Characterization of exosomes in peritoneal fluid of endometriosis patients

Hannah M. Nazri, M.D.,a Maria Imran, B.Sc.,a Roman Fischer, Ph.D.,a Raphael Heilig, Ph.D.,b Sanjiv Manek, M.D.,c Rebecca A. Dragovic, Ph.D.,a Benedikt M. Kessler, Ph.D.,b Krina T. Zondervan, Ph.D.,a,d Thomas T. Tapmeier, Ph.D.,a and Christian M. Becker, M.D.a

a Endometriosis CaRe Centre, Nuffield Department of Women’s & Reproductive Health, University of Oxford; b Nuffield Department of Medicine, University of Oxford; c Department of Cellular Pathology, Oxford University Hospitals; and d Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom

Objective: To demonstrate the feasibility of studying exosomes directly from peritoneal fluid, we isolated exosomes from endometriosis patient samples and from controls, and characterized their cargo.

Design: Case-control experimental study.

Setting: Academic clinical center.

Patient(s): Women with and without endometriosis who underwent laparoscopic surgery (n = 28 in total).

Intervention(s): None.

Main Outcome Measure(s): Concentration of exosomes within peritoneal fluid and protein content of the isolated exosomes.

Result(s): Peritoneal fluid samples were pooled according to the cycle phase and disease stage to form six experimental groups, from which the exosomes were isolated. Exosomes were successfully isolated from peritoneal fluid in all the study groups. The concentration varied with cycle phase and disease stage. Proteomic analysis showed specific proteins in the exosomes derived from endometriosis patients that were absent in the controls. Five proteins were found exclusively in the endometriosis groups: PRDX1, H2A type 2-C, ANXA2, ITIH4, and the tubulin a-chain.

Conclusion(s): Exosomes are present in peritoneal fluid. The characterization of endometriosis-specific exosomes opens up new avenues for the diagnosis and investigation of endometriosis. (Fertil Steril® 2020;113:364–73. Copyright ©2019 The Authors. Published by Elsevier Inc. on behalf of the American Society for Reproductive Medicine. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)).

El resumen está disponible en Español al final del artículo.

Key Words: Biomarker, endometriosis, exosomes, pathogenesis, peritoneal fluid

Discuss: You can discuss this article with its authors and other readers at https://www.fertstertdialog.com/users/16110-fertility-and-sterility/posts/53994–28445

Endometriosis affects millions of women of reproductive age worldwide (1), with a minority of women continuing to experience endometriosis even into menopause (2). The symptoms include menstrual and non-menstrual pain that is often aggravated during and after coitus, defecation, and micturition. Additionally, up to half of women with endometriosis experience a degree of infertility as well as mental health issues and fatigue (3). Consequently, endometriosis not only affects women and their partners but society in general, with ever-rising health care and non-health care costs (4). Furthermore, due to the “unhappy endometriosis triad” of insufficient public and professional

Received June 12, 2019; revised September 11, 2019; accepted September 23, 2019.

H.M.N. has nothing to disclose. M.I. has nothing to disclose. R.F. has nothing to disclose. R.H. has nothing to disclose. S.M. has nothing to disclose. R.A.D. has nothing to disclose. B.M.K. has nothing to disclose. K.T.Z. has received research grants from Bayer AG, Volland Rx, MDNA Life Sciences, and Roche Diagnostics Inc., has received consulting fees contributed to academic research by Abbvie Inc., and has had a non-financial collaborative relationship with Population Diagnostics Ltd. outside the submitted work. T.T.T. has nothing to disclose. C.M.B. has received research grants from Bayer AG, Volland Rx, MDNA Life Sciences, and Roche Diagnostics Inc., Consulting fees contributed to academic research from Abbvie; has received non-financial support from Population Diagnostics Ltd., and is a member of the independent monitoring committee for ObsEva and a consultant for Flo Health, outside the submitted work.

Supported by the Nuffield Department of Women’s & Reproductive Health, the Oxfordshire Health Services Research Committee (to H.M.N.), and the Nuffield Beneﬁt for Medicine and the Wellcome Institutional Strategic Support Fund (ISSF) (to T.T.T.).

T.T.T. and C.M.B. should be considered similar in author order.

T.T.T. present address: John Curtin School of Medical Research, Australian National University, Canberra, Australia.

Reprint requests: Thomas T. Tapmeier, Ph.D., Endometriosis CaRe Centre, Nuffield Department of Women’s & Reproductive Health, University of Oxford, OX3 9DU, United Kingdom (E-mail: thomas.tapmeier@wrh.ox.ac.uk).

Fertility and Sterility® Vol. 113, No. 2, February 2020 0015–0282

Copyright ©2019 The Authors. Published by Elsevier Inc. on behalf of the American Society for Reproductive Medicine. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1016/j.fertnstert.2019.09.032
awareness (5), lack of clinically relevant biomarkers (6), and the nonspecificity of endometriosis-associated symptoms, women wait on average for 6 to 9 years (7) before the definitive diagnosis is made by laparoscopy (8).

Endometriosis presents as ectopic endometrial-like lesions mostly in the pelvis along the peritoneum, at times involving surrounding structures, or as endometriomas, or as fibrotic nodules (1). Pelvic endometriosis is classified into stages I–IV (minimal to severe) based on direct visualization during surgery (9). The current endometriosis treatments are not curative and are targeted toward symptom amelioration and restricted to hormone treatment or surgical excision while also aiming for fertility preservation if required (10). Although retrograde menstruation is thought to be the underlying cause for most intra-abdominal endometriosis (11), more than 90% of women have menstrual blood in their peritoneum during menses (12). The reason why endometriosis develops only in some women remains unknown, and the search for noninvasive tests (13) and blood biomarkers (14) has been unsuccessful so far.

