Cetaceans Have Complex Brains for Complex Cognition

Lori Marino
Emory University

Richard C. Connor
University of Massachusetts at Dartmouth

R. Ewan Fordyce
University of Otago

Louis M. Herman
University of Hawaii at Manoa

Patrick R. Hof
Mount Sinai School of Medicine

See next page for additional authors

Follow this and additional works at: https://www.wellbeingintlstudiesrepository.org/anatom

Part of the Animal Structures Commons, Animal Studies Commons, and the Veterinary Anatomy Commons

Recommended Citation
Marino L, Connor RC, Fordyce RE, Herman LM, Hof PR, et al. (2007) Cetaceans have complex brains for complex cognition. PLoS Biol 5(6): e139. doi:10.1371/journal.pbio.0050139

This material is brought to you for free and open access by WellBeing International. It has been accepted for inclusion by an authorized administrator of the WBI Studies Repository. For more information, please contact wbisr-info@wellbeingintl.org.
Authors
Lori Marino, Richard C. Connor, R. Ewan Fordyce, Louis M. Herman, Patrick R. Hof, Louis Lefebvre, David Lusseau, Brenda McCowan, Esther A. Nimchinsky, Adam A. Pack, Luke Rendell, Joy S. Reidenberg, Diana Reiss, Mark D. Uhen, Estel Van der Gucht, and Hal Whitehead

This article is available at WBI Studies Repository: https://www.wellbeingintlstudiesrepository.org/anatom/4
The brain of a sperm whale is about 60% larger in absolute mass than that of an elephant. Furthermore, the brains of toothed whales and dolphins are significantly larger than those of any nonhuman primates and are second only to human brains when measured with respect to body size [1]. How and why did such large brains evolve in these modern cetaceans? One current view of the evolution of dolphin brains is that their large size was primarily a response to social forces—the requirements for effective functioning within a complex society characterized by communication and collaboration as well as competition among group members [2–4]. In such a society, individuals can benefit from the recognition of others and knowledge of their relationships and from flexibility in adapting to or implementing new behaviors as social or ecological context shifts. Other views focus on the cognitive demands associated with the use of echolocation [5–7].

Recently, Manger [8] made the controversial claim that cetacean brains are large because they contain an unusually large number of thermogenic glial cells whose numbers increased greatly to counteract heat loss during a decrease in ocean temperatures in the Eocene-Oligocene transition. Therefore, he argues, cetacean brain size could have evolved independently of any cognitive demands and, further, that there is neither neuronal evidence nor behavioral evidence of complex cognition in cetaceans. These claims have garnered considerable attention in the popular press, because they challenge prevailing knowledge and understanding of cetacean brain evolution, cognition, and behavior.

We believe that the time is ripe to present an integrated view of cetacean brains, behavior, and evolution based on the wealth of accumulated and recent data on these topics. Our conclusions support the more generally accepted view that the large brain of cetaceans evolved to support complex cognitive abilities.

The Origins and Evolution of Large Brains in Odontocetes

The cetaceans arose from artiodactyls (even-toed ungulates) early in the Eocene approximately 55 million years ago (Figure 1) [9,10]. The earliest cetaceans, archaeocetes, were not highly encephalized; rather there was a significant increase in relative brain size in odontocetes (toothed whales, including dolphins) during their initial radiation in the late Eocene–early Oligocene transition [11]. This dramatic increase in relative brain size involved a substantial decrease in body size with a concurrent, more moderate, increase in brain size.

As Manger correctly points out, there is evidence for oceanic cooling during late Eocene-Oligocene times (Figure 1) [12]. Odontocete bodies actually got smaller during that time, whereas, generally, cooler climates induce increases in body size [e.g., 13], because larger animals lose relatively less heat to the environment. Moreover, cetaceans were already well above the threshold for body size to deal with oceanic cooling [14]. Therefore, there was no need for odontocetes to respond to these temperature decreases with either change in body size or brain size. Thus, such changes in brain size (and body size) in odontocetes were likely due to factors other than oceanic temperature change.

Concurrent with changes in relative size, the brain reorganized into a form with relatively larger cerebral hemispheres and overall greater similarity to that of modern cetaceans [11]. Tentative evidence also suggests concomitant changes in cranial architecture and ear structure to support echolocation [15]. Although the selection pressure that drove the decrease in body size is unknown, smaller animals would have experienced changes in their ecology (e.g., predation risk) that may have driven further behavioral changes. This
may indicate that the large brains of early odontocetes were used, at least partly, for processing this entirely new sensory mode that evolved at the same time as these anatomical changes and perhaps for integrating this new mode into an increasingly complex behavioral ecological system.

