Discriminantal Groups and Zariski Pairs of Sextic Curves

Jin-Gen Yang, Fudan University, Shanghai, jgyang@fudan.edu.cn
Jinjing Xie, Fudan University, Shanghai, 032018008@fudan.edu.cn

Abstract
A series of Zariski pairs and four Zariski triplets were found by using lattice theory of K3 surfaces. There is a Zariski triplet of which one member is a deformation of another.

1 Introduction
In [13] Zariski showed that there are two irreducible sextic curves C_1, C_2 with six cusps and the fundamental groups of $\mathbb{P}^2 \setminus C_1$ and $\mathbb{P}^2 \setminus C_2$ are not isomorphic. Such pairs are called Zariski pairs. The precise definition of Zariski pair differs from paper to paper. Here we adopt the following definition: Two plane curves C_1, C_2 of the same degree form a Zariski pairs if C_1, C_2 have the same combinatorial data (cf. [2]) and (\mathbb{P}^2, C_1) and (\mathbb{P}^2, C_2) are not homeomorphic. The Zariski triplet and k-plet are defined similarly (cf. [4]). A brief account of the history of Zariski pairs can be found in [4]. It is remarkable that the degrees of all known Zariski pairs are at least six.

Let C be a reduced sextic curve with simple singularities only and let X be the K3 surface obtained from the double cover branched over C. Let N_C be the orthogonal complement in $H^2(X, \mathbb{Z})$ of the sublattice generated by all irreducible components of the inverse image of C in X. Shimada shows in [9] that N_C is a topological invariant of the pair (\mathbb{P}^2, C). When C is maximizing, i.e., the Milnor number of C is 19, N_C is the transcendental lattice of the K3 surface X. Let γ_X be the discriminantal form of the Picard lattice of X. For some special maximizing sextics there are two non-isomorphic positive definite lattices of rank two whose discriminantal forms are isomorphic to $-\gamma_X$. By Shimada’s theorem they are Zariski pairs, called arithmetic Zariski pairs. Shimada was able to enumerate all such pairs ([8, 9]).

For any reduced sextic with simple singularities, not necessarily maximizing, let M be the primitive hull of the sublattice generated by all irreducible components of

*Partially supported by NSF of China.
2000 Mathematical Subject Classification: Primary 14F45, Secondary 14H50,14J28.
Keywords and phrases: sextic curve, simple singularity, Zariski pair
the inverse image of C in X. By Shimada’s theorem and Nikulin’s lattice theory, the discriminant group A of M is a topological invariant of (\mathbb{P}^2, C), which is weaker than N_C. In this paper we use this invariant to obtain a series of Zariski pairs and four Zariski triplets of reduced sextics. Among them the most interesting one is a Zariski triplet of three conics with $3A_5 + 3A_1$, of which one member of the triplet is the deformation of another member (Theorem 5.2). To our knowledge this is the first such example.

One significant difference between our Zariski pairs and Shimada’s arithmetic Zariski pairs is that in our examples although two members of a pair have the same combinatorial data but for one member there is a plane curve of low degree whose intersection number with the sextic at every point is even. This geometric property is not shared by arithmetic Zariski pairs of Milnor number 19, since the Picard groups of both members of such a pair are isomorphic.

We would like to thank Professor W. Barth, Professor K. Zuo and Bo Wu for helpful discussions on the subject.

After the finishing of this paper, the authors were kindly informed by Professor Shimada that he obtained similar results, (cf. [7]).

2 Discriminantal group of a sextic curve with simple singularities

Let C be a reduced sextic curve with simple singularities only. Let $p : Y \to \mathbb{P}^2$ be the double cover branched over C and let $\mu : X \to Y$ be the minimal resolution of singularities of Y. Then X is a K3 surface and $H^2(X, \mathbb{Z})$ is a unimodular lattice of signature $(3, 19)$. Let Pic(X) denote the Picard lattice of X. It is a primitive sublattice of $H^2(X, \mathbb{Z})$. Let G be the sublattice of Pic(X) generated by all irreducible components of the pull-back of C in X and let \tilde{G} be the primitive hull of G in $H^2(X, \mathbb{Z})$. We define the discriminant group of C to be the finite group $\tilde{G}^\vee / \tilde{G}$, where \tilde{G}^\vee is the dual lattice of \tilde{G}.

Lemma 2.1. Let C and C_1 be two reduced sextic curves with simple singularities only. If (\mathbb{P}^2, C) is homeomorphic to (\mathbb{P}^2, C_1), then the discriminantal groups of C and C_1 are isomorphic.

Proof. Let G be the sublattice generated by all irreducible components of $(p \mu)^{-1}(C)$ and let \tilde{G} be the primitive hull of G in $H^2(X, \mathbb{Z})$. According to a theorem of Shimada ([9]) the orthogonal complement G^\perp of G in $H^2(X, \mathbb{Z})$ is a topological invariant of the pair (\mathbb{P}^2, C). By Nikulin’s lattice theory ([6]) the discriminantal group of G^\perp is isomorphic to that of \tilde{G}. Hence the lemma holds. \Box

Denote the unimodular even lattice of signature $(3, 19)$ by Λ, called the K3 lattice. Recall that for any lattice L, an overlattice M of L is a sublattice of the dual lattice L^\vee such that $M \supset L$ and $|M/L| < \infty$.

2
Theorem 2.2 (Urabe [10, 11]). Let $G = \sum_k a_k A_k + \sum_i d_i D_i + \sum_m e_m E_m$ be a finite Dynkin graph. Let $L(G)$ denote the negative definite lattice of G. Let $\mathbb{Z}\lambda$ be a lattice of rank one generated by λ with $\lambda^2 = 2$. Then there is a reduced sextic curve in \mathbb{P}^2 whose singularities correspond to G if and only if there is an overlattice M of $\mathbb{Z}\lambda \oplus L(G)$ such that there is a primitive embedding of M into the K3 lattice Λ such that

i) if $u \in M$, $u\lambda = 0$, $u^2 = -2$, then $u \in L(G)$;

ii) there is no $u \in M$ with $u\lambda = 1$ and $u^2 = 0$.

The main tool in Urabe’s proof of the theorem is the surjectivity of the period map for K3 surfaces. The sextic curve in the theorem can be so chosen that the overlattice M is exactly the Picard group of the corresponding K3 surface and the pull-back of a line on the plane belongs to the divisor class λ.

3 Classical Zariski pair

In this section we give a lattice-theoretic interpretation of Zariski’s classical example mentioned at the beginning of the paper.

Let M be the lattice of A_2. Let $L = \mathbb{Z}\lambda \oplus M^6$. Then L has a primitive embedding into the K3 lattice. By Theorem 2.2 there is a sextic curve C_1 such that the Picard group of the corresponding double sextic is isomorphic to L.

Denote the 12 generators of the root lattice of $6A_2$ by $e_i (1 \leq i \leq 12)$ such that $e_i e_{i+1} = 1$ for $i = 1, 3, 5, 7, 9, 11$. Let

$$u = \sum_{i=1}^{6} \frac{e_{2i-1} + 2e_{2i}}{3}.$$

Then $uv \in \mathbb{Z}$ for every $v \in L$ and $u^2 \in 2\mathbb{Z}$. Hence the subgroup L' of L^\vee generated by u and L is an overlattice of L. By Nikulin’s embedding criterion there is a primitive embedding of L' into Λ. It is easy to check that the two additional conditions of Theorem 2.2 are also satisfied. Thus there is a sextic curve C_2 such that the Picard group of the corresponding double sextic is isomorphic to L'.

Both C_1 and C_2 are irreducible sextic curves with six A_2 cusps as their only singularities. However, their discriminantal groups are L^\vee / L and L'^\vee / L' respectively, which are not isomorphic. Hence $\{C_1, C_2\}$ is a Zariski pair.

Next we show that the six cusps of C_2 are located on a conic.

Let $p : Y \to \mathbb{P}^2$ be the double cover of \mathbb{P}^2 branched over C_2 and let $\mu : X \to Y$ be the minimal resolution of singularities of Y. Identify $\text{Pic}(X)$ with L'. The map $p\mu$ is
determined by the linear system \(|\lambda|\). Let

\[
D = \lambda - \sum_{i=1}^{6} \frac{e_{2i-1} + 2e_{2i}}{3}.
\]

Then \(D \in \text{Pic}(X)\). Since \(D^2 = -2\), the Riemann-Roch theorem implies that either \(h^0(X, D) > 0\) or \(h^0(X, -D) > 0\). Since \(\lambda D = 2 > 0\), we have \(h^0(X, D) > 0\). Hence we may assume that \(D\) is an effective divisor. Choose an irreducible component \(D_1\) of \(D\) such that \(\lambda D_1 > 0\).

Suppose that \(\lambda D_1 = 1\). Then the divisor \(D_1\) would be in the class \(\lambda/2 + \sum_{i=1}^{12} k_i e_i\), in which \(k_i \in \mathbb{Q}\). However, the latter is not in \(\text{Pic}(X)\). This leads to a contradiction. Hence \(\lambda D_1 = 2\).

Let \(D = D_1 + E\). Then \(\lambda F = 0\) for each irreducible component \(F\) of \(E\). Thus \(F\) is contracted to a point in \(\mathbb{P}^2\). This means that \(E = \sum_{j=1}^{12} k_j e_j\) where \(k_j\) is a nonnegative integer. For any \(1 \leq i \leq 6\), if \(k_{2i-1} > 0\) or \(k_{2i} > 0\) then

\[
0 \leq k_{2i} = D(k_{2i-1}e_{2i-1} + k_{2i}e_{2i})
= D_1(k_{2i-1}e_{2i-1} + k_{2i}e_{2i}) + (k_{2i-1}e_{2i-1} + k_{2i}e_{2i})^2
< D_1(k_{2i-1}e_{2i-1} + k_{2i}e_{2i})
\]

implies that either \(D_1 e_{2i-1} > 0\) or \(D_1 e_{2i} > 0\). Hence \(pp(D_1)\) is a conic passing through all six cusps of \(C_2\).

4 Sextics of Milnor number 19 with simple singularities

Shimada finds all arithmetic Zariski pairs for sextics with simple singularities of Milnor number 19 ([8]). In this section we present a few more Zariski pairs of sextics of Milnor number 19 with different discriminant groups, all reducible.

