Comparing and contrasting two United Nations Environment Programme reports on COVID-19

1. Introduction

The cause of COVID-19 and other emerging infectious diseases, especially zoonotic, is of intense interest and great importance. In October 2022 a report by me was published by the United Nations Environment Programme (UNEP) into the causes and implications of the pandemic [1]. This adds to an earlier (July 2020) UNEP report into the pandemic [2].

2. Drivers of zoonotic disease emergence

Each of these UNEP reports identifies a number of important drivers for zoonotic emergence. While the two reports substantially agree (see Table 1), there are also some divergences, the discussion of which is the main purpose of this letter. Each report agrees that the farming of livestock to supply meat and other animal products is an underlying driver of potential zoonotic spillover. The chief difference between these reports, with regard to this aspect, concerns the word “protein”. The other important difference is that the later report identifies a potential role of laboratory and medical procedures contributing to zoonotic outbreaks and even to pandemics. Each of these differences are described. The letter concludes by discussing a recent WHO report that also warns of the risk of viral manipulation, and argues that this is an emerging topic relevant to One Health.

| 2022 report (2022 rank) | 2020 report (2020 rank) |
|-------------------------|-------------------------|
| Intensification of livestock raising (2) | Unsustainable agricultural intensification (2) |
| Increased use and exploitation of wildlife (3) | Increased over exploitation and unsustainable, unregulated or illegal trading of wildlife (3) |
| Unsustainable utilization of natural resources accelerated by urbanization, land use change and extractive industries (4) | Unsustainable use of natural resources accelerated by urbanization, land use change and extractive industries (4) |
| Climate change as a driver of bat and rodent densities (5) | Climate change (7) |
| Increased global travel and transportation (6) | Travel and transportation (5) |
| Viral mixing (?) | Changes in food supply chains (6) |

In 2022 a report was published by the United Nations Environment Programme (UNEP) into the causes and implications of the pandemic. This adds to an earlier UNEP report into the pandemic. Each of these reports identifies a small number of important drivers for zoonotic emergence. While the two reports substantially agree, there are also some divergences, the discussion of which is the main purpose of this letter. Each report agrees that the farming of livestock to supply meat and other animal products is an underlying driver of potential zoonotic spillover. The chief difference between these reports, with regard to this aspect, concerns the word “protein”. The other important difference is that the later report identifies a potential role of laboratory and medical procedures contributing to zoonotic outbreaks and even to pandemics. Each of these differences are described. The letter concludes by discussing a recent WHO report that also warns of the risk of viral manipulation, and argues that this is an emerging topic relevant to One Health.
Two drivers remain to be discussed. One is mentioned in each report with slightly different interpretations. The second has no equivalent in the earlier report (see Table 2).

3. Changes in food value preferences versus an increasing demand for animal protein

Each report agrees that the farming of livestock to supply meat and other animal products is the most important underlying driver of potential zoonotic spillover. The chief difference between these reports, with regard to this aspect, concerns the word “protein”. Animal sources of protein are generally considered higher in “quality” than from plants, not only because they contain all essential amino acids needed by humans, but also because they enable faster growth [7]. Such protein is particularly important for infants and young children, and possibly in older people losing muscle mass [7]. However, a mix of amino acids that maximally stimulate cell replication and growth may increase the risk of cancer and thus be sub-optimal for most of adult life [8]. In addition, for most people, adequate protein can be easily obtained via a vegan or vegetarian diet.

On the other hand, iron deficiency, with or without iron deficiency anaemia, affects as many as 3.6 billion people [9]. This is, therefore, an enormous global health problem, with immense negative implications for the economy and society, as well as for human well-being, because it harms learning, stamina, earning capacity and immunity [10]. Zinc deficiency is also widespread, especially in low-income settings, and often accompanies iron deficiency [11]. The frequency of iron and zinc deficiency, combined, must greatly exceed that of protein deficiency.

Although the consumption of animal products is not needed, by most people, to provide adequate protein (provided the right combinations of plants are eaten), animal products are far superior to plants as bioavailable sources of the micronutrients iron, zinc and vitamin B12, the latter of which (as is well-known) cannot be supplied at all from a vegan diet. Animal products can also be useful sources of beneficial fatty acids and calories. In summary, the second UNEP report does not question the value of modest dietary ingestion of animal products for most people to obtain and to maintain good health, but argues that the chief benefit from such diet is not via protein intake. The latter report implies that part of the perceived rejuvenating power attributed to the eating of meat, including wild meat, is genuine, but due more to the absorption of micronutrients within animal products, rather than to its protein.

