SCREENING ANTIBACTERIAL ACTIVITY OF VIETNAMESE PLANT EXTRACTS AGAINST HUMAN PATHOGENIC BACTERIA

LONG HOANG NGO1, THI HAI YEN NGUYEN2, VU KHAC TRAN3, VU VAN DOAN1, MINH VAN NGUYEN2, HIEU TRUNG BUI*

1VK-Tech Center, Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City. 2Faculty of Science, Dong Nai University, Bien Hoa City. 3Department of Pharmaceutical Chemistry and Pesticides Technology, School of Chemical Engineering, Hanoi University of Science and Technology. 4Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam. 5Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, Jeollabuk-do, Korea. Email: btthieu@ntt.edu.vn

ABSTRACT

Objectives: Infectious diseases caused by bacteria are a leading cause of death worldwide. Hence, the objectives of the study are aimed to evaluate the antibacterial activity against five human pathogenic bacteria of methanolic extracts from 66 plants collected from Vietnam.

Methods: The broth microdilution method was used to determine the minimum inhibitory concentration (MIC) of methanol extracts of 66 plant species against five bacterial strains.

Results: In this study, all the plant extracts were active against at least one strain with MIC values ranging from 24 to 2048 µg/mL. Twenty-five plant extracts were active against all three Gram-positive bacteria (Bacillus cereus, Bacillus subtilis, and Staphylococcus aureus). Of these, the extracts of Macaranga trichocarpa (Rchb. f. and Zoll) Mull. Arg. (Euphorbiaceae), Calophyllum inophyllum L. (Clusiaceae) and Caryodaphnopsis baviensis (Leconte) Airy Shaw (Laureaceae) exhibited the highest antibacterial activity (MIC = 24–128 µg/mL) followed by extracts of Betula alnoides Buch-Ham. e. × D. Don (Betulaceae), Arctocyclus pedunculata (L.) Miq. (Rutaceae), Croton alpinus A. Chev. ex Dagnep. (Euphorbiaceae) (MIC = 64–256 µg/mL). Furthermore, the extract of Rhus chinensis Mill. (Anacardiaceae) and Annona reticulata L. (Annonaceae) exhibited potent antibacterial activity against the two Bacillus species (MIC = 32–64 µg/mL).

Conclusion: Results of this study reveal that plant extracts from Vietnam have highly antibacterial activity against Gram-positive bacteria. These results suggest that Vietnamese plant extracts may be a rich source of antibacterial drugs.

Keywords: Screening, Antibacterial, Human pathogenic bacteria, Vietnamese plant extracts.

INTRODUCTION

Infectious diseases remain a major health concern, being the second leading cause of death worldwide, and remain a dominant feature of domestic and international public health considerations in the 21st century [1,2]. Bacterial infections are prevalent in developing countries due to factors such as inadequate sanitation, poor hygiene, and overcrowded living conditions [3]. Antibiotics have proven to be powerful drugs for control of infectious diseases and remain one of the most important discoveries in modern medicine [4]. At present, the world is facing the widespread emergence of bacterial resistance to antibiotics [2]. Antibiotic resistance has been recognized by the World Health Organization as the greatest threat in the treatment of infectious diseases [4]. To combat antibiotic resistance, the development of new antibacterial agents that suppress bacterial resistance mechanisms is necessary. Plants have traditionally provided a source of new chemicals, and numerous clinical studies have demonstrated the therapeutic value of molecules of plant origin [4]. Mainstream medicine is increasingly receptive to the use of antimicrobial and other drugs derived from plants as traditional antibiotics [5]. Indeed, higher plant-derived products represent ~25% of drugs in current clinical use [4].

Considering the therapeutic potential of plants, the aim of the present study was to evaluate the in vitro antibacterial activity of Vietnamese plant extracts against five human pathogenic bacteria, Escherichia coli, Pseudomonas aeruginosa, Bacillus cereus, Bacillus subtilis, and Staphylococcus aureus, which cause food poisoning and various infections in the community and in hospitals [6,7].

