Effect of ethanol extract of robusta coffee leaves (Coffea canephora var. robusta) against Streptococcus mutans growth

Putri Rahmi NOVIYANDRI1, Diotama NUZA1, Suzanna SUNGKAR2

1 Department of Oral Biology, Faculty of Dentistry, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
2 Department of Pediatric Dentistry, Faculty of Dentistry, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
* Corresponding Author. E-mail: putri@unsyiah.ac.id

Received; August 12, 2020, Revised, October 20, 2020, Accepted, December 2, 2020

ABSTRACT The study to determine the inhibition capability of robusta coffee's (Coffea canephora var. robusta) leaf extract against S. mutans growth. Robusta coffee's (Coffea canephora var. robusta) leaf extract was made by maceration method using 96% ethanol. The antibacterial examination using well diffusion on Mueller Hinton Agar (MHA) media. The concentration of robusta coffee's (Coffea canephora var. robusta) leaf extract used in this study was 25%, 50%, and 75%. The study was analyzed using the One Way Analysis of Variance (ANOVA) test and continued with the Least Significant Difference (LSD) test. The results showed a value of \(p < 0.05 \), which proves that robusta coffee's (Coffea canephora var. robusta) leaf extract has an antibacterial effect on the growth of S. mutans with low inhibition potency.

KEYWORDS: Streptococcus mutans, dental caries, robusta coffee leaves (Coffea canephora var. robusta)

INTRODUCTION

Based on the 2013 Baseline Health Research (Riskesdas), the percentage of oral and dental problems in the Indonesian population in 2007 and 2013 increased from 23.2% to 25.9%. Cavities or dental caries are one of the problems that many children and adults complain about.1 Dental caries is an infectious disease that damages tooth structures such as the surface of the enamel, dentin, or cementum. This infection may develop into pulp necrosis.2

Fitrini et al. (2014) reported the prevalence of dental caries in Indonesia is 90.05%, indicating the prevalence of dental caries is still high in Indonesia.3 Dental caries occurs when the causative factors such as host, agent or microorganisms, substrate or diet, and time are mutually supporting and related to one another.4 The agent or microorganism factor that plays a role in the process of caries is bacteria. These caries-causing bacteria usually originate from the continuous accumulation of plaque on the teeth.

Bacteria involved in dental caries are; Streptococcus mutans, Streptococcus sanguinis, Lactobacillus sp., Actinomyces sp., Veillonella sp., Bifidobacterium sp., Propionibacterium sp. Streptococcus mutans is reported as the primary agent of dental caries. It has properties of aciduric and acidogenic. When these bacteria population increases in the oral cavity it converts these bacteria into pathogens to cause dental caries. Therefore, one of the prevention measures is to control the growth of the cariogenic bacteria S. mutans as the leading cause of dental caries.6

Treatment options for preventing dental caries are controlling the growth of bacteria in plaque or plaque control. Plaque control can be done mechanically, such as brushing teeth and chemically using antibacterials such as mouthwash. However, the side effects of long-term use of chemicals in mouthwashes such as chlorhexidine can cause discoloration and restoration, burning sensations, and harming the mouth's soft tissues. It is necessary to have alternative treatments such as treatments from herbal plants that have antibacterial effects.7

Effect of ethanol extract of robusta coffee leaves (Coffea canephora var. robusta) against Streptococcus mutans growth. JDS. 2020; 5(2): 75-79
One of the most common herbal plants in Aceh is the coffee plant. As part of the robusta plant (Coffea canephora var. Robusta), Robusta seeds also have an antibacterial effect. Tilaar and Kaseke (2016) reported that robusta coffee bean extract (Coffea canephora var. Robusta) can inhibit the growth of Enterococcus faecalis.

The average diameter of the inhibition zone that has been reported is 13.8mm. In general, Indonesians only use coffee beans for drinking, but in West Sumatra, people have also used the leaves (Coffea canephora var. Robusta). This type of coffee drink from its leaves is actually beneficial for health, warms the body, lowers high blood pressure and increases stamina. Robusta coffee leaves (Coffea canephora var. Robusta) contain antimicrobial compounds such as alkaloids, saponins, flavonoids, and polyphenols.9

Based on Putri’s (2018) research, disc diffusion method of robusta coffee leaf extract (Coffea canephora var. Robusta) has ability to inhibit S. mutans growth at a concentration of 25%. In another study by Anggraini (2017) that using ethanol solvent, it was stated that robusta coffee leaf extract (Coffea canephora var. Robusta) can inhibit the growth of Lactobacillus acidophilus bacteria. Based on this, researchers are interested in conducting research to determine the inhibitory ability of robusta coffee leaf extract (Coffea canephora var. Robusta) against Streptococcus mutans growth.

