Mindfulness buffers the influence of stress on cue-induced craving for Internet among Chinese colleges with problematic Internet use

XIAOJUN SUN1,2,3†, CHANGYING DUAN1,2†, GENGFENG NIU1,2,3*, YUAN TIAN1,2,3 and YAMEI ZHANG1,2

1 School of Psychology, Central China Normal University, Wuhan, 430079, China
2 Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Wuhan, 430079, China
3 Beijing Normal University Collaboration Innovation Center, Central China Normal University Branch, Wuhan, 430079, China

ABSTRACT

Background and aims: Stress is a common experience among college students with problematic Internet use, and it may exacerbate their cue-induced Internet craving. This study aimed to examine the influence of stress on cue-induced craving for the Internet among subjects with problematic Internet use and the buffering effect of mindfulness. Methods: Sixty-eight college students with problematic Internet use were assigned to groups with a 2 (stress vs. no-stress) × 2 (high vs. low mindfulness) between-subject design. Results: It was deduced that stress could significantly enhance cue-induced craving for the Internet, and mindfulness could buffer this effect. Specifically, the effect of stress on cue-induced craving for the Internet was weaker among subjects with high mindfulness as compared to subjects with low mindfulness. Discussion and Conclusions: These findings contribute to understanding of the factors influencing problematic Internet use and how such factors interact. It also provides recommendations on how to prevent the progression of problematic Internet use and suggests possible interventions.

KEYWORDS

cue-induced craving, stress, mindfulness, problematic internet use

INTRODUCTION

Problematic Internet use (PIU; also known as “Internet addiction” or “pathological Internet use”) (Kojima, Shinohara, Akiyama, Yokomichi, & Yamagata, 2021) is an increasingly prevalent behavioral problem. It refers to the inability of individuals to control their use of the Internet, thereby leading to panic in its absence and detrimental effects on their lives (Vadher et al., 2019; You et al., 2021). PIU was found to be linked to a high risk for physical and psychological problems, such as suicidal ideation and self-harm (Kuang et al., 2020) and other mental disorders (e.g., substance use disorders and mood disorders) (Chamberlain, Ioannidis, & Grant, 2018; Sevelko et al., 2018).

The Interaction of Person–Affect–Cognition–Execution (I-PACE) model provides a theoretical framework explaining the processes underlying the development and maintenance of Internet-use disorder. The model suggests that cravings induced by addiction-related cues are the key mechanism for the maintenance of PIU (Brand et al., 2016, 2019). Researchers have demonstrated that individuals with internet gaming disorder reported a high craving of internet gaming, following game-related cues (Ma et al., 2019). These cue-induced cravings were also observed in those with substance addiction (Giasson-Gariépy, Potvin, Ghabrash,
mindfulness is a short-term experience that
2019). Though mindfulness could be a trait or state, state
in the development of addictive behavior (Brand et al., 2016,
sonality trait (e.g., trait mindfulness) is an important factor
involves in cravings for the Internet (Brand et al.,
been few research examining the predisposing factors and moderating vari-
ables involved in cravings for the Internet (Brand et al.,
According to the I-PACE model, the present study aimed to examine factors (e.g., stress) influencing cue-
induced craving among subjects with PIU. The study also
analyzed whether personality traits (e.g., mindfulness) would
moderate the effect of stress on cue-induced craving among
subjects with PIU, with the goal of providing scientific support for the I-PACE model and contributing to the
development of interventions preventing relapse among
former college students with PIU.

