Arsenic trioxide induces regulatory functions of plasmacytoid dendritic cells through interferon-α inhibition

Yishan Ye, Laure Ricard, Lama Siblany, Nicolas Stocker, Frédéric De Vassoigne, Eolia Brissot, Baptiste Lamartheé, Arsène Mekinian, Mohamad Mohty, Béatrice Gaugler, Florent Malard

Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris F-75012, France
Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
AP-HP, Hôpital Saint-Antoine, Service d’Hématologie Clinique et Thérapie Cellulaire, Paris F-75012, France
AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne et de l’Inflammation-(DHU i2B), Paris F-75012, France

Received 7 July 2019; received in revised form 4 December 2019; accepted 16 December 2019

KEY WORDS
Arsenic trioxide; Plasmacytoid dendritic cell; Immunotherapy; Systemic sclerosis; IFN-I

Abstract Arsenic trioxide (As2O3) is recently found to have therapeutic potential in systemic sclerosis (SSc), a life-threatening multi-system fibrosing autoimmune disease with type I interferon (IFN-I) signature. Chronically activated plasmacytoid dendritic cells (pDCs) are responsible for IFN-I secretion and are closely related with fibrosis establishment in SSc. In this study, we showed that high concentrations of As2O3 induced apoptosis of pDCs via mitochondrial pathway with increased BAX/BCL-2 ratio, while independent of reactive oxygen species generation. Notably, at clinical relevant concentrations, As2O3 preferentially inhibited IFN-α secretion as compared to other cytokines such as TNF-α, probably due to potent down-regulation of the total protein and mRNA expression, as well as phosphorylation of the interferon regulatory factor 7 (IRF7). In addition, As2O3 induced a suppressive phenotype, and in combination with cytokine inhibition, it down-regulated pDCs’ capacity to induce CD4+ Th cell proliferation, Th1/Th22 polarization, and B cell differentiation towards plasmablasts. Moreover, chronically activated pDCs from SSc patients were not resistant to the selective IFN-α inhibition, and regulatory phenotype induced by As2O3. Collectively, our data suggest that As2O3 could...
target pDCs and exert its treatment efficacy in SSc, and more autoimmune disorders with IFN-I signature.

© 2020 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Arsenic trioxide (\(\text{As}_2\text{O}_3\)), an old drug well-known for its rediscovery in the treatment of acute promyelocytic leukemia (APL)\(^1\), was shown to have therapeutic potential in a number of mouse models of autoimmune disorders including systemic sclerosis (SSc)\(^2-5\), with largely unknown mechanism. Apoptosis induction and NF-\(\kappa\)B pathway inhibition are two mechanisms generally known for \(\text{As}_2\text{O}_3\) efficacy, but are not disease-specific\(^6,7\).

Plasmacytoid dendritic cells (pDCs) are a unique subset of dendritic cells specialized in secreting high levels of type-I interferons (IFN-I), and are lately identified to play crucial pathogenetic role in SSc\(^8\). Thus, in a SSc mouse model with bleomycin-induced fibrosis, depletion of pDCs not only prevented the disease initiation, but ameliorated the established fibrosis\(^7,8\). Furthermore, in human, abnormally activated pDCs are infiltrated in the target organs such as skin, lung and bronchoalveolar lavage, and secrete IFN-\(\alpha\) and CXCL4, which are both hallmarks of SSc\(^9,10\).

Abnormal T and B cell responses are both key factors in the pathogenesis of SSc\(^10-12\). Upon activation by different signals, pDCs mature and present antigen to CD4\(^+\) T cells, leading to Th1, Th2, Th17 or Breg responses\(^13\). Th2 and Th17 promote fibrosis development, whereas Breg (Treg) responses are known to ameliorate fibrosis\(^14\).

Peripheral blood mononuclear cells (PBMCs) were obtained from buffy coats by Ficoll density centrifugation, from healthy donors (Etablissement Français du Sang, Paris Saint-Antoine-Crozatier, France) or untreated SSc patients (Hôpital Saint-Antoine, Paris, France) after informed consent. The study was approved by the local institutional review board and the Comité de Protection des Personnes Ile-de France VII (CPP Ouest-1, reference 2017-A03380-53). pDCs were negatively selected with EasySep™ Human Plasmacytoid DC Enrichment Kit (Stem cell, Grenoble, France). The purity of isolated pDCs, verified by flow cytometry using PE-Vio770-BDCA2 (Miltenyi Biotec), ECD-CD123 (Beckman Coulter, Villepinte, France), was >90%.

2. Materials and methods

2.1. Media and reagents

Complete medium was RPMI-1640 supplemented with 1 mmol/L sodium pyruvate, 2 mmol/L L-glutamine, MEM vitamin solutions, 100 U/mL penicillin, 100 \(\mu\)g/mL streptomycin and 10% heat-inactivated fetal bovine serum (all from Thermo Fisher Scientific, Villebon-sur-Yvette, France). CpG oligodeoxyribonucleotides (ODNs) are toll-like receptor 9 (TLR9) agonists. 1.5 mmol/L of class A CpG ODN 2216 (CpG-A), 1.5 mmol/L of class B CpG ODN 2006 (CpG-B), or 1 mmol/L of class P CpG ODN 21798 (CpG-P) (all from Miltenyi Biotec, Paris, France) were used to activate pDCs in vitro in this study. CpG-A is a strong inducer of type I IFNs, whereas CpG-B is a potent stimulator of maturation and the production of cytokines and chemokines. CpG-P exhibits properties of both CpG-A and CpG-B. The stock solution of \(\text{As}_2\text{O}_3\) (6672 \(\mu\)mol/L) was reconstituted by dissolving \(\text{As}_2\text{O}_3\) (Sigma Aldrich, Saint-Quentin Fallavier, France) powder into distilled water and stored in 4 \(^\circ\)C fridge. The solution was then diluted in complete medium to reach the target concentrations. For control condition a similar volume of complete medium was added.

