Crystal structure of $\text{Rb}_6[\text{B}_{12}\text{O}_{18}(\text{OH})_6]\cdot2\text{H}_2\text{O}$

Qi-Ming Qiu,* Li Yanb and Jian-Biao Songc

*aSchool of Science, China University of Geosciences, Beijing 100083, People’s Republic of China, bAnalytical and Testing Centre, Beijing Institute of Technology, Beijing 100081, People’s Republic of China, and cBeijing Chaoyang Foreign Language School, Beijing 100101, People’s Republic of China. *Correspondence e-mail: qiuqiming890521@163.com

The solvothermal reaction of H_3BO_3, sodium tert-butoxide, Rb_2CO_3 and pyridine led to a new alkaline metal borate hexarubidium hexahydroxydodecaborate dihydrate, $\text{Rb}_6[\text{B}_{12}\text{O}_{18}(\text{OH})_6]\cdot2\text{H}_2\text{O}$. Its structure contains a large cyclic dodecaoxoboron cluster, $[\text{B}_{12}\text{O}_{18}(\text{OH})_6]^{6-}$, formed by six $[\text{B}_3\text{O}_3]$ rings. In the crystal, $\text{O}—\text{H}\cdots\text{O}$ hydrogen bonds between the components lead to the formation of a three-dimensional supramolecular framework.

1. Chemical context

In recent years, borates have made excellent contributions to the development of nonlinear optical (NLO) materials and so they are the focus of material chemists (Bashir et al., 2018; Qiu et al., 2021a; Wei et al., 2016). Scientists have found that alkali- and alkaline-earth–metal borates often exhibit a short ultraviolet cut-off edge due to no d–d and f–f electron transition in the ultraviolet region with wide transparency ranges (Shi et al., 2019; Tang et al., 2019). Generally, boron has two kinds of coordination modes: either BO$_3$ trigonal or BO$_4$ tetrahedral, and they further bond to each other through common O atoms forming different oxoboron clusters, which can further polymerize into isolated clusters, one-dimensional chains, two-dimensional layers or three-dimensional frameworks. Here, single crystals of $\text{Rb}_6[\text{B}_{12}\text{O}_{18}(\text{OH})_6]\cdot2\text{H}_2\text{O}$ with alkali metal atoms and isolated oxoboron clusters have been obtained under solvothermal conditions.

2. Structural commentary

There are 13.5 independent atoms in the asymmetric unit of the title compound, including 3 B, 9/2 O, 3/2 OH, 3/2 Rb, and 1/
2 H₂O. It should be noted that the Rb1, Rb2, B2, B4, O4, O6 and O8 atoms are located on special positions with occupancy of 0.25 or 0.5, while the remaining Rb, B and O atoms are located at general positions with an occupancy of 1. Bond-valence-sum calculations show that Rb and B are consistent with the expected oxidation states (Brown & Altermatt, 1985; Brese & O’Keeffe, 1991). Six trigonal BO₂(OH) units [B—O(avg.) = 1.360 Å] and six tetrahedral BO₄ units [B—O(avg.) = 1.474 Å] are linked by vertex sharing. Each BO₄ unit provides two terminal oxygen atoms to connect with two neighboring BO₄ units and shares the other two corners with the BO₂(OH) unit to form a [B₁₂O₁₈(OH)₆]⁻ cluster (Fig. 1). Each Rb atom is six-coordinate, with Rb—O distances in the range of 2.793 (5)–3.359 (5) Å.

