An effective method for computing Grothendieck point residue mappings

Shinichi Tajima
Graduate School of Science and Technology, Niigata University, 8050, Ikarashi 2-no-cho, Nishi-ku Niigata, Japan

Katsusuke Nabeshima
Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Minamijosanjima-cho 2-1, Tokushima, Japan

Abstract

Grothendieck point residue is considered in the context of computational complex analysis. A new effective method is proposed for computing Grothendieck point residues mappings and residues. Basic ideas of our approach are the use of Grothendieck local duality and a transformation law for local cohomology classes. A new tool is devised for efficiency to solve the extended ideal membership problems in local rings. The resulting algorithms are described with an example to illustrate them. An extension of the proposed method to parametric cases is also discussed as an application.

Key words: Grothendieck local residues mapping, algebraic local cohomology, transformation law

1991 MSC: 32A27, 32C36, 13P10, 14B15

1 Introduction

The theory of Grothendieck residue and duality is a cornerstone of algebraic geometry and complex analysis. Griffiths and Harris [1978], Grothendieck [1957].

* This work has been partly supported by JSPS Grant-in-Aid for Scientific Research (C) (Nos 18K03214, 18K03320).

Email addresses: tajima@emeritus.niigata-u.ac.jp (Shinichi Tajima), nabeshima@tokushima-u.ac.jp (Katsusuke Nabeshima).
It has been used and applied in diverse problems of several different fields of mathematics (Baum and Bott, 1972; Bykov et al., 1991; Cardinal and Mourrain, 1996; Dickenstein and Sessa, 1991; Griffiths, 1976; Lehmann, 1991; O’Brien, 1973; Perotti, 1998; Suwa, 2005). In the global situation, methods for computing the total sum of Grothendieck residues have been extensively studied and applied by several authors (Bykov et al., 1991; Cattani et al., 1996; Kytmanov, 1988; Yushakov, 1984). The concept of Grothendieck local residue together with the local duality theory also play quite important roles in complex analysis, especially in singularity theory (Brasselet et al., 2009; Cherveny, 2018; Corrêa et al., 2016; Klehn, 2002; O’Brien, 1975; Suwa, 1988). Computing Grothendieck local residues is therefore of fundamental importance. However, since the problem is local in nature, it is difficult in general to compute Grothendieck local residues (O’Brien, 1977). In fact, a direct use of the classical transformation law described in (Hartshorne, 1966) only gives algorithms which lack efficiency. Compared to the global situation, despite the importance, much less work has been done on algorithmic aspects of computing Grothendieck local residues (Elkadi and Mourrain, 2007; Mourrain, 1997; Ohara and Tajima, 2019ab; Tajima and Nakamura, 2005b). Grothendieck local residues with parameters are useful in the study of singularity theory, for example, deformations of singularity and unfoldings of holomorphic foliations (Kulikov, 1998; Saito, 1983; Varchenko, 1986). However, to the best of our knowledge, existing algorithm of computing Grothendieck local residues are not designed to be able to treat parametric cases.

In this paper, we consider methods for computing Grothendieck point residues from the point of view of complex analysis and singularity theory. We propose a new effective method for computing Grothendieck point residues mappings and residues, which can be extended to treat parametric cases.

Let $X \subseteq \mathbb{C}^n$ be an open neighborhood of the origin $O \in \mathbb{C}^n$ and let $f_1(z), f_2(z), \ldots, f_n(z)$ be n holomorphic functions defined on X, where $z = (z_1, z_2, \ldots, z_n) \in X$. Assume that their common locus in X is the origin O: $\{ z \in X \mid f_1(z) = f_2(z) = \cdots = f_n(z) = 0 \} = \{ O \}$.

Then, for a given germ $h(z)$ of holomorphic function at O, the Grothendieck point residue at the origin O, denoted by

$$\text{res}_{\{O\}} \left(\frac{h(z)dz}{f_1(z)f_2(z)\cdots f_n(z)} \right),$$

of the differential form $\frac{h(z)dz}{f_1(z)f_2(z)\cdots f_n(z)}$ can be expressed, or defined, as
the integral
\[\left(\frac{1}{2\pi \sqrt{-1}} \right)^n \int \cdots \int_{\gamma} \frac{h(z)dz}{f_1(z)f_2(z) \cdots f_n(z)}, \]
where \(dz = dz_1 \wedge dz_2 \wedge \cdots \wedge dz_n \), and where \(\gamma_\epsilon \) is a real \(n \)-dimensional cycle:
\[\gamma_\epsilon = \{ z \in X \mid |f_1(z)| = |f_2(z)| = \cdots = |f_n(z)| = \epsilon \}, \]
with \(0 < \epsilon \ll 1 \). (See for instance, [Baum and Bott, 1972; Griffiths and Harris, 1978; Tong, 1973]).

Let
\[h(z) \longrightarrow \text{res}_{O} \left(\frac{h(z)dz}{f_1(z)f_2(z) \cdots f_n(z)} \right) \]
be the Grothendieck point residue mapping that assigns to a holomorphic function \(h(z) \) the value of the Grothendieck point residue. We show that, based on the concept of local cohomology, the use of Grothendieck local duality and a transformation law for local cohomology classes given by J. Lipman ([Lipman, 1984]) allows us to design an effective method for computing Grothendieck local residue mappings and another one for computing Grothendieck local residues. Note that the classical transformation law on Grothendieck residue is of no avail for computing Grothendieck local residue mappings. Since we compute Grothendieck local residue mappings, our method is applicable when the holomorphic function \(h(z) \) in the numerator is computable, that is the case when the coefficients of the Taylor expansion of \(h(z) \) is computable. This is an advantage of our approach. We also show that the proposed method can be extended to treat parametric cases. This is another advantage of our approach.

In Section 2, we recall the transformation law for local cohomology classes and Grothendieck local duality. In Section 3, we fix our notation and we briefly recall our basic tool, an algorithm for computing Grothendieck local duality. We devise, in the context of exact computation, a new tool which plays a key role in the resulting algorithm. In Section 4, we describe the resulting algorithm for computing Grothendieck point residue mappings and the algorithm for computing Grothendieck point residues. In Section 5, as an application, we generalize the proposed method to treat parametric cases and we show, by using an example, an algorithm for computing Grothendieck point residues associated to a \(\mu \)-constant deformation of quasi homogeneous isolated hypersurface singularities.
2 Local analytic residues

The concept of Grothendieck point residue was introduced by A. Grothendieck in terms of derived categories and local cohomology. In this section, we briefly recall some basics on transformation law for local cohomology classes and Grothendieck local duality.

Let $X \subset \mathbb{C}^n$ be an open neighborhood of the origin $O \in \mathbb{C}^n$. Let \mathcal{O}_X be the sheaf on X of holomorphic functions, and Ω^n_X the sheaf of holomorphic n-forms. Let $\mathcal{H}^n_{\{O\}}(\mathcal{O}_X)$ (resp. $\mathcal{H}^n_{\{O\}}(\Omega^n_X)$) denote the local cohomology supported at O of \mathcal{O}_X (resp. Ω^n_X).

