Supporting Information

for

Formation of alkyne-bridged ferrocenophanes using ring-closing alkyne metathesis on 1,1’-diacetylenic ferrocenes

Celine Bittner, Dirk Bockfeld and Matthias Tamm

Beilstein J. Org. Chem. 2019, 15, 2534–2543. doi:10.3762/bjoc.15.246

Experimental section, NMR spectra, catalysis procedures and product characterisation, crystallographic data
1. General Information

Experimental. All operations with air and moisture-sensitive compounds were conducted in a glovebox (MBraun 200B) under a dry and oxygen-free argon atmosphere or on a Schlenk line using standard Schlenk techniques. The herefore exploited argon gas 4.6 (Linde AG und Westfalen AG) was passed over BTS-catalyst (BASF) at 130 °C for oxygen removal and over Sicapent (phosphorous pentoxide with colour indicator, VWR) for the removal of water. Solvents were purified and dried by an mBraun Solvent Purification System (SPS) and stored over molecular sieve (3−4 Å). Complex MoF6 and ferrocenyl dichloride 3 were synthesized according to literature methods.1,2 All other compounds were obtained from commercial sources and used without further purification. Flash chromatography was performed on silica gel (230–400 mesh) from Merck in combination with HPLC grade solvents. The powdered molecular sieve with a pore size of 5 Å (Sigma-Aldrich, powder <50 μm) for metathesis reactions (MS 5 Å) was dried for 24 h at 180 °C under vacuum prior to use.

Analytical methods. 1H and 13C NMR spectra were recorded on Bruker AV II-300, DRX-400, and AV II-600 instruments at room temperature. Chemical shifts (δ) are expressed in ppm (parts per million) and are referenced to residual solvent signals (CDCl3: δ(H) 7.26 ppm, δ(C) 77.16 ppm; CD2Cl2: δ(H) 5.32 ppm, δ(C) 53.84 ppm; THF-d8: δ(H) 1.72 ppm and 3.58 ppm, δ(C) 25.31 ppm and 67.21 ppm). Coupling constants (J) are reported in hertz (Hz). Multiplicities are expressed with s (singlet), d (doublet), t (triplet), q (quartet), or m (multiplet). The number of hydrogen atoms (n) for a signal is indicated by nH. When necessary, signal assignment was confirmed by two-dimensional H,C-HSQC and H,C-HMBC NMR experiments. Elemental analyses (TU Braunschweig) were accomplished by combustion and gas chromatographic analysis using a VarioMICRO Tube and WLD detection. ESI mass spectrometry (TU Braunschweig) in MeOH was performed on an LTQ-Orbitrap Velos linear iontrap with orbitrap mass...
analyser (Thermo Fisher Scientific, Bremen, Germany) in direct infusion mode using a custom made microspray-device mounted on a Proxeon nanospray ion source. The microspray-device allows for the sample infusion through a stainless steel capillary (90 µm i. d.). Accurate mass measurements in the orbitrap were performed using the lock mass option of the instrument control software using the cation of tetradecyltrimethylammonium bromide (0.1 mg/mL; 256.29988 amu) as internal mass reference.

2. Experimental Section

2.1. General Procedure for the synthesis of ferroceny1 esters 1a and 1b

To a solution of the alcohol (2.1 equiv, 13.5 mmol), NEt3 (2.1 equiv, 13.5 mmol), and DMAP (0.08 equiv, 0.5 mmol) in DCM (20 mL) at 0 °C a solution of ferrocenyl dichloride 3 (2 g, 6.4 mmol) in DCM (20 mL) is slowly added via a dropping funnel under inert gas atmosphere. The resulting orange suspension is stirred overnight at room temperature. The reaction mixture is then washed with water and sat. NaCl (aq), dried over Na2SO4 and evaporated under reduced pressure. The dark brown and oily crude product is purified using column chromatography (hexane/EtOAc 1:5). The products 1a and 1b are obtained as crystalline orange solids. The NMR spectroscopic data for 1a fit the published literature.3

1a n = 2 yield 2 g, 82%.

