Polymorphism in Organic Anion-Transporting Polypeptide Gene Related to Methotrexate Response in Rheumatoid Arthritis Treatment

Kenji Takahashi¹, Hiroshi Nakamura², Atsushi Watanabe³, Tokifumi Majima⁴, Masahito Koiwa⁵, Toshikazu Kamada⁶ and Shinro Takai⁶⁻¹

¹Department of Orthopaedic Surgery, International University of Health and Welfare Hospital, Tochigi, Japan
²Department of Orthopaedic Surgery, Sanno Hospital, Tokyo, Japan
³Division of Personalized Genetic Medicine, Nippon Medical School Hospital, Tokyo, Japan
⁴Department of Orthopaedic Surgery, Nippon Medical School, Tokyo, Japan
⁵Department of Orthopaedic Surgery, Shuwa General Hospital, Saitama, Japan
⁶Hara Orthopaedic Hospital, Tokyo, Japan

Background: Methotrexate (MTX) is still the first-choice drug for the treatment of rheumatoid arthritis (RA). In Japan, MTX doses of up to 16 mg/week were approved in 2011. In this study, we aimed to identify the gene polymorphisms that can predict therapeutic effects of MTX in Japanese patients in current clinical settings.

Methods: This study involved 171 patients with RA (all Japanese nationals, age 63.5±10.0 years) who had been administered MTX. The analyzed polymorphisms included 82 single nucleotide polymorphisms (SNPs) involved in the MTX pharmacological pathway or in the pathogenesis of RA. Responders were patients who showed high sustained remission or low disease activity with MTX or conventional disease-modifying anti-rheumatic drugs (DMARDs) treatment beyond 6 months. Non-responders were patients who showed moderate or high disease activity, who were prescribed biological DMARDs. A logistic model was constructed with Responder/Non-responder as the target variable, and minor allele frequency was set as an explanatory variable.

Results: None of the 82 SNPs targeted for analysis met the Bonferroni significance threshold of 6.098×10⁻⁴. However, we identified SLCO1B1 rs11045879 as an SNP that might yield significant results if the number of patients were to be increased (P=0.015).

Conclusions: The rs11045879 minor allele in the SLCO1B1 gene is a potential predictor of non-responders to MTX treatment among Japanese RA patients. In future collaborative research, we will investigate whether the association with SLCO1B1 polymorphism is significant by performing statistical analysis with a larger study population. (J Nippon Med Sch 2019; 86: 149–158)

Key words: genetic polymorphism, rheumatoid arthritis, methotrexate, precision medicine, Japanese
Fect differs between clinical cases, with some patients being responders and others being non-responders. MTX also produces a range of unexpected adverse reactions, including gastrointestinal disturbance, pneumonia, hepatic dysfunction, and bone marrow suppression. Responders account for 46% to 65% of MTX-treated patients, among whom the incidence of adverse drug reactions is around 50%. A range of factors are implicated in such individual differences, including sex, age, body weight, disease duration, and disease activity.

MTX reportedly needs to be taken for at least 6 months for its therapeutic effect to be clearly evaluated. However, a recent study has demonstrated that longer periods may be needed for this effect to be determined. Nevertheless, non-responders who have a poor prognosis with MTX treatment are recommended to take genetically engineered biologic agents and Janus kinase inhibitors with a stronger pharmacological effect than MTX as the next step. However, these are expensive agents associated with a high incidence of serious adverse drug reactions. Therefore, it is desirable to ascertain the effect of MTX before such biologic agents and Janus kinase inhibitors are used. Recent reports have shown progressive bone destruction in the early phase after RA onset. As a consequence, determinations of drug susceptibility would be very useful before MTX treatment rather than over a prolonged period of MTX treatment, with patients screened based on biologic usage and subsequent pharmacotherapy plans decided at the same time.

As mentioned earlier, MTX sensitivity can be influenced by a range of factors. One widely reported factor is gene polymorphism, with reports focusing on genes considered to encode proteins involved in the cellular uptake of MTX, its removal into the extracellular environment, and its onset of action. However, there are differences in MTX sensitivity between human populations.

In Japan, MTX was approved in 1999 with a maximum dose of 8 mg/week. The average weekly dose for Japanese patients subsequent to that approval was around 6 mg, which differed substantially from the dose in other countries. MTX doses of up to 16 mg/week were approved in 2011 after an application was made based on data in the public domain (results of MTX usage outside Japan). Research on the response to MTX treatment in Japanese RA patients was largely conducted before 2011, and involved analysis at a lower dose. Accordingly, it is possible that these evaluations are not an accurate gauge of response.

In this study, we aimed to identify gene polymorphisms that can predict therapeutic effects for MTX in Japanese patients when the drug is administered at doses approved in 2011.

Materials and Methods

Ethics

This study was approved by the Ethics Committee and Ethical Review Board on Human Genome/Gene Analysis Research of Nippon Medical School (No. 25-05); written informed consent was obtained from all patients.

Patients

A total of 180 patients with RA who had been administered MTX were selected from the Rheumatology Outpatient Clinic at the Department of Orthopaedic Surgery, Nippon Medical School Hospital, between October 2013 and September 2014. All patients had been diagnosed based on the 1987 American College of Rheumatology criteria. Eight patients could not continue MTX treatment for 6 months because of adverse events (infection 3, nasal bleeding 1, gastrointestinal symptom 2, depilation 1, eczema 1). One patient was unable to continue MTX treatment due to poor compliance. The remaining 171 patients (all Japanese nationals; 146 women, 25 men, age 63.5±10.0 years) were subjected to analysis. All patients with liver dysfunction could continue MTX treatment by dose reduction.

