The O-Mannosylation Pathway: Glycosyltransferases and Proteins Implicated in Congenital Muscular Dystrophy*

Lance Wells

From the Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602

Several forms of congenital muscular dystrophy, referred to as dystroglycanopathies, result from defects in the protein O-mannosylation biosynthetic pathway. In this minireview, I discuss 12 proteins involved in the pathway and how they play a role in the building of glycan structures (most notably on the protein α-dystroglycan) that allow for binding to multiple proteins of the extracellular matrix.

Although O-mannosylation of mammalian proteins was observed almost 35 years ago (1), it was not until the turn of the millennium that the importance of this protein post-translational modification pathway began to be appreciated. In the early 2000s, multiple groups established that deficiencies of enzymes in this pathway result in multiple forms of congenital muscular dystrophy (CMD) that have now been termed dysenzymes in this pathway result in multiple forms of congenital muscular dystrophy, which is the most common form of muscular dystrophy, is an X-linked recessive disorder resulting from loss of expression of functional dystrophin, a cytoplasmic actin-binding protein (16). Dystrophin is connected to a set of proteins at the plasma membrane, most notably dystroglycan (18). Dystroglycan is a single gene product (DAG1) that is processed into two subunits: β-dystroglycan, that is a transmembrane protein that interacts with dystrophin in the cytoplasm, and α-dystroglycan, which is a soluble secreted glycoprotein that interacts with both β-dystroglycan and multiple components of the extracellular matrix, such as laminin, perlecain, pikachurin, neurexin, and agrin (18–23). These extracellular matrix proteins recognize and bind the unusual glycan structures on α-dystroglycan. Thus, proper glycosylation of α-dystroglycan is essential for binding to extracellular matrix components (24).

Although α-dystroglycan is both N- and O-linked glycosylated, it is the O-linked glycans that are essential for proper function (25). In terms of O-linked glycosylation, α-dystroglycan contains both classical mucin-like O-GalNAc-initiated glycans and the more unusual O-Man-initiated glycans (11). Multiple studies have clearly demonstrated that it is the O-mannosylated glycan structures that serve as binding sites for laminin and presumably other extracellular matrix proteins (18–23). Interestingly, it appears to be these same essential structures that are recognized by the antibody IIH6 and that are used as cellular binding sites by some arenaviruses (9, 26).

The initial O-mannose residue is added to serines and threonines of α-dystroglycan and other proteins that have not been clearly defined but certainly must exist in the endoplasmic reticulum (ER) (27, 28). Multiple sites of O-mannosylation (and O-GalNAcylation) on α-dystroglycan have been established (8, 11, 12). This O-mannose can then be extended to create a variety of glycan structures (Fig. 1) (reviewed recently in Refs. 13 and 29). In terms of how O-mannose-extended glycan structures are important for binding to the extracellular matrix, two recent studies have made substantial contributions (7, 10). It has been demonstrated on α-dystroglycan that a GalNAc-β3-GlcNAc-β4-Man structure that is phosphorylated at the 6-position of mannose and further extended by an unknown moiety on the distal side of the phosphate, forming a phosphodiester structure, is essential for binding to extracellular matrix proteins (10). Most recently, it has been proposed that a key component of this unknown extension from the phosphate contains the repeating disaccharide α3-GlcUA-β3-Xyl- (7).

Other recent reviews have focused on the structures, substrates, and functional implications of the O-mannosylation pathway and the phenotypes observed in the various muscular dystrophies (13, 14, 17, 24, 29, 30). Here, I review the enzymes/proteins of the pathway that have been implicated in CMD.

Enzymes/Proteins of the Pathway

Over the last decade, a variety of enzymes and proteins have been implicated in the O-mannosylation pathway. Here, I focus primarily on the human proteins involved in the pathway that, when defective, have been shown to cause CMD, specifically dystroglycanopathies (Table 1). It should be noted that at least one-third of dystroglycanopathies are of unknown genetic etiology and do not have defects in the known gene products.
analyzed by the DPM synthase complex (34). The catalytic activity on the cytosolic side of the ER (34). This reaction is catalyzed from GDP-Man and dolichol phosphate via an inverting mechanism from yeast to man, and several model systems have provided invaluable insights into the pathway (31–33). DPM is synthesized provided linear or branched structures. A key structure for binding to extra-cellular matrix proteins is not fully resolved but contains a phosphodiester linkage, and a component of the X moiety is likely to be the LARGE-catalyzed repeating disaccharide. Green circles, Man; blue squares, GlcNAc; yellow square, GalNAc; yellow circle, Gal; pink diamonds, Neu5Ac; red triangles, Fuc; orange star, Xyl; blue/white diamond, GlcUA. GlcNAc residues on the O-Man added in the 2-position are drawn up to the left, in the 4-position straight up, and in the 6-position up to the right. Asymmetric branched structures are drawn in only one possible configuration, although isomeric structures are likely to exist.

involved to date in the O-mannosylation pathway. Furthermore, several of the enzymes needed to build the array of structures observed (Fig. 1) are common to multiple pathways, such as the sialyltransferases, fucosyltransferases, and galactosyltransferases, and are not discussed here, as there is no evidence to date for them being defective in CMD. Finally, O-mannosylation is an evolutionarily conserved post-translational modification from yeast to man, and several model systems have provided invaluable insights into the pathway (31–33).

