Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products

Gerrit Smit a,b,*, Bart A. Smit c,1, Wim J.M. Engels c

a Wageningen University, Department of Food Chemistry, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
b Unilever Food Research Centre, Department of Flavour Generation and Analysis, P.O. Box 114, 3130 AC Vlaardingen, The Netherlands
c NIZO Food Research, Department of Flavour, P.O. Box 20, 6710 BA Ede, The Netherlands

Received 31 January 2005; accepted 20 April 2005
First published online 28 August 2005

Abstract

Flavour development in dairy fermentations, most notably cheeses, results from a series of (bio)chemical processes in which the starter cultures provide the enzymes. Particularly the enzymatic degradation of proteins (caseins) leads to the formation of key-flavour components, which contribute to the sensory perception of dairy products. More specifically, caseins are degraded into peptides and amino acids and the latter are major precursors for volatile aroma compounds. In particular, the conversion of methionine, the aromatic and the branched-chain amino acids are crucial. A lot of research has focused on the degradation of caseins into peptides and free amino acids, and more recently, enzymes involved in the conversion of amino acids were identified. Most data are generated on Lactococcus lactis, which is the predominant organism in starter cultures used for cheese-making, but also Lactobacillus, Streptococcus, Propionibacterium and species used for surface ripening of cheeses are characterised in their flavour-forming capacity. In this paper, various enzymes and pathways involved in flavour formation will be highlighted and the impact of these findings for the development of industrial starter cultures will be discussed.

© 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

Keywords: Fermentative flavour formation; Lactic acid bacteria; Dairy products; Amino acid converting enzymes

1. Introduction to flavour ... 592
2. (Bio-)chemical routes leading from proteins to flavour ... 593
 2.1. Proteolysis and peptidolysis .. 595
 2.2. Transaminase-pathway .. 595
 2.3. Lyase pathway .. 600
 2.4. Non-enzymatic conversions .. 601
 2.5. Regulation of AACEs and role of lysis ... 602
 2.6. Natural biodiversity ... 603
 2.7. Application of strains with selected enzyme activities for improving cheese flavour 604

* Corresponding author. Tel.: +31 10 460 6760.
E-mail address: gerrit.smit@unilever.com (G. Smit).
1 Present address: VTT Biotechnology, P.O. Box 1500, FI-02044 VTT, Espoo, Finland.
1. Introduction to flavour

The quality of fermented (dairy) products is largely determined by the sensory perception. Sensory perception is a complex process, which is influenced by many factors, such as the content of flavour components, texture, and appearance. Flavour perception is defined as the sensation arising from the integration or interplay of signals produced as a consequence of sensing chemical substances by smell, taste and irritation stimuli from food or beverage [1]. Regarding flavour, in the mouth five basic differences like sweet, bitter, salt, acid and umami are sensed by taste-receptor cells as well as cold and hot sensations [2]. In the nose, many different receptors (3–400) are present and able to response a large variety of volatile flavour components [1, 3]. These receptors involved in odour detection have been identified and characterised (see Buck and Axel [4], for an excellent overview for which they were rewarded with the Nobel Prize in 2004). However, the integration and interpretation of taste and smell stimuli in the brain, leading to the ultimate liking or disliking of a food product is still poorly understood.

The balance of flavour components in a given food product determines largely whether that food product is liked or disliked. It is good to realise that many flavour molecules can be found in a fermented food product such as cheese [5–7]. In order to control the liking of (fermented) food products it is highly important to understand which of these flavour compounds are determining the overall quality the most.

A commonly used step in the determination of the dominant compounds, the so-called key-flavour components, can be done by GC-O, which is a combination of separation of compounds by gas chromatography (GC) and analytical identification by the human nose (olfactometry). Similarly, for tastants a combination between separation (LC) and tasting of fractions (LC-taste) is applied.

For GC-O analysis of volatile compounds, a number of methods have been described. Generally, various dilutions of an extract or a product are prepared, analysed on a GC and detected by a number of subjects. The compounds which are still sensed in the highest dilution (=FD-factor) of the product are regarded as key-flavour components [8–10]. In order to also include the importance of the product matrix in sensory perception, Grosch and co-workers [11] introduced the term odour activity value (OAV). The OAV is the ratio between the concentration of a compound in a product and the nasal or retro nasal threshold of the compound, as it is present in the matrix of the product or a matrix that closely resembles this product. In this way, also the matrix interactions are included in determining the key-flavour compounds. This approach does not yet take into account the possible interactions between volatiles that might affect their perception also in concentrations below their threshold [12]. Although the determination of key-flavours has some flaws, recombination of the key-flavour compounds usually gives a good imitation of the product studied, although a mix of a limited set of compounds might require some alterations in the concentration of the individual concentration of components in order to match the original product [10, 12].

Several important flavour compounds of different types of cheeses are shown in Table 1. Since not all products were analysed by GC-O, not all flavour components may be called key-flavours. The flavour compounds are categorised by the metabolic pathway/substrate they are most likely derived from, as will be discussed in the following sections. As an indication the following references are given: Limburger [13–15], Gruyère [16, 17], Gorgonzola [18], Mozzarella [19], Parmigiano [5, 20], Grana Padano [21], Mahón, Fontina, Comté, Beaufort and Appenzeller [5].

In Table 2, a number of descriptions are given of some important flavour components and their thresholds in water and oil (if known). Not only the amount of the individual components, but also the balance between these components is very important in the ultimate perception by the consumers. This has important implications for the work as described in the following parts of this paper. The work on controlling the flavour formation in dairy products, such as cheese, can focus on two aspects: an overall increase in all important key flavour components (improved/faster cheese ripening) or an increase in some target flavour. The latter might result in a new cheese variety that closely resembles this product. In this way, also the matrix interactions are included in determining the key-flavours has some flaws, recombination of the key-flavour compounds usually gives a good imitation of the product studied, although a mix of a limited set of compounds might require some alterations in the concentration of the individual concentration of components in order to match the original product [10, 12].
2. (Bio-)chemical routes leading from proteins to flavour

In previous sections, flavour has been introduced as an important product characteristic of fermented dairy products, e.g., cheese. Flavour compounds in cheese arise from the action of enzymes from rennet, milk, the (secondary) starter and non-starter bacteria, together with non-enzymatic conversions [24–27]. In case of cheese ripening, the formation of flavours is a rather slow process involving various chemical and biochemical conversions of milk components. Three main pathways can be identified: the conversions of lactose (glycolysis), fat (lipolysis), and caseins (proteolysis). The starter cultures used in these fermentations are the main source of the enzymes involved in these pathways.

The predominant organisms in these starters are lactic acid bacteria (LAB), e.g., Lactococcus lactis, Lactobacillus species, Streptococcus thermophilus, Leuconostoc mesenteroides. However, also additional cultures are used, such as Propionibacterium in the case of Swiss-type and Maasdammer-type of cheeses, and various aerobic cultures (e.g., Brevibacterium, Arthrobacter, Staphylococcus, Penicillium, Debaryomyces) for surface-ripened cheeses [28–30]. Apart from these starter organisms, also mesophilic lactobacilli, originating from the milk environment might grow in the dairy products and thereby be a source of enzyme activities leading to the formation of flavours.

In the case of the lactose fermentation, the main conversion obviously leads to the formation of lactate by

Table 1	Examples of key- and other important flavour components in four types of cheese			
Metabolism	Gouda	Cheddar	Camembert	Swiss-type (and Maasdam)
Amino acid	3-Methylbutanal	3-Methylbutanal	3-Methylvalerate	Methional
3-Methylbutanol	Isovaleric acid	3-Methylbutanol	3-Methylbutanal	3-Methylbutanol
Methanethiol	Methionol	Methionol	Methionol	Methionol
Dimethylsulphide (DMS)	DMDS	DMDS	DMS	DMS
2-Methylpropanol	2-Methylbutanol	2-Methylbutanol	2-Methylbutanol	2-Methylbutanol
Dimethyltrisulphide (DMTS)				
Sugar	Diacetyl	Propionic acid	2,3-Butanediol	Propionic acid
	Diacetyl			Diacetyl
Fat	Butyric acid	Butyric acid	1-Octen-3-one	1-Octen-3-one
	Butanone	Acetic acid	Butyric acid	Butyric acid
	Hexanal	1-Octen-3-one	Butanone	2-Unsodecalactone
	Pentanal			γ-Decalactone
Rest and combined pathways	Ethyl butyrate	Ethyl butyrate	Phenylethyl acetate	Ethyl butyrate
	Limonene	Ethyl hexanoate		Ethyl hexanoate
			Phenylethyl acetate	Phenylethyl acetate
References	[77,161]	[164–166]	[96]	[123,166,167]

Table 2	Description of some important key-flavours and their odour thresholds [22,168–171]			
Flavour compound	Description	Odour threshold in ppb (µM)	Water	Oil
2-Methylpropanal	Banana, malty, chocolate-like	0.1–2.3 (0.002–0.03)	–	
3-Methylbutanal	Malt, powerful, cheese	1 (0.01)	13 (0.15)	
3-Methylbutanol	Fresh cheese, breathtaking, alcoholic	250 (2.8)	–	
3-Methylbutyric acid	Rancid, sweat, cheese, putrid	120–700 (1.2–6.9)	–	
Butyric acid	Sweaty, butter, cheese, strong, acid	240 (2.7)	–	
Propionic acid	Pungent, sour milk, cheese	2 × 10^4 (270)	–	
Ethylbutyrate	Fruity, buttery, ripe fruit	1 (0.008)	–	
Diacetyl	Buttery, strong	2.3 (0.026)	50 (0.36)	
Acetaldehyde	Yoghurt, green, nutty, pungent	15 (0.34)	–	
Methionol	Cooked potato, meat like, sulphur	0.05–10 (1 × 10^-4–0.9)	0.2 (0.002)	
Methanethiol	“Rotting” cabbage, cheese, vegetative, sulphur	0.02–2 (3 × 10^-4–0.3)	–	
Benzaldehyde	Bitter almond oil, character, sweet cherry	350 (3.3)	–	
Phenyl acetate	Rough, lily-jasmine with metallic note	–	–	
LAB, but a fraction of the intermediate pyruvate can alternatively be converted to various flavour compounds such as diacetyl, acetoin, acetaldehyde, or acetic acid, some of which contribute to typical yoghurt flavours.

Lipolysis results in the formation of free fatty acids, which can be precursors of flavour compounds such as methylketones, secondary alcohols, esters and lactones. LAB, in general, contribute relatively little to lipolysis, but additional cultures, e.g., moulds in the case of surface-ripened cheeses [30] often have high activities in fat conversion. Flavours derived from the conversion of fat are particularly important in soft cheeses like Camembert and Roquefort.

The conversion of caseins is undoubtedly the most important biochemical pathway for flavour formation in hard-type and semi-hard-type cheeses. Degradation of caseins by the activities of rennet enzymes, and the cell-envelope proteinase and peptidases from LAB yields small peptides and free amino acids. For specific flavour development, further conversion of amino acids to various alcohols, aldehydes, acids, esters and sulphur compounds is required. This paper focuses the main pathways involved in flavour formation from amino acids.

Flavour forming pathways originating from proteins are combined in Fig. 1. After a short description of this figure, each part of the route will be reviewed separately.

