Projected distances to host galaxy reduce SNIa dispersion

Ryley Hill,1,2 H. Shariff1,3 R. Trotta1,3,4∗ S. Ali-Khan,1 X. Jiao3,5 Y. Liu,1 S.-K. Moon,1 W. Parker,1,6 M. Paulus,1,7 D. A. van Dyk3,4,5 and L. B. Lucy1

1Department of Physics, Astrophysics Group, Imperial College London, Prince Consort Rd, London SW7 2AZ, UK
2Department of Physics and Astronomy, the University of British Columbia, 6244 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
3Imperial Centre for Inference and Cosmology, Astrophysics Group, Blackett Laboratory, Prince Consort Rd, London SW7 2AZ, UK
4Data Science Institute, William Penney Laboratory, Imperial College London, London SW7 2AZ, UK
5Department of Mathematics, Statistics Section, Huxley Building, South Kensington Campus, Imperial College London, London SW7 2AZ, UK
6Bay House school & Sixth Form, Gomer lane, Gosport, Hampshire PO12 2QP, UK
7Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK

Accepted 2018 September 7. Received 2018 September 7; in original form 2018 June 15

ABSTRACT
We use multiband imagery data from the Sloan digital sky survey to measure projected distances of 302 supernova Type Ia (SNIa) from the centre of their host galaxies, normalized to the galaxy’s brightness scale length, with a Bayesian approach. We test the hypothesis that SNIa further away from the centre of their host galaxy are less subject to dust contamination (as the dust column density in their environment is smaller) and/or come from a more homogeneous environment. Using the Mann–Whitney U test, we find a statistically significant difference in the observed colour correction distribution between SNIa that are near and those that are far from the centre of their host. The local p-value is 3×10^{-3}, which is significant at the 5 per cent level after look-elsewhere effect correction. We estimate the residual scatter of the two sub-groups to be 0.073 ± 0.018 for the far SNIa, compared to 0.114 ± 0.009 for the near SNIa – an improvement of 30 per cent, albeit with a low-statistical significance of 2σ. This confirms the importance of host galaxy properties in correctly interpreting SNIa observations for cosmological inference.

Key words: methods: data analysis – supernovae: general – cosmological parameters.

1 INTRODUCTION
The Nobel Prize for Physics 2011 was awarded for the discovery that the Universe is accelerating. Riess et al. (1998) and Perlmutter et al. (1999) used supernovae Type Ia (SNIa) as standardizable candles to infer the existence of an additional component in the energy density of the universe, now called dark energy. The number of SNIa observations since that seminal discovery has grown rapidly: we now have hundreds of spectroscopically confirmed SNIa (e.g. Astier et al. 2006; Wood-Vasey, Miknaitis & Stubbs 2007; Kowalski et al. 2008; Ballard et al. 2009; Freedman et al. 2009; Hicken et al. 2009; Kessler et al. 2009; Amanullah et al. 2010; Contreras et al. 2010; Suzuki et al. 2012; Betoule et al. 2014; Rest et al. 2014), which have been used to measure the distance modulus to $z \sim 1.9$ (Jones et al. 2013). This low-redshift probe of the expansion history of the Universe, coupled with the high-redshift measurements of the cosmic microwave background (CMB) anisotropies, has been a vital tool for determining the equation of state of dark energy and to put constraints on modified gravity models.

SNIa are a sub-class of supernovae defined by the absence of H lines in their spectra and the presence of Si lines. The generally accepted understanding of an SNIa explosion is that of a CO white dwarf accreting material from a companion star. The gravitational pressure ignites a runaway thermonuclear reaction that leads to the catastrophic unbinding of the white dwarf. While this scenario is generally agreed upon in literature, the details of their formation, including the nature of the progenitor, as well as the exact explosion mechanism remain unclear. The diversity of SNIa appears, however, to suggest that SNIa are produced by more than one progenitor channel: No single channel (i.e., single degenerate scenario, where a CO white dwarf accretes mass from a non-degenerate companion star; or double degenerate scenario, where a CO white dwarf accretes mass from a non-degenerate companion star; or double degenerate scenario, the merging of two white dwarfs) can account for all of the available observations (see e.g. Maeda & Terada 2016 for a recent review).
Given the emerging support for the idea that the diversity in SNIa observations can only be explained by postulating multiple sub-classes (perhaps even within the ‘Branch-normal’ SNIa type of Branch, Fisher & Nugent 1993), it becomes even more important to clarify any links between the SNIa variability and their galactic environment. Much work has thus been expended in studying the influence of the SNIa’s environment on its observable properties -- in particular, possible residual dependencies of the brightness and/or colour of the SNIa after the empirical standardization corrections have been applied. Empirical corrections are applied by linearly adjusting the SNIa’s β-band peak magnitude for stretch (Phillips 1993; Phillips et al. 1999) (slow-declining SNIa) and colour excess (Riess, Press & Kirshner 1996; Jha, Riess & Kirshner 2007) (bluer SNIa are brighter). After such corrections, the residual scatter around the Hubble diagram is reduced to ~ 0.1 mag, which is what enables the use of SNIa as cosmological probes.

Since the standardization procedure is empirical (although partially justified by theoretical models, e.g. Kasen & Woosley 2007), much effort has gone into trying to establish whether the residual scatter can be further reduced by including other observable proxies of the SNIa’s environment and/or progenitor channel. These include host galaxy mass (e.g. Lampeitl et al. 2010; Sullivan et al. 2010), SFR, metallicity, stellar population age, spectral lines width, host morphology, and location within the host. For a recent review of environmental correlations, see Anderson et al. (2015a).

There is general agreement that SNIa in more massive galaxies are (post-corrections) brighter (Sullivan et al. 2006, 2010; Kelly et al. 2010; Campbell, Fraser & Gilmore 2016; Shariff et al. 2016), although estimates of the difference range from 0.055 ± 0.022 (Shariff et al. 2016) to 0.11 mag (Sullivan et al. 2010). This effect could be a reflection of the hosts’ metallicity (Gallagher et al. 2008), given the well-known mass-metallicity correlation in early-type galaxies. Several studies have investigated the influence of galaxy morphology and/or star formation rate (SFR), reporting that SNIa with a smaller stretch parameter (i.e. rapid decliners) occur more often in lenticular/elliptical galaxies (Henne et al. 2017) as well as in passive galaxies (Lampeitl et al. 2010). Lampeitl et al. (2010) found evidence that galaxies with lower SFRs produce, on average, dimmer SNIa. D’Andrea et al. (2011) analysed host-galaxy spectra to obtain metallicity and SFRs from a subset of the Sloan digital sky survey (SDSS)-II SNIa. They found that SNIa in high-metallicity host galaxies are ~ 0.1 mag brighter post-correction, and a $> \sigma$ correlation between specific SFR and Hubble residuals. More recently, a study by Moreno-Raya et al. (2016) investigated gas-phase oxygen abundance in 28 host galaxies in the local Universe and concluded that high-metallicity galaxies host dimmer SNIa, in contrast to Lampeitl et al. (2010). However, given that Moreno-Raya et al. (2016) did not apply colour corrections, the two results are not directly comparable.

No significant correlation has been found between the SNIa’s colour and the hosts’ morphology or SFR. For example, Campbell et al. (2013) used a sample of 581 photometric SNIa and applied a series of host galaxy corrections to the Hubble distance including metallicity, mass, SFR, specific SFR, and age of galaxies. They found a $> \sigma$ significant reduction in the Hubble residuals when host galaxy mass was added as an additional covariate. However, the improvement was less significant for the other covariates. More recently, much work has focused on evaluating the residual effect of the local SFR at the site of the explosion, with somewhat contradictory results (Rigault et al. 2013; Anderson et al. 2015b; Jones, Riess & Scolnic 2015; Kelly et al. 2015).

