Fermi Surface of CeIn$_3$ above the Neel Critical Field

Harrison N., Sebastian Suchitra E., Mielke C. H., Paris A., Gordon M. J., Swenson C. A., Rickel D. G., Pacheco M. D., Ruminer P. F., Schillig J. B., Sims J. R., Lacerda A. H., Suzuki M.-T., Harima H., Ebihara Takao

Physical Review Letters

Volume 99

Number 5

Page Range 056401-056401

Year 2007

doi: 10.1103/PhysRevLett.99.056401
Fermi Surface of CeIn₃ above the Néel Critical Field

N. Harrison,¹ S.E. Sebastian,² C.H. Mielke,¹ A. Paris,¹ M.J. Gordon,¹ C.A. Swenson,¹ D.G. Rickel,¹ M.D. Pacheco,¹ P.F. Ruminer,¹ J.B. Schillig,¹ J.R. Sims,¹ A.H. Lacerda,¹ M.-T. Suzuki,³ H. Harima,³ and T. Ebihara⁴

¹National High Magnetic Field Laboratory, Los Alamos National Laboratory, MS E536, Los Alamos, New Mexico 87545, USA
²Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom
³Department of Physics, Kobe University, Kobe 657-8501, Japan
⁴Department of Physics, Shizuoka University, Shizuoka 422-8529, Japan

(Received 16 April 2007; published 31 July 2007)

We report measurements of the de Haas–van Alphen effect in CeIn₃ in magnetic fields extending to \(90 \text{T}\), well above the Néel critical field of \(\mu_0 H_c = 61 \text{T}\). The unreconstructed Fermi surface a sheet is observed in the high magnetic field polarized paramagnetic limit, but with its effective mass and Fermi surface volume strongly reduced in size compared to that observed in the low magnetic field paramagnetic regime under pressure. The spheroidal topology of this sheet provides an ideal realization of the transformation from a “large Fermi surface” accommodating \(f\) electrons to a “small Fermi surface” when the \(f\)-electron moments become polarized.

DOI: 10.1103/PhysRevLett.99.056401

PACS numbers: 71.18.+y, 71.27.+a, 75.20.Hr, 75.30.Fv

Strong magnetic fields are an indispensable tool for studying the energy scales relevant to antiferromagnetism. By polarizing their magnetic moments, they deplete the system of available spin degrees of freedom for staggered ordering. In \(f\)-electron antiferromagnets, polarization is expected to be accompanied by the effective removal of the \(f\)-electron degrees of freedom from the Fermi surface (FS) [1–3], enabling access to the underlying electronic structure in its simplest form. The \(f\)-electron system CeIn₃ provides an essential paradigm to understand universal aspects of the relationship between antiferromagnetism and unconventional superconductivity—given the magnetic simplicity of this nonmagnet magnetic cubic system [2,4] compared with CeRu₂Si₂ [5], CeB₆ [6], or CeRhIn₅ [7]. Universal behavior is realized in CeIn₃ by the application of pressure, whereupon antiferromagnetism is suppressed and superconductivity [8] and heavy fermion behavior emerge [9]. If NdB₆ provides a model example of a cubic system in which the hybridization between the \(f\) electrons and conduction electrons remains negligible throughout [10], then CeIn₃ may be considered as the model system for understanding antiferromagnetism preceding superconductivity in the opposite strongly correlated regime comprising heavy quasiparticles [11,12].

One unavoidable consequence of a monotonic nonmagnet magnetization is that much stronger magnetic fields are required to polarize the quasiparticle bands to suppress the correlations [13,14]. In CeIn₃ this requires exceeding the critical field of the Néel ordered phase, \(\mu_0 H_c = 61 \text{T}\) [4]. To determine the electronic structure of CeIn₃ in magnetic fields above \(H_c\), we use the recently constructed 100 T magnet at Los Alamos [15]—presently delivering magnetic fields of up to 90 T (see Fig. 1) while being commissioned. Measurements of the de Haas–van Alphen (dHvA) effect over a wide interval in field above \(H_c\) enable the unreconstructed FS of CeIn₃ to be observed in the polarized state, and compared with that previously observed in the paramagnetic regime at pressures exceeding the critical pressure \(p_c = 26 \text{kbar}\) [9].

