Independent associations of education, intelligence, and cognition with hypertension and the mediating effects of cardiometabolic risk factors: a Mendelian randomization study

Yiying Wang,1,2* Chaojie Ye,1,2* Lijie Kong,1,2* Jie Zheng,1,2,3 Min Xu,1,2 Yu Xu,1,2 Mian Li,1,2 Zhiyun Zhao,1,2 Jielu Li,1,2 Yuhong Chen,1,2 Weiqing Wang,1,2 Guang Ning,1,2 Yufang Bi,1,2 Tiange Wang,1,2

*Yiying Wang, Chaojie Ye, and Lijie Kong contributed equally as first authors.

Author Affiliations:
1Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China;
2Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China;
3MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, United Kingdom.

Address for Correspondence:
Tiange Wang, MD, PhD. Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rujin 2nd Road, Shanghai, China. E-mail: tiange.wang@shsmu.edu.cn. Phone number: 86-021-64370045.

Jie Zheng, PhD. Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rujin 2nd Road, Shanghai, China; MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, United Kingdom. E-mail: jie.zheng@bristol.ac.uk.
Contents

Table S1. Epidemiological evidence for the relationship between the 25 candidate mediators and hypertension or blood pressure6

Table S2. UVMR estimating the bidirectional associations between education, intelligence, and cognition10

Table S3. UVMR estimating the associations of education, intelligence, or cognition with hypertension and blood pressure12

Table S4. MR heterogeneity test of the associations of education, intelligence, or cognition with hypertension and blood pressure14

Table S5. MR directional pleiotropy test (MR Egger) of the associations of education, intelligence, or cognition with hypertension and blood pressure15

Table S6. MVMR estimating the associations of education, intelligence, and cognition with hypertension16

Table S7. MR heterogeneity test of the association of education with each mediator19

Table S8. MR directional pleiotropy test (MR Egger) of the association of education with each mediator20

Table S9. Reverse MR estimating the association of each mediator with education21

Table S10. MVMR estimating the association of each mediator with hypertension after adjusting for education22

Figure S1. Overview of the process of identifying the mediators24
References

14. Franklin SS, Pio JR, Wong ND, Larson MG, Leip EP, Vasan RS, Levy D. B Predictors of new-onset diastolic and systolic hypertension: the Framingham Heart Study. Circulation. 2005;111(9):1121-7. doi: 10.1161/01.CIR.0000157159.39889.EC

15. Peng X, Huang J, Liu Y, Cheng M, Li B, Li R, Wang P. Influence of Changes in Obesity Indicators on the Risk of Hypertension: A Cohort Study in Southern China. Ann Nutr Metab. 2021;77(2):100-108. doi: 10.1159/000515059

16. Li R, Tian Z, Wang Y, Liu X, Tu R, Wang Y, Dong X, Wang Y, Wei D, Tian H, et al. The Association of Body Fat Percentage With Hypertension in a Chinese Rural Population: The Henan Rural Cohort Study. Front Public Health. 2020;8:70. doi: 10.3389/fpubh.2020.00070

17. Guagnano MT, Ballone E, Colagrande V, Della Vecchia R, Manigrasso MR, Merlitti D, Riccioni G, Sensi S. Large waist circumference and risk of hypertension. Int J Obes Relat Metab Disord. 2001;25(9):1360-4. doi: 10.1038/sj.ijo.0801722

18. Juonala M, Magnussen CG, Berenson GS, Venn A, Burns TL, Sabin MA, Srinivasan SR, Daniels SR, Davis PH, Chen W. Childhood adiposity, adult adiposity, and cardiovascular risk factors. N Engl J Med. 2011;365(20):1876-85. doi: 10.1056/NEJMoa1010112

19. Laaksonen DE, Niskanen L, Nyyssönen K, Lakka TA, Laukkanen JA, Salonen JT. Dyslipidaemia as a predictor of hypertension in middle-aged men. Eur Heart J. 2008;29(20):2561-8. doi: 10.1093/eurheartj/ehn061

20. Halperin RO, Sesso HD, Ma J, Buring JE, Stampfer MJ, Gaziano JM. Dyslipidemia and the risk of incident hypertension in men. Hypertension. 2006;47(1):45-50. doi: 10.1161/01.HYP.0000196306.42418

21. Wang F, Han L, Hu D. Fasting insulin, insulin resistance and risk of hypertension in the general population: A meta-analysis. Clin Chim Acta. 2017;464:57-63. doi: 10.1016/j.cca.2016.11.009

22. Levin G, Kestenbaum B, Ida Chen YD, Jacobs DR Jr, Psaty BM, Rotter JI, Siscovick DS, de Boer IH. Glucose, insulin, and incident hypertension in the multi-ethnic study of atherosclerosis. Am J Epidemiol. 2010;172(10):1144-54. doi: 10.1093/aje/kwq266

23. Adrogué HJ, Madias NE. Sodium and potassium in the pathogenesis of hypertension. N Engl J Med. 2007;356(19):1966-78. doi: 10.1056/NEJMra064486

24. Perez-Hernandez J, Riffo-Campos AL, Ortega A, Martinez-Arroyo O, Perez-Gil D, Olivares D, Solaz E, Martínez F, Martínez-Hervás S, Chaves FJ, Redon J, Cortes R. Urinary- and Plasma-Derived Exosomes Reveal a Distinct MicroRNA Signature Associated With Albuminuria in Hypertension. Hypertension. 2021;77(3):960-971. doi: 10.1161/HYPERTENSIONAHA.120.16598

