Design preferences for global scale: A mixed-methods study of “glocalization” of an animated, video-based health communication intervention.

Maya Adam (madam@stanford.edu)
Stanford University School of Medicine https://orcid.org/0000-0001-5563-421X

Rachel P Chase
Independent Researcher

Shannon A McMahon
Heidelberg University Institute of Global Health

Kira-Leigh Kuhnert
Stanford University

Jamie Johnston
Stanford University

Victoria Ward
Stanford University School of Medicine

Charles Prober
Stanford University School of Medicine

Till Bämighausen
Heidelberg University Institute of Global Health

Research article

Keywords: global health, health communication, health literacy, health education, human-centered design, community health promotion.

DOI: https://doi.org/10.21203/rs.3.rs-27339/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

Designing health communication interventions for global scaling reinforces health literacy promotion and facilitates time-sensitive global health messaging. Limited literature explores preferences for animation prototypes and other content characteristics across participants living in different global regions. Prior research underscores an urgent need for health communication interventions that are more compelling and accessible across diverse global cultures. This study provides valuable international insights and key considerations for health communicators and educators developing video-based, animated content intended for global distribution.

Methods

We used a mixed-methods, sequential explanatory design, drawing on participation via an international group of learners enrolled in a massive open online course. Through an online quantitative survey (n = 330), we sought preferences from participants in 73 countries for animation design prototypes to be used in video-based, globally scalable, health communication interventions. To learn more about these preferences, we conducted in-depth interviews (n = 20) with participants selected using maximum variation purposive sampling.

Results

For globally scalable interventions, most respondents preferred animation design prototypes that were free of cultural identifiers, especially when these were localized through familiar-sounding voiceovers. Across global regions, participants favored narrative approaches, short videos and family structures that were inclusive across age and gender.

Conclusions

This study summarizes preferences from participants in 73 countries for a variety of design prototypes that could be used in globally scalable, animated health communication videos. We also present novel content development considerations that could inform future interventions. Our findings suggest that global learners may be willing to accept simplified visuals, designed for broad cross-cultural acceptability, especially if the content is localized in other ways, such as the use of locally resonating narratives and voiceovers.

Background
Effective and accessible health communication media interventions are increasingly recognized as key strategies for increasing basic health literacy and promoting healthy behaviors.\(^1\)–\(^5\) Researchers have thus called on professionals in the related fields of health communication, health education and health literacy to join forces in developing interventions that are compelling and effective for promoting behavior change.\(^6\) A growing body of research also emphasizes the need to design communication interventions that are accessible across diverse global audiences.\(^1\),\(^3\),\(^6\),\(^7\) Key solutions could lie in designing interventions for “glocalization”, the adaptation of global content for local resonance.\(^8\)

Research suggests that health communication for global health literacy promotion needs to take into account cultural factors that may influence health in different target audiences. Thoughtful integration of these determinants has been identified as a cornerstone of effective interventions.\(^3\),\(^9\),\(^10\) If our goal is to promote health literacy globally, including reaching marginalized audiences, we must design health communication interventions from the outset with an appreciation for global cultural variation.\(^9\),\(^11\),\(^12\)

Socio-cultural considerations influencing message design, narrative, and visual elements require close attention when designing animated health communication interventions.\(^13\),\(^14\) Prior research on the use of animated videos to promote agricultural knowledge gains in low- and middle-income countries (LMIC), showed high long-term retention of information (98%) and solution adoption (89%).\(^15\) This research underscores the potential of animated videos, dubbed in local languages, to cost-effectively reach a broad range of global learners, including those facing literacy barriers and geographic isolation.\(^16\)

The Pilot Intervention in South Africa

In 2018, we created a video-based maternal child health communication intervention in collaboration with the South African National Department of Health. Our shared goal was to design and produce a series of story-based, short videos aimed at improving health literacy on key maternal-child health topics. The videos were also intended to optimally engage a broad spectrum of parents and caregivers across this culturally diverse country.\(^14\) In designing this intervention, the team faced several challenges:

1) We needed to effectively communicate key health messages, while overcoming literacy barriers and facilitating easy translation into different languages.

2) Our animation design prototypes needed to be universally acceptable while maintaining viewer engagement.

3) Since data costs in South Africa remain high, the videos needed to be small (2–10 MB) to facilitate equitable access for all communities.