2.2. pDC isolation and culture

Peripheral blood mononuclear cells (PBMCs) were obtained from buffy coats by Ficoll density centrifugation, from healthy donors (Etablissement Français du Sang, Paris Saint-Antoine-Crozatier, France) or untreated SSc patients (Hôpital Saint-Antoine, Paris, France) after informed consent. The study was approved by the local institutional review board and the Comité de Protection des Personnes Ile-de France VII (CPP Ouest-1, reference 2017-A03380-53). pDCs were negatively selected with EasySep™ Human Plasmacytoid DC Enrichment Kit (Stem cell, Grenoble, France). The purity of isolated pDCs, verified by flow cytometry using PE-Vio770-BDCA2 (Miltenyi Biotec), ECD-CD123 (Beckman Coulter, Villepinte, France), was >90%.

2.3. pDC viability and apoptosis

Isolated pDCs were cultured in the presence of 10 ng/mL IL-3 (Miltenyi Biotec), or activated with CpG-A/CpG-P in the presence of the indicated doses of \(\text{As}_2\text{O}_3\). Viability and apoptosis were checked with Fixable Viability Dye eFluor™ 506 (FVD, Thermo Fisher Scientific) and FITC Annexin V (Biolegend, Ozyme, Saint-Quentin-Fallavier, France). FVD-Annexin V\(^+\) cells were regarded as viable, FVD\(^+\) cells as dead, and FVD-Annexin V\(^+\) cells as apoptotic. For NAC (Sigma—Aldrich) treatment, pDCs were pre-treated with 1 mmol/L of NAC for 1 h, washed and placed in culture for 6 h. For BCL-2 and BAX staining, isolated pDCs were treated with 1 mmol/L of NAC for 1 h, washed and placed in culture for 6 h. For BCL-2 and BAX staining, isolated pDCs were cultured for 6 h in complete culture medium in the presence of 10 ng/mL IL-3, or activated with CpG-A in the presence of 5 mmol/L \(\text{As}_2\text{O}_3\). Afterwards cells were stained with PE-BCL-2 (BD Biosciences, Le Pont de Claix, France) and Alexa Fluor® 488-BAX (Biolegend, Ozyme) or the corresponding isotype controls, using the FOXP3/Transcription Factor Staining Buffer Set (Thermo Fisher Scientific).

2.4. Reactive oxygen species

Isolated pDCs were cultured for 30 min in complete medium in the presence of 10 ng/mL IL-3, with or without activation with CpG-A and 5 mmol/L \(\text{As}_2\text{O}_3\). Instead of \(\text{As}_2\text{O}_3\), pDCs were cultured simultaneously with 200 \(\mu\)mol/L of tert-butyl hydroperoxide as positive control. For negative control, pDCs were pre-treated with 1 mmol/L of antioxidant N-acetylcysteine (NAC) for 1 h. Reactive oxygen species (ROS) level was detected with CellROX® Green Flow Cytometry Assay Kits (Thermo Fisher Scientific).

2.5. Cytokine secretion analysis

PBMCs were incubated with increasing doses of \(\text{As}_2\text{O}_3\), activated with CpG-A for 6 h, and 1 \(\mu\)L/mL Golgi plug (BD Biosciences) was added in the last 3 h. The cells were firstly stained with FVD eFluor™ 506, then with PE-Vio770-BDCA2 (Miltenyi Biotec)
and ECD-CD123 (Beckman Coulter). Cells were then stained with FITC-IFN-α and APC-Vio770-TNF-α (both from Miltenyi Biotec) with Cytofix/Cytoperm Buffer (BD Biosciences).

2.6. Cell signaling staining

Isolated pDCs were cultured overnight in the absence of IL-3, with or without CpG-A and 1 μmol/L of As2O3. Afterwards, the cells were fixed with Cytofix™ Fixation Buffer (BD Biosciences), permeabilized with Phosflow™ Perm Buffer III (BD Biosciences), and then stained with APC-interferon regulatory factor 7 (IRF7) and PE-IRF7 pS477/pS479 (both from Miltenyi Biotec).

2.7. Gene expression analysis

Isolated pDCs were cultured for 6 h in the absence of IL-3, with or without CpG-A and 1 μmol/L of As2O3. RNA was then extracted using RNAeasy Mini kit (QIAGEN, Les Ulis, France). RNA was subjected to reverse transcription (High Capacity RNA-to-cDNA Master Mix, Thermo Fisher Scientific) and quantified by real-time quantitative PCR using commercially available primer/probes sets (Assay-On-Demand, Thermo Fisher Scientific): GAPDH (Hs99999905_m1) and IRF7 (Hs01014809_g1). Real-time PCR was performed on a 7500 Fast Dx Real-Time PCR Instrument (Thermo Fisher Scientific). Relative expressions for the mRNA transcripts were calculated using the △△Ct method and GAPDH mRNA transcript as reference.

2.8. Phenotype evaluation

After 24 h of culture, pDCs were harvested and stained with FVD eFluor™ 506, treated with human Fc block (Miltenyi Biotec) and stained with the following antibodies: AA750-CD80, PC5.5-CD86, FITC-HLA-DR (Beckman Coulter), PE-CCR7 (Thermo Fisher Scientific), APC-programmed cell death-ligand 1 (PD-L1, BD Biosciences) or the corresponding isotype controls. The relative fluorescence intensity (RFI) ratios were calculated by normalizing the RFI of the indicated to the condition of non-activated pDCs without As2O3 treatment.

