On the Universality of Online Mirror Descent

Nathan Srebro
TTIC
nati@ttic.edu

Karthik Sridharan
TTIC
karthik@ttic.edu

Ambuj Tewari
University of Texas at Austin
ambuj@cs.utexas.edu

July 21, 2011

Abstract

We show that for a general class of convex online learning problems, Mirror Descent can always achieve a (nearly) optimal regret guarantee.

1 Introduction

Mirror Descent is a first-order optimization procedure which generalizes the classic Gradient Descent procedure to non-Euclidean geometries by relying on a “distance generating function” specific to the geometry (the squared ℓ_2-norm in the case of standard Gradient Descent) [14, 4]. Mirror Descent is also applicable, and has been analyzed, in a stochastic optimization setting [9] and in an online setting, where it can ensure bounded online regret [20]. In fact, many classical online learning algorithms can be viewed as instantiations or variants of Online Mirror Descent, generally either with the Euclidean geometry (e.g. the Perceptron algorithm [5] and Online Gradient Descent [27]), or in the simplex (ℓ_1 geometry), using an entropic distance generating function (Winnow [13] and Multiplicative Weights / Online Exponentiated Gradient algorithm [11]). More recently, the Online Mirror Descent framework has been applied, with appropriate distance generating functions derived for a variety of new learning problems like multi-task learning and other matrix learning problems [10], online PCA [26] etc.

In this paper, we show that Online Mirror Descent is, in a sense, universal. That is, for any convex online learning problem, of a general form (specified in Section 2), if the problem is online learnable, then it is online learnable, with a nearly optimal regret rate, using Online Mirror Descent, with an appropriate distance generating function. Since Mirror descent is a first order method and often has simple and computationally efficient update rules, this makes the result especially attractive. Viewing online learning as a sequentially repeated game, this means that Online Mirror Descent is a near optimal strategy, guaranteeing an outcome very close to the value of the game.

In order to show such universality, we first generalize and refine the standard Mirror Descent analysis to situations where the constraint set is not the dual of the data domain, obtaining a general upper bound on the regret of Online Mirror Descent in terms of the existence of an appropriate uniformly convex distance generating function (Section 3). We then extend the notion of a martingale type of a Banach space to be sensitive to both the constraint set and the data domain, and building on results of [24], we relate the value of the online learning repeated game to this generalized notion of martingale type (Section 4). Finally, again building on and generalizing the work of [16], we show how having appropriate martingale type guarantees the existence of a good uniformly convex function (Section 5), that in turn establishes the desired nearly-optimal guarantee on Online Mirror Descent (Section 6). We mainly build on the analysis of [24], who related the value of the online game to the notion of martingale type of a Banach space and uniform convexity when the constraint set and data domain are dual to each other. The main technical advance here is a non-trivial generalization of their analysis (as well as the Mirror Descent analysis) to the more general situation where the constraint set and data domain are chosen independently of each other. In Section 7 several examples are provided that demonstrate the use of our analysis.

Mirror Descent was initially introduced as a first order deterministic optimization procedure, with an ℓ_p constraint and a matching ℓ_q Lipschitz assumption ($1 \leq p \leq 2$, $1/q + 1/p = 1$), was shown to be optimal in terms of the number of exact gradient evaluations [15]. Shalev-Shwartz and Singer later observed that the online version of Mirror

1
Descent, again with an ℓ_p bound and matching ℓ_q Lipschitz assumption ($1 \leq p \leq 2, 1/q + 1/p = 1$), is also optimal in terms of the worst-case (adversarial) online regret. In fact, in such scenarios stochastic Mirror Descent is also optimal in terms of the number of samples used. We emphasize that although in most, if not all, settings known to us these three notions of optimality coincide, here we focus only on the worst-case online regret.

Sridharan and Tewari [24] generalized the optimality of online Mirror Descent (w.r.t. the worst case online regret) to scenarios where learner is constrained to a unit ball of an arbitrary Banach space (not necessarily and ℓ_p space) and the objective functions have sub-gradients that lie in the dual ball of the space—for reasons that will become clear shortly, we refer to this as the data domain. However, often we encounter problems where the constraint set and data domain are not dual balls, but rather are arbitrary convex subsets. In this paper, we explore this more general, “non-dual”, variant, and show that also in such scenarios online Mirror Descent is (nearly) optimal in terms of the (asymptotic) worst-case online regret.

2 Online Convex Learning Problem

An online convex learning problem can be viewed as a multi-round repeated game where on round t, the learner first picks a vector (predictor) w_t from some fixed set W, which is a closed convex subset of a vector space B. Next, the adversary picks a convex cost function $f_t : W \to \mathbb{R}$ from a class of convex functions F. At the end of the round, the learner pays instantaneous cost $f_t(w_t)$. We refer to the strategy used by the learner to pick the f_t’s as an online learning algorithm. More formally, an online learning algorithm A for the problem is specified by the mapping $A : \bigcup_{n \in \mathbb{N}} F^{n-1} \to W$. The regret of the algorithm A for a given sequence of cost functions f_1, \ldots, f_n is given by

$$R_n(A, f_1, \ldots, f_n) = \frac{1}{n} \sum_{t=1}^{n} f_t(A(f_{1:t-1})) - \inf_{w \in W} \frac{1}{n} \sum_{t=1}^{n} f_t(w).$$

The goal of the learner (or the online learning algorithm), is to minimize the regret for any n.

In this paper, we consider cost function classes F specified by a convex subset $\mathcal{X} \subset B^*$ of the dual space B^*. We consider various types of classes, where for all of them, subgradients1 of the functions in F lie inside \mathcal{X} (we use the notation (x, w) to mean applying linear functional $x \in B^*$ on $w \in B$):

$$F_{\text{Lip}}(\mathcal{X}) = \{ f : f \text{ is convex } \forall w \in W, \nabla f(w) \in \mathcal{X} \}, \quad F_{\text{lin}}(\mathcal{X}) = \{ w \mapsto \langle x, w \rangle : x \in \mathcal{X} \},$$

$$F_{\text{sup}}(\mathcal{X}) = \{ w \mapsto \| (x, w) - y \| : x \in \mathcal{X}, y \in [-b, b] \}$$

The value of the game is then the best possible worst-case regret guarantee an algorithm can enjoy. Formally the value is defined as:

$$V_n(F, \mathcal{X}, W) = \inf_A \sup_{f_1:n \in F(\mathcal{X})} R_n(A, f_1:n)$$

(1)

It is well known that the value of the game for all the above sets F is the same. More generally:

Proposition 1. If for a convex function class F, we have that $\forall f \in F, w \in W, \nabla f(w) \in \mathcal{X}$ then

$$V_n(F, \mathcal{X}, W) \leq V_n(F_{\text{lin}}, \mathcal{X}, W)$$

Furthermore,

$$V_n(F_{\text{Lip}}, \mathcal{X}, W) = V_n(F_{\text{sup}}, \mathcal{X}, W) = V_n(F_{\text{lin}}, \mathcal{X}, W)$$

That is, the value for any class F with subgradients in W, which include all the above classes, is upper bounded by the value of the class of linear functionals in W, see e.g. [1]. In particular, this includes the class F_{Lip} which is the class of all functions with subgradients in W, and thus, since $F_{\text{lin}}(\mathcal{X}) \subset F_{\text{Lip}}(\mathcal{X})$ we get the first equality. The second equality is shown in [18].

1Throughout we commit to a slight abuse of notation, with $\nabla f(w)$ indicating some sub-gradient of f at w and $\nabla f(w) \in \mathcal{X}$ meaning that at least one of the sub-gradients is in \mathcal{X}.

2
problems such as multitask learning and matrix completion, where in all cases
function classes like say the hinge loss class with some extra constant factors.

equality in the above proposition can also be essentially extended to most other commonly occurring convex loss
value upper bounded by V. We define,

we only require uniform convexity inside X. Owing to Proposition 1, we can focus our attention on the class F_{lin}
and henceforth the term value without any qualification refers to value of the linear game. Further, for any $p \in [1, 2]$
we us also define :

Most prior work on online learning and optimization considers the case when W is the unit ball of some Banach
space, and X is the unit ball of the dual space, i.e. W and X are related to each other through duality. In this work,
however, we analyze the general problem where $X \in B^*$ is not necessarily the dual ball of W. It will be convenient
for us, however, to relate the notions of a convex set and a corresponding norm. The Minkowski functional of a
subset K of a vector space V is defined as $||v||_K := \inf \{\alpha > 0 : v \in \alpha K\}$. If K is convex and centrally symmetric
(i.e. $K = -K$), then $||\cdot||_K$ is a semi-norm. Throughout this paper, we will require that W and X are convex
and centrally symmetric. Further, if the set K is bounded then $||\cdot||_K$ is a norm. Although not strictly required for
our results, for simplicity we will assume W and X are related in such a way that $||\cdot||_W$ and $||\cdot||_X$ (the Minkowski functionals of
the sets W and X) are norms. Even though we do this for simplicity, we remark that all the results go through for
semi-norms. We use X^* and W^* to represent the dual of balls X and W respectively, i.e. the unit balls of the dual norms $||\cdot||^*_X$ and $||\cdot||^*_X$.

3 Mirror Descent and Uniform Convexity

A key tool in the analysis mirror descent is the notion of strong convexity, or more generally uniform convexity:

Definition 1. $\Psi : B \rightarrow \mathbb{R}$ is q-uniformly convex w.r.t. $||\cdot||$ in $W \subset B$:

$$\forall w, w' \in W \forall \alpha \in [0, 1] \quad \Psi(\alpha w + (1 - \alpha) w') \leq \alpha \Psi(w) + (1 - \alpha) \Psi(w') - \frac{\alpha(1 - \alpha)}{q} \|w - w'\|^q$$

It is important to emphasize that in the definition above, the norm $||\cdot||$ and the subset W need not be related, and we
only require uniform convexity inside W. This allows us to relate a norm with a non-matching “ball”. To this end define,

$$D_p := \inf \left\{ \left(\sup_{w \in W} \Psi(w) \right)^{\frac{p-1}{p}} \bigg| \Psi : W \rightarrow \mathbb{R}^+ \text{ is } \frac{p}{p-1}-\text{uniformly convex w.r.t. } ||\cdot||_X, \text{ on } W, \Psi(0) = 0 \right\}$$

Given a function Ψ, the Mirror Descent algorithm, A_{MD} is given by

$$w_{t+1} = \arg\min_{w \in W} \Delta_{\Psi}(w|w_t) + \eta \langle \nabla f_t(w_t), w - w_t \rangle$$

or equivalently

$$w_{t+1} = \nabla^* \Psi^*(\nabla \Psi(w_t) - \eta \nabla f_t(w_t)), \quad w_{t+1} = \arg\min_{w \in W} \Delta_{\Psi}(w|w_t')$$

2Note that any convex supervised learning problem can necessarily be viewed as linear classification with some convex constraint W on the predictors.
where \(\Delta_\Psi \left(w | w' \right) := \Psi(w) - \Psi(w') - \langle \nabla \Psi(w'), w - w' \rangle \) is the Bregman divergence and \(\Psi^* \) is the convex conjugate of \(\Psi \). As an example notice that when \(\Psi(w) = \frac{1}{2} \|w\|^2 \) then we get back the gradient descent algorithm and when \(\mathcal{W} \) is the \(d \) dimensional simplex and \(\Psi(w) = \sum_{i=1}^d w_i \log(1/w_i) \) then we get the multiplicative weights update algorithm.

