On semiconvexity of open sets with smooth boundary in the plane

Tetiana Osipchuk

Abstract. We study properties of classes of generalized convex sets in the plane known as 1-semiconvex and weakly 1-semiconvex. It is proved that an open, weakly 1-semiconvex but not 1-semiconvex set with smooth boundary in the plane consists of at least four connected components.

On the plane, an open set with smooth boundary is called 1-semiconvex if for every point in its complement, there exists a ray starting in this point and not intersecting the set. A set is weakly 1-semiconvex if for every point on its boundary, there exists a ray starting in this point and not intersecting the set. These concepts were introduced by Yu. B. Zelinskii.

The work is dedicated to the memory of Yu. B. Zelinskii. The author expresses her gratitude to Professors Sergiy Maksymenko, Sergiy Plaksa, Oleksandr Bakhtin, Serhii Gryshchuk, Ruslan Salimov, Vitalii Shpakivskyi for valuable advice in planning the study and recommendations for the design of the paper. The author also is grateful to translators Julia Sheichenko and Anna Sheichenko who assisted in the preparation of the manuscript before being sent to the publisher. The author expresses her gratitude to all anonymous Referees of the paper for their comments.

2010 Mathematics Subject Classification: 32F17, 52A30
UDC 514.172
Keywords: Convex set, open set, smooth boundary, real Euclidean space
A class of \(m\)-semiconvex sets is one of the classes of generalized convex sets. A semiconvexity notion was proposed by Yu. Zelinskii [9] and it was used in the formulation of a generalization of shadow problem. The shadow problem was proposed by G. Khudaiberganov [4] in 1982. It requires to find the minimal number of open (closed) balls in the real Euclidean space \(\mathbb{R}^n\) that are pairwise disjoint, centered on a sphere \(S^{n-1}\) (see [6]), do not contain the sphere center, and such that any straight line passing through the sphere center intersects at least one of the balls.

To formulate the generalized shadow problem, let us give at first the following definitions which we also use in our investigation.

Each \(m\)-dimensional affine subspace of the space \(\mathbb{R}^n\), \(0 \leq m < n\), is called an \(m\)-dimensional plane.

Definition 1.1. One of two parts of an \(m\)-dimensional plane, \(m \geq 1\), of the space \(\mathbb{R}^n\), \(n \geq 2\), into which it is divided by its any \((m-1)\)-dimensional plane (herewith, the points of the \((m-1)\)-dimensional plane are included) is said to be an \(m\)-dimensional half-plane.

For instance, the 1-dimensional half-plane is a ray, the 2-dimensional half-plane is a half-plane, etc.

Definition 1.2. ([7]) A subset \(E \subset \mathbb{R}^n\) is called \(m\)-semiconvex with respect to a point \(x \in \mathbb{R}^n \setminus E\), \(1 \leq m < n\), if there exists an \(m\)-dimensional half-plane \(L\) such that \(x \in L\) and \(L \cap E = \emptyset\).

A subset \(E \subset \mathbb{R}^n\) is called \(m\)-semiconvex, \(1 \leq m < n\), if it is \(m\)-semiconvex with respect to every point \(x \in \mathbb{R}^n \setminus E\).

One can easily see that both definitions satisfy the axiom of convexity: the intersection of each subfamily of these sets also satisfies the definition. Thus, for any subset \(E \subset \mathbb{R}^n\) we can consider the minimal \(m\)-semiconvex set containing \(E\). This set is called the \(m\)-semiconvex hull of \(E\).
The generalized shadow problem requires to find the minimum number of pairwise disjoint closed (open) balls in \mathbb{R}^n (centered on a sphere S^{n-1} and whose radii are smaller than the radius of the sphere) such that any ray starting at the center of the sphere necessarily intersects at least one of these balls.

In the terms of m-semiconvexity this problem can be reformulated as follows: what is the minimum number of pairwise disjoint closed (open) balls in \mathbb{R}^n whose centers are located on a sphere S^{n-1} and the radii are smaller than the radius of this sphere such that the center of the sphere belongs to the 1-semiconvex hull of the family of these balls?

In [9] the generalized shadow problem is solved as $n = 2$ and only the sufficient number of balls is indicated for $n = 3$.

In the 60’s L. Aizenberg and A. Martineau proposed their notions of a linearly convex set in the multi-dimensional complex space \mathbb{C}^n. The first author considered domains and their closures and used boundary points of the domains in his definition [1, 2]. The second author used all points of the complement to a subset of the space \mathbb{C}^n, [5]. If one uses these definitions not only for domains and compact sets, then Aizenberg’s definition isolates one connected component of a set which is linearly convex in the sense of Martineau.

Guided by similar ideas Yu. Zeliskii suggested to distinguish m-semiconvex and weakly m-semiconvex sets.

We will use the following standard notations. For a subset $G \subset \mathbb{R}^n$ let \overline{G} be its closure, $\text{Int} G$ be its interior, and $\partial G = \overline{G} \setminus \text{Int} G$ be its boundary.

Say that a set A is approximated from the outside by a family of open sets A_k, $k = 1, 2, \ldots$, if \overline{A}_{k+1} is contained in A_k, and $A = \bigcap_k A_k$ (see [2]).

Definition 1.3. ([8]) An open subset $G \subset \mathbb{R}^n$ is called weakly m-semiconvex, $1 \leq m < n$, if it is m-semiconvex with respect to any point $x \in \partial G$. A subset $E \subset \mathbb{R}^n$ is called weakly m-semiconvex if it can be approximated from the outside by a family of open weakly m-semiconvex sets.

Thus, each weakly m-semiconvex set A is either open or closed. Among closed weakly m-semiconvex sets there also are sets with empty interior:

$$A = \overline{A} = \overline{A} \setminus \text{Int} A = \partial A.$$

Theorem 1.4. ([8]) Let $E \subset \mathbb{R}^2$ be an open, weakly 1-semiconvex and not 1-semiconvex subset. Then E is disconnected.

The formulation of the following theorem is equivalent to Theorem 1.4 but will be also in use.
Theorem 1.5. Let $E \subset \mathbb{R}^2$ be open, connected and weakly 1-semiconvex. Then E is 1-semiconvex.

The maximal connected subsets of a topological space A are called connected components (components) of A (see [2]).

In [8] it was constructed the example of an open, weakly 1-semiconvex, and not 1-semiconvex set (see Figure 2.3b). It was also conjectured that every open, weakly 1-semiconvex, and not 1-semiconvex set consists of at least three components. The latter statement was proved in [3].

Theorem 1.6. ([3]) Let $E \subset \mathbb{R}^2$ be an open, weakly 1-semiconvex, and not 1-semiconvex subset. Then E consists of at least three connected components.

