Chapter 5
SERS for Bacteria, Viruses, and Protein Biosensing

Ilya N. Kurochkin, Arkadiy V. Eremenko, Evgeniy G. Evtushenko, Natalia L. Nechaeva, Nikolay N. Durmanov, Rustam R. Guliev, Ilya A. Ryzhikov, Irina A. Boginskaya, Andrey K. Sarychev, A. V. Ivanov, and Andrey N. Lagarkov

Abstract In this chapter, various techniques are reviewed with focus on the identification of complex biological agents such as bacteria, viruses, proteins, and enzymes using SERS-active silver substrates. Biological targets have multiple peculiarities that add to the challenges of the SERS biosensing. In regards to the direct non-labeled sensing of bacteria, it was discovered that all bands in the registered SER spectra were generated by metabolites released from bacterial cells. It undermined the prior notion of non-labeled detection and identification of bacteria based on the presumed spectra of cellular walls. However, it also provides new opportunities for the SERS analysis of bacteria. The SERS measurements of viruses can be performed with SERS-active surfaces or colloidal solutions of silver nanoparticles. However, the use of surfaces requires extensive sample preparation and often lacks sensitivity, while colloidal SERS substrates have another problem—most types of silver nanoparticles are negatively charged and have a poor interaction with likewise predominantly negatively charged virions. Thus, a challenge is posed to develop SERS-ready positively charged silver nanoparticles or use other methods to enforce the non-specific binding of viruses to the silver surfaces. Meanwhile, SER spectra of proteins are nearly impossible to acquire at adequate sensitivity. Thus, non-direct measurements are the only way. SERS provides the most benefits when working with relatively small molecules, so small molecules serving as Raman probes can be...
used as an intermediary to produce SER spectra. For enzymes like butyrylcholine-
terase, it means measuring SER spectra of substrates and products of the relevant reaction, while for other proteins, specialized techniques must be developed. It can be concluded that biological targets require a case-by-case approach. Prior experiences with direct SERS measurements of highly Raman-active molecules like R6G and others often used in fundamental studies might not be relevant in bioanalytics.

Keywords SERS · bacteria · viruses · proteins · enzymes · biosensing

Nomenclature

4-mPBA 4-mercaptophenylboronic acid
AChE acetylcholinesterase
AFM atomic force microscopy
AMP adenosine monophosphate
BChE butyrylcholinesterase
CDV canine distemper virus
EB-PVD electron beam physical vapor deposition technique
EF enhancement factor
ELISA enzyme-linked immunosorbent assay
EW excitation wavelength
GA glycated albumin
HSA human serum albumin
LDA linear discriminant analysis
LOD limit of detection
MYXV myxomatosis virus
PCA principal component analysis
PCR polymerase chain reaction
PLS partial least squares regression
PVX potato virus X
SEM scanning electron microscopy
SERS surface enhanced Raman spectroscopy/scattering
SER surface enhanced Raman
TCh thiocholine
TMV tobacco mosaic virus
TNB 5-thio-2-nitrobenzoate ion
UV ultraviolet
VERS volume-enhanced Raman spectroscopy/scattering
5.1 Introduction

Surface-enhanced Raman scattering (SERS) is a powerful analyzing tool providing the high sensitive detection of different types of molecular compounds (Sharma et al. 2012; Sarychev et al. 2019). SERS is promising in clinical diagnostics, which include the cancer detection and imaging, cancer therapy and drug delivery (Pazos et al. 2016; Oseledchyk et al. 2016; Litti et al. 2016; Schurmann and Bald 2016; Andreou et al. 2016; Chen et al. 2016b; Chen et al. 2016c; Li et al. 2016a, 2016b; Cheng et al. 2017; Kneipp 2017; Harmsen et al. 2017; Rastinehad 2019), quantitative control of glycated proteins for diabetes detection (Xu et al. 1999; Kiran et al. 2010; Dingari et al. 2012; Barman et al. 2012; Lin et al. 2014), cardiovascular biomarkers for early diagnosis of acute myocardial infarction (Das et al. 2008; Benford et al. 2009; Chon et al. 2014), etc.; in environmental and food safety for real-time monitoring of pathogenic bacteria, pesticides, and toxic molecules (Bodelon et al. 2016; Duan et al. 2016a; Duan et al. 2016b; Yang et al. 2016; Chen et al. 2016a; Zhou et al. 2016; Tian et al. 2016; Liu et al. 2017); for detection of ultra-low quantities of nerve gases, explosive substances, and other hazardous substances (Hakonen et al. 2016; Chen et al. 2017). The basis of the SERS sensing is the generation of several plasmon modes at a metallic surface and further Raman scattering of the plasmons by analyte molecules. The molecules are excited by surface plasmons and generate secondary plasmons which can be significantly enhanced. The radiation coming from these secondary plasmons produces a SERS signal (Brouers et al. 1997). Therefore, in SERS, the dominant contribution to enhancement factor (EF) is the electromagnetic mechanism (Ding et al. 2016) allowing it to reach very high sensitivity. This EF for SERS is evaluated as the fourth power of the intensity of the local electric field (Brouers et al. 1997; Itoh et al. 2017; Ding et al. 2017). Thus, the surface morphology of nanostructured SERS substrates is crucial for achieving high EFs. It is an important point in context of increasing the sensitivity of the biological and chemical sensing. Several groups have already demonstrated EFs from 10^4 to 10^9 for SERS substrates composed of clusters of gold or silver nanoparticles encapsulated in a dielectric matrix (McFarland et al. 2005; Perney et al. 2006; Yan et al. 2009; Fan et al. 2011; Banaee and Crozier 2011; Li et al. 2011; Mattucci et al. 2012; Huang et al. 2013; Hu et al. 2014; Lee et al. 2014; Zhang et al. 2015). Modern fabrication technologies such as focused ion-beam lithography, electron-beam lithography, X-ray, UV, and interference lithographies allow to produce SERS substrates with an accuracy control over the shape and spatial distribution of nanostructures. However, most of these techniques are still expensive and complicated. A large number of nanostructures such as nanodisks, nanoholes, and nanodimers have been tested and provided high EFs for SERS (Brolo et al. 2004; Lim et al. 2010; Suh and Odom 2013; Barbillon et al. 2019). High EF was also observed in a system of silver microplates resulting from the enhancement of the local electric field in gaps between plates (Nechaeva et al. 2020).

The chemical enhancement strongly depends on local electronic structures of the molecules and the substrate it interacts with as each of their wave functions begins
to overlap (Campion et al. 1995; Kambhampati et al. 1998; Otto 2005). Influence of chemical enhancement is significantly weaker than electromagnetic enhancement. Indeed, the magnitude order of the chemical enhancement is only 10^2 (Jensen et al. 2008; Jahn et al. 2016), but it can play a crucial role in SERS. The maximum convergence of the analyzed molecules with the surface is extremely important.

In this chapter, we have reviewed useful techniques for identification of complex biological agents such as bacteria, viruses, proteins, and enzymes using SERS-active silver substrates.

