Ethylamine gas sensing properties of SnO$_2$/rGO nanocomposite materials

Shanshan Huang1, Jian Song2 and Kaijin Huang2,*

1School of Physics, Northeast Normal University, Changchun 130024, China
2State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China

*Corresponding author e-mail: huangkaijin@hust.edu.cn

Abstract. Ethylamine has been widely used in production and life, but it needs to be monitored in real-time because of its important harm to human health. In this study, an SnO$_2$/rGO nanocomposite gas sensitive material was synthesized by hydrothermal method, and the gas-sensing properties of ethylamine were tested by a self-made gas sensitivity test platform. The results show that the SnO$_2$/rGO nanocomposite materials have good gas-sensitive performance of ethylamine and low detection limit (up to 1 ppm). Finally, the mechanism of gas sensitivity is proposed.

1. Introduction
Ethylamine is easy volatile under room temperature and pressure, it is a colorless and strong smell of ammonia organic liquid, which belongs to high toxic substances. It can be used as pesticides in agricultural production, and also widely used as dye production in industrial production, antioxidant, rubber accelerator and surfactant, power fuel [1], ion exchange resin, solvents and detergents, lubricant, metallurgical processing agent, and the production of cosmetics and pharmaceuticals in daily life. It is also used as extraction agent, emulgator, medicine raw material and reagent. Ethylamine can get inside the body by inhaled, ingestion or skin contact. It can stimulate the eye, weasand, lung, excretory system and the upper respiratory tract, and damage the cornea. Ethylamine liquid splashed into people’s eyes can lead to severe eye burns; contact with skin can cause burns. Consequently, the maximum permissible concentration–time weighted average (PC-TWA) for ethylamine is 9 mg/m3 (4.47 ppm); the permissible concentration–short term exposure (PC-STEL) is 18 mg/m3 (8.94 ppm) in China [2]. Therefore, it is necessary to carry out real-time monitoring of this molecule.

To date, many methods have been devised for the detection of ethylamine at the ppm or ppb level, such as solvent-gas chromatography [3], headspace capillary gas chromatography [3], ion chromatography [4], and spectrophotometric method [5]. These methods have many disadvantages: gas chromatography needs derivatization processing, its operation is complicated; ion chromatography is also complex, cannot achieve real-time monitoring; spectrophotometric method contains many influence and interference factors, and its result is poor stability and reproducibility. In order to solve these problems, some new detection methods of ethylamine have been developed [6-10]. However, the materials [6-8,10] or quartz crystal microbalance (QCM) sensors [9] or optical sensor [10] used in these new detection methods are expensive and difficult to popularize. On the other hand, gas sensors based on metal oxide semiconductors, such as SnO$_2$, ZnO, and Fe$_2$O$_3$, have attracted much attention owing to
their unique features, such as low cost, high sensitivity, fast response, relative simplicity and portability [11].

It is well known that SnO$_2$ is widely used as a gas-sensing material and that graphene has very good electrical conductivity and a large surface area. Many published reports [12-22] have proved the excellent gas-sensing properties of SnO$_2$/rGO nanocomposite materials. Among them, the gases showing excellent gas sensitivity performance are NO$_2$ [12], formaldehyde [13], H$_2$ [14], methane [15], ethanol [16], C$_2$H$_2$ [17], diethyl ether [18], H$_2$S [19], trichloroethylene [20], acetone [21], NH$_3$ [22], etc.

To the best of our knowledge, there has been no published report on the sensing of ethylamine with SnO$_2$/rGO gas-sensing material, except for the sensing of ethylamine with Na[Cd(MIDC)]$_n$ [6], PPy-metal oxide semiconductor (MOS) [7], thiobarbituric-isophorone chromophore [8], etc.

In this study, a SnO$_2$/rGO gas-sensing material has been prepared by a hydrothermal method and the gas sensing properties of ethylamine vapor was tested and a gas sensitive mechanism of ethylamine was proposed.