Dolichyl-phosphate Mannose Synthase—Dolichyl-phosphate mannose (DPM) is the donor for luminal ER mannosylation, including N-, O-, and C-glycosylation as well as glycosphatidylinositol anchor biosynthesis (34). DPM is synthesized from GDP-Man and dolichyl phosphate via an inverting mechanism on the cytosolic side of the ER (34). This reaction is catalyzed by the DPM synthase complex (34). The catalytic activity is performed by DPM1, a dolichyl-phosphate β-1,4-mannosyltransferase belonging to the glycosyltransferase 2 (GT2) family of the CAZy (Carbohydrate-Active enZymes) Database (34). DPM2 and DPM3 are ER-localized transmembrane proteins that interact with the catalytic DPM1 protein to form a fully active DPM synthase complex (35). Causal mutations for a dystroglycanopathy phenotype along with type I congenital disorders of glycosylation (CDG) have been observed in DPM2 and DPM3 (36, 37). Although patient mutations in DPM1 cause a severe form of CDG (38), surprisingly, no dystroglycanopathies or muscular dystrophy has been noted. Given the vital role of DPM in multiple forms of glycosylation, it is perhaps not surprising that mutations in DPM2 and DPM3 cause severe pleiotropic phenotypes. Whether DPM2/3 mutations are truly causal for CMD remains controversial in the field. The proteins responsible for flipping the DPM to the lumen of the ER have not been determined, and impairment of function of these proteins would also likely lead to a plethora of complications resembling both CMD and CDG, as observed for DPM2 and DPM3.

Dolichyl-phosphate-mannose:Protein Mannosyltransferase (POMT1/2)—Initial O-mannosylation of proteins in the ER is catalyzed by POMT1/2 using DPM as the donor (39, 40). POMT1 and POMT2 belong to the inverting GT39 family in the CAZy Database. The proper expression of both proteins together is required for the catalysis of this first step in the O-mannosylation pathway (40, 41). Multiple mutations in both genes are causal for CMD, and complete loss-of-function mutations cause Walker-Warburg syndrome, the most severe of the dystroglycanopathies (42–49). Localization of these enzymes in the ER infers that O-mannosylation precedes classical mucin-like O-GalNAcylations of proteins in the secretory pathway. A recent study has demonstrated that O-mannosylation appears to modulate O-GalNAc addition and site selection (50). Furthermore, loss of O-mannosylation would potentially provide novel sites for the polypeptide GalNAc transferases in the cis-Golgi. Thus, loss of O-mannosylation may alter O-GalNAc addition on proteins, and this “gain of modification” could be responsible for some of the observed phenotypes in CMD.

2-C-Methyl-D-Erythritol 4-Phosphate Cytidylyltransferase-like Protein (Isoprenoid Synthase Domain-containing (ISPD))—ISPD is not predicted to be a glycosyltransferase, yet mutations in this protein cause Walker-Warburg syndrome with clear loss of α-dystroglycan functional glycosylation (51, 52). This enzyme has high similarity to an enzyme in the non-mevalonate pathway for isoprenoid synthesis (53). However, mammals are thought to use only the mevalonate pathway, and several other enzymes in the bacterial non-mevalonate pathway are not obviously conserved in higher animals (53). Thus, the role for this putative enzyme remains unclear, although it clearly impacts the ability of POMT1/2 to transfer O-mannose (52). Does the defect in ISPD affect other types of glycosylation that depend on dolichol-linked sugars? Does ISPD play a role in modification of dolichol-linked mannose? These questions have yet to be fully explored.

