Comparing the Cervista HPV HR Test and Hybrid Capture 2 Assay in a Dutch Screening Population: Improved Specificity of the Cervista HPV HR Test by Changing the Cut-Off

Aniek Boers¹, Lorian Slagter-Menkema², Bettien M. van Hemel², Jerome L. Belinson³, Teus Ruitenbeek², Henk J. Buikema², Harry Klip¹, Hilde Ghysaert⁴, Ate G. J. van der Zee¹, Geertruida H. de Bock⁵, G. Bea A. Wisman⁴, Ed Schuuring²*¹

¹Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands, ²Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands, ³Preventive Oncology International Inc., Cleveland Heights and Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio, United States of America, ⁴Department of Pathology, AZ St Jan Brugge-Oostende, Brugge, Belgium, ⁵Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands

Abstract

The diagnostic performance of the widely-used Cervista HPV HR test was compared to the Hybrid Capture 2 (HC2) test in a Dutch population-based cervical cancer screening program. In 900 scrapings of women with normal cytomorphology, specificity was 90% (95%CI: 87.84–91.87) for the Cervista HPV HR test and 96% (95%CI: 94.76–97.37) for the HC2 test with 93% agreement between both tests (κ = 0.5, p < 0.001). The sensitivity for CIN2+ using 65 scrapings of women with histological-confirmed CIN2+ was 91% (95%CI: 80.97–96.51) for the Cervista HPV HR test and 92% (95%CI: 82.94–97.43) for the HC2 test with 95% agreement between both tests (κ = 0.7, p < 0.001). Fifty-seven of 60 HC2 negative/Cervista positive cases tested HPV-negative with PCR-based HPV assays; of these cases 56% were defined as Cervista triple-positive with FOZ values in all 3 mixes higher than the second cut-off of 1.93 (as set by manufacturer). By setting this cut-off at 5.0, specificity improved significantly without affecting sensitivity. External validation of this new cut-off at 5.0 in triple-positive scrapings of women selected from the SHENCASTI database revealed that 22/24 histological normal cases now tested HPV-negative in the Cervista HPV HR test, while CIN2+ lesions remained HPV-positive. The intra-laboratory reproducibility of the Cervista HPV HR test (n = 510) showed a concordance of 92% and 93% for cut-off 1.93 and 5.0 (κ = 0.83 and p < 0.001) and inter-laboratory agreement of the Cervista HPV HR test was 90% and 93% for cut-off 1.93 and 5.0 (κ = 0.80 and p < 0.001). In conclusion, the specificity of the Cervista HPV HR test could be improved significantly by increasing the second cut-off from 1.93 to 5.0, without affecting the sensitivity of the test in a population-based screening setting.

Citation: Boers A, Slagter-Menkema L, van Hemel BM, Belinson JL, Ruitenbeek T, et al. (2014) Comparing the Cervista HPV HR Test and Hybrid Capture 2 Assay in a Dutch Screening Population: Improved Specificity of the Cervista HPV HR Test by Changing the Cut-Off. PLoS ONE 9(7): e101930. doi:10.1371/journal.pone.0101930

Editor: Fausto Baldanti, Fondazione IRCCS Policlinico San Matteo, Italy

Received January 8, 2014; Accepted June 13, 2014; Published July 22, 2014

Copyright: © 2014 Boers et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: AB is supported by the Dutch Cancer Society (RUG-NKB2009-4577). The Cervista HPV HR test reagents were kindly provided by Hologic Inc. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have read the journal's policy and have the following conflicts: Ed Schuuring is a member of the scientific advisory board of Roche, Hologic and QCMD, received travel reimbursements from Roche, Abbott, Hologic Inc. and QCMD. AB, LSM, BvR received travel reimbursements from Hologic Inc. Jerome L. Belinson has received support in kind (reagents and testing) and funds for direct support and research, under the auspices of Preventive Oncology International Inc., from Hologic Inc., Qiagen, Gen-Probe, Merck Inc., BGI Shenzen, and GE Healthcare. The Cervista HPV HR test reagents were kindly provided by Hologic Inc. for this study. There are no further patents, products in development or marketed products to declare. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials, as detailed online in the guide for authors.

* Email: eschuuring@umcutc.nl

Introduction

Population-based screening programs have led to a significant reduction of the incidence and mortality from cervical cancer [1]. In the Netherlands cytomorphological examination of cervical scrapings is used for early detection of cervical cancer and premalignant cervical intraepithelial neoplasia (CIN). Despite the high specificity (95–97%), a disadvantage of cytomorphological examination is the relatively low sensitivity (50–60%) for detection of high grade CIN lesions (CIN2+/3) and cervical cancer [2].

