Genetic Liability for Schizophrenia and Childhood Psychopathology in the General Population

Laurie J. Hannigan*,1,2, Ragna Bugge Askeland1, Helga Ask3, Martin Tesli14, Elizabeth Corfield1, Ziada Ayorech1,2, Øyvind Helgeland5,6, Per Magnus7,8, Pål Rasmus Njølstad5,9, Anne-Siri Øyen1,10, Camilla Stoltenberg10,11, Ole A. Aasssen4,12, George Davey Smith2, Ted Reichborn-Kjennerud3,13, and Alexandra Havdahl1–3,14

1Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway; 2MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; 3Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway; 4NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; 5KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; 6Department of Genetics and Bioinformatics, Health Data and Digitalisation, Norwegian Institute of Public Health, Oslo, Norway; 7Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway; 8Institute of Health and Society, University of Oslo, Norway; 9Department of Pediatrics and Adolescents, Haukeland University Hospital, Bergen, Norway; 10Norwegian Institute of Public Health, Oslo, Norway; 11Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; 12Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; 13Institute of Clinical Medicine, University of Oslo, Oslo, Norway; 14Promenta Research Center, Department of Psychology, University of Oslo, Oslo, Norway

*To whom correspondence should be addressed; e-mail: Laurie.Hannigan@lds.no

Genetic liability for schizophrenia is associated with psychopathology in early life. It is not clear if these associations are time dependent during childhood, nor if they are specific across different forms of psychopathology. Using genotype and questionnaire data on children (N = 15 105) from the Norwegian Mother, Father and Child Cohort Study, we used schizophrenia polygenic risk scores to test developmental stability in associations with measures of emotional and behavioral problems between 18 months and 5 years, and domain specificity in associations with symptoms of depression, anxiety, conduct problems, oppositionality, inattention, and hyperactivity at 8 years. We then sought to identify symptom profiles—across development and domains—associated with schizophrenia polygenic liability. We found evidence for developmental stability in associations between schizophrenia polygenic risk scores and emotional and behavioral problems between 18 months and 5 years, and the latter being mediated specifically via the rate of change in symptoms (βslope = 0.032; 95% CI: 0.007–0.057). At age 8, associations were better explained by a model of symptom-specific polygenic effects rather than effects mediated via a general psychopathology factor or by domain-specific factors. Overall, individuals with higher schizophrenia polygenic risk scores were more likely (OR = 1.310 [95% CIs: 1.122–1.528]) to have a profile of increasing behavioral and emotional symptoms in early childhood, followed by elevated symptoms of conduct disorder, oppositionality, hyperactivity, and inattention by age 8. Schizophrenia-associated alleles are linked to specific patterns of early-life psychopathology. The associations are small, but findings of this nature can help us better understand the developmental emergence of schizophrenia.

Key words: schizophrenia/genetic risk/polygenic scores/developmental psychopathology/childhood emotional and behavioral problems/MoBa

Introduction

Genetic risk for schizophrenia is highly polygenic,1,2 representing an additive combination of many common genetic variants with small effects. Large-scale genome-wide association studies (GWAS)3 discover these effects, with currently more than 176 genetic loci identified as conferring risk for schizophrenia.4 Effect sizes and SEs from GWAS can be combined across many variants in polygenic risk scores (PRS)5 to examine how common genetic liability for schizophrenia is associated with traits and behaviors in the general population.6

Schizophrenia is most commonly diagnosed in late adolescence or early adulthood.7 PRS-based approaches can be used to study early-life manifestations of genetic risk for schizophrenia, with the potential to inform as to how and why the disorder emerges later in life. Previous studies have shown that genetic liability for schizophrenia is modestly (typically explaining <1% phenotypic variance)
but robustly associated with a range of childhood outcomes, including infant neuromotor development, early neurocognitive and behavioral development, sleep problems, and social cognition—as well as with measures of psychopathology (including symptoms of anxiety, depression, attention deficit hyperactivity disorder, and conduct problems) across childhood. These associations appear to persist into adolescence as well as potentially diversify further (eg, into disordered eating and cannabis use). The breadth of associations is underlined by findings that schizophrenia PRS explain variance in a latent, general “p” (for “psychopathology”) factor in both childhood and adolescence. The “p” factor model offers a parsimonious explanation for comorbidity and shared genetic influence between symptom domains.

Although it seems clear that early-life manifestations of schizophrenia genetic liability across the psychopathological “phenome” are relatively diverse, it is not well understood how this diversity arises. For example, it could be that schizophrenia-associated genes have transient, developmentally varying effects or that early effects in specific domains trigger developmental cascades that encompass a wider range of behaviors. It could simply be the case that these genes have highly generalized effects on behavior or that the environmental and maturational restrictions of childhood make their expression more diffuse than is observed in adulthood. To narrow down the various possible explanations, it is necessary to investigate the characteristics of associations in 2 additional dimensions: developmental time and phenotypic space; ie, to ask to what degree effects are developmentally stable (influencing behavior consistently across development) vs age specific (transient or emerging at a specific point) and to explore how broadly vs selectively they influence different behaviors and symptoms.

