Antibiotics: A Brief Review

Mrudul R. Keskar and Ravin M. Jugade

Department of Chemistry, R. T. M. Nagpur University, Nagpur, India.

ABSTRACT: Macrolides, one of the most commonly used class of antibiotics, are a group of drugs produced by Streptomyces species. They belong to the polyketide class of natural products. Their activity is due to the presence of a large macrolide lactone ring with deoxysugar moieties. They are protein synthesis inhibitors and broad-spectrum antibiotics, active against both gram-positive and gram-negative bacteria. Different analytical techniques have been reported for the determination of macrolides such as chromatographic methods, flow injection methods, spectrofluorometric methods, spectrophotometric methods, and capillary electrophoresis methods. Among these methods, spectrophotometric methods are sensitive and cost effective for the analysis of various antibiotics in pharmaceutical formulations as well as biological samples. This article reviews different spectrophotometric methods for the determination of macrolide antibiotics.

KEYWORDS: Macrolide antibiotics, spectrophotometric analysis, charge transfer complexes, ion pair complexes

Introduction

The term "antibiotic" was put forward by Vuillemin in 1889 to designate the active component involved in the process of antibiosis. The Greek word "anti" means against and "bios" means life. Benedict and Langlykke coined a general and acceptable definition of antibiotic, which states that "antibiotic is a chemical compound derived from or produced by a living organism, which is capable, in small concentration, of inhibiting the life processes of micro-organisms." 1 Antibiotics are used to treat infections caused by bacteria, the microscopic organisms, some of which may cause illness. Antibiotics can save lives either by killing bacteria or by inhibiting their reproduction. Antibiotics can be classified on the basis of their chemical structures as macrolides, fluoroquinolones, beta lactam antibiotics, etc.

Spectrophotometric Determination of Macrolide Antibiotics

Fourteen-membered macrolide antibiotics. Erythromycin, clarithromycin, and roxithromycin are 14-membered macrolide antibiotics.

Erythromycin. Erythromycin (Fig. 1A) is the first macrolide antibiotic. In 1949, some Fillipino scientists isolated erythromycin from a strain of Streptomyces erythreus from soil sample. It is available in the form of tablets, capsules, oral suspensions, ophthalmic solutions, ointments, gels, and injections. It is a white or slightly yellow crystal or powder with a melting point of 191°C. It contains two oximes side chain attached to the lactone ring with a dissociation constant $pK_a = 8.86$. It is freely soluble in alcohol, acetone, chloroform, acetonitrile, and ethyl acetate and moderately soluble in ether, ethyl dichloride, and amyl acetate.

Clarithromycin. In 1970, researchers of a Japanese drug company, Taisho Pharmaceutical, invented clarithromycin (6-O-methyl erythromycin; Fig. 1B). Taisho filed a patent for clarithromycin in 1980. It is available in the form of tablets, oral suspensions, gel, or lotion. It is a colorless crystalline solid with a melting point of 217–220°C and a dissociation constant $pK_a = 8.9$. It is soluble in acetone and slightly soluble in ethanol, methanol, and acetonitrile.

Roxithromycin. Roxithromycin (Fig. 1C) is a semi-synthetic macrolide antibiotic. In 1987, a German pharmaceutical company, Hoechst Uclaf, introduced roxithromycin. It is available in the form of tablets and oral suspensions. It is derived from erythromycin with N-oxime side chain attached to the lactone ring. It is a white solid having a melting point of 111°C. It is soluble in ethanol, methanol, acetonitrile, and acetone.
 Fifteen-membered macrolide antibiotics. Azithromycin is a 15-membered macrolide antibiotic.

Azithromycin. In 1980, Pliva, a Croatian pharmaceutical company, discovered azithromycin (Fig. 1D). It is one of the most successful antibiotics. It is derived from erythromycin, with methyl-substituted nitrogen atom included in the lactone ring, which makes it a 15-membered lactone ring. It is available in the form of tablets, oral suspensions, and injections. It is a white solid having a melting point of 113–115°C with a dissociation constant $pK_a = 8.74$. It is soluble in ethanol, methanol, acetonitrile, and acetone.

Sixteen-membered macrolide antibiotics. Josamycin is a 16-membered macrolide antibiotic.

Josamycin. Josamycin (Fig. 1E) is synthesized from the strains of *Streptomyces narbonensis var. josamyceticus*. It is a yellowish crystalline powder with a melting point of 130–133°C. It is available in the form of tablets and dry syrup. It is soluble in ethanol, chloroform, acetone, ether, benzene, and toluene and partly soluble in water. Unlike the 14- and 15-membered macrolide antibiotics, josamycin is not commonly used.

Pharmacology of Macrolides
Macrolides bind to the 50S subunit of the bacterial ribosome. They inhibit the bacterial protein synthesis. At lower concentrations of bacteria, these antibiotics act as bacteriostatic but may become bactericidal at high concentrations or depending on the type of microorganism. Macrolides assemble within leukocytes by which they are transported to the site of infection.