Recently, exosomes have gained considerable interest as novel agents of intercellular communication in health and disease (15): Exosomes are cell-derived lipid-bound nanovesicles secreted by virtually every cell, so they are present in almost all biological fluids (16). They are formed within multivesicular endosomes (MVE) and released by the fusion of the MVE with the plasma membrane of the cell (16). Proteins like Alix, CD9, and syntenin are instrumental in exosome biogenesis and thus serve as markers in exosome enrichment and purification protocols.

Tumor-derived exosomes have been shown to direct metastasis by preparing the premetastatic niche (17), and exosomes have been described in benign diseases such as obesity and diabetes (18), preeclampsia (19), in hematologic (20) and neurodegenerative diseases (21), and in atherosclerosis (22) and coronary artery disease (23).

Exosomes carry surface markers, genetic material, peptides, and proteins from their parent cell, which mirror its gene and protein expression (16). This makes exosomes an attractive candidate as a diagnostic and therapeutic tool. Exosomes have been evaluated as biomarkers of pancreatic cancer (24); in coronary artery disease, disease-specific circulating exosomes have been shown to add prognostic value to an existing scoring system and to increase the predictive value of a risk factor model for major adverse events (23). At the moment, more than 20 clinical trials involving exosomes are recruiting participants (clinicaltrials.gov).

In endometriosis, an in vitro study (25) showed that exosomes isolated from cultured endometrial stromal cells of endometriosis patients carried mir-21, a microRNA implicated in angiogenesis. Other studies have similarly investigated exosomes derived from serum (26) or cultured endometriotic material (27, 28). However, as opposed to the indirect sourcing of exosomes, no direct analysis of the exosomes presumably present within the peritoneal fluid (PF) of women has yet been undertaken. Here, we directly detect exosomes in the PF of women and begin to characterize the PF-derived exosomes with regards to their protein cargo.

MATERIALS AND METHODS

The samples and clinical data were obtained as part of the larger prospective ENDOX study of endometriosis biology at the Oxford Endometriosis CaRe Centre (29), approved on July 13, 2009, by the Oxford University Hospitals Foundation Trust, with ethics approval by the South Oxfordshire Research Ethics Committee (09/H0604/58).

Consent and sample acquisition

We obtained PF from women aged 18 to 49 years old who were undergoing elective laparoscopy for suspected endometriosis due to pain symptoms and/or infertility investigation after informed consent. None of the women had been undergoing hormone treatment for at least 1 month at the time of surgery. The control patients had no history of endometriosis and were found to have no pelvic pathology (Table 1). Biological samples and clinical data were collected, processed, and stored according to World Endometriosis Research Foundation Endometriosis Phenome and Biobanking Harmonisation Project (WERF EPHect) protocols (30–33). The exclusion criteria were malignancy, pregnancy, breastfeeding, and an inability to understand the study or the consent form.

A total of 28 women were included in the study (see Table 1). Endometriosis was staged according to the American Society for Reproductive Medicine (ASRM) classification (9). Cycle phases were self-reported and confirmed by histology of endometrial biopsy samples taken during the laparoscopy (34). In case of discordance, the histologic result was used.

For this exploratory study, only 1 mL of clear PF per patient was available due to the material demands of other research performed out under ENDOX. To reduce biological variation and in keeping with earlier studies on serum proteomics (35) and on exosomes isolated from small amounts of liquid (36), the samples of women with stage I and stage II endometriosis, and the samples of women with stage III and stage IV endometriosis were pooled after histologic confirmation of their menstrual cycle phase. This resulted in six experimental groups: control–proliferative, stage I/II–proliferative, stage III/IV–proliferative, control–secretory, stage I/II–secretory, and stage III/IV–secretory.

Exosome isolation

Exosomes were isolated as described for placental perfusate before (37). Briefly, PF was put on ice at acquisition and then was centrifuged twice at 1,500 × g for 10 minutes at room temperature to remove cells (Fig. 1A). We and others have shown that this does not compromise exosome content or quality (37, 38). The pellet was discarded, and the cell-free PF supernatant was stored in 1-mL aliquots at −80°C until use.

Cell-free PF supernatants were thawed and centrifuged at 16,000 × g for 30 minutes to remove microvesicles and cell debris. Debris-free supernatants were pooled within the six experimental groups and were filtered through a 0.10-μm filter (Merck Millipore Ltd.). Exosomes were extracted using Exo-spin size-exclusion chromatography columns (Cell Guidance Systems) according to the manufacturer’s instructions. The samples were incubated at 4°C overnight with one half
volume of Exo-spin buffer, then centrifuged for 1 hour at 16,000 × g and resuspended in 15 mL per group for column separation into 30 fractions at 500 µL (39). These fractions were analyzed for particle and protein content by nanoparticle tracking analysis, and exosome-rich/protein-poor fractions were reunited to obtain the experimental exosome sample (see the section on concentrating pf size-exclusion chromatography fractions).

Nanoparticle tracking analysis

The particle content within the 30 fractions per group was measured using a NanoSight NS500 instrument (488 nm laser) with nanoparticle tracking analysis (NTA) software, version 3.1, Build 3.1.54 (Malvern Panalytical) and a high-sensitivity scientific complementary metal–oxide semiconductor (sCMOS) camera as previously described elsewhere (40). The samples were diluted with phosphate-buffered saline and infused into the sample chamber using a syringe pump module. The infusion rate was set so that events took 10 seconds to move across the screen. The camera brightness was kept at level 12. Five 90-second videos were recorded per sample and averaged to determine the particle concentration and sizes.

