日本実験動物学会からのお知らせ

理事候補者選挙について

公益社団法人日本実験動物学会選挙管理委員会
委員長：國田 智
委 員：吉木 淳

定款および理事候補者選出細則に則り、令和 2 ～ 3 年度在任理事候補者の選挙を下記の要領で実施します。

1. 日本実験動物学会名誉会員および正会員（平成 31 年 4 月 1 日現在）のうち、理事候補者選出細則第 4 章第 9 条に従い、名誉会員、浦野 徹会員、國田 智会員、塩谷 恭子会員および吉木淳会員は立候補できません。それ以外の正会員の方々が被選挙人としての有資格者です。日本実験動物学会会員名簿は 10 月中旬に全会員へ発送します。

2. 選挙は立候補制をとります。下記の「令和 2 ～ 3 年度理事候補者推薦書」用紙に立候補者名と正会員3名以上の推薦者名を記入して推薦してください。推薦にあたり、立候補者の承諾を得てください。複数の立候補者を推薦するときは用紙をコピーしてそれぞれ個別に推薦してください。

3. 推薦書は選挙管理委員会事務局まで郵送してください。推薦受付期間は 11 月 1 日（金）～ 11 月 30 日（土）（当日消印有効）です。

4. 選挙公報、立候補者名簿、投票用紙等は 12 月 24 日（火）までに会員宛に発送致します。

5. 投票は立候補者の5名連記による無記名投票を郵送で行い、上位 15 名を当選者とします（第15位の得票が同数の場合は抽選）。

6. 投票の受付期間は 12 月 25 日（水）～ 2 月 5 日（水）（当日消印有効）です。

7. 選挙管理委員会事務局は学会事務所（〒113-0033 東京都文京区本郷6-26-12 東京 RS ビル）内におきます。

令和 2 ～ 3 年度理事候補者推薦書

令和元年 11 月 日

下記会員を理事候補者として推薦致します。

立候補者氏名：
年 齢：
所属：
現職名：

推薦者（3名以上）
氏名
氏名
氏名

㊞
㊞
㊞
令和元年度 維持会員懇談会の開催について

財務特別委員会
委員長 高木博隆

日頃、（公社）日本実験動物学会への維持会員の皆様からのご理解とご支援、誠にありがとうございます。例年の通り、動物実験に関する学術振興、技術発展による社会と産業への貢献などの話題を広く情報共有、周知する目的で、講演・展示会および意見交換会を下記要領で開催いたします。維持会員の皆様に限らず、実験動物や動物実験にかかわる多くの皆様をお迎えして、当学会活動に親しんでいただく機会になれば幸いです。

プログラム・参加申し込み等については、本学会のホームページ（https://www.jalas.jp/）に掲載いたしますので、そちらでご確認ください。多くの方のご参加をお待ちしております。

令和元年度（公社）日本実験動物学会 維持会員懇談会

日 時：令和元年11月15日（金）13:00～（展示会）、13:00～（講演会）
場 所：中央大学 駿河台記念館
〒101-8324 東京都千代田区神田駿河台3-11-5
内 容：理事長挨拶
「動物愛護管理法改正および外部検証について」
講演会
「血液腫瘍治療の最前線」
1）臨床の場から～CAR-T療法など最新治療の現状について
2）基礎研究の場から～遺伝子改変動物を用いた病態解析の現状について
話題提供
「ナショナルバイオリソースプログラム・ラットの紹介とラットの生殖工学技術」
意見交換会
企業説明（プレゼンテーション）
インピバイエンス株式会社
有限会社葛生運送
意見交換会

参加費：講演会・展示会（無料）、意見交換会（5,000 円／人）

主 催：（公社）日本実験動物学会
後 援（予定）：
日本製薬工業協会、安全性試験受託研究機関協議会、
動物実験関係者連絡協議会、日本実験動物協同組合、
日本実験動物器材協議会、日本実験動物協会
第13回実験動物管理者等研修会の開催について

公益社団法人日本実験動物学会 理事長 浦野 徹
実験動物管理者研修制度委員会 委員長 花木賢一

（公社）日本実験動物学会（以下、本学会）では第13回実験動物管理者等研修会を下記の要領で開催いたします。

我が国の動物実験の基準である「実験動物の飼養及び保管並びに苦痛の軽減に関する基準（環境省告示）」には、実験動物管理者等の教育訓練について記載があります。そこで、本学会では平成25年度より学会員・非学会員を問わず、動物実験を実施する国内の全ての機関の実験動物管理者等を対象として研修会を開催して参りました。そして、これまでに1,300名を超える参加を頂いています。内容は実験動物管理者等に求められる基本的な知識と技術、動物福祉や関連法令など多岐に亘りますが、初学者でも解るように解説いたします。参加を希望される方は参加申込票に必要事項を記入し、本学会事務局宛にFAX(03-3814-3990)でお申し込みください。プログラムや参加方法の詳細は本学会のホームページ(http://jalas.jp/meeting/seminar.html)よりご確認ください。多くの方の参加をお待ちしております。

第13回実験動物管理者等研修会

日 時：令和2年2月26日（水）13:00 ～ 18:00, 2月27日（木）9:00 ～ 16:20
会 場：東京大学農学部3号館4階会議室 東京都文京区弥生1-1-1
http://www.a.u-tokyo.ac.jp/campus/overview.html
参加費：4,000円（会員）、5,000円（非会員である維持会員団体職員）、6,000円（非会員）
定 員：120名
その他：受講者には資料を配布、受講修了証を発行
主 催：（公社）日本実験動物学会
後 援：環境省、厚生労働省、農林水産省、文部科学省

プログラム

講義1 法律における実験動物の位置づけについて～社会から見た実験動物～
講義2 動物実験の機関管理、「実験動物管理者」の役割と責任
講義3 実験動物の飼養管理等に関連する法規
講義4 遺伝子組換え動物実験と感染動物実験の規制
講義5 人獣共通感染症とバイオセーフティ
講義6 労働安全衛生と危機管理
講義7 各種実験動物の特性
講義8 実験動物の導入、飼育管理（器材、飼料、飲水、エンリッチメント）、記録管理
講義9 実験動物の健康管理（検疫、順化、獣医学的ケア、主な疾病・傷害、感染症予防対策）
講義10 施設・設備の衛生管理（清掃、洗浄、消毒、昆虫・野鼠対策、廃棄物処理）
講義11 動物実験を修飾する要因～外部環境と内在性因子～
講義12 動物における苦痛のカテゴリーと人道的エンドポインタ
講義13 中大動物・靈長類の麻酔、鎮痛、術中術後管理、安楽死
講義14 げっ歯類の麻酔、鎮痛、鎮静、試料採取、安楽死
テーマ：「健康長寿を支える実験動物」
大会長：塩谷恭子（国立循環器病研究センター実験動物管理室）
会期：2020年5月23日（土）〜25日（月）
会場：大阪府立国際会議場（〒530-0005　大阪府大阪市北区中之島5-3-51）

プログラム案
●特別講演
「社会への情報発信　UARに学ぶ（仮題）」
Wendy Jarrett
（Understanding Animal Research）
●学会本部企画シンポジウム
　学術集会委員会（「睡眠，生物リズム研究の最前線」）
　実験動物感染症対策委員会（企画中）
　動物福祉・倫理委員会（「One Welfare」）
●LASセミナー（教育研修委員会，企画中）
●第67回総会企画シンポジウム（企画中）
●実技協協賛企画シンポジウム（「長寿研究を支える実験動物技術」）

一般講演
●ポスター発表
なお、「若手発表賞（仮称）」に応募された方には口演発表をいただきます

ランチョンセミナー
●ホスピタリティールーム
●器材展示
●情報交換会

大会事務局
第67回日本実験動物学会総会事務局
〒564-8565　吹田市岸部新町6-1
国立循環器病研究センター　研究所内
E-mail: jala67@ncvc.go.jp
https://jala67.org
ゲノム編集生物とは

通知の中で、「ゲノム編集技術の利用により得られた生物のうち、最終的に得られた生物が細胞内で加工した核酸が含まれない場合は対象外」としている。その中で、移入された核酸（ガイド RNA や人工スクラアーゼ mRNA、ベクターの DNA を含む）が宿主のゲノムの中に移転又は分離されない場合は「遺伝子組換え生物等」には該当しないとしている。また、人工スクラアーゼ遺伝子等を意図してゲノムに組み込む場合、従来品種との交配等によって、組み込まれた遺伝子を除去すれば（null segregant）、これも該当しないこととなっている。外来の核酸が含まれない人工スクラアーゼのみでのゲノムの切断と自然修復で偶然導入された塩基等は細胞内で加工した核酸には当たらないため、その生物も対象外となれる。それでは、細胞外で加工した核酸の移入・残存の有無をどのように示すのか、標準部位を調べて核酸の移入・残存のないことが確認できれば遺伝子組換え生物に該当しないこととされ、それは単純でもない。非標的部位への移入の有無（オプテーゲット効果）も確認しなければならない、これを調べることで「最終的に得られた生物が細胞内で加工した核酸が含まれない」とする生物となる。文部科学省では、その確認方法として、PCR 法やサザンプロット法をあげているので、使用するゲノム編集技術やゲノム編集生物の使用方法（開放系や閉鎖系等）にも、全ゲノムシーケンス等のより正確な確認方法を必ずしも求めていない。

ゲノム編集生物の取扱い

文部科学省の通知では、細胞外で加工した核酸を含む生物もしくは核酸の有無を確認していない生物は遺伝子組換え生物であり、カルタヘナ法に基づく取扱いはしなければならない。ゲノム編集技術を使用することで、標的部位で外来の核酸の挿入あるいは置換・変異を発生させる場合は明らかに該当する。核酸の欠失（ゲノム配列の欠失）の場合は、
他部位での外来の核酸の移入・残存がないことを確認していれば遺伝子組換え生物に該当しないが、確認していなかったと移入・残存がなくとも該当することになる。そのため、問題となるのはカルテナ法の対象外である「最終的に得られた生物に細胞外で加工した核酸が含まれない」生物の取扱いである。対象外の生物を開放系で使用する場合と閉鎖系で使用する場合で対応が異なる。開放系の場合は、使用に先立ち所定の書類（ゲノム編集技術の利用により得られた生物の使用等に係る実験計画報告書）を作成して所属機関の安全委員会で検討した後、文部科学省（生命倫理・安全対策室）に提出しなければならない。カルテナ法における第一種使用等に類似した対応である。一方、閉鎖系では、バイオセーフティの観点から、当該生物に応じた適切な拡散防止措置を執る必要があり、従前のカルテナ法に基づく遺伝子組換え生物等の取扱いと同様に取扱いを行うこともある。特に、大臣確認を要する生物（ウイルスや細菌等の病原体）を使用する場合は、所属機関の安全委員会において安全な取扱い等について検討した上で、生命倫理・安全対策室に照会を行い、必要に応じて学識経験者の意見を踏まえた拡散防止措置を執ることが必要とされる。それ以外の生物においても、遺伝子組換え生物と同様に所属機関の安全委員会で検討した方がよいだろう。

