Comparative Genomic Analyses Provide Insight Into the Pathogenicity of *Metschnikowia bicuspidata* LNES0119

Hongbo Jiang†, Jie Bao†, Yuenan Xing, Xiaodong Li and Qijun Chen*

Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shenyang, China

Metschnikowia bicuspidata is a globally distributed pathogenic yeast with a wide range of aquatic hosts. A new strain, *M. bicuspidata* LNES0119, isolated from the Chinese mitten crab *Eriocheir sinensis*, has caused a serious reduction in production and marked economic loss for the aquaculture industry in China. Therefore, the whole-genome sequence of *M. bicuspidata* LNES0119 was sequenced using Illumina and Oxford Nanopore technology; whole-genome annotation and comparative genomic analyses of this pathogen were performed as well. A high-quality genome of *M. bicuspidata* LNES0119 was 16.13 Mb in size, with six scaffolds and six contigs, and encoded 5,567 putative predicted genes. Of these, 1,467 genes shared substantial homology with genes in the pathogen–host interactions database. Comparative genomic analyses of three *M. bicuspidata* strains and one non-pathogenic yeast, *M. aff. pulcherrima*, showed 331 unique genes in *M. bicuspidata* LNES0119, 30 of which were putatively related to pathogenicity. Overall, we identified several meaningful characteristics related to pathogenicity and virulence that may play essential roles in the infection and pathogenicity of *M. bicuspidata* LNES0119. Our study will aid in identifying potential targets for further exploration of the molecular basis of the pathogenicity of *M. bicuspidata* as well as the therapeutic intervention of *M. bicuspidata* infection.

Keywords: *Metschnikowia bicuspidata*, genome annotation, comparative genomics, pathogenicity, *Eriocheir sinensis*

INTRODUCTION

Metschnikowia bicuspidata (Metschnikoff) Kamienski (1899), which belongs to Fungi; Ascomycota; Saccharomycetales: Metschnikowiaceae: *Metschnikowia*, was first isolated from infected *Daphnia magna* by Metschnikoff (1884). Three strains are recognized according to their metabolic profile, biogeography, and habitat: *M. bicuspidata* var. *bicuspidata*, *M. bicuspidata* var. *californica*, and *M. bicuspidata* var. *chathamia* (Miller and Phaff, 1998).

M. bicuspidata is a globally distributed pathogenic fungus with a wide range of aquatic hosts. It exists in freshwater and marine environments worldwide, including in France, Romania, Russia, China, the United States, Canada, and even Antarctic waters (Bao et al., 2021). The hosts of *M. bicuspidata* include *Daphnia*, *Artemia*, snails, and the economically important freshwater prawn.
Macrobrachium rosenbergii, Chinese swimming crab Portunus trituberculatus, Chinese mitten crab Eriocheir sinensis, Chinese, grass shrimp (Palaeomonetes sinensis) and chinook salmon (Moore and Strom, 2003; Wang et al., 2007; Bao et al., 2021; Cao et al., 2022). Among these hosts, the Daphnia-M. bicuspidata system has long been considered a model system in ecology and evolutionary biology and has been used as a model organism in the exploration of host-parasite theory. For example, M. bicuspidata is considered to be highly virulent and has been suggested to have affected the evolution of D. dentifera populations in Bristol Lake, United States (Duffy et al., 2008). In aquaculture, many economically important animals have been infected by M. bicuspidata, resulting in a decline in production and marked economic loss. For example, an outbreak of M. bicuspidata in Taiwan from May 2001 to December 2003 resulted in cumulative mortality rates of 20–95% in M. bicuspidata (see Chen et al., 2003, 2007), 40–60% in P. trituberculatus in Zhoushan, Zhejiang Province, China, from 2002 to 2006 (Shi et al., 2008), over 20% in E. sinensis in Panjin, Liaoning Province, China, from 2018 to 2019 (Bao et al., 2021), and 34.5% in larval chinook salmon fed on infected Artemia in California, United States (Moore and Strom, 2003). The aquatic hosts were infected directly by ingesting M. bicuspidata spores or indirectly by consuming diseased individuals, after which the spores in the body cavity began producing hyphae and adhered to nearby surfaces, producing conidia that rapidly increased in abundance within the host (Merrill and Cáceres, 2018; Jiang et al., 2022; Sun et al., 2022).

In 2019, we isolated the M. bicuspidata LNES0119 strain from infected E. sinensis from ponds in Panjin city, Liaoning Province, and using the D1/D2 domain of the 26S rDNA, we identified it as the pathogen causing milky disease in Chinese mitten crab (Bao et al., 2021), which is an economically important freshwater crustacean in China. This epidemic showed the characteristic symptoms of milky hemolymph and death due to organ failure. A milky disease epidemic was also detected in Xinjiang, Heilongjiang, and Jilin provinces, and the mortality rates in 2021 were even higher than that in 2020, which had seriously affected the Chinese mitten crab industry (Sun et al., 2022). Therefore, in this study, the whole-genome sequence of the strain M. bicuspidata LNES0119 was sequenced using Illumina and Oxford Nanopore technology. The whole-genome annotation and comparative genomic analyses with two M. bicuspidata stains and one non-pathogenic M. aff. pulcherrima stain were carried out to explore the genes or gene families associated with pathogenicity, our analyses will provide genomic resources for future exploration of the pathogenesis and molecular basis of the pathogenicity of M. bicuspidata.

