Nuclear proton dynamics and interactions with calcium signaling

Alzbeta Hulikova, Pawel Swietach *

Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, United Kingdom

A R T I C L E I N F O

Article history:
Received 24 April 2015
Received in revised form 2 June 2015
Accepted 7 July 2015
Available online 13 July 2015

Keywords:
Protons
Nucleus
Cardiac myocyte
Calcium
Mobile buffer

A B S T R A C T

Biochemical signals acting on the nucleus can regulate gene expression. Despite the inherent affinity of nucleic acids and nuclear proteins (e.g. transcription factors) for protons, little is known about the mechanisms that regulate nuclear pH (pHnuc), and how these could be exploited to control gene expression. Here, we show that pHnuc dynamics can be imaged using the DNA-binding dye Hoechst 33342. Nuclear pores allow the passage of medium-sized molecules (calcium), but protons must first bind to mobile buffers in order to gain access to the nucleoplasm. Fixed buffering residing in the nucleus of permeabilized cells was estimated to be very weak on the basis of the large amplitude of pHnuc transients evoked by photolytic H+ uncaging or exposure to weak acids/bases. Consequently, the majority of nuclear pH buffering is sourced from the cytoplasm in the form of mobile buffers. Effective proton diffusion was faster in nucleoplasm than in cytoplasm, in agreement with the higher mobile-to-fixed buffering ratio in the nucleus. Cardiac myocyte pHnuc changed in response to maneuvers that alter nuclear Ca2+ signals. Blocking Ca2+ release from inositol-1,4,5-trisphosphate receptors stably alkalinized the nucleus. This Ca2+-pH interaction may arise from competitive binding to common chemical moieties. Competitive binding to mobile buffers may couple the efflux of Ca2+ via nuclear pores with a counterflux of protons. This would generate a stable pH gradient between cytoplasm and nucleus that is sensitive to the state of nuclear Ca2+ signaling. The unusual behavior of protons in the nucleus provides new mechanisms for regulating cardiac nuclear biology.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A vast majority of biologically important molecules react reversibly with protons (H+ ions) [1]. This chemical interaction underlies the pH-sensitivity observed with essentially all biological processes, including those that underlie cardiac function. The complex effects of protons on metabolism, electrical excitation, calcium signaling and contraction have been investigated experimentally [1] and modeled mathematically [2]. However, comparatively little is known about the effect of pH on nuclear biology. This is despite the inherent affinity of nucleic acids and nuclear proteins for protons, and hence a predicted pH-sensitivity. In particular, pH is likely to influence the activity of transcription factors such as EGR1 (Early-Growth Response 1), ERα (Estrogen Receptor α), GCR (Glucocorticoid receptor) and NF-B (Nuclear Factor kappa-light-chain-enhancer of activated B-cells) which contain protonatable histidine residues near sites of interaction with DNA [3–6]. Of relevance to the heart, the DNA-binding motif of NFAT (Nuclear Factor of Activated T-cells), a transcription factor involved in pro-hypertrophic signaling [7,8], contains conserved histidines residues.

Protons can affect cardiac function indirectly by modulating the dynamics of other signaling molecules, such as Ca2+ ions [9–11]. Nuclear activity in cardiac myocytes is strongly regulated by Ca2+ signals evoked by chemical messengers, notably inositol 1,4,5-trisphosphate (InsP3) [12–14]. The molecular apparatus regulating transcription must distinguish InsP3-evoked Ca2+ signals from electrically-evoked Ca2+ transients that flood the cell. Pro-hypertrophic nuclear Ca2+ signals are believed to operate within highly localized microdomains that are insulated from [Ca2+] fluctuations associated with excitation–contraction coupling [15]. It is well-documented that pH strongly modulates Ca2+ signaling in the cytoplasm [1,9,16]. Moreover, a gradient of pH can compartmentalize cytoplasmic [Ca2+] by means of a recently described Ca2+/H+ exchange process that operates without membranes [9]. This process could, in principle, generate stable [Ca2+] gradients between the nucleus and cytoplasm. However, evidence for Ca2+/H+ interactions in the nucleus is lacking, therefore the role of pHnuc in regulating Ca2+-sensitive gene expression is unknown.

The physiological and pathophysiological significance of pH-sensitivity must be evaluated in the context of proton dynamics, that is, the reactive, diffusive and transport fluxes that set pH. In the heart, proton fluxes can reach several mmol/l/min, which is very large in comparison with steady-state intracellular H+ (normally in the sub-μM range). High cytoplasmic pH-buffering, distributed among the cell’s titratable chemical moieties, restricts proton diffusivity [17,18] and attenuates the amplitude and rate of pH changes evoked by fluxes such as metabolic acid production or membrane transport of acid [19,20]. In contrast to the wealth of information about proton behavior in cytoplasm, little is known about proton dynamics in the nucleus. Moreover,
it is often assumed [21] that \(\text{pH}_{\text{nuc}} \) is tightly coupled to cytoplasmic pH (\(\text{pH}_{\text{cyto}} \)) by means of high-conductance nuclear pores, thus precluding the manifestation of nucleus-specific behavior.

Here, we investigate proton dynamics in the nucleus and compare these with proton behavior in cytoplasm. Our data show that, despite the presence of nuclear pores, protons cannot freely enter the nucleus but require mobile buffers to facilitate the transfer. We also demonstrate that buffering by fixed sites residing in the nucleus is surprisingly weak. As a result, effective proton diffusivity in the nucleus is faster than in cytoplasm. Since proton transmission in and out of the nucleus is mediated by mobile buffers, a gradient of pH could be established between the nucleus and cytoplasm (\(\Delta \text{pH} = \text{pH}_{\text{nuc}} - \text{pH}_{\text{cyto}} \)) by directing the flow of protonated mobile buffer molecules. Indeed, maneuvers that alter nuclear Ca\(^{2+} \) signaling can stably change \(\Delta \text{pH} \), and we hypothesize that this may involve the exchange of Ca\(^{2+} \)-bound mobile buffers for their protonated form [9]. The unusual dynamics of protons in the nucleus, and interactions with calcium provide new means of interacting with the gene expression.

2. Materials and methods

2.1. Cells

Adult ventricular myocytes were isolated enzymically from Langendorff-perfused Sprague–Dawley rat hearts and kept in DMEM suspension for up to 8 h. Neonatal cardiac ventricular myocytes were isolated enzymically from rat pups and cultured for 48 h in LabTek chambers. Animals were sacrificed in accordance with Home Office regulations on Schedule I killing, NHDF-Ad human dermal fibroblasts (acquired from Lonza, Slough, UK) and colorectal HCT116 cancer cells (acquired from ATCC, Teddington, UK) were cultured until confluent in LabTek chambers.

