Dimensionality reduction to maximize prediction generalization capability

Takuya Isomura and Taro Toyoizumi

Generalization of time series prediction remains an important open issue in machine learning; earlier methods have either large generalization errors or local minima. Here, we develop an analytically solvable, unsupervised learning scheme that extracts the most informative components for predicting future inputs, which we call predictive principal component analysis (PredPCA). Our scheme can effectively remove unpredictable noise and minimize test prediction error through convex optimization. Mathematical analyses demonstrate that, provided with sufficient training samples and sufficiently high-dimensional observations, PredPCA can asymptotically identify hidden states, system parameters and dimensionalities of canonical nonlinear generative processes, with a global convergence guarantee. We demonstrate the performance of PredPCA using sequential visual inputs comprising handwritten digits, rotating three-dimensional objects and natural scenes. It reliably estimates distinct hidden states and predicts future outcomes of previously unseen test input data, based exclusively on noisy observations. The simple architecture and low computational cost of PredPCA are highly desirable for neuromorphic hardware.

Prediction is essential for both biological organisms and machine learning. In particular, they both need to predict the dynamics of newly encountered sensory inputs (that is, test data) based on and only on knowledge learned from a limited number of past experiences (that is, training data). Generalization error is a standard measure of the generalization capability of predicting the future consequences of previously unseen input data, which is defined as the difference between the training and test prediction errors. It is thus crucial for organisms and machines to find a prediction strategy with a small generalization error, because otherwise their predictions will fail because of overfitting to the training data.

Despite the importance of generalizing prediction, current mainstream machine learning approaches have some limitations. The approaches can be categorized into three major groups, and their limitations are summarized as follows: (1) The most basic prediction strategy is to learn a direct mapping from past to future inputs in the form of an autoregressive model (Fig. 1a). Although autoregressive models are simple to construct and guarantee global convergence, their predictions contain a large generalization error because the mapping from the observations to the prediction is often redundant, leading to severe overfitting when the number of training samples is limited. Thus, to make accurate predictions, low-dimensional (that is, concise) representations should be extracted from high-dimensional (that is, redundant) sensory data. (2) A dimensionality reduction technique can be used to obtain a concise representation; however, this is often achieved separately from the prediction step—for example, by first applying an autoencoder to reduce the dimensionality and then employing a long short-term memory to predict the sequence (Fig. 1b). The first autoencoding step—which provides a low-dimensional representation that minimizes the loss for reconstructing the current input—is the most basic dimensionality reduction strategy. One problem with this approach is that autoencoders may preferentially extract observation noise that is useless for prediction, owing to its extra variance. From a prediction perspective, it is more helpful to reduce the dimensionality to minimize the prediction error, similar to the approach used in time-lagged autoencoders (TAEs) and their variants (Fig. 1c). These approaches combine predictions with dimensionality reduction in a single architecture. (3) A major approach to time-series prediction is to construct a state-space model (SSM). SSMs, which include the Kalman filter and its nonlinear variants, simultaneously perform dimensionality reduction and prediction (Fig. 1d). From this model-based perspective, the best prediction is achieved when an SSM employs the states and parameters that match the true properties of the external system. However, the problem becomes difficult when both the hidden states and system parameters are unknown. In particular, their predictions become inaccurate owing to nonlinear interactions between the uncertainties in hidden states and parameters, because they can create spurious solutions. Furthermore, the dimensionality of hidden states, which is essential for prediction accuracy, is difficult to optimize. Conventional model selection approaches using some information criterion or structural risk would fail to identify the optimal dimensionality when the state or parameter estimation converges to a suboptimal solution. In short, all three approaches have essential drawbacks that interfere with the generalization of accurate predictions.

To overcome these limitations, we establish a method that can solve this simultaneous optimization problem of hidden states, system parameters and dimensionality with a global convergence guarantee. We develop an unsupervised learning scheme for extracting features that are essential for prediction, which we call predictive principal component analysis (PredPCA). It is formally derived from the minimization of the squared prediction error and can extract low-dimensional predictive features from high-dimensional sensory inputs, even in the presence of observation noise that is much larger than the signals themselves. This robustness is because PredPCA conducts post hoc dimensionality reduction to extract a concise representation of the predicted input (Fig. 1e), unlike autoencoders or SSMs. Moreover, the architecture of PredPCA is...
suitable for noise reduction because it predicts the subsequent input based on multi-timestep basis functions, unlike TAEs and their variants. These properties allow PredPCA to find hidden states (refer to blind source separation) and to perform long-term prediction reliably and accurately. In particular, system parameter identification using PredPCA contrasts with conventional methods. It is guaranteed to asymptotically identify the true parameters of the input. Note that \mathbf{x}_t is a N_x-dimensional vector of encoders, V is a (horizontally long) $N_x \times N_y$ encoding synaptic weight matrix, and $\mathbf{\phi}_t \equiv \begin{pmatrix} s^{T}_t, s^{T}_{t-1}, \ldots, s^{T}_{t-K_y+1} \end{pmatrix}$ is an N_y-dimensional vector of linear basis functions that summarize current and past observations. We refer to this linear encoder as a neural network, intending an analogy to biological neural networks and to highlight potential applications to neuromorphic computation (see ‘Discussion’ section for further details). Unlike standard PCA and autoencoders, which minimize the reconstruction error in the current input, PredPCA minimizes the prediction error $\mathbf{\epsilon}_{t+1|t} \equiv \mathbf{s}_{t+1} - W^{T} \mathbf{u}_{t+1|t}$, defined as the difference between the actual next input at $t+1$ and the prediction based on inputs up to t. Here, W^{T} is an $N_y \times N_x$ decoding synaptic weight matrix used for predicting the next input \mathbf{s}_{t+1} based on the encoder parameters $\mathbf{u}_{t+1|t}$ (where we introduced the transposed matrix W^{T} rather than W for a notational reason that will become clear below). PredPCA's cost function L is defined as the expectation of the squared prediction error over the training period T:

$$L \equiv \frac{1}{2} \mathbb{E} \left[\sum_{t=1}^{T} \mathbf{\epsilon}_{t+1|t} \right]^{2}.$$

Here, $\mathbb{E} \left[\mathbf{\epsilon}_{t+1|t} \right]^{2}$ indicates the expectation over the empirical distribution q. By minimizing this cost function with respect to V, we obtain the optimal encoding weights as $V = W^{Q}$, where $Q \equiv Q^{(t+1)\mathbf{\phi}_t}$. Thus, $\mathbf{u}_{t+1|t} = W^{\ast} \mathbf{s}_{t+1}^{(\ast)}$ holds, where $\mathbf{s}_{t+1}^{(\ast)} = Q^{\mathbf{\phi}_t}$ is the desired decoding weights. By minimizing this cost function with respect to V, we obtain the optimal decoding weights as $V = W^{Q}$, where $Q \equiv Q^{(t+1)\mathbf{\phi}_t}$. Thus, $\mathbf{u}_{t+1|t} = W^{\ast} \mathbf{s}_{t+1}^{(\ast)}$ holds, where $\mathbf{s}_{t+1}^{(\ast)} = Q^{\mathbf{\phi}_t}$ is the desired decoding weights. By minimizing this cost function with respect to V, we obtain the optimal decoding weights as $V = W^{Q}$, where $Q \equiv Q^{(t+1)\mathbf{\phi}_t}$. Thus, $\mathbf{u}_{t+1|t} = W^{\ast} \mathbf{s}_{t+1}^{(\ast)}$ holds, where $\mathbf{s}_{t+1}^{(\ast)} = Q^{\mathbf{\phi}_t}$ is the desired decoding weights. By minimizing this cost function with respect to V, we obtain the optimal decoding weights as $V = W^{Q}$, where $Q \equiv Q^{(t+1)\mathbf{\phi}_t}$. Thus, $\mathbf{u}_{t+1|t} = W^{\ast} \mathbf{s}_{t+1}^{(\ast)}$ holds, where $\mathbf{s}_{t+1}^{(\ast)} = Q^{\mathbf{\phi}_t}$ is the desired decoding weights. By minimizing this cost function with respect to V, we obtain the optimal decoding weights as $V = W^{Q}$, where $Q \equiv Q^{(t+1)\mathbf{\phi}_t}$. Thus, $\mathbf{u}_{t+1|t} = W^{\ast} \mathbf{s}_{t+1}^{(\ast)}$ holds, where $\mathbf{s}_{t+1}^{(\ast)} = Q^{\mathbf{\phi}_t}$ is the desired decoding weights. By minimizing this cost function with respect to V, we obtain the optimal decoding weights as $V = W^{Q}$, where $Q \equiv Q^{(t+1)\mathbf{\phi}_t}$. Thus, $\mathbf{u}_{t+1|t} = W^{\ast} \mathbf{s}_{t+1}^{(\ast)}$ holds, where $\mathbf{s}_{t+1}^{(\ast)} = Q^{\mathbf{\phi}_t}$ is the desired decoding weights. By minimizing this cost function with respect to V, we obtain the optimal decoding weights as $V = W^{Q}$, where $Q \equiv Q^{(t+1)\mathbf{\phi}_t}$. Thus, $\mathbf{u}_{t+1|t} = W^{\ast} \mathbf{s}_{t+1}^{(\ast)}$ holds, where $\mathbf{s}_{t+1}^{(\ast)} = Q^{\mathbf{\phi}_t}$ is the desired decoding weights.
maximum likelihood estimator of s_{i+1}. The synaptic weight matrix W is updated by gradient descent on L. After some additional transformations (see Methods section ‘Derivation of PredPCA’), we obtain

$$\dot{W} \propto -\frac{\partial L}{\partial W} = \left(u_{i+1}^T \left(s_{i+1} - W^T u_{i+1} \right) \right)_q^T$$

The fixed point of equation (5) yields the transpose of optimal decoding weights that minimize L. The solution ensures that the encoders u_{i+1} achieve the optimal representation for prediction.

