Conformational rearrangements in the N-domain of Escherichia coli FepA during ferric enterobactin transport

Aritri Majumdar, Vy Trinh, Kyle J. Moore, Chuck R. Smallwood, Ashish Kumar, Taihao Yang, Daniel C. Scott, Noah J. Long, Salete M. Newton, and Phillip E. Klebba

The Escherichia coli outer membrane receptor FepA transports ferric enterobactin (FeEnt) by an energy- and TonB-dependent process but otherwise a mechanistically undetermined process involving its internal 150-residue N-terminal globular domain (N-domain). We genetically introduced pairs of Cys residues in different regions of the FepA tertiary structure, with the potential to form disulfide bonds. These included Cys pairs on adjacent β-strands of the N-domain (intra-N) and Cys pairs that bridged the external surface of the N-domain to the interior of the C-terminal transmembrane β-barrel (inter-N–C). We characterized FeEnt uptake by these mutants with siderophore nutrition tests, [59Fe]Ent binding and uptake experiments, and fluorescence decay sensor assays. The three methods consistently showed that the intra-N disulfide bonds, which restrict conformational motion within the N-domain, prevented FeEnt uptake, whereas most inter-N–C disulfide bonds did not prevent FeEnt uptake. These outcomes indicate that conformational rearrangements must occur in the N terminus of FepA during FeEnt transport. They also argue against disengagement of the N-domain out of the channel as a rigid body and suggest instead that it remains within the transmembrane pore as FeEnt enters the periplasm.

The crystal structures of some Gram-negative bacterial outer membrane (OM) proteins clarified or rationalized their functionalities. For instance, the crystal structures of general porins (1, 2) showed open trans-OM channels, with a 10 Å constriction zone that explained the size-exclusion properties of the pore. These data revealed why OmpF and its relatives exclude large molecules but allow passage of small (< ~600 Da) hydrophilic solutes, as was previously defined (3, 4). Similarly, the structure of the maltoporin, LamB (5), revealed a narrower (~6 Å diameter) open pore decorated on the exterior and within the pore constriction zone by aromatic residues, that explained its selectivity for maltodextrins (6, 7). The situation was different for OM siderophore receptors like FepA and its relatives. Aside from revealing 22 stranded β-barrels topped with large loops that form a cell-surface vestibule for ligand binding, their crystal structures (8–12) did not explain their transport mechanisms and posed the quandary of transmembrane channels obstructed by ~20-kDa globular domains. Instead of revealing an obvious path for ligand uptake, the structures implied that conformational changes must occur to allow internalization of bound ligands. The energy and TonB dependence (13) of OM iron transport rationalized these predicted protein dynamics. Despite this insight, the structural changes that facilitate ligand uptake through TonB-dependent transporters (14) are not yet understood. Such OM proteins are not typical transporters, a term that usually refers to ATP- or protonmotive force-driven inner membrane permeases (15). Another designation for OM siderophore receptors in this superfamily (16, 17) is ligand-gated porin (LGP) (18), which alludes to the fact that ligand binding initiates their uptake reaction and calls to mind their transmembrane porin β-barrels. However, LGPs are not diffusor. Unlike OmpF (3, 19) or LamB (20), LGPs like FepA (8) do not contain open transmembrane pores. Rather, energy-dependent uptake through their closed channels (a globular N terminus situated within a C-terminal β-barrel) is regulated by TonB action (13). This report focuses on conformational rearrangements within LGP that allow internalization of bound ligands.

Many different LGPs across many families of Gram-negative bacteria transport ferric siderophores, heme, other metal complexes (21) and other small molecules (e.g. sugars in Caulobacter crescentus (22–24)). Iron acquisition systems are virulence determinants (25) of bacterial pathogens that secrete siderophores to scavenge iron or hemophores to strip heme from host-binding proteins (26). Hence, exploitation of the molecular mechanism of OM iron uptake may lead to new approaches or new compounds against bacterial pathogens (27). LGPs bind ligands in their surface vestibules by induced fit (28, 29), creating sub-nanomolar affinities at binding equilibrium (28, 30–33).
and triggering internal protein dynamics that result in signal transduction to TonB in the bacterial periplasm (11, 12, 34, 35). Previous studies concluded that the 150-residue N-terminal globular domain (N-domain) likely exits the C-domain channel into the periplasm during ligand uptake (29, 36, 37). However, these results did not address how the N-domain moves or changes in structure to promote passage of metal complexes or other molecules (38, 39) through the transmembrane pore. The N-domain contains a four-stranded β-sheet, short turns of α-helix, and loops that project into the surface vestibule (Fig. 1A). Hypothetically, the N termini of LGP may allow metal transport by rearranging within the β-barrel to create a pore or by dislodging from the β-barrel, either as a folded domain or by unfolding. During FeEnt uptake through *Escherichia coli* FepA, substitution G54C, on the surface of the N-domain globule, became accessible to alkyllyation by extrinsic fluorescein maleimide (FM) (37). This TonB-dependent fluorescence of G54C did not occur in the absence of FeEnt transport, and the labeling originated from the presence of FM in the periplasm. We concluded from these data that during iron transport the actions of TonBExbBD promoted full or partial exit of the N-domain out of the β-barrel into the periplasmic space.

Herein, we genetically engineered Cys substitutions in fepA, encoding pairs of sulfhydryls in presumably close enough proximity to form disulfide bonds, either exclusively within the N-domain (intra-N) of FepA or between its N- and C-domains (inter-N–C) (Fig. 1). If N-domain unfolding or rearrangement occurs during ligand uptake, then we expected intra-N Cys pairs to impair or abrogate FeEnt transport. Conversely, if the N-domain exits the barrel as a folded unit, then disulfide bonds within it may not prevent ligand uptake, but inter-N–C disulfides that hold the N-domain within the β-barrel will inhibit FeEnt uptake. The experiments found that intra-N disulfide bonds prevented FeEnt transport, but the majority of inter-N–C disulfides did not impair iron uptake. These findings indicate that the N terminus of FepA must rearrange during FeEnt uptake, does not exit the channel as a rigid body, and may instead remain within the pore as it allows or promotes passage of FeEnt into the periplasm.

Results

Formation of disulfide bonds in site-directed Cys pair substitution mutants

We analyzed six pairs of Cys substitutions in adjacent β-strands or other parts of the N-domain and nine Cys pairs in regions that potentially bridged the N-domain and β-barrel (Fig. 1) of otherwise WT *fepA* (all carried on pITS23 (40)). For both types of Cys-pair mutants, disulfide bond formation may retard or abrogate FeEnt transport by interfering with conformational dynamics or motions that involve the N-domain of FepA. We selected the locations for the Cys mutations based on their expected proximity to each other in the FepA tertiary structure (Fig. 1). Analysis of the mutant proteins in nonreducing SDS-PAGE (i.e. in the absence of β-mercaptoethanol (βME)), visualized by anti-FepA immunoblots developed with

\[{}^{125}\text{I-protein A, allowed quantification of their expression and often showed the extent of disulfide bond formation. However, SDS-PAGE/immunoblot analyses did not always reveal the presence of disulfides in FepA. Some Cys pairs (33–120, 42–162, 56–73, and 149–180; Fig. 2A) showed no evidence of disulfide bond formation in the gels or immunoblots; i.e. the electrophoretic mobility of those double-Cys derivatives exactly matched that of WT FepA, despite the fact that other experiments showed that they were disulfide-bonded. For many Cys pairs, however, we saw anti-FepA–reactive band(s) with different electrophoretic mobilities than WT FepA (14–300, 27–126, 51–608, 54–585, 77–511, 84–142, 125–141, 128,463, 138–427, and 138–445; Fig. 2A), verifying the presence of disulfide bonds. Nevertheless, disulfide formation appeared incomplete for all but one of these double-Cys constructs: only mutant I14C-G300C produced a homogeneous band with different mobility than that of FepA (Fig. 2A).