Cervical carcinogenesis is strongly associated with high-risk human papillomavirus (hrHPV). Persistent infection with hrHPV can result in CIN lesions and neoplastic progression. Testing for hrHPV in cervical scrapings shows high sensitivity (94–97%) to detect CIN2+ lesions. However, specificity, especially in younger women, is around 6% lower than with cytology [2,3]. Nowadays cervical cancer screening programs in many countries have combined cytomorphological examination and hrHPV testing [4,5]. The current Dutch screening program is primarily based on cytomorphological classification with hrHPV testing as a triage test for abnormal cytological results (ASCUS/LSIL) [4]. In the
Netherlands the population-based screening program will change to primary hrHPV screening in 2016 [6]. In primary screening hrHPV testing will be performed mostly on scrapings with no abnormalities, since the majority of the screening population is healthy. An optimal balance between the sensitivity and specificity of the hrHPV test is therefore important. At this moment numerous hrHPV tests are available, but only seven tests have been approved by the United States Food and Drug Administration (FDA) [7-9].

The first 2 and mostly used FDA approved HPV tests are the Hybrid Capture 2 (HC2) and the Cervista HPV HR assay [10]. The Digene HC2 test (Qiagen, Gaithersburg, MD) is a nucleic acid hybridization assay with signal amplification using microplate chemiluminescence for the detection of HPV DNA from 13 hrHPV types [11,12]. The Cervista HPV HR test (Hologic Inc., Madison, WI, USA) uses Invader chemistry, a signal amplification method for detection of specific nucleic acid sequences [13,14]. The Cervista HPV HR test detects 14 hrHPV types: HPV66 and the same 13 hrHPV types as detected by the HC2 test. Advantages of the Cervista HPV HR test compared to the HC2 test are; reduced sample volume required for testing (2 ml vs. 4 ml), the presence of an internal control which reduces the possibility of false-negative results due to insufficient DNA present in the sample and significant lower cross-reactivity to other HPV types [13,15,16].

Several studies analyzed the sensitivity and specificity for either the Cervista HPV HR test or the HC2 test [2,13,15,17-20], but studies comparing both assays on the same samples in a population-based screening setting are limited [21-23]. In this study, we compared the performance of the widely-used Cervista HPV HR test with the “golden standard” HC2 test on the same scrapings selected from the national population-based cervical cancer screening based on the international guidelines for HPV DNA testing in primary cervical cancer screening in women 30 years and older [24]. Samples with discordant results were analyzed using additional PCR-based HPV detecting assays. In addition, we determined the intra-laboratory reproducibility and inter-laboratory agreement of the Cervista HPV HR test.

Materials and Methods

Sample collection

To compare the specificity of the Cervista HPV HR and HC2 test, 900 cytological normal cervical scrapings (NILM) collected in PreservCyt of women between the ages of 30-60 years were randomly selected from the routine Dutch population-based screening program. Since women without cytological abnormalities are not referred to the hospital for colposcopy, histology is not available for this group. To compare the specificity we only included women who also had a normal cervical scraping at the previous population-based screening 5 years prior and are therefore with the smallest chance of having an undetected CIN2+ lesion. Women with a history of (pre)malignant cervical lesions, abnormal cervical smears or any surgery in the area of the cervix as well as HIV-seropositive or pregnant women were excluded. Study-specific, uniquely numbered samples with more than 12 ml residual PreservCyt solution were collected to perform Cervista HPV HR and HC2 testing.

To compare the sensitivity of the Cervista HPV HR and HC2 test, we randomly selected scrapings of women referred to the University Medical Center with abnormal cytology (>BMD) during routine population-based screening. All 63 women included had histologically confirmed CIN2+ lesions. Since a considerable number of CIN2+ lesions are missed by routine cytological examination [2], we also included, of these 65 patients, 17 patients with a normal cytological diagnosis [25]. These samples were selected from our research database of women who underwent a new cervical scraping before colposcopy.