Equation (5) is equivalent to the subspace rule of PCA\(^\text{\dagger}\), except that u_{i+1} encodes the future state at time $t+1$ instead of the state at time t (that is, the standard PCA uses u_t). This means that PredPCA, which is defined by the prediction error minimization,
can be decomposed into two steps: computing the maximum likelihood estimator of $s_{t+1|t}$, followed by a post hoc PCA of $s_{t+1|t}$, using the eigenvalue decomposition (Fig. 1e). Owing to the global convergence property of the subspace rule for PCA, the global convergence of equation (5) is also guaranteed. In essence, PredPCA is a convex optimization. Crucially, however, only PredPCA (but not the standard PCA) can effectively filter out unpredictable observation noise, as we demonstrate numerically below and mathematically in Methods section ‘Filtering out observation noise’. It is straightforward to extend PredPCA to multi-step predictions (see Methods section ‘Derivation of PredPCA’ for further details). We note that although this paper focuses on the prediction of subsequent inputs (that is, autoregression), it is straightforward to apply PredPCA to minimize the generalization error for a class of regression tasks. The formulation for this is performed simply by supposing that the hidden states x_t generate both observations s_t and a high-dimensional target signal y_t and by replacing the prediction error $e_{t+1|t}$ with $e_t \equiv y_t - W^T \phi_t$.

After extracting the hidden states by using PredPCA, we employ independent component analysis (ICA)\(^ {11,12}\), which can separate the extracted states into independent components as long as the true hidden states of the external milieu are actually mutually independent. For example, when the network observes a sequence of handwritten digits generated using the MNIST dataset\(^ {13}\), PredPCA followed by ICA generates 10-dimensional independent encoders $x_{t+1|t}$, each element of which encodes one of the ten possible digits (Fig. 2a, right). The detailed procedure to extract $x_{t+1|t}$ from $u_{t+1|t}$ is provided in Methods section ‘Asymptotic linearization theorem’.

Previous works have developed methods combining future data predictions with dimensionality reduction, for example, time-lagged independent component analysis (TICA)\(^ {14}\), TAE\(^ {13}\) and dynamic mode decomposition (DMD)\(^ {15}\). When $\phi_t = s_t$, PredPCA is involved in this family of methods—thus, one may view PredPCA as a combination of these methods and autoregressive models based on high-dimensional, multi-timestep basis functions. This construction enables PredPCA to effectively filter out observation noise and reduce test prediction error (see below).

Key analytical discoveries. We conducted comprehensive mathematical analyses to rigorously demonstrate the performance and statistical properties of PredPCA. In particular, we demonstrated the following two key properties. First, it is mathematically guaranteed that PredPCA can identify the optimal (explained below) hidden state representation and parameter estimators—up to a linear transformation that does not affect prediction accuracy—for general linear systems and, asymptotically, even for nonlinear systems (Methods sections ‘Asymptotic linearization theorem’ and ‘System parameter identification’). When equations (1) and (2) are involved in a class of canonical nonlinear systems defined by equations (8) and (9), a set of hidden states, parameters and dimensionalities that characterize a system is uniquely determined up to a trivial linear ambiguity (Methods section ‘System’). Under this condition, while using a linear neural network for the encoding, the asymptotic linearization theorem\(^ {16}\) ensures that PredPCA will extract the true hidden states when the hidden state dimensionality is large and the input dimensionality is sufficiently larger than the hidden state dimensionality. Briefly, this is because projecting the high-dimensional input onto the directions of the major eigenvectors of the input covariance effectively magnifies the linearly transformed components of the hidden states included in the input, while filtering out the nonlinear components (see Methods section ‘Asymptotic linearization theorem’ for its mathematical statement and the conditions for application; see ref. \(^ {16}\) for the mathematical proof).

Owing to this linearization property, the hidden state estimator $x_{t+1|t}$ obtained using PredPCA asymptotically converges to a linear transformation of the maximum likelihood estimator of hidden states x_t, that is, $\langle x_t + \phi_t \rangle_q = \langle \phi_t \rangle_q^{-1} \phi_t$. Hence, PredPCA provides the optimal hidden state representation for prediction. Furthermore, the analytical expressions of the system parameter estimators are derived as functions of $x_{t+1|t}$, with a convergence guarantee to the true parameter values in the large sample-size and system-size limits. These parameter estimators are calculated by a simple iteration-free computation summarized in Table 2 and Methods section ‘System parameter identification’. In essence, provided with sufficient but finite training samples, PredPCA can identify the hidden states and parameters of large-scale canonical systems up to a small estimation error. This result is surprising because the reliable identification of the optimal hidden states and the true parameters were previously only described within the framework of supervised learning, whereas PredPCA can provide them by unsupervised learning without relying on the true hidden states x_t

Second, PredPCA can maximize the prediction generalization capability by minimizing the test prediction error

$$L_{\text{test}} \equiv \frac{1}{2} \left\langle |e_{t+1|t}|^2 \right\rangle$$

(6)

Here, $\left\langle \cdot \right\rangle \equiv \int \rho(\phi, s_{t+1}) \, d\phi \, ds_{t+1}$ indicates the expectation over the true distribution $\rho(\phi, s_{t+1})$ (note the difference from equation (4)). In practice, however, the true distribution is unknown for a learner. Thus, one needs to estimate equation (6) based on and only on parameters estimated from the training data. In the framework of the maximum likelihood estimation or squared error minimization, the expectation of the test error is expressed as an Akaike information criterion (AIC)\(^ {17}\) or network information criterion (NIC)\(^ {18}\), respectively. Similar to the derivation of AIC and NIC, we explicitly
compute the expectation of equation (6), with the optimized synaptic weights, as
\[
\mathcal{L} = \mathbb{E}(q) \left[L_{\text{test}} \right] = \frac{1}{2} \left(\text{tr} [\Sigma] - \text{tr} \left[P_s^T \Sigma^\text{Pred} P_s \right] \right) + \frac{N_k}{T^2} \text{tr} \left[P_s^T \left(\Sigma - \Sigma^\text{Pred} \right) P_s \right] + O \left(T^{-2} \right)
\]

The derivation is presented in Methods section ‘Test prediction error minimization’. Here, \(T \) is the number of training samples, \(P_s \) is the first-to-\(N_k \)-th major eigenvectors of the predicted input covariance \(\Sigma^\text{Pred} \equiv \langle s_{t+1} | s_{t+1} \rangle_q \) (where \(W^T W = P_s P_s^T \) holds at the fixed point of equation (5)), and \(\Sigma \equiv \langle s_{t} s_{t} \rangle_q \) is the actual input covariance. The expectation \(E_q[\cdot] \) is taken over different empirical distributions \(q \), each of which comprises \(T \) training samples and is used to optimize synaptic weights.

The expectation of the test prediction error \(\mathcal{L} \) is characterized by two free parameters: the rank of encoding dimensions (\(N_k \)) and the number of past observations used for the maximum likelihood estimation (\(K_p \)). The optimal generalization error is guaranteed to converge to the true hidden basis dimensionality of the canonical system for a large but finite \(T \) (Methods section ‘Test prediction error minimization’). The second term of \(\mathcal{L} \), referred to as the generalization error, is associated with an entropy that is due to the sampling fluctuation\(^2\). This term indicates that only the prediction error projected to the major eigenspace causes the generalization error, which highlights the importance of dimensionality reduction to reduce the test prediction error. In short, naively minimizing the training error by using a large encoding dimensionality, such as in autoregressive models, leads to overfitting; in contrast, minimizing \(\mathcal{L} \) provides the best encoding dimensionality and number of past observations to generalize the prediction.

For further details, please see Methods and Supplementary Information. The aforementioned analytical results are empirically validated through numerical simulations by confirming the reliable identification of properties of canonical systems defined in Methods section ‘System’ (Supplementary Fig. 1a–c). Furthermore, empirical observations imply that the outcomes of PredPCA can be utilized to identify the properties of more general classes of systems (for example, a class involving a Lorenz attractor; Supplementary Fig. 1d–f), although system parameter identification beyond the class defined in Methods section ‘System’ has not yet been proved mathematically. In what follows, we demonstrate the performance of PredPCA using sequential visual inputs comprising handwritten digits, rotating three-dimensional (3D) objects and natural scenes (refer to Supplementary Methods sections 1 and 2 for simulation protocols).

PredPCA provides optimal representation and parameters for prediction. In the first experiment (Fig. 2), we trained a neural network with MNIST handwritten digit images\(^3\) in ascending order and in the Fibonacci sequence, wherein only the last digit was presented; however, these sequences involve some additional stochasticity (which corresponds to process noise \(\sigma_z \)) such that a digit was replaced by a random one and a monochrome inversion occurred with a small probability at each step (analogous to large noise that interferes with weak signal measurements: for example, movement artefacts in electroencephalogram recordings\(^5\)). In both cases, PredPCA successfully extracted 10-dimensional features underlying the image sequences as they were relevant to predicting the sequences. The following ICA\(^6\) separated the extracted components into independent hidden states. Each of the ensuing encoder neurons (that is, independent components, \(\mathbf{x}_{k+1/d} \)) selectively responded to one of the ten digits without being taught their labels, as we can see for the encoders trained with the ascending sequence in Fig. 2a (right).