Clinical Information

We collected information on sex, age, serum levels of C-reactive protein, maintenance dose of MTX, and disease activity score 28 (DAS28).

DNA Extraction

A total of 5 mL of venous blood was collected from each patient, transferred to ethylenediaminetetraacetic acid vacuum tubes, and stored at 4°C before DNA extraction. Genomic DNA was extracted by a contracted clinical laboratory (SRL Inc., Tokyo, Japan) and stored at −20°C. DNA quality and purity were assessed using agarose gel electrophoresis, and optical absorbance was measured at A260/A280.

Single Nucleotide Polymorphism Selection

The candidate polymorphisms in this study included 96 single nucleotide polymorphisms (SNPs) involved in the MTX pharmacological pathway or in the pathogenesis of RA based on the previous reports. A total of 82 SNPs (from the 96 SNPs) met the criteria stated below and were included in the analysis (Table 1). The criteria were call rate (CR) ≥0.95, minor allele frequency (MAF) ≥0.01, and a p value ≥0.001 in Hardy-Weinberg equilibrium goodness-of-fit testing. We assumed a trend mode
SLCO1B1 SNP and MTX Response in RA

Reference SNP ID number	Gene symbol	Possibility of relevance	Ref.
rs10181656	STAT4	Th1 cell differentiation	12
rs1043879	CR1	Association with anti-TNF treatment efficacy	13
rs1051266	SLC19A1	Association with MTX treatment efficacy	14
rs10760130	Traf1	Role in RA susceptibility	15
rs10865035	Afp3	Association with anti-TNF treatment efficacy	16
rs10903129	Tmem57	Transmembrane protein 57	13
rs10958713	KbkB	Inhibitor of NF-kB and subsequent TNF induction	17
rs11045879	Slc01b1	Na⁺-independent uptake of organic anions such as methotrexate	18
rs11209026	Il23r gene	Rheumatoid arthritis susceptibility	19
rs1143634	Il1b	Possibly associated with IL-1 beta production	20
rs11545078	NfkB2	Role in RA susceptibility	21
rs11586238	Cd58	Role in RA susceptibility	22
rs11595324	Chuk	NF-kB induction and subsequent TNF induction	23
rs1160542	Afp3	Role in RA susceptibility	15
rs11935252	Tlr2	Role in RA susceptibility	15
rs11986055	Ikbkb	Inhibitor of NF-kB and subsequent TNF production	17
rs12081765	Intergenic	Association with anti-TNF treatment efficacy	24
rs13031237	Rel	Role in RA susceptibility	25
rs13192841	Tnfaip3	Role in RA susceptibility	26
rs13207033	Tnfaip3	Role in RA susceptibility	26
rs1532269	Pdz2d	Association with anti-TNF treatment efficacy	27
rs1650697	Dhfr	Association with MTX treatment efficacy	28
rs1678542	Kiif5a	Non-HLA rheumatoid arthritis susceptibility loci	15
rs16944	Il1b	Role in RA susceptibility	29
rs17301249	Eya4	Association with anti-TNF treatment efficacy	30
rs17602729	Ampd1	Association with MTX treatment efficacy	31
rs1799724	Tnfa	Association with anti-TNF treatment efficacy	32
rs1799964	Tnfa	Possible influence on TNF production	33
rs1800471	Tgfb1	Influence on TGF-B1 production	34
rs1800610	Tnfa	Possible influence on anti-TNF treatment efficacy	35
rs1800629	Tnfa	Association with cardiovascular event in RA	36
rs1800896	Il10	Associated with IL-10 production	37
rs1801131	Mthfr	Association with MTX treatment efficacy	31
rs1801133	Mthfr	Association with MTX treatment efficacy	31
rs1801274	Fcgr2a	Association with anti-TNF treatment efficacy	38
rs1980422	Cd28	Role in RA susceptibility	22
rs2104286	Il2ra	Association with persistence of RA	39
rs2229094	Lta	Possible influence on anti-TNF treatment efficacy	40
rs2230804	Chuk	NF-kB induction and subsequent TNF induction	23
rs2236624	Adora2a	Association with adverse event in MTX treatment	41
rs2267076	Adora2a	Association with adverse event in MTX treatment	41
rs2273697	Abcc2	Association with MTX treatment efficacy	42
rs2297480	Lta	Effect on in vitro TNF production	43
rs231775	Ctl4	Role in RA susceptibility	44
rs2372536	Atic	Association with MTX treatment efficacy	45
rs246240	Abcc1	Association with MTX treatment efficacy	46
rs2476601	Ptpn22	Role in RA susceptibility	47
rs2736340	Blk	Role in RA susceptibility	48
rs2812378	Ccl21	Role in RA susceptibility	49
rs2900180	Traf1	Role in RA susceptibility	15
rs3087243	Ctl4	Role in RA susceptibility	15
rs3218253	Il2rb	Role in RA susceptibility	50
rs35592	Abcc1	Association with MTX treatment efficacy	31
rs3758149	Ggh	Association with MTX treatment efficacy	51
rs3761422	Adora2a	Association with adverse event in MTX treatment	42
Table 1 SNPs included in the analysis (Continue)

