Sampling and periodization of generators of Heisenberg modules

Franz Luef

Noncommutativity in the North
Gothenborg

15.03.2022
This is based on joint work with **Mads S. Jakobsen**.

- **Sampling and periodization of generators of Heisenberg modules**, International Journal of Mathematics, Vol. 30, No. 10, 1950051 (2019).
This is based on joint work with Mads S. Jakobsen.

- **Sampling and periodization of generators of Heisenberg modules**, International Journal of Mathematics, Vol. 30, No. 10, 1950051 (2019).

Main theme
Study of Heisenberg modules from the perspective of frame theory. Use results on Gabor frames in the continuous and discrete setting to approximate Heisenberg modules by finite-dimensional Heisenberg modules.
Definitions

Let E be an A-B-equivalence bimodule. For $g \in E$ we define the **analysis operator** by

$$\Phi g : E \to A \quad f \mapsto \langle f, g \rangle,$$

and the **synthesis operator**:

$$\Psi g : A \to E \quad a \mapsto a \cdot g.$$
Frames for Hilbert C^*-modules

Definitions

Let E be an A-B-equivalence bimodule. For $g \in E$ we define the **analysis operator** by

$$
\Phi_g : E \rightarrow A \\
\quad \quad f \mapsto \langle f, g \rangle,
$$
Definitions

Let E be an A-B-equivalence bimodule. For $g \in E$ we define the **analysis operator** by

$$\Phi_g : E \rightarrow A$$

$$f \mapsto \langle f, g \rangle,$$

and the **synthesis operator**:

$$\Psi_g : A \rightarrow E$$

$$a \mapsto a \cdot g.$$
Definitions-ctd
Let E be an A-B-equivalence bimodule. We define the frame-like operator $\Theta_{g,h}$ to be
Definitions-ctd

Let E be an A-B-equivalence bimodule. We define the **frame-like operator** $\Theta_{g,h}$ to be

$$\Theta_{g,h} : E \rightarrow E$$

$$f \mapsto \langle f, g \rangle \cdot h.$$
Let E be an A-B-equivalence bimodule. We define the frame-like operator $\Theta_{g,h}$ to be

$$\Theta_{g,h} : E \rightarrow E$$

$$f \mapsto \langle f, g \rangle \cdot h.$$

$$\Theta_{g,h} = \Psi_h \Phi_g = \Phi_h^* \Phi_g.$$

The frame operator of g is the operator

$$\Theta_g := \Theta_{g,g} = \Phi_g^* \Phi_g.$$
Module frames

Suppose we have \(g_1, \ldots, g_k \in E \), such that \(\sum_{i=1}^{k} \Theta_{g_i} \) is invertible \(E \). Then we call \(\{g_1, \ldots, g_k\} \) a **module frame** for \(E \).
Module frames

Suppose we have \(g_1, \ldots, g_k \in E \), such that \(\sum_{i=1}^{k} \Theta g_i \) is invertible \(E \). Then we call \(\{g_1, \ldots, g_k\} \) a **module frame** for \(E \).

This is equivalent to existence of constants \(C, D > 0 \) such that

\[
C \langle f, f \rangle \leq \sum_{i=1}^{k} \langle f, g_i \rangle \langle g_i, f \rangle \leq D \langle f, f \rangle
\]

for all \(f \in E \).
Frames for Hilbert C^*-modules

Module frames

Suppose we have $g_1, \ldots, g_k \in E$, such that $\sum_{i=1}^{k} \Theta g_i$ is invertible E. Then we call $\{g_1, \ldots, g_k\}$ a **module frame** for E.

This is equivalent to existence of constants $C, D > 0$ such that

$$C \langle f, f \rangle \leq \sum_{i=1}^{k} \langle f, g_i \rangle \langle g_i, f \rangle \leq D \langle f, f \rangle$$

for all $f \in E$.

Frame condition

Let E be an A-B-equivalence bimodule. Then $f = \sum_{i=1}^{k} \Theta g_i, h_i f$ for all $f \in E$ if and only if B is unital and $\sum_{i=1}^{k} \langle g_i, h_i \rangle \bf{=} 1_B$.

Lemma

Let E be an A-B-equivalence bimodule. Suppose $g, h \in E$ satisfy $\langle f, h \rangle g = f$ for all $f \in E$. Then

$$f = h \langle g, f \rangle \quad \text{for all } f \in h \cdot B.$$

Definition

Let E be an A-B-equivalence bimodule. If $g \in E$ is such that Θ_g is invertible on E, then $h = \Theta_g^{-1} g$ is called the \textbf{canonical dual atom} of g.
Heisenberg modules

Modulation operator and translation operator

$$E_{\beta}f(t) = e^{2\pi i \beta t}f(t), \ T_\alpha f(t) = f(t - \alpha), \ \alpha, \beta \in \mathbb{R}\{0\}, \ f \in L^2(\mathbb{R}),$$
Heisenberg modules

Modulation operator and translation operator

\[E_{\beta} f(t) = e^{2\pi i \beta t} f(t), \quad T_{\alpha} f(t) = f(t - \alpha), \quad \alpha, \beta \in \mathbb{R} \setminus \{0\}, \quad f \in L^2(\mathbb{R}), \]

\[\mathcal{A} = \left\{ a \in B(L^2(\mathbb{R})) : a = \sum_{m,n \in \mathbb{Z}} a(m, n) E_{m\beta} T_{n\alpha}, \quad a \in \ell^1(\mathbb{Z}^2) \right\}. \]
Heisenberg modules