Amino acids are primarily needed for protein synthesis, but Lactococcus lactis is not able to produce all amino acids from the central metabolism [31,32]. Certain genes coding for enzymes involved in the amino acid biosynthesis seem to be disrupted [33,34]. To obtain all essential amino acids, L. lactis is able to take up small peptides and to a lesser extend amino acids from the environment. This uptake can be preceded by extracellular degradation of proteins (proteolysis and peptidolysis, Fig. 1(A)–(D)) [35,36]. Intracellularly, most amino acids can be converted at first by aminotransferases (Fig. 1(1)) to their corresponding α-keto acids. Other types of deaminating enzymes have not been found in LAB. α-Keto acids are central intermediates, and can be converted to hydroxy acids (Fig. 1(2)), aldehydes (Fig. 1(3)) and CoA-esters (Fig. 1(8)). These reactions are mostly enzymatic, but some chemical conversion steps have also been described, like the formation of benzaldehyde from phenylpyruvic acid [37,38]. The aldehydes formed can generally be dehydrogenated (Fig. 1(4)), or hydrogenated (Fig. 1(5)) to their corresponding alcohols or organic acids, which are in their turn substrates for esterases and acyltransferases (Fig. 1(7)), leading to (thio)esters. One of the biological roles of these amino acid degrading pathways is the generation of precursors, which are needed for example in the sterol and branched-chain fatty acids

Fig. 1. Overview of general protein conversion pathways relevant for flavour formation in dairy fermentations. Numbers and letters besides reactions are used for pointing out these reactions in the text. This figure is adapted from [34,113].
synthesis [39]. On the other hand, the hydrogenation of the α-keto acids may act as sink for excessive redox potential (NADH). The conversion of amino acids to alcohols via α-keto acids as described above was first identified for the formation of so-called fusel alcohols (short-[branched]-chain alcohols) in yeast, where it is called the Ehrlich’s pathway [40].

Another important conversion route of amino acids is initiated by lyases (Fig. 1(10)), like cystathionine β-lyase (EC 4.4.1.8), which is able to convert methionine to methanethiol [41–43]. Threonine aldolase (EC 4.1.2.5) (Fig. 1(9)) belongs to another class of lyases, and is able to convert threonine directly to acetaldehyde [44–48].

A third conversion pathway for amino acids is the deamination/decarboxylation to amines. These reactions have been studied, in regard to the health risk of biogenic amines [49–51]. The direct decarboxylation of amino acids explains the presence of most of the amines found, but not the formation of secondary and tertiary amines [52].

Chemical conversion reactions are discussed as last category of flavour forming reactions in this review. Although enzymes are needed to catalyse many reactions, in order to shorten the timescale of processes, still a variety of chemical reactions proceed at the mild conditions of the cheese ripening process, and thereby contribute to flavour formation. The conversions by LAB often provide substrates, or the LAB might influence the chemical reactions by influencing environmental characteristics such as pH, cofactor and oxygen availability.

The most potent flavour compounds in Fig. 1 are the aldehydes, alcohols, carboxylic acids and esters (Tables 1 and 2). Especially important are the aldehydes, alcohols, carboxylic acids and esters derived from the amino acids methionine, phenylalanine, threonine and the branched-chain amino acids. The importance of these amino acids for the cheese flavour is a combination of their abundance, their conversion rates, and the odour threshold of the compounds derived from them. Fig. 1 will be discussed in detail in the next subsections.

2.1. Proteolysis and peptidolysis

Since the concentrations of free amino acids and peptides are very low in milk, the starter cultures depend for growth in milk heavily on their proteolytic systems. The degradation of milk proteins (Fig. 1(A)–(D)) leads to peptides and free amino acids, which can subsequently be taken up by the cells. Proteolysis is initiated by a single cell-wall-bound extracellular proteinase [53,54]. While many dairy LAB strains contain such an extracellular proteinase, several do not and these are mainly dependent on other strains in the starter culture for the production of peptides and amino acids. Such dependency of strains is rather common in starter cultures, and indicates the relevance of knowledge on the population dynamics between strains in order to be able to develop stable starter cultures.

Peptide uptake occurs via oligopeptide transport systems (OPP system), and di-/tri-peptide transporters. In addition, various amino acid transport systems have been identified with a high specificity for structurally similar amino acids. Selected references [35,53,55–59] give further information.

Following uptake, the peptides are degraded intracellularly by a variety of peptidases, which have been extensively studied in both lactococci and lactobacilli. These peptidases of LAB can be divided into endopeptidases, aminopeptidases, di-/tri-peptidases, and proline-specific peptidases (reviews by Kunji and Christensen [53,54]).

Although peptides and amino acids do have specific flavour characteristics, like sweet, bitter, or malty, [7,60–62], it is generally believed that they only add to the basic taste of cheese. Stimulation or over-expressing of several proteolytic enzymes and also the addition of amino acids to cheese did hardly influence the positive flavour perception of the product [63]. However, unbalanced proteolysis might lead to excess of bitter peptides, which can lead to decreased cheese flavour perception [64–67]. Specific cultures have been selected with high bitter-tasting-peptide degrading abilities [64] and such cultures are nowadays frequently used in the preparation of various types of cheese. Free amino acids though can be substrates for successive flavour forming reactions. All together, the conclusion might be drawn that although proteolysis and peptidolysis are important for flavour formation, they are generally not rate controlling in flavour formation from proteins.

2.2. Transaminase-pathway

Methional, 3-methylbutanal, isovaleric acid, and benzaldehyde are examples of key flavour compounds which are formed by a (initially) similar pathway, which is initiated by a transaminase (AT = aminotransferase). In Table 3, specific flavour compounds derived from some relevant amino acids are specified, corresponding to the class of chemical compounds used in Fig. 1. The AT-pathway is very important for the formation of many flavours, and it is interesting to know which step in the pathway is rate-controlling in relation to the formation of flavours by dairy related micro-organisms. In the next subsections, individual reactions of this pathway are reviewed.

2.2.1. Transaminases

Transaminases (Fig. 1(1)) are widely distributed among micro-organisms, and use pyridoxal-5’-phosphate as cofactor for catalysis. Transaminases catalyse the conversion of an amino acid to its corresponding
α-keto acid, and as such transamination is the first step of the amino acid catabolism. The enzymes are also able to catalyse the reversed reaction, and in that role they are the last enzyme in the amino acid anabolism. For the conversion of several types of amino acids, such as the branched-chain amino acids (BcAA) and aromatic amino acids (ArAA), specific transaminases have been identified and characterised [68–73]. Rijnen et al. [74] showed with mutants lacking either BcAA or ArAA that these enzymes are essential for flavour formation from amino acids. In addition, a double BcAA or ArAA mutant showed that another pathway or another amino-transferase appears also to be weakly involved in the formation of volatile sulphur compounds [74]. The enzymes have overlapping substrate specificities, which, e.g., also leads to the conversion of methionine, an amino acid for which no specific transaminase has been identified [75–77]. Because of their overlapping specificities, the activity of the branched chain transaminases is probably not limiting in the pathway to the production of branched chain fatty acids [78]. The BcAA transaminase identified by Engels was stable and active under cheese ripening conditions [77]. Knocking out the aromatic amino acid transaminase (ArAA-TA) gene, resulted in a lack of phenylalanine-derived flavour compounds in semi-hard cheese, which proved that transamination is essential for the formation of phenylalanine-derived flavours, and also that the aromatic amino acid transaminase is the major phenylalanine-transaminating enzyme [79] (see Fig. 2).

α-Ketoglutarate is generally the preferred amino group acceptor (co-substrate) for transamination reactions. Improving the availability of this co-substrate leads to increased conversion of amino acids. This was shown in situ by increased amino acid conversion in several types of cheese, when adding α-ketoglutarate to the curd [80,81]. This increased conversion led to increased concentrations of the α-keto acids, α-hydroxy acids, and carboxylic acids. Besides externally adding the α-ketoglutarate, the availability of α-ketoglutarate could also be increased by introduction of a glutamate dehydrogenase gene from *Peptostreptococcus* in *L. lactis*

Table 3

Flavour compounds derived from amino acids via α-keto acids by the transaminase pathway

Amino acid	Keto acid	Aldehyde	Organic acid	Alcohol (thiol)	Esters (example)
Ile	α-Keto-3-methyl-pentanoic acid	2-Methylbutanal	2-Methyl butyric acid	2-Methylbutanol	Ethyl-3-methylbutanoate
Leu	α-Ketoisocaproic acid	3-Methylbutanal	3-Methylbutyric acid	3-Methylbutanol	Ethyl isobutanoate
Val	α-Ketoisovaleric acid	2-Methylpropanal	2-Methyl propanoic acid	2-Methylpropanol	Ethyl benzoate
Phe	Phenyl pyruvate	Benzaldehyde	Benzoic acid	Phenylethanol	Phenylethyl acetate
Trp	Indole-3-pyruvate	Indole-3-acetaldehyde	Indole-3-acetic acid	Methionol	Ethyl-3-methylthio propionate
Met	α-Keto methylthio butyrate	Methional	Methylthiobutyric acid	Methanethiol	Methylthioacetate

Compounds in italic are formed by non-enzymatic reactions (adapted from [113]).

Fig. 2. Transaminase activities on leucine of tested strains grouped by (sub)species. Error bars indicate the standard deviation of three independent measurements (adapted from Smit et al. [110]).
towards various amino acids.

This means that there is competition of ATs for the \(\alpha \)-ketoglutarate produced by GDH and thus aroma compound production depends on the relative AT activities towards various amino acids.

The \(\alpha \)-keto acids are central intermediates in the AT-catabolic pathway, and can be hydrogenated to the corresponding \(\alpha \)-hydroxy acid, decarboxylated to the corresponding aldehyde, converted chemically, or dehydrogenated/oxidative decarboxylated by a dehydrogenase complex, resulting in the corresponding CoA-ester. The CoA ester can in many organisms be used as building block for several compounds, but can also be converted to the flavour compound isovaleric acid. These conversions are discussed next.

2.2.2. Hydroxy acid dehydrogenase

Hydroxy acids are not major flavour compounds, and are not known as precursors of flavour compounds [76]. The hydrogenation of keto acids to hydroxy acids (Fig. 1(2)), can lead to low \(\alpha \)-keto acid concentrations, thereby negatively affecting the flux towards flavour compounds such as aldehydes. The hydroxy acids derived from BcAAs, ArAAs and methionine have been observed in many dairy fermentations [86–88]. Several 2-hydroxy acid dehydrogenases, such as lactate dehydrogenase (LDH), hydroxy isocaproate dehydrogenase (HicDH), mandelate dehydrogenase, have been identified and characterised from several LAB [88–92]. The best known enzyme is LDH, which substrate specificity is mainly restricted to pyruvate. Several other enzymes are collectively called hydroxy isocaproate dehydrogenase (HicDH), since \(\alpha \)-ketoisocaproate is often their preferred substrate. These enzymes have thus a broad substrate specificity [76], and catalyse the stereo specific hydrogenation of \(\alpha \)-keto acids, using NADH as hydrogen donor. HicDH enzymes appear in two forms, the \(\nu \) and \(\iota \) form, with the latter being rather unusual. In LAB, hydroxy acid dehydrogenases play an important role in maintaining the intracellular redox balance, by converting the excess NADH from the glycolysis. Tokuda et al. [93] were able to convert a LDH of *Lactobacillus pentosus* into a highly active HicDH by the replacement of Tyr52 with Leu.

Since hydroxy acids are the major amino acid degradation products found in semi hard cheeses made with lactococci [80], inactivation of the genes encoding for some of these dehydrogenases could allow a better use of \(\alpha \)-keto acids for producing aroma compounds. Over expression of the \(\alpha \)-hydroxyisocapric acid dehydrogenase yielded decreased non-enzymatic \(\alpha \)-keto acid degradation products in 3 months old low fat cheeses, and a retarded flavour formation in these cheeses [94].

