Valproate Induces the Unfolded Protein Response by Increasing Ceramide Levels*§

Shyamalagauri Jadhav§, Sarah Russo§, Stéphanie Cottier§, Roger Schneiter§, Ashley Cowart§, and Miriam L. Greenberg

From the §Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, the §Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, the §Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401, and the §Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland

Bipolar disorder (BD), which is characterized by depression and mania, affects 1–2% of the world population. Current treatments are effective in only 40–60% of cases and cause severe side effects. Valproate (VPA) is one of the most widely used drugs for the treatment of BD, but the therapeutic mechanism of action of this drug is not understood. This knowledge gap has hampered the development of effective treatments. To identify candidate pathways affected by VPA, we performed a genome-wide expression analysis in yeast cells grown in the presence or absence of the drug. VPA caused up-regulation of FEN1 and SUR4, encoding fatty acid elongases that catalyze the synthesis of very long chain fatty acids (C24 to C26) required for ceramide synthesis. Interestingly, fen1Δ and sur4Δ mutants exhibited VPA sensitivity. In agreement with increased fatty acid elongase gene expression, VPA increased levels of phytoceramide, especially those containing C24–C26 fatty acids. Consistent with an increase in ceramide, VPA decreased the expression of amino acid transporters, increased the expression of ER chaperones, and activated the unfolded protein response element (UPRE), suggesting that VPA induces the UPR pathway. These effects were rescued by supplementation of inositol and similarly observed in inositol-starved ino1Δ cells. Starvation of ino1Δ cells increased expression of FEN1 and SUR4, increased ceramide levels, decreased expression of nutrient transporters, and induced the UPR. These findings suggest that VPA-mediated inositol depletion induces the UPR by increasing the de novo synthesis of ceramide.

Bipolar disorder (BD), one of the most severe forms of mood disorder, is characterized by recurrent episodes of depression and mania (1, 2). BD is ranked as the sixth leading cause of disability worldwide. It affects about 1–2% of the total world population (1–3) and leads to suicide in 15% of cases (4). Valproic acid (VPA), a branched short-chain fatty acid, is one of the most widely used drugs for the treatment of BD. However, it is effective in only 40–60% of cases and results in serious side effects, including hepatotoxicity and teratogenicity (5). Although many hypotheses have been postulated to explain its efficacy, the therapeutic mechanism of the drug is not understood, nor is the underlying cause of the disease (6, 7). This knowledge gap hampers the development of more effective drugs to treat BD.

The inositol depletion hypothesis has had a major impact on research in BD. Berridge (8) proposed that lithium, widely used to treat BD, inhibits inositol monophosphatase, causing inositol depletion and subsequently decreasing inositol 1,4,5-triphosphate-mediated signaling (8, 9). We have shown previously that VPA, similar to lithium, causes a decrease in intracellular inositol in yeast and mammalian cells (10–12). VPA indirectly inhibits myo-inositol-3-phosphate synthase (MIPS), the enzyme responsible for the rate-limiting step of de novo synthesis of inositol, suggesting that MIPS is post-translationally regulated (13). More recent findings show that yeast and human MIPS are phosphorylated (14, 15) and that phosphorylation of conserved sites affects enzymatic activity (14). These findings suggest that the mechanism by which VPA causes inositol depletion is conserved in yeast and mammals, supporting the yeast model for genetic and molecular studies of the mechanism of the drug.

In yeast, supplementation of inositol triggers a change in the expression of hundreds of inositol-regulated genes, including genes for lipid synthesis (16–18). Inositol-containing lipids, including inositol phosphoinositides, glycosylphosphatidylinositol, and sphingolipids, play crucial structural and functional roles in regulating membrane biogenesis, membrane trafficking, cytoskeletal organization, and gene expression (19–23). Hence, inositol depletion exerts profound effects on cellular function (24). Inositol depletion not only alters lipid biosynthesis (25) but also activates stress response pathways, including the protein kinase C and unfolded protein response (UPR) pathways (26–28). Cells grown in the absence of inositol exhibit induction of the UPR pathway (27, 29), which is reversed by inositol supplementation (16). These studies suggest that decreasing the intracellular levels of inositol induces the UPR pathway by a mechanism not yet characterized.
Valproate Induces the Unfolded Protein Response via Ceramide

Interdependence of the UPR pathway and ceramide synthesis has been demonstrated in yeast and mammals. Induction of the UPR increases ceramide levels and viability in yeast (30). In mammals, activation of the UPR increases the expression of ceramide synthase CerS6, leading to increased synthesis of ceramides containing C16 fatty acids (30). Perturbation of de novo synthesis of sphingolipids activates the UPR in yeast (29, 31), and defective ceramide homeostasis leads to UPR failure (32). Ceramide also decreases the transcription of nutrient transporters, including amino acid transporter mCAT-1, glucose transporter GLUT-1 (33), glucose transporter HXT4, and uracil permease FUR4 (34). Therefore, the interrelationship between ceramide levels and the UPR pathway maintains cell homeostasis.

