Molecular validation of clinical *Pantoea* isolates identified by MALDI-TOF

Craig D. Soutar, John Stavrinides*

Department of Biology, University of Regina, Regina, Saskatchewan, Canada

* john.stavrinides@uregina.ca

Abstract

The Enterobacterial genus *Pantoea* contains both free-living and host-associating species, with considerable debate as to whether documented reports of human infections by members of this species group are accurate. MALDI-TOF-based identification methods are commonly used in clinical laboratories as a rapid means of identification, but its reliability for identification of *Pantoea* species is unclear. In this study, we carried out *cpn60*-based molecular typing of 54 clinical isolates that had been identified as *Pantoea* using MALDI-TOF and other clinical typing methods. We found that 24% had been misidentified, and were actually strains of *Citrobacter*, *Enterobacter*, *Kosakonia*, *Klebsiella*, *Pseudocitrobacter*, members of the newly described *Erwinia gerundensis*, and even several unclassified members of the *Enterobacteriaceae*. The 40 clinical strains that were confirmed to be *Pantoea* were identified as *Pantoea agglomerans*, *Pantoea allii*, *Pantoea dispersa*, *Pantoea eucalypti*, and *Pantoea septica* as well as the proposed species group, *Pantoea latae*. Some species groups considered largely environmental or plant-associated, such as *P. allii* and *P. eucalypti* were also among clinical specimens. Our results indicate that MALDI-TOF-based identification methods may misidentify strains of the *Enterobacteriaceae* as *Pantoea*.

Introduction

Strains of *Pantoea* are frequently found in association with a wide variety of hosts, including plants, insects, animals, and humans [1,2]. Multiple *Pantoea* species are well-documented plant pathogens [3–5]; however, *Pantoea* species have also been isolated from clinical specimens. *Pantoea agglomerans* has been isolated from pediatric patients with bacteremia, osteomyelitis, peritonitis, pneumonia, septic arthritis, and septicemia [6]. The majority of *P. agglomerans* clinical cases are either the result of wound contamination with plant material or are hospital-acquired infections [7]. Likewise, other species such as *Pantoea ananatis*, *Pantoea dispersa*, *Pantoea eucalypti*, and *Pantoea septica* have also been isolated from a variety of clinical sources including wounds, blood and other fluids, skin, stool, abscesses, cysts, fractures and body sites such as the urethra and trachea [2]. *Pantoea* has also been implicated in multiple outbreaks that resulted in the deaths of neonates [8,9]. Despite this, the human pathogenic potential of many *Pantoea* species is currently being debated as there is evidence to suggest that many clinical strains are not *Pantoea* at all [10]. Due in part to taxonomic and
nomenclatural revisions many strains previously listed as *Pantoea* have been found to belong to other genera including *Klebsiella* and *Enterobacter* [11]. Furthermore, *Pantoea* strains are difficult to assign to a species group based on metabolic profiling alone, which has resulted in numerous *Pantoea* clinical isolates being incorrectly classified as *Pantoea agglomerans* [12].

Identification of clinical specimens of *Pantoea* is often achieved by the mass spectrometry-based approach matrix-assisted laser desorption ionization-time of flight (MALDI-TOF). MALDI-TOF involves the application of a laser to an isolated bacterial colony that has been treated with a matrix solution, leading to ionization of bacterial molecules that are then used as the signature for genus- and/or species-level identification via comparison to a reference database [13,14]. MALDI-TOF can achieve species-level identification with greater accuracy and speed than conventional biochemical methods [15,16]. However, as MALDI-TOF identification relies upon a database of profiles of known reference organisms, gaps in the database can lead to misidentification. Indeed, many reported MALDI-TOF misidentifications are the result of incomplete databases with most situations remedied by updating the reference database with additional organisms [15,17]. Likewise, novel and undescribed genera and species may not be discernible from the next closest relative. For the genus *Pantoea*, which continues to be revised with new species groups, the accuracy of MALDI-TOF-based identifications remains unknown.

Molecular typing methods can be used to help validate the accuracy of MALDI-TOF based clinical identifications of *Pantoea*. The 16S ribosomal RNA (rRNA) gene is considered to be a universal identifier for bacteria largely due to its conservation across Bacteria, and due to the phylogenetic signal provided by the approximately 1500 base pair (bp) locus [18]; however, this slowly-evolving locus often does not provide sufficient resolution for distinguishing between *Pantoea* species groups [19,20]. In contrast, the multi-locus sequence analysis (MLSA) approach has demonstrated reproducible typing of strains along with robust phylogenies for *Pantoea* [21]. Single-gene barcoding of *Pantoea* using *leuS* has also been proposed, which provides consistent species identification with some incongruencies only in the relative position of particular species groups in the tree [22]. The *leuS* gene, however, has not been developed as a universal marker for bacterial identification and classification, making comparisons across species and across studies considerably more difficult with this locus. In contrast, *cpn60*, known as *groEL* in *E. coli*, is a roughly 1650 bp chaperonin gene that has been shown to reliably provide robust species-level resolving power [23–25]. This gene is present in the genome of almost all bacteria and contains a region of close to 600 bp that has been designated a universal target for discriminating between closely related species [26]. In addition, a curated database of *cpn60* sequences is available online [27].

In this study, we performed species-level identification of clinical and environmental candidate *Pantoea* isolates using a combination of MLSA and *cpn60*-based typing. We first generated and compared a *cpn60* gene genealogy of *Pantoea* reference strains to a phylogeny generated by MLSA to demonstrate that *cpn60* consistently recovers the *Pantoea* species groups with strong support. We used this robust clustering of species groups to type 64 candidate *Pantoea* strains from clinical and environmental sources, and show that 24% of clinical isolates were misidentified, with MALDI-TOF misidentifying one of every five strains. Of those strains that were correctly identified, the majority were *P. agglomerans* and *P. septica*. We also found clinical strains of the plant-associated, *Pantoea allii* and *P. eucalypti*.

