ally have a lower risk of cardiovascular disease, a major cause of death in dialysis patients, compared with type 2 diabetic patients, and approximately one-third of their subjects had type 1 diabetes. Furthermore, one-third of their subjects underwent peritoneal dialysis. In general, peritoneal dialysis patients have considerably different metabolic disorders and risk factors for cardiovascular diseases compared with hemodialysis patients. The use of dialysate with high-glucose solution and continuous ultrafiltration induces different states of glycemic control, dyslipidemia, nutrition, and cardiac function. Furthermore, their patients with poor glycemic control and complications were prescribed higher doses of dialysis, which may result in a better prognosis. Second, as Snit et al. also pointed out, age and creatinine level of their subjects differed considerably from our subjects and among their three groups. Third, the existence of cardiac diseases and medications among their groups were not clearly described. In our study, these factors also strongly affected our findings.

Many confounding factors contribute to the prognosis of life in diabetic patients on dialysis. Thus, more careful analyses and interpretations will be needed in such an observational study. We hope that clinical implications of glycemic control in dialysis patients will be reexamined by many investigators for the sake of a better life for dialysis patients.

M ASANORI EMOTO, MD1 T AKESHI OOMICHI, MD1,2 T SUTOMU TABATA, MD2 T ETSUO SHOJI, MD4 Y OSHIKI NISHIZAWA, MD4

From the 1Division of Metabolism, Endocrinology, and Molecular Medicine, Department of Internal Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan; and the 2Department of Internal Medicine, Inoue Hospital, Suita, Japan.

Address correspondence to Masanori Emoto, MD, Division of Metabolism, Endocrinology, and Molecular Medicine, Department of Internal Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka, Japan, 545-8585. E-mail: memoto@med.osaka-cu.ac.jp.

DOI: 10.2337/dc06-2096
© 2007 by the American Diabetes Association.

References
1. Snit M, Burak W, Kuzniwicz R, Żukowska-Szczewska E, Grzeszczak W: Impact of glycemic control on survival of diabetic patients on chronic regular hemodialysis: a 7-year observational study (Letter). Diabetes Care 30:189, 2007
2. Oomichi T, Emoto M, Tabata T, Morioka T, Tsujimoto Y, Tahara H, Shoji T, Nishizawa Y: Impact of glycemic control on survival of diabetic patients on chronic regular hemodialysis: a 7-year observational study. Diabetes Care 29:1496–1500, 2006

Management of Hyperglycemia in Type 2 Diabetes: A Consensus Algorithm for the Initiation and Adjustment of Therapy: A Consensus Statement From the American Diabetes Association and the European Association for the Study of Diabetes

Response to Nathan et al.

The consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes published in both Diabetes Care (1) and Diabetes Care (2) included the following statement concerning the incidence of hypoglycemia in insulin-treated type 2 diabetes: “In clinical trials aimed at normoglycemia and achieving a mean A1C of ~7%, severe hypoglycemic episodes (defined as requiring help from another person to treat) occurred at a rate of between 1 and 3 per 100 patient-years.” This is not a balanced description of the published literature.

The authors cited five publications to support the statement quoted (3–7). However, two of those do not include event rates for severe hypoglycemia as defined in the statement (5,6), and one was a review with no original data (7). Notably, however, the latter review cited studies reporting severe hypoglycemia event rates of 28 and 35 per 100 patient-years in insulin-treated type 2 diabetes (7), event rates well in excess of “between 1 and 3 per 100 patient-years” (1,2). Thus, only two (3,4) of the five publications cited, involving 127 patients with insulin-treated type 2 diabetes, support the authors’ statement (Table 1).

The authors did not cite original publications reporting severe hypoglycemia event rates of 10 (8), 28 (9), 35 (10), 44 (11), and 73 (12) per 100 patient-years, involving 907 patients with insulin-treated type 2 diabetes (Table 1). (Admittedly, one [11] was published at about the same time as the consensus statement.) These five reports included a prospective study of a population-based random sample of patients with insulin-treated type 2 diabetes that found a severe hypoglycemia event rate of 35 per 100 patient-years (10). These severe hypoglycemia event rates, which ranged from 10 to 73 per 100 patient-years in insulin-treated type 2 diabetes (8–12), approach those ranging from 62 to 170 per 100 patient-years in type 1 diabetes (10,12–14) (Table 1).

Furthermore, the authors did not cite additional population-based data in which the event rates for severe hypoglycemia requiring emergency medical treatment in insulin-treated type 2 diabetes ranged from 40 (15) to 100% (16) of those in type 1 diabetes.

