Prediction of COVID-19 status using baseline demographics and lab data

Jimmy Zhang
Queens High School for the Sciences at York College

Tomi Jun
Icahn School of Medicine at Mount Sinai

Jordi Frank
Outco Inc.

Sharon Nirenberg
Icahn School of Medicine at Mount Sinai

Patricia Kovatch
Icahn School of Medicine at Mount Sinai

Kuan-lin Huang (kuan-lin.huang@mssm.edu)
Icahn School of Medicine at Mount Sinai

Research Article

Keywords: COVID-19, diagnostic tests, machine learning-based framework, patient demographics, comorbidities, common lab values

DOI: https://doi.org/10.21203/rs.3.rs-156097/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

The global surge in COVID-19 cases underscores the need for fast, scalable, and reliable testing. Current COVID-19 diagnostic tests are limited by turnaround time, limited availability, or occasional false findings. Here, we developed a machine learning-based framework for predicting COVID-19 positive test status relying only on readily-available baseline data, including patient demographics, comorbidities, and common lab values. Leveraging a cohort of 31,739 adults within an academic health system, we trained and tested multiple types of machine learning models, achieving an area under the curve of 0.75. Feature importance analyses highlighted serum calcium levels, aspartate aminotransferase levels, and oxygen saturation as key predictors. Additionally, we developed a single decision tree model that provided an operable method for stratifying sub-populations. Overall, this study provides a proof-of-concept that COVID-19 status prediction models can be developed using only baseline data. The resulting prediction can complement existing tests to enhance screening and pandemic containment workflows.

Introduction

As of late January, 2021, nearly 100 million cases of COVID-19 have been confirmed globally, with over two million deaths, placing tremendous strain on healthcare systems around the world. The COVID-19 pandemic has necessitated mass testing as a starting point for tracking and ultimately containing the spread of the disease. Fast, widespread testing would help to identify infected individuals early on and slow disease transmission through early public health interventions, such as quarantine and contact tracing.

However, current COVID-19 diagnostic tests are imperfect. RT-PCR based assays are widely regarded as the gold standard, but could occasionally yield false findings and the return of results often take multiple days. Further, recent evaluations by the UK National COVID-19 Scientific Advisory Panel revealed that the sensitivity of ELISA and lateral flow immunoassay (LFIA) devices were 85% and less than 70% compared to RT-PCR, depending on the assayed time points. Based on the Bayes’ theorem, medical tests that are not perfectly sensitive and specific can yield undesired ratios of true to false findings, especially when widespread testing of the general population is performed. In such circumstances, combining tests with other prioritization metrics can improve accuracy and help allocate testing for high-risk individuals.

Multiple pandemic scenarios need to be addressed with enhanced capacity to quickly or repeatedly screen large populations and deploy containment strategies, including (1) high-exposure-risk populations needing repeated testing and monitoring, (2) under-resourced regions lacking personnel, testing kits, and biosafety facilities, and (3) the monitoring hotspots for local outbreaks. Predictive models for the risk of testing COVID positive could facilitate testing resource allocation and contact tracing procedures.
Until other measures to counteract COVID-19 become widely available (ex. effective and mass-distributed vaccines), effective screening methods are pivotal in containing the pandemic. Establishing a machine learning-based tool that relies only on baseline data will help in prioritizing sub-populations for COVID-19 testing, and is urgently needed to relieve the burden of large-scale screening when testing capacity may be limited.

Methods

Study setting and data sources

The study was conducted based on patient cohorts from the Mount Sinai Health System, which comprises 8 hospitals and more than 410 ambulatory practice locations in the New York metropolitan area. Data were derived from clinical records from Mount Sinai facilities using the Epic electronic health record (Epic Systems, Verona, WI). Data were directly extracted from Epic's Clarity and Caboodle servers.

