DETERMINANT BUNDLE IN A FAMILY OF CURVES, AFTER A. BEILINSON AND V. SCHECHTMAN

HÉLÈNE ESNAULT AND I-HSUN TSAI

Abstract. Let \(\pi : X \to S \) be a smooth projective family of curves over a smooth base \(S \) over a field of characteristic 0, together with a bundle \(E \) on \(X \). Then A. Beilinson and V. Schechtman define in [1] a beautiful “trace complex” \(\text{tr} A^*_E \) on \(X \), the 0-th relative cohomology of which describes the Atiyah algebra of the determinant bundle of \(E \) on \(S \). Their proof reduces the general case to the acyclic one. In particular, one needs a comparison of \(R\pi_* (\text{tr} A^*_F) \) for \(F = E \) and \(F = E(D) \) where \(D \) is étale over \(S \) (see Theorem 2.3.1, reduction ii) in [1]). In this note, we analyze this reduction in more details and correct a point.

1. Introduction

Let \(\pi : X \to S \) be a smooth projective morphism of relative dimension 1 over a smooth base \(S \) over a field \(k \) of characteristic 0. One denotes by \(T_X \) and the tangent sheaf over \(k \), by \(T_X/S \) the relative tangent sheaf, and by \(\omega_{X/S} \) the relative dualizing sheaf. For an algebraic vector bundle \(E \) on \(X \), one writes \(E^\circ = E^* \otimes_{\mathcal{O}_X} \omega_{X/S} \). Let \(\text{Diff}(E, E) \) (resp. \(\text{Diff}(E/S, E/S) \subset \text{Diff}(E, E) \)) be the sheaf of first order (resp. relative) differential operators on \(E \) and \(\epsilon : \text{Diff}(E, E) \to \mathcal{E}nd(E) \otimes_{\mathcal{O}_X} T_X \) be the symbol map. The Atiyah algebra \(\mathcal{A}_E := \{ a \in \text{Diff}(E, E) | \epsilon(a) \in \text{id}_E \otimes_{\mathcal{O}_X} T_X \} \) of \(E \) is the subalgebra of \(\text{Diff}(E, E) \) consisting of the differential operators for which the symbolic part is a homothety. Similarly the relative Atiyah algebra \(\mathcal{A}_{E/S} \subset \mathcal{A}_E \) of \(E \) consists of those differential operators with symbol in \(\text{id}_E \otimes_{\mathcal{O}_X} T_{X/S} \) and \(\mathcal{A}_{E, \pi} \subset \mathcal{A}_E \) with symbols in \(T_\pi = d\pi^{-1}(\pi^{-1}T_S) \subset T_X \). Let \(\Delta \subset X \times_S X \) be the diagonal. Then there is a canonical sheaf isomorphism \(\text{Diff}(E/S, E/S) \cong \frac{E \otimes E^\circ (2\Delta)}{E \otimes E^\circ} \) (see [1], section 2) which is locally written as follows. Let \(x \) be a local coordinate of \(X \) at a point \(p \), and \((x, y) \) be the induced local coordinates on \(X \times_S X \) at \((p, p) \), such that the equation of \(\Delta \) becomes \(x = y \). Let \(e_i \) be a local basis of \(E \), \(e_i^* \)

Date: October 7, 1999.

1991 Mathematics Subject Classification. Primary 14F10, 14F05.
be its local dual basis. Then the action of
\[
P = \sum_{i,j} e_i \otimes e_j^* P_{ij}(x,y) \, dy
\]
on \begin{equation}
\begin{aligned}
s = \sum_{\ell} s_\ell(y) e_\ell
\end{aligned}
\end{equation}
is
\[
\begin{aligned}
P(s) &= \sum_i e_i \sum_j (P_{ij}^{(1)}(x,0)s_j(x) + P_{ij}(x,x)s_j^{(1)}(x,0)),
\end{aligned}
\]
where
\[
\begin{aligned}
P_{ij}(x,y) &= P_{ij}(x,x) + (y-x)P_{ij}^{(1)}(x,y-x) \\
s_j(y) &= s_j(x) + (y-x)s_j^{(1)}(x,y-x).
\end{aligned}
\]
Beginning with
\[
\begin{aligned}
0 &\to \frac{E \boxtimes E^o}{E \boxtimes E^o(-\Delta)} \to \frac{E \boxtimes E^o(2\Delta)}{E \boxtimes E^o(-\Delta)} \to \mathcal{D}iff(E/S, E/S) \to 0
\end{aligned}
\]
restricting to \(\mathcal{A}_{E/S} \subset \mathcal{D}iff(E,E) \), and pushing forward by the trace map \(\frac{E \boxtimes E^o}{E \boxtimes E^o(-\Delta)} \to \omega_\Delta \cong \omega_{X/S} \), yields an exact sequence
\[
\begin{aligned}
0 &\to \omega_{X/S} \to^{tr} \mathcal{A}_E^{-1} \xrightarrow{\gamma_E} \mathcal{A}_{E/S} \to 0
\end{aligned}
\]
One defines the trace complex \(^{tr}\mathcal{A}^\bullet \) by \(\mathcal{A}_{E,\pi}^i \) for \(i = 0, ^{tr}\mathcal{A}_E^{-1} \) for \(i = -1 \), \(\mathcal{O}_X \) for \(i = -2 \) and 0 else, with differentials \(d^{-1} := \gamma_E \) and \(d^{-2} \) equal to the relative Kähler differential (see [1], section 2).

