Embeddings of local fields in simple algebras and simplicial structures on the Bruhat-Tits building

Daniel Skodlerack

20. Juni 2008
Notation

The outlook

Embeddings

The euclidean building of $GL_m(D)$

The affine map j_E

Barycentric coordinates

The theorem
Notation

- $\mathbb{N} = \{1, 2, \ldots\}$ $\mathbb{N}_r := \{1, \ldots, r\}$.

- (F, ν) non-archimedean local field, $D|F$ a central skewfield, $d := \sqrt{[D : F]} < \infty$. $L|F$ max. unramified field in D, $[L : F] = d$

$$D \supseteq L \supseteq F$$

- Assume that π_D normalizes L.

$$D = L \oplus L\pi_D \oplus L\pi_D^2 \ldots \oplus L\pi_D^{d-1}$$

- $A := M_m(D)$ the and $V := D^m$, right D vector space, $m \in \mathbb{N}$ fixed.
Martin Grabitz and Paul Broussous have classified embeddings

\[E^\times \subseteq \text{compact modulo center group} \subseteq M_m(D) \]

and introduced invariants. The question of E.W. Zink was: Is there a geometric way to find the invariants using euclidean Bruhat Tits buildings as geometrical object together with an affine map.
Embeddings

Notation
The outlook

Embeddings
hereditary order
Embedding
Pearl embedding
Equivalent vectors
Grabitzs' theorems
The euclidean building of $GL_m(D)$
The affine map j_E
Barycentric coordinates
The theorem
Definition 1 A *hereditary order* \(a \subseteq M_m(D) \) is a subring of \(M_m(D) \), s.t. there is a \(g \in GL_m(D) \) s.t. \(gag^{-1} \) is of the form

\[
\begin{pmatrix}
D \circ & D \circ \circ & \ldots & D \circ \circ \\
\vdots & \ldots & \ldots & \vdots \\
D \circ & \ldots & D \circ & D \circ \circ \\
D \circ & \ldots & D \circ & D \circ \\
\end{pmatrix}^{n_1, n_2, \ldots, n_r}
\]

where \(\sum n_i = m \).
Definition 4 An embedding is a pair \((E, \alpha)\) satisfying

1. \(E\) is a field extension of \(F\) in \(A\),

2. \(\alpha \in \text{Her}(A)\) is normalised by \(E^\times\).

\((E, \alpha) \sim (E', \alpha')\) if there is a \(g \in A^\times\), such that \(gE_Dg^{-1} = E'_D\) and \(gag^{-1} = \alpha'\).

An example for embeddings are pearl embeddings. (soon)
Definition 6 Let \(f|d \) and \(r \leq m \). An *embedding datum* is a \(f \times r \)-matrix \(\lambda \) of non-negative integer entries s.t. in every column is non-zero, and the sum of all entries is \(m \). The *pearl embedding* of \(\lambda \) is the embedding \((E, a)\), s.t.

1. \([E : F] = f\) and \(E \) is in the image of
 \[
 x \in L \mapsto \text{diag}(M_1(x), M_2(x), \ldots, M_r(x)) \quad \text{where}
 \]
 \[
 M_j(x) = \text{diag}(\sigma^0(x)I_{\lambda_1,j}, \sigma^1(x)I_{\lambda_2,j}, \ldots, \sigma^{f-1}(x)I_{\lambda_f,j})
 \]

2. \(a \in \text{Her}(A) \) in standard form according to
 \[
 m = n_1 + \ldots + n_r \quad \text{where} \quad n_j := \sum_{i=1}^{f} \lambda_{i,j}.
 \]
Equivalent vectors

\[
\begin{pmatrix}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 3 & 0 & 1 & 1 & 0
\end{pmatrix}^T.
\]

Definition 7

1. \(w = (w_1, \ldots, w_t) \sim w' = (w'_1, \ldots, w'_t) \) (real entries) if there is a \(k \), s.t.

\[
w = (w'_k, \ldots, w'_t, w'_1, \ldots, w'_{k-1}).
\]

We write \(< w >\) for the equivalence class.

