Atypical Carboxysome Loci: JEEPs or Junk?

USF Genomics Class 2020¹, USF Genomics Class 2021¹, Markus Sutter²,³, Cheryl A. Kerfeld²,³ and Kathleen M. Scott¹*

¹Integrative Biology Department, University of South Florida, Tampa, FL, United States, ²MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States, ³Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA, United States

Carboxysomes, responsible for a substantial fraction of CO₂ fixation on Earth, are proteinaceous microcompartments found in many autotrophic members of domain Bacteria, primarily from the phyla Proteobacteria and Cyanobacteria. Carboxysomes facilitate CO₂ fixation by the Calvin-Benson-Bassham (CBB) cycle, particularly under conditions where the CO₂ concentration is variable or low, or O₂ is abundant. These microcompartments are composed of an icosahedral shell containing the enzymes ribulose 1,5-carboxylase/oxygenase (RubisCO) and carbonic anhydrase. They function as part of a CO₂ concentrating mechanism, in which cells accumulate HCO₃⁻ in the cytoplasm via active transport, HCO₃⁻ enters the carboxysomes through pores in the carboxysomal shell proteins, and carboxysomal carbonic anhydrase facilitates the conversion of HCO₃⁻ to CO₂, which RubisCO fixes. Two forms of carboxysomes have been described: α-carboxysomes and β-carboxysomes, which arose independently from ancestral microcompartments. The α-carboxysomes present in Proteobacteria and some Cyanobacteria have shells comprised of four types of proteins [CsoS1 hexamers, CsoS4 pentamers, CsoS2 assembly proteins, and α-carboxysomal carbonic anhydrase (CsoSCA)], and contain form IA RubisCO (CbbL and CbbS). In the majority of cases, these components are encoded in the genome near each other in a gene locus, and transcribed together as an operon. Interestingly, genome sequencing has revealed some α-carboxysome loci that are missing genes encoding one or more of these components. Some loci lack the genes encoding RubisCO, others lack a gene encoding carbonic anhydrase, some loci are missing shell protein genes, and in some organisms, genes homologous to those encoding the carboxysome-associated carbonic anhydrase are the only carboxysome-related genes present in the genome. Given that RubisCO, assembly factors, carbonic anhydrase, and shell proteins are all essential for carboxysome function, these absences are quite intriguing. In this review, we provide an overview of the most recent studies of the structural components of carboxysomes, describe the genomic context and taxonomic distribution of atypical carboxysome loci, and propose functions for these variants. We suggest that these atypical loci are JEEPs, which have modified functions based on the presence of Just Enough Essential Parts.

Keywords: carboxysome, microcompartment, carbonic anhydrase, carbon dioxide fixation, autotroph
INTRODUCTION

Autotrophic organisms that use the Calvin-Benson-Bassham cycle (CBB) for carbon dioxide fixation must grapple with the catalytic constraints of ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). This enzyme has poor substrate specificity; it catalyzes both the carboxylase reaction of the CBB, as well as a wasteful oxygenase reaction, which results in added energetic expense to regenerate the ribulose 1,5 bisphosphate (RuBP) necessary for the CBB (Tabita, 1999). In addition, RubisCO enzymes have relatively low affinities for CO$_2$ (5–250 µM; Tabita, 1999). RubisCO affinities for CO$_2$ are particularly low for autotrophic bacteria (25–250 µM; tabulated in Horken and Tabita, 1999). Furthermore, RubisCO is not able to use HCO$_3^-$ (Cooper and Filmer, 1969), the predominant form in the equilibrium between CO$_2$ and HCO$_3^-$ at the circumneutral pH typical for cytoplasm.

In order to grow while using CO$_2$ as a major carbon source, many autotrophic bacteria using the CBB cycle have CO$_2$-concentrating mechanisms (CCMs). CCMs consist of two components: (1) membrane transporters for dissolved inorganic carbon (DIC = CO$_2$ + HCO$_3^-$ + CO$_3^{2-}$), which generate high concentrations of cytoplasmic HCO$_3^-$, and (2) carboxysomes, which are present in the cytoplasm and facilitate high rates of CO$_2$ fixation by RubisCO (reviewed in Price et al., 2009; Long et al., 2016). Carboxysomes are a type of bacterial microcompartment, and consist of a protein shell filled with RubisCO and a trace of carbonic anhydrase activity (reviewed in Kerfeld et al., 2018). Cytoplasmic HCO$_3^-$ enters carboxysomes, where carbonic anhydrase converts some of it to CO$_2$, which is then fixed by RubisCO. CO$_2$ is prevented from escaping from the carboxysome before fixation because the shell is impermeable to this gas (Dou et al., 2008; Cai et al., 2009). The components of CCMs, including carboxysomes, are often upregulated when autotrophic microorganisms are cultivated under low DIC conditions (Dobrinski et al., 2012; Esparza et al., 2019; Scott et al., 2019).

Two types of carboxysomes (α and β) are currently recognized (reviewed in Cannon et al., 2010; Kerfeld and Melnicki, 2016). Members of Proteobacteria and certain marine members of Cyanobacteria have α-carboxysomes, while the remaining members of Cyanobacteria have β-carboxysomes (Price et al., 2009; Scott et al., 2019). These types can be distinguished by the form of RubisCO they carry (α-carboxysomes carry form IA RubisCO; β-carboxysomes carry form IB RubisCO), as well as differences in carbonic anhydrases, scaffolding proteins, and carboxysome shell components (Kerfeld and Melnicki, 2016).

The composition of α-carboxysomes from members of phyla Proteobacteria and Cyanobacteria is mostly conserved (Kinney et al., 2011; Roberts et al., 2012; Sutter et al., 2021). The icosahedral shells of carboxysomes are comprised of (1) hexagonal units, consisting of hexamers of CsoS1 proteins that assemble into single-layers (Tsai et al., 2007), as well as trimers of CsoS1D proteins that assemble into single and double layers (Klein et al., 2009; Roberts et al., 2012), and (2) pentamers of CsoS4 proteins which assemble into pentagonal truncated pyramids and cap the vertices of the icosahedral shells (Tanaka et al., 2008; Cai et al., 2009; Zhao et al., 2019). Hexamers, trimers, and pentamers typically have central pores, which in some cases open and close. The size and charge of these pores are likely to dictate the selective permeability of carboxysome shells (Tsai et al., 2007; Kinney et al., 2011), which are impermeable to CO$_2$ (Dou et al., 2008; Cai et al., 2009), and permeable to protons (Menon et al., 2010). α-carboxysomes contain RubisCO and carbonic anhydrase, as described above. Based on amino acid sequence, α-carboxysomal carbonic anhydrase (CsoSCA) was initially believed to be a new form of this enzyme, but its structure clarified that it is a deeply divergent β-carboxy anhydrase (So et al., 2004; Sawaya et al., 2006). β-carboxysomes also contain CsoS2, which facilitates the assembly of these microcompartments by binding to RubisCO and CsoS1 (Cai et al., 2015; Oltrogge et al., 2020). The conserved nature of α-carboxysome shell proteins and contents is reflected in gene synteny apparent in the loci encoding them; typical gene order in α-carboxysome loci is cbbL, cbbS, csoS2, csoSCA, csoS4AB, and csoS1ABC, with csoS1D genes, when present, often encoded a few genes downstream or elsewhere (Figure 1; Cannon et al., 2002; Cai et al., 2008; Roberts et al., 2012; Axen et al., 2014; Sutter et al., 2021).

Atypical carboxysome loci are scattered among several phyla of Bacteria (Table 1). Most are present in genomes from members of Proteobacteria, as expected, given the abundance of organisms from this phylum with typical α-carboxysome loci (Cannon et al., 2002; Axen et al., 2014; Sutter et al., 2021). The atypical loci described here fall into four categories: (1) csoSCA is present without any of the other carboxysome-associated genes; (2) cbbL and cbbS and csoSCA are present, without genes encoding shell proteins; (3) genes encoding RubisCO are missing from the locus, with cbbL and cbbS encoded in a location distinct from csoS1, csoS2, csoSCA, and csoS4; and (4) csoSCA is absent, though the other carboxysome-associated genes are present (Figure 1). It seems likely that these atypical loci originated from typical loci, and were selected for in some lineages. The objective of this review is to assess the likelihood that the genes of these atypical loci are functional, predict the function of the loci, and describe how they may have originated.