Figure 1. Structures of (A) erythromycin, (B) clarithromycin, (C) roxithromycin, (D) azithromycin, and (E) josamycin.
Therapeutic Applications

The antimicrobial spectrum of macrolides is similar to that of penicillins. However, in contrast to penicillins, macrolides are also active against *Legionella pneumonia*, *Mycoplasma pneumoniae*, and some Rickettsias and Chlamydias.5,10 Clarithromycin is used to treat gastric ulcers as a component of multidrug combinations.11

Generally, macrolide antibiotics are prescribed for people who are allergic to penicillin antibiotics in the treatment of urinary tract infections, upper as well as lower respiratory tract infections, skin and soft tissue infections, ear infections, mouth infections, eye infections, intestinal infections, and tetanus infections.

Use of Macrolides in Pediatrics

Azithromycin, erythromycin, and clarithromycin have been widely used for pediatric infections. Azithromycin and clarithromycin are more stable and better absorbed than erythromycin. They are used for acute otitis media caused by *Streptococcus pneumonia*, *Haemophilus influenza*, and *Moraxella catarrhalis* and for tonsillitis caused by *Streptococcus pyogenes*. Azithromycin is more active against *H. influenza*. Oral suspension of azithromycin is used against pneumonia caused by *Chlamydia pneumonia*, *H. influenza*, *M. pneumonia*, and *S. pneumonia*. Clarithromycin is used to treat acute maxillary sinusitis, skin structure infections, pneumonia, and disseminated mycobacterial infections, as well as asthma.12,13 Children suffering from soft tissue infections, skin infections, and respiratory tract infections are treated with roxithromycin. Erythromycin is used to treat gastrointestinal disorders in children.

Adverse Effects

High intravenous administration of macrolide antibiotics generally causes thrombophlebitis; sometimes, it may cause skin rashes.14 The most common adverse reactions of this class of antibiotics are gastrointestinal disturbances, nausea, diarrhea, abdominal pain, and headache.15 Macrolide antibiotics can also produce acute cholestatic hepatitis as a hypertensive reaction.16,17

Analysis of Macrolide Antibiotics

Different methods have been reported to determine macrolides separately as well as simultaneously. Some of these methods are spectrophotometry, high-performance liquid chromatography, voltammetry, spectrofluorometry, capillary electrophoresis, and titrimetry. The most widely used cost-effective and sensitive methods are spectrophotometric methods, mainly based on charge transfer and ion-pair interactions.

Spectrophotometric Methods

Spectrophotometric methods are based on the formation of a complex between the drug and the reagent. The color intensity is used as a measure of drug concentration. The complex formed between the drug and reagent is of either charge transfer or ion-pair type. The charge transfer complex is also known as electron donor–acceptor complex in which a fraction of electronic charge is transferred between the molecules. In the ion-pair complex, ions of opposite electric charge are held together in solution by Coulomb attraction. Spectrophotometric methods have been reported for the analysis of some antibiotics (other than macrolide antibiotics), including tetracycline, doxycycline, cefixime trihydrate, streptomycin sulfate, gentamicin sulfate, and amoxicillin.18–22

Spectrophotometric Methods for the Analysis of Macrolide Antibiotics

Different spectrophotometric methods of analysis of macrolide antibiotics are discussed below.

Paula et al23 reported a method for the determination of azithromycin using quinalizarin as a charge transfer reagent. The complex shows the maximum absorbance at 564 nm and obeys Beer’s law over a narrow concentration range of 4–20 mg L⁻¹. A fairly low detection limit of 0.35 mg L⁻¹ has been reported for azithromycin estimation. This method was successfully applied to the analysis of tablets without any interference from other ingredients.

Rachidi et al24 proposed a method based on the extraction of the ionic-pair formed between azithromycin and Mo (V)–SCN complex in dichloroethane medium. The measurements were performed at 469 nm against a blank solution prepared analogously to the standard solutions.

Huang et al25 employed two reagents 7,7,8,8-tetracyanoquindimethane (TCNQ) and chloranilic acid (CL) for the estimation of azithromycin in tablets. After the reaction with azithromycin, both the reagents produced charge transfer complexes with a maximum absorbance at 743 and 842 nm, respectively. The molar absorptivities of these complexes have been found to be 2.7 × 10⁴ and 5.0 × 10⁴ L mol⁻¹ cm⁻¹, respectively. Wide linearity between concentration and absorbance has been reported for azithromycin–CL complex ranging from 5 to 225 μg mL⁻¹.

Liu et al26 established a method based on charge transfer complex for the determination of azithromycin with 2,4-dinitrophenol having a linear range of 5–30 μg mL⁻¹ at 364 nm; this method was used to analyze azithromycin tablets.

Change transfer complex between azithromycin and alizarin red was studied by Li et al27 in alcohol–water medium. The complex shows the maximum absorbance at 525 nm with a linear range of 5–55 mg L⁻¹ and molar absorptivity of 1.26 × 10⁴ L mol⁻¹ cm⁻¹.

Spectrophotometric estimation of azithromycin in tablets with potassium permanganate in alkaline medium at 547 nm was studied by Jayanna et al.28 The method was used to determine azithromycin between 2 and 20 μg mL⁻¹ in the final measured solution with no interference from the ingredients commonly found in azithromycin tablets.
Li et al. studied the charge transfer spectra of azithromycin and alizarin in ethanol medium at 546 nm with molar absorptivity of 5.79 \times 10^4 \text{ L mol}^{-1} \text{ cm}^{-1} and Beer’s law limit of 5–120 mg L\(^{-1}\), showing a wider linear range. The method reported by Li et al. to study the charge transfer complex between azothymycin and TCNQ used acetone medium. The complete complex formation required an elevated temperature of 50°C for a period of 30 minutes. The molar absorptivity of the complex at 745 nm has been reported to be 1.44 \times 10^4 \text{ L mol}^{-1} \text{ cm}^{-1}, and the method was used to analyze azithromycin tablets.