25. Cook NR, Obarzanek E, Cutler JA, Buring JE, Rexrode KM, Kumanyika SK, Appel LJ, Whelton PK; Trials of Hypertension Prevention Collaborative
Research Group. Joint effects of sodium and potassium intake on subsequent cardiovascular disease: the Trials of Hypertension Prevention follow-up study. *Arch Intern Med.* 2009;169(1):32-40. doi: 10.1001/archinternmed.2008.523

26. Whelton SP, Chin A, Xin X, He J. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. *Ann. Intern. Med.* 2002;136(7):493-503. doi: 10.7326/0003-4819-136-7-200204020-00006

27. Guo C, Zhou Q, Zhang D, Qin P, Li Q, Tian G, Liu D, Chen X, Liu L, Liu F, et al. Association of total sedentary behaviour and television viewing with risk of overweight/obesity, type 2 diabetes and hypertension: A dose-response meta-analysis. *Diabetes Obes Metab.* 2020;22(1):79-90. doi: 10.1111/dom.13867

28. Liu MY, Li N, Li WA, Khan H. Association between psychosocial stress and hypertension: a systematic review and meta-analysis. *Neurol Res.* 2017;39(6):573-580. doi: 10.1080/01616412.2017.1317904

29. Li L, Gan Y, Zhou X, Jiang H, Zhao Y, Tian Q, He Y, Liu Q, Mei Q, Wu C, Lu Z. Insomnia and the risk of hypertension: A meta-analysis of prospective cohort studies. *Sleep Med Rev.* 2021;56:101403. doi: 10.1016/j.smrv.2020.101403

30. Halperin RO, Gaziano JM, Sesso HD. Smoking and the risk of incident hypertension in middle-aged and older men. *Am J Hypertens.* 2008;21(2):148-52. doi: 10.1038/ajh.2007.36

31. Bowman TS, Gaziano JM, Buring JE, Sesso HD. A prospective study of cigarette smoking and risk of incident hypertension in women. *J Am Coll Cardiol.* 2007;50(21):2085-92. doi: 10.1016/j.jacc.2007.08.017

32. Roerecke M, Kaczorowski J, Tobe SW, Gmel G, Hasan OSM, Rehm J. The effect of a reduction in alcohol consumption on blood pressure: a systematic review and meta-analysis. *Lancet Public Health.* 2017;2(2):e108-e120. doi: 10.1016/S2468-2667(17)30003-8

33. Grosso G, Micek A, Godos J, Pajak A, Sciacca S, Bes-Rastrollo M, Galvano F, Martinez-Gonzalez MA. Long-Term Coffee Consumption Is Associated with Decreased Incidence of New-Onset Hypertension: A Dose-Response Meta-Analysis. *Nutrients.* 2017;9(8):890. doi: 10.3390/nu9080890

34. Aleixandre A, Miguel M. Dietary fiber and blood pressure control. *Food Funct.* 2016;7(4):1864-71. doi: 10.1039/c5fo00950b

35. Schwingshackl L, Schwedhelm C, Hoffmann G, Knüppel S, Iqbal K, Andriolo V, Bechthold A, Schlesinger S, Boeing H. D Food Groups and Risk of Hypertension: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. *Adv Nutr.* 2017;8(6):793-803. doi: 10.3945/an.117.017178

36. Qin P, Luo X, Zeng Y, Zhang Y, Li Y, Wu Y, Han M, Qie R, Wu X, Liu D, et al. Long-term association of ambient air pollution and hypertension in adults and in children: A systematic review and meta-analysis. *Sci Total Environ.* 2021;796:148620. doi: 10.1016/j.scitotenv.2021.148620

37. Adegoke EO, Rahman MS, Park YJ, Kim YJ, Pang MG. Endocrine-Disrupting Chemicals and Infectious Diseases: From Endocrine Disruption to Immunosuppression. *Int J Mol Sci.* 2021;22(8):3939. doi: 10.3390/ijms22083939
38. Birukov A, Herse F, Nielsen JH, Kyhl HB, Golic M, Kräker K, Haase N, Busjahn A, Bruun S, Jensen BL, et al. Blood Pressure and Angiogenic Markers in Pregnancy: Contributors to Pregnancy-Induced Hypertension and Offspring Cardiovascular Risk. *Hypertension*. 2020;76(3):901-909. doi: 10.1161/HYPERTENSIONAHA.119.13966

39. de Jonge LL, Harris HR, Rich-Edwards JW, Willett WC, Forman MR, Jaddoe VW, Michels KB. Parental smoking in pregnancy and the risks of adult-onset hypertension. *Hypertension*. 2013;61(2):494-500. doi: 10.1161/HYPERTENSIONAHA.111.200907

40. van der Sande MA, Walraven GE, Milligan PJ, Banya WA, Ceesay SM, Nyan OA, McAdam KP. Family history: an opportunity for early interventions and improved control of hypertension, obesity and diabetes. *Bull World Health Organ*. 2001;79(4):321-8.