In the current study, we show for the first time that VPA-mediated inositol depletion induces the UPR pathway by increasing de novo synthesis of ceramide, especially C24–C26-containing phytoceramide. These findings have implications for the therapeutic mechanism of VPA.

Results

VPA Increases the Expression of Fatty Acid Elongases—To determine candidate pathways that may be important for the therapeutic role of VPA, we performed a genome-wide microarray analysis of cells treated with 0.6 mM VPA for 5 h in the presence or absence of inositol, as described under “Experimental Procedures.” VPA treatment resulted in altered expression (>2-fold) of 324 genes in the presence of inositol and 413 genes in the absence of inositol (supplemental Table 1). Interestingly, fatty acid elongase genes FEN1 and SUR4 exhibited 2-fold increased expression in response to VPA (supplemental Table 1). qRT-PCR analysis of fatty acid elongase genes in WT cells treated with VPA validated these findings. As seen in Fig. 1, mRNA levels of FEN1 and SUR4 were increased 6- and 4-fold in the absence of inositol and to a lesser extent (3- and 2-fold) in the presence of inositol. Fen1 and Sur4 catalyze the synthesis of very long chain fatty acids, including C22 and C24 (Fen1) and C24 and C26 (Sur4) (35), which are used for the synthesis of ceramide. However, VPA did not alter the expression levels of ELO1, a fatty acid elongase that catalyzes the synthesis of C16 or C18 (Fig. 1). This indicates that VPA specifically increases the expression of fatty acid elongases catalyzing the synthesis of very long chain fatty acids (C24–C26). Mutants fen1Δ and sur4Δ exhibited sensitivity to VPA, as did the sphingamine C4-hydroxylase mutant, sur2Δ (Fig. 2). VPA sensitivity was partially rescued by inositol. The VPA-mediated increase in the expression of these genes and the VPA sensitivity of Fen1, Sur4, and Sur2 mutants suggested that VPA induces an increase in ceramide containing C24–C26 fatty acids and phytosphingosine (the product of Sur2).

VPA Increases Ceramide Levels and Down-regulates Amino Acid Transporters—To determine whether VPA increases ceramide levels, dihydroceramide (DHC) and phytoceramide (PHC) ceramide species were analyzed by mass spectrometry in WT cells. VPA showed a trend of increase in ceramide levels, dihydroceramide (DHC) and phytoceramide (especially C26 phytoceramide, but this increase was not statistically significant (Fig. 3B). Interestingly, VPA treatment for 30 min up-regulated the expression of RSB1 (data not shown), which transports long chain bases (LCBs) (including dihydrospingosine and phytosphingosine) across the plasma membrane from the inside to the outside of the cell (36). In WT cells, up-regulation of RSB1 increases the transport of LCBs, reducing the intracellular levels of these ceramide precursors. Therefore, we measured the effect of VPA on ceramide levels with varying fatty acids in rsb1Δ cells. VPA increased both DHC and PHC in rsb1Δ (Fig. 3). Specific ceramide species were increased, including DHC with C16, C18,
and C20 and PHC with C16, C24, and C26 in rsb1Δ cells (Fig. 3). The highest increase was observed in C26 species of PHC. The likely explanation for this is that the increase in RSB1 in WT cells reduces the available LCB precursor for ceramide synthesis. However, when RSB1 is deleted, the increase in ceramide levels is more significant.

Previous studies have shown that increased levels of ceramide cause a decrease in the transcription of nutrient permeases, leading to reduced intake of nutrients and induction of stress (33, 34). Consistent with this, the microarray analysis revealed decreased expression of amino acid transporter genes BIO5, AGP1, GAP1, BAP2, DIP5, UGA4, CAN1, and SAM3 in response to VPA in the absence of inositol. The expression of these transporters was not altered in I+/H11001 medium (supplemental Table 1). Decreased expression of amino acid transporters was confirmed by qRT-pCR in both WT and rsb1Δ cells (Fig. 4). Down-regulation was greater in rsb1Δ than in WT cells, consistent with the increase in ceramide levels. To determine whether decreased expression of amino acid transporters resulted from increased ceramide, cells were treated with 100 μM fumonisin, a ceramide synthase inhibitor (37, 38). Fumonisin reversed the down-regulation of the amino acid transporters in both WT and rsb1Δ cells (Fig. 4). Taken together, these findings suggest that VPA increases levels of specific ceramide species, resulting in decreased expression of nutrient permeases.

