Real-World Evidence: Multicenter Efficacy and Toxicity Analysis of Nintedanib With Docetaxel as Second-Line Treatment in Mexican Patients With Advanced Lung Adenocarcinoma

Jeronimo Rafael Rodríguez-Cid, MD, MSc; Saul Campos-Gomez, MD, MSc; Vanessa Garcia-Montes, MD; Manuel Magallanes-Maciel, MD; Rodrigo Rafael Flores-Maritellerena, MD; Valeria Michelle Fernández-Garibay, MD; Iván Romanico González-Espinoza, MD; Juan Paulo Ceja-García, MD; Juan Carlos Cázarez-Price, MD; Luis Martínez-Barrera, MD; Leopoldo Barriguete-Parra, MD; Carlos José Zuloaga-Fernandez, MD; Roberto Kuri-Exsome, MD; David Suárez-García, MD; Jorge Ignacio González-Villanueva, MD; Noé Flores-Anaya, MD; Jose Antonio Acevedo-Delgado, MD; Alma Magdalena Astorga-Ramos, MD; Raquel Gerson-Cwilich, MD; Alberto Villalobos-Prieto, MD; Claudia Rodríguez-Silva, MD; Maria Fernanda Noriega-Iriondo, MD; Leticia Vázquez-Cortés, MD; Eusebio Perales-Rodríguez, MD; Alicia Acosta-Espinoza, MD; Yareni Perez-Lozano, MD; Daniel Capdeville-García, MD; and Jorge Arturo Alatorre-Alexander, MD

PURPOSE
The LUME-Lung 1 study has brought consistent evidence of the effective use of nintedanib in lung adenocarcinoma as a second-line treatment; however, differences among ethnicities have been found in some studies.

METHODS
This was a retrospective review among 21 medical centers of 150 patients with a confirmed diagnosis of lung adenocarcinoma, included in a compassionate use program of nintedanib from March 2014 to September 2015. The current study aimed to analyze the effectiveness of nintedanib in combination with docetaxel in the Mexican population, using progression-free survival rate and the best objective response to treatment by RECIST 1.1 as a surrogate of effectiveness. In addition, we examined the toxicity profile of our study population as a secondary end point.

RESULTS
After exclusion criteria, only 99 patients met the criteria for enrollment in the current study. From the total study population, 53 patients (53.5%) were male and 46 (46.5%) were female, with an average age of 60 years and stage IV as the most prevalent clinical stage at the beginning of the compassionate use program. A total of 48 patients (48.5%) had partial response; 26 (26.3%), stable disease; 4 (4%), complete response; and 16 (16.2%), progression; and 5 (5%) were nonevaluable. We found a median progression-free survival of 5 months (95% CI, 4.3 to 5.7 months). The most common grade 3 or 4 adverse reactions were fatigue (14%) and diarrhea (13%).

CONCLUSION
Nintedanib, as part of a chemotherapy regimen, is an effective option with an acceptable toxicity profile for advanced lung adenocarcinoma after first-line treatment progression.

JCO Global Oncol 6:462-470. © 2020 by American Society of Clinical Oncology

INTRODUCTION
Lung cancer represents the leading cause of cancer-related deaths worldwide, with nearly all patients facing disease progression during or after first-line therapy. Approximately 85% of patients with lung cancer are found to have a non–small-cell lung cancer (NSCLC) tumor histology, from which 50% are further classified as adenocarcinoma, followed by squamous cell carcinoma with 40%, and other less common subtypes such as large cell carcinoma and carcinoid tumor accounting for the rest. Despite the growing research involving NSCLC pathology and the development of molecular-targeted therapies, additional efforts to improve treatment must be implemented. Failure to achieve prolonged disease control is characterized by poor survival with second-line treatment with currently approved second-line agents such as docetaxel, gemcitabine, pemetrexed (for nonsquamous histologic types), and afatinib in specific patient groups, which rarely exceed a median survival of 8 months. It is widely acknowledged that angiogenesis is vital for the growth, progression, and metastatic dissemination of many solid tumor types. These mechanisms of neovascular formation are regulated mainly by the activation of signaling pathways associated with vascular
CONTEXT

Key Objective
Is the combination of docetaxel with nintedanib an effective second-line treatment option for patients with advanced lung adenocarcinoma?

