Circulating adiponectin levels in various malignancies: an updated meta-analysis of 107 studies

Tai Wei¹,*, Peng Ye¹,*, Xin Peng¹, Li-Ling Wu² and Guang-Yan Yu¹

¹ Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
² Department of Physiology and Pathophysiology, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China

* These authors have contributed equally to this work
Correspondence to: Li-Ling Wu, email: pathophy@bjmu.edu.cn
Guang-Yan Yu, email: gyyu@263.net

Keywords: adiponectin, malignancy, biomarker, diagnosis, meta-analysis

Received: December 15, 2015 Accepted: April 16, 2016 Published: April 22, 2016

ABSTRACT

Early detection of cancers is challenging for lack of specific biomarkers. Adiponectin is an adipokine predominantly derived from adipocytes and hypoadiponectinemia has been reported to associate with risk of many types of cancers. However, available evidence is controversial. Some studies show that increased adiponectin levels correlate with cancer risk. Therefore, we performed a meta-analysis of the association between circulating adiponectin levels and cancer development. A systematic search of PubMed, EMBASE, Wiley Online Library and Cochrane Library was conducted for eligible studies involving circulating adiponectin and malignancies from inception to August 8, 2015. Standard mean differences (SMDs) with 95% confidence intervals (95% CIs) were calculated by use of a random-effect model. Funnel plot and Egger’s linear regression test were conducted to examine the risk of publication bias. 107 studies were included with 19,319 cases and 25,675 controls. The pooled analysis indicated that circulating adiponectin levels were lower in patients with various cancers than in controls, with a pooled SMD of -0.334 μg/ml (95% CI, -0.465 to -0.203, \(P = 0.000 \)). No evidence of publication bias was observed. Circulating high molecular weight adiponectin levels were also lower in cancer patients than in controls, with a pooled SMD of -0.502 μg/ml (95% CI, -0.957 to -0.047, \(P = 0.000 \)). This meta-analysis provides further evidence that decreased adiponectin levels is associated with risk of various cancers. Hypoadiponectinemia may represent a useful biomarker for early detection of cancers.

INTRODUCTION

Cancer, a major cause of human mortality, has been a worldwide public health problem. A variety of factors such as genetic lesions, environmental aspect and increasing adoption of unhealthy lifestyle are considered as crucial causes of cancer [1]. Among them, obesity is an important factor contributing to the occurrence and development of malignancies. According to the literature in 2005, 396 and 937 million people suffer from obese and overweight worldwide, respectively [2]. Epidemiological research reveals that obesity increases the risk of cancer with evidence that obese women have 50% higher incidence rate than normal weight women [3]. In the process of obesity, dysregulated circulating hormones and growth factors may play an important role in carcinogenesis [4]. Among them, aberrant adiponectin concentration is reported to be a vital link between obesity and cancer.

Adiponectin, firstly discovered by Scherer et al. in 1995, is an adipokine predominantly produced by adipocytes with the monomeric subunit containing 244 amino-acids in human and circulates abundantly in plasma [5, 6]. Three bioactive forms of adiponectin are produced...
after post-transcriptional process known as trimeric low molecular weight (90 kD, LMW), hexameric medium molecular weight (180 kD, MMW) and oligomeric high molecular weight (> 400 kD, HMW) adiponectin. Among them, HMW-adiponectin is the dominant form in plasma and has the most biological activity than the other two isoforms [7]. Adiponectin mainly acts on two seven-transmembrane adiponectin receptors, AdipoR1 and AdipoR2. Besides, T-cadherin is also responsible for mediating the role of adiponectin in certain tissues [8, 9]. Adiponectin exerts pleiotropic functions in human health such as anti-inflammation, anti-atherosclerosis, and anti-angiogenesis. It also has the properties of insulin-sensitizing and balancing glucose and lipid metabolism in various cells [10]. A number of studies reveal that circulating adiponectin levels decrease in metabolic syndrome, whereas overexpression of it can counteract metabolic dysfunctions [10]. Besides, increased weight reduces the plasma adiponectin level and decreased weight upregulates circulating adiponectin level [11].

It was first reported that circulating adiponectin level was lower in patients with breast cancer in 2003 [12]. Since then, the most clinical studies have indicated that hypoadiponectinemia is associated with risk of various cancers including prostate, endometrial, and colorectal cancers [13-16]. In addition, adiponectin has anti-proliferative and pro-apoptotic effects on cultured cancer cell lines [17, 18]. These results suggest that adiponectin might be an important regulator in carcinogenesis and progression of cancers. However, unchanged or increased circulating adiponectin levels in pancreatic and hepatocellular carcinoma are also reported [19, 20]. Therefore, understanding the exact role of adiponectin in cancer may offer a novel target in tumor diagnosis and therapeutic strategy. In order to gain a more explicit and evidence-based conclusion on the association between circulating adiponectin levels and carcinogenesis, we conducted a comprehensive meta-analysis of current available studies.

RESULTS

Literature selection

The initial comprehensive search yielded 1486 articles, of which 235 articles were excluded for duplication. Then 997 studies were ruled out because of apparent irrelevance after reading titles and/or abstracts.

Figure 1: Flow diagram of the included studies.
Author	Year	Type	Country	Ethnicity	Sample	Mean age (Case/ control)	Number (Case/ control)	Study design	Assay method	Assay source	Study quality	
Petridou et al.	2006	Acute leukemia	Greece/ USA	Caucasian	Serum	NR	201/201	Case-control	RIA	Beth Israel Deacooness Medical Center	8	
Moschovi et al.	2010	Acute leukemia	Greece	Caucasian	Plasma	4.3/5.2	9/9	Prospective case-control	Other	Linco Research	7	
Aref et al.	2013	Acute leukemia	Egypt	African	Serum	42.8/49.1	80/20	Case-control	Elisa	R&D Systems	5	
Miyoshi et al.	2003	Breast cancer	Japan	Asian	Serum	54.0/52.8	102/100	Case-control	Elisa	NR	7	
Mantzoros et al.	2004	Breast cancer	Greece	Caucasian	Serum	NR	174/167	Case-control	RIA	Beth Israel Deacooness Medical Center	8	
Chen et al.	2006	Breast cancer	Taiwan	Asian	Serum	49.9/49.9	100/100	Case-control	RIA	Linco Research	7	
Korner et al.	2007	Breast cancer	Greece	Caucasian	Serum	62.5/55.6	74/76	Case-control	RIA	ALPCO Diagnostics	7	
Yamaji et al.	2010	Colorectal adenoma	Japan	Asian	Plasma	NR	778/735	Case-control	Elisa	AdipoGen	7	
Al Awadhi et al.	2012	Breast cancer	Kuwait	Asian	Plasma	50.3/50.7	144/77	Case-control	RIA	Linco Research	7	
Stocks et al.	2008	Colorectal adenoma	Japan	Asian	Plasma	65.6/648	778/735	Case-control	Elisa	Sekisui Medical	6	
Danese et al.	2013	Colorectal adenoma	Italy	Caucasian	Serum	63.0/59.5	40/40	Case-control	Elisa	Medigraphit	7	
Wei et al.	2005	Colorectal cancer	USA	Caucasian	Plasma	66.6/66.5	179/356	Nested case-control	RIA	Linco Research	8	
Guadagni et al.	2009	Colorectal cancer	Italy	Caucasian	Serum	63.0/59.0	90/30	Case-control	Ria	BioVendor Laboratory Medicine	8	
Kumon et al.	2009	Colorectal cancer	Poland	Caucasian	Serum	58.6/60.1	36/25	Case-control	Elisa	R&D Systems	7	
Eraslan et al.	2009	Colorectal cancer	Turkey	Asian	Plasma	57.0/59.0	23/50	Case-control	Elisa	RayBio	8	
Nakajima et al.	2010	Colorectal cancer	Japan	Asian	Plasma	63.7/63.5	115/115	Case-control	Elisa	Sekisui Medical	6	
Otake et al.	2010	Colorectal cancer	Japan	Asian	Plasma	66.7/67.9	91/25	Case-control	Elisa	Sekisui Medical	6	
Kemik et al.	2010	Colorectal cancer	Turkey	Asian	Serum	43.5/40.4	126/38	Case-control	RIA	Linco Research	7	
Gonullu et al.	2010	Colorectal cancer	Turkey	Asian	Serum	56.6/51.0	36/37	Case-control	Elisa	BioSource	8	
Catalan et al.	2011	Colorectal cancer	Spain	Caucasian	Plasma	66.0/44.0	11/18	Case-control	Elisa	R&D Systems	8	
Study (et al.)	Year	Tumor Type	Country	Ethnicity	Tumor Material	Test	Biomarker	Case-control	Laboratory			
---------------	------	---------------------	---------	-----------	----------------	------	-----------	--------------	------------	---	---	---
Chen et al.	2012	Colorectal cancer	China	Asian	Plasma	61.9/58.3	165/102	Case-control	Elisa			
Touvier et al.	2012	Colorectal cancer	France	Caucasian	Plasma	51.8/52.1	50/100	Nested case-control	Elisa	R&D Systems	9	
Aleksandrova et al.	2012	Colorectal cancer	Germany	Caucasian	Serum	58.3/58.3	1206/1206	Case-control	Elisa	ALPCO Diagnostics	9	
Song et al.	2013	Colorectal cancer	USA	Caucasian	Plasma	61.9/61.9	616/1205	Case-control	Elisa	ALPCO Diagnostics	9	
Cust et al.	2007	Endometrical carcinoma	UK	Caucasian	Plasma	56.9/56.9	284/548	Nested case-control	Elisa	R&D Systems	8	
Soliman et al.	2006	Endometrical carcinoma	USA	Caucasian	Serum	66.6/61.2	117/238	Case-control	Elisa	R&D Systems	5	
Ashizawa et al.	2010	Endometrical carcinoma	Japan	Asian	Serum	59.9/57.5	146/150	Case-control	RIA	Linco Research	8	
Dossus et al.	2013	Endometrical carcinoma	Greece	Caucasian	Serum	57.7/57.7	233/446	Case-control	Elisa	R&D Systems	8	
Friedenreich et al.	2012	Endometrical carcinoma	USA	Caucasian	Serum	59/59	514/962	Case-control	Elisa	ALPCO Diagnostics	9	
Luhn et al.	2013	Endometrical carcinoma	USA	Caucasian	Serum	NR	167/327	Nested case-control	RIA	Linco Research	8	
Erdogan et al.	2013	Endometrical carcinoma	Turkey	Asian	Serum	56.6/49.7	60/70	Case-control	Elisa	eBioscience	6	
Ma et al.	2013	Endometrical carcinoma	China	Asian	Serum	53.2/53.3	206/310	Case-control	Elisa	Beinder MedSystems	9	
Dallal et al.	2013	Endometrical carcinoma	USA	Caucasian	Serum	67.4/67.5	62/124	Nested case-control	Elisa	Millipore	8	
Mihu et al.	2013	Endometrical carcinoma	Romania	Caucasian	Serum	60.2/58.5	44/44	Case-control	Elisa	R&D Systems	6	
Obbuchi et al.	2014	Endometrical carcinoma	Japan	Asian	Serum	61.2/58.1	43/62	Case-control	Elisa	Daichi Co. Ltd.	8	
Diao et al.	2009	Esophageal cancer	China	Asian	Plasma	58.0/49.0	43/33	Case-control	Elisa	Adlitteram Diagnostic Laboratories. Inc.	6	
Nakajima et al.	2010	Esophageal cancer	Japan	Asian	Blood	63.6/63.6	117/117	Case-control	Elisa	Otsuka Pharmaceutical	6	
Yildirim et al.	2009	Esophageal cancer	Turkey	Asian	Serum	64/61	62/30	Case-control	Elisa	Avibion	6	
Ishikawa et al.	2005	Gastric cancer	Japan	Asian	Plasma	64.2/59.3	75/52	Case-control	Elisa	Otsuka Pharmaceutical	6	
Nakajima et al.	2009	Gastric cancer	Japan	Asian	Blood	61.0/60.8	156/156	Case-control	Elisa	Otsuka Pharmaceutical	8	
Seker et al.	2010	Gastric cancer	Turkey	Asian	Plasma	60.0/38.6	40/43	Case-control	Elisa	Linco Research	5	
Duikowska et al.	2014	Gastroesophageal cancer	Poland	Caucasian	Serum	60.0/58.0	85/60	Case-control	Elisa	R&D Systems	7	
Kotani et al.	2009	Hepatocellular carcinoma	Japan	Asian	Serum	63.5/62.7	59/334	Nested case-control	Elisa	Daichi Co. Ltd.	8	
Liu et al.	2009	Hepatocellular carcinoma	Taiwan	Asian	Serum	50.7/53.8	120/116	Case-control	Elisa	B-Bridge International Inc.	5	
Sumie et al.	2011	Hepatocellular carcinoma	Japan	Asian	Serum	67.4/61.2	97/97	Case-control	Elisa	EikenChemical Co. Ltd.	7	
Sadik et al.	2012	Hepatocellular carcinoma	Egypt	African	Serum	58.9/55.7	69/121	Case-control	Elisa	Assaypro	7	
Chen et al.	2012	Hepatocellular carcinoma	Taiwan	Asian	Serum	52.4/52.2	65/165	Case-control	RIA	Linco Research	6	
Khattab et al.	2012	Hepatocellular carcinoma	Egypt	African	Plasma	43.9/42.9	147/320	Case-control	Other	Linco Research	5	
Chen et al.	2014	Hepatocellular carcinoma	Taiwan	Chinese	Plasma	NR	185/373	Nested case-control	Elisa	B-Bridge International Inc.	8	
Petridou et al.	2010	Hodgkin lymphoma	Greece	Caucasian	Serum	11.5/11.2	75/75	Case-control	RIA	Linco Research	7	
Jamieson et al.	2004	Lung cancer	UK	Caucasian	Serum	64.0/65.0	20/13	Case-control	RIA	Linco Research	7	
Karapanagiotou et al.	2008	Lung cancer	Greece	Caucasian	Serum	64.2/55.5	101/51	Case-control	Elisa	BioVendor	6	
Petridou et al.	2007	Lung cancer	Greece	Caucasian	Serum	NR	85/170	Case-control	RIA	Beth Israel Deaconess Medical Center	8	
Gulen et al.	2012	Lung cancer	Turkey	Asian	Serum	65.6/63.5	63/25	Case-control	Elisa	BioVendor	7	
Kerendii et al.	2013	Lung cancer	Greece	Caucasian	Serum	62.9/NR	80/40	Case-control	Elisa	Linco Research	7	
Antoniadis et al.	2011	Melanoma	Greece/ Canada	Caucasian	Serum	52.7/53.3	55/165	Case-control	RIA	Beth Israel Deaconess Medical Center	8	
Dalamaga et al.	2009	Multiple myeloma	Greece/ Canada	Caucasian	Serum	NR	73/73	Case-control	Elisa	Avibion	8	
The remaining 254 studies were included for full-text reading, of which 151 studies were removed for one of the following reasons: (i) reviews, comments or letters (n = 37); (ii) shared population (n = 13); (iii) no report of adiponectin levels and/or SDs for both patients and controls or there was not enough information to calculate them (n = 25); (iv) not case-control study (n = 76). 4 additional studies were included from checking the references list. Finally, 107 studies met the inclusion criteria and were used for further analysis [12, 13, 15, 16, 20-112]. The flow diagram of this selection process was showed in Figure 1.

