Modification of the Bel-Robinson type energy-momentum

Lau Loi So
Department of Physics, National Central University, Chung-Li 320, Taiwan

Abstract
For describing the non-negative gravitational energy-momentum in terms of a pure Bel-Robinson type energy-momentum in a quasi-local 2-surface, both the Bel-Robinson tensor B and tensor V are suitable. We have found that this Bel-Robinson type energy-momentum can be modified such that it satisfies the Lorentz covariant, future pointing and non-spacelike properties. We find that these particular quasi-local energy-momentum properties can be obtained from (i): B or V plus a tensor S in a small sphere limit, or (ii): directly evaluating the energy-momentum of B or V in a small ellipsoid region. (iii): calculate the total energy using the Landau-Lifshitz pseudotensor in a small ellipsoid, from Jupiter’s tidal force to Io in Schwarzschild spacetime, in an elliptic orbit.

1 Introduction
According to the Living Review article, Szabados said (see 4.2.2 in [1]): “Therefore, in vacuum in the leading r^5 order any coordinate and Lorentz-covariant quasi-local energy-momentum expression which is non-spacelike and future pointing must be proportional to the Bel-Robinson ‘momentum’ $B_{\mu\lambda\xi\kappa} t^\lambda t^\xi t^\kappa$.” Note that here t^α is the timelike unit vector and ‘momentum’ means 4-momentum. Previously, we believed that the Bel-Robinson type energy-momentum was the natural choice and indeed the only choice for describing the non-negative gravitational quasi-local energy-momentum expression. However, we have now found that it is not the case.

In the past, we thought there were only two gravitational energy-momentum expressions that have the positive definite energy (i.e., causal) since they give a positive multiple of the Bel-Robinson type energy-momentum in a small sphere limit. They are the Papapetrou pseudotensor [2, 3, 4] and tetrad-teleparallel energy-momentum gauge current expression [5, 6]. We even had concluded that both the Einstein and Landau-Lifshitz pseudotensors cannot guarantee positive definite [2], but now we discovered that the Landau-Lifshitz pseudotensor ensure positivity while Einstein does not. The motivation why we review the argument given by Szabados [1] is that we suspect there may exists a relaxation such that the desired physical requirements can be satisfied, i.e., the four-momentum are Lorentz covariant, future pointing and non-spacelike. We find that the explanation given by Szabados is necessary but not sufficient.

Positive gravitational energy is required for the stability of the spacetime [7] and any quasi-local stress expression which gives the Bel-Robinson type energy-momentum is the desirable candidate. Moreover, evaluate the quasi-local energy-momentum around a closed 2-surface, we can use the Bel-Robinson type energy-momentum to test whether the expression can have a chance to give the positivity at the large scale or not. Since negative quasi-local energy guarantees negative for a large scale, while positive quasi-local energy might have a chance for the large scale. Checking the result for the gravitational energy in a small regions is an economy way because the positivity energy prove is not easy.

Basically, quasi-local methods are not fundamentally different than pseudotensor methods [8, 9]. We will use the pseudotensor to illustrate our modified quasi-local Bel-Robinson type energy-momentum in three cases in section 3. Although pseudotensor

1email address: s0242010@gmail.com
is an coordinates dependent object, it stills a practical way to calculate the work done for an isolated system from an external universe, e.g., tidal heating through transferring the gravitational field from Jupiter to its satellite Io \cite{10}. Tidal heating means when an external tidal field E_{ij} interacts with the evolving quadrupole moment I_{ij} of an isolated body, the tidal work per unit time is \[\frac{dW}{dt} = -\frac{c^3}{2} E_{ij} \frac{dI_{ij}}{dt}, \] where $I_{ij} \propto a_0^2 E_{ij}$ and a_0 is the radius of Io. This work rate formula is the same for the Newtonian energy and general relativistic Landau-Lifshitz pseudotensor \cite{11}. Tidal heating is a real physical observable irreversible process that Jupiter distorts and heats up Io \cite{12}, it should be unambiguous of how one’s choice to localize the energy, Purdue used the Landau-Lifshitz pseudotensor to calculate the tidal heating for Io in 1999 \cite{10}. Two years later, Favata examined different classical pseudotensors (i.e., Einstein, Landau-Lifshitz, Møller and Bergmann conserved quantities) and discovered the tidal heating formula \cite{13}. Moreover, in 2000, Booth and Creighton modified the Brown and York quasi-local energy formalism and obtained the same result for the tidal dissipation formula \cite{9}.

