THE GAUSSIAN PROCESS FOR PARTICLE MASSES IN THE
NEAR-CRITICAL ISING MODEL

FEDERICO CAMIA, JIANPING JIANG, AND CHARLES M. NEWMAN

Abstract. We review the construction of a stationary Gaussian process \(X(t) \) starting from the near-critical continuum scaling limit \(\Phi^h \) of the Ising magnetization and its relation to the mass spectrum of the relativistic quantum field theory associated to \(\Phi^h \). Then for the near-critical Ising model on \(\mathbb{Z}^2 \) with external field \(a \frac{15}{8} h \geq 0 \), we study the renormalized magnetization along a vertical line (with horizontal coordinate approximately \(t \)) and prove that the limit as \(a \downarrow 0 \) is the same Gaussian process \(X(t) \). We also explore the possible extension of this approach to dimensions \(d > 2 \).

1. Introduction

1.1. Overview. Consider the Ising model at inverse critical temperature \(\beta_c \) on \(\mathbb{Z}^2 \) with \(a > 0 \) and external field \(a \frac{15}{8} h \geq 0 \). Let \(\{\sigma_x : x \in \mathbb{Z}^2\} \) denote the basic spin random variables of the Ising model, and \(\Phi^{a,h} \) denote the magnetization field

\[\Phi^{a,h} := a^{\frac{15}{8}} \sum_{x \in \mathbb{Z}^2} \sigma_x \delta_x, \]

where \(\delta_x \) is a unit Dirac point measure at \(x \). In Theorem 1.2 of [2] and Theorem 1.4 of [3], it was proved that

\[\Phi^{a,h} \Rightarrow \Phi^h \]

where \(\Rightarrow \) denotes convergence in distribution, and \(\Phi^h \) with \(h \geq 0 \) is a generalized random field on \(\mathbb{R}^2 \); see [7] for a review. Euclidean random fields such as \(\Phi^h \) on Euclidean “space-time” \(\mathbb{R}^d := \{x = (x_0, y_1, \ldots, y_{d-1})\} \) are related to quantum fields on relativistic space-time, \(\{(t, y_1, \ldots, y_{d-1})\} \), essentially by replacing \(x_0 \) with a complex variable and analytically continuing from the purely real \(x_0 \) to pure imaginary \((-it)\)—see [31, 32], Chapter 3 of [17] and [29] for background. It was predicted in [37, 36] that the relativistic quantum field theory associated to the Euclidean field \(\Phi^h \) with \(h > 0 \) should have remarkable properties including the existence of eight distinct types of particles, with relations between the masses of those particles and the Lie algebra \(E_8 \) [13, 1, 26]—see also [12] (respectively, [9]) for experimental (respectively, numerical) studies.

In [4, 5], exponential decay of truncated correlations in \(\Phi^h \) with \(h > 0 \) was proved; this roughly says that in the relativistic quantum field theory associated to \(\Phi^h \) with \(h > 0 \), there is at least one particle with strictly positive mass and no smaller mass particles. In [6], the authors took the limit of \(\Phi^h(t, y) \) as the spatial coordinate \(y \) scales to infinity with \(t \) fixed and proved that it is a stationary Gaussian process \(X(t) \) whose covariance function \(K(t) \) should provide a useful tool for analyzing particle masses in the associated quantum field theory.

1.2. Why are \(X \) and \(K \) of interest? \(K \) should capture some important information about particle masses of the quantum field theory associated with \(\Phi^h \). In [6], based on [13, 37, 36] and [18] below, it was conjectured that there exist \(m_1, m_2, m_3 \in (0, \infty) \) and \(B_1, B_2, B_3 \in (0, \infty) \) such that, for large \(t \),

\[K(t) = B_1 \exp(-m_1 |t|) + B_2 \exp(-m_2 |t|) + B_3 \exp(-m_3 |t|) + \mathcal{O}(\exp(-2m_1 |t|)), \]

where \(\mathcal{O}(\cdot) \) denotes the vanishing of the remainder term as \(t \) goes to infinity.
with $m_1 < m_2 < m_3 < 2m_1$; the mass m_1 should be the same as in [15], and m_2/m_1, m_3/m_1 should take the predicted values, as in (1.8) of [17].

The exponential decay result in [3, 5] only shows that in the relativistic quantum field theory associated to Φ^h, there is a mass gap—i.e., no particles with masses in $[0, m_1)$. A natural question is then whether the mass spectral measure ρ (defined in (17) below) has an atom with strictly positive weight at m_1. As proved in Appendix B of [6], this would follow from Ornstein-Zernike behavior of the covariance function $H(t, y)$ of Φ^h. We state that result as a proposition here.

Proposition 1 (Propositions A and B of [6]). Suppose that there exist a constant $C_1 \in (0, \infty)$ such that

\[
\lim_{t \to \infty} \frac{H(t, 0)}{t^{-1/2} \exp(-m_1 t)} = C_1 = \rho(\{m_1\}) \sqrt{m_1/(2\pi)}.
\]

Then we have

\[
\lim_{t \to \infty} \frac{K(t)}{\exp(-m_1 t)} = C_1 \sqrt{2\pi/m_1} = \rho(\{m_1\}).
\]

Recently, a new proof of exponential decay (for truncated correlations in Φ^h) based on the random current representation of the Ising model was given in [23]. We believe that it is possible to combine the methods in [33] and [23] to give a rigorous proof of (4). Then the next step would be to show that the mass spectrum has an upper gap $(m_1, m_1 + \epsilon)$ for some $\epsilon > 0$.

In this paper, we first review in Section 2 the main results of [6]. Then in Section 3 we state some new results which are closely related to those of Section 2. In Section 3.1 the main result is that the same Gaussian process $X_t(y)$ can be obtained directly from the near-critical lattice Ising model on $a\mathbb{Z}^2$ by appropriate scalings of the vertical and horizontal coordinates without use of the continuum field Φ^h. Then in Section 3.2 we explore the possible extension of this approach to dimensions $d > 2$. In Section 4 we prove the results stated in Section 3.

2. The Gaussian Process from Φ^h: A Review

2.1. Construction of the Gaussian Process. Let $H(t, y)$ be the covariance function of Φ^h. Roughly speaking,

\[
H(t, y) := \text{Cov} \left(\Phi^h(t_0, y_0), \Phi^h(t_0 + t, y_0 + y) \right) \quad \text{for any } (t_0, y_0) \in \mathbb{R}^2.
\]

The existence of H follows from Proposition 6.1.4 of [17]; this is because $\mathbb{E} \left(\exp(i z \Phi^h(f)) \right)$ is analytic in z, which can be proved, for example, by arguments based on the Lee-Yang theorem [25] and the GHS inequality [20]. For each fixed $L > 0$, we define a collection of random variables $\{X_L(s) : s \in \mathbb{R} \}$ by

\[
X_L(s) := \frac{\Phi^h(1_{[-L,L]}(y)\delta_s(t)) - \mathbb{E}\Phi^h(1_{[-L,L]}(y)\delta_s(t))}{\sqrt{2L}},
\]

where $1_{[-L,L]}(y)\delta_s(t)$ is the product of an interval indicator function in y and a delta function in t, and \mathbb{E} is the expectation with respect to the random field Φ^h. Formally,

\[
\Phi^h(f) := \int_{\mathbb{R}^2} \Phi^h(x)f(x)dx.
\]

In [6], it was shown that [8] is well-defined for any f in the dual of the Sobolev space $\mathcal{H}^{-1/8}(\mathbb{R}^2)$. This was later generalized in [16] to any f in the dual of the Besov space $\mathcal{B}_{p,q}^{-1/8-\epsilon,\text{loc}}(\mathbb{R}^2)$ where $\epsilon > 0$ and $p,q \in [1,\infty]$. Since the test function $1_{[-L,L]}(y)\delta_s(t)$
is in neither of those two spaces, we instead refer to Lemma A in Appendix A of [6] for a justification of such a paring; the idea is to approximate the delta function with smooth functions. Let \(\{X(s) : s \in \mathbb{R}\} \) be a mean zero stationary Gaussian process with covariance function

\[
\text{Cov}(X(s), X(t)) = K(t - s) := \int_{-\infty}^{\infty} H(t - s, y)dy \text{ for any } s, t \in \mathbb{R}.
\]

(9)

The following was proved in [6].