Irrespective of the sequence types (ascending order and Fibonacci sequence), PredPCA and ICA precisely separated the digits into ten clusters in 10 dimensions with an average categorization

Table 2 | Definitions and analytical solutions of estimators

Estimator	Definition	Analytical solution									
\(\mathbf{s}_{t+1}	p_{t+1}	\mathbf{p}_s	\mathbf{P}_s \)	\(\langle s_{t+1}	p_{t+1}	\mathbf{p}_s	\mathbf{P}_s \rangle_q \)	\(\langle s_{t+1}	p_{t+1}	\mathbf{p}_s	\mathbf{P}_s \rangle_q \)
\(\Sigma_{t+1}	\mathbf{P}_s \mathbf{P}_s^T \)	\(\Omega_p \langle w_{t+1}	p_{t+1}	\mathbf{p}_s	\mathbf{P}_s \rangle_q \)	\(\Omega_p \langle w_{t+1}	p_{t+1}	\mathbf{p}_s	\mathbf{P}_s \rangle_q + \mathcal{O} \left(T^{-2} \right) \)		
\(\mathbf{x}_{t+1}	\mathbf{P}_s \mathbf{P}_s^T \)	\(\Omega_p \langle x_{t+1}	p_{t+1}	\mathbf{p}_s	\mathbf{P}_s \rangle_q \)	\(\Omega_p \langle x_{t+1}	p_{t+1}	\mathbf{p}_s	\mathbf{P}_s \rangle_q + \mathcal{O} \left(T^{-2} \right) + \mathcal{O} \left(\sigma_p \right) \)		

The external system is characterized by \(s_t = \mathbf{A}_s \mathbf{x}_t + \mathbf{w}_t \) and \(s_{t+1} = \mathbf{A}_s \mathbf{x}_{t+1} + \mathbf{z}_t \). Throughout the Article, a bold variable (for example, \(\mathbf{s}_{t+1} \)) indicates the estimator of the corresponding italic variable (for example, \(s_t \)). \(\mathbf{P}_s \) and \(\mathbf{P}_p \) are sets of the major eigenvectors of \(\Sigma_{\text{pred}} \) and \(\Sigma_{t+1} \), respectively. The full-rank square matrix \(\Sigma_t \) and orthogonal matrix \(\mathbf{P}_s \) are ambiguity factors. \(\mathcal{O} \left(\sigma_i \right) = \mathcal{O} \left(\frac{\sigma}{\sqrt{N_0}} \right) + \mathcal{O} \left(\frac{1}{N_0^{1/2}} \right) \) and \(\mathcal{O} \left(\alpha \right) = \mathcal{O} \left(\frac{1}{N_0^{1/2}} \right) \) are linearization errors, where \(\sigma = \sigma_i = 0 \) for any linear system. \(T, T_\sigma < \infty \) are finite large constants and \(\alpha > 0 \) is a small positive constant. Refer to Methods for further details.
error of less than 2% (scored by false discovery rate; Fig. 2b). During this process, PredPCA ignored any within-class differences in the digit images that do not predict the next image (which correspond to observation noise ω_t). Hence, PredPCA's policy of dimensionality reduction to minimize the prediction error distinguishes it from standard PCA and autoencoders—because PCA and autoencoders minimize the reconstruction error for the current input s_t and thus preferentially extract the within-class differences in the digit images owing to their extra variances. Even when the standard PCA was applied to the past-to-current input sequence (that is, ϕ_t), it failed to separate the digits because the hidden representation of ϕ_t included more than 10-dimensional state space and thus the first ten major components of ϕ_t did not match the true hidden states x_t. Although the categorization errors of TICA, TAE and DMD were smaller than those of PCA and an autoencoder, they still failed to categorize some digits. This is because the former methods use only a single step (that is, $\phi_t = s_t$) to predict subsequent digit images (s_{t+1}). Moreover, even when using (s_t, s_{t+1}) or ϕ_t to predict (s_{t+1}, s_{t+2}) or ϕ_{t+1}, they failed to categorize digits, because the extracted features do not match the true hidden states (these results are similar to the PCA of ϕ_t). The performance of the SSM and hidden Markov model with 10-dimensional state spaces was also poor because their larger parameter estimation errors led them to a spurious solution or local minimum.

In addition to accurate source separation, PredPCA could provide the optimal system parameters for the prediction (Fig. 2c). These parameter estimators were computed simply by following the definitions in Table 2. The differences between the parameter estimators obtained by PredPCA and those obtained by supervised learning converged to zero as the number of training samples increased, as predicted theoretically (Methods section ‘System parameter identification’). These results corroborated that PredPCA-based system parameter identification was applicable to systems involving non-Gaussian noise. Consequently, the outcomes of PredPCA could reliably identify the transition rules underlying the ascending order (Extended Data Fig. 1a) and Fibonacci sequences (Extended Data Fig. 1b) in an unsupervised manner. In essence, we demonstrated that each encoder obtained using PredPCA corresponds to a digit, and the obtained state transition matrix represents the estimated dynamics of digit sequences, which can assign the meaning to these model parameters. These results indicate the interpretability of PredPCA as the obtained model can provide an explanation of the manner that the hidden dynamics generate the sensory input.

The above outcomes allowed PredPCA to predict subsequent digits reliably and accurately (Fig. 2d). Here, we see that although PredPCA did not observe the hidden states directly, its test prediction error converged globally—with increasing training samples—to the lower bound of the test prediction error computed via supervised learning that explicitly used the true hidden states for training. This is as theoretically predicted by equation (7). Moreover, equation (7) successfully identified the optimal encoding dimensionality that minimized the test prediction error as $N_u = 10$, which also matched the true hidden state dimensionality (Fig. 2d, inset). These matchings hold even in the absence of random replacement and/or monochrome inversion of digit images (Extended Data Fig. 1c). Numerical observations indicate that PredPCA can reduce errors in categorization, system identification, and prediction as the number of past observations used for prediction (K_n) increases until reaching its finite optimum (Extended Data Fig. 1d). In contrast, linear TAE and SSM (same as PredPCA with $\phi_t = s_t$) failed to identify the system properties, and thus generated a larger prediction error (Extended Data Fig. 2).

In particular, the long-term prediction of subsequent digits highlights the virtue of PredPCA’s categorization and system identification accuracy—provided with a winner-takes-all operation, the outcomes of PredPCA could recursively predict the subsequent digits without categorization errors for more than 10^5 steps (Fig. 2e). These results were minimally influenced by the assumed transition mapping structures and training history (Extended Data Fig. 3a–c), and the optimal model structure could be determined through model selection based on the standard AIC (Extended Data Fig. 3d). In contrast, SSMs tended to fail the long-term prediction depending on initial conditions and training history, even though they were provided with the winner-takes-all operation (Extended Data Fig. 3e).

PredPCA filters out observation noise and minimizes test prediction error. Next, the noise reduction and prediction generalization capabilities of PredPCA were examined using natural videos. We trained a neural network by using images of 3D objects rotating anti-clockwise as the input (Fig. 3a, furthest left). In short, the task was to predict the opposite side of test object images (200 objects) by observing only a half side of the images, based on the transition (that is, rotational) mapping learned from different training object images (up to 800 objects). Here, we used the optimal linear bases ϕ_t to maximize PredPCA’s generalization capability (see Supplementary Methods section 3 for the procedure). The ability of PredPCA was experimentally confirmed by its successful predictions of the $30°-150°$ rotated images of previously unseen test objects (Fig. 3a, middle row; see Supplementary Video 1 for predictions of $90°$ rotated images, where the right-hand-side images are the predictions of the corresponding ground truth images on the left-hand side).

In general, features extracted using PredPCA comprise categorical features that represent what the input is as well as dynamical features that express how it is moving. As the asymptotic linearization theorem implies that the obtained encoders $x_{a,b}$ are linear superpositions of hidden states, we define categorical features as the average of estimators, $\overline{x}_s = \langle x_{1:30|t} + \ldots + x_{1:150|t} \rangle / 5$, and dynamical features as the deviation from their average, $\Delta x_{a,b} = x_{a,b} - \overline{x}_s$. Applying ICA to x_s separated the categorical features into a sparse representation, each dimension of which expresses a feature of objects (Fig. 3b, top). Applying an additional PCA to the dynamical features (for example, $\Delta x_{a,b}$) provided the angle of 3D objects as the first principal component (PC1; Fig. 3c, left). Although the coordinate of the attractor changes depending on its category, this treatment makes it easier to interpret the dynamics of hidden states. We also observed the same property for $x_{a=30|t}$ and $x_{a=120|t}$ and $x_{a=120|t}$.

Notably, these prediction and feature extraction capabilities were largely retained even in the presence of an artificially added large (white Gaussian) observation noise whose variance had the same magnitude as the variance of original images, demonstrating the robustness of PredPCA’s outcomes (Fig. 3a,b, bottom, and Fig. 3c, right; see Supplementary Video 2 for predictions of $90°$ rotated images). The sampling fluctuation caused by the observation noise disturbed the prediction of minor components, and thus changed the optimal encoding dimensionality (Fig. 3d).

We confirmed an earlier decrease of the test prediction error for PredPCA relative to the naive autoregressive model as the number of training samples increases (Fig. 3e). PredPCA generated a smaller test prediction error relative to TICA, TAE, DMD and SSMs based on the Kalman or Bayesian filters (Fig. 3f). These results indicate that PredPCA could determine a plausible rule for rotating generic objects. Remarkably, owing to the convex optimization, features extracted using PredPCA are uniquely determined for any given training dataset (even if the true system is unknown). This contrasts with TAE and SSM, because their extracted features change depending on the initial conditions, order of supplying mini batches, or level of observation noise, even though they are trained with the same dataset (Extended Data Fig. 4).
We note that we also trained PredPCA with an image dataset of rotating 3D human faces and confirmed that PredPCA can accurately predict subsequent images and extract relevant features such as pan and tilt angles of face images in an unsupervised manner (Supplementary Fig. 2).