DO THE GENES FROM ATYPICAL CARBOXYsome LOCI ENCODE FUNCTIONAL PROTEINS?

The majority of genes from atypical carboxysome loci appear to encode proteins that could function similarly to their homologs from typical carboxysome loci, based on the presence of conserved amino acids predicted from their sequences (Table 2). For CbbS sequences from members of genus Nitrobacter, conserved residue Y25 (tyrosine) is replaced with histidine; given that both are large polar amino acids, this substitution may not disrupt the function of CbbS in these organisms. Pseudonocardia sp. N23 has two cbbS genes, with one (IMG gene ID 2868417193) immediately upstream of
FIGURE 1 | Atypical carboxysome loci. Arrows connected by dotted lines are collocated on the genome, and the distance between them is indicated in nucleotides (nt). cbbL, ribulose 1,5-carboxylase/oxygenase (RubisCO) large subunit; cbbS, RubisCO small subunit; csoS1ABC, hexamer shell proteins; csoS1D, pseudohexamer shell protein; csoS2, carboxysomal carbonic anhydrase; hyp, hypothetical protein; csoS4, pentameric shell protein; acRAF, RubisCO assembly factor; bfr, bacterioferritin-like protein; cbbQ, RubisCO activase; gCA hom: gamma carbonic anhydrase homolog; cbbO: adaptor for CbbQ protein; and cbbX, RubisCO activase.
cbbLS and the other (IMG gene ID 2868417191) immediately downstream (Figure 1). The protein encoded by the upstream cbbL is only 63 amino acids long, shorter than is typical for Cbb5 (~90 amino acids), and is missing several conserved amino acids (L53, P54, and F56) in the portion that is present. The protein encoded by the cbbS gene downstream of cbbL, as annotated in IMG, has a truncated amino terminus, but selecting an alternative start codon results in a predicted amino acid sequence including S2, L11, and P12. Based on these observations, the cbbS gene downstream of cbbL in Pseudonocardia sp. N23 is likely to be functional, while the cbbS upstream is not.

Genes encoding CsoS1A-C from atypical carboxysome loci have some amino acid substitutions at conserved positions. In many cases the substitutions are biochemically similar; e.g., V36 (valine) is replaced with an isoleucine, R70 (arginine) is replaced with a lysine, I80 (isoleucine) is replaced with a valine, which suggests similar functionality. However, there are some instances, e.g., for Pseudonocardia sp. N23, where the amino acids are not biochemically similar [V36 (valine) is replaced with glutamate; G37 (glycine) is replaced with aspartate]; given that these are core residues of CsoS1 monomers, folding may be problematic, suggesting that these carboxysomes may not be able to assemble.

Genes encoding CsoS2 from atypical carboxysome loci have features that have been found to be conserved among sequences from typical carboxysome loci. All have at least one N-terminal [RK]XXXXX[RKR]R motif, which binds RubisCO (Cai et al., 2015; Oltrogge et al., 2020). Of the six repetitive motifs from the M (middle) region of CsoS2 (Cai et al., 2015), M1-M4 and M6 are present, while M5 is less conserved. All share a conserved carboxy terminus as described in (Cai et al., 2015).

α-Carboxysomal carbonic anhydrase encoded by atypical carboxysome loci, including those from loci consisting solely of csoSCA homologs, have all of the active site residues. In typical carboxysome loci, csoSCA follows csoS2. Members of

Table 1: Number of genomes with atypical carboxysome loci.

Type of locus*	Proteobacteria	Other phyla	
Just csoSCA	Alpha: 2	Beta: 27	Gamma: 63
cbbLS and csoSCA	3	2	–
No CsoSCA	–	4	7
cbbLS and csoS1-4 separate	–	4	–

*Atypical carboxysome loci were gathered from the Integrated Microbial Genomes & Microbiomes database (IMG; https://img.jgi.doe.gov; Chen et al., 2019). To find these atypical carboxysome loci, two lists of genomes from isolates were compared: (1) the list of all genomes containing genes encoding members of Pfam12288 (csoS2) or Pfam08936 (csoSCA), believed to be exclusive to carboxysomes (collected using the “find functions” feature at IMG), and (2) the list of all genomes containing typical α-carboxysome loci, with 10 kb regions of genome sequence encoding members of Pfam00016 (cbbL), Pfam0101 (cbbS), Pfam0936 (csoS1), Pfam12288 (csoS2), Pfam08936 (csoSCA), and Pfam03319 (csoS4) (collected using the “cassette search” feature at IMG). Genomes absent from list (2) were examined more closely to determine whether they had atypical carboxysome loci, or whether genes were absent due to sequencing gaps. To remove carboxysome loci likely to be incomplete due to sequencing gaps, draft genomes, and genomes from this list with >100 scaffolds were removed. For the remainder of the genomes on the list, the gene neighborhoods of the csoS2 and csoSCA genes were examined, and those in which these genes were located at the end of a scaffold were removed. The remaining loci were manually reviewed to verify the presence and absence of cbbL, cbbS, csoS1, csoS2, csoSCA, and csoS4.

Table 2: Conserved residues in carboxysome-associated proteins.

Protein	Model organism	Conserved amino acids*	Function	Reference
CbbL	Rhodospirillum rubrum (CbbM)†	K166, K191, D193, E194, H287, G393, and G395	Active site residues	Watson et al., 1999
CbbS	Cupriavidus necator	S9, L11, P12, Y25, E36, W48, L53, P56, F56, and E67	Nearly universally conserved in CbbS	Spreitzer, 2003
CsoS1A,B,C	Halothiobacillus neapolitanus	D25, K29, V36, G37, RS1, G52, V57, A63, G64, A67, R70, I80, I81, R83, H85, L92, and P93	Conserved in both α- and β-carboxysomes	Tsai et al., 2007; Kinney et al., 2011
CsoS2	Halothiobacillus neapolitanus	N region repeats; M region repeats; and Conserved C terminus		Cai et al., 2015; Oltrogge et al., 2020
CsoSCA (CsoS3)	Halothiobacillus neapolitanus	C173, D175, R177, H242, C253, H397, and E399	Active site residues	Sawaya et al., 2006
CsoS4	Halothiobacillus neapolitanus	V6, D40, G43, V50, S56, A58, D70, and D/E78	conserved	Zhao et al., 2019

*Conserved amino acids are numbered relative to their position in the amino acid sequence from the model organism.

†CbbM (form II RubisCO) is homologous to CbbL (large subunit of form I RubisCO); both CbbM and CbbL catalyze the carboxylation of ribulose 1,5-bisphosphate (Tabita et al., 2008).
genus *Thiomicrospira* have a gene following *csoS2* which in some cases matches weakly with Pfam08936 (see section “No *csoSCA*” below), but lack all of the active site residues necessary for carbonic anhydrase activity.

Amino acid sequences predicted from genes encoding CsoS4A and B from all of the atypical carboxysome loci include all of the conserved residues, though in some cases S56 (serine) is replaced with threonine; given that a hydroxyl moiety is present in both of these amino acids, this substitution is less likely to be disruptive to the function of these proteins.

TAXONOMIC DISTRIBUTION, ORIGIN, AND POTENTIAL FUNCTION OF THE FOUR TYPES OF ATYPICAL CARBOXYSOME LOCI

As described above, based on predicted amino acid sequences, most of the individual genes of atypical carboxysome loci appear to encode proteins sufficiently conserved to be capable of the same function as their homologs from typical carboxysome loci. Below are detailed descriptions of the taxonomic distribution of atypical loci, possible mechanisms for their origins, and predictions of how the proteins encoded by atypical carboxysome loci could function together.

csoSCA Alone

Genes homologous to those encoding CsoSCA are quite widespread beyond carboxysome loci, and are present in genomes from autotrophic (e.g., *Sulfuritortus caldifontis, Nitrospia marina*) and heterotrophic (e.g., *Cand. Accumulibacter phosphatis; Chrysiogenes arsenatis*) bacteria. Given their widespread distribution, it is surprising that they have yet to be studied (Table 1; Figure 2; referred to as CsoSCA2 to distinguish them from those present in carboxysome loci). The amino acid sequences predicted from CsoSCA2 genes share many features with CsoSCA proteins; they include both an active and defunct domain (Sawaya et al., 2006), and the active domain includes all of the residues necessary for catalytic activity as carbonic anhydrase (Table 2; Figure 3).