Example 1 \(E_6 + A_{11} + 2A_1\)

Let \(L\) denote the negative definite lattice of the Dynkin graph \(E_6 + A_{11} + 2A_1\). The 19 generators of \(L\) are labeled according to Figure [1]. Let \(V = \mathbb{Q} \otimes \mathbb{Z}(\mathbb{Z} \lambda \oplus L)\), in which \(\lambda^2 = 2\). Let

\[
u = \frac{\sum_{i=1}^{11} i e_{i+6}}{2} + \frac{e_{18}}{2} + \frac{e_{19}}{2} \in V.
\]

It can be verified that \(u^2 \in 2\mathbb{Z}\) and \(uw \in \mathbb{Z}\) for any \(w \in \mathbb{Z} \lambda \oplus L\). Let \(M_1\) be the lattice generated by \(\mathbb{Z} \lambda \oplus L\) and \(u\). Then \(M_1\) is an overlattice of \(\mathbb{Z} \lambda \oplus L\). Using Nikulin’s criterion for lattice embedding ([6] 1.12.2), one verifies that there is a primitive embedding from \(M_1\) into the K3 lattice \(\Lambda\). Moreover, it is not hard to check that \(M_1\) satisfies
the two additional conditions in Theorem 2.2. It follows that there is a reduced sextic curve C_1 with E_6, A_{11}, A_1, A_1 as its singularities. Although we can use the algorithm in [12] to determine the irreducible decomposition of C_1, the following lemma uses an elementary argument to serve the same purpose.

Lemma 4.1. Let C be a reduced sextic curve with E_6, A_{11}, A_1, A_1 as its only singularities. Then $C = B + D$ where B and D are irreducible curves of degree 2 and degree 4 respectively satisfying the following conditions:

1) D has an E_6 singularity;
2) $B \cap D = \{p, q_1, q_2\}$, in which p is an A_{11} point of C and B, D meet at q_1 and q_2 transversally.

Proof. Let d be the maximal degree of all irreducible components of C. Since E_6 is locally irreducible, d is at least 4. Since the arithmetic genus of an irreducible sextic curve is 10, there is no irreducible sextic curve with E_6, A_{11}, A_1, A_1 as its singularities. Hence $d \leq 5$. It is obvious that there are two irreducible components passing through the A_{11} point and the intersection number of these two components at A_{11} point is 6. The only possibility is that $d = 4$ and the other component is a conic. The rest is clear.

Let $v = \frac{3e_1 + 2e_2 + 4e_3 + 6e_4 + 5e_5 + 4e_6}{3} + \frac{\sum_{i=1}^{11} ie_{i+6}}{6} + \frac{e_{18}}{2} + \frac{e_{19}}{2} \in V$.

Then $v^2 \in 2\mathbb{Z}$ and $vw \in \mathbb{Z}$ for any $w \in \mathbb{Z} \lambda \oplus L$. Let M_2 be the lattice generated by $\mathbb{Z} \lambda \oplus L$ and v. Then M_2 is an overlattice of $\mathbb{Z} \lambda \oplus L$. Note that $3v \equiv u \pmod{L}$.

Using the same method as before, we assert that M_2 satisfies the conditions in Theorem 2.2. Let C_2 be the sextic determined by M_2. By Lemma 4.1 C_2 has the same configuration as C_1. The discriminantal groups of C_1 and C_2 are M_1^\vee / M_1 and M_2^\vee / M_2 respectively. They are finite groups of different size. Hence they are not isomorphic. This shows that $\{C_1, C_2\}$ is a Zariski pair.

Next we show that C_1 and C_2 are distinguished by the existence of a special conic on \mathbb{P}^2.

Lemma 4.2. Let C be either C_1 or C_2. Let p_1, p_2, p_3, p_4 be its singularities of types E_6, A_{11}, A_1, A_1 respectively. Then the following statements hold:

1) There is a conic Q on \mathbb{P}^2 such that $(C_2, Q)_{p_1} = (C_2, Q)_{p_2} = 4, (C_2, Q)_{p_3} = (C_2, Q)_{p_4} = 2$;
2) There is no conic Q on \mathbb{P}^2 such that $(C_1, Q)_{p_1} = (C_1, Q)_{p_2} = 4, (C_1, Q)_{p_3} = (C_1, Q)_{p_4} = 2$.

5
Proof. Let $p : Y \to \mathbb{P}^2$ be the double cover branched over C and let $\mu : X \to Y$ be the minimal resolution of singularities of Y. There are nineteen -2 curves on X arising from the singularities of C. They are still denoted by e_1, \ldots, e_{19} by abuse of notation.

Case 1) $C = C_2$:

The map $p\mu$ is determined by the linear system $|\lambda|$. Let

$$D = \lambda - \frac{3e_1 + 2e_2 + 6e_4 + 5e_5 + 4e_6}{3} - \sum_{i=1}^{11} i e_{i+6} + e_{17} - \frac{e_{18}}{2} - \frac{e_{19}}{2}.$$

It follows from $D \equiv -v \pmod{\mathbb{Z}\lambda \oplus L}$ that $D \in \text{Pic}(X)$. Since $D^2 = -2$, the Riemann-Roch theorem shows that either $h^0(X, D) > 0$ or $h^0(X, -D) > 0$. Since $\lambda D = 2 > 0$, we have $h^0(X, D) > 0$. Hence we may assume that D is an effective divisor. Choose an irreducible component D_1 of D such that $\lambda D_1 > 0$.

Suppose that $\lambda D_1 = 1$. Then image of D_1 in L^*/L would be $\lambda/2 + \sum_{i=1}^{19} n_i e_i$ for some $n_i (1 \leq i \leq 19)$, which is not in the lattice M_2. This leads to a contradiction. Hence $\lambda D_1 = 2$.

Let $D = D_1 + E$. Then $\lambda F = 0$ for each irreducible component F of E. Thus F is contracted to a point in \mathbb{P}^2. This means that E consists of exceptional curves. Since $De_i > 0$ for $i = 6, 16, 18, 19$, the image Q of D in \mathbb{P}^2 passes through all singularities of C_2. Since there is no line with this property, it must be a conic.

Following the process of the canonical resolution of a double cover, it is easy to see that $(C_2, Q)_{p_1} = (C_2, Q)_{p_2} = 4$.

Case 2) $C = C_1$:

Suppose that there is such a conic Q for C_1. Since Q has even intersection number with C_1 at each point of $Q \cap C_1$, it splits into two components \tilde{Q}_1 and \tilde{Q}_2 in X. Since $\lambda \tilde{Q}_i > 0$ for $i = 1, 2$ and $\lambda (\tilde{Q}_1 + \tilde{Q}_2) = 2$, we have $\lambda \tilde{Q}_1 = \lambda \tilde{Q}_2 = 1$. Since $(Q, C_1)_{p_2} = 4$, one of \tilde{Q}_1 and \tilde{Q}_2 meets e_{16} transversally. We may assume that $\tilde{Q}_1 e_{16} = 1$. Since
respectively.

The intersection numbers of are labeled according to Figure 2. Let

\[\lambda = \sum_{i=1}^{19} m_i e_i \]

for some \(n_i \) and \(m_i \). Obviously there is no such element in \(M_1 \).

The equations are as follows:

\[C_1 : (3x_0^3 x_2 + 3x_0^2 x_1^2 - 3x_0 x_1^3 + 2x_1^4)(3x_0 x_2 - x_2^3 + 3x_1 x_2 + 3x_1^2) = 0, \]

for which \(E_6, A_{11}, A_1, A_1 \) are located at \((0 : 0 : 1), (1 : 0 : 0), (1 : 3/2 + \sqrt{-3} : 33/4 + 15 \sqrt{-3}/4), (1 : 3/2 - \sqrt{-3} : 33/4 - 15 \sqrt{-3}/4)\) respectively.

\[C_2 : (x_1 x_2 + 3x_0 x_1 + 8x_0^2 + 3x_0 x_2)(3x_1^3 x_2 + x_0 x_1^3 - 2x_1^2 x_2^3 + 3x_0 x_1^2 + x_0 x_2 + x_1 x_2) = 0, \]

for which \(E_6, A_{11}, A_1, A_1 \) are located at \((1 : 0 : 0), (1 : -2 : -2), (0 : 1 : 0), (0 : 0 : 1)\) respectively.

For \(C_2 \) the conic \(Q : x_0 x_1 + x_0 x_2 + x_1 x_2 = 0 \) passes through all singularities. The intersection numbers of \(Q \) with the quartic at \(E_6 \) and \(A_{11} \) are equal to 4.

Example 2 \(A_{11} + A_5 + 3A_1 \)

Let \(L \) denote the lattice of the Dynkin graph \(A_{11} + A_5 + 3A_1 \). The 19 generators of \(L \) are labeled according to Figure 2. Let \(V = \mathbb{Q} \otimes \mathbb{Z} \lambda \otimes L \). Let

\[u_1 = \frac{\sum_{i=1}^{11} i e_i}{2} + \frac{e_{18}}{2} + \frac{e_{19}}{2}, \]

\[u_2 = \frac{\lambda}{2} + \frac{\sum_{i=1}^{11} i e_{i+11}}{2} + \frac{e_{18}}{2} + \frac{e_{19}}{2}. \]

Let \(M_1 \) be the lattice generated by \(u_1, u_2 \) and \(\mathbb{Z} \lambda \otimes L \). Then \(M_1 \) is an overlattice of \(\mathbb{Z} \lambda \otimes L \) satisfying the conditions in Theorem 2.2. The configuration of \(C_1 \) can be described as
follows. C_1 consists of three components Q_1, Q_2, Q_3 of degrees $1, 2, 3$ respectively. Q_3
has a node. $Q_1 \cap Q_3$ is an $A_{11}, Q_1 \cap Q_3$ is an A_3 point and Q_1 intersects Q_2 at two
distinct points.
Let
$$v = \frac{\sum_{i=1}^{11} i e_i}{6} + \frac{\sum_{i=1}^{5} i e_{i+11}}{3} + \frac{e_{18}}{2} + \frac{e_{19}}{2}.$$
Let M_2 be the lattice generated by u_1, u_2, v and $\mathbb{Z} \lambda \oplus L$. Then M_2 is an overlattice of $\mathbb{Z} \lambda \oplus L$
satisfying the conditions in Theorem [2,2]. The corresponding sextic curves C_2 has the
same configuration as C_1. However their discriminantal groups are not isomorphic,
since their orders are different. It follows that $\{C_1, C_2\}$ is a Zariski pair.
The equations are as follows:

$C_1 : (2x_0 - 5x_1 + 3x_2)(16x_0x_2 - 16x_1^2 - 4x_1x_2 + 3x_2^2)(4x_0^2x_2 - 4x_0x_1x_2 + x_1^2 + x_2^2) = 0,$
in which the $A_{11}, A_5, A_1, A_1, A_1$ points are located at $(1 : 0 : 0), (1 : 1 : 1), (0 : 0 : 1), (1 : \frac{24}{43} + \frac{4\sqrt{3}}{43} : \frac{28}{43} + \frac{20\sqrt{3}}{129}), (1 : \frac{-24}{43} - \frac{4\sqrt{3}}{43} : \frac{28}{43} - \frac{20\sqrt{3}}{129})$ respectively.