3. Supramolecular features

In the title compound, each [B₁₂O₁₈(OH)₆]⁻ cluster is connected to other clusters by O1—H1—O6 hydrogen bonds, resulting in a three-dimensional supramolecular framework (Fig. 2, Table 1). Water molecules are also attached to supramolecular structure via O—H···O hydrogen bonds. The title structure is different from those of previously reported analogues K₂[(BO₃)Mn[B₁₂O₁₈(OH)₆]]·H₂O (Zhang et al., 2004), and Na₂Cs₂Ba₂[B₁₂O₂⁻(OH)₆]·4OH (Zhang et al., 2016). Both compounds crystallize in the non-centrosymmetric Pmn2₁ space group and their supramolecular structures are different from that of the title compound. Therefore, the use of different alkali metals as templates may affect the crystallization of the oxoboron supramolecular structure.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.43, update June 2022; Groom et al., 2016) for the cyclic dodeca-oxoboron unit [B₁₂O₂₄] ring gave eight hits. In the crystals of Li₆Na₂KRb₂B₁₂O₂₄, Li₇Na₂₂K₁₀S₀₇B₁₂O₂₄, Li₆Na₆K₁₂Cs₁₈B₁₅O₁₈, and Li₇Na₂₂Rb₂Ba₂B₁₂O₂₄ (refcodes: JOGBIT, JOGBOZ, JOFNEA, JOFNIE, trigonal, R3 space group; Baiheti et al., 2019), the terminal oxygens of this type of the [B₁₂O₂₄] ring can be completely deprotonated [B₁₂O₂₄]⁻ and fail to extend to high-dimensional structures through covalent bonds and hydrogen bonds. In the crystal of Na₅[B₁₂O₂₀(OH)₄] (refcode: ETIJAU, monoclinic, P2₁/c space group; Menchetti et al., 1979), the partially protonated [B₁₂O₂₀(OH)₄]⁺⁻ unit also fails to extend to a higher dimensional structure through O—B—O bonds. While KN₄[Li@B₁₂O₁₈(OH)₆](CO₃)₂ (refcode: EBUCAJ, trigonal, R3 space group; Qiu et al., 2021b) is a borate carbonate with the isolated [Li@B₁₂O₁₈(OH)₆]⁻ cluster and interesting layers formed by Na⁺ and CO₃²⁻ ions, thus forming a two-dimensional supramolecular structure. After changing the synthetic conditions, the isolated [Li@B₁₂O₁₈(OH)₆]⁻ cluster was successfully extended to a layered structure via B—O—B...
bonds in Cs[Li@B12O20(OH)2]·3H2O (refcode: EBUCIR, monoclinic, Pbc a space group; Qiu et al., 2021b), by condensation reactions with the elimination of water molecules between oxoboron clusters.

5. Synthesis and crystallization

A mixture of H3BO3 (0.618 g, 10 mmol), sodium tert-butoxide (0.096 g, 1 mmol) and Rb2CO3 (0.231 g, 1 mmol) was added into pyridine (3.0 mL). After stirring for 15 min, the resulting mixture was sealed in a 25 mL Teflon-lined stainless steel autoclave, heated at 483 K for 7 days, and then slowly cooled to room temperature. Colorless block-shaped crystals of Rb6[B12O18(OH)6]·2H2O were obtained (yield 51% based on H3BO3). Infrared (KBr pallet, cm−1): 3445vs, 1639m, 1427s, 1320m, 1003m, 939w, 873m, 721m, 622w, 542m. The thermogravimetric curve of the title compound is shown in Fig. 3a. The weight loss of 8.6% (cal. 8.4%) in the temperature range 350–950 K for the compound is attributed to the loss of the water molecules and the removal of dehydration of the hydroxyl groups. The compound has almost no weight loss after 950 K. The ultraviolet visible diffuse reflectance spectrum of the title compound is shown in Fig. 3b. The band gap obtained by extrapolating the linear part of the rising curve to zero for the compound is 5.59 eV.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen-atom coordinates were refined without any constraints or restraints. Their Uiso values were set to 1.2U eq of the parent atoms.

Table 2

Experimental details
Chemical formula
M r
Crystal system, space group
Temperature (K)
a, b, c (Å)
Z
Radiation type
μ (mm⁻¹)
Crystal size (mm)

Data collection

Diffractometer Bruker APEX2
Absorption correction Multi-scan (SADABS; Krause et al., 2015)

No. of measured, independent and observed | 1980 | 1523 |
∣ wR2	0.061, 0.173, 1.07
No. of reflections	1980
No. of parameters	110
H-atom treatment	H-atom parameters constrained
δFmax, δFmin (e Å⁻³)	1.57, −1.16

Computer programs: APEX2 and SADINT (Bruker, 2014), SHELXTL2018/3 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and SHELXTL (Sheldrick, 2008).