There are two variants of CsoSCA2. The first variant closely resembles carboxysomal CsoSCA (found in *Nitrobacter vulgaris, Nitrobacter winogradskyi, Nitrosomonas nitrosa,* and *Nitrosomonas* sp. 51), clustering with carboxysomal CsoSCA in phylogenetic analyses, but missing the N-terminal 40 residues (Figure 2; Figure 3). The second variant is further truncated at the N-terminus, is missing short stretches of sequence throughout, and does not cluster with carboxysomal CsoSCA sequences (Figure 2; Figure 3). The more substantially truncated version has an N-terminal domain of only 40 amino acids (instead of 144 for the CsoSCA from *Halothiobacillus neapolitanus*) that does not align with the CsoSCA equivalent on a sequence level but is also predicted to form two short alpha helices in an AlphaFold2 model (Jumper et al., 2021; Figure 3). Further truncations include shorter loops connecting secondary structure elements (Figure 3). Some of those extra elements are involved in dimer contacts (Sawaya et al., 2006), so it is possible that this homolog has lost the ability to form dimers, which would be unusual for a β-carbonic anhydrase (Cannon et al., 2010); however, this would need to be verified experimentally. The N-terminus of CsoSCA from *Htb. neapolitanus* facilitates interaction between CsoSCA and RubisCO (Blikstad et al., 2021). Presumably, since CsoSCA2 proteins do not interact with RubisCO, this N-terminal region is not necessary for CsoSCA2 to function outside of carboxysomes. Altogether, this form of CsoSCA2 seems to be a more compact version, possibly due to the fact that it is not necessary to encapsulate this protein in a carboxysome. This is particularly interesting for genomes that include both *csoSCA* and *csoSCA2* genes (e.g., members of *Nitrobiacter, Nitrosomonas, Ectothiorhodospira,* and *Halorhodospira*). Presumably, the CsoSCA2 proteins cannot assemble within the carboxysomes present in these organisms.

The presence of CsoSCA2 sequences in numerous phyla, and the more restricted distribution of CsoSCA, suggest that CsoSCA may have originated from CsoSCA2. However, in some cases, the reverse appears to be the case. *Nitrobiacter vulgaris, Nb. winogradskyi* (Nb-102, 106, and 255), *Ns. nitrosa,* and *Nitrosomonas* sp. 51 have genes encoding both a CsoSCA (encoded in a typical carboxysome locus), and a CsoSCA2 encoded elsewhere. The two copies cluster together within the larger clade of carboxysomal CsoSCA sequences, despite having the truncated N-termini seen in other CsoSCA2 sequences (Figure 2; Figure 3). Sequence similarities between CsoSCA and CsoSCA2 proteins in these organisms suggest that these CsoSCA2 sequences duplicated and diverged from CsoSCA.

One wonders why these deeply divergent β-carbonic anhydrases are so widespread, and what the features of these proteins might be that make them particularly useful to their host organisms. Though CsoSCA2 proteins lack the residues needed to associate with RubisCO, they may have residues that facilitate the formation of other types of enzyme complexes. Alternatively, CsoSCA2 proteins may not require aggregation with other proteins for activity. Indeed, even carboxysomal CsoSCA is active when expressed in the absence of other carboxysomal proteins (Heinhorst et al., 2006), which suggests that “free” CsoSCA2 could also be active in the cytoplasm of its host organisms.

cbbL, cbbS, and csoSCA Alone

In genomes from some members of Alpha- and Betaproteobacteria, csoSCA homologs are present near genes encoding RubisCO (Figure 1; Figure 4). In *Alphaproteobacteria,* three strains of *Nb. winogradskyi* share this arrangement of genes (though the average nucleotide identities of strains Nb-102 and Nb-106 versus Nb-255 are 94.6%, suggesting they may be a different species; Richter and Rosselló-Móra, 2009). Among Betaproteobacteria, two species of *Sulfuricella* have *cbbL* and *cbbS* genes near csoSCA homologs (Figure 4).

For both the *Alphaproteobacteria* and *Betaproteobacteria,* if these genomically juxtaposed *cbbL, cbbS,* and *csoSCA* genes are the fragments of a single degraded carboxysome locus, one would anticipate that phylogenetic analysis would place...
maximum likelihood analysis of CsoSCA homologs from carboxysome loci and elsewhere (CsoSCA2). Amino acid sequences were gathered from the IMG database, aligned by MUSCLE in MEGA 11, and trimmed via GBLOCKS to a final length of 278 aa (Edgar, 2004; Talavera and Castresana, 2007; Tamura et al., 2021).

The maximum likelihood tree was constructed with partial deletion of gaps (95% cut-off) and the JTT model (Jones et al., 1992; discrete Gamma distribution with five categories, gamma parameter = 1.9314, 3.55% of sites evolutionarily invariant; this model had the lowest AIC calculated via the Find Best DNA/Protein Models feature in MEGA 11; Hurvich and Tsai, 1989; Akaike, 1998). Branch lengths are proportional to the number of substitutions (scale bar = substitutions per site). Bootstrap values are based on 500 resamplings of the alignment, with values <70% omitted. Taxon labels include abbreviated names of classes of Proteobacteria (Alpha, Beta, Gamma, and Delta; Acid=Acidithiobacillia), and full names of phyla beyond Proteobacteria. "C" indicates candidate status of species or phylum names. Taxon names also include symbols indicating the position of CsoSCA homologs relative to carboxysome-related genes, if present in the genomes. "Typical carboxysome locus" indicates that the CsoSCA homolog is part of a typical carboxysome locus, "cbbLS and csoSCA nearby" indicates that genes encoding RubisCO and a CsoSCA homolog are juxtaposed on the genome, and "typical carboxysome locus elsewhere" indicates that a typical carboxysome locus is present elsewhere on the genome.

FIGURE 2 | Maximum likelihood analysis of CsoSCA homologs from carboxysome loci and elsewhere (CsoSCA2). Amino acid sequences were gathered from the IMG database, aligned by MUSCLE in MEGA 11, and trimmed via GBLOCKS to a final length of 278 aa (Edgar, 2004; Talavera and Castresana, 2007; Tamura et al., 2021). The maximum likelihood tree was constructed with partial deletion of gaps (95% cut-off) and the JTT model (Jones et al., 1992; discrete Gamma distribution with five categories, gamma parameter = 1.9314, 3.55% of sites evolutionarily invariant; this model had the lowest AIC calculated via the Find Best DNA/Protein Models feature in MEGA 11; Hurvich and Tsai, 1989; Akaike, 1998). Branch lengths are proportional to the number of substitutions (scale bar = substitutions per site). Bootstrap values are based on 500 resamplings of the alignment, with values <70% omitted. Taxon labels include abbreviated names of classes of Proteobacteria (Alpha, Beta, Gamma, and Delta; Acid=Acidithiobacillia), and full names of phyla beyond Proteobacteria. "C" indicates candidate status of species or phylum names. Taxon names also include symbols indicating the position of CsoSCA homologs relative to carboxysome-related genes, if present in the genomes. "Typical carboxysome locus" indicates that the CsoSCA homolog is part of a typical carboxysome locus, "cbbLS and csoSCA nearby" indicates that genes encoding RubisCO and a CsoSCA homolog are juxtaposed on the genome, and "typical carboxysome locus elsewhere" indicates that a typical carboxysome locus is present elsewhere on the genome.
A

Comparison of carboxysomal CsoSCA and CsoSCA2.