Simultaneously, I-PACE posits that the combination of internal (i.e., personality) and external factors (i.e., stress)
contributes to the development of addiction (Brand et al.,
Stress is an important external factor in the
development of cravings and the provocation of relapse in
addictive behaviors (Fox, Bergquist, Hong, & Sinha, 2007;
Glynn et al., 2018; Michalowski & Erblich, 2014; Ruisoto &
Contador, 2019; Tartter & Ray, 2012). Specifically, adopting
Internet as a tool for coping with stressful life events and
negative emotions is considered the most likely initiating
factor in the development of PIU (Canale et al., 2019; Hou
et al., 2019). This can be explained by the affective processing
model of negative reinforcement (Baker, Piper, McCarthy, Majeskie, & Fiore, 2004; Snellman, Schoen-
makers, & van de Mheen, 2014). In this model, stressors
cause or increase negative affect, which, in turn, influences
unconscious cognitive processes and motivates the learned
avoidance behavior of engaging with the addictive substance
or behavior to relieve negative affect. Repetition of this
process conditions an association between the addiction
stimuli and relief from distress, thereby leading to cravings
for the stimuli. Empirical research has demonstrated that
stress contributes to cravings for addictive stimuli, such as
alcohol and nicotine than stimuli per se (Netter & Hennig,
2017; Tartter & Ray, 2012). Cravings can be triggered by
addiction-related stimuli, and PIU is no exception. Internet-
related stimuli significantly increase craving for the Internet
among subjects with PIU (Niu et al., 2016). Thus, it was
hypothesized that stress would exacerbate cue-induced
 cravings among subjects with PIU.

In addition, the I-PACE model also postulates that per-
sonality trait (e.g., trait mindfulness) is an important factor
in the development of addictive behavior (Brand et al.,
2019). Though mindfulness could be a trait or state, state
mindfulness is a short-term experience that fluctuates in the
engagement of mindfulness processes using mindfulness skills (Eisenlohr-Moul, Peters, Pond, & DeWall, 2016),
whereas, trait mindfulness is a relatively stable capacity that
represents non-judgmental, accepting, and self-empathetic
awareness of the present–moment experience (i.e., physical
sensations, thoughts, and emotions) (Brown & Ryan, 2003;
Calvete, Gámez-Guadix, & Cortazar, 2017). Trait mind-
lessness is more widely accepted as compared to state
mindfulness, and is used in studies owing to its stability and valid
measurement. A mindfulness reperceiving model argues that
shifting individuals’ perceptions toward mindfulness enables
them to free themselves of the control exerted by problem-
etic emotions and habitual reactive patterns (Shapiro,
Carlson, Astin, & Freedman, 2006). Empirical research
supports the negative association between trait mindfulness
and craving (Garland, 2014; Hsiao et al., 2019).

It is possible that the association between stress and cue-
induced craving could be moderated by trait mindfulness.
The craving induced by stress (Netter & Hennig, 2017) may
be attenuated in individuals with high levels of trait mind-
fulness. Individuals with high levels of trait mindfulness
have more metacognitive awareness (Garland, Gaylord,
& Park, 2009), and this facilitates more functional coping
strategies (Li, Howard, Garland, McGovern, & Lazar, 2017)
to deal with stress. Trait mindfulness also enhances self-
regulation (Calvete et al., 2017; Sancho et al., 2018) and
disengages the attention of addicts from substance-related
stimuli (Garland, 2014), both of which would decrease
 cravings in substance use disorders (Garland et al., 2014; Li
et al., 2017; Hochster, Block-Lerner, Marks, & Erblich, 2018;
Tapper, 2018). Thus, it was hypothesized that trait mind-
fulness would moderate the influence of stress on cue-
induced cravings. Specifically, those with high mindfulness
will cope better with stress and show low levels of cue-
induced cravings.

METHODS

Participants
A total of 68 subjects with PIU from two public universities in
central China were recruited for this study (43 men and
25 women, $M_{age} = 19.57 \pm 1.33$ years old). The inclusion
criteria were (1) a score of ≥ 3.15 on the Adolescent Path-
ological Internet Use Scale (APIUS) (Lei & Yang, 2007) and
(2) more than five affirmative answers to Young’s brief
diagnostic questionnaire (Young, 1998). Participants were
asked not to use the Internet for two hours before the
experiment and were compensated with 20 RMB (approx-
imately $3) for completing the experiment.

Measures
The public speaking paradigm (Cremers et al., 2015) was
adopted to induce stress in study participants. Participants
were instructed to deliver a three minutes self-introduction
speech on camera for a job application. They were informed
that their performances would be video-taped and judged by
Being exposed to this set of stimuli in an experimental trial. Self-reported cravings (pre-cue exposure) were also assessed with one item “How intense is your craving for the Internet right now?” with a seven-point scale ranging from 1 (no craving) to 7 (intense craving). The difference between self-reported cravings before and after cue exposure indicated the level of cue-induced craving for the Internet.