We say that a component A of an open, bounded subset of the plane has smooth boundary if ∂A is the image of a C^1-embedding of the unit circle. We say that an open, bounded subset of the plane has smooth boundary if each of its components has smooth boundary.

The present paper continues the research of Yu. Zelinskii by investigating properties of 1-semiconvex and weakly 1-semiconvex open sets with smooth boundary in the plane.

For the convenience, we give the following

Definition 1.7. We say that a set in the plane has Z-property if the set is weakly 1-semiconvex and not 1-semiconvex.

The main result of the present paper is the following

Theorem 1.8. Suppose that an open, bounded subset $E \subset \mathbb{R}^2$ with smooth boundary has Z-property. Then E consists of at least four components.

2. Auxiliary results

In what follows, unless otherwise is specified, a point of the space \mathbb{R}^2 will be denoted by a small or capital Latin letter and the ray starting at that point will be denoted by a small Greek letter with the index denoting this point. The straight segment between points $x, y \in \mathbb{R}^n$ will be denoted by xy and the distance between them will be denoted by $|x - y|$.

Let us provide several auxiliary statements.

Proposition 2.1. If an open subset $E \subset \mathbb{R}^n$ is m-semiconvex, then it is weakly m-semiconvex.

Proposition 2.2. There exist sets in the plane having Z-property.
In the following example we present an open subset of \mathbb{R}^2 with Z-property.

Example 2.3. Figure 2.1a) shows a set E consisting of four open rectangles with a common rays passing through their boundaries. By the construction, for any boundary point of E there exists a ray that does not intersect E, while for any point of the interior of the rhombus $abcd$ such a ray can not be found.

Similarly, in Figure 2.1b), the set consisting of three open components is weakly 1-semiconvex. On the other hand it is not 1-semiconvex, since each ray η_x starting at each point x of the interior of the triangle abc intersects that set.

Figure 2.1.

Example 2.4. An example of open set with smooth boundary having Z-property can be obtained by replacing the rectangles from Figure 2.1a) with open sets having smooth boundaries tangent to the same rays and such that their union is weakly 1-semiconvex. For instance, this property holds for a system of four open disks shown in Figure 2.2a).

Figure 2.2.

Suppose that two disks of that system have the same radii r and their centers belong to the axis Ox and are symmetric with respect to the origin O, see Figure 2.2b). Assume that the other two disks have radii R and
their centers belong to the axis Oy. If we place the center of the fifth open disk with radius r at the point $(R+r,0)$, then the union of those five open disks will have Z-property. Adding more disks of radius r and centers on the axis Ox in the positive direction, we will get an open set with smooth boundary having Z-property and consisting of any finite or even countable number of components.

Further it will be shown that in the example of a set having Z-property and consisting of three components it is not possible to replace the components with those that have smooth boundary while maintaining Z-property.

The set of all points of rays starting at a point $x \in \mathbb{R}^n \setminus A$ and passing through a subset $A \subset \mathbb{R}^n$ is called the cone over the set A with respect to the point x and is denoted by C_xA. The boundary of C_xA consists of rays which are called boundary rays. The boundary rays of C_xA are called supporting for the set A (with respect to the point x). We suppose that $x \notin C_xA$ whenever A is open and $x \in C_xA$ otherwise.

It can be proved that if A is bounded and open (closed), then C_xA is open (closed) as well and $C_x\overline{A} = \overline{C_xA}$.

Lemma 2.5. A ray γ_x is supporting for an open bounded subset $E \subset \mathbb{R}^n$ iff the following conditions are satisfied:

1) $\gamma_x \cap \partial E \neq \emptyset$,
2) $\gamma_x \cap E = \emptyset$.

Proof. Necessity. Suppose $a' \in \gamma_x \cap E \neq \emptyset$, then there exists a neighborhood $U(a') \subset E$ of a' such that $\gamma_x \subset C_x(U(a')) \subset C_xE$ and the ray γ_x is not the boundary one. If $\gamma_x \cap \partial E = \emptyset$, then $\gamma_x \cap \overline{E} = \emptyset$, i.e $\gamma_x \subset \mathbb{R}^n \setminus C_x\overline{E} \equiv \mathbb{R}^n \setminus \overline{C_xE}$ which implies that the ray γ_x is also not the boundary one.

Sufficiency. Consider the cone C_xE. Since E is open, C_xE is open as well. We need to show that the ray γ_x satisfying conditions 1) and 2) coincides with one of boundary rays of C_xE. If $\gamma_x \subset \mathbb{R}^n \setminus \overline{C_xE}$, then condition 1) of the lemma is not true. On the other hand, if $\gamma_x \subset C_xE$, then $\gamma_x \cap E \neq \emptyset$, by the definition of C_xE, which contradicts to condition 2). Thus, $\gamma_x \subset \partial C_xE$. □

Lemma 2.6. For an open connected weakly 1-semiconvex subset $E \subset \mathbb{R}^2$ there exists at least one but no more than two supporting rays starting at some point $x \in \mathbb{R}^2 \setminus E$.

Proof. By Theorem 1.5 the set E is 1-semiconvex. Thus for any point $x \in \mathbb{R}^2 \setminus E$ there exists a ray γ_x such that $\gamma_x \cap E = \emptyset$. Since E is not empty, open and connected, C_xE is a plane angle $\angle \alpha > 0$ not containing its sides.
If γ_x is unique, i.e. $\gamma_x \equiv \mathbb{R}^2 \setminus C_x E$, then $\angle \alpha = 2\pi$ and γ_x is its unique side. On the other hand, if $\gamma_x \subsetneq \mathbb{R}^2 \setminus C_x E$, then $0 < \angle \alpha < 2\pi$ with two sides. \(\square\)

An example of open, connected, and weakly 1-semiconvex set E for which there exists a point $x \in \mathbb{R}^2 \setminus E$ admitting a unique supporting ray ξ_x is shown in Figure 2.3a).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.3.png}
\caption{Figure 2.3.}
\end{figure}

Definition 2.7. A point $x \in \mathbb{R}^n \setminus A$ is called a point of m-nonsemiconvexity of a subset $A \subset \mathbb{R}^n$ if there is no m-dimensional half-plane that has x on its boundary and does not intersect A.

Lemma 2.8. Suppose that an open subset $E = \bigcup_{j=1}^{k} E_j \subset \mathbb{R}^2$, $k \geq 3$, $k \in \mathbb{N}$, where E_j are its components, has Z-property. Let also x be a point of 1-nonsemiconvexity of E. Then each component E_j has exactly two supporting rays starting at x.