Modulation operator and translation operator

\[E_\beta f(t) = e^{2\pi i \beta t} f(t), \quad T_\alpha f(t) = f(t - \alpha), \quad \alpha, \beta \in \mathbb{R} \setminus \{0\}, \quad f \in L^2(\mathbb{R}), \]

\[\mathcal{A} = \left\{ a \in B(L^2(\mathbb{R})) : a = \sum_{m,n \in \mathbb{Z}} a(m, n) E_m T_n, \quad a \in \ell^1(\mathbb{Z}^2) \right\}. \]

\(a \rightarrow a \) is a faithful representation of the twisted group algebra \(\ell^1(\alpha \mathbb{Z} \times \beta \mathbb{Z}, c) \):
Heisenberg modules

Modulation operator and translation operator

\[E_\beta f(t) = e^{2\pi i \beta t} f(t), \quad T_\alpha f(t) = f(t - \alpha), \quad \alpha, \beta \in \mathbb{R}\setminus\{0\}, \quad f \in L^2(\mathbb{R}), \]

\[\mathcal{A} = \{ a \in B(L^2(\mathbb{R})) : a = \sum_{m,n \in \mathbb{Z}} a(m, n) E_{m\beta} T_{n\alpha}, \quad a \in \ell^1(\mathbb{Z}^2) \}. \]

\(a \to a \) is a faithful representation of the twisted group algebra \(\ell^1(\alpha \mathbb{Z} \times \beta \mathbb{Z}, c) \):

\[a_1 \sharp a_2(m, n) = \sum_{m', n' \in \mathbb{Z}} a_1(m', n') a_2(m - m', n - n') e^{2\pi i \beta \alpha (m-m')n'}, \quad (1) \]

\[a^*(m, n) = e^{2\pi i \alpha \beta mn} \overline{a(-m, -n)}. \quad (2) \]
Heisenberg modules

Modulation operator and translation operator

\[E_\beta f(t) = e^{2\pi i \beta t} f(t), \quad T_\alpha f(t) = f(t - \alpha), \quad \alpha, \beta \in \mathbb{R} \setminus \{0\}, \quad f \in L^2(\mathbb{R}), \]

\[\mathcal{A} = \{ a \in B(L^2(\mathbb{R})) : a = \sum_{m,n \in \mathbb{Z}} a(m, n) E_m T_n, \quad a \in \ell^1(\mathbb{Z}^2) \}. \]

\(a \rightarrow a \) is a faithful representation of the twisted group algebra \(\ell^1(\alpha \mathbb{Z} \times \beta \mathbb{Z}, c) \):

\[a_1 \upharpoonright a_2(m, n) = \sum_{m', n' \in \mathbb{Z}} a_1(m', n') a_2(m - m', n - n') e^{2\pi i \beta_\alpha (m - m') n'}, \quad (1) \]

\[a^*(m, n) = e^{2\pi i \beta \alpha mn} \overline{a(-m, -n)}. \quad (2) \]

The enveloping \(C^* \)-algebra is the twisted group \(C^* \)-algebra \(C^*(\mathbb{Z}^2, c) \).
Heisenberg modules

The left-action that $a \in \mathcal{A}$ has on functions $f \in L^2(\mathbb{R})$ is given by

$$a \cdot f = \sum_{m,n \in \mathbb{Z}} a(m, n) E_{m\beta} T_{n\alpha} f.$$
Heisenberg modules

The left-action that $a \in \mathcal{A}$ has on functions $f \in L^2(\mathbb{R})$ is given by

$$a \cdot f = \sum_{m,n \in \mathbb{Z}} a(m, n) E_{m\beta} T_{n\alpha} f.$$

For functions in $S_0(\mathbb{R})$ we define an \mathcal{A}-valued inner-product in the following way:

$$\langle \cdot, \cdot \rangle: S_0(\mathbb{R}) \times S_0(\mathbb{R}) \to \mathcal{A},$$

$$\langle f, g \rangle = \sum_{m,n \in \mathbb{Z}} \langle f, E_{m\beta} T_{n\alpha} g \rangle E_{m\beta} T_{n\alpha}.$$
Heisenberg modules

The left-action that \(a \in A \) has on functions \(f \in L^2(\mathbb{R}) \) is given by

\[
a \cdot f = \sum_{m,n \in \mathbb{Z}} a(m, n) E_{m\beta} T_{n\alpha} f.
\]

For functions in \(S_0(\mathbb{R}) \) we define an \(A \)-valued inner-product in the following way: \(\langle \cdot, \cdot \rangle : S_0(\mathbb{R}) \times S_0(\mathbb{R}) \to A, \)

\[
\langle f, g \rangle = \sum_{m,n \in \mathbb{Z}} \langle f, E_{m\beta} T_{n\alpha} g \rangle E_{m\beta} T_{n\alpha}.
\]

Here \(S_0(\mathbb{R}) \) is Feichtinger’s algebra: a suitable Banach space of test-functions, which is widely used in time-frequency analysis. Let \(g \) be a Gaussian function.
Heisenberg modules