Bashir, B., Zhang, B., Pan, S. & Yang, Z. (2018). J. Alloys Compd. 758, 85–90.
Brese, N. E. & O’Keeffe, M. (1991). Acta Cryst. B47, 192–197.
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.
Bruker (2014). APEX2 and SADINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
Menchetti, S. & Sabelli, C. (1979). Acta Cryst. B35, 2488–2493.
Qiu, Q.-M. & Yang, G.-Y. (2021a). J. Solid State Chem. 301, 122303.
Qiu, Q.-M. & Yang, G.-Y. (2021b). CrystEngComm, 23, 6518–6525.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
Shi, Y.-T., Luo, M., Lin, C.-S., Peng, G. & Ye, N. (2019). Cryst. Growth Des. 19, 3052–3059.
Tang, C.-C., Jiang, X.-X., Yin, W.-L., Liu, L.-J., Xia, M.-J., Huang, Q., Song, G.-M., Wang, X.-Y., Lin, Z.-S. & Chen, C.-T. (2019). Dalton Trans. 48, 21–24.
Wei, Q., Wang, J.-J., He, C., Cheng, J.-W. & Yang, G.-Y. (2016). Chem. Eur. J. 22, 10759–10762.
Zhang, H.-X., Zhang, J., Zheng, S.-T. & Yang, G.-Y. (2004). Inorg. Chem. Commun. 7, 781–783.
Zhang, T.-J., Pan, R., He, H., Yang, B.-F. & Yang, G.-Y. (2016). J. Clust. Sci. 27, 625–633.

References

Baiheti, T., Han, S. J., Bashir, B., Yang, Z. H., Wang, Y., Yu, H. H. & Pan, S. L. (2019). J. Solid State Chem. 273, 112–116.
Crystal structure of Rb₆[B₁₂O₁₈(OH)₆]·2H₂O

Qi-Ming Qiu, Li Yan and Jian-Biao Song

Computing details

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2018/3 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

hexarubidium hexahydroxydodecaborate dihydrate, Rb₆[B₁₂O₁₈(OH)₆]·2H₂O

Crystal data

Parameter	Value
Chemical formula	Rb₆[B₁₂O₁₈(OH)₆]·2H₂O
Mr	1068.62
Crystal system	Orthorhombic
Space group	Pnnm
a (Å)	13.395 (4)
b (Å)	9.251 (2)
c (Å)	12.368 (4)
V (Å³)	1532.7 (7)
Z	2
F(000)	1000

Mo Kα radiation, λ = 0.71073 Å

Cell parameters from 3469 reflections

θ = 2.7–26.1°

μ = 9.60 mm⁻¹

T = 296 K

Block, colorless

0.08 × 0.07 × 0.07 mm

Data collection

Bruker APEXII CCD
diffractometer

Radiation source: fine-focus sealed tube, Bruker (Mo) X-ray Source

φ and ω scans

Absorption correction: multi-scan
(SADABS; Krause et al., 2015)

Tmin = 0.452, Tmax = 0.746

17510 measured reflections
1980 independent reflections
1523 reflections with I > 2σ(I)

Refinement

Refinement on F²

Least-squares matrix: full

R[F² > 2σ(F²)] = 0.061

wr(F²) = 0.173

S = 1.07

1980 reflections
110 parameters
0 restraints

Hydrogen site location: difference Fourier map

H-atom parameters constrained

w = 1/[σ²(Fo²) + (0.0825P)² + 9.4675P]