Proof. Since E has Z-property, it follows that each of its 1-nonsemiconvexity point x belongs to $\mathbb{R}^2 \setminus \overline{E}$.

By Lemma 2.8 each component E_j has either one or two supporting rays starting at x. Suppose some component E_{j_1}, $j_1 \in \{1, 2, \ldots, k\}$, has a unique supporting ray ξ_{x_1}. Since E is not 1-semiconvex, it follows that $\xi_x \cap (E \setminus E_{j_1}) \neq \emptyset$. Let ξ'_x be the ray complementary to ξ_x and y be the nearest point of ∂E_{j_1} to x along the ray ξ'_x.

Notice that any ray starting at y and not containing the ray ξ_x intersects E_{j_1}. Indeed, suppose there exists a ray γ_y not containing the ray ξ_x and such that $\gamma_y \cap E_{j_1} \neq \emptyset$. Let ξ'_y be the ray starting at y and containing ξ_x. Then the polygonal chain $\gamma_y \cup \{y\} \cup \xi_y$ cuts the plane into two open components (parts). Since $E_{j_1} \cap (\gamma_y \cup \{y\} \cup \xi_y) = \emptyset$ and E_{j_1} is connected, it is completely contained in one of those parts. On the other hand, there
exists a ray \(\eta_x \) contained in the other part, which gives \(\eta_x \cap E_{j^1} = \emptyset \). Since \(\eta_x \) differs from \(\xi_x \), it is clear that \(\xi_x \) is not a unique supporting ray for \(E_{j^1} \) with respect to the point \(x \). This contradicts to our assumption that \(E_{j^1} \) has a unique supporting ray.

Furthermore, since \(\xi_x \) intersects \(E \setminus E_{j^1} \), the ray \(\xi_y \supset \xi_x \) also intersects \(E \setminus E_{j^1} \). Thus, \(y \in \partial E \) is a point of 1-nonsemiconvexity of \(E \), which contradicts to weak 1-semiconvexity of \(E \) and none of the components of \(E \) have a unique supporting ray. □

Definition 2.9. Let \(A \subset \mathbb{R}^n \), \(A_1 \) be a component of \(A \), and \(x \in \mathbb{R}^n \setminus (\overline{A}) \). A ray \(\xi_x \) is called inner supporting for the set \(A \) with respect to \(A_1 \), whenever \(\xi_x \) is supporting for \(A_1 \), \(\xi_x \cap (A \setminus A_1) \neq \emptyset \), and there exists a point \(a \in \xi_x \cap \partial A_1 \) such that \(|a - x| < |b - x| \) for any point \(b \in \xi_x \cap (A \setminus A_1) \).

Definition 2.10. Let \(A \subset \mathbb{R}^n \) and \(x \in \mathbb{R}^n \setminus (\overline{A}) \). A ray \(\xi_x \), is called inner supporting for \(A \) if there exists a component \(A_1 \) of \(A \) such that \(\xi_x \) is inner supporting for \(A \) with respect to \(A_1 \).

Lemma 2.11. Let \(E_1, E_2 \) be two components of a subset \(E \subset \mathbb{R}^n \) and let \(x \in \mathbb{R}^n \setminus \overline{E} \). If a ray \(\xi_x \) is inner supporting for \(E_1 \cup E_2 \) and
\[
\xi_x \cap (E \setminus (E_1 \cup E_2)) = \emptyset,
\]
then \(\xi_x \) is inner supporting for \(E \).

Proof. Without loss of generality, suppose that \(\xi_x \) is inner supporting for the set \(E_1 \cup E_2 \) with respect to \(E_1 \). Then \(\xi_x \) is supporting for \(E_1 \) and has the following properties:

a) \(\xi_x \cap E_2 \neq \emptyset \),

b) there exists a point \(a \in \xi_x \cap \partial E_1 \) such that \(|a - x| < |b - x| \) for every \(b \in \xi_x \cap E_2 \) by Definition 2.9.

Condition a) together with condition \(E_2 \subset E \setminus E_1 \) gives \(\xi_x \cap (E \setminus E_1) \neq \emptyset \). Since \(\xi_x \cap (E \setminus (E_1 \cup E_2)) = \emptyset \), we have
\[
\xi_x \cap E_2 \equiv \xi_x \cap ((E \setminus (E_1 \cup E_2)) \cup E_2) \equiv \xi_x \cap (E \setminus E_1),
\]
which together with condition b) gives \(|a - x| < |b - x| \) for the point \(a \in \xi_x \cap \partial E_1 \) and for any point \(b \in \xi_x \cap (E \setminus E_1) \). Thus, \(E_1 \) is a component of \(E \) such that \(\xi_x \) is an inner supporting ray for \(E \) with respect to \(E_1 \). □

Lemma 2.12. Let \(E = \bigcup_{j=1}^{k} E_j \subset \mathbb{R}^2 \), \(3 \leq k < \infty \), \(k \in \mathbb{N} \), be an open bounded set having \(Z \)-property, where \(E_j \) are its components. Let \(x \in \mathbb{R}^2 \setminus \overline{E} \) be a point of 1-nonsemiconvexity of \(E \), \(y \in \partial E \) the nearest point of \(\partial E \) to \(x \) along some ray \(\eta_x \), and \(\gamma_y \) any ray that does not intersect \(E \).
Then there exists an inner supporting ray ξ_x for E with respect to some component E_{j^0}, $j^0 \in \{1,k\}$, such that

1) $\xi_x \cap \gamma_y = c \neq \emptyset$;
2) $|a - x| \leq |c - x|$ for any point $a \in \xi_x \cap \partial E_{j^0}$;
3) $E \cap \text{Int}(\triangle xyc) = \emptyset$.

Proof. Since x is a point of 1-nonsemiconvexity of E, γ_y does not lie on the straight line that contains η_x.

Choose the polar coordinate system (φ, ρ) in \mathbb{R}^2 in which x is the pole, the ray $\eta_x = \eta_x(0)$ is the polar axis, $\eta_x(\varphi)$ is a ray starting at x and constituting an angle φ with ray η_x, and a positive angular coordinate φ is determined by a ray starting at x and intersecting ray γ_y.

Let $\eta_x(\phi)$, $0 < \phi < \pi$, be the ray that is parallel to γ_y. Then rays $\eta_x(\varphi)$, $0 < \varphi < \phi$, intersect γ_y. We will also use the following notations:

c(φ) = $\eta_x(\varphi) \cap \gamma_y$ and $xc(\varphi)$ is the interval between points x and $c(\varphi)$.

Let Φ be the set of all $\phi \in (0, \phi)$ such that $xc(\varphi) \cap E \neq \emptyset$. Then Φ is non-empty. Indeed, since $\eta_x(\phi) \cap \partial E \neq \emptyset$ and E is open, there exists $\varepsilon > 0$ small enough and such that $xc(\phi - \varepsilon) \cap E \neq \emptyset$.

