Averages of exponential twists of the von Mangoldt function

Xiumin Ren and Wei Zhang

Abstract In this paper, we obtain some improved results for the exponential sum
\[\sum_{x<n \leq 2x} \Lambda(n) e(\alpha kn^\theta) \] with \(\theta \in (0, 5/12) \), where \(\Lambda(n) \) is the von Mangoldt function. Such exponential sums have relations with the so-called quasi-Riemann hypothesis and were considered by Vinogradov \[8\] and Murty-Srinivas \[5\].

Keywords Exponential sums over primes, zero-density estimates

2000 Mathematics Subject Classification 11L20, 11M26

1. Introduction

In this paper, we are interested in the exponential sum
\[S(k, x, \theta) := \sum_{x<n \leq 2x} \Lambda(n) e(\alpha kn^\theta), \]
where \(x \geq 2 \) and \(k \in \mathbb{Z}^+ \) are the main parameters, \(\alpha \neq 0 \) and \(0 < \theta < 1 \) are fixed, \(\Lambda(n) \) is the von Mangoldt function, and \(e(z) = e^{2\pi i z} \).

We call \(S(k, x, \theta) \) Vinogradov’s exponential sum, since it was first considered by I. M. Vinogradov \[8\] in the special case \(\theta = 1/2 \). Actually, he proved in \[8\] that, for \(k \leq x^{1/10} \),
\[S(k, x, 1/2) \ll k^{1/4} x^{7/8+\varepsilon}, \]
where the implied constant may depend on \(\alpha \) and \(\varepsilon \). Iwaniec and Kowalski (see (13.55) in \[4\]) remarked that the stronger inequality
\[S(1, x, 1/2) \ll x^{5/6} \log^4 x \]
follows from an application of Vaughan’s identity. For general \(\theta \) and \(k \), Murty and Srinivas \[5\] proved that
\[S(k, x, \theta) \ll k^{1/8} x^{(7+\theta)/8} \log(xk^3), \]
where the implied constant may depend on \(\alpha \) and \(\theta \). In 2006, Ren \[6\] proved that
\[S(k, x, \theta) \ll (k^{1/2} x^{(1+\theta)/2} + x^{4/5} + k^{-1/2} x^{1-\theta/2}) \log^A x, \] for arbitrary \(A > 0 \), and for \(\theta \leq 1/2 \) and \(k < x^{1/2-\theta} \),
\[S(k, x, \theta) \ll (k^{1/10} x^{3/4+\theta/10} + k^{-1/2} x^{1-\theta/2}) \log^{11} x. \] (1.2)

In this paper, we will prove the following Theorem 1.1, which is new for \(\theta \in (0, 5/12) \). In \[3\], Iwaniec, Luo and Sarnak showed that such type exponential sums are connected to the quasi-Riemann Hypothesis (or the existence of zero-free region) for \(L(s, f) \), where \(f \) is any holomorphic cusp form of integral weight for \(SL(2, \mathbb{Z}) \).

\(^1\)School of Mathematics, Shandong University, Jinan, Shandong, 250100, China, xmren@sdu.edu.cn
\(^2\)School of Mathematics and Statistics, Henan University Kaifeng, Henan 475004 China, zhangweimath@126.com
Theorem 1.1. For $0 < \theta < 5/12$ and $1 \leq k < x^{5/12-\theta-\varepsilon}$, there exists an absolute constant $c_0 > 0$ such that

$$S(k, x, \theta) \ll k^{-1/2} x^{1-\theta/2} \exp(-c_0(\log x)^{1/3-\varepsilon}),$$

where the implied constant may depend on α, θ, and ε, which denotes an arbitrarily small positive constant.