2.9. Mixed lymphocyte reaction (MLR)

For the pDC/CD4⁺ T cell coculture system, pDCs were cultured for 24 h with 0.25–0.5 μmol/L As2O3, in the presence of 10 ng/mL IL-3, simultaneously activated with CpG-A or CpG-B, and washed twice before co-culture. Allogeneic naïve CD4⁺ T cells were isolated from PBMC using MagniSort™ Human CD4 Naïve T cell Enrichment Kit (Thermo Fisher Scientific). After incubation, CD4⁺ T cells were labeled with Cell Proliferation Dye eFluor® 450 (Thermo Fisher Scientific) and co-cultured with pDCs at a 2:1 ratio for 7 days. T cell proliferation was assessed at day-5 of culture by flow cytometry. For intracellular cytokine detection, cells were harvested at day-7 of culture and stimulated for 5 h with 25 ng/mL phorbol-12-myristate-13-acetate (PMA), Sigma–Aldrich) and 1 μg/mL ionomycin (Sigma–Aldrich) and 1 μL/mL Golgi plug. Afterwards, cells were stained with FVD 575 V (BD Biosciences), followed by staining with PE/Dazzle 594-CD3 (Biolegend) and PC7-CD4 (BD Biosciences). Finally, cells were stained with PE-IFN-γ, APC-Vio770-TNF-α, eFluor660-IL-22 (Thermo Fisher Scientific) and Vio-515-IL-10 (Miltenyi) with Cytofix/Cytoperm Buffer (BD Biosciences).

For the pDC/B cell co-culture system, pDCs were pre-treated for 24 h with 0.5 μmol/L As2O3 in the presence of 10 ng/mL IL-3, and washed twice before co-culture. Syngeneic CD19⁺ B cells were isolated from PBMC using MagniSort™ Human CD19 Positive Selection Kit (Thermo Fisher Scientific), and co-cultured with pDCs at a 3:1 ratio, in the presence of 1 μmol/L CpG-P for 3 days. Cells were then stained with FITC-CD19, ECD-CD24, PC5.5-CD38 (all from Beckman Coulter), and BV421-CD27 (Biolegend).

2.10. ELISA

ELISA kits of IFN-α (Thermo Fisher Scientific), TNF-α, IL-6 (PeproTech, Neuilly-sur-Seine, France) and CXCL10 (Biolegend) were used to detect these cytokine/chemokine concentrations in supernatants of pDC cultures.

2.11. Flow cytometry

Analyses were performed with CytoFLEX Flow Cytometer (Beckman Coulter) and Kaluza Flow Cytometry Analysis Software version 1.5a (Beckman Coulter).

2.12. Statistical analysis

The Student’s t-test was used for comparison between conditions. All data were analyzed using GraphPad Prism 5.0 (GraphPad Software, San Diego, CA, USA). A P < 0.05 was considered to be significant.

3. Results

3.1. High concentrations of As2O3 induces pDC apoptosis via mitochondrial pathway with BAX/BCL-2 ratio increase

In the treatment of APL, patients’ plasma As2O3 peaks the reach level of around 6 μmol/L about 3–4 h after administration and quickly decreases to a stable concentration between 0.5 and 3 μmol/L. Therefore, concentrations up to 2 μmol/L were considered as clinical relevant. We cultured pDCs purified from healthy donors in the presence of different doses of As2O3 for 6 or 24 h, respectively. After 6 h of treatment, up to 2 μmol/L of As2O3 induced neither significant increase of pDC apoptosis (Fig. 1A and B) nor decrease of viable pDCs (Fig. 1A and C). Five μmol/L of As2O3, however, significantly increased pDC apoptosis (Fig. 1A and B) and decreased the pDC viability (Fig. 1A and C). Meanwhile, there was a significantly lower degree of apoptosis in the CpG-A stimulated group as compared with the non-stimulated group, revealing a protective nature of CpG-A activation against apoptosis induction (Fig. 1B). After 24 h, there was an As2O3 dose-dependent decrease of viable pDC percentages, with concentrations equal or over 1 μmol/L significantly decreased viability of both non-activated and CpG-A activated pDCs. The CpG-P activated pDCs were more resistant to As2O3, whose viability significantly decreased with equal or over 2 μmol/L (Fig. 1D). Moreover, for all the concentrations investigated, percentages of apoptotic pDCs were below 5% after 24 h culture, probably due to the death of apoptotic cells between 6 and 24 h (data not shown). Accordingly, we used higher concentration (5 μmol/L) of As2O3 for pDC apoptotic tests, and non-toxic
concentrations of As$_2$O$_3$ for all the following functional tests on pDCs.

BAX and BCL-2 are key members of the BCL-2 family proteins within the mitochondrial apoptotic pathway, and the BAX to BCL-2 ratio determines cell survival/death following an apoptotic stimulus20. We observed that BAX was greatly upregulated, while BCL-2 was slightly decreased in pDCs treated with 5 μmol/L of As$_2$O$_3$ for 6 h (Fig. 1E and F and Supporting Information Fig. S1), leading to a significantly increased BAX/BCL-2 ratio (Fig. 1G). As$_2$O$_3$ is a well-known inducer of oxidative stress, an initiator of

Figure 1 As$_2$O$_3$ induces pDC apoptosis via mitochondrial pathway with BAX/BCL-2 ratio increase. Purified pDCs were cultured with indicated doses of As$_2$O$_3$ before tests. (A) Representative graph of pDC apoptosis after 6 h of culture ($n = 4$ independent healthy donors (HD)). Percent of (B) apoptotic or (C) viable cells after 6 h culture with 0–5 μmol/L As$_2$O$_3$ ($n = 4$ HD). (D) Percent of viable cells after 24 h culture ($n = 4$ HD). (E) Percent of BAX$^+$ cells ($n = 4$ HD), MFI of BAX ($n = 4$ HD), (F) MFI of BCL-2 ($n = 4$ HD), and (G) BAX/BCL-2 MFI ratio ($n = 4$ HD) after 6 h culture with 5 μmol/L As$_2$O$_3$ for 30 min ($n = 5$ HD). (I) MFI of ROS ($n = 5$ HD). Data are represented as mean ± SEM. *$P < 0.05$, **$P < 0.01$ and ***$P < 0.001$ by t-test.
apoptosis. However, we observed that although 5 μmol/L of As$_{2}$O$_{3}$ increased the intracellular ROS in non-activated pDCs (Fig. 1H and I), the anti-oxidant NAC pre-treatment, which significantly reduced the intracellular ROS level (Supporting Information Figs. S2A and B) without affecting pDCs viability (Figs. S2C and D), did not prevent the As$_{2}$O$_{3}$-induced pDC apoptosis (Fig. S2E).

