Genome analysis

IDP-denovo: de novo transcriptome assembly and isoform annotation by hybrid sequencing

Shuhua Fu1, Yingke Ma1, Hui Yao2, Zhichao Xu2, Shilin Chen2, Jingyuan Song2 and Kin Fai Au1,3,*

1Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA, 2Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China and 3Department of Biostatistics, University of Iowa, Iowa City, IA 52242, USA

*To whom correspondence should be addressed.
Associate Editor: Bonnie Berger

Received on June 16, 2017; revised on February 10, 2018; editorial decision on February 19, 2018; accepted on February 21, 2018

Abstract

Motivation: In the past years, the long read (LR) sequencing technologies, such as Pacific Biosciences and Oxford Nanopore Technologies, have been demonstrated to substantially improve the quality of genome assembly and transcriptome characterization. Compared to the high cost of genome assembly by LR sequencing, it is more affordable to generate LRs for transcriptome characterization. That is, when informative transcriptome LR data are available without a high-quality genome, a method for de novo transcriptome assembly and annotation is of high demand.

Results: Without a reference genome, IDP-denovo performs de novo transcriptome assembly, isoform annotation and quantification by integrating the strengths of LRs and short reads. Using the GM12878 human data as a gold standard, we demonstrated that IDP-denovo had superior sensitivity of transcript assembly and high accuracy of isoform annotation. In addition, IDP-denovo outputs two abundance indices to provide a comprehensive expression profile of genes/isoforms. IDP-denovo represents a robust approach for transcriptome assembly, isoform annotation and quantification for non-model organism studies. Applying IDP-denovo to a non-model organism, Dendrobium officinale, we discovered a number of novel genes and novel isoforms that were not reported by the existing annotation library. These results reveal the high diversity of gene isoforms in D. officinale, which was not reported in the existing annotation library.

Availability and implementation: The dataset of Dendrobium officinale used/analyzed during the current study has been deposited in SRA, with accession code SRP094520. IDP-denovo is available for download at www.healthcare.uiowa.edu/labs/au/IDP-denovo/.

Contact: kinfai-au@uiowa.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

As the new generation sequencing technologies bring substantial advances in exploring transcriptomes, a wealth of relevant bioinformatics methods, such as splice detection and transcript reconstruction, have been developed and used widely in various species (Grabherr et al., 2011; Pertea et al., 2015; Schulz et al., 2012; Trapnell et al., 2010). In particular, transcriptome analysis of model organisms has achieved tremendous progress (Darmanis et al., 2015; Gonzalez-Porta et al., 2013; Su et al., 2002; Tang et al., 2009), because their well-established reference genomes considerably reduce the problem complexity and thus improve the accuracy of sequencing data analysis (Au et al., 2013; Oliver et al., 2016). In contrast to the limited number of model organisms, there are hundreds of thousands of non-model organisms that are crucial to broad research areas, such as ecology, microbiology,
evolutionary biology and agricultural sciences (da Fonseca et al., 2016; Ekblom and Galindo, 2011). For example, a traditional Chinese medicine plant, *Dendrobium officinale*, shows drought resistance and therapeutic effects (Yan et al., 2015). Research on venom gland transcriptomes of painted saw-scale viper, *Echis coloratus*, paved the way for antivenom manufacture (Hargreaves and Mulley, 2015).

However, *de novo* genome assembly of non-model organisms is particularly expensive and computationally intense (Meyer et al., 2015; Rokas and Abbot, 2009). Moreover, the assembled genomes are not as accurate and complete as those of model organisms, which have been polished over the years. As the cost of transcriptome sequencing of non-model organisms is affordable by all-size laboratories (Wang et al., 2009), plenty of bioinformatics efforts have been made to perform *de novo* transcriptome assembly (Grabherr et al., 2011; Robertson et al., 2010; Schulz et al., 2012).

De novo transcriptome assembly based on Second Generation Sequencing (SGS) short reads (SRs) is a general approach to investigate non-model organisms (Chen et al., 2011; Surget-Groba and Montoya-Burgos, 2010), albeit current progress is still far from satisfying. Most SGS-based methods build de Bruijn graph of k-mers extracted from SRs and search for paths representing transcripts with heuristics or customized criteria (e.g. coverage) (Chang et al., 2015; Fu et al., 2014; Grabherr et al., 2011; Luo et al., 2015; Pevzner et al., 2001; Simpson et al., 2009; Zerbino and Birney, 2008). These methods are limited by the SR length of SGS data in a few ways: (i) transcript assembly contains numerous ambiguities or even fails in homologous or repetitive regions; (ii) accuracy of transcript assembly is called into question when a gene exhibits complex isoform expression; (iii) transcripts with low expression levels are challenging to be reconstructed, especially when certain k-mers are missing due to low abundance; (iv) long k-mers require high computing intensity whereas short k-mers yield high false-positive assemblies (Miller et al., 2010).

In contrast to the 50–300bp read length generated from SGS platforms, Third Generation Sequencing (TGS), including Pacific Biosciences (PacBio) (English et al., 2012; Rhoads and Au, 2015; Tilgner et al., 2015) and Oxford Nanopore Technologies (ONT) (Laver et al., 2015; Oikonomopoulos et al., 2016), produces much longer reads (1–100kb). TGS long reads (LRs) have been exploited successfully to identify gene isoforms from human by genome-alignment-based methods, as they can cover long stretches of sequences, up to full-length transcripts (Au et al., 2013; Sharon et al., 2013; Tilgner et al., 2014; Weirather et al., 2015). Owing to the lack of reference genomes for non-model organisms, a novel assembly method is required to utilize TGS LRs that merely cover fragments of extremely long transcripts. In addition, the high error rate of TGS limits the accuracy of assembly, and the low throughput and sequencing bias of TGS render it inadequate for statistical estimation of isoform abundance.

