Lasso type classifiers with a reject option

Marten Wegkamp

Department of Statistics, Florida State University, Tallahassee, FL 32306-4330
e-mail: wegkamp@stat.fsu.edu

Abstract: We consider the problem of binary classification where one can, for a particular cost, choose not to classify an observation. We present a simple proof for the oracle inequality for the excess risk of structural risk minimizers using a lasso type penalty.

AMS 2000 subject classifications: Primary 62C05; secondary 62G05, 62G08.

Keywords and phrases: Bayes classifiers, classification, convex surrogate loss, empirical risk minimization, hinge loss, large margin classifiers, ℓ_1 penalties, local mutual coherence, margin condition, reject option, support vector machines.

Received May 2007.

1. Introduction

This paper discusses structural risk minimization in the setting of classification with a reject option. Binary classification is about classifying observations that take values in an arbitrary feature space \mathcal{X} into one of two classes, labelled -1 or $+1$. A discriminant function $f: \mathcal{X} \to \mathbb{R}$ yields a classifier $\text{sgn}(f(x)) \in \{-1,+1\}$ that represents our guess of the label Y of a future observation X and we err if the margin $y \cdot f(x) < 0$. Since observations x for which the conditional probability

\[\eta(x) = \mathbb{P}\{Y = +1|X = x\} \]

is close to $1/2$ are difficult to classify, we introduce a reject option for classifiers, by allowing for a third decision, \bigcirc (reject), expressing doubt.

We built in the reject option by using a threshold value $0 \leq \tau < 1$ as follows. Given a discriminant function $f: \mathcal{X} \to \mathbb{R}$, we report $\text{sgn}(f(x)) \in \{-1,1\}$ if $|f(x)| > \tau$, but we withhold decision if $|f(x)| \leq \tau$ and report \bigcirc. We assume that the cost of making a wrong decision is 1 and the cost of utilizing the reject option is $d > 0$. The appropriate risk function is then

\[\mathbb{E}\{\ell(Yf(X))\} = \mathbb{P}\{Yf(X) < -\tau\} + d\mathbb{P}\{|Yf(X)| \leq \tau\} \]

*Research is supported in part by NSF grant DMS 0706829
for the discontinuous loss

$$\ell(z) = \begin{cases}
1 & \text{if } z < -\tau, \\
d & \text{if } |z| \leq \tau, \\
0 & \text{otherwise}.
\end{cases} \quad (3)$$

Since we never reject if $d > 1/2$, see [11], we restrict ourselves to the cases $0 \leq d \leq 1/2$. The generalized Bayes discriminant function, minimizing (2), is then

$$f_0(x) = \begin{cases}
-1 & \text{if } \eta(x) < d \\
0 & \text{if } d \leq \eta(x) \leq 1-d \\
+1 & \text{if } \eta(x) > 1-d
\end{cases} \quad (4)$$

with risk

$$\mathbb{E} \left[\min \{ \eta(X), 1-\eta(X), d \} \right],$$

see [9, 13]. The case $(\tau, d) = (0, 1/2)$ reduces to the classical situation without the reject option. We can view d as an upper bound on the conditional probability of misclassification (given X) that is considered tolerable.

The estimators

$$f_\lambda(x) = \sum_{i=1}^{M} \lambda_i f_i(x), \quad \lambda \in \mathbb{R}^M,$$

of $f_0(x)$ that we study in this paper are linear combinations of base functions f_j from a dictionary $F_M = \{f_1, \ldots, f_M\}$. We suggest regularized empirical risk minimization based using convex surrogate loss functions ϕ and a penalty term $p(\lambda) = 2r_n |\lambda|_1$ that is proportional to the ℓ_1-norm $|\lambda|_1$ of the parameter λ. The regularized empirical risk

$$\frac{1}{n} \sum_{i=1}^{n} \phi(Y_i f_\lambda(X_i)) + p(\lambda) \quad (5)$$

is then convex in λ and its minimization can be solved by a (tractable) convex program.

The organization of the paper is as follows. Section 2 presents a general bound on the excess risk of minimizers $\hat{\lambda}$ of the penalized empirical risk (5). We define an oracle target λ^*, that provides an ideal approximation f_{λ^*} of f_0 with possibly many fewer elements f_i of the dictionary F_M, and show under mild assumptions that this oracle target can be recovered by minimization of (5), even if M is larger than n. We advance the use of a novel type of oracle inequality, explored in [8, 6], where the aim is to show that the sum of the excess risk and the penalty term $p(\hat{\lambda} - \lambda^*)$ achieves the optimal balance between the excess risk and a regularization term. This allows us to determine that the oracle can be recovered and gives us information about the ℓ_1-distance between $\hat{\lambda}$ and the oracle vector λ^*. This extends the work of [4, 5, 6] on lasso-type estimators in regression and density estimation problems to empirical risk minimization of
the general criterion [5] in the context of classification with a reject option. We take a different approach than the recent technical report [17]. In particular, we use the concept of mutual coherence, used in [4, 5, 6, 7], which is weaker than the corresponding requirement in [17] and give a different, simple proof of the main oracle inequality. We demonstrate that the choice of the tuning parameter \(r_n \) in the penalty \(p(\lambda) = 2r_n|\lambda| \) is crucial. We prove that the oracle inequality holds on an event where \(\hat{r} \) exceeds a certain random quantity \(\hat{r} \). Then we show that \(\hat{r} \) is highly concentrated around its mean using McDiarmid’s concentration inequality and provide an upper bound for \(\mathbb{E}[\hat{r}] \).