5.2 Bacteria

Bioanalytical applications of label-free SERS for bacterial cells are fully defined by molecular origin of bacterial spectra. Early research papers on this topic (Picorel et al. 1990; Efrima and Bronk 1998; Zeiri et al. 2002, 2004) have shown that at excitation wavelengths (EWs) of 488 and 514.5 nm, SER spectra of various bacterial species, both Gram-positive and Gram-negative, are almost identical. Moreover, they do not differ from spectra of isolated cell membranes. Bands of oxidized or reduced forms of riboflavin as common components of cell membranes fully dominate in such spectra due to overlap of their extinction band with mentioned EWs, which leads to additional resonant enhancement of riboflavin spectrum. Such molecular origin of bacterial spectra at EWs of 488 and 514.5 nm holds the potential for their detection, but not discrimination of different species.

Pioneering studies on SERS of bacteria with longer EWs, particularly 785 nm, reported (Guzelian et al. 2002; Jarvis and Goodacre 2004; Premasiri et al. 2005) significant distinctive features in spectra of different species and sometimes strains. It has been hypothesized that label-free SERS of bacteria at EW of 785 nm might be used for both detection and identification of bacteria. Unfortunately, for more than 10 years, many attempts to assign observed bands to particular chemical substances were unconvincing as they were focused on single bands, but not the full spectrum (Guzelian et al. 2002; Jarvis and Goodacre 2004; Premasiri et al. 2005; Luo and Lin 2008; Kahraman et al. 2011; Feng et al. 2015; Su et al. 2015; Mosier-Boss 2017). However, it should be noted that adenine and guanine bands were identified in spectra (Guzelian et al. 2002; Luo and Lin 2008; Kahraman et al. 2011; Feng et al. 2015; Su et al. 2015), but their assignment to intracellular RNA/DNA raised questions about lacking bands of pyrimidines (thymine, uracil, and cytosine). Without solid basement of molecular origin, the main aim of the most bioanalytical papers was to demonstrate the ability of SERS to discriminate different species or strains using formal mathematical approach, based on application of principal component analysis (PCA) or similar procedures of dimensionality reduction to spectra, followed by discriminant or cluster analysis (Jarvis and Goodacre 2004; Patel et al. 2008; Sundaram et al. 2013; Mosier-Boss 2017; Witkowska et al. 2018).

Premasiri et al. (2016) decisively demonstrated that SER spectra of 10 various bacterial species at EW of 785 nm using “in situ” grown, aggregated-Au-nanoparticle-
covered SiO$_2$ substrate” originated from 6 purine derivatives (adenine, AMP, guanine, hypoxanthine, xanthine, and uric acid). It has been shown that these molecules were not bound to the cell surface, but were secreted by cells into the surrounding solution. Later the applicability of such assignment was confirmed for another type of SERS substrate, a sol of silver nanoparticles, and two EWs: 532 and 785 nm (Durovich et al. 2018). DH5α strain of Escherichia coli was used as a model bacterium; silver nanoparticles were incubated for 1 minute with thoroughly washed E. coli suspension followed by sol aggregation with NaCl for SER signal generation (Fig. 5.1). Bacterial SER spectra of a cell suspension batch showed high repeatability on a timescale of 10–20 min. However, during the course of 4 h of cell suspension storage, the overall intensity of spectra increased together with pronounced changes in intensity ratios of some strong bands (e.g., I_{1325}/I_{655}). Even more severe differences in spectra were observed for independently cultivated and harvested cells. Spectrum of the 0.22 mkm filtrate of cell suspension retained all the bands of the original suspension. Moreover, the intensities of these bands were substantially higher for filtrate. Thermal inactivation of cells at +90 °C for 1 h followed by washing resulted in almost complete disappearance of the spectra. They contained only 3 weak bands characteristic of intact bacteria (730, 1325, and 1450 cm$^{-1}$), the band of phenylalanine (1002 cm$^{-1}$), and two bands of the amide III (1230–1270 cm$^{-1}$) and amide I (1640–1680 cm$^{-1}$). Despite strong variations in spectra, they contained a limited number of bands. All of these bands both for the entire set of spectra or any particular spectrum were in a good agreement with positions and relative intensities of 4 purines: adenine, guanine, hypoxanthine, and xanthine. These substances were gradually released by cells into the surrounding media; their presence was characteristic of viable cells only; the ratio of purines varied both for different batches of the same strand and during 4 h storage in starvation conditions.

This newly revealed molecular origin of bacterial SER spectra at EWs of 532 and 785 nm considerably reshapes the entire bioanalytical area of label-free SERS of bacteria. Indeed, from this point of view, the problem of discrimination of bacterial species and strains is strongly related to dissimilarities in their purines metabolism. On the other hand, the presence of purines might be used as a general bacterial marker for their detection. It also starts a whole new field of SERS application for purine metabolome profiling in bacteria.
5.3 Identification of Animal and Plant Viruses

Viruses represent another type of biological object for SERS measurements. There is an urgent need to develop new rapid methods of virus detection, only further exacerbated by the emergence of new viral diseases, such as novel coronaviruses or new influenza strains (Afrough et al. 2019).

Highly sensitive and express techniques are thus in demand. Nowadays, there are two mutually exclusive types of solutions: highly sensitive techniques (variations of ELISA and PCR) and rapid techniques (such as immune–chromatography strips). The methods with sufficient sensitivity lack the necessary speed, which limits their applications in epidemics control. The rapid techniques mostly lack required sensitivity and cannot detect viruses without prior concentration.

SERS techniques appear to have almost the same limit of detection as ELISA in some cases, such as the SERS detection of porcine circovirus’ intact virions (Luo et al. 2013), influenza virus SERS assay (Kukushkin et al. 2019), hepatitis B antigen detection (Kamińska et al. 2015), and many others. Thus, SERS is considered to be one of the most promising approaches to achieve both rapid and sensitive detection of viral pathogens. Non-labeled detection, while harder to achieve, is especially alluring, due to the fact that it enables the detection of multiple different targets as well as new strains without the need for pre-existing antibodies or other selective agents. There are also less requirements for reagents and materials, and no time spent on any specific binding or amplification reaction.

There are several peculiarities associated with viruses in general, that must be taken into consideration before attempting to develop a SERS-based detection and/or identification methods. First of all, viral particles are almost always negatively charged due to low isoelectric point value, which lies around 4 to 5 for most viruses (Michen and Graule 2010). Simultaneously, many viruses are very fragile and stable only at specific pH values, which makes it impossible to reliably alter the charge of virions by adjusting pH of the solution. Most frequently used methods of silver nanoparticles synthesis produce negatively charged particles. Such particles have poor compatibility with negatively charged analytes. Another issue is the shape and size of virions. Most viruses can not fit entirely into hot spots of normal SERS substrates. That means that only surface components of the virions generate SERS signals, and the strength of that signal might be greatly reduced. While some viruses with thread-like shapes might generate strong SERS signals from both exterior and interior components, large spherical viruses might not. Finally, viruses might have empty virions (no nucleic acid inside) or destroyed virions’ fragments present in the solution, which further complicates data interpretation.

Taking into consideration the above-mentioned challenges, SERS-active surfaces remain the main focus for label-free SERS-based virus detection. One of the common approaches to solve the problem with the size of various viral particles is the application of nanocavities, which can incorporate the entire virion inside, maximizing the contacts between the virus and the hot spots (Chang et al. 2011; Yan et al. 2017). In fact, the entire internal volume of the nanocavities, depending on
their shape and size, might benefit from the electromagnetic signal enhancement, an effect which is sometimes called VERS (volume-enhanced Raman scattering) (Zhang et al. 2019), and can be used to acquire scattered light from the internal components of the large virions.

