Alternative evolutionary histories in the sequence space of an ancient protein

Tyler N. Starr1, Lora K. Picton2 & Joseph W. Thornton2,3

To understand why molecular evolution turned out as it did, we must characterize not only the path that evolution followed across the space of possible molecular sequences but also the many alternative trajectories that could have been taken but were not. A large-scale comparison of real and possible histories would establish whether the outcome of evolution represents an optimal state driven by natural selection or the contingent product of historical chance events1; it would also reveal how the underlying distribution of functions across sequence space shaped historical evolution2–3. Here we combine ancestral protein reconstruction4 with deep mutational scanning5–10 to characterize alternative histories in the sequence space around an ancient transcription factor, which evolved a novel biological function through well-characterized mechanisms11,12. We find hundreds of alternative protein sequences that use diverse biochemical mechanisms to perform the derived function at least as well as the historical outcome. These alternatives all require prior permisive substitutions that do not enhance the derived function, but not all require the same permissive changes that occurred during history. We find that if evolution had begun from a different starting point within the network of sequences encoding the ancestral function, outcomes with different genetic and biochemical forms would probably have resulted; this contingency arises from the distribution of functional variants in sequence space and epistasis between residues. Our results illuminate the topology of the vast space of possibilities from which history sampled one path, highlighting how the outcome of evolution depends on a serial chain of compounding chance events.

We applied deep mutational scanning to the DNA-binding domain of a reconstructed ancestral steroid hormone receptor, whose historical trajectory of functional, genetic, and biochemical evolution is well understood. Steroid receptors are transcription factors that mediate the action of sex and adrenal steroids by binding to specific DNA sequences and regulating expression of target genes. The two major clades of receptors differ in their DNA specificity (Fig. 1a): oestrogen receptors prefer an inverted palindrome of AGGTCA (oestrogen response element, ERE)13, whereas receptors for androgens, progestogens, and corticosteroids prefer AGAACA (steroid response element, SRE)14. Although some degeneracy is tolerated, these sequences represent the high-affinity consensus sites for each class13,14 and have therefore been the focus of extensive biochemical characterization15–18. Previously, we reconstructed the ancestral protein from which all steroid receptors descend (AncSR1) and found that it specifically binds ERE11,12. After AncSR1 duplicated, one daughter protein diverged in function to yield AncSR2, which prefers SRE. Re-introducing three substitutions from the historical interval radically shifts the relative affinity of AncSR1 from ERE to SRE, and this effect is robust to uncertainty about the ancestral sequence19. These substitutions are located on the protein's recognition helix (RH), which directly contacts the response element's major groove15–17. Although they shift specificity, the RH substitutions alone reduce affinity below that required to activate transcription. Another eleven substitutions (11P) outside the RH that occurred during this evolutionary interval were permissive, increasing affinity for both ERE and SRE, allowing the protein to tolerate the function-switching RH substitutions11.

To characterize alternative ways by which SRE specificity could have evolved (Fig. 1a), we focused on the RH, the only portion of the protein that directly contacts the nucleotides that vary between ERE and SRE. We prepared a library containing all 160,000 combinations of all 20 amino acids at four key sites in the RH: the three that historically shifted DNA specificity, plus a physically adjacent lysine that varies among the broader receptor superfamily (Fig. 1b). The library was constructed in AncSR1 + 11P, the genetic background that enabled the historical RH substitutions to alter DNA specificity. We engineered yeast reporter strains in which ERE or SRE drives expression of a fluorescent GFP reporter and showed that GFP activation directly relates to DNA affinity (Extended Data Fig. 1a)18. We transformed the library into each reporter and used fluorescence-activated cell sorting coupled to deep sequencing (FACS-seq) to quantify binding of each variant in the library to ERE or SRE (Extended Data Figs 1–3 and Extended Data Table 1). We classified genotypes as ERE-specific, SRE-specific, promiscuous, or inactive; results of all subsequent analyses were robust to the specific classification criteria (Extended Data Table 2).

We found 828 new RH variants that are SRE-specific, binding SRE as well or better than the historical outcome and displaying no activity on ERE (Fig. 1c). These alternative SRE-specific genotypes use amino acids with diverse biochemical characteristics (Fig. 1d), and they discriminate between SRE and ERE using different physical contacts (Fig. 1e, f and Extended Data Fig. 4). For example, the historical outcome (RH sequence GSKV) binds SRE in part by polar contacts from Lys28 to nucleotides A1 and G2, but the alternative outcome KAAI makes no polar contacts using residue 28, instead hydrogen bonding from Lys25 to A1, G2, and the opposite-strand nucleotide T-3 (Fig. 1e). It also exhibits novel mechanisms of ERE-exclusion: whereas GSKV leaves the hydrogen bonding potential of C-3 unsatisfied, KAAI also leaves G2 and T4 unpaired, because Ala28—unlike Lys28 of GSKV—cannot bond to G2, and Ile29 interferes with a hydrogen bond to T4 made by the conserved Arg33 residue (Fig. 1f and Extended Data Fig. 4c).

The historical outcome is therefore not unique in its genetic or biochemical mechanism of SRE specificity, but it might have been uniquely accessible from the ancestral RH. To investigate the distribution of functions across sequence space, we constructed a force-directed graph of functional RH variants (Fig. 2a). Each node represents a functional RH genotype, and edges connect nodes separated by one non-synonymous nucleotide mutation (steps). Although the vast majority of RH variants are non-functional, virtually all of the 1,351 functional variants are part of a single connected network that can be traversed without visiting non-functional genotypes2. The network contains clusters of densely interconnected variants that share distinguishing amino-acid states, with epistasis and the structure of the genetic code separating the clusters. ERE-specific, SRE-specific, and promiscuous
Figure 1 | Diverse sequences and mechanisms can yield the derived DNA specificity. a, The historical transition in DNA-binding specificity in steroid receptors occurred during a known phylogenetic interval and was caused by three changes in the protein's recognition helix (RH), which required permissive substitutions (11P)11. We searched for other RH mutations (RH') that could have produced the derived function in the reconstructed ancestral background, before or after 11P. The DNA response element and protein RH sequence of each clade on the protein family phylogeny (residues 24–33) is shown; underlined, historically variable states. ERs, oestrogen receptors; SRs, other steroid receptors. Reconstructed ancestral proteins are coloured by their previously determined response element preference. b, FACs-seq assay for steroid receptor DNA recognition. Libraries of 160,000 RH variants were synthesized in the AncSR1 and AncSR1+11P backgrounds and cloned into yeast carrying an integrated ERE- or SRE-driven GFP reporter. Red Xs indicate variable residues in the RH. Each variant's activity was estimated by FACs-sorting cells transformed with the library, using deep sequencing to determine the distribution of each RH variant across fluorescence bins, and then estimating the mean fluorescence of cells carrying each variant. RE, response element. c, GFP activation on ERE and SRE by each variant in the AncSR1, AncSR1+11P-GSKV and AncSR1+11P-GSVK strains. d, Frequency of residues at each position in ER- and SRE-specific variants; n, number of variants in each class. Residues are coloured by biochemical category: red, acidic; blue, basic; magenta, polar uncharged; black, large non-polar; green, small non-polar. Residues and site numbers in AncSR1 and AncSR2 are shown. e, f, Diverse biochemical mechanisms for recognition of SRE (e) or ERE (f) by the historical derived RH (GSKV) and an alternative SRE-specific variant (KAASI). Contacts in structural models are shown between RH residues (circles) and DNA. Arrows, hydrogen bonds from donor to acceptor; dotted lines, non-bonded contacts. Red squares, bases that hydrogen bond in EGKA-ERE but are unsatisfied in these complexes. Only RH-DNA contacts that differ among complexes are shown (see Extended Data Fig. 4).