$C_2 : (x_2 - x_0)(x_0^2x_2 - x_0x_1^2 + x_1^2x_2)(x_0x_2 - x_1^2 + x_2^2) = 0,$
in which the $A_{11}, A_5, A_1, A_1, A_1$ points are located at $(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : \sqrt{2} : 1), (1 : -\sqrt{2} : 1)$ respectively.

For C_2 the line $L : x_2 = 0$ passes A_{11}, A_5 and is tangent to the conic at A_{11}. This
property is not shared by C_1.

Example 3 $A_{17} + 2A_1$

Let L denote the lattice of the Dynkin graph $A_{17} + 2A_1$. The 19 generators of L are
labeled according to Figure 3. Let $V = \mathbb{Q} \otimes_2 (\mathbb{Z} \lambda \oplus L)$. Let
$$u = \frac{\lambda}{2} + \frac{\sum_{i=1}^{17} i e_i}{2}.$$
Let M_1 be the lattice generated by u and $\mathbb{Z} \lambda \oplus L$. Then M_1 is an overlattice of $\mathbb{Z} \lambda \oplus L$
satisfying the conditions in Theorem [2,2]. Let C_1 be the corresponding sextic.
Let
$$v = \frac{\lambda}{2} + \frac{\sum_{i=1}^{17} i e_i}{6}.$$
Let M_2 be the lattice generated by v and $\mathbb{Z} \lambda \oplus L$. Then M_2 is an overlattice of $\mathbb{Z} \lambda \oplus L$
satisfying the conditions in Theorem [2,2]. Let C_2 be the corresponding sextic.

Both curves C_1 and C_2 have two nodal cubics as irreducible components and these
two components meet at A_{17}. They form a Zariski pair.
Figure 3: Dynkin graph of $A_{17} + 2A_1$

Denote the A_{17} point by p. Let L be the common tangent line of the two cubics at p. Then $(L, C_1)_p = 4$ and $(L, C_2)_p = 6$.

The equations are as follows:

$$C_1 : (x_0^2 x_2 - x_0 x_1^2 + x_1^3 + x_0 x_1 x_2 + 7 x_1^2 x_2)(29 + 9 \sqrt{-3})x_0 x_2 - (29 + 9 \sqrt{-3})x_0 x_1^2$$

$$- (484 - 18 \sqrt{-3})x_0 x_1 x_2 + 542 x_1^3 + (3078 - 54 \sqrt{-3})x_0 x_2^2 - (3901 - 135 \sqrt{-3})x_1^2 x_2$$

$$+ (13851 - 243 \sqrt{-3})x_2^3 + (1539 - 27 \sqrt{-3})x_1 x_2^2] = 0,$$

in which the A_{17}, A_1, A_1 are located at $(1 : 0 : 0), (0 : 0 : 1)$ and $(1 : 1 : 13 + 3 \sqrt{-3} : 3 : 1170 : 1)$ respectively.

$$C_2 : (x_0^2 x_2 + x_1^3 + x_0 x_1 x_2 + x_1^2 x_2 - \frac{x_1^3}{16})(x_0^2 x_2 + x_1^3 + x_0 x_1 x_2 + x_1^2 x_2) = 0,$$

in which the A_{17}, A_1, A_1 are located at $(1 : 0 : 0), (1 : -2 : 4), (0 : 0 : 1)$ respectively.

Example 4 $A_{15} + A_3 + A_1$

Let L denote the lattice of the Dynkin graph $A_{15} + A_3 + A_1$. The 19 generators of L are labeled according to Figure 4. Let $V = \mathbb{Q} \otimes (\mathbb{Z} \lambda \oplus L)$. Let

$$u = \frac{\lambda}{2} + \sum_{i=1}^{15} ie_i + \frac{e_{16} + 2e_{17} + 3e_{18}}{2} + \frac{e_{19}}{2}.$$

Let M_1 be the lattice generated by u and $\mathbb{Z} \lambda \oplus L$. Then M_1 is an overlattice of $\mathbb{Z} \lambda \oplus L$ satisfying the conditions in Theorem 2.2. Let C_1 be the corresponding sextic.

Let

$$v = \frac{\lambda}{2} + \sum_{i=1}^{15} ie_i + \frac{e_{16} + 2e_{17} + 3e_{18}}{4}.$$

Let M_2 be the lattice generated by u, v and $\mathbb{Z} \lambda \oplus L$. Then M_2 is an overlattice of $\mathbb{Z} \lambda \oplus L$ satisfying the conditions in Theorem 2.2. Let C_2 be the corresponding sextic.
Both curves C_1 and C_2 have two irreducible components of degree 4 and 2 respectively. The quartic component contains an A_3 and an A_1. The two components meet at A_{15}. $\{C_1, C_2\}$ is a Zariski pair.

The equations are as follows:

$$C_1 : (2x_0x_2 + 2x_1^2 - 2x_2 + \sqrt{-2}x_1x_2)(4x_0^2x_2 + 4x_0^2x_1^2 + 4x_0^2x_2^2 - 2\sqrt{-2}x_0x_1x_2 - 4\sqrt{-2}x_0x_3^2 + 34x_0x_1^2x_2 + 12\sqrt{-2}x_0x_1x_3^2 + 22x_1^4 + 15\sqrt{-2}x_1x_2 - 18x_1^2x_2^2) = 0,$$

in which A_{15}, A_3 and A_1 are located at $(1 : 0 : 0), (0 : 0 : 1)$ and $(1 : -\frac{\sqrt{2}}{3} : \frac{2}{9})$ respectively. The line $x_1 = 0$ passes A_{15} and A_3 but its intersection number with C_1 at A_{15} is equal to 2.

$$C_2 : (x_0x_2 + x_1^2 - \frac{x_2^2}{2})(x_0^3x_2 + x_0^2x_1^2 + 2x_0x_1^2x_2 + x_1^3x_2^2 + \frac{3x_0^2x_2^2}{2}) = 0,$$

in which A_{15}, A_3 and A_1 are located at $(1 : 0 : 0), (0 : 1 : 0)$ and $(0 : 0 : 1)$ respectively. The intersection numbers of the line $x_2 = 0$ with C_2 at A_{15} and A_3 are 4 and 2 respectively.

Example 5 $2A_9 + A_1$

Let L denote the lattice of the Dynkin graph $2A_9 + A_1$. The generators of L are labeled according to Figure 5. Let $V = \mathbb{Q} \otimes_{\mathbb{Z}} (\mathbb{Z} \lambda \oplus L)$. Let

$$u = \frac{\lambda}{2} + \frac{\sum_{i=1}^{9} i e_i}{2}.$$

Let M_1 be the lattice generated by u and $\mathbb{Z} \lambda \oplus L$. Then M_1 is an overlattice of $\mathbb{Z} \lambda \oplus L$ satisfying the conditions in Theorem 2.2. Let C_1 be the corresponding sextic. Let

$$v = \frac{\lambda}{2} + \frac{\sum_{i=1}^{9} i e_i}{5} + \frac{\sum_{i=1}^{9} i e_{i+9}}{10}.$$
Figure 5: Dynkin graph of $2A_9 + A_1$

Let M_2 be the lattice generated by u, v and $\mathbb{Z}\lambda \oplus L$. Then M_2 is an overlattice of $\mathbb{Z}\lambda \oplus L$ satisfying the conditions in Theorem 2.2. Let C_2 be the corresponding sextic.

Both curves C_1 and C_2 have two irreducible components of degree 5 and 1 respectively. The quintic component contains an A_9 and an A_1. The two components meet at the second A_9. Let L be the line connecting the two A_9 points. Let p be the A_9 of the quintic component. Then $(L, C_1)_p = 2$ and $(L, C_2)_p = 4$.

The equations of C_1 and C_2 are as follows:

$C_1 : x_0[x_0^3x_2^2 + 2x_0^2x_1^2x_2 + x_0x_1^4 + (25/2 - 5\sqrt{5}/2)x_1^5 + (27 - 5\sqrt{5})x_0x_1^3x_2$

$+(-22 + 6\sqrt{5})x_0^2x_2^3 + (29/2 - 5\sqrt{5}/2)x_0^2x_1^3x_2 + (-21 + 6\sqrt{5})x_0^2x_1^2x_2^2$

$+(-19/2 + 7\sqrt{5}/2)x_0x_1x_2^3 + (-9 + 4\sqrt{5})x_0x_2^4] = 0,$

in which the quint component has an A_9 at $(1 : 0 : 0)$ and an A_1 at $(1 : -39 - 87\sqrt{5}/5 : 648 + 1449\sqrt{5}/5)$, and the two components meet at another A_9 point $(0 : 1 : 0)$.

$C_2 : x_1(x_0^2x_1^3 + 2x_0x_1^2x_2^2 + x_1^4x_2 + \frac{3x_0^3x_1^2}{4} + x_0^2x_1^2x_2 + \frac{9x_0^4x_1}{64}$

$+\frac{3x_0^3x_1x_2}{8} + x_0^2x_1x_2^2 + x_0x_1x_2^3 + \frac{125x_0^5}{27648}) = 0,$

in which A_1 is at $(1 : -5/48 : -1/4)$ and the two A_9 points are at $(0 : 1 : 0)$ and $(0 : 0 : 1)$ respectively.

In summary, we obtain the following result.

Theorem 4.3. There are five Zariski pairs of sextic curves of Milnor number 19, whose combinations of singularities are

$$E_6 + A_{11} + 2A_1, A_{17} + 2A_1, A_{15} + A_3 + A_1, A_{11} + A_5 + 3A_1, 2A_0 + A_1.$$
5 Sextic Zariski pairs with Milnor number less than 19

Many Zariski pairs of sextics with lower Milnor numbers can be obtained using the same method. We choose several special ones to analyze in details. The others can be obtained by the same method and are listed in the tables at the end of this paper.

5.1 Zariski triplets

Four Zariski triplets were found among reduced sextics with simple singularities.

5.1.1 Zariski triplet of three conics

Namba and Tsuchihashi constructed a Zariski pair of octive curves which consists of four conics in [5]. Here we give a Zariski triplet consisting of three conics.