(A) Cartoon representation (www.pymol.org) of a dimer of CsoSCA subunits (pdb id 2FGY) in gray and wheat, and AlphaFold2 model of CsoSCA2 in blue and cyan. The active site zinc is labeled and shown as a sphere. Differences due to truncations are shown on the CsoSCA in red. The two N-terminal helices of CsoSCA2 are shown as slightly darker blue/cyan. Loop regions with truncations at the dimer interface are also labeled.

(B) Alignment of carboxysomal CsoSCA and CsoSCA2 sequences. Structural and functional information from Halothiobacillus neapolitanus CsoSCA is indicated above the alignment: Blue ovals = alpha-helices, yellow arrows = beta strands, "#" = RubisCO binding site, "*" = active site residue, vertical lines = regions involved in dimerization. Coloring of conserved residues is according to chemical properties. Sequences from typical carboxysome loci included in the alignment are: Halothiobacillus neapolitanus, H. neapolitanus from Gammaproteobacteria, IMG gene object ID 646383304; Nitrospira winogradskyi, N. winogradskyi from Alphaproteobacteria, IMG gene object ID 2923555277; Serpentimonas mccroryi, S. mccroryi from Betaproteobacteria, IMG gene object ID 2631660951; CsoSCA2 sequences included in the alignment are: N. winogradskyi nonCS, S. mccroryi from Betaproteobacteria, IMG gene object ID 2631660951; Serpentimonas mccroryi nonCS, S. mccroryi from Betaproteobacteria, IMG gene object ID 2631660951; Sulfuricabacter limicola nonCS, S. limicola from Gammaproteobacteria, IMG gene object ID 2775936065.
FIGURE 4 | Ribulose 1,5-carboxylase/oxygenase subunits (CbbL and CbbS) encoded by genes collocated with csoSCA homologs. Maximum likelihood analysis of CbbL and CbbS sequences was undertaken on sequences gathered from the IMG database, aligned by MUSCLE in MEGA 11, and trimmed via GBLOCKS (Edgar, 2004; Talavera and Castresana, 2007; Tamura et al., 2021). CbbL and CbbS alignments were then concatenated using the FASTA alignment joiner feature at FABOX (https://birc.au.dk/~palle/php/fabox/index.php), resulting in an alignment of 527 residues. The tree was constructed with partial deletion of gaps (95% cut-off) and the Le_Gascuel model (Le and Gascuel, 2008; discrete Gamma distribution with five categories, gamma parameter = 0.5775, 17.46% of sites evolutionarily invariant; this model had the lowest AIC calculated via the Find Best DNA/Protein Models feature in MEGA 11; Hurvich and Tsai, 1989; Akaike, 1998). Branch (Continued)
them among genes encoding their carboxysomal cognates from taxonomically affiliated organisms. For the *Nitrobacter* spp. and *Sulfuricella* spp., the *cbbLS* genes cluster with noncarboxysomal RubisCO genes (Figure 4). The situation is more complicated for the *csoSCA* homologs (Figure 2). For the *Nitrobacter* spp., the *csoSCA* homologs appear to be recent duplicates of those present in the typical carboxysome loci in their genomes. For the *Sulfuricella* spp., the *csoSCA* homologs fall within the *csoSCA*2 clade and are unlikely to have arisen from carboxysomes. Given the noncarboxysomal origin of the *cbbLS* genes in both classes, and *csoSCA* genes in the *Sulfuricella* spp., these are not fragments of a single degraded carboxysome locus. Despite the likelihood that they do not share evolutionary history cohabitating carboxysomes, it is still possible that these two enzymes might function together in the cytoplasm to facilitate CO$_2$ fixation in their host organisms, all of which are capable of autotrophic growth (Winogradsky, 1892; Kojima and Fukui, 2010). Coregulation is possible for both, but seems more likely for the members of *Nitrobacter*, since their genes are <2 kb apart (Figure 1). The juxtaposition of noncarboxysomal RubisCO genes to those encoding typical β-carbonic anhydrase has been noted for two members of *Hydrogenovibrio* (Yoshizawa et al., 2004; Scott et al., 2006), and is apparent in genome data from in many other members of *Hydrogenovibrio* and *Thiomicrothrix*; suggesting such juxtaposition may be selected for in some organisms. While the expression of cytoplasmic carbonic anhydrase results in a high CO$_2$-requiring phenotype in organisms with CCMs (Price and Badger, 1989), there is evidence for carbonic anhydrase activity in the chloroplasts of certain algae and plants (reviewed in Moroney et al., 2001). If these enzymes do function together in *Nitrobacter* and *Sulfuricella*, perhaps the carbonic anhydrase facilitates RubisCO-mediated CO$_2$ fixation by maintaining intracellular HCO$_3^-$ and CO$_2$ near chemical equilibrium, preventing RubisCO from diminishing the concentration of intracellular CO$_2$ under conditions where CCMs are not induced (e.g., moderate environmental CO$_2$ concentrations; Yoshizawa et al., 2004).

cbbL and cbbS Separate From csoS1, csoS2, csoSCA, and csoS4

Many members of family *Thiobacillaceae* (Boden et al., 2017; Boden, 2019) have *csoS1–S4* genes in a separate genomic locus from *cbbL* and *cbbS* genes (Figure 1), as has previously been described for *Thiobacillus denitrificans* (Cannon et al., 2003; Beller et al., 2006a). Of the eight genome sequences from cultivated members of this family, all of which grow autotrophically (Boden et al., 2017; Boden, 2019), five include a homolog to *csoS2* (Pfam012288; *Annwoodia aquaesulis*, *Sulfuritortus calidifontis* DSM103923 and J1A, *Thiobacillus denitrificans* ATCC25259, and *Thiobacillus thioparus*). In all cases, these csoS2 genes do not have *cbbL* and *cbbS* genes immediately upstream. Instead, *cbbL* and *cbbS* are located 2.6–21 kb away from *csoS1–4* (Figure 1). The other three genome sequences lack csoS2 homologs; since these three sequences are incomplete (38–98 scaffolds), it is not possible to know whether csoS2 is truly absent from these organisms. Nine genomes (15–407 scaffolds) inferred to belong to members of *Thiobacillaceae* have been gathered from metagenomes, and five of these include csoS2 homologs. Three of these genes are present at the ends of scaffolds, making it impossible to determine whether *cbbL* and *cbbS* genes are nearby. For the remaining *Thiobacillus* spp. Bin4_E1B and BP01), *cbbL* and *cbbS* are encoded separately from *csoS1–4*. Based on these observations, it seems likely that having *csoS1–4* genes apart from *cbbL* and *cbbS* genes may be a trait shared by all members of this family.

There are two mechanisms that could have resulted in the separate *cbbLS* and *csoS1–4* loci found in members of *Thiobacillaceae*. In the first scenario, a typical ancestral carboxysome locus containing all of these genes was severed by genome re-arrangement. In the second scenario, *cbbLS* and *csoS1–4* did not share an ancestral locus. Instead, carboxysomal *cbbLS* genes could have been lost from the genome entirely, and the *cbbLS* genes currently located 2–20 kb away are noncarboxysomal in origin. An additional possibility is that either *cbbLS* or *csoS1–4* were acquired via horizontal gene transfer.