The left-action that \(a \in A \) has on functions \(f \in L^2(\mathbb{R}) \) is given by
\[
a \cdot f = \sum_{m,n \in \mathbb{Z}} a(m, n) E_{m\beta} T_{n\alpha} f.
\]
For functions in \(S_0(\mathbb{R}) \) we define an \(A \)-valued inner-product in the following way:
\[
\langle \cdot, \cdot \rangle : S_0(\mathbb{R}) \times S_0(\mathbb{R}) \to A,
\]
\[
\langle f, g \rangle = \sum_{m,n \in \mathbb{Z}} \langle f, E_{m\beta} T_{n\alpha} g \rangle E_{m\beta} T_{n\alpha}.
\]

Here \(S_0(\mathbb{R}) \) is Feichtinger's algebra: a suitable Banach space of test-functions, which is widely used in time-frequency analysis. Let \(g \) be a Gaussian function. Then \(f \in L^2(\mathbb{R}) \) is in \(S_0(\mathbb{R}) \) if and only if
\[
\| f \|_{S_0} = \iint_{\mathbb{R}^2} |\langle f, E_{\omega} T_x g \rangle| \, dx \, d\omega < \infty,
\]
where \(V_g f(x, \omega) = \langle f, E_{\omega} T_x g \rangle \) is the short-time Fourier transform.
Let \mathcal{B} be the twisted group algebra $\ell^1(\frac{1}{\beta}\mathbb{Z} \times \frac{1}{\alpha}\mathbb{Z}, \overline{c})$ and $C^*(\frac{1}{\beta}\mathbb{Z} \times \frac{1}{\alpha}\mathbb{Z}, \overline{c})$ its enveloping C^*-algebra.
Let \mathcal{B} be the twisted group algebra $\ell^1(\frac{1}{\beta}\mathbb{Z} \times \frac{1}{\alpha}\mathbb{Z}, \overline{c})$ and $C^*(\frac{1}{\beta}\mathbb{Z} \times \frac{1}{\alpha}\mathbb{Z}, \overline{c})$ its enveloping C^*-algebra.

We define a \mathcal{B}-valued inner product $\langle \cdot, \cdot \rangle : S_0(\mathbb{R}) \times S_0(\mathbb{R}) \to \mathcal{B} :$

$$\langle f, g \rangle = \frac{1}{|\alpha\beta|} \sum_{m,n \in \mathbb{Z}} \langle g, (E_{m/\alpha} T_{n/\beta})^* f \rangle (E_{m/\alpha} T_{n/\beta})^*$$
Let \mathcal{B} be the twisted group algebra $\ell^1(\frac{1}{\beta}\mathbb{Z} \times \frac{1}{\alpha}\mathbb{Z}, \overline{c})$ and $C^*(\frac{1}{\beta}\mathbb{Z} \times \frac{1}{\alpha}\mathbb{Z}, \overline{c})$ its enveloping C^*-algebra.

We define a \mathcal{B}-valued inner product $\langle \cdot, \cdot \rangle \cdot : S_0(\mathbb{R}) \times S_0(\mathbb{R}) \rightarrow \mathcal{B}$:

$$\langle f, g \rangle \cdot = \frac{1}{|\alpha \beta|} \sum_{m,n \in \mathbb{Z}} \langle g, (E_{m/\alpha} T_{n/\beta})^* f \rangle \left(E_{m/\alpha} T_{n/\beta} \right)^*$$

that has a right-action on functions $g \in L^2(\mathbb{R})$ given by

$$g \cdot b = \frac{1}{|\alpha \beta|} \sum_{m,n \in \mathbb{Z}} b(m, n) \left(E_{m/\alpha} T_{n/\beta} \right)^* g.$$
Let B be the twisted group algebra $\ell^1\left(\frac{1}{\beta}\mathbb{Z} \times \frac{1}{\alpha}\mathbb{Z}, \bar{c}\right)$ and $C^*\left(\frac{1}{\beta}\mathbb{Z} \times \frac{1}{\alpha}\mathbb{Z}, \bar{c}\right)$ its enveloping C^*-algebra.

We define a B-valued inner product $\langle \cdot, \cdot \rangle : S_0(\mathbb{R}) \times S_0(\mathbb{R}) \to B : \langle f, g \rangle = \frac{1}{|\alpha\beta|} \sum_{m,n \in \mathbb{Z}} \langle g, (E_{m/\alpha} T_{n/\beta})^* f \rangle (E_{m/\alpha} T_{n/\beta})^*$ that has a right-action on functions $g \in L^2(\mathbb{R})$ given by

$$g \cdot b = \frac{1}{|\alpha\beta|} \sum_{m,n \in \mathbb{Z}} b(m, n) (E_{m/\alpha} T_{n/\beta})^* g.$$

Associativity condition:

$$\langle f, g \rangle \cdot h = f \cdot \langle g, h \rangle$$ for all $f, g, h \in S_0(\mathbb{R})$.

Franz Luef (NTNU Trondheim)
Let \mathcal{B} be the twisted group algebra $\ell^1(\mathbb{Z}/\beta \mathbb{Z} \times \mathbb{Z}/\alpha \mathbb{Z}, \bar{c})$ and $C^*(\mathbb{Z}/\beta \mathbb{Z} \times \mathbb{Z}/\alpha \mathbb{Z}, \bar{c})$ its enveloping C^*-algebra.