In the current study, we use data from the population-based Norwegian Mother, Father and Child Cohort Study (MoBa) to investigate the extent to which manifestations of genetic liability for schizophrenia in childhood emotional and behavioral problems are: (1) developmentally stable vs unstable (age specific) and (2) domain general vs domain specific. Additionally, we aim to investigate genomic prediction, using schizophrenia PRS, of individuals’ latent symptom profiles across development and a broad range of symptom domains. The purpose of this facet of our analysis is to explore whether combining information about symptoms of psychopathology across time and domains is a useful way to maximize the explanatory power of genomic information in a developmental context.

The analyses we present are, in large part, exploratory. However, for the first 2 aims, in each case, we seek to identify the most parsimonious model describing the covariation between schizophrenia PRS and various questionnaire measures of childhood emotional and behavioral problems. Based on previous findings, we had 2 explicit hypotheses corresponding to these aims. First, we expected developmentally stable associations between schizophrenia-associated genetic variants and symptoms of psychopathology across early and middle childhood, based on both previous work with schizophrenia PRS and findings of the stable genetic influence on childhood psychopathology. Second, we expected associations later in childhood to be primarily domain general, mediated via a latent, general “p” factor.

Materials and Methods

Study Sample

MoBa is a population-based pregnancy cohort study conducted by the Norwegian Institute of Public Health. Participants were recruited from all hospitals and obstetric units in Norway during 1999–2008. The women consented to participation in 41% of the pregnancies. The cohort now includes 114 500 children, 95 200 mothers and 75 200 fathers. The current study is based on version 12 of the quality-assured data files released in January 2019.

The establishment and data collection in MoBa were previously based on a license from the Norwegian Data Protection Agency and approval from the Regional Committee for Medical Research Ethics (REK) and is now based on regulations under the Norwegian Health Registry Act. The current study was approved by REK (2016/1702).

Blood samples were obtained from children (umbilical cord) at birth. Genotyping of the entire MoBa cohort is ongoing. We used genotype data from children in 17 000 randomly selected trios and, after quality control, the analytic sample was a genotyped subset (N = 15 105) of children. Details about the processing of the genetic data are outlined in the supplementary information.

Measures

For the longitudinal analyses across early childhood (18 months, 3 years, and 5 years), we used maternal reports of children’s emotional problems (5 items) and behavioral problems (10 items) on subscales of the Child Behaviour Checklist (CBCL). For the specificity analyses, we used 3 maternal report scales measuring 6 distinct domains of emotional and behavioral psychopathology in middle childhood (at the 8-year data collection): the 13-item Short Mood and Feelings Questionnaire measured symptoms of depression, a 5-item short form of the Screen for Child Anxiety Related Disorders measured symptoms of anxiety, and a 34-item version of the Rating Scale for Disruptive Behaviour Disorders (RS-DBD) measured symptoms of conduct problems (CD), oppositional defiant disorder (ODD), hyperactivity, and inattention. Details about measure selection and psychometrics are in the supplementary information.
Polygenic Risk Scores

We calculated PRS for schizophrenia using PRSice2,32 based on European samples from the most recent2 Psychiatric Genomics Consortium schizophrenia GWAS. PRS can be calculated using effect estimates for all variants in common between the discovery (ie, GWAS) sample and target sample for variants whose effects in the GWAS had a P-value below a specified threshold. Typically, PRS are created at a range of P-value thresholds (0–1), reflecting the expectation that the polygenic signal will gradually increase as more variants (either with weaker effects or a lower frequency in the population) are included, up until the point additional variants contribute only statistical noise to the score. We opted to use the thresholds from the polygenic scoring analysis presented in the original GWAS.2 These were: P < .001, P < .01, P < .05, P < .1, P < .2, P < .5, p < 1. Full details of the parameters and procedure used in generating the PRS are in the supplementary information.

Analyses

Modeling Developmental Stability Latent growth models were used to explore variability in the development of emotional and behavioral problems between the ages of 18 months and 5 years in the context of genetic liability for schizophrenia. In these models, variance in observed variables is explained by 2 latent growth factors: a latent intercept, which is specified to load equally at all waves (here, at 1.5, 3, and 5 years), and a latent slope, loadings for which are fixed proportional to their temporal distance from the first wave of measurement (here, the loadings are 0, 1.5, and 3). For each schizophrenia PRS (based on the different thresholds), we formally compared the fit of models specifying an effect on growth parameters (intercept and slope) vs age-specific residuals in emotional and behavioral problems. This model fitting indicated to what extent the association between schizophrenia PRS and emotional/behavioral problems is developmentally stable (ie, via latent growth factors), age specific (ie, via residuals), or null. Informal comparisons were also made to ascertain whether stable effects could be primarily ascribed to either the latent intercept or slope factor (for full details of model fitting and comparison strategy, see supplementary information).

Modeling Phenotypic Specificity Next, we specified models describing covariation among items from the 8-year psychopathology variables with 6 domain-specific factors and one overall “p” factor. We compared the fit of models in which schizophrenia PRS were allowed to influence, respectively: symptom-specific residuals, domain-specific factors, the domain-general “p” factor; or else constrained to have no effect on 8-year psychopathology. All versions of a given model were nested, so formal tests of fit (χ^2 difference tests) were used to ascertain the best-fitting model.

For both the developmental and “p” factor modeling, after performing the formal model fitting to establish the structure of the best-fitting model for each PRS threshold, we calculated the average R^2 value among the relevant outcomes for that model. In the main text, we present the results for the best-fitting model at the PRS threshold at which R^2 was maximized.