Establishing the dependence (if any) of the SNIa-inferred luminosity on environmental effects is important both in terms of potentially improving SNIa as standard candles and in order to reduce any remaining systematic effects. For example, Kelly et al. (2015) demonstrated that SNIa in regions of high-UV flux have a smaller residual dispersion. Furthermore, reducing the remaining intrinsic dispersion below 0.1 mag would enable measuring spatial weak lensing correlations between SNIa (Smith et al. 2014), a new probe of cosmological parameters (Scovacricchi et al. 2016).

With this in mind, the goal of this paper is to revisit the question of the influence of the projected radial position of the SNIa within its host, but using a larger sample of SNIa and a more sophisticated statistical analysis than was previously available.

In this work, we extend and improve previous (null) results by Ivanov, Hamuy & Pinto (2000), Yasuda & Fukugita (2010), and Galbany et al. (2012), who analysed SNIa samples containing between 62 and 195 objects. Ivanov et al. (2000) used a sample of 62 SNIa and found no evidence of correlation between stretch or colour corrections and deprojected galactocentric distances from the hosts. They also separated the SNIa sample according to galactic morphology, again finding no effect. Yasuda & Fukugita (2010) looked at the first year SDSS-II SNIa sample (137 SNIa at $0.05 \leq z \leq 0.3$) and considered possible correlations of colour $c = E(B - V)$ with galactocentric distance, without finding any significant correlation. More recently, Galbany et al. (2012) performed a similar analysis on a larger sample containing 195 SNIa and again did not find any effect.

One of the motivations for the above studies was to investigate the effect (if any) of the radial metallicity gradient in the galaxy on the SNIa’s properties. By selecting a sub-group at high-projected galactocentric radius, one might hope to select a more homogeneous metallicity environment, and hence a more homogeneous sub-class of SNIa progenitors. Furthermore, the effect of dust and extinction within the host also changes with galactocentric distance. The confounding effect of dust along the line of sight is a well-known source of uncertainty (and potentially systematic errors) in the empirical correction procedure. Indeed, there is evidence that the conventional linear colour correction is inadequate, in that it fails to distinguish between intrinsic colour variations in the SNIa and host galaxy dust effects (Mandel et al. 2016). This is one for the reasons of the current effort to obtain light curve in the rest-frame near-infrared (NIR) -- a wavelength range much less affected by dust (Mandel et al. 2009).

However, given the high-observational cost of obtaining NIR light curves for a sample at cosmological distances, it would be interesting to determine whether the location of the SNIa explosion within the host can help to select SNIa that are less affected by dust. While it is important to keep in mind that projection effects and host-galaxy selection biases will always be an issue, this could still lead to higher precision (using SNIa with lower residual scatter) and accuracy (by mitigating a potential source of systematic error).

Higher extinction is expected in regions with a higher SFR, and particularly in more central regions of star-forming galaxies. Hence, SNIa at small galactocentric radii are expected to be redder, an effect that could be due to the local interstellar medium (ISM) but also to the progenitor’s rings of dust, particularly for active, late-type galaxies. Indeed, Anderson et al. (2015b) showed that redder SNIa events are found more centrally in a sample of star-forming galaxies. They used the equivalent width of the unresolved sodium doublet (NaD) to quantify the amount of extinction along the line of sight, finding that SNIa with NaD detections (indicating high absorption) are much more likely to be centrally located within their hosts.
Largely removing the effect of reddening due to the ISM might help in identifying intrinsic colour variations in the SNIae and/or the reddening due to circumstellar material (CSM). Therefore, our aim is to investigate whether segregating the SNIae sample into sub-groups according to their projected radial distance from the host can help in selecting a sub-group (at large galactocentric radii) that is less affected by dust and more homogeneous in its post-correction magnitude. Indeed, Lira (1996) predicted that low-reddened SNIae would have very little interstellar gas and dust. This could be either due to the distance from host or the galaxy type (Sternberg et al. 2011). As forcibly argued by Mandel et al. (2016), the empirical corrections to the observed magnitude currently implemented in the popular SALT2 fitter might introduce biases in the measured distances, for they bundle together intrinsic colour variations with extrinsic (i.e. due to host dust) variations, especially so at both extremes of the colour range. If it were possible to identify a subgroup of SNIae that are less affected by extrinsic colour variations, this would be a useful tool to access their intrinsic colour variability and use such measurements as cross-checks of systematics due to inappropriate statistical modelling of the type pointed out by Mandel et al. (2016).

In this paper, we increase the sample size significantly with respect to previous work, to 302 SNIae (a sub-set of the 368 SDSS SNIae in joint light-curve analysis, JLA); we re-fit galaxy images from scratch (for consistency) and adopt a more sophisticated (and powerful) statistical approach for the estimation of the residual scatter after empirical corrections.

This paper is structured as follows. In Section 2, we discuss details of the modelling of the brightness profile of the host galaxies, how we estimate the SNIae’ galactocentric distance to their host, as well as how we split the SNIae into two groups based on this quantity. In Section 3, we briefly summarize BAHAMAS, the Bayesian parameter inference procedure we adopt to estimate the residual scatter in the two sub-groups of SNIae. We present our results in Section 4 and conclude in Section 5.

2 HOST GALAXY MODELLING AND FITTING

2.1 Host images data

We investigate the 368 SNIae from the SDSS II supernova survey (Sako et al. 2018) contained in the JLA SNIa compilation (Betoule et al. 2014), spanning the redshift range $0.04 \leq z \leq 0.4$ and with median redshift $z_{\text{med}} = 0.2$. We require estimates of the SALT2 (Guy et al. 2007) parameters of each SNIa, namely the peak B-band magnitude, m_B, the light-curve stretch correction, s, and colour correction, c. For these quantities, we adopt the estimates obtained by Betoule et al. (2014).

We obtain the necessary imaging to identify the position of each SNIa in its host galaxy from the SDSS data release 10 (DR10; Ahn et al. 2014). Images of 100×100 pixels were acquired, centred on the right ascension and declination of each host galaxy, as identified by the SDSS-II supernova survey. Given the pixel size of the SDSS, this resulted in square images of approximately 396 arcsec sides. Each galaxy was observed in five filters ($ugriz$) over the course of many different runs (Doi et al. 2010). To obtain cut-outs for fitting, we stacked the r-band images from all observations for a given galaxy with equal weights and normalized them to obtain a single co-added image for each galaxy, with arbitrary flux units, then further cropped to a size of 49×49 pixels around the reported SDSS host galaxy centre. An example of a galaxy image resulting form this procedure is shown in Fig. 1.

Figure 1. Left: example galaxy images in the r-band, in units of nMgy (1 nanomaggy $= 3.631 \times 10^{-6}$ Jy). The upper galaxy is a low-redshift example, while the lower galaxy is a high-redshift example. Right: images of the corresponding SNIa taken from the SDSS-II supernova survey. The SNIa images were not used to fit galaxy intensity profiles, but only serve as illustrative examples.

With increasing redshift of the galaxies, each of the bands is measuring bluer rest-frame wavelengths, and therefore the apparent size of the galaxy increases in a given band. Galbany et al. (2012) find (using r-band photometry for the SDSS galaxies) that the average spiral galaxy size increase by ~ 30 per cent up to $z \sim 0.1$ and stabilizes after that. The same study did not find that this effect had an appreciable impact on their measurement of scaled SN distances from hosts. Furthermore, only 9 per cent of our hosts have redshifts less than 0.1, so it therefore appears safe to neglect this effect in this study.

