CUDA implementation of Wagener’s 2D convex hull PRAM algorithm

Colm Ó Dúnláing*

Mathematics, Trinity College, Dublin 2, Ireland

May 5, 2014

Abstract

This paper describes a CUDA implementation of Wagener’s PRAM convex hull algorithm in \(\mathbb{R}^2 \). It is presented in Knuth’s literate programming style.

1 Using this file

The source of this document is a .nw file (for ‘noweb,’ an implementation of Knuth’s literate programming technique: see ‘Literate programming with noweb,’ by Andrew L. Johnson and Brad C. Johnson, Linux Journal, October 1st 1997). Noweb allows one to mix LaTeX with C (or pretty well any programming language), allowing a well-annotated program. One can extract ‘chunks’ from it. You need the noweb system, of course (that is, notangle to extract the C part and noweave to typeset the full document).

This document includes a Makefile. To start the ball rolling, you can extract it as follows:

\[
\text{notangle -t8 -RWagener.Makefile wagener.nw > wagener.Makefile}
\]

With it, you can make a CUDA source file (wagener.cu) or a DVI copy of this document (make dvi produces wagener.dvi)

There is one problem with wagener.cu. The construct <<<...>>> is a necessary part of the cuda source code, and it conflicts with noweb’s construct <<<...>>>. Therefore wagener.cu contains

\[
\text{match_and_merge LLL range, block RRR (hood, newhood, scratch)};
\]

*e-mail: odunlain@maths.tcd.ie. Mathematics department website: http://www.maths.tcd.ie
and it must be edited, changing LLL to <<< and RRR to >>>.

and it must be edited, changing LLL to <<< and RRR to >>>.

2 Wagener’s algorithm, CUDA version

The present goal is to make a working CUDA version of Wagener’s PRAM algorithm for computing an upper hood for a set of \(n \) points presented in left-to-right order.

We have not considered the memory access patterns which may seriously degrade performance. Again, thread divergence may degrade performance — it is an interesting exercise to write ‘non-divergent’ code. This has been done in some places and not in others.

This program assumes that

- \(n \) (the number of points) is a power of 2.
- No three points are collinear.
- All \(x \)-coordinates are between 0 and 1. We shall use the point \(\text{REMOTE}, (10, 0) \), for padding. Any point whose \(x \)-coordinate is > 1 is assumed to be ‘remote,’ used for padding.
- There are no floating-point errors (i.e., it’s a problem, but it’s not our problem.)

Also, three shared device arrays, one \texttt{short} and two \texttt{float2} are used, of size \(n \). Their total size is \(18n \) bytes. This puts inessential limitations on \(n \) — there would be no difficulty, and little overhead, in slicing the data into manipulable chunks for larger \(n \).
Figure 1: Points and hoods. The x-coordinates have been distorted in the depiction of `host_hood`.

```c
#include <stdio.h>
#include <stdlib.h>
#include <cuda.h>

float2 * point;
int count;
float2 * host_hood;

/* The following are device variables */
float2 * hood, * newhood; short * scratch;

float2 REMOTE = { 10.0f, 0.0f };

__device__ void make_remote ( float2 * p )
{
    p->x = 10.0f; p->y = 0.0f;
}
```

Points are stored in the array `point`, and initially copied to `host_hood`. The main program launches the global routine `match_and_merge` repeatedly to merge adjacent hoods from intervals of size d to hoods of size $2d$.

The algorithm repeatedly copies `host_hood[]` to device array `hood[]`, launches `match_and_merge()`, and copies the device array `newhood[]` to `host_hood[]`.

Let $s = \log_2 n$; s is a positive integer. The hood is built in $s-1$ stages (there is nothing to do if $s = 1$). At the r-th stage, let $d = 2^r$: `host_hood` defines n/d hoods. For $0 \leq \ell < n/d$, let P be the ℓ-th block of d points from `point` (indexed from ℓd to $\ell d + d - 1$). The ℓ-th hood is $H(P)$. The corners of $H(P)$ are stored in the corresponding block of `host_hood`, shifted left and padded with copies of `REMOTE` (Figure 1).

