Electronic Supplementary Information
Phosphorothioate Analogs of Glycol Nucleic Acids

Synthesis and Structural Properties of P-Stereodefined Phosphorothioate Analogs of Glycol Nucleic Acids.

Agnieszka Tomaszewska-Antczak, Anna Maciaszek, Katarzyna Jastrzębska, Barbara Mikołajczyk, Piotr Guga

Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Bioorganic Chemistry, Sienkiewicza 112. 90-363 Łódź, Poland
Table 1S. HRMS data for 5a-d (unseparated P-diastereomers) and physico-chemical characteristics of fast and slow-eluting pairs of enantiomers of 5a-d. A mixture of EtOAc and hexane at given ratio (v/v) was used for TLC and HPLC analyses.

	5a	5b	5c	5d				
	OTP-G\(\)T	OTP-G\(\)A\(\)Bz	OTP-G\(\)C\(\)Bz	OTP-G\(\)G\(\)iBu				
HRMS\(^c\) (Da)	707.2015	820.2392	796.2280	802.2498				
	found	707.2015	820.2400	796.2287	802.2514			
EtOAc : hexane	50 : 50	45 : 55	55 : 45	85 : 15				
fast/\(s\)low	f	s	f	s	f	s	f	s
TLC, \(R_f\)	0.68	0.60	0.72	0.58	0.70	0.58	0.65	0.50
HPLC\(^a\), \(R_t\) (min)	19.2	21.5	18.0	23.0	27.0	31.2	13.5	17.0
\(\delta^{31}\)P NMR\(^b\) (ppm)	105.6	106.1	105.8	106.6	105.1	105.7	106.1	106.5

\(^a\) A Pursuit XRs column (10µ silica, 100 Å; 250 × 21.2 mm; flow rate 25 mL min\(^{-1}\));

\(^b\) In CDCl\(_3\);

In principle, the phosphitylation of eight \(^{\text{DMT-G}}\)N’s (obtained from 2 enantiomeric glycidols and 4 nucleobases) should provide 16 OTP-G\(\)N’s, but because 4d was obtained only from \((R)-(+)\)-glycidol we actually have obtained 14 diastereomerically different OTP-G\(\)N’s. However, Table 1S does not contain 14 data sets but only 8 (5a fast/slow to 5d fast/slow) because each of 5a-c consists of two pairs of enantiomers \((R_P\)R\(_C/S_P\)\(S_C\) and \(S_P\)R\(_C/R_P\)\(S_C\)) and within each pair the components cannot be distinguished by the chromatographic and spectroscopic methods applied (no chiral auxiliaries were used). From this perspective 5d consisted of two diastereomeric \(R_P\)\(S_C\) and \(S_P\)\(S_C\) components.
Panel A – isomer fast

Panel B – isomer slow

Figure 1S. 31P NMR spectra (CDCl$_3$) for fast- and slow-eluting 5a, panel A and B, respectively; recorded with a Bruker AV-200 spectrometer (200 MHz).
Figure 2S. 1H NMR spectra (CDCl$_3$) for fast-eluting and slow-eluting 5a, panel A and B, respectively; recorded with a Bruker AV-200 spectrometer (200 MHz).
Figure 3S. 13C NMR spectra (CDCl$_3$) for fast-eluting and slow-eluting 5a, panel A and B, respectively; recorded with a Bruker AV-200 spectrometer (200 MHz).
Elemental Composition Report

Tolerance = 5.0 mDa / **DBE: min = -1.5, max = 50.0**
Element prediction: Off
Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions
332 formula(e) evaluated with 3 results within limits (up to 50 closest results for each mass)

Elements Used:
- C: 0-38
- H: 0-45
- N: 0-3
- O: 0-8
- P: 0-2
- S: 0-2

A. Antczak
180508_ATA_10_neg_2 9 (0.228) AM2 (Ar,40000.0,0.00,0.00); Cm (7:14-38:63)
1: TOF MS ES-
1.09e+005

Minimum: 80.00
Maximum: 100.00

Mass	RA	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula
707.2015	100.00	707.2015	0.0	0.0	18.5	47.2	4.072	1.70	C36 H40 N2 O7 P S2
707.2031	-1.6	-2.3	13.5	47.0	3.873	2.08	C34 H45 O8 P2 S2		
707.1997	1.8	2.5	18.5	43.2	0.039	96.22	C37 H41 O8 P2 S		