Hybrid sequencing (‘Hybrid-Seq’) has emerged as a novel approach to integrate TGS and SGS data, in order to address the limitations of SGS-alone and TGS-alone data analyses. It can improve the overall performance and accuracy of the output data. Indeed, a series of bioinformatics tools for Hybrid-Seq transcriptome data, including LSC, IDP, IDP-fusion and IDP-ASE, have been demonstrated to elucidate transcriptomes of model organisms at the isoform level with high precision and sensitivity (Au et al., 2012, 2013; Deonovic et al., 2016; Weirather et al., 2015). The high-quality transcript assembly by Hybrid-Seq will guarantee the accuracy of annotation and quantification of isoforms.

Here we present IDP-denovo (www.healthcare.uiowa.edu/labs/au>IDP-denovo), a novel method to perform *de novo* transcriptome assembly by Hybrid-Seq data, and further annotate gene isoform structures and alternative splice sites without requiring a reference genome, followed by isoform abundance estimation from sequencing coverage. Using the human Hybrid-Seq transcriptome data from a lymphoblastoid cell line [GM12878 (Tilgner et al., 2014)] as a gold standard, we show the superior performance of full-length transcript assembly by IDP-denovo, demonstrating the advantages of LR inclusion in comparison to existing SR-alone methods, and the advantages of its conceptual design in comparison to existing Hybrid-Seq methods (Grabherr et al., 2011; Roulin et al., 2014). After assembly, isoforms are clustered and annotated to show high accuracy of identifying alternative exon usage. In addition, isoform abundance is estimated by SRs and LRs. To demonstrate the utility of IDP-denovo to non-model organisms, we apply it to *D. officinale* as a proof-of-concept study and compare the results with the existing annotation library. IDP-denovo discovers 7831 novel genes that are missed by the existing annotation library, which is likely due to the complexity of gene sequences or the poor quality of genome assembly in the previous studies.

2 Materials and methods

2.1 Overview of IDP-denovo

To characterize transcriptomes that lack a reference genome, IDP-denovo was designed with three stages: (i) assembly, (ii) annotation and (iii) quantification (Fig. 1). In the ‘assembly’ stage, SRs are assembled by an existing SR-alone method to generate SR-assembled scaffolds (denote as SR-scaffolds) (Fig. 1, step a1). Next, the LRs that are aligned to SR-scaffolds (Fig. 1, step a2), are used to extend the SR-scaffolds and grouped with SR-scaffolds according to locus information provided by the SR-assembly method (Fig. 1, step a3). The unaligned LRs are clustered together based on k-mers (Fig. 1, step a4). Using all exonic regions of transcript sequences in each cluster obtained in the ‘assembly’ stage, the ‘annotation’ stage generates longer consensus sequences with higher accuracy, named as pseudo-reference sequences (Fig. 1, step b1). Next, the transcript sequences are aligned to the pseudo-reference sequences to annotate isoform structures, including identification of alternative usage of exons and splice sites (Fig. 1, step b2). Finally, the ‘quantification’ stage estimates isoform abundance using two indices: (i) SR coverage deconvolved by the existing annotation-based statistical approach (Au et al., 2013), and (ii) the number of supporting LRs (Fig. 1, step c1).

![Fig. 1. Flowchart of IDP-denovo. There are three stages in IDP-denovo: assembly, annotation and quantification.](image-url)
2.2 Transcript assembly by Hybrid-Seq data

2.2.1 SR-scaffold assembly and SR-scaffold extension

Firstly, SRs are assembled into SR-scaffolds by a de novo assembly algorithm [e.g., Velvet + Oases (Schulz et al., 2012; Zerbino and Birney, 2008)] (Fig. 1, step a1). However, a number of SR-scaffolds are still not long enough to cover the full length of very long transcripts (Fig. 2). The missing regions can be covered by LRs, so SR-scaffold extension by LRs is subsequently performed to get longer transcript sequences. Following error correction using SRs [e.g. by LSC (Au et al., 2012)], LRs are aligned to SR-scaffolds by GMAP (Wu and Watanabe, 2005) (Fig. 1, step a2). If the alignment of a LR covers one end of the SR-scaffold and also contains an overhang region, the overhang region from the LR is used in SR-scaffold extension (Fig. 2). When more than one LR contributes to extension of the same end of a SR-scaffold, a consensus sequence of these overhang fragments will be generated by an existing consensus generation algorithm, CAP3 (Huang and Madan, 1999) to extend the SR-scaffolds.