2 Technical background

The Bel-Robinson tensor B and the recently proposed tensor V \cite{14} both fulfil the Lorentz covariant, future pointing and non-spacelike requirements in a small sphere limit. They are defined in empty space as follows:

\[
B_{\alpha\beta\xi\kappa} := R_{\alpha\lambda\xi\sigma} R_{\beta\lambda\kappa} - R_{\alpha\lambda\kappa} R_{\beta\lambda\xi} - \frac{1}{8} g_{\alpha\beta} g_{\xi\kappa} R^2,
\]

\[
V_{\alpha\beta\xi\kappa} := R_{\alpha\lambda\xi\sigma} R_{\beta\kappa} + R_{\alpha\lambda\kappa} R_{\beta\lambda\xi} + R_{\alpha\lambda\xi} R_{\beta\lambda\kappa} + R_{\alpha\lambda\kappa} R_{\beta\lambda\xi} - \frac{1}{8} g_{\alpha\beta} g_{\xi\kappa} R^2,
\]

where $R^2 = R_{\mu\nu\xi\kappa} R^{\mu\nu\xi\kappa}$, Greek letters mean spacetime and the signature we use is $+2$. The associated known energy-momentum density is

\[
B_{\mu\lambda\sigma\tau} t^\lambda t^\sigma t^\tau \equiv V_{\mu\lambda\sigma\tau} t^\lambda t^\sigma t^\tau = (E_{ab} E^{ab} + H_{ab} H^{ab}, 2\epsilon_{cab} E^a_d H^{bd}),
\]

where Latin denotes spatial indices. The electric part E_{ab} and magnetic part H_{ab}, are defined in terms of the Weyl curvature \cite{15}: $E_{ab} := C_{ambn} t^m t^n$ and $H_{ab} := * C_{ambn} t^m t^n$, where t^m is the timelike unit vector and $* C_{\mu\nu\xi\kappa}$ indicates its dual for the evaluation. Here we emphasize that both B and V are totally traceless $t_{\mu\nu\sigma\tau} = 0$, which means $t_{\mu000} = t_{\mu0ij} \delta^{ij}$, where t can be replaced by B or V. Moreover, the energy component in \cite{3} is non-negative definite for all observers, which is well known, and the linear momentum component is a kind of cross product between E and H:

\[
\epsilon_{cab} E^a_d H^{bd} = (\epsilon_{1ab} E^a_d H^{bd}, \epsilon_{2ab} E^a_d H^{bd}, \epsilon_{3ab} E^a_d H^{bd}) = (E_{2a} H^{3a} - E_{3a} H^{2a}, E_{3a} H^{1a} - E_{1a} H^{3a}, E_{1a} H^{2a} - E_{2a} H^{1a}) = (A_x, A_y, A_z),
\]

where $A := (E_{1a} \times H^{1a} + E_{2a} \times H^{2a} + E_{3a} \times H^{3a})$. The cross product can be well-defined if we treat E_{1a} as a 3-dimensional vector, explicitly $E_{1a} = (E_{11}, E_{12}, E_{13})$. Similarly for E_{2a}, E_{3a}, H_{1a}, H_{2a} and H_{3a}. Referring to \cite{4}, the momentum magnitude can be interpreted as follows

\[
|\epsilon_{cab} E^a_d H^{bd}| = |E_{1a} \times H^{1a} + E_{2a} \times H^{2a} + E_{3a} \times H^{3a}|
\leq |E_{1a} \times H^{1a}| + |E_{2a} \times H^{2a}| + |E_{3a} \times H^{3a}|
= |E_{1a}| \|H_{1b}\| \sin \theta_1 + |E_{2a}| \|H_{2b}\| \sin \theta_2 + |E_{3a}| \|H_{3b}\| \sin \theta_3,
\]