Panel A
Elemental Composition Report

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions
444 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass)

Elements Used:
C: 0-45 H: 0-47 N: 0-5 O: 0-8 P: 0-2 S: 0-2
A. Antczak
180508ATA_5_neg 10 (0.265) AM2 (Ar,40000,0,0.00,0.00); Cm (6:18-50:63)

Minimum: 80.00 5.0 10.0 -1.5
Maximum: 100.00 0.8 1.0 25.5 16.2

Mass	RA	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula
820.2400	100.00	820.2392	0.8	1.0	25.5	16.2	0.000	100.00	C43 H43 N5 O6 P S2
820.2375	2.5	820.2352	3.0	3.0	25.5	27.3	11.159	0.000	C44 H44 N5 O7 P2 S

Panel B
Electronic Supplementary Information
Phosphorothioate Analogs of Glycol Nucleic Acids

Panel C
Elemental Composition Report

Single Mass Analysis
Tolerance = 3.0 PPM / DBE: min = -1.5, max = 50.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions
614 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 0.45 H: 0.50 N: 0.6 O: 0.8 P: 0.1 S: 0.3
A. Tomaszewaka
180518_guaG_OTP 7 (0.194) Cm (5:10-17:30)

Panel D

Figure 4S. HRMS spectra for 5a-d (panel A, B, C, and D, respectively).
Panel A.

Panel B.

Figure SS. MALDI-TOF MS spectrum for fast- and slow-eluting 5a (panel A and B, respectively). 3-hydroxyypicolinic acid (50 mg/mL in 50% ACN/H2O) and ammonium citrate dibasic (50 mg/mL in H2O) 8:1 (v/v) used as a matrix.
Figure 6S. MS data for c\(^{6}\)TMPS isolated from the mixture after detritylation of 5a.
Figure 7S. 31P NMR spectra (no deuterated solvent) for DMT-15C$_{2}$PS$_{10}$c obtained from fast-5c and slow-5c, panel A and B, respectively. The monomer 5c was obtained from R (+)-glycidol.
Figure 8S. MALDI TOF MS spectra for RP HPLC isolated $^4\text{C}_{\text{PS}}\text{T}$ 11c obtained from fast-5c (panel A) and slow-5c (panel B). The monomer 5c was obtained from R-(\pm)-glycidol. Molecular mass (calc. for $\text{C}_{17}\text{H}_{23}\text{N}_5\text{O}_9\text{PS}$) 504.44, m/z found 504.2 and 504.1.
Electronic Supplementary Information
Phosphorothioate Analogs of Glycol Nucleic Acids

Figure 9S. RP HPLC profiles for three samples: 1) 6G$_{PS}$T 11d obtained from fast-5d (a black line), hydrolysis of 6G$_{PS}$T with svPDE (a red line) and hydrolysis 6G$_{PS}$T with nP1 (a blue line). An ACE 5 C 18-AR Column, 250×4.6 mm; flow rate 1mL/min, A buffer: 0.1 M TEAB, B buffer: 40% CH$_3$CN in 0.1 TEAB, Gradient: 0-50% of B buffer in 20 min, 50-100% of B buffer in 7 min.