The curation of EHR data is as previously described. Briefly, in the setting of the COVID-19 pandemic, the Mount Sinai Data Warehouse (MSDW) developed and released a de-identified data set encompassing all COVID-19 related patient encounters within the Mount Sinai system, accompanied by selected demographics, comorbidities, vital signs, medications, and lab values. De-identification was performed in accordance with the Safe Harbor subsection of the HIPAA Privacy Rule. The MSDW dataset captured any patient encounters at a Mount Sinai facility with any of the following: a COVID-19 related encounter diagnosis, a COVID-19 related visit type, a SARS-CoV-2 lab order, a SARS-CoV-2 lab result, or a SARS-CoV-2 lab test result from the New York State Department of Health's Wadsworth laboratory. As part of de-identification, all patients over the age of 89 had their age set to 90. Initial vital signs were the first vital signs documented for the encounter. We defined initial labs as the first lab value within 24 hours of the start of the encounter.

For this study, we included all adult patients (18 or older) who had a COVID-19 test up to June 2nd, 2020. We split the cohort into a training set (encounters up to April 13th, 2020) and a test set (encounters from April 14th to June 2nd, 2020).

This study utilized de-identified data extracted from the electronic health. The Institutional Review Board (IRB) of the Mount Sinai School of Medicine (MSSM), in accordance with Mount Sinai’s Federal Wide Assurances (FWA#00005656, FWA#00005651) to the Department of Health and Human Services approved this human subject research. The IRB has determined that this research involves no greater than minimal risk and approved the waiver for informed consent. The MSSM IRB approved the request for Waiver of Authorization for use and disclosure of PHI for this project under expedited review procedure category 5. All analyses were carried out in accordance with relevant guidelines and regulations.

Machine learning models
We implemented a machine learning framework to build a COVID-19 status predictor using three different classification algorithms: logistic regression, random forest, and eXtreme Gradient Boosting (XGBoost). The goal of this predictor was to predict whether or not a patient would test positive for SARS-CoV-2 from an RT-PCR test. Tests reported as “presumptive positive” were classified as positive results for the purposes of training and validation.

**Feature selection**

A total of 38 features were used in the final models. The features included in this study were chosen based on clinical judgment, with an emphasis on easily obtained or readily available clinical features, such as patient demographics, comorbidities, and common lab values. In order to maximize feature inclusion while removing any features unlikely to be predictive, we omitted any features containing over 70% missing values. The values of categorical features were label encoded and converted into numerical form (0, 1, 2, 3, ...). Ordinal categorical features, e.g. smoking, were encoded based on the sequential relation between discrete values, e.g. ‘NEVER’ < ‘FORMER’ < ‘CURRENT’. Nominal categorical features, e.g. race, were encoded based on the order in which discrete values appeared in the data.

**Model Training, Cross-Validation, and Hyperparameter Optimization**

We stratified the patient population in the MSDW dataset into a training set to train the prediction models and a test set to test each model’s performance. We used the patients tested through April 13, 2020 (N = 12476) as the training set and the patients tested from April 13, 2020 through June 2, 2020 (N = 19263) as the test set.

Since random forest models and logistic regression models are incompatible with missing values, we created a separate training set and test set without missing values. Missing values for each feature were imputed by the median value (for continuous variables) or the most frequently occurring value (for categorical variables) for that feature in its respective dataset.

We trained the XGBoost model on the unimputed training set, and we trained the random forest and logistic regression models on the imputed training set. We applied a randomized search with sixty rounds of five-fold cross validation to identify the optimal hyperparameters for each of the three models. For the XGBoost model, we optimized ‘n_estimators’, ‘learning_rate’, ‘subsample’, ‘max_depth’, ‘colsample_bytree’, ‘min_child_weight’, and ‘gamma.’ For the random forest model, we optimized ‘max_features’, ‘min_samples_split’, ‘min_samples_leaf’, ‘n_estimators’, ‘max_depth’, and ‘bootstrap.’ For the logistic regression model, we optimized ‘C’, ‘penalty’, ‘solver’, and ‘max_iter.’ The full list of final hyperparameters for these three models is available in **Supplementary Table 1A-C**.

**Model Testing**

We then evaluated the performance of each model on their respective test sets. We tested the XGBoost model on the unimputed test set, and we tested the random forest and logistic regression models on the
imputed test set. Each model derived and utilized class probabilities to predict COVID-19 status with a threshold of $\geq 0.5$, in which predicted probabilities greater than the threshold corresponded to predicted positive status.

The performance of each model was evaluated in terms of classification accuracy, negative predictive value, precision, recall/sensitivity, and area under the receiver operating characteristic curve (AUC-ROC). The model with the highest AUC score on the test set was analyzed to determine feature importance.