Section 3 applies the results of Section 2 to the specific generalized hinge loss function \(\phi_d \) introduced in [1], extending the work [14] to classification with a reject option. This loss is convex, so that the minimization of (5) is computationally feasible, and at the same time classification calibrated, as the minimizer of \(\mathbb{E}[\phi_d(Yf(X))] \) is the Bayes discriminant \(f_0 \), our parameter of interest.

Finally, the proofs are collected in Section 4.

2. Oracle inequalities for the excess risk

2.1. Preliminaries

The data \((X_1, Y_1), \ldots, (X_n, Y_n)\) consist of independent copies of \((X, Y)\) where \(X\) takes values in an arbitrary measurable space \(\mathcal{X}\) and \(Y \in \{-1, +1\}\). Let \(F_M = \{f_1, \ldots, f_M\}\) be a finite set of functions (dictionary) with \(\|f_j\|_{\infty} \leq C_F\) and we consider discriminant functions

\[
f_\lambda(x) = \sum_{j=1}^{M} \lambda_j f_j(x), \quad \lambda \in \mathbb{R}^M.
\]

We consider a loss function \(\phi : \mathbb{R} \to [0, \infty)\) that is Lipschitz,

\[
|\phi(y) - \phi(y')| \leq C_\phi |y - y'|
\]

with \(C_\phi < \infty\) and based on this loss function, we define the risk functions

\[
R_\phi(\lambda) = \mathbb{E}[\phi(Yf_\lambda(X))] \quad \text{and} \quad \hat{R}_\phi(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \phi(Y_i f_\lambda(X_i)).
\]

We assume that \(f_0\) defined in (4) minimizes the risk \(\mathbb{E}[\phi(Yf(X))]\) over all measurable \(f : \mathcal{X} \to \mathbb{R}\), and we denote its risk by \(R_0\), that is,

\[
R_0 = \inf_{f} \mathbb{E}[\phi(Yf(X))]
\]

We measure the performance of our estimators in terms of the excess risk

\[
\Delta_\phi(\lambda) = R_\phi(\lambda) - R_0.
\]
Based on the penalty

\[p(\lambda) = 2r_n|\lambda|_1 = 2r_n \sum_{i=1}^{M} |\lambda_i| \]

with \(r_n \) specified later in Section 2.4, the penalized empirical risk minimizer \(\hat{\lambda} \) satisfies

\[\hat{R}_\phi(\hat{\lambda}) + p(\hat{\lambda}) \leq \hat{R}_\phi(\lambda) + p(\lambda) \quad \text{for all} \quad \lambda \in \mathbb{R}^M. \] (6)

In particular, (6) ensures that for \(\lambda_0 = (0, \ldots, 0) \),

\[p(\hat{\lambda}) \leq \hat{R}_\phi(\hat{\lambda}) \leq \hat{R}_\phi(\lambda_0) + p(\lambda_0) = \phi(0) \]

which in turn implies \(|\hat{\lambda}|_1 \leq \phi(0)/(2r_n) \). This means that we effectively minimize the penalized empirical risk \(\hat{R}_\phi(\lambda) + p(\lambda) \) over \(\lambda \) in the set

\[\Lambda_n = \{ \lambda \in \mathbb{R}^M : |\lambda|_1 \leq \phi(0)/(2r_n) \}. \]

2.2. Assumptions

We impose two conditions. Given some finite measure \(\mu \) on \(\mathcal{X} \), set

\[< f, g > = \int f(x)g(x) \mu(dx) \quad \text{and} \quad \|f\|^2 = \int f^2(x) \mu(dx). \]

The first condition imposes a link between the distance \(\|f_\lambda - f_0\| \) and excess risk \(\Delta_\phi(\lambda) \):

Condition 1. There exist \(C_{\Delta,\mu} < \infty \) and \(0 \leq \beta < 1 \) such that, for all \(\lambda \in \Lambda_n \),

\[\|f_\lambda - f_0\| \leq C_{\Delta,\mu}\Delta_\phi^\beta(\lambda). \] (7)

In regression and density estimation problems as considered in [4, 5, 6, 7], this condition trivially holds with \(\beta = 1/2 \) and \(C_{\Delta,\mu} = 1 \). This relation is more delicate to establish in classification problems. It depends on the behavior of the conditional probability \(\eta(X) \) near \(d \) and \(1 - d \), see Section 3 below.

Our goal is to estimate \(f_0 \) via linear combinations \(f_\lambda(x) \) and to evaluate performance in terms of the excess risk \(\Delta_\phi(\lambda) \). For any \(I = \{i_1, \ldots, i_m\} \subseteq \{1, \ldots, M\} \), we define the approximating parameter space

\[\Lambda(I) = \{ \lambda \in \mathbb{R}^M : \lambda_i = 0 \quad \text{for all} \quad i \notin I \} \]

and let \(\hat{\lambda}_I \) minimize \(\hat{R}_\phi(\lambda) \) over \(\Lambda(I) \). An oracle that knows \(f_0 \) would be able to tell us in advance which approximating space \(\Lambda(I) \) yields the smallest excess risk \(\Delta_\phi(\hat{\lambda}_I) \). However, \(f_0 \) is unknown so the best we can do is to mimic the
behavior of the oracle. General theory for empirical risk minimization in the classification context \cite{2,3,11} indicates that
\[\Delta_\phi(\hat{\lambda}_I) \lesssim \inf_{\lambda \in \Lambda(I)} \Delta_\phi(\lambda) + \left(\frac{|I|}{n}\right)^\rho, \]
where $|I|$ denotes the cardinality of the set I and the symbol \lesssim means that the inequality holds up to known multiplicative constants. Various choices are possible for the parameter ρ depending on the margin exponent $\alpha \geq 0$ defined in Section 3. Our target of interest, the oracle vector $\lambda^* \in \Lambda_n$, depends on β.

