Streptomyces blattellae, a novel actinomycete isolated from the in vivo of a Blattella germanica

Gui-Min Liu · Lin-Lin Yuan · Li-Li Zhang · Hong Zeng

Received: 13 June 2021 / Accepted: 27 October 2021 / Published online: 13 November 2021
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Abstract During a screening for novel and useful actinobacteria in desert animal, a new actinomycete was isolated and designated strain TRM63209T. The strain was isolated from in vivo of a Blattella germanica in Tarim University in Alar City, Xinjiang, north-west China. The strain was found to exhibit an inhibitory effect on biofilm formation by Candida albicans ATCC 18,804. The strain was observed to form abundant aerial mycelium, occasionally twisted and which differentiated into spiral spore chains. Spores of TRM63209T were observed to be oval-shaped, with a smooth surface. Strain TRM63209T was found to grow optimally at 28 °C, pH 8 and in the presence of 1% (w/v) NaCl. The whole-cell sugars of strain TRM63209T were rhamnose ribose, xylose, mannose, galactose and glucose, and the principal polarlipids were found to be diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol mannoside, phosphatidylinositol and an unknown phospholipid(L). The diagnostic cell wall amino acid was identified as LL-diaminopimelic acid. The predominant menaquinone was found to be MK-9(H6) (14.64%), MK-9(H2) (19.65%), MK-9(H8) (22.34%), MK-10(H2) (25.37%). The major cellular fatty acids were identified as iso-C16:0, 16:0, anteiso-C15:0, anteiso-C17:0, iso-C15:0 and Sum in Feature 3. Analysis of the 16S rRNA sequence showed that strain TRM63209T exhibits high sequence similarity to Streptomyces bungoensis strain DSM 41781T (98.20%). A multi-locus sequence analysis of five house-keeping genes (atpD, gyrB, rpoB, recA and trpB) and phylogenomic analysis also illustrated that

Li-li Zhang and Hong Zeng have contributed equally to this work.

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain TRM63209T is MK795724

This Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession WIXO00000000. The version described in this paper is version WIXO00000000.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10482-021-01681-w.

G.-M. Liu · L.-L. Yuan · L.-L. Zhang
Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin/College of Life Science, Tarim University, Alar 843300, Xinjiang, Xinjiang Production and Construction Corps, Xinjiang, People’s Republic of China
E-mail: zhang63lyly@sina.com.cn

H. Zeng
School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, People’s Republic of China
E-mail: zenghong0705@163.com
strain TRM63209T should be assigned to the genus *Streptomyces*. The DNA G + C content of the strain was determined to be 70.2 mol%. Average nucleotide identity (ANI) between strain TRM63209T and *S. bungoensis* DSM 41781T, *Streptomyces phyllanthi* PA1-07T, *Streptomyces longwoodensis* DSM 41677T and *Streptomyces caeruleatus* NRRL B-24802T were 82.76%, 82.54%, 82.65%, 84.02%, respectively. Digital DNA-DNA (dDDH) hybridization were 26.30%, 25.10%, 26.20%, 29.50%, respectively. Therefore, it is concluded that strain TRM63209T represents a novel species of the genus *Streptomyces*, for which the name *Streptomyces blattelae* is proposed. The type strain is TRM63209T (CCTCC AA 2018093T = LMG 31,403 = TRM63209T).

Keywords Actinomycete · *Streptomyces blattelae* · Polyphasic taxonomy · Anti-biofilm

Materials and methods

Isolation of *Streptomyces* strain and culture conditions

As part of a program to unravel the diversity of symbiotic actinomycetes in insect-microbe and to discover novel actinomycetes and novel natural products, strain TRM63209T was isolated from the in vivo of a *Blattella germanica*, the Tarim University, Alar, Xinjiang Province, north-west China. *Blattella germanica* is washed with sterile distilled water to remove surface impurities. The surface was sterilized in 70% ethanol for 60 s and then washed three times in sterile distilled water. Grind it to a powder and suspend in sterile distilled water incubated on a rotary shaker at 180 rpm 37 °C for 30 min (Liu et al. 2017), ultrasound 3 min, and the suspension was appropriately diluted before being spread onto Czapek’s agar (Wiese et al. 2008) supplemented with nystatin (100 mg/ml) and nalidixic acid (50 mg/ml) (Arocha-Garza et al. 2017). After 21 days of incubation at 28 °C, the isolate was transferred and purified on International Streptomyces Project (ISP) 4 medium (Shirling and Gottlieb 1966) and the spore and mycelia maintained as glycerol suspensions (20%, v/v) at −80 °C.