Study characteristics

Among the 107 studies, a total of 25,675 controls and 19,319 cases were enrolled until August, 2015. Geographic regions were various, among which 46 studies from Asia, 39 studies from Europe, 19 studies from America, and 3 studies from Africa. 16 types of malignancies were investigated in this meta-analysis, with digestive system cancers accounting for the largest percentage (43 studies); other types included: prostate cancer (20 studies), breast cancer (13 studies), endometrial carcinoma (11 studies), lung cancer (5 studies), renal cancer (3 studies), acute leukemia (3 studies), non-Hodgkin’s lymphoma (3 studies), Hodgkin’s lymphoma (1 study), multiple myeloma (2 studies), etc.

Study Characteristics	Description
Study inclusion	107 studies
Study type	Case-control studies
Study population	Various geographies
Study malignancies	16 types
Malignancies	Digestive system cancers, prostate cancer, breast cancer, endometrial carcinoma, lung cancer, renal cancer, acute leukemia, non-Hodgkin’s lymphoma, Hodgkin’s lymphoma, multiple myeloma

Abbreviations

- NR: not reported
- Elisa: enzyme-linked immunosorbent assay
- RIA: radioimmunoassay

Table: Study characteristics

Study Characteristics	Description
Study inclusion	107 studies
Study type	Case-control studies
Study population	Various geographies
Study malignancies	16 types
Malignancies	Digestive system cancers, prostate cancer, breast cancer, endometrial carcinoma, lung cancer, renal cancer, acute leukemia, non-Hodgkin’s lymphoma, Hodgkin’s lymphoma, multiple myeloma

The following table shows the characteristics of the studies included in this meta-analysis.

Study Authors	Year of Publication	Study Type	Study Population	Study Malignancy	Study Region	Study Characteristics	Study Controls	Study Cases			
Hofmann et al.	2012	Multiple myeloma	USA	Caucasian	Plasma	174/348	Case-control	Elisa	R&D Systems	7	
Parmak et al.	2006	Non-Hodgkin's lymphoma	Turkey	Asian	Serum	63.2/58.5	28/17	Case-control	Elisa	Otsuka Co. Ltd	5
Petridou et al.	2009	Non-Hodgkin's lymphoma	Greece	Caucasian	Serum	37/8.8/l	121/121	Case-control	RIA	NR	7
Conroy et al.	2013	Non-Hodgkin's lymphoma	USA	Caucasian	Plasma	70.0/70.0	272/541	Nested case-control	Elisa	R&D Systems	7
Chang et al.	2007	Pancreatic cancer	Taiwan/ China	Asian	Serum	64.6/49.5	72/290	Case-control	Elisa	R&D Systems	8
Dalamagia et al.	2009	Pancreatic cancer	Greece	Caucasian	Serum	69.0/70.1	81/81	Case-control	RIA	Linco Research	7
Solomon et al.	2008	Pancreatic cancer	USA	Caucasian	Serum	58.0/58.0	311/510	Case-control	Elisa	Millipore	8
Krechler et al.	2011	Pancreatic cancer	Czech Republic	Caucasian	Plasma	51.9/64.5	64/64	Case-control	RIA	DRG Inc.	8
Grote et al.	2012	Pancreatic cancer	Germany	Caucasian	Serum	58.0/60.0	452/452	Nested case-control	Other	R&D Systems	8
Hao et al.	2013	Pancreatic cancer	USA	Caucasian	Plasma	NR	468/1080	Nested case-control	Elisa	ALPCO Diagnostics	8
Goitkas et al.	2005	Prostate cancer	Turkey	Asian	Plasma	65.8/62.2	30/36	Case-control	RIA	Linco Research	8
Goitkas et al.	2005	Prostate cancer	Turkey	Asian	Plasma	65.8/65.0	30/41	Case-control	RIA	Linco Research	8
Baillargeon et al.	2006	Prostate cancer	USA	Caucasian	Serum	63.5/63.2	125/125	Nested case-control	Other	LumineX	7
Michalakis et al.	2007	Prostate cancer	Greece	Caucasian	Serum	74.0/64.0	75/150	Case-control	RIA	Linco Research	5
Michalakis et al.	2007	Prostate cancer	Greece	Caucasian	Serum	74.0/70.0	75/75	Case-control	RIA	Linco Research	5
Housa et al.	2008	Prostate cancer	Czech Republic	Caucasian	Serum	63.6/70.5	43/25	Case-control	RIA	Linco Research	5
Grosman et al.	2010	Prostate cancer	Argentina	Caucasian	Serum	NR	25/25	Case-control	RIA	Linco Research	7
Li et al.	2010	Prostate cancer	USA	Caucasian	Plasma	59.0/58.6	620/599	Nested case-control	Elisa	Linco Research	7
Dhillon et al.	2011	Prostate cancer	USA	Caucasian	Plasma	57.9/57.5	1286/1267	Nested case-control	RIA	Linco Research	8
Lopez Fontana et al.	2011	Prostate cancer	Argentina	Caucasian	Serum	63.8/64.9	35/35	Case-control	Elisa	Linco Research	6
Al Khaldi et al.	2011	Prostate cancer	Kuwait	Asian	Plasma	59.0/60.0	14/68	Case-control	Elisa	Linco Research	7
Touvier et al.	2013	Prostate cancer	France	Caucasian	Plasma	54.9/51.5	156/1024	Nested case-control	Elisa	R&D Systems	9
Tewari et al.	2013	Prostate cancer	India	Asian	Blood	65.6/65.7	95/95	Case-control	Other	NR	5
Spyridopoulos et al.	2012	Renal cancer	Greece	Caucasian	Serum	61.5/60.7	60/236	Case-control	RIA	Beth Israel Deaconess Medical Center	8
Liao et al.	2013	Renal cancer	Finland/ USA	Caucasian	Serum	57/57	273/273	Nested case-control	Elisa	Millipore	9
Liao et al.	2013	Renal cancer	Canada/ USA	Caucasian	Serum	NR	768/917	Case-control	Elisa	Millipore	9
Mitsiades et al.	2011	Thyroid cancer	USA	Caucasian	Serum	51.2/55.4	175/107	Case-control	RIA	Beth Israel Deaconess Medical Center	5
Guo et al.	2013	Tongue cancer	China	Asian	Serum	57.2/52.7	59/50	Case-control	Elisa	Adipobiotech	8

Abbreviations: NR, not reported; Elisa, enzyme-linked immunosorbent assay; RIA, radioimmunoassay.
Figure 2: Forest plot of studies in circulating total adiponectin and cancer risk. The combined SMD and 95% CIs were calculated through a random-effect model.
Table 2: Subgroup analysis of the relationships between circulating adiponectin levels and study characteristics.