Let $J \subseteq \{1,2,\ldots,k\}$ be the set of all indexes $j \in \{1,2,\ldots,k\}$ such that there exists $\varphi \in \Phi$ for which $xc(\varphi) \cap E_j \neq \emptyset$. Let also $\Phi_j \subseteq \Phi$, $j \in J$, be the set of all $\varphi \in \Phi$ with $xc(\varphi) \cap E_j \neq \emptyset$.

Put $\varphi_j = \inf \Phi_j$, $j \in J$. Then it is clear that $\varphi_j \in [0, \phi)$ and

a) $xc(\varphi_j) \cap \partial E_j \neq \emptyset$,
b) $xc(\varphi_j) \cap E_j = \emptyset$,
c) $xc(\varphi_j + \varepsilon) \cap E_j \neq \emptyset$, for $\varepsilon > 0$ small enough.

This implies that $E_j \cap \text{Int}(\triangle xyc(\varphi_j)) = \emptyset$, $j \in J$.

Figure 2.4.

We claim that if $\eta_x(\varphi_q) \cap E_q \neq \emptyset$ for some $q \in J$, then E_q does not have supporting rays starting at x, see Figure 2.4a). Indeed, suppose $\eta_x(\varphi')$, $\varphi' \neq \varphi_q$, is supporting for E_q. Then $\eta_x(\varphi') \cap E_q = \emptyset$. Let $\gamma_{c(\varphi_q)}$ be the ray
starting at point $c(\varphi_q)$ and lying on ray γ_y. If $\eta_x(\varphi') \cap \gamma_{c(\varphi_q)} = \emptyset$, then the polygonal chain

$$L := \eta_x(\varphi') \cup \{x\} \cup xc(\varphi_q) \cup \{c(\varphi_q)\} \cup \gamma_{c(\varphi_q)}$$

cuts the plane into two open components. Herewith, $L \cap E_q = \emptyset$. One of the components of $\mathbb{R}^2 \setminus L$ contains a part of the ray $\eta_x(\varphi_q)$ intersecting E_q. Since E_q is connected, it is entirely contained in this component. On the other hand, since the interval $xc(\varphi)$, $\varphi_q < \varphi < \phi$, is contained in the second component of $\mathbb{R}^2 \setminus L$ and $xc(\varphi_q + \varepsilon) \cap E_q \neq \emptyset$, for $\varepsilon > 0$ small enough, E_q is contained in the second component. We have reached a contradiction.

If $\eta_x(\varphi') \cap \gamma_{c(\varphi_q)} \neq \emptyset$, then the polygonal chain L cuts the plane into three open components. The component of $\mathbb{R}^2 \setminus L$ containing the part of the ray $\eta_x(\varphi_q)$ intersecting E_q contains E_q as well. Moreover, the component of $\mathbb{R}^2 \setminus L$ bounded by the triangle generated by the intersection of rays $\eta_x(\varphi')$, $\gamma_{c(\varphi_q)}$, and $\eta_x(\varphi_q)$ also contains E_q, since $xc(\varphi_q + \varepsilon) \cap E_q \neq \emptyset$, for $\varepsilon > 0$ small enough. This contradicts to the fact that E_q is connected. Thus, our assumption is incorrect and E_q does not have supporting rays starting at x.

Similarly, it can be proved that if $\eta_x(\varphi_q) \cap E_q = \emptyset$ but there exists a point $a \in \eta_x(\varphi_q) \cap \partial E_q$ such that $|a - x| > |c(\varphi_q) - x|$ for some $q \in J$, then E_q has a unique supporting ray starting at x coinciding with $\eta_x(\varphi_q)$ (see Figure 2.4.b).

The cases when component E_q does not have supporting ray or has a unique supporting ray contradict to Lemma 2.8. Then by Lemma 2.5, for any $j \in J$ the ray $\eta_x(\varphi_j)$ is supporting for E_j and has the following properties:

a) $\eta_x(\varphi_j) \cap \gamma_y = c(\varphi_j)$;

b) $|a - x| \leq |c(\varphi_j) - x|$ for any point $a \in \eta_x(\varphi_j) \cap \partial E_j$;

c) $E_j \cap \text{Int}(\triangle xyc(\varphi_j)) = \emptyset$.

Thus, conditions 1) and 2) of our lemma are fulfilled for any ray $\eta_x(\varphi_j)$, $j \in J$.

To finish the proof, we need only to show that among rays $\eta_x(\varphi_j)$, $j \in J$, there is the one that is inner supporting for E and satisfying the lemma condition 3). Consider the angle $\varphi_j^0 := \min_j \varphi_j$, $j^0 \in J$, and note that by the constructions $E \cap \triangle \text{Int}(xyc(\varphi_{j^0})) = \emptyset$. Thus, condition 3) holds for the ray $\eta_x(\varphi_{j^0})$. Since x is a point of 1-nonseminconvexity of E, it follows that $\eta_x(\varphi_{j^0}) \cap (E \setminus E_{j^0}) \neq \emptyset$. It then follows from properties 1) and 2), that $|a - x| < |b - x|$ for any point $a \in \eta_x(\varphi_{j^0}) \cap \partial E_{j^0}$ and any point $b \in \eta_x(\varphi_{j^0}) \cap (E \setminus E_{j^0})$. Thus, $\xi_x := \eta_x(\varphi_{j^0})$ is an inner supporting ray of E with respect to E_{j^0} satisfying the conditions 1)-3) of the lemma. \qed
Remark 2.13. Notice that if ∂E is not smooth at y, then the inner supporting ray ξ_x can coincide with the ray η_x. In this case the points c and y coincide and $\triangle xyc$ degenerates into the interval xy, see Figure 2.3b). Then all rays $\eta_x(\varphi)$ which are close enough to $\xi_x \equiv \eta_x$ and intersect ray γ_y must also intersect the component E_j°.

If ∂E is smooth, then $\triangle xyc$ is non-degenerate, due to the fact that y is the nearest to x along η_x.

Definition 2.14. We say that a subset $A \subset \mathbb{R}^n$ is projected from a point $x \in \mathbb{R}^n$ on a subset $B \subset \mathbb{R}^n$ if any ray starting at point x and intersecting A intersects B as well.

Lemma 2.15. Suppose an open subset $E \subset \mathbb{R}^2$ has Z-property and consists of three components. Then none of its components is projected on the union of the others from a point of 1-nonsemiconvexity of E.