VPA Induces the UPR by Increasing Ceramide Levels—
Decreased expression of nutrient transporters is expected to induce stress due to nutrient starvation (33). In agreement with this, VPA increased the expression of ER chaperone genes ELI1, JEM1, KAR2, LHS1, SEC63, and PDI1 in I− medium (supplemental Table 1 and Fig. 5), suggesting that the UPR pathway was induced. To test this, we analyzed the UPR response in WT and rsb1Δ cells expressing a UPR-lacZ reporter plasmid. Increased lacZ activity was observed in response to VPA in I− medium (Fig. 6B). The increase was more pronounced in rsb1Δ than in WT cells. Fumonisin, a
Valproate Induces the Unfolded Protein Response via Ceramide

In this study, we show that VPA induces the UPR by increasing ceramide levels via inositol depletion. Our specific findings indicated that VPA 1) increased expression of fatty acid elongases synthesizing C24 and C26 fatty acids; 2) increased ceramide levels, particularly PHC with C24–C26 fatty acids; 3) decreased the expression of amino acid transporters; and 4) induced the UPR pathway. These outcomes were abrogated by inhibition of de novo ceramide synthesis or by supplementation of inositol.

Ceramide levels can be increased via two routes, increased de novo synthesis by ceramide synthase or inhibition of inositol phosphorylceramide synthase, which converts ceramide to complex sphingolipids. Our findings suggest that VPA induces the UPR pathway by increasing de novo synthesis of ceramide (Fig. 6B) as a result of increased expression of fatty acid elongases, because induction did not occur in the presence of the ceramide synthase inhibitor fumonisin (37). In contrast, aureobasidin, which inhibits inositol phosphorylceramide synthase, did not affect VPA-mediated induction of the UPR (Fig. 6C).

Our findings are consistent with studies showing that inositol starvation induces the UPR. UPR target genes were found to be significantly up-regulated in cells grown in the absence of inositol (16). In addition, inositol supplementation alters the expression of UPR pathway genes (39). Although initial studies showed that accumulation of unfolded proteins in the ER induces the UPR pathway (40, 41), it has since been determined that Ire1p, the transmembrane kinase that senses ER stress (27, 42), induces the UPR pathway in response to changes in membrane lipid composition (29). In this light, inositol starvation may trigger the UPR as a result of lipid-related membrane changes in the ER, including perturbation of sphingolipid metabolism. The addition of inositol induces changes in the synthesis and levels of numerous lipids, including sphingolipids (28, 43). Recent studies show that perturbation of sphingolipid metabolism may affect ER membrane homeostasis. Mutant cells lacking ORM1 and ORM2, negative regulators of sphingolipid metabolism (31, 44), exhibit constitutive induction of the UPR response (31). In addition, orm1Δ orm2Δ cells contain elevated levels of sphingolipids (31, 44) and are hypersensitive to stress induced by inositol starvation (31). Similarly, UPR expression is constitutive in isc1Δ mutant cells, which contain elevated sphingolipids due to a block in sphingolipid turnover (45, 46). Conversely, inhibiting sphingolipid synthesis with myriocin treatment suppresses activation of the UPR induced by inositol starvation (29). Elevated sphingolipids in the ER may lead to membrane aberrancy that activates the UPR pathway independent of accumulation of unfolded protein. The role of specific sphingolipids in activation of the UPR is not known.
Our study suggests that accumulation of ceramide, specifically C24–C26-containing PHC, induces the UPR upon inositol depletion.

We have previously shown that VPA decreases intracellular inositol levels (10–13, 47). VPA induction of the UPR occurred only in I−/H11002 conditions, suggesting that the response to VPA was mediated by inositol depletion. Consistent with this, inositol starvation of ino1/H9004 cells caused similar effects, including increased expression of fatty acid elongases, increased intracellular levels of ceramides, especially PHC with C24 and C26, down-regulation of nutrient transporters, and induction of the UPR. Based on these data, we propose the following model (Fig. 8). VPA decreases intracellular inositol levels, causing an increase in C24 and C26 PHC species as a result of up-regulation of expression of fatty acid elongases (FEN1 and SUR4). This results in increased ceramide synthesis, which causes down-regulation of expression of nutrient transporters, inducing stress and the UPR.