Ashour and Bayram developed and validated a method for the assay of two macrodrugs, azithromycin and erythromycin, in pure and pharmaceutical formulations. It was based on the reaction of these two drugs with sodium 1,2-naphthoquinone-4-sulfonate in alkaline medium at 25°C. The maximum absorbance was found to be at 425 nm with linear ranges of 1.5–33.0 and 0.92–8.0 μg mL\(^{-1}\), respectively. The limits of detection 0.026 and 0.063 μg mL\(^{-1}\) and molar absorptivity values 4.3 \times 10^4 and 12.3 \times 10^4 L mol\(^{-1}\) cm\(^{-1}\) have been reported for azithromycin and erythromycin, respectively. The method has a narrow linear range in the case of erythromycin.

Kelani et al. described a method for the determination of azithromycin with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), and 588 nm wavelength was chosen to give the maximum sensitivity. This method was applied for reference materials as well as dosage forms.

Simple and rapid methods have been developed by Keskar and Jugade for azithromycin, roxithromycin, and erythromycin by using bromocresol green as a reagent. These complexes were formed at 630, 620, and 625 nm with linear ranges of 4–46, 3–53, and 7–73 μg mL\(^{-1}\) for azithromycin, roxithromycin, and erythromycin, respectively. Compositions of the complexes were found to be 2:1. The values of detection limit were found to be 0.19, 0.56, and 0.30 μg mL\(^{-1}\), respectively, for the three drugs. Stability constant values were found to be 2.78 ± 0.03, 4.73 ± 0.02, and 4.86 ± 0.06 with molar absorptivity values of 1.485 \times 10^4, 2.312 \times 10^4, and 3.090 \times 10^4 L mol\(^{-1}\) cm\(^{-1}\), respectively, for the three drugs. These methods are applied to determine the three drugs in pharmaceutical formulations and spiked human urine samples.

Walash et al. reported Eosin Y as an efficient reagent for the estimation of four macrolides, namely, erythromycin, azithromycin, clarithromycin, and roxithromycin. All the four drugs gave the maximum absorbance between 542 and 544 nm. The linear working ranges for the four drugs were 2–20, 1–10, 3–30, and 2–20, respectively. This method has been applied for the analysis of these macrolides in bulk, pharmaceutical formulations and spiked human urine and plasma samples.

Sayed et al. studied a spectrophotometric method for the determination of azithromycin dihydrate, erythromycin thioyanate, and clarithromycin using a combination of rose bengal and copper. The complexes formed are extractable with methylene chloride and found to give the maximum absorbance at 560, 558, and 557 nm, respectively. Ringbom optimum concentration ranges for the three drugs were found to be 9–16, 20–50, and 0–35 μg mL\(^{-1}\), respectively. Sandell’s sensitivity values were found to be 0.02, 0.07, and 0.05 μg cm\(^{-2}\), respectively. This method was successfully applied to tablets, capsules, and suspension forms of the respective drugs.

Jugade and Keskar developed a new spectrophotometric method for the determination of azithromycin in bulk and pharmaceutical formulations with bromphenol blue as an ion-pair reagent. The maximum absorbance of the complex was found to be at 595 nm. Composition of the complex was found to be 2:1. Calibration curve was found to be linear over the range 0–50 μg mL\(^{-1}\), with the limit of detection 0.10 μg mL\(^{-1}\). The molar absorptivity was found to be 1.369 \times 10^4 L mol\(^{-1}\) cm\(^{-1}\) with a stability constant of 6.19 ± 0.04, indicating high stability of the complex.

Spectrophotometric determination of roxithromycin based on charge transfer reaction with cresol red was studied by Zhao and Li. The reaction conditions include interaction between the drug and reagent at 35°C for 10 minutes in alcohol–acetone medium. The complex formed has a maximum absorptivity of 1.05 \times 10^4 L mol\(^{-1}\) cm\(^{-1}\) at 456 nm. The wide linear range of 0–80 mg L\(^{-1}\) is the most significant feature of this method.

Sastry et al. reported an ion-pair complex formation of roxithromycin with supracen violet 3B and tropaeolin 000. Regression analysis of the Beer’s plot showed good correlation in the concentration ranges 5–60 and 5–40 μg mL\(^{-1}\), respectively.

Li et al. developed a method for the determination of roxithromycin using TCNQ. The reaction was completed in acetone medium within 30 minutes at room temperature, with a wide linear range of 20.93–418.5 mg L\(^{-1}\) at 848 nm.

Two spectrophotometric methods have been reported for roxithromycin and alizarin red as a charge transfer reagent. The method developed by Chen et al. uses hydrochloride medium and has a linear range of 20–120 mg L\(^{-1}\). The method developed by Bai et al. uses alcohol–water medium and has a linear range of 10–110 mg L\(^{-1}\) at 325 nm.