Proof. Let E_1, E_2, E_3 be connected components of E and $x \in \mathbb{R}^2 \setminus \overline{E}$ be a point of 1-nonsemiconvexity of E. Without loss of generality, suppose that E_1 is projected from x on $E_2 \cup E_3$, see Figure 2.5. Then the set, consisting only of components E_2, E_3, has Z-property, which contradicts to Theorem 1.6. \qed

![Figure 2.5.](image)

Let $E \subset \mathbb{R}^2$ be an open subset and γ a straight line passing through some boundary point x of E and does not intersect set E in some neighborhood U of x, i.e. $\gamma \cap E \cap U = \emptyset$. Notice that γ cuts the plane into two half-planes. Let P be the half-plane such that $P \cap U \cap E = \emptyset$. We say that a ray η_x starting at x lies above the straight line γ if $\eta_x \subset P$.

Lemma 2.16. Suppose an open bounded set $E \subset \mathbb{R}^2$ has Z-property and consists of three components. If ∂E is smooth, then E has three distinct inner supporting rays starting at a point of 1-nonsemiconvexity of E and
each of them is inner supporting for \(E \) with respect to a unique component of the set.

Proof. Let \(E_j, \ j = 1, 2, 3 \), be components of \(E \) and let \(x \in \mathbb{R}^2 \setminus E \) be a point of 1-nonsemiconvexity of the set. By Lemma 2.8 each \(E_j, \ j = 1, 2, 3 \), has exactly two supporting rays which we denote by \(\xi_x^{j,1}, \xi_x^{j,2} \), respectively. Notice that in general some of \(\xi_x^{j,k}, \ j = 1, 2, 3, \ k = 1, 2, \) can coincide, see Figure 2.7b).

By Lemma 2.15, none of the components of \(E \) is projected on the union of the others from \(x \). Then for \(i = 1, 2, 3 \) there exists a ray \(\tau_x^i \) starting at \(x \) and intersecting a unique component \(E_i \). In other words,

\[
\tau_x^1 \cap E \equiv \tau_x^1 \cap E_1, \quad \tau_x^2 \cap E \equiv \tau_x^2 \cap E_2, \quad \tau_x^3 \cap E \equiv \tau_x^3 \cap E_3.
\]

Then the rays \(\tau_x^1, \tau_x^2 \) and \(\tau_x^3 \) cut the plane into three open components \(G_1, G_2, G_3 \) such that

\[
\partial G_1 = \tau_x^2 \cup \tau_x^3, \quad \partial G_2 = \tau_x^3 \cup \tau_x^1, \quad \partial G_3 = \tau_x^1 \cup \tau_x^2.
\]

Consider the closure of the domain \(G_3 \) between the rays \(\tau_x^1, \tau_x^2 \). We claim that \(\overline{G_3} \) does not contain points of \(E_3 \). Indeed, \(\partial G_3 \cap E_3 = \emptyset \) and \(\partial G_3 \) cuts \(\mathbb{R}^2 \setminus \{x\} \) into two components: \(G_3 \) and \(G_2 \cup G_1 \cup \tau_x^3 \). Since \(E_3 \) is connected, it must be completely contained in one of those components. Hence \(E_3 \cap \tau_x^3 \neq \emptyset \) implies that \(E_3 \subset G_2 \cup G_1 \cup \tau_x^3 \).

Thus, the union of rays starting at \(x \) and intersecting both \(E_1, E_2, \) is open and connected in \(\overline{G_3} \) and its boundary consists of one ray supporting for \(E_1 \) and one ray supporting for \(E_2 \). Without loss of generality, suppose \(\xi_x^{1,1}, \xi_x^{2,2} \subset \overline{G_3} \). Analogically, \(\xi_x^{2,1}, \xi_x^{3,2} \subset \overline{G_1}, \xi_x^{3,1}, \xi_x^{1,2} \subset \overline{G_2} \).

Now we prove that for a fixed \(k = 1, 2, 3 \) one and only one of rays \(\xi_x^{1,1}, \xi_x^{2,2} \subset \overline{G_k}, \ (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2), \) is inner supporting for \(E \). It is sufficient to prove this for \(k = 3 \). Moreover, due to Lemma 2.11, it suffices to show that one and only one of rays \(\xi_x^{1,1}, \xi_x^{2,2} \) is inner supporting for the set \(E_1 \cup E_2 \).

By Lemma 2.5, \(\xi_x^{i,j} \cap \partial E_j \neq \emptyset, \xi_x^{i,j} \cap E_j = \emptyset, \ j = 1, 2 \). Consider the points \(y_j \in \xi_x^{i,j} \cap \partial E_j, \ j = 1, 2 \). By smoothness of \(\partial E \) and since \(\xi_x^{i,j} \cap E_j = \emptyset, \ j = 1, 2 \), the rays \(\xi_x^{1,1}, \xi_x^{2,2} \) are tangent to \(\partial E_1, \partial E_2 \) at the points \(y_1, y_2 \), respectively. Without loss of generality, suppose that there are points \(b_1, b_2 \in \xi_x \cap E_2 \) such that \(|b_1 - x| < |y_1 - x| < |b_2 - x| \), see Figure 2.6a). Since ray \(\xi_x^{1,1} \) is tangent to \(\partial E_1 \) at \(y_1 \), all rays starting at \(y_1 \) and not intersecting \(E \) should lie above the straight containing \(\xi_x^{1,1} \). On the other hand, all these rays intersect any curve in \(E_2 \) connecting points \(b_1, b_2 \), as \(E_2 \) is connected, which gives that these rays intersect \(E_2 \) and
therefore \(y_1 \) is a point of 1-nonsemiconvexity of \(E \). This contradicts weakly 1-semiconvexity of the set.

Thus, \(|b - x| < |y_1 - x| \) or \(|b - x| > |y_1 - x| \) for any point \(b \in \xi_{x}^{1,1} \cap E_2 \). These statements are also true for the ray \(\xi_{x}^{2,2} \). Furthermore, \(|b_1 - x| > |y_2 - x| \) for any point \(b_1 \in \xi_{x}^{2} \cap E_1 \) if and only if \(|b_2 - x| < |y_1 - x| \) for any point \(b_2 \in \xi_{x}^{1,1} \cap E_2 \). Swapping indices we will also get that \(|b \circ x| > |y_2 - x| \) for any point \(b \in \xi_{x}^{1,1} \cap E_2 \) if and only if \(|b \circ x| < |y_1 - x| \) for any point \(b \in \xi_{x}^{2,2} \cap E_1 \), see Figure 2.6b). Otherwise, \(E_1, E_2 \) would be overlapping.