The partial disulfide bonding suggested that a fraction of the engineered Cys side chains remained native and unoxidized. To estimate the amount of unreacted Cys sulfhydryls in the mutant proteins, we exposed SDS-denatured cell-envelope fractions from the Cys-pair mutants to FM (5 μM; 5 min), before and after reduction by 10 mM βME. Cys side chains in stable disulfide bonds do not react with the extrinsic fluorophore (e.g. Cys-487–Cys-494 in WT FepA (41); Fig. S1A). Fluorescent images of the gels (Fig. S1, A and B), standardized by expression levels gleaned from the immunoblots (Fig. S1, C and D) and quantified by image analysis (Fig. S1E), indicated different extents of disulfide formation among the mutants. Prior to reduction, the six intra-N Cys-pair proteins showed variable reactivity with FM (Fig. S1, A and E), showing different extents of disulfide bond formation. Some (27–126 and 125–141) were only slightly modified by FM, suggesting that they were predominately disulfide-bonded. Others (14–300, 33–120, 56–73, and 84–142) were more reactive and less disulfide-bonded. 44–111 was the most reactive and the least disulfide-bonded. Unlike other intra-N Cys pairs, it was quantitatively modified by FM before exposure to βME, implying that it did not significantly form a disulfide bond in vivo. 14–300, which appeared fully disulfide-bonded in SDS-PAGE/immunoblots (Fig. 2A), was still partially labeled by FM. After reduction by βME, all the intra-N Cys-pair proteins were better labeled by FM. WT FepA (two Cys) behaved as anticipated: without reduction it was not labeled; after reduction it was labeled to approximately half the level of 44–111 (four Cys). Overall, from observations of the different electrophoretic mobilities of the Cys–pair mutant proteins, and the reactivity of their sulfhydryls to FM, we obtained evidence of their disulfide-bond formation in vivo. The experiments revealed that some disulfide bonds (e.g. 33–120 and 56–73) did not alter FepA’s mobility in SDS-PAGE, that each mutant protein was unique, and that whether particular Cys pairs formed bonds was unpredictable a priori. For example, from its position in the crystal structure of FepA, we expected 44–111 to form a disulfide bond, but apparently it did not.

As seen for intra-N Cys pairs, gels and immunoblots of inter-N–C Cys pairs showed partial disulfide-bond formation. Although the 14–300 disulfide appeared complete, a fraction of these mutant proteins was still modified by FM (Fig. S1, A and E), indicating the presence of free sulfhydryls. Partial disulfide
formation also occurred between sites 51–608, 54–585, 77–511, 128–463, and 137–465 (Fig. 2A). We did not observe any immunoreactive bands with altered mobility for Cys pairs 42–162 and 149–180.

Effect of engineered Cys pairs on FeEnt utilization in nutrition tests

FeEnt nutrition tests (42) in the absence or presence of βME showed that the intra-N Cys pairs impaired FepA-mediated transport (Fig. 2D, Fig. S2, and Table 1). In every case that we observed disulfide formation by intra-N Cys pairs, we also observed inhibition of FeEnt uptake through FepA. In the absence of any reducing agent, Cys pairs 27–126, 33–120, 56–73, 84–142, and 125–141 produced 2–3-fold larger and often fainter halos than that of WT FepA (Fig. 2 and Fig. S2). These differences reflected a lower FeEnt uptake rate (43, 44) that was overcome by the inclusion of 1 mM βME in the test plate. None of the individual Cys substitutions comprising the Cys pairs that we tested impaired FeEnt utilization (Fig. S2).

The inhibitory Cys pairs all linked adjacent β-strands in the N-domain, suggesting that these structural elements must remain unfettered during FeEnt transit through FepA. The 44–111 pair, which was projected to link short helices in the N-domain (but showed no evidence of disulfide formation), did not inhibit FeEnt acquisition. In summary, each of the engineered Cys pairs in the N-domain that demonstrably formed a disulfide bond blocked FeEnt uptake through FepA.