UDP-GlcNAc:O-Linked Mannose β1,2-N-Acetylglucosaminyltransferase (POMGnT1)—POMGnT1 catalyzes the extension of the O-mannose-initiated structure with a GlcNAc in a β2-linkage and is a member of the CAZy GT13 family of inverters (6). Mutations in this gene are observed in patients with multiple forms of dystroglycanopathy (6, 54–59). Mice with a knock-out of this enzyme present with phenotypes consistent with human muscle-eye-brain disease, a severe form of CMD (55). Genotype-phenotype correlations have begun to be established for this enzyme (54). This enzyme is localized in the cis-Golgi, and its action appears to be essential for not only 2-extension but also 6-branching of the O-mannose moiety with GlcNAc (28). 6-Branching of the O-mannose is catalyzed by UDP-GlcNAc:mannose β1,6-N-acetylglucosaminyltransferase, GnT-Vb (GnT-IX) (60). Although GnT-Vb and O-mannose branching is localized primarily to the brain, making the gene an attractive potential affected target for undiagnosed CMD with neurological complications, mice lacking GnT-Vb alone or in combination with a knock-out of GnT-Va (which can partially compensate for O-Man branching in the absence of GnT-Vb) do not display any gross brain abnormalities or muscular dystrophy (61). Given the recent finding that the 6-phosphomannose structure that was presumably extended...
with the functional glycan that is LARGE-dependent had an extension with β4-GlcNAc instead of β2-GlcNAc raises several questions (see Fig. 1) (10). Was the β4-GlcNAc structure observed a cell culture artifact from overexpression of a recombinant α-dystroglycan fragment in HEK293 cells? If not, which GlcNAc transferase is responsible for this activity (multiple GlcNAc transferases can add a β4-GlcNAc structure onto mannoside residues in N-linked structures, including GnT-III, GnT-IV, and GnT-VI), and does its loss induce dystroglycanopathy? Also, if the functionally glycosylated structure is extended via a phosphodiester (68). Recent work by Beedle et al. (69) has demonstrated that α-dystroglycan isolated from fukutin knock-out animals has exposed phosphates as opposed to phosphodiester (69). Although it has been suggested that they are putative Golgi-localized glycosyltransferases, they do not fit into any established CAZy glycosyltransferase family, and mutation of the DXD domain in FKRP does not appear to alter functional glycosylation of α-dystroglycan (67). Both proteins are part of the nucleotidytransferase superfamily and do contain LicD domains, which have been implicated in phosphorylcholine transfer to sugars in a 6-linkage, forming a phosphodiester (68). Recent work by Beedle et al. (69) has demonstrated that α-dystroglycan isolated from fukutin knock-out animals has exposed phosphates as opposed to phosphodiester(CDN), which are critical for functional glycosylation. Thus, although these putative enzymes are clearly involved in the formation of the functional O-mannose-initiated glycans important for binding to extracellular proteins, their exact functions remain a mystery.

UDP-Xyl:GlcUA α1,3-Xylosyltransferase and UDP-GlcUA: Xyl β1,3-Glucoacetylglycosyltransferase (LARGE1 and LARGE2)—The most recent protein associated with CMD is GTDC2 (75). This glycosyltransferase belongs to the CAZy inverting family. Defects in this gene are seen in patients presenting with Walker-Warburg syndrome, and knockdown of this gene in zebrafish recapitulated the phenotype of the knockdown of POMT1 (75). It was speculated that this enzyme might be a xylosyltransferase (GT61 does contain β1,2-xylosyltransferases) (75). Sequence comparison showed that this enzyme also has high homology to the recently described secretary pathway-localized protein O-β-N-acetylgalcosaminyltransferase (EGF domain-specific O-GlcNAc transferase) (76, 77). The actual activity of this enzyme and what role it plays specifically in producing functional glycan-dependent protein associations related to CMD remain to be elucidated.

Conclusions

Although substantial progress has been made in the last decade in uncovering enzymes and proteins that modulate the O-mannosylation pathway and that cause CMD, many questions remain to be answered. As noted above, several of the
putative enzymes are poorly characterized in terms of their preferred substrates and actual enzymatic activity. For the more defined glycosyltransferases, little work has been done to establish genotype-phenotype correlations with the existing mutations. Clearly, based on the fact that at least one-third of patients with dystroglycanopathy do not have defects in the described gene products, there are other enzymes/proteins to be discovered and characterized. Although substantial progress in determining the extracellular matrix-binding glycan structures has been made in the last few years, a full description of these structures remains to be presented. The protein substrates for the O-mannosylation pathway have yet to be elucidated, with only a few putative proteins besides α-dystroglycan being identified to date. This may be particularly important given that the phenotypes observed in the dystroglycanopathies clearly overlap but also exceed those observed in Duchenne muscular dystrophy (65, 78). Thus, like all good science, the cohort of scientists/clinicians in this field have made substantial advances while creating more questions that need to be pursued if we are to better understand the disease-relevant pathway of protein O-mannosylation.

Acknowledgments—I thank all of the members of my laboratory as well as Michael Tiemeyer, Kelly Moremen, Michael Pierce, David Live, Geert-Jan Boons, Richard Steet, Will York, Aaron Beedle, Vlad Panin, and Kevin Campbell for helpful discussions.