Reference SNP ID number	Gene symbol	Possibility of relevance	Ref.
rs3761847	TRAF1-C5	Association with anti-TNF treatment efficacy	52
rs394581	TAGAP	Role in RA susceptibility	53
rs396991	FCR3A	Association with anti-CD20 treatment efficacy	54
rs4149056	SLC01B1	Association with MTX treatment efficacy	42
rs4149081	SLC01B1	Association with MTX treatment efficacy	55
rs4195998	IL1RN	Possible influence on IL-1 beta production	56
rs4694890	Intergenic	Involved in TNF-mediated responses	57
rs4750316	PRKCQ	Role in RA susceptibility	58
rs4905865	CCDC85C	Association with MTX treatment efficacy	57
rs5029937	TNFAIP3	Role in RA susceptibility	59
rs540386	TRAF6	Role in RA susceptibility	59
rs548234	PRDM1	Role in RA susceptibility	60
rs5760410	CYTSA	Association with MTX treatment efficacy	57
rs6028945	MAFB	Possible influence on anti-TNF treatment efficacy	57
rs6427528	CD84	Association with anti-TNF treatment efficacy	61
rs6691117	CR1	Association with anti-TNF treatment efficacy	13
rs6822844	IL2/IL21	Regulation of immune responses	62
rs6920220	TNFAIP3	Involved in TNF-mediated responses	63
rs7045953	TLR4	Possible role in RA susceptibility	35
rs7080681	ABCC2	Association with MTX treatment efficacy	64
rs7574865	STAT4	Role in RA susceptibility	65
rs7636361	CD226	Role in RA susceptibility	66
rs7744	MyD88	Association with anti-TNF treatment efficacy	23
rs854548	PON1	Association with anti-TNF treatment efficacy	67
rs909253	LTA	Effect on in vitro TNF production	68
rs928655	GBP6	Involved in TNF-mediated responses	69
seq.rs1045642	ABCB1	Association with MTX treatment efficacy	70

for the minor allele analysis and constructed a logistic regression model. We then applied the Wald test to ascertain associations. Strength of association was evaluated based on odds ratio.

Gene Analysis

Genotyping was performed using the Illumina SNP GoldenGate Assay (Illumina, San Diego, CA) according to the manufacturer’s specifications. Briefly, 250 ng of genomic DNA was amplified at 37°C for 20 h, and then the amplified DNA was fragmented and precipitated. The dried pellet was resuspended and hybridized to BeadChips. Hybridized BeadChips were then incubated at 48°C for 20 h, washed, and a single-base extension step performed. After that, the BeadChips were stained, washed, coated, and dried. Finally, signal intensity data were generated by an Illumina BeadArray Reader. We randomly selected 20% of the samples and genotyped them in duplicate, and 99.8% concordance was observed. Inconsistent data were excluded from the final analysis.

Evaluation of the MTX Response

MTX response was evaluated with Disease Activity Score 28-C-reactive protein in accordance with the European League against Rheumatic Diseases standards for RA activity, as follows: DAS<2.3: remission; 2.3≤DAS<2.7: low disease activity; 2.7≤DAS≤4.1: moderate disease activity; and 4.1<DAS: high disease activity.

MTX and concomitant agent dosages were adjusted monthly and taken as indications of remission or low disease activity.

Responders were those patients who showed sustained remission or low disease activity with MTX alone or with the combination therapy of other conventional DMARDs beyond 6 months. Non-responders were those patients who showed moderate or high disease activity, or those who were prescribed biological DMARDs.

Evaluation of Hepatotoxicity

We assessed MTX-induced hepatotoxicity. We defined the hepatotoxicity as serum levels of alanine aminotransferase (ALT) elevated 1.5 times over the normal range.

Statistical Analysis

A logistic model was constructed with Responder/Non-responder as a target variable, and MAF was set as an explanatory variable, to evaluate associations between the target variable and the candidate SNPs. The signifi-
SLCO1B1 SNP and MTX Response in RA

Table 2 Allele frequency

Gene symbol	Reference SNP ID number	Genotype	Patients in this study (N = 171)	HWE p	HapMap JPT* (N = 172)	P value
SLCO1B1	rs11045879	TT	57	0.157	70	0.167
		TC	91		74	
		CC	23		28	

*National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov)

HWE p: p value in Hardy-Weinberg equilibrium

Table 3 Characteristics and possible factors for MTX response in 171 patients

Factors	Non-responders	Responders	P value	Crude OR (95% CI)	P value	Adjusted OR (95% CI)	P value
Male/Female	11/87	14/59	0.145	1.88 (0.80-4.42)	0.150		
Age	65.1	62.3	0.133	1.02 (0.99-1.05)	0.135	1.02 (0.99-1.05)	0.135
Mean MTX dose (mg/week)	8.08	8.78	0.070	1.12 (0.99-1.26)	0.076	1.11 (0.98-1.27)	0.107
Hepatotoxicity							
Present/Absent Adverse event	34/64	13/60	0.014*	0.41 (0.20-0.85)	0.016*	0.47 (0.22-1.00)	0.049*
Present/Absent SLCO1B1 CC	12/86	11/62	0.592	1.14 (0.48-2.80)	0.779		
CT	17	6	0.046*	0.55 (0.34-0.89)	0.015*	0.58 (0.35-0.96)	0.034*
TT	55	36					

*P<0.05 was considered statistically significant. Statistical analysis was performed using Student’s t-test, chi-square test, and multivariate logistic regression.

P value, odds ratio (OR), and 95% confidence intervals (CI) are for multivariate logistic regression adjusted for SLCO1B1 genotype, age, MTX dosage, and presence of hepatotoxicity.

cance level was set using the Bonferroni correction for multiple comparisons. We then performed logistics analysis for the identified SNPs, taking into account clinical information.

Results

In total, 98 patients were non-responders (11 men, 87 women; mean age: 65.1 years), and 73 patients were responders (14 men, 59 women; mean age: 62.3 years). Mean MTX dose did not differ significantly between non-responders and responders, at 8.08 mg/week and 8.78 mg/week, respectively.

