Association between plasma adipsin level and mild cognitive impairment in Chinese patients with type 2 diabetes: a cross-sectional study

Dan Guo 1,2,†, Yang Yuan 1,2,†, Rong Huang 1, Sai Tian 1, Jiaqi Wang 1, Hongyan Lin 1, Ke An 1, Jin Han 1 and Shaohua Wang 1*

Abstract

Background: The adipokine adipsin contributes to insulin resistance (IR), inflammation, and obesity, which are all regarded as high-risk factors for mild cognitive impairment (MCI) in patients with type 2 diabetes mellitus. This research aimed to uncover the role of adipsin in Chinese type 2 diabetes mellitus (T2DM) population with early cognitive dysfunction and determine whether adipsin contributes to diabetic MCI caused by IR.

Methods: In our study, 126 patients with T2DM were enrolled. The Montreal Cognitive Assessment (MoCA) was used to assess cognitive impairment. Demographic data and neuropsychological test results were evaluated. Plasma adipsin level was measured by enzyme-linked immunosorbent assay.

Results: The MCI group (n = 57) presented higher plasma adipsin levels compared with the healthy controls (p = 0.018). After adjustment for educational attainment, and age, negative correlations were found between plasma adipsin levels and MoCA, Mini Mental State Exam, and Verbal Fluency Test scores (r = −0.640, p < 0.001; r = −0.612, p < 0.001; r = −0.288, p = 0.035; respectively). Correlation analysis demonstrated that adipsin levels were significantly positively correlated with fasting C-peptide; homeostasis model of assessment for insulin resistance (HOMA-IR) (r = 0.368, p < 0.001; r = 0.494, p < 0.001; respectively). Multivariable regression analysis further indicated that high plasma adipsin level was a significant independent determinant of MCI in the Chinese population with T2DM (p = 0.017).

Conclusions: Elevated plasma adipsin level was associated with MCI in Chinese T2DM patients. Further large-scale studies should be designed to determine whether adipsin is linked to IR-associated susceptibility to early cognitive decline in T2DM patients.

Keywords: Adipsin, Homeostasis model of assessment for insulin resistance, Mild cognitive impairment, Type 2 diabetes mellitus

Background

Given its prevalence, type 2 diabetes mellitus (T2DM) is expected to affect 552 million people worldwide by 2030 according to the International Diabetes Federation (IDF) [1]. With its growing chronic complications, diabetes-induced cognitive dysfunction has received considerable attention from researches [2]. Previous researches demonstrated that patients with T2DM have an increased incidence of dementia and mild cognitive impairment (MCI), a transition phase between dementia and regular aging [3, 4]. T2DM results in a 60% increase in Alzheimer’s disease (AD) risk [5]. The exact mechanisms of diabetes-induced cognitive dysfunction are multifactorial. Insulin resistance (IR), dyslipidemia, neuroinflammation, hyperphosphorylation of TAU and abnormal accumulation of amyloid-beta (Aβ) peptide were...
reported [6, 7]. Nevertheless, the potential etiology and pathological mechanisms remain unclear.

IR is one of the principal distinctive features of T2DM, which exists throughout the entire diabetes course [8]. IR itself also leads to the production of Aβ and hyperphosphorylation of tau protein [9]. Prior studies suggested that systemic IR actsuates brain IR [9], and leads to the reduction of cerebral glucose metabolic rate and worsened memory [10]. Indeed, accumulated evidence has suggested that AD is usually accompanied by profound IR; moreover, IR abnormalities also participate in the occurrence of T2DM-related early cognitive dysfunction and contribute to the progression of MCI to AD [11]. However, the precise mechanisms about diabetic MCI caused by IR remain uncertain.

Partial adipocytokines were thought to be involved in diabetic-related MCI. Pathological mechanisms such as cerebral IR, hyperinsulinemia, and inflammation have been discussed. Certain adipocytokines including leptin and adiponectin were reported to mediate early cognitive impairment caused by IR [12, 13]. Leptin-deficient mice with T2DM [14] show impaired cerebral insulin signaling, thereby leading to the activation of glycogen synthase kinase 3β (GSK3β), the production of Aβ, the hyperphosphorylation of tau protein, and subsequent cognitive impairment. The adipokine adiponectin can ameliorate insulin sensitivity by activating protein kinase (AMPK) phosphorylation, resulting in neuroinflammation, neurodegeneration, Aβ production, and tau protein hyperphosphorylation. Thus, IR plays an important role in T2DM, adipokine levels, and cognitive impairment. The adipokine adipin (complement factor D), is a serine protease that was first found in 3 T3 adipocytes [15]. Patients suffering from DM have high serum and cerebrospinal fluid (CSF) levels of adipin [16]. In mice, Lo et al. found that adipin, together with its downstream receptor of C3a, C3aR1, acts on islets and finally stimulates insulin secretion [17]. This finding provided a link between IR and adipin. The association between adipin and IR has been confirmed in some investigations. Many human clinical studies presented a positive correlation between adipin and IR, although contradictory clinical reports were found by Wang et al. [18]. Moreover, adipin has also been reported to modulate lipid metabolism [19], ischemia-reperfusion [20], and insulin secretion [17], which are all implicated as risk factors of cognitive dysfunction. Thus, adipin, probably plays a previously unrecognized role in T2DM-related cognitive dysfunction. Therefore, we hypothesized that adipin might regulate IR–related susceptibility to early cognitive dysfunction in T2DM patients.