41. Kirschbaum TK, Sudharsanan N, Manne-Goehler J, De Neve JW, Lemp JM, Theilmann M, Marcus ME, Ebert C, Chen S, Yoosefi M. The Association of Socioeconomic Status With Hypertension in 76 Low- and Middle-Income Countries. *J Am Coll Cardiol*. 2022;80(8):804-817. doi: 10.1016/j.jacc.2022.05.044
Table S1. Epidemiological evidence for the relationship between the 25 candidate mediators and hypertension or blood pressure

Candidate mediator	Epidemiological evidence		
Adiposity trait			
BMI	After adjustment for baseline blood pressure, the HRs of developing isolated diastolic, systolic-diastolic, and isolated systolic hypertension for each 1-SD increase in BMI during follow-up were 1.28 (95% CI: 1.06, 1.55), 1.92 (1.72, 2.15), and 1.15 (1.04, 1.28), respectively, from the Framingham Heart Study. \(^{14}\)		
WHR	The multivariate HRs of hypertension for per unit increase in WHR were 1.43 (95% CI: 1.23, 1.66), 1.24 (1.14, 1.34), 1.16 (1.03, 1.30) in 18-39, 40-59, 60-90 age-groups among men, respectively, and 1.37 (1.12, 1.68), 1.24 (1.14, 1.36), 1.10 (1.06, 1.33) in 18-39, 40-59, 60-90 age-groups among women, respectively, from a cohort study of 6,959 non-hypertensive participants aged over 18 years old in southern China. \(^{15}\)		
BF%	Compared with the first quartile of BF%, the adjusted OR of hypertension in the highest BF% quartile was 3.30 (95% CI: 2.85, 3.83) in men and 2.66 (2.36, 2.99) in women, from the Henan Rural Cohort Study in five rural areas in China. \(^{16}\)		
Waist circumference	Compared with men with a waist circumference <94 cm, the OR of hypertension for men with a waist circumference ≥102 cm was 3.04 (95% CI: 1.13, 8.15) using casual blood pressure measure, 3.97 (1.52, 10.36) using 24 h blood pressure mean, and 5.19 (2.11, 12.8) using day-time blood pressure mean. Regardless of the blood pressure measurement (casual, 24 h or day-time), women with a waist circumference more than 88 cm had twice the risk of developing hypertension compared with women with a waist circumference <80 cm, from the Obesity Research Center of Chieti University in Italy. \(^{17}\)		
Childhood obesity	As compared with persons who had a normal BMI as children and were nonobese as adults, the relative risk of hypertension for subjects with consistently high adiposity status from childhood to adulthood was 2.7 (95% CI: 2.2, 3.3), from a meta-analysis of four prospective cohort studies. \(^{18}\)		
Lipid			
LDL-C	ORs of developing hypertension during the 7-year follow-up for a SD change in LDL-C, HDL-C, and		
HDL-C			
Triglycerides	Triglycerides in 311 middle-aged men were 1.30 (95%CI: 1.01, 1.67), 0.67 (0.50, 0.89), and 1.76 (1.35, 2.29), respectively, from the Kuopio Ischaemic Heart Disease Risk Factor Study.19		
---------------	--		
Total cholesterol	In Cox proportional hazards models adjusted for lifestyle and clinical risk factors, men in the highest quintile of total cholesterol had increased risks of developing hypertension of 23% compared with participants in the lowest quintile, from the Physicians’ Health Study.20		
Glucose metabolism-related trait	Fasting insulin	The pooled adjusted RR of hypertension was 1.54 (95% CI: 1.34, 1.76) for fasting insulin concentrations in a meta-analysis of eleven studies involving 10,230 hypertension cases.21	
	Fasting glucose	Compared with participants with normal baseline fasting glucose, those with impaired fasting glucose and diabetes had adjusted RR of hypertension of 1.16 (95% CI: 0.96, 1.40) and 1.41 (1.17, 1.71), respectively (P: 0.0015). The adjusted RR of incident hypertension was 1.08 (1.04, 1.13) for each mmol/L higher glucose (P <0.0001), from the Multi-Ethnic Study of Atherosclerosis.22	
Urinary biomarker	Urinary sodium	The interaction between sodium and potassium is a key component of blood pressure regulation.23 Urinary albumin excretion is a marker of cardiovascular risk and renal damage in hypertension.24 The sodium-potassium ratio has been suggested as a stronger predictor of blood pressure than either sodium or potassium excretion alone.25	
	Urinary potassium		
	Urinary albumin		
	Urinary sodium-potassium ratio		
Physical activity or sedentary behavior	MVPA	Aerobic exercise was associated with a significant reduction in mean systolic blood pressure of 3.84 mmHg (95% CI: 2.72, 4.97) and diastolic blood pressure of 2.58 mmHg (1.81, 3.35) in a meta-analysis of 54 randomized controlled trials with 2,419 participants.26	
	Watching TV	A linear association was found between television viewing and hypertension ($P_{\text{non-linearity}}$: 0.679). For each 1-h/d increase in television viewing, the risk increased by 6% for hypertension, from a meta-analysis of one cohort and 13 cross-sectional studies.27	
	Computer using	A linear association was found between total sedentary behavior and hypertension ($P_{\text{non-linearity}}$: 0.225). For each 1-h/d increase in total sedentary behavior, the risk	
Stress-related trait			

Major depression	In a meta-analysis of two observational studies with 622 participants, mental stress was associated with an increased risk of hypertension (OR: 2.40; 95% CI: 1.65, 3.49; P <0.001).		
Insomnia	In a meta-analysis of fourteen prospective cohort studies involving 395,641 participants, the pooled RR of insomnia on hypertension was 1.21 (95%CI: 1.10, 1.33) and was statistically significant in the European population (RR: 1.08; 95%CI: 1.02, 1.14).		

