Temporal Description Logic for Ontology-Based Data Access

Alessandro Artale1, Roman Kontchakov2, Frank Wolter3 and Michael Zakharyaschev2

1Faculty of Computer Science
Free University of Bozen-Bolzano, Italy
2Department of Computer Science and Information Systems
Birkbeck, University of London, U.K.
3Department of Computer Science,
University of Liverpool, U.K.

Abstract

Our aim is to investigate ontology-based data access over temporal data with validity time and ontologies capable of temporal conceptual modelling. To this end, we design a temporal description logic, \textit{TQL}, that extends the standard ontology language \textit{OWL 2 QL}, provides basic means for temporal conceptual modelling and ensures first-order rewritability of conjunctive queries for suitably defined data instances with validity time.

1 Introduction

One of the most promising and exciting applications of description logics (DLs) is to supply ontology languages and query answering technologies for ontology-based data access (OBDA), a way of querying incomplete data sources that uses ontologies to provide additional conceptual information about the domains of interest and enrich the query vocabulary. The current W3C standard language for OBDA is \textit{OWL 2 QL}, which was built on the \textit{DL-Lite} family of DLs [Calvanese \textit{et al.}, 2006; 2007]. To answer a conjunctive query q over an \textit{OWL 2 QL} ontology T and instance data \mathcal{A}, an OBDA system first ‘rewrites’ q and T into a new first-order query q' and then evaluates q' over \mathcal{A} (without using the ontology). The evaluation task is performed by a conventional relational database management system. Finding efficient and practical rewritings has been the subject of extensive research [Pérez-Urbina \textit{et al.}, 2009; Rosati and Almatelli, 2010; Kontchakov \textit{et al.}, 2010; Chor-\textit{taras \textit{et al.}}, 2011; Gottlob \textit{et al.}, 2011; König \textit{et al.}, 2012]. Another fundamental feature of \textit{OWL 2 QL}, supplementing its first-order rewritability, is the ability to capture basic conceptual data modelling constructs [Berardi \textit{et al.}, 2005; Artale \textit{et al.}, 2007].

In applications, instance data is often time-dependent: employment contracts come to an end, parliaments are elected, children are born. Temporal data can be modelled by pairs consisting of facts and their validity time; for example, \textit{givesBirth}(<\textit{diana}, <\textit{william}, 1982>). To query data with validity time, it would be useful to employ an ontology that provides a conceptual model for both static and temporal aspects of the domain of interest. Thus, when querying the fact above, one could use the knowledge that, if x gives birth to y, then x becomes a mother of y from that moment on:

\[
\Diamond_p \textit{givesBirth} \sqsubseteq \textit{motherOf},
\]

where \Diamond_p reads ‘sometime in the past.’ \textit{OWL 2 QL} does not support temporal conceptual modelling and, rather surprisingly, no attempt has yet been made to lift the OBDA framework to temporal ontologies and data.

Temporal extensions of DLs have been investigated since 1993; see [Gabbay \textit{et al.}, 2003; Lutz \textit{et al.}, 2008; Artale and Franconi, 2005] for surveys and [Franconi and Toman, 2011; Gutiérrez-Basulto and Klarmann, 2012; Baader \textit{et al.}, 2012] for more recent developments. Temporalised \textit{DL-Lite} logics have been constructed for temporal conceptual data modelling [Artale \textit{et al.}, 2010]. But unfortunately, none of the existing temporal DLs supports first-order rewritability.

The aim of this paper is to design a temporal DL that contains \textit{OWL 2 QL}, provides basic means for temporal conceptual modelling and, at the same time, ensures first-order rewritability of conjunctive queries (for suitably defined data instances with validity time).

The temporal extension \textit{TQL} of \textit{OWL 2 QL} we present here is interpreted over sequences $T(n), n \in \mathbb{N}$, of standard DL structures reflecting possible evolutions of data. TBox axioms are interpreted globally, that is, are assumed to hold in all of the $T(n)$, but the concepts and roles they contain can vary in time. ABox assertions (temporal data) are time-stamped unary (for concepts) and binary (for roles) predicates that hold at the specified moments of time. Concept (role) inclusions of \textit{TQL} generalise \textit{OWL 2 QL} inclusions by allowing intersections of basic concepts (roles) in the left-hand side, possibly prefixed with temporal operators \Diamond_p (sometime in the past) or \Diamond^p (sometime in the future). Among other things, one can express in \textit{TQL} that a concept/role name is rigid (or time-independent), persistent in the past/future or instantaneous. For example, $\Diamond_p \Diamond^p \textit{Person} \sqsubseteq \textit{Person}$ states that the concept \textit{Person} is rigid, $\Diamond_p \textit{name} \sqsubseteq \textit{name}$ says that the role \textit{name} is persistent in the future, while $\textit{givesBirth} \cap \Diamond_p \textit{givesBirth} \sqsubseteq \perp$ implies that $\textit{givesBirth}$ is instantaneous. Inclusions such as $\Diamond_p \textit{Start} \cap \Diamond_p \textit{End} \sqsubseteq \textit{Employed}$ represent convexity (or existential rigidity) of concepts or roles. However, in contrast to most existing temporal DLs, we cannot use temporal operators in the right-hand side of inclusions (e.g., to say that every student will eventually graduate: $\textit{Student} \sqsubseteq \Diamond_p \textit{Graduate}$).
In conjunctive queries (CQs) over TQL knowledge bases, we allow time-stamped predicates together with atoms of the form \((\tau < \tau')\) or \((\tau = \tau')\), where \(\tau, \tau'\) are temporal constants denoting integers or variables ranging over integers.

Our main result is that, given a TQL TBox \(T\) and a CQ \(q\), one can construct a union \(q'\) of CQs such that the answers to \(q\) over \(T\) and any temporal ABox \(A\) can be computed by evaluating \(q'\) over \(A\) extended with the temporal precedence relation \(<\) between the moments of time in \(A\). For example, the query \(motherOf(x,y,t)\) over (1) can be rewritten as

\[\text{motherOf}(x,y,t) \equiv \exists t' ((t' < t) \land \text{givesBirth}(x,y,t')). \]

Note that the addition of the transitive relation \(<\) to the ABox is unavoidable: without it, there exists no first-order rewriting even for the simple example above [Libkin, 2004, Cor. 4.13].