Obviously, when $\theta < 5/12$ and $k < x^{5/12-\theta-\varepsilon}$, Theorem 1.1 improve (1.2). Some much sharper estimates can be obtained if one assumes the zero-density hypothesis, i.e,

$$N(\sigma, T) \ll T^{2(1-\sigma)} \log^B T, \quad \sigma \geq 1/2,$$

(1.3)

where $N(\sigma, T)$ is the number of zeros of $\zeta(s)$ in the region $\{\sigma \leq \Re s \leq 1, |t| \leq T\}$ and B is some positive constant. In fact, under (1.3), it is proved in [6] that

$$S(k, x, \theta) \ll (k^{1/2} x^{(1+\theta)/2} + k^{-1/2} x^{1-\theta/2}) \log^{B+2} x,$$

(1.4)

where the implied constant may depend on α, ε and θ.

It is worth pointing out that, comparing with Theorem 1.1, the ranges of θ and k have been extended in Theorem 1.2.

2. Proof of Theorem 1.1

To prove Theorem 1.1, we will borrow the idea in [6] by using the results related to zeros of Riemann zeta function. The following lemma will be used in the proof of Theorem 1.1 and Theorem 1.2.

Lemma 2.1 (see page 71 of [7]). Let $F(u)$ and $G(u)$ be real functions in $[a, b]$, satisfying $|G(u)| \leq M$ and that $G(u)$ and $1/F'(u)$ are monotone.

1. If $F''(u) \geq m > 0$ or $F''(u) \leq -m < 0$, then
 $$\int_a^b G(u)e(F(u))du \ll \frac{M}{m};$$

2. If $F''(u) \geq r > 0$ or $F''(u) \leq -r < 0$, then
 $$\int_a^b G(u)e(F(u))du \ll \frac{M}{\sqrt{r}}.$$

Proof of Theorem 1.1 Using partial summation and the explicit formula (see (5.53) in [4]): for $1 \leq T \leq x$,

$$\sum_{n \leq x} \Lambda(n) = x - \sum_{|\gamma| \leq T} \frac{x^\rho}{\rho} + O\left(\frac{x}{T} (\log xT)^2\right),$$
we have
\[\sum_{x<n<2x} \Lambda(n)e(k\alpha n^\theta) = \int_x^{2x} e(k\alpha u^\theta)d \sum_{n\leq u} \Lambda(n) \]
\[= \int_x^{2x} e(k\alpha u^\theta)du - \sum_{|\gamma| \leq T} \int_x^{2x} u^{\theta-1}e(k\alpha u^\theta)du \]
\[+ O \left((1 + k|\alpha|x^\theta) \frac{x \log^2 x}{T} \right). \tag{2.1} \]

Here \(\rho = \beta + i\gamma \) denotes a zero of \(\zeta(s) \) with \(0 < \beta < 1, \, |\gamma| \leq T \). Set \(T = T_0 = x \), then the error-term is \(O(((1 + k|\alpha|x^\theta) \log^2 x) = O(kx^\theta \log^2 x) \). Moreover, we have
\[\int_x^{2x} e(k\alpha u^\theta)du = \frac{1}{\theta} \int_{x^\theta}^{(2x)^\theta} u^{1/\theta-1}e(k\alpha u^\theta)du \ll_{\alpha, \theta} k^{-1}x^{1-\theta}. \tag{2.2} \]
Making the change of variable \(u^\theta = v \), we get
\[\int_x^{2x} u^{\theta-1}e(k\alpha u^\theta)du = \frac{1}{\theta} \int_{x^\theta}^{(2x)^\theta} v^{\frac{\theta}{\theta-1}}e(f(v))dv, \]
where
\[f(v) = k\alpha v + \frac{\gamma}{2\pi \theta} \log v. \]
Trivially one has
\[\int_x^{2x} u^{\theta-1}e(k\alpha u^\theta)du \ll x^\beta. \tag{2.3} \]

