Neutrophil-to-lymphocyte ratio (NLR) and Platelets-to-lymphocyte ratio (PLR) Ratio in Patients with Exacerbation of Bronchiectasis

NICOLETA STEFANIA MOTOC1, PAULA MARTINOVICI1, BEATRICE MAHLER BOCA2, IOAN SOVIN TUDORACHE2, TUDOR HARSOVESCU3, FLORENTINA LIGIA FURTUNESCU2, MILENA ADINA MAN2*, CARMEN MONICA POP1

1Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Str., 400000, Cluj Napoca, Romania
2Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474, Bucharest, Romania
3Titu Maiorescu University, Faculty of Medicine, 22 Dambovnicului Str., 031593, Bucharest, Romania

Neutrophil-to-lymphocyte ratio (NLR) and platelets-to-lymphocyte ratio(PLR) are novel inflammatory markers used in evaluation of systemic inflammation. The aim of this study was to evaluate the utility of NLR and PLR as inflammatory markers in patients with exacerbation of bronchiectasis. 100 patients with age between 23 and 88 years old with chest CT documented bronchiectasis were included. Blood test were collected at admission in the hospital. There was a good correlation between classical markers such as CRP, ESR, white blood cells and NLR. PLR, however correlated only with ESR from the inflammatory markers and with the values of hemoglobin and hematocrit. We did not see higher values in patients with COPD and bronchiectasis when compared with patients with bronchiectasis alone, howevere patients with COPD GOLD stage 2 and bronchiectasis had higher values of NLR and PLR when compared with other stages. NLR, more than PLR can be safely used in evaluating inflammation in patients with exacerbation of bronchiectasis.

Keywords: Neutrophil-to-lymphocyte ratio (NLR), platelets-to-lymphocyte ratio(PLR), bronchiectasis, COPD

Bronchiectasis is a chronic inflammatory lung disease characterised by a clinical syndrome of cough, sputum production and bronchial infection, and radiological by abnormal and permanent dilatation of the bronchi [1]. The exacerbations of bronchiectasis represent deterioration in three or more of the key symptoms for more than 48 hours: cough sputum volume and/or sputum consistency [1, 2] and is associated with increased airways and systemic inflammation [3] and progressive lung damage [4-6]. Systemic inflammation induces an increase in neutrophils and platelets count accompanied by a decrease in lymphocyte count making their ratio (neutrophil-to-lymphocyte ratio and platelets-to-lymphocyte ratio) a useful tool in the diagnosing chronic inflammatory diseases [5, 7]. In bronchiectasis the inflammation is primarily neutrophilic and it’s due to persistent bacterial infection [8]. Excessive neutrophilic inflammation is linked to an increased frequency of exacerbations and rapid lung function decline through degradation of airway elastin, among other mechanisms [1-5]. NLR is assessing both the inflammatory status and cell-mediated immunity and it’s increase in several systemic diseases, cancer, COPD, asthma, obstructive sleep apnea [5,7, 9-19]. Platelets have an important role in the immune system due to the surface receptors that enable them to recognize pathogens and immune complexes. Activated and adherent platelets release cytokines, including chemokines that stimulates inflammatory recruitment of immune cells [20, 21]. The aim of this study is to evaluate the utility of NLR and PLR as inflammatory markers in patients with exacerbation of bronchiectasis compared with classical markers such as C-reactive protein, erythrocyte sedimentation rate and white blood cells. As a second objective we wanted to see if in patients with COPD and bronchiectasis these markers are higher, considering that both conditions are associated systemic inflammatory status.

Experimental part
Materials and methods
This is a prospectively cross sectional study.

Study population
were enrolled all patients, over 18 years old with chest CT confirmed bronchiectasis consecutively hospitalized for a exacerbation of bronchiectasis in Leon Daniello Clinical Hospital of Pulmonology from Cluj Napoca, Romania in one year from January 2018 to December 2018. Exclusions criteria: were excluded hemodynamically instable patients, patients with severe comorbidities, patients with cystic fibrosis, pneumonia, lung cancer and interstitial lung disease. All patients signed an informed consent for participating in the study.

Study protocol
The study was approved by the Ethics Committee of University of Medicine and Pharmacy Iuliu Hatieganu, Cluj Napoca no 232/05.07.2019. Demographic data were collected directly from the patients. The exacerbation of bronchiectasis was defined according British Thoracic Society Bronchiectasis Guideline [1]. Blood samples were taken from all the patients at admission in the hospital (before any intervention): complete blood cell counts and differential values were recorded. The NLR ratio was defined as the absolute count of neutrophils divided by the absolute count of lymphocytes. The PLR was defined as the absolute count of platelets divided by the absolute count of lymphocytes. CRP and ESR were determined.