The magnetic field \(\mathbf{H}\) is generated in two stages. First, a 1.4 GW motor generator is used to energize an “outsert” coil, delivering a \(a = 36 \text{T}\) “base” magnetic field in a 0.2 m bore. A 2.5 MJ capacitor bank is then used to energize an “insert” coil to produce the remaining \(= 54 \text{T}\) in a 15 mm bore [16]. Figure 1(a) shows an example of the total magnetic field-versus-time profile experienced by the CeIn₃ samples studied in this Letter. With the exception of the magnetic field generation, the dHvA experimental technique is identical to that used in regular pulsed magnetic field experiments [4,10,17]. Three single crystalline CeIn₃ samples are cut and etched to diameters of less than 300 \(\mu\text{m}\) for experiments with \(\mathbf{H} \parallel (100), (110), \text{and } (111)\). The dHvA effect is measured using a coaxially arranged

FIG. 1 (color). (a) The \(H\)-versus-time \(T\) profile of the pulse generated by the combined “outsert” and “insert” magnets. The inset shows the region of the pulse profile provided by the insert magnet in which dHvA measurements in Fig. 2 are made. (b) A schematic of the magnet used for generating the pulse (outer diameter \(\approx 1.4 \text{ m}\)).
compensated pair of detection coils with the innermost coil having \(\approx 460 \) turns and an inner bore of 450 \(\mu \)m. A digitizer captures the dHvA signal data while temperatures between 300 mK and 4 K are obtained by controlling the vapor pressure of liquid \(^3\)He and \(^4\)He reservoirs.

Figure 2 shows examples of dHvA signals and Fourier transforms for \(\mathbf{H} \parallel \langle 100 \rangle \) and \(\langle 110 \rangle \). For \(\mathbf{H} \parallel \langle 100 \rangle \), the signal is dominated by the \(d \) branch in both the antiferromagnetic (\(\mu_0 H < \mu_0 H_c \approx 61 \) T) and polarized paramagnetic regimes (\(H > H_c \)). The \(n \) frequency [11] is also observed to appear prominently at high magnetic fields. The \(a \) sheet (see Fig. 3) yields a relatively weak feature corresponding to a large electron sheet centered at the \(R \) point of the Brillouin zone [18], observable above the level of noise over a restricted interval 75–85 T in magnetic fields (see Fig. 3). This frequency becomes more prominent for \(\mathbf{H} \parallel \langle 110 \rangle \) (Fig. 2, lower panel) and \(\langle 111 \rangle \), appearing at all fields \(\mu_0 H \gtrsim 55 \) T.

Fermi surface measurements of Ce compounds are often reported to be consistent with either of two dichotomous scenarios. In one scenario, good agreement is found with band structure calculations in which the \(f \)-electron shells are completely filled or empty, as for the Lu and La analog compounds, indicating that the \(f \) electrons contribute negligibly to the FS volume. A compound with these characteristics is considered to have a “small FS” (i.e., the FS is much smaller than it might otherwise be were the \(f \) electrons to contribute their charge degrees of freedom) [19]. In the other scenario, some level of agreement is found with band structure calculations in which the \(f \) electrons are treated as band electrons. A compound with these characteristics is then considered to have a “large FS” (see Fig. 4) [19]. Our present measurements outside the antiferromagnetic phase of CeIn\(_3\) reveal that both these scenarios are realized in the same isotropic material under conditions of either extreme pressure [9] or intense magnetic field. dHvA measurements made at \(p > p_c \) are consistent with band structure calculations in which the \(f \) electrons are treated as itinerant, as shown in Fig. 3 [18]. Satisfactory agreement requires the effects of Coulomb repulsion and the orbital manifold of the lowest lying \(\Gamma_7 \) doublet to be taken into consideration [18]. Our high magnetic field \(a \)-sheet measurements on CeIn\(_3\) (see Fig. 3), in contrast, are found to be similar to the predicted electronic structure of LuIn\(_3\), which has filled \(f \) shells. CeIn\(_3\) therefore provides a particularly clear example of a system in which a transformation occurs from a “large FS” at high pressures and low magnetic fields to a “small FS” at high magnetic fields and ambient pressure. Since CeIn\(_3\) is nonmetamagnetic [2,4] and it is possible (in principle) to move from the high pressure regime to the high magnetic field regime without

![FIG. 2 (color). Examples of dHvA signal measurements on CeIn\(_3\) for two different orientations of \(\mathbf{H} \) together with Fourier transforms. The Cu signal originates from the polycrystalline Cu comprising the detection coils.](image-url)
crossing the antiferromagnetic phase boundary, the transformation in FS must take place in a continuous fashion.