Lemma 2. Let \(\Psi : \mathcal{B} \to \mathbb{R} \) be non-negative and \(q \)-uniformly convex w.r.t. norm \(\|\cdot\|_{\mathcal{X}} \) on \(\mathcal{W} \). For the Mirror Descent algorithm with this \(\Psi \), using \(w_1 = \arg\min_{w \in \mathcal{W}} \Psi(w) \) and \(\eta = \left(\frac{\sup_{w \in \mathcal{W}} \Psi(w)}{n^2} \right)^{1/p} \), we can guarantee that for any \(f_1, \ldots, f_n \) s.t. \(\frac{1}{n} \sum_{t=1}^n \|\nabla f_t\|_{\mathcal{X}}^p \leq 1 \) (where \(p = \frac{q}{q-1} \)),

\[
R(\mathcal{A}_{\text{MD}}, f_1, \ldots, f_n) \leq 2 \left(\frac{\sup_{w \in \mathcal{W}} \Psi(w)}{n} \right)^{\frac{1}{2}}.
\]

Note that in our case we have \(\nabla f \in \mathcal{X} \), i.e. \(\|\nabla f\|_{\mathcal{X}} \leq 1 \), and so certainly \(\frac{1}{n} \sum_{t=1}^n \|\nabla f_t\|_{\mathcal{X}}^p \leq 1 \). Similarly to the value of the game, for any \(p \in [1, 2] \), we define:

\[
\text{MD}_p := \inf \left\{ D : \exists \Psi, \eta \text{ s.t. } \forall n \in \mathbb{N}, \sup_{f_1, n \in \mathcal{F}(\mathcal{X})} R_n(\mathcal{A}_{\text{MD}}, f_1; n) \leq D n^{-\left(1 - \frac{1}{p}\right)} \right\}
\]

where the Mirror Descent algorithm in the above definition is run with the corresponding \(\Psi \) and \(\eta \). The constant \(\text{MD}_p \) is a characterization of the best guarantee the Mirror Descent algorithm can provide. Lemma 2 therefore implies:

Corollary 3. \(V_p \leq \text{MD}_p \leq 2D_p \).

Proof. The first inequality is essentially by the definition of \(V_p \) and \(\text{MD}_p \). The second inequality follows directly from previous lemma. \(\square \)

The Mirror Descent bound suggests that as long as we can find an appropriate function \(\Psi \) that is uniformly convex w.r.t. \(\|\cdot\|_{\mathcal{X}} \) we can get a diminishing regret guarantee using Mirror Descent. This suggests constructing the following function:

\[
\hat{\Psi}_q := \arg\min_{\psi \text{ is } q \text{-uniformly convex} \atop \psi \text{ w.r.t. } \|\cdot\|_{\mathcal{X}} \text{ on } \mathcal{W} \text{ and } \psi \geq 0} \sup_{w \in \mathcal{W}} \Psi(w).
\]

If no \(q \)-uniformly convex function exists then \(\hat{\Psi}_q = \infty \) is assumed by default. The above function is in a sense the best choice for the Mirror Descent bound in (2). The question then is: when can we find such appropriate functions and what is the best rate we can guarantee using Mirror Descent?

4 Martingale Type and Value

In [24], it was shown that the concept of the *Martingale type* (also sometimes called the *Haar type*) of a Banach space and optimal rates for online convex optimization problem, where \(\mathcal{X} \) and \(\mathcal{W} \) are duals of each other, are closely related. In this section we extend the classic notion of Martingale type of a Banach space (see for instance [16]) to one that accounts for the pair \((\mathcal{W}^*, \mathcal{X}) \). Before we proceed with the definitions we would like to introduce a few necessary notations. First, throughout we shall use \(\epsilon \in \{\pm 1\}^\mathbb{N} \) to represent infinite sequence of signs drawn uniformly at random (i.e. each \(\epsilon_i \) has equal probability of being \(+1 \) or \(-1 \)). Also throughout \((x_n)_{n \in \mathbb{N}} \) represents a sequence of mappings where each \(x_n : \{\pm 1\}^{n-1} \to \mathcal{B}^* \). We shall commit to the abuse of notation and use \(x_n(\epsilon) \) to represent \(x_n(\epsilon) = x_n(\epsilon_1, \ldots, \epsilon_{n-1}) \) (i.e. although we used entire \(\epsilon \) as argument, \(x_n \) only depends on first \(n - 1 \) signs). We are now ready to give the extended definition of Martingale type (or M-type) of a pair \((\mathcal{W}^*, \mathcal{X}) \).
Definition 2. A pair $(\mathcal{W}^*, \mathcal{X})$ of subsets of a vector space \mathcal{B}^* is said to be of M-type p if there exists a constant $C \geq 1$ such that for all sequence of mappings $(x_n)_{n \geq 1}$ where each $x_n : \{\pm 1\}^{n-1} \mapsto \mathcal{B}^*$ and any $x_0 \in \mathcal{B}^*$:

$$
\sup_n \mathbb{E} \left[\left\| \frac{1}{n} \sum_{i=1}^{n} \epsilon_i x_i(\epsilon) \right\|_{\mathcal{W}^*}^p \right] \leq C^p \left(\left\| x_0 \right\|_{\mathcal{X}}^p + \sum_{n \geq 1} \mathbb{E} \left[\left\| x_n(\epsilon) \right\|_{\mathcal{X}}^p \right] \right) \tag{8}
$$

The concept is called Martingale type because $(\epsilon_n x_n(\epsilon))_{n \in \mathbb{N}}$ is a martingale difference sequence and it can be shown that rate of convergence of martingales in Banach spaces is governed by the rate of convergence of martingales of the form $Z_n = x_0 + \sum_{i=1}^{n} \epsilon_i x_i(\epsilon)$ (which are incidentally called Walsh-Paley martingales). We point the reader to [16, 17] for more details. Further, for any $\rho \in [1, 2]$ we also define,

$$
C_\rho := \inf \left\{ C \mid \forall x_0 \in \mathcal{B}^*, \forall (x_n)_{n \in \mathbb{N}}, \sup_n \mathbb{E} \left[\left\| x_0 + \sum_{i=1}^{n} \epsilon_i x_i(\epsilon) \right\|_{\mathcal{W}^*}^p \right] \leq C^p \left(\left\| x_0 \right\|_{\mathcal{X}}^p + \sum_{n \geq 1} \mathbb{E} \left[\left\| x_n(\epsilon) \right\|_{\mathcal{X}}^p \right] \right) \right\}
$$

C_ρ is useful in determining if the pair $(\mathcal{W}^*, \mathcal{X})$ has Martingale type p.

The results of [24, 18] showing that a Martingale type implies low regret, actually apply also for “non-matching” \mathcal{W} and \mathcal{X} and, in our notation, imply that $V_p \leq 2C_p$. Specifically we have the following theorem from [24, 18]:

Theorem 4. [24, 18] For any $\mathcal{W} \in \mathcal{B}$ and any $\mathcal{X} \in \mathcal{B}^*$ and any $n \geq 1$,

$$
\sup_n \mathbb{E} \left[\left\| \frac{1}{n} \sum_{i=1}^{n} \epsilon_i x_i(\epsilon) \right\|_{\mathcal{W}^*}^p \right] \leq \mathcal{V}_n(\mathcal{W}, \mathcal{X}) \leq 2 \sup_n \mathbb{E} \left[\left\| \frac{1}{n} \sum_{i=1}^{n} \epsilon_i x_i(\epsilon) \right\|_{\mathcal{W}^*}^p \right]
$$

where the supremum above is over sequence of mappings $(x_n)_{n \geq 1}$ where each $x_n : \{\pm 1\}^{n-1} \mapsto \mathcal{X}$.

Our main interest here will is in establishing that low regret implies Martingale type. To do so, we start with the above theorem to relate value of the online convex optimization game to rate of convergence of martingales in the Banach space. We then extend the result of Pisier in [16] to the “non-matching” setting combining it with the above theorem to finally get:

Lemma 5. If for some $r \in (1, 2]$ there exists a constant $D > 0$ such that for any n,

$$
\mathcal{V}_n(\mathcal{W}, \mathcal{X}) \leq Dn^{(1 - \frac{1}{r})}
$$

then for all $p < r$, we can conclude that any $x_0 \in \mathcal{B}^*$ and any \mathcal{B}^* sequence of mappings $(x_n)_{n \geq 1}$ where each $x_n : \{\pm 1\}^{n-1} \mapsto \mathcal{B}^*$ will satisfy:

$$
\sup_n \mathbb{E} \left[\left\| x_0 + \sum_{i=1}^{n} \epsilon_i x_i(\epsilon) \right\|_{\mathcal{W}^*}^p \right] \leq \left(\frac{1104}{(r - p)^2} \right)^p \left(\left\| x_0 \right\|_{\mathcal{X}}^p + \sum_{n \geq 1} \mathbb{E} \left[\left\| x_n(\epsilon) \right\|_{\mathcal{X}}^p \right] \right)
$$

That is, the pair $(\mathcal{W}, \mathcal{X})$ is of martingale type p.

The following corollary is an easy consequence of the above lemma.