2.2.3. Esterases and acyltransferases

Esters, such as ethylbutyrate, contribute to Cheddar and Gouda flavour, although, an excess of esters in proportion to other flavour compounds could be responsible for the fruity defect of Cheddar [95]. In Camembert, phenylacetaldehyde, 2-phenylethanol and the ester phenylethyl acetate, which all result from phenylalanine degradation, are identified in fractions with floral rose-like odour [96], and could cause the pleasant floral note of this cheese [97]. Esters are formed in a reaction between an alcohol and an organic acid [7,8], which also might be activated by coupling to CoA. Besides amino acid metabolism, also sugar and fat metabolism provide substrates for ester formation [30,76]. Although ester formation is generally considered to be an enzymatic catalysed reaction, the reaction between acetyl-CoA and methanethiol is spontaneous [98]. Esterases and lipases are serine hydrolases capable of synthesising or hydrolysing esters, depending on the environmental conditions, while alcohol acetyltransferases only catalyse ester synthesis. By knocking out the esterase gene (*estA*) in *L. lactis*, Fernandez et al. [99] showed that all ester hydrolysing activity in *L. lactis* was lost and that this organism most probably had only one enzyme with esterase activity. Later, this EstA-enzyme has been reported to be responsible for the formation of short chain fatty acid esters in vitro [100]. The extrapolation of these data to cheese is not directly possible, since the reaction equilibrium for these kind of esterifications depends strongly on environmental parameters like water activity. However, recent work by Wouters et al. [101] with an EstA overproducing *L. lactis* strain, showed that the EstA activity resulted in a strong increase in degradation of both thio-esters and ethyl esters. The degradation of thio-esters and ethyl esters by EstA was also observed at conditions resembling the cheese matrix indicating that EstA is capable of degrading thio-esters and ethyl esters at cheese-like conditions. Liu et al. [102] described an alternative reaction for formation of esters by dairy lactic acid bacteria. The process, alcoholysis, is essentially a transferase reaction in which fatty acyl groups and acyl groups from acyl-CoA derivatives are directly transferred to alcohols.

2.2.4. Decarboxylase

The decarboxylation (Fig. 1(3)) of the branched-chain keto acids results in aldehydes with a malty/chocolate-like flavour and a very low odour threshold.
The production of these characteristic malty flavour compounds has only been shown in few strains belonging to the following species: *Carnobacterium piscicola*, *Lactobacillus casei*, *L. lactis maltigenes* and “wild” *L. lactis* [103–109]. Most lactococci produce only small amounts of these aldehydes, suggesting that these strains weakly express the decarboxylase gene, that in these strains a less efficient pathway may exist, or that the aldehyde is converted relatively fast to other compounds [76].

Recently, Smit et al. [38,109–111] studied the α-keto acid decarboxylase enzyme and the pathway leading to 3-methylbutanal in more detail (Fig. 3). By screening enzyme activities in various dairy related micro-organisms it was found that 3-methylbutanal was only formed in considerable amounts in just the few of the strains studied (Fig. 4). In contrast, the flavour compound 3-methylbutyric acid, which can, amongst others, be produced by subsequent oxidation of the aldehyde, has been

![Reaction scheme of simplified leucine degradation pathway](image-url)

Fig. 3. Reaction scheme of simplified leucine degradation pathway. TA = transaminase, HaDH = hydroxy acid dehydrogenase, DC = keto acid decarboxylase, ADH = alcohol dehydrogenase, AIDH = aldehyde dehydrogenase and KaDH = keto acid dehydrogenase (adapted from [110]).

![Graph showing specific keto acid decarboxylase activity of various dairy related micro-organisms](image-url)

Fig. 4. Specific keto acid decarboxylase activity of various dairy related micro-organisms. Error bars indicate the standard deviation of three independent measurements (adapted from Smit et al. [110]).
found in many LAB. The absence of aldehyde, but presence of the organic acid, must be explained by action of a ketoacid dehydrogenase complex \[76,112\] rather than by rapid conversion of the aldehyde into the organic acid.

In order to identify the gene coding for the decarboxylase in \textit{L. lactis} B1157 a high throughput screening was developed based on measuring volatile (aldehyde) metabolites by direct-inlet mass spectroscopy (DI-MS) followed by screening a knock-out mutant library of a strain which possessed the enzyme activity \[109,111\]. The screening resulted in the identification of the gene coding for the decarboxylase (\textit{kdcA}) \[113\]. The major part of the gene was identical to the as \textit{ipd} annotated gene of \textit{L. lactis} IL1403. Compared to \textit{kdcA} the \textit{ipd} gene missed a large c-terminal part \[114\]. Over expressing \textit{kdcA} resulted in a 30-fold increased decarboxylating activity compared to the wild type B1157, while over expression of \textit{ipd} did not result in an active decarboxylase indicating that the absence of decarboxylase activity in IL1404, is due to a truncated gene \[111\]. Modelling of the KdcA enzyme suggested that larger substrates than pyruvate would fit in the KdcA, and confirmed that the open reading frame annotated as \textit{ipd} in \textit{L. lactis} IL1403 is probably an inactive variant of the KdcA \[111\]. Over expression of \textit{kdcA} in \textit{L. lactis} NZ9000 resulted in a 3-fold increase in 3-methylbutanal production from leucine. This increase was much lower than the increased specific enzyme activity mentioned above and suggests a second rate-limiting step in the conversion route from leucine to the aldehyde. Most probably the availability of the substrate \textit{a}-keto acid, produced via transamination is rate limiting in this case \[80,81\].

De la Plaza et al. \[115\] identified a similar decarboxylating enzyme, using N-terminal peptide sequencing of bands from a SDS-gel of a partial purified protein sample followed by the identification of the \textit{kivd} (keto isovaleric acid decarboxylase) gene using the genome sequence of \textit{L. lactis} IL1403 \[114\]. Over expression of the gene was achieved in \textit{E. coli} \[115\].

Characterisation of the decarboxylating enzyme revealed that the enzyme can be active under cheese ripening conditions \[111,115\]. The highest activity was measured on branched-, and straight-chain \textit{a}-keto acids with 4–6 carbon atoms, but also the keto acids of methionine, phenylalanine and tryptophan were converted, though with a relatively low conversion rate (Table 4) \[111,115,116\]. Comparison of the enzyme with other keto acid decarboxylases revealed that the sequence and molecular mass are very similar to IPD and PDC, but not to the branched-chain \textit{a}-keto acid decarboxylase from \textit{Bacillus} described by Oku \[39\] and the molecular mass reported by Amarita \[116\]. For selecting strains to control of aldehyde formation in dairy fermentations the knowledge regarding the activity of \textit{a}-keto acid decarboxylating enzymes is of major relevance as the aldehydes produced are very potent flavour compounds.

2.2.5. Alcohol, aldehyde and keto acid dehydrogenases

Oxidation of a branched-chain aldehyde by aldehyde dehydrogenase (Fig. 1(5)) leads to the corresponding branched-chain organic acid. The reaction equilibrium is close to this organic acid, and the enzyme uses NAD\(^+\) as hydrogen acceptor \[117\]. Branched chain organic acids are generally believed to be the substrates for the formation of (longer) branched-chain fatty acids. In addition to the decarboxylase in combination with the aldehyde dehydrogenase, a keto acid dehydrogenase complex (Fig. 1(8)) is most probably present in LAB,

Substrate	Corresponding amino acid	Enzymatic Conversion Rate	Chemical Conversion Rate
3-Methyl-2-oxobutanoic acid	Val	100%	3%
4-Methyl-2-oxopentanoic acid	Leu	31%	29%
3-Methyl-2-oxopentoanoic acid	He	28%	2%
4-Methylthio-2-oxobutanoic acid	Met	8%	18%
2-Oxo-3-phenoxypropanoic acid	Phe	7%	100%
3-Indol-3-yl-2-oxopropanoic acid	Trp	3%	n.d.
3-(4-Hydroxyphenyl)-2-oxopropanoic acid	Tyr	1%	54%
2-Oxopentanedioic acid	Glu	0%	32%
2-Oxohexanoic acid		25%	44%
2-Oxopentanoic acid		19%	47%
2-Oxobutanoic acid		7%	35%
2-Oxopropanoic acid		1%	5%
Isohexanoic acid		0%	0%
Isopentanoic acid		0%	0%
Isobutanoic acid		0%	0%

n.d. = not determined.
which is able to convert the α-keto acid directly to the corresponding organic acid. Although both routes might be active under other conditions, with different rates, the existence of two routes indicates that one could be missed, without affecting growth or survival. This would explain the absence of decarboxylating activity in many LAB. The dehydrogenase enzyme complex performs the oxidative decarboxylation of α-keto acids resulting in the formation of organic acids, without transitory formation of aldehydes. Although this dehydrogenase complex has not been identified or characterised in LAB yet, the reaction proceeds in lactococci [80,118], but also in propionibacteria and micrococci [76]. A similar dehydrogenase complex for branched-chain α-keto acids has been characterised in Bacillus subtilis [119]. This enzyme complex clearly differs from pyruvate dehydrogenase (PDH). The dehydrogenase complex consists of three catalytic components, being a keto acid dehydrogenase, dihydrolipoyl transacylase and a lipamide dehydrogenase. The oxidative decarboxylation of α-keto acids by this complex in LAB is also relevant for flavour formation in cheese, since carboxylic acids like isovaleric acid are important flavour compounds. Furthermore, these carboxylic acids are precursors for other aroma compounds, such as esters, thioesters, cresol and skatole. Cresol and skatole can chemically as well as enzymatically be formed from the amino acids, tyrosine and tryptophan [6,120].

Alcohol dehydrogenase (Fig. 1(4)) is identified in most LAB [107,117,121–124]. Although the reaction equilibrium of this reaction is far to the side of the alcohol, in many fermented dairy products, aldehyde concentrations are stable at relatively high concentrations. This might be explained by the relatively low activity of this enzyme in LAB. The flavour intensity of aldehydes is higher than that of their corresponding alcohols (Table 2), and therefore this conversion to alcohols might not be favourable, when maximal flavour intensity is desired.

2.3. Lyase pathway

Besides the transaminase pathway, also the activity of several lyases results in flavour compounds. These pathways are usually shorter, because the type of splicing of the substrates leads directly to smaller and volatile compounds. The conversion of methionine by LAB for example, can occur in several steps via the aminotransferase-initiated pathway as described above, but also via a direct α,γ-elimination of methionine to methanethiol by lyase activities (Fig. 5).

Cystathionine β-lyase (CBL, EC 4.4.1.8) and cystathionine γ-lyase (CGL, EC 4.4.1.1) posses this activity and are found in and isolated from several LAB [42,125–129]. However, the main physiological function of these enzymes is the α-β and α-γ elimination of cystathionine in homoserine and cysteine in the anabolism (Fig. 8). All cystathionine lyases are able to convert several substrates, use PLP as cofactor and have a pH optimum close to 8. The relative activity towards methionine is below 10% compared to the rate for cystathionine [126]. Although cystathionine lyases are active under cheese-ripening conditions [42,129,130], their activity towards methionine could not be detected in lactococci using 13C nuclear magnetic resonance [86]. With this technique, only the aminotransferase-initiated pathway was observed suggesting that this pathway is most prominent in methionine catabolism to produce

![Conversion of methionine to volatile sulphur compounds.](https://example.com/fig5.png)
methanethiol. On the other hand, strains that overproduce cystathionine β-lyase, where found to be able to degrade methionine efficiently, indicating the potential of this enzyme in the production of sulphury flavour compounds (Fig. 6). Since CBL is only involved in the conversion of sulphur containing amino acids, these enzymes are of particular interest if one would only like to increase the sulphury flavour compounds. Analytical and sensorial analyses of cheeses made with a CBL overproducing strain have shown that this is a very promising application of overproduction of amino acids converting enzymes (AAACE) in cheese [131].