MATERIALS AND METHODS

Yeast Strain and DNA Isolation

The M. bicuspidata strain LNES0119 was isolated from a diseased Chinese mitten crab in Panjin city. The strain was stored at −80°C in 20% glycerol (v/v), incubated on Rose Bengal agar medium, cultured for 48 h at 28°C, and transferred onto a new medium, followed by further culturing for 48 h before collecting the yeast. Genomic DNA was extracted using the Qiagen Genomic-Tip 100/G Kit (Qiagen, Hilden, Germany) according to the manufacturer's instructions. DNA quality was assessed via 0.35% agarose gel electrophoresis and quantified using NanoDrop and Qubit Fluorometer 3.0 (Thermo Fisher Scientific, Waltham, MA, United States).

Library Construction, Genome Sequencing, and Assembly

The M. bicuspidata strain LNES0119 was first surveyed using Illumina NovaSeq 6000 platform TruSeq libraries (150 bp paired end reads, insert size of 350 bp) and then sequenced using the long reads Oxford Nanopore sequencing platforms at Beijing Biomarker Technologies (Beijing, China). Large fragments of DNA (DNA fragments > 20 kb) were first collected using the BluePippin Size-Selection system (Sage Science, Beverly, MA, United States). Next, the DNA sequencing library was constructed, including DNA repair, end-prep, and adapter ligation, and clean-up steps were performed with the ligation kit SQK-LSK109 (Oxford Nanopore Technologies, Oxford, United Kingdom) according to the manufacturer's instructions. The final product was quantified using a Qubit fluorometer (Thermo Fisher Scientific, Waltham, United States) and loaded into the PromethION flow cell, and real-time single-molecule sequencing was performed according to the manufacturer's instructions (Oxford Nanopore Technologies, Oxford, United Kingdom). The Nanopore reads were base-called from the raw Fast5 files using Albacore (Oxford Nanopore Technologies). Fastq reads were filtered with a quality value of Q > 7. The filtered subreads were first corrected and assembled using Canu version 1.5 (Koren et al., 2017) and Wtdbg version 2.2 (Ruan and Li, 2020). Pilon version 1.22 (Walker et al., 2014) was further applied to correct any sequencing errors caused by using second-generation results, and a genome sequence with a higher accuracy was obtained. BUSCO v2.0, Simão et al. (2015) was used to assess the completeness of the assembled genome based on the Benchmarking Universal Single-Copy Orthologs (BUSCOs) for Fungi (fungi_odb9) dataset.

Genomic Prediction and Genome Annotation

For prediction of repeat sequences, LTR_FINDER v1.05 (Xu and Wang, 2007), MITE-Hunter (Han and Wessler, 2010), RepeatScout v1.0.5 (Price et al., 2005) and PILER-DF v2.4 (Edgar and Myers, 2005) software were used to construct a de novo repeats library of the M. bicuspidata LNES0119 genome using a combination of homology-based and de novo approaches. PASTEClassifier (Wicker et al., 2007) was used to classify the database, and then combined with the Repbase database (Jurka et al., 2005) to obtain the final repeat library, which was annotated using RepeatMasker V4.0.6 software (Chen, 2004). Transfer RNAs (tRNAs) were predicted by tRNAscan-SE 2.0 (Lowe and Eddy, 1997), whereas ribosomal RNAs (rRNAs) and other non-coding RNAs (ncRNAs) were predicted using
M. bicuspidata species were selected for comparison (PRJNA207846), and one non-pathogenic M. bicuspidata from a total of 290 BUSCOs, one missing BUSCO from the NCBI database. The total length of the repeat sequences was 475,761 bp, accounting for 2.95% of the genomic length. These contained Class II transposable elements, including four Helitrons and 26 terminal inverted repeats, Class I or the retroelements including 359 LINE, 60 LTR/Copia, 153 LTR/Gypsy, and 426 non-LTR/LINE (Supplementary Table 1). With respect to RNAs, 88 rRNAs, 306 tRNAs, and 89 other ncRNAs were predicted (Supplementary Table 2). The genome was estimated to be 99.3% complete with 288 complete BUSCOs, one fragmented BUSCO, and one missing BUSCO from a total of 290 BUSCO groups. Overall, these results indicate that the genome of our M. bicuspidata strain was characterized as high-quality, complete, and accurate.

Genome Annotation
To annotate the function of the predicted genes in the M. bicuspidata LNES0119 genome build, 5,567 predicted genes were annotated using multiple public databases: NR, GO, KEGG, KOG, TCDB, Pfam, TrEMBL, and Swiss-Prot databases are shown in Supplementary Table 3. According to the GO database, 3,175 predicted proteins that accounted for 57.03% of the entire genome were primarily distributed in three categories: cellular components, molecular function, and biological process (Supplementary Figure 2 and Supplementary Table 3). NCBI KOG mapping predicted that 3,590 genes (64.49%) were assigned to KOG categories (262), and “Signal transduction mechanisms” (253). A total of 2,869 genes were annotated in the KEGG database only” (530), followed by “Posttranslational modification, protein turnover, chaperones” (386), “Translation, ribosomal structure and biogenesis” (305), “Intracellular trafficking, secretion, and vesicular transport” (282), “Function unknown” (262), and “Signal transduction mechanisms” (253). A total of 2,869 genes were annotated in the KEGG database and were separated into three specific categories: genetic information processing, environmental information processing, metabolism, and cellular processes (Supplementary Figure 3 and Supplementary Table 3). Among them, “Ribosome” (113)
TABLE 1 | Genome characteristics of four Metschnikowia species strains.

