Species composition of Amphibians and Reptiles in Krau Wildlife Reserve, Pahang, Peninsular Malaysia

Nurulhuda, Zakaria 1,2, Juliana Senawi 3, Fakhru Hatta Musa 4, Daicus Belabut 3,5, Chan Kin Onn 6, Shukor Md. Nor 1 and Norhayati Ahmad 1,3*.

1 Universiti Kebangsaan Malaysia, Faculty of Science and Technology, School of Environment and Natural Resource Sciences. 43600. Bangi, Selangor; Malaysia.
2 Universiti Malaysia Terengganu, Faculty of Science and Technology, Department of Biological Sciences. 21030. Kuala Terengganu, Terengganu, Malaysia.
3 Universiti Kebangsaan Malaysia, Institute for Environment and Development (LESTARI). 43600. Bangi, Selangor; Malaysia.
4 Institute of Biodiversity, Bukit Rengit, Department of Wildlife and National Parks. 28500. Lanchang, Pahang, Malaysia.
5 University of Malaya, Faculty of Science, Institute of Biological Sciences. 50603. Kuala Lumpur, Malaysia.
6 University of Kansas, KU Biodiversity Institute and Department of Ecology and Environmental Ecology. Dyche Hall, 1345 Jayhawk Blvd, Lawrence, KS 66045-7593. United States.

* Corresponding author. E-mail: amphibia.my@gmail.com

INTRODUCTION

The Krau Wildlife Reserve (KWR) is situated at the east of the Malaysian Main Range (= Titiwangsa Range) and near the basin of Gunung Benom in the Malaysian state of Pahang. This reserve covers an area of 624 km², which makes it the third largest protected area in Peninsular Malaysia. The highest peak within the reserve is Gunung Benom (2,108 m), the third highest mountain in Peninsular Malaysia. Inventories and surveys on the herpetofauna in KWR have commenced since 1972 when the first expedition to Gunung Benom was conducted (Grandison 1972). Since then, other studies have been conducted at various stations within the reserve, such as at Sg. (=River) Chenderoh (Jasmi et al. 1999), Bukit Rengit (Salman et al. 1999; Norsham et al. 2001; Ahmad Shukri 2004; Grace 2006), and Kuala Gandah (Chan et al. 2008). These studies, however, were isolated in manner. It is not easy to estimate the actual biodiversity of amphibians as a whole, but diversity of amphibians in KWR has been believed to be relatively well studied based on the many studies listed above. However, this assumption has proven to be erroneous as re-analyses of faunal diversity using different methods (eg. molecular techniques) have resulted in the revision and addition of many new taxa whose status was previously based on morphology (Grandison 1972).

Molecular techniques for associating adult and larval forms of some anurans have resulted in numerous novel species descriptions (Shimada et al. 2007a), while others have been synonymized (Matsui et al. 2007a), resurrected (Matsui et al. 2007) or revised under a different nomen (Chan and Grismer 2010). Another method that was used to delimit species boundaries is acoustic characteristics that can be used as a proxy for reproductive isolation. Two new amphibian species were recently described from the Peninsular Malaysia using this technique (Matsui et al. 2009; Matsui 2009). This paper provides an overview of the herpetofauna of KWR, with additional data based on an intensive 12 month period of drift-fenced pitfall trappings and visual encounter surveys of amphibians at Kuala Gandah field station (one of the five field stations in KWR) and with some notes on revised taxa, ecology, and distribution of the less common species based on compilation of species list from all previous studies in KWR. Knowledge of species richness and community structures is important for conservation and governance on sustainable management of the environment. Such clarification is required to focus effort at crucial areas such as areas with high density of rare species, and areas that are threatened by landscape alteration to initiate mitigation process. Thus, the objectives of this study were to: (1) to document species richness in the region from past and current studies with notes on their current taxonomic status. (2) to examine patterns of community structure and composition, (2) to document taxa occurring species richness in the region from past and current studies with notes on their current taxonomic status.

MATERIALS AND METHODS

Study Area

KWR is predominantly covered with lowland dipterocarp forests at the east and highland forests at the west. The reserve is drained by three major river systems, Sg. Krau, Sg. Lompat, and Sg. Teris. The landscape ranges from flat lowlands to undulating hilly terrain, with altitude ranges of 43 – 2,107 m. The reserve was established in 1923, starting with a total area of 552 km². It was regazetted twice in 1965 and 1968 until it reached its present size of 624 km² (Perhilitan/Danced 2001). The average annual
rainfall is about 2000 mm and the daily temperature fluctuates between a minimum of 23°C to a maximum of 33°C. There are five stations within this reserve, all of which are under the management and administration of the Department of Wildlife and National Parks (DWNP) or PERHILITAN: Kuala Lompat Research Station (KL), Lubuk Baung (LB), Kuala Sungai Serloh (KS), Kuala Gandah (KG), and Jenderak Selatan (JS).