3.2. Clinical-relevant As$_{2}$O$_{3}$ inhibits cytokine secretion of pDCs, with special potency on IFN-α

PBMCs were incubated with CpG-A and up to 2 μmol/L As$_{2}$O$_{3}$ for 6 h, which induced neither pDC death nor apoptosis, and IFN-α/TNF-α secretions were analyzed by intracellular staining on gated viable pDCs (Supporting Information Figs. S3A and B). Surprisingly, we observed that As$_{2}$O$_{3}$ significantly inhibited the production of IFN-α dose-dependently, but not TNF-α, for either percentages of cytokine secretion cells (Fig. 2A) or the mean fluorescent intensity (MFI) of cytokine expressions of all gated viable pDCs (Supporting Information Figs. S4A and B). However, ELISA analysis of supernatants of purified pDCs after 24 h culture showed that non-lethal As$_{2}$O$_{3}$ inhibited secretion of both IFN-α and TNF-α significantly (Fig. 2B). Moreover, IL-6 and CXCL10 productions were also slightly decreased but not statistically significant (Supporting Information Fig. S5).

3.3. As$_{2}$O$_{3}$ blocks IFN-α secretion from pDCs via IRF7 inhibition

Decrease of TNF-α, IL-6 and CXCL10 secretion from pDCs were probably due to As$_{2}$O$_{3}$ inhibition of the NF-κB pathway. However, the reason for the quick and potent inhibition of IFN-α remained to be elucidated. We focused on IRF7, a crucial and specific regulator of both the induction and maintenance of IFN-α secretion by pDCs. Overnight incubation with 1 μmol/L of As$_{2}$O$_{3}$ induced a significant decrease of both the percentage of IRF7$^{+}$ pDCs and MFI of IRF7 from both non-activated and CpG-A activated pDCs, gated on viable pDCs (Fig. 2C–E). Meanwhile, the percentage of phospho-IRF7$^{+}$ pDCs was also significantly decreased in both non-activated and CpG-A activated conditions (Fig. 2F and G). Further RT-PCR experiments demonstrated the inhibition on the mRNA level, in both non-activated and CpG-A activated conditions (Fig. 2H).

3.4. As$_{2}$O$_{3}$ induces regulatory phenotype of pDCs

It has been shown that As$_{2}$O$_{3}$ induced a suppressive phenotype on immature DCs. We addressed whether pDC maturation could also be influenced by As$_{2}$O$_{3}$ treatment. For this purpose, isolated pDCs were incubated with non-lethal doses of As$_{2}$O$_{3}$ for 24 h, simultaneously activated with CpG-A, and checked for the expression of maturation markers (Fig. 3A). The results showed that 0.5 μmol/L of As$_{2}$O$_{3}$ significantly decreased the RFI ratio of CD80, CD86, and HLA-DR, as well as the percentages of CD86$^{+}$ and CCR7$^{+}$ activated pDCs. We also observed an up-regulated expression of PD-L1 (Fig. 3B and C).

3.5. As$_{2}$O$_{3}$ impairs pDCs’ capacity to induce CD4$^{+}$ T cell proliferation and Th1/Th22 polarization

We used a pDC/CD4$^{+}$ T cell co-culture system to investigate As$_{2}$O$_{3}$ effects on pDCs’ capacity to induce T cell proliferation and polarization. Flow cytometry analysis showed that when pDCs were pretreated with 0.5 μmol/L of As$_{2}$O$_{3}$ for 24 h, together with CpG-B activation, they induced significantly lower percentages of proliferating CD4$^{+}$ T cells after 5 days of co-culture (Fig. 4A and B). We then investigated the effect of As$_{2}$O$_{3}$ treatment on the pDC capacity to polarize allogeneic naïve CD4$^{+}$ T cells. Flow cytometry analysis showed that when naïve CD4$^{+}$ T were co-cultured with activated pDCs pre-treated with As$_{2}$O$_{3}$, there was a significant decrease in the percentages of IFN-γ (Fig. 4C and D) and IL-22 (Fig. 4E and F) positive proliferating CD4$^{+}$ T cells after 7 days. However, As$_{2}$O$_{3}$ did not alter the percentages of IL-10 or TNF-α positive proliferating CD4$^{+}$ T cells significantly (Supporting Information Fig. S6).

3.6. As$_{2}$O$_{3}$ inhibits plasmablast differentiation of B cells

We used a pDC/B cell co-culture model to investigate As$_{2}$O$_{3}$’ effects on pDCs’ capacity to induce B cell differentiation towards plasmablasts. The flow cytometry results showed that pDCs, together with CpG-P, induced CD27hiCD38hi plasmablast differentiation of syngeneic B cells. When pDCs were pretreated with 0.5 μmol/L of As$_{2}$O$_{3}$ for 24 h, significantly lower percentages of plasmablasts were induced (Fig. 5A and B). Given that IFN-α/IL-6 secretion and cell-to-cell contacts mediate pDC-induced B cell differentiation, we subsequently observed that 24 h culture of as low as 0.25 μmol/L of As$_{2}$O$_{3}$ decreased greatly the IFN-α secretion from CpG-P activated pDCs, with IL-6 inhibition shown at a higher concentration (Fig. 5C). Meanwhile, As$_{2}$O$_{3}$ significantly decreased CD86$^{+}$ pDCs, and increased PD-L1 expression on CpG-P activated pDCs (Fig. 5D), with the CD80, HLA-DR, and CCR7 expressions not significantly altered (Supporting Information Fig. S7).