Theorem 1 (Theorem 1 of [6]). Fix \(h > 0 \). For any \(n \in \mathbb{N} \) and distinct \(s_1, \ldots, s_n \in \mathbb{R} \),

\[
(X_L(s_1), \ldots, X_L(s_n)) \Rightarrow (X(s_1), \ldots, X(s_n)) \text{ as } L \to \infty,
\]

(10)

where \(\Rightarrow \) denotes convergence in distribution.

\(H \) is really a function of the radial variable \(\sqrt{t^2 + y^2} \). Note that \(H \) actually depends on \(h \); we only distinguish whether \(h = 0 \) or not since all results in this paper are insensitive to the exact value \(h > 0 \). When \(h = 0 \), we always write \(H^0 \) for the covariance function of \(\Phi^0 \). By Proposition 4 below and Wu’s result [35, 27] (see also Remark 1.4 of [11] and Theorem 3.1 of [10]), we have

\[
H^0(t, y) = C_2(t^2 + y^2)^{-1/8}, \text{ for any } (t, y) \in \mathbb{R}^2 \text{ with } (t, y) \neq (0, 0),
\]

(11)

where \(C_2 \in (0, \infty) \) is a universal constant. The following small distance/time behavior of \(H \) and \(K \) was also proved in [6].

Theorem 2 (Theorem 2 of [6]). Fix \(h > 0 \).

\[
\lim_{\lambda \downarrow 0} \lambda^{1/4} H(0, \lambda) = H^0(0, 1) = C_2.
\]

(12)

\[
\lim_{\epsilon \downarrow 0} \frac{K(0) - K(\epsilon)}{\epsilon^{3/4}} = 2 \int_{0}^{\infty} [H^0(0, y) - H^0(1, y)] dy \in (0, \infty).
\]

(13)

2.2. **Relation to quantum field theory.** Since \(\Phi^h \) is a Euclidean field satisfying the Osterwalder-Schrader axioms, by the Källén-Lehmann spectral formula (see Theorem 6.2.4 of [17]), we have

\[
H(s, y) = \int_{0}^{\infty} \left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp(ipy) \exp(-E|s|) \delta(m^2 + p^2 - E^2) dEdp \right) d\tilde{\rho}(m),
\]

(14)

where \(\tilde{\rho} \) is a mass spectral measure of the relativistic quantum field theory obtained from \(\Phi^h \) via the Osterwalder-Schrader reconstruction theorem [31, 32]. Here for fixed \(p \) and \(m \),

\[
\delta(m^2 + p^2 - E^2) = \frac{\delta(\sqrt{m^2 + p^2} + E) + \delta(\sqrt{m^2 + p^2} - E)}{2 \sqrt{m^2 + p^2}}.
\]

(15)

Then an easy computation (see [6] for the details) gives

\[
K(s) = \pi \int_{0}^{\infty} \frac{\exp(-|s|m)}{m} d\tilde{\rho}(m), \text{ for any } s \in \mathbb{R}.
\]

(16)

By Theorem 1.4 and Remark 1.7 of [4], the support of \(\tilde{\rho} \) is in \([m_1, \infty)\) for some \(m_1 > 0 \). If we define a new measure \(\rho \) by the Radon-Nikodym derivative

\[
\frac{d\rho}{d\tilde{\rho}}(m) = \frac{\pi}{m},
\]

(17)

then we have the following.
Proposition 2 (Theorem 1 and Corollary 1 of [9]). There exists \(m_1 \in (0, \infty) \) such that
\[
K(s) = \int_{m_1}^{\infty} \exp(-m|s|)d\rho(m).
\]
Moreover, \(\rho \) is a finite measure, but its first moment is infinite.

3. A Gaussian process from the discrete Ising model

3.1. Two-dimensional results. Theorem 1 says that the limit of the centered \(\Phi^h \) as the spatial coordinate \(y \) scales to infinity with the Euclidean time coordinate \(t \) fixed is a mean zero stationary Gaussian process \(X(t) \) with covariance function \(K(t) \). We prove in Section 4 below that this Gaussian process can also be obtained directly from the near-critical Ising model on \(a\mathbb{Z}^2 \).

Denote by \(P^a_h \) the infinite volume Ising measure at the inverse critical temperature \(\beta_c \) on \(a\mathbb{Z}^2 \) with external field \(a^{15/8}h > 0 \). Let \(\langle \cdot \rangle_{a,h} \) denote expectation with respect to \(P^a_h \).

For \(s \in \mathbb{R} \), let \(s_a \) denote a point in \(a\mathbb{Z} \) that is closest to \(s \). For \(L > 0 \) and \(s \in \mathbb{R} \), we define
\[
X_L(s) := \frac{a^{7/8} \sum_{k \in a\mathbb{Z} \cap [-L,L]} [\sigma(s_a,k) - \langle \sigma(s_a,k) \rangle_{a,h}]}{\sqrt{2L}}.
\]

Our main result for \(d = 2 \) is the following.

Theorem 3. Suppose \(L(a) \geq 0 \) is a function of \(a \) satisfying \(L(a) \to \infty \) as \(a \downarrow 0 \). Then for any \(n \in \mathbb{N} \) and distinct \(s_1, \ldots, s_n \in \mathbb{R} \), we have
\[
(X_{L(a)}(s_{1,a}), \ldots, X_{L(a)}(s_{n,a})) \Rightarrow (X(s_1), \ldots, X(s_n)) \quad \text{as} \quad a \downarrow 0,
\]
where \(s_{j,a} \) for each \(1 \leq j \leq n \) is a point in \(a\mathbb{Z} \) that is closest to \(s_j \).

The relation between Theorems 1 and 3 and the results in 3 can be summarized in the following diagram:

\[
\begin{array}{c}
\{\sigma_x : x \in a\mathbb{Z}^2\} \\
\xrightarrow{\text{n.i.d.}}
\Phi^h(t, y) \\
\downarrow_{L \uparrow \infty}
X(t),
\end{array}
\]

where the right and down arrows represent results in 3 and Theorem 1 respectively, and the diagonal arrow represents Theorem 3.

3.2. Results and discussions for general dimension. For general \(d \geq 2 \), we try to derive the desired Gaussian process (denoted by \(\hat{X} \)) in two steps. In the first step, we construct a Gaussian process \(\hat{X}^a(t) \) from the critical Ising model on \(a\mathbb{Z}^d \) with fixed magnetic field \(\tilde{h} \); in the second step, we choose \(\tilde{h} \) as an appropriate function of \(a \) and obtain \(\hat{X} \) from \(\hat{X}^a(t) \) by sending \(a \downarrow 0 \).