	M. bicuspidata LNES0119	M. bicuspidata Baker 2002	M. bicuspidata NRRL YB-4993	M. aff. pulcherrima APC 1.2
Genome size (Mb)	16.13	10.95	16.06	15.80
Scaffolds	6	478	48	7
Contigs	6	488	582	7
N50	3,357,032	132,937	62,344	2,688,662
GC (%)	47.65	51.1	47.9	45.89
Coverage	175.82 X	100 X	16 X	254.0 X
Number of genes	5,567	4,890	6,090	6,018
Number of predicted proteins	6,478	4,777	5,838	5,800
Sequencing technology	Nanopore	Illumina	454, Illumina	PacBio
Location	China	Michigan, United States	Peoria, IL, United States	Switzerland
Lifestyle/host	Single-cell/crabs	Non-free-living/daphnia	Single-cell/brine shrimp	Single-cell/flowers

M. bicuspidata Baker 2002 was isolated from an infected population of the water flea Daphnia dentifera. M. bicuspidata NRRL YB-4993 is an aquatic yeast that has been reported to infect freshwater prawns and brine shrimps and to cause mortality when infected shrimps are fed to salmon. M. aff. pulcherrima APC 1.2 was isolated from apple flowers as antagonist.

and "Biosynthesis of amino acids" (104) contained the largest number of genes.

Moreover, 1,467 genes were annotated in the PHI database into different categories, which predicted protein function during host infection (Figure 2A and Supplementary Table 4). Of these genes, 653 genes were annotated to reduced virulence, 432 genes were annotated as unaffected pathogenicity, and there were 163 genes annotated as mixed outcomes. A total of 117 and 79 genes were annotated as pathogenic loss and lethal factors, respectively, whereas seven and 15 genes were annotated as chemistry targets and effectors (plant avirulence determinant), respectively. Only 10 genes were annotated as having enhanced virulence.

There were 149 genes annotated in the CAZy database, which were divided into five categories, of which 64 genes (42.95%) annotated as glycosyl transferases (GTs), 50 genes (33.55%) annotated as glycoside hydrolases (GHs), 18 genes (12.08%) annotated as carbohydrate esterases (CEs), nine genes (6.04%) annotated as auxiliary activities enzymes (AAAs), and eight genes (5.36%) annotated as carbohydrate-binding modules (CBMs) (Figure 2B).

The Venn map of M. bicuspidata LNES0119 was obtained according to the annotation results of CAZy, PHI, transported protein, and secreted protein (Figure 2C). A total of 291 proteins with signal peptides and 1,066 with transmembrane structures were detected in the genome of M. bicuspidata LNES0119. Of these, 158 were identified as potential secreted proteins (including 18 with putative effectors), of which 41 were annotated using the PHI database, and these secreted proteins were primarily cell wall proteins and hydrolytic proteins (Table 3 and Supplementary Table 5). In addition, 62 CAZymes protein clusters (including 64 genes) were annotated to PHI (Figure 2C), which were enriched in protein O-linked glycosylation (GO:0009251), glucan catabolic process (GO:0006493), and protein mannosylation (GO:0035268). The Venn diagram showed that there was only one protein cluster (multicopper oxidases) that was annotated to CAZymes, PHI, transported protein, and secreted protein, which belonged to iron ion homeostasis (GO:0055072).

TABLE 2 | Genome characteristics of the Metschnikowia bicuspidata strain LNES0119.

Assembly and characteristics	16.13
N50 Length (bp)	3,357,032
N90 Length (bp)	2,648,385
Max length (bp)	3,791,280
GC (%)	47.65
Coverage	175.28X
Scaffolds number	6
Gap number	0
BUSCO (% complete)	99.3%
Number of genes	5,567
Mean number of exons	1.17
Mean number of introns	1.16
Average length of exons (bp)	1,434.08
Average length of introns (bp)	264.11
Number of predicted proteins	6,478

Comparative Analysis of Carbohydrate-Active Enzymes

The numbers of CAZymes in human/animal pathogenic and non-pathogenic yeasts varied between 117 and 173, all of which were without polysaccharide lyases (PLs). The lowest number was in M. bicuspidata Baker 2002 and highest in non-pathogen Debaryomyces hansenii (Figure 3). The number of CAZymes in M. bicuspidata LNES0119 was lower than that in the human pathogen C. albicans and non-pathogen Debaryomyces hansenii (Figure 3). CBM18, CBM21, CBM43, and CBM48 were present in each fungus, but CBM48 was absent in M. bicuspidata LNES0119 (Supplementary Table 6). In addition, M. bicuspidata LNES0119 had 18 CE, which was the highest among these yeast genomes. CBM20, CBM23, CE1 (8), CE8, CE10 (6), CE12, CE14, AA3, and
AA7 are unique to the *M. bicuspidata* LNES0119 genome (Supplementary Table 6).