where $A := (E_{1a} \times H^{1a} + E_{2a} \times H^{2a} + E_{3a} \times H^{3a})$. The cross product can be well-defined if we treat E_{1a} as a 3-dimensional vector, explicitly $E_{1a} = (E_{11}, E_{12}, E_{13})$. Similarly for E_{2a}, E_{3a}, H_{1a}, H_{2a} and H_{3a}. Referring to \cite{4}, the momentum magnitude can be interpreted as follows

\[
|\epsilon_{cab} E^a_d H^{bd}| = |E_{1a} \times H^{1a} + E_{2a} \times H^{2a} + E_{3a} \times H^{3a}|
\leq |E_{1a} \times H^{1a}| + |E_{2a} \times H^{2a}| + |E_{3a} \times H^{3a}|
= |E_{1a}| \|H_{1b}\| \sin \theta_1 + |E_{2a}| \|H_{2b}\| \sin \theta_2 + |E_{3a}| \|H_{3b}\| \sin \theta_3,
\]
where θ_1 is the angle between E_{1a} and H_{1a}; similarly for θ_2 and θ_3.

According to (3), both B and V have the same Bel-Robinson type energy-momentum in a small sphere region, which exhibits the desired causal relationship:

$$t_{0000} - |t_{000c}| = (E_{ab}E^{ab} + H_{ab}H^{ab}) - |2\epsilon_{cab}E^a_dH^{bd}| \geq 0,$$

and t can be either B or V. Here we consider two more possibilities for the comparison with the energy and still obtain the non-negative condition:

$$(E_{ab}E^{ab} + H_{ab}H^{ab}) + k_1(E_{ab}E^{ab} - H_{ab}H^{ab}) \geq 0, \quad \Rightarrow \quad |k_1| \leq 1, \quad (7)$$

$$(E_{ab}E^{ab} + H_{ab}H^{ab}) + k_2E_{ab}H^{ab} \geq 0, \quad \Rightarrow \quad |k_2| \leq 2. \quad (8)$$

The above two extra invariant terms come from

$$R_{\alpha\beta\mu\nu}R^{\alpha\beta\mu\nu} = 8(E_{ab}E^{ab} - H_{ab}H^{ab}), \quad R_{\alpha\beta\mu\nu} * R^{\alpha\beta\mu\nu} = 16E_{ab}H^{ab}. \quad (9)$$

These two terms are scalar and satisfy the Lorentz covariant property. The first term can be classified as the energy density (i.e., see (20)−(21)) and the second as the momentum density (i.e., look (22)−(23)). Moreover, the momentum density EH can be classified as a dot product between E and H:

$$E_{ab}H^{ab} = E_{1a}H^{1a} + E_{2a}H^{2a} + E_{3a}H^{3a} = |E_{1a}| |H_{1b}| \cos \theta_1 + |E_{2a}| |H_{2b}| \cos \theta_2 + |E_{3a}| |H_{3b}| \cos \theta_3, \quad (10)$$

Combining the inequalities from (6) to (8)

$$(E_{ab}E^{ab} + H_{ab}H^{ab}) + k_1(E_{ab}E^{ab} - H_{ab}H^{ab}) + k_2E_{ab}H^{ab} - |2\epsilon_{cab}E^a_dH^{bd}| \geq 0. \quad (11)$$

Based on the argument from Szabados [1], the above non-negative inequality should hold only if k_1 and k_2 are both zero. However, we can demonstrate that this is not true. Let $|H_{Ia}| = \alpha_I |E_{Ia}|$ and $\alpha_I \geq 0$, where $I = 1, 2, 3$, consider (11) again