Protein Measurement (Qubit)

The protein content of the 30 fractions per group was analyzed by a Qubit 4.0 Fluorometer using the Qubit Protein Assay (ThermoFisher Scientific).

Concentrating PF size-exclusion chromatography fractions

The fractions with the highest exosome concentration and the least protein content were pooled and concentrated using an Amicon centrifugal filter unit (Ultra-4, 100 kDa; Millipore) and were reanalyzed by NTA (Supplemental Fig. 1, available online), taking the dilution factor and total sample volumes into consideration.

Western Blot

The samples were tested for the presence of exosome protein markers using immunoblotting. Briefly, 10 µg of protein were loaded onto a NuPAGE Novex 4-12% Bis-Tris Gel (ThermoFisher Scientific/Invitrogen) then run in NuPAGE MOPS SDS Running Buffer (ThermoFisher Scientific/Invitrogen) at 150 V for 1 hour. The proteins were electroblotted for 1 hour at 25 V onto a methanol-activated polyvinylidene difluoride membrane (Bio-Rad Laboratories). The protein transfer was ascertained by Ponceau Red stain (Merck). Antibodies used for immunostaining were anti-CD9 (Abcam), anti-Alix (Cell Signaling Technology), and anti-syntenin (Abcam). The syntenin band was visualized using the EZ-ECL kit (Geneflow), and the Alix and CD9 bands were visualized using the Westar Supernova ECL kit (Cynagen) with the Gel-Box imaging system (Sygene), or on Kodak films according to the manufacturer’s instructions.

TABLE 1

Endometriosis patient characteristics.

Sample	Age, years	ASRM staging	Menstrual cycle phase	Experimental group	Previous history of endometriosis	Other diagnosis
1	32	0	Proliferative	Control	No	None
2	39	0	Secretory	Control	No	None
3	34	0	Secretory	Control	No	None
4	38	0	Proliferative	Control	No	None
5	33	0	Proliferative	Control	No	None
6	24	0	Proliferative	Control	No	None
7	31	1	Proliferative	Stage VII	Yes (1 previous surgery)	None
8	28	1	Secretory	Stage VII	Yes (1 previous surgery)	None
9	33	2	Proliferative	Stage VII	No	None
10	46	1	Secretory	Stage VII	No	None
11	29	2	Secretory	Stage VII	No	None
12	38	2	Secretory	Stage VII	Yes (1 previous surgery)	None
13	32	1	Secretory	Stage VII	Yes (1 previous surgery)	None
14	45	2	Secretory	Stage VII	Yes (1 previous surgery)	None
15	36	2	Proliferative	Stage VII	No	Simple cyst
16	36	1	Proliferative	Stage VII	No	None
17	34	1	Secretory	Stage VII	No	None
18	22	1	Proliferative	Stage VII	No	None
19	26	1	Secretory	Stage VII	No	None
20	27	1	Secretory	Stage VII	Yes (1 previous surgery)	None
21	35	1	Proliferative	Stage VII	Yes (1 previous surgery)	None
22	32	1	Proliferative	Stage VII	Yes (1 previous surgery)	None
23	33	4	Proliferative	Stage III/IV	Yes (1 previous surgery)	None
24	40	3	Secretory	Stage III/IV	Yes (1 previous surgery)	None
25	43	4	Secretory	Stage III/IV	Yes (1 previous surgery)	None
26	36	3	Proliferative	Stage III/IV	No	Simple endometrial cyst
27	48	3	Secretory	Stage III/IV	No	Cysts
28	38	3	Secretory	Stage III/IV	No	None

Note: ASRM = American Society for Reproductive Medicine.

Nazri. PF exosomes in endometriosis. Fertil Steril 2019.
Liquid Chromatography with Tandem Mass Spectrometry and Proteomic Analysis

A total of 9.7 μg of protein was used, and the volumes were equalized to 85 μL with deionized water. The samples were lysed by adding the same volume of radioimmunoprecipitation assay buffer (ThermoFisher Scientific/Pierce) and incubating on ice for 30 minutes. After lysis the samples were centrifuged for 10 minutes, and the clear supernatant was transferred into fresh tubes. The samples were reduced by the addition of 5 μL of 200 mM dithiothreitol (30 minutes at room temperature) and

FIGURE 1

A

PF → centr. 1500 x g, 10 min (2 x) → cell-free supernatant -80°C

thawed cell-free supernatant → centr. 16000 x g, 30 min → debris-free supernatant

Pooling of d.-f. supernatants within groups → exosome precipitation overnight, then centr. 16000 x g, 1 h → exosomes in pellet

size exclusion chromatography: 30 exosomes/protein fractions → Nanosight Tracking Analysis of particle sizes: re-pooling of exosome rich (=protein poor) fractions → Concentration of experimental sample (700 μL) → NTA TEM WB proteomics

B

	Proliferative	Secretory				
Patients	Control	Stage I/II	Stage III/IV	Control	Stage I/II	Stage III/IV
Original volume [μL]	5800	9	2	1250	8650	4100
Mode [nm]	137	142	146	172	129	152
Conc. [μL]	6.09x10^8	1.14x10^7	5.32x10^7	2.18x10^7	7.31x10^7	4.10x10^7
	±1.02x10^7	±4.67x10^7	±3.36x10^6	±8.47x10^5	±6.19x10^7	±3.22x10^5

C

Proliferative

- Control
- Stage I/II
- Stage III/IV

Secretory

- Control
- Stage I/II
- Stage III/IV

D

Event count

- Proliferative
- Secretory

Particules/mL

- Proliferative
- Secretory

Naazni. PF exosomes in endometriosis. Fertil Steril 2019.
alkylated with 20 μL of 200 mM iodoacetamide (30 minutes at room temperature) followed by methanol-chloroform precipitation.