Corollary 6. For any $p \in [1, 2]$ and any $p' < p : C_{p'} \leq \frac{1104 V_p}{(p' - p)^2}$

5 Uniform Convexity and Martingale Type

The classical notion of Martingale type plays a central role in the study of geometry of Banach spaces. In [16], it was shown that a Banach space has Martingale type p (the classical notion) if and only if uniformly convex functions with certain properties exist on that space (w.r.t. the norm of that Banach space). In this section, we extend this result and show how the Martingale type of a pair $(\mathcal{W}^*, \mathcal{X})$ are related to existence of certain uniformly convex functions. Specifically, the following theorem shows that the notion of Martingale type of pair $(\mathcal{W}^*, \mathcal{X})$ is equivalent to the existence of a non-negative function that is uniformly convex w.r.t. the norm $\left\| \cdot \right\|_{\mathcal{X}}$ on \mathcal{X}.
Lemma 7. If, for some \(p \in (1, 2] \), there exists a constant \(C > 0 \), such that for all sequences of mappings \((x_n)_{n \geq 1}\) where each \(x_n : \{ \pm 1 \}^{n-1} \to B^* \) and any \(x_0 \in B^* \):

\[
\sup_n E \left[\left\| x_0 + \sum_{i=1}^n \epsilon_i x_i(\epsilon) \right\|^p_{\mathcal{W}^*} \right] \leq C^p \left(\| x_0 \|_q^p + \sum_{n \geq 1} \mathbb{E} \left[\| x_n(\epsilon) \|_q^p \right] \right)
\]

(i.e. \((\mathcal{W}^*, \mathcal{X})\) has Martingale type \(p \)), then there exists a convex function \(\Psi : B \to \mathbb{R}^+ \) with \(\Psi(0) = 0 \), that is \(q \)-uniformly convex w.r.t. norm \(\| \cdot \| \), s.t. \(\forall w \in B, \frac{1}{q} \| w \|_\Psi^q \leq \Psi(w) \leq \frac{C_q}{q} \| w \|_\Psi^q \).

The following corollary follows directly from the above lemma.

Corollary 8. For any \(p \in [1, 2] \), \(D_p \leq C_p \).

The proof of Lemma 7 goes further and gives a specific uniformly convex function \(\Psi \) satisfying the desired requirement (i.e. establishing \(D_p \leq C_p \)) under the assumptions of the previous lemma:

\[
\Psi_q^*(x) := \sup \left\{ \frac{1}{C^p} \sup_n \mathbb{E} \left[\left\| x + \sum_{i=1}^n \epsilon_i x_i(\epsilon) \right\|^p_{\mathcal{W}^*} \right] : \sum_{i \geq 1} \mathbb{E} \left[\| x_i(\epsilon) \|_q^p \right] \right\}, \quad \Psi_q := (\Psi_q^*)^*.
\]

where the supremum above is over sequences \((x_n)_{n \in \mathbb{N}}\) and \(p = \frac{q}{q-1} \).

6 Optimality of Mirror Descent

In the Section 3, we saw that if we can find an appropriate uniformly convex function to use in the mirror descent algorithm, we can guarantee diminishing regret. However the pending question there was when can we find such a function and what is the rate we can guarantee. In Section 4 we introduced the extended notion of Martingale type of a pair \((\mathcal{W}^*, \mathcal{X})\) and how it related to the value of the game. Then, in Section 5, we saw how the concept of M-type related to existence of certain uniformly convex functions. We can now combine these results to show that the mirror descent algorithm is a universal online learning algorithm for convex learning problems. Specifically we show that whenever a problem is online learnable, the mirror descent algorithm can guarantee near optimal rates:

Theorem 9. If for some constant \(V > 0 \) and some \(q \in [2, \infty) \), \(V_n(\mathcal{W}, \mathcal{X}) \leq V n^{-\frac{1}{q/2}} \) for all \(n \), then for any \(n > e^{q-1} \), there exists regularizer function \(\Psi \) and step-size \(\eta \), such that the regret of the mirror descent algorithm using \(\Psi \) against any \(f_1, \ldots, f_n \) chosen by the adversary is bounded as:

\[
R_n(\mathcal{A}_{MD}, f_{1:n}) \leq 6002 V \log^2(n) n^{-\frac{1}{q-1}}.
\]

Proof. Combining Mirror descent guarantee in Lemma 2, Lemma 7 and the lower bound in Lemma 5 with \(p = \frac{q}{q-1} - \frac{1}{\log(n)} \) we get the above statement.

The above Theorem tells us that, with appropriate \(\Psi \) and learning rate \(\eta \), mirror descent will obtain regret at most a factor of 6002 log\(^2\)(n) from the best possible worst-case upper bound. We would like to point out that the constant \(V \) in the value of the game appears linearly and there is no other problem or space related hidden constants in the bound.

The following figure summarizes the relationship between the various constants. The arrow mark from \(C \) smaller the \(q \) better the bound) such that \(\| \cdot \|^q \) is \(q \)-uniformly convex w.r.t. \(\| \cdot \| \).
7 Examples

We demonstrate our results on several online learning problems, specified by \(\mathcal{W} \) and \(\mathcal{X} \).

\(\ell_p \) non-dual pairs It is usual in the literature to consider the case when \(\mathcal{W} \) is the unit ball of the \(\ell_p \) norm in some finite dimension \(d \) while \(\mathcal{X} \) is taken to be the unit ball of the dual norm \(\ell_q \) where \(p, q \) are Hölder conjugate exponents. Using the machinery developed in this paper, it becomes effortless to consider the non-dual case when \(\mathcal{W} \) is the unit ball \(B_{p_1} \) of some \(\ell_{p_1} \) norm while \(\mathcal{X} \) is the unit ball \(B_{p_2} \) for arbitrary \(p_1, p_2 \) in \([1, \infty) \). We shall use \(q_1 \) and \(q_2 \) to represent Hölder conjugates of \(p_1 \) and \(p_2 \). Before we proceed we first note that for any \(r \in (1, 2] \), \(\psi_r(w) := \frac{1}{2(r-1)}\|w\|^2_r \) is 2-uniformly w.r.t. norm \(\| \cdot \|_r \) (see for instance [25]). On the other hand by Clarkson’s inequality, we have that for \(r \in (2, \infty) \), \(\psi_r(w) := \frac{2}{r-1}\|w\|_r^r \) is \(r \)-uniformly convex w.r.t. \(\| \cdot \|_r \). Putting it together we see that for any \(r \in (1, \infty) \), the function \(\psi_r \) defined above, is \(Q \)-uniformly convex w.r.t. \(\| \cdot \|_r \), for \(Q = \max\{r, 2\} \). The basic technique idea is to be to select \(\psi_r \) based on the guidelines in the end of the previous section. Finally we show that using \(\tilde{\psi}_r := d^Q \max\{\frac{1}{q_1} - \frac{1}{r}, 0\} \psi_r \) in Mirror descent Lemma 2 yields the bound that for any \(f_1, \ldots, f_n \in \mathcal{F} \):

\[
R_n(A_{\text{MD}}, f_{1:n}) \leq 2 \max\{2, \frac{1}{\sqrt{2(r-1)}}\} d^\max\{\frac{1}{q_1} - \frac{1}{r}, 0\} + \max\{\frac{1}{r} - \frac{1}{p_2}, 0\} \}
\]

The following table summarizes the scenarios where a value of \(r = 2 \), i.e. a rate of \(D_2/\sqrt{n} \), is possible, and lists the corresponding values of \(D_2 \) (up to numeric constant of at most 16):

\(p_1 \) Range	\(q_2 = \frac{p_2}{p_2 - 2} \) Range	\(D_2 \)
\(1 \leq p_1 \leq 2 \)	\(q_2 > 2 \)	\(\sqrt{p_2 - 1} \)
\(1 \leq p_1 \leq 2 \)	\(1 \leq q_2 < p_1 \)	\(d^{1/q_2 - 1/p_1} \sqrt{p_2 - 1} \)
\(1 \leq p_1 \leq 2 \)	\(q_2 > 2 \)	\(d^{(1/2 - 1/p_1)} \)
\(1 \leq p_1 \leq 2 \)	\(1 \leq q_2 \leq 2 \)	\(d^{(1/q_2 - 1/p_1)} \)
\(1 \leq p_1 \leq 2 \)	\(q_2 = \infty \)	\(\sqrt{\log(d)} \)

Note that the first two rows are dimension free, and so apply also in infinite-dimensional settings, whereas in the other scenarios, \(D_2 \) is finite only when the dimension is finite. An interesting phenomena occurs when \(d = \infty \), \(p_1 > 2 \) and \(q_2 \geq 1 \). In this case \(D_2 = \infty \) and so one cant expect a rate of \(O(\frac{1}{\sqrt{n}}) \). However we have \(D_{p_2} \leq 16 \) and so can still get a rate of \(\frac{1}{\sqrt{n}} \).

Ball et al [3] tightly calculate the constants of strong convexity of squared \(\ell_p \) norms, establishing the tightness of \(D_2 \) when \(p_1 = p_2 \). By extending their constructions it is also possible to show tightness (up to a factor of 16) for all other values in the table. Also, Agarwal et al [2] recently showed lower bounds on the sample complexity of stochastic optimization when \(p_1 = \infty \) and \(p_2 \) is arbitrary—their lower bounds match the last two rows in the table.

Non-dual Schatten norm pairs in finite dimensions Exactly the same analysis as above can be carried out for Schatten \(p \)-norms, i.e. when \(\mathcal{W} = B_{S(p_1)}, \mathcal{X} = B_{S(p_2)} \) are the unit balls of Schatten \(p \)-norm (the \(p \)-norm of the singular values) for matrix of dimensions \(d_1 \times d_2 \). We get the same results as in the table above (as upper bounds on \(D_2 \)), with \(d = \min\{d_1, d_2\} \). These results again follow using similar arguments as \(\ell_p \) case and tight constants for strong convexity parameters of the Schatten norm from [3].
Non-dual group norm pairs in finite dimensions In applications such as multitask learning, groups norms such as $\|w\|_{q,1}$ are often used on matrices $w \in \mathbb{R}^{k \times d}$ where $(q,1)$ norm means taking the ℓ_1-norm of the ℓ_q-norms of the columns of w. Popular choices include $q = 2, \infty$. Here, it may be quite unnatural to use the dual norm (p, ∞) to define the space \mathcal{X} where the data lives. For instance, we might want to consider $W = \mathcal{B}_{(q,1)}$ and $\mathcal{X} = \mathcal{B}_{(\infty,\infty)} = \mathcal{B}_\infty$. In such a case we can calculate that $D_2(\mathcal{W}, \mathcal{X}) = \Theta(k^{1-1/q} \sqrt{\log(d)})$ using $\Psi(w) = \frac{1}{q+r-2} \|w\|_{q,r}^2$ where $r = \frac{\log d}{\log d-1}$.