We define a \mathcal{B}-valued inner product $\langle \cdot, \cdot \rangle_\bullet : S_0(\mathbb{R}) \times S_0(\mathbb{R}) \rightarrow \mathcal{B}$:

$$\langle f, g \rangle_\bullet = \frac{1}{|\alpha \beta|} \sum_{m, n \in \mathbb{Z}} \langle g, (E_{m/\alpha} T_{n/\beta})^* f \rangle (E_{m/\alpha} T_{n/\beta})^*$$

that has a right-action on functions $g \in L^2(\mathbb{R})$ given by

$$g \cdot b = \frac{1}{|\alpha \beta|} \sum_{m, n \in \mathbb{Z}} b(m, n) (E_{m/\alpha} T_{n/\beta})^* g.$$

Associativity condition:

$$\bullet \langle f, g \rangle \cdot h = f \cdot \langle g, h \rangle_\bullet \quad \text{for all } f, g, h \in S_0(\mathbb{R}).$$

The completion of $S_0(\mathbb{R})$ with respect to $\| f \|_E = \| \langle f, f \rangle_\bullet \|^{1/2}$ (or $\| \langle f, f \rangle_\bullet \|^{1/2}$) is the Heisenberg module, E.
Heisenberg modules

Bessel family

Denote by $B_{\alpha\beta}$ the subspace of $L^2(\mathbb{R})$ consisting of those $g \in L^2(\mathbb{R})$ such that

$$\sum_{k,l \in \mathbb{Z}} |\langle f, E_{\beta l} T_{\alpha k} g \rangle|^2 \leq \infty,$$

for all $f \in L^2(\mathbb{R})$.
Heisenberg modules

Bessel family

Denote by $B_{\alpha \beta}$ the subspace of $L^2(\mathbb{R})$ consisting of those $g \in L^2(\mathbb{R})$ such that

$$\sum_{k,l \in \mathbb{Z}} |\langle f, E_{\beta l} T_{\alpha k} g \rangle|^2 \leq \infty,$$

for all $f \in L^2(\mathbb{R})$.

$\{E_{\beta l} T_{\alpha k} g\}_{k,l \in \mathbb{Z}}$ is a Gabor frame if there exists an $h \in L^2(\mathbb{R})$ such that

$$f = \langle f, g \rangle h = \sum_{m,n \in \mathbb{Z}} \langle f, E_{\beta n} T_{\alpha m} g \rangle E_{\beta n} T_{\alpha m} h$$
Heisenberg modules

Bessel family

Denote by $B_{\alpha\beta}$ the subspace of $L^2(\mathbb{R})$ consisting of those $g \in L^2(\mathbb{R})$ such that

$$\sum_{k,l \in \mathbb{Z}} |\langle f, E_{\beta l} T_{\alpha k} g \rangle|^2 \leq \infty,$$

for all $f \in L^2(\mathbb{R})$.

$\{E_{\beta l} T_{\alpha k} g\}_{k,l \in \mathbb{Z}}$ is a **Gabor frame** if there exists an $h \in L^2(\mathbb{R})$ such that

$$f = \langle f, g \rangle h = \sum_{m,n \in \mathbb{Z}} \langle f, E_{\beta n} T_{\alpha m} g \rangle E_{\beta n} T_{\alpha m} h$$
Austad-Enstad

If $g \in E$ is an element of the Heisenberg module, then it is a Bessel vector of the Gabor system $\{E_{\beta l} T_{\alpha k} g\}_{k,l}$.

For $g \in S^0(\mathbb{R})$ this was shown in (Luef, JFA 2009).
Heisenberg modules

Austad-Enstad

- If $g \in E$ is an element of the Heisenberg module, then it is a Bessel vector of the Gabor system $\{ E_{\beta l} T_{\alpha k} g \}_{k,l \in \mathbb{Z}}$.
- The set $\{ g_1, \ldots, g_k \}$ generates E as a left $C^*(\alpha \mathbb{Z} \times \beta \mathbb{Z}, c)$-module if and only if $\{ E_{\beta n} T_{\alpha m} g_i : i = 1, \ldots, k \}_{m,n \in \mathbb{Z}}$ is a (multi-window) frame for $L^2(\mathbb{R})$, i.e. there exist constant $A, B > 0$ such that

$$A \| f \|_2^2 \leq \sum_{i=1}^{k} \sum_{m,n \in \mathbb{Z}} |\langle f, E_{\beta n} T_{\alpha m} g_i \rangle|^2 \leq B \| f \|_2^2$$

for all $f \in L^2(\mathbb{R})$. For $g \in S_0(\mathbb{R})$ this was shown in (Luef, JFA 2009).
Heisenberg modules

Austad-Enstad

- If $g \in E$ is an element of the Heisenberg module, then it is a Bessel vector of the Gabor system $\{E_{\beta l}T_{\alpha k}g\}_{k,l \in \mathbb{Z}}$.

- The set $\{g_1, \ldots, g_k\}$ generates E as a left $C^*(\alpha \mathbb{Z} \times \beta \mathbb{Z}, c)$-module if and only if $\{E_{\beta m}T_{\alpha n}g_i : i = 1, \ldots, k\}_{m, n \in \mathbb{Z}}$ is a (multi-window) frame for $L^2(\mathbb{R})$, i.e. there exist constant $A, B > 0$ such that

$$A \|f\|_2 \leq \sum_{i=1}^k \sum_{m, n \in \mathbb{Z}} |\langle f, E_{\beta m}T_{\alpha n}g_i \rangle|^2 \leq B \|f\|_2 \text{ for all } f \in L^2(\mathbb{R}).$$

For $g \in \mathcal{S}_0(\mathbb{R})$ this was shown in (Luef, JFA 2009).
Setting

We assume that θ is such that $\theta = a/M = b/N$ for some $a, b, M, N \in \mathbb{N}$ and take $d = aN$. Then the noncommutative torus \mathcal{A}_θ has faithful representations in terms of the Schrödinger representations of the Heisenberg group that act on $L^2(\mathbb{R})$, $\ell^2(a^{-1}\mathbb{Z})$ and $\ell^2(\mathbb{Z}_d) \cong \mathbb{C}^d$, where $\mathbb{Z}_d = \mathbb{Z}/d\mathbb{Z} \cong \{0, 1, \ldots, d - 1\}$.

