Synchronization of delayed coupled neurons in presence of inhomogeneity

S. Sadeghi · A. Valizadeh

Abstract In principle, two directly coupled limit cycle oscillators can overcome mismatch in intrinsic rates and match their frequencies, but zero phase lag synchronization is just achievable in the limit of zero mismatch, i.e., with identical oscillators. Delay in communication, on the other hand, can exert phase shift in the activity of the coupled oscillators. In this study, we address the question of how phase locked, and in particular zero phase lag synchronization, can be achieved for a heterogeneous system of two delayed coupled neurons. We have analytically studied the possibility of inphase synchronization and near inphase synchronization when the neurons are not identical or the connections are not exactly symmetric. We have shown that while any single source of inhomogeneity can violate isochronous synchrony, multiple sources of inhomogeneity can compensate for each other and maintain synchrony. Numeric studies on biologically plausible models also support the analytic results.

Keywords Synchronization · Delay · Inhomogeneity · Neuronal excitability · Phase resetting curves

1 Introduction

Synchronous firing of neurons has received much attention in relation to the generation of brain wave rhythms and information processing at various aspects in the neuronal systems, such as selective attention and the binding problem (Taub et al. 1999; Gray et al. 1990; Roelfsema et al. 1997; Traub et al. 1996; Contreras et al. 1996). Although synchronization with nonzero phase lag has been observed between distal areas in human brains (Melloni et al. 2007), zero phase lag synchronization is of particular interest with respect to the binding hypothesis (Singer 1993; Womelsdorf et al. 2007). The mechanism of these phenomena has been subject of controversial debate in a more general context; beyond its functional relevance, the zero time lag synchrony among such distant neuronal ensembles must be established by mechanisms that are able to compensate for the delays involved in the neuronal communication. Latencies in conducting nerve impulses down axonal processes can amount to delays of several tens of milliseconds between the generation of a spike in a presynaptic cell and the elicitation of a postsynaptic potential (Ringo et al. 1994). The question is how, despite such temporal delays, the reciprocal interactions between two brain regions can lead to the associated neural populations to fire in unison.

It is quite probable that a variety of mechanisms are responsible for bringing synchrony at different levels (distinguishing for example, among local and long-distance synchrony) and different cerebral structures. Yet there are strong evidences that long distance inter-hemispheric phase locking at zero phase lag arises via reciprocal connectivity rather than via locking to a common input (Engel et al. 1991). Connections between different areas and cortical columns are mediated by excitatory interactions. It has been argued that delayed excitatory connections between neuron models do not readily synchronize the neurons and in fact they usually lead to antiphase firing (Vreeswijk et al. 1994; Ernst et al. 1995, 1998). This belongs to the mechanism by which model cortical neurons make the transition from excitable state to repetitive firing. Phase resetting...
curves (PRCs) keep track of how much an input advances or delays the next spike in an oscillatory neuron depending upon where in the cycle the input is applied. PRCs are formally found by perturbing the oscillation with a brief depolarizing stimulus at different times in its cycle and measuring the resulting phase shift from the unperturbed system (Ermentrout 1996; Canavier 2006; Izhikevich 2006). There was an agreement that the type of bifurcation which results in repetitive firing of the neuron, determines the response of the neuron to the external stimulations, so the functional form of PRC: In type I neurons with mainly positive PRC, transition to repetitive firing occurs through a saddle-node bifurcation on invariant circle (SNIC) and for type II neurons which have PRCs with a large negative lobe, repetitive firing ensues birth of a limit cycle through a Hopf bifurcation (Ermentrout 1996; Canavier 2006; Ermentrout et al. 2001). Just recently it is shown that type II PRCs can also occur in systems that are arbitrarily close to a SNIC bifurcation (Ermentrout et al. 2012; Krogh-Madsen et al. 2012).

In general the form of the interaction between oscillators together with their intrinsic response (the PRC) provide sufficient information about the ability of the system to synchronize or desynchronize the oscillations (Kopell 1988; Hansel et al. 1995; Smeal et al. 2010). On the neurons side, the type II oscillators can more easily synchronize: A PRC which contains both negative and positive lobes can allow inputs to both slow down the oscillator which is behind and speed up the oscillator which is ahead. Indeed it turned out inphase firing of type I neurons with excitatory synapses is only possible with unrealistic instantaneous couplings (Tsodyks et al. 1993; Mirollo and Strogatz 1990; Hansel et al. 1995; Ermentrout 1996). Intuitively, phase lags equal to the conduction delay are expected in causal limit when the delayed arrival of an input triggers a spike (Sieling et al. 2009; Woodman and Canavier 2011). On the effect of the type of interaction, it is believed that inhibition and not excitation is responsible for synchronization of the neurons in many brain areas (Vreeswijk et al. 1994; Ernst et al. 1995, 1998). While instantaneous inhibitory couplings lead to antiphase firing of neuronal oscillators, in presence of delay inphase firing of is more likely to occur with inhibitory synapses (Vreeswijk et al. 1994; Ernst et al. 1995, 1998; Sieling et al. 2009; Woodman and Canavier 2011; Wang et al. 2012).

Synchronization is also affected by the configuration through which the neurons interact. A prominent example where a special configuration of the links is exploited to synchronize delayed coupled oscillators, is suggested by Fischer et al. (2006). In this arrangement two distant oscillators communicate indirectly through a relay oscillator and the system exhibits zero-lag synchronization between two outer elements provided the two branches are similar. While the symmetry is held, i.e. the lateral neurons are identical and the couplings are of the same strength and the same delay time, the model is generic and synchronization is almost independent of the intrinsic parameters of the relay neuron and also the type of interactions. Yet, as the authors indicate the results critically depend on the symmetry of the parameters of the lateral neurons and connections (Fischer et al. 2006; Vicente et al. 2008; D’Huys et al. 2008; Viriyopase et al. 2012).