2. Materials and methods

Graphene oxide (GO) and SnO$_2$/rGO nanocomposite powders were prepared by a modified hummer’s method and a hydrothermal method, respectively. Detailed preparation process and characterization methods can be found in our previous paper [18]. Detailed preparation process of the SnO$_2$/rGO gas sensing film and the ethylamine gas sensitivity test method can also be referred to literature [18]. The gas-sensing properties of the SnO$_2$/rGO film were investigated using a gas-sensing material screening platform [23] by testing the change of the resistances of the coating layer when the testing chamber was exposed in air and tested gases atmosphere under laboratory conditions. Gas sensitivity in this study is defined as $S = R_a/R_g$, where R_a and R_g are the resistances of a sensor in air and in a test gas, respectively.

3. Results and discussion

3.1. Structural characterization

Detailed characterization of GO, rGO and SnO$_2$/rGO was reported in our previous paper [18]. The research results in literature [18] showed that the specific surface area of SnO$_2$/rGO nanocomposite gas-sensitive materials synthesized by hydrothermal method reached 187m2/g, larger than that in literature [22]. This large specific surface area is beneficial for the sensing properties of the SnO$_2$/rGO nanocomposite powders for ethylamine vapors.

3.2. Gas-sensing properties of SnO$_2$/rGO sensor arrays

Figure 1 shows the effect of operating temperature on the gas sensitivity of the SnO$_2$/rGO sensor to 200 ppm ethylamine. The gas sensitivity increases with increasing operating temperature, and its gas sensitivity is 39.57 at 400 °C. This phenomenon has been reported in the detection of C$_2$H$_2$ by SnO$_2$ and rGO [17] and methane by SnO$_2$ [15]. The change of physical adsorption at low temperature to chemical adsorption at high temperature of the adsorption mode of oxygen molecules is the main reason for this phenomenon [24]. As the operating temperature increases, the amount of chemically adsorbed ethylamine also increases. That is to say, the adsorbed ethylamine molecules will increase with the increase of temperature, and the adsorbed oxygen molecules are also increase, so it traps more electrons from the conduction band to form a depletion layer and causes a larger change in the resistance, increase the gas sensitivity (Figure 1). It should be pointed out that due to the power limitation of the gas-sensitive performance test circuit, on the one hand, the working temperature cannot continue to increase; on the other hand, the actual working temperature of the gas-sensitive sensor generally does not exceed 400 °C. This operating temperature of 400 °C has not yet reached the maximum gas sensitivity value, which may be related to the type of gas [25] being tested.
The following reactions may describe the adsorption of oxygen [26] and ethylamine:

\[
\begin{align*}
\text{O}_2(g) & \rightleftharpoons \text{O}_2(\text{ads}) \quad (1) \\
\text{O}_2(\text{ads}) + e^- & \rightleftharpoons \text{O}_2^-(\text{ads}) \quad (T < 100^\circ \text{C}) \quad (2) \\
\text{O}_2^-(\text{ads}) + e^- & \rightleftharpoons 2\text{O}^-(\text{ads}) \quad (100^\circ \text{C} < T < 300^\circ \text{C}) \quad (3) \\
\text{O}^-(\text{ads}) + e^- & \rightleftharpoons \text{O}_2^-(\text{ads}) \quad (T > 300^\circ \text{C}) \quad (4) \\
2\text{CH}_3\text{CH}_2\text{NH}_2(\text{ads}) + 11\text{O}_2^-(\text{ads}) & \rightarrow 7\text{H}_2\text{O} + 2\text{CO}_2 + 2\text{CN} + 22e^- \quad (5)
\end{align*}
\]