Study site

The study focused on Kuala Gandah (3°36′00″ N, 102°09′04″ E) (Figure 1), which is located at the south of KWR, where the National Elephant Conservation Centre is also located. Permission to study here was granted by the DWNP. There are several villages of the indigenous Orang Asli Che Wong (Che Wong tribe) villages in the area, with a total of 45 households around the reserve (Haemamalar et al. 2010). The Che Wong is of the Senoi sub-group, who resides mainly in the forest of Pahang state in Peninsular Malaysia. They depend substantially on forest produce. Other tribes that live here are Temuan and Jah Hut. They maintain many narrow motorbike trails in the reserve as their means of travelling in and out of the forest to the nearest town to get supplies. Some of these trails are included in the plot.

Method

Survey methods include drift-fenced pitfall trapping, diurnal and nocturnal censuses, and opportunistic searches. A total of 126 traps were set up in a 400 x 400 m grid (Figure 2). The grid was further subdivided into 16 sub-grids, each measuring 100 x 100 m. A total of 9 traps were set upper line in this subgrid, with a distance of 5 m between traps. Galvanized metal drift fences 0.3 m in height were buried ~5 cm below soil surface to prevent animals from burrowing under them. Pitfall traps consist of 18-L plastic buckets (0.5 m deep and 0.2 m in diameter) (Figure 3). Drain holes were punched at the bottom of each bucket and buried flush with the ground surface, with the drift fence overhanging the lip of each pitfall trap. The traps were opened for 7 continuous days each month for 12 consecutive months and were examined once a day before noon.

The visual encounter survey procedure consisted of active searching for animals using wide-beam headlights at a steady pace within a constrained area along the trails at a specific time at night, usually within the first 2-4 h after dark fall (Table 1). Surveys were conducted for 7 continuous days per month for 12 months. Time spent surveying depended on the density of animals per unit area, based on the pit-fall collection. Animals were caught by hand and brought back for measurements.

Voucher specimens for most taxa were collected to aid the identification of unknown taxa and to collect tissue samples for taxonomic groups requiring further taxonomic resolution. All specimens are deposited at the Institute of Biodiversity, DWNP, Bukit Rengit, KWR. Taxonomic nomenclature follows the Amphibian Species of the World 5.3 by the American Museum of Natural History (http://research.amnh.org/herpetology/amphibia/), last accessed on 5 June 2009. Taxonomy for *Hemidactylus* follows Carranza and Arnold (2006); *Draco* taxonomy follows (Manthey 2008).
Figure 2. The 400 x 400 m grid at Kuala Gandah where the traps were laid along 14 designated lines A to N.

Figure 3. A line where 9 pitfall traps were laid every 5 m apart along the fence.

Table 1. The dates of pitfall trappings and visual encounter surveys (VES).

MONTH	PITFALL TRAPPING	VES
Aug 2009	19 - 25 Aug 2009	25 - 31 Aug 2009
Sep	11 - 17 Sep 2009	05 - 11 Sep 2009
Oct	15 - 21 Oct 2009	22 - 28 Oct 2009
Nov	02 - 08 Nov 2009	15 - 21 Nov 2009
Dec	16 - 22 Dec 2009	09 - 15 Dec 2009
Jan 2010	19 - 25 Jan 2010	25 - 31 Jan 2010
Feb	22 - 28 Feb 2010	15 - 21 Feb 2010
Mar	01 - 07 Mar 2010	07 - 13 Mar 2010
Apr	24 - 30 Apr 2010	15 - 21 Apr 2010
May	21 - 27 May 2010	13 - 19 May 2010
Jun	22 - 28 Jun 2010	15 - 21 Jun 2010
Jul	17 - 23 Jul 2010	22 - 28 Jul 2010

Results and Discussion

A total of 1,045 individuals were obtained, comprising 13 families and 38 species (Table 2). The total frogs was 929, comprising 6 families and 24 species; Bufonidae (2 species), Dicroglossidae (6 species), Megophryidae (3 species), Microhylidae (6 species), Ranidae (6 species) and Rhacophoridae (1 species). For reptiles, a total of 116 individuals were sampled, comprising 7 families and 14 species: Agamidae (2 species), Bataguridae (1 species), Colubridae (2 species), Gekkonidae (2 species), Scincidae (4 species), Typhlopidae (1 species) and Varanidae (2 species). The most sampled anuran species were Micryletta inornata (about 45% of the total amphibians), followed by Ingerophrynus parvus (19%), and Megophrys nasuta (6%). Among the reptiles, Cyrtodactylus quadririrgatus was the most frequently sampled (29% of the total reptiles), followed by Ansonia fusca (27%) and Eutropis multifasciata (18%).