Formally, we define it as follows:

Definition. Let $c_\mu = \min_{1 \leq i \leq M} \|f_i\|$ and let λ^* be the minimizer of
\[3\Delta_\phi(\lambda) + 2 \left(\frac{8C_{\Delta,\mu}}{c_\mu} \right)^{\frac{1}{1-\beta}} \left(r_n^{-2} |\lambda|_0 \right)^{\frac{1}{2-2\beta}}, \tag{8} \]
over $\lambda \in \Lambda_n$, where $|\lambda|_0 = \sum_{i=1}^M |\lambda_i|$ is the number of non-zero coefficients of the vector λ.

Thus λ^* balances the approximation error, as measured by the excess risk $\Delta_\phi(\lambda)$, and the complexity of the parameter set $\Lambda(I)$ to which λ^* belongs to, as measured by the regularization term $(r_n^{-2} |\lambda|_0)^{\frac{1}{1-2\beta}}$. The constants 3 and $2(8C_{\Delta,\mu})^{-1/(1-\beta)}$ can be changed: A decrease in the former will lead to an increase in the latter, and vice-versa. The constant c_μ can be avoided altogether if we take the penalty $p(\lambda) = 2r_n \sum_{i=1}^M \|f_i\||\lambda_i|$, but in practice μ, and consequently $\|f_i\|$, is unknown. Surely we could plug in estimates for $\|f_i\|$ as in \cite{4,5,6,17}, but we chose to keep the exposition and proofs as simple as possible.

Let $I^* = \{i : \lambda^*_i \neq 0\}$ be the collection of non-zero coefficients of λ^*,
\[|\lambda^*|_0 = \sum_{i=1}^M I_{\{\lambda^*_i \neq 0\}} \]
be the cardinality of I^*, and
\[\rho(i, j) = \frac{\langle f_i, f_j \rangle}{\|f_i\| \cdot \|f_j\|} \]
be the correlation between f_i and f_j. Our second assumption requires that
\[\rho^* = \max_{i \in I^*} \max_{j \neq i} |\rho(i, j)| \]
is small:
Condition 2. Let \(c_\mu = \min_{1 \leq j \leq M} \| f_j \| \) and assume that
\[
12 \rho^*|\lambda^*|_0 \leq c_\mu. \tag{10}
\]

This mainly states that the submatrix \((< f_i, f_j >)_{i,j \in I^*} \) is positive definite and that the correlations \(\rho(i,j) \) between elements \(f_i, i \in I^* \), of this submatrix and outside elements \(f_j, j \not\in I^* \), are relatively small. We refer to this assumption as the local mutual coherence assumption, see [4, 5, 6, 7].

2.3. Oracle inequality

Instrumental in our argument is the random quantity
\[
\hat{r} = \sup_{\lambda \in \Lambda_n} \left| (\tilde{R}_\phi - R_\phi)(\lambda) - (\tilde{R}_\phi - R_\phi)(\lambda^*) \right| / (\lambda - \lambda^*)_1 + \varepsilon_n \tag{11}
\]
where we take \(\varepsilon_n = \phi(0)/(nr_n) \).

Our first result states the oracle inequality. It holds true as long as the tuning parameter \(r_n \) in the penalty term exceeds \(\hat{r} \).

Theorem 1. Assume that (7) and (10) hold. On the event \(r_n > \hat{r} \),
\[
\Delta_\phi(\hat{\lambda}) + r_n|\hat{\lambda} - \lambda^*|_1 \leq 3\Delta_\phi(\lambda^*) + 2 \left(\frac{8C_\mu}{c_\mu} \right)\sqrt{\frac{n}{2C_\mu^2C_F^2}} + \frac{2\phi(0)}{n}. \tag{12}
\]

The next section discusses choices of the tuning parameter \(r_n \) that ensure that the probability of the event \(\{ r_n \geq \hat{r} \} \) is large.

2.4. Choice of the tuning parameter \(r_n \)

The next lemma states that \(\hat{r} \) is sharply concentrated around its mean.

Lemma 2. Let \(C_F = \max_{1 \leq j \leq M} \| f_j \|_\infty \). We have
\[
0 \leq \hat{r} \leq 2C_\phi C_F \tag{13}
\]
and, for all \(\delta > 0 \),
\[
\mathbb{P} \{ \hat{r} - \mathbb{E}[\hat{r}] \geq \delta \} \leq \exp \left(-\frac{1}{2C_\phi^2C_F^2} \frac{n\delta^2}{2C_\phi^2C_F^2} \right) \tag{14}
\]

Proof. The first assertion follows directly from the definition of \(\hat{r} \). The second statement follows from an application of McDiarmid’s bounded differences inequality [10] Theorem 2.2, page 8] after observing that a change of a single pair \((X_i, Y_i) \) changes \(\hat{r} \) by at most \(2C_\phi C_F/n \). \(\square \)
The range of \(\hat{r} \) in (13) is important for implementation of the method: We suggest to find a good value for \(r_n \) based on cross validation and the grid can be taken on the interval \([0, 2C_o C_F]\). Inequality (14) is important for theoretical considerations. It shows that we should take

\[
r_n = E[\hat{r}] + \sqrt{\frac{2 \log(1/\delta)}{n}} C_o C_F
\]

for some \(0 < \delta < 1 \), since then

\[
P\{r_n \geq \hat{r}\} \geq 1 - \delta.
\]

The expected value \(E[\hat{r}] \) is of order \(\{\log(M \lor n)/n\}^{1/2} \) by the following lemma.