Smoking or dietary behavior
Smoking initiation
Smoking heaviness
Alcohol drinking
Coffee consumption

Socioeconomic factor
Total household income
individual wealth as compared with high individual wealth, from a cross-sectional survey in urban clinics of 12 countries in Sub-Saharan Africa.41

Abbreviations: BF%, body fat percentage; BMI, body mass index; CI, confidence interval; HDL-C, high density lipoprotein cholesterol; HR, hazard ratio; LDL-C, low density lipoprotein cholesterol; MVPA, moderate to vigorous physical activity; OR, odds ratio; RR, relative risk; SD, standard deviation; TV, television; WHR, waist-to-hip ratio.
Table S2. UVMR estimating the bidirectional associations between education, intelligence, and cognition

Exposure	Outcome	Method	No. of SNPs	β (95% CI)	P value
	Intelligence	IVW	330	0.791 (0.742, 0.840)	6.65e-223
		Weighted Median	330	0.734 (0.682, 0.787)	6.71e-166
		MR Egger	330	0.928 (0.753, 1.103)	4.62e-22
		MR PRESSO	9*	0.770 (0.725, 0.815)	1.58e-106
Education	Cognition	IVW	375	0.785 (0.738, 0.832)	2.97e-233
		Weighted Median	375	0.743 (0.693, 0.792)	1.74e-189
		MR Egger	375	0.934 (0.767, 1.101)	2.00e-24
		MR PRESSO	8*	0.775 (0.731, 0.820)	1.13e-116
	Intelligence	IVW	144	0.436 (0.399, 0.472)	1.33e-119
		Weighted Median	144	0.339 (0.306, 0.371)	3.28e-92
		MR Egger	144	0.510 (0.341, 0.679)	2.47e-08
		MR PRESSO	13*	0.396 (0.368, 0.424)	1.67e-56
	Cognition	IVW	144	0.956 (0.930, 0.982)	0.00e+00
		Weighted Median	144	0.956 (0.909, 1.003)	0.00e+00
		MR Egger	144	0.972 (0.856, 1.091)	3.06e-34
		MR PRESSO	0*	0.956 (0.938, 0.974)	3.48e-136
	Education	IVW	125	0.417 (0.378, 0.456)	3.75e-97
		Weighted Median	125	0.314 (0.281, 0.348)	1.03e-75
		MR Egger	125	0.564 (0.394, 0.733)	1.62e-09
		MR PRESSO	10*	0.387 (0.356, 0.418)	3.98e-47
	Cognition	IVW	105	0.912 (0.883, 0.940)	0.00e+00
		Weighted Median	105	0.903 (0.850, 0.956)	2.64e-245
		MR Egger	105	0.944 (0.825, 1.062)	6.84e-29
		MR PRESSO	0*	0.912 (0.890, 0.933)	3.02e-96
*NO. of outliers.
Abbreviations: CI, confidence interval; IVW, inverse variance weighted; MR, Mendelian randomization; PRESSO, pleiotropy residual sum and outlier; SNP, single nucleotide polymorphism; UVMR, univariable Mendelian randomization.
Table S3. UVMR estimating the associations of education, intelligence, or cognition with hypertension and blood pressure

Exposure	Outcome	Method	No. of SNPs	\(\beta \) (95% CI)	OR (95% CI)	P value
Education	Hypertension (FinnGen)	IVW	372	-0.493 (-0.588, -0.398)	0.61 (0.56, 0.67)	1.44e-23
		Weighted Median	372	-0.474 (-0.582, -0.366)	0.62 (0.56, 0.69)	7.77e-18
		MR Egger	372	-0.389 (-0.742, -0.037)	0.68 (0.48, 0.96)	3.10e-02
		MR PRESSO	2*	-0.481 (-0.576, -0.387)	0.62 (0.56, 0.68)	4.59e-21
	Hypertension (UK Biobank)	IVW	378	-0.712 (-0.805, -0.618)	0.49 (0.45, 0.54)	5.45e-50
		Weighted Median	378	-0.680 (-0.784, -0.576)	0.51 (0.46, 0.56)	3.20e-39
		MR Egger	378	-0.749 (-1.085, -0.413)	0.47 (0.34, 0.66)	1.63e-05
		MR PRESSO	11*	-0.717 (-0.799, -0.635)	0.49 (0.45, 0.53)	1.72e-48
	SBP	IVW	367	-2.056 (-2.681, -1.431)	/	1.14e-10
		Weighted Median	367	-2.111 (-2.632, -1.590)	/	1.96e-15
		MR Egger	367	-2.107 (-4.395, 0.182)	/	7.23e-02
		MR PRESSO	28*	-2.281 (-2.774, -1.788)	/	1.05e-17
	DBP	IVW	368	-0.939 (-1.333, -0.544)	/	3.08e-06
		Weighted Median	368	-0.929 (-1.237, -0.622)	/	2.99e-09
		MR Egger	368	-0.979 (-2.415, 0.458)	/	0.18
		MR PRESSO	37*	-0.862 (-1.148, -0.575)	/	9.32e-09
	Hypertension (FinnGen)	IVW	143	-0.243 (-0.342, -0.144)	0.78 (0.71, 0.87)	1.51e-06
		Weighted Median	143	-0.198 (-0.310, -0.086)	0.82 (0.73, 0.92)	5.33e-04
		MR Egger	143	-0.231 (-0.725, 0.263)	0.79 (0.48, 1.30)	0.36
		MR PRESSO	44*	-0.254 (-0.349, -0.158)	0.78 (0.71, 0.85)	6.63e-07
	Hypertension (UK Biobank)	IVW	145	-0.258 (-0.365, -0.150)	0.77 (0.69, 0.86)	2.80e-06
		Weighted Median	145	-0.249 (-0.350, -0.148)	0.78 (0.71, 0.86)	1.04e-06
		MR Egger	145	-0.331 (-0.825, 0.163)	0.72 (0.44, 1.18)	0.19
		MR PRESSO	11*	-0.278 (-0.368, -0.188)	0.76 (0.69, 0.83)	1.18e-08
	SBP	IVW	143	-1.092 (-1.861, -0.324)	/	5.35e-03
Cognition	Weighted Median	143	-0.622 (-1.174, -0.069)	/	2.71e-02	
-----------	----------------	-----	-------------------------	---	----------	
MR Egger	143	-0.410 (-4.043, 3.222)	/	0.83		
MR PRESSO	22*	-1.073 (-1.595, -0.550)	/	1.01e-04		
MR Egger	143	0.335 (-1.902, 2.572)	/	0.77		
MR PRESSO	27*	-0.535 (-0.849, -0.222)	/	1.10e-03		