1H NMR (200.1 MHz, CDCl3, 298 K): δ [ppm] = 4.85 (m, 2H, CHβ), 4.43 (m, 2H, CHα), 4.32 (t, 3JHH = 6.7 Hz, 2H, OCH2), 2.64 (td, 3JHH = 6.7 Hz, 4JHH = 2.7 Hz, 2H, CHC≡CH), 2.05 (t, 4JHH = 2.7 Hz, 1H, C≡CH).

13C{1H} NMR (50.3 MHz, CDCl3, 298 K): δ [ppm] = 170.3 (s, C=O), 80.5 (s, C≡CH), 73.2 (s, 2 CHβ), 72.6 (s, ipso–C), 71.8 (s, 2 CHα), 70.0 (s, C≡CH), 62.3 (s, OCH2), 19.3 (s, CH2C≡CH).

Elemental analysis (%) calcd for C20H18FeO4: C 63.52, H 4.80; found C 63.96, H 4.85.

1b n = 3 yield 2.46 g, 94%.

1H NMR (200.1 MHz, CDCl3, 298 K): δ [ppm] = 4.83 (m, 2H, CHβ), 4.42 (m, 2H, CHα), 4.33 (t, 3JHH = 6.3 Hz, 2H, OCH2), 2.39 (td, 3JHH = 7.0 Hz, 4JHH = 2.7 Hz, 2H, CHC≡CH), 2.01 (t, 4JHH = 2.7 Hz, 1H, C≡CH), 2.01-1.92 (m, 2H, CHCH2CH2C≡CH).

13C{1H} NMR (50.3 MHz, CDCl3, 298 K): δ [ppm] = 170.5 (s, C=O), 83.2 (s, C≡CH), 73.0 (s, 2 CHβ), 72.9 (s, ipso–C), 71.6 (s, 2 CHα), 69.3 (s, C≡CH), 63.1 (s, OCH2), 27.8 (s, OCH2CH2), 15.4 (s, CH2C≡CH).

Elemental analysis (%) calcd for C22H22FeO4: C 65.04, H 5.46; found C 64.54, H 5.52.
2.2. Catalytic ring-closing alkyne metathesis

Scheme S1. Catalytic RCAM of substrates 1a and 1b towards the monomeric ferrocenophanes 2a and 2b; in some cases the formation of the dimeric ferrocenophanes S1 and S2 were observed by means of NMR spectroscopy and mass spectrometry.

Preparation of ferrocenophane 2a

To a solution of 1a (0.25 mmol) and MS 5Å in toluene (56 mL, 4.5 mM) under inert Ar atmosphere the catalyst MoF6 (2 mol %, 0.005 mmol) is added as a solid. After stirring at room temperature for 2 hours the reaction mixture is filtered over silica and the patch is washed with Et2O and DCM. The orange filtrate is evaporated under reduced pressure and the crude product was purified by flash column chromatography on silica gel with 1:5 hexane/EtOAc yielding 2a as an orange crystalline powder. In a second attempt the reaction was repeated using 12 mL of toluene (21 mM). Crystals suitable for X-ray diffraction analysis could be obtained from a slowly cooled (−28 °C) saturated solution of 2a in toluene.

yield: 93% (4.5 mM), 92% (21 mM).

1H NMR (300.3 MHz, CDCl3, 298 K): δ [ppm] = 4.75 (m, 2H, CHβ), 4.51 (m, 2H, CHδ), 4.24 (m, 2H, OCH2), 2.59 (m, 2H, CH2C≡C).

13C{1H} NMR (75.5 MHz, CDCl3, 298 K): δ [ppm] = 171.0 (s, C=O), 78.5 (s, C≡C), 73.6 (s, iO), 72.2 (s, CHδ), 71.8 (s, CHβ), 63.7 (s, OCH2), 19.2 (s, CH2C≡C).

elemental analysis (%) calcd for C18H16FeO4: C 61.39, H 4.58; found C 61.87, H 4.70.