To provide evidence for different mechanisms for formation of *cbbLS* and *csoS1–4* loci, phylogenetic analyses were conducted using concatenated alignments of *cbbL* and *cbbS* genes (*cbbLS*), and *csoS2, S3, S4a, and S4b (*csoS2–4*). Genes encoding CsoS1A–C were omitted from these analyses, due to difficulties distinguishing the three types of *csoS1–C* genes. The results of these analyses raise the possibility that *cbbLS* and *csoS1–4* loci did not originate from a single ancestral typical carboxysome locus in these organisms (Figure 5). In *Sf. calidifontis* (here collapsed to strain J1A, since sequences for the two strains are identical), *cbbLS* genes fall in a small well-supported clade with *Tb. denitrificans*, and with other members of *Thiobacillaceae* in larger clades, though these larger clades are not as well-supported (Figure 5). The *csoS2–4* genes from *S. calidifontis* fall among completely different taxa than its *cbbLS* genes, suggesting independent origins for its two loci. For all four isolates from *Thiobacillaceae*, *cbbLS* genes do not fall among those from typical carboxysome loci, though it should be noted that carboxysomal and non-carboxysomal *cbbLS* genes are not distinguished by two distinct, well-supported clades (Figure 5). Together, these observations suggest independent origins for *cbbLS* and *csoS2–4* loci in *Thiobacillaceae*, but low bootstrap values for these phylogenetic analyses compromise the
FIGURE 5 | Analysis of RubisCO subunits (CbbL and CbbS) and carboxysome shell proteins (CsoS2, SCA, S4A, and S4B) that are encoded at two separate loci. Maximum likelihood analysis of amino acid sequences of RubisCO subunits and carboxysome shell proteins was undertaken on sequences that were gathered from the IMG database, aligned by Muscle in MEGA 11, and trimmed via Gblocks (Edgar, 2004; Talavera and Castresana, 2007; Tamura et al., 2021). CbbL and CbbS alignments were then concatenated using the FASTA alignment joiner feature at FABOX (https://birc.au.dk/~palle/php/fabox/index.php), as were CsoS2, SCA, S4A, and S4B, resulting in alignments of 550 (CbbLS) and 997 (CsoS2–4) residues.

The trees were constructed with partial deletion of gaps (95% cut-off) and the Le_Gascuel model [Le and Gascuel, 2008; discrete Gamma distribution with five categories, gamma parameter = 0.5298, 17.64% of sites evolutionarily invariant (CbbLS); gamma parameter = 1.2921, 7.86% of sites evolutionarily invariant (CsoS2–4)]. Bootstrap values are based on 500 resamplings of the alignment, with values <70% omitted. Taxon labels include abbreviated names of classes of Proteobacteria (Alpha, Beta, Gamma, and Delta; Acid = Acidithiobacillales). Taxon names also include symbols indicating the position of genes relative to carboxysome-related genes, if present in the genome. "Typical carboxysome locus" indicates that the genes are part of a typical carboxysome locus, "cbbLS and csoS1–4 separate" indicates that genes encoding RubisCO and CsoS1–4 are encoded by separate loci, and "typical carboxysome locus elsewhere" indicates that a typical carboxysome locus is present elsewhere on the genome.

(continued)
and Gammaproteobacteria. A carboxysome locus lacking csoSCA is also present in Pseudonocardia sp. N23, a member of Actinobacteria (Figure 1); though it has not been determined whether this organism could grow autotrophically, other members of its genus can (e.g., Pseudonocardia autotrophica; Takamiya and Tubaki, 1956). None of these organisms have csoSCA homologs elsewhere in their genomes (aside from Thiomicrorhabdus sediminis, which has a copy in its “typical” carboxysome operon). In Betaproteobacteria, they are present in Nitrosospira multiformis and also Nitrosospira spp. Nsp5 and Nsp6, which may be strains of Nsp. multiformis, based on average nucleotide identities >99% (Richter and Rosselló-Móra, 2009). Within Gammaproteobacteria, they appear to have arisen independently three times. All members of Thiomicrosira have carboxysome loci lacking csoSCA. Within Thiomicrorhabdus, such loci seem to have arisen twice. In Thiomicrorhabdus sediminis, two carboxysome loci are present; one is typical, while the second appears to be a recent duplicate of the typical locus. The amino acid sequences predicted from both cbbL and cbbS genes are 100% identical. Both copies of CsoS2 are 100% identical at amino termini; however, at residue 330, they diverge, and this continues to the carboxy termini. CsoS1 sequences also are identical at the amino termini and have small differences at their carboxy termini. The carboxysome locus from Thiomicrorhabdus aquaedulcis does not fall within a clade with those from other members of its genus (Figure 6), suggesting that it may have been acquired via horizontal gene transfer.

The carboxysome locus from Pseudonocardia sp. N23 includes cbbL and cbbS genes distinct from those present in other members of phylum Actinobacteria (Figure 4). Other members of this phylum carry cbbL and cbbS, and Pseudonocardia sp. N23 does include a copy that falls within a clade of these sequences (Figure 4). However, the cbbL and cbbS genes present in the carboxysome locus, as well as csoS2, csoS4A, and csoS4B, fall among genes from carboxysome loci from members of Alpha- and Betaproteobacteria (Figures 4, 6), suggesting this locus was acquired via horizontal gene transfer.

It is apparent that these carboxysome loci originated from typical carboxysome loci, given that they cluster with others that contain csoSCA genes (Figure 6). Indeed, in members of Thiomicrosira, a gene is present between csoS2 and csoS4A (Figure 1), which is likely to be a degraded form of csoSCA. In Thiomicrosiras pelophila, thyasirae, and microaerophila, these genes do match Pfam08936 (csoSCA), but e-values range from 0.006 to 4.5e–05, and none of the residues necessary for carbonic anhydrase activity are present. However, the amino termini of the proteins predicted from these genes align well with those from CsoSCA proteins. Given that the amino termini of CsoSCA proteins may facilitate interactions among carboxysome proteins (Blikstad et al., 2021), perhaps these degraded genes may still encode proteins that facilitate packing of RubisCO molecules into carboxysomes.

There is evidence that these carboxysome loci are transcribed and translated. Carboxysome locus genes are transcribed in Thiomicrospira (Scott et al., 2019), carboxysomes are visible in transmission electron micrographs of members of Thiomicrospira (Sorokin et al., 2001, 2002a,b; Scott et al., 2019), and have been purified from Thms. thyasirae (Lanaras et al., 1991). Electron dark inclusions are abundant in Nsp. multiformis, but staining patterns suggest these consist of glycerogen (Watson et al., 1971). Ultrastructural studies of Pseudonocardia sp. N23, as well as Tmr. aquaedulcis and sediminis, have not been published.

Given the presence of carboxysomes in at least some of these taxa, the conservation of residues necessary for the function of the CbbL, CbbS, CsoS2, and CsoS4A and B proteins, and the convergent evolution of this sort of carboxysome locus in multiple lineages of microorganisms, they are likely to be functional in their host organisms (however, see the comments on CsoS1 sequences from Pseudonocardia sp. N23 in Section “Do the Genes From Atypical Carboxysome Loci Encode Functional Proteins” above). The current understanding of carboxysome function requires the presence of carbonic anhydrase activity within these microcompartments in order for them to facilitate CO2 fixation by RubisCO (see above). One possibility is that these modified carboxysomes have shells that are permeable to CO2, allowing this gas to enter from the cytoplasm. CsoS4 proteins are necessary for carboxysome shell impermeability to CO2; the absence of CsoS4 to seal the vertices of their shells renders the microcompartments CO2-permeable (Cai et al., 2009). Their critical function perhaps accounts for their strong sequence conservation, hence redundancy, which is unusual for bacterial microcompartments that have multiple pentamer-forming paralogs (Melnicki et al., 2021). Interestingly, the carboxysome locus from Tmr. aquaedulcis lacks genes encoding CsoS4A, and the Tmr. sediminis locus lacking csoSCA lacks both csoS4A and csoS4B. Perhaps carboxysomes from these organisms operate without CsoS4 proteins, and are permeable to CO2. Given that carboxysome shells are assumed to require only 12 pentamers, and their pores are small (~4 Å in diameter), they are assumed to not play a significant role in metabolite conductance. However, a recent study of the protein stoichiometry of β-carboxysomes showed varying occupation of the vertices by the CcmL, the lone pentamer-forming gene product in beta carboxysome loci (Sun et al., 2019). The occupancy was correlated with environmental conditions, suggesting that pentamer association with shells is dynamic and perhaps serves as one way to alter permeability. Because Tmr. sediminis has two carboxysome loci (one typical, one lacking csoSCA, csoS4A, and csoS4B), determining the conditions under which it expresses typical, vs. atypical, carboxysomes could provide useful information about how its atypical carboxysomes might function, including whether pentamers and carbonic anhydrase are provided by the other locus. If these carboxysomes are permeable to CO2, cytoplasmic CO2 concentrations would need to be elevated in order to enhance RubisCO activity, running the risk of high rates of CO2 loss from the cells via diffusion, unless this loss is counterbalanced by living in a high CO2 habitat. These organisms have been cultivated in growth media supplemented with HCO3− (10–30 mM; Kojima and Fukui, 2019) or CO2 (20% headspace; Liu et al., 2021). For Tmr. sediminis, the lack of csoS4 genes suggests that this
organism may not be capable of growth under low CO$_2$ conditions, and it would be interesting to determine whether this is the case.