REFERENCES

1. Finne, J., Krusius, T., Margolis, R. K., and Margolis, R. U. (1979) Novel mannotet-containing oligosaccharides obtained by mild alkaline borohydride treatment of a chondroitin sulfate proteoglycan from brain. J. Biol. Chem. 254, 10295–10300
2. Barresi, R., Michele, D. E., Kanagawa, M., Harper, H. A., Dovico, S. A., Satz, J. S., Moore, S. A., Zhang, W., Schachter, H., Dunamski, J. P., Cohn, R. D., Nishino, I., and Campbell, K. P. (2004) LARGE can functionally bypass α-dystroglycan glycosylation defects in distinct congenital muscular dystrophies. Nat. Med. 10, 696–703
3. Brockington, M., Blake, D. J., Prandini, P., Brown, S. C., Torelli, S., Benson, M. A., Ponting, C. P., Estournet, B., Romero, N. B., Mercuri, E., Voit, E., Tordi, S., Guicheny, P., and Muntoni, F. (2001) Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin α2 deficiency and abnormal glycosylation of α-dystroglycan. Am. J. Hum. Genet. 69, 1198–1209
4. Grewal, P. K., Holzfeind, P. J., Bittner, R. E., and Hewitt, J. E. (2001) Mutant glycosyltransferase and altered glycosylation of α-dystroglycan in the mdyostomydystrophymouse. Nat. Genet. 28, 151–154
5. Michele, D. E., Barresi, R., Kanagawa, M., Saito, F., Cohn, R. D., Satz, J. S., Dollar, J., Nishino, I., Kelley, R. L., Sommer, H., Straub, V., Mathews, K. D., Moore, S. A., and Campbell, K. P. (2002) Post-translational disruption of dystroglycan-ligand interactions in congenital muscular dystrophies. Nature 418, 417–422
6. Yoshida, A., Kobayashi, K., Manya, H., Taniguchi, K., Kano, H., Mizuno, M., Inazu, T., Mushiake, H., Takahashi, S., Takeuchi, M., Herrmann, K., Straub, V., Talim, B., Voit, E., Nakajima, T., Toda, T., and Endo, T. (2001) Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnTI. Dev. Cell 1, 717–724
7. Inamori, K., Yoshida-Moriguchi, T., Hara, Y., Anderson, M. E., Yu, L., and Campbell, K. P. (2012) Dystroglycan function requires xylosyl- and glucuronyltransferase activities of LARGE. Science 335, 93–96
8. Harrison, R., Hitchen, P. G., Panico, M., Morris, H. R., Mekhaiel, D., Pleass, R. J., Dell, A., Hewitt, J. E., and Haslam, S. M. (2012) Glycoproteomic characterization of recombinant mouse α-dystroglycan. Glycobiology 22, 662–675
9. Har, Y., Kanagawa, M., Kunz, S., Yoshida-Moriguchi, T., Satz, J. S., Kobayashi, Y. M., Zhu, Z., Burden, S. J., Oldstone, M. B., and Campbell, K. P. (2011) Like-acetylglucosaminyltransferase (LARGE)-dependent modification of dystroglycan at Thr317/319 is required for laminin binding and arenavirus infection. Proc. Natl. Acad. Sci. U.S.A. 108, 17426–17431
10. Yoshida-Moriguchi, T., Yu, L., Stalnaker, S. H., Davis, S., Kunz, S., Madison, M., Oldstone, M. B., Schachter, H., Wells, L., and Campbell, K. P. (2010) O-Mannosyl phosphorylation of α-dystroglycan is required for laminin binding. Science 327, 88–92
11. Stalnaker, S. H., Hashmi, S., Lim, J. M., Aoki, K., Porterfield, M., Gutierrez-Sanchez, G., Wheeler, J., Ervasti, J. M., Bergmann, C., Tiemeyer, M., and Wells, L. (2010) Site mapping and characterization of O-glycan structures on α-dystroglycan isolated from rabbit skeletal muscle. J. Biol. Chem. 285, 24882–24891
12. Nilsson, J., Nilsson, J., Larson, G., and Grahn, A. (2010) Characterization of site-specific O-glycan structures within the mucin-like domain of α-dystroglycan from human skeletal muscle. Glycobiology 20, 1160–1169
13. Stalnaker, S. H., Stuart, R., and Wells, L. (2011) Mammalian O-mannosylation: unsolved questions of structure/function. Curr. Opin. Struct. Biol. 21, 603–609
14. Barresi, R., and Campbell, K. P. (2006) Dystroglycan: from biosynthesis to pathogenesis of human disease. J. Cell Sci. 119, 199–207
15. Ervasti, J. M., Ohlendieck, K., Kahl, S. D., Gaver, M. G., and Campbell, K. P. (1990) Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature 345, 315–319
16. Hoffman, E. P., Brown, R. H. Jr., and Kunel, L. M. (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51, 919–928
17. Ervasti, J. M. (2007) Dystrophin, its interactions with other proteins, and implications for muscular dystrophy. Biochim. Biophys. Acta 1772, 108–117
18. Ervasti, J. M., and Campbell, K. P. (1991) Membrane organization of the dystrophin-glycoprotein complex. Cell 66, 1121–1131
19. Gee, S. H., Montanaro, F., Lindenbaum, M. H., and Carbonetto, S. (1994) Dystroglycan-α, a dystrophin-associated glycoprotein, is a functional agrin receptor. Cell 77, 675–686
20. Ibraghimov-Beskrovnaya, O., Ervasti, J. M., Leveille, C. J., Slaughter, C. A., Sernett, S. W., and Campbell, K. P. (1992) Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355, 696–702
21. Peng, H. B., Ali, A. A., Daggett, D. F., Rauvala, H., Hassell, J. R., and Smallheiser, N. R. (1998) The relationship between perlecain and dystroglycan and its implication in the formation of the neuromuscular junction. Cell Adhes. Commun. 5, 475–489
22. Sato, S., Omori, Y., Kato, K., Kondo, M., Kanagawa, M., Miyata, K., Funabiki, K., Koyasu, K., Kajimura, N., Miyoshi, T., Sawai, H., Kobayashi, K., Tani, A., Toda, T., Usukura, J., Tano, Y., Fujikado, T., and Furukawa, T. (2008) Pikachurin, a dystroglycan ligand, is essential for photoreceptor ribbon synapse formation. Nat. Neurosci. 11, 923–931
23. Sugita, S., Saito, F., Tang, J., Satz, J., Campbell, K., and Südhof, T. C. (2001) A stoichiometric complex of neuraxins and dystroglycan in brain. J. Cell Biol. 154, 435–445
24. Dobson, C. M., Hempel, S. J., Stalnaker, S. H., Stuart, R., and Wells, L. (2012) O-Mannosylation and human disease. Cell. Mol. Life Sci., in press
25. Combs, A. C., and Ervasti, J. M. (2005) Enhanced laminin binding by α-dystroglycan after enzymatic deglycosylation. Biochem. J. 390, 303–309
26. Cao, W., Henry, M. D., Borrow, P., Yamada, H., Elder, J. H., Ravkow, E. V., Nichol, S. T., Comans, R. W., Campbell, K. P., and Oldstone, M. B. (1998) Identification of α-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science 282, 2079–2081
27. Beltrán-Valero de Bernabé, D., Currier, S., Steinbrecher, A., Celli, J., van Beusekom, E., van der Zwaag, B., Kayaerili, H., Merlini, L., Chitayat, D., Dobyns, W. B., Cormand, B., Lehesjoki, A. E., Cruces, J., Voit, T., Walsh, C. A., and Bokhoven, H., and Brunner, H. G. (2002) Mutations in the O-mannosyltransferase gene POMGnTI give rise to the severe neuronal migration disorder Walker-Warburg syndrome. Am. J. Hum. Genet. 71, 1033–1043
MINIREVIEW: O-Mannosylation and CMD