4) To help viewers identify with characters and settings, we needed a protocol for glocalization, ie: localizing content that had been created for a broad, global audience.
A collection of existing approaches, combined with contemporary digital solutions, allowed us to address these challenges:

1) The use of narrative has shown great promise in the field of health communication, especially for populations with diverse literacy levels. Entertainment-education, storytelling, and testimonials are increasingly being deployed to communicate health messages, persuade and motivate behavior change.\(^4\)

2) Universal design for learning (UDL), a theoretical framework originally developed to accommodate those with learning differences, has been successfully applied to the design of culturally inclusive health literacy interventions.\(^3\)

3) The digital simplicity of vector-based, two-dimensional character animations facilitates compression into small files and optimization for mobile viewing.

4) The children's entertainment-education industry has demonstrated the great potential for glocalizing video content by capturing local, community voiceovers to enhance viewer identification with the content. Research documenting the glocalization of Sesame Street by the Children's Television Network, in the 1970's, demonstrated the power of a structured approach to local language dubbing. This involved collaboration with in-country educators and local voice artists, facilitating the global scaling of this iconic television series.\(^17,18\)

We integrated these approaches to facilitate glocalization, by featuring local voices,\(^19\) designing simple, vector-based characters for accessibility across audiences and integrating narratives in an entertainment-education approach. A major, underlying goal was to enhance emotional appeal and character identification, highlighted as important strategies in the behavior change, communication science, and education literature.\(^17,18,20-23\)

Following the launch of our pilot intervention\(^24\), we received requests to adapt some videos in the series for use in rural China, Guatemala, and Burkina Faso. While we had gathered in-country feedback from diverse local audiences during the development of the initial intervention in South Africa, we recognized a shortage of research on visual design preferences for health communication across global audiences. In this study, we use a mixed-methods approach to gain a broad sense of global design preferences, as well as a more nuanced understanding of those preferences. We summarize feedback from participants in 73 countries on a set of geographically and culturally non-specific prototypes. We also present novel content development considerations that have already served to inform the design of a globally scalable coronavirus disease (COVID-19) prevention intervention and could serve to inform similar interventions in the future. Especially in the midst of a global health crisis, the COVID-19 pandemic, the need for evidence-based, globally scalable, accessible and compelling health communication media has become increasingly clear.

Methods
During the development of the pilot intervention in South Africa, we applied a Human Centered Design (HCD) approach to the development of eight animation prototypes (see Fig. 1). HCD involves a process of rapid prototyping, iterative cycles of feedback from target audiences and re-design by the development team. The earliest formative feedback, shaping the development of the eight prototypes, was gathered within South Africa in 2018, through our interactions with the South African National Department of Health and a large community-based maternal child health organization engaged in community health promotion.

Mixed methods approach

In this study, we deployed a mixed-methods approach, using a sequential explanatory study design consisting of a quantitative survey of preferences, followed by qualitative in-depth interviews. We used the results of the quantitative survey to a) inform the selection of interview participants and b) develop the interview guide for the second phase of the study.

Quantitative survey of preferences

We recruited participants for the quantitative survey of preferences from a cohort of learners enrolled in a global, massive open online course, Stanford Introduction to Food and Health. The first author is lead instructor for this course, offered on Coursera, a massive open online learning platform serving more than 35 million learners worldwide. Learners enrolled in the Stanford Food and Health course represent more than 95 countries and enroll in cohorts, with a new cohort beginning every two weeks. In April 2019, we gauged interest in participating in a research study, among the most recent cohort of course completers. All learners who expressed interest in participating in research on health communication (n = 642) were invited to complete the preferences survey, where the 8 design prototypes were presented (see Fig. 1). We obtained informed consent digitally via an information sheet, sent to learners by email. Participants were not offered any financial or other incentives for their involvement. Three hundred and thirty participants, from 73 countries, completed the quantitative survey of preferences. The demographic characteristics of these participants are described in Table 1.

Characteristic	Gender Identity		Global Region		
	n=330	%	USA & Canada	n	
	female	80.0	105	31.8	
	male	19.4	56	17.0	
	prefer not to answer	0.6	49	14.8	
			Eastern Europe & Russia	28	8.4
			Middle East / North Africa	24	7.3
			Southeast Asia	24	7.3
			Sub-Saharan	20	6.1
			East Asia	13	3.9
			Oceania	6	1.8
			Prefer not to answer	5	1.5
			Participants living in countries characterized as low- or middle-income by the World Bank (2019)	129	39.1
Respondents sorted, ranked, and rated the prototypes in several ways to convey their preferences: they sorted prototypes into categories of would, might, or would not resonate with a global audience and then ranked, from most to least favorite, the prototypes in the “would resonate with a global audience” category. Participants then rated all prototypes on a 6-point scale and sorted them into three categories to indicate whether they expected the prototypes to resonate with people in their region (would likely resonate, might resonate, would not resonate). Using open-ended feedback and qualitative pile sorting, \(^{28}\) respondents also expressed their opinions on which prototypes they felt would be most likely to resonate globally.