From a technical viewpoint, one of the challenges we are facing is that, in contrast to known OBDA languages with CQ rewritability (including fragments of datalog\([\pi]\) [Calli et al., 2012]), witnesses for existential quantifiers outside the ABox are not independent of each other but interact via the temporal precedence relation. For this reason, a reduction to known languages appears to be impossible and a novel approach to rewriting has to be found. We also observe that straightforward temporal extensions of TQL lose first-order rewritability. For example, query answering over the ontology \{Student \(\sqsubseteq\) \(\Diamond_5\) Graduate\} is shown to be non-tractable. All omitted proofs can be found in [Artale et al., 2013].

2 TQL: a Temporal Extension of OWL 2 QL

Concepts \(C\) and roles \(S\) of TQL are defined by the grammar:

\[
\begin{align*}
R &::= \bot \mid P_i \mid P_i^{-}, \\
B &::= \bot \mid A_i \mid \exists R, \\
C &::= B \mid C_1 \cap C_2 \mid \Diamond_\tau C \mid \Diamond_\rho S, \\
S &::= R \mid S_1 \sqcap S_2 \mid \Diamond_\rho \tau S, \quad \text{where } A_i \text{ is a concept name, } P_i \text{ a role name (} i \geq 0\text{), and } \Diamond_\tau \text{ and } \Diamond_\rho \text{ are temporal operators 'some time in the past' and 'some time in the future', respectively. We call concepts and roles of the form } B \text{ and } R \text{ basic. A TQL TBox, } T, \text{ is a finite set of concept and role inclusions of the form} \\
C &\subseteq B, \quad S \subseteq R,
\end{align*}
\]

which are assumed to hold globally (over the whole timeline). Note that the \(\Diamond_\rho \tau\)-free fragment of TQL is an extension of the description logic DL-Lite\([\text{Hor}]\) [Artale et al., 2009] with role inclusions of the form \(R_1 \sqcap \cdots \sqcap R_n \subseteq R\); it properly contains OWL 2 QL (the missing role constraints can be safely added to the language).

A TQL ABox, \(A\), is a (finite) set of atoms \(P_i(a,b,n)\) and \(A_i(a,n)\), where \(a, b\) are individual constants and \(n \in \mathbb{Z}\) a temporal constant. The set of individual constants in \(A\) is denoted by \(\text{ind}(A)\), and the set of temporal constants by \(\text{term}(A)\). A TQL knowledge base (KB) is a pair \(K = (T,A)\), where \(T\) is a TBox and \(A\) an ABox.

A temporal interpretation, \(I\), is given by the ordered set \((\mathbb{Z},<)\) of time points and standard (atemporal) interpretations \(I(n) = (\Delta^n, I(n))\), for each \(n \in \mathbb{Z}\). Thus, \(\Delta^n \neq \emptyset\) is the common domain of all \(I(n), A_i^Z(n) \subseteq \Delta^n\) and \(P_i^Z(n) \subseteq \Delta^n \times \Delta^n\). We assume that \(A_i^Z(n) = A_i^Z(0)\), for all \(n \in \mathbb{Z}\). To simplify presentation, we adopt the unique name assumption, that is, \(A_i^Z(n) \neq A_j^Z(n)\) for \(i \neq j\) (although the obtained results hold without it). The role and concept constructs are interpreted in \(I\) as follows, where \(n \in \mathbb{Z}\):

\[
\begin{align*}
\bot^n(n) &\equiv \emptyset \quad \text{(for both concepts and roles),} \\
(P_i^-)^Z(n) &= \{(x,y) \mid (y,x) \in P_i^Z(n)\}, \\
(\exists R)^Z(n) &= \{x \mid (x,y) \in R^Z(n)\} \quad \text{for some } y, \\
(C_1 \sqcap C_2)^Z(n) &= C_1^Z(n) \sqcap C_2^Z(n), \\
(\Diamond_\rho C)^Z(n) &= \{x \mid x \in C^Z(n)\}, \quad \text{for some } m < n, \\
(\Diamond_\rho S)^Z(n) &= \{x \mid x \in S^Z(n)\}, \quad \text{for some } m > n, \\
(S_1 \sqcap S_2)^Z(n) &= S_1^Z(n) \sqcap S_2^Z(n), \\
(\Diamond_\tau S)^Z(n) &= \{(x,y) \mid (x,y) \in S^Z(n)\}, \quad \text{for some } m < n, \\
(\Diamond_\rho \tau S)^Z(n) &= \{(x,y) \mid (x,y) \in S^Z(n)\}, \quad \text{for some } m > n.
\end{align*}
\]

The satisfaction relation \(\models\) is defined by taking

\[
\begin{align*}
I \models A_i(a,n) &\iff A_i^Z(n) \subseteq A_i^Z(n), \\
I \models P_i(a,b,n) &\iff (a^Z(n), b^Z(n)) \in P_i^Z(n), \\
I \models C \sqsubseteq B &\iff C^Z(n) \subseteq B^Z(n), \quad \text{for all } n \in \mathbb{Z}, \\
I \models S \sqsubseteq R &\iff S^Z(n) \subseteq R^Z(n), \quad \text{for all } n \in \mathbb{Z}.
\end{align*}
\]

If all inclusions in \(T\) and atoms in \(A\) are satisfied in \(I\), we call \(I\) a model of \(K = (T,A)\) and write \(I \models K\).