Characteristics	Number of studies	Number (Case/control)	SMD	95% CI	Heterogeneity (I²)
Ethnicity					
Caucasian	58	14178/19758	-0.269	-0.400 to -0.138	96.8%
Asian	46	4845/5456	-0.555	-0.812 to -0.298	97.1%
African	3	296/461	1.821	-2.201 to 5.843	99.6%
Cancer Types					
Acute leukemia	3	290/230	-2.236	-4.418 to -0.054	97.3%
Multiple myeloma	2	247/421	-0.621	-0.966 to -0.276	69.7%
Breast cancer	20	4545/5292	-0.334	-0.543 to -0.126	95.5%
Colorectal cancers	23	4749/5591	-0.496	-0.653 to -0.339	91.3%
Endometrial cancer	11	1876/3281	-0.594	-0.825 to -0.363	92.8%
Prostate cancer	13	2609/3565	-0.892	-1.345 to -0.438	97.9%
Thyroid cancer	1	175/107	-0.358	-0.601 to -0.116	91.8%
Tongue cancer	1	59/50	-1.172	-1.580 to -0.764	NA
Hepatocellular cancer	7	742/1526	1.385	0.240 to 2.530	99.2%
Gastroesophageal cancer	7	578/491	-0.278	-0.553 to -0.004	78.1%
Hodgkin lymphoma	1	75/75	0.28	-0.041 to 0.602	NA
Non-Hodgkin lymphoma	3	421/679	0.316	-0.048 to 0.68	79.7%
Lung cancer	5	349/299	-0.085	-0.58 to 0.409	87.1%
Melanoma	1	55/165	-0.112	-0.418 to 0.193	NA
Pancreatic cancer	6	1448/2477	0.037	-1.207 to 1.281	99.6%
Renal cancer	3	1101/1426	0.021	-0.246 to 0.288	86.6%
Study Design					
Case-control study	86	11965/14210	-0.346	-0.505 to -0.188	97.2%
Nested case-control study	21	7354/11465	-0.290	-0.553 to -0.026	98.5%
Blood samples					
Serum	65	9171/11101	-0.335	-0.483 to -0.186	95.8%
Plasma	37	8303/12010	-0.238	-0.497 to 0.022	98.6%
NR	5	1845/2564	-1.072	-1.775 to -0.369	98.8%
Assay methods					
RIA	29	6190/7587	-0.316	-0.459 to -0.172	93.0%
Elisa	71	12179/16968	-0.266	-0.426 to -0.106	97.4%
Others	7	950/1120	-1.305	-3.113 to 0.502	99.5%
Study size					
≥100 patients	48	16057/21437	-0.135	-0.299 to 0.030	98.3%
<100 patients	59	3262/4238	-0.549	-0.825 to -0.273	96.5%
Study quality					
≥6	96	16352/22425	-0.334	-0.465 to -0.203	97.3%
<6	11	2967/3250	-0.267	-0.700 to 0.165	98.2%
Patients’ age (mean)					
≥60	44*	4770/6414*	-0.489	-0.689 to -0.288	95.6%
<60	47*	9782/12935*	-0.194	-0.383 to -0.004	97.7%

Abbreviations: NA, not assessable. *There are 91 studies with 14,552 cases and 19,349 controls reported the mean age of cancer patients.
Table 3: The pooled SMDs and 95% CIs of the included studies through sensitivity analysis.

Study omitted	Estimate	95% CI
Miyoshi et al. (2003)	-0.33362126	-0.46549249 to -.20175007
Jamieson et al. (2004)	-0.32790136	-0.45929646 to -.19650623
Mantzoros et al. (2004)	-0.3366529	-0.46877834 to -.20452745
Goktas et al. (2005)	-0.31018904	-0.44067159 to -.1797065
Goktas et al. (2005)	-0.31467217	-0.4453963 to -.18394804
Wei et al. (2005)	-0.33543056	-0.46779135 to -.20306975
Otake et al. (2005)	-0.32370359	-0.4541788 to -.19248928
Ishikawa et al. (2005)	-0.33179379	-0.4634814 to -.20010617
Petridou et al. (2006)	-0.33611172	-0.4683494 to -.20387407
Baillargeon et al. (2006)	-0.33559188	-0.46757615 to -.2036076
Chen et al. (2006)	-0.32800215	-0.45950019 to -.1965041
Pamuk et al. (2006)	-0.34167045	-0.47312284 to -.21021806
Soliman et al. (2006)	-0.32821506	-0.45972851 to -.19670163
Cust et al. (2007)	-0.33429027	-0.46701819 to -.20156233
Korner et al. (2007)	-0.33221245	-0.4639549 to -.20046999
Kang et al. (2007)	-0.33505732	-0.46672907 to -.20338558
Tworoger et al. (2007)	-0.33802846	-0.47386777 to -.20218913
Tworoger et al. (2007)	-0.3405844	-0.47277904 to -.20838977
Chang et al. (2007)	-0.35825887	-0.48626736 to -.2302504
Michalakis et al. (2007)	-0.32968622	-0.46133375 to -.19803868
Michalakis et al. (2007)	-0.33015183	-0.46179458 to -.19850905
Hou et al. (2007)	-0.33114624	-0.46280947 to -.19948301
Petridou et al. (2007)	-0.33918613	-0.47100937 to -.20736288
Fukumoto et al. (2008)	-0.33727011	-0.47093907 to -.20360115
Solomon et al. (2008)	-0.3375347	-0.47031215 to -.20475723
Housa et al. (2008)	-0.33494586	-0.46656513 to -.2033266
Karapanagiotou et al. (2008)	-0.337192	-0.46895465 to -.20542936
Stocks et al. (2008)	-0.33803195	-0.47080877 to -.20525511
Dalamaga et al. (2009)	-0.34321341	-0.47464448 to -.21178232
Dalamaga et al. (2009)	-0.32902971	-0.46060005 to -.19745934
Petridou et al. (2009)	-0.34161058	-0.47322133 to -.2099998
Kotani et al. (2009)	-0.33791459	-0.46976718 to -.20606196
Study	Value 1	Value 2
------------------------	------------	-----------------------
Guadagni et al. (2009)	-0.31941918	-.45032975 to -.18850861
Kumor et al. (2009)	-0.32856214	-.46004361 to -.1970806
Erarslan et al. (2009)	-0.33168712	-.46326634 to -.20010787
Kumor et al. (2009)	-0.3339898	-.4655939 to -.2023856
Erarslan et al. (2009)	-0.33251002	-.46413583 to -.20088424
Cust et al. (2009)	-0.33854863	-.47171903 to -.20537826
Nakajima et al. (2009)	-0.33416247	-.4662253 to -.20209965
Diao et al. (2009)	-0.33897933	-.47058302 to -.2073756
Yildirim et al. (2009)	-0.3268407	-.45826575 to -.19541568
Li et al. (2009)	-0.34737712	-.47806501 to -.21668923
Moschovi et al. (2010)	-0.31926209	-.45011383 to -.18841037
Hancke et al. (2010)	-0.33801222	-.46974581 to -.20627865
Seker et al. (2010)	-0.34004903	-.47163537 to -.2084627
Nakajima et al. (2010)	-0.33507797	-.46703228 to -.20312366
Petridou et al. (2010)	-0.33972663	-.47141987 to -.20803338
Grosman et al. (2010)	-0.32690996	-.45831883 to -.19550107
Li et al. (2010)	-0.3373847	-.47090244 to -.20386696
Nakajima et al. (2010)	-0.3372006	-.46912611 to -.2052751
Otake et al. (2010)	-0.3304036	-.46196187 to -.19884537
Kemik et al (2010)	-0.3278496	-.45933568 to -.19636351
Gonullu et al. (2010)	-0.3353405	-.46698609 to -.20369488
Nakajima et al. (2010)	-0.33436027	-.46614832 to -.20257224
Ashizawa et al. (2010)	-0.33154425	-.4634259 to -.19966258
Shahar et al. (2010)	-0.3222657	-.4640207 to -.20043245
Otake et al. (2010)	-0.3297922	-.46132797 to -.19825645
Yamaji et al. (2010)	-0.33636427	-.47040036 to -.20232819
Antoniadis et al. (2011)	-0.3360277	-.46786067 to -.2041948
Dhillon et al. (2011)	-0.33877328	-.47420669 to -.2033987
Al Khaldi et al. (2011)	-0.3581396	-.48865175 to -.22762746
Sumie et al. (2011)	-0.33623996	-.46812296 to -.20435697
Catalan et al. (2011)	-0.3270525	-.4584052 to -.19569978
Dalamaga et al. (2011)	-0.33432293	-.46621501 to -.20243084
Al Khaldi et al. (2011)	-0.34966454	-.48045498 to -.21887414
Study	LogRR	95% CI
-----------------------------	-------	----------------------
Krechler et al. (2011)	-0.33685401	-.46860847 to -.20509957
Mitsiades et al. (2011)	-0.33370164	-.46567562 to -.20172767
Lopez Fontana et al. (2011)	-0.3409504	-.47248313 to -.20941767
Spyridopoulos et al. (2012)	-0.33505121	-.46693206 to -.20317033
Hofmann et al. (2012)	-0.33265379	-.46483427 to -.2004733
Gulen et al. (2012)	-0.33108562	-.46266881 to -.1995024
Sadik et al. (2012)	-0.35871589	-.48782459 to -.2296071
Chen et al. (2012)	-0.32368076	-.45458078 to -.1927807
Gulcelik et al. (2012)	-0.32346013	-.45471603 to -.19220424
Aleksandrova et al. (2012)	-0.33816311	-.47353563 to -.2079059
Friedenreich et al. (2012)	-0.33428073	-.46782497 to -.20073651
Touvier et al. (2012)	-0.3405067	-.47251758 to -.20849583
Gulcelik et al. (2012)	-0.31726849	-.44793424 to -.18660273
Al Awadh et al. (2012)	-0.34153	-.47313255 to -.2099274
Grote et al. (2012)	0.33630246	-.46936187 to -.20324306
Chen et al. (2012)	-0.34161338	-.47320184 to -.2100249
Khattab et al. (2012)	-0.38207525	-.50227177 to -.2618787
Dossus et al. (2013)	-0.33401754	-.46652448 to -.20151059
Bao et al. (2013)	-0.30136451	-.41626969 to -.18645933
Guo et al. (2013)	-0.3258861	-.45724642 to -.1945257
Touvier et al. (2013)	-0.3433828	-.46610662 to -.2025699
Liao et al. (2013)	-0.33713764	-.46957946 to -.20469585
Liao et al. (2013)	-0.3403554	-.47350773 to -.20720309
Conroy et al. (2013)	-0.33808553	-.47072488 to -.2054462
Touvier et al. (2013)	-0.3296572	-.46145904 to -.19785538
Kerendi et al. (2013)	-0.3439351	-.4753255 to -.21254471
Danese et al. (2013)	-0.34142008	-.47294763 to -.20989256
Song et al. (2013)	-0.33765575	-.47181916 to -.20349233
Luhn et al. (2013)	-0.33139816	-.46341154 to -.19938481
Ma et al. (2013)	-0.32076678	-.45034227 to -.1911912
Dallal et al. (2013)	-0.33651593	-.4683443 to -.20468754
Alokail et al. (2013)	-0.30377382	-.43343174 to -.17411587
Ollberding et al. (2013)	-0.33671638	-.47059336 to -.20283943
melanoma (1 study), thyroid cancer (1 study), and tongue cancer (1 study). Circulating samples included serum (65 studies) and plasma (37 studies), while 5 studies did not mention the exact one. Most researches provided the mean concentrations of circulating adiponectin levels and the SDs of them. SDs from 11 studies were calculated based on the sample size and P values. 96 studies had NOS scores greater than 6 along with 11 studies had scores of 5. The main characteristics of eligible articles were listed in Table 1.