Cervista HPV HR method

The Cervista HPV HR test (Hologic Inc., Madison, WI, USA) is a qualitative test detecting 14 hrHPV types (HPV 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66 and 68) [13,14]. The assay uses three separate oligonucleotide mixtures; Mix 1 (A5/A6 pool) contains probes for HPV 51, 56 and 66; mix 2 (A7 pool) probes for HPV 18, 39, 45, 59 and 68, and mix 3 (A9 pool) probes for HPV 16, 31, 33, 35, 52 and 56. In these three mixes, oligonucleotides for the human histone 2 gene (HIST2H2BE) are also present as an internal control for the presence of sufficient genomic DNA [14]. A signal to noise value (sample signal measured against signal from a No Target Control) is generated for each of the three mixes and is referred to as HPV Fold-Over-Zero (FOZ). The HPV FOZ ratio is calculated by dividing the highest FOZ value from any one of the three reaction mixtures by the lowest HPV FOZ value of the three mixtures. If the HPV FOZ ratio is equal to or greater than 1.525, the sample is considered positive for hrHPV [14]. Samples with mixed HPV infections might result in positive signals of similar intensity in two or three reaction wells. Therefore, if the HPV FOZ ratio is lower than 1.525, but the HPV FOZ values in all three mixes are larger than the second cut-off value at 1.93 (default setting), the sample is considered positive for hrHPV in the Cervista HPV HR test [14].

HC2 method

The HC2 test is routinely used in our (ISO15189 certified) laboratory. The HC2 test is clinically validated and FDA-approved and detects 13 hrHPV types (HPV 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59 and 68). The HC2 test has previously been described extensively and results are interpreted as a ratio of relative light units (RLU/CO) to the positive control specimen [11,12]. Samples with an RLU/CO ratio >1.0 are considered positive for hrHPV. If the RLU/CO ratio <1 the sample is negative for hrHPV infection and borderline RLU/CO ratios (1-2.5) are re-tested.

GPS5+/+6+ PCR and INNO-LiPA genotyping assay

All 965 specimens were tested both with the Cervista HPV HR test and HC2 test. Cases with discordant results were retested for the presence of hrHPV using PCR-based HPV detection assays. The HPV-L1 consensus GPS5+/+6+ PCR was performed as previously described [26] on DNA extracted for the Cervista HPV HR test. Samples positive for the GPS5+/+6+ HPV-PCR were defined as true HPV-positive cases. The genotype of L1-HPV PCR positive cases was determined utilizing the INNO-LiPA HPV genotyping Extra assay [27,28]. For quality control, genomic DNA was amplified in a multiplex PCR containing a control gene primer set resulting in products of 100, 200, 300, 400 and 600 bp according to the BIOMED-2 protocol [29]. Only DNA samples with PCR products of 300 bp and larger were used for the detection of HPV.

In silico analysis of the SHENCCASTII data

To evaluate the effect of different second threshold values for the Cervista HPV HR test we used an external patient group with histological-confirmed normal and abnormal tissue. In silico analysis of the data available from the Shenzhen Cervical Cancer Screening Trial II (SHENCCASTII) [21] was kindly provided by
In the Cervista HPV HR test, cases with a HPV FOZ ratio > 1.525 are considered HPV-negative except those cases where all three mixes have a HPV FOZ > 1.93, referred to as triple-positive cases [13,14]. In the group of 57 discordant HC2-negative/Cervista HPV HR positive cases, 32 (56%) cases were Cervista triple-positive (Table S1 and Table S2). These cases were obtained from cytologically normal women and tested negative using the GP5+/6+ PCR and are therefore defined as true-HPV-negative cases.
We noticed that the lowest HPV FOZ mix value in the Cervista triple-positive cases varied between 1.95 and 4.60; only one case showed higher HPV FOZ mix values (6.58/6.83/6.22) (Table S2). Since these 32 triple-positive samples were part of our series of 900 cytomorphological normal cervical scrapings, thereby representing a group with the smallest chance of having an undetected CIN2+ lesion, increasing the second HPV FOZ cut-off value of 1.93 might improve the specificity of the Cervista HPV HR test.

To determine the best HPV FOZ second cut-off value for discriminating between true-negative and true-positive HPV cases, we included all observed triple positive cases in this study. In addition to the 32 discordant triple-positive cases from the cytomorphological normal scrapings, in our whole cohort of 1405 samples (including samples used for intra- and inter-laboratory testing), we observed 31 additional Cervista triple-positive cases including scrapings with abnormal cytomorphology and/or HPV-positivity (Table S3). In this group the lowest HPV FOZ mix value varied between 1.93 and 8.18. Of these 31 cases, 11 were HC2 positive. Comparing the lowest FOZ mix value of the three mixes in the Cervista HPV HR test with the HC2 ratio of all 63 Cervista triple-positive cases revealed that the second cut-off of 1.93 (default setting) is not optimal (see blue vertical line in Figure 1). Increasing the cut-off to 5.0, all but one (nr 12) of the 52 HC2-negative cases are now correctly classified as Cervista HPV-negative, whereas only 2 HC2-positive (nr 40 and 41) are now considered as Cervista-negative. All histological confirmed CIN2+ lesions remained positive.

