LETTER TO THE EDITOR

Inflammatory biomarkers at hospital discharge are associated with readmission and death in patients hospitalized for COVID-19

Marleen A. Slim1,2 · Brent Appelman1 · Marcella C. A. Müller2 · Matthijs C. Brouwer3 · Alexander P. J. Vlaar2 · W. Joost Wiersinga1,4 · Lonneke A. van Vught1,2 on behalf of the Amsterdam UMC COVID-19 biobank study group

Received: 8 September 2021 / Accepted: 27 September 2021 / Published online: 28 October 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Introduction

Even though the survival of patients admitted with coronavirus disease 2019 (COVID-19) has increased with approximately 20% over the past year [1], readmission and mortality rates remain high (19.9% and 9.1%, respectively, within 2 months after hospital discharge (ward and intensive care unit (ICU)—admissions combined) [2]. In community-acquired pneumonia, elevated interleukin (IL)-6 and IL-10 at hospital discharge are associated with mortality in the subsequent 3 and 6 months, despite initial clinical recovery [3]. We aim to evaluate whether elevated levels of IL-6 and IL-10 at hospital discharge are associated with readmissions and mortality in the following 12 months in patients with COVID-19.

Methods

This study was part of the Amsterdam University Medical Centers (UMC) COVID-19 biobank. Patients were prospectively included in the biobank if they were admitted to the Amsterdam UMC with COVID-19 and had provided written informed consent or not used the opt-out form. COVID-19 was defined as a positive severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) polymerase chain reaction (PCR). IL-6 and IL-10 were measured in serial blood samples from March to May 2020 [4]. Patients who died during admission were excluded. Since biomarkers were measured in the first wave in The Netherlands, patients did not receive immunomodulatory therapy. Readmissions and mortality after hospital discharge were ascertained by contacting the general practitioner (GP). Biomarker measurements were done by using a Luminex platform [4]. Normally distributed data were analyzed by a t-test and nonparametric continuous data by Mann–Whitney U test. The ethics committee of the Amsterdam UMC approved the study.
Results

One-hundred sixty-one patients who were discharged alive formed our cohort. The mean age was 62 years (SD 11.76), 106 (68%) were male, and patients had an average of one comorbidity (IQR [1–3]). Seventy-five patients (47%) required ICU care during admission. Thirty-four (21%) were readmitted (median time to readmission was 29 days, IQR [6–97]), and six (4%) died (median time to death was 85 days, IQR [20–169]) in the 12 months following the initial hospitalization for COVID-19. Twenty-three patients were readmitted once, six patients twice, and five patients three or more times. The primary cause of the first readmission was dyspnea or respiratory insufficiency in fourteen (41%) patients, cardiovascular disease in seven (21%), and other causes in thirteen (38%) patients. Compared to patients without readmissions and/or mortality after discharge, patients with these adverse outcomes were older (p = 0.031) and suffered from more comorbidities (p = 0.001, Table 1).

At time of hospital discharge, most patients in both groups had zero or one abnormal vital parameter according to Halm’s criteria [5] (criteria for clinical stability at hospital discharge). Lymphocytes and platelets were significantly lower at discharge in patients who were readmitted or died in the first 2 months following discharge (p = 0.002 and p = 0.007, respectively). The median concentrations of IL-6 and IL-10 at discharge were significantly higher in patients with these adverse outcomes in the first month (p = 0.005 and p < 0.001, respectively) and first 2 months (p = 0.031 and p = 0.017, respectively) following discharge (Fig. 1). At 12 months, the IL-6 and IL-10 concentration did not show significant differences. Biomarkers representing discharge were measured in the last 4 days before discharge. For the biomarker concentrations, we used 26 age and gender-matched controls from the outpatients clinic, with a mean age of 64 years (SD 15.5) of whom 18 (69%) were male (Fig. 1).

Discussion

This study shows that after hospitalization for COVID-19, elevated IL-6 and IL-10 concentrations at time of hospital discharge are associated with increased readmission and/or mortality rates over the subsequent 2 months. A similar association was found for lower lymphocyte and platelet concentration at discharge. Previous studies show that lymphopenia and low platelets have been associated with more severe infection [6] and IL-6 concentration is correlated with COVID-19 severity and in-hospital mortality [7]. Our findings could be of special relevance for patients who did not receive tocilizumab, since this recombinant humanized anti-IL-6 receptor monoclonal antibody inhibits the binding of IL-6 to both membrane and soluble IL-receptors [8].

