Abstract—Using artificial neural network for the prediction of heat demand has attracted more and more attention. Weather conditions, such as ambient temperature, wind speed and direct solar irradiance, have been identified as key input parameters. In order to further improve the model accuracy, it is of great importance to understand the influence of different parameters. Based on an Elman neural network (ENN), this paper investigates the impact of direct solar irradiance and wind speed on predicting the heat demand of a district heating network. Results show that including wind speed can generally result in a lower overall mean absolute percentage error (MAPE) (6.43%) than including direct solar irradiance (6.47%); while including direct solar irradiance can achieve a lower maximum absolute deviation (71.8%) than including wind speed (81.53%). In addition, even though including both wind speed and direct solar irradiance shows the best overall performance (MAPE=6.35%), ENN may not always benefit from the simultaneous introduction of both wind speed and direct solar irradiance, according to MAPE in broken down ranges of heat demands (0~150MW, 150~300MW, 300~450MW and >450MW).

Index Terms—District heating, data processing, Elman neural network (ENN), heat demand, direct solar irradiance, wind speed.

1 INTRODUCTION

EVEN though district heating (DH) has been considered as the most efficient, environment friendly and cost-effective method for supplying heat to buildings, it is nowadays facing big challenges of further improving efficiency, reducing cost and enhancing profitability. In general, reducing the peak load has been considered as a crucial issue regarding both efficiency improvement and cost saving. In order to reduce the peak, it is of great importance to understand the consumption pattern and predict the peak load precisely. Meanwhile, examining the experience in the electricity market shows that demand response is an effective way to save energy and reduce the cost [1], [2], [3]. For the time-critical DH system [4], similar benefits can also be achieved if heat can be supplied in a more dynamic way, such as hourly, according to the demand. To adjust the heat supply, accurate prediction of heat demand is essential for DH companies.

Thermal energy is the product of mass flow, temperature difference, the specific heat of the water, and time. Models for predicting the heat demand can be classified into two categories: physical models, which are developed based on energy balance according to the principle of heat transfer [5], [6]; and statistic models, which are built up based on measured data and data processing technologies [7], [9], [10], [25], [59], [60]. Evolving technologies about smart meters and smart energy network open up new opportunities for the second category as more and more energy data become available [11], [21]. Data analysis can extract valuable information from large amount of data, which can be further used for model design and algorithm implementation [12], [13]. Many data analysis methods [12], [24] have been developed and adopted in the intelligent energy networks. Therefore, the statistic models attract more and more attention in the prediction of heat demand, due to its unique advantages, such as the ability to reflect the sociological behaviors of consumers. Generally, the most popular methods for data analysis in energy networks are linear regression (LR), support vector machine (SVM) and neural networks. Correspondingly, many statistic models have been developed to predict heat demand and shown good abilities to produce accurate predictions [12], [13], [15], [58].

Statistic models need to correlate the heat demand to some parameters, such as meteorological parameters, the building type and time of the day etc. The ambient temperature is the most important meteorological parameter, since it determines the temperature difference between indoor and outdoor, which is the main driving force for heat transfer [9], [15], [63]. However, it is not sufficient to obtain satisfying results by only considering ambient temperature. In order to further improve the accuracy of prediction, other meteorological parameters, such as wind speed and direct solar irradiance, have also been considered. For example, Michalakakou et al. [17] involved direct solar irradiance as one of the inputs in an artificial neural network (ANN) model to forecast the heat demand in residential buildings. Yang et al. [20] combined the numerical weather prediction (NWP) with an ANN model for the projection of heat load, in which both direct solar irradiance and wind speed were taken as inputs. Kusiak et al. [19], [22] identified wind speed as an important parameter in predicting building energy demand. Fu et al. [23] verified the importance of direct solar irradiance on the thermal load of a micro DH network. It can be concluded that both the wind speed and the direct solar irradiance have been identified as important meteorological parameters, which should be considered as inputs to a statistic model. However, the impacts of direct solar irradiance and wind speed have not been quantitatively
compared regarding the prediction of energy consumption. Different opinions exist in the open literature about which parameter should give a higher priority \[8, 16, 26, 39, 47, 48, 49, 50\]. In order to achieve a high accuracy of prediction, it is of great significance to clarify their quantitative impacts. Therefore, this work aims to quantitatively investigate the impacts of direct solar irradiance and wind speed on heat demand prediction.