METHODS

Plant materials and extraction
A total of 68 plant leaves and branches were collected from different locations in Vietnam in 2012. Plant species were identified by Associate Prof. Xuan Phuong Vu, Dr. The Bach Tran and Dr. The Cuong Nguyen from the Institute of Ecology and Biological Resources, Vietnam. Voucher specimens have been preserved in the Herbarium of the Department of Phytochemistry and Research and Development Center of Bioactive Compounds, Vietnam Institute of Industrial Chemistry. Plant extracts were prepared as described in our previous study [8]. Briefly, air-dried and powdered aerial parts of the plant species (10 g) were extracted twice with 100 mL of methanol for 48 h at room temperature. Extracts were filtered and the filtrates were evaporated to dryness using a rotary evaporator, and then stored at ~20°C until further use. For the antibacterial activity assays, the extracts were dissolved in dimethyl sulfoxide (DMSO) at a concentration of 100 mg/mL and stored at 4°C as stock solutions.

Bacterial culture
Five bacterial species, comprising three Gram-positive (B. cereus American Type Culture Collection [ATCC] 21768, B. subtilis ATCC 6633, and S. aureus ATCC 6538) and two Gram-negative (E. coli ATCC
exhibited considerable antibacterial activity. Twenty-four plant extracts had the antibacterial activity. To the best of our knowledge, isolation of compounds from this plant has been reported only by Anh et al. [19], and this is the first report of antibacterial activity of an extract of C. baviensis.

M. trichocarpa

The methanol extract of *M. trichocarpa* showed the strongest antibacterial activity against three Gram-positive bacteria among the 68 plant extracts tested in this study (MICs 31.3–62.5 µg/ml) (Table 1). Leaves of some *Macaranga* species are used in folk medicine to treat swellings, cuts, sores, boils, and bruises. This genus is reported to be a rich source of isoprenylated, geranylated, and farnesylated flavonoids. Flavonoids and stilbenes are major constituents and most likely responsible for the activities of plants of this genus [20]. Flavonones and dihydrochalcones have been reported to show antibacterial activities against various bacterial species, including *B. subtilis*, *S. aureus*, *E. coli*, and *P. aeruginosa* [21]. However, the methanol extract of *M. trichocarpa* did not inhibit the growth of *E. coli* and *P. aeruginosa* at the maximum concentration tested (2000 µg/ml) (Table 1).

R. chinensis

This plant has long been used by practitioners of folk medicine in Asia. *R. chinensis* plant parts, particularly the galls on its leaves, *Galla chinensis*, have preventative and therapeutic effects on diverse ailments, including diarrhea, dysentery, rectal and intestinal cancer, diabetes mellitus, sepsis, oral diseases, and inflammation. Phytochemical studies on *R. chinensis* have demonstrated that it contains high levels of two phenolic compounds, gallic acid and methyl gallate. Recent studies revealed that *R. chinensis* compounds possess strong antiviral, anticancer, hepatoprotective, and antioxidant activities. Extracts from *G. chinensis* inhibited several bacteria, including *B. cereus*, *B. subtilis*, *S. aureus*, *E. coli*, and others (MICs 0.5–8 mg/ml) [22]. In our study, the methanol extract of *R. chinensis* exhibited considerable antibacterial activity against the Gram-positive bacteria, especially against the two *Bacillus* species (MIC 31.3 µg/ml) (Table 1).

CONCLUSION

The Vietnamese plant extracts investigated in this study significantly suppressed the growth of Gram-positive bacteria. Discovery of biological activities in Vietnamese plants is a new venture. Although the antibacterial activities of some highly antibacterial plant extracts have been reported, *C. baviensis* and *C. alpinus* extracts have not previously been reported to show potent antibacterial activities.

Our results provide important information on the antibacterial activities of Vietnamese plant extracts to medical plant consumers, pharmacologists and researchers. Some Vietnamese plant extracts have potential for application as natural antibacterial agents and can be used for the development of new antibacterial drugs.

To develop new plant-derived antibacterial agents, further studies are necessary to isolate and characterize the active components from the antibacterial plants. Furthermore, additional research on combinations of the antibacterial components or plants with other antimicrobial agents would be useful to enhance their antibacterial potency.