In *Brevibacterium linens* a similar enzyme, methionine γ-lyase (MGL, EC 4.1.1.11) has been identified and characterised [126,132]. This highly specific enzyme plays a central role in the methionine and cystathionine metabolism of *Brevibacterium linens*. The homotetrameric enzyme with a M_w of 170 kDa is PLP dependent and has a pH optimum of 7.5 [126]. The enzyme is also slightly active under cheese ripening conditions, but is also susceptible for proteolysis [41,126]. Amarita et al. [133–135] studied the role of this lyase and found that disruption of the gene coding for this enzyme resulted in an almost complete abolishment of the production of volatile sulphur compounds in this strain, indicating the importance of this enzyme in the formation of sulphur compounds in *B. linens*. Aspects on regulation of the lysases, as important enzymes will be discussed below.

Threonine aldolase (EC 4.1.2.5; Fig. 1(9)) belongs to the class of carbon–carbon lyases, and catalyses the conversion of threonine to glycine and acetaldehyde. The latter is an especially important flavour compound in yoghurt. Although several sources for acetaldehyde are known, this lyase pathway contributes largely to the acetaldehyde pool. The reaction has intensively been studied and references suggested for reading are: [44–48,123,124,136–138].

2.4. Non-enzymatic conversions

Although most of the flavour forming reactions during cheese production and ripening are enzymatic, e.g., proteolysis, transaminase- and lyase pathways, the α-keto acids of phenylalanine (phenylpyruvic acid) and methionine (KMBA) can (also) non-enzymatically be converted into flavour compounds such as benzaldehyde and methylthioacetalddehyde. The existence of the chemical conversion of phenylpyruvic acid was demonstrated by Villalblanca et al. [139] and by Nierop Groot et al. [37], the conversion of indole-3-pyruvate by Gao et al. [118], the conversion of α-ketoisocaproic acid by Smit et al. [38] and the conversion of KMBA to methylthioacetalddehyde by Bonnarme et al. [134]. All these conversions seem to proceed via a similar reaction mechanism [113]. Table 4. The spontaneous degradation of hydroxyphenylpyruvate to hydroxybenzaldehyde also occurs under simulated Cheddar cheese conditions [86], and both benzaldehyde and hydroxybenzaldehyde were found in significant amounts in semi-hard cheeses [80]. The reaction is catalysed by several divalent metal ions [37]. The conversion products of indole-3-pyruvate (indole acetic acid, indol-3-acetaldehyde and skatole) have been identified as off-flavours in Cheddar cheese [118].

This chemical conversion of α-keto acids, especially the α-keto acid of leucine, was studied in more detail by Smit et al. [38]. Fig. 7 shows that the component...
2-methylpropanal thus can be formed by two mechanisms: an enzymatic conversion originating from valine and a non-enzymatic chemical conversion with leucine as the substrate. The essence of the reaction mechanism is most probably the formation of a reactive peroxide as a result of a reaction between oxygen and the enol tautomer of the \(\alpha \)-keto acid. The reaction is strongly influenced by the availability of substrates (\(\alpha \)-keto acid and oxygen), manganese and the pH. Only in the presence of MnCl\(_2\) and MnSO\(_4\) (both at 10 mM) chemical conversion occurred. The simultaneous presence of 20 mM EDTA effectively suppressed the catalytic effect of manganese ions [51]. Although the pH of cheese ripening seems to be rather optimal, the manganese, oxygen and \(\alpha \)-keto acid concentration are most probably not [38]. Increasing these concentrations (locally) might therefore be an obvious way for controlling this chemical reaction. High local manganese concentrations might be obtained by selecting strains, which are able to accumulate manganese and lysate later in the ripening process [140,141]. Since only an effect of Mn\(^{2+}\) was observed, it would be relevant to know in which form the manganese in these bacteria will be present, and what happens with the manganese if these bacteria lysate. Oxygen is consumed quickly in the fermentation process in semi-hard cheeses, thereafter being almost absent, which is a major difference with the laboratory experiments described in the paper by Smit et al. [38], although only low concentrations of oxygen were needed for the non-enzymatic conversion to proceed. On the other hand, on the surface of smear- and fungal-ripened cheeses the situation might be more in favour of such conversions.

Another important chemical reaction leading from amino acids to flavour compounds is the Strecker degradation. Generally the Strecker degradation is described as the reaction of the amino group of an amino acid with an \(\alpha \)-dicarbonyl like a reducing sugar, and it is an important step in the Maillard reaction [142,143]. However, at high temperatures also direct oxidative decarboxylation of amino acids can lead to the same aldehydes [144,145]. These reactions are especially intense at high temperatures, and therefore contribute largely to the flavour of baked products. Nevertheless, at lower temperatures the reactions have also been shown to proceed, e.g., in the case of cheese and beer production [22,146]. Strecker degradation of leucine can result in 3-methylbutanal, but it has also been suggested that the conversion of valine results in this aldehyde as well [146].

Taken together, also certain non-enzymatic conversions result in flavour active compounds and therefore these reactions might also be relevant for the flavour formation in cheese. However, more research on the conversions under cheese ripening conditions is desired.

2.5. Regulation of AACEs and role of lysis

Apart from being present or not, activity of amino acid converting enzymes can also be affected by the growth and culture conditions of the bacteria. This is highly relevant, because it also offers opportunities for practical implication and moreover, it is of importance for screening strategies (see below).

As reviewed by Kranenburg et al. [34] and Smit et al. [147], the biosynthesis and degradation of some amino acids are intricately coupled pathways as exemplified in Fig. 8 for serine, cysteine and methionine. During cheese ripening, cystathionine \(\beta \)-lyase can convert methionine to various volatile flavour compounds.

The physiological role of CBL is the conversion of cystathionine to homocysteine, which is the penultimate step in the biosynthesis of methionine. This indicates that amino acid converting enzymes can in fact be involved in the biosynthesis of amino acids rather than catabolism only. It is well known that biosynthesis of amino acids is highly regulated, and therefore the growth conditions of the starter cultures may affect their flavour forming capacities. For instance, in \(L. \) lactis the gene coding for cystathionine \(\beta \)-lyase (\(\text{metC} \)) is clustered together with a gene coding for cysteine synthase (\(\text{cysK} \)) [128], thus genetically linking the methionine and cysteine biosynthesis pathways. The expression of the \(\text{metC-cysK} \) gene cluster is strongly influenced by the amounts of methionine and cysteine in the culture medium [127]. High concentrations of these amino acids completely abolish transcription and result in \(L. \) lactis cells almost deficient of cystathionine \(\beta \)-lyase activity. These regulatory aspects are most likely very important in the control of flavour forming enzymes in starter cultures and adjunct cultures.

\[\text{Glycine} \quad \overset{\text{glyA}}{\longrightarrow} \quad \text{Serine} \quad \overset{\text{cysE, cysK}}{\longrightarrow} \quad \text{Homoserine} \quad \overset{\text{metA}}{\longrightarrow} \quad \text{o-succinylhomoserine} \]

\[\overset{\text{metB}}{\longrightarrow} \text{Cystathionine} \quad \overset{\text{metC}}{\longrightarrow} \text{Homocysteine} \quad \overset{\text{metE}}{\longrightarrow} \text{Methionine}\]

Fig. 8. Cysteine and methionine biosynthesis pathways in \(E. \) coli and \(S. \) enterica serovar typhimurium and the responsible genes. The conversion of cystathionine to cysteine is not described for \(E. \) coli. Cystathionine \(\beta \)-lyase from \(L. \) lactis is able to catalyse this reaction in vitro ([42,172]).
The MGL activity of *Brevibacterium linens* is highly induced by the presence of methionine or methionine containing peptides in the culture medium [41,148].

Other lactococcal enzymes involved in flavour generation that are reported to be regulated are the aminotransferases AraT and BcaT. Chambellon and Yvon [149] reported that these enzymes, which physiological role is to catalyse the last step in the biosynthesis of branched-chain or aromatic amino acids, are regulated by CodY. CodY has also been identified as a regulator of several genes encoding proteo- and peptidolytic enzymes, sensing the nutritional supply as a function of the branched chain amino acid pool in the cell [150,151]. Den Hengst et al. [151] demonstrated that *L. lactis* CodY interacts directly with a region upstream of the promoter of its major target known so far, the oligopeptide transport system (OPP system). It is suggested that multiple molecules of CodY interact with this promoter and that the amount of bound CodY molecules is affected by the presence of branched-chain amino acids.

Inactivation of both the AraT and BcaT strongly reduces the growth of *L. lactis* in milk, which was found to result in excess in intracellular pool of isoleucine. This in turn likely represses the proteolytic system of the cells, due to distortion of the CodY regulation [149]. Several enzymes can thus be considered as being involved in both biosynthesis and degradation of amino acids, and α-keto acids are intermediates in both directions. Expression of the *bcaT* gene is repressed by high concentrations of branched-chain amino acids or methionine [71]. These examples illustrate that the selection of culture conditions can strongly influence the flavour-forming capacities of *L. lactis*.

Until now, not many reports deal with the role of lysis for the activity of AACEs in cheese. Dias and Weimar indicated that in addition to the presence of the metabolic pathway, methionine degradation in Cheddar cheese also depends on the organism used in production, the amount of enzyme released during aging, and the amount of methionine in the matrix [41]. While studying the effect of lysis on proteolysis and peptidolysis Meijer et al. [141] and Lepeuple et al. [152], showed that the mechanism behind the differences between ‘bitter’ or ‘non-bitter’ cultures was strongly correlated with the sensitivity of the cells to lysis. The introduction of a transposon for nisin immunity (it encodes for immunity to nisin, a lanthionine-containing peptide with antimicrobial activity, and the capacity to utilize sucrose via a phosphotransferase system) in *L. lactis* SK110 by Meijer et al. [141] and the introduction of a prophage Phi AM2 in *L. lactis* AM2 [152] resulted in cultures with decreased an increased sensitivity to lysis, respectively. Development of bitterness in cheeses made with these cultures was linked to the sensitivity to lysis. These results indicate that the cell membrane can be a barrier between the enzymes, located intracellularly, and the peptide substrates present in the cheese matrix. Apparently, there is not enough active transport anymore by the starter cultures, for taking-up the peptides, once they are present in the cheese matrix and lysis then is essential for enhancing enzyme-substrate interaction.

Bourdat-Deschamps et al. [153] showed that the conversion of phenylalanine to flavour compounds in cheese models was enhanced by autolysis, when α-ketoglutarate concentration was not limiting. In a study by De Palencia [154], bacteriocin sensitive strains of *L. lactis*, with BcAA activity and α-keto acid decarboxylase activity, were used as adjunct together with a bacteriocin-producing (*Lacticin 3147*) *L. lactis* strain in cheese making. In control cheese making, a non-bacteriocin producing strain was used. The bacteriocin produced enhanced lysis of the adjunct strains, which led to an increase in isoleucine transamination. The concentration of the flavour compound 2-methylbutanal was about doubled again indicating that increased aldehyde formation can be obtained due to lysis.

In contrast to the activity of peptidases, where lysis generally enhances the activity enzymes, enzymes that require cofactors or co-substrates (e.g., PLP, NAD, and NADP), might be negatively affected by lysis of the cells. It likely depends on the type of enzyme (system) whether lysis will improve the activity (and formation of flavour) or not. The examples above show that the delicate balance in the whole set of conversions involved in flavour formation can be affected by lysis and therefore the role of lysis deserves to be further studied. The effect of lysis on formation of various flavour compounds then could become much clearer.