2.2 Galaxy images fitting

Our aim is to obtain approximate isophotes for the host galaxies and use these as a simple proxy for their dust column density. We are interested in determining the scale length of the galaxy, i.e. the projected distance to locus of elliptical isophote containing a specified fraction of the galaxy’s flux (in the following, 50 per cent). The scale length then gives the characteristic scale by which the projected distance (i.e. galactocentric distance) of the SNIa is normalized.

Because obtaining an estimate of the scale length does not require sophisticated models for the light emission from the galaxy, we model each galaxy’s radial intensity profile, $I(r)$, with a simple (Sérsic 1963) profile, as implemented in ProFit (Robotham et al. 2017) Bayesian profile modelling code:

$$I(r) = I_e \exp \left(-p_n \left(\frac{r}{r_e} \right)^{1/n} - 1 \right),$$

where

$$I_e = \frac{10^{-0.4(m_m-m_0)}}{L_{\text{tot}}},$$

$$L_{\text{tot}} = \frac{2\pi A_n r_e^2 n \Gamma(2n) \exp(b_n)}{b_n^2},$$

Here, r_e is the scale length or effective radius (i.e. the radius containing half the total flux), I_e is the intensity of the galaxy at r_e, n is the Sérsic index (which controls the drop-off in intensity from...
the centre, with \(n = 0.5 \) corresponding to a Gaussian profile, \(n = 1 \) being exponential, and \(n = 4 \) being de Vaucouleurs), \(m \) is the total flux expressed in magnitudes, \(m_{0} \) is the magnitude zero-point, \(\Delta_{\text{at}} \) is the ratio of the minor to major axis (with \(\Delta_{\text{at}} = 1 \) corresponding to a circle), \(\Gamma \) is the standard gamma function, and \(b_{j} \) is a derived parameter that ensures the correct integration of the flux at \(r_{c} \).

The origin of the pixel coordinate system that we use for each galaxy image coincides by construction with the galaxy centre as reported in the SDSS-II supernova survey (Sako et al. 2018). However, for internal consistency we refit the centre of the galaxy, parametrizing it by its pixel coordinates \((x_{0}, y_{0})\). Furthermore, we allow for elliptical isophotes with minor to major axis ratio parametrized by \(\Delta_{\text{at}} \) and major axis orientation angle, \(\theta \) (increasing counterclockwise from \(0^\circ \) being vertical). With this, the radial distance \(r \) in equation (1) of a pixel with coordinates \((x, y)\), is given by

\[
 r(x, y) = \left(\frac{x^{2}}{x_{p}^{2}} + \frac{y^{2}}{A_{\text{at}}^{2}} \right)^{1/2},
\]

where
\[
 x_{p} = (x - x_{0}) \cos(\phi) + (y - y_{0}) \sin(\phi),
\]
\[
 y_{p} = -(x - x_{0}) \sin(\phi) + (y - y_{0}) \cos(\phi),
\]
\[
 \phi = \theta + \pi/2.
\]

Our model of the intensity profile of each host galaxy thus includes seven free parameters, namely

\[
 \Theta = \{ x_{0}, y_{0}, m, \theta, \Delta_{\text{at}}, r_{c}, n \}.
\]

The model images were convolved with a Gaussian point spread function (PSF) of full width at half-maximum 1.3 arcsec, matched to the median SDSS PSF. We also fitted any additional point sources to the median SDSS PSF. We also fitted any additional point sources to the median SDSS PSF.

Following the recommendations by the authors of ProFit (Robotham et al. 2017), we adopt a more robust Student-T distribution for the likelihood function, with heavier tails than a standard normal distribution. At each observed pixel intensity, \(D_{ij} \), the standard deviation is estimated as \(\sigma_{ij} \equiv \sqrt{\frac{D_{ij}}{\text{Poisson}} \left(\frac{\text{Poisson}}{2} \right) \left(1 + \frac{x_{ij}}{\nu} \right)^{-\frac{\nu}{2}}. \)

\[
 \ln L(\theta) = -\ln \sum_{i,j} \left(\frac{1}{\sqrt{2\pi\sigma_{ij}}} \right) \left(1 + \frac{x_{ij}}{\nu} \right)^{-\frac{\nu}{2}}.
\]

We used ProFit’s Markov Chain Monte Carlo (MCMC) component-wise hit-and-run Metropolis (CHARM) sampler (from the LaplacesDemon package) to obtain the posterior distribution for the host galaxy intensity parameters vector, \(\Theta \), using priors as given in Table 1. We then base our final inference on 3000 posterior samples, obtained from a thinned final chain after burn-in has been removed and convergence achieved. We report maximum a posteriori (MAP) values of parameters, while their uncertainty was obtained as the standard deviation of the marginal posterior.

We compared our MAP galaxy centre values with the host galaxy coordinates given by Sako et al. (2018): the median displacement is 0.27 pixels. A fit was deemed ‘successful’ if (i) the iso-brightness contours followed the general shape of the galaxy, with \(r_{c} \) being located somewhere in the vicinity of the outer edge of the galaxy; (ii) if \((x_{0}, y_{0})\) was in the visual centre of the galaxy and compared well with the host galaxy coordinates in Sako et al. (2018) and (iii) the residuals were close to 0 throughout the model image.

Parameter	Symbol	Prior
Galaxy centre (px)	\(x_{0}, y_{0}\)	\(N([0, 0], \text{diag}(0.5^{2}, 0.5^{2}))\)
Apparent mag. (r-band)	\(m\)	\([0, 10, m_{0}]\)
Major axis orientation angle (rad)	\(\theta\)	\([0, \pi]\)
Major to minor axis ratio	\(\Delta_{\text{at}}\)	\([0.1, 1]\)
Scale length (px)	\(r_{c}\)	\([0.5, 25]\)
Sérisc index	\(n\)	\([0.5, 10]\)

1Each fit is then visually inspected to ensure that the fitted luminosity profile is a good description of the image by checking the residuals plots.

Some fits are unsuccessful because of poor image quality. In some cases, the galaxy is found in a region of significantly higher noise and in other cases the galaxy is too faint. Both of these effects lead to a host intensity within a few per cent of the background. Examples of these cases are shown in Fig. 3. SNIae associated with a host galaxy that could not be fit are removed from the sample. Of the 368 host galaxy images, 66 cannot be successfully fit, leaving a sample of 302 SNIae for our analysis.

We checked our sample for any biases that may have been introduced by removing the poor fits; for example, it might be expected that higher redshift galaxies on average are fainter and thus tend to be more difficult to fit. In Fig. 4, we plot histograms of the distribution of the inferred S´ersic index \(n \), for our analysis.

Historically, spiral galaxies have been identified with a Sérisc index \(n = 1 \) (corresponding to a typical exponential disc galaxy) and elliptical galaxies with a Sérisc index \(n = 4 \) (a de Vaucouleurs profile; see e.g. de Vaucouleurs 1959). More recently, it has become standard to allow \(n \) to vary freely, as there is significant spread around these integer values in modern surveys (e.g. Ravindranath et al. 2004; Trujillo et al. 2006; Buitrago et al. 2008; van Dokkum et al. 2010; van der Wel et al. 2012; Vika et al. 2015). Fig. 5 shows the distribution of the inferred Sérisc index \(n \) for both sub-groups. The mode of the \(d_{c} < 3 \) group is \(n = 1 \), while the mode of the \(d_{c} \geq 3 \) group is \(n = 1.6 \). We observe that we have very few galaxies with \(n > 3 \) and none with \(n \approx 4 \). This result is consistent with the findings of Paulino-Afonso et al. (2017), who found that the reconstructed Sérisc indexes of 2507 local and 1118 high-z star-forming galaxies are biased low by about 20 per cent, almost independently of red-
Figure 2. ProFit host galaxy image modelling, showing the normalized SDSS r-band data (left-hand panels), the ProFit MAP model (second panels), and the normalized residuals (right-hand panels and histograms). The top row is for the host galaxy of SN2006hx ($z = 0.04$, upper panel in Fig. 1), while the bottom row is for the host of SN2007mu ($z = 0.40$, lower panel of Fig. 1).