2.2.2 Clustering of SR-scaffolds and LRs

After extension, SR-scaffolds and LRs are grouped according to the location information provided by the SR-assemble method. Some LRs are not aligned to SR-scaffolds, as they are from genes that are not covered by SR data, missed by SR assembly, or due to misassembly by SRs, in addition to the high error rates of LRs. To rescue the important splicing information and isoforms, the unaligned LRs are clustered by a k-mer-based clustering approach (Fig. 1, step a4 and Fig. 3). Each cluster represents a gene, although gene families or pairs of expressed parent and pseudogenes may be represented in a single cluster. LR sequences are processed with homopolymer compression before clustering, in order to increase sensitivity and reduce computing intensity (Au et al., 2012). Next, similar to CD-HIT (Li et al., 2001), LRs are clustered sequentially according to the descending order of their lengths. Initially, the longest LR is assigned to the first cluster and it is set as the representative LR of this cluster. While CD-HIT computes similarity between two sequences by alignment, our k-mer clustering method computes their similarity by the percentage of shared k-mers. When considering the next LR, we examine the percentages of shared k-mers between this LR and the representative LRs of all existing clusters. If no existing cluster has the shared percentage of k-mers above a customized threshold, a new cluster is generated with this LR as the representative LR. Otherwise, this LR is assigned to the cluster with the highest percentage of shared k-mers. The time complexity of the clustering step is $O(N^2l)$, where N is the number of unaligned LRs and l is the average length of those LRs (see details in Supplementary Material: Note 1). To accelerate the clustering process, bloom filters are used to store and query k-mers (Melsted and Pritchard, 2011). A bloom filter is a space-efficient data structure with constant time of data addition or query at the expense of a low false positive rate (Kirsch and Mitzenmacher, 2006). The consensus sequences of SR-scaffolds and LRs in each cluster will be generated in the ‘Annotation of gene isoform structures’ stage.

2.3 Annotation of gene isoform structures

2.3.1 Generation of pseudo-references of exonic regions

To annotate isoform structures from transcript sequences, we need to generate a pseudo-reference for each cluster, which is supposed to contain all expressed exons, via multiple sequence alignment (Fig. 1, step b1 and Fig. 4). In each cluster, IDP-denovo sorts the assembled transcript sequences by descending order of lengths. In the initial round, multiple sequence alignment is performed on the longest three sequences by Clustal Omega (Sievers et al., 2011). Transcript sequences with <30% identities to the longest sequence are ignored. If multiple sequences remain, then the consensus sequence is generated from the alignment. In the next round, two following shorter transcript sequences will be added with the consensus sequence for multiple sequence alignment to generate the next consensus sequence. The loop continues until no more input sequence exists. The final consensus sequence will be denoted as the pseudo-reference (See the pseudocodes and details in Supplementary Material: Note 2).

![Fig. 2. Schematic illustration of SR-scaffold extension by LRs. SR-scaffolds are generated by de novo assembly from SRs. Next, LRs are aligned to SR-scaffolds and then the SR-scaffolds are extended by LRs.](image1)

![Fig. 3. Illustration of k-mer-based clustering method. (a) Sort LRs by descending lengths. (b) Generate the first cluster with the longest LR (LR1) and take it as the representative LR. Then, compute the percentages of shared k-mers between the representative LRs from existing clusters and the following LRs sequentially. If the highest percentage is below the customized threshold $C_{\text{threshold}}$, a new cluster is formed with the LR as its representative, such as LR2 (c). If the percentages are above the customized threshold C_{method}, then assign the LR to the cluster with the highest percentage, such as LR3 (d).](image2)

![Fig. 4. Schematic illustration of the pseudo-reference generation and SR-alignment confirmation. The pseudo-reference of the exonic regions is generated via multiple sequence alignment with transcripts T1 and T2 to include all expressed exons. Next, the transcripts T1 and T2 are aligned to the pseudo-reference to identify the alternative usage of exons and splice sites. The predicted splices are confirmed by at least 10 SRs aligned to the splices and 10X SR coverage of the skipped exons.](image3)
2.3.2 LR alignment to pseudo-references and SR alignment confirmation

In each cluster, the assembled transcript sequences are aligned to the pseudo-references by GMAP. If a gap with significant length (≥43 bp) by default, see details in Supplementary Material: Note 3) is reported in the best alignment, IDP-denovo considers it as a possible alternative exon usage event. The gap is further confirmed as an alternative exon usage event with SR alignment to the pseudo-reference [e.g. by HISAT (Kim et al., 2015)] (Fig. 1, step b2 and Fig. 4). Two criteria are applied: 1) at least 10 splice-aligned SRs support the gap, and 2) the gapped region contains at least 10× SR coverage. By identifying alternative exon usage events, IDP-denovo annotates the corresponding isoform structures of each transcript.

2.4 Isoform abundance estimation

As transcript annotation is completed in the stage above, we use our previously published tool, IDP, to estimate transcript abundance by deconvolution of SR coverage (Au et al., 2013), which is termed as ‘SR abundance index’. In addition, the number of supporting LRs for each transcript is termed as ‘LR abundance index’ (Fig. 1, step c1).

Overall, IDP-denovo outputs the assembled transcript sequences, splice sites of alternative exon usage events and two transcript abundance indices.

3 Results

3.1 Full-length gene isoform assembly and accuracy of assembled transcript sequences

We evaluated the performance of IDP-denovo using the human GM12878 dataset (See Supplementary Material: Note 4), since the high-quality human genome and gene annotation library can be used as a gold standard in performance evaluation. The first step of IDP-denovo is to assemble SR-scaffolds (Fig. 1, step a1). In order to obtain the best SR-scaffolds, we evaluated the performance of five existing SR-alone methods, including Trinity (Grabherr et al., 2011), SOAPdenovo-Trans (Xie et al., 2014), Bridger (Chang et al., 2015), Trans-ABySS (Roberson et al., 2010) and Velvet + Oases (Schulz et al., 2012; Zerbino and Birney, 2008). Using the GM12878 dataset, we measured precision-recall statistics as established by Li et al (Li et al., 2014) (See Supplementary Material: Note 5 for the detailed parameter settings for each software and an expanded description of the statistics). Among the SR-alone methods, Trans-ABySS achieved the highest precision (0.87), while the corresponding recall was only 0.14 (Table 1). Velvet + Oases produced the highest recall (0.29). Using the F1 score to evaluate the overall performance of both precision and recall, Velvet + Oases had the best performance (F1 score = 0.42) among the five SR-alone methods. Therefore, we used Velvet + Oases to assemble SR-scaffolds in IDP-denovo.