The other organisms lacking CsoSCA genes encoding CsoS1 and CsoS4; perhaps their shells are permeable to CO$_2$ based on modifications to these two types
of shell proteins. However, such differences are not detected when shell proteins from typical carboxysomes are compared to those from carboxysomes lacking carbonic anhydrase. For CsoS1ABC proteins, the sequence FVGGGY, corresponding to residues 40–45 from Htb. neapolitanus, comprises the narrowest part of the pore and the residues surrounding it (Tsai et al., 2007). In all of the CsoS1ABC sequences from atypical carboxysome loci lacking csoSCA, these residues are conserved, suggesting the pores have characteristics similar to those in typical carboxysomes. To determine whether there are other residues that vary systematically for these atypical carboxysome loci, and to detect changes in the sequence that are more likely due to the presence/absence of CsoSCA rather than evolutionary distance, CsoS1ABC sequences within Piscirickettsiidae were compared, since genomes from this family include both typical (all 10 species of Hydrogenovibrio, 8/10 species from Thiomicrorhabdus) and atypical (2/10 species from Thiomicrothrix, all six members of Thiomicrospira) loci. Among all of these organisms, CsoS1ABC sequences are very highly conserved throughout the sequences. Likewise, CsoS1D sequences from these organisms have small differences throughout, and mapping those differences on a homology model does not reveal significant patches of variability. CsoS4A and B sequences are also very similar across all three genera and there are no distinguishable differences between them. If these shell proteins actually are permeable to CO₂, the mechanism mediating this change is not apparent from their sequences.

Another mechanism for preserving the activities of these carboxysomes would be their recruitment of a carbonic anhydrase encoded elsewhere on the genome, as may be the case for some β-carboxysomes from Cyanobacteria. β-carboxysomes carry homologs to γ-carbonic anhydrase (Dearajujo et al., 2014). In some cases, these homologs are enzymatically active as carbonic anhydrases, while in others, these homologs have apparently lost enzymatic activity (Cot et al., 2008), although the active site residues are intact. In these cases, the carboxysomes also carry a functional β-carbonic anhydrase (deeply divergent to CsoSCA; so et al., 2002; Cot et al., 2008; Rae et al., 2013), and the gene encoding this β-carbonic anhydrase is not present in or near the operon encoding the essential components of the carboxysome (Rae et al., 2013). Evaluation of these possibilities awaits purification of carboxysomes from organisms with carboxysome loci lacking csoSCA genes, to test the permeabilities of their shells and the potential presence of carbonic anhydrase activity within them.

CONCLUSION

The unusual carboxysome-related loci described here are common enough to suggest relevance. Genes encoding CsoSCA2 are extremely widespread. Colocalization of csoSCA homologs and cbbLS is present in genomes from two classes of Proteobacteria. “Split” carboxysome loci (cbbLS and csoS1-4) are likely present in all members of family Thiobacillaceae. Carboxysome loci lacking csoSCA homologs (or homologs unlikely to be active) are present in at least two classes of Proteobacteria and have been horizontally transferred to phylum Actinobacteria. Together, all of this indicates that modified carboxysome loci have been evolutionarily selected for in some lineages, and are not the tattered remnants of typical carboxysome loci, captured on their journey to degradation and loss. Understanding how the proteins encoded by these atypical carboxysome loci function could help us understand better how typical carboxysomes function (the exceptions that prove—or disprove—the rule), as well as the selective pressures driving their origins from the assembly of their components over time.

The nature of the selective advantage provided by these atypical loci is not apparent at this point. All of the organisms carrying these atypical carboxysome loci (except for csoSCA2) are chemolithoautotrophs, so these atypical loci are likely to play a role in CO₂ fixation. The habitats from which they were isolated are very diverse, with CO₂ concentrations ranging from extremely low (alkaline soda lakes; Sorokin et al., 2001, 2002a,b), to high (e.g., soils, marine sediments; Bock and Wagner, 2006; Kelly and Wood, 2006). Particularly for those organisms from low CO₂ habitats, these atypical carboxysome loci are likely to play a role in CCMs. Consistent with this possibility, most of these organisms have genes for likely DIC transporters either associated with their atypical loci or elsewhere in their genomes (Scott et al., 2020). However, based on the current understanding of CCMs in bacteria, which requires that both RubisCO and carbonic anhydrase are present in carboxysomes, it is difficult to understand how organisms lacking carboxysomal RubisCO (as in section “cbbL and cbbS Separate From csoS1, csoS2, csoSCA, and csoS4” above) or carbonic anhydrase (as in section “No csoSCA” above) could have functioning CCMs. This conceptual gap may result from the relative paucity of studies on CCMs in organisms besides Cyanobacteria, in which CCMs have been well-studied (reviewed in Price et al., 2009). Though carboxysomes from chemolithoautotrophs have been well-studied (Kerfeld et al., 2010, 2018; Sutter et al., 2021), their integration with the other components of CCMs in these organisms (e.g., DIC transporters) has not. CCM function (carboxysome presence and elevated intracellular DIC concentration) has been demonstrated for only one bacterium beyond Cyanobacteria (Hydrogenovibrio crunogenus; Dobrinski et al., 2005). Upregulation of genes encoding both DIC transporters and carboxysomes under low DIC conditions has only been demonstrated for a handful of chemolithoautotrophic Gammaproteobacteria (Mangiapi et al., 2017; Desmarais et al., 2019; Scott et al., 2019). Despite this undersampling, it is already apparent that CCMs in Proteobacteria are more diverse than those from Cyanobacteria, in their reliance on a different arsenal of DIC transporters and multiple types of RubisCO (Dobrinski et al., 2012; Scott et al., 2019, 2020). Atypical carboxysomes could represent yet another layer of diversity in these CCMs; evaluating this possibility awaits further study of CCMs in these organisms as well as those in other members of Proteobacteria.
AUTHOR CONTRIBUTIONS

KS contributed to conception and design of the manuscript. KS, USF GC 2020, USF GC 2021, MS, and CK ran the analyses. All authors contributed to manuscript writing and revision, and have read and approved the submitted version.

FUNDING

This work was supported by the National Science Foundation (NSF-MCB-1952676 to KS), and the Office of Science of the United States Department of Energy (DE-FG02-91ER20021 to MS and CK), and MSU AgBio Research (MS and CK).

REFERENCES

Akaike, H. (1998). “Information theory and an extension of the maximum likelihood principle,” in Selected Papers of Hirotugu Akaike. eds. E. Parzen, K. Tanabe and G. Kitagawa (New York, NY: Springer New York), 199–213.

Axen, S. D., Erbilgin, O., and Kerfeld, C. A. (2014). A taxonomy of bacterial microcompartment loci constructed by a novel scoring method. PLoS Comput. Biol. 10:e1003898. doi: 10.1371/journal.pcbi.1003898

Beller, H. R., Chain, P. S., Letain, T. E., Chakicherla, A., Larimer, F. W., Richardson, P. M., et al. (2006a). The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiothrix denitrificans. J. Bacteriol. 188, 1473–1488. doi: 10.1128/JB.188.4.1473-1488.2006

Beller, H. R., Letain, T. E., Chakicherla, A., Kane, S. R., Legler, T. C., and Coleman, M. A. (2006b). Whole-genome transcriptional analysis of chemolithoautotrophic thiocyanate oxidation by Thiothrix denitrificans under aerobic versus denitrifying conditions. J. Bacteriol. 188, 7005–7015. doi: 10.1128/JB.00568-06

Bilkstad, C., Dugan, E. J., Laughlin, T. G., Liu, M. D., Shoemaker, S. R., Remis, J. P., et al. (2021). Discovery of a carbonic anhydrase-Rubisco supercomplex within the alpha-carboxysomes. bioRxiv [Preprint]. doi: 10.1101/2021.11.05.467472

Bock, E., and Wagner, M. (2006). “Oxidation of inorganic nitrogen compounds” in Bergey’s Manual of Systematics of Archaea and Bacteria. ed. W. B. Whitman (John Wiley & Sons, Inc.), 1–3.