A conjunctive query (CQ) is a (two-sorted) first-order formula \(q(\vec{x}, \vec{s})\) is \(\exists \vec{y}, \vec{z} \Phi(\vec{x}, \vec{y}, \vec{z}, \vec{t})\), where \(\Phi(\vec{x}, \vec{y}, \vec{z}, \vec{t})\) is a conjunct of atoms of the form \(A_i(\xi, \tau), P_i(\xi, \zeta, \tau), (\tau = \sigma)\) and \((\tau < \sigma)\), with \(\xi, \zeta\) being individual terms—individual constants or variables in \(\vec{x}, \vec{y}\)—and \(\tau, \sigma\) temporal terms—temporal constants or variables in \(\vec{t}, \vec{s}\). In a positive existential query (PEQ) \(q\), the formula \(\Phi\) can also contain \(\forall\). A union of CQs (UCQ) is a disjunction of CQs (so every PEQ is equivalent to an exponentially larger UCQ).

Given a KB \(K = (T,A)\) and a CQ \(q(\vec{x}, \vec{s})\), we call tuples \(\vec{a} \subseteq \text{ind}(K)\) and \(\vec{n} \subseteq \text{term}(A)\) a certain answer to \(q(\vec{x}, \vec{s})\) over \(K\) and write \(\vec{a} \models q(\vec{a}, \vec{n})\) for every model \(I\) of \(K\) (understood as a two-sorted first-order model).

Example 1 Suppose Bob was a lecturer at UCL between times \(n_1\) and \(n_2\), after which he was appointed professor on a permanent contract. To model this situation, we use individual names, \(e_1\) and \(e_2\), to represent the two events of Bob’s employment. The ABox will contain \(n_1 < n_2\) and the atoms \(\text{lect}(bob, e_1, n_1), \text{lect}(bob, e_1, n_2), \text{prof}(bob, e_2, n_2 + 1)\). In the TBox, we make sure that everybody is holding the corresponding post over the duration of the contract, and include other knowledge about the university life:

\[
\begin{align*}
\Diamond_\rho \text{lect} \sqsubseteq \Diamond_\rho \text{lect} \sqsubseteq \text{lect}, \\
\Diamond_\rho \text{prof} \sqsubseteq \text{prof}, \\
\Diamond_\rho \text{lect} \sqsubseteq \Diamond_\rho \text{lect}, \\
\Diamond_\rho \text{prof} \sqsubseteq \Diamond_\rho \text{prof}, \\
\text{Professor} \sqsubseteq \Diamond_\rho \text{supervisesPhD}, \\
\text{Professor} \sqsubseteq \text{Staff}, \\
\Diamond_\rho \text{supervisesPhD} \sqcap \Diamond_\rho \text{supervisesPhD} \sqsubseteq \text{supervisesPhD}, \\
\text{etc.}
\end{align*}
\]
We can now obtain staff who supervised PhDs between times k_1 and k_2 by posing the following CQ:

$$\exists y, t \left(k_1 < t < k_2 \right) \land Staff(x, t) \land supervisesPhD(x, y, t).$$

The key idea of OBDA is to reduce answering CQs over KBs to evaluating FO-queries over relational databases. To obtain such a reduction for TQL KBs, we employ a very basic type of temporal databases. With every TQL ABox A, we associate a data instance $[A]$ which contains all atoms from A as well as the atoms $(n_1 < n_2)$ such that $n_1 \in \mathbb{Z}$ with $\min \text{tem}(A) \leq n_1 \leq \max \text{tem}(A)$ and $n_1 < n_2$. Thus, in addition to A, we explicitly include in $[A]$ the temporal precedence relation over the convex closure of the time points that occur in A. (Note that, in standard temporal databases, the order over timestamps is built-in.) The main result of this paper is the following:

Theorem 2 Let $q(\vec{x}, \vec{s})$ be a CQ and T a TQL TBox. Then one can construct a UQ CQ $q'(\vec{x}, \vec{s})$ such that, for any consistent KB (T, A) such that A contains all temporal constants from q, any $\vec{a} \subseteq \text{ind}(A)$, $\vec{n} \subseteq \text{tem}(A)$, we have $(T, A) \models q(\vec{a}, \vec{n})$ iff $[A] \models q'(\vec{a}, \vec{n})$.

Such a UQ $q'(\vec{x}, \vec{s})$ is called a rewriting for q and T. We begin by showing how to compute rewritings for CQs over KBs with empty TBoxes. For an ABox A, we denote by A^∞ the infinite data instance which contains the atoms in A as well as all $(n_1 < n_2)$ such that $n_1, n_2 \in \mathbb{Z}$ and $n_1 < n_2$. It will be convenient to regard CQs $q(\vec{x}, \vec{s})$ as sets of atoms, so that we can write, e.g., $A(\xi, \tau) \subseteq q$. We say that q is totally ordered if, for any temporal terms τ, τ' in q, at least one of the constraints $\tau < \tau'$, $\tau = \tau'$ or $\tau' < \tau$ is in q and the set of such constraints is consistent (in the sense that it can be satisfied in \mathbb{Z}). Clearly, every CQ is equivalent to a union of totally ordered CQs (note that the empty union is \bot).

Lemma 3 For every UQ CQ $q(\vec{x}, \vec{s})$, one can compute a UQ CQ $q'(\vec{x}, \vec{s})$ such that, for any ABox A containing all temporal constants from q and any $\vec{a} \subseteq \text{ind}(A)$, $\vec{n} \subseteq \text{tem}(A)$, we have $A^\infty \models q(\vec{a}, \vec{n})$ iff $[A] \models q'(\vec{a}, \vec{n})$.

Proof. We assume that every CQ q_0 in q is totally ordered. In each such q_0, we remove a bound temporal variable t together with the atoms containing t if at least one of the following two conditions holds:

- there is no temporal constant or free temporal variable τ with $(\tau < t) \in q_0$, and for no temporal term τ' and atom of the form $A(\xi, \tau')$ or $P(\xi, \zeta, \tau')$ in q_0 do we have $(\tau' < t)$ or $(\tau' = t)$ in q_0;
- the same as above but with $< $ replaced by $> $.

It is readily checked that the resulting UQ is as required.