On the other hand we have
\[|f'(v)| = \left| k\alpha + \frac{\gamma}{2\pi \theta v} \right| \geq \min_{v \in [x^\theta, (2x)^\theta]} \left| \gamma + 2\theta \pi k\alpha v \right|, \]
\[|f''(v)| = \frac{|\gamma|}{2\pi \theta v^2}. \]
By Lemma 2.1 and (2.3) we get
\[\int_{x^\theta}^{(2x)^\theta} v^{\frac{\theta}{\theta-1}}e(f(v))dv \ll \begin{cases} \frac{x^\beta}{\sqrt{1+\theta k|\alpha|x^\theta}} & \text{for } |\gamma| \leq 4(1 + \theta \pi k|\alpha|(2x)^\theta), \\ \frac{x^\beta}{1+|\gamma|} & \text{for } 4(1 + \theta \pi k|\alpha|(2x)^\theta) \leq |\gamma| \leq T_0. \end{cases} \]
Therefore
\[\sum_{|\gamma| \leq T} \int_x^{2x} u^{\theta-1}e(k\alpha u^\theta)du \ll \frac{1}{\sqrt{1 + \theta k|\alpha|x^\theta}} \sum_{|\gamma| \leq 4(1 + \theta \pi k|\alpha|(2x)^\theta)} x^\beta + \sum_{4(1 + \theta \pi k|\alpha|(2x)^\theta) \leq |\gamma| \leq T_0} x^\beta \frac{1}{1 + |\gamma|}. \]
Assume that, for some positive constant C,
\[N(\sigma, T) \ll T^{A(\sigma)(1-\sigma)} \log^{C} T. \]
Then by the Riemann-Von Mangoldt formula, for $2 \leq U \leq T_0$ we have
\[
\sum_{1 \leq \gamma \leq U} x^{\beta} = - \int_{0}^{1} x^{\sigma} dN(\sigma, U) \ll x^{1/2} U \log U + (\log U)^{C} \log x \sup_{1/2 \leq \sigma \leq \sigma_0} U^{A(\sigma)(1-\sigma)} x^{\sigma},
\]
where
\[\sigma_0 = 1 - c_0 (\log T)^{-2/3} (\log \log T)^{-1/3} \]
with c_0 an absolute positive constant. Here we have used the well known zero-free region results (for example, see [4, 7]) which states that $\zeta(s) \neq 0$ for $\sigma > \sigma_0$.

