Trade-off between standing biomass and productivity in species-rich tropical forest: Evidence, explanations and implications

Takashi S. Kohyama1 | Matthew D. Potts2 | Tetsuo I. Kohyama1 | Kaoru Niiyama3 | Tze Leong Yao4 | Stuart J. Davies5 | Douglas Sheil6

1Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan; 2Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA; 3Department of Forest Vegetation, Forestry and Forest Products Research Institute, Tsukuba, Japan; 4Forestry and Environment Division, Forest Research Institute Malaysia, Kepong, Malaysia; 5Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC, USA and 6Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway

Abstract

1. Despite its broad implications for community structure and dynamics, we lack a clear understanding of how forest productivity is partitioned among tree species. As leaf mass per unit of standing biomass declines with tree size, species achieving larger stature should show lower relative productivity as compared to smaller stature species. However, many observations indicate large-stature species grow faster than small-stature species. In this study, we address this apparent paradox, and clarify interspecific trade-offs between turnover rates and maximum size in terms of forest-level productivity and biomass storage.

2. We examined data from the 1990 and 2000 surveys of the Pasoh 50-ha plot of Malaysian rain forest. In these data, individual stems ≥1 cm stem diameter (dbh) have been identified, marked, measured and mapped. We applied site-specific equations to estimate tree biomass from dbh. We estimated species-level productivity and loss rates that are less influenced by census interval-related effects and biases.

3. Among 390 abundant tree species, species with high stand-level biomass were predominantly those large-stature species where individuals could achieve large sizes. We found that relative (= per-species-biomass) productivity and loss rate, per-capita recruitment and mortality of species were all negatively correlated to species biomass and maximum size, but not to species abundance.

4. Large-stature species grew faster than small-stature species at the same tree sizes up to 36 cm dbh. However, the relative growth of large species at their maximum size markedly declined. As a result, tree-level relative growth at maximum size and species-level relative productivity decreased with species-level biomass.
1 | INTRODUCTION

The diversity of life histories found within mixed species communities influences coexistence and ecosystem properties (Falster, Brännström, Westoby, & Dieckmann, 2017; Hooper et al., 2005; Liang, Zhou, Tobin, McGuire, & Reich, 2015). Previous studies have found that net primary productivity is correlated with community species diversity at the level of forest stands (Chisholm et al., 2013; Jucker et al., 2016; Mori, 2018). However, it remains unclear how stand-level productivity is partitioned among co-occurring tree species with differing life histories.

Past studies of stand productivity have various shortcomings. Most have neglected spatial variation and differences among species (Kira & Shidei, 1967; Malhi et al., 2004; Phillips et al., 1998). When studies have examined interspecific variation, they have typically neglected stand-level processes and focused on selected, for example, common species (Condit, Sukumar, Hubbell, & Foster, 1998; Kohyama, Suzuki, Partomihardjo, Yamada, & Kubo, 2003; Poorter et al., 2008). Furthermore, conventional estimates of net primary production by tree growth (Clark et al., 2001; Kira & Shidei, 1967; Ohtsuka et al., 2005)—biomass gained through growth of surviving stems and by new recruits divided by the census interval—are problematic for a number of reasons including their inability to account for productivity during inter-census intervals (Malhi et al., 2004; Talbot et al., 2014). To remedy these shortcomings, we developed a method for estimating instantaneous rates of production and loss that is less impacted by census interval effects and biases (see Kohyama, Kohyama, & Sheil, 2019). In addition, by defining stand-level production as the sum of species-level production, biases due to ignoring interspecific heterogeneity are avoided. Using this new approach, we clarify how forest production is partitioned among tree species.

If the largest tree sizes in a population represent the population-level biomass, then a pattern similar to stand-level biomass distributions should arise (Bastin et al., 2018; Lutz et al., 2018; Silk et al., 2013): large-stature species have higher species biomass as compared to small-stature species. We further expected that the relative growth and mortality of individual trees at the species maximum size would represent species-level relative productivity and loss, respectively (Figure 1). Therefore, it is necessary to relate species-level biomass turnover to species demography as measured by tree-size dependent growth and mortality.

Species-level biomass turnover (i.e. per-biomass relative rate of production and loss) is either negatively, positively or not related to species biomass in a community. The negative turnover-biomass correlation could be expected from the following assumptions. The relative growth of individual forest trees generally decreases with increasing size in any species population (Iida et al., 2014; Kohyama, Potts, Kohyama, Abd Rahman, & Ashton, 2015). This trend likely

\[
\frac{[\text{Species biomass}]}{[\text{Species productivity}]} = \frac{[\text{Species-largest tree size}]}{[\text{Growth at species-largest size}]} \]

(a) Common growth trajectory (b) Species-specific growth trajectory

FIGURE 1 Assumed link between species-level biomass productivity, and size-dependent tree growth trajectory. Circles indicate species maximum individual tree values for large-, intermediate- and small-stature species. (a) Forest-wide decline of relative growth with tree size predicts a negative relationship between relative productivity and biomass. (b) Interspecific differentiation in growth curves may bring about an increasing relationship between relative productivity and biomass.
reflects the reduced ratio of photosynthetic leaves, and thus available energy capture, in relation to total tree biomass (Enquist & Niklas, 2002; Poorter et al., 2012, 2015). Assuming that the decline of relative growth with tree size is similar among species with varied maximum sizes then large-stature species should show lower relative growth at maximum tree size and species-level relative productivity (Figure 1a). Tree mortality at maximum size and species-level relative loss would also be lower in large-stature species than in small-stature species (Iida et al., 2014; Kohyama et al., 2015). However, at the stand-scale, larger (and taller) trees capture a greater share of available light than smaller (and shorter) trees, which may compensate for the cost of achieving large tree size.