In one of our prior works (Durmanov et al. 2018), a SERS substrate with nanocavities was utilized for non-labeled SERS analysis of four viral species—two thin, thread-like non-enveloped plant viruses, and two large spherical enveloped animal viruses. The substrates were fabricated with electron beam physical vapor deposition technique (EB-PVD), achieving porous interwoven surface by altering temperature of the mica substrate and tuning adatom energy levels by altering EB acceleration voltage. EB-PVD, while not exactly precise, is a cheap and readily available method of fabrication. The resulting SERS substrates contained a large amount of nanocavities, 200–300 nm in diameter, as characterized by SEM and AFM methods. The 3-dimensional reconstruction, based on SEM and AFM images, can be seen in Fig. 5.2.

The tobacco mosaic virus (TMV) and the Potato virus X (PVX) are RNA containing plant viruses with a thin unenveloped thread-like capsid. Moreover, the two animal viruses, viz. Canine Distemper virus (CDV) and the rabbit Myxomatosis virus (MYXV), are large, with MYXV being somewhat larger, roughly spherical (CDV) or brick-shaped (MYXV), and enveloped, though their respective envelope-formation mechanisms are different. Also, one is a DNA-containing virus (MYXV), while the other RNA (CDV). The viruses were purified and diluted in the same buffer solution, and then deposited on the SERS-active surface and dried. Raman spectra were collected from the dried spot, containing adsorbed virions. The concentration was about 100 viral particles per the detection zone.

Then the preprocessing was applied: the spectra were trimmed to the region between 1800 cm\(^{-1}\) and 400 cm\(^{-1}\), and cosmic spikes were removed by straight line generation; then baseline was corrected, mean buffer spectrum was subtracted from each spectra, and vector normalization was applied. Figure 5.3 represents the averaged spectrum of each virus. For visual contrast, the values are also presented in a heat-map style.

![Fig. 5.2 Three-dimensional reconstruction of the SERS-active porous surface, based on SEM and AFM images](image)
The expected differences between viruses should be attributed to the variations in their structure and components. And indeed, the areas of interest, as indicated by the heat-map, correspond to the expected differences in chemical properties. The bands of cholesterol and other lipid content, as well as β-sheets typical for membrane proteins ($610, 1067–69, 1098, 1302, 1443, 1448, 1491, 1676, and 1734 \text{ cm}^{-1}$), are present in the spectra of MYXV and CDV, but absent in TMV and PVX, due to their lack of an envelope. Some bands have high influence in all groups: $770–800 \text{ cm}^{-1}, 1006–1008 \text{ cm}^{-1}, 1430–1450 \text{ cm}^{-1}, and 1650–1700 \text{ cm}^{-1}$. These might be related to proteins, nucleic acids, and aromatic amino acids. Some bands, like $1103, 1108, 1463 \text{ cm}^{-1}$, and others, are more pronounced in the two plant viruses. Presumably, these bands correspond to the nucleic acid components among other things. Since plant viruses have thin thread-like structure, their internal components, namely, RNA, are closer to the silver surface and thus can contribute more to the SERS signal. There are also differences between amino acid composition, seen at $\sim 480 \text{ cm}^{-1}, \sim 850 \text{ cm}^{-1}, and 1560 \text{ cm}^{-1}$.

The collation of PCA-LDA values, visually observed differences, and expected variation in SERS bands positions points to the conclusion that label-free SERS can indeed support the identification of viruses based on their spectra. The overhaul accuracy of the classification model, trained with the spectra of the viruses, was no less than 99.4%. The main challenge is sensitivity. One of the possible ways to increase it is to use SERS colloids, such as silver nanoparticles. The problem with the charge of the viruses might be overcome by using positively charged aggrega-

![Averaged spectra of each virus (black line). From top to the bottom: CDV, MYXV, TMV, and PVX. Each Raman shift is marked by a colored vertical line. The color of the line reflects the value of the averaged spectrum at the corresponding Raman shift. The values are colored by a gradient from dark red (the highest value within all averaged spectra) to the dark blue (the lowest value).](image-url)
tion reagents, which would act as intermediaries between negatively charged nanoparticles and virions. One example of that approach is the use of spermin, which was successfully applied to the nucleic acid SERS measurement (Li et al. 2018). The results for viruses are unclear so far, which opens a whole new field of research.

5.4 Quantitative Enzyme Detection

Since solid SERS-substrate application is limited by diffusion, it is very important to attract the analyte to the surface. Special attraction techniques can include imprinting in complex-shaped pores (Li et al. 2020; Ren et al. 2020), antibodies (Kamińska et al. 2017; Smolsky et al. 2017), or labels (e.g., peptides or low-molecular-weight targeting ligands (Lee et al. 2010; Li et al. 2016a, 2016b), or just utilize covalent bonding to the surface of the substrate (Shan et al. 2018). Here we describe two examples of covalent interaction with the view of analyte attraction.

Butyrylcholinesterase (BChE), or pseudocholinesterase, is a serine hydrolase closely related to acetylcholinesterase (AChE). This enzyme is of high toxicological and pharmacological importance because it hydrolyzes ester-containing drugs and scavenges cholinesterase inhibitors including potent organophosphorus nerve agents (Masson and Lockridge 2010; Lockridge 2015; Lockridge et al. 2016). Decreased BChE level is a diagnostic and prognostic indicator for organophosphate poisoning. BChE activity is associated with obesity (Li et al. 2008; Lima et al. 2013), with insulin resistance and the metabolic syndrome (Valle et al. 2006; Iwasaki et al. 2007), hyperlipidemia (Kalman et al. 2004), coronary artery disease and hypertension (Alcantara et al. 2002), and the arterial pathology of diabetes mellitus (Vaisi-Raygani et al. 2010). Thus, plasma level of BChE represents an important prognostic marker in the organophosphate exposure biomonitoring and in the diagnostic network of various patient clinical conditions.

One of the most widespread techniques for estimation of the cholinesterase activity is the detection of thiocholine—the product of enzymatic hydrolysis of butyrylthiocholine. Comparing to electrochemical methods (Arduini et al. 2009; Eremenko et al. 2012; Sgobbi et al. 2013; Kurochkin et al. 2014), Raman spectroscopy detection has a number of advantages: since the sample can be dried, the technique is suitable for routine measurements, the experiment can be carried out far away from the special equipment, and it is not necessary to transport blood or plasma samples.

Preparation and characterization of silver SERS-substrate were described by Nechaeva et al. (2018). In this study, silver-containing polymeric paste was applied to a 5-mm thick aluminum block and dried. The surface represents heterogeneous flaked structure with silver particles of various sizes and shapes. Numerous points of contact as well as the variation of the angles of incident light make possible the local enhancement of electromagnetic field, which causes a gain of Raman signal of the analyte.
The silver SERS substrate was used for thiocholine determination. Thiocholine solution was obtained by the enzymatic hydrolysis of butyrylthiocholine chloride according to the Scheme (1). The concentration of produced TCh was determined by Ellman's assay (Ellman et al. 1961). The conversion from the substrate reached 100%. The thiocholine concentration was calculated by the Beer–Lambert–Bouguer law ($\varepsilon_{412} = 14.15 \text{ ml/\mu mol} \cdot \text{cm}$ is the absorption coefficient of 5-thio-2-nitrobenzoate ion (TNB) at 412 nm) (Eyer et al. 2003).