The species accumulation curve shown in Figure 4 reflects the same scenario in most studies of vertebrate communities in which the curve rises steeply at first and levels off in later samples as increasingly rare taxa are added (Gotelli and Colwell 2001). Meanwhile, the asymptote point shows the estimated species richness in the area of study was 38. The species accumulation curve showed no leveling off into an asymptote, suggesting that our sampling did not represent the true species richness in the area.

The total number of amphibian species from Krau Wildlife Reserve includes five that were recently revised and one new locality record. The revised taxa are: Hylarana labialis (previously H. raneiceps: Inger et al. 2009), H. picturata (previously H. signata: Brown and Guttman 2002), Ansonia latiffi (previously A. leptopus: Wood et al. 2008), and Microhyla mantheyi (previously M. borneensis: Das et al. 2007); and Rhacophorus norhayatae (previously R. reinwardtii: Chan and Grismer 2010). From the current study, Ingerana tenasserimensis (Ranidae) represents new locality record for KRW.

Gonocephalus bornensis (Schlegel, 1848) was included in the list by Grandison (1972), but it is not known to occur in Peninsular Malaysia (Grismer 2011). It is reported from Indonesian Borneo (de Rooij 1915), Sabah and Sarawak (Das 2004), and Thailand, but reported only once near the border of Surat Thani and Nakhon Si Thammarat (fide Taylor 1963). Thus, this species is omitted from the current list. Cnemaspis affinis (Stoliczka, 1870) has been restricted to Penang Island (Grismer et al. 2008), and thus, C. affinis reported by Grandison (1972) should be assigned to Cnemaspis flavolineata (fide Grismer et al. 2008). Cyrtodactylus marmoratus is not known to occur in Malaysia (Grismer 2011), and thus, omitted from the current list. From the current study, there are four reptile species of new locality records for KRW: Varanus dumerilii (Varanidae), Ramphotyphlops braminus (Typhidiidae), Dryocalamus subannulatus (Colubridae) and Heosemys spinosa (Bataguridae).

Referring to Table 3, Rana chalconota (indicated by asterisks) was recently resolved at the species level to be Hylarana labialis (Inger et al. 2009). Draco fimbriatus Kuhl, 1820 and Draco punctatus Bouleneger, 1912 are actually synonyms. Meanwhile, those indicated by the symbol ^ were reexamined and described as new species, such as Ansonia (leptopus) latiffi (Wood et al. 2008), Rhacophorus (reinwardtii) norhayatae (Chan and Grismer 2010) and Microhyla (borneensis) mantheyi (Das et al. 2007).

The latest publication on the herpetofauna of Krau was by Chan et al. (2008), in which many new records were obtained using pit-fall traps, which captured numerous ground-dwelling frog species, such as Ingerophrynus quadriporcatus, Limnonectes paramacrodon, L. malesianus, Kaloula balearia, Leptobrachium nigrops, Calluella minuta, Kalophrynus palmatissimus, Microhyla mantheyi, Micryletta inornata, Hylarana siberu and H. laterimaculata. The current study, which also used pit-fall method,
Table 2. Species and relative abundance of amphibians and reptiles sampled at Kuala Gandah, Krau Wildlife Reserve, Pahang (numbers in brackets are in percentages).