Phenotypic characterisation

Cultural characteristics were determined by methods used in the ISP 1, ISP 2, ISP 3, ISP 4, ISP 5, ISP 6, ISP 7. (Shirling and Gottlieb 1966), nutrient agar (NA) (Waksman 1961), Gause’s synthetic agar no.1 and Czapek’s agar (Wiese et al. 2008) for 28 °C at 14 days. For colour determination, the colour of colony of strain TRM63209T were compared with the Inter-Society Colour Council-National Bureau of Standards (ISCC-NBS) Colour Charts standard sample no. 2106 (Kelly 1964). Microscopic observation of spores and mycelia were observed by light microscopy (Axiostop 20; Zeiss) and scanning electron microscopy SEM (Quanta; FEI) after Incubation for 7 days at 28 °C on the optimal medium ISP 3. The growth temperature range 5–55 °C (4, 10, 15, 18, 28, 35, 36, 37, 38, 39, 40, 45, 50 and 55 °C) and tolerance to NaCl concentrations (0, 1, 3, 5, 8, 10, 13, 15, 18 and 20%, w/v) was tested on ISP 3 agar medium after culturing for 28 °C at 2 weeks. The pH range was adjusted separately with buffer (pH 4.0–5.0, 0.1 M citric acid/
Chemotaxonomy

Isomers of diaminopimelic acid were analysed following the method of Hasegawa et al. (1983). The whole cell sugar composition was analysed following the method of Staneck and Roberts (1974). Polar lipids in cells of strain TRM63209T were extracted and examined by two-dimensional TLC and identified following the methods of Minnikin et al. (1984). Menaquinones were extracted using the method of Collins (1985) and subjected to HPLC analysis (Groth et al. 1997). The cellular fatty acid composition was determined using the Microbial Identification System (MIDI Sherlock version 6.0) (Sasser 1990).

Phylogenetic analyses

Genomic DNA extraction and PCR amplification of the 16S rRNA gene from strain TRM63209T were performed following Chun and Goodfellow (1995). The purified PCR product was cloned into the vector pMD19-T (Takara) and sent to Sangon for gene sequencing. Multiple alignments with sequences from closely related Streptomyces species and calculations of sequence similarity were performed using the EzTaxon-e server (Kim et al. 2012). Phylogenetic analyses were performed using MEGA version 7.0 (Kumar et al. 2016) selecting the neighbour-joining (Saitou and Nei 1987), Maximum-Evolution (Rzhetsky and Nei 1993) and maximum-likelihood (Felsenstein 1981) algorithms. Topologies of the resultant trees were evaluated using the Felsenstein’s (1985) resampling method with 1000 replications. AtpD, gyrB, rpoB, recA and trpB genes were obtained using primers and amplification conditions as previously described (Guo et al. 2008; Hatano et al. 2003). Phylogenetic relationships were reconstructed using the Neighbour-Joining algorithm as described above. Phylogenomic analysis was performed online by Type (strain) Genome Server (TYGS) (Meier-Kolthoff et al. 2019).

The whole genome of TRM63209T was sequenced by Oxford Nanopore technologies. The DNA G + C content of strain TRM63209T was obtained by whole genome sequencing. The Average nucleotide identity (ANI) was determined as described by Lee et al. (2015). DNA-DNA relatedness values were determined online according to the method of Meier-Kolthoff et al. (2013). DNA-DNA hybridization (dDDH) values were calculated at the Genome-to-Genome Distance Calculator (GGDC) website using formula 2, as originally described by Auch et al. (2010) and updated by Meier-Kolthoff et al. (2013). Anti-SMASH was used to predict the biosynthetic gene clusters of strain TRM63209T (Blin et al. 2013).

