An eco-epidemiological model with general functional response of predator to prey

Lopo F. de Jesus1,2 | César Marques Silva1 | Helder Vilarinho1

1Centro de Matemática e Aplicações (CMA-UBI), Universidade da Beira Interior, Covilhã, Portugal
2Instituto Superior de Ciências da Educação, Lubango, Angola

Correspondence
Helder Vilarinho, Centro de Matemática e Aplicações (CMA-UBI), Universidade da Beira Interior, 6201-001 Covilhã, Portugal.
Email: helder@ubi.pt

Funding information
L. de Jesus, C. M. Silva and H. Vilarinho were partially supported by FCT through CMA-UBI (project UIDB/00212/2020). L. F. de Jesus was also supported by INAGBE.

1INTRODUCTION

The description of the dynamics of eco-epidemiological systems is a subject that have been receiving increasing attention by the researchers interested in mathematical biology. The inclusion of infected classes in predator–prey models has shown that eco-epidemiological dynamics has several differences to the dynamics of original models. In particular, the inclusion of a disease in the preys or in the predators have several important impacts on the population, including in the size of the predator–prey community.1–7

To make models more realistic, it is important, in many situations, to consider time varying parameters. Several nonautonomous eco-epidemiological systems have been proposed and studied in the literature, starting with the case of periodic parameters,2,8–13 an important case since it is well known in epidemiology that some parameters, for instance incidence rates, are seldom subject to periodic seasonal fluctuations.

Dropping the assumption of periodicity, Niu et al13 obtained threshold conditions for the extinction and persistence of the infected preys for a class of general nonautonomous eco-epidemiological models with disease in the prey, containing the periodic case as a very particular situation. For the same model, Silva14 established the existence of an endemic periodic orbit when the parameters become periodic, giving a partial answer to a question formulated in Niu et al.13

In Niu et al13 and Silva,14 it is assumed that there is no predation on uninfected preys. From the biological point of view, this is a seldom a natural simplification: It is possible that infected individuals can be less active and caught more easily. Additionally, sometimes the infection modifies the behavior of the preys by making them live in a part of the habitat that is more accessible to predators. Nevertheless, this assumptions is not always realistic: Predators are often able to eat prey, even if they are not carriers of some infectious disease.
Ghosh et al.15 studied a model with predation on uninfected preys. Their model assumes that the uninfected prey population grow according to a logistic law. They also assume that, in the absence of the prey population considered, the predator dynamics also follows a logistic law (biologically, the situation reflects the availability of alternative preys). Moreover, they assume that the transmission of the disease is given by a bilinear contact rate and the predation of both uninfected and infected preys is given by some kind of Holling-type II functional response, even though the denominators are assumed to depend only on the uninfected prey or the infected prey, instead of depending on the total prey population. The authors provided in that paper a condition for uniform persistence of the disease and conditions for the global asymptotic stability of the positive periodic orbit they found.

Based on the model in Niu et al.13 and Silva,14 Lu et al.16 considered a family of models that include predation on uninfected preys described by a bilinear functional response and obtained threshold conditions for the extinction and persistence of the infected prey. In their model, the authors assume that in the absence of disease, the growth rate of the prey population is given by a linear equation, that the predator species vanishes in the absence of the considered prey and that both the transmission of the disease and the predation on infected and uninfected preys is given by Holling-type I functional responses. The extinction result in their work is given by some condition that depends on a bound for the size of an absorbing region. The model studied in17 has a very different structure from the models above: it includes the possibility of recovery and a modified Leslie–Gower functional response is used to describe the dynamics between migratory preys and their predators.

We also refer that several works already available in the literature deal with eco-epidemiological models with disease in the predator.18–21 Additionally, there are also works devoted to the study of eco-epidemiological models with delay22–24 as well as models for which optimal control theory is used.25–28 We also refer to Li et al.29 for a model defined in a time-scale setting and de Jesus et al.30 for a random model.

In all the previous mentioned papers, the functional response of the predator to prey is given by some particular function. Also the vital dynamics of predator and prey is assumed to follow some particular law. In this paper, we generalize the models in Niu et al.13 and Lu et al.16 by considering general functions corresponding to the predation on infected and uninfected preys and also to the vital dynamics of uninfected prey and predator populations. Namely, we consider the following eco-epidemiological model:

\begin{equation}
\begin{aligned}
S' &= G(t, S) - a(t) f(S, I, P)P - \beta(t)SI \\
I' &= \beta(t)SI - \eta(t)g(S, I, P)I - c(t)I \\
P' &= h(t, P)P + \gamma(t)\alpha(t) f(S, I, P)P + \theta(t)\eta(t)g(S, I, P)I
\end{aligned}
\end{equation}

where S, I, and P correspond, respectively, to the susceptible prey, infected prey, and predator, $\beta(t)$ is the incidence rate of the disease, $\eta(t)$ is the predation rate of infected prey, $c(t)$ is the death rate in the infective class, $\gamma(t)$ is the rate converting susceptible prey into predator (biomass transfer), $\theta(t)$ is the rate of converting infected prey into predator, $G(t, S)$ and $h(t, P)P$ represent the dynamics of the susceptible prey and predator populations, respectively, $a(t)f(S, I, P)$ is the predation of susceptible preys and $\eta(t)g(S, I, P)$ represents the predation of infected prey. It is assumed that only susceptible preys S are capable of reproducing; that is, the infected prey is removed by death (including natural and disease-related death) or by predation before having the possibility of reproducing.

The objective of this work is to discuss the uniform strong persistence and extinction of the infectives I in system (1). Recall that the infectives are \textit{uniformly strong persistent} in system (1) if there exist $0 < m_1 < m_2$ such that for every solution $(S(t), I(t)P(t))$ of (1) with positive initial conditions $S(t_0), I(t_0), P(t_0) > 0$, we have

$$m_1 < \lim \inf_{t \to \infty} I(t) \leq \lim \sup_{t \to \infty} I(t) < m_2,$$

and we say that the infectives I go to \textit{extinction} in system (1) if

$$\lim_{t \to +\infty} I(t) = 0,$$

for all solutions of (1) with positive initial conditions. For biological reasons, we will only consider for system (1) solutions with initial conditions in the set (\mathbb{R}_+^3).

Our approach is very different to the one in Niu et al.13 and Lu et al.16 In fact, we want to discuss the extinction and strong persistence of the infectives in system (1), having as departure point some prescribed behavior of subsystems related to the dynamics of preys and predators in the absence of disease. We will assume that we have global asymptotic stability of solutions of these special bidimensional subsystems (see condition S6 in Section 2). Thus, to apply our results to specific situations in the literature, one must first verify that the underlying referred subsystems satisfy our assumptions or, looking at our results differently, we can construct an eco-epidemiological model from a previously studied predator–prey model (the uninfected subsystem) that satisfies our assumptions. We believe that this approach is interesting since it highlights the relation of the dynamics of the eco-epidemiological model with the behavior of the predator–prey model used in its construction.

We note that, similarly to the thresholds obtained in Lu et al.16 our thresholds for extinction and uniform strong persistence are not sharp. In spite of this, unlike the conditions for extinction and strong persistence in Lu et al.16 that rely on parameters that cannot, in principle, be computed explicitly (note that conditions (22) and (43) in Lu et al.16 depend on q_i), our thresholds in Theorem 1 and Theorem 2 can be directly obtained from the parameters and the limit behavior of the predator-(uninfected) prey subsystem.

To illustrate this results, in Section 3, some models available in the literature, satisfying our assumptions, are considered and thresholds conditions for the corresponding eco-epidemiological model automatically obtained from our results: In Section 3.1, we consider the situation where $f \equiv 0$ in system (1), that is with no predation on uninfected preys, corresponding to a generalized version of the situation studied in Niu et al.13; in Section 3.2, we obtain a particular form for the threshold conditions in the context of periodic models and particularize our result for a model constructed from the predator–prey model in Goh31; in Section 3.3, we consider a model with Michaelis–Menten (or Holling-type I) functional response of predator to infected prey and a Holling-type II functional response of predator to susceptible prey; finally, in Section 3.4, we consider the eco-epidemiological model obtained from an uninfected subsystem with ratio-dependent functional response of predator to prey, a type interaction considered as an attempt to overcome some known biological paradoxes observed in models with Gause-type interaction and again obtain the corresponding results for the eco-epidemiological model, based on the discussion of ratio-dependent predator–prey systems in Hsu et al.32 For all these examples, we present some simulation that illustrate our conclusions.

In Theorem 3, we provide an iterative process that can be used to improve the extinction estimates in Theorem 1. In Section 3.5, we provide an example in order to illustrate this iterative scheme in a simple situation.

Throughout the paper, given a function f, we will use the notation $f^e = \inf_{t \geq 0} f(t)$, $f^u = \sup_{t \geq 0} f(t)$ and, for a ω-periodic function f, we set $f = (1/\omega) \int_0^\omega f(s)ds$.

2 Eco-epidemiological Models with Asymptotically Stable Behavior in the Predator-Uninfected Prey Subspace

We will assume the following hypothesis concerning the parameter functions and the functions f, g, G, and h appearing in our model (1):

(S1) The real valued functions a, β, η, c, γ, and θ are bounded, nonnegative, and continuous;
(S2) The real valued functions f, g, G, and $H(t,x) = h(t)x$ are locally Lipschitz and functions f and g are nonnegative and $f(0,0,z) = 0$, for every $z \geq 0$. For fixed $x,z \geq 0$, functions $y \mapsto f(x,y,z)$ and $y \mapsto g(x,y,z)$ are nonincreasing; for fixed $y,z \geq 0$, function $x \mapsto g(x,y,z)$ is nonincreasing; for fixed $x,y \geq 0$, function $z \mapsto f(x,y,z)$ is nonincreasing and function $z \mapsto g(x,y,z)$ is nondecreasing.

Our next assumption relates to the ω-limit of solutions of (1) and is usually fulfilled by mathematical models in eco-epidemiology.

(S3) Each solution of (1) with positive initial condition is bounded and there is a bounded region R that contains the ω-limit of all solutions of (1) with positive initial conditions.

Notice in particular that condition S3 implies that there is $L > 0$ such that

$$\limsup_{t \to +\infty} (S(t) + I(t) + P(t)) < L,$$

for all solutions $(S(t), I(t), P(t))$ of (1) with positive initial conditions.
To proceed, we need to consider two auxiliary equations and one auxiliary system. First, we consider the equation

\[s' = G(t, s), \]

(2)

describes the dynamics of uninfected preys in the absence of infected preys and predators (the first equation in system (1) with \(I = 0 \) and \(P = 0 \)). We assume the following properties for the solutions of (2):

(S4) Each solution \(s(t) \) of (2) with positive initial condition is bounded, bounded away from zero, and globally attractive on \([0, +\infty[\), that is, \(|s(t) - v(t)| \to 0 \) as \(t \to +\infty \) for each solution \(v(t) \) of (2) with positive initial condition. The second auxiliary equation we consider is the equation

\[y' = h(t, y), \]

(3)

describes the dynamics of predators in the absence of the considered preys (the third equation in system (1) with \(I = 0 \) and \(S = 0 \)). We need the following property for the solutions of (3):

(S5) Each fixed solution \(y(t) \) of (3) with positive initial condition is bounded and globally attractive on \([0, +\infty[\).