The pellets were resuspended in 6 M urea in 400 mM Tris-HCl, pH 7.8. Urea was diluted to 1 M using 400 mM Tris-HCl, pH 7.8, and the proteins were digested with trypsin in a ratio of 1:50 (overnight at 37°C). After acidification to a final concentration of 1% formic acid, the samples were desalted on Sola HRP SPE cartridges (ThermoFisher Scientific) and dried down in a SpeedVac.

The peptides were separated on an EASY spray column (ES803; ThermoFisher Scientific) and analyzed on a Dionex Ultimate 3000/Orbitrap Fusion Lumos platform (both ThermoFisher Scientific) using standard parameters as described elsewhere (41).

Mass spectrometry data were analyzed quantitatively with Progenesis QI for proteomics (v4.1) after a database search (Swiss-Prot human 03/2018) by Mascot (v2.5) using standard parameters: 10 ppm/0.5 Da mass tolerance (MS1/MS2), 1 missed cleavage site, fixed carbamidomethylation (C), variable deamidation (D, Q), and oxidation (M). The peptide false-discovery rate was adjusted to 1%, and the peptides with ion scores lower than 20 were discarded. A full list of proteins identified is provided in Supplemental Table 1 (available online).

Transmission electron microscopy

For exosome visualization, a carbon-coated 300 mesh copper grid was glow discharged and then incubated on a 10-μL droplet of the sample for 2 minutes, blotted with filter paper, negatively stained with 2% uranyl acetate for 10 seconds, blotted, and air dried. Grids were imaged at an accelerating voltage of 120 kV in a FEI T12 transmission electron microscopy (TEM) using a Gatan OneView digital camera.

Statistical analysis

To compare the concentrations of exosomes between groups, we performed two-way analysis of variance with Tukey’s post-test for multiple comparisons (Prism 7, Graph Pad Software). P < .05 was considered statistically significant.

RESULTS

Exosome concentrations in PF vary depending on disease stage and cycle phase

The NTA profiles of the pooled PF samples showed peaks at around 150 nm, consistent with the presence of exosomes in all sample groups (see Fig. 1B and C). Particles larger than 500 nm were absent, indicating an enriched exosome sample without contamination by microvesicles or apoptotic bodies. The stage I/II endometriosis group showed a higher concentration of exosomes in PF compared with the control group in both cycle phases (see Fig. 1D; P < .0001). Although the low sample number is reason for caution (see Fig. 1B), this likely reflects the more prominent involvement of inflammatory cells in stage I/II disease compared with stage III/IV endometriosis, which frequently shows deep endometriosis with lesions removed from direct contact with the PF.

The exosome concentration changed overall with the menstrual cycle phase within the groups (see Fig. 1D, P < .0001). In three groups it was so low that only the minimal number of valid NTA tracks (≥ 200) could be recorded (proliferative stage III/IV group; secretory control and stage III/IV groups); however, the particle mode size—the most prominent peak—was nevertheless similar among all groups (129–172 nm; see Fig. 1B), indicating that we were indeed observing exosomes.

We confirmed the presence of exosomes by TEM and immunoblotting in all groups (Fig. 2). The electron microscopy images showed the typical invaginated cuplike appearance of exosomes at the expected size (see Fig. 2A). Immunoblotting of the samples indicated the presence of the exosome markers syntentin and CD9 in the preparations, although only a faint band was seen in the low-abundance samples mentioned earlier (see Fig. 2B). Alix was not detected in any of the samples (data not shown). This could point to the overall low protein amount or to an Alix-independent pathway of exosome biogenesis. In conclusion, exosomes are present within PF samples of women with and without endometriosis, independent of the cycle phase.

Endometriosis-specific exosome proteins

We analyzed the pooled exosome samples by liquid chromatography with tandem mass spectrometry to investigate the exosome protein cargo of the different groups. Using label-free relative quantitation of proteins with at least two unique peptides identified and an false-discovery rate <1%, we detected proteins shared between all exosomes as well as distinct proteins present within each group (Fig. 3; see Supplemental Table 1). Overall, the exosome cargo analysis showed 62 proteins shared by the control and endometriosis groups regardless of menstrual phase, at a maximum reading depth of 150 proteins. A gene ontology analysis of cell compartment origin of these proteins and the comparison with the ExoCarta data set of exosome proteins (42) confirmed them as exosome-derived.

To define an endometriosis-specific exosome population, we combined the data of both cycle phases to average out cycle phase-specific markers in favor of an endometriosis-specific signature. Five proteins were found to be present within endometriosis samples (stage I/II and stage III/IV) that were absent from the control samples: (fragments of) peroxiredoxin-1 (PRDX1), histone H2A type 2-C, annexin A2 (ANXA2), inter-α-trypsin inhibitor heavy chain H4 (ITIH4) (fragment), and tubulin α-chain.

We consulted the expression data from the Human Proteome Map (43) database to learn about the potential origin of the exosomes carrying these proteins. The database contains data for three out of the five proteins identified (Supplemental Fig. 2, available online), with PRDX1 expressed mainly in fetal tissues but also in placenta and kidney, ANXA2 in placenta and lung, and ITIH4 as predominantly expressed on monocytes. Thus, PRDX1 and ANXA2 are linked to...
placental/fetal development, while ITIH4 most likely derives from inflammatory monocytes prevalent in endometriosis.

Taken together, we directly identified exosomes in the PF of women. The exosome populations vary between nonendometriotic controls and endometriosis patients, and they carry proteins consistent with a potential role in the pathogenesis of endometriosis.