On \(a\mathbb{Z}^d \), we write \(x \in a\mathbb{Z}^d \) as \(x = (t, \tilde{y}) \) where \(t \in a\mathbb{Z} \) and \(\tilde{y} \in a\mathbb{Z}^{d-1} \). For \(L > 0 \) and \(s \in \mathbb{R} \), we define
\[
\hat{X}^a_L(s) := \frac{\sum_{\tilde{y} \in a\mathbb{Z}^{d-1} \cap [-L,L]^{d-1}} [\sigma(s_a,\tilde{y}) - \langle \sigma(s_a,\tilde{y}) \rangle]}{\sqrt{\text{Var} \left(\sum_{\tilde{y} \in a\mathbb{Z}^{d-1} \cap [-L,L]^{d-1}} \sigma(s_a,\tilde{y}) \right)}}.
\]

where \(\langle \cdot \rangle \) denotes the expectation for the critical Ising model on \(a\mathbb{Z}^d \) with fixed magnetic field \(\tilde{h} \); for general \(d \geq 2 \) we do not add any subscripts to brackets since the corresponding probability measure should be clear from the context. Note that \(\hat{X}^a_L(s) \) is standardized.
with mean 0 and variance 1. For \(z, w \in a\mathbb{Z}^d \), let \(\langle \sigma_z; \sigma_w \rangle \) denote the truncated two-point function, i.e.,
\[
\langle \sigma_z; \sigma_w \rangle = \langle \sigma_z \sigma_w \rangle - \langle \sigma_z \rangle \langle \sigma_w \rangle. \tag{22}
\]
In the first step, we prove

Theorem 4. Consider the critical Ising model on \(a\mathbb{Z}^d \) with fixed magnetic field \(\hat{h} > 0 \). Then for any \(n \in \mathbb{N} \) and distinct \(s_1, \ldots, s_n \in a\mathbb{Z} \), we have
\[
\left(\hat{X}^a_0(s_1), \ldots, \hat{X}^a_L(s_n) \right) \Rightarrow \left(\hat{X}^a(s_1), \ldots, \hat{X}^a(s_n) \right) \text{ as } L \uparrow \infty,
\tag{23}
\]
where \(\{ \hat{X}^a(s), s \in a\mathbb{Z} \} \) is a mean zero stationary Gaussian process with covariance function
\[
\text{Cov}(\hat{X}^a(s), \hat{X}^a(t)) = \hat{K}^a(t - s) := \sum_{\tilde{y} \in a\mathbb{Z}^{d-1}} \frac{\langle \sigma(0, \tilde{y}); \sigma_i(t - s, \tilde{y}) \rangle}{\sum_{\tilde{y} \in a\mathbb{Z}^{d-1}} \langle \sigma(0, \tilde{y}); \sigma(0, \tilde{y}) \rangle} \text{ for } s, t \in a\mathbb{Z}. \tag{24}
\]

Remark 1. \(\hat{K}^a(s) \) is non-increasing as a function of \(|s| \). This follows from the monotonicity of \(\langle \sigma(0, \tilde{y}); \sigma(t, \tilde{y}) \rangle \) (and hence also \(\langle \sigma(0, \tilde{y}); \sigma_i(t, \tilde{y}) \rangle \)) in \(|t| \) (see \([34]\) and \([28]\)).

We recall that the correlation function for the critical Ising model on \(\mathbb{Z}^d \) with \(\hat{h} = 0 \) is expected to scale in the following way
\[
\langle \sigma_0 \sigma_x \rangle \approx |x|^{-d+2-\eta} \text{ for } 0, x \in \mathbb{Z}^d \text{ and large } |x|,
\tag{25}
\]
where \(|x| := \|x\|_2 \) denotes the Euclidean distance and \(\eta \geq 0 \). It is known that \(\eta = 1/4 \) when \(d = 2 \) \([33, 27]\) and the conjecture for \(d \geq 4 \) is \(\eta = 0 \). If we take \(\hat{h} = a^{(d+2-\eta)/2}h \) for some \(h > 0 \), we conjecture that the following limit exists
\[
\hat{K}(s) := \lim_{a \downarrow 0} \hat{K}^a(s_a) = \lim_{a \downarrow 0} \frac{\sum_{\tilde{y} \in a\mathbb{Z}^{d-1}} \langle \sigma(0, \tilde{y}); \sigma_{i(s, \tilde{y})} \rangle}{\sum_{\tilde{y} \in a\mathbb{Z}^{d-1}} \langle \sigma(0, \tilde{y}); \sigma(0, \tilde{y}) \rangle}, \text{ for } s \in \mathbb{R}. \tag{26}
\]

Now it is easy to prove (by showing the convergence of the corresponding characteristic functions)

Proposition 3. Under the assumption that the limit in \((26)\) exists, we have
\[
(\hat{X}^a(s_1), \ldots, \hat{X}^a(s_n)) \Rightarrow (\hat{X}(s_1), \ldots, \hat{X}(s_n)) \text{ as } a \downarrow 0, \tag{27}
\]
where \(\{ \hat{X}(s) : s \in \mathbb{R} \} \) is a mean zero stationary Gaussian process with covariance function
\[
\text{Cov}(\hat{X}(s), \hat{X}(t)) = \hat{K}(t - s). \tag{28}
\]

Remark 2. From \((26)\) and Remark \[\] below, one can see that \(\hat{K}(s) = K(s)/K(0) \) when \(d = 2 \). Therefore, \(\hat{X}(s) \overset{d}{=} X(s)/\sqrt{K(0)} \) when \(d = 2 \).

As mentioned in \([4]\), for \(d = 3 \), the covariance function \(\hat{K}(t) \) for small \(t \) would be nondifferentiable at \(t = 0 \), like in Theorem \([2]\) but with \(\hat{K}(0) - \hat{K}(\epsilon) \) behaving like \(\epsilon^{1-\eta} \) as \(\epsilon \downarrow 0 \), rather than \(\epsilon^{3/4} \), with \(\eta \) the corresponding critical exponent for \(d = 3 \). For \(d > 4 \), \(\hat{K} \) would be differentiable while for \(d = 4 \), there is the possibility of logarithmic behavior.

The diagram right after Theorem \([8]\) and Remark \[\] imply that, when \(d = 2 \), the two limits “\(L \uparrow \infty \)” and “\(a \downarrow 0 \)” commute. This should be contrasted with a result and a conjecture for the high dimensional Ising model in \([8]\). In Remark 3 of \([8]\), it was proved that for large \(d \), the limit of the near-critical magnetization field on \(\Lambda^a \) := \([-L, L]^d \cap a\mathbb{Z}^d \), \(\Phi^h_{\Lambda^a} \), converges (after subtracting its mean) as \(L \uparrow \infty \) in distribution to a massless Gaussian free field on \(\mathbb{R}^d \). But Conjecture 1 of \([8]\) says that the near-critical magnetization field on \(a\mathbb{Z}^d \) converges (after subtracting its mean) as \(a \downarrow 0 \) in distribution to a massive...
Gaussian free field on \(\mathbb{R}^d \). So in that case, the two limits “\(L \uparrow \infty \)” and “\(a \downarrow 0 \)” should not commute.

4. Proof of results in Section 3

The main ingredients for the proof of Theorem 3 are the convergence of the covariance \(\text{Cov}(X_{(a)}(s), X_{(a)}(t)) \) and an inequality for FKG systems from [30]. Since \(H \) is a function only of the radial variable, we define

\[
\hat{H}(\sqrt{t^2 + y^2}) := H(t, y), \quad \text{for any } (t, y) \in \mathbb{R}^2.
\]

(29)

Recall that \(s_a \) is a point in \(a\mathbb{Z} \) that is closest to \(s \). For \(z \in \mathbb{R}^2 \), let \(z_a \) be a point in \(a\mathbb{Z} \) that is closest to \(z \).

Proposition 4. Fix \(h \geq 0 \). For any \(L \in (0, \infty) \) and any \(s, t \in \mathbb{R} \), we have

\[
\lim_{a \downarrow 0} a^{3/4} \sum_{k \in a\mathbb{Z}[\mathbb{Z}[L, L]]} \langle \sigma(s_a, 0); \sigma(t_a, k) \rangle_{a,h} = \int_{-L}^{L} H(t - s, y)dy,
\]

(30)

\[
\lim_{a \downarrow 0} a^{-1/4} \langle \sigma_{z_a}; \sigma_{w_a} \rangle_{a,h} = \hat{H}(|z - w|), \quad \text{for all } z \neq w \in \mathbb{R}^2.
\]

(31)

Remark 3. The limit (31) generalizes a classical result by Wu, which corresponds to \(h = 0 \) in (31). See [35, 27] (also [11] and Theorem 3.1 of [11]) for Wu’s result.