Several studies suggest that the UPR pathway may be involved in the pathophysiology of BD. Lymphoblasts from bipolar patients show an aberrant ER stress response (48, 49). Compared with cells from healthy controls, lymphoblasts from bipolar patients had lower expression of XBPI (mammalian homologue of yeast HAC1), the spliced form of which binds the UPRE element and induces the UPR pathway in response to ER stress inducers (49). A polymorphism (−116C → G) in the XBPI promoter that is associated with lower gene transcription was observed in BD lymphoblastoid cells (50). These findings suggest that the UPR pathway may be perturbed in bipolar patients, and activation of this pathway may be important for the therapeutic action of VPA. In this light, the UPR pathway may be a possible new target for BD therapy.

Experimental Procedures

Yeast Strains, Growth Media, and Conditions—Strains used in this study are summarized in Table 1. Cells were maintained on YPD medium (2% glucose, 1% yeast extract, 2% bactopeptone). Deletion mutants were maintained on medium supplemented with G418 (200 μg/ml). Synthetic minimal medium without inositol (I−) contained all of the essential components of Difco yeast nitrogen base (minus...
Valproate induces the Unfolded Protein Response via Ceramide

in insulin); 2% glucose; 0.2% ammonium sulfate; vitamins; the four amino acids histidine (20 mg/liter), methionine (20 mg/liter), leucine (60 mg/liter), and lysine (20 mg/liter); and the nucleobase uracil (40 mg/liter). Where indicated, inositol (I) was added at a concentration of 75 μM. For selection of plasmids, uracil was omitted. Liquid and solid media were supplemented with 0.6 and 1 mM VPA, respectively, when indicated. Fumonisin B1 (Sigma) and aureobasidin A (Clontech) were used at a concentration of 100 μM and 0.5 g/l, respectively. For solid media, 2% agar was added. Absorbance was measured at 550 nm to monitor growth in liquid cultures. All incubations were at 30 °C.

VPA Treatment—WT cells were precultured in synthetic minimal medium with inositol (I10000), harvested, washed twice with sterile water, and grown in I10001 until the cells reached the mid-log phase (A550 = 0.5). Cells were then pelleted and suspended in fresh I10002 or I10001 medium with or without 0.6 mM VPA and incubated for 5 h.

FIGURE 7. VPA induces the UPR by inositol depletion. ino1Δ cells expressing the UPRE-lacZ reporter plasmid were precultured and grown in Ura-I+ medium until the cells reached mid-log phase (A550 = 0.5). Cells were washed and transferred to Ura-I− medium with or without 100 μM fumonisin for 3 h. A, LacZ activity. Data shown are mean ± S.D. (error bars) (n = 6) (*, p < 0.05; **, p < 0.01; ***, p < 0.001). B, DHC and PHC levels with varying fatty acids were quantified by mass spectrometry. Data shown are mean ± S.D. (n = 6) (*, p < 0.05; **, p < 0.01; ***, p < 0.001). mRNA levels of nutrient transporters (C) and fatty acid elongases (D) were quantified by qRT-PCR, as indicated. Values are reported as -fold change in expression in cells grown in I− medium relative to cells grown in I+ medium. Expression was normalized to the mRNA levels of the internal control ACT1. Data shown are mean ± S.D. (n = 6). *, p < 0.05; **, p < 0.01; ***, p < 0.001.

VPA Treatment—WT cells were precultured in synthetic minimal medium with inositol (I+), harvested, washed twice with sterile water, and grown in I+ until the cells reached the mid-log phase (A550 = 0.5). Cells were pelleted, washed twice with sterile water and inoculated in I+ to a final A550 of 0.05 and cultured until the cells reached the mid-log phase (A550 = 0.5). Cells were then pelleted and suspended in fresh I− or I+ medium with or without 0.6 mM VPA and incubated for 5 h.

FIGURE 8. Model; VPA induces the UPR pathway by increasing intracellular ceramide levels. In the proposed model, VPA-mediated inositol depletion leads to increased expression of fatty acid elongases, specifically FEN1 and SUR4, which catalyze the synthesis of C24 and C26 fatty acids and ceramides, especially PHC containing C24–C26 fatty acids. Increased ceramide levels decrease expression of nutrient transporters, stressing the cell due to lack of nutrients and inducing the UPR pathway.
Valproate Induces the Unfolded Protein Response via Ceramide

TABLE 1
Yeast strains and plasmids used in this study

Strain/Plasmid	Genotype/Description	Source/Reference
Wild type	MATa, his 3Δ, ura 3Δ	Invitrogen
fen1Δ	MATa, his 3Δ, ura 3Δ, fen1Δ: KanMX4	Invitrogen
sur1Δ	MATa, his 3Δ, ura 3Δ, sur1Δ: KanMX4	Invitrogen
rsi1Δ	MATa, his 3Δ, ura 3Δ, rsi1Δ: KanMX4	Invitrogen
ino1Δ	MATa, his 3Δ, ura 3Δ, ino1Δ: KanMX4	Invitrogen
RSB1-HA	pRS316-BSB1Δ353-382-HA	Johnson et al. (55)
UPRE-LacZ	pC194, containing UPRE-CYC-lacZ	Chang et al. (53)