In reality, there is interspecific variation in size-dependent growth of trees. Observations in tropical forests suggest that species with larger stature typically grow faster, have lower mortality and recruit less frequently as compared to species with smaller stature (Iida et al., 2014; King, Davies, & Noor, 2006; King, Wright, & Connell, 2006; Kohyama et al., 2003, 2015; Lieberman, Lieberman, Hartshorn, & Peralta, 1985; Manokaran & Kochummen, 1987; Poorter et al., 2008; Rüger et al., 2018). Smaller stature species compensate for slow growth by maturing sooner and recruiting more frequently. Theoretically, lower mortality-to-growth ratios over a tree size range results in larger maximum tree sizes in stable populations (Kohyama et al., 2015). Sillett et al. (2010) and Stephenson et al. (2014) suggest that absolute (not relative) productivity of forest trees steadily increases with tree size; though the evidence remains ambiguous (Ligot et al., 2018; Sheil et al., 2017). In addition, mortality does not simply decline with tree size, but shows a minimum among mid-sized trees, with increasing rates of both smaller and larger stems (Coomes & Allen, 2007; Iida et al., 2014; King, Davies, et al., 2006; King, Wright, et al., 2006; Kohyama et al., 2015; Rüger, Huth, Hubbell, & Condit, 2011). We wish to examine how tree mortality at species maximum size relates to total species biomass. Therefore, it remains possible that species-level biomass turnover (relative productivity and loss) is positively related to species biomass (Figure 1b).

To guide our work, we propose the following four complementary hypotheses: (1) In a mixed-species stand, species that achieve large sizes (i.e. in which some individuals achieve large diameters and stature) have higher species-population biomass than smaller sized species (n.b. this is not a truism: it would be false if small-stature species were sufficiently common and large-stature species sufficiently rare), (2) species population-wide relative production rates are lower for higher biomass species; (3) low species-level relative productivity for high-biomass species is explained by large-stature species possessing a lower proportion of photosynthetic leaves to wood mass than small-stature species and (4) despite the fact that individual trees of large sized species grow faster than those of small sized species at equivalent individual stem sizes, marked reduction of tree-level relative growth at large tree sizes brings about lower species-level relative productivity for large-stature, high-biomass species.

To test these hypotheses, we examined data from the Pasoh 50-ha forest plot in Peninsular Malaysia. We estimated and compared the biomass turnover (productivity and loss) and abundance turnover (recruitment and mortality) of 390 co-occurring tree species. From repeated tree inventory data, we generated ‘identity-free’ data, in which we replaced the species identity and spatial position of a stem with another stem of similar diameter. Comparing results of observed and identity-free communities allowed us to disentangle species properties from effects of forest-wide tree size dependence. We also quantified stem size dependence of individual growth and mortality for every species, to relate biomass turnover by ontogeny and life history. We examined the generality of our results by analysing data from four other old-growth forests.

2 | MATERIALS AND METHODS

2.1 | Pasoh plot data

We used data from the 50-ha forest dynamics plot (2°59′N, 102°18′E) located in an intact lowland mixed dipterocarp forest in the Pasoh Forest Reserve, Negeri Sembilan, Peninsular Malaysia, where tree stems ≥1.0 cm in diameter at breast height (hereafter, dbh) have been identified, tagged and their dbh measured to the nearest 0.1 cm, since 1986 (Condit et al., 1999; Davies, Noor, LaFrankie, & Ashton, 2003; Manokaran & LaFrankie, 1990). We used data from two censuses (~1990 and ~2000). For individual trees, the time interval varied from 10.02 to 11.25 years. Biomass estimates were determined using allometric equations (Niiyama et al., 2010) calibrated using destructive sampling at Pasoh in 2004–2005; these equations estimate tree height (m), leaf mass and stem plus branch mass, and coarse root mass (Mg oven dry mass) from dbh (cm). We estimated leaf mass and above-ground mass (i.e. leaf mass plus stem-branch mass) of every tree in two censuses using these in situ equations. These equations disregard interspecific differences though we note that the allometries of tree height versus dbh in the Pasoh plot are not significantly different among the most abundant 200 tree species, and across maximum species sizes (Iida et al., 2011). We examined the effect of interspecific variation in stem wood density using the Global Wood Density Database (Zanne et al., 2009). Large declines in measured dbh between censuses, where the change in log dbh between the two censuses was smaller than ~0.1 (or more than c. 10% reduction), were considered as the death of one stem and recruitment of a new stem by regrowth (Kohyama et al., 2015).

To disentangle the effects of species-specific demographic properties and response to local site conditions from effects of forest-wide average tree-size dependence, we generated an ‘identity-free’ dataset, in which demography is independent of species identity and location (Figure 2). To generate the identity-free data, we first sorted the trees in the observed data in order of their dbh in the 1990 census (tied values were randomized), and swapped species identity and location between every neighbouring pair of odd- and even-number trees in the sorted data, leaving other tree measures (dbh in two censuses and time interval) unchanged. By using this procedure, each identity-free ‘species’ population possesses a tree-size distribution similar to that observed, but growth, survival and
where \(r \) and \(m \) are instantaneous per-capita recruitment and mortality, respectively (Kohyama, Kohyama, & Shell, 2018). If the time interval between two censuses is identical at \(T \) (year) across all trees, we obtain turnover estimates as: \(p = \ln(B_i/B_{0i})/T \), \(l = \ln(B_i/B_{0i})/T \), \(r = \ln(N_i/N_{0i})/T \) and \(m = \ln(N_i/N_{0i})/T \) (Kohyama et al., 2018, 2019). However, because census duration varies among trees in the Pasoh plot data, we employed the following implicit equations of turnover obtained by time integration of Equations 1 and 2 from \(t = 0 \) to \(T \) for every tree \(i \),

\[
\begin{align*}
\sum_i W_i \exp(-pT_i) &= \sum_i s_i W_{0i}, \\
\sum_i W_i \exp(-lT_i) &= \sum_i s_i W_{0i}, \\
\sum_i (1 - d) \exp(-rT_i) &= \sum_i s_i, \quad \text{and} \\
\sum_i (s_i + d) \exp(-mT_i) &= \sum_i s_i.
\end{align*}
\]