where P = (Fo² + 2Fc²)/3

(Δσ)max < 0.001

Δρmax = 1.57 e Å⁻³

Δρmin = -1.16 e Å⁻³
Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	U(eq)
Rb1	1.000000	1.000000	0.500000	0.0418 (4)
Rb2	1.000000	0.500000	1.000000	0.0529 (5)
Rb3	0.74535 (5)	1.03106 (9)	0.73060 (7)	0.0489 (3)
O1	1.0385 (4)	0.6325 (4)	0.6768 (4)	0.0397 (12)
H1	1.089080	0.687977	0.643718	0.048*
O2	0.9347 (3)	0.7048 (4)	0.8193 (3)	0.0191 (8)
O3	1.0311 (3)	0.8776 (4)	0.7204 (3)	0.0203 (8)
O4	0.9428 (4)	0.7903 (6)	1.000000	0.0204 (11)
O5	0.7857 (3)	0.7944 (4)	0.9032 (3)	0.0194 (8)
O6	0.6357 (4)	0.7801 (7)	1.000000	0.0270 (13)
H6	0.599457	0.797673	0.948224	0.032*
O7	0.9137 (3)	0.9603 (4)	0.8563 (3)	0.0224 (8)
O8	0.4074 (4)	0.3941 (5)	0.500000	0.0144 (9)
B1	0.9999 (4)	0.7413 (6)	0.7399 (4)	0.0193 (11)
B2	1.000000	1.000000	0.7919 (6)	0.0127 (14)
B3	0.8956 (4)	0.8163 (6)	0.8960 (4)	0.0114 (10)
B4	0.7386 (6)	0.7897 (9)	1.000000	0.0176 (15)

Atomic displacement parameters (Å²)

	U¹¹	U¹²	U¹³	U²²	U²³	U³³
Rb1	0.0586 (9)	0.0472 (8)	0.0196 (6)	0.0159 (6)	0.000	0.000
Rb2	0.0971 (13)	0.0268 (6)	0.0348 (7)	0.0271 (7)	0.000	0.000
Rb3	0.0324 (4)	0.0516 (5)	0.0628 (5)	0.0101 (3)	−0.0090 (3)	0.0248 (4)
O1	0.059 (3)	0.0192 (19)	0.041 (3)	−0.011 (2)	0.036 (2)	−0.0119 (18)
O2	0.0257 (18)	0.0140 (16)	0.0175 (18)	−0.0067 (14)	0.0084 (15)	−0.0047 (13)
O3	0.0296 (18)	0.0153 (16)	0.0158 (17)	−0.0080 (15)	0.0094 (15)	−0.0048 (14)
O4	0.010 (2)	0.036 (3)	0.015 (2)	0.007 (2)	0.000	0.000
O5	0.0110 (15)	0.036 (2)	0.0117 (16)	−0.0044 (15)	−0.0006 (13)	−0.0003 (14)
O6	0.013 (2)	0.052 (4)	0.016 (2)	−0.004 (2)	0.000	0.000
O7	0.0223 (19)	0.0154 (17)	0.029 (2)	0.0031 (14)	0.0108 (16)	0.0055 (15)
O8	0.017 (2)	0.012 (2)	0.013 (2)	0.0099 (18)	0.000	0.000
B1	0.025 (3)	0.018 (3)	0.014 (2)	−0.007 (2)	0.004 (2)	−0.007 (2)
B2	0.016 (3)	0.015 (3)	0.006 (3)	0.002 (3)	0.000	0.000
B3	0.008 (2)	0.014 (2)	0.012 (2)	−0.0031 (18)	−0.0010 (18)	−0.0018 (19)
B4	0.013 (4)	0.024 (4)	0.016 (4)	−0.004 (3)	0.000	0.000
Geometric parameters (Å, °)