Noncommutative tori

For convenience, we denote the respective realization by $\mathcal{A}_\theta^\mathbb{R}$, $\mathcal{A}_\theta^{a^{-1}\mathbb{Z}}$ and $\mathcal{A}_\theta^{\mathbb{Z}_d}$ and the canonical generators:

$$U_{\mathbb{R}} f(t) = e^{2\pi i \theta t} f(t), \quad V_{\mathbb{R}} f(t) = f(t - 1), \quad f \in L^2(\mathbb{R}), \ t \in \mathbb{R},$$
Noncommutative tori – ctd

\[U_{a^{-1}\mathbb{Z}} f(t) = e^{2\pi i \theta t} f(t), \quad V_{a^{-1}\mathbb{Z}} f(t) = f(t - 1), \quad f \in \ell^2(a^{-1}\mathbb{Z}), \quad t \in a^{-1}\mathbb{Z}, \]

\[U_{\mathbb{Z}_d} f(t) = e^{2\pi i b t/d} f(t), \quad V_{\mathbb{Z}_d} f(t) = f(t - a), \quad f \in \ell^2(\mathbb{Z}/d\mathbb{Z}), \quad t \in \{0, 1, \ldots, d - 1\}. \]

We shall not so much use the operators \(U \) and \(V \) but rather the time-frequency shift operators:

(i) For \((x, \omega) \in \mathbb{R}^2\) and \(f \in L^2(\mathbb{R})\) we define
\[\pi(x, \omega) f(t) = e^{2\pi i \omega t} f(t - x), \quad t \in \mathbb{R} \text{ and that } \pi(1, \theta) = U_{\mathbb{R}} V_{\mathbb{R}}. \]

(ii) For \((x, \omega) \in a^{-1}\mathbb{Z} \times [0, a)\) and \(f \in \ell^2(a\mathbb{Z})\) we define
\[\pi(x, \omega) f(t) = e^{2\pi i \omega t} f(t - x), \quad t \in a^{-1}\mathbb{Z} \text{ and that } \pi(1, \theta) = U_{a^{-1}\mathbb{Z}} V_{a^{-1}\mathbb{Z}}. \]

(iii) For \((x, \omega) \in \mathbb{Z}_d \times \mathbb{Z}_d\) and \(f \in \ell^2(\mathbb{Z}_d)\) we define
\[\pi(x, \omega) f(t) = e^{2\pi i \omega t/d} f(t - x) \text{ and that } \pi(a, b) = U_{\mathbb{Z}_d} V_{\mathbb{Z}_d}. \]
Noncommutative tori – ctd

\[A^R_\theta = \{ a \in B(L^2(\mathbb{R})) : a = \sum_{n,m \in \mathbb{Z}} a(n, m) \pi(n, \theta m), a \in \ell^1(\mathbb{Z}^2) \}, \]

\[A^{a^{-1}Z}_\theta = \{ a \in B(\ell^2(a^{-1}\mathbb{Z})) : a = \sum_{n \in \mathbb{Z}} \sum_{m=0}^{M-1} a(n, m) \pi(n, \theta m), a \in \ell^1(\mathbb{Z} \times \mathbb{Z}_M) \}, \]

\[A^{Z^d}_\theta = \{ a \in \mathbb{C}^d : a = \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} a(n, m) \pi(na, mb), a \in \ell^1(\mathbb{Z}_N \times \mathbb{Z}_M) \}. \]

The enveloping C*-algebras of \(A^R_\theta \), \(A^{a^{-1}Z}_\theta \) and \(A^{Z^d}_\theta \) are *-representations of the noncommutative torus \(A_\theta \).
For functions in Feichtinger’s algebra $S_0(\mathbb{R})$, sequences in $\ell^1(a^{-1}\mathbb{Z})$, and vectors in \mathbb{C}^d we define a respective \mathcal{A}_θ-valued inner-product in the following ways:

\[
\langle \cdot, \cdot \rangle^\mathbb{R} : S_0(\mathbb{R}) \times S_0(\mathbb{R}) \rightarrow \mathcal{A}_\theta^\mathbb{R},
\]

\[
\langle f, g \rangle^\mathbb{R} = \sum_{n,m \in \mathbb{Z}} \langle f, \pi(n, \theta m)g \rangle \pi(n, \theta m),
\]

\[
\langle \cdot, \cdot \rangle^{a^{-1}\mathbb{Z}} : \ell^1(a^{-1}\mathbb{Z}) \times \ell^1(a^{-1}\mathbb{Z}) \rightarrow \mathcal{A}_\theta^{a^{-1}\mathbb{Z}},
\]

\[
\langle f, g \rangle^{a^{-1}\mathbb{Z}} = \sum_{n \in \mathbb{Z}} \sum_{m=0}^{M-1} \langle f, \pi(n, \theta m)g \rangle \pi(n, \theta m),
\]

\[
\langle \cdot, \cdot \rangle^{\mathbb{Z}_d} : \mathbb{C}^d \times \mathbb{C}^d \rightarrow \mathcal{A}_\theta^{\mathbb{Z}_d},
\]