To evaluate the effect of different second cut-off values, we recalculated sensitivity and specificity of the Cervista HPV HR test on our series of 900 women with cytomorphological negative scrapings and on the 63 scrapings associated with histological proven CIN2+ lesions (Table 4). Increasing the second cut-off to 5.0 improved the specificity of the Cervista HPV HR test in a cytomorphological normal population from 90.0% to 93.4%. Sensitivity of the test was not affected when increasing the second cut-off to 5.0 (Table 4). Comparing the specificity of the Cervista HPV HR test (using this new cut-off of 5.0) with the HC2 test in our group of 900 cytomorphological normal scrapings, agreement between both tests improved from 93% to 97% (kappa improved from 0.47 to 0.67) (p<0.001).

However, improving sensitivity and specificity of the Cervista HPV HR test is not solely dependent on the HPV status of the scraping, but primarily by the presence of histological confirmed CIN2+ lesions. By law in most countries, including the Netherlands, no colposcopy is performed on women with normal cytomorphology. Consequently, in our series of 63 Cervista triple-positive cases only from 6 women histology was available. In five cases CIN2 or CIN3 lesions were detected and all showed a second cut-off above 5.0 (Figure 1 and Table S3). From the Cervista triple-positive cases with normal cytomorphology 44 out of 45 scrapings had a second cut-off below 5.0 (Table S2). Only 1 HC2-negative case with normal cytology (nr 12) showed a second cut-off above 5.0.

To evaluate the effect of a different second cut-off for the Cervista HPV HR test on patients with histological diagnosis, we analyzed in silico an independent external cohort from the SHENCCASTII dataset. In the SHENCCASTII study women were referred for colposcopy if they were positive on any of the HPV tests performed. In addition, every HPV positive woman referred to coloscopy had a minimum of 5 cervical biopsies [21]. This means that women with cytomorphological normal scrapings but positive for hrHPV were subjected to colposcopy and histological examination. From this cohort, 28 Cervista triple-positive cases with histological diagnosis were retrieved (Table S4). All 6 cases with a high HC2 ratio (>380) showed a lowest FOZ mix value above the new second cut-off of 5.0 including 4 cases with CIN2 or CIN3 (Figure 2). Also, 3 cases with relative low HC2 ratio as well as all 19 HC2-negative cases showed a lowest FOZ mix value below the second cut-off value of 5.0 (Figure 2). These 22 scrapings would be considered as HPV-negative using the new second cut-off at 5.0 and are all associated with normal (≤CIN1) histological results (Figure 2).

The intra- and inter-laboratory reproducibility of the Cervista HPV HR test

To ensure a reliable performance of the Cervista HPV HR test in clinical practice, we validated the intra-laboratory reproducibility and inter-laboratory agreement in time. The intra laboratory reproducibility (n = 510) showed a concordance of 92% and 93% with a kappa of 0.83 and 0.84 for cut-off 1.93 and 5.0 respectively (p<0.001) (Table 5). The inter-laboratory reproducibility (n = 510) showed a concordance of 87% and 91% with a kappa of 0.71 and 0.75 for cut-off 1.93 and 5.0 respectively (p<0.001) (Table 6).

Table 1. Performance of the Cervista HPV HR test in women aged 30 years and older.

	Women with CIN2+	Women without ≥CIN2+	Total
Cervista HPV HR test positive	59	90	149
Cervista HPV HR test negative	6	809	815
Low gDNA	0	1	1
Total	65	900	965

Table 2. Performance of the Hybrid Capture 2 assay in women aged 30 years and older.

	Women with CIN2+	Women without ≥CIN2+	Total
HC2 test positive	60	34	94
HC2 test negative	5	866	871
Total	65	900	965
agreement between our laboratory and an independent laboratory that uses the Cervista HPV HR test routinely on the same 510 scrapings showed agreement between the two laboratories of 90% and 93% with a kappa of 0.80 and 0.85 for cut-off 1.93 and 5.0 (p<0.001) (Table 6).