We recall two inequalities which will be important for the proof of Proposition 4. The first one is the SMM (for Schrader, Messager and Miracle-Sole) inequality [34, 28]: in a region \(\Lambda \) with reflection symmetry, the correlation \(\langle \prod_{x \in A} \sigma_x \prod_{x \in B} \sigma_x \rangle_{\Lambda, a, h} \) with \(A \) and \(B \) on the same side of a reflection plane can only decrease when \(B \) is replaced by its reflected image \(\bar{B} \), i.e.,

\[
\langle \prod_{x \in A} \sigma_x \prod_{x \in \bar{B}} \sigma_x \rangle_{\Lambda, a, h} \geq \langle \prod_{x \in A} \sigma_x \prod_{x \in B} \sigma_x \rangle_{\Lambda, a, h}.
\]

(32)

In the infinite volume limit on \(a\mathbb{Z}^2 \), this inequality holds for reflections with respect to (a) lines parallel to the principal axes and passing through points in \((\frac{1}{2}a\mathbb{Z}) \times (\frac{1}{2}a\mathbb{Z}) \) — in particular for any \(z = (z_1, z_2), w = (w_1, w_2) \in a\mathbb{Z}^2 \),

\[
\langle \sigma_0 \sigma_z \rangle_{a, h} \leq \langle \sigma_0 \sigma_w \rangle_{a, h} \quad \text{if } z_1 = w_1 \text{ and } |z_2| \geq |w_2|;
\]

(33)

(b) “diagonal” lines, i.e., lines with slope \(\pm 1 \) and passing through points in \(a\mathbb{Z}^2 \).

The SMM inequality also holds for infinite-volume truncated two-point functions since the one-point function is constant. The second inequality is the GKS inequality (see Corollary 1 of [19] and also [22]), which says that

\[
\langle \sigma_z; \sigma_w \rangle_{a,h} \geq 0 \text{ for any } z, w \in a\mathbb{Z}^2.
\]

(34)

We will also use the following lemma about convergence of moments.

Lemma 1. Fix \(h \geq 0 \). Suppose \(f \in C_c^\infty(\mathbb{R}^2) \), the space of \(C^\infty \) functions on \(\mathbb{R}^2 \) whose support is compact. Then we have

\[
\lim_{a \downarrow 0} \langle \Phi^{a,h}(f) \rangle_{a,h} = \mathbb{E} \Phi^h(f).
\]

(35)

Moreover, for any \(f, g \in C_c^\infty(\mathbb{R}^2) \), we have

\[
\lim_{a \downarrow 0} \langle \Phi^{a,h}(f) \Phi^{a,h}(g) \rangle_{a,h} = \mathbb{E} \langle \Phi^h(f) \Phi^h(g) \rangle.
\]

(36)
Remark 4. Lemma 1 actually holds for any bounded \(f, g \) in the dual of the Sobolev space \(\mathcal{H}^{-3}(\mathbb{R}^2) \). In our applications, \(f \) and \(g \) will be indicator functions of some bounded regions in \(\mathbb{R}^2 \).

Proof of Lemma 1. \(\Phi^{a,h}(f) \Rightarrow \Phi^h(f) \).

So (35) follows if we can show that

\[
\langle \exp \left(t \Phi^{a,h}(f)\right) \rangle_{a,h} \text{ is bounded for any } t \in \mathbb{R}
\]

(uniformly as \(a \downarrow 0 \)). We may choose a bounded \(\Lambda \) such that the support of \(f \) is contained in \(\Lambda \). Then the GKS inequalities [18, 22] imply that

\[
\langle \exp \left(t \Phi^{a,h}(f)\right) \rangle_{a,h} \leq \langle \exp \left(\Phi^{a,0} ((|t||f||_{\infty} + h)1_\Lambda)\right) \rangle_{a,h}^+,
\]

where \(\langle \cdot \rangle^+_{a,h} \) is the expectation of the critical Ising model on \(\Lambda \cap a\mathbb{Z}^2 \) with plus boundary conditions. The GHS inequality [20] gives that, for any \(M \in \mathbb{R} \),

\[
\langle \exp \left(\Phi^{a,0}(M1_\Lambda)\right) \rangle^+_{a,h} \leq \exp \left[\langle \Phi^{a,0}(M1_\Lambda) \rangle^+_{a,h} + \frac{1}{2} \text{Var}^+_{a,0}(\Phi^{a,0}(M1_\Lambda)) \right].
\]

By Proposition B.1 in Appendix B.1 of [2], which bounds the mean and variance in (40), we see that (39) and (40) imply (38). For the proof of (36), we note that

\[
\Phi^{a,h}(f + g) \Rightarrow \Phi^h(f + g) \text{ as } a \downarrow 0,
\]

and (37) and (38) imply that

\[
\lim_{a \downarrow 0} \left\langle \left(\Phi^{a,h}(f + g) \right)^2 \right\rangle_{a,h} = \mathbb{E} \left[\Phi^h(f + g) \right]^2, \quad \lim_{a \downarrow 0} \left\langle \left(\Phi^{a,h}(f) \right)^2 \right\rangle_{a,h} = \mathbb{E} \left[\Phi^h(f) \right]^2,
\]

which completes the proof. \(\square \)

Proof of Proposition 4. We first consider the easy case: \(s \neq t \). Without loss of generality, we may assume that \(s < t \). An application of (33) and (34) gives that, for each fixed \(\epsilon \) satisfying \(2a \leq \epsilon < (t - s)/2 \),

\[
\sum_{k \in a\mathbb{Z} \cap [-L,L]} \left\langle \sigma_{(s,u,0)}; \sigma_{(u,k)} \right\rangle_{a,h} \leq \frac{1}{([\epsilon/a] - 1)^3} \sum_{z,w \in a\mathbb{Z}^2} 1_{\{z \in [s,s+\epsilon] \times [-\epsilon/2,\epsilon/2], w \in [t-\epsilon,t] \times [-L-\epsilon,L+\epsilon]\}} \left\langle \sigma_z; \sigma_w \right\rangle_{a,h},
\]

where \([\cdot]\) denotes the greatest integer function. It is clear that

\[
\lim_{a \downarrow 0} \frac{(\epsilon/a)^3}{([\epsilon/a] - 1)^3} = 1.
\]

Lemma 1, (33) and (44) imply that

\[
\limsup_{a \downarrow 0} a^{3/4} \sum_{k \in a\mathbb{Z} \cap [-L,L]} \left\langle \sigma_{(s,u,0)}; \sigma_{(u,k)} \right\rangle_{a,h} \leq \frac{1}{e^3} \int_{[s,s+\epsilon] \times [-\epsilon/2,\epsilon/2]} \int_{[t-\epsilon,t] \times [-L-\epsilon,L+\epsilon]} H(\|z - w\|) \, dz \, dw.
\]

(45)
Note that \hat{H} is real analytic on $(0, \infty)$ (see, e.g., Corollary 19.5.6 of [17]). Therefore, by letting $\epsilon \downarrow 0$ in (45), we get
\[
\limsup_{a \downarrow 0} a^{3/4} \sum_{k \in a\mathbb{Z} \cap [-L, L]} \langle \sigma(s_{a,0}); \sigma(t_{a,k}) \rangle_{a,h} \leq \int_{-L}^{L} \hat{H}(\sqrt{(t-s)^2 + y^2})dy. \tag{46}
\]

Another application of (33) and (34) gives that, for each fixed ϵ with $2a \leq \epsilon < L$,
\[
\sum_{k \in a\mathbb{Z} \cap [-L, L]} \langle \sigma(s_{a,0}); \sigma(t_{a,k}) \rangle_{a,h} \geq \frac{1}{(\lceil \epsilon/a \rceil + 1)^3} \sum_{z,w \in a\mathbb{Z}^2} 1\{z \in [s-\epsilon,s) \times [-\epsilon/2, \epsilon/2], w \in [t-\epsilon, t+\epsilon] \} \langle \sigma_z; \sigma_w \rangle_{a,h}. \tag{47}
\]

The same arguments leading to (46) imply that
\[
\liminf_{a \downarrow 0} a^{3/4} \sum_{k \in a\mathbb{Z} \cap [-L, L]} \langle \sigma(s_{a,0}); \sigma(t_{a,k}) \rangle_{a,h} \geq \int_{-L}^{L} \hat{H}(\sqrt{(t-s)^2 + y^2})dy. \tag{48}
\]

The limit (30) with $s < t$ follows from (46) and (48).