Lemma 3. Let \(J_n \) be the smallest integer such that \(2^{J_n} \geq n \). Then, for all \(M, n \geq 1 \) and \(0 < \delta < 1 \)

\[
E[\hat{r}] \leq \frac{7 C_o C_F}{\sqrt{n}} \sqrt{2 \log 2(M \lor n)} + \frac{J_n C_o C_F}{2(M \lor n)^2} + C_o C_F \sqrt{\frac{2 \log(1/\delta)}{n}}.
\]

Consequently,

Corollary 4. Assume that (7) and (10) hold, and take

\[
r_n \geq \frac{7 C_o C_F}{\sqrt{n}} \sqrt{2 \log 2(M \lor n)} + \frac{J_n C_o C_F}{2(M \lor n)^2} + C_o C_F \sqrt{\frac{2 \log(1/\delta)}{n}}.
\]

Then oracle inequality (12) holds with probability at least \(1 - \delta \).

3. Example: generalized hinge loss

Throughout this section, we consider a fixed cost \(d \) and a fixed threshold value \(\tau \) with \(0 \leq d \leq 1/2 \) and \(d \leq \tau \leq 1 - d \). Instead of the discontinuous loss \(\ell(z) \) defined in (3), [1] considers the convex surrogate loss

\[
\phi_d(z) = \begin{cases}
1 - az & \text{if } z < 0, \\
1 - z & \text{if } 0 \leq z < 1, \\
0 & \text{otherwise}
\end{cases}
\]

where \(a = (1 - d)/d \geq 1 \) and shows that the Bayes discriminant function \(f_0 \) defined in [4] minimizes both the risks \(E[\ell(Yf(X))] \) and \(E[\phi_d(Yf(X))] \) over all measurable \(f : X \to \mathbb{R} \). We see that \(\phi_d(z) \geq \ell(z) \) for all \(z \in \mathbb{R} \) as long as \(0 \leq \tau \leq 1 - d \). Moreover, [4] shows that a relation like this holds not only for the loss functions and hence the risks, but for the excess risks as well. In particular, for all \(d \leq \tau \leq 1 - d \), we have

\[
E[\ell(Yf(X))] - E[\ell(Yf_0(X))] \leq E[\phi_d(Yf(X))] - E[\phi_d(Yf_0(X))].
\]
This is important since minimization of (5) produces oracle inequalities in terms of the \(\phi_d \)-excess risk (Theorem 1), not in terms of the original excess risk directly. The latter risk has a sound statistical interpretation.

For plug-in rules and empirical risk minimizers, [1, 11] show that for classification with a reject option, fast rates (faster than \(n^{-1/2} \)) for the excess risk may be obtained if the probability that \(\eta(X) \), defined in (1), is close to the critical values of \(d \) and \(1-d \), is small. More precisely, assume that there exist \(A \geq 1 \) and \(\alpha \geq 0 \) such that for all \(t > 0 \),

\[
\mathbb{P}\{|\eta(X) - d| \leq t\} \leq A t^\alpha \quad \text{and} \quad \mathbb{P}\{|\eta(X) - (1-d)| \leq t\} \leq A t^\alpha. \tag{19}
\]

For \(d = 1/2 \), this assumption is equivalent to Tsybakov’s margin condition [15]. Then, [1, Proof of Lemma 7] shows that

\[
\Delta_{\phi_d}(\lambda) \geq \frac{\left\{ \mathbb{E}[\rho_\eta(f_\lambda(X), f_0(X))] \right\}^{1+\alpha}}{2d\{4A(1 + |\lambda| C_F)\}^{1+\alpha}} \tag{20}
\]

where

\[
\rho_\eta(f, f_0) = \begin{cases}
\eta|f - f_0| & \text{if } \eta < d \text{ and } f < -1, \\
(1-\eta)|f - f_0| & \text{if } \eta > 1-d \text{ and } f > 1, \\
|f - f_0| & \text{otherwise}.
\end{cases}
\]

Following [14], we consider the measure \(\mu \) defined by

\[
\mu(B) = \int_B \eta(x)\{1 - \eta(x)\} P(dx), \tag{21}
\]

for any Borel set \(B \), where \(P \) is the probability measure of \(X \). Since

\[
\int \{f_\lambda(x) - f_0(x)\}^2 \mu(dx) \leq (1 + |\lambda| C_F) \int |f_\lambda(x) - f_0(x)| \mu(dx),
\]

it follows from (20) that condition (7) holds for all \(\lambda \) with \(|\lambda| \leq C_\Lambda \) with

\[
C_{\Delta, \mu} = (1 + C_\Lambda C_F)^{1+\alpha} (2d)^{-\frac{2+2\alpha}{\alpha}} \{4A(1 + C_\Lambda C_F)\}^{\frac{1+\alpha}{1+2\alpha}}, \tag{22}
\]

and \(\beta = \alpha/(2 + 2\alpha) \).