Antifungal and antibacterial activity

C. albicans ATCC 18,804 was obtained from China Center for Type Culture Collection, and was cultured with Sabouraud dextrose agar/broth (SDA/SDB). Unless specified otherwise, ISP 3 was used to culture TRM63209T strain.

A 4% (v/v) inoculum of well-growing strain TRM63209T was used to culture strain TRM63209T in ISP 3 liquid culture medium (20 g oatmeal and 1 ml trace salt per L distilled water) and incubated at 28 °C with shaking at 180 rpm for 10 days. Cells were removed by centrifugation to leave the supernatant, which was kept at 4 °C for further screening of biofilm inhibition. The effect of the strain TRM63209T growth supernatants on static biofilm formation measured according to Balasubramanian et al. (2017). Briefly, test organism cells were diluted 1:100 with fresh SDB to bring the test cell suspension to a concentration of 1 × 10^8 cells per mL. 100 μL aliquots of cells were added to the wells of a 96 well plate and 10 μL of supernatants was added, then the plates inoculated with C. albicans were incubated at 37 °C for 72 h. Wells without the supernatant (100 μL SDB) was used as blank control. After crystal violet staining, the absorbance was measured at 490 nm by an enzyme-linked immunosorbent assay reader (Bio-Rad). Relative activity of biofilm formation was indicated as Relative Biofilm Formation % (RBF %) calculated the following formula: RBF % = Treated OD_{490}/Untreated OD_{490} × 100%.
Results and discussion

Strain TRM63209\(^\text{T}\) was observed to grow optimally on ISP 3 and ISP 2, and showed moderate growth on ISP 1, ISP 4, ISP 5, nutrient agar and Gause’s synthetic agar no. 1, with slow growth on ISP 6, ISP 1 and Czapek’s medium. Light yellow soluble pigment was produced in ISP 5 and greenish White soluble pigment was produced in ISP 6, the colour of other the aerial mycelium is white, other no diffusible pigment was produced on the media test, the color of ISP 2 substrate mycelium is light yellow (Table 1). The growth and cultural characteristics of strain TRM63209\(^\text{T}\) related type strains are listed in the species description and in Table S1.

Morphological characteristics of strain TRM63209\(^\text{T}\) were observed using SEM (Fig. 1). The strain was observed to form an abundant white aerial mycelium, occasionally twisted, which differentiates into spiral spore chains. Each spore was observed to be oval-shaped with a smooth surface (Fig. 1). Strain TRM63209\(^\text{T}\) was found to grow only at 5–55 °C, pH 4.0–12.0 and 0–20% (w/v) NaCl, with optimal growth at 28 °C, pH 8.0 and with 1% (w/v) NaCl. Other physiological characteristics of strain TRM63209\(^\text{T}\) are listed in the species description and in Table 1.

The whole-cell sugars of strain TRM63209\(^\text{T}\) were rhamnose, ribose, xylose, galactose, glucose and mannose, and the principal phospholipids were found to be diphosphatidylglycerol(DPG), phos-phantidylethanolamine(PE), phosphatidylcholine(PC), phosphatidylinositol mannoside(PIM), phosphatidylinositol(PI) and an unknown phospholipid(L)(supplementary Fig. S1, Fig. S3). The diagnostic cell wall amino acid was identified as LL-diaminopimelic acid (supplementary Fig. S2). The predominant menaquinone was found to be MK-9(H6) (14.64%), MK-9(H2) (19.65%), MK-9(H8) (22.34%), MK-10(H2) (25.37%) (Supplementary Fig. S4). The major cellular fatty acids (>5%) were identified as iso-C16:0(26.5%), 16:0 (21.4%), anteiso-C15:0 (9.8%), anteiso-C17:0 (9.7%), iso-C15:0 (6.7%) and Sum in Feature 3 (5.7%). Fatty acids present in smaller amounts (>1%) were iso-C17:0 (4.3%), iso-C16:1 H (1.9%), iso-C14:0 (1.9%), 18:1 w9c (1.6%), 15:0(1.4%), Sum in Feature 9 (1.4%), anteiso-C17:1 w9c (1.4%), 14:0 (1.2%) and Sum in Feature 5 (1.7%), the complete fatty acids for strain TRM63209\(^\text{T}\) and related type strains of the genus *Streptomyces* were summarized in Table (supplementary Table S2). It utilized D-mannitol, trehalose, sucrose, L-rhamnose, galactose, raffinose, maltose, cellobiose, sorbose as carbon sources but not chitosan, xylan, L-arabinose, starch, melezitose, glucose, xylose, fructose, inositol or xylitol. Comparison of the physiological properties of strain TRM63209\(^\text{T}\) with other species of *Streptomyces* is shown in Table 2.

Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain TRM63209\(^\text{T}\) belongs to the genus *Streptomyces*, with high sequence similarity to *Streptomyces bungoensis* DSM 41781\(^\text{T}\) (GenBank accession no. KQ948892; 98.20%), *Streptomyces phyllanthi* PA1-07\(^\text{T}\) (GenBank accession no. LC125632; 98.14%), *Streptomyces longwoodensis* DSM41677\(^\text{T}\) (GenBank accession no. KQ948572;

Culture medium	Growth	Aerial mycelium	Substrate mycelium	Soluble pigments
Tryptone—yeast extract agar medium ISP 1	+ +	White; moderate	Colorless	None
Yeast extract/malt extract ISP 2	+ + +	White; Abundant	Light yellow	None
Oatmeal ISP 3	+ + +	White; Abundant	Colorless	None
Inorganic salts/starch ISP 4	+ +	White; moderate	Colorless	None
Glycerol/asparagine ISP 5	+ +	White; moderate	Colorless	Light yellow
Peptone/yeast extract/iron agar ISP 6	+	No aerial mycelium	None	Greenish White
Tyrosine Agar Medium Base ISP 7	+	No aerial mycelium	None	None
Nutrient Agar	+ +	White; moderate	Colorless	None
Gauze’s No. 1	+ +	White; moderate	Colorless	None
Czapek’sagar	+	No aerial mycelium	None	None

+ + + good, + + moderate, + weak, none not determined

Table 1 Growth and cultural characteristics of strain TRM63209\(^\text{T}\)

Antonie van Leeuwenhoek (2022) 115:79–87
98.00%) and *Streptomyces caeruleatus* NRRL B-24802T (GenBank Accession No. KQ948975; 98.00%). Strain TRM63209T was found to form an unique clade that was different from other closely related species (Fig. 2). The apparent close relationship with *Streptomyces bungoensis* DSM 41781T did not receive high bootstrap support and was not supported by the other two (Maximum Likelihood and Minimum-Evolution) tree building methods (supplementary Figs. S5, S6). According to the guiding principles of Rong and Huang (2012), in multi-locus sequence analysis (MLSA) it is considered that pairs with evolutionary distances greater than 0.007 belong to different species. A MLSA of five house-keeping genes (*atpD, gyrB, recA, rpoB*, and *trpB*) indicated that the MLSA distances between strain TRM63209T and similar species were greater than the 0.007 threshold (Fig. S7). Result of phylogenomic analysis also supported that strain TRM63209T belonged to genus *Streptomyces* (supplementary Fig. S8).