Then, $\mathcal{O}_{X,O}$, the stalk at O of the sheaf \mathcal{O}_X, and the local cohomology $\mathcal{H}^n_{\{O\}}(\Omega^n_X)$ are mutually dual as locally convex topological vector spaces (Bănică and Stănășilă, 1974). The duality is given by the point residue pairing:

$$\text{res}_{\{O\}}(\ast, \ast): \mathcal{O}_{X,O} \times \mathcal{H}^n_{\{O\}}(\Omega^n_X) \longrightarrow \mathbb{C}$$

Let $F = [f_1(z), f_2(z), \ldots, f_n(z)]$ be an n-tuple of n holomorphic functions defined on X. Assume that their common locus $\{z \in X \mid f_1(z) = f_2(z) = \cdots = f_n(z) = 0\}$ in X is the origin O. Let I_F denote the ideal in $\mathcal{O}_{X,O}$ generated by $f_1(z), f_2(z), \ldots, f_n(z)$. Let ω_F denote a local cohomology class $\omega_F = \left[\frac{dz}{f_1(z)f_2(z)\cdots f_n(z)} \right]$ in $\mathcal{H}^n_{\{O\}}(\Omega^n_X)$, where $dz = dz_1 \wedge dz_2 \wedge \cdots \wedge dz_n$, and $[\]$ stands for Grothendieck symbol (Hartshorne, 1966; Grothendieck, 1967). Residue theory says that, for $h(z)$ in $\mathcal{O}_{X,O}$, one has

$$\text{res}_{\{O\}} \left(\frac{h(z)dz}{f_1(z)f_2(z)\cdots f_n(z)} \right) = \text{res}_{\{O\}}(h(z), \omega_F).$$

2.1 Transformation law

Since $V(I_F) \cap X = \{O\}$, there exists, for each $i = 1, 2, \ldots, n$, a positive integer m_i such that $z_i^{m_i} \in I_F$. There exists an n-tuple of holomorphic functions $a_{i,1}(z), a_{i,2}(z), \ldots, a_{i,n}(z)$ such that

$$z_i^{m_i} = a_{i,1}(z)f_1(z) + a_{i,2}(z)f_2(z) + \cdots + a_{i,n}(z)f_n(z), \quad i = 1, 2, \ldots, n.$$

Set $A(z) = \det(a_{i,j}(z))_{1 \leq i, j \leq n}$.

4
We have the following key lemma (Lipman, 1984).

Lemma 1 (Transformation law for local cohomology classes). In $\mathcal{H}^n_{\{O\}}(\Omega^n_X)$, the following formula holds.

$$\omega_F = \begin{bmatrix} A(z)dz \\ z_1^{m_1}z_2^{m_2} \cdots z_n^{m_n} \end{bmatrix}.$$

For the proof of the result above, we refer the reader to (Kunz, 2009; Lipman, 1984). Note that the formula above implies the classical transformation law

$$\text{res}_{\{O\}}\left(\frac{h(z)dz}{f_1(z)f_2(z) \cdots f_n(z)} \right) = \text{res}_{\{O\}}\left(\frac{h(z)A(z)dz}{z_1^{m_1}z_2^{m_2} \cdots z_n^{m_n}} \right)$$

for point residues described in (Hartshorne, 1966). See also (Baum and Bott, 1972; Boyer and Hickel, 1997; Griffiths and Harris, 1978; Kytmanov, 1988).

2.2 Grothendieck local duality

We define W_F to be the set of local cohomology classes in $\mathcal{H}^n_{\{O\}}(\Omega^n_X)$ that are killed by I_F:

$$W_F = \{ \omega \in \mathcal{H}^n_{\{O\}}(\Omega^n_X) \mid f_1(z)\omega = f_2(z)\omega = \cdots = f_n(z)\omega = 0 \}.$$

Then, according to Grothendieck local duality, the pairing

$$\text{res}_{\{O\}}(\ast, \ast) : \mathcal{O}_{X,O}/I_F \times W_F \rightarrow \mathbb{C}$$

induced by the residue mapping is non-degenerate (Altman and Kleiman, 1970; Grothendieck, 1957; Hartshorne, 1966; Lipman, 2002).

Let \succ^{-1} be a local term ordering on the local ring $\mathcal{O}_{X,O}$ and let $\{z^\alpha \mid \alpha \in \Lambda_F\}$ denote the monomial basis of the quotient space $\mathcal{O}_{X,O}/I_F$ with respect to the local term ordering \succ^{-1}, where $\Lambda_F \subset \mathbb{N}^n$ is the set of exponents α of basis monomials z^α.

Let $\{\omega_\alpha \in W_F \mid \alpha \in \Lambda_F\}$ denote the dual basis of $\{z^\alpha \mid \alpha \in \Lambda_F\}$ with respect to the Grothendieck point residue. Then, we have

(i) $\mathcal{O}_{X,O}/I_F \cong \text{Span}_\mathbb{C}\{z^\alpha \mid \alpha \in \Lambda_F\}$,

(ii) $W_F = \text{Span}_\mathbb{C}\{\omega_\alpha \mid \alpha \in \Lambda_F\}$,
(iii) \(\text{res}_{(O)}(z^\alpha, \omega_\beta) = \begin{cases}
1, & \alpha = \beta, \\
0, & \alpha \neq \beta, \quad \alpha, \beta \in \Lambda_F.
\end{cases} \)

2.3 Residue mapping

Since \(\omega_F \) satisfies \(f_1(z)\omega_F = f_2(z)\omega_F = \cdots = f_n(z)\omega_F = 0 \), the local cohomology class \(\omega_F \) is in \(W_F \). Therefore \(\omega_F \) can be expressed as a linear combination of the basis \(\{ \omega_\alpha \mid \alpha \in \Lambda_F \} \).

Assume that, for the moment, we have the following expression:

\[
\omega_F = \sum_{\alpha \in \Lambda_F} b_\alpha \omega_\alpha, \quad b_\alpha \in \mathbb{C}.
\]

Now let

\[
\text{NF}_{\prec -1}(h)(z) = \sum_{\alpha \in \Lambda_F} h_\alpha z^\alpha, \quad h_\alpha \in \mathbb{C}
\]

be the normal form of the given holomorphic function \(h(z) \). Then, we have the following.

Theorem 2.

\[
\text{res}_{(O)} \left(\frac{h(z)dz}{f_1(z)f_2(z)\cdots f_n(z)} \right) = \sum_{\alpha \in \Lambda_F} h_\alpha b_\alpha
\]

Proof. Since \(h - \text{NF}_{\prec -1}(h) \in I_F \), we have

\[
\text{res}_{(O)}(h(z), \omega_F) = \text{res}_{(O)}(\text{NF}_{\prec -1}(h)(z), \omega_F).
\]

Therefore,

\[
\text{res}_{(O)} \left(\frac{h(z)dz}{f_1(z)f_2(z)\cdots f_n(z)} \right) = \text{res}_{(O)} \left(\sum_{\alpha \in \Lambda_F} h_\alpha z^\alpha, \sum_{\beta \in \Lambda_F} b_\beta \omega_\beta \right),
\]

which is equal to

\[
\sum_{\alpha, \beta \in \Lambda_F} h_\alpha b_\beta \text{res}_{(O)}(z^\alpha, \omega_\beta) = \sum_{\alpha \in \Lambda_F} h_\alpha b_\alpha.
\]

This completes the proof.
Let us consider a method for computing Grothendieck point residues in the context of symbolic computation. We start by recalling some basics on an algorithm for computing Grothendieck local duality given in (Tajima and Nakamura, 2009; Tajima et al., 2009).