One has an exact sequence of complexes
\[
\begin{aligned}
0 &\to \Omega^\bullet_{X/S}[2] \to^{tr} \mathcal{A}_E^\bullet \to (T_{X/S} \to T_\pi)[1] \to 0,
\end{aligned}
\]
where \(\Omega^\bullet_{X/S} \) is the relative de Rham complex of \(\pi \). Taking relative cohomology, one obtains the exact sequence
\[
\begin{aligned}
0 &\to \mathcal{O}_S \to R^0\pi_*(^{tr}\mathcal{A}_E^\bullet) \to T_S \to 0.
\end{aligned}
\]
Furthermore \(R^0\pi_*(^{tr}\mathcal{A}_E^\bullet) \) is a sheaf of algebras ([1], 1.2.3). One denotes by \(\pi(^{tr}\mathcal{A}_E^\bullet) \) the sheaf on \(S \) together with its algebra structure.

Finally, let \(\mathcal{B}_i, i = 1, 2 \) be two sheaves of algebras on \(S \), with an exact sequence of sheaves of algebras
\[
\begin{aligned}
0 &\to \mathcal{O}_S \to \mathcal{B}_i \to T_S \to 0.
\end{aligned}
\]
One defines \(\mathcal{B}_1 + \mathcal{B}_2 \) by taking the subalgebra of \(\mathcal{B}_1 \oplus \mathcal{B}_2 \), inverse image \(\mathcal{B}_1 \times_{T_S} \mathcal{B}_2 \) of the diagonal embedding \(T_S \to T_S \oplus T_S \), and its push out via the trace map \(\mathcal{O}_S \oplus \mathcal{O}_S \to \mathcal{O}_S \).

The aim of this note is to prove
Theorem 1.1. Let $D \subset X$ be a divisor, étale over S. One has a canonical isomorphism
\[
\pi^!(\mathcal{A}_E^\bullet) \cong \pi^!(\mathcal{A}_{E(-D)}^\bullet) + \mathcal{A}_{\det \pi_*(E|_D)}
\]
This is [1] Theorem 2.3.1, ii). We explain in more details the proof given there and correct a point in it.

2. Proof of Theorem 1.1

The proof uses the construction of a complex \mathcal{L}^\bullet, together with maps $\mathcal{L}^\bullet \to \pi^! \mathcal{A}_E^\bullet$ and $\mathcal{L}^\bullet \to \pi^! \mathcal{A}_{E(-D)}^\bullet \oplus i_{D*} \mathcal{A}_{E|_D}$ inducing isomorphisms from $R^0 \pi_* \mathcal{L}^\bullet$ with the left and the right hand side of theorem 1.1. We make the construction of \mathcal{L}^\bullet and the maps explicit, and show that the induced morphisms are surjective, with the same (non-vanishing) kernel.

We first recall the definition of the sub-complex $\mathcal{L}^\bullet \subset \pi^! \mathcal{A}_E^\bullet$ (see [1], theorem 2.3.1, ii)): $\mathcal{L}^0 \subset \pi^! \mathcal{A}_E^0$ consists of the differential operators P with $\epsilon(P) \in T_\pi < -D >$, where $T_\pi < -D > = T_\pi \cap T_X < -D >$ and $T_X < -D > = \text{Hom}_{\mathcal{O}_X}(\Omega^1_X < D >, \mathcal{O}_X)$ where $\Omega^1_X < D >$ denotes the sheaf of 1-forms with log poles along D. In particular, $\pi^! i_{D*} \mathcal{A}_{E|_D}$ is defined as the kernel. Then $\mathcal{L}^{-2} = \mathcal{O}_X$. The product structure on $\pi^! \mathcal{A}_E^\bullet$ is defined in [1], 2.1.1.2, and coincides with the Lie algebra structure on $\pi^! \mathcal{A}_E^0 = \mathcal{A}_{E,\pi}$. Since $\mathcal{L}^{-2} = \pi^! \mathcal{A}_E^{-2}$, to see that the product structure stabilizes \mathcal{L}^\bullet, one just has to see that $\mathcal{L}^0 \subset \pi^! \mathcal{A}_E^0$ is a subalgebra, which is obvious, and that $\mathcal{L}^0 \times \mathcal{L}^{-1} \to \pi^! \mathcal{A}_E^{-1}$ takes values in \mathcal{L}^{-1}, which is a consequence of proposition 2.2.