DISCUSSION

Endometriosis is characterized by ongoing, chronic inflammation in the peritoneum (44), and PF is rich in cytokines, prostaglandins, interleukin, and other growth factors. We show that exosomes are also part of this list of PF constituents.

It is thought that stage I/II disease especially contains “active” lesions involving increased angiogenesis and immune processes (45, 46). We found elevated numbers of exosomes in PF of women with ASRM stage I/II endometriosis, particularly during the proliferative phase of the menstrual cycle. As to the origin of these exosomes, it is conceivable that they were released from immune, mesothelial, or neuronal cells, from endometriotic lesions per se, or that they were retrogradely washed in during the last menstrual period. Exosomes from menstrual blood-derived stem cells (MenSCs) have been described previously as antiangiogenic (47) and anti-inflammatory (48), and promoting neurite outgrowth (49); however, our analysis of PF exosome protein cargo did not indicate a MenSCs origin.

Apart from proteins, exosome cargo comprises of microRNA, RNA (50), piwi-interacting RNA, transfer RNA fragments (16), DNA (51) and secondary messenger molecules (52) capable of affecting the gene expression and behavior of their target cells, such as phenocopying (53). Their investigation was beyond the scope of our study. However, we investigated the protein content of isolated exosomes. While 62 proteins were shared by exosomes from endometriosis patients and controls irrespective of menstrual phase, five proteins were found exclusively in endometriosis samples: (fragments of) PRDX1, histone H2A type 2-C, ANXA2, ITIH4 (fragment), and tubulin \(\alpha \)-chain.

The PRDX1 gene is overexpressed in human malignancies, suggesting that PRDX1 may be a proto-oncogene,
although in some studies PRDX1 has been shown to suppress tumors (54). ANXA2, an activator of matrix metallopeptidase (MMP-9) (55), is essential for degradation of the extracellular matrix of retrogradely menstruated endometrium by peritoneal macrophages (56). Similarly, the extracellular matrix of the peritoneal layer of mesothelial cells could be compromised, enabling ectopic endometrial lesions to attach and develop here. An earlier proteomics study showed ANXA2 dysregulation within the eutopic endometrium of endometriosis patients (57). Both PRDX1 and ANXA2 are elevated in stage I endometrial cancer (58), and ANXA2 has been suggested as a potential biomarker for recurrent endometrial cancer (59) and in ovarian cancer progression (regulation of β-catenin–driven epithelial–mesenchymal transition) (60). Thus, ANXA2 is already an established protein of interest in the field. Closer to endometriosis, ANXA2 has been implied in adenomyosis-associated dysmenorrhea (61). Furthermore, ANXA2 has been shown to correlate with gastric cancer growth and spreading, suggesting a role in metastasis (62); a similar role for ANXA2 could be envisaged in the establishment of endometriotic lesions.

An RNA expression of ITIH4 has been detected only in the liver (63), and it seems to be up-regulated during surgical trauma, which would explain its presence within our sample cohort. We alternatively assume an inflammatory component as the origin of specific exosomes in endometriosis, such as inflammatory monocytes. Moreover, ITIH4 has been suggested as a serum biomarker for recurrent pregnancy loss patients (64). On the other hand, histone and tubulin are constituents of normal cell machinery and are less likely endometriosis-associated proteins, although the possibility that the presence of these proteins reflects an altered cell machinery cannot be excluded.

We have shown increased exosome concentration in stage I/II disease in keeping with the ongoing inflammatory response during endometriosis, and we saw a decrease in stage III/IV disease. Genetic studies have recently indicated that stages I/II and III/IV endometriosis are distinct in their pathogenesis (65). Here, the PF-exosome concentration may be a useful biomarker to separate these two entities.

It can be speculated that exosomes are priming the peritoneal mesothelial cell layer for implantation of endometriotic tissue, similar to tumor exosomes creating the premetastatic niche (66). Exosomes may also be involved in endometriosis-associated pain either by promoting neurite outgrowth (67) or transporting neurotransmitters (49).

Clinical implications

Exosomes are of increasing interest in the pathophysiology of endometriosis, and a recent review by Schjenken et al. (68) asked that “future studies should examine the composition of these exosomes,” referring to exosomes produced by endometriotic lesions and released into the PF. We believe to have made the first step in that direction. The successful isolation of exosomes directly from PF and the analysis presented here suggest proteins specifically found in exosomes from endometriosis patients as biomarkers of the disease. However, similar to other conditions (68), the systemic presence of endometriosis-specific exosomes will have to be confirmed to use, for instance, a simple blood test to confirm the presence of the disease.

Research implications

Exosomes have the potential to direct tumor metastasis in cancer, and their role in endometriosis is as yet unclear. However, their diverse nature could provide an explanation as to why endometriosis occurs in some women and not in others, given that retrograde menstruation (the most commonly cited source of endometriotic cells) is very common. We have shown the presence of exosomes in PF, but more experimental research is needed to functionally characterize the role of exosomes in endometriosis.

Strengths and limitations

Although challenging in its approach, this is the first analysis of exosomes directly isolated from PF as opposed to exosomes derived from cultured tissue. A caveat is that only a small volume (≤ 1 mL) of PF per patient was available for analysis, which required the pooling of samples within groups to reach the amounts necessary for analysis. Thus, we cannot ascribe our findings to individual patients. We were able to use PF samples only of patients who had not taken hormones for at least 1 month before surgery and whose PF samples were of a large enough volume to allow for their use in our experiments once the amounts required for other research under ENDOX had been stored according to the study protocol. This left us with samples from 28 patients only, whom we further divided according to cycle phase and disease stage to avoid confounding our results. This limitation introduces

FIGURE 3

Proteomic analysis of peritoneal fluid (PF) exosome cargo revealing the distinct presence of endometriosis-associated exosomes. Exosomes isolated from the PF of patients and controls were analyzed by liquid chromatography with tandem mass spectrometry according to disease stage. This allowed for the detection of five proteins found in both disease groups but absent in controls. The diagram depicts the number of proteins found in all experimental groups.