Max Norm Max-norm has been proposed as a convex matrix regularizer for application such as matrix completion [21]. In the online version of the matrix completion problem at each time step one element of the matrix is revealed, corresponding to \mathcal{X} being the set of all matrices with a single element being 1 and the rest 0. Since we need \mathcal{X} to be convex we can take the absolute convex hull of this set and use \mathcal{X} to be the unit element-wise ℓ_1 ball. Its dual is $\|W\|_{\mathcal{X}^*} = \max_{i,j} |W_{i,j}|$. On the other hand given a matrix W, its max-norm is given by $\|W\|_{\max} = \min_{U,V:W=UV^\top} (\max_i \|U_i\|_2) (\max_j \|V_j\|_2)$. The set \mathcal{W} is the unit ball under the max norm. As noted in [22] the max-norm ball is equivalent, up to a factor two, to the convex hull of all rank one sign matrices. Let us now make a more general observation.

Proposition 10. Let $\mathcal{W} = \mathbb{abs}cvx\{(w_1, \ldots, w_K)\}$. The Minkowski norm for this \mathcal{W} is given by

$$\|w\|_{\mathcal{W}} := \inf_{\alpha_1, \ldots, \alpha_K : w = \sum_{i=1}^K \alpha_i w_i} \sum_{i=1}^K |\alpha_i|$$

In this case, for any $q \in (1,2]$, if we define the norm :

$$\|w\|_{\mathcal{W},q} = \inf_{\alpha_1, \ldots, \alpha_K : w = \sum_{i=1}^K \alpha_i w_i} \left(\sum_{i=1}^K |\alpha_i|^q \right)^{1/q}$$

then the function $\Psi(w) = \frac{1}{2(q-1)} \|w\|_{\mathcal{W},q}^2$ is 2-uniformly convex w.r.t. $\|\cdot\|_{\mathcal{W},q}$. Further if we use $q = \frac{\log K}{\log K-1}$, then $\sup_{w \in \mathcal{W}} \sqrt{\Psi(w)} = O(\sqrt{\log K})$.

Proof of the above proposition is similar to proof of strong convexity of ℓ_q norms. For the max norm case as noted before the norm is equivalent to the norm got by taking the absolute convex hull of the set of all rank one sign matrices. Cardinality of this set is of course 2^{N+M}. Hence using the above proposition and noting that \mathcal{X}^* is the unit ball of $| \cdot |_\infty$ we see that Ψ is obviously 2-uniformly convex w.r.t. $\|\cdot\|_{\mathcal{X}^*}$ and so we get a regret bound $O\left(\sqrt{\frac{M+N}{n}}\right)$. This matches the stochastic (PAC) learning guarantee [22], and is the first guarantee we are aware of for the max norm matrix completion problem in the online setting.

Interpolation Norms Another interesting setting is when the set \mathcal{W} is got by interpolating between unit balls of two other norms $\|\cdot\|_{\mathcal{W}_1}$ and $\|\cdot\|_{\mathcal{W}_2}$. Specifically one can consider \mathcal{W} to be the unit ball of two such interpolated norms, the first type of interpolation norm is given by

$$\|w\|_{\mathcal{W}} = \|w\|_{\mathcal{W}_1} + \|w\|_{\mathcal{W}_2}$$

(11)

The second type of interpolation norm one can consider is given by

$$\|w\|_{\mathcal{W}} = \inf_{w_1 + w_2 = w} (\|w_1\|_{\mathcal{W}_1} + \|w_2\|_{\mathcal{W}_2})$$

(12)

In learning problems such interpolation norms are often used to induce certain structures or properties into the regularization. For instance one might want sparsity along with grouping effect in the linear predictors for which elastic-net type regularization introduced by Zou and Hastie [28] (this is captured by interpolation of the first type between ℓ_1 and ℓ_2 norms). Another example is in matrix completion problems when we would like the predictor matrix to be decomposable into sum of sparse and low rank matrices as done by Chandrasekaran et. al [6] (here one can use the interpolation norm of second type to interpolate between trace norm and element wise ℓ_1 norm). Another example
where interpolation norms of type two are useful are in multi-task learning problems (with linear predictors) as done by Jalali et al. [8]. The basic idea is that the matrix of linear predictors can be decomposed into sum of two matrices one with for instance low entry-wise \(\ell_1 \) norm and other with low \(B_{(2,\infty)} \) group norm (group sparsity). While in these applications the set \(\mathcal{W} \) used is obtained through interpolation norms, it is typically not natural for the set \(\mathcal{X} \) to be the dual ball of \(\mathcal{W} \) but rather something more suited to the problem at hand. For instance, for the elastic net regularization case, the set \(\mathcal{X} \) usually considered are either the vectors with bounded \(\ell_\infty \) norm or bounded \(\ell_2 \). Similarly for the [8] case \(\mathcal{X} \) could be either matrices with bounded entries or some other natural assumption that suits the problem.

It can be shown that in general for any interpolation norm of first type specified in Equation 11,

\[
D_2(\mathcal{W}, \mathcal{X}) \leq 2 \min\{D_2(\mathcal{W}_1, \mathcal{X}), D_2(\mathcal{W}_2, \mathcal{X})\}
\]

(13)

Similarly for the interpolation norm of type two one can in general show that,

\[
D_2(\mathcal{W}, \mathcal{X}) \leq \frac{1}{2} \max\{D_2(\mathcal{W}_1, \mathcal{X}), D_2(\mathcal{W}_2, \mathcal{X})\}
\]

(14)

Using the above bounds one can get regret bounds for mirror descent algorithm with appropriate \(\Psi \) and step size \(\eta \) for specific examples like the ones mentioned.

The bounds given in Equations (13) and (14) are only upper bounds and it would be interesting to analyze these cases in more detail and also to analyze interpolation between several norms instead of just two.

8 Conclusion and Discussion

In this paper we showed that for a general class of convex online learning problems, there always exists a distance generating function \(\Psi \) such that Mirror Descent using this function achieves a near-optimal regret guarantee. This shows that a fairly simple first-order method, in which each iteration requires a gradient computation and a prox-map computation, is sufficient for online learning in a very general sense. Of course, the main challenge is deriving distance generating functions appropriate for specific problems—although we give two mathematical expressions for such functions, in equations (7) and (9), neither is particularly tractable in general. In the end of Section 6 we do give some general guidelines for choosing the right distance generating function. However obtaining a more explicit and simple procedure at least for reasonable Banach spaces is a very interesting question.

Furthermore, for the Mirror Descent procedure to be efficient, the prox-map of the distance generating function must be efficiently computable, which means that even though a Mirror Descent procedure is always theoretically possible, we might in practice choose to use a non-optimal distance generating function, or even a non-MD procedure. Furthermore, we might also find other properties of \(w \) desirable, such as sparsity, which would bias us toward alternative methods [12, 7]. Nevertheless, in most instances that we are aware of, Mirror Descent, or slight variations of it, is truly an optimal procedure and this is formalized and rigorously establish here.

In terms of the generality of the problems we handle, we required that the constraint set \(\mathcal{W} \) be convex, but this seems unavoidable if we wish to obtain efficient algorithms (at least in general). Furthermore, we know that in terms of worst-case behavior, both in the stochastic and in the online setting, for convex cost functions, the value is unchained when the convex hull of a non-convex constraint set [18]. The requirement that the data domain \(\mathcal{X} \) be convex is perhaps more restrictive, since even with non-convex data domain, the objective is still convex. Such non-convex \(\mathcal{X} \) are certainly relevant in many applications, e.g. when the data is sparse, or when \(x \in \mathcal{X} \) is an indicator, as in matrix completion problems and total variation regularization. In the total variation regularization problem, \(\mathcal{W} \) is the set of all functions on the interval \([0, 1]\) with total variation bounded by 1 which is in fact a Banach space. However set \(\mathcal{X} \) we consider here is not the entire dual ball and in fact is neither convex nor symmetric. It only consists of evaluations of the functions in \(\mathcal{W} \) at points on interval \([0, 1]\) and one can consider a supervised learning problem where the goal is to use the set of all functions with bounded variations to predict targets which take on values in \([-1, 1]\). Although the total-variation problem is not learnable, the matrix completion problem certainly is of much interest. In the matrix completion case, taking the convex hull of \(\mathcal{X} \) does not seem to change the value, but we are unaware of neither a
guarantee that the value of the game is unchanged when a non-convex X is replaced by its convex hull, nor of an example where the value does change—it would certainly be useful to understand this issue. We view the requirement that W and X be symmetric around the origin as less restrictive and mostly a matter of convenience.

We also focused on a specific form of the cost class \mathcal{F}, which beyond the almost unavoidable assumption of convexity, is taken to be constrained through the cost sub-gradients. This is general enough for considering supervised learning with an arbitrary convex loss in a worst-case setting, as the sub-gradients in this case exactly correspond to the data points, and so restricting \mathcal{F} through its sub gradients corresponds to restricting the data domain. Following Proposition 1, any optimality result for \mathcal{F}_{Lip} also applies to \mathcal{F}_{sup}, and this statement can also be easily extended to any other reasonable loss function, including the hinge-loss, smooth loss functions such as the logistic loss, and even strongly-convex loss functions such as the squared loss (in this context, note that a strongly convex scalar function for supervised learning does not translate to a strongly convex optimization problem in the worst case). Going beyond a worst-case formulation of supervised learning, one might consider online repeated games with other constraints on \mathcal{F}, such as strong convexity, or even constraints on $\{f_t\}$ as a sequence, such as requiring low average error or conditions on the covariance of the data—these are beyond the scope of the current paper.

Even for the statistical learning setting, online methods along with online to batch conversion are often preferred due to their efficiency especially in high dimensional problems. In fact for ℓ_p spaces in the dual case, using lower bounds on the sample complexity for statistical learning of these problems, one can show that for large dimensional problems, mirror descent is an optimal procedure even for the statistical learning problem. We would like to consider the question of whether Mirror Descent is optimal for stochastic convex optimization, or equivalently convex statistical learning, setting [9, 19, 23] in general. Establishing such universality would have significant implications, as it would indicate that any (convex) problem that is learnable, is learnable using a one-pass first-order online method (i.e. a Stochastic Approximation approach).

References

[1] J. Abernethy, P. L. Bartlett, A. Rakhlin, and A. Tewari. Optimal strategies and minimax lower bounds for online convex games. In Proceedings of the Nineteenth Annual Conference on Computational Learning Theory, 2008.

[2] Alekh Agarwal, Peter L. Bartlett, Pradeep Ravikumar, and Martin J. Wainwright. Information-theoretic lower bounds on the oracle complexity of convex optimization.

[3] Keith Ball, Eric A. Carlen, and Elliott H. Lieb. Sharp uniform convexity and smoothness inequalities for trace norms. Invent. Math., 115:463–482, 1994.