None of the 82 SNPs targeted for analysis met the Bonferroni significance threshold of 6.098×10⁻⁴. However, we identified SLCO1B1 rs11045879 (complete linkage disequilibrium with rs4149081) as an SNP that might yield significant results if the number of patients were to be increased (OR=0.55, 95% CI=0.34–0.89, P=0.015). The allele frequencies for the SLCO1B1 gene in this study did not significantly differ from those in the Japanese in Tokyo, Japan haplotype map collection (HapMap JPT) (Table 2). If the supplementary research included additional 80 (about half of this study) or 180 (same as this study) cases with the same genotype frequencies as the case and control groups and the same proportion of dropouts due to adverse events as the collected sample in this study, the integrated P value by meta-analysis of this research and the supplementary research would be 0.003 and 6.225×10⁻⁴, respectively. Additional 180 cases would almost meet the Bonferroni significance threshold.

Hepatic dysfunction was found in 34 non-responders and 13 responders; the incidence was significantly higher in non-responders even in multivariate analysis adjusting for MTX dose (OR=0.41, 95% CI=0.20–0.85, P=0.016). Multivariate analyses adjusting for age, MTX dose, and hepatic dysfunction revealed a significantly greater MAF in non-responders (OR=0.58, 95% CI=0.35–0.96, P=0.034) (Table 3). The SLCO1B1 rs11045879 polymorphism showed no association with hepatic dysfunction. Other adverse events that did not stop MTX treatments were seen in 23 patients (gastrointestinal symptom 8, respiratory symptom 8, leukopenia (less than 3,000/μL) 4, depilation 1, itching 2). There was no significant difference between responders and non-responders.

J Nippon Med Sch 2019; 86 (3) 153
Discussion

In this study, no SNPs met the significance threshold with Bonferroni correction (set to compensate for multiple comparisons). However, we suggest that the rs11045879 minor allele in the SLCO1B1 gene is a potential predictor of non-response to MTX treatment in Japanese RA patients. SLCO1B1 is one of the genes encoding organic anion-transporting polypeptides; it is specifically expressed in stem cell sinusoids and on the basement membranes of intestinal cells, and plays an important role in absorption of drugs from the digestive tract, subsequent transportation in blood, and uptake in hepatocytes. Drugs that are used clinically recognize the relevant substrate and include β-hydroxy β-methylglutaryl-CoA reductase inhibitors (statins), angiotensin converting enzyme inhibitors, angiotensin II receptor antagonists, hypoglycemic agents, and MTX. The rs11045879 allele in the SLCO1B1 gene is reportedly associated with MTX excretion and has reported utility for the prediction of adverse drug reactions to MTX in childhood acute lymphoblastic leukemia. Individuals homozygous for the rs11045879 minor allele CC were reported to have prolonged high-MTX plasma levels after MTX treatments due to the low capacity of MTX clearance and to have risk for MTX toxicity. This SNP could meet a Bonferroni significance threshold that was set based on the assumed power of a test for an additional study enrolling 180 patients.

Genes targeted in pharmacogenetics analysis include those encoding drug target proteins such as drug-metabolizing enzymes, drug receptors, and drug transporters. Statistical processing of such genetic information could potentially enable personalized-medicine therapeutic strategies for individual patients. In the case of MTX, associations with therapeutic effect have been reported for a number of polymorphisms. These reports cover solute carrier family 19 (SLC19A1; or the reduced folate carrier-1), which is involved in the cellular uptake of MTX; the ATP binding cassette subfamily C member 1 (ABCC1), which affects the expression of P-glycoprotein, a protein involved in MTX excretion; methylenetetrahydrofolate reductase, a folate-metabolizing enzyme; thymidylate synthetase (TYMS); and 5-aminomimidazole-4-carboxamide ribonucleotide formyltransferase (ATIC), an enzyme in the adenosine pathway related to the anti-inflammatory effect of MTX. SNP analyses have revealed large disparities between human populations. In 2011, the Japanese authorities increased the approved dosage from the previous limit of 8 mg/week to 16 mg/week, in consideration of the results seen at the higher dosage levels outside of Japan. This study was the first research on associations between SNPs and the therapeutic effect of MTX in Japan since the raising of the MTX upper dose limit; the mean MTX dose in responders is around 9 mg. The results of our analysis reflect the current treatment of RA in actual clinical settings.

The results of this study showed a low possibility for an MTX therapeutic effect against RA in carriers of the minor allele of the SLCOB1 gene. We consider that MTX treatment can be started while predicting responders and non-responders based on determinations of SLCOB1 polymorphism carried out prior to treatment. We also consider that carriers of the SLCOB1 minor allele should be monitored for therapeutic effect in the early stage of treatment and may require treatment centered on biology that are completely uninfluenced by the SLCO1B1 gene.

The incidence of hepatic dysfunction was significantly higher in non-responders in the present study. All patients with liver dysfunction could continue MTX treatment by dose reduction, and mean MTX in non-responders was lower than in responders. Therefore, we conducted multivariate analysis for the predictive factor of MTX response, adjusting for liver dysfunction, mean MTX dose, and SLCO1B1 genotype, and liver dysfunction was still significant. Another new finding in this research is that hepatotoxicity significantly and independently influenced the response to MTX treatment.

In conclusion, the rs11045879 minor allele in the SLCO1B1 gene is a potential predictor of non-responders to MTX treatment in Japanese RA patients. In future collaborative research, we will investigate whether the association with SLCO1B1 polymorphism is significant by performing statistical analysis with a larger study population.

Funding: This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Conflict of Interest: None.

Acknowledgement: We thank Ms. Mariko Sugimoto of Nippon Medical School for her support in organizing the data.