Figure 2 | Evolvability of SRE specificity in an ancestral sequence space. a, Force-directed graph shows the functional topology of the RH sequence space in the AncSR1+11P background. Nodes, all functional RH variants, coloured by specificity as in Fig. 1c; yellow, SRE-specific variants that are accessible from ancestral genotype EGKA in three or fewer mutational steps (the length of the historical trajectory). Edges, single non-synonymous nucleotide mutations. Clusters of densely connected nodes (grey arcs) are labelled by their defining genetic features; X, variable sites within a cluster. Historical ancestral and derived RH genotypes are indicated. b, Distribution of ERE-specific nodes (starting points) by number of SRE-specific nodes (outcomes) reached in three or fewer steps. Black, starting points that reach zero outcomes because epistasis results in non-functional intermediates7,8. c, Distribution of outcomes by number of starting points that reach it in three or fewer steps. Black, outcomes reached from zero starting points because of epistasis; white, because all starting points are more than three non-synonymous mutations away. d, Distribution of pairs of starting points by the frequency of outcomes within three or fewer steps that are shared. Black, pairs with zero shared outcomes because of epistasis; white, because starting points are too far apart to reach the same genotypes; hatched, because no mutually accessible genotypes are SRE-specific.
Distributions differ between the networks (multiple equally short paths contribute proportionally to each category.) the accessibility of the derived specificity and its dependence on starting point. We constructed and characterized the same four-site combinatorial RH library, this time in the AncSR1 background without 11P (Figs 1a and 3a and Extended Data Fig. 1). Removing 11P dramatically reduces the number of functional variants (Fig. 3b) and the connectivity of the network (Fig. 3c). Unlike the AncSR1 + 11P sequence space, many functional variants in AncSR1 are isolated and therefore cannot be reached from most other genotypes without passing through non-functional intermediates. Still, most functional RHs—including the ancestral RH (EGKA)—are interconnected in the primary subnetwork, where many SRE-specific RHs are accessible. Therefore, although the historically derived RH genotype GSKV requires the historical permissive substitutions, other genotypes with the derived specificity could have evolved without 11P. But trajectories in the AncSR1 sequence space are more complex. The shortest path from the ancestral RH to any SRE-specific variant is five steps long, compared to just one step in AncSR1 + 11P. Further, all paths require permissive RH steps that do not enhance SRE activity, and all paths require promiscuous intermediate genotypes (Extended Data Fig. 7a, b). Thus, without the historical permissive substitutions, other permissive mutations would have been required for SRE specificity to evolve from the ancestral genotype.

The 11P substitutions enhanced the accessibility of SRE specificity not only from the ancestral genotype but from all ERE-specific starting points. Whereas virtually all starting points in the AncSR1 + 11P network could access at least one SRE-specific node without passing through non-functional intermediates, over a quarter of ERE-specific variants in AncSR1 have no path to the derived specificity, and those that can access SRE specificity require longer paths (Fig. 3d). Removing the historical permissive substitutions also increases the proportion of ERE-specific starting points that require a permissive step before acquiring SRE activity (Fig. 3e). And, unlike the AncSR1 + 11P network, every path from ancestral to derived specificity in AncSR1 must pass through a promiscuous intermediate (Fig. 3e).

Finally, we investigated the mechanism by which the historical permissive substitutions enhanced the potential for evolution across the RH sequence space. The 11P substitutions were broadly permissive, increasing the number of SRE-specific genotypes in the network by a factor of 20 (Fig. 3b). Previous work suggests that increases in protein stability sometimes mediate generalized permissive effects, but 11P have been shown not to increase the stability of AncSR1 (ref. 11). We previously proposed that 11P permitted the historical RH substitutions by non-specifically increasing affinity for both response elements, which would explain the broadly permissive effect of 11P on many RH genotypes. This hypothesis makes four testable predictions, all of which are corroborated by our experiments. First, RH variants that do not depend on 11P to yield SRE specificity should have greater SRE affinity than those that require 11P, whether or not 11P are present; we compared the predicted affinity and FACS-seq mean fluorescence of all 11P-independent and 11P-dependent SRE-specific variants and found that this prediction holds true (Fig. 4a and Extended Data Fig. 8a–d). Second, 11P should not change the genetic determinants of binding within the RH; as predicted, the most enriched residues among SRE-specific variants do not change between the two networks, but 11P weakens the preference for some tolerated states over others (Fig. 4b and Extended Data Fig. 8e). Third, 11P should not change the biochemical mechanisms by which the RH confers specificity, a prediction we tested by identifying the biochemical properties at each RH site that predict specificity for ERE and SRE (Extended Data Fig. 8f); we found that the determinants of SRE specificity are not dramatically altered by 11P (Fig. 4c). Fourth, if 11P non-specifically enhance affinity by all RHs, they should add new functional genotypes across sequence space; we found that the set of variants permitted by 11P are not localized to some region of the network but instead surround the sparser set of variants that functioned independently of 11P (Fig. 4d, e). As a result, the non-specific effect of 11P on affinity enhanced the connectivity of the ancestral sequence.
network, increasing the number of paths from ERE to SRE specificity and reducing their length and complexity.

Our results shed light on the roles of determinism and chance in protein evolution. The primary deterministic force is natural selection, which drives the evolution of forms that optimize fitness. Chance appears in two non-exclusive ways: as historical contingency, when the accessibility of some outcome depends on prior events that cannot be driven by selection for that outcome; and as stochasticity, when there are paths to numerous possible genotypes of similar function, and which one is realized is random (Extended Data Fig. 7c). Previous work has shown that historical function-switching substitutions in some proteins were contingent on prior permissive substitutions, but the overall roles of chance and determinism in the evolution of a new function can be understood only by characterizing other ways by which the function could have evolved. Our results point to strong stochasticity and contingency in the many histories by which SRE specificity could have evolved. Hundreds of genotypes encoding SRE specificity were accessible from AncSR1, but selection for that function alone could not have deterministically driven evolution down any of those paths, because all were contingent on permissive mutations—either the historical 11P or alternative permissive mutations within the RH. Which particular permissive mutations happened to occur determined which SRE-specific genotypes then became accessible. Further, given some permissive set of first steps, paths to numerous SRE-specific genotypes typically become available. Thus, evolution of any particular SRE-specific outcome—including the one that evolved during history—is contingent on the initial stochastic acquisition of some set of permissive mutations, followed by the subsequent stochastic realization of one of many possible ways to encode the derived function. These serial stochastic choices result in compounding contingency, magnifying the role of chance in evolution.

Some aspects of real and counterfactual history cannot be reconstructed, but our conclusions are likely to be robust to major forms of uncertainty. For example, the precise probability of any trajectory depends on population size and on the relationship between molecular function and fitness, but neither of these is known. Still, we found that contingency and stochasticity were important not only under scenarios emphasizing purifying selection and drift, but also under those favouring determinism, such as when selection drives continuous enhancement of the derived function or allows affinity within only a narrow range. Second, sequence space is so vast that we could explore only a limited portion. But contingency and stochasticity are likely to remain important when larger regions are considered. If these unexplored regions contain additional trajectories to SRE-specific outcomes, then the role of stochasticity in the choice among options would be even more important. Moreover, contingency on starting point arising from the distribution of SRE-specific genotypes across sequence space would persist even if new potential outcomes were discovered, and it would be magnified if those outcomes were even more distant than those we characterized. Finally, the dependence on permissive mutations that we observed would be eliminated only if there is a mutation at some other site that could somehow confer SRE activity on AncSR1 in a single step; this seems implausible, because all other residues are distant from the variable bases.

Despite the abundance of accessible SRE-specific genotypes near the ancestral and derived RHs (Extended Data Fig. 5d, e), the genotype that historically evolved is conserved among present-day descendants. It is possible that some unknown property made this sequence selectively superior to the many genotypes we found that are at least as effective at recognizing SRE and excluding ERE. But it could also be conserved because of factors that accumulated after it evolved. For example, a substitution can become epistatically entrenched by subsequent restrictive substitutions at other sequence sites. A transcription factor’s sequence may also become pleiotropically entrenched by subsequent mutations in the ensemble of response elements it binds. If one of the many alternative SRE-specific outcomes had instead evolved from the ancestral protein by chance, it too could have been subsequently locked in, yielding conservation and the illusion that it evolved deterministically. The singularity of the present seems to rationalize the past. History leaves no trace of the many roads it did not take, or of the possibility that evolution turned out as it did for no good reason at all.

Online Content Methods, along with any additional Extended Data display items and Source Data, are available in the online version of the paper; references unique to these sections appear only in the online paper. Received 23 March; accepted 8 August 2017. Published online 13 September 2017.