We solved Equations 3–6 using the Newton–Raphson method (cf. Kohyama et al., 2018; Kubo, Kohyama, Potts, & Ashton, 2000). We note that these descriptive estimates of turnover are prone to estimation errors. Per-capita vital rate estimates \((r, m)\) are influenced by the count of states, that is, survival, death and recruitment (Kohyama et al., 2018) and per-biomass rates \((p, l)\) are influenced by those events as well as measurement errors of dbh. In the next section we introduce statistical models to quantify dbh-dependent growth and mortality of each species population by the combination of community-wide model parameters and species-specific deviation from those (as random effect). We compare \((p, l)\) and these statistical estimates of growth and mortality at the largest population tree size.

We quantified period-mean population biomass \(B \) (and so for leaf biomass, denoted \(B^l \)) and tree density \(N \) during the period over two censuses (Kohyama et al., 2018, 2019) as

\[
B = (B_T - B_0) / \ln(B_T/B_0), \quad \text{and} \\
N = (N_T - N_0) / \ln(N_T/N_0).
\]

In addition to \(B \) and \(N \), we quantified each species population by the 99 percentile tree biomass \(W_{\text{max}} \) (Mg) as a standardized maximum tree size to avoid the effect of population size \(N \) (Kohyama et al., 2015).

Plot-level biomass \(B_{\text{plot}} \) is \(\sum_k B_k \), where \(k \) denotes species (including the aggregated population of all rarer species). Plot-level absolute
production by tree growth and recruitment, \(P_{\text{plot}}\) and absolute loss by tree death \(L_{\text{plot}}\) are:

\[
P_{\text{plot}} = \sum_k p_i B_i \quad \text{and} \quad L_{\text{plot}} = \sum_k l_i B_i.
\]

(Kohyama et al., 2019).

Niiyama, Ripin, Yasuda, Sato, and Shari (2019) compiled the records of monthly rate of fine litter fall, that is, leaves, reproductive organs, twigs and bark, etc., in 100 traps of 50 m\(^2\) in total, over 25 years in the Pasoh forest. We employed the records of the 8 years from June 1992 to May 2000, the period overlapped with the examined two tree censuses. By denoting the absolute rate of fine litter fall \(F\) (Mg ha\(^{-1}\) year\(^{-1}\)), and assuming no loss between production and fall of these fine parts, we obtained an estimate of above-ground net primary production NPP to be:

\[
NPP = P_{\text{plot}} + F.
\]

2.2 | Stem-size dependence of individual growth and mortality

We used the plot-wide Bayesian procedure (Kohyama et al., 2015) to estimate tree-size-dependent growth for each tree of species. We fitted a curve relating period-mean biomass increase of a surviving tree \(i\) of period-mean biomass \(W = (W_{hi} - W_{lo})/\ln(W_{hi}/W_{lo})\) (cf. Equations 6 and 7), \(g(W) = \ln(W_{hi}/W_{lo})/T_i\) (year\(^{-1}\)), with respect to period-mean dbh \(D\) (cm) using,

\[
g(W) = aD^b \exp(cW) = a[f(W)]^b \exp[f(W)],
\]

where \(D = f(W)\) is the reverse function of the set of allometric functions by Niiyama et al. (2010). We determined a nearly perfect approximation \(f(W) = 22.4W^{0.326}\exp(0.283W^{0.203})\). We approximated among-tree variation in \(g(W)\) at any given period by exponential distribution, and accounted for dbh measurement error. Similarly, we fitted a curve relating tree mortality of a tree \(i\) at \(W = W_{lo}\) \(\mu(W) = \ln([s_i + d]/s_i)/T_i\) using the formula as Equation 9, where the probability \(d/s_i\) followed Bernoulli distribution. We set all \((a, b, c)\)'s \(\mu(W)\) for each species to the plot-wide value and a species-specific parameter. Treatment of measurement error and model-parameter priors follows those in Kohyama et al. (2015).

2.3 | Other plot data

We performed similar analyses using data from four other old-growth mixed forests. Serimbu plots (two plots, 1 ha each and combined in the analysis) are located in an intact lowland mixed dipterocarp forest (0°45’S, 110°06’E) in West Kalimantan (Kohyama et al., 2003). We used censuses from 1992 and 1995 (3 years). We also analysed data from Ulu Gadut old-growth foothill dipterocarp forest in West Sumatra (Pinang Pianang plot of 1 ha at 0°55’S, 100°30’E). Here we used censuses from 1984 to 2004 (Kohyama et al., 2019). We also analysed data from old growth warm-temperate rain forest using 1998 and 2008 plot census data from the Segire and Koyohji basin (30°20’N, 130°50’E; 0.89 ha in total area) in Yakushima Island, southern Japan (Kohyama, 1993). Data for intact cool-temperate mixed deciduous forest (42°37’N, 141°36’E) was drawn from the 4-ha plot located in Tomakomai, Hokkaido (Kohyama et al., 2019). We used censuses in 1996 and 2006 (10 years). In all plots, we selected species with ≥6 trees surviving over the period with ≥5 cm dbh (but ≥8 cm for Ulu Gadut). We used plot-specific tree height versus dbh allometry, and biomass equations of Niiyama et al. (2010) for the two Indonesian rain forests, Ishihara et al. (2015) for warm-temperate rain forests on Yakushima, and the site-specific ones for Tomakomai (Kohyama et al., 2019).