Presence of inhomogeneity in the networks of neural oscillators can also destabilize synchrony (Tsodyks et al. 1993; White et al. 1998). In classical models for synchronization coupling strength and inhomogeneity are competing factors which determine the collective dynamics of the system (Kuramoto 2003; Pikovsky et al. 2003). How does inhomogeneity affect synchronization of two neurons when they communicate from distant? In a minimal model of two reciprocally coupled neurons, mismatch in intrinsic firing rates of the neurons (nodes’ mismatch) and differences in the synaptic strengths and connection delays (links’ mismatch) can both be source of inhomogeneity. While in most of the studies on the synchronization of inhomogeneous neuronal systems mismatch of the firing rates is considered, few attention has been paid to mismatch in reciprocal synaptic connections (Zeitler et al. 2009; Wang et al. 2012). In this study we investigate how slight inhomogeneities in the neurons or the couplings parameters affect synchrony and then we follow this question in a more general scheme when multiple sources of inhomogeneity are present, i.e., both the neurons and the connections are dissimilar. Our results show that while any single source of inhomogeneity can violate isochronous synchrony, multiple sources of inhomogeneity can compensate for each other and maintain synchrony. Using iterative maps we give a general analytic framework for the existence and stability of phase locked solutions for two phase oscillators connected by delayed pulsatile couplings, in presence of inhomogeneity. The results coincide with those of other authors in special cases, e.g., for two similar oscillators coupled via symmetric reciprocal connections (Sieling et al. 2009; Woodman and Canavier 2011). The numerical results given both for the phase model and for more biologically plausible conductance based models for neurons, support the analytic findings.

2 Models and methods

To model the type I and type II neurons, we have considered Wang–Buzsáki (WB) (Wang and Buzsáki 1996) and classical Hodgkin-Huxley (HH) (Hodgkin and Huxley 1952) models, respectively. In type I neurons with mainly positive PRC, transition to repetitive firing occurs through an infinite period bifurcation and with a slowly increasing applied
current, the neuronal dynamic changes from stationary to oscillatory with arbitrarily small frequency. For type II neurons which have PRCs with a large negative lobe, repetitive firing occurs via birth of a limit cycle through a Hopf bifurcation, and the onset of the repetitive firing occurs with non-zero frequency (Ermentrout 1996; see also Ermentrout et al. 2012; Krogh-Madsen et al. 2012).

Both the WB and HH models when stimulated with a supra-threshold constant input current settle into a limit cycle, embedded in its 3- and 4-dimensional phase spaces, respectively. The current balance equation for both model neurons is

\[C \frac{dV_i}{dt} = -g_{nat}m^3h(V_i - V_{na}) - g_kn^4(V_i - V_k) - g_l(V_i - V_l) - I_{ij} + I_i, \]

where \(i \) and \(j \) are chosen from Eqs. (1) and (2). \(C \) is the membrane capacitance in \(\mu F/cm^2 \), \(V_l \) is the membrane voltage in mV. The parameters \(g_{nat} \), \(g_k \) and \(g_l \) are the maximum conductances per surface unit for the sodium, potassium and leak currents and \(V_{na} \), \(V_k \) and \(V_l \) are the corresponding reversal potentials. All the constant parameters for both neuronal models are given in Table 1. Details of the two models can be found in Appendix. The external (density of) applied current \(I_i \), in \(\mu A/cm^2 \), models the sensory inputs or the input from other neurons in the network. \(I_i \) is composed of a constant current \(\mu_i \) and a stochastic component \(\sigma \xi_i(t) \). The amplitude of the stochastic components is \(\sigma \), and \(\xi_1(t) \) and \(\xi_2(t) \) are independent Gaussian stochastic processes with zero mean and unit variance \(\langle \xi_1(t)\xi_1(t') \rangle = \delta_{ij}(t - t') \).

The neurons are assumed to communicate through chemical synapses modeled by

\[I_{ij} = \bar{s}_{ij}(t - \tau_{ij})(V_i - E_{syn}), \]

where \(\bar{s}_{ij} \) is the synaptic maximum conductivity and \(\tau_{ij} \) is the delay in communication of the neurons \(j \) (presynaptic) and \(i \) (postsynaptic). Synaptic reversal potential \(E_{syn} \) determines the excitatory/inhibitory type of the synapse. Throughout this manuscript, we take \(E_{syn} = 10 \) mV for excitatory and \(E_{syn} = -70 \) mV for inhibitory synapses, respectively. The rate of change of the synaptic variable \(s(t) \) is given by the following equation

\[\frac{ds_{ij}}{dt} = \alpha f(v_j - v_{th})(1 - s_{ij}) - \beta s_{ij}, \]

with \(\alpha \) and \(\beta \) defining the synaptic activation and deactivation time constants, respectively, and \(f(x) = 1/2[1 + \tan h(\beta x)] \) ensures activation of the synapse when the presynaptic voltage exceeds \(v_{th} \). We assume the synapses are fast, i.e., the time constants of the synapses are taken much less than the period of the spiking neurons (Hashemi et al. 2012). In this regime the coupling terms can be approximated by pulsatile currents (see below).

Given the choice of model parameters in Table 1, an uncoupled WB neuron exhibits periodic spiking with a period of about 16 ms for \(I_i = 1 \) \(\mu A/cm^2 \), and a HH neuron fires with a period of about 14 ms for \(I_i = 10 \) \(\mu A/cm^2 \). Throughout this paper we have taken these typical values for \(I_1 \) and then inhomogeneity is imposed by \(I_1 = I_2 + \Delta I \) with \(\Delta I > 0 \). Consequently, \(\omega_2 = \omega_2 + \Delta \omega \) and the first neuron has a larger natural firing rate with \(\Delta \omega > 0 \).