Next, $n/2$ `match_and_merge` threads are launched in $n/(2d)$ blocks of dimension $d_1 \times d_2$, where $d_1 = 2^{\lceil r/2 \rceil}$ and $d_2 = 2^{\lfloor r/2 \rfloor}$, so $d = d_1d_2$. The ℓ-th block of threads cooperate to compute $H(P \cup Q)$, where P and Q are the 2ℓ-th and $2\ell + 1$-st interval of d points, locating the common
tangent of $H(P)$ and $H(Q)$ and replacing these separate hoods by $H(P \cup Q)$, shifted and padded in a block of $2d$ entries in hood.

The routine `make_remote(float2 *p)` is used to set a point to remote values (I'm not sure how to assign a constant `float2` value in device code).

```
⟨main⟩≡

int pos_power_of_2 ( int x )
{
    if ( x < 2 )
        return 0;

    while ( x > 1 )
        if ( x % 2 == 1 )
            return 0;
        else if ( x == 2 )
            return 1;
        else
            x /= 2;
}

void show_current_hoods ( FILE * outfile, int d )
{
    int i, j, hoodsize;
    fprintf(outfile, "%d\n", count/d);
    for ( i=0; i<count/d; ++i )
    {
        hoodsize = 0;
        for ( j=0; j<d; ++j )
            if ( host_hood[i*d+j].x <= 1.0 )
                ++ hoodsize;
        fprintf(outfile, "%d\n", hoodsize);
        for ( j=0; j<d; ++j )
            if ( host_hood[i*d+j].x <= 1.0 )
                fprintf(outfile, "%f %f\n", host_hood[i*d+j].x, host_hood[i*d+j].y);
    }
    fprintf(outfile, "\n");
}

main( int argc, char * argv[] )
{
    int i;
    int d, d1, d2;
    FILE * file;
    FILE * trace;
    short * h_scratch;

    count = 0;

    if ( argc != 2 && argc != 3 )
    {
        fprintf(stderr,
            "usage: %s <sorted counted points file> [trace file]\n",
            argv[0]);
    }
```
THE PROGRAM COPIES the points to standard output, computes the hood and writes the hood points to standard output. It may write comment lines beginning #. If the trace file is used, it prints the intermediate hood sequences to this file. The program output is intended to be sent to a companion program `hood2ps` which generates postscript.

```c
<main>+≡
    file = fopen ( argv[1], "r" );
    if ( file == NULL )
      {
        fprintf(stderr, "%s unreadable\n", argv[1]);
        exit(-1);
      }

    trace = NULL;
    if ( argc == 3 )
      {
        trace = fopen ( argv[2], "w" );
        if ( trace == NULL )
          fprintf(stderr, "Can't write to %s, no tracing\n", argv[2]);
      }

    fscanf(file, "%d", &count);
    if ( ! pos_power_of_2 ( count ) )
      {
        fprintf(stderr, "Count %d not a power of 2, abort\n", count);
        exit(-1);
      }

    printf ("%d\n", count);

    point = (float2*) malloc (count * sizeof(float2) );
    host_hood = (float2*) malloc (count * sizeof(float2) );
    h_scratch = (short*) malloc ( count * sizeof ( short ) );

    for (i=0; i<count; ++i)
      {
        fscanf(file, "%.f %.f", &point[i].x, &point[i].y);
        printf("%.f %.f\n", point[i].x, point[i].y);
        host_hood[i] = point[i];
      }
    printf("\n");

    d1 = 2;
    d2 = 1;
    d = d1 * d2;

    hood = newhood = NULL;
    scratch = NULL;
```
THE ARRAY point WILL CONTAIN THE data points, and host_hood will contain the interme-
diate hoods as illustrated in Figure[1] H_scratch is to hold a copy, on the host, of the device array
scratch, for debugging. The shared device arrays hood, newhood, scratch are allocated
at every thread launch. Also, host_hood needs to be copied to hood before the thread launch.

while (d < count)
{
 if (trace != NULL)
 show_current_hoods (trace, d);
 if (hood != NULL)
 {
 cudaFree (hood);
 cudaFree (newhood);
 cudaFree (scratch);
 }

cudamalloc((void **) & hood, count * sizeof(float2));
cudamemcpy(hood, host_hood, count * sizeof(float2),
cudamemcpyhosttoDevice);
cudamalloc((void **) & newhood, sizeof(float2) * count);
cudamalloc((void **) & scratch, count * sizeof(short));

NOW THE THREAD LAUNCH: n threads in n/(2d) blocks of dimension d1 × d2.