The obtained Raman spectra of thiocholine have several characteristic peaks, the most intensive 773 cm$^{-1}$ can be attributed to CH3 rocking vibration modes (Liron et al. 2011).

For different concentrations of TCh, the resulting spectra have different intensities of 773 cm$^{-1}$ peak (Fig. 5.4). Therefore, it is possible to plot a calibration curve based on this peak. Each point at this curve represents the average of 10 replicates of TChCl spectra, and zero-point means phosphate buffer. The right axis on this figure demonstrates the PLS-calibration curve of thiocholine, the reference was Ellman's method. It is possible to calculate the limit of detection (LOD) for TCh

![Fig. 5.4](image)

Fig. 5.4 The calibration curve of thiocholine chloride on the silver SERS substrate based on intensity of 773 cm$^{-1}$ peak (black) and PLS-regression plot for the same data (red). The inset shows dependence of 773 cm$^{-1}$ peak intensity from the concentration of TCh, concentrations from the top to the bottom: 50, 30, 20, and 5 μM
using a calibration curve. For developed technique, LOD (TCh) is 260 nM and sensitivity is 103.92 intensity units/1 μM.

It was shown that BTCh presence does not affect TCh detection on silver SERS substrate (Nechaeva et al. 2018). This conclusion is very important because thiocholine is the product of enzymatic hydrolysis of butyrylthiocholine (Scheme 5.1). The resulting curve at the end of the enzymatic reaction enables us thiocholine determination (and BChE activity correspondingly) despite the BTCh presence.

Butyrylcholinesterase activity in solution is strongly connected with thiocholine concentration and can be evaluated by measuring TCh. The solutions with high initial BChE activity give intensive Raman spectra because of high concentration of the TCh, and the solutions with low BChE activity contrariwise give low-intensive spectra. As for TCh, BChE calibration curve in the buffer and in human plasma can be created in two ways—by 773 cm$^{-1}$ peak and by PLS regression. The offset for BChE calibration curve in plasma also takes into account initial BChE contained in human plasma. It must be highlighted that the matrix effect does not impact the results of measurements.

Silver SERS substrate can be applied for low-molecular substances determination, for example, thiocholine, for enzymatic activity detection in model systems and in spike solutions with plasma. This technique has a number of undeniable advantages: it is label-free, inexpensive, and has the possibility to routine measurements of hundreds of samples.

5.5 Glycated Human Albumin Biosensing

The SERS substrate described above can be also used for glycated albumin (GA) biosensing. GA level shows the average concentration blood sugars over 2 weeks (Koga et al. 2010). Thus, GA can be considered as a marker for glycemic status (Kohzuma and Koga 2010). The present techniques of GA determination often require antibodies and enzymes and also represent many-step difficult processes. We propose to expand the possible methods of analyzing the content of GA in plasma by using the SERS effect. There are a number of previous studies available which demonstrated the prospective use of SERS method for plasma glucose monitoring (Chen et al. 2011; Sun et al. 2014a, 2014b; Usta et al. 2016; Zhao et al. 2017).

The analysis itself includes silver SERS substrate, described above (Fig. 5.5a), modified with low-molecular-weight SERS label 4-mercaptophenylboronic acid.
This label creates very strong covalent bond Ag–S with silver surface and on the other hand has affinity to cis-diols and polyols due to boronic group. Surface modification of SERS substrate with 4-mPBA helps to produce specific substrate for cis-diol and polyols (including glycated proteins). Nechaeva et al. (2020) proposed the use of 4-mPBA-modified silver SERS substrate for one-step GA measuring both in the buffer and human plasma. In this work, selective changes of SERS spectra have been observed due to ionization of 4-mPBA on the surface. The main differences are observed at 416, 470, 999, 1021, 1072, 1572, and 1589 cm$^{-1}$ due to symmetry breaking of a 4-mPBA molecule from nearly C$_2$v to C$_s$ (Sun et al. 2014a, 2014b; Su et al. 2017). An obvious change of 8a (1586 cm$^{-1}$) and 8b (1573 cm$^{-1}$) modes is observed (Fig. 5.5b). Peaks demonstrate different areas, maximum position, different total intensity, and intensity of shoulders. All these changes indicate the difference between molecular HS-Ph-B(OH)$_2$ and anionic HS-Ph-B(OH)$_3$ forms of 4-mPBA.

4-mPBA band amplitude is distributed unevenly on the surface due to the heterogeneous morphology. Maximal Raman signals correspond to the excitation of gap plasmons between silver flakes as it is discussed above.

Silver SERS substrate modified with 4-mPBA was applied for sugars and glycated albumin determination. This technique provides detection of only covalently bonded molecules. To explore minor differences appearing due to glycation, statistical methods were used. Principal component analysis (PCA) was used to distinguish sugar spectra. The main differences that help to distinguish sugar spectra from the control lay in ranges 400–500 cm$^{-1}$, 950–1100 cm$^{-1}$, and 1550–1630 cm$^{-1}$ and correspond to 4-mPBA vibrations including in-plane benzene ring breathing mode and totally and non-totally symmetric ring-stretching vibrational modes.

For distinguishing human serum albumin (HSA) and glycated albumin (GA)—proteins with very similar structure—PLS (partial least square) regression was used. First, a model for standard concentrations of mixture HSA + GA was built. GA fraction was 24, 48, 60, 90, and 120 μM, and HSA was used as control (0 μM of GA). Then, using this model for GA, we can predict the value of GA in unknown samples. Plasma from three different healthy donors was examined on the SERS

Fig. 5.5 (a) SEM image of silver SERS-substrate surface, (b) comparison of Raman spectra of anionic and molecular form of 4-mPBA
substrate modified with 4-mPBA. The most significant loadings represent Raman shifts corresponded to 4-mPBA vibrations (ranges 250–450 cm$^{-1}$, 1000–1100 cm$^{-1}$, and 1600–1650 cm$^{-1}$) as in case with sugars. Although human plasma contains different sugars, they don’t affect the protein detection. We trained our model on protein spectra, thus we take into account only bands that play a key role in protein distinguishing. Predicted GA values are consistent with independent laboratory values. Thus silver SERS substrate modified with 4-mPBA allows quantitative biosensing of GA in the buffer and human plasma.

This technique requires an extremely low volume of the sample—about 15 μl—to measure 4 replicates. The method simplifies the experimental procedure and can be automated by computer processing of measurements. It also has an important advantage of technical simplicity since our silver-based substrates are easy to manufacture and operate.