2.2. Superfusion and solutions

Adult cardiac myocytes were superfused at 37 °C in a custom-made Perspex chamber with a poly-l-lysine treated coverslip at its base. Superfusion of neonatal cardiac myocytes, NHDF-Ad fibroblasts or HCT116 cells was performed in LabTek chambers used for culturing. Superfusion chambers were mounted on a Zeiss Axiovert inverted microscope coupled to an LSM 700 confocal imaging system. Two platinum electrodes attached to the Perspex chamber delivered field stimulation for pacing adult myocytes. CO\(_2\)/HCO\(_3^-\) buffered Tyrode was bubbled with 5% CO\(_2\) and contained 125 mM NaCl, 4.5 mM KCl, 11 mM glucose, 22 mM NaHCO\(_3\), 1 mM CaCl\(_2\), 1 mM MgCl\(_2\). For Heps-buffered Tyrode, 22 mM HCO\(_3^-\) was replaced with 20 mM Heps, NaCl was raised to 135 mM and solution was titrated to pH 7.4 with 4 M NaOH. 0Na0Ca solution contained 135 mM N-methyl-d-glucamine, 4.5 mM KCl, 11 mM glucose, 20 mM Heps, 0.5 mM EGTA, 1 mM MgCl\(_2\), pH titrated to 7.4 with 5 M HC1. High-Heps internal solution (IS) contained 30 mM KCl, 90 mM K-gluconate, 10 mM NaCl, 20 mM Heps, 2 mM MgATP, 0.1 mM ADP, 1 mM BAPTA, 0.5 mM MgCl\(_2\), 0.6 mM CaCl\(_2\), pH titrated to 7.0–7.1 with KOH (final free [Ca\(^{2+}\)] = 0.1 μM, [Mg\(^{2+}\)] = 0.5 mM). For alkaline IS, pH was titrated to 7.5. For acidic IS, pH was titrated to 6.6 or 6.5, and CaCl\(_2\) and MgCl\(_2\) were reduced appropriately (final free [Ca\(^{2+}\)] = 0.1 μM, [Mg\(^{2+}\)] = 0.5 mM). The concentrations of divalents added to solutions was determined from ionic equilibria using CaBuf program (G. Droogmans, ftp://ftp.cc.kuleuven.ac.be/pub/). Low-Heps IS contained only 0.5 mM Heps and an additional 15 mM of K-glucronate; for experiments on permeabilized adult myocytes, MgATP was raised to 3 mM to reduce the extent of rigor. For acetate or ammonium containing IS, KCl was iso-osmotically replaced with NH\(_4\)Cl or K-Acetate. Permeabilization was performed in high-Heps IS containing 0.005% saponin. For photolytic uncaging of acid, solutions contained 6-nitroveratraldehyde (Sigma-Aldrich, UK), a photolabile H\(^+\)-donor excited at 405 nm (dissolved in warm solution from stock in DMSO).

2.3. Fluorescence imaging

A Zeiss LSM 700 confocal imaging system recorded fluorescence in superfused cells. The Ca\(^{2+}\)-reporter dye Fluor3 (20 μM; loaded into cells as the AM-ester for 5 min at room temperature) was excited at 488 nm and emission was recorded >520 nm. Fluor3 was calibrated by measuring the fluorescence response to 100 μM Ca\(^{2+}\) dialyzed into cells via patch pipette (this measures the maximal fluorescence, \(F_{\text{max}} \)). This experiment estimates Fluor3 Ca\(^{2+}\)-affinity in situ, assuming that Ca\(^{2+}\)-independent fluorescence (\(F_{\text{free}} \)) is zero and that resting [Ca\(^{2+}\)] is 100 nM [9]. The pH-sensitive fluorescence dye cSNARF1 (10 μM; loaded into cells as the AM-ester for 10 min at room temperature) was excited at 555 nm and emission was recorded ratiometrically at 580 ± 20 nm and 640 ± 20 nm. The nuclear dye Hoechst 33342 (loaded at 1:100 dilution for 30 min at room temperature) was excited at 405 nm and emission was recorded ratiometrically (shortpass filter <470 nm and bandpass filter 490–555 nm). All dyes were obtained from Life Technologies (UK). Higher intensity 405 nm laser was used to release acid from the caged H\(^+\)-compound 6-nitroveratraldehyde.

3. Results

3.1. Cytoplasmic proton dynamics are attenuated by high buffering capacity

During the cardiac cycle, electrical excitation evokes large Ca\(^{2+}\) fluxes across the sarcosomal and sarcoplasmic reticulum membranes that raise cytoplasmic [Ca\(^{2+}\)] transiently. Fig. 1A shows the averaged time course of a Ca\(^{2+}\) transient recorded in linescan mode (3 ms/scan) in a Fluor3-loaded adult ventricular myocyte paced at 1 Hz. Ca\(^{2+}\) activates the contractile apparatus, which consumes ATP. Estimates of the turnover of intracellular ATP are ~10 s (resting heart) to ~2 s (maximally-activated heart) [22], predicting that a significant fraction of the myocytes’ ATP pool (several mM) is hydrolyzed during the relatively short period of tension development. Since ATP hydrolysis is a net proton-generating reaction (0.5–1.0 H\(^+\)/ATP stoichiometry over the pH\(_{\text{cyto}}\) range 6.5–7.5) [23], a concentrated release of protons is expected to take place during contraction. To explore whether force generation is associated with a measurable ‘proton transient’, cSNARF1-loaded adult rat ventricular myocytes (superfused with 5% CO\(_2\)/22 mM HCO\(_3^-\); Tyrode at 37 °C) were field-stimulated at 1 Hz (1 ms pulse) and fluorescence was measured in linescan mode (1.9 ms/scan) along the long-axis of the cell, avoiding nuclear regions. The width of the fluorescence signal along the linescan was used as an index of contraction (Fig. 1B gray trace, for comparison with [H\(^+\)] time course). Contraction was accompanied by a proton transient of ~3.6 nM (95% ± 0.0002 nM to 95.0 ± 0.01 nM). Since cSNARF1 fluorescence was acquired ratiometrically, the pH response is unlikely to be an artifact of cell movement. This assertion is supported by the short delay between changes in cell-length and [H\(^+\)]. The proton transient was abolished by treatment with the contraction inhibitor butanedione monoxime (10 mM; data not shown), suggesting that the pH response was not due to electrical activity.
or Ca\(^{2+}\) signaling per se. The small size of the proton transient, despite the expected release of ~mM of protons per contraction, is a consequence of high buffering capacity. Total buffering capacity (β) in myocyte cytoplasm at resting pH is ~50 mM/pH, equivalent to a dimensionless buffering ratio (B) of 200,000:1

\[
\frac{d[H^+]}{d[H^+]_{\text{free}}} = \frac{[H^+]_{\text{total}}}{d[H^+]_{\text{free}}} = \frac{\Delta p[H]}{\Delta[H^+]_{\text{free}}} \cdot B = \frac{\beta}{\log(10)} \times [H^+]_{\text{free}}
\]

Assuming that buffering kinetics are fast, a 3.6 nM proton transient is thus predicted to arise from a ~0.7 mM release of H\(^+\) ions, i.e. hydrolysis of a tenth of the ATP pool. In summary, high cytoplasmic buffering attenuates proton dynamics in contracting myocytes.

3.2. Imaging cytoplasmic and nuclear pH simultaneously

The pH-sensitivity of the nuclear stain Hoechst 33342 was exploited to study nuclear pH dynamics [24]. Acidity increases total fluorescence emission and produces a spectral shift that permits ratiometric measurements. An optimal combination of wide dynamic range and good signal-to-noise ratio is obtained by sampling 405 nm-excited fluorescence at ~440 nm (470 nm shortpass filter) and ~510 nm (490–555 bandpass filter). Since the spectra of cSNARF1 and Hoechst 33342 do not overlap, both dyes can be used concurrently to probe cytoplasmic and nuclear pH by alternating between 555 nm and 405 nm excitation, respectively (Fig. 2A). Artifactual signal bleed-through between cSNARF1 and Hoechst 33342 detection modes was tested in myocytes loaded with one dye only at a time. In cSNARF1 detection mode, fluorescence from Hoechst 33342 was essentially absent (the nuclear dye is not excited at 555 nm). In Hoechst 33342 detection mode, fluorescence from cSNARF1 was very low compared to the signal from Hoechst 33342 (Fig. 2B). Since both dyes can be loaded into cells passively, experiments can be performed on freshly isolated myocytes without genetic modifications. Using image analysis of confocally-acquired data to identify nuclear regions, it is possible to measure pH\(_{\text{max}}\) and the surrounding pH\(_{\text{cyto}}\). Hoechst 33342 and cSNARF1 fluorescence ratios were calibrated using the nigericin technique [25]. Briefly, cells were superfused in solutions containing 140 mM KCl, 1 mM MgCl\(_2\), 1 mM EGTA, 10 mM MES, 10 mM HEPES and 10 μM nigericin (a K\(^{+}\)/H\(^{+}\) ionophore). To generate a pH-calibration curve for the co-loaded fluorescent dyes, intracellular pH was manipulated by changing superfusate pH (Fig. 2C). These data demonstrate an apparent pK\(_a\) and dynamic range (R\(_{\text{max}}\)/R\(_{\text{min}}\)) of 6.54 and 2.55, respectively, for Hoechst 33342 (c.f. 6.98 and 12.2 for cSNARF1). The Hoechst 33342 ratio did not change substantially during contraction, despite a 10-fold increase in [Ca\(^{2+}\)] (Fig. 2D), arguing for its Ca\(^{2+}\)-insensitivity. Using the same procedure, the two dyes could be calibrated concurrently in neonatal ventricular myocytes, fibroblasts (NHDF-Ad) and colorectal epithelial cancer cells (HCT116).