3.7. SSc pDCs are sensitive to As$_{2}$O$_{3}$ induced selective IFN-α inhibition, and regulatory phenotype

In order to further investigate As$_{2}$O$_{3}$ as a potential therapeutic agent for SSc, we first tested As$_{2}$O$_{3}$ on PBMCs from 12 untreated SSc patients. After incubation with CpG-A and clinical relevant doses of As$_{2}$O$_{3}$ for 6 h, IFN-α production was inhibited dose-dependently, but not TNF-α from pDCs of SSc patients (Fig. 6A). We then checked how As$_{2}$O$_{3}$ affected the viability and phenotype of pDCs purified from 6 additional SSc patients (for all patients information, see Supporting Information Table S1). After 24 h of culture, 0.5 μmol/L of As$_{2}$O$_{3}$, which is non-lethal for pDCs from healthy donors, significantly decreased, albeit not hugely, the viability of both non-activated and CpG-A activated SSc pDCs (Fig. 6B). An increased BAX/BCL-2 ratio was also observed when these cells were cultured for 6 h with high dose of 5 μmol/L As$_{2}$O$_{3}$ (Fig. 6C–E). For phenotype, 24 h culture with 0.5 μmol/L of As$_{2}$O$_{3}$ decreased significantly both the MFI and the percentages of CD80$^{+}$ and CD86$^{+}$ SSc pDCs, while increased both the MFI and the percentage of PD-L1$^{+}$ SSc pDCs, with CCR7 and HLA-DR expressions unchanged (Fig. 6F and G).

4. Discussion

With this study, we concluded that in clinical conditions, As$_{2}$O$_{3}$ may induce pDC apoptosis during the first hours of drug administration. Afterwards, clinical relevant concentrations of As$_{2}$O$_{3}$ do not alter viability, but induce mostly functional
alterations of pDCs. The survival of the resting state pDCs depend predominantly on the mitochondrial BCL-2 pathway, while the survival of activated pDCs is regulated by several pathways25,26. The pro-apoptotic protein BAX and the anti-apoptotic protein BCL-2 are important players in the mitochondrial apoptotic pathway27, and the BAX/BCL-2 ratio determines survival or death following an apoptotic stimulus27. We found that As$_2$O$_3$ induced a significantly increased BAX/BCL-2

Figure 2
As$_2$O$_3$ preferentially blocks IFN-\(\alpha\) production from pDCs via IRF7 inhibition. (A) Percent of IFN-\(\alpha\)/TNF-\(\alpha\) positive viable pDCs after PBMC incubation with indicated doses of As$_2$O$_3$ for 6 h (\(n = 4\) HD). (B) Concentrations of indicated cytokines in supernatants of purified pDCs for 24 h with As$_2$O$_3$, normalized to concentration per viable cell (\(n = 5\) HD). For (C) to (G), purified pDCs were cultured with 1 \(\mu\)mol/L As$_2$O$_3$ overnight before tests, gated on living cells. (C) and (F) Representative graph of IRF7 and phospho-IRF7, after incubation with (dotted line) or without As$_2$O$_3$ (solid line), and the isotype control (grey) (\(n = 5\) HD). (D) Percent of IRF7\(^+\) cells (\(n = 5\) HD). (E) MFI of IRF7 (\(n = 5\) HD). (G) Percent of IRF7\(^+\) cells (\(n = 5\) HD). (H) IRF7 mRNA expression within purified pDCs cultured with 1 \(\mu\)mol/L As$_2$O$_3$ for 6 h (\(n = 4\) HD). Data are represented as mean \(\pm\) SEM. \(^* P < 0.05\), \(^{**} P < 0.01\) and \(^{***} P < 0.001\) by \(t\)-test.
Figure 3 \(\text{As}_2\text{O}_3 \) induces regulatory phenotype of pDCs. Isolated pDCs were incubated with/without CpG-A activation, with indicated doses of \(\text{As}_2\text{O}_3 \) for 24 h before flow cytometry analysis. (A) Representative graph showing cells positive for the indicated surface molecule in the presence of 0.5 \(\mu \text{mol/L} \) \(\text{As}_2\text{O}_3 \) (dotted line), control (solid line) and the isotype control (grey) \((n = 4 \text{ HD}) \). (B) Relative fluorescence intensity (RFI) ratios of indicated surface molecules \((n = 4 \text{ HD}) \). (C) Percentages of positive cells for indicated surface molecule \((n = 4 \text{ HD}) \). Data are represented as mean ± SEM. * \(P < 0.05 \), ** \(P < 0.01 \) by \(t \)-test.
As$_2$O$_3$ impairs pDCs' capacity to induce CD4$^+$ T cell proliferation and Th1/Th22 polarization. A pDC/CD4$^+$ cell co-culture system was used. T cell proliferation and polarization was detected on day-5 and day-7 of co-culture, respectively. (A) Representative graph of cell proliferation ($n = 4$). (B) CD4$^+$ T cells negative for cell proliferation dye ($n = 4$). (C) Representative graph of IFN-γ- and TNF-α-proliferating T cells gated on cell proliferation dye-negative cells ($n = 4$). (D) Percent of IFN-γ-proliferating T cells ($n = 4$). (E) Representative graph of IFN-γ- and IL-22$^+$ proliferating T cells gated on cell proliferation dye-negative cells ($n = 4$). (F) % of IL-22$^+$ proliferating T cells ($n = 4$). Data are represented as mean ± SEM. *$P < 0.05$, **$P < 0.01$ by t-test.
Figure 5 As$_2$O$_3$ reduces pDCs’ ability to induce plasmablast differentiation of B cells. A pDC/B cell co-culture model was used. CD38$^+$CD27$^+$ plasmablast differentiation was analyzed on day-3 of co-culture. (A) Representative graph of CD38$^+$CD27$^+$ plasmablasts, gated on CD19$^+$ cells ($n = 4$). (B) Percent of CD38$^+$CD27$^+$ plasmablasts among all gated B cells ($n = 4$). For (C) to (D), isolated pDCs were incubated with/without CpG-P activation, with indicated doses of As$_2$O$_3$ for 24 h before analysis. (C) IFN-α and IL-6 concentrations in supernatants of purified pDCs ($n = 4$ HD). (D) RFI ratios and percentages of positive cells for CD86 and PD-L1 ($n = 4$ HD). Data are represented as mean ± SEM. * $P < 0.05$, ** $P < 0.01$ by t-test.
ratio in pDCs. Moreover, antioxidant NAC did not reverse As₂O₃-induced pDC apoptosis. Collectively, As₂O₃ induced pDC apoptosis via the mitochondrial pathway with increased BAX/BCL-2 ratio, and independent of ROS generation.