Contemporary Cetacean Neuroanatomy

The common ancestor of cetaceans and primates lived over 95 million years ago [16], and cetacean brains have been on an independent evolutionary trajectory from other mammals for close to 55 million years [17]. During that time, cetacean brains evolved a unique combination of features that are different in many respects from primate brains.

The cetacean neocortex was once viewed as relatively homogeneous in cellular architecture, regionally unspecialized, and lacking organizational complexity. It was thought to have poorly differentiated neuronal morphology, low numbers of neurons and cortical areas, and an indistinct prefrontal cortex. This view of cetacean neocortex harks back to an earlier era when a few authors who considered dolphins rather unintelligent saw little in the neuroanatomy, not surprisingly, to refute that view [18,19]. This perspective influenced later thinking about cetacean brains and led to the “initial brain” hypothesis of cetacean neocortical evolution [20] that asserted cetacean neocortex was primitive. However, modern neuroanatomical techniques convincingly demonstrate that the cetacean neocortex has a degree of regional parcellation comparable to that of many terrestrial mammals (see Box 1) [21,22]. There is certainly no evidence that the “cetacean scheme” is incapable of supporting complex processing similar to that in primates and other mammals.

Likewise, there is no reason to expect that cetacean and primate prefrontal cortical analogs would be, in fact, located in the same region of the brain. However, the expansion of the insular and cingulate cortices in cetaceans is consistent with high-level cognitive functions—such as attention, judgment, intuition, and social awareness—known to be associated with these regions in primates [23]. This view is further supported by the observation that the anterior insular and anterior cingulate cortex in cetacean species having the largest brains exhibit a large number of large layer V spindle neurons [22] (Figure 2), similar to those originally reported to be unique to humans and great apes [24,25]. These particular neurons are considered to be responsible for neural...
networks subserving aspects of social cognition [23].

The cetacean neocortex is also characterized by a high ratio of glial cells to neurons, consistent with the general pattern found in other mammals, where neuron density decreases with absolute brain size, probably to maintain certain properties of neural transmission. “Glia” include several distinct cell populations, including: (1) oligodendrocytes, which provide myelin for axons or “white matter;” (2) astrocytes, which have several roles and predominate in the gray matter; and (3) microglia, immune cells which are not embryologically related to other glia or neurons. Given their vastly different roles, it is important to know which is being counted to interpret the functional significance of a high glial cell/neuron ratio in cetaceans. If, for instance, a high glial cell/neuron ratio is due to an increase in oligodendrocytes, this would be consistent with previous observations that as brains get larger, the white matter increases proportionally more than the gray matter [26]. In fact, recent imaging studies show that it is precisely by a greater proportion of white matter that humans can be distinguished from apes and monkeys [27,28]. Moreover, growing evidence demonstrates that astrocytes contribute to the modulation and coordination of neural activity in the brain [29–31]. Therefore, despite Manger’s argument, a high glia cell/neuron ratio is consistent with the increased needs of complex brains for rapid communication and synaptic efficiency.

Cetacean Cognition and Behavior in the Laboratory

The preceding description of cetacean brains reveals not only their large absolute and relative size but also underscores a structural complexity that could support complex information processing, allowing for intelligent, rational behavior. There is considerable behavioral data to support that assumption.

Laboratory studies of bottlenose dolphins have documented various dimensions of their intellectual abilities. These include an understanding of symbolic representations of things and events (declarative knowledge); an understanding of the activities, identities, and behaviors of others, (social knowledge); and an understanding of one’s own image, behavior, and body parts (self knowledge) [reviewed in 32]. All these capabilities rest on a strong foundation of memory; investigations have demonstrated that bottlenose dolphin auditory, visual, and spatial memory are accurate and robust [33–36]. Learning, remembering, and innovation can be life-saving cognitive tools in a challenging environment. The flexible and diverse learning capabilities of dolphins are well documented, including, for example, the learning of a variety of types of abstract rules [37,38] and the spontaneous understanding and execution of instructions from televised trainers [39]. Learning of an imposed language is perhaps the most challenging cognitive task that dolphins have faced in the laboratory. Dolphins learned to understand not only the semantic features of artificial gestural and acoustic languages, but also the syntactic features [40]. Learning of complex syntactic structures or decoding of anomalous structures was often achieved through inference, rather than through explicit instruction [41].