DBP	Weighted Median	143	-0.528 (-1.002, -0.054)	/	2.95e-02
MR Egger	143	-0.364 (-0.686, -0.042)	/	2.74e-02	
MR PRESSO	22*	-1.073 (-1.595, -0.550)	/	1.01e-04	
MR Egger	143	0.335 (-1.902, 2.572)	/	0.77	
MR PRESSO	27*	-0.535 (-0.849, -0.222)	/	1.10e-03	

Hypertension (FinnGen)	Weighted Median	126	-0.194 (-0.306, -0.082)	0.82 (0.73, 0.92)	6.62e-04
MR Egger	126	0.050 (-0.474, 0.575)	1.05 (1.62, 1.78)	0.85	
MR PRESSO	6*	-0.219 (-0.318, -0.120)	0.80 (0.73, 0.89)	3.22e-05	

Hypertension (UK Biobank)	Weighted Median	126	-0.244 (-0.344, -0.145)	0.78 (0.71, 0.87)	1.44e-06
MR Egger	126	-0.016 (-0.487, 0.454)	0.98 (0.61, 1.58)	0.95	
MR PRESSO	9*	-0.306 (-0.400, -0.213)	0.74 (0.67, 0.81)	2.85e-09	

SBP	Weighted Median	121	-0.603 (-1.435, 0.230)	/	0.16
MR Egger	121	-0.181 (-0.757, 0.395)	/	0.54	
MR PRESSO	17*	-0.442 (-1.006, 0.121)	/	0.13	

DBP	Weighted Median	121	-0.357 (-0.694, -0.019)	/	3.84e-02
MR Egger	121	1.480 (-0.870, 3.831)	/	0.22	
MR PRESSO	22*	-0.573 (-0.910, -0.235)	/	1.33e-03	

*NO. of outliers.
Abbreviations: CI, confidence interval; DBP, diastolic blood pressure; IVW, inverse variance weighted; MR, Mendelian randomization; OR, odds ratio; PRESSO, pleiotropy residual sum and outlier; SBP, systolic blood pressure; SNP, single nucleotide polymorphism; UVMR, univariable Mendelian randomization.
Table S4. MR heterogeneity test of the associations of education, intelligence, or cognition with hypertension and blood pressure

Exposure	Outcome	Method	Q statistic	Q df	Q p-value
Education	Hypertension (FinnGen)	IVW	784.14	371	9.88e-32
	MR Egger	MR Egger	783.38	370	8.28e-32
	Hypertension (UK Biobank)	IVW	924.57	377	6.82e-48
	MR Egger	MR Egger	924.45	376	4.50e-48
	SBP	IVW	1739.73	366	3.04e-177
	MR Egger	MR Egger	1739.72	365	1.40e-177
	DBP	IVW	2108.32	367	9.90e-242
	MR Egger	MR Egger	2108.30	366	4.15e-242
Intelligence	Hypertension (FinnGen)	IVW	347.23	142	3.27e-19
	MR Egger	MR Egger	347.22	141	2.07e-19
	Hypertension (UK Biobank)	IVW	501.46	144	4.64e-41
	MR Egger	MR Egger	501.15	143	2.76e-41
	SBP	IVW	1112.65	142	3.51e-150
	MR Egger	MR Egger	1111.53	141	2.03e-150
	DBP	IVW	1283.64	142	5.66e-183
	MR Egger	MR Egger	1278.21	141	2.10e-182
Cognition	Hypertension (FinnGen)	IVW	399.02	143	4.84e-26
	MR Egger	MR Egger	394.97	142	1.07e-25
	Hypertension (UK Biobank)	IVW	423.78	125	3.80e-34
	MR Egger	MR Egger	419.64	124	8.93e-34
	SBP	IVW	1023.69	120	2.87e-143
	MR Egger	MR Egger	1003.64	119	6.96e-140
	DBP	IVW	1293.14	120	8.38e-196
	MR Egger	MR Egger	1264.26	119	1.27e-190

Abbreviations: DBP, diastolic blood pressure; df, degree of freedom; IVW, inverse variance weighted; MR, Mendelian randomization; SBP, systolic blood pressure.
Table S5. MR directional pleiotropy test (MR Egger) of the associations of education, intelligence, or cognition with hypertension and blood pressure