$$\begin{align*}
(E_{ab}E^{ab} + H_{ab}H^{ab}) + k_1(E_{ab}E^{ab} - H_{ab}H^{ab}) + k_2E_{ab}H^{ab} - 2|\epsilon_{cab}E^a_dH^{bd}| & \\
\geq & (E^2 + H^2) + k_1(E^2 - H^2) - |k_2||E_{ab}H^{ab}| - 2|\epsilon_{cab}E^a_dH^{bd}| \\
\geq & (1 + k_1)E^2_{1a} + (1 - k_1)H^2_{1a} - |k_2||E_{1a}||H_{1b}| \cos \theta_1 - 2|E_{1a}||H_{1b}| \sin \theta_1 \\
\quad + (1 + k_1)E^2_{2a} + (1 - k_1)H^2_{2a} - |k_2||E_{2a}||H_{2b}| \cos \theta_2 - 2|E_{2a}||H_{2b}| \sin \theta_2 \\
\quad + (1 + k_1)E^2_{3a} + (1 - k_1)H^2_{3a} - |k_2||E_{3a}||H_{3b}| \cos \theta_3 - 2|E_{3a}||H_{3b}| \sin \theta_3 \\
= & \left\{ (1 - \alpha_I)^2 \left[1 + \frac{k_1(1 + \alpha_I)}{(1 - \alpha_I)} \right] + 2\alpha_I \left(1 - \frac{1}{2} |k_2| \cos \theta_I \right) \right\} E^2_{1a} \\
\geq & 0, \quad (12)
\end{align*}$$

provided that

$$k_1 \geq \frac{\alpha_I - 1}{\alpha_I + 1}, \quad |k_2| \leq \frac{2(1 - |\sin \theta_I|)}{|\cos \theta_I|}. \quad (13)$$

Thus (12) is non-negative for some non-vanishing k_1 and k_2. The component with k_1 varies the energy density, while the component with k_2 alters the momentum value. One may question the purpose for this kind of modification, but for the present discussion we note that we do not change the energy-momentum relationship indicated in (6) through the introduction of the two terms multiplied by k_1 and k_2. The detailed physical consequences will be discussed in section 3, i.e., see (16), (19) and (24).

Actually, we are repeating the same comparison with Szabados [1]. However, we have found a different result; one that is strictly forbidden according to the conclusion
of Szabados’s article. A natural question if (12) is correct, is what are the allowed ranges for \(k_1 \) and \(k_2 \)? More precisely, looking at (11) again, we consider what ranges for constants \(k_1 \) and \(k_2 \) may be selected such that the Lorentz covariant and future directed non-spacelike qualities can be kept. For this purpose we use the 5 Petrov types \([16]\) Riemann curvature for the verification. After some simple algebra, we find a different results from Szabados \([1]\):

\[
|k_1| \leq 1, \quad |k_2| \leq 2(1 - |k_1|). \tag{14}
\]

This indicates that, in terms of a quasi-local energy-momentum expression, \(B \) and \(V \) are not the only candidates that satisfy the Lorentz covariant and future directed non-spacelike requirements in a small sphere limit. There exists some relaxation freedom for the modification, the detail will be discussed in three cases in section 3. Here we list out the accompanied tensor \(S \) with \(B \) or \(V \) as follows:

\[
S_{\alpha\beta\xi\kappa} = R_{\alpha\xi\lambda\sigma} R_{\beta\kappa}^{\lambda\sigma} + R_{\alpha\kappa\lambda\sigma} R_{\beta\xi}^{\lambda\sigma} + \frac{1}{4} g_{\alpha\beta} g_{\xi\kappa} R^2. \tag{15}
\]

3 Quasi-local energy-momentum

We now examine the positive definite gravitational quasi-local energy-momentum, which satisfies the Lorentz covariant and future directed non-spacelike conditions.

Case (i): Consider a simple physical situation such that within a small sphere limit we define: \(t + sS \), where \(t \) can be replaced by \(B \) or \(V \), and \(s \) is a constant. For constant time \(t_0 = 0 \), the energy-momentum in vacuum with radius \(r \)

\[
2\kappa \mathcal{P}_\mu = \int_{t_0} (t^0_{\mu\xi\kappa} + sS^0_{\mu\xi\kappa}) x^\xi x^\kappa dV = \frac{4\pi}{15} r^5 (t^0_{\mu ij} + sS^0_{\mu ij}) \delta^{ij}, \tag{16}
\]