Comparative Genomics of *Metschnikowia bicuspidata* LNES0119 With Other Strains

As shown in Table 1, the genome size was similar between LNES0119 (16.13 Mb) and NRRL YB-4993 (16.06 Mb); meanwhile, the phylogenetic tree revealed that these two *M. bicuspidata* strains evolved closely, as determined according to their single copy homologous genes (Figure 4). In addition, there were 10,522 (92.52%) collinear genes between *M. bicuspidata* LNES0119 and NRRL YB-4993 strains, whereas there were 6,809 (65.83%) collinear genes between *M. bicuspidata* LNES0119 and Baker 2002 strains (Figures 4, 5). We found that the *M. bicuspidata* LNES0119 and NRRL YB-4993 strains were largely linearly syntenic, but there was a total of six evident inversions between the two assemblies (Figure 5).

Comparative analyses of gene families were conducted among four *Metschnikowia* strains, including three *M. bicuspidata* strains and one non-pathogen, *M. aff. Pulcherrima* APC 1.2. We identified 5,411 putative gene families, of which 2,948 homologous families were shared among four *Metschnikowia* species, including 2,785 single-copy genes. There were 82 common family genes present in three pathogenic strains of *M. bicuspidata* that were absent in the non-pathogenic species *M. aff. pulcherrima* APC 1.2 (Table 4 and Supplementary Table 7). A total of 331 unique genes were found in *M. bicuspidata* LNES0119, 30 of which were putatively related to pathogenicity, and they were primarily cell wall genes, including eight Hyr/Iff-like genes (Pfam annotation to hyphally regulated N-terminal) as well as one agglutinin-like protein 5 and secreted aspartyl protease (Table 4 and Supplementary Table 8). In addition, only 12 unique gene families were observed in *M. bicuspidata* LNES0119, of which two gene families (GF3117 and GF3118) represented by six genes belonged to the Pfam domain (PF11765.3, hyphally regulated cell wall protein N-terminal) and were putatively associated with pathogenicity (Table 4 and Supplementary Table 9).

DISCUSSION

The genome of *M. bicuspidata* LNES0119 strain was successively sequenced using Illumina and Oxford Nanopore platforms in combination, and the assembly size of the genome was similar to that of *M. bicuspidata* NRRL YB-4993. The six contigs and 99.3% complete BUSCO estimation demonstrated that the genome was a high-integrity assembly. When compared with that of the three *M. bicuspidata* strains, the homology of *M. bicuspidata* LNES0119 and NRRL YB-4993 strains was found to be higher than that of the Baker 2002 strain in a phylogenetic tree analysis, and this result is consistent with the results of the synteny analysis. Ahrendt et al. (2018) considered that the *Daphnia* parasite *M. bicuspidata* Baker 2002 was unculturable and not conspecific to the brine shrimp parasite *M. bicuspidata* NRRL YB-4993. The two strains of *M. bicuspidata* LNES0119 and NRRL YB-4993 had good coverage with each other, but there were six large segment inversions, which revealed that the two genomes experienced
FIGURE 2 | Gene annotation and gene prediction of M. bicuspidata LNES0119. (A) Genes were annotated and classified in the PHI database. Bars in different colors represent different PHI function classes, and lengths represent the number of genes. (B) Genes were annotated and classified in the CAZy database. Bars in different colors represent different CAZy categories, and lengths represent the number of genes. GH, glycoside hydrolase; GT, glycosyltransferase; CE, carbohydrate esterase; AA, auxiliary activity; CBM, carbohydrate-binding module. (C) Venn diagram showing the overlap of PHI-homologs and secretory proteins with transport protein and CAZymes.

FIGURE 3 | Number of CAZymes genes in M. bicuspidata LNES0119 and the other 12 yeasts. GH: glycoside hydrolase; GT, glycosyltransferase; CE, carbohydrate esterase; AA, auxiliary activity; CBM, carbohydrate-binding module.
TABLE 3 | Secretory proteins associated with pathogenicity.