2.6. Natural biodiversity

It has already been mentioned that various LAB strains differ in amino acid converting abilities and that these activities are in fact linked to the ability to synthesise amino acids. The KdCA activity studies by Smit et al. [38,109,111] give a good example of such a diversity (Fig. 4). The strains that were found to have the highest activity were *L. lactis* strains isolated from natural sources and non-dairy environments, the so-called ‘wild lactococci’. Ayad et al. [23,104] focused on the ability of these strains and they were found to have unique and diverse properties, when compared to commercially available starter strains. For instance, many of these strains do not degrade caseins, produce antimicrobial compounds and/or have low acidifying activity. However, when the dependency of these strains for amino acids in the growth medium was determined using the single omission technique [155], it was found that these strains had a much larger potential to synthesise their own amino acids as compared to industrial strains. Lactococci used in dairy fermentations are known for their limited capacity for biosynthesis of amino acids, which
explains their complex nutritional requirements. Most of these strains require at least glutamate, valine, methionine, histidine, serine, leucine and isoleucine for growth, and the number of essential amino acids is strain-dependent [31,32,104,156,157]. Industrial L. lactis subsp. cremoris strains require even more different amino acids for growth [104]. Wild L. lactis subsp. cremoris strains generally require two to three amino acids while some L. lactis subsp. lactis strains only need one or two amino acids. The absence of some amino acid biosynthetic pathways in dairy lactococci might be a consequence of their adaptation to dairy products, since in milk, the amino acids are readily available from the proteolytic degradation of caseins. Wild strains are not naturally associated with a rich environment such as milk, which makes them more dependent on their own biosynthesis of amino acids compared to industrial strains.

Interestingly, lactococci isolated from natural niches were not only found to have a larger potential in amino acid production, but concomitantly, also found to be able to produce rather unusual flavour components and/or flavour profiles [104]. This natural biodiversity could offer new possibilities when explored and applied in practice.

2.7. Application of strains with selected enzyme activities for improving cheese flavour

For the application of selected lactococci, it was found that strains possessing a specific flavour-forming enzyme do not necessarily possess other enzymatic activities of the complete pathway. In addition, strains might lack other characteristics for application as cheese starter (e.g., fast acidification). In order to be able to use such strains and to overcome problems, it is required to combine selected strains with industrial strains in order to obtain a starter with both good flavour generating potential as well as good acidifying and proteolytic activities [23,158].

It was found by Ayad et al. [159] that different strains could influence each other in formation of flavour components. Strains, which each had only a limited set of enzymes in a certain pathway could complement each other. For instance, the combination of L. lactis B1157 and SK110 strains in milk resulted in the formation of high levels of 3-methylbutanal. In SK110, a highly proteolytic strain from industrial origin, the complete pathway from casein via leucine to 3-methylbutanal cannot proceed due to the lack of a decarboxylating enzyme (Fig. 9). L. lactis strain B1157 on the other hand is a non-proteolytic wild strain and thus unable to produce enough free amino acids that can serve as substrate for the subsequent transamination and decarboxylation steps. However, when B1157 and SK110 are cultivated together, the strains complement each other with regard to their enzyme activities resulting in a high production of the chocolate flavour component 3-methylbutanal (Fig. 9). This proto-cooperation between strains as it is called offers new possibilities for the construction of tailor-made starter cultures, because it makes it clear that not all the desired enzyme activities in a certain flavour pathway leading to flavour need to be present in one strain.

An example of the application of knowledge of proto-cooperation, but also of population dynamics of starter cultures for the optimisation of a cheese flavour is given by Ayad et al. [160]. A selected L. lactis strain (strain B851) with high (in vitro) activity to form 3-methylbutanal was used to improve the taste of Proosdij cheese. Proosdij cheese is a Gouda-type cheese, prepared with a mesophilic starter culture in combination with a thermophilic adjunct culture. This cheese has a flavour profile, which has characteristics between Gouda and Parmesan cheese. One of the key flavour components in this type of cheese is 3-methylbutanal [77,161]. The selected L. lactis strain B851 was used in combination with the regular cultures used for this type of cheese. The cheeses made with and without the selected adjunct strain were analysed for the production of 3-methylbutanal by headspace gas chromatography [159] and graded by an expert panel [162]. It was found that the use of the selected adjunct strain in cheese resulted in both an increase in the key-flavour production as well as in the intensity of the Proosdij cheese flavour (Fig. 10). This is a first example on how fundamental knowledge can lead to the development of new starter cultures in a directive manner.

In order to control the flavour intensity, the selected strain was first tested at different levels in a defined strain starter (DSS) culture as well as in combination with a mixed strain starter (MSS) culture. The latter is generally used for Gouda and Proosdij-type cheese production. The results of population dynamics, sensory evaluation and analysis of volatile compounds pointed to the possibility of controlling both the cell numbers of strain B851 as well as the flavour intensity resulting
from this strain in cheese. Based on these results, B851 was used to enhance the flavour development of a Proosdij-type cheese made with a new thermophilic culture B1138. This culture had previously been developed to prevent crack formation in Proosdij cheese. In this cheese, the addition of culture B851 led to an increase in the overall flavour intensity, indicating that it is possible to tailor the flavour of cheese by using specifically selected cultures, even in combination with complex starter cultures.

3. Conclusions

In fermented dairy products, most notably cheese, the degradation of caseins is the main pathway to flavour formation. Proteolysis and peptidolysis are a prerequisite to generate free amino acids. A balanced degradation of caseins, i.e., formation and breakdown, is important in order to prevent accumulation of bitter-tasting peptides. The volatile flavour components, which predominantly determine the typical flavour, are subsequently derived from the activity of amino acid converting enzymes. In LAB strains the physiological functions of these enzymes are most likely the biosynthesis of amino acids. Based on this, a strong regulation is anticipated and found for these enzymes. This characteristic is very important for practical applications, since it means that the activity of starter cultures can be influenced by the cultivation conditions. Moreover, a large natural biodiversity is found within LAB species, which also offers good possibilities for flavour enhancement and diversification of dairy products.

The increasing knowledge on the amino acid converting enzymes, together with genome data, which will become available for various LAB, will expand our knowledge of flavour-forming pathways and mechanisms in different bacteria even faster. Obviously, one should also focus on other pathways (e.g., leading to flavours originating from lactose and fat), which play a role in the liking of the products, as well as on the role of the interaction of the various taste, aroma and structure components in the cheese, again also a rapidly expanding field of (flavour) research.

Whole genome sequences of various lactic acid bacteria are available, e.g., *L. lactis* [114] and *L. plantarum* [163] and more are being sequenced (for example http://genome.jgi-psf.org/draft_microbes). It will soon allow prediction of the flavour-forming capacity of various lactic acid bacteria, and secondly lead to the design of probes for high-throughput screening and strain selection in the future. Probes will become available to rapidly screen for various enzymes by which screening for the presence of whole pathways will become possible. On the other hand, it appears that not all enzymes have to be present in one strain, making it possible to combine a number of strains in defined starter systems. One should, however, be cautious that not only the presence of certain enzymes, but also the proper level of these enzymes will have an impact on the overall flavour perception. A careful balance is needed and in order to know this balance it might be required to determine not only the compounds required for a certain flavour impact, but also their concentration. It the light of this, it would be very powerful if fast screening of total aroma profiles could be realised in order to match the desired profile.

Apart from that, one has to realise that most screening systems are based on laboratory media. Obviously, the activity of the various enzymes will change in the actual food matrices (e.g., cheese). Good predictable model systems (like the so-called Cheasy model) should therefore be linked to rapid screening and analysis methods. The basic insight into the flavour formation pathways is essential for all of this, but further knowledge on the balance of key-flavour components, on the screening methods for desired enzyme activities as well as on the regulation of these enzymes in product matrices is all needed at the same time to make this possible. Genomics might assist us in getting a fast insight whether other enzymes or pathways exist in the broad variety of lactic acid bacteria, thereby enabling a faster selection of interesting strains. The long-term endeavour
of generating a consumer preferred cheese flavour, should however not prevent us from applying already the various (smaller) steps towards new and improved cheese production by the selection of new or adaptation of existing cheese starter cultures. A very interesting and tasty future lies ahead of us.

Acknowledgements

The EC FAIR contract CT97-3173, FLAVOUR-AACES/EUREKA research grant E!2536 and Stichting J. Mesdagfonds supported part of the work described in this paper.