Meanwhile, most of the previous studies mainly focused on the heat demand from the consumption side, for example the heat demand of different types of buildings; while fewer efforts have been dedicated from the production side, due to lack of data \[51, 52, 53, 54, 61\]. However, an accurate prediction of heat demand is more significant to district heating companies as the dynamic heat demand is needed by the planning and optimization of heat production and the determination of heat price. Therefore, the contributions of this work to academia and industry include: (I) to determine the quantitative influence of direct solar irradiation and wind speed; (II) to identify the most important parameter regarding the improvement of the prediction accuracy; and (III) to develop a statistic model with high accuracy for the prediction of heat demand at DH plants.

2 Model Description

Statistical Models are developed based on Elman neural networks (ENN) in this paper. ENN is an effective method for predicting energy demands. In previous studies, it has been used in short term heat demand prediction \[23\], mid-long term electricity demand prediction \[59\] and host energy demand prediction \[50\].

2.1 Elman Neural Network

ENN is a global feed forward and local recurrent neural network proposed in 1990 by Elman for the purpose of overcoming the drawbacks of the traditional neural networks \[57\]. An ENN generally comprises four levels: the input, the hidden, the context, and the output layers. The structures of input, hidden, and output layers are similar to the normal feedforward neural network. The role of context layer nodes is to store the output of the hidden layer nodes, which are used for activating the nodes of hidden layer in the next time step and equivalent to the time delay operator.

A typical ENN has one hidden layer with delayed feedback. However, an ENN with multiple hidden layers (ENN-m) is often used in order to achieve a better prediction performance, which is represented as:

\[
x_1(t) = f[W^1 u(t) + W^{-1} x_{c,1}(t)],
\]

\[
x_i(t) = f[W^i x_{i-1}(t) + W^{c,i} x_{c,i}(t)], \quad i = 2, 3, \ldots, n,
\]

\[
x_{c,i}(t) = x_i(t - 1), \quad i = 1, 2, \ldots, n,
\]

\[
y(t) = g[W^{n+1} x_n(t)],
\]

where \(t \) is the time step, \(n \) is the number of hidden layers, \(u(t) \) is the input of the model, \(x_{c,i}(t) \) and \(x_i(t) \) are the output of context layer \(i \) and hidden layer \(i \), \(y(t) \) is the output of output layer, \(W^1 \) is the connection weight matrix between the input layer and the hidden layer 1, \(W^i \) is the connection weight matrix between the hidden layer \(i \) and the hidden layer \((i-1)\), \(W^{n+1} \) is the connection weight matrix between the hidden layer \(n \) and the output layer, and \(W^{c,i} \) is the connection weight matrix between the hidden layer \(i \) and the context layer \(i \) respectively. \(f(\cdot) \) and \(g(\cdot) \) are transfer functions, of which \(f(\cdot) \) is a tangent sigmoid transfer function and \(g(\cdot) \) is a linear transfer function. The structure of ENN-m is shown in Figure 1. It is noted that Figure 1 describes the structure of ENN-m with \(n \) hidden layers but only shows context layer 1 for hidden layer 1 as an example.

2.2 Data

Hourly data during the period of 2008-2011 were collected from a utility company in Västerås, Sweden, including the heat consumption, ambient temperature, direct solar irradiance and wind speed. This DH company provides about 1.6TWh heat to more than 14 thousand users, which can be categorized into six groups: villas, multi-family buildings, office & school buildings; commercial buildings;
hospital/social services buildings; and industry buildings. Considering the clear difference about the heat demand in working days and non-working days, this work mainly focuses on working days in order to achieve a higher accuracy.

To quantitatively evaluate the impacts of wind speed and direct solar irradiance on the prediction of heat demand, respectively, four datasets were created for ENN model training, which details are listed in Table 2.

2.3 Model Training

2.3.1 Training Steps of Models

For ENN-m, the length of slide window and the number of hidden layers of neural networks are two key parameters. In order to achieve a better performance, their impacts on the prediction of heat demand are evaluated. To investigate the impact of the length of slide windows, data in consecutive 2, 4 and 8 hours are combined to create a super-vector. A super-vector is the input of neural network at one time step. A step size, which is set as a half of the length of slide window, is selected to update the super-vector. For example, a step size will be 2 hours. Correspondingly, the first super-vector is the input of neural network at one time step.

To evaluate the model performance, the mean absolute percentage error (MAPE) and the root mean square error (RMSE) are used as indicators. MAPE is defined as

$$\text{MAPE} = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{y_i - y_{pi}}{y_i} \right| \times 100\%.$$

RMSE is an absolute indicator to measure the performance of models

$$\text{RMSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - y_{pi})^2}.$$

where y_i is the actual heat demand, y_{pi} is the predicted result, and N is the number of the points of heat demand predictions.