The reaction between roxithromycin and methylene blue was studied by Peng in alcohol–HCl medium at 666 nm. Beer’s law was obeyed in the range of 30.14–66.30 mg L\(^{-1}\), and molar absorptivity was found to be 2.01 \times 10^3 L mol\(^{-1}\) cm\(^{-1}\).

This method was applied to tablets and capsules with satisfactory results.

Charge transfer reaction of roxithromycin and purpurin was studied by Li et al. at 544 nm. The stability constant, molar absorptivity, and Beer’s law linear range were found to be 3 \times 10^3, 6.56 \times 10^3 L mol\(^{-1}\) cm\(^{-1}\), and 0–120 mg L\(^{-1}\), respectively. This method was used to determine roxithromycin in capsules.
and a stability constant of 6.59×10^5. This complex was reported to have 1:2 composition.

Sultana et al45 studied charge transfer spectra of roxithromycin, clarithromycin, and erythromycin with CL reagent. The absorption maxima were found to be 496, 491, and 498 nm with linear ranges of 4–40, 8–40, and 3–36 μg mL-1, respectively. Stoichiometry was found to be 1:1 for all the three complexes. Molar absorptivity values were determined as 1.81 \times 104, 1.67 \times 104, and 2.07 \times 104 L mol$^{-1}$ cm$^{-1}$, respectively.

Determination of erythromycin with methyl violet by heating at 50°C for 10 minutes in a water bath has been reported by Xu et al46 at 583 nm with molar absorptivity of 1.61 \times 104 L mol$^{-1}$ cm$^{-1}$.

Charge transfer reaction between erythromycin and methylene blue was studied by Xu et al47 in water medium. Molar absorptivity was found to be 1.59 \times 104 L mol$^{-1}$ cm$^{-1}$ with Beer’s law range of 0.0008–0.025 mg mL$^{-1}$.

An ion-pair complex formation of erythromycin ethyl succinate using bromothymol blue was studied by Dikran et al48. The complex absorbs at 414.5 nm at pH 4.0 (phthalate buffer), with a linear range of 0.5–50 μg mL$^{-1}$. Sandell’s sensitivity was found to be 47.620 μg cm$^{-2}$. This method was successfully applied to tablet assays.

A charge transfer spectrum of erythromycin with alizarin red in water–ethanol medium was studied by Sun49 at 580 nm. The composition of the complex was found to be 1:1 with molar absorptivity of 8.70 \times 103 L mol$^{-1}$ cm$^{-1}$ and a stability constant of 1.6 \times 104.

Yanqing et al50 studied charge transfer spectra of erythromycin and quinalizarin at 570 nm. Stoichiometry of the complex was found to be 1:1 with molar absorptivity of 1.14 \times 104 L mol$^{-1}$ cm$^{-1}$ and a stability constant of 1.8 \times 105.

Ion-pair formation between erythromycin and bromothymol blue, methylthymol blue, and thymol blue was studied by Dabrowska et al51. The associates were extractable with chloroform at the maximum absorption wavelengths of 415, 430, and 550 nm, respectively.

Li et al52 studied charge transfer spectra of erythromycin ethyl succinate with TCNQ. Determination of erythromycin and its stearate and succinate esters with gentian violet in alkaline medium with the maximum absorbance at 633 nm has been described by Amin and Issa53. This method has been reported to be highly specific for the estimation of erythromycin.

Erythromycin forms an association with methyl orange as described by Smith et al54 while charge transfer determination of erythromycin with purpurin was described by Kan and Kun55 in ethanol–water medium. The composition of the complex was found to be 1:1 with a stability constant of 1.9 \times 103 and molar absorptivity of 9.18 \times 103 L mol$^{-1}$ cm$^{-1}$.

Complex formation of clarithromycin with iron (III) and Folin–Ciocalteu reagent has been described by Rao et al56 with the maximum absorbance at 750 and 775 nm, respectively. These methods were applied to tablets.

Charge transfer complex between clarithromycin and DDQ was studied by Darwish et al57. An important advantage of this method is the wide linear range of 20–850 μg mL$^{-1}$.

Charge transfer reaction between clarithromycin and 2,4-dinitrophenol was studied by Zhao58 at 364 nm with molar absorptivity 1.55 \times 104 L mol$^{-1}$ cm$^{-1}$, linear range 5–45 mg L$^{-1}$, and the composition of the complex was found to be 1:1.

Charge transfer reaction between clarithromycin and alizarin red was studied by Li et al59 in alcohol–water medium. Molar absorptivity of the complex was found to be 7.31 \times 103 L mol$^{-1}$ cm$^{-1}$ at 546 nm, while the stability constant and linear range were found to be 3.4 \times 104 and 1–100 mg L$^{-1}$, respectively.

Li et al60 studied the charge transfer reaction between clarithromycin and quinalizarin in water–alcohol medium. Stability constant, molar absorptivity, and linear range were found to be 2.6 \times 105, 3.74 \times 103 L mol$^{-1}$ cm$^{-1}$, and 0–100 mg L$^{-1}$, respectively, at 580 nm.

Li61 developed a method based on charge transfer reaction between clarithromycin and purpurin. Beer’s law range was found to be 10–150 mg L$^{-1}$, while the molar absorptivity and stability constant were found to be 4.49 \times 103 L mol$^{-1}$ cm$^{-1}$ and 3.48 \times 104, respectively.