References

[1] Laing, D. and Jinks, A. (1996) Flavour perception mechanisms. Trends Food Sci. Technol. 7, 387–389.
[2] Ninomiya, K. (2002) Umami: A universal taste. Food Rev. Int. 18, 23–38.
[3] Brand, J.G. and Bryant, B.P. (1994) Receptor mechanisms for flavour stimuli. Food Qual. Pref. 5, 31–40.
[4] Buck, L. and Axel, R. (1991) A novel multigene family may encode odorant receptors: A molecular basis for odor recognition. Cell 65, 175–187.
[5] Bosset, J.O. and Gauch, R. (1993) Comparison of the volatile flavour compounds of six European ‘AOC’ cheeses by using a new dynamic headspace GC–MS method. Int. Dairy J. 3, 359–377.
[6] Urbach, G. (1995) Contribution of lactic acid bacteria to flavour compound formation in dairy products. Int. Dairy J. 5, 873–903.
[7] Engels, W.J.M. and Visser, S. (1994) Isolation and comparative characterization of components that contribute to the flavour of different types of cheese. Neth. Milk Dairy J. 48, 127–140.
[8] Acree, T.E., Barnard, J. and Cunningham, D.G. (1984) A procedure for the sensory analysis of gas chromatographic effluents. Food Chem. 14, 273–286.
[9] Grosch, W. (1993) Detection of potent odourants in foods by aroma extract dilution analysis. Trends Food Sci. Technol. 4, 68–73.
[10] Mistry, B.S., Reineccius, T. and Olson, L.K. (1997) Gas chromatography–olfactometry for the determination of key odorants in foods. In: Techniques for Analysing Food Aroma (Marsili, R., Ed.), vol. 79. Marcel Dekker Inc., New York.
[11] Grosch, W. (2001) Evaluation of the key odorants of foods by dilution experiments, aroma models and omission. Chem. Sens. 26, 533–545.
[12] Blank, I. (1997) Gas chromatography–olfactometry in food aroma analysis. In: Techniques for Analysing Food Aroma (Marsili, R., Ed.), vol. 79. Marcel Dekker Inc., New York.
[13] Parliment, T.H., Kolor, M.G. and Rizzo, D.J. (1982) Volatile components of Limburger cheese. J. Agric. Food Chem. 30, 1006–1008.
[14] Lindsay, R.C. and Rippe, J.K. (1986) Enzymatic generation of methanethiol to assist in the flavor development of Cheddar cheese and other foods. In: Biogeneration of Aromas (Croteau, R., Ed.), pp. 286–308. American Chemical Society, Washington, DC.
[15] Urbach, G. (1993) Relations between cheese flavour and chemical composition. Int. Dairy J. 3, 389–422.
[16] Rychlik, M. and Bosset, J.O. (2001) Flavour and off-flavour compounds of Swiss Gruyere cheese. Identification of key odorants by quantitative instrumental and sensory studies. Int. Dairy J. 11, 903–910.
[17] Rychlik, M. and Bosset, J.O. (2001) Flavour and off-flavour compounds of Swiss Gruyere cheese. Evaluation of potent odorants. Int. Dairy J. 11, 895–901.
[18] Mino, L., Piombino, P. and Addo, F. (2000) Odour-impact compounds of Gorgonzola cheese. J. Dairy Res. 67, 273–285.
[19] Mino, L., Langlois, D., Etievant, P.X. and Addo, F. (1993) Powerful odorants in water Buffalo and Bovine Mozzarella cheese by use of extract dilution sniffing analysis. Int. J. Food Sci. 3, 227–237.
[20] Qian, M. and Reineccius, G. (2002) Identification of aroma compounds in Parmigiano-reggiano cheese by gas chromatography/mass spectrometry. J. Dairy Sci. 85, 1362–1369.
[21] Mino, L. and Addo, F. (1998) Grana Padano cheese aroma. J. Dairy Res. 65, 317–333.
[22] Dunn, H.C. and Lindsay, R.C. (1985) Evaluation of the role of microbial Strecker-derived aroma compounds in unclean-type flavors of Cheddar cheese. J. Dairy Sci. 68, 2859–2874.
[23] Ayad, E.H.E., Verheul, A., Wouters, J.T.M. and Minit, G. (2000) Application of wild starter cultures for flavour development in pilot plant cheese making. Int. Dairy J. 10, 169–179.
[24] Kosikowski, F.V. and Mistry, V.V. (1997) Origins and principles. Cheese and Fermented Milk Foods, vol. 1. N.Y.F.V. Kosikowski and Associates, Brooktondale.
[25] Walstra, P., Noomen, A. and Geurts, T.J. (1993) Dutch type varieties. In: Cheese: Chemistry, Physics and Microbiology (Fox, P., Ed.), vol. 2, pp. 39–82. Chapman & Hall, London.
[26] Skeie, S. and Ardo, Y. (2000) Influence from raw milk flora on cheese ripening studied by different treatments of milk to model cheese. Leb. Wissensch. Technol. 33, 499–505.
[27] Christiani, G. and Monnet, V. (2001) Food micro-organisms and aromatic ester synthesis. Sci. Aliments 21, 211–230.
[28] Bockelmann, W. and Hoppe Seyler, T. (2001) The surface flora of bacterial smear-ripened cheeses from cow’s and goat’s milk. Int. Dairy J. 11, 307–314.
[29] Bockelmann, W., Krusch, U., Engel, G., Klijn, N., Smit, G. and Keller, K.J. (1997) The microflora of Tilis cheese. Part 1: Variability of the smear flora. Nahrung 41, 208–212.
[30] Molinard, P. and Spinnler, H.E. (1996) Compounds involved in the favour of surface mold-ripened cheeses: Origins and properties. J. Dairy Sci. 79, 169–184.
[31] Andersen, A.W. and Elliker, P.R. (1953) The nutritional requirements of lactic streptococci isolated from starter cultures. I. Growth in a synthetic medium. J. Dairy Sci. 36, 161–167.
[32] Reiter, B. and Oram, J.D. (1962) Nutritional studies on cheese starters. J. Dairy Res. 29, 63–77.
[33] Deguchi, Y. and Morishita, T. (1992) Nutritional requirements in multiple auxotrophic lactic acid bacteria; genetic lesions affecting amino acid biosynthetic pathways in Lactococcus lactis, Enterococcus faecalis and Pediococcus acidilactici. Biose. Biochem. Biochem. 56, 913–918.
[34] Van Kraayenburg, R., Kleerebezem, M., van Hylckama Vlieg, J.E.T., Ursing, B.M., Boekhorst, J., Smit, B.A., Ayad, E.H.E., Smit, G. and Siezen, R.J. (2002) Flavour formation from amino acids by lactic acid bacteria; Predictions from genome sequence analysis. Int. Dairy J. 12, 111–121.
[35] Konings, W.N., Poolman, B. and Driesen, A.J.M. (1989) Bioenergetics and solute transport in lactococci. Rev. Microbiol. 16, 419–476.
[36] Smid, E. (1991) Physiological implications of peptide transport in lactococci, Ph.D. Thesis, University of Groningen, Groningen, The Netherlands.
[37] Nierop Groot, M.N. and De Bont, J.A.M. (1998) Conversion of phenylalanine to benzaldehyde initiated by an aminotransferase in Lactobacillus plantarum. Appl. Environ. Microbiol. 64, 3009–3013.
Raya, R.R., Manca de Nadra, M.C., Pesce de Ruiz Holgado, A.
Lees, G.J. and Jago, G.R. (1976) Formation of acetaldehyde during milk fermentation using 13C-labeled pre-
ATCC 11842 and YOP12. Milchwissenschaft 41, 113.
Bacterial threonine aldolase and serine hydroxymethyltransferase enzyme. Biochem. Soc.
Trans. 1, 678–681.
LecS. G.J. and Jago, G.R. (1976) Formation of acetaldehyde from threonine by lactic acid bacteria. J. Dairy Res. 43, 75–83.
Hugenholz, J., Starrenburg, M., Boels, I., Sybesma, W., Chaves, A.C., Mertens, A. and Kleebezem, M. (2000) Metabolic engineering of lactic acid bacteria for the improvement of fermented dairy products; animating the Cellular Map. In: Proceedings of BTK 2000 (Snoep, J.L., Ed.), pp. 3009–3013.
Stellenbosch University Press, Stellenbosch, South Africa.
Raya, R.R., Manca de Nadra, M.C., Pesce de Ruiz Holgado, A. and Oliver, G. (1986) Threonine aldolase in Lactobacillus bulgaricus ATCC 11842 and YOP12. Milchwissenschaft 41, 630–631.
Ott, A., Germond, J. and Chaintrant, A. (2000) Origin of acetaldehyde during milk fermentation using 13C-labeled precursors. J. Agric. Food Chem. 48, 1512–1517.
Leuschner, R.G., Kurihara, R. and Hammes, W.P. (1988) Effect of enhanced proteolysis on formation of biogenic amines by lactobacilli during Gouda cheese ripening. Int. J. Food Microbiol. 44, 15–20.
Joosten, H.M.L.J. and Northolt, M.D. (1987) Conditions allowing the formation of biogenic amines in cheese. 2. Decarboxylative properties of some non-starter bacteria. Neth. Milk Dairy J. 41, 259–280.
Joosten, H.M.L.J. (1987) Conditions allowing the formation of biogenic amines in cheese. 3 Factors influencing the amounts formed. Neth. Milk Dairy J. 41, 329–357.
Adda, J., Giraud, J.C. and Vassal, L. (1982) The chemistry of flavour and texture generation in cheese. Food Chem. 9, 115–129.
Kunji, E.R.S., Mierau, I., Hagting, A., Poolman, B. and Konings, W.N. (1996) The proteolytic systems of lactic acid bacteria. Ant. Leuvenhoek 70, 187–221.
Christensen, J.E., Dudley, E.G., Pederson, J.A. and Steele, J.L. (1999) Peptidases and amino acid catabolism in lactic acid bacteria. Ant. Leuvenhoek 76, 217–246.
Charbonnel, P., Lamarque, M., Piard, J., Gilbert, C., Juillard, V. and Atlán, D. (2003) Diversity of oligopeptide transport specificity in Lactococcus lactis species – A tool to unravel the role of OppA in uptake specificity. J. Biol. Chem. 278, 14832–14840.
Germain, A.V. and Foucaud, S.C. (2002) Identification and characterization of an oligopeptide transport system in Leuconostoc mesenteroides subsp. mesenteroides CNRZ 1463. Lett. Appl. Microbiol. 35, 68–73.
Peltoniemi, K., Vesanto, E. and Palva, A. (2002) Genetic characterization of an oligopeptide transport system from Lactobacillus delbrueckii subsp. bulgaricus. Arch. Microbiol. 177, 457–467.
Lanfermeijer, F.C., Detmers, F.J.M., Konings, W.N. and Poolman, B. (2000) On the binding mechanism of the peptide receptor of the oligopeptide transport system of Lactococcus lactis. EMBO J. 19, 3649–3656.
Detmers, F.J.M., Kunji, E.R.S., Lanfermeijer, F.C., Poolman, B. and Konings, W.N. (1998) Kinetics and specificity of peptide uptake by oligopeptide transport system of Lactococcus lactis. Biochemistry 64, 3327–3331.
Lemieux, L. and Simard, R.E. (1992) Bitter flavour in dairy products. II. A review of bitter peptides from caseins: Their formation, isolation and identification, structure masking and inhibition. Lait 72, 335–382.
Mulder, H. (1952) Taste and flavour forming substances in cheese. Neth. Milk Dairy J. 6, 157–168.
Haeferi, R.J. and Glaser, D. (1990) Taste responses and thresholds obtained with the primary amino acids in humans. Leb. Wissensch.Technol. 23, 523–527.
Wallace, J.M. and Fox, P.F. (1997) Effect of adding free amino acids to cheddar cheese curd on proteolysis, flavour and texture development. Int. Dairy J. 7, 157–167.
Smit, G., Kruyswijk, Z., Weerkamp, A.H., de Jong, C. and Neeter, R. (1996) Screening for and control of debittering properties of cheese cultures. In: Flavour Science: Recent Developments (Mottram, D.S., Ed.), pp. 25–31. Royal Society of Chemistry, Burlington House, London.
Smit, G., Rippen, M., Kruyswijk, Z. and van Boven, A. (1998) Control of debittering activity of cheese starters. Cheese Sci. 53, 113.
Visser, S., Slangen, C.J., Hup, G. and Stadhouwers, J. (1983) Bitter flavour in cheese. 3. Comparative gel-chromatographic analysis of hydrophobic peptide fractions from twelve Gouda-type cheeses and identification of bitter peptides isolated from a cheese made with Streptococcus cremoris HP. Neth. Milk Dairy J. 37, 181–192.
Stadhouwers, J., Hup, G., Exterkate, F.A. and Visser, S. (1983) Bitter formation in cheese. 1. Mechanism of the formation of the bitter flavour defect in cheese. Neth. Milk Dairy J. 37, 157–167.
Yvon, M., Thirouin, S., Rijnen, L., Fromentier, D. and Gripon, J.C. (1997) An aminotransferase from Lactococcus lactis initiates conversion of amino acids to cheese flavor compounds. Appl. Environ. Microbiol. 63, 414–419.
Engels, W.J.M., Alting, A.C., Arntz, M.M.T.G., Gruppen, H., Voragen, A.G.J., Smits, G. and Visser, S. (2000) Partial purification and characterization of two aminotransferases from Lactococcus lactis subsp. cremoris B78 involved in the catabolism of methionine and branched-chain amino acids. Int. Dairy J. 10, 443–452.
Rijnen, L., Bonneau, S. and Yvon, M. (1999) Genetic characterization of the major lactococcal aromatic aminotransferase and its involvement in conversion of amino acids to aroma compounds. Appl. Environ. Microbiol. 65, 4873–4880.
Yvon, M., Chambellon, E., Bolotin, A. and Roudot Algaron, F. (2000) Characterization and role of the branched-chain aminotransferase (BcAT) isolated from Lactococcus lactis subsp. cremoris NCDO 763. Appl. Environ. Microbiol. 66, 571–577.
Rollan, G.C., Manca de Nadra, M.C., Pesce de Ruiz Holgado, A. and Oliver, G. (1989) Aspartate metabolism in Lactobacillus helveticus CRL581. 1 – Aspartate aminotransferase. Microbiol. Alim. Nutr. 7, 101–106.
Gao, S. and Steele, J.L. (1998) Purification and characterization of oligomeric species of an aromatic amino acid aminotransferase from Lactococcus lactis subsp. lactis S3. J. Food Biochem. 22, 197–211.
[74] Rijnen, L., Yvon, M., van Kranenburg, R., Courtin, P., Verheul, A., Chambellon, E. and Smit, G. (2003) Lactococal amino-transferases AraT and BcaT are key enzymes for the formation of aroma compounds from amino acids in cheese. Int. Dairy J. 13, 805–812.

[75] Jensen, R.A. and Calhoun, D.H. (1981) Intracellular roles of microbial amino transferases: Overlap enzymes across different biochemical pathways. Crit. Rev. Microbiol. 8, 229–266.

[76] Yvon, M. and Rijnen, L. (2001) Cheese flavour formation by amino acid catabolism. Int. Dairy J. 11, 185–201.