This study has several limitations. Biomarkers representing hospital discharge were measured in the 4 days prior to discharge and were available in 70 (43%) patients. Second, we could not ascertain readmissions in ten (6%) patients in our cohort. Third, due to the lack of controls without COVID-19, we could not investigate if our findings are also true for other diseases. Fourth, the use of tocilizumab, which has been recommended by the World Health Organization as treatment for severely or critically ill patients with COVID-19 [9], will have influence of the IL-6 concentration at discharge. Even so, this study shows that COVID-19 patients with elevated IL-6 and IL-10 levels at hospital discharge were associated with an increased risk of readmission and/or death up to 2 months after hospital discharge when compared with those with normal circulating biomarkers.
Appendix

Collaborators Amsterdam UMC COVID-19 biobank study group

Name	Department	Position	Email
Agtmael	Department of Infectious Diseases	Dr	a.g.agtmael@amsterdamumc.nl
Algera	Department of Intensive Care	Dr	a.g.algera@amsterdamumc.nl
Appelman	Department of Infectious Diseases	Dr	b.appelman@amsterdamumc.nl
Baarle	Department of Infectious Diseases	Dr	f.e.h.p. baarle@amsterdamumc.nl
Bax	Experimental Immunology	Dr	d.j.c. bax@amsterdamumc.nl
Beudel	Department of Neurology	Dr	m.beudel@amsterdamumc.nl
Bogaard	Department of Pulmonology	Prof. dr	h.j bogaard@amsterdamumc.nl
Bomers	Department of Infectious Diseases	Dr	m.bomers@amsterdamumc.nl
Bonta	Department of Pulmonology	Dr	p.j.bonta@amsterdamumc.nl
Bos	Department of Intensive Care	Dr	l.d.bos@amsterdamumc.nl
Botta	Department of Intensive Care	Dr	m.botta@amsterdamumc.nl
Brabander	Department of Infectious Diseases	Dr	j.debrabander@amsterdamumc.nl
Bree	Department of Infectious Diseases	Dr	g.j.bree@amsterdamumc.nl
Bruin	Department of Intensive Care	Dr	s.debruin1@amsterdamumc.nl
Bugiani	Department of Pathology	Dr	m.bugiani@amsterdamumc.nl
Bulle	Department of Intensive Care	Dr	b.bulle@amsterdamumc.nl
Chouchane	Department of Infectious Diseases	Dr	o.chouchane@amsterdamumc.nl
Cloherty	Experimental Immunology	Dr	a.p.c.cloherty@amsterdamumc.nl
David	Department of Infectious Diseases	Dr	d.t.david@amsterdamumc.nl
de Rotte	Department of Clinical Chemistry	Dr	m.derotte@amsterdamumc.nl
Dijkstra	Department of Clinical Chemistry	Dr	m.dijkstra@amsterdamumc.nl
Dongelmans	Department of Intensive Care	Dr	d.a.dongelmans@amsterdamumc.nl
Dujardin	Department of Intensive Care	Dr	r.w.dujardin@amsterdamumc.nl
Elbers	Department of Intensive Care	Dr	p.elbers@amsterdamumc.nl
Fleuren	Department of Intensive Care	Dr	l.fleuren@amsterdamumc.nl
Geerlings	Department of Infectious Diseases	Prof. dr	s.e.geerlings@amsterdamumc.nl
Geijtenbeek	Department of Experimental Immunology	Prof. dr	t.b.h. geijtenbeek@amsterdamumc.nl
Girbes	Department of intensive care	Prof. dr	a.r.j. girbes@amsterdamumc.nl
Goorhuis	Department of Infectious Diseases	Dr	a.goorhuis@amsterdamumc.nl
Grobusch	Department of Infectious Diseases	Dr	m.p.grobusch@amsterdamumc.nl
Haifkamp	Department of Experimental Immunology	Dr	f.m.haifkamp@amsterdamumc.nl
Hagens	Department of Intensive Care	Dr	l.a.hagens@amsterdamumc.nl
Hamann	Department of Biobank Core Facility	Dr	j.hamann@amsterdamumc.nl
Harris	Department of Infectious Diseases	Dr	v.c.harris@amsterdamumc.nl
Hemke	Department of Radiology	Dr	r.hemke@amsterdamumc.nl
Hermans	Department of Infectious Diseases	Dr	s.m.hermans@amsterdamumc.nl
Heunks	Department of Intensive Care	Dr	l.m.a. heunks@amsterdamumc.nl
Hollmann	Department of Anesthesiology	Prof. dr	m.w.hollmann@amsterdamumc.nl
Horn	Department of Intensive Care	Dr	j.horn@amsterdamumc.nl
Hovius	Department of Infectious Diseases	Prof. dr	j.w.hovius@amsterdamumc.nl
Jong	Department of Medical Microbiology	Prof. dr	m.d.dejong@amsterdamumc.nl
Koning	Department of Neurology	Dr	r.koning@amsterdamumc.nl
Lim	Department of Intensive Care	Dr	e.lim@amsterdamumc.nl
Mourik	Department of Intensive Care	Dr	n.vanmourik@amsterdamumc.nl
Table 1 Clinical characteristics, stratified for readmissions and/or mortality in the first 2 months and 12 months after discharge