where \(\kappa = 8\pi G/c^4 \), \(G \) is the Newtonian constant and \(c \) the speed of light. According to \([1]\), the only possibility is \(s = 0 \) in order to produce the Lorentz covariant, future pointing and non-spacelike properties. However, we can show that there are some \(s \neq 0 \) such that these properties are preserved. As the 4-momentum of \(S_{0\mu ij} \delta^{ij} = -10(E_{ab}^2 - H_{ab}^2, 0, 0, 0) \), we only vary the energy and without affecting the momentum. After the substitution, the energy for (16) is

\[
- \mathcal{P}_0 = \mathcal{E} = \frac{2\pi}{15\kappa} r^5 \left[(E_{ab} E^{ab} + H_{ab} H^{ab}) - 10s(E_{ab} E^{ab} - H_{ab} H^{ab}) \right], \tag{17}
\]

and the associated momentum is \(\mathcal{P}_c = \frac{2\pi}{15\kappa} r^5 (2\epsilon_{cab} E^{ad} H^{bd}) \). Since the values of \(E_{ab} \) and \(H_{ab} \) can be arbitrary at a given point, the sign of the energy component of \(S \) is uncertain and obviously \(S \) affects the desired Bel-Robinson type energy-momentum inequality: \(\mathcal{E} \geq |\vec{\mathcal{P}}| \). Previously, our preference was achieving a multiple of pure Bel-Robinson type energy-momentum in a small sphere \([14]\), and we thought the result in (16) required \(s = 0 \). However, we have now shown that this is not true: we have found that certain linear combinations of \(t \) and \(S \) are legitimate. Comparing (12) and (17), we observe that \(|k_1| = 10|s| \leq 1 \) and \(k_2 = 0 \) produce results that satisfy the non-negative energy, Lorentz covariant and future directed non-spacelike requirements. Here we give a remark: previously we thought both Einstein \(t^E_{\alpha\beta} \) and Landau-Lifshitz \(t^{LL}_{\alpha\beta} \) pseudotensors cannot give the positive (i.e., causal) definite quasi-local energy in Riemann normal coordinates \([2]\):

\[
t^E_{\alpha\beta} = \frac{2}{9} \left(B_{\alpha\beta\xi\kappa} - \frac{1}{4} S_{\alpha\beta\xi\kappa} \right) x^\xi x^\kappa, \quad t^{LL}_{\alpha\beta} = \frac{7}{18} \left(B_{\alpha\beta\xi\kappa} + \frac{1}{14} S_{\alpha\beta\xi\kappa} \right) x^\xi x^\kappa. \tag{18}
\]
This implies that the Landau-Lifshitz pseudotensor (i.e., corresponding $|s| = \frac{1}{14} < \frac{1}{10}$) is a suitable candidate for the Lorentz covariant and future directed non-spacelike requirements, while Einstein pseudotensor does not (i.e., associated $|s| = \frac{1}{7} > \frac{1}{10}$).

Case (ii): Evaluate the energy-momentum in a small ellipsoid, replacing t by B or V. Consider a simple dimension $(a, b, c) = (\sqrt{1 + \Delta}, 1, 1)r_0$ for non-zero $|\Delta| << 1$ and r_0 finite. For constant time $t_0 = 0$, the corresponding 4-momentum are

$$2K\mathcal{P}_\mu = \int_{t_0} t^0_{\mu ij}x^ix^j dV = \frac{4\pi}{15}(t^0_{\mu ij}\delta^{ij} + \Delta t^0_{\mu 11})r_0^5\sqrt{1 + \Delta}. \tag{19}$$

Here we list out the energy component for B and V

$$B_{0011} = E_{ab}E^{ab} + H_{ab}H^{ab} - 2E_{1a}E^{1a} - 2H_{1a}H^{1a}, \tag{20}$$
$$V_{0011} = 3E_{ab}E^{ab} - H_{ab}H^{ab} - 8E_{1a}E^{1a} + 4H_{1a}H^{1a}, \tag{21}$$

and the associated momenta are

$$B_{0c11} = 2\epsilon_{cab}(E^{ad}H_d - 2E^{a1}H_1), \tag{22}$$
$$V_{0c11} = 2\epsilon_{1ab}(E^{ad}H_d - 2E^{a1}H_1, 2E^{a}H_2 - 4E^{a2}H_1, 2E^{a}H_3 - 4E^{a3}H_1). \tag{23}$$

