Vertical Liouville foliations on the big-tangent manifold of a Finsler space

Cristian Ida and Paul Popescu

Abstract

The present paper unifies some aspects concerning the vertical Liouville distributions on the tangent (cotangent) bundle of a Finsler (Cartan) space in the context of generalized geometry. More exactly, we consider the big-tangent manifold $\mathcal{T}M$ associated to a Finsler space (M, F) and of its L-dual which is a Cartan space (M, K) and we define three Liouville distributions on $\mathcal{T}M$ which are integrable. We also find geometric properties of both leaves of Liouville distribution and the vertical distribution in our context.

2010 Mathematics Subject Classification: 53B40, 53C12, 53C60.
Key Words: generalized geometry, big-tangent manifold, Liouville field, Finsler space, foliation.

1 Introduction and preliminary notions

1.1 Introduction

The vertical Liouville distribution on the tangent bundle of a (pseudo) Finsler space was defined for the first time in [3] where some aspects of the geometry of the vertical bundle are derived via vertical Liouville distribution. A similar study on the cotangent bundle of a Cartan space can be found in [9]. Also, other significant studies concerning the interrelations between natural foliations defined by Liouville fields on the tangent bundle of a Finsler space and the geometry of the Finsler space itself, as well as similar problems on Cartan spaces are intensively studied in [5] and [11], respectively. See also [9, 11, 16, 17].

As it is well known, in the generalized geometry initiated in [8], the tangent bundle $\mathcal{T}M$ of a smooth n-dimensional manifold M is replaced by the big-tangent bundle (or Pontryagin bundle) $\mathcal{T}M \oplus T^*M$. On its total space the velocities and momenta are considered as independent variables. This idea was proposed and developed in [18, 19] and later was used in the study of Hamiltonian-Jacoby theory for singular Lagrangian systems [10]. The geometry of the total space of the big-tangent bundle, called big-tangent manifold, is intensively studied in [22] and some its applications to mechanical systems can be found in [7].

Using the framework of the geometry on the big-tangent manifold, our aim in this paper is to extend some results concerning the vertical Liouville foliation in the context of generalized geometry. In this sense, we consider the big-tangent manifold $\mathcal{T}M$ associated to a Finsler space (M, F) and of its L-dual which is a Cartan space (M, K). As usual, we reconsider the vertical Liouville distributions V_{E_1} and V_{E_2} from the case of vertical tangent (cotangent) bundle of a Finsler (Cartan) space, see [3, 9], for the case of vertical subbundles V_1 and V_2, respectively, with respect to Liouville vector fields E_1 and E_2. Next we define the Liouville distribution V_{E} with respect to
the Liouville vector field $E = E_1 + E_2$, we prove that it is integrable (Theorem 2.1) and we study some of its properties (Theorems 2.2 and 2.3). Also, some links between the vertical Liouville foliations V_{E_1}, V_{E_2} and V_E, respectively, are established.

1.2 Preliminaries and notations

Let M be a n-dimensional smooth manifold, and we consider $\pi : TM \to M$ its tangent bundle, $\pi^* : T^*M \to M$ its cotangent bundle and $\tau \equiv \pi \oplus \pi^* : TM \oplus T^*M \to M$ its big-tangent bundle defined as Whitney sum of the tangent and cotangent bundles of M. The total space of the big-tangent bundle, called big-tangent manifold, is a $3n$-dimensional smooth manifold denoted here by $T M$. Let us briefly recall some elementary notions about the big-tangent manifold $T M$. For a detailed discussion about its geometry we refer [22].

Let $(U, (x^i))$ be a local chart on M. If $\{dx^i|_x\}, x \in U$ is a local frame of sections in the tangent bundle over U and $\{dx^i|_x\}, x \in U$ is a local frame of sections in the cotangent bundle over U, then by definition of the Whitney sum, $\{\frac{\partial}{\partial y^i}, dx^i|_x\}, x \in U$ is a local frame of sections in the big-tangent bundle $TM \oplus T^*M$ over U. Every section $(y, p) \in \tau$ over U takes the form $(y, p) = y^i \frac{\partial}{\partial y^i} + p_i dx^i$ and the local coordinates on $\tau^{-1}(U)$ will be defined as the triples (x^i, y^i, p_i), where $i = 1, \ldots, n = \dim M$, (x^i) are local coordinates on M, (y^i) are vector coordinates and (p_i) are covector coordinates.

The change rules of these coordinates are:

$$\tilde{x}^i = \tilde{x}^i(x^i), \tilde{y}^i = \frac{\partial \tilde{x}^i}{\partial x^j} y^j, \tilde{p}_i = \frac{\partial \tilde{x}^i}{\partial y^j} p_j$$ \hspace{1cm} (1.1)

and the local expressions of a vector field X and of a 1-form φ on $T M$ are

$$X = \xi^i \frac{\partial}{\partial x^i} + \eta^j \frac{\partial}{\partial y^j} + \zeta^j \frac{\partial}{\partial p_j} \quad \text{and} \quad \varphi = \alpha_i dx^i + \beta_j dy^j + \gamma^i dp_i.$$ \hspace{1cm} (1.2)

For the big-tangent manifold $T M$ we have the following projections

$$\tau : TM \to M, \tau_1 : TM \to TM, \tau_2 : TM \to T^*M$$

on M and on the total spaces of tangent and cotangent bundle, respectively.