The present cross-sectional study aimed to evaluate the latent correlation between plasma adipin levels and diabetes-related cognitive impairment. Further analysis may reveal the potential mechanisms of IR–related susceptibility to early cognitive impairment in T2DM patients.

Methods

Clinical subjects and study design

The present cross-sectional research was designed and implemented in T2DM patients from 2013 to 2017. The Endocrinology Department of the Affiliated Zhongda Hospital of Southeast University provided recruiters. Altogether, 126 right-handed, hospitalized T2DM individuals were recruited (71 men and 55 women, aged 40–75 years). All subjects had at least three years of diabetes duration and met the diagnostic criteria for T2DM based on the World Health Organization in 1999 [21]. Among these individuals, 57 patients (28 females, 29 males, mean ± SE age = 59.98 ± 0.919 years) were diagnosed as MCI and 69 patients (27 females, 42 males, mean ± SE age = 58.28 ± 1.035 years) were diabetic patients with healthy cognition. The recruited individuals with MCI met the 2006 diagnostic criteria: 1) Cognitive complaints, come from patients themselves or family members; 2) Clinical Dementia Rating (CDR) score ≤ 0.5; 3) Cognitive dysfunction certified by professional clinicians without dementia and major repercussions in daily life [22]. Exclusion criteria include: 1) diabetic ketoacidosis, severe hypoglycemia coma or other acute diabetic complication, 2) acute cardiovascular and cerebrovascular events, known history stroke within one year (Hachinski score ≥ 4), epilepsy, head injury, moderate depression or other psychiatric illness; 3) Severe systemic disease (i.e., thyroid disease, serious infection and anemia); 4) Severe visual or hearing loss.

Clinical data collection

Demographic data were gathered including age, sex, education levels, height, hip circumference, waist circumference, weight, and blood pressure. Physical data were measured by a professional research staff based on a standard and uniform method. The body mass index (BMI) = body weight in kilograms / the square of the height in meters (kg/m²). Systolic blood pressure ≥ 140 mmHg or diastolic blood pressure ≥ 90 mmHg would be defined as hypertension, according to the 2010 Chinese Hypertension Management Guidelines [23]. Medical histories such as diabetes duration (calculated from the time when diabetes was diagnosed by a professional doctor), insulin use, lifestyle factors (including smoking and drinking) were obtained through self-report or medical records. Fatty liver was detected by the Color Doppler ultrasound. The blood samples were assayed for fasting and 2-h postprandial glucose (FBG and 2hPG), glycosylated hemoglobin (HbA1c), total cholesterol (TC), fasting C-peptide (FCP), triglyceride (TG), high-density and low-density lipoprotein cholesterol (HDL-C, LDL-C),
apo lipoprotein A1 (ApoA1) and apolipoprotein B (ApoB). The homeostasis model of assessment for insulin resistance (HOMA-IR) was calculated by the formula HOMA-IR = fasting glucose (mmol/L) x fasting peptide (nmol/L) / 22.5 [24]. All the samples were measured by the Center of the Zhongda Hospital in accordance with the internal and external quality management procedures implemented by the Chinese Laboratory of Quality Control.

Neuropsychological test data
An experienced neuropsychiatry specialist conducted the neuropsychological test by using a single-blind method. The present research employed a neuropsychological battery, including Montreal Cognitive Assessment (MoCA), Verbal Fluency Test (VFT), Mini Mental State Exam (MMSE), Clock Drawing Test (CDT), Digit Span Test (DST), Auditory Verbal Learning Test (AVLT), Stroop color word test (SCWT), Trail Making Test-A and B (TMT-A and TMT-B). Overall cognitive function, executive abilities, calculation ability, attention and information processing speed were covered.

Measurement of plasma adipsin level
After overnight fasting, 2 ml blood samples were drawn from the anterior elbow vein between 6 and 7 A.M into tubes anticoagulated by heparin and then centrifuged at 100xg at least 15 min. After that, the samples were separated and refrigerated at −80°C before measured. The plasma levels of adipsin were detected by the enzyme-linked immunosorbent assay kits [USCN, Wuhan, China] based on the manufacturer’s instructions. The Intra-Assay CV was <10% and the Inter-Assay CV <12%. The minimum detectable value of this kit was 0.257 ng/ml. Each sample was measured 2 times and then taking the average value. All samples were measured on the same day to minimize test variation.