Dynamics of limit cycle oscillators can be approximated by the equation describing the evolution of the averaged phases. For an analytic inspection we use this approximation to quantify the evolution of the membrane voltage of two regularly firing neurons connected by pulse like couplings with Winfree type oscillators (Winfree 2010):

\[\dot{\theta}_i = \omega_i + g_{ij} \bar{Q}(\theta_i) \sum \delta (t - t^*_j - \tau_{ij}) \]

where \(\delta \) is the Dirac’s delta function describing the pulsatile interaction, and \(g_{ij} \) is the strength of the synapse which can take both positive and negative values to describe excitatory and inhibitory synapses, respectively. The normalized phase reset curve \(\bar{Q}(\theta) \) determines the response of the neuron to the incoming pulse (see Eq. (7)). Delay time between the firing of the neuron \(j \) and elicitation of a postsynaptic pulse in neuron \(i \) is denoted by \(\tau_{ij} \). \(\omega_i \) is the natural firing rate of the neuron (when isolated).

We have mainly studied the synchronization of the neurons by recording intervals between spiking of two neurons. Furthermore we have measured synchrony by calculating the zero lag cross-correlation between phases of two neurons:

\[\rho_{12} = \frac{\langle \theta_1(t)\theta_2(t) \rangle - \langle \theta_1(t) \rangle \langle \theta_2(t) \rangle}{\sqrt{\text{Var}(\theta_1)\text{Var}(\theta_2)}}, \]

Where Var is the variance. For the limit cycle oscillators of WB and HH type, the interval between two successive action potentials defines a complete cycle, and the phase increase during this time amounts to \(2\pi \). Then we can assign

Table 1 The parameters for Wang–Buzsaki and Hudgkin–Huxley neurons

	WB	HH
\(V_{na} \)	55	55
\(V_k \)	-90	-72
\(V_l \)	-65	-50.6
\(g_{nat} \)	35	120
\(g_k \)	9	36
\(g_l \)	0.1	0.3
\(C \)	1	1
\(\phi \)	5	-
a value to the phase by linear interpolation between two action potentials:

$$\theta = \frac{2\pi}{T} (t - t_i),$$

where t_i is the time of the last spike and T is the interspike interval (Izhikevich 2006). Advantage of using the correlation function as a measure of phase locking is that it can discriminate between uncorrelated firing and antiphase locking since it assigns a zero value to the former and negative values to the later case. Order parameters of the Kuramoto type (Kuramoto 2003) used by other authors (see e.g. Vicente et al. 2008) take zero value for both the antiphase and uncorrelated firings.

Phase reset curves Phase reset curves determine the responses of neurons to brief stimulations. As illustrated in Fig. 1, a pulse of duration 1ms and strength h at different phases θ is imposed after the ith spike, and the timing of the next spike t_{i+1} is recorded. The normalized phase reset $Q(\theta)$ is defined as

$$Q(\theta) = \frac{1}{h} \left(1 - \frac{t_{i+1} - t_i}{T} \right),$$

(7)

where the phase is defined by Eq. (6) and h is the strength of the pulse which can be positive or negative for excitatory and inhibitory pulses, respectively. In general, phase reset curves are functions of both θ and the pulse strength h (Izhikevich 2006). The advantage of using normalized form of PRC as defined above, is that it is independent of pulse strength, while the pulse is weak and PRC can be approximated by a linear function of h. In what follows, for simplicity we drop the overline and call $Q(\theta)$ the phase reset curve.

In Fig. 2, the phase reset curve for positive (excitatory) and negative (inhibitory) pulses are shown for the WB and HH neurons. The most notable difference between the two models is that PRC is strictly positive for the WB model, whereas it may either advance or delay spiking in the HH model, depending on when exactly the perturbation is delivered. Both the WB and HH models show maximal sensitivity to the external perturbation far away from the spiking events. In addition, the HH model shows more evidently that right after the spike, the system is rather unresponsive to incoming perturbations, due to refractoriness. The results for inhibitory and excitatory pulses do not show any qualitative difference.

3 Results

3.1 Analytic results

Out of the causal limit (when the incoming pulses do not elicit action potentials instantaneously), we construct an iterative map by sampling the phase of the Winfree oscillators, defined in Eq. (4), at the time of firing of the faster spiking neuron, neuron 1. Assuming $\theta_1(t^n) = \theta_1(n)$ we have

$$\theta_1(n + 1) = \theta_1(n) + \omega_1 T + g_{12} Q(\omega_1 t_{12} + \Delta \theta_1),$$
$$\theta_2(n + 1) = \theta_2(n) + \omega_2 T + g_{21} Q(\omega_2 t_{21} - \Delta \theta_2).$$

(8)
Here $\Delta \theta_n$ is the phase difference of the neurons at the instant of nth spike of the high frequency neuron (see Fig. 3), and T is the period of the firing of the high frequency neuron which in general is different from its natural period of the firing. In the locked state T is the period of the firing of the both neurons in the network (see below).

A 1:1 locked state is characterized by a fixed point of the map

$$\Delta \theta_{n+1} = \Delta \theta_n + T \Delta \omega + g_{12} Q(\omega_1 \tau_{12} + \Delta \theta_n) - g_{21} Q(\omega_2 \tau_{21} - \Delta \theta_n),$$

which gives an implicit equation for the phase lag $\Delta \theta$ in locked state:

$$T \Delta \omega = g_{21} Q(\omega_2 \tau_{21} - \Delta \theta) - g_{12} Q(\omega_1 \tau_{12} + \Delta \theta).$$ \hspace{1cm} (10)

Note that in general the network period T is not constant and depends on the other parameters. Intuitively, this equation expresses that the phase difference arisen from the frequency mismatch over a period should be balanced by the mutual excitations (or inhibition) for phase locked activity. For given values of parameters, a solution of this equation, if exists, determines the phase lag of firing of two neurons in locked state. An upper limit for the frequency mismatch which the system can tolerate in a phase locked solution is given by

$$T \Delta \omega < \text{Max}[g_{21} Q] - \text{Min}[g_{12} Q].$$ \hspace{1cm} (11)

Stability condition Assuming a small perturbation on the phase lag in locked state $\Delta \theta_n = \Delta \theta + \zeta_n$, we get the linearized map

$$\zeta_{n+1} = \zeta_n \left[1 + g_{12} Q'(\omega_1 \tau_{12} + \Delta \theta) + g_{21} Q'(\omega_2 \tau_{21} - \Delta \theta)\right].$$ \hspace{1cm} (12)

where $Q'(\theta) = \frac{dQ}{d\theta}$. Stability condition is

$$g_{12} Q'(\omega_1 \tau_{12} + \Delta \theta) + g_{21} Q'(\omega_2 \tau_{21} - \Delta \theta) < 0,$$ \hspace{1cm} (13)

which guarantees $|\zeta_{n+1}| < |\zeta_n|$.