Figure 10S. RP HPLC profiles for three samples: 1) 6G$_{PS}$T 11d obtained from slow-5d (a black line), hydrolysis of 11d with svPDE (a red line) and hydrolysis of 11d with nP1 (a blue line). An ACE 5 C 18-AR column, 250×4.6 mm; flow rate 1mL/min, A buffer: 0.1 M TEAB, B buffer: 40% CH$_3$CN in 0.1 TEAB, Gradient: 0-50% of B buffer in 20 min.
Figure 11S. HPLC profiles recorded for four samples: 1) d(CPS-T), a mixture of both P-diastereomers – a black line; 2) d(CPS-T), a mixture of both P-diastereomers, treated with svPDE – a blue line; 3) 10cCPS-T10c (derived from fast-5c) treated with svPDE – a red line; 4) 10cCPS-T10c (derived from fast-5c) – a pink line. A Kinetex 5u C18 column, 250x4.6 mm; flow rate 1mL/min, A buffer: 0.1 M TEAB, B buffer: 40% CH$_3$CN in 0.1 TEAB, Gradient: 0-50% of B buffer in 20 min.
Figure 12S. Decay of the trityl cation absorption (after the 10th coupling) during the synthesis of (U$_{25}$)$_{11}$dA as measured photometrically by the internal monitor in the automated H-6 DNA/RNA synthesizer. From the total yield 94% a repetitive yield 99.2% was calculated (0.99210).
Figure 13S. RP HPLC analysis of \((^3\text{G}_{\text{PS}})^{11}\text{dA} \) after treatment with DBU. A Phenomenex Polymer X column, 10um RP-1 100Å, 250x10.0mm; Buffers: A = 0.1 M TEAB, B = 40% CH\(_3\)CN in 0.1 M TEAB; flow rate 2.5 ml/min;
Gradient program:

t (min)	%B
0	0
10	50
12	70
14	100
20	100
Figure 14S. MALDI-TOF MS analysis of the fraction collected during RP HPLC analysis of (G_U_{PS})_{11}dA after treatment with DBU (a broad peak eluting at 15.65 min, see Figure 13S).
Figure 15S. Decay of the trityl cation absorption during the manual synthesis of \(\text{SP-17} \) (A\(^{\text{T}}\)TG\(^{\text{G}}\)CG\(^{\text{C}}\)CAT) measured photometrically.
Figure 16S. RP HPLC profile for the detritylated S_p-17 oligomer. A Kinetex 5μ C18 column, 250x4.6 mm; flow rate 1mL/min, A buffer: 0.1 M TEAB, B buffer: 40% CH_3CN in 0.1 TEAB, Gradient: 0-100% of B buffer in 22 min.
Figure 17S. MALDI-TOF MS spectrum for Sp-17 oligomer; molecular mass calculated 2395, found 2394.1
Figure 18S: Increase of UV absorption at 260 nm in melting experiments for selfcomplementary oligomers 15-19 (dissolved in pH 7.2 buffer containing 10 mM Tris-HCl, 100 mM NaCl, and 10 mM MgCl₂).

Figure 19S: Increase of UV absorption at 260 nm in melting experiments for selfcomplementary oligomers 14, 16 and heteroduplexes 14/16 and 15/17 (dissolved in pH 7.2 buffer containing 10 mM Tris-HCl, 100 mM NaCl, and 10 mM MgCl₂).
Electronic Supplementary Information
Phosphorothioate Analogs of Glycol Nucleic Acids

Table 2S. Melting temperatures for mixtures of Rₚ-PS-(GNA/DNA) 14 or 16, and Sₚ-PS-(GNA/DNA) 15 or 17 with DNA (d(ATGCGCAT)) or (m)RNA ((2'-OMe)-AUGCGCAU) templates. Melting temperatures for homoduplexes DNA/DNA and (m)RNA/(m)RNA are given as the reference. Temperature gradients of 1°C/min for annealing and 0.5°C/min for melting were applied.

template	DNA (m)RNA	5’-(G A T G G C G) -3’	5’-(A G T G G C C G A T) -3’			
		Rₚ-14	Sₚ-15	Rₚ-16	Sₚ-17	
DNA d(ATGCGCAT)	43	×	41	42	42	41
(m)RNA (2’-OMe)-AUGCGCAU	×	62	59	60	59	58
Figure 20S: Increase of UV absorption at 260 nm in melting experiments for selfcomplementary DNA, (m)RNA and for mixtures DNA/(m)RNA, 14/(m)RNA and 16/(m)RNA (dissolved in pH 7.2 buffer containing 10 mM Tris-HCl, 100 mM NaCl, and 10 mM MgCl₂).
Figure 21S: CD spectra for the selfcomplementary oligomer (m)RNA and its mixture with 14 or 16 (dissolved in pH 7.2 buffer containing 10 mM Tris-HCl, 100 mM NaCl, and 10 mM MgCl₂) recorded at room temperature.