5.6 Conclusion

Biological targets often differ from expectations. The revelation about the true nature of the SER spectra of bacteria came after more than a decade of multiple publications in which researchers demonstrated their ability to acquire SER spectra of bacterial cells, and used it to form classification models that successfully identified bacteria down to a strain. However, their results naturally couldn’t be reproduced in another lab, since every time the metabolites would be present in slightly differing proportions, and the classification model would have to be formed anew. That long-lasting confusion stemmed from a rigid approach and treating a complex living target like a static chemical reagent. Researchers expected to see the repeat of the same logic they observed when working with classical Raman probes like R6G and others. Viruses proved to be likewise tricky. It remains unknown what viral components actually provide the majority of the SERS signal, and the difficulties associated with the sample preparation render that field of biosensing impractical so far. Colloidal solutions can be an answer to some of those concerns, but also pose a number of new challenges caused by the charge interaction and the presence of various impurities. As for the proteins, non-direct measurements seem to be the main trend since protein molecules usually do not produce strong-enough SERS signals. But non-direct methods cannot be universal and applicable to a large variety of different proteins and have to be developed case-by-case. Thus, in order to create new biosensing techniques, more fundamental studies are a necessity.

Acknowledgments The work was partially supported by Russian Science Foundation Grant (No. 16-14-00209), as well as Ministry of Science and Higher Education (AAAA-A19-119071890024-8—Physicochemical fundamentals of highly sensitive bio-analytical processes and development of new sensing materials; AAAA-A19-119110790066-5—Principle development for the creation of an innovative technological solutions “laboratory on a chip”).
References

Afrough B, Dowall S, Hewson R (2019) Emerging viruses and current strategies for vaccine intervention. Clin Exp Immunol 196:157–166. https://doi.org/10.1111/cei.13295

Alcantara VM, Chautard-Freire-Maia EA, Scartezini M, Cerri MSJ, Braun-Prado K, Picheth G (2002) Butyrylcholinesterase activity and risk factors for coronary artery disease. Scand J Clin Lab Invest 62:399–404. https://doi.org/10.1080/00365510260296564

Arduini F, Cassisi A, Amine A, Ricci F, Moscone D, Palleschi G (2009) Electrocatalytic oxidation of thiocholine at chemically modified cobalt hexacyanoferrate screen-printed electrodes. J Electroanal Chem 626:66–74. https://doi.org/10.1016/j.jelechem.2008.11.003

Andreou C, Neuschmelting V, Tschaharganeh D, Huang C, Oseledchyk A, Iacono P, Karabeber H, Colen R, Mannelli L, Lowe S, Kircher M (2016) Imaging of liver tumors using surface-enhanced Raman scattering nanoparticles. ACS Nano 10:5015–5026

Banaee M, Crozier K (2011) Mixed dimer double resonance substrates for surface-enhanced Raman spectroscopy. ACS Nano 5:307–314

Barbillon G, Ivanov A, Sarychev (2019) A hybrid Au/Ga disk-shaped Nanoresonators on gold film for amplified SERS chemical sensing. Nano 9:1588

Barman I, Dingari N, Kang J, Horowitz G, Dasari R, Feld M (2012) Raman spectroscopy- based sensitive and specific detection of glycated hemoglobin. Anal Chem 84:2474–2482

Benford M, Wang M, Kameoka J, Cote G (2009) Detection of cardiac biomarkers exploiting Surface Enhanced Raman scattering (SERS) using a Nanofluidic Channel based biosensor towards coronary point-of-care diagnostics. Proc SPIE 7192:719203

Bodelon G, Montes-Garcia V, Lopez-Puente V, Hill E, Hamon C, Sanz-Ortiz M, Rodal-Cedeira S, Costas C, Celiksoy S, Perez-Juste I, Scarbrelli L, La Porta A, Perez-Juste J, Pastoriza-Santos I, Liz-Marzan L (2016) Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering. Nat Mater 15:1203–1211

Brolo A, Arctander E, Gordon R, Leathem B, Kavanagh K (2004) Nanohole-enhanced Raman scattering. Nano Lett 4:2015–2018

Brouers F, Blacher S, Lagarkov A, Sarychev A, Gadenne P, Shalaev V (1997) Theory of giant raman scattering from semicontinuous metal films. Phys Rev B 55:13234–13245

Campion A, Ivanecj K, Child C, Foster M (1995) On the mechanism of chemical enhancement in surface-enhanced Raman scattering. J Am Chem Soc 117:11807–11808

Chang CW, Der Liao J, Shiau AL, Yao CK (2011) Non-labeled virus detection using inverted triangular Au nano-cavities arrayed as SERS-active substrate. Sensors Actuators B Chem. https://doi.org/10.1016/j.snb.2011.04.006

Chen PC, Wan LS, Ke BB, Xu ZK (2011) Honeycomb-patterned film segregated with phenylboronic acid for glucose sensing. Langmuir 27:12597–12605. https://doi.org/10.1021/la201911f

Chen N, Ding P, Shi Y, Jin T, Su Y, Wang H, He Y (2017) Portable and reliable surface-enhanced Raman scattering silicon chip for signal-on detection of trace trinitrotoluene explosive in real systems. Anal Chem 89:5072–5078

Chen J, Huang Y, Kannan P, Zhang L, Lin Z, Zhang J, Chen T, Guo L (2016a) Flexible and adhesive SERS active tape for rapid detection of pesticide residues in fruits and vegetables. Anal Chem 88:2149–2155

Chen Y, Zhang Y, Pan F, Liu J, Wang K, Zhang C, Cheng S, Lu L, Zhang W, Zhang Z, Zhi X, Zhang Q, Alfranca G, de la Fuente J, Chen D, Cui D (2016c) Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons. ACS Nano 10:8169–8179