Let $K = \mathbb{Q}$ be the field of rational numbers and let $z = (z_1, z_2, \ldots, z_n) \in \mathbb{C}^n$. Let $H^n_{(O)}(K[z])$ denote the algebraic local cohomology defined to be

$$H^n_{(O)}(K[z]) = \lim_{k \to \infty} \text{Ext}^n_{K[z]}(K[z]/m^k, \Omega^n_X),$$

where m is the maximal ideal $m = (z_1, z_2, \ldots, z_n)$ in $K[z] = K[z_1, z_2, \ldots, z_n]$.

We adopt the notation used in (Nabeshima and Tajima, 2015a,b, 2016a,b) to handle local cohomology classes. For instance, a polynomial $\sum \lambda c_\lambda \xi^\lambda$ in $K[\xi] = K[\xi_1, \xi_2, \ldots, \xi_n]$ represents the local cohomology class of the form

$$\sum_{\lambda=(\ell_1, \ell_2, \ldots, \ell_n)} c_\lambda \left[\frac{1}{z_1^{\ell_1+1} z_2^{\ell_2+1} \cdots z_n^{\ell_n+1}} \right].$$

Note that a multiplication on ξ^β by z^α is

$$z^\alpha \cdot \xi^\beta = \begin{cases} \xi^{\beta+\alpha}, & \beta \geq \alpha. \\ 0, & \text{otherwise}. \end{cases}$$

Let \succ be a term ordering on $K[\xi]$. For a local cohomology class $\psi = c_\alpha \xi^\alpha + \sum_{\xi^\gamma > \xi^\alpha} c_\gamma \xi^\gamma$, we call ξ^α the head monomial of ψ, and $\alpha \in \mathbb{N}^n$ the head exponent of ψ.

Let $F = [f_1(z), f_2(z), \ldots, f_n(z)]$ be a list of n polynomials f_1, \ldots, f_n in $K[z]$. We also assume as in the previous section that there exists an open neighborhood X of the origin O such that their common locus is the origin: $\{z \in X \mid f_1(z) = f_2(z) = \cdots = f_n(z) = 0\} = \{O\}$.

We set

$$H_F = \{ \psi \in H^n_{(O)}(K[z]) \mid f_1(z) \cdot \psi = f_2(z) \cdot \psi = \cdots = f_n(z) \cdot \psi = 0 \}.$$

3.1 Algorithm for computing Grothendieck local duality

In (Nabeshima and Tajima, 2017; Tajima et al., 2009), an algorithm for computing bases of H_F is introduced. Let Ψ_F denote an output of the algorithm. Then,

$$W_F = \text{Span}_\mathbb{C}\{\psi dz \mid \psi \in \Psi_F\}$$
holds. Furthermore, the algorithm computes Grothendieck local duality with respect to the Grothendieck local residue pairing. Here we recall some basic properties of the algorithm.

An output of the algorithm, say $Ψ_F$, a basis of the vector space H_F, has the following form:

$$Ψ_F = \left\{ \psi_α \mid ψ_α = ξ^α + \sum_{ξ^α > ξ^γ} c_γ ξ^γ, \quad α ∈ Λ_F \right\},$$

where $Λ_F ⊂ \mathbb{N}^n$ is the set of the head exponents of local cohomology classes in $Ψ_F$.

Let L_F denote the set of lower exponents of local cohomology classes in $Ψ_F$:

$$L_F = \left\{ γ ∈ \mathbb{N}^n \mid ∃ ψ_α = ξ^α + \sum_{ξ^α > ξ^γ} c_γ ξ^γ ∈ Ψ_F \text{ such that } c_γ ≠ 0 \right\}.$$

Set $E_F = Λ_F ∪ L_F$ and $T_F = \{ ξ_λ \mid λ ∈ E_F \}$. Now let $ℓ_{F,i} = \max\{ ℓ \mid ξ^ℓ_ℓ ∈ T_F \}$. Then Grothendieck local duality implies the following.

Lemma 3. Set $m_i = ℓ_{F,i} + 1$. Then $z_i^{m_i} ∈ I_F$ holds, where I_F is the ideal in the local ring $K\{z\}$ generated by $f_1(z), f_2(z), \ldots, f_n(z)$.

Proof. Since $z_i^{m_i} * ψ_α = 0$ and $ψ_α ∈ Ψ_F$ hold, we have $z_i^{m_i} * ψ = 0$ for $ψ ∈ H_F$. It follows from the Grothendieck local duality that $z_i^{m_i}$ is in I_F. \square

Now let us consider the set of monomials M_F in $K\{z\}$ defined to be $M_F = \{ z^α \mid α ∈ Λ_F \}$. Let $>^{-1}$ denote the local term ordering on $K\{z\}$ defined as the inverse ordering of $>$. Then, M_F constitutes a monomial basis of the quotient $K\{z\}/I_F$ with respect to the local term ordering $>^{-1}$. Furthermore, we have the following result (Tajima and Nakamura, 2005a, 2009).

Theorem 4. Let $Ψ_F, M_F$ be as above. Then, $Ψ_F$ is the dual basis of the basis M_F with respect to Grothendieck local residue pairing. That is, for $z^α ∈ M_F$ and for $ψ_β ∈ Ψ_F$,

$$\text{res}_{(O)}(z^α, ψ_β dz) = \begin{cases} 1, & α = β, \\ 0, & α ≠ β, \end{cases}$$

holds.

Sketch of the proof. Since the algorithm outputs a reduced basis of H_F, we have $Λ_F ∩ L_F = \emptyset$, which implies the result. \square
3.2 A key tool

Let \(m_i \) be an integer such that \(z_i^{m_i} \) is in the ideal \(I_F = (f_1, f_2, \ldots, f_n) \) in the local ring. Then there exist germs \(a_{i,1}(z), a_{i,2}(z), \ldots, a_{i,n}(z) \) of holomorphic functions such that

\[
z_i^{m_i} = a_{i,1}(z)f_1(z) + a_{i,2}(z)f_2(z) + \cdots + a_{i,n}(z)f_n(z), \quad i = 1, 2, \ldots, n.
\]

Theory of symbolic computation asserts that such \(n \)-tuple of holomorphic functions can be obtained by computing syzygies in the local ring \(K\{z\} \). Whereas, since the cost of computation of syzygies in local rings is high, a direct use of the classical algorithm of computing syzygy is not appropriate in actual computations. In fact, it is difficult to obtain these holomorphic functions. In previous papers [Nabeshima and Tajima, 2016b], the authors of the present paper have proposed a new effective method to overcome this type of difficulty.

We adopt the proposed method mentioned above and devise a new, much more efficient algorithm by improving the previous algorithm presented in [Nabeshima and Tajima, 2015b, 2016b]. We start by recalling the main idea given in [Nabeshima and Tajima, 2016b]. Let \(J_F = (f_1(z), f_2(z), \ldots, f_n(z)) \) denote the ideal in the polynomial ring \(K[z] \) generated by \(f_1(z), f_2(z), \ldots, f_n(z) \). Let \(J_{F,O} \) be the primary component of \(J_F \) whose associated prime is the maximal ideal \(\mathfrak{m} = \langle z_1, z_2, \ldots, z_n \rangle \), and \(G_Q \) a Gröbner basis of the ideal quotient \(Q = J_F : J_{F,O} \subset K[z] \). Then there is in \(G_Q \) a polynomial, say \(q(z) \), such that \(q(O) \neq 0 \).