Among Cys pairs that bridged the N-and C-domains of FepA, we previously engineered and characterized 14–300 (37). Residue I14C is situated in the TonB-box region of the N-domain; G300C is located on the periplasmic rim of the β-barrel in β-strand 7. Disulfide formation by 14–300 therefore precludes movement of the N-domain from the β-barrel, and accordingly, the 14–300 pair severely reduced FeEnt uptake in nutrition tests (Fig. 2, Fig. S2, and Table 1 (37)). Other inter-N–C Cys pairs produced less definitive effects. Six of them (42–162, 51–608, 128–463, 137–465, 138–445, and 149–180) showed normal halos of growth, even in the absence of βME. Among these, 51–608, 128–463, 137–465, 138–445, and 149–180 showed normal halos of growth, even in the absence of βME. Among these, 51–608, 128–463, 137–465, 138–445, and 149–180 showed normal halos of growth, even in the absence of βME. Among these, 51–608, 128–463, 137–465, 138–445, and 149–180 showed normal halos of growth, even in the absence of βME. Among these, 51–608, 128–463, 137–465, 138–445, and 149–180 showed normal halos of growth, even in the absence of βME. Among these, 51–608, 128–463, 137–465, 138–445, and 149–180 showed normal halos of growth, even in the absence of βME. Among these, 51–608, 128–463, 137–465, 138–445, and 149–180 showed normal halos of growth, even in the absence of βME. Among these, 51–608, 128–463, 137–465, 138–445, and 149–180 showed normal halos of growth, even in the absence of βME. Among these, 51–608, 128–463, 137–465, 138–445, and 149–180 showed normal halos of growth, even in the absence of βME. Among these, 51–608, 128–463, 137–465, 138–445, and 149–180 showed normal halos of growth, even in the absence of βME. Among these, 51–608, 128–463, 137–465, 138–445, and 149–180 showed normal halos of growth, even in the absence of βME. Among these, 51–608, 128–463, 137–465, 138–445, and 149–180 showed normal halos of growth, even in the absence of βME. Among these, 51–608, 128–463, 137–465, 138–445, and 149–180 showed normal halos of growth, even in the absence of βME. Among these, 51–608, 128–463, 137–465, 138–445, and 149–180 showed normal halos of growth, even in the absence of βME. Among these, 51–608, 128–463, 137–465, 138–445, and 149–180 showed normal halos of growth, even in the absence of βME. Among these, 51–608, 128–463, 137–465, 138–445, and 149–180 showed normal halos of growth, even in the absence of βME. Among these, 51–608, 128–463, 137–465, 138–445, and 149–180 showed normal halos of growth, even in the absence of βME. Among these, 51–608, 128–463, 137–465, 138–445, and 149–180 showed normal halos of growth, even in the absence of βME. Among these, 51–608, 128–463, 137–465, 138–445, and 149–180 showed normal halos of growth, even in the absence of βME. Among these, 51–608, 128–463, 137–465, 138–445, and 149–180 showed normal halos of growth, even in the absence of βME. Among these, 51–608, 128–463, 137–465, 138–445, and 149–180 showed normal halos of growth, even in the absence of βME. Among these, 51–608, 128–463, 137–465, 138–445, and 149–180 showed normal halos of growth, even in the absence of βME. Among these, 51–608, 128–463, 137–465, 138–445, and 149–180 showed normal halos of growth, even in the absence of βME. Among these, 51–608, 128–463, 137–465, 138–445, and 149–180 showed normal halos of growth, even in the absence of βME. Among these, 51–608, 128–463, 137–465, 138–445, and 149–180 showed normal halos of growth, even in the absence of βME. Among these, 51–608, 128–463, 137–465, 138–445, and 149–180 showed normal halos of growth, even in the absence of βME. Among these, 51–608, 128–463, 137–465, 138–445, and 149–180 showed normal halos of growth, even in the absence of βME. Among these, 51–608, 128–463, 137–465, 138–445, and 149–180 showed normal halos of growth, even in the absence of βME. Among these, 51–608, 128–463, 137–465, 138–445, and 149–180 showed normal halos of growth, even in the absence of βME. Among these, 51–608, 128–463, 137–465, 138–445, and 149–180 showed normal halos of growth, even in the absence of βME. Among these, 51–608, 128–463, 137–465, 138–445, and 149–180 showed normal halos of growth, even in the absence of βME. Among these, 51–608, 128–463, 137–465, 138–445, and 149–180 showed normal halos of growth, even in the absence of βME. Among these, 51–608, 128–463, 137–465, 138–445, and 149–180 showed normal halos of growth, even in the absence of βME. Among these, 51–608, 128–463, 137–465, 138–445, and 149–180 showed normal halos of growth, even in the absence of βME. Among these, 51–608, 128–463, 137–465, 138–445, and 149–180 showed normal halos of growth, even in the absence of βME.
pairs, 54–585 and 77–511, produced slightly aberrant halos in the absence of βME that did not revert to normal in the presence of βME. The inability of the reducing agent to relieve inhibition complicated the interpretation of these Cys-pair mutants in the nutrition tests.

Effect of βME on binding of [59Fe]Ent by FepA

Native *E. coli* FepA contains a single disulfide bond in L7 (Cys-487–Cys-494), which is needed for efficient transport of FeEnt (41, 43, 44). Because our experiments involved the reduction of engineered disulfide bonds in FepA, we determined the effect of varying concentrations of βME on [59Fe]Ent binding by OKN3 (ΔfepA)/pITS23 (fepA⁺). The results (Fig. 3A) showed little impact of the reductant at concentrations <1 mM, but a 20% reduction in [59Fe]Ent binding capacity at 5 mM βME.

Effect of engineered disulfide bonds on [59Fe]Ent transport

As in nutrition tests, all the engineered intra-N Cys pairs except 44–111 decreased the [59Fe]Ent uptake rate (V_{max}) (Fig. 3C). They inhibited [59Fe]Ent uptake to a level that was 25–30% of WT FepA, and βME reversed their effects, reiterating that...
Site-directed Cys pairs in FepA

Table 1

Cys pair*	Location*	Expri, −βME	S-Si, −βME	Siderophore nutrition a	[59Fe]Ent uptake b	FD sensor uptake c		
None (+ +)	NA d	1.0	15	15	1.0	1.03		
Intra-N-domain Cys pairs								
G27C/R126C	Nβ3–Nβ5	0.97	+	21	18	0.23	1.08	+ +
A33C/E120C	Nα2–Nβ5	0.92	+	28*	15	0.31	1.24	+ + + +
D44C/T111C	Nα3–Nλ2	1.31	-	20	16	1.05	1.26	+ + + +
N56C/D73C	Nβ2–Nβ3	0.85	+	33*	20	0.19	0.99	+ + + +
I84C/V142C	Nβ4–Nβ6	1.2	-	24	17	0.13	0.95	+ + + +
L125C/V141C	Nβ5–Nβ8	1.44	+	23	16	0.12	0.88	+ + + +
Inter-N-domain–C-domain Cys pairs								
I14C/G300C		0.86	+	17*	15	0.03	1.03	– –
A42C/N162C	Nα3–β1	0.83	-	15	15	ND	ND	++ + ++
T51C/N608C	Nβ2–β18	0.88	+	15	16	0.57	0.74	++ + +
G54C/T585C	Nβ2–β17	1.17	+	22	23	0.37	0.31	– –
M77C/E511C	Nβ3–β11	1.67	+	21*	18*	0.57	0.48	++ + + +
P128C/A463C	Nβ5–β13	0.71	+	13	14	ND	ND	++ + + +
A137C/A465C	Nβ6–β13	1.57	+	14	15	ND	ND	++ + + +
A138C/A445C	Nβ6–β12	1.58	+	19	20	0.94	0.70	++ + + +
G149C/T180C	Nβ6–β12	0.71	-	15	15	ND	ND	++ + + +

* Cys-pair mutants were engineered in wildtype FepA and carried on the pHSG575 (66) derivative pITS23 (39). Mutants identified in bold type showed severely impaired FeEnt uptake, unless exposed to βME.

† We designed Cys pairs using the Modeller algorithm of CHIMERA (UCSF) and PDB file 1FEP (8).

‡ Evidence of disulfide formation, from observation of altered mobility in anti-FepA immunoblots of SDS-polyacrylamide gels of OM fractions, or reversible (i.e. relieved by βME) inhibition of FeEnt uptake.

§ Using ImageJ (73), we quantified the immunoreactive bands of each Cys-pair mutant in Fig. 2A, relative to the amount of wildtype FepA. Mean expression among 15 mutants was 0.96 of wildtype; the range of expression values was 0.71–1.67 of wildtype expression.

a Sites of the growth halo (41, 42) around a paper disk containing 50 μg FeEnt, after incubation at 37 °C overnight. Results marked with an asterisk (*) denote samples with a faint halo.

b Vmax values of [59Fe]Ent uptake from Vmax screening experiments were calculated relative to the rate of wildtype FepA (96 pmol/109 cells/min; Fig. 3 and D).

c FeEnt uptake was measured as the rate of fluorescence recovery in FD sensor experiments, relative to wildtype FepA.

NA means not applicable.

ND means no data.

disulfides within the N-domain interfere with [59Fe]Ent transport. [59Fe]Ent binding capacity was also lower in several of the Cys-pair mutants (Fig. 3B); for the most part, the addition of βME did not reverse this decrease (the exception was 84–142). In some cases, a lower [59Fe]Ent-binding capacity contrasted with a relatively normal [59Fe]Ent uptake rate (56–73 and 125–141, plus βME). But LGP turnover numbers are low (5.5/min (47)), so the extent of FepA saturation may not limit the uptake rate.