The barrier of hypoglycemia precludes maintenance of euglycemia over a lifetime of diabetes and thus full realization of the now well-established vascular benefits of glycemic control (17). In contrast to type 1 diabetes, hypoglycemia is relatively infrequent early in the course of type 2 diabetes when glucose counterregulatory defenses against falling plasma glucose concentrations are intact (17,18). However, as discussed here and summarized in Table 1, there is a body of evidence, including prospective, population-based data, that indicates that hypoglycemia becomes progressively more frequent, approaching its incidence in type 1 diabetes, as patients approach the insulin-deficient end of the spectrum of type 2 diabetes, when physiological and behavioral defenses against falling glucose levels become compromised (17,18).

I agree with the authors of the consensus statement that “[i]nsulin is the most effective of diabetes medications in lowering glycemia” (1,2). In my opinion, insulin should be introduced earlier, rather than later, in inadequately controlled type 2 diabetes. However, our associations should provide a balanced view of the downside of that effective therapy: hypoglycemia.

PHILIP E. CRYER, MD
Type 2 diabetes

Author (ref.)	n	AIC (%)	Event rate (per 100 patient-years)	Comment
Ohkubo et al. (3)	52	7.1 ± 1.1	0	Clinical trial, intensive insulin group
Abraira et al. (4)	75	<7.3	3	Clinical trial, intensive insulin group
Saudek et al. (8)	62	7.5 ± 0.8	10	Clinical trial, multiple insulin injection group
Henderson et al. (9)	215	8.6 ± 1.5	28	Retrospective clinic survey
Donnelly et al. (10)	173	8.9 ± 1.4	35	Prospective study of a population-based random sample
Akram et al. (11)	401	8.3	44	Retrospective clinic survey
MacLeod et al. (12)	56	NA	73	Retrospective clinic survey

Type 1 diabetes

Author (ref.)	n	AIC (%)	Event rate (per 100 patient-years)	Comment
DCCT Research Group (13)	711	∼7.1	62	Clinical trial, intensive insulin group
Reichard and Pihl (14)	48	7.1 ± 0.7	110	Clinical trial, intensive insulin group
Donnelly et al. (10)	94	8.5 ± 1.6	115	Prospective study of a population-based random sample
MacLeod et al. (12)	544	NA	170	Retrospective clinic survey

Data are means ± SD unless otherwise indicated. DCCT, Diabetes Control and Complications Trial. NA, not available.

From the Division of Endocrinology, Metabolism and Lipid Research, the General Clinical Research Center, and the Diabetes Research and Training Center, Washington University School of Medicine, St. Louis, Missouri.

Address correspondence to Philip E. Cryer, MD, Campus Box 8127, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110. E-mail: p.cryer@wustl.edu.

P.E.C. has served on advisory boards for Novo Nordisk, Takeda Pharmaceuticals North America, MannKind Corporation, and Merck & Co.

DOI: 10.2337/dc06-1670

© 2007 by the American Diabetes Association.

Acknowledgments—This work was supported, in part, by U.S. National Institutes of Health Grants R37 DK27085, M01 RR00036, P60 DK02579, and T32 DK07120 and a fellowship award from the American Diabetes Association.

Janet Dedeke assisted in the preparation of this manuscript.