Materials and methods

Bacterial strains

Clinical isolates were obtained from St. Boniface General Hospital in Winnipeg, Manitoba, Canada, the Texas Children’s Hospital in Houston, Texas, USA, the Roy Romanow Provincial
Laboratory in Regina, Saskatchewan, Canada, and the Regina General Hospital in Regina. Strain information provided included a tentative identification to genus, as well as anonymized patient information (Table 1). Clinical identification of isolates by St. Boniface General Hospital was achieved via a Bruker Biotyper microflex LT/SH MALDI-TOF system, which used the RUO MALDI Biotyper Reference Library (Bruker Ltd., Milton, Ontario, Canada). Texas Children’s Hospital identified isolates using a combination of VITEK 2 [28] and 16S rRNA gene sequencing, the Roy Romanow Provincial Laboratory with MicroScan [29], biochemical typing, and 16S rRNA gene sequencing, and the Regina General Hospital with VITEK 2 ID cards. Environmental strains that were initially identified as *Pantoea* via phenotype-based methods were obtained from a variety of sources. Reference strain genomes were obtained from NCBI and our lab collection (S1 Table).

Sequence data
The gene sequences of *atpD*, *fusA*, *gyrB*, *leuS*, *recA*, *rplB*, and *rpoB* as well as *cpn60* were extracted from *Pantoea* genomes from the National Centre for Biotechnology Information (NCBI) and from our collection [2] using an in-house Perl-based pipeline. Complete genomic data were not available for representatives of *Pantoea beijingensis* and *coffeiphila* so these were not included in the analysis. For new strains, the 16S rRNA and *cpn60* genes were amplified using primers 16S +335 (ACTCCTACGGGAGGCAGC) and 16S-1400 (ACGGGCGGTGTGTACAA) in a colony PCR reaction with New England Biolabs Taq DNA polymerase (New England Biolabs Ltd., Whitby, Ontario, Canada) as per the manufacturer’s instructions, and *cpn60_ent+1* (ATGGCAGCWAAAG ACGTAAAATTCGG) and *cpn60-1330* (CGCRACYTTRATACCSACGTTCTG) in a colony PCR reaction with GenedireX Taq DNA polymerase (GenedireX Inc., Taiwan) as per the manufacturer’s instructions. Amplicons were sequenced using Sanger sequencing by Genome Quebec (Montreal, Quebec, Canada). Forward and reverse reads were merged using the BBMap software package [30]. MLSA loci and *cpn60* gene sequences have been deposited in Genbank under accession numbers MK909837-MK909900, MK928255-MK928322, and MK936803-MK936866.

Sequence analysis and phylogenetics
16S rRNA gene sequences were analyzed using the Ribosome Database Project (Training Set 16) Classifier [31]. *cpn60* sequences were analyzed with a custom cpnDB database of Group I sequences [27] that included the *cpn60* sequence of *P. septica* strains FF5, VB38951-A, and X44686, as well as *Pantoea* sp. PSNIH6, *Pantoea* sp. RIT388, *Pantoea* sp. UBA4389, Enterobacteriaceae bacterium IIIIF5SW, Erwinia bacterium IIIIFSW-P2, Izhakiella australiensis D4N98, Tatumella saanichensis NML 06–3099, Mixta calida DSM 25383 Pseudocitrobacter sp. RIT 415, Pseudocitrobacter faecalis DSM 27453, Erwinia gerundensis EM595, and Kosakonia cowanii Esp_Z (S1 Table). Alignments for phylogenies were generated using Clustal Omega version 1.2.1 using default parameters [32]. Alignments for the MLSA trees consisted of concatenated full-length *fusA*, *gyrB*, *leuS*, *recA*, *rplB*, *rpoB*, and *atpD* gene sequences, while *cpn60* alignments contained sequences of at least 530 bp of the coding sequence. Maximum likelihood trees were constructed in MEGA version 7.0.26 [33] using models selected via Modeltest and 1000 bootstrap replicates. MLSA and *cpn60* nucleotide sequences are available as supplementary data (S1 Dataset, S2 Dataset).

Results
cpn60 accurately constructs species groupings
A *cpn60* phylogenetic tree was constructed and compared to a seven gene (*fusA*, *gyrB*, *leuS*, *recA*, *rpoB*, *rplB*, and *atpD*) MLSA phylogenetic tree from representative *Pantoea* genomes,
Table 1. Candidate *Pantoea* isolates used in this study.

Strain	E/C	Probable species	Host/Locale	Source	Initial ID method
07–703	C	unclassified	Enterobacteriaceae, Human, 82 years old, blood, Abdominal pain (non-trauma)	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
10–854	C	*Pseudocitrobacter*	Human, 58 years old, abdominal fluid, Ruptured appendix	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
12BT205805	C	unclassified	*Enterobacteriaceae*, Human, 62 years old, ETC, Arrest, Hypothermia	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
12DB793227A	C	*Pantoea agglomerans*	Human, 68 years old, ETC, MI	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
12DB793227B	C	*Pantoea agglomerans*	Human, 68 years old, ETC, MI	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
12GB497105	C	*Kosakonia*	Human, 54 years old, fluid, Gallbladder	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
12GC134883	C	*Citrobacter*	Human, 98 years old, Edema, CHF, Cellulitis	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
12VB493046	C	*Pantoea dispersa*	Human, 54 years old, ETC, Post PCI, Cardiac Arrest	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
12VB899147A	C	*Pantoea dispersa*	Human, 82 years old, urine	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
13BC160225A	C	*Pantoea septica*	Human, 59 years old, urine, Febrile neutropenia	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
13BG284532	C	*Pantoea* sp.	Human, infant, trach secretion, Premature	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
13DB433109	C	*Pantoea* sp.	Human, 69 years old, urine midstream, Flank pain	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
13DB759184B	C	*Pantoea septica*	Human, 74 years old, nephrostomy urine, Renal failure	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
13DB759184C	C	*Pantoea septica*	Human, 74 years old, nephrostomy urine, Renal failure	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
13DB767309C	C	*Pantoea septica*	Human, 74 years old, blood culture, Renal failure	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
13VB752675	C	*Pantoea agglomerans*	Human, 60 years old, coccyx wound, Sepsis	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
14BB43300	C	*Pantoea septica*	Human, 54 years old, sputum	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
14GC287951	C	*Pantoea septica*	Human, 92 years old, urine midstream, Fall	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
14MB215572	C	*Erwinia gerundensis*	Human, 27 years old, eyes, Peri-orbital swelling	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
14VB542579A	C	*Klebsiella*	Human, 62 years old, catheter urine, Cystoscopy stent insertion	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
14VB542579B	C	*Bacillus*	Human, 62 years old, catheter urine, Cystoscopy stent insertion	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
15BB477046	C	*Mixta calida*	Human, 26 years old, urine midstream, Abdominal pain	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
15DB693365	C	*Pantoea eucalypti*	Human, 37 years old, bronch wash, Cough	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
15IE404477	C	*Pantoea septica*	Human, 54 years old, leg ulcer, Localized swelling	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
15MB93116	C	*Pantoea septica*	Human, 56 years old, foot ulcer to bone	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
15VB680695	C	*Pantoea agglomerans*	Human, 81 years old, arm wound, Hemochromatosis	St. Boniface General Hospital, Winnipeg, MB, Canada	MT