Figure 3. Two examples of images that are of insufficient quality to be fit. SNIa associated with galaxies that led to unsuccessful fits were not included in the analysis.

shift. They attributed this phenomenon to cosmological dimming, leading to decreased resolution and increased noise that produces a bias towards disc-like (i.e. $n = 1$) profiles. Nevertheless, we do not believe that this effect leads to a bias in our inferred values for the galactocentric distance, as explained in the next section.

2.3 Sub-groups of SNIa based on galactocentric distance to host

From our best-fitting parameters, we compute the projected distance of the SNIa from its host galaxy with equation (4):

$$r_{\text{SN}} = r(x_{\text{SN}}, y_{\text{SN}}),$$

where $(x_{\text{SN}}, y_{\text{SN}})$ are the coordinates of the SNIa in each host galaxy image determined from our fits (which generally compare well with the coordinates in Sako et al. 2018), converted from standard RA/Dec. coordinates with the AstroPy library for PYTHON (Astropy Collaboration 2013) that includes world coordinate system transformation functions (Calabretta & Greisen 2002). This is the distance between an SNIa and its host galaxy if the SNIa were moved along an isophote contour to line up with semimajor axis of the host. The galactocentric distance is obtained by dividing this distance by the scale length, r_e:

$$d_g \equiv \frac{r_{\text{SN}}}{r_e}. \quad (12)$$

This definition of galactocentric distance is a good description of the SNIa to host galaxy distance as it takes into account the geometry.
of the light distribution of the host galaxy, which is assumed to be a proxy for the dust that is the main contributor to SNIa extinction.

The galactocentric distance defined in equation (12) takes into account ellipticity and is normalized to the scale length r_s. By contrast, Sako et al. (2018) defined galactocentric distances using circular Petrosian half-light radii instead, making a direct comparison difficult. Sako et al. (2018) defined galactocentric distances using circular Petrosian half-light radii instead, making a direct comparison difficult. However, we find no significant correlation between n and d_r, Fig. 5, showing the distribution of n for both sub-groups of d_r, demonstrates that the mode of the $d_r > 3$ group is at a slightly higher value of n than the mode for the $d_r < 3$ group. If d_r and n were anticorrelated, the larger d_r sub-group distribution of Sérsic indexes should peak at a lower value of n, not at a higher value like we observe. Therefore, we conclude that our grouping based on d_r is not a reflection of the host galaxies’ morphology.

According to our hypothesis, SNIa events were correlated with the Sérsic index n. Since d_r is inversely proportional to r_s, and r_s is positively correlated with n (see e.g. Trujillo, Graham & Coan (2001)), a larger value of d_r could correlate with a smaller value of n. If this were the case, our sub-groups could be a simple reflection of different galaxy morphology, rather than galactocentric distance. However, we use a two-sample Kolmogorov–Smirnov (KS) test to assess the statistical significance of the difference in the colour and stretch differences in the subsequent analysis.

A potential difficulty would arise if our values of galactocentric distance d_r were correlated with the Sérsic index n. Since d_r is inversely proportional to r_s, and r_s is positively correlated with n (see e.g. Trujillo, Graham & Coan (2001)), a larger value of d_r could correlate with a smaller value of n. If this were the case, our sub-groups could be a simple reflection of different galaxy morphology, rather than galactocentric distance. However, we find no significant correlation between n and d_r. Fig. 5, showing the distribution of n for both sub-groups of d_r, demonstrates that the mode of the $d_r > 3$ group is at a slightly higher value of n than the mode for the $d_r < 3$ group. If d_r and n were anticorrelated, the larger d_r sub-group distribution of Sérsic indexes should peak at a lower value of n, not at a higher value like we observe. Therefore, we conclude that our grouping based on d_r is not a reflection of the host galaxies’ morphology.

According to our hypothesis, SNIa events were correlated with the Sérsic index n. Since d_r is inversely proportional to r_s, and r_s is positively correlated with n (see e.g. Trujillo, Graham & Coan (2001)), a larger value of d_r could correlate with a smaller value of n. If this were the case, our sub-groups could be a simple reflection of different galaxy morphology, rather than galactocentric distance. However, we find no significant correlation between n and d_r. Fig. 5, showing the distribution of n for both sub-groups of d_r, demonstrates that the mode of the $d_r > 3$ group is at a slightly higher value of n than the mode for the $d_r < 3$ group. If d_r and n were anticorrelated, the larger d_r sub-group distribution of Sérsic indexes should peak at a lower value of n, not at a higher value like we observe. Therefore, we conclude that our grouping based on d_r is not a reflection of the host galaxies’ morphology.

Using the fixed choice of $d_{cut} = 3$, we define two groups of SNIa: (i) those with $d_r < 3$ (250 SNIa) and (ii) those with $d_r ≥ 3$ (52 SNIa). The distributions of stretch and colour for the two groups are shown in Fig. 8. The stretch distributions for the two groups are similar, while the $d_r ≥ 3$ group appears bluer, i.e. there are more objects with $c < 0$. We use a two-sample Kolmogorov–Smirnov (KS) test to assess the statistical significance of the difference in the colour and stretch distributions of the two groups. The KS test statistic is the maximum difference between the cumulative distribution function of the marginal posterior distributions resulting from ProFit’s MCMC.
two empirical distributions, D_{max}. Here, we compare the cumulative distributions of the colour for the two groups of SNIae. D_{max} is compared to a threshold value

$$D_{\text{cut}}(\alpha) = \kappa(\alpha) \sqrt{\frac{n_1 + n_2}{n_1 n_2}},$$

where $\kappa(\alpha)$ is an α-dependent critical value and n_1 and n_2 are the numbers of objects in each of the two groups. The test is significant (at the level α) if $\Delta = D_{\text{max}} - D_{\text{cut}}(\alpha) > 0$. For $\alpha = 0.05$, the critical level is $\kappa(0.05) = 1.36$.

To investigate the sensitivity of this result to the choice of d_{cut}, we evaluate Δ as a function of d_{cut} for comparing the distributions of both the colour and stretch corrections in the two SNIa groups. With a significance level of $\alpha = 0.05$, the KS test for the stretch distribution is not significant for any value $1 \leq d_{\text{cut}} \leq 4$ (We do not consider larger values for d_{cut} as the number of SNIae in the $d_r \geq d_{\text{cut}}$ group then becomes too small). The KS test is, however, locally statistically significant for the colour distribution for $3 \leq d_{\text{cut}} \leq 3.5$, as shown by the black points in the upper panel of Fig. 9. To account for multiple testing, we use the (conservative) Bonferroni correction, where in order to achieve a confidence level of 95 per cent one must divide α by the number of tests performed. Here, we have a total of seven tests (given by the chosen values of d_{cut}). We use the Mann–Whitney U test to compare the two distributions are no longer significantly different at the 95 per cent confidence level when using the Bonferroni correction.