Exploring Developmental Symptom Profiles Finally, we incorporated both the developmental modeling and “p” factor modeling approaches into a latent profile analysis. In latent profile analysis, a categorical latent variable is used to assign individuals in a sample into one of a prespecified number of profiles based on their pattern of scores across multiple observed continuous variables. For our analysis, profile membership was informed by individuals’ estimated scores on the continuous latent growth factors from the emotional and behavioral problems latent growth models and their observed scores on compiled scale versions of the 6 psychopathology domains measured at 8 years. We then included schizophrenia PRS as predictors of profile assignment. The full model is displayed in figure 1. We specified models with 2, 3, 4, 5, and 6 profiles, respectively, and assessed them using a combination of standard criteria (Vuong–Lo–Mendell–Rubin likelihood ratio test33,34, entropy, and fit indices).

All modeling for the first 2 parts of the analyses was carried out in R version 3.4.4 using the lavaan package35 version 0.6.3, and the latent profile analysis required the Mplus software36 version 8.1 via the R package MplusAutomation37 version 0.7.3 as lavaan does not support categorical latent variables at present. All models included sex as a covariate to prevent mean differences (eg, in depressive symptoms in girls vs boys) from having an influence on the model fit comparisons. Further details are available in the supplementary information, and code for the modeling is openly available at https://github.com/psychgen/sez-prs-psychopathol-dev. The consent given by the participants does not allow for storage of data on an individual level in repositories or journals. Researchers can apply for access to data for replication purposes via MoBa, in line with their data access policies.

Results

Descriptive statistics for all study variables are available in table 1; alongside, an exploration of the extent of selection bias among our genotyped subsample of MoBa and of selective attrition with respect to the longitudinal analyses (both of which were observed at low levels) is included in supplementary tables 2 and 3.

Developmental Stability Analyses

Linear growth models provided an acceptable fit to the data from the measures of emotional and behavioral problems (for details, see supplementary information).
We found evidence of associations between schizophrenia genetic liability and emotional and behavioral problems, with the null model rejected at most P-value thresholds in each domain. Moreover, we observed evidence in favor of developmentally stable rather than age-specific associations, with models incorporating PRS effects on the latent growth factors preferred in both domains (see Table 2). For emotional problems, formal model fit comparisons did not indicate whether these effects were primarily mediated via the intercept (ie, predicting the overall level of symptoms) or slope (ie, rate of change in symptoms over time) in the best-fitting model. That is, both models represented an acceptable constraint to the model with effects on both intercept and slope, and neither model could be rejected in favor of a more parsimonious model with no developmentally stable effects. Point estimates were similar for both ($\beta_{intercept} = 0.019$, 95% CI: −0.005–0.043; $\beta_{slope} = 0.019$, 95% CI: −0.010–0.048; PRS threshold: $P < .1$). In contrast, for behavioral problems, these effects were mediated via the slope factor alone at the most predictive threshold ($\beta_{slope} = 0.032$; 95% CI 0.007–0.057; threshold: $P < 1$), meaning that early symptoms of behavioral problems were more persistent across early childhood as schizophrenia PRS increased. However, in both cases, the associations were small, explaining $\sim0.1\%$ variance in the growth factors. Fit statistics and parameter estimates for all models are included in the supplementary information.

Phenotypic Specificity Analyses

A structural model of domain-specific factors and one overarching “p” factor provided a good fit to item-level data from the 8-year psychopathology measures (comparative fit index [CFI] = 0.98, Tucker-Lewis index [TLI] = 0.97, root mean square error of approximation [RMSEA] = 0.04). Details of the model-fitting process are presented in the supplementary information.

Table 1. Descriptive statistics for main study variables (scale-level only)

Measure	Age (y)	N	Mean	SD	Min	Max	Skew	Kurtosis	α
Behavioral problems (CBCL)	1.5	11,552	3.87	2.21	0	16	0.63	0.42	.70
	3	9,369	3.78	2.38	0	16	0.75	0.47	.77
	5	7,274	2.42	2.23	0	15	1.21	1.69	.81
Emotional problems (CBCL)	1.5	11,549	1.26	1.18	0	8	1.01	1.11	.66
	3	9,370	1.33	1.35	0	9	1.24	1.89	.69
	5	7,272	1.03	1.26	0	10	1.64	3.59	.73
Depressive symptoms (sMFQ)	8	7,111	1.78	2.38	0	23	2.36	8.40	.92
Anxiety symptoms (SCARED)	8	7,118	1.02	1.20	0	10	1.67	4.27	.76
Conduct disorder symptoms (RS-DBD)	8	7,121	0.76	1.50	0	16	3.13	13.88	.88
Oppositional defiant disorder symptoms (RS-DBD)	8	7,111	3.41	3.11	0	22	1.45	3.39	.91
Hyperactivity symptoms (RS-DBD)	8	7,114	3.47	3.87	0	27	1.91	4.96	.91
Inattention symptoms (RS-DBD)	8	7,115	4.82	4.01	0	27	1.67	4.07	.92

Note: α, ordinal Cronbach’s alpha; CBCL, Child Behavior Checklist; sMFQ, Short Mood and Feelings Questionnaire; SCARED, Screen for Child Anxiety Related Disorders; RS-DBD, Rating Scale for Disruptive Behaviour Disorders.