ACKNOWLEDGMENTS

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.99-2020.67 and Nguyen Tat Thanh University (project No 2020.01.001).

We thank Associate Prof. Phuong Kuan Vu and Dr. Bach The Tran at the Institute of Ecology and Biological Resources, Vietnam, for identifying plant materials.
No.	Plant species	Family	MIC (µg/mL)*		
			Bacillus cereus	Bacillus subtilis	Staphylococcus aureus
1.	Barleria priotitis L.	Acanthaceae	75±26	128±0	512±0
2.	Pygysstricta kunthiana (Wall. ex Nees) B. Hansen	Acanthaceae	597±209	–	–
3.	Alangium chinense (Lour.) Harms	Alangiaceae	174±66	–	–
4.	Rhiz chinensis Mill.	Anacardiaceae	32±0	32±0	427±132
5.	Toxicoderrn succedaneum (L.) Kuntze	Anacardiaceae	102±0	768±200	102±0
6.	Annona reticulata L.	Annonaceae	64±0	64±0	384±140
7.	Acorus gramineus Soland. ex Ait.	Araceae	1195±18	1877±18	2048±0
8.	Amorphophallus paeonifolius (Dennst.) Nicolson	Araceae	128±0	256±0	–
9.	Cryptolepis buchanani Roem. and Schult.	Asclepiadaceae	341±132	–	–
10.	Chromolaena odorata (L.) King and Robinson	Asteraceae	–	–	768±280
11.	Exapatorium fortunei Turcz.	Asteraceae	394±140	–	–
12.	Tithonia diversifolia (Hems.) A. Gray	Asteraceae	–	512±0	768±280
13.	Betula alnoides Buch.-Ham. ex D. Don	Betulaceae	64±0	64±0	256±0
14.	Markhamia stipulata (Will) Seem. ex K. Schum.	Bignoniaceae	384±140	–	–
15.	Spathodea campanulata P. Beauv.	Bignoniaceae	384±140	–	–
16.	Plumbago zeylanica L.	Plumbaginaceae	192±70	–	–
17.	Canarium trandum Dai and Yakovl.	Burseraceae	384±140	–	–
18.	Calophyllum inophyllum L.	Clusiaceae	32±0	53±17	64±0
19.	Garcinia cowa Roxb.	Clusiaceae	256±0	256±0	384±140
20.	Quisqualis indica L.	Combretaceae	102±4	512±0	102±40
21.	Rourea harmandiana Pierre	Conneraceae	768±280	–	–
22.	Hopea chinensis (Merr) Hand. Mazz	Dipterocarpaceae	48±18	512±0	128±0
23.	Croton alpinus A. Chev. ex Gagnep.	Euphorbiaceae	128±0	128±0	192±70
24.	Endospermum chinense Benth.	Euphorbiaceae	384±140	–	–
25.	Euphorbia atoto Forst. f.	Euphorbiaceae	384±140	–	–
26.	Macaranga trichocarpa (Rchb.f. and Zoll.) Mull. Arg.	Euphorbiaceae	64±0	24±9	24±9
27.	Mallotus yunnanensis Pax and K. Hoffm.	Euphorbiaceae	768±280	–	–
28.	Alibizia vialeana Pax	Fabaceae	192±70	–	–
29.	Cassia siamea Lam.	Fabaceae	768±280	–	–
30.	Castanopsis ceratocarpa Rehd. and Wils.	Fabaceae	256±0	512±0	768±280