As usual, we denote by $V = V(TM)$ the vertical bundle on the big-tangent manifold $T M$ and it has the decomposition

$$V = V_1 \oplus V_2,$$ \hspace{1cm} (1.3)

where $V_1 = \tau_1^{-1}(V(TM))$, $V_2 = \tau_2^{-1}(V(T^*M))$ and have the local frames $\{\frac{\partial}{\partial y^i}\}$, $\{\frac{\partial}{\partial p_i}\}$, respectively. The subbundles V_1, V_2 are the vertical foliations of $T M$ by fibers of τ_1, τ_2, respectively, and $T M$ has a multi-foliate structure [20]. The Liouville vector fields (or Euler vector fields) are given by

$$E_1 = y^i \frac{\partial}{\partial y^i} \in \Gamma(V_1), E_2 = p_i \frac{\partial}{\partial p_i} \in \Gamma(V_2), E = E_1 + E_2 \in \Gamma(V).$$ \hspace{1cm} (1.4)

In the following we consider that manifold M is endowed with a Finsler structure F, and we present a metric structure on V induced by F. According to [2] [4] [14], a function $F : TM \to [0, \infty)$ which satisfies the following conditions:

i) F is C^∞ on $TM^0 = TM \setminus \{\text{zero section}\}$;
ii) $F(x, \lambda y) = \lambda F(x, y)$ for all $\lambda \in \mathbb{R}_+$;

iii) the $n \times n$ matrix (g_{ij}), where $g_{ij} = \frac{1}{2} \frac{\partial^2 K^2}{\partial p_i \partial p_j}$, is positive definite at all points of TM^0, is called a Finsler structure on M and the pair (M, F) is called a Finsler space. We notice that in fact $F(x, y) > 0$, whenever $y \neq 0$.

There are some useful facts which follow from the above homogeneity condition ii) of the fundamental function of the Finsler space (M, F). By the Euler theorem on positively homogeneous functions we have, see [2, 4, 14]:

$$y_i = g_{ij}y^j, \quad y^i = g^{ij}y_j, \quad F^2 = g_{ij}y^i y^j = y_i y^i, \quad C_{ijk}y^k = C_{ikj}y^k = C_{kij}y^k = 0, \quad (1.5)$$

where (g^{ij}) is the inverse matrix of (g_{ij}) and we have put $y_i = \frac{1}{2} \frac{\partial^2 K^2}{\partial p_i}$. \(C_{ijk}p_k = C_{ikj}p_k = C_{kij}p_k = 0\).

Also, for a Finsler structure F on TM^0 there is Cartan structure $K = F^*$ on $T^*M^0 := T^*M – \{\text{zero section}\}$ obtained by Legendre transformation of F (the \mathcal{L}-duality process, see [12, 13, 15]), that is a function $K : T^*M \rightarrow [0, \infty)$ which has the following properties:

i) K is C^∞ on T^*M^0;

ii) $K(x, \lambda p) = \lambda K(x, p)$ for all $\lambda > 0$;

iii) the $n \times n$ matrix (g^{*ij}), where $g^{*ij} = \frac{1}{2} \frac{\partial^2 K^2}{\partial p_i \partial p_j}$, is positive definite at all points of T^*M_0.

Also $K(x, p) > 0$, whenever $p \neq 0$. The properties of K imply that

$$p^i = g^{*ij}p_j, \quad p_i = g^{*ij}p_j, \quad K^2 = g^{*ij}p_ip_j = p_ip^i, \quad C^{iij}p_k = C^{ikj}p_k = C^{kij}p_k = 0, \quad (1.6)$$

where (g^{*ij}) is the inverse matrix of (g^{*ij}) and we have put $p^i = \frac{1}{2} \frac{\partial K^2}{\partial p_i}$, $C^{iij}p_k = -\frac{1}{2} \frac{\partial^2 K^2}{\partial p_i \partial p_j \partial p_k}$.

It is well-known that g_{ij} determines a metric structure on $V(TM)$ and g^{*ij} determines a metric structure on $V(T^*M)$. Similarly, every Finsler structure F on M determines a metric structure G on V by setting

$$G(X, Y) = g_{ij}(x, y)X^i_t(x, y, p)Y^j_t(x, y, p) + g^{*ij}(x, p)X^2_t(x, y, p)Y^2_t(x, y, p), \quad (1.7)$$

for every $X = X^i_t(x, y, p) \frac{\partial}{\partial p_t} + X^2_t(x, y, p) \frac{\partial}{\partial p_t}$, $Y = Y^i_t(x, y, p) \frac{\partial}{\partial p_t} + Y^2_t(x, y, p) \frac{\partial}{\partial p_t} \in \Gamma(V)$.

2 Vertical Liouville foliations on TM

In this section we reconsider the vertical Liouville distributions V_{E_1} and V_{E_2} from the case of vertical tangent (cotangent) bundle of a Finsler (Cartan) space, see [3, 9], for the case of vertical subbundles V_1 and V_2, respectively, with respect to Liouville vector fields E_1 and E_2. Next we define the Liouville distribution V_E with respect to the Liouville vector field $E = E_1 + E_2$, we prove that it is integrable and we study some of its properties. Also, some links between the vertical Liouville foliations V_{E_1}, V_{E_2} and V_E, respectively, are established.
2.1 Vertical Liouville distributions $V_{\mathcal{E}_1}$ and $V_{\mathcal{E}_2}$

Following [3], [9] we define two vertical Liouville distributions on $\mathcal{T}M$ as the complementary orthogonal distributions in V_1 and V_2 to the line distributions spanned by the Liouville vector fields \mathcal{E}_1 and \mathcal{E}_2, respectively.