Statistical analysis
All the data were tested in the form of the means ± standard error (SE), n (%), or the median (interquartile range) according to the characteristics. SPSS version 22.0 was conducted. The Kolmogorov−Smirnov (KS) test was performed to validate the normality of data. Analysis of variance (ANOVA) and Student’s tests were performed for normally distributed variables, otherwise, non-parametric Mann-Whitney U or Kruskal-Wallis tests would be performed. Besides, the Chi-squared analysis (χ^2) was taken to analyze categorical data. The partial correlation analysis was used after adjustment for age and some other confounding factors to determine the correlation of plasma adipsin levels and cognitive performance. The Regression model was conducted to establish a predictive model of MCI. MCI group was recommended with a MoCA score less than 26, patients with education levels < 12 years would have a one-point adjustment. All analyses were bilateral. $P < 0.05$ was considered statistically significant.

Results
Demographic, clinical and neuropsychological characteristics
The demographic, clinical and neuropsychological tests are shown in Table 1. A total of 126 Chinese subjects with T2DM were recruited and further divided into two groups. Among these patients, 57 were diagnosed as MCI and 69 showed healthy cognition.

The two groups well matched in terms of age, sex, educational attainment, smoking, drinking, hypertension, insulin use and duration of diabetes (all $p > 0.05$). No significant differences were discovered in both groups in BMI, weight, WC, HC, WHR, TG, TC, HDL, LDL, ApoA1 and ApoB (all $p > 0.05$). Compared with the normal group, the MCI group exhibited increased plasma FCP, FBG, HOMA-IR and HbA1c levels (all $p < 0.05$). Moreover, increased adipsin levels were found in the MCI group (13.532 ± 0.948 vs. 10.427 ± 0.877, $p < 0.05$). T2DM patients with MCI presented poorer cognitive performance than healthy controls (all $p < 0.05$).

Relationship between plasma adipsin level and cognitive performance
The correlation between the plasma levels of adipsin and cognitive performance were determined by partial correlation analysis for all subjects. After adjusting for age, sex and education levels, the adipsin level was statistically significant negatively correlated with MoCA scores ($r = -0.640$, $p < 0.001$), MMSE scores ($r = -0.612$, $p < 0.001$), SCWT-A Time ($r = 0.290$, $p = 0.034$) and VFT scores ($r = -0.288$, $p = 0.035$) in T2DM patients with cognition dysfunction. However, only the SCWT-A Number ($r = -0.299$, $p = 0.015$) was interrelated in the normal cognitive group (Table 2).

Binary logistic regression analysis for all individuals
We elucidated the major determinants related to MCI prevalence in the enrolled populations. A regression analysis was constructed. All variables from Table 1 were entered into the model. The model was finally developed by a stepwise approach. Adipsin ($\beta = 0.063$, $p = 0.017$) and HbA1c ($\beta = 0.196$, $p = 0.031$) were eventually imported to the model (Table 3), and analysis revealed that high plasma levels of adipsin and HbA1c were the independent risk factors that increased the diagnosis of MCI.

Multivariable regression analysis among patients with cognitive impairment
Simple linear regression models and multivariable linear regression models were constructed to evaluate the
Characteristic	MCI group (n = 57)	Non-MCI group (n = 69)	p-value
Age (years)	59.98 ± 0.919	58.28 ± 1.035	0.229a
Female, n(%)	28 (49.1%)	27 (39.1%)	0.26c
Education Levels (years)	10 (9–12)	11 (9–12)	0.619d
Smoking, n(%)	18 (31.6%)	25 (36.2%)	0.632c
Drinking, n(%)	11 (19.3%)	18 (26.1%)	0.368c
Hypertension, n (%)	36 (63.2%)	39 (56.5%)	0.45c
SBP (mmHg)	134.81 ± 18.55	135.29 ± 15.79	0.875a
DBP (mmHg)	81.30 ± 11.33	80.10 ± 9.76	0.525a
Hypertension duration (years)	5 (0–12)	3 (0–12)	0.440c
Diabetes duration (years)	10.807 ± 0.686	9.529 ± 0.655	0.182a
Insulin use, n(%)	33 (57.9%)	42 (60.9%)	0.735c
metformin, n(%)	34 (59.6%)	39 (56.5%)	0.432
Glucose fluctuation (mmol/L)	6.55 ± 0.38	6.71 ± 0.36	0.766a
HbaA1c (%)	9.72 ± 0.35	8.79 ± 0.25	0.028a
FBG (mmol/L)	8.599 ± 0.34	7.662 ± 0.30	0.041a
@2hPG (mmol/L)	15.15 ± 0.49	14.37 ± 0.48	0.262a
FCP (ug/L)	1.25 (0.63–1.92)	0.779 (0.44–1.4)	0.025b*
HOMA-IR	0.434 (0.227–0.665)	0.251 (0.146–0.472)	0.005b**
BMI (kg/m²)	24.94 ± 0.44	24.73 ± 0.37	0.723a
Weight (kg)	68.58 ± 1.39	69.60 ± 1.49	0.619a
WC (cm)	90.11 ± 1.14	88.38 ± 1.22	0.310a
HC (cm)	95.61 ± 0.78	94.39 ± 7.25	0.307a
WHR	0.942 ± 0.008	0.937 ± 0.008	0.858a
TG (mmol/L)	1.80 ± 0.85	1.73 ± 0.13	0.72a
TC (mmol/L)	4.77 ± 0.14	4.56 ± 0.13	0.297a
HDL (mmol/L)	1.19 ± 0.05	1.17 ± 0.03	0.889a
LDL (mmol/L)	2.97 ± 0.113	2.82 ± 0.097	0.328a
ApoA1(g/L)	1.09 ± 0.035	1.08 ± 0.030	0.759a
ApoB(g/L)	0.84 ± 0.029	0.815 ± 0.022	0.663a
Fatty liver, n(%)	29 (50.9%)	28 (40.6%)	0.248a
Adipsin (μg/ml)	13.532 ± 0.948	10.4274 ± 0.877	0.018a**