As a further application to more natural data, we lastly trained a neural network with natural scenes captured from a driving car (Fig. 4a and Supplementary Video 3). Here, we aimed to demonstrating the applicability of our simple, analytically solvable linear method to real-world video prediction and feature extraction tasks, rather than comparing the prediction accuracy of PredPCA with that of state-of-the-art video prediction methods exploiting engineering wisdom. For predictions, we separated the videos into six groups of data based on the magnitude of change in the images per frame and trained six predictors separately with each group of data; subsequently, post hoc PCA was applied to the synthesized predicted input (see Supplementary Methods section 1 for further details).

PredPCA could predict 0.5-seconds future images of previously unexperienced natural scenes with a certain accuracy (Fig. 4a). Moreover, PredPCA could extract brightness, the vertical and lateral asymmetries, and lateral motion in the scenes underlying the driving car videos (Fig. 4b,c). For the feature extractions, the entire video was simply supplied to PredPCA without the six sub-groups; thus, the global convergence was theoretically guaranteed. We observed tight correspondences between features learned based on different finite training samples (Fig. 4b, c insets), implying that PredPCA could extract features unique to the generative process that generated sensory data. In particular, the PCI of dynamical features that encoded the lateral motion in the scenes (Fig. 4c) was relevant to predicting the steering of the car. The features extracted using PredPCA were retained even when using the data grouping (Extended Data Fig. 5a, b). Other major categorical and dynamical features represent different categories of scenes (Extended Data Fig. 5c) and motions in different positions (Extended Data Fig. 5d),

Fig. 3 | PredPCA-based de-noising, hidden state extraction and subsequent input prediction of videos of rotating 3D objects. a, Snapshots of the prediction results. Latest input image (furthest left) and ground truth (top) and predicted images after 30°, 60°, 90°, 120° and 150° rotations, without (middle row) and with (bottom) artificially added observation noise. b, Images corresponding to 20-dimensional sparse representations (x), each expressing a categorical feature of objects. These images were obtained by applying ICA with super-Gaussian prior distribution to the first 20 principal components of PredPCA, averaged over different prediction points \(x_i = \{x_{t+30|t} + \ldots + x_{t+150|t}\}/5 \) (see Methods section ‘Asymptotic linearization theorem’ for the details). These images visualize linear mappings from each independent component to the observation. c, Rotation of objects encoded in the first principal component (PCI) of the dynamical features of \(x_{i,90|t} \) (that is, \(\Delta x_{t+90|t} = x_{t+90|t} - x_i \)). Here, the neural activity predicted the angle of 90°-rotated future images, indicating that when observing an asymmetric object (as opposed to a cylindrical object), the network was able to anticipate whether its image would be wider or narrower after a 90° rotation. Blue lines and shaded areas indicate the median and area between the 25th and 75th percentiles over the dataset, whereas black lines show trajectories for an object that is shown at the bottom. d, Optimal encoding dimensionality increasing with training sample size, in the absence (blue) and presence (red) of the large observation noise. e, Comparison of test prediction error, defined by \(\text{error}_t = \{(g_{t+k} - W^T u_{t+k})^2\}/\langle\{g_{t+k}^2\}\rangle\), where \(g_t = s_t - \bar{s} \), indicates the observation-noise-free input. PredPCA (solid lines) show a smaller test prediction error and an earlier error convergence compared with the naive autoregressive model (dashed lines). Blue and red lines denote the error in the absence and presence of the large observation noise. f, Comparison of test prediction error between PredPCA, naive autoregressive model, TICA, TAE, DMD and SSMs based on the Kalman filter (KF) and the Bayesian filter (BF), when trained with 800 objects in the absence of noise. d–f are obtained with ten different realizations of training and test samples. The green bars in f indicate the minimum test prediction error among these ten different realizations. The shaded areas and error bars indicate the standard deviation. See Supplementary Methods sections 1 and 2 for further details.
respectively. Remarkably, unlike conventional video prediction methods, PredPCA could extract these relevant features in an unsupervised manner, without the use of labels or target signals for training.

In summary, using examples of objects rotating in 3D and natural scenes, we demonstrated that PredPCA can filter out observation noise and minimize test prediction error by extracting features relevant to generalizing predictions. Although the true generative

Fig. 4 | PredPCA of natural scene videos.

Fig. 4 | PredPCA of natural scene videos. a Four examples of predictions. Top row: ground truth or target image (s_{t+15}); that is, 0.5-seconds future image of the latest input. Second row: predicted image obtained using PredPCA ($W^T u_{t+15}$). It should be noted that the blurry edges in the predicted images occurred primarily because PredPCA predicted the mean of future outcome images. Third row: latest input image (s_t). Fourth row: prediction error between ground truth and predicted images; the white regions indicate the extent of errors (magnitude of $s_{t+15} - W^T u_{t+15}$). Bottom row: difference between ground truth and latest input images (magnitude of $s_{t+15} - s_t$). The test prediction error, defined by $\text{error}_{15} = \langle |s_{t+15} - W^T u_{t+15}|^2 \rangle / \langle |s_{t+15} - s_t|^2 \rangle$, was 0.648. Although unexpected events during 0.5 s were unpredictable and some predictions were inaccurate owing to the limited effective dimensionality of the input, the results indicate that PredPCA provides predictions that interpolate unseen future images and the latest input images, without using any label for training.

b, Extraction of brightness and the vertical and lateral asymmetries in driving car videos as the PC1–PC3 of categorical features (that is, \bar{x}_i). Insets depict tight correspondences between features extracted using PredPCA, learned exclusively on the basis of the first and second half of training samples. For PC1–PC3, the correlations between them are larger than 0.9999.

c, Extraction of lateral motion from driving car videos as the PC1 of dynamical features (that is, Δx_{t+3}). The correlation between features learned based exclusively on the first and second half of training samples is 0.9962. In *b* and *c*, blue lines and shaded areas indicate the median and area between the 25th and 75th percentiles. Refer to Supplementary Methods section 1 for further details.
process is unknown for these examples, these results indicate that the outcomes of PredPCA capture the plausible properties of natural data. These results highlight the prediction generalization and feature extraction capabilities of PredPCA as well as its wide applicability to real-world data.

Discussion

Our proposed scheme, PredPCA, is thus shown to identify a concise representation that provides the global minimum of the test prediction error, by first predicting subsequent observations and then performing post hoc PCA of the predicted inputs. This is essential for maximizing the prediction generalization capability, as well as for ensuring accurate and unbiased estimation of system properties, comprising hidden states, system parameters and dimensionalities. Our scheme is formally based on Akaike’s statistics and consistent with existing information-theoretical views of biological optimizations, including maximum negentropy, predictive coding, predictive information and the free energy principle—providing a normative, analytically solvable example of a neural network that maximizes information quality and generalization capability.

PredPCA offers an interpretable hidden state representation (Methods section ‘Asymptotic linearization theorem’) that is preferable for generalizing prediction, without using prior knowledge about external systems. To this end, the global convergence guarantee or convex optimization of PredPCA (Methods sections ‘Derivation of PredPCA’ and ‘Test prediction error minimization’) is essential, because the representation could otherwise change depending on the initial conditions, training history or level of observation noise, rendering such representation unreliable, and may overfit to a particular training dataset. PredPCA further guarantees the asymptotic identification of the true system properties with a global convergence guarantee (Methods sections ‘Asymptotic linearization theorem’, ‘System parameter identification’ and Table 3) when sensory data are generated from a class of canonical systems (Methods section ‘System’), provided with sufficient training samples T and sufficiently high-dimensional observations satisfying $N_x \gg N_z \gg 1$. This is remarkable because PredPCA can identify properties of canonical systems even with a limited number of training samples, up to a small range of errors that are inversely proportional to the sample and system sizes, as empirically validated in Fig. 2 (and Extended Data Fig. 1 and Supplementary Fig. 1; see also ref. 1). These guarantees are crucial, particularly when feature extraction failures or misunderstanding of a system lead to catastrophic problems in subsequent applications, such as in automated driving or medical diagnosis. In general, finite but sufficiently large T, N_x/N_z and N_z are required to ensure this asymptotic property—because only under such conditions are the major principal components of the de-noised input guaranteed to match the hidden states of the original nonlinear system.

Unlike PredPCA, conventional (nonlinear) prediction strategies using autoencoders or TAE or SSMs do not have such guarantees and can fail to reliably provide accurate prediction and feature extraction depending on various conditions, as shown in Figs. 2 and 3 and Methods section ‘Filtering out observation noise’, because they have many spurious solutions. Having said this, if a learner has a sufficient amount of prior knowledge about the generative process that generates sensory data (for example, knowledge about underlying physics), incorporating such knowledge into prediction can provide more interpretable and accurate predictions. Such knowledge may remove spurious solutions and make all solutions the global minimum. In other words, for these related methods, the outcomes of PredPCA are potentially of great importance in setting a plausible minimum. In other words, for these related methods, the outcomes of PredPCA capture the plausible properties of natural data. These results highlight the prediction generalization and feature extraction capabilities of PredPCA as well as its wide applicability to real-world data.