Study ID	SMD (95% CI)	% Weight
Gross et al. (2013)	-0.33571425, -0.46818775 to -0.20324075	
Aref et al. (2013)	-0.31502652, -0.4457356 to -0.18431742	
Tewari et al. (2013)	-0.28841972, -0.41580069 to -0.16103874	
Erdogan et al. (2013)	-0.33102214, -0.46268752 to -0.19935676	
Mihu et al. (2013)	-0.3298324, -0.46139839 to -0.1982664	
Chen et al. (2014)	-0.33950841, -0.47162384 to -0.20739301	
Ohbuchi et al. (2014)	-0.32285877, -0.46454135 to -0.20117618	
Minatoya et al. (2014)	-0.32982665, -0.46143582 to -0.19821748	
Diakowska et al. (2014)	-0.33376125, -0.46553349 to -0.20198898	
Combined	-0.33375105, -0.46467104 to -0.20283107	

Figure 3: Forest plot of studies in circulating high molecular weight adiponectin and cancer risk. The combined SMD and 95% CIs were calculated through a random-effect model.
Circulating adiponectin levels and carcinogenesis

Data from 107 studies were analyzed in a random-effect model to compare circulating adiponectin levels in people with different cancers and controls. Results showed that circulating adiponectin levels in cancer cases were significantly lower than in the controls with a pooled SMD of -0.334 μg/ml (95% CI, -0.465 to -0.203, \(P = 0.000 \)). Statistically significant amount of heterogeneity was observed across these studies (\(I^2 = 97.6\% \), \(P < 0.0001 \)), so subgroup analysis was carried out next. These results were presented in Figure 2.

HMW-adiponectin is the dominant form of adiponectin in plasma and correlates with cardiovascular disease, insulin resistance, and obesity [7, 113, 114]. But few studies have evaluated the relationship between circulating HMW-adiponectin levels and cancer risk. We analyzed data from 8 studies in a random-effect model to compare circulating HMW-adiponectin levels in people with different cancers [33, 56, 58, 72, 83, 94, 107, 108]. Results showed that circulating HMW-adiponectin levels in cancer cases were significantly lower than in the controls with a pooled SMD of -0.502 μg/ml (95% CI, -0.957 to -0.047, \(P = 0.000 \)), which is consistent with the results derived from total adiponectin levels. Statistically significant amount of heterogeneity was observed across these studies (\(I^2 = 97.0\% \), \(P < 0.0001 \)). These results were presented in Figure 3.

Subgroup analysis and meta-regression

Stratified subgroup analysis was performed to evaluate the potential sources of heterogeneity including ethnicity, cancer type, study design, blood sample, assay method, study size, study quality and mean age of cancer patients (Table 2). Lower levels of circulating adiponectin were observed in both Asian (SMD -0.555, 95% CI, -0.812 to -0.298) and Caucasian people (SMD -0.269, 95% CI, -0.400 to -0.138). Similar results were also presented in people with breast (SMD -0.334, 95% CI, -0.543 to -0.126), colorectal (SMD -0.496, 95% CI, -0.653 to -0.339), endometrial (SMD -0.594, 95% CI, -0.825 to -0.363), prostate (SMD -0.892, 95% CI, -1.345 to -0.438), thyroid (SMD -0.358, 95% CI, -0.601 to -0.116), tongue (SMD -1.172, 95% CI, -1.580 to -0.764), gastroesophageal (SMD -0.278, 95% CI, -0.553 to -0.004) cancer, multiple

Figure 4: Funnel plot of lower adiponectin expression and cancer risk. Circles indicate included studies.
myeloma (SMD -0.621, 95% CI, -0.966 to -0.276), and acute leukemia (SMD -0.594, 95% CI, -0.825 to -0.363). Notably, circulating adiponectin levels were higher in the patients with hepatocellular cancer than in controls among 7 studies included (SMD 1.385, 95% CI, 0.240 to 2.530).

Additionally, adiponectin was significantly lower in patients who used serum as test samples (SMD -0.335, 95% CI, -0.483 to -0.186), and in 37 studies who used plasma as testing samples, 26 studies showed the inverse relation of adiponectin to cancer risk. Assay method (radioimmunoassay or enzyme-linked immunosorbent assay) did not affect the results that circulating adiponectin was lower in cancer patients with pooled SMD of -0.316 and -0.266. Study size (more or less than 100 patients) did not change the result of estimated SMD either (SMD -0.135, 95% CI, -0.299 to -0.030; SMD -0.549, 95% CI, -0.825 to -0.273, respectively). Besides, no matter the mean age of cancer patients is older or younger than 60 years, decreased adiponectin levels were still exist in cancer patients (SMD -0.489, 95% CI, -0.689 to -0.288; SMD -0.194, 95% CI, -0.383 to -0.004, respectively).

Next we performed meta-regression to evaluate the effect of the above factors on the estimate of SMD. In meta-regression, none of the examined factors, such as ethnicity, cancer type, study design, blood sample, assay method, study size, study quality and mean age of cancer patients was proved to be significant contributing factors.

Sensitivity analysis

Sensitivity analysis was performed by excluding one study at a time and calculating the pooled SMDs for the remaining studies. It was found that the combined SMDs were similar to one another and statistically significant. None of the studies influence the pooled results substantially in this analysis (Table 3).

Publication bias

Publication bias was assessed by funnel plot and Egger’s regression test. Funnel plot shapes demonstrated a marginally asymmetrical distribution (Figure 4), accordingly we performed further analysis with Egger’s test. The tested result (Figure 5) showed no evidence of publication bias ($P = 0.123$).

DISCUSSION

By integrating 107 studies, our meta-analysis revealed that lower circulating adiponectin levels were associated with higher risk of cancers. Despite the existence of heterogeneity, the disparity of adiponectin levels between malignant individuals and controls reveals the potential ability of adiponectin to serve as a biomarker for early detection of cancers.

Aberrant adiponectin secretion is associated with tumor progression, metastasis and overall prognosis. Two previous meta-analysis indicated that lower adiponectin levels were associated with higher risk of breast cancer, colorectal cancer and colorectal adenoma [115, 116]. By synthesizing 107 studies involving 19,319 cases with different malignancies, the present meta-analysis estimate the inverse association between circulating adiponectin levels and cancer risk. Moreover, through subgroup analysis, we identified that this inverse relation of adiponectin to cancer risk might be more meaningful in
breast, colon, endometrial, prostate, and gastroesophageal cancers. Besides, adiponectin levels tend to decrease as tumor stage increases in gastric cancer [62]. Kang et al. also indicate that breast cancer patients with less than the median adiponectin levels are easy to develop lymph node metastasis [82]. Low adiponectin level is the independent predictor of unfavorable prognosis in colorectal cancer [117]. These findings demonstrate that adiponectin is not only associated with cancer risk, but also correlated with tumor progression. Additionally, in our included 107 studies, 8 studies evaluated the relationship between circulating levels of adiponectin subtypes and cancer risk. The changing trend of total adiponectin was almost same with the three adiponectin subtypes in cancer patients, especially with HMW-adiponectin, that it is inversely associated with cancer risk.

Circulating adiponectin levels are affected by various factors, including inflammatory, dietary, hormonal, genetic, and medicine. One of possible explanations for decreased adiponectin levels in malignancies is the sustained inflammatory status of cancer patients leads to the increased proinflammatory cytokines such as TNF-α and IL-6, which are all reported to suppress adiponectin transcription and translation in adipocyte cell line [118, 119]. Besides, in obesity-related cancers, adiponectin may control its own production through a negative feedback loop during the development of obesity [120]. Moreover, dietary with lower intake of fiber and magnesium can also reduce circulating adiponectin levels [121].

However, elevated adiponectin levels are also reported in hepatocellular carcinoma. Since adiponectin is mainly degraded in the liver and adiponectin levels are elevated in advanced disease including cirrhosis and virus-related cancer [61, 122]. One possible explanation for increased adiponectin level in hepatocellular carcinoma might be due to deteriorated hepatic metabolism resulted from repeated necroinflammation and regeneration. Besides, conflicting results also exist in clinical studies of pancreatic cancer that both higher and lower adiponectin levels are reported to be associated with cancer risk [45, 50]. After reviewing the pancreatic cancer studies with higher levels of adiponectin, we found that almost half of them were accompanied with jaundice [45]. Since cholestasis would lead to the chronic liver deterioration, it is possible that increased adiponectin levels might be due to the reduced degradation.

The peripheral functions of adiponectin are mainly mediated through AdipoR1 and AdipoR2. The expression levels of AdipoRs vary between malignant tissues and their peritumoral normal counterparts. The upregulation of AdipoR1 and AdipoR2 are reported in gastric carcinoma [123], whereas decreased in prostate cancer tissues compared with the nonmalignant tissues [36]. Increased expression of AdipoRs may be the response of reduced circulating as well as local adiponectin levels and reduced expression suggests that the sensitivity of AdipoRs to adiponectin is decreased in tumor tissues. Yabushita et al. indicate that poor expression of AdipoR1 is associated with tumor invasion and lymph node metastasis, as well as poor prognosis in endometrial cancer patients [124]. A study of non-small cell lung cancer also indicates that patients with higher expression of AdipoR1 have longer overall survival and AdipoR2 expression is inversely correlated with tumor size [125]. Those findings further illustrate the protective role of adiponectin as well as AdipoRs and shed light on exploiting them for cancer therapy. Recently, AdipoRs agonist called 355ADP is identified and might represent a new strategy to replace low adiponectin level in cancer [126].