3.1.1 Special cases

a. **Symmetric configuration:** For the bidirectional symmetric couplings $g_{12} = g_{21} = g$ and $\tau_{12} = \tau_{21} = \tau$, and identical neurons $\omega_1 = \omega_2 = \omega$ Eq. (10) gives

$$Q(\omega \tau + \Delta \theta) = Q(\omega \tau - \Delta \theta).$$ \hspace{1cm} (14)

This equation has always a synchronous solution $\Delta \theta = 0$ regardless of the functional form of Q. But since Q is a periodic function of phase, assuming it is continuous, other solution also exist which depends on the functional form of PRC. Stability condition for synchronous (inphase) state is $g Q'(\omega \tau) < 0$ consistent with previous results (Vreeswijk et al. 1994; Sieling et al. 2009; Woodman and Canavier 2011).

b. **Symmetric couplings with dissimilar neurons:** For the bidirectional symmetric couplings $g_{12} = g_{21} = g$ and $\tau_{12} = \tau_{21} = \tau$, Eq. (10) gives

$$T \Delta \omega = g[Q(\omega \tau - \Delta \theta) - Q(\omega_1 \tau + \Delta \theta)].$$

Assuming small mismatch in frequencies, we can linearize Q and deduce an explicit equation for small phase lag:

$$\Delta \theta = -\Delta \omega \left[\frac{\tau}{2} + \frac{T}{2g Q'(\omega \tau)}\right].$$ \hspace{1cm} (15)

For zero frequency mismatch, synchronous solution exists independent of the delay and synaptic strengths. For nonzero mismatch, inphase firing is only possible if the terms in brackets cancel each other (note that second term is negative due to stability condition given below). Yet for small mismatch, near isochronous firing is possible for a range of delay times since the phase lag changes proportional to delay with the rate $\Delta \omega \ll 1$.

Stability condition given in Eq. (13) for the symmetric connections gives:

$$g \left[Q'(\omega_1 \tau + \Delta \theta) + Q'(\omega_2 \tau - \Delta \theta)\right] < 0.$$ \hspace{1cm} (16)

For small mismatch, if a synchronous state exists, it is stable if $g Q'(\omega \tau) < 0$.

c. **Asymmetric couplings with identical neurons:** With identical neurons asymmetry can arise from unequal delay times or unequal synaptic strengths. We consider here a small difference in synaptic strengths $\Delta g = g_{21} - g_{12}$, with identical neurons $\omega_1 = \omega_2 = \omega$ and equal delay times $\tau_{12} = \tau_{21} = \tau$. A similar study has
been done before on integrate-fire neurons (Zeitler et al. 2009). Linearizing Eq. (10) gives:
\[
\Delta \theta = -\Delta g \frac{Q(\omega \tau)}{2g Q'(\omega \tau)} .
\]
(17)
Along with stability condition \(g Q'(\omega \tau) < 0 \) this equation states that phase difference grows with increasing \(\Delta g \) if the phase reset curve is positive \(Q(\omega \tau) > 0 \) and vice versa.

d. **Near symmetric configuration:** In a near symmetric configuration when the neurons are not identical and the connections are not exactly symmetric, such that \(\Delta \omega = \omega_1 - \omega_2 \), \(\Delta g = g_{21} - g_{12} \) and \(\Delta \tau = \tau_{21} - \tau_{12} \) are small parameters, the phase lag in a near inphase state can be given by a linearized approximation:
\[
\Delta \theta = \frac{1}{2g Q'} \left[-(T + g \tau Q') \Delta \omega - Q \Delta g - g \omega Q' \Delta \tau \right].
\]
(18)
where \(Q = Q(\omega \tau) \) and \(Q' = Q'(\omega \tau) \). Together with the stability condition \(g Q'(\omega \tau) < 0 \) this equation determines deviation from synchrony for given amounts of heterogeneity in the neuronal and synaptic parameters. This equation shows that theoretically it is possible to tune the phase lag by changing one or more of the values of the parameters, but in reality it is most likely that due to synaptic plasticity the synaptic strength will be the parameter that changes the phase lag.

e. **Unidirectional coupling:** Assuming a unidirectional coupling \(g_{12} = 0 \) necessary condition for phase locking is \(T \Delta \omega < \max(g_{21}, Q) \). With excitatory synapse \(g_{21} > 0 \), this equation states that over each period, phase shift exerted by excitatory synapse on the low frequency neuron should be strong enough to compensate for the difference in natural frequency. For inhibitory synapse \(g_{21} Q \) should have a positive lobe for existence of phase locked state, i.e., just type II neurons can be locked together. The phase lag in the locked state for unidirectionally coupled neurons can be explicitly found
\[
\Delta \theta = \omega_2 \tau_{21} - Q^{-1} \left(\frac{T \Delta \omega}{g_{21}} \right) .
\]
(19)
As can be seen phase lag changes linearly with \(\tau \) and if \(\Delta \omega \neq 0 \), \(\Delta \theta \) can be changed by \(g \), i.e. in this case plasticity can tune the phase difference. On the other hand in absence of a frequency mismatch \(\Delta \omega = 0 \), the phase lag is independent of the synaptic strength and is solely determined by the firing rate and the delay time.