NO.	TAXA	VOUCHER NO.	PITFALL	VES	TOTAL
	Order Anura				
	Bufonidae				
1	*Ingerophrynus parvus*	UKMHC065	147	27	174 (18.7)
2	*Ingerophrynus quadriporcatus*	UKMHC066	43	0	43 (4.6)
	Dicroglossida				
3	*Fejervarya limnocharis*	UKMHC067	15	8	23 (2.5)
4	*Limnonectes blythii*	UKMHC068	1	11	12 (1.3)
5	*Limnonectes kuhlii*	UKMHC069	1	0	1 (0.1)
6	*Limnonectes paramacronodon*	UKMHC070	1	0	1 (0.1)
7	*Limnonectes plicatellus*	UKMHC071	12	0	12 (1.3)
8	*Occidozyga laevis*	UKMHC072	30	12	42 (4.5)
	Megophryidae				
9	*Leptobrachium nigrops*	UKMHC073	0	3	3 (0.3)
10	*Megophrys nasuta*	UKMHC074	49	4	53 (5.7)
11	*Xenophrys aceras*	UKMHC075	1	0	1 (0.1)
	Microhylidae				
12	*Calliella minuta*	UKMHC076	0	30	30 (3.2)
13	*Kalophrynus palmatissimus*	UKMHC077	4	0	4 (0.4)
14	*Kalophrynus pleurostigma*	UKMHC078	3	0	3 (0.3)
15	*Kaloula baleata*	UKMHC079	41	0	41 (3.3)
16	*Kaloula pulchra*	UKMHC080	0	12	12 (1.3)
17	*Micryletta inornata*	UKMHC081	413	0	413 (44.5)
	Ranidae				
18	*Hylarana erythraea*	UKMHC082	0	13	13 (1.4)
19	*Hylarana nicobariensis*	UKMHC083	0	3	3 (0.3)
20	*Hylarana labialis*	UKMHC084	0	13	13 (1.4)
21	*Hylarana laterimaculata*	UKMHC085	10	0	10 (1.1)
22	*Hylarana picturata*	UKMHC086	5	11	16 (1.7)
23	*Ingerana tenasserimensis*	UKMHC087	1	0	1 (0.1)
	Rhacophoridae				
24	*Polypedates leucomystax*	UKMHC088	0	5	5 (0.5)
	Total Order Anura		**777 (83.6)**	**152 (16.4)**	**929 (100)**
	Orders Squamata and Testudines				
	Agamidae				
25	*Aphiophis fusca*	UKMHC089	31	0	31 (26.7)
26	*Draco melanopogon*	UKMHC090	1	0	1 (0.9)
	Gekkonidae				
27	*Cyrtodactylus quadrivirgatus*	UKMHC091	34	0	34 (29.3)
28	*Onnaspis kendallii*	UKMHC092	6	0	6 (5.2)
	Colubridae				
29	*Calamaria lumbricoidea*	UKMHC093	1	0	1 (0.9)
30	*Dryocalamus sabotanulatus*	UKMHC094	2	0	2 (1.7)
	Typhlopidae				
31	*Ramphotyphlops braminus*	UKMHC095	5	0	5 (4.3)
	Scincidae				
32	*Eutropis multifasciata*	UKMHC096	21	0	21 (18.1)
33	*Lipinia vittigera*	UKMHC097	1	0	1 (0.9)
34	*Lygosoma bowringii*	UKMHC098	2	0	2 (1.7)
35	*Sphenomorphus cyanolaemus*	UKMHC099	3	0	3 (2.6)
	Varanidae				
36	*Varanus dumerili*	UKMHC100	3	0	3 (2.6)
37	*Varanus salvator*	UKMHC101	1	0	1 (0.9)
	Bataguridae				
38	*Heosemys spinosa*	UKMHC102	5	0	5 (4.3)
	Total Orders Squamata and Testudines	**116 (100.0)**	**0 (0.0)**	**116 (100)**	
	Grand Total		**893 (85.5)**	**152 (14.5)**	**1045 (100.0)**
managed to obtain another additional record, which is *Ingerana tenasserimensis* (Ranidae). From the latest checklist provided in Table 3, there are now 61 species of amphibians and 68 species of reptiles recorded in KWR, which are approximately 56% and 24% of the total number of species recorded from Peninsular Malaysia, respectively.

Habitat loss of many organisms is still occurring in vast areas of tropical Asia including Malaysia. Herpetofaunal diversity, especially of frogs, that are well-known environmental indicators, can provide valuable data usable for environmental conservation relating to the monitoring of biological diversity in Malaysia. This updated checklist can serve as a starting point to help future researchers form long-term strategies in response to habitat and climate change.

Figure 4. Accumulation graph of average Species Richness Index of herpetofauna sampled using the pit-fall traps.

Table 3. Updated and revised checklist of herpetofauna of Krau Wildlife Reserve, Lanchang, Pahang.