Let \(\lambda^* \) minimize the penalized empirical risk \(\hat{R}_{\phi_d}(\lambda) + p(\lambda) \) over the restricted set

\[
\Lambda = \{\lambda \in \mathbb{R}^M : |\lambda| \leq C_\Lambda\}
\]

for some finite \(C_\Lambda \) and let \(\lambda^* \) minimize

\[
3\Delta_{\phi_d}(\lambda) + 2 \left(\frac{8C_{\Delta, \mu}}{C_\mu} \right)^{\frac{2+2\alpha}{\alpha}} (r_n^2 |\lambda_0|)^{\frac{1+\alpha}{1+2\alpha}}. \tag{23}
\]
over \(\lambda \in \Lambda \). Provided then that the mutual coherence assumption \((10)\) holds, Corollary 4 states that for all choices \(r_n = r_n(\delta) \) in \((10)\) with \(C_\phi = (1 - d)/d \),

\[
\Delta_{\phi, \delta}(\hat{\lambda}) + r_n|\hat{\lambda} - \lambda^*|_1 \leq 3\Delta_{\phi}(\lambda^*) + 2 \left(\frac{8C_{\Delta, \mu}}{c_\mu} \right)^{\frac{2+\alpha}{2+\alpha}} (r_n^2|\lambda^*|_0)_{\sqrt{\frac{1}{n}} 1 + 2\phi(0)} + \frac{2\phi(0)}{n}.
\]

with probability at least \(1 - \delta \), where \(0 < \delta < 1 \) is given in \((10)\). Consequently, via \((15)\).

Theorem 5. Assume that \((14)\) holds for some \(\alpha \geq 0 \) and that the dictionary \(F_M \) satisfies \((10)\) with \(\mu \) defined in \((22)\). Let \(\lambda^* \in \Lambda \) be as given in \((22)\). Then the estimator \(\hat{\lambda} \in \Lambda \) with \(r_n \) as in \((10)\) with \(\delta = 1/(n \vee M) \) and \(C_\phi = (1 - d)/d \) satisfies, for \(C_{\Delta, \mu} \) defined in \((22)\),

\[
\mathbb{E}[\ell(Yf_\hat{\lambda}(X))] - \mathbb{E}[\ell(Yf_0(X))] + r_n|\hat{\lambda} - \lambda^*|_1 \leq 3\Delta_{\phi}(\lambda^*) + 2 \left(\frac{8C_{\Delta, \mu}}{c_\mu} \right)^{\frac{2+\alpha}{2+\alpha}} (r_n^2|\lambda^*|_0)_{\sqrt{\frac{1}{n}} 1 + 2\phi(0)} + \frac{2\phi(0)}{n}
\]

with probability tending to 1 as \(n \to \infty \).

The best possible “rate” \((r_n^2|\lambda^*|_0)^{(1+\alpha)/(2+\alpha)}\) is achieved at \(\alpha = +\infty \). The slowest possible rate is achieved at \(\alpha = 0 \) in which case \((19)\) imposes no restriction at all on \(\eta(X) \).

4. Proofs

4.1. Proof of Theorem 7

Lemma 6. On the set \(\hat{r} \leq r_n \), we have

\[
\Delta_{\phi}(\hat{\lambda}) - \Delta_{\phi}(\lambda^*) + r_n|\hat{\lambda} - \lambda^*|_1 \leq 4r_n \sum_{i \in I^*} |\hat{\lambda}_i - \lambda^*_i| + r_n \varepsilon_n.
\]

Proof. Rewrite \((6)\) to obtain, for \(\hat{\lambda}(\lambda) = \hat{R}(\lambda) - R(\lambda) \),

\[
R_{\phi}(\hat{\lambda}) - R_{\phi}(\lambda^*) \leq \hat{G}(\lambda^*) - \hat{G}(\hat{\lambda}) + p(\lambda^*) - p(\hat{\lambda}) \leq \hat{r}|\hat{\lambda} - \lambda^*|_1 + \varepsilon_n \hat{r} + p(\lambda^*) - p(\hat{\lambda}).
\]

On the event \(r_n \geq \hat{r} \) then,

\[
\Delta_{\phi}(\hat{\lambda}) - \Delta_{\phi}(\lambda^*) \leq r_n|\hat{\lambda} - \lambda^*|_1 + \varepsilon_n r_n + p(\lambda^*) - p(\hat{\lambda}).
\]

Add \(r_n|\hat{\lambda} - \lambda^*|_1 \) to both sides, and deduce

\[
\Delta_{\phi}(\hat{\lambda}) - \Delta_{\phi}(\lambda^*) + r_n|\hat{\lambda} - \lambda^*|_1 \leq 2r_n|\hat{\lambda} - \lambda^*|_1 + r_n \varepsilon_n + 2r_n|\lambda^*|_1 - 2r_n|\hat{\lambda}|_1
\]

\[
\leq 2r_n \sum_{i \in I^*} |\hat{\lambda}_i - \lambda^*_i| + 2r_n \sum_{i \notin I^*} |\hat{\lambda}_i| - 2r_n \sum_{i = 1}^M |\hat{\lambda}_i| + 2r_n \sum_{i \in I^*} |\lambda^*_i| + r_n \varepsilon_n
\]

\[
\leq 4r_n \sum_{i \in I^*} |\hat{\lambda}_i - \lambda^*_i| + r_n \varepsilon_n,
\]