Example 4 Suppose $T = \{ \varphi_r C \subseteq A, \varphi_r A \subseteq B \}$ and $q(x, s) = B(x, s)$. Then, for any A, $a \in \text{ind}(A)$, $n \in \text{tem}(A)$, we have $(T, A) \models q(a, n)$ iff $A^\infty \models q'(a, n)$, where

$$q'(x, s) = B(x, s) \lor \exists t \left((t < s) \land A(x, t) \right) \lor \exists t, r \left((t < s) \land (t < r) \land C(x, r) \right).$$

Note, however, that q' is not a rewriting for q and T. Take, for example, $A = \{ C(a, 0) \}$. Then $(T, A) \models B(a, 0)$ but $[A] \not\models q'(a, 0)$. A correct rewriting is obtained by replacing the last disjunct in q' with $\exists r C(x, r)$; it can be computed by applying Lemma 3 to q' and slightly simplifying the result.

In view of Lemma 3, from now on we will only focus on rewritings over A^∞.

The problem of finding rewritings for CQs and TQL TBoxes can be reduced to the case where the TBoxes only contain inclusions of the form

$$B_1 \sqcap B_2 \sqsubseteq B, \quad \varphi_r B_1 \sqsubseteq B, \quad \varphi_r B_2 \sqsubseteq B,$$

$$R_1 \sqcap R_2 \sqsubseteq R, \quad \varphi_r R_1 \sqsubseteq R, \quad \varphi_r R_2 \sqsubseteq R.$$

We say that such TBoxes are in normal form.

Theorem 5 For every TQL TBox T, one can construct in polynomial time a TQL TBox T' in normal form (possibly containing additional concept and role names) such that $T' \models T$ and, for every model I of T, there exists a model of T' that coincides with I on all concept and role names in T.

Suppose now that we have a UQ rewriting q' for a CQ q and the TBox T' in Theorem 5. We obtain a rewriting for q and T simply by removing from q' those CQs that contain symbols occurring in T' but not in T. From now on, we assume that all TQL TBoxes are in normal form. The set of role names in T and with their inverses is denoted by R_T, while $|T|$ is the number of concept and role names in T.

We begin the construction of rewritings by considering the case when all concept inclusions are of the form $C \sqsubseteq A$, so existential quantification $\exists R$ does not occur in the right-hand side. TQL TBoxes of this form will be called flat. Note that RDFS statements can be expressed by means of flat TBoxes.

3 UCQ Rewriting for Flat TBoxes

Let $K = (T, A)$ be a KB with a flat TBox T (in normal form). Our first aim is to construct a model K_C of K, called the canonical model, for which the following theorem holds:

Theorem 6 For any consistent KB $K = (T, A)$ with flat T and any CQ $q(\vec{x}, \vec{s})$, we have $K_C \models q(\vec{a}, \vec{n})$ iff $K_C \models q'(\vec{a}, \vec{n})$, for all tuples $\vec{a} \subseteq \text{ind}(A)$ and $\vec{n} \subseteq \mathbb{Z}$.

The construction uses a closure operator, cl, which applies the rules (ex), (c1)–(c3), (r1)–(r3) below to a set, S, of atoms of the form $R(u, v, n), A(u, n), \exists R(u, n)$ or $(n < n')$; $cl(S)$ is the result of (non-recursively) applying those rules to S.

$$cl^0(S) = S, \quad cl^{i+1}(S) = cl(cl^i(S)), \quad cl^\infty(S) = \bigcup_{i \geq 0} cl^i(S).$$

- (ex) if $R(u, v, n) \in S$ then add $\exists R(u, n), \exists R^-(v, n)$ to S;
- (c1) if $(B_1 \sqcap B_2 \sqsubseteq B) \in T$ and $B_1(u, n), B_2(u, n) \in S$, then add $B(u, n)$ to S;
- (c2) if $(\varphi_r B \sqsubseteq B') \in T$, $B(u, m) \in S$ for some $m < n$ and n occurs in S, then add $B'(u, n)$ to S;
- (c3) if $(\varphi_r B \sqsubseteq B') \in T$, $B(u, m) \in S$ for some $m > n$ and n occurs in S, then add $B'(u, n)$ to S;
- (r1) if $(R_1 \sqcap R_2 \sqsubseteq R) \in T$ and $R_1(u, v, n), R_2(u, v, n)$ are in S, then add $R(u, v, n)$ to S;
(r2) if $(\varnothing, R \subseteq R') \in T$, $R(u, v, m) \in S$ for some $m < n$ and n occurs in S, then add $R'(u, v, n)$ to S.

(r3) if $(\varnothing, R \subseteq R') \in T$, $R(u, v, m) \in S$ for some $m > n$ and n occurs in S, then add $R'(u, v, n)$ to S.

Note first that $K = (T, A)$ is inconsistent iff $\bot \in \text{cl}^\infty(A^2)$. If K is consistent, we define the canonical model C_K of K by taking $\Delta_{C_K} = \text{ind}(A)$, $a \in A^{C_K(n)}$ iff $A(a, n) \in \text{cl}^\infty(A^2)$, and $(a, b) \in P^{C_K(n)}$ iff $P(a, b, n) \in \text{cl}^\infty(A^2)$, for $n \in \mathbb{N}$.

As T is flat, atoms of the form $\exists R(u, n)$ can only be added by (ex).

This gives us Theorem 6. The following lemma shows that to construct C_K we actually need only a bounded number of applications of cl which does not depend on A.

Lemma 7 Suppose T is a flat TBox, let $n_T = (4 \cdot |T|)^4$. Then $\text{cl}^\infty(A^2) = \text{cl}^{n_T}(A^2)$, for any ABox A.