Dolphins spontaneously learn associations between sounds and temporally paired events [42] and demonstrate extensive imitative abilities for sounds and for behaviors (see Box 2) [42, 43–45]. Dolphins can develop a concept of mimicry—copying an observed behavior or sound if given a symbolic instruction to do so. Dolphins are the only mammal, other than humans, shown capable of extensive...
and rich vocal and behavioral mimicry. Indeed the evidence that bottlenose dolphins are capable of imitation, one of the highest forms of social learning, is so strong that a leading primatologist has concluded that they “ape better than apes” [46].

Social knowledge includes awareness of the indications of another. Dolphins readily learn to understand the significance of human pointing gestures and head gaze [47–49]. They attend not only to the direction in which the human points or gazes, but also to the object of regard [50]. Dolphins can also attend to a target being echoically interrogated by another dolphin by “eavesdropping” on the returning echoes [51]. Dolphins echolocate by orienting both their body and their narrow-beam echolocation signal in a particular direction, which may be a rough analog to arm and hand directional pointing by humans [47]. Additionally, dolphins can use their rostrums and body alignment to point and direct a human swimmer to an object or place of interest [52] and monitor whether the human receiver is attending to them [52,53].

Self-knowledge, including self-awareness, enables one to develop a self-image and monitor and evaluate one’s own behaviors. Dolphins recognize themselves in a mirror [54] (Figure 3), a rare ability previously demonstrated in the great apes and humans ([54] for a review) and, recently, in elephants [55]. Mirror self-
Box 2. Imitation in Dolphins

Imitation is an important type of social learning that can readily lead to stable cultures. While it is clear that many cetaceans are natural mimics, executing synchronous motor behaviors, such as “porpoising” in unison, and spontaneously imitating sounds, including the whistles of others, imitation is a complex multidimensional ability that is most intimately studied in the laboratory. Bottlenose dolphin abilities for both arbitrary vocal and motor imitation were demonstrated at the Kewalo Basin Marine Mammal Laboratory in Honolulu. Vocal imitation was investigated by broadcasting electronically generated “model” sounds underwater into a dolphin’s habitat [43]. In response, the dolphin vocalized into a hydrophone. Figure A in this box shows spectrograms of each of nine model sounds and the resulting imitation. The arrow points to the beginning of the dolphin’s imitation. A variety of different waveforms were imitated accurately; the imitations of sounds G and H show spontaneous octave generalization, the imitation occurring precisely an octave above (G) or an octave below (H) the model sound. Octave generalization is a rare ability that, for example, has not been elicited from songbirds.

Social motor imitation was demonstrated first by having two dolphins side by side with a partition between them that allowed the dolphins to see each other but not their respective trainers. The “demonstrator” dolphin was instructed gesturally by its trainer to perform one of many possible behaviors, including its own self-chosen behavior. Then, the “imitator” dolphin was instructed by its trainer to either “mimic” the demonstrated behavior or to perform another behavior. Both dolphins successfully imitated familiar and novel modeled behaviors. This ability generalized easily to imitating human behaviors demonstrated either at poolside (Figure B) or on a television monitor placed behind an underwater window. Motor mimicry also extended to self-imitation, the imitation of one’s own previous behavior. No nonhuman animal has shown the levels of diversity, flexibility, and cognitive control of imitative skill demonstrated in bottlenose dolphins [44].
production mechanisms. Odontocetes (primarily high-frequency producers, echolocating) and mysticetes (primarily low-frequency producers, non-echolocating) exhibit radically divergent nasal, laryngeal, and hyoid anatomy [70–74]. Cetaceans also supplement their repertoire of vocal signals with visual cues (e.g., changes in body posture), tactile behaviors (e.g., flipper touching, teeth raking), and nonvocal auditory behaviors (e.g., breaching, lob tailing). The temporal sequencing of these latter nonvocal communicative events can be highly structured, demonstrating a complex and diverse nonvocal communication system [64,79].

Dolphins produce several different whistle types and sounds. Evidence also shows that the sequential order of whistle production is an important feature of their communication system [76,77]. Extensive fieldwork has shown that cetacean call types exhibit enormous variation [78,79], evolve over time [80], and are used differently across social groups [81]. In some cases, the variation is so pronounced that other species have learned to use it in judging predation risk [82]. In bottlenose dolphins, there is evidence that this variation is the basis for a referential identity-labeling system [83].

