Molecular line shape parameters for exoplanetary atmospheric applications

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2017 J. Phys.: Conf. Ser. 810 012010
(http://iopscience.iop.org/1742-6596/810/1/012010)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 128.41.35.98
This content was downloaded on 19/06/2017 at 15:31

Please note that terms and conditions apply.

You may also be interested in:

ExoMars delayed by two years
Michael Banks

The Enriched Xenon Observatory
K O'Sullivan and the EXO Collaboration

Erratum: A Cloudiness Index for Transiting Exoplanets Based on the Sodium and Potassium Lines: Tentative Evidence for Hotter Atmospheres Being Less Cloudy at Visible Wavelengths (2016, ApJL, 826, L16)
Kevin Heng

EXPLORING BIASES OF ATMOSPHERIC RETRIEVALS IN SIMULATED JWST TRANSMISSION SPECTRA OF HOT JUPITERS
Waldmann, O. Venot et al.

Positron Annihilation in Germanium in Thermal Equilibrium at High Temperature
Akira Uedono, Tsuyoshi Moriya, Naoyuki Komuro et al.

Double beta decay in liquid xenon
Razvan Gornea and the Exo collaboration

Preparation and conductivity measurement of 7-8 mol % YSZ and 12 mol % CSZ for electrolyte SOFC
B Budiana, F Fitriana, N Ayu et al.

A CLOUDINESS INDEX FOR TRANSITING EXOPLANETS BASED ON THE SODIUM AND POTASSIUM LINES: TENTATIVE EVIDENCE FOR HOTTER ATMOSPHERES BEING LESS CLOUDY AT VISIBLE WAVELENGTHS
Kevin Heng
Molecular line shape parameters for exoplanetary atmospheric applications

S N Yurchenko, J Tennyson and E J Barton
Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London, UK
E-mail: s.yurchenko@ucl.ac.uk

Abstract.
We describe the recent updates to the ExoMol database regarding the molecular spectral line shapes. ExoMol provides comprehensive molecular line lists with a special emphasis on the applications involving characterization of hot atmospheres such as those found in exoplanets and cool stars. Among important requirements of such applications are (i) the broadening parameters for hydrogen and helium dominating atmospheres and (ii) very broad ranges of temperature and pressures. The current status of the available line shape data in the literature, demands from the exoplanetary community and their specific needs are discussed.

1. Introduction
Molecules in the atmospheres of exoplanets, and similar astronomical objects such as brown dwarfs, are observed at pressures approaching atmospheric and therefore display pronounced pressure effects in their spectra [1, 2, 3]. There is, however, a severe lack of data appropriate for reproducing these pressure effects.

The ExoMol project provide extensive line lists for a large range of molecules, mostly related to the atmospheric retrievals for exoplanets and cool stars [4]. The selection of molecules and the spectroscopic coverage in ExoMol are dictated by the requirements from these applications. A major requirement is that the line lists must be sufficiently complete to be applicable for high temperatures specific for atmospheres of most of these objects [5]. Spectroscopic data for almost 40 molecules are currently covered by the ExoMol database, including diatomic, triatomic, tetrameric and two pentatomic species. The available line lists were generated both by ExoMol and other groups, see Table 1.

Recently we have undertaken a major upgrade of the ExoMol database [6]. The upgrade was motivated by the growing role of ExoMol as a major provider of the hot spectroscopic line lists for atmospheric retrievals from exoplanetary observations. The most important modifications include: (i) introduction of application programming interface (API); (ii) line shape parameters; (iii) cooling functions; (iv) radiative life times [7] and Landé g-factors [8]. In this contribution the new line shape data provided by ExoMol are discussed.

2. Requirements for the line shape parameters from the exoplanetary applications.
It is widely recognized that Voigt profiles only provide an approximate solution, especially for high resolution atmospheric studies [116]. However Voigt profiles are in widespread use and
Table 1. Molecular line lists included in the ExoMol database and Voigt line shape parameters when available.