(Continued)
Table 1. (Continued)

Strain	E/C	Probable species	Host/Locale	Source	Initial ID method
16BD751234	C	*Pantoea allii*	Human, 56 years old, maxillary sinus, Chronic sinusitis	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
16BF887461	C	*Pantoea* sp.	Human, 1 year old, blood culture	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
16DB688514	C	*Pantoea agglomerans*	Human, 47 years old, ortho knee, infected	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
16GB300243	C	*Pantoea septica*	Human, 80 years old, penis	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
16GB303624	C	*Pantoea septica*	Human, 80 years old, midstream urine	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
16GB504195	C	*Pantoea septica*	Human, 70 years old, catheter urine	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
161E448486	C	*Pantoea septica*	Human, 43 years old, incision wound, Hysterectomy	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
16MB259464	C	*Pantoea septica*	Human, 35 years old, nostril wound	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
16MB264552	C	*Pantoea agglomerans*	Human, 37 years old, wound—face sore	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
17BE3618	C	*Pantoea septica*	Human, 71 years old, endotrach. secretions, Respiratory failure	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
17BG299761-2	C	*Pantoea agglomerans*	Human, 74 years old, fistula, End-stage renal disease	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
17DB268518	C	*Pantoea agglomerans*	Human, 61 years old, toe wound	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
17DB651035	C	*Pantoea* sp.	Human, 62 years old, endotrach secretions	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
17IE403177	C	*Pantoea* sp.	Human, 51 years old, midstream urine, Urinary tract infection	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
17IE565985	C	*Pantoea septica*	Human, 34 years old, elbow	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
17IE656463	C	*Pantoea septica*	Human, 1 year old, eye, Conjunctivitis	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
17IE68873	C	*Pantoea septica*	Human, 9 years old, abdominal wall	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
17MB171522-1	C	*Pantoea agglomerans*	Human, 51 years old, right foot wound	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
17MB171522-2	C	*Erwinia gerundensis*	Human, 51 years old, right foot wound	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
17VB530109	C	*Pantoea septica*	Human, 74 years old, catheter urine	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
17VB566491	C	*Pantoea agglomerans*	Human, 66 years old, leg wound	St. Boniface General Hospital, Winnipeg, MB, Canada	MT
20S	E	*Pantoea agglomerans*	bumblebee	Regina, SK	P
22	E	*Pantoea agglomerans*	thistle	Regina, SK	P
23	E	*Pantoea agglomerans*	soil	Regina, SK	P
B011499	C	*Klebsiella*	Human female, 96 years old, urine indwelling catheter, Cloudy urine	Roy Romanow Provincial Lab, Regina, SK	MS+16S+BC
B012497	C	unclassified Enterobacteriaceae	Human female, 57 years old, urine midstream	Roy Romanow Provincial Lab, Regina, SK	MS+16S+BC
B23I	E	*Pantoea agglomerans*	soil	Regina, SK	P
B6I	E	*Acinetobacter*	algae from rock	Regina, SK	P
FB1	E	*Pantoea agglomerans*	flea beetle	Regina, SK	P

(Continued)
along with representative genera of the Enterobacteriales. The majority of clades corresponding to individual Pantoea species groups were largely consistent between the two trees, and supported by strong bootstrap values, although the relative positions of some clades differed between the two trees (Fig 1). For example, the *P. agglomerans* group forms a sister group to *P. eucalypti* in the MLSA tree with *P. vagans* forming the basal group whereas in the cpn60 tree *P. vagans* is a sister group to *P. eucalypti* with *P. agglomerans* forming the basal group (Fig 1). There were similar incongruencies noted for the positions of the majority of Pantoea clades (Fig 1); however, in all these cases, taxa of the same species always formed monophyletic groups, but their recent common ancestor with other species varied.

One quarter of clinical strains labeled *Pantoea* are misidentified

The nucleotide sequence of the *cpn60* gene from 64 bacterial isolates that had been received as *Pantoea* were added to the previously established *cpn60* tree shown in Fig 1. Of these candidate *Pantoea* isolates, 54 were obtained from patients while 10 were collected from the environment (Table 1). Of the 54 clinical isolates, 47 were initially identified by MALDI-TOF, 4 were initially identified by a combination of VITEK 2 and 16S rRNA gene, 2 were initially identified via MicroScan combined with 16S rRNA gene and biochemical typing and a single isolate was initially identified using VITEK 2 ID cards. The 10 environmental isolates were initially identified visually by pigmentation. Based on the *cpn60* phylogeny, 47 of the 64 isolates were confirmed to belong to the genus *Pantoea* (Fig 2, Table 1). These included 17 *P. agglomerans*, 1 *P. allii*, 1 *P. dispersa*, 1 *P. eucalypti*, 19 *P. septica*, 2 strains of the proposed species *P. latae* [34], and 6 *Pantoea* sp. with 3 found in the *P. brenneri/P. conspicua* lineage and 3 found in the *P. septica/P. latae* lineage possibly representing new species (Fig 2). Of the 17 *P. agglomerans* strains, 10 were clinical and were associated with sepsis, wound infection, and esophageal tracheal combitube contamination, while the other seven were isolated from flea beetles and various plant sources (Table 1). All of the other strains in the other species groups of *Pantoea* were

Table 1. (Continued)