The proof of (31) is similar but simpler than that of (30) with $s \neq t$. We next consider the more involved case: (31) with $s = t$. By the SMM inequality (33), we have
\[
\sum_{k \in a\mathbb{Z} \cap [-L, L]} \langle \sigma(s_{a,0}); \sigma(t_{a,k}) \rangle_{a,h} \geq \sum_{k \in a\mathbb{Z} \cap [-L, L]} \langle \sigma(s_{a,0}); \sigma(t_{a,k}) \rangle_{a,h} \text{ for any } s < t. \tag{49}
\]

Using (49) and (30) with $s \neq t$, we obtain
\[
\liminf_{a \downarrow 0} a^{3/4} \sum_{k \in a\mathbb{Z} \cap [-L, L]} \langle \sigma(s_{a,0}); \sigma(t_{a,k}) \rangle_{a,h} \geq \liminf_{a \downarrow 0} a^{3/4} \sum_{k \in a\mathbb{Z} \cap [-L, L]} \langle \sigma(s_{a,0}); \sigma(t_{a,k}) \rangle_{a,h} = \int_{-L}^{L} H(t-s, y)dy \text{ for any } s < t. \tag{50}
\]

Taking $t \downarrow s$, we get
\[
\liminf_{a \downarrow 0} a^{3/4} \sum_{k \in a\mathbb{Z} \cap [-L, L]} \langle \sigma(s_{a,0}); \sigma(t_{a,k}) \rangle_{a,h} \geq \int_{-L}^{L} H(0, y)dy. \tag{52}
\]

So (30) with $s = t$ would follow if we can show
\[
\limsup_{a \downarrow 0} a^{3/4} \sum_{k \in a\mathbb{Z} \cap [0, L]} \langle \sigma(s_{a,0}); \sigma(t_{a,k}) \rangle_{a,h} \leq \int_{0}^{L} H(0, y)dy. \tag{53}
\]

To do this, we first observe that, for any $\eta \in (0, L)$,
\[
\limsup_{a \downarrow 0} a^{3/4} \sum_{k \in a\mathbb{Z} \cap [0, L]} \langle \sigma(s_{a,0}); \sigma(t_{a,k}) \rangle_{a,h} \leq \limsup_{a \downarrow 0} a^{3/4} \sum_{k \in a\mathbb{Z} \cap [0, \eta]} \langle \sigma(s_{a,0}); \sigma(t_{a,k}) \rangle_{a,h} \tag{54}
\]
\[
+ \limsup_{a \downarrow 0} a^{3/4} \sum_{k \in a\mathbb{Z} \cap [\eta, L]} \langle \sigma(s_{a,0}); \sigma(t_{a,k}) \rangle_{a,h}. \tag{55}
\]
It is not hard to see that for any \(\epsilon \) satisfying \(2a \leq \epsilon < \eta/2 \)
\[
\sum_{k \in a\mathbb{Z} \cap [\eta, L]} \langle \sigma(0,0); \sigma(0,k) \rangle_{a,h} \leq \frac{1}{(\lfloor \epsilon/a \rfloor - 1)^3} \sum_{z,w \in a\mathbb{Z}} 1_{\{z \in [-\epsilon/2, \epsilon/2] \times [0, \epsilon], w \in [-\epsilon/2, \epsilon/2] \times [\eta, \eta + \epsilon]\}} \langle \sigma_z; \sigma_w \rangle_{a,h}; \tag{56}
\]
this is because for any \(z \in a\mathbb{Z}^2 \cap \{[-\epsilon/2, \epsilon/2] \times [0, \epsilon]\} \) and any \(w_1 \in a\mathbb{Z} \cap [-\epsilon/2, \epsilon/2], \) by the SMM inequality, we have
\[
\sum_{k \in a\mathbb{Z} \cap [\eta - \epsilon, L + \epsilon]} \langle \sigma_z; \sigma(\eta, L) \rangle_{a,h} \geq \sum_{k \in a\mathbb{Z} \cap [\eta, L]} \langle \sigma(0,0); \sigma(0,k) \rangle_{a,h}. \tag{57}
\]
Let us check \refeq{57} for the special case \(z = (-\epsilon/2, 0) \) and \(w_1 = \epsilon/2. \) (We assume \(\epsilon/2 \) is a multiple of \(a; \) otherwise we may take \(\lfloor \epsilon/(2a) \rfloor a \) instead.) Part (b) of the SMM inequality (reflection with respect to the line with slope 1 and passing through \((\epsilon/2, 0) \)) implies that
\[
\sum_{k \in a\mathbb{Z} \cap [\eta - \epsilon, L + \epsilon]} \langle \sigma(-\epsilon/2,0); \sigma(\epsilon/2,k) \rangle_{a,h} \geq \sum_{k \in a\mathbb{Z} \cap [\eta - \epsilon, L + \epsilon]} \langle \sigma(\epsilon/2,-\epsilon); \sigma(\epsilon/2,k) \rangle_{a,h}. \tag{58}
\]
Then translation invariance implies
\[
\sum_{k \in a\mathbb{Z} \cap [\eta - \epsilon, L + \epsilon]} \langle \sigma(-\epsilon/2,0); \sigma(\epsilon/2,k) \rangle_{a,h} \geq \sum_{k \in a\mathbb{Z} \cap [\eta - \epsilon, L + \epsilon]} \langle \sigma(\epsilon/2,-\epsilon); \sigma(\epsilon/2,k) \rangle_{a,h} \tag{59}
\]
\[
\geq \sum_{k \in a\mathbb{Z} \cap [\eta, L]} \langle \sigma(0,0); \sigma(0,k) \rangle_{a,h}. \tag{60}
\]
Letting \(a \downarrow 0 \) in \refeq{56} and applying Lemma \ref{lemma} we get
\[
\limsup_{a \downarrow 0} a^{3/4} \sum_{k \in a\mathbb{Z} \cap [\eta, L]} \langle \sigma(0,0); \sigma(0,k) \rangle_{a,h} \leq \frac{1}{\epsilon^3} \int_{[-\epsilon, \epsilon] \times [0, \epsilon]} \int_{[-\epsilon, \epsilon] \times [\eta, \eta + \epsilon]} \tilde{H}(\|z - w\|) dz dw. \tag{61}
\]
Letting \(\epsilon \downarrow 0 \) in the last displayed inequality, we have
\[
\limsup_{a \downarrow 0} a^{3/4} \sum_{k \in a\mathbb{Z} \cap [\eta, L]} \langle \sigma(0,0); \sigma(0,k) \rangle_{a,h} \leq \int_{\eta}^{L} H(0,y) dy. \tag{62}
\]
Next, we deal with the sum in the RHS of \refeq{54}. By the GHS inequality \ref{E19},
\[
\sum_{k \in a\mathbb{Z} \cap [0, \eta]} \langle \sigma(0,0); \sigma(0,k) \rangle_{a,h} \leq \sum_{k \in a\mathbb{Z} \cap [0, \eta]} \langle \sigma(0,0); \sigma(0,k) \rangle_{a,h=0}; \tag{63}
\]
where \(\langle \cdot \rangle_{a,h=0} \) is expectation with respect to the critical Ising model on \(a\mathbb{Z}^2 \) without external field (i.e., \(h = 0 \)). Wu’s result \ref{E1}, \ref{E27} says that there exists \(C_3 \in (0, \infty) \) such that
\[
\lim_{N \to \infty} \frac{\langle \sigma(0,0) \sigma(0,N) \rangle_{a=1, h=0}}{N^{-1/4}} = C_3. \tag{64}
\]
This implies that, for all small enough \(a, \)
\[
\langle \sigma(0,0) \sigma(0,k) \rangle_{a,h=0} \leq 2C_3 \left(\frac{k}{a} \right)^{-1/4} \text{ for any } k \in a\mathbb{Z} \cap [a^{1/2}, \infty). \tag{65}
\]
Combining this with (63), we get
\[
\sum_{k \in aZ \cap [0,a]} \langle \sigma(0,0) ; \sigma(0,k) \rangle_{a,h} \leq \sum_{k \in aZ \cap [0,1/2]} 1 + \sum_{k \in aZ \cap [1/2,a]} \langle \sigma(0,0) ; \sigma(0,k) \rangle_{a,h=0} \leq \frac{a^{1/2}}{a} + 1 + 2C_3 \sum_{k \in aZ \cap [1/2,a]} \left(\frac{k}{a} \right)^{-1/4}.
\] (67)