References
1. Nathan DM, Buse JB, Davidson MB, Heine RJ, Holman RR, Sherwin R, Zinman B: Management of hyperglycaemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes 49:1711–1721, 2006
2. Nathan DM, Buse JB, Davidson MB, Heine RJ, Holman RR, Sherwin R, Zinman B: Management of hyperglycaemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 29:1963–1972, 2006
3. Ohkubo Y, Kishikawa H, Araki E, Miyata T, Isami S, Motoyoshi S, Kojima Y, Fujiyoshi N, Shichiri M: Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract 28:103–117, 1995
4. Abraira C, Colwell JA, Nuttall FQ, Sawin CT, Nagel NJ, Comstock JP, Emmanuelle NV, Levin SR, Henderson W, Lee HS, VA CSDM Group: Veterans Affairs Cooperative study on glycemic control and complications in type II diabetes (VA CSDM). Diabetes Care 18:1113–1123, 1995
5. Nathan DM, Roussel A, Godine JE: Glyburide or insulin for metabolic control in non-insulin-dependent diabetes mellitus. Ann Intern Med 108:334–340, 1988
6. Miller CD, Phillips LS, Ziemer DC, Gallina DL, Cook CB, El-Kebbi IM: Hypoglycemia in patients with type 2 diabetes mellitus. Arch Intern Med 161:1653–1659, 2001
7. Zammitt NN, Frier BM: Hypoglycaemia in type 2 diabetes. Diabetes Care 28:2948–2961, 2005
8. Saudek CD, Duckworth WC, Giobbie-Hurder A, Henderson WG, Henry RR, Kelley DE, Edelman SV, Zieve FJ, Adler RA, Anderson JW, Anderson RJ, Hamilton BP, Donner TW, Kirkman MS, Morgan NA, Department of Veterans Affairs Implantable Insulin Pump Study Group: Implantable insulin pump vs multiple dose insulin for non-insulin-dependent diabetes mellitus: a randomized clinical trial. J Am Med Assoc 276:1322–1327, 1996
9. Henderson JN, Allen KV, Deary IJ, Frier BM: Hypoglycaemia in insulin-treated Type 2 diabetes: frequency, symptoms and impaired awareness. Diabet Med 20:1016–1021, 2003
10. Donnelly LA, Morris AD, Frier BM, Ellis JD, Donnan PT, Durrant R, Band MM, Reelie G, Leese GP, the DARTS/MEMO Collaboration: Frequency and predictors of hypoglycaemia in type 1 and insulin-treated type 2 diabetes: a population-based study. Diabet Med 22:749–755, 2005
11. Akram K, Pedersen-Bjergaard U, Carstensen B, Borch-Johnsen K, Thorsteinsson B: Frequency and risk factors for severe hypoglycaemia in insulin-treated type 2 diabetes: a cross sectional survey. Diabet Med 23:750–756, 2006
12. MacLeod KM, Hepburn DA, Frier BM: Frequency and morbidity of severe hypoglycaemia in insulin-treated diabetic patients. Diabet Med 10:238–245, 1993
13. The Diabetes Control and Complications Trial Research Group: The effect of intensive treatment of diabetes on the development and progress of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329:977–986, 1993
14. Reichard P, Pihl M: Mortality and treatment side-effects during long-term intensified conventional insulin treatment in the Stockholm Diabetes Intervention Study. Diabetes 43:313–317, 1994
15. Holstein A, Plaschke A, Egberts EH: Clinical characterization of severe hypoglycaemia: a prospective population-based study. Exp Clin Endocrinol Diabetes 111:364–369, 2003
16. Leese GP, Wang J, Broomhall J, Kelly P, Marsden A, Morrison W, Frier BM, Morris AD, the DARTS/MEMO Collaboration: Frequency of severe hypoglycaemia requiring emergency treatment in type 1 and type 2 diabetes. Diabetes Care 26:1176–1180, 2003
17. Cryer PE: Diverse causes of hypoglycaemia-associated autonomic failure in diabetes. N Engl J Med 350:2272–2279, 2004
18. Segel SA, Paramore DS, Cryer PE: Hypo-
Management of Hyperglycemia in Type 2 Diabetes: A Consensus Algorithm for the Initiation and Adjustment of Therapy: A Consensus Statement From the American Diabetes Association and the European Association for the Study of Diabetes

Response to Nathan et al.

We applaud the efforts of those who developed the American Diabetes Association/European Association for the Study of Diabetes algorithm for managing type 2 diabetes (1). Although the algorithm provides a comprehensive assessment of the clinical utility of various medications, the authors’ strong focus on A1C as a measure of glycemic control may lead to inadequate management of glycemia because it fails to consider important issues relevant to diabetes pathophysiology and outcomes.

First, the algorithm assumes that patients have only recently developed type 2 diabetes and that the A1C is only slightly elevated. The majority of type 2 diabetes is diagnosed 9–12 years after it develops (2). Further, the algorithm suggests that individuals should first be started on lifestyle modification and metformin and then evaluated at 3 months regardless of current A1C. This initial therapy is inappropriate for patients with an A1C >10% because the average lowering capacity of metformin at a 2,000-mg dose is ~2%. In addition, not all patients are responders or candidates for that specific therapy (as with most medications). Early and aggressive intervention improves outcomes; however, the algorithm neither promotes nor supports early, aggressive management.

Second, although the authors focus on an A1C <7% as the goal, the contribution of postprandial glucose (PPG) to A1C is ignored. Monnier et al. (3) showed that PPG is the primary contributor to glycemia when A1C levels are <7.3% and very similar to fasting at levels of 8.4%. Earlier studies (4,5) showed fasting plasma glucose to be an inexact measure of glycemic control relative to A1C. Why, then, should we recommend that clinicians and patients rely on fasting plasma glucose measures to guide daily diabetes management?

Third, there is a strong link between postchallenge/PPG excursions and macrovascular disease independent of A1C levels (6,7). Monnier et al. (8) showed that glucose fluctuations during postprandial periods exhibited a more specific triggering effect on oxidative stress than chronic sustained hyperglycemia. Further, reducing glycemic excursions is causally associated with carotid intima-media thickness, a validated surrogate cardiovascular end point (7).