As in section 1, we denote by $\mathcal{A}_{E/S}$ the relative Atiyah algebra of E, with symbolic part $T_{X/S}$ and by $\mathcal{A}_{E,\pi}$ Beilinson’s subalgebra of the global Atiyah algebra with symbolic part T_π. If $\iota : F \subset E$ is a vector bundle, isomorphic to E away of D, then one has an injection of differential operators
\[
\text{Diff}(E, F) \xrightarrow{i} \text{Diff}(E, E)
\]
induced by ι on the second argument, and an injection
\[
\text{Diff}(E, F) \xrightarrow{j} \text{Diff}(F, F)
\]
induced by ι on the first argument. One has

Definition 2.1.

$\mathcal{A}_{(E/S,F/S)} := \mathcal{A}_{E/S} \cap_i \text{Diff}(E, F) \cong \mathcal{A}_{F/S} \cap_j \text{Diff}(F, F)$

Recall $\gamma_E : \pi^! \mathcal{A}_E^{-1} \to \mathcal{A}_{E/S}$ denotes the map coming from the filtration by the order of poles of $\mathcal{O}_{X\times X}(*\Delta)$ on $\pi^! \mathcal{A}_E^{-1}$.

One has
Proposition 2.2.
\[\gamma_E^{-1}(A_{E/S,E(-D)/S}) \cong \gamma_{E(-D)}^{-1}(A_{E/S,E(-D)/S}) \cong \mathcal{L}^{-1}. \]

Proof. One considers
\[\begin{align*}
\frac{E(-D) \boxtimes E^\circ(2\Delta) + E \boxtimes E^\circ}{E \boxtimes E^\circ(-\Delta)} &= \left[\frac{E(-D) \boxtimes E^\circ(2\Delta)}{E(-D) \boxtimes E^\circ(-\Delta)} \oplus \frac{E \boxtimes E^\circ}{E \boxtimes E^\circ(-\Delta)} \right]/\left[\frac{E(-D) \boxtimes E^\circ}{E \boxtimes E^\circ(-\Delta)} \right] \\
\end{align*} \]
which, via the natural inclusion to
\[\frac{E(-D) \boxtimes E^\circ(2\Delta)}{E \boxtimes E^\circ(-\Delta)} \]
is the inverse image \(\gamma_E^{-1}\left(\text{Diff}(E, E(-D)) \right) \) (here we abuse of notation, still denoting by \(\gamma_E \) the map coming from the filtration), and via the map coming from the natural inclusion
\[\frac{E(-D) \boxtimes E^\circ(2\Delta)}{E(-D) \boxtimes E^\circ(-\Delta)} \rightarrow \frac{E(-D) \boxtimes E^\circ(D)(2\Delta)}{E(-D) \boxtimes E^\circ(D)(-\Delta)} \]
and the identification with the first term of the filtration on
\[\frac{E(-D) \boxtimes E^\circ(D)(2\Delta)}{E(-D) \boxtimes E^\circ(D)(-\Delta)} \]
is the inverse image \(\gamma_{E(-D)}^{-1}\left(\text{Diff}(E, E(-D)) \right) \).

The filtration induced by the order of poles of \(\mathcal{O}_{X \times X}(*D) \) induces the exact sequences
\[\begin{align*}
0 &\rightarrow \mathcal{H}om(E, E(-D)) \rightarrow A_{(E/S,E(-D)/S)} \rightarrow T_{X/S}(-D) \rightarrow 0 \\
0 &\rightarrow \mathcal{E}nd(E) \rightarrow A_{E/S} \rightarrow T_{X/S} \rightarrow 0 \\
0 &\rightarrow \mathcal{E}nd(E) \rightarrow A_{E(-D)/S} \rightarrow T_{X/S} \rightarrow 0.
\end{align*} \]

Now, as one has an injection \(\mathcal{L}^* \subset \mathcal{A}_E^* \) with cokernel \(Q \), and again by looking at the filtration by the order of poles on the sheaf in degree (-1), one obtains
\[Q \cong \mathcal{E}nd(E)|_D[1] \]
and