3.2 Numeric results

We first give numeric results for two pulse coupled Winfree oscillators to test the analytic results given above. Phase reset curves for type I and type II oscillators are assumed as \(1 - \cos(\theta) \) and \(\sin(\theta) \), respectively. It has been shown that these two functions are approximately proportional to PRC near Hopf and SNIC bifurcations, respectively (Ermentrout et al. 2001; Brown et al. 2004). In Figs. 4 and 5 we have shown the time lag between the spikes of two bidirectionally coupled model neurons in symmetric and near symmetric configurations. For the symmetric case, when the neurons are identical and couplings are symmetric (both the coupling strengths and delays are equal), the results match the results of other authors (Sieling et al. 2009; Woodman and Canavier 2011). The excitatory coupled neurons fire in synchrony (with zero phase lag) for the range of the delay time for which the PRC has a negative slope. This is consistent with Eq. (10) where \(\Delta \theta = 0 \) is a trivial solution regardless of other parameters, along with the stability criterion \(g Q'(\omega \tau) < 0 \).

With any deviation from the symmetric case the lag in the phase locked state changes with the parameters such as delay, synaptic weight and firing rate. For example with nonidentical neurons modeled with different firing frequencies, Eq. (10) has no trivial solution and the phase lag of firings in locked state changes with delay (Fig. 5a–c). For small frequency mismatches a linear approximation can show the dependence of the phase lag on other parameters.
Fig. 5 In (a) and (b) the phase difference between the spikes of neurons is plotted against delay time, for two nonidentical neurons with frequency mismatch shown in the plots. The synaptic connections are symmetric with equal strength and equal delay times. In (c) the phase difference is shown vs. the frequency mismatch for a sample value of delay time. The red solid line in (c) is the result of the analytic approximation (15). In (d) to (f) similar results are presented when the neurons are identical and the connections are of equal delay times and different strengths. Red solid line in (f) shows the result of the linear approximation (17). Arrows in left and middle panels indicate the sample delay time for which (e) and (f) are plotted. The synapses are excitatory with the strengths $g_{12} = g_{21} = 0.5$ in (a)–(c) and $g_{21} = 0.5 + \Delta g$ in (d)–(f). The neurons are of type-II and the delay times are equal. Here and in the subsequent figures delay time is normalized by the interspike interval of the neuron 2 (slower neuron when the neurons are non-identical).

as is given in Eq. (15). Numeric results shown in Fig. 5c are in agreement with analytic results for small mismatches. It can also be seen that transition from the inphase state to antiphase, is mediated by an unlocked region in which the neurons fire independently. This unlocked region is centered around the point in which derivative of PRC changes sign and neither inphase and antiphase solutions are stable. For the fully symmetric configuration it occurs just in the point of zero slope of the PRC, but the region grows with increasing mismatch in firing rates. In another point of view, the results show that the range of frequency mismatch which the system can tolerate and remain in a phase locked state, depends on the slope of phase reset curve. Hence the tolerance of the locked state to the frequency mismatch depends also on delay time: Near the regions in which the slope of the PRC changes sign, the system is vulnerable to the heterogeneity and nonidentical neurons can fire neither in synchrony nor in phase locked manner.

We then tested the case with identical neurons and asymmetric connections. The results shown in Fig. 5d–f are produced with the connections of equal delay times and different synaptic strengths. The phase lag in the phase locked state increases with the mismatch in synaptic strengths in accordance with Eq. (17) for small Δg. It is notable that an stable phase locked solution exist for any value of the mismatch in synaptic strengths in the range we examined. Also despite of the symmetric case, with unequal synapses strengths, a soft transition from inphase to antiphase firing occurs when the delay time is varied.

We have repeated numeric experiments for conductance based neuronal models, WB and HH as type-I and type-II neurons, respectively. Results shown in Figs. 6 and 7 qualitatively match the results for Winfree oscillators. Synchronous state is not structurally stable and phase lag between the firings changes proportional to the mismatch in firing rates, for small mismatches (Fig. 6c). Wang et al. have shown that with large delays synchronous firing is more stable against frequency mismatch, comparing to small delay times (Wang et al. 2012). Our results for HH model (Fig. 7) are consistent with this result but in a general point of view dependence of phase lag to the frequency mismatch is determined not only by delay time but also by other parameters as coupling constant and the slope of PRC for a given delay time (see Eq. (15)). So the form of PRC also determines the sensitivity of the synchronous state to the frequency mismatch, for example, for a canonical form of PRC of type-II which is symmetric around $\theta = \pi$, phase lag changes similarly for small and large delays (see Fig. 5).

Another notable effect of inhomogeneity on the coupled conductance based neuronal models is that it can both remove instability (for example for $\tau = 0.26T$ in Fig. 6a) and induce instability when homogeneous system is stable.
Fig. 6 Phase difference between the spikes of two neurons is plotted against delay time, for two bidirectionally coupled WB neurons with excitatory (a)–(c) and inhibitory synapses (d) and (e). In (a) and (d) the results are shown for both identical neurons and in presence of frequency mismatch, with no noise. In (b) and (d) an stochastic input of strength $\sigma = 0.1$ is added to the input currents (see Section 2). In (c) the phase difference is shown against the frequency mismatch for a sample value of delay time depicted with an arrow in (a). Input currents are $I_2 = 1$ and $I_1 = 1 + \Delta I$. The currents are chosen such that natural period of firing for the slower neuron is about 15 ms or bistable (around $\tau = 0.5T$ in Fig. 6d). Such stabilizing/destabilizing effect of inhomogeneity can also be seen for HH coupled neurons (see Fig. 7c). In the formalism presented in the previous section, both PRC and its derivative always appear as their multiplications with corresponding coupling constant, i.e. as gQ and gQ'. If the PRCs or bistable (around $\tau = 0.5T$ in Fig. 6d). Such stabilizing/destabilizing effect of inhomogeneity can also be seen for HH coupled neurons (see Fig. 7c). In the formalism presented in the previous section, both PRC and its derivative always appear as their multiplications with corresponding coupling constant, i.e. as gQ and gQ'. If the PRCs