Hence, \(\xi_{x}^{i,j} \) is supporting for \(E_j \) and \(\xi_{x}^{i,j} \cap ((E_1 \cup E_2) \setminus E_j) \neq \emptyset \), \(j = 1, 2 \), but \(|b - x| > |y_j - x| \) for each \(y_j \in \partial E_j \) and each \(b \in \xi_{x}^{i,j} \cap ((E_1 \cup E_2) \setminus E_j) \), if \(j = 1 \) or \(j = 2 \), which was necessary to prove.

![Figure 2.6](image)

Thus, \(E \) has no more than three inner supporting rays which we denote by \(\xi_{x}^{i} \), \(i = 1, 2, 3 \), such that \(\xi_{x}^{i} \subseteq G_{i} \). Herewith, if \(\xi_{x}^{k} \subseteq G_{k} \), \(k = 1, 2, 3 \), then the ray \(\xi_{x}^{k} \) is supporting for a unique of components \(E_j \), \(j = 1, 2, 3 \), \(j \neq k \), and therefore, it is inner supporting for \(E \) with respect to a unique component of \(E \).

Since each \(G_{k} \) contains only points of \(E_i, E_j \) for

\[
(i, j, k) = (1, 2, 3), \ (2, 3, 1), \ (3, 1, 2),
\]

neither of the rays \(\xi_{x}^{k} \subseteq G_{k} \), \(k = 1, 2, 3 \), can be inner supporting with respect to three components \(E_j \), \(j = 1, 2, 3 \), at the same time.

Since \(G_{i} \cap G_{j} = \tau_{x}^{i} \), \((i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2) \), a ray \(\xi_{x}^{k} \subseteq G_{k} \), \(k = 1, 2, 3 \), can be inner supporting with respect to two components if and only if it coincides with a neighboring inner supporting ray on the common boundary of the respective sets \(G_{j} \), \(j = 1, 2, 3 \). Let us consider this case and prove that it is not possible under the lemma conditions. By this we will show that \(E \) has not less than three inner supporting rays starting at
x and ξ_x^k is inner supporting for E with respect to a single component of the set in ∂G_k, $k = 1, 2, 3$, as well.

Without loss of generality, assume that two inner supporting rays ξ_x^1, ξ_x^2 coincide with the boundary ray τ_x^3, see Figure 2.7a). By the constructions, ξ_x^1 can be supporting for E_2 or E_3. But since τ_x^3 intersects component E_3 and ξ_x^1 coincides with τ_x^3, the ray ξ_x^1 is supporting for E_2. Similarly, the ray ξ_x^2 is supporting for E_1.

Let y_j be the nearest to x point of $\tau_x^3 \cap \partial E_j$, $j = 1, 2$. Since $\tau_x^3 \cap E_j = \emptyset$, $j = 1, 2$, and by smoothness of ∂E, the ray τ_x^3 is tangent to ∂E_j at the points y_j, $j = 1, 2$. The points y_1, y_2 do not coincide, since otherwise one can not draw a ray starting at the point $y_1 = y_2$ and does not intersect E, which contradicts to weak 1-semiconvexity of E. Assume for definiteness that x is closer to y_1 than to y_2, i.e. $|x - y_1| < |x - y_2|$. Then, let us draw any ray γ_{y_1} starting at y_1 and not intersecting E. It lies above the straight line containing the ray τ_x^3, since ∂E is smooth. The ray, complementary to τ_x^3, intersects ∂E at the point z_1 which is nearest to x along this ray.

Let us draw a ray γ_{z_1} starting at z_1 and also not intersecting E. By Lemma 2.12, among all rays starting at point x and crossing rays γ_{y_1} and γ_{z_1} there exist two inner supporting rays different from τ_x^3. If they are distinct, this contradicts to the fact that E has only two inner supporting rays by our assumption. Such an inner supporting ray is unique only if rays γ_{y_1} and γ_{z_1} are intersecting and the inner supporting ray ξ_x^3 passes through the point $x_0 \in \gamma_{y_1} \cap \gamma_{z_1}$.

Since the polygonal chain $\gamma_{y_1} \cup \{y_1\} \cup y_1 z_1 \cup \{z_1\} \cup \gamma_{z_1}$ is self-intersecting, it cuts the plane into three components (parts). The first part contained inside the triangle $y_1 z_1 x_0$ does not have points of E, by condition 3) of Lemma 2.12. Since the ray $\tau_{y_1}^3 \subset \tau_x^3$ is such that $y_1 \in \tau_{y_1}^3 \cap \partial E_1$, $y_2 \in \tau_{y_1}^3 \cap \partial E_2$, and $\tau_{y_1}^3 \cap E_3 \neq \emptyset$, the second part of the plane that holds $\tau_{y_1}^3$ contains all three components of E. Thus, the third part also does not have points.
of E, which allows the ray ξ^3_x to not intersect E. This contradicts to non 1-semiconvexity of E. Lemma is proved. □

Remark 2.17. Lemma 2.16 fails for sets with non-smooth boundary. Figure 2.7b) contains an example of open bounded set having Z-property and consisting of three components which has only two inner supporting rays starting at a point of 1-nonsenseiconvexity $x \in \text{Int}(\triangle y_1 a_1 a_2)$.

In the following lemmas we will assume that inner supporting rays of the set start at some point of its 1-nonsenseiconvexity.

Lemma 2.18. There exists no open bounded subset $E \subset \mathbb{R}$ with smooth boundary having Z-property, consisting of three components E_1, E_2, E_3, and such that two of inner supporting rays of E are inner supporting with respect to the same component.

Proof. Let us prove the lemma by the contradiction. Let $x \in \mathbb{R}^2 \setminus E$ be a point of 1-nonsenseiconvexity of E. By Lemma 2.16, E has three inner supporting rays ξ^i_x, $i = 1, 2, 3$, and each of them is inner supporting with respect to a unique component of E.

Without loss of generality, suppose that the rays ξ^1_x and ξ^2_x are inner supporting for E with respect to the component E_1 and ξ^3_x is inner supporting with respect to E_3.

Consider the intersections $\xi^1_x \cap \partial E_1$, $\xi^2_x \cap \partial E_1$, $\xi^3_x \cap \partial E_3$. By Lemma 2.5, these intersections are not empty. Let $y_1 \in \xi^1_x \cap \partial E_1$, $y_2 \in \xi^2_x \cap \partial E_1$, $y_3 \in \xi^3_x \cap \partial E_3$ be the nearest points to x. Since ξ^i_x, $i = 1, 2, 3$, does not intersect the component for which it is supporting and by smoothness of ∂E, it follows that ξ^i_x is tangent to the boundary of the correspondent component at the point y_i, $i = 1, 2, 3$. This implies that all rays starting at y_i and not intersecting E lie above the straight line containing the supporting ray ξ^i_x.