Neuropsychological test scores

- MOCA: 23 (20–24) vs. 27 (27–28) < 0.001b***
- MMSE: 26 (23–28) vs. 29 (28–30) < 0.001b***
- CDT: 3 (2–4) vs. 4 (3–4) 0.032b**
- DST: 10.49 ± 0.27 vs. 10.49 ± 0.221 < 0.001b***
- VFT: 14.25 ± 0.421 vs. 16.59 ± 0.425 < 0.001b***
- TMTA: 66 (53–84) vs. 52 (45–57) < 0.001b***
- TMTB: 198.28 ± 11.881 vs. 139.96 ± 5.737 < 0.001b***
- SCWT A(time): 33 (28–38) vs. 28 (24–35) 0.013a**
- SCWT A (number): 50 (50–50) vs. 50 (50–50) 0.03a*
- SCWT B(time): 57 (46–62) vs. 43 (36–49) < 0.001b***
- SCWT B (number): 48 (46–50) vs. 50 (49–50) < 0.001b***
- SCWT C(time): 109 (82–123) vs. 82 (71–89) < 0.001b***
Table 1 Demographic, clinical and cognitive performances of patients with T2DM (Continued)

Characteristic	MCI group (n = 57)	Non-MCI group (n = 69)	p-value
SCWT C (number)	44 (42–47)	48 (46–50)	< 0.001***
AVLT immediate	15.74 ± 0.698	18.93 ± 0.546	< 0.001***
AVLT delayed	5 (3–6)	6 (5–7)	< 0.001***
LMT	6.16 ± 0.558	10.12 ± 0.537	< 0.001***

Significance, *p<0.05; **p < 0.01
Data are presented as n (%), mean ± SE, or median (interquartile range) as appropriate
a Student’s t test for comparison of normally distributed quantitative variables between MCI group and N-MCI group
b Mann-Whitney U test for comparison of asymmetrically distributed quantitative variables between MCI group and N-MCI group
c χ² test for comparison of qualitative variables between MCI group and N-MCI group

Abbreviations: MCI, mild cognitive impairment; SBP, systolic blood pressure; DBP, Diastolic blood pressure; HbA1c, glycosylated hemoglobin; FBG, fasting blood-glucose; 2hPG, 2-h postprandial blood glucose; FCP, fasting C-peptide; HOMA-IR, homeostasis model of assessment for insulin resistance; BMI, body mass index; WC, waist circumference; HC, hip circumference; TG, triglyceride; TC, total cholesterol; HDL, high-density lipoprotein; LDL, low-density lipoprotein; ApoA1, apolipoprotein A1; ApoB, apolipoprotein B; MoCA, Montreal Cognitive Assessment; MMSE, Mini-mental State Examination; CDT, Clock Drawing Test; DST, Digit Span Test; VFT, Verbal Fluency Test; TMT-A, Trail Making Test-A; TMT-B, Trail Making Test-B; SCWT, Stroop Color Word Test; AVLT, Auditory Verbal Learning Test; LMT, Logical Memory Test

Table 2 Correlation analysis of the plasma adipsin level and the neuropsychological test results in different groups

Characteristic	MCI group	Non-MCI group											
MoCA	−0.640	−0.612											
MMSE	−0.390	−0.202											
SCWT-A Time	SCWT-A Number	SCWT-B Time	SCWT-B Number	SCWT-C Time	SCWT-C Number	AVLT immediate recall	AVLT delayed recall	CDT	LMT	DST	VFT	TMTA	TMTB
r	−0.098	0.169	0.156	0.153	0.154	−0.082	−0.077	0.050	−0.218	−0.288	0.062	0.176	
p	< 0.001	< 0.001	0.142	0.069	0.034	0.195	0.128	0.057	0.008	0.112	0.032	0.029	

Correlations of adipsin with clinical variables

Table 3 Assessment results of the risk of having MCI in a binary regression model in patients with T2DM

β	SE	95% CI	p		
adipsin	0.063	0.026	1.012	1.121	0.017
HbA1c	0.196	0.091	1.018	1.454	0.031