2.4 | Statistical analysis

We fitted species-level relative productivity \(p\) (and other turnover rates, \(l, r\) and \(m\)) to population biomass \(B\) (and \(W_{\text{max}}\) and \(N\)), using an Equation 9 type model

\[
p = aB^b \exp(cB),
\]

which fits log-nonlinear \(p\-B\) relationship with parameters \((a, b, c)\). We tested whether the reduced log-log linear, power function model, \(p = aB^b\), was a better model than the full model of Equation 10. For subplot-nested model, we described local (= per-subplot) species-level relative productivity, \(p\) (year\(^{-1}\)), as a function of local species biomass \(B\) (Mg/ha) and species-sum subplot-level biomass \(B_{\text{subplot}}\) (Mg/ha),

\[
p = aB^b \exp(cB)B_{\text{subplot}}^d.
\]

with four parameters \((a, b, c, d)\) to be estimated. To relate population-level leaf mass \(B_{\text{l}}\) (Mg/ha) to species above-ground biomass \(B\) (cf. our Hypothesis 4), Equation 10 or simpler power function is not applicable because \(B_{\text{l}}\) should be smaller than \(B\). We therefore used the following allocation equation

\[
B_{\text{l}} = a’c’B / (a’ + c’B^{-b’}).
\]

where \((a’, b’, c’)\) are parameters \((a’\) and \(c’\) are positive). Leaf mass ratio \(B_{\text{l}}/B\) is \(c’\) for \(B\) to be close to zero, and is approximately a power function \(d’B^b’\) for infinite \(B\). We ran linear and nonlinear regressions on log-transformed Equations 10–12, based on the examination of residual distributions (Xiao, White, Hooten, & Durham, 2011), and applied model selection by AIC. We used R 3.4.1 (R Core Team, 2017) for all calculation and analysis, and JAGS 4.3.0 (Pullmer, 2017) for the MCMC simulation of estimating Equation 9 parameters, of which R code is in the Dryad repository for Kohyama et al. (2015): https://doi.org/10.5061/dryad.bb460. The Pasoh datasets of 1990 and 2000 plot inventories for observed and identity-free community, and R code to obtain species-specific structural data (\(B, B_{\text{l}}, W_{\text{max}}, N\)) and turnover rates \((p, l, r, m)\) from these datasets are provided in the GitHub/Zenodo repository for this paper: https://github.com/kohyamat/p-B (https://doi.org/10.5281/zenodo.3966750).
3 | RESULTS

3.1 | Interspecific variation in turnover

There were 390 species with 100 or more surviving individuals, \(\Sigma_i s_i \geq 100 \) (out of 808 recorded species in total). These 390 species comprised 94.7% of the total tree density \((N_{\text{plot}} = 6,155.6/\text{ha}) \), and 90.3% of total biomass \((B_{\text{plot}} = 467.8 \text{ Mg/ha}) \) in the Pasoh 50-ha plot. The three species with the highest biomass were all dipterocarps that could reach the canopy: Neobalanocarpus heimii \((B = 21.9 \text{ Mg/ha}) \), Shorea leprosula \((21.7 \text{ Mg/ha}) \) and S. maxwelliana \((19.8 \text{ Mg/ha}) \). The species with the least biomass were small-stature shrubs—Tetrardisia porosa \((0.000886 \text{ Mg/ha}) \) and Semecarpus curtisii \((0.00152 \text{ Mg/ha}) \). Therefore, biomass per species spanned four orders of magnitude.

Plot-scale species biomass \(B \) was relatively well predicted by powers of standardized maximum tree mass \(W_{\text{max}} \) and tree density \(N \) as \(B = 0.0781 W_{\text{max}}^{0.824} N^{0.912} \) \((R^2 = 0.971, W_{\text{max}} \Delta R^2 = 0.902 \) and \(N \Delta R^2 = 0.202) \).

Observed species turnover varied 10-fold or more among the 390 species. Relative production \(p \) ranged from 0.0098 to 0.0638/year (95% range) and the median was 0.0262/year. Turnover in species biomass \(p \) and stem density \(r \) were all positively correlated; correlation coefficients \((R's) \) were ranging from 0.300 to 0.570 (Table S1). Thus, species with high-biomass turnover showed high stem turnover. In contrast, in the identity-free data (where we recorded 395 ‘species’ ≥100 survived trees), most of these correlations were markedly lower. Their correlation coefficients ranged from 0.069 to 0.375 (Table S1).

The relative production \(p \) and species biomass \(B \) appear inversely related among the 390 species. The power function model, \(p = a B^b \), was selected by fitting Equation 10, that is, \(c = 0 \) (Figures 3a and 4a). The power exponent \(b \) for \(p \) on \(B \) in observed community was \(-0.128\) (with 95% confidence interval, henceforth ‘CI’, of \(-0.150\) and \(-0.105\), Figure 4a). The aggregated population of the rarer 418 species (accounting for 5.3% of plot total biomass) showed a relative productivity of \(p = 0.0232/\text{year} \), which is located above the regression line for the other, more abundant, 390 species (Figure 3a).

In the identity-free community, \(p-B \) exponent was \(-0.218\) with CI \([-0.239, -0.197]\), which was significantly more negative than that in the observed community (Figures 3b and 4a). For the observed data, relative biomass loss \(l \) decreased with \(B \) (Figure 3c), and the exponent \(-0.106\) was not significantly different from the \(p-B \) exponent at \(-0.128\) (Figure 4a). Therefore, the net rate of biomass change, \(p-l \) (year\(^{-2}\)), indicated by coloured dots in Figure 3, showed no clear dependence on species biomass (Figure 3a,c). The sum of rare species showed a higher biomass loss rate than did the highest biomass

![Figure 3](image-url) Interspecific relationship of per species biomass turnover to biomass in the Pasoh data. (a) Relative production \(p \) among observed 390 species; (b) relative production among 395 identity-free species; (c) relative loss \(l \) among observed species; and (d) relative loss among identity-free species. Dot colours correspond to decreasing (blue) to increasing (orange) biomass in net change rate, \(p-l \). Regression using a power function with 95% confidence interval is shown, and estimated exponent, or log–log slope, is stated in each panel. The black square indicates the aggregated data for the combined rare species [Colour figure can be viewed at wileyonlinelibrary.com]
species (Figure 3c). In contrast for the identity-free data, the l/B exponent was not different from zero (Figure 3d) and thus was distinct from the p/B exponent (Figure 4a). As a result, the B values of the identity-free ‘species’ with smaller B tended to increase ($p - l > 0$), while the values for those ‘species’ with larger B were more likely to decline (Figure 3b,d).