We investigate the choice of d_{cut} further using the non-parametric two-sample one-sided Mann–Whitney U test (sometimes also called the Wilcoxon rank sum test). The hypothesis we want to test is that the sub-group at greater galactocentric distances is bluer than the sub-group at smaller distances. This means the observed colour distribution for the $d_r \geq d_{\text{cut}}$ group should be shifted to the left with respect to the distribution for the $d_r < d_{\text{cut}}$ group. This translates into a one-sided hypothesis test. Let A denote a SNIa drawn at random from the $d_r < d_{\text{cut}}$ group and B denote a SNIa drawn at random from the $d_r \geq d_{\text{cut}}$ group. We use the Mann–Whitney U statistic to test the one-sided null hypothesis that B has a smaller observed colour correction value, \hat{c}, than A with probability greater than or equal to 0.5 against the alternative hypothesis that this probability is less than 0.5. If the null hypothesis is rejected (at a given confidence level), this means that the data indicate that the distribution of the colour correction in the $d_r \geq d_{\text{cut}}$ group is to the left of (smaller than) d_{cut} this distribution of the $d_r < d_{\text{cut}}$ group. This test does not require the colour correction to be normally distributed in the two groups. The one-sided Mann–Whitney U test is generally
more powerful than the KS test, and it can detect differences in the shapes of the distributions, not just in their medians (as sometimes incorrectly stated). We show the resulting p-values for testing the null hypothesis as a function of d_{cut} in the lower panel of Fig. 9. The top dashed line corresponds to a p-value of 0.05, while the bottom dashed line corresponds to a Bonferroni-corrected p-value of 0.05/7. P-values below these lines indicate that the null hypotheses can be rejected at the (local or global) 95 per cent confidence level. We observe that at $d_{cut} = 3$ the Mann–Whitney test indicates that the SNIae in the $d_c \geq d_{cut}$ group have a smaller colour correction distribution than those in the $d_c < d_{cut}$ group. This holds at the 95 per cent confidence level even when the Bonferroni correction is taken into account, in contrast to the KS test.

3 EVALUATING THE RESIDUAL SCATTER

After the empirical colour and stretch corrections, SNIae still exhibit a residual scatter in their (standardized) intrinsic magnitudes. Reducing this scatter enables more precise estimation of the cosmological parameters since it allows for a more precise measurement of the distance modulus as a function of redshift. Here, we turn to the question of whether there is a statistically significant difference between the magnitude of the residual scatter in the two sub-groups defined in Section 2.3. We use the Bayesian hierarchical framework BAHAMAS (March et al. 2011; Shariff et al. 2016) to estimate the residual scatter of the two groups. This fully Bayesian approach is different from the classical χ^2 approach in two fundamental ways.

First, for each observed variable a latent (true) unobserved value is introduced using a hierarchical representation of the probabilistic relationships between the latent variables, observations, and population parameters. More specifically,

$$m^*_B = \mu(z_i, \mathcal{C}) - \alpha_{x_i} + \beta_{c_i} + M^*_i,$$ (14)

encapsulates the linear corrections to the B-band peak apparent magnitude, m^*_B, captured by the SALT2 correction, namely c_i (colour) and x_i (stretch). Here, $\mu(z_i, \mathcal{C})$ is the distance modulus, which depends on the SN's redshift, z_i, and the underlying cosmological parameters, \mathcal{C}; $\{\alpha, \beta\}$ are regression coefficients to be estimated, and M^*_i is the residual absolute magnitude after empirical corrections. More specifically, the SALT2 colour parameter is defined as $c = (B - V)_{\text{max}} - (B - V)_{\text{max, SALT2}}$, where all colours are evaluated at the time of B-band maximum, and $(B - V)_{\text{max, SALT2}}$ is the colour averaged over the SNIae in the templates (Guy et al. 2007). A value of $c < 0$ means that the blue band magnitude is smaller (i.e. brighter) than the V band, hence the object is bluer. On the other hand, $c > 0$ means the object is redder (than average). Unlike in the χ^2 approach, in BAHAMAS $\{m^*_B, x_i, c_i\}$ are latent variables that are stochastically related to their observed counterparts but differ from the data because of observational noise. Since the SNIae in our data are spectroscopically confirmed, the errors in redshift can be ignored. The redshift range of the SNIae used in this analysis is restricted by the need to acquire host galaxy images and spans $0.04 < z < 0.40$. With this narrow range, SNIa data alone cannot constrain the cosmological parameters. We therefore assume a flat ΛCDM universe with a fixed cosmology, $\{\Omega_m = 0.315, H_0 = 67.3\}$, matching the posterior mean value obtained by the Planck CMB mission (Planck Collaboration XIII 2015).

The second key feature of the Bayesian approach is its ability to account for population variability. Instead of assuming that each SNIa has the same absolute magnitude (after corrections), we assume that they vary probabilistically with an underlying population-level distribution. Specifically, we model the residual absolute magnitude, M^*_i, using a Gaussian distribution:

$$M^*_i \sim N\left(M_0, \sigma_{res}^2\right).$$ (15)

where M_0 is the mean of the residual absolute magnitudes and σ_{res}^2 is its residual standard deviation, quantifying the residual scatter of SNIae after corrections. This quantity is to be understood as a phenomenological error describing the intrinsic residual variability that is not accounted for by the empirical corrections for stretch and colour.

It was demonstrated by March et al. (2011) with simulated data that (a precursor of) the Bayesian approach used in BAHAMAS results in less-biased, more accurate estimates than the standard χ^2 approach, while improving overall coverage of the ensuing credible intervals. We apply BAHAMAS to the two SNIa groups ($d_c < 3$ and $d_c \geq 3$), as well as to the whole dataset for comparison, and obtain the marginal posterior distribution of $\{\alpha, \beta, \sigma_{res}\}$ numerically using the sampler provided in Shariff et al. (2016). Full details of BAHAMAS, including prior choices, hierarchical structure, and the sampling algorithms are given in Shariff et al. (2016).

Our approach to estimate the residual scatter and the colour and stretch correction parameters is significantly more sophisticated than what has been adopted in previous works attempting to establish the influence of galactocentric distance (Ivanov et al. 2000; Galbany et al. 2012). The Bayesian method adopted here has the advantage of exploiting the probabilistic nature of the model to ‘borrow strength’ between SNIae, thus increasing sensitivity to subtle features in the data than relative to the cruder χ^2 approach. Furthermore, we produce a full marginal probability distribution for the value of the intrinsic scatter, not just a point estimate. As shown in March et al. (2011), this results in more accurate and precise estimates for the parameters of interest than it is possible with the standard χ^2 method.

In this work, we segregate SNIae according to the two sub-groups defined above. Alternatively, one could include d_c as an additional linear covariate in the correction term in equation (14), the slope of which would be another free parameter, thus replacing equation (14) with

$$m^*_B = \mu(z_i, \mathcal{C}) + X^T B + M^*_i,$$ (16)

where $X = \{x_i, c_i, d_{z_i}\}$ and $B = \{-\alpha, \beta, \gamma\}$, with γ the slope of the galactocentric distance covariate. One would then fit the value of γ together with the colour and stretch correction coefficients, α and β. The inclusion of galactocentric distance as an additional standardization variable is akin to how the host galaxy mass correction is usually parametrized. In both cases, one can either segregate the SNIae in two groups, divided by a cut-off value, or use the additional covariate as a linear correction term in the distance modulus, as was done e.g. in Shariff et al. (2016). The second approach dispenses with the need of defining an arbitrary cut-off point.

In previous studies, Ivanov et al. (2000) and Galbany et al. (2012) investigated the impact of galactocentric distance as a covariate. Galbany et al. (2012) also used only two bins (‘near’ and ‘far’). Importantly, the ‘near’ and ‘far’ bins were defined by splitting the SNIae into two groups of equal size (and further sub-dividing them according to host morphology) and not with reference to their normalized galactocentric distance, like we do here. This might have washed out any potential correlation. A puzzling result of Galbany et al. (2012) is that while c decreased with distance (with a reported significance of the correlation coefficient of 4.4σ) for the entire data set, the effect disappeared when the data were split according to morphology. Yasuda & Fukagita (2010) also adopted (de-projected) galactocentric distance as a covariate, finding no
effect. They, however, did not attempt to normalize the galactocentric
distance to the host light radius, as we do here. For simplicity, we only consider splitting the
SNIae into two groups (with a hard, pre-defined cut), and leave investigation of the
galactocentric distance as a linear covariate to future work.