**Development of an interpretable, single-tree XGBoost model**

XGBoost is widely regarded as a high-performance algorithm due to its reliance on gradient tree boosting, an ensemble technique that enables XGBoost to add new trees to correct errors made by existing trees.$^{21}$ However, since XGBoost combines results across multiple trees when making predictions, the decision algorithm utilized by XGBoost models is often difficult to interpret.

Therefore, we also developed a more interpretable XGBoost model to predict COVID-19 status by limiting the number of trees to 1, which reduces the complexity of the model to yield a single decision tree that can be visualized as a simple binary flowchart. Although a single-tree XGBoost model can suffer slightly in predictive power as compared to a multi-tree model, a single decision tree can reveal a much simpler and more clinically applicable decision algorithm.$^{22}$

This single-tree XGBoost model was trained on the unimputed training set and five-fold cross validated over sixty rounds in a randomized search to determine optimal hyperparameters. The hyperparameter search space used during the randomized search for the single-tree XGBoost model was the same as that of the multi-tree XGBoost model, with the exception of the n_estimators and max_depth parameters, which were manually set to 1 and 4, respectively. The full list of hyperparameters for the single-tree XGBoost model is available in **Supplementary Table 1D**. Subsequently, the single-tree XGBoost model was tested on the unimputed test set and evaluated alongside the other three models.

**Results**

**Predictive models of COVID-19 status**

The full MSHS study cohort used to train and test our models contained a total of 31,739 adult patients who had a COVID-19 test up to June 2nd, 2020 (**Supplementary Fig. 1, Supplementary Table 2**). To demonstrate the utility of training a model based on past data that have prospective predictive values, this cohort was split based on encounter dates into a training set ($N = 12,476$, patients tested through April 13, 2020; of whom 6884 tested positive and 5592 tested negative) and a test set ($N = 19,263$, patients tested from April 13, 2020 through June 2, 2020; of whom 2940 tested positive and 16323 tested negative).
We conducted predictive modeling of COVID-19 status using the described data. Five-fold cross-validated XGBoost, random forest, and logistic regression models predicting COVID-19 status were trained on the training set and tested on the test set (Methods). We evaluated and compared the performance of the multi-tree XGBoost model, the random forest model, and the logistic regression model in correctly predicting COVID-19 status of patients within their respective test sets: the XGBoost model was tested on the unimputed test set while the random forest and logistic regression models were tested on the imputed test set (Methods). The predictive performance of each of the three models is provided in Table 1, and the AUC-ROC curves of the prediction models are shown in Fig. 1A-C. The multi-tree XGBoost model (AUC score = 0.75) and the random forest model (AUC score = 0.75) achieved similar performance, while the logistic regression model performed slightly worse (AUC score = 0.73).

**Feature importance**

To evaluate the key features predictive of COVID-19 status, we assessed the contribution of each input variable to the performance of the machine learning model. Since the multi-tree XGBoost model tied for highest AUC score in the test set and also outperformed the random forest model during cross-validation, we determined feature importance using the XGBoost model. Features were ranked according to their relative contribution, also known as gain: the average training loss reduction gained by using a particular feature to split the data, as calculated by the log loss function.\(^{21}\) The relative gain of a feature (the gain provided by that feature divided by total gain across all features) demonstrates the relative importance of that feature compared to other features in the model. The relative gain of each feature in the multi-tree XGBoost model is summarized in Fig. 2. Calcium had the highest predictive value in the XGBoost model (relative gain = 0.167), followed by AST (aspartate aminotransferase, relative gain = 0.072), oxygen saturation (relative gain = 0.052), and temperature (relative gain = 0.046).

**Identifying an optimal probability threshold for patient screening**

In the multi-tree XGBoost model, the predicted class probabilities of COVID-19 status across all patients in the test set revealed a distribution close to actual outcome for patients that tested negative (median = 0.33, SD = 0.19), while the distribution of patients that tested positive showed a wider range of probabilities (median = 0.58, SD = 0.28), as shown in Fig. 3. Such a probability score can prioritize individuals for testing. For example, above the probability threshold of 0.85, we identified 854 patients that tested positive and 331 patients that tested negative in the test set. The positive-test rate of 72% for this prioritized sub-population is notably higher than the 15% overall positive rate in the entire test set patient population.