When the reaction takes place in further concentrated solution (125 mM) four species can be identified with the help of mass spectrometry. Starting material 1a exact mass theoretical m/z = 387.01 (C20H18FeO4), found: 378.1; monomeric ring-closed product 2a exact mass theoretical m/z = 352.04 (C18H16FeO4), found: 352.0; ring-closed dimer S1 exact mass theoretical m/z = 704.08 (C36H32Fe2O8), found: 704.8; open dimer exact mass theoretical m/z = 730.10 (C38H34Fe2O8), found: 730.0.
Preparation of ferrocenophane 2b

To a solution of **1b** (0.25 mmol) and MS 5 Å in toluene (56 mL, 4.5 mM) under inert Ar atmosphere the catalyst **MoF6** (2 mol %, 0.005 mmol) is added as a solid. After stirring at room temperature for 4 hours the reaction mixture is filtered over silica and the patch is washed with Et₂O and DCM. The orange filtrate is evaporated under reduced pressure and the crude product (42 mg, 89%) was purified by flash column chromatography on silica gel with 5:1 hexane/EtOAc yielding 25 mg (53%) of **2b** as an orange crystalline powder. The dimeric compound **S2** could only be eluted as a mixture with **2b** in a ratio of roughly 1:0.75 (16 mg). However, single crystals of **2b** suitable for X-ray analysis could be obtained from that mixture from a DCM solution layered with *n*-hexane.

1H NMR (300.3 MHz, CDCl₃, 298 K): δ [ppm] = 4.81 (m, CH₆), 4.44 (m, CH₆), 4.43 (t, 3J_HH = 6.0 Hz, OCH₂) 2.41 (m, CH₃C≡C), 1.92 (m, CH₃CH₂C≡C).

13C{¹H} NMR (75.5 MHz, CDCl₃, 298 K): δ [ppm] = 170.5 (s, C=O), 80.8 (s, C≡C), 74.0 (s, iC), 72.0 (s, CH₆), 71.8 (s, CH₆), 62.9 (s, OCH₂), 26.8 (s, CH₃CH₂C≡C), 15.9 (s, CH₃C≡C).

MS: exact mass theoretical m/z = 403.06032 (C₂₀H₂₀FeO₄Na); found: 403.06041.

NMR characterization of the side product S2

1H NMR (300.3 MHz, CDCl₃, 298 K): δ [ppm] = 4.76 (m, CH₆), 4.44-4.40 (m, CH₆, overlay with CH₆ & OCH₂ of **2b**), 4.32 (t, 2J_HH = 6.2 Hz, OCH₂), 2.43-2.35 (m, CH₃C≡C, overlay with the corresponding signal of **2b**), 1.95-1.88 (m, CH₃CH₂C≡C, overlay with the corresponding signal of **2b**).

13C{¹H} NMR (75.5 MHz, CDCl₃, 298 K): δ [ppm] = 170.4 (s, C=O), 79.8 (s, C≡C), 73.2 (s, iC), 72.6 (s, CH₆), 71.8 (s, CH₆, overlay with the corresponding signal of **2b**), 63.3 (s, OCH₂), 28.2 (s, CH₃CH₂C≡C), 15.7 (s, CH₃C≡C).

MS: exact mass theoretical m/z = 783.13139 (C₄₀H₄₀Fe₂O₈Na); found: 783.13189.
2.3. Synthesis of [Fe(III){Cp(COO(CH₂)₂)₂C≡C}][SbF₆] (4)

To a solution of the ferrocenophane 2a (30 mg, 0.085 mmol) in DCM (3 mL) is added a solution of Ag(SbF₆) (29.3 mg, 0.085 mmol) in DCM (2 mL) while stirring. An immediate colour change from orange to dark green can be observed. After 16 hours at room temperature the reaction mixture is filtered over silica and the solvent is evaporated under reduced pressure. Crystallisation with hexane from a saturated solution of the crude product in DCM affords the ferrocenium 4 as dark blue crystalline needles.

yield: 48 mg, 96%.