By (1.3) and (1.5) we have

$$G(\mathcal{E}_1, \mathcal{E}_1) = F^2.$$ \hspace{1cm} (2.1)

Using G and \mathcal{E}_1, we define the V_1-vertical one form ζ_1 by

$$\zeta_1(X_1) = \frac{1}{F}G(X_1, \mathcal{E}_1), \quad \forall X_1 = X^i_1(x, y, p)\frac{\partial}{\partial y^i} \in \Gamma(V_1).$$ \hspace{1cm} (2.2)

Let us denote by $\{\mathcal{E}_1\}$ the line vector bundle over $\mathcal{T}M$ spanned by \mathcal{E}_1 and we define the first vertical Liouville distribution as the complementary orthogonal distribution $V_{\mathcal{E}_1}$ to $\{\mathcal{E}_1\}$ in V_1 with respect to G. Thus, $V_{\mathcal{E}_1}$ is defined by ζ_1, that is

$$\Gamma(V_{\mathcal{E}_1}) = \{X_1 \in \Gamma(V_1) : \zeta_1(X_1) = 0\}.$$ \hspace{1cm} (2.3)

We get that every V_1-vertical vector field $X_1 = X^i_1(x, y, p)\frac{\partial}{\partial y^i}$ can be expressed in the form:

$$X_1 = P_1X_1 + \frac{1}{F}\zeta_1(X_1)\mathcal{E}_1,$$ \hspace{1cm} (2.4)

where P_1 is the projection morphism of V_1 on $V_{\mathcal{E}_1}$.

Also, by direct calculus, we get

$$G(X_1, P_1Y_1) = G(P_1X_1, P_1Y_1) = G(X_1, Y_1) - \zeta_1(X_1)\zeta_1(Y_1), \quad \forall X_1, Y_1 \in \Gamma(V_1).$$ \hspace{1cm} (2.5)

Let us consider $\{\theta^i\}$ the dual basis of $\{\frac{\partial}{\partial y^i}\}$. Then, with respect to the basis $\{\theta^i\}$ and $\{\frac{\theta^i \otimes \frac{\partial}{\partial y^j}}{F^2}\}$, respectively, ζ_1 and P_1 are locally given by

$$\zeta_1 = \zeta^1 \theta^i, \quad P_1 = P^i_j \theta^i \otimes \frac{\partial}{\partial y^j}, \quad \zeta_1 = \frac{y_i}{F}, \quad P^i_j = \delta^i_j - \frac{y_j y^i}{F^2},$$ \hspace{1cm} (2.6)

where δ^i_j are the components of the Kronecker delta.

As usual for tangent bundle of a Finsler space (see Theorem 3.1 from [3]), the first vertical Liouville distribution $V_{\mathcal{E}_1}$ is integrable and it defines a foliation on $\mathcal{T}M$, called the first vertical Liouville foliation on the big-tangent manifold $\mathcal{T}M$. Also, some geometric properties of the leaves of vertical foliation V_1 can be derived via the first vertical Liouville foliation $V_{\mathcal{E}_1}$.

Similarly, by (1.4) and (1.6) we have

$$G(\mathcal{E}_2, \mathcal{E}_2) = K^2,$$ \hspace{1cm} (2.7)

and using G and \mathcal{E}_2, we define the V_2-vertical one form ζ_2 by

$$\zeta_2(X_2) = \frac{1}{K}G(X_2, \mathcal{E}_2), \quad \forall X_2 = X^i_2(x, y, p)\frac{\partial}{\partial p_i} \in \Gamma(V_2).$$ \hspace{1cm} (2.8)

Let us denote by $\{\mathcal{E}_2\}$ the line vector bundle over $\mathcal{T}M$ spanned by \mathcal{E}_2 and we define the second vertical Liouville distribution as the complementary orthogonal distribution $V_{\mathcal{E}_2}$ to $\{\mathcal{E}_2\}$ in V_2 with respect to G. Thus, $V_{\mathcal{E}_2}$ is defined by ζ_2, that is

$$\Gamma(V_{\mathcal{E}_2}) = \{X_2 \in \Gamma(V_2) : \zeta_2(X_2) = 0\}.$$ \hspace{1cm} (2.9)
We get that every V_2-vertical vector field $X_2 = X^2_1(x, y, p)\frac{\partial}{\partial p}$ can be expressed in the form:

$$X_2 = P_2 X_2 + \frac{1}{K} \zeta_2(X_2) E_2,$$ \hspace{1cm} (2.10)

where P_2 is the projection morphism of V_2 on V_{E_2}.

Similarly, by direct calculus, we get

$$G(X_2, P_2 Y_2) = G(P_2 X_2, P_2 Y_2) = G(X_2, Y_2) - \zeta_2(X_2) \zeta_2(Y_2), \, \forall X_2, Y_2 \in \Gamma(V_2). \hspace{1cm} (2.11)$$

Let us consider $\{k_i\}$ the dual basis of $\left\{\frac{\partial}{\partial p^i}\right\}$. Then, with respect to the basis $\{k_i\}$ and $\left\{k_j \otimes \frac{\partial}{\partial p^i}\right\}$, respectively, ζ_2 and P_2 are locally given by

$$\zeta_2 = 2 \zeta^i k_i, \, P_2 = P^j_k k_j \otimes \frac{\partial}{\partial p^i}, \, \zeta^i = \frac{p^i}{K}, \, P^j_k = \delta^j_k - \frac{p^j p^i}{K^2}. \hspace{1cm} (2.12)$$

As usual for cotangent bundle of a Cartan space (see Theorem 2.1 from [9]), the second vertical Liouville distribution V_{E_2} is integrable and it defines a foliation on TM, called the second vertical Liouville foliation on the big-tangent manifold TM. Also, some geometric properties of the leaves of vertical foliation V_2 can be derived via the second vertical Liouville foliation V_{E_2}.

2.2 Vertical Liouville distribution V_{E}

In this subsection we unify the concepts presented in the previous subsection and we define a vertical Liouville distribution on TM as the complementary orthogonal distribution in V to the line distribution spanned by the Liouville vector field $E = E_1 + E_2$. We prove that this distribution is an integrable one, and also, we find some geometric properties of both leaves of Liouville distribution and the vertical distribution on the big-tangent manifold TM. Finally, some links between the vertical Liouville foliations V_{E_1}, V_{E_2} and V_{E}, respectively, are established.