Next, we sought to improve transcript detection by adding LRs into SR-scaffolds. LRs covered 36,821 transcripts, including 20,690 transcripts that were missed by SR-scaffolds (Fig. 5a). It may be attributed to misassembly of SR-scaffolds in repetitive regions or problematic reconstruction of lowly expressed transcripts as well as no coverage in SR data. Remarkably, the transcripts missed by SR-scaffolds but covered by LRs show significantly lower abundance than those covered by SR-scaffolds (P-value < 2.2e-16, see details in Supplementary Material: Note 6). SR-scaffolds covered a total of 21,410 transcripts, with 5,279 transcripts that were not found by LRs. This is likely due to the sequencing bias of TGS. Therefore, pooling LRs with SR-scaffolds by IDP-denovo recovers the transcripts missed by either SR-alone or LR-alone method, and thus improves sensitivity.

In addition, 16,131 transcripts, including 10,453 full-length isoforms, were detected by either SR-scaffolds or LRs (Fig. 5b). While the vast majority of full-length isoforms were detected by both SR-scaffolds and LRs (6,529 transcripts), 1983 transcripts were detected only by SR-scaffolds, and 1,941 were detected only by LRs. These data demonstrate the importance of integrating LRs and SR-scaffolds in order to maximize the number of recovered full-length transcripts.

However, a number of transcripts were not detected as full-length isoforms by either SR-scaffolds or LRs. To assemble full-length transcripts, IDP-denovo performed SR-scaffold extension using LRs (Fig. 1, step a3). This approach recovered 702 full-length isoforms. An example from the GM12878 dataset is shown in Figure 6: the extended SR-scaffold, but not either SR-scaffold or LR alone, recovered all annotated splice sites of the isoform ENST00000371998.6 of AIB1, an oncogene that is associated with drug resistance and a significant decrease in mortality (Tikkanen et al., 2000).
We also evaluated the performance of IDP-denovo relative to the SR-alone methods. As compared to the results with Velvet + Oases (the superior SR-alone method), adding LRs with IDP-denovo significantly improved the precision, recall and F1 score (Table 1). High SR coverage aids in assembly of accurate SR-scaffolds (step a1 in Fig. 1), while low SR coverage can lead to low-accuracy assembly that further prevents LRs from being aligned correctly to extend SR-scaffolds. In the regions uncovered by SR-scaffolds but extended by LRs, high LR coverage is helpful to generate accurate consensus from error-prone LRs (step a3 in Fig. 1). (See details in Supplementary Material: Note 7).

Therefore, integration of SR-scaffolds and LRs by IDP-denovo not only increased the total number of transcripts assembled as well as the number of full-length transcripts, but also had superior precision, recall and F1 score as compared to SR-alone methods. While a caveat of LRs is a high error rate, these errors are corrected by IDP-denovo because SR-scaffolds cover the errors. In the example with AIB1 (Fig. 6), the transcript assembled by IDP-denovo using Hybrid-Seq data contained far fewer errors than LRs alone. Thus, using Hybrid-Seq data by IDP-denovo also greatly improves the accuracy of transcript sequences assembled by correcting errors in LRs.

3.2 Comparison of IDP-denovo to the existing assembly methods with Hybrid-Seq data

Currently two methods have been reported for de novo assembly with Hybrid-Seq data: 1) a new version of Trinity (Grabherr et al., 2011); and 2) a pipeline proposed by the Roulin group (Roulin et al., 2014) (referred to herein as ‘Roulin’s pipeline’). We compared IDP-denovo to these two methods using parameter settings described in Supplementary Material: Note 8. Both Trinity and Roulin’s pipeline achieved a precision of 0.77, while Roulin’s pipeline gave a higher recall (0.24) and a higher F1 score (0.37) than Trinity (Table 1). By contrast, IDP-denovo demonstrated better performance in terms of precision, recall and F1 score (Table 1), as well as higher sensitivity [defined as the number of full-length reconstructed transcripts by Chang et al. (2015); Table 2; see also Supplementary Material: Note 8]. IDP-denovo reconstructed 32 393 annotated transcripts, with 16 597 as full-length transcripts, while Trinity and Roulin’s pipeline reconstructed fewer annotated transcripts (31 358 and 20 316, respectively) and full-length reference transcripts (12 698 and 8908, respectively). Trinity employs LRs to refine assembly of isoforms with complex structures by SRs, but does not use LRs to recover transcripts or transcript fragments missed by SRs. Roulin’s pipeline was designed to assemble Roche 454 LRs and Illumina SRs separately, followed by clustering and removing redundant contigs. LRs from PacBio platform (as well as ONT) are more error-prone than 454 data, so Roulin’s pipeline underperformed when PacBio data were used. Thus, IDP-denovo has enhanced performance over other existing Hybrid-Seq assembly methods.