No.	Family/Species	Grandison (1972)	Norskim et al. (2001)	Jasmi et al. (1999)	Salman et al. (1999)	Lim, B. L. 1999	Grace (2006)	Chan et al. (2008)	Grismer (2011)	This study
1	Caudacaecilia nigroflava (Taylor 1960)	+								
2	Ichthyophis glutinosus (Linnaeus, 1758)	+								
3	Ansonia latiflora Wood, Grismer, Ahmad & Senawi, 2008^	+								
4	Duttaphrynus melanostictus (Schneider, 1799)	+	+	+	+					
5	Ingerophrynus parvus (Boulenger, 1887)	+	+	+	+	+				
6	Ingerophrynus quadripporus (Boulenger, 1887)	+	+							
7	Leptophryne borbonica (Tschudi, 1838)	+								
8	Pedostibes hosii (Boulenger, 1892)	+	+							
9	Pelophryne signata (Peters, 1867)	+	+							
10	Phrynoidis aspera (Gravenhorst, 1829)	+	+	+	+	+				
11	Fejervarya cancrivora (Gravenhorst, 1829)	+								
12	Fejervarya limnocharis (Gravenhorst, 1829)	+	+	+	+	+				
13	Limnonectes blythii (Boulenger, 1920)	+	+	+	+	+				
14	Limnonectes kuhlii (Tschudi, 1838)	+	+							
15	Limnonectes laticeps (Boulenger, 1882)	+	+							
16	Limnonectes malesianus (Kiew, 1984)	+								
17	Limnonectes paramerodon (Inger, 1966)	+	+							
18	Limnonectes plicatellus (Stoliczka, 1873)	+	+	+						
Table 3. Continued.

No.	Family/Species	Grandison (1972)	Norsham et al. (2001)	Jasmi et al. (1999)	Slamani et al. (1999)	Lim, B. L. 1999.	Grace (2006)	Chan et al. (2008)	Grismer (2011)	This study
19	Limnonectes tweediei (Smith, 1935)	+								
20	Occidozyga laevis (Günther, 1858)	+	+	+	+					

Megophryidae

21 Leptobrachium hendecksoni Taylor, 1962
22 Leptobrachium nigrops Berry & Hendrickson, 1963
23 Leptolalax gracilis (Günther, 1872)
24 Leptolalax heteropus (Boulenger, 1900)
25 Megophrys nasuta (Schlegel, 1858)
26 Xenophrys acerus (Boulenger, 1903)

Microhylidae

27 Caliella minuta Das, Yaakob & Lim, 2004
28 Chaperina fusca Mocquard, 1892
29 Kalophrynus palmatissimus Kiew, 1984
30 Kalophrynus pleurostigma Tschudi, 1838
31 Kaloula baleata (Müller in Van Oort & Müller, 1833)
32 Kaloula pulchra (Gray, 1831)
33 Metaphrynella pollicaris (Boulenger, 1890)
34 Microhyla annectans Boulenger, 1900
35 Microhyla berdmorei (Blyth, 1856)
36 Microhyla butleri Boulenger, 1900
37 Microhyla heymonsi Vogt, 1911
38 Microhyla mantheyi Das, Yaakob & Sukumaran, 2007*
39 Micryletta inornata (Boulenger, 1890)
40 Phrynella pulchra Boulenger, 1887

Ranidae

41 Amolops larutensis (Boulenger, 1899)
42 Humerana miopus (Boulenger, 1918)
43 Hylarana erythraea (Schlegel, 1837)
44 Hylarana glandulosa (Boulenger, 1882)
45 Hylarana labialis (Boulenger, 1887)*
46 Hylarana laterimaculata (Barbour & Noble, 1916)
47 Hylarana lucuosa (Peters, 1871)
48 Hylarana nicobariensis (Stoliczka, 1870)
49 Hylarana picturata (Boulenger, 1920)
50 Ingerana tenasserimensis (Sclater, 1892)
51 Odorrana hosii (Boulenger, 1891)

Rhacophoridae

52 Philautus petersi (Boulenger, 1900)
53 Philautus vermiculatus (Boulenger, 1900)
54 Polypedates colletti (Boulenger, 1890)
55 Polypedates leucomystax (Graevenhorst, 1829)
56 Polypedates macropis (Boulenger, 1891)
57 Rhacophorus appendiculatus (Günther, 1858)
58 Rhacophorus nigropalmatus Boulenger, 1895
59 Rhacophorus pardalis Günther, 1858
60 Rhacophorus prominentus Smith, 1924
61 Rhacophorus norhayatae Chan & Grismer 2010*

LACERTILIA (Lizards, geckos, skinks, varanids)

Agamidae

1 Aphanotis fusca (Peters, 1864)
2 Bronchocela cristatella (Kuhl, 1820)
3 Gonocephalus bellii (Duméril & Bibron, 1837)
4 Gonocephalus liogaster (Günther, 1872)
Table 3. Continued.