Knowledge Generated
Nintedanib’s strong antiangiogenic effects after first-line treatment progression were demonstrated with a median progression-free survival of 5 months, consistent with previous phase III randomized trials. The toxicity profile associated with the use of docetaxel with nintedanib was acceptable, with diarrhea and fatigue being the most common grade 3 or 4 adverse reactions.

Relevance
Nintedanib, when used as part of a chemotherapy regimen, can be an adequate alternative for the treatment of advanced lung adenocarcinoma and for those who have faced disease progression after receiving other antiangiogenic agents as first-line therapy.

Nintedanib is a tyrosine kinase inhibitor with the ability to target 3 major angiogenesis pathways, and it is now considered a promising agent for multiple antiangiogenic anti-neoplastic therapies, including NSCLC adenocarcinoma.5,10,16 Because of its triple angiokinase inhibitor activity, nintedanib competitively binds ATP-binding sites within the PDGF receptor family, the FGF receptor family, and the VEGF receptor family, thus halting their signaling pathways and limiting angiogenic progression on multiple fronts.11,17,18 Recent publications have presented evidence of the strong antiangiogenic capacity of nintedanib with downstream effects on multiple cell types including endothelial cells, smooth cells, pericytes, and fibroblasts.2,8,11,19,20

In addition, because of its pharmacokinetic properties, nintedanib has minimal drug interactions, which permits its combination with other chemotherapy agents, improving its efficacy.9,21,22 Nintedanib has shown a good tolerability profile with grade ≥ 3 adverse events, related mainly to increases in transaminases and asthenia.5,23 However, phase I nintedanib trials have reported differences between Japanese and European patients, with greater liver-limiting toxicity at a lower dose in the Japanese population.24-26 resulting in a need for a more precise security profile among different ethnicities.

In a phase III, multinational, randomized, placebo-controlled clinical trial (LUME-Lung 1), nintedanib showed positive and additive results in combination with docetaxel, an antimitotic chemotherapeutic agent, in the treatment of patients with advanced lung adenocarcinoma, but no reported benefit was shown in patients with squamous histology.5 In addition, in the LUME-Lung 1, the median progression-free survival (PFS) of 3.4 months in the nintedanib plus docetaxel group was significantly prolonged compared with the PFS of 2.7 months in the docetaxel plus placebo group. The study also showed a good safety profile, with a similar frequency of adverse events to the prior treatments.5,27

After the previous study, the LUME-Lung 2 clinical trial was performed, which compared nintedanib plus pemetrexed versus pemetrexed and placebo in patients with advanced NSCLC after the failure of first-line chemotherapy. Results from this study showed a better PFS in the nintedanib plus pemetrexed arm, but because the study was stopped prematurely, no data on overall survival (OS) were recorded.8,11,28 Recently, the NIS VARGADO study, which is currently ongoing, investigated the efficacy and tolerability of nintedanib plus docetaxel as second-line treatment in patients with advanced NSCLC after first-line chemotherapy and/or immunotherapy; the study showed that 58.3% of patients developed a partial response, a disease control rate of 83.3% with a median PFS of 5.5 months.29
A network meta-analysis published in 2017 analyzed data across multiple randomized controlled trials and evaluated the relative efficacy of nintedanib plus docetaxel compared with other second-line agents in patients with adenocarcinoma histology NSCLC.30 Regarding both OS and PFS analysis, there was a statistically significant advantage of nintedanib plus docetaxel over monotherapy with docetaxel, erlotinib, and gefitinib.30 Comparison between nintedanib plus docetaxel and the newer treatment option, ramucirumab plus docetaxel, presented a similar relative efficacy, shown by no difference in either OS or PFS.30 Interestingly, when the combination of nintedanib plus docetaxel was compared with nivolumab as monotherapy, programmed death-ligand 1 (PD-L1) expression levels showed an important impact on patient outcomes. In those with low PD-L1 expression levels,

endothelial growth factor (VEGF), fibroblast growth factor (FGF), and platelet-derived growth factor (PDGF).13,14 The limitations of VEGF-targeted therapies are primarily related to their toxicity and development of resistance by the activation of alternative proangiogenic pathways, including the over-expression of FGF-2, and signaling via PDGF ligands and receptors, tumor necrosis factor α, and placental growth factor.11
there was no difference in OS between nivolumab and nintedanib plus docetaxel. In addition, in this same group, PFS favored those treated with nintedanib plus docetaxel. However, when PD-L1 expression levels were higher, nivolumab offered a greater advantage in OS. These findings suggest that the large proportion of patients with low PD-L1 expression levels could potentially receive a greater benefit when treated with nintedanib plus docetaxel. As of today, precise cutoff levels for PD-L1 in different subsets of patients remain to be determined for making appropriate treatment decisions in the future.