[77] Engels, W.J.M. (1997) Volatile and non-volatile compounds in ripened cheese: Their formation and their contribution to flavour. Ph.D. Thesis, Agricultural University, Wageningen, The Netherlands.

[78] Ganesan, B. and Weimer, B.C. (2004) Role of aminotransferase IlvE in production of branched-chain fatty acids by Lactococcus lactis subsp.lactis. Appl. Environ. Microbiol. 70, 638–641.

[79] Rijnen, L., Delacroix Buchet, A., Damaizieres, D., Le Quere, J.L., Gripon, J.C. and Yvon, M. (1999) Inactivation of lactococal aromatic aminotransferase prevents the formation of floral aroma compounds from aromatic amino acids in semi-hard cheese. Int. Dairy J. 9, 877–885.

[80] Yvon, M., Berthelot, S. and Gripon, J.C. (1998) Adding alphaketoglutarate to semi-hard cheese curd highly enhances the conversion of amino acids to aroma compounds. Int. Dairy J. 8, 889–898.

[81] Banks, J.M., Yvon, M., Gripon, J.C., de la Fuente, M.A., Brechany, E.Y., Williams, A.G. and Muir, D.D. (2001) Enhancement of amino acid catabolism in Cheddar cheese using alphaketoglutarate: Amino acid degradation in relation to volatile compounds and aroma character. Int. Dairy J. 11, 235–243.

[82] Rijnen, L., Courtin, P., Gripon, J.C. and Yvon, M. (2000) Expression of a heterologous glutamate dehydrogenase gene in Lactococcus lactis highly improves the conversion of amino acids to aroma compounds. Appl. Environ. Microbiol. 66, 1354–1359.

[83] Tanous, C., Kierczynski, A., Helinck, S., Chambellon, E. and Yvon, M. (2002) Glutamate dehydrogenase activity: A major criterion for the selection of flavour-producing lactic acid bacteria strains. Ant. Leeuwenhoek 82, 271–278.

[84] Kierczynski, A., Skie, S., Langsrued, T., Le Bars, D. and Yvon, M. (2004) The nature of aroma compounds produced in a cheese model by glutamate dehydrogenase positive Lactobacillus INF15D depends on its relative aminotransferase activities towards the different amino acids. Int. Dairy J. 14, 227–235.

[85] Kierczynski, A., Skie, S., Langsrued, T. and Yvon, M. (2003) Cooperation between Lactococcus lactis and nonstarter lactobacilli in the formation of cheese aroma from amino acids. Appl. Environ. Microbiol. 69, 734–739.

[86] Gao, S., Mooberry, E.S. and Steele, J.L. (1998) Use of 13C nuclear magnetic resonance and gas chromatography to examine methionine catabolism by lactococci. Appl. Environ. Microbiol. 64, 4670–4675.

[87] Gummalla, S. and Broadbent, J.R. (1999) Tryptophan catabolism by Lactobacillus casei and Lactobacillus helveticus cheese flavor adjuncts. J. Dairy Sci. 82, 2070–2077.

[88] Hummel, W., Schütte, H. and Kula, M.H. (1988) D-2-hydroxyisocaproate dehydrogenase from Lactobacillus delbrueckii subsp. bulgaricus. Gene cloning and enzyme characterization. Eur. J. Biochem. 224, 439–446.

[89] Hummel, W., Schütte, H. and Kula, M.H. (1985) D-(-)mandelic acid dehydrogenase from Lactobacillus curvatus. Appl. Microbiol. Biotechnol. 28, 433–439.

[90] Bernard, N., Johnson, K., Ferain, T., Garmyn, D., Hols, P., Holbrook, J.J. and Delcour, J. (1994) NAD+ dependent α-2-hydroxyisocaproate dehydrogenase of Lactobacillus delbrueckii subsp. bulgaricus. Gene cloning and enzyme characterization. Eur. J. Biochem. 224, 439–446.

[91] Yamazaki, Y. and Maeda, H. (1986) Enzymatic synthesis of optically pure (R)-α-mandelic acid and other 2-hydroxycarbonylic acids: Screening for the enzyme, and its purification, characterization and use. Agr. Biol. Chem. 50, 2621–2631.

[92] Schütte, H., Hummel, W. and Kula, M.H. (1984) α-2-Hydroxyisocaproate dehydrogenase-a new enzyme from Lactobacillus confusus for the stereospecific reduction of 2-ketocarboxylic acids. Appl. Microbiol. Biotechnol. 19, 167–176.

[93] Tokuda, C., Ishikura, Y., Shigematsu, M., Mutoh, H., Tsuzuki, S., Nakahira, Y., Tamura, Y., Shinoda, T., Ariai, K., Takahashi, O. and Taguchi, H. (2003) Conversion of Lactobacillus pentosus α-lactate dehydrogenase to an α-hydroxyisocaproate dehydrogenase through a single amino acid replacement. J. Bacteriol. 185, 5023–5026.

[94] Broadbent, J.R., Gummalla, S., Hughes, J.E., Johnson, M.E., Rankin, S.A. and Drake, M.A. (2004) Overexpression of Lactobacillus casei α-hydroxyisocaproic acid dehydrogenase in cheddar cheese. Appl. Environ. Microbiol. 70, 4814–4820.

[95] Bills, D.D., Morgan, M.E., Libbey, L.M. and Day, E.A. (1965) Identification of compounds responsible for fruity flavor defect of experimental Cheddar cheeses. J. Dairy Sci. 48, 1168–1173.

[96] Kubickova, J. and Grosch, W. (1997) Evaluation of potent odorants of Camembert cheese by dilution and concentration techniques. Int. Dairy J. 7, 65–70.

[97] Roger, S., Degas, C. and Gripon, J.C. (1988) Production of phenyl ethyl alcohol and its esters during ripening of traditional Camembert. Food Chem. 28, 1–12.

[98] Helinck, S., Spinnler, H.E., Parayre, S., Dame-Cahagne, M. and Bonnarme, P. (2000) Enzymatic versus spontaneous S-methyl thioester synthesis in Geotrichum candidum. FEMS Microbiol. Lett. 193, 237–241.

[99] Fernandez, M., Beethuyzen, M.M., Brown, J., Siezen, R.J., Coolbear, T., Holland, R. and Kuipers, O.P. (2000) Cloning, characterization, controlled overexpression, and inactivation of the major tributyrin esterase gene of Lactococcus lactis. Appl. Environ. Microbiol. 66, 1360–1368.

[100] Nardi, M., Fiez Vandal, C., Tailliez, P. and Monnet, V. (2002) The EstA esterase is responsible for the main capacity of Lactococcus lactis to synthesize short chain fatty acid esters in vitro. J. Appl. Microbiol. 93, 1004–1009.

[101] Wouters, J.A., Jansen-Van den Bosch, T., Floris, E., Mandrich, L., van Hylckama Vlieg, J.E.T., Smit, G. (submitted for publication) Esterase EstA of Lactococcus lactis MG1363 is involved in the degradation of thio-esters and ester ethyl important for cheese flavor. Int. J. Food Microbiol.

[102] Liu, S.Q., Holland, R. and Crow, V.L. (2004) Esters and their biosynthesis in fermented dairy products: A review. Int. Dairy J. 14, 923–945.

[103] Larroustre, C., Ardaillon, V., Montel, M.C. (1999) Production of aromatic compounds arising from leucine during growth of Carnobacterium piscicola. In: Sixth symposium on lactic acid bacteria: Genetics, metabolism and applications, Veldhoven, The Netherlands.

[104] Ayad, E.H.E., Verheul, A., de Jong, C., Wouters, J.T.M. and Smit, G. (1999) Flavour forming abilities and amino acid requirements of Lactobacillus lactis strains isolated from artisanal and non-dairy origin. Int. Dairy J. 9, 725–735.

[105] Weerkamp, A.H., Klijn, N., Neeter, R. and Smit, G. (1996) Properties of mesophilic lactic acid bacteria from raw milk and naturally fermented raw milk products. Neth. Milk Dairy J. 50, 319–332.

[106] Miller, A., Morgan, M.E. and Libbey, L.M. (1974) Lactobacillus maltaromicus, a new species producing a malty aroma. Int. J. Syst. Bact. 24, 346–354.