[4] A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods for convex optimization. Operations Research Letters, 31(3):167–175, 2003.

[5] H. D. Block. The perceptron: A model for brain functioning. Reviews of Modern Physics, 34:123–135, 1962. Reprinted in ”Neurocomputing” by Anderson and Rosenfeld.

[6] V. Chandrasekaran, S. Sanghavi, P. Parrilo, and A. Willsky. Sparse and low-rank matrix decompositions. In IFAC Symposium on System Identification, 2009.

[7] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto the ℓ_1-ball for learning in high dimensions. In Proceedings of the 25th International Conference on Machine Learning, 2008.

[8] Ali Jalali, Pradeep Ravikumar, Sujay Sanghavi, and Chao Ruan. A Dirty Model for Multi-task Learning. In NIPS, December 2010.

[9] A. Juditsky, G. Lan, A. Nemirovski, and A. Shapiro. Stochastic approximation approach to stochastic programming. SIAM J. Optim, 19(4):1574–1609, 2009.

[10] Sham M. Kakade, Shai Shalev-Shwartz, and Ambuj Tewari. On the duality of strong convexity and strong smoothness: Learning applications and matrix regularization, 2010.
[11] J. Kivinen and M. Warmuth. Exponentiated gradient versus gradient descent for linear predictors. *Information and Computation*, 132(1):1–64, January 1997.

[12] J. Langford, L. Li, and T. Zhang. Sparse online learning via truncated gradient. In *Advances in Neural Information Processing Systems 21*, pages 905–912, 2009.

[13] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. *Machine Learning*, 2:285–318, 1988.

[14] A. Nemirovski and D. Yudin. On cesaro’s convergence of the gradient descent method for finding saddle points of convex-concave functions. *Doklady Akademii Nauk SSSR*, 239(4), 1978.

[15] A. Nemirovski and D. Yudin. *Problem complexity and method efficiency in optimization*. Nauka Publishers, Moscow, 1978.

[16] G. Pisier. Martingales with values in uniformly convex spaces. *Israel Journal of Mathematics*, 20(3–4):326–350, 1975.

[17] G. Pisier. Martingales in banach spaces (in connection with type and cotype). *Winter School/IHP Graduate Course*, 2011.

[18] A. Rakhlin, K. Sridharan, and A. Tewari. Online learning: Random averages, combinatorial parameters, and learnability. *NIPS*, 2010.

[19] S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Stochastic convex optimization. In *COLT*, 2009.

[20] S. Shalev-Shwartz and Y. Singer. Convex repeated games and fenchel duality. In *Advances in Neural Information Processing Systems*, 19:1265, 2007.

[21] Nathan Srebro, Jason D. M. Rennie, and Tommi S. Jaakola. Maximum-margin matrix factorization. In *Advances in Neural Information Processing Systems 17*, pages 1329–1336. MIT Press, 2005.

[22] Nathan Srebro and Adi Shraibman. Rank, trace-norm and max-norm. In *Proceedings of the 18th Annual Conference on Learning Theory*, pages 545–560. Springer-Verlag, 2005.

[23] Nathan Srebro and Ambuj Tewari. Stochastic optimization for machine learning. In *ICML 2010*, tutorial, 2010.

[24] K. Sridharan and A. Tewari. Convex games in Banach spaces. In *Proceedings of the 23nd Annual Conference on Learning Theory*, 2010.

[25] S. Shalev-Shwartz. *Online Learning: Theory, Algorithms, and Applications*. PhD thesis, Hebrew University of Jerusalem, 2007.

[26] Manfred K. Warmuth and Dima Kuzmin. Randomized online pca algorithms with regret bounds that are logarithmic in the dimension, 2007.

[27] M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In *ICML*, 2003.

[28] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. *Journal of the Royal Statistical Society, Series B*, 67:301–320, 2005.
Proof of Lemma 2 (generalized MD guarantee). Note that for any \(w^* \in \mathcal{W} \),
\[
\eta \left(\sum_{i=1}^{n} f_i(w_t) - \sum_{i=1}^{n} f_i(w^*) \right) \leq \sum_{i=1}^{n} \langle \eta \nabla f_i(w_t), w_t - w^* \rangle
\]
\[
= \sum_{i=1}^{n} \left(\langle \eta \nabla f_i(w_t), w_t - w^*_{t+1} \rangle + \langle \nabla f_i(w_t), w^*_{t+1} - w^* \rangle \right)
\]
\[
= \sum_{i=1}^{n} \left(\langle \eta \nabla f_i(w_t), w_t - w^*_{t+1} \rangle + \langle \nabla \Psi(w_t) - \nabla \Psi(w^*_{t+1}), w^*_{t+1} - w^* \rangle \right)
\]
\[
\leq \sum_{i=1}^{n} \left(\eta \left(\frac{p}{q} \left\| \nabla f_i(w_t) \right\|_{\mathcal{X}}^p + \frac{1}{q} \left\| w_t - w^*_{t+1} \right\|_{\mathcal{X}}^q, + \left\langle \nabla \Psi(w_t) - \nabla \Psi(w^*_{t+1}), w^*_{t+1} - w^* \right\rangle \right) \right)
\]
Using simple manipulation we can show that
\[
\langle \nabla \Psi(w_t) - \nabla \Psi(w^*_{t+1}), w^*_{t+1} - w^* \rangle = \Delta_{\Psi} (w^* | w_t) - \Delta_{\Psi} (w^* | w^*_{t+1}) - \Delta_{\Psi} (w^*_{t+1} | w_t)
\]
where given any \(w, w' \in B \),
\[
\Delta_{\Psi} (w|w') := \Psi(w) - \Psi(w') - \langle \nabla \Psi(w'), w - w' \rangle
\]
is the Bregman divergence between \(w \) and \(w' \) w.r.t. function \(\Psi \). Hence,
\[
\eta \left(\sum_{i=1}^{n} f_i(w_t) - \sum_{i=1}^{n} f_i(w^*) \right)
\]
\[
\leq \sum_{i=1}^{n} \left(\frac{p}{q} \left\| \nabla f_i(w_t) \right\|_{\mathcal{X}}^p + \frac{1}{q} \left\| w_t - w^*_{t+1} \right\|_{\mathcal{X}}^q, + \Delta_{\Psi} (w^* | w_t) - \Delta_{\Psi} (w^* | w^*_{t+1}) - \Delta_{\Psi} (w^*_{t+1} | w_t) \right)
\]
Now since \(\Psi \) is \(q \)-uniformly convex w.r.t. \(\| \cdot \|_{\mathcal{X}} \), for any \(w, w' \in B^* \), \(\Delta_{\Psi} (w' | w) \geq \frac{1}{q} \left\| w - w' \right\|_{\mathcal{X}}^q \). Hence we conclude that
\[
\sum_{i=1}^{n} f_i(w_t) - \sum_{i=1}^{n} f_i(w^*) \leq \eta^{p-1} \sum_{i=1}^{n} \| \nabla f_i(w_t) \|_{\mathcal{X}}^p + \frac{\Psi(w^*)}{\eta}
\]
\[
\leq \frac{\eta^{p-1} Bn}{p} + \frac{\sup_{w \in \mathcal{W}} \Psi(w)}{\eta}
\]
\[
\leq \frac{\eta^{p-1} Bn}{p} + \frac{\sup_{w \in \mathcal{W}} \Psi(w)}{\eta}
\]
Plugging in the value of $\eta = \left(\sup_{w \in W} \Psi(w)\right)^{1/p}$ we get:

$$\sum_{i=1}^{n} f_i(w_i) - \sum_{i=1}^{n} f_i(w^*) \leq 2 \left(\sup_{w \in W} \Psi(w)\right)^{1/q} (Bn)^{1/p}$$

dividing throughout by n conclude the proof.

Lemma 11. Let $1 < p \leq 2$ and $C > 0$ be fixed constants, the following statements are equivalent:

1. For all sequence of mappings $(x_n)_{n \geq 1}$ where each $x_n : \{\pm 1\}^{n-1} \mapsto B^*$ and any $x_0 \in B^*$:

$$\sup \mathbb{E} \left[\left\| x_0 + \sum_{i=1}^{n} \epsilon_i x_i(\epsilon) \right\|^p \right] \leq C^p \left(\|x_0\|_X^p + \sum_{n \geq 1} \mathbb{E} [\|x_n(\epsilon)\|_X^p]\right)$$

2. There exist a non-negative convex function Ψ on B with $\Phi(0) = 0$, that is q-uniformly convex w.r.t. norm $\|\cdot\|_X$, and for any $w \in B$, $\frac{1}{q} \|w\|^q_X \leq \Psi(w) \leq C^q \|w\|^q_X$.

Proof. For any $x \in B^*$ define $\Psi^*: B^* \mapsto \mathbb{R}$ as

$$\Psi^*(x) := \sup \left\{ \frac{1}{C^q} \sup \mathbb{E} \left[\left\| x + \sum_{i=1}^{n} \epsilon_i x_i(\epsilon) \right\|^p \right] - \sum_{i \geq 1} \mathbb{E} [\|x_i(\epsilon)\|_X^p] \right\}$$

where the supremum is over sequence of mappings $(x_n)_{n \geq 1}$ where each $x_n : \{\pm 1\}^{n-1} \mapsto B^*$ and the sequence is such that, $\sup \mathbb{E} [\|x + \sum_{i=1}^{n} x_i(\epsilon)\|_W^p] \leq \text{sup} \|\cdot\|_X$. Since supremum of convex functions is a convex function, it is easily verified that $\Psi^*(\cdot)$ is convex. Note that by the definition of M-type in Equation 8, we have that for any $x_0 \in B^*$, $\Psi^*(x_0) \leq \|x_0\|^p_X$. On the other hand, note that by considering the sequence of constant mappings, $x_i = 0$ for all $i \geq 1$, we get that for any $x_0 \in B^*$,

$$\Psi^*(x_0) = \sup \left\{ \frac{1}{C^q} \sup \mathbb{E} \left[\left\| x_0 + \sum_{i=1}^{n} \epsilon_i x_i(\epsilon) \right\|^p \right] - \sum_{i \geq 1} \mathbb{E} [\|x_i(\epsilon)\|_X^p] \right\} \geq \frac{1}{C^p} \|x_0\|^p_W.$$

Thus we can conclude that for any $x \in B^*$, $\frac{1}{C^p} \|x\|^p_W \leq \Psi^*(x) \leq \|x\|^p_X$.