Qualitative interviews

A majority (n = 224, 68%) of survey respondents indicated a willingness to participate in a follow-up in-depth interview. From those who volunteered, maximum variation purposive sampling\(^ {29}\) was used to select 20 respondents from whom we could elicit the widest variety of perspectives (across geographic location, gender, age, years of education, and style rating patterns).

Interview participants were shown short video animations incorporating the animation prototypes they had previously ranked in the online survey. They were also provided with a single-page reference document containing the eight prototypes and their corresponding names, as presented in the survey. Participants were asked to reference the video samples and the prototypes during interviews, which occurred over a two-month period following completion of the online survey. Participants were asked to describe why they felt drawn to or put off by certain prototypes, they were also asked to provide thoughts on characteristics that would be important for globally scalable content.

Interviews were conducted by a co-investigator who is a full-time staff member at Stanford’s Digital Medic South Africa program, a health education and evaluation team based in Cape Town, South Africa. We conducted regular debriefings with the co-investigator who conducted all 20 interviews, as recommended in the literature.\(^ {30}\) This helped to enhance interviewer skills as well as gaining early insights into emerging themes. As suggested by McMahon & Winch (2018)\(^ {30}\) debriefings also allowed us to rapidly share emerging data within our production teams and with collaborating stakeholders, thereby shaping the developmental trajectory of ongoing health communication projects. Following each interview, audio-recordings were uploaded and coded by two co-investigators and assessed for inter-coder reliability. The interviews were also transcribed and specific quotations relevant to each code were collected and organized in a shared Google Drive document. As themes emerged from the early interviews, the interview guide was adapted to include questions focused on these themes, including questions related to the use of a narrative approach to animated video health communication and qualities that make a narrated voiceover credible and engaging. Additional themes that emerged during the interview process included optimal video length, ideal number of learning objectives, as well as the portrayal of family roles in health communication videos. Grounded Theory was used to inform our decisions regarding the point at which saturation had been reached, namely when no new codes emerged and when additional interviews failed to lead to additional emerging themes.\(^ {31,32}\)
Results

Surveys

Most respondents indicated preferences for three or four of the eight design prototypes when asked which of these they felt would be most likely to resonate globally. Across the design prototypes, Mercury was most commonly preferred, with 62% of respondents categorizing it as “would resonate very well for global learners” and 46% ranking it as the first or second most-preferred design prototype. Earth was the second most preferred, with 60% of respondents categorizing it as globally resonant and 32% ranking it as the first or second most-preferred (see Fig. 2).

When assessed by region, Mercury and Earth were frequently ranked within the top three most preferred design prototypes. This preference was consistent for both local and global video interventions across respondents who lived in the USA & Canada, Western Europe, Latin America, the Middle East & North Africa, South Asia and Oceania. Respondents living in East Asia did not commonly include Mercury in their top three preference rankings and those in Sub-Saharan Africa tended to rank Saturn higher than Mercury, (see Fig. 3).

Of note, respondents in some regions indicated different preference rankings locally compared with the design prototypes they expected to resonate globally. For example, in East Asia and Latin America, respondents frequently expected Neptune to be preferred locally, but did not similarly anticipate it to resonate globally.

Similarly, when asked to sort all of the design prototypes respondents anticipated being preferred both regionally and globally, in a pile-sorting exercise, Mercury and Earth were most frequently included (68% and 67%, respectively). Six of the designs (Mercury, Earth, Saturn, Neptune, Venus and Uranus) were included by more than 50%. Respondents were also able to “dislike” designs they felt would not be preferred by local learners in their regions. Venus was disliked by 34% of respondents. Both Jupiter and Mars were disliked by more than 50% of respondents.

The star rating exercise produced similar results (Mercury, Earth and Saturn receiving the highest star ratings, Mars and Jupiter the lowest). A minority of respondents (14%) opted to provide no response to the star rating exercise (see Fig. 4).