Per-capita recruitment r and mortality m also decreased with species biomass B in observed data (Figure 4a). The power exponent of r on species biomass B in observed data (Figure 4a). The power exponent of r on species biomass B in observed data (Figure 4a). The power exponent of r on species biomass B in observed data (Figure 4a). The power exponent of r on species biomass B in observed data (Figure 4a). The power exponent of r on species biomass B in observed data (Figure 4a).
3.2 | Linkage with population-level leaf mass ratio

Among species, population-level leaf mass ratio, $\text{LMR} = B_l/B$, exhibited a negative correlation with above-ground biomass B in both the observed and identity-free community, which was approximated using Equation 12 (Figure 5a,b). Per-leaf mass productivity, $P/\text{LMR} = P/B_l$ (year$^{-1}$) increased with species biomass in observed and identity-free forests (Figure 5c,d) though the slope was significantly less for the latter.

3.3 | Linkage with individual tree growth and mortality

Tree relative growth rate, $g(W)$, decreased with tree mass W (Figure 6a). Species with large standardized maximum mass W_{max} tended to grow faster than species with small W_{max} at the same reference sizes up to 36 cm dbh (at 5% significance level). By contrast, relative growth at maximum size, $g(W_{\text{max}})$, was significantly negatively correlated with W_{max} among species (Figure 6a), because $g(W)$ sharply decreased around W_{max} for most species. Individual tree mortality $\mu(W)$ was typically lower at intermediate tree sizes for most species (Figure 6b). Treesize-dependent mortality $\mu(W)$ was negatively correlated with species W_{max} over reference tree sizes up to 64 cm dbh, and so was $\mu(W_{\text{max}})$ with W_{max} (Figure 6b, significant at 5%). Population-level relative productivity p was closely positively correlated to individual tree relative growth at W_{max}, $g(W_{\text{max}})$ (Figure 6c, $R^2 = 0.813$ in log-log linear regression). Similarly, the population-level relative loss l was positively correlated with tree mortality at W_{max}, $\mu(W_{\text{max}})$ (Figure 6d, $R^2 = 0.592$).

3.4 | Productivity dependence on subplot-by-species structure

To evaluate spatial variation in the interspecific productivity–biomass relationship, we calculated the biomass and relative production of local species populations in two hundred 0.25-ha subplots. Selected

![Image of Figure 6](wileyonlinelibrary.com)
abundant species at each subplot had ≥20 surviving trees. The observed local species populations at this quarter hectare scale showed a broader scatter when p was plotted against local species biomass B (Figure 7a) than for the full 50 ha (Figure 3a). Among these populations, p on local species biomass B exhibited an upward convex curve on a log–log scale, and observed p on B relationships for these subplots with stand-level biomass B_{subplot} supported the full model of Equation 11 with model parameters b, c and d all being negative (Figure 7a). In contrast, identity-free local ‘species’ populations showed less variation in p on B relationship and supported a reduced model of Equation 11 without B_{subplot} dependence, that is, parameter $d = 0$ (Figure 7b).

3.5 | Plot-level net primary productivity

Estimated species-sum absolute productivity for the Pasoh plot P_{plot} was 10.0 Mg ha$^{-1}$ year$^{-1}$, with a period-mean plot biomass B_{plot} of 468 Mg/ha. The rate of fine litter fall F was 6.49 ± 1.35 Mg ha$^{-1}$ year$^{-1}$ (of which leaf litter was 69%). The estimated plot-scale net primary production (NPP) was 16.5 Mg ha$^{-1}$ (of which leaf litter was 69%). The estimated plot-scale net primary production (NPP) was 16.5 Mg ha$^{-1}$ (of which leaf litter was 69%). The estimated plot-scale net primary production (NPP) was 16.5 Mg ha$^{-1}$ (of which leaf litter was 69%). Among local species, observed p at 97.5% B_{subplot} (Figure 7a) than for the full 50 ha (Figure 3a). Among these populations, p at 97.5% B_{subplot} species-sum subplot biomass in 0.25 ha. Fitted curve (with 95% confidence interval) using Equation 11 shown.

4 | DISCUSSION

We examined how constituent tree species populations with varied structural properties and demographic characteristics contribute to stand-level properties of net primary productivity in species-rich forests. We found that for the 390 most abundant species in the Pasoh 50-ha plot, species with larger population-level biomass also tended to be those with larger maximum individual tree biomass (cf. Hypothesis 1). Species-level relative production p was lower when species above-ground biomass was higher and vice versa (cf. Hypothesis 2, Figure 3a). We also found that the sum of rarer species (<100 stems per plot) showed higher productivity compared to high-biomass species (Figure 3a). The proportion of leaf mass in above-ground biomass was lower among populations with higher species overall biomass (cf. Hypothesis 3, Figure 5a). A negative p-B relationship reflects that larger stemmed species typically possess lower relative growth at their largest stem sizes than smaller stemmed species (cf. Hypothesis 4; Figure 6a). Comparable relationships were observed in four other old-growth forests suggesting similar processes.