Boden, R., Hutt, L. P., and Rae, A. W. (2017). Reclassification of Thiothrix aquaeulis (Wood & Kelly, 1995) as Annooodia aquaeulis gen. nov., comb. nov., transfer of Thiothrix (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadale, proposal of Hydrogenophilalia class. nov. within the ‘Proteobacteria’, and four new families within the orders Nitrosomonadales and Rhodocycliales. Int. J. Syst. Evol. Microbiol. 67, 1191–1205. doi: 10.1099/ijsem.0.019127

Cai, F., Dou, Z., Bernstein, S. L., Leverenz, R., Williams, E. R., Heinhorst, S., et al. (2015). Advances in understanding carboxysome assembly in Prochlorococcus and Synechococcus implicate CsoS2 as a critical component. Life 5, 1141–1171. doi: 10.3390/life5021141

Cai, F., Heinhorst, S., ShivELY, J. M., and Cannon, G. C. (2008). Transscript analysis of the Halothiobacillus neapolitanus cso operon. Arch. Microbiol. 189, 141–150. doi: 10.1007/s00203-007-0305-y

Cai, F., Monen, B. B., Cannon, G. C., Curry, K. J., Shively, J. M., and Heinhorst, S. (2009). The pentameric vertex proteins are necessary for the icoshedral carboxysome shell to function as a CO2 leakage barrier. PLoS One 4:e7521. doi: 10.1371/journal.pone.0007521

Cannon, G. C., Baker, S. H., Soyer, F., Johnson, D. R., Bradburne, C. E., Mehlman, J. L., et al. (2003). Organization of carboxysome genes in the thiothiobacilli. Curr. Microbiol. 46, 115–119. doi: 10.1007/s00284-002-3823-3

Cannon, G. C., Heinhorst, S., Bradburne, C. E., and Shively, J. M. (2002). Carboxysome genomics: a status report. Funct. Plant Biol. 29, 175–182. doi: 10.1071/FP01200

Cannon, G. C., Heinhorst, S., and Kerfeld, C. A. (2010). Carboxysomal carbonic anhydrases: structure and role in microbial CO2 fixation. Biochim. Biophys. Acta 1804, 382–392. doi: 10.1016/j.bbapap.2009.09.026

Chen, I. A., Chu, K., Palaniappan, K., Pillay, M., Ratner, A., Huang, J., et al. (2019). IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and metagenomes. Nucleic Acids Res. 47, D666–D677. doi: 10.1093/nar/gky901

Cooper, T. G., and Filmer, D. (1969). The active species of “CO2” utilized by ribulose diphosphate carboxylase. J. Biol. Chem. 244, 1081–1083. doi: 10.1016/S0021-9258(18)91899-9

Cot, S. S. W., So, A. K. C., and Espie, G. S. (2008). A multiprotein bicarbonate dehydrogen complex essential to carboxysome function in cyanobacteria. J. Bacteriol. 190, 936–945. doi: 10.1128/JB.01283-07

Dobrinski, K. P., Enkemann, S. A., Yoder, S. J., Haller, E., and Scott, K. M. (2012). Transcription response of the sulfur chemolithoautotroph Thiomicrospira crunogena to dissolved inorganic carbon limitation. J. Bacteriol. 194, 2074–2081. doi: 10.1128/JB.01650-11

Dobrinski, K. P., Longo, D. L., and Scott, K. M. (2005). A hydrothermal vent chemolithoautotroph with a carbon concentrating mechanism. J. Bacteriol. 187, 5761–5766. doi: 10.1128/JB.187.16.5761-5766.2005

Dou, Z., Heinhorst, S., Williams, E., Murin, E., ShivELY, J., and Cannon, G. (2008). CO2 fixation kinetics of Halothiobacillus neapolitanus mutant carboxysomes lacking carbonic anhydrase suggest the shell acts as a diffusional barrier for CO2. J. Biol. Chem. 283, 10377–10384. doi: 10.1074/jbc.M709285200

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797. doi: 10.1093/nar/gkh340

Esparrza, M., Jedlicki, E., Gonzalez, C., Dopson, M., and Holmes, D. S. (2019). Effect of CO2 concentration on uptake and assimilation of inorganic carbon in the extreme acidophile Acidithiobacillus ferrooxidans. Front. Microbiol. 10:603. doi: 10.3389/fmicb.2019.00603

Heinhorst, S., Williams, E., Cai, F., Murin, E., ShivELY, J., and Cannon, G. (2006). Characterization of the carboxysomal carbonic anhydrase CsoCSA from Halothiobacillus neapolitanus. J. Bacteriol. 188, 8087–8094. doi: 10.1128/JB.00990-06

Horken, K., and Tabita, F. R. (1999). Closely related form I ribulose bisphosphate carboxylase/oxygenase molecules that possess different CO2/O2 substrate specificities. Arch. Biochem. Biophys. 361, 183–194. doi: 10.1006/abbi.1998.0979

ACKNOWLEDGMENTS

We are grateful to the University of South Florida for the resources to make it possible for the students in Genomics Class 2020 and 2021 to contribute to this manuscript. Genomics Class 2020 and 2021 are Salvador Ayala-Preciado, Alizain K. Bangash, Eleanor Brodick, Deanna Byram, Madilynn Carney, Michael Colosi, Holly David, Gabriela Dolarid, Anelys Figueroa, Christyn A. Geniesse, Lucy B. Gravitt, M. Andrew Glass, Rhianne A. Hendrick, Arianna Henry, Thomas Henry, Alexis Hunt, Nicole Juern, Jason A. Kalathia, Taylor Kelsay, Jacob Kligman, Sydney T. Marshall, Ian M. Matosdeza, Aaron S. Mohammed, Jeremias Munoz, Nicole Nauman, Dhanvi Patel, Alexandra Rodier, Beatriz Sanchez Uribazo, Logan Suits, Angel D. Valladares, Daniela Varon-Garcia, Alex Wagner, Lauren Wallace, and Jana Wieschollek.

AUTHORS

USF Genomics Class 2020 et al.

Atypical Carboxysome Loci

May 2022 | Volume 13 | Article 872708
Price, G. D., Badger, M. R., Woodger, F. J., and Long, B. M. (2009). Advances in understanding the cyanobacterial CO₂-concentrating-mechanism (CCM): functional components, CI transporters, diversity, genetic regulation and prospects for engineering into plants. J. Exp. Bot. 59, 1441–1461. doi: 10.1093/jxb/erm112

Rae, B. D., Long, B. M., Badger, M. R., and Price, G. D. (2013). Functions, compositions, and evolution of the two types of cyanobosomes: polyhedral microcompartments that facilitate CO₂ fixation in cyanobacteria and some proteobacteria. Microbiol. Mol. Biol. Rev. 77, 357–379. doi: 10.1128/MMBR.00061-12

Richter, M., and Rosselló-Móra, R. (2009). Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. U. S. A. 106, 19126–19131. doi: 10.1073/pnas.0906412106

Roberts, E. W., Cai, E., Kerfeld, C. A., Cannon, G. C., and Heinhorst, S. (2012). Isolation and characterization of the Prochlorococcus cyanobosome reveal the presence of the novel shell protein CsoSID. J. Bacteriol. 194, 787–795. doi: 10.1128/JB.00444-11

Sawaya, M. R., Cannon, G. C., Heinhorst, S., Tanaka, S., Williams, E. B., Yeates, T. O., et al. (2006). The structure of beta-carbonic anhydrase from the cyanobacterial shell reveals a distinct subclass with one active site for the price of two. J. Biol. Chem. 281, 7546–7555. doi: 10.1074/jbc.M510464200