Finally, we consider the uninfected subsystem, that is, the system that describes the behavior of preys and predators in the absence of infected preys (the first and third equations of system (1) with \(I = 0 \)), given by

\[
\begin{cases}
 x' = G(t, x) - a(t) f(x, 0, z) z \\
 z' = h(t, z) + \gamma(t) a(t) f(x, 0, z) z
\end{cases}
\]

(4)

We assume that we are able to construct a family of auxiliary subsystems

\[
\begin{cases}
 x' = G_{1,\epsilon}(t, x) - a(t) f(x, 0, 0) \hat{x} \epsilon(t) - v(\epsilon) \rho(t) x \\
 z' = h_{1,\epsilon}(t, z) + \gamma(t) a(t) f(x, 0, z) \rho(\epsilon, z) z
\end{cases}
\]

(5)

where \((\hat{x}(t), \hat{z}(t))\) is a solution of

\[
\begin{cases}
 x' = G_{2,\epsilon}(t, x) \\
 z' = h_{2,\epsilon}(t, z) + \gamma(t) a(t) f(x, 0, z) \rho(\epsilon, g(x, 0, z) + v(\epsilon) \rho(t) g(x, 0, z)
\end{cases}
\]

(6)

satisfying the following assumptions:

(S6) The following holds for systems (5) and (6):

(S6.1) for sufficiently small \(\epsilon > 0 \), the functions \(G_{1,\epsilon} \) and \(h_{1,\epsilon} \), \(\epsilon = 1, 2 \), are continuous, the functions \(\epsilon \mapsto G_{1,\epsilon} \) and \(\epsilon \mapsto h_{1,\epsilon} \), \(\epsilon = 1, 2 \), are continuous, \(G_{1,0} = G_{2,0} = G, h_{1,0} = h_{2,0} = h \),

\[G_{1,\epsilon}(t, x) \leq G(t, x) \leq G_{2,\epsilon}(t, x) \]

and

\[h_{1,\epsilon}(t, x) \leq h(t, x) \leq h_{2,\epsilon}(t, x); \]

(S6.2) the real valued function \(v : [0, +\infty[\to \mathbb{R} \) verifies \(v(\epsilon) > 0 \) for \(\epsilon \in [0, +\infty[\), \(v(0) = 0 \) and is differentiable near \(\epsilon = 0 \) with

\[A < v'(\epsilon) < B, \]

for some \(A, B > 0 \) and sufficiently small \(\epsilon \geq 0 \);

(S6.3) we have \(0 < \rho' \leq \rho'' < +\infty \);
Main results

(S6.4) there is a family of nonnegative solutions, \(\{ (x_1^*(t), z_1^*(t)) \} \) of system (5), one solution for each \(\epsilon \geq 0 \) sufficiently small, depending on a solution \((x_{1,0}^*(t), z_{1,0}^*(t)) \) of system (6), such that each solution in the family is globally asymptotically stable in a set containing the set \((\mathbb{R}^+)^2\) and the function

\[
\epsilon \mapsto (x_1^*(t), z_1^*(t)) \text{ is continuous;}
\]

(S6.5) the family of nonnegative solutions \(\{ (x_{2,0}^*(t), z_{2,0}^*(t)) \} \) of system (6), one solution for each \(\epsilon \geq 0 \) sufficiently small, is such that each solution in the family is globally asymptotically stable in a set containing the set \((\mathbb{R}^+)^2\) and the function

\[
\epsilon \mapsto (x_{2,0}^*(t), z_{2,0}^*(t)) \text{ is continuous.}
\]

We write \(x_{1,0}^* = x_1^*, x_{2,0}^* = x_2^*, z_{1,0}^* = z_1^*, \) and \(z_{2,0}^* = z_2^* \) for the components of the solutions in S6.4 and S6.5 corresponding to \(\epsilon = 0 \). For the continuity of the functions in S6.1, S6.4, and S6.5, we consider the usual supremum norm, \(\| \cdot \|_0 \) (notice that, by S3, the solutions are bounded). Note that we only aim to control two suitable families of perturbations of the uninfected subsystem, so that condition S6 is sufficiently flexible to adapt to a wide range of uninfected subsystems associated to the eco-epidemiological models.

We emphasize that our setting includes several of the most common functional responses for both functions \(f \) and \(g \). Writing

\[
f(S, I, P) = \frac{kS^a}{h(S, I, P)} \quad \text{and} \quad g(S, I, P) = \frac{kP^c}{h(S, I, P)},
\]

we may consider the following cases:

- Holling-type I: \(h(S, I, P) = 1, \ a = 1 \)
- Holling-type II: \(h(S, I, P) = (1 + m(S + I)), \ a = 1 \)
- Holling-type III: \(h(S, I, P) = (1 + m(S + I)), \ a > 0 \)
- Holling-type IV: \(h(S, I, P) = (a + b(S + I) + c(S + I)^2), \ a = 1 \)
- Beddington-De Angelis: \(h(S, I, P) = (a + b(S + I) + cP), \ a = 1 \)
- Crowley-Martin: \(h(S, I, P) = (a + b(S + I) + cP + d(S + I)P), \ a = 1, \)

where \(k, m, a, b, c, d > 0 \).

2.1 Main results

In this subsection, we will establish our results on the extinction and uniform strong persistence of the infective prey in system (1), assuming conditions S1 to S6.

We define

\[
\mathcal{R}^c(\lambda) = \lim \inf_{t \to +\infty} \int_t^{t+\lambda} \beta(s)x_1^*(s) - \eta(s)g(x_1^*(s), 0, z_1^*(s)) - c(s)ds,
\]

where we still denote by \(x_1^*(t) \) and \(z_1^*(t) \) the components of solutions in systems S6.4 and S6.5, with \(\epsilon = 0 \), and

\[
\mathcal{R}^u(\lambda) = \lim \sup_{t \to +\infty} \int_t^{t+\lambda} \beta(s)s^*(s) - \eta(s)g(s^*(s), 0, y^*(s)) - c(s)ds.
\]

where \(s^*(t) \) and \(y^*(t) \) are particular solutions, respectively, of (2) and (3) with positive initial conditions.

As we will see in the following, using the global attractivity of solutions of (2) and (3) in \([0, +\infty[\) and the global attractivity of solutions given at S6.4 and S6.5 we can easily conclude that (7) is independent of the particular solutions considered in S6.4 and S6.5. Similarly, it is easy to conclude that (8) is independent of the particular solutions of (2) and (3) with positive initial conditions considered.

Proposition 1. The numbers (7) and (8) are independent, respectively, of the particular solutions considered in S6.4 and S6.5 and of the particular solutions of (2) and (3) with positive initial conditions chosen.

Proof. Let \((x_1^*(t), z_1^*(t)), (x_1^*(t), z_1^*(t)), (\bar{x}_1^*(t), \bar{z}_1^*(t)), (\bar{x}_2^*(t), \bar{z}_2^*(t)) \) be two distinct pairs of nonnegative solutions of (5) and (6) as in S6.4 and S6.5. Let \(\delta > 0 \). By S6, for \(t \geq T_0 \) sufficiently large, we have

\[
x_1^*(t) - \delta \leq \bar{x}_1^*(t) \leq x_1^*(t) + \delta \quad \text{and} \quad z_1^*(t) - \delta \leq \bar{z}_1^*(t) \leq z_1^*(t) + \delta.
\]

\[
x_2^*(t) - \delta \leq \bar{x}_2^*(t) \leq x_2^*(t) + \delta \quad \text{and} \quad z_2^*(t) - \delta \leq \bar{z}_2^*(t) \leq z_2^*(t) + \delta.
\]

\[
\eta(s)g(x_1^*(s), 0, z_1^*(s)) - \bar{\eta}(s)g(x_1^*(s), 0, \bar{z}_1^*(s)) \leq \eta(s)g(x_1^*(s), 0, z_1^*(s)) - \bar{\eta}(s)g(x_1^*(s), 0, \bar{z}_1^*(s)) \leq \|
\]
Additionally, by S1 and S2, we have, for every $t \geq T_0$,
\[
\left| \int_t^{t+\lambda} \beta(s)x_1^*(s) - \eta(s)g(x_1^*(s), 0, z_2^*(s)) - c(s)ds - \int_t^{t+\lambda} \beta(s)x_1^*(s) - \eta(s)g(x_1^*(s), 0, z_2^*(s)) - c(s)ds \right|
\leq \int_t^{t+\lambda} \beta(s)\left| x_1^*(s) - x_1^*(s) \right| + \eta(s)\left| g(x_1^*(s), 0, z_2^*(s)) - g(x_1^*(s), 0, z_2^*(s)) \right| ds
\leq \lambda \beta \delta + 2\lambda \eta \phi(\delta),
\]
with $\phi(\delta) \to 0$ as $\delta \to 0$. We conclude that, for every $\delta > 0$,
\[
\liminf_{t \to +\infty} \int_t^{t+\lambda} \beta(s)x_1^*(s) - \eta(s)g(x_1^*(s), 0, z_2^*(s)) - c(s)ds = \lambda \beta \delta - 2\lambda \eta \phi(\delta)
\leq \liminf_{t \to +\infty} \int_t^{t+\lambda} \beta(s)x_1^*(s) - \eta(s)g(x_1^*(s), 0, z_2^*(s)) - c(s)ds
\leq \liminf_{t \to +\infty} \int_t^{t+\lambda} \beta(s)x_1^*(s) - \eta(s)g(x_1^*(s), 0, z_2^*(s)) - c(s)ds + \lambda \beta \delta + 2\lambda \eta \phi(\delta).
\]

Thus, $R^f(\lambda)$ is independent of the chosen solution. Taking, respectively, \limsup, $s^*(t)$ and $y^*(t)$ instead of \liminf, $x_1^*(t)$ and $z_2^*(t)$ and using the same reasoning we can prove that $R^u(\lambda)$ is also independent of the particular solutions chosen. The result follows.

Theorem 1. Assume that conditions S1 to S5 hold. Assume further that either $G(t, S) = \Lambda(t) - \mu(t)S$ and $g(S + I, 0, P) \leq g(S, I, P)$ or g does not depend on I. If there is $\lambda > 0$ such that $R^u(\lambda) < 0$, then the infectives in system (1) go to extinction.

Proof. Assume that there is $\lambda > 0$ such that $R^u(\lambda) < 0$ and let $s^*(t)$ and $y^*(t)$ be particular solutions, respectively, of (2) and (3) with positive initial conditions. Since functions β and η are bounded, there are $\kappa > 0$, $t_0 > 0$ and $\epsilon_0 > 0$ such that, for $t \geq t_0$ and $\delta \in [0, \epsilon_0]$, we have
\[
\int_t^{t+\lambda} \beta(s)(s^*(s) + \delta) - \eta(s)g(s^*(s) + \delta, 0, y^*(s) - \delta) - c(s)ds \leq -\kappa < 0.
\]

Let $(S(t), I(t), P(t))$ be a solution of (1) with positive initial conditions. We will prove first that
\[
\liminf_{t \to +\infty} I(t) = 0.
\]

Assume that (10) does not hold. Then, there is $\epsilon > 0$ such that $I(t) > \epsilon$ for all sufficiently large t. By the first equation of (1), we have
\[
S' \leq G(t, S),
\]
and thus $S(t) \leq s(t)$, where $s(t)$ is the solution of (2) with $s(t_0) = S(t_0)$. By condition S4, given $\epsilon \in [0, \epsilon_0]$, we have $S(t) \leq s^*(t) + \epsilon$, for all sufficiently large t.

By the third equation of (1), we have
\[
P' \geq h(t, P)P,
\]
and thus $P(t) \geq y(t)$, where $y(t)$ is the solution of (3) with $y(t_0) = P(t_0)$. By condition S5, given $\epsilon \in [0, \epsilon_0]$, we have $P(t) \geq y^*(t) - \epsilon$, for all sufficiently large t.

When $G(t, S) = \Lambda(t) - \mu(t)S$,
\[
(S + I)' \leq \Lambda(t) - \mu(t)S - c(t)I \leq \Lambda(t) - \mu(t)(S + I),
\]
and consequently, for sufficiently large t
\[
S(t) + I(t) \leq s^*(t) + \epsilon.
\]
Under this assumption on G, by the second equation of (1), since we assumed that $g(S + I, 0, P) \leq g(S, I, P)$, we have

$$I' \leq [\beta(t)(s^*(t) + \epsilon) - \eta(t)g(s^*(t) + \epsilon, 0, y^*(t) - \epsilon) - c(t)] I,$$

(11)

for all sufficiently large t. Notice that, for a general G, if g does not depend on I, we have $g(S, I, P) \geq g(s^*(t) + \epsilon, 0, y^*(t) - \epsilon)$ and we still obtain inequality (11).