Interviews

Several questions were consistently explored across all interviews. We asked respondents for their views on a variety of considerations applied to the design of animated content for global audiences. Within this context, respondents were probed regarding visual characteristics that either drew participants to certain characters or repelled them, as well as preferences regarding characters, backgrounds/settings and color choices.
Probing questions posed in the original structured interview guide elicited several primary themes that were directly related to design prototype preferences. Additionally, during the coding process, several new, secondary themes emerged. After noting these emerging themes, we adapted the interview guide to specifically probe on these topic areas. In this way, the interview guide became a living document, responsive to feedback from previous interviews. The investigators agreed that saturation had been reached when interviews 15–20 revealed no new codes, in line with definitions in the literature on qualitative in-depth interviews.31,32 Summaries of information gathered and codes generated are presented in Table 2.

Code	Summary
Glocalization	The majority of respondents felt that the simplification of character and setting representations was both acceptable to them and an effective strategy for designing visuals that would resonate cross-culturally. Several respondents suggested that simpler visual representations of characters facilitated the individual viewer’s projection of familiar identifiers onto the characters. A few respondents felt that extremely simple character representations might not be able to elicit the level of identification needed to transport the viewer in a way that facilitates audience engagement. Most respondents felt that the use of compelling voiceovers and narratives could help to overcome the challenges associated with simple, universally applicable imagery. In China, one respondent noted that videos reflecting obviously foreign characters and settings might elicit positive, aspirational sentiments, compared with those that are universal or familiar to the viewer. This hypothesis was not echoed by respondents in other countries. In both in-depth interviews and open-ended survey feedback, the prototypes that incorporated ethnic identifiers were more likely to be preferred within regions where those identifiers were felt to be familiar, but less preferred for global resonance.
Color	In general, respondents expressed a preference for high contrast or bright, solid colors as a means of supporting viewer engagement and also as a suggested way of making content accessible to those in need of visual accommodations. Respondents from different regions mentioned region-specific associations with select colors that should be taken into account when deciding on a universal color palate, (for example, one respondent felt that red might commonly be associated with death or danger among Korean audiences).
Family portrayals	Several respondents reflected on the importance of considering the potential variation in portrayals of “typical family” structures and depiction of traditional roles. This was specifically referenced with regard to gender norms regarding child caregiving roles. These respondents expressed a preference for inclusive representations of diverse family structures.
Voice	In general, respondents felt voiceovers should ideally be tailored to align closely with both local language and familiar-sounding voices in order to optimally enhance learner identification and engagement with the content. A minority of respondents expressed a fascination with the novelty of an unfamiliar accent but qualified this by noting that they felt many people would stop listening or dismiss messages delivered by a narrator with an unfamiliar accent. Many respondents felt that featuring a child’s voice within the narration was compelling. Some perceived benefits, noted by respondents, included: a) the neutrality/innocence of the child’s voice, b) the feeling that a child’s voice was considered “cute” and was therefore potentially less patronizing or directive than instructions coming from an adult. A minority of respondents felt that a child should only narrate videos for other children as a child’s voice would not carry the same authority as an adult’s voice.
Use of narration/stories	A majority of respondents expressed a preference for a narrative approach to instruction (vs. a more traditional approach focused on simply relaying information). These respondents felt that simple animations were effective as supporting visuals for narratives and could more effectively be universalized, while the voice of the narrator should ideally be tailored to the region.
Video length	Respondents expressed a preference for short (2-5min) videos for health communication purposes, with no more than 2-3 key messages per video.

Discussion

Continually evolving health communication approaches and technologies present new opportunities for delivering health information to global audiences. This becomes increasingly important during global public health crises, when evidence-based health information needs to be communicated quickly across
global regions. The ability to convey evidence-based health messages globally, including to remote or under-resourced communities, reflects a growing potential to address global health disparities in access to health information.5,33−37 However, the ultimate success of these innovations in health communication will depend on their capacity to be compelling, accessible and applicable for individuals with widely differing life experiences.

Applying Universal Design for Learning (UDL) principles to the practice of creating globally scalable digital health tools, is a potentially powerful strategy for improving access to health information.3 The UDL framework was originally developed to increase accessibility of educational materials for children with special needs.23 Certainly, we are not equating cultural affiliations with special needs. However, by considering the needs of all potential users of an intervention from the start (one of the core tenets of UDL), the design of health communication interventions becomes more accessible to a broader range of global audiences.23

Even when they reach the audiences who need them most, health communication interventions may fail when their behavior change messages arouse motivations to reject them. This phenomenon has been long-documented in the behavior change literature as the psychological reactance theory.38 The theory posits that a perceived threat to an individual’s behavioral freedom (ie: through external direction to change that behavior) can trigger attempts to re-establish a sense of freedom by actively engaging in the threatened behavior.38 Reactance can be measured and therefore modulated through thoughtful design of persuasive health messaging.39