1. Monod, J. Chance and Necessity: An Essay on the Natural Philosophy of Biology (Vintage Books, 1972).
2. Maynard Smith, J. Natural selection and the concept of a protein space. Nature 255, 563–564 (1970).
3. Wagner, A. Neutralism and selectionism: a network-based reconciliation. Nat. Rev. Genet. 9, 965–974 (2008).
4. Hochberg, G. K. A. & Thornton, J. W. Reconstructing ancient proteins to understand the causes of structure and function. Annu. Rev. Biophys. 46, 247–269 (2017).
5. Fowler, D. M. et al. High-resolution mapping of protein sequence-function relationships. Nat. Methods 7, 741–746 (2010).
6. Hietpas, R. T., Jensen, J. D. & Bolon, D. N. A. Experimental illumination of a fitness landscape. Proc. Natl Acad. Sci. USA 108, 7896–7901 (2011).
7. Podgornaia, A. I. & Laub, M. T. Pervasive degeneracy and epistasis in a protein-protein interface. Science 347, 673–677 (2015).
8. Wu, N. C., Dai, L., Olson, C. A., Lloyd-Smith, J. O. & Sun, R. Adaptation in protein fitness landscapes is facilitated by indirect paths. eLife 5, e19965 (2016).
9. Aakre, C. D. et al. Evolving new protein-protein interaction specificity through promiscuous intermediates. Cell 163, 594–606 (2015).
10. Sarkisyan, K. S. et al. Local fitness landscape of the green fluorescent protein. Nature 533, 397–401 (2016).
11. McKeown, A. N. et al. Evolution of DNA specificity in a transcription factor family produced a new gene regulatory module. Cell 159, 58–68 (2014).
12. Anderson, D. W., McKeown, A. N. & Thornton, J. W. Intermolecular epistasis shaped the function and evolution of an ancient transcription factor and its DNA binding sites. *eLife* **4**, e07864 (2015).

13. Carroll, J. S. et al. Genome-wide analysis of estrogen receptor binding sites. *Nat. Genet.* **38**, 1289–1297 (2006).

14. Watson, L. C. et al. The glucocorticoid receptor dimer interface allosterically transmits sequence-specific DNA signals. *Nat. Struct. Mol. Biol.* **20**, 876–883 (2013).

15. Luisi, B. F. et al. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. *Nature* **352**, 497–505 (1991).

16. Schwabe, J. W., Chapman, L., Finch, J. T. & Rhodes, D. The crystal structure of the estrogen receptor DNA-binding domain bound to DNA; how receptors discriminate between their response elements. *Cell* **75**, 567–578 (1993).

17. Zilliacus, J., Carlstedt-Duke, J., Gustafsson, J. A. & Wright, A. P. Evolution of distinct DNA-binding specificities within the nuclear receptor family of transcription factors. *Proc. Natl Acad. Sci. USA* **91**, 4175–4179 (1994).

18. Bain, D. L. et al. Glucocorticoid receptor-DNA interactions: binding energetics are the primary determinant of sequence-specific transcriptional activity. *J. Mol. Biol.* **422**, 18–32 (2012).

19. Eick, G. N., Bridgham, J. T., Anderson, D. P., Harms, M. J. & Thornton, J. W. Robustness of reconstructed ancestral protein functions to statistical uncertainty. *Mol. Biol. Evol.* **34**, 247–261 (2017).

20. Bloom, J. D., Gong, L. I. & Baltimore, D. Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. *Science* **328**, 1272–1275 (2010).

21. Gong, L. I., Suchard, M. A. & Bloom, J. D. Stability-mediated epistasis constrains the evolution of an influenza protein. *eLife* **2**, e00631 (2013).

22. Harms, M. J. & Thornton, J. W. Evolutionary biochemistry: revealing the historical and physical causes of protein properties. *Nat. Rev. Genet.* **14**, 559–571 (2013).

23. Starr, T. N. & Thornton, J. W. Epistasis in protein evolution. *Protein Sci.* **25**, 1204–1218 (2016).

24. Dickinson, B. C., Leconte, A. M., Allen, B., Esvelt, K. M. & Liu, D. R. Experimental interrogation of the path dependence and stochasticity of protein evolution using phage-assisted continuous evolution. *Proc. Natl Acad. Sci. USA* **110**, 9007–9012 (2013).

25. Ortlund, E. A., Bridgham, J. T., Redinbo, M. R. & Thornton, J. W. Crystal structure of an ancient protein: evolution by conformational epistasis. *Science* **317**, 1544–1548 (2007).

26. Harms, M. J. & Thornton, J. W. Historical contingency and its biophysical basis in glucocorticoid receptor evolution. *Nature* **512**, 203–207 (2014).

27. Natarajan, C. et al. Predictable convergence in hemoglobin function has unpredictable molecular underpinnings. *Science* **354**, 336–339 (2016).

28. Shah, P., McCandlish, D. M. & Plotkin, J. B. Contingency and entrenchment in protein evolution under purifying selection. *Proc. Natl Acad. Sci. USA* **112**, E3226–E3235 (2015).

29. Bridgham, J. T., Ortlund, E. A. & Thornton, J. W. An epistatic ratchet constrains the direction of glucocorticoid receptor evolution. *Nature* **461**, 515–519 (2009).

30. Lynch, M. & Hagner, K. Evolutionary meandering of intermolecular interactions along the drift barrier. *Proc. Natl Acad. Sci. USA* **112**, E30–E38 (2015).

Supplementary Information is available in the online version of the paper.

Acknowledgements We thank J. Bridgham and B. Metzger for technical advice, members of the Thornton laboratory past and present for comments, the University of Chicago’s Flow Cytometry and Genomics Cores, and E. Thomas for poetic inspiration. This work was supported by National Institutes of Health R01GM104397 and R01GM121931 (J.W.T.), T32-GM007183 (T.N.S.), UL1-TR000430, and a National Science Foundation Graduate Research Fellowship (T.N.S.).

Author Contributions T.N.S. and J.W.T. conceived the project, designed experiments, and wrote the paper. L.K.P. and T.N.S. designed and performed experiments, and wrote the paper. L.K.P. and T.N.S. performed experiments and analysed data.

Author Information Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of the paper. Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Correspondence and requests for materials should be addressed to J.W.T. (joet1@uchicago.edu).

Reviewer Information Nature thanks J. Bloom, A. de Visser, and D. Weinreich for their contribution to the peer review of this work.
Oligonucleotide sequences used for cloning and sequencing are included in Supplementary Table 1. We constructed yeast reporter strains containing yeast enhanced GFP (yeGFP) under the control of a minimal CEN3 promoter with two upstream ERE or SREpalindromes, integrated into the ade2 locus\(^1\). Colony PCR and Sanger sequencing confirmed correct integration, and we confirmed the presence of ERE-yeGFP or SRE-yeGFP in yeast using fluorescence microscopy. Yeast aliquots were thawed on ice, added to 500 ml SC-His + D, and grown for 12 h at 30 °C and 225 r.p.m. Cells were diluted to 0.25 A\(_{600nm}\) in 500 ml SC-His + R, and grown for an additional 12 h at 30 °C and 225 r.p.m. Cells were then diluted to 0.25 A\(_{600nm}\) in 200 ml SC-His + G to induce DBD expression, and grown for 24 h at 30 °C and 225 r.p.m. Induced cells were spun at 3,000 × g for 5 min, frozen to −160 °C for 1 h, and thawed in 3 × 10\(^5\) cells per milliliter in 1 × TBS, passed through a 40 μm nylon cell strainer, and stored on ice for sorting. Alongside each library induction, we induced isogenic controls expressing known DBDs according to the same protocol but at 3 ml volumes.

Each library was sorted into four bins on a BD FACSAria II. Initial gates were drawn to isolate homogenous cells and exclude doublets, using SSC/SSC and FSC-H/FSC-A scatterplots (Extended Data Fig. 2). We assigned sort gate boundaries to the AncSR1+ SRE library to correspond to the observed mean fluorescence of a stop-codon-containing variant, of AncSR1+11P:GSKV, and AncSR1+11P:GGKA, the variant with the highest previously known activation; these gates yielded four bins that captured 45%, 45%, 9.5%, and 0.5% of the library population, respectively. Gates for other libraries were assigned to yield the same bin sizes. To calibrate the arbitrary-unit fluorescence scales of sorting experiments conducted on different days, we transformed fluorescence values by a linear model fitted to the relationship between mean fluorescence of reference isogenic cultures induced and analysed in parallel to each library sorting experiment. Cells were sorted into SC-His + D with 34 μg ml\(^{-1}\) chloramphenicol to prevent bacterial contamination and stored on ice until ~10\(^6\) cells were sorted. An aliquot of sorted cells from each bin was serially diluted and plated to estimate colony-forming unit recovery (Extended Data Table 1). Remaining cells were suspended to an estimated 200,000 cells per milliliter in SC-His + D + chloramphenicol, and grown for 16 h at 30 °C and 225 r.p.m. Plasmids were extracted from each outgrowth according to the protocol of ref. 39, which was scaled up 16-fold for bins 1 and 2, eighthfold for bin 3, and threefold for bin 4 to avoid bottlenecks. Extracted plasmids were estimated to be present at a concentration of 2 × 10\(^9\) plasmids per microlitre by comparing bacterial transformation efficiencies of yeast-extracted plasmid with pUC19 and bacterial-purified plasmid standards.