Let x be sufficiently large such that $\theta \pi k|\alpha|(2x)^{\theta} \gg 1$, then we have
\[
\frac{1}{\sqrt{1 + \theta k|\alpha| x^{\theta}}} \sum_{|\gamma| \leq 4(1 + \theta \pi k|\alpha| (2x)^{\theta})} x^{\beta} \ll \left(\log x \right)^{C+1} \left(k^{1/2} x^{(1+\theta)/2} + \max_{1/2 \leq \sigma \leq \sigma_0} k^{A(\sigma)(1-\sigma)-1/2} x^{\sigma+\theta A(\sigma)(1-\sigma)-\theta/2} \right),
\]
and
\[
\sum_{4(1 + \theta \pi k|\alpha| (2x)^{\theta}) \leq |\gamma| \leq T_0} \frac{x^{\beta}}{1 + |\gamma|} \ll \left(\log x \right)^{C+2} \left(x^{1/2} + \max_{1/2 \leq \sigma \leq \sigma_0} k^{A(\sigma)(1-\sigma)-1} x^{\sigma+\theta A(\sigma)(1-\sigma)-\theta} \right).
\]
Writing
\[g(\sigma) = \sigma + \theta A(\sigma)(1 - \sigma) - \frac{\theta}{2}, \]
and collecting the above estimates we get
\[
\sum_{1 \leq \gamma \leq T} \int_{x}^{2x} u^{\gamma-1} e(k\alpha u^{\theta}) du \ll \left(\log x \right)^{C+2} \left(k^{1/2} x^{(1+\theta)/2} + \max_{1/2 \leq \sigma \leq \sigma_0} k^{A(\sigma)(1-\sigma)-1/2} x^{g(\sigma)} \right).
\]
By the well known result of Ingham [2] and Huxley [1], we can choose $A(\sigma) = 12/5$. Thus we have
\[
\max_{1/2 \leq \sigma \leq \sigma_0} k^{A(\sigma)(1-\sigma)-1/2} x^{g(\sigma)} \ll \left(\log x \right)^{C_1} \sup_{1/2 \leq \sigma \leq \sigma_0} k^{A(\sigma)(1-\sigma)-1/2} x^{\sigma+12\theta(1-\sigma)/5-\theta/2} \ll k^{-1/2} x^{1-\theta/2} \left(\log x \right)^{C_1} \sup_{1/2 \leq \sigma \leq \sigma_0} \left(k^{12/5} x^{12\theta/5-1} \right)^{1-\sigma}.
\]
Thus for $\theta < 5/12$ and $k < x^{5/12-\theta-\varepsilon}$, we get
\[
\max_{1/2 \leq \sigma \leq \sigma_0} k^{A(\sigma)(1-\sigma)-1/2} x^{\theta(\sigma)}
\ll k^{-1/2} x^{1-\theta/2}(\log x)^C \sup_{1/2 \leq \sigma \leq \sigma_0} x^{-c_0(\log x)^{-2/3}(\log \log x)^{-1/3}}
\ll k^{-1/2} x^{1-\theta/2} \exp(-c_0(\log x)^{1/3}(\log x \log x)^{-1/3})
\ll k^{-1/2} x^{1-\theta/2} \exp(-c_0(\log x)^{1/3-\varepsilon}).
\]
This together with (2.1) and (2.2) shows that, for $\theta \in (0, 5/12)$ and $1 \leq k < x^{5/12-\theta-\varepsilon}$,
\[
\sum_{x < n \leq 2x} \Lambda(n)e(\alpha n^\theta)
\ll k^{1/2} x^{(1+\theta)/2}(\log x)^C + k^{-1/2} x^{1-\theta/2} \exp(-c_0(\log x)^{1/3-\varepsilon}) + k^{-1} x^{1-\theta} + k x^\theta
\ll k^{-1/2} x^{1-\theta/2} \exp(-c_0(\log x)^{1/3-\varepsilon}).
\]
This finishes the proof of Theorem 1.1. □

Acknowledgement This work was supported by National Natural Science Foundation of China (Grant No. 11871307).

References

[1] M.N. Huxley, On the difference between consecutive primes. Invent. Math. 15 (1972), 164-170.
[2] A.E. Ingham, On the estimation of $N(\sigma, T)$. Q. J. Math. 15 (1940), 291-292.
[3] H. Iwaniec, W.Z. Luo and P. Sarnak, Low lying zeros of families of L-functions, Extrait Publ. Math. 91 (2000) 55-131.
[4] H. Iwaniec and E. Kowalski, Analytic Number Theory, Am. Math. Soc. Colloquium Publ. vol.53. Am. Math. Soc., Providence, 2004.
[5] M.R. Murty and K. Srinivas, On the uniform distribution of certain sequences. Ramanujan J. 7 (2003), 185-192.
[6] X.M. Ren, Vinogradov’s exponential sum over primes, Acta Arith. 124(2006) 269-285.
[7] E.C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd. edn University Press, Oxford 1986.
[8] I.M. Vinogradov, Special Variants of the Method of Trigonometric Sums, Nauka, Moscow, 1976 (in Russian); English transl.: I. M. Vinogradov, Selected Works, Springer, Berlin, 1985.

Xiumin Ren, School of Mathematics, Shandong University, Jinan, Shandong 250100, China
Email address: xmren@sdu.edu.cn

Wei Zhang, School of Mathematics and Statistics, Henan University, Kaifeng 475004, Henan, China
Email address: zhangweimath@126.com