Statistics analysis
Data was analyzed using SPSS v.2 software for Windows. Values were presented as mean ± standard deviation or, in the case of non-normally distributed data, as medians and 25th and 75th percentile. Independent-samples t-test, Mann-Whitney U test and nonparametric tests were used for the comparison of continuous variables, with a significance level of 0.05. Values are expressed as frequencies, percentages and mean ± standard deviation. Spearman correlation analysis was done between NLR, PLR and other markers of inflammation.

* email: manmilena50@yahoo.com
All authors have equal contributions to the study
Results and discussions

100 patients with age between 23 and 88 years old (60.70 ± 15.1 years old) with chest CT documented bronchiectasis were included. Most patients were male (53 versus 47) and from urban areas. Patients characteristics are shown in table 1.

Table 1
PATIENTS DEMOGRAPHIC CHARACTERISTICS

Characteristics	Patients (n=100)
Age	60.70 ± 15.1
Gender	
Male	55
Female	47
Smoking status	
Current smoker	15
Ex-smoker	34
Never smoker	51
COPD	31
Asthma	21
Systemic diseases	8

The exacerbation of bronchiectasis was defined as deterioration in three or more of the key symptoms for more than 48 hours: cough sputum volume and/or sputum consistency. Patients laboratory tests are shown in table 2.

Purulent sputum was present in 54% of patients and we had a confirmed bacterial aetiology in 24.47% of cases. COPD was present in 36 patients.

There was a correlation between NLR and CRP, ESR and white blood cells (figure 1). This correlation did not exist between PLR and CRP or white blood cells (see figure 2). There is however a week correlation between PLR and ESR, haemoglobin and hematocrit.

Table 2
PATIENTS LABORATORY TESTS

Test (n=100 patients)	Value (µ=±DS)
White blood cells (WBC) (10^9/µL)	8.23 ± 3.04
Eosinophils (10^9/µL)	2.94 ± 3.62
Neutrophils (10^9/µL)	5.57 ± 2.82
Lymphocytes (10^9/µL)	2.07 ± 0.56
Neutrophil-to-lymphocyte ratio(NLR)	3.16 ± 2.38
Platelets (10^9/µL)	250.39 ± 90.5
Platelets-to-lymphocyte ratio (PLR)	136.79 ± 68.5
C-reactive protein (mg/dl)	21.33 ± 12.7
Erythrocyte sedimentation rate (mm/h)	28.35 ± 28.4
Hemoglobin (g/dl)	13.51 ± 1.75
Hematocrit (%)	40.94 ± 4.91
Saturatiion oxygen (sat O2) (%)	94.38 ± 4.06
pao2 (mmHg)	61.95 ± 17.3
paco2 (mmHg)	38.43 ± 4.19

We did not notice higher values of NLR or PLR in patients with COPD and bronchiectasis, however an interesting observation was the higher values of both PLR and NLR in patients with COPD GOLD stage 2 compared with other stages (figure 3 and 4). There was no difference when looking at the distribution of the bronchiectasis.

In this study we evaluated the role of NLR and PLR as inflammatory markers in patients with exacerbation of bronchiectasis when compared with classical markers. We also wanted to see if in patients with bronchiectasis and COPD these markers have higher values. There was a good correlation between classical markers such as CRP,
ESR, white blood cells and NLR. PLR, however correlated only with ESR from the inflammatory markers and with the values of hemoglobin and hematocrit. We did not see higher values in patients with COPD and bronchiectasis when compared with patients with bronchiectasis alone, however patients with COPD GOLD stage 2 and bronchiectasis had higher values of NLR and PLR when compared with other stage of COPD. In recent years, multiple studies have been carried out to evaluate the utility of NLR and PLR as markers of systemic inflammation as they are more accessible and cheaper blood test. While NLR has been proven to be a reliable inflammatory marker in solid tumors, COPD, sleep apnea and several of other disease the importance of PLR is still [17-23]. NLR is an independent prognostic factor in many solid tumors (eg, pulmonary, gastric). It is associated with disease severity, hospitalization, malnutrition, recurrence, and mortality in various chronic diseases such as cardiovascular or renal disease and has recently been studied as a predictive factor of exacerbations and mortality in COPD. Thus, it was observed that NRL increases significantly in exacerbations compared to stable periods and that there are significant positive correlations between NRL, CRP and white blood cells. In the case of bronchiectasis, Nacaroglu et al [5] observed in a retrospective study that followed 50 pediatric patients that only absolute numbers of neutrophils and NLR can be used as biomarkers in acute exacerbations, the ratio does not have higher values. In our study COPD stage 2 patients had higher vales of both NLR and PLR when compared with other stages. It is well known that these patients represent a particular group as they have higher decline rate and higher risk to develop cancer. One possible explanation could be that in this particular subgroup of COPD patients the inflammation is more important.