The impact of inter-N–C Cys pairs on [59Fe]Ent uptake was more complicated. 14–300 nearly abolished [59Fe]Ent uptake (29), but none of the others we assayed comparably inhibited acquisition of [59Fe]Ent (Table 1). 54–585 decreased the FeEnt uptake rate by 65%, but other inter-N–C Cys pairs that we tested showed much less effect, in the range of 10–45%.

Fluorescent measurements of FeEnt uptake by Cys-pair mutants

Electrophoretic analyses did not always reveal disulfide bonds between Cys pairs, and most of the disulfides that we observed in SDS-PAGE/immunoblots were only partially formed. Consequently, the partial reductions in FeEnt uptake that we saw in nutrition tests and radioisotopic assays were difficult to interpret. We employed a fluorescent decoy (FD) sensor (30) to monitor TonB-dependent FeEnt uptake through FepA, as a better measure of whether the FeEnt uptake portal was open or held shut by engineered disulfide bonds. In a ΔtonB host (OKN13 (37)), FepA–FM (29) binds but cannot transport FeEnt. As a result, it becomes an FD sensor (30); the extent of its quenching reflects [FeEnt] and therefore the uptake of FeEnt (i.e. its depletion) by other cells in the same solution. Incubation of FD sensor cells with the Cys-pair mutant cells allowed observations of the latter’s ability to transport FeEnt, which appears as a reversal of FeEnt-mediated quenching (i.e. fluorescence recovery; Fig. 4). These data provided a quantitative time course of FepA’s transport functionality.

The FD sensor provided more definitive data on the ability of the intra-N mutants of FepA to acquire FeEnt. Whereas transport of FeEnt by WT FepA quickly reverted the FeEnt-mediated quenching of the sensor, five of the six intra-N-domain Cys-pair mutants of FepA (27–126, 33–120, 56–73, 84–142, and 125–141) did not promote fluorescence recovery until we reduced their disulfides by adding βME to the cuvette. The only exception was 44–111, which supported fluorescence recovery like WT FepA, albeit at a slower rate. Given the uncertain status of the 44–111 disulfide bond, the fluorescence data either confirmed that it did not form or that its presence did not corrupt the FeEnt transport process. Overall, the results of the intra-N Cys pairs were consistent: disulfide formation in the N-domain prevented FeEnt transport, and reduction of those bonds restored the FeEnt uptake process.

Regarding inter-N–C Cys pairs, the FD sensor reiterated that the majority did not impair FeEnt uptake, despite that we observed disulfide bond formation by five of them. Cys-pair 77–511, which produced an inconclusive nutrition test with FeEnt, showed definitive transport in the FD sensor assay (Fig. 4 and Table 1). Overall, among the nine inter-N–C Cys pairs that we tested, besides 14–300, which falls into its own category, only 54–585 inhibited FeEnt transport in FD sensor assays. As
in nutrition tests, βME did not relieve the inhibition of 54–585, confounding its interpretation.

In summary, we observed evidence of disulfide bond formation in 12 of the 15 Cys-pair mutants (Table 1). 10 FepA variants showed a band of altered electrophoretic mobility (Fig. 2A). Among the intra-N Cys pairs, 33–120, 44–111, and 56–73 showed no electrophoretic evidence of disulfide bond formation, but 33–120 and 56–73 reversibly (i.e. relieved by βME) inhibited FeEnt utilization, indicating that they did bond. The observation of disulfide bond formation by intra-N Cys pairs always correlated with impaired FeEnt uptake (Table 1).

Among inter-N–C Cys pairs, we saw anti-FepA–reactive bands with altered migration in all mutants except 42–162 and 149–180 (Fig. 2A and Table 1). In five of seven of these instances disulfide bond formation did not inhibit FeEnt uptake (Table 1). The exceptions (14–300 and 54–585) each had individual considerations that rationalized their behavior (discussed below).

Discussion

Delineation of the FepA transport mechanism requires insight into the actions of its N-domain during FeEnt internalization. In three disparate assays, the phenotypes of the Cys-pair mutants under investigation led to the same conclusion: intra-N disulfide bonds generally prevented FeEnt transport, whereas inter-N–C disulfide bonds generally did not prevent FeEnt transport (Fig. 1). These data imply several conclusions.

(i) The internal β-structure of the N-domain must rearrange during FeEnt uptake, because bonds that block such a transition also block transport. Disulfide bonds in the N-domain will restrict its potential motion, constraining conformational changes that are apparently required to achieve FeEnt import.

(ii) The N-domain does not move out of the transmembrane pore as a folded rigid body (37), because bonds that hold it within the channel do not block FeEnt uptake. (iii) Numerous disulfide bonds that restrained the N-domain within the β-barrel did not prevent ligand uptake. These data suggest that most of the N terminus remains within the channel, which infers the formation of a transient pore (37) through which FeEnt passes into the periplasm.

It was a challenge to determine the extent of engineered disulfide bond formation in vivo. The Cys pairs produced a gamut of possible outcomes. Some formed disulfides that altered the Rₐ of FepA, whereas others did not change Rₐ because they did not form or because the disulfide did not alter migration in the gels. Even a single amino acid substitution may dramatically change the electrophoretic mobility of a protein (45), but the effects of engineered disulfides on the electrophoretic behavior of FepA were unpredictable: some created a
Site-directed Cys pairs in FepA

Figure 4. FD sensor measurements of FeEnt uptake by Cys-pair mutants of FepA. OKN3 expressing FepA with individual Cys pairs was incubated with the FD sensor OKN13 (ΔtonB and ΔfepA)/pFepA-FM and observed in response to the addition of FeEnt (5 nM) at 37 °C. A, intra-N mutants. After quenching by addition of FeEnt at 100 s, WT FepA (+ +) and 44–111 conferred complete recovery (i.e., FeEnt uptake) within 500 s. Addition of 10 mM βME at 800 s enabled recovery by 33–120, but all the remaining Cys pairs required a second aliquot of 10 mM βME to confer recovery. B, inter-N and -C mutants. None of the Cys pairs prevented fluorescence recovery except 14–300 and 54–585, which were not affected by up to 20 mM βME.

compact isoform of the denaturated protein that moved faster, whereas others stabilized a larger isoform that moved slower. Anti-FepA immunoblots of 33–120 and 56–73 did not reveal any additional bands, despite the fact that both Cys pairs impaired FeEnt uptake and reverted to normal transport when reduced by βME. Hence, disulfides formed in both 33–120 and 56–73, but the immunoblots did not reveal them. Furthermore, when we observed a Cys pair mutant band with different Rf values, usually only ~50% of the protein was in the altered state. The engineered Cys-pair sulphydryls were hypothetically close enough (<2.5 Å between sulfur atoms) to form disulfides, but without the crystallographic data on each mutant protein their impact on local folding and side-chain projection was unknown. Furthermore, for numerous engineered Cys pairs the DsbAB system (46–50) did not efficiently oxidize disulfide bond formation, as evidenced by the susceptibility of the component sulphydryls to alkylation by FM. Finally, we saw multiple immunoreactive electrophoretic forms of some FepA Cys-pair mutants. Besides fully synthesized, secreted, and folded OM proteins, immunoblots may reveal nascent or incomplete mutants. After quenching by only six residues in L7 and probably immediately bond as that region of the polypeptide exits the ribosome and folds.