3.3 Optimization of k-mer clustering

Our next goal is to perform annotation of transcripts. First, however, it is necessary to group together (referred to as ‘clustering’) transcripts that arise from the same gene, where each cluster contains multiple isoforms of one gene. Whereas the SR-scaffold extension process (Fig. 1, step a3) clustered the aligned LRs, a number of LRs remained unaligned. To address this, we developed a k-mer-based clustering approach to group unaligned LRs (Fig. 1, step a4). Two parameters influence our k-mer clustering method: length of k-mer (k) and percentage threshold (C_{\text{threshold}}) of shared k-mers between each LR and the representative LR (see details in ‘Clustering of SR-scaffolds and LRs’ in Materials and methods section) in a cluster. To find the optimal combination of k and C_{\text{threshold}}, we conducted a proof-of-concept study using 94 506 LRs from Chr19 (chromosome 19 from human genome) in GM12878 dataset as the training data. Chr19 has the highest gene density among all human chromosomes and a reasonable chromosome size (Grimwood et al., 2004). We set k as 13, 15 and 17 and C_{\text{threshold}} as 0.04, 0.05 and 0.06, according to the previous studies (Affitos et al., 2015; Ghodsi et al., 2011; Ondov et al., 2016). Four typical measures of clustering performance were used: the Jaccard index, precision, recall and F-measure (See details in Supplementary Material: Note 9). As shown in Table 3, the optimal values of these measures were obtained when k = 15 and C_{\text{threshold}} = 0.05. We also got the same optimal parameter setting when clustering unaligned LRs from Chr19 (See details in Supplementary Material: Note 9). Therefore, this parameter setting was subsequently used to cluster unaligned LRs.

3.4 Completeness of exonic regions in pseudo-references

After clustering, IDP-denovo generates a longer consensus sequence termed ‘pseudo-reference of exonic regions’, which ideally covers all expressed exonic regions of a gene (Fig. 1, step b1). This step is necessary in order to perform gene isoform annotation when a reference genome is not available. Correct annotation of gene isoforms therefore requires complete exonic regions in the pseudo-references. For example, an annotated exon of isoform ENST00000549838.4 from the gene NUBPL on Chr14, was only found in one LR (LR4) and missed in the SR-scaffold and the longest LR of the gene (LR3) in GM12878 dataset (Fig. 7). That is, using the longest sequence in a cluster, including the longest SR-scaffold, cannot guarantee the completeness of exonic regions. However, the pseudo-reference of
Table 3. Performance of k-mer clustering with different combinations of lengths of k-mer and percentage cutoff $C_{\text{threshold}}$

Percentage cutoff $C_{\text{threshold}}$	Length of k-mer			
	13	15	17	
Jaccard index	0.04	0.955	0.955	0.965
	0.05	0.959	0.967	0.967
	0.06	0.959	0.967	0.964
Precision	0.04	0.993	0.995	0.994
	0.05	0.995	0.995	0.995
	0.06	0.995	0.995	0.996
Recall	0.04	0.961	0.960	0.970
	0.05	0.963	0.972	0.971
	0.06	0.964	0.971	0.968
F-measure	0.04	0.977	0.977	0.982
	0.05	0.979	0.983	0.983
	0.06	0.979	0.983	0.982

Note: Results with the best performance for each performance measure are bold, underlined and italic.

Fig. 7. The pseudo-reference generated by IDP-denovo covers all expressed exonic regions, including the ‘missing’ exon from the SR-scaffold or LR3. When IDP-denovo was applied to the whole GM12878 dataset, pseudo-references covered 158,967 out of 173,719 exons (91.51%) that were contained by the SR-scaffolds and the LRs. The uncovered exons may be partially due to error in clustering. It is possible that some transcripts were not grouped into the correct clusters and thus their specific exons were lost in the pseudo-references. Uncorrected errors in LRs could also affect the completeness of the exonic regions.

3.5 Accuracy of identifying alternative exon usage

After pseudo-references of exonic regions are generated, IDP-denovo detects alternative exon usage by aligning SR-scaffolds and LRs to the pseudo-references. When RNA sequencing data were analyzed without a reference genome, we designed a step to perform isoform annotation to identify alternative exon usage and confirm with SR alignment (Fig. 1, step b2). Errors in identifying alternative exon usage can introduce frame-shift in protein coding regions. Using the GM12878 data, we evaluated the errors by examining the difference between annotation of alternative exon usage by IDP-denovo and by aligning transcripts to the reference genome (See details in Supplementary Material: Note 10). Because of misalignment, sequencing errors or incompleteness of the reference genome, some events are difficult to be confirmed by transcript alignment to the reference genome. IDP-denovo reported 4140 alternative exon usage events, out of which 3763 (90.89%) were confirmed. As compared to the transcript alignment with the reference genome, most of the errors were 0 bp (58.99%) and a majority (85.01%) of annotations had <5 bp errors. (Fig. 8; See Supplementary Material: Note 10 for the definition of error). This suggests that IDP-denovo can identify alternative exon usage with high accuracy, which is further helpful in detecting alternative peptides. Very few outliers (155) with errors >50 bp were observed, which were likely caused by misalignments of transcripts to the pseudo-references.