TABLE 2
Real-time PCR primers used in this study

Gene	Primer	Sequence	(5’–3’)
ACT1	Forward	AGCTTCCAGCCTTCTAGTCTTCA	
ACT1	Reverse	ACGTTGAAGAACGACTGCACGAA	
FEN1	Forward	TGGGTTCACCAACCTGACCTTCT	
FEN1	Reverse	TCATTACCTCTCGCGGAACTGAT	
SUR4	Forward	TGTATGCTGACCTGCTGCTGCT	
SUR4	Reverse	AGTAGAGAAACGAGGATGCAAGGAG	
RSBI	Forward	TTGGCCTCTCCAAATGGCTATCT	
RSBI	Reverse	ACGTGTTCCGGTGTTGCTGAC	
ELO1	Forward	GAAGAACCTTCTAGTGGTCACCAA	
ELO1	Reverse	GAGATCCTCTACGGCTGCTATC	
GAP1	Forward	GTGACATCTCAGGGCTTACAA	
GAP1	Reverse	GACAGCAAGGACCAACATTCTC	
BAP2	Forward	GGAAGCTGGGCTGAGTCTATC	
BAP2	Reverse	GCCCAATACCTGCTGCCAAAG	
DIP5	Forward	TCAATTTGTCGACCTGTTACA	
DIP5	Reverse	GGTCCCTTCATCCCTCCCTCTCTCT	
UGA4	Forward	AGCGAGGATGAGGAAGGCTTCT	
UGA4	Reverse	AGCGAGGATGAGGAAGGCTTCT	
CAN1	Forward	Gaagctttgagtaagagagagagag	
CAN1	Reverse	GATGATGACGCTTCTCTCTCTCTCT	
SIM3	Forward	GATGGAATGACGCTTCTCTCTCTCT	
SIM3	Reverse	GATGGAATGACGCTTCTCTCTCTCT	
EUG1	Forward	TGTTCACTGCTTCGGGCTGTGCAA	
EUG1	Reverse	CTTAAGACTCCGTGACGCAAAG	
JEM1	Forward	GCGTGTTGGCAGCTCCCAACAG	
JEM1	Reverse	GCATGGGCTGCAGCTGCAGAAG	
KAR2	Forward	AAGATGGGAGGACGCGTCGAGAAG	
KAR2	Reverse	ACAAGATGGAACGCTGAGCAGG	
LHS1	Forward	AGCCAGACCTGGAGAACGACTTAT	
LHS1	Reverse	AGCCAGACCTGGAGAACGACTTAT	
SEC63	Forward	AGCGAAGGCCTAACAATGGCAGAAG	
SEC63	Reverse	TGGGCACTGGGATGAGCAGGATTT	
PDH1	Forward	TGCCATCAGCAGGCTCGAGAAG	
PDH1	Reverse	ACGTGTTCCGGTGTTGCTGAC	

ino1Δ Starvation—ino1Δ cells were precultured in I−, harvested, washed twice with sterile water, and grown in I+ until the cells reached mid-log phase (A550 = 0.5). Cells were pelleted, washed twice with sterile water, and transferred to fresh I− (inositol starvation) or I+ (control) for 3 h.

Microarray Analysis—Total RNA was isolated by hot phenol extraction (51) and purified using an RNaseasy kit from Qiagen. Quality of RNA was determined using Agilent 2100 Bioanalyzer. RNA was labeled using the Agilent Low Input QuickAmp labeling kit (Agilent Technologies). Cy3-labeled cRNA was then hybridized to the 8 × 15K Agilent Yeast V2 Arrays (design ID 016322). Slides were scanned on an Agilent G2505B microarray scanner, and the resulting image files were processed with Agilent Feature Extraction software (version 9.5.1). All procedures were carried out according to the manufacturer’s protocols. Subsequent analysis was performed using GeneSpring (version 10.0) software. Microarray analysis was carried out at the Research Technology Support Facility at Michigan State University.

qRT-PCR Analysis—Total RNA was extracted using the hot phenol method (51) and purified using an RNaseasy mini plus kit (Qiagen, Valencia, CA). cDNA was synthesized using the first strand cDNA synthesis kit from Roche Applied Science as described in the manufacturer’s manuals. qRT-PCRs were done in a 20-μl volume reaction using Brilliant III Ultra-Fast SYBR Green qPCR master mix (Agilent Technologies, Santa Clara, CA). Each reaction was done in triplicate. The primers used for the qRT-PCRs are listed in Table 2. RNA levels were normalized to ACT1 levels (internal control). Relative values of mRNA transcripts are shown as -fold change relative to the indicated controls. Primers were validated as suggested in the Methods and Applications Guide (Agilent Technologies). All primers used in this study had primer efficiency between 85 and 105%.