Despite the inverse correlation between adiponectin and various cancers, the underlying mechanisms of adiponectin in potential cancer suppression are still need to elucidate. Adiponectin decreases low density lipoprotein (LDL) receptor expression in breast cancer cells through promoting autophagic flux and inhibits LDL-cholesterol-induced tumor cell proliferation [127]. Adiponectin induces the phosphorylation of p53, a tumor suppressor, which renders cell cycle arrest and apoptosis in cancer cell lines [128]. Adiponectin also inhibits leptin-induced metastasis by downregulating JAK/STAT3 pathway, displaying an inverse correlation with cancer development [129]. In contrast, adiponectin promotes the angiogenesis in human chondrosarcoma by increasing vascular endothelial growth factor-A expression [130]. It is also reported to exert anti-apoptotic effects on pancreatic cancer cells through activation of AMPK/Sirtuin-1 signaling pathway [131]. Taken together, adiponectin might play a complicated role in carcinogenesis and progression of cancers.

Our study has some limitations that need to be addressed when interpreting the results. The significant heterogeneity was observed among the studies thus the conclusion should be more conservative. Although stratified analysis was conducted, none of the factors including ethnicity, cancer type, study design, blood sample, assay method, study size, study quality, and mean age of cancer patients were confirmed to contributing factors. Some possible reasons may partially explain this heterogeneity. Adiponectin levels are changed along with the tumor development. The tumor type, size, histological grade, and lymph node metastasis are the possible contributors caused heterogeneity. It is difficult for us to acquire the detailed information from the included studies. Besides, the subjects were from different regions and the lifestyle combined with diet was varied, which might influence the level of adiponectin. Since adiponectin is mainly secreted from adipose tissue, variables such as age, hormone receptor expression, menopausal status and BMI could contribute to the secretion and those factors were not fully deliberated for the complexity of tumor environment.
CONCLUSIONS

In summary, the present study shows significant difference in circulating adiponectin levels between patients with malignancies and controls. Low circulating adiponectin level is associated with increased cancer risk, which suggests that adiponectin may serve as a potential biomarker for early detection of cancers considering its abundance in blood. Thorough understanding the roles of adiponectin and its receptors in the progression of cancers is helpful to cancer screening and promote individualized treatment.

MATERIALS AND METHODS

Search strategy

Based on the standard guidelines, a systematic search of English literature from Cochrane library, Wiley online library, PubMed was conducted to retrieve eligible studies until August 8, 2015. Searching terms included Medical Subject Heading (Mesh) and free text words “adiponectin”, “ADPN”, “Acrp 30”, “AdipoQ”, “GBP 28” or “apM1” in combination with “neoplasm”, “cancer”, “carcinoma”, “malignancy” or “tumor”. Furthermore, we manually searched references of relevant studies to add potential research to this meta-analysis.

Inclusion and exclusion criteria

Studies were included if they met the following criteria: (i) full text case-control studies published in peer-reviewed journals evaluating the relationship between circulating adiponectin concentration and carcinogenesis; (ii) all cases were diagnosed as cancer by pathological biopsy or other medical methods with blood sample obtained before any therapies and all the controls were people without any cancers. (iii) circulating adiponectin level and standard deviation (SD) of it were provided or there were enough information to estimate them. Reviews, letters or animal experiments were excluded and articles without key information to carry on further analysis were also beyond consideration. Meanwhile, if replicated patient cohort was published in different studies, only the most recent or complete one was chosen. Since all the studies included were acquired from literature, ethics committee approval was not needed.

Data extraction

Based on the checklist of MOOSE (Meta-analysis Of Observational Studies in Epidemiology) [132], two reviewers (Tai W and Peng Y) extracted the following data independently from eligible studies: the last name of first author, year of publication, geographic region, ethnicity, tumor type, study design, sample type, adiponectin assay method, number of patients and controls, assay source, mean ± SD of adiponectin concentration. Disagreement was resolved by discussion until the two reviewers reached a consensus.

Quality assessment of included studies

Two reviewers (Tai W and Peng Y) independently assessed the quality of each included study according to the Newcastle-Ottawa Quality Assessment Scale (NOS) [133] ranges from 0 to 9 stars. Studies with more than 6 stars were considered as high-quality studies. Any disagreement was resolved by discussion and reevaluation.

Statistical analysis

We acquired the mean ± SD of circulating adiponectin levels from cases and controls through three ways. The most accurate method was extracted them from the original research directly. However, a few studies presented the results as median values or standard error. In that case, we regarded median value as mean value considering the large sample size and calculated the SD value by using standard error and population number. If necessary, we contacted the author for detailed information. Standard mean differences (SMDs) and the corresponding 95% confidence intervals (CIs) of circulating adiponectin were calculated for all the eligible studies. Cochran’s Q-test was performed to test the heterogeneity of included studies and $P < 0.05$ was considered statistically significant. Higgins I-squared statistic was applied to offer evidence of heterogeneity with $I^2 > 50\%$ suggesting significant heterogeneity. The pooled SMD and 95\% CI was calculated using a fixed-effects model if the heterogeneity was not significant, otherwise a random-effect model was employed and subgroup analyses and meta-regression were adopted to detect the potential cause of heterogeneity.

Sensitivity analysis was executed to detect the robustness of the results. Publication bias was evaluated by use of funnel plot and Egger’s linear regression test. The Stata 13.0 software (Stata Corporation, College Station, TX, USA) was used to perform all the statistical analysis. All P values were two-sided.

CONFLICTS OF INTEREST

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial conflict with any materials discussed in the paper. All authors declare that there is no conflict of interest regarding the publication of this work.
REFERENCES

1. Bray F, Ren JS, Masuyer E and Ferlay J. Global estimates of cancer prevalence for 27 sites in the adult population in 2008. Int J Cancer. 2013; 132:1133-1145.

2. Kelly T, Yang W, Chen CS, Reynolds K and He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond). 2008; 32:1431-1437.

3. Calle EE and Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer. 2004; 4:579-591.

4. Trevellin E, Scarpa M, Carraro A, Lunardi F, Kotsafti A, Porzionato A, Saadeh L, Cagol M, Alfieri R, Tedeschi U, Calabrese F, Castoro C and Vettor R. Esophageal adenocarcinoma and obesity: peritumoral adipose tissue plays a role in lymph node invasion. Oncotarget. 2015; 6:11203-11215. doi: 10.18632/oncotarget.3587.

5. Scherer PE, Williams S, Fogliano M, Baldini G and Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem. 1995; 270:26746-26749.

6. Hu E, Liang P and Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem. 1996; 271:10697-10703.

7. Fujimatsu D, Kotooka N, Inoue T, Nishiyama M and Node K. Association between high molecular weight adiponectin levels and metabolic parameters. J Atheroscler Thromb. 2009; 16:553-559.

8. Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Murakami K, Ohteki T, Uchida S, Takekawa S, Waki H, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M, Endo K, Ohnaka K and Kono S. Adiponectin and colorectal adenomas: self defense forces health study. Cancer Sci. 2008; 99:781-786.

9. Dieudonne MN, Bussiere M, Dos Santos E, Leneveu MC, Giudicelli Y and Pecquery R. Adiponectin mediates antiproliferative and apoptotic responses in human MCF7 breast cancer cells. Biochem Biophys Res Commun. 2006; 345:271-279.

10. Gu C, Qu Y, Zhang G, Sun L, Zhu Y and Ye D. A single nucleotide polymorphism in ADIPOQ predicts biochemical recurrence after radical prostatectomy in localized prostate cancer. Oncotarget. 2015; 6:32205-32211. doi: 10.18632/oncotarget.4980.

11. Liu YM, Lacorte JM, Viguerie N, Poitou C, Pelloux V, Guy-Grand B, Coussieu C, Langin D, Basdevant A and Clement K. Adiponectin gene expression in subcutaneous adipose tissue of obese women in response to short-term very low calorie diet and refeeding. J Clin Endocrinol Metab. 2003; 88:5881-5886.

12. Miyoshi Y, Funahashi T, Kihara S, Taguchi T, Tamaki Y, Matsuzawa Y and Noguchi S. Association of serum adiponectin levels with breast cancer risk. Clin Cancer Res. 2003; 9:5699-5704.

13. Goktas S, Yilmaz MI, Caglar K, Sommez A, Kilic S and Bedir S. Prostate cancer and adiponectin. Urology. 2005; 65:1168-1172.

14. Pezzilli R, Barassi A, Corsi MM, Morselli-Labate AM, Campana D, Casadei R, Santini D, Corinaldesi R and D’Eril GM. Serum leptin, but not adiponectin and receptor for advanced glycation end products, is able to distinguish autoimmune pancreatitis from both chronic pancreatitis and pancreatic neoplasms. Scand J Gastroenterol. 2010; 45:93-99.

15. Soliman PT, Wu D, Tortolero-Luna G, Schmeler KM, Slomovitz BM, Bray MS, Gershenson DM and Lu KH. Association between adiponectin, insulin resistance, and endometrial cancer. Cancer. 2006; 106:2376-2381.

16. Fukumoto J, Otake T, Tajima O, Tabata S, Abe H, Mizoue T, Ohnaka K and Kono S. Adiponectin and colorectal adenomas: self defense forces health study. Cancer Sci. 2008; 99:781-786.

17. Bedir S. Prostate cancer and adiponectin. Urology. 2005; 65:1168-1172.

18. Zhang L, Wen K, Han X, Liu R and Qu G. Adiponectin mediates antiproliferative and apoptotic responses in human MCF7 breast cancer cells. Biochem Biophys Res Commun. 2006; 345:271-279.

19. Zhang L, Chen MJ, Yeh YT, Lee KT, Tsai CJ, Lee HH and Wang SN. The promoting effect of adiponectin in hepatocellular carcinoma. J Surg Oncol. 2012; 106:181-187.

20. Mitsiades N, Pazaitou-Panayiotou K, Aronis KN, Moon HS, Chamberland JP, Liu X, Diakopoulos KN, Kyttaaris V, Panagiotou V, Mylvaganam G, Tseleni-Balafouta S and Mantzoros CS. Circulating adiponectin is inversely associated with risk of thyroid cancer: in vivo and in vitro studies. J Clin Endocrinol Metab. 2011; 96:E2023-2028.