Strain					
FB2 E	Pantoea agglomerans	flea beetle	Regina, SK	P	
FB4 E	Paenibacillus	flea beetle	Regina, SK	P	
FB6 E	Pantoea agglomerans	flea beetle	Regina, SK	P	
G4061350 C	Klebsiella	Human—urine	Regina General Hospital, Regina, SK	V	
ICMP12202 E	Kosakonia	Muskmelon (Cucumis melo L.)	ICMP, New Zealand	V+16S	
TX2 C	Enterobacter	Human—sputum (cystic fibrosis)	Texas Children’s Hospital, Houston, Texas, USA	V+16S	
TX7 C	Pantoea latae	Human—blood	Texas Children’s Hospital, Houston, Texas, USA	V+16S	
TX9 C	Pantoea sp.	Human—foot	Texas Children’s Hospital, Houston, Texas, USA	V+16S	
TX11 C	Pantoea latae	Human—sputum	Texas Children’s Hospital, Houston, Texas, USA	V+16S	

a E = environmental; C = clinical.
b Identification based on consensus of *cpn60* phylogeny, *cpnDB* best hit, and 16S rRNA RDP Classifier output.
c ETC = Esophageal Tracheal Combitube; MI = Myocardial Infarction; PCI = Percutaneous Coronary Intervention; CHF = Congestive Heart Failure.
d MT = MALDI-TOF; P = Pigmentation; MS = MicroScan; 16S = 16S rRNA gene; BC = Biochemical assays; V = VITEK 2

https://doi.org/10.1371/journal.pone.0224731.t001

Molecular typing of clinical *Pantoea* isolates

PLOS ONE | https://doi.org/10.1371/journal.pone.0224731

November 4, 2019
Molecular typing of clinical Pantoea isolates

clinical in origin. P. septica strains, which accounted for almost half of all Pantoea clinical isolates identified in this study were associated with a variety of medical conditions, including renal failure, febrile neutropenia, leg ulcer infection, foot ulcer infection, and conjunctivitis (Table 1). Strains identified as the proposed species P. latae were obtained from blood and sputum while the single P. dispersa strain was obtained from a contaminated esophageal tracheal combitube in a patient who had suffered cardiac arrest (Table 1). Of the three Pantoea sp. falling in the P. brenneri/P. conspicua lineage, 13BG284532 was obtained from the tracheal secretions of a premature infant while 17DB651035 and 17IE403177 were associated with urinary tract infection and endotracheal secretions (Table 1). The partial cpn60 sequence of 13BG28 4532 was more similar to the cpn60 sequence of the P. conspica type strain than any P. brenneri strain (S2 Table) and therefore it may belong to P. conspica. 17DB651035 and 17IE40 3177 share 99% nucleotide identity with the P. brenneri type strain over a 770 bp region of their 16S rRNA gene, suggesting they likely belong to the P. brenneri species group. There was also some ambiguity in the identity of the other three Pantoea sp. strains, 13DB433109, 16BF 887461, and TX9, which grouped with reference Pantoea strains that have not been assigned to any existing species. Strains 13DB433109 and TX9, isolated from urine and a wound on the foot respectively, both grouped with Pantoea sp. PSNIH6 as part of a sister taxon to P. latae (Table 1, Fig 2). Strain 16BF887461, isolated from the blood of a 1 year old patient, grouped with Pantoea sp. UBA4389 and Pantoea sp. RIT388, forming a sister taxon to the P. septica/P. latae lineage (Table 1, Fig 2). These may represent more divergent P. latae strains or new species. Finally, one strain obtained from the maxillary sinus of a patient with chronic sinusitis (Table 1), forms a sister taxon to P. allii (Fig 2), and shares 99% identity to the P. allii type strain in a 721 bp region of the 16S rRNA gene, indicating that this strain belongs to the P. allii species group.

Of the 17 isolates that were not Pantoea, two were environmental isolates that grouped with the Gram-negative Acinetobacter and the Gram-positive Paenibacillus, and one was a clinical isolate identified as Bacillus by cpn60 (Fig 2, Table 1). The remaining 14 isolates included 13 clinical and 1 environmental isolate, all of which clustered within the Enterobacteriales. The identity of 9 of the 13 clinical strains was established by cpn60 and 16S rRNA gene analysis, as well as phylogenetic grouping (S2 Table). Among these were representatives of Citrobacter, Enterobacter, Erwinia, Klebsiella, Kosakonia and Mixta (Table 1). The identification of clinical Erwinia strains was unexpected, and these grouped within a newly defined species group, Erwinia gerundensis, which in both our MLSA and cpn60 trees was non-monophyletic with the other Erwinia. The 16S rRNA gene of our clinical E. gerundensis strains shared 100% identity with the E. gerundensis type strain 16S rRNA gene over approximately 800 bp. The identities of the other 4 of the 13 clinical strains and the lone remaining environmental isolate, ICMP12202, were ambiguous. Strains 10–854 and ICMP12202 matched different genera depending on whether cpn60 or 16S rRNA gene was used. 10–854 is identified by the RDP database with confidence as Pseudocitrobacter (92%), while cpnDB initially returned Leclercia and Klebsiella as best hits until Pseudocitrobacter representatives were included (S2 Table). ICMP12202, a strain previously identified as Kosakonia [35], and which our cpn60 analysis also confirms to be Kosakonia is identified as a weak Citrobacter (42%) by the RDP based on the 16S rRNA gene (S2 Table). Kosakonia is included in Training Set 16 of the RDP Classifier.
Three strains, B012497, 12BT205805, and 07–703 also had conflicting 16S rRNA gene and cpn60 matches, and were categorized as “unclassified Enterobacteriaceae” by the RDP database. The groupings of these strains in our cpn60 phylogeny were ambiguous, and could not be used to assign identity with any confidence.

Discussion

This study identified clinical and environmental candidate Pantoea isolates to the species-level using cpn60. Our phylogenetic analysis examining the evolutionary history of cpn60 using representatives of each Pantoea species showed that these formed monophyletic groups consistent with those found in the MLSA trees, indicating largely vertical maintenance of the cpn60 locus within species groups. Notably, the relative position of each clade in the cpn60 tree differed from that of the MLSA tree (Fig 1), suggesting that at least for Pantoea, this locus may not accurately reconstruct the evolutionary history of the species groups. Similar results were obtained with previous studies evaluating the leuS gene, which has been suggested to have value as a single gene identification system for Pantoea isolates despite minor differences in species group relationships between MLSA phylogenies compared to leuS [22]. Other studies have also shown that cpn60 effectively identifies clinical isolates of Campylobacter to the species-level, as well as the opportunistically invasive Actinobacterium, Gardnerella vaginalis, which was consistent with the taxonomic classification obtained by whole-genome-based methods [36]. The congruence of our MLSA and cpn60 trees and the robust confidence values (Fig 1) indicates that cpn60 provides adequate phylogenetic information to accurately assign a given Pantoea isolate to a species group, or in the case of ambiguously positioned sequences, assign it to a specific multi-species lineage.