保管および運搬にあっても同様で、当該生物を漏出、逃亡その他拡散しない構造の容器に入れた上で、所定の場に保管するもしくは最も外側の容器に取扱いに注意を要する旨表示をして運搬することが必要である。譲渡先へ所定の情報（a）当該生物がゲノム編集技術の利用により得られた生物のうち細胞外で加工した核酸を含まないことを確認した生物である旨、（b）閉鎖系において使用等している旨（該当する場合）、（c）当該生物の種類の名称（名称が無い場合はその旨）、（d）既に主務官庁に届出を提出している場合はその旨、（e）譲渡者の氏名および住所（法人にあっては、その名称及び担当責任者の氏名および連絡先）を提供することや、海外から当該生物を譲受する前に上述の手続きと取扱いが必要となることも忘れてはならない。また、事故や災害等の場合には、緊急時対応や文部科学省への通報もカルテナ法と同様と考えてよい。

実験動物での対応

上述のように、ゲノム編集動物で必要とする手続に応じる遺伝子組換え動物の場合は、そのままで適用させればよい。ただし、安全委員会への申請様式や情報提案書の様式は、従来の様式を修正するか、ゲノム編集動物用に別に設けるかする必要があるだろう。また、海外から動物を輸入する場合は、ゲノム編集動物であるか否かを必ず確認して、しっかりと対応を行わなければならない。こうしたことから、実験動物の生産・供給あるいは研究段階での飼養保管において、遺伝子組換え動物や該当しないゲノム編集動物が一部の家畜や飼育魚のように開放系で飼育されることがない限り、現場の対応がこれまでと大きく変化することはないと考える。
最近の医学実験用カニクイザルの微生物学的管理を考える

中村紳一朗
滋賀医科大学動物生命科学研究センター

要 約
医学実験用カニクイザルの微生物学的管理は、多くの個体が海外から輸入される点、繁殖母群を得る際の発生工学的なクリーニングが困難な点、集団管理ではなく個体ごとに管理される点などから、げっ歯類の管理とは考え方が大きく異なる。実験用イスやブタで用いられることがあるワクチンによる管理も利用可能なワクチンが限られ困難である。カニクイザルの海外からの導入には我が国における法定輸入検疫を要し、輸出国および各生産施設の衛生管理状況を完全に知ることは難しく、微生物学的管理における不確定要素が多い。国内施設へ導入してからの管理では、標準的な微生物学的基準が存在せず、また他の国内施設の情報、施設内での試験（実験）内容などを考慮しながら決定している状況である。他種実験動物のような集団管理はできず、個別の定期検診による管理は多くの労力を伴う。また研究トレンドの変化によって配慮すべき微生物も変わった。しかしカニクイザルにはこれらの苦労を上回るインパクトのある研究成果が得られるポテンシャルがある。本稿では最近の、カニクイザルの海外からの導入ならびに国内施設内での管理において、考慮すべきカニクイザル微生物学的管理のポイントと主だった微生物について紹介する。

1. 現状に関する総論
感染症を防ぐための基本的な考え方に動物種を超えた共通点は多いが、医学実験用カニクイザルには、げっ歯類などではあまり考慮することの無い特殊事態が存在する。
まず繁殖施設の問題がある。カニクイザルは繁殖母群を起こす際に発生工学的手法を用いないため、コンベンショナルな微生物学的レベルで繁殖母群が維持されることになる。生産施設は海外であり、感染症法に基づく生産国での輸出検疫、そして日本での輸入検疫が必要である。該当する海外繁殖施設は、農林水産省による許認可を受けてはいるが、我々エンドユーザーには詳細な管理体制がわかりにくい。海外繁殖施設の施設、カニクイザル輸入を取扱う業者が現地視察を行っており、詳しい。一方で、入手可能な各種情報を総合しても監視しきれない部分があり、海外繁殖施設で抗生物質や殺虫剤が投与されなければならないが輸出され、”飼育陰性”となり、我が国へ輸入後に再燃といった実例も存在する。
カニクイザルを国内施設へ導入した後には定期健康診断などにより個体ごとに微生物学的検査を行う必要がある。げっ歯類のように腸管動物を用いる検査は経済的な観点から、ワクチンによる感染症コントロールは適用可能なワクチンが少ない（麻疹などヒトとの共通感染症では利用可能なものもあり）点から、それぞれ問題があり、サル類では集団を対象とした微生物学的管理は困難である。検査対象とする微生物の種類の基準は存在せず、各機関で考えなければならない。感染症法による監視微生物（エボラ出血熱ウイルスとマールブルグ熱ウイルス）は、国内での感染症は考えにくいため除外できる（前述）。そこで重要な人間共通感染症、またはサルコロニーの中で深刻な拡がりを示す感染症などを重点的に考慮して、サルのヘルペス B ウイルス (BV), サルバリセラウイルス (SIV), 結核、細菌性赤痢、アメーバ赤痢等は必検項目とし、その他の項目（サルレトウイルス (SRV), サル免疫不全ウイルス (SIV), サル T リンパ球白血病ウイルス, E 型肝炎, サルモネラなど）については、各機関での試験（実験）期間、試験（実験）内容に合わせて必要な項目を選択することが多い。試験（実験）内容によりさらに詳細な検査を検討すべき場合は、血液寄生のフィラリアやマラリア、消化管寄生虫（原虫を含む）などを加える。
細菌，原虫で有効な治療薬が存在し，国内施設間で動物を授受する場合は，各機関の検査項目の差異，試験内容を考慮して導入検疫を行うこともある。

さて，誰がどのように微生物学的検査をするか，という点では，カニクイザルを含むサル類の管理は貧弱だ。信頼できる外部検査機関を１機関，一般社団法人予防衛生協会（予防衛生協会）だけである。予防衛生協会が提供しているサービスの内訳は基本的に，ウイルス検査として抗原抗体法をベースにした検査，細菌は培養および抗原同定検査，寄生虫では虫体をより良く描出する染色を施しての顕微鏡検査である。一方で各実験動物施設・機関が自前で検査する場合もあり，その結果に対するツベルクチン検査，消化管寄生虫・原虫に対する直接鏡検などが挙げられる。これらのうち，ウイルスの抗原抗体反応およびツベルクチンに対する生体反応は結果のブレに悩むことがある。その不安定さを解消するには，核酸をベースとしたPCR等による補完検査が必要と思われるが，現状では必要時に自施設で行うか，その分野の専門家に依頼することになる。外部検查機関による二次（オプション）検査が提供されるほど，適切な評価への手助けとなるだろう。

最近，抗体薬品，免疫を介在した創薬などの開発，再生医療の前臨床的評価におけるサル類を用いた評価の中で，病原性の低い日和見感染症に関わる微生物のコントロールが必要となってきている。特に消化管寄生虫には検査法の検出限界の問題があり，各機関へ導入された個体には一部，見逃された原虫感染があるかもしれない。治療薬がある場合は薬剤を用いた治療と予防を兼ねた処置も必要となってくる。

このように医学実用化用カニクイザルを取り巻く微生物学的管理には，様々な調査がある。次から，現状で私たちが配置すべきことは何か，すなわち輸入検疫，国内施設導入検疫と定常健康診断，試験内容のトレンドと日和見感染症の微生物，といった各作業課題別に概説と，それぞれで注意すべき微生物を示していく。

2. 輸入検疫

カニクイザルは，我が国の農林水産省に許可された繁殖施設からのみ日本へ輸出され，日本での輸入検疫を経て，法令上の対象となるエボラ出血熱ウイルスとマールブルグ熱ウイルスの陰性個体のみ動物実験施設へ導入される。とはいえ，先方施設での運用の実態は，国内外からの連携を必要とするため，現地での抗生物質，駆虫薬による一時的かつ不十分な微生物の排除によって，輸入後に国内で再燃する可能性もあり（例えば細菌性赤痢，サルモネラなど），また不適切な廃棄あるいは動線などから生じたと思われる事例もある。輸入検疫中に考慮すべき病原体を以下に挙げる。

実例1. イヌジステンバウイルス（CDV）：2008年に中国から輸入したカニクイザルが法定輸入検疫中に突然死，あるいは眼瞼，鼻漏，食欲不振，発咳，鼻炎，下痢，発熱，全身性の発疹などを呈した。これら症状は麻疹やイヌジステンバーの症状に類似しており，観察例からはCDV（CYN07-dV）株が分離された。このCYN07-dVは分子遺伝学的に2006年から2008年に中国のアカゲザルで発生したCDV例と近縁であったため[11]，これらアウトブレークとの関連がSakaiらによって指摘された[10]。

CDVは麻疹ウイルスと同様にSLAM（Signaling lymphocyte activation molecule, CD150）と Nectin4（PVRL4; polio virus receptor like molecule 4）を受容体とする。CYN07-dV株はcanine SLAMに加えて，macaque SLAMにも親和性を示したが，human SLAMとの親和性は低く，ヒトへの感染の可能性は低いと考えられた[10]。

雛長類でのCDV感染報告例は多くはないが，ウイ−ス株と宿主の組合せ，その他の要因によっては感染成立が起こり得る。なお，世界初のサル類のCDV感染報告は，日本のイヌ施設に近接した場所で飼育されていたニホンザルの例である[13]。結局，カニクイザルはCDVの感染があり得るのかどうかは明らかにされていない。国際のサル生産施設でのCDV発生状況，国内外においても獣医学的な疫学情報には注意を払いたい。