Let L be the root lattice of $3A_5 + 3A_1$. Let $N = \mathbb{Z} \lambda \oplus L$. Denote the 18 generators of L by $e_i (1 \leq i \leq 18)$ in a natural way such that $e_i e_{i+1} = 1$ for $1 \leq i \leq 4, 6 \leq i \leq 9$ and $11 \leq i \leq 14$. Let

$$u_1 = \left(\sum_{i=1}^{5} i(e_{i+5} + e_{i+10}) + e_{17} + e_{18} \right) / 2,$$

$$v_1 = \left(\sum_{i=1}^{5} i(e_i + e_{i+10}) + e_{16} + e_{18} \right) / 2,$$

$$u_2 = \sum_{i=1}^{5} i(e_i + e_{i+5}) / 6 + \sum_{i=1}^{5} ie_{i+10} / 3 + (e_{17} + e_{18}) / 2,$$

$$v_2 = \left(\sum_{i=1}^{5} i(e_{i+5} + e_{i+10}) + e_{16} + e_{18} \right) / 2$$

and

$$w = \lambda / 2 + \sum_{i=1}^{5} i(e_i + e_{i+5} + e_{i+10}) / 2.$$

Let A_i be the sublattice of N^\vee generated by u_i, v_i and N for $i = 1, 2$. Let A_3 be the sublattice of N^\vee generated by u_1, v_1 and w. Then A_1, A_2, A_3 are overlattices of N satisfying the conditions in Theorem 2.22. Let E_1, E_2, E_3 be their corresponding reduced sextic curves. The configurations of these two curves turn out to be the same: three conics. Since the orders of $A_1^\vee / A_1, A_2^\vee / A_2$ and A_3^\vee / A_3 are different, $\{E_1, E_2, E_3\}$ is a Zariski triplet.

Let us call a sextic curve corresponding to the overlattice A_i a sextic of type i for $i = 1, 2, 3$.

Theorem 5.1. There is a Zariski triplet \(\{E_1, E_2, E_3\} \) of sextics of three conics where \(E_i \) is of type \(i \). They are distinguished by the following conditions:

1) For \(E_2 \) there is a conic on \(\mathbb{P}^2 \) passing through the three \(A_5 \) points such that the intersection number of this conic with \(E_2 \) at each \(A_5 \) point is 4. This property is not shared by \(E_1 \) and \(E_3 \).

2) For \(E_3 \) there is a nodal cubic with the node at one \(A_5 \) point such that the intersection number of this nodal cubic with \(E_3 \) at each \(A_5 \) point is equal to 6. This property is not shared by \(E_1 \) and \(E_2 \).

Sketch of the proof. Let \(X_i \) denote the \(K3 \) surface obtained by the double cover branched over \(E_i \) for \(i = 1, 2, 3 \).

Let \(D = \lambda - \frac{e_1 + 2e_2 + 3e_3 + 4e_4 + 2e_5}{3} - \frac{e_6 + 2e_7 + 3e_8 + 4e_9 + 2e_{10}}{3} - \frac{2e_11 + 4e_12 + 3e_13 + 2e_14 + e_15}{3} \),

Then \(D \in \text{Pic}(X_2) \) and \(D^2 = -2, D\lambda = 2 \). Using the same argument as before, we proved that the image of one irreducible component of a member of \(|D| \) under the double cover map is a conic with the desired property.

Let

\[
C = \frac{3\lambda/2 - \frac{e_1 + 2e_2 + 3e_3 + 2e_4 + e_5}{2} - \frac{e_6 + 2e_7 + 3e_8 + 2e_9 + e_{10}}{2} - \frac{e_11 + 2e_12 + 3e_13 + 4e_14 + 3e_15}{2}}{3},
\]

Then \(C \in \text{Pic}(X_3) \) and \(C^2 = -2, C\lambda = 3 \). For the same reason as before the image of one irreducible component of a member of \(|C| \) in \(\mathbb{P}^2 \) is a nodal cubic with the desired property. □

In the remaining part of this subsection we calculate in details the explicit equations of all such sextics.

Let \((x_0 : x_1 : x_2)\) be the homogeneous coordinates of \(\mathbb{P}^2 \). Let \(Y \) be a sextic curve consisting of three conics \(C_1, C_2, C_3 \) satisfying the conditions in Theorem 5.1. After a suitable linear change of coordinates, we may assume that the three \(A_5 \) points are located at

\((1 : 0 : 0) \in C_2 \cap C_3, (0 : 1 : 0) \in C_1 \cap C_3, (0 : 0 : 1) \in C_1 \cap C_2\),

and the tangent lines of \(C_1 \) at \((0 : 1 : 0)\) and \((0 : 0 : 1)\) are given by the equations \(x_2 - x_0 = 0 \) and \(x_1 - x_0 = 0 \) respectively. The equations of the conics are written as
\[C_1 : x_1 x_2 - x_0 x_1 - x_0 x_2 + \lambda x_0^2 = 0, \]
\[C_2 : x_1 x_2 - ax_0 x_1 - x_0 x_2 + bx_1^2 = 0, \]
\[C_3 : x_1 x_2 - x_0 x_1 - \frac{1}{a} x_0 x_2 + cx_1^2 = 0 \]

where \(\lambda, a, b, c \) are parameters to be determined. With generic values for \(\lambda, a, b, c \) the sextic has at least three \(A_3 \) singularities at \((1 : 0 : 0), (0 : 1 : 0) \) and \((0 : 0 : 1) \) already. The requirement of \(A_5 \) poses three conditions on the parameters, which are determined as follows.

1) \(A_5 \) at \((1 : 0 : 0)\):
Under the standard affine coordinates \(x = x_1/x_0, y = x_2/x_0 \) the equations of \(C_2 \) and \(C_3 \) are

\[C_2 : xy - ax - y + bx^2 = 0, \]
\[C_3 : xy - x - \frac{1}{a} y + cy^2 = 0. \]

After the change of coordinates \(y = y' - ax \) these two equations become

\[y' + (a - b)x^2 - xy' = 0 \tag{1} \]

and

\[y' + a^2(1 - ac)x^2 - a(1 - 2ac)xy' + cy'^2 = 0. \tag{2} \]

In order that the intersection number of \(C_2 \) and \(C_3 \) at \((1 : 0 : 0)\) is greater than two, the coefficients of the term \(x^2 \) in \((1) \) and \((2) \) should be equal. This gives the following relation

\[b = a - a^2 + a^3 c. \tag{3} \]

2) \(A_5 \) at \((0 : 1 : 0)\):
Under the affine coordinates \(w = x_0/x_1, y = x_2/x_1 \) the equations of \(C_1 \) and \(C_3 \) are

\[C_1 : y - w - wy + \lambda w^2 = 0, \]
\[C_3 : y - w - \frac{1}{a} wy + cy^2. \]

After the change of coordinates \(y = y' + w \) these two equations become

\[y' + (\lambda - 1)w^2 - wy' = 0 \tag{4} \]
and

\[y' + (c - \frac{1}{a})w^2 + \cdots = 0. \tag{5} \]

The coefficients of the term \(w^2 \) in (4) and (5) should be equal. This gives the following relation

\[c = \frac{1}{a} + \lambda - 1. \tag{6} \]

3) \(A_5 \) at \((0 : 0 : 1)\):
Under the affine coordinates \(w = x_0/x_2, x = x_1/x_2 \) the equations of \(C_1 \) and \(C_3 \) are

\[
C_1 : x - xw - w + \lambda w^2 = 0,
\]
\[
C_2 : x - axw - w + bx^2 = 0.
\]

The requirement of an \(A_5 \) at \((0 : 0 : 1)\) gives the following condition

\[b = a + \lambda - 1. \tag{7} \]

The three conditions (3), (6) and (7) yield

\[
(\lambda - 1)(a^3 - 1) = 0.
\]

Since \(\lambda \neq 1 \) (otherwise the conic \(C_1 \) would become the union of two lines), \(a \) is equal to one of \(1, \zeta, \zeta^2 \) with \(\zeta = e^{2\pi i/3} \). Thus we obtain three sets of solutions for the parameters \(a, b, c \):

- \(a = 1, \quad b = \lambda, \quad c = \lambda, \)
- \(a = \zeta, \quad b = \lambda + \zeta - 1, \quad c = \lambda + \zeta^2 - 1, \)
- \(a = \zeta^2, \quad b = \lambda + \zeta^2 - 1, \quad c = \lambda + \zeta - 1, \)

Hence there are three families of sextic curves satisfying our conditions defined by

\[
(x_1x_2 - x_0x_1 - x_0x_2 + \lambda x_0^2)(x_1x_2 - x_0x_1 - x_0x_2 + \lambda x_1^2) = 0,
\tag{8}
\]

\[
(x_1x_2 - x_0x_1 - x_0x_2 + \lambda x_2^2) = 0,
\]

\[
(x_1x_2 - x_0x_1 - x_0x_2 + \lambda x_0^2)(x_1x_2 - \zeta x_0x_1 - x_0x_2 + (\lambda + \zeta - 1)x_1^2) = 0,
\tag{9}
\]

\[
(x_1x_2 - x_0x_1 - \zeta^2 x_0x_2 + (\lambda + \zeta^2 - 1)x_2^2) = 0,
\]

Hence there are three families of sextic curves satisfying our conditions defined by
and

\[(x_1x_2 - x_0x_1 - x_0x_2 + \lambda x_0^2)(x_1x_2 - \zeta x_0x_2 + (\lambda + \zeta - 1)x_2^2) = 0\] \hspace{1cm} (10)

respectively. The equation (9) becomes (10) if the variables \(x_1\) and \(x_2\) are exchanged. Hence they are essentially the same.

Let \(X_\lambda\) and \(Y_\lambda\) denote the sextic curves defined by (8) and (9) respectively. When \(\lambda \neq 0, 1\), the sextic \(X_\lambda\) is composed of three conics with \(3A_5 + 3A_1\) as singularities. The three \(A_1\) points are located at

\[\left(1 : \frac{2}{\lambda + 1} : \frac{2}{\lambda + 1} \right), \left(1 : -1 : \frac{\lambda + 1}{2} \right), \left(1 : \frac{\lambda + 1}{2} : -1 \right)\].

When \(\lambda = -1\), \(X_\lambda\) is special in the sense that every two \(A_5\) points are collinear with an \(A_1\) point.