\[
\langle f, g \rangle^{\mathbb{Z}_d} = \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} \langle f, \pi(na, mb)g \rangle \pi(na, mb),
\]
The *module norm* of a function in $S_0(\mathbb{R})$, a sequence in $\ell^1(a^{-1}\mathbb{Z})$ and a vector in \mathbb{C}^d is given, respectively, by

$$\|g\|_{A^R_\theta} = \|\langle g, g \rangle^R\|_{\text{op}}^{1/2}, \quad g \in S_0(\mathbb{R}),$$

$$\|g\|_{A^{a^{-1}\mathbb{Z}}_\theta} = \|\langle g, g \rangle^{a^{-1}\mathbb{Z}}\|_{\text{op}}^{1/2}, \quad g \in \ell^1(a^{-1}\mathbb{Z}),$$

$$\|g\|_{A^\mathbb{Z}_d} = \|\langle g, g \rangle^{\mathbb{Z}_d}\|_{\text{op}}^{1/2}, \quad g \in \mathbb{C}^d,$$
If g is a function in $S_0(\mathbb{R})$ such that $\langle g, g \rangle^\mathbb{R}$ is a projection in $A^\mathbb{R}_\theta$, then the following holds.

(i) The module norm of g satisfies

$$\|g\|_{A^\mathbb{R}_\theta} \leq C := \theta^{-1} \sum_{m,n \in \mathbb{Z}} |\langle g, e^{2\pi i m(\cdot)}g(\cdot - n\theta^{-1}) \rangle|.$$

(ii) The sequence $\tilde{g} := \{\sqrt{a^{-1}} g(t)\}_{t \in a^{-1}\mathbb{Z}}$ belongs to $\ell^1(a^{-1}\mathbb{Z})$ and is such that $\langle \tilde{g}, \tilde{g} \rangle^{a^{-1}\mathbb{Z}}$ is a projection in $A^{a^{-1}\mathbb{Z}}_\theta$. Moreover, the module norm of \tilde{g} satisfies $\|\tilde{g}\|_{A^{a^{-1}\mathbb{Z}}_\theta} \leq C$.

(iii) The finite sequence $\tilde{g}(t) := \sqrt{a^{-1}} \sum_{k \in \mathbb{Z}} g(a^{-1}(t - kd))$, $t \in \{0, 1, \ldots, d - 1\}$ belongs to \mathbb{C}^d and is such that $\langle \tilde{g}, \tilde{g} \rangle^{\mathbb{Z}_d}$ is a projection in $A_{\theta}^{\mathbb{Z}_d}$. Moreover, the module norm of \tilde{g} satisfies $\|\tilde{g}\|_{A_{\theta}^{\mathbb{Z}_d}} \leq C$.

Franz Luef (NTNU Trondheim)
Sampling and periodization

For $\gamma \in \mathbb{R}\backslash\{0\}$ we let $\mathcal{R}_{\gamma \mathbb{Z}}$ be the sampling/restriction operator that takes a function in $\mathcal{S}_0(\mathbb{R})$ to a sequence in $\ell^1(\gamma \mathbb{Z})$ defined by

$$(\mathcal{R}_{\gamma \mathbb{Z}} f)(k) = f(k), \text{ for } k \in \gamma \mathbb{Z}.$$

Furthermore, for $d \in \mathbb{N}$ we let $\mathcal{P}_{\gamma d \mathbb{Z}}$ be the periodization operator

$\mathcal{P}_{\gamma d \mathbb{Z}} : \ell^1(\gamma \mathbb{Z}) \to \mathbb{C}^d$, $(\mathcal{P}_{\gamma d \mathbb{Z}} f)(t) = \sum_{k \in \gamma d \mathbb{Z}} f(\gamma t - k), \text{ } t \in \{0, 1, \ldots, d - 1\}.$
If g be a function in $S_0(\mathbb{R})$ such that $\langle g, g \rangle$ is a projection in A_θ^R, then the following holds.

(i) The module norm of g satisfies

$$\|g\|_\Lambda \leq C := \theta^{-1} \sum_{\lambda^\circ \in \theta^{-1}\mathbb{Z} \times \mathbb{Z}} |\langle g, \pi(\lambda^\circ)g \rangle|.$$

(ii) The sequence in $\ell^1(a^{-1}\mathbb{Z})$ defined by $\tilde{g} = (a^{-1/2} \mathcal{R}_{a^{-1}\mathbb{Z}}g)$ is such that $\langle \tilde{g}, \tilde{g} \rangle$ is a projection in $A_{\theta}^{a^{-1}\mathbb{Z}}$. Moreover, the module norm of \tilde{g} satisfies $\|\tilde{g}\| \tilde{\Lambda} \leq C$.

(iii) The vector in \mathbb{C}^d given by $\tilde{\tilde{g}} = (a^{-1/2} \mathcal{P}_{a^{-1}d\mathbb{Z}} \mathcal{R}_{a^{-1}\mathbb{Z}}g)$ is such that $\langle \tilde{\tilde{g}}, \tilde{\tilde{g}} \rangle$ is a projection in $A_{\theta}^{\mathbb{Z}^d}$. Moreover, the module norm of $\tilde{\tilde{g}}$ satisfies $\|\tilde{\tilde{g}}\| \tilde{\tilde{\Lambda}} \leq C$.
Setting

Let Λ be the lattice in \mathbb{R}^2 given by

$$\Lambda = \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix} \cdot \begin{bmatrix} \mathbb{Z} \\ \mathbb{Z} \end{bmatrix}, \quad \alpha, \beta > 0.$$

and let g and h be functions in $S_0(\mathbb{R})$ such that $\langle g, h \rangle^{\mathbb{R}}$ is an idempotent element of $\mathcal{A}^\mathbb{R}$, i.e. $\{\pi(\lambda)g\}_{\lambda \in \Lambda}$ and $\{\pi(\lambda)h\}_{\lambda \in \Lambda}$ are dual Gabor frames for $L^2(\mathbb{R})$.