Fig. 7 Phase difference between the spikes of two neuron is plotted against delay time, for two bidirectionally coupled HH neuron with excitatory (a) and (b), and inhibitory synapses (c) and (d). The results in (a) and (c) are shown for both identical neurons and in presence of frequency mismatch, with no noise. In (b) and (d) an stochastic input of strength $\sigma = 1$ is added to the input currents (see Section 2). Input currents are $I_2 = 10$ and $I_1 = 1 + \Delta I$. The currents are chosen such that natural period of firing for the slower neuron is about 15 ms. Note that with the applied mismatch and noise amplitude shown in this figure and Fig. 6, relative mismatch is $\Delta I / I = 0.05$ and the ratio of noise amplitude to the constant current is $\sigma / I = 0.1$ for both WB and HH models.
maintain their form for inhibitory pulses \(g < 0 \), with the transformation \(g \rightarrow -g \) the general result for existence of phase locked solutions (10) remains invariant with the simultaneous permutation transform 1 ↔ 2. But the right hand side of the stability condition (13) for inphase and antiphase solutions changes sign and therefore the regions of stable synchronous solutions loose stability and vice versa. For identical oscillators, for example, this means that the regions of inphase and antiphase solutions interchange. Results shown in Figs. 6 and 7 support this results: In both the figures the regions for inphase firing (near inphase firing for nonidentical neurons) are almost interchanged with regions of antiphase firing (near antiphase firing for nonidentical neurons). Specifically, with excitatory synapses and small values of delay time, typical type I neurons fire in antiphase manner while type II neurons fire synchronously.

In a more biologically plausible preparation we have also examined the effect of noise on the phase difference of firing of two neurons. Besides a constant input, a zero mean additive noise is imposed on the model neurons to more realistically mimic the input from large number of other neurons present in the network. In our simulations, noisy inputs to the two coupled neurons are assumed independent and the amplitude of the noise is chosen as 0.1 of the constant input current (see Section 2). The results shown in Figs. 6b, e and 7b, d show that with such a small amplitude noise, if the neurons are in mono-stable phase locked state, an expectable jitter is added into the phase differences. The pattern of the phase differences is maintained until the noise amplitude becomes of the order of constant input current (results not shown).

According to Eq. (18) it is possible to maintain synchrony, if different source of inhomogeneity show compensating effects. We have tested this hypothesis by considering nonidentical oscillators coupled by unequal strength synapses. Figure 8 shows that for a given delay time if synchrony is stable for symmetric configuration, simultaneous changing of asymmetry parameters (synaptic strengths and firing rates) can maintain synchrony. Note that for the given example, the synapse from the high frequency neuron to low frequency neuron should be stronger to bring the neurons back to synchrony; an intuitively reasonable result. For the HH neurons, interestingly, the region of near inphase firing is larger comparing to Winfree oscillators but yet the results hold qualitatively.

4 Discussion

In most studies on the synchronization of two delayed coupled neurons, symmetric configuration is assumed (Vreeswijk et al. 1994; Ernst et al. 1995, 1998; Hansel et al. 1995), with identical neurons and the couplings of exactly equal weights and equal delay times. Studies on heterogenous systems are also focused on the presence of one source of inhomogeneity (see e.g. Zeitler et al. 2009; Wang et al. 2012). To step beyond this seemingly unrealistic assumptions, in this study we have considered a near symmetric configuration where either the neurons (nodes) or the coupling terms (links) have slightly different parameters. Our analytic results for two pulse coupled phase oscillators show that any small inhomogeneity in one parameter, when imposed on the system, can change the synchronous firing to a near synchronous firing where the neurons fire with a small phase lag which is proportional to the parameter of inhomogeneity. These parameters in our minimal model are the natural firing rate of the neurons, and the strength and the delay time of two directed couplings. If in a symmetric system synchronous firing is stable, then any small asymmetric deviation in firing rates, synaptic strengths and delay times exerts a phase lag between firing of two neurons.
As is evident from Eq. (18), the functional form of phase reset curve of the neurons and the strength and the type of synaptic coupling (inhibitory/excitatory) determine deviation from inphase firing. As the main outcome of this study we have shown that different sources of inhomogeneity when are present in a system together, can counteract and bring the system closer to synchrony. For example, for nonidentical neurons, it is recently shown (see Wang et al. 2012) that synchronization is only possible in the causal limit (when the excitations elicit an immediate action potential in postsynaptic neuron) with equal delays. In this case synchronization is not possible with short delay times and a symmetric increase in synaptic conductances is not an effective strategy to decrease the time lag. Instead, we have shown that an asymmetric change in synaptic strengths can bring the neurons back to synchrony (when the two first terms in the brackets in the right hand side of Eq. (18) cancel each other). Interestingly, spike timing-dependent plasticity (STDP) exerts an asymmetric change in bidirectional synaptic couplings, but with the classical profile, STDP breaks neuronal loop and leads to the divergence of mutual couplings such that they are just restrained by limiting values (Song et al. 2000; Masuda and Kori 2007; Gilson et al. 2009; Bayati and Valizadeh 2012). The outcome of operation of STDP in this case will always be a unidirectional coupling and hence, STDP with classical profile is not a good candidate to compensate the asymmetry in the system. It needs further investigation to check if nonlinear profiles of spike timing-dependent plasticity can show such self-regulatory effect on the inhomogeneous systems (Güttig et al. 2003). Interestingly, axonal conduction velocity can also be modulated (Salami et al. 2003). It is not clear if there is a self-tuning mechanism to change the conduction velocities but in principle variable delays also can role as another regulatory parameter to balance the system and bring the neurons closer to synchrony (Sieling et al. 2009; Woodman and Canavier 2011).

Introducing a relay neuron in the midway between two distant neuron is a sensible proposal to extend the domain of stable synchrony in the parameter space (Fischer et al. 2006; Vicente et al. 2008; D’Huyss et al. 2008; Viriyopase et al. 2012). Indeed in this case both antiphase and inphase firing of adjacent neurons, lead to simultaneous firing of wing neurons and so synchrony will be stable for almost all values of delay time. But again, in the full parameter space, this synchrony can be achieved in symmetry manifold on which all the parameters of two wings are equal. It is the subject of future studies to investigate how deviation from symmetric configuration affects the synchronization properties of such a system.