Assume that conditions S1 to S3 and S6 hold. If there is $t \geq 0$ such that $I(t) > \epsilon$ for sufficiently large t. We conclude that (10) holds.

Let $\epsilon > 0$. Next, we will prove that for sufficiently large t,

$$I(t) \leq \epsilon e^{h_1},$$

(12)

where

$$h = \sup_{t \geq 0} |\beta(t)(s^*(t) + \epsilon_0) - \eta(t)g(s^*(t) + \epsilon_0, 0, y^*(t) - \epsilon_0) - c(t)|.$$

By (10), there exists $t_1 \geq t_0$ such that $I(t_1) < \epsilon$.

Assume by contradiction that (12) does not hold. Then, there is $t_2 > t_1$ such that $I(t_2) > \epsilon e^{h_1}$. Since $I(t_1) < \epsilon$, there is $t_3 \in [t_1, t_2]$ such that $I(t_1) = \epsilon$ and $I(t) > \epsilon$, for all $t \in [t_1, t_2]$. Integrating, we get, by (9),

$$\epsilon e^{h_1} < I(t_2)$$

$$\leq I(t_3) \exp \left\{ \int_{t_1}^{t_2} \beta(r)(s^*(r) + \epsilon) - \eta(r)g(s^*(r) + \epsilon, 0, y^*(r) - \epsilon) - c(r)dr \right\}$$

$$\leq \epsilon \exp \left\{ \int_{t_1 + [(t_2 - t_1)] \lambda}^{t_2} \beta(r)(s^*(r) + \epsilon_0) - \eta(r)g(s^*(r) + \epsilon_0, 0, y^*(r) - \epsilon_0) - c(r)dr \right\}$$

$$\leq \epsilon e^{h_1},$$

which is a contradiction. Thus, we conclude that (12) holds and, since $\epsilon \in [0, \epsilon_0]$ is arbitrary, we conclude that $I(t) \to 0$ as $t \to 0$, as claimed.

Theorem 2. Assume that conditions S1 to S3 and S6 hold. If there is $\lambda > 0$ such that $R^c(\lambda) > 0$, then the infectives in system (1) are uniformly strong persistent.

Proof. Assume that there is $\lambda > 0$ such that $R^c(\lambda) > 0$ and let us fix particular families of solutions of systems (5) and (6), respectively ($x_{1,t}^*(t), z_{1,t}^*(t)$) and ($x_{2,t}^*(t), z_{2,t}^*(t)$), with positive initial conditions and satisfying S6.4 and S6.5. Then, we can choose $t_0 > 0$, $\kappa > 0$ and $\epsilon_0 > 0$ such that, for $t \geq t_0$ and $\delta \in [0, \epsilon_0]$, we have

$$\int_{t}^{t+\lambda} \beta(s)(x_{1,s}^*(s) - \delta) - \eta(s)g(x_{1,s}^*(s) - \delta, \delta, z_{1,s}^*(s) + \delta) - c(s)ds \geq \kappa > 0.$$

(13)
Let \((S(t), I(t), P(t))\) be a solution of (1) with positive initial conditions. We will prove first that there is \(\varepsilon > 0\) such that

\[
\limsup_{t \to +\infty} I(t) \geq \frac{v(\varepsilon) \rho'}{(1 + \beta^u)(1 + \theta^u \eta^u)} > 0. \quad (14)
\]

Assume that for all sufficiently small \(\varepsilon > 0\),

\[
\limsup_{t \to +\infty} I(t) < \frac{v(\varepsilon) \rho'}{(1 + \beta^u)(1 + \theta^u \eta^u)}.
\]

Then, we conclude that there is \(t_1 > t_0\), such that

\[
I(t) < \frac{v(\varepsilon) \rho'}{(1 + \beta^u)(1 + \theta^u \eta^u)} < v(\varepsilon) \rho(t), \quad (15)
\]

for each \(t \geq t_1\). By the first and third equations of (1) and the inequalities in S6.1, we have

\[
\begin{align*}
S' &\leq G_{2,\varepsilon}(t, S) \\
P' &\leq h_{2,\varepsilon}(t, P) + \gamma(t)a(t)f(S, 0, P) + v(\varepsilon) \rho(t) \theta(t) \eta(t)g(S, 0, P)
\end{align*}
\]

Let \((\hat{x}_e(t), \hat{z}_e(t))\) be the solution of

\[
\begin{align*}
x' &= G_{2,\varepsilon}(t, x) \\
z' &= h_{2,\varepsilon}(t, z)z + \gamma(t)a(t)f(x, 0, z)z + v(\varepsilon) \rho(t) \theta(t) \eta(t)g(x, 0, z)
\end{align*}
\]

with \(\hat{x}_e(t_1) = S(t_1)\) and \(\hat{z}_e(t_1) = P(t_1)\). We have \(S(t) \leq \hat{x}_e(t)\) and \(P(t) \leq \hat{z}_e(t)\) for \(t \geq t_1\). By the global stability assumption in S6.5, we have

\[
|x_{2,\varepsilon}^e(t) - \hat{x}_e(t)| \to 0 \quad \text{and} \quad |z_{2,\varepsilon}^e(t) - \hat{z}_e(t)| \to 0, \quad \text{as} \quad t \to +\infty
\]

and, by continuity, again according to S6.5, we have for sufficiently large \(t\)

\[
|x_{2,\varepsilon}^e(t) - \hat{x}_e(t)| \leq \|x_{2,\varepsilon}^e(t) - x_{2,\varepsilon}^e(t)| + \|x_{2,\varepsilon}^e(t) - \hat{x}_e(t)|
\leq \|x_{2,\varepsilon}^e - x_{2,\varepsilon}^e\|_0 + \|x_{2,\varepsilon}^e(t) - \hat{x}_e(t)|
\leq \phi_1(\varepsilon),
\]

and

\[
|z_{2,\varepsilon}^e(t) - \hat{z}_e(t)| \leq \|z_{2,\varepsilon}^e(t) - z_{2,\varepsilon}^e(t)| + \|z_{2,\varepsilon}^e(t) - \hat{z}_e(t)|
\leq \|z_{2,\varepsilon}^e - z_{2,\varepsilon}^e\|_0 + \|z_{2,\varepsilon}^e(t) - \hat{z}_e(t)|
\leq \phi_2(\varepsilon),
\]

with \(\phi_1(\varepsilon), \phi_2(\varepsilon) \to 0\) as \(\varepsilon \to 0\). In particular, for sufficiently large \(t\),

\[
S(t) \leq \hat{x}_e(t) \leq \phi_1(\varepsilon) + x_{2,\varepsilon}^e(t) \quad \text{and} \quad P(t) \leq \hat{z}_e(t) \leq \phi_2(\varepsilon) + z_{2,\varepsilon}^e(t). \quad (16)
\]

On the other hand, by (15) and the first and third equations of (1), we have

\[
\begin{align*}
S' &\geq G_{1,\varepsilon}(t, S) - a(t)f(S, 0, 0)z_e(t) - v(\varepsilon) \rho(t)S \\
P' &\geq h_{1,\varepsilon}(t, P) + \gamma(t)a(t)f(S, v(\varepsilon) \rho^a, P)P
\end{align*}
\]
Letting \((\tilde{x}_e(t), \tilde{z}_e(t))\) be the solution of
\[
\begin{cases}
x' = G_{1,\epsilon}(t, x) - a(t)f(x, 0, 0)\tilde{x}_e(t) - v(\epsilon)\rho(t)x \\
z' = h_{1,\epsilon}(t, z)z + y(t)a(t)(f(x, \nu(t)\rho^\mu, z)z
\end{cases},
\]
with \(\tilde{x}(t_1) = S(t_1)\) and \(\tilde{z}(t_1) = P(t_1)\), we have \(S(t) \geq \tilde{x}_e(t)\) and \(P(t) \geq \tilde{z}_e(t)\), for all \(t \geq t_1\). By the global stability assumption in S6.4, we have
\[
\left| x^*_{1,\epsilon}(t) - \tilde{x}_e(t) \right| \to 0 \text{ and } \left| z^*_{1,\epsilon}(t) - \tilde{z}_e(t) \right| \to 0, \text{ as } t \to +\infty.
\]
and, by the continuity property in S6.4, for sufficiently large \(t\), we have
\[
\left| x^*_1(t) - x^*_{1,\epsilon}(t) \right| \leq \left| x^*_1(t) - x^*_1(t) \right| + \left| x^*_{1,\epsilon}(t) - \tilde{x}_e(t) \right| \\
\leq \| x^*_1 - x^*_{1,\epsilon} \|_0 + \left| x^*_{1,\epsilon}(t) - \tilde{x}_e(t) \right| \\
\leq \psi_1(\epsilon),
\]
and
\[
\left| z^*_1(t) - \tilde{z}_e(t) \right| \leq \left| z^*_1(t) - z^*_{1,\epsilon}(t) \right| + \left| z^*_{1,\epsilon}(t) - \tilde{z}_e(t) \right| \\
\leq \| z^*_1 - z^*_{1,\epsilon} \|_0 + \left| z^*_{1,\epsilon}(t) - \tilde{z}_e(t) \right| \\
\leq \psi_2(\epsilon),
\]
with \(\psi_1(\epsilon), \psi_2(\epsilon) \to 0\) as \(\epsilon \to 0\). In particular, for sufficiently large \(t\),
\[
S(t) \geq \tilde{x}_e(t) \geq x^*_1(t) - \psi_1(\epsilon) \text{ and } P(t) \geq \tilde{z}_e(t) \geq z^*_1(t) - \psi_2(\epsilon).
\]
By the second equation in (1), (13), (16), and (17), we get, for \(t \geq t_1\),
\[
\int_t^{t+\lambda} \beta(s)S(s) - \eta(s)g(S(s), I(s), P(s)) - c(s) ds \\
\geq \int_t^{t+\lambda} \beta(s)(x^*_1(s) - \psi_1(\epsilon)) - \eta(s)g(x^*_1(s) - \psi_1(\epsilon), v(\nu(t)\rho^\mu, z^*_2(s) + \phi_2(\epsilon)) - c(s) ds \geq \kappa.
\]
Thus, choosing \(\epsilon > 0\) such that \(\max\{\phi_2(\epsilon), \psi_1(\epsilon), v(\epsilon)\rho^\mu\} < \epsilon_0\), we have
\[
I(t) = I(t_1)\exp \left\{ \int_t^{t_1} \beta(s)S(s) - \eta(s)g(S(s), I(s), P(s)) - c(s) ds \right\} \\
\geq I(t_1)\exp \left\{ \int_t^{t_1} \beta(s)x^*_1(s) - \psi_1(\epsilon) ds \right\} \\
\times \exp \left\{ \int_t^{t_1} -\eta(s)g(x^*_1(s) - \psi_1(\epsilon), 0, z^*_2(s) + \phi_2(\epsilon)) - c(s) ds \right\} \\
\geq I(t_1)e^{-\int_{t_1}^{t+\lambda} \beta(s)(x^*_1(s) - \psi_1(\epsilon))ds} \\
\times \exp \left\{ \int_{t_1}^{t+\lambda} \beta(s)(x^*_1(s) - \psi_1(\epsilon))ds \right\} \\
\times \exp \left\{ \int_{t_1}^{t+\lambda} -\eta(s)g(x^*_1(s) - \psi_1(\epsilon), 0, z^*_2(s) + \phi_2(\epsilon)) - c(s) ds \right\} \\
\geq I(t_1)e^{\int_{t_1}^{t+\lambda} \kappa} e^{-\int_{t_1}^{t+\lambda} (\beta(s)(x^*_1(s) - \psi_1(\epsilon), 0, z^*_2(s) + \phi_2(\epsilon)) - c(s)) ds},
\]
a contradiction to the fact that, according to S3, \(I(t)\) is bounded. We conclude that (14) holds.
Next, we will prove that there is $m_1 > 0$ such that for any solution \((S(t), I(t), P(t))\) with positive initial condition,

\[
\liminf_{t \to +\infty} I(t) > m_1. \tag{18}
\]

Assume that (18) does not hold. Then, given $\varepsilon \in (0, \varepsilon_0]$, there exists a sequence of initial values \((x_n)_{n \in \mathbb{N}}\), with $x_n = (S_n, I_n, P_n)$ and $S_n > 0$, $I_n > 0$, and $P_n > 0$ such that

\[
\liminf_{t \to +\infty} I(t, x_n) < \frac{\rho^\mu v(\varepsilon / n^2)}{(1 + \theta^\mu \eta^\mu)(1 + \beta^\mu)},
\]

where \((S(t, x_n), I(t, x_n), P(t, x_n))\) denotes the solution of (1) with initial conditions $S(0) = S_n$, $I(0) = I_n$, and $P(0) = P_n$.

