Computed tomography-guided core needle biopsy of lung lesions: Diagnostic yield and correlation between factors and complications

YING WANG, WENTAO LI, XINHONG HE, GUODONG LI and LICHAO XU

Department of Radiology, Fudan University Cancer Hospital, Shanghai 200032, P.R. China

Received April 30, 2013; Accepted November 1, 2013

DOI: 10.3892/ol.2013.1680

Correspondence to: Professor Wentao Li, Department of Radiology, Fudan University Cancer Hospital, 270 Dong An Road, Shanghai 200032, P.R. China
E-mail: liwentao98@126.com

Key words: CT-guided, core needle biopsy, pneumothorax, hemorrhage, core needle biopsy diagnosis, final diagnosis

Abstract. The aim of the present study was to determine the diagnostic accuracy of computed tomography (CT)-guided core needle biopsy (CNB) and to retrospectively analyze the correlation between the factors and complications of the procedure. Between January 2009 and June 2010, CNB was performed on 345 lung lesions in 343 patients. These patients were then followed up for at least two years. The sensitivity, specificity, accuracy, positive predictive value (PPV) and negative predictive value (NPV) of the CNB diagnoses were calculated. The correlation between factors, such as smoking, position and maximal diameter, and the complications of pneumothorax and hemorrhage was analyzed by χ² test. The sensitivity, specificity, accuracy, PPV and NPV of the CNB diagnoses were 97.3, 100, 97.7, 100 and 87.7%, respectively. A statistically significant correlation was found between pneumothorax and the factors of smoking (P=0.015) and position (P<0.01) and length of the needle in the normal parenchyma (P=0.011), as well as between hemorrhage and the maximal diameter (P=0.005) and length of the needle in the normal parenchyma (P<0.01) and the frequency of needle adjustments (P<0.01). A CT-guided core needle biopsy of the lung lesions provides a high diagnostic yield. Smoking, the decubitus position and a longer length of the needle in the normal parenchyma were found to represent risk factors for a pneumothorax. In addition, a small diameter and longer length of the needle in the normal parenchyma and a more frequent adjustment of the needle were poor predictive factors of hemorrhage.

Introduction

With the development of computed tomography (CT), an increasing number of lung lesions are detected. It has been reported that >50% of resected pulmonary nodular lesions are related to malignancy; therefore, the requirement for rapid and definite diagnoses of lung lesions has been stressed (1). CT-guided needle biopsy has become the dominant method for obtaining tissue samples from lung lesions in order to obtain a pathological diagnosis (2). The procedure is generally regarded as safe, but pneumothorax, hemorrhage and other rare complications may occur. In addition, the reliability of a benign result remains controversial (3). The objective of the current study was to determine the diagnostic accuracy of CT-guided core needle biopsy (CNB) and to retrospectively analyze the correlation between factors and complications of the procedure.

Materials and methods

Study population. Between January 2009 and June 2010, a CNB was performed on a total of 343 patients with 345 lung lesions in 345 sessions. Among them, two patients received a second CNB, as the size of the tissue sample was not large enough to obtain pathological results. These patients were then followed up for at least two years. The enrolled population consisted of 228 males (66.5%) and 115 females (33.5%). The patient age ranged between 17 and 86 years old (mean age, 60±18.3 years old). The study was approved by the ethics committee of Fudan University (Shanghai, China).

Procedure. Prior to the procedure, the risks and benefits were explained to each patient and informed consent was obtained. Three interventional physicians, each with >5 years experience of needle biopsies, performed the procedures. All cases were performed using the Philips 64-slice spiral CT (120 kV, 250 mA and a 3-mm thickness; Philips Healthcare, Andover, MA, USA) for imaging guidance. The biopsy tool that was used was an automated biopsy gun (SuperCore™, Angiotech Pharmaceuticals, Inc., Vancouver, BC, Canada) with an 18-gauge needle. The patient lay on the CT table and the puncture point and access routine were determined by CT scan. Following local anesthesia, the needle was inserted through the skin and advanced to the lesion. Intra-operative CT scans were performed to confirm the position of the lesion and needle. Once the needle was located in an appropriate position within or near the lesion, the operator triggered the cannula to close, trapping the specimen in the sample notch. Next, the tissue specimen was removed.
from the notch and sent to the Department of Pathology (Fudan University, Shanghai, China). Immediately after the procedure, a chest CT scan was performed to evaluate procedural complications, including pneumothorax and hemorrhage. In addition, a chest radiograph was obtained the following morning. The baseline characteristics of the lesions and procedures are summarized in Table I.

Classification of diagnoses and complications. The CNB results were divided into 4 categories: Atypical adenomatous hyperplasia (AAH), malignant, benign and undetermined (3). AAH is a premalignant lesion of lung adenocarcinoma. Although AAH is not ranked as malignant, this category commonly undergoes carcinomatous change.