4 RESULTS

The marginal posterior distributions in one and two dimensions for the
parameters of interest, \{\alpha, \beta, \sigma_{res}\} are shown in Fig. 10, split
group at small galactocentric distance, \(d_r < 3\) (\(N_{SN} = 231\)), blue is for the
group at high galactocentric distance, \(d_r \geq 3\) (\(N_{SN} = 49\)), while black is all
SNIae combined. 1D posterior densities have been normalized to the peak.

Table 2. Marginal posterior average and standard deviation for the stretch,
\(\alpha\), and colour, \(\beta\), correction parameters as well as for the SNIae residual scatter
\(\sigma_{res}\) (after empirical corrections) for the three cases considered: including
only SNIae with small galactocentric distance (\(d_r < 3\)), only SNIae with
large galactocentric distance (\(d_r \geq 3\)) and including all SNIae irrespective
of galactocentric distance (‘All data’).

	\(d_r < 3\)	\(d_r \geq 3\)	All data
\(\alpha\)	0.149 ± 0.012	0.120 ± 0.020	0.145 ± 0.010
\(\beta\)	3.244 ± 0.162	3.640 ± 0.353	3.271 ± 0.142
\(M_0^{\alpha}\)	-19.116 ± 0.065	-19.152 ± 0.049	-19.145 ± 0.046
\(\sigma_{res}\)	0.114 ± 0.009	0.073 ± 0.018	0.108 ± 0.008

reduction of \(\approx 30\) per cent in the posterior mean values. The signifi-
cance of the difference is approximately \(2\sigma\) (computed using the standard
deviation of the difference between \(\sigma_{res}\) in the two sub-
groups and assuming Gaussian errors). While this is not strongly
significant, we emphasize the small sample size (\(N_{SN} = 49\) for the
\(d_r \geq 3\) sub-group), which results in a fairly wide posterior distribu-
tion for \(\sigma_{res}\). This means that SNIae at large galactocentric
distances show better standardization properties (i.e. are more uniform in their
magnitudes after corrections) than the whole data set. This is addi-
tionally supported by Fig. 11, showing the Hubble residuals of the
two sub-groups. The right/blue (\(d_r \geq 3\)) residuals are clearly
smaller than the left/red ones (\(d_r < 3\)). SNIae further away from
the centre of the galaxy have, on average, smaller residuals after
corrections. Therefore, cosmological distance estimation from this
sub-group can be expected to be more precise.

We show in Figs 12 and 13 the inferred posterior mean and
standard deviation for the latent colour and (post-correction)
intrinsic magnitude for each SNIa, fit separately for the two

Figure 10. 1D and 2D marginal posterior distributions for \(\alpha\), \(\beta\), and \(\sigma_{res}\)
(the residual scatter in the intrinsic magnitude), with all latent variables
and other population-level parameters marginalized over. Red is for the sub-
group at small galactocentric distance, \(d_r < 3\) (\(N_{SN} = 231\)), blue is for the
group at high galactocentric distance, \(d_r \geq 3\) (\(N_{SN} = 49\)), while black is all
SNIae combined. 1D posterior densities have been normalized to the peak.

Figure 11. Hubble residuals as a function of redshift. The left-hand panel
shows the residuals for the SNIae with \(d_r < 3\), while the right-hand panel
shows SNIae with \(d_r \geq 3\). Error bars are the posterior standard deviation
of the Hubble residual value. Also shown as horizontal dashed blue/red lines
is the posterior mean of the residual scatter, \(\sigma_{res}\), given in Table 2.

Figure 12. Posterior mean of the latent colour values (determined from
our hierarchical model) as a function of galactocentric distance, \(d_r\), colour
coded according to the two sub-groups (split at \(d_r = 3\)). The histograms at
the margins show the 1D marginal distribution of latent colour values for the
two sub-groups. The \(d_r \geq 3\) sub-group clearly shows a preferentially bluer
colour (\(c < 0\)). The vertical errorbars give the average posterior standard
deviation in the values of \(c\) for each of the two sub-groups, and the dashed
horizontal lines indicate their means.

Downloaded from https://academic.oup.com/mnras/article-abstract/481/2/2766/5097878 by Imperial College London Library user on 09 October 2018
which is typically steeper \(^2\) than the Milky Way value. For example, for SN2014J Yang et al. (2016) found evidence of a luminous arc – attributed to the CSM – with an estimated \(R_{\text{CSM}}^\beta \approx 1.4\). Recall that, from equation (14), \(\beta\) is the slope that gives the change in \(B\)-band magnitude for a unit change in the value of \(B - V\). Therefore, \(\beta\) ought to be compared to \(R_B = A_B/E(B - V)\). Given their respective definitions, it follows that \(R_B - R_V = (A_B - A_V)E(B - V) = 1\), hence \(R_B = R_V + 1\). From this, one would expect that reddening due to the CSM should typically show \(\beta_{\text{CSM}}^\beta = R_{\text{CSM}}^\beta + 1 \approx 2.4\), i.e. a much smaller value than what we observe in the \(d_r \geq 3\) sub-sample, for which \(\beta = 3.64 \pm 0.35\).

Alternatively, in the absence of CSM reddening one would expect the inferred value of \(\beta\) for the \(d_r \geq 3\) sub-sample to recover the value associated with the intrinsic colour variability of the SNIae. This has been estimated by Mandel et al. (2016) in a low-redshift sample, finding \(\beta_{\text{int}} = 2.210 \pm 0.255\), again much lower than the value we obtain for our sub-sample at high galactocentric distance. Mandel et al. (2016) argue that the simple linear colour correction formula (which we adopt in this work, in line with standard usage) effectively averages between the intrinsic colour correction, \(\beta_{\text{int}}\), and the reddening law slope. Thus, one would expect that if indeed the \(d_r \geq 3\) sub-group had negligible reddening due to the ISM, we would observe a value of \(\beta\) that averages between the \(\beta_{\text{int}} = 2.210\) value found by Mandel et al. (2016) and the CSM reddening law, equivalent to \(\beta \approx 2.2 - 2.4\). Thus, the inferred \(\beta\) for the \(d_r \geq 3\) sub-group ought to be around 2.2, which is not what we observe.

Folatelli et al. (2010) analysed the first set of low-redshift SNIae from the Carnegie Supernovae Project (CSP) and found \(R_B \approx 1.7\) \((\beta \approx 2.7\) for the entire set of SNIae. However, when excluding two highly reddened SNIae from their analysis, they obtained \(R_B \approx 3.2\) \((\beta \approx 4.2\). While their value is somewhat higher than our value for the \(d_r \geq 3\) sub-group \((\beta = 3.640 \pm 0.353\), the effect goes in the same direction. Our value for \(\beta\) for the larger galactocentric distance sub-group, however, still falls short of the average Milky Way value of \(R_V = 3.1\) (corresponding to \(\beta = 4.1\). More recently, Burns et al. (2014) used the late-time Lira (1996) law to select a low-reddening sample of 34 SNIae from the CSP. Their approach circumvents the use of galactocentric distance, which can be expected to assign to the \(d_r < 3\) sub-group SNIae that are low reddened but at small projected radii (i.e. in front of the host). Burns et al. (2014) then employed a Bayesian hierarchical model to reconstruct the reddening law of the host (under a number of priors). They found that objects with the least reddening \((E(B - V)_{\text{host}} < 0.2)\) have a reddening law compatible with the Milky Way value of \(R_V = 3.1\) (corresponding to \(\beta = 4.1\). This is compatible with our observation of a shift of \(\beta\) to larger values in the \(d_r \geq 3\) group, which (being the bluer sub-group) exhibits the least reddening. This thus hints at the possibility that the shift of \(\beta\) to higher values for the \(d_r \geq 3\) sub-group is compatible with the hypothesis that the remaining reddening is due to the host ISM. Furthermore, despite not finding any correlation between colour and galactocentric distance, Yasuda & Fukugita (2010) do observe an excess of redder colour values at low galactocentric distances, compatible with the later findings of Anderson et al. (2015b).