Extractive spectrophotometric method for the determination of clarithromycin with bromocresol green was developed by Rao et al62. Beer’s law limit, molar absorptivity, and Sandell’s sensitivity were found to be 5.0–30.0 μg mL$^{-1}$, 1.9347 \times 104 L mol$^{-1}$ cm$^{-1}$, and 0.03865 μg cm$^{-2}$, respectively.

Spectrophotometric charge transfer determination of josamycin with alizarin red in alcohol–water medium was carried out by Li.63 Molar absorptivity was found to be 5.92 \times 103 L mol$^{-1}$ cm$^{-1}$ at 530 nm. The composition of the complex was found to be 1:1 with a linear range of 0–120 mg L$^{-1}$.

Spectrophotometric determination of josamycin with alizarin was also studied by Jiang et al64. The maximum absorption wavelength was found to be 426 nm, with molar absorptivity 2.14 \times 104 L mol$^{-1}$ cm$^{-1}$ and linear range 0–22 mg L$^{-1}$.

Charge transfer reaction between josamycin and purpurin was studied by Li and Xiao65 in alcohol–water medium at 545 nm with 1:1 composition. Stability constant was found to be 3.9 \times 104 with molar absorptivity 4.09 \times 103 L mol$^{-1}$ cm$^{-1}$ and linear range 0–120 mg L$^{-1}$. A brief discussion of each method is given in Table 1.

Conclusions

Spectrophotometric methods have been successfully used for the determination of macrolide antibiotics in pure and commercial preparations. They can be used for routine analysis and quality control. Human urine samples have been analyzed for these antibiotics using these methods. Commonly occurring excipients do not interfere in the determination of pharmaceutical formulations. The results have been found to be accurate, precise, and validated statistically.
Table 1. Spectrophotometric analysis of macrolide antibiotics.

DRUG	REAGENT USED	LINEAR RANGE (µg mL⁻¹)	LOD (µg mL⁻¹)	MOLAR ABSORPTIVITY (L mol⁻¹ cm⁻¹)	λ_max (nm)	APPLICATIONS	REF.
Azithromycin	Quinalizarin	4 to 20	0.35			Tablets	23
Azithromycin	Molybdenum thiocyanate	0.1 to 30	2.7 × 10⁴			Tablets	24
Azithromycin	7,7,8,8-tetrayanoquinodimethane	5.0 × 10⁻¹	8.12			Tablets	25
Azithromycin	Chloranilic acid	0.1 to 225	2.4 × 10⁻¹			Tables	26
Azithromycin	Alizarin red	0.05 to 55	5.04	1.44 × 10⁴	743	Tablets	27
Azithromycin	Alizarin	5.0 to 120	5.79 × 10⁻¹	1.26 × 10⁴	546	Tablets	28
Azithromycin	2,4-dinitrophenol	5.0 to 30	1.26 × 10⁴		364	Tablets	29
Azithromycin	Alizarin red	1.0 to 120	7.79 × 10⁻¹	1.12 × 10⁴	525	Tablets	30
Azithromycin	2,3-dichloro-5,6-dicyano-1,4-benzoquinone	0.15 to 33	0.92 × 10⁻³		3094	Tablets, suspension, human urine	31
Azithromycin	Bromocresol green	0.19 to 8	2.43 × 10⁻¹		630	Tablets, suspension, human urine	32
Azithromycin	7,7,8,8-tetracyanoquinodimethane	0.92 to 8	2.06 × 10⁻¹		620	Tablets, suspension, human urine	33
Azithromycin	Bromocresol green	0.026 to 0.038	2.312 × 10⁻¹		625	Tablets, suspension, human urine	34
Azithromycin	2,3-dichloro-5,6-dicyano-1,4-benzoquinone	1.15 to 33	1.44 × 10⁴		598	Tablets, suspension, human urine	35
Azithromycin	Alizarin red	3.09 × 10⁻¹	1.463 × 10⁴		543	Tablets, suspension, human urine	36
Azithromycin	Alizarin	1.26 × 10⁴	5.04 × 10⁴		546	Tablets, suspension, human urine	37
Azithromycin	Alizarin red	743	546		525	Tablets, suspension, human urine	38
Azithromycin	2,3-dichloro-5,6-dicyano-1,4-benzoquinone	743	546		525	Tablets, suspension, human urine	39
Azithromycin	Alizarin	2,3-dichloro-5,6-dicyano-1,4-benzoquinone	5.04 × 10⁴		543	Tablets, suspension, human urine	40
Azithromycin	Alizarin red	743	546		525	Tablets, suspension, human urine	41
Azithromycin	Alizarin	5.04 × 10⁴	1.463 × 10⁴		546	Tablets, suspension, human urine	42
Azithromycin	Alizarin	5.04 × 10⁴	1.463 × 10⁴		546	Tablets, suspension, human urine	43
Azithromycin	Alizarin	2,3-dichloro-5,6-dicyano-1,4-benzoquinone	5.04 × 10⁴		546	Tablets, suspension, human urine	44
Antibiotic	Reagent	Concentration	Extinction				
----------------------------	----------------------------------	---------------	------------				
Erythromycin	Chloranilic acid	3 to 36	2.07×10^4	498	45		
Roxithromycin	Chloranilic acid	4 to 40	1.81×10^4	496	45		
Clarithromycin	Chloranilic acid	8 to 40	1.67×10^4	491	45		
Erythromycin	Methyl violet	–	1.61×10^4	583	46		
Erythromycin	Methylene blue	0.0008 to 0.025	1.59×10^4	678 Tablets	47		
Erythromycin ethyl succinate	Bromothymol blue	0.5 to 50	–	414.5 Tablets	48		
Erythromycin	Alizarin red	–	8.07×10^3	580	49		
Erythromycin	Quinalizarin	–	1.14×10^4	570	50		
Erythromycin	Bromothymol blue	–	–	415	51		
Erythromycin	Methyl thymol blue	–	–	430	51		
Erythromycin	Thymol blue	–	–	550	51		
Erythromycin ethyl succinate	7,7,8,8-tetracyanoquinodimethane	–	–	–	52		
Erythromycin	Gentian violet	–	–	633	53		
Erythromycin	Methyl orange	–	–	–	54		
Erythromycin	Purpurin	0–90	9.18×10^3	546	55		
Clarithromycin	Iron(III)	–	–	750 Tablets	56		
Clarithromycin	Folien-ciocalteu reagent	–	–	775 Tablets	56		
Clarithromycin	2,3-dichloro-5,6-dicyano-1,4-benzoquinone	20 to 850	15.5	450 Tablets	57		
Clarithromycin	2,4-dinitrophenol	5 to 45	1.55×10^4	364	58		
Clarithromycin	Alizarin red	1 to 100	7.31×10^3	546	59		
Clarithromycin	Quinalizarin	0 to 100	3.74×10^3	580 Tablets	60		
Clarithromycin	Purpurin	10 to 150	4.49×10^3	548	61		
Clarithromycin	Bromocresol green	5 to 30	1.934×10^4	415	62		
Josamycin	Alizarin red	0 to 120	5.92×10^3	530	63		
Josamycin	Alizarin	0 to 22	2.14×10^4	526	64		
Josamycin	Purpurin	0 to 120	4.09×10^3	545	65		
Considering the detection limits of the reported methods, the method using 2-naphthaquinone-4-sulfonate has the lowest detection limit among all the reported values for azithromycin and erythromycin. Bromocresol green for roxithromycin and rose bengal for clarithromycin are found to give the lowest detection limits.