The Student’s t-test is a statistical hypothesis test and usually used to determine if MAPEs of the models are significantly different from each other. A significant difference on MAPEs means that the factors may play a decisive role regarding the model performance. Meanwhile, a boxplot graphically depicts the distribution of MAPEs. The interquartile range and mid-range of the boxplot are used to find a group of results which have the most concentrated distribution and the lowest quartiles of MAPEs.

3 Results

3.1 The impacts of the number of hidden layers and the length of slide window

Short-term predictions of heat demand were implemented to investigate the impacts of the number of hidden layers and the length of slide window. The data from October 2008 to February 2009 (five months) were used for model training and those in March 2009 (one month) were used for model validation. To study the impacts of the number of hidden layers and the length of slide window, 6 models were obtained, as shown in Table 3. Here, “window” means the length of slide window and “layers” denotes the number of hidden layers. Each model was trained by using dataset A-D, respectively. Correspondingly, the inputs for each model are ambient temperature ($T_{ambient}$), $T_{ambient} +$ direct solar irradiance data ($R_{solarirradiance}$), $T_{ambient} +$ wind speed.

TABLE 2

Dataset	Heat demand	Ambient temperature	Direct solar irradiance	Wind speed
Dataset A	✓	✓	×	×
Dataset B	✓	✓	✓	×
Dataset C	✓	✓	×	✓
Dataset D	✓	✓	✓	✓

The Z-Score or named standard score is used as the normalization method before model training to preprocess measured data, which is represented as follows:

$$\hat{x}_i = \frac{x_i - \mu}{\sigma^2}, i = 1, 2, \cdots , N,$$

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i,$$

$$\sigma^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu)^2,$$

where x_i is an element of the measured data, $x = (x_1, \cdots , x_N)$, \hat{x}_i is an element of the normalized data $\hat{x} = (\hat{x}_1, \cdots , \hat{x}_N)$, μ and σ^2 are the sample mean and the unbiased sample variance of x, and N is the length of x and \hat{x}.
(V_{\text{wind}}), \text{ and } T_{\text{ambient}} + R_{\text{solarirradiance}} + V_{\text{wind}}$. Each model was trained and tested for 10 times in order to analyze the distribution of errors.

240 groups of results were obtained from each model. Table 4 and Table 5 show the mean and the variance of MAPE and RMSE. The computing methods of mean and variance are showed in (9) and (10). The smallest mean and variance are showed in (9) and (10). The smallest mean and variance of MAPE and RMSE of the obtained models have been highlighted.

Table 6 and Table 7 show the p-value of the Student’s t-test, where the statistical significance threshold is 0.05 ($\alpha = 0.05$). During the test, either the length of slide windows or the number of hidden layers is varied, while the other remains the same. For example, to do the Student’s t-test between the MAPE of models which have different numbers of hidden layers, the length of slide windows should be kept the same. If the calculated p-value is below the chosen threshold, the null hypothesis is rejected in favor to the alternative hypothesis.

Comparing the models which have different numbers of hidden layers, those with 8 hidden layers only have slightly lower MAPE and RMSE than those with 4 hidden layers. Meanwhile, all the results of the Students t-test show statistically insignificant different, which implies that increasing the number of hidden layers is not an effective way to improve the performance. However, the computation time is much longer when the number of hidden layers increases. For example, for a computer with Intel core i5-6600@3.30GHz CPU and 4GB RAM, training a neural network with 16 or more hidden layers consumes more than 5 hours than training a neural network with 8 hidden layers. Therefore, 8 hidden layers are selected in this work.

Comparing the models which have different lengths of slide window, those with a 4-hour slide window have smaller MAPE and RMSE than those with a 8-hour slide window. Results of the Students t-test also show that the distributions of MAPEs obtained by using 2-hour and 8-hour slide windows have significantly statistical difference. It is the same for the distributions of MAPEs obtained by using 4-hour and 8-hour slide windows. However, the distributions of MAPEs obtained by 2 and 4-hour slide window don't have statistically significant difference. Therefore, the 4-hour slide window is chosen.

3.2 The Impacts of Data Amount on the Prediction of Heat Demand

Long-term predictions of heat demand were implemented to investigate the impacts of data amount one year (2010), two year (2009 and 2010) and three year data (2008 to 2010) were used for model training respectively, resulting in three models, ENN-1, ENN-2 and ENN-3. To evaluate the model performance, the data of 2011 were used for model validation.