実例2. E型肝炎ウイルス（HEV）：HEVはマカク属サル類に対して非病原性だが，感染は成立する非病原性ウイルスである。ヒトのHEV感染が国内で公衆衛生上問題になった際，実験動物として使用されているブタ，サル類が媒介する本ウイルス感染の可能性が問題となり，2005年に国立大学法人動物実験施設協議会（国動協）会員校施設での調査が行われた。HEV抗原に対するIgG抗体陽性率は，動物実験施設飼育（20施設）のニホンザル13％，アカゲザル10％，カニクイザル8％だった。一方で，野生由来個体を含む野外飼育ニホンザルの調査では36.2％が陽性，またカニクイザルを生産地に調査した医学実験施設でのデータで陽性率は中国67％，ベトナム30％，インドネシアとフィリピン，ならびに国内産は陰性だった[12]。

我が国では，衛生的な管理が行われている医学実験用サル類の飼育管理の中でHEV感染が起こること
3. 国内施設導入検査と定期健康診断

我が国の多くの機関では、法定検査の指定保存施設からカニクイザルを導入することとなる。エンプローター施設が指定保存施設と連携を取りながら輸入検査を行った場合は、検査期間中には行い、自主検査として、エンプローター施設で必要とされる微生物に対する検査が可能である。一方、検査をさらに精密化したい場合は、施設導入検査を行う場合がある。例えば、消化管内原虫は法定輸入検査を含むそれまでの検査内で、排泄物中の囊子等虫体が十分量でない場合には検出できず、国内輸送や環境変化によるストレスで見いだされる可能性がある。また、生産圏で生産される、抗菌剤を投与されて“感染”陰性となっている個体が、薬効が切れて陽性へ転換する可能性もある。再検査や、あらためて適切な抗菌剤の投与後、十分な休薬期間にて再検的のことを確認したあと、ようやく国内施設への導入となることもあろう。さらに施設導入後の検査内容や検査期間を検定し、日和見感染症の微生物検査を加える場合がある。

試験（実験）目的によって飼育期間が長期化する場合は、定期的なモニタリングが必要である。その際、げっ歯類の様なカスタマイズされた方法が存在しないため、個体別に必要なサンプルを採取し、検査項目はからの機関で判断しなければならない。直接鏡検、ツベルク反応、一部の細菌培養検査などは、現在の検査項目については予防衛生法に載ることとなる。SRV 以外のウイルス検査はほとんどの抗原抗体反応で、陽性判定が困難なケースに対し、予防衛生協会では二次検査としての PCR 検査等が用意されておらず、陽性が出た場合などは判断に苦慮することが多い。

私たちの施設はカニクイザルで、発生工学的技術を用いた病態モデル動物の開発を行っている。そのため、繁殖母群のカニクイザルの飼育期間は数年を超えることが少なくない。そのため 1 年に 1 回程度、定期健康診断を行い、その微生物学的項目には BV、SUV、結核（ツベルク）、細菌性赤痢、サルモネラ、消化管内寄生虫・原虫をあげている。

4. 試験内容のトレンドと日和見感染症の微生物

最近の抗体医薬品・免疫を介在した創薬などの開発では、厳密な免疫学的評価が必要とされる。また、iPS 細胞への応用を想んだモデル作製の場では、移植細胞の生着のために免疫抑制剤が使われる。いずれにおいても、病原性の低い日和見感染症の微生物に対するコントロールが必要となる。消化管内原虫は、検査法による検出限界による見逃しの可能性を考慮し、治療薬がある場合は予防を兼ねた投薬も視野に入れる管理が必要となる。一方で、一部のレトロウィルスやヘルペスウィルスの抗原抗体反応による検査検出限界以下だった個体が、免疫抑制剤によってウィルスの増殖を招く場合がある。また基本は無症状キャリアとして一般的に感染している病原体が、免疫抑制剤によって何らかの病態の標誌に関する
図1 Epstein-Barrウイルス関与が示唆される、カノクイザルのリンパ腫例。免疫抑制剤を約5か月間投与されたカノクイザルに生じた胸腔縦隔腫瘍のHE染色像。大小不同的円形から多角形の細胞がびまん性に増殖（Scale Bar; 50 μm）。腫瘍細胞は免疫染色でCD20陽性のB細胞（挿入図参照）。

図2 Epstein-Barrウイルス関与が示唆される、カノクイザルのリンパ腫例。EBV-encoded small RNA（EBER）に対するin situ hybridization（Scale Bar; 50 μm）。多くの腫瘍細胞が陽性。

ことである。

実例4. 消化管内原虫駆虫の1例（大腸バランチジム）：大腸バランチジムの病原性は低いとされ、多くの機関では、導入検査の検査の対象としない、あるいは陽性個体のみへの駆虫という対応を行っている機関が多いのではないか。

私たちの施設では2011年から2012年の全頭健康診断で大腸バランチジムは陰性だったが、2013年から2014年に行った健康診断で、重度の水樣下痢を示した1頭に大腸バランチジムの濃厚感染が見られ、そのその後の検査で同室または周間の飼育室で下痢の有無とは関係なく大腸バランチジム阳性個体が多数確認された。現在はパロモアイシン硫酸（アメパモ：ファイザー社）を全頭へ投与する予防と治療を兼ねた方法を用い、以後の出現は終息している。排出されるシストは一般的な消毒薬に抵抗性であるため、濃厚感染に気づかないでいると動物実験従事者が拡散し、結果としてかなりのスピードで蔓延するようだ[7]。

実例5. Epstein-Barrウイルス（EBV）：EBVは、ヒトではホジキンリンパ腫や上部消化器癌の発生との関与が知られている。また移植後リンパ増殖症疾患という、臓器ならびに細胞移植時に免疫抑制剤投与で生じる免疫抑制状態が引き起こす。制御不能なリンパ球増殖症疾患（特にB細胞）の原因であることが知られている[2]。

マカカ属サル類ではほとんどの個体が血清EBV抗体陽性であるにも関わらず、病態発生との関係は不明な点が多い。私たちの施設では、免疫抑制剤を必要とする実験操作の中で、ヒトの移植後リンパ増殖性疾患に相当する、全身の腫瘍形成を伴うリンパ腫を2例経験した（未発表データ）。とに腫瘍細胞はCD20陽性のB細胞由来で（図1挿入図）、多くがEBV-encoded small RNA（EBER）に対するin situ hybridizationで陽性を示した（図2）。両例とも血清EBV抗体陽性だったが、この実験以外で血清EBV抗体陽性カノクイザル2例の脾腫では、EBERは陰性だった。免疫抑制剤を用いる実験の際には、体表リンパ節の腫脹、リンパ球の増殖性変化に注意を払っていただきたい。

5. その他

BVのようにサルからヒトへ感染して問題になる微生物のほかに、実験用サル類の管理の現場ではヒトがサルへうつす微生物が問題になることもある。上述した結核の他に、麻疹もそうである。サル類の微生物学的管理では、BVを排除するために多くの労力が払われ、現在入手可能なほとんどのカノクイザルはBV陰性である。一方で、サルのBVに相当するヒトを宿主とする単純ヘルペスウイルス（HSV）については、筆者も含む多くのサル類実験従事者の
抗体保有状況は全く調べられていないだろう。我々の施設では育仔放棄された仔カニクイザルに対し人工哺育を行うことがある。その取扱いの中で、仔ザルと従事者との接触は一般的な取扱い以上に密になる。密接なサル類との接触が、HSVの感染のリスクとなることを知っておきたい。

実例6. HSV：主にペットとして飼われているサル類やヒトと濃密に接するサル類（特にマーモッセト）でのHSV感染報告が多く、動物実験施設におけるHSV感染成立の可能性は低いが、いったんヒト由来と推定されるHSV感染が成立するとサル類に致死性の脳脊髄炎を起こす [4, 5]。HSV感染はマーモッセトからオランウータンまで、亜長類の系統発生の中でも多様に発生しているので、どのサル種でも感染の可能性に注意しなければならない。なお、実験動物として汎用されるマクサザルでの論文ベースの報告例は無い。

また、臨床検査機関などでサル血清のHSV抗体検査を行う際は、他のペルベスイアルとの交差点を考慮し、慎重にデータを取り扱うべきである。サル類を飼う動物実験施設では、BVを管理しているが、HSVの抗体検査をしていないヒトの存在は、サルたちにとって大変な脅威である。

6. 最後に

ここまで公になっているデータと私たちの施設での経験を元に、カニクイザルの微生物学的管理の現状を記してきた。単純にげっ歯類の現状と比べることはできないが、現状とすべきような標準的な基準がないことが、現場での管理が困難になっている。げっ歯類では標準的な項目と免疫不全の項目が準備されているように、最近の試験（実験）内容を考えるとサル類では検査対象の項目が必要かも知れない。またサル類を飼育するためには、ある程度の経済的バッケラグンドが必要で、情報を表に出しやすいアカデミアの動物施設ごと、大きなサル類飼育施設が少ないことが、サル類の微生物学的管理に関わる情報の少なさに響いているのかも知れない。民間機関を含めた情報共有があれば、国全体のサル類を用いた研究の質向上に繋がるものである。発表会報の実験中には制限も多いと思われるが、協力願いたい。

参考文献

1. Clayson, ET, et al. 1995. Viremia: fecal shedding, and IgM and IgG responses in patients with hepatitis E. J. Infect. Dis. 172: 927–933.
2. Dharmidharka VR et al. 2016. Post-transplant lymphoproliferative disorders. Nat Rev Dis Primers. 28: 15088.
3. Gong W et al. 2017. An alert of Mycobacterium tuberculosis infection of rhesus macaques in a wild zoo in China. Exp Anim. 66: 357–365.
4. Imura K, et al. 2014. Herpes simplex virus type 1 infection in two pet marmosets in Japan. J Vet Med Sci. 76: 1667–1670.
5. Kik MJ, et al. 2005. Herpes simplex infection in a juvenile orangutan (Pongo pygmaeus pygmaeus). J Zoo Wildl Med. 36: 131–134.
6. Min F, Pan J, Wu R, et al. 2016. Profiling serum antibodies to Mycobacterium tuberculosis proteins in rhesus monkeys with nontuberculous Mycobacteria. Exp Anim. 65: 11–16.
7. Nakamura S, et al. 2019. Paromomycin sulfate is an effective treatment for balantidiasis in captive cynomolgus monkeys. Exp Anim. 68: 285–292.
8. Nakamura S, et al. 2012. Epidemiology of hepatitis E virus in indoor-captive cynomolgus monkey colony. J Vet Med Sci. 74: 279–283.
9. 大江経松ら, 2018. 輸入カニクイザルにおける結核症の集団発生事例. 日獣会誌. 71: 369–375.
10. Sakai K, et al. 2013. Lethal canine distemper virus outbreak in cynomolgus monkeys in Japan in 2008. J Virol. 87: 1105–1114.
11. Sun Z, et al. 2010. Natural infection with canine distemper virus in hand-feeding Rhesus monkeys in China. Vet Microbiol. 141: 374–378.
12. Yamamoto H, et al. 2008. Serological evidence for hepatitis E virus infection in laboratory monkeys and pigs in animal facilities in Japan. Exp Anim. 57: 367–376.
13. Yoshikawa Y, et al. 1989. Natural infection with canine distemper virus in a Japanese monkey (Macaca fascicularis). Vet Microbiol. 20: 193–205.
他学会情報