Proof. It is not hard to see that $\text{cl}^\infty(S)$ can be obtained by first exhaustively applying (r1)-(r3), then (ex), and after that (c1)-(c3). Since no recursion of (ex) is needed, it is sufficient to bound the recursion depth for applications of (r1)-(r3) and (c1)-(c3) separately. As both behave similarly, we focus on (r1)-(r3). One can show that it is enough to consider ABoxes with two individuals, say a and b, and it is not difficult to find a bound for the recursion depth of the separated rule sets (r1), (r2) and, respectively, (r1), (r3); the interesting part of the analysis is how often one has to alternate between applications of (r1), (r2) and applications of (r3), (r1). The key observation here is that each alternation introduces a fresh cross over (i.e., a pair (R_1, R_2) of roles such that there are $m_1, m_2 \in \mathbb{Z}$ with $m_1 + 1 \geq m_2$, $R_1(a, b, n) \in S$ for all $n \leq m_1$, and $R_2(a, b, n) \in S$ for all $n \geq m_2$). The number of such cross overs is bounded by $|T|^2$, and so the number of required alternations between exhaustively applying (r1), (r2) and (r3) is bounded by $|T|^2$. □

We now use Lemma 7 to construct a rewriting for any flat TBox T and CQ $q(\vec{x}, \vec{s})$. For a concept C and a role R, denote by C^2 and S^2 their standard FO-translations; for example, $(\varnothing, C)\sqsubseteq (\vec{x}, \vec{s}) = \exists R(\vec{x}, t) \land C(\vec{s}, t))$. Now, given a PEQ φ, we set $\varphi^{\bot k} = \varphi$ and define, inductively, $\varphi^{(n+1)\bot}$ as the result of replacing every

- $A(\xi, \tau)$ with $A(\xi, \tau) \lor (\forall C(\xi) \tau)^{n\bot}$,
- $P(\xi, \tau)$ with $P(\xi, \tau) \lor (\forall S(\xi) \tau)^{n\bot}$.

Finally, we set $\text{ext}_\varphi(\vec{x}, \vec{s}) = (\varphi(\vec{x}, \vec{s}))^{n\bot}$.

Clearly, $\text{ext}_\varphi(\vec{x}, \vec{s})$ is a PEQ, and so can be equivalently transformed into a UCQ. Denote by T^{\bot} the result of replacing \bot with a fresh concept name, say F, in all concept inclusions and with a fresh role name, say Q, in all role inclusions of T. Clearly (T^{\bot}, A) is consistent for any ABox A. Let $q^{\bot} = (\exists x, t F(x, t)) \lor (\exists y, t Q(x, y, t))$. By Theorem 6 and Lemma 7, we obtain:

Theorem 8 Let T be a flat TBox and $q(\vec{x}, \vec{s})$ a CQ. Then, for any consistent KB (T, A), any $\vec{a} \subseteq \text{ind}(A)$ and $\vec{n} \subseteq \mathbb{Z}$,

$(T, A) \models q(\vec{a}, \vec{n})$ iff $A^2 = \text{ext}_{q^{\bot}}(\vec{a}, \vec{n})$.

Thus, we obtain a rewriting for q and T using Lemma 3.

4 Canonical Models for Arbitrary TBoxes

Canonical models for consistent KBs $K = (T, A)$ with not necessarily flat TBoxes T (in normal form) can be constructed starting from A^2 and using the rules given in the previous section together with the following one:

(\sim) if $\exists R(u, n) \in S$ and $R(u, v, n) \notin S$ for any v, then add $R(u, v, n)$ to S, for some fresh individual name v; in this case we write $u \sim_R v$.

Denote by c_I the closure operator under the resulting 8 rules.

Again, K is inconsistent iff $\bot \in \text{cl}^\infty(A^2)$. If K is consistent, we define the canonical model C_K for K by the set $\text{cl}^\infty(A^2)$ in the same way as in Section 3 but taking the domain Δ_{C_K} to contain all the individual names in $\text{cl}^\infty(A^2)$.

Theorem 9 For every consistent $K = (T, A)$ and every CQ $q(\vec{x}, \vec{s})$, we have $K \models q(\vec{a}, \vec{n})$ iff $C_K \models q(\vec{a}, \vec{n})$, for any tuples $\vec{a} \subseteq \text{ind}(A)$ and $\vec{n} \subseteq \mathbb{Z}$.

Example 10 Let $K = (T, A)$ with $A = \{\{a, 0\}\}$ and $T = \{\exists R, \varnothing, R \subseteq Q, \exists Q' \subseteq S, \varnothing, Q \subseteq P, \exists S, \exists S'\}$. A fragment of the model C_K is shown in the picture below:

We say that the individuals $a \in \text{ind}(A)$ are of depth 0 in C_K; now, if u is of depth d in C_K and $u \sim_R^d v$, for some $n \in \mathbb{Z}$ and R, then v is of depth $d + 1$. Thus, both u_1 and u_2 in Example 10 are of depth 2 and v is of depth 1. The restriction of C_K, treated as a set of atoms, to the individual names of depth $\leq d$ is denoted by C_K^d. Note that this set is not necessarily closed under the rule (\sim).

In the remainder of this section, we describe the structure of C_K, which is required for the rewriting in the next section. We split C_K into two parts: one consists of the elements in $\text{ind}(A)$, while the other contains the fresh individuals introduced by (\sim). As this rule always uses fresh individuals, to understand the structure of the latter part it is enough to consider KBs of the form $K_{\tau,R} = (T \cup \{\{A \subseteq \exists R\}, \{A(a, 0)\}\})$ with fresh A. We begin by analysing the behaviour of the atoms $R'(u, a, n)$ entailed by $R(a, u, 0)$, where $a \sim_R 0 u$.

Lemma 11 (monotonicity) Let $a \sim_R^d u$ in $C_{K_{\tau,R}}$. If either $m < n < 0$ or $0 < n < m$, then $R'(u, a, m) \in C_{K_{\tau,R}}$ implies $R'(u, a, m) \in C_{K_{\tau,R}^{d}}$, moreover, if $n < m = -|R_T|$, or $|R_T| = m < n$, then $R'(u, a, n) \in C_{K_{\tau,R}^{d}}$.