Chen Y, Ren J, Zhang X, Wu D, Shen A, Hu J (2016b) Alkyne-modulated surface-enhanced Raman scattering-palette for optical interference-free and multiplex cellular imaging. Anal Chem 88:6115–6119
Cheng Z, Choi N, Wang R, Lee S, Moon K, Yoon S, Chen L, Choo J (2017) Simultaneous detection of dual prostate specific antigens using surface-enhanced Raman scattering-based immunoassay for accurate diagnosis of prostate cancer. ACS Nano 11:4926–4933
Chon H, Lee S, Yoon S, Lee E, Chang S, Choo J (2014) SERS-based competitive immunoassay of troponin I and CK-MB markers for early diagnosis of acute myocardial infarction. Chem Commun 50:1058–1060
Das G, Mecarini F, Angelis F, Prasciulo M, Liberale C, Patrini M, Fabrizio E (2008) Atomol (Amol) myoglobin Raman detection from plasmonic nanostructures. Microelectron Eng 85:1282–1285
Ding S-Y, Yi J, Li J-F, Ren B, Wu D-Y, Panneer selvam R, Tian Z-Q (2016) Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat Rev Mater 1:16021
Ding S-Y, You E-M, Tian Z-Q, Moskovits M (2017) Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem Soc Rev 46:4042–4076
Dingari N, Horowitz G, Kang J, Dasari R, Barman I (2012) Raman spectroscopy provides a powerful diagnostic tool for accurate determination of albumin glycation. PLoS One 7:e32406
Duan N, Chang B, Zhang H, Wang Z, Wu S (2016a) Salmonella typhimurium detection using a surface-enhanced Raman scattering-based aptasensor. Int J Food Microbiol 218:38–43
Duan N, Yan Y, Wu S, Wang Z (2016b) Vibrio parahaemolyticus detection aptasensor using surface-enhanced Raman scattering. Food Control 63:122–127
Durmanov NN, Guliev RR, Eremenko AV, Boginskaya IA, Ryzhikov IA, Trifonova EA, Putlyayev EV, Mukhin AN, Kalnov SL, Balandina MV, Tkachuk AP, Gushchin VA, Sarychev AK, Lagarkov AN, Rodionov IA, Gabidullin AR, Kurochkin IN (2018) Non-labeled selective virus detection with novel SERS-active porous silver nanofilms fabricated by Electron beam physical vapor deposition. Sensors Actuators B Chem. https://doi.org/10.1016/j.snb.2017.10.022
Durovich EA, Evtushenko EG, Senko OV, Stepanov NA, Efremenko EN, Eremenko AV, Kurochkin IN (2018) Molecular origin of surface-enhanced Raman spectra of E. coli suspensions excited at 532 and 785 nm using silver nanoparticle sols as SERS substrates. Bull RSMU 6:25–32
Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9
Efrima S, Bronk BV (1998) Silver colloids impregnating or coating Bacteria. J Phys Chem B 102:5947–5950
Eremenko AV, Donotsova EA, Nazarov AP, Evtushenko EG, Amitonov SV, Savilov SV, Martynova LF, Lunin VV, Kurochkin IN (2012) Manganese dioxide nanostructures as a novel electrochemical mediator for Thiol sensors. Electroanalysis 24:573–580. https://doi.org/10.1002/elan.201100535
Eyer P, Worek F, Kiderlen D, Sinko G, Stuglin A, Simeon-rudolf V, Reiner E (2003) Molar absorption coefficients for the reduced Ellman reagent: reassessment. Anal Biochem 312:224–227
Fan M, Andrade G, Brolo A (2011) A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal Chim Acta 693:7–25
Feng J, de la Fuente-Núñez C, Trimble MJ, Xu J, Hancock REW, Lu X (2015) An in situ Raman spectroscopy-based microfluidic “lab-on-a-chip” platform for non-destructive and continuous characterization of Pseudomonas aeruginosa biofilms. Chem Commun 51:8966–8969
Guzelian AA, Sylvia JM, Janni JA, Clauson SL, Spencer KM (2002) SERS of whole-cell bacteria and trace levels of biological molecules. In: Proceedings of the SPIE 4577, vibrational spectroscopy-based sensor systems, (22 February 2002), pp 4511–4577.
Hakonen A, Rinnecevicius T, Schmidt M, Andresson P, Juhlin L, Svedendahl M, Boisen A, Kall M (2016) Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion. Nanoscale 8:1305–1308
Harmsen S, Wall M, Huang R, Kircher M (2017) Cancer imaging using surface-enhanced resonance Raman scattering nanoparticles. Nat Protoc 12:1400–1414
Huang J, Zhao Y, Zhang X, He L, Wong T, Chui Y, Zhang W, Lee S (2013) Ordered Ag/Si nanowires Array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection. Nano Lett 13:5039–5045

Hu F, Lin H, Zhang Z, Liao F, Shao M, Lifshitz Y, Lee S (2014) Smart liquid SERS substrates based on Fe3O4/Au nanoparticles with reversibly tunable enhancement factor for practical quantitative detection. Sci Rep 4:1–10

Itoh T, Yamamoto Y, Ozaki Y (2017) Plasmon-enhanced spectroscopy of absorption and spontaneous emissions explained using cavity quantum optics. Chem Soc Rev 49:3904–3921

Iwasaki T, Yoneda M, Nakajima A, Terauchi Y (2007) Serum butyrylcholinesterase is strongly associated with adiposity, the serum lipid profile and insulin resistance. Intern Med 46:1633–1639. https://doi.org/10.2169/internalmedicine.46.0049

Jahn M, Patze S, Hidi I, Knipper R, Radu A, Muhlig A, Yuksel S, Peksa V, Weber K, Mayerhofer T, Cialla-May D, Popp J (2016) Plasmonic nanostructures for surface enhanced spectroscopic methods. Analyst 141:756–793

Jarvis RM, Goodacre R (2004) Discrimination of Bacteria using surface-enhanced Raman spectroscopy. Anal Chem 76:40–47

Jensen L, Aikens C, Schatz G (2008) Electronic structure methods for studying surface-enhanced Raman scattering. Chem Soc Rev 37:1061–1073

Kahraman M, Keseroglu K, Culha M (2011) On sample preparation for surface-enhanced Raman scattering (SERS) of bacteria and the source of spectral features of the spectra. Appl Spectrosc 65:500–506

Kalmán J, Juhász A, Rakonczay Z, Ábrahám G, Zana M, Boda K, Farkas T, Penke B, Janka Z (2004) Increased serum butyrylcholinesterase activity in type IIb hyperlipidaemic patients. Life Sci 75:1195–1204. https://doi.org/10.1016/j.lfs.2004.02.019

Kambhampati P, Child C, Foster M, Campion A (1998) On the chemical mechanism of surface enhanced Raman scattering: experiment and theory. J Chem Phys 108:5013–5026

Kamińska A, Winkler K, Kowalska A, Witkowska E, Szymborski T, Janecek A, Waluk J (2017) SERS-based immunoassay in a microfluidic system for the multiplexed recognition of interleukins from blood plasma: towards Picogram detection. Sci Rep 7:1–11. https://doi.org/10.1038/s41598-017-11152-w

Kamińska A, Witkowska E, Winkler K, Dziecielewski I, Weyher JL, Waluk J (2015) Detection of hepatitis B virus antigen from human blood: SERS immunoassay in a microfluidic system. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2014.10.082

Kiran M, Itoh T, Yoshida K, Kawashima N, Biju V, Ishikawa M (2010) Selective detection of HbA1c using surface enhanced resonance Raman spectroscopy. Anal Chem 82:1342–1348

Kneipp J (2017) Interrogating cells, tissues, and live animals with new generations of surface-enhanced raman scattering probes and labels. ACS Nano 11:1136–1141

Koga M, Murai J, Kasayama S (2010) Glycated albumin and glycated hemoglobin are influenced differently by endogenous insulin secretion in patients with type 2 diabetes. Diabetes Care 33:270–272. https://doi.org/10.2337/dc09-1002

Kohzuma T, Koga M (2010) Lucica GA-L glycated albumin assay kit: a new diagnostic test for diabetes mellitus. Mol Diagn Ther 14:49–51. https://doi.org/10.2165/11317390-000000000-00000

Kukushkin VI, Ivanov NM, Novosel'tseva AA, Gambaryan AS, Yaminsky IV, Kopylov AM, Zavyalova EG (2019) Highly sensitive detection of influenza virus with SERS aptasensor. PLoS One 14:1–14. https://doi.org/10.1371/journal.pone.0216247

Kurochkin IN, Sigolaeva LV, Ereminov AV, Dontsova EA, Gromova MS, Rudakova EV, Makhaea GF (2014) Layer-by-layer electrochemical biosensors for blood Esterases assay. In: Dishovsky C, Radenkova-Saeva J (eds) Toxicological problems. Military Publishing House, Sofia, pp 51–67