Table 8 and Table 9 show the mean and variance of MAPE and RMSE. The smallest ones have been highlighted in bold. In general, using more data for model training can clearly improve the model performance, no matter what the input factors are.

Figure 2 and 3 show the boxplots of MAPE and the tendency of daily MAPE (DMAPE) in a part of prediction interval trained by using 4 datasets. DMAPE shows daily tendency of prediction errors clearly.

\[
\text{DMAPE} = \frac{1}{24} \sum_{i=1}^{24} \left| \frac{y_i - y_{pi}}{y_i} \right| \times 100\% ,
\]

where y_i is the actual heat demand and y_{pi} is the predicted result.

It is obvious that when more data have been used for model training, a better accuracy can be obtained.
TABLE 3
Different Models for the Short-term Prediction of Heat Demand

Length of slide windows (hr)	2	4	8
4 hidden layers	“Elman, window=2, layers=4”	“Elman, window=4, layers=4”	“Elman, window=8, layers=4”
8 hidden layers	“Elman, window=2, layers=8”	“Elman, window=4, layers=8”	“Elman, window=8, layers=8”

TABLE 4
Mean and Variance of MAPE

Number of hidden layers	4	8	4	8	4	8	
Dataset A	Mean	4.11%	4.17%	4.14%	4.14%	4.35%	4.28%
	Variance	2.9E-06	1.7E-06	2.2E-07	1.01E-07	7.4E-07	6.61E-07
Dataset B	Mean	4.21%	4.26%	4.34%	4.33%	4.52%	4.50%
	Variance	2.30E-06	1.98E-06	4.50E-07	3.48E-07	8.33E-07	1.96E-06
Dataset C	Mean	4.17%	4.23%	4.18%	4.20%	4.46%	4.44%
	Variance	2.40E-06	1.91E-06	8.99E-08	7.40E-07	6.61E-07	6.21E-07
Dataset D	Mean	4.3%	4.35%	4.32%	4.32%	4.66%	4.60%
	Variance	1.89E-06	3.44E-07	1.35E-07	1.40E-06	1.12E-06	1.12E-06

TABLE 5
Mean and Variance of RMSE

Number of hidden layers	4	8	4	8	4	8	
Dataset A	Mean	17.8545	18.2153	18.1363	18.1395	18.2800	18.1169
	Variance	0.0794	0.1134	0.0703	0.0683	0.1059	0.0458
Dataset B	Mean	18.4278	18.7067	18.9075	18.8704	19.2753	19.2306
	Variance	0.2878	0.1941	0.1265	0.0569	0.1279	0.3684
Dataset C	Mean	18.3824	18.2272	18.3412	18.3981	18.7891	18.8548
	Variance	0.1375	0.1957	0.0447	0.0389	0.1486	0.0452
Dataset D	Mean	18.9048	18.7553	18.8673	18.8945	19.6771	19.4505
	Variance	0.1318	0.2485	0.0473	0.0272	0.1770	0.1735

TABLE 6
P-value of the Student’s T-test between MAPE where Lengths of Slide Windows Are 2, 4 and 8 Hrs

Number of hidden layers	Length of slide windows (hr)	Dataset A	Dataset B	Dataset C	Dataset D
	2 and 4	0.420481	0.026466	0.002646	0.242179
	4 and 8	0.000134	2.89E-05	0.000101	8.61E-05
	4 and 8	8.46E-06	7.03E-05	7.75E-08	2.12E-07
	8 and 4	0.498705	0.000111	0.000534	0.001374
	8 and 8	0.033244	0.002473	0.000273	0.00273
	8 and 8	7.13E-05	0.000203	2.29E-07	3.10E-07

TABLE 7
P-value of the Student’s T-test between MAPE where Numbers of Hidden Layers Are 4 and 8

Length of slide windows	Dataset A	Dataset B	Dataset C	Dataset D
	2	0.339876	0.523546	0.389471
	4	0.682536	0.639843	0.169053
	8	0.149735	0.649133	0.668691

TABLE 8
Means and Variances of MAPE in Long-term Heat Demand Prediction

Model	ENN-1	ENN-2	ENN-3	
Dataset A	Mean	6.05%	6.45%	6.60%
	Variance	6.51E-07	7.21E-08	1.91E-07
Dataset B	Mean	6.61%	6.51%	6.42%
	Variance	2.78E-07	6.82E-07	8.64E-08
Dataset C	Mean	6.67%	6.48%	6.46%
	Variance	2.17E-07	2.28E-07	1.59E-06
Dataset D	Mean	6.68%	6.51%	6.43%
	Variance	2.94E-07	3.44E-07	1.39E-07