Fig. 1. Latent profile analysis to ascertain developmental and domain-specific profiles of psychopathology symptoms associated with schizophrenia genetic effects. Note: boxes represent observed variables and circles model-estimated latent variables; I = intercept factor, which loads equally on observed variables at all waves; C = categorical latent variable, subdividing the sample into a specified number of classes (we tested models with 2, 3, 4, 5, and 6) according to values on: S = slope factor with loadings 0, 1.5, and 3.5, corresponding to temporal distance from the first wave of measurement; EMO = Child Behaviour Checklist (CBCL) emotional problems symptoms; BEH = CBCL behavioral problems symptoms; DEP = Short Mood and Feelings Questionnaire depressive symptoms; ANX = Screen for Child Anxiety Related Disorders anxiety symptoms; conduct problems (CD) = Rating Scale for Disruptive Behaviour Disorders (RS-DBD) conduct disorder symptoms; oppositional defiant disorder (ODD) = RS-DBD oppositional defiant disorder symptoms; HYP = RS-DBD hyperactivity (attention deficit hyperactivity disorder [ADHD]) symptoms; ODD = RS-DBD inattention (ADHD) symptoms; 8-year observed variables and emotional/behavioral intercept/slope variables, respectively, are intercorrelated within class (paths omitted from diagram for clarity).
We found that schizophrenia PRS were significant predictors of variability in symptoms of psychopathology at 8 years, and that this prediction was maximized at the PRS threshold, including all variants ($P < 1$). At this threshold (as well as 3 others tested: $P < .05$, $P < .2$, and $P < .5$), neither the model incorporating a PRS effect on the general “p” factor nor the model incorporating domain-specific effects fit the data sufficiently well to be accepted. Instead, the preferred model allowed the PRS to influence item-specific residuals—ie, explaining symptom-specific variation. Figure 2 shows standardized beta coefficients for these symptom-level relationships.

The pattern of results in figure 2 shows that there is substantial heterogeneity, in terms of schizophrenia PRS associations, between symptoms—even within domains. This is particularly evident for symptoms within the depression and inattention domains. Nonetheless, as with the developmental modeling, effect sizes were very small, with PRS explaining a maximum of 0.4% variance in symptoms. Furthermore, at other PRS thresholds, both the PRS-on-“p” factor ($P < .001$ and $P < .01$) and PRS-on-domain-specific factors model ($P < .01$) were accepted. Parameter estimates and 95% CIs for these alternatives are presented in the supplementary information.

Developmental Symptom Profiles

Scores from all scales (CBCL measures of emotional and behavioral problems at 18 months, 3 years, and 5 years and six 8-year psychopathology domains) were incorporated into a single model for the latent profile analysis. Fit statistics for these models are presented in the supplementary information. Entropy (reflecting the overall certainty with which individuals could be assigned to symptom profiles) was good (~0.8) for each version of the model, but the Vuong–Lo–Mendell–Rubin test statistic for the 5-profile model indicated that it offered no significant improvement of fit on the simpler 4-profile model.

Figure 3 shows the 4 symptom profiles. Individuals assigned to profile 1 (5.7% of sample) had increasing symptoms of emotional problems between 18 months and 8 years, and elevated anxiety symptoms at age 8. Profile 2 (7.9%) was characterized by moderate, stable behavioral problems symptomatology in early childhood and moderate symptoms of ODD, hyperactivity, and inattention at 8 years. Profile 3 was considered the normative symptom profile as a large majority (84.7%) could be assigned to it, and it was characterized by decreasing problems developmentally and low levels of symptoms at 8 years. Profile 4 was the least populous (1.8% of the sample) and most symptomatic profile, characterized by increasing/elevated symptoms of behavioral problems and increasing symptoms of emotional problems preceding relatively elevated symptoms of conduct disorder, ODD, hyperactivity, and inattention at 8 years.

The probabilities of classification into profiles 1, 2, and 4 relative to the normative profile are shown in figure 4 as a function of PRS (at the $P < .05$ threshold), alongside ORs of PRS on the probability of classification into a given profile rather than the normative profile. Individuals with higher PRS were more likely to be assigned to profile 4 than the normative profile (OR = 1.310 [95% CIs: 1.122–1.528]; bottom-right of figure). Profile 4 was also better defined—relative to the normative profile—than profiles 1 or 2: this is evident, in the bottom-left panel of figure 4, in the density of high probabilities of assignment into this profile, illustrated by the proximity of the contour lines at the top of the

Scale	PRS threshold	Model (comparator)	df	AIC	ΔChisq	P		
Behavioral problems	$P < 1$	Age-specific PRS effects (none)	1	122,345.23	2	122,343.62	.036	.534
		PRS effects on latent growth—both (age specific)	2	122,343.66	4	122,345.98	1.419	.234
		PRS effects on latent intercept only (age specific)	3	122,346.56	4	122,345.98	6.345	.012
		No PRS effects (intercept only)	4	122,345.98	4	122,345.98	6.364	.042
Emotional problems	$P < .1$	PRS effects on latent slope only (age specific)	3	122,341.63	3	122,346.36	0.018	.892
		No PRS effects (slope only)	4	122,345.98	4	122,345.98	6.345	.012
		No PRS effects (latent growth—both)	4	122,345.98	4	122,345.98	6.364	.042
		Age-specific PRS effects (none)	1	90,224.89	1	90,224.89		
		PRS effects on latent growth—both (age specific)	2	90,223.37	2	90,223.37	0.379	.538
		PRS effects on latent intercept only (age specific)	3	90,222.95	4	90,227.72	6.764	.009
		No PRS effects (intercept only)	4	90,227.72	4	90,227.72	6.073	.014
		PRS effects on latent slope only (age specific)	3	90,223.64	4	90,227.72	2.374	.123
		No PRS effects (slope only)	4	90,227.72	4	90,227.72	6.073	.014
		No PRS effects (latent growth—both)	4	90,227.72	4	90,227.72	8.447	.015