FD sensor assays provided unique, real-time insight into the transport behavior of the FepA mutants. Nutrition tests and [59Fe]Ent uptake assays were useful but sometimes hard to interpret, whereas FD assays were unambiguous about the impact of each Cys pair on FeEnt transport. The sensor cell OKN13/pFepA-FM depicted uptake of FeEnt by the FepA Cys-pair mutants in vivo. It showed that except for 44–111 (which did not form a disulfide bond), all intra-N Cys pairs blocked FeEnt uptake until exposed to 10 mM βME. Conversely, with the exception of 14–300 and 54–585, none of the other seven inter-N–C Cys pairs inhibited FeEnt uptake. Cys pair 14–300 is unique among all the mutants, because its immobilization of the TonB-box both holds the N-domain within the β-barrel and interferes with signal transduction to TonB. 54–585 blocked FeEnt uptake, but its inhibition was not reversed by βME, suggesting that its negative phenotype was unrelated to disulfide formation. Despite these two exceptions, the more definitive FD sensors corroborated and clarified the siderophore nutrition and [59Fe]Ent accumulation results.

The crystal structures of ligand-free and ligand-bound transporters (9–12, 28, 32) revealed that when LGP adsorbs metal complexes by induced fit (29), subtle changes propagate through their N termini that alter the disposition of residues in the periplasm, promoting interactions with the TonB C terminus (34, 35). These dynamics raise the possibility that intra-N disulfides interfere with FeEnt uptake because they corrupt signal transduction to TonBExbBD. However, inspection of the
ligand-free and ligand-bound forms of FhuA, FecA, and BtuB show little or no deviation in the regions of the N-domain that contain the Cys pairs we engineered in FepA. We cannot exclude the notion that intra-N Cys pairs interfere with signal transduction to TonBExbBD, but this explanation seems unlikely.

Despite the importance of TonB-dependent iron acquisition to Gram (−) bacterial pathogenesis (52–61) and the solution of many LGP crystal structures (FepA (8), Cir (8), FhuA (11, 12), FecA (11, 12), FoxA (32), BtuB (9), FptA (62), FpvA (63), PfeA (28), and FyuA (64)), it is unknown how metal complexes move through their channels or how the actions of TonB facilitate uptake. Biochemical data on FepA (65) and crystallographic studies of other LGPs (28, 32) indicated a two-site model during FeEnt adsorption. Other approaches, including site-directed alkylation of FepA during FeEnt transport (37) and molecular dynamics simulations of the interaction between TonB and BtuB (28), suggested that the N-domain globules of LGP exit their transmembrane β-barrels, either stably folded or by unfolding into the periplasm. Our results argue against both these mechanisms. First, seven of nine inter-N–C Cys pairs that we tested did not inhibit FeEnt uptake, refuting the notion that the N-domain exit the β-barrel as an intact globule. Second, tethering Cys residues at 51, 77, 128, 137, or 138 to the N-domain is indispensable to the uptake reaction, because five of six the intra-N domain Cys pairs we created prevented FeEnt internalization, unless exposed to βME.

Experimental procedures

Bacterial strains, plasmids, and culture conditions

Plasmid pITS23 (39, 40) is a derivative of pHSG575 (66) that carries fepA* under the control of its natural Fur-regulated promoter. We engineered Cys-pair alleles of fepA in this vector. Derivatives of BN1071 (67) with precise deletions (OKN1, ΔtonB; OKN3, ΔfepA; and OKN13, ΔtonB, ΔfepA (37)), harboring variants of pITS23 that encode WT or mutant alleles, were grown at 37 °C with shaking to stationary phase in Luria-Bertani (LB) broth. We added streptomycin (100 µg/ml) to the growth media and chloramphenicol (20 µg/ml) to select for the plasmids when appropriate. We de-repressed the FeEnt transport system by subculturing bacteria from stationary phase LB cultures at 1% into iron-deficient MOPS minimal medium (68) and shaking at 200 rpm for 5.5–6 h at 37 °C, until cell density reached an absorbance of 600 nm of 0.8–0.9.

Site-directed mutagenesis of E. coli fepA

We used QuikChange (Stratagene) for single- and double-Cys substitutions in FepA, using complementary oligonucleotides flanking the mutation, followed by digestion of the WT vector by DpnI. We confirmed the mutations by sequencing (Genesys, Daly City, CA) of purified plasmids.

Intra-N Cys pairs—We constructed six Cys pairs (G27C-R126C, A33C-E120C, D44C-T111C, N56C-D73C, I84C-V142C, and L125C-V141C) in different regions of the N-domain of FepA. Each pair may form a disulfide bond within the globular domain, which prevents separation of its constituent β-strands (Fig. 1 and Table 1).

Inter-N–C Cys pairs—We analyzed another group of nine Cys pairs (I14C-G300C, A42C-N162C, T51C-N608C, G54C-T585C, M77C-E511C, P128C-A463C, A137C-A465C, A138C-A445C, and G149C-T180C) in which one sulfhydryl was on the surface of the N-domain and a second was on the internal wall of the FepA β-barrel (Fig. 1 and Table 1).

Siderophores

We purified enterobactin from E. coli and formed the iron(III) complex with ⁵⁶Fe or ⁵⁹Fe (33) and chromatographically-purified FeEnt over Sephadex LH20 (42). We stored the [⁵⁶Fe]Ent and [⁵⁹Fe]Ent complexes on ice and re-purified them over LH20 to remove oxidized and degraded compounds when A₃₉₃ nm/A₄₉₅ nm exceeded 0.7.

Siderophore nutrition tests

To qualitatively evaluate the FeEnt uptake abilities encoded by the mutant fepA alleles, we performed siderophore nutrition tests (42, 44). We expressed the results as the diameter of bacterial growth around the paper disk, and we compared mutant halos to the growth halo conferred by a strain harboring pITS23 (fepA*). To test the effect of disulfide bond reduction on FeEnt transport by the FepA mutants, we added 1 mM βME to the molten agar.

Preparation of cell-envelope fractions

After growth in LB broth overnight, we sub-cultured FepA Cys-pair mutant derivatives of OKN3/pITS23 at (1%) into 20 ml of iron-deficient MOPS media, and we incubated the cultures with shaking for 5.5–6 h at 37 °C, to an A₆₀₀ nm = 1–1.2 (5–6 × 10⁸ cells/ml). We collected the cells by centrifugation at 7500 × g, resuspended the pellets in 2 ml of PBS containing trace amounts of DNase and RNase, and passed the cell suspensions (three times) through a French pressure cell at 14,000 p.s.i. (69). After spinning the lysates at 3000 × g for 10 min to remove unbroken cells and debris, we transferred the supernatants to microcentrifuge tubes and pelleted the cell envelopes by centrifugation at 13,000 × g for 45 min. We resuspended the cell envelopes in 400 µl of 50 mM NaH₂PO₄ pH 6.7, containing 1% SDS, added 3% βME to one-half of the sample (reduced), left the remainder unaltered (nonreduced), and denatured the proteins in both samples by boiling for 5 min.