Cultural learning of behaviors may proceed through motor imitation or perhaps even through direct teaching (pedagogy), as may be the case for killer whale calves “instructed” in beach capture of pinnipeds by their mothers [83–85, 88]. The close synchrony among killer whale family groups (pedagogy), as may be the case for killer whale calves “instructed” in beach capture of pinnipeds by their mothers [83–85, 88]. The close synchrony among killer whale family groups such as the development of dialects [66,84]. Vocal imitation also occurs, and nonvocal auditory behaviors (e.g., breaching, lob tailing). The temporal sequencing of these latter nonvocal communicative events can be highly structured, demonstrating a complex and diverse nonvocal communication system [64,79].

Returning to Manger, his controversial claim is reminiscent of the conclusion reached about bees by physicists and mathematicians in the 1930s—that the anatomical structure of bees and the known principles of flight indicate that bee flight is impossible [90]. Rightfully oblivious to Manger’s contentions, cetaceans continue to provide an enormous body of empirical evidence for complex behavior, learning, sociality, and culture. ■

Acknowledgments
Support for PRH and EVdG provided by the James S. McDonnell Foundation (2209200728). Support for contributions by LH and AP provided by members of The Dolphin Institute, LeBurta Atherton, Terrie and Larry Henry, the Arthur M. Blank Family Foundation, and The Resort Group at Ko Olina. Support for DL provided by the Killam Trusts. Support for LM and MU provided by the National Science Foundation. LR was supported by a NERC Postdoctoral Fellowship (NER/1/S/2002/00632). Support for DR provided by Brian and Darlene Heidtke and the Quadra S/2002/00632). Support for DL provided by members of the James S. McDonnell Foundation (2209200728). Support for contributions by LH and AP provided by members of The Dolphin Institute, LeBurta Atherton, Terrie and Larry Henry, the Arthur M. Blank Family Foundation, and The Resort Group at Ko Olina. Support for DL provided by the Killam Trusts. Support for LM and MU provided by the National Science Foundation. LR was supported by a NERC Postdoctoral Fellowship (NER/1/S/2002/00632). Support for DR provided by Brian and Darlene Heidtke and the Quadra Foundation.

References
1. Marino L. (1998) A comparison of encephalization between odontocete cetaceans and anthropoid primates. Brain Behav Evol 51: 290–328.
2. Herman LM (1980) Cognitive characteristics of dolphins. In: Herman LM editor. Cetacean behavior: Mechanisms and functions. New York: Wiley Interscience. pp 363–429.
3. Connor RC, Smolker RA, Richards AF (1992) Dolphin alliances and coalitions. In: Harcourt AH, de Waal FBM, editors. Coalitions and alliances in animals and humans. Oxford: Oxford University Press. pp. 415–443.
4. Connor RC (2007). Complex alliance relationships in bottlenose dolphins and a consideration of selective environments for extreme brain size evolution in mammals. Philosophical Transactions of the Royal Society: Biological Sciences FirstCite Early Online Publishing. DOI: 10.1098/rspb.2006.
5. Jerison HJ (1986) The perceptual world of dolphins. In: Schusterman RJ, Thomas JA. Wood FG, editors. Dolphin cognition and behavior: a comparative approach. New Jersey: Lawrence Erlbaum. pp 141–166.
6. Ridgway SH (1986) Physiological observations on dolphin brains. In: Schusterman RJ, Thomas JA. Wood FG, editors. Dolphin cognition and behavior: a comparative approach. New Jersey: Lawrence Erlbaum. pp 31–59.
7. Wood FG, Evans WE (1980) Adaptiveness and ecology of echolocation in toothed whales. In: Busnel R, Fish J, editors. Animal sonar systems. New York: Plenum. pp 381–426.
8. Manger PR (2006) An examination of cetacean brain structure with a novel hypothesis correlating thermogenesis to the evolution of a big brain. Biol Rev 81: 293–338.
9. Fordyce RE (2003) Cetacean evolution and Eocene-Oligocene oceans revisited. In: Prothero DR, Ivany LC, Nesbitt E, editors. From greenhouse to icehouse. The marine Eocene-Oligocene transition. New York: Columbia University Press. pp 154–170.
10. Geisler JH, Uhen MD (2005) Phylogenetic relationships of extinct Cetartiodactyls. Results of simultaneous analyses of molecular, morphological, and stratigraphic data. J Mamm Evol 12: 145–169.
11. Marino L, McShea D, Uhen MD (2004) The origin and evolution of large brains in toothed whales. Anat Rec 281: 247–253.
12. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and abberations in global climate 65 Ma to present. Science 292: 680–695.
13. Millien V, Lyons SK, Olson L, Smith FA, Wilson AB, et al. (2006) Ecophenotypic variation in the context of global climate change: Revisiting the rules. Ecol Lett 9: 853–869.
14. Downhower JF, Blumen LS (1988) Calculating just how small a whale can be. Nature 335: 675–677.
15. Fleischer G (1976) Hearing in extinct cetaceans as determined by cochlear structure. J Paleontol 40: 135–152.
16. Kumar S, Blair Hedges S (1998) A molecular timescale for vertebrate evolution. Nature 392: 917–920.
17. Gingerich PD, Uhen MD (1998) Likelihood estimation of the time of origin of cetaceans and the time of divergence of cetaceans and Artiodactyla. Paleo-electronica 2: 1–47.
18. Bianchi V (1995) Il sistema cerebrale del delfino (Delphinus delphis). Napoli: Tipographia della R. Accademia delle Scienze Fisiche e Matematiche. pp. 1–18.
19. Kesarev VS (1971) The inferior brain of the dolphin. Soviet Sci Rev 1: 52–58.
20. Gleizer II, Jacobs MS, Morgane PJ (1988) Implications of the ‘initial brain’ concept for brain evolution in Cetacea. Behav Brain Sci 11: 75–116.
21. Hof PR, Chanis R, Marino L (2005) Cortical complexity in cetacean brains. Anat Rec 287:1142–1152.
22. Hof PR, Van der Gucht E (2007) The structure of the cerebral cortex of the humpback whale, Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae). Anat Rec. 290: 1–31.
23. Allman JM, Watson KK, Erwin JM, et al. (1999) A neuronal reorganization during their evolution with resulting expansion of the neocortex. Cortical evolution, however, Proceeded along very different lines than in primates and other large mammals. Despite this divergence, many cetaceans evince some of the most sophisticated cognitive abilities among all mammals and exhibit striking cognitive convergences with primates, including humans. In many ways, it is because of the evolution of similar levels of cognitive complexity via an alternative neuroanatomical path that comparative studies of cetacean brains and primate brains are so interesting. They are examples of convergent evolution of function largely in response, it appears, to similar societal demands.