Another heuristic (if counterintuitive) argument in support of our findings comes from the fact that less-massive galaxies (with stellar mass \(M_* \approx 10^{10} M_\odot\)) show a larger value of \(\beta\) (Sullivan

\(^2\)The wavelength dependence of extinction in the vicinity of the \(V\) band is approximately linear in \(\lambda\), with slope \(1/R_\lambda\), where \(\lambda\) is the wavelength (Cardelli, Clayton & Mathis 1989). Hence, a smaller value of \(R_\lambda\) results in a steeper reddening law.
et al. 2010). These galaxies are also the ones with the least dusty environments (Garn & Best 2010). Hence, a larger value of β can be associated with less-dusty environments.

Taken all together, the above arguments lend credence to the hypothesis that the large d_r sub-group is actually probing a low-reddening/low-attenuation ISM environment, rather than seeing the underlying CSM/intrinsic colour scatter. The reduction in residual intrinsic scatter we observe could be the resultant of the $d_r \geq 3$ sub-group being subject to a less-dusty ISM as well as to the more homogeneous metallicity and SFR environment for this sub-group. Further work is required to disentangle the physical origin of this effect, and we comment on this aspect in the next section.

In this work, we have not divided hosts in terms of their morphology. Since early-type galaxies are dominated by old stars and are relatively dust-free (Wise & Silva 1996), while spirals have star-forming activity in the arms and a diverse (age-wise) stellar population, SNIae that occur in early-type galaxies are less likely to be significantly affected by dust. In spirals, central stars tend to be both older and metal rich than in outer regions, and therefore classifying SNIae according to both radial distance and galaxy type could potentially disentangle the effects due to stellar age and metallicity from those due to dust properties. One might therefore speculate that including host galaxy morphology information could help in further reducing the residual scatter and perhaps in clarifying the origins of the effect. Lampeitl et al. (2010) sub-divided the SDSS–II SNIa sample in two groups, according to the passive or star-forming nature of their host galaxies (based on their estimated SFR). They found a strong difference in the stretch parameter, x_i, for the two groups, but no significant difference in the colour, concluding that SNIae must have the same intrinsic colour variations in all galaxy types. This conclusion was confirmed by Henne et al. (2017), who examined the influence of galaxy morphology by classifying hosts in three groups – ellipticals/ellenticals (E,S0), early-type spirals (Sa-Sc), late-type spirals (Sd-Ir)– for 192 SNIae from JLA. While they reported 1σ shifts in the reconstructed values of α, β dependent on galactic morphology group, they did not find any significant correlation between colour and host morphology. This conclusion stood despite a weak trend of slightly bluer colour SNIae in early-type (i.e. passive) hosts. This was interpreted as being due to the larger amount of dust in spirals, which would thus make the SN colour redder. The above studies thus seem to suggest that our results are not strongly affected by the lack of morphological host information.

Even the spectroscopic SDSS–II SN sample is known to be complete only out to $z \sim 0.2$ (Sako et al. 2016), and we have used SNIae out to $z = 0.4$. As the apparent magnitude of high-z SNIae approaches the flux limit of the telescope, brighter objects will be detected preferentially, leading to a bias in their inferred distance modulus. The $d_r \geq 3$ sub-group has on average smaller colour values, and an inferred larger β value than the $d_r < 3$ group, which means that the colour correction term βC_i in equation (14) for the $d_r \geq 3$ sub-group is (at a given redshift) more positive than for the $d_r < 3$ sub-group. It follows from equation (14) that at a fixed redshift (and thus fixed value of $\mu_i(\hat{z}, C)$) the apparent magnitude for the $d_r \geq 3$ sub-group is on average smaller than for the $d_r < 3$ sub-group (since there are no significant differences in either αx_i or M^*_ν between the two groups, as shown in Figs 8 and 13). Hence, for $z > 0.2$ SNIae in the $d_r \geq 3$ sub-group can be expected to have a larger apparent brightness and therefore might be preferentially selected due to magnitude-based selection effects. When plotting the ratio of the number of SNIae in the $d_r \geq 3$ sub-group to the $d_r < 3$ sub-group as a function of redshift, we do observed an increase for $z > 0.2$. However, due to the smaller number of objects at larger redshift, the Poisson uncertainty in the ratio is quite large, and the increase in the ratio is not statistically significant. Furthermore, when considering the Hubble residuals as a function of z for the two sub-groups, we do not observe any feature in their distribution (like a skewness, which would be indicative of residual selection effects) above $z = 0.2$. Therefore, we conclude that magnitude-based selection effects do not play a statistically significant role in our results.

This work does not consider colour-based selection effects over and above the (magnitude) corrections already implemented in the JLA sample. There is evidence that high-z SNIa are bluer (Rubin & Hayden 2016) and come from less-dusty environment (Mandel et al. 2016) due to selection bias. However, our $d_r \geq 3$ sub-group spans almost the entire SDSS–SNIa redshift range (see Fig. 7), with the majority of the SNIa at $z < 0.3$, and hence colour-based selection effects are unlikely to be playing a major role here.

5 CONCLUSIONS

We have measured the projected galactocentric distance to the host of the SNIa for a sub-set of the SDSS Type Ia SN sample and investigated the scatter around the Hubble diagram (for a fixed cosmology) for two sub-groups, separated by a cut in their distance. The rationale was that SNIae at large galactocentric distances might be less subject to ISM reddening and absorption and might explode in more homogeneous environments in terms of metallicity and local SFR. We have demonstrated that SNIae further away from the host can be standardized to a higher degree, in that their intrinsic dispersion (post-stretch and colour corrections) is reduced from $\sigma_{res} = 0.114 \pm 0.009$ (for the full sample) to $\sigma_{res} = 0.073 \pm 0.018$ (for the SNIa with larger galactocentric distances). The statistical significance of the effect is, however, small (about 2σ). This is primarily due to the smallness of the sample (only 49 SNIa in the $d_r \geq 3$ sub-group). Future surveys and data tabulations should be encouraged to include measured galactocentric distances (and perhaps morphology of host) to account for this effect. In a Bayesian framework, it would be straightforward to include prior information on extinction and reddening depending on galactocentric distance and morphology of host. This has the potential to improve accuracy and precision for inferred cosmological parameters.

Future work should focus on verifying whether a larger sample size can confirm this tentative result. The SDSS–II SN sample contains a larger number of photometrically observed SNIa, which have not been included in this analysis. Campbell et al. (2016) analysed 721 SNIa from this larger data set and used different host properties such as age and metallicity to reduce the Hubble residual. Given the availability of SDSS imagery for the hosts, the additional supernovae in the photometric SDSS sample could be analyzed to corroborate or disprove this result. Also, since this is a photometric sample, there is a possibility of contamination of the sample by non-SNIa’s. A Bayesian supernova classifier (Hlozek et al. 2012; Jones et al. 2016; Revsbech, Trotta & van Dyk, 2018) can be used to account for this. Additionally, since this photometric sample contain SNIa to a higher redshift, selection effects may play a major role and have to be correctly accounted for (e.g. as in Rubin et al. 2015). Another complementary low-redshift ($0.01 < z < 0.10$) SNIa sample is the one used in Mandel et al. (2016), from a compilation of data including high-quality light curves from the CFA and CSP surveys. An advantage of this lower redshift data set is that detailed morphological studies can be carried out on these relatively nearby galaxies, to verify whether or not host galaxy type plays a role in the
correction procedure. Furthermore, the source of the difference in β value from the two sub-groups could be elucidated by analysing them with the Simple-BayeSN framework (Mandel et al. 2016). The upcoming SNIa data from the Dark Energy Survey would also be a very useful testing ground for our method. We leave exploration of all these avenues to future work.