MATERIALS AND METHODS

The S. mutans isolates were obtained from the Microbiology Laboratory of the Faculty of Veterinary Syiah Kuala University, Banda Aceh. Samples of robusta coffee leaves (Coffea canephora var. Robusta) were obtained from Sumatra Barat (West Sumatra Province). The type of research is an experimental laboratory design with a post-test only control group.

Robusta coffee leaves (Coffea canephora var. Robusta) are obtained from 3rd and 4th stalks of each tree branch. Leaves are washed under running water, drained, and sliced into small pieces (about 2cm in size). Then, let the leaves re-dry for three days at room temperature. Simplicia Robusta coffee leaves (Coffea canephora var. Robusta) are blended until the coffee leaves are smooth. The fine powder is put into a sterile Erlenmeyer flask by adding 96% ethanol solvent until the powder was immersed completely. The Erlenmeyer flask is tightly closed and left for two days. After the maceration process is complete. The entire filtrate obtained is filtered and concentrated using a rotary evaporator.10

A phytochemical test was conducted to determine Robusta coffee leaves (Coffea canephora var. Robusta). In this study, a phytochemical test was conducted to determine alkaloids, flavonoids, tannins, terpenoids, and saponins from the extract of the Robusta coffee leaves (Coffea canephora var. Robusta). The pure extract (100%) that has been obtained is diluted with distilled water to get a concentration of 100%, 75%, 50%, and 25%, then homogenized using a vortex. The dilution formula adopted to Permatasari et al.11

RESULTS

Phytochemical test results showed alkaloids, flavonoids, tannins, terpenoids, and saponins in the Robusta coffee leaves (Coffea canephora var. robusta). The culture results of Streptococcus mutans on...
Trypticase Soy with Sucrose and Bacitracin (TYS20B) media with the T streak technique and incubated for 1 x 24 hour at 37°C showed a yellowish-white colony of *S. mutans* with a convex surface. The results of Gram stain show that purple Gram-positive bacteria are cocci and chains form. Antibacterial test results of robusta coffee leaf extract (*Coffea canephora var. Robusta*) against the growth of *S. mutans* is demonstrated in Table 1 below:

Table 1. Antibacterial of robusta coffee leaf extract (*Coffea canephora var. Robusta*) against *S. mutans* growth

Concentration	Inhibition Zone (mm)	Mean (mm)	Davis and Stout Category		
	I	II	III		
25 %	0,5	0,7	0	0,4*	Weak
50 %	1,1	0,8	1	0,63*	Weak
75 %	2,33	3,1	3	2,81*	Weak
CHX	21,7	22,5	20,7	21,63*	Powerful
Aquades	0	0	0	0*	None

*p = 0.000

DISCUSSION

Robusta coffee leaf extract (*Coffea canephora var. Robusta*) positively contains alkaloids, saponins, flavonoids, and polyphenols. All of these compounds are active substances that can inhibit the growth of *S. mutans* bacteria. Alkaloids are known to work by disrupting the peptidoglycan component in bacterial cells. The cell wall layer is unformed entirely and ultimately leads to cell death—the mechanism of inhibition of saponin compounds by reacting with transmembrane proteins of the bacterial cell wall. Sehen forms a strong polymer bond that damages porins and reduces the permeability of bacterial cell membranes. The reduced permeability of the bacterial cell membrane results in the cell being deficient in nutrients, which causes slow growth of bacteria and even causes death. Flavonoids act by inhibiting bacterial growth forming extracellular protein complexes needed for the integrity of bacterial cell membranes.

Polyphenol can denature proteins cause cell components is damage. Some of these components, such as cell membranes, microsomes, and lysosomes, and this effect is irreparable. The mechanism of inhibiting the growth of the microorganisms from polyphenols is by inhibiting the enzyme’s performance in the cell wall. Polyphenols also interfere with microorganism interactions to cause adhesions with other microorganisms, known as co-aggregation.21,22

Besides, *S. mutans* with Gram stain observed under light microscopy is described as coccus-shaped (oval) colonies, colored purple and, arranged in chains. This display proves that *S. mutans* is a Gram-positive bacterium. Gram-positive bacteria have a thicker peptidoglycan layer whose layer retains a crystal violet dye even when alcohol is applied.23