Now let \(r(z) \in J_{F,O} \). Then, since \(q(z)r(z) \in J_F \), there exists an \(n \)-tuple of polynomials \(p_1(z), p_2(z), \ldots, p_n(z) \) in \(K[z] \), such that

\[
q(z)r(z) = p_1(z)f_1(z) + p_2(z)f_2(z) + \cdots + p_n(z)f_n(z).
\]

Since, \(q(O) \neq 0 \), we have a following expression in the local ring \(K\{z\} : \)

\[
r(z) = \frac{p_1(z)}{q(z)}f_1(z) + \frac{p_2(z)}{q(z)}f_2(z) + \cdots + \frac{p_n(z)}{q(z)}f_n(z).
\]

Since \(I_F = K\{z\} \otimes J_{F,O} \) and \(z_i^{m_i} \in I_F \), \(z_i^{m_i} \in J_{F,O} \) holds. Therefore, the argument above can be applied to compute germs \(a_{i,1}(z), a_{i,2}(z), \ldots, a_{i,n}(z) \) of holomorphic functions. Note also that, since \(J_{F,O} = \{p(z) \in K[z] \mid p(z) * \psi_{\alpha} = 0, \ \psi_{\alpha} \in \Psi_F\} \), the primary ideal \(J_{F,O} \) can be computed by using \(\Psi_F \).

Let \(G_F = \{g_1, g_2, \ldots, g_p\} \) be a Gröbner basis of \(J_F \). Let \(R_F \) be a list of relations between \(g_j \) and \(F = [f_1, f_2, \ldots, f_n] : \)

\[
g_j = r_{1,j}f_1 + r_{2,j}f_2 + \cdots + r_{n,j}f_n,
\]

where \(r_{1,j}, r_{2,j}, \ldots, r_{n,j} \) are elements of the field. The Gröbner basis \(G_F \) can be computed by using the proposed method.
where $r_{i,j} \in K[z]$, $i = 1, 2, \ldots, n$, and $j = 1, 2, \ldots, \nu$. Let S_F be a Gröbner basis of the module of syzygies among F:

$$s_1f_1 + s_2f_2 + \cdots + s_nf_n = 0,$$

where $s_i \in K[z]$, $i = 1, 2, \ldots, n$. Let q be a polynomial in G_Q such that $q(O) \neq 0$.

Now we are ready to present a new tool.

Algorithm 1. localexpression

Input: G_F, R_F, S_F, q, r.

Output: $[p_1, p_2, \ldots, p_n]$ such that $q(z)r(z) = p_1(z)f_1(z) + p_2(z)f_2(z) + \cdots + p_n(z)f_n(z)$.

BEGIN

step 1: divide qr by the Gröbner basis $G_F = \{g_1, g_2, \ldots, g_\nu\}$:

$$qr = e_1g_1 + e_2g_2 + \cdots + e_\nu g_\nu;$$

step 2: rewrite the relation above by using R_F:

$$qr = \left(\sum_j r_{j,1}e_j\right)f_1 + \left(\sum_j r_{j,2}e_j\right)f_2 + \cdots + \left(\sum_j r_{j,\nu}e_j\right)f_\nu;$$

step 3: simplify the expression above by using S_F:

$$q(z)r(z) = p_1(z)f_1(z) + p_2(z)f_2(z) + \cdots + p_n(z)f_n(z);$$

return $[p_1, p_2, \ldots, p_n]$;

END

Example 5 (E_{12} singularity). Let $f(x, y) = x^3 + y^7 + xy^5$ and let $F = [\frac{\partial f}{\partial x}(x, y), \frac{\partial f}{\partial y}(x, y)]$. Note that $f(x, y)$ is a semi quasi-homogeneous function with respect to the weight vector $(7, 3)$. Let \succ be the weighted degree lexicographical ordering on $K[\xi, \eta]$ with respect to the weight vector $(7, 3)$, where ξ, η correspond to x, y.

Then, $\dim_K(H_F) = 12$, the Milnor number at the origin $(0, 0)$ of the curve $\{(x, y) \in \mathbb{C}^2 \mid f(x, y) = 0\}$. The algorithm for computing Grothendieck local duality, mentioned in this section, outputs a basis Ψ_F that consists of the following 12 local cohomology classes:

$$1, \eta, \xi, \eta^2, \xi\eta, \eta^3, \xi\eta^2, \eta^4, \eta^5 - \frac{1}{4}\xi^2, \xi\eta^3, \xi^2 - \frac{5}{7}\eta^6 + \frac{5}{21}\xi^2\eta, \xi\eta^5 - \frac{5}{7}\eta^7 - \frac{1}{3}\xi^3 + \frac{5}{21}\xi^2\eta^2.$$

Note for instance that the local cohomology class $\begin{bmatrix} 1 \\ xy^6 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} 1 \\ x^3y \end{bmatrix}$ repre-
sented by $\psi_{(0,5)} = \eta^5 - \frac{1}{3} \xi^2$ above acts on a holomorphic function $h(x, y) = \sum_{(i, j)} c_{(i, j)} x^i y^j$ by

$$\text{res}_O(h(x, y), \psi_{(0,5)} dx \wedge dy) = c_{(0,5)} - \frac{1}{3} c_{(2,0)}.$$

The output implies that

$$\Lambda_F = \{(0, 0), (0, 1), (0, 2), (1, 0), (0, 3), (1, 1), (0, 4), (1, 2), (0, 5), (1, 3), (1, 4), (1, 5)\}$$

and $M_F = \{x^iy^j \mid (i, j) \in \Lambda_F\}$ is the monomial basis of the quotient space $K\{x, y\}/I_F$ with respect to the local term ordering \succ^{-1} on $K\{x, y\}$, where I_F denote the ideal in $K\{x, y\}$ generated by $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$. Furthermore $W_F = \{\psi dx \wedge dy \mid \psi \in \Psi_F\}$ is the dual basis of the monomial basis M_F with respect to the Grothendieck local residue pairing. Since $\lambda_F = (3, 7)$, we have $x^4, y^8 \in I_F$.

Let J_F be the ideal in $K[x, y]$ generated by the two polynomials $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$. Let $J_{F,O}$ be the primary component of J_F whose associated prime is the maximal ideal $\langle x, y \rangle$. A Gröbner basis of the ideal quotient $J_{F,O} : J_F$ is

$$3125x + 151263, 25y + 147.$$

Set $q(x, y) = 25y + 147$. Then, the algorithm `localexpression` outputs the following:

$$q(x, y)x^4 = (49x^2 + 25/3x^2y - 49/3y^5)\frac{\partial f}{\partial x} + (-5/3xy^2 + 7/3y^4)\frac{\partial f}{\partial y},$$

$$q(x, y)y^8 = 25y^4\frac{\partial f}{\partial x} + (-15x + 21y^2)\frac{\partial f}{\partial y}.$$

4 Algorithms

Let τ_F denote the local cohomology class in H_F defined to be

$$\tau_F = \begin{bmatrix} 1 \\ f_1(z)f_2(z) \cdots f_n(z) \end{bmatrix}.$$

Since $\omega_F = \tau_F dz$, the local cohomology class τ_F is the kernel function of the point residue mapping.

Let

$$q(z)z_i^{m_i} = p_{i,1}(z)f_1(z) + p_{i,2}(z)f_2(z) + \cdots + p_{i,n}(z)f_n(z), \quad i = 1, 2, \ldots, n,$$

and set $\text{Det}(z) = \det(p_{i,j}(z))_{1 \leq i, j \leq n}$.