**Single-tree XGBoost Model Performance**

Compared to the multi-tree XGBoost model, the single-tree XGBoost model performed slightly worse with an AUC score of 0.69 in the test set. The performance of the single-tree XGBoost model in predicting COVID-19 status in the test set is also provided in Table 1, and its corresponding AUC-ROC curve is provided in Fig. 1D. Despite suffering slightly in predictive strength, the single-tree XGBoost model relies
only on a single decision tree, which can be easily interpreted and adapted into a simple, clinically applicable decision rule, as shown in Fig. 4.

**Discussion**

In this study, our machine learning framework provides a proof-of-concept for predicting COVID-19 status (RT-PCR test result) relying only on baseline demographics, comorbidities, vitals, and lab values. The predictive models could prioritize sub-populations for COVID-19 status in situations where testing capacity may be limited, or they could also be used in conjunction with clinical judgment or other predictive models (ex. based on mobile phone data) to verify RT-PCR test results. Our predictive models also identified key clinical features that correlate with a positive test status, providing insights on efficient patient stratification and population screening. Moreover, the decision algorithm derived from the single-tree XGBoost model provides a simple, clinically operable method of stratifying sub-populations that can be replicated in other settings.

As the best performing model in the test set, the multi-tree XGBoost model revealed several key clinical variables predictive of positive RT-PCR test result. One key finding was that serum calcium levels is a highly predictive feature of COVID-19 status; concurrently, previous studies identified serum calcium as a biomarker of clinical severity and poor prognosis in COVID-19 patients.\(^{23,24}\) Our single-tree XGBoost model uses serum calcium level < 9.05 mg/dL as the first split in the decision tree (Fig. 4), which also correlates with previous findings confirming the prevalence of hypocalcemia in severe COVID-19 patients.\(^{23}\) Notably, a serum calcium test typically have a rapid turnaround time within a day and thus may be valuable in complementing existing tests.

The development of acute respiratory distress syndrome (ARDS) and/or sepsis, along with their associated symptoms, have also been shown to be a key indicator of positive COVID-19 status.\(^{2,25}\) While the datasets used to train and test the machine learning models did not directly include symptoms of COVID-19, the trained models prioritized features that may contribute to COVID-19 positivity in both symptomatic and asymptomatic individuals. Our multi-tree XGBoost model identified features such as age, lab values (AST levels, total bilirubin levels), comorbidities (cancer, diabetes, HIV, smoking), vitals (oxygen saturation, temperature), and hematologic features (lymphocyte count, hemoglobin) to be predictive of positive test status. Many of these identified features have been previously reported as markers of COVID-19 severity. For instance, abnormal liver function tests, which includes elevated levels of AST and bilirubin, have previously been found to be a marker of poor clinical outcome in COVID-19 patients.\(^{24,26}\) Decreased white blood cell count (lymphopenia) and hemoglobin levels (anemia) have been confirmed to be positively correlated with serum calcium levels and severe COVID-19 disease progression.\(^{6,23,24,27}\)

We highlight multiple conscious design choices in constructing the machine-learning models for practical reasons. First, a split of train vs. test sets based on date mimics real-world situations, in which predictive models can only be trained on past data to facilitate prospective predictions. The samplings for tested
individuals likely differ across the two time periods in New York City, and the ability of our model to predict a prospective cohort based on past data provide confidence to this approach. Second, our models rely solely on baseline features that can be easily obtained at initial patient encounter, which will have significant practical implications in prioritizing sub-populations for testing in areas with limited test kits or testing capacity. Indeed, the resulting models remain a proof-of-principal; given the different sampling populations and available lab tests, best performance of COVID-19 status prediction can likely be achieved if each testing site derive its own predictive model. Our codes are made openly available for future implementations.

Our machine learning models had several limitations. First, the variable predicted by the models was RT-PCR test result, which, despite being widely regarded as the gold standard for the diagnosis of COVID-19, is still prone to error and limits the peak performance of the model. We note that if data from a new test outperforming the RT-PCR test become available, our predictive models can be adapted to leverage the results of the new test. Second, the data contained high proportion of missing values in certain variables, especially in lab tests, which may have contributed to the low precision in our models. Although XGBoost models are compatible with missing values, the inclusion of more complete patient records may improve the performance of subsequent model versions. Finally, as more data becomes available, our machine learning models could be retrained and validated in other settings (e.g., health systems, testing sites, schools) to evaluate model performance and utility across populations.