Note: Bold typeface shows best-fitting model(s).
PRS, polygenic risk scores df, model degrees of freedom; AIC, Akaike’s Information Criterion; ΔChisq, change in chi square comparing nested models.
PRS threshold at which explained variance was maximized—for all model-fitting results from all tested thresholds, see supplementary table 6.
panel and in the increased separation between the sets of contour lines emanating from the top and bottom of this panel respectively (indicating that very few individuals were equally likely to be assigned to either profile 4 or the normative profile). There was no strong evidence of associations between schizophrenia PRS and probability of assignment to either of the other profiles (relative to the normative profile).

Discussion

The results indicate that associations between schizophrenia risk-associated alleles and symptoms of early childhood (18 months–5 years) psychopathology tend to be developmentally stable rather than transient or emergent. In middle childhood (8 years), we found that, contrary to expectations, associations between schizophrenia genetic risk and symptoms of psychopathology may be better explained by symptom-specific effects than by prediction of a latent “p” factor indexing general psychopathology. Finally, we showed that, by combining information about symptoms of psychopathology across time and domains, associations with schizophrenia genetic liability can be summarized in the form of a characteristic symptom profile.

Our results are supportive of the neurodevelopmental model of schizophrenia and consistent with previous findings of widespread associations between schizophrenia genetic liability and symptoms of childhood psychopathology. There are a number of possible explanations for such associations. They may arise because of pleiotropy; ie, direct effects of schizophrenia-related genetic variants on other behaviors and symptoms. They may represent early manifestations of schizophrenia liability, where environmental or maturational restrictions mean that the classic “schizophrenia phenotype” (and its subclinical analogues) cannot be fully expressed until adolescence or later. A further alternative is that (some) childhood manifestations of genetic liability for schizophrenia are actually part of a causal process in the development of the disorder. This could involve intrinsic, developmental processes (eg, specific thought patterns becoming “grooved” over time) or extrinsic causal processes, where genetic risk is mediated via the environment. An example of such a process would be the putatively causal link between cannabis use and schizophrenia. Cannabis is an environmental exposure, but its use is associated with genetic variants linked to impulsivity and risk-taking. Assuming a demonstrable causal relationship between cannabis use and the development of schizophrenia, the environment (cannabis use) would mediate the effects of these genetic variants on schizophrenia; and impulsivity and risk-taking earlier in development would be on the causal pathway.

We applied competing structural models to associations between schizophrenia PRS and symptoms
of childhood psychopathology in order to go beyond simply detecting or even quantifying these links, seeking instead to explore their characteristics across developmental time and phenotypic space. For example, using developmental models, we found that associations between schizophrenia PRS and emotional and behavioral symptomatology were best explained via effects on developmentally stable growth processes. This is in line with evidence on the stability of genetic influences, in general, across childhood.26 We had limited power to investigate the nature of these stable associations but found evidence that, for behavioral problems, schizophrenia-associated alleles are primarily predictive of individual differences in their propensity to change over time in early childhood. Such a pattern is more consistent with an etiological model implicating environmentally mediated genetic effects and active or evocative gene–environment correlations than direct pleiotropy. Future work incorporating measured environmental mediators may be able to establish whether these mechanisms are involved in the childhood manifestation of schizophrenia genetic liability.

The “p” factor structure of childhood psychopathology has been largely supported by previous genetically informative work indicating that genetic prediction of symptoms is primarily mediated via a domain-general factor (eg, 22). Schizophrenia genetic risk has been shown to associate with psychopathology via this route.14,16 In apparent contrast, we found that models with symptom-specific effects were preferred, despite the cost of estimating many more parameters. There is likely some overfitting involved in these models, which is why we do not interpret the individual symptom-level effects. At the domain level, schizophrenia PRS were most predictive of

Fig. 3. Symptom profiles from latent profile analysis of symptoms of psychopathology across development and domain. Note: bars/ bands indicate 95% CIs; %s in header indicate the proportion of the sample best classified in each profile; DEP = Short Mood and Feelings Questionnaire depressive symptoms; ANX = Screen for Child Anxiety Related Disorders anxiety symptoms; conduct problems (CD) = Rating Scale for Disruptive Behaviour Disorders (RS-DBD) conduct disorder symptoms; oppositional defiant disorder (ODD) = RS-DBD oppositional defiant disorder symptoms; YP = RS-DBD hyperactivity (ADHD) symptoms; ODD = RS-DBD inattention (ADHD) symptoms; 8-year observed variables and internalizing/externalizing intercept/slope variables, respectively, are intercorrelated within class (paths omitted from diagram for clarity).
behavioral problems, such as conduct and oppositional
defiance. This finding contrasts somewhat with prior evi-
dence of marginally stronger effects for emotional prob-
lems, such as anxiety and depression, albeit primarily
in older children and teenagers. It is possible that the
skewing of effects towards behavioral (rather than emo-
tional) manifestations we observed is somewhat child-
hood limited. Alternatively, it could be that measurement
differences account for these contrasting patterns. What
is clear is that there is substantial heterogeneity of these