If α and β are such that $\alpha \beta = a/M = b/N$ for some $a, b, M, N \in \mathbb{N}$, we put $d = Mb(=aN)$, and let

$$\tilde{\Lambda} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \cdot \begin{bmatrix} \{0, 1, \ldots, N-1\} \\ \{0, 1, \ldots, M-1\} \end{bmatrix} \subset \mathbb{Z}_d \times \mathbb{Z}_d,$$
Let \(\tilde{g} \) and \(\tilde{h} \) in \(\mathbb{C}^d \) given by

\[
\tilde{g}(t) = \sqrt{\alpha a^{-1}} \sum_{k \in \mathbb{Z}} g(\alpha a^{-1}(t - kd)),
\]

\[
\tilde{h}(t) = \sqrt{\alpha a^{-1}} \sum_{k \in \mathbb{Z}} h(\alpha a^{-1}(t - kd)),
\]

for \(t \in \{0, 1, \ldots, d - 1\} \).

Theorem

Then \(\langle \tilde{g}, \tilde{h} \rangle^{\Lambda} \) is an idempotent element of \(\mathcal{A}^{\mathbb{Z}_d} \), i.e., the two Gabor systems \(\{ \pi(\lambda)\tilde{g} \}_{\lambda \in \tilde{\Lambda}} \) and \(\{ \pi(\lambda)\tilde{h} \}_{\lambda \in \tilde{\Lambda}} \) are dual frames for \(\mathbb{C}^d \).
From the discrete to the continuous

Want to construct a function in $S_0(\mathbb{R})$ from a sequence in ℓ^1 is by use of linear interpolation.

Quasi-interpolation

For a given $\gamma > 0$ let \wedge_γ be the triangular-function

$$\wedge_\gamma(x) = (1 - |\gamma^{-1}x|) \cdot 1_{[-\gamma,\gamma]}.$$\[10pt]

Furthermore, for any $\gamma > 0$ we define the operator

$$Q_{\gamma\mathbb{Z}}^{\mathbb{R}} : \ell^1(\gamma\mathbb{Z}) \to S_0(\mathbb{R}), \quad (Q_{\gamma\mathbb{Z}}^{\mathbb{R}} c)(t) = \sum_{k \in \gamma\mathbb{Z}} c(k) \cdot \wedge_\gamma(t - k).$$

Observe that $Q_{\gamma\mathbb{Z}}^{\mathbb{R}}$ interpolates linearly in between the points $(k, c(k))_{k \in \gamma\mathbb{Z}}$.
Quasi-interpolation–ctd

The procedure to turn a vector in \mathbb{C}^d into a sequence in $\ell^1(\gamma\mathbb{Z})$ is similar:

$$Q_{\gamma d} : \mathbb{C}^d \to \ell^1(\gamma\mathbb{Z}), \quad (Q_{\gamma d} c)(k) = \begin{cases} 0 & \text{if } k \notin \gamma\{-\lfloor \frac{d-1}{2} \rfloor, \ldots, \lfloor \frac{d}{2} \rfloor\}, \\ c(\gamma^{-1} k \mod d) & \text{if } k \in \gamma\{-\lfloor \frac{d-1}{2} \rfloor, \ldots, \lfloor \frac{d}{2} \rfloor\}. \end{cases}$$

Here $c \in \mathbb{C}^d$ is treated as a function that can be evaluated on the set $\{0, 1, \ldots, d - 1\}$.

Feichtinger-Kaiblinger

(i) For any $f \in \mathcal{S}_0(\mathbb{R})$

$$\lim_{\gamma \to 0} \left\| f - Q_{\gamma\mathbb{Z}}^R R_{\gamma\mathbb{Z}} f \right\|_{\mathcal{S}_0(\mathbb{R})} = 0.$$

(ii) For any $f \in \mathcal{S}_0(\mathbb{R})$

$$\lim_{n \to \infty} \left\| f - Q_{n^{-1/2}\mathbb{Z}}^R Q_{n^{-1/2}\mathbb{Z}}^n P_{n^{1/2}\mathbb{Z}} R_{n^{-1/2}\mathbb{Z}} f \right\|_{\mathcal{S}_0(\mathbb{R})} = 0.$$
Observation

We know already that the samples of generator of a projection in A^R_θ also generate a projection in $A^{a^{-1}Z}_\theta$. If these samples are dense enough, and linear interpolated to a function on \mathbb{R} by the operator $Q^{R}_{\gamma Z}$, then the in this way constructed collections of functions generate a projection in A^R_θ, again.