Multiplying each side by \(a^{3/4}\) and taking limits, we obtain
\[
\limsup_{a \downarrow 0} a^{3/4} \sum_{k \in aZ \cap [0,a]} \langle \sigma(0,0) ; \sigma(0,k) \rangle_{a,h} \leq 2C_3 \int_0^{\eta} y^{-1/4} dy = \frac{8C_3}{3} \eta^{3/4}.
\] (68)

Substituting (68) and (62) into (54) and (55) respectively, we get that for all small \(\eta\)
\[
\limsup_{a \downarrow 0} a^{3/4} \sum_{k \in aZ \cap [0,L]} \langle \sigma(0,0) ; \sigma(0,k) \rangle_{a,h} \leq \frac{8C_3}{3} \eta^{3/4} + \int_{\eta}^{L} H(0,y) dy.
\] (69)

This completes the proof of (53) by letting \(\eta \downarrow 0\). \(\square\)

Remark 5. For any \(h > 0\), from (51) and Theorem 1.1 of [1], we know that \(\hat{H}(t)\) decays exponentially for large \(t\). Using this fact, it is easy to see that Proposition 4 also extends to \(L = \infty\).

The following corollary, based on Proposition 4 and Remark 5, will be used to prove convergence of \(\text{Cov}(X_{L(a)}(s), X_{L(a)}(t))\).

Corollary 1. Fix \(h > 0\). Suppose \(L(a) > 0\) is a function of \(a\) satisfying \(L(a) \to \infty\) as \(a \downarrow 0\). Then for any \(s, t \in \mathbb{R}\), we have
\[
\lim_{a \downarrow 0} a^{3/4} \sum_{k \in aZ \cap [-L(a),L(a)]} \langle \sigma(s,a) ; \sigma(t,a) \rangle_{a,h} = \int_{-\infty}^{\infty} H(t-s,y) dy = K(t-s).
\] (70)

Proof of Corollary 4. The GKS inequality (34) and Remark 5 imply that
\[
\limsup_{a \downarrow 0} a^{3/4} \sum_{k \in aZ \cap [-L(a),L(a)]} \langle \sigma(s,a) ; \sigma(t,a) \rangle_{a,h} \leq \limsup_{a \downarrow 0} a^{3/4} \sum_{k \in aZ} \langle \sigma(s,a) ; \sigma(t,a) \rangle_{a,h} = \int_{-\infty}^{\infty} H(t-s,y) dy.
\] (71)

On the other hand, for any fixed \(M > 0\), one may choose \(\epsilon > 0\) such that \(L(a) \geq M\) for each \(a \in (0, \epsilon)\). Then the GKS inequality (34) and Proposition 4 imply that
\[
\liminf_{a \downarrow 0} a^{3/4} \sum_{k \in aZ \cap [-L(a),L(a)]} \langle \sigma(s,a) ; \sigma(t,a) \rangle_{a,h} \geq \liminf_{a \downarrow 0} a^{3/4} \sum_{k \in aZ \cap [-M,M]} \langle \sigma(s,a) ; \sigma(t,a) \rangle_{a,h} = \int_{-M}^{M} H(t-s,y) dy.
\] (72)

Letting \(M \to \infty\), we obtain
\[
\liminf_{a \downarrow 0} a^{3/4} \sum_{k \in aZ \cap [-L(a),L(a)]} \langle \sigma(s,a) ; \sigma(t,a) \rangle_{a,h} \geq \int_{-\infty}^{\infty} H(t-s,y) dy.
\] (73)

The corollary follows from (71) and (73). \(\square\)

We are ready to prove convergence of \(\text{Cov}(X_{L(a)}(s), X_{L(a)}(t))\) as \(a \downarrow 0\).
Proposition 5. Fix $h > 0$. Suppose $L(a) > 0$ is a function of a satisfying $L(a) \to \infty$ as $a \downarrow 0$. Then for any $s, t \in \mathbb{R}$, we have
\[
\lim_{a \downarrow 0} \text{Cov}(X_{L(a)}(s), X_{L(a)}(t)) = K(t - s).
\] (74)

Proof of Proposition 5. By the definition of $X_{L(a)}(s)$ in [19], the SMM inequality (33), and Corollary 1, we have
\[
\limsup_{a \downarrow 0} \text{Cov}(X_{L(a)}(s), X_{L(a)}(t)) = \limsup_{a \downarrow 0} \frac{a^{7/4}}{2L(a)} \sum_{k,j \in a\mathbb{Z} \cap [-L(a),L(a)]} \langle \sigma(s,a,k); \sigma(t,a,j) \rangle_{a,h}
\leq \limsup_{a \downarrow 0} \frac{a^{7/4}}{2L(a)} \left(\frac{2L(a)}{a} + 1 \right) \sum_{j \in a\mathbb{Z} \cap [-L(a),L(a)]} \langle \sigma(s,a,0); \sigma(t,a,j) \rangle_{a,h}
= K(t - s).
\] (75)

For any fixed $\epsilon \in (0, 1)$, the GKS inequality (34), translation invariance of the Ising model on $a\mathbb{Z}^2$ and Corollary 1 imply that
\[
\liminf_{a \downarrow 0} \text{Cov}(X_{L(a)}(s), X_{L(a)}(t)) \geq (1 - \epsilon)K(t - s).
\] (76)

Letting $\epsilon \downarrow 0$, we get
\[
\liminf_{a \downarrow 0} \text{Cov}(X_{L(a)}(s), X_{L(a)}(t)) \geq K(t - s).
\] (77)

The proposition now follows from (75) and (77). \qed

Another important ingredient in the proof of Theorem 3 is the following inequality from [30].

Theorem 5 (Theorem 1 in [30]). Suppose U_1, \ldots, U_m have finite variance and satisfy the FKG inequality; then for any $r_1, \ldots, r_m \in \mathbb{R}$,
\[
\left| \exp \left(i \sum_{l=1}^m r_l U_l \right) - \prod_{l=1}^m \exp (ir_l U_l) \right| \leq \frac{1}{2} \sum_{l \neq n} |r_l r_n| \text{Cov}(U_l, U_n),
\] (80)

where $\langle \cdot \rangle$ denotes expectation.