ACKNOWLEDGEMENTS

We dedicate this paper to the memory of our colleague and co-author, L.B. Lucy (1938-2018). We thank Heather Campbell, Kaisey Mandel, and Marc Sullivan for useful discussions. We are grateful to an anonymous referee for helpful suggestions and comments that have improved this work. This work was supported by Grant ST/N000838/1 from the Science and Technology Facilities Council (UK). RT was partially supported by an Engineering and Physical Sciences Research Council ‘Pathways to Impact’ Grant. RT, DVd, and HS were supported by a Marie–Skodowska–Curie Research and Innovation Staff Exchange (H2020-MSCA-RISE-2015-746364) Grant provided by the European Commission.

REFERENCES

Ahn C. P. et al., 2014, ApJS, 211, 17
Amanullah R. et al., 2010, ApJ, 716, 712
Anderson J. P., James P. A., Habergham S. M., Galbany L., Kuncarayakti H., 2015a, Publ. Astron. Soc. Aust., 32, e019
Anderson J. P., James P. A., Förster F., González-Gaitán S., Habergham S. M., Hamuy M., Lyman J. D., 2015b, MNRAS, 448, 732
Astier P. et al., 2006, A&A, 447, 31
Astropy Collaboration, 2013, ApJ, 558, A33
Balland C. et al., 2009, A&A, 507, 85
Betoule M. et al., 2014, A&A, 568, A22
Branch D., Fisher A., Nugent P., 1993, AJ, 106, 2383
Buitrago F., Trujillo I., Conselice C. J., Bouwens R. J., Dickinson M., Yan H., 2008, ApJ, 687, L61
Burns C. R. et al., 2014, ApJ, 789, 32
Calabretta M. R., Greisen E. W., 2002, A&A, 395, 1077
Campbell H. et al., 2013, ApJ, 763, 88
Campbell H., Fraser M., Gilmore G., 2016, MNRAS, 457, 3470
Cardelli J. A., Clayton G. C., Mathis J. S., 1989, ApJ, 345, 245
Contreras C. et al., 2010, AJ, 139, 519
D’Andrea C. B. et al., 2011, ApJ, 743, 172
de Vaucouleurs G., 1959, Handbuch Phys., 53, 311
Doi M. et al., 2010, AJ, 139, 1628
Folatelli G. et al., 2010, AJ, 139, 120
Freedman W. L. et al., 2015, ApJ, 794, 1036
Galbany L. et al., 2012, ApJ, 755, 125
Gallagher J. S., Garnavich P. M., Caldwell N., Kirshner R. P., Jha S. W., Li W., Ganeshalingam M., Filippenko A. V., 2008, ApJ, 685, 752
Garn T., Best P. N., 2010, MNRAS, 409, 421
Goobar A., 2008, ApJ, 686, L103
Gunn J. E. et al., 2006, AJ, 131, 2332
Guy J. et al., 2007, A&A, 466, 11
Henne V. et al., 2017, New Astron., 51, 43
Hicken M. et al., 2009, ApJ, 700, 331
Hlozek R. et al., 2012, ApJ, 752, 79
Ivanov V. D., Hamuy M., Pinto P. A., 2000, ApJ, 542, 588
Jha S., Riess A. G., Kirshner R. P., 2007, ApJ, 659, 122
Jones D. O. et al., 2013, ApJ, 768, 166
Jones D. O., Riess A. G., Scolnic D. M., 2015, ApJ, 812, 31
Jones D. O. et al., 2016, ApJ, 843, 6
Kasen D., Woosley S. E., 2007, ApJ, 656, 661
Kelly P. L., Hicken M., Burke D. L., Mandel K. S., Kirshner R. P., 2010, ApJ, 715, 743
Kelly P. L., Filippenko A. V., Burke D. L., Hamuy M., Ganeshalingam M., Zheng W., 2015, Science, 347, 1459
Kessler R. et al., 2009, ApJS, 185, 32
Kowalski M. et al., 2008, ApJ, 686, 749
Lampeitl H. et al., 2010, ApJ, 722, 566
Lira P., 1996, Master’s thesis. Univ. Chile
Maeda K., Terada Y., 2016, Int. J. Mod. Phys. D, 25, 1630024
Mandel K. S., Wood-Vasey W. M., Friedman A. S., Kirshner R. P., 2009, ApJ, 704, 629
Mandel K. S., Scolnic D., Shariff H., Foley R. J., Kirshner R. P., 2016, ApJ, 842, 93
March M. C., Trotta R., Berkes P., Starkman G. D., Vaudevange P. M., 2011, MNRAS, 418, 2308
Moreno-Raya M. E., López-Sánchez Á. R., Mollá M., Galbany L., Vilchez J. M., Carneno A., 2016, MNRAS, 462, 1281
Paulino-Afonso A., Sobral D., Buitrago F., Afonso J., 2017, MNRAS, 465, 2717
Perlmutter S. et al., 1999, ApJ, 517, 565
Phillips M. M., 1993, ApJ, 413, L105
Phillips M. M., Lira P., Suntzeff N. B., Schommer R. A., Hamuy M., Maza J., 1999, AJ, 118, 1766
Planck Collaboration XIII, 2015, A&A, 594, A13
Ravindranath S. et al., 2004, ApJ, 604, L9
Rest A. et al., 2014, ApJ, 795, 44
Revsbech E. A., Trotta R., van Dyk D. A., 2018, MNRAS, 473, 3969
Riess A. G., Press W. H., Kirshner R. P., 1996, ApJ, 473, 88
Riess A. G. et al., 1998, AJ, 116, 1009
Rigault M. et al., 2013, A&A, 560, A66
Robotham A. S. G., Taranu D. S., Tobar R., Moffett A., Driver S. P., 2017, MNRAS, 466, 1513
Rubin D., Hayden B., 2016, ApJ, 833, L30
Rubin D. et al., 2015, ApJ, 813, 137
Sako M. et al., 2018, PASP, 130, 064002
Scovacrich D., Nichol R. C., Macaulay E., Bacon D., 2016, MNRAS, 465, 2862
Sérsic J. L., 1963, Argentina Bol., 6, 41
Shariff H., Jiao X., Trotta R., van Dyk D. A., 2016, ApJ, 827, 1
Smith M. et al., 2014, ApJ, 780, 24
Sternberg A. et al., 2011, Science, 333, 856
Sullivan M. et al., 2006, ApJ, 648, 868
Sullivan M. et al., 2010, MNRAS, 406, 782
Suzuki N. et al., 2012, ApJ, 746, 85
Trujillo I., Graham A. W., Caon N., 2001, MNRAS, 326, 869
Trujillo I. et al., 2006, ApJ, 650, 18
van der Wel A. et al., 2012, ApJS, 203, 24
van Dokkum P. G. et al., 2010, ApJ, 709, 1018
Vika M., Vulcani B., Bamford S. P., Häußler B., Rojas A. L., 2015, A&A, 577, A97
Wang L., 2005, ApJ, 635, L33
Wise M. W., Silva D. R., 1996, ApJ, 461, 155
Wood-Vasey W. M. et al., 2007, ApJ, 666, 694
Yang Y. et al., 2016, ApJ, 834, 60
Yasuda N., Fukugita M., 2010, AJ, 139, 39

This paper has been typeset from a TeX/LaTeX file prepared by the author.