Secreted_protein ID	Pfam annotation	PHI-base entry	Phenotype of mutant
EVM0001456.1	Cellulase (GH5)	PHI:323	Reduced virulence
EVM0005284.1	Homoserine dehydrogenase	PHI:323	Reduced virulence
EVM0001841.1	GH65	PHI:3076	Reduced virulence
EVM0005201.1	Glucanosyl transferase	PHI:33	Reduced virulence
EVM0001397.1	Thioredoxin	PHI:2644	Reduced virulence
EVM0001511.1	Thioredoxin	PHI:2644	Reduced virulence
EVM0005208.1	Thioredoxin	PHI:2644	Reduced virulence
EVM0000597.1	Subtilase family	PHI:2117	Reduced virulence
EVM0002445.1	Subtilase family	PHI:2117	Reduced virulence
EVM0004644.1	Ribonuclease T2 family	PHI:811	Reduced virulence
EVM0001314.1	Multicopper oxidase	PHI:2700	Reduced virulence
EVM0005103.1	Lysophospholipase catalytic domain	PHI:105	Reduced virulence
EVM0000180.1	Lipase (class 3)	PHI:432	Reduced virulence
EVM0005523.1	Hsp70 protein	PHI:2058	Reduced virulence
EVM0002218.1	Eukaryotic aspartyl protease	PHI:17	Reduced virulence
EVM0002655.1	Eukaryotic aspartyl protease	PHI:17	Reduced virulence
EVM0004851.1	Eukaryotic aspartyl protease	PHI:17	Reduced virulence
EVM0003594.1	Eukaryotic aspartyl protease	PHI:17	Reduced virulence
EVM0005045.1	Cytochrome P450	PHI:438	Reduced virulence
EVM0000369.1	Cysteine-rich secretory protein family	PHI:184	Reduced virulence
EVM0001601.1	Candida agglutinin-like	PHI:527	Reduced virulence
EVM0002221.1	Serine carboxypeptidase	PHI:901	Unaffected pathogenicity
EVM0005124.1	Secretory lipase	PHI:2928	Unaffected pathogenicity
EVM0000326.1	Lipase (class 3)	PHI:2925	Unaffected pathogenicity
EVM0000263.1	DnaJ domain	PHI:1414	Unaffected pathogenicity
EVM0003862.1	DnaJ domain	PHI:1414	Unaffected pathogenicity
EVM0000119.1	GH47	PHI:2510	Unaffected pathogenicity
EVM0004965.1	Hyphally regulated cell wall protein N-terminal	PHI:2599	Unaffected pathogenicity
EVM0001885.1	Hyphally regulated cell wall protein N-terminal	PHI:2599	Unaffected pathogenicity
EVM0002018.1	Hyphally regulated cell wall protein N-terminal	PHI:2599	Unaffected pathogenicity
EVM0003346.1	Hyphally regulated cell wall protein N-terminal	PHI:2599	Unaffected pathogenicity
EVM0003396.1	Hyphally regulated cell wall protein N-terminal	PHI:2599	Unaffected pathogenicity
EVM0005341.1	Hyphally regulated cell wall protein N-terminal	PHI:2599	Unaffected pathogenicity
EVM0003928.1	Hyphally regulated cell wall protein N-terminal	PHI:2599	Unaffected pathogenicity
EVM0003205.1	3-Beta hydroxysteroid dehydrogenase/isomerase family	PHI:325	Effector (plant avirulence determinant)
EVM0003884.1	ERG2 and Sigma1 receptor like protein	PHI:832	chemistry target
EVM0003644.1	Copper/zinc superoxide dismutase (SODC)	PHI:383	Loss of pathogenicity
EVM0000853.1	Receptor L domain	PHI:333	Loss of pathogenicity
EVM0003931.1	Aminotransferase class-III	PHI:3126	Loss of pathogenicity
EVM0004604.1	GH31	PHI:1071	Loss of pathogenicity
EVM0003093.1	–	PHI:2611	Loss of pathogenicity

A particular genome structure variation during the process of evolution, which might have led to changes in coding genes and even changes in functional proteins.

CAZymes are responsible for the breakdown, biosynthesis, or modification of glycoconjugates, oligo-, and polysaccharides, and are known to play important roles in host-pathogen interactions (Zhao et al., 2013). In our study, 64 CAZymes of *M. bicuspidata* LNES0119 annotated to PHI are involved in carbohydrate metabolic processes of protein O-linked glycosylation, the glucan catabolic process, and protein mannosylation. Previous studies have demonstrated that these proteins play vital roles in cell wall assembly and construction of human pathogenic yeasts against environmental stress conditions, act as virulence factors in pathogenicity, or cause a cell-mediated host immune response (Chaffin et al., 1998; Stubbs et al., 1999; Chaffin, 2008; Mora-Montes et al., 2009; Hall and Gow, 2013). This suggests that these CAZymes of *M. bicuspidata* LNES0119 might be involved in the composition and maintenance of the cell wall during infection. In addition, comparative analysis of the CAZymes genes of 13 species of human/animal and non-pathogenic yeast showed that they all lacked PLs and the number of CAZY genes varied from 117 to 173, which is far less than that found in the genomes of ascomycete fungi (Gazis et al., 2016; Peng et al., 2017). This distinction in the composition and size of CAZymes was closely
related to host specificity and the lifestyle adaptations of the fungi. For example, the number of CAZymes in 97 species of saprophytic, pathogenic, and endophytic fungi varied from 215 to 1,938 (Wan, 2019). Compared to the 94 saprophytic, facultative parasitic, hemi-biotrophic, biotrophic, and symbiotic fungi, there were 12 saprophytic or facultative parasitic species such as yeasts and fungi in the genus \textit{Trichophyton} that lacked PLs (Zhao et al., 2013). By comparing the genomes of pathogenic animal and plant fungi, it was found that specialization to different hosts drives a distinct CAZyme family repertoire (Gaulin et al., 2018). In our study, the lowest number of CAZymes shown in \textit{M. bicuspidata} Baker 2002 might be closely related to its non-free-living lifestyle. It was found that \textit{M. bicuspidata} Baker 2002 was uncultururable \textit{in vitro} because it lacked 15 CAZymes that were broadly linked to aspects of urea, sulfate, and thiamine metabolism when compared with that of the NRRL YB-4993 strain (Ahrendt et al., 2018). These results suggest that \textit{M. bicuspidata} Baker 2002 might have a reduced number of CAZymes as a strategy to adapt to the host environment. In a similar way, the reduced number of 30 CAZymes observed in the endophytic fungus \textit{Xylona heveae} may be an adaptation to enable intercellular growth in its rubber tree host (Gazis et al., 2016). However, the CE1 and CE10 gene families were unique in \textit{M. bicuspidata} LNES0119 and the extended role of this gene family is unknown. The enrichment of CE1 and CE10 homologs observed in hemibiotrophic and necrotrophic Oomycetes suggests that they are used either in a species-specific manner during infection or only for pathogens with certain similar characteristics (Gaulin et al., 2018). Taken together, these results might provide insights into the close relationship of CAZymes with the lifestyle and pathogenicity of pathogenic yeasts, which highlights the need for further research. Fungal lifestyle closely relies on proteins that are secreted extracellularly for growth within their hosts, and these secreted proteins play an important role in mediating interactions with hosts (McCotter et al., 2016). In the \textit{M. bicuspidata} LNES0119 strain, 41 secretory proteins were found to be related to pathogenicity. Of these, cell wall proteins were the most abundant (Table 3). It is well known that the cell wall of pathogenic fungi maintains the integrity of the cell and interacts with the environment; it also plays a major role in the interaction with the host cells by adhering to their surfaces, invading tissues, and protecting the pathogen from host defense mechanisms.
Genomic and comparative analyses revealed that the genome assembly and construction and might play a vital role in adapting to the host environment or acting as virulence factors in pathogenicity or causing a cell-mediated host immune response. Therefore, these candidate factors provide a novel resource for further study of the pathogenic mechanisms in M. bicuspidata–associated diseases as well as for the identification of potential targets for further research and therapeutic intervention.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repository and accession number(s) can be found below: https://www.ncbi.nlm.nih.gov/, PRJNA803590.