TABLE 9
Means and Variances of RMSE in Long-term Heat Demand Prediction

Model	ENN-1	ENN-2	ENN-3	
Dataset A	Mean	15.13	14.72	14.79
	Variance	0.0077	0.0032	0.0012
Dataset B	Mean	15.06	14.71	14.69
	Variance	0.0089	0.0053	0.0024
Dataset C	Mean	14.96	14.55	14.60
	Variance	0.0075	0.0034	0.0013
Dataset D	Mean	14.85	14.51	14.58
	Variance	0.0111	0.0062	0.0038

TABLE 10
P-value of the Student’s T-test between MAPE of Models

Models	Dataset A	Dataset B	Dataset C	Dataset D
ENN-1 and ENN-2	2.17E-06	0.004228	4.29E-08	4.03E-06
ENN-1 and ENN-3	2.65E-07	9.22E-09	8.78E-05	1.65E-09
ENN-2 and ENN-3	0.009206	0.004532	0.584193	0.00252

According to the results of MAPE, RMSE, the Student’s training set can improve the model performance and reduce MAPE and RMSE.
t-test and boxplots, three year data were used for model training.

3.3 The Impacts of Key Parameters

The model, “Elman, window=4, layers=8”, trained by using Dataset A, Dataset B, Dataset C or Dataset D, was renamed as ENN-A, ENN-B, ENN-C and ENN-D. Correspondingly, they use the ambient temperature, ambient temperature + direct solar radiance, ambient temperature + wind speed, and ambient temperature + direct solar radiance + wind speed as inputs, respectively. Table 11 lists MAPE and RMSE. Generally speaking, all models are capable to reflect the change of heat demand and predict the heat demand with MAPE less than 6.60% and RMSE less than 14.8000. ENN-D shows the best accuracy with MAPE=6.35% and RMSE=14.5358. It is also clear that the introduction of direct solar radiance and wind speed has positive impacts on the performance as ENN-B, C and D have smaller MAPE and RMSE than ENN-A. Comparatively, the inclusion of wind speed results in a better prediction accuracy than that of the direct solar radiance. This implies that wind speed is a more important parameter. Meanwhile, the introduction of both wind speed and direct solar radiance simultaneously can further improve the model accuracy.

Table 11 also presents the maximum absolute deviation (MAD) of different models

\[\text{MAD} = \max_{i} |y_i - y_{pi}|, \]

where \(y_i \) is the actual heat demand and \(y_{pi} \) is the predicted result.

It is clear that compared to ENN-A, including direct solar irradiance and wind speed can reduce MAD. Meanwhile, including direct solar irradiance is more effective than including wind speed to reduce MAD, even though including wind speed (ENN-C) can result in a lower MAPE.

TABLE 11	MAPE, RMSE and MAD of Different Models		
Model	MAPE	RMSE	MAD
ENN-A	6.50%	14.7751	91.6261
ENN-B	6.47%	14.6969	71.8131
ENN-C	6.43%	14.6139	81.5368
ENN-D	6.35%	14.5358	70.6640

Figure 4 shows the distribution of absolute errors (in percentage). For all models, most of errors (>74%) is between -5%~5%. However, it is worth to note that although ENN-A has the highest MAPE, it has the most points in the range of -5%~5%. Meanwhile, there are more points which heat demand was under-estimated than those which heat demand was over-estimated for all of the models.

In order to further understand the error distributions, MAPE, RMSE and MAD of different models were re-calculated corresponding to different heat demand ranges and results were listed in Table 12.14. For all of models, MAPE decreases, while RMSE increases with the increase of heat demands. However, direct solar irradiance and wind speed may have different influences at different heat demands. According to MAPE (Table 12), at very low demand (0~150MW), it is more beneficial to include wind speed (ENN-C); while in the demand of 150~300MW, including direct solar irradiance (ENN-B) has the lowest MAPE. In addition, despite that ENN-D has the lowest overall MAPE as shown in Table 11, it does not always have the lowest MAPE at different heat demands. It only has the lowest MAPE in the demand range of 300~450MW. In general, it can be concluded that the statistic model can clearly benefit from introducing more meteorological parameters at high demands, such as >450MW. It is mainly owing to that space heating accounts for a bigger fraction at higher demands and introducing more meteorological parameters can result in a better estimation of heat loss.

The influence of input factors on MAD is not consistent at different heat demands. As illustrated in Table 13, including direct solar irradiance can reduce MAD except in the demand range of 150~300MW and it is more effectively than including wind speed. Moreover, similar to the results about MAPE, including both direct solar irradiance and wind speed does not necessarily result in the lowest MAD.