An unexpected result was the identification of two clinical isolates of the recently proposed E. gerundensis, a species group whose type strain was isolated from the leaves of a pear tree [37]. The members of the genus Erwinia have not been documented as opportunistic human pathogens, and when coupled with the non-monophyly of E. gerundensis with the other Erwinia species in either tree (Fig 1), the placement of E. gerundensis within the genus Erwinia remains uncertain. In addition, the cpn60 gene of E. gerundensis is more similar to that of members of Pantoea than it is to other members of Erwinia. This could account for why E. gerundensis appeared within the Pantoea lineage of the candidate isolate-containing cpn60 phylogeny, albeit with low branch support (Fig 2). The reliability of cpn60 for the identification of Erwinia strains should therefore be explored further.

Using cpn60 we determined that of the 64 candidate Pantoea strains (54 clinical, 10 environmental), 47 were confirmed to be Pantoea. Of the 54 clinical strains, 41 were correctly identified, leaving one quarter misidentified. 81% (38/47) of clinical isolates initially identified via MALDI-TOF were correctly identified while 3 of 4 strains initially identified using VITEK combined with 16S rRNA gene typing were correctly identified. The remaining 3 clinical isolates, initially identified with other methodological combinations, were misidentified. Because these strains were classified prior to the description of the proposed Mixta calida, we considered the single M. calida strain found in our study to be correctly identified [38]. Three non-Pantoea strains, 07–703, 12BT205805, and B012497 are sufficiently divergent that they remain
unclassified. Of the clinical strains that were confirmed to be *Pantoea*, the vast majority belonged to *P. agglomerans* (10 strains) and *P. septica* (19 strains). *P. agglomerans* has been previously identified as a human pathogen [6,39,40]; however, it has been suggested that *P. agglomerans* may be incorrectly considered a human pathogen due to inaccurate identification of clinical isolates and nomenclatural confusion [10]. Strains that were misidentified as *Pantoea* tended to be other closely related enteric species (S2 Table), many of which are genera that contain opportunistic, multi-drug resistant human pathogens [41,42]; however, many clinical strains identified were confirmed to be *P. agglomerans*. The recurrent isolation of strains implicated in sepsis, esophageal tracheal combitube contamination, and various wound infections suggests that *P. agglomerans* is not simply guilty by association (Table 1) [1]. In contrast, *P. septica* appears to be largely clinical in origin [1,43], so it was not surprising that 19 strains were recovered from patients suffering from a variety of conditions, including renal failure, respiratory failure, ulcers, infected wounds, and conjunctivitis (Table 1). Other species of *Pantoea* that were recovered included *P. dispersa* and strains within the *P. brenneri/P. conspicua* lineage, with all three aforementioned species having been noted by the scientific community to be human-associated species groups that have been isolated from the clinical environment previously [1,43–45]. For example, *P. dispersa* has been implicated as the cause of bacteremia and multiple cases of neonatal sepsis while *P. brenneri* and *P. conspicua* have been isolated from human sputum and blood respectively [43,46,47].

A single clinical isolate of *P. allii* was identified in our study, which to our knowledge is the first instance of this plant-pathogenic species being isolated from the clinical environment. *P. allii* has been characterized as a plant pathogen able to cause disease in onion and is most closely related to *P. ananatis* and *P. stewartii* [48]. As *P. allii* is closely related to *P. ananatis*, a species group that has also been isolated from the clinical environment and has been described as an opportunist [5,49,50], it is possible that *P. allii* also carries host-association and virulence factors that may enable opportunism. Similarly, *P. eucalypti* has been isolated predominantly from diseased plants [4] and is generally considered a plant-associated species, yet our study has identified one clinical isolate of *P. eucalypti*, marking the third clinical strain of *P. eucalypti* that we have reported [1]. While the isolation of *P. allii* from the clinical environment has been the exception rather than the rule, species like *P. eucalypti* are becoming more frequently identified among clinical specimens. Similarly, we identified two clinical strains of the proposed species, *P. latae*, the type strain of which had been isolated from the rhizosphere of cycad plants and forms a sister group to the *P. septica* lineage [34]. Both of these clinical strains fall, with confidence, within the *P. latae* species group (Fig 2). Although *P. latae* has previously only been isolated from plants, the identification of clinical isolates in our study is not necessarily surprising given that *P. septica* is so closely related to *P. latae* (Fig 1). It is possible that some of the factors responsible for the ability of *P. septica* to persist in the clinical environment are shared with *P. latae*. This could also explain the clinical origin of 13DB433109, 16BF887461, and TX9 which grouped with reference *Pantoea* strains related to the *P. septica/P. latae* lineage that have yet to be assigned to a species (Fig 2).

There is mounting evidence that clinical specimens of *Pantoea* are not simply misidentifications caused by incomplete MALDI-TOF spectral databases; rather, it is possible that the genetic factors used by *Pantoea* strains for environmental persistence and for association with plants, insects and other hosts are being co-opted and used for establishing opportunistic human infections [51,52]. For example, in the closely related clinically-isolated species *M. calida*, a plant type III secretion system was identified suggesting that some of these strains may have other primary hosts [53]. Although there is little information on the genetic determinants that may be used by *Pantoea* strains for opportunistic association with humans, some factors have been identified that may play a role in infection. Many strains secrete a diversity
of natural products, some having antimicrobial activity against clinically relevant pathogens [54,55], while others are biosurfactants that exhibit cytotoxicity toward animal cells [56]. It has recently been reported that *P. septica* and the *P. ananatis*/*P. stewartii* lineage have horizontally acquired the biosynthetic gene cluster responsible for production of the iron-gathering siderophore, aerobactin, which is absent in other *Pantoea* species [57]. Aerobactin is a known virulence factor and has been demonstrated to be essential for the virulence of hypervirulent, *Klebsiella pneumoniae* [58,59]. While these genetic factors may have evolved to exploit very specific niches, they may provide a competitive edge in other environments as well, which may include the human host environment.