/*
 * LLL and RRR need to be replaced
 * by triple < and >: double < and >
 * have a special meaning in noweb,
 * the literate programming system
 * we use.
 */

dim3 range (count / (2*d));
dim3 block (d1, d2);
match_and_merge LLL range, block RRR (hood, newhood, scratch);

WHEN ALL THREADS HAVE TERMINATED, copy the revised array newhood to host_hood, and
print various debugging items.

cudamemcpy(host_hood, newhood, count * sizeof(float2),
cudamemcpydeviceToHost);
printf("#returned from match_and_merge, d1=%d, d2=%d, d=%d\n",
d1, d2, d);
cudamemcpy(h_scratch, scratch, count * sizeof (short),
cudamemcpydeviceToHost);
The following is for debugging.

```c
if ( trace != NULL )
{
    fprintf(trace,"0\n");
    fclose ( trace );
}
```

The remaining functions are on the device. The function `left_of()` returns 1 if `r` is left of the directed line-segment `pq`, (i.e., $\det(q - p, r - p) > 0$), 0 otherwise.

```
```
Suppose P and Q are adjacent intervals of points processed by a thread block in \texttt{match and merge}. Given two points p and q is either a corner of $H(Q)$ or is remote, and p is to the left of Q, there is a unique tangent to $H(Q)$ from P: suppose q' is the corner of $H(Q)$ which supports the tangent. Let $f(p,q)$ be \texttt{LOW}, \texttt{EQUAL}, or \texttt{HIGH} according as q is left of, at, or right of q' (high if q is remote).

Similarly if p is remote or on $H(P)$ and q is to the right of P, a function $f(p,q)$ indicates whether p is left of, at, or right of the point supporting the tangent to $H(P)$ from q (or remote).

These functions are implemented (on the device) by g and f below, where $p = \text{hood}[i]$ and $q = \text{hood}[j]$ and P is defined by the range $\text{start}..\text{start}+d-1, Q$ by $\text{start}+d..\text{start}+2*d-1$.
return HIGH;

p = hood[i];
q = hood[j];

atend = (j == start + 2*d - 1 || hood[j+1].x > 1.0);

Atend signals the condition that q is the rightmost corner of H(Q). As written, it might cause thread divergence, which could be remedied by adding an extra slot in hood and making it REMOTE. Using atend, we can (without divergence) make q_next default to a point directly underneath the rightmost corner in H(Q), in the case where q is the last corner in H(Q).

If q_next is left of pq, then q is LOW.

\langle match and merge \rangle +≡

q_next = hood[j+1-atend];
q_next.y -= (float) atend;

if (left_of (q_next, p, q))
 /*
 * avoidable divergence?
 */
 return LOW;

Similarly atstart indicates whether q is leftmost in H(Q), in which case q_prev is directly below it; otherwise it is the corner of H(Q) to its left; q is HIGH iff q_prev is left of the directed line-segment pq.

\langle match and merge \rangle +≡

atstart = (j == start + d);
q_prev = hood[j + atstart - 1];
q_prev.y -= (float) atstart;

isleft = left_of (q_prev, p, q);

return HIGH * isleft + EQUAL * (1-isleft);
}

/**
* f (i, j, start, d)
**

__device__ short f(float2 * hood, short i, short j,
 short start, short d)
{
 float2 p, q, p_next, p_prev;
 int atstart, atend;
 int isleft;
if (hood[i].x > 1) /* REMOTE */
 return HIGH;

p = hood[i];
q = hood[j];

atend = (i == start + d - 1 || hood[i+1].x > 1);

p_next = hood[i+1-atend];
p_next.y -= (float) atend;

if (left_of (p_next, p, q))
 return LOW;

atstart = (i == start);
p_prev = hood[i + atstart - 1];
p_prev.y -= (float) atstart;

isleft = left_of (p_prev, p, q);

return HIGH * isleft + EQUAL * (1-isleft);

THE WORKHORSE of Wagener’s algorithm is the match_and_merge procedure below. Recall that \(n/(2d) \) threads are launched in blocks of dimension \(d_1 \times d_2 \). The \(\ell \)-th block is to calculate \(H(P \cup Q) \), where \(P \) and \(Q \) are intervals of \(d \) points in hood beginning at \(2d\ell \) (this offset is computed and stored in start). First start and other parameters are computed, and the scratch array is set to a recognisably ‘uninitialised’ value. (scratch[start..start+2*d-1] is shared by the threads in the same block).