We observed that As₂O₃ inhibited pDC secretion of IFN-α, which may consequently impair the pDCs’ capacity to promote effector CD8⁺ and Th1 cell responses, to drive B cell activation and plasma cell generation²⁸. Meanwhile, the observed inhibition of TNF-α, IL-6 and CXCL10 could reduce capacity of pDCs to upregulate inflammatory reactions and to attract immune cells to sites of infection or inflammation²¹.

A ‘cross-regulation’ effect between IFN-I and TNF-α was previously described in pDCs where TNF-α blockade decreased pDC maturation and promoted their ability to produce IFN-I, leading to possible novel autoimmune side-effects²⁹,³⁰. In our study, As₂O₃ inhibited both IFN-α and TNF-α secretion, as well as maturation of pDCs. These effects were probably due to ‘double-target’ effects of As₂O₃ on both IRF7 and the NF-κB pathways⁴,²¹. Moreover, the IRF7 pathway seems to be much more sensitive to As₂O₃, as compared to the NF-κB pathway. We observed that clinical relevant concentrations of As₂O₃, which induced neither pDC death nor apoptosis, potently inhibited IFN-α, while leaving A ‘cross-regulation’ effect between IFN-I and TNF-α was previously described in pDCs where TNF-α blockade decreased pDC maturation and promoted their ability to produce IFN-I, leading to possible novel autoimmune side-effects²⁹,³⁰. In our study, As₂O₃ inhibited both IFN-α and TNF-α secretion, as well as maturation of pDCs. These effects were probably due to ‘double-target’ effects of As₂O₃ on both IRF7 and the NF-κB pathways⁴,²¹. Moreover, the IRF7 pathway seems to be much more sensitive to As₂O₃, as compared to the NF-κB pathway. We observed that clinical relevant concentrations of As₂O₃, which induced neither pDC death nor apoptosis, potently inhibited IFN-α, while leaving
TNF-α unchanged at 6 h of culture. Meanwhile, IRF7 expression and phosphorylation were potent inhibited\(^{32,33}\). Indeed, the IFN-I secretion by pDCs is predominantly (albeit not exclusively) mediated through the myeloid differentiation primary response protein 88 (MYD88)-IRF7 pathway\(^2\). Especially, for the TLR9 ligands CpG ODNs used to activate pDCs in this study, the IFN-I secretion by pDCs seems to be solely mediated through MYD88-IRF7 signaling\(^32\). We speculate that the IRF7 protein may contain a special domain, offering itself high affinity for soluble trivalent arsenic\(^34\). Moreover, in pDCs, MYD88-IRF7 is the downstream signaling of TLR-mediated and other cytosolic receptor-mediated nucleic acid sensing. The diminished phosphorylation of IRF7 indicates a probable effect of As\(_2\)O\(_3\) on pDC nucleic sensing\(^35\).

Upon TLR7 or TLR9 mediated activation, pDCs mature and express MHC class I (MHCI) and class II (MHCII) molecules and co-stimulatory markers, which operate together to cross-prime CD\(^8\)\(^+\) T cells and present antigen to CD4\(^+\) T cells\(^31\). Mature pDCs also express co-inhibitory molecules such as PD-L1\(^36,37\), and induce regulatory T cell responses\(^38\). In this study, As\(_2\)O\(_3\) inhibited expression of co-stimulatory molecules and chemokine receptors, indicating that it impaired pDCs’ trafficking and antigen-presenting capacity.

In line with these observations, we showed that As\(_2\)O\(_3\) treatment significantly impaired activated pDCs to promote CD4\(^+\) T cell proliferation and Th1/Th22 polarizations. The preferential inhibition of type-I IFN secreted by pDCs after As\(_2\)O\(_3\) treatment probably contributed to the deficiency of Th1 pro-inflammatory response\(^38\). Since abnormal T cell proliferation plays an important role in the pathogenesis of SSC\(^2,10\), and both Th1 and Th22 immune responses are involved in the development of SSC\(^39,40\), these observations highlight an important role of As\(_2\)O\(_3\) in modulating T cell responses in SSC. Nevertheless, pDCs regulate B cell growth and differentiation via both cytokine secretion and cell-to-cell contact\(^16\)–\(^18\). Altered B cell homeostasis characterized by hyperactivity of plasmablasts and autoantibodies production are reported in patients with SSC\(^31\). We observed in this study that As\(_2\)O\(_3\) potently impaired the pDC ability to induce B cell differentiation towards plasmablasts, revealing another important role of As\(_2\)O\(_3\) in B cell regulation in SSC.

Regarding effects of As\(_2\)O\(_3\) on other immune subsets, previous studies have shown that T and B cells’ viability were not significantly affected by clinical relevant concentrations of As\(_2\)O\(_3\)\(^42,43\). In addition, As\(_2\)O\(_3\) have been reported not to alter viability, but to repress the monocyte-derived dendritic cells’ capacity to induce Th1 and Th17 responses\(^32\). Therefore, both conventional DCs and pDCs probably contribute to As\(_2\)O\(_3\) induced immunomodulation in vivo. Moreover, it was reported that pDC functions were significantly impaired activated pDCs to promote CD4\(^+\) T cells28,31. Indeed, the As\(_2\)O\(_3\) effect on plasmacytoid dendritic cells 1071

5. Conclusions

Overall, we have described the pharmacological effects and mechanisms of As\(_2\)O\(_3\) on pDCs, which offer an important theoretical explanation for the efficacy of As\(_2\)O\(_3\) on SSC, and may pave the way to As\(_2\)O\(_3\) utilization in more autoimmune diseases with type-I IFN signature.