The variation in per-species turnover in biomass (relative productivity and loss) and abundance (per-capita recruitment and mortality) was positively correlated in the Pasoh Forest. Species turnover in biomass and abundance were negatively related to species biomass B and maximum tree mass W_{max} (Figure 4a,b), suggesting that...
interspecific variation in B is maintained over time. In contrast, in the identity-free community, the relationship between $p-B$ was negative while $l-B$ was neutral (Figures 3b,d and 4a), thus ‘species’ biomass changes with time. Our results appear consistent with patterns reported in other old-growth tropical forests. For example, Nascimento et al. (2005) noted that abundance turnover rates (recruitment and mortality) were negatively correlated with mean tree size among 95 Amazonian tree species.

In some respects, the patterns we found among co-occurring tree populations in species-rich forests resemble those seen among dominant life forms across various biomes, where populations of organisms that reach larger dimensions have slower turnover than those with smaller body size (Brown, Gillooly, Allen, Savage, & West, 2004; Niklas & Enquist, 2001; Price, Gillooly, Allen, Weitz, & Niklas, 2010). Within-community trade-off between turnover and adult stature would partly reflect general life-history constraints shown by these studies. In addition, within-community interspecific productivity partitioning is also regulated by interactions among individual-stems in the shared habitat. For example, we found small-stature species with low B show lower productivity per unit leaf mass than large-stature species (Figure 5c). This is presumably because small species typically have less access to light on average. Our examination of the variation in production among subplot-scale species populations suggests that species productivity p in a local subplot is negatively correlated to both local species-level biomass and species-sum subplot-level biomass (Figure 7a), but not in identity-free forest where variation in demography is (we presume) independent of local stand conditions (Figure 7b). Higher p at the same species biomass in less-crowded local stands indicates that the productivity of species populations is regulated by local-scale available resources, such as light.

Our study clarifies why large species tend to show low relative productivity regardless of the well-established fact that trees of larger stature species tend to grow faster than those of smaller stature species over a range of reference stem diameters (Iida et al., 2014; King, Davies, et al., 2006; King, Wright, et al., 2006; Kohyama et al., 2003, 2015; Lieberman et al., 1985; Poorter et al., 2008; Rüger et al., 2018). The higher growth observed for larger stature species likely reflects that their juveniles tend to appear in less shaded conditions than stems of smaller stature species (Sheil, Salim, Chave, Vanclay, & Hawthorne, 2006), and that shorter species favour higher reproductive allocation rather than vegetative growth at the same stem sizes (King, Wright, et al., 2006; Kohyama et al., 2003). By comparing species at W_{max}, we obtained contrasting patterns of interspecific variation. Because of the generally marked reduction of relative growth observed at large stem sizes, larger sized species also experienced lower $g(W_{\text{max}})$ than smaller sized species (Figure 6a). In contrast, stem mortality of larger sized species was low at the same stem sizes, and their $\mu(W_{\text{max}})$ compared to smaller sized species was generally lower, even though mortality tended to increase when species approached their largest stem sizes (Figure 6b). Fast growth and generally low mortality (at most sizes) for juveniles of large-stature species result in a low mortality-to-growth ratio, which allows a species population to reach larger maximum sizes (Kohyama et al., 2015). However, close to their maximum size, larger sized species show slower relative growth and survive longer than smaller sized species, resulting in similar negative power exponents between $p-B$ and $l-B$ relationship in the observed (but not in the identity-free) community (Figures 3 and 6).

The variation in demographic characteristics among coexisting tree species has been related to horizontal and vertical aspects of forest structure. Variation in understorey light enhances interspecific differentiation in juvenile growth, survival and shade-tolerance sometimes called ‘the growth-survival trade-off’ (Rees, Condit, Crawley, Pacala, & Tilman, 2001; Wright et al., 2010; Zhu et al., 2018). In contrast, in terms of the vertical structure of the forest canopy, we observe interspecific differentiation between short stature species exhibiting high reproductive allocation for frequent recruitment and tall stature species showing high allocation to vegetative growth for height gain (and delayed reproduction), which is called ‘the recruitment versus stature trade-off’ (Falster et al., 2017; Kohyama, 1993; Kohyama & Takada, 2009; Rüger et al., 2018). Our results indicate that this trade-off between turnover and adult stature underlies the relationship between relative productivity and standing biomass. To generalize, we see that large-stature, high-biomass species show slower turnover—that is lower recruitment, relative growth and mortality—than small-stature species. We note that the greater range of species sizes that can occur in taller forests, and the associated diversity of size-dependent species behaviours this permits, explains why taller forests tend to be both more productive, and richer in species, than otherwise comparable forests of smaller stature (Duivenvoorden, 1996; Huston, 1994; Sheil & Bongers, 2020).

Improved methods that avoid major biases offer new insights that were not previously available. For example, we can now recognize the contribution that small-stature tree species make to both diversity and stand dynamics. High tree species diversity in tropical forests is known to be largely related to the diversity and persistence of small-sized species (King, Wright, et al., 2006; Niklas, Midgley, & Rand, 2003). We observed that the abundance of small-sized species with high relative productivity collectively contributes to high tropical forest net primary productivity—a contribution which was previously unnoticed due to the biases in previous ‘conventional’ production estimates (Kohyama et al., 2019).

Viewed in their totality, our results show how demographic differences among species contribute to general properties of ecosystem functioning and biodiversity maintenance. Small-stature, low-biomass species contribute to high forest net primary productivity and enhance ecosystem resilience through rapid biomass turnover and replacement via high per-capita recruitment and relative productivity. In contrast, large-stature species contribute to the persistence of large biomass storage by their longevity (low mortality). The mass ratio hypothesis posits that species-level biomass in a plant community is proportional to species’ absolute (not relative) rates of primary production and nutrient supply to soil heterotroph,
and thus high-biomass species disproportionately control ecosystem functioning (Grime, 1998). Studies that consider the role of functional diversity have suggested that ecosystem properties predominantly reflect the characteristics of higher biomass species (Finegan et al., 2015; Fotis et al., 2018; Prado-Junior et al., 2016). In contrast, our study implies that the contribution of biodiversity to ecosystem functioning is more complex and multidimensional with different populations making distinct and disproportionate contributions to different ecosystem properties. For example, ecosystem resilience and biomass recovery depend disproportionately on species with rapid turnover while standing biomass and total carbon sequestration depend disproportionately on species with slow turnover.