Final diagnoses were divided into 3 categories: Malignant, benign and undetermined. Malignant tumors were defined by: i) Cancer-associated mortality occurring during the follow-up period; ii) lesions representing complete response, partial response or progressive disease to chemotherapy according to the Response Evaluation Criteria in Solid Tumors (4); and iii) a histopathological examination showing malignant tumor tissue in the specimen received at surgical resection. Benign tumors were defined by: i) Lesions that disappeared or decreased in size with conservative treatment; ii) patient exhibited a positive microbiological conclusion (3,5); or iii) a histopathological examination showing no malignant tumor tissue in the specimen from surgical resection. Undetermined tumors were defined as: i) Lesions treated by radiofrequency ablation or stereotactic irradiation (6); ii) a lesion that was stable in size at follow-up; or iii) a patient that could not be contacted for follow-up (Table II).

AAH and malignant were considered to be positive results and benign was considered a negative result. Positive CNB results were considered true positives if the final diagnosis was malignant or AAH. By contrast, results were considered false positives if the final diagnosis was benign. Negative CNB results were considered true negatives if the final diagnosis was benign and false negatives if the final diagnosis was malignant or AAH (Table III).

Pneumothorax was graded as mild (lung surface retraction of ≤2 cm; Fig. 1), moderate (lung surface retraction of 2-4 cm) and severe (lung surface retraction of ≥4 cm) (7). Hemorrhage was graded as mild (presenting as haziness along the needle tract; Fig. 2), moderate (hemoptysis of <30 ml or occurrence of patchy haziness around the lesion in CT; Fig. 3) and severe (hemoptysis of ≥30 ml or hemothorax).

Statistical analysis. Data were analyzed with SPSS 19.0; the χ² test was used for the statistical analysis. The analysis of pneumothorax and hemorrhage was based on the 345 CNB sessions not the 343 patients. P<0.05 was considered to indicate a statistically significant difference.

Results

CNB diagnoses included 66 benign cases, 3 AAH cases, 256 malignant cases and 20 undetermined cases; final diagnoses consisted of 52 benign cases, 267 malignant cases and 26 undetermined cases. Final diagnoses were obtained based on the following characteristics: 11 (3.2%) patients succumbed to cancer-associated mortalities; 64 (18.7%) surgical specimens, 12 (3.5%) positive cultures; 193 (56.2%) positive responses to chemotherapy; 37 (10.8%) tumors disappeared or decreased in size with conservative treatment; 8 (2.3%) lesions were treated with radiofrequency ablation (n=2) or stereotactic irradiation (n=6); 5 (1.5%) lesions were stable during the follow-up period; and 13 (3.8%) patients could not be contacted.
for follow-up. Following exclusion of the undetermined CNB and final diagnoses (n=35) (8), the number of true positives, false positives, true negatives and false negatives were 253, 0, 50 and 7, respectively. The sensitivity, specificity, accuracy, positive predictive value (PPV) and negative predictive value (NPV) were 97.3, 100, 97.7, 100 and 87.7%, respectively.

In the present study, the overall complication rate was 50.4%. There was a total of 60 (17.5%) cases of pneumothorax in the 343 patients. Among those, 52 (15.2%) were mild, 6 (1.7%) were moderate and 2 (0.6%) were severe. Only 5 (1.5%) required placement of chest tubes. There were 113 (32.9%) cases of hemorrhage in this study. Of those, 78 (22.7%) were mild hemorrhage, 35 (10.2%) were moderate hemorrhage. No severe hemorrhage occurred. One of the patients with moderate hemorrhage complained of chest pain and chest tightness 8 h after the biopsy; the chest radiograph indicated a parenchymal hemorrhage and hemocoagulase was administrated. Another patient developed hypotension with syncope, and resuscitation and hemocoagulase administration improved the individual's condition. All other hemorrhages were self-limited.
Table IV. Correlation between factors and pneumothorax.

Characteristic	Pneumothorax, n	Non-pneumothorax, n	P-value
Gender			0.956
Male	40	189	
Female	21	95	
Age, years			0.986
17-49	12	58	
50-69	34	146	
70-86	15	80	
Smoking status			0.015*
Non-smoker	17	44	
Current or ex-smoker	20	126	
Unknown	24	114	
Patient position			0.000*
Supine	16	89	
Prone	25	170	
Decubitus	20	25	
Lesion location			0.568
Lobe			
Upper	29	158	
Middle	5	25	
Lower	27	101	
Zone			0.115
Outer	14	41	
Middle	24	86	
Inner	23	157	
Effusion			0.181
No	56	246	
Yes	5	38	
Maximal diameter, cm			0.605
≤1	2	4	
1-3	22	89	
3-5	26	107	
>5	11	84	
Length of needle through normal parenchyma, mm			0.011*
<1	14	124	
1-3	31	102	
≥3	16	58	
Needle-hilus angle, °			0.156
0-30	22	95	
30-60	32	125	
60-90	7	63	
Needle adjustments			0.285
1	38	176	
2-3	14	83	
≥4	9	25	
Operator/s			0.210
1	34	136	
2	15	60	
3	12	88	