The current study aimed to analyze the effectiveness of nintedanib in combination with docetaxel in the Mexican population, using PFS rate and the best objective response to treatment as a surrogate of effectiveness. In addition, we examined the toxicity profile of our study population as a secondary end point.

METHODS

This was a descriptive, observational, retrospective, multicenter study of patients with nintedanib compassionate program in combination with docetaxel. The study design was approved by Instituto Nacional de Enfermedades Respiratorias’ Institutional Ethics Board following the Declaration of Helsinki, Fortaleza Brazil 2013. The study population met the following criteria: patients older than 18 years of age with a confirmed histopathologic diagnosis of lung adenocarcinoma, relapse, or failure of 1 first-line prior chemotherapy, Eastern Cooperative Oncology Group (ECOG) 0-1 at the beginning of the second-line treatment, locally advanced and/or metastatic clinical stage at the beginning of the second-line treatment, and acceptance to participate in the nintedanib compassionate use program by informed consent between March 2014 and September 2015. Excluded were those with more than 1 prior chemotherapy regimen, a previous non–platinum-based

FIG 1. Flow diagram of the study population.
chemotherapy regimen, active CNS metastases, therapeutic anticoagulation (with the exception of low-dose heparin) or antiplatelet therapy, a history of major thrombotic or clinically relevant major bleeding, and any contraindications for docetaxel therapy, and those without a complete medical record or lost to follow-up.

The following clinical and pathologic variables were reviewed: sex, age, smoking status, ECOG, TNM initial clinical stage, mutational status, first-line treatment, response to treatment, adverse effects associated with the use of nintedanib (evaluated by the Common Terminology Criteria for Adverse Events version 4.03),33 PFS, and response as per Response Evaluation Criteria in Solid Tumors, version 1.1 (RECIST 1.1)34 using computed tomography scan. SPSS software version 24.0 (IBM, Armonk, NY) was used for analysis. The variables were expressed as median values, together with total values and percentages. PFS was graphed using a Kaplan-Meier plot. The criterion for statistical significance was P < .05. All financially related issues from the study were absorbed by the investigation group.

The following clinical and pathologic variables were reviewed: sex, age, smoking status, ECOG, TNM initial clinical stage, mutational status, first-line treatment, response to treatment, adverse effects associated with the use of nintedanib (evaluated by the Common Terminology Criteria for Adverse Events version 4.03),33 PFS, and response as per Response Evaluation Criteria in Solid Tumors, version 1.1 (RECIST 1.1)34 using computed tomography scan. SPSS software version 24.0 (IBM, Armonk, NY) was used for analysis. The variables were expressed as median values, together with total values and percentages. PFS was graphed using a Kaplan-Meier plot. The criterion for statistical significance was P < .05. All financially related issues from the study were absorbed by the investigation group.

TABLE 1. Baseline Characteristics of 99 Patients Treated With Nintedanib in Combination With Docetaxel

Characteristic	Patients
Age, years, mean (SD)	60 (12.36)
Sex	
Female	46 (46.5)
Male	53 (53.5)
Smoking	
Yes	53 (53.5)
No	46 (46.5)
ECOG	
0	49 (49.5)
1	50 (50.5)
Clinical stage	
IIIA	2 (2)
IIIB	8 (8.1)
IV	87 (87.9)
Nonevaluable	2 (2)
Mutational status	
EGFR	
Unknown	15 (15.2)
Not mutated	73 (73.7)
Mutation present	11 (11.1)
ALK	
Unknown	53 (53.3)
Not rearranged	45 (45.5)
Rearranged present	1 (1)
KRAS	
Unknown	67 (67.7)
Not mutated	31 (31.3)
Mutation present	1 (1)
HER2	
Unknown	58 (58.6)
Not mutated	39 (31.3)
Mutation present	2 (2)
ROS1	
Unknown	98 (99)
Not mutated	
Mutation present	1 (1)
Prior chemotherapy intention	
Palliative treatment	93 (94)
Neoadjuvant treatment	4 (4)
Adjuvant treatment	2 (2)
Prior chemotherapy regimen	
Platinum-based chemotherapy	99 (100)
Use of bevacizumab	7 (7.1)
Maintenance treatment	38 (38.4)