References
1. Smolen JS, Landewé R, Bijlsma J, Burmester G, Chatzidionysiou K, Dougados M, Nam J, Ramiro S, Voshaar M,
van Vollenhoven R, Aletaha D, Aringer M, Boers M, Buckley CD, Buttgereit F, Bykerk V, Cardiel M, Combe B, Cutofo M, van Eijk-Hustings Y, Emery P, Finckh A, Gabay C, Gomez-Reino J, Gossec L, Gottenberg JE, Hazes JM, Huizinga T, Jani M, Karateev D, Kouloumas M, Kvien T, Li Z, Mariette X, McInnes I, Mysler E, Nash P, Pavelka K, Poo R, Ghez C, van Riel P, Rubbert-Roth A, Saag K, da Silva J, Stamm T, Takeuchi T, Westhovens R, de Wit M, van der Heijde D: EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update. Ann Rheum Dis 2017; 76: 960–977.

2. Weinblatt ME, Kaplan H, Germain BF, Block S, Solomon SD, Merriman RC, Frederick W, Wall B, Anderson L, Gall E, Torretti D, Weissman B: Methotrexate in rheumatoid arthritis. A five-year prospective multicenter study. Arthritis Rheum 1994; 37: 1492–1498.

3. Walker AM, Funch D, Dreyer NA, Tolman KG, Kremer JM, Alarcon GS, Lee RG, Weinblatt ME: Determinants of serious liver disease among patients receiving low-dose methotrexate for rheumatoid arthritis. Arthritis Rheum 1993; 36: 329–335.

4. Bathon JM, Martin RW, Fleischmann RM, Tesser JR, Schiff MH, Keystone EC, Genovese MC, Wasko MC, Moreland LW, Weaver AL, Markenson J, Finck BK: A comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. N Engl J Med 2000; 343: 1586–1593.

5. Kremer JM, Phelps CT: Long-term prospective study of the use of methotrexate in the treatment of rheumatoid arthritis. Update after a mean of 90 months. Arthritis Rheum 1992; 35: 138–145.

6. Anderson JJ, Wells G, Verhoeven AC, Felson DT: Factors predicting response to treatment in rheumatoid arthritis: the importance of disease duration. Arthritis Rheum 2000; 43: 22–29.

7. Ortdendahl M, Holmes T, Schettler JD, Fries JF: The methotrexate therapeutic response in rheumatoid arthritis. J Rheumatol 2002; 29: 2084–2091.

8. Graudal NA, Jurik AG, de Carvalho A, Graudal HK: Radiographic progression in rheumatoid arthritis: a long-term prospective study of 109 patients. Arthritis Rheum 1998; 41: 1470–1480.

9. Wolfe F, Sharp JT: Radiographic outcome of recent-onset rheumatoid arthritis: a 19-year study of radiographic progression. Arthritis Rheum 1998; 41: 1571–1582.

10. Qiu P, Huang J, Shu X, Fan H, Zhou Y, Xiao C: Polymorphisms and pharmacogenomics for the clinical efficacy of methotrexate in patients with rheumatoid arthritis: a systematic review and meta-analysis. Sci Rep 2017; 7: 44015. doi: 10.1038/srep44015.

11. Takatori R, Takahashi K, Tokunaga D, Hojo T, Fujikoma M, Asano T, Hirata T, Kawaih T, Satomi T, Nishino H, Tanaka T, Hirota Y, Kubo T: ABCB1 C3435T polymorphism influences methotrexate sensitivity in rheumatoid arthritis patients. Clin Exp Rheumatol 2006; 24: 546–554.

12. Li J, Wang XR, Zhai XW, Wang HS, Qian XW, Miao H, Zhu XH: Association of SLC01B1 gene polymorphisms with toxicity response of high dose methotrexate chemotherapy in childhood acute lymphoblastic leukemia. Int J Clin Exp Med 2015; 8: 6109–6113.

13. Song CG, Bae SC, Choi SJ, Ji JD, Lee YH: Associations between interleukin-23 receptor polymorphisms and susceptibility to rheumatoid arthritis: a meta-analysis. Mol Biol Rev 2012; 39: 10655–10663.

14. van der Staaten RJ, Wessels JA, de Vries-Bouwstra JK, Goekoop-Ruiterman YP, Allaart CF, Bogaart J, Tiller M, Huizinga TW, Guchelaar HJ: Exploratory analysis of four polymorphisms in human GGH and FPGS genes and their effect in methotrexate-treated rheumatoid arthritis patients. Pharmacogenomics 2007; 8: 141–150.

15. Raychaudhuri S, Thomson BP, Remmers EF, Eyre S, Hinks A, Guiducci C, Catanese JJ, Xie G, Stahl EA, Chen R, Alfredsson L, Amos CI, Ardlie KG, Consortium B, Barton A, Bowes J, Burtt NP, Chang M, Coblyn J, Costenbader KH, Criswell LA, Crusius JB, Cui J, De Jager PL, Ding B, Emery P, Flynn E, Harrison P, Hocking LJ, Huizinga TW, Kastner DL, Ke X, Kureemman FA, Lee AT, Liu X, Li Y, Martin P, Morgan AW, Padyukov L, Reid DM, Seielstad M, Selden MF, Shadick NA, Steer S, Tak PP, Thomson W, van der Helm-van Mil AH, van der Horst-Bruinsma IE, Weinblatt ME, Wilson AG, Wolbink GJ, Wordsworth P, Consortium Y, Altshuler D, Karlson EW, Toes RE, de Vries N, Begovich AB, Siminovich KA, Worthington J, Klareskog L, Gregersen PK, Daly MJ, Pfeifer RM: Genetic variants at CD28, PRDM1 and CD2/CD86 are associated with rheumatoid arthritis risk. Nat Genet 2009; 41: 1313–1318.