Demographics	Short term (2 months)	Long term (12 months)	P value	P value		
Age, mean (SD)	68.07 (12.67)	60.96 (11.33)	0.007	65.62 (13.33)	60.88 (11.08)	0.031
Gender, male, no. (%)	16 (69.6%)	90 (65.2%)	0.865	24 (64.9%)	82 (66.1%)	1.000
BMI, median [IQR]	27.46 [24.56, 29.23]	27.75 [25.22, 32.14]	0.161	27.71 [24.57, 30.97]	27.36 [25.19, 31.87]	0.690
Number of comorbidities1, median [IQR]	3.00 [1.50, 4.00]	1.00 [0.00, 3.00]	0.001	3.00 [1.00, 4.00]	1.00 [0.00, 3.00]	0.001
Admission						
qSOFA, median [IQR]	1.00 [0.00, 1.00]	1.00 [0.50, 1.00]	0.051	1.00 [0.00, 1.00]	1.00 [0.00, 1.00]	0.648
MEWS, median [IQR]	2.00 [1.00, 4.00]	4.00 [2.00, 5.00]	0.033	3.00 [1.00, 5.00]	4.00 [2.00, 5.00]	0.302
CT Severity Score2, mean (SD)	10.59 (6.62)	12.73 (5.64)	0.177	11.57 (7.26)	12.58 (5.34)	0.476
Days between onset and admission, median [IQR]	10.00 [7.75, 14.00]	10.00 [7.00, 14.00]	0.828	10.00 [7.00, 14.00]	10.00 [7.00, 14.00]	0.860
Do not resuscitate order at admission3, no. (%)	15 (71.4%)	14 (14.7%)	<0.001	18 (60.0%)	11 (12.8%)	<0.001
Do not intubate order at admission3, no. (%)	9 (42.9%)	8 (8.4%)	<0.001	11 (36.7%)	6 (7.0%)	<0.001
Discharge						
Length of hospital stay (days), median [IQR]	6.00 [4.00, 8.00]	11.00 [6.00, 22.00]	0.002	7.00 [5.00, 17.00]	11.00 [6.00, 20.00]	0.121
Discharge location, no. (%)			0.003	0.047		
Home	11 (47.8%)	56 (40.6%)	17 (45.9%)	50 (40.3%)		
Nursing home	3 (13.0%)	1 (0.7%)	3 (8.1%)	1 (0.8%)		
Other	2 (8.7%)	6 (4.3%)	3 (8.1%)	5 (4.0%)		
Rehabilitation	5 (21.7%)	66 (47.8%)	11 (29.7%)	60 (48.4%)		
Abnormal Halm’s criteria for clinical stability at discharge4,6, no. (%)			0.499	0.462		
0	10 (55.6%)	57 (60.0%)	15 (60.0%)	52 (59.1)		
1	8 (44.4%)	33 (34.7%)	10 (40.0%)	31 (35.2)		
2	0 (0.0%)	5 (5.3%)	0 (0.0%)	5 (5.7)		
Complications during admission						
Venous thromboembolism, no. (%)	6 (26.1)	38 (27.5)	1.000	10 (27.0)	34 (27.4)	1.000
Required ICU stay, no. (%)	5 (21.7)	70 (50.7)	0.019	13 (35.1)	62 (50.0)	0.161
Mechanical ventilation, no. (%)	4 (17.4)	67 (48.9)	0.010	12 (33.3)	59 (47.6)	0.185
Laboratory values at discharge5						
White blood cell count (10^9/L), median (SD)	6.14 (2.34)	6.89 (2.34)	0.497	6.57 (2.54)	6.88 (2.31)	0.707
Table 1 (continued)

	Readmission and/or mortality (n=23)	No readmission and/or mortality (n=138)	*P* value	Readmission and mortality (n=37)	No readmission and/or mortality (n=124)	*P* value
Lymphocytes *(10^9/L)*, median [IQR]	0.68 [0.61, 0.70]	1.33 [1.07, 1.94]	**0.007**	0.70 [0.66, 1.45]	1.33 [1.07, 1.94]	0.103
Neutrophils *(10^9/L)*, median [IQR]	3.96 [3.18, 4.99]	4.35 [3.00, 5.36]	0.760	4.90 [3.18, 5.72]	4.19 [3.00, 5.26]	0.734
Platelets *(10^9/L)*, median [IQR]	202.00 [157.00, 204.00]	387.00 [272.00, 429.00]	**0.002**	215.50 [169.00, 349.50]	389.50 [272.75, 425.25]	**0.031**
C-reactive protein *(mg/L)*, median [IQR]	61.25 [45.35, 80.78]	36.10 [17.30, 61.70]	0.225	46.50 [28.22, 80.78]	36.10 [17.30, 61.70]	0.473
LDH *(U/L)*, median [IQR]	328.50 [296.75, 358.00]	282.50 [231.75, 363.50]	0.447	290.00 [249.50, 328.50]	287.00 [232.50, 368.50]	0.963
D-dimer *(mg/L)*, median [IQR]	1.47 [1.18, 1.76]	2.40 [1.38, 4.16]	0.243	2.27 [2.05, 3.12]	2.22 [1.33, 4.07]	0.979