Lee J, Hua B, Park S, Ha M, Lee Y, Fan Z, Ko H (2014) Tailoring surface plasmons of high-density gold nanostar assemblies on metal films for surface-enhanced Raman spectroscopy. Nanoscale 6:616–623
Lee S, Xie J, Chen X (2010) Peptide-based probes for targeted molecular imaging. Biochemistry 49:1364–1376. https://doi.org/10.1021/bi0901135x

Li W, Ding F, Hu J, Chou S (2011) Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area. Opt Express 19:3925–3936

Li J, Zhu Z, Zhu B, Ma Y, Lin B, Liu R, Song Y, Lin H, Tu S, Yang C (2016b) Surface-enhanced Raman scattering active plasmonic nanoparticles with ultrasmall interior nanogap for multiplex quantitative detection and cancer cell imaging. Anal Chem 88:7828–7836

Lim D, Jeon K, Kim H, Nam J-M, Suh Y (2010) Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat Mater 9:60–67

Lin J, Lin J, Huang Z, Lu P, Wang J, Wang X, Chen R (2014) Raman spectroscopy of human hemoglobin for diabetes detection. J Innov Opt Health Sci 7:1350051

Litti L, Amendola V, Toffoli G, Meneghetti M (2016) Detection of low-quantity anticancer drugs by surface-enhanced Raman scattering. Anal Bioanal Chem 408:2123–2131

Liu Y, Zhou H, Hu Z, Yu G, Yang D, Zhao J (2017) Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: a review. Biosens Bioelectron 94:131–140

Li B, Duysen EG, Lockridge O (2008) The butyrylcholinesterase knockout mouse is obese on a high-fat diet. Chem Biol Interact 175:88–91. https://doi.org/10.1016/j.čbi.2008.03.009

Li H, Wang Y, Li Y, Zhang J, Qiao Y, Wang Q, Che G (2020) Fabrication of pollutant-resistance SERS imprinted sensors based on SiO2@TiO2@ag composites for selective detection of pyrethroids in water. J Phys Chem Solids. https://doi.org/10.1016/j.jpcs.2019.109254

Li M, Banerjee SR, Zheng C, Pomper MG, Barman I (2016a) Ultrahigh affinity Raman probe for targeted live cell imaging of prostate cancer. Chem Sci 7:6779–6785. https://doi.org/10.1039/c6sc01739h

Li X, Yang T, Li CS, Song Y, Lou H, Guan D, Jin L (2018) Surface enhanced Raman spectroscopy (SERS) for the multiplex detection of Braf, Kras, and Pik3ca mutations in plasma of colorectal cancer patients. Theranostics 8:1678–1689. https://doi.org/10.7150/thno.22502

Lima JK, Leite N, Turek LV, Souza RLR, da Silva Timossi L, Osiecki AV, Osiecki R, Furtado-Alle L (2013) 1914G variant of BCHE gene associated with enzyme activity, obesity and triglyceride levels. Gene 532:24–26. https://doi.org/10.1016/j.gene.2013.08.068

Liron Z, Zifman A, Heleg-Shabtai V (2011) Surface-enhanced Raman scattering detection of cholinesterase inhibitors. Anal Chim Acta 703:234–238. https://doi.org/10.1016/j.aca.2011.07.033

Lockridge O (2015) Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol Ther 148:34–46. https://doi.org/10.1016/j.pharmthera.2014.11.011

Lockridge O, Norgren RB, Johnson RC, Blake TA (2016) Naturally occurring genetic variants of human acetylcholinesterase and Butyrylcholinesterase and their potential impact on the risk of toxicity from cholinesterase inhibitors. Chem Res Toxicol 29:1381–1392. https://doi.org/10.1021/acs.chemrestox.6b00228

Luo Z, Li W, Lu D, Chen K, He Q, Han H, Zou M (2013) A SERS-based immunoassay for porcine circovirus type 2 using multi-branched gold nanoparticles. Microchim Acta 180:1501–1507. https://doi.org/10.1007/s00604-013-1032-5

Luo BS, Lin M (2008) A portable Raman system for the identification of foodborne pathogenic Bacteria. J Rapid Methods Autom Microbiol 16:238–255

Masson P, Lockridge O (2010) Butyrylcholinesterase for protection from organophosphorus poisons: catalytic complexities and hysteretic behavior. Arch Biochem Biophys 494:107–120. https://doi.org/10.1016/j.abb.2009.12.005

Mattucci N, D’Aguanno G, Everitt H, Foreman J, Callahan J, Buncick M, Bloemer M (2012) Ultraviolet surface-enhanced Raman scattering at the plasmonic band edge of a metallic grating. Opt Express 20:1868–1877

McFarland A, Young M, Dieringer J, Van Duyne R (2005) Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J Phys Chem B 109:11279–11285
Michen B, Graule T (2010) Isoelectric points of viruses. J Appl Microbiol 109:388–397. https://doi.org/10.1111/j.1365-2672.2010.04663.x

Mosier-Boss AP (2017) Review on SERS of Bacteria. Bios 7:51

Nechaeva N, Prokopkina T, Makhava E, Rudakova E, Boltneva N, Dishovsky C, Eremenko A, Kurochkin I (2018) Quantitative butyrylcholinesterase activity detection by surface-enhanced Raman spectroscopy. Sensors Actuators B Chem 259:75–82. https://doi.org/10.1016/j.snb.2017.11.174

Nechaeva N, Boginskaya I, Ivanov A, Sarychev A, Eremenko A, Ryzhikov I, Lagarkov A, Kurochkin I (2020) Multiscale flaked silver SERS-substrate for glycated human albumin biosensing. Anal Chim Acta 1100:250–257

Oseledchyk A, Andreou C, Wall M, Kircher M (2016) Folate-targeted surface-enhanced resonance Raman scattering nanoprobe ratiometry for detection of microscopic ovarian cancer. ACS Nano 11:1488–1497

Otto A (2005) The “chemical” (electronic) contribution to surface-enhanced Raman scattering. J Raman Spectrosc 36:497–509

Patel IS, Premasiri WR, Moir DT, Ziegler LD (2008) Barcoding bacterial cells: a SERS-based methodology for pathogen identification. J Raman Spectrosc 39:1660–1672

Pazos E, Garcia-Algar M, Penas C, Nazarenus M, Torruella A, Pazos-Perez N, Guerrini L, Vazquez M, Garcia-Rico E, Mascarenas J, Alvarez-Puebla R (2016) Surface-enhanced Raman scattering surface selection rules for the proteomic liquid biopsy in real samples: efficient detection of the Oncoprotein c-MYC. J Am Chem Soc 138:14206–14209

Perney N, Baumberg J, Zoorob M, Charlton M, Mahnkopf S, Netti C (2006) Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering. Opt Express 14:847–857

Picorel R, Lu T, Holt RE, Cotton TM, Seibert M (1990) Surface-enhanced resonance Raman scattering (SERRS) spectroscopy of bacterial membranes: the Flavoproteins. In: Baltscheffsky M (ed) Current research in photosynthesis: proceedings of the VIIIth international conference on photosynthesis. Stockholm, Sweden, August 6–11, vol 1989. Springer Netherlands, Dordrecht, pp 1867–1870

Premasiri WR, Lee JC, Sauer-Budge A, Théberge R, Costello CE, Ziegler LD (2016) The biochemical origins of the surface-enhanced Raman spectra of bacteria: a metabolomics profiling by SERS. Anal Bioanal Chem 408:4631–4647