16. Potter C, Cordell HJ, Barton A, Daly AK, Hyrich KL,
Mann DA, Morgan AW, Wilson AG, Biologics in Rheumatoid Arthritis G, Genomics Study S, Isaacs JD: Association between anti-tumour necrosis factor treatment response and genetic variants within the TLR and NF-κB signalling pathways. Ann Rheum Dis 2010; 69: 1315–1320.

24. Marquez A, Ferreiro-Iglesias A, Davila-Fajardo CL, Montes A, Pascual-Salcedo D, Perez-Pampin E, Moreno-Ramos MJ, Garcia-Portales R, Navarro F, Moreira V, Magro C, Caliz R, Ferrer MA, Alegre-Sancho JJ, Joven B, Carreira P, Balsa A, Vasiopoulou Y, Sarafidou T, Cabeza-Barrera J, Narvaez J, Raya E, Canete JD, Fernandez-Nebro A, Ordonez Mdel C, de la Serna AR, Magallanes B, Gomez-Reino JJ, Gonzalez A, Martin J: Lack of validation of genetic variants associated with anti-tumor necrosis factor therapy response in rheumatoid arthritis: a genome-wide association study replication and meta-analysis. Arthritis Res Ther 2014; 16: R66.

25. Eyre S, Hinks A, Flynn E, Martin P, Wilson AG, Maxwell JR, Morgan AW, Emery P, Steer S, Hocking LJ, Reid DM, Harrison P, Wordsworth P, Thomson W, Worthington J, Barton A: Confirmation of association of the REL locus with rheumatoid arthritis susceptibility in the UK population. Ann Rheum Dis 2010; 69: 1572–1573.

26. Musone SL, Taylor KE, Lu TT, Nittitham J, Ferreira RC, Ortman W, Shirin N, Petri MA, Kamboh MI, Manzi S, Seldin MF, Gregersen PK, Behrens TW, Ma A, Kwok PY, Criswell LA: Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat Genet 2008; 40: 1062–1064.

27. Plant D, Bowes J, Potter C, Hyrich KI, Morgan AW, Wilson AG, Isaacs JD, Wellcome Trust, Case Control C, British Society for Rheumatology Biologists R, Barton A: Genome-wide association study of genetic predictors of anti-tumor necrosis factor treatment efficacy in rheumatoid arthritis identifies associations with polymorphisms at seven loci. Arthritis Rheum 2011; 63: 645–653.

28. Owen SA, Hider SL, Martin P, Bruce IN, Barton A, Thomson W: Genetic polymorphisms in key methotrexate pathway genes are associated with response to treatment in rheumatoid arthritis patients. Pharmacogenomics J 2013; 13: 227–234.

29. Korczowska I: Rheumatoid arthritis susceptibility genes: An overview. World J Orthop 2014; 5: 544–549.

30. Daen CL, Morel J: Predictive factors of response to biological disease modifying anti-rheumatic drugs: towards personalized medicine. Mediators Inflamm 2014; 2014: 386148.

31. Qiu Q, Huang J, Shu X, Fan H, Zhou Y, Xiao C: Polymorphisms and Pharmacogenomics for the Clinical Efficacy of Methotrexate in Patients with Rheumatoid Arthritis: A Systematic Review and Meta-analysis. Sci Rep 2017; 7: 44015.

32. Sode J, Vogel U, Bank S, Andersen PS, Thomsen MK, Hetland ML, Locht H, Heegaard NH, Andersen V: Anti-TNF treatment response in rheumatoid arthritis patients is associated with genetic variation in the NLRP3-inflammasome. PLoS One 2014; 9: e100361.

33. Zhu J, Qu H, Chen X, Wang H, Li J: Single nucleotide polymorphisms in the tumor necrosis factor-alpha gene promoter region alter the risk of psoriasis vulgaris and psoriatic arthritis: a meta-analysis. PLoS One 2013; 8: e64376.

34. Chen Y, Dawes PT, Packham JC, Mattey DL: Interaction between smoking and functional polymorphism in the TGFβ1 gene is associated with ischaemic heart disease and myocardial infarction in patients with rheumatoid arthritis: a cross-sectional study. Arthritis Res Ther 2012; 14: R81.

35. Toonen E: Predicting response to anti-tumour necrosis factor therapy in rheumatoid arthritis patients: what has genetics taught us so far? OA Arthritis 2013; 1: 3.

36. Teruel M, Martin JE, Gonzalez-Juaneyte C, Lopez-Mejias R, Miranda-Filloy JA, Blanco R, Balsa A, Pascual-Salcedo D, Rodriguez-Rodriguez L, Fernandez-Gutierrez B, Ortiz AM, Gonzalez-Alvaro I, Gomez-Vaquero C, Bottini N, Llorca J, Gonzalez-Gay MA, Martin J: Association of acid phosphatase locus 1C allele with the risk of cardiovascular events in rheumatoid arthritis patients. Arthritis Res Ther 2011; 13: R116.

37. Davis LA, Whitfield E, Cannon GW, Wolff RK, Johnson DS, Reimold AM, Kerr GS, Richards JS, Mikuls TR, Caplan L: Association of rheumatoid arthritis susceptibility gene with lipid profiles in patients with rheumatoid arthritis. Rheumatology (Oxford) 2014; 53: 1014–1021.