TABLE 12	MAPE at Different Heat Demand Ranges			
Heat demand (MW)	ENN-A	ENN-B	ENN-C	ENN-D
0~150	8.95%	8.87%	8.73%	8.83%
150~300	4.95%	4.93%	5.06%	4.97%
300~450	4.14%	4.13%	4.06%	4.04%
>450	3.89%	3.71%	3.63%	3.66%

TABLE 13	RMSE at Different Heat Demand Ranges			
Heat demand (MW)	ENN-A	ENN-B	ENN-C	ENN-D
0~150	9.8899	9.8798	9.9209	9.8010
150~300	15.9006	15.9266	16.0522	15.9812
300~450	19.8979	19.7661	19.2720	19.2544
>450	25.2362	24.3013	23.7500	23.7959

TABLE 14	MAD at Different Heat Demand Ranges			
Heat demand (MW)	ENN-A	ENN-B	ENN-C	ENN-D
0~150	28.5977	26.4968	26.5604	23.7552
150~300	46.4071	55.1570	52.5413	54.5364
300~450	91.6261	71.8131	81.5368	70.6640
>450	48.5284	43.9760	46.3392	47.8068

The distribution of absolute errors (in percentage) was also broken down at different heat demands and shown. Obviously, no matter what the heat demand is, the most of
errors of all models are in the range of -5%~5%, which is similar to the overall error distribution. Comparatively, for the heat demand of 0~150MW, the fraction of the points with errors larger than 10% or lower than -10% is much higher. That is the reason that all models have the worst MAPE.

3.4 Discussions

As shown in Table [12][14], ENN may not benefit from the introduction of both wind speed and direct solar irradiance simultaneously. The potential reasons include: 1) the effect of one factor is already included into another (e.g., the effect of wind on the demand is reflected by the temperature); hence, it is not necessary to include redundant information in the analysis. 2) For ENN, there are different ways when integrating multi-factors. In order to further improve the ENN, advanced fusion methods may be applied. For example, with the principle of hierarchical neural network, two ENNs, each one with a single factor, can be trained separately. Then the two trained ENNs can be combined to get an ENN model for prediction. 3) Data discontinuity and outliers, including additive outlier, level shift, temporary change and ramp effect of data quality, may also have influence on the performance of heat demand prediction [62]. Therefore, there is a strong requirement about checking the data quality.

4 Conclusion

Ambient temperature, wind speed and direct solar irradiance have been recognized as key input parameters in the development of statistic models for predicting heat demand. In order to understand the quantitative influence of different meteorological parameters, this paper developed a new model based on Elman neural network for the prediction of the heat demand from the heat production side. Based on the results, that the following conclusions are drawn:

- ENN with multiple hidden layers has a good ability to predict the heat demand accurately; and the slide window and the number of layers have been identified as two key parameters influencing the model performance. With a slide window of 4 hours and a number of layers of 8, the mean absolute percentage error (MAPE) is less than 7%.
- Including wind speed can result in a lower overall MAPE (6.43%) than including direct solar irradiance (6.47%); therefore, wind speed should receive more attention when developing a statistic model.
- Including both wind speed and direct solar irradiance can further improve the overall performance, which MAPE is 6.35%.