Consequently:

\[
\Delta_{\phi}(\hat{\lambda}) - \Delta_{\phi}(\lambda^*) + r_n|\hat{\lambda} - \lambda^*|_1 \leq 4r_n \sum_{i \in I^*} |\hat{\lambda}_i - \lambda^*_i| + r_n \varepsilon_n.
\]
which proves our claim. □

Lemma 7.

\[
\sum_{i \in I^*} |\hat{\lambda}_i - \lambda_i^*| \leq 2\rho^* |\hat{\lambda} - \lambda^*|_1 + |\lambda^*|^{1/2}_0 \|f_{\lambda - \lambda^*}\| \tag{25}
\]

Proof. See the proof of Theorem 2 of [7, pages 536, 537]. For completeness, we repeat the argument: Set

\[
u_j = \hat{\lambda}_j - \lambda_j^*, \quad U^* = \sum_{j \in I^*} |u_j|\|f_j\|, \quad U = \sum_{j=1}^M |u_j|\|f_j\|.
\]

Clearly

\[
\sum_{i,j \notin I^*} <f_i, f_j> u_i u_j \geq 0
\]

and so we obtain

\[
\sum_{j \in I^*} u_j^2\|f_j\|^2 = \|f_{\lambda - \lambda^*}\|^2 - \sum_{i,j \notin I^*} u_i u_j <f_i, f_j> - 2 \sum_{i \in I^*} u_i u_j <f_i, f_j>
\]

\[
\sum_{i,j \notin I^*, i \neq j} u_i u_j <f_i, f_j>
\]

\[
\leq \|f_{\lambda - \lambda^*}\|^2 + 2\rho^* \sum_{i \notin I^*} |u_i|\|f_i\| \sum_{j \in I^*} |u_j|\|f_j\|
\]

\[
+ \rho^* \sum_{i,j \in I^*} |u_i| |u_j|\|f_i\|\|f_j\|
\]

\[
= \|f_{\lambda - \lambda^*}\|^2 + 2\rho^* U^* U - \rho^*(U^*)^2.
\] \tag{26}

The left-hand side can be bounded by \(\sum_{j \in I^*} u_j^2\|f_j\|^2 \geq (U^*)^2/|\lambda^*|_0\) using the Cauchy-Schwarz inequality, and we obtain that

\((U^*)^2 \leq \|f_{\lambda - \lambda^*}\|^2 |\lambda^*|_0 + 2\rho^* |\lambda^*|_0 U^* U \)

and, using the properties of a function of degree two in \(U(\lambda)\), we further obtain

\[
U^* \leq 2\rho^* |\lambda^*|_0 U + \sqrt{|\lambda^*|_0 \|f_{\lambda - \lambda^*}\|}
\] \tag{27}

and the results follows from \(c^*_\mu \sum_{i \in I^*} |\hat{\lambda}_i^* - \lambda_i^*| \leq U^*\). □

Combining both lemmas with the mutual coherence assumption immediately gives

Lemma 8. On the event \(r_n \geq \hat{r}\),

\[
\Delta_\phi(\hat{\lambda}) - \Delta_\phi(\lambda^*) + \frac{1}{2} r_n |\hat{\lambda} - \lambda^*|_1 \leq \frac{4}{c^*_\mu} r_n |\lambda^*|_0^{1/2}/\|f_{\lambda - \lambda^*}\| + r_n \varepsilon_n
\] \tag{28}
Finally we use the link between the $L_2(\mu)$ norm of $f_\lambda - f_0$ and the excess risk $\Delta_\phi(\lambda)$ and Young’s inequality that states

$$ab \leq \frac{a^p}{p} + \frac{b^q}{q}, \quad p > 1, \quad q = \frac{p}{p-1}$$

so that,

$$ab \leq \frac{\delta^p}{p} a^p + \frac{b^q}{q}, \quad \delta > 0$$

for all $a, b, \delta > 0$. From Lemma 3 above and condition (7), on the event $r_n \geq \hat{r}$,

$$\Delta_\phi(\hat{\lambda}) - \Delta_\phi(\lambda^*) + \frac{1}{2} r_n |\hat{\lambda} - \lambda^*|_1 \leq \frac{4C_{\Delta, \mu}}{c_\mu} r_n |\lambda^*|_0^{1/2} \{\Delta_\phi(\hat{\lambda}) + \Delta_\phi(\lambda^*)\} + r_n \varepsilon_n$$

Now use the above Young’s inequality twice with $p = 1/\beta$, $\delta = 1/2$, $b = 4r_n^2 \lambda^*|_0^{1/2} C_{\Delta, \mu}/c_\mu$ and $a = \Delta_\phi(\hat{\lambda})$ and $a = \Delta_\phi(\lambda^*)$, respectively, to deduce

$$\Delta_\phi(\hat{\lambda}) - \Delta_\phi(\lambda^*) + \frac{1}{2} r_n |\hat{\lambda} - \lambda^*|_1 \leq \frac{\beta}{2} \{\Delta_\phi(\hat{\lambda}) + \Delta_\phi(\lambda^*)\} + (1 - \beta) r_n^2 \lambda^*|_0^{1/2} \left(\frac{8C_{\Delta, \mu}}{c_\mu}\right)^{\frac{1}{1-\beta}} + r_n \varepsilon_n$$

This concludes the proof of Theorem 1.