Figure 2 shows the relationship between the gas sensitivity of the SnO$_2$/rGO gas sensor and the concentration of ethylamine. As can be seen from the Figure 2, the gas sensitivity increases with the increase of the concentration of ethylamine from 1 to 200 ppm at 400 ºC. This phenomenon has also been widely reported in the literature [27]. The gas sensitivity of the SnO$_2$/rGO gas sensor was 1.03 at 1 ppm and 400 ºC, and increased to 39.57 at 200 ppm and 400 ºC. That is, the detection limit of the SnO$_2$/rGO gas sensor to ethylamine can reach 1 ppm, which meets the demand for real-time monitoring of this molecule [2].
Figure 2. Gas sensitivity of the SnO$_2$/rGO sensor vs ethylamine concentration (1–200 ppm) at 400 °C

Figure 3 shows the response and recovery times of the SnO$_2$/rGO gas sensor to 1 and 200 ppm ethylamine. As can be seen from Figure 3, these parameters were 369 and 110 s, respectively, at 1 ppm ethylamine, and 20 and 27 s, respectively, at 200 ppm ethylamine.

The high gas sensitivity of the SnO$_2$/rGO gas sensor is related to its large specific surface area (187 m2/g) and the high conductivity of rGO [28]. At the operating temperature, when the negative oxygen ions are adsorbed, the SnO$_2$ surface, as an n-type semiconductor, will generate an electron depletion layer, which will cause the increase of the surface potential barrier and the resistance. When ethylamine molecules are adsorbed on the surface of SnO$_2$ gas-sensitive material, the adsorbed negative oxygen ions are consumed and free electrons are generated. In this way, the resistance of SnO$_2$ gas-sensitive material is reduced. On the contrary, when there is no adsorption of ethylamine molecules, the resistance of SnO$_2$ gas-sensitive material will recover. This change in resistance will provide a gas-sensitive detection method.

Figure 3. Response and recovery curve of the SnO$_2$/rGO sensor to 200 ppm ethylamine at 400 °C (Inset: corresponding curve at 1 ppm ethylamine).
The sensing mechanism for ethylamine based on SnO$_2$/rGO composites could be described as follows: When the SnO$_2$/rGO sensor is exposed to ethylamine, first, the ethylamine molecules will be adsorbed onto the SnO$_2$/rGO composites. Second, the adsorbed ethylamine molecules will react with the chemisorbed oxygen species (O$^2-$, O$^-$, O$^2-$) depending on the operating temperature and release the electrons to the SnO$_2$/rGO composites. Third, the electrons will flow from SnO$_2$ to rGO (Figure 4b) owing to the formation of p(rGO)-n(SnO$_2$) heterojunction [14] and the work functions of n-type SnO$_2$ and p-type rGO are about 4.55 and 4.75 eV, respectively, and results in a rapid decrease of the resistance and higher sensitivity (Figure 2).

Figure 4. Schematic model on gas sensing mechanism of SnO$_2$/rGO gas sensor to ethylamine

Adsorbed onto the SnO$_2$/rGO composites. Second, the adsorbed ethylamine molecules will react with the chemisorbed oxygen species (O$^2-$, O$^-$, O$^2-$) depending on the operating temperature and release the electrons to the SnO$_2$/rGO composites. Third, the electrons will flow from SnO$_2$ to rGO (Figure 4b) owing to the formation of p(rGO)-n(SnO$_2$) heterojunction [14] and the work functions of n-type SnO$_2$ and p-type rGO are about 4.55 and 4.75 eV, respectively, and results in a rapid decrease of the resistance and higher sensitivity (Figure 2).

4. Conclusion

An SnO$_2$/rGO ethylamine gas sensor has been successfully fabricated by a screen-printing technique based on SnO$_2$/rGO nanocomposite powders prepared by a hydrothermal method. The gas sensitivity of the obtained SnO$_2$/rGO sensor to 1 ppm and 200 ppm ethylamine reached 1.03 and 39.57 at 400 ºC, respectively.

Acknowledgments

The research work of this paper was done in the gas sensing laboratory of School of Materials Science and Engineering, Huazhong University of Science and Technology. During the experiment, I received strong support and help from many teachers, brothers and sisters, so that I gradually understood and loved the field of gas sensor, and at the same time, I realized the importance and charm of interdisciplinary study, which laid a good foundation for the application of professional knowledge in this field in the future. I would like to express my heartfelt thanks to all the people who have helped me.