Optimal primer concentrations were determined, and primer specificity of a single product was monitored by a melt curve following the amplification reaction. PCRs were initiated at 95 °C for 10 min for denaturation followed by 40 cycles consisting of 30 s at 95 °C and 60 s at 55 °C.

Ceramide Measurement—Cells were grown and treated with VPA as described above for 5 h, pelleted, and stored at −80 °C. Extraction of lipids from yeast pellets and lipid quantification by LC/MS/MS was performed as described previously (52).

β-Galactosidase Assays—Cells expressing the UPRE-lacZ reporter plasmid provided by Dr. Susan Henry (53) were precultured in Ura− and grown in Ura+ to an A550 of 0.5, washed, and transferred to Ura− medium with or without VPA for 5 h at 30 °C. Cells were harvested, and β-galactosidase was assayed as described (54).

Author Contributions—S. J. and M. L. G. designed the research and wrote the manuscript; S. J. carried out all of the experiments; S. R., S. C., R. S., and A. C. performed ceramide measurements; S. J., A. C., R. S., and M. L. G. carried out the data analysis. All authors reviewed the results and approved the final version of the manuscript.

Acknowledgments—We thank Dr. Susan Henry for the UPRE-lacZ reporter plasmid, Dr. Jeff Landgraf and the Research Technology Support Facility at Michigan State University for assistance in carrying out the microarray analysis, and Dr. Yusuf Hannun for valuable insights.

References
1. Belmaker, R. H. (2004) Bipolar disorder. N. Engl. J. Med. 351, 476–486
2. Goodwin, G. M. (2007) Quetiapine more effective than placebo for depression in bipolar I and II disorder. Evid. Based Ment. Health 10, 82
Valproate Induces the Unfolded Protein Response via Ceramide

3. Cheng, R. S., Lin, C., Fok, M. L., and Leung, C. M. (2005) Shoplifting in the mentally ill: the role of bipolar affective disorder and mental retardation. *Med. Sci. Law* 45, 317–320

4. Bostwick, J. M., and Pankratz, V. S. (2000) Affective disorders and suicide risk: a reexamination. *Am. J. Psychiatry* 157, 1925–1932

5. Henry, C. A., Zamvil, L. S., Lam, C., Rosenquist, K. J., and Ghaemi, S. N. (2003) Long-term outcome with divalproex in children and adolescents with bipolar disorder. *J. Child Adolesc. Psychopharmacol.* 13, 523–529

6. Gould, T. D., Quiroz, I. A., Singh, J., Zarate, C. A., and Manji, H. K. (2004) Emerging experimental therapeutics for bipolar disorder: insights from the molecular and cellular actions of current mood stabilizers. *Mol. Psychiatry* 9, 734–755

7. Williams, R. S., Cheng, L., Mudge, A. W., and Harwood, A. J. (2002) A common mechanism of action for three mood-stabilizing drugs. *Nature* 417, 292–295

8. Berridge, M. J. (1989) Inositol 1,4,5-trisphosphate-induced calcium mobilization is localized in *Xenopus* oocytes. *Proc. R. Soc. Lond. B Biol. Sci.* 238, 223–233

9. Hallicher, L. M., and Sherman, W. R. (1980) The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. *J. Biol. Chem.* 255, 10896–10901

10. Shaltiel, G., Shamir, A., Shapiro, J., Ding, D., Dalton, E., Bialer, M., Harwood, A. I., Belmaker, R. H., Greenberg, M. L., and Agam, G. (2004) Valproate decreases inositol biosynthesis. *Biopol. Psychiatry* 56, 868–874

11. Vanden, D. L., Ding, D., Peterson, B., and Greenberg, M. L. (2001) Lithium and valproate decrease inositol mass and increase expression of the yeast *INO1* and *INO2* genes for inositol biosynthesis. *J. Biol. Chem.* 276, 15466–15471

12. Ye, C., and Greenberg, M. L. (2015) Inositol synthesis regulates the activation of GSK-3α in neuronal cells. *J. Neurochem.* 133, 273–283

13. Ju, S., Shaltiel, G., Shamir, A., Agam, G., and Greenberg, M. L. (2004) Human 1-d-threo-inositol-3-phosphatase synthase is functional in yeast. *J. Biol. Chem.* 279, 21759–21765