[107] Morgan, M.E., Lindsay, R.C. and Libbey, L.M. (1966) Identity of additional aroma constituents in milk cultures of Streptococcus lactis var. maligenes. J. Dairy Sci. 49, 15–18.
Namba, Y., Yoshizawa, K., Ejima, A., Hayashi, T. and Kaneda, Gao, S., Oh, D.H., Broadbent, J.R., Johnson, M.E., Weimer, Nosova, T., Jousimies Somer, H., Jokelainen, K., Heine, R. and Amarita, F., Fernandez Espla, D., Requena, T. and Pelaez, C. Smit, B.A., Engels, W.J.M., Wouters, J.T.M. and Smit, G. (1997) Biochemical and molecular characterization of the gene encoding methionine-gamma-lyase in Brevibacterium linens MG1363. J. Appl. Environ. Microbiol. 63, 561–566. Curtin, A.C., De, A.M., Cipriani, M., Corbo, M.R., McSweeney, P.L.H. and Gobbetti, M. (2001) Amino acid catabolism in cheese-related bacteria: Selection and study of the effects of pH, temperature and NaCl by quadratic response surface methodology. J. Appl. Microbiol. 91, 312–321. Bruiinenberg, P.G. (2002) Method for the preparation of a cheese product. Patent: EP 1216619. Collin, J.C. and Law, B.A. (1989) Isolation and characterization of the l-methionine-gamma-demethiolase from Brevibacterium linens NCD0 739. Sci. Aliments 9, 805–812. Amarita, F., Yvon, M., Nardi, M., Chambellan, E., Delette, J. and Bonnarre, P. (2004) Identification and functional analysis of the gene encoding methionine-gamma-lyase in Brevibacterium linens. Appl. Environ. Microbiol. 70, 7348–7354. Bonnarre, P., Amarita, F., Chambellan, E., Semon, E., Spinnler, H.E. and Yvon, M. (2004) Methylthioacetaldehyde, a possible intermediate metabolite for the production of volatile sulphur compounds from l-methionine by Lactococcus lactis. FEMS Microbiol. Lett. 236, 367–374. Amarita, F., Fernandez Espla, D., Requena, T. and Pelaez, C. (2001) Conversion of methionine to methionol by Lactococcus lactis. FEMS Microbiol. Lett. 204, 189–195. Nosova, T., Joussimies Somer, H., Jokelainen, K., Heine, R. and Salaspuro, M. (2000) Acatelaldehyde production and metabolism by human indigenous and probiotic Lactobacillus and Bifidobacterium strains. Alcohol Alcoholism 35, 561–568. Gao, S., Oh, D.H., Broadbent, J.R., Johnson, M.E., Weimer, B.C. and Steele, J.L. (1997) Aromatic amino acid catabolism by lactococci. Lait 77, 381–387. Namba, Y., Yoshizawa, K., Ejima, A., Hayashi, T. and Kaneda, T. (1969) Coenzyme A and nicotinamide adenine dinucleotide-dependent branched-chain 2-keto acid dehydrogenase. J. Biol. Chem. 244, 4437–4447. Yokoyama, M.T. and Carlson, J.R. (1981) Production of skatole and para-cresol by a rumen Lactobacillus sp. Appl. Environ. Microbiol. 41, 71–76. Jensen, N.B.S., Melchior, C.R., Jokumsen, K.V. and Villadsen, J. (2001) Metabolic behavior of Lactococcus lactis MGI1363 in microaerobic continuous cultivation at a low dilution rate. Appl. Environ. Microbiol. 67, 2677–2682. Libudzisz, Z., Piarkiewicz, A., Oberman, H. and Lubnauer, M. (1993) Heterogeneity of the physiological activity of Lactococcus and Leuconostoc strains. Acta Microbiol. Pol. 42, 181–192. Zourari, A., Accolas, J.P. and Desmazeaud, M.J. (1992) Metabolism and biochemical characteristics of yogurt bacteria. A review. Lait 72, 1–34. Marshall, V.M. and Cole, W.M. (1983) Threonine aldolase and alcohol dehydrogenase activities in Lactobacillus bulgaricus and Lactobacillus acidophilus and their contribution to flavour formation in fermented milks. J. Dairy Res. 59, 369–380. Bruiinenberg, P.G., de Roo, G. and Limswotin, G.K.Y. (1997) Purification and characterization of cystathionine γ-lyase from Lactococcus lactis subsp. cremoris SK11: Possible role in flavour compound formation during cheese maturation. Appl. Environ. Microbiol. 63, 561–566. Dias, B. and Weimer, B. (1998) Purification and characterization of l-methionine gamma-lyase from Brevibacterium linens BL2. Appl. Environ. Microbiol. 64, 3327–3331. Fernandez, M., Kleerebezem, M., Kuipers, O.P., Siezen, R.J. and van Kranenburg, R. (2002) Regulation of the metC-cysK operon, involved in sulfur metabolism in Lactococcus lactis. J. Bacteriol. 184, 82–90. Fernandez, M., van Doesburg, W., Rutten, G.A.M., Marugg, J.D., Alting, A.C., van Kranenburg, R. and Kuipers, O.P. (2000) Molecular and functional analyses of the metC gene of Lactococcus lactis, encoding cystathionine beta-lyase. Appl. Environ. Microbiol. 66, 42–48. Smacchi, E. and Gobbetti, M. (1998) Purification and characterization of cystathionine gamma-lyase from Lactobacillus delbrueckii subsp. diacetylactis FT41. FEMS Microbiol. Lett. 166, 197–202. Curtis, A.C., De, A.M., Cipriani, M., Corbo, M.R., McSweeney, P.L.H. and Gobbetti, M. (2001) Amino acid catabolism in cheese-related bacteria: Selection and study of the effects of pH, temperature and NaCl by quadratic response surface methodology. J. Appl. Microbiol. 91, 312–321. Bruiinenberg, P.G. (2002) Method for the preparation of a cheese product. Patent: EP 1216619. Collin, J.C. and Law, B.A. (1989) Isolation and characterization of the l-methionine-gamma-demethiolase from Brevibacterium linens NCD0 739. Sci. Aliments 9, 805–812. Amarita, F., Yvon, M., Nardi, M., Chambellan, E., Delette, J. and Bonnarre, P. (2004) Identification and functional analysis of the gene encoding methionine-gamma-lyase in Brevibacterium linens. Appl. Environ. Microbiol. 70, 7348–7354. Bonnarre, P., Amarita, F., Chambellan, E., Semon, E., Spinnler, H.E. and Yvon, M. (2004) Methylthioacetaldehyde, a possible intermediate metabolite for the production of volatile sulphur compounds from l-methionine by Lactococcus lactis. FEMS Microbiol. Lett. 236, 85–90. Arfi, K., Amarita, F., Spinnler, H.E. and Bonnarre, P. (2003) Catabolism of volatile sulfur compounds precursors by Brevibacterium linens and Geotrichum candidum, two microorganisms of the cheese ecosystem. J. Biotechnol. 105, 245–253. Raya, R.R., Mzina de Nadra, M.C., Pesce de Ruiz-Holgado, A. and Oliver, G. (1986) Acatelaldehyde metabolism in lactic acid bacteria. Milchwissenschaft 41, 397–399. Chaves, A.C.S.D., Fernandez, M., Lerayer, A.L.S., Mierau, I., Kleerebezem, M. and Hugenholz, J. (2002) Metabolic engineering of acetaldehyde production by Streptococcus thermophilus. Appl. Environ. Microbiol. 68, 5656–5662. Gonzalez, S., Morata de Ambrosini, V., Manca de Nadra, M., Pesce de Ruiz, H.A. and Oliver, G. (1994) Acatelaldehyde production by strains used as probiotics in fermented milk. J. Food Prot. 57, 436–440. Villablanca, M. and Clelton, G. (1987) Oxidation of phenylpyruvic acid. Biochim. Biophys. Acta 926, 224–230. Archibald, F. (1986) Manganese: Its acquisition by and function in lactic acid bacteria. Crit. Rev. Microbiol. 13, 63–109. Meijer, W., van de Bunt, B., Twigt, M., de Jonge, B., Smit, G. and Hugenholz, J. (1998) Lysis of Lactococcus lactis subsp. lactis SK110 and its nisin-immune transconjugant in relation to flavor development in cheese. Appl. Environ. Microbiol. 64, 1950–1953. Hofmann, T. and Schieberle, P. (2000) Formation of aromatic Strecker-aldehydes by a direct oxidative degradation of Amadori compounds. J. Agric. Food Chem. 48, 4301–4305. Martins, S.I.F.S., Jongen, W.M.F. and Boekel, M.J.A.S. (2000) A review of maillard reaction in food and implications to kinetic modelling. Trends Food Sci. Technol. 11, 364–373.
Yaylayan, V.A., Anahita, K. and Keyhani, A. (2001) Carbohydrate and amino acid degradation pathways in \(\text{t-methionine/t-[13C]} \) glucose model systems. J. Agric. Food Chem. 49, 800–803.

Yaylayan, V.A. (2003) Recent advances in the chemistry of Strecker degradation and Amadori rearrangement: Implications to aroma and color formation. Food Sci. Technol. Res. 9, 1–6.

Perpete, P. and Collin, S. (2000) Evidence of Strecker aldehyde excretion by yeast in cold contact fermentations. J. Agric. Food Chem. 48, 2384–2386.

Smit, G., van Hylckama Vlieg, J.E.T., Smit, B.A., Ayad, E.H.E. and Engels, W.J.M. (2002) Fermentative formation of flavour compounds by lactic acid bacteria. Austr. J. Dairy Technol. 57, 61–68.

Ferchichi, M., Hemme, D., Nardi, M. and Pamboukdjian, N. (1985) Production of methanethiol from methionine by \textit{Brevibacterium linens} CNRZ918. J. Gen. Microbiol. 131, 715–723.

Chambellon, E. and Yvon, M. (2003) CodY-regulated aminotransferases AraT and BcaT play a major role in the growth of \textit{Lactococcus lactis} in milk by regulating the intracellular pool of amino acids. Appl. Environ. Microbiol. 69, 3061–3068.

Guedon, E., Seror, P., Ehrlich, S., Renault, P. and Delorme, C. (2001) Pleiotropic transcriptional repressor CodY senses the intracellular pool of branched-chain amino acids in \textit{Lactococcus lactis}. Mol. Microbiol. 40.

Lepeuple, A.S., Vassal, L., Cesselin, B., Delacroix Buchet, A., Gripon, J.C. and Chapot Chartier, M.P. (1998) Involvement of a prophage in the lysis of \textit{Lactococcus lactis} subsp. \textit{cremoris} AM2 during cheese ripening. Int. Dairy J. 8, 667–674.

Bourdat Deschamps, M., Le Bars, D., Yvon, M. and Chapot Chartier, M.P. (2004) Autolysis of \textit{Lactococcus lactis} AM2 stimulates the formation of certain aroma compounds from amino acids in a cheese model. Int. Dairy J. 14, 791–800.

de Palencia, P.F., de la Plaza, M., Mohedano, M.L., Martinez Cuesta, M.C., Requena, T., Lopez, P. and Pelaez, C. (2004) Enhancement of 2-methylbutanal formation in cheese by using a fluorescently tagged Lacticiin 3147 producing \textit{Lactococcus lactis} strain. Int. J. Food Microbiol. 93, 335–347.

Cocaing-Bousquet, M., Garrigues, C., Novak, L., Lindley, N.D. and Loubiere, P. (1995) Rational development of a simple synthetic medium for sustained growth of \textit{Lactococcus lactis}. J. Appl. Bacteriol. 79, 108–116.

Chopin, A. (1993) Organization and regulation of genes form amino acid biosynthesis in lactic acid bacteria. FEMS Microbiol. Rev. 12, 21–38.

Jensen, P.R. and Hammer, K. (1993) Minimal requirements for exponential growth of \textit{Lactococcus lactis}. Appl. Environ. Microbiol. 59, 4363–4366.

Ayad, E.H.E., Verheul, A., Wouters, J.T.M. and Smit, G. (2001) Population dynamics of lactococci from industrial, artisanal and non-dairy origins in defined strain starters for Gouda-type cheese. Int. Dairy J. 11, 51–61.

Ayad, E.H.E., Verheul, A., Engels, W.J.M., Wouters, J.T.M. and Smit, G. (2001) Enhanced flavour formation by combination of selected lactococci from industrial and artisanal origin with focus on completion of a metabolic pathway. J. Appl. Microbiol. 90, 59–67.

Ayad, E.H.E., Verheul, A., J.T.M. Smit, G. (2002) Antimicrobial-producing wild lactococci isolated from artisanal and non-dairy origins. Int. Dairy J. 12, 145–150.

Neeter, R. and De Jong, C. (1992) Flavour research on milk products: Use of purge-and-trap techniques. Voed. Technol. 25, 9–11.

Ayad, E.H.E., Verheul, A., Bruinenberg, P.G., Wouters, J.T.M. and Smit, G. (2003) Starter culture development for improving the flavour of Proosdij-type cheese. Int. Dairy J. 13, 159–168.

Kleerebezem, M., Boekhorst, J., van Kranenburg, R., Molenaar, D., Kuipers, O.P., Leer, T., Tarchini, R., Peters, S.A., Sandbrink, H.M., Fiers, M.W., Steikema, W., Lankhorst, R.M., Bron, P.A., Hoffer, S.M., Nierop Groot, M., Kerkhoven, R., de Vries, M., Ursing, B., de Vos, W.M. and Siezen, R.J. (2003) Complete genome sequence of \textit{Lactobacillus plantarum} WCFS1. PNAS 100, 1990–1995.

Christensen, K.R. and Reineccius, G.A. (1995) Aroma extract dilution analysis of aged Cheddar cheese. J. Food Sci. 60, 218–220.

Milo, C. and Reineccius, G.A. (1997) Identification and quantification of potent odorants in regular-fat and low-fat mild cheddar cheese. J. Agric. Food Chem. 45, 3590–3594.

Curioni, P.M.G. and Bosset, J.O. (2002) Key odorants in various cheese types as determined by gas chromatography–olfactometry. Int. Dairy J. 12, 959–984.

Preininger, M. and Grosch, W. (1994) Evaluation of key odorants of the neutral volatiles of Emmentaler cheese by the calculation of odour activity values. Leb. Wissensch. Technol. 27, 237–244.

Badings, H.T. (1984) Flavors and off-flavors. In: Dairy Chemistry and Physics (Jenness, R., Ed.), pp. 336–357. John Wiley & sons, New York.

Griffith, R. and Hammond, E.G. (1989) Generation of Swiss cheese flavor components by the reaction of amino acids with carbonyl compounds. J. Dairy Sci. 72, 604–613.

Dacremont, C. and Vickers, Z. (1994) Concept matching technique for assessing importance of volatile compounds for Cheddar cheese aroma. J. Food Sci. 59, 981–985.

Leffingwell, J.C. and Cantrell, J.P. (1989) Flavor-Base. Leffingwell & Associates, Canton.

Dobric, N., Limsworth, G.K., Hillier, A.J., Dudman, N.P. and Davidson, B.E. (2000) Identification and characterization of a cystationine beta/gamma-lyase from \textit{Lactococcus lactis} ssp. \textit{cremoris} MG1363. FEMS Microbiol. Lett. 182, 249–254.