The limitations of this study are: the small sample of patients and the absence of the control group.

Conclusions
While NLR correlates with classical inflammatory markers, the correlation is weak. The presence of COPD appears not to influence the inflammatory status in these patients. Further studies on subgroups are required.

References
1. HILL AT, SULLIVAN AL, CHALMERS JD et al. British Thoracic Society Guideline for bronchiectasis in adults. Thorax 2019; 74(Suppl 1):1–69.
2. POLVERINO E, GOEMINNE PC, MCDONNELL MJ, et al. European Respiratory Society guidelines for the management of adult bronchiectasis. Eur Respir J 2017; 50: 1700629.
3. CHALMERS JD, SMITH MP, MCHUGH BJ, et al. Short- and long-term antibiotic treatment reduces airway and systemic inflammation in non-cystic fibrosis bronchiectasis. Am J Respir Crit Care Med 2012; 186: 657–665.
4. SHEEHAN RE, WELLS AU, COPLEY SJ, et al. A comparison of serial computed tomography and functional change in bronchiectasis. Eur Respir J 2002; 20: 581–587.
5. NACAROGLU HT, ERDEM SB, KARAMAN S et al. Can mean platelet volume and neutrophil-to-lymphocyte ratio be biomarkers of acute exacerbation of bronchiectasis in children? Centr eur J immunol 2017; 42 (4): 358-362.
6. NEMES, R.M., DUCEAC, L.D., VASINCU, E.G., AGOP, M., POSTOLACHE, P. On the implications of the biological systems fractal morpho-functional structure. University Politehnica of Bucharest Scientific Bulletin-Series A- Applied Mathematics and Physics 2015, 77(4):263-272.
7. YOON HY, KIM HN, LEE SH, KIM SJ, CHANG Y, RYU S, SHIN H, KIM HL, LEE JH. Association between Neutrophil-to-Lymphocyte Ratio and Gut Microbiota in a Large Population: a Retrospective Cross-Sectional Study. Sci Rep. 2018 Oct 30;8(1):16031. Thomsen M,
Ingebrigtsen TS, Marott JL, Dahl M, Lange P, et al. (2013) Inflammatory biomarkers and exacerbations in chronic obstructive pulmonary disease. JAMA 309: 2353-2361.

Goll L, A.L., Nitu, M.F., Balasoiu, M., Lungu, M.A., Olteanu, M., Nemes, R.M., Fortofoiu, M., Rusu, E., Olteanu, M. Antibiotic resistance pattern of bacterial pathogens in elderly of bacterial pathogens in elderly patients admitted in the intensive care unit; Rev Chir. (Bucharest), 69, no. 12, 2018, p. 3433-3438.

Lesan, A., Man, M.A., Nemes, R.M., Harsovescu, T., Tudorache, I.S., Mahler-Boca, B., Pop, C.M., Serum interleukin 4 and 6 levels measured using the ELISA method in patients with acquired bronchiectasis compared to healthy subjects. Rev. Chim. (Bucharest), 70, no. 7, 2017, p. 2410-2414.

Ianoși, E.S., Postolache, P., Macovei, L.A., Szathmary, M., Szasz, S., Nemes, R.M., Jimboorean, G., Smoking cessation in COPD patients by a selective partial nicotinic agonist. Rev. Chim. (Bucharest), 69, no. 7, 2018, p. 1766-1769.

Ianoși, E.S., Dantes, E., Csipor, A., Szathmary, M., Socaci, A., Rusu, E., Nemes, R.M., Enhancing education for smoking preventing and smoking cessation in medical personnel: a measure for a better health. Rev Chim (Bucharest), 69, no. 10, 2018, p. 2725-2727.

Mochimaru T, Fukunaga K, Kuwae M, Watanabe R, Okuzumi S, Baba R, Kamatani T, Tanosaki T, Matsusaka M, Betsuyaku T. Neutrophil to lymphocyte ratio is a novel predictor of severe exacerbation in asthma patients. American Journal of Respiratory and Critical Care Medicine 2018, 197: A1406.

Constantin B, Postolache P, Ciortor A, Nemes, R.M. Occupational bronchial asthma - clinical and epidemiological aspects. Journal Of Environmental Protection And Ecology 2015; 16(2): 517-520.

Agusti A, Noguera A, Sauleda J, et al. Systemic effects of chronic obstructive pulmonary disease. 2003 Feb;21(2):347-60. Review. EurRespir J 2003; 21:347-360.

Alexescu TG, Maiorean A, Ciurmanean L, Budin C, Dogaru G, Todea DA, Rehabilitation therapies in stable chronic obstructive pulmonary disease Balnco Research Journal 2019, 10(1):37-44.