By (14), given $n \in \mathbb{N}$, there are two sequences \((t_{n,k})_{k \in \mathbb{N}}\) and \((s_{n,k})_{k \in \mathbb{N}}\) with

\[
s_{n,1} < t_{n,1} < s_{n,2} < \cdots < s_{n,k} < t_{n,k} < \cdots
\]

and $\lim_{k \to +\infty} s_{n,k} = +\infty$, such that

\[
I(s_{n,k}, x_n) = \frac{\rho^\mu v(\varepsilon / n^2)}{(1 + \theta^\mu \eta^\mu)(1 + \beta^\mu)}, \quad I(t_{n,k}, x_n) = \frac{\rho^\mu v(\varepsilon / n^2)}{(1 + \theta^\mu \eta^\mu)(1 + \beta^\mu)} \tag{19}
\]

and, for all $t \in [s_{n,k}, t_{n,k}]$,

\[
\frac{\rho^\mu v(\varepsilon / n^2)}{(1 + \theta^\mu \eta^\mu)(1 + \beta^\mu)} < I(t, x_n) < \frac{\rho^\mu v(\varepsilon / n)}{(1 + \theta^\mu \eta^\mu)(1 + \beta^\mu)}. \tag{20}
\]

By the second equation in (1) and S3, for sufficiently large t, we have

\[
I'(t, x_n) = \left[\beta(t)S(t, x_n) - \eta(t)g(S(t, x_n), I(t, x_n), P(t, x_n)) - c(t)\right] I(t, x_n)
\geq -\eta^\mu g(L, 0, 0) + c^\mu)I(t, x_n).
\]

Therefore, we obtain

\[
\int_{s_{n,k}}^{t_{n,k}} \frac{I'(r, x_n)}{I(r, x_n)} dr \geq -\eta^\mu g(L, 0, 0) + c^\mu)(t_{n,k} - s_{n,k}).
\]

and thus $I(t_{n,k}, x_n) \geq I(s_{n,k}, x_n)e^{-\eta^\mu g(L, 0, 0) + c^\mu)(t_{n,k} - s_{n,k})}$. By (19), and S6.3, we get

\[
\frac{\rho^\mu v(\varepsilon / n^2)}{\rho^\mu v(\varepsilon / n)} \geq \frac{\rho(t_{n,k})v(\varepsilon / n^2)}{\rho(s_{n,k})v(\varepsilon / n)} \geq e^{-\eta^\mu g(L, 0, 0) + c^\mu)(t_{n,k} - s_{n,k})},
\]

and therefore, we have

\[
t_{n,k} - s_{n,k} \geq \frac{\log(\rho^\mu / \rho^\mu) + \log(v(\varepsilon / n^2)/v(\varepsilon / n^2))}{\eta^\mu g(L, 0, 0) + c^\mu} \to +\infty \tag{21}
\]

as $n \to +\infty$, since, by S6.2, we have

\[
\lim_{n \to +\infty} \frac{v(\varepsilon / n)}{v(\varepsilon / n^2)} = \lim_{n \to +\infty} \frac{n v'(\varepsilon / n)}{2 v(\varepsilon / n^2)} \geq \lim_{n \to +\infty} \frac{An}{2B} = +\infty.
\]

By the first and third equations of (1) and (20), we have, for $t \in [s_{n,k}, t_{n,k}]$,

\[
\begin{cases}
S' \leq G_{2,2}(t, S(t, x_n)) \\
P' \leq h_{2,2}(t, P(t, x_n))P(t, x_n) + \gamma(t)a(t)f(S(t, x_n), 0, P(t, x_n))P(t, x_n) \\
\quad + \rho(t)v(\varepsilon / n)\theta(t)\eta(t)g(S(t, x_n), 0, P(t, x_n))
\end{cases}
\]
Letting \((\hat{x}_{n,k}(t), \hat{z}_{n,k}(t))\) be the solution of
\[
\begin{align*}
\left\{
\begin{array}{l}
x' = G_{2,r}(t,x) \\
z' = h_{2,r}(t,z) + \gamma(t)a(t)f(x,0,z) + \rho(t)\nu(\epsilon/n)\theta(t)g(x,0,z)
\end{array}
\right.,
\end{align*}
\]
with \(\hat{x}_{n,k}(S_{n,k}) = S_{n,k}\) and \(\hat{z}_{n,k}(S_{n,k}) = P(S_{n,k})\). We conclude that \(S(t,x_n) \leq \hat{x}_{n,k}(t)\) and \(P(t,x_n) \leq \hat{z}_{n,k}(t)\), for each \(t \in [S_{n,k}, t_{n,k}]\). By N6.5, given \(\delta > 0\), we have
\[
|x_{2,r/n}(t) - x_{n,k}(t)| < \delta/2 \text{ and } |z_{2,r/n}(t) - z_{n,k}(t)| < \delta/2,
\]
for all sufficiently large \(k\) (that depends on \(n\)). By continuity, for sufficiently large \(n\) and all sufficiently large \(k \geq K(n)\), we have
\[
|x_{2,r/n}(t) - x_{n,k}(t)| < \delta/2 \text{ and } |z_{2,r/n}(t) - z_{n,k}(t)| < \delta/2,
\]
and
\[
|x_{2,r/n}(t) - x_{n,k}(t)| < \delta/2 \text{ and } |z_{2,r/n}(t) - z_{n,k}(t)| < \delta/2.
\]
In particular, for sufficiently large \(n\), all sufficiently large \(k \geq K(n)\) and for \(t \in [S_{n,k}, t_{n,k}]\), we have
\[
S(t) \leq \hat{x}_{n,k}(t) \leq x_{n,k}(t) + \delta \text{ and } P(t) \leq \hat{z}_{n,k}(t) \leq z_{n,k}(t) + \delta. \tag{22}
\]
Similar computations show that, for sufficiently large \(n\), all sufficiently large \(k \geq K(n)\) and for \(t \in [S_{n,k}, t_{n,k}]\), we obtain
\[
S(t) \geq \hat{x}_{n,k}(t) \geq x_{n,k}(t) - \delta \text{ and } P(t) \geq \hat{z}_{n,k}(t) \geq z_{n,k}(t) - \delta. \tag{23}
\]
Notice that, for a given \(\delta\), eventually considering a larger \(n\), we can take the same \(n\) and \(k\) in (22) and (23).
Given \(l > 0\), by (21), we can choose \(T > 0\) such that \(t_{n,k} - S_{n,k} > l\) for all \(n \geq T\). Therefore, by (19), (22), and (23), and by the second equation in (1), for \(n \geq T\) and \(k \geq K(n)\), we get
\[
\frac{\rho^\mu v(\epsilon/n^2)}{(1 + \theta^\mu \eta^\mu)(1 + \beta^\mu)} = I(t_{n,k}, x_n) = \exp \left\{ \int_{S_{n,k}}^{t_{n,k}} \beta(r)S(r) - \eta(r)g(S(r), I(r), P(r)) - c(r)dr \right\}
\]
\[
\geq I(S_{n,k}, x_n) \times \exp \left\{ kl + \int_{S_{n,k}}^{t_{n,k}} \beta(r)(x_n^*(r) - \delta) - \eta(r)g(x_n^*(r) - \delta, 0, z_n^*(r) + \delta) - c(r)dr \right\}
\]
\[
\geq \frac{\rho^\mu v(\epsilon/n)}{(1 + \theta^\mu \eta^\mu)(1 + \beta^\mu)} e^{k(1-\beta^\mu \eta^\mu(\|x_n^*(r) - \delta, 0, z_n^*(r) + \delta\| + c^*)}
\]
\[
\geq \frac{\rho^\mu v(\epsilon/n)}{(1 + \theta^\mu \eta^\mu)(1 + \beta^\mu)}.
\]
for sufficiently large \(l\) (that requires that \(T\) is sufficiently large). We conclude that
\[
\frac{\rho^\mu v(\epsilon/n^2)}{\rho^\mu v(\epsilon/n)} > 1,
\]
and this contradicts the fact that, by S6.2 and S6.3, we have
\[
\lim_{n \to +\infty} \frac{\rho^\mu v(\epsilon/n^2)}{\rho^\mu v(\epsilon/n)} = \lim_{n \to +\infty} \frac{2\rho^\mu v(\epsilon/n^2)/n^3}{\rho^\mu v(\epsilon/n)/n^2} \leq \lim_{n \to +\infty} \frac{2\rho^\mu B}{n \rho^\mu A} = 0.
\]
We conclude that there is $m_1 > 0$ such that $\liminf_{t \to +\infty} I(t) > m_1$ and the result follows from S2. \qed

In Lu et al., the authors obtain extinction and persistence results for eco-epidemiological model with Crowley–Martin functional response. In the extinction result, the authors consider auxiliary equations different from (2) and (3) using some upper bound for S and some lower bound for P related to the dimension of some positive invariant region that contains the omega limit of all solutions. We will borrow and improve the idea of that paper in our context. To this purpose, we need to consider families of auxiliary equations. We begin by noticing that, by the proof of Theorem 1, for any solution $(S(t), I(t), P(t))$ of our problem with initial condition $(S_0, I_0, P_0) = (S_0, I_0, P_0)$, we have $s^{1,\ell}(t) \leq S(t) \leq s^{1,u}(t)$ and $y^{1,\ell}(t) \leq P(t) \leq y^{1,u}(t)$, for all $t > 0$ sufficiently large, where $s^{1,\ell}(t) = 0, s^{1,u}(t)$ is the solution of (2) with initial condition $s^{1,u}(0) = S_0$ and $y^{1,\ell}(t) = L$, where L is given in condition S3. Let $k \in \mathbb{N}$ be given and assume that $s^{k,u}(t), s^{k,\ell}(t), y^{k,u}(t)$ and $y^{k,\ell}(t)$ are defined. Consider the equations:

$$s' = G(t, s) - a(t) f(S, L, y^{k,u}(t)) y^{k,\ell}(t), \quad (24)$$

and

$$s' = G(t, s) - a(t) f(s, 0, y^{k,\ell}(t)) y^{k,u}(t) - \beta(t)sL, \quad (25)$$

and set $s^{k+1,u}(t)$ and $s^{k+1,\ell}(t)$ as particular solutions of (24) and (25) with positive initial condition, respectively. Consider also the equations

$$y' = h(t, y) + \gamma(t) a(t) f(s^{k+1,u}(t), 0, y) y + \theta(t) \psi(0, 0, y) \ell, \quad (26)$$

and

$$y' = h(t, y) + \gamma(t) a(t) f(s^{k+1,\ell}(t), L, y) y, \quad (27)$$

and set $y^{k+1,u}(t)$ and $y^{k+1,\ell}(t)$ as particular solutions of (26) and (27) with positive initial condition, respectively.