The DNA G + C content in the draft genome sequence of strain TRM63209T was determined to be 70.2 mol %. The complete genome of strain TRM63209T has a size of 8.49 Mb, did not distribute among chromosomes and plasmids. In its genome, 7804 genes were annotated, of which 7732 are putative protein-coding genes. The number of hypothetical proteins is 2367, corresponding to 31% of the total number of putatively annotated proteins. 60 tRNAs and seven copies of the 16S rRNA gene were identified. The genomic characteristics of the compared strains are quite heterogeneous (Table. S4). The ANI relatedness between strain TRM63209T and the phylogenetically related strain *Streptomyces caeruleatus* NRRL B-24802T, *Streptomyces bungoensis* DSM 41781T, *Streptomyces longwoodensis* DSM 41677T and *Streptomyces phyllanthi* PA1-07T were respectively determined to be 84.02%, 82.76%, 82.65%, 82.54%. This value is significantly lower than the widely accepted threshold for describing prokaryote species (95–96%; Kim et al. 2014). The dDDH value between strain TRM63209T and the phylogenetically related strain *Streptomyces bungoensis* DSM 41781T, *Streptomyces phyllanthi* PA1-07T, *Streptomyces longwoodensis* DSM 41677T and *Streptomyces caeruleatus* NRRL B-24802 was respectively determined to be 26.30%, 25.10%, 26.20%, 29.50%. significantly lower than the 70% threshold value for delineation of prokaryotic genomic species (Wayne et al. 1987). It is thus proposed that strain TRM63209T can be differentiated from closely related *Streptomyces* species and represents a novel species. The supernatant of strain TRM63209T inhibited biofilm formation by both *C. albicans*, with inhibition ratios over 40% (Table S3). The anti-SMASH biosynthetic gene cluster prediction tool was used to investigate the draft genome sequence of strain TRM63209T and found one type I, two type III polyketide biosynthetic gene clusters, five nonribosomal peptide synthetase biosynthetic gene clusters and one NRPS-like fragment. In addition, five terpene, three siderophore, three class I lanthipeptide clusters like nisin, one non-alpha poly-amino acids like e-Polysin (NAPAA), one ectoine, one arylpolyene, one other unspecified ribosomally synthesised and post-translationally modified peptide product (RiPP), one redox-cofactors such as...
Table 2 Differential characteristics between strain TRM63209^T and phylogenetically related species of the genus Streptomyces

Characteristic	1	2	3	4	5
Spore chains	Spiral	Spiral	Short and compact Spiral	Short Spiral	Long and flexuous; looped
Spore shape	Oval-shaped, with a smooth surface	Moderately short with simple branches spiny surface	Oval-shaped with arugose surface	Smooth	Spiny
Growth temperature (optimum temperature)	5–55 (28)	5–55 (28)	20–40 (28–30)	10–45 (28)	28
Optimal pH for growth	4–12 (8)	4–12 (7)	5	7	7
NaCl tolerance (%, w/v)	0–20 (1)	1–15 (7–10)	5	5	0–10 (2,5)
Catalase production	+	+	ND	ND	+
Oxidase reaction	+	+	+	ND	ND
Starch hydrolysis	+	–	ND	+	ND
Cellulose hydrolysis	+	+	ND	–	+
Utilization as sole carbon source					
Celllobiose	+	+	+	–	ND
D-fructose	–	+	+	–	+
Glucose	–	+	+	+	+
Inositol	–	–	+	–	–
L-Arabinose	–	–	+	+	+
L-Rhamnoside	+	–	+	–	+
Raffinose	+	+	+	–	+
Ribose	ND	ND	–	ND	ND
Xylose	–	–	+	+	+
Polar lipids components	DPG, PE, PG, PI, PIM	DPG, PE, PIM	DPG, PG, PE, PI	ND	
DNA G + C content (mol %)	70.2	70.3	71.0	73.0	70.7

Strains: 1, TRM63209^T; 2, Streptomyces bungoensis DSM 41781^T; 3, Streptomyces phyllanthi PA1-07^T; 4, Streptomyces longwoodensis DSM 41677^T; 5, Streptomyces caeruleatus NRRL B-24802^T. Data for reference strains were taken from Eguchi et al. (1993), Pittayakhajonwut et al. (2016), Prosser et al. (1976) and Zhu et al. (2011). + Positive; – negative; AD; not shown. PIM phosphatidylinositol mannoside, PG phosphatidylglycerol, PI phosphatidylinositol, PE phosphatidylethanolamine, APL aminophospholipids, AL aminolipids, DPG diphosphatidylglycerol

+ positive; – negative; ND; not no data available
PQQ (NC_021985:1458906-1494876), one oligosaccharide, two siderophore, one melamin and one indole biosynthetic gene clusters were detected. Numbers of secondary metabolite-associated gene clusters in TRM63209T in comparison to other species in the family that is shown in Table S4. A product of one of these clusters may be involved in the antibiofilm activity observed. Through anti-SMASH analysis, the 7-prenylisatin antibiotic biosynthesis gene cluster can be found, which can effectively inhibit the growth of fungi and the similarity to 60%, whereby the strain TRM63209T inhibits the formation of BF may be associated with this gene cluster (Liang D). In summary, the sequencing of the genome of strain TRM63209T further clarified the evolutionary relationship between strains and will guide the screening for active secondary metabolites.