28. Stalnaker, S. H., Aoki, K., Lim, J. M., Porterfield, M., Liu, M., Satz, J. S., Buskirk, S., Xiong, Y., Zhang, P., Campbell, K. P., Hu, H., Live, D., Tiemeyer, M., and Wells, L. (2011) Glyccan analyses of mouse models of congenital muscular dystrophy. J. Biol. Chem. 286, 21180–21190

29. Hewitt, J. E. (2009) Abnormal glycosylation of dystroglycan in human genetic disease. Biochim. Biophys. Acta 1792, 853–861

30. Chandrasekharan, K., and Martin, P. T. (2010) Genetic defects in muscular dystrophy. Methods Enzymol. 479, 291–322

31. Kriangkripipat, T., and Momany, M. (2009) Aspergillus nidulans protein O-mannosyltransferases play roles in cell wall integrity and developmental patterning. Eurkaryot. Cell 8, 1475–1485

32. Moore, C. J., Goh, H. T., and Hewitt, J. E. (2008) Genes required for functional glycosylation of dystroglycan are conserved in zebrafish. Genomics 92, 159–167

33. Nakamura, N., Lyalan, D., and Panin, V. M. (2010) Protein O-mannosylation in animal development and physiology: from human disorders to Drosophila phenotypes. Semin. Cell Dev. Biol. 21, 622–630

34. Lefeber, D. J., Schönberger, J., Morava, E., Guillard, M., Huyben, K. M., Lammens, M., Lehmke, L., Ashida, H., Hofsteenge, J., Maeda, Y., Heuvel, L., Lammens, M., Lehle, L., and Wevers, R. A. (2009) Deficiency of Dol-P-Man synthase subunit DPM3 bridges the congenital disorders of glycosylation with the dystroglycanopathy. Hum. Mol. Genet. 18, 239–248

35. Ashida, H., Morava, E., and Kinoshita, T. (2006) DPM1, the catalytic subunit of dolichol-phosphate-mannose synthase, is tethered to and stabilized on the endoplasmic reticulum membrane by DPM3. J. Biol. Chem. 281, 896–904

36. Barone, R., Aiello, C., Race, V., Morava, E., Foulquier, F., Riemersma, M., Passarelli, C., Concolino, D., Carella, M., Santorelli, F., Vleugels, W., Mercuri, E., Garozzo, D., Sturiale, L., Messina, S., Jaeken, J., Fiumara, A., Wevers, R. A., Bertini, E., Matthijs, G., and Lefeber, D. J. (2012) DPM2-CDG: a muscular dystrophy-dystroglycanopathy syndrome with severe epilepsy. Ann. Neurol. 72, 550–558