Premasiri WR, Moir DT, Klempner MS, Krieger N, Jones G, Ziegler LD (2005) Characterization of the surface enhanced Raman scattering (SERS) of Bacteria. J Phys Chem B 109:312–320

Ren X, Yang L, Li Y, Cheshari EC, Li X (2020) The integration of molecular imprinting and surface-enhanced Raman scattering for highly sensitive detection of lysozyme biomarker aided by density functional theory. Spectrochim Acta – Part A Mol Biomol Spectrosc. https://doi.org/10.1016/j.saa.2019.117764

Sarychev A, Ivanov A, Lagarkov A, Barbillon G (2019) Light concentration by metal-dielectric micro-resonators for SERS sensing. Materials 12:103

Schurmann R, Bald I (2016) Decomposition of DNA Nucleobases by laser irradiation of gold nanoparticles monitored by surface-enhanced Raman scattering. J Phys Chem C 120:3001–3009

Sgobbi LF, Razzino C a, Rosset IG, Burtoloso ACB, Machado S a S (2013) Electrochemistry and UV-vis spectroscopy of synthetic thiocholine: revisiting the electro-oxidation mechanism. Electrochim Acta 112:500–504. https://doi.org/10.1016/j.electacta.2013.08.143

Shan B, Pu Y, Chen Y, Liao M, Li M (2018) Novel SERS labels: rational design, functional integration and biomedical applications. Coord Chem Rev. https://doi.org/10.1016/j.ccr.2018.05.007

Sharma B, Frontiera R, Henry A-I, Ringe E, Van Duyne R (2012) SERS: materials, design, and the future. Mater Today 15:16–25

Smolsky J, Kaur S, Hayashi C, Batra SK, Krasnoslobodtsev AV (2017) Surface-enhanced raman scattering-based immunoassay technologies for detection of disease biomarkers. Bios 7. https://doi.org/10.3390/bios7010007
Su H, Wang Y, Yu Z, Liu Y, Zhang X, Wang X, Sun C, Zhao B (2017) Surface-enhanced Raman spectroscopy study on the structure changes of 4-Mercaptophenylboronic acid under different pH conditions. Spectrochim Acta – Part A Mol Biomol Spectrosc 185:336–342. https://doi.org/10.1016/j.saa.2017.05.068

Su L, Zhang P, Zheng D, Wang Y, Zhong R (2015) Rapid detection of Escherichia coli and Salmonella typhimurium by surface-enhanced Raman scattering. Optoelectron Lett 11:157–160

Suh J, Odom T (2013) Nonlinear properties of nanoscale antennas. Nano Today 8(5):469–479

Sun F, Bai T, Zhang L, Elle-Menye J-R, Liu S, Nowinski AK, Jiang S, Yu Q (2014a) Sensitive and fast detection of fructose in complex media via symmetry breaking and signal amplification using surface-enhanced Raman spectroscopy. Anal Chem 86:2387–2394. https://doi.org/10.1021/ac4040983

Sun X, Stagon S, Huang H, Chen J, Lei Y (2014b) Functionalized aligned silver nanorod arrays for glucose sensing through surface enhanced Raman 23382–23388. https://doi.org/10.1039/c4ra02423k

Sundaram J, Park B, Hinton A, Lawrence KC, Kwon Y (2013) Detection and differentiation of Salmonella serotypes using surface enhanced Raman scattering (SERS) technique. J Food Meas Charact 7:1–12

Tian L, Jiang Q, Liu K, Luan J, Naik R, Singamaneni S (2016) Bacterial nanocellulose-based flexible surface enhanced Raman scattering substrate. Adv Mater Interfaces 3:1–8

Usta DD, Salimi K, Pinar A, Coban İ, Tekinay T, Tuncel A (2016) A Boronate affinity-assisted SERS tag equipped with a Sandwich system for detection of Glycated hemoglobin in the Hemolysate of human erythrocytes. ACS Appl Mater Interfaces 8:11934–11944. https://doi.org/10.1021/acsami.6b00138

Vaisi-Raygani A, Rahimi Z, Tavilani H, Pourmotabbed T (2010) Butyrylcholinesterase K variant and the APOE-?? allele work in synergy to increase the risk of coronary artery disease especially in diabetic patients. Mol Biol Rep 37:2083–2091. https://doi.org/10.1007/s11033-009-9666-4

Valle A, O’Connor DT, Taylor P, Zhu G, Montgomery GW, Slagboom PE, Martin NG, Whitfield JB (2006) Butyrylcholinesterase: association with the metabolic syndrome and identification of 2 gene loci affecting activity. Clin Chem 52:1014–1020. https://doi.org/10.1373/clinchem.2005.065052

Witkowska E, Korsak D, Kowalska A, Janecek A, Kamińska A (2018) Strain-level typing and identification of bacteria – a novel approach for SERS active plasmonic nanostructures. Anal Bioanal Chem 410:5019–5031

Xu H, Bjerneld E, Kall M, Borjesson L (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 83:4357–4360

Yan B, Thubagere A, Premasiri W, Ziegler L, Negro L, Reinhard B (2009) Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays. ACS Nano 3:1190–1202

Yan Y, Zhang J, Xu P, Miao P (2017) Fabrication of arrayed triangular micro-cavities for SERS substrates using the force modulated indentation process. RSC Adv 7:11969–11978. https://doi.org/10.1039/c6ra28875h

Yang T, Zhang Z, Zhao B, Hou R, Kinchla A, Clark J, He L (2016) Real-time and in situ monitoring of pesticide penetration in edible leaves by surface-enhanced Raman scattering mapping. Anal Chem 88:5243–5250

Zhang N, Liu K, Liu Z, Song H, Zeng X, Ji D, Cheney A, Jiang S, Gan Q (2015) Ultrabroadband Metasurface for efficient light trapping and localization: a universal surface-enhanced Raman spectroscopy substrate for “all” excitation wavelengths. Adv Mater Interfaces 2:1–7

Zhang X, Zhang X, Luo C, Liu Z, Chen Y, Dong S, Jiang C, Yang S, Wang F, Xiao X (2019) Volume-enhanced Raman scattering detection of viruses. Small 15:1–8. https://doi.org/10.1002/smll.201805516
Zhao L, Huang Q, Liu Y, Wang Q, Wang L, Xiao S, Bi F, Ding J (2017) Boronic acid as glucose-sensitive agent regulates drug delivery for diabetes treatment. Materials (Basel) 10:1–14. https://doi.org/10.3390/ma10020170
Zhou Q, Meng G, Wu N, Zhou N, Chen B, Li F, Huang Q (2016) Dipping into a drink: basil-seed supported silver nanoparticles as surface-enhanced Raman scattering substrates for toxic molecule detection. Sensors Actuators B Chem 223:447–452
Zeiri L, Bronk BV, Shabtai Y, Czégé J, Efrima S (2002) Silver metal induced surface enhanced Raman of bacteria. Colloids Surf A Physicochem Eng Asp 208:357–362
Zeiri L, Bronk BV, Shabtai Y, Eichler J, Efrima S (2004) Surface-enhanced Raman spectroscopy as a tool for probing specific biochemical components in Bacteria. Appl Spectrosc 58:33–40