*Statistically significant difference.
Characteristic	Hemorrhage, n	Non-hemorrhage, n	P-value
Gender			0.747
Male	75	154	
Female	40	76	
Age, years			0.455
17-49	27	43	
50-69	55	125	
70-86	33	62	
Smoking status			0.697
Non-smoker	20	41	
Current or ex-smoker	52	94	
Unknown	43	95	
Patient position			0.211
Supine	32	73	
Prone	72	123	
Decubitus	11	34	
Lesion location			0.466
Lobe			
Upper	65	122	
Middle	7	23	
Lower	43	85	
Zone			0.336
Outer	14	41	
Middle	36	74	
Inner	65	115	
Effusion			0.134
No	10	33	
Yes	105	197	
Maximal diameter, cm			0.005*
≤1	5	1	
1-3	43	68	
3-5	45	88	
>5	22	73	
Length of needle through normal parenchyma, mm			0.000*
<1	18	120	
1-3	49	84	
≥3	48	26	
Needle-hilus angle, °			0.465
0-30	36	81	
30-60	55	102	
60-90	23	47	
Needle adjustments			0.000*
1	53	161	
2-3	48	59	
≥4	14	20	
Operator/s			0.797
1	55	115	
2	24	51	
3	36	64	

*Statistically significant difference.
The correlation between factors and complications was determined, and a statistically significant correlation was found between pneumothorax and the factors of smoking and the position and length of the needle in the normal parenchyma (P<0.01). In addition, a statistically significant correlation existed between hemorrhage and the maximal diameter (P=0.005) and length of the needle in the normal parenchyma (P<0.01) and the frequency of needle adjustments (P<0.01). The correlations between factors and complications are shown in Tables IV and V.

Discussion

In the present study, the incidence of pneumothorax was 17.5%, with 1.5% requiring chest tube drainage. These results are comparable to prior studies (9-11). The decubitus position was found to result in more pneumothorax than the supine and prone positions. We hypothesize that the decubitus position separates the parietal and visceral pleura more than the other positions and therefore, air is more likely to enter the pleural cavity as the needle is taken out. Moreover, the majority of lung lesions were found to be located in the middle or inner zone of the lung in the present study. In the biopsy of lesions located in the middle or inner zone of the lung, it is more difficult to keep away from the interlobar pleural; if it is damaged, it is more likely to result in pneumothorax. O’Neill et al (12) reported that rapidly (within 10 sec) rolling the patient over to the biopsy-side-down position following needle-out reduced the rate of overall pneumothorax and pneumothorax necessitating a drainage catheter. Moreover, smoking, the decubitus position and a longer length needle in the normal parenchyma were risk factors for a pneumothorax. It is generally considered that a pneumothorax is the most common complication of a needle biopsy of the lung (11,13). However, in the present study, the incidence of hemorrhage (32.9%) was higher than pneumothorax (17.5%) and also higher than the 1-27% reported in the literature (7). Smoking, a history of hemoptysis only. The results showed that a small diameter and longer length of the needle in the normal parenchyma and more frequent adjustments of the needle were poor predictive factors of hemorrhage.

With regard to pathological yield, in the present study, the false positive and false negative rates and the PPV and NPV were 0, 2.7, 100 and 87.7%, respectively. When a malignant diagnosis is obtained, there is clinical uncertainty over how to proceed, as a number of these lesions may prove to be malignant (false negatives). Previous studies have evaluated the outcomes following a benign biopsy and have found false negative rates that vary widely (2-54%) (16-18). Combining the results of the present and relevant previous studies, we recommend that patients with benign CNB diagnoses undergo repeat imaging for ≥2 years to document the stability or resolution of the lesions. If the nodule grows, a repeat biopsy (19-21) or resection (22) may be required to obtain a definitive diagnosis.

The main limitations of the present study were as follows: Firstly, in the analysis of the correlation between factors and complications, single factors were considered individually without excluding the affect of other factors. Secondly, a small number of patients were lost for follow-up and a two-year follow-up may not have been sufficient.

In conclusion, CT-guided core needle biopsy of the lung lesions provides a high diagnostic yield. Smoking, the decubitus position and a longer length of needle in the normal parenchyma were risk factors for pneumothorax. In addition, small diameter, a longer length of needle in the normal parenchyma and more frequent adjustments of the needle were poor predictive factors of hemorrhage.