Although we were able to successfully identify the isolates in our study to the species level using *cpn60*, there are several limitations to single gene identification methods including limited phylogenetic signal, and misleading evolutionary histories due to horizontal transfer events. Using multiple gene or whole genome-based identification methods would likely yield more accurate and precise results; however, this requires additional time and resources with currently available technologies. These constraints, particularly in the clinical setting, are easily overcome by MALDI-TOF, since it is relatively inexpensive, fast and accurate. Still, our work has demonstrated that *Pantoea* isolates continue to be misidentified by MALDI-TOF, although this may continue to improve as MALDI-TOF spectra for *Pantoea* are expanded with additional representatives of the species groups and their close relatives. This also raises questions about the frequency of isolates that are *Pantoea*, but are being incorrectly identified as other genera. Our work has shown that *P. septica* and *P. agglomerans* continue to account for a large portion of clinical *Pantoea* isolations from urinary tract infections, wound infections, conjunctivitis, sepsis, renal failure, sinusitis, ulcers, and febrile neutropenia. Furthermore, our work shows that species of *Pantoea* considered primarily plant pathogens can be isolated from humans, although their specific involvement in disease establishment and pathology still requires further investigation.

Supporting information

S1 Dataset. Nucleotide sequences of concatenated MLSA genes in FASTA format. (TXT)

S2 Dataset. Nucleotide sequences of *cpn60* genes in FASTA format. (TXT)

S1 Table. Accession numbers of reference strains used for phylogenetic and cpnDB analyses. (XLSX)

S2 Table. Strain identification based on *cpn60* and 16S rRNA typing. (XLSX)

Acknowledgments

We gratefully acknowledge the very kind contributions of Jodi Guenther, Christine Turenne and the members of the Microbiology Laboratory at St. Boniface Hospital, Carol Barth at Regina General Hospital, Amanda Lang at the Roy Romanow Provincial Laboratory, and Paul Levett at the British Columbia Center for Disease Control.

Author Contributions

Conceptualization: John Stavrinides.
Formal analysis: Craig D. Soutar, John Stavrinides.
Funding acquisition: John Stavrinides.
Investigation: Craig D. Soutar, John Stavrinides.
Methodology: Craig D. Soutar, John Stavrinides.
Project administration: John Stavrinides.
Resources: John Stavrinides.
Supervision: John Stavrinides.
Validation: Craig D. Soutar, John Stavrinides.
Visualization: John Stavrinides.
Writing – original draft: Craig D. Soutar, John Stavrinides.
Writing – review & editing: Craig D. Soutar, John Stavrinides.

References
1. Nadarashah G, Stavrinides J. Quantitative evaluation of the host-colonizing capabilities of the enteric bacterium Pantoea using plant and insect hosts. Microbiol (United Kingdom). 2014; 160: 602–615. https://doi.org/10.1099/mic.0.073452–0
2. Walterson AM, Stavrinides J. Pantoea: Insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol Rev. 2015; 39: 968–984. https://doi.org/10.1093/femsre/fuv027 PMID: 26109597
3. Roper MC. Pantoea stewartii subsp. stewartii: Lessons learned from a xylem-dwelling pathogen of sweet corn. Mol Plant Pathol. 2011; 12: 629–637. https://doi.org/10.1111/j.1364-3703.2010.00698.x PMID: 21726365
4. Brady CL, Venter SN, Cleenwerck I, Engelbeen K, Vancanneyt M, Swings J, et al. Pantoea vagans sp. nov., Pantoea eucalyti sp. nov., Pantoea deleyi sp. nov. and Pantoea anthophila sp. nov. Int J Syst Evol Microbiol. 2009; 59: 2339–2345. https://doi.org/10.1099/ijs.0.009241-0 PMID: 19620357
5. Coutinho TA, Venter SN. Pantoea ananatis: An unconventional plant pathogen. Mol Plant Pathol. 2009; 10: 325–335. https://doi.org/10.1111/j.1364-3703.2009.00542.x PMID: 1940836
6. Cruz AT, Cazacu AC, Allen CH. Pantoea agglomerans, a plant pathogen causing human disease. J Clin Microbiol. 2007; 45: 1989–1992. https://doi.org/10.1128/JCM.00332-07 PMID: 17442803
7. Dutkiewicz J, Mackiewicz B, Lemieszek MK, Golec M, Milanowski J. Pantoea agglomerans: A mysterious bacterium of evil and good. Part III. Delterious effects: Infections of humans, animals and plants. Ann Agric Environ Med. Institute of Rural Health; 2016; 23: 197–205. https://doi.org/10.5604/12321966.1203978 PMID: 27294620
8. Van Rostenbergh H, Noraida R, Wan Pauzi WI, Habsah H, Zeehaida M, Rosilza AR, et al. The clinical picture of neonatal infection with Pantoea species. Jpn J Infect Dis. 2006; 59: 120–121. PMID: 16632913
9. Bergman KA, Arends JP, Schölvinck EH. Pantoea agglomerans septicemia in three newborn infants. Pediatr Infect Dis J. 2007; 26: 453–454. https://doi.org/10.1097/01.inf.0000261200.83869.92 PMID: 17468662
10. Rezzonico F, Smits THM, Duffy B. Misidentification slanders Pantoea agglomerans as a serial killer. J Hosp Infect. 2012; 81: 137–139. https://doi.org/10.1016/j.jhin.2012.02.013 PMID: 22552185
11. Rezzonico F, Smits TH, Montesinos E, Frey JE, Duffy B. Genotypic comparison of Pantoea agglomerans plant and clinical strains. BMC Microbiol. 2009; 9. https://doi.org/10.1186/1471-2180-9-204 PMID: 19772624
12. Rezzonico F, Stockwell VO, Tonolla M, Duffy B, Smits THM. Pantoea clinical isolates cannot be accurately assigned to species based on metabolic profiling. Transp Infec Dis. 2012; 14: 220–221. https://doi.org/10.1111/j.1399-3082.2011.00684.x PMID: 22093950
13. Patel R. MALDI-TOF MS for the diagnosis of infectious diseases. Clin Chem. Clinical Chemistry; 2015; 61: 100–11. https://doi.org/10.1373/clinchem.2014.221770 PMID: 25278500
14. Seng P, Rolain J-M, Fournier PE, La Scola B, Drancourt M, Raoult D. MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiol. Future Medicine Ltd London, UK; 2010; 5: 1733–1754. https://doi.org/10.2217/fmb.10.127 PMID: 21133692