3.6 Performance of transcript abundance estimation

A fundamental goal of transcriptome characterization is to estimate the abundance of various isoforms of a given gene. We therefore investigated the performance of IDP-denovo to quantify isoform abundance using SR or LR coverage. The SR abundance index is calculated as the RPKM, which is estimated using a Poisson model of SR coverage and maximum likelihood estimation (Au et al., 2013; Jiang and Wong, 2009). The LR abundance index is calculated as the number of supporting LRs for each transcript (Fig. 1, step c1). Since some transcripts are covered by either SRs only or LRs only (Fig. 5a), the abundance estimation will fail to cover all transcripts if only one type of data is used. IDP-denovo outputs two abundance indices estimated by SR and LR data respectively, so that the abundance of all 42,100 transcripts (in Fig. 5a) can be estimated.

The reliability of two abundance indices estimated by SR and LR data can be evaluated in two ways: (i) accuracy of abundance estimation and (ii) accuracy of lowly-expressed isoform abundance estimation. To evaluate these two accuracies, we used a reference genome-based method for abundance estimation by SR coverage named StringTie (Pertea et al., 2015) as the gold standard (see details in Supplementary Material: Note 11). The Spearman and Pearson correlation coefficients between SR abundance index and FPKM estimated by StringTie are 0.51 and 0.49, respectively, while those between LR abundance index and FPKM by StringTie are 0.35 and 0.35, respectively. Therefore, SR abundance index by IDP-denovo has a closer estimation of the widely-used abundance index by StringTie (Fig. 9). The incompleteness of assembly and annotation, and uncorrected sequencing errors can cause abundance estimation biases in the de novo transcriptome analysis. Moreover, because LR abundance index merely reports the numbers of supporting LRs, which are discrete values, it poorly estimates low abundance level. In particular, relatively low throughput and sequencing bias (e.g. size selection protocol in PacBio library preparation) in the TGS platforms further result in inaccuracy of the LR abundance index on lowly-expressed isoforms. In addition, as a LR can usually
annotation library, including 6834 aligned to the draft genome and 997 unaligned (Fig. 10a). Some annotated genes are not identified by IDP-denovo, which is probably due to (i) tissue-specific gene expression, or (ii) low gene expression, or (iii) uncorrected errors from LRs or (iv) the poor quality of the existing annotation library. Moreover, IDP-denovo discovered the high diversity of isoform expression for *D. officinale*. The genes reported in the existing annotation library are mostly annotated with single isoforms, while multiple isoform expressions were found in 17989 genes by IDP-denovo (Fig. 10b). For example, a locus ‘Dendrobium_GLEAN_10123378’ is annotated with only a single isoform containing three exons, which is supported by a LR (LR1). However, alignment of the SR-scaffold and the other LR (LR2) to the locus shows that there are two novel isoforms with two unannotated exons (Fig. 10c). This suggests that IDP-denovo identifies more splice sites, even without a reference genome. Therefore, IDP-denovo with Hybrid-Seq data provides a comprehensive approach for characterizing the transcriptomes of non-model organisms.

4 Discussion

Although studies of non-model organisms play important roles in many investigations (Ekblom and Galindo, 2011), the lack of well-annotated genomes enormously limits our capability of deeper understanding of their genomes, transcriptomes and gene structures. The annotated reference genome from a closely related species can aid in understanding of the non-model organism of interest, in the studies of sequence assembly (Surget-Groba and Montoya-Burgos, 2010), phylogenetic surveys (Shin et al., 2012) and prediction of homologous proteins (Quistad et al., 2016) etc.

In the past years, the LR sequencing technologies, such as PacBio and ONT, have been demonstrated to considerably improve the quality of genome assembly and transcriptome characterization (Au et al., 2013; Bolisetty et al., 2015). Compared to the high cost of genome assembly by LR sequencing, it is more affordable to generate LRs for transcriptome characterization. That is, when informative transcriptome LR data are available without a high-quality genome, a method for de novo transcript assembly and annotation is of high demand. IDP-denovo solves this problem with the assistance of SRs that can complement the weakness of LRs and thus improve the accuracy of assembled transcript sequences as well as the quantitative analysis. Without the requirement of a reference genome, IDP-denovo performs de novo transcript assembly with LR and SR data, and further annotates isoform structures and alternative usage of exons, followed by abundance estimation from sequencing coverage.

We examined the performance of IDP-denovo using the GM12878 data, since the high-quality human genome plus the reference genome-based methods can provide a reliable gold standard. IDP-denovo showed superior sensitivity and reconstructed a large number of full-length gene isoforms that were missed by the SR-alone or LR-alone approach. However, in a small number of cases that SR-scaffolds only covered fragments and no LR was generated from the gene due to low throughput or sequencing bias, IDP-denovo may not be able to assemble full-length isoforms. In addition to full-length isoform identification, IDP-denovo can produce high-quality transcript sequences through error correction of LRs and consensus sequence generation during assembly process. When we compared IDP-denovo to the existing methods using SR-alone data or the same Hybrid-Seq data, IDP-denovo had the highest precision, recall and sensitivity, and thus showed the best overall transcript
assembly performance. With the assembled transcripts, IDP-denovo identifies alternative usage of exons, splice sites and gene isoforms. In order to annotate alternative splicing and gene isoforms, we applied a k-mer clustering approach to cluster assembled transcripts of the same gene into a single group. Although the other clustering tool ToFU is available (Gordon et al., 2015), it clusters LRs from the same gene isoform, and thus is not applicable for our aim of isoform annotation. As only RNA sequencing data are used, it is not possible to identify the introns in the genome and splice sites that exist in all expressed transcripts, because no gaps corresponding to these introns and splice sites could be detected in multiple sequence alignment of transcripts. Once a reference genome is available, they can be easily identified. In the previous studies of annotating gene structure, splicing graphs have been applied to high-accuracy transcript sequences (Heber et al., 2002; Santhanam and Krithivasan, 2006), while its application to error-prone LRs may introduce numerous ambiguities in splicing site prediction. Our approach works well for the vast majority of alternative exon usage events, but it is problematic for very small alternative exon usage events (<1kbp), given the difficulty of recognizing these in low-quality TGS data.