ETHICS STATEMENT

The animal study was reviewed and approved by the Animal Experiments Ethics Committee of Shenyang Agricultural University.

AUTHOR CONTRIBUTIONS

HJ and QC conceived and designed the project. JB, HJ, and YX prepared the strain samples and conducted the bioinformatics analysis. HJ, JB, XL, and QC wrote the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by the China Agriculture Research System of MOF and MARA (CARS-48), Liaoning Province Department of Education fund item (LSNQN202002), Liaoning Province Key R&D Planning Project (2021JH1/10400040), and Shenyang Science and Technology Mission Project (21-116-3-38).

CONCLUSION

In the present study, high-quality assembly and complete genome analysis were performed in M. bicuspidata LNES0119. Genomic and comparative analyses revealed that the genome of M. bicuspidata LNES0119 possesses a variety of putative pathogenic genes, which are primarily involved in cell wall assembly and construction and might play a vital role in adapting to the host environment or acting as virulence factors in pathogenicity or causing a cell-mediated host immune response. Therefore, these candidate factors provide a novel resource for further study of the pathogenic mechanisms in M. bicuspidata–associated diseases as well as for the identification of potential targets for further research and therapeutic intervention.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2022.939141/full#supplementary-material
REFERENCES

Ahrendt, S. R., Quandt, C. A., Ciobanu, D., Clum, A., Salamov, A., Andreopoulos, B., et al. (2018). Leveraging single-cell genomics to expand the fungal tree of life. *Nat. Microbiol.* 3, 1417–1428. doi: 10.1038/s41564-018-0261-0

Bailey, D. A., Feldmann, P. J., Bovey, M., Gow, N. A., and Brown, A. J. (1996). *The Candida albicans* HYRI gene, which is activated in response to hyphal development, belongs to a gene family encoding yeast cell wall proteins. *J. Bacteriol.* 178, 5333–5360. doi: 10.1128/JB.178.11.5333-5360.1996

Bao, J., Jiang, H. B., Shen, H. B., Xing, Y. N., Feng, C. C., Li, X. D., et al. (2021). First description of milky disease in the Chinese mitten crab *Eriocheir sinensis* caused by the yeast *Metschnikowia bicuspidata*. *Aquaculture* 532:735984. doi: 10.1016/j.aquaculture.2020.735984

Benthubo, H. D. L., and Gompertz, O. F. (2014). Effects of temperature and incubation time on the in vitro expression of proteases, phospholipases, lipases and DNases by different species of *Trichosporon*. *SpringerPlus* 3:377. doi: 10.1186/2193-1801-3-377

Blanco, E., Parra, G., and Guigo, R. (2007). Using geneid to identify genes. *Curr. Protoc. Bioinformatics* 18, 4.3.1–4.3.28. doi: 10.1002/0471250953.bi0403s18

Burge, C., and Karlin, S. (1997). Prediction of complete gene structures in human genomic DNA. *J. Mol. Biol.* 268, 78–94. doi: 10.1006/jmbi.1997.0951

Butler, G., Rasmussen, M. D., Lin, M. F., Santos, M. A., Sakthikumar, S., Munro, B., et al. (1997). *Prediction of complete gene structures in Duffy, M. A., Brassil, C. E., Hall, S. R., Tessier, A. J., Cáceres, C. E., and Conner, J. K.*

Chaffin, W. L., López-Ribot, J. L., Casanova, M., Gozalbo, D., and Martínez, J. P. (2008). *Candida albicans* Chaffin, W. L. (2008).