21. Spyridopoulos TN, Dessypris N, Antoniadis AG, Gialamas D, Chow WH and Purdue MP. Prediagnostic circulating adipokine concentrations and risk of renal cell cancer: a case-control study. Hormones (Athens). 2012; 11:308-315.

22. Liao LM, Schwartz K, Pollak M, Graubard BI, Li Z, Bedir S. Prostate cancer and adiponectin. Urology. 2005; 65:1168-1172.

23. Liu YM, Lacorte JM, Viguerie N, Poitou C, Pelloux V, Guy-Grand B, Coussieu C, Langin D, Basdevant A and Clement K. Adiponectin gene expression in subcutaneous adipose tissue of obese women in response to short-term very low calorie diet and refeeding. J Clin Endocrinol Metab. 2003; 88:5881-5886.

24. Miyoshi Y, Funahashi T, Kihara S, Taguchi T, Tamaki Y, Matsuzawa Y and Noguchi S. Association of serum adiponectin levels with breast cancer risk. Clin Cancer Res. 2003; 9:5699-5704.
Ruterbusch J, Rothman N, Davis F, Wacholder S, Colt J, Chow WH and Purdue MP. Serum leptin and adiponectin levels and risk of renal cell carcinoma. Obesity (Silver Spring). 2013; 21:1478-1485.

25. Petridou E, Mantzoros CS, Dessypris N, Dikalioti SK and Trichopoulos D. Adiponectin in relation to childhood myeloblastic leukaemia. Br J Cancer. 2006; 94:156-160.

26. Moschovi M, Trimis G, Vountasou M, Katsabardi K, Margoli A, Damianos A, Chrousos G and Papassotiriou I. Serial plasma concentrations of adiponectin, leptin, and resistin during therapy in children with acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 2010; 32:e8-13.

27. Aref S, Ibrahim L, Azmy E and Al Ashary R. Impact of serum adiponectin and leptin levels in acute leukemia. Hematology. 2013; 18:198-203.

28. Petridou ET, Dessypris N, Panagopoulos P, Sergentanis TN, Mentis AF, Poursitis A, Polychronopoulou S, Kalmanti M, Athanasiadou-Piperopoulou F and Moschovi M. Adipocytokines in relation to Hodgkin lymphoma in children. Pediatr Blood Cancer. 2010; 54:311-315.

29. Pamuk GE, Turgut B, Demir M and Vural O. Increased adiponectin level in non-Hodgkin lymphoma and its relationship with interleukin-10. Correlation with clinical features and outcome. J Exp Clin Cancer Res. 2006; 25:537-541.

30. Petridou ET, Sergentanis TN, Dessypris N, Vlachantoni IT, Tseleni-Balafouta S, Poursitis A, Moschovi M, Polychronopoulou S, Athanasiadou-Piperopoulou F, Kalmanti M and Mantzoros CS. Serum adiponectin as a predictor of childhood non-Hodgkin’s lymphoma: a nationwide case-control study. J Clin Oncol. 2009; 27:5049-5055.

31. Conroy SM, Maskarinec G, Morimoto Y, Franke AA, Cooney RV, Wilkens LR, Goodman MT, Hernandez BY, Le Marchand L, Henderson BE and Kolonel LN. Non-hodgkin lymphoma and circulating markers of inflammation and adiposity in a nested case-control study: the multiethnic cohort. Cancer Epidemiol Biomarkers Prev. 2013; 22:337-347.

32. Dalamaga M, Karmaniolas K, Panagiotou A, Hsi A, Chamberland J, Dimas C, Lekka A and Mantzoros CS. Low circulating adiponectin and resistin, but not leptin, levels are associated with multiple myeloma risk: a case-control study. Cancer Causes Control. 2009; 20:193-199.

33. Hofmann JN, Liao LM, Pollak MN, Wang Y, Pfeiffer RM, Baris D, Andreotti G, Lan Q, Landgren O, Rothman N and Purdue MP. A prospective study of circulating adipokine levels and risk of multiple myeloma. Blood. 2012; 120:4418-4420.

34. Antoniadias AG, Petridou ET, Antonopoulos CN, Dessypris N, Panagopoulos P, Chamberland JP, Adami HO,戈加斯 H and Mantzoros CS. Insulin resistance in relation to melanoma risk. Melanoma Res. 2011; 21:541-546.

35. Baillargeon J, Platz EA, Rose DP, Pollock BH, Ankerst DP, Haffner S, Higgins B, Lokshin A, Troyer D, Hernandez J, Lynch S, Leach RJ and Thompson JM. Obesity, adipokines, and prostate cancer in a prospective population-based study. Cancer Epidemiol Biomarkers Prev. 2006; 15:1331-1335.

36. Michalakis K, Williams CJ, Mitsiades N, Blakeman J, Balafouta-Tselenis S, Giannopoulos A and Mantzoros CS. Serum adiponectin concentrations and tissue expression of adiponectin receptors are reduced in patients with prostate cancer: a case control study. Cancer Epidemiol Biomarkers Prev. 2007; 16:308-313.

37. Housa D, Vernerova Z, Heracek J, Prochazka B, Cechak P, Kuncova J and Haluzik M. Adiponectin as a potential marker of prostate cancer progression: studies in organ-confined and locally advanced prostate cancer. Physiol Res. 2008; 57:451-458.

38. Grosman H, Fabre B, Mesch V, Lopez MA, Schreier L, Mazza O and Berg G. Lipoproteins, sex hormones and inflammatory markers in association with prostate cancer. Aging Male. 2010; 13:87-92.

39. Li H, Stampfer MJ, Mucci L, Rifai N, Qiu W, Kurth T and Ma J. A 25-year prospective study of plasma adiponectin and leptin concentrations and prostate cancer risk and survival. Clin Chem. 2010; 56:34-43.

40. Al Khaldi RM, Al Mulla F, Al Awadhie S, Kapila K and Mojiminiyi OA. Associations of single nucleotide polymorphisms in the adiponectin gene with adiponectin levels and cardio-metabolic risk factors in patients with cancer. Dis Markers. 2011; 30:197-212.

41. Dhillon PK, Penney KL, Schumacher F, Rider JR, Sesso HD, Pollak M, Fiorentino M, Finn S, Loda M, Rifai N, Mucci LA, Giovannucci E, Stampfer MJ and Ma J. Common polymorphisms in the adiponectin and its receptor genes, adiponectin levels and the risk of prostate cancer. Cancer Epidemiol Biomarkers Prev. 2011; 20:2618-2627.

42. Lopez Fontana CM, Maselli ME, Perez Elizalde RF, Di Milta Monaco NA, Uvilla Recupero AL and Lopez Laur JD. Leptin increases prostate cancer aggressiveness. J Physiol Biochem. 2011; 67:531-538.

43. Tewari R, Rajender S, Natu SM, Goel A, Dalela D, Goel MM and Tondon P. Significance of obesity markers and adipocytokines in high grade and high stage prostate cancer in North Indian men - a cross-sectional study. Cytokine. 2013; 63:130-134.

44. Touvier M, Fezeu L, Ahluwalia N, Julia C, Charneau X, Sutton A, Mejean C, Latino-Martel P, Hereberg S, Galan P and Czernichow S. Association between prediagnostic biomarkers of inflammation and endothelial function and cancer risk: a nested case-control study. Am J Epidemiol. 2013; 177:3-13.

45. Chang MC, Chang YT, Su TC, Yang WS, Chen CL, Tien YW, Liang PC, Wei SC and Wong JM. Adiponectin as a potential differential marker to distinguish pancreatic cancer and chronic pancreatitis. Pancreas. 2007; 35:16-21.

46. Stolzenberg-Solomon RZ, Weinstein S, Pollak M, Tao
Y, Taylor PR, Virtamo J and Albanes D. Prediagnostic adiponectin concentrations and pancreatic cancer risk in male smokers. Am J Epidemiol. 2008; 168:1047-1055.

Dalamaga M, Migdalis I, Fargnoli JL, Papadavid E, Bloom E, Mitsiades N, Karmaniolas K, Pelecanos N, Tsleni-Balafouta S, Dionysio-Asteriou A and Mantzoros CS. Pancreatic cancer expresses adiponectin receptors and is associated with hypoleptinemia and hyperadiponectinemia: a case-control study. Cancer Causes Control. 2009; 20:625-633.

Krechler T, Zeman M, Vecka M, Macasek J, Jachymova M, Zima T and Zak A. Leptin and adiponectin in pancreatic cancer: connection with diabetes mellitus. Neoplasma. 2011; 58:58-64.

Grote VA, Rohrmann S, Dossus L, Nieters A, Halkjaer J, Tjonneland A, Overvad K, Stegger J, Chambert-Buttet N, Bouton-Ruault MC, Clavel-Chapelon F, Teucher B, Becker S, Montonen J, Boeing H, Trichopoulou A, et al. The association of circulating adiponectin levels with pancreatic cancer risk: a study within the prospective EPIC cohort. Int J Cancer. 2012; 130:2428-2437.

Bao Y, Giovannucci EL, Kraft P, Stampfer MJ, Ogino S, Ma J, Buring JE, Sesso HD, Lee IM, Gaziano JM, Rifai N, Pollak MN, Cochrane BB, Kaklamani V, Lin JH, Manson JE, et al. A prospective study of plasma adiponectin and pancreatic cancer risk in five US cohorts. J Natl Cancer Inst. 2013; 105:95-103.

Jamieson NB, Brown DJ, Michael Wallace A and McMillan DC. Adiponectin and the systemic inflammatory response in weight-losing patients with non-small cell lung cancer. Cytokine. 2004; 27:90-92.

Petridou ET, Mitsiades N, Gialamas S, Angelopoulos M, Skalkidou A, Dessypris N, Hsi A, Lazaris N, Polyzos A, Syrigos C, Brennan AM, Tseleni-Balafouta S and Mantzoros CS. Circulating adiponectin levels and expression of adiponectin receptors in relation to lung cancer: two case-control studies. Oncology. 2007; 73:261-269.

Karapanagiotou EM, Tsochatzis EA, Dilana KD, Tourkantonis I, Gratias I and Syrigos KN. The significance of leptin, adiponectin, and resistin serum levels in non-small cell lung cancer (NSCLC). Lung Cancer. 2008; 61:391-397.

Gulen ST, Karadag F, Karul AB, Kilicarslan N, Ceylan M, Kurozawa Y, Suzuki H, Yoshimura T and Tamakoshi A. Serum adiponectin multimer complexes and liver cancer risk in a large cohort study in Japan. Asian Pac J Cancer Prev. 2009; 10 Suppl:87-90.

Liu CJ, Chen PJ, Lai MY, Liu CH, Chen CL, Kao JH and Chen DS. High serum adiponectin correlates with advanced liver disease in patients with chronic hepatitis B virus infection. Hepatol Int. 2009; 3:364-370.