(Continued in next column)

TABLE 1. Baseline Characteristics of 99 Patients Treated With Nintedanib in Combination With Docetaxel (Continued)

Characteristic	Patients
Best response to first-line treatment	
Complete response	4 (4.04)
Partial response	50 (50.5)
Stable disease	17 (17.2)
Progressive disease	24 (24.2)
Nonevaluable	4 (4.04)

NOTE. Data are presented as No. (%) unless indicated otherwise. Abbreviations: ECOG, Eastern Cooperative Oncology Group; EGFR, epidermal growth factor receptor; HER2, human epidermal growth factor receptor 2; SD, standard deviation.

TABLE 2. Best Objective Response to Treatment by RECIST 1.1 of 99 Patients After Use of Nintedanib in Combination With Docetaxel

CUP Nintedanib Plus Docetaxel
Objective response
CR
PR
SD
Disease control rate (CR + PR + SD)
Disease progression
Nonevaluable

NOTE. Data are presented as No. (%). Abbreviations: CR, complete response; CUP, compassionate use program; PR, partial response; SD, stable disease.
RESULTS
A total of 150 patients with a confirmed diagnosis of lung adenocarcinoma included in the compassionate program of nintedanib from March 2014 to September 2015 in 21 medical centers in Mexico were identified. After exclusion criteria, only 99 patients met the criteria for enrollment in the current study (Fig 1). From the total study population, 53 patients (53.5%) were male and 46 (46.5%) were female. The average age was 60 years (standard deviation, 12.36 years), with a range of 29 to 84 years. Fifty-three patients (53.5%) had a confirmed history of tobacco use (current or past smoker). At the beginning of treatment with nintedanib, 49 patients (49.5%) had an ECOG 0, and 50 patients (50.5%), an ECOG 1. First-line platinum-based chemotherapy was administered to all the patients; from the total study population, 7 patients (7.1%) had received previous therapy with bevacizumab and 38 (38.4%) had received a maintenance treatment. After the first-line treatment, 50 patients (50.5%) reported a partial response as the best response. Baseline characteristics of the study population are listed in Table 1.

After evaluating response to nintedanib therapy by RECIST 1.1, we found 48 patients (48.5%) with partial response, 26 (26.3%) with complete response, 16 (16.2%) with progression, and 5 (5%) who were nonevaluable (Table 2). The median PFS was 5 months (95% CI, 4.3 to 5.7 months), as shown in Fig 2. The most common grade 3 or 4 adverse reactions were fatigue (14%), diarrhea (13%), hyporexia (7%), and neutropenia (7%), as listed in Table 3. Four patients had adverse events not related to nintedanib, including vena cava syndrome, pulmonary thromboembolism, bacterial pneumonia, and sepsis secondary to empyema.

Exploratory analysis of patients with rapidly progressive disease (defined as a progression within 9 months after first-line treatment)\(^5\) reported a total of 58 rapid progressors and 34 patients who progressed beyond 9 months after first-line treatment. The median PFS shown in Fig 3 of patients who progressed within 9 months was 5 months (95% CI, 4.2 to 5.8 months) versus a median PFS of 6 months from those who progressed beyond 9 months (95% CI, 1.9 to 10.1 months; \(P = .058\)). After bivariate analysis between those with rapidly progressive disease and those without, no statistical difference was found in the comparison of median duration of treatment with nintedanib (\(P = .835\)), the best response to nintedanib (\(P = .100\)), or disease control rate (complete response + partial response + stable disease; \(P = .12\)).