By (1.4), (1.5) and (1.6) we have

$$G(E, E) = F^2 + K^2. \hspace{1cm} (2.13)$$

Now, by means of G and E, we define the vertical one form ζ by

$$\zeta(X) = \frac{1}{\sqrt{F^2 + K^2}} G(X, E), \forall X = X_1^1(x, y, p) \frac{\partial}{\partial y} + X_2^2(x, y, p) \frac{\partial}{\partial p} \in \Gamma(V). \hspace{1cm} (2.14)$$

Let us denote by $\{E\}$ the line vector bundle over TM spanned by E and we define the vertical Liouville distribution as the complementary orthogonal distribution V_{E} to $\{E\}$ in V with respect to G. Thus, V_{E} is defined by ζ, that is

$$\Gamma(V_{E}) = \{X \in \Gamma(V) : \zeta(X) = 0\}. \hspace{1cm} (2.15)$$

We get that every vertical vector field $X = X_1^1(x, y, p) \frac{\partial}{\partial y} + X_2^2(x, y, p) \frac{\partial}{\partial p}$ can be expressed in the form:

$$X = P X + \frac{1}{\sqrt{F^2 + K^2}} \zeta(X) E, \hspace{1cm} (2.16)$$

where P is the projection morphism of V on V_{E}.

5
Similarly, differentiate (2.23) with respect to τ using an argument similar to that used in [3]. Let ζ and P be locally given by

$$\zeta = \zeta^i \theta^i + \zeta^j k_j, \quad P = P^i_j \theta^i \otimes \frac{\partial}{\partial y^i} + P^j_i k_j \otimes \frac{\partial}{\partial p_i} + P_{ij} \theta^i \otimes \frac{\partial}{\partial p_i} + P^{ij} k_j \otimes \frac{\partial}{\partial y^i},$$

where their local components are expressed by

$$\zeta_i = \frac{y_i}{\sqrt{F^2 + K^2}}, \quad \zeta^i = \frac{p^i}{\sqrt{F^2 + K^2}}.$$

(2.19)

Also, by direct calculus, we get

$$G(X, P Y) = G(P X, P Y) = G(X, Y) - \zeta(X) \zeta(Y), \quad \forall X, Y \in \Gamma(V).$$

(2.17)

With respect to the basis $\{\theta^i, k_i\}$ and $\{\theta^i \otimes \frac{\partial}{\partial y^i}, \theta^j \otimes \frac{\partial}{\partial p_i}, k_j \otimes \frac{\partial}{\partial y^i}, k_j \otimes \frac{\partial}{\partial p_i}\}$, respectively, ζ and P are locally given by

$$\zeta = \zeta^i \theta^i + \zeta^j k_j, \quad P = P^i_j \theta^i \otimes \frac{\partial}{\partial y^i} + P^j_i k_j \otimes \frac{\partial}{\partial p_i} + P_{ij} \theta^i \otimes \frac{\partial}{\partial p_i} + P^{ij} k_j \otimes \frac{\partial}{\partial y^i},$$

(2.18)

Remark 2.1. We have the following relations between ζ, P, ζ_1, ζ_2, P_1 and P_2:

$$\zeta(X) = \frac{F}{\sqrt{F^2 + K^2}} \zeta_1(X_1) + \frac{K}{\sqrt{F^2 + K^2}} \zeta_2(X_2),$$

(2.21)

$$P(X) = P_1(X_1) + P_2(X_2) + \frac{1}{F^2 + K^2} \left(\zeta_1(X_1) - \zeta_2(X_2) \right) (K^2 \xi_1 - F^2 \xi_2),$$

(2.22)

for every vertical vector field $X = X_1 + X_2 = X_1(x, y, p) \frac{\partial}{\partial y} + X_2(x, y, p) \frac{\partial}{\partial p}$.

Theorem 2.1. The vertical Liouville distribution \mathcal{V} is integrable and it defines a foliation on $\mathcal{T}M$, called vertical Liouville foliation on the big-tangent manifold $\mathcal{T}M$.

Proof. Follows using an argument similar to that used in [3]. Let $X, Y \in \Gamma(\mathcal{V})$. As V is an integrable distribution on $\mathcal{T}M$, it is sufficient to prove that $[X, Y]$ has no component with respect to \mathcal{E}.

It is easy to see that a vertical vector field $X = X_1(x, y, p) \frac{\partial}{\partial y} + X_2(x, y, p) \frac{\partial}{\partial p}$ is in $\Gamma(\mathcal{V})$ if and only if

$$g_{ij}(x, y) X_1^i y^j + g^{*ij}(x, p) X_2^j p_j = 0.$$

(2.23)

Differentiate (2.23) with respect to y^k we get

$$\frac{\partial g_{ij}}{\partial y^k} X_1^i y^j + g_{ik} X_1^i + g_{jk} \frac{\partial X_1^i}{\partial y^j} y^j + g^{*ij} p_j \frac{\partial X_2^j}{\partial y^k} = 0, \quad \forall k = 1, \ldots, n$$

(2.24)

and taking into account the relation $\frac{\partial g_{*ij}}{\partial y^k} y^j = 0$ (see (1.5)), one gets

$$g_{ik} X_1^i + g_{jk} \frac{\partial X_1^i}{\partial y^j} + g^{*ij} p_j \frac{\partial X_2^j}{\partial y^k} = 0, \quad \forall k = 1, \ldots, n.$$

(2.25)

Similarly, differentiate (2.23) with respect to p_k we get

$$g_{ij} y^i \frac{\partial X_1^i}{\partial p_k} + g^{*ik} X_1^i + g_{ik} \frac{\partial X_1^i}{\partial p_k} X_2^j p_j + g^{*ij} p_j \frac{\partial X_2^j}{\partial p_k} = 0, \quad \forall k = 1, \ldots, n.$$