公益社団法人日本実験動物協会の動き

Ⅰ．ブク実技研修会の開催について
この実技研修会は、今回も実技試験を受験される方を優先したうえで、一般の受講希望者にも参加いただけるよう広く募集し、下記の内容で開催いたします。

開催予定日：令和元年 11月9日（土）～10日（日）
場所：日本獣医生命科学大学
受講者数：12名
研修内容：ハンドリング、保定、健康判定、体重測定、体温測定、心拍測定、
投与（経口、皮下、静脈内、筋肉内等）、採血（耳介静脈、前大静脈収）、
麻酔、切皮・縫合等
実習テキスト：公益社団法人日本実験動物協会教育・認定委員会発行、A4版、18頁
詳細については、日動協ホームページ（http://www.nichidokyo.or.jp/）をご確認願います。

Ⅱ．ウサギ実技研修会及びザル類実技研修会について
1．ウサギ実技研修会（1級・2級実技試験受験者対象）
開催予定日：令和元年 11月9日（土）～10日（日）
場所：日本獣医生命科学大学
対象者には個別に連絡

2．ザル類実技研修会（1級・2級実技試験受験者対象）
開催予定日：令和元年 11月9日（土）
場所：日本獣医生命科学大学
対象者には個別に連絡
総説
熊本大学生命資源研究・支援センターにおけるマウス生殖工学技術の研究開発……391–395
中溝直己・竹尾透
熊本大学生命資源研究・支援センター（CARD）資源開発分野
熊本大学生命資源研究・支援センター（CARD）は、遺伝子変異マウスを用いた生命科学・
医学研究に関する国際研究拠点の形成を目的として、1998年に設立された。我々は、研究コミュニ
ティにおける遺伝子変異マウスの利活用を促進するために、研究支援事業として遺伝子変異
マウスの凍結精ずおよび胚を保管するマウスバンク（CARD公開マウスバンク、CARD有償マ
ウスバンク）を運営している。さらに、マウスバンクの機能強化を目的として、様々なマウス生
殖工学技術を開発し、現在ではCARDの技術が世界中の研究機関で利用されている。本論文で
は、CARDマウスバンクに関する活動および我々が開発したマウス生殖工学技術について紹介する。

齧歯類モデルの遺伝的修飾因子：その白内障発症における役割……………………397–406
和田健太1,2・安田俊平2・吉川新世2
1) 東京農業大学生命産業学部、2) 東京都医学総合研究所哺乳類遺伝プロジェクト
視覚障害は、ヒトにおいて著しいQuality of Life (QOL)の低下を引き起こす。白内障は、視
覚障害の中で最もよく知られた疾患である。白内障発症のリスクファクターは、加齢、感染、
外傷、放射線および紫外線などの環境的要因に加えて、遺伝的要因も強く発症に関与することが
知られている。さらに、白内障患者は重症度や発症時期において病態の不均一性を示し、それらの一部は遺伝的背景の違いによって引き起こされることが示唆されている。しかしなが
ら、ヒト白内障の重篤度や発症時期に関与する修飾遺伝子は同定された例がない。それとは対
照的に、これまでマウスおよびラットモデルにおいて白内障に関与する複数の修飾遺伝子が同
定、あるいはマッピングされてきた。本総説では、モデルマウスおよびラットから見だされ
た白内障の遺伝的修飾因子について述べた。
The promise of zebrafish as a model of metabolic syndrome... 407–416
Khaled BENCHOULA1), Ali KHATIB2,3), Ashika JAFFAR4) , Qamar Udin AHMED5) ,
Wan Mohd Azizi Wan SULAIMAN1), Ridhwan Abd WAHAB5) and Hesham R. EL-SEED6,7)
1) Department of Basic Medical Sciences, Kulliyyah of Pharmacy, International Islamic University
Malaysia, Sultan Ahmad Shah Street, Kuantan 25200, Pahang, Malaysia, 2) Pharmacognosy
Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International
Islamic University Malaysia, Sultan Ahmad Shah Street, Kuantan 25200, Pahang, Malaysia,
3) Central Research and Animal Facility (CREAM), Kulliyyah of Science, International Islamic
University Malaysia, Sultan Ahmad Shah Street, Kuantan 25200, Pahang, Malaysia, 4) School of
Biosciences & Technology, VIT University, Vellore 632014, India, 5) Kulliyyah of Allied Health Science,
International Islamic University Malaysia, Sultan Ahmad Shah Street, Kuantan 25200, Pahang,
Malaysia, 6) Pharmacognosy Group, Department of Medicinal Chemistry, Biomedical Centre,
Uppsala University, Box 574, SE-751 23 Uppsala, Sweden, 7) Alrayan Medical colleges, Medina
42541, Kingdom of Saudi Arabia

Metabolic syndrome is a cluster including hyperglycaemia, obesity, hypertension, and
hypertriglyceridaemia as a result of biochemical and physiological alterations and can increase the
risk of cardiovascular disease and diabetes. Fundamental research on this disease requires validated
animal models. One potential animal model that is rapidly gaining in popularity is zebrafish (Danio
rerio). The use of zebrafish as an animal model conveys several advantages, including high human
genetic homology, transparent embryos and larvae that allow easier visualization. This review
discusses how zebrafish models contribute to the development of metabolic syndrome studies.
Different diseases in the cluster of metabolic syndrome, such as hyperglycaemia, obesity, diabetes,
and hypertriglyceridaemia, have been successfully studied using zebrafish; and the model is
promising for hypertension and cardiovascular metabolic-related diseases due to its genetic similarity
to mammals. Genetic mutation, chemical induction, and dietary alteration are among the tools used to
improve zebrafish models. This field is expanding, and thus, more effective and efficient techniques
are currently developed to fulfill the increasing demand for thorough investigations.

原著

NASH病態モデルマウスの血中アミノ酸組成変動及びバイオマーカーの探査........417–428
飯田経香1)・倉貫早智1)・山元理香2)・太田雅規3)・内田雅也4)・太田雅規2)・市村真祐子5)・
常山幸一5)・正木孝幸6)・清家正隆7)・中村 強2)
1) 神奈川県立保健福祉大学保健福祉学部栄養学科，2) 福岡女子大学大学院人間環境科学研究科
博士後期課程人間環境科学専攻栄養健康科学領域，3) 弘前大学農学生命科学部食料資源学科，
4) 有明工業高等専門学校創造工学科，5) 徳島大学大学院医歯薬学研究部疾患病理学分野，
6) 大分大学医学部内分泌代謝膠原病腎臓内科，7) 大分大学医学部消化器内科

NASHから肝硬変への血中アミノ酸組成の変動は明確にはなっていない。本研究ではNASH
病態モデルとされるSTAMマウスを用い、肝疾患の進展ならびに血清中遊離アミノ酸組成比
を評価し、さらにバイオマーカーを探索することを目的とした。すなわち、生後2日目の雄性
C57BL/6Jマウスにストレプトゾトンを接種して薬機能を低下させ、4週齢より高脂肪食を投
与してSTAMマウスを作製した。STAMマウスは6、8、10、12および16週齢にて経時的に脱血
屠宰し、血清生化学検査、血清中遊離アミノ酸分析及び肝臓組織学的検査（HE染色、Azan染
色）を行い、病態の進展を経時的に評価した。なお、正常値は8週齢の正常雄性C57BL/6Jマウ
スの値とした。その結果、各週齢のSTAMマウスにおける血清AST、ALT、TCHO、GLUは正

78
常値に比べ、高値を示した。フィッシャー比は8週齢から12週齢まで上昇する傾向にあり、次いで16週齢では低下することが認められた。さらに、肝臓組織学検査の結果、6週齢で肝脂肪化、8週齢でNASH発症が認められ、10週齢以降で線維化が進展し、16週齢では発症例も認められた。さらに、血清アミロイドA蛋白がNASHの炎症マーカーとして有用であることが明らかとなった。以上の結果から、STAMマウスはアミノ酸代謝異常を示し、短期間で病態が進展するモデルであり、アミノ酸代謝を予防／治療を目指した薬理効果の検討ならびにスクリーニング系として有用であることが期待された。

CT撮影装置を用いた雄ウサギ（日本白色種）の体表面積及び体積の計測：ニュージーランドホワイト種（雄）との比較 ...429–434

伊藤 格1)・川部美史2)・長瀬孝彦3)・遠藤克己1)・三好雅史3)・宮原和郎3)

1)株式会社日本バイオリサーチセンター, 2)岐阜大学応用生物科学部附属動物病院, 3)帯広畜産大学動物医療センター

神経細胞特異的Mafb遺伝子欠損は、GH/IGF-I axisの異常を伴う

神経細胞特異的Mafb遺伝子欠損は、GH/IGF-I axisの異常を伴う..435–442

Sayda Maimaiti1,5)・越田隆介2)・小島正美1)・Kaushalya Kulathunga1,3)・

大石久史4)・高橋 智1)

1)筑波大学医学医療系解剖学発生学研究室, 2)筑波大学医学医療系解剖学・神経科学研究室, 3)筑波大学ヒューマンバイオロジー学位プログラム, 4)名古屋市立大学医学研究科病態モデル医学分野, 5)沖縄科学技術大学院大学