Discussion

The aim of the present study was to compare the diagnostic performance of the Cervista HPV HR test versus the HC2 test on the same cervical scrapings from women participating in the routine Dutch population-based screening program. The sensitivity for detecting CIN2+ lesions in a cohort of women referred with an abnormal scraping was comparable between the Cervista HPV HR test (91%) and the HC2 assay (92%). The specificity in a cohort of 900 women with repeated normal cytology was 96% for the HC2 test versus 90% in the Cervista HPV HR test. However, by adjusting the second threshold to 5.0 we were able to improve the specificity of the Cervista HPV HR test to 93% without affecting the sensitivity. Furthermore, reproducibility is an

Nr	HC2 result	Cervista result	Cervista re-test	GPS+/6+ L1-PCR	INNO-LIPA HPV genotyping
2	Positive	Negative	Negative	Negative	HPV33
3	Positive	Negative	Negative	Positive	HPV51
4	Positive	Negative	NP	Positive	NP*
5	Positive	Negative	NP	Positive	HPV33, 69, 71
6	Positive	Negative	Positive (mix 1)	Positive	HPV53, 54, 66

DNA from the initial Cervista HPV HR test was used for re-testing with the Cervista HPV HR test, the GPS+/6+PCR and for HPV-typing using INNO-LIPA in the GPS+/6+ positive cases. For some tests insufficient material was available.

*NP = not performed because of insufficient material.

doi:10.1371/journal.pone.0101930.t003

Figure 1. The lowest mix HPV FOZ value of the Cervista HPV HR test versus the HC2 ratio value in the 63 Cervista triple-positive cases. The blue line marks the default second cut-off at 1.93 of the Cervista HPV HR test; the red line marks the cut-off set at 5.0.

doi:10.1371/journal.pone.0101930.g001
Table 4. Sensitivity and specificity of the Cervista HPV HR test using different second HPV FOZ cut-off values.

Second cut-off	Specificity Cervista	Sensitivity Cervista
1.93	809/899 = 90.0%	59/65 = 90.8%
3.0	833/899 = 92.7%	59/65 = 90.8%
4.0	839/899 = 93.3%	59/65 = 90.8%
5.0	840/899 = 93.4%	59/65 = 90.8%
6.0	840/899 = 93.4%	58/65 = 89.2%
7.0	841/899 = 93.5%	58/65 = 89.2%

The selection of our samples was based on the international guidelines for HPV DNA testing in primary cervical cancer screening in women 30 years and older by Meijer et al [24]. Nevertheless, the clinical sensitivity found in our dataset was comparable to literature. Literature shows that the sensitivity for the detection of CIN2+ is 85–100% for the HC2 test [2] and 90–100% for the Cervista HPV HR test [17,21]. The corresponding clinical specificity is 84–96% for the HC2 test [2] and 68–91% for the Cervista HPV HR test [17,21]. The sensitivity and specificity of the Cervista HPV HR test in a population-based setting was compared to the HC2 test in one large study (SHENCCASTII). In this population-based cross-sectional clinical study testing 8556 scrapings, the Cervista HPV HR test showed a sensitivity for CIN3+ of 95% and specificity of 90% similar as detected with the HC2 HPV test (98% and 88%, respectively) [21]. The HPV
positivity rates in women with normal cytological results were 8% for HC2 and 6% for the Cervista HPV HR test in this cohort [21]. In two other studies using scrapings with a negative cervical cytology (NILM), no significant difference in prevalence rates was observed between the HC2 (5.9–7.5%) and Cervista HPV HR test (6.9–8.4%) [22,23]. However, comparing data of the Cervista manufacturer’s package insert [30] with data of different HC2 studies, Kinney et al. signaled that the Cervista HPV HR test was 2–4-fold more likely to give positive HPV test results in women over 30 years with normal cytology compared to the HC2 test, suggesting that the Cervista HPV HR assay is significantly less specific than the HC2 assay [31]. Other studies do not reflect this opinion [16,19–23]. Recently, Chateau et al. [19] compared a large data set generated from consecutive 9-month intervals of HC2 and Cervista HPV HR screening, stratified by age and cytological classification. Comparison of more than 1000 retrospective HC2 results from NILM patients aged >30 years to 1100 results generated by Cervista showed no difference in rates of detection. The authors describe that the overall Cervista detection rates in NILM patients (9.4%) in their study was similar to the detection rates from a meta-analysis of NILM patients (11.3%) [32]. These observations are in good agreement with the Cervista detection rate (10.0%) in our cohort of 900 women >30 years with normal cytology.

One of the limitations of the current FDA-approved HC2 test is the lack of an internal control. Without an internal control a negative HPV result could be due to the fact that the sample was hypocellular, the sample contained a substance that inhibited the signal amplification reaction or was processed incorrectly. The use of an internal control in the Cervista HPV HR test protects against a false-negative results due to these problems. In this study only 1 of the 965 scrapings gave a negative HC2-result whereas the internal control of the Cervista HPV HR test indicated that the sample had too few cells for reliable HPV-testing. Other studies comparing HC2 with the Cervista HPV HR test showed that the false-negative rate of the HC2 test due to insufficient input of cells is approximately 3.2–4.1% [16,22]. An explanation for the low false-negative rate in our series is the fact that only samples with more than 12 ml PreservCyt solution were included to ensure that we would have sufficient material to compare both the HC2 and

Table 5. Intra-laboratory reproducibility of the Cervista HPV HR test with a second cut-off at default setting of 1.93 (A) and at new setting of 5.0 (B).