Comparing the sensitivities on the basis of molar absorptivity values, the method using 2-naphthaquinone-4-sulfonate is most sensitive for erythromycin. TCNQ for azithromycin, bromocresol green for clarithromycin, CL for roxithromycin, and alizarin for josamycin have been found to be the most sensitive reagents.

Author Contributions
Conceived the concepts: RMJ. Analyzed the data: RMJ. Wrote the first draft of the manuscript: MRK. Contributed to the writing of the manuscript: MRK. Agree with manuscript results and conclusions: RMJ. Jointly developed the structure and arguments for the paper: MRK, RMJ. Made critical revisions and approved final version: RMJ. All authors reviewed and approved of the final manuscript.

Supplementary Material
Supplementary table 1. Spectrophotometric analysis of macrolide antibiotics.

REFERENCES
1. Kar A. Medicinal Chemistry. New Delhi: New Age International Limited, 2007.
2. Gaynor M, Mankin AS. Macrolide antibiotics: binding site, mechanism of action, resistance. Curr Top Med Chem. 2003;3:949–961.
3. Mazzei T, Mini E, Novelli A, Periti F. Chemistry and mode of action of macro- lides. J Antimicrob Chemother. 1993;31:1–9.
4. Delgado JN, Remers WA. Textbook of Organic Medicinal and Pharmaceutical Chemistry. 10th ed. Philadelphia, PA: Lippincott-Raven; 1998.
5. Andriole VT. In: 7th Mediterranean Congress on Chemotherapy, Barcelona, Spain, 1990.
6. Rang HP, Dale MM, Ritter JM, Moore PK. Pharmacology. 5th ed. Edinburgh: Churchill Livingstone; 2003.
7. McFarland JW, Berger CM, Froshauer SA, et al. Quantitative structure-activity relationships among macrolide antibacterial agents: in vitro and in vivo potency against Pasteurella multocida. J Med Chem. 1997;40:1340–1346.
8. Tomisic ZB. The story of azithromycin. J Chem Eng. 2011;60:603–617.
9. Sweetman SC. The Complete Drug Reference. 33rd ed. London, UK: Pharmaceutical press; 2002.
10. Omura S. Macrolide Antibiotics: Chemistry, Biology and Practice. 2nd ed. Waltham, MA: Academic Press; 2002.
11. William FO, Lemke TL, William DA. Foye’s Principle of Medicinal Chemistry. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2008.
12. Klein JO. History of macrolide use in paediatrics. Pediatr Infect Dis J. 1997;16: 427–431.
13. Mikulov A, Kase I, Aronoff SC, Luck R, Del Vecchio MT. Utility of adjunctive macrolide therapy in treatment of children with asthma: a systematic review and meta-analysis. J Asthma Allergy. 2011;6:23–29.
14. Grahame-Smith DG, Aronson JK. Oxford Textbook of Clinical Pharmacology and Thrapy. 3rd ed. New York: Oxford Medical Publications; 1991.
15. Guay DR, Patterson DR, Seipman N, Craft JC. Overview of the tolerability profile of clarithromycin in preclinical and clinical trials. Drug Saf. 1993;8:350–364.
16. Katzung BG. Basic and Clinical Pharmacology. 9th ed. New York City, NY: McGraw Hill International; 2004.
17. Whitman MS, Tunkel AR. Azithromycin and clarithromycin: overview and comparison with erythromycin. Infect Control Hosp Epidemiol. 1992;13:357–368.
18. Rufino JL, Fernandes FCB, Ruy MS, Pezza HR, Pezza L. A simple spectropho- tometric method for the determination of tetracycline and doxycycline in pharmaco- tical formulations using chloramines-T. J Eur Chem Soc. 2010;35:139–149.
19. Keskar MR, Jugade RM. Spectrophotometric determination of cefixime trihydrate in pharmaceutical formulations based on ion-pair reaction with bromophenol blue. Anal Chim Acta. 2015;10:11–16.
20. Omar MA, Njug D, Hammed MA, Aly AA. Validation spectrophotometric methods for determination of certain aminoglycosides in pharmaceutical formu- lations. J Appl Pharm Sci. 2013;3:151–161.
21. Keskar MR, Jugade RM. A new spectrophotometric method for determination of amoxicillin using bromocresol green. JIPS. 2013;1:1340–1348.
22. Keskar MR, Jugade RM. A new spectrophotometric method for determination of azithromycin using bromocresol blue. J Anal Chem. 2010;3:206–208.
23. Paula CER, Almeida VGK, Cassella RJ. Novel spectrophotometric method for the determination of azithromycin in pharmaceutical formulations based on its charge transfer reaction with quinalizarin. J Braz Chem Soc. 2010;21:1664–1671.