Conclusion
Evidence from various domains of research demonstrates that cetacean brains underwent elaboration and reorganization during their evolution with resulting expansion of the
K (2005) Neural connectivity and cortical substrates of cognition in hominoids. J Hum Evol 49: 547–569.
28. Schonemann PT, Sheehan MJ, Glatzer LD (2005) Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nat Neurosci 8: 242–252.
29. Hayden FG (2001) Glia: Listening and talking to the synapse. Nat Rev Neurosci 2: 185–193.
30. Kang J, Juul L, Goldman SA, Nederhaft M (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1: 683–692.
31. Ullian EM, Sapperstein SK, Christopherson KS, Barres BA (2001) Control of synapse number by glia. Science 296: 657–661.
32. Herman LH (2006) Intelligence and rational behaviour in the bottlenosed dolphin. In: Hurley S, Nudds M, editors. Rational animals? Oxford: Oxford University Press. pp. 379–408.
33. Herman LM, Gordon JA (1974) Auditory vocal learning. J Comp Psychol 107: 301–312.
34. Herman LM, Hovancik, JR, Gary JD, Bradshaw GL (1989) Generalization of visual matching by a bottlenosed dolphin (Tursiops truncatus). Evidence for invariance of cognitive processes. J Exp Psychol Anim Behav Proc 15: 124–136.
35. Thompson RKR, Herman LM (1977) Memory for lists of sounds by the bottlenosed dolphin: Correlation with delayed matching performance. Animal Learn Behav 9: 9–15.
36. Herman LM, Pack AA, Wood AM (1994) Bottlenosed dolphins can generalize rules and develop abstract concepts. Mar Mamm Sci 10: 70–80.
37. Mercado III EM, Killebrew DA, Pack AA, Macha IVB, Herman LM (2000) Generalization of same-different classification abilities in the bottlenosed dolphin (Tursiops truncatus). J Exp Psych: Gen 126: 59–74.
38. Herman LM, Morrell-Samuels P, Pack AA (1999) Bottlenosed dolphin and human recognition of veridical and degraded video displays of an artificial primate language. J Exp Psych: Gen 119, 215–230.
39. Herman LM, Richards DG, Wolz JP (1984) Comprehension of sentences by bottlenosed dolphins (Tursiops truncatus): Evidence for vocal learning. J Comp Psychol 107: 301–312.
40. Richards D, Wolz J, Herman LM (1984) Vocal mimicry of computer-generated sounds and vocal labeling of objects by a bottlenosed dolphin (Tursiops truncatus). J Comp Psychol 98: 10–28.
41. Herman LH (2002) Vocal, social, and self-identification behaviors of a language-trained dolphin. In: Daureen K, Nebelski CL, eds. Imitation in animals and artifacts. Cambridge (Massachusetts): MIT Press. pp. 65–108.
42. Hooper SC, Reiss D, Carter M, McCowan B (2006) Importance of contextual salience on vocal imitation by bottlenose dolphins. Int J Comp Psychol 19: 116–128.
43. Whitehead RC (2001) Imitation and cultural transmission in apes and cetaceans. Behav Brain Sci 24: 359–360.
44. Herman LM, Abichandani SL, Elhai AN, Herman EY, Sanchez JL, et al. (1999) Dolphins (Tursiops truncatus) comprehend the referential character of the human pointing gesture. J Comp Psychol 113: 1–18.