For each $k \in \mathbb{N}$, we consider the following conditions:

(S4k) For each $i = 1, \ldots, k$, $s^{i,u}(t)$ and $s^{i,\ell}(t)$ are bounded, bounded away from zero, and globally attractive on $]0, +\infty[$, that is $|s^{i,u}(t) - v(t)| \to 0$ as $t \to +\infty$ for each other solution $v(t)$ of (24) (respectively (25)), with $k = i$, with positive initial condition.

(S5k) For each $i = 1, \ldots, k$, $y^{i,u}(t)$ and $y^{i,\ell}(t)$ are bounded and globally attractive on $]0, +\infty[$.

We define the following number:

$$R^{u,k}(\lambda) = \limsup_{t \to +\infty} \int_{t}^{t+\lambda} \beta(\tau) y^{k,u}(\tau) - \eta(\tau) g(s^{k,u}(\tau), 0, y^{k,\ell}(\tau)) - c(\tau)d\tau. \quad (28)$$

Notice that $R^{u,1}(\lambda) = R^{u}$, and according to our assumptions, it is easy to prove, with similar arguments to the ones in Proposition 1, that for all $k \in \mathbb{N}$ the number $R^{u,k}(\lambda)$ is independent of the particular solutions considered.

Theorem 3. Assume that conditions S1 to S3, S4k, and S5k hold for some $k \in \mathbb{N}$. Assume further $x \to f(x, y, z)$ in nondecreasing and that either $G(t, S) = \lambda(t) - \mu(t)S$ and $g(S + I, 0, P) \leq g(S, I, P)$ or g does not depend on I. If there is $\lambda > 0$ such that $R^{u,k}(\lambda) < 0$, then the infectives in system (1) go to extinction.

Proof. The proof consists in repeating the steps in the proof of Theorem 1, with the changes that we will describe below. Let us consider $k \geq 2$ (otherwise the proof follows from Theorem 1). In the first place, instead of the bounds given by (2) and (3), we use bounds obtained in the following way: Letting $y^{k-1,\ell}(t)$ and $y^{k-1,u}(t)$ be the solutions defined above, we know that

$$s' \leq G(t, S) - a(t) f(S, L, y^{k-1,u}(t)) y^{k-1,\ell}(t), \quad (29)$$

and

$$s' \geq G(t, S) - a(t) f(S, 0, y^{k-1,\ell}(t)) y^{k-1,u}(t) - \beta(t)sL. \quad (30)$$
Thus, using solutions $s^{k,t}(t)$ and $s^{k,u}(t)$, from the monotonicity properties of f, we obtain

$$P' \geq h(t, P)P + \gamma(t)a(t)f(s^{k,t}(t), L, P)P$$

(31)

and

$$P' \leq h(t, P)P + \gamma(t)a(t)f(s^{k,u}(t), 0, P)P + \theta(t)\eta(t)g(0, 0, P)L.$$

The bounds in (29) and (31) allow us to conclude that, for sufficiently large $t > 0$, we have $S(t) \leq s^{k,u}(t)$ and $P(t) \geq y^{k,t}(t)$; using the number $R^{u,k}(\lambda)$ in (28), similar arguments to the ones in Theorem 1 allow us to obtain the result. \(\square\)

We notice that Theorem 3 can be used to obtain a better understanding of the extinction threshold. For instance, if $R^{u,k} < R^{u,m}$, for some $m < k$, condition $R^{u,k} < 0$ is weaker than $R^{u,m} < 0$, so we may improve the threshold for extinction. See Section 3.5.

3 | EXAMPLES

In this section, we will apply Theorem 1 and Theorem 2 to some particular cases of model (1). We finish with an example for Theorem 3.

3.1 | Models with no predation on uninfected preys

In this section, we will consider a family of models with no predation on uninfected preys by letting $f \equiv 0$ and $g(S, I, P) = P$. This family generalizes the family of models in Niu et al13 by allowing a very general form for the vital dynamics of predators and preys. Thus, we consider in this subsection the following model:

$$
\begin{aligned}
S' &= G(t, S) - \beta(t)SI \\
I' &= \beta(t)SI - \eta(t)PI - c(t)I \\
P' &= h(t, P)P + \theta(t)\eta(t)PI
\end{aligned}
$$

In this context, (7) and (8) become

$$
R_{np}^f(\lambda) = \lim \inf_{t \to +\infty} \int_{t}^{t+\lambda} \beta(s)s^*(s) - \eta(s)y^*(s) - c(s)ds
$$

and

$$
R_{np}^f(\lambda) = \lim \sup_{t \to +\infty} \int_{t}^{t+\lambda} \beta(s)s^*(s) - \eta(s)y^*(s) - c(s)ds,
$$

where $s^*(t)$ and $y^*(t)$ are particular solutions, respectively, of (2) and (3).

Under the hypotheses of Theorem 1, we obtain that if there is $\lambda > 0$ such that $R_{np}^f(\lambda) < 0$, then the infectives in system (3.1) go to extinction, and under the hypotheses of Theorem 2, we conclude that if there is $\lambda > 0$ such that $R_{np}^f(\lambda) > 0$ then the infectives in system (3.1) are uniform strong persistent.

As we already mentioned, model (3.1) includes the model discussed in Niu et al13 as the particular case where $G(t, S) = \Lambda(t) - \mu(t)S$ and $h(t, P) = b(t) - r(t)P$, with Λ, μ, r, and b nonnegative, continuous and bounded functions satisfying:

$$
\lim \inf_{t \to +\infty} \int_{t}^{t+\omega_1} \Lambda(s)ds > 0, \quad \lim \inf_{t \to +\infty} \int_{t}^{t+\omega_2} \mu(s)ds > 0,
$$

$$
\lim \inf_{t \to +\infty} \int_{t}^{t+\omega_3} r(s)ds > 0 \quad \text{and} \quad \lim \inf_{t \to +\infty} \int_{t}^{t+\omega_4} b(s)ds > 0,
$$
functions

Extinction:

FIGURE 1

for some constants \(w_i > 0, i = 1, \ldots, 4 \):

\[
\begin{align*}
S' &= \Lambda(t) - \mu(t) S - \beta(t) S I \\
I' &= \beta(t) S I - \eta(t) P I - c(t) I \\
P' &= (b(t) - r(t) P) P + \theta(t) \eta(t) P I
\end{align*}
\]

(32)

Note that, for the model in (32), condition S1 is assumed, condition S2 is immediate from the particular forms of the functions \(g \) and \(h \), conditions S4 and S5 follow from Lemmas 1 and 3 in Niu et al.\(^{13} \) and condition S6 is a consequence of the fact that, in this setting, systems (5) and (6) are uncoupled and small perturbations of each of the equations in those systems is globally asymptotically stable by Lemmas 1 and 3 in Niu et al.\(^{13} \) Finally, condition S3 follows from Theorem 1 in Niu et al.\(^{13} \) We also note that \(R_{np}^\alpha (\lambda) \) and \(R_{np}^\gamma (\lambda) \) coincide with the corresponding numbers in Niu et al.\(^{13} \)

Another possible choice for the functions \(f \) and \(G \) is \(h(t, P) = - (\delta_1(t) + \delta_2(t) P) \), with \(\delta_1 \) and \(\delta_2 \) continuous and nonnegative functions and \(G(t, S) = k(t, S) S \) with \(k \) a continuous and bounded function satisfying the conditions: \(\partial k / \partial S(t, s) < 0 \), for every \(t, s \geq 0 \); \(k(t, 0) > 0 \) for all \(t \geq 0 \); there is \(S_1(t) > 0 \) such that \(k(t, S_1(t)) = 0 \), for every \(t \geq 0 \). This choice makes the underlying predator–uninfected prey subsystem in model (3.1) correspond to the model studied in Section 3 of Garrione and Rebelo\(^{33} \) with the function \(f \equiv 0 \). System (3.1) becomes in this case:

\[
\begin{align*}
S' &= k(t, S) S - \beta(t) S I \\
I' &= \beta(t) S I - \eta(t) P I - c(t) I \\
P' &= -(\delta_1(t) + \delta_2(t) P) P + \theta(t) \eta(t) P I
\end{align*}
\]

Notice that the study of the function \(k(t, S) \) in Garrione and Rebelo\(^{33} \) allow us to conclude easily that conditions S1 to S5 are satisfied for this model. Condition S6 is a consequence of the fact that systems (5) and (6) are uncoupled and small perturbations of each of the equations in those systems is globally asymptotically stable (the global asymptotic stability of the first equation is consequence of Lemma 3.1 in Garrione and Rebelo\(^{33} \) and the global asymptotic stability of the second equation is trivial).

To do some simulation, in this scenario, we assumed that \(G(t, S) = (0.7 - 0.6 S) S; \beta(t) = \beta_0 (1 + 0.7 \cos(2 \pi t)); \eta(t) = 0.7(1 + 0.7 \cos(\pi + 2 \pi t)); c(t) = 0.1; h(t, P) = -0.2 - 0.3 P; \theta(t) = 0.9 \). We obtain the model:

\[
\begin{align*}
S' &= (0.7 - 0.6 S) S - \beta_0 (1 + 0.7 \cos(2 \pi t)) S I \\
I' &= \beta_0 (1 + 0.7 \cos(2 \pi t)) S I - 0.7(1 + 0.7 \cos(\pi + 2 \pi t)) P I - 0.1 I \\
P' &= -(0.2 - 0.3 P) P + 0.63(1 + 0.7 \cos(\pi + 2 \pi t)) P I
\end{align*}
\]

When \(\beta_0 = 0.01 \), we obtain \(R^\alpha = -0.15 < 0 \) and we conclude that we have extinction (Figure 1). When \(\beta_0 = 0.3 \) we obtain \(R^\gamma = 1.3 > 0 \) and we conclude that the infectives are uniform strong persistent (Figure 2).

We considered the following initial conditions at \(t = 0 \): \((S_0, I_0, P_0) = (1, 0.5, 0.1), \) \((S_0, I_0, P_0) = (0.1, 0.2, 1) \) and \((S_0, I_0, P_0) = (0.5, 0.5, 0.5) \).

FIGURE 1 Extinction: \(\beta_0 = 0.01 \) [Colour figure can be viewed at wileyonlinelibrary.com]
3.2 Periodic coefficients

In this subsection, we consider a family of models with periodic parameters and predation on uninfected preys that, in general, is not included in the general family of models considered in Lu et al.16 For periodic models, the thresholds become easier to deal with.

Assume that there is $\omega > 0$ such that all parameters in (1) are ω-periodic functions. In this case, (7) and (8) become, respectively,

$$R^\ell(\omega) = \int_0^\omega \beta(s)x^*_1(s) - \eta(s)g(x^*_1(s), 0, z^*_2(s)) - c(s)\, ds,$$

and

$$R^u(\omega) = \int_0^\omega \beta(s)s^*(s) - \eta(s)g(s^*(s), 0, y^*(s)) - c(s)\, ds.$$

Thus,

$$R^\ell(\omega) > 0 \iff \frac{\bar{\beta}x^*_1}{\eta g(x^*_1, 0, z^*_2) + \bar{c}} > 1,$$

and

$$R^u(\omega) < 0 \iff \frac{\bar{\beta}s^*}{\eta g(s^*, 0, y^*) + \bar{c}} < 1,$$

where $s^*(t)$ and $y^*(t)$ are particular solutions, respectively, of (2) and (3), and $x^*_1(t)$ and $z^*_2(t)$ still denote any particular solution of first and second equations in systems (5) and (6), respectively, with positive initial conditions. Define

$$R^\ell_{\text{per}} = \frac{\bar{\beta}x^*_1}{\eta g(x^*_1, 0, z^*_2) + \bar{c}} \quad \text{and} \quad R^u_{\text{per}} = \frac{\bar{\beta}s^*}{\eta g(s^*, 0, y^*) + \bar{c}}.$$

Under the hypotheses of Theorem 1, we have that if $R^u_{\text{per}} < 1$ then the infectives in model (1) with periodic coefficients go to extinction, and under the hypotheses of Theorem 2, if $R^\ell_{\text{per}} > 1$ then the infectives in model (1) with periodic coefficients are uniform strong persistent.