Sequencing and processing. We used PCR to amplify the variable RH region from post-sort plasmid aliquots; primers appended in-line barcodes to identify the experiment and sort bin, along with binding sites for sequencing primers and Illumina flow cell adaptor sequences (Supplementary Table 1). Barcodes were of different lengths to stagger reads across clusters and were assigned to bins to optimize the distribution of base calls at each position during the initial rounds of sequencing. Multiple barcodes were used for bins 1 and 2, which contained the majority of cells. For each bin–barcode combination, PCR was conducted in eight replicate 50-μl aliquots, with 10 μl of plasmid template, 10 μl × 5×HF buffer, 1 μl 10 mM dNTPs, 2.5 μl 100 μM forward and reverse primer, and 0.5 μl Phusion polymerase per reaction. PCRs were assembled on ice, transferred to a thermocycler block preheated to 98 °C, and subjected to 20 PCR cycles with 60 °C annealing. PCRs were gel-purified, quantified via BioAnalyzer and qPCR, and then pooled for sequencing according to the relative numbers of cells acquired in each bin. Single-end 30 bp reads spanning the barcode and RH sequence were acquired on an Illumina HiSeq2500.

We discarded sequence reads with an average Phred score <30 and sequences that did not align perfectly to the barcode and insert portion of the template. Reads were demultiplexed by barcode and further processed using tools from the FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). RH variants with inconsistent read numbers between barcodes in the same bin were considered uncharacterized for that entire experiment. This procedure yielded filtered read counts in each sort bin greater than the number of cells sorted into that bin (Extended Data Table 1). To estimate the number of cells of a genotype that were sorted into a bin, we divided the number of sequence reads of a genotype in a bin by the average number of reads per cell in that bin.

Estimating mean fluorescence and standard error. We estimated the mean fluorescence of each variant in the library from the distribution of its reads across fluorescence sort bins using a maximum likelihood approach\(^41\). We first assessed the fit of various distributions to the observed per-cell fluorescence of a series of isogenic cultures of different RH genotypes analysed in isolation via flow cytometry, and found the logistic distribution to have the best fit by Akaike information criterion (Extended Data Fig. 1b, c). We then used the ‘ldistitrus’ package\(^42\) in R to
find the maximum likelihood mean fluorescence for each library variant given its distribution of cell counts across sort bins, the fluorescence boundaries of those bins, and the logistic distribution; this approach explicitly takes into account the fact that the fluorescence of a cell within a sort is not precisely measured and has been shown to be an unbiased approach for estimating underlying activities in FACS-seq analyses. Estimates of mean fluorescence from the FACS-seq library characterization were compared between independent replicates (Extended Data Fig. 1d). Interval-censored per-cell observations from the two independent replications were pooled, and the maximized likelihood mean fluorescence for each variant estimated from these pooled data. These final estimates were compared with fluorescence observed directly for isogenic cultures of randomly selected clones from each library, which were isolated post-sort, genotyped, re-induced in isogenic cultures, and analysed via flow cytometry according to the protocol above (Extended Data Fig. 1e).

We estimated the standard error of mean fluorescence (s.e.m.) for genotypes on the basis of their depth of coverage (number of cells sampled) in two ways. First, we estimated s.e.m. from stop-codon-containing variants in each library by grouping them according to their depth of coverage and calculating the standard deviation of the sampling distribution of estimated mean fluorescence for variants in each group. Second, we leveraged variability in the mean fluorescence estimates from the two replicate FACS-seq experiments for each library; using coding variants for which the number of cells sampled between replicates is within 20% of each other, we calculated the difference between the estimate of mean fluorescence from the pooled data and the estimates from each of the two replicates, grouped variants by their average depth of coverage for the two replicates, and calculated the standard deviation of the distribution of differences for each group. Every variant in the library was then assigned the s.e.m. for the appropriate coverage depth group. These two approaches yielded a similar relationship between s.e.m. and sampling depth, but the second approach estimated higher s.e.m. at higher coverage depths (Extended Data Fig. 1g), to be conservative, we therefore used the second approach for further analyses.

Classifying strength of activation on each response element. We used mean fluorescence estimates to classify the strength with which each library variant bound to ERE and SRE using non-parametric comparisons with distributions of reference genotypes. A variant was classified as active on a response element if its mean fluorescence was significantly greater than that of stop-codon-containing variants contained in the library for: for each variant, the P value for the null hypothesis that a variant was inactive was calculated as the proportion of stop-codon-containing variants of similar sampling depth with greater mean fluorescence than that of the variant of interest; variants were labelled ‘active’ if the null hypothesis could be rejected at a 5% false discovery rate (using the Benjamini–Hochberg procedure) or ‘inactive’ if the null hypothesis could not be rejected. Each active variant was then subclassified as a weak or strong activator by comparing its mean fluorescence to that of the relevant ancestral genotypes (AncSR1:EGKA on ERE, or AncSR1+11P:GSKV on SRE). Specifically, for each active variant we performed a test of non-inferiority within an equivalence margin of 20% of the range between the average mean fluorescence of stop-codon-containing variants and the mean fluorescence of the ancestral reference. This test compares the mean fluorescence of a variant of interest with the fluorescence of cells with the relevant ancestral genotype, shifted to 80% of the range between the mean of stop-codon-containing variants and the ancestral reference. To determine whether a variant’s fluorescence was greater than the shifted ancestral reference, we generated 10,000 bootstrap replicates from the shifted distribution of ancestral cellular fluorescence, with replicate size of similar sampling depth to the variant of interest; the mean fluorescence of each bootstrap replicate was calculated using the FACS gates and maximum likelihood procedure described above. The P value for the null hypothesis that a variant was a weak activator was calculated as the proportion of bootstrap replicates with s.e.m. on the basis of coverage depth to calculate a P value that a variant was inactive or weakly active given a normal distribution, rejecting each null hypothesis at a 5% false discovery rate as above. When appropriate, ordinal logistic regression models were re-trained to predict missing genotypes under each scheme. These alterations made no qualitative differences to our conclusions (Extended Data Table 2).

Extrapolation to missing genotypes. Classification of variants that are rare in the library may not be reliable. We examined how agreement in classification between FACS-seq replicates is affected by sampling depth, and we found that the probability that a variant is classified as positive in one replicate if it is classified as positive in the other depends on sampling depth below 15 cells (Extended Data Fig. 1f). We therefore considered variants with 15 or fewer cells to be experimentally unresolved, accounting for 2.0–8.8% of all variants across the four DBD/response element combinations (Extended Data Table 1). To predict the classification of these variants, we used a continuation ratio ordinal logistic regression model that predicted the probability that a variant was strong, weak, or inactive from its genotype, trained on the empirical classification of all the determined genotypes in the library. We modelled amino-acid states as potentially contributing first-order main effects (20 states × 4 positions = 80 parameters) and pairwise epistatic effects (20 × 20 = 400 parameters). We fitted the observed classifications in each library using a coordinate-descent fitting algorithm with L₁ penalization, as implemented in the ‘glmnet’ package in R. We used tenfold cross-validation to determine the quality of model predictions and to select the penalization parameter λ. We set λ = 10⁻⁵ to obtain a high true positive rate without compromising the positive predictive value (Extended Data Fig. 3).

Classifying response element specificity. The specificity of each variant was determined from its functional classification on ERE and SRE. ERE-specific variants are strong on ERE and inactive on SRE; SRE-specific variants are strong on SRE and inactive on ERE; promiscuous variants are strong on one response element and strong or weak on the other; and non-functional variants are not strong on either response element. The false positive rate was very low, with no stop-codon-containing variants classified as functional. AncSR1+11P:EGKA is classified as promiscuous, because it has very strong ERE activity and SRE activity that is very weak but statistically distinguishable from background, consistent with previous observations.

