Erratum to: P2X7R blockade prevents NLRP3 inflammasome activation and brain injury in a rat model of intracerebral hemorrhage: involvement of peroxynitrite

Liang Feng1, Yizhao Chen1*, Rui Ding2, Zhenghao Fu3, Shuo Yang4, Xinqing Deng5 and Jun Zeng1

Erratum
After publication of this work [1], it was noted that there was an error within Figs. 6 and 8: both these figures were inadvertently transposed with one another. This has been correctly updated in the original article, and is also included correctly below.

Author details
1The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhuhai Hospital, Southern Medical University, Guangzhou 510282, China. 2Department of Neurosurgery, Jingmen No. 1 People’s Hospital, Jingmen, Hubei 448000, China. 3Department of Neurosurgery, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou 510900, China. 4Department of Neurosurgery, Gaoqing Campus of Central Hospital of Zibo, Gaoqing People’s Hospital, Gaoqing, Zibo, Shandong 256300, China. 5Department of Neurosurgery, 999 Brain Hospital, Jinan University, Guangzhou, Guangdong 510510, China.

Received: 14 June 2016 Accepted: 14 June 2016

Reference
1. Feng L, Chen Y, Ding R, Fu Z, Yang S, Deng X, et al. P2X7R blockade prevents NLRP3 inflammasome activation and brain injury in a rat model of intracerebral hemorrhage: involvement of peroxynitrite. J Neuroinflammation. 2015;12:190. doi:10.1186/s12974-015-0409-2.

Submit your next manuscript to BioMed Central and we will help you at every step:
• We accept pre-submission inquiries
• Our selector tool helps you to find the most relevant journal
• We provide round the clock customer support
• Convenient online submission
• Thorough peer review
• Inclusion in PubMed and all major indexing services
• Maximum visibility for your research

Submit your manuscript at www.biomedcentral.com/submit

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Fig. 6 Effects of BBG on neuronal apoptosis and neurological outcomes in ICH rats. BBG significantly reduced the number of apoptotic neurons (a, b) 24 h following ICH, n = 6 rats per group. BBG significantly improved neurological deficits (c) at 24 and at 72 h after ICH, n = 6 rats per group. Scale bar = 50 μm. Data represent means ± SD. * P < 0.05, ** P < 0.01. BBG brilliant blue G.

Fig. 8 Effects of BBG on neutrophils infiltration after ICH. Representative photographs of immunofluorescence staining (a) for MPO (neutrophil marker)-positive cells in perihematoma area in the Sham, Vehicle, and BBG (50 mg/kg) groups at 24 h following operation, n = 6 rats per group. Representative western blot (b) and effects of BBG on MPO levels (c) at 24 h after ICH, n = 4 rats per group. Scale bar = 50 μm. Data represent means ± SD. * P < 0.05, ** P < 0.01. BBG brilliant blue G, ICH intracerebral haemorrhage.