¹H NMR (300.2 MHz, CD₂Cl₂, 298 K): δ [ppm] = 1.37-1.29 (m, CH), 0.90 (t, ³JₖH = 6.8 Hz, CH₂), —3.80 (br s, CHCp), —5.43 (m, CHCp).

elemental analysis (%) calcd for C₁₈H₁₆FeO₄Sb: C 36.77, H 2.74; found C 36.51, H 2.917.

2.4. General procedure for the complexation of ferrocenophane 2a

Scheme S2. Attempted complexation of transition metals with ferrocenophane 2a.

The transition metal salt (0.057 mmol) is solved or suspended in THF (1 mL). A solution of 2a (20 mg, 0.057 mmol) in THF (1 mL) is added. After 16 hours at room temperature the orange suspension is filtered over a short patch of celite and the solvent is evaporated in vacuum.

2a/Pd: [(MeCN)₄Pd][BF₄]₂ (25.2 mg) was used as a Pd source. The resulting 2a/Pd can be obtained with precipitation after addition of hexane from a saturated solution of 2a/Pd in DCM as a light brown powder.

yield: 27 mg.

¹H NMR (200.1 MHz, CDCI₃, 298 K): δ [ppm] = 4.99-4.29 (m, 4H, CHCp), 3.79 (br s, 2H, OCH₂), 3.42 (m, thf), 1.90 (br s, 2H, CH₂C≡C), 1.63 (m, thf).
2a/Ag: Ag(SbF$_6$) (19.5 mg) was used as a Ag source. The coordination polymer 5(thf) can be obtained with hexane from a saturated solution of 5(thf) in THF as orange crystals.

yield: 34 mg.

1H NMR (200.1 MHz, thf-d_8, 298 K): δ [ppm] = 4.90 (m, 2H, CH$_{Cp}$), 4.72 (m, 2H, CH$_{Cp}$), 4.37 (m, 2H, OCH$_2$), 3.80 (br m, thf), 2.77 (m, 2H, CH$_2$C≡C), 1.95 (br m, thf).

2a/Au: (Me$_2$S)AuCl (16.7 mg) was used as a Au source. The reaction is performed under the exclusion of light. The resulting 2a/Au can be obtained as a light orange powder after evaporation of the solvent. Crystallisation from a saturated solution in THF layered with Et$_2$O afforded orange crystals suitable for X-ray diffraction analysis. However, these crystals turned out to be a polymorph of the free ligand 2b.

yield: 19 mg.

1H NMR (200.1 MHz, thf-d_8, 298 K): δ [ppm] = 4.67 (br s, 2H, CH$_{Cp}$), 4.49 (br s, 2H, CH$_{Cp}$), 4.13 (m, 2H, OCH$_2$), 2.53 (m, 2H, CH$_2$C≡C).
3. NMR Spectra

Figure S1. 1H NMR spectrum (300.3 MHz, CDCl$_3$, 298 K) of butinyl ferrocene diester 1a.

Figure S2. 13C NMR spectrum (75.5 MHz, CDCl$_3$, 298 K) of butinyl ferrocene diester 1a.
Figure S3. 1H NMR spectrum (300.1 MHz, CDCl$_3$, 298 K) of pentinyl ferrocene diester 1b.

Figure S4. 13C NMR spectrum (75.5 MHz, CDCl$_3$, 299 K) of pentinyl ferrocene diester 1c.
Figure S5. 1H NMR spectrum (500.3 MHz, CDCl$_3$, 298 K) of [10]ferrocenophane 2a.