Looking at (19), $\Delta t^0_{\mu 11}$ varies the energy and momentum of $t^0_{\mu ij}\delta^{ij}$ simultaneously, i.e., making it analogous with (12): $k_1 \neq 0 \neq k_2$. Using the 5 Petrov types Riemann curvature to compare the energy and momentum in (19), we find that if t is replaced by B the Lorentz covariant and future directed non-spacelike properties require $\Delta \in (-1, 1]$. Similarly, if we replace t by V, it is also true provided $\Delta \in [-\frac{1}{3}, \frac{1}{3}]$. However, as far as the quasi-local small 2-surface is concerned, practically, we only need the non-zero Δ to be sufficiently small. Therefore, the result in (19), a linear combination for $t^0_{\mu ij}\delta^{ij}$ with an extra $t^0_{\mu 11}$, is a physically reasonable candidate for describing the quasi-local energy-momentum.

Case (iii): Demonstrate the total energy-momentum on a gravitating system by an external universe, i.e., transferring the gravitational field energy from Jupiter to Io. Referring to second equation of (18), evaluate the energy-momentum for Landau-Lifshitz pseudotensor in a small ellipsoid. It is natural to consider a 2-surface ellipsoid instead of a 2-surface sphere because Jupiter deformed Io from being a perfect sphere through the tidal force. In reality, it is slightly deformed and it suits the quasi-local small 2-surface limit. The detail is follows. Again let $(a, b, c) = (\sqrt{1 + \Delta}, 1, 1)a_0$, constant time $t_0 = 0$ and the 4-momentum are

$$2K\mathcal{P}^{LL}_\mu = \frac{14\pi}{135}\left[(B^0_{\mu ij} + sS^0_{\mu ij})\delta^{ij} + \Delta(B^0_{\mu 11} + sS^0_{\mu 11})\right]a_0^5\sqrt{1 + \Delta}, \tag{24}$$

where $s = \frac{1}{14}$, energy from $S_{0011} = -2(E_{ab}^2 + 2E_{1a}^2 - H_{ab}^2 - 2H_{1a}^2)$ and momentum from $S_{0c11} = 4(0, E_{1a}H_3^a + E_{3a}H_1^a, -E_{1a}H_2^a - E_{2a}H_1^a)$. Looking at (24) for the 4-momentum, we observed that the interval for $\Delta \in [-\frac{1}{3}, \frac{1}{3}]$ satisfies the requirements for the Lorentz covariant and future directed non-spacelike. Recall $\frac{GM}{c^2} = 3.4 \times 10^{-9}$ which is small compare to unity (i.e., weak gravity limit), where $M = 1.90 \times 10^{27}$kg denotes the mass of Jupiter, $r = 4.2 \times 10^{6}$km means the separation between Jupiter and Io. The physical dimension for Io is $(x, y, z) = (3660.0, 3637.4, 3630.6)$ in kilometer. Using our notation: $a = \sqrt{1 + \Delta}a_0$, $b \simeq c \simeq a_0$, where $a_0 = 1817$km and $\Delta = 0.0144$. Indeed this ellipsoid is a little bit deformed from a perfect sphere. In our case, the volume element of Io is the quasi-local 2-surface for evaluating the energy-momentum values. Note that the density of Io is $M_{Io} = 9.83 \times 10^{22}$kg. Let’s use the Schwarzschild metric in spherical coordinates (see §31.2 in [17]) for a simple test. Certainly, there is no momentum since we are dealing with a static spacetime. The non-vanishing
Riemann curvatures are $R_{\hat{t}\hat{r}\hat{t}\hat{r}} = -R_{\hat{\theta}\hat{\phi}\hat{\theta}\hat{\phi}} = -\frac{2GM}{c^2 r^3}$ and $R_{\hat{t}\hat{\theta}\hat{t}\hat{\theta}} = R_{\hat{t}\hat{\phi}\hat{t}\hat{\phi}} = -R_{\hat{r}\hat{\theta}\hat{r}\hat{\theta}} = -R_{\hat{r}\hat{\phi}\hat{r}\hat{\phi}} = \frac{GM}{c^2 r^3}$. Substitute into (24) and thence the total energy-momentum complex (see (29) in [4] and (45) in [10]) is