24. Rachidi M, Elhartj J, Difua K, Cherhab Y, Boutlouca A. New spectrophotometric method for azithromycin determination. Anal Lett. 2006;39:1917–1926.
25. Huang W, Liu XJ, Zhao FL. Spectrophotometric determination of azithromycin by charge transfer reaction. Guang Pu Xue Yu Guang Pu Fen Xi. 2006;26:913–916.
26. Liu H, Jinag Y, Xue N, Xiao X. Spectrophotometric determination of azithromycin based on charge transfer reaction with 2,4-dinitrophenol. Chin J Pharm Anal. 2015;3:308–310.
27. Li H, Zhang Y, Kang J Spectrophotometric determination of azithromycin based on the charge transfer reaction between azithromycin and alizarin red. Chin J Medres. 2014;6:504–506.
28. Jayanna BK, Nagerndrappa G, Arunkumar, Gowda N. Spectrophotometric esti- mation of azithromycin in tablets. Indian J Pharm Sci. 2012;74:365–367.
29. Li H, Zhang Y, Wang Y, Kang J. Spectrophotometric determination of azithro- mycin based on the charge transfer reaction between azithromycin and alizarin. Chin J Anal Chem. 2014;32:598–600.
30. Li J, Li Q, Wang X. The spectrophotometric determination of charge transfer complex of azithromycin with 7, 8, 8-tetracyanoquinodimethane. Chin J Appl Chem. 2005;12:1363–1365.
31. Ashour S, Bayram R. Novel spectrophotometric method for determination of some macrolide antibiotics in pharmaceutical formulations using 1, 2-naphthaquine-4-sulfonate. Spectrochim Acta A Mol Biomol Spectrosc. 2012;79:74–80.
32. Kelani K, Behaww LL, Fattah LA, Ahmad AKS. Spectrophotometric determi- nation of some n-donating drugs using DDQ. Anal Lett. 1997;30:1843–1860.
33. Keskar MR, Jugade RM. Spectrophotometric determination of macrolides using bromocresol green in pharmaceutical formulations and urine samples. Anal Lett. 2015;55:1292–1308.
34. Walash MI, Rizk MS, Ebd MI, Farhat ME. Spectrophotometric determination of four macrolide antibiotics in pharmaceutical formulations and biological fluids via binary complex formation with eosin Y. JAOAC Int. 2007;90:1579–1587.
35. Sayed RA, Hassan WS, Mammli MY, Shalaby A. New spectrophotomet- ric and conductometric methods for macrolide antibiotics determination in pure and pharmaceutical dosage forms using rose Bengal. J Spectrosc. 2012; 2013:1–11.
36. Jugade R, Keskar M. Spectrophotometric determination of some antibiotics using bromophenol blue as ion pair reagent. Pharm Acta. 2015;6:1–6.
37. Zhou ZZ, Li HK. Spectrophotometric determination of roxithromycin in based on charge transfer reaction. Guang Pu Xue Yu Guang Pu Fen Xi. 2003;23:157–159.
38. Sastry CSP, Rao KR, Prasad DS. Spectrophotometric procedures for the deter- mination of roxithromycin in pharmaceutical formulations. Microsoma Acta. 1996;122:53–60.
39. Li J, Li Q, Wang X. The charge transfer reaction between roxithromycin and 7, 8, 8-tetracyanoquinodimethane. Chin Res Appl. 2006;9:1081–1083.
40. Chen D, Zang B, Ma Z, Chen J. Spectrophotometric determination of disso- lution of roxithromycin capsules by charge transfer complex with alizarin red. Drug Stand China. 2008;5:363–366.
41. Bai X, Li H, Liu Z, Zhunxu X, Yu D. Spectrophotometric determination of roxithromycin based on charge transfer reaction between roxithromycin and alizarin red. Chin J Pharm Anal. 2015;4:429–431.
42. Peng J. Study of charge transfer reaction of roxithromycin with methylene blue. Chin J Spectrosc. 2010;3:1085–1088.
43. Chen H, Lu X, Zhao G, Zhao Y. Spectrophotometric determination of roxithromyc- lin based on charge transfer reaction between roxithromycin and purpurin. Chin J Anal Chem. 2003;7:833–835.
44. Zhao G. Roxithromycin with 1, 2, 5, 8-tetrahydroxyanthraquinone charge transfer reaction. Zhongguo Kang Wu Xue Za Zhi. 2010;3:206–208.
45. Sultana N, Arayne S, Ali SN. The use of chloranilic acid for the spectrophotometric determination of three macrolides through charge transfer spectra. Med Chem. 2013;3:241–246.
46. Xu W, Li C, Yan Y. Spectrophotometric determination of erythromycin based on its charge transfer reaction with methyl violet. Phy Test Chim Acta. 2007;12: 1737–1739.
47. Xu W, Li C, Lu X, Yan Y. Spectrophotometric determination of erythromycin based on its charge transfer reaction with methylene blue. Chem World. 2007;3: 1–3.
Spectrophotometric investigations of macrolide antibiotics: a brief review