Sumie S, Kawaguchi T, Kuromatsu R, Takata A, Nakano M, Satani M, Yamada S, Niizeki T, Torimura T and Sata M. Total and high molecular weight adiponectin and hepatocellular carcinoma with HCV infection. PLoS One. 2011; 6:e26840.

Khattab MA, Eslam M, Mousa YI, Ela-adawy N, Fathy S, Shatat M, Abd-Aalhalim H, Kamal A and Sharawe MA. Association between metabolic abnormalities and hepatitis C-related hepatocellular carcinoma. Ann Hepatol. 2012; 11:487-494.

Sadik NA, Ahmed A and Ahmed S. The significance of serum levels of adiponectin, leptin, and hyaluronic acid in hepatocellular carcinoma of cirrhotic and noncirrhotic patients. Hum Exp Toxicol. 2012; 31:311-321.

Chen CL, Yang WS, Yang HI, Chen CF, You SL, Wang LY, Lu SN, Liu CJ, Kao JH, Chen PJ, Chen DS and Chen CJ. Plasma adipokines and risk of hepatocellular carcinoma in chronic hepatitis B virus-infected carriers: a prospective study in taiwan. Cancer Epidemiol Biomarkers Prev. 2014; 23:1659-1671.

Ishikawa M, Kitayama J, Kazama S, Hiramatsu T, Hatano K and Nagawa H. Plasma adiponectin and gastric cancer. Clin Cancer Res. 2005; 11:466-472.

Nakajima TE, Yamada Y, Hamano T, Furuta K, Gotoda T, Katai H, Kato K, Hamaguchi T and Shimada Y. Adipocytokine levels in gastric cancer patients: resistin and visfatin as biomarkers of gastric cancer. J Gastroenterol. 2009; 44:685-690.

Seker M, Bilici A, Sonmez B, Ustaalioglu BB, Gumus M, Gozu H, Sargin M, Orcun A, Gezen C, Eser M, Bildik N and Salepci T. The association of serum adiponectin levels with histopathological variables in gastric cancer patients. Med Oncol. 2010; 27:1319-1323.

Diakowska D, Markocka-Maczka K, Szelachowski P and Grabowski K. Serum levels of resistin, adiponectin, and apelin in gastroesophageal cancer patients. Dis Markers. 2014; 2014:619649.

Diao Y, Li H, Li H, Zhou Y, Ma Q, Wang Y and Li D. Association of serum levels of lipid and its novel constituents with the different stages of esophageal carcinoma. Lipids Health Dis. 2009; 8:48.

Yildirim A, Bilici M, Cayir K, Yaman V, Yildirim S and Tekin SB. Serum adiponectin levels in patients with esophageal cancer. Jpn J Clin Oncol. 2009; 39:92-96.

Nakajima TE, Yamada Y, Hamano T, Furuta K, Oda I, Kato H, Kato K, Hamaguchi T and Shimada Y. Adipocytokines and squamous cell carcinoma of the esophagus. J Cancer Res Clin Oncol. 2010; 136:261-266.

Cust AE, Kaaks R, Friedenreich C, Bonnet F, Laville M, Lukanova A, Rinaldi S, Dossus L, Slimani N, Lundin E,
Tjonneland A, Olsen A, Overvad K, Clavel-Chapelon F, Mesrine S, Joulin V, et al. Plasma adiponectin levels and endometrial cancer risk in pre- and postmenopausal women. J Clin Endocrinol Metab. 2007; 92:255-263.

70. Ashizawa N, Yahata T, Quan J, Adachi S, Yoshihara K and Tanaka K. Serum leptin-adiponectin ratio and endometrial cancer risk in postmenopausal female subjects. Gynecol Oncol. 2010; 119:65-69.

71. Friedenreich CM, Langley AR, Speidel TP, Lau DC, Courneya KS, Csiszmadi I, Magliocco AM, Yasui Y and Cook LS. Case-control study of markers of insulin resistance and endometrial cancer risk. Endocr Relat Cancer. 2012; 19:785-792.

72. Dallal CM, Brinton LA, Bauer DC, Buist DS, Cauley JA, Hue TF, Lacroix A, Tice JA, Chia VM, Falk R, Pfeiffer R, Pollak M, Veenstra TD, Xu X and Lacey JV, Jr. Obesity-related hormones and endometrial cancer among postmenopausal women: a nested case-control study within the B–FIT cohort. Endocr Relat Cancer. 2013; 20:151-160.

73. Dossus L, Lukanova A, Rinaldi S, Allen N, Cust AE, Becker S, Tjonneland A, Hansen L, Overvad K, Chabbert-Buffet N, Mesrine S, Clavel-Chapelon F, Teucher B, Chang-Claude J, Boeing H, Drogan D, et al. Hormonal, metabolic, and inflammatory profiles and endometrial cancer risk within the EPIC cohort--a factor analysis. Am J Epidemiol. 2013; 177:787-799.

74. Erdogan S, Sezer S, Baser E, Gun-Eryilmaz O, Gungor T, Uysal S and Yilmaz FM. Evaluating vaspin and adiponectin in postmenopausal women with endometrial cancer. Endocr Relat Cancer. 2013; 20:669-675.

75. Luhn P, Dallal CM, Weiss JM, Black A, Huang WY, Lacey JV, Jr., Hayes RB, Stanczyk FZ, Wentzensen N and Brinton LA. Circulating adipokine levels and endometrial cancer risk in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer Epidemiol Biomarkers Prev. 2013; 22:1304-1312.

76. Ma Y, Liu Z, Zhang Y and Lu B. Serum leptin, adiponectin and endometrial cancer risk in Chinese women. J Gynecol Oncol. 2013; 24:336-341.

77. Mihu D, Ciortea R and Mihu CM. Abdominal adiposity through adipocyte secretion products, a risk factor for endometrial cancer. Gynecol Endocrinol. 2013; 29:448-451.

78. Ohbuchi Y, Suzuki Y, Hatakeyama I, Nakao Y, Fujito A, Iwasaka T and Isaka K. A lower serum level of middle-molecular-weight adiponectin is a risk factor for endometrial cancer. Int J Clin Oncol. 2014; 19:667-673.

79. Mantzoros C, Petridou E, Desysspris N, Chavelas C, Dalamaga M, Alexe DM, Papadimantitis Y, Markopoulou C, Spanos E, Chrousos G and Trichopoulos D. Adiponectin and breast cancer risk. J Clin Endocrinol Metab. 2004; 89:1102-1107.

80. Chen DC, Chung YF, Yeh YT, Chaung HC, Kuo FC, Fu OY, Chen HY, Hou MF and Yuan SS. Serum adiponectin and leptin levels in Taiwanese breast cancer patients. Cancer Lett. 2006; 237:109-114.

81. Hou WK, Xu YX, Yu T, Zhang L, Zhang WW, Fu CL, Sun Y, Wu Q and Chen L. Adipocytokines and breast cancer risk. Chin Med J (Engl). 2007; 120:1592-1596.

82. Kang JH, Yu BY and Youn DS. Relationship of serum adiponectin and resistin levels with breast cancer risk. J Korean Med Sci. 2007; 22:117-121.

83. Korner A, Pataizou-Panayiotou K, Kelesidis T, Kelesidis I, Williams CJ, Kaprara A, Bullen J, Neuwirth A, Tseleini S, Mitsiades N, Kiess W and Mantzoros CS. Total and high-molecular-weight adiponectin in breast cancer: in vitro and in vivo studies. J Clin Endocrinol Metab. 2007; 92:1041-1048.

84. Tworoger SS, Eliassen AH, Kelesidis T, Colditz GA, Willett WC, Mantzoros CS and Hankinson SE. Plasma adiponectin concentrations and risk of incident breast cancer. J Clin Endocrinol Metab. 2007; 92:1510-1516.

85. Cust AE, Stocks T, Lukanova A, Lundin E, Hallmans G, Kaaks R, Jonsson H and Stattin P. The influence of overweight and insulin resistance on breast cancer risk and tumour stage at diagnosis: a prospective study. Breast Cancer Res Treat. 2009; 113:567-576.

86. Hancke K, Grubeck D, Hauser N, Kreienberg R and Weiss JM. Adipocyte fatty acid-binding protein as a novel prognostic factor in obese breast cancer patients. Breast Cancer Res Treat. 2010; 119:367-367.

87. Shahar S, Salleh RM, Ghazali AR, Koon PB and Mohamud WN. Roles of adiposity, lifetime physical activity and serum adiponectin in occurrence of breast cancer among Malaysian women in Klang Valley. Asian Pac J Cancer Prev. 2010; 11:61-66.

88. Dalamaga M, Karmaniolas K, Papadavid E, Pelekanos N, Sotiropoulos G and Lekka A. Elevated serum visfatin/nicotinamide phosphoribosyl-transferase levels are associated with risk of postmenopausal breast cancer independently from adiponectin, leptin, and anthropometric and metabolic parameters. Menopause. 2011; 18:1198-1204.

89. Al Awadhi SA, Al Khalidi RM, Al Rammah T, Kapila K and Mojiminiyi OA. Associations of adipokines & insulin resistance with sex steroids in patients with breast cancer. Indian J Med Res. 2012; 135:500-505.

90. Gulcelik MA, Colakoglu K, Dincer H, Dogan L, Yenidogan E and Gulcelik NE. Associations between adiponectin and two different cancers: breast and colon. Asian Pac J Cancer Prev. 2012; 13:395-398.

91. Alokail MS, Al-Daghri N, Abdulkareem A, Draz HM, Yakout SM, Alnaami AM, Sabico S, Alenad AM and Chrousos GP. Metabolic syndrome biomarkers and early breast cancer in Saudi women: evidence for the presence of...
a systemic stress response and/or a pre-existing metabolic syndrome-related neoplasia risk? BMC Cancer. 2013; 13:54.

92. Gross AL, Newschaffer CJ, Hoffman-Bolton J, Rifai N and Visvanathan K. Adipocytokines, inflammation, and breast cancer risk in postmenopausal women: a prospective study. Cancer Epidemiol Biomarkers Prev. 2013; 22:1319-1324.

93. Oblerbing JD, Kim Y, Shvetsov YB, Wilkens LR, Franke AA, Cooney RV, Maskarinec G, Hernandez BY, Henderson BE, Le Marchand L, Kolonel LN and Goodman MT. Prediagnostic leptin, adiponectin, C-reactive protein, and the risk of postmenopausal breast cancer. Cancer Prev Res (Phila). 2013; 6:188-195.

94. Minatoya M, Kutomi G, Shima H, Asakura S, Otokozawa S, Ohsnishi H, Akasaka H, Miura T, Mori M and Hirata K. Relation of serum adiponectin levels and obesity with breast cancer: a Japanese case-control study. Asian Pac J Cancer Prev. 2014; 15:8325-8330.