Electrophoresis and western immunoblots

We electrophoretically and immunochemically analyzed cell-envelope fractions of the mutants. For SDS-PAGE (70, 71), we suspended 30 µg of cell-envelope protein (measured by UV absorbance) in sample buffer (containing 1% SDS), with or without 3% βME, boiled the sample for 5 min, and resolved the samples by SDS-PAGE at 30 mA. To enhance the separation of proteins in the 80-kDa range, we continued electrophoresis at 30 mA for an additional 45 min after the tracking dye left the gels. To visualize FepA in western immunoblots, we electrophoretically transferred the proteins from the SDS-polyacrylamide gels to nitrocellulose (NC) paper, blocked the paper with...
Site-directed Cys pairs in FepA

1% gelatin in 50 mM Tris chloride, pH 7.4, 0.9% NaCl (TBSG), and incubated with a mixture of anti-FepA mouse monoclonal antibodies (mAbs) 41 and 45 (72), both of which have Ig2b heavy chains, in the same buffer. After incubation with the antisera for 1 h at room temperature, we washed the NC five times with 0.5% Tween 20 in TBS, incubated it with 125I-protein A in TBS for 1 h at room temperature, washed with three rinses of tap water, dried the paper, and visualized the adsorbed 125I-protein A on a Typhoon 8600 Biomolecular Scanner (GE/Amersham Biosciences).

Labeling reactions with FM

We estimated the extent of disulfide formation in Cys-pair mutants of FepA by modifying them with FM. We precipitated 100 μl of the denatured, reduced, and nonreduced cell-envelope proteins in 50 mM MOPS medium with appropriate antibiotics and continued growth at 37 °C with shaking for 5.5 h. In some cases, the bacteria were exposed to 5 mM [59Fe]Ent. We employed it in these binding studies as a negative (background) control.

Image analysis

We analyzed images from SDS-polycrylamide gels of fluorescent proteins and from phosphorimagery of 125I-protein A immunoblots, collected on a Typhoon Biomolecular scanner (GE Healthcare) using ImageJ (73).

Effect of βME on FeEnt binding by FepA

Because in several experiments we used βME to reduce disulfide bonds within FepA, we tested its effects on the adsorption of [59Fe]Ent by OKN3/pITS23 (fepA⁺). We grew the bacteria in LB overnight, subcultured at 1% in iron-deficient MOPS minimal medium, shook the cultures for 5 h at 37 °C, added βME at increasing concentrations to 5 mM, and shook the cultures for additional 30 min at 37 °C. We created a duplicate control culture that we subjected to the same conditions, but without any βME. To determine the [59Fe]Ent-binding capacities, we added the ferric siderophore at 10 nM, filtered the cells after 1 min, washed the samples with ice-cold 70% acetone, solubilized them with SDS-PAGE sample buffer, and subjected them to SDS-PAGE/Western immunoblot.

Ferric enterobactin accumulation

We subcultured overnight LB cultures at 1% in iron-deficient MOPS medium with appropriate antibiotics and continued growth at 37 °C with shaking for 5.5 h. In some cases, the bacteria were exposed to 5 mM βME in the final 30 min of growth. We next added [59Fe]Ent to 3-ml aliquots of the cells at 37 °C (in the original culture medium) to a final concentration of 10 μM, removed 100-μl aliquots at 5, 10, 15, 30, and 45 min, filtered them, and washed them with 10 ml of 0.9% LiCl, and we determined the amounts of [59Fe] on the filters in a Packard gamma counter. For each accumulation experiment, we collected triplicate samples at each time point and averaged the data. At a density of ~5 × 10⁸ cells/ml, the added [59Fe]Ent was sufficient to remain in excess for more than 2 h of transport at V_{max} (74).

Fluorescence assays of FeEnt transport

We employed FD sensors (30) to monitor TonB-dependent FeEnt uptake through FepA, as a measure of whether the FeEnt uptake portal was open or held shut by engineered disulfide bonds. In this approach, we used the transport-defective host strain OKN13 (ΔtonB and ΔfepA) harboring a plasmid (pITS23) encoding fepA with a single amino acid substitution (A698C), which was modifiable by FM (FepA_{A698C-FM}; henceforth called FepA-FM). OKN13/pFepA-FM bound FeEnt, which quenched its fluorescence (29), but its TonB deficiency prevented it from transporting the bound iron complex. The absence of TonB transformed the fluorescent bacteria into spectroscopic sensors of [FeEnt] (30); if transport-competent cells cohabited the same environment, then the emissions of OKN13/pFepA-FM reflected their FeEnt uptake activity. Hence, in fluorescence spectroscopic uptake studies, OKN13/pFepA-FM was a decoy sensor that monitored FeEnt uptake by the FepA Cys-pair mutants in a host strain OKN3 (ΔfepA). These data provided a quantitative time course of FepA’s transport functionality.

For each assay, we used 50 μl of OKN13/pFepA-FM (44) at 5 × 10⁸ cells/ml. We analyzed the aliquot in 2 ml of PBS + 0.4% glucose at 37 °C, and we recorded its fluorescence intensity for 100 s, before adding FeEnt to the cuvette at a final concentration of 5 nM. We incubated the sample for 100 s, during which time fluorescence was quenched (~60% quenching for FepA labeled at position A698C), and we then added 50 μl of the test strain (~5 × 10¹⁰ cells) at 200 s while monitoring fluorescence. If no increase in fluorescence occurred (indicating lack of uptake) by 800 s, we added βME to a final concentration of 10 mM. For some strains, we added a second aliquot of βME at 1000 s that raised the final concentration to 20 mM.

Author contributions—A. M., V. T., K. J. M., C. R. S., D. C. S., S. M. N., and P. E. K. conceptualization; A. M. and P. E. K. resources; A. M., V. T., S. M. N., and P. E. K. data curation; A. M., V. T., S. M. N., and P. E. K. writing—original draft; A. M., V. T., S. M. N., and P. E. K. supervision; A. M. and P. E. K. project administration; A. M. and P. E. K. writing-review and editing.

Acknowledgment—We thank Ron Kaback for helpful discussions about the experiments.