Bond	Length (Å)	Bond	Length (Å)
Rb1—O3	2.980 (4)	Rb3—O5	3.105 (4)
Rb1—O3i	2.980 (4)	Rb3—O3ii	3.114 (4)
Rb1—O3ii	2.980 (4)	Rb3—O1vi	3.359 (5)
Rb1—O3iii	2.980 (4)	Rb3—B3	3.491 (5)
Rb1—O6iv	3.166 (6)	Rb3—B2	3.5061 (19)
Rb1—O6v	3.166 (6)	Rb3—B3'	3.603 (5)
Rb1—B2iii	3.610 (7)	Rb3—B4'	3.729 (5)
Rb1—B2	3.610 (7)	O1—B1	1.374 (7)
Rb1—Rb3	4.4556 (12)	O1—H1	0.9433
Rb1—Rb3'	4.4556 (12)	O2—B1	1.357 (6)
Rb1—Rb3''	4.4556 (12)	O2—B3	1.495 (6)
Rb1—Rb3iii	4.4556 (12)	O3—B1	1.350 (7)
Rb2—O4vi	2.793 (5)	O3—B2	1.496 (5)
Rb2—O4	2.793 (5)	O4—B3''	1.453 (5)
Rb2—O2vii	3.058 (4)	O4—B3''	1.453 (5)
Rb2—O2viii	3.058 (4)	O5—B4	1.354 (5)
Rb2—O2ix	3.058 (4)	O5—B3	1.490 (6)
Rb2—O2	3.058 (4)	O6—B4	1.381 (9)
Rb2—B3	3.488 (5)	O6—H6	0.8200
Rb2—B3v	3.488 (5)	O6—H6''	0.8200
Rb2—B3vi	3.488 (5)	O7—B3	1.441 (6)
Rb2—Rb3v	4.3609 (11)	O7—B2	1.452 (5)
Rb2—Rb3''	4.3609 (11)	O8—H8A	0.8500
Rb3—O7	2.816 (4)	O8—H8B	0.8500
Rb3—O2v	2.963 (4)	O8—H8B'	0.8500
Rb3—O5v	2.974 (4)		
O3—Rb1—O3i	132.24 (13)	O3''—Rb3—O1vi	158.35 (10)
O3—Rb1—O3ii	47.76 (13)	O7—Rb3—B3	23.42 (11)
O3''—Rb1—O3a	180.00 (5)	O2''—Rb3—B3	154.19 (11)
O3—Rb1—O3iii	180.0	O5''—Rb3—B3	150.79 (11)
O3''—Rb1—O3ii	47.76 (13)	O5—Rb3—B3	25.25 (10)
O3''—Rb1—O3a	132.24 (13)	O3''—Rb3—B3	67.90 (10)
O3—Rb1—O6v	66.97 (7)	O1''—Rb3—B3	91.11 (11)
O3''—Rb1—O6a	66.97 (7)	O7—Rb3—B2	23.45 (12)
O3''—Rb1—O6a	113.03 (7)	O2''—Rb3—B2	151.80 (8)
O3''—Rb1—O6v	113.03 (7)	O5''—Rb3—B2	108.86 (9)
O3—Rb1—O6a	113.03 (7)	O5—Rb3—B2	67.94 (10)
O3''—Rb1—O6v	113.03 (7)	O3''—Rb3—B2	25.24 (9)
O3—Rb1—O6v	66.97 (7)	O1''—Rb3—B2	133.79 (11)
O3''—Rb1—O6v	66.97 (7)	B3—Rb3—B2	42.74 (11)
O6v—Rb1—O6v	180.0	O7—Rb3—B3v	146.09 (12)
O3—Rb1—B2iii	156.12 (7)	O2v—Rb3—B3v	23.88 (10)
O3—Rb1—B2''	23.88 (7)	O5—Rb3—B3v	23.81 (10)
O3''—Rb1—B2''	156.12 (7)	O5—Rb3—B3v	155.00 (10)
Bond	Distance (Å)	Bond	Distance (Å)
---------------------------	--------------	---------------------------	--------------
O3̅i—Rb1—B2̅ii	23.88 (7)	O3̅—Rb3—B3̅	106.72 (10)
O6̅i—Rb1—B2̅ii	90.0	O1̅i—Rb3—B3̅	92.62 (11)
O6̅—Rb1—B2̅ii	90.0	B3—Rb3—B3̅	166.87 (12)