Eddy, S. R. (1998). Profile hidden Markov models. *Bioinformatics* 14, 755–763. doi: 10.1093/bioinformatics/14.9.755

Edgar, R. C., and Myers, E. W. (2005). PILER: identification and classification of genomic repeats. *Bioinformatics* 21, i152–i158. doi: 10.1093/bioinformatics/bti1003

Finn, R. D., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Mistry, J., and Mitchell, A. L. (2016). The Pfam protein families database: towards a more sustainable future. *Nucleic Acids Res.* 44, D279–D285. doi: 10.1093/nar/gkv1344

Guilard, C. (2010). "Lipases as pathogenicity factors of fungi," in *Handbook of Hydrocarbon and Lipid Microbiology*, ed. K. N. Timmis (Berlin: Springer). doi: 10.1789/978-3-540-77587-4_247

Gaulin, E., Pel, M. J. C., Camborde, L., San-Clemente, H., Courbier, S., Dupouy, M. A., et al. (2018). Genomics analysis of *Aphanomyces* spp. identifies a new class of oomycte effector associated with host adaptation. *BMC Biol.* 16:43. doi: 10.1186/s12915-018-0508-5

Gaziz, R., Kuo, A., Riley, R., Butti, K., Lipzen, A., Lin, J. Y., et al. (2016). The genome of *Xylea hoveniae* provides a window into fungal endophytism. *Fungal Biol.* 120, 26–42. doi: 10.1016/j.funbio.2015.10.002

Hall, R. A., and Gow, N. A. R. (2013). Mannosylation in *Candida albicans*: role in cell wall function and immune recognition. *Mol. Microbiol.* 90, 1147–1161. doi: 10.1111/mmi.12426

Han, Y., and Wessler, S. R. (2010). MITE-hunter: a program for discovering miniature invertedrepeat transposable elements from genomic sequences. *Nucleic Acids Res.* 38:e199. doi: 10.1093/nar/gkq862

Hruskova-Heidingsfeldova, O. (2008). Secreted proteins of *Candida albicans*. *Front. Biosci.* 13,7227–7242. doi: 10.2741/s322

Jiang, H., Bao, J., Cao, G., Xing, Y., Feng, C., Hu, Q., et al. (2022). Experimental transmission of the yeast, *Metschnikowia bicuspidata*, in the Chinese mitten Crab, *Eriocheir sinensis*. *J. Fungi* 8:210. doi: 10.1007/s12915-020-02100

Jurka, J., Kapitonov, V. V., Pavlicek, A., Klonowski, P., Kohny, O., and Walichiewicz, J. (2005). Repebase update, a database of eukaryotic repetitive elements. *Cytogenet. Genome Res.* 110, 462–467. doi: 10.1159/000084979

Keilwagen, J., Wenk, M., Erickson, J. L., Schattat, M. H., Jan, G., and Frank, H. (2016). Using intrinsic position conservation for homology-based gene prediction. *Nucleic Acids Res.* 44:e89. doi: 10.1093/nar/gkw092

Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., and Phillippy, A. M. (2017). Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. *Genome Res.* 27, 722–736. doi: 10.1101/gr.215087.116

Korf, I. (2004). Gene finding in novel genomes. *BMC Bioinform.* 5:59. doi: 10.1186/1471-2105-5-9

Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E. L. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. *J. Mol. Biol.* 305, 567–580. doi: 10.1006/jmbi.2000.4315

Li, L., Stoeckert, C. J., Jr., and Roos, D. S. (2003). OrthoMCL: identification of ortholog groups for eukaryotic genomes. * Genome Res.* 13, 2178–2189. doi: 10.1101/gr.1224503

Lowe, T. M., and Eddy, S. R. (1997). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. *Nucleic Acids Res.* 25, 955–964. doi: 10.1093/nar/25.5.955

Majewos, W. H., Perteza, M., and Salzberg, S. L. (2004). *TigrScan* and *GlimmerHMM*: two open source ab initio eukaryotic gene-finders. *Bioinformatics* 20, 2878–2879. doi: 10.1093/bioinformatics/bth210

McCotter, S. W., Horianopoulos, L. C., and Kronstad, J. W. (2016). Regulation of the fungal secretome. *Curr. Genet.* 62, 533–545. doi: 10.1007/s00294-016-0578-2

Merrill, T., and Cáceres, C. E. (2018). Within-host complexity of a planktonic-parasite interaction. *Ecology* 99, 2864–2867. doi: 10.1002/ecy.2483

Metschnikoff, E. (1884). *Ueber eine sprosspilzkrankheit der daphnien. Beitrag Zur Entomologie* 18, 85–99. doi: 10.1016/j.psr.2016.10.001