3.3. Protons enter and exit the nucleus only when bound to mobile buffers

The pathway of least resistance to ion traffic between cytoplasm and nucleoplasm is the nuclear pore, known to conduct macromolecules as large as 100 kDa [21]. The diffusive restrictions imposed by the nucleus were explored by measuring the diffusion of calcein (a fluorescent marker of molecular weight 622 Da) following localized bleaching (FRAP: fluorescence recovery after photobleaching). Fig. 3A shows fluorescence recovery (excitation at 488 nm, fluorescence measured ~510 nm) and the best-fit rate constant (the inverse of time constant). Experiments on adult myocytes were performed in 0Na0Ca superfusates to minimize motion artifacts. Bleaching was performed in one of two types of regions (see icons in Fig. 3B) in myocytes co-loaded with calcein-AM and Hoechst 33342. In the first set of experiments, the entire nucleus was selected for bleaching (region defined on the basis of Hoechst 33342 fluorescence). In the second set of experiments, bleaching was restricted to a 3 × 3 μm region in the nucleus. In both cases, bleaching was performed until half of the fluorescence signal was attenuated locally. FRAP experiments performed in nuclear regions were then repeated in regions of bulk cytoplasm using the same size and shape of the bleaching region. Calcein diffusivity in the nucleus was no different from

\[\text{Fig. 1. Proton dynamics in the cytoplasm of contracting myocytes. (A) Adult ventricular myocytes loaded with Ca\(^{2+}\)-dye Fluo3. Electrical excitation (1 ms field stimulation at 1 Hz; *) evokes a Ca\(^{2+}\) transient (n = 10). (B) Adult ventricular myocytes, paced at 1 Hz, loaded with pH-dye cSNARF1. Electrical excitation triggers cell-shortening (gray line, inverted for comparison with [H\(^+\)] time course). During contraction, cytoplasmic [H\(^+\)] increases transiently (*proton transient*), putatively as a result of acid-yielding ATP hydrolysis by cross-bridge cycling (n = 17; SEMs not shown for clarity). Inset: linescan of cSNARF1 ratio.}\]
that in the cytoplasm, even when Ca^{2+} stores were emptied by thapsigargin (10 μM; blocker of the smooth/endoplasmic reticulum Ca^{2+} ATPase, SERCA). Similarly, no difference in FRAP was measured between nuclear and cytoplasmic regions of neonatal ventricular myocytes (experiments in 0Na0Ca or in normal Tyrode). Thus, the sum of nucleoplasmic tortuosity and nuclear pore permeability restrict calcein diffusivity to the same extent as does the bulk cytoplasm. These results argue that nuclear pores are not major obstacles to the movement of medium-sized molecules, such as calcein.

Based on ionic radius alone, protons would be expected to flow in and out of the nucleus much faster than calcein. However, extensive buffering restricts the movement of free protons [26]. In cytoplasm, proton diffusion is facilitated by low-molecular weight (mobile) buffers, such as histidyl dipeptides [17,18]. Effective proton diffusivity (D_{H}^{eff}) is expressed mathematically as a function of free H^+ diffusivity (D_{H}), mobile buffer diffusivity (D_{mob}), and mobile and fixed buffering capacities (\beta_{mob}, \beta_{fix}):

\[
D_{H}^{eff} = \frac{D_{H} \times \log(10) \times [H^{+}] + D_{mob} \times \beta_{mob} \approx D_{mob} \times \frac{\beta_{mob}}{\beta_{mob} + \beta_{fix}}}{\log(10) \times [H^{+}] + \beta_{mob} + \beta_{fix}}.
\]

The role of mobile buffers in facilitating the exchange of protons between cytoplasm and nucleoplasm was explored in adult myocytes by measuring the rate of nuclear acidification in the presence and absence of intrinsic mobile buffers (Fig. 4A). In resting (not paced), intact adult ventricular myocytes (i.e. with all intrinsic mobile buffers retained), transient exposure to acetate-containing solution reversibly acidified the cytoplasm (cSNARF1) and nucleus (Hoechst 33342). The delay in pH response between the two compartments was very small, indicating good diffusive coupling (Fig. 4Ai). Experiments were repeated in saponin-permeabilized myocytes superfused with internal solution of low buffering power (0.5 mM A. Hulikova, P. Swietach / Journal of Molecular and Cellular Cardiology 96 (2016) 26–37
Hepes and 3 mM MgATP) to minimize mobile buffering capacity (NB: lower [Hepes] would lead to difficulties in titrating solutions to a stable pH; lower [ATP] may lead to movement artifacts due to hyper-contracture). Switching between superfusates at pH 7 and 6.6 evoked a delayed pHnuc response reported by Hoechst 33342. To determine if this pHnuc response was rate-limited by slow delivery and wash-out of acid in the extra-nuclear region, myocytes that had not been loaded with Hoechst 33342 were first saponin-permeabilized and then exposed for 30 s to a solution containing 10 μM of the pH-reporter fluorescein conjugated to wheat germ agglutinin (WGA). WGA-fluorescein binds to membrane-tethered proteins, thus staining the sarcolemma and nuclear envelope (Fig. 4Aii) [27]. The fluorescence signal in extra-nuclear regions reported a faster pH response than nuclear Hoechst 33342, indicating that proton access to the myocyte’s nucleus across nuclear pores is the rate-limiting step that depends on mobile buffers availability.

The relationship between mobile buffering and proton transmission in and out of the nucleus was explored further in NHDF-Ad fibroblasts loaded with calcein (AM-ester) and Hoechst 33342. Compared to myocytes, fibroblasts have larger and more spherical nuclei for better resolution of pHnuc dynamics. Furthermore, fibroblast nuclei are more readily accessible upon surface-membrane permeabilization across a thin layer of cytoplasm. To permeabilize the surface membrane only, 0.005% saponin solution was withdrawn at the onset of calcein fluorescence loss (Fig. 4B). The rate of calcein loss from the nucleus provided a measure of calcein permeability across nuclear pores. By varying the composition of internal solution, experiments were performed in the presence of high (20 mM) or very low (0.5 mM) concentrations of Hepes, an exogenous mobile buffer. Since ATP is also a mobile pH buffer, [MgATP] was restricted to 2 mM (buffering <1 mM/pH). Unlike cardiac myocytes, fibroblasts do not undergo a contractile response (rigor) at this low [ATP]. Proton flux in and out of the fibroblast nuclei was evoked by switching rapidly between superfusates titrated to 7.1 and 6.6 (Fig. 4B), and the pHnuc response was reported by Hoechst 33342. Thus, each experiment measured a proton-to-calcein permeability ratio per nucleus. As shown in Fig. 4C, the permeability ratio was greater with higher [Hepes]. A plot of the permeability ratio against total mobile buffering capacity (Hepes plus MgATP; assuming pKₐ of 7.31 and 6.49, respectively [9]) shows that mobile buffering is obligatory for proton transport in and out of the nucleus. This relationship also shows that protons enter (and exit) the nucleus more slowly than calcein if the mobile buffering capacity is below ~10 mM/pH (nota bene, equivalent to the intrinsic mobile buffering capacity of cardiac cytoplasm [17]). In summary, proton traffic in and out of the nucleus is relatively slow and must be carried aboard mobile buffers.