開始障害を引き起こす..435–442

ネコ

実験動物ニュース Vol. 68 No. 4
ウサギにおける三種混合麻酔薬の麻酔効果とアチパメゾールによる拮抗作用 ... 443–452
桐原由美子 1)・武智眞由美 1)・黒崎 薫 1)・松尾裕之 1)・桝谷尚世 1)・齊藤洋司 2)
1) 島根大学研究・学術情報機構総合科学研究支援センター実験動物部門
2) 島根大学医学部麻酔科学講座
メドトミジン、ミダゾラム、プロトファノールを混合した三種混合麻酔薬（MMB）は、近年マウス、ラットを中心に実験動物の麻酔薬として使用されている。しかし、ウサギでの報告例は少なく適切な投与量も明らかではない。本研究では MMB の麻酔効果について、従来からウサギの麻酔薬として汎用されているケタミンとキシリジンとの混合麻酔薬（KX）と比較検討を行った。また、ウサギでの MMB 麻酔後のアチパメゾール（ATI）投与による拮抗作用を、投与経路の違いにより検討した。MMB は KX と比較し、正向反射消失時間、外科麻酔開始時間は有意に遅かったが、外科麻酔時間および麻酔からの回復時間は有意差は認められなかった。MMB 投与 30 分後の ATI 投与による麻酔からの回復時間は、静脈内投与が筋肉内投与より有意に早かった。MMB は KX と同等の麻酔効果を示し、アチパメゾールで麻酔から容易に回復出来ることから、ウサギにおいても有用な麻酔薬である。

Osthole improves therapy for osteoporosis through increasing autophagy of mesenchymal stem cells.. 453–463
Xuedan ZHEN 1–3), Yang YU 1–3), Binyi SHAO 1–3), Ning GAN 1–3), Liang CHEN 1–3)
and Deqin YANG 1–3)
1) Department of Endodontics, Stomatological Hospital of Chongqing Medical University, No. 426 Songshi Bei Road, Yubei, 401147 Chongqing, China, 2) Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, No. 426 Songshi Bei Road, Yubei, 401147 Chongqing, China, 3) Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, No. 426 Songshi Bei Road, Yubei, 401147 Chongqing, China
Osteoporosis is a common skeletal disorder resulting in elevated fracture risk. Improvement of osteogenic differentiation is thought to be the top priority in osteoporosis treatment projects. Significant characteristics of bone marrow mesenchymal stem cells (BMMSCs), especially attractive ability to differentiate into osteoblasts, have made them alternatives for osteoporosis treatment. However, therapeutic effect with BMMSCs remains to be improved. Here, osthole, a bioactive simple coumarin derivative extracted from many medicinal plants, was introduced to pre-stimulate BMMSCs and then applied in osteoporosis therapy. The results showed that osthole-treated-BMMSCs (OBMMSCs) brought a better outcome than BMMSCs alone in estrogen deficiency-induced osteoporosis model. And elevated autophagy level was suggested to be the underlying mechanism of the ability of osthole to promote osteoblast differentiation, which is indicated by the upregulation of protein and mRNA expression level of autophagy-associated genes, Beclin1 and LC3. We concluded from these experiments that OBMMSCs are more effective than BMMSCs in osteoporosis treatment maybe through upregulation level of autophagy level induced by osthole.
Slc:Hartley系モルモットは高率に重複後大静脈を具有する…………………………465–470
中村鉄平1)・法村美幸3)・濱見嘉奈子3)・市居修2)・Yaser Hosny Ali Elewa2,4)

1)一般財団法人日本食品分析センター千歳研究所生化学部科学課, 2)北海道大学大学院獣医学部基礎獣医学科学講座解剖学教室, 3)一般財団法人日本食品分析センター千歳研究所安全性試験課, 4)Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University,

後大静脈の形成は複雑であり、発生、退縮及び吻合が関連する。正常な哺乳動物においては、後大静脈は腹大動脈の右側を走行するが、伴侶動物及びヒトにおいて重複後大静脈と呼ばれ発生異常が起こる。本研究では、Slc:Hartley系モルモットが無症状の重複後大静脈を高率に具有することを発見した。その発生率は雄で30%，雌で24%であり、性差は認められなかった。Saadら（2012）の基準に従った場合、モルモットの重複後大静脈は2種の変異に分類される。主要な変異は腸骨間静脈を伴わないcomplete duplicationであり、低頻度な変異はincomplete duplicationであった。Complete duplicationにおいては、左後大静脈は左腸骨静脈から連続し左腎静脈に合流した。左腎静脈は右側に向かって走行し右後大静脈に合流した。Incomplete duplicationにおいては、左後大静脈は腎静脈より尾側、正常例よりも頭側で右後大静脈に合流したが、腎臓周りの血管走行は正常であった。重複後大静脈は体重及び腎臓重量に影響を与えなかった。以上のSlc:Hartley系モルモットは腸骨間静脈を伴わない重複後大静脈を具有するが無症状であり、伴侶動物及びヒトの重複後大静脈の新規かつ有用な動物モデルであると結論した。

超免疫不全動物であるNOGとNSGマウスにおける生物学的性状の比較…………471–482
永谷真理子1)・小寺努2)・鈴木大介2)・伊倉佐織2)・福永八千代2)・金光弘幸2)・中村大地2)・望月雅裕2)・花見正幸3)・田村一利1)・笠原健一郎2)

1)株式会社ボゾリサーチセンター御殿場研究所, 2)株式会社ボゾリサーチセンターつくば研究所, 3)一般財団法人ふくしま医療機器産業推進機構ふくしま医療機器開発支援センター

超免疫不全マウスであるNOD.Cg-Prkdcsid Il2rgtm1Sug/ShiJic（NOG）とNOD.Cg-Prkdcsid Il2rgtm1Wjl/SzJ（NSG）マウスについて、11週齢までの背景データおよびHeLa細胞の皮下移植における腫瘍形成に対する感受性を比較した。体重は、NSGマウスに比べNOGマウスの方が低値を示した。これらの動物での特徴として良く知られている末梢血中のリンパ球数の著減と組織学的なリンパ系組織の低形成に関しては、両系統間で差はなかった。胸腺における異所性分泌腺も腫瘍が、系統差を示すことなくしばしばみられた。さらに、延髄および脊髄では軽微な海綿状変化が両系統で同様にみられた。この変化の雌での発生率は、NOGマウスでNSGマウスに比べやや高かった。副腎では、産仔子非操作マウスで加齢に伴い出現する被膜下細胞の過形成が、NOGマウスに比べNSGマウスで早期かつ高い頻度で発生した。一方、異種細胞の移植による腫瘍形成に対する感受性を比較するために、HeLa細胞の1×10^5から1×10^6個を雌マウスの背部皮下に移植し、その16週間後に観察した結果、腫瘍の発育と腫瘍体積について両系統間に明らかな差はみられなかった。以上のことから、NOGとNSGマウスの間には明らかな生物学的性状の違いは明らかとなった。
老齢マウスに存在するTh17様自己細胞反応性T細胞の特徴.................................483–490
植松崇之・藤田智子・小林憲忠
北里大学メディカルセンター研究部門バイオメディカルラボラトリー
インターロイキン17産生ヘルパーT細胞（Th17）は、T細胞の新しいCD4陽性サブセットとして注目を集めている。標的細胞からの炎症性サイトカインの放出を促すことによって、様々な自己免疫疾患の原因となることが報告されている。しかし、Th17を介した自己免疫疾患発症に関するほとんどの研究は、若齢動物に由来する実験的自己免疫疾患モデルに焦点を当てて解析されており、老化などの生理的要因を加味した研究は非常に少ない。本研究では、老齢マウス由来の同種同系混合リンパ球培養（sMLC）で樹立された自己細胞反応性T細胞を分析し、Th17との類似性を検討した。その結果、老齢マウスの末梢リンパ節中には、sMLCによって増幅されるIL-17産生自己細胞反応性CD4陽性T細胞が存在することが確認された。また、これらの細胞は、細胞表面にいくつかの幹細胞マーカーおよび免疫抑制受容体PD-1を発現していたため、典型的なTh17とは異なるTh17様細胞である可能性が示唆された。さらに、RT-PCRによる解析の結果、Th17様細胞はIl17a、Il17f、Il23r、RorcおよびTdt mRNAを発現していたが、Rag1またはRag2 mRNAは発現していなかった。このことから、Th17様細胞は老齢マウスにおける自己免疫応答に関与する可能性が示唆された。

母体レチノイン酸関連オーファン受容体γtの上昇は、ポリイノシン-ポリシチジル酸の流産誘導効果を高める......................................491–497
當銘幸貴・佐々木哲也・高橋 智・武井陽介
1) 筑波大学医学医療系解剖学神経科学研究室、2) 筑波大学院人間総合科学研究科感性認知脳科学専攻、3) 筑波大学医学医療系解剖学発生学研究室
ヘルパーT細胞17（Th17）は母体免疫活性化(maternal immune activation; MIA)に関与し様々な問題に重要な役割を果たすことが示唆されている。MIA媒介性流産におけるTh17細胞の役割について検討するため、筆者らはTh17細胞のマスターレギュレーターであるレチノイン酸関連オーファン受容体γt（retinoic acid receptor-related orphan receptor gamma-t; RORγt）を過剰発現する遺伝子変異マウス（RORγt Tgマウス）の解析を行う。RORγt Tgマウスは血清中のインターロイキン17A（IL-17A）の恒常的上昇と、胎盤組織における細胞接着因子Eカドヘリリンの発現減少を示した。ウイルスRNAを模倣した合成二本鎖RNAポリイソシンポリシチジル酸(polyinosinic-polycytidylic acid; poly(IC))投与後の流産数は野生型マウスに比べRORγt Tgマウスにおいて高かった。これらの結果は、過剰なTh17活性が免疫応答性を変化させ、妊娠中の流産率を増加させることを示唆している。
胚葉を可視化するバイオシストロニック・レポーター・ノックインマウスの作製499–509

鈴木 Welch Ⅱ・Tra Thi Huong Dinh Ⅰ・大徳陽子 Ⅰ・谷本陽子 Ⅰ・加藤花名子 Ⅰ・
浅見拓哉 Ⅱ・依馬正次 Ⅱ・村田知弥 Ⅰ・水野聖哉 Ⅰ・杉山文博 Ⅰ

Ⅰ筑波大学医学部医療 Systems 医学研究センター、生命科学動物資源センター。
Ⅱ筑波大学大学院総合科学研究所科学システム医学専攻。
Ⅲ滋賀医科大学動物生命科学センター幹細胞・ヒト疾患モデル研究分野