15. van Veen SQ, Claas ECJ, Kuiper EJ. High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol. American Society for Microbiology (ASM); 2010; 48: 900–7. https://doi.org/10.1128/JCM.02071-09 PMID: 20053859

16. Singhal N, Kumar M, Kanaujia PK, Virdi JS. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol. Frontiers Media SA; 2015; 6: 791. https://doi.org/10.3389/fmicb.2015.00791 PMID: 26300860

17. Croxatto A, Prod'hom G, Greub G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev. Narnia; 2012; 36: 380–407. https://doi.org/10.1111/j.1574-6976.2011.00298.x PMID: 22092265

18. Patel JB. 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Mol Diagn. 2001; 6: 313–321. https://doi.org/10.1054/modi.2001.29158 PMID: 11774196

19. Mignard S, Flandrois JP. 16S rRNA sequencing in routine bacterial identification: A 30-month experiment. J Microbiol Methods. 2006; 67: 574–581. https://doi.org/10.1016/j.mimet.2006.05.009 PMID: 16859787

20. Fox GE, Wisotzkey JD, Jurtshuk P. How Close Is Close: 16S rRNA Sequence Identity May Not Be Sufficient To Guarantee Species Identity. Int J Syst Bacteriol. 1992; 42: 166–170. https://doi.org/10.1099/00207713-42-1-166 PMID: 1371061

21. Brady C, Cleenwerck I, Venter S, Vancanneyt M, Swings J, Coutinho T. Phylogeny and identification of Pantoea species associated with plants, humans and the natural environment based on multilocus sequence analysis (MLSA). Syst Appl Microbiol. 2008; 31: 447–460. https://doi.org/10.1016/j.syapm.2008.09.004 PMID: 19008066

22. Tambong JT, Xu R, Kaneza CA, Nshogozahizzi JC. An in-depth analysis of a multilocus phylogeny identifies leuS as a reliable phylogenetic marker for the genus Pantoea. Evol Bioinform. 2014; 10: 115–125. https://doi.org/10.4137/EBo.s15738 PMID: 25125967

23. Brousseau R, Hill JE, Prefontaine G, Goh SH, Harel J, Hemmingsen SM. Streptococcus suis Serotypes Characterized by Analysis of Chaperonin 60 Gene Sequences. Appl Environ Microbiol. 2001; 67: 4828–4833. https://doi.org/10.1128/AEM.67.10.4828-4833.2001 PMID: 11571190

24. Marston EL, Sumner JW, Regnery RL. Evaluation of intraspecies genetic variation within the 60 kDa heat-shock protein gene (groEL) of Bartonella species. IntJ SystBacteriol. 1999; 49 Pt 3: 1015–1023. https://doi.org/10.1099/00207713-49-3-1015 PMID: 10425758

25. Hemmingsen SM, Woolford C, van der Vies SM, Tilly K, Dennis DT, Georgopoulos CP, et al. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature. 1988; 333: 330–334. https://doi.org/10.1038/333330a0 PMID: 2897629

26. Goh SH, Potter S, Wood JO, Hemmingsen SM, Reynolds RP, Chow AW. HSP60 gene sequences as universal targets for microbial species identification: Studies with coagulase-negative staphylococci. J Clin Microbiol. 1996; 34: 818–823. PMID: 8815090

27. Hill JE, Penny SL, Crowell KG, Goh SH, Hemmingsen SM. cpnDB: A chaperonin sequence database. Genome Res. 2004; 14: 1669–1675. https://doi.org/10.1101/gr.2649204 PMID: 15289485

28. Funke G, Monnet D, deBernardis C, von Graevenitz A, Freney J. Evaluation of the VITEK 2 system for rapid identification of medically relevant gram-negative rods. J Clin Microbiol. American Society for Microbiology (ASM); 1998; 36: 1948–52. Available: http://www.ncbi.nlm.nih.gov/pmcid:9650942 PMID: 9650942

29. Mcgregor A, Schio F, Beaton S, Boulton V, Perman M, Gilbert G. The MicroScan WalkAway diagnostic system—an evaluation. Pathology. 1995; 27: 172–6. Available: http://www.ncbi.nlm.nih.gov/pubmed:7567148 https://doi.org/10.1080/00313029500169822 PMID: 7567148

30. Bushnell, Brian. BBMap: A Fast, Accurate, Splice-Aware Aligner. Conference: 9th Annual Genomics of Energy & Environment Meeting. 2014. doi:10.1186/1471-2105-13-238

31. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007; 73: 5261–5267. https://doi.org/10.1128/AEM.00062-07 PMID: 17586664

32. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011; 7. https://doi.org/10.1038/msb.2011.75 PMID: 21988835
33. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol Biol Evol. 2016; 33: 1870–1874. https://doi.org/10.1093/molbev/msw504 PMID: 27004904

34. Lata P, Govindarajan SS, Qi F, Li J-L, Maurya SK, Sahoo MK, et al. De Novo Whole-Genome Sequence of Pantoea latae Strain AS1, isolated from Zania floridana Rhizosphere in Central Florida, USA. Genome Announc. 2017; 5: e00640–17. https://doi.org/10.1128/genomeA.00640-17 PMID: 28705985

35. Brady C, Cleenwerck I, Venter S, Coutinho TA, De Vos P. Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA). Syst Appl Microbiol. 2013; 36: 309–319. https://doi.org/10.1016/j.syapm.2013.03.005 PMID: 23632228

36. Paramel Jayaprakash T, Schellenberg JJ, Hill JE. Resolution and characterization of distinct cpn60-based subgroups of Gardnerella vaginalis in the vaginal microbiota. PLoS One. 2012; 7: e43009. https://doi.org/10.1371/journal.pone.0043009 PMID: 22900080