38. Avila-Pedretti G, Tornero J, Fernandez-Nebro A, Blanco F, Gonzalez-Alvaro I, Canete JD, Mayno J, Alperiz M, Fernandez-Gutierrez B, Olive A, Corominas H, Erra A, Aterido A, Lopez Lasanta M, Tortosa R, Julia A, Marsal S: Variation at FCGR2A and functionally related genes is associated with the response to anti-TNF therapy in rheumatoid arthritis. PLoS One 2015; 10: e0122088.

39. van Steenbergen HW, van Nies JA, Ryussen-Witrand A, Huizinga TW, Cantagrel A, Berenbaum F, van der Helm-van Mil AH: IL2RA is associated with persistence of rheumatoid arthritis. Arthritis Res Ther 2015; 17: 244.

40. Merino AM, Zhang K, Kaslow RA, Assnani B: Structure of tumor necrosis factor-alpha haplotypes in European populations. Immunogenetics 2013; 65: 543–552.

41. Hider SL, Thomson W, Mack LF, Armstrong DJ, Shadforth M, Bruce IN: Polymorphisms within the adenosine receptor 2a gene are associated with adverse events in RA patients treated with MTX. Rheumatology (Oxford) 2008; 47: 1156–1159.

42. Jenko B, Tomsic M, Jekic B, Milic V, Dolzan V, Praprotnik S: Clinical Pharmacogenetic Models of Treatment Response to Methotrexate Monotherapy in Slovenian and Serbian Rheumatoid Arthritis Patients: Differences in Patient’s Management May Preclude Generalization of the Models. Front Pharmacol 2018; 9: 20.

43. Levy ME, Parker RA, Ferrell RE, Zmuda JM, Greenspan SL: Farnesyl diphosphate synthase: a novel genotype association with bone mineral density in elderly women. Maturitas 2007; 57: 247–252.

44. Torres-Carrillo N, Ontiveros-Mercado H, Torres-Carrillo NM, Parra-Rojas I, Rangel-Villalobos H, Ramirez-Duenas MG, Gutierrez-Urena SR, Valle Y, Munoz-Valle JF: The –319C/+49G/CT66G haplotype of CTLA-4 gene confers susceptibility to rheumatoid arthritis in Mexican population. Cell Biochem Biophys 2013; 67: 1217–1228.

45. Lima A, Bernardes M, Azevedo R, Medeiros R, Seabra V: Moving toward personalized medicine in rheumatoid arthritis: SNPs in methotrexate intracellular pathways are associated with methotrexate therapeutic outcome. Pharmacogenomics 2016; 17: 1649–1674.

46. Lima A, Bernardes M, Azevedo R, Medeiros R, Seabra V: Pharmacogenomics of Methotrexate Membrane Transport Pathway: Can clinical response to methotrexate in rheumatoid arthritis be predicted? Int J Mol Sci 2015; 16: 13760–13780.

47. Sinir O, Gomez-Cabbrero D, Montes A, Perez-Pampin E, Gomez-Reino JJ, Seddighzadeh M, Klich KU, Israelsson L, Ding B, Catrina AI, Holmdahl R, Alfredsson L, Klareskog K. Takahashi, et al J Nippon Med Sch 2019; 86 (3)
53. van der Helm-van Mil AH, Toes RE, Huizinga TW: Genetic variants in the prediction of rheumatoid arthritis. Ann Rheum Dis 2010; 69: 1694–1696.

54. Oorooco G, Hinks A, Eyer S, Ke X, Gibbons LJ, Bowes J, Flynn E, Martin P, Wellcome Trust Case Control C, consortium Y, Wilson AG, Bax DE, Morgan AW, Emery P, Steer S, Hocking L, Reid DM, Wordsworth P, Harrison P, Thomson W, Barton A, Worthington J: Combined effects of three independent SNPs greatly increase the risk estimate for RA at 6q23. Hum Mol Genet 2009; 18: 2693–2699.

55. Lu XL, Zhou XJ, Guo JP, Jia RL, Zhao Y, Jiang Q, Liu XY, Liu Y, Sun LY, Zhang H, Li ZG: Rs548234 polymorphism at PRDM1-ATG5 region susceptible to rheumatoid arthritis in Caucasians is not associated with rheumatoid arthritis in Chinese Han population. Chin Med J (Engl) 2011; 124: 2863–2867.

56. Cui J, Stahl EA, Saevasdottir S, Miceli C, Diogo D, Trynka G, Raj T, Mirkov MU, Canhao H, Ikari K, Terao C, Okada Y, Wedren S, Askgling J, Yamanaka H, Momohara S, Taniguchi A, Ohmura K, Mutsuda F, Miimi T, Gupta N, Kuchroo V, Morgan AW, Isaacs JD, Wilson AG, Hyrich KL, Herenius M, Doororspleet ME, Tak PP, Crusius JB, van der Horst-Bruinsma IE, Wolbink GJ, van Riel PL, van de Laar M, Guchelaar HJ, Shadick NA, Allaert CF, Huizinga TW, Toes RE, Kimberly RP, Bridges SL Jr, Criswell LA, Moreland LW, Fonseca JE, de Vries N, Stranger BE, De Jager PL, Raychaudhuri S, Gregersen PK, Mariette X, Barriefa A, Pad syukov L, Coenen MJ, Karlson EW, Plenge RM: Genome-wide association study and gene expression analysis identifies CD84 as a predictor of response to etanercept therapy in rheumatoid arthritis. PLoS Genet 2013; 9: e1003394.

57. Daha NA, Kurreeman FA, Marques RB, Stoeken-Rijsbergen G, Verduijn W, Huizinga TW, Toes RE: Confirmation of STAT4, IL12/IL21, and CTLA4 polymorphisms in rheumatoid arthritis. Arthritis Rheum 2009; 60: 1255–1260.