2. For a \(t \times s \)-matrix \(M \) we put

\[
\text{row}(M) := (m_{1,1}, \ldots, m_{1,s}, m_{2,1}, \ldots, m_{2,s}, \ldots, m_{t,s}).
\]

3. \(M \sim N \) if \(\text{row}(M) \sim \text{row}(N) \).
Theorem 1 \[BG00, 2.3.3 \text{ and } 2.3.10\]

1. *Two pearl embeddings are equivalent if and only if the embedding datas are.*

2. *In any class of embeddings lies a pearl embedding.*

Definition 8 By the theorem to an embedding corresponds one class of embedding datas, called *embedding type* (notion from V. Secherre).
The euclidean building of $GL_m(D)$

Notation
The outlook
Embeddings
The euclidean building of $GL_m(D)$
built
Euclidean building
Lattice functions
Affine Structure
The description of the building with lattice function
Simplicial structure

The affine map j_E
Barycentric coordinates
The theorem
A building of rank $m - 1$ is a poset (Ω, \leq) s.t.

- $\bar{S} := \{S' \in \Omega | S' \leq S\}$ is poset isom. to a simplex, $S \in \Omega$ (faces).
- Every face has not more then $m - 1$ vertices (= minimal elements).
- Every face lies in a face with $m - 1$ vertices (= maximal elements = chambers).
- $\Omega = \bigcup \mathcal{A}$, where \mathcal{A} is a set of chamber subcomplexes of rank $m - 1$, apartments.
- There are poset isomorphisms between $\Sigma, \Sigma' \in 'A$.

Notation
The outlook
Embeddings
The euclidean building of $GL_m(D)$
building
Euclidean building
Lattice functions
Affine Structure
The description of the building with lattice function
Simplicial structure

The affine map j_E
Barycentric coordinates
The theorem
Euclidean building

A building is called euclidean if every apartment is a isomorphic to a cell decomposition of an f.d. euclidean space with an infinite affine reflection group.

\(|S| := \{\sum_{\text{vertex of } S} \lambda_v v | \sum \lambda_v = 1 \lambda_v > 0\}\) geometric realisation g.r. of \(S\)

\(|\Omega| := \bigcup{|S| | S \in \Omega}\).
Lattice functions

With $\text{Latt}_{D^\circ}^{m,V}$ we denote the set of full D°-lattices in V. The word full will be omitted. Definitions:

- A left continuous monoton decreasing (all w.r.t. \subseteq) function $r \in \mathbb{R} \rightarrow \Lambda(r) \in \text{Latt}_{D^\circ}^{m,V}$ is called D°-lattice function of V, if $\forall r \in \mathbb{R} : \Lambda(r)\pi_D = \Lambda(r + \frac{1}{d})$.

- The set of D° lattice functions is denoted by $\text{Latt}_{D^\circ}^1 V$.

- $\Lambda_1 \sim \Lambda_2$ iff $\exists s \in \mathbb{R} : \forall r \in \mathbb{R} : \Lambda_1(r) = \Lambda_2(r + s)$.

- $\text{Latt}_{D^\circ} V := \text{Latt}_{D^\circ}^1 V / \sim$
Affine Structure

Definition 10 A D-basis (v_i) of V is called splitting basis of a lattice function $[\Lambda]$, if

$$\forall r \in \mathbb{R} : \Lambda(r) = \bigoplus_{i=1}^m (\Lambda(r) \cap R_i).$$

Affine structure: For $[\Lambda]$ and $[\Lambda']$ we can find a splitting basis (v_i), thus

$$\Lambda(r) = \bigoplus_{i=1}^m v_i D^{\circ \circ [r-\alpha_i]} + \text{ and } \Lambda'(r) = \bigoplus_{i=1}^m v_i D^{\circ \circ [r-\alpha'_i]} + .$$

For $\lambda \in [0, 1]$ one defines

$$\lambda[\Lambda] + (1 - \lambda)[\Lambda'] := [\Lambda''] \text{ with}$$

$$\Lambda''(r) := \bigoplus_{i=1}^m v_i D^{\circ \circ [r-\lambda \alpha_i - (1-\lambda)\alpha'_i]} + .$$
The g.r. of the eucl. building of $GL_m(D)$ we denote by \mathcal{I}.

Theorem 5 ([BL02] section 1 (2.5)) $\mathcal{I} \cong \text{Latt}_{D^\circ} V$

$GL(D)^\times$-equivariant, affine.