No.	Family/Species	Grandison (1972)	Norsham et al. (2001)	Jasmi et al. (1999)	Salim et al. (1999)	Lim, B. L. (1999)	Grace (2006)	Chan et al. (2008)	Grismer (2011)	This study
5	*Draco abbreviatus* Hardwicke & Gray, 1827	+	+	+	+	+	+	+	+	+
6	*Draco blanfordi* Boulenger, 1885	+	+	+	+	+	+	+	+	+
7	*Draco fimbriatus* Kuhl, 1820	+	+	+	+	+	+	+	+	+
8	*Draco formosus* Boulenger, 1887	+	+	+	+	+	+	+	+	+
9	*Draco maximus* Boulenger, 1893	+	+	+	+	+	+	+	+	+
10	*Draco melanopogon* Boulenger, 1887	+	+	+	+	+	+	+	+	+
11	*Draco fimbriatus* Kuhl, 1820	+	+	+	+	+	+	+	+	+
12	*Draco quinquefasciatus* Hardwicke & Gray, 1827	+	+	+	+	+	+	+	+	+
13	*Draco sumatranus* Schlegel, 1844	+	+	+	+	+	+	+	+	+
14	*Pseudocalotes dringi* Hallermann & Böhme, 2000	+	+	+	+	+	+	+	+	+
15	Varanidae								+	+
16	*Varanus dumerili* (Schlegel, 1839)	+	+	+	+	+	+	+	+	+
17	*Varanus nebulosus* (Gray, 1831)	+	+	+	+	+	+	+	+	+
18	*Varanus rudicollis* (Gray, 1845)	+	+	+	+	+	+	+	+	+
19	Gekkonidae								+	+
20	*Gekko monochirus* (Schlegel, 1836)	+	+	+	+	+	+	+	+	+
21	*Gekko smithii* Gray, 1842	+	+	+	+	+	+	+	+	+
22	*Hemidactylus frenatus* Schlegel, 1836	+	+	+	+	+	+	+	+	+
23	*Hemidactylus platyurus* (Schneider, 1792)	+	+	+	+	+	+	+	+	+
24	Scincidae								+	+
25	*Eutropis multisignata* (Kuhl, 1820)	+	+	+	+	+	+	+	+	+
26	*Sphenomorphus cyanolaemus* (Gray, 1835)	+	+	+	+	+	+	+	+	+
27	*Sphenomorphus indicus* (Gray, 1835)	+	+	+	+	+	+	+	+	+
28	SNAKES								+	+
29	Typhlopidae								+	+
30	*Ramphotyphlops braminus* (Daudin, 1803)	+	+	+	+	+	+	+	+	+
31	*Typhlops mulleri* Schlegel, 1839	+	+	+	+	+	+	+	+	+
32	Pythonidae								+	+
33	*Malayopython reticulatus* (Schneider, 1801)	+	+	+	+	+	+	+	+	+
34	Colubridae								+	+
35	*Boiga cyanodonta* (Boie, 1827)	+	+	+	+	+	+	+	+	+
36	*Boiga drapiezii* (Boie, 1827)	+	+	+	+	+	+	+	+	+
37	*Calamaria lumbricoidea* Boie, 1827	+	+	+	+	+	+	+	+	+
38	*Dendrelaphis formosus* (Boie, 1827)	+	+	+	+	+	+	+	+	+
39	*Dryocalamus subannulatus* (Duméril, Bibròn & Duméril, 1854)	+	+	+	+	+	+	+	+	+
40	*Gongylosoma baliodeirus* (Peters, 1871)	+	+	+	+	+	+	+	+	+
41	*Gongylosoma longicauda* (Peters, 1871)	+	+	+	+	+	+	+	+	+
42	*Lepturophis albofuscus* (Duméril, Bibròn & Duméril, 1854)	+	+	+	+	+	+	+	+	+
43	*Lycodon subcinctus* Boie, 1827	+	+	+	+	+	+	+	+	+
Table 3. Continued.

No.	Family/Species	Grandison (1972)	Norsham et al. (2001)	Jasi et al. (1999)	Sahman et al. (1999)	Lim, B.B. (1999)	Grace (2006)	Chan et al. (2008)	Grimsler (2011)	This study
17	Macrolamalus jasoni Grandison, 1972									
18	Megalagama flaviceps (Duméril, Bibron & Duméril, 1854)									
19	Macrophistodon rhodomas (Boie, 1827)									
20	Xenochrophis trianguligerus (Boie, 1827)									
21	Astenolopas malaccanas Peters,1864									
22	Astenolopas vertebralis (Boulenger, 1900)									
23	Pseudobradon longiceps (Cantor, 1847)									
24	Pityas korros (Schlegel, 1837)									