ACKNOWLEDGEMENTS
We acknowledge that the project of Pasoh 50-ha Forest Dynamics Plot is carried out by the Forest Research Institute Malaysia and Center for Tropical Forest Science–Forest Global Earth Observatory. We thank David Gibson, Gerhard Zotz and two reviewers for valuable suggestions. This study was supported by Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (18H02504). Authors declare no competing financial interests or other conflicts of interest.

AUTHORS’ CONTRIBUTIONS
T.S.K., D.S. and M.D.P. designed the project; T.L.Y. and S.J.D. updated plot data; K.N. compiled biomass data; T.S.K. and T.I.K. carried out numerical analysis; T.S.K. drafted; D.S., S.J.D. and M.D.P. revised the conceptual framing and all authors approved the paper for publication.

PEER REVIEW
The peer review history for this article is available at https://publons.com/publon/10.1111/1365-2745.13485.

DATA AVAILABILITY STATEMENT
Observed and identity-free dataset of the Pasoh plot, and source code for estimation of population structural variables and turnover variables are provided in the GitHub repository and has been archived on Zenodo https://github.com/kohyamat/p-B; https://doi.org/10.5281/zenodo.3966750 (Kohyama et al., 2020).

ORCID
Takashi S. Kohyama https://orcid.org/0000-0001-7186-8585
Tetsuo I. Kohyama https://orcid.org/0000-0002-4567-2893
Douglas Shell https://orcid.org/0000-0002-1166-6591