Let I_M be the ideal in $K[z]$ generated by $z_1^{m_1}, z_2^{m_2}, \ldots, z_n^{m_n}$. Let $u(z) \in K[z]$ be a polynomial such that $u(z)q(z) - 1 \in I_M$.

Since $A(z) = \det(p_{i,j}(z)/q(z))_{1 \leq i,j \leq n}$ is equal to $\frac{1}{q(z)^n}\det(z)$, the transformation law implies the following

$$\tau_F = \begin{bmatrix} u(z)^n\det(z) \\ z_1^{m_1}z_2^{m_2} \cdots z_n^{m_n} \end{bmatrix}.$$

Let $\lambda_F = (\ell_{F,1}, \ell_{F,2}, \ldots, \ell_{F,n})$. Since $m_i = \ell_{F,i} + 1$, the formula above can be rewritten as $\tau_F = u(z)^n\det(z) * \xi^{\lambda_F}$.

Note that, according to an algorithm in [Sato and Suzuki, 2009] discovered by Y. Sato and A. Suzuki, the inverse $u(z)$ of $q(z)$ in $K[z]/I_M$ can be obtained by using Gröbner basis computation.

The following algorithm computes a representation of the local cohomology class τ_F, the kernel function of the point residue mapping.

Algorithm 2. tau

Input: $V = [z_1, z_2, \ldots, z_n], \succ, F = [f_1(z), f_2(z), \ldots, f_n(z)]$.

/* V: a list of variables, \succ: a term order */

Output: $\tau_F = \sum_{\alpha \in \Lambda_F} b_{\alpha} \psi_{\alpha}$.

BEGIN

step 1: compute a basis $\Psi_F = \{\psi_\alpha \mid \alpha \in \Lambda_F\}$ of the space H_F;

/* Λ_F: the set of head terms of Ψ_F */

step 2: compute $\ell_{F,i} = \max\{\ell | \xi^\ell \in T_F\}$ and set $m_i = \ell_{F,i} + 1$, $i = 1, 2, \ldots, n$;

/* $T_F = \{\xi^\lambda | \lambda \in E_F\}$ */

step 3: compute a Gröbner basis of the ideal $J_{F,O} = \{p(z) \in K[z] \mid p(z) * \psi_\alpha = 0, \alpha \in \Lambda_F\}$.

step 4: compute G_F, R_F, S_F;

/* notations are from subsection 3.2 */

step 5: compute a Gröbner basis G_Q of the quotient ideal $Q = J_F : J_{F,O}$ and choose a polynomial $q(z)$ from G_Q such that $q(O) \neq 0$;

step 6: compute

$q(z)z_i^{m_i} = p_{i,1}(z)f_1(z) + p_{i,2}(z)f_2(z) + \cdots + p_{i,n}(z)f_n(z), (i = 1, 2, \ldots, n),$

by using the algorithm **localexpression**;

step 7: compute $\det(z) = \det(p_{i,j}(z))_{1 \leq i,j \leq n}$ and set $ND = NF_{I_M}(\det(z))$, the normal form of $\det(z)$ with respect to I_M;
step 8: compute a Gröbner basis of the ideal in $K[z, u]$ generated by

$$1 - q(z)u, z_1^{m_1}, z_2^{m_2}, \ldots, z_n^{m_n}$$

with respect to an elimination ordering to eliminate u;

step 9: choose a polynomial of degree one with respect to u, of the form $cu + poly(z)$, from the Gröbner basis of step 8 and set

$$\text{Den} = (-c)^n, \text{NU} = NF_{I_M}(poly(z)^n), \text{Num} = NF_{I_M}(ND \times \text{NU});$$

step 10: compute $\psi = \text{Num} \times \xi^{\lambda_F}$ and set $\text{Coeff} = \{c_\alpha \mid \alpha \in \Lambda_F\};$

/* c_α is the coefficient of a term ξ^α of ψ, $\alpha \in \Lambda_F$. */

return $[\Lambda_F, \Psi_F, \text{Coeff}, \text{Den}]$;

END

The return of the algorithm above means

$$\tau_F = \frac{1}{\text{Den}} \sum_{\alpha \in \Lambda_F} c_\alpha \psi_\alpha.$$

Note that, since,

$$\text{res}_O(h(z)\tau_F dz) = \frac{1}{\text{Den}} \sum_{\alpha \in \Lambda_F} b_\alpha |\text{res}_O(h(z)\psi_\alpha dz)$$

holds, the output of the algorithm above completely describes the Grothendieck point residue mapping

$$h(z) \rightarrow \text{res}_O \left(\frac{h(z)dz}{f_1(z)f_2(z) \cdots f_n(z)} \right).$$

Let $\text{Res}_F = \tauau(V, \succ, F)$ be the output of the algorithm τau. The following algorithm residues evaluates the value of Grothendieck point residue.

Algorithm 3. residues

Input: $h \in K[z]$, Res$_F$.

Output: $\text{res}_O(h(z)\tau_F dz)$.

BEGIN

step 1: compute the normal form of h by using Ψ_F, i.e., $NF_{\succ}(h)(z) = \sum_{\alpha \in \Lambda_F} h_\alpha z^\alpha$;

step 2: compute $\text{sum} = \sum_{\alpha \in \Lambda_F} h_\alpha c_\alpha$;

13
return \(\sum\frac{\text{Den}}{\text{Den}}\);
END

Note that \(\text{NF}_\infty(h)\) is computed by the algorithms given in [Tajima and Nakamura, 2009; Tajima et al., 2009]. The algorithm is free from standard bases computation. All the algorithms given in the present paper are implemented in a computer algebra system Risa/Asir (Noro and Takeshima, 1992).

Example 6 (\(E_{12}\) singularity). Let us continue the computation. Since step 1 to step 6 are done, we start from step 7. From

\[
\begin{pmatrix}
p_{1,1} & p_{1,2} \\
p_{2,1} & p_{2,2}
\end{pmatrix} = \begin{pmatrix}
\frac{25}{3}x^2y + 49x^2 & -\frac{5}{3}xy^2 + 7/3y^4 \\
25y^4 & -15x + 21y^2
\end{pmatrix},
\]

we have the determinant

\[
\text{Det} = \left(-125y - 735\right)x^3 + \left(175y^3 + 1029y^2\right)x^2 + \left(125/3y^6 + 245y^5\right)x - 175/3y^8 - 343y^7.
\]

A Gröbner basis of the ideal in \(K[x, y, u]\) generated by \(1 - uq(x, y), x^4, y^8\) with respect to a elimination ordering \(u \succ x, y\) is

\[
\{x^4, y^8, -6103515625y^7 + 35888671875y^6 - 211025390625y^5 + 124082929875y^4 - 7296076265625y^3 + 42900928441875y^2 - 25225745923225y - 218041257467152161u + 1483273860320763\}.
\]

We have

\[
\text{Num} = (6654091109227055694580078125y^7 - 39126055722255087484130859375y^6 + 2300612076486859914406689453125y^5 - 1352759900963536296711333984375y^4 + 795422821766559342466243828125y^3 - 46770861919873689337016345y^2 + 275012668088857293301656112771125y - 1617074488362480884613737943094215)x^3 + (-322085690705603880169365234375y^7 + 189386386134895015395867578125y^6 - 11135919504731830794527701359375y^5 + 65479206667823165071822883993125y^4 - 385017735324400210622318557879575y^3 + 2263904283707473238459233120331901y^2)x^2 + (15590287306624563112338781903125y^7 - 916708936295243110552037590375y^6 + 53902489454160294871245981031405y^5)x - 7546347612358244281974437343967y^7
\]

and \(\text{Den} = (218041257467152161)^2\).