	Cervista test 2 positive	Cervista test 2 negative	Low gDNA	Total
(A) Cut-off 1.93				
Cervista test 1 positive	174	24	0	198
Cervista test 1 negative	17	293	1	311
Low gDNA	0	0	1	1
Total	191	317	2	510
(B) Cut-off 5.0				
Cervista test 1 positive	169	21	0	190
Cervista test 1 negative	16	302	1	319
Low gDNA	0	0	1	1
Total	185	323	2	510

The same sample was tested twice by the same technician within an interval of 1–3 weeks.

*Concordance of the 510 scrapings tested twice was 92% (kappa of 0.83; p<0.0001).

**Concordance of the 510 scrapings tested twice was 93% (kappa of 0.84; p<0.0001).

doi:10.1371/journal.pone.0101930.t005

The same sample was tested twice by the same technician within an interval of 1–3 weeks.

*Concordance between 2 laboratories (UMCG-Groningen and Ghent) on the same 510 scrapings was 90% (kappa of 0.80; p<0.0001).

**Concordance between 2 laboratories (UMCG-Groningen and Ghent) on the same 510 scrapings was 93% (kappa of 0.85; p<0.0001).

doi:10.1371/journal.pone.0101930.t006

Two ml PreservCyt samples tested in our laboratory (UMCG) were sent to another laboratory (Brugge in Belgium) that uses the Cervista HPV HR assay routinely.

*Concordance between 2 laboratories (UMCG-Groningen and Ghent) on the 510 scrapings was 90% (kappa of 0.80; p<0.0001).

**Concordance between 2 laboratories (UMCG-Groningen and Ghent) on the same 510 scrapings was 93% (kappa of 0.85; p<0.0001).

doi:10.1371/journal.pone.0101930.t006

Performance of the Cervista HPV HR Test

Table 6. Inter-laboratory agreement of the Cervista HPV HR test with a second cut-off at default setting of 1.93 (A) and at new setting of 5.0 (B).

	Cervista test Brugge positive	Cervista test Brugge negative	Low gDNA	Total
(A) Cut-off 1.93				
Cervista test UMCG positive	179	12	0	191
Cervista test UMCG negative	35	281	1	317
Low gDNA	0	1	1	2
Total	214	294	2	510
(B) Cut-off 5.0				
Cervista test UMCG positive	175	10	0	185
Cervista test UMCG negative	25	298	0	323
Low gDNA	1	1	0	2
Total	201	309	0	510
Cervista HPV HR assay, as well as to characterize discordant results. In general, residual samples with more than 12 ml contain higher cell counts since less PreservCyt is used to prepare cytological slides. The relatively low false-negative rate due to insufficient input of cells identified by the internal control has been suggested to be of limited benefit for the Cervista HPV HR test [22]. However, the potential of reducing the risk of false negatives by including the internal control in the Cervista HPV HR test becomes increasing important with primary HPV screening. The risk for women to develop CIN lesions will increase significant for HPV false-negative women, especially because in the suggested primary HPV screening program longer screening interval are advised [33].

In the cytological negative cases, 60 HC2-negative scrapings were positive by the Cervista HPV HR test. The GP5+/+6+ PCR revealed only 3 HPV-positive cases suggesting a Cervista HPV HR false-positivity rate of 95% (57/60). Remarkably, of the 57 HPV-negative/Cervista-positive cases, 56% (32/57) were Cervista triple-positive defined as FOZ-ratio negative (<1.525) but considered HPV-positive because all three mixes had FOZ value higher than the second cut-off 1.93 (default setting). Comparison of the HC2-negative/Cervista triple-positive cases with the HC2-positive/Cervista-triple-positive cases revealed that changing the second cut-off to 5.0 improved the specificity significantly (Figure 1). While all five cases with CIN2/3 lesions were still positive for the Cervista HPV HR test, all 44 scrapings with normal cytomorphology became negative.

This new second cut-off of 5.0 for the Cervista HPV HR test was evaluated in an independent external cohort (SHENCCAST-II) [21]. Using the default setting (second cut-off 1.93) 28 triple positive cases were considered as Cervista HPV positive, although most (n = 24) presented with normal histology. With the second cut-off of 5.0 all 4 CIN2+ remained Cervista HPV positive, whereas 22 of the 24 histological normal cases are now considered Cervista HPV negative. Thus 22/24 underwent unnecessary colposcopy and that could have been prevented by using the cut-off of 5.0. This remarkable improvement is in good agreement with our data using the Dutch population and warrants serious consideration to change the second cut-off.