The test results showed that robusta coffee leaf extract (*Coffea canephora var. Robusta*) affected *S. mutans*. Based on the classification of inhibition according to Davis and Stout (Table 1.) shows that robusta coffee leaf extract (*Coffea canephora var. Robusta*) at a concentration of 25%, 50%, and 75% has a weak inhibitory. One of the factors that contribute is environmental factors. The environmental changes such as rainfall, day and night temperatures, duration and intensity of sunlight, and season may influence leaves’ compounds. The age of the leaves also affects the content of active compounds found in leaves. The research of Ramadhan, Aziz and Ghulamahdi (2015) reported that the levels of flavonoids in mature leaves were higher than medium and young leaves.26 The effect of differences in extract concentrations also affected the ability to inhibit bacterial growth. The greater the concentration, the greater the inhibitory ability of the extract.58

The length of time between the freshly picked leaves and the extraction process also affects the leaves’ chemical compounds. In this study, the leaves went through a shipping process until the drying process was over 24 hours. This gap causes the leaf wilting process to overtime. It is known, the length of withering time affects the decrease in water content, total phenol, tannin content, and
decreased antioxidant activity in leaves. The study result is in line with Putri’s (2018) research on the inhibition of robusta coffee leaf extract (Coffea canephora var. Robusta) on S. mutans growth. This study also used the maceration method and 96% ethanol solvent for extraction with variable concentrations of 25%, 50%, 75%, and 100%. Leaves taken from different areas and using the disc paper diffusion method showed that the robusta coffee leaf extract (Coffea canephora var. Robusta) could inhibit the growth of S. mutans at a concentration of 25%. However, Davis and Stout's classification of inhibition showed a weak category.

Murtafiah (2012) stated that the inhibition of robusta coffee bean extract (Coffea canephora var. Robusta) on the growth of S. mutans using maceration method and 97% ethanol solvent for the extraction process with variable concentrations respectively: 12.5%, 25%, 50%, and 100%. This study also used the well diffusion method to test for compound content. Each extract’s contents, one of which is selecting the solvent. The choice of a particular solvent is known to be influenced by the following factors: selectivity, solubility, density, reactivity, and boiling point. Besides, the extraction method can also affect the content of the extract constituent compounds. Each extract certainly shows advantages and disadvantages facts in the extraction process,

The selection of a different solvent and extraction method can produce different extract compound content.

CONCLUSION
Robusta coffee leaf extract (Coffea canephora var. Robusta) has an inhibitory power against the growth of S. mutans. The concentration of robusta coffee leaf extract (Coffea canephora var. Robusta) of 25%, 50%, and 75% can inhibit the weak category.

REFERENCES
[1]. Kementerian Kesehatan RI. Informasi Pusat Data dan Informasi Kesehatan RI. Jakarta Selatan: Pusat Data dan Informasi 2014.
[2]. Heymann HO, Swift Jr EJ, Ritter AV. Sturdevant’s Art & Science of Operative Dentistry-E-Book: Elsevier Health Sciences; 2014.
[3]. Fitriyanti A, Susilowati A, Darjono UN. Perbedaan Pola Konsumsi Ikan dan Status Kesehatan Gigi dan Mulut pada Anak Usia Sekolah Dasar (7-12 th) di daerah Pesisir dan Non Pesisir Kabupaten Jepara Tahun 2012. Odonto Dental Journal 2014;1(1):6-10.
[4]. Mount GJ, Hume WR, Ngo HC, Wolff MS. Preservation and Restoration of Tooth Structure: John Wiley & Sons; 2016.
[5]. Aas JA, Griffen AL, Dardis SR, et al. Bacteria of dental caries in primary and permanent teeth in children and young adults. Journal of Clinical Microbiology. 2008;46(4):1407-17.
[6]. Kuramitsu HK, He X, Lux R, Anderson MH, Shi W. Interspecies Interactions within Oral Microbial Communities. Microbiology and Molecular Biology Reviews. 2007;71(4):653-70.
[7]. Farah CS, McIntosh L, McCullough MJ. Mouthwashes. Australian Prescriber. 2009;32(6):162-4.
[8]. Tilaar VA, Kaseke MM. Uji Daya Hambat Ekstrak Biji Kopi Robusta (Coffea robusta) terhadap Pertumbuhan Enterococcus faecalis Secara In Vitro. e-Gigi 2016;4(2).
[9]. Setiawan EA, Muhammad DRA, Siswanti S. Pengaruh Penyangraian Daun Kopi Robusta (Coffea robusta) terhadap Karakteristik Kimia dan Sensory Minuman Penyegar. Jurnal Teknosains Pangan. 2015;4(2).
[10]. Anggraini, Ikatanti Ratna. 2017. Kemampuan Inhibisi Ekstrak Daun Kopi Robusta (Coffea canephora) Menggunaklan Pelarut Etanol terhadap Pertumbuhan Lactobacillus acidophilus. Fakultas Kedokteran Gigi. Universitas Jember.
[11]. Permatasari GAAA, Besung INK, Mahatmi H. Daya Hambat Perasan Daun Sirsak terhadap Pertumbuhan Bakteri Escherichia coli. Indonesia Medicus Veterinus. 2013;2(2):162-69.
[12]. Nurhayati. Penentuan Praktikum Mikrobiologi. Indralaya: Fakultas Pertanian, Universitas Sriwijaya; 2015.
[13]. Fitri L, Yasmin Y. Isolasi dan Pengamatan Morfologi Koloni Bakteri Kitinolitik. Jurnal Biologi Edukasi. 2013;3(2):20-25.
[14]. Alfath CR, Yulina V, Sunnati S. Antibacterial Effect of Granati fructus Cortex Extract on
Effect of robusta coffee leaves against S. mutans