$$T_{00}^{LL} = T_{00}^{LL} + (2\kappa)^{-1} T_{00}^{LL} = M_{Io} + \frac{14\pi G^2 M^2}{45\kappa c^4 r_0^6} \left[(1 - 10s) + \frac{\Delta}{3} (1 - 10s) \right] a_0^5 \sqrt{1 + \Delta} = 1.11M_{Io}. \quad (25)$$

Note that the extra amount of energy received from Jupiter is small but significant.

4 Conclusion

To describe the positive quasi-local energy-momentum expression, the Bel-Robinson tensor B and tensor V are suitable because both of them give the Bel-Robinson type energy-momentum in a small sphere region. In the past, it has seemed that only this Bel-Robinson type energy-momentum can manage this specific task: Lorentz covariant, future pointing and non-spacelike. That particular restriction cannot allow even a small amount of energy to be subtracted from this Bel-Robinson type energy-momentum. After some careful comparison and using the 5 Petrov type Riemann curvature for the verification, we have discovered that the Bel-Robinson type energy-momentum implies Lorentz covariant and future directed non-spacelike properties; but the converse is not true. We find that there exists a certain relaxation freedom such that one can (i): add an extra tensor S with B or V in a quasi-local small sphere limit, or (ii): directly evaluate B or V in a small ellipsoid region, (iii): Using the Landau-Lifshitz pseudotensor to calculate the total energy, refer to the Schwarzschild metric, in a small ellipsoid region.

Previously, we thought there are only two classical energy-momentum expressions, Papapetrou pseudotensor and tetrad-teleparallel energy-momentum gauge current expression, that contribute the desired Lorentz covariant and future directed non-spacelike requirements. Now, we have to add one more: Landau-Lifshitz pseudotensor in Riemann normal coordinates.

Acknowledgment

The author would like to thank Dr. Peter Dobson, Professor Emeritus, HKUST, for reading the manuscript and providing some helpful comments. This work was supported by NSC 99-2811-M-008-021 and NSC 100-2811-M-008-063.

References

[1] Szabados L B 2009 *Living Rev. Relativity* 12 4

[2] So L L 2009 *Class. Quantum. Grav.* 26 185004

[3] Papapetrou A 1948 *Proc. R. Irish. Acad. A* 52 11

[4] So L L, Nester J M and Chen H 2009 *Class. Quantum. Grav.* 26 085004

[5] de Andrade V C, Guillen L C T and Pereira J G 2000 *Phys. Rev. Lett.* 84 4533

[6] So L L and Nester J M 2009 *Chin. J. Phys.* 47 10
[7] Horowitz G T 1984 The positive energy theorem and its extensions Asymptotic Behavior of Mass and Spacetime Geometry (Lecture Notes in Physics vol 203) ed Flaherty F J (Berlin: Springer) pp1-20

[8] Chang C C, Nester J M and Chen C M 1999 Phys. Rev. Lett. 83 1897

[9] Booth I and Creighton J 2000 Phys. Rev. D 62 067503

[10] Purdue P 1999 Phys. Rev. D 60 104054

[11] Thorne K S 1998 Phys. Rev. D 58 124031

[12] Smith B A, et al. 1979 Science 204 951; Morabito et al. 1979 Science 204 972

[13] Favata M 2001 Phys. Rev. D 63 064013

[14] So L L and Nester J M 2009 Phys. Rev. D 79 084028

[15] Carmeli M 1982 Classical Fields General relativuty and Gauge Theory (John Wiley & Sons)

[16] Gomez-Lobo A G P 2008 Class. Quantum. Grav. 25 015006

[17] Misner C W, Thorne K S and Wheeler J A 1973 Gravitation (San Francisco, CA: Freeman)