Improving specificity is an important issue when it comes to primary population-based HPV screening. Since the prevalence of CIN2+ lesions in a population-based screening setting is relatively low, even small changes in clinical specificity of the hrHPV test will have enormous effects on the number of unnecessary referrals to the gynecologist and associated costs.

In our series of 900 cases, we observed 32 (3.6%) triple-positive cases with normal cytology (NILM). Literature shows no other studies using the analytical-sensitive GP5+/+6+ PCR and HPV-typing with the INNO-LiPA and Cervista retesting.

In conclusion, the performance to detect hrHPV using the Cervista HPV HR test is comparable to the HC2 test regarding the sensitivity for detecting CIN2+ lesions. Data from this study in addition to external validation using the SHENCCAST-II dataset demonstrate that increasing the second cut-off from default setting (1.93) to 5.0 will significantly improve the specificity of the Cervista HPV HR test.

Supporting Information

Table S1 Characterization of discordant cases using the analytical-sensitive GP5+/+6+ PCR, HPV-typing with the INNO-LiPA and Cervista retesting.

Table S2 Summary of the 32 Cervista triple-positive cases using the analytical-sensitive GP5+/+6+ PCR and HPV-typing with INNO-LiPA analysis.

Table S3 Summary of the 31 additional Cervista triple-positive cases using the analytical-sensitive GP5+/+6+ HPV PCR and HPV-typing with INNO-LiPA analysis.

Table S4 SHENCCAST data of 28 triple positive cases with available histological results.

Author Contributions

Conceived and designed the experiments: AB ES. Performed the experiments: LS-M TR HJB HK HG. Analyzed the data: AB JLB GHdB. Contributed reagents/materials/analysis tools: JLB. Wrote the paper: AB Bm+H AG+jdz GHdB GB AW ES.
systematic review for the U.S. preventive services task force. Ann Intern Med 155: 687–97, 212–54.

4. Guidelines Cervical Cancer Screening the Netherlands (2009). Available: https://www.nhg.org/standaarden/samenleving/preventie-en-vroegdiagnostiek-van-cervixcarcinoom. Accessed 2014 Jun 19.

5. Sadow D, Solomon D, Lawson HW, Killackey M, Kulasingam SL, et al. (2012) American cancer society, american society for colposcopy and cervical pathology, and american society for clinical pathology screening guidelines for the prevention and early detection of cervical cancer. Am J Clin Pathol 137: 516–542.

6. RIVM (2011). Available: http://www.gezondheidsraad.nl/nl/advice/ preventie/screening-op-baarmoederhalskanker. Accessed 2014 Jun 19.

7. Abreu AL, Souza RF, Gimenes F, Consolino ME (2011) A review of methods for detect human papillomavirus infection. Virol J 9: 262–222X-9-262.

8. Poljak M, Kocjan BJ (2010) Commercially available assays for multiple detection of alpha human papillomaviruses. Expert Rev Anti Infect Ther 8: 1139–1162.

9. FDA (2013). Available: http://www.fda.gov/medicaldevices/productsandevidence/paymentGradientSummarynder/ucm299376.htm. Accessed 2014 Jun 19.

10. Emmadi R, Boonyaratankun J, Seharianeg R, Shyamala V, Zimmer BL, et al. (2011) Molecular methods and platforms for infectious diseases testing a review of FDA-approved and cleared assays. J Mol Diagn 13: 583–604.

11. Digene HC2 HPV DNA test. Available: http://www.thelptest.com/~/media/3C4BD0982BED1E3788FB5F36AF829AAD.ashx. Accessed 2014 Jun 19.

12. Bory JP, Cucherousset J, Lorenzato M, Gabriel R, Quereux C, et al. (2002) Recurrent human papillomavirus infection detected with the hybrid capture II assay selects women with normal cervical smears at risk for developing high grade cervical lesions: A longitudinal study of 3,091 women. Int J Cancer 102: 516–542.

13. Day SP, Hudson A, Mast A, Sander T, Curtis M, et al. (2009) Analytical performance of the investigational use only cervista HPV HR test as determined by a multi-center study. J Clin Virol 45 Suppl 1: S63–72.

14. Cervista HPV HR. Available: http://www.cervistahpv.com/pdf/Cervista_ HPV_HR_PI_EN_15-3100_101_01.pdf. Accessed 2014 Jun 19.