DISCUSSION
The general characteristics of the population are consistent with previous reports described in the literature.\(^5,9,28,29\) The average age was 60 years (range, 29-84 years), and stage IV was the most prevalent clinical stage at the beginning of

\[\text{FIG 2. Progression-free survival.}\]

\[\text{FIG 3. Progression-free survival within 9 months and beyond 9 months.}\]
the compassionate program. The current study allowed the inclusion of patients who had received antiangiogenic agents, other than nintedanib, as part of their first-line treatments, of whom only 7% had received bevacizumab as a first-line agent and 38% had received maintenance therapy. This proves relevant because both strategies increased both the PFS and the OS of patients. Greater response rates than those obtained in LUME-Lung 1 were obtained in this study, which could be explained by the high prevalence of patients without previous exposure to antiangiogenic drugs. Nonetheless, the retrospective nature of this study and the heterogeneous evaluation of each researcher is an important variable to consider. The PFS in the current study was similar to values reported in previous studies, giving greater validity to nintedanib as an effective second-line treatment option in a real-life setting.

Although traditionally, patients with a better PFS and OS after docetaxel with nintedanib were those with rapidly progressive disease, this study did not find any statistical difference between this group and the group without rapidly progressive disease. This is relevant because immunotherapy as a second-line treatment has shown an attenuated efficacy in patients with a negative PD-L1, in those with rapidly progressive disease, in women, and in nonsmokers.

The toxicity profile of this study reported less adverse events and an adequate tolerance to treatment. Diarrhea, neutropenia, and febrile neutropenia were seen less frequently than reported in the literature, which is probably because of the retrospective nature of the study. In this study, oncologists were constantly aware of reported toxicity profiles, which may have helped them prevent and treat these scenarios more efficiently.

The LUME-Lung 1 trial demonstrated a benefit not only in PFS, but also in OS in patients treated with docetaxel plus nintedanib when compared with nintedanib alone as second-line treatment in advanced lung adenocarcinoma, with a disease progression of less than 9 months. Because of the retrospective nature of our study, limitations in collecting OS rates were found.

Finally, it is important to consider that second-line treatment of wild-type lung adenocarcinoma has changed dramatically since the approval of immunotherapies (anti-PD1, anti–PD-L1) such as nivolumab, pembrolizumab, and atezolizumab, increasing OS when compared with docetaxel alone. However, these studies do not include the use of second-line–approved antiangiogenic agents such as nintedanib or ramucirumab in combination with docetaxel, and although immunotherapies have shown benefit to those with some degree of expression of PD-L1, the same benefit is not so clear for those with a PD-L1–negative tumor; therefore, additional investigation is required.

The previous results were extracted from Mexican patients included in the compassionate use program with nintedanib in a real-life setting. In Mexico, access to oncologic treatment has multiple limitations including economic, sociodemographic, and health system access issues, hindering access to novel treatments. The advantages of participating in a compassionate program are invaluable, not only because patients can receive novel treatments, but also because it increases oncologist expertise in the management of agent toxicity, which generates new information for the management of populations with similar ethnic profiles and provides greater insight for future research.

Nintedanib, as part of a chemotherapy regimen, is an effective option for advanced lung adenocarcinoma after first-line treatment progression; however, additional investigation making direct comparisons with immunotherapy should be performed, taking into account a wider oncologic profile, such as the expression of PD-L1.

AFFILIATIONS

1. Department of Oncology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
2. Department of Oncology, Centro Oncológico Estatal ISSEMYM, State of Mexico, Toluca de Lerdo, Mexico
3. Department of Oncology, Hospital Español, Mexico City, Mexico
4. Department of Oncology, Hospital Central Militar, Mexico City, Mexico
5. Department of Internal Medicine, Fundación Clínica Médica Sur, Mexico City, Mexico
6. School of Medicine, Monterrey Institute of Technology and Higher Education, Mexico City, Mexico
7. Department of Oncology, Hospital Ángeles Puebla, Puebla, Mexico
8. Department of Oncology, Hospital General ISSSTE La Paz, Baja California Sur, Mexico
9. Department of Oncology, American British Cowdray Medical Center, Mexico City, Mexico
10. Department of Oncology, Hospital Aranda de la Parra, Guanajuato, Mexico
11. Department of Oncology, Hospital Aranda de la Parra, Guadalajara, Mexico
12. Department of Oncology, Hospital Aranda de la Parra, Guadalajara, Mexico
13. Department of Oncology, Seguro Popular, León, Mexico
14. Department of Oncology, Oncare Treatment Center, Monterrey, Mexico
15. Department of Oncology, Medionco, Mexico City, Mexico
16. Department of Oncology, Universidad de Cancerología, Jalisco, Mexico
17. Department of Oncology, Hospital Universitario Dr. José Eleuterio González, Monterrey, Mexico
18. Department of Oncology, Hospital Universitario Sur, Monterrey, Mexico
19. Department of Oncology, Centro Médico Hospital San José, Monterrey, Mexico
20. Department of Oncology, Clínica Médica ARCOS, Morelia, Mexico
21. Department of Oncology, Servicio de Salud Pemex, Reynosa, Mexico
22. Department of Oncology, Hospital ISSSTE Mexicali, Baja California, Mexico
23. Department of Oncology, Hospital Puebla, Puebla, Mexico
24. Department of Oncology, Centro Oncológico de Chihuahua, Chihuahua, Mexico
25. Department of Oncology, Oncología Privada Integral, Guadalajara, Mexico
CORRESPONDING AUTHOR
Jerónimo Rafael Rodríguez-Cid, Instituto Nacional de Enfermedades Respiratorias, Calzada de Tlalpan 4502, Colonia Belisario Domínguez Sección XVI, Delegación Tlalpan, C.P. 14080, Clínica de Oncología Torácica, Pabellón 6, Mexico; e-mail: cidjeronomi@yahoo.com.mx.