Figure S6. 13C NMR spectrum (125.8 MHz, CDCl$_3$, 298 K) of [10]ferrocenophane 2a.
Figure S7. 1H NMR spectrum (300.3 MHz, CDCl$_3$, 298 K) of [12]ferrocenophane 2b.

Figure S8. 13C NMR spectrum (125.8 MHz, CDCl$_3$, 298 K) of [12]ferrocenophane 2b.
Figure S9. 1H NMR spectrum (300.3 MHz, CDCl$_3$, 298 K) of the crude product obtained after 4 hours from the RCAM of 1b (0.25 mmol) with MoF$_6$ (2 mol %) in toluene (24 mL) in the presence of MS 5 Å (500 mg), signals of desired product 2b overlay with side product S2.

Figure 10. 13C NMR spectrum (75.5 MHz, CDCl$_3$, 298 K) of the crude product obtained after 4 hours from the RCAM of 1b (0.25 mmol) with MoF$_6$ (2 mol %) in toluene (24 mL) in the presence of MS 5 Å (500 mg); signals of desired product 2b overlay with side product S2.
Figure S11. 1H NMR spectrum (300.3 MHz, CDCl$_3$, 298 K) of the ferrocenium 4.

Figure S12. 1H NMR spectrum (200.1 MHz, THF-d$_8$, 300 K) of coordination polymer 5.
Figure S13. 1H NMR spectrum (200.1 MHz, CDCl$_3$, 300 K) of 2a/Pd.

Figure S14. 1H NMR spectrum (200.1 MHz, thf-d$_8$, 300 K) of 2a/Au.
4. Crystallographic Data

Numerical data for the coordination polymer 5 are collected in Tables S1 and S2. Crystallographic data for all structures are given in Tables S3–S5. Single crystals were mounted on glass fibers, MiTeGen mounts or on top of a human hair in perfluorinated inert oil. Measurements were performed on Oxford Diffraction Xcalibur diffractometers using monochromated MoKa (2a°) or mirror-focused CuKa (1a, 1b, 2a, 2b, 5) radiation. Data collection of the ferrocenium 4 was performed during a product presentation of Bruker ASX in Karlsruhe by Dr. Holger Ott on a Bruker D8 QUEST diffractometer with mirror-focused MoKa radiation. Data reduction was performed with CrysAlisPro or in case of compound 4 with Bruker Saint. Absorption correction was based on multi-scans. The structures were solved by direct methods with SHELXS-97 or intrinsic phasing with SHELXT-2014/5 and refined on F2 using the program SHELXL-2014 in OLEX2. H atoms were placed in idealized positions and refined using a riding model.

Special features and exceptions:

1a: The crystal structure was refined as a 2-component inversion twin with a twin ratio of 38% for the minor component. The iron atom was found disordered over two positions with an occupancy of 74% for the major position. The two positions of the iron atoms would correspond to a b-glide plane. Since the occupancy of these two atoms is far from 50%, we decided to refine this structure in the non-centrosymmetric space group Pca21.

4: A part of the main molecule is refined with a disorder model comprising two positions.

5: Three disordered molecules of THF were refined over two positions each. The respective atoms were refined isotropically.

Figure S15. ORTEP diagram of 1a with thermal displacement drawn at 50% probability; displayed is the chain like structure of the ferrocene units connected via Fe' in a disordered position occupied by 26%; hydrogen atoms are omitted for clarity.
Figure S16. ORTEP diagram of the triclinic polymorph 2a obtained from the crystallisation of 2a from THF with Et₂O with thermal displacement drawn at 50% probability; hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Fe–Ct1 1.6559(3), Fe–Ct11 1.6574(3), Ct1–Fe–Ct11 179.35(2), C9–C19 1.193(3), C8–C9–C19 175.5(2), C9–C19–C18 177.1(2).