The later report also argues that this is not a reason to stop eating animal products but instead points towards alternative, cost-effective mechanisms that may reduce meat demand, while at the same time maintaining or improving health [12]. These alternative approaches are the treatment of micronutrient-robbing parasitic diseases (e.g. hookworm) [13] and the intake of supplements, especially iron and zinc, particularly where diets are high in phytates or when soil levels of zinc are low [11].

4. The role of laboratory and medical procedures contributing to zoonotic outbreaks and potentially to pandemics

The final major difference in the drivers discussed by each report is that the latter includes the role of laboratory and medical procedures in contributing to zoonotic outbreaks and to potential pandemics. It lists fifteen documented escapes of eleven pathogens from laboratories, including the viruses that cause Ebola [14], smallpox [15], SARS, H5N1 influenza and foot and mouth disease. It also describes (with other examples) how the reuse of unsterile needles contributed to the early spread of HIV/AIDS in Sub-Saharan Africa [16] and to a large epidemic of hepatitis C in Egypt [17].

This second UNEP report also warns that the deliberate alteration of viral characteristics, even in a highly secure laboratory, may result in the inadvertent or purposeful creation of new viral forms, with properties that either might not evolve in nature, or are very unlikely to. Such research is variously called “dual use”, “dual use of concern”, “gain of function” and “gain of function research of concern” [18]. Some research that can be described as gain of function (but not of concern) is recognised as valuable, even by critics of its alleged potential to create “potentially pandemic pathogens” [19]. Critics of such experimentation argue that it has profound risks, and requires exemplary governance, transparency and oversight if it is to be safely undertaken [20]. Such an ethical environment is, however, not sufficiently engrained within some of the virological research community, as illustrated, for example, by the delayed conflict of interest declaration of one of its key members [21] and, allegedly the same Commissioner’s unwillingness [22] to disclose relevant material to the Lancet Commission into the pandemic [23].

5. Conclusion: broadening the scope of One Health and planetary health

The One Health High-Level Expert Panel, involving 26 experts recently (June 2022) defined One Health [24]. Like other One Health definitions [25,26] these authors do not speculate about nor appear to recognise the role of laboratory procedures (forms of biorisk) as contributing to potential disease spillovers. In contrast, however, the foreword to a recent WHO report, written by WHO’s chief scientist [18] (September 2022) states “this framework aims to raise awareness about the importance of biorisk management in the context of the One Health approach”. This letter strongly endorses the implicit appeal in this foreword to broaden the scope of One Health to include biorisks, particularly those that might generate potentially pandemic pathogens (PPPs).

This WHO report defines gain of function as “research that results in the acquisition of new biological phenotypes, or an enhancement of existing phenotypes”. It points out that any such research that is “anticipated to enhance the transmissibility or virulence (or both) of potential pandemic pathogens raises significant biosafety and biosecurity risks.” [18].

This WHO report is of significance because it documents concern at the highest level of global health about the possibility for viral “engineering” to generate a pandemic. In October 2014 a US moratorium on research intended to create novel potential pandemic pathogens was introduced. However, in December 2017 this funding pause was lifted by the US National Institutes of Health [27]. The WHO report, together with this second UNEP report, hints at a global re-awakening of concerns about such research, as does anxiety about the expansion of biosafety laboratories [28].

Although attribution of SARS-CoV-2 to such research remains speculative, some argue that it is plausible [29,30]. Both the WHO and the second UNEP report implicitly recognise the relevance of viral engineering and synthetic biology to One Health [18]. Such laboratory constructs are also relevant to planetary health because synthesised organisms can be conceptualised as “novel entities”, a term coined by and associated with the “planetary boundaries” literature [31]. In turn, planetary boundaries is a key explanatory framework for planetary health. To date, like One Health, definitions of planetary health also overlook this field [32,33].

Each of these UNEP reports is relevant to One Health, but the second calls for an important broadening of its scope, to recognise the risk of viral engineering as a novel source of zoonotic emergence.