Abbreviations: T2DM, type 2 diabetes mellitus; β, regression coefficient; SE, standard error; CI, confidence interval for odds ratio; HbA1c, glycosylated hemoglobin

Discussion

The foremost results of this study were as follows: (1) Compared with the normal controls, individuals with cognitive dysfunction exhibited higher plasma adipsin levels. (2) After controlling for potential confounders such as levels of education, age, and sex, the plasma...
adipsin level was remarkably negatively correlated with MoCA, MMSE, and VFT scores, which represent executive function in the MCI group. (3) Increased plasma adipsin level was a major independent determinant for diabetic MCI. (4) Plasma adipsin level was positively associated with FCP and HOMA-IR in all subjects. In addition, FCP and HOMA-IR independently predicted adipsin levels.

Consistent with previous studies, our study demonstrated that T2DM patients with MCI exhibited worsened glucose homeostasis, as indicated by increased HbA1c and FBG in the MCI group. Moreover, HbA1c is an independent risk factor for poor cognitive performance. Yaffe et al. reported that for patients with HbA1c ≥7%, the risk for developing MCI was increased by nearly fourfold in a large sample size study with a female population. Several mechanisms have been investigated, including accumulation of advanced glycation end-products, activation of protein kinase C and increased flux of hexosamine in brain endothelial cells that lead to vessel occlusion, alteration of angiogenesis and permeability, production of NF-κB that causes neuroinflammation, obstruction of Akt/CREB signaling pathway, and impaired insulin homeostasis of the brain.

Moreover, increased plasma adipsin level was correlated with higher BMI and weight in the MCI group. Adipose tissue dysfunction and obesity exists in diabetes and contributes to the development of lipid metabolism disorder and MCI in patients with T2DM. Animal experiments indicated that circulating adipsin levels decreased in obese models, while human studies presented diametrically opposite results. The exact explanation for these discrepancies remains uncertain. One possible reason is that the expansion of fat mass in obesity may compensate to maintain higher circulating levels of adipsin. Our results were consistent with most human studies. Maslowska et al. reported that an obese group presented a high plasma adipsin levels, and a strong positive association was discovered between BMI and plasma adipsin. Analogous results were found in a large sample size study with a female population.

Table 4 Multivariable linear regression analyses of clinical indicators and MoCA, MMSE, VFT scores in the MCI subgroup
Variable
MoCA
adipsin
MMSE
adipsin
VFT
adipsin
HbA1c
adipsin

| Abbreviations: B, regression coefficient; SE, standard error; CI, confidence interval for odds ratio; HbA1c, glycosylated hemoglobin; MoCA, Montreal Cognitive Assessment; MMSE, Mini-mental State Examination; VFT, Verbal Fluency Test |

Table 5 Association between plasma level of adipsin and clinical variables
MCI group
SBP
FCP
Hypertension
Smoking
Fatty liver
HOMA-IR
BMI
2hPG
ApoB
FBG
WC
TC
TG

| Abbreviations: MCI, mild cognitive impairment; SBP, systolic blood pressure; FCP, fasting C-peptide; HOMA-IR, homeostasis model of assessment for insulin resistance; BMI, body mass index; 2hPG, 2-h postprandial blood glucose; ApoB, apolipoprotein B; FBG, fasting blood-glucose; WC, waist circumference; TC, total cholesterol; TG, triglyceride |

Table 6 Evaluation of the effects of clinical indicators on adipsin in T2DM by multiple linear regression analysis
Variables analyzed
TC
FBG
HOMA-IR
FCP
TG

| Abbreviations: T2DM, type 2 diabetes mellitus; β, regression coefficient; SE, standard error; CI, confidence interval for odds ratio; TC, total cholesterol; FBG, fasting blood-glucose; HOMA-IR, homeostasis model of assessment for insulin resistance; FCP, fasting C-peptide; TG, triglyceride |
in a cross-sectional study carried out on Arabs [35], in which a positive correlation was also discovered between adipsin and waist circumference. Schrover et al. [36] reported a strong positive relation between adipsin and BMI; moreover, visceral adipose tissue was related to higher plasma concentrations of adipsin. Conversely, adipsin is a serine protein in triglyceride synthesis through the ASP/adipsin pathway [19, 37]. Maslowska et al. [34] also verified that free fatty acid and BMI predicted adipsin levels. However, insignificant correlations were found between adipsin and TG and adipsin and WC in our study.

We also noted significantly higher FCP and HOMA-IR in the MCI group, thereby suggesting an association between elevated IR and MCI. Our findings are in line with previous research supporting the concept that IR contributes to the pathological mechanism of cognitive dysfunction [38]. Consistent with our study, Ekblad et al. [39] reported that IR predicted poor verbal fluency and acted as an independent risk factor of mild cognitive dysfunction in a population-based cohort with an 11-year large follow-up survey. Insulin signaling in the brain induces the suppression of GSK-3, which results in tau hyperphosphorylation and neurofibrillary formation, thereby causing damage or apoptosis of neurons [9].