Elapidae

No.	Family/Species	Grandison (1972)	Norsham et al. (2001)	Jasi et al. (1999)	Sahman et al. (1999)	Lim, B.B. (1999)	Grace (2006)	Chan et al. (2008)	Grimsler (2011)	This study
25	Calliophis gracilis Gray, 1835									
26	Calliophis intestinalis (Laurenti, 1768)									
27	Bungarus flaviceps Reinhardt, 1843									
28	Naja sumatrana (Müller 1890)									

Viperidae

No.	Family/Species	Grandison (1972)	Norsham et al. (2001)	Jasi et al. (1999)	Sahman et al. (1999)	Lim, B.B. (1999)	Grace (2006)	Chan et al. (2008)	Grimsler (2011)	This study
29	Paria sumatranus (Raffles, 1822)									
30	Popeia fucata (Vogel, Panwels & David, 2004)									
31	Tropidolaemus wagleri (Boie, 1827)									
32	Paria hageni (Lithd de Jeude, 1886)									
33	Trimeresurus wiroti (Boie, 1827)									

TESTUDINES (Tortoises)

No.	Family/Species	Grandison (1972)	Norsham et al. (2001)	Jasi et al. (1999)	Sahman et al. (1999)	Lim, B.B. (1999)	Grace (2006)	Chan et al. (2008)	Grimsler (2011)	This study
34	Heosemys spinosa (Gray, 1830)									

ACKNOWLEDGMENTS: We would like to thank the Department of Wildlife and National Parks for their collaboration and support in logistics and field assistants. We would also like to acknowledge our respective institutions for support in our research. This research was partly funded by FRGS/1/2012/STWN10/UKM/02/4.

LITERATURE CITED

Brown, R.M. and Guttman, S.L. 2002. Phylogenetic systematics of the Rana signata complex of Philippine and Bornean stream frogs: reconsideration of Huxley’s modification of Wallace’s Line at the Oriental–Australian faunal zone interface. Biological Journal of the Linnean Society 76: 393–461.

Carranza, S. and E.N. Arnold. 2006. Systematics, biogeography, and evolution of Hemidactylus geckos (Reptilia: Gekkonidae) elucidated using mitochondrial DNA sequences. Molecular Systematic Evolution 38: 531–545.

Chan, K.O., A. Norhayati and S. Juliana. 2008. Kekayaan spesies herpetofauna di Kuala Gandah menggunakan kawad perangkap labang berpagar; pp. 71–84, in: E. Sivananthan, Y. Siti Hawa, A.H. Abd lubang berpagar; pp. 71–84, in: E. Sivananthan, Y. Siti Hawa, A.H. Abd

de Rooij, N. 1915. The Reptiles of the Indo-Australian Archipelago. I. The Reptiles of the Indo-Australian Archipelago. I. Frankfurt am Main: Chimaira Buchhandelsgesellschaft mbH.

Frost, D.R., T. Grant, J. Faivovich, R.H. Bain, A. Haas, C.F.B. Haddad, R.O. De Sá, A. Channing, M. Wilkinson, S.C. Donnellan, C.J. Rexworthy, J.A. Campbell, B.L. Biotto, P. Moler, R.C. Drewes, R.A. Nussbaum, J.D. Lynch, D.M. Green and W.C. Wheeler. 2006. The amphibian tree of life. Bulletin of the American Museum of Natural History 297: 1–370.

Grace, R.L. 2006. Species diversity of Amphibia at Bukit Rengit, Krau Wildlife Reserve, Pahang. B.Sc. thesis. Bangi: Universiti Kebangsaan Malaysia 31 pp.

Grimsler, L.L. 2011. Lizards of Peninsular Malaysia, Singapore, and their Adjacent Archipelagos. Their Description, Distribution, and Natural History. Frankfurt am Main: Chimaira Buchhandelsgesellschaft mbH. 728 pp.

Huitay, M. 2009. A new species of Kalophrynus with a unique male humeral spine from Peninsular Malaysia (Amphibia, Anura, Microhylidae). Zoological Science 26: 579–585.

Jasi et al. | Herpetofauna in Krau Wildlife Reserve, Malaysia

Lacertilia, Chelonia, Emydosauria. Leiden: E. Brill. xiv + 384 pp.

Lacertilia, Chelonia, Emydosauria. Leiden: E. Brill. xiv + 384 pp.

Lacertilia, Chelonia, Emydosauria. Leiden: E. Brill. xiv + 384 pp.