Prone."
a potential bias in that a few additional patients in the control group could have resulted in a different picture.

CONCLUSION
Exosomes in the PF of women present a worthwhile target of investigation. Future larger scale studies will enable us to focus on particular aspects of exosome involvement in the disease, which should give further insight into the pathogenesis of endometriosis. Multicenter collaborative efforts such as supported by WERF and performed according to EPHeCT standards will be instrumental in this effort.

Acknowledgments: The authors thank all the women participating in the ENDOX study; the team at the Endometriosis CaRe Centre, Oxford, especially the research nurses Carol Hubbard, Kelly Barrett, and Emily Shepherd; and Dr. Errin Johnson of the Sir William Dunn School of Pathology, University of Oxford, for the TEM images.

REFERENCES
1. Burney RO, Giudice LC. Pathogenesis and pathophysiology of endometriosis. Fertil Steril 2012;98:51–9.
2. Gemmell LC, Weisberg KE, Kirtley S, Vincent K, Zondervan KT, Becker CM. The management of menopause in women with a history of endometriosis: a systematic review. Hum Reprod Update 2017;23:481–500.
3. Zondervan KT, Becker CM, Koga K, Missner SA, Taylor RN, Viganò P. Endometriosis. Nat Rev Dis Prim 2018;4:9.
4. Simoons S, Dunselman G, Dirksen C, Hummelshoj L, Bokor A, Brandes I, et al. The burden of endometriosis: costs and quality of life of women with endometriosis and treated in referral centres. Hum Reprod 2012;27:1292–9.
5. Shah DK, Moravek MB, Vahratian A, Dalton VK, Lebovic DI. Public perceptions of endometriosis: perspectives from both genders. Acta Obstet Gynecol Scand 2010;89:646–50.
6. May KE, Conduit-Hulbert SA, Villar J, Kirtley S, Kennedy SH, Becker CM. Peripheral biomarkers of endometriosis: a systematic review. Hum Reprod Update 2010;16:651–74.
7. Nnoaham KE, Hummelshoj L, Webster P, D’Hooghe T, de Cicco Nardone C, de Cicco Nardone F, de Cicco Nardone C, et al. Impact of endometriosis on quality of life and work productivity: a multicenter study across ten countries. Fertil Steril 2011;96:366–73.e8.
8. Dunselman GA2, Vermeulen N, Becker C, Calhaz-Jorge C, D’Hooghe T, de Bie B, et al. ESHRE guideline: management of women with endometriosis. Hum Reprod Update 2014;29:400–12.
9. American Society for Reproductive Medicine. Revised American Society for Reproductive Medicine classification of endometriosis: 1996. Fertil Steril 1997;67:817–21.
10. Bedawy MA, Alfaraj S, Yong P, Casper R. New developments in the medical treatment of endometriosis. Fertil Steril 2017;107:555–65.
11. Sampson JA. Peritoneal endometriosis due to the menstrual dissemination of endometrial tissue into the peritoneal cavity. Am J Obstet Gynecol 1927;14:422–69.
12. Halme J, Hammond MG, Hulka BF,raj SG, Talbert ML. Retrograde menstruation in healthy women and in patients with endometriosis. Obstet Gynecol 1984;64:151–4.
13. Nisenblat V, Prentice L, Bossuyt PM, Farquhar C, Hull ML, Johnson N. Combination of the non-invasive tests for the diagnosis of endometriosis. Cochrane Database Syst Rev 2016;7:CD012281.
14. Nisenblat V, Bossuyt PM, Shaikh R, Farquhar C, Jordan V, Scheffers CS, et al. Blood biomarkers for the non-invasive diagnosis of endometriosis. Cochrane Database Syst Rev 2016;5:CD012179.
15. Xu R, Greening DW, Zhi H-J, Takahashi N, Simpson RJ. Extracellular vesicle isolation and characterization: toward clinical application. J Clin Invest 2016;126:1152–62.
16. Colombo M, Raposo G, Thiery J. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 2014;30:255–89.
17. Hoshino A, Costa-Silva B, Shen T-L, Rodrigues G, Hashimoto A, Tese C, et al. Tumour exosome integrins determine organotropic metastasis. Nature 2015;527:329–35.
18. Pardo F, Villalobos-Lara R, Sobrevia B, Toledo F, Sobrevia L. Extracellular vesicles in obesity and diabetes mellitus. Mol Aspects Med 2018;60:81–91.
19. Shen L, Li Y, Li R, Diao Z, Yany M, Wu M, et al. Placenta-associated serum exosomal miR-155 derived from patients with preeclampsia inhibits eNOS expression in human umbilical vein endothelial cells. Int J Mol Med 2018;41:1731–9.
20. Pando A, Reagan JL, Quisenberry P, Fast LD. Extracellular vesicles in leukemia. Leuk Res 2018;64:52–60.
21. Soria FN, Pampliega O, Bourdenx M, Meissner WG, Bezdaj E, Dehay B. Exosomes, an unmasked culprit in neurodegenerative diseases. Front Neurosci 2017;11:26.
22. Morel O, Toti F, Bakouboula B, Grunebaum L, Freysinet J-M. Procoagulant microparticles: ‘criminal partners’ in atherothrombosis and deleterious cellular exchanges. Pathophysiol Haemost Thromb 2006;35:15–22.
23. Bei Y, Yu P, Cretou D, Cretou SM, Xiao J. Exosomes-based biomarkers for the diagnosis of cardiovascular diseases. Adv Exp Med Biol 2017;998:71–88.
24. Melo SA, Luecke LB, Kahler C, Fernandez AF, Gammon ST, Kaye J, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 2015;523:177–82.