Procedure

All participants were initially instructed to perform a five minutes relaxation exercise. After the relaxation exercise, two items were used to assess their pre-stress levels and pre-exposure craving for the Internet. Then, participants were then randomly assigned to the stress or the non-stress condition. Participants in the stress condition were asked to undergo the cue-reactivity paradigm to measured post-exposure craving immediately after three minutes of speech preparation. Participants in the non-stress condition were asked to undergo the cue-reactivity paradigm to measured post-exposure craving after a three minutes preparation. Following the experiment, participants were asked to reevaluate their level of post-stress, and the participants in the stress group gave a three minutes public speech as required after stress was reassessed. Finally, all participants were again instructed to perform a five minutes relaxation exercise to eliminate any negative effects from the stress induction.

Statistical analyses

Statistical analyses were conducted with SPSS 22.0. First, descriptive statistics were employed to calculate means, standard deviations for all variables. Then, t tests for independent samples were used to analyze group differences (e.g., stress or non-stress). After that, an ANOVA was used to examine the main effect of stress or mindfulness on cue-induced craving, and the interaction effect of stress and mindfulness on cue-induced craving. Finally, a further simple effect analysis was performed to investigate the effect of stress on cue-induced cravings on individuals with high and low mindfulness.

Ethics

The study procedures were approved by the Ethics Committee of Institutional Review Board. Prior to the study, all participants gave written informed consent.

RESULTS

As presented in Table 1, no significant difference was observed for the APIUS, mindfulness, pre-stress, and pre-exposure craving between the stress and non-stress groups, thereby ensuring the homogeneity of the two groups and successful randomization. However, significant differences were observed for post-stress and post-c craving between the two conditions, demonstrating the validity of the...
The buffering effect of mindfulness on the effect of stress on cue-induced craving for the Internet was significantly higher in the high mindfulness condition than in the low mindfulness condition. This indicates that mindfulness can significantly buffer the effect of stress on cue-induced craving for the Internet.

The results revealed significant main effects for both stress ($F(1, 66) = 13.35, P < 0.01$, partial $\eta^2_p = 0.39$) and mindfulness conditions ($F(1, 66) = 8.79, P < 0.05$, partial $\eta^2_p = 0.21$), indicating that the cue-induced craving for the Internet was significantly higher for those in the stress condition than those in the non-stress condition, and the cue-induced craving for the Internet was significantly lower in the high mindfulness condition than in the low mindfulness condition (see Fig. 1). Additionally, a significant interaction ($F(1, 66) = 6.27, P < 0.05$, partial $\eta^2_p = 0.18$) was found. As shown in Fig. 1, although the effect of stress on cue-induced craving for the Internet was significant in both the high ($F(1, 66) = 3.16, P < 0.05$) and low mindfulness ($F(1, 66) = 6.92, P < 0.01$) groups, this effect was attenuated among individuals with PIU with higher mindfulness (see Fig. 1). This indicates that mindfulness can significantly buffer the effect of stress on cue-induced craving for the Internet in PIU.

DISCUSSION

Previous research has revealed that Internet-related stimuli could induce craving for the Internet among individuals with PIU (Niu et al., 2016; Zhang et al., 2016). Based on these findings, the present study demonstrated that stress could significantly enhance cue-induced cravings for the Internet among individuals with PIU. That is, the cue-induced craving for the Internet is more pronounced under stress. According to the positive reinforcement theory of craving, individuals gradually establish a close association between addiction-related stimuli and the positive feelings accompanying the addictive behavior, thereby leading the stimuli to reinforce cravings (Drummond, 2001; Drummond, Litten, Lowman, & Hunt, 2000). Regarding stress, research indicates that stress can trigger the motivation and reward system underlying addictive behaviors and make people more sensitive to addiction-related stimuli (Volkow & Morales, 2015; Johnston, Linden, & van den Bree, 2016). Coping with or escaping from stress is believed to be the primary motivation for PIU (Jun & Choi, 2015). Hence, individuals with PIU are likely to exaggerate the positive valence of Internet-related stimuli and the satisfaction attained from Internet use in stressful situations (Michalowski & Erblich, 2014; Glynn et al., 2018). Therefore, stress can enhance cue-induced craving for the Internet among subjects with PIU.