37. Rezzonico F, Smits THM, Born Y, Blom J, Frey JE, Goesmann A, et al. Erwinia gundens

38. Palmer M, Steenkamp ET, Coetzee MPA, Avontuur JR, Chan W-Y, van Zyl E, et al. Mixta gen. nov., a new genus in the Erwiniaeae. Int J Syst Evol Microbiol. 2018; 68: 1396–1407. https://doi.org/10.1099/ijsem.0.025540 PMID: 29485394

39. Liberto MC, Madera G, Puccio R, Lo Russo T, Colosimo E, Focà E. Six cases of sepsis caused by Pantoea agglomerans in a teaching hospital. New Microbiol. 2009; 32: 119–123. PMID: 19382678

40. Venincas VD, Kuriyan AE, Flynn HW, Sridhar J, Miller D. Endophthalmitis caused by Pantoea agglomerans: Clinical features, antibiotic sensitivities, and outcomes. Clin Ophthalmol. 2015; 9: 1203–1207. https://doi.org/10.2147/OPHT.S80748 PMID: 26185411

41. Delgado-Valverde M, Sojo-Dorado J, Pascual A, Rodríguez-Bano J. Clinical management of infections caused by multidrug-resistant Enterobacteriaceae. Ther Adv Infect Dis. 2013; 1: 49–69. https://doi.org/10.1177/2049936113476284 PMID: 25165944

42. Bassetti M, Peghin M, Pecori D. The management of multidrug-resistant Enterobacteriaceae. Curr Opin Infect Dis. 2016; 29: 583–594. https://doi.org/10.1097/QCO.0000000000000314 PMID: 27584587

43. Brady CL, Cleenwerck I, Venter SN, Engelbeen K, De Vos P, Gitaitis RD, et al. Pantoea allii sp. nov., a cosmopolitan epiphyte originally isolated from pome fruit trees. Int J Syst Evol Microbiol. 2016; 66: 1583–1592. https://doi.org/10.1099/ijsem.0.009920 PMID: 26813696

44. Hagiya H, Otsuka F. Pantoea dispersa bacteremia caused by central line-associated bloodstream infection. Brazilian J Infect Dis. The Brazilian Journal of Infectious Diseases and Contexto Publishing; 2014; 18: 696–697. https://doi.org/10.1016/j.bijd.2014.06.006 PMID: 25179511

45. Mehvar V, Yadav D, Sanghvi J, Gupta N, Singh K. Pantoea dispersa: An unusual cause of neonatal sepsis. Brazilian J Infect Dis. Elsevier; 2013; 17: 726–728. https://doi.org/10.1016/j.bjid.2013.05.013 PMID: 24120830

46. Brady CL, Gosczynska T, Venter SN, Cleenwerck I, de Vos P, Gitaitis RD, et al. Pantoea allii sp. nov., isolated from onion plants and seed. Int J Syst Evol Microbiol. 2011; 61: 932–937. https://doi.org/10.1099/ijs.0.022921-0 PMID: 22987764

47. De Baere T, Verhelst R, Labit C, Verschraegen G, Wauters G, Claey s G, et al. Bacteremic infection with Pantoea ananatis. J Clin Microbiol. 2004; 42: 4393–4395. https://doi.org/10.1128/JCM.42.9.4393-4395.2004 PMID: 15365053

48. De Maayer P, Chan WY, Rezzonico F, Buhlmann A, Venter SN, Blom J, et al. Complete genome sequence of clinical isolate Pantoea ananatis LMG 5342. J Bacteriol. 2012; 194: 1615–1616. https://doi.org/10.1128/JB.06715-11 PMID: 22374951

49. Kirzinger MWB, Nadarasa G, Stavarvides J. Insights into cross-kingdom plant pathogenic bacteria. Genes (Basel). Molecular Diversity Preservation International; 2011; 2: 980–997. https://doi.org/10.3390/genes2040980 PMID: 24710301
52. Nadarasah G, Stavrinides J. Insects as alternative hosts for phytopathogenic bacteria. FEMS Microbiol Rev. 2011; 35: 555–575. https://doi.org/10.1111/j.1574-6976.2011.00264.x PMID: 21251027

53. Kirzinger MWB, Butz CJ, Stavrinides J. Inheritance of Pantoea type III secretion systems through both vertical and horizontal transfer. Mol Genet Genomics. 2015; 290: 2075–2088. https://doi.org/10.1007/s00438-015-1062-2 PMID: 25982743

54. Walterson AM, Smith DDN, Stavrinides J. Identification of a Pantoea biosynthetic cluster that directs the synthesis of an antimicrobial natural product. PLoS One. 2014; 9: e96208. https://doi.org/10.1371/journal.pone.0096208 PMID: 24796857

55. Lim JA, Lee DH, Kim BY, Heu S. Draft genome sequence of Pantoea agglomerans R190, a producer of antibiotics against phytopathogens and foodborne pathogens. J Biotechnol. 2014; 188: 7–8. https://doi.org/10.1016/j.jbiotec.2014.07.440 PMID: 25087741

56. Smith DDN, Nickzad A, Déziel E, Stavrinides J. A novel glycolipid biosurfactant confers grazing resistance upon Pantoea ananatis BRT175 against the social amoeba Dictyostelium discoideum. mSphere. 2016; 1: e00075–15. https://doi.org/10.1128/mSphere.00075-15 PMID: 27303689

57. Soutar CD, Stavrinides J. The evolution of three siderophore biosynthetic clusters in environmental and host-associated strains of Pantoea. Mol Genet Genomics. 2018; 293: 1453–1467. https://doi.org/10.1007/s00438-018-1477-7 PMID: 30027301

58. Russo TA, Olson R, MacDonald U, Beanen J, Davidson A. Aerobactin, but not yersiniabactin, salmochelin, or enterobactin, enables the growth/survival of hypervirulent (hypermucoviscous) Klebsiella pneumoniae ex vivo and in vivo. Infect Immun. 2015; 83: 3325–3333. https://doi.org/10.1128/IAI.00430-15 PMID: 26056379

59. Russo TA, Olson R, MacDonald U, Metzger D, Maltese LM, Drake EJ, et al. Aerobactin mediates virulence and accounts for increased siderophore production under iron-limiting conditions by hypervirulent (hypermucoviscous) Klebsiella pneumoniae. Infect Immun. 2014; 82: 2356–2367. https://doi.org/10.1128/IAI.01667-13 PMID: 24664504