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: The author is the sole author of the UNEP report from 2022 cited in this letter.

References

[1] United Nations Environment Programme (UNEP), COVID-19: A Warning. Addressing Environmental Threats and the Risk of Future Pandemics in Asia and the Pacific. Bangkok, Thailand, UNEP, 2022. https://wecommons.unep.org/3/20.500.1122/40871, (Accessed 25 October 2022).

[2] UNEP, Preventing the Next Pandemic: Zoonotic Diseases and How to Break the Chain of Transmission, UNEP, Nairobi, Kenya, 2020. https://www.unenvironment.org/resources/report/preventing-future-zoonotic-disease-outbreaks-protecting-environment-animals-and, (Accessed 25 October 2022).

[3] B.A. Jones, D. Grace, R. Kock, S. Alonso, J. Rushton, M.Y. Said, Zoonosis emergence linked to agricultural intensification and environmental change, Proc. Natl. Acad. Sci. U. S. A 110 (2013) 8399–8404, https://doi.org/10.1073/pnas.1208059110.

[4] J. Epstein, H. Field, S. Luby, J. Pulliam, P. Daszak, Nipah virus: impact, origins, and causes of emergence, Curr. Infect. Dis. Rep. 8 (2006) 59–65, https://doi.org/10.1007/s11908-006-0036-2.

[5] Y. Guan, B.J. Zheng, Y.Q. He, X.L. Liu, Z.X. Zhuang, C.L. Cheung, S.W. Luo, P.H. Li, L.J. Zhang, Y.J. Guan, K.M. Butt, Isolation and characterization of viruses related to the SARS coronavirus from animals in Southern China, Science 302 (2003) 276–278, https://doi.org/10.1126/science.1087139.

[6] M. Worobey, J.I. Levy, L. Malpica Serrano, A. Cirta-Christoff, J.E. Pekar, S.A. Goldstein, A.L. Raumuissen, M.U. Kraemer, C. Newman, M.P. Koopmans, M.A. Suchard, The Huanan market was the epicenter of SARS-CoV-2 emergence, Science 377 (2022) 951–959, https://doi.org/10.1126/science.abj8715.

[7] W. Willett, J. Rockstrom, B. Loken, M. Springmann, T. Lang, S. Vermeulen, T. Garnett, D. Tilman, F. DeClerck, A. Wood, M. Jonell, Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems, Lancet 393 (2019) 447–492, https://doi.org/10.1016/S0140-6736(18)31788-4.

[8] C. Tomasetti, L. Li, B. Vogelstein, Stem cell division, somatic mutations, cancer etiology, and cancer prevention, Science 355 (2017) 1330–1334, https://doi.org/10.1126/science.aaf9011.

[9] C. Camaschella, Iron deficiency, Blood 133 (2019) 39–39, https://doi.org/10.1182/blood-2018-05-815944.

[10] K.M. Musallam, A.T. Taher, Iron deficiency beyond erythropoiesis: should we be concerned? Curr. Med. Res. Opin. 34 (2018) 81–93, https://doi.org/10.1080/03007995.2017.1394853.

[11] S. Gupta, A.K.M. Brazier, N.M. Love, Zinc deficiency in low- and middle-income countries: prevalence and approaches for mitigation, J. Hum. Nutr. Diet. 33 (2020) 624–643, https://doi.org/10.1111/jhn.12791.

[12] R.S. Kovats, C.D. Butler, Global health and the global environment: linking research and policy, Curr. Opin. Environ. Sustain. 4 (2012) 44–50, https://doi.org/10.1016/j.cosust.2012.01.012.

[13] A. Loukas, P.J. Hotz, D. Diemert, M. Yazdanbakhsh, J.S. McCarthy, R. Correa-Kunis, A.T. Taher, Iron deficiency and schistosomiasis: a result of iatrogenic and biological factors, Hepatology 43 (2006) 915–922, https://doi.org/10.1002/hep.21172.

[14] WHO, Global Guidance Framework for the Responsible Use of the Life Sciences. Mitigating Biorisks and Governing Dual-Use Research, WHO, Geneva, Switzerland, 2022. https://www.who.int/publications/i/item/9789240056107, (Accessed 25 October 2022).

[15] M. Lipsitch, T.V. Inglesby, Moratorium on research intended to create novel potential pandemic pathogens, mBio 5 (2014) e02366, https://doi.org/10.1128/mBio.02366-14.