This study also demonstrated that mindfulness can help mitigate the effect of stress on cue-induced cravings, with this association being more noteworthy among participants with low mindfulness. Mindfulness, in particular, could attenuate the effect of stress on cue-induced cravings among participants with PIU. Individuals who have high mindfulness have more objective awareness of their state and experience, thereby making them accept stress and negative emotional experiences, and adopt more positive and adaptive strategies to cope with stress (Akin & Akin, 2015; Kalapiran, Koo, Kirubakaran, & Hancock, 2015). All such coping mechanisms could relieve the perceived stress (Daubenmier, Hayden, Chang, & Epel, 2014; Khoury, Sharma, Rush, & Fournier, 2015) and attenuate the deleterious effects of stress (Khoury et al., 2015; Song & Park, 2019) on craving for the Internet among subjects with PIU. Simultaneously, individuals with high mindfulness will observe and act with awareness, thereby increasing self-regulation and reducing compulsion and loss of control (Calvete et al., 2017). This may also help reduce cravings for PIU, even when individuals are under a lot of stress. Thus, mindfulness may attenuate the enhanced cue-induced cravings for the Internet in stressful situations.

IMPLICATIONS AND LIMITATIONS

Previous studies have found trait mindfulness to be negatively associated with PIU and to buffer the influence of risky environmental factors (such as stress) on PIU (Liu et al., 2018; Song & Park, 2019). The present study expanded on this by examining the effects of trait mindfulness on cue-induced craving for the Internet among individuals with PIU. Cue-induced craving is one of the most important mechanisms underlying the maintenance of substance addiction (Ko et al., 2013). The present study supports...
previous research that has demonstrated a similar mechanism at work in Internet-use disorders. The study findings also provide practical guidance for prevention of, and intervention with, PIU. PIU interventions should be conducted in a stress-free situation, and mindfulness should be incorporated to reduce the cravings for the Internet induced by external factors.

Some limitations of the present study should be considered. First, the first-choice applications and control for other aspects of participants’ Internet use (e.g., frequency or duration) were not collected. Future research should consider first-choice applications and usage motivations when investigating specific subtypes in the context of Internet-use disorders. Second, the sample size was relatively small, and this may limit the generalizability of the study’s findings. Future research should recruit more participants to replicate the present study results and examine the relationship between stress, mindfulness, and craving in Internet-use disorders. Finally, the classification of PIU use was based on questionnaires, which are susceptible to recall bias. In the future, more objective, standardized diagnostic criteria should be used.

CONCLUSIONS

The present study revealed that stress can enhance cue-induced craving for the Internet among individuals with PIU and mindfulness can buffer the deleterious effect of stress on cue-induced craving for the Internet. Mindfulness is a positive trait that should be developed to promote healthy growth and prevent Internet addiction. In summary, this study provides a theoretical basis for the development of mindfulness-based intervention programs addressing Internet addiction.

Funding sources: This work was supported by the MOE (Ministry of Education in China) Project of Humanities and Social Sciences (19YJC190019), Fok Ying Tung Education Foundation [No. 161075], the Collaborative Innovation Center of Assessment toward Basic Education Quality at Beijing Normal University [No. 2020-04-013-BZPK01; 2021-04-012-BZPK01], and the Fundamental Research Funds for the Central Universities [CCNU20QN023].

Authors’ contribution: Xiao-jun Sun, Chang-ying Duan: Conceptualization, Formal analysis, Writing - Original Draft; Yuan Tian, Ya-mei Zhang: Writing – Review and Editing; Geng-feng Niu: Supervision.

Conflict of interest: The authors declare that they have no conflicts of interest.

REFERENCES

Akin, A., & Akin, U. (2015). Mediating role of coping competence on the relationship between mindfulness and flourishing. Suma Psicológica, 22(1), 37–43. https://doi.org/10.1016/j.jumper.2015.05.005.