Note that the corollaries in Niu et al.13 concerning the periodic case, are particular cases of the corollaries above. In fact, in Niu et al.13 we have $f \equiv 0$, and in this case, as argued in the previous section, $(s^*(t), y^*(t))$ is a particular solution of (4), condition S1 is assumed, condition S2 is immediate, conditions S3 to S6 follow from results in Niu et al.13 Thus, when $f \equiv 0$, we get similar thresholds to the ones in the mentioned paper:

$$R_{\text{per}} = R^u_{\text{per}} = \frac{\bar{\beta}s^*}{\eta y^* + \bar{c}}.$$

This threshold can also be obtained using the procedures in Rebelo et al.34 and Wang and Zhao.35

We will focus now on a particular models with a function G that is different from the corresponding function in Lu et al.16 We consider the following setting: $G(t, S) = (\Lambda - \mu S)S; a(t) = a; f(S, I, P) = S; g(S, I, P) = P; h(t, P) = b - rP;$
\(\gamma(t) = \gamma \). We obtain the model:

\[
\begin{align*}
S' &= (\Lambda - \mu S)S - aSP - \beta(t)SI \\
I' &= \beta(t)SI - \eta(t)PI - c(t)I \\
P' &= (b - rP)P + \gamma aSP + \theta(t)\eta(t)PI
\end{align*}
\]

(33)

For this model, condition S1 is assumed, condition S2 is immediate from the particular forms of the functions \(g \) and \(h \), and conditions S4 and S5 hold for our particular functions as already discussed in Section 3.1. In this context, an endemic equilibrium for (6) is

\[
\left(\frac{\Lambda}{\mu}, \hat{z}_\epsilon \right),
\]

where

\[
\hat{z}_\epsilon = \frac{(b \mu + a \gamma \Lambda + \epsilon \mu)}{\mu r},
\]

and the endemic equilibrium for (5) exists if \(\Lambda r > a b + a \gamma \Lambda / \mu \):

\[
\left(\frac{\hat{\Lambda}}{\mu}, \frac{b \mu + a \gamma \hat{\Lambda}}{\mu r} \right).
\]

Finally, condition S3 is consequence of the following lemma:

Lemma 1. There is a bounded region that contains the \(\omega \)-limit of all orbits of (33).

Proof. Let \(\epsilon > 0 \). Since, by the first equation in (33), \(S' \leq (\Lambda - \mu S)S \), we conclude that

\[
S(t) \leq \frac{\Lambda}{\mu} + \epsilon,
\]

for all \(t \) sufficiently large. Additionally, we get

\[
\sup_{s \in \mathbb{R}} (\Lambda - \mu S)S \leq \left(\Lambda - \frac{\mu \Lambda}{2 \mu} \right) = \frac{\Lambda^2}{2 \mu}.
\]

(35)

Adding the first two equations in (33) and using (34) and (35), we have, for all \(t \) sufficiently large,

\[
(S + I)' = (\Lambda - \mu S)S - c(t)I \\
\leq \frac{\Lambda^2}{4 \mu} + c(t)S - c(t)(S + I) \\
\leq \frac{\Lambda^2}{4 \mu} + c(t) \left(\frac{\Lambda}{\mu} \right) + c(t) \epsilon - c(t) (S + I).
\]

(36)

Since \(\epsilon > 0 \) is arbitrary, we conclude that

\[
\limsup_{t \to +\infty} (S + I)(t) \leq \frac{1}{c(t)} \left(\frac{\Lambda^2}{4 \mu} + c(t) \right) =: A.
\]

Finally, by the third equation in (33) and (36), given \(\epsilon > 0 \), we get

\[
P' = (b - rP)P + \gamma aSP + \theta(t)\eta(t)PI \\
\leq (b + \gamma aA + \theta(t)\eta(t)A - rP)P,
\]

(37)

for sufficiently large \(t \). Thus,

\[
\limsup_{t \to +\infty} P(t) \leq \frac{1}{r} (b + \gamma aA + \theta(t)\eta(t)A) =: B.
\]

(38)

Equations (36) and (37) show that the region

\[
\{(S, I, P) \in \mathbb{R}^3 : 0 \leq S + I \leq A \text{ and } 0 \leq P \leq B\}
\]

contains the \(\omega \)-limit of any orbit. \(\square \)
To do some simulation, in this scenario, we assumed that $G(t, S) = (0.7 - 0.6S)S; a = 0.9; \beta(t) = \beta_0(1 + 0.7 \cos(2\pi t)); \eta(t) = 0.7(1 + 0.7 \cos(\pi + 2\pi t)); c(t) = 0.1; b = 0.2; r = 0.6; \gamma = 0.1; \theta(t) = 0.9$. We obtain the model:

$$\begin{align*}
S' &= (0.7 - 0.6S)S - 0.9SP - \beta_0(1 + 0.7 \cos(2\pi t))SI \\
I' &= \beta_0(1 + 0.7 \cos(2\pi t))SI - 0.7(1 + 0.7 \cos(\pi + 2\pi t))PI - 0.1I \\
P' &= (0.2 - 0.6P)P + 0.09SP + 0.63(1 + 0.7 \cos(\pi + 2\pi t))PI
\end{align*}$$

When $\beta_0 = 0.1$, we obtain $R^u \approx -0.217 < 0$ ($R^u_{per} \approx 0.35 < 1$) and we conclude that we have extinction (Figure 3). When $\beta_0 = 0.8$, we obtain $R^r \approx 0.167 > 0$ ($R^r_{per} \approx 1.483 > 1$) and we conclude that the infectives are uniform strong persistent (Figure 4).

We considered the following initial conditions at $t = 0$: $(S_0, I_0, P_0) = (1, 0.5, 0.1), (S_0, I_0, P_0) = (0.1, 0.2, 1)$, and $(S_0, I_0, P_0) = (0.5, 0.5, 0.5)$.

3.3 Models with Gause-type uninfected subsystem

A model with Michaelis– Menten (or Holling-type I) functional response of predator to infected prey and a Holling-type II functional response of predator to susceptible prey is now considered. We consider the vital dynamics of uninfected prey as

$$G(t, S) = k(t, S),$$

where $k : \mathbb{R} \times [0, +\infty[\rightarrow \mathbb{R}$ is continuous, T-periodic ($T > 0$) in the t-variable, continuously differentiable in S, and satisfying the following conditions:

$$\begin{align*}
k(t, S) &\text{ is bounded from above and } k(t, 0) > 0; \\
&\text{for every } t \text{ there exists } S_1(t) > 0 \text{ such that } k(t, S_1(t)) = 0; \\
\frac{dk}{dS} &< 0 \text{ for every } S \geq 0.
\end{align*}$$

(39)
This type of vital dynamics was considered in Garrione and Rebelo33 (see condition (k) in §3 in that reference). We notice that the general assumptions (39) are satisfied by a logistic growth of the prey population (with $S_1(t)$ equal to a constant). We also consider $a(t) = a > 0$; $f(S, I, P) = S/(m + S + I)$, with $m > 0$; $g(S, I, P) = P$; $h(t, P) = b - rP$, with $b, r > 0$, $\gamma(t) = \gamma > 0$. Moreover, we assume $\beta(t), \eta(t), c(t)$ and $\theta(t)$ to be bounded, nonnegative and continuous real valued functions. Henceforth, we are considering the system

$$
\begin{align*}
S' &= k(t, S)S - a\frac{SP}{m + S + I} - \beta(t)SI \\
I' &= \beta(t)SI - \eta(t)PI - c(t)I \\
P' &= (b - rP)P + \gamma a\frac{SP}{m + S + I} + \theta(t)\eta(t)PI
\end{align*}
$$

(40)

For model (40), conditions S1 and S2 follow immediate from hypothesis. The following lemma ensures condition S3.

Lemma 2. There is a bounded region that contains the ω-limit of all orbits of (40).

Proof. By the first equation in (40), we have $S' \leq k(t, S)S$. Notice that from (39) we have $k(t, S) > 0$ for $S < S_1(t)$ and $k(t, S) < 0$ for $S > S_1(t)$. Thus, $[0, \max_{[0, T]} S_1(t)]$ is an attractor and so

$$\lim_{t \to +\infty} S(t) \leq \max_{[0, T]} S_1(t) := S_1^*.$$

Additionally, writing $k^u = \sup_{(t, S)} k(t, S)$, we have

$$(S + I)' \leq k(t, S)S - c(t)I$$

$$\leq k^u S - c' I$$

$$\leq (k^u + c') (S_1^u + \delta) - c' (S + I),$$

for some $\delta > 0$ and all sufficiently large t, which lead us to

$$(S + I)(t) \leq \frac{(k^u + c')(S_1^u + \delta)}{c'} =: C.$$

Finally, since for sufficiently large t

$$P' \leq (b - rP + \gamma a + \theta^u \eta^u C)P,$$

we have

$$\lim_{t \to +\infty} P(t) \leq \frac{1}{r} (b + \gamma a + \theta^u \eta^u C) =: D.$$

Thus, the region

$$\{(S, I, P) \in \mathbb{R}^3 : 0 \leq S + I \leq C \text{ and } 0 \leq P \leq D\}$$

contains the ω-limit of any orbit. \hfill \Box

Notice that by Garrione and Rebelo33, Lemma 3.1 equations $s' = k(t, s)s$ and $y' = (b - ry)y$, with positive initial condition, have a unique T-periodic solution, which is bounded and globally asymptotically stable, hence globally attractive, on $[0, +\infty)$. This ensures conditions S4 and S5. For condition S6, we consider $G_{1, \varepsilon}(t, x) = G_{2, \varepsilon}(t, x) = k(t)\varepsilon$, $h_{1, \varepsilon}(t, z) = h_{2, \varepsilon}(t, z) = (r - bz)\varepsilon$, $\nu(\varepsilon) = \varepsilon$ and $\rho(t) = 1$. Clearly, conditions S6.1 to S6.3 hold. The auxiliary subsystem (6) becomes

$$
\begin{align*}
x' &= k(t, x)x \\
z' &= (b - rz)z + \gamma a\frac{xz}{m + x} + \varepsilon z.
\end{align*}
$$

(41)

By Garrione and Rebelo33, Lemma 3.1 there exists a T-periodic globally asymptotic stable solution $x_{2, \varepsilon}^\ast(t)$ of the first equation of (41). Considering this solution in the second equation, we get

$$z' = \left(b + \gamma a\frac{x_{2, \varepsilon}^\ast(t)}{m + x_{2, \varepsilon}^\ast(t)} + r z\right)z.$$
which, again from Garrione and Rebelo,33, Lemma 3.1 has a T-periodic globally asymptotic stable solution $z_{2,\epsilon}^*(t)$. Using this solutions $(x_{1,\epsilon}^*(t), z_{1,\epsilon}(t))$, and writing

$$
\tilde{k}(t, x) = k(t, x) - \frac{az_{2,\epsilon}^*(t)}{m + x} - \epsilon,
$$
the auxiliary subsystem (5) becomes

$$
\begin{cases}
 x' = \tilde{k}(t, x)x \\
 z' = (b - rz)z + y a \frac{x}{m + x + \epsilon}.
\end{cases}
$$

(42)