A small number of RH variants were unexpectedly inferred to be functional in AncSR1 but non-functional in AncSR1+11P (Extended Data Fig. 8a–c). To validate this observation, we re-clustered the three SRE-specific variants with the largest reduction in fluorescence when 11P were included (CARY, HABY, HPRM) and assessed their SRE activation in the AncSR1 and AncSR1+11P backgrounds in isogenic cultures by flow cytometry; for comparison, we also validated a putatively 11P-independent genotype (KASM) and two 11P-dependent variants (SPKM, YGKQ), alongside GSKV for reference. Inductions were conducted in triplicate, each from an independent transformant. Classifications of the three comparison genotypes were all confirmed; however, the three genotypes that were putatively restricted by 11P showed no reduction in fluorescence in this assay, indicating that they were falsely classified as non-functional in the AncSR1+11P FACS-seq assay (Extended Data Fig. 8c). Notably, the predictive logistic regression correctly predicts that these three variants are strong SRE-binders in the AncSR1+11P background. These three variants manifested strong growth defects in the AncSR1+11P background, even in the ERE strain in which they do not activate GFP expression.

Robustness of results to classification method. We tested the robustness of our conclusions to alternative methods for classifying variants as functional. These included the following: (A) using the internal library AncSR1:EGKA mean fluorescence estimated by FACS-seq as the reference level of AncSR1 activation on ERE; (B) increasing the margin of equivalence to 50% of the activity difference between ancestral and stop-codon-containing variants; (C) classifying any active variant (weak or strong) as functional; (D) using the 80% mark of the range from stop-codon-containing to ancestral variants as a hard threshold rather than a null hypothesis for statistical testing; (E) defining functional variants as between 80% and 120% of the ancestral activity, so that extremely strong binders were classified as non-functional; (F) using predicted classifications for all variants, with experimental classifications used only to train predictive models; (G) using no predicted classifications, and labelling all undetermined genotypes as non-functional; (H) using for each variant the strongest functional class as predicted or determined by experiment; (I) using the experimental classification for a variant only if it was identical between replicates and predicting all others; and (J) using the per-variant thresholds as thresholds between ancestral and stop-codon-containing variants (Hamada et al., 1993).
exclusion of less connected nodes. Force-directed graph layouts were constructed with the ForceAtlas2 method in LinLog mode, Gravity 1.0, and Scaling 0.8 (AncSR1) or 0.125 (AncSR1 + 11P).

We used the ‘igraph’ package46 in R to characterize the set of paths between functional nodes. A step was defined as a non-synonymous nucleotide mutation between two functional variants; synonymous mutations within a single node were not considered as contributing to trajectory length. The graph was directed, so that trajectories could proceed from ERE to SRE specificity directly or via a promiscuous intermediate (Fig. 1). Selection of intermediates5 and functional reversals were not allowed, but ‘neutral’ steps within a functional class were allowed. Epistasis was inferred when the shortest path between two nodes was longer than the minimum genetic distance between genotypes3; epistasis could arise because the state at one site specifically modulated the functional effect of some state at another site or because of nonlinearity in the genotype–phenotype map47, such as the threshold we used to classify variants as functional.

The distributions of shortest path length to SRE specificity from ERE-specific starting points in the AncSR1 and AncSR1 + 11P networks were compared using a Wilcoxon rank-sum test with continuity correction, as observations were not normally distributed. The number of ERE-specific starting points in each network that required permissive steps and/or promiscuous intermediates on their shortest path to SRE specificity was compared via a χ² test. All categories had an expected value of 5 or greater.

To compare genotypic states among outcomes reached from different ERE-specific starting points, we calculated the frequency distribution of amino-acid states at each sequence site for the set of outcomes reached from each starting point; we then calculated the Jensen–Shannon (J–S) distance between these distributions for pairs of starting points. To capture a true amino-acid state distribution across outcomes, we only considered ERE-specific starting points that accessed at least 15 outcomes (the median across all ERE-specific starting points). We compared these observed J–S distances with a null expectation of J–S distances in the absence of structure in sequence space, in which we randomly sampled two sets of variants from all possible SRE-specific outcomes according to the same sample sizes used in each real comparison, and calculated the J–S distance between these randomly sampled distributions.

We also considered a regime in which SRE-binding affinity is under strong selection, such that SRE-binding affinity is required to increase with each step; such a scenario has a strong potential to make evolution deterministically favour a single outcome. In this scheme, a step from one genotype to a neighbour was allowed only if the lower bound of the 90% confidence interval of the neighbour’s mean SRE fluorescence, estimated from its mean and s.e.m., was greater than the upper bound of the confidence interval of the starting genotype (indicating P < 0.02, ref. 48). We then calculated the probability of each accessible trajectory using two previously described models48, in the equal fixation model, any step that enhances SRE affinity from a particular node is equally likely to occur; in the correlated fixation model, the probability that an SRE-affinity-enhancing step occurs is directly proportional to the degree to which it increases SRE mean fluorescent, relative to the other SRE-enhancing steps available from the given node. A summary of the biochemical properties of the amino-acid states at each of its four variable RH sites specifically modulated the functional effect of some state at another site or because of nonlinearity in the genotype–phenotype map47, such as the threshold we used to classify variants as functional.

The predicted binding energies of 11P-dependent and 11P-independent variants were compared using a non-parametric Wilcoxon rank-sum test with continuity correction, as data were not normally distributed. This test was conducted independently for energies predicted using the AncSR1 and AncSR2 structures.

To compare these same groups as directly estimated in FACS-seq, a Wilcoxon rank-sum test with continuity correction was used, as data were not normally distributed.

To characterize the diversity in biochemical mechanisms of SRE specificity, we analysed FoldX models of the ten most active SRE-specific variants that were selected from a particular node is equally likely to occur; in the correlated fixation model, the probability that an SRE-affinity-enhancing step occurs is directly proportional to the degree to which it increases SRE mean fluorescent, relative to the other SRE-enhancing steps available from the given node. A summary of the biochemical properties of the amino-acid states at each of its four variable RH sites specifically modulated the functional effect of some state at another site or because of nonlinearity in the genotype–phenotype map47, such as the threshold we used to classify variants as functional.

To compare these same groups as directly estimated in FACS-seq, a Wilcoxon rank-sum test with continuity correction was used, as data were not normally distributed.

To characterize the diversity in biochemical mechanisms of SRE specificity, we analysed FoldX models of the ten most active SRE-specific variants that were identified in our AncSR1 + 11P FACS-seq experiment. We modelled binding to SRE using the AncSR2/SRE structure as described above and binding to ERE using the crystal structure of the AncSR2. EGKA DBD bound to ERE (PDB 4OND), with water and non-zinc ions removed and optimized using the RepairPDB function. To illustrate protein–DNA contacts made in each structural model, we used NUCPLOT50 to identify all hydrogen bonds with distances < 3.35 Å between non-hydrogen atoms and non-bonded packing contacts < 3.90 Å. Summary figures display the union of contacts made by a residue in either of the half sites of the response element palindrome; we only illustrate residues whose contacts vary among the analysed structures.

To ensure structural inferences converge, we built each SRE- and ERE-bound FoldX model a second time. We observed convergence in all polar contacts (and non-polar contacts inferred in Fig. 1) and in the NUCPLOT 5.0 sample test with continuity correction was used, as data were not normally distributed. This test was conducted independently for energies predicted using the AncSR1 and AncSR2 structures.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