95. Otake S, Takeda H, Suzuki Y, Fukui T, Watanabe S, Ishihama K, Saito T, Togashi H, Nakamura T, Matsuzawa Y and Kawata S. Association of visceral fat accumulation and plasma adiponectin with colorectal adenoma: evidence for participation of insulin resistance. Clin Cancer Res. 2005; 11:3642-3646.

96. Wei EK, Giovannucci E, Fuchs CS, Willett WC and Mantzoros CS. Low plasma adiponectin levels and risk of colorectal cancer in men: a prospective study. J Natl Cancer Inst. 2005; 97:1688-1694.

97. Stocks T, Lukanova A, Johansson M, Rinaldi S, Palmqvist R, Hallmans G, Kaaks R and Stattin P. Components of the metabolic syndrome and colorectal cancer risk: a prospective study. Int J Obes (Lond). 2008; 32:304-314.

98. Erarslan E, Turkay C, Koktener A, Koca C, Uz B and D'Alessandro R, Del Monte G, Formica V, Laudisi A, Portarena I, Palmiotto R and Ferroni P. Prognostic significance of serum adipokine levels in colorectal cancer patients. Anticancer Res. 2009; 29:3321-3327.

99. Guadagni F, Roselli M, Martini F, Spila A, Rondino S, D'Alessandro R, Del Monte G, Formica V, Laudisi A, Portarena I, Palmiotto R and Ferroni P. Prognostic significance of serum adipokine levels in colorectal adenoma patients. J Colorectal Dis. 2009; 24:275-281.

100. Kumor A, Daniel P, Pietruczuk M and Malecka-Panas E. Serum leptin, adiponectin, and resistin concentration in colorectal adenoma and carcinoma (CC) patients. Int J Colorectal Dis. 2009; 24:275-281.

101. Gumullu G, Kahraman H, Bedir A, Bektas A and Yucel I. Association between adiponectin, resistin, insulin resistance, and colorectal tumors. Int J Colorectal Dis. 2010; 25:205-212.

102. Kemik O, Sumer A, Kemik AS, Hasirci I, Purisa S, Dulger AC, Demiriz B and Tuzun S. The relationship among acute-phase response proteins, cytokines and hormones in cachectic patients with colon cancer. World J Surg Oncol. 2010; 8:85.

103. Nakajima TE, Yamada Y, Hamano T, Furuta K, Matsuda T, Fujita S, Kato K, Hamaguchi T and Shimada Y. Adipocytokines as new promising markers of colorectal tumors: adiponectin for colorectal adenoma, and resistin and visfatin for colorectal cancer. Cancer Sci. 2010; 101:1286-1291.

104. Otake S, Takeda H, Fujishima S, Fukui T, Orii T, Sato T, Sasaki Y, Nishise S and Kawata S. Decreased levels of plasma adiponectin associated with increased risk of colorectal cancer. World J Gastroenterol. 2010; 16:1252-1257.

105. Yamaji T, Iwasaki M, Sasazuki S and Tsugane S. Interaction between adiponectin and leptin influences the risk of colorectal adenoma. Cancer Res. 2010; 70:5430-5437.

106. Catalan V, Gomez-Ambrosi J, Rodriguez A, Ramirez B, Silva C, Rotellar F, Fernandez-Lizoain JL, Baixauli J, Valenti V, Pardo F, Salvador J and Frühbeck G. Up-regulation of the novel proinflammatory adipokines lipocalin-2, chitinase-3 like-1 and osteopontin as well as angiogenic-related factors in visceral adipose tissue of patients with colon cancer. J Nutr Biochem. 2011; 22:634-641.

107. Aleksandrova K, Boeijing H, Jena B, Bueno de Mesquita HB, Jansen E, van Duin R, Furoko E, Rinaldi S, Romieu I, Riboli E, Romaguera D, Westphal S, Overvad K, Tjonneland A, Bouteron-Rual MC, Clavel-Chapelon F, et al. Total and high-molecular weight adiponectin and risk of colorectal cancer: the European Prospective Investigation into Cancer and Nutrition Study. Carcinogenesis. 2012; 33:1211-1218.

108. Chen MW, Ye S, Zhao LL, Wang SY, Li YY, Yu CJ, Xie HJ and Wang YM. Association of plasma total and high-molecular-weight adiponectin with risk of colorectal cancer: an observational study in Chinese male. Med Oncol. 2012; 29:3129-3135.

109. Touvier M, Fezeu L, Amlouwila N, Julia C, Charnaux N, Sutton A, Mejean C, Latino-Martel P, Hercberg S, Galan P and Clavel-Chapelon F. Pre-diagnostic levels of adiponectin and soluble vascular cell adhesion molecule-1 are associated with colorectal cancer risk. World J Gastroenterol. 2012; 18:2805-2812.

110. Danese E, Minicozzi AM, Montagnana M, De Manzoni G, Lippi G and Guidi GC. Lack of an association between circulating adiponectin levels and risk of colorectal adenoma. Clin Lab. 2013; 59:211-214.

111. Song M, Zhang X, Wu K, Ogino S, Fuchs CS, Giovannucci EL and Chan AT. Plasma adiponectin and soluble leptin receptor and risk of colorectal cancer: a prospective study. Cancer Prev Res (Phila). 2013; 6:875-885.

112. Guo XH, Wang JY, Gao Y, Gao M, Yu GY, Xiang RL, Li L, Yang NY, Cong X, Xu XY, Li SL, Peng X and Wu LL. Decreased adiponectin level is associated with aggressive phenotype of tongue squamous cell carcinoma. Cancer Sci. 2013; 104:206-213.
113. Inoue T, Kotooka N, Morooka T, Komoda H, Uchida T, Aso Y, Inukai T, Okuno T and Node K. High molecular weight adiponectin as a predictor of long-term clinical outcome in patients with coronary artery disease. Am J Cardiol. 2007; 100:569-574.

114. Hara K, Horikoshi M, Yamauchi T, Yago H, Miyazaki O, Ebimura H, Imai Y, Nagai R and Kadowaki T. Measurement of the high-molecular weight form of adiponectin in plasma is useful for the prediction of insulin resistance and metabolic syndrome. Diabetes Care. 2006; 29:1357-1362.

115. Ye J, Jia J, Dong S, Zhang C, Yu S, Li L, Mao C, Wang D, Chen J and Yuan G. Circulating adiponectin levels and the risk of breast cancer: a meta-analysis. Eur J Cancer Prev. 2014; 23:158-165.

116. An W, Bai Y, Deng SX, Gao J, Ben QW, Cai QC, Zhang HG and Li ZS. Adiponectin levels in patients with colorectal cancer and adenoma: a meta-analysis. Eur J Cancer Prev. 2012; 21:126-133.

117. Ferroni P, Palmirotta R, Spila A, Martini F, Raparelli V, Fossile E, Mariotti S, Del Monte G, Buonomo O, Roselli M and Guadagni F. Prognostic significance of adiponectin levels in non-metastatic colorectal cancer. Anticancer Res. 2007; 27:483-489.

118. Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, Furuyama N, Kondo H, Takahashi M, Arita Y, Komuro R, Ouchi N, Kihara S, Tochino Y, Okutomi K, Horie M, et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med. 2002; 8:731-737.

119. Fasshauer M, Kralisch S, Klier M, Lossner U, Bluher M, Klein J and Paschke R. Adiponectin gene expression and secretion is inhibited by interleukin-6 in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2003; 301:1045-1050.

120. Bauche IB, Ait El Mkadem S, Rezsohazy R, Funahashi T, Maeda N, Miranda LM and Brichard SM. Adiponectin downregulates its own production and the expression of its AdipoR2 receptor in transgenic mice. Biochem Biophys Res Commun. 2006; 345:1414-1424.

121. Qi L, Rimm E, Liu S, Rifai N and Hu FB. Dietary glycemic index, glycemic load, cereal fiber, and plasma adiponectin concentration in diabetic men. Diabetes Care. 2005; 28:1022-1028.

122. Tietge UJ, Boker KH, Manns MP and Bahr MJ. Elevated circulating adiponectin levels in liver cirrhosis are associated with reduced liver function and altered hepatic hemodynamics. Am J Physiol Endocrinol Metab. 2004; 287:E82-89.

123. Barresi V, Grosso M, Giusfrè G, Tuccari G and Barresi G. The expression of adiponectin receptors Adipo-R1 and Adipo-R2 is associated with an intestinal histotype and longer survival in gastric carcinoma. J Clinical Pathol. 2009; 62:705-709.

124. Yabushita H, Iwasaki K, Obayashi Y and Wakatsuki A. Clinicopathological roles of adiponectin and leptin receptors in endometrial carcinoma. Oncol Lett. 2014; 7:1109-1117.

125. Abdul-Ghafoor J, Oh SS, Park SM, Wairagu P, Lee SN, Jeong Y, Eom M, Yong SJ and Jung SH. Expression of adiponectin receptor 1 is indicative of favorable prognosis in non-small cell lung carcinoma. Tohoku J Exp Med. 2013; 229:153-162.

126. Otvos L Jr., Haspinger E, La Russa F, Graziano P, Kovalszky I, Lovas S, Nama K, Hoffmann R, Knappe D, Cassone M, Wade J and Surmacz E. Design and development of a peptide-based adiponectin receptor agonist for cancer treatment. BMC Biotechnol. 2011; 11:90.

127. Liu J, Xu A, Lam KS, Wong NS, Chen J, Shepherd PR and Wang Y. Cholesterol-induced mammary tumorigenesis is enhanced by adiponectin deficiency: role of LDL receptor upregulation. Oncotarget. 2013; 4:1804-1818. doi: 10.18632/oncotarget.1364.

128. Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum MJ and Thompson CB. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell. 2005; 18:283-293.

129. Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum MJ and Thompson CB. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell. 2005; 18:283-293.

130. Lee HP, Lin CY, Shih JS, Fong YC, Wang SW, Li TM and Tang CH. Adiponectin promotes VEGF-A-dependent angiogenesis in human chondrosarcoma through PI3K, Akt, mTOR, and HIF-alpha pathway. Oncotarget. 2015; 6:36746-36761. doi: 10.18632/oncotarget.5479.

131. Huang B, Cheng X, Wang D, Peng M, Xue Z, Da Y, Zhang N, Yao Z, Li M, Xu A and Zhang R. Adiponectin promotes pancreatic cancer progression by inhibiting apoptosis via the activation of AMPK/Sirt1/PGC-1alpha signaling. Oncotarget. 2014; 5:4732-4745. doi: 10.18632/oncotarget.1963.

132. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA and Thacker SB. Meta-analysis of observational studies in epidemiology: a proposal for reporting. meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA. 2000; 283:2008-2012.

133. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010; 25:603-605.