Significant values are shown in bold

Abbreviations: *BMI* body mass index, *ICU* intensive care unit, *LDH* lactate dehydrogenase, *MEWS* modified early warning score, *n* number, *qSOFA* quick sequential organ failure assessment

1 Comorbidities include chronic cardiac disease, hypertension, chronic pulmonary disease, asthma, chronic kidney disease, liver disease, chronic neurologic disease, malignancy, chronic hematologic disease, HIV or aids, diabetes, rheumatic disorder, auto-immune disease, and dementia

2-5 Percentage of missing values: 2 44%, 3 28%, 4 14%, 5 between 51 and 64%

6 One of the seven Halm’s criteria (the ability to maintain oral intake) was not record

Fig. 1 Concentration interleukin-6 and interleukin-10 at hospital discharge, stratified for readmission and/or mortality

Panel A) the first month, **panel B)** 2 months and **panel C)** 12 months after discharge.

Abbreviations: IL, interleukin.

Matched controls: 26 age and gender matched controls from the outpatients clinic.

* represents a *p* value of <0.05, ** represents a *p* value of <0.01 and *** represents a *p* value of <0.001.
Acknowledgements We would like to thank all medical, paramedical, laboratory, and nursing staff involved in the care of the COVID-19 patients for making it possible to build the Amsterdam UMC COVID-19 Biobank in the middle of the COVID-19 outbreak in The Netherlands.

Author contribution All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Marleen A. Slim, Brent Appelman, and Lonneke A. van Vught. The first draft of the manuscript was written by Marleen A. Slim, W. Joost Wiersinga, and Lonneke A. van Vught, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding This study was funded by the Amsterdam UMC, Amsterdam UMC Corona Research Fund. Lonneke A. van Vught was supported by a VENI grant from ZonMW (grant number 09150161910033).

Declarations

Conflict of interest The authors declare no competing interests. Collaborators Amsterdam UMC COVID-19 biobank study group See Appendix.

References

1. Prescott HC, Levy MM (2021) Survival from severe coronavirus disease 2019: is it changing? Crit Care Med 49(2):351–353. https://doi.org/10.1097/CCM.0000000000004753
2. Donnelly JP, Wang XQ, Iwashyna TJ, Prescott HC (2020) Readmission and death after initial hospital discharge among patients with COVID-19 in a large multihospital system. JAMA 325(3):304–306. https://doi.org/10.1001/jama.2020.21465
3. Yende S, D’Angelo G, Kellum JA, Weissfeld L, Fine J, Welch RD et al (2008) Inflammatory markers at hospital discharge predict subsequent mortality after pneumonia and sepsis. Am J Respir Crit Care Med 177(11):1242–1247. https://doi.org/10.1164/rccm.200712-1777OC
4. de Bruin S, Bos LD, van Roon MA, Tuip-de Boer AM, Schuurman AR, Koel-Simmelink MJA et al (2021) Clinical features and prognostic factors in Covid-19: a prospective cohort study. EBioMedicine 67:103378. https://doi.org/10.1016/j.ebiom.2021.103378
5. Halm EA, Fine MJ, Kapoor WN, Singer DE, Marrie TJ, Siu AL (2002) Instability on hospital discharge and the risk of adverse outcomes in patients with pneumonia. Arch Intern Med 162(11):1278–1284. https://doi.org/10.1001/archinte.162.11.1278
6. Wiersinga WJ, Rhodes A, Cheng AC, Peacock SI, Prescott HC (2020) Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA 324(8):782–793. https://doi.org/10.1001/jama.2020.12839
7. Osuchowski MF, Winkler MS, Skirecki T, Cajander S, Shankar-Hari M, Lachmann G et al (2021) The COVID-19 puzzle: deciphering pathophysiology and phenotypes of a new disease entity. Lancet Respir Med 9(6):622–642. https://doi.org/10.1016/S2213-2600(21)00218-6
8. RECOVERY Collaborative Group (2021) Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet 397(10285):1637–1645. https://doi.org/10.1016/S0140-6736(21)00676-0
9. Guideline Therapeutics and COVID-19: living guideline. World Health Organization. July 2021. https://apps.who.int/iris/bitstream/handle/10655/432368/WHO-2019-nCoV-therapeutics-2021.2-eng.pdf (accessed 17 Aug 2021)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.