15. Einstein MH, Martens MG, Garcia FA, Ferris DG, Mitchell AL, et al. (2010) Clinical validation of the cervista HPV HR and 16/18 genotyping tests vs hybrid capture 2 assay: Outcome comparison in women with negative cervical cytology. Am J Clin Pathol 136: 508–515.

16. Kurian EM, Caporelli MLI, Baker S, Woda B, Cosar EF, et al. (2011) Cervista HR and HPV 16/18 assays vs hybrid capture 2 assay: Outcome comparison in women with negative cervical cytology. Am J Clin Pathol 136: 808–816.

17. Else EA, Swoyer R, Zhang Y, Taddeo FJ, Bryan JT, et al. (2011) Comparison of real-time multiplex human papillomavirus (HPV) PCR assays with INNO-LiPA HPV genotyping extra assay. J Clin Virol 52: 23–27.

18. Meijer CJ, Berkhof H, Castle PE, Hesselink AT, Franco EL, et al. (2009) Guidelines for human papillomavirus DNA test requirements for primary cervical cancer screening in women 30 years and older. Int J Cancer 124: 514–520.

19. Du Chateau BK, Schroeder ER, Munson E (2003) Clinical laboratory experience with cervista HPV HR as a function of cytological classification: Comparison with retrospective digene HC2 high-risk HPV DNA test data. J Clin Microbiol 51: 1057–1058.

20. Youens KE, Holser GA, Washington PJ, Jenevein EP, Murphy KM (2011) Clinical experience with the cervista HPV HR assay: Correlation of cytology and HPV status from 56,301 specimens. J Mol Diagn 13: 160–166.

21. Belinson JL, Wu R, Belinson SE, Qu X, Yang B, et al. (2011) A population-based clinical trial comparing endocervical high-risk HPV testing using hybrid capture 2 and cervista from the SHENCCAST II study. Am J Clin Pathol 135: 790–795.

22. Kurtan EM, Caporelli MLI, Baker S, Woda B, Cosar EF, et al. (2011) Cervista HR and HPV 16/18 assays vs hybrid capture 2 assay: Outcome comparison in women with negative cervical cytology. Am J Clin Pathol 136: 808–816.

23. Quigley NB, Potter NT, Chivukula M, Knight MZ, Welch JR, et al. (2011) Rate of detection of high-risk HPV with two assays in women >/>= 30 years of age. J Clin Virol 52: 23–27.

24. Meijer CJ, Berkhof H, Heideman DA, Hesselink AT, Snijders PJ, et al. (2009) Guidelines for human papillomavirus DNA test requirements for primary cervical cancer screening in women 30 years and older. Int J Cancer 124: 516–520.

25. Meijer CJ, Berkhof H, Heideman DA, Hesselink AT, Snijders PJ, et al. (2009) Validation of high-risk HPV tests for primary cervical screening J Clin Virol 46 Suppl 3: S1–4.

26. Wiman GB, Nijhuis ER, Hoque MO, Reesink-Peters N, Koning AJ, et al. (2006) Assessment of gene promoter hypermethylation for detection of cervical neoplasia. Int J Cancer 119: 1908–1914.

27. Else EA, Swoyer R, Zhang Y, Taddeo FJ, Bryan JT, et al. (2011) Comparison of real-time multiplex human papillomavirus (HPV) PCR assays with INNO-LiPA HPV genotyping extra assay. J Clin Microbiol 49: 1907–1912.

28. INNO-LiPA Available: http://www.microgenbioproducts.com/pdf/ Microlab%20Newsletters/MIRAB_019.pdf Accessed 2014 Jun 19.

29. van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, et al. (2003) Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: Report of the BIOMED-2 concerted action BMH- CT98-3936. Leukemia 17: 2257–2317.

30. Cervista HPV HR (package insert). Madison, WI: Third wave technologies (2006) Available: http://www.cervistahpv.com/pdf/Cervista_ HPV_HR_PI_EN_15-3100_101_01.pdf. Accessed 2014 Jun 19.

31. Kinney W, Soder MH, Castle PE (2010) Special commentary: Patient safety and the next generation of HPV DNA tests. Am J Clin Pathol 134: 193–199.

32. de Sanjosé S, Diaz M, Castellsague X, Clifford G, Bruni L, et al. (2007) Worldwide prevalence and genotype distribution of cervical human papillomavirus DNA in women with normal cytology: A meta-analysis. Lancet Infect Dis 7: 453–459.

33. Arbyn M, Ronco G, Anttila A, Meijer CJ, Poljak M, et al. (2012) Evidence regarding human papillomavirus testing in secondary prevention of cervical cancer. Vaccine 30 Suppl 5: F84–99.