Acknowledgments

The authors acknowledge the Association for Training, Education and Research in Hematology, Immunology and Transplantation for the generous and continuous support to the research work. Yishan Ye thanks to China Scholarship Council for financial support (CSC No. 201606320257, China). Mohamad Mohty thanks Prof. J.V. Melo for critical reading of the manuscript.

Author contributions

Yishan Ye: conceptualization, investigation, data curation, writing-original draft. Laure Ricard: investigation, resources, data curation. Lama Siblany: investigation, data curation. Nicolas Stocker: investigation, resources. Frédéric De Vassoigne: investigation. Baptiste Lamarthe: investigation. Arsène Mekinian: resources, writing-review & editing. Mohamad Mohty: conceptualization, writing-review & editing, supervision, funding acquisition. Béatrice Gaugler: conceptualization, writing-review & editing, supervision. Florent Malard: conceptualization, validation, writing-review & editing, supervision, project administration.

Conflicts of interest

The authors declare no conflicts of interest.

Appendix A. Supporting information

Supporting data to this article can be found online at https://doi.org/10.1016/j.apsb.2020.01.016.

References

1. Lo-Coco F, Avvisati G, Vignetti M, Thiede C, Orlando SM, Iacobelli S, et al. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med 2013;369:111–21.
2. Bobe P, Bonardelle D, Benihoud K, Opolon P, Chelbi-Alix MK. Arsenic trioxide: a promising novel therapeutic agent for lymphoproliferative and autoimmunode syndromes in MRL/lpr mice. Blood 2006;108:3967–75.
3. Kavian N, Marut W, Servettaz A, Nico C, Chereau C, Lemarechal H, et al. Reactive oxygen species-mediated killing of activated fibroblasts by arsenic trioxide ameliorates fibrosis in a murine model of systemic sclerosis. Arthritis Rheum 2012;64:3430–40.
4. Einadi A, Gore SD. Arsenic trioxide—an old drug rediscovered. Blood Rev 2010;24:191–9.
5. Yu HS, Chen GS, Liao WT, Chang KL, Yu CL. Arsenic induces tumor necrosis factor a release and tumor necrosis factor receptor I signaling in T helper cell apoptosis. J Invest Dermatol 2002;119:812–9.
6. Laurent P, Sisirak V, Lazar E, Richez C, Duffau P, Blanco P, et al. Innate immunity in systemic sclerosis fibrosis: recent advances. Front Immunol 2018;9:1702.

Supporting information
7. Ab Koon MD, Tripodo C, Fernandez D, Kirou KA, Spiera RF, Crow MK, et al. Plasmacytoid dendritic cells promote systemic sclerosis with a key role for TLR8. Sci Transl Med 2018;10:eaam8458.

8. Kafaja S, Valera I, Dikevaa AA, Sagar R, Abtin F, Furst DE, et al. pDCs in lung and skin fibrosis in a bleomycin-induced model and patients with systemic sclerosis. JCI Insight 2018;3:e93899.

9. van Bon L, Affand AJ, Broen J, Christmann RB, Marinissen RJ, Stawski L, et al. Proteome-wide analysis and CXCL4 as a biomarker in systemic sclerosis. N Engl J Med 2014;370:433–43.

10. Liu M, Wu W, Sun X, Yang J, Xu J, Fu W, et al. New insights into CD4+ T cell abnormalities in systemic sclerosis. Cytokine Growth Factor Rev 2016;28:31–6.

11. de Bourcy CF, Dekker CL, Davis MM, Nicolls MR, Quake SR. Dynamics of the human antibody repertoire after B cell depletion in systemic sclerosis. Sci Immunol 2017;2:eaan8289.

12. Ricard L, Jachiet V, Malard F, Ye Y, Stocker N, Riviere S, et al. Circulating follicular helper T cells are increased in systemic sclerosis and promote plasmablast differentiation through the IL-21 pathway which can be inhibited by ruxolitinib. Ann Rheum Dis 2019;78:539–50.

13. Cella M, Facchetti F, Lanzavecchia A, Colonna M. Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization. Nat Immunol 2000;1:305–10.

14. Ito T, Yang M, Wang YH, Lande R, Gregorio J, Perng OA, et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 2005;434:772–7.

15. Honda K, Ohba Y, Yanai H, Negishi H, Mizutani T, Takaoka A, et al. Spatiotemporal regulation of MyD88–IRF-7 signalling for robust type-I interferon induction. Nature 2005;434:1035–40.

16. Shu S, Li XF, Cullen WR, Weinfeld M, Le XC. Arsenic binding to proteins. Chem Rev 2013;113:7769–92.

17. Kim T, Pachouro S, Bao M, Zhang Z, Hanabuchi S, Facchinetti V, et al. Aspartate-glutamate-alanine-histidine box motif (DEAH/RNA helicase A helicases sense microbial DNA in human plasmacytoid dendritic cells. Proc Natl Acad Sci U S A 2010;107:15181–6.

18. Diana J, Brezar V, Beaudoin L, Dalod M, Mellor A, Tafuri A, et al. Viral infection prevents diabetes by inducing regulatory T cells through NKT cell-plasmacytoid dendritic cell interplay. J Exp Med 2011;208:729–45.

19. Wolfe SJ, Strebkovsky J, Burtz H, Sahr A, Arnold C, Kaiser C, et al. PD-L1 expression on tolerogenic APCs is controlled by STAT-3. J Immunol 2003;170:225–34.