The field of communication science offers powerful message design strategies for overcoming reactance and achieving behavior change, including recommendations around message framing, the use of narratives,4,40 and supporting visuals.41 Identification with the messenger can yield more persuasive messages than those in which the source of the message is perceived as dissimilar, foreign, or not admirable. Health messages that elicit emotion in the target audience, such as hope or compassion, can be particularly effective for changing behaviors through conviction rather than simple persuasion.41 Audiences who detect that emotional appeals are crafted primarily for the purpose of persuasion may reject the associated health messages.42,43 Additional research is needed to better inform the design of effective, animated health communication interventions optimized to reduce reactance. Questions also remain about how to craft video interventions that elicit emotion in ways that support engagement and underscore health messages. To this end, the thoughtful integration of narrative and entertainment-education may become even more important approaches to increasing health literacy and eliciting behavior change.4,9,44,45

Involving target audiences in the narrative development and delivery, ie: using a human-centered design approach, may support emotional appeal and identification with characters and messages. These have been highlighted as effective engagement strategies in the behavior change and communication science literature.14,25 We applied these strategies in the creation of our pilot intervention and the approach has
since been incorporated into the health delivery strategy of the South African National Department of
Health: 1) the Road to Health Campaign video series and 2) the “Grow Great” (maternal child health and
stunting reduction) video series, created in collaboration with South Africa’s DG Murray Trust. The
earliest prototypes of these animated videos were also part of the intervention arm of an ongoing
randomized controlled trial involving 84 community health workers and 1500 expecting mothers in South
Africa. Additional evaluations are urgently needed to better understand the potential for “glocalizable”
animated, video-based health communication interventions to improve knowledge, attitudes, behavioral
intentions, and ultimately health outcomes.

Conclusions

Rather than a set of fixed conclusions related to global preferences for design prototypes, we offer two
sets of considerations that will help to inform the development of more culturally versatile interventions.
These include:

a) The degree to which visuals need to be localized for each audience: Our data suggest that global
learners may be willing to accept simplified visuals, designed for broad cross-cultural acceptability. This
acceptance is enhanced if the content is localized in other ways, such as the use of locally resonating
voiceovers. Localizing the audio only can help to offset the relatively cost- and time-intensive process of
customizing visuals for multiple audiences. Care may need to be taken to ensure that social and familial
roles are represented in ways that are varied enough to be inclusive of the broadest possible audience.
This may mean, for example, including a variety of permutations of family structure or taking care not to
perpetuate gender stereotypes around childcare or the provision of food for the family. The goal should
be to design for the broadest audience. Approaches to glocalization, successfully used by the children’s
entertainment-education industry, include the addition of “cut-ins” or short segments of highly localized
video content added strategically at specified points in the video to help viewers identify with it. The
thoughtful use of color should also be considered, both with regard to the potential significance of certain
color choices in different global regions as well as the opportunity for color to be used in a way that
facilitates accommodation of learners with differing abilities. Color may also be used to enhance the
viewer experience on mobile devices, with contrasting colors being easier to differentiate on smaller
screens.

b) The degree to which voice and narrative need to be localized for each audience: Our data suggest a
general acceptance of narrative approaches to health education and communication. These findings
echo existing data that support the role of narrative approaches for health messaging. Narratives may
be especially appropriate when developed with input from the target audience, using a human-centered
design approach, and when accompanied by visuals that invite generalizations and facilitate the
creation of analogies by the learner. The use of narratives may also be a powerful way to support the
inclusion of audiences with limited literacy and those with rich oral traditions. Storytelling lies at the
foundations of the human experience and decades of research underscore its important role in education
and healthcare. The characteristics of the narrator need also be carefully considered and may vary by audience and content area. For example, harnessing the power of the child’s voice, especially for relevant topics like maternal-child health and nutrition, could be an innovative way of increasing engagement and overcome reactance towards behavior change messages. Larger-scale studies are needed to further explore this approach.

In this study, our main limitation was the fact that the platform, from which participants were recruited, does not reflect the breadth of socio-economic and educational diversity we ultimately hope to reach with our health communication interventions. Eighty percent of our study participants were female and 52% had more than 18 years of education. Coursera also attracts users with at least some English language fluency, although the course from which participants were recruited is offered in 5 languages. Finally, the users of an online learning platform like Coursera likely have a level of technology savviness and an openness to online learning that could influence their preferences for animation design prototypes. While our participant pool did afford us access to a global pool of culturally diverse learners, it is possible that our results are not representative of people around the world who would engage with video-based health communication.