References

[1] M. Altarawneha, M. H. Almatarneh, A. Marashdeh, B.Z. Dlugogorski, Decomposition of ethylamine through bimolecular reactions, Combust. Flame 163(2016) 532~535.

[2] Ministry of Health of the People's Republic of China: Occupational Exposure Limits for Hazardous Agents in the Workplace. Part I: Chemical Hazardous Agents. National Occupational Health Standard of the People's Republic of China (GBZ 2.1-2007), 2007, pp.12. (in Chinese)

[3] X. H. Ma, Y. H. Li, X. L. Yang, F. Q. Zhu, B. Zhou, Q. P. Dong, Determination of ethylamine in workplace air by headspace capillary gas chromatography, Occup. Health 30(2014) 1513~1514. (in Chinese)
[4] W. Liu, Y. F. Zhang, J. H. Li, W. H. Chen, L. C. Hu, G. S. Su, Determination of methylamine and ethylamine in sidestream cigarette smoke by ion chromatography, Tob. Sci. Technol. 48(2015) 32–36. (in Chinese)

[5] Institute of Chinese Academy of Preventive Medicine Health, Workshop Air Monitoring Inspection Method, People's Medical Publishing House, Beijing, China, 1990, pp. 349–351. (in Chinese)

[6] R.L. Liu, Y.R. Liu, S.H. Yu, C.L. Yang, Z.F. Li, G. Li, A highly proton-conductive 3D ionic cadmium-organic framework for ammonia and amines impedance sensing, ACS Appl. Mater. Inter. 11(2019) 1713-1722.

[7] H. Jamalabadi, A. Mani-Varnosfaderani, N. Alizadeh, PPy-metal oxide hybrid nanocomposite sensor array for simultaneous determination of volatile organic amines in high humid atmosphere, IEEE Sens. J. 17(2017) 8282-8289.

[8] Y.J. Kim, S.Y. Gwon, S.N. Kim, Synthesis and VOC ethylamine sensing properties of new colorimetric chemosensor based on thiobarbituric-isophorone chromophore, Fiber. Polym. 17(2016) 1801-1805.

[9] R. Das, S. Pradhan, S. Biswas, P. Sharma, A. Ghosh, R. Bandyopadhyay, P. Pramanik, Aliphatic amines vapours detection by quartz crystal microbalance sensor, Sensor Actuat. B- Chem. 198(2014) 94-101.

[10] W. Qin, P. Parzuchowski, W. Zhang, M.E. Meyerhoff, Optical sensor for amine vapors based on dimer-monomer equilibrium of indium (III) octaethylporphyrin in a polymeric film, Anal. Chem. 75(2003) 332-340.

[11] D. P. Volanti, A. A. Felix, M. O. Orlandi, G. Whitfield, D. J. Yang, E. Longo, H. L. Tallur, J. A. Varela, The role of hierarchical morphologies in the superior gas sensing performance of CuO-based chemiresistors, Adv. Funct. Mater. 23(2013)1759-1776.

[12] Z.Y. Wang, Z.G. Jia, Q.L. Li, X.Y. Zhang, W. Sun, J.B. Sun, B.H. Liu, B.Y. Ha, The enhanced NO2 sensing properties of SnO2 nanoparticles/reduced graphene oxide composite, J. Colloid Interface Sci. 537(2018) 228-237.

[13] X.R. Rong, D.L. Chen, G.P. Qu, T. Li, R. Zhang, J. Sun, Effects of graphene on the microstructures of SnO2@rGO nanocomposites and their formaldehyde-sensing performance, Sens. Actuators, B 269(2018) 223-237.

[14] H.B. Ren, C.P. Gu, S.W. Joo, J.Y. Cui, Y.F. Sun, J.R.Huang, Preparation of SnO2 nanorods on reduced graphene oxide and sensing properties of as-grown nanocomposites towards hydrogen at low working temperature, Mater. Express 8(2018) 263-271.