(2.26)
and taking into account the relation \(\frac{\partial g^{ij}}{\partial p_k} p_j = 0 \) (see (1.6)), one gets
\[
g^{ik} X_i^2 + g_{ij} y \frac{\partial X_i}{\partial p_k} + g^{ij} p_j \frac{\partial X_i^2}{\partial p_k} = 0, \quad \forall k = 1, \ldots, n. \tag{2.27}
\]
Let \(X = X_i(x, y, p) \frac{\partial}{\partial y^i} + X_i^2(x, y, p) \frac{\partial}{\partial p_k} \), \(Y = Y_i(x, y, p) \frac{\partial}{\partial y^i} + Y_i^2(x, y, p) \frac{\partial}{\partial p_k} \in \Gamma(V) \). Then, by direct calculations using (2.25) and (2.27), we have
\[
G([X, Y], E) = g_{ijk} X^i_1 \frac{\partial Y^j}{\partial y^k} - Y^i_1 \frac{\partial X^j}{\partial y^k} + g^{ijk} p_k \frac{\partial X^i_1}{\partial p_j} - g^{ijk} Y^i_1 \frac{\partial X^j}{\partial p_k} \frac{\partial Y^i}{\partial p_j} = 0,
\]
which completes the proof. \(\square \)

Remark 2.2. The proof of Theorem 2.1 can be also obtained using an argument similar to [6].

More exactly, if we consider \(P(\frac{\partial}{\partial y^i}) = P_2^i \frac{\partial}{\partial y^i} + P_3^i \frac{\partial}{\partial p_k} \) and \(P(\frac{\partial}{\partial p_i}) = P_4^i \frac{\partial}{\partial y^i} + P_5^i \frac{\partial}{\partial p_k} \), by direct calculus we obtain
\[
P(\frac{\partial}{\partial y^i}) (\sqrt{F^2 + K^2}) = P(\frac{\partial}{\partial p_i}) (\sqrt{F^2 + K^2}) = 0. \tag{2.28}
\]
Now, since \(V = V_\mathcal{E} \oplus \{ E \} \) is integrable, the Lie brackets of vector fields from \(V_\mathcal{E} \) are given by
\[
\begin{align*}
[P(\frac{\partial}{\partial y^i}), P(\frac{\partial}{\partial y^j})] &= A^k_{ij} P(\frac{\partial}{\partial y^k}) + B_{ijk} P(\frac{\partial}{\partial p_k}) + C_{ij} E, \tag{2.29} \\
[P(\frac{\partial}{\partial y^i}), P(\frac{\partial}{\partial p_j})] &= D^k_{ij} P(\frac{\partial}{\partial y^k}) + E_{ijk} P(\frac{\partial}{\partial p_k}) + F^i_{ij} E, \tag{2.30} \\
[P(\frac{\partial}{\partial p_i}), P(\frac{\partial}{\partial p_j})] &= G^{ijk} P(\frac{\partial}{\partial y^k}) + H^i_{ijk} P(\frac{\partial}{\partial p_k}) + L^i_{ij} E, \tag{2.31}
\end{align*}
\]
for some locally defined functions \(A^k_{ij}, B_{ijk}, C_{ij}, D^k_{ij}, E_{ijk}, F^i_{ij}, G^{ijk}, H^i_{ijk} \) and \(L^i_{ij} \), respectively.

We notice that by the homogeneity condition of \(F \) and \(K \) we have \(E(\sqrt{F^2 + K^2}) = \sqrt{F^2 + K^2} \).

Now, if we apply the vector fields in both sides of formulas (2.29), (2.30) and (2.31) to the function \(\sqrt{F^2 + K^2} \) and using (2.28), we obtain \(C_{ij} \sqrt{F^2 + K^2} = F^i_{ij} \sqrt{F^2 + K^2} = L^i_{ij} \sqrt{F^2 + K^2} = 0 \). This implies that \(C_{ij} = F^i_{ij} = L^i_{ij} = 0 \), and then the vertical Liouville distribution \(V_\mathcal{E} \) is integrable.

As usual, the Theorem 2.1 we may say that the geometry of the leaves of vertical foliation \(V \) should be derived from the geometry of the leaves of vertical Liouville foliation \(V_\mathcal{E} \) and of integral curves of \(\mathcal{E} \). In order to obtain this interplay, we consider a leaf \(L_V \) of \(V \) given locally by \(x^i = a^i, \ i = 1, \ldots, n \), where the \(a^i \)'s are constants. Then, \(g_{ij}(a, y) \) and \(g^{ij}(a, p) \) are the components of a Riemannian metric \(G_{L_V} = G|_{L_V} \) on \(L_V \). If we denote by \(\nabla \) the Levi-Civita connection on \(L_V \) with respect to \(G_{L_V} \), then its local expression is
\[
\nabla_{\frac{\partial}{\partial y^i}} \frac{\partial}{\partial y^j} = C^i_{ij}(a, y) \frac{\partial}{\partial y^k}, \quad \nabla_{\frac{\partial}{\partial y^i}} \frac{\partial}{\partial p_j} = 0, \quad \nabla_{\frac{\partial}{\partial p_i}} \frac{\partial}{\partial y^j} = 0, \quad \nabla_{\frac{\partial}{\partial p_i}} \frac{\partial}{\partial p_j} = C^i_{k}(a, p) \frac{\partial}{\partial p_k}, \tag{2.32}
\]
where \(C^k_{ij}(a,y) = \frac{1}{2} g^k_{ij}(a,y) \frac{\partial g_{ij}(a,y)}{\partial y} \) and \(C^k_{ij}(a,p) = -\frac{1}{2} g^k_{ij}(a,p) \frac{\partial g_{ij}(a,p)}{\partial p} \).

Contracting \(C^k_{ij}(a,y) \) by \(y^i \) and \(C^k_{ij}(a,p) \) by \(p_j \), respectively, we deduce

\[
C^k_{ij}(a,y)y^i = 0, \quad C^k_{ij}(a,p)p_j = 0.
\]

In the following lemma we obtain the covariant derivatives with respect to \(\nabla \) of \(E, \zeta \) and \(P \), respectively.