Our correlation study of plasma adipsin level and IR revealed that higher plasma adipsin level was correlated with higher FCP and HOMA-IR. Further multivariate analysis confirmed that the degree of HOMA-IR was an independent predictor of adipsin levels. Research on animals suggested that adipsin cleaves factor B, thereby catalyzing the formation of C3bBb, which cleaves C3 to liberate C3a. Then, together with its downstream receptor of C3a, C3aR1 acts on islets through augmenting intracellular adenosine-triphosphate (ATP) levels, thus motivating ATP-coupled respirations, increasing the concentration of cytosolic free Ca2+, and finally stimulating insulin secretion [17]. Interestingly, a dispute exists about the relationship between adipsin and IR. Our findings are consistent with some human studies. One recent cross-sectional study displayed significant positive correlations between adipsin levels and the HOMA-IR index in patients with polycystic ovary syndrome. In another study, IR was found to be an independent predictive factor of adipsin levels [40]. Similar findings were obtained by Derosa et al. [41], who suggested that increased HOMA-IR index was profoundly correlated with higher adipsin levels in obese subjects. However, an insignificant correlation was reported in a study on Arab T2DM patients with cognitive dysfunction promotes adipsin production as a compensatory mechanism to maintain normal insulin secretion [17], that leads to compensatory IR, which, in turn may contribute to impairment of cellular insulin signaling [43], reduction of brain insulin uptake, and increased levels of Aβ [10]. In addition, abnormal insulin signaling represents a risk to the dysfunction of the entorhinal cortex and hippocampus, finally leading to impaired memory and executive function [44].

Several limitations exist in our research. First, the cross-sectional study design itself failed to explain any causal relationship between adipsin and cognitive impairment. Large-scale and multi-center prospective studies should be conducted to verify our inferences. Second, some clinical parameters such as education levels were collected through self-report and medical records, which correlated with IR, especially in subjects with BMI ≥ 25 kg/m². The disparity between results was not fully understood. One possible explanation is that the patients with T2DM employed in our research have not developed severe metabolic disorders, and a compensatory mechanism may have been triggered to retain normal insulin secretion. In addition, different study populations (patients with MCI in our report vs. subjects with cardiovascular disease by Calan et al. [41]), different races (Asians vs. Arabs), and different species (human vs. mice) may at least partly explain such discrepancies. Additionally, MCI subjects presented high adipsin levels. Further multivariate analyses demonstrated that, besides HbA1c, adipsin is an independent determinant for MCI individuals with T2DM. This outcome implies that a higher plasma adipsin level might play a previously unrecognized role in diabetic MCI caused by IR. Neuro-psychological tests conducted in our study also indicated that the MMSE and MoCA scores, which represented global cognition, were inversely correlated to plasma adipsin levels. The influences on cognitive dysfunction were consistent with cognitive decline caused by insulin resistance in the past study conducted by Zhong Y et al. [42]. In our present study, although lower HOMA-IR was found in the MCI group, the further multivariable linear regression analyses discovered insignificant correlations about HOMA-IR and MoCA, MMSE, VFT scores. This may be due to the insufficient population. Furthermore, adipsin acts as an independent predictor of VFT, which represents the executive function. To the best of our knowledge, this is the unique research estimating the expressing of adipsin in cognitive impairment with T2DM.

One or more possible explanations may be reasonable for the observed results: 1) glucose dysregulation in T2DM patients with cognitive dysfunction promotes adipsin production as a compensatory mechanism to maintain normal insulin secretion [17], that leads to compensatory IR, which, in turn may contribute to impairment of cellular insulin signaling [43], reduction of brain insulin uptake, and increased levels of Aβ [10]. In addition, abnormal insulin signaling represents a risk to the dysfunction of the entorhinal cortex and hippocampus, finally leading to impaired memory and executive function [44]. 2) adipsin itself is related to CSF inflammation and increases grades of disturbed blood-CSF barrier function [16].

Several limitations exist in our research. First, the cross-sectional study design itself failed to explain any causal relationship between adipsin and cognitive impairment. Large-scale and multi-center prospective studies should be conducted to verify our inferences. Second, some clinical parameters such as education levels were collected through self-report and medical records, which
could lead to recall bias. Third, the sample size in this study is not large enough and consists of the Chinese Han population, which might reduce the strength of the results. Furthermore, while we adjusted some confounding factors that may influence the logistic regression, the results may have been affected by other possible confounders (e.g., living environment and habits), which could not be controlled. Finally, we used the less invasive HOMA-IR method to evaluate IR; thus, more accurate indicators should be used to gain a better evaluation of IR.