Overall, this study provided a proof-of-concept that predictive models of COVID-19 case status can be developed to help prioritize sub-populations for more efficient screening or complement existing tests. Given that the COVID-19 pandemic continues to affect large fractions of populations, efficient screening of COVID-19 status, identification of high risk factors of COVID-19 positivity, and stratification of patient populations will play a crucial role in the allocation of limited testing resources for efficient testing and facilitation of patient management.

**Declarations**

**Acknowledgment**

We dedicate this work to the frontline health workers and staff of the Mount Sinai Healthcare System. This work was supported in part through the Mount Sinai Data Warehouse (MSDW) resources and staff expertise provided by Scientific Computing at the Icahn School of Medicine at Mount Sinai.

**COMPETING FINANCIAL INTERESTS**

J.F. is an employ of Outco Inc. All other authors declare no competing financial interests.

**CONTRIBUTIONS**
J.Z. and J.F. developed the machine learning models, and J.Z. conducted the analyses. T.J. curated clinical data and S.N. and P.K. compiled the structured EHR data. J.Z. wrote, T.J. and K.H. edited the manuscript. K.H. conceived and supervised the research. All authors read and approved the manuscript.

DATA AND CODE AVAILABILITY

The summarized data are available in Supplementary Tables. The implemented code is available at https://github.com/Huang-lab/COVIDStatusPrediction.