Assessing the benefit of a given therapy cannot be based solely on cost and efficacy in lowering glucose. The STOP-NIDDM (9) study showed a clear association between treatment with acarbose and a significant reduction in cardiovascular disease and hypertension. Use of rapid insulin reduces hypoglycemia (10). Newer medications, such as pramlintide and exenatide, have demonstrated improved PPG control and significant weight loss (11,12).

The mission of the American Diabetes Association is “to prevent and cure diabetes and to improve the lives of all people affected by diabetes” (13). Is it prudent to ignore or diminish the value and clinical utility of these medications simply because they do not meet subjective criteria regarding cost versus A1C-lowering effects? Exenatide, in combination with metformin, could be used earlier to get more patients to target and avoid costly long-term complications. We must remember that the highest cost in diabetes is not the medications; rather, it is the complications that result from not achieving good diabetes control.

The algorithm is substantially incomplete in communicating the necessity for early, aggressive management using treatment modalities that address all glycemic abnormalities. We strongly urge the authors to reevaluate their focus on A1C and expand the algorithm to include strategies to manage postprandial hyperglycemia, which is clearly required to achieve normal metabolic control.

Christopher G. Parkin, MS1
Jaime A. Davidson, MD, FACP, FACE2

From 1CG Parkin Communications, Carmel, Indiana; and the 2Medical City Dallas Hospital, University of Texas Southwestern Medical School, Dallas, Texas.

Address correspondence to Christopher G. Parkin, MS, CG Parkin Communications, 11360 Royal Ct., Carmel, IN 46032. E-mail: cgparkin@aol.com.

C.G.P. has received consulting fees from Abbott Diabetes Care, Bayer Diagnostics, Eli Lilly, EMD Pharmaceuticals, Roche Diagnostics, and Sanofi-Aventis Pharmaceuticals.

DOI: 10.2337/dc06-1858 © 2007 by the American Diabetes Association.

References

1. Nathan DM, Buse JB, Davidson MB, Heine RJ, Holman RR, Sherwin R, Zinman B: Management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 29:1963–1972, 2006

2. Harris MI, Klein R, Welborn TA, Knuiman MW: Onset of NIDDM occurs at least 4–7 yr before clinical diagnosis. Diabetes Care 15:815–819, 1992

3. Monnier L, Lapinski H, Colette C: Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients: variations with increasing levels of HbA1c. Diabetes Care 26:881–885, 2003

4. Avignon A, Radaouceanu A, Monnier L: Nonlasting plasma glucose is a better marker of diabetic control than fasting plasma glucose in type 2 diabetes. Diabetes Care 20:1822–1826, 1997

5. Bouma M, Dekker JH, de Sonnaville JJ, van der Does FE, de Vries H, Kriegsmann DM, Kostense PJ, Heine RJ, van Eijk JT: How valid is fasting plasma glucose as a parameter of glycemic control in non-insulin-using patients with type 2 diabetes? Diabetes Care 22:904–907, 1999

6. Ceriello A, Quagliao L, Piconi L, Assaloni R, Da Ros R, Maier A, Esposito K, Guigliano D: Effect of postprandial hypertriglyceridemia and hyperglycemia on circulating adhesion molecules and oxidative stress generation and the possible role of simvastatin treatment. Diabetes 53:701–710, 2004

7. Esposito K, Guigliano D, Nappo F, Marfella R: Regression of carotid atherosclerosis by control of postprandial hyperglycemia in type 2 diabetes mellitus. Circulation 110:214–219, 2004

8. Monnier L, Mas E, Ginet C, Michel F, Vilon L, Christol JP, Colette C: Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 295:1681–1687, 2006

9. Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M: Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with diabetes. The STOP-NIDDM Study Group. N Engl J Med 342:1078–1084, 2000

10. Finckh A, Halle M, Remberger M, Hausdorff W: Circulating levels of adhesion molecules and markers of oxidative stress in subjects with cardiovascular disease. Thromb Haemost 88:1082–1086, 2002

11. Ceriello A, Quagliao L, Piconi L, Assaloni R, Da Ros R, Maier A, Esposito K, Guigliano D: Effect of postprandial hypertriglyceridemia and hyperglycemia on circulating adhesion molecules and oxidative stress generation and the possible role of simvastatin treatment. Diabetes 53:701–710, 2004

12. Esposito K, Guigliano D, Nappo F, Marfella R: Regression of carotid atherosclerosis by control of postprandial hyperglycemia in type 2 diabetes mellitus. Circulation 110:214–219, 2004

13. American Diabetes Association: Standards of Medical Care for Persons with Diabetes Mellitus. Diabetes Care 30(1):S12–S54, 2007