REFERENCES
Bastin, J.-F., Rutishauser, E., Kellner, J. R., Saatchi, S., Pélissier, R., Hérault, B., ... Zebaze, D. (2018). Pan-tropical prediction of forest structure from the largest trees. *Global Ecology and Biogeography*, 27(11), 1366–1383. https://doi.org/10.1111/geb.12803
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004). Toward a metabolic theory of ecology. *Ecology*, 85(7), 1771–1789. https://doi.org/10.1890/03-9000
Chisholm, R. A., Muller-Landau, H. C., Abdul Rahman, K., Babber, D. P., Bin, Y., Bohman, S. A., ... Zimmerman, J. K. (2013). Scale-dependent relationships between tree species richness and ecosystem functioning in forests. *Journal of Ecology*, 101(5), 1214–1224. https://doi.org/10.1111/1365-2745.12132
Clark, D. A., Brown, S., Kicklighter, D. W., Chambers, J. Q., Thomsonson, J. R., Ni, J., & Holland, E. A. (2001). Net primary production in tropical forests: An evaluation and synthesis of existing field data. *Ecological Applications*, 11(2), 371–384. https://doi.org/10.1890/1051-0761(2001)011[0371:NPPITF]2.0.CO;2
Condit, R., Ashton, P. S., Manokaran, N., LaFrankie, J. V., Hubbell, S. P., & Foster, R. B. (1999). Dynamics of the forest communities at Pasoh and Barro Colorado: Comparing two 50-ha plots. *Philosophical Transactions of the Royal Society of London B: Biological Sciences*, 354(1391), 1739–1748.
Condit, R., Sukumaran, R., Hubbell, S. P., & Foster, R. B. (1998). Predicting population trends from size distributions: A direct test in a tropical tree community. *The American Naturalist*, 152(4), 495–509. https://doi.org/10.1086/286186
Coomes, D. A., & Allen, R. B. (2007). Mortality and tree-size distributions in natural mixed-age forests. *Journal of Ecology*, 95(1), 27–40. https://doi.org/10.1111/j.1365-2745.2006.01179.x
Davies, S. J., Noor, N. S. M., LaFrankie, J. V., & Ashton, P. S. (2003). The trees of Pasoh Forest: Stand structure and floristic composition of the 50-ha forest research plot. In T. Okuda, N. Manokaran, Y. Matsumoto, K. Niiyama, S. C. Thomas, & P. S. Ashton (Eds.), Pasoh: Ecology of a lowland rain forest in Southeast Asia (pp. 35–50). Tokyo, Japan: Springer.
Duivenvoorden, J. F. (1996). Patterns of tree species richness in rain forests of the middle Caqueta area, Colombia, NW Amazonia. *Biotropica*, 28(2), 142–158. https://doi.org/10.2307/2389070
Enquist, B. J., & Niklas, K. J. (2002). Global allocation rules for patterns of biomass partitioning in seed plants. *Science*, 295(5559), 1517–1520. https://doi.org/10.1126/science.1066360
Falster, D. S., Brännström, Å., Westoby, M., & Dieckmann, U. (2017). Multitrait successional forest dynamics enable diverse competitive coexistence. *Proceedings of the National Academy of Sciences of the United States of America*, 114(13), E2719–E2728. https://doi.org/10.1073/pnas.1610206114
Finegan, B., Peña-Claros, M., de Oliveira, A., Ascarrunz, N., Bret-Harte, M. S., Carreño-Rocabado, G., ... Poorter, L. (2015). Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. *Journal of Ecology*, 103(1), 191–201. https://doi.org/10.1111/1365-2745.12346
Fotis, A. T., Murphy, S. J., Ricart, R. D., Krishnasad, M., Whitacre, J., Wenzel, J. W., ... Comita, L. S. (2018). Above-ground biomass is driven by mass-ratio effects and stand structural attributes in a temperate deciduous forest. *Journal of Ecology*, 106(2), 561–570. https://doi.org/10.1111/1365-2745.12847
Grime, J. P. (1998). Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. *Journal of Ecology*, 86(6), 902–910. https://doi.org/10.1046/j.1365-2745.1998.00306.x
Hooper, D. U., Chapin, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., ... Wardle, D. A. (2005). Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. *Ecological Monographs*, 75(3), 3–35. https://doi.org/10.1890/04-0922
Huston, M. A. (1994). Biological diversity: The coexistence of species. Cambridge, UK: Cambridge University Press.
Iida, Y., Kohyama, T. S., Kubo, T., Kassim, A. R., Poorter, L., Sterck, F., & Potts, M. D. (2011). Tree architecture and life-history strategies across 200 co-occurring tropical tree species. *Functional Ecology*, 25(6), 1260–1268. https://doi.org/10.1111/j.1365-2435.2011.01884.x
Iida, Y., Poorter, L., Sterck, F., Kassim, A. R., Potts, M. D., Kubo, T., & Kohyama, T. S. (2014). Linking size-dependent growth and mortality
predictors of demographic rates? Evidence from five neotropical forests. Ecology, 89(7), 1908–1920. https://doi.org/10.1890/07-0207.1
Prado-Junior, J. A., Schiavini, I., Vale, V. S., Arantes, C. S., van der Sande, M. T., Lohbeck, M., & Poorter, L. (2016). Conservative species drive biomass productivity in tropical dry forests. Journal of Ecology, 104(3), 817–827. https://doi.org/10.1111/1365-2745.12543
Price, C. A., Gillooly, J. F., Allen, A. P., Weitz, J. S., & Niklas, K. J. (2010). The metabolic theory of ecology: Prospects and challenges for plant biology. New Phytologist, 188(3), 696–710. https://doi.org/10.1111/j.1469-8137.2010.03442.x
Pullmer, M. (2017). JAGS Version 4.3.0 user manual. Retrieved from https://web.sgh.waw.pl/~atoroj/ekonometria_bayesowska/jags_user_manual.pdf
R Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
Rees, M., Condit, R., Crawley, M., Pacala, S., & Tilman, D. (2001). Long-term studies of vegetation dynamics. Science, 293(5530), 650–655.
Rüger, N., Comita, L. S., Condit, R., Purves, D., Rosenbaum, B., Visser, M. D., … Wirth, C. (2018). Beyond the fast-slow continuum: Demographic dimensions structuring a tropical tree community. Ecology Letters, 21(7), 1075–1084. https://doi.org/10.1111/ele.12974
Rüger, N., Huth, A., Hubbell, S. P., & Condit, R. (2011). Determinants of mortality across a tropical lowland rainforest community. Oikos, 120(7), 1047–1056. https://doi.org/10.1111/j.1600-0706.2010.19021.x
Sheil, D., & Bongers, F. (2020). Interpreting forest diversity-productivity relationships: Volume values, disturbance histories and alternative inferences. Forest Ecosystems, 7(1), 6. https://doi.org/10.1186/s40663-020-0215-x
Sheil, D., Eastaugh, C. S., Vlam, M., Zuidema, P. A., Groenendijk, P., Sleen, P., … Vanclay, J. (2017). Does biomass growth increase in the largest trees? Flaws, fallacies and alternative analyses. Functional Ecology, 31(3), 568–581. https://doi.org/10.1111/1365-2435.12775
Sheil, D., Salim, A., Chave, J., Vanclay, J., & Hawthorne, W. D. (2006). Illumination–size relationships of 109 coexisting tropical forest tree species. Journal of Ecology, 94(2), 494–507. https://doi.org/10.1111/j.1365-2745.2006.01111.x
Sillett, S. C., Van Pelt, R., Koch, G. W., Ambrose, A. R., Carroll, A. L., Antoine, M. E., & Mifsud, B. M. (2010). Increasing wood production through old age in tall trees. Forest Ecology and Management, 259(5), 976–994. https://doi.org/10.1016/j.foreco.2009.12.003
Slik, J. W. F., Paoli, G., McGuire, K., Amaral, I., Barroso, J., Bastian, M., … Zweifel, N. (2013). Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography, 22(12), 1261–1271. https://doi.org/10.1111/geb.12092
Stephenson, N. L., Das, A. J., Condit, R., Russo, S. E., Baker, P. J., Beckman, N. G., … Zavala, M. A. (2014). Rate of tree carbon accumulation increases continuously with tree size. Nature, 507(7490), 90. https://doi.org/10.1038/nature12914
Talbot, J., Lewis, S. L., Lopez-Gonzalez, G., Brienen, R. J. W., Monteagudo, A., Baker, T. R., … Phillips, O. L. (2014). Methods to estimate aboveground wood productivity from long-term forest inventory plots. Forest Ecology and Management, 320, 30–38. https://doi.org/10.1016/j.foreco.2014.02.021
Wright, S. J., Kitajima, K., Kraft, N. J. B., Reich, P. B., Wright, I. J., Bunker, D. E., … Zanne, A. E. (2010). Functional traits and the growth-mortality trade-off in tropical trees. Ecology, 91(12), 3664–3674. https://doi.org/10.1890/09-2335.1
Xiao, X., White, E. P., Hooten, M. B., & Durham, S. L. (2011). On the use of log-transformation vs. nonlinear regression for analyzing biological power laws. Ecology, 92(10), 1887–1894.
Zanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis, S. L., & Chave, J. (2009). Global wood density database. Dryad. Identifier: http://hdl.handle.net/10255/dryad.235
Zhu, Y., Queenborough, S. A., Condit, R., Hubbell, S. P., Ma, K. P., & Comita, L. S. (2018). Density-dependent survival varies with species life-history strategy in a tropical forest. Ecology Letters, 21(4), 506–515. https://doi.org/10.1111/ele.12915

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Kohyama TS, Potts MD, Kohyama TI, et al. Trade-off between standing biomass and productivity in species-rich tropical forest: Evidence, explanations and implications. J Ecol. 2020;108:2571–2583. https://doi.org/10.1111/1365-2745.13485