Apartments: A frame $R = \{R_i| 1 \leq i \leq m\}$ is a set of m linearely independent 1-dim. D-subspaces of V.

$$\text{Latt}_R V := \{[\Lambda]| \Lambda \text{ is splitt by } R\}.$$

Apartments $= \{\text{Latt}_R V| R \text{ frame}\}$.

Faces: They are given by the hereditary orders of A,

$$\text{Her}(A) := \{a| a \text{ is a hereditary order}\}$$

Def.: $a \leq a'$ if $a \supseteq a'$
A lattice function $[\Lambda]$ lies on the face $\alpha_\Lambda = \{ a \in A | a\Lambda(r) \subseteq \Lambda(r) \ \forall r \in \mathbb{R} \}$.

The range of a lattice function is a lattices chain. This lattice chain represents the face \tilde{F} of the simplicial building s.t. $p \in |\tilde{F}|$.

Lattice chains are in 1-1 correspondence to hereditary orders.
Theorem 6 (P. Broussous, B. Lemaire)

1. The simplicial complex of \mathcal{I} is isomorphic to $(\text{Her}(A), \supseteq)$.

2. The hereditary order of rank k correspond to the faces of rank k, i.e. of dimension $k - 1$.

3. Maximal her. orders, correspond to the vertices and minimal her. orders to the chambers.
The affine map j_E
\[A = M_m(D) \supseteq B = C_A(E) \supseteq E \supseteq F \]

- \(E|F\) is a unram. field extension of degree \([E:F]|d\) in \(A\).
- \(B\) is the centraliser of \(E\) in \(A\).
- It is \(\mathcal{I}_E\) the g.r. of the eucl. building of \(B\).
Existence and Uniqueness of j_E

Theorem 8 [BL02, part of Thm 1.1.] There exists a unique application $j_E : \mathcal{I}_E^\times \to \mathcal{I}_E$ such that

1. j_E is B^\times-equivariant.
2. j_E is affine.

Moreover j_E^{-1} can be characterised as the unique B^\times-equivariant affine map $\mathcal{I}_E \to \mathcal{I}$.
\(\mathbf{j}_E \) in terms of lattice functions 1

This is due to Broussous and Lemaire [BL02] II 3.1. We have \(E \cong \mathfrak{i}(E) \subseteq L \) (\(F \)-Algebrahomomorphism).

\[E \otimes_F \mathfrak{i}(E) \cong \bigoplus_{k=0}^{[E:F]-1} \mathfrak{i}(E) \] with the decomposition

\[1 = \sum_{k=0}^{[E:F]-1} 1^k \]

So we get \(V = \bigoplus_k V^k \), \(V^k := 1^k V \), w.l.o.g. s.t. \(V^{k+1} = V^k \pi_D \)

and \(V^{[E:F]-1} \pi_D = V^0 \).

Remark 3 The skewfield \(\Delta := C_D(\mathfrak{i}(E)) \) is central over \(\mathfrak{i}(E) \) of index \(\frac{d}{[E:F]} \).

1. \(B \cong \text{End}_\Delta(V^0) \).

2. \(B \cong M_m(\Delta) \).
\[j_E \text{ in terms of lattice functions 2} \]

Theorem 9 [BL02, II 3.1.] *In terms of lattice functions \(j_E \) has the form*

\[
j_E^{-1}([\Theta]) = [\Lambda],
\]

with

\[
\Lambda(s) := \bigoplus_{k=0}^{f-1} \Theta(s - \frac{k}{d})\pi_D^k, \quad s \in \mathbb{R}.
\]
Barycentric coordinates
Orientation

For the simplicial complexes of $\mathcal{I}, \mathcal{I}_E$ we write $(\Omega, \leq), (\Omega_E, \leq)$. For the lattices corresponding to a face H or point x we write $\text{lattices}(H), \text{lattices}(x)$. We define an orientation on Ω_E.