Since \(b_\alpha = \frac{c_\alpha}{\text{Den}}\), we have \(\tau_F = \frac{1}{\text{Den}}(\text{Num} * (\xi^3\eta^7))\).

Therefore,
\[\tau_F = \frac{30517578125}{218041257467152161} - \frac{1220703125}{1483273860320763} + 4 \]
\[\frac{8828125}{10090298369529} \eta^2 = -1953125/68641485507 \eta^2 + 78125/466948881 \eta^4 - 3 \]
\[125/3176523 \eta^5 + 125/21609 \eta^6 - 5/147 \eta^7 - 9765625/1441471195647 \xi + 390625/9 \]
\[80592651 \xi \eta - 15625/66706983 \xi \eta^2 + 125/453789 \xi \eta^3 - 25/3087 \xi \eta^4 + 1/21 \xi \eta^5 + \]
\[3125/9529569 \xi^2 = 125/64827 \xi^2 \eta + 5/441 \xi^2 \eta^2 - 1/63 \xi^3. \]

This yields

\[\tau_F = \sum_{0 \leq i,j \leq 5} b_{i,j} \psi_{i,j}, \]

where

\begin{align*}
 b_{0,0} &= 30517578125/218041257467152161, \\
 b_{0,1} &= -1220703125/1483273860320763, \\
 b_{0,2} &= 48828125/10090298369529, b_{0,3} = -1953125/68641485507, \\
 b_{0,4} &= 78125/466948881, b_{0,5} = -3125/3176523, \\
 b_{1,0} &= -9765625/1441471195647, b_{1,1} = 390625/9805926501, \\
 b_{1,2} &= -15625/66706983, b_{1,3} = 625/453789, b_{1,4} = -25/3087, b_{1,5} = 1/21.
\end{align*}

and

\begin{align*}
 \psi_{0,0} &= 1, \ \psi_{0,1} = \eta, \ \psi_{0,2} = \eta^2, \ \psi_{0,3} = \eta^3, \ \psi_{0,4} = \eta^4, \ \psi_{0,5} = \eta^5 - \frac{1}{3} \xi^2, \\
 \psi_{1,0} &= \xi, \ \psi_{1,1} = \xi \eta, \ \psi_{1,2} = \xi \eta^2, \ \psi_{1,3} = \xi \eta^3, \\
 \psi_{1,4} &= \xi \eta^4 - \frac{5}{7} \eta^6 + \frac{5}{21} \xi^2 \eta, \ \psi_{1,5} = \xi \eta^5 - \frac{5}{7} \eta^7 - \frac{1}{3} \xi^3 + \frac{5}{21} \xi^2 \eta^2.
\end{align*}

Let \(NF_r(h)(x, y) = \sum_{(i, j) \in \Lambda_F} h_{i,j} x^i y^j. \) Then,

\[\text{res}_{(O)}(h(x, y), \tau_F dx \wedge dy) = \sum_{(i, j) \in \Lambda_F} h_{i,j} b_{i,j}. \]

We have for instance,

\[\text{res}_{(O)} \left(\frac{dx \wedge dy}{\frac{\partial f}{\partial x} \frac{\partial f}{\partial y}} \right) = \frac{30517578125}{218041257467152161}. \]

Recall that, as local cohomology class \(\omega_F = \tau_F dx \wedge dy \) is in \(H^2_{\{u,v\}}(\Omega_X^2) \), the cohomology class \(\tau_F \) defines the residue mapping

\[\text{res}_{(O)}(\ast, \tau_F) : \mathcal{O}_{X, O} \rightarrow \mathbb{C}. \]

Therefore, the formula above is valid for germs of holomorphic functions \(h(x, y) \). More precisely, for a germ of holomorphic function \(h(x, y) = \sum_{(i, j)} c_{i,j} x^i y^j \), we have

\[\text{res}_{(O)}(h(x, y), \tau_F dx \wedge dy) = c_{0,0} b_{0,0} + c_{0,1} b_{0,1} + c_{0,2} b_{0,2} + c_{1,0} b_{1,0} + c_{0,3} b_{0,3} + c_{1,1} b_{1,1} + c_{0,4} b_{0,4} + c_{1,2} b_{1,2} + (c_{0,5} - \frac{5}{7} c_{2,0}) b_{0,5} + c_{1,3} b_{1,3} + (c_{1,4} - \frac{5}{7} c_{0,6} + \frac{5}{21} c_{2,1}) b_{1,4} + (c_{1,5} - \frac{5}{7} c_{3,0} - \frac{5}{7} c_{0,7} + \frac{5}{21} c_{2,2}) b_{1,5}. \]
In this section, we consider a μ-constant deformation of a quasi homogeneous singularity, a family of semi-quasi homogeneous isolated hypersurface singularities (Greuel, 1986; Lê and Ramanujam, 1976). We give, as an application of the algorithms presented in the previous section, an algorithm for computing Grothendieck point residues associated to a μ-constant deformation of a quasi homogeneous isolated hypersurface singularity. The keys of the resulting algorithm are the use of parametric local cohomology systems and parametric Gröbner systems (comprehensive Gröbner systems).

Let $w = (w_1, w_2, \ldots, w_n) \in \mathbb{N}^n$ be a weight vector for $z = (z_1, z_2, \ldots, z_n)$. Let $d_w(z^\lambda)$ denote the weighted degree of a monomial $z^\lambda = z_{1}^{\ell_{1}} z_{2}^{\ell_{2}} \cdots z_{n}^{\ell_{n}}$ defined to be

$$d_w(z^\lambda) = \ell_{1} w_{1} + \ell_{2} w_{2} + \cdots + \ell_{n} w_{n}.$$

Definition 7. (1) A non-zero polynomial f_0 is called a weighted homogeneous (or quasi homogeneous) polynomial of type (d, w), if all monomials of f_0 have the same weighted degree d with respect to the weight vector w, that is $f_0 = \sum_{d_w(z^\lambda) = d} c_\lambda z^\lambda$ where $c_\lambda \in K$.

(2) A polynomial $f(z) = f_0(z) + g(z)$ is called a semi weighted homogeneous (or semi quasi homogeneous) polynomial of type (d, w), if

(i) f_0 is weighted homogeneous of type (d, w), and $f_0(z) = 0$ has an isolated singularity at the origin O, and

(ii) $g(z) = \sum_{d_w(z^{\beta_j}) > d} b_j z^{\beta_j}$, where b_j are coefficients.

Let $t = (t_1, t_2, \ldots, t_m)$ denote a set of new indeterminates, and let $T = \{t \mid t \in \mathbb{C}^m\}$. Let

$$f_t(z) = f_0(z) + g(z, t), \quad \text{with} \quad g(z, t) = \sum_{d_w(z^{\beta_j}) > d} t_j z^{\beta_j}$$

be a family of semi weighted homogeneous polynomials in $K(t)[z]$, where $t \in T$ is regarded as a deformation parameter. Then f_t is a μ-constant deformation of f_0.