Mondal, S., Baksi, S., Koris, A., and Vatai, G. (2016). Journey of enzymes in entomopathogenic fungi. *Pac. Sci. Rev. A Nat. Sci. Eng.* 18, 85–99. doi: 10.1016/j.psrva.2016.10.001
Moore, M. M., and Strom, M. S. (2003). Infection and mortality by the yeast
Metschnikowia bicuspidata var. bicuspidata in Chinook salmon fed live adult
brine shrimp (Artemia franciscana). Aquaculture 220, 43–57. doi: 10.1016/
S0044-8486(02)00271-5
Mora-Montes, H. M., Ponce-Noyola, P., Villágómez-Castro, J. C., Gow, N.,
and Lópex-Romero, A. E. (2009). Protein glycosylation in Candida. Future
Microbiol. 4, 1167–1183. doi: 10.2217/fmb.09.88
Naglik, J. R., Challacombe, S. I., and Hube, B. (2003). Candida albicans secreted
aspartyl proteinases in virulence and pathogenesis. Microbiol. Mol. Biol. Rev.
67, 400–428. doi: 10.1128/MMBR.67.3.400-428.2003
Nawrocki, E. P., and Eddy, S. R. (2013). Infernal 1.1: 100-fold faster RNA homology
searches. Bioinformatics 29, 2933–2935. doi: 10.1093/bioinformatics/btt509
Perti, M., Perti, G. M., Leek, J. K., and Salzberg, S. L. (2016). Transcript-
level expression analysis of RNA-seq experiments with HISAT, StringTie and
Ballgown. Nat. Protoc. 11, 1650–1667. doi: 10.1038/nprot.2016.095
Petrisor, C., and Stoian, G. (2017). The role of hydrolytic enzymes produced by
Candida albicans during infection with single-copy orthologs. E. Z. (2015). BUSCO: assessing genome assembly and annotation completeness
with single-copy orthologs. Bioinformatics 31, 3210–3212. doi: 10.1093/
bioinformatics/btv351
Petersen, T. N., Brunak, S., Von Heijne, G., and Nielsen, H. (2011). SignalP 4.0:
discriminating signal peptides from transmembrane regions. Nat. Methods 8,
785–786. doi: 10.1038/nmeth.1701
Price, A. L., Jones, N. C., and Pevzner, P. A. (2005). De novo identification of
virulence factor, “ in Moonlighting Cell Stress Proteins in Microbial Infections.
Future Microbiol. 10, 1–3. doi: 10.2217/fmb.10.1
Puri, S., and Edgerton, M. (2013). "Candida albicans Ssa: an Hsp70 homologue and
virulence factor," in Moonlighting Cell Stress Proteins in Microbial Infections.
Heat Shock Proteins, Vol. 7, ed. B. Henderson (Dordrecht: Springer). doi: 10.
1007/978-94-007-6787-4_14
Purvis, D. J., and López-Romero, A. E. (2009). Protein glycosylation in
Candida albicans and López-Romero, A. E. (2009). Protein glycosylation in
Candida albicans and genome assembly improvement. PLoS One 9, e112963. doi: 10.1371/journal.
pone.0112963
Wan, R. P. (2019). Comparative Genomic Analysis of CAZymes in Plant
Supriprophic, Pathogenic and Endophytic Fungi. Master’s thesis. Nanchang:
Jiangxi Normal University.
Wang, J., Chen, J., Hu, Y., Ying, S. H., and Feng, M. G. (2020). Roles of six Hsp70
genes in virulence, cell wall integrity, antioxidant activity and multiple stress
tolerance of Beauveria bassiana. Fungal Genet. Biol. 144,103437. doi: 10.1016/j.
gfb.2020.103437
Wang, X., Chi, Z., Yue, L., Li, J., Li, M., and Wu, L. (2007). A marine killer yeast
against the pathogenic yeast strain in crab (Portunus trituberculatus) and an
optimization of the toxin production. Microbiol. Res. 162, 77–85. doi: 10.1016/
j.micres.2006.09.002
Wang, Y., Yang, H., DeBarry, J. D., Tan, X., Li, J., Wang, X., et al. (2012).
MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and
collinearity. Nucleic Acids Res. 40, x49. doi: 10.1093/nar/gkr1293
Wicker, T., Sabot, F., Hua-Van, A., Benetzen, J. L., Capy, P., Chalhoub, B., et al.
(2007). A unified classification system for eukaryotic transposable elements.
Nat. Rev. Genet. 8, 973–982. doi: 10.1038/nrg2165
Winnenburg, R., Baldwin, T. K., Urban, M., Rawlings, C., Köhler, J., and
Hammond-Kosack, K. E. (2006). PHI-base: a new database for pathogen
host interactions. Nucleic Acids Res. 34, D459–D464. doi: 10.1093/nar/gkj047
Xu, Z., and Wang, H. (2007). LTR_FINDER: an efficient tool for the prediction
of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265–W268. doi:
10.1093/nar/gkm286
Yin, Y., Mao, X., Yang, J., Chen, X., Mao, F., and Xu, Y. (2012). dbCAN: a web
resource for automated carbohydrate-active enzyme annotation. Nucleic Acids
Res. 40, W445–W451. doi: 10.1093/nar/gks479
Zhao, Z. T., Liu, H. Q., Wang, C. F., and Xu, J. R. (2013). Comparative analysis of
fungal genomes reveals different plant cell wall degrading capacity in fungi.
BMC Genomics 14:274. doi: 10.1186/1471-2164-14-274
Zhu, X., and Williamson, P. R. (2004). Role of laccase in the biology and virulence
of pathogenic yeast strain in crab (Portunus trituberculatus). Mar. Fish. Res.
53, 1136–1140. doi: 10.1111/are.15625
Zhang, Q., and Yue, C. (2007). Artemia brine shrimp (Artemia franciscana)
distributed under the terms of the Creative Commons Attribution License (CC BY).
Endorsed by the publisher. This article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or