Methods

In what follows, we mathematically express the benefits of PredPCA. Methods sections ‘System’ and ‘Derivation of PredPCA’ formally define the system and PredPCA. Methods sections ‘Derivation of PredPCA’ and ‘Test prediction error minimization’ prove that PredPCA inherits preferable properties of both the standard PCA and autoregressive models, and outperforms naive PCA and autoregressive models in terms of robustness to noise and generalization of prediction. Methods sections ‘Asymptotic linearization theorem’ and ‘System parameter identification’ demonstrate that PredPCA identifies the optimal hidden state estimator and the true system parameters of a class of canonical systems with a global convergence guarantee, owing to the asymptotic property of linear neural networks with high-dimensional inputs. Supplementary Methods sections 1 and 2 provide the simulation protocols.
can suppose that the steady state of \(x_t \) follows a distribution with zero mean and the identity covariance \(\Sigma \). For analysis, we consider a family of functions \(f \equiv B p \) and \(g \equiv A p \), spanned by nonlinear basis functions \(\psi_k \equiv \psi(x_k) \in \mathbb{R}^{N_k} \), where \(N_k \) denotes the number of linearly independent bases, \(B \in \mathbb{R}^{N_k \times N_k} \) is a full-row-rank transition matrix, and \(A \in \mathbb{R}^{N_k \times N_k} \) is a full-column-rank mapping matrix from the bases to the sensory input. Thus, equation (1) becomes
\[
s_t = A p_t + o_t
\]
and equation (2) becomes
\[
x_{t+1} = B p_t + z_t
\]
As the dimensionality of bases increases, each element of \(f(x_k) \) and \(g(x_k) \) asymptotically expresses an arbitrary nonlinear mapping if \(A \) and \(B \) are suitably selected (refer to universality). We assume \(N_0 \leq N \leq N_k \) such that the system dynamics are produced by hidden states that are lower-dimensional than the observations. Although this paper supposes \(\psi_k = \psi(x_k) \), this analysis can be applied to a system comprising \(\psi_k = \psi(x_k, x_{t-1}, \ldots) \) by redefining \((x_t, x_{t-1}, \ldots) \) and \((s_t, s_{t-1}, \ldots) \) as new \(x_t \) and \(s_t \), respectively. Table 1 presents the glossary of expressions.

Derivation of PredPCA. PredPCA aims to minimize the multistep prediction error for predicting a 1-to-K-step future of the aforementioned system by optimizing synaptic weight matrices using its generalization as an orthogonal matrix (that is, \(\Omega \)). The empirical distribution approaches this true distribution in the large training sample size limit: \(\psi_k \equiv (s_{t+1}, s_{t+1}, \ldots, s_{t+K}) \) is the simple vector of observations, \(W \in \mathbb{R}^{N \times N_k} \) is the transpose of the decoding synaptic weight matrix, and \(V \in \mathbb{R}^{N_k \times N_k} \) is the 4th encoding synaptic weight matrix. Although general nonlinear bases can be used as \(s_t \), a simple vector of observations serves the purpose of this paper. We will show below that the prediction and system identification using these linear bases are possible when the dimensionality of inputs are sufficiently large. Minimizing \(e_{t+1} \) can be viewed as a generalization of the standard PCA that minimizes the reconstruction error of the current observation (that is, \(e_{t+1} \)).

Formally, the cost function of PredPCA for multistep predictions is defined by
\[
L = \frac{1}{2} \sum_{k=1}^{K} \left(\langle e_k, e_k \rangle \right)_q
\]

where \(\langle \cdot, \cdot \rangle_q \) is the expectation over the empirical distribution \(q \). Solving the fixed point of the above cost function \(L \) with respect to \(V \), yields the optimal estimator. From
\[
\frac{\partial L}{\partial V} = -W^T e_k \phi_k^T \phi_k = O,
\]
under an assumption of \(WW^T = I \) (which is preserved by equation (13) below), the optimal \(V \) is found to be
\[
V = W \langle \phi_k^T \phi_k \rangle_q^{-1} \phi_k^T
\]

We define the maximum likelihood estimator of \(s_{t+1} \) as \(s_{t+1} \equiv Q \phi_k \), where \(Q \equiv \langle \phi_k \phi_k^T \rangle_q \) is the optimal (maximum likelihood) matrix estimator. Throughout the Article, a bold variable (for example, \(s_{t+1} \)) indicates the estimator of the corresponding italic variable (for example, \(s_t \)). The 4th encoder \(u_{t+1} \) is thus defined by \(u_{t+1} \equiv W e_{t+1} \). The optimal \(W \) is determined by the gradient descent on \(L \):
\[
W \propto -\frac{\partial L}{\partial W} = \frac{1}{N} \sum_{k=1}^{K} \left(s_{t+1} - W u_{t+1} \right) \phi_k^T
\]
Equation (13) is similar to Oja’s subspace rule for PCA\(^\text{u}\) except that \(s_{t+1} \) is used instead of \(s_t \) to define \(u_{t+1} \). In this sense, PredPCA conducts post hoc dimensionality reduction (PCA) of the predicted input. The update by equation (13) maintains \(W \) as an orthogonal matrix (that is, \(WW^T = I \)) throughout the learning.

The above PredPCA solution can also be obtained by eigenvalue decomposition. When \(WW^T = I \), the cost function is transformed as
\[
L = \frac{1}{2} \sum_{k=1}^{K} \left(s_{t+1} - W u_{t+1} \right) \phi_k^T = \frac{1}{2} \left(\Sigma - \Sigma \phi_k, q = O \right)
\]
where \(\Sigma \equiv \langle e_k \phi_k \phi_k^T \rangle_q \) and \(\Sigma^2 \equiv \frac{1}{2} \sum_{k=1}^{K} \left(s_{t+1} - W u_{t+1} \right) \phi_k^T \phi_k \) are the actual and predicted input covariances calculated based on the empirical distribution, respectively. Thus, the minimization of \(L \) is achieved by maximizing the second term under the constraint of \(WW^T = I \) (note that this constraint is automatically satisfied by minimizing \(L \)). Hence, the optimal \(W \) is provided as the transpose of the major eigenvectors of \(\Sigma^2 \). This solution is unique up to the multiplication of an \(N \times N_k \) orthogonal matrix from the left. The global convergence and absence of spurious solutions are guaranteed even when \(W \) is computed by equation (13) because of the global convergence property of Oja’s subspace rule for PCA\(^\text{u}\). In short, PredPCA is a convex optimization and thus can reliably identify the optimal synaptic weight matrices \(W \) and \(V \), for predictions, which provides the global minimum of the cost function \(L \).

Filtering out observation noise. Here, we compare the components extracted using PredPCA and the standard PCA\(^\text{u}\). We show that only PredPCA can remove observation noise and accurately estimate the observation matrix \(A \) as its training samples increases.

We introduce the prediction error via true distribution \(\psi_k \equiv (s_{t+1}, s_{t+1}, \ldots, s_{t+K}) \), denoted by \(\langle \cdot \rangle \equiv \langle \cdot \rangle_p \equiv \langle \cdot \rangle_{p, \psi_k} \) throughout the manuscript, we suppose \(\langle x \rangle = 0, \psi_k = 0, \) and \(\langle x \rangle = 0 \) for the sake of simplicity. The true covariance matrix of some variable \(z \) is denoted by \(\Sigma \equiv \langle z \phi_k \phi_k^T z \rangle \). Here, any estimator or statistic \(\theta \) under consideration, calculated based on the empirical distribution, can be decomposed into its true value \(\theta \) and its generalization error \(\theta - \theta \), where \(\theta \) is in the \(t \)-th order (see Supplementary Methods section 4 for the conditions and the proof). Below, we will decompose \(\theta \) into \(\theta \) and \(\theta \) and then solve \(\theta \) analytically.

The standard PCA conducts the eigenvalue decomposition of the actual input covariance, calculated based on \(\psi_k \), to determine \(\phi_k \). The convergence to some unknown underlying distribution in the large-sample limit is a known property of PCA\(^\text{u}\). From equation (8), the covariance is decomposed as
\[
\Sigma = \Sigma + \mathcal{O}
\]

where \(\Sigma \equiv \langle \phi_k \phi_k^T \rangle_q \) is the predicted hidden basis covariance, calculated based on the true distribution. Applying the eigenvalue decomposition to \(\Sigma \) provides the set of major eigenvectors \(\psi_k \equiv \langle \phi_k \phi_k^T \rangle \) that correspond to asymptotically non-zero eigenvalues of the predicted input covariance. Because of the uniqueness of the eigenvalue decomposition, \(\psi_k \) converges to matrix \(A \) as the number of training samples increases—up to the multiplication of a full-rank matrix \(\Omega_k \in \mathbb{R}^{N_k \times N_k} \) from the right-hand side. Hence, we refer to \(\psi_k \) as the estimator of \(A \):
\[
A \equiv \psi_k = \lim_{d \to \infty} \psi_k
\]

where \(\psi_k \equiv \langle \phi_k \phi_k^T \rangle \Sigma^{-1} \psi_k = O \) holds. Thus, we obtain
\[
S_{t+1} = A S_{t+1} + \mathcal{O}
\]
Here, we introduced the inverse of \(\Sigma_k \) (instead of \(\Sigma_k \) itself) for our convenience. Note that \(A \) is the set of major eigenvectors of the generalization-error-free predicted input covariance \(S_{t+1} \equiv \mathcal{A} S_{t+1} \). In short, PredPCA can identify matrix \(A \) with asymptotically zero error without directly observing \(\psi_k \) for large \(T \). Notably, the number of basis dimensions \(N_k \) is also identifiable by counting the number of asymptotically non-zero eigenvalues of \(\Sigma_{t+1} \) which converges to the true \(\Sigma_k \) of canonical systems for a large training sample size (see Methods section ‘Test prediction error minimization’ for the formal definition of the estimator \(\Sigma_k \) using the test prediction error).