Set $F = \left[\frac{\partial f}{\partial z_1}, \frac{\partial f}{\partial z_2}, \ldots, \frac{\partial f}{\partial z_n}\right]$. Let I_F denote a family of ideals in $K(t)[z]$ generated by F with the parameter $t \in T$ and let

$$H_F = \left\{\psi \in H_{\{O\}}^n(K(t)[z]) \mid \frac{\partial f}{\partial z_1} \ast \psi = \frac{\partial f}{\partial z_2} \ast \psi = \cdots = \frac{\partial f}{\partial z_n} \ast \psi = 0\right\}.$$
set of leading exponents Λ_F is independent of t and thus so is the corresponding basis monomial set M_F. In our previous papers (Nabeshima and Tajima, \textit{2015d,b}), an algorithm for computing a basis Ψ_F of H_F is given. The algorithm also computes Grothendieck local duality as in the non parametric cases. The other steps, from step 3 to step 10 in the algorithm tau are also executable by using parametric Gröbner systems. The step 1 and step 2 of the algorithm residues are also executable.

Here we give an example of computation.

\textbf{Example 8 (E_{12} singularity)}. Let us consider $f = x^3 + y^7 + txy^5$ ($t \neq 0$).

\textbf{step 1}: A basis Ψ_F of the vector space H_F with respect to a term ordering \succ compatible with the weight $w = (7,3)$ is

$$\{1, \eta, \eta^2, \xi, \eta^3, \xi \eta, \eta^4, \xi \eta^2, \eta^5 - \frac{t}{3} \xi^2, \xi \eta^3, \xi \eta^4 - \frac{5t}{7} \eta^6 + \frac{5t^2}{21} \xi^2 \eta, \\
\xi \eta^5 - \frac{t}{3} \xi^3 - \frac{5t}{7} \eta^7 + \frac{5t^2}{21} \xi^2 \eta^2\}.$$

The set Λ_F is

$$\Lambda_F = \{(0,0), (0,1), (0,2), (1,0), (0,3), (1,1), (0,4), (1,2), (0,5), (1,3), (1,4), (1,5)\}.$$

\textbf{step 2}: $x^4, y^8 \in I_F$.

\textbf{step 5}: $q(x, y) = 147 + 25t^3 y \in J_F : J_{F,O}$.

\textbf{step 6}:

$$\begin{pmatrix}
q(x, y)x^4 \\
q(x, y)y^8
\end{pmatrix} = \begin{pmatrix}
(25/3t^3 y + 49)x^2 - 49/3t y^5, -5/3t^3 y^2 x + 7/3t^2 y^4 \\
25t^2 y^4 \\
-15tx + 21y^2
\end{pmatrix} \left(\frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \right).$$

\textbf{step 7}: $\det(x, y)$ is

$$(-125t^4 y - 735t)x^3 + (175t^3 y^3 + 1029y^2)x^2 + (125/3t^5 y^6 + 245t^2 y^5)x - 175/3t^4 y^8 - 343ty^7.$$

\textbf{step 8}: A Gröbner basis of $\langle x^4, y^8, 1 - q(x, y)u \rangle$ is

$$\{y^8, x^4 - 6103515625t^{21}y^7 + 35888671875t^{18}y^6 - 211025390625t^{15}y^5 + 1240829296875t^{12}y^4 - 7290076265625t^9y^3 + 42900928401875t^6y^2 - 252257459238225t^3y - 218041257467152161u + 1483273860320763\}.$$
step 9: We have

$$\text{Den} = (218041257467152161)^2,$$

$$poly(x,y) = -6103515625t^{21}y^7 + 35888671875t^{18}y^6 - 211025390625t^{15}y^5 + 1$$
$$240829296875t^{12}y^4 - 7296076265625t^9y^3 + 42900928441875t^6y^2 - 252257549238$$
$$225t^3y + 1483273860320763,$$

$$\text{NU} = -72425481460974755859375000t^{21}y^7 + 37262910211671511889648375$$
$$t^{18}y^6 - 1878050674668244199238281250t^{15}y^5 + 920244830587439657626757812$$
$$5t^{12}y^4 - 432883168308331614947628675000t^9y^3 + 19090147722397424219190345$$
$$1875t^6y^2 - 74833379071797902933261531350t^3y + 22001013447108583461324$$
$$8902169,$$

and

$$\text{Num} = (6654091109227055694580078125t^{22}y^7 - 3912605572255087484130859$$
$$375t^{19}y^6 + 230061207646859914406689453125t^{16}y^5 - 13527599009635362967113$$
$$33984375t^{13}y^4 + 7954228217665593424662643828125t^{10}y^3 - 46770861919873689$$
$$337016345709375t^7y^2 + 27501266808885729330165611277112ttty^3 - 16170744883$$
$$62480884613737943094215(t^3 + (-322085690705603880169365234375t^{15}y^7 + 1$$
$$893863861348950815395867578125t^{12}y^6 - 11135919504731830794527701359375$$
$$t^9y^5 + 6547920668782316507182883393125t^6y^4 - 38501773532440021062231855$$
$$7879575t^3y^2 + 2263904283707473238459233120331901y^2)x^2 + (155902873066245$$
$$63112338781903125t^8y^7 - 9167088936295243100052037590375t^6y^5 + 539024829$$
$$45416029487124598103405t^3y^2 - 7546347676235824412819744373443967ty^7.$$

As an output we thus have

$$\tau_F = \sum_{0 \leq i,j \leq 5} b_{i,j}\psi_{i,j},$$

where

$$b_{0,0} = 30517578125t^{22}/218041257467152161,$$
$$b_{0,1} = -1220703125t^{19}/1483273860320763,$$
$$b_{0,2} = 48828125t^{16}/10090298369529, b_{0,3} = -1953125t^{13}/68641485507,$$
$$b_{0,4} = 78125t^{10}/466948891, b_{0,5} = -3125t^7/3176523,$$
$$b_{1,0} = -9765625t^{15}/1441471195647,$$
$$b_{1,1} = 390625t^{12}/9805926501, b_{1,2} = -15625t^9/66706983,$$
$$b_{1,3} = 625t^6/453789, b_{1,4} = -25t^3/3087, b_{1,5} = 1/21.$$

and

$$\psi_{0,0} = 1, \ \psi_{0,1} = \eta, \ \psi_{0,2} = \eta^2, \ \psi_{0,3} = \eta^3, \ \psi_{0,4} = \eta^4, \ \psi_{0,5} = \eta^5 - \frac{t}{3}\xi^2,$$

18
\[\psi_{1,0} = \xi, \quad \psi_{1,1} = \xi \eta, \quad \psi_{1,2} = \xi \eta^2, \quad \psi_{1,3} = \xi \eta^3, \quad \psi_{1,4} = \xi \eta^4 - \frac{5t}{7} \eta^6 + \frac{5t^2}{21} \xi^2 \eta; \]

\[\psi_{1,5} = \xi \eta^5 - \frac{5t}{7} \eta^7 - \frac{t}{3} \xi^3 + \frac{5t^2}{21} \xi^2 \eta^2. \]

We have, for instance,

\[
\text{res}_{\{O\}} \left(\begin{vmatrix} dx \wedge dy \\ \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \end{vmatrix} \right) = \frac{30517578125}{218041257467152161 t^{22}}.
\]

References

Altman, A., Kleiman, S., 1970. Introduction to Grothendieck Duality Theory, Lecture Notes in Math. 146. Springer.

Bănică, C., Stănășilă, O., 1974. Méthodes Algèbriques dans la Théorie Globale des Espaces Complexes. Gauthier-Villars.

Baum, P.F., Bott, R., 1972. Singularities of holomorphic foliations. J. Differential Geometry 7, 279–342.