48. Dikran SB, Mohammed AK, Al-Jumaily AKM. Univariate and simplex optimization for the spectrophotometric determination of cimetidine and erythromycin ethylsuccinate drugs using bromothymol blue via ion-pair formation. *IHJPS*. 2010;23:1–20.

49. Sun SG. The spectrophotometric determination of erythromycin ethylsuccinate based on the charge transfer reaction erythromycin ethylsuccinate and alizarin red. *J Math Med*. 2005;18:56–57.

50. Yangqin Z, Kan L, Zhao GZ. Spectrophotometric determination of erythromycin ethylsuccinate based on the charge transfer reaction between erythromycin ethylsuccinate and quinalizarin. *Chin J Modern Appl Pharm*. 2005;41:229–231.

51. Dabrowska D, Regosa A, Pickou R, Miercwa M, Paruch B. A study of ion-pair formation between erythromycin and bromothymol blue, methylthymol blue and thymol blue and their use for assaying erythromycin in dosage form. *Microchem J*. 1999;41:210–218.

52. Jun L, Quan-min L, Xan-ming W. The charge transfer reaction between erythromycin ethylsuccinate and 7,7,8,8-tetracyanoquinodimethane. *J Pharm Anal*. 2006;2:225–227.

53. Amin AS, Issa YM. Selective spectrophotometric method for the determination of erythromycin and its esters in pharmaceutical formulations using gentian violet. *J Pharm Biomed Anal*. 1996;14:1625–1629.

54. Smith RV, Harris RG, Sanchez E, Muness DJ, Martin A. Analysis of erythromycin I. A study of erythromycin acid-dye complexes. *Microchem J*. 1997;22:168–175.

55. Kan L, Kun X. Spectrophotometric determination of erythromycin ethylsuccinate based on the charge transfer reaction between erythromycin ethylsuccinate and purpurin. *Phys Test Chem Anal B*. 2006;42:753–755.

56. Rao JV, Rao VS, Murthy TK, Sankar DG. Spectrophotometric estimation of clarithromycin in pharmaceutical formulations. *Asian J Chem*. 2002;14:647–650.

57. Darwish IA, Alqarni MA, Wani A. Novel microwell assay with high throughput and minimum consumption for organic solvents in the charge transfer based spectrophotometric determination of clarithromycin in pharmaceutical formulations. *Chin Cent J*. 2013;7:172–179.

58. Zhao G. Determination of clarithromycin dispersible tablet based on charge transfer reaction with 2,4-dinitrophenol. *West China J Pharm Sci*. 2009;6:669–670.

59. Li H, Wang Q, Zhao Y. Spectrophotometric determination of clarithromycin based on its charge transfer reaction between clarithromycin and alizarin. *J Fourth Military Med Univ*. 2004;25:2206–2208.

60. Li H, Liu Y, Wang Y. The spectrophotometric determination of clarithromycin based on its charge transfer reaction between clarithromycin and quinalizarin. *Chin J Spectrosc Lab*. 2005;2:356–359.

61. Li H. Spectrophotometric determination of clarithromycin based on its charge transfer reaction between clarithromycin and purpurin. *Chin J Anal Chem*. 2005;33:1327–1329.

62. Rao VS, Itendrabahu V, Chowdary KPR, Rao JV. Extractive spectrophotometric method for the determination of clarithromycin. *Indian J Pharm Sci*. 2003;65:653–655.

63. Li H. Spectrophotometric determination of josamycin based on the charge transfer reaction between josamycin and purpurin. *Chin J Spectrosc Lab*. 2006;12:1–3.

64. Jiang H, He S, Zhan H. Color reactions of alizarin with josamycin and their analytical applications. *Chem Reagents*. 2006;12:1–3.

65. Li H, Xiao J. The spectrophotometric determination of josamycin based on the charge transfer reaction between josamycin and purpurin. *Chin J Spectrosc Lab*. 2006;6:1–3.