With these limitations in mind, it is worth noting that while this manuscript was being prepared, the global coronavirus disease pandemic 2019 (COVID-19) led the World Health Organization to declare a global health emergency. We used data gathered during this study to inform the rapid development of an animated, global health communication video that could be used worldwide without adaptation. Within ten days, the resulting video had been viewed more than 1 million times on various social media platforms around the world.

By increasing the accessibility of evidence-based health recommendations, through the design of effective, quickly scalable video health communication tools, we can begin to meet the needs of our diverse global community. The associated social responsibility for providing equitable global access to these tools demands thoughtful, theory-driven, and evidence-based communication approaches – ones that will engage and empower people from different cultures and backgrounds. Designing health communication interventions, from the outset, with the potential for glocalization may prove to be both an ethical and a practical approach to improving health communication around the world.

Abbreviations

LMIC – low- and middle-income countries
UDL – Universal Design for Learning
COVID – Coronavirus Disease
HCD – Human-centered Design
Declarations

Ethics approval and consent to participate: This study has been granted ethics approval by the Stanford University Internal Review Board, (protocol #50975). Consent from each participant was obtained through online, written affirmation that the participant had read the information sheet and consented to take part in the study.

Consent for publication: Not applicable.

Competing interests: The authors declare that they have no competing interests.

Funding: This research was funded by the Stanford Center for Health Education, who funded the development of the intervention.

Availability of data and materials: The survey data that support the findings of this study are available from the corresponding author. All video interventions cited in this study are publicly available and can be accessed through the Digital Medic YouTube channel or by contacting the corresponding author.

Authors’ contributions: MA, CP, TB, SM and JJ led the intervention development and study design. KK, RC led the data collection. MA, KK, RC and VW conducted and advised on data analysis. MA, RC, SM and TB drafted and revised the early versions of the manuscript. All authors read and approved the final manuscript.

Acknowledgements: We wish to acknowledge the Philani Maternal Child Health and Nutrition Trust and the South African National Department of Health for collaborating on the development of the Road to Health video series in South Africa. We also wish to thank the Digital Medic creative team, who developed the animation prototypes as well as the donors who support them: the ELMA Foundation and the Paddock Family.

References

1. Aldoory L. The status of health literacy research in health communication and opportunities for future scholarship. Health Communication. 2017;32(2):211–8.
2. Sheridan SL, Halpern DJ, Viera AJ, Berkman ND, Donahue KE, Crotty K. Interventions for individuals with low health literacy: a systematic review. Journal of Health Communication. 2011;16(sup3):30–54.
3. Perlow E. Accessibility: global gateway to health literacy. Health Promotion Practice. 2010;11(1):123–31.
4. Hinyard LJ, Kreuter MW. Using narrative communication as a tool for health behavior change: a conceptual, theoretical, and empirical overview. Health Education Behavior. 2007;34(5):777–92.
5. Higgs ES, Goldberg AB, Labrique AB, et al. Understanding the role of mHealth and other media interventions for behavior change to enhance child survival and development in low-and middle-
income countries: an evidence review. Journal of Health Communication. 2014;19(sup1):164–89.

6. Allen MP, Auld E, Logan R, Montes JH, Rosen S. Improving collaboration among health communication, health education, and health literacy. NAM Perspectives. 2017.

7. Kreuter MW, McClure SM. The role of culture in health communication. Annu Rev Public Health. 2004;25:439–55.

8. Roudometof V. Glocalization: A Critical Introduction. Routledge; 2016.

9. Freimuth VS, Quinn SC. The contributions of health communication to eliminating health disparities. In: American Public Health Association; 2004.

10. Airhihenbuwa CO, Makoni S, Iwelunmor J, Munodawafa D. Sociocultural infrastructure: communicating identity and health in Africa. Journal of Health Communication. 2014.

11. Century IoMCoCfBCIts P, ItHoD. Speaking of health: Assessing health communication strategies for diverse populations. National Academy Press; 2002.

12. Barros AJ, Ronsmans C, Axelton H, et al. Equity in maternal, newborn, and child health interventions in Countdown to 2015: a retrospective review of survey data from 54 countries. The Lancet. 2012;379(9822):1225–33.