4.2. Proof of Lemma 3

Let $\sigma_1, \ldots, \sigma_n$ be independent Rademacher variables, taking the values ± 1, each with probability $1/2$, independent of the data $(X_1, Y_1), \ldots, (X_n, Y_n)$. Set

$$\hat{G}_0(\lambda) = \frac{1}{n} \sum_{i=1}^n \sigma_i \{\phi(Y_i f_\lambda(X_i)) - \phi(Y_i f_{\lambda^*}(X_i))\}$$

A standard symmetrization trick ([10], page 18) shows that

$$\mathbb{E} \left[r \right] \leq \mathbb{E} \left[\sup_{\lambda \in \Lambda_n} \left| \frac{\hat{G}_0(\lambda) - \hat{G}_0(\lambda^*)}{|\lambda - \lambda^*|_1 + \varepsilon_n} \right| \right]$$

$$\leq \mathbb{E} \left[\sup_{|\lambda - \lambda^*|_1 \leq \varepsilon_n} \left| \frac{\hat{G}_0(\lambda) - \hat{G}_0(\lambda^*)}{|\lambda - \lambda^*|_1 + \varepsilon_n} \right| \right] + \mathbb{E} \left[\sup_{\varepsilon_n \leq |\lambda - \lambda^*|_1 \leq \phi(0)/r_n} \left| \frac{\hat{G}_0(\lambda) - \hat{G}_0(\lambda^*)}{|\lambda - \lambda^*|_1 + \varepsilon_n} \right| \right]$$

$$= (I) + (II)$$
as $|\lambda - \lambda^*|_1 \leq \phi(0)/r_n$ for all $\lambda \in \Lambda_n$. The first term can be bounded as follows:

\[
(I) \leq \frac{1}{\varepsilon_n} \mathbb{E} \left[\sup_{|\lambda - \lambda^*|_1 \leq \varepsilon_n} \left| \hat{G}^0(\lambda) - \bar{G}^0(\lambda^*) \right| \right]
\]

\[
\leq \frac{C_0}{\varepsilon_n} \mathbb{E} \left[\sup_{|\lambda - \lambda^*|_1 \leq \varepsilon_n} \left| \frac{1}{n} \sum_{i=1}^{n} \sigma_i Y_i f_{\lambda - \lambda^*}(X_i) \right| \right]
\]

by the contraction principle for Rademacher processes, see [12, pages 112 – 113]. This implies that

\[
(I) \leq \frac{C_0}{\varepsilon_n} \mathbb{E} \left[\sup_{|\lambda - \lambda^*|_1 \leq \varepsilon_n} \left| \frac{1}{n} \sum_{i=1}^{n} \sigma_i Y_i f_{\lambda - \lambda^*}(X_i) \right| \right]
\]

\[
\leq C_0 \mathbb{E} \left[\max_{1 \leq j \leq M} \left| \frac{1}{n} \sum_{i=1}^{n} \sigma_i Y_i f_j(X_i) \right| \right]
\]

\[
\leq C_0 C_F \frac{\sqrt{2 \log(2M)}}{\sqrt{n}}
\]

where we used [10, Lemma 2.2, page 7] to get the last inequality. We can apply this result since

\[
\mathbb{E} \left[\exp \left\{ s \sum_{i=1}^{n} \sigma_i Y_i f_j(X_i) \right\} \right] \leq \exp(ns^2C_F^2/2)
\]

for all s, that follows in turn from [10, Lemma 2.1, page 5].

The second term (II) requires a peeling argument [10, page 70]. Since $0 \leq \hat{r} \leq 2C_0 C_F$ almost surely, we can use the bound

\[
\mathbb{E}[II] \leq \zeta + 2C_0 C_F \mathbb{P}\{(II) \geq \zeta\}. \tag{29}
\]

Observe that for any $\zeta > 0$, and for J_n the smallest integer with $2^{J_n} \varepsilon_n \geq \phi(0)/r_n$ or $2^{J_n} \geq n$,

\[
\mathbb{P} \left\{ \sup_{\varepsilon_n \leq |\lambda - \lambda^*|_1 \leq \phi(0)/r_n} \frac{|\hat{G}^0(\lambda) - \bar{G}^0(\lambda^*)|}{|\lambda - \lambda^*|_1 + \varepsilon_n} \geq \zeta \right\}
\]

\[
\leq \sum_{j=1}^{J_n} \mathbb{P} \left\{ \sup_{2^{j-1} \varepsilon_n \leq |\lambda - \lambda^*|_1 \leq 2^j \varepsilon_n} \frac{|\hat{G}^0(\lambda) - \bar{G}^0(\lambda^*)|}{|\lambda - \lambda^*|_1 + \varepsilon_n} \geq \zeta \right\}
\]

\[
\leq \sum_{j=1}^{J_n} \mathbb{P} \left\{ \sup_{2^{j-1} \varepsilon_n \leq |\lambda - \lambda^*|_1 \leq 2^j \varepsilon_n} |\hat{G}^0(\lambda) - \bar{G}^0(\lambda^*)| \geq 2^{j-1} \varepsilon_n \zeta \right\}
\]