Baker, T. B., Piper, M. E., McCarthy, D. E., Majeskie, M. R., & Fiore, M. C. (2004). Addiction motivation reformulated: An affective processing model of negative reinforcement. Psychological Review, 111(1), 33–51. https://doi.org/10.1037/0033-295X.111.1.33.

Brand, M., Wegmann, E., Stark, R., Müller, A., Wölling, K., Robbins, T. W., & Potenza, M. N. (2019). The Interaction of Person-Affect-Cognition-Execution (I-PACE) model for addictive behaviors: Update, generalization to addictive behaviors beyond Internet-use disorders, and specification of the process character of addictive behaviors. Neuroscience and Biobehavioral Reviews, 104, 1–10. https://doi.org/10.1016/j.neubiorev.2019.06.032.

Brand, M., Young, K. S., Laier, C., Wölling, K., & Potenza, M. N. (2016). Integrating psychological and neurobiological considerations regarding the development and maintenance of specific Internet-use disorders: An Interaction of Person-Affect-Cognition-Execution (I-PACE) model. Neuroscience and Biobehavioral Reviews, 71, 252–266. https://doi.org/10.1016/j.neubiorev.2016.08.033.

Brown, K. W., & Ryan, R. M. (2003). The benefits of being present: Mindfulness and its role in psychological well-being. Journal of Personality and Social Psychology, 84(4), 822–848. https://doi.org/10.1037/0022-3514.84.4.822.

Calvete, E., Gámez-Guadix, M., & Cortazar, N. (2017). Mindfulness facets and problematic Internet use: A six-month longitudinal study. Addictive Behaviors, 72, 57–63. https://doi.org/10.1016/j.addbeh.2017.03.018.

Canale, N., Marino, C., Griffiths, M. D., Scacchi, L., Monaci, M. G., & Vieno, A. (2019). The association between problematic online gaming and perceived stress: The moderating effect of psychological resilience. Journal of Behavioral Addictions, 8(1), 174–180. https://doi.org/10.1556/2006.8.2019.01.

Carter, B. L., & Tiffany, S. T. (2001). The cue-availability paradigm: The effects of cigarette availability on cue reactivity in smokers. Experimental and Clinical Psychopharmacology, 9(2), 183–190. https://doi.org/10.1037/1064-1299.9.2.183.

Chamberlain, S. R., Ioannidis, K., & Grant, J. E. (2018). The impact of comorbid impulsive/compulsive disorders in problematic Internet use. Journal of Behavioral Addictions, 7(2), 269–275. https://doi.org/10.1556/2006.7.2018.30.

Cremers, H. R., Veer, I. M., Spinthoven, P., Rombouts, S. A. R. B., Yarkoni, T., Wager, T. D., & Roelofs, K. (2015). Altered cortical-amygdala coupling in social anxiety disorder during the anticipation of giving a public speech. Psychological Medicine, 45(7), 1521–1529. https://doi.org/10.1017/s0033291714002657.

Daubenhier, J., Hayden, D., Chang, V., & Epel, E. (2014). It’s not what you think, it’s how you relate to it: Dispositional mindfulness moderates the relationship between psychological distress and the cortisol awakening response. Psychoneuroendocrinology, 48, 11–18. https://doi.org/10.1016/j.psyneuen.2014.05.012.

Deng, Y. Q., Li, S., Tang, Y. Y., Zhu, L. H., Ryan, R., & Brown, K. (2012). Psychometric properties of the Chinese translation of the mindful attention awareness scale (Maas). Mindfulness, 3(1), 10–14. https://doi.org/10.1007/s12671-011-0074-1.
Niu, G. F., Sun, X. J., Subrahmanyam, K., Kong, F. C., Tian, Y., & Zhou, Z. K. (2016). Cue-induced craving for Internet addiction. *Addictive Behaviors, 62*, 1–5. https://doi.org/10.1016/j.addbeh.2016.06.012.

Patterson, P., & Mcdonald, F. E. (2015). "Being Mindful": Does it help adolescents and young adults who have completed cancer treatment? *Journal of Pediatric Oncology Nursing, 32*(4), 189–194. https://doi.org/10.1177/1043454214563401.