When \(\lambda \neq 0, \frac{3}{2}, 2, \frac{3 \pm \sqrt{-3}}{2}, \frac{3 \pm \sqrt{-3}}{4}, \frac{1 \pm \sqrt{-3}}{2}\) the sextic \(Y_\lambda\) has the desired configuration. The three \(A_1\) points of \(Y_\lambda\) are located at

\[\left(1 : \frac{2\lambda}{2\lambda - 3 + \sqrt{-3}} : \frac{\lambda(2\lambda - 1 + \sqrt{-3})}{4\lambda - 3 + \sqrt{-3}} \right), \left(1 : \frac{\lambda(2\lambda - 1 - \sqrt{-3})}{4\lambda - 3 - \sqrt{-3}} : \frac{2\lambda}{2\lambda - 3 - \sqrt{-3}} \right)\]

and

\[\left(1 : \frac{(1 - \sqrt{-3})(2\lambda - 3)}{(\lambda - 2)(2\lambda - 3 + \sqrt{-3})} : \frac{(1 + \sqrt{-3})(2\lambda - 3)}{(\lambda - 2)(2\lambda - 3 - \sqrt{-3})} \right)\].

Theorem 5.2. Let \(X_\lambda\) and \(Y_\lambda\) denote the sextic curves defined by (8) and (9) respectively. Then

\[X_\lambda \begin{cases}
\text{is of type 2,} & \text{if } \lambda \neq 0, 1 \\
\text{degenerates,} & \text{if } \lambda = 0, 1
\end{cases}\]

and

\[Y_\lambda \begin{cases}
\text{degenerates,} & \text{if } \lambda = 0, \frac{3}{2}, 2, \frac{3 \pm \sqrt{-3}}{2}, \frac{3 \pm \sqrt{-3}}{4}, \frac{1 \pm \sqrt{-3}}{2} \\
\text{is of type 3,} & \text{if } \lambda = 3, \pm \sqrt{-3}, \\
\text{is of type 1,} & \text{otherwise.}
\end{cases}\]

In particular, every sextic of type 3 with this configuration is a deformation of the ones of type 1.
Proof.
The values of \(\lambda \) for which \(X_4 \) or \(Y_4 \) degenerates have been discussed. Here we only consider the non-degenerate values of \(\lambda \).

Let \(Q \) be the conic defined by \(x_1x_2 - x_0x_1 - x_0x_2 = 0 \). It is obvious that for every \(X_4 \) or \(Y_4 \) the conic \(Q \) is the unique one passing three \(A_5 \) points and whose intersection numbers with the sextic at both \((0 : 1 : 0)\) and \((0 : 0 : 1)\) are greater than 2. However, the intersection number of \(Q \) with the sextic at \((1 : 0 : 0)\) is greater than 2 if and only if the sextic is some \(X_4 \). Hence \(X_4 \) is of type 2 and \(Y_4 \) is of type 1 or 3.

Let \(N \) be a nodal cubic characterizing some \(Y_4 \) as a sextic of type 3. There are three choices \((1 : 0 : 0)\), \((0 : 1 : 0)\), \((0 : 0 : 1)\) for the location of the node. They will give three values of \(\lambda \). First assume that the node of \(N \) is at \((1 : 0 : 0)\).

Since the tangent lines of \(N \) at \((0 : 1 : 0)\) and \((0 : 0 : 1)\) are the same as those of \(C_2 \), the equation of \(N \) takes the form

\[
x^2 - x^2y + ry^2 - rx^2 - sxy = 0
\]

under the affine coordinates \(x = x_1/x_0, y = x_2/x_0 \). The tangent cone of \(N \) at \(x = 0, y = 0 \) is \(x^2 + ry^2 + sxy \) and the tangent line of \(Y_4 \) is \(y + \zeta x \). In order that \(N \) and \(Y_4 \) have higher contact at \(x = 0, y = 0 \) it is necessary that

\[
1 - \zeta s + r\zeta^2 = 0. \tag{11}
\]

The other two conditions of \(N \) at \((0 : 1 : 0)\) and \((0 : 0 : 1)\) are computed. They yields the following two relations:

\[
r - s = \lambda - 1, \tag{12}
\]

\[
r(\lambda - 1) - 1 + s = 0. \tag{13}
\]

The solution of the simultaneous equations (11), (12), and (13) is \(r = 1, s = -1, \lambda = 3 \). Hence \(Y_3 \) has type 3.

If the node is chosen to be at \((0 : 1 : 0)\) or \((0 : 0 : 1)\) then the similar computation shows that \(\lambda = \pm \sqrt{-3} \). Therefore \(Y_3, Y_\sqrt{-3}, Y_-\sqrt{-3} \) are all possible \(Y_4 \) of type 3. \(\square \)

5.1.2 2\(A_7 + A_3 \)

Let \(L \) be the root lattice of the Dynkin graph \(2A_7 + A_3 \). Let \(N = \mathbb{Z}\lambda \oplus L \). Denote the 17 generators of \(L \) by \(e_i (1 \leq i \leq 17) \) in a natural way such that \(e_ie_{i+1} = 1 \) for \(1 \leq i \leq 6, 8 \leq i \leq 13 \) and \(15 \leq i \leq 16 \). Let

\[
u_1 = \sum_{i=1}^{7} i(e_i + e_{i+1})/2,
\]

17
be three elements in N^ν. It is easy to verify that $u_i^2 \in 2\mathbb{Z}$ for $i = 1, 2, 3$. Let M_i be the sublattice of N^ν generated by u_i and N for $i = 1, 2, 3$. Note that $N \subset M_1 \subset M_2 \subset M_3$. It can be verified that all these three overlattices of N satisfy the conditions in Theorem [2.2]. Therefore there are three reduced sextic curves C_1, C_2, C_3 whose discriminantal groups are $M_1^\nu/M_1, M_2^\nu/M_2, M_3^\nu/M_3$ respectively. By the algorithm in [12] we determine that all these three curves have the same configuration. That is the union of an irreducible quartic curve with an A_3 singularity and a conic such that the conic meets the quartic at two points to form $2A_7$. Thus we have the following theorem.

Theorem 5.3. The collection of three sextic curves $\{C_1, C_2, C_3\}$ forms a Zariski triplet.

These three curves are distinguished by the following two conditions:
1) The three singularities on C_3 are collinear while those on C_1 or C_2 are not.
2) For C_1 and C_2 let Q be the conic passing through the three singularities and infinitely near points at both A_7. Then Q passes the infinitely near point of A_3 for C_2 but does not pass the one for C_1.

The equations are given as following:

$$C_1 : \begin{bmatrix} x_0^2 + ax_0x_1 + (\sqrt{2} - a)x_0x_2 + x_1x_2 \end{bmatrix}[2(\frac{\sqrt{2}}{2}a - 1)^2x_0^2(x_2 - x_1)^2 + c_{2,2}x_1^2x_2^2$$

$$+c_{3,0}x_0x_1^3 + c_{2,1}x_0x_1^2x_2 + c_{1,2}x_0x_1x_2^2 - c_{0,3}x_0x_2^3 + c_{3,1}x_1x_2 + c_{1,3}x_1x_2^3] = 0$$

where

- $c_{2,2} = 2 \sqrt{2}ab - 2a^2b - b + 2 \sqrt{2}a - 3$,
- $c_{3,0} = a^3b - 2 \sqrt{2}a^2 + 2a$,
- $c_{2,1} = 3 \sqrt{2}a^2b - 3a^3b - 2ab + 4 \sqrt{2}a^2 - 8a + 2 \sqrt{2}$,
- $c_{1,2} = 3a^3b - 6 \sqrt{2}a^2b + 8ab - 2 \sqrt{2}a^2 - 2 \sqrt{2}b + 6a - 2 \sqrt{2}$,
- $c_{0,3} = 3 \sqrt{2}a^2b - a^3b - 6ab + 2 \sqrt{2}b$,
- $c_{1,3} = a^2b - 2 \sqrt{2}ab + 2b$,
- $c_{3,1} = a^2b - 2 \sqrt{2}a + 2$.

\[\sum_{i=1}^{7} i(e_i + e_{i+7})/4 + (e_{15} + 2e_{16} + 3e_{17})/2, \]

$$u_3 = \lambda/2 + \sum_{i=1}^{7} i(e_i + e_{i+7})/8 + (e_{15} + 2e_{16} + 3e_{17})/4$$
in which \(a \) and \(b \) are generic parameters.

The \(A_7, A_7, A_3 \) are located at \((0 : 1 : 0), (0 : 0 : 1) \) and \((1 : 0 : 0) \) respectively.

\[C_2 : (x_0^3 + ax_0x_1 - ax_0x_2 + x_1x_2)[(a^2x_0^2(x_2 - x_1))^2 + (1 - b - 2a^2b)x_1x_2^2 + a^3bx_0x_1^3 + a(2 - 2b - 3a^2b)(x_0x_1x_2 - x_0x_1x_2) - a^3bx_0x_2^3 + a^2bx_1x_2^2 + a^2bx_1x_3^3] = 0 \]

for generic parameters \(a \) and \(b \).

The \(A_7, A_7, A_3 \) are located at \((0 : 1 : 0), (0 : 0 : 1) \) and \((1 : 0 : 0) \) respectively. The conic \(ax_0x_1 - ax_0x_2 + x_1x_2 \) is tangent to the quartic component at \((1 : 0 : 0) \) and to the conic at both \((0 : 1 : 0) \) and \((0 : 0 : 1) \).

\[C_3 : (x_0x_1 + x_2^3)(x_0^3x_1 + x_0^2x_2^2 + b^2x_0x_1x_2 - 2x_0^2x_1^2 + bx_0x_1^3 + bx_0x_2^3 + \left(\frac{b^2}{4} - 2\right) x_0x_1x_2 - bx_0x_1^2x_2 + x_0x_1^3 + ax_0^4 - bx_1x_2^3 + x_1^3x_2) = 0 \]

for generic parameters \(a \) and \(b \).

The three collinear \(A_7, A_7, A_3 \) points are located \((1 : 0 : 0), (0 : 1 : 0), (1 : 0 : 1) \) respectively.