AUTHOR CONTRIBUTIONS
Conception and design: Jerónimo Rafael Rodríguez-Cid, Saul Campos-Gomez, Manuel Magallanes-Maciel, Iván Romarico González-Espinoza, Juan Carlos Cázarez-Price, Raquel Gerson-Cwilich, Eusebio Perales-Rodríguez, Jorge Arturo Alatorre-Alexander
Financial support: Jerónimo Rafael Rodríguez-Cid, Saul Campos-Gomez
Administrative support: Jerónimo Rafael Rodríguez-Cid, Saul Campos-Gomez, Alma Magdalena Astorga-Ramos
Publication of study material or patients: Jerónimo Rafael Rodríguez-Cid, Saul Campos-Gomez, Vanessa García-Montes, Manuel Magallanes-Maciel, Iván Romarico González-Espinoza, Juan Paulo Ceja-García, Luis Martínez-Barrera, Leopoldo Barragüete-Parra, David Suárez-García, Noé Flores-Anaya, Jose Antonio Acevedo-Delgado, Raquel Gerson-Cwilich, Alberto Villalobos-Prieto, Maria Fernanda Noriega-Irondo, Eusebio Perales-Rodríguez, Alicia Acosta-Espinoza, Yareni Perez-Lozano, Daniel Capdeville-García
Collection and assembly of data: Jerónimo Rafael Rodríguez-Cid, Saul Campos-Gomez, Vanessa García-Montes, Manuel Magallanes-Maciel, Rodrigo Rafael Flores-Manríquelarena, Valeria Michelle Fernández-Garibay, Iván Romarico González-Espinoza, Juan Paulo Ceja-García, Juan Carlos Cázarez-Price, Luis Martínez-Barrera, Leopoldo Barragüete-Parra, Carlos Jose Zuloaga-Fernández, Roberto Kuri-Exsome, David Suárez-García, Jorge Ignacio González-Villanueva, Noé Flores-Anaya, Alma Magdalena Astorga-Ramos, Raquel Gerson-Cwilich, Alberto Villalobos-Prieto, Claudia Rodríguez-Silva, Maria Fernanda Noriega-Irondo, Leticia Vázquez-Cortés, Eusebio Perales-Rodríguez, Alicia Acosta-Espinoza, Yareni Perez-Lozano, Daniel Capdeville-García, Jorge Arturo Alatorre-Alexander
Data analysis and interpretation: Jerónimo Rafael Rodríguez-Cid, Rodrigo Rafael Flores-Manríquelarena, Valeria Michelle Fernández-Garibay, Iván Romarico González-Espinoza, Juan Carlos Cázarez-Price, Jose Antonio Acevedo-Delgado, Raquel Gerson-Cwilich, Alberto Villalobos-Prieto, Jorge Arturo Alatorre-Alexander
Manuscript writing: All authors
Final approval of manuscript: All authors
Accountable for all aspects of the work: All authors