O3̅—Rb1—B2	23.88 (7)	B2—Rb3—B3̅	131.60 (10)
O3̅i—Rb1—B2̅	156.12 (7)	O7—Rb3—B4̅	121.68 (14)
O3̅—Rb1—B2	23.88 (7)	O2̅—Rb3—B4̅	62.59 (13)
O6̅—Rb1—B2	156.12 (7)	O5̅—Rb3—B4̅	19.43 (12)
O6̅—Rb1—B2	90.0	O5—Rb3—B4̅	165.50 (14)
O6̅—Rb1—B2	90.0	O3̅—Rb3—B4̅	74.88 (13)
B2̅ii—Rb1—B2	180.0	O1̅i—Rb3—B4̅	126.70 (14)
O3̅—Rb1—Rb3	63.01 (7)	B3—Rb3—B4̅	141.27 (14)
O3̅i—Rb1—Rb3	135.79 (7)	B2—Rb3—B4̅	99.31 (15)
O3̅—Rb1—Rb3	44.21 (7)	B3—Rb3—B4̅	39.47 (14)
O3̅—Rb1—Rb3	116.99 (7)	O3̅—Rb3—B4̅	135.72 (7)
O6̅—Rb1—Rb3	119.50 (7)	O2̅—Rb3—B4̅	44.45 (7)
O6̅—Rb1—Rb3	60.50 (7)	O5̅—Rb3—B4̅	65.47 (7)
B2̅ii—Rb1—Rb3	129.79 (15)	O5—Rb3—B4̅	122.29 (7)
B2—Rb1—Rb3	50.20 (15)	O3̅—Rb3—B4̅	135.72 (7)
O3—Rb1—Rb3i	135.79 (7)	O1i—Rb3—Rb2	64.64 (7)
O3̅—Rb1—Rb3i	63.01 (7)	B3—Rb3—Rb2	141.29 (9)
O3̅i—Rb1—Rb3i	116.99 (7)	B2—Rb3—Rb2	150.36 (11)
O3̅ii—Rb1—Rb3i	44.21 (7)	B3—Rb3—Rb2	50.87 (8)
O6̅—Rb1—Rb3i	119.50 (7)	B4—Rb3—Rb2	65.52 (11)
O6—Rb1—Rb3i	60.50 (7)	O7—Rb3—Rb1	74.06 (8)
B2̅ii—Rb1—Rb3i	50.20 (15)	O2̅—Rb3—Rb1	121.65 (7)
B2—Rb1—Rb3i	129.79 (15)	O5̅—Rb3—Rb1	78.67 (7)
Rb3—Rb1—Rb3i	79.60 (3)	O5—Rb3—Rb1	105.16 (7)
O3—Rb1—Rb3i	44.21 (7)	O3̅—Rb3—Rb1	41.86 (7)
O3̅—Rb1—Rb3i	116.99 (7)	O1i—Rb3—Rb1	145.17 (7)
O3̅ii—Rb1—Rb3i	63.01 (7)	B3—Rb3—Rb1	84.08 (9)
O6̅—Rb1—Rb3i	135.79 (7)	B2—Rb3—Rb1	52.28 (12)
O6—Rb1—Rb3i	60.50 (7)	B3—Rb3—Rb1	99.81 (8)
B2̅ii—Rb1—Rb3i	119.50 (7)	B4—Rb3—Rb1	60.50 (11)
B2—Rb1—Rb3i	129.79 (14)	Rb2—Rb3—Rb1	98.86 (3)
Rb3—Rb1—Rb3i	50.20 (14)	B1—O1—Rb3i	116.5 (4)
Rb3—Rb1—Rb3i	100.40 (3)	B1—O1—H1	96.8
Rb3—Rb1—Rb3i	180.0	Rb3i—O1—H1	78.5
O3—Rb1—Rb3ii	116.99 (7)	B1—O2—B3	120.9 (4)
O3̅—Rb1—Rb3ii	44.21 (7)	B1—O2—Rb3i	120.5 (3)
O3̅—Rb1—Rb3ii	135.79 (7)	B3—O2—Rb3i	102.8 (2)
O6̅—Rb1—Rb3ii	63.01 (7)	B1—O2—Rb2	119.9 (3)
O6—Rb1—Rb3ii	60.50 (7)	B3—O2—Rb2	93.7 (3)
O6—Rb1—Rb3ii	119.50 (7)	Rb3—O2—Rb2	92.81 (9)
B2̅—Rb1—Rb3ii	50.20 (14)	B1—O3—B2	121.0 (4)
B2—Rb1—Rb3ii	129.79 (14)	B1—O3—Rb1	118.4 (3)
Rb3—Rb1—Rb3ii	180.0	B2—O3—Rb1	102.4 (3)
Rb3—Rb1—Rb3iii	100.40 (3)	B1—O3—Rb3i	122.9 (3)
Rb3—Rb1—Rb3iii	79.60 (3)	B2—O3—Rb3i	92.20 (15)