In addition, multiplying \(P \) by the predicted input yields the predicted basis estimator:
\[
\psi_k \equiv \langle \phi_k \phi_k^T \rangle q = \mathcal{P} \langle \phi_k \phi_k^T \rangle q = O
\]

where
\[
A \equiv \mathcal{P} = \mathcal{P} A
\]

and the independence between \(q \) and \(\psi_k \). Indeed, \(q \equiv \psi_k \).
with optimized synaptic weight matrices is equivalent to $w_{\psi, \phi}$ when $N_s = N_c$. In short, PredPCA can provide the maximum likelihood estimator of the hidden bases without directly observing $y_{\omega,t}$—up to the multiplication of the full-rank ambiguity factor Q_k from the left-hand side. This ambiguity factor is safely absorbed into the definition of $w_{\psi, \phi}$ without changing the system dynamics, by applying the following transformations: $Q_k y_{\omega,t} = \psi, P_{\phi} = A Q_k^{-1} - A,$ and $B Q_k^{-1} - B$. Therefore, the estimated hidden dynamics are formally homologous to the original dynamics.

In terms of conceptual innovations of PredPCA, our analyses reveal that this scheme can identify the true hidden states, parameters, and dimensionalities of a class of canonical systems (see below). In particular, the multi-step-time bases function ϕ_k is an essential difference between PredPCA and related methods such as TICA29, TAE13 and DMD43. Empirical observations highlight the importance of filtering out observation noise to reliably perform system identification (Fig. 2, and Extended Data Figs. 1 and 2). Indeed, features extracted from TICA or DMD are expressed as complex numbers, which do not match the true hidden states. Although TAE can identify matrix A and the extracted features are denoted in real numbers, it still fails to identify true hidden states and other parameters because it fails to filter out large observation noise (Fig. 2b and Extended Data Fig. 2a).

Furthermore, we presented an algorithm to update synaptic weights (equation (5)), which makes it easier to design a computational architecture for PredPCA. As discussed above, it is fairly straightforward to implement PredPCA in neuromorphic hardware through a previously developed local learning algorithm10,29,43,52—wherein a previous work has implemented the local algorithm using resistive random-access memories32. It should be emphasized that PredPCA is suitable for neuromorphic hardware relative to TICA, TAE and DMD because the computations for inverse matrices, complex numbers, and eigenvalue decomposition of non-symmetric matrices are intractable in neural networks. For further discussion, please refer to Supplementary Discussion.

Test prediction error minimization. A learner needs to predict the future consequences of some input data based on learning with a limited number of training samples. Here, we analytically solve the expectation of the PredPCAs test prediction error as a function of the training samples (T), encoding dimensions (N_s), and number of past observations used for prediction ($N_{\psi} = N_s N_c$). Its minimization enables a learner to maximize the generalization ability by optimizing free parameters in the network without knowing the true distribution that generates test samples. PredPCAs test prediction error is defined as the squared error over the true distribution p. Meanwhile, the learning is based on the empirical distribution q. Thus, the test error is given as a function of q

$$L_{\text{test}}[q] = \frac{1}{N_{\psi}} \sum_{k=1}^{N_{\psi}} \{ (1 + \frac{1}{N_{\psi}}) \}$$

We see Supplementary Methods section 5 for the detailed derivation. This is viewed as a variant of AIC54 and NIC55. For practical use, covariances and eigenvectors in equation (18) are replaced with their estimators: $Q_k \rightarrow \Sigma_k$, $\Sigma_k \rightarrow \Sigma_k^{\text{pred}}$, and $P_k \rightarrow P_k$, which does not change by these replacements in the leading order. Because $tr \left[P_k^T \Sigma_k - P_k^T \Sigma_k^{\text{pred}} \right] P_k > 0$, the generalization error monotonically increases with the dimensionalities of the encoders N_c. Meanwhile, the reduction of the training prediction error becomes small as N_c increases, and it reaches zero for $N_c > N_s$, due to eigenvalues of Σ_k^{pred}. Hence, the optimal N_c that minimizes L is less than N_s.

The optimal encoding dimensionalities that minimizes L is comparable to the effective dimensionalities of true hidden basis dynamics of canonical systems for large T. Thus, N_c is the optimal encoding dimensionalities. In particular, when $N_s = N_c$, holds that is (the operator that is, the smallest non-zero) eigenvalue of Σ_k^{pred}. In contrast, equation (18) with $N_s = N_c$ provides the test prediction error of an autoregressive (AR) model that does not consider hidden states: $L_{\text{test}} = \frac{1}{N_{\psi}} \left(1 + \frac{1}{N_{\psi}} \right)$. Because some components of Σ_k are generally perpendicular to P_k, $tr \left[P_k^T \Sigma_k^{\text{pred}} \right] P_k < tr \left[\Sigma_k^{\text{pred}} - \Sigma_k \right]$ for $N_s < N_c$. This means that the test prediction error of PredPCA with optimal N_c is smaller than that of autoregressive models. Hereafter, we supoose $N_s = N_c = N_{\psi}$.

Asymptotic linearization theorem. The asymptotic linearization theorem56 was originally introduced to guarantee accurate extraction of independently and identically distributed hidden sources from its high-dimensional nonlinear transformations. In this Article, we use this theorem to prove that the true hidden states $x_t \in \mathbb{R}^{N_c}$ is accurately estimated from its unknown nonlinear transformation $y_t (x_t) \in \mathbb{R}^{N_{\psi}}$ with asymptotical zero element-wise error as $N_s = N_c$ and N_{ψ} (and T) diverge. In this section, we suppose that $y_t (x_t)$ is specified in a specific but generic form of two-layered structure, $y_t (x_t) = \Psi (x_t) + \epsilon_t$. Here, the elements of $\Psi \in \mathbb{R}^{N_{\psi}}$ and $\epsilon_t \in \mathbb{R}^{N_{\psi}}$ are drawn from $\mathcal{N} [0, 1]$, $\epsilon_t \in \mathbb{R}^{N_{\psi}}$ is a matrix whose elements are, on average, on the order of $N_{\psi}^{-1/2}$, and $\rho (\cdot) : \mathbb{R} \to \mathbb{R}$ is an odd nonlinear function, where the correlation between $\rho (\cdot)$ and a unit Gaussian variable ξ sampled from $\mathcal{N} [0, 1]$ is close to zero. Here N_s is large, each element of $y_t (x_t)$ can represent an arbitrary nonlinear mapping of x_t by adjusting C (refer to universality)44.

The assumption behind the theorem is as follows: (1) the elements of hidden states x_t are not strongly dependent on each other (where zero mean and identity covariance matrix are supposed without loss of generality), in the sense that the average of higher-order correlations of the elements of x_t asymptotically vanishes for large N_s with less than the order of 1; and (2) the matrix components of C that are parallel to R are not too small compared to the other components (that is, the mapping is not very close to a singular mapping)—namely, the ratio of the minimum eigenvalue of $\mathbf{R}^T \mathbf{C} \mathbf{R}$ to the maximum eigenvalue of \mathbf{C} is assumed to be much greater than 1. We note that $R^T \mathbf{C} = \mathcal{N} (\mathbf{N_c}, \mathbf{N_c}^*$) is much greater than 1, so the condition (2) is easily satisfied when singular values of C are of order 1. The asymptotic linearization theorem states that under these two conditions, covariance Σ_k in the spectrum gap that separates major and minor components, where the major and minor components correspond to linear and nonlinear transformations of the true hidden states, respectively.

Let $P_t \in \mathbb{R}^{N_s \times N_c}$ be the set of the first N_cth major eigenvectors of Σ_k, and let $A \in \mathbb{R}^{N_s \times N_c}$ be the diagonal matrix of the corresponding eigenvalues. The asymptotic linearization theorem proved that applying PCA to $y_t (x_t)$ provides accurate estimation of x_t up to the multiplication of a fixed orthogonal matrix Q_k that is, $A^{-1/2} \psi (x_t) = Q_k x_t + O (\sigma_t)$. Here, $\sigma_t = \sqrt{\frac{1}{N_c} \sum_{i=1}^{N_c} \left(\frac{x_{i,t}}{N_c} - \frac{1}{N_c} \right)^2}$. The standard deviation of the linearization error, where $p^C \equiv \int p^C (x_t) \, dx_t$, $\mathbb{P}^C \equiv \int \mathbb{P}^C (x_t) \, dx_t$, and $\mathbb{P}^C \equiv \int \mathbb{P}^C (x_t) \, dx_t$ are statistics of the nonlinear function ρ over unit Gaussian variable ξ, and λ is an order-one constant determined by the characteristics of C. The linearization error monotonically decreases as the system size increases (that is, when $N_s = N_c$ and λ diverge)—asymptotically achieving the zero-element-wise error hidden state estimation in the large system size. Please refer to ref. 44 for further details.

This theorem can be applied to the estimator of $\psi (x_t)$. Let $P_t \in \mathbb{R}^{N_s \times N_c}$ be the major eigenvectors of Σ_k (see equation (23) below for its definition and analytical solution), and $A_t \in \mathbb{R}^{N_s \times N_c}$ be the corresponding eigenvalues. The hidden state estimator is given as

$$x_{\phi,t+1} = A_t^{-1/2} P_t^T y_t (x_{\phi,t}).$$

From the asymptotic linearization theorem,

$$A_t^{-1/2} P_t^T y_t (x_{\phi,t}) = \Omega_t x_{\phi,t} + O (\sigma_t)$$

where $\Omega_t \in \mathbb{R}^{N_s \times N_c}$ is a fixed
orthogonal matrix. Here, we treated $\Omega_{\psi^{\phi_{k}}}^{\phi_{k}}$ as a nonlinear function of ϕ_{k} and applied the theorem. Thus, equation (20) is solved analytically as

$$x_{t+1} = \Omega_{\psi} x_{t} + \phi_{t} + \mathcal{O} \left(T^{-\frac{1}{2}}\right) + \mathcal{O} \left(\sigma_{\phi}\right)$$ (21)

This result shows that the maximum likelihood estimator of x_{t} based on ϕ_{t}, x_{t+1}, and ϕ_{t+1}, is available (up to the ambiguity factor Ω_{ψ} and the order $T^{-\frac{1}{2}}$ and σ_{ϕ} small error terms), despite the fact that PredPCA is unsupervised learning that does not use any explicit data of x_{t} for training. Similar to Ω_{ψ}, the ambiguity of Ω_{ψ} can be absorbed into the definition of x_{t}, without changing any system dynamics, by applying the following transformations: $\Omega_{\psi} x_{t} \rightarrow x_{t}, \Omega_{\psi} B \rightarrow B, \Omega_{\psi} \rightarrow \Omega_{\psi}^{-1}$, and $R_{\psi} A_{\psi} \rightarrow R$. Notably, the number of state dimensions N_{ψ} is also identifiable by defining the estimator ψ_{t} as the largest spectrum gap of Σ_{ψ}, which is guaranteed to converge to true Σ_{ψ}, when σ_{ϕ} is smaller than a small positive constant σ_{ϕ} and T_{ψ} is larger than a large finite constant T_{ψ}.