Fig. 4. Density of relative probabilities of classification into the different profiles by schizophrenia polygenic risk scores (PRS) and
ORs for the prediction of symptom profile classification by PRS. Note: contour plots show probabilities of classification into a specific
profile (1, 2, or 4) relative to probabilities of classification into the normative profile (3) for individuals ultimately assigned to each of
these profiles (highlighted by color coding in online version) as a function of PRS; diamond marker indicates within-profile means
(both classification probability and PRS) and the shaded region around them shows the 95% CIs in either dimension (ie, vertically
for probability and horizontally for PRS); profile 3 is used as reference category for logistic regression; PRS threshold used is $P < .05$,
selected as it maximizes the OR for profile 4 vs profile 3; but the pattern of results is consistent at other thresholds (see supplementary
information).
effects—even within domains. This strengthens the conclusion that genetic liability for schizophrenia influences childhood psychopathology in a more specific and less generalized manner than has been shown previously.12,13,15

It is likely that 2 aspects of our approach explain why we uncover this specificity. First, we used item-level data, providing more scope for heterogeneity—from both signal and noise—to emerge, whereas scale-level data has often been used in the past. Second, we tested schizophrenia PRS at different thresholds—including thresholds at which all or almost all single nucleotide polymorphisms (SNPs) are included in the score. Previous work has often selected a single threshold score, typically \(P < .05 \) or lower. We found that lower threshold scores were likely to have smaller associations that, partly for reasons of statistical power, led to more parsimonious models being preferred. However, the amount of variance explained in symptoms continued to increase for scores created with less-stringent thresholds suggesting that a single-score approach to using PRS potentially leads to meaningful signal from single nucleotide polymorphisms (SNPs) being missed. Using scores at higher thresholds both increases power and is consistent with the theory underpinning the polygenic model of genetic effects.5

The small effect sizes for schizophrenia PRS on measures of childhood psychopathology in our sample are consistent with the literature.9,12,15 Our latent profile analytic approach demonstrates one way in which combining information across time and symptom domains can draw out more meaningful effect sizes (ie, we observed effects equivalent to a 30% increase in the probability of displaying a particular symptom profile per SD increase in schizophrenia PRS). However, we acknowledge the inherent bounds on the utility of effects explaining so little variance in childhood and adolescent outcomes. Using PRS for adult psychiatric disorders to identify children and adolescents at substantially increased, personal risk for behavioral and emotional difficulties and basing targeted prevention strategies on this information is currently not a realistic prospect. That is, with effects of the magnitude observed in these analyses, schizophrenia PRS have little or no clinical utility at the individual level in a pediatric population. As increasing GWAS sample sizes and methodological improvements allow polygenic prediction to increase and account for more so-called “missing heritability,”43 it is possible that this situation may evolve. Nonetheless, even with the current barriers to clinical utility, we show here that PRS do have value as tools to help clarify the mechanisms by which symptoms emerge, are maintained, differentiate, exacerbate, or improve developmentally.

Our study is subject to several limitations. Small effect sizes for schizophrenia PRS on childhood traits mean that, even with a sample of several thousand children, we have limited power for differentiating similar parameterizations (eg, on latent growth processes) and, therefore, opted against stratifying by sex. Second, the genotyped sample we use is subject to some selection effects, and the MoBa sample as a whole is (like all cohort studies) affected by selective attrition as the propensity to drop out of studies over time is linked to poorer health, which is also reflected genetically.44 Furthermore, the measures used to index symptoms of emotional and behavioral psychopathology are relatively brief and available only as maternal reports. Some, most notably both CBCL subscales at 18 months, 3 years, and 5 years and the anxiety measure at 8 years, have lower internal consistency than is desirable, and statistical noise in these measures will decrease the power to detect associations with polygenic scores. Corroboration by additional reporters and using clinical interviews or diagnoses from linked health care registries would help to mitigate this limitation in future work.

Overall, our findings suggest that schizophrenia-related genetic variants are associated with symptoms of psychopathology stably from as early as 18 months of age and with considerable phenotypic specificity by middle childhood. Further work—such as expanding models longitudinally, incorporating measured environments, and testing within-family polygenic prediction—can help to refine and triangulate developmental explanations for the emergence of schizophrenia later in life.

Supplementary Material
Supplementary material is available at Schizophrenia Bulletin.

Acknowledgments
We are grateful to all the participating families in Norway who take part in this ongoing cohort study. The Norwegian Mother, Father and Child Cohort Study is supported by the Norwegian Ministry of Health and Care Services and the Ministry of Education and Research. We thank the Norwegian Institute of Public Health for generating high-quality genomic data. This research is part of the HARVEST collaboration, supported by the Research Council of Norway (NRC; #229624). We also thank the NORMENT Centre for providing genotype data, funded by NRC (#223273), South East Norway Health Authority, and KG Jevsen Stiftelsen. Furthermore, we thank the Center for Diabetes Research, the University of Bergen, for providing genotype data and performing quality control and imputation of the data. L.J.H. and A.H. conceived of the analyses; L.J.H., R.B.A., H.A., and A.H. refined the analysis plan, prepared the polygenic scores, and conducted the analyses; L.J.H., E.C., and Ø.H. performed quality control of the genetic data; P.M.M., P.N., O.A.A., and T.R.K. carried
out the genotyping; L.J.H. and A.H. drafted the manuscript; all authors critically reviewed and commented upon the manuscript.