Exposure	Outcome (FinnGen)	MR Egger intercept	SE	P value
Education	Hypertension	-0.0013	0.0022	0.55
	SBP	0.00048	0.0021	0.82
	DBP	0.00065	0.0144	0.96
	Hypertension	0.00052	0.0091	0.95
	(UK Biobank)			
	SBP	0.00025	0.0050	0.96
	DBP	0.0015	0.0050	0.77
	Hypertension	-0.014	0.0370	0.71
	(UK Biobank)			
	SBP	-0.018	0.0231	0.44
	DBP	-0.018	0.0231	0.44
Intelligence	Hypertension	-0.0062	0.0051	0.23
	(FinnGen)			
	Hypertension	-0.0057	0.0051	0.27
	(UK Biobank)			
	SBP	-0.061	0.0400	0.13
	DBP	-0.042	0.0263	0.10

Abbreviations: DBP, diastolic blood pressure; MR, Mendelian randomization; SBP, systolic blood pressure; SE, standard error.
Table S6. MVMR estimating the associations of education, intelligence, and cognition with hypertension

Method	Exposure	β	SE	P	MVMR Instrument validity test	MVMR Heterogeneity test	MVMR directional pleiotropy test					
		F-statistic	Q statistic	P value	Q statistic	P value	Egger intercept	SE	P value			
Hypertension (FinnGen)												
Models with mutual adjustment for education, intelligence, and cognition												
MV-IVW	Education	-0.403	0.0923	1.27e-05	28.82	721.72	1.11e-34	735.64	3.07e-36	-0.00038	0.0018	0.83
	Intelligence	-0.215	0.2639	0.41								
	Cognition	0.106	0.2552	0.68								
MVMR Egger	Education	-0.388	0.1157	7.92e-04	28.82	721.72	1.11e-34	735.64	3.07e-36	-0.00038	0.0018	0.83
	Intelligence	-0.207	0.2676	0.44								
	Cognition	0.110	0.2562	0.67								
Models with mutual adjustment for education and intelligence												
MV-IVW	Education	-0.417	0.0993	2.61e-05	36.92	646.10	1.80e-32	653.68	3.04e-33	-0.0036	0.0020	8.11e-02
	Intelligence	-0.084	0.0890	0.34								
MVMR Egger	Education	-0.256	0.1355	5.94e-02	36.92	646.10	1.80e-32	653.68	3.04e-33	-0.0036	0.0020	8.11e-02
	Intelligence	0.015	0.1054	0.89								
Models with mutual adjustment for education and cognition												
MV-IVW	Education	-0.463	0.0941	8.92e-07	36.55	736.96	1.60e-38	746.42	1.49e-39	0.00041	0.0018	0.82
	Cognition	-0.013	0.0880	0.87								
MVMR Egger	Education	-0.480	0.1227	9.09e-05	36.55	736.96	1.60e-38	746.42	1.49e-39	0.00041	0.0018	0.82
	Cognition	-0.025	0.1030	0.81								
Models with mutual adjustment for intelligence and cognition												
MV-IVW	Intelligence	-0.380	0.2855	0.18	11.22	368.78	6.45e-17	378.57	6.35e-18	-0.0068	0.0041	9.43e-02
	Cognition	0.157	0.2790	0.57								
MVMR Egger	Intelligence	-0.194	0.3050	0.53	11.22	368.78	6.45e-17	378.57	6.35e-18	-0.0068	0.0041	9.43e-02
	Cognition	0.321	0.2944	0.28								
Models with mutual adjustment for education, intelligence, and cognition

	Education	Intelligence	Cognition
MV-IVW	-0.743	0.0857	4.10e-18
MVMR Egger	-0.772	0.1077	7.73e-13
MV-IVW	0.032	0.2450	0.89
MVMR Egger	0.016	0.2481	0.95
MV-IVW	0.024	0.2369	0.92
MVMR Egger	0.015	0.2379	0.95
MV-IVW	60.12	808.14	1.23e-43
MVMR Egger			
MV-IVW	840.21	1.07e-47	0.00073
MVMR Egger	839.24	8.96e-48	0.0017
MV-IVW	0.1085	0.2450	0.89
MVMR Egger	0.016	0.2481	0.95
MV-IVW	0.024	0.2369	0.92
MVMR Egger	0.015	0.2379	0.95

Models with mutual adjustment for education and intelligence

	Education	Intelligence
MV-IVW	-0.805	0.0964
MVMR Egger	-0.797	0.1338
MV-IVW	0.107	0.0862
MVMR Egger	0.112	0.1029
MV-IVW	78.69	768.72
MVMR Egger		
MV-IVW	805.86	1.80e-51
MVMR Egger	805.40	1.24e-51
MV-IVW	1.68	1.12e-02
MVMR Egger		
MV-IVW	560.95	1.77e-41
MVMR Egger	560.32	1.23e-41
MV-IVW	0.36	0.704
MVMR Egger		
MV-IVW	12.61	1645.25
MVMR Egger		
MV-IVW	166.12	8.80e-194
MVMR Egger	161.95	1.17e-186

Models with mutual adjustment for education and cognition

	Education	Cognition
MV-IVW	-0.744	0.0844
MVMR Egger	-0.735	0.1099
MV-IVW	0.059	0.0776
MVMR Egger	0.112	0.1029
MV-IVW	94.11	773.19
MVMR Egger		
MV-IVW	804.13	1.58e-44
MVMR Egger	803.71	1.12e-44
MV-IVW	14.46	549.78
MVMR Egger		
MV-IVW	560.95	1.77e-41
MVMR Egger	560.32	1.23e-41

Systolic blood pressure

	Education	Intelligence
MV-IVW	-1.682	0.6575
MVMR Egger	-0.623	0.9100
MV-IVW	-0.286	0.5893
MVMR Egger	0.361	0.7045
MV-IVW	12.61	1645.25
MVMR Egger		
MV-IVW	166.12	8.80e-194
MVMR Egger	161.95	1.17e-186

