank. Our goal is to compare those metrics based on the topology of the hyperlinks network with our temporal semantic based scores.

Figure 4 shows box plots of in-linking and page rank per interval of precursor score. The two plots present similar shapes, showing an increase in both in-link degrees and page ranks up to the third bar. On the fourth bar there is a clear decrease, suggesting that the precursor behavior is positively correlated with blog popularity only up to a certain point.

In figure 5 we plot in-linking per interval of laggard score. This plot is more noisy and the pattern is less clear than the previous one. Higher laggard scores appear to have a detrimental effect on link popularity. Although not shown, a similar pattern was found when comparing page ranks to laggard scores.

In order to derive general principles, we divided the blog set into four classes. Each class is characterized by a high or low precursor score and a high or low laggard score. A precursor score is considered low if it is equal or lesser than the mean precursor score for the entire set \(P \in [0, \bar{P}] \), and high otherwise \((P \in [\bar{P}, 1]) \). Laggard scores are classified in an analogous fashion. We use the notation \(p \) for low precursor, \(P \) for high precursor and so on. The class \(P_L \), for example, is

\[
\begin{array}{cccc}
2.08 & 6.19 & 1.59 & 3.50 \\
pl & Pl & pL & PL \\
\end{array}
\]

\[\text{Table I} \]

SIGNIFICANCE OF MEAN IN-DEGREE RELATIONSHIPS FOR CLASSES OF BLOGS DETERMINED ACCORDING TO PRECURSOR AND LAGGARD SCORE INTERVALS.

\[^{1}\text{Since the blog network is not a closed system, two blogs could have a very similar set of external influences, leading to the same temporal patterns they would display if influencing each other in a symmetrical way.}\]
the one containing blogs with an high precursor score and low laggard score.

In each cell of table[1] we perform a comparison between the mean in-link degree of each class. The statistical significance of the differences was determined using Wilcoxon rank sum tests. We use a number of * symbols to denote the level of significance found. One * if \(p \text{-value} < 0.05 \), two if \(p \text{-value} < 0.01 \) and three if \(p \text{-value} < 0.001 \). The mean in-degrees for classes are shown in row and column headers.

When comparing the two classes with low laggard scores, the one with an high precursor score has a higher mean in-degree. The same is true of the two classes with high laggard scores. When comparing the two classes with a low precursor score, the one with the low laggard score has the higher mean in-degree. In the two cases where no significance was found, the \(p \)-value was very close to 0.05, suggesting that the relationships are likely true, but we have insufficient data to be certain. This confirms that higher precursor scores and lower laggard scores have a positive effect on in-linking. These results also show that the two scores are not just reflecting the effect of participating in discussions. In fact, both scores require higher participation for higher values, but have opposite effects.

It is clear, however, that these general principles do not tell the whole story. The box plots show that, despite the general principles, blogs with high precursor scores are not necessarily rewarded with high in-link degrees.

This becomes more obvious by observing the hexagonal binning plot, shown in figure[6]. It displays the mean in-linking per region of precursor and laggard scores. The darker the color, the higher the in-linking. It clearly confirms for example that higher precursor score does not guarantee higher in-degree.

To validate our protocol and experimental results, we generated four lists of ten blogs. We determined the position of each blog on a plane, where dimension \(x \) is the precursor score, and \(y \) the link in-degree. Both axis were converted to a logarithmic scale and normalized to \([0, 1]\) intervals. From this spatial distribution, list 1 contains the blogs closest to point \((0, 0)\) - low precursors, low in-degree; list 2 the blogs closest to \((0, 1)\) - low precursors, high in-degree; list 3 the blogs closest to \((1, 0)\) - high precursors, low in-degree and list 4 the blogs closest to \((1, 1)\) - high precursors, high in-degree.

We then provided these four lists to an expert on the French blogosphere. She had no prior knowledge of our classification process. We simply asked her if she could notice any significant pattern inside groups. She described blogs of list 1, which belong to the category of low precursor and low in-degree, as very “small” blogs essentially concerned with regional or local issues. According to her, list 2 (low precursors, high in-degree) is typically composed of experienced bloggers who emerged during the last presidential election in 2008 and now gather together despite their political differences. As such their pattern of linking is similar to a “rich-club” which may explain their high in-degree in spite of their low precursor score. Blogs which have high precursor score and low in-degree (list 3) are exclusively made of copycats. These sites are basically systematically relaying the media or making reviews of regular papers on the web. The presence of such behavior in the dataset incidentally explains the sharp decline of mean in-degree and page rank among blogs with highest precursor scores that we observed previously (Fig. [1]). The fourth list is composed of high precursors and high in-degree blogs. All of them have been described by the expert as very active in political contestation, both from the left and the extreme right, against the government policy and, more broadly, against the current political balance.