5.1.3 2\(A_7 + A_3 + A_1 \)

Let \(L \) be the root lattice of the Dynkin graph \(2A_7 + A_3 + A_1 \). Let \(N = \mathbb{Z}l \oplus L \). Denote the 18 generators of \(L \) by \(e_i (1 \leq i \leq 18) \) in a natural way such that \(e_ie_{i+1} = 1 \) for \(1 \leq i \leq 6, 8 \leq i \leq 13 \) and \(15 \leq i \leq 16 \). Let

\[u_1 = \sum_{i=1}^{7} i(e_i + e_{i+7})/2, \]

\[u_2 = \sum_{i=1}^{7} i(e_i + e_{i+7})/4 + (e_{15} + 2e_{16} + 3e_{17})/2, \]

\[u_3 = \sum_{i=1}^{7} i(e_i + 3e_{i+7})/8 + (e_{15} + 2e_{16} + 3e_{17})/4 + e_{18}/2 \]

and

\[v = l/2 + \sum_{i=1}^{7} i(e_{i+7})/2 + e_{18}/2 \]
be four elements in N'. It is easy to verify that $u_i^2 \in 2\mathbb{Z}$ for $i = 1, 2, 3$ and $v^2 \in 2\mathbb{Z}$. Let M_i be the sublattice of N' generated by u_i, v and N for $i = 1, 2, 3$. It can be verified that all these three overlattices of N satisfy the conditions in Theorem 2.2. Therefore there are three reduced sextic curves C'_1, C'_2, C'_3 whose discriminantal groups are $M'_1/M_1, M'_2/M_2, M'_3/M_3$ respectively. By the algorithm in [12] we determine that all these three curves have the same configuration: the union of an irreducible quartic curve with an A_3 singularity and two lines such that the each line meets the quartic with intersection number 4. Thus we have the following

Theorem 5.4. The collection of three sextic curves $\{C'_1, C'_2, C'_3\}$ forms a Zariski triplet.

These three curves are distinguished by the following two conditions:

1) The three singularities on C'_3 are collinear while those on C'_1 or C'_2 are not.

2) For C'_1 and C'_2 let Q be the conic passing through the A_7, A_7, A_3 and infinitely near points at both A_7. Then Q passes the infinitely near point of A_3 for C'_2 but does not pass the one for C'_1.

The equations of the curves are given as following:

$$C'_1 : (x_1 - x_0)(x_2 - x_0)(\sqrt{-1}x_0^2x_1^2 + 2x_0^2x_1x_2 - \sqrt{-1}x_0^2x_2^2 - (2\lambda - 2\sqrt{-1})x_0x_2^3$$

$$-(2\lambda + 2 - 2\sqrt{-1})x_0x_1x_2^2 - (2\lambda + 2)x_0^2x_1x_2 - 2\lambda x_0x_1^3$$

$$+(2\lambda - 2\sqrt{-1})x_1x_2^3 + (2\lambda + 2 - \sqrt{-1})x_1^2x_2^2 + 2\lambda x_1^3x_2] = 0$$

for a generic parameter λ.

The A_7, A_7, A_3 and A_1 points are located at $(0 : 1 : 0), (0 : 0 : 1), (1 : 0 : 0)$ and $(1 : 1 : 1)$ respectively.

$$C'_2 : (x_1 - x_0)(x_2 - x_0)(x_0^2x_1^2 + 2x_0^2x_1x_2 + x_0^2x_2^2 - 2\lambda x_0x_1^3 - (2\lambda + 2)x_0x_1^2x_2$$

$$-(2\lambda + 2)x_0x_1x_2^2 - 2\lambda x_0x_2^3 + 2\lambda x_1^3x_2 + (2\lambda + 1)x_1^2x_2^2 + 2\lambda x_1^3x_2] = 0$$

for a generic parameter λ.

The A_7, A_7, A_3, A_1 points are located at $(0 : 1 : 0), (0 : 0 : 1), (1 : 0 : 0)$ and $(1 : 1 : 1)$ respectively. The conic $x_1x_2 - x_0x_1 - x_0x_2$ has intersection number 4 with C'_2 at A_7 and A_3 points.

$$C'_3 : x_1x_2(x_1^3x_2 - 2x_1^2x_2^2 + x_1^3x_2^2 + \lambda x_0^4) = 0$$

for a generic parameter λ.

The A_7, A_7, A_3, A_1 points are located at $(0 : 1 : 0), (0 : 0 : 1), (1 : 1 : 1)$ and $(1 : 0 : 0)$ respectively. The line $x_0 = 0$ passes through the two A_7 points and the A_3 point.
Let L be the root lattice of $A_{15} + A_3$. Let $N = \mathbb{Z} \lambda \oplus L$. Denote the 18 generators of L by $e_i (1 \leq i \leq 18)$ in a natural way such that $e_i e_{i+1} = 1$ for $1 \leq i \leq 14$ and $16 \leq i \leq 17$. Let

$$u_1 = \frac{1}{2} \sum_{i=1}^{15} ie_i,$$

$$u_2 = \frac{1}{4} \sum_{i=1}^{15} ie_i + \frac{e_{16} + 2e_{17} + 3e_{18}}{2},$$

$$u_3 = \frac{\lambda}{2} + \frac{1}{8} \sum_{i=1}^{15} ie_i + \frac{e_{16} + 2e_{17} + 3e_{18}}{4}$$

be three elements in N^\vee. It is easy to verify that $u_i^2 \in 2\mathbb{Z}$ for $i = 1, 2, 3$. Let M_i be the sublattice of N^\vee generated by u_i and N for $i = 1, 2, 3$. It can be verified that all these three overlattices of N satisfy the conditions in Theorem 2.2. Therefore there are three reduced sextic curves D_1, D_2, D_3 whose discriminantal groups are $M_1^\vee / M_1, M_2^\vee / M_2$ and M_3^\vee / M_3 respectively. By the algorithm in [12] we determine that all these three curves have the same configuration. That is the union of an irreducible quartic curve with an A_3 singularity and a conic such that the conic meets the quartic at an A_{15} point. Thus we have the following theorem

Theorem 5.5. The collection of three sextic curves $\{D_1, D_2, D_3\}$ forms a Zariski triplet.

These three curves are distinguished by the following two conditions:

1) The line passing A_{15} and A_3 is tangent to the quartic component for D_3, but not for D_1 and D_2.

2) For D_1 and D_2, let Q be the conic passing through the two singularities together with their infinitely near points such that the intersection number of the conic component and Q at A_{15} is at least 3. Then $Q \cap D_2 = \{A_{15}, A_3\}$ while $Q \cap D_1$ contains four distinct points.

The equations of the curves are:

$$D_1 : (2x_0x_2 + 2x_1^2 + x_2^2)[(3\lambda + 2)x_1^4 - 4x_0^2x_2 + \lambda x_0^2x_2^2 - 4\lambda x_0^2x_1x_2 - 4x_0^2x_1^2 - 2\lambda x_0x_1x_2^2 + (4\lambda + 4)x_0x_1^2x_2 - 4\lambda x_0x_1^3 + \lambda x_1^2x_2^2] = 0$$

for a generic parameter λ and the A_{15}, A_3 are located at $(1:0:0)$ and $(0:0:1)$ respectively.
\[D_2 : (x_0x_2 - x_1^2 + \lambda x_2^2)(x_0^3x_2 - x_0^2x_1^2 - 5\lambda x_1^4 + 10\lambda x_0x_2^2 - 4\lambda x_0^2x_1^2) = 0 \]
for a generic parameter \(\lambda \) and the \(A_{15}, A_3 \) are located at (1 : 0 : 0) and (0 : 0 : 1) respectively. the conic \(x_0x_2 - x_1^2 \) intersects the sextic at \(A_{15} \) and \(A_3 \) only.

\[D_3 : (x_0x_2 + x_1^2 - x_1x_2 + x_2^2)(x_0^3x_2 + x_0^2x_2^2 + \lambda x_2^4 - x_0^2x_1x_2 + x_0^2x_2^2) = 0, \]
and the \(A_{15}, A_3 \) are located at (1 : 0 : 0) and (0 : 1 : 0) respectively. The line \(x_2 = 0 \) passes \(A_{15}, A_3 \) and is tangent to the conic component at (1 : 0 : 0).

5.2 More than one Zariski pairs for the same combination of singularities

Our search shows several occasions where more than one Zariski pairs pop up for the same combination of singularities. Here is a typical example.

Theorem 5.6. There are four Zariski pairs of reduced sextic curves with \(3A_5 + 2A_1 \) as their singularities. Their configurations are as follows:

1) a quintic plus a line;
2) a quartic plus a conic;
3) two cubics;
4) a cubic plus a conic plus a line.

Proof. Let \(L \) be the root lattice of the Dynkin graph \(3A_5 + 2A_1 \). Let \(N = \mathbb{Z}\lambda \oplus L \). Denote the 17 generators of \(L \) by \(e_i \) (1 \(\leq i \leq 17 \)) in a natural way such that \(e_ie_{i+1} = 1 \) for 1 \(\leq i \leq 4, 6 \leq i \leq 9 \) and 11 \(\leq i \leq 14 \). Let

\[u_1 = (\lambda + \sum_{i=1}^{5} ie_i + e_{16} + e_{17})/2, \]
\[u_2 = \lambda/2 + \sum_{i=1}^{5} ie_i/6 + \sum_{i=1}^{5} i(e_{i+5} + e_{i+10})/3 + (e_{16} + e_{17})/2, \]
\[v_1 = \sum_{i=1}^{5} i(e_i + e_{i+5})/2 + (e_{16} + e_{17})/2, \]
\[v_2 = \sum_{i=1}^{5} i(e_i + e_{i+5})/6 + \sum_{i=1}^{5} ie_{i+10}/3 + (e_{16} + e_{17})/2, \]
\[w_1 = (\lambda + \sum_{i=1}^{5} i(e_i + e_{i+5} + e_{i+10}))/2. \]
Let A_i be the sublattice of N^\vee generated by u_i and N for $i = 1, 2$. Let B_i be the sublattice of N^\vee generated by v_i and N for $i = 1, 2$. Let D_i be the sublattice of N^\vee generated by w_i and N for $i = 1, 2$. Let G_i be the sublattice of N^\vee generated by s_i, t_i and N for $i = 1, 2$.

It can be verified that all these eight overlattices of N satisfy the conditions in Theorem 2.2. Therefore there are eight reduced sextic curves $C_1, C_2, E_1, E_2, P_1, P_2, Q_1, Q_2$ whose discriminantal groups are

$$A_1^\vee/A_1, A_2^\vee/A_2, B_1^\vee/B_1, B_2^\vee/B_2, D_1^\vee/D_1, D_2^\vee/D_2, G_1^\vee/G_1, G_2^\vee/G_2$$

respectively.

By using the algorithm in [12] we determine the configurations of these curves are:

1) a quintic plus a line for C_1 and C_2;
2) a quartic plus a conic for E_1 and E_2;
3) two cubics for P_1 and P_2;
4) a cubic plus a conic plus a line for Q_1 and Q_2.