References

1. Cowan, S. W., Schirmer, T., Rummel, G., Steiert, M., Ghosh, R., Paupert, R. A., Jansonius, J. N., and Rosenbusch, J. P. (1992) Crystal structures explain functional properties of two E. coli porins. Nature 358, 727–733

CrossRef Medline
22. Eisenbeis, S., Lohmiller, S., Valdebenito, M., Leicht, S., and Braun, V. (2008) N-Acetylglucosamine and N-acetyl-
chitin oligosaccharides across the outer membrane of Caulobacter crescentus. J. Bacteriol. 190, 5230–5238 CrossRef Medline

23. Lohmiller, S., Hanke, K., Patzer, S. L., and Braun, V. (2008) TonB-dependent maltose transport by Caulobacter crescentus. Microbiology 154, 1748–1754 CrossRef Medline

24. Neugebauer, H., Herrmann, C., Cammer, W., Schwarz, G., Nordheim, A., and Braun, V. (2005) ExbB-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus. J. Bacteriol. 187, 8300–8311 CrossRef Medline

25. Fetherston, J. D.,kirillina, O., Bobrov, A. G., Paulley, J. T., and Perry, R. D. (2010) The yersiniaabactin transport system is critical for the pathogenesis of bubonic and pneumonic plague. Infect. Immun. 78, 2045–2052 CrossRef Medline

26. Larson, J. A., Higashi, D. L., Stojilkovic, I., and So, M. (2002) Replication of Neisseria meningitidis within epithelial cells requires TonB-dependent acquisition of host cell iron. Infect. Immun. 70, 1461–1467 CrossRef Medline

27. Nairn, B. L., Elaissoun, O. S., Hyder, D. R., Long, N. J., Majumdar, A., Chakravorty, S., McDonald, P., Roy, A., Newton, S. M., and Klebba, P. E. (2017) Fluorescence high-throughput screening for inhibitors of TonB action. J. Bacteriol. 199, e00878–16 CrossRef Medline

28. Moynié, L., Milenkovic, S., Mlin, G. L. A., Gasser, V., Malloci, G., Raco, E., McCaughan, R. P., Page, M. G. P., Schalk, I. J., Ceccarelli, M., and Naismith, J. H. (2019) The complex of ferric-enterobactin with its transport-eropor from Pseudomonas aeruginosa suggests a two-site model. Nat. Commun. 10, 3673 CrossRef Medline

29. Smallwood, C. R., Jordan, L., Trinh, V., Schuerr, D. W., Gala, A., Hanson, M., Hanson, M., Shipleysky, Y., Majumdar, A., Newton, S. M., and Klebba, P. E. (2014) Concerted loop motion triggers induced fit of FepA to ferric enterobactin. J. Gen. Physiol. 144, 191–202 CrossRef Medline

30. Chakravorty, S., Shipleysky, Y., Kumar, A., Majumdar, A., Yang, T., Nairn, B. L., Newton, S. M., and Klebba, P. E. (2019) Universal fluorescent sensors of high affinity iron transport, applied to ESKAPE(yen) pathogens. J. Biol. Chem. 294, 4682–4692 CrossRef Medline

31. Di Masili, D., White, J. C., Schnaitman, C. A., and Bradbeer, C. (1973) Transport of vitamin B12 in Escherichia coli: common receptor sites for vitamin B12 and the E. coli colicins on the outer membrane of the cell envelope. J. Bacteriol. 115, 506–513 CrossRef Medline

32. Josts, I., Veith, K., and Tidow, H. (2019) Ternary structure of the outer membrane transmembrane FvaxA with resolved signalling domain provides insights into TonB-mediated siderophore uptake. Elife 8, e48528 CrossRef Medline

33. Newton, S. M., Trinh, V., Pi, H., and Klebba, P. E. (2010) Direct measurements of the outer membrane stage of ferric enterobactin transport: postuptake binding. J. Biol. Chem. 285, 17488–17497 CrossRef Medline

34. Pawelek, P. D., Croteau, N., Ng-Thow-Hing, C., Khursigara, C. M., Moiseska, N., Allaire, M., and Coulton, J. W. (2006) Structure of TonB in complex with FhuA, E. coli outer membrane receptor. Science 312, 1399–1402 CrossRef Medline

35. Shultis, D. D., Purdy, M. D., Banchs, C. N., and Wiener, M. C. (2006) Outer membrane active transport: structure of the BtuB:TonB complex. Science 312, 1396–1399 CrossRef Medline

36. Gumbart, J., Wiener, M. C., and Tjaskorshid, E. (2007) Mechanics of force propagation in TonB-dependent outer membrane transport. Biophys. J. 93, 496–504 CrossRef Medline

37. Ma, L., Kaserer, W., Annamalai, R., Scott, D. C., Jin, B., Xiao, Q., Maymani, H., Massis, L. M., Ferreira, L. C., Newton, S. M., and Klebba, P. E. (2007) Evidence of bond-and-anch transport of ferric enterobactin through FepA. J. Biol. Chem. 282, 397–406 CrossRef Medline

38. Cao, Z., and Klebba, P. E. (2002) Mechanisms of colicin binding and transport through outer membrane porins. Biochimie 84, 399–412 CrossRef Medline

39. Smallwood, C. R., Arco, A. G., Xiao, Q., Trinh, V., Newton, S. M., and Klebba, P. E. (2009) Fluoresceinization of FepA during colicin B killing: effects of temperature, toxin and TonB. Mol. Microbiol. 72, 1171–1180 CrossRef Medline

40. Scott, D. C., Cao, Z., Qi, Z., Bauler, M., Igo, J. D., Newton, S. M., and Klebba, P. E. (2001) Exchangeability of N termini in the ligand-gated...
Site-directed Cys pairs in FepA

porins of Escherichia coli. J. Biol. Chem. 276, 13025–13033 CrossRef Medline

41. Liu, J., Rutz, J. M., Klebba, P. E., and Feix, J. B. (1994) A site-directed spin-labeling study of ligand-induced conformational change in the ferric enterobactin receptor, FepA. Biochemistry 33, 13274–13283 CrossRef Medline

42. Wayne, R., Frick, K., and Neilands, J. B. (1976) Siderophore protection against colicins M, B, and V, and l in Escherichia coli. J. Bacteriol. 126, 7–12 CrossRef Medline

43. Annamalai, R., Jin, B., Cao, Z., Newton, S. M., and Klebba, P. E. (2004) Recognition of ferric catecholates by FepA. J. Bacteriol. 186, 3578–3589 CrossRef Medline

44. Cao, Z., Qi, Z., Sprence, C., Newton, S. M., and Klebba, P. E. (2000) Aromatic components of two ferric enterobactin binding sites in Escherichia coli fepA. Mol. Microbiol. 37, 1306–1317 CrossRef Medline

45. Noel, D., Nikaide, K., and Ames, G. F. (1979) A single amino acid substitution in a histidine-transport protein drastically alters its mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Biochemistry 18, 4159–4165 CrossRef Medline

46. Bardwell, J. C. (1994) Building bridges: disulphide bond formation in the cell. Mol. Microbiol. 14, 199–205 CrossRef Medline

47. Gleiter, S., and Bardwell, J. C. (2008) Disulfide bond isomerization in prokaryotes. Biochim. Biophys. Acta 1783, 530–534 CrossRef Medline

48. Goldstone, D., Haebel, P. W., Katzen, F., Bader, M. W., Bardwell, J. C., Beckwith, J., and Metcalf, P. (2001) Dsb activation by the N-terminal domain of DsbD. Proc. Natl. Acad. Sci. U.S.A. 98, 9551–9556 CrossRef Medline