Description of Streptomyces blattellae

Streptomyces blattellae (blatt.tel’lae. N.L. gen. n. blattellae of the cockroach genus Blattella). Aerobic, Gram-stain positive actinomycete. Forms abundant aerial mycelium,
occasionally twisted, which differentiates into spiral spore chains. Each spore is oval-shaped with a smooth surface. The strain grew well and developed more abundant aerial mycelia on ISP 3 and ISP 2 than on ISP 1, ISP 4, ISP 5, NA and Gause’s synthetic agar no. 1, but poor growth was observed on ISP 7 and Czapek’s medium. Growth was observed at 5–55 °C, with 0–20% (w/v) NaCl and at pH 4.0–12.0 and was found to grow optimally at 28 °C, pH 7 and in the presence of 1% (w/v) NaCl. The whole-cell sugars of strain TRM63209T were rhamnose, ribose, xylose, mannose galactose and glucose, and the principal phospholipids were found to be diphosphatidylglycerol(DPG), phosphatidylethanolamine(PE), phosphatidylcholine(PC), phosphatidylinositol mannoside(PIM), phosphatidylinositol(PI) and an unknown phospholipid(L). The diagnostic cell wall amino acid was LL-diaminopimelic acid. The predominant menaquinone was found to be MK-9(H6), MK-9(H2), MK-9(H8), MK-10(H2). The major cellular fatty acids were identified asiso-C16:0, 16:0, anteiso-C15:0, anteiso-C17:0, iso-C15:0, Sum in Feature 3 and Summed Feature 3. The DNA G + C content of the strain was determined to be 70.2 mol%.

The type strain, TRM63209T (CCTCC AA 2018093T = LMG 31,403), was isolated from the in vivo of a Blattella germanica in Tarim University, Alar City, Xinjiang Province, The GenBank/EMBL/DDBJ accession numbers for the genome and 16S rRNA gene sequence of strain TRM63209T are WJBG00000000 and MK795724, respectively.

Author contributions GML contributed to performing the experiments and writing the initial draft. HZ and ZFX contributed to the guidance of experimental operations. LLY contributed to the morphological analyzes. HZ and LLZ contributed to reagents, instrumentation and the financial support for this work. All authors approved the manuscript.

Funding This work was supported by the National Natural Science Foundation of China (Project No. U1703236), Corps of person of outstanding ability (38000020923), and Microbial Resources Utilization Innovation Team in Key Field of Tarim University (TDZKCQ202001).

Declarations

Conflict of interest All authors declare that they have no conflict of interest.

Ethical approval This article does not contain any studies with human participants and/or animals performed by any of the authors. The formal consent is not required in this study.

References

Arocha-Garza HF, Canales-Del CR, Eguiarte LE, Souza V, De TS (2017) High diversity and suggested endemicity of cultivable actinobacteria in an extremely oligotrophic desert oasis. Peer J 5:e3247

Auch AF, von Jan M, Klenk HP, Goker M (2010) Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2:117–134

Balasubramanian S, Othman EM, Kampik D, Stopper H, Hentschel U, Ziebuhr W, Oelschlaeger TA, Abdelmohsen UR (2017) Marine sponge-derived Streptomyces sp. SBT343 extract inhibits staphylococcal biofilm formation. Front Microbiol 8:236

Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Wezel GPV (2015) Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol R 80:1–43

Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E, Weber T (2013) antiSMASH 2.0-a versatile platform for genome mining of secondary metabolite producers. Nucl Acids Res 41:W204–W212

Chun J, Goodfellow M (1995) A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45:240–245