Streptococcus mutans In Vitro. Journal of Dentistry Indonesia. 2013;20(1):5-8.

[15]. Davis W, Stout T. Disc Plate Method of Microbiological Antibiotic Assay I. Factors Influencing Variability and Error. Applied Microbiology 1971;22(4):659-65.

[16]. Rukmi M, Komariyah K. Metoda Baru Untuk Dekontaminasi Bakteri dengan Plasma Non Termik pada Tekanan Atmosfer. Berkala Fisika. 2005;8(3):91-98.

[17]. Wahyuni R, Guswandi G, Rivai H. Pengaruh Cara Pengeringan Dengan Oven, Kering Angin dan Cahaya Matahari Langsung terhadap Mutu Simplisia Herba Sambiloto. Jurnal Farmasi Higea. 2014;6(2):130.

[18]. Indonesia DKR. Cara Pembuatan Simplisia. Dirjen Jakarta: Pengawasan Obat dan Makanan. 1985.

[19]. Winangsih W, Prihastanti E, Parman S. Pengaruh Metode Pengeringan terhadap Kualitas Simplisia Lempuyang Wangi (Zingiber aromaticum L.). Buletin Anatomii dan Fisologi. 2013;21(1):19-25.

[20]. Tetti M. Ekstraksi, Pemisahan Senyawa, dan Identifikasi Senyawa Aktif. Jurnal Kesihatan. 2014;7(2).

[21]. Erisha AO. 2017. Kemampuan Daya Hambat Ekstrak Kering Buku Daun Kopi Robusta (Coffea canephora) Terhadap Pertumbuhan Candida albicans. Jember: Fakultas Kedokteran Gigi, Universitas Jember.

[22]. Anggraeni MA. Aktivitas Antibakteri Ekstrak Daun Kopi Arabika (Coffea arabica L) Terhadap Pertumbuhan Bakteri Staphylococcus aureus. Malang: Akademi Analisis Farmasiv dan Makanan Putra Indonesia; 2014.

[23]. Hadioetomo R. Teknik dan Prosedur Dasar Laboratorium Mikrobiologi. Jakarta: Gramedia. 1993.

[24]. Sari WP. 2017. Perbedaan Hasil Uji Kepekaan Salmonella typhi Menggunakan Muller Hinton Agar dan Nutrient Agar dengan Antibiotik Ampicillin, Ciprofloxacin dan Trimethoprim-Sulfamethoxazole. Universitas Muhammadiyah Semarang.

[25]. Prayoga E. 2013. Perbandingan Efek Ekstrak Daun Sirih Hijau (Piper betle L.) Dengan Metode Difusi Disk dan Sumuran terhadap Pertumbuhan Bakteri Staphylococcus aureus. Jakarta: Universitas Islam Negeri Syarif Hidayatullah.

[26]. Ramadhan BC, Aziz SA, Ghulamahdi M. Potensi Kadar Bioaktif yang Terdapat Pada Daun Kepel (Stelechocarpus burahol). Buletin Penelitian Tanaman Rempah dan Obat. 2016;26(2):99-108.

[27]. Laily FN. 2017. Pengaruh Lama Pelayuan dan Kondisi Daun terhadap Karakteristik Fisik, Kimia, serta Sensoris Teh Daun Tin (Ficus carica). Surakarta: Universitas Sebelas Maret.

[28]. Putri S. 2018. Daya Hambat Ekstrak Daun Kopi Robusta (Coffea canephora) Terhadap Pertumbuhan Streptococcus mutans. Fakultas Kedokteran Gigi, Universitas Jember.

[29]. Murtiafa A. 2012. Daya Hambat Ekstrak Biji Kopi Robusta (Coffea robusta) terhadap Streptococcus mutans (Penelitian Eksperimental Laboratoris). Fakultas Kedokteran. Universitas Jember.

[30]. Tiwari P, Kumar B, Kaur M, Kaur G, Kaur H. Phytochemical Screening and Extraction: A Review. Internationale Pharmaceutica Sciencia. 2011;1(1):98-106.