Theorem

For all $a \in \mathbb{N}$ let \tilde{g} in $\ell^1(a^{-1}\mathbb{Z})^n$ be given by

$$\tilde{g} = (R_{a^{-1}\mathbb{Z}}g).$$

For all a that are sufficiently large, $k := (Q^{R}_{a^{-1}\mathbb{Z}}\tilde{g})$ in $S_0(\mathbb{R})$ is such that $b_k := \langle k, k \rangle \in B^{R}_{\theta^{-1}}$ is invertible on $L^2(\mathbb{R})$ and on $S_0(\mathbb{R})$.

In that case, $k \cdot b_k^{-1} \in S_0(\mathbb{R})$ is such that $\langle k, k \cdot b_k^{-1} \rangle$ is a projection in A^R_θ.
Theorem–ctd

Furthermore, we also have that \(k = Q^{\mathbb{R}}_{a^{-1} \mathbb{Z}} \tilde{g} \) converges towards \(g \) in the module norm as \(a \to \infty \), that is

\[
\lim_{a \to \infty} \| g - k \|_\Lambda = 0.
\]

Theorem

For each \(d \in \mathbb{N} \) let \(\tilde{g} \) be the vector in \(\mathbb{C}^d \) given by

\[
\tilde{g} = \mathcal{P}_{d^{1/2} \mathbb{Z}} \mathcal{R}_{d^{-1/2} \mathbb{Z}} g.
\]

For all \(d \) that are sufficiently large, the function \(k \) in \(S_0(\mathbb{R}) \) given by

\[
k := Q^{\mathbb{R}}_{d^{-1/2} \mathbb{Z}} Q_{d}^{d-1/2 \mathbb{Z}} \tilde{g}
\]

is such that \(b_k := \langle k, k \rangle_\bullet \in \mathcal{B}^{\mathbb{R}}_{\theta-1} \) is invertible on \(L^2(\mathbb{R}) \) and on \(S_0(\mathbb{R}) \). In that case, \(k \cdot b_k^{-1} \in S_0(\mathbb{R}) \) is such that \(\bullet \langle k \cdot b_k^{-1}, k \cdot b_k^{-1} \rangle \) is a projection in \(\mathcal{A}_\theta^{\mathbb{R}} \).
Theorem—ctd

In that case, \(k \cdot b_k^{-1} \in S_0(\mathbb{R}) \) is such that \(\langle k \cdot b_k^{-1}, (k \cdot b_k^{-1}) \rangle \) is a projection in \(A^\mathbb{R}_\theta \).

Furthermore, we also have that \(k \) converges towards \(g \) in the module norm as \(d \to \infty \), that is

\[
\lim_{d \to \infty} \| g - k \|_\Lambda = 0.
\]

\[
\| g - k \|_\Lambda^2 = \| g - k \|_{\Lambda^\circ}^2 = \| \langle g - k, g - k \rangle \|_{\text{op}}
\]
\[
\leq \theta^{-1} \sum_{\lambda^\circ \in \Lambda^\circ} \left| \langle g - k, \pi(\lambda^\circ)^*(g - k) \rangle_{L^2(\mathbb{R})} \right|
\]
\[
= \theta^{-1} \sum_{\lambda^\circ \in \Lambda^\circ} \left| V_{g-k}(g - k)(\lambda^\circ) \right|
\]
\[
\leq c \| g - k \|_{S_0}^2
\]

for some \(c > 0 \) that does not depend on \(a \) or \(g \).
Irrational case

Feichtinger-Kaiblinger

For a given θ we put $\Lambda = \mathbb{Z} \times \theta\mathbb{Z}$ and $\Lambda^\circ = \theta^{-1}\mathbb{Z} \times \mathbb{Z}$. If g is function in $S_0(\mathbb{R})$ such that $\langle g, g \rangle$, is a projection in A^R_θ for some irrational θ, then, for every rational $\tilde{\theta}$ that is sufficiently close to θ, the element $b_g := \langle g, g \rangle \in B^R_\tilde{\theta}$ is invertible as an operator on $L^2(\mathbb{R})$ and on $S_0(\mathbb{R})$. Moreover, the element $h := g \cdot b_g^{-1}$ in $S_0(\mathbb{R})$ is such that $\langle g, h \rangle$ is a projection in $A^R_{\tilde{\theta}}$.
Irrational case

Theorem

[Jakobsen-L.] Let θ be irrational and let g in $S_0(\mathbb{R})$ be a generator of the Heisenberg module E over $C^*(\mathbb{Z} \times \theta \mathbb{Z}, c)$, recall that $\langle g, g \rangle$ is a projection in $A_{\mathbb{R}}^R$. If $(\theta_i)_{i \in \mathbb{N}}$ is a sequence of rational numbers such that
$$\lim_{i \to \infty} |\theta - \theta_i| = 0,$$
and $(a_i), (b_i), (N_i)$ and (M_i) are sequences of natural numbers such that $\theta_i = a_i/M_i = b_i/N_i$ for all $i \in \mathbb{N}$ and such that the sequence $(d_i) = (a_i \cdot N_i)$ is increasing and unbounded, then there exists a sequence of vectors $(\tilde{g}_i)_i$ such that $\langle \tilde{g}_i, \tilde{g}_i \rangle$ is a projection in $A_{\mathbb{Z}_{d_i}}^R$. There exist functions $k^{(i)}$ in $S_0(\mathbb{R})$ such that $\langle k^{(i)}, k^{(i)} \rangle$ is a projection in $A_{\mathbb{R}}^R$. Furthermore, we also have that $(k^{(i)})$ converges towards g in the module norm as $i \to \infty$, that is

$$\lim_{i \to \infty} \| g - k^{(i)} \|_\Lambda = 0.$$