20. Ding C, Cai Y, Marroquin J, Blalock P, Chalouni C, Pascual V, et al. Irregular control of T helper cell and dendritic cell by inducible costimulator ligand. J Exp Med 2007;204:105–15.

21. Risoan MC, Soumelis V, Kadowaki N, Grouard B, Brieu F, de Waal Malefyt R, et al. Reciprocal control of TH1 helper cell and dendritic cell differentiation. Science 1999;283:1183–6.

22. Jego G, Palucka AK, Blanck JP, Chalouni C, Pascual V, Banchereau J. Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 2003;19:225–34.

23. Ding C, Cai Y, Marroquin J, Blalock P, Chalouni C, Pascual V, Banchereau J. Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 2003;19:225–34.

24. Zhan Y, Chow KV, Soo P, Xu Z, Brady JL, Lawlor KE, et al. Plasmacytoid dendritic cells are short-lived: reappraising the influence of type-I interferon response without autoimmunity in paradoxical psoriasis. Nat Commun 2018;9:25.

25. Lee EF, Fairlie WD, Ottina E, Tarlinton DM, Strasser A, Vikstrom IB, et al. Prosurvival Bcl-2 family members reveal a distinct apoptotic cell-to-cell contact manner. J Exp Med 2009;203:135–43.

26. Jiang J, Ardestani M, Zhou W, Yang J, Sun X, Yang J, et al. Type-I IFN and TNF-alpha cross-regulate in immune-mediated inflammatory disease: basic concepts and clinical relevance. Arthritis Res Ther 2010;12:219.

27. Haley L, Osterlund EJ, Andrews DW, BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ 2018;25:65–80.

28. Reizis B. Plasmacytoid dendritic cells: development, regulation, and function. Immunology 2019;50:37–50.

29. Cantaert T, Baeten D, Tak PP, van Baarsen LGM. Type I IFN and TNF-alpha cross-regulation in immune-mediated inflammatory disease: basic concepts and clinical relevance. Arthritis Res Ther 2010;12:219.

30. Ito T, Yang M, Wang YH, Lande R, Gregorio J, Perng OA, et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 2005;434:772–7.

31. Kim S, Kaiser V, Beier E, Bechheim M, Guenthner-Biller M, Ablasser A, et al. Self-priming determines high type IFN production by plasmacytoid dendritic cells. Eur J Immunol 2014;44:807–18.

32. Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T, et al. IRF-7 is the master regulator of type-I interferon induction. Nature 2005;434:1035–40.

33. Shu S, Li XF, Cullen WR, Weinfeld M, Le XC. Arsenic binding to proteins. Chem Rev 2013;113:7769–92.

34. Kim T, Pachouro S, Bao M, Zhang Z, Hanabuchi S, Facchinetti V, et al. Aspartate-glutamate-alanine-histidine box motif (DEAH/RNA helicase A helicases sense microbial DNA in human plasmacytoid dendritic cells. Proc Natl Acad Sci U S A 2010;107:15181–6.

35. Diana J, Brezar V, Beaudoin L, Dalod M, Mellor A, Tafuri A, et al. Viral infection prevents diabetes by inducing regulatory T cells through NKT cell-plasmacytoid dendritic cell interplay. J Exp Med 2011;208:729–45.

36. Wolfe SJ, Strebkovsky J, Burtz H, Sahr A, Arnold C, Kaiser C, et al. PD-L1 expression on tolerogenic APCs is controlled by STAT-3. J Immunol 2003;170:225–34.

37. Ding C, Cai Y, Marroquin J, Blalock P, Chalouni C, Pascual V, Banchereau J. Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 2003;19:225–34.

38. Shu S, Li XF, Cullen WR, Weinfeld M, Le XC. Arsenic binding to proteins. Chem Rev 2013;113:7769–92.

39. Kim T, Pachouro S, Bao M, Zhang Z, Hanabuchi S, Facchinetti V, et al. Aspartate-glutamate-alanine-histidine box motif (DEAH/RNA helicase A helicases sense microbial DNA in human plasmacytoid dendritic cells. Proc Natl Acad Sci U S A 2010;107:15181–6.

40. Diana J, Brezar V, Beaudoin L, Dalod M, Mellor A, Tafuri A, et al. Viral infection prevents diabetes by inducing regulatory T cells through NKT cell-plasmacytoid dendritic cell interplay. J Exp Med 2011;208:729–45.

41. Sato S, Fujimoto M, Hasegawa M, Takehara K. Altered blood B cell subsets differentiation and functions of human dendritic cells. J Immunol 2004;172:925–34.

42. Baysan A, Yel L, Kim D, Kim C, Chipplunkar S, Gollapudi S. Arsenic trioxide induces apoptosis in peripheral blood T lymphocyte subsets by inducing oxidative stress: a role of Bel-2. Mol Canc Therapeut 2003;2:711–9.

43. Baysan A, Yel L, Gollapudi S, Su H, Gupta S. Arsenic trioxide induces apoptosis via the mitochondrial pathway by upregulating the expression of Bax and Bim in human B cells. Int J Oncol 2007;30:313–8.

44. Bonnefoi F, Perruche S, Courdurier M, Sedrati A, Sun Y, Tiberghien P, et al. Plasmacytoid dendritic cells play a major role in apoptotic leukocyte-induced immune modulation. J Immunol 2011;186:7507–7515.

45. Lemarie A, Morzadec C, Merino D, Micheau O, Fardel O, Vernhet L. Arsenic trioxide induces apoptosis of human monocytes during macrophagic differentiation through nuclear factor-kappaB-related survival pathway down-regulation. J Pharmacol Exp Therapeut 2006;316:304–14.

46. Kim D, Peck A, Santer D, Potole P, Schwartz SM, Molitor JA, et al. Induction of interferon-alpha by sclerodema sera containing autoantibodies to topoisomerase I: association of higher interferon-alpha activity with lung fibrosis. Arthritis Rheum 2008;58:2163–73.