Analysis study of nonwoven pineapple leaf fibre, nonwoven pineapple layered double weave and tricot knitting fabric as absorber material

N I Khasanah¹ and A I Makki¹,²

¹Politeknik STTT Bandung, Jl Jakarta No 31 Bandung
¹Graduate of Textile Engineering, Politeknik STTT Bandung
²Assistant Professor at Textile Engineering, Politeknik STTT Bandung

Corresponding : ibrahimmakki@stttekstil.ac.id;

Abstract. Sound pollution can be minimized by noise intensity using sound absorbing material. Nonwoven fabrics are the material most widely used for acoustic applications. This research investigated about absorption coefficient of nonwoven pineapple leaf fiber (PNW), and its layered combination with double weave (PDW) and tricot knitting fabric (PTK). The variation of fabric will be tested for sound absorption coefficient using an impedance tube. Absorption coefficient test results showed there was an effect in absorption coefficient on nonwoven with layered.

1. Introduction

Sound pollution (noise) can be defined as the excessive noise that can cause an imbalance level of the humans or animals. Excessive noise will impact badly on physiological and psychological effects on humans that can cause permanent hearing damage, increasing efficiency, reducing stress in the workplace, the interference pattern sleep and disorders in communicating

The noise happens around us can come from a variety of sources. The source of this distinguished sources of static and moving resources. Examples of static is the factory and machinery construction. The example moving resource such as motor vehicles, trains and airplanes. Noise in Office buildings, schools, hospitals, etc. are sourced from the activity surrounding the building. Sound absorption is the ability of a material to muffle the sound of coming, calculated in percent or fractional value 0 ≤ α ≤ 1. A value of 0 means there is no attenuation sound (the whole sound comes reflected perfectly) whereas a value of 1 means the sound came completely absorbed (Nothing reflected back).

Porous materials absorbed the most commonly used as sound absorbent fibrous material is usually in the form of boards (composite), foam, fabric, rugs, pillows, etc. According to Padhye and Nayak, structure of textile fibrous materials is a great example of a porous material used for sound absorption. There are a number of textile material which can be used for sound absorbent. The material can be classified as a nonwoven fabric, woven and knitted.

Soltani and Zarrebini are conducting research on sound absorption coefficients and characteristics on a woven fabric with a variation of the plain weave structure, twill 2/1, 3/1 2/2, ribs and satin. Tang
et al.6 analyzes woven fabric corduroy against the absorption of sound by performing experiments and simulations. Mankondi and Mistry7 conducts research on the combination of jacquard woven fabric with nonwoven fabric against the absorption of sound. Monaragala8 and Ozturk, et al.9 using fabric knit spacer for sound absorption.

The use of natural fibers as sound absorber has been done, including hemp, coconut, and abaca. Natural fibers are made in the form of composites10. Pineapple leaf fiber as a textile material has also been previously studied11. Pineapple leaf extract has been studied as a sound absorber in a composite form12. In this study, pineapple leaf fiber will be made nonwoven as sound absorber material.

2. Method research
This research uses experimental methods. The study begins by make a sample pineapple leaf fiber nonwoven fabric, double weave fabric13, and tricot knit fabric14. Sample fabric that has been created is then tested with absorption coefficient of a tube impedance15. Absorption coefficient testing performed on sample of nonwoven fabric, nonwoven layered of double weave, nonwoven layered of tricot knitted fabric. Thickness, weight per meter square and density are calculated to support the results of the study16,17.

3. Result and Discussion
Nonwoven fabric made using a thermal bonding method with low melt polyester as a fastener by a ratio of 75\% comparison of pineapple leaves fiber and 25\% low melt polyester. Type double weave made that kind of a double weave with a bond, the composition of warp and weft threads 1a1. Top side weave is twill 1/3 and bottom weave is twill 3/1. Double weave is made from 100\% cotton. Figure of top and bottom weave can see in figure 1, and weaving plans of double weave can see in figure 2.

![Figure 1](image1.png)

\textbf{Figure 1.} (a) top side weave is twill 1/3, (b) bottom side weave is twill 3/1

![Figure 2](image2.png)

\textbf{Figure 2.} Weaving plans of double weave

Tricot knit fabric made of 100\% polyester yarn using a double needle machine with 22E gauge. Guide bars are used as many as four of the total guide bar that is installed seven pieces. Lapping diagram of the tricot fabric used is shown in figure 3. Guide bar used is guide bar numbers 1,2,4 and 5. Lapping diagram of each bar is shown in figure 4.
Figure 3 Lapping diagram Tricot knit fabric

Figure 4 (a) Lapping diagram guide bar number 1, (b) Lapping diagram guide bar number 2, (c) Lapping diagram guide bar number 4, (d) Lapping diagram guide bar number 5
The results of the absorption coefficient test of the fabric variations made are shown in table 1. The absorption coefficient test is carried out twice for each sample. Tests are carried out at low, normal and moderate frequencies at frequencies 100 - 5000 Hz. In figure 5 the frequency ranges are listed according to ISO 11564[18]. Based on these graphs all materials used can absorb sounds with different absorption coefficients.

Absorption coefficients in all samples increase at frequencies of 1000-5000 Hz. At low frequencies the absorption coefficient is relatively low. This is because porous material can absorb sound at high frequencies. Sound absorption in fabrics is caused by the morphology of the fabrics that have cavity so that when sound passes through the material, the sound will be absorbed by the porosity in the fabrics.