Let S be the sector between rays ξ^1_x and ξ^2_x containing the component E_1. We claim that then the ray ξ^3_x is not contained in S. Indeed, otherwise E_3 would be contained in the open component of $\mathbb{R}^2 \setminus E$ bounded by the intervals xy_1, xy_2 and the part of ∂E_1 between points y_1, y_2. Then E_3 would be projected on E_1, which contradicts to Lemma 2.15. Therefore ξ^3_x is contained in the open sector that is complementary to S.

Let α be the angle of sector S. Consider two cases: a) $\alpha \geq \pi$ and b) $\alpha < \pi$.

a) Let $z_3 \in \partial E$ be the point contained in the ray complementary to ξ^3_x and closest to x. Then $z_3 \in \partial E_1$, see Figure 2.8. Let us draw a ray γ_{z_3} that does not intersect E. It passes through the interval xy_1 or xy_2. It is sufficient to consider the case with interval xy_1. For the interval xy_2, the arguments will be the same.
By Lemma 2.12, one of the rays ξ^i_x, $i = 1, 2, 3$, satisfies conditions 1)-3) of that lemma for the ray γ_{z_3}. Denote that ray by ξ_x.

Since ξ^2_x lies in the half-plane not containing γ_{z_3}, the ray ξ^2_x does not intersect γ_{z_3} and therefore $\xi_x \neq \xi^2_x$. As $\gamma_{z_3} \notin \xi^3_x$, the ray ξ^3_x does not intersect ray γ_{z_3} as well and therefore $\xi_x \neq \xi^3_x$.

Let $c = \xi^1_x \cap \gamma_{z_3}$. Since ∂E is smooth and z_3 belongs to the open part of ∂E_1 between points y_1 and y_2, it follows that the point $y_1 \in \partial E_1$ satisfies the inequality $|y_1 - x| > |c - x|$ and therefore condition 2) of Lemma 2.12 is not fulfilled for the ray ξ^1_x. Thus, $\xi_x \neq \xi^1_x$ as well.

We get a contradiction, whence our assumption is incorrect for $\alpha \geq \pi$.

b) Suppose $\alpha < \pi$. If the inner supporting ray ξ^3_x is contained in the open sector S' between the rays complementary to ξ^1_x and ξ^2_x, then $z_3 \in \partial E_1$ and the arguments should be as in the case a). Thus, we again get a contradiction.

Let α_1 (resp. α_2) be the angle between nearest-neighbor rays ξ^3_x and ξ^1_x (resp. ξ^3_x and ξ^2_x), see Figure 2.9. Suppose ξ^3_x is not contained in the sector S'. Then $\alpha_1 \neq \alpha_2$.

For definiteness assume that $\alpha_1 > \alpha_2$ and $\alpha_1 \geq \pi$. By smoothness of ∂E, the ray γ_{y_1} that does not intersect E should lie above the straight that contains ξ^1_x. But all such rays intersect E. Indeed, if one assumes that there exists a ray γ_{y_1} not intersecting E, then by Lemma 2.12, one of the inner supporting rays ξ^j_x, $j = 1, 2, 3$, intersects γ_{y_1}. However the ray ξ^1_x can intersect γ_{y_1} only if $\gamma_{y_1} \subset \xi^1_x$, which is not possible, since ξ^1_x intersects E and γ_{y_1} does not. By the constructions, the rays ξ^3_x and ξ^2_x lie in the half-plane different from the one that contains γ_{y_1}. Then the rays ξ^3_x, ξ^2_x also do not intersect γ_{y_1}.

Thus, y_1 is a point of 1-nonsemiconvexity of E, which contradicts to its weak 1-semiconvexity. We have now reached a contradiction and our assumption is wrong for $\alpha < \pi$ as well. Lemma is proved.
Lemma 2.19. There exists no open bounded set with smooth boundary in the plane having Z-property, consisting of three components and such that there is a bijection between the inner supporting rays of the set and the components with respect to which they are inner supporting.

Proof. Let us prove the lemma by the contradiction. Suppose set $E \subset \mathbb{R}^2$ is open, bounded, having Z-property, and consisting of three components E_j, $j = 1, 2, 3$. Let $x \in \mathbb{R}^2 \setminus E$ be a point of 1-nonsemiconvexity of E. By Lemma 2.16, E has three inner supporting rays ξ^i_x, $i = 1, 2, 3$. Thus, without loss of generality, suppose ξ^i_x is inner supporting for E with respect to E_i, $i = 1, 2, 3$.

Let $y_i \in \xi^i_x \cap \partial E_i$ be the nearest point of $\xi^i_x \cap \partial E_i \neq \emptyset$ to x, Figure 2.10a). Since neither of the rays ξ^i_x, $i = 1, 2, 3$, intersect the respective component E_i for which it is supporting, it follows from smoothness of ∂E that each ray ξ^i_x is tangent to ∂E_i at the point y_i.

By Lemma 2.8, each component E_i, $i = 1, 2, 3$, is contained in the respective sector between two supporting rays of $\angle \alpha_i > 0$, $i = 1, 2, 3$. Without loss of generality, let us consider the polar coordinate system (φ, ρ), where point x is the pole, inner supporting ray ξ^1_x is the polar axis, and $\eta_x(\varphi)$ is a ray starting at x and generating an angle φ with ray ξ^1_x, see Figure 2.10. Since E is weakly 1-semiconvex, there exists a ray γ_{y_1} not intersecting E. As ∂E_1 is smooth, the ray γ_{y_1} should lie above the straight that contains ray ξ^1_x. Let us chose a positive angular coordinate determined by a ray starting at x and intersecting ray γ_{y_1}. In this coordinate system, let angle ϕ be such that $\eta_x(\phi) \parallel \gamma_{y_1}$, $0 < \phi < \pi$.

![Figure 2.9.](image-url)
By Lemma 2.12, for the ray $γ_{y_1}$ there exists an inner supporting ray $ξ_x$ satisfying conditions 1)-3) of that lemma. Since E has only three inner supporting rays, one of rays $ξ_x^i$, $i = 1, 2, 3$, coincides with $ξ_x$.

Since ∂E is smooth, the triangle $x y_1 c$, where $c = ξ_x \cap γ_{y_1}$, does not degenerate into the interval $x y_1$. Then $ξ_x \neq ξ_x^1$, which gives $ξ_x = ξ_x^2$ or $ξ_x = ξ_x^3$.

Without loss of generality suppose that $ξ_x = ξ_x^2$. Then by Lemma 2.12, $ξ_x^2 = η_x(φ_2)$, $0 < φ_2 < φ < π$, and

1) $ξ_x^2 \cap γ_{y_1} = c(φ_2)$;

2) $y_2 \in xc(φ_2)$;

3) $E \cap \text{Int}(Δ x y_1 c(φ_2)) = ∅$.