Acknowledgments Authors acknowledge C. C. Canavier and M. D. McDonnell for the constructive suggestions and two anonymous reviewers for careful reading of the manuscript and giving valuable comments. A. V. gratefully thanks M. R. Khajehpour for his help and encouragement from early stages of the study.

Conflict of interest The authors declare that they have no conflict of interest.

Appendix: The model neurons

Wang–Buzsaki (WB) model The steady-state activation \(m_\infty \) and the rate equation for the inactivation variable \(h \) in the expression for sodium current and rate equation for the activation variable \(n \) in the expression for potassium current are given respectively as follow:

\[
m = m_\infty(V) = \frac{\alpha_m(V)}{\alpha_m(V) + \beta_m(V)},
\]

\[
dh dt = \phi[\alpha_h(V)(1 - h) - \beta_h(V)h],
\]

\[
dn dt = \phi[\alpha_n(V)(1 - n) - \beta_n(V)n].
\]

The rate constants for \(m_\infty, h, \) and \(n \) are:

\[
\alpha_h(V) = 0.07 \exp(-V+58)/20,
\]

\[
\beta_h(V) = 1/(\exp(-0.1(V+28)+1),
\]

\[
\alpha_n(V) = -0.01(V+34)/(\exp(-0.1(V+34))-1),
\]

\[
\beta_n(V) = 0.125 \exp(-V+44)/80.
\]

Hodgkin–Huxley (HH) model The rate equations for the activation variable \(m \) and inactivation variable \(h \) of the sodium expression, and \(n \), activation variable of potassium, obey the differential equations:

\[
dm dt = [\alpha_m(V)(1 - m) - \beta_m(V)m],
\]

\[
dh dt = [\alpha_h(V)(1 - h) - \beta_h(V)h],
\]

\[
dn dt = [\alpha_n(V)(1 - n) - \beta_n(V)n].
\]

The rate constants for \(m, h, \) and \(n \) are:

\[
\alpha_m(V) = (2.5 - 0.1V)/(\exp(2.5 - 0.1V) - 1),
\]

\[
\beta_m(V) = 4 \exp(-V/18),
\]

\[
\alpha_h(V) = 0.07 \exp(-V/20),
\]

\[
\beta_h(V) = 1/(\exp(3 - 0.1V) + 1),
\]

\[
\alpha_n(V) = (0.1 - 0.01V)/(\exp(1 - 0.1V) - 1),
\]

\[
\beta_n(V) = 0.125 \exp(-V/80).
\]
References

Bayati, M., & Valizadeh, A. (2012). Effect of synaptic plasticity on the structure and dynamics of disordered networks of coupled neurons. *Physical Review E, 86*, 011925.

Brown, E., Moehlis, J., Holmes, P. (2004). On the phase reduction and response dynamics of neural oscillator populations. *Neural Computation, 16*(4), 673–715.

Canavier, C.C. (2006). Phase response curve. *Scholarpedia, 1*(12), 1332.

Contreras, D., Destexhe, A., Sejnowski, T.J., Steriade, M. (1996). Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. *Science, 274*(5288), 771–774.

D’Huys, O., Vicente, R., Erneux, T., Danckaert, J., Fischer, I. (2008). Synchronization properties of network motifs: influence of coupling delay and symmetry. *Chaos (Woodbury N.Y.), 18*(3), 037116–037116.

Engel, A.K., König, P., Kreiter, A.K., Singer, W. (1991). Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. *Science, 252*(5009), 1177–1179.

Ermentrout, B. (1996). Type I membranes, phase resetting curves, and synchronization. *Neural Computation, 8*(5), 799–1001.

Ermentrout, B., Pascal, M., Gutkin, B. (2001). The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators. *Neural Computation, 13*(6), 1285–1310.

Ermentrout, G.B., Glass, L., Oldeman, B.E. (2012). The shape of phase-resetting curves in oscillators with a saddle node on an invariant circle bifurcation. *Neural Computation, 24*(12), 3111–3125.

Ernst, U., Pawelzik, K., Geisel, T. (1995). Synchronization induced by temporal delays in pulse-coupled oscillators. *Physical Review Letters, 74*(9), 1570–1573.

Ernst, U., Pawelzik, K., Geisel, T. (1998). Delay-induced multistable synchronization of biological oscillators. *Physical Review E, 57*, 2150–2162.

Fischer, I., Vicente, R., Buldú, J.M., Pei, M., Mirasso, C.R., Torrent, M.C., Ojalvo, J.G. (2006). Zero-lag long-range synchronization via dynamical relaying. *Physical Review Letters, 97*(12), 123902.

Gillo, M., Burkitt, A., Grayden, D., Thomas, D., van Hemmen, J.L. (2009). Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. I. Input selectivity strengthening correlated input pathways. *Biological Cybernetics, 101*(2), 81–102.

Gray, C.M., Engel, A.K., König, P., Singer, W. (1990). Stimulus-dependent neuronal oscillations in cat visual cortex: receptive field properties and feature dependence. *European Journal of Neuroscience, 2*(7), 607–619.

Güttig, R., Aharony, R., Rotter, S., Sompolinsky, H. (2003). Learning input correlations through nonlinear temporally asymmetric hebbian plasticity. *The Journal of Neuroscience, 23*(9), 3697–3714.

Hansel, D., Mato, G., Meunier, C. (1995). Synchrony in excitatory neural networks. *Neural Computation, 7*(2), 307–337.

Hashemi, M., Valizadeh, A., Azizi, Y. (2012). Effect of duration of synaptic activity on spike rate of a Hodgkin-Huxley neuron with delayed feedback. *Physical Review E, 85*(2), 021917.