13. Isler J, Sawadogo NH, Harling G, et al. Correction: Iterative Adaptation of a Mobile Nutrition Video-Based Intervention Across Countries Using Human-Centered Design: Qualitative Study. JMIR mHealth uHealth. 2020;8(1):e17666.

14. Adam M, McMahon SA, Prober C, Bärnighausen T. Human-Centered Design of Video-Based Health Education: An Iterative, Collaborative, Community-Based Approach. Journal of Medical Internet research. 2019;21(1):e12128.

15. Bello-Bravo J, Abbott E, Mocumbe S, Maria R, Mazur R, Pittendrigh BR. An 89% solution adoption rate at a two-year follow-up: evaluating the effectiveness of an animated agricultural video approach. Information Technology for Development. 2019:1–14.

16. Bello-Bravo J, Dannon E, Agunbiade T, Tamo M, Pittendrigh B. The prospect of animated videos in agriculture and health: A case study in Benin. International Journal of Education and Development using ICT. 2013;9(3).

17. Cole CF, Richman BA, Brown SKM. The world of Sesame Street research. In: G Is for Growing. Routledge; 2014:169–202.

18. Moran KC. The global expansion of children's television: A case study of the adaptation of Sesame Street in Spain. Learning Media Technology. 2006;31(3):287–300.

19. Adam M. South African Road to Health Book Kangaroo Mother Care (National Department of Health). 2018; Direct link: https://youtu.be/iqZkrAhm-Hk.

20. Bernhardt JM. Communication at the core of effective public health. American Journal of Public Health. 2004.

21. Dillard JP, Shen L. The Sage Handbook of Persuasion. Sage; 2013.
22. O'Mara B. Social media, digital video and health promotion in a culturally and linguistically diverse Australia. Health Promotion International. 2012;28(3):466–76.

23. Rose DH, Meyer A. A Practical Reader in Universal Design for Learning. ERIC; 2006.

24. South African Road to Health Book Playlist (SA National Department of Health)
Playlist link
1ZfHfsQ&list=PLuhZ6_ONjglm5ZiXrWC8OJ_xudEylqlYU.
Adam M. South African Road to Health Book Playlist (SA National Department of Health). 2018; Playlist link: https://www.youtube.com/watch?v=DC8B1ZfHfsQ&list=PLuhZ6_ONjglm5ZiXrWC8OJ_xudEylqlYU.

25. Bazzano AN, Martin J, Hicks E, Faughnan M, Murphy L. Human-centred design in global health: A scoping review of applications and contexts. PloS One. 2017;12(11):e0186744.

26. Creswell JW, Clark VP, Garrett A. Advanced Mixed Methods Research. In: Handbook of Mixed Methods in Social and Behavioural Research. Thousand Oaks: Sage; 2003. pp. 209–40.

27. Adam M. Stanford Introduction to Food and Health. In: Coursera Online Learning Platform; 2016.

28. Hines AM. Linking qualitative and quantitative methods in cross-cultural survey research: Techniques from cognitive science. American Journal of Community Psychology. 1993;21(6):729–46.

29. Etikan I, Musa SA, Alkassim RS. Comparison of convenience sampling and purposive sampling. American Journal of Theoretical Applied Statistics. 2016;5(1):1–4.

30. McMahon SA, Winch PJ. Systematic debriefing after qualitative encounters: an essential analysis step in applied qualitative research. BMJ global health. 2018;3(5):e000837.

31. Given LM. 100 questions (and answers) about qualitative research. SAGE Publications; 2015.

32. Urquhart C. Grounded theory for qualitative research: A practical guide. Sage; 2012.

33. Aranda-Jan CB, Mohutsiwa-Dibe N, Loukanova S. Systematic review on what works, what does not work and why of implementation of mobile health (mHealth) projects in Africa. BMC Public Health. 2014;14(1):188.

34. Beratarrechea A, Lee AG, Willner JM, Jahangir E, Ciapponi A, Rubinstein A. The impact of mobile health interventions on chronic disease outcomes in developing countries: a systematic review. Telemedicine e-Health. 2014;20(1):75–82.

35. Labrique AB, Vasudevan L, Kochi E, Fabricant R, Mehl G. mHealth innovations as health system strengthening tools: 12 common applications and a visual framework. Global Health: Science Practice. 2013;1(2):160–71.

36. Lee SH, Nurmatov UB, Nwaru BI, Mukherjee M, Grant L, Pagliari C. Effectiveness of mHealth interventions for maternal, newborn and child health in low–and middle–income countries: Systematic review and meta–analysis. Journal of Global Health. 2016;6(1).