49. Mamathambika, B. S., and Bardwell, J. C. (2008) Disulfide-linked protein folding pathways. Annu. Rev. Cell Dev. Biol. 24, 211–235 CrossRef Medline

50. Tapley, T. L., Eichner, T., Gleiter, S., Ballou, D. P., and Bardwell, J. C. (2007) Kinetic characterization of the disulfide bond-forming enzyme DsbB. J. Biol. Chem. 282, 10263–10271 CrossRef Medline

51. Cao, Z., Warfel, P., Newton, S. M., and Klebba, P. E. (2003) Spectroscopic observations of ferric enterobactin transport. J. Biol. Chem. 278, 1022–1028 CrossRef Medline

52. Buckling, A., Harrison, F., Mos, M., Brockhurst, M. A., Gardner, A., West, S. A., and Griffin, A. (2007) Siderophore-mediated cooperation and virulence in Pseudomonas aeruginosa. FEMS Microbiol. Ecol. 62, 135–141 CrossRef Medline

53. Cornelissen, C. N., and Hollander, A. (2011) TonB-dependent transporters expressed by Neisseria gonorrhoeae. Front. Microbiol. 2, 117 CrossRef Medline

54. Dhople, A. M., Ibanez, M. A., and Poirier, T. C. (1996) Role of iron in the pathogenesis of Mycobacterium avium infection in mice. Microbiol 87, 77–87 Medline

55. Furman, M., Fica, A., Saxena, M., Di Fabio, J. L., and Cabello, F. C. (1994) Salmonella typhi iron uptake mutants are attenuated in mice. Infect. Immun. 62, 4091–4094 CrossRef Medline

56. Konings, A. F., Martin, L. W., Sharples, K. J., Roddam, L. F., Latham, R., Reid, D. W., and Lamont, I. L. (2013) Pseudomonas aeruginosa uses multiple pathways to acquire iron during chronic infection in cystic fibrosis lungs. Infect. Immun. 81, 2697–2704 CrossRef Medline

57. Mortensen, B. L., and Skaar, E. P. (2013) The contribution of nutrient metal acquisition and metabolism to Acinetobacter baumannii survival within the host. Front. Cell Infect. Microbiol. 3, 95 CrossRef Medline

58. Schoolnik, G. K. (2002) Microarray analysis of bacterial pathogenicity. Adv. Microb. Physiol. 46, 1–45 CrossRef Medline

59. Smith, K. D. (2007) Iron metabolism at the host pathogen interface: lipocalin 2 and the pathogen-associated iroA gene cluster. Int. J. Biochem. Cell Biol. 39, 1776–1780 CrossRef Medline

60. Torres, A. G., Redford, P., Welch, R. A., and Payne, S. M. (2001) TonB-dependent systems of uropathogenic Escherichia coli: aerobactin and hem transport and TonB are required for virulence in the mouse. Infect. Immun. 69, 6179–6185 CrossRef Medline

61. Torres, V. J., Pischchany, G., Humayun, M., Schneewind, O., and Skaar, E. P. (2006) Staphylococcus aureus IsdB is a hemoglobin receptor required for hem iron utilization. J. Bacteriol. 188, 8421–8429 CrossRef Medline

62. Cobessi, D., Celina, H., and Pattus, F. (2005) Crystal structure at high resolution of ferric-pyochelin and its membrane receptor FptA from Pseudomonas aeruginosa. J. Mol. Biol. 352, 893–904 CrossRef Medline

63. Cobessi, D., Celina, H., Folschweiller, N., Schalk, I. J., Abdallah, M. A., and Pattus, F. (2005) The crystal structure of the pyoverdine outer membrane receptor FpvA from Pseudomonas aeruginosa at 3.6 angstroms resolution. J. Mol. Biol. 347, 121–134 CrossRef Medline

64. Lukacik, P., Barnard, T. J., Keller, P. W., Chaturvedi, K. S., Seddiki, N., Fairman, J. W., Noinaj, N., Kirby, T. L., Henderson, J. P., Steven, A. C., Hinnebusch, B. J., and Buchanan S. K. (2012) Structural engineering of a phage lysin that targets Gram-negative pathogens. Proc. Natl. Acad. Sci. U.S.A. 109, 9857–9862 CrossRef Medline

65. Payne, M. A., Igo, J. D., Cao, Z., Foster, S. B., Newton, S. M., and Klebba, P. E. (1997) Biphasic binding kinetics between FepA and its ligands. J. Biol. Chem. 272, 21950–21955 CrossRef Medline

66. Takeshita, S., Sato, M., Toba, M., Masahashi, W., and Hashimoto-Gotoh, T. (1987) High-copy-number and low-copy-number plasmid vectors for lacZ α-complementation and chloramphenicol- or kanamycin-resistance selection. Gene 61, 63–74 CrossRef Medline

67. Klebba, P. E., McIntosh, M. A., and Neillands, J. B. (1982) Kinetics of biosynthesis of iron-regulated membrane proteins in Escherichia coli. J. Bacteriol. 149, 880–888 CrossRef Medline

68. Neidhardt, F. C., Bloch, P. L., and Smith, D. F. (1974) Culture medium for enterobacteria. J. Bacteriol. 119, 736–747 CrossRef Medline

69. Smit, J., Kamio, Y., and Nikaide, H. (1975) Outer membrane of Salmonella typhimurium: chemical analysis and freeze-fracture studies with lipopolysaccharide mutants. J. Bacteriol. 124, 942–958 CrossRef Medline

70. Hancock, R. E., and Braun, V. (1976) The colicin I receptor of Escherichia coli K-12 has a role in enterochelin-mediated iron transport. FEBS Lett. 65, 208–210 CrossRef Medline

71. Lugtenberg, B., Meijers, J., Peters, R., van der Hoek, P., and van Alphen, L. (1975) Electrophoretic resolution of the "major outer membrane protein" of Escherichia coli K12 into four bands. FEBS Lett. 58, 254–258 CrossRef Medline

72. Murphy, C. K., Kalve, V. I., and Klebba, P. E. (1990) Surface topology of the K-12 ferric enterobactin receptor. J. Bacteriol. 172, 2736–2746 CrossRef Medline

73. Schneider, C. A., Rashedan, W. S., and Eliceiri, K. W. (2012) NIH Image to Image: 25 years of image analysis. Nat. Methods 9, 671–675 CrossRef Medline

74. Newton, S. M., Igo, J. D., Scott, D. C., and Klebba, P. E. (1999) Effect of loop deletions on the binding and transport of ferric enterobactin by FepA. Mol. Microbiol. 32, 1153–1165 CrossRef Medline

75. Hashimoto-Gotoh, T., Franklin, F. C., Nordheim, A., and Timmis, K. N. (1981) Specific-purpose plasmid cloning vectors. I. Low copy number, temperature-sensitive, mobilization-defective pSC101-derived containment vectors. Gene 16, 227–235 CrossRef Medline

76. Hollifield, W. C., Jr., Fiss, E. H., and Neilands, J. B. (1978) Modification of a ferric enterobactin receptor protein from the outer membrane of Escherichia coli. Biochem. Biophys. Res. Commun. 83, 739–746 CrossRef Medline