Ruisoto, P., & Contador, I. (2019). The role of stress in drug addiction. An integrative review. *Physiology and Behavior, 202*, 62–68. https://doi.org/10.1016/j.physbeh.2019.01.022.

Sancho, M., De Gracia, M., Rodríguez, R. C., Mallorquí-Bagué, N., Sánchez-González, J., Trujols, J., . . ., Menchón, J. M. (2018). Mindfulness-based interventions for the treatment of substance and behavioral addictions: A systematic review. *Frontiers in Psychiatry, 9*, 95. https://doi.org/10.3389/fpsyt.2018.00095.

Sayedte, M. A., Shiffman, S., Tiffany, S. T., Niaura, R. S., & Shadel, W. G. (2015). The measurement of drug craving. *Addiction, 95*(8), 189–210. https://doi.org/10.1111/add.12561.

Sevelko, K., Bischof, G., Bischof, A., Besier, B., John, U., Meyer, C., & Rumpf, H. J. (2018). The role of self-esteem in Internet addiction within the context of comorbid mental disorders: Findings from a general population-based sample. *Journal of Behavioral Addictions, 7*(4), 976–984. https://doi.org/10.1556/2006.7.2018.130.

Shapiro, S. L., Carlson, L. E., Astin, J. A., & Freedman, B. (2006). Mechanisms of mindfulness. *Journal of Clinical Psychology, 62*(3), 373–386. https://doi.org/10.1002/jclp.20237.

Snelleman, M., Schoenmakers, T. M., & van de Mheen, D. (2014). The relationship between perceived stress and cue sensitivity for alcohol. *Addictive Behaviors, 39*(12), 1884–1889. https://doi.org/10.1016/j.addbeh.2014.07.024.

Song, W. J., & Park, J. W. (2019). The influence of stress on internet addiction: Mediating effects of self-control and mindfulness. *International Journal of Mental Health and Addiction, 17*(4), 1063–1075. https://doi.org/10.1007/s11469-019-0051-9.

Tapper, K. (2018). Mindfulness and craving: Effects and mechanisms. *Clinical Psychology Review, 59*, 101–117. https://doi.org/10.1016/j.cpr.2017.11.003.

Tartter, M. A., & Ray, L. A. (2012). A prospective study of stress and alcohol craving in heavy drinkers. *Pharmacology, Biochemistry, and Behavior, 101*(4), 625–631. https://doi.org/10.1016/j.pbb.2012.03.007.

Tiffany, S. T., & Conklin, C. A. (2000). A cognitive processing model of alcohol craving and compulsive alcohol use. *Addiction, 95*(8), 145–153. https://doi.org/10.1080/09652140050111717.

Vadher, S. B., Panchal, B. N., Vala, A. U., Ratnani, I. J., Vasava, K. J., Desai, R. S., & Shah, A. H. (2019). Predictors of problematic Internet use in school going adolescents of Bhavnagar, India. *International Journal of Social Psychiatry, 65*(2), 151–157. https://doi.org/10.1177/0020764019827985.

Volkow, N. D., & Morales, M. (2015). The brain on drugs: From reward to addiction. *Cell, 162*(4), 712–725. https://doi.org/10.1016/j.cell.2015.07.046.

You, Z., Mei, W., Ye, N., Zhang, L., & Andrasik, F. (2021). Mediating effects of rumination and bedtime procrastination on the relationship between Internet addiction and poor sleep quality. *Journal of Behavioral Addictions, 9*(4), 1002–1010. https://doi.org/10.1556/2006.2020.200104.

Young, K. S. (1998). Internet addiction: The emergence of a new clinical disorder. *CyberPsychology and Behavior, 1*(3), 237–244. https://doi.org/10.1089/10920279875.

Zhang, J. T., Yao, Y. W., Potenza, M. N., Xia, C. C., Lan, J., Liu, L., . . . Fang, X. Y. (2016). Effects of craving behavioral intervention on neural substrates of cue-induced craving in Internet gaming disorder. *NeuroImage: Clinical, 12*, 591–599. https://doi.org/10.1016/j.nicl.2016.09.004.