Now, set

\[
Z_j = \sup_{|\lambda - \lambda^*|_1 \leq 2^j \varepsilon_n} \left| \hat{G}^0(\lambda) - \bar{G}^0(\lambda^*) \right|
\]
and the same considerations leading to the final bound of (I) above yield
\[\mathbb{E}[Z_j] \leq 2^j \varepsilon_n C_\phi C_F \frac{\sqrt{2 \log(2M)}}{\sqrt{n}} \]
and
\[\sum_{j=1}^{J_n} \mathbb{P} \left\{ \sup_{2^{j-1} \varepsilon_n \leq |\lambda - \lambda^*| \leq 2^j \varepsilon_n} \left| \hat{G}_n^0(\lambda) - \hat{G}_n^0(\lambda^*) \right| \geq 2^{j-1} \varepsilon_n \zeta \right\} \leq \sum_{j=1}^{J_n} \mathbb{P} \left\{ Z_j - \mathbb{E}[Z_j] \geq 2^{j-1} \varepsilon_n \zeta - \mathbb{E}[Z_j] \right\}.

A change of a single pair \((X_i, Y_i)\) changes \(Z_j\) by at most \(2 C_\phi C_F (2^j \varepsilon_n) / n\), so that another application of the bounded differences inequality \([10, \text{Theorem 2.2, page 8}]\) gives, by taking
\[\zeta = 6 C_\phi C_F \frac{\sqrt{2 \log(2(M \lor n))}}{\sqrt{n}}, \]
the final bound
\[\sum_{j=1}^{J_n} \mathbb{P} \left\{ Z_j - \mathbb{E}[Z_j] \geq 2^{j-1} \varepsilon_n \zeta - \mathbb{E}[Z_j] \right\} \leq \sum_{j=1}^{J_n} \mathbb{P} \left\{ Z_j - \mathbb{E}[Z_j] \geq 2 \cdot 2^j \varepsilon_n \frac{\sqrt{2 \log(2M \lor 2n)}}{\sqrt{n}} \right\} \leq J_n \exp \left\{ - \frac{2(C_\phi C_F 2^j \varepsilon_n)^2 2 \log(2M \lor 2n)}{(C_\phi C_F 2^j \varepsilon_n)^2} \right\} = J_n \exp \{-2 \log(2M \lor 2n)\} = J_n (2M \lor 2n)^{-2}.

Invoke (29) to conclude the proof of Lemma 3.

References

[1] P.L. Bartlett and M.H. Wegkamp (2007). Classification with a reject option using a hinge loss. Technical report M980, Department of Statistics, Florida State University.
[2] S. Boucheron, O. Bousquet and G. Lugosi (2004). Introduction to statistical learning theory. In Advanced Lectures in Machine Learning (O. Bousquet, U. von Luxburg, and G. Rätsch, Editors), 169–207. Springer, New-York.
[3] S. Boucheron, O. Bousquet and G. Lugosi (2005). Theory of Classification: a Survey of Recent Advances. ESAIM: Probability and Statistics, 9:323-375. [MR2182250]
[4] F. Bunea, A.B. Tsybakov and M.H. Wegkamp (2004). Aggregation for Gaussian regression. Technical Report M972, Department of Statistics, Florida State University. To appear in the Annals of Statistics.

[5] F. Bunea, A.B. Tsybakov and M.H. Wegkamp (2006). Aggregation and sparsity via \(\ell_1 \)-penalized least squares. Proceedings of 19th Annual Conference on Learning Theory, COLT 2006. Lecture Notes in Artificial Intelligence, 4005, 379–391. Springer-Verlag, Heidelberg. MR2280619

[6] F. Bunea, A.B. Tsybakov and M.H. Wegkamp (2006). Sparsity oracle inequalities for the Lasso. Technical Report M979, Department of Statistics, Florida State University.

[7] F. Bunea, A.B. Tsybakov and M.H. Wegkamp (2007). Sparse density estimation with \(\ell_1 \) penalties. Proceedings of 20th Annual Conference on Learning Theory, COLT 2007. Lecture Notes in Artificial Intelligence, 4539, 530–543. Springer-Verlag, Heidelberg.

[8] F. Bunea and M.H. Wegkamp (2004). Two-stage model selection procedures in partially linear regression. Canadian Journal of Statistics, 32(2), 105–118. MR2064395

[9] C.K. Chow (1970). On optimum error and reject trade-off. IEEE Transactions on Information Theory, 16, 41–46.

[10] L. Devroye and G. Lugosi (2000). Combinatorial Methods in density estimation. Springer, New York. MR1843146

[11] R. Herbei and M. H. Wegkamp (2006). Classification with reject option. Canadian Journal of Statistics, 34(4), 709–721.

[12] M. Ledoux and M. Talagrand (1991). Probability in Banach Spaces. Springer, New York. MR1102019

[13] B. D. Ripley (1996). Pattern recognition and neural networks. Cambridge University Press, Cambridge. MR1438788

[14] B. Tarigan and S. A. van de Geer (2006). Classifiers of support vector machine type with \(\ell_1 \) complexity regularization. Bernoulli, 12(6), 1045–1076. MR2274857

[15] A. B. Tsybakov (2004). Optimal aggregation of classifiers in statistical learning. Annals of Statistics, 32, 135–166. MR2051002

[16] S.A. van de Geer (2000). Empirical processes in \(M \)-estimation. Cambridge Series in statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge.

[17] S.A. van de Geer (2006). High dimensional generalized linear models and the Lasso. Research report No.133. Seminar für Statistik, ETH.