31.	Indigofera galgoides DC.	Fabaceae	192±70	–	–
32.	Lithocarpus ducapaceae Hickel and A. Camus	Fabaceae	384±140	–	–
33.	Milletia setigera Dunn	Fabaceae	384±140	–	–
34.	Lysonotus chinii Chun ex W.T. Wang	Gesneriaceae	149±52	512±0	683±264
35.	Caryodophyndon bavensis (Leomonte) Airy Shaw	Lauraceae	64±0	128±0	64±0
36.	Litsea verticillata Hance	Lauraceae	1195±18	1365±529	–
37.	Barringtonia macracanthya (Jack) Kurz	Lecythidaceae	102±40	299±105	597±209
38.	Magnolia coco (Lour.) DC	Magnoliaceae	384±140	–	–
39.	Mangiellia insignis (Wall.) Bl	Magnoliaceae	768±280	–	–
40.	Stachyphrynium placentarium (Lour.)	Marcantaceae	768±280	–	–
	Clausager and Borchs.				
41.	Chisocheton cunningianus subsp. balanae (C.D.C)Mabb.	Meliaceae	171±66	–	–
42.	Melia azedarach L.	Meliaceae	136±529	2048±0	1195±18
43.	Toona sureni (Blume) Merr.	Meliaceae	341±132	–	–
44.	Kneema mixta W. J. de Wilde	Myristicaceae	683±264	–	–
45.	Myrsine linearis (Lour.) Poir.	Myrsinaceae	597±209	853±264	683±264
46.	Olax impricata Roxb.	Oleaceae	1195±18	597±209	102±40
47.	Piper henryphyllum Miq.	Piperaceae	136±529	–	–
48.	Rhamnus longipes Merr. and Chun	Rhamnaceae	512±0	256±0	256±0
49.	Ziziphus atrospenis Pierre	Rhamnaceae	192±70	–	–
50.	Carallia brachiata (Lour.) Merr.	Rhzophoraceae	341±132	1195±18	–
51.	Coposspalatia flavescens Korth.	Rubiaceae	128±0	256±0	–
52.	Acronychia pedunculata (L.) Miq.	Rutaceae	75±26	256±0	171±66
53.	Clausena indica (Dalz) Oliv.	Rutaceae	384±140	–	–
54.	Glycosmis petelogii Guill.	Rutaceae	192±70	–	–
55.	Luvunga sarmentosa (Blume) Kurz	Rutaceae	192±70	–	–
56.	Zanthoxyllum nitidum (Roxb.) DC.	Rutaceae	341±132	853±264	512±397
57.	Schrophularia ningpoensis Hemsl.	Scrophulariaceae	102±40	1707±529	136±529
58.	Brucea javanica (L.) Merr.	Simaroubaceae	683±264	2048±0	384±140
59.	Brucea mollis Wall. ex Kurz	Simaroubaceae	768±280	–	–
60.	Sonneratia caseolaris (L.) Engl.	Sonneratiaceae	683±264	683±264	–
61.	Sterculia hypstocida Miq.	Sterculiaceae	768±280	–	–
62.	Schima surpepa Gardner and Champ.	Theaceae	–	102±40	384±140
63.	Aphanaestheaspina (Thunb.) Planch.	Ulmaceae	768±280	–	–
64.	Holoptelea integrifolia Rodb. Planch.	Ulmaceae	384±140	–	–
65.	Callicarpa dichotoma (Lour.) Rauwch.	Verbenaceae	256±0	256±0	683±264
66.	Tecctonia grandis L.	Verbenaceae	256±0	384±140	–
	Streptomyceu sulfate (positive control)	–	5±0	2.5±0	5±0