VI. CONCLUSIONS

In this work, we strived to extract quantifiable metrics from the wealth of semantic information contained in blogs. We presented a method for the detection of bursts of activity at the semantic level, that was tested on a real data set and shown capable of identifying topics characterized by n-grams and time intervals. We then described a probabilistic model to quantify
temporal relationships between blogs. Dyadic precursor scores are able to quantify temporal relationships between pairs of blogs, where one tends to enter a topic before the other, discounting the effects of asymmetrical posting rates. From these dyadic scores we derived two scores to classify blogs according to their overall precursor and laggard behaviors. The comparison of these semantic temporal metrics with the more traditional in-link degree based popularity metrics revealed non-trivial relationships between the two. The expert assessment indicates that the scores we proposed lead to relevant distinctions that could not be derived from classical structural based methods only. Search engine ranking algorithms, like the well-known PageRank [24] used by Google, are more sophisticated than simple reliance on URL link in-degrees. However, they are still based on structural aspects of the web, deriving their estimations from the analysis of the network of URL links. We found that the precursor/laggard scores are able to identify blogs that have a high tendency to be precursors in topics under discussion, but that would likely not be distinguishable from other blogs with similar page ranks or in-degrees by relying only on this later type of metric. It is conceivable that search engine ranking algorithms could be improved with the approach we propose. Including precursor scores in ranking metrics could help improve the quality of searches, for example the ones related to time sensitive events. It could also reward blogs that generate influential content, but that are not especially popular in the sense of receiving many in-links.

ACKNOWLEDGMENTS
This work has been partially supported by the French National Agency of Research (ANR) through grant “Webfluence” #ANR-08-SYSC-009. We thank Clémence Lerondeau and Guilhem Fouetillou from LINKFLUENCE for their help in qualitatively assessing the data.

REFERENCES
[1] G. Lenclud, “La culture s’attrape-t-elle?” Communications, vol. 66, pp. 165—183, 1998.
[2] J. Kleinberg, “Bursty and hierarchical structure in streams,” in Proc. 8th ACM SIGKDD Intl. Conf. on Knowledge discovery and data mining, New York, NY, USA: ACM, 2002, pp. 91–101.
[3] J. Ginsberg, M. H. Mohebbi, R. S. Patel, L. Brammer, M. S. Smolinski, and L. Brilliant, “Detecting influenza epidemics using search engine query data,” Nature, vol. 457, pp. 1012–1014, 2009.
[4] S. Asur and B. A. Huberman, “Predicting the future with social media,” arXiv.org e-print archive: 1003.5699.
[5] J. Leskovec, L. Backstrom, and J. Kleinberg, “Meme-tracking and the dynamics of the news cycle,” in Proc. ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, 2009.
[6] D. J. Watts and P. S. Dodds, “Influentials, networks, and public opinion formation,” Journal of Consumer Research, vol. 34, no. 4, pp. 441–458, 2007.
[7] M. Cha, H. Haddadi, F. Benevenuto, and K. Gummadi, “Measuring user influence in twitter: The million follower fallacy,” 2010.
[8] D. Sperber, Explaining Culture: A Naturalistic Approach. Oxford: Blackwell Publishers, 1996.
[9] D. Sperber and N. Claidière, “Why modeling cultural evolution is still such a challenge,” Biological Theory, vol. 1, no. 1, pp. 20–22, 2006.
[10] D. Gruhl, R. Guha, D. Liben-Nowell, and A. Tomkins, “Information diffusion through blogspace,” in WWW2004: Proc. 13th Intl Conf on World Wide Web, NYC, NY, USA, May 17-22 2004, pp. 491–501.
[11] K. Balog, G. Mishne, and M. de Rijke, “Why are they excited? identifying and explaining spikes in blog mood levels,” Proc. 11th Meeting Eur. chapter of the Association for Comp. Ling. EACL, pp. 207–210, 2006.
[12] L. Lloyd, P. Kaulgud, and S. Skiena, “Newspapers vs. blogs: Who gets the scoop?” in AAAI Spring Symposium on Computational Approaches to Analyzing Weblogs(AAAI-CAA), Palo Alto, California, USA, 2006.
[13] G. Mishne and M. de Rijke, “Capturing global mood levels using blog posts,” AAAI 2006 Spring Symp. on Computational Approaches to Analysing Weblogs, 2006.
[14] R. Kumar, J. Novak, P. Raghavan, and A. Tomkins, “On the bursty evolution of blogspace,” World Wide Web, vol. 8, pp. 159–178, 2005.
[15] J. Leskovec, M. McGlohon, C. Faloutsos, N. Glance, and M. Hurst, “Cascading behavior in large blog graphs,” in Proc. 7th SIAM Intl. Conf. on Data Mining (SDM), 2007.
[16] J.-P. Cointet and C. Roth, “Socio-semantic dynamics in a blog network,” in IEEE Intl. Conf. Social Computing, 2009, pp. 114–121.
[17] A. Java, P. Kolari, T. Finin, and T. Oates, “Modeling the spread of influence on the blogosphere,” Proceedings of the 15th International World Wide Web, p. 7, May 2006.
[18] G. Kossinets, J. Kleinberg, and D. J. Watts, “The structure of information pathways in a social communication network,” in Proc. SIGKDD 08, 2008.
[19] T. Valente, “Social network thresholds in the diffusion of innovations,” Social Networks, vol. 18, pp. 69–89, 1996.
[20] D. Zhou, X. Ji, H. Zha, and C. L. Giles, “Topic evolution and social interactions: How authors effect research,” in Proc. CIKM’06, 2006.
[21] E. Adar, L. Zhang, L. A. Adamic, and R. M. Lukose, “Implicit structure and the dynamics of blogspace,” in Workshop Weblogging Ecosystem, 13th WWW, 2004.
[22] A. Java, “Tracking influence and opinions in social media,” ebiquity, p. 69, Nov 2006.
[23] H. Schmid, “Probabilistic part-of-speech tagging using decision trees,” 1994.
[24] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking: Bringing order to the web,” Stanford InfoLab, Technical Report 1999-66, November 1999. [Online]. Available: http://ilpubs.stanford.edu:8090/4227/