37. Sondaal SFV, Browne JL, Amoakoh-Coleman M, et al. Assessing the effect of mHealth interventions in improving maternal and neonatal care in low-and middle-income countries: a systematic review. PloS One. 2016;11(5):e0154664.
38. Brehm JW. A theory of psychological reactance. 1966.
39. Dillard JP, Shen L. On the nature of reactance and its role in persuasive health communication. Communication Monographs. 2005;72(2):144–68.
40. Gardner L, Leshner G. The role of narrative and other-referencing in attenuating psychological reactance to diabetes self-care messages. Health Communication. 2016;31(6):738–51.
41. Dillard JP, Pfau M. The persuasion handbook: Developments in theory and practice. Sage Publications; 2002.
42. Knowles ES, Linn JA. Resistance and Persuasion. Psychology Press; 2004.
43. Petty RE, Tormala ZL, Rucker DD. Resisting persuasion by counterarguing: An attitude strength perspective. 2004.
44. Shen F, Han J. Effectiveness of entertainment education in communicating health information: A systematic review. Asian Journal of Communication. 2014;24(6):605–16.
45. Slater MD, Rouner D. Entertainment—education and elaboration likelihood: Understanding the processing of narrative persuasion. Communication Theory. 2002;12(2):173–91.
46. Playlist link
 Adam M, Eley N, Johnston S, Walker K, Sanchez C, Kirton A, Mabaso K. Grow Great (Maternal Child Health and Stunting Reduction) Playlist. 2018; Playlist link: https://www.youtube.com/watch?v=NfIISiq7V8w&list=PLuhZ6_ONjglkZahkRyo5yuH0j6As0rwkq.
47. Adam M, Tomlinson M, Le Roux I, et al. The Philani MOVIE study: a cluster-randomized controlled trial of a mobile video entertainment-education intervention to promote exclusive breastfeeding in South Africa. BMC Health Services Research. 2019;19(1):211.
48. Murphy ST, Frank LB, Chatterjee JS, Baezconde-Garbanati L. Narrative versus nonnarrative: The role of identification, transportation, and emotion in reducing health disparities. Journal of Communication. 2013;63(1):116–37.
49. Niederdeppe J, Bu QL, Borah P, Kindig DA, Robert SA. Message design strategies to raise public awareness of social determinants of health and population health disparities. The Milbank Quarterly. 2008;86(3):481–513.
50. Haigh C, Hardy P. Tell me a story—a conceptual exploration of storytelling in healthcare education. Nurse Education Today. 2011;31(4):408–11.
51. Adam M. Global. COVID-19 Prevention Video. March 21, 2020, 2020. https://youtu.be/rAj38E7vrS8.

Figures
Figure 1

Design prototypes for animated health communication videos* * Note: prototypes were named after planets to facilitate discussing them without appearing to rank the prototypes (as with Prototype 1, Prototype 2, etc.) and without highlighting any specific feature of the prototype.
Figure 2

Percentage of respondents categorizing each design prototype by likelihood of global resonance
Figure 3

Preference rankings by region of design prototypes expected to resonate globally and locally by respondents

Region	Preferred for Global Video Interventions	Preferred for Local Video Interventions				
	1st	2nd	3rd	1st	2nd	3rd
USA & Canada	Mercury	Saturn	Earth	Mercury	Saturn	Earth
Western Europe	Earth	Mercury	Saturn	Earth	Mercury	Saturn
Latin America	Mercury	Earth	Saturn	Neptune	Earth	Uranus
Eastern Europe & Russia	Mercury	Earth	Neptune	Earth	Mercury	Neptune
Middle East North Africa	Mercury	Earth	Saturn	Neptune	Earth	Uranus
South Asia	Earth	Mercury	Venus	Earth	Mercury	Venus
Sub-Saharan Africa	Saturn	Mercury	Venus	Saturn	Mercury	Venus
East Asia	Earth	Neptune	Uranus	Neptune	Uranus	Mercury
Oceania	Earth	Uranus	Mercury	Neptune	Uranus	Mercury
Unknown Region	Mercury	Earth	Venus	Neptune	Venus	Saturn

6 stars | 5 stars | 4 stars | 3 stars | No response

- **Mercury**
- **Earth**
- **Saturn**
- **Venus**
- **Uranus**
- **Neptune**
- **Jupiter**
- **Mars**
Figure 4

Number of respondents that assigned ratings of 6 stars (best) through 1 star (worst) by design prototype.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- COVIDpreventionSoM.mov
- Kangarootexture.h264720.mp4