It follows that the pairs $\{C_1, C_2\}, \{E_1, E_2\}, \{P_1, P_2\}$ and $\{Q_1, Q_2\}$ are Zariski pairs. □

6 Other Zariski pairs with different discriminantal groups

Other Zariski pairs can be obtained using the method in the main text. They are listed below. The notations in the tables are briefly explained as follows.

The configuration of a sextic is described by the incidence table with its entries to be the local components of a simple singularites according to the convention in Figure 6.
For example,
\[
\begin{array}{c}
A_{17} \\
A_1
\end{array}
\begin{array}{c}
I \\
I,II
\end{array}
\]
means that the sextic has a nodal cubic and a smooth cubic as its irreducible components and they intersect at an \(A_{17}\) point.

The overlattices are denoted by the generators over the root lattice. The trivial lattice, i.e. the root lattice, is denote by “-”. A generator of the overlattice is represented by its image in \(L^\vee/L\) where \(L\) is the root lattice. As long as there is no singularity of type \(D_{2n}\), the discriminant group of every singularity is a cyclic group. Moreover, \((\mathbb{Z}\lambda)^\vee/\mathbb{Z}\lambda \cong \mathbb{Z}/2\mathbb{Z}\) is also cyclic. Hence a generator can be represented by a sequence of numerals of which the first corresponds to its component in \((\mathbb{Z}\lambda)^\vee/\mathbb{Z}\lambda\).

Take the example of \(D_7 + A_{11}\): the element 026 stands for \(2u + 6v\) where \(u\) and \(v\) are generators of \(L(D_7)^\vee/L(D_7)\) and \(L(A_{11})^\vee/L(A_{11})\) respectively.
The last column in the table is a special curve distinguishing two members of the Zariski pair. It is given by the degree of the curve followed by a sequence of intersection numbers with the sextic curve at singularities.
Table 1. Milnor number 18

singularities	configuration	overlattices	special curve
3E_6	irreducible	-.0111	2,(E_6,4),(E_6,4),(E_6,4)
2E_6 + A_5 + A_1	irreducible	-.01120	2,(E_6,4),(E_6,4),(A_5,4)
E_6 + A_11 + A_1	irreducible	-.0140	2,(E_6,4),(A_11,8)
E_6 + A_3 + A_2 + 2A_1	irreducible	-.013100	2,(E_6,4),(A_3,6),(A_2,2)
E_6 + 2A_5 + 2A_1	E_6 A_5 A_5 A_1 A_1	100311, 111211	2,(E_6,4),(A_5,5),(A_1,6)
E_6 + 2A_5 + 2A_1	E_6 A_5 A_5 A_1 A_1	003311, 011111	2,(E_6,4),(A_5,2),(A_1,2)
D_7 + A_11	D_7 A_11	026,013	2,(D_7,6),(A_11,6)
D_7 + A_7 + A_3 + A_1	D_7 A_7 A_3 A_1	02420,10401	2,(D_7,6),(A_7,4),(A_3,2)
A_17 + A_1	A_17 A_1	-.060	2,(A_17,12)
A_17 + A_1	A_17 A_1	190,130	1,(A_17,6)
A_14 + A_3 + 2A_1	A_14 A_3 A_1 A_1	-0.5100	2,(A_14,10),(A_2,2)
A_11 + A_5 + 2A_1	A_11 A_5 A_2 A_1 A_1	10311, 14111	2,(A_11,8),(A_5,4)
A_11 + A_5 + 2A_1	A_11 A_5 A_1 A_1	10311, 14111	2,(A_11,8),(A_5,4)
A_11 + A_5 + 2A_1	A_11 A_5 A_2 A_1 A_1	10311, 14111	2,(A_11,8),(A_5,4)
A_11 + A_5 + 2A_1	A_11 A_2 A_1 A_1	10311, 14111	1,(A_11,4),(A_5,2)
A_11 + A_5 + 2A_1	A_11 A_3 A_1 A_1	{060011,10311}	2,(A_11,4),(A_5,4), (A_1,2), (A_1,2)
A_11 + A_5 + 2A_1	A_11 A_2 A_1 A_1	{02211,10311}	2,(A_11,4),(A_2,2), (A_2,2), (A_1,2), (A_1,2)
A_11 + 2A_3 + 3A_1	A_11 A_2 A_1 A_1	0600911, 0211011	2,(A_11,8),(A_2,2),(A_2,2)
A_11 + 2A_3 + 3A_1	A_11 A_3 A_1 A_1	1600111, 1211111	2,(A_11,8),(A_2,2),(A_2,2)
2A_6	irreducible	-.024	2,(A_6,4),(A_6,8)
Table 1 (cont.)

singularities	configuration	overlattices	special curve
2A9	A9 A9	105,121	1, (A9, 4), (A9, 2)
A9 + 2A4 + A1	irreducible	.02220	2, (A9, 4), (A9, 4), (A1, 4)
A9 + 2A4 + A1	A9 A4 A4 A1	15000, 11110	1, (A9, 2), (A4, 2), (A1, 2)
2A3 + 2A1	irreducible	.03300	2, (A3, 6), (A3, 6)
A8 + A5 + A2 + 3A1	A8 A5 A5 A2 A1 A1	1030011, 1311011	2, (A8, 6), (A5, 4), (A2, 2)
2A7 + A3 + A1	A7 A7 A3 A1	01311, 12221	2, (A7, 6), (A7, 2), (A3, 2), (A1, 2)
3A5 + 3A1	A5 A5 A5 A5 A1 A1	0033011,1003101	2, (A5, 4), (A5, 2), (A5, 2)
3A5 + 3A1	3 3 A5 A5 A5 A1 A1	0033011,1300011	2, (A5, 4), (A5, 2), (A5, 2)

Table 2. Milnor number 17

singularities	configuration	overlattices	special curve
2E6 + A5	irreducible	-.0112	2, (E6, 4), (E6, 4), (A5, 4)
2E6 + 2A2 + A1	irreducible	-.01110	2, (E6, 4), (E6, 4), (A2, 2)
E6 + A11	irreducible	.014	2, (E6, 4), (A11, 8)
E6 + A8 + A2 + A1	irreducible	-.01310	2, (E6, 4), (A8, 6), (A2, 2)
E6 + 2A5 + A1	irreducible	-.01220	2, (E6, 4), (A5, 4), (A5, 4)
E6 + A3 + 2A2 + 2A1	irreducible	-.012100	2, (E6, 4), (A3, 2), (A2, 2)
E6 + A5 + 2A2 + 2A1	E6 A5 A5 A2 A1 A1	1030011,1111111	2, (E6, 4), (A5, 4), (A2, 2)
D7 + A3 + A1	D7 A3 A3	0242,0121	2, (D7, 6), (A3, 4), (A1, 2)
D7 + 3A3 + A1	D7 A3 A3 A3 A1	022220,100221	2, (D7, 6), (A3, 2)
2D3 + A7	D3 D3 A7	0224,0112	2, (D3, 4), (D3, 4), (A7, 4)
singularities	configuration	overlattices	special curve
----------------------	---------------	-----------------------------	---------------
2D₃ + 2A₃ + A₁	D₂, D₂, A₃, A₃, A₁	{022220,102021, 011110,102021}	2, (A₁, 2), (A₁, 2)
D₅ + A₁₁ + A₁	D₅, A₁₁, A₁	0260,0131	2, (D₅, 4), (A₁₁, 6), (A₁, 2)
D₅ + A₇ + A₃ + 2A₁	D₅, A₇, A₃, A₁, A₁	{024200,104001, 012110,104001}	2, (A₁, 2), (A₁, 2)
A₁₇	irreducible	-.06	2, (A₁₇, 12)
A₁₇	3 I	19,13	1, (A₁₇, 6)
A₁₅ + 2A₁	A₁₅, A₁, A₁	0800,0411	2, (A₁₅, 8), (A₂, 2), (A₁, 2)
A₁₄ + A₂ + A₁	irreducible	-.0510	2, (A₁₄, 10), (A₂, 2)
A₁₁ + A₅ + A₁	irreducible	-.0420	2, (A₁₁, 8), (A₅, 4)
A₁₁ + A₅ + A₁	3 I I I, I, II	1630,1210	1, (A₁₁, 4), (A₅, 2)
A₁₁ + 2A₁	A₁₁, A₃, A₃	0620,0312	2, (A₁₁, 6), (A₃, 4), (A₁, 2)
A₁₁ + 2A₁ + 2A₁	irreducible	-.041100	2, (A₁₁, 8), (A₂, 2), (A₂, 2)
A₁₁ + 2A₁ + 2A₁	A₁₁, A₂, A₂, A₁, A₁	060011,021111	2, (A₁₁, 4), (A₂, 2), (A₂, 2)
A₉ + 2A₄	irreducible	-.0222	2, (A₉, 4), (A₄, 4), (A₄, 4)
A₉ + 2A₄	5 I I I, I	1500,1111	1, (A₉, 2), (A₄, 2), (A₄, 2)
2A₄ + A₁	irreducible	-.0330	2, (A₄, 6), (A₆, 6)
A₈ + A₅ + A₂ + 2A₁	irreducible	-.032100	2, (A₈, 6), (A₅, 4), (A₂, 2)
A₈ + A₅ + A₂ + 2A₁	A₈, A₅, A₂, A₁, A₁	103011,131111	2, (A₈, 6), (A₅, 4), (A₂, 2)
A₈ + 3A₂ + 3A₁	irreducible	-.0311000	2, (A₈, 6), (A₂, 2), (A₂, 2)
2A₇ + 3A₁	A₇, A₇, A₁, A₁	{044000,104001, 022110,104001}	2, (A₇, 4), (A₇, 4)

28
Table 2 (cont.)

singularities	configuration	overlattices	special curve
$A_7 + 3A_3 + A_1$	A_7 A_3 A_3 A_3 A_1	{040220,1002221}	2. $(A_7,4), (A_3,4)$
		{021120,102201}	$(A_1,2), (A_1,2)$
		10300011,112111011	2. $(A_3,2), (A_5,4), (A_2,2)$
$2A_5 + 2A_2 + 3A_1$	A_5 A_5 A_2 A_2 A_1 A_1	03300011,01111011	2. $(A_5,2), (A_5,2), (A_2,2)$
		13300111,11111111	$(A_2,2), (A_2,2)$
		{03300011,10300101}	2. $(A_2,2), (A_5,2), (A_2,2)$
		{01111011,10300101}	$(A_2,2), (A_5,2), (A_2,2)$
$4A_4 + A_1$	irreducible	-011220	2. $(A_4,4), (A_5,4)$
			$(A_4,2), (A_1,2)$