37. Lefeber, D. J., Schönberger, J., Morava, E., Guillard, M., Huyben, K. M., Verrips, A., Boukhris, D., Vaccari, G., Vissers, L. E. L. M., Schraders, M., Alunoglu, U., Buckley, M. F., Brunner, H. G., Grims, B., Zhou, H., Veltman, J. A., Gilsen, C., Mancini, G. M. S., Delrée, P., Willemsen, M. A., Ramadã, D. P., Chitayat, D., Bennett, C., Sheriden, E., Peeters, E. A. J., Tan-Sindhuana, G. M. B., de Die-Smulders, C. E., Devriendt, K., Kayserili, H., El-Hashash, O. A. E.-F., Stemple, D. L., Lefeber, D. J., Lin, Y.-Y., and van Bokhoven, H. (2012) Mutations in ISPD cause Walker-Warburg syndrome and defective glycosylation of α-dystroglycan. Hum. Mutat. 33, 522–539

38. Van Reeuwijk, J., Bertini, E., Santorelli, F. M., and Valsesia, I. (2006) O-mannosylation of protein O-mannosyltransferase and assignment to human chromosome 9q34.1. Genomics 88, 171–180

39. Manya, H., Chiba, A., Yoshida, A., Wang, X., Chiba, Y., Jigami, Y., Margolis, R. U., and Endo, T. (2004) Demonstration of mammalian protein O-mannosyltransferase activity: coexpression of POMT1 and POMT2 required for enzymatic activity. Proc. Natl. Acad. Sci. U.S.A. 101, 500–505

40. Akasaka-Manya, K., Manya, H., Nakajima, A., Kawakita, M., and Endo, T. (2006) Physical and functional association of human protein O-mannosyltransferases 1 and 2. J. Biol. Chem. 281, 19339–19345

41. Akasaka-Manya, K., Manya, H., and Endo, T. (2004) Mutations of the POMT1 gene found in patients with Walker-Warburg syndrome lead to a defect of protein O-mannosylation. Biochim. Biophys. Res. Commun. 325, 75–79

42. van Reeuwijk, J., Janssen, M., van den Elzen, C., Beltrán-Valero de Bernabé, D., Sabatelli, P., Merlini, L., Boon, M., Scheffer, H., Brockington, M., Muntoni, F., Huyten, M. A. V., Verrips, A., Walsh, C. A., Barth, P. G., Brunner, H. G., and van Bokhoven, H. (2005) POMT2 mutations cause α-dystroglycan hypoglycosylation and Walker-Warburg syndrome. J. Med. Genet. 42, 907–912

43. Mercuri, E., D’Amico, A., Tessa, A., Berardinelli, A., Pane, M., Messina, S., van Reeuwijk, J., Bertini, E., Muntoni, F., and Santorelli, F. M. (2006) POMT2 mutation in a patient with ‘MEB-like’ phenotype. Neuromuscular Dis. 16, 446–448

44. Godfrey, C., Clement, E., Mein, R., Brockington, M., Smith, J., Talim, B., Straub, V., Robb, S., Quinlivan, R., Feng, L., Jimenez-Mallebrera, C., Mercuri, E., Manzur, A. Y., Kinali, M., Torelli, S., Brown, C. S., Sewry, C. A., Bushby, K., Topaloglu, H., North, K., Abbas, S., and Muntoni, F. (2007) Defining genotype phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain 130, 2725–2735

45. Yanagisawa, A., Bouchet, C., Van den Bergh, P. Y., Cuisset, J. M., Viollet, L., Leturcq, F., Romero, N. B., Quijano-Roy, S., Fardeau, M., Setta, N., and Guicheney, P. (2007) New POMT2 mutations causing congenital muscular dystrophy: identification of a founder mutation. Neurology 69, 1254–1260

46. Yis, U., Uyanik, G., Kurul, S., Dirik, E., Ozer, E., Gross, C., and Hehr, U. (2007) A case of Walker-Warburg syndrome resulting from a homozygous POMT1 mutation. Eur. J. Paediatr. Neurol. 11, 46–49

47. Messina, S., Mora, M., Pajek, E., Pini, A., Mongini, T., D’Amico, A., Pane, M., Aiello, C., Bruno, C., Biancheri, R., Berardinelli, A., Boito, C., Farina, L., Morandi, L., Moroni, I., Pazzani, R., Pichiechio, A., Ricci, E., Ruggieri, A., Saredi, S., Scuderi, C., Tessa, A., Toscano, A., Tortorella, G., Trevisan, C. P., Uggetti, C., Santorelli, F. M., Bertini, E., and Mercuri, E. (2008) POMT1 and POMT2 mutations in CMD patients: a multicentric Italian study. Neuromuscular Dis. 18, 565–571

48. Yanagisawa, A., Bouchet, C., Quijano-Roy, S., Vuillaume-Barron, S., Clarke, N., Torelli, F., and Muntoni, F. (2008) Mutations in ISPD cause Walker-Warburg syndrome and defective glycosylation of α-dystroglycan. Hum. Genet. 123, 1491–1495