For any $x_0, y_0 \in B^*$, by definition of $\Psi^*(x_0)$ and $\Psi^*(y_0)$, for any $\gamma > 0$, there exist sequences $(x_n)_{n \geq 1}$ and $(y_n)_{n \geq 1}$ s.t.:

$$\Psi^*(x_0) \leq \left(\frac{1}{C^p} \sup_n \mathbb{E} \left[\left\| x_0 + \sum_{i=1}^{n} \epsilon_i x_i(\epsilon) \right\|^p \right] - \sum_{i \geq 1} \mathbb{E} [\|x_i(\epsilon)\|_X^p] \right) + \gamma$$

and

$$\Psi^*(y_0) \leq \left(\frac{1}{C^p} \sup_n \mathbb{E} \left[\left\| y_0 + \sum_{i=1}^{n} \epsilon_i y_i(\epsilon) \right\|^p \right] - \sum_{i \geq 1} \mathbb{E} [\|y_i(\epsilon)\|_X^p] \right) + \gamma$$

In fact in the above two inequalities if the supremum over n were achieved at some finite n_0, by replacing the original sequence by one which is identical up to n_0 and for any $i > n_0$ using $x_i(\epsilon) = 0$ (and similarly $y_i(\epsilon) = 0$), we can in fact conclude that using these x’s and y’s instead, $\Psi^*(x_0) \leq \left(\frac{1}{C^p} \mathbb{E} \left[\left\| x_0 + \sum_{i \geq 1} \epsilon_i x_i(\epsilon) \right\|^p \right] - \sum_{i \geq 1} \mathbb{E} [\|x_i(\epsilon)\|_X^p] \right) + \gamma$ (15)
and

$$\Psi^*(y_0^{(j)}) \leq \left(\frac{1}{C^p} E \left[\left\| y_0 + \sum_{i \geq 1} \epsilon_i y_i(\epsilon) \right\|_W^p \right] - \sum_{i \geq 1} E \left[\| y_i(\epsilon) \|_X^p \right] \right) + \gamma \quad (16)$$

Now consider a sequence formed by taking $z_0 = \frac{x_0 + y_0}{2}$ and further let

$$z_1 = \left(1 + \frac{\epsilon_0}{2}\right) \frac{x_0 - y_0}{2} + \left(1 - \frac{\epsilon_0}{2}\right) \frac{y_0 - x_0}{2} = \epsilon_0 (x_0 - y_0)$$

and for any $i \geq 2$, define

$$z_i = \left(1 + \frac{\epsilon_0}{2}\right) \epsilon_{i-1} x_{i-1}(\epsilon) + \left(1 - \frac{\epsilon_0}{2}\right) \epsilon_{i-1} y_{i-1}(\epsilon)$$

where $\epsilon_0 \in \{ \pm 1 \}$ is drawn uniformly at random. That is essentially at time $i = 1$ we flip a coin and decide to go with the sequence $(x_n)_{n \geq 0}$ with probability $1/2$ and $(y_n)_{n \geq 0}$ with probability $1/2$. Clearly using the sequence $(z_n)_{n \geq 1}$, we have that,

$$\Psi^* \left(\frac{x_0 + y_0}{2} \right) = \sup_{(z)_{n \geq 1}} \left\{ \left(\frac{1}{C^p} \sup_n E \left[\left\| z_0 + \sum_{i \geq 1} \epsilon_i x_i(\epsilon) \right\|_W^p \right] - \sum_{i \geq 1} E \left[\| z_i(\epsilon, \epsilon) \|_X^p \right] \right)^{1/p} \right\}^p$$

where the last step is obtained by using Equations 15 and 16. Since γ was arbitrary taking limit we conclude that for any x_0 and y_0,

$$\Psi^* \left(\frac{x_0 + y_0}{2} \right) + \Psi^* \left(\frac{x_0 - y_0}{2} \right) \leq \Psi^* \left(\frac{x_0 + y_0}{2} \right) + \left\| \frac{x_0 - y_0}{2} \right\|_X^p$$

14
Hence we have shown the existence of a convex function Ψ^* that is p-uniformly smooth w.r.t. norm $\|\cdot\|_X$ such that $\frac{1}{C_p} \|x\|^p_{\Psi^*} \leq \Psi^*(\cdot) \leq \|x\|^p_{\Psi^*}$. Using convex duality we can conclude that the convex conjugate Ψ of function Ψ^*, is q-uniformly convex w.r.t. norm $\|\cdot\|_X$, and is such that $\|x\|^q_{\Psi} \leq \Psi(\cdot) \leq C_\Psi \|x\|^q_{\Psi^*}$. That 2 implies 1 can be easily verified using the smoothness property of Ψ^*.

The following sequence of four lemma’s give us the essentials towards proving Lemma 5. They use similar techniques as in [16].

Lemma 12. Let $1 < r \leq 2$. If there exists a constant $D > 0$ such that any $x_0 \in B^*$ and any sequence of mappings $(x_n)_{n \geq 1}$, where $x_n : \{\pm 1\}^{n-1} \mapsto B^*$ satisfy:

$$\forall n \in \mathbb{N}, \quad \mathbb{E} \left[\left\| x_0 + \sum_{i=1}^n \epsilon_i x_i(\epsilon) \right\|_{W^*} \right] \leq D(n + 1)^{1/r} \sup_{0 \leq i \leq n} \sup_{\epsilon} \|x_i(\epsilon)\|_X$$

then for all $p < r$ and $\alpha_p = \frac{20D}{r-p}$ we can conclude that any $x_0 \in B^*$ and any sequence of mappings $(x_n)_{n \geq 1}$, where $x_n : \{\pm 1\}^{n-1} \mapsto B^*$ will satisfy:

$$\sup_n \mathbb{E} \left[\left\| x_0 + \sum_{i=1}^n \epsilon_i x_i(\epsilon) \right\|_{W^*} \right] \leq \alpha_p \sup_{\epsilon} \left(\sum_{i=0}^n \|x_i(\epsilon)\|^p_X \right)^{1/p}$$

Proof. To begin with note that in the definition of type, if the supremum over n were achieved at some finite n_0, then by replacing the original sequence by one which is identical up to n_0 and then on for any $i > n_0$ using $x_i(\epsilon) = 0$ would only tighten the inequality. Hence it suffices to only consider such sequences. Further to prove the statement we only need to consider finite such sequences (ie. sequences such that there exists some n so that for any $i > n$, $x_i = 0$) and show that the inequality holds for every such n (every such sequence).

Restricting ourselves to such finite sequences, we now use the shorthand, $S = \sup_{\epsilon} (\sum_{i=0}^n \|x_i(\epsilon)\|^p_X)^{1/p}$. Now define

$$I_0(\epsilon) = \left\{ i \geq 0 \mid \frac{S}{2^{i+1} r^p} < \|x_i(\epsilon)\|_X \leq \frac{S}{2^{i+1} r^p} \right\}, \quad T_0(\epsilon) = \inf \{ i \in I_0(\epsilon) \}$$

and

$$\forall m \in \mathbb{N}, \quad T_m(\epsilon) = \sup \{ i > T_{m-1}(\epsilon), i \in I_k(\epsilon) \}$$

Note that for any $\epsilon \in \{\pm 1\}^\mathbb{N}$,

$$S^p \geq \sum_{i \in I_k(\epsilon)} \|x_i(\epsilon)\|^p_X > \frac{S^p |I_k(\epsilon)|}{2^{k+1}}$$

and so we get that $\sup_{\epsilon} |I_k(\epsilon)| < 2^{k+1}$. From this we conclude that

$$\mathbb{E} \left[\left\| x_0 + \sum_{i=1}^n x_i(\epsilon) \right\|_{W^*} \right] \leq \sum_{k \geq 0} \mathbb{E} \left[\left\| \sum_{i \in I_k(\epsilon)} x_i(\epsilon) \right\|_{W^*} \right]$$

$$= \sum_{k \geq 0} \mathbb{E} \left[\left\| \sum_{i \in I_k(\epsilon)} x_{T_i(\epsilon)}(\epsilon) \right\|_{W^*} \right]$$

$$\leq \sum_{k \geq 0} \left(D \sup_{\epsilon} |I_k(\epsilon)|^{1/r} \sup_{\epsilon} \left(\sup_{i \in I_k(\epsilon)} \|x_i(\epsilon)\|_X \right) \right)$$

$$\leq \sum_{k \geq 0} \left(D \cdot 2^{(k+1)/r} \sup_{\epsilon} \left(\sup_{i \in I_k(\epsilon)} \|x_i(\epsilon)\|_{X;\infty} \right) \right)$$
\[
\leq \sum_{k \geq 0} \left(D \cdot 2^{(k+1)/r} \cdot 2^{-k/p} S \right)
\]
\[
= D \cdot 2^{1/r} \sum_{k \geq 0} 2^{k(1/r) - 1} S
\]
\[
\leq \frac{2D}{1 - 2^{(1/r - 1/p)}} S
\]
\[
\leq \frac{2D}{1 - 2^{(1/r - 1/p)}} S
\]
\[
\leq \frac{12D}{r - p} S
\]
\[
= \alpha_p \sup_\epsilon \left(\sum_{i=0}^{n} \|x_i(\epsilon)\|_X^p \right)^{1/p}
\]

Lemma 13. Let \(1 < r \leq 2\). If there exists a constant \(D > 0\) such that any \(x_0 \in B^*\) and any sequence of mappings \((x_n)_{n \geq 1}\), where \(x_n : \{\pm 1\}^{n-1} \rightarrow B^*\) satisfy:

\[
\forall n \in \mathbb{N}, \quad \mathbb{E} \left[\left\| x_0 + \sum_{i=1}^{n} \epsilon_i x_i(\epsilon) \right\|_{W^*} \right] \leq D(n + 1)^{1/r} \sup_{0 \leq \epsilon \leq n} \sup_\epsilon \|x_i(\epsilon)\|_X
\]

then for any \(p < r\), any \(x_0 \in B^*\) and any mapping \((x_n)_{n \geq 1}\), where \(x_n : \{\pm 1\}^{n-1} \rightarrow B^*\):

\[
P \left(\sup_n \left\| x_0 + \sum_{i=1}^{n} \epsilon_i x_i(\epsilon) \right\|_{W^*} > c \right) \leq 2 \left(\frac{\alpha_p}{c} \right)^{p/(p+1)} \left(\|x_0\|_X^p + \sum_{i \geq 1} \mathbb{E} \|x_i(\epsilon)\|_X^p \right)^{1/(p+1)}
\]

Proof. For any \(x_0 \in B^*\) and sequence \((x_n)_{n \geq 1}\) define

\[
V_n(\epsilon) = \sum_{i=0}^{n} \|x_i(\epsilon)\|_X^p.
\]