3.4. Proton buffering by fixed moieties resident in the nucleus is weak

Mobile buffers account for half of the total intrinsic buffering capacity in myocyte cytoplasm; the remainder being attributed to fixed buffers [18]. Fixed buffering capacity can be measured by disturbing pHnuc in cells that have been permeabilized to remove intrinsic mobile buffers. Adult fibroblasts account for half of the total buffering capacity in myocyte cytoplasm; the remainder being attributed to fixed buffers [18]. Fixed buffering capacity can be measured by disturbing pHnuc in cells that have been permeabilized to remove intrinsic mobile buffers. Adult fibroblasts have larger and more spherical nuclei for better resolution of pHnuc dynamics. Furthermore, fibroblast nuclei are more readily accessible upon surface-membrane permeabilization across a thin layer of cytoplasm. To permeabilize the surface membrane only, 0.005% saponin solution was withdrawn at the onset of calcein fluorescence loss (Fig. 4B). The rate of calcein loss from the nucleus provided a measure of calcein permeability across nuclear pores. By varying the composition of internal solution, experiments were performed in the presence of high (20 mM) or very low (0.5 mM) concentrations of Hepes, an exogenous mobile buffer. Since ATP is also a mobile pH buffer, [MgATP] was restricted to 2 mM (buffering <1 mM/pH). Unlike cardiac myocytes, fibroblasts do not undergo a contractile response (rigor) at this low [ATP]. Proton flux in and out of the fibroblast nuclei was evoked by switching rapidly between superfusates titrated to 7.1 and 6.6 (Fig. 4B), and the pHnuc response was reported by Hoechst 33342. Thus, each experiment measured a proton-to-calcein permeability ratio per nucleus. As shown in Fig. 4C, the permeability ratio was greater with higher [Hepes]. A plot of the permeability ratio against total mobile buffering capacity (Hepes plus MgATP; assuming pKₐ of 7.31 and 6.49, respectively [9]) shows that mobile buffering is obligatory for proton transport in and out of the nucleus. This relationship also shows that protons enter (and exit) the nucleus more slowly than calcein if the mobile buffering capacity is below ~10 mM/pH (nota bene, equivalent to the intrinsic mobile buffering capacity of cardiac cytoplasm [17]). In summary, proton traffic in and out of the nucleus is relatively slow and must be carried aboard mobile buffers.

3.4. Proton buffering by fixed moieties resident in the nucleus is weak

Mobile buffers account for half of the total intrinsic buffering capacity in myocyte cytoplasm; the remainder being attributed to fixed buffers [18]. Fixed buffering capacity can be measured by disturbing pHnuc in cells that have been permeabilized to remove intrinsic mobile buffers. Adult fibroblasts have larger and more spherical nuclei for better resolution of pHnuc dynamics. Furthermore, fibroblast nuclei are more readily accessible upon surface-membrane permeabilization across a thin layer of cytoplasm. To permeabilize the surface membrane only, 0.005% saponin solution was withdrawn at the onset of calcein fluorescence loss (Fig. 4B). The rate of calcein loss from the nucleus provided a measure of calcein permeability across nuclear pores. By varying the composition of internal solution, experiments were performed in the presence of high (20 mM) or very low (0.5 mM) concentrations of Hepes, an exogenous mobile buffer. Since ATP is also a mobile pH buffer, [MgATP] was restricted to 2 mM (buffering <1 mM/pH). Unlike cardiac myocytes, fibroblasts do not undergo a contractile response (rigor) at this low [ATP]. Proton flux in and out of the fibroblast nuclei was evoked by switching rapidly between superfusates titrated to 7.1 and 6.6 (Fig. 4B), and the pHnuc response was reported by Hoechst 33342. Thus, each experiment measured a proton-to-calcein permeability ratio per nucleus. As shown in Fig. 4C, the permeability ratio was greater with higher [Hepes]. A plot of the permeability ratio against total mobile buffering capacity (Hepes plus MgATP; assuming pKₐ of 7.31 and 6.49, respectively [9]) shows that mobile buffering is obligatory for proton transport in and out of the nucleus. This relationship also shows that protons enter (and exit) the nucleus more slowly than calcein if the mobile buffering capacity is below ~10 mM/pH (nota bene, equivalent to the intrinsic mobile buffering capacity of cardiac cytoplasm [17]). In summary, proton traffic in and out of the nucleus is relatively slow and must be carried aboard mobile buffers.
myocytes, loaded with Hoechst 33342 were permeabilized and superfused with internal solution containing 0.5 mM Hepes and 3 mM ATP, to minimize mobile buffering, and 2 mM of 6-nitroveratraldehyde (NVA), a highly permeant photolabile H+-donor. pH$_{\text{nuc}}$ was reported by Hoechst 33342 under low intensity excitation to minimize background NVA photolysis. Higher intensity 405 nm excitation (raised ~100-fold relative to Hoechst excitation) was used to release protons from NVA in a controlled manner. A series of 5 exposures to high intensity 405 nm laser produced a large pH$_{\text{nuc}}$ response (Fig. 5A; black trace). Assuming complete photolysis of NVA, the amplitude of this pH$_{\text{nuc}}$ response suggests that nuclear pH buffering is very low (2 mM NVA evoking a 1.6 pH$_{\text{nuc}}$ change is equivalent to a buffering capacity of 2/1.6 = 1.3 mM/pH). Of this, ~1 mM/pH buffering can be attributed to the presence of Hepes plus ATP. The relaxation time constant of the evoked pH$_{\text{nuc}}$ transient was 8.9 ± 1.9 s, confirming a previous result (Fig. 4A) that the efflux of protons from the nucleus is slow in the absence of intrinsic mobile buffers. To demonstrate the effect of intrinsic mobile buffers on pH$_{\text{nuc}}$ transients, experiments were repeated on intact myocytes loaded with Hoechst 33342 and superfused with ONaOa solution. Uncaging protons using the same amount of energy as with permeabilized cells produced considerably smaller pH changes in nuclei that retain intrinsic mobile buffers (Fig. 5A; gray trace).

Fig. 4. Quantifying proton transmission into the nucleus. (A) (i) Intact adult ventricular myocyte (not paced electrically), loaded with cSNARF1 and Hoechst 33342. Transient exposure to 80 mM acetate evoked a rapid acidification in cytoplasm and, without delay, in the nucleus (average of 7 cells; SEMs < 0.05 pH units; not shown for clarity). (ii) Permeabilized myocyte, superfused with low-buffer solution (0.5 mM Hepes, 3 mM ATP) loaded with Hoechst 33342 (to measure nuclear pH) or, in separate experiments, WGA-fluorescein (to measure extranuclear pH in nuclear-stained regions). Switching between superfusates at pH 7 and 6.6 evokes a rapid extra-nuclear pH response and a slower nuclear pH response (average of 8 cells; SEMs < 0.03 for Hoechst 33342 and ~0.06 for WGA-F; not shown for clarity). (B) (i) NHDF fibroblasts loaded with calcine and Hoechst 33342. (ii) Protocol for permeabilizing cells (0.005% saponin for ~10 s at *) in internal solution buffered with 0.5 mM Hepes. Rate of nuclear calcine loss estimates calcine permeability. Transient exposure to acidic superfusate evokes proton traffic in and out of the nucleus, providing a read-out of proton permeability across nuclear pores. (C) Calcine permeability vs proton permeability with best-fit lines. Experiments performed using superfusates buffered with either 0.5 (n = 37) or 20 mM Hepes (n = 75). (D) Proton-to-calcine permeability ratio expressed as a function of total mobile buffering capacity supplied by superfusate (Hepes, pK$_a$ = 7.31; MgATP, pK$_a$ = 6.49). Inset: Proton transmission to the nucleus is facilitated by mobile buffers (M.B.).
Fixed buffering capacity residing in the nucleus was measured using an alternative method. \(\text{pH}_{\text{nuc}} \) transients were evoked by exposing permeabilized cells to internal solution containing weak acids or bases. Hoechst 33342-loaded HCT116 cells were used for these experiments because their nuclei are larger (radius 5.8 ± 0.3 \(\mu \text{m} \)) and more spherical than those of the adult myocyte, while the cytoplasmic volume is very small. These conditions improve the power to resolve \(\text{pH}_{\text{nuc}} \) transients and minimize the distance from superfusate to the nucleus for more responsive \(\text{pH}_{\text{nuc}} \) manipulations. Upon saponin-permeabilization in 20 mM Hepes internal solution at pH 7.0, cells were transiently exposed to solution containing 40 mM ammonium/ammonia and then to solution containing 40 mM acetate/acetic acid at constant pH. These solution maneuvers did not alter \(\text{pH}_{\text{nuc}} \), as expected from the high buffering capacity provided by Hepes (Fig. 5Bi). Experiments were repeated in solutions with very low (0.5 mM) [Hepes]. Exposure to ammonium/ammonia solution produced a transient decrease of \(\text{pH}_{\text{nuc}} \) of 0.29 units; whereas acetate/acetic acid solution evoked a 0.19-unit \(\text{pH}_{\text{nuc}} \) transient in the opposite direction (Fig. 5Bii). These responses suggest that in nucleoplasm, the charged species (ammonium, acetate) diffuse faster than the uncharged conjugate (ammonia, acetic acid). This behavior may be attributed to regions of nuclear hydrophobicity (low dielectric constant) [21,28], which may retard \(\text{NH}_3/\text{acetic acid} \) diffusion. On such a model, entry of ammonium (an acid) ahead of ammonia reduces \(\text{pH}_{\text{nuc}} \) and entry of acetate (a base) ahead of acetic acid raises \(\text{pH}_{\text{nuc}} \) (Fig. 5Biii). The size of \(\text{pH}_{\text{nuc}} \) transients suggests that overall pH buffering is low. 40 mM \(\text{NH}_4^+ \) entering a compartment at pH 6.9 would, at equilibrium, produce 0.3 mM \(\text{NH}_3 \) and 0.3 mM \(\text{H}^+ \) \((\text{eq} \ 40 \times K_{\text{NH}_4^+/\text{H}^+} / ([\text{H}^+] + K_{\text{NH}_4^+}), \ K_{\text{NH}_4^+} = 10^{-9.03} \text{ M}) \). By analogy, 40 mM acetate would react with 0.16 mM \(\text{H}^+ \) to generate 0.16 mM acetic acid \((\text{eq} \ 40 \times [\text{H}^+] / ([\text{H}^+] + K_{\text{HAc}})) \).