References

1. WHO Coronavirus Disease (COVID-19) Dashboard. https://covid19.who.int (accessed Jan 26, 2021).
2. Tabish, S. A. COVID-19 pandemic: Emerging perspectives and future trends. J Public Health Res.9, https://doi.org/10.4081/jphr.2020.1786 (2020).
3. MacKay, M. J. et al. The COVID-19 XPRIZE and the need for scalable, fast, and widespread testing. Nature Biotechnology.38, 1021–1024 (2020).
4. La Marca, A. et al. Testing for SARS-CoV-2 (COVID-19): a systematic review and clinical guide to molecular and serological in-vitro diagnostic assays. Reprod Biomed Online.41, 483–499 (2020).
5. Tromberg, B. J. et al. Rapid Scaling Up of Covid-19 Diagnostic Testing in the United States — The NIH RADx Initiative. New England Journal of Medicine.383, 1071–1077 (2020).
6. Oliveira, B. A., de Oliveira, L. C., Sabino, E. C. & Okay, T. S. SARS-CoV-2 and the COVID-19 disease: a mini review on diagnostic methods. Rev Inst Med Trop Sao Paulo.62. DOI:10.1590/S1678-9946202062044.
7. Whitman, J. D. et al. Evaluation of SARS-CoV-2 serology assays reveals a range of test performance. Nature Biotechnology.38, 1174–1183 (2020).
8. Woloshin, S., Patel, N. & Kesselheim, A. S. False Negative Tests for SARS-CoV-2 Infection — Challenges and Implications. New England Journal of Medicine.383, e38 (2020).
9. Lisboa Bastos, M. et al. Diagnostic accuracy of serological tests for covid-19: systematic review and meta-analysis. BMJ.370, https://doi.org/10.1136/bmj.m2516 (2020).
10. Adams, E. R. et al. Antibody testing for COVID-19: A report from the National COVID Scientific Advisory Panel. medRxiv 2020;: 2020.04.15.20066407.
11. Health, C. & for D R. Guidance for the Use of Bayesian Statistics in Medical Device Clinical Trials. U.S. Food and Drug Administration 2020; published online Jan 19. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-use-bayesian-statistics-medical-device-clinical-trials (accessed Oct 11, 2020).
12. Shental, N. et al. Efficient high-throughput SARS-CoV-2 testing to detect asymptomatic carriers. Sci. Adv.6, eabc5961 (2020).
13. Giri, A. K. & Rana, D. R. Charting the challenges behind the testing of COVID-19 in developing countries: Nepal as a case study. Biosafety and Health.2, 53–56 (2020).
14. Kobia, F. & Gitaka, J. COVID-19: Are Africa’s diagnostic challenges blunting response effectiveness? AAS Open Res. 3, https://doi.org/10.12688/aasopenres.13061.1 (2020).
15. Xu, S. & Li, Y. Beware of the second wave of COVID-19. The Lancet. 395, 1321–1322 (2020).
16. Bar-Zeev, N. & Inglesby, T. COVID-19 vaccines: early success and remaining challenges. The Lancet. 396, 868–869 (2020).
17. Koirala, A., Joo, Y. J., Khatami, A., Chiu, C. & Britton, P. N. Vaccines for COVID-19: The current state of play. Paediatr Respir Rev. 35, 43–49 (2020).
18. Jun, T., Nirenberg, S., Kovatch, P. & Huang, K. Mortality and risk factors among US Black, Hispanic, and White patients with COVID-19. medRxiv 2020; 2020.09.08.20190686.
19. Jun, T., Nirenberg, S., Kovatch, P. & Huang, K. Sex-specificity of mortality risk factors among hospitalized COVID-19 patients in New York City: prospective cohort study. medRxiv 2020; 2020.07.29.20164640.
20. Rights (OCR) O for C. Methods for De-identification of PHI. HHS.gov. 2012; published online Sept 7. https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html (accessed Dec 14, 2020).
21. Chen, T., Guestrin, C. & XGBoost: A Scalable Tree Boosting System. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: Association for Computing Machinery 2016: 785–94.
22. An interpretable mortality prediction model for COVID-19 patients | Nature Machine Intelligence. https://www.nature.com/articles/s42256-020-0180-7#Sec7 (accessed Dec 14, 2020).
23. Liu, J., Han, P., Wu, J., Gong, J. & Tian, D. Prevalence and predictive value of hypocalcemia in severe COVID-19 patients. Journal of Infection and Public Health. 13, 1224–1228 (2020).
24. Sun, J-K. et al. Serum calcium as a biomarker of clinical severity and prognosis in patients with coronavirus disease 2019. Aging (Albany NY). 12, 11287–11295 (2020).
25. Hassan, S. A., Sheikh, F. N., Jamal, S., Ezeh, J. K. & Akhtar, A. Coronavirus (COVID-19): A Review of Clinical Features, Diagnosis, and Treatment. Cureus; 12. DOI:10.7759/cureus.7355.
26. Cai, Q. et al. COVID-19: Abnormal liver function tests. J Hepatol. 73, 566–574 (2020).
27. Cavezzi, A., Troiani, E. & Corrao, S. COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. A narrative review. Clin Pract. 10, https://doi.org/10.4081/cp.2020.1271 (2020).

Table

Table 1: Predictive performance of each COVID-19 status prediction model in the test set
| Model                                  | Accuracy (%) | Precision (%) | Sensitivity (%) | Specificity (%) | Negative Predictive Value (%) | AUC-ROC (%) |
|----------------------------------------|--------------|---------------|-----------------|-----------------|--------------------------------|--------------|
| Multi-tree XGBoost classifier          | 77.66        | 35.54         | 57.04           | 81.37           | 91.32                          | 74.67        |
| Random Forest classifier               | 79.10        | 37.21         | 53.71           | 83.67           | 90.94                          | 74.53        |
| Logistic Regression classifier         | 79.05        | 36.66         | 51.19           | 84.07           | 90.53                          | 71.75        |
| Single-tree XGBoost classifier         | 79.37        | 36.11         | 45.68           | 85.44           | 89.73                          | 69.64        |

**Supplemental Materials**

**Supplementary Table 1**: List of final hyperparameters used in (A) the multi-tree XGBoost model, (B) the random forest model, (C) the logistic regression model, and (D) the single-tree XGBoost model. All hyperparameters were selected through a randomized search with five-fold cross validation, with the exception of the ‘n_estimators’ and ‘max_depth’ parameters in the single-tree XGBoost model, which were manually set so that a single-tree model could be produced (Methods). All unlisted parameters were initialized to their algorithm’s default values.

**Supplementary Figure 1**: Flow diagram of included patients

**Supplementary Table 2**: Descriptive cohort characteristics. Categorical variables are presented as counts and proportions; continuous variables are presented as medians and interquartile ranges.