[16] S. Wain-Hobson, HSNI viral-engineering dangers will not go away, Nature 493 (2013) 411, https://doi.org/10.1038/495411a.

[17] Editors of The Lancet, Addendum: competing interests and the origins of SARS-CoV-2, Lancet 397 (10293) (2021) 2449–2455, https://doi.org/10.1016/S0140-6736(21)01377-5.

[18] J. Cohen, Fights over confidentiality pledge and conflicts of interest tore apart COVID-19 origin probe, Science (2021). https://www.science.org/content/article/fights-over-confidence-pledge-conflicts-interest-tore-apart-covid-19-origin-probe. (Accessed 9 November 2022). https://doi.org/10.1126/science.aac9371.

[19] J.D. Sachs, S.S.A. Karim, L. Aknin, J. Allen, K. Brosch, F. Colombo, G.C. Barron, M.F. Espinosa, V. Gaspar, A. Gaviria, A. Haines, The Lancet Commission on lexions for the future from the COVID-19 pandemic, Lancet 400 (2022) 1224–1280, https://doi.org/10.1016/S0140-6736(22)01585-9.

[20] One Health High-Level Expert Panel (OHBHEP), W.B. Adisasmito, S. Almuhairi, C.B. Behravesh, P. Bilivogui, S.A. Bukachi, N. Casas, N.C. Becerra, D.F. Charron, A. Chaudhary, J.R. Zanella, A.A. Cunningham, One Health: a new definition for a sustainable and healthy future, PLoS Pathog. 18 (2022), e1010537, https://doi.org/10.1371/journal.ppat.10105.

[21] J.H. Amund, L. Tuson, S. Horton, A. Winkler, Reconnecting for our future: the Lancet one health commission, Lancet 395 (2020) 1469–1471, https://doi.org/10.1016/S0140-6736(20)31027-8.

[22] J. Zinstag, D. Walthner-Toews, M. Tanner, Why one health? In: J. Zinstag, E. Schelling, L. Crump, M. Whitaker, M. Tanner, C. Stephen (Eds.), The Theory and Practice of Integrated Health Approaches, second ed., CAB, Wallingford, UK, 2021, pp. 15–24.

[23] T. Burki, Ban on gain-of-function studies ends, Lancet Infect. Dis. 18 (2018) 148–149, https://doi.org/10.1016/S1473-3099(18)30006-9.

[24] S. Malapati, COVID prompts global surge in labs that handle dangerous pathogens, Nature 610 (2022) 428–429, https://doi.org/10.1038/s41586-022-03181-x.

[25] N.L. Harrison, J. Sachs, A call for an independent inquiry into the origin of the SARS-CoV-2 virus, Proc. Natl. Acad. Sci. U. S. A 119 (2022), e2207601, https://doi.org/10.1073/pnas.2207601.

[26] J. van Helden, C.D. Butler, G. Achatz, B. Canard, D. Casane, J.M. Claverie, F. Colombo, V. Courtier, R.H. Eibright, F. Graner, M. Leitenberg, An appeal for an objective, open and transparent scientific debate about the origin of SARS-CoV-2, Lancet 398 (2021) 1462–1440, https://doi.org/10.1016/S0140-6736(21)02019-6.

[27] W. Steffen, K. Richardson, J. Rockstrom, S.E. Cornell, I. Fester, E.M. Bennett, R. Biggs, S.R. Carpenter, W. De Vries, C.A. De Wit, C. Folke, Planetary boundaries: guiding human development on a changing planet, Science 347 (2015) 736–746, https://doi.org/10.1126/science.1259855.

[28] S. Whitmee, A. Haines, C. Beyrer, F. Boltz, A.G. Capon, B.F. de Souza Dias, A. Ezeh, H. Frumkin, P. Gong, F. Head, R. Horton, Safeguarding human health in the Anthropocene epoch: report of the Rockefeller Foundation–Lancet Commission on planetary health, Lancet 386 (2015) 1973–2028, https://doi.org/10.1016/S0140-6736(15)69011-1.

[29] A. Haines, H. Frumkin, Planetary Health. Safeguarding Human Health and the Environment in the Anthropocene, Cambridge University Press, Cambridge UK, 2021.