References

[1] H. Li and Q. Sun and Q. Zhang and F. Wallin, A Review of the Pricing Mechanisms for District Heating Systems, Renewable and Sustainable Energy Reviews, 2015; 42: 56–65.
[2] E. Pan and D. Wang and Z. Han, Analyzing Big Smart Metering Data Towards Differentiated User Services: A Sublinear Approach, IEEE Transactions on Big Data, 2016; 2(3): 249–261.
[3] Y. Wang and S. Mao and R. M. Nelms, Distributed Online Algorithm for Optimal Real-Time Energy Distribution in the Smart Grid, IEEE Internet of Things Journal, 2014; 1(1): 70–80.
[4] P. Basantaval and N. C. Audsley and A. J. Wellings and I. Gray and N. Fernandes-garcia, Architecting Time-Critical Big-Data Systems, IEEE Transactions on Big Data, 2016; 2(4): 310–324.
[5] Z. Melikyan, Residential Buildings: Heating Loads, Encyclopedia of Energy Engineering, 2007; 3: 1272–1277.
[6] A. Fouda and Z. Melikyan, Assessment of A Modified Method for Determining the Cooling Load of Residential Buildings, Energy, 2010; 35: 4726–4730.
[7] M. F. Torchio and G. Genon and A. Poggio and M. Poggio, Merging of Energy and Environmental Analyses for District Heating Systems, Energy, 2009; 34: 220–227.
[8] Z. Ma, P. K. Rana, J. Taghia, M. Flierl, and A. Leijon, “Bayesian estimation of Dirichlet mixture model with variational inference,” Pattern Recognition, vol. 47, no. 9, pp. 3143–3157, 2014.
[9] E. Dotzauer, Simple Model for Prediction of Loads in District-Heating Systems, Applied Energy, 2002; 73: 277–284.
[10] Z. Ma and H. Li and Q. Sun and C. Wang and A. Yan and F. Starfelt, Statistical Analysis of Energy Consumption Patterns on the Heat Demand of Buildings in District Heating Systems, Energy and Buildings, 2014; 85: 464–472.
[11] Q. Sun and H. Li and Z. Ma and C. Wang and J. Campillo and Q. Zhang and F. Wallin and J. Guo, A Comprehensive Review of Smart Meters in Intelligent Energy Networks, IEEE Internet of Things Journal, 2015; 3(4): 464–472.
[12] Z. Ma and J. Xie and H. Li and Q. Sun and Z. Si and J. Zhang and J. Guo, The Role of Data Analysis in the Development of Intelligent Energy Networks, IEEE Network, Vol. 31, Issue 5, pp. 88–95, 2017.
[13] W. Shao and F. D. Salim and A. Song and A. Bouguettaya, Clustering Big Spatiotemporal-Interval Data, IEEE Transactions on Big Data, 2016; 2(3): 190–203.
[14] H. Yu, Z. H. Tan, Z. Ma, R. Martin, and J. Guo, “Spoofing detection in automatic speaker verification systems using DNN classifiers and dynamic acoustic features,” IEEE Transactions on Neural Networks and Learning Systems, vol. PP, no. 99, pp. 1–12, 2018.
[15] S. Shamsiehband and D. Petkovic and R. Enayatifar and A. H. Abdollah and D. Markovic and M. Lee and R. Ahmad, Heat Load Prediction in District Heating Systems with Adaptive Neuro-Fuzzy Method, Renewable and Sustainable Energy Reviews, 2015; 48: 760–767.
[16] Z. Ma and A. Leijon, “Bayesian estimation of beta mixture models with variational inference,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 11, pp. 2160–73, 2011.
[17] G. Michalakakou and M. Santamouris and A. Tsagkousis, On the Energy Consumption in Residential Buildings, Energy and Buildings, 2002; 34(7): 727–736.
[18] Z. Ma, A. E. Teschendorff, A. Leijon, Y. Qiao, H. Zhang, and J. Guo, “Verification of a Bayesian mixture factorization for bounded support data,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 4, pp. 876–89, 2015.
[19] J. Taghia, Z. Ma, and A. Leijon, “Bayesian estimation of the von-Mises Fisher mixture model with variational inference,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 9, pp. 1701–1715, Sept 2014.
[20] H. Yang and S. Jin and S. Feng and B. Wang and F. Zhang and J. Che, Heat Load Forecasting of District Heating System Based on Numerical Weather Prediction Model, 2nd International Forum on Electrical Engineering and Automation (IFEEA 2015), 2015.
[21] Z. Ma, A. Leijon, and W. B. Kleijn, “Vector quantization of LSF parameters with a mixture of Dirichlet distributions,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 21, no. 9, pp. 1777–1790, Sept 2013.
[22] A. Kusiak and M. Li and Z. Zhang, A Data-Driven Approach for Steam Load Prediction in Buildings, Applied Energy, 2010; 87(3): 925–933.
[23] X. Fu and S. Huang and R. Li and Q. Guo, Thermal Load Prediction Considering Solar Radiation and Weather, Energy Procedia, 2016; 103: 3–8.
[24] Q. Xu, Q. Yin, Y. Huang, Y.Z. Song, Z. Ma, L. Wang, T. Xiang, W. B. Kleijn, and J. Guo, “Cross-modal subspace learning for fine-grained sketch-based image retrieval,” NEUROCOMPUTING, vol. 278, pp. 75–86, Feb. 2018.