Boyer, J.Y., Hickel, M., 1997. Une généralisation de la loi de transformation pour les résidus. Bull. Soc. Math. France 125, 315–335.

Brasselet, J.P., Seade, J., Suwa, T., 2009. Vector Fields on Singular Varieties, Lecture Notes in Math. 1987. Springer.

Bykov, V., Kytmanov, A., Lazman, M., Passare, M., 1991. Elimination Methods in Polynomial Computer Algebra, Mathematics and its Applications. Kluwer.

Cardinal, J.P., Mourrain, B., 1996. Algebraic approach of residues and applications, in: The Mathematics of Numerical Analysis, Lectures in Applied Math. 32, AMS. pp. 186–210.

Cattani, E., Dickenstein, A., Sturmfels, B., 1996. Computing multidimensional residues. Progress in Math. 143, 135–164.

Cherveny, L., 2018. Remarks on localizing Futaki-Morita integrals at isolated degenerate zeros. Differential Geom. Appl. 56, 1–12.

Corrêa, M., Rodriguez, P., Soares, M.G., 2016. A Bott-type residue formula on complex orbifolds. Int. Math. Res. Not. IMRN 10, 2889–2911.

Dickenstein, A.E., Sessa, C., 1991. Duality methods for the membership problem. Progress in Math. 94, 86–103.

Elkadi, M., Mourrain, B., 2007. Introduction à la Résolution des Systèmes Polynomiaux. Springer.

Greuel, G.M., 1986. Constant Milnor number implies constant multiplicity for quasi homogeneous singularities. Manuscripta Math. 56, 156–166.

Griffiths, P., 1976. Variations on a theorem of Abel. Invent. Math. 35, 321–390.

Griffiths, P., Harris, J., 1978. Principles of Algebraic Geometry. Wiley Inter-science.
Grothendieck, A., 1957. Théorèmes de dualité pour les faisceaux algébriques cohérents. Séminaire Bourbaki 149.

Grothendieck, A., 1967. Local Cohomology, notes by R. Hartshorne, Lecture Notes in Math., 41. Springer.

Hartshorne, R., 1966. Residues and Duality. Lecture Notes in Math. 20. Springer.

Klehn, O., 2002. Local residues of holomorphic 1-forms on an isolated surface singularity. Manuscripta Math. 109, 93–108.

Kulikov, V.S., 1998. Mixed Hodge Structure and Singularities, Cambridge Tracts in Math. 132. Cambridge Univ. Press.

Kunz, E., 2009. Residues and Duality for Projective Algebraic Varieties. Univ. Lecture Series 47. AMS.

Kytmanov, A.M., 1988. A transformation formula for Grothendieck residues and some of its applications. Siberian Math. J. 169, 495–499.

Lê, D.T., Ramanujam, C.P., 1976. The invariance of Milnor’s number implies the invariance of the topological type. Amer. J. Math. 98, 67–78.

Lehmann, D., 1991. Résidues des sous-variétés invariantes d’un feuilletage singulier. Ann. Inst. Fourier, Grenoble 41, 211–258.

Lipman, J., 1984. Dualizing Sheaves, Differentials and Residues on Algebraic Varieties. Astérisque 117.

Lipman, J., 2002. Lectures on local cohomology and duality. Lecture Notes in Pure and Applied Math. 226, 39–89.

Mourrain, B., 1997. Isolated points, duality and residues. J. Pure and Applied Algebra 117/118, 460–493.

Nabeshima, K., Tajima, S., 2015a. Computing logarithmic vector fields associated with parametric semi-quasihomogeneous hypersurface isolated singularities, in: International Symposium on Symbolic and Algebraic Computation, ACM. pp. 291–298.

Nabeshima, K., Tajima, S., 2015b. Efficient computation of algebraic local cohomology classes and change of ordering for zero-dimensional standard bases, in: International Workshop on Computer Algebra in Scientific Computing 2015, Lecture Notes in Computer Science, 9301, Springer. pp. 334–348.

Nabeshima, K., Tajima, S., 2015c. On the computation of algebraic local cohomology classes associated with semi-quasihomogeneous singularities. Advanced Studies in Pure Mathematics 66, 143–159.

Nabeshima, K., Tajima, S., 2016a. Computing Tjurina stratifications of μ-constant deformations via parametric local cohomology systems. Applicable Algebra in Engineering, Computation and Computing 27, 451–467.

Nabeshima, K., Tajima, S., 2016b. Solving extended ideal membership problems in rings of convergent power series via Gröbner bases, in: International Conference on Mathematical Aspects of Computer and Information Sciences 2016, Lecture Notes in Computer Science, 9582, Springer. pp. 252–267.

Nabeshima, K., Tajima, S., 2017. Algebraic local cohomology with parameters and parametric standard bases for zero-dimensional ideals. Journal of Symbolic Computation 82, 91–122.
Noro, M., Takeshima, T., 1992. Risa/Asir- A computer algebra system, in: International Symposium on Symbolic and Algebraic Computation, ACM. pp. 387–396.

O’Brian, N.R., 1975. Zeros of holomorphic vector fields and the Grothendieck residues. Bull. London Math. Soc. 7, 33–38.

O’Brian, N.R., 1977. Zeros of holomorphic vector fields and Grothendieck duality theory. Trans. AMS. 229, 289–306.

Ohara, K., Tajima, S., 2019a. An algorithm for computing Grothendieck local residues I - shape base case -. Mathematics in Computer Science 1-2, 205–216.

Ohara, K., Tajima, S., 2019b. An algorithm for computing Grothendieck local residues II - general case -. to apper in Mathematics in Computer Science ArXiv:1811.08054.

Perotti, A., 1998. Multidimensional residues and ideal membership. Publ. Mat. 42, 143–152.

Saito, S., 1983. The higher residue pairings for a family of hypersurface singular points, in: Symposia in Pure Math. 40, Part 2, pp. 441–463.

Sato, Y., Suzuki, A., 2009. Computation of inverses in residue class rings of parametric polynomial ideals, in: International Symposium on Symbolic and Algebraic Computation, ACM. pp. 311–315.

Suwa, T., 1988. Indices of Vector Fields and Residues of Singular Holomorphic Foliations. Hermann.

Suwa, T., 2005. Residues of Chern classes on singular varieties. Séminaires et Congrès, Soc. Math. France. 10, 265–285.

Tajima, S., Nakamura, Y., 2005a. Algebraic local cohomology classes attached to quasi-homogeneous hypersurface isolated singularities. Publ. Res. Inst. Math. Sci. 41, 1–10.

Tajima, S., Nakamura, Y., 2005b. Computational aspects of Grothendieck local residues. Séminaires et Congrès, soc. Math. France. 10, 287–305.

Tajima, S., Nakamura, Y., 2009. Annihilating ideals for an algebraic local cohomology class. Journal of Symbolic Computation 44, 435–448.

Tajima, S., Nakamura, Y., Nabeshima, K., 2009. Standard bases and algebraic local cohomology for zero dimensional ideals. Advanced Studies in Pure Mathematics 56, 341–361.

Tong, Y.L., 1973. Integral representation formulae and Grothendieck residue symbol. Amer. J. Math. 95, 904–917.

Varchenko, A.N., 1986. On the local residue and the intersection form on the vanishing cohomology. Math. USSR Izvestiya 26, 31–52.

Yushakov, A.P., 1984. On the computation of the complete sum of residues relative to a polynomial mapping in n. Akad. Nauk. SSSR 275, 817–820.