58. Shen N, Ruan Y, Lu Y, Jiang X, Sun H, Gao G, Nong L, Ren K: Three single nucleotide polymorphisms of TNFAIP3 gene increase the risk of rheumatoid arthritis. Oncotarget 2017; 8: 20784–20793.

59. Ranganathan P, Culverhouse R, Marsh S, Mody A, Scott-Horton TJ, Brasington R, Joseph A, Reddy V, Eisen S, McLeod HIL: Methotrexate (MTX) pathway gene polymorphisms and their effects on MTX toxicity in Caucasian and African American patients with rheumatoid arthritis. J Rheumatol 2008; 35: 572–579.

60. Coniglio P, Cicciaci C, Politi C, Triggiani P, Rufini S, Kroegler B, Perricone C, Latini A, Novelli G, Borgiani P, Perricone R: Polymorphisms in STAT4, PTNP2, PSORS1C1 and TRAF3I P2 Genes Are Associated with the Response to TNF Inhibitors in Patients with Rheumatoid Arthritis. PLoS One 2017; 12: e0169956.

61. Lee YH, Bae SC, Song GG: Association between the CTLA-4 CD226, FAS polymorphisms and rheumatoid arthritis susceptibility: a meta-analysis. Hum Immunol 2015; 76: 83–89.

62. Liu C, Batliwalla F, Li W, Lee A, Roubenoff R, Beckman E, Khalili H, Damle A, Kern M, Furie R, Dupuis J, Plenge RM, Coenen MJ, Behrens TW, Carulli B, Gregersen PK: Genome-wide association scan identifies candidate polymorphisms associated with differential response to anti-TNF treatment in rheumatoid arthritis. Mol Med 2008; 14: 575–581.
68. Zhang C, Zhao MQ, Liu J, Huang Q, Li P, Ni J, Liang Y, Pan HF, Ye DQ: Association of lymphotxin alpha polymorphism with systemic lupus erythematosus and rheumatoid arthritis: a meta-analysis. Int J Rheum Dis 2015; 18: 398–407.

69. Ovejero-Benito MC, Prieto-Perez R, Llamas-Velasco M, Belmonte C, Cabaleiro T, Roman M, Ochoa D, Talegon M, Saiz-Rodriguez M, Dauden E, Abad-Santos F: Polymorphisms associated with etanercept response in moderate-to-severe plaque psoriasis. Pharmacogenomics 2017; 18: 631–638.

70. Sala-Icardo L, Lamana A, Ortiz AM, Garcia Lorenzo E, Moreno Fresneda P, Garcia-Vicuna R, Gonzalez-Alvaro I: Impact of genetic variants of ATP binding cassette B1, ALCAR transformylase/IMP cyclohydrolase, fohyl-polyglutamatesynthetase, and methylenetetrahydrofolateeductase on methotrexate toxicity. Reumatol Clin 2017; 13: 318–325.

71. Staatz CE, Tett SE: Pharmacology and toxicology of mycophenolate in organ transplant recipients: an update. Arch Toxicol 2014; 88: 1351–1389.

72. Ieiri I, Higuchi S, Sugiyama Y: Genetic polymorphisms of uptake (OATP1B1, 1B3) and efflux (MRP2, BCRP) transporters: implications for inter-individual differences in the pharmacokinetics and pharmacodynamics of statins and other clinically relevant drugs. Expert Opin Drug Metab Toxicol 2009; 5: 703–729.

73. Schmiegelow K: Advances in individual prediction of methotrexate toxicity: a review. Br J Haematol 2009; 146: 489–503.

74. Lopez-Lopez E, Ballesteros J, Piñan MA, Sanchez de Toledo J, Garcia de Andoin N, Garcia-Miguel P, Navajas A, Garcia-Orad A: Polymorphisms in the methotrexate transport pathway: a new tool for MTX plasma level prediction in pediatric acute lymphoblastic leukemia. Pharmacogenet Genomics 2013; 23: 53–61.

75. Owen SA, Hider SL, Martin P, Bruce IN, Barton A, Thompson W: Genetic polymorphisms in key methotrexate pathway genes are associated with response to treatment in rheumatoid arthritis patients. Pharmacogenomics J 2013; 13: 227–234.

76. Salazar J, Moya P, Altés A, Díaz-Torné C, Casademont J, Cerdà-Gabani D, Corominas H, Baiget M: Polymorphisms in genes involved in the mechanism of action of methotrexate: are they associated with outcome in rheumatoid arthritis patients? Pharmacogenomics 2014; 15: 1079–1090.

77. Lima A, Monteiro J, Bernardes M, Sousa H, Azevedo R, Seabra V, Medeiros R: Prediction of methotrexate clinical response in Portuguese rheumatoid arthritis patients: implication of MTHFR rs1801133 and ATIC rs4673993 polymorphisms. BioMed Res Int 2014; 2014: 368681.

78. Lima A, Seabra V, Bernardes M, Azevedo R, Sousa H, Medeiros R: Role of key TYMS polymorphisms on methotrexate therapeutic outcome in Portuguese rheumatoid arthritis patients. PLoS One 2014; 9: e108165. doi: 10.1371/journal.pone.0108165.

79. Jekic B, Lukovic L, Bunjevacki V, Milic V, Novakovic I, Damnjanovic T, Milasin J, Popovic B, Maksimovic N, Damjanov N, Radunovic G, Kovacevic L, Krajnovic M: Association of the TYMS 3G/3G genotype with poor response and GGH 354GG genotype with the bone marrow toxicity of the methotrexate in RA patients. Eur J Clin Pharmacol 2013; 69: 377–383.

(Received, September 7, 2018)
(accepted, January 22, 2019)