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST
The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/go/site/misc/authors.html.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Jerónimo Rafael Rodríguez-Cid
Consulting or Advisory Role: Roche, Bristol-Myers Squibb (Mexico), MSD Oncology, Takeda, Bayer
Speakers’ Bureau: MSD Oncology, Bristol-Myers Squibb (Mexico), Roche, Boehringer Ingelheim, Novartis, Bayer, Eli Lilly, AstraZeneca
Research Funding: MSD, Bristol-Myers Squibb (Mexico), Roche, Celtrion, Eli Lilly, BeiGene, AstraZeneca
Travel, Accommodations, Expenses: Roche, MSD Oncology, AstraZeneca, Boehringer Ingelheim

Saul Campos-Gomez
Consulting or Advisory Role: Roche, Bristol-Myers Squibb
Vanessa García-Montes
Consulting or Advisory Role: AstraZeneca, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb (Mexico), Janssen Oncology
Speakers’ Bureau: AstraZeneca, Boehringer Ingelheim, Bayer, Bristol-Myers Squibb (Mexico), Janssen Oncology
Travel, Accommodations, Expenses: AstraZeneca, MSD Oncology, Amgen
Manuel Magallanes-Maciel
Consulting or Advisory Role: AstraZeneca, Roche Mexico, Novartis, Pfizer
Speakers’ Bureau: Pfizer, Eli Lilly, Roche, AstraZeneca, Boehringer, Bristol-Myers Squibb (Mexico)
Research Funding: Bristol-Myers Squibb, Roche, Novartis, Eli Lilly, AstraZeneca, Merck
Iván Romarico González-Espinoza
Employment: Hospital Ángeles Puebla
Leadership: Clinica Integral Internacional de Oncología
Honoraria: Boehringer Ingelheim, Roche, Foundation Medicine, Pfizer, Amgen, AstraZeneca, Sanofi, Eli Lilly, Bristol-Myers Squibb (Mexico), MSD Oncology, Novartis
Consulting or Advisory Role: MSD Oncology, Roche, Bristol-Myers Squibb (Mexico), AstraZeneca
Speakers’ Bureau: Boehringer Ingelheim, Roche, Foundation Medicine, Pfizer, Amgen, AstraZeneca, Bristol-Myers Squibb (Mexico), MSD Oncology, Novartis
Research Funding: Novartis, Amgen, MSD Oncology, Bristol-Myers Squibb, Boehringer Ingelheim, AstraZeneca, Roche, Foundation Medicine, Guardant Health
Expert Testimony: Roche, Bristol-Myers Squibb (Mexico), Foundation Medicine, MSD Oncology, Sanofi
Travel, Accommodations, Expenses: MSD Oncology, Roche, Foundation Medicine, AstraZeneca, Novartis, Pfizer, Teva
Juan Paulo Ceja García
Consulting or Advisory Role: Sanofi, Merck Serono, Amgen, MSD Oncology
Speakers’ Bureau: Merck, Amgen, Boehringer Ingelheim
Speakers’ Bureau: Merck Sharp & Dohme
Travel, Accommodations, Expenses: Roche, Merck Serono, Boehringer Ingelheim, Amgen
Juan Carlos Cázarez-Price
Speakers’ Bureau: Roche
Research Funding: Bristol-Myers Squibb (Mexico)
Carlos Jose Zuloaga-Fernández
Consulting or Advisory Role: Boehringer Ingelheim, MSD Oncology
Travel, Accommodations, Expenses: Pfizer, MSD Oncology, Roche/Genentech
David Suárez-García
Honoraria: Pfizer, Bayer
Speakers’ Bureau: Pfizer, Bayer, Bayer
Travel, Accommodations, Expenses: Roche, Pfizer, Amgen, Bayer
Raquel Gerson-Cwilich
Leadership: ABC Medical Centre
Leticia Vázquez-Cortés
Honoraria: MSD Oncology, BMS, Amgen
Consulting or Advisory Role: BMS
Speakers’ Bureau: BMS
Research Funding: BMS
Expert Testimony: BMS
Travel, Accommodations, Expenses: MSD Oncology, Roche
REFERENCES