Acta Cryst. (2022). E78, 971-973
Bond	Bond Length (Å)	Bond Angle (°)		
O4vi—Rb2—O4	180.0			
O4vi—Rb2—O2vi	132.41 (6)			
O4—Rb2—O2vi	47.59 (6)			
O4vi—Rb2—O2iii	47.59 (6)			
O4—Rb2—O2	132.41 (6)			
O2vi—Rb2—O2iii	180.0			
O4vi—Rb2—O2vi	47.59 (6)			
O4—Rb2—O2	132.41 (6)			
O2vi—Rb2—O2	86.08 (13)			
O3—Rb1	93.93 (9)			
B3—O4—Rb2	106.2 (3)			
B3—O4—Rb2	124.6 (5)			
B3—O4—Rb2	113.6 (4)			
B3—O4—Rb2	102.5 (3)			
B3—O4—Rb2	123.3 (4)			
B3—O4—Rb2	92.0 (3)			
B3—O4—Rb2	98.83 (10)			
B3—O4—Rb2	128.7 (5)			
B3—O4—Rb2	125.4			
B3—O4—Rb2	79.7			
B3—O4—Rb2	125.35 (13)			
B3—O4—Rb2	79.74 (6)			
B3—O4—Rb2	102.7			
B3—O4—Rb2	123.7 (3)			
B3—O4—Rb2	105.6 (3)			
B3—O4—Rb2	106.0 (3)			
B3—O4—Rb2	107.7			
B3—O4—Rb2	97.83			
B3—O4—Rb2	101.8 (2)			
B3—O4—Rb2	62.57 (15)			
B3—O4—Rb2	101.8 (2)			
B3—O4—Rb2	50.52 (19)			
B3—O4—Rb2	150.8 (3)			
B3—O4—Rb2	101.8 (2)			
B3—O4—Rb2	62.57 (15)			
B3—O4—Rb2	155.0 (2)			
B3—O4—Rb2	123.3 (3)			
B3—O4—Rb2	123.3 (3)			
B3—O4—Rb2	53.8 (3)			
B3—O4—Rb2	53.8 (3)			
B3—O4—Rb2	77.52 (12)			
Bond/Angle	Value	Unit	Value	Unit
-----------	-------	------	-------	------
O2viii—Rb2—Rb3ix	102.80 (7)		Rh3iii—B2—Rb1	77.52 (12)
O2vi—Rb2—Rb3ix	42.74 (7)		O7—B3—O4	112.5 (4)
O2—Rb2—Rb3ix	137.26 (7)		O7—B3—O5	108.2 (4)
B3—Rb2—Rb3ix	126.76 (8)		O4—B3—O5	110.8 (4)
B3viii—Rb2—Rb3ix	96.67 (8)		O7—B3—O2	111.3 (4)
B3vi—Rb2—Rb3x	83.33 (8)		O4—B3—O2	107.2 (4)
O4v—Rb2—Rb3x	53.24 (8)		O5—B3—O2	106.9 (4)
O4—Rb2—Rb3x	105.67 (8)		O7—B3—Rb2	146.6 (3)
B3—Rb2—Rb3x	74.33 (8)		O4—B3—Rb2	50.3 (3)
O3vi—Rb2—Rb3x	102.80 (7)		O5—B3—Rb2	105.1 (3)
O2viii—Rb2—Rb3x	42.74 (7)		O5—B3—Rb3	62.7 (2)
O2vi—Rb2—Rb3x	137.26 (7)		O2—B3—Rb3	109.2 (3)
B3—Rb2—Rb3x	53.24 (8)		O7—B3—Rb3	128.1 (3)
O7—Rb3—O2v	153.22 (11)		O4—B3—Rb3x	119.4 (3)
O7—Rb3—O5v	127.55 (10)		O5—B3—Rb3x	53.7 (2)
O2—Rb3—O5v	47.64 (10)		O2—B3—Rb3x	53.3 (2)
O7—Rb3—O5	46.94 (10)		O7—B3—Rb3x	81.95 (10)
O2—Rb3—O5	131.85 (10)		O2—B3—Rb3x	124.3 (6)
O5—Rb3—O5	169.84 (10)		O5—B3—O6	117.8 (3)
O7—Rb3—O3ii	46.81 (9)		O5—B4—O6	117.8 (3)
O2—Rb3—O3ii	128.83 (9)		O5—B4—Rb3x	47.0 (3)
O5—Rb3—O3ii	83.65 (10)		O5iv—B4—Rb3x	132.1 (5)
O5—Rb3—O3ii	92.98 (9)		O5—B4—Rb3x	90.9 (3)
O7—Rb3—O1xi	111.56 (10)		O5—B4—Rb3xii	132.1 (5)
O2—Rb3—O1xi	69.14 (10)		O5iv—B4—Rb3xii	47.0 (3)
O5—Rb3—O1xi	116.34 (10)		O5—B4—Rb3xii	90.9 (3)
O5—Rb3—O1xi	65.88 (10)		Rh3x—B4—Rb3xii	99.8 (2)
B2—O3—B1—O2	4.2 (8)		Rh2—O4—B3—O5	92.7 (4)
Rb1—O3—B1—O2	−123.3 (5)		B3viii—O4—B3—O2	−147.0 (4)
Rb3ix—O3—B1—O2	120.5 (5)		B2—O4—B3—O2	−23.6 (4)
B2—O3—B1—O1	−174.3 (5)		B3viii—O4—B3—Rb2	−123.5 (7)
Rb1—O3—B1—O1	58.2 (6)		B2—O4—B3—Rb3	40.4 (11)
Rb3ix—O3—B1—O1	−58.1 (6)		B2—O4—B3—Rb3x	163.9 (5)
B3—O2—B1—O3	−3.0 (8)		B3viii—O4—B3—Rb3x	−89.9 (6)
Rb3ix—O2—B1—O3	127.7 (5)		Rh2—O4—B3—Rb3x	33.5 (3)
B2—O2—B1—O3	−118.4 (5)		B4—O5—B3—O7	−107.7 (6)
B3—O2—B1—O1	175.6 (5)		Rh3x—O5—B3—O7	124.4 (3)
Rb3ix—O2—B1—O1	−53.8 (6)		Rb3—O5—B3—O7	23.9 (3)
B2—O2—B1—O1	60.1 (6)		Rb3—O5—B3—O4	15.9 (7)
Rb3ix—O1—B1—O3	91.4 (5)		Rh3x—O5—B3—O4	−111.9 (4)
Rh3ix—O1—B1—O2	−87.2 (5)		Rh3—O5—B3—O4	147.5 (4)
B3—O7—B2—O7	−87.0 (4)		B4—O5—B3—O2	132.3 (5)
Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
O8—H8B···O7x	0.85	2.25	3.046 (6)	155