31. Fox, J. E., Bridgham, J. T., Bovee, T. F. H. & Thornton, J. W. An evolvable oestrogen receptor activity sensor: development of a modular system for integrating multiple genes into the yeast genome. Yeast 24, 379–390 (2007).
32. Mumborg, D., Müller, R. & Funk, M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156, 119–122 (1995).
33. Gietz, R. D. & Woods, R. A. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polypeolyethylene glycol method. Methods Enzymol. 304, 14–19 (2000).
34. R Core Team: R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2016).
35. Mugggeo, V. M. R. segmented: an R package to fit regression models with broken-line relationships. R News 8, 20–25 (2008).
36. Sluder, A. E., Mathews, S. W., Hough, D., Yin, V. P. & Maina, C. V. The nuclear receptor superfamily has undergone extensive proliferation and diversification in nematodes. Genome Res. 9, 103–120 (1999).
37. Ireland, J. & Hish, J. M., C. M. An improved yeast transformation method for the generation of very large human antibody libraries. Protein Eng. Des. Sel. 23, 155–159 (2010).
38. Scanlon, T. C., Gray, E. C. & Griswold, K. E. Quantifying and resolving multiple vector-encoded protein–DNA interactions in S. cerevisiae plasmid libraries. BMC Biotechnol. 9, 55 (2009).
39. Fowler, D. M., Stephany, J. J. & Fields, S. Measuring the activity of protein variants on a large scale using deep mutational scanning. Nat. Protocols 9, 2267–2284 (2014).
40. Mir, K., Neuhau, K., Bossert, M. & Schaper, S. Short barcodes for next generation sequencing. PLoS ONE 8, e82933 (2013).
41. Peterman, N. & Levine, E. Sort-seq under the hood: implications of design choices on large-scale characterization of sequence-function relations. BMC Genomics 17, 206 (2016).
42. Delignette-Muller, M. L. & Dutang, C. fitdistrplus: an R package for fitting distributions. J. Stat. Softw. 64, http://dx.doi.org/10.18637/jss.v064.i04 (2015).
43. Archer, K. J. & Williams, A. A. A. L1 penalized continuation ratio models for ordinal response prediction using high-dimensional datasets. Stat. Med. 31, 1464–1474 (2012).
44. Vega Yon, J., Fábrega Lacoa, J. & Kunst, J. B. rgexf: build, import and export GEXF graph files. R package version 0.15.3. https://CRAN.R-project.org/package=rgexf (2015).
45. Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. In Int. AAAI Conference on Weblogs and Social Media, vol. 8, 361–362 (Association for the Advancement of Artificial Intelligence, 2009).
46. Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJ. Complex Syst. 1695, 1–9 (2006).
47. Sailer, Z. R. & Harms, M. J. Detecting high-order epistasis in nonlinear genotype-phenotype maps. Genetics 205, 1079–1088 (2017).
48. Knol, M. J., Pestman, W. R. & Grobbee, D. E. The (mis)use of overlap of confidence intervals to assess effect modification. Eur. J. Epidemiol. 26, 253–254 (2011).
49. Schymkowitz, J. et al. The FoldX web server: an online force field. Nucleic Acids Res. 33, W382–W388 (2005).
50. Luscombe, N. M., Laskowski, R. A. & Thornton, J. M. NUCPLOT: a program to generate schematic diagrams of protein-nucleic acid interactions. Nucleic Acids Res. 25, 4940–4945 (1997).
51. Schymkowitz, J. W. H. et al. Prediction of water and metal binding sites and their affinities by using the Fold-X force field. Proc. Natl Acad. Sci. USA 102, 10147–10152 (2005).
52. Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).
53. Abriata, L. A., Palzkill, T. & Dal Peraro, M. How structural and physicochemical determinants shape sequence constraints in a functional enzyme. PLoS ONE 10, e0118684 (2015).
54. Paternoster, R., Brame, R., Mazerolle, P. & Piquero, A. Using the correct statistical test for the equality of regression coefficients. Criminology 36, 899–866 (1998).
Extended Data Figure 1 | Design and validation of a yeast FACS-seq assay for steroid receptor DNA-binding function. a, GFP activation in ERE (purple) and SRE (green) yeast reporters correlates with previously measured protein–DNA binding affinity \(^{11,12}\). Asterisk, stop-codon-containing variant. Dashed line, best fit segmented-linear relationship between GFP activation and \(\log_{10}(K_{a,\text{mac}})\). b, Histogram of the per-cell green fluorescence for AncSR1 on ERE measured via flow cytometry, fitted to a logistic distribution (dashed line). c, Distributions providing the best fit to flow cytometry data for isogenic cultures of 101 DBD variants, using Akaike information criterion. d, Comparisons of mean fluorescence estimates between FACS-seq replicates of each protein/response element combination. Black points, coding RH variants; light grey, stop-codon-containing variants. \(R^2_{\text{pos}}\), squared Pearson correlation coefficient for variants with mean fluorescence significantly higher than stop-codon-containing variants in either or both replicates. e, Comparisons between mean fluorescence as determined in FACS-seq and via flow cytometry analysis of isogenic cultures for a random selection of clones from each library. Dashed line, best-fit linear regression. f, Robustness of classification to sampling depth. Variants were binned according to the minimum number of cells with which they were sampled in either replicate. Below 15 cells sampled (dashed line), the probability that a variant called active in one replicate was also called active in the other is dependent on sampling depth; to minimize errors due to sampling depth, we eliminated as ‘undetermined’ all variants with fewer than 15 cells sampled after pooling replicates. g, Standard error of mean fluorescence estimates (s.e.m.) in each library as a function of sampling depth. Top: for each background, the relationship between s.e.m. and sampling depth for ERE (purple) and SRE (green) libraries, as estimated from the sampling distribution of stop-codon-containing variants (dotted lines) or variability in mean fluorescence estimates between replicates (solid lines). Bottom: the cumulative fraction of coding variants in each library having a certain number of cells sampled in the pooled data.
Extended Data Figure 2 | Representative FACS gates for library sorting.

a, A scatterplot of side-angle scattering (SSC-A) and forward-angle scattering (FSC-A) selects for a homogenous cell population (P1).

b, A scatterplot of the height of the per-cell forward scatter peak (FSC-H) and the integrated area of this peak (FSC-A) excludes events where multiple cells pass through the detector simultaneously (P2).

c, Final sort bins (P3–P6) are drawn on the distribution of green fluorescence (FITC-A).

d, Table showing the hierarchical parentage of sort gates and the percentage of events that fall in each bin.
Extended Data Figure 3 | Models to predict the function of missing genotypes. For each protein/response element combination, a continuation ratio ordinal logistic regression model was constructed to predict the functional class of a variant as a function of its four RH amino-acid states, including possible first-order main effects and second-order pairwise epistatic effects. Tenfold cross-validation was used to select the penalization parameter λ and evaluate performance. **a,** **b,** True positive rate (left, TPR, the proportion of experimental positives that are predicted positive) and positive predictive value (right, PPV, the proportion of predicted positives that are experimentally positive) are shown as a function of λ for AncSR1+11P on ERE. Classifications were evaluated for (a) all active (weak and strong) versus inactive variants and (b) strong active versus weak active and inactive variants. Grey dotted lines, cross-validation replicates; solid line, mean. Dashed line shows the chosen value of $\lambda = 10^{-5}$; as λ continues to decrease beyond $\lambda = 10^{-5}$, the true positive rate plateaus but positive predictive value continues to decline. **c,** The number of non-zero parameters included in each model as a function of λ. Dashed line, $\lambda = 10^{-5}$. **d,** Summary of performance metrics from tenfold cross-validation for each model with $\lambda = 10^{-5}$. Accuracy is the proportion of predicted classifications (strong, weak, and inactive) that match their experimentally determined classes.
Extended Data Figure 4 | Biophysical diversity in DNA recognition.
a, b, Diverse mechanisms for recognition of SRE (a) or ERE (b) by the historical RH genotypes (GSKV and EGKA) and alternative SRE-specific variants. Contacts from FoldX-generated structural models are shown between RH residues (circles) and DNA bases (letters), backbone phosphates (small circles) and sugars (pentagons, numbered by position in the DNA motif; dashed numbers refer to the complementary strand). Hydrogen bonds are shown as dashed arrows from donor to acceptor; dotted lines, non-bonded contacts. Red squares, bases that
form hydrogen bonds in the EGKA-ERE structure that are unsatisfied in complex with an SRE-specific RH; red circles, side chains with polar groups that are not satisfied in complex with ERE. Only DNA contacts that vary among the analysed structures are shown. c, Large side chains at position 29 correlate with the loss of a conserved R33 hydrogen bond to ERE. For ERE-bound structural models, the distance of the Arg33 guanidinium hydrogen to the ERE T4 carbonyl oxygen was measured and compared with the atomic volume of the residue at position 29 in that variant.
Extended Data Figure 5 | The ancestral RH (EGKA) and derived RH (GSKV) can access many SRE-specific outcomes by short paths in AncSR1+11P. a, Concentric rings contain RH genotypes of minimum path length one, two, or three steps from AncSR1+11P:EGKA (centre). The historical outcome (GSKV, boxed, bottom) is accessible through a three-step path (EGKA–GGKA–GGKV–GSKV). Alternative SRE-specific outcomes accessible in three or fewer steps are in green. Lines connect genotypes separated by a single non-synonymous nucleotide mutation; lines among genotypes in the outer ring are not shown for clarity. Orange arrows indicate paths of significantly increasing SRE mean fluorescence. b, For trajectories indicated by orange arrows in a, SRE mean fluorescence is shown versus mutational distance from AncSR1+11P:EGKA (with x-axis jitter to avoid overplotting). Grey lines connect variants separated by single-nucleotide mutations. Error bars, 90% confidence intervals. Green dashed line, activity of AncSR1+11P:GSKV on SRE. c, For the SRE-specific outcomes accessed in orange paths in a, the probability of each outcome under models where the probability of taking a step depends on the relative increase in SRE mean fluorescence (correlated fixation model), or where any SRE-enhancing step is equally likely (equal fixation model). d, The historical outcome (GSKV) has SRE-specific single-mutant neighbours. Concentric rings contain SRE-specific RH genotypes of path length one or two steps from AncSR1+11P:GSKV (centre). Lines connect genotypes separated by a single non-synonymous nucleotide mutation; lines among genotypes in the outer ring are not shown for clarity. e, The distribution of SRE mean fluorescence of SRE-specific neighbours of AncSR1+11P:GSKV illustrated in d. Error bars, 90% confidence intervals.
Extended Data Figure 6 | Evolvability of SRE specificity in an ancestral sequence space.