It is well known that conventional nonlinear blind source separation approaches using nonlinear neural networks (for example, nonlinear ICA) do not guarantee the identification of true hidden sources under the general nonlinear blind source separation setup58,59. In contrast, it is remarkable that the asymptotic guarantees the identification of true hidden sources under the general nonlinear blind source separation setup when Ω_{ψ} is the optimal basis transition matrix, Ω_{ψ} is the linearization error that is smaller than a small positive constant σ_{ϕ}, and σ_{ϕ} is the order of the linearization error. Using this, we have the following estimator of the transition matrix:

$$\psi_{t}^{T} = \psi_{t}^{T} - \sigma_{\phi}^{T} T_{\psi}^{-1} + \sigma_{\phi}^{T} T_{\psi}^{-1}$$ (22)

This estimator converges to the optimal ψ_{t} up to the ambiguity of Ω_{ψ} for large T and N_{ψ}. The variance of the linearization error term σ_{ϕ} is of the same order as the variance of nonlinearly transformed components of x_{t} that are involved in ψ_{t}; thus, using the asymptotic linearization theorem, we compute the variance of the nonlinear components and obtain $\sigma_{\phi} = \sqrt{T_{\psi} - p_{\phi}^{T} T_{\psi}} / N_{\psi}$ as the order (see Supplementary Methods section 6 for further details).

Next, we compute the covariance matrices of hidden bases and observation noise. By multiplying the inverse of ψ_{t} with $\psi_{t}^{T} = \psi_{t}^{T} - \sigma_{\phi}^{T} T_{\psi}^{-1} + \sigma_{\phi}^{T} T_{\psi}^{-1}$, we find the hidden basis covariance estimator (symmetrized version) as

$$\Sigma_{\psi} = \psi_{t}^{T} - \sigma_{\phi}^{T} T_{\psi}^{-1} + \sigma_{\phi}^{T} T_{\psi}^{-1}$$ (23)

See Supplementary Methods section 6 for the order of the linearization error term. Using this Σ_{ψ}, the observation noise covariance estimator is given as

$$\Sigma_{\phi} = \Sigma_{\psi} - \sigma_{\phi} A_{\phi}^{T}$$

$$\Sigma_{\phi} = \Sigma_{\psi} - \sigma_{\phi} A_{\phi}^{T} + \sigma_{\phi} T_{\psi}^{-1} + \sigma_{\phi} T_{\psi}^{-1}$$ (24)

Finally, we estimate the state transition matrix and covariance matrices of hidden states and process noise. From equation (9) and the independence between x_{t} and ϕ_{t}, $\langle x_{t+2} x_{t+1}^{T} \rangle = B \langle x_{t+1}^{T} \phi_{t+1}^{T} \rangle$ holds. Thus, equation (21) for $k = 2$ becomes

$$B_{t} = \langle x_{t+2} \phi_{t+2}^{T} \rangle = \langle x_{t+1} \phi_{t+1}^{T} \rangle + \sigma_{\phi} T_{\psi}^{-1} + \sigma_{\phi} T_{\psi}^{-1}$$ (25)

The hidden state covariance estimator is given by $\Sigma_{\psi} = \Sigma_{\psi}^{T} = \Sigma_{\psi}$ as we defined Σ_{ψ} so. Thus, as equation (9) yields $\Sigma_{\psi} = \Sigma_{\psi} + \psi_{t}^{T} \Sigma_{\psi}^{T} \psi_{t} + \sigma_{\phi}$, the process noise covariance estimator is given by

$$\Sigma_{\phi} = \Sigma_{\phi} - B_{t} A_{\phi}^{T} B_{t}^{T}$$ (26)

In summary, PredPCA could identify the true system parameters $A_{t}, B_{t}, \Sigma_{\psi}$, and Σ_{ϕ} with a global convergence guarantee as the system and training sample sizes increase, using noisy observations only—up to the full-rank linear transformations ($\Omega_{\psi}, \Omega_{\phi}$) that do not change the system dynamics. When z_{t} and o_{t} are white Gaussian noises, these parameters are sufficient to identify the canonical system. The aforementioned analyses hold true even when z_{t} and o_{t} are white non-Gaussian noises, although, in this case, unsupervised identification of the higher-order moments of z_{t} and o_{t} has not yet been established. The zero-element-wise error identification of these parameters will be asymptotically achieved when $N_{\psi}/N_{\phi}, T_{\psi}$ and T_{ϕ} diverge. This global convergence guarantee is an advantage of PredPCA compared with conventional system identification approaches18,61. If x_{t} is a linear function of x_{t}, the true system becomes a linear system and thus provides $\sigma_{\phi} = 0$; hence, PredPCA is guaranteed to identify the true system parameters with zero error as the increasing training samples, when $N_{\psi} \leq N_{\phi}$. Table 2 summarizes the definitions and analytical solutions of these estimators. Every estimator can be computed by following the definition, where its analytical solution and accuracy have been proved theoretically.

The identification of system properties using PredPCA was empirically demonstrated with the example of handwritten digit images (Fig. 2, Extended Data Fig. 1 and Supplementary Fig. 1). Although it is difficult to prove what the true generative process is for rotating 3D objects (Fig. 3 and Supplementary Fig. 2) or natural scenes (Fig. 4 and Extended Data Fig. 5), empirical observations suggest that PredPCA can extract features relevant to generalized predictions. At least, PredPCA was able to identify the angles of rotating objects (Fig. 3c and Supplementary Fig. 2) and lateral motion in natural scenes (Fig. 4c and Extended Data Fig. 5b), indicating the identification of a part of their generative processes. These observations imply that the outcomes of PredPCA capture the plausible properties of natural data.

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability
Image data used in this work are available in the MNIST dataset1 (http://yann.lecun.com/exdb/mnist/index.html, for Fig. 2), the ALOI dataset2 (http://aloi.science.uva.nl, for Fig. 3), and the BDD100K dataset3 (https://bdd-data.berkeley.edu, for Fig. 4). Figures 2–4 are generated by applying our scripts (see below) to these image data.

Code availability
MATLAB scripts used in this work are available at https://github.com/takuyaisomura/predpca or https://doi.org/10.5281/zenodo.4362249. The scripts are covered under the GNU General Public License v3.0.

Received: 5 March 2020; Accepted: 27 January 2021; Published online: 12 April 2021