![Image](image_url)

Fig. 5. Estimating fixed pH buffering capacity in the nucleus. (A) pH response in adult ventricular myocyte nucleus (Hoechst 33342-loaded) to photolytic uncaging of protons from 2 mM 6-nitroveratraldehyde in 16 × 16 \(\mu \text{m} \) region wholly containing the nucleus. In permeabilized cells superfused with low-buffer internal solution (0.5 mM Hepes, 3 mM ATP), the pH response is large and decays slowly \((n = 6) \). Experiments repeated on intact cells (superfused with 0Na0Ca), demonstrating smaller pH responses to the same uncaging energy \((n = 6) \). (B) Permeabilized, Hoechst 33342-loaded HCT116 cells. (i) Superfusion with internal solution containing 20 mM Hepes \((n = 10) \). Exposure to 40 mM \(\text{NH}_4^+/\text{NH}_3 \) containing solution or 40 mM acetate/acetic acid containing solution at pH 7.0 did not alter nuclear pH. Calibration of Hoechst 33342 using superfusates titrated to pH 6.5 and 7.5 at end of experiment. (ii) Superfusion with 0.5 mM Hepes-buffered internal solution. Addition and removal of weak acid/weak base now evokes major changes in nuclear pH \((n = 15) \). (iii) Model fits. Inset: scheme illustrating principle of nuclear pH transients.
Based on these estimates of acid uptake/release and the amplitude of pH\textsubscript{nucl} transients, buffering capacity is estimated to be \(-1\) mM/pH. For a more accurate calculation that considers the slower entry of uncharged species, a model [29] was used for best fitting

\[
\frac{d[pH]}{dt} = -\frac{k_{on} \times K_{NH4+} \times [NH_4^+] - k_{off} \times [NH_3] \times [H^+] + (k_{on} \times K_{HAc} \times [HAc] - k_{off} \times [Ac^-] \times [H^+])}{p_{fix}}
\]

\[
\frac{d[NH_3]}{dt} = D_{NH3} \times \frac{\left(d^2[NH_3] \right)}{dr^2} \left(2 \times \frac{d[NH_3]}{dr} \right) + (k_{on} \times K_{NH4+} \times [NH_4^+] - k_{off} \times [NH_3] \times [H^+])
\]

\[
\frac{d[NH_4^+]}{dt} = D_{NH4^+} \times \frac{\left(d^2[NH_4^+] \right)}{dr^2} \left(2 \times \frac{d[NH_4^+]}{dr} \right) - (k_{on} \times K_{NH4+} \times [NH_4^+] - k_{off} \times [NH_3] \times [H^+])
\]

\[
\frac{d[Ac^-]}{dt} = D_{Ac} \times \frac{\left(d^2[Ac^-] \right)}{dr^2} + (k_{on} \times K_{HAc} \times [HAc] - k_{off} \times [Ac^-] \times [H^+])
\]

\[
\frac{d[HAc]}{dt} = D_{HAc} \times \frac{\left(d^2[HAc] \right)}{dx^2} - (k_{on} \times K_{HAc} \times [HAc] - k_{off} \times [Ac^-] \times [H^+])
\]

Here, \(k_{on}\) is the protonation constant \((10^{19} \text{ s}^{-1})\), \(K_{NH4+}\), and \(K_{HAc}\) are the ammonium and acetic acid dissociation constants \((10^{-9.02}, 10^{-4.5})\), \(r\) is the radial dimension (spherical symmetry), \(p_{fix}\) is the fixed buffering capacity, \(D_{NH4^+}\) and \(D_{Ac}\) are the ammonium and acetate diffusion coefficients \((1270\) and \(700 \text{ m}^2/\text{s})\) and \(D_{NH3}\) and \(D_{HAc}\) are the restricted ammonia and acetic acid diffusion coefficients [29]. To simulate exposure to weak acid/base, the boundary condition \((at r = \text{nucleus radius})\) was set to represent the equilibrium composition of acetate or ammonium containing solution. Best-fitting to data yielded a \(\beta\) of 0.3 mM/pH and uncharged species diffusivity that was 3.7 orders of magnitude lower than the conjugate ion \((\text{Fig. 5Biii})\). Since 0.5 mM Hesper contributes \(-0.2 \text{ mM/pH buffering at pH 6.9\), fixed buffering in nuclei is inferred to be very weak.\)

3.5. Protons diffuse faster in the nucleus than in cytoplasm

The observations so far demonstrate that mobile buffers enter nuclei freely across nuclear pores (Fig. 4) and that fixed buffering capacity residing in the nucleus is very low (Fig. 5). Applying this information to Eq. (1) predicts that protons should diffuse faster in nucleoplasm than in cytoplasm (that is, the mobile fraction of buffering is higher in the nucleus). This prediction was tested experimentally in adult ventricular myocytes superfused with \(\text{CO}_2/\text{HCO}_3^–\)-buffered Tyrode containing 0.5 mM 6-nitroveratraldehyde, a highly membrane-permeant, photolabile \(\text{H}^+\)-donor. By restricting the acid-uncaging site \((i.e. 405 \text{ nm light exposure})\) to a small region of the cell and iterating between localized uncaging and whole-cell pH-image acquisition, it is possible to experimentally produce a point-source of acid and measure its dissipation throughout the cell [18]. Since high spatial resolution is required for measuring proton diffusion, Hoescht 33342 could not be used because the higher-intensity 405 nm laser needed for adequate spatial mapping of the nucleus would concurrently uncage acid from NVA. Thus, cSNARF1 fluorescence was used to measure diffusivity in cytoplasmic and nuclear regions. Myocytes were AM-loaded with cSNARF1 and fluorescence was recorded ratiometrically in linescan mode to improve temporal resolution. Between line-scanning for cSNARF1 (555 nm excitation), an high-intensity laser \((405 \text{ nm})\) uncaged protons in a small segment of the linescan (Fig. 6A). This protocol had a temporal resolution \((5.3 \text{ ms})\) sufficient to resolve diffusion delays over the small dimensions of cardiac nuclei \((20 \mu\text{m} or less in long axis)\). To measure proton diffusivity in nucleoplasm, linescans were positioned to run along the long-axis of nuclear regions (Fig. 6Ai). In separate experiments, cytoplasmic diffusivity was determined from linescans that omit nuclear regions (Fig. 6A). This protocol had a temporal resolution \((5.3 \text{ ms})\) sufficient to resolve diffusion delays over the small dimensions of cardiac nuclei \((20 \mu\text{m} or less in long axis)\). To measure proton diffusivity in nucleoplasm, linescans were positioned to run along the long-axis of nuclear regions (Fig. 6Ai). In separate experiments, cytoplasmic diffusivity was determined from linescans that omit nuclear regions (Fig. 6Aii). The effective proton diffusion coefficient \((D_{fi}^p)\) is inversely related to the time-delay between the proximal and distal \([\text{H}^+]\) time course (Fig. 6A). To quantify \(D_{fi}^p\), \([\text{H}^+]\) time courses in two regions of interest along the linescan were best-fitted to simulations generated by a one-dimensional diffusion model [18]. The model solved the diffusion problem over the entire myocyte-length with reflection boundary conditions, and with a constant point-source of acid \((F)\) positioned at the uncaging site:

\[
\frac{d[H^+]}{dt} = D_{fi}^p \times \frac{\partial^2 [H^+]}{dx^2} + F(x).
\]

Results demonstrate that protons diffuse twice as fast in nucleoplasm compared to bulk cytoplasm (Fig. 6B), in agreement with the prediction of Eq. (1).

3.6. Nuclear \(\text{Ca}^{2+}\) dynamics can regulate the \(\text{pH}\) gradient between nucleus and cytoplasm

Inositol 1,4,5-trisphosphate \((\text{InsP}_3)\), acting on \text{InsP}_3 receptors, regulates gene expression by triggering \(\text{Ca}^{2+}\) release from the nuclear envelope \((\text{NE})\), a structure that is continuous with the sarcoplasmic reticulum (SR) [12–14]. In the cytoplasm, \([\text{Ca}^{2+}]\) and \(\text{pH}\) are coupled via chemical interactions, such as binding to common buffers [9]. However, the relationship between nuclear \([\text{Ca}^{2+}]\) and \(\text{pH}_{\text{nucl}}\) is unknown. This was explored in adult ventricular myocytes dualy loaded with cSNARF1 and Hoechst 33342. Myocytes, superfused in \(\text{CO}_2/\text{HCO}_3^–\)-buffered Tyrode, were paced \((1 \text{ Hz})\) to load the SR/NE with \(\text{Ca}^{2+}\). Following a 3 minute resting period, \(\text{pH}_{\text{nucl}}\) was only marginally more alkaline than cytoplasm \((\Delta\text{pH} = \text{pH}_{\text{nucl}} - \text{pH}_{\text{cyto}} = 0.0324 \pm 0.0163)\). Treatment with the \text{InsP}_3 receptor antagonist 2-aminoethoxydiphenyl borate \((2-\text{APB}; 5 \mu\text{M})\) made the nucleus more alkaline relative to the cytoplasm (Fig. 7A). Even after 20 min of treatment with 2-APB, \(\text{pH}_{\text{nucl}}\) was stably alkaline-shifted relative to \(\text{pH}_{\text{cyto}}\) \((\Delta\text{pH} = 0.092 \pm 0.017; \text{Fig. 7B})\). Emptying the SR/NE \(\text{Ca}^{2+}\) store with the SERCA inhibitor thapsigargin \((10 \mu\text{M}; \text{pre-treatment for 10 min})\) did not mimic the effect of 2-APB on \(\text{pH}_{\text{nucl}}\), but collapsed \(\Delta\text{pH}\) (Fig. 7B). Blocking SERCA is expected to raise nucleoplasm \([\text{Ca}^{2+}]\) as NE/ER stores become depleted. In contrast, 2-APB lowers nucleoplasm \([\text{Ca}^{2+}]\) by curtailing the leak [30]. Thus, \(\text{pH}_{\text{nucl}}\) in adult myocytes is influenced by \(\text{Ca}^{2+}\) signaling, producing the highest \(\text{pH}_{\text{nucl}}\) when nuclear \([\text{Ca}^{2+}]\) is low. Under physiological conditions, resting levels of \(\text{Ca}^{2+}\) signaling in the fully differentiated adult myocyte produce modestly alkaline nuclei. In contrast, nuclei of neonatal myocytes were more acidic than the surrounding cytoplasm \((\Delta\text{pH} = -0.041 \pm 0.012)\). \(\Delta\text{pH}\) in neonatal and adult myocytes were collapsed by the \(K^+/\text{H}^+\) ionophore nigericin \((10 \mu\text{M})\) applied in high-\(K^+\) superfusates (Fig. 2).
4. Discussion

This study explored proton dynamics in nuclei using a combination of fluorescence imaging and mathematical modeling. Biophysical characterization of the behavior of protons in the nucleus is necessary for understanding the regulation of pHnuc. This information is relevant to nuclear biology because nucleic acids and nuclear proteins react with protons. To the best of our knowledge, this is the first study to simultaneously measure the pH in the nucleus and its surrounding cytoplasm in wild-type cardiac myocytes using non-protein fluorescent probes loaded passively into cells. This was achieved using two spectrally resolvable dyes, Hoechst 33342 and cSNARF1, which emit pH-sensitive (but Ca2+-insensitive) fluorescence that can be quantified ratiometrically. Unlike pH-sensing proteins expressed in the nucleus [31], Hoechst dyes intercalate with DNA and probe pH in the DNA nano-environment, which is the domain relevant for regulating gene expression. The relevance of signal compartmentalization is emphasized by the ability of nuclear sensors to distinguish between Ca2+ evoked by InsP3 signaling and ‘contraction’ Ca2+ evoked electrically [15]. Dual emission ratiometry eliminates motion artifacts and allows for accurate calibration in units of pH. Since measurements of nuclear and cytoplasmic pH can be performed on the same cell, the power to resolve pH gradients is high.

Proton dynamics in the cytoplasm are greatly influenced by the exceptionally high buffering capacity. In cardiac myocytes, the large (~mM/min) proton fluxes driven by the high turnover of ATP per cardiac cycle do not substantially affect cytoplasmic pH. As shown in Fig. 1, bulk cytoplasmic [H+] fluctuates by no more than 5% during a single cardiac cycle of an adult myocyte, in contrast to the dramatic changes in membrane potential, [Ca2+] and energetics. All parts of the myocyte that are adequately coupled by diffusion with the bulk cytoplasm are expected to have access to this buffering capacity. It is generally accepted that small ions can enter and exit the nucleus freely across large nuclear pores. Indeed, our data show that calcein, a medium-sized molecule similar in mass to ATP, diffuses into the nucleus as rapidly as it...