14. Deranlie, R. M., He, Q., Caruso, J. A., and Greenberg, M. L. (2013) Phosphorylation regulates myo-inositol-3-phosphate synthase: a novel regulatory mechanism of inositol biosynthesis. *J. Biol. Chem.* 288, 26822–26833

15. Parthasarathy, R. N., Lakshmanan, J., Thangavel, M., Seelan, R. S., Stagner, J. L., Jainckila, A. I., Vadalal, R. E., Casanova, M. F., and Parthasarathy, L. K. (2013) Rat brain myo-inositol 3-phosphate synthase is a phosphoprotein. *Mol. Cell Biochem.* 378, 83–89

16. Jesch, S. A., Zhao, X., Wells, M. T., and Henry, S. A. (2005) Genome-wide analysis reveals inositol, not choline, as the major effector of Ino2p-Ino4p and unfolded protein response target gene expression in yeast. *J. Biol. Chem.* 280, 9106–9118

17. Santiago, T. C., and Mamoun, C. B. (2003) Genome expression analysis in yeast reveals novel transcriptional regulation by inositol and choline and new regulatory functions for Oppl1p, Ino2p, and Ino4p. *J. Biol. Chem.* 278, 38723–38730

18. Henry, S. A., Gaspar, M. L., and Jesch, S. A. (2014) The response to inositol: regulation of glycerolipid metabolism and stress response signaling in yeast. *Chem. Phys. Lipids* 180, 23–43

19. Balla, T. (2013) Phosphoinositides: tiny lipids with giant impact on cell regulation. *Physiol. Rev.* 93, 1019–1137

20. Fagone, P., and Jackowski, S. (2009) Membrane phospholipid synthesis and endoplasmic reticulum function. *J. Lipid Res.* 50, S311–S316

21. Knödler, A., Konrad, G., and Mayinger, P. (2008) Expression of yeast lipids. *Semin. Cell Dev. Biol.* 19, 459–485

22. Mousley, C. J., Tyeryar, K., Ile, K. E., Schaaf, G., Brost, R. L., Boone, C., Guan, X., Wenk, M. R., and Bankaitis, V. A. (2008) Trans-Golgi network and endosome dynamics connect ceramide homeostasis with regulation of the unfolded protein response and TOR signaling in yeast. *Mol. Biol. Cell* 19, 4785–4803

23. Guenther, G. G., Peralta, E. R., Rosales, K. R., Wong, S. Y., Siskind, I. J., and Edinger, A. L. (2008) Ceramide starves cells to death by downregulating nutrient transporter proteins. *Proc. Natl. Acad. Sci. U.S.A.* 105, 17402–17407

24. Layet, I. A., Pineau, L., Snyder, E. C., Colas, I., Moussa, A., Vannier, B., Bigay, J., Clarhaut, J., Becq, F., Berjeaud, J. M., Vandebrouck, C., and Ferreira, T. (2013) Saturated fatty acids alter the late secretory pathway by modulating membrane properties. *Traffic* 14, 1228–1241

25. Oh, C. S., Toki, D. A., Mandala, S., and Martin, C. E. (1997) ELO2 and ELO3, homologues of the *Saccharomyces cerevisiae* ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. *J. Biol. Chem.* 272, 17376–17384

26. Kihara, A., and Igarashi, Y. (2002) Identification and characterization of a *Saccharomyces cerevisiae* gene, SBS1, involved in sphingoid long-chain base release. *J. Biol. Chem.* 277, 30048–30054

27. He, Q., Suzuki, H., Sharma, N., and Sharma, R. P. (2006) Ceramide synthesis inhibition by fumonisin B1 treatment activates sphingolipid-metabolizing systems in mouse liver. *Toxicol. Sci.* 94, 388–397

28. Wu, W. I., McDonough, V. M., Nickels, J. T., Jr, Ko, J., Fischl, A. S., Vales, T. R., Merrill, A. H., Jr., and Carman, G. M. (1995) Regulation of lipid biosynthesis in *Saccharomyces cerevisiae* by fumonisin B1. *J. Biol. Chem.* 270, 13171–13178

29. Jesch, S. A., Liu, P., Zhao, X., Wells, M. T., and Henry, S. A. (2006) Multiple endoplasmic reticulum-to-nucleus signaling pathways coordinate sphingolipid metabolism with gene expression by distinct mechanisms. *J. Biol. Chem.* 281, 24070–24083

30. Pearson, R., Sidrauski, C., and Walter, P. (1998) Intracellular signaling and endoplasmic reticulum membrane. *Mol. Biol. Cell* 9, 459–485