Table 3. Milnor number 16

singularities	configuration	overlattices	special curve	
$2E_6 + 2A_2$	irreducible	-0111	2. $(E_6,4), (E_6,4)$	
			$(A_2,2), (A_2,2)$	
$E_6 + A_3 + A_2$	irreducible	-0131	2. $(E_6,4), (A_6,6), (A_2,2)$	
$E_6 + 2A_2$	irreducible	-0122	2. $(E_6,4), (A_2,4), (A_2,4)$	
$E_6 + A_3 + 2A_2 + A_1$	irreducible	-012110	2. $(E_6,4), (A_5,4)$	
			$(A_2,2), (A_2,2)$	
$E_6 + 4A_2 + 2A_1$	irreducible	-0111100	2. $(E_6,4), (A_2,2), (A_2,2)$	
			$(A_2,2), (A_2,2)$	
$D_5 + 3A_3$	D_5 A_3 A_3 A_3	022220,011111	2. $(D_5,6), (A_5,2)$	
			$(A_2,2), (A_2,2)$	
$2D_5 + 2A_3$	D_5 D_5 A_3 A_3	022220,011111	2. $(D_5,4), (D_5,4)$	
			$(A_3,2), (A_3,2)$	
$D_5 + A_3 + A_3 + A_1$	D_5 A_7 A_3 A_1	02420,01211	2. $(D_5,4), (A_3,4)$	
			$(A_3,2), (A_3,2)$	
$D_5 + 3A_3 + 2A_1$	D_5 A_3 A_3 A_3 A_1 A_1	{0222200,1002201}	2. $(D_5,4), (A_3,2), (A_3,2)$	
			{0111101,1002201}	$(A_1,2), (A_1,2)$

29
singularities	configuration	overlattices	special curve
$A_{14} + A_3$	irreducible	-0.051	2, $(A_{14}, 10), (A_3, 2)$
$A_{11} + A_5$	irreducible	-0.042	2, $(A_{11}, 8), (A_5, 4)$
$A_{11} + A_3$	A_1 A_3 A_3 A_5	3 I I	1, $(A_{11}, 4), (A_3, 2)$
$A_{11} + A_3 + 2A_1$	A_1 A_3 A_3 A_1 A_1	4 I I I, I, I, I, I	2, $(A_{11}, 6), (A_3, 2), (A_1, 2)$
$A_{11} + 2A_3 + A_1$	irreducible	-0.04110	2, $(A_{11}, 8), (A_3, 2), (A_1, 2)$
$2A_5$	irreducible	-0.033	2, $(A_5, 6), (A_3, 6)$
$A_5 + A_5 + A_2 + A_1$	irreducible	-0.03210	2, $(A_5, 6), (A_3, 4), (A_2, 2)$
$A_5 + 3A_2 + 2A_1$	irreducible	-0.031100	2, $(A_5, 6), (A_3, 2), (A_2, 2), (A_1, 2)$
$2A_7 + 2A_1$	A_7 A_7 A_1 A_1 A_1	4 I I I, I, I, I	0.04400, 0.02211
$A_7 + 3A_3$	A_7 A_3 A_3 A_3	4 I I, I, I, I	0.04022, 0.02112
$A_7 + 2A_3 + 3A_1$	A_7 A_3 A_3 A_1 A_1 A_1	4 I I I, I, I, I	(0.042200, 0.102200)
$3A_3 + A_1$	irreducible	-0.02220	2, $(A_3, 4), (A_3, 4), (A_1, 2)$
$3A_3 + A_1$	A_3 A_3 A_3 A_3	3 I I I I, II	1, $(A_3, 2), (A_3, 2), (A_1, 2)$
$2A_5 + 2A_2 + 2A_1$	irreducible	-0.022100	2, $(A_5, 6), (A_3, 4), (A_2, 2)$
$2A_5 + 2A_2 + 2A_1$	A_5 A_5 A_2 A_2 A_2 A_2	5 I, I, I, I, I, I	0.103001, 0.112111
$2A_5 + 2A_2 + 2A_1$	A_5 A_2 A_2 A_2 A_2 A_2	4 I I I I I I	0.033001, 0.011111
$A_5 + 4A_2 + 3A_1$	irreducible	-0.02111000	2, $(A_5, 2), (A_2, 2), (A_1, 2)$
$A_5 + 4A_2 + 3A_1$	A_5 A_2 A_2 A_2 A_2 A_2	5 I I I I I I	0.1300001, 0.111111011
$4A_3$	irreducible	-0.02211	2, $(A_5, 4), (A_3, 4), (A_2, 2),$
$5A_3 + A_1$	A_3 A_3 A_3 A_3 A_3	4 I I I I I I	(0.002220, 0.000221)

Table 3 (cont.)
Table 4. Milnor number 15 or less

singularities	configuration	overlattices	special curve
$E_6 + A_3 + 2A_2$	irreducible	-0.1211	2, $(E_6, 4), (A_5, 4), (A_2, 2)$
$E_6 + 4A_2 + A_1$	irreducible	-0.011110	2, $(E_6, 4), (A_2, 2), (A_2, 2)$
$D_5 + 3A_3 + A_1$		022220,011111	2, $(D_5, 4), (A_3, 2), (A_3, 2)$
$A_{11} + 2A_2$	irreducible	-0.0411	2, $(A_{11}, 8), (A_2, 2), (A_2, 2)$
$A_8 + A_3 + A_2$	irreducible	-0.0321	2, $(A_8, 6), (A_5, 4), (A_2, 2)$
$A_8 + 3A_2 + A_1$	irreducible	-0.03110	2, $(A_8, 6), (A_2, 2), (A_2, 2)$
$A_7 + 2A_3 + 2A_1$		042200,021111	2, $(A_7, 4), (A_5, 2), (A_3, 2)$
$3A_4$	irreducible	-0.0222	2, $(A_4, 4), (A_5, 4), (A_5, 4)$
$3A_5$		1333,1111	1, $(A_5, 2), (A_5, 2), (A_5, 2)$
$2A_3 + 2A_2 + A_1$	irreducible	-0.022110	2, $(A_5, 4), (A_5, 4), (A_2, 2), (A_2, 2)$
$A_5 + 4A_2 + 2A_1$	irreducible	-0.021110	2, $(A_5, 4), (A_2, 2), (A_2, 2)$
$A_5 + 4A_2 + 2A_1$		13000011,1111111	2, $(A_5, 4), (A_2, 2), (A_2, 2)$
singularities	configuration	overlattices	special curve
--------------	--------------	-------------	---------------
$5A_3$	A_3 A_3 A_3 A_3 A_3	002222,0111112	2, $(A_3, 4), (A_3, 2), (A_3, 2), (A_3, 2)$
$4A_3 + 3A_1$	A_3 A_3 A_3 A_1 A_1	{02222000, 10022001}	2, $(A_3, 2), (A_3, 2), (A_3, 2), (A_3, 2)$
$6A_2 + 3A_1$	irreducible	-011111000	2, $(A_2, 2), (A_2, 2), (A_2, 2), (A_2, 2)$
$E_6 + 4A_2$	irreducible	-011111	2, $(E_6, 4), (A_2, 2), (A_2, 2)$
$A_8 + 3A_2$	irreducible	-03111	2, $(A_8, 6), (A_2, 2), (A_2, 2)$
$2A_3 + 2A_2$	irreducible	-02211	2, $(A_3, 4), (A_2, 2), (A_2, 2)$
$A_5 + 4A_2 + A_1$	irreducible	-0211110	2, $(A_5, 4), (A_2, 2), (A_2, 2)$
$4A_3 + 2A_1$	A_3 A_3 A_3 A_1 A_1	0222200, 0111111	2, $(A_3, 2), (A_3, 2), (A_3, 2), (A_3, 2)$
$6A_2 + 2A_1$	irreducible	-011111000	2, $(A_2, 2), (A_2, 2), (A_2, 2), (A_2, 2), (A_2, 2)$
$A_5 + 4A_2$	irreducible	-021111	2, $(A_5, 4), (A_2, 2), (A_2, 2), (A_2, 2), (A_2, 2)$
$6A_2 + A_1$	irreducible	-011111000	2, $(A_2, 2), (A_2, 2), (A_2, 2)$
References

[1] E. Artal-Bartolo, *Sur les couples de Zariski*, J. Algebraic Geom. 3 (1994), 223-247.

[2] E. Artal-Bartolo, H. Tokunaga, *Zariski pairs of index 19 and Mordell-Weil groups of K3 surfaces*, Proc. London Math. Soc. (3), 80 (2000), no.1, 127-144.

[3] W. P. Barth, K. Hulek, C. A. M. Peters, and A. Van de Ven, *Compact complex surfaces* (2nd ed.), Springer-Verlag, Berlin, 2004.

[4] A. Degtyarev, *Zariski k-plets via dessins d’enfants*, preprint, arxiv.math/0710.0279v2, 2008.

[5] M. Namba and H. Tsuchihashi, *On the Fundamental Groups of Galois Covering Spaces of the Projective Plane*, Geometriae Dedicata 105 (2004), 85-105.

[6] V. V. Nikulin, *Integral symmetric bilinear forms and some of their applications*, Math. USSR Izvestiya 14 (1980), 103-167.

[7] I. Shimada, *Lattice Zariski k-plets of plane sextic curves and Z-splitting curves for double place sextics*, preprint, arXiv:math/0903.3308v1, 2009.

[8] I. Shimada, *Non-homeomorphic conjugate complex varieties*, preprint, arXiv:math/0701115, 2009.

[9] I. Shimada, *On Arithmetic Zariski Pairs in degree 6*, preprint, arxiv/math/0611596, to appear in Adv. Geom.

[10] T. Urabe, *Combinations of rational singularities on plane sextic curves with the sum of Milnor numbers less than sixteen*, Banach Center Publ. 20 (1988), 429-456.

[11] T. Urabe, *Dynkin graphs and combinations of singularities on plane sextic curves*, in Singularities, Proc., Univ. Iowa 1986 (R. Randell, ed.), Contemporary Math. 90, Amer. Math. Soc., Providence, Rhode Island, 1989, 295-316.

[12] J. Yang, *Sextic curves with simple singularities*, Tohoku Math. J., 48 (2) (1996), 203-227.

[13] O. Zariski, *On the Problem of Existence of Algebraic Functions of Two Variables Possessing a Given Branch Curve*, Amer. J. Math., 51 (2) (1929), 305-328.