Proof of Theorem 3. For fixed $\vec{z} = (z_1, \ldots, z_n) \in \mathbb{R}^n$ and $\vec{s} = (s_1, \ldots, s_n) \in \mathbb{R}^n$, we define
\[
Y_L = Y_L(\vec{z}, \vec{s}) = z_1X_L(s_1) + \cdots + z_nX_L(s_n).
\] (81)

Note that (20) is equivalent to
\[
\lim_{a \downarrow 0} \langle \exp(iY_L(a)) \rangle_{a,h} = \exp \left(-\frac{1}{2} \sum_{j=1}^n \sum_{l=1}^n z_j z_l K(s_j - s_l) \right),
\] (80)

for each $(z_1, \ldots, z_n) \in \mathbb{R}^n$. We will prove (80) for $(z_1, \ldots, z_n) \in [0, \infty)^n$. We claim that this yields a proof of Theorem 3 by applying the same argument used in the proof of Theorem 1 of [6]; for completeness, we reproduce below. The basic idea is to define
\[
Y^+_L(a) := \sum_{j:z_j \geq 0} z_j X_L(a)(s_j),
Y^-_L(a) := \sum_{j:z_j < 0} |z_j| X_L(a)(s_j),
\] (81)
and note that \(cY_{L(a)}^+ + dY_{L(a)}^- \) for any \(c \geq 0, d \geq 0 \) converges (as \(a \downarrow 0 \)) in distribution to a Gaussian distribution with mean zero and variance

\[
\sum_{j=1}^{n} \sum_{l=1}^{n} (c1_{\{z_j \geq 0\}} + d1_{\{z_l < 0\}}) (c1_{\{z_j \geq 0\}} + d1_{\{z_l < 0\}}) |z_j z_l| K(s_j - s_l). \tag{82}
\]

So we may assume \((Y_{L(a)}^+, Y_{L(a)}^-) \) has a subsequential limit in distribution \((Y^+, Y^-) \). Then \(cY^+ + dY^- \) for \(c, d \geq 0 \) is a mean zero Gaussian random variable with variance given by \((82) \). Theorem 3 of \cite{21} then implies that \((Y^+, Y^-) \) is a bivariate normal vector whose distribution is already determined by \(cY^+ + dY^- \) for \(c, d \geq 0 \). Therefore,

\[
(Y_{L(a)}^+, Y_{L(a)}^-) \Rightarrow (Y^+, Y^-) \text{ as } a \downarrow 0. \tag{83}
\]

In particular, we have

\[
Y_{L(a)} = Y_{L(a)}^+ - Y_{L(a)}^- \Rightarrow Y^+ - Y^- \text{ as } a \downarrow 0, \tag{84}
\]

which is the claim.

For \(j \in \mathbb{N} \) and \(j \in [-|L^{1/2}|, |L^{1/2}|] \), we define

\[
Y_{L(j)} := \begin{cases}
\sum_{l=1}^{n} z_l L^{-1/4} a_l^{7/8} \sum_{k \in a \mathbb{Z} \cap [j |L^{1/2}|, (j+1) |L^{1/2}|]} [\sigma_{(s_l,a,k)} - \langle \sigma_{(s_l,a,k)} \rangle_{a,h}], & j \leq |L^{1/2}| - 1 \\
2^{1/2} L^{-1/4} Y_{L} - \sum_{k=-|L^{1/2}|}^{0} Y_{L(k)}, & j = |L^{1/2}|.
\end{cases} \tag{85}
\]

where \(s_l,a \) is a point in \(a \mathbb{Z} \) which is closest to \(s_l \). Note that by translation invariance, \(Y_{L(j)} \) for all \(j \)'s with \(-|L^{1/2}| \leq j \leq |L^{1/2}| - 1 \) are identically distributed random variables. Then Theorem \cite{3} implies that (this is where we use the assumption that all \(z_l \)'s are nonnegative)

\[
\left| \left\langle \exp(iY_{L(a)}) \right\rangle_{a,h} - \prod_{j=-|L(a)|^{1/2}}^{0} \left\langle \exp(i2^{-1/2} L(a)^{-1/4} Y_{L(j)}) \right\rangle_{a,h} \right| \leq \frac{1}{2} \sum_{j \neq l} \sum_{j=-|L(a)|^{1/2}}^{0} 2^{-1} L(a)^{-1/2} \operatorname{Cov}\left(Y_{L(a)}^{(j)}, Y_{L(a)}^{(l)} \right)
\]

\[
= \frac{1}{2} \left[\operatorname{Var}(Y_{L(a)}) - 2^{-1} L(a)^{-1/2} \sum_{j=-|L(a)|^{1/2}}^{0} \operatorname{Cov}(Y_{L(a)}^{(j)}, Y_{L(a)}^{(j)}) \right]
\]

\[
= \frac{1}{2} \left[\operatorname{Var}(Y_{L(a)}) - \frac{|L(a)|^{1/2}}{L(a)^{1/2}} \operatorname{Var}(Y_{L(a)}^{(0)}) - \frac{1}{2 \sqrt{L(a)}} \operatorname{Var}(Y_{L(a)}^{(|L(a)|^{1/2}/2)}) \right], \tag{86}
\]

where we have used that \(Y_{L(a)}^{(j)} \) has the same distribution as \(Y_{L(a)}^{(0)} \) if \(j \leq |L(a)|^{1/2} - 1 \). By Proposition \cite{5} we have

\[
\lim_{a \downarrow 0} \operatorname{Var}(Y_{L(a)}) = \sum_{j=1}^{n} \sum_{l=1}^{n} z_j z_l K(s_j - s_l), \tag{87}
\]

\[
\lim_{a \downarrow 0} \operatorname{Var}(Y_{L(a)}^{(0)}) = \sum_{j=1}^{n} \sum_{l=1}^{n} z_j z_l K(s_j - s_l). \tag{88}
\]
By \(^{(33)}\), translation invariance and the Cauchy-Schwarz inequality, we have
\[
\text{Var}(Y_{L(a)}^{([L(a)^{1/2}])}) \leq 4\text{Var}(Y_{L(a)}^{(0)}).
\] (89)
Therefore,
\[
\lim_{a \to 0} \left| \left\langle \exp(iY_{L(a)}) \right\rangle_{a, h} - \prod_{j = -[L(a)^{1/2}]}^{[L(a)^{1/2}]} \left\langle \exp(i2^{-1/2}L(a)^{-1/4}Y_{j}) \right\rangle_{a, h} \right| = 0. \tag{90}
\]
Since \(^{(33)}\) implies that \(\text{Var}(Y_{L(a)}^{(0)}) < \infty\) for all small \(a\), a standard Taylor expansion result (see, e.g., Theorem 3.3.20 of [14]) implies that
\[
\text{Var}(Y_{L(a)}^{(0)}) \rightarrow 0 \text{ as } a \rightarrow 0. \tag{91}
\]
We conclude with a proof of Theorem 4.

Proof of Theorem 4 Without loss of generality, we may assume \(a = 1\) in the proof. Theorem 4 is equivalent to
\[
\lim_{L \to \infty} \left\langle \exp(i(z_1 \tilde{X}_L^a(s_1) + \cdots + z_n \tilde{X}_L^a(s_n))) \right\rangle = \exp \left(-\frac{1}{2} \sum_{j=1}^{n} \sum_{l=1}^{n} z_j z_l \tilde{K}^a(s_j - s_l) \right), \tag{92}
\]
for each \((z_1, \ldots, z_n) \in \mathbb{R}^n\). By the same argument as in the proof of Theorem 3, it is enough to show \(^{(92)}\) for \((z_1, \ldots, z_n) \in [0, \infty)^n\). Note that \(\langle \sigma_x; \sigma_y \rangle\) decays exponentially as \(|z - w| \to \infty\) (see [24, 15]). This and (26) in Lemma 4 of [30] imply that
\[
\lim_{L \to \infty} \frac{\text{Var}(\sum_{j \in \mathbb{Z}^{d-1} \cap [-L, L]^{d-1}} \sigma(s_j) \tilde{g})}{(2L)^{d-1}} = \sum_{\tilde{g} \in \mathbb{Z}^{d-1}} \left\langle \sigma(0, 0); \sigma(0, \tilde{g}) \right\rangle, \forall s \in \mathbb{Z}. \tag{93}
\]
A direct application of Theorem 2 in [30] implies that
\[
\sum_{j=1}^{n} z_j \sum_{\tilde{g} \in \mathbb{Z}^{d-1} \cap [-L, L]^{d-1}} \sigma(s_j) \tilde{g} - \sum_{j=1}^{n} z_j \sum_{\tilde{g} \in \mathbb{Z}^{d-1} \cap [-L, L]^{d-1}} \left\langle \sigma(s_j) \tilde{g} \right\rangle \tag{94}
\]
converges as \(L \uparrow \infty\) in distribution to a normal distribution with mean 0 and variance
\[
\sum_{j=1}^{n} \sum_{l=1}^{n} z_j z_l \sum_{\tilde{g} \in \mathbb{Z}^{d-1}} \left\langle \sigma(s_j, 0); \sigma(s_l, \tilde{g}) \right\rangle. \tag{95}
\]
This combined with \(^{(93)}\) completes the proof of \(^{(92)}\). \(\square\)