Conclusion

In summary, the current study demonstrated that T2DM individuals with cognitive dysfunction presented increased plasma adipin levels. Furthermore, high plasma adipin level is an independent risk predictor of overall cognitive function and executive function. The data implied that adipin could be a potential predictor of early cognitive dysfunction among Chinese patients with T2DM. Additionally, we obtained evidence that plasma adipin level is significantly positively associated with FCP and HOMA-IR, which suggested that adipin might facilitate the development of diabetic MCI caused by IR. Further prospective studies with large sample size should be conducted to confirmed our hypotheses and clarify whether adipin is involved in diabetic MCI caused by IR.

Abbreviations

2hPG: 2h postprandial blood glucose; AD: Alzheimer’s disease; ApoA1: apolipoprotein A1; ApoB: apolipoprotein B; AVLT: Auditory Verbal Learning Test; BMI: body mass index; CDT: Clock Drawing Test; CI: confidence interval for odds ratio; DBP: Diastolic blood pressure; DST: Digit Span Test; FBG: fasting blood-glucose; FCP: fasting C-peptide; HbA1c: glycosylated hemoglobin; HC: hip circumference; HDL: high-density lipoprotein; HOMA-IR: homeostasis model of assessment for insulin resistance; IRS: insulin resistance; LDL: low-density lipoprotein; LMT: Logical Memory Test; MCI: mild cognitive impairment; MMSE: Mini-mental State Examination; MoCa: Montreal Cognitive Assessment; SBP: systolic blood pressure; SCWT: Stroop Color Word Test; SE: standard error; T2DM: type 2 diabetes mellitus; TC: total cholesterol; TG: triglyceride; TMT-A: Trail Making Test-A; TMT-B: Trail Making Test-B; VFT: Verbal Fluency Test; WC: waist circumference; β: regression coefficient

Acknowledgments

We would also sincerely appreciate all participants and care organization for their contribution to this study.

Authors’ contributions

SHW, DG, YY, JH carried out the study design; DG, RH, ST, were in charge of the experiments; DG, SHW, RH, ST, HYL, JQW, KA collected the clinical data, analyzed the experimental data and give the interpretation of data; DG was the main contributor in composing the manuscript. All authors read and approved the final manuscript.

Authors’ information

Not applicable.

Funding

This work was partially supported by the National Natural Science Foundation of China (No.81570732, Shaohua Wang; and No.81870568, Shaohua Wang), the National Nature Science Youth Foundation of China (No.81200635, Yang Yuan), and the Jiangsu Provincial Medical Youth Talent (QNRC2016819, Yang Yuan). The sponsors provided financial support and did not participate in the research design, data collection, analysis, interpretation, or preparation of the manuscript.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

The cross-sectional study was ratified by the IEC for clinical Research of Zhongda Hospital, Affiliated to Southeast University (reference number: 2013ZDSYLL040.0). All participants and their legal guardians will provided written informed consents before study related activities commenced according to a protocol approved by the Research Ethics Committee of the Affiliated Zhongda Hospital of Southeast University.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No. 87 DingJiaQiao Road, Nanjing 210009, People’s Republic of China. 2School of Medicine, Southeast University, Nanjing, People’s Republic of China. 3Department of Statistics, School of Mathematics and Computer Science, Southeast University, Nanjing, People’s Republic of China. 4Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, No. 87 DingJiaQiao Road, Nanjing 210009, People’s Republic of China.

Received: 4 May 2019 Accepted: 20 September 2019

Published online: 24 October 2019

References

1. Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94(3):311–21.
2. van Harten B, de Leeuw FE, Weinstein HC, Selchettens P, Biessels GJ. Brain imaging in patients with diabetes: a systematic review. Diabetes Care. 2006;29(11):2539–48.
3. Mariani E, Monastero R, Meccoci P. Mild cognitive impairment: a systematic review. J Alzheimers Dis. 2007;12(1):23–35.
4. Li W, Huang E. An update on type 2 diabetes mellitus as a risk factor for dementia. J Alzheimers Dis. 2016;53(2):393–402.
5. Kimm H, Lee PH, Shin YJ, Park KS, Jo J, Lee Y, Kang HC, Jee SH. Mid-life and late-life vascular risk factors and dementia in Korean men and women. Arch Gerontol Geriatr. 2011;52(1):17–22.
6. De Felice FG, Ferreira ST. Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes. 2014;63(7):2262–72.
7. Cerello A, Motz E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol. 2004;24(5):816–23.
8. Kahn SE. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia. 2003;46(1):3–19.
9. Urregaila H, Makino T, Uemura K, Shimada H, Hayashi T, Cheng XW, Kuzuya M. The associations among insulin resistance, hyperglycemia, physical performance, diabetes mellitus, and cognitive function in relatively healthy older adults with subtle cognitive dysfunction. Front Aging Neurosci. 2017;9:72.
10. Baker LD, Cross DJ, Minoshima S, Belongia D, Watson GS, Craft S. Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with prediabetes or early type 2 diabetes. Arch Neurol. 2011;68(1):151–7.
11. Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A, Fuino RL, Kawaguchi KR, Samoyedny AJ, Wilson RS, et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest. 2012;122(4):3136–38.
12. Berglund ED, Vanni CR, Donato J Jr, Kim MH, Chuang JC, Lee CE, Lauzon DA, Lin P, Brule LJ, Scott MM, et al. Direct leptin action on POMC neurons...
regulates glucose homeostasis and hepatic insulin sensitivity in mice. J Clin Invest. 2012;122(3):1000–9.