Funding

L.J.H., Z.A., A.H. and A.-S.O. were supported by grants from the South-Eastern Norway Regional Health Authority (201805, 2019097, and 2018059). R.B.A. and E.C. were supported by a grant from the Norwegian Research Council (274611). T.-K. was supported by a grant from the Research Council of Norway (274611). P.R.N. was funded by the European Research Council AdG SELECTionPREDISPOSED (#293574), the Stiftelsen Kristian Gerhard Jebsen, the Trond Mohn Foundation, the Norwegian Research Council (#240413/F20), the Novo Nordisk Foundation (#54741), the University of Bergen, and the Western Norway Health Authorities (Helse Vest; PERSON-MED-DIA and #911745). O.A.A. was supported by the Research Council of Norway (229129; 213837; 223273; 249711); the South-Eastern Norway Regional Health Authority (2017–112); Stiftelsen Kristian Gerhard Jebsen and H2020 grant # 847776 CoMorMent. G.D.S. works in the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, which is supported by the Medical Research Council (MC_UU_00011/1). This work was partly supported by the Research Council of Norway through its Centre of Excellence funding scheme, project number 262700. The funders had no role in the direction or content of the manuscript.

References

1. Gratten J, Wray NR, Keller MC, Visscher PM. Large-scale genomics unveils the genetic architecture of psychiatric disorders. *Nat Neurosci.* 2014;17(6):782–790.
2. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. *Nature.* 2014;511(7510):421–427.
3. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. *Nat Rev Genet.* 2005;6(2):95–108.
4. Lam M, Chen CY, Li Z, et al; Schizophrenia Working Group of the Psychiatric Genomics Consortium; Indonesia Schizophrenia Consortium; Genetic REsearch on schizophrenia in East Asian and European populations. *Nat Genet.* 2019;51(12):1670–1678.
5. Dudbridge F. Power and predictive accuracy of polygenic risk scores. *PLoS Genet.* 2013;9(3):e1003348.
6. Mistry S, Harrison JR, Smith DJ, Escott-Price V, Zammit S. The use of polygenic risk scores to identify phenotypes associated with genetic risk of schizophrenia: systematic review. *Schizophr Res.* 2018;197:2–8.
7. Kessler RC, Angermeyer M, Anthony JC, et al. Lifetime prevalence and age-of-onset distributions of mental disorders in the World Health Organization’s World Mental Health Survey Initiative. *World Psychiatry.* 2007;6(3):168–176.
8. Serdarievic F, Jansen PR, Ghassabian A, et al. Association of genetic risk for schizophrenia and bipolar disorder with infant neuromotor development. *JAMA Psychiatry.* 2018;75(1):96–98.
9. Riglin L, Collishaw S, Richards A, et al. Schizophrenia risk alleles and neurodevelopmental outcomes in childhood: a population-based cohort study. *Lancet Psychiatry.* 2017;4(1):57–62.
10. Reed ZE, Jones HJ, Hemani G, Zammit S, Davis OSP. Schizophrenia liability shares common molecular genetic risk factors with sleep duration and nightmares in childhood. *Woolcome Open Res.* 2019;4:15.
11. Germine L, Robinson EB, Smoller JW, et al. Association between polygenic risk for schizophrenia, neurocognition and social cognition across development. *Transl Psychiatry.* 2016;6(10):e924.
12. Nivard MG, Gage SH, Hottenga JJ, et al. Genetic overlap between schizophrenia and developmental psychopathology: longitudinal and multivariate polygenic risk prediction of common psychiatric traits during development. *Schizophren Bull.* 2017;43(6):1197–1207.
13. Riglin L, Collishaw S, Richards A, et al. The impact of schizophrenia and mood disorder risk alleles on emotional problems: investigating change from childhood to middle age. *Psychol Med.* 2018;48(13):2153–2158.
14. Riglin L, Thapar AK, Leppert B, et al. Using genetics to examine a general liability to childhood psychopathology. *Behav Genet.* 2020;50(4):213–220.
15. Jansen PR, Polderman TJ, Bolhuis K, et al. Polygenic scores for schizophrenia and educational attainment are associated with behavioural problems in early childhood in the general population. *J Child Psychol Psychiatry.* 2018;59(1):39–47.
16. Jones HJ, Heron J, Hammerton G, et al; 23 and Me Research Team. Investigating the genetic architecture of general and specific psychopathology in adolescence. *Transl Psychiatry.* 2018;8(1):145.
17. Jones HJ, Stergiakouli E, Tansel KE, et al. Phenotypic manifestation of genetic risk for schizophrenia during adolescence in the general population. *JAMA Psychiatry.* 2016;73(3):221–228.
18. Solmi F, Mascarell MC, Zammit S, Kirkbride JB, Lewis G. Polygenic risk for schizophrenia, disordered eating behaviours and body mass index in adolescents. *Br J Psychiatry.* 2019;215(1):428–433.
19. Hiemstra M, Nelemans SA, Branje S, et al. Genetic vulnerability to schizophrenia is associated with cannabis use patterns during adolescence. *Drug Alcohol Depend.* 2018;190:143–150.
20. Leppert B, Havdahl A, Riglin L, et al. Association of maternal neurodevelopmental risk alleles with early-life exposures. *JAMA Psychiatry.* 2019;76(8):834–842.
21. Caspi A, Houts RM, Belsky DW, et al. The p factor: one general psychopathology factor in the structure of psychiatric disorders? *Clin Psychol Sci.* 2014;2(2):119–137.
22. Selzam S, Coleman JRI, Caspi A, Moffitt TE, Plomin R. A polygenic p factor for major psychiatric disorders. *Transl Psychiatry.* 2018;8(1):205.
23. Allegreni AG, Cheesman R, Rimfeld K, et al. The p factor: genetic analyses support a general dimension of psychopathology in childhood and adolescence. *J Child Psychol Psychiatry.* 2020;61(1):30–39.
24. Magnus P, Birke C, Vejrup K, et al. Cohort profile update: the Norwegian mother and child cohort study (MoBa). *Int J Epidemiol.* 2016;45(2):382–388.