The present experimental limitations require us to study the link between the high pressure and high magnetic field regimes via the intervening antiferromagnetic phase. The manner in which each section of the FS is modified by the antiferromagnetic order parameter depends on its size, location in \(\mathbf{k} \) space, and the extent to which it accommodates \(f \)-electrons. The \(d \)-sheet passes through \(H_c \) and \(p_c \) in Fig. 4 relatively unperturbed in topology or effective mass [9,18], as indicated in Figs. 2 and 5(a). This robustness to antiferromagnetism and high magnetic fields arises from the minimal contribution of the \(f \)-electrons to the \(d \)-sheet volume (the \(f \)-electron dispersion exhibits a minimum at the \(\Gamma \) point in the Brillouin zone [18]), and its small size well within the interior of the antiferromagnetic Brillouin zone.

The \(a \) sheet, by contrast, is radically affected by antiferromagnetism owing to its much greater size and hybridization with the \(f \) dispersion near the Fermi energy. The large size of the staggered moment within the antiferromagnetic phase of CeIn\(_3\) [20], combined with the weak dispersion of the \(f \) band in the paramagnetic phase [18], requires the antiferromagnetism to be considered from the strong coupling perspective [12]. The disappearance of the \(a \) sheet at pressures \(p < p_c \) [9] reflects the effective removal of the majority of the \(f \) electrons from the FS deep within the antiferromagnetic phase, where strong coupling gaps the \(f \)-electron dispersion. Unlike the \(d \)-sheet FS, the evolution of the \(a \)-sheet FS topology cannot easily be predicted in the intermediate regime close to the antiferromagnetic boundary where local staggered moment ordering competes with Kondo screening [21]. A clearer picture begins to emerge in high magnetic fields once the hybridization becomes perturbatively weak due to the field-induced polarization of the quasiparticle bands (as with the suppression of Kondo screening deep within the antiferromagnetic phase [12]). The effective mass of the \(a \)-sheet in Fig. 5(a) is observed to be magnetic field independent (within experimental error) and roughly an order of magnitude smaller than that observed at \(p > p_c \), providing compelling evidence for the removal of the majority of the \(f \) electrons from this sheet due to the field-induced polarization of the quasiparticle bands [3].

While the experimental picture at low magnetic fields and ambient pressure is more complex, with small pockets of \(f \) holes [12] coexisting with fragments of the unhybridized
conduction band FS resembling LuIn$_3$, magnetic breakdown tunneling at higher magnetic fields causes the re-emergence of this a sheet at fields slightly below H_c. Spin-dependent effective masses are another consequence of the polarization of the f electrons in strong magnetic fields. In the case of the d_{100} frequency, shown in Fig. 5(b), the absence of a significant f-electron contribution causes the spin dependence to closely mimic the localized f-electron behavior seen in the single impurity limit, as realized in Ce$_x$La$_{1-x}$B$_6$ [17] and Ce$_x$La$_{1-x}$RhIn$_5$ [22] for $x \leq 10\%$. Localization of the f electrons causes the spin-up and spin-down dHvA frequencies to be the same, but with the lighter mass spin component dominating the dHvA signal, causing the harmonic index dependence of the dHvA amplitude to decay in a simple exponential manner. In the case of the a_{110} frequency, four harmonics are observed at the highest magnetic fields, $80 < \mu_0 H < 87$ T, in Fig. 5(c). The observed field independence of the a-sheet FS topology and effective mass suggests that the polarization of the quasiparticle bands is more complete than realized in CeB$_6$ and CeRu$_2$Si$_2$, where well separated dHvA frequencies corresponding to split spin-up and spin-down Fermi surfaces and/or field-dependent effective masses are observed [5,23]. Exchange splitting effects caused by the polarized f moments (as in NdB$_6$ [10,24]) can also not be resolved at high magnetic fields in CeIn$_3$. The new a_{110} frequency (and its harmonic) at $\approx 10 \times 400$ T in Fig. 5(c) has a similar size to other features predicted in the LuIn$_3$ band structure calculations [25].