Figure S17. ORTEP diagram of 2b with thermal displacement drawn at 50% probability; both molecules of the asymmetric unit are shown, hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Fe–Ct1 1.6558(2), Fe–Ct11 1.6548(2), Ct1–Fe–Ct11 176.83(2), C10–C20 1.198(3), C9–C10–C20 177.6(2), C10–C20–C19 179.1(2); Fe a–Ct1a 1.6541(3), Fe a–Ct11a 1.6534(3), C11a–Fe a–Ct11a 177.85(2), C10a–C20a 1.197(3), C9a–C10a–C20a 177.9(2), C10a–C20a–C19a 176.3(2).
Figure S18. ORTEP diagram of 5 with thermal displacement drawn at 50% probability; hydrogen atoms are omitted for clarity, only the main positions of the disorderes thf molecules are given. Selected bond lengths [Å] and angles [°] are summarized in Table S1 and Table S2.

Table S1. Selected bond lengths [Å] and angles [°] of 5; bonds with metal participation.

	Ct	Ct'	Ct–Fe–Ct'	O	O'	O(thf)	
Fe1	1.6814(6)	1.6524(6)	168.20(4)	Ag1	2.357(3)	2.284(3)	2.430(5)
Fe2	1.6539(6)	1.6480(6)	174.49(4)	Ag2	2.342(3)	2.287(3)	2.451(5)
Fe3	1.6538(6)	1.6552(6)	175.16(4)	Ag3	2.302(3)	2.334(3)	2.427(3)

Table S2. Selected bond lengths [Å] and angles [°] of 5; bonds with alkyne participation.

	C–C≡C	C≡C–C	Ag–(C≡C)	
C9–C19	1.217(6)	168.9(5)	167.7(5)	2.2453(3)
C29–C39	1.209(6)	166.6(5)	167.2(5)	2.2321(3)
C49–C59	1.230(6)	166.3(5)	167.8(4)	2.2390(3)
Table S3. Selected crystallographic data for compounds 1a, 1b and the orthorhombic polymorph of 2a measured by X-ray structure analysis.

	1a	1b	2a⁰
CCDC	1870273	1870274	1870275
Empirical formula	C₂₀H₁₈FeO₄	C₂₂H₂₂FeO₄	C₁₈H₁₆FeO₄
M [g mol^{−1}]	378.19	406.25	352.16
T [K]	100(2)	100(2)	100(2)
λ [Å]	1.54184	1.54184	0.71073
Crystal system	orthorhombic	monoclinic	orthorhombic
Space group	P_ca₂1	P₂1/c	Pbcn
a [Å]	11.2911(4)	11.5038(4)	7.7798(3)
b [Å]	6.7989(3)	10.3533(3)	20.0621(6)
c [Å]	21.8070(8)	7.9683(3)	9.4277(3)
α [°]	90	90	90
β [°]	90	92.284(3)	90
γ [°]	90	90	90
V [Å³]	1674.06(11)	948.29(6)	1471.47(9)
Density [g cm^{−3}]	1.501	1.423	1.590
m [mm^{−1}]	7.413	6.582	1.043
F(000)	781	424	728
Crystal size [mm]	0.23x0.08x0.27	0.18x0.16x0.08	0.28x0.10x0.07
Theta range [°]	4.05 - 76.37	3.85 - 76.25	0.28 - 29.13
Reflexions collected	25065	9891	27708
Independent reflections	3494	1968	1990
R(int)	0.7390	0.0302	0.0374
Data/restraints/parameters	3494/121/237	1968/0/124	1990/0/105
GooF	1.103	1.087	1.063
R1 (F, >4σ(F))	0.0808	0.0285	0.0289
wR2 (F2, all data)	0.1980	0.0770	0.0714
max. ∆ρ [e Å^{−3}]	1.080/−0.656	0.204/−0.407	0.441/−0.323
Table S4. Selected crystallographic data for the triclinic polymorph of 2a and compounds 2b and 4 measured by X-ray structure analysis.