Lemma 2.1. On any leaf \(L_V \) of \(V \), we have

\[
\nabla X \left(\frac{E}{\sqrt{F^2 + K^2}} \right) = \frac{PX}{\sqrt{F^2 + K^2}},
\]

(2.34)

\[
(\nabla X \zeta) Y = \frac{1}{\sqrt{F^2 + K^2}} G_{L_V}(PX, PY),
\]

(2.35)

and

\[
(\nabla X P) Y = -\frac{1}{F^2 + K^2} \left[G_{L_V}(PX, PY) E + \sqrt{F^2 + K^2} \zeta(Y) PX \right]
\]

(2.36)

for any \(X, Y \in \Gamma(TL_V) \).

Proof. We take \(X = X^1_1(a,y,p) \frac{\partial}{\partial y_1} + X^2_1(a,y,p) \frac{\partial}{\partial y_2} \), \(Y = Y^1_1(a,y,p) \frac{\partial}{\partial y_1} + Y^2_1(a,y,p) \frac{\partial}{\partial y_2} \in \Gamma(TL_V) \) and the relation (2.34) follows by:

\[
\nabla X \left(\frac{E}{\sqrt{F^2 + K^2}} \right) = \frac{X^1_1}{\sqrt{F^2 + K^2}} \left(\delta_i^j - \frac{y^i y_j}{F^2 + K^2} \frac{\partial}{\partial y_j} - \frac{p_j y_i}{F^2 + K^2} \frac{\partial}{\partial p_j} \right) + \frac{X^2_1}{\sqrt{F^2 + K^2}} \left(\delta_i^j - \frac{p_i p_j}{F^2 + K^2} \frac{\partial}{\partial p_j} - \frac{y^i y_j}{F^2 + K^2} \frac{\partial}{\partial y_j} \right)
\]

\[
= \frac{1}{\sqrt{F^2 + K^2}} \left(X^1_1 P^1_1 \frac{\partial}{\partial y_1} + X^1_1 P^3_1 \frac{\partial}{\partial p_j} + X^2_1 P^2_1 \frac{\partial}{\partial p_j} \right)
\]

\[
= \frac{PX}{\sqrt{F^2 + K^2}}
\]

For the relation (2.35) we have

\[
(\nabla X \zeta) Y = X(\zeta(Y)) - \zeta(\nabla X Y)
\]

\[
= X^1_1 Y^1_1 \frac{\partial \zeta_j}{\partial y^1} + X^1_1 Y^2_1 \frac{\partial \zeta^j}{\partial y^2} + X^2_1 Y^1_1 \frac{\partial \zeta_j}{\partial p_i} + X^2_1 Y^2_1 \frac{\partial \zeta^j}{\partial p_i}
\]

\[
= \frac{X^1_1 Y^1_1}{\sqrt{F^2 + K^2}} \left(g_{ij} - \frac{y_i y_j}{F^2 + K^2} \right) - \frac{X^1_1 Y^2_1 p_i y_i}{(F^2 + K^2) \sqrt{F^2 + K^2}}
\]

\[
- \frac{X^2_1 Y^2_1 p_j y_j}{(F^2 + K^2) \sqrt{F^2 + K^2}} + \frac{X^2_1 Y^2_1}{\sqrt{F^2 + K^2}} \left(g^{*ij} - \frac{p^{*i} p^j}{F^2 + K^2} \right).
\]

On the other hand we have

\[
G_{L_V}(PX, PY) = G_{L_V}(X, Y) - \zeta(X) \zeta(Y)
\]

\[
= X^1_1 Y^1_1 g_{ij} + X^2_1 Y^2_1 g^{*ij} - \frac{(X^1_1 y_i + X^2_1 p^j)(Y^1_1 y_j + Y^2_1 p^i)}{F^2 + K^2}.
\]
and the relation (2.35) follows easy.

The relation (2.36) follows using (2.16), (2.34) and (2.35).

Theorem 2.2. Let \((M, F)\) be a \(n\)-dimensional Finsler space and \(L_V, L_{V\xi}\) and \(\gamma\) be a leaf of \(V\), a leaf of \(V_{\xi}\) that lies in \(L_V\), and an integral curve of \(\frac{\mathbf{E}}{\sqrt{F^2 + K^2}}\), respectively. Then the following assertions are valid:

i) \(\gamma\) is a geodesic of \(L_V\) with respect to \(\nabla\).

ii) \(L_{V\xi}\) is totally umbilical immersed in \(L_V\).

iii) \(L_{V\xi}\) lies in the generalized indicatrix \(I_a = \{(y, p) \in T_a M^0 \oplus T^*_a M^0 : F^2(a, y) + K^2(a, p) = 1\}\) and has constant mean curvature equal to \(-1\).

Proof. Replace \(X\) by \(\frac{\mathbf{E}}{\sqrt{F^2 + K^2}}\) in (2.34) and we obtain i). Taking into account that \(\frac{\mathbf{E}}{\sqrt{F^2 + K^2}}\) is the unit normal vector field of \(L_{V\xi}\), the second fundamental form \(B\) of \(L_{V\xi}\) as a hypersurface of \(L_V\) is given by

\[
B(X, Y) = \frac{1}{\sqrt{F^2 + K^2}} G_{L_V}(\nabla_X Y, \mathbf{E}), \forall X, Y \in \Gamma (TL_{V\xi}).
\]

(2.37)

On the other hand, by using (2.34) and taking into account that \(G_{L_V}\) is parallel with respect to \(\nabla\), we deduce that

\[
G_{L_V}(\nabla_X Y, \mathbf{E}) = -G_{L_V}(X, Y), \forall X, Y \in \Gamma (TL_{V\xi}).
\]