25. Hansen JM, Moriarity-Craige S, Jones DP. Nuclear and cytoplasmic peroxiredoxin-1 differentially regulate NF-κb activity. Free Radic Biol Med 2007;43:282–8.
26. Qiu J-J, Lin X-J, Zheng T-T, Tang X-Y, Zhang Y, Hua K-Q. The exosomal long noncoding rna ahif is upregulated in serum from patients with endometriosis and promotes angiogenesis in endometriosis. Reprod Sci 2019:193371911983177.
27. Greening DW, Nguyen HPT, Elgass K, Simpson RJ, Salamonsen LA. Human endometrial exosomes contain hormone-specific cargo modulating trophoblast adhesive capacity: insights into endometrial-embryo interactions. Biol Reprod 2016;94:38.
28. Sun H, Li D, Yuan M, Li Q, Li N, Wang G. Eutopic stromal cells of endometriosis promote neuroangiogenesis via exosome pathway. Biol Reprod 2019;100:649–59.
29. Rahmoglu N, Drong AW, Lockstone H, Tapmeier T, Hellner K, Saare M, et al. Variability of genome-wide DNA methylation and mRNA expression profiles in reproductive and endocrine disease related tissues. Epigenetics 2017;12:897–908.
30. Becker CM, Lauffer MR, Stratton P, Hummelshoj L, Missner SA, Zondervan KT, et al. World Endometriosis Research Foundation Endometriosis Phenome and Biobanking Harmonisation Project: I. Surgical phenotype data collection in endometriosis research. Fertil Steril 2014;102:1213–22.
31. Faisbender A, Rahmoglu N, Vitos AF, Viganò P, Giudice LC, D’Hooghe TM, et al. World Endometriosis Research Foundation Endometriosis Phenome and Biobanking Harmonisation Project: IV. Tissue collection, processing, and storage in endometriosis research. Fertil Steril 2014;102:1244–53.
32. Rahmoglu N, Fassbender A, Vitos AF, Tvoroger SS, Hummelshoj L, D’Hooghe TM, et al. World Endometriosis Research Foundation Endometriosis Phenome and Biobanking Harmonization Project: III. Fluid biospecimen collection, processing, and storage in endometriosis research. Fertil Steril 2014;102:1233–43.
33. Vitos AF, Vincent K, Rahmoglu N, Fassbender A, Buck Louis GM, Hummelshoj L, et al. World Endometriosis Research Foundation Endometriosis Phenome and Biobanking Harmonization Project: II. Clinical and covariate phenotype data collection in endometriosis research. Fertil Steril 2014;102:1223–32.
34. Noyes RW, Haman JO. Correlation of endometrial dating with basal body temperature and menses. Fertil Steril 1953;4:504–17.
35. States DJ, Omenni GS, Blackwell TW, Femin D, Eng J, Speicher DW, et al. Challenges in deriving high-confidence protein identifications from data
gathered by a HUPO plasma proteome collaborative study. Nat Biotechnol 2006;24:333–8.
36. Tomlinson PR, Zheng Y, Fischer R, Heidusch K, Gardiner C, Evetts S, et al. Identification of distinct circulating exosomes in Parkinson’s disease. Ann Clin Transl Neurol 2015;2:353–61.
37. Dragovic RA, Collett GP, Hole P, Ferguson DP, Redman CW, Sargent IL, et al. Isolation of syncytiotrophoblast microvesicles and exosomes and their characterisation by multimodal flow cytometry and fluorescence nanoparticle tracking analysis. Methods 2015;87:64–74.
38. Wills E, Johansson HJ, Mäger I, Lee Y, Blomberg KEM, Sadik M, et al. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep 2016;6:22519.
39. Welton JL, Webber JP, Botos L-A, Jones M, Clayton A. Ready-made chroma-
tography columns for extracellular vesicle isolation from plasma. J Extracel Vesicles 2015;4:27269.
40. Carnell-Morris P, Tannetta D, Siupa A, Hole P, Dragovic R. Analysis of extra-
cellular vesicles using fluorescence nanoparticle tracking analysis. Methods Mol Biol 2017;1660:153–73.
41. Davis S, Charles PD, He L, Mowlds P, Kessler BM, Fischer R. Expanding pro-
teome coverage with CHarge Ordered Parallel lon aNalysis (CHOPIN) com-
bined with broad speciﬁcity proteolysis. J Proteome Res 2017;16:1288–99.
42. Keerthikumar S, Chisanga D, Ariyaratne D, Al Saffar H, Anand S, Zhao K, et al. ExoCarta: a web-based compendium of exosomal cargo. J Mol Biol 2016;428:688–92.
43. Kim M-S, Pinto SM, Getnet D, Nirujiog RS, Manda SS, Chaerkady R, et al. A draft map of the human proteome. Nature 2014;509:575–81.
44. Konincks P. Endometriotic disease: the role of peritoneal ﬂuid. Hum Reprod Update 1998;4:741–51.
45. Kennedy S, Bergqvist A, Chapron C, Díaz C, Contreras L, et al. Prostate tumor-induced angiogenesis is blocked by exosomes derived from menstrual stem cells through the inhibition of reactive oxygen species. Oncotarget 2016;7:4462–77.
46. Chen L, Xiang B, Wang X, Xiang C. Exosomes derived from human stratal blood-derived stem cells alleviate fulminant hepatic failure. Stem Cells Transl 2015;2:353–59.
47. Alcayaga-Miranda F, González PL, Lopez-Verrilli A, Varas-Godoy M, Aguiladeria C, Contreras L, et al. Prostate tumor-induced angiogenesis is blocked by exosomes derived from menstrual stem cells through the inhibition of reactive oxygen species. Oncotarget 2016;7:4462–77.
48. Alzere PL, Lopez-Verrilli A, Varas-Godoy M, Aguila-