[15] S. Navazani, A. Shokuhfar, M. Hassanisadi, M. Askarieh, A. Di Carlo, A. Agresti, Facile synthesis of a SnO2@ rGO nanohybrid and optimization of its methane-sensing parameters, Talanta 181(2018) 422-430.

[16] C. Zhao, H.M. Gong, W.Z. Lan, R. Ramachandran, H. Xu, S. Liu, F. Wang, Facile synthesis of SnO2 hierarchical porous nanosheets from graphene oxide sacrificial scaffolds for high-performance gas sensors, Sens. Actuators, B 258(2018) 492-500.

[17] L.F. Jin, W.G. Chen, H. Zhang, G.W. Xiao, C.T. Yu, Q. Zhou, Characterization of reduced graphene oxide (rGO)- loaded SnO2 nanocomposite and applications in C2H2 gas detection, Appl. Sci.-Basel 7(2017) DOI: 10.3390/app7010019.

[18] J. Song, K.J. Huang, N. Wang, Gas-sensing properties and in situ diffuse-reflectance Fourier-transform infrared spectroscopy study of diethyl ether adsorption and reactions on SnO2/rGO films, J. Mater. Res. 31(2016) 2035-2045.

[19] Z.L. Song, Z.R. Wei, B.C. Wang, Z. Luo, S.M. Xu, W.K. Zhang, H.X. Yu, M. Li, Z. Huang, J.F. Zhang, Sensitive room-temperature H2S gas sensors employing SnO2 quantum wire/ reduced graphene oxide nanocomposites, Chem. Mater. 28(2016) 1205-1211.

[20] J. Song and K.J. Huang, “Gas sensing properties and in situ diffuse reflectance infrared Fourier transform spectroscopy study of trichloroethylene adsorption and reactions on SnO2/rGO films”. Proceedings of 2nd International Conference on Material Engineering and Application
[21] D.Z. Zhang, A.M. Liu, H.Y. Chang, B.K. Xia, Room-temperature high-performance acetone gas sensor based on hydrothermal synthesized SnO2-reduced graphene oxide hybrid composite, RSC Adv. 5(2015) 3016-3022.

[22] Q. Q. Lin, Y. Li, M. J. Yang, Tin oxide/graphene composite fabricated via a hydrothermal method for gas sensors working at room temperature, Sens. Actuators, B 173(2012) 139–147.

[23] X. J. Wang, S. P. Zhang, G. Z. Zhang, A gas-sensing material screening platform for high throughput screening sensor sensitive material, Electron. Technol. 39 (2012) 53-56. (in Chinese)

[24] Z. X. Zhang, K. J. Huang, F. L. Yuan, C. S. Xie, Gas-sensing properties and in situ diffuse reflectance infrared Fourier transform spectroscopy study of formaldehyde adsorption and reactions on SnO2 films, J. Mater. Res. 29 (2014) 139-147.

[25] K.J. Huang, C. Zhu, F.L. Yuan, C.S. Xie, Nanoscale SnO2 flat-type coplanar hexanal gas sensor arrays at ppb leve, J. Nanosci. Nanotechno. 13(2013) 4370-4374.

[26] S. K. Lee, D. Chang, S. W. Kim, Gas sensors based on carbon nanoflake/tin oxide composites for ammonia detection, J. Hazard. Mater. 268 (2014) 110–114.

[27] Z. Y. Zhang, R. J. Zou, G. S. Song, L. Yu, Z. G. Chen, J. Q. Hu, Highly aligned SnO2 nanorods on graphene sheets for gas sensors, J. Mater. Chem. 21(2011) 17360-17365.

[28] Z. G. Wang, P. J. Li, Y. F. Chen, J. R. He, B. J. Zheng, J. B. Liu, F. Qi, The green synthesis of reduced graphene oxide by the ethanol-thermal reaction and its electrical properties, Mater. Lett. 116(2014) 416-419.