The atoms $R'(u, a, n)$ entailed by $R(a, u, 0)$ in $C_{K_{\tau,R}}$, via (r1)-(r3), also have an impact, via (ex), on the atoms of the form $B(a, n)$ and $B(u, n)$ in $C_{K_{\tau,R}}$. Thus, in Example 10, $R(a, v, 0)$ entails $\exists Q(a, n)$, for $n > 0$. To analyse the behaviour of such atoms, it is helpful to assume that T is in concept normal form (CoNF) in the following sense: for every role $R \in R_T$, the TBox T contains

\[
\exists R \subseteq A^0_R, \quad \exists R \subseteq A^1_R, \quad \exists R \subseteq A^{m-1}_R, \quad \exists R \subseteq A^m_R, \quad \exists R \subseteq A^{m+1}_R.
\]
for $0 \leq m \leq |\mathcal{R}_T|$ and some concepts A^i_R, and

$$A^i_R \subseteq \exists \mathcal{R}'_R, \text{ for } |m| \leq |\mathcal{R}_T| \text{ and } \mathcal{R}'(a, v, m) \in \mathcal{C}_{K, T, R}.$$

(Example 10, \mathcal{C}_K will contain the atoms $A^i_R(a, n)$ and $A^i_R(a, n + 1)$, for $n \geq 1$.) By Lemma 11, if \mathcal{T} is in CoNF, then we can compute the atoms $B(u, n)$ and $B(u, n)$ in $\mathcal{C}_{K, T, R}$ without using the rules (r1)–(r3). Lemma 11 also implies that we can add the inclusions above (with fresh A^i_R) to \mathcal{T} if required, thereby obtaining a conservative extension of \mathcal{T}; so from now on we always assume \mathcal{T} to be in CoNF. These observations enable the proof of the following two lemmas. The first one characterises the atoms $B(u, n)$ in $\mathcal{C}_{K, T, R}$:

Lemma 12 (monotonicity) Let $a \sim_{\mathcal{R}}^0 u$ in $\mathcal{C}_{K, T, R}$. If either $m < n < 0$ or $0 < n < m$, then $B(u, n)$ in $\mathcal{C}_{K, T, R}$ implies $B(u, m)$ in $\mathcal{C}_{K, T, R}$; moreover, if either $n < m = -|\mathcal{T}|$ or $|\mathcal{T}| = m < n$, then $B(u, n)$ in $\mathcal{C}_{K, T, R}$ iff $B(u, m)$ in $\mathcal{C}_{K, T, R}$.

The second lemma characterises the ABox part of \mathcal{C}_K and is a straightforward generalisation of Lemma 7:

Lemma 13 For any KB $K = (\mathcal{T}, A)$ and any atom α of the form $A(a, n)$, $\exists R(a, n)$ or $R(a, b, n)$, where $a, b \in \text{ind}(\mathcal{A})$ and $n \in \mathbb{Z}$, we have $\alpha \in \mathcal{C}_K$ iff $\alpha \in \text{cl}^{\mathcal{T}}(\mathcal{A}^2)$.

An obvious extension of the rewriting of Theorem 8 provides, for every \mathcal{C}_K $q(\bar{x}, \bar{s})$ a UCQ $\text{ext}_T^q(\bar{x}, \bar{s})$ such that for all $\bar{a} \subseteq \text{ind}(\mathcal{A})$ and $\bar{n} \subseteq \text{Z}$, the appropriate length,

$$\mathcal{C}_K^0 \models q(\bar{a}, \bar{n}) \iff \mathcal{C}_K \models \text{ext}_q^T(\bar{a}, \bar{n}).$$

Moreover, for a basic concept $\exists \mathcal{R},$ we find a UCQ $\text{ext}_T^\exists \mathcal{R}(\xi, \tau)$ such that, for any $a \in \text{ind}(\mathcal{A})$ and $n \in \mathbb{Z}$, $\exists \mathcal{R}(a, n) \in \mathcal{C}_K$ iff $\mathcal{C}_K \models \text{ext}_T^\exists \mathcal{R}(a, n)$.

Let $q(\bar{x}, \bar{s})$ be a UCQ. Tuples $\bar{a} \subseteq \text{ind}(\mathcal{A})$ and $\bar{n} \subseteq \text{term}(\mathcal{A})$ give a certain answer to a UCQ q over $\mathcal{C}_K = (\mathcal{T}, A)$ iff there is a homomorphism h from q to \mathcal{C}_K, which maps individual (temporal) terms of q to individual (respectively, temporal) terms of \mathcal{C}_K in such a way that the following conditions hold:

$$\begin{align*}
& h(\bar{x}) = \bar{a} \text{ and } h(\bar{b}) = \bar{b}, \text{ for all } \bar{b} \in \text{ind}(\mathcal{A}); \\
& h(\bar{s}) = \bar{n} \text{ and } h(\bar{m}) = \bar{m}, \text{ for all } \bar{m} \in \text{term}(\mathcal{A}); \\
& h(\bar{q}) \subseteq \mathcal{C}_K.
\end{align*}$$

where $h(\bar{q})$ denotes the set of atoms obtained by replacing every term in q with its h-image, e.g., $P(\bar{\xi}, \bar{\zeta}, \bar{\tau})$ with $P(h(\bar{\xi}), h(\bar{\zeta}), h(\bar{\tau}))$, $(\tau_1 < \tau_2)$ with $h(\tau_1) < h(\tau_2)$, etc.

Now, using the monotonicity lemmas for the temporal dimension and the fact that atoms of depth $|\mathcal{R}_T|$ in the canonical models duplicate atoms of smaller depth, we obtain

Theorem 14 There are polynomials f_1 and f_2 such that, for any consistent TQL KB $K = (\mathcal{T}, A)$, any UCQ $q(\bar{x}, \bar{s})$ and any $\bar{a} \subseteq \text{ind}(\mathcal{A})$ and $\bar{n} \subseteq \text{tem}(\mathcal{A})$, we have $K \models q(\bar{a}, \bar{n})$ iff there is a homomorphism $h : q \to \mathcal{C}_K$ such that $h(\bar{q}) \subseteq \mathcal{C}_K^{f_1}$, where $d = f_1(|\mathcal{T}|, |q|)$ and $\ell = f_2(|\mathcal{T}|, |q|)$.

We are now in a position to define a rewriting for any given UCQ and TQL TBox.