The main effort is calculating the corners of \(H(P) \) and \(H(Q) \) supporting the common tangent. Their indices will be placed in pindex and qindex, initially \(-1\) to show uninitialised.

There are \(d_1 \) sample points along \(H(P) \) and \(d_2 \) along \(H(Q) \), but some of them will be REMOTE.

MATCH_AND_MERGE begins by setting the variables \(d_1, d_2, d, \text{start}, x, y, \text{indx} \) to mirror the construction of its thread blocks. Also, pindex, qindex, scratch are set to negative values, meaning not initialised. Also \(i \) and \(j \) are set to sample corners (indices) in \(H(P) \) and \(H(Q) \). There are \(d_1 \) sample indices \(i \) and \(d_2 \) sample indices \(j \). If \(I \) is the set of sample indices \(i \), namely, \(I = \{ \text{start} + d_2x : 0 \leq x < d_1 \} \), and correspondingly \(J = \{ \text{start} + d + d_1y : 0 \leq y < d_2 \} \), then the procedure is outlined as follows.

For \(0 \leq x < d_1 \), let \(i_x = \text{start} + d_2x \), so \(I = \{ i_x : 0 \leq x < d_1 \} \). Also, for \(0 \leq y < d_2 \), let \(j_y = \text{start} + d + d_1y \), so \(J = \{ j_y : 0 \leq y < d_2 \} \).

\[
\langle \text{match and merge} \rangle + \equiv \\
\langle \text{mam 0: initialisations} \rangle + \\
\langle \text{mam 1: } 0 \leq x < d_1 \text{ scratch[start+x]} = \max jy g(ix,jy) \leq EQ \rangle \\
\langle \text{mam 2: } 0 \leq x < d_1 \text{ scratch[start+d+x]} = jI(x) = \text{unique j } g(ix,j) = EQ \rangle \\
\langle \text{mam 3: scratch[start]} = k0 = \max ix f(ix,j1(x)) \leq EQ \rangle \\
\]

Figure 2: thread allocation.
⟨mam 4: 0<=y<d2 scratch[start+d+y]=ly=max jx, 0<=x<d2, g(k0+y,jx)<=EQ⟩
⟨mam 5: scratch[start..]= unique p=k0+y,q=ly+x, g(p,q)=f(p,q)=EQ⟩
 ⟨mam 6: newhood[start..]= hood[start.. p] concatenated hood[q.. start+d-1]⟩

⟨mam 0: initialisations⟩≡

/*****************************/
 * match_and_merge ()
 *****************************/

__global__ void match_and_merge (float2 * hood, float2 * newhood,
short * scratch)
{
 int i, j, pindex, qindex, shift;
 int d1, d2, d, start, x, y, indx;

d1 = blockDim.x;
d2 = blockDim.y;
d = d1 * d2;
start = blockIdx.x * 2 * d;

x = threadIdx.x;
y = threadIdx.y;
indx = x + d1 * y;

pindex = qindex = -1;
scratch[start + indx] = -1;
scratch[start + indx + d] = -1;

__syncthreads();
i = start + d2 * x;

⟨mam 1: 0<=x<d1 scratch[start+x]=max jy g(i,jy) <= E Q⟩≡
if (hood[i].x <= 1.0) /* not REMOTE */
{
j = start + d + d1 * y;

 /*
 * The condition below should identify the
 * unique interval of H(Q) touching the
 * tangent from hood[i].
 */

 if (g(hood,i,j,start,d) <= EQUAL &&
 (y == d2 - 1 ||
 hood[j+d1].x > 1.0 ||
 g(hood,i,j+d1,start,d) == HIGH))
 scratch[start+x] = j;
}
Suppose that p and q are the actual corners to be calculated, supporting the common tangent to $H(P)$ and $H(Q)$. For each sample point p_i a corresponding tangent corner q'_i on $H(Q)$ has been calculated.

(2.1) Theorem The tangent corners q'_i occur in nondecreasing left-to-right order, and p_i is left of, equal to, or right of p according as $f(p_i, q'_i)$ is LOW, EQUAL, or HIGH.

Sketch proof. Parametrise the tangents to $H(Q)$ by the angle θ they make with the x-axis: θ varies over the clockwise interval from 90° (yielding the left vertical tangent) to -90°.