Diastolic blood pressure

	Education	Intelligence
MV-IVW	-0.275	0.3166
MVMR Egger	0.097	0.3053
MV-IVW	0.056	0.2901
MVMR Egger	0.097	0.3053
MV-IVW	14.46	549.78
MVMR Egger		
MV-IVW	560.32	1.23e-41
MVMR Egger		
MV-IVW	0.36	0.7045
MVMR Egger		
MV-IVW	12.61	1645.25
MVMR Egger		
MV-IVW	166.12	8.80e-194
MVMR Egger	161.95	1.17e-186

17
Models with mutual adjustment for education and intelligence

Method	Education	Intelligence	R^2	P-value	Education	Intelligence	R^2	P-value
MV-IVW	-0.898	0.050	6.28	1935.87	2.87e-02	0.3662	0.89	1.55e-46
MV-IVW	-0.363	0.378	6.28	1935.87	2.87e-02	0.3662	0.89	1.55e-46
MV-IVW	0.5664	0.4381	6.28	1935.87	2.87e-02	0.3662	0.89	1.55e-46

Abbreviations: MV-IVW, multivariable inverse variance weighted; MVMR, multivariable Mendelian randomization; SE, standard error.
Table S7. MR heterogeneity test of the association of education with each mediator

Exposure	Mediator	Method	Q statistic	Q df	Q p-value
Education	BMI	IVW	2610.77	294	0
		MR Egger	2607.93	293	0
	WHR	IVW	400.36	302	1.25e-04
		MR Egger	400.22	301	1.10e-04
	BF%	IVW	350.98	304	3.38e-02
		MR Egger	347.04	303	4.41e-02
	HDL-C	IVW	398.21	287	1.48e-05
		MR Egger	398.07	286	1.27e-05
	Triglycerides	IVW	378.87	287	2.20e-04
		MR Egger	378.83	286	1.90e-04
	Major depression	IVW	1072.23	369	8.96e-70
		MR Egger	1072.05	368	5.57e-70

Abbreviations: BF%, body fat percentage; BMI, body mass index; df, degree of freedom; HDL-C, high density lipoprotein cholesterol; IVW, inverse variance weighted; MR, Mendelian randomization; WHR, waist-to-hip ratio.
Exposure	Mediator	Egger intercept	SE	P value
Education	BMI	0.00073	0.0013	0.57
	WHR	-0.00038	0.0012	0.75
	BF%	0.0028	0.0015	6.43e-02
	HDL-C	0.00045	0.0014	0.75
	Triglycerides	0.00023	0.0014	0.86
	Major depression	0.00040	0.0016	0.80

Abbreviations: BF%, body fat percentage; BMI, body mass index; HDL-C, high density lipoprotein cholesterol; MR, Mendelian randomization; SE, standard error; WHR, waist-to-hip ratio.
Mediator	Method	MR results	Heterogeneity test	Directional pleiotropy test				
		β	SE	P value	Q statistic	Q p-value	Egger intercept	P value
BMI	IVW	-0.139	0.0136	2.19e-24	3163.27	0	-0.0020	7.00e-04
	Weighted Median	-0.093	0.0115	6.16e-16	NA	NA		
	MR Egger	-0.026	0.0356	0.47	3089.58	0		
WHR	IVW	-0.006	0.0234	0.79	73.77	3.20e-06	-0.0070	7.81e-03
	Weighted Median	0.019	0.0239	0.43	NA	NA		
	MR Egger	0.263	0.0957	1.15e-02	55.90	5.81e-04		
BF%	IVW	-0.089	0.0588	0.13	111.92	5.97e-20	-0.0150	0.13
	Weighted Median	-0.071	0.0315	2.43e-02	NA	NA		
	MR Egger	0.317	0.2483	0.24	82.88	1.28e-14		
HDL-C	IVW	0.023	0.0113	4.97e-02	469.16	7.30e-55	0.0015	0.11
	Weighted Median	0.009	0.0084	0.31	NA	NA		
	MR Egger	-0.006	0.0210	0.78	455.14	9.99e-53		
Triglycerides	IVW	-0.001	0.0109	0.93	219.02	4.62e-22	-0.0012	0.16
	Weighted Median	0.012	0.0092	0.20	NA	NA		
	MR Egger	0.018	0.0171	0.30	210.95	4.98e-21		
Major depression	IVW	-0.079	0.0349	2.32e-02	654.88	1.28e-108	-0.0027	0.64
	Weighted Median	-0.048	0.0198	1.43e-02	NA	NA		
	MR Egger	0.008	0.1886	0.97	651.68	1.48e-108		

Abbreviations: BF%, body fat percentage; BMI, body mass index; HDL-C, high density lipoprotein cholesterol; IVW, inverse variance weighted; MR, Mendelian randomization; NA, not available; SE, standard error; WHR, waist-to-hip ratio.
Table S10. MVMR estimating the association of each mediator with hypertension with adjustment for education