The addition of layer to nonwoven fabric has an effect on sound absorption. Especially at high frequencies. This might be due to the addition of sample thickness which affects the density. At low frequency the nonwoven sample of pineapple fiber layered with double weave absorbs less sound so that more noise is transmitted. Conversely at high frequencies the nonwoven layered double weave absorbs the most sound. This is possible because of the influence of the porosity by the woven structure on the top and bottom for double weave fabric. Tricot upholstery has less influence on sound absorption compared to double weave, this is because the characteristics of the tricot that are made that have many open voids compared to the double weave so that they cannot absorb much sound.

The highest sound absorption coefficient at the frequency of 5000 Hz based on the graph above is equal to 0.70760 in the nonwoven layered double weave, while the lowest absorption coefficient on the double fabric material is 0.05252 on the same fabric combination at the frequency of 100 Hz.

Frequency (Hz)	Nonwoven pineapple leaf fiber	Nonwoven Pineapple + Double weave	Nonwoven Pineapple + Tricot Knitted Fabric
100	0.1407	0.05252	0.099389
124	0.1672	0.07188	0.112073
160	0.1334	0.07233	0.121352
200	0.1307	0.06346	0.140659
250	0.1330	0.08702	0.121732
314	0.1230	0.10024	0.12389
400	0.1649	0.09920	0.112567
500	0.0638	0.10674	0.066939
630	0.1474	0.12513	0.149091
800	0.1510	0.16461	0.135188
1000	0.1697	0.18907	0.132164
1250	0.2282	0.21595	0.160132
1600	0.2102	0.27801	0.229578
2000	0.2388	0.29391	0.248456
2500	0.2590	0.35791	0.237869
3150	0.3062	0.45641	0.330113
4000	0.3254	0.57728	0.441594
5000	0.4589	0.70860	0.481594
Factors that affect sound absorption are fabric density. The higher the fabric density, the higher the sound absorption. Material that has a high fabric density has good sound absorption at high frequencies. Data density of each sample are shown in table 2. The relationship between fabric density and absorption coefficient is shown in Figure 6.

Tabel 2 density of sample	Nonwoven pineapple leaf fiber	Nonwoven Pineapple + Double weave	Nonwoven Pineapple + Tricot Knitted Fabric
Density (g/cm³)	0.514	0.674	0.554

The density of pineapple leaf fiber nonwoven fabric layered with tricot knit fabric is higher than the nonwoven fabric layered with double weave. This is because the tricot fabric has the highest thickness compared to the double weave fabric. So that when the nonwoven fabric is layered with tricot, the thickness exceeds the thickness of the nonwoven fabric layered double weave.
5. Conclusion

Cavities in the fiber are able to absorb sound at low and high frequencies. Thickness and weight in square affect the fabric density which can increase sound absorption. In this study, nonwoven layered with double weave fabric and tricot fabric is increases sound absorption at high frequencies. Morphological analysis can be done next to see more clearly the influence of porosity. Nonwoven layered using double weave fabric and tricot fabric can be tried to determine the effect on sound absorption and become a solution to add aesthetics.

References

[1] Padhye R and Nayak R (edt). 2016 Textile Science and Clothing Technology (Singapore: Springer)
[2] Mediastika Christina 2005 Akustika Bangunan: Prinsip-prinsip dan Penerapannya di Indonesia (Jakarta: Erlangga)
[3] Satwiko Prasasto 2009 Fisika Bangunan (Yogyakarta: C. V Andi Offset)
[4] Everest F Alton and Pohlmann Ken C 2009 Master Handbook of Acoustic Fifth Edition (United States of America: McGraw-Hill)
[5] Soltani Parham and Zarebini Mohammad 2013 The Journal of The Textile Institute (London: Taylor & Francis)
[6] Tang Xiaoning, Zhang Xiansheng, Zhuang Xingmin, Zhang Huiping, and Yan Xiong 2017 Journal of Industrial Textile 0(00) 1-20
[7] Mankodi Hireni R and Mistry Purvi 2014 International Journal of Industrial Engineering & Technology (IJIET) 4 19-26
[8] Monaragala R M 2011 Advances in Knitting Technology (United Kingdom: Woodhead Publishing Limited)
[9] Ozturk M K, Nergis B U, Candan C 2010 7th International Conference – TEXSCI
[10] Erningsih Rifaid, Widodo Mukti, Marlina Rini 2014 Arena Tekstil 29 1-8
[11] Hidayat Praktino 2008 Teknoin Jurnal Teknologi Industri 13 31-5
[12] Putra Azma, Or Khai Hee, Selamat Mohd Zulkifli, Noor Mohd Jailani M, Hassan Muhamad Haziq and Prasetiyo Iwan 2018 Applied Acoustic 136 9-15
[13] Widodo Sugeng and Wardningsih Wiah 2005 Disain Tekstil. Bandung (Indonesia: Sekolah Tinggi Teknologi Tekstil Bandung)
[14] David J Spencer 2001 Knitting Technology Third Edition (United Kingdom: Woodhead Publishing)
[15] 1998 ISO10534-2: Acoustic – Determination of absorption coefficient and impedance in impedance tubes part 1: method using standing wave ratio
[16] 2010 SNI ISO 5084:Cara Uji Tebal Tekstil dan Produk Tekstil
[17] 2010 SNI ISO 3801:Cara Uji Berat Kain per Satuan Panjang dan Berat Kain per Satuan Luas
[18] 1997 ISO 11654: Acoustic – Sound Absorption for use in building – rating of sound absorption