25. Lubke GH, Miller PJ, Verhulst B, et al. A powerful phenotype for gene-finding studies derived from trajectory analyses of symptoms of anxiety and depression between age seven and 18. *Am J Med Genet B Neuropsychiatr Genet.* 2016;171(7):948–957.

26. Hannigan LJ, Walaker N, Waszczuk MA, McAdams TA, Eley TC. Aetiological influences on stability and change in emotional and behavioural problems across development: a systematic review. *Psychopathol Rev.* 2017;48(4):52–108.

27. Magnus P, Irgens LM, Haug K, Nystad W, Skjaerven R, Stoltenberg C; MoBa Study Group. Cohort profile: the Norwegian Mother and Child Cohort Study (MoBa). *Int J Epidemiol.* 2006;35(5):1146–1150.

28. Achenbach TM, Ruffle TM. The child behavior checklist and related forms for assessing behavioral/emotional problems and competencies. *Pediatr Rev.* 2007;28(8):265–271.

29. Angold A, Costello EJ, Pickles A, Winder F, Silver D. The development of a short questionnaire for use in epidemiological studies of depression in children and adolescents. *Int J Methods Psychiatr Res.* 1995;5:237–249.

30. Birmaher B, Khetarpal S, Brent D, et al. The Screen for Child Anxiety Related Emotional Disorders (SCARED): scale construction and psychometric characteristics. *J Am Acad Child Adolesc Psychiatry.* 1997;36(4):545–553.

31. Silva RR, Alpert M, Pouget E, et al. A rating scale for disruptive behavior disorders, based on the DSM-IV item pool. *Psychiatr Q.* 2005;76(4):327–339.

32. Euesden J, Lewis CM, O’Reilly PF. PRSice: polygenic risk score software. *Bioinformatics.* 2015;31(9):1466–1468.

33. Lo Y, Mendell NR, Rubin DB. Testing the number of components in a normal mixture. *Biometrika.* 2001;88(3):767–778.

34. Vuong QH. Likelihood ratio tests for model selection and non-nested hypotheses. *Econometrica.* 1989;57(2):307–333.

35. Rosseel Y. lavaan: an R package for structural equation modeling. *J Stat Softw.* 2012;48:1–36. doi:10.18637/jss.v048.i02.

36. Muthén LK, Muthén BO. *Mplus User’s Guide.* 8th ed. Muthén & Muthén.

37. Hallquist MN, Wiley JF. MplusAutomation: an R package for facilitating large-scale latent variable analyses in Mplus. *Struct Equ Modeling.* 2018;25(4):621–638.

38. Rapoport JL, Giedd JN, Gogtay N. Neurodevelopmental model of schizophrenia: update 2012. *Mol Psychiatry.* 2012;17(12):1228–1238.

39. Vaucher J, Keating BJ, Lasserre AM, et al. Cannabis use and risk of schizophrenia: a Mendelian randomization study. *Mol Psychiatry.* 2018;23(5):1287–1292.

40. Gage SH, Jones HJ, Burgess S, et al. Assessing causality in associations between cannabis use and schizophrenia risk: a two-sample Mendelian randomization study. *Psychol Med.* 2017;47(5):971–980.

41. Soler Artigas M, Sánchez-Mora C, Rovira P, et al; ADHD Group of the Psychiatric Genomics Consortium, International Cannabis Consortium. Attention-deficit/hyperactivity disorder and lifetime cannabis use: genetic overlap and causality. *Mol Psychiatry.* 2020;25(10):2493–2503.

42. Strawbridge RJ, Ward J, Lyall LM, et al. Genetics of self-reported risk-taking behaviour, trans-ethnic consistency and relevance to brain gene expression. *Transl Psychiatry.* 2018;8(1):178.

43. Young AI. Solving the missing heritability problem. *PLoS Genet.* 2019;15(6):e1008222.

44. Adams MJ, Hill WD, Howard DM, et al. Factors associated with sharing e-mail information and mental health survey participation in large population cohorts. *Int J Epidemiol.* 2020;49(2):410–421. doi:10.1093/ije/dyz134.