49. Liu, J., Ball, S. L., Yang, Y., Mei, P., Zhang, L., Shi, H., Kamiński, H. J., Lemmon, V. P., and Hu, H. (2006) A genetic model for muscle-eye-brain disease in mice lacking protein O-mannose 1,2-β-acetlyglucosaminyltransferase (POMGnT1). J. Neurosci. 26, 7293–7301

50. Hehr, U., Yukan, G., Gross, C., Walter, M. C., Bohring, A., Cohen, M., Oehl-Jaschkowitz, B., Bird, L. M., Shamdeen, G. M., Bogdahn, U., Schüller, G., Topaloglu, H., Aigner, L., Lochmüller, H., and Winkler, J. (2007) Novel POMGnT1 mutations define broader phenotypic spectrum of muscle-eye-brain disease. Neurogenetics 8, 279–288

51. Clement, E. M., Godfrey, C., Tan, J., Brockington, M., Torelli, S., Feng, L., Brown, S. C., Jimenez-Mallebrera, C., Sewry, C. A., Longman, C., Mein, R., Abbas, S., Vajsar, J., Schachter, H., and Muntoni, F. (2008) Mild POMGnT1 mutations underlie a novel limb-girdle muscular dystrophy variant. Arch. Neurol. 65, 137–141

52. Vuillaume-Barron, S., Bouchet-Seraphin, C., Chelbi, M., Eude-Caye, A., Charluteau, E., Besson, C., Quintin, S., Devisse, L., Becquey, C., and Landrieu, P.
MINIREVIEW: O-Mannosylation and CMD

P. Goldenberg, A. Maincent, K. Loget, P. Boute, O. Gilbert-Dussardier, B., Encha-Razavi, F., Gonzales, M., Grandchamp, B., and Seta, N. (2011) Intragenic rearrangements in LARGE and POMGNT1 genes in severe dystroglycanopathies. Neurmunscul. Disord. 21, 782–790

59. Saredi, S., Ardissone, A., Ruggieri, A., Mottarelli, E., Farina, L., Rinaldi, R., Silvestri, E., Gandioli, C., D’Arrigo, S., Salerno, F., Morandi, L., Grammatico, P., Pantaleoni, C., Moroni, I., and Mora, M. (2012) Novel POMGNT1 point mutations and intragenic rearrangements associated with muscle-eye-brain disease. J. Neurol. Sci. 318, 45–50

60. Inamori, K., Endo, T., Gu, J., Matsu, I., Ito, Y., Fujii, S., Iwasaki, H., Nari-matsu, H., Miyoshi, E., Hone, H., and Taniguchi, N. (2004) Xylosyl- and glucuronyltransferase IX acts on the GlcNAcβ1,2-Manα1,3-Thr moiety, forming a 2,6-branched structure in brain O-mannosyl glycan. J. Biol. Chem. 279, 2337–2340

61. Lee, J. K., Matthews, R. T., Lim, J. M., Swanier, K., Wells, L., and Pierce, N. B., Estournet, B., Sewry, C. A., Guicheney, P., Voit, T., and Muntoni, F. (2012) Developmental expression of the neuron-specific N-acetylgalactosaminyltransferase Vb (GnT-Vb/IX) and identification of its in vivo glycan products in comparison with those of its paralog, GnT-V. J. Biol. Chem. 287, 28526–28536

62. Kobayashi, K., Nakahori, Y., Miyake, M., Matsumura, K., Kondo-Iida, E., Nomura, Y., Segawa, M., Yoshioka, M., Saito, K., Osawa, M., Hamano, K., Sakakihara, Y., Nonaka, I., Nakagome, Y., Kanazawa, I., Nakamura, Y., Tokunaga, K., and Toda, T. (1998) An ancient retrotranspositional insertion causes Fukuyama-type congenital muscular dystrophy. Nature 394, 388–392

63. Mercuri, E., Brockington, M., Straub, V., Quijano-Roy, S., Yuva, Y., Herrmann, R., Brown, S. C., Torelli, S., Dubowitz, V., Blake, D. J., Romero, N. B., Estournet, B., Sewry, C. A., Guicheney, P., Voit, T., and Muntoni, F. (2003) Phenotypic spectrum associated with mutations in the fukutin-related protein gene. Ann. Neurol. 53, 537–542

64. Manzini, M. C., Gleason, D., Chang, B. S., Hill, R. S., Barry, B. J., Partlow, J. N., Poduri, A., Currier, S., Galvin-Parton, P., Shapiro, L. R., Schmidt, K., Davis, J. G., Basel-Vanagaite, L., Seidahmed, M. Z., Salih, M. A., Dobyns, W. B., and Walsh, C. A. (2008) Ethnically diverse cases of Walker-Warburg syndrome (WWS): FCMD mutations are a more common cause of WWS outside of the Middle East. Hum. Mutat. 29, E231–E241