IDP-denovo estimates transcript abundance based on coverage of SRs or LRs. IDP-denovo outputs two abundance indices that together cover all assembled transcripts including those missed by either abundance estimation. Abundance estimation by SR coverage may overestimate the expression level of assembled transcripts in some cases when not all transcripts are recovered. Abundance estimation with LRs may also not be sensitive and reliable for the lowly expressed transcripts.

The proof-of-concept application of IDP-denovo to D. officinale showed that it can provide a comprehensive transcriptome assembly and an annotation library of non-model organisms. IDP-denovo rescued a number of novel genes and transcripts that were missed by the existing annotation library, and also discovered high diversity of alternative splice sites and isoforms in D. officinale, which were not reported previously. With the improvement of LR sequencing technologies on sequencing errors, read length and throughput, IDP-denovo, taking advantage of strengths of LRs and SRs, will provide a powerful yet affordable approach to comprehensively characterize transcriptomes, and thus will facilitate studies of non-model organisms in the near future.

Acknowledgements

We would like to thank two professional scientific writers Kristina Thiel and Paul Casella for their assistance of revising the manuscript. We would like to thank Anqi Wang, Jason Weirather, Meng Zou and Yunhao Wang for critical reading of the manuscript. We would like to thank Andrew Thurman and Ying Li for software testing. We thank the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions.

Funding

This work was supported by an institutional fund of Department of Internal Medicine, University of Iowa [to K.F.A., Y.M. and S.F.], the Pharmaceutical Research and Manufacturers of America (PhRMA) Foundation Research Starter grant [to K.F.A. and S.F.], American Cancer Society (ACS) Seed Grants for Junior Faculty [IRG-77-004-34 to Y.M.], the National Institutes of Health [R01HG008759 to K.F.A. and S.F.], the National Key Technology R&D Program [2012BAI29B01 to J.S.] and CAMS Innovation Fund for Medical Sciences (CIFMS) [NO. 2016-12M-3-016 to J.S.].

Conflict of Interest: none declared.

References

Alioth,S.A. et al. (2015) Cnidaria: fast, reference-free clustering of raw and assembled genome and transcriptome NGS data. BMC Bioinformatics, 16.

An,K.F. et al. (2013) Characterization of the human ESC transcriptome by hybrid sequencing. Proc. Natl. Acad. Sci. USA, 110, E4821–E4830.

An,K.F. et al. (2012) Improving PacBio long read accuracy by short read alignment. PLoS One, 7, e46679.

Bolisetty,M.T. et al. (2015) Determining exon connectivity in complex mRNAs by nanopore sequencing. Genome Biol., 16.

Chang,Z. et al. (2015) Bridger: a new framework for de novo transcriptome assembly using RNA-Seq data. Genome Biol., 16, 30.

Chen,G. et al. (2011) De novo transcriptome assembly of RNA-Seq reads with different strategies. Sci. China Life Sci., 54, 1129–1133.

da Fonseca,R.R. et al. (2016) Next-generation biology: sequencing and data analysis approaches for non-model organisms. Mar. Genom., 30, 3–13.

Darmanis,S. et al. (2015) A survey of human brain transcriptome diversity at the single cell level. Proc. Natl. Acad. Sci. USA, 112, 7285–7290.

Deonovic,B. et al. (2016) IDP-ASE: haplotyping and quantifying allele-specific expression at the gene and gene isoform level by hybrid sequencing. Nucleic Acids Res., 45:e32.

Ekblom,R. and Galindo,J. (2011) Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity, 107, 1–15.

English,A.C. et al. (2012) Mind the gap: upgrading genomes with pacific biosciences RS long-read sequencing technology. PLoS One, 7, e47768.

Fu,S.H. et al. (2015) Heuristic pairwise alignment of de Bruijn Graphs to facilitate simultaneous transcript discovery in related organisms from RNA-Seq data. Bmc Genomics, 16.

Ghods,M. et al. (2011) DNACLUST: accurate and efficient clustering of phylogenetic marker genes. BMC Bioinformatics, 12, 271.

Gonzalez-Porta,M. et al. (2013) Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene. Genome Biol., 14, R70.

Gordon,S.P. et al. (2015) Widespread polycistronic transcripts in fungi revealed by single-molecule mRNA sequencing. PLoS One, 10, e0132628.

Grabherr,M.G. et al. (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol., 29, 644–U130.

Grimuwood,J. et al. (2004) The DNA sequence and biology of human chromosome 19. Nature, 428, 529–535.

Hargreaves,A.D. and Mulley,J.F. (2015) Assessing the utility of the Oxford Nanopore MinION for snake venom gland cDNA sequencing. PeerJ, 3, e1441.

Heber,S. et al. (2002) Splicing graphs and EST assembly problem. Bioinformatics, 18, 5181–5188.

Huang,X.Q. and Madan,A. (1999) CAP3: a DNA sequence assembly program. Genome Res., 9, 868–877.