a. Alternative ERE-specific starting points reach SRE-specific outcomes with very different amino-acid states. For each starting point accessing at least 15 outcomes (the median of all starting points), the frequency profile of amino-acid states at each RH site was determined for the set of SRE-specific outcomes reached in three or fewer steps; for each pair of starting points, the Jensen–Shannon (J–S) distance between profiles was calculated. Blue curve, distribution of pairs of starting points by J–S distances of the outcomes they reach; grey, distribution of J–S distances between profiles for randomly sampled sets of SRE-specific variants. In each modal peak, the amino-acid frequency profiles for outcomes reached by a representative pair of ERE-specific starting points are shown.

b–d. Contingency in the accessibility of individual SRE-specific outcomes remains when path lengths longer than the historical trajectory are considered. Plots are equivalent to Fig. 2b–d but for trajectories of increasing length.
Extended Data Figure 7 | The historical starting point cannot access the derived function without permissive mutations.

a. AncSR1 RH functional network layout as in Fig. 3c, with the shortest paths from AncSR1:EGKA to SRE specificity highlighted. The ancestral RH (EGKA) can access SRE specificity. However, all trajectories are at least five steps long, require permissive RH changes that confer no SRE activity (for example, K28R and G26A), and proceed through promiscuous intermediates.

b. For paths highlighted in a, SRE mean fluorescence is shown versus mutational distance from AncSR1:EGKA; grey lines connect variants separated by single-nucleotide mutations. Error bars, 90% confidence intervals. Green dashed line, activity of AncSR1+11P:GSKV on SRE. AncSR1:EGKA was represented by only seven cells in the SRE library, so its FACS-seq SRE mean fluorescence estimate is unreliable (and its classification was thus inferred by the predictive model).

In isolated flow cytometry experiments, its SRE mean fluorescence was indistinguishable from null alleles; the decrease in SRE mean fluorescence from step 0 to step 1 suggested by this figure is therefore more probably a flat line (no change in SRE activity).

c. Stochasticity and contingency in trajectories of functional change. Diagrams illustrate paths from a purple starting point (left) to possible green outcomes (right). In a deterministic trajectory (i), a particular genotype encoding the green function will evolve deterministically if selection favours acquisition of the green function and only that genotype is accessible. The outcome of evolution is stochastic (ii) if multiple outcomes are accessible, so which one occurs is random. An outcome is contingent (iii) if its accessibility depends on the prior occurrence of some step that cannot be driven by selection for that outcome. Contingency and stochasticity can occur independently (ii and iii), or they can co-occur in serial (iv).
Extended Data Figure 8 | See next page for caption.
Extended Data Figure 8 | The effect of historical permissive substitutions is mediated by non-specific increases in affinity.

a–d. The 11P substitutions non-specifically increase transcriptional activity as measured by FACS-seq, consistent with FoldX predictions of effects on binding affinity. **a.** Classification of SRE-specific variants as 11P-dependent (orange) and 11P-independent (yellow) on the basis of their functions in AncSR1 and AncSR1+11P backgrounds. Icons for individual variants specifically assessed in **b** and **c** are shown. **b.** FACS-seq mean fluorescence estimates for 11P-dependent (orange) and 11P-independent (yellow) RH variants in the AncSR1 (left) and AncSR1+11P (right) backgrounds, shown as box-and-whisker plots as in Fig. 4a. Icons represent variants validated in **c.** P values, Wilcoxon rank-sum test with continuity correction. The mean fluorescence of 11P-independent genotypes is significantly higher in the AncSR1 background but not in AncSR1+11P. **c.** Validation of apparently restrictive effect of 11P on some genotypes. For three variants non-functional in AncSR1+11P but SRE-specific in AncSR1 FACS-seq assays (×), we measured mean fluorescence of isogenic cultures by flow cytometry. We also assayed variants SRE-specific in AncSR1+11P and SRE-specific (square) or non-functional (open circle) in AncSR1, as validation controls. Isogenic mean fluorescence is represented as mean ± s.e.m. from three replicate transformations and inductions analysed via flow cytometry. All FACS-seq classifications were validated except for the three apparently restricted variants in AncSR1+11P (highlighted in red), which are in fact strong SRE-activators in this background. Each of these variants was predicted to be a strong SRE-binder on the basis of its genotype, but had an artificially low FACS-seq mean fluorescence estimate, perhaps because of a strong growth defect in inducing conditions. **d.** After removing the three genotypes with inaccurate FACS-seq fluorescence measurements (×), 11P-independent genotypes have significantly higher mean fluorescence than 11P-dependent genotypes in the AncSR1+11P background, consistent with a non-specific permissive mechanism via affinity. P values, Wilcoxon rank-sum test with continuity correction. **e.** The 11P substitutions do not alter the genetic determinants of SRE specificity. Each plot shows, for a variable site in the library, the frequency of every amino-acid state in two functionally defined sets of variants. Spearman's ρ for each correlation is shown. The top row shows that the determinants of SRE specificity are similar in AncSR1 and AncSR1+11P libraries; the bottom row shows a much weaker relationship between the determinants of SRE and ERE specificity within the AncSR1+11P library. **f.** Biochemical determinants of ERE and SRE specificity in the AncSR1 (top) and AncSR1+11P (bottom) backgrounds. A multiple logistic regression model predicts the probability that a variant is response-element-specific from the biochemical properties of its amino-acid state at each of the four variable RH sites. The coefficients of this model represent the change in log-odds of being ERE-specific or SRE-specific per unit change in each property. Asterisks indicate site-specific determinants that differ significantly between ERE and SRE specificity in each background (Z test, P < 0.05).
Extended Data Table 1 | Library sampling statistics

numer	bacterial transformation yield (cfu)	yeast transformation yield (cfu)	smallest bottleneck during FACS induction (cfu)	bin 1 count (cfu)	bin 2 count (cfu)	bin 3 count (cfu)	bin 4 count (cfu)	total number cells recovered post-sort (cfu)	bin 1 read count	bin 2 read count	bin 3 read count	bin 4 read count	read:cfu > 1 for all bins?	median number of cells sampled with >15 variants	median number of cells sampled with >15 variants		
AncSR1 +RH pool 1 &¹	2.32e7	6.31e6	3.46e6	2.02e7	3.38e7	3.22e6	4.74e6	5.77e7	2.75e7	3.64e7	3.32e6	2.01e7	yes	55.4	0.780	61.1	0.757
AncSR1 +RH pool 2 &¹	8.63e6	2.56e6	1.36e7	1.61e7	2.82e6	1.56e5	3.49e7	2.50e7	2.85e7	3.54e6	1.12e6	yes	37.1	0.734	39.6	0.748	
AncSR2 +RH pool 1 &²	2.06e7	2.9e6	2.02e7	3.07e6	5.04e6	1.33e5	6.28e7	3.28e7	3.07e7	5.57e5	4.32e5	yes	178.4	0.958	191.3	0.961	
AncSR2 +RH pool 2 &²	4.11e7	Not applicable	289.8	0.975	312.1	0.980											

Sample sizes and sequence read/coverage statistics are shown at various stages of the experimental pipeline for each protein library, yeast reporter strain, and replicate. For details, see Methods.
Extended Data Table 2 | Robustness of inferences to scheme for classification of variants