References
1. Rao, R. P. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-clasical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).
2. Rao, R. P. & Sejnowski, T. J. Predictive sequence learning in recurrent neural circuits. Adv. Neural Inf. Proc. Syst. 12, 164–170 (2000).
3. Friston, K. A theory of cortical responses. Phil. Trans. R. Soc. Lond. B 360, 815–836 (2005).
4. Srivastava, N., Mansimov, E. & Salakhudinov, R. Unsupervised learning of video representations using LSTMs. In Int. Conf. Machine Learning 843–852 (ML Research Press, 2015).
5. Mathieu, M., Couprie, C. & LeCun, Y. Deep multi-scale video prediction beyond mean square error. Preprint at https://arxiv.org/abs/1511.05440 (2015).
Extended Data Fig. 1 | See next page for caption.
Extended Data Fig. 1 | Supplementary results of PredPCA with handwritten digit images. a, Transition mapping estimated using PredPCA $B \in \mathbb{R}^{10 \times 10}$ accurately matches the true transition mapping $B \in \mathbb{R}^{10 \times 10}$ that generates the ascending order sequence. Elements of $x_{t+1}\upharpoonright t$ are permuted and sign-flipped for visualization purpose. b, This is also the case for the nonlinear dynamics. The estimated mapping from $x_{t} \otimes x_{t-1}\upharpoonright t$ to $x_{t+1}\upharpoonright t$ was obtained using the outcomes of PredPCA, which accurately matches the true mapping of the Fibonacci sequence $B \in \mathbb{R}^{10 \times 100}$. Here, \otimes indicates the Kronecker product. These results indicate that PredPCA offers the identification of the transition rules underlying the linear and nonlinear dynamics, without observing the true hidden states x_t. c, Prediction error in the absence of random replacement and/or monochrome inversion of digit images, as a counterpart of Fig. 2d. PredPCA’s outcomes are retained with or without those distortions, and relevant encoders comprise up to 10 dimensions owing to the construction of the input data, highlighting the robustness of PredPCA to various types of large noise. In particular, in the presence of monochrome inversion, irrespective of random replacement of digits, $N_u = 10$ provides the global minimum of both equations (6) and (7). Conversely, in the absence of monochrome inversion, $N_u = 9$ provides their global minimum as in this case, the 10-dimensional hidden state representation becomes redundant. This is because without monochrome inversion, true hidden states take only 10 different positions in the 10-dimensional coordinate, which can be fully expressed by the 9-dimensional coordinate. Remarkably, PredPCA could detect their difference. Note that monochrome inversion corresponds to the first principal component (PC1) of PredPCA. This is because whether the next image is a ‘black digit on white background’ or ‘white digit on black background’ is the most predictable feature as the monochrome inversion rarely occurs. Thus, a relatively large prediction error in the absence of monochrome inversion is due to the lack of the PC1. d, PredPCA increases its performance as the number of past observations used for prediction (K_p) increases until reaching its finite optimum. Left panel: error in categorizing digits, which converges to near zero as K_p increases (refer to Fig. 2b). Middle panel: parameter estimation error (refer to Fig. 2c). Right panel: test prediction error (refer to Fig. 2d). The blue line is the optimal test prediction error computed via supervised learning. The red line indicates the theoretical value computed using equation (7), wherein $K_p = 10$ (green line) gives its minimum, which matches empirical observations (black circles). These observations imply that predicting single-time-step future outcomes (s_t) using multi-time-step past observations (ϕ_t) is key to reducing those errors. Note that an extension of PredPCA for multi-time-step prediction while retaining its accuracy is provided in Methods section ‘Derivation of PredPCA’. c and d are obtained with 20 different realizations of digit sequences.
Extended Data Fig. 2 | Comparison with related methods. The errors in estimating system parameters (left and middle panels, as a counterpart of Fig. 2c) and in predicting one-step future inputs in test ascending sequence (right panels, refer to Fig. 2d) are shown. **a**, Performance of linear TAE. Although it estimates matrix A with high accuracy, it fails to estimate other parameters, because linear TAE (same as PredPCA with $\phi_t = s_t$) does not effectively filter out observation noise. Moreover, linear TAE yields a larger test prediction error even relative to PredPCA with $\phi_t = s_t$ owing to the difference in their cost functions. This is because PredPCA (even with $\phi_t = s_t$) extracts components most important to predicting high variant signals preferentially, and thereby provides the global minimum of the squared error in predicting the non-normalized target signal (under the constraint of $\phi_t = s_t$), while linear TAE minimizes a normalized target signal (see Methods section ‘Filtering out observation noise’ for more details). For reference, the blue and red lines in the right panel represent the optimal test prediction error computed via supervised learning and that of PredPCA with $\phi_t = s_t$, respectively. The results are obtained with 20 different realizations of digit sequences. **b**, Performance of SSM based on Kalman filter. SSM also tends to fail system identification depending on initial conditions and training history, which leads to a relatively larger prediction error. In the left panel, lines and shaded areas indicate the median and the 25th to 75th percentile area, respectively. The results are obtained with 100 different realizations of digit sequences.
Extended Data Fig. 3 | See next page for caption.
Extended Data Fig. 3 | Accuracy of long-term predictions. PredPCA and SSM can both yield generative models to predict an arbitrary future. However, SSM can fail to identify system parameters depending on initial conditions and training history, leading to the failure of long-term predictions even if provided with a winner-takes-all operation. a. Outcomes of PredPCA offer long-term prediction via greedy prediction based on iterative winner-takes-all operations, regardless of training dataset. Each row indicates a prediction based on a different realization of training sequence. A transition mapping from x_{t+1} to x_{t+1} is assumed. b. The long-term prediction is successful even if a transition mapping from $x_{t+1} \otimes x_{t+2}$ to x_{t+3} is assumed, indicating the minimal influence of the assumed model structure (that is, prior knowledge). c. PredPCA can also predict Fibonacci sequences in the long term, regardless of the training dataset. d. Model selection to determine the optimal number of step backs. Here, the standard AIC was used for model selection. We considered the following four models based on four types of polynomial basis functions, $x_{t+1} \otimes x_{t+2} \otimes x_{t+3}$ and $x_{t+1} \otimes x_{t+2} \otimes x_{t+3}$ and $x_{t+1} \otimes x_{t+2} \otimes x_{t+3} \otimes x_{t+4}$. The state in the next time period x_{t+1} was predicted based on these four types of bases, followed by a winner-takes-all operation to conduct the greedy prediction, and their AICs were compared. Left panel: To explain the ascending order sequences, a mapping from x_{t+1} to x_{t+1} was the best among these four models. Right panel: To explain the Fibonacci sequences, a mapping from $x_{t+1} \otimes x_{t+2}$ to x_{t+3} was significantly better than other three models. Here, the pairwise t test was applied based on 10 different realizations. Error bars indicate the standard deviation. e. In contrast, SSM based on Kalman filter tends to fail iterative prediction depending on the initial conditions of state and parameter values, and training history—even though it uses the winner-takes-all operation—owing to its relatively large state and parameter estimation errors. System identification using SSM is severely harmed by nonlinear interaction between state and parameter estimations, which yield local minima or spurious solutions (Extended Data Fig. 2b); consequently, SSM exhibits an approximately 6% categorization error (Fig. 2b). These inaccuracies undermine iterative predictions using SSM even when states are de-noised in each step using a winner-takes-all operation.
Extended Data Fig. 4 | Instability of features extracted by TAE and SSM. This figure is a counterpart of Fig. 3b. TAE and SSM do not guarantee the global convergence of their outcomes, and as a result their extracted features are sensitive to the initial conditions, order of supplying mini batches, and level of observation noise. The extracted features in six trials are shown; the last three are outcomes trained with a large noise. The same training dataset was used for all trials. However, as initial parameter values for TAE and SSM and order of supplying mini batches were varied, different features were extracted. The difference in the observation noise level also altered their outcomes. These results imply the unreliability of features extracted by TAE and SSM, and further highlight the benefit of the global convergence guarantee of PredPCA.
Extended Data Fig. 5 | See next page for caption.
Extended Data Fig. 5 | Feature extraction of diving car movies.

a. PC1–PC3 of the categorical features (that is, \bar{x}_t) representing the brightness and vertical and lateral symmetries of scenes.

b. PC1 of the dynamical features (that is, Δx_{t+3}) representing the lateral motion. Although (a)(b) were obtained using PredPCA with grouping of the data, these extracted features accurately matched those obtained using PredPCA without the six sub-groups (Fig. 4b,c). This implies that PredPCA offers reliable identification of relevant features, even when using the data grouping.

c. 100 major categorical features (\bar{x}_t) representing different categories of scenes.

d. 100 major dynamical features (Δx_{t+3}) responding to motions at different positions of the screen. The white areas indicate the receptive field of each encoder.

c and **d** were obtained using PredPCA and ICA without the six sub-groups. Similar to Fig. 3b, these images visualize linear mappings from each independent component to the observation.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided

 Only common tests should be described solely by name; describe more complex techniques in the Methods section.

- A description of any covariates tested

- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted Give P values as exact values whenever suitable.

- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

- Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection

The datasets used in this work are publicly available for download. The MNIST handwritten digit dataset is available from http://yann.lecun.com/exdb/mnist/index.html. The ALOI 3D rotating object image dataset is available from http://ailoi.science.uva.nl. The BDD100K driving video dataset is available from https://bdd-data.berkeley.edu.

Data analysis

MATLAB scripts used in this work are available at https://github.com/takuyaisumura/predpca or https://doi.org/10.5281/zenodo.4362249. The scripts are covered under the GNU General Public License v3.0.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

Image data used in this work are available in the MNIST data set [33] (http://yann.lecun.com/exdb/mnist/index.html, for Fig. 2), the ALOI data set [36] (http://ailoi.science.uva.nl, for Fig. 3), and the BDD100K data set [37] (https://bdd-data.berkeley.edu, for Fig. 4). Figures 2-4 are generated by applying our scripts to these image data.
Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size	Describe how sample size was determined, detailing any statistical methods used to predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.
Data exclusions	Describe any data exclusions. If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them, indicating whether exclusion criteria were pre-established.
Replication	Describe the measures taken to verify the reproducibility of the experimental findings. If all attempts at replication were successful, confirm this OR if there are any findings that were not replicated or cannot be reproduced, note this and describe why.
Randomization	Describe how samples/organisms/participants were allocated into experimental groups. If allocation was not random, describe how covariates were controlled OR if this is not relevant to your study, explain why.
Blinding	Describe whether the investigators were blinded to group allocation during data collection and/or analysis. If blinding was not possible, describe why OR explain why blinding was not relevant to your study.

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description	Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional, quantitative experimental, mixed-methods case study).
Research sample	State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For studies involving existing datasets, please describe the dataset and source.
Sampling strategy	Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and what criteria were used to decide that no further sampling was needed.
Data collection	Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper, computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.
Timing	Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample cohort.
Data exclusions	If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the rationale behind them, indicating whether exclusion criteria were pre-established.
Non-participation	State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no participants dropped out/declined participation.
Randomization	If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description	Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested, hierarchical), nature and number of experimental units and replicates.
Research sample	Describe the research sample [e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
Research sample: Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets, describe the data and its source.

Sampling strategy: Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample size calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection: Describe the data collection procedure, including who recorded the data and how.

Timing and spatial scale: Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which the data are taken.

Data exclusions: If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them, indicating whether exclusion criteria were pre-established.

Reproducibility: Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization: Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were controlled. If this is not relevant to your study, explain why.

Blinding: Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why blinding was not relevant to your study.

Did the study involve field work? ☑ Yes ☐ No

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

n/a	Involved in the study
☒ Antibodies	
☒ Eukaryotic cell lines	
☒ Palaeontology	
☒ Animals and other organisms	
☒ Human research participants	
☒ Clinical data	

Methods

n/a	Involved in the study
☒ ChIP-seq	
☒ Flow cytometry	
☒ MRI-based neuroimaging	