Collins MD (1985) Isoprenoid quinone analyses in bacterial classification and identification. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic, London, pp 267–284

Eguchi T, Takada N, Nakamura S, Tanaka T, Makino T, Oshima Y (1993) Streptomyces bungoensis sp. nov. Int J Syst Bacteriol 43:794–798

Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

Genilloud O (2017) Actinomycetes: still a source of novel antibiotics. Nat Prod Rep 34:1203–1232

Groth I, Schumann P, Rainey FA, Martin K, Schuetze B, Augsten K (1997) Demetria terragena gen. nov. sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 47:1129–1133

Guo Y, Zheng W, Rong X, Huang Y (2008) A multilocus phyloge

hy of the Streptomyces griseus 16S rRNA gene clade: use of multilocus sequence analysis for streptomycete systematics. Int J Syst Evol Microbiol 58:149–159

Hasegawa T, Takizawa M, Tanida S (1983) A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322

Hatano K, Nishii T, Kasai H (2003) Taxonomic re-evaluation of whorl-forming Streptomyces (formerly Streptosporangium) species by using phenotypes, DNA-DNA hybridization and sequences of gyrB, and proposal of
Streptomyces luteireticuli (ex Katoh and Arai 1957) corrig., sp. nov. nom. rev. Int J Syst Evol Microbiol 53:1519–1529

Kelly KL (1964) Inter-society color council: National Bureau of standards color name charts illustrated with centroid colors. US Government Printing Office, Washington

Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylogenotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351

Klykleung N, Phongsopitanun W, Pityaknahjonwut P, Ohkuma M, Kudo T, Tanasupawat S (2016) Streptomyces phyllanthi sp. nov. isolated from the stem of Phyllanthus amarus. Int J Syst Evol Microbiol 66:3923–3928

Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

Lee I, Kim YO, Park SC, Chun J (2015) Orthoani: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103

Liang D, Wang Y (2019) The first synthesis of 7-prenylisatin. Mendeleev Commun 29(2):172–173

Liu C, Yao L, Lan Y, Zhao J, Piao C, Li Z et al (2017) Actinocorallia lasiicapitis sp. Nov., a novel actinomycete isolated from the head of an ant (Lasius fuliginosus L). Int J Syst Evol Microbiol 66(6):2172

Meier-Kolthoff JP, Göker M (2019) TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10:2182

Meier-Kolthoff PJ, Alexander FA, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatic 14(1):60–60

Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal K, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinines and polar lipids. J Microbiol Methods 2:233–241

Prosser BLT, Palleroni NJ (1976) Streptomyces longwoodensis sp. nov. Int J Syst Bacteriol 26:319–322

Rong X, Huang Y (2012) Taxonomic evaluation of the Streptomyces hygroscopicus clade using multilocus sequence analysis and DNA–DNA hybridization, validating the MLSA scheme for the systematics of the whole genus. Syst Appl Microbiol 35:7–18

Rzhetsky A, Nei M (1993) Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 10:1073–1095

Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI technical note 101. MIDI Inc, Newark

Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

Staneck JL, Roberts GD (1974) Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231

Waksman SA (1961) The Actinomycetes Vol II Classification, identification and descriptions of genera and species. Williams and Wilkins, Baltimore

Waksman SA, Henrici AT (1943) The nomenclature and classification of the actinomycetes. J Bacteriol 66:337–341

Wiese J, Jiang Y, Tang SK, Thiel V, Schmaljohann R, Xu LH, Jiang CL, Imhoff JF (2008) A new member of the family Micromonosporaceae, Planosporangium flavigriseum gen. nov. sp. nov. Int J Syst Evol Microbiol 58:1324–1331

Zhang R, Han X, Xia Z, Luo X, Wan C, Zhang L (2017) Streptomyces luozhongensis sp. nov., a novel actinomycete with antifungal activity and antibacterial activity. Antonie van Leeuwenhoek 110:195–203

Zhu HH, Guo J, Yao Q, Yang SZ, Deng MR, Li TH (2011) Streptomyces caeruleatus sp. nov. with dark blue diffusible pigment. Int J Syst Evol Microbiol 61:507–511

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.