Hodgkin, A.L., & Huxley, A.F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. *The Journal of Physiology, 117*(4), 500–544.

Izhikevich, E.M. (2006). Dynamical systems in neuroscience: the geometry of excitability and bursting (computational neuroscience) (1st Ed.). MIT Press, Cambridge.

Kopell, N. (1988). Toward a theory of modeling central pattern generators. In A.H. Cohen, S. Rossignol, S. Grillner, N. Kopell (Eds.), *Neural control of rhythmic movements in vertebrates* (pp. 369–413). New York: Wiley.

Krogh-Madsen, T., Butera, R., Ermentrout, G.B., Glass, L. (2012). Phase resetting of neural oscillators: topological theory versus the realworld In N.W. Schultheiss, A.A. Prinz, R.J. Butera (Eds.), *Phase response curves in neuroscience*, Vol. 6 of *springer series in computational neuroscience* (pp. 33–51). New York: Springer.

Kuramoto, Y. (2003). *Chemical oscillations, waves, and turbulence* (dover books on chemistry). Dover Publications, dover ed ed.

Masuda, N., & Kori, H. (2007). Formation of feedforward networks and frequency synchrony by spike-timing-dependent plasticity. *Journal of Computational Neuroscience, 22*(3), 327–345.

Melloni, L., Molina, C., Pena, M., Torres, D., Singer, W., Rodriguez, E. (2007). Synchronization of neural activity across cortical areas correlates with conscious perception. *The Journal of Neuroscience, 27*(11), 2858–2865.

Mirollo, R.E., & Strogatz, S.H. (1990). Synchronization of pulse-coupled biological oscillators. *SIAM Journal on Applied Mathematics, 50*(6), 1645–1662.

Pikovsky, A., Rosenblum, M., Kurths, J. (2003). *Synchronization: a universal concept in nonlinear sciences* (cambridge nonlinear science series) (1st Ed.). Cambridge: Cambridge University Press.

Ringo, J.L., Doty, R.W., Demeter, S., Simard, P.Y. (1994). Time is of the essence: a conjecture that hemispheric specialization arises from interhemispheric conduction delay. *Cerebral Cortex, 4*(4), 331–343.

Roelfsema, P.R., Engel, A.K., König, P., Singer, W. (1997). Visualmotor integration is associated with zero time-lag synchronization among cortical areas. *Nature, 385*(6612), 157–161.

Salami, M., Itami, C., Tsumoto, T., Kimura, F. (2003). Change of conduction velocity by regional myelination yields constant latency irrespective of distance between thalamus and cortex. *Proceedings of the National Academy of Sciences, 100*(10), 6174–6179.

Sieling, F.H., Canavier, C.C., Prinz, A.A. (2009). Predictions of phase-locking in excitatory hybrid networks: excitation does not promote phase-locking in pattern-generating networks as reliably as inhibition. *Journal of Neurophysiology, 102*(1), 69–84.

Singer, W. (1993). Synchronization of cortical activity and its putative role in information processing and learning. *Annual Review of Physiology, 55*(1), 349–374.

Smeal, R.M., Ermentrout, G.B., White, J.A. (2010). Phase-response curves and synchronized neural networks. *Philosophical Transactions of the Royal Society B: Biological Sciences, 365*(1551), 2407–2422.

Song, S., Miller, K.D., Abbott, L.F. (2000). Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. *Nature Neuroscience, 3*(9), 919–926.

Traub, R.D., Whittington, M.A., Jefferys, J.G.R. (1999). *Fast oscillations in cortical circuits* (computational neuroscience). A Bradford Book.

Traub, R.D., Whittington, M.A., Stanford, I.M., Jefferys, J.G.R. (1996). A mechanism for generation of long-range synchronous fast oscillations in the cortex. *Nature, 383*(6601), 621–624.

Tsydyks, M., Mitkov, I., Sompolinsky, H. (1993). Pattern of synchrony in inhomogeneous networks of oscillators with pulse interactions. *Physical Review Letters, 71*, 1280–1283.

Vicente, R., Gollo, L.L., Mirasso, C.R., Fischer, I., Pipa, G. (2008). Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays. *Proceedings of the National Academy of Sciences, 105*(44), 17157–17162.

Viriyopase, A., Bojak, I., Zeiler, M., Gielen, S. (2012). When Long-Range Zero-Lag Synchronization is Feasible in Cortical Networks. *Frontiers in Computational Neuroscience, 6*, (49).
Vreeswijk, C., Abbott, L.F., Bard, E.G. (1994). When inhibition not excitation synchronizes neural firing. *Journal of Computational Neuroscience, 1*(4), 313–321.

Wang, S., Chandrasekaran, L., Fernandez, F.R., White, J.A., Canavier, C.C. (2012). Short conduction delays cause inhibition rather than excitation to favor synchrony in hybrid neuronal networks of the entorhinal cortex. *PLoS Computational Biology, 8*(1), e1002306+.

Wang, X.-J., & Buzsáki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. *The Journal of Neuroscience, 16*(20), 6402–6413.

White, J., Chow, C., Rit, J., Soto-Treviño, C., Kopell, N. (1998). Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. *Journal of Computational Neuroscience, 5*(1), 5–16.

Winfree, A.T. (2010). *The geometry of biological time (interdisciplinary applied mathematics)*. Springer, softcover reprint of hardcover 2nd ed. 2001 ed.

Womelsdorf, T., Schoffelen, J.-M., Oostenveld, R., Singer, W., Desimone, R., Engel, A.K., Fries, P. (2007). Modulation of neuronal interactions through neuronal synchronization. *Science, 316*(5831), 1609–1612.

Woodman, M., & Canavier, C. (2011). Effects of conduction delays on the existence and stability of one to one phase locking between two pulse-coupled oscillators. *Journal of computational neuroscience, 31*(2), 401–418.

Zeitler, M., Daffertshofer, A., Gielen, C. (2009). Asymmetry in pulse-coupled oscillators with delay. *Physical Review E, 79* (6), 065203.