Symmetry codes: (i) x, y, z; (ii) −x+1/2, −y−1/2, −z+1; (iii) −x+1/2, −y−1/2, −z+1; (iv) x+1/2, y+1/2, z; (v) −x+1, −y+1/2, −z+1; (vi) −x+1/2, y+1/2, −z+1; (vii) x−1, y+1, z; (viii) x+1, y+1, z; (ix) x+1, −y+1, z; (x) x+1, −y+1, z+1; (xi) x+1, −y+1, −z+1; (xii) x+1, −y+1, −z+1; (xiii) x+1, −y+1, −z+1.
Bond	d (Å)	r (Å)	D (Å)	Θ (°)
O8—H8B···O4x	0.85	1.68	2.224 (7)	119
O8—H8A···O7xiv	0.85	1.70	2.231 (5)	118
O8—H8A···O4xiv	0.85	2.17	2.958 (7)	155
O6—H6···O1xi	0.82	1.86	2.670 (5)	167
O1—H1···O6vi	0.94	1.91	2.670 (5)	136

Symmetry codes: (iv) x+1/2, −y+3/2, z−1/2; (x) −x+3/2, y−1/2, −z+3/2; (xi) x−1/2, −y+3/2, −z+3/2; (xiv) x−1/2, −y+3/2, z−1/2.