原腸胚は胚発生の中で最も動的な時期であり、三胚葉への細胞分化が生じる。しかし、原腸胚で発現する遺伝子の機能は完全には理解されていない。その原因として、原腸胚における三胚葉形成の評価は技術的に容易ではないことが挙げられる。この問題を解決するため、我々は各胚葉を可視化する種類の新規バイオシストロニック・レポーター・ノックインマウスの作製を試みた。まず、CRISPR/Cas9 を用いて、P2A-Peptide 配列と融合された蛍光タンパク質遺伝子 EGFP, tdTomato, TagBFP をマウス受精卵の Sox17 遺伝子（中胚葉マーカー）、Otx2 遺伝子（外胚葉マーカー）、T 遺伝子（中胚葉マーカー）の終止コドン直前にそれぞれ挿入させた。結果、Sox17-P2A-EGFP 系統、Otx2-P2A-tdTomato 系統、T-P2A-TagBFP 系統のファウンドマウスが得られた。次に、全系統においてホモ接合型ノックインマウスを作製し、形態学的な異常が見られず胚発育まで可能であることを確認した。胎児 6.5 日〜 8.5 日のノックインマウス原腸胚を用いてレポータータンパク質を観察実験領域で観察したところ、遺伝子サルミナルは胚葉特異的な発現様式で検出された。さらに胎児 7.5 日胚においてレポーターと標的マーカータンパク質の胚内局在を蛍光免疫染色にて解析したところ、発現部位は重複していることが確認された。以上の結果から、本研究で作製された Sox17-P2A-EGFP 系統、Otx2-P2A-tdTomato 系統、T-P2A-TagBFP 系統は各胚葉を可視化するマウスとして原腸胚の遺伝子機能解析に有用であることが示された。

老化促進モデルマウス（SAMP8）における自律神経系機能の早期老化に関する報告 ... 511–517

近本明俊・関澤信一・板内易夫・桑原正徳
東京大学大学院農学生命科学研究科農畜医衛生学研究室

老化促進モデルマウス（SAM）は、早期に老化兆候を示す絶夜系マウスとして確立されてきた。中でも、SAM prone-8（SAMP8）系統は、早期に学習障害および免疫機能低下などの異常を示すことが知られている。しかしながら、SAMP8における自律神経系機能に及ぼす加齢の影響に関しては明らかにされていない。本研究は、自律神経系の老化関連研究における SAMP8 の有用性を明らかにすることを目的とした。実験には、20 週齢および 40 週齢の SAMP8、同週齢の通常老化を示す対照系統（SAMP8）の雄を用いた。テレメトリー法を用いて無麻酔・無拘束下で記録した心電図から心拍変動の周波数解析を行い、自律神経系機能の評価を行った。自律神経系から生体機能の指標として、心拍数、体温及び活動量についても同時に関係を検討した。20 週齢において、SAMP8 と SAMP1 の両群に自律神経系機能および生体機能指標に違いは認められなかった。SAMP1 は、同系統の 20 週齢と比較して加齢による有意な変化は認められなかった一方で、SAMP8 は 40 週齢において副交感神経系機能の低下、活動量の減少および体温の上昇が認められた。以上より SAMP8 は、通常老化を示す対照系統と比較して、早期に自律神経系における老化機能変化を示し、本研究における老化関連研究に有用であることが示唆された。
Hairless-knockout piglets generated using the clustered regularly interspaced short palindromic repeat/Cas-9 exhibit abnormalities in the skin and thymus.. 519–529

Qing-Shan GAO1), Mei-Fu XUAN1,2), Zhao-Bo LUO1,2), Hyo-Jin PAEK2), Jin-Dan KANG1,2) and Xi-Jun YIN1,2)

1) Department of Animal Science, Agricultural College, Yanbian University, No. 977 Gongyuan Street, Yanji City, Jilin 133002, P.R. China, 2) JiLin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, No. 977 Gongyuan Street, Yanji City, Jilin 133002, P.R. China

The nuclear receptor corepressor Hairless (HR) interacts with nuclear receptors and controls expression of specific target genes involved in hair morphogenesis and hair follicle cycling. Patients with HR gene mutations exhibit atrichia, and in rare cases, immunodeficiency. Pigs with HR gene mutations may provide a useful model for developing therapeutic strategies because pigs are highly similar to humans in terms of anatomy, genetics, and physiology. The present study aimed to knockout the HR gene in pigs using the clustered regularly interspaced short palindromic repeat (CRISPR) system and to investigate the molecular and structural alterations in the skin and thymus. We introduced a biallelic mutation into the HR gene in porcine fetal fibroblasts and generated nine piglets via somatic cell nuclear transfer. These piglets exhibited a lack of hair on the eyelids, abnormalities in the thymus and peripheral blood, and altered expression of several signaling factors regulated by HR. Our results indicate that introduction of the biallelic mutation successfully knocked out the HR gene, resulting in several molecular and structural changes in the skin and thymus. These pigs will provide a useful model for studying human hair disorders associated with HR gene mutations and the underlying molecular mechanisms.

16S rRNAクローンライブラリー法に基づいた実験動物および野生のスンクスの消化管内微生物叢の比較 ..531–539

篠原明男 1) ・野原 諒 1,3) ・近藤優太 1) ・城ヶ原貴通 1,4) ・名倉（加藤）悟郎 1)
伊澤雅子 2) ・越本知大 1)

1) 宮崎大学フロンティア科学実験総合センター, 2) 琉球大学理学部,
3) 現所属：WdB 株式会社エウレカ社, 4) 現所属: 沖縄大学法経学部

スンクスは食虫性の実験動物として生命科学研究において重要な役割を担ってきた。スンクスの特徴として、その消化管構造がシンプルなことが挙げられる。消化管全長が体サイズに比べて短く、盲腸や前胃といった発酵機能を持たず、大腸が極めて短い。これらの特徴はスンクスがヒトやマウスとは異なる栄養生理学的特性を有していることを示唆しているが、消化管内微生物叢については知見が少ない。また、実験動物のスンクスの消化管内微生物叢の多様性に影響を与えた可能性も考えられる。そこで本研究では、実験動物のスンクスと野外捕獲した野生スンクスの小腸および大腸内の消化管内微生物叢を16S rRNAクローンライブラリー法を用いて比較した。合計759クローン（実験動物=大腸=176, 実験動物=小腸=174, 野生=大腸=195, 野生=小腸=214）の塩基配列を得て多様性を比較した結果、スンクスの消化管内微生物叢はフィルミクシス門の乳酸菌が主構成群で、バクテリオディス門の細菌は検出されなかった。また、実験動物のスンクスにおいては小腸と大腸の部位間で微生物叢構成に違いが検出されたが、野生スンクスでは検出されなかった。さらに、消化管内微生物叢の多様性指標は実験動物よりも野生動物の方が高い値を示した。これらはスンクスが消化管内におい酵発酵を利用していること、実験動物化が消化管内微生物叢を変化させたことを示唆している。
Oral supplementation of L-glutathione prevents ultraviolet B-induced melanogenesis and oxidative stress in BALB/c mice ... 541–548

Tava Shelan NAGAPAN, Wenna Naillance LIM, Dayang Fredalina BASRI and Ahmad Rohi GHAZALI

Programme of Biomedical Science, Centre of Health & Applied Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia

Dietary antioxidant supplements such as L-glutathione have gained considerable attention in dermatology and cosmeceutical fields. L-glutathione possesses antiaging, antimelanogenic, antioxidant, and anticancer properties. This study aimed to investigate the inhibitory effects of L-glutathione on melanogenesis activity and oxidative stress in ultraviolet B (UVB)-irradiated BALB/c mice. Eighteen female BALB/c mice were randomly divided into 3 groups: a control group (n=6), a group without UVB irradiation and L-glutathione administration; a UVB irradiated group (n=6), a group irradiated with a UVB dose of 250 mJ/cm² for 3 min; and a treatment group (n=6), a group irradiated with UVB and treated with 100 mg/kg of L-glutathione by oral gavage. Treatment was given for 14 days, and UVB irradiation was given on days 9, 11, and 13. Oral L-glutathione significantly (P<0.05) reduced lipid peroxidation and elevated superoxide dismutase activity and glutathione level. L-glutathione also inhibited melanin content and tyrosinase activity significantly (P<0.05) as compared with the UVB-irradiated group. Histopathological examination also showed that L-glutathione reduced the deposition of melanin pigment in the basal layer of the epidermis as compared with that in UVB-irradiated mice. All in all, the present study demonstrated that L-glutathione has the potential to be developed as a photoprotection agent against UVB-induced oxidative stress and melanogenesis.

Astragaloside IV reduces cardiomyocyte apoptosis in a murine model of coxsackievirus B3-induced viral myocarditis .. 549–558

Tianlong LIU(1), Fan YANG(2), Jing LIU(1), Mingjie ZHANG(3), Jianjun SUN(1), Yunfeng XIAO(3), Zhibin XIAO(3), Haiyan NIU(2), Ruilian MA(3), Yi WANG(1), Xiaolei LIU(3) and Yu DONG(1)

1)Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Huimin District, 010059 Hohhot, P.R. China, 2)Department of Service Center, Health committee of Inner Mongolia Autonomous Region, No. 63 Xinhua Street, Xincheng District, 010055 Hohhot, P.R. China, 3)Department of Pharmacology, Inner Mongolia Medical University, Jincheng Development Zone, 010059 Hohhot, P.R. China

Astragaloside IV reduces cardiomyocyte apoptosis in a murine model of coxsackievirus B3-induced viral myocarditis (VM). It has been reported that Astragaloside IV (AST-IV) from Astragalus membranaceus could inhibit apoptosis under a variety of pathological conditions in vivo or in vitro. However, the functional roles of AST-IV in CVB3-induced VM still remain unknown. Here, we found that AST-IV significantly enhanced survival for CVB3-induced mice. AST-IV protected the mice against CVB3-induced virus myocarditis characterized by the increased body weight, decreased serum level of creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH), suppressed expression of Ifn-γ, Il-6 in heart, enhanced systolic and diastolic function of left ventricle. At the pathological level, AST-IV ameliorated the mice against CVB3-induced myocardial damage and myocardial fibrosis. In vitro, the results from flow cytometry showed that AST-IV significantly suppressed CVB3-induced cardiomyocytes apoptosis, which also were verified in vivo. Moreover, an increased...
Emodin reactivated autophagy and alleviated inflammatory lung injury in mice with lethal endotoxemia