Inference	Classification Scheme
# ERE-specific, AncSR1	(A) Use FACS-seq ML estimate for AncSR1/ERE
# promiscuous, AncSR1	(B) Increase equivalence margin from 20% to 50%
# SRE-specific, AncSR1	(C) Classify as functional if ML fluorescence >0.8 that of ancestral reference
# ERE-specific, AncSR1+11P	(D) Classify as functional if ML fluorescence >0.8 that of ancestral reference
# promiscuous, AncSR1+11P	(E) Classify as functional only if ML within 20% on either side of ancestral reference
# SRE-specific, AncSR1+11P	(F) Classify all variants based on predictions from genotype
AncSR1:EGKA requires permissives to access SRE-specificity?	(G) No predictions; classify undetermined variants as inactive
AncSR1:EGKA requires permissives to access SRE-specificity?	(H) Classify based on prediction or experiment, whichever assigns stronger function
AncSR1:EGKA requires permissives to access SRE-specificity?	(I) Keep only classifications identical between replicates
AncSR1:EGKA requires permissives to access SRE-specificity?	(J) Use per-variant estimate of standard error to classify

# ERE-specific, AncSR1	43	138	108	444	67	36	27	39	47	11	47
# promiscuous, AncSR1	45	94	84	158	45	44	46	30	46		
# SRE-specific, AncSR1	41	41	58	213	45	19	31	38	40	39	40
# ERE-specific, AncSR1+11P	144	326	264	619	212	114	101	108	133	76	123
# promiscuous, AncSR1+11P	378	525	554	719	464	254	319	341	459	282	358
# SRE-specific, AncSR1+11P	829	832	1206	2728	956	296	670	768	899	809	837

AncSR1:EGKA requires permissives to access SRE-specificity? TRUE TRUE

Shortest path length from EGKA to SRE-specificity in AncSR1 5 5 3 2 5 6 5 5 5 5 no paths 4

| Shortest path length from EGKA to SRE-specificity in AncSR1+11P | 65 | 66 | 89 | 136 | 77 | 10 | 58 | 53 | 72 | 71 | 65 |

Proportion ERE-specific starting points with permissive to access SRE-specificity in 3 steps, AncSR1 0.063 0.037 0.008 0.066 0.014 0.252 0.050 0.139 0.053 0.026 0.089

Proportion SRE-specific outcomes not accessed from any ERE-specific starting point in 3 steps, AncSR1+11P 0.276 0.108 0.118 0.071 0.150 0.571 0.378 0.388 0.276 0.425 0.280

Proportion pairs of ERE-specific starting points with no shared outcomes in 3 steps, AncSR1+11P 0.542 0.530 0.426 0.229 0.501 0.836 0.543 0.611 0.529 0.390 0.541

Fraction ERE-specific variants with no path to SRE-specificity, AncSR1 0.279 0.058 0.505 0.054 0.176 0.378 0.321 0.350 0.250 0.063 0.104

Fraction ERE-specific variants with no path to SRE-specificity, AncSR1+11P 0.014 0.021 0.004 0.066 0.005 0.470 0.010 0.056 0.015 0 0 0.033

Average shortest path length to SRE-specificity from all connected ERE-specific variants, AncSR1 4.193 4.191 3.796 2.309 4.054 4.304 4.158 4.889 4.278 4.545 4.163

Average shortest path length to SRE-specificity from all connected ERE-specific variants, AncSR1+11P 2.183 2.122 1.867 1.336 1.986 2.885 2.270 2.333 2.206 2.158 2.294

Fraction ERE-specific variants with permissive shortest path, AncSR1 0 0.035 0.069 0.242 0 0 0 0 0 0 0

Fraction ERE-specific variants with permissive shortest path, AncSR1+11P 0.290 0.218 0.225 0.191 0.235 0.136 0.207 0.234 0.210 0.140 0.214

Fraction ERE-specific variants with promiscuous shortest path, AncSR1 0.483 0.461 0.381 0.370 0.381 0.445 0.548 0.361 0.594 0.634 0.524

Fraction ERE-specific variants with promiscuous shortest path, AncSR1+11P 0.413 0.462 0.403 0.133 0.441 0.458 0.504 0.426 0.538 0.524 0.475

Fraction ERE-specific variants with permissive and promiscuous shortest path, AncSR1 0.517 0.481 0.530 0.191 0.619 0.555 0.452 0.639 0.406 0.366 0.476

Fraction ERE-specific variants with permissive and promiscuous shortest path, AncSR1+11P 0.108 0.120 0.065 0.002 0.082 0.241 0.149 0.164 0.106 0.165 0.135

Fraction ERE-specific variants with direct shortest path AncSR1 0 0.023 0.030 0.198 0 0 0 0 0 0 0

Fraction ERE-specific variants with direct shortest path AncSR1+11P 0.190 0.201 0.308 0.673 0.242 0.165 0.14 0.176 0.145 0.171 0.176

Each row represents an inference reported in Figs 2 and 3; each column is a scheme for functionally classifying variants from FACS-seq data and FACS-seq-trained predictive models. For details of schemes, see Methods.
Corresponding Author: Joseph Thornton
Date: Jul 18, 2017

Life Sciences Reporting Summary

Nature Research wishes to improve the reproducibility of the work we publish. This form is published with all life science papers and is intended to promote consistency and transparency in reporting. All life sciences submissions use this form; while some list items might not apply to an individual manuscript, all fields must be completed for clarity.

For further information on the points included in this form, see Reporting Life Sciences Research. For further information on Nature Research policies, including our data availability policy, see Authors & Referees and the Editorial Policy Checklist.

1. Sample size
 Describe how sample size was determined.

2. Data exclusions
 Describe any data exclusions.
 For FACS-seq, variants with fewer than 15 cells sampled were excluded (lines 552-558); for points excluded in Extended Data Fig. 8d, criteria described in Methods (lines 577-590).

3. Replication
 Describe whether the experimental findings were reliably reproduced.
 Yes, all FACS-seq experiments were replicated, with reproducibility illustrated in Extended Data Fig. 1d

4. Randomization
 Describe how samples/organisms/participants were allocated into experimental groups.
 n/a

5. Blinding
 Describe whether the investigators were blinded to group allocation during data collection and/or analysis.
 n/a
 Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6. Statistical parameters
 For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or the Methods section if additional space is needed).

 n/a
 Confirmed

 - The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)
 - A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same sample was measured repeatedly.
 - A statement indicating how many times each experiment was replicated.
 - The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more complex techniques should be described in the Methods section)
 - A description of any assumptions or corrections, such as an adjustment for multiple comparisons
 - The test results (e.g. p values) given as exact values whenever possible and with confidence intervals noted
 - A summary of the descriptive statistics, including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)
 - Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.
Software

7. Software

Describe the software used to analyze the data in this study.

All analysis was performed using custom scripts in R, which are included as Supplementary Information and at the included github link. All additional packages used are described and cited in the Methods.

For all studies, we encourage code deposition in a community repository (e.g. GitHub). Authors must make computer code available to editors and reviewers upon request. The Nature Methods guidance for providing algorithms and software for publication may be useful for any submission.

Materials and reagents

8. Materials availability

Indicate whether there are restrictions on availability of unique materials or if these materials are only available for distribution by a for-profit company.

All unique materials are readily available from the authors.

9. Antibodies

Describe the antibodies used and how they were validated for use in the system under study (i.e. assay and species).

n/a

10. Eukaryotic cell lines

a. State the source of each eukaryotic cell line used.

The yeast strain used was described in Fox et al. (ref. 31)

b. Describe the method of cell line authentication used.

n/a
c. Report whether the cell lines were tested for mycoplasma contamination.

n/a
d. If any of the cell lines used in the paper are listed in the database of commonly misidentified cell lines maintained by ICLAC, provide a scientific rationale for their use.

n/a

Animals and human research participants

11. Description of research animals

Provide details on animals and/or animal-derived materials used in the study.

n/a

12. Description of human research participants

Describe the covariate-relevant population characteristics of the human research participants.

n/a
Flow Cytometry Reporting Summary

Form fields will expand as needed. Please do not leave fields blank.

- **Data presentation**

 For all flow cytometry data, confirm that:

 - 1. The axis labels state the marker and fluorochromes used (e.g. CD4-FITC).
 - 2. The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
 - 3. All plots are contour plots with outliers or pseudocolor plots.
 - 4. A numerical value for number of cells or percentage (with statistics) is provided.

- **Methodological details**

 5. Describe the sample preparation.
 Methods lines 395-443

 6. Identify the instrument used for data collection.
 BD FACSAria II (Methods line 444)

 7. Describe the software used to collect and analyze the flow cytometry data.
 Gates drawn using BD FACSDIVA software; all further analyses were performed in R (scripts included)

 8. Describe the abundance of the relevant cell populations within post-sort fractions.
 Recovery yield from post-sort fractions was estimated by plating dilutions of cells and counting colony forming units

 9. Describe the gating strategy used.
 Methods lines 444-450, Extended Data Fig. 2

 Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information. ✓