13. Davis C, Mudd J, Hawkins M. Neuroprotective effects of leptin in the context of obesity and metabolic disorders. Neurobiology of disease 2014, 72 Pt A:61–71.

14. Gao C, Liu Y, Li L, Holscher C. New animal models of Alzheimer’s disease that display insulin desensitization in the brain. Rev Neurosci. 2013;24(6):607–15.

15. Rosen BS, Cook KS, Yaglom J, Groves DL, Volanakis JE, Damm D, White T, Spiegelman BM. Adipsin and complement factor D activity: an immune-related defect in obesity. Science (New York, NY). 1987;244(4911):1483–7.

16. Schmid A, Hobisch A, Berghoff M, Schlegel J, Kranach T, Kaps M, Schaffer A. Quantification and regulation of adipin in human cerebrospinal fluid (CSF). Clin Endocrinol. 2016;84(2):194–202.

17. Lo JC, Jlubicic S, Leibiger B, Kern M, Leibiger IB, Moede T, Kelly ME, Chatterjee Bhowmick D, Murano I, Cohen P, et al. Adipsin is an adipokine that improves beta cell function in diabetes. Cell. 2014;158(1):41–53.

18. Wang JS, Lee WG, Lee JT, Lin SY, Lee WL, Li CY, Wang Y, Zeng MJ, Cai ZX, Tian RB, Jia W, Li XH. Chinese guidelines for the management of hypertension. Zhonghua J Prev Med. 2016;49(2):138–52.

19. Rosen BS, Cook KS, Yaglom J, Groves DL, Volanakis JE, Damm D, White T, Spiegelman BM. Adipsin and complement factor D activity: an immune-related defect in obesity. Science (New York, NY). 1987;244(4911):1483–7.

20. Stahl GL, Xu Y, Hao L, Miller M, Buras JA, Fung M, Zhao H. Role of the alternative complement pathway in ischemia/reperfusion injury. Am J Pathol. 2003;163(2):445–50.

21. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15(7):539–53.

22. Poteret F, Gusset PJ, Visser PJ, Frisoni GB, Nobili F, Scheltema P, Vellas B, Touchon J. Mild cognitive impairment (MCI) in medical practice: a critical review of the concept and new diagnostic procedure. Report of the MCI working Group of the European Consortium on Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2006;77(6):714–8.

23. Liu LS. Chinese guidelines for the management of hypertension. Zhonghua xue xuan guan bing za zhi. 2010;39(7):579–615.

24. Kim JD, Kang SJ, Lee MK, Park SE, Rhee EJ, Park CY, Oh KW, Park SW, Lee WY. C-Peptide-Based Index Is More Related to Incident Type 2 Diabetes in Non-Diabetic Subjects than Insulin-Based Index. Endocrinology and Metabolism (Seoul, Korea). 2016;31(2):320.

25. Herbert V, Brooks RL, Markus HS, Morris RG. Verbal fluency in cerebral small vessel disease and Alzheimer’s disease. J Int Neuropsychol Soc. 2014;20(4):413–21.

26. Xiang Q, Zhang J, Li CY, Wang Y, Zeng MJ, Cai ZX, Tian RB, Jia W, Li XH. Insulin resistance-induced hyperglycemia decreased the activation of Akt/GSK3β pathway in polycystic ovary syndrome. J Endocr Soc. 2019;3(2):403–10.

27. Ekblad LL, Rinne JO, Puukka P, Laine H, Ahltiluoto S, Sulkava R, Vitanen M, Jula A. Insulin resistance predicts cognitive decline: an 11-year follow-up of a nationally representative adult population sample. Diabetes Care. 2017;40(6):751–8.

28. Gursoy Calan O, Calan M, Yesil Senturk S, Unal Kocabas G, Ceden E, Sari KR, Kocar M, Imamoglu C, Senturk S, Bodakci A, et al. Increased adipinsin is associated with carotid intima media thickness and metabolic disturbances in polycystic ovary syndrome. Clin Endocrinol. 2016;85(6):910–7.

29. Derosa G, Fogari E, D’Angelo A, Bianchi L, Bonaventura A, Romano D, Maffioli P. Adipocytokine levels in obese and non-obese subjects: an observational study. Inflammation. 2013;36(4):914–20.

30. Zhong Y, Mao Y, Jia WP, Yan H, Wang BW, Jin J. Hyperinsulinemia, insulin resistance and cognitive decline in older cohort. Biomed Environ Sci. 2012;25(1):8.

31. Zhou Y, Fang F, Liu LH, Chen SD, Tang HD. Clinical characteristics for the relationship between Type-2 diabetes mellitus and cognitive impairment: a Cross-sectional study. Aging Dis. 2015;6(4):236–44.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.