Definition 11 An edge $H = \{e, e'\} \in \Omega_E$ is said to be oriented towards e' if there are $\Gamma \in \text{lattices}(e)$ and $\Gamma' \in \text{lattices}(e')$, such that $\dim_{\kappa_D}(\Gamma/\Gamma') = 1$. (write $e_1 \rightarrow e_2$) An oriented chamber is a tupel (e_1, \ldots, e_m) of m different vertices which lie in a common chamber s.t. $e_i \rightarrow e_{i+1}$ and $e_m \rightarrow e_1$.
Oriented barycentric coordinates type

Definition 12 Assume \(x \in \mathcal{I}_E \). An equivalence class of a tuple \(\mu = (\mu_1, \ldots, \mu_m) \in \mathbb{R}^m_+ \) is called the local type of \(x \), if there is an oriented chamber \((e_1, \ldots, e_m) \) of \(\Omega_E \) such that \(x = \sum_{i=1}^{m} \mu_i e_i \).

Proposition 1 For \(x \in \mathcal{I}_E \) there is only one local type.
The theorem
Definition 13 $m', t \in \mathbb{N}$. Take

$$w \in \text{Row}(m', t) := \{w \in \mathbb{N}_0^{m'} | \sum_i w_i = t\}, \ \text{i.e.}$$

$$w = (0, \ldots, 0, w_{i_0}, 0, \ldots, 0, w_{i_1}, 0, \ldots, 0, w_{i_k}, 0, \ldots, 0)$$

with $w_{i_j} > 0$, and we can represent $\langle w \rangle$ by a $(k + 1)$-tupel of pairs

$$(w_{i_0}, i_1-i_0), (w_{i_1}, i_2-i_1), \ldots, (w_{i_{k-1}}, i_k-i_{k-1}), (w_{i_k}, i_0+m'-1-i_k)$$

In this way we can map $\langle w \rangle$ to a class of a vector of pairs, which we denote:

$$\text{pairs}(\langle w \rangle) := \langle (w_{i_0}, i_1-i_0), (w_{i_1}, i_2-i_1), \ldots, (w_{i_k}, i_0+m'-1-i_k)$$
There is a duality map $<>^c$: $\text{Row}(m', t) \rightarrow \text{Row}(t, m')$.

Definition 14 Given w as above and pairs($< w >$) = $(a_0, b_0), \ldots, (a_k, b_k)$ we define the *complement of* $< w >$, denoted by $< w >^c$ to be the class $< w' >$, such that pairs($< w' >$) = $(b_0, a_1), (b_1, a_2), (b_2, a_3), \ldots, (b_k, a_0)$.

Theorem 10 (S.) Given $\alpha \in \text{Her}(A)^{E^\times}$ and a matrix λ s.t. $< \lambda >$ is the embedding type of (α, E) and assume $< \mu >$ to be the local type of $j_E(M_\alpha)$, where M_α is the barycentre of the face corresponding to α. $< \text{row}(\lambda) >$ is obtained as follows

1. $r f \mu \in \mathbb{N}_0^m$ and
2. $< \text{row}(\lambda) > = <fr\mu >^c$.
Example

For example take \(r = 2, \ [E : F] = 6, \ \dim_D V = 7, \)

\[
j_E(M_\alpha) = \frac{3}{12} b_0 + \frac{2}{12} b_1 + \frac{1}{12} b_2 + \frac{0}{12} b_3 + \frac{0}{12} b_4 + \frac{4}{12} b_5 + \frac{2}{12} b_6.
\]

\[
< 12\mu > = < 3, 2, 1, 0, 0, 4, 2 > \\
\equiv < (3, 1), (2, 1), (1, 3), (4, 1), (2, 1) > \\
< 12\mu >^c \equiv < (1, 2), (1, 1), (3, 4), (1, 2), (1, 3) > \\
\equiv < 1, 0, 1, 3, 0, 0, 0, 1, 0, 1, 0, 0 > .\text{Applying theorem 10 we get the embedding data}
\]

\[
\begin{pmatrix}
1 & 0 \\
1 & 3 \\
0 & 0 \\
0 & 1 \\
0 & 1 \\
0 & 0
\end{pmatrix}.
\]
Bibliography

[BG00] P. Broussous and M. Grabitz. Pure elements and intertwining classes of simple strata in local central simple algebras. *COMMUNICATION IN ALGEBRA*, 28(11):5405–5442, 2000.

[BL02] P. Broussous and B. Lemaire. Buildings of $GL(m, D)$ and centralizers. *Transformation Groups*, 7(1):15–50, 2002.