It is straightforward to verify that $\tilde{k}(t, S)$ is bounded from above. Moreover, if

$$
k(t, 0) - \frac{az_{2,\epsilon}^*(t)}{m} - \epsilon > 0,
$$

for all sufficiently small $\epsilon > 0$, then $\tilde{k}(t, 0) > 0$. Notice that we may find a bound for $z_{2,\epsilon}^*(t)$ independent of ϵ. Moreover, if

$$
\sup_{(t, x)} \left\{ \frac{\partial k}{\partial x}(t, x) + \frac{az_{2,\epsilon}^*(t)}{(m + x)^2} \right\} < 0,
$$

we have

$$
\frac{\partial \tilde{k}}{\partial x}(t, x) = \frac{\partial k}{\partial x}(t, x) + \frac{az_{2,\epsilon}^*(t)}{(m + x)^2} \leq \zeta < 0.
$$

If (43) and (44) hold, we have $\frac{\partial k}{\partial x}(t, x) \leq \zeta < 0$ and $\tilde{k}(t, 0) > 0$. Since $\lim_{t \to +\infty} \tilde{k}(t, x) = -\infty$, we conclude that for all t there exists $X_t(t)$ such that $\tilde{k}(t, X_t(t)) = 0$. Notice that having simultaneously (43) and (44) can be achieved, for instance, if a is small enough. Therefore, if (43) and (44) hold and $\epsilon > 0$ is sufficiently small we are in conditions to apply Lemma 3.133 to conclude that the first equation in (42) has a T-periodic solution $x_{1,\epsilon}^*(t)$, which is globally asymptotically stable. Using this solution in the second equation gives

$$
z' = (b - rz)z + y a \frac{x_{1,\epsilon}^*(t)}{m + x_{1,\epsilon}^*(t) + \epsilon} z = \left(b + y a \frac{x_{1,\epsilon}^*(t)}{m + x_{1,\epsilon}^*(t) + \epsilon} - rz \right) z,
$$

which, proceeding as before, has a T-periodic solution $z_{1,\epsilon}^*(t)$ that is globally asymptotically stable.

We have showed that conditions S6.4) and S6.5) also hold, so we may apply Theorem 1 and Theorem 2 to conclude that if $R^\gamma < 1$ then the infectives in model (40) go to extinction, and if $R^\gamma > 1$ then the infectives are uniform strong persistent.

Let us point out that in the particular case $k(t, x) = \Lambda - \mu x$, for some constants $\Lambda, \mu > 0$, we have the following globally asymptotically stable solution for (41)

$$
\begin{cases}
 x_{1,\epsilon}^* = \frac{\Lambda}{\mu} \\
 z_{2,\epsilon}^* = \left(b + y a \frac{1}{m \mu + 1} + \epsilon \right) r
\end{cases}
$$

and in this situation conditions (43) and (44) holds if

$$
\frac{a}{mr} \left(b + \frac{y a}{m \mu + 1} \right) < \min\{\Lambda, m \mu\},
$$

and ϵ is sufficiently small.

To do some simulation, in this scenario, we assumed that $G(t, S) = (0.7 - 0.6S)S$; $a = 0.9$; $\beta(t) = \beta_0(1 + 0.7 \cos(2\pi t))$; $\eta(t) = 0.7(1 + 0.7 \cos(\pi + 2\pi t))$; $c(t) = 0.1$; $b = 0.2$; $r = 0.6$; $m = 2$; $\gamma = 0.8$; $\theta(t) = 0.9$. We obtain the model:

$$
\begin{align*}
 S' &= (0.7 - 0.6S)S - 0.9 \frac{SP}{2 + 3S + 1} - \beta_0(1 + 0.7 \cos(2\pi t))S \\
 I' &= \beta_0(1 + 0.7 \cos(2\pi t))S - 0.7(1 + 0.7 \cos(\pi + 2\pi t))PI - 0.1I \\
 P' &= (0.2 - 0.6P)P + 0.9 \frac{SP}{2 + 3S + 1} + 0.6(1 + 0.7 \cos(\pi + 2\pi t))PI
\end{align*}
$$
When \(\beta_0 = 0.1 \), we obtain \(\gamma \approx -0.217 < 0 \) and we conclude that we have extinction (Figure 5). When \(\beta_0 = 0.9 \), we obtain \(\gamma \approx 0.757 > 0 \) and we conclude that the infectives are uniform strong persistent (Figure 6).

We considered the following initial conditions at \(t = 0 \):

\[
(S_0, I_0, P_0) = (1, 0.5, 0.1) , (S_0, I_0, P_0) = (0.1, 0.2, 1) \text{ and } (S_0, I_0, P_0) = (0.5, 0.5, 0.5).
\]

3.4 Models with ratio-dependent uninfected subsystem

The functional response of predator to prey in the uninfected subsystem in the next example is ratio-dependent. Ratio-dependent functional responses were considered to overcome some paradoxes identified in Gause-type systems (see Hsu et al.\(^{32}\) and the references therein).

We consider now the vital dynamics of uninfected prey as

\[
G(t, S) = \Lambda - \mu S,
\]

for constants \(\Lambda, \mu > 0 \), and \(a(t) = a > 0, f(S, I, P) = S/(Pm + S + I) \), with \(m > 0 \), \(g(S, I, P) = P; h(t, P) = b - rP \), with \(b, r > 0, \gamma(t) = \gamma > 0 \), and \(\beta(t), \eta(t), c(t) \) and \(\theta(t) \) to be bounded, nonnegative and continuous real valued functions. With this assumptions system (1) becomes

\[
\begin{align*}
S' &= \Lambda - \mu S - a \frac{SP}{mP+S+I} - \beta(t)SI \\
I' &= \beta(t)SI - \eta(t)PI - c(t)I \\
P' &= (b - rP)P + \gamma a \frac{SP}{mP+S+I} + \theta(t)\eta(t)PI
\end{align*}
\]

For model (45), conditions S1 and S2 follow immediate from hypothesis and the particular forms of the functions \(g \) and \(h \). Condition S3 is an immediate corollary of the following.

Lemma 3. There is a bounded region that contains the \(\omega \)-limit of all orbits of (40).
Proof. By the first equation in (45), we have $S' \leq \Lambda - \mu S$, which implies

$$\limsup_{t \to +\infty} S(t) \leq \frac{\Lambda}{\mu}. $$

We have

$$(S + I)' \leq \Lambda - \mu S - c(t)I = \Lambda - \min\{\mu, c^r\}(S + I),$$

which implies

$$(S + I)(t) \leq \frac{\Lambda}{\min\{\mu, c^r\}} + \delta =: C.$$ for some $\delta > 0$ and all sufficiently large t. Finally, since for large t,

$$P' \leq (b - rP + \gamma a + \theta^\mu \eta^\mu C)P,$$

we have

$$\limsup_{t \to +\infty} P(t) \leq \frac{1}{r}(b + \gamma a + \theta^\mu \eta^\mu C) =: D.$$ Thus, the region

$$\{(S, I, P) \in \mathbb{R}^3 : 0 \leq S + I \leq C \text{ and } 0 \leq P \leq D\}$$

contains the ω-limit of any orbit. \qed

Similarly to the previous example, each solution of $s' = \Lambda - \mu s$ and of $y' = (b - ry)y$, with positive initial condition is bounded, bounded away from zero, and globally asymptotic stable (hence globally attractive) on $[0, +\infty[$, which ensures conditions S4 and S5.

For condition S6 we consider now $G_{1,\xi}(t, x) = G_{2,\xi}(t, x) = \Lambda - \mu x$, $h_{1,\xi}(t, z) = h_{2,\xi}(t, z) = (r - bz)z$, $v(\varepsilon) = \varepsilon$ and $\rho(t) = 1$. As before, conditions S6.1 to S6.3 are straightforward. The auxiliary subsystem (6) becomes

$$\begin{cases}
x' = \Lambda - \mu x \\
z' = (b - rz)z + \frac{\Lambda/\mu}{m^2 + \varepsilon} + \varepsilon z.
\end{cases}$$

The first equation of (46) has solution $x^*_{2,\xi}(t) = \Lambda/\mu$. Considering this solution in the second equation, we get

$$z' = \left(b + \gamma a + \frac{\Lambda/\mu}{m^2 + \varepsilon} + \varepsilon - rz\right)z,$$

which has solution

$$z^*_{2,\xi}(t)^* = \frac{A + \sqrt{A^2 + 4\Lambda rm\varepsilon B}}{2rm\mu} := z_{2,\xi},$$

where

$$A = -\Lambda r + bm\mu + \varepsilon m\mu \text{ and } B = b + \varepsilon + a\gamma.$$ Proceeding as in previous example, from Garrione and Rebelo,33 Lemma 3.1 we conclude that $(x^*_{2,\xi}(t), z^*_{2,\xi}(t))$ is a globally asymptotically stable solution on $\{(x, y) \in \mathbb{R}^2 : x, y > 0\}$. Using this solution $(x^*_{2,\xi}(t), z^*_{2,\xi}(t))$, the auxiliary subsystem (5) becomes

$$\begin{cases}
x' = \Lambda - \mu x - az^*_{2,\xi} - \varepsilon x \\
z' = (b - rz)z + \gamma a + \frac{\Lambda/\mu}{m^2 + \varepsilon}.
\end{cases}$$
which in turn has solution

\[x^*_t(t) = \frac{\Lambda - az^*_{2,\epsilon}}{\mu + \epsilon} =: x^*_{1,\epsilon}. \]

Using this solution in the second equation gives

\[z' = \left(b + \gamma a \frac{x^*_{1,\epsilon}}{zm + x^*_{1,\epsilon} + \epsilon} - rz \right) z, \]

which in turn has solution

\[z^*_{1,\epsilon}(t) = \frac{\bar{\Lambda} + \sqrt{\bar{\Lambda} + 4mr \bar{B}}}{2mr}, \]

where \(\bar{\Lambda} = bm - \epsilon r - rx^*_{1,\epsilon} \) and \(\bar{B} = b \epsilon + bx^*_{1,\epsilon} + a \gamma x^*_{1,\epsilon} \).

\[z^*_{1,\epsilon}(t) = \frac{\bar{\Lambda} + \sqrt{\bar{\Lambda} + 4mr \bar{B}}}{2mr}. \]

where \(\bar{\Lambda} = mb - rz^*_{1,\epsilon} \) and \(\bar{B} = (b + \gamma a)z^*_{1,\epsilon} \). Once more, proceeding as in the previous example, one can check that by Garrione and Rebelo,\(^3\), Lemma 3.1 we conclude that \((x^*_t(t), z^*_1(t))\) is a globally asymptotically stable solution on \(\{(x, y) \in \mathbb{R}^2 : x, y > 0\} \).

We have showed that if (47) holds, which happens, for instance, for sufficiently small \(a \), then conditions S6.4 and S6.5 also hold, and we may apply Theorem 1 and Theorem 2 to conclude that if \(R^u < 1 \) then the infectives in model (45) go to extinction, and if \(R^c > 1 \) then the infectives are uniform strong persistent.

To do some simulation, in this scenario we assumed that \(G(t, S) = 3 - 0.6S; a = 0.9; \beta(t) = \beta_0(1 + 0.7 \cos(2\pi t)); \eta(t) = 0.7(1 + 0.7 \cos(\pi + 2\pi t)); c(t) = 0.1; b = 0.2; r = 0.6; m = 2; \gamma = 0.8; \theta(t) = 0.9 \). We obtain the model:

\[
\begin{align*}
S' &= 3 - 0.6S - 0.9 \frac{SP}{2p_s+t} - \beta_0(1 + 0.7 \cos(2\pi t))SI \\
I' &= \beta_0(1 + 0.7 \cos(2\pi t))SI - 0.7(1 + 0.7 \cos(\pi + 2\pi t))PI - 0.1I \\
P' &= (0.8 - 0.6P)P + 0.9 \frac{SP}{2p_s+t} + 0.6(1 + 0.7 \cos(\pi + 2\pi t))PI
\end{align*}
\]

When \(\beta_0 = 0.01 \) we obtain \(R^u \approx -0.283 < 0 \) and we conclude that we have extinction (Figure 7). When \(\beta_0 = 0.3 \), we obtain \(R^c \approx 0.073 > 0 \) and we conclude that the infectives are uniform strong persistent (Figure 8).