Lacertilia, Chelonia, Emydosauria. Leiden: E. Brill. xiv + 384 pp. Frost, D.R. 1972. The Gunung Benom Expedition, 1967: Reptilia and amphibians of Gunung Benom with a description of a new species Macrolamus. Bulletin of the British Museum of Natural History; Zoology 23(4): 45–101.

Lacertilia, Chelonia, Emydosauria. Leiden: E. Brill. xiv + 384 pp.

Lacertilia, Chelonia, Emydosauria. Leiden: E. Brill. xiv + 384 pp.

Lacertilia, Chelonia, Emydosauria. Leiden: E. Brill. xiv + 384 pp.

Lacertilia, Chelonia, Emydosauria. Leiden: E. Brill. xiv + 384 pp.

Lacertilia, Chelonia, Emydosauria. Leiden: E. Brill. xiv + 384 pp.

Lacertilia, Chelonia, Emydosauria. Leiden: E. Brill. xiv + 384 pp.

Lacertilia, Chelonia, Emydosauria. Leiden: E. Brill. xiv + 384 pp.

Lacertilia, Chelonia, Emydosauria. Leiden: E. Brill. xiv + 384 pp.

Lacertilia, Chelonia, Emydosauria. Leiden: E. Brill. xiv + 384 pp.

Lacertilia, Chelonia, Emydosauria. Leiden: E. Brill. xiv + 384 pp.

Lacertilia, Chelonia, Emydosauria. Leiden: E. Brill. xiv + 384 pp.

Lacertilia, Chelonia, Emydosauria. Leiden: E. Brill. xiv + 384 pp.

Lacertilia, Chelonia, Emydosauria. Leiden: E. Brill. xiv + 384 pp.

Lacertilia, Chelonia, Emydosauria. Leiden: E. Brill. xiv + 384 pp.

Lacertilia, Chelonia, Emydosauria. Leiden: E. Brill. xiv + 384 pp.

Lacertilia, Chelonia, Emydosauria. Leiden: E. Brill. xiv + 384 pp.
Matsui, M., D. Belabut, N. Ahmad and H.-S. Yong. 2009. A new species of *Leptolalax* (Amphibia, Anura, Megophryidae) from Peninsular Malaysia. *Zoological Science* 26: 243–247.

Matsui, M., Maryati, M., Shimada, T. and Sudin, A. 2007. Resurrection of *Staurois parvus* from *S. tuberilinguis* from Borneo (Amphibia, Ranidae). *Zoological Science* 24(1): 101–106.

Matsui, M., P. Yambun and A. Sudin. 2007. Taxonomic relationships of *Ansonia anotis* Inger, Tan, and Yambun, 2001 and *Pedostibes maculatus* (Mocquard, 1890), with a description of a new genus (Amphibia, Bufonidae). *Zoological Science* 24(1): 1159–1166.

Norsham, Y. and A. Jasmi. 2000. Terrestrial herpetofauna. *Journal of Wildlife and Parks* 18: 21-38.

Norsham, Y., T.M. Leong and L. Gary. 2001. Amphibians checklist of Bukit Rengit Lanchang, Pahang. *Journal of Wildlife and Parks* 19: 123–124.

Ohler, A. and S. Grosjean. 2005. Color pattern and call variation in *Kalophrynus* from South-east (Amphibia: Microhylidae). *Herpetozoa* 18: 99–106.

Inger, R.F., L.S. Bryan and T.I. Djoko. 2009. Systematics of a widespread southeast Asian frog, *Rana chalconota* (Amphibia: Anura: Ranidae). *Zoological Journal of the Linnean Society* 155: 123–147.

Salman, S., A.P. Pazil and A. Sailun. 1999. A survey of the amphibians fauna in the Wildlife Training Centre, Lanchang at Krau Game Reserve, Pahang. *Journal of Wildlife and Parks* 17: 132–133.

Shimada, T, M. Matsui, A. Sudin and M. Maryati. 2007. Identity of larval *Meristogenys* from a single stream in Sabah, Malaysia (Amphibia: Ranidae). *Zoological Journal of Linnean Society* 151: 173–189.

Taylor, E.H. 1963. The lizards of Thailand. *University of Kansas Science Bulletin* 44: 687–1077.

Wood, P.L. Jr., L.L. Grismer, A. Norhayati and S. Juliana. 2008. Two new species of torrent dwelling toads *Ansonia* Stoliczka, 1872 (Anura: Bufonidae) from Peninsular Malaysia. *Herpetologica* 64(3): 321–340.

Received: March 2013
Accepted: February 2014
Published online: May 2014
Editorial responsibility: Olivier Pauwels