In summary, we observe the a-sheet FS of CeIn$_3$ in strong magnetic fields $H > H_c$, which is found to be consistent with the "small FS" picture [19], in which the f electrons do not contribute significantly to its volume, in contrast to that observed within the paramagnetic regime at pressures $p > p_c$. Consequently, its effective mass is observed to be reduced by an order of magnitude compared to that at $p > p_c$. The spheroidal geometry of the FS represents an ideal embodiment of the change in the electronic structure from large FS (at high pressure) to a small FS (in strong magnetic fields). Although a direct observation of this transformation is presently masked by the intervening antiferromagnetic phase, the transformation is expected to take place continuously given the cubic symmetry of CeIn$_3$ [2] (the absence of metamagnetism is already established at ambient pressure [4]). The present experiments on CeIn$_3$ show the importance of extreme experimental conditions for understanding electronic structure of strongly correlated f-electron metals.

This work was performed under the auspices of the National Science Foundation, the Department of Energy (U.S.), and Florida state. T.E. acknowledges support provided by a Grant-in-Aid for Scientific Research on priority Areas, “High Field Spin Science in 100 T” (CASIO) and MEXT. S.E.S. acknowledges support from the Institute for Complex Adaptive Matter and from Trinity College, Cambridge University.

[1] A. Wasserman, M. Springford, and A. C. Hewson, J. Phys. Condens. Matter 1, 2669 (1989).
[2] S. M. M. Evans, Europhys. Lett. 17, 469 (1992).
[3] D. M. Edwards and A. C. M. Green, Z. Phys. B 103, 243 (1997).
[4] T. Ebihara et al., Phys. Rev. Lett. 93, 246401 (2004).
[5] Strong anisotropy of the hybridization between the f electrons and the conduction electrons is required to explain metamagnetism in CeRu$_2$Si$_2$ in the absence of magnetic ordering [2].
[6] Metamagnetism in CeB$_3$ is caused by a transition between antiferromagnetic and antiferroquadrupolar phases (otherwise unexpected in a cubic system [2]); R. G. Goodrich et al., Phys. Rev. B 69, 054415 (2004).
[7] The upper critical field of the antiferromagnetic phase of CeRhIn$_5$ appears to coincide with metamagnetism, possibly as a consequence of the anisotropy of the crystal electric fields in the tetragonal symmetry; T. Takeuchi et al., J. Phys. Soc. Jpn. 70, 877 (2001).
[8] N. D. Mathur et al., Nature (London) 394, 39 (1998).
[9] R. Settai et al., J. Phys. Soc. Jpn. 74, 3016 (2005).
[10] R. G. Goodrich, N. Harrison, and Z. Fisk, Phys. Rev. Lett. 97, 146404 (2006).
[11] M. Endo, N. Kimura, and H. Aoki, J. Phys. Soc. Jpn. 74, 3295 (2005).
[12] S. E. Sebastian et al. (unpublished); Effective masses as large as 100 times the free electron mass m_e are observed in fields approaching 41 T.
[13] J. A. Detwiler et al., Phys. Rev. B 61, 402 (2000).
[14] T. Sakakibara et al., J. Magn. Magn. Mater. 70, 375 (1987).
[15] J. L. Bacon et al., IEEE Trans. Appl. Supercond. 12, 695 (2002).
[16] C. A. Swenson et al., Physica (Amsterdam) 346B–347B, 561 (2004).
[17] N. Harrison et al., Phys. Rev. Lett. 81, 870 (1998); A. A. Teklu et al., Phys. Rev. B 62, 12875 (2000).
[18] M.-T. Suzuki, Ph.D. thesis, Kobe University, 2007; M.-T. Suzuki and H. Harima, Physica B (Amsterdam) (to be published).
[19] P. Coleman et al., J. Phys. Condens. Matter 13, R723 (2001).
[20] J. M. Lawrence and S. M. Shapiro, Phys. Rev. B 22, 4379 (1980).
[21] Q. M. Si, Physica (Amsterdam) 378B, 23 (2006).
[22] U. Alver et al., Phys. Rev. B 64, 180402 (2001).
[23] This is evidenced by recent observations of a new frequency α', smaller and heavier than that of the α_1 frequency, but corresponding to the same topology, as revealed by its angular dependence; M. Endo et al., J. Phys. Soc. Jpn. 75, 114704 (2006).
[24] L. P. Gor’kov and P. D. Grigoriev, Phys. Rev. B 73, 060401 (2006).
[25] H. Harima (private communication).