Original Article: Endometriosis

57. Fowler PA, Tattum J, Bhattacharya S, Klonsch–Ishnik, L, Hajn–Klonsch–Ishnik, S, Gazvani R, et al. An investigation of the effects of the endometriosis on the pro-
teome of human eutopic endometrium: a heterogeneous tissue with a com-
plex disease. Proteomics 2007;7:130–42.
58. Maxwell GL, Hood BL, Day R, Chandran U, Kirchner D, Koli VSK, et al. Pro-
teomic analysis of stage I endometrial cancer tissue: identiﬁcation of pro-
teins associated with oxidative processes and inﬂammation. Gynecol Oncol 2011;121:586–94.
59. Alonso-Alconada L, Santacana M, Garcia-Sanz P, Muinelo-Romay L, Colas E, Mirantes C, et al. Annexin-A2 as predictor biomarker of recurrent disease in endometrial cancer. Int J Cancer 2015;136:1863–73.
60. Liu Y, Li H, Bani Z, Nai M, Yang L, Chen Y, et al. Annexin A2 inhibition sup-
presses ovarian cancer progression via regulating β-catenin/EMT. Oncol Rep 2017;37:3643–50.
61. Liu LX, Wu YG, Zheng J. Increased annexin A2 and decreased β-catenin in adenomyosis contribute to adenomyosis-associated dysmenorrhea. Histol Histopathol 2017;32:1333–40.
62. Han F, Shrestha S, Huang H, Lv H-Y, Nie C, Lin L, et al. Expression of annexin II in gastric carcinoma and its role in gastric cancer metastasis. World J Gastronterol 2017;23:7009–15.
63. Fagerberg L, Hallström BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, et al. Analysis of the human tissue-speciﬁc expression by genome-wide inte-
gration of transcriptomics and antibody-based proteomics. Mol Cell Prote-
omics 2014;13:397–406.
64. Kim M-S, Gu B-H, Song S, Choi B-C, Cha D-H, Baek K-H. ITI-H4, as a biomarker in the serum of recurrent pregnancy loss (RPL) patients. Mol Bio-
syst 2011;7:1430.
65. Sapkota Y, Attia J, Gordon SD, Henders AK, Holliday EG, Rahmioglu N, et al. Genetic burden associated with varying degrees of disease severity in endo-
metriosis. Mol Hum Reprod 2015;21:594–602.
66. Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 2015;17:816–26.
67. Koles K, Nunnari J, Korkut C, Baria R, Brewer C, Li Y, et al. Mechanism of evenness interrupted (ev)-exosome release at synaptic boutons. J Biol Chem 2012;287:16820–34.
68. Schijvenken JE, Panir K, Robertson SA, Hull ML. Exosome-mediated intra-
cellular signalling impacts the development of endometriosis—new a-
venues for endometriosis research. MHR Basic Sci Reprod Med 2019;25:2–4.
Caracterización de exosomas en el fluido peritoneal de pacientes con endometriosis

Objetivo: Para demostrar la viabilidad de estudiar de exosomas directamente del líquido peritoneal, aislamos exosomas de muestras de pacientes con endometriosis y de controles y caracterizamos su carga.

Diseño: Estudio experimental caso-control.

Lugar: Centro clínico académico.

Pacientes: Mujeres con y sin endometriosis que se sometían a una laparoscopia quirúrgica (n=28 en total).

Intervención: Ninguna.

Resultados principales: Concentración de exosomas dentro del fluido peritoneal y contenido proteico de los exosomas aislados.

Resultados: Las muestras de líquido peritoneal se agruparon de acuerdo con la fase del ciclo y el estado de la enfermedad para formar seis grupos experimentales, de los cuales se aislaron los exosomas. Los exosomas fueron exitosamente aislados del líquido peritoneal en todos los grupos de estudio. La concentración varió según la fase del ciclo y el estado de la enfermedad. El análisis proteómico mostró proteínas específicas en los exosomas derivados de pacientes con endometriosis que estaban ausentes en los controles. Se encontraron cinco proteínas exclusivas del grupo con endometriosis: PRDX1, H2A tipo 2-C, ANXA2, ITIH4 y la cadena a de tubulina.

Conclusiones: Los exosomas están presentes en el fluido peritoneal. La caracterización de exosomas específicos de endometriosis abre nuevas vías para el diagnóstico y la investigación de la endometriosis.
SUPPLEMENTAL FIGURE 1

Protein versus particle content in fractionated sample. Plot showing the particle concentration per fraction as measured by nanoparticle tracking analysis (NTA) (black bars) compared with the free protein content (grey bars). The fractions with the highest number of particles (F8–F12) were selected, thus excluding the major portion of free (i.e. not exosome-bound) protein from downstream analysis.

Nazri. PF exosomes in endometriosis. Fertil Steril 2019.
SUPPLEMENTAL FIGURE 2

Human Proteome Map analysis of endometriosis-specific exosome protein expression. The exosome proteins found in endometriosis stage I/II and stage III/IV groups but not in controls were searched within the Human Proteome Map database (43) to indicate their origin.

Nazari. PFC exosomes in endometriosis. Fertil Steril 2019.