An Efficiency Study for SPLADE models

Carlos LASSANCE, Stéphane CLINCHANT
Introduction

• Goal: Study the efficiency of SPLADE models for sparse neural retrieval
 • In domain: MSMARCO passage dataset
 • Out-of-domain: 18 BEIR datasets
Introduction – SPLADE Recap

• Use the MLM output
 • Max pooling over each token output
 • Induce sparsity:
 • ReLU over the output
 • FLOPS [Paria et al 2020] regularization
 • Estimate number of activations in a batch
 • Proxy for total retrieval FLOPS

http://github.com/naver/splade
Motivation: Findings from Wacky Weights
Mackenzie, Trotman and Lin, 2021

Findings:
• Recent sparse models are slower than BM25
• SPLADE 50x slower on mono-thread evaluation

RQ:
SPLADE quick as BM25?
First things first:
Is SPLADE efficient?

• **Yes and No**
 - **No:** It does not optimize for the same things as sparse retrieval
 - Released models are *tuned for effectiveness*, not efficiency
 - Optimized *for multi-thread retrieval* of each query
 - Measures FLOPS, not latency

• **Yes:** *SPLADE is a family of models*
 - Control efficiency-effectiveness trade-off
 - Can optimize for cpu mono-thread query retrieval:
 - Focus more on query size than document size
Finding efficient SPLADE configurations

- I) Explore SPLADE family to find better configuration
 - Small, Medium and Large versions
- II) Use latest available data (better distillation)
Our contribution

• Can we go further than those adjustments?

• III) Separating encoders
 • Traditional SPLADE makes no difference between query and document
 • Hard for the model to learn that sparsities may be different

• IV) Using L1 regularization instead of FLOPS on queries
 • FLOPS is optimized for generating balanced indexes
 • Queries need to be small, but don’t need to be balanced

• V) Unsupervised FLOPS+MLM training
 • Improves the state of the network before pretraining
 • Network already knows output should be sparse
Results: Improvements add up
VI) Reducing query encoder latency

- VI-BT) Using a smaller query encoder (BERT-Tiny)
 - Reduces the query encoder latency to almost 0 (43 ms -> 0.7ms)

- VI-SD) SPLADE doc
 - No encoding
 - *: without stop words
Comparison with SoTA sparse on in-domain data (MSMARCO)
Comparison on OOD (BEIR)

Method	Latency	MSMARCO	TREC19	BEIR	BEIR*
Baselines					
BM25†	4	19.7	50.6	43.0	-
DocT5 [36]	11	27.6	64.2	44.1	-
SPLADEv2-distil [10]	691	36.8	72.9	47.0	49.3
Proposed models					
VI) BT-SPLADE-S	7	35.8	67.2	39.2	45.9
VI) BT-SPLADE-M	13	37.6	69.4	42.1	47.1
VI) BT-SPLADE-L	32	38.0	70.3	44.5	48.0

BEIR* creates an ensemble with BM25 to non BM25-baselines
Latency increases by 4 ms
Comparison with dense models

How to?

- Not exactly sure how to do it fairly
 - Different software makes for different benchmark
 - Comparing PISA/Anserini/JASS vs NMSlib/FAISS?
 - Example: How to be sure that all of them are warmed up correctly/fairly?

- Different optimizations
 - Approximate KNN (Dense) vs KNN (Sparse)
 - “Uniform” Latency (Dense) vs “Variable” Latency (Sparse)
 - Mono-cpu (Latency) vs Multi-cpu/gpu (QPS)
 - Keep index small (IVF, PISA) vs Precompute and store everything (HNSW)
Comparison with dense models

How to?

OPEN QUESTION

Take results with a grain of salt

- Not exactly sure how to do it fairly
 - Different software makes for different benchmark
 - Comparing PISA/Anserini/JASS vs NMSlib/FAISS?
 - Example: How to be sure that all of them are warmed up correctly/fairly?

- Different optimizations
 - Approximate KNN (Dense) vs KNN (Sparse)
 - “Uniform” Latency (Dense) vs “Variable” Latency (Sparse)
 - Mono-cpu (Latency) vs Multi-cpu/gpu (QPS)
 - Keep index small (IVF, PISA) vs Precompute and store everything (HNSW)
Comparison with dense models

Latency

OPEN QUESTION
Take results with a grain of salt
Comparison with dense models

QPS

OPEN QUESTION
Take results with a grain of salt
Conclusion

SPLADE can be efficient and VI) BT-Medium is the first method to concurrently:

- Only 2x the cost of BM25 (or 4 times of BM25 without stop words)
- Comparable to ColBERTv2 on MSMARCO (<10% loss of MRR@10)
- Comparable to SPLADEv2 on BEIR (<5% loss of NDCG@10)

Code: https://github.com/naver/splade
Indexes: https://github.com/naver/splade/tree/main/efficient_splade_pisa
HuggingFace weights: https://huggingface.co/naver
Improving other sparse methods

• Kinda unfair comparison with them as well
• Distillation and hyperparameter search can easily be added to both
• Better PLM initialization as well
 • MLM+Flops? Contriever? CoCondenser?
• Removing stop words from queries could also be important
• Is there a way to benchmark all this?