Jiang,H. and Wong,W.H. (2009) Statistical inferences for isoform expression in RNA-Seq. Bioinformatics, 25, 1026–1032.

Kim,D. et al. (2015) HISAT: a fast spliced aligner with low memory requirements. Nat. Methods, 12, 357–U121.

Kirsch,A. and Mittenmacher,M. (2006) Less hashing, same performance: building a better bloom filter. Lect. Notes Comput. Sci., 4168, 456–467.

Laver,T. et al. (2015) Assessing the performance of the Oxford Nanopore Technologies MinION. Biomol. Detect. Quantif., 3, 1–8.

Li,B. et al. (2014) Evaluation of de novo transcriptome assemblies from RNA-Seq data. Genome Biol., 15.

Li,W.Z. et al. (2001) Clustering of highly homologous sequences to reduce the size of large protein databases. Bioinformatics, 17, 282–283.

Luo,R.B. et al. (2015) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler (vol 1, 18, 2012). Gigascience, 4.

Melsted,P. and Pritchard,J.K. (2011) Efficient counting of k-mers in DNA sequences using a bloom filter. BMC Bioinformatics, 12, 333.

Meyer,W.K. et al. (2015) Evolutionary history inferred from the de novo assembly of a nonmodel organism, the blue-eyed black lemur. Mol. Ecol., 24, 4392–4405.

Miller,J.R. et al. (2010) Assembly algorithms for next-generation sequencing data. Genomics, 95, 315–327.
Oikonomopoulos, S., et al. (2016) Benchmarking of the Oxford Nanopore MinION sequencing for quantitative and qualitative assessment of cDNA populations. Sci. Rep. UK, 6.

Oliver, S.G. et al. (2016) Model organism databases: essential resources that need the support of both funders and users. BMC Biol., 14.

Ondov, B.D. et al. (2016) MinHash: fast genome and metagenome distance estimation using MinHash. Genome Biol., 17.

Pertea, M. et al. (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol., 33, 290.

Pevzner, P.A. et al. (2001) An Eulerian path approach to DNA fragment assembly. Proc. Natl. Acad. Sci. USA, 98, 9748–9753.

Quistad, S.D. et al. (2016) Using viromes to predict novel immune proteins in non-model organisms. R. Soc. B Biol. Sci., 283, 20161200. P.

Rhoads, A. and Au, K.F. (2015) PacBio sequencing and its applications. Genomics Proteomics Bioinf., 13(5), 278–289.

Robertson, G. et al. (2010) De novo assembly and analysis of RNA-seq data. Nat. Methods, 7, 909–916.

Rokas, A. and Abbot, P. (2009) Harnessing genomics for evolutionary insights. Trends Ecol. Evol., 24, 192–200.

Roulin, A.C. et al. (2014) De novo transcriptome hybrid assembly and validation in the European Earwig (Dermaptera, Forficula auricularia). Plos One, 9, e94098.

Santhanam, R. and Krithivasan, K. (2006) Graph splicing systems. Discret. Appl. Math., 154, 1246–1274.

Schulz, M.H. et al. (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics, 28, 1086–1092.

Sharon, D. et al. (2013) A single-molecule long-read survey of the human transcriptome. Nat. Biotechnol., 31, 1099. +.

Shin, S.C. et al. (2012) Transcriptomics and comparative analysis of three antarctic notothenioid fishes. Plos One, 7, e43762.

Sievers, F. et al. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol., 7.

Simpson, J.T. et al. (2009) ABySS: a parallel assembler for short read sequence data. Genome Res., 19, 1117–1123.

Su, A.I. et al. (2002) Large-scale analysis of the human and mouse transcriptomes. Proc. Natl. Acad. Sci. USA, 99, 4465–4470.

Surget-Groba, Y. and Montoya-Burgos, J.L. (2010) Optimization of de novo transcriptome assembly from next-generation sequencing data. Genome Res., 20, 1432–1440.

Tang, F.C. et al. (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods, 6, 377–386.

Tikkkanen, M.K. et al. (2000) Endogenously expressed estrogen receptor and coactivator AIB1 interact in MCF-7 human breast cancer cells. Proc. Natl. Acad. Sci. USA, 97, 12536–12540.

Tilgner, H. et al. (2014) Defining a personal, allele-specific, and single-molecule long-read transcriptome. Proc. Natl. Acad. Sci. USA, 111, 9869–9874.

Tilgner, H. et al. (2015) Comprehensive transcriptome analysis using synthetic long-read sequencing reveals molecular co-association of distant splicing events. Nat. Biotechnol., 33, 736–742.

Trapnell, C. et al. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol., 28, 511–515.

Wang, Z. et al. (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet., 10, 57–63.

Weirather, J.L. et al. (2015) Characterization of fusion genes and the significantly expressed fusion isoforms in breast cancer by hybrid sequencing. Nucl. Acids Res., 43, e116.

Wu, T.D. and Watanabe, C.K. (2005) GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics, 21, 1859–1875.

Wu, Z.G. et al. (2016) Insights from the cold transcriptome and metabolome of Dendrobium officinale: global reprogramming of metabolic and gene regulation networks during cold acclimation. Front. Plant Sci., 7.

Xie, Y. et al. (2014) SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics, 30, 1660–1666.

Yan, L. et al. (2015) The genome of Dendrobium officinale illuminates the biology of the important traditional Chinese Orchid Herb. Mol. Plant, 8, 922–934.

Zerbino, D.R. and Birney, E. (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res., 18, 821–829.