For each θ, let L_θ be the half-plane left of the tangent line at angle θ (except at $\pm 90^\circ$, this means above the tangent line). The map $\theta \rightarrow L_\theta$ is, loosely speaking, continuous, and $H(P) \cap L_\theta$ contracts with θ. The point of contact between L_θ and $H(Q)$ shifts discontinuously from corner to corner, but always rightward. At a unique angle, $\theta = \alpha$, say, the intersection contains a single point, and that point is p. The points p_i under consideration are left and right endpoints of various sets $H(P) \cap L_\theta$, the points q'_i are points of contact between various L_θ and $H(Q)$, and the points p_i are left of, at, or right of p according to the values of $f(p_i, q'_i)$. \hfill \Box
\[\langle \text{mam 4: } 0 \leq y < d_2 \text{ scratch[} \text{start} + d + y\text{]} = l y = \text{max jx}, \ 0 \leq x < d_2, \ g(k_0 + y, jx) \leq EQ \rangle \equiv \]
\[
\begin{align*}
i &= \text{scratch[} \text{start} \text{]} + y; \\
\text{if (hood[i].x } \leq 1.0 \text{) /* not REMOTE */} \\
\{ \\
\quad j &= \text{start} + d + x \times d_2; \\
\quad \text{if (} g(\text{hood}, i, j, \text{start}, d) \leq \text{EQUAL } \&\& \\
\quad \quad \quad (x == d_1 - 1 \| \\
\quad \quad \quad \quad \text{hood}[j+d_2].x > 1.0 \| \\
\quad \quad \quad \quad \quad g(\text{hood}, i, j+d_2, \text{start}, d) == \text{HIGH }) \\
\quad \quad \quad \text{scratch[} \text{start} + d + y \text{]} &= j; \\
\} \\
\}_\text{syncthreads}(); \\
\]

\[\langle \text{mam 5: scratch[} \text{start..} \text{]} = \text{unique } p = k_0 + y, q = l y + x, \ g(p,q) = f(p,q) = EQ \rangle \equiv \]
\[
\begin{align*}
j &= \text{scratch[} \text{start} + d + y \text{]} + x; \\
\text{if (} x < d_2 \&\& \\
\quad g(\text{hood}, i, j, \text{start}, d) == \text{EQUAL } \&\& \\
\quad \quad f(\text{hood}, i, j, \text{start}, d) == \text{EQUAL }) \\
\{ \\
\quad \text{scratch[} \text{start} \text{]} &= i; \\
\quad \text{scratch[} \text{start} + 1 \text{]} &= j; \\
\} \\
\}_\text{syncthreads}(); \\
\]

\[\langle \text{mam 6: newhood[} \text{start..} \text{]} = \text{hood[} \text{start..} p \text{]} \text{ catenated } \text{hood[} q.. \text{start} + d - 1 \text{]} \rangle \equiv \]
\[
\begin{align*}
pindex &= \text{scratch[} \text{start} \text{]}; \\
qindex &= \text{scratch[} \text{start} + 1 \text{]}; \\
\text{newhood[} \text{start} + \text{indx} \text{]} &= \text{hood[} \text{start} + \text{indx} \text{]}; \\
\text{make_remote (} \& (\text{newhood[} \text{start} + d + \text{indx} \text{]}) \text{) } \}; \\
\}_\text{syncthreads}(); \\
\]

Let \(s \) be the 'shift', \(qindex - pindex - 1 \).
Then \(\text{hood[} qindex... \text{start} + 2 \times d - 1 \text{]} \) is copied, shifted left by \(s \), to \(\text{newhood[} pindex + 1... \text{]} \).

\[\langle \text{mam 6: newhood[} \text{start..} \text{]} = \text{hood[} \text{start..} p \text{]} \text{ catenated } \text{hood[} q.. \text{start} + d - 1 \text{]} \rangle + \equiv \]
\[
\begin{align*}
\text{shift} &= qindex - pindex - 1; \\
\text{if (} \text{start} + d + \text{indx} \geq qindex \text{)} \\
\quad \text{newhood[} \text{start} + d + \text{indx} - \text{shift} \text{]} &= \text{hood[} \text{start} + d + \text{indx} \text{]}; \\
\}_\text{syncthreads}(); \\
\]
Figure 4: Sample cuda output, 1024 points

Final closing brace in match and merge.