45. Pack AA, Herman LM (2004). Dolphins (Tursiops truncatus) comprehend the referent of both static and dynamic human gazing and pointing in an object choice task. J Comp Psychol 118: 111–120. 
46. Tschudin A, Call J, Dunbar RIM, Harris G, van der Elst C (2005) The dolphin’s (Tursiops truncatus) understanding of human gaze and pointing: Knowing what and where. J Comp Psychol 119: 345–355.
47. Xitco Jr JJ, Gory JD, Kuczaj II SA (2004) Spontaneous pointing by bottlenose dolphins (Tursiops truncatus). Anim Cogn 7: 213–238.
48. Xitco MJ, Gary JD, Kuczaj II SA (2001) Vocal mimicry of computer-generated sounds by a language-trained dolphin: Evidence for invariance of cognitive processes with an abstract rule. Anim Learn Behav 26: 210–218.
49. Mercado III E, Uyeyama RK, Pack AA, Herman LM (1998) Memory for recent actions is the basis of delayed dolphin (Tursiops truncatus): Repetition of arbitrary behaviors using an abstract rule. Anim Learn Behav 26: 210–218.
50. Mercado III E, Uyeyama RK, Pack AA, Herman LM (1999) Memory for action events in the bottlenosed dolphin. Anim Cogn 2: 17–25.
51. Herman LM, Matus DS, Herman EY, Ivancic M, Pack AA (2001) The bottlenosed dolphin’s (Tursiops truncatus) use of common gestures as symbolic representations of its body parts. Anim Learn Behav 29: 259–264.
52. Smith JD, Schull J, Strote J, McGee K, Egnot R, et al. (1995) The uncertain response in the bottlenosed dolphin (Tursiops truncatus). J Exp Psych: Gen 124: 391–408.
53. Connor RC, Wells RS, Mann J, Read A (2009) The bottlenosed dolphin’s (Tursiops truncatus) use of gestural strings as symbols of social relations. J Exp Psych: Gen 122: 184–194.
54. Reiss D, McCowan B (1993) Spontaneous vocal mimicry and production by bottlenosed dolphins (Tursiops truncatus): Evidence for vocal learning. J Comp Psychol 107: 301–312.
55. Reidenberg JS, de Waal FBM, Reiss D (2006) Self-recognition in the bottlenose dolphin: A case of cognitive convergence. Proc Natl Acad Sci U S A 98: 5937–5942.
56. Plotnik JM, de Waal FBM, Reiss D (2006) Self-recognition in bottlenose dolphins. Evol Hum Behav 27: 573–581.
57. Mercado III E, Uyeyama RK, Pack AA, Herman LM (1998) Memory for recent actions is the basis of delayed dolphin (Tursiops truncatus): Repetition of arbitrary behaviors using an abstract rule. Anim Learn Behav 26: 210–218.
58. Smith JD, Schull J, Strote J, McGee K, Egnot R, et al. (1995) The uncertain response in the bottlenosed dolphin (Tursiops truncatus). J Exp Psych: Gen 124: 391–408.
59. Connor RC, Wells RS, Mann J, Read A (2009) The bottlenosed dolphin’s (Tursiops truncatus) use of gestural strings as symbols of social relations. J Exp Psych: Gen 122: 184–194.
60. Reiss D, McCowan B (1993) Spontaneous vocal mimicry and production by bottlenosed dolphins (Tursiops truncatus): Evidence for vocal learning. J Comp Psychol 107: 301–312.