This implies that, in a certain coordinate system, the component E_2 is contained in the angle that corresponds to the interval $(φ_2, φ_2 + α_2)$ between its two supporting rays. Then E_1 is contained in the angle $(2π − α_1, 2π)$.

If $φ_2 + α_2 > 2π − α_1$, then $(φ_2, φ_2 + α_2) \cap (2π − α_1, 2π) \neq ∅$, see Figure 2.10. Hence neither of these intervals is completely contained in the other one, otherwise one of the components E_1, E_2 would be projected on the other. Consider the rays $τ_x^1$, $τ_x^2$ from the proof of Lemma 2.16. They are contained in the angle $(φ_2, φ_2 + α_2) \cup (2π − α_1, 2π) = (φ_2, 2π)$.

Let $[φ_3, φ_4) \subset (φ_2, 2π)$ be the angle between rays $τ_x^1$, $τ_x^2$. The component E_3 is not contained in $[φ_3, φ_4]$, otherwise E_3 would be projected on $E_1 \cup E_2$. Thus, by the proof of Lemma 2.16, the third inner supporting ray $ξ_x^3$ is contained in $[φ_3, φ_4]$ and is inner supporting for E with respect to one of the components E_1, E_2. This contradicts to our assumption that $ξ_x^3$ is inner supporting with respect to the component E_3.

If $φ_2 + α_2 \leq 2π − α_1$, then either angle $[φ_2 + α_2, 2π − α_1]$ or $[0, φ_2]$ does not contain points of E_3 and therefore points of E, otherwise, component E_1 would be projected on E_3. But this gives that we can draw a ray starting at x and not intersecting set E, which contradicts to non 1-semiconvexity of E. Thus the assumption is wrong. Lemma is proved. \square

Lemma 2.19 also fails for sets with non-smooth boundary, see Figure 2.3b).

3. PROOF OF THEOREM 1.8

By Theorem 1.6, the set E does not consist of one or two components. Due to Example 2.4, it suffices to prove that the set does not consist of three components as well. Let us prove this by contradiction. So, suppose E consists of three connected components E_i, $i = 1, 2, 3$.

Since E is not 1-semiconvex, it follows that there exists a point of 1-nonsemiconvexity $x \in \mathbb{R}^2 \setminus E$ of E (since E is a weakly 1-semiconvex set, we do not consider points of ∂E as points of 1-nonsemiconvexity of E).
By Lemma 2.16, E has three inner supporting rays ξ_i^x, $i = 1, 2, 3$, starting at x, and each of them is inner supporting for E with respect to a single component of the set. In other words, there is a function

$$f : \{\xi_1^x, \xi_2^x, \xi_3^x\} \rightarrow \{E_1, E_2, E_3\}.$$

Since by Lemma 2.8 each component has at most two supporting rays, there possible exactly two cases:

I) f is a bijection, i.e., each ray ξ_i^x, $i = 1, 2, 3$, is inner supporting for E with respect to one and only one component of E, Figure 3.1a;

II) there exist ξ_k^x, ξ_l^x, $k, l = 1, 2, 3$, $k \neq l$, such that $f(\xi_k^x) = f(\xi_l^x)$, i.e., two rays of ξ_i^x, $i = 1, 2, 3$, are inner supporting for E with respect to the same its component and the third is inner supporting for E with respect to one of the other two components, Figure 3.1b).

Then the case II) is not possible due to Lemma 2.18 while the case I) is not possible by Lemma 2.19. Therefore the assumption that the set
consists of three components is incorrect. Example 2.4 completes the proof of Theorem 1.8.

\[\square \]

Corollary 3.1. Suppose an open bounded subset \(E \subset \mathbb{R}^2 \) has \(Z \)-property and consists of four components with smooth boundary. Then none of its components is projected on the union of the others from a point of \(1 \)-nonsemiconvexity of \(E \).

Proof. The proof is similar to the proof of Lemma 2.15. Let \(E_i, i = 1, 4 \), be components of \(E \), and \(x \in \mathbb{R}^2 \setminus E \) be a point of \(1 \)-nonsemiconvexity of \(E \). Without loss of generality, suppose that \(E_1 \) is projected from \(x \) on \(\bigcup_{i=2}^4 E_i \).

Then the set, consisting only of components \(E_i, i = 2, 3, 4 \), has \(Z \)-property, which contradicts to Theorem 1.8. \[\square \]

Acknowledgements. The author was supported by the grant of the President of Ukraine for competitive projects F75/30308 of the State Fund for Fundamental Research.

References

[1] L. A. Aizenberg. Linear convexity in \(\mathbb{C}^n \) and the separation of singularities of holomorphic functions. Bull. Acad. Pol. Sci., 15(7):487–495, 1967.

[2] L. A. Aizenberg. The expansion of holomorphic functions of several complex variables in partial fractions. Sibirsk. Mat. Ž., 8:1124–1142, 1967.

[3] H. K. Dakhil. The shadows problems and mappings of fixed multiplicity. PhD, Institute of Mathematics of NAS of Ukraine, Kyiv, 2017 (in Ukrainian).

[4] G. Khudaiberganov. On the homogeneous polynomially convex hull of a union of balls, volume Manuscr.dep. 21.02.1982 of 85 Dep. M.: VINITI, 1982 (in Russian).

[5] A. Martineau. Sur la topologie des espaces de fonctions holomorphes. Math. Ann., 163(1):62–88, 1966.

[6] B. A. Rozenfeld. Multi-dimensional spaces. Moskow, 1966 (in Russian).

[7] Yu. B. Zelinski. Generalized convex envelopes of sets and the problem of shadow. J. Math. Sci. (N.Y.), 211(5):710–717, 2015, doi: 10.1007/s10958-015-2626-8. Translation of Ukr. Mat. Visn. 12 (2015), no. 2, 278–289.

[8] Yu. B. Zelinski. Variations to the problem of “shadow”. Zbirn. Prats Inst. Math. NANU, 14(1):163–170, 2017 (in Ukrainian).

[9] Yu. B. Zelinski, I. Yu. Vygovskaya, M. V. Stefanchuk. Generalized convex sets and a shadow problem. Ukrain. Mat. Zh., 67(12):1658–1666, 2015, doi: 10.1007/s11253-016-1196-3.

Received: November 17, 2017, accepted: November 2, 2019.

Tetiana Osipchuk

Institute of Mathematics of NAS of Ukraine, Tereschenkivska str., 3, Kyiv, 01024, Ukraine

Email: osipchuk.tania@gmail.com