Mediator	Method	Variable	β	SE	P	F-statistic	Q statistic	P value	MVMR Heterogeneity test	Q statistic	P value	MVMR directional pleiotropy test	P value	
Hypertension (FinnGen)														
BMI	MV-IV	Education	-0.317	0.0745	2.11e-05	149.72	1108.56	4.25e-54	1135.92	2.17e-57	-0.0038	0.0012	0.75	
	W	BMI	0.557	0.0385	1.75e-47				1135.29	1.67e-57				
	MVMR	Education	-0.322	0.0780	3.71e-05									
	Egger	BMI	0.578	0.0748	1.15e-14									
WHR	MV-IV	Education	-0.356	0.0641	2.62e-08	48.88	535.65	8.50e-25	594.46	4.86e-32	-0.0032	0.0012	6.85e-03	
	W	WHR	0.527	0.0939	2.02e-08				594.44	3.09e-32				
	MVMR	Education	-0.420	0.0674	4.69e-10									
	Egger	WHR	0.750	0.1239	1.44e-09									
BF%	MV-IV	Education	-0.406	0.0614	3.51e-11	45.18	396.78	6.34e-14	599.61	1.63e-32	-0.00053	0.0012	0.65	
	W	BF%	0.377	0.0805	2.84e-06				598.05	1.65e-32				
	MVMR	Education	-0.411	0.0623	4.30e-11									
	Egger	BF%	0.412	0.1116	2.20e-04									
HDL-C	MV-IV	Education	-0.455	0.0733	5.25e-10	25.74	723.65	5.61e-50	735.63	1.72e-51	-0.0031	0.0011	5.04e-03	
	W	HDL-C	-0.101	0.0349	3.71e-03				735.61	9.89e-52				
	MVMR	Education	-0.397	0.0753	1.34e-07									
	Egger	HDL-C	-0.0361	0.0415	0.38									
Triglycerides	MV-IV	Education	-0.454	0.0648	2.48e-12	32.8	584.74	2.28e-32	595.68	1.28e-33	0.00098	0.00095	0.30	
	W	Triglycerides	0.122	0.0357	6.07e-04				589.01	6.18e-33				
	MVMR	Education	-0.437	0.0668	6.04e-11									
	Egger	Triglycerides	0.104	0.0400	9.45e-03									
Major depression	MV-IV	Education	-0.420	0.0556	4.65e-14	44.37	645.92	2.46e-29	662.87	3.15e-31	0.00016	0.0010	0.88	
	W	Major depression	0.201	0.0643	1.78e-03				657.98	8.31e-31				
	MVMR	Education	-0.418	0.0570	2.42e-13									
	Egger	Major depression	0.192	0.0857	2.49e-02									

Hypertension (UK Biobank)

Mediator	Method	Variable	β	SE	P	F-statistic	Q statistic	P value	MVMR Heterogeneity test	Q statistic	P value	MVMR directional pleiotropy test	P value	
BMI	MV-IV	Education	-0.573	0.0693	1.36e-16	265.14	1159.69	1.53e-57	1219.02	5.01e-65	0.0018	0.0011	0.11	
	W													
	W	BMI	0.630	0.0357	8.30e-70									
----------------	--------------------	-------	-------	--------	----------									
MVMR Egger	Education	-0.541	0.0722	7.14e-14										
	BMI	0.533	0.0694	1.59e-14										
WHR	Education	-0.599	0.0571	8.03e-26										
MVMR Egger	WHR	0.431	0.0841	2.98e-07										
	Education	-0.631	0.0607	2.90e-25										
	WHR	0.540	0.1123	1.53e-06										
BF%	MV-IV W	-0.659	0.0555	7.05e-35										
	BF%	0.286	0.0705	4.94e-05										
	Education	-0.659	0.0543	5.69e-34										
	BF%	0.287	0.0988	3.71e-03										
HDL-C	MV-IV W	-0.703	0.0695	4.49e-24										
	HDL-C	-0.127	0.0343	2.07e-04										
	Education	-0.645	0.0711	1.13e-19										
	HDL-C	-0.059	0.0406	0.14										
Triglycerides	MV-IV W	-0.680	0.0597	5.12e-30										
	Triglycerides	0.127	0.0335	1.50e-04										
	Education	-0.645	0.0614	7.75e-26										
	Triglycerides	0.090	0.0374	1.63e-02										
Major depression	MV-IV W	-0.664	0.0510	8.92e-39										
	Major depression	0.159	0.0586	6.82e-03										
	Education	-0.667	0.0522	1.82e-37										
	Major depression	0.176	0.0786	2.54e-02										

100.31 545.14 2.30e-24 1199.69 1.07e-62

601.15 3.86e-31 -0.0016 0.0011 0.14

579.11 2.40e-28 -7.60e-06 0.0010 0.99

575.71 4.18e-28

846.78 6.51e-66 -0.0031 0.0010 2.84e-03

842.62 1.53e-65

647.97 8.56e-39 0.0019 0.00088 2.91e-02

645.80 1.03e-38

721.05 1.78e-36 -0.00031 0.00093 0.74

720.85 1.22e-36

Abbreviations: BF%, body fat percentage; BMI, body mass index; HDL-C, high density lipoprotein cholesterol; MV-IVW, multivariable inverse variance weighted; MVMR, multivariable Mendelian randomization; SE, standard error; WHR, waist-to-hip ratio.
Figure S1. Overview of the process of identifying the mediators

We searched PubMed for papers published in English using keywords: “cardiometabolic risk factor”, “risk factor”, or “association”, combined with “hypertension”, “primary hypertension”, “blood pressure”, or “cardiometabolic disease”. A total of 44 common cardiometabolic risk factors were collected and listed in the first box of this figure by categories.

Abbreviations: BF%, body fat percentage; BMI, body mass index; CO, carbon monoxide; GWAS, genome-wide association study; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; MVPA, moderate to vigorous physical activity; NOx, nitrogen oxide; O3, ozone; PM2.5, particulate matter ≤2.5 microns; SO2, sulfur dioxide; TV, television; WHR, waist-to-hip ratio.