Theorem 2.3. One has an exact sequence
\[0 \rightarrow R^0\pi_*(\mathcal{E}nd(E)|_D) \rightarrow R^0\pi_*(\mathcal{L}^*) \rightarrow R^0\pi_*(^{tr}\mathcal{A}_E^*) \rightarrow 0. \]
On the other hand, one has an injection $\mathcal{L}^* \subset \mathcal{A}^*_{E(-D)} \oplus i_D^* \mathcal{A}_{E[D]}$ with cokernel \mathcal{P}, and, as \mathcal{L}^* injects into $\mathcal{A}^*_{E(-D)}$, one has an exact sequence
\[(2.11) \quad 0 \rightarrow i_D^* \mathcal{A}_{E[D]}[0] \rightarrow \mathcal{P} \rightarrow [\mathcal{A}^*_{E(-D)}/\mathcal{L}^*] \rightarrow 0,
\]
where $i_D : D \rightarrow X$ is the closed embedding. We see that the induced filtration on the sheaf in degree (-1) of \mathcal{P} has graded pieces $(0, T\mathcal{L}^*)$ for any m. If D is irreducible, one has graded pieces $(0, \mathcal{E}nd(E|D), T_{X/S}|D)$, whereas the filtration on the sheaf in degree (0) has graded pieces $(0, T_\pi/T\pi < -D \geq T_{X/S}|D)$. This last point comes from the obvious

Lemma 2.4.

\[
\{P \in \text{Diff}(E, E), P(E(-D)) \subset E(-D)\} \cong \{P \in \text{Diff}(E(-mD), E(-mD)), \epsilon(P) \in \mathcal{E}nd(E) \otimes T < -D\}
\]
for any $m \in \mathbb{Z}$, where ϵ is the symbol map.

So

Lemma 2.5. $[\mathcal{A}^*_{E(-D)}/\mathcal{L}^*]$ is quasiisomorphic to $\mathcal{E}nd(E|D)[1]$.

The connecting morphism $R^{-1}\pi_*[\mathcal{A}^*_{E(-D)}/\mathcal{L}^*] \rightarrow R^0\pi_*(i_D^* \mathcal{A}_{E[D]})[0]$ is just the natural embedding $\pi_*(\mathcal{E}nd(E|D)) \rightarrow \pi_*(i_D^* \mathcal{A}_{E[D]})$ with cokernel $\pi_*\pi|_D^{-1}T_S$. If D is irreducible, one has $\pi_*\pi|_D^{-1}T_S \cong T_S$, and therefore

Proposition 2.6. If D is irreducible, one has an exact sequence
\[0 \rightarrow R^0\pi_*\mathcal{L}^* \rightarrow R^0\pi_*[\mathcal{A}^*_{E(-D)}] \oplus R^0\pi_*(i_D^* \mathcal{A}_{E[D]}) \rightarrow T_S \rightarrow 0\]
and the image of $R^0\pi_*\mathcal{L}^*$ is obtained from the direct sum by taking the pull back under the diagonal embedding $T_S \rightarrow T_S \oplus T_S$.

On the other hand, still assuming D irreducible, one has the exact sequence
\[(2.12) \quad 0 \rightarrow \pi_*\mathcal{E}nd(E|D) \rightarrow R^0\pi_*(i_D^* \mathcal{A}_{E[D]}) \rightarrow T_S \cong \pi_*\pi|_D^{-1}T_S \rightarrow 0\]
and the Atiyah algebra $\mathcal{A}_{\det(\pi_*E|D)}$ is the push out of $R^0\pi_*[i_D^* \mathcal{A}_{E[D]}]$ by the trace map $\pi_*\mathcal{E}nd(E|D) \rightarrow \mathcal{O}_S$.

Defining
\[(2.13) \quad \mathcal{K} := \text{Ker}(\mathcal{O}_S \oplus \pi_*\mathcal{E}nd(E|D) \xrightarrow{\text{id} \oplus \text{Tr}} \mathcal{O}_S) \cong \pi_*\mathcal{E}nd(E|D),\]
one thus obtains

Theorem 2.7. If D is irreducible, one has an exact sequence
\[0 \rightarrow \mathcal{K} \rightarrow R^0\pi_*\mathcal{L}^* \rightarrow \pi_*[\mathcal{A}^*_{E(-D)}] \oplus \mathcal{A}_{\det(\pi_*E|D)} \rightarrow 0.\]
It can be easily shown that the embedding \(\pi_* \mathcal{E}nd(E|_D) \subset R^0 \pi_* \mathcal{L}^* \) in theorems 2.3 and 2.7 is the same embedding of a subsheaf of ideals. It finishes the proof of theorem 1.1 when \(D \) is irreducible. In general, since \(D \) is \(\acute{e}tale \) over \(S \), its irreducible components are disjoint, thus one proves theorem 1.1 by adding one component at a time.

References

[1] A. Beilinson, V. Schechtman: Determinant Bundles and Virasoro Algebras, Commun. Math. Phys. 118 (1988), 651-701.