Scott, K. M., Hamer, T. L., Gemmell, B. J., Kramer, A. M., Sutter, M., Kerfeld, C. A., et al. (2020). Ubiquity and functional uniformity in CO₂ concentrating mechanisms in multiple phyla of bacteria is suggested by a diversity and prevalence of genes encoding candidate dissolved inorganic carbon transporters. FEMS Microbiol. Lett. 367:e31a106. doi: 10.1093/femsec/fna106

Scott, K. M., Leonard, J., Boden, R., Chaput, D., Dennison, C., Haller, E., et al. (2019). Diversity in CO₂ concentrating mechanisms among chemolithoautotrophs from the genera Hydrogenovibrio, Thiomicrorhabdus, and Thiomicrospira, ubiquitous in sulfidic habitats worldwide. Appl. Environ. Microbiol. 85, e02096–e03018. doi: 10.1128/AEM.02096-18

Scott, K. M., Sievert, S. M., Abril, F. N., Ball, L. A., Barrett, C. J., Blake, R. A., et al. (2006). The genome of deep-sea vent chemolithoautotroph Thiomicrospira crunogena. PLoS Biol. 4:e383. doi: 10.1371/journal.pbio.0040383

ShivELY, J. M., Decker, G. L., and Greenawalt, J. W. (1970). Comparative ultrastructure of the thiobacilli. J. Bacteriol. 101, 618–627. doi: 10.1128/JB.101.2.618-627.1970

So, A. K., Espie, G. S., Williams, E. B., Shively, J. M., Heinhorst, S., and Parnell, G. C. (2004). A novel evolutionary lineage of carbonic anhydrase (epsilon class) is a component of the cyanobacterial shell. J. Bacteriol. 186, 623–630. doi: 10.1128/JB.186.3.623-630.2004

So, A. K., Johnmckay, M., and Espie, G. S. (2002). Characterization of a mutant lacking carbonic-anhydrase and cyanobacterium Synechocystis PCC6803. Planta 213, 456–467. doi: 10.1007/s004250100638

Sorokin, D. Y., Gorlenko, V. M., Tourouva, T. P., Tsapin, A. I., Nealon, K. H., and Kuenen, G. J. (2002a). Thiialkalibacterium cyclicum sp. nov. and Thiokalkivibrio jannaschi sp. nov., novel species of haloalkaliphilic, obligately chemolithoautotrophic sulfur-oxidizing bacteria from hypersaline alkaline monolake (California). Int. J. Syst. Evol. Microbiol. 52, 913–920. doi: 10.1099/ijs.0.0027713-52-3-913

Sorokin, D. Y., Lysenko, A. M., Mityushina, L. I., Tourouva, T. P., Jones, B. E., Rainey, F. A., et al. (2001). Thioalkalibacterium aerophilum gen. nov., sp. nov. and Thioalkalivibrio sibiricum sp. nov., and Thioalkalivibrio versatus gen. nov., sp. nov., Thioalkalivibrio nitratis sp. nov., and Thioalkalivibrio denitrificans sp. nov., novel obligately alkaliophilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes. Int. J. Syst. Evol. Microbiol. 51, 565–580. doi: 10.1099/ijs.0.0027713-52-1-565

Sorokin, D. Y., Tourouva, T. P., Kolganova, T. V., Sjollemma, K. A., and Kuenen, J. G. (2002b). Thioalkalivibrio microaerophilus gen. nov., sp. nov., a novel lithoautotrophic, sulfur-oxidizing bacterium from a soda lake. Int. J. Syst. Evol. Microbiol. 52, 2175–2182. doi: 10.1099/ijs.0.0027713-52-6-2175
Spreitzer, R. J. (2003). Role of the small subunit in ribulose-1,5-bisphosphate carboxylase/oxygenase. *Arch. Biochem. Biophys.* 414, 141–149. doi: 10.1016/S0003-9861(03)00171-1

Sun, Y., Wollman, A. J. M., Huang, F., Leake, M. C., and Liu, L. N. (2019). Single-organellle quantification reveals stoichiometric and structural variability of carboxysomes dependent on the environment. *Plant Cell* 31, 1648–1664. doi: 10.1105/tpc.18.00787

Sutter, M., Melnicki, M. R., Schulz, F., Woyke, T., and Kerfeld, C. A. (2021). A catalog of the diversity and ubiquity of bacterial microcompartments. *Nat. Commun.* 12:3809. doi: 10.1038/s41467-021-24126-4

Tabita, F. R. (1999). Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a different perspective. *Photosynth. Res.* 60, 1–28. doi: 10.1023/A:1006211417981

Tabita, F. R., Hanson, T. E., Satagopan, S., Witte, B. H., and Kree, N. E. (2008). Phylogenetic and evolutionary relationships of RubisCO and the RubisCO-like proteins and the functional lessons provided by diverse molecular forms. *Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci.* 363, 2629–2640. doi: 10.1098/rstb.2008.0023

Takamiya, A., and Tubaki, K. (1956). A new form of Streptomyces capable of growing autotrophically. *Arch. Mikrobiol.* 25, 58–64. doi: 10.1007/BF00409115

Tabata, F. R., Hanson, T. E., Satagopan, S., Witte, B. H., and Kree, N. E. (2008). Phylogenetic and evolutionary relationships of RubisCO and the RubisCO-like proteins and the functional lessons provided by diverse molecular forms. *Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci.* 363, 2629–2640. doi: 10.1098/rstb.2008.0023

Talavera, G., and Castresana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. *Syst. Biol.* 56, 564–577. doi: 10.1080/10635150500472164

Tamura, K., Stecher, G., and Kumar, S. (2021). MEGA11: molecular evolutionary genetics analysis version 11. *Mol. Biol. Evol.* 38, 3022–3027. doi: 10.1093/molbev/msab120

Tanaka, S., Kerfeld, C. A., Sawaya, M. R., Cai, F., Heinhorst, S., Cannon, G. C., et al. (2008). Atomic-level models of the bacterial carboxysome shell. *Science* 319, 1083–1086. doi: 10.1126/science.1151458

Tsai, Y., Sawaya, M. R., Cannon, G. C., Cai, F., Williams, E. B., Heinhorst, S., et al. (2007). Structural analysis of CsoS1A and the protein shell of the *Halothiobacillus neapolitanus* α-carboxysome. *PLoS Biol.* 5:e144. doi: 10.1371/journal.pbio.0050144

Watson, S. W., Graham, L. B., Remsen, C. C., and Valois, F. W. (1971). Lobular, ammonia-oxidizing bacterium, *Nitrosolobus multiformis* nov. gen. nov. sp. *Arch. Microbiol.* 76, 183–203. doi: 10.1007/BF00409115

Watson, G. M. F., Yu, J.-P., and Tabita, F. R. (1999). Unusual ribulose 1,5-bisphosphate carboxylase/oxygenase of anoxic Archaea. *J. Bacteriol.* 181, 1569–1575. doi: 10.1128/JB.181.5.1569-1575.1999

Winogradsky, S. (1892). *Contributions à la morphologie des organismes de la nitrification.* St. Petersburg: L’Institut Imperial de Medecine Experimentale.

Yoshizawa, Y., Toyoda, K., Arai, H., Ishii, M., and Igarashi, Y. (2004). CO₂-responsive expression and gene organization of three ribulose-1,5-bisphosphate carboxylase/oxygenase enzymes and carboxysomes in *Hydrogenovibrio marinus* strain MH-110. *J. Bacteriol.* 186, 5685–5691. doi: 10.1128/JB.186.17.5685-5691.2004

Zhao, Y.-Y., Jiang, Y.-L., Chen, Y., Zhou, C.-Z., and Li, Q. (2019). Crystal structure of pentameric shell protein CsoS4B of *Halothiobacillus neapolitanus α*-carboxysome. *Biochem. Biophys. Res. Commun.* 515, 510–515. doi: 10.1016/j.bbrc.2019.05.047

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Sutter, Kerfeld and Scott. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.