(2.38)

Hence,

\[
B(X, Y) = -\frac{1}{\sqrt{F^2 + K^2}} G_{L_V}(X, Y), \forall X, Y \in \Gamma (TL_{V\xi}),
\]

(2.39)

that is, \(L_{V\xi}\) is totally umbilical immersed in \(L_V\). Now, we have

\[
\frac{g_{ij}y^i}{\sqrt{F^2 + K^2}} + \frac{g^{ij}p_i}{\sqrt{F^2 + K^2}} = \frac{\partial \sqrt{F^2 + K^2}}{\partial y^i} + \frac{\partial \sqrt{F^2 + K^2}}{\partial p_j}
\]

(2.40)

which says that \(\frac{\mathbf{E}}{\sqrt{F^2 + K^2}}\) is a unit normal vector field for both \(L_{V\xi}\) and the component \(I_a\). Thus, \(L_{V\xi}\) lies in \(I_a\) and \(F^2(a, y) + K^2(a, p) = 1\) at any point \((y, p) \in L_{V\xi}\). Then (2.39) becomes

\[
B(X, Y) = -G_{L_V}(X, Y), \forall X, Y \in \Gamma (TL_{V\xi})
\]

(2.41)

which implies that

\[
\frac{1}{2n-1} \sum_{i=1}^{2n-1} \varepsilon_i B(E_i, E_i) = -1,
\]

(2.42)

where \(\{E_i\}\) is an orthonormal frame field on \(L_{V\xi}\) of signature \(\{\varepsilon_i\}\). Hence, the mean curvature of \(L_{V\xi}\) is \(-1\) which completes the proof.

Theorem 2.3. Let \((M, F)\) be a \(n\)-dimensional Finsler space and \(L_V\) be a leaf of the vertical foliation \(V\). Then the sectional curvature of any nondegenerate plane section on \(L_V\) which contain the vertical Liouville vector field \(\mathbf{E}\) is equal to zero.
Proof. Denote by R_{LV} the curvature tensor field of ∇ on L_V. Then, by using (2.34) and (2.36), we obtain

$$R_{LV} (X, E)E = - \left(1 - \frac{E(\sqrt{F^2 + K^2})}{\sqrt{F^2 + K^2}}\right) PX$$

(2.43)

for every vector field X on L_V. Now, taking into account $E(\sqrt{F^2 + K^2}) = \sqrt{F^2 + K^2}$, the sectional curvature of a plane section $\{X, E\}$ vanishes on L_V. \hfill \square

Corollary 2.1. Let (M, F) be a n-dimensional Finsler space. Then there exist no leaves of V which are positively or negatively curved.

Finally, let us study certain relations between the vertical Liouville foliations V_{E_1}, V_{E_2} and V_E, respectively.

We notice that we have the following decompositions of the vertical distribution:

$$V = V_{E_1} \oplus V_{E_2} \oplus \{E_1\} \oplus \{E_2\} \quad \text{and} \quad V = V_E \oplus \{E\}. \quad (2.44)$$

Taking into account that $[P^1_j \frac{\partial}{\partial y^j}, P^k_l \frac{\partial}{\partial y^k}] = 0$ and $[E_1, E_2] = 0$ we get that both distributions $V_{E_1} \oplus V_{E_2}$ and $\{E_1\} \oplus \{E_2\}$ are integrable. Evidently, $\{E\} \subset \{E_1\} \oplus \{E_2\}$ and by (2.21) we have also $V_{E_1} \oplus V_{E_2} \subset V_E$. Thus, we have the following vertical subfoliations on TM:

$$\{E\} \subset \{E_1\} \oplus \{E_2\} \subset V, \ V_{E_1} \oplus V_{E_2} \subset V_E \subset V. \quad (2.45)$$

The relations (2.44) says that $\{E\}$ and $V_{E_1} \oplus V_{E_2}$ have the same orthogonal complement in $\{E_1\} \oplus \{E_2\}$ and in V_E, respectively. It is a line distribution $\{E'\}$, where $E' = K^2E_1 - F^2E_2$, see (2.22) (or by direct calculation in $G(\alpha_1E_1 + \alpha_2E_2, E) = 0$ it results $\alpha_1 = K^2$ and $\alpha_2 = -F^2$). Thus

$$\{E_1\} \oplus \{E_2\} = \{E\} \oplus \{E'\}, \ V_E = V_{E_1} \oplus V_{E_2} \oplus \{E'\}. \quad (2.46)$$

Proposition 2.1. The leaves of the foliation $\{E_1\} \oplus \{E_2\}$ are totally geodesic submanifolds of the leaves of vertical foliation V.

Proof. Follows easily taking into account that $\nabla E_1, E_1 = E_1, \ \nabla E_1, E_2 = \nabla E_2, E_1 = 0, \ \nabla E_2, E_2 = E_2$. \hfill \square

Also by direct calculus we obtain $\nabla E, E' = -K^2F^2E + (K^2 - F^2)E' \notin \Gamma(\{E'\})$, which leads to

Proposition 2.2. If γ is an integral curve of E' then it is not a geodesic of a leaf of vertical foliation V.

A natural question is if between the foliations $V_{E_1} \oplus V_{E_2}$ and V_E exists certain relations. Although, the leaves of V_{E_1} are totally umbilical submanifolds of the leaves of V, the leaves of V_{E_2} are totally umbilical submanifolds of the leaves of V_2 and the leaves of V_E are totally umbilical submanifolds of the leaves of V, we have

Theorem 2.4. The leaves of $V_{E_1} \oplus V_{E_2}$ are not totally umbilical submanifolds of the leaves of V_E.