Yan DONG(1), Li ZHANG(2), Yu JIANG(3), Jie DAI(4), Ling TANG(1) and Gang LIU(5)

1) Department of Neurology, University-Town Hospital of Chongqing Medical University, 55 Middle Road, University City, Shapingba District, Chongqing 401331, China, 2) Department of Pathophysiology, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, China, 3) Department of Respiratory, University-Town Hospital of Chongqing Medical University, 55 Middle Road, University City, Shapingba District, Chongqing 401331, China, 4) Hospital of Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan District, Chongqing 402160, China, 5) Department of Emergency, University-Town Hospital of Chongqing Medical University, 55 Middle Road, University City, Shapingba District, Chongqing 401331, China

An uncontrolled inflammation induced critical health problems with serious morbidity and death, which namely acute lung injury (ALI). Recently researchs have found the anti-inflammatory effects of emodin. Here, we investigated the potential effects of emodin on a mouse model with a lethal dose of the potential mechanisms and lipopolysaccharide (LPS)-induced inflammatory lung injury in mice. The pulmonary histological abnormalities, the Evans blue’s leakage, the myeloperoxidase (MPO) activity, the grades of TNF-α, IL-6, nitric oxide (NO), lactic acid (LA) in lung tissues were determined 18 h post exposure of LPS. Based on the expression of LC3-II with BECN1 was determined using Western blotting. Besides, the LPS-exposed mice for survival rate was monitored. The results indicated that intervention with emodin was important for mitigating LPS-induced pulmonary histological change and LPS-induced leakage of Evans blue, which were associated with suppressed elevation of MPO activity and inhibited up-regulation of TNF-α, IL-6, NO with LA in lung tissues. Moreover, intervention with emodin enhanced the survival rate of LPS-exposed mice. Finally, therapy with emodin increased the LC3 and BECN1 in lungs of LPS-exposed mice. Treatment with 3-MA (the autophagy inhibitor) reversed the beneficial effects of emodin. In conclusion, emodin might provide pharmacological benefits in LPS-induced inflammatory lung injury, and the mechanisms might be related to the restoration of autophagy.

Minimum Environmental Enrichment はマウスの移植腫瘍細胞に対する
抗腫瘍免疫を活性化するのに有効である

高井大策(1)・安部 晴子(2)・田中 聡(1)・小村 清一郎(1)

1)公益財団法人環境科学技術研究所生物影響研究部, 2) 株式会社ジェー エー シー

環境エンリッチメントに関する研究は、神経系やストレス、運動の分野で進んでいる。最近、エンリッチされた環境での動物の増殖が発がんや寿命に影響を与えることが示されている。しかしながら、環境エンリッチメントの抗腫瘍効果に関する研究は、実験手法が複雑であるため再現が難しい。そこで、環境エンリッチメントを用いた抗腫瘍研究には、より単純な実験系が必要となる。本研究では、通常はマウスシェルターとして使用されるマウススケールを1つだけ設置した Minimum Environmental Enrichment を提案する。この実験系は再現が容易である
だけでなく、移植腫瘍の増殖を有意に抑制することができる。ナチュラルキラー細胞の活性化
は、Minimum Environmental Enrichment後の腫瘍に対する免疫に関与することが示された。マ
ウスにおける移植腫瘍細胞に対する Minimum Environmental Enrichmentは抗腫瘍免疫を活性化
するのに有効なので、我々はこれがあなた環境エンリッチメントを用いた抗腫瘍研究を促進するのに
有用であろうと考えている。
維持会員（五十音順）（92社）

（令和元年8月31日現在）

会 員 名	〒	住 所
(株) HHI	135-8710	東京都江東区豊洲3-1-1
(株) アイセイ	594-1151	大阪府和泉市唐国町1-6-1
(株) アイテクノ	391-0004	長野県茅野市城山10-10
旭化成ファーマ（株）	410-2321	静岡県伊豆の国市三福632-1
味の素（株）	210-8681	神奈川県川崎市川崎区鈴木町1-1
あすか製薬（株）	213-8522	神奈川県川崎市高津区下作延5-36-1
アステラス製薬（株）	305-8585	茨城県つくば市御幸が丘21
(株) アドミール	164-0003	東京都中野区東中野4-27-37
(株) アニマルケア	160-0022	東京都新宿区新宿5-18-14 新宿北西ビル7F
(株) アニメックス	183-0031	東京都府中市府中町3-17-4
EPトレーディング（株）	162-0825	東京都新宿区神楽坂4-8
(株) イナリサーチ	399-4501	長野県伊那市西箕輪2148-188
エーザイ（株）	300-2635	茨城県つくば市東光台5-1-3
(株) LSIメディエンス	314-0255	茨城県神栖市砂山14-1
(株) 大塚製薬工場	772-8601	徳島県鳴門市撫養町立岩字赤原115
小野薬品工業（株）	913-0032	福井県坂井市三川町山岸50-10
小原医科産業（株）	165-0022	東京都中野区江古田4-28-16
オリエンタル酵母工業（株）	174-8505	東京都板橋区小豆沢3-6-10
花王（株）	321-3497	栃木県芳賀郡東茨城町赤羽2606
科研製薬（株）	426-8646	静岡県藤枝市源助301
鹿島建設（株）	107-8348	東京都港区赤坂6-5-11
北山グループ（株）	396-0025	長野県伊那市荒井3052-1
キッセイ製品工業（株）	399-8304	長野県安曇野市穂高栄原4365-1
九動（株）	841-0075	佐賀県鳥栖市立石町憩楽883-1
共立製薬（株）	300-1252	茨城県つくば市高見原2-9-22
協和発酵キリン（株） 富士リサーチパーク	411-0943	静岡県駿東郡長泉町下土砂1188
(有) 菊生運送	287-0224	千葉県成田市新田280-1
クミアイ化学工業（株）	439-0031	静岡県菊川市加茂3360
(株) クレハ	169-8503	東京都新宿区百人町3-26-2
(株) ケー・エー・シー	604-8423	京都府京都市中京区西/京西月光町40
KMバイオロジクス（株）	869-1298	熊本県菊池市旭川辻3134-1
興和（株）	189-0022	東京都文京区山王野口町2-17-43
三協ラボサービス（株）	132-0023	東京都江戸川区西一之江2-13-16
参天製薬（株）	630-0101	奈良県生駒市高山町8916-16
(株) 三和化学研究所	511-0406	三重県いなべ市北勢町塚崎363
(株) ジェー・エー・シー	153-0043	東京都目黒区東山1-2-7 第44興和ビル3階
シオノギテクノアドバンスリサーチ（株）	520-3423	滋賀県甲賀市甲賀町五反田1405
(公財) 実験動物中央研究所	210-0821	神奈川県川崎市川崎区殿町3-25-12
清水建設（株）	104-0031	東京都中央区京橋2-16-1 8階
会 員 名	〒	住 所
----------	----	-------
昭和セラミックス (株)	486-0934	愛知県春日井市長塚町1-1-9
(有) 新東洋製作所	334-0073	埼玉県川口市赤井2-13-22
(株) 新日本科学安全性研究所	891-1394	鹿児島県鹿児島市宮之浦町2438番地
住友化学 (株)	554-8558	大阪府大阪市此花区春日出中3-1-98
(株) 精研	542-0081	大阪府大阪市中央区南船堀2-1-3
清和産業 (株)	132-0033	東京都江戸川区東小松川4-57-7
ゼリア新薬工業 (株)	360-0111	埼玉県熊谷市押切字沼上2512-1
全国農業協同組合連合会飼料畜産中央研究所	300-4204	茨城県つくば市作谷1708-2
第一三共 (株)	134-8630	東京都江戸川区北葛西1-16-13
大正製薬 (株)	331-9530	埼玉県さいたま市北区吉野町1-403
ダイサム (株)	102-8175	東京都千代田区富士見2-15-10
武田薬品工業 (株)	251-0012	神奈川県藤沢市村岡東二丁目26番地1
田辺三菱製薬 (株)	227-0033	神奈川県横浜市青葉区鶴泉志田町1000番地
(株) 中外医科学研究所	247-8530	神奈川県鎌倉市根岸200
中外製薬 (株)	412-8513	静岡県御殿場市駅前1-135
千代田テクノエース (株)	221-0022	神奈川県横浜市神奈川区守屋町3-13
(株) ソーラ	100-0031	東京都中央区京橋2-5-12 東京ビル
帝人ファーマ (株)	191-8512	東京都日野市旭が丘4-3-2
(一財) 動物繁殖研究所	300-0134	茨城県茨城県すみがうら市深谷1103
東洋熟工業 (株)	103-0420	東京都中央区京橋2-5-12 東京ビル
トーアエイヨー (株)	960-0280	福島県福島市飯坂町湯野字田中1
トキワ科学器械 (株)	110-0005	東京都台東区上野5-11-1
(株) 夏目製作所	113-8551	東京都文京区湯島2-18-6
(株) 日本医科学動物資料研究所	179-0074	東京都練馬区春日町4-32-25
(合) 日本医学広告社	102-0071	東京都千代田区富士見2-12-8
日本エスエルシー (株)	431-1103	静岡県浜松市御茶東町3371-8
日本化薬 (株)	115-8588	東京都北区志茂3-31-12
日本クレア (株)	153-8533	東京都目黒区東山2-1-2
日本実験動物器材協議会	153-8533	東京都目黒区東山2-1-2 日本クレア (株) 内
(公社) 日本実験動物協会	101-0051	東京都中央区神田神保町3-2-5 丸沼ロイヤルビル502号室
日本実験動物協同組合	101-0032	東京都中央区岩本町2-8-10 神田永谷マンション602
日本新薬 (株)	601-8550	京都府京都市南区吉祥院西ノ庄門口町14
(一財) 日本生物科学研究所	198-0024	東京都青梅市新町9-2221-1
日本たばこ産業 (株)	569-1125	大阪府枚方市紫町1-1
日本たばこ産業 (株) たばこ中央研究所	227-8512	神奈川県横浜市青葉区梅が丘6-2
日本チャールスリバー (株)	222-0033	神奈川県横浜市港北区新横浜3-17-6
日本農薬工業 (株)	300-2615	茨城県つくば市田倉5246
日本農薬 (株) 総合研究所	586-0094	大阪府河内長野市小山田町345番地
(株) ハクバッテック・ライフサイエンス・ ソリューションズ	180-0002	武蔵野市吉祥寺東町2-38-2
バニーグループ 日本事務所	370-0074	群馬県高崎市下小鳥町290-1
ハムリー (株)	306-0101	茨城県古河市尾崎2638-2
（一財）阪大微生物病研究会