*All plant extracts were inactive against two Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) at maximum tested concentration (2048 µg/mL). *Values are mean±SD of two experiments with three replicates each, *Inactive at maximum tested concentration (2048 µg/mL).
CONFLICT OF INTERESTS
All authors declare that they have no competing interests.

REFERENCES
1. Fauci AS. Infectious diseases: Considerations for the 21st century. Clin Infect Dis 2001;32:675-85.
2. Noumedem JA, Mihasan M, Lacmata ST, Stefan M, Kuiaje JR, Kuete V. Antibacterial activities of the methanol extracts of ten Cameroonian vegetables against Gram-negative multidrug-resistant bacteria. BMC Complement Altern Med 2013;13:26.
3. Kannathasan K, Senthilkumar A, Venkatesalu V. In vitro antibacterial potential of some Vitis species against human pathogenic bacteria. Asian Pac J Trop Med 2011;4:645-8.
4. Abreu AC, McBain AJ, Simões M. Plants as sources of new antimicrobials and resistance-modifying agents. Nat Prod Rep 2012;29:1007-21.
5. Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev 1999;12:564-82.
6. de Barros Machado T, Leal IC, Kuster RM, Amaral AC, Kokis V, de Silva MG, et al. Brazilian phytopharmaceuticals—evaluation against hospital bacteria. Phytother Res 2005;19:519-25.
7. Tajkarimi MM, Ibrahim SA, Cliver DO. Antimicrobial herb and spice compounds in food. Food Control 2010;21:1199-218.
8. Vu TT, Kim H, Tran VK, Le Dang Q, Nguyen HT, Kim H, et al. In vitro antibacterial activity of selected medicinal plants traditionally used in Vietnam against human pathogenic bacteria. BMC Complement Altern Med 2016;16:32.
9. Lesueur D, De Rocca Serra D, Bighelli A, Hoi TM, Thai TH, Casanova J. Composition and antimicrobial activity of the essential oil of Acronychia pedunculata (L.) Miq. from Vietnam. Nat Prod Res 2006;20:393-8.
10. Ghimire BK, Tamang JP, Yu CY, Jung SJ, Chung IM. Antioxidant, antimicrobial activity and inhibition of α-glucosidase activity by Betula alnoides Buch. bark extract and their relationship with polyphenolic compounds concentration. Immunopharmacol Immunotoxicol 2012;34:824-31.
11. Auraniwat C, Trisuwan K, Saiai A, Pyne SG, Rithiwigrom T. Antibacterial tetraoxygenated xanthones from the immature fruits of Garcinia cowa. Fitoterapia 2014;98:179-83.
12. Siridechakorn I, Phakhodee W, Rithiwigrom T, Promgool T, Deachatthai S, Cheenpracha S, et al. Antibacterial dihydrobenzopyran and xanthone derivatives from Garcinia cowa stem barks. Fitoterapia 2012;83:1430-4.
13. Negi PS, Jayaparaksha GK, Jena BS. Antibacterial activity of the extracts from the fruit rinds of Garcinia cowa and Garcinia pedunculata against food borne pathogens and spoilage bacteria. LWT Food Sci Technol 2008;41:1857-61.
14. Jamkhande PG, Wattamwar AS. Annona reticulata Linn. (Bullock’s heart): Plant profile, phytochemistry and pharmacological properties. J Tradit Complement Med 2015;5:144-52.
15. Jamkhande PG, Wattamwar AS, Kankudte AD, Tidke PS, Kalaskar MG. Assessment of Annona reticulata Linn. leaves fractions for in vitro antioxidative effect and antimicrobial potential against standard human pathogenic strains. Alex J Med 2016;52:19-25.
16. Ali SM, Perveen S, Rizwani GH, Ahmad VU. Screening for the antimicrobial properties of the leaves of Calophyllum inophyllum Linn. (Guttiferae). J Chem Soc Pak 1999;21:174-8.
17. Cochinel Filho V, Meyre-Silva C, Niero R. Chemical and pharmacological aspects of the genus Calophyllum. Chem Biodivers 2009;6:313-27.
18. Saravanan R, Dhachinamoorthi D, Senthilkumar K, Thamizhvanan K. Antimicrobial activity of various extracts from various parts of Calophyllum inophyllum L. J Appl Pharm Sci 2011;1:102-6.
19. Nguyen Hoang A, Ripperger H, Porzel A, Tran Van S, Adam G. Neolignans from Caryodaphnopsis baviensis. Phytochemistry 1997;46:569-71.
20. Magadula JJ. Phytochemistry and pharmacology of the genus Macaranga: A review. J Med Plant Res 2014;8:489-503.
21. Fareza MS, Syah YM, Mujahidin D, Julaiawaty LD, Kurniasih I. Antibacterial flavonones and dihydrochalcones from Macaranga trichocarpa. Z Naturforsch C Biosci 2014;69:375-80.
22. Djakpo O, Yao W. Rhus chinensis and Galta Chinensis--folklore to modern evidence: Review. Phytother Res 2010;24:1739-47.