65. Peat, R. A., Smith, J. M., Compton, A. G., Bax, N. L., Pace, R. A., Burkin, D. J., Kaufman, S. J., Lamannde, S. R., and North, K. N. (2008) Diagnosis and etiology of congenital muscular dystrophy. Neurology 71, 312–321

66. Yis, U., Uyanik, G., Heck, P. B., Smitka, M., Nobell, H., Ehinger, F., Dirk, E., Feng, L., Kurul, S. H., Brocke, K., Unalp, A., Özer, E., Catmakci, H., Sewry, C., Cirak, S., Muntoni, F., Hehr, U., and Morris-Rosendahl, D. J. (2011) Fukutin mutations in non-Japanese patients with congenital muscular dystrophy: less severe mutations predominate in patients with a non-Walker-Warburg phenotype. Neuromuscular Disord. 21, 20–30

67. Esapa, C. T., Benson, M. A., Schröder, J. E., Martin-Rendon, E., Brockington, M., Brown, S. C., Muntoni, F., Kröger, S., and Blake, D. J. (2002) Functional requirements for fukutin-related protein in the Golgi apparatus. Hum. Mol. Genet. 11, 3319–3331

68. Cipollol, J. F., Awad, A., Costello, C. E., Robbins, P. W., and Hirschberg, C. B. (2004) Biosynthesis in vitro of Caenorhabditis elegans phosphorylcholine oligosaccharides. Proc. Natl. Acad. Sci. U.S.A. 101, 3404–3408

69. Beedle, A. M., Turner, A. J., Saito, Y., Lueck, J. D., Foltz, S. J., Fortunato, M. J., Nienaber, P. M., and Campbell, K. P. (2012) Mouse fukutin deletion impairs dystroglycan processing and recapitulates muscular dystrophy. J. Clin. Invest. 122, 3330–3342

70. Inamori, K., Hara, Y., Miller, T., Anderson, M. E., Zhu, Z., Yoshida-Moriguchi, T., and Campbell, K. P. (2013) Xylosyl- and glucuronyltransferase functions of LARGE in α-dystroglycan modification are conserved in LARGE2. Glycobiology 23, 295–302

71. Grewal, P. K., and Hewitt, J. E. (2002) Mutation of Large, which encodes a putative glycosyltransferase, in an animal model of muscular dystrophy. Biochim. Biophys. Acta 1573, 216–224

72. Longman, C., Brockington, M., Torelli, S., Jimenez-Mallebrera, C., Kennedy, C., Khalil, N., Feng, L., Saran, R. K., Voit, T., Merlini, L., Sewry, C. A., Brown, S. C., and Muntoni, F. (2003) Mutations in the human LARGE gene cause MDC1D, a novel form of congenital muscular dystrophy with severe mental retardation and abnormal glycosylation of α-dystroglycan. Hum. Mol. Genet. 12, 2853–2861

73. Beltrán-Valero de Bernabé, D., Inamori, K., Yoshida-Moriguchi, T., Wey- dert, C. J., Harper, H. A., Willer, T., Henry, M. D., and Campbell, K. P. (2009) Loss of α-dystroglycan laminin binding in epithelium-derived cancers is caused by silencing of LARGE. J. Biol. Chem. 284, 11279–11284

74. Patnaik, S. K., and Stanley, P. (2005) Mouse Large can modify complex N- and mucin O-glycans on α-dystroglycan to induce laminin binding. J. Biol. Chem. 280, 20851–20859

75. Manzini, M. C., Tambunan, D. E., Hill, R. S., Yu, T. W., Maynard, T. M., Heinzen, E. L., Shianna, K. V., Stevens, C. R., Partlow, J. N., Barry, B. J., Rodriguez, J., Gupta, V. A., Al-Qudah, A. K., Eyaid, W. M., Friedman, J. M., Salih, M. A., Clark, R., Moroni, I., Mora, M., Beggs, A. H., Gabriel, S. B., and Walsh, C. A. (2012) Exome sequencing and functional validation in zebrafish identify GTDC2 mutations as a cause of Walker-Warburg syndrome. Am. J. Hum. Genet. 91, 541–547

76. Matsuura, A., Ito, M., Sakaidani, Y., Kondo, T., Murakami, K., Furukawa, K., Nadano, D., Matsuda, T., and Okajima, T. (2008) O-Linked N-acetylglucosamine is present on the extracellular domain of Notch receptors. J. Biol. Chem. 283, 35486–35495

77. Sakaidani, Y., Ichiyanagi, N., Saito, C., Nomura, T., Ito, M., Nishio, Y., Salih, M. A., Clark, R., Moroni, I., Mora, M., Beggs, A. H., Gabriel, S. B., and Walsh, C. A. (2010) Exome sequencing and functional validation in zebrafish identify GTDC2 mutations as a cause of Walker-Warburg syndrome. Am. J. Hum. Genet. 91, 541–547

78. Muntoni, F., Torelli, S., and Brockington, M. (2008) Muscular dystrophies due to glycosylation defects. Neurotherapeutics 5, 627–632