Acknowledgements

The research of the second author was partially supported by NSFC grant 11901394 and STCSM grant 17YF1413300, and that of the third author by US-NSF grant DMS-1507019.
References

[1] D. Borthwick and S. Garibaldi. Did a 1-dimensional magnet detect a 248-dimensional Lie algebra? Notices of the AMS, 58(8):1055–1066, 2011.
[2] F. Camia, C. Garban, and C. M. Newman. Planar Ising magnetization field I. Uniqueness of the critical scaling limit. The Annals of Probability, 43(2):528–571, 2015.
[3] F. Camia, C. Garban, and C. M. Newman. Planar Ising magnetization field II. Properties of the critical and near-critical scaling limits. Annales de l'IHP, Probabilités et Statistiques, 52(1):146–161, 2016.
[4] F. Camia, J. Jiang, and C. M. Newman. Exponential decay for the near-critical scaling limit of the planar Ising model. Communications on Pure and Applied Mathematics, 73(7):1371–1405, 2020.
[5] F. Camia, J. Jiang, and C. M. Newman. FK–Ising coupling applied to near-critical planar models. Stochastic Processes and their Applications, 130(2):560–583, 2020.
[6] F. Camia, J. Jiang, and C. M. Newman. A Gaussian process related to the mass spectrum of the near-critical Ising model. Journal of Statistical Physics, 179:885–900, 2020.
[7] F. Camia, J. Jiang, and C. M. Newman. Conformal measure ensembles and planar Ising magnetization: a review. To appear in Markov Processes and Related Fields, 2021.
[8] F. Camia, J. Jiang, and C. M. Newman. The effect of free boundary conditions on the Ising model in high dimensions. To appear in Probability Theory and Related Fields, 2021.
[9] M. Caselle and M. Hasenbusch. Critical amplitudes and mass spectrum of the 2d Ising model in a magnetic field. Nuclear Physics B, 579(3):667–703, 2000.
[10] D. Chelkak. 2D Ising model: Correlation functions at criticality via Riemann-type boundary value problems. In European Congress of Mathematics, pages 235–256, 2018.
[11] D. Chelkak, C. Hongler, and K. Izyurov. Conformal invariance of spin correlations in the planar Ising model. Annals of Mathematics, pages 1087–1138, 2015.
[12] R. Coldea, D. A. Tennant, E. M. Wheeler, E. Wawrzynska, D. Prabhakaran, M. Telling, K. Habicht, P. Smeibidl, and K. Kiefer. Quantum criticality in an Ising chain: experimental evidence for emergent es symmetry. Science, 327(5962):177–180, 2010.
[13] G. Dellino. Integrable field theory and critical phenomena: the Ising model in a magnetic field. Journal of Physics A: Mathematical and General, 37(14):R45, 2004.
[14] R. Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.
[15] J. Fröhlich and P.-F. Rodríguez. On cluster properties of classical ferromagnets in an external magnetic field. Journal of Statistical Physics, 166(3-4):828–840, 2017.
[16] M. Furlan and J.-C. Mourrat. A tightness criterion for random fields, with application to the Ising model. Electronic Journal of Probability, 22:1–29, 2017.
[17] J. Glimm and A. Jaffe. Quantum physics: a functional integral point of view. Springer, 1987.
[18] R. B. Griffiths. Correlations in Ising ferromagnets. I. Journal of Mathematical Physics, 8(3):478–483, 1967.
[19] R. B. Griffiths. Correlations in Ising ferromagnets. II. External magnetic fields. Journal of Mathematical Physics, 8(3):484–489, 1967.
[20] R. B. Griffiths, C. A. Hurst, and S. Sherman. Concavity of magnetization of an Ising ferromagnet in a positive external field. Journal of Mathematical Physics, 11(3):790–795, 1970.
[21] G. G. Hamedani and M. N. Tata. On the determination of the bivariate normal distribution from distributions of linear combinations of the variables. The American Mathematical Monthly, 82(9):913–915, 1975.
[22] D. G. Kelly and S. Sherman. General Griffiths’ inequalities on correlations in Ising ferromagnets. Journal of Mathematical Physics, 9(3):466–484, 1968.
[23] F. R. Klausen and A. Raoufi. Mass scaling of the near-critical 2d Ising model using random currents. arXiv preprint arXiv:2105.13673, 2021.
[24] J. L. Lebowitz and O. Penrose. Analytic and clustering properties of thermodynamic functions and distribution functions for classical lattice and continuum systems. Communications in Mathematical Physics, 11(2):99–124, 1968.
[25] T.-D. Lee and C.-N. Yang. Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Physical Review, 87(3):410, 1952.
[26] B. M. McCoy and J.-M. Maillard. The importance of the Ising model. Progress of Theoretical Physics, 127(5):791–817, 2012.
[27] B. M. McCoy and T. T. Wu. The two-dimensional Ising model. Harvard University Press, 1973.
A. Messager and S. Miracle-Sole. Correlation functions and boundary conditions in the Ising ferromagnet. *Journal of Statistical Physics*, 17(4):245–262, 1977.

I. Montvay and G. Münster. *Quantum fields on a lattice*. Cambridge University Press, 1997.

C. M. Newman. Normal fluctuations and the FKG inequalities. *Communications in Mathematical Physics*, 74(2):119–128, 1980.

K. Osterwalder and R. Schrader. Axioms for Euclidean Green’s functions. *Communications in Mathematical Physics*, 31(2):83–112, 1973.

K. Osterwalder and R. Schrader. Axioms for Euclidean Green’s functions II. *Communications in Mathematical Physics*, 42(3):281–305, 1975.

S. Ott. Sharp asymptotics for the truncated two-point function of the Ising model with a positive field. *Communications in Mathematical Physics*, 374(3):1361–1387, 2020.

R. Schrader. New correlation inequalities for the Ising model and $P(\varphi)$ theories. *Physical Review B*, 15(5):2798, 1977.

T. T. Wu. Theory of Toeplitz determinants and the spin correlations of the two-dimensional Ising model. I. *Physical Review*, 149(1):380, 1966.

A. B. Zamolodchikov. Integrable field theory from conformal field theory. In *Integrable Systems in Quantum Field Theory and Statistical Mechanics*, pages 641–674. Mathematical Society of Japan, 1989.

A. B. Zamolodchikov. Integrals of motion and S-matrix of the (scaled) $t = t_c$ Ising model with magnetic field. *International Journal of Modern Physics A*, 4(16):4235–4248, 1989.

Division of Science, NYU Abu Dhabi, Saadiyat Island, Abu Dhabi, UAE & Courant Institute of Mathematical Sciences, New York University, 251 Mercer st, New York, NY 10012, USA & Department of Mathematics, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1111, 1081 HV Amsterdam, The Netherlands.

Email address: federico.camia@nyu.edu

Yanqi Lake Beijing Institute of Mathematical Sciences and Applications, Building 11, Yanqi Island, Yanqi Lake West Road, Beijing 101408, China.

Email address: jianpingjiang11@gmail.com

Courant Institute of Mathematical Sciences, New York University, 251 Mercer st, New York, NY 10012, USA & NYU-ECNU Institute of Mathematical Sciences at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China.

Email address: newman@cims.nyu.edu