[25] X. Ma, J. Zhang, Y. Zhang, and Z. Ma, “Data scheme-based wireless channel modeling method: motivation, principle and perfor-
mance," Journal of Communications and Information Networks, vol. 2, no. 3, pp. 41–51, Sep 2017.
[26] R. E. Edwards and J. New and L. E. Parker, Predicting Future Hourly Residential Electrical Consumption: A Machine Learning Case Study, Energy and Buildings, 2012; 49: 591–603.
[27] M. A. Leijon, “Human audio-visual consonant recognition analyzed with three bimodal integration models,” in Proceedings of INTERSPEECH, 2009.
[28] P. Xu, Z. Ma, Y. Li, J. Guo, and Z. Guo, “Cross-modal subspace learning for sketch-based image retrieval: A comparative study,” in Proceedings of IEEE International Conference on Network Infrastructure and Digital Content, 2016.
[29] H. Zhou, N. Zhang, D. Huang, Z. Ma, W. Hu, and J. Guo, “Activation force-based air pollution tracing,” in Proceedings of IEEE International Conference on Network Infrastructure and Digital Content, 2016.
[30] Z. Wang, Y. Qi, J. Liu, and Z. Ma, “User intention understanding from scratch,” in IEEE International Workshop on Sensing, Processing and Learning for Intelligent Machines, 2016.
[31] Y. Chen, Y. Li, F. Qi, Z. Ma, and H. Zhang, “Cycled merging registration of point clouds for 3d human body modeling,” in IEEE International Workshop on Sensing, Processing and Learning for Intelligent Machines, 2016.
[32] H. Yu, A. Sarkar, D. A. L. Thomsen, Z.-H. Tan, Z. Ma, and J. Guo, "Effect of multi-condition training and speech enhancement methods on spoofing detection," in IEEE International Workshop on Sensing, Processing and Learning for Intelligent Machines, 2016.
[33] B. A. Frigyik, A. Kapila, and M. R. Gupta, "Introduction to expectation propagation," in Proceedings of IEEE Conference on Signals, Systems, and Computers, 2014.
[34] P. K. Rana, Z. Ma, J. Taghia, and M. Fliert, "Multiview depth map enhancement by variational bayes inference estimation of dirichlet mixture models," in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 2013.
[35] Z. Ma, R. Martin, J. Guo, and H. Zhang, "Nonlinear estimation of missing lsf parameters by a mixture of dirichlet distributions," in Proceedings of International Conference on Acoustics, Speech, and Signal Processing, 2014.
[36] B. A. Frigyik, A. Kapila, and M. R. Gupta, "Introduction to the Dirichlet distribution and related processes," Department of Electrical Engineering, University of Washington, Tech. Rep., 2010.
[37] Z. Ma and A. Leijon, “A probabilistic principal component analysis based hidden markov model for audio-visual speech recognition,” in Proceedings of IEEE Asilomar Conference on Signals, Systems, and Computers, 2008.
[38] ——, “Expectation propagation for estimating the parameters of the beta distribution,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 2010.
[39] R. K. Jain and K. M. Smith and P. J. Culligan and J. E. Taylor, Forecasting Energy Consumption of Multi-Family Residential Buildings Using Support Vector Regression: Investigating the Impact of Temporal and Spatial Monitoring Granularity on Performance Accuracy, Applied Energy, 2014; 123: 168–178.
[40] Z. Ma, A. Leijon, Z.-H. Tan, and S. Gao, “Predictive distribution of the dirichlet mixture model by local variational inference,” Journal of Signal Processing Systems, vol. 74, no. 3, pp. 359–374, Mar 2014.
[41] Z. Ma, S. Chatterjee, W. Kleijn, and J. Guo, "Dirichlet mixture modeling to estimate an empirical lower bound for LSF quantization," Signal Processing, vol. 104, no. 11, pp. 291–295, Nov. 2014.
[42] Z. Ma, H. Li, Q. Sun, C. Wang, A. Yan, and F. Starfelt, “Statistical analysis of energy consumption patterns on the heat demand of buildings in district heating systems," Energy and Buildings, vol. 85, pp. 464–472, Dec. 2014.
[43] Z. Ma and A. Leijon, “Modeling speech line spectral frequencies with dirichlet mixture models,” in Proceedings of INTERSPEECH, 2010.
[44] Z. Ma and A. Leijon, “Human skin color detection in rgb space with bayesian estimation of beta mixture models,” in Proceedings of European Signal Processing Conference, 2010.
[45] Z. Ma, J. Taghia, W. B. Kleijn, A. Leijon, and J. Guo, “Line spectral frequencies modeling by a mixture of von misesfisher distributions,” Signal Processing, vol. 114, pp. 219–224, Sept. 2015.
[46] Z. Ma, Z.-T. Tan, and J. Guo, “Feature selection for neutral vector in EEG signal classification,” NEUROCOMPUTING, vol. 174, pp. 937–945, 2016.