\begin{equation}
\langle \text{match and merge} \rangle + \equiv \\
\end{equation}

\begin{quote}
\begin{verbatim}
⟨wagener.Makefile⟩≡
.SUFFIXES: .nw .tex .c

wagener: wagener.nw
 /usr/bin/notangle -Rwagener -L wagener.nw > wagener.cu

dvi: wagener.nw
 /usr/bin/noweave -delay wagener.nw > wagener.tex
 latex wagener
 latex wagener
 rm wagener.out wagener.aux

clean:
 rm *.c *.dvi *.log
\end{verbatim}
\end{quote}

3 Conclusions

Wagener’s PRAM algorithm, published only as a manuscript, is very clean and simple in comparison, for example, with another $O(\log n)$ algorithm in [1].

Our program illustrates how Wagener’s PRAM algorithm might be realised on a CUDA chip: the organisation, at any rate, is faithful to the model. However, it is insensitive to the memory bank conflicts which make the chip, although robust enough to tolerate these conflicts, so slow that the parallel program is slow by comparison with another serial program (not described here).
On the other hand, we tried to avoid branching, another reason for serialisation, and the writing of branch-free code is an interesting challenge.

Another possible innovation was our usage of padding, rather than compression, which we felt too cumbersome. That is, data would be in blocks, with ‘live’ data to the left of the block padded with ‘remote’ values on the right. This left some threads with nothing to do, but it avoided allocation tasks.

A few last words about optimal speedup. Our algorithm gets the data points in sorted order, and in principle should use $O(n)$ work (runtime \times processor count): but it uses $O(n \log n)$. We indicate how Wagener’s algorithm can achieve optimal speedup: $O(\log n)$ time and $O(n)$ work. So we suppose we have n data points and $n/(\log_2 n)$ processors.

- Separate the data into $n/\log n$ strips, 1 per processor, and compute the convex hood in each strip, $O(\log n)$ time serially.
- Store the hood corners in each strip (in left-to-right order) in balanced trees of size $\leq \log n$.
- Overmars and Van Leeuwen devised a logarithmic time procedure, a balanced search, for locating common tangents: see [12]. Applying their procedure to convex hoods stored in balanced trees, convex hoods can be merged in logarithmic time.
- This means that with $\log \log n$ passes using $\leq n/\log n$ processors per pass, convex hoods can be calculated for $n/\log^2 n$ strips each containing $\log^2 n$ points, each in time $O(\log \log n)$, hence $O((\log \log n)^2)$ overall, which is of course $O(\log n)$.
- Under the PRAM model, these trees can be flattened into arrays using $\log n$ processors per tree. Now we have the same organisation as in our Cuda algorithm, with strips of $\log^2 n$ points each stored in an array.
- Our implementation involved finding the common tangent between adjacent hoods using k processors for hoods of size (at most) k, in $O(1)$ time.

Given $k \geq \log^2 n$, this can be done with $k/\log n$ processors. In this case there are at least \sqrt{k} processors available. Let $h = \sqrt{k}$, and let P be the points in the left-hand strip and Q the points on the right. Subdivide $H(P)$ into k/h intervals of length h. For each interval endpoint p, allocate h processors which first inspect intervals in $H(Q)$ of length k/h, bracketing the tangent from p to one of these intervals; next they bracket the tangent to an interval of length k/h^2, then k/h^3, and finally return the tangent from p to $H(Q)$. This brackets the common tangent endpoint in $H(P)$ to an interval of length k/h; repeat the process to bracket to intervals of length k/h^2 and k/h^3, and finally compute the common tangent.

When run on the dataset illustrated, our CUDA algorithm is perceptibly slower by comparison with a serial algorithm (which is not described here). This is not surprising considering the serialisation of conflicting memory accesses. To attempt optimal speedup as described here would demand a great deal of effort. Our CUDA program is a specimen implementation of a PRAM algorithm which cannot claim much speed advantage.
4 References

1. ‘Parallel Computational Geometry,’ with Alok Aggarwal, Bernard Chazelle, Leo Guibas, and Chee-Keng Yap (1988). *Algorithmica* 3, 293-327 (special issue on Parallel Processing).

2. ‘Some parallel geometric algorithms’ (1993), in *Lectures on Parallel Computation*, ed. Alan Gibbons and Paul Spirakis, Cambridge University Press, 77–108.

3. H. Wagener (1985). Optimally parallel algorithms for convex hull determination. Manuscript, Technical University of Berlin.