31. Pahl, H. L. (1999) Signal transduction from the endoplasmic reticulum to the cell nucleus. *Physiol. Rev.* 79, 683–701

32. Mori, K., Ogawa, N., Kawahara, T., Yanagi, H., and Yura, T. (2000) mRNA splicing-mediated C-terminal replacement of transcription factor Hac1p is required for efficient activation of the unfolded protein response. *Proc. Natl. Acad. Sci. U.S.A.* 97, 4660–4665

33. Alvarenga-Vasquez, S., Sims, K. J., Cowart, L. A., Okamoto, Y., Voit, E. O., and Hannun, Y. A. (2005) Simulation and validation of modelled sphingolipid metabolism in *Saccharomyces cerevisiae*. *Nature* 433, 425–430
44. Breslow, D. K., Collins, S. R., Bodenmiller, B., Aebersold, R., Simons, K., Shevchenko, A., Eising, C. S., and Weissman, J. S. (2010) Orm family proteins mediate sphingolipid homeostasis. *Nature* **463**, 1048–1053
45. Gururaj, C., Federman, R. S., and Chang, A. (2013) Orm proteins integrate multiple signals to maintain sphingolipid homeostasis. *J. Biol. Chem.* **288**, 20453–20463
46. Sawai, H., Okamoto, Y., Luberto, C., Mao, C., Bielawska, A., Domae, N., and Hannun, Y. A. (2000) Identification of ISC1 (YER019w) as inositol phosphosphingolipid phospholipase C in *Saccharomyces cerevisiae*. *J. Biol. Chem.* **275**, 39793–39798
47. Ju, S., and Greenberg, M. L. (2003) Valproate disrupts regulation of inositol responsive genes and alters regulation of phospholipid biosynthesis. *Mol. Microbiol.* **49**, 1595–1603
48. Hayashi, A., Kasahara, T., Kametani, M., Toyota, T., Yoshikawa, T., and Kato, T. (2009) Aberrant endoplasmic reticulum stress response in lymphoblastoid cells from patients with bipolar disorder. *Int. J. Neuropsychopharmacol.* **12**, 33–43
49. So, J., Warsh, J. J., and Li, P. P. (2007) Impaired endoplasmic reticulum stress response in B-lymphoblasts from patients with bipolar-I disorder. *Biol. Psychiatry* **62**, 141–147
50. Kakiuchi, C., Iwamoto, K., Ishiwata, M., Bundo, M., Kasahara, T., Kusumi, I., Tsujita, T., Okazaki, Y., Nanko, S., Kunugi, H., Sasaki, T., and Kato, T. (2003) Impaired feedback regulation of XBP1 as a genetic risk factor for bipolar disorder. *Nat. Genet.* **35**, 171–175
51. Körner, K., and Domdey, H. (1991) Preparation of high molecular weight RNA. *Methods Enzymol.* **194**, 398–405
52. Brice, S. E., Alford, C. W., and Cowart, L. A. (2009) Modulation of sphingolipid metabolism by the phosphatidylinositol-4-phosphate phosphatase Sac1p through regulation of phosphatidylinositol in *Saccharomyces cerevisiae*. *J. Biol. Chem.* **284**, 7588–7596
53. Chang, H. J., Jesch, S. A., Gaspar, M. L., and Henry, S. A. (2004) Role of the unfolded protein response pathway in secretory stress and regulation of INO1 expression in *Saccharomyces cerevisiae*. *Genetics* **168**, 1899–1913
54. Fu, Y., and Xiao, W. (2006) Study of transcriptional regulation using a reporter gene assay. *Methods Mol. Biol.* **313**, 257–264
55. Johnson, S. S., Hanson, P. K., Manoharlal, R., Brice, S. E., Cowart, L. A., and Moye-Rowley, W. S. (2010) Regulation of yeast nutrient permease endocytosis by ATP-binding cassette transporters and a seven-transmembrane protein, RSB1. *J. Biol. Chem.* **285**, 35792–35802
Valproate Induces the Unfolded Protein Response by Increasing Ceramide Levels
Shyamalagauri Jadhav, Sarah Russo, Stéphanie Cottier, Roger Schneiter, Ashley Cowart
and Miriam L. Greenberg

J. Biol. Chem. 2016, 291:22253-22261.
doi: 10.1074/jbc.M116.752634 originally published online September 1, 2016

Access the most updated version of this article at doi: 10.1074/jbc.M116.752634

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2016/09/01/M116.752634.DC1.html

This article cites 55 references, 33 of which can be accessed free at
http://www.jbc.org/content/291/42/22253.full.html#ref-list-1