Proof. Taking into account that $\frac{E'}{FK\sqrt{F^2 + K^2}}$ is the unit normal vector field of $L_{V_{E_1} \oplus V_{E_2}}$, the second fundamental form B' of $L_{V_{E_1} \oplus V_{E_2}}$ as hypersurface of L_{V_E} is given by

$$B'(X', Y') = \frac{1}{FK\sqrt{F^2 + K^2}}G_{LV} (\nabla X', Y', E') , \forall X', Y' \in \Gamma (TL_{V_{E_1} \oplus V_{E_2}}). \quad (2.47)$$
Taking into account that G_{L_V} is parallel with respect to ∇, we deduce that
\[
G_{L_V}(\nabla X', Y', E') = -G_{L_V}(Y', \nabla X', E'), \quad \forall \ X', Y' \in \Gamma (TL_{V_1} \oplus V_2).
\] (2.48)

Now, let us take $X' = P_1(X_1) + P_2(X_2)$ and $Y' = P_1(Y_1) + P_2(Y_2)$ for every $X_1, Y_1 \in \Gamma(V_1)$ and $X_2, Y_2 \in \Gamma(V_2)$. Then by direct calculus we get
\[
\nabla X' E' = K^2 P_1(X_1) - F^2 P_2(X_2).
\] (2.49)

Thus the relation (2.47) becomes
\[
B'(X', Y') = \frac{-1}{FK^2 - F^2} G_{L_V}(K^2 P_1(X_1) - F^2 P_2(X_2), Y') \neq \lambda G_{L_V}(X', Y'),
\] (2.50)

that is, $L_{V_1} \oplus V_2$ is not totally umbilical immersed in L_{V_2}.

\[\square\]

References

[1] Attarchi, H., Rezaii, M. M., Cartan spaces and natural foliations on the cotangent bundle. Int. J. Geom. Methods in Modern Physics, 10 (2013), No. 3, 1250089, 14 pages.

[2] Bao, D., Chern, S. S., Shen, Z., An Introduction to Riemannian Finsler Geometry. Graduate Texts in Math., 200, Springer-Verlag, 2000.

[3] Bejancu, A., Farran, H. R., On The Vertical Bundle of a Pseudo-Finsler Manifold. Int. J. Math. and Math. Sci. 22 (1997), No. 3, 637–642.

[4] Bejancu, A., Farran, H. R., Foliations and Geometric Structures. Mathematics and Its Applications Vol. 580, Springer, Dordrecht, 2006.

[5] Bejancu, A., Farran, H. R., Finsler Geometry and Natural Foliations on the Tangent Bundle. Rep. Math. Physics 58 (2006), No. 1, 131–146.

[6] Bucătaru, I., Muzsnay, Z., Projective and Finsler metrizability: Parametric-Rigidity of the geodesics. Int. J. of Math., 23 (2012), No. 9, 1250099 (15 pages).

[7] Gîrţu, M., Geometry on the big tangent bundle. Sci. Stud. Research, Ser. Mathematics- Informatics 23 (2013), No. 1, 39–48.

[8] Hitchin, N., Generalized Calabi-Yau manifolds. Quart. J. Math., 54, 2003, 281–308.

[9] Ida, C., Manea, A., A vertical Liouville subfoliation on the cotangent bundle of a Cartan space and some related structures. Int. J. Geom. Methods in Mod. Phys. (2014) (Accepted). Available to arXiv:1301.5316v2.

[10] de León, M., Martín de Diego, D., Vaquero, M., A Hamilton-Jacobi theory for singular Lagrangian systems in the Skinner and Rusk setting. Int. J. Geom. Methods Mod. Phys. 09, 1250074 (2012), 24 pages.

[11] Manea, A., Ida, C., Adapted basic connections to a certain subfoliation on the tangent bundle of a Finsler space. Turkish J. Math. 2014 (In press). Available to arXiv:1301.5275v1.
[12] Miron, R., *Cartan spaces in a new point of view by considering them as duals of Finsler Spaces*. Tensor N.S. **46** (1987), 330–334.

[13] Miron, R., *The geometry of Cartan spaces*. Prog. Math. India. **22** (1988), 1–38.

[14] Miron, R., Anastasiei, A., *The Geometry of Lagrange Spaces. Theory and Applications*. Kluwer Acad. Publ. **59**, 1994.

[15] Miron, R., Hrimiuc, D., Shimada, H., Sabău, S., *The geometry of Hamilton and Lagrange spaces*. Kluwer Acad. Publ., **118** 2001.

[16] Peyghan, E., Tayebi, A., Zhong, C., *Foliations on the tangent bundle of Finsler manifolds*. Science China Mathematics **55** (2012), 647–662.

[17] Peyghan, E., Nourmohammadi Far, L., *Foliations and a class of metrics on tangent bundle*. Turk. J. Math **37** (2013), 348–359.

[18] Skinner, R., Rusk, R., *Generalized Hamiltonian dynamics I. Formulation on TQ ⊕ T∗Q*. J. Math. Phys., **24**, 2589 (1983).

[19] Skinner, R., Rusk, R., *Generalized Hamiltonian dynamics II. Gauge transformations*. J. Math. Phys., **24**, 2595 (1983).

[20] Vaisman, I., *Almost-multifoliate Riemannian manifolds*. An. St. Univ. Iasi **16** (1970), 97–103.

[21] Vaisman, I., *Variétés riemanniennes feuilletées*. Czechoslovak Math. J., **21** (1971), 46–75.

[22] Vaisman, I., *Geometry on Big-Tangent Manifolds*, (2013). Available to arXiv: 1303.0658v1.

Cristian Ida
Department of Mathematics and Computer Science
University Transilvania of Brașov
Address: Brașov 500091, Str. Iuliu Maniu 50, România
email: cristian.ida@unitbv.ro

Paul Popescu
Department of Applied Mathematics
University of Craiova
Address: Craiova, 200585, Str. Al. Cuza, No. 13, România
email:paul_p_popescu@yahoo.com