Acknowledgements

This study was supported by grants from the Science Technology Commission of Shanghai Municipality (nos. 0952nm03400 and 11nm0504000).

References

1. Shah PL, Singh S, Bower M, Livni N, Padley S and Nicholson AG: The role of transbronchial fine needle aspiration in an integrated care pathway for the assessment of patients with suspected lung cancer. J Thorac Oncol 1: 324-327, 2006.
2. Zhou Y, Thiruvalluvan K, Krzeminski L, et al: CT-guided robotic needle biopsy of lung nodules with respiratory motion - experimental system and preliminary test. Int J Med Robot: 9: 317-320, 2013.
3. Gelman BD, Cham MD, Kim W, et al: Radiographic and clinical characterization of false negative results from CT-guided needle biopsies of lung nodules. J Thorac Oncol 7: 815-820, 2012.
4. Padhani AR and Ollivier L: The RECIST (Response Evaluation Criteria in Solid Tumors) criteria: implications for diagnostic radiologists. Br J Radiol 74: 983-986, 2001.
5. Jae LI, June IH, Miyeon Y, et al: Percutaneous core needle biopsy for small (≤10 mm) lung nodules: accurate diagnosis and complication rates. Diagn Interv Radiol 18: 527-530, 2012.
6. Inoue D, Gobara H, Hiraki T, et al: CT fluoroscopy-guided cutting needle biopsy of focal pure ground-glass opacity lung lesions: diagnostic yield in 83 lesions. Eur J Radiol 81: 354-359, 2012.
7. Yildirim E, Kirbas I, Harman A, et al: CT-guided cutting needle lung biopsy using modified coaxial technique: factors effecting risk of complications. Eur J Radiol 70: 57-60, 2009.
8. Kim GR, Hur J, Lee SM, et al: CT fluoroscopy - guided needle biopsy versus conventional CT-guided lung biopsy: a prospective controlled study to assess radiation doses and diagnostic performance. Eur Radiol 21: 352-359, 2011.
9. Tomiyama N, Yasuhara Y, Nakajima Y, et al: CT-guided needle biopsy of lung lesions: a survey of severe complication based on 9783 biopsies in Japan. Eur J Radiol 59: 60-64, 2006.
10. Laurent F, Montaudon M, Latrabe V and Bégueret H: Percutaneous biopsy in lung cancer. Eur J Radiol 45: 60-68, 2003.
11. Wu CC, Maher MM and Shepard JA: Complications of CT-guided percutaneous needle biopsy of the chest: prevention and management. AJR Am J Roentgenol 196: W678-W682, 2011.
12. O’Neill AC, McCarthy C, Ridge CA, et al: Rapid needle-out patient-rollover time after percutaneous CT-guided transbronchoscopic endobronchial ultrasound of lung nodules: effect on pneumothorax rate. Respir Med 262: 314-319, 2012.
13. Wu RH, Tzeng WS, Lee WJ, et al: CT-guided transthoracic cutting needle biopsy of intrathoracic lesions: comparison between coaxial and single needle technique. Eur J Radiol 81: e712-e716, 2012.
15. Manhire A, Charig M, Clelland C, et al: Guidelines for radiologically guided lung biopsy. Thorax 58: 920-936, 2003.
16. Schreiber G and McCrory DC: Performance characteristics of different modalities for diagnosis of suspected lung cancer: summary of published evidence. Chest 123 (1 Suppl): 115S-128S, 2003.
17. Savage C, Walser EM, Schnadig V, et al: Transthoracic image-guided biopsy of lung nodules: when is benign really benign? J Vasc Interv Radiol 15: 161-164, 2004.
18. Anderson JM, Murchison J and Patel D: CT-guided lung biopsy: factors influencing diagnostic yield and complication rate. Clin Radiol 58: 791-797, 2003.
19. Lee YJ, Hwang Y, Kim TJ, et al: Inconclusive result from CT guided transthoracic needle aspiration and biopsy: affecting factors and final outcome. J Lung Cancer 10: 94-101, 2011.
20. Lee IJ, Bae YA, Kim DG, et al: Percutaneous needle aspiration biopsy (PCNAB) of lung lesions: 5 years results with focusing on repeat PCNAB. Eur J Radiol 73: 551-554, 2010.
21. Khouri NF, Stitik FP, Erozan YS, et al: Transthoracic needle aspiration biopsy of benign and malignant lung lesions. AJR Am J Roentgenol 144: 281-288, 1985.
22. Lee WT, Wang Y, He XH, et al: Combination of CT-guided hookwire localization and video-assisted thoracoscopic surgery for pulmonary nodular lesions: Analysis of 103 patients. Oncology Letters 4: 824-828, 2012.