1. Siegel RL, Miller KD, Jemal A: Cancer statistics, 2018. CA Cancer J Clin 68:7-30, 2018
2. International Agency for Research on Cancer. Global Cancer Observatory. http://globocan.iarc.fr/
3. Instituto Nacional de Estadística y Geografía: Estadísticas a propósito del día mundial contra el cáncer (4 de febrero). http://www.beta.inegi.org.mx/contenidos/saludepresn/naproposito/2018/cancer2018_nal.pdf
4. National Cancer Institute: Non-Small Cell Lung Cancer Treatment (PDQ). Bethesda, MD, National Institutes of Health, 2019
5. Reck M, Kaiser R, Mellemgaard A, et al: Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): A phase 3, double-blind, randomised controlled trial. Lancet Oncol 15:143-155, 2014
6. Gabasa M, Ikemori R, Hilberg F, et al: Nintedanib selectively inhibits the activation and tumour-promoting effects of fibroblasts from lung adenocarcinoma patients. Br J Cancer 117:1128-1138, 2017
7. Hirsch FR, Suda K, Wiens J, et al: New and emerging targeted treatments in advanced non-small-cell lung cancer. Lancet 388:1012-1024, 2016
8. Corrales I, Nogueira A, Passiglia F, et al: Second-line treatment of non-small-cell lung cancer: Clinical, pathological, and molecular aspects of nintedanib. Front Med (Lausanne) 4:13, 2017
9. Hilberg F, Haslinger C, Garin Chesa P, et al: Molecular correlates of clinical benefit from antiangiogenic therapy for patients with lung adenocarcinoma: A hypothesis. J Clin Oncol (epub ahead of print on January 31, 2017)
10. Dhillo S: Nintedanib: A review of its use as second-line treatment in adults with advanced non-small cell lung cancer of adenocarcinoma histology. Target Oncol 10:303-310, 2015
11. Janning M, Loges S: Anti-angiogenics: Their value in lung cancer therapy. Oncol Res Treat 41:172-180, 2018
12. Roth GJ, Binder R, Colbatzky F, et al: Novel tyrosine kinase inhibitor, nintedanib (BIBF1120). Oncotarget 6:22098-22113, 2015
13. Weiss JM, Stinchcombe TE: Second-line therapy for advanced NSCLC. Oncologist 18:947-953, 2013
14. Chu BF, Otterson GA: Incorporation of antiangiogenic therapy into the non-small-cell lung cancer paradigm. Clin Lung Cancer 17:493-506, 2016
15. Stopfer P, Roth W, Mross K, et al: Pharmacokinetic characterization of BIBF 1120, an orally active triple angiokinase inhibitor (VEGFR, PDGFR, FGFR) in advanced cancer patients. Eur J Cancer, Suppl 4:26, 2006
16. Stopfer P, Rathgen K, Bischoff D, et al: Pharmacokinetics and metabolism of BIBF 1120 after oral dosing to healthy male volunteers. Xenobiotica 41:297-311, 2011
17. Ballas MS, Chachoua A: Rationale for targeting VEGF, FGFR, and PDGF for the treatment of NSCLC. Oncotargets Ther 4:43-58, 2011
18. Hilberg F, Roth GJ, Krassak M, et al: BIBF 1120: A potent angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Res 68:4774-4782, 2008
19. Wollin L, Maitel I, Quasniaux V, et al: Antifibrotic and anti-inflammatory activity of the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis. J Pharmacol Exp Ther 349:209-220, 2014
20. Huang RY, Kuyu KT, Tan TZ, et al: Functional relevance of a six mesenchymal gene signature in epithelial-mesenchymal transition (EMT) reversal by the triple angiokinase inhibitor, nintedanib (BIBF1120). Oncotarget 6:22098-22113, 2015
21. Hilberg F, Brandstetter I: C7-03: Efficacy of BIBF 1120, a potent triple angiokinase inhibitor, in models of human non-small cell lung cancer is augmented by chemotherapy. J Thorac Oncol 2:S380, 2007
22. Gadgeel SM: Safety pro...
33. US Department of Health and Human Services: Common Terminology Criteria for Adverse Events (CTCAE) Version 4.03. 2010
34. Eisenhauer EA, Therasse P, Bogaerts J, et al: New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer 45:228-247, 2009
35. Zarrin B, Zarifi F, Vaseghi G, et al: Acquired tumor resistance to antiangiogenic therapy: Mechanisms at a glance. J Res Med Sci 22:117, 2017
36. Reck M, Paz-Ares L, Bidoli P, et al: Outcomes in patients with aggressive or refractory disease from REVEL: A randomized phase III study of docetaxel with ramucirumab or placebo for second-line treatment of stage IV non-small-cell lung cancer. Lung Cancer 112:181-187, 2017