For appropriate choice of \(a > 0\) to be fixed later, define stopping time

\[
\tau(\epsilon) = \inf \{ n \geq 0 | V_{n+1} > a^p \}
\]

Now for any \(c > 0\) we have,

\[
P \left(\sup_n \left\| x_0 + \sum_{i=1}^{n} \epsilon_i x_i(\epsilon) \right\|_{W^*} > c \right) \leq P(\tau(\epsilon) < \infty) + P \left(\tau(\epsilon) = \infty, \sup_n \left\| x_0 + \sum_{i=0}^{n} \epsilon_i x_i(\epsilon) \right\|_{W^*} > c \right)
\]
\[
\leq P(\tau(\epsilon) < \infty) + P \left(\tau(\epsilon) > 0, \sup_n \left\| x_0 + \sum_{i=1}^{n \wedge \tau(\epsilon)} \epsilon_i x_i(\epsilon) \right\|_{W^*} > c \right) \tag{17}
\]

As for the first term in the above equation note that

\[
P(\tau(\epsilon) < \infty) = P(\sup_n V_n > a^p) \leq \frac{\|x_0\|_X^p + \sum_{i \geq 1} \mathbb{E} \|x_i(\epsilon)\|_X^p}{a^p} \tag{18}
\]

\[\square\]
To consider the second term of Equation 17 we note that
\(\left(\mathbb{I}_{\{\tau(\epsilon) > 0\}} (x_0 + \sum_{i=1}^{n \land \tau(\epsilon)} \epsilon_i x_i(\epsilon)) \right)_{n \geq 0} \) is a valid martingale (stopped process) and hence,
\(\left(\left\| \mathbb{I}_{\{\tau(\epsilon) > 0\}} (x_0 + \sum_{i=1}^{n \land \tau(\epsilon)} \epsilon_i x_i(\epsilon)) \right\|_{\mathcal{W}^*} \right)_{n \geq 0} \) is a sub-martingale. Hence by Doob's inequality we conclude that,
\[
P \left(T > 0, \sup_n \left\| x_0 + \sum_{i=1}^{n \land \tau(\epsilon)} \epsilon_i x_i(\epsilon) \right\|_{\mathcal{W}^*} > c \right) \leq \frac{1}{c} \sup_n \mathbb{E} \left[\left\| \mathbb{I}_{\{\tau(\epsilon) > 0\}} \left(x_0 + \sum_{i=1}^{n \land \tau(\epsilon)} \epsilon_i x_i(\epsilon) \right) \right\|_{\mathcal{W}^*} \right]
\]
Applying conclusion of the previous lemma we get that
\[
P \left(T > 0, \sup_n \left\| x_0 + \sum_{i=1}^{n \land \tau(\epsilon)} \epsilon_i x_i(\epsilon) \right\|_{\mathcal{W}^*} > c \right) \leq \frac{\alpha_p}{c} \sup_n \frac{\mathbb{E} p \left(\left\| x_0 \right\|_{\mathcal{X}}^p + \sum_{i \geq 1} \mathbb{E} \left[\left\| x_i(\epsilon) \right\|_{\mathcal{X}}^p \right] \right)}{c^p} \left(\frac{\left\| x_0 \right\|_{\mathcal{X}}^p + \sum_{i \geq 1} \mathbb{E} \left[\left\| x_i(\epsilon) \right\|_{\mathcal{X}}^p \right] }{c} \right)^{\frac{1}{p+1}}.
\]
Plugging the above and Equation 18 into Equation 17 we conclude that:
\[
P \left(\sup_n \left\| x_0 + \sum_{i=1}^{n} \epsilon_i x_i(\epsilon) \right\|_{\mathcal{W}^*} > c \right) \leq \frac{\mathbb{E} p \left(\left\| x_0 \right\|_{\mathcal{X}}^p + \sum_{i \geq 1} \mathbb{E} \left[\left\| x_i(\epsilon) \right\|_{\mathcal{X}}^p \right] \right)}{c^p} \left(\frac{\left\| x_0 \right\|_{\mathcal{X}}^p + \sum_{i \geq 1} \mathbb{E} \left[\left\| x_i(\epsilon) \right\|_{\mathcal{X}}^p \right] }{c} \right)^{\frac{1}{p+1}}.
\]
Using \(a = \left(\frac{\mathbb{E} p \left(\left\| x_0 \right\|_{\mathcal{X}}^p + \sum_{i \geq 1} \mathbb{E} \left[\left\| x_i(\epsilon) \right\|_{\mathcal{X}}^p \right] \right)}{c^p} \right)^{\frac{1}{p+1}} \) we conclude that
\[
P \left(\sup_n \left\| x_0 + \sum_{i=1}^{n} \epsilon_i x_i(\epsilon) \right\|_{\mathcal{W}^*} > c \right) \leq 2 \left(\frac{\mathbb{E} p \left(\left\| x_0 \right\|_{\mathcal{X}}^p + \sum_{i \geq 1} \mathbb{E} \left[\left\| x_i(\epsilon) \right\|_{\mathcal{X}}^p \right] \right)}{c^p} \right)^{\frac{p}{p+1}} \left(\frac{\left\| x_0 \right\|_{\mathcal{X}}^p + \sum_{i \geq 1} \mathbb{E} \left[\left\| x_i(\epsilon) \right\|_{\mathcal{X}}^p \right] }{c} \right)^{\frac{1}{p}}.
\]
This conclude the proof.

\[\Box\]

Lemma 14. Let \(1 < r \leq 2 \). If there exists a constant \(D > 0 \) such that any \(x_0 \in \mathcal{B}^* \) and any sequence of mappings \((x_n)_{n \geq 1}\), where \(x_n : \{\pm 1\}^{n-1} \rightarrow \mathcal{B}^* \) satisfy:
\[
\forall n \in \mathbb{N}, \quad \mathbb{E} \left[\left\| x_0 + \sum_{i=1}^{n} \epsilon_i x_i(\epsilon) \right\|_{\mathcal{W}^*} \right] \leq D (n + 1)^{1/r} \sup_{0 \leq i \leq n} \sup_{\epsilon} \| x_i(\epsilon) \|_{\mathcal{X}}
\]
then for any \(p < r \), any \(x_0 \in \mathcal{B}^* \) and any sequence \((x_n)_{n \geq 1}\) satisfies:
\[
\sup_{\lambda > 0} \mathbb{P} \left(\sup_n \left\| x_0 + \sum_{i=1}^{n} \epsilon_i x_i(\epsilon) \right\|_{\mathcal{W}^*} > \lambda \right) \leq \max \left\{ 4 \frac{\mathbb{E} p \left(\left\| x_0 \right\|_{\mathcal{X}}^p + \sum_{i \geq 1} \mathbb{E} \left[\left\| x_i(\epsilon) \right\|_{\mathcal{X}}^p \right] \right)}{c^p}, 2^{2p+3} \log(2) \alpha_p \left(\frac{\left\| x_0 \right\|_{\mathcal{X}}^p + \sum_{i \geq 1} \mathbb{E} \left[\left\| x_i(\epsilon) \right\|_{\mathcal{X}}^p \right] }{c} \right)^{\frac{1}{p+3}} \right\}
\]

Proof. We shall use Proposition 8.53 of Pisier's notes which is restated below to prove this lemma. To this end consider any \(x_0 \in \mathcal{B}^* \) and any sequence \((x_i)_{i \geq 1}\). Given an \(\epsilon \in \{\pm 1\}^M \), for any \(j \in [M] \) and \(i \in \mathbb{N} \) let \(\epsilon_i^{(j)} = \epsilon_i^{(j-1),M} \). Let \(z_0 = x_0 M^{-1/p} \) and define the sequence \((z_i)_{i \geq 1}\) as follows, for any \(k \in \mathbb{N} \) given by \(k = j + (i-1)M \) where \(j \in [M] \) and \(i \in \mathbb{N} \),
\[
z_k(\epsilon) = x_i(\epsilon^{(j)}) M^{-1/p}
\]
Clearly,
\[\|z_0\|^p_X + \sum_{k \geq 1} \mathbb{E} [\|z_k(\epsilon)\|^p_X] = \|x_0\|^p_X + \frac{1}{M} \sum_{j=1}^M \sum_{k \geq 1} \mathbb{E} [\|x_k(\epsilon(j))\|^p_X] \]
\[= \|x_0\|^p_X + \sum_{i \geq 1} \mathbb{E} [\|x_i(\epsilon)\|^p_X] \]

By previous lemma we get that for any \(c > 0 \),
\[\Pr \left(\sup_n \left\| z_0 + \sum_{i=1}^n \epsilon_i z_i(\epsilon) \right\|_{W^*} > c \right) \leq 2 \left(\frac{\alpha_p}{c} \right)^{p/(p+1)} \left(\|z_0\|^p_X + \sum_{i \geq 1} \mathbb{E} [\|z_i(\epsilon)\|^p_X] \right)^{1/(p+1)} \]
\[= 2 \left(\frac{\alpha_p}{c} \right)^{p/(p+1)} \left(\|x_0\|^p_X + \sum_{i \geq 1} \mathbb{E} [\|x_i(\epsilon)\|^p_X] \right)^{1/(p+1)} \]

Note that
\[\sup_n \left\| z_0 + \sum_{i=1}^n \epsilon_i z_i(\epsilon) \right\|_{W^*} = M^{-1/p} \sup_{j \in [M]} \sup_n \left\| x_0 + \sum_{i=1}^n \epsilon_i x_i(\epsilon(j)) \right\|_{W^*} \]

Hence we conclude that
\[\Pr \left(\sup_{j \in [M]} M^{-1/p} \sup_n \left\| x_0 + \sum_{i=1}^n \epsilon_i x_i(\epsilon(j)) \right\|_{W^*} > c \right) \leq 2 \left(\frac{\alpha_p}{c} \right)^{p/(p+1)} \left(\|x_0\|^p_X + \sum_{i \geq 1} \mathbb{E} [\|x_i(\epsilon)\|^p_X] \right)^{1/(p+1)} \]

For any \(j \in [M] \), defining \(Z^{(j)} = \sup_n \left\| x_0 + \sum_{i=1}^n \epsilon_i x_i(\epsilon(j)) \right\|_{W^*} \) and using Proposition 16 we conclude that for any \(c > 0 \),
\[\sup_{\lambda > 0} \lambda^p \Pr \left(\sup_n \left\| x_0 + \sum_{i=1}^n \epsilon_i x_i(\epsilon) \right\|_{W^*} > \lambda \right) \leq \max \left\{ c, 2\alpha_p \log \left(\frac{1}{1 - 2 \left(\frac{\alpha_p}{c} \right)^{p/(p+1)} \left(\|x_0\|^p_X + \sum_{i \geq 1} \mathbb{E} [\|x_i(\epsilon)\|^p_X] \right)^{1/(p+1)}} \right) \right\} \]