5 UCQ Rewriting

Suppose $q(\bar{x}, \bar{s})$ is a UCQ and \mathcal{T} a TQL TBox (in CoNF). Without loss of generality we assume q to be totally ordered. By a sub-query of q we understand any subset $q' \subseteq q$ containing all temporal constraints ($\tau < \tau'$) and ($\tau = \tau'$) that occur in q. In the rewriting for q and \mathcal{T} given below, we consider all possible splittings of q into two sub-queries (sharing the same temporal terms). One is to be mapped to the ABox part of the canonical model $C_{\mathcal{T}, A}$, and so we can rewrite it using (2). The other sub-query is to be mapped to the non-ABox part of $C_{\mathcal{T}, A}$ and requires a different rewriting.

For every $R \in \mathcal{R}_T$, we construct the set $C_{R, T, R}^d$ where d and ℓ are provided by Theorem 14. Let h be a map from a sub-query $q_h \subseteq q$ to $C_{R, T, R}^d$ such that $h(q_h) \subseteq C_{R, T, R}^d$. Denote by \mathcal{X}_h the set of individual terms ξ in q_h with $h(\xi) = a$, and let \mathcal{Y}_h be the remaining set of individual terms in q_h. We call h a witness for R if

- \mathcal{X}_h contains at most one individual constant;
- every term in \mathcal{Y}_h is a quantified variable in q;
- q_h contains all atoms in q with a variable from \mathcal{Y}_h.

Let h be a witness for R. Denote by \sim_a the union of all $\sim_{R, T, R}^a$ in $C_{R, T, R}^d$. Clearly, \sim_a is a tree order on the individuals in $C_{R, T, R}^d$, with root a. Let T_h be its minimal sub-tree containing a and the h-images of all the individual terms in q_h. For each $v \in T_h \setminus \{a\}$, we take the (unique) moment $g(v)$ with $u \sim_{R, T, R}^a v$, for some u and R, and set $g(a) = 0$. For $A(y, \tau) \in q_h$, we say that $h(y)$ realises $A(y, \tau)$. For any $P(\bar{\xi}, \bar{\zeta}, \tau) \in q_h$, there are $u, u' \in T_h$ with $u \sim_a u'$ and $\{u, u'\} = \{h(\bar{\xi}), h(\bar{\zeta})\}$; we say that u' realises $P(\bar{\xi}, \bar{\zeta}, \tau)$. Let \mathcal{T} be a list of fresh temporal variables r_u, for $u \in T_h \setminus \{a\}$. Consider the following formula, whose free variables are r_u and the temporal variables of q_h:

$$\mathcal{T}_h = \exists r_a \exists x_h \left[\text{ext}_T^R(\mathcal{T}_h, r_a) \wedge \bigwedge_{h(\xi) = a} (\xi = x_h) \wedge t_h \right].$$

To give the intuition behind w_h, suppose that $C_{\mathcal{T}, A} \models \exists g \ w_h$, for some assignment g. Then g maps all terms in A^i_h to
In this section, we show that the language TQL is nearly optimal as far as rewritability of CQs and ontologies is concerned. We note first, that the syntax of TQL allows concept inclusions and role inclusions; ‘mixed’ axioms such as the datalog rule $A(x, t) \land R(x, y, t) \rightarrow B(x, t)$ are not expressible. The reason is that mixed rules often lead to non-rewritability, as is well known from the DL literature where boundedness has been investigated extensively [Gelfond et al., 1987; van der Meyden, 2000; Krutz et al., 2007]. Grohe and Schwandtner [2009] investigate boundedness for datalog programs on linear orders; the results are different from ours since the linear order is the only predicate symbol of the datalog programs considered and no further restrictions (comparable to ours) are imposed.

6 Non-Rewritability

In this section, we show that the language TQL is nearly optimal as far as rewritability of CQs and ontologies is concerned. We note first, that the syntax of TQL allows concept inclusions and role inclusions; ‘mixed’ axioms such as the datalog rule $A(x, t) \land R(x, y, t) \rightarrow B(x, t)$ are not expressible. The reason is that mixed rules often lead to non-rewritability, as is well known from the DL literature where boundedness has been investigated extensively [Gelfond et al., 1987; van der Meyden, 2000; Krutz et al., 2007]. Grohe and Schwandtner [2009] investigate boundedness for datalog programs on linear orders; the results are different from ours since the linear order is the only predicate symbol of the datalog programs considered and no further restrictions (comparable to ours) are imposed.

7 Related Work

The Semantic Web community has developed a variety of extensions of RDF/S and OWL with validity time [Motik, 2012; Pugliese et al., 2008; Gutierrez et al., 2007]. The focus of this line of research is on representing and querying time stamped RDF triples or OWL axioms. In contrast, in our language only instance data are time stamped while the ontology formulates time independent constraints that describe how the extensions of concepts and roles can change over time. In the temporal DL literature, a similar distinction has been discussed as the difference between temporalised axioms and temporalised concepts/roles; the expressive power of the respective languages is incomparable [Gabbar et al., 2003; Baader et al., 2012].

In Theorem 8, we show rewritability using boundedness of recursion. This connection between first-order definability and boundedness is well known from the datalog and logic literature where boundedness has been investigated extensively [Gelfond et al., 1987; van der Meyden, 2000; Krutz et al., 2007]. Grohe and Schwandtner [2009] investigate boundedness for datalog programs on linear orders; the results are different from ours since the linear order is the only predicate symbol of the datalog programs considered and no further restrictions (comparable to ours) are imposed.