Fig. 6. Measuring proton diffusion coefficient in the adult myocyte nucleus. (A) cSNARF1-loaded myocyte. (i) Proton diffusivity measured along linescan through nuclear region (pinhole 2 μm). White region represents area of photolytic uncaging of acid from membrane permeant donor 6-nitroveratraldehyde (0.5 mM), supplied from superfusate. Uncaging alternated with linescanning for cSNARF1. Delay in [H+] rise measured at the proximal (nearest to the uncaging site, labeled P) and distal end (labeled D) of nucleus yields best-fit diffusion coefficient. Smooth lines show best-fit model simulation to data. (ii) Proton diffusivity measured along linescan that by-passes nuclear regions. (B) Proton diffusivity in the nucleus was twice as fast as in the cytoplasm (n = 17, 11; P = 0.002).
nuclei were significantly more acidic (P = 0.0072 for nuclear response; P = 0.0125 for cytoplasmic response). (B) pH gradient across the nuclear envelope (ΔpH) (Fig. 7). Intriguingly, the change in ΔpH was stable which indicates that an uphill transport mechanism must balance dissipative proton back flux. Previous studies have measured nuclear pH to be higher than cytoplasm [28]. This apparent ΔpH gradient may arise from a trans-NE potential (V_{NE}), Gibb–Donnan forces, differences in ionization, or an artifact of dye calibration [21]. Our finding that ΔpH can change dynamically with maneuvers that affect Ca2+ signaling argues against dye artifacts. Moreover, addition of nigericin (K+/H+) abolished pH gradients (Fig. 2). Previous electrophysiological measurements have shown that the nucleus is negatively charged relative to the cytoplasm (V_{NE} in the range —10 to —5 mV [21]), which would per se result in a negative ΔpH of ~0.1 units at equilibrium (acidic nucleus). Instantaneously blocking Ca2+ release via InsP3 receptors at the inner nuclear membrane could be expected to make the nucleus more negatively charged, i.e. more acidic. This prediction goes against our experimental observations. The excess of anionic charge in the nucleus has been suggested to generate a Gibbs–Donnan equilibrium favoring nuclear acidity. Blocking Ca2+ release may reduce the extent to which anionic charge is neutralized by Ca2+, thereby exacerbating the Gibbs–Donnan effect. Again, this prediction contradicts our findings. The nucleus is more hydrophobic than the cytoplasm, and hence has a lower dielectric constant. In vitro, this tends to decrease weak acid ionization [28] and would predict an alkaline pHnuc (Fig. 8A), as observed at the steady-state (Fig. 7). However, this model, alone, is inadequate because it cannot explain how abrupt inhibition of Ca2+ signaling could evoke a change in ΔpH. The underlying mechanism must account for the observation that increasing NE Ca2+ load (thapsigargin < paced cells < 2-APB) correlates with pHnuc (Fig. 7B).

The circuit for Ca2+ signaling in the myocyte nucleus is proposed to involve release at the inner nuclear membrane (via InsP3 receptors) and uptake at the outer nuclear membrane (via SERCA pumps). As shown experimentally by others [30], blocking release would lower [Ca2+]nuc (Fig. 8B). In contrast, inhibiting SERCA activity would raise [Ca2+]nuc isoforms are known to target to the nucleus [33], thus CO2/HCO3− may be relatively ineffective as a mobile carrier of nuclear protons. Thus, considering the normal range of myocyte mobile buffering, protons are transmitted in and out of the nucleus no faster than calcine, despite being 600-fold smaller (Fig. 4D).

Fixed pH buffers resident in the nucleus cannot facilitate proton transport, but will influence the magnitude and rate of pHnuc changes. Surprisingly, our data (Fig. 5) suggest that fixed buffering (pHb) in the nucleus is very weak. This was inferred from the amplitude of pHnuc transients evoked by photolytic acid uncaging in permeabilized adult myocytes and exposure of permeabilized HCT116 to weak acids or bases. Low pHnuc (~1 mM/pH) is somewhat surprising, given the presence of protonatable sites on nucleic acids and nuclear proteins. However, half of the nuclear mass is DNA which is only a weak buffer at resting pH because the pKₐ of its bases and phosphate backbone is outside the physiological pH range. A consequence of low nuclear pHnuc is at least three-fold. Firstly, the nucleus is reliant on other parts of the cell to supply buffers for protecting the genome against pH disturbances. Secondly, the nucleus is more prone to developing out-of-equilibrium pH transients during evoked proton fluxes. Thirdly, effective proton diffusivity (∆Deff) in the nucleus is predicted to be faster than in bulk cytoplasm. In myocyte cytoplasm at resting pHc, a third of total buffering capacity is due to CO2/ HCO3− [18]. Of the remainder, a third is attributable to intrinsic mobile buffers. Therefore, 40–50% of total buffering in cytoplasm arises from fixed moieties. Assuming Dmob and ∆Dmob are no different between nucleus and cytoplasm, Eq. (1) predicts a doubling of diffusivity in the nucleus. Indeed, ∆D eff in the nucleus was found to be twice its cytoplasmic value (Fig. 6).

The nucleus hosts a specialized Ca2+ signaling apparatus that is implicated in the control of gene expression. Our data show that altering nuclear Ca2+ signaling also affects pHnuc. Blocking InsP3 receptor channels (with 2-APB) was found to selectively alkalize pHnuc, thereby increasing the magnitude of the pH gradient across the nuclear envelope (ΔpH) (Fig. 7). Intriguingly, the change in ΔpH was stable which indicates that an uphill transport mechanism must balance dissipative proton back flux. Previous studies have measured nuclear pH to be higher than cytoplasm [28]. This apparent ΔpH gradient may arise from a trans-NE potential (V_{NE}), Gibb–Donnan forces, differences in ionization, or an artifact of dye calibration [21]. Our finding that ΔpH can change dynamically with maneuvers that affect Ca2+ signaling argues against dye artifacts. Moreover, addition of nigericin (K+/H+) abolished pH gradients (Fig. 2). Previous electrophysiological measurements have shown that the nucleus is negatively charged relative to the cytoplasm (V_{NE} in the range —10 to —5 mV [21]), which would per se result in a negative ΔpH of ~0.1 units at equilibrium (acidic nucleus). Instantaneously blocking Ca2+ release via InsP3 receptors at the inner nuclear membrane could be expected to make the nucleus more negatively charged, i.e. more acidic. This prediction goes against our experimental observations. The excess of anionic charge in the nucleus has been suggested to generate a Gibbs–Donnan equilibrium favoring nuclear acidity. Blocking Ca2+ release may reduce the extent to which anionic charge is neutralized by Ca2+, thereby exacerbating the Gibbs–Donnan effect. Again, this prediction contradicts our findings. The nucleus is more hydrophobic than the cytoplasm, and hence has a lower dielectric constant. In vitro, this tends to decrease weak acid ionization [28] and would predict an alkaline pHnuc (Fig. 8A), as observed at the steady-state (Fig. 7). However, this model, alone, is inadequate because it cannot explain how abrupt inhibition of Ca2+ signaling could evoke a change in ΔpH. The underlying mechanism must account for the observation that increasing NE Ca2+ load (thapsigargin < paced cells < 2-APB) correlates with pHnuc (Fig. 7B).

The circuit for Ca2+ signaling in the myocyte nucleus is proposed to involve release at the inner nuclear membrane (via InsP3 receptors) and uptake at the outer nuclear membrane (via SERCA pumps). As shown experimentally by others [30], blocking release would lower [Ca2+]nuc (Fig. 8B). In contrast, inhibiting SERCA activity would raise [Ca2+]nuc isoforms are known to target to the nucleus [33], thus CO2/HCO3− may be relatively ineffective as a mobile carrier of nuclear protons. Thus, considering the normal range of myocyte mobile buffering, protons are transmitted in and out of the nucleus no faster than calcine, despite being 600-fold smaller (Fig. 4D).
Normal Ca2+ signaling is expected to produce intermediate [Ca2+]\textsubscript{nuc}. Raising [Ca2+]\textsubscript{nuc} may acidify the nucleus by displacing protons from buffering moieties that also bind Ca2+ ions. Such a competitive interaction is known to occur in cytoplasm and is mediated, at least in part, by histidyl dipeptides [9] which are predicted to be a major contributor to nuclear pH buffering. However, diffusive coupling (albeit slow) between the nucleus and cytoplasm would eventually dissipate pH gradients. Thus, an uphill form of proton transport is required to stabilize ΔpH.