（株）ボスリサーチセンター

三浦工業（株）

（株）明治

Meiji Seika ファルマ（株）横浜研究所

持田製薬（株）

（株）ヤクルト本社

八洲環境エンジニアリング（株）

ライオン（株）

レッテンマイヤージャパン（株）

（株）レナテック
広告掲載一覧

会社名	筆者名
日本クレア株式会社	実験動物等企業広告
オリエンタル酵母工業株式会社	実験動物等企業広告
北山ラベス株式会社	実験動物等企業広告
株式会社 ケー・エー・シー	実験動物総合受託事業
日本エスエルシー株式会社	飼料
日本エスエルシー株式会社	実験動物
わかもと製薬株式会社	感染症診断キット
清和産業株式会社	ウォッシングシステムズ
株式会社 夏目製作所	気管内噴霧スプレー
株式会社 アニメック	げっ歯類のエンリッチメント
ダイタン株式会社	実験動物飼育ラック
九動株式会社	マウス精子凍結・体外受精システム
ハムリー株式会社	実験動物等企業広告
東京化成工業株式会社	動物透明化試薬
バイオ関連支援サービス

- 広範囲な動物実験関連業務を代行します
 ○ 非GLP試験 ○ 実験動物長期飼育
 ○ 変異型ロドブシンTgウサギ（有毛・白色）
 ○ 各種Tgウサギ作製 ○ 担癌マウス作製
- ポリクローナル抗体作製 ○ 抗体精製
- モノクローナル抗体作製
- 細胞培養・凍結保存
- GMP対応試験
 ○ 発熱性物質試験 ○ 細胞毒性試験
 ○ 急性毒性試験 ○ 抗原性試験 ○ 溶血性試験
- 微生物検査代行（動物・検査セット）
確かな実験データは確実なチェックから・・・

モニライザ®

ELISAによる実験動物の感染症診断キット

モニライザ®IVA（96ウェル）
HVJ, MVH, SDAV, M. pulmonis, Tyzzer菌抗体検査用

モニライザ®HVJ（96ウェル）
HVJ抗体検査用

モニライザ®MHV（96ウェル）
MHV/SDAV抗体検査用

モニライザ®Myco（96ウェル）
M. pulmonis 抗体検査用

モニライザ®Tyzzer（96ウェル）
Tyzzer菌抗体検査用

モニライザ®HANTA（48ウェル）
Hantavirus抗体検査用

特徴
●抗体検出感度に優れ、特異性、再現性が高く、どのような場所でも簡便に検査ができ、in-houseモニタリングに最適です。
●酵素標識物として、プロテインAを使用していますので、同一試薬で、マウス・モルモット・ウサギ・ハムスターの抗体検査ができます。

公益財団法人
実験動物中央研究所
ICLAS モニタリングセンター
〒210-0821 神奈川県川崎市川崎区鶴間町3丁目25番12号
TEL.044-201-8525 FAX.044-201-8526

製造
和光純業株式会社
〒103-8330 東京都中央区日本橋本町二丁目2番2号
TEL.03-3279-0381 FAX.03-3279-1271

2019.3

SeiwaのWashing Systems
http://www.seiwa-sangyo.co.jp

ロータリーワッシャー
RTS-150型 RTS-2200型 RTS-2400型
精密旋轉ノズルで実験室ラボ洗浄

ボトルワッシャー

その他の製品/ラックウォッシャー・バブルリング槽・床敷固定供給装置

洗浄システム及び周辺機器メーカー
清和産業株式会社
〒132-0033 東京都江戸川区東小松川4—57—7
電話：03-3654-4151（代表） FAX：03-3654-4155
KN-34700
気管内噴霧スプレー

気管内にウイルスや薬液を噴霧するときに、使用するスプレーです。

6タイプのスプレー管をご用意
マウス
ラット
モルモット
マーモセット
ウサギ
カニクイサル

ライフサイエンスの未来と共に
NAMIE
Since 1946
http://www.nazme.co.jp

東京本社
〒113-8551 東京都文京区湯島 2-18-6
Tel: 03-3813-3651
Fax: 03-3815-2002

大阪支社
〒567-0005 大阪府茨木市新村 7-7-18
新都バイオテクセンター3F
Tel: 072-646-9311 Fax: 072-646-9300

Bio-Huts
初めてのマウス用検定済みペーパーハット

オートクレープにかけられます。
アクリルアミドを含みません。
汚染物質検査済。
GLP適合原料
2方が開いているので観察がしやすい。
簡単に割れてHalf Hutが2個になる。

お問い合わせご用命は...

製造元：BioServ
www.bio-serv.com

Animec 株式会社 アニメック
〒183-0031 東京都府中市西町3-17-4 Tel: 042-333-7531 Fax: 042-333-0602
URL: http://animec-tokyo.sakura.ne.jp
E-mail: animec@theia.ocn.ne.jp
実験動物飼育ラック アイラックシステム
Novel One Way Air Flow Rearing Equipment 〈iRack System〉

「アイラックシステム」とは、オープンラックの「易操作性」と、IVCのような「安全性」を同時に兼ね備えた実験動物飼育ラックです。

オーブンラック

IVC Individual Ventilation Cage

環境面の向上
安定した一方気流により、アレルギー・感染リスクの低減、実験精度の向上、動物種疾の向上が可能。

操作性の向上
ラック前面に扉などが多く、ケージの操作性や清掃性が向上。

ランニングコスト削減
さらに低排気量（当社比10〜60%）で、外気負荷・搬送負荷を削減。

構造と特長

- ケージ個別換気方式の採用
- 良好な気流による均一な温度分布
- 高度な一方気流の形成
- 床敷交換の削減が可能
- 適齢高母が容易に
- メンテナンスも容易に

【エンジニアリング本部】
東京都新宿区西新宿1-28-2 新宿文化ビル15階 TEL:03-5326-7133
URL: https://www.daidan.co.jp E-mail: tech-info@daidan.co.jp

CARD FERTIUP®マウス精巣凍結保存液 (0.13 / 0.5 / 1.0 mL)
CARD HyperOva®マウス卵巣卵胞卵作製 (0.6 / 1.0 mL)
CARD 0.25M Sucrose (2.0 / 5.0 mL)
CARD MEDIUM®(Kit / Set)
CARD KSOM (2.0 / 5.0 mL)
CARD DAP213 (0.5 / 10 mL)

九動株式会社 マウス生殖工学関連試薬一覧

〒841-0075 佐賀県鳥栖市立石町恵楽883-1
TEL: 0942-82-6519 URL: http://www.kyudo.co.jp/
FAX: 0942-85-3175 Email: web_req@kyudo.co.jp
実験動物の生体電位測定・解析
＜テレメトリーによる無拘束条件下での測定が可能です＞

脳波
眼電図
筋電図
心電図
血圧
体温
などを用いて
薬効を評価！

※1: テレメトリーで記録可能な動物種はカンクイザルおよびコモンマーモセットです。マウスおよびラットは有線での記録となります。詳細はお問い合わせください。動物種、測定系の組み合わせで、記録できる項目が変わります。

ハムリー株式会社
http://www.hamri.co.jp

お問い合わせ	TEL	E-Mail
本社営業所	0280-76-4477	hb@hamri.co.jp
東京営業所	048-650-4477	tb@hamri.co.jp
大阪営業所	06-6306-4477	ob@hamri.co.jp
国際事業部	0280-75-2416	lb@hamri.co.jp
受託事業部	048-650-4477	cb@hamri.co.jp
動物透明化試薬 CUBIC

Tissue-Clearing Reagent CUBIC-L [for Animals]	25mL 4,000円 / 100mL 13,000円 [T3740]
Tissue-Clearing Reagent CUBIC-R+ [for Animals]	25mL 5,500円 / 100mL 16,500円 [T3741]
Tissue-Clearing Reagent CUBIC-B [for Animals]	25mL 4,500円 / 100mL 15,000円 [T3780]
Tissue-Clearing Reagent CUBIC-HL [for Animals]	25mL 4,500円 / 100mL 15,000円 [T3781]
Tissue-Clearing Reagent CUBIC-P [for Animals]	25mL 4,500円 / 100mL 15,000円 [T3782]
Tissue-Clearing Reagent CUBIC-X1 [for Animals]	25mL 4,000円 / 100mL 13,000円 [T3866]
Tissue-Clearing Reagent CUBIC-X2 [for Animals]	25mL 4,000円 / 100mL 13,000円 [T3867]

特長

- **Basic protocol:**
 2種類の試薬に浸すだけでマウス全身、動物各臓器の透明化が可能
 CUBIC-L: 脱脂, 脱色用
 CUBIC-R+: 屈折率調整用
- **Optional protocol:**
 透明化処理の困難であった組織の透明化に適した試薬をご用意
 CUBIC-B: 骨を含む臓器用
 CUBIC-HL: 自家蛍光を低減させる, ヒトなどの高脂肪組織の脱脂用
 CUBIC-P: 適応固定時にマウスに還流させてより効率的な透明化
- **Expansion protocol:**
 動物組織を肥大化させつつ透明化させることができる
 CUBIC-X1: 組織肥大化用
 CUBIC-X2: 肥大化した組織のサイズを維持したまま屈折率調整用
- **蛍光タンパクの蛍光シグナルを保持 (CUBIC-HLを除く)**
- **操作時間のより短縮**
- **光シート顕微鏡 (LSFM) や共焦点レーザー顕微鏡 (CLSM) により細胞解像度でのイメージングが可能**

マウス全身透明化

全身透明化

全身透明化とヨウ化プロビシウム (P1) による染色

マウス臓器透明化

全脳透明化

全脳透明化と検染色, 免疫組織染色

本製品は東京大学の上田泰己教授らによって開発され、理化学研究所のライセンスを受けて製品化したものです。