8 Conclusion

In this paper, we have proved UCQ rewritability for conjunctive queries and TQL ontologies over data instances with validity time. Our focus was solely on the existence of rewritings, and we did not consider efficiency issues such as finding shortest rewritings, using temporal intervals in the data representation or mappings between temporal databases and ontologies. We only note here that these issues are of practical importance and will be addressed in future work. It would also be of interest to investigate the possibilities to increase the expressive power of both ontology and query language. For example, we believe that the extension of TQL with the next/previous time operators, which can only occur in TBox axioms not involved in cycles, will still enjoy rewritability. We can also increase the expressivity of conjunctive queries by allowing the arithmetic operations $+$ and \times over temporal terms, which would make the CQ $A(x, t)$ and the TBox $\{\forall \rho A \sqsubseteq B, \forall \rho B \sqsubseteq A\}$ rewritable in the extended language.
References

[Artale and Franconi, 2005] A. Artale and E. Franconi. Temporal description logics. In Handbook of Temporal Reasoning in Artificial Intelligence, Foundations of Artificial Intelligence, pages 375–388. Elsevier, 2005.

[Artale et al., 2007] A. Artale, D. Calvanese, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev. Reasoning over extended ER models. In Proc. of ER-2007, volume 4801 of LNCS, pages 277–292. Springer, 2007.

[Artale et al., 2009] A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite family and relations. J. of Artificial Intelligence Research, 36:1–69, 2009.

[Artale et al., 2010] A. Artale, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev. Complexity of reasoning over temporal data models. In Proc. of ER-2010, volume 6412 of LNCS, pages 174–187. Springer, 2010.

[Artale et al., 2013] A. Artale, R. Kontchakov, F. Wolter, and M. Zakharyaschev. Temporal Description Logic for Ontology-Based Data Access (Extended Version). CoRR, abs/1304.5185, 2013.

[Baader et al., 2012] F. Baader, S. Ghilardi, and C. Lutz. LTL over description logic axioms. ACM Trans. Comput. Log., 13(3):21, 2012.

[Berardi et al., 2005] D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning on UML class diagrams. Artificial Intelligence, 168(1–2):70–118, 2005.

[Calì et al., 2012] A. Calì, G. Gottlob, and T. Lukasiewicz. A general datalog-based framework for tractable query answering over ontologies. J. Web Sem., 14:57–83, 2012.

[Calvanese et al., 2006] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data complexity of query answering in description logics. In Proc. of KR 2006, pages 260–270, 2006.

[Calvanese et al., 2007] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning and efficient query answering in description logics: The DL-Lite family. J. of Automated Reasoning, 39(3):385–429, 2007.

[Chortaras et al., 2011] A. Chortaras, D. Trivelas, and G. Stamou. Goal-oriented query rewriting for OWL 2 QL. In Proc. of DL 2011, volume 745 of CEUR-WS, 2011.

[Franconi and Toman, 2011] E. Franconi and D. Toman. Fixpoints in temporal description logics. In Proc. of IJCAI 2011, pages 875–880, 2011.

[Gabbay et al., 2003] D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-dimensional modal logics: theory and applications. Studies in Logic. Elsevier, 2003.

[Gaifman et al., 1987] H. Gaifman, H. G. Mairson, Y. Sagiv, and M. Y. Vardi. Undecidable optimization problems for database logic programs. In Proc. of LICS 87, pages 106–115, 1987.

[Gottlob and Schwentick, 2011] G. Gottlob and T. Schwentick. Rewriting ontological queries into small nonrecursive datalog programs. In Proc. of DL 2011, volume 745 of CEUR-WS, 2011.

[Gottlob et al., 2011] G. Gottlob, G. Orsi, and A. Pieris. Ontological queries: Rewriting and optimization. In Proc. of ICDE 2011, pages 2–13. IEEE Computer Society, 2011.

[Grohe and Schwandtner, 2009] M. Grohe and G. Schwandtner. The complexity of datalog on linear orders. Logical Methods in Computer Science, 5(1), 2009.

[Gutiérrez-Basulto and Klarman, 2012] V. Gutiérrez-Basulto and S. Klarman. Towards a unifying approach to representing and querying temporal data in description logics. In Proc. of RR 2012, volume 7497 of LNCS, pages 90–105. Springer, 2012.

[Gutierrez et al., 2007] C. Gutierrez, C. A. Hurtado, and A. A. Vaisman. Introducing time into RDF. IEEE Trans. Knowl. Data Eng., 19(2):207–218, 2007.

[König et al., 2012] M. König, M. Leclère, M.-L. Mugnier, and M. Thomazo. A sound and complete backward chaining algorithm for existential rules. In Proc. of RR 2012, volume 7497 of LNCS, pages 122–138. Springer, 2012.

[Kontchakov et al., 2010] R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Zakharyaschev. The combined approach to query answering in DL-Lite. In Proc. of KR 2010. AAAI Press, 2010.

[Kreutzer et al., 2007] S. Kreutzer, M. Otto, and N. Schweikardt. Boundedness of monadic FO over acyclic structures. In Proc. of ICALP 2007, pages 571–582, 2007.

[Libkin, 2004] L. Libkin. Elements Of Finite Model Theory. Springer, 2004.

[Lutz et al., 2008] C. Lutz, F. Wolter, and M. Zakharyaschev. Temporal description logics: A survey. In Proc. of TIME 2008, pages 3–14. IEEE Computer Society, 2008.

[Motik, 2012] B. Motik. Representing and querying validity time in RDF and OWL: A logic-based approach. J. Web Sem., 12:3–21, 2012.

[Pérez-Urbina et al., 2009] H. Pérez-Urbina, B. Motik, and I. Horrocks. A comparison of query rewriting techniques for DL-Lite. In Proc. of DL 2009, volume 477 of CEUR-WS, 2009.

[Pugliese et al., 2008] A. Pugliese, O. Udrae, and V. S. Subrahmanian. Scaling RDF with time. In Proc. of WWW 2008, pages 605–614, 2008.

[Rosati and Almatelli, 2010] R. Rosati and A. Almatelli. Improving query answering over DL-Lite ontologies. In Proc. of KR 2010. AAAI Press, 2010.

[Schaerf, 1993] A. Schaerf. On the complexity of the instance checking problem in concept languages with existential quantification. J. of Intel. Inf. Systems, 2:265–278, 1993.

[van der Meyden, 2000] R. van der Meyden. Predicate boundedness of linear monadic datalog is in PSPACE. Int. J. Found. Comput. Sci., 11(4):591–612, 2000.