	2a^a	2b	4
CCDC	1870276	1870277	1870278
Empirical formula	C₁₈H₁₆FeO₄	C₂₀H₂₀FeO₄	C₁₈H₁₆F₆FeO₄Sb
M [g mol⁻¹]	352.16	380.21	587.91
T [K]	100(2)	100(2)	100(2)
λ [Å]	1.54184	1.54184	0.71073
Crystal system	triclinic	triclinic	monoclinic
Space group	P¹	P¹	P 2₁/c
a [Å]	9.6657(7)	6.7796(3)	7.7742(8)
b [Å]	9.9367(9)	16.0367(6)	20.746(2)
c [Å]	10.1480(8)	16.3279(7)	12.4205(14)
α [°]	64.259(8)	110.086(4)	90
β [°]	64.848(7)	94.337(3)	96.901(4)
γ [°]	62.995(8)	90.276(3)	90
V [Å³]	750.04(11)	1661.56(13)	1988.7(4)
Z	2	4	4
Density [g cm⁻³]	1.599	1.520	1.964
m [mm⁻¹]	8.225	7.469	2.165
F(000)	364	792	1148
Crystal size [mm]	0.15x0.12x0.11	0.303x0.112x0.075	0.20x0.08x0.03
Theta range [°]	5.05 - 76.26	3.336 to 76.220	1.921 - 27.530
Reflexions collected	14143	67456	81709
Independent reflections	3122	6937	4570
R(int)	0.0317	0.0570	0.0550
Data/restraints/parameters	3122/0/208	6937/0/451	4570/0/31
GooF	1.074	1.066	1.109
R1 (F, >4σ(F))	0.0304	0.0313	0.0266
wR2 (F2, all data)	0.0863	0.0841	0.0518
max. Δρ [e Å⁻³]	0.465/−0.524	0.522/−0.607	0.575/−0.845
Table S5. Selected crystallographic data for coordination polymer 5 measured by X-ray structure analysis.

	5
CCDC	1870279
Empirical formula	C_{66}H_{72}Ag_{3}F_{18}Fe_{3}O_{15}Sb_{3}
M [g mol⁻¹]	2303.65
T [K]	100(2)
λ [Å]	1.54184
Crystal system	monoclinic
Space group	P 2₁/c
a [Å]	14.99930(14)
b [Å]	13.44550(10)
c [Å]	37.6178(3)
α [°]	90
β [°]	91.8395(8)
γ [°]	90
V [Å³]	7582.59(11)
Z	4
Density [g cm⁻³]	2.018
M [mm⁻¹]	19.814
F(000)	4488
Crystal size [mm]	0.20x0.19x0.05
Theta range [°]	3.49 - 76.33
Reflexions collected	215741
Independent reflections	15843
R(int)	0.0843
Data/restraints/parameters	15843/30/961
GooF	1.115
R1 (F, >4σ(F))	0.0387
wR2 (F², all data)	0.0978
max. Δρ [e Å⁻³]	1.200/-1.440
5. References

1. Haberlag, B.; Freytag, M.; Daniliuc, C. G.; Jones, P. G.; Tamm, M. Angew. Chem. Int. Ed. 2012, 51, 13019–13022.
2. Petrov, A. R.; Jess, K.; Freytag, M.; Jones, P. G.; Tamm, M. Organometallics 2013, 32, 5946–5954.
3. Curran, T. P.; Lawrence, A. P.; Murtaugh, T. S.; Ji, W.; Pokharel, N.; Gober, C. B.; Suitor, J. J. Organomet. Chem. 2017, 846, 24–32.
4. CrysaliisPRO Software System; Rigaku Oxford Diffraction: Rigaku Corporation, Oxford, UK.
5. SAINT; Bruker: Bruker AXS Inc., Madison, Wisconsin, USA.
6. Sheldrick, G. M. Acta crystallographica. Section C, Structural chemistry 2015, 71, 3–8.
7. Sheldrick, G. M. Acta crystallographica. Section A, Foundations and advances 2015, 71, 3–8.
8. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J Appl Crystallogr 2009, 42, 339–341.