The recently described cytoplasmic Ca2+/H+ exchanger [9] may provide a mechanism for stabilizing pH gradients across the NE. According to this model, a mobile buffer that binds Ca2+ ions and protons competitively can produce Ca2+ transport up a [H+] gradient, or vice versa. To explore how this may apply to the nucleus, we first consider Ca2+ cycling across the NE. In order to couple InsP\textsubscript{3} receptor release with SERCA uptake, Ca2+ ions must diffuse via nuclear pores. The nuclear pore density is 10–40 per μm2 [21] and assuming that this is distributed evenly, the longest InsP\textsubscript{3} receptor-to-SERCA path-length can be 35–130 nm, i.e. a distance that precludes free Ca2+ ion diffusion and implies a role for Ca2+ buffers in completing the circuit [34]. SR Ca2+ release in diastole is 0.3 μM/s [35] and increases substantially during electrical stimulation. If a comparable flux of Ca2+ is released into the nucleoplasm, it would drive a major efflux of Ca2+-bound buffers from the nucleus. The continuous efflux of Ca2+-bound buffer provides an opportunity for uphill transport of cargo aboard the returning (Ca2+-free) buffer. The Ca2+-free buffer is expected to be more anionic and have higher proton affinity (K\textsubscript{a}). If this were in the physiological pH range, the returning buffer molecules would carry a significant proton cargo to acidify the nucleus. Since protons can only enter the nucleus aboard mobile buffers, dissipative back-flux would be readily surmountable. The modeling framework presented in [9] can be used to predict the conditions that favor a large trans-NE [H+]/[Ca2+] gradient relative to the [Ca2+] gradient (Δ[H+]/Δ[Ca2+]). A high Δ[H+]/Δ[Ca2+] ratio would be attained by a combination of high Ca2+ affinity of mobile buffers, high nuclear Ca2+ buffering relative to cytoplasm, and low β\textsubscript{NS}. Thus, the low nuclear pH measured experimentally (Fig. 5) would support the development of ΔpH during Ca2+ signals. The inversion of ΔpH from positive (alkaline nucleus) in adults to negative (acidic nucleus) in neonates may relate to different degrees of nuclear Ca2+ signaling engaged at different stages of development and differentiation.

5. Conclusions

Despite the presence of high-conductance nuclear pores, protons can only enter (or exit) the nucleus when bound to mobile buffers. This carrier-mediated transport results in surprisingly slow proton transmission. Mobile buffers, ultimately supplied by the cytoplasm, account for the majority of nuclear pH buffering because of the low concentration of fixed buffering moieties in nucleoplasm. As a result of this unique buffering milieu, protons in the nucleus diffuse faster than in the cytoplasm. Nuclear Ca2+ signals can evoke changes in nuclear pH, and generate stable pH gradients, possibly maintained as a result of a Ca2+/H+ exchange process involving mobile buffers that bind Ca2+ ions and protons competitively. Nuclear biology is strongly regulated by Ca2+ signaling, but the importance of pH\textsubscript{nuc} as an intermediary of this cascade or as a bona fide signal merits further investigation.

Fig. 8. Nuclear pH-Ca2+ interactions. Hypothesis. (A) Nucleoplasm hydrophobicity (low dielectric constant) reduces ionization of protonated sites, resulting in alkaline nuclear pH relative to cytoplasm. NE—nuclear envelope; ONM—outer nuclear membrane; INM—inner nuclear membrane. (B) Loading the NE with Ca2+ by SERCA pumps at the ONM, in the absence of Ca2+ leak across InsP\textsubscript{3} receptors (InsP\textsubscript{3}R) on the INM, results in low nucleoplasmic [Ca2+]. This maintains an alkaline pH\textsubscript{nuc}. (C) Inhibition of SERCA allows nuclear [Ca2+] to rise. This acidifies the nucleus, possibly by displacing protons from Ca2+-binding sites. (D) During normal signaling, Ca2+ released from the NE via open InsP\textsubscript{3}R is recycled back to the NE by SERCA. Since these processes operate at opposite sides of the NE, they must be coupled by Ca2+ diffusion across nuclear pores. This process may maintain nuclear pH at a more acidic level by exchanging Ca2+-bound mobile buffers with protonated mobile buffers.
Disclosures

None declared.

Acknowledgments

We thank Professor Richard Vaughan-Jones for valuable comments and mentoring throughout the project. We thank Dr. Mark Richards for isolating adult cardiac myocytes and Drs. Alexander Burduga and Stefania Monterisi for cultivating neonatal cardiac myocytes. Supported by the British Heart Foundation (PG/12/2/39324) and the EP Abraham Fund (CF 255). P.S. is a Royal Society University Research Fellow.

References

[1] R.D. Vaughan-Jones, K.W. Spitzer, P. Swietach, Intracellular pH regulation in heart, J. Mol. Cell. Cardiol. 46 (2009) 318–331.
[2] E.J. Crampin, N.P. Smith, A.E. Langham, R.H. Clayton, C.H. Orchard, Acidosis in models of cardiac ventricular myocytes, Philos. Transact. A Math. Phys. Eng. Sci. 364 (2006) 1171–1186.
[3] L. Chen, J.N. Glover, P.G. Hogan, A. Rao, S.C. Harrison, Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA, Nature 392 (1998) 42–48.
[4] D.C. Mikles, V. Blat, B.J. Schuchardt, B.J. Deegan, K.L. Seldeen, C.B. McDonald, et al., pH modulates the binding of early response protein 1 transcription factor to DNA, FEBS J. 280 (2013) 3669–3684.
[5] B.J. Deegan, K.L. Seldeen, C.B. McDonald, V. Blat, A. Farooq, Binding of the ERalpha nuclear receptor to DNA is coupled to proton uptake, Biochemistry 49 (2010) 5978–5988.
[6] T. Lundback, S. van Den Berg, T. Hard, Sequence-specific DNA binding by the glucocorticoid receptor/DNA-binding domain is linked to a salt-dependent histidine protonation, Biochemistry 39 (2000) 8909–8916.
[7] P.H. Sugden, Signaling in myocardial hypertrophy: life after calcineurin? J. Gen. Physiol. 139 (2012) 407–414.
[8] M.J. Kushnerick, Multiple equilibria of cations with metabolites in muscle bioenergetics, Am. J. Physiol. 272 (1997) C1739–C1747.
[9] H. Gorner, Direct and sensitized photoprocesses of bis-benzimidazolyl dyes and the effects of surfactants and DNA, Photochem. Photobiol. 73 (2001) 339–348.
[10] J.A. Thomas, R.N. Buchsbaum, A. Zimniak, E. Racker, Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ, Biochemistry 18 (1979) 2210–2218.
[11] M. Irving, J. Maylie, N.L. Sizoo, W.K. Chandler, Intracellular diffusion in the presence of mobile buffers, Application to proton movement in muscle, Biophys. J. 57 (1990) 717–721.
[12] M.A. Schroeder, M.A. Ali, A. Hulikova, C.T. Supuran, K. Clarke, R.D. Vaughan-Jones, et al., Extramitochondrial domain rich in carbonic anhydrate activity improves myocardial energetics, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) E958–E967.
[13] O. Seksek, J. Bolard, Nuclear pH gradient in mammalian cells revealed by laser microscopyfluorimetry, J. Cell Sci. 109 (Pt 1) (1996) 257–262.
[14] P. Swietach, C.H. Leem, K.W. Spitzer, R.D. Vaughan-Jones, Experimental generation and computational modeling of intracellular pH gradients in cardiac myocytes, Biophys. J. 88 (2005) 3018–3037.
[15] S. Ljubojevic, S. Wallther, M. Aigasoe, S. Sedej, B. Pieszek, J. Kochskamer, In situ calibration of nucleoplasmic versus cytoplasmic Ca2+ concentration in adult cardiomyocytes, Biophys. J. 100 (2011) 2356–2366.
[16] J. Llopis, J.M. McCaffery, A. Miyawaki, M.G. Farquhar, R.Y. Tsien, Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins, Proc. Natl. Acad. Sci. U. S. A. 95 (1998) 6803–6808.
[17] S. Cukiernian, E. Etu, Grothuss1 and other unfinished stories, Biochim. Biophys. Acta 1757 (2006) 876–885.
[18] C.T. Supuran, Carbonic anhydrases: novel therapeutic applications for inhibitors and activators, Nat. Rev. Drug Discov. 7 (2008) 168–181.
[19] E. Neher, Usefulness and limitations of linear approximations to the understanding of Ca2+ signals, Cell Calcium 24 (1998) 345–357.
[20] R.A. Bassani, D.M. Bers. Rate of diastolic Ca release from the sarcoplasmic reticulum of intact rabbit and rat ventricular myocytes, Biophys. J. 68 (1995) 2015–2022.