We considered the following initial conditions at \(t = 0 \): \((S_0, I_0, P_0) = (1, 0.5, 0.1), (S_0, I_0, P_0) = (0.1, 0.2, 1)\), and \((S_0, I_0, P_0) = (0.5, 0.5, 0.5)\).
3.5 | Iterative scheme for models with Holling-type I functional response

In this subsection, we consider a simple example in order to illustrate the procedure in Section 2, which makes use of Theorem 3. This procedure can be extended for more complex models and can constitute a procedure in order to improve a threshold for extinction.

We will consider $G(t, S) = (\Lambda - \mu S)S; a(t) = a; \beta(t) = \beta; \eta(t) = \eta; \theta(t) = \theta; c(t) = c; f(S, I, P) = S; g(S, I, P) = P; h(t, P) = b - rP; \gamma(t) = \gamma$. We obtain the model:

\[
\begin{align*}
S' &= (\Lambda - \mu S)S - aSP - \beta SI \\
I' &= \beta SI - \eta PI - cI \\
P' &= (b - rP)P + \gamma aSP + \theta PI
\end{align*}
\]

As discussed in Section 3.1, conditions S1 and S2 hold for system (48). By Theorem 1, if

\[
\mathcal{R}_0 = \mathcal{R}^{u,0} = \frac{\Lambda}{\mu} - \frac{b}{r} - c < 0
\]

the infectives in (48) go to extinction.

Set now $s^{1,\ell}(t) = 0$ and consider the solution $s^{1,u}(t) = \Lambda/\mu$ of Equation (2). Recall B from (38) given by

\[
B = \frac{1}{r} (b + \gamma aA + \theta A),
\]

where $A = \frac{\Lambda}{4\mu} + \frac{\Lambda}{\mu}$. Set $y^{1,\ell}(t) = B$ and consider the solution $y^{1,u}(t) = b/r$ of Equation (3). We define recursively the corresponding Equations (24)–(26), respectively, by setting for $k \in \mathbb{N}$

\[
\begin{align*}
(s^{k+1,u})' &= (\Lambda - a y^{k,\ell} - \mu s^{k+1,u})s^{k+1,u} \\
(y^{k+1,u})' &= (b + \gamma a s^{k+1,u} + \theta B - r y^{k+1,u})y^{k+1,u} \\
s^{k+1,\ell} &= (\Lambda - a y^{k,\ell} - \beta B)/\mu \\
y^{k+1,\ell} &= (b + \gamma a s^{k+1,\ell} + \theta B)/r
\end{align*}
\]

and consider the corresponding particular solutions

\[
\begin{align*}
\hat{s}^{k+1,u} &= (\Lambda - a y^{k,\ell})/\mu \\
\hat{s}^{k+1,\ell} &= (\Lambda - a y^{k,\ell} - \beta B)/\mu \\
\hat{y}^{k+1,u} &= (b + \gamma a s^{k+1,u} + \theta B)/r \\
\hat{y}^{k+1,\ell} &= (b + \gamma a s^{k+1,\ell})/r.
\end{align*}
\]
It is easy to check that conditions S_4^k and S_5^k hold. We conclude that the infectives go to extinction if

$$R^{k,k}(\lambda) = \beta s^{k,u} - \eta y^{k,e} - c < 0. \quad (49)$$

Condition (49) can be used to improve a threshold for extinction.

In order to undertake some simulation, we fix $\mu = 0.6; a = 0.8; c = 0.1; b = 0.2; r = 0.9; \gamma = 0.1$ and $\theta = 0.9$. In the first situation, we also fix $\eta = 0.5$ and analyze the persistence and extinction threshold in terms of variables Λ and β; see Figure 9.

We can see the region of parameters corresponding to persistence above the line $\{(\Lambda, \beta) : R^\epsilon = 0\}$. If, for each $k = 1, 2, 3$, we set the region for extinction $E_k = \{(\Lambda, \beta) : \Lambda \in [0, 1] \land R^{k,u} < 0\}$, which can be easily seen in Figure 9 as the region below the corresponding curve, one can see that E_2 does not contain E_1 but we can improve the known region of extinction E_1 by considering $E_1 \cup E_2$ instead. In general, there is no guarantee that there is a real improvement in each iteration as we can see by the region E_3, which is contained in $E_1 \cup E_2$, and thus not adding new information on the set of parameters leading to extinction.

For the second situation, we maintain the values $\mu = 0.6; a = 0.8; c = 0.1; b = 0.2; r = 0.9; \gamma = 0.1$; and $\theta = 0.9$. We fix now $\Lambda = 0.6$ and analyze the persistence and extinction as a function of parameters β and η; see Figure 10.

We see now the regions for extinction $F_k = \{(\eta, \beta) : \Lambda \in [0, 0.3] \land R^{k,u} < 0\}, k = 1, 2, 3$. As Figure 10 suggests, in this example, we have an improvement in each of the first iterations, in the sense that $F_1 \subseteq F_2 \subseteq F_2 \cup F_3$.

This example intends to illustrate the potential of this approach and raises several interesting questions.
ACKNOWLEDGEMENT
The authors thank the anonymous referees for the valuable comments.

CONFLICT OF INTEREST
This work does not have any conflicts of interest.

ORCID
Helder Vilarinho https://orcid.org/0000-0002-9822-5341

REFERENCES
1. Hethcote HW, Wang W, Han L, Ma Z. A predator–prey model with infected prey. *Theor Popul Biol.* 2004;66:259-268.
2. Koopmans M, Wilbrink B, Conyn M, Natrop G, van der Nat H, Vennema H. Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. *Lancet.* 2004;363:587-593.
3. Li HL, Zhang L, Teng Z, Jiang Y-L, Muhammadjai A. Global stability of an SI epidemic model with feedback controls in a patchy environment. *Appl Math Comput.* 2018;321:372-384.
4. Saha S, Maiti A, Samanta GP. A Michaelis–Menten predator–prey model with strong Allee effect and disease in prey incorporating prey refuge. *Int J Bifurcation Chaos.* 2019;29(12):1950007.
5. Saha S, Samanta GP. Analysis of a predator–prey model with herd behaviour and disease in prey incorporating prey refuge. *Int J Biomath.* 2020;12(1):1950007.
6. Saha S, Samanta GP. A prey-predator system with disease in prey and cooperative hunting strategy in predator. *J Phys A: Math Theor.* 2020;53:485601.
7. Sharma S, Samanta GP. Analysis of a two prey one predator system with disease in the first prey population. *Int J Dyn Control.* 2015;3:210-224.
8. Dobson AP. The population biology of parasite-induced changes in host behavior. *Q Rev Biol.* 1988;30:139-165.
9. Friend M. Avian disease at the Salton Sea. *Hydrobiologia.* 2002;161:293-306.
10. de Jesus LF, Silva CM, Vilarinho H. Dynamics of a discrete eco-epidemiological model with disease in the prey. *J Differ Equ Appl.* 2021;27:132-155.
11. de Jesus LF, Silva CM, Vilarinho H. Periodic orbits for periodic eco-epidemiological systems with infected prey. *Electron J Qual Theory Differ Equ.* 2020;54:1-20.
12. Krebs JR. Optimal foraging: decision rules for predators. *Behavioural Ecology: an Evolutionary approach.* First ed. Oxford: Blackwell Scientific Publishers; 1978:23-63.
13. Niu X, Zhang T, Teng Z. The asymptotic behavior of a nonautonomous eco-epidemic model with disease in the prey. *Appl Math Model.* 2011;35:457-470.
14. Silva CM. Existence of periodic solutions for eco-epidemic model with disease in the prey. *J Math Anal Appl.* 2017;53:383-397.
15. Ghosh K, Sardar T, Biswas S, Samanta S, Chattopadhyay J. An eco-epidemiological model with periodic transmission rate. *Nonlinear Stud.* 2016;23:345-363.
16. Lu Y, Wang X, Liu S. A non-autonomous predator–prey model with infected prey. *Discret Contin Dyn Syst - B.* 2018;23:3817-3836.
17. Fan K, Zhang Y, Gao S. On a new eco-epidemiological model for migratory birds with modified Leslie-Gower functional schemes. *Adv Differ Equ.* 2016;2016:97.
18. Bate AM, Hilker FM. Comppler dynamics in an eco-epidemiological model. *Bull Math Biol.* 2013;75:2059-2078.
19. Hilker FM, Schmidt K. Disease-induced stabilisation of predator-prey oscillations. *J Theoret Biol.* 2008;255:299-306.
20. Sun SL, Yuan CD. Analysis of an eco-epidemiological SIS model with epidemic in the predator. *Gongcheng Shuxue Xuebuo.* 2005;22:30-34.
21. Yaping W, Wenyan C. Existence for positive steady states of an eco-epidemiological model. *J Southeast Univ (English Ed.)* 2011;27:119-122.
22. Lu J, Zhang X, Xu R. Global stability and Hopf bifurcation of an eco-epidemiological model with time delay. *Int J Biomath.* 2019;12:1950062.
23. Nayerbeh B, Hamid RZZ, Mojtaba MG. Multiple bifurcation analysis in a diffusive ecoepidemiological model with time delay. *Internat J Bifur Chaos Appl Sci Engrg.* 2019;29:1950033.
24. Samantan S, Tiwarib PK, Alzahranic AK, Alshomranid AS. Chaos in a nonautonomous eco-epidemiological model with delay. *Appl Math Model.* 2020;79:865-880.
25. Alfred H, Emanuel S. Analysis of an eco-epidemiological model under optimal control measures for infected prey. *Appl Appl Math.* 2019;14:117-138.
26. Alfred H, Daniel MO, Santosh K, Fred FC. Optimal control and cost effectiveness analysis for Newcastle disease eco-epidemiological model in Tanzania. *J Biol Dyn.* 2017;11:190-209.
27. Feng D, Bin L. Optimal control problem for a general reaction-diffusion eco-epidemiological model with disease in prey. *Appl Math Model.* 2020;88:1-20.
28. Sahoo B. Role of additional food in eco-epidemiological system with disease in the prey. *Appl Math Comput.* 2015;259:61-79.
29. Li HL, Zhang L, Hu C, Jiang YL, Teng Z. Dynamical analysis of a fractional-order predator–prey model incorporating a prey refuge. *J Appl Math Comput*. 2017;54:435-449.
30. de Jesus LF, Silva CM, Vilarinho H. Random perturbations of an eco-epidemiological model. *Discret Contin Dyn Syst - B*. 2022;27:257-275.
31. Goh BS. Global stability in two species interactions. *J Math Biol*. 1976;3:313-318.
32. Hsu SB, Hwang TW, Kuang Y. Global analysis of the Michaelis–Menten-type ratio-dependent predator–prey system. *J Math Biol*. 2001;42:489-506.
33. Garrione M, Rebelo C. Persistence in seasonally varying predator–prey systems via the basic reproduction. *Nonlinear Anal Real World Appl*. 2016;30:73-98.
34. Rebelo C, Margheri A, Bacaër N. Persistence in seasonally forced epidemiological models. *J Math Biol*. 2012;64:933-949.
35. Wang W, Zhao X-Q. Threshold dynamics for compartmental epidemic models in periodic environments. *J Dynam Differ Equ*. 2008;20:699-717.

How to cite this article: de Jesus LF, Silva CM, Vilarinho H. An eco-epidemiological model with general functional response of predator to prey. *Math Meth Appl Sci*. 2023;46(4):4085-4110. doi:10.1002/mma.8743