Picking
\[c = 4^{\frac{2+p}{p}} \alpha_p \left(\|x_0\|^p_X + \sum_{i \geq 1} \mathbb{E} [\|x_i(\epsilon)\|^p_X] \right)^{1/p} \]

we conclude that
\[\sup_{\lambda > 0} \lambda^p \Pr \left(\sup_n \left\| x_0 + \sum_{i=1}^n \epsilon_i x_i(\epsilon) \right\|_{W^*} > \lambda \right) \leq \max \left\{ 4^{\frac{2+p}{p}} \alpha_p \left(\|x_0\|^p_X + \sum_{i \geq 1} \mathbb{E} [\|x_i(\epsilon)\|^p_X] \right)^{\frac{1}{p}}, 2^{2p+3} \log(2) \alpha_p \left(\|x_0\|^p_X + \sum_{i \geq 1} \mathbb{E} [\|x_i(\epsilon)\|^p_X] \right)^{1/p} \right\} \]

\[\square \]
Lemma 15. Let $1 < r \leq 2$. If there exists a constant $D > 0$ such that any $x_0 \in B^*$ and any sequence of mappings $(x_n)_{n \geq 1}$, where $x_n : \{\pm 1\}^{n-1} \mapsto B^*$ satisfy :

$$\forall n \in \mathbb{N}, \quad \mathbb{E} \left[\left\| x_0 + \sum_{i=1}^{n} \epsilon_i x_i(\epsilon) \right\|_{\mathcal{W}^r}^p \right] \leq D(n+1)^{1/r} \sup_{0 \leq t \leq n} \sup_{\epsilon} \| x(t) \|_{\mathcal{X}}$$

then for all $p < r$, we can conclude that any $x_0 \in B^*$ and any sequence of mappings $(x_n)_{n \geq 1}$ where each $x_n : \{\pm 1\}^{n-1} \mapsto B^*$ will satisfy :

$$\sup_n \mathbb{E} \left[\left\| x_0 + \sum_{i=1}^{n} \epsilon_i x_i(\epsilon) \right\|_{\mathcal{W}^r}^p \right] \leq \left(\frac{1104 D}{(r-p)^2} \right)^{p} \left(\| x_0 \|_{\mathcal{X}}^p + \sum_{i \geq 1} \mathbb{E} \left[\| x_i(\epsilon) \|_{\mathcal{X}}^p \right] \right)^{r/p}$$

That is the pair $(\mathcal{W}, \mathcal{X})$ is of martingale type p.

Proof. Given any $p < r$ pick $r > p' > p$, due to the homogeneity of the statement we need to prove, w.l.o.g. we can assume that

$$\| x_0 \|_{\mathcal{X}}^p + \sum_{i \geq 1} \mathbb{E} \left[\| x_i(\epsilon) \|_{\mathcal{X}}^p \right] = 1$$

Hence by previous lemma, we can conclude that

$$\sup_{\lambda > 0} \lambda^{p'} \mathbb{P} \left(\sup_n \left\| x_0 + \sum_{i=1}^{n} \epsilon_i x_i(\epsilon) \right\|_{\mathcal{W}^r}^p > \lambda \right) \leq p' 2^{2p' + 3} \log(2) \alpha_{p'}^{p'} \leq (32 \alpha_{p'})^{p'} \quad (19)$$

Hence,

$$\mathbb{E} \left[\left(\sup_n \left\| x_0 + \sum_{i=1}^{n} \epsilon_i x_i(\epsilon) \right\|_{\mathcal{W}^r}^p \right)^{1/p} \right] \leq \inf_{a > 0} \left\{ a^{p'} + p \int_{a}^{\infty} \lambda^{p-1} \mathbb{P} \left(\sup_n \left\| x_0 + \sum_{i=1}^{n} \epsilon_i x_i(\epsilon) \right\|_{\mathcal{W}^r}^p > \lambda \right) d\lambda \right\}$$

$$\leq \inf_{a > 0} \left\{ a^{p'} + p (32 \alpha_{p'})^{p'} \int_{a}^{\infty} \lambda^{p-1} - \lambda^{p'} d\lambda \right\}$$

$$\leq \inf_{a > 0} \left\{ a^{p'} + p (32 \alpha_{p'})^{p'} \frac{\lambda^{p-1} - \lambda^{p'}}{p - p'} \right\}$$

$$\leq \inf_{a > 0} \left\{ a^{p'} + (46 \alpha_{p'})^{p'} \frac{a^{p-1} - a^{p'}}{p - p'} \right\}$$

$$= 2 \frac{(46 \alpha_{p'})^{p}}{(p' - p)^{p/p'}} \leq 2 \frac{(46 \alpha_{p})^{p}}{(p' - p)^{p/p'}}$$

Since $\| x_0 \|_{\mathcal{X}}^p + \sum_{i \geq 1} \mathbb{E} \left[\| x_i(\epsilon) \|_{\mathcal{X}}^p \right] = 1$ and $p' > p$, we can conclude that $\| x_0 \|_{\mathcal{X}}^p + \sum_{i \geq 1} \mathbb{E} \left[\| x_i(\epsilon) \|_{\mathcal{X}}^p \right] \geq 1$ and so

$$\mathbb{E} \left[\left(\sup_n \left\| x_0 + \sum_{i=1}^{n} \epsilon_i x_i(\epsilon) \right\|_{\mathcal{W}^r}^p \right)^{1/p} \right] \leq 2 \frac{(46 \alpha_{p})^{p}}{(p' - p)^{p/p'}} \left(\| x_0 \|_{\mathcal{X}}^p + \sum_{i \geq 1} \mathbb{E} \left[\| x_i(\epsilon) \|_{\mathcal{X}}^p \right] \right)$$

$$\leq 2 \frac{(46 \alpha_{p})^{p}}{(p' - p)^{p/p'}} \left(\| x_0 \|_{\mathcal{X}}^p + \sum_{i \geq 1} \mathbb{E} \left[\| x_i(\epsilon) \|_{\mathcal{X}}^p \right] \right)$$

Since p' can be chosen arbitrarily close to r, taking the limit we can conclude that

$$\mathbb{E} \left[\left(\sup_n \left\| x_0 + \sum_{i=1}^{n} \epsilon_i x_i(\epsilon) \right\|_{\mathcal{W}^r}^p \right)^{1/p} \right] \leq 2 \frac{(46 \alpha_{p})^{p}}{(r - p)^{p/p'}} \left(\| x_0 \|_{\mathcal{X}}^p + \sum_{i \geq 1} \mathbb{E} \left[\| x_i(\epsilon) \|_{\mathcal{X}}^p \right] \right)$$

19
Recalling that $\alpha_p = \frac{12D}{r - p}$ we conclude that

$$
E \left[\sup_n \left\| x_0 + \sum_{i=1}^n \epsilon_i x_i(\epsilon) \right\|_{\mathcal{W}^*}^p \right] \leq \left(\frac{1104D}{(r - p)(p + 1/p)} \right)^p \left(\| x_0 \|_{\mathcal{W}}^p + \sum_{i \geq 1} E \left[\| x_i(\epsilon) \|_{\mathcal{W}}^p \right] \right)
$$

$$
\leq \left(\frac{1104D}{(r - p)^2} \right)^p \left(\| x_0 \|_{\mathcal{W}}^p + \sum_{i \geq 1} E \left[\| x_i(\epsilon) \|_{\mathcal{W}}^p \right] \right)
$$

This concludes the proof.

We restate below a proposition from Pisier’s note (in [17]):

Proposition 16 (Proposition 8.53 of [17]). Consider a random variable $Z \geq 0$ and a sequence $Z^{(1)}, Z^{(2)}, \ldots$ drawn iid from some distribution. For some $0 < p < \infty$, $0 < \delta < 1$ and $R > 0$,

$$
\sup_{M \geq 1} \mathbb{P} \left(\sup_{m \leq M} M^{-1/p} Z^{(m)} > R \right) \leq \delta \quad \Rightarrow \quad \sup_{\lambda > 0} \lambda^p \mathbb{P} (Z > \lambda) \leq \max \left\{ R, 2R^p \log \left(\frac{1}{1 - \delta} \right) \right\}
$$

Proof of Lemma 5. By Theorem 4 and our assumption that $V_n(\mathcal{W}, \mathcal{X}) \leq Dn^{-(1-1/r)}$, we have that for any sequence $(x_n)_{n \geq 1}$ such that $x_n : \{\pm 1\}^{n-1} \to \mathcal{X}$ and any $n \geq 1$,

$$
E \left[\left\| \frac{1}{n} \sum_{i=1}^n \epsilon_i x_i(\epsilon) \right\|_{\mathcal{W}^*} \right] \leq Dn^{-\left(1-\frac{1}{r}\right)}
$$

Hence we can conclude for any sequence $(x_n)_{n \geq 1}$ such that $x_n : \{\pm 1\}^{n-1} \to \mathcal{X}^*$ and any $n \geq 1$,

$$
E \left[\left\| \sum_{i=1}^n \epsilon_i x_i(\epsilon) \right\|_{\mathcal{W}^*} \right] \leq Dn^{\frac{1}{r}} \sup_{1 \leq i \leq n} \| x_i(\epsilon) \|_{\mathcal{X}}
$$

Hence for any $x_0 \in \mathcal{B}^*$, we have that

$$
E \left[\left\| x_0 + \sum_{i=1}^n \epsilon_i x_i(\epsilon) \right\|_{\mathcal{W}^*} \right] \leq E \left[\left\| \sum_{i=1}^n \epsilon_i x_i(\epsilon) \right\|_{\mathcal{W}^*} \right] + \| x_0 \|_{\mathcal{W}^*}
$$

$$
\leq E \left[\left\| \sum_{i=1}^n \epsilon_i x_i(\epsilon) \right\|_{\mathcal{W}^*} \right] + D \| x_0 \|_{\mathcal{X}}
$$

$$
\leq Dn^{\frac{1}{r}} \sup_{1 \leq i \leq n} \| x_i(\epsilon) \|_{\mathcal{X}} + D \| x_0 \|_{\mathcal{X}}
$$

$$
\leq 2D(n + 1)^{\frac{1}{r}} \sup_{0 \leq i \leq n} \| x_i(\epsilon) \|_{\mathcal{X}}
$$

Now applying Lemma 15 completes the proof. \qed