Molecule	Reference	Broadener	Molecule	Reference	Broadener
AlO	[9]	HD⁺	[10]		
BeH	[11]	HeH⁺	[12]		
CaH	[11]	HNO₃	[13]	Air	
CaH	[14]	KCl	[15]		
CaO	[16]	LiH	[10]		
CH	[17]	LiH⁺	[10]		
CH₄	[18]	Air, He, H₂, CH₄	MgH	[11]	
CN	[19]	MgH	[20]		
CP	[21]	NaCl	[15]		
CrH	[22]	NaH	[23]		
CS	[24]	Air, CS	NH	[25]	
FeH	[26]	NH₃	[27]	Air, H₂, He, NH₃	
H₂CO	[28]	Air, He, H₂, H₂CO	PH₃	[28]	Air, He, H₂, PH₃
H₂O	[29]	Air, H₂, He, H₂O	PN	[30]	
H⁺	[31]	ScH	[32]		
HCl	[33]	Air, H₂, He, HCl	SiO	[34]	
HCN/HNC	[35]	Air, He, H₂, HCN	TH	[36]	
SO₂	[37]	Air, He, H₂	SO₃	[38]	
H₂S	[39]	H₂O₂	[40]		
VO	[41]				
H₂⁺	[42]				

are easily computed [117, 118, 119]; they are therefore uniformly used to represent pressure broadening effects in exoplanetary models and hence in the ExoMol database.

Table 1 illustrates the coverage of the broadening parameters in ExoMol, which is also a reflection of the current status in the field. Below we list the main factors affecting the development of the line shapes for the exoplanetary applications.

(i) The dominant species in gas giant planets such as hot Jupiter atmospheres are H₂ and He, often at high pressure [120]. However most of the line shapes parameters available in the literature are for the air (or N₂) as the main broadener and motivated by the terrestrial applications. Even though the needs for the line shapes broadened by H₂ and He have been recently recognized by HITRAN [121], the corresponding line shape data is still incomplete [122, 2].

(ii) The large size of the line lists in ExoMol, which consist of tens of billions of lines for larger molecules, make it practically impossible to populate the whole database with accurate, line-by-line line shape parameters, experimental or theoretical. Only simple and very approximate models (e.g. based only on one quantum number J′′) can afford productions of the data on such a large scale. However even simple models do not exist for most of the species in question, especially for H₂ and He as broadeners.

(iii) The high temperatures (T > 1000K) of hot Jupiters, and other exoplanets of current interest [123], require line profiles for a large range of rotation and vibration excitations over extended temperature ranges. It is considered to be important to model at least the rotational (J) dependence of the line widths broadened by H₂ [120].

(iv) There is no agreement on the value of the line wing cut-off to be used when computing Voigt profiles. On one hand, it is imperative to use a reasonable cut-off distance in order to speed
up the line-by-line calculations of the molecular opacities. On the other hand, the choice of the cut-off is known to affect the results at high pressures. Common practices include a fixed cut-off (e.g. 25 cm\(^{-1}\) or 100 cm\(^{-1}\) \cite{120}), variable cut-off depending on pressure \(P\) (e.g. \(\text{min}(25P; 100)\) cm\(^{-1}\) \cite{85}) or proportional to the line (half-)width (e.g. 500 widths \cite{3}). The importance of folding back the truncated wings to ensure that the strength of the profile is conserved \cite{85} is also considered in certain circumstances.

(v) Efficient computational algorithms for the Voigt evaluations \cite{117, 124} as well as the sampling method \cite{125} are required when billions of lines are involved.

Some progress in estimating \(\text{H}_2\) and He pressure-broadening parameters for water at elevated temperatures \cite{50, 126} which are assumed to appropriate not only for our \(\text{H}_2^{16}\text{O}\) line lists \cite{29, 127} but also those for \(\text{H}_2^{17}\text{O}\) and \(\text{H}_2^{18}\text{O}\) \cite{128}.
In practice it is computationally prohibitive to perform radiative transport calculations on hot exoplanets line-by-line. Therefore the models either use precomputed cross sections, such as is done by τ-Rex [28, 129], or tables of k-coefficients, as done by the NEMISIS [130]. This means that appropriate values are precomputed on a grid of temperatures and pressures as inputs to such codes. Progress has been made recasting very large line lists, such as that for methane, into a background quasi-continuous pressure-independent cross section which can be combined with a full pressure-dependent treatment of the stronger lines [131, 132]. This approach would appear to provide a practical way forward.

3. Conclusion

We are in the advanced stages of developing a diet for pressure broadening of molecules present in exoplanetary atmospheres and those of other hot astronomical objects. A full discussion of this problem will be given elsewhere [133].

Pressure broadening data is urgently needed for atmospheric studies (retrievals) of exoplanets and cool stars. There is huge demand on the comprehensive solutions of the line shape problems for most of the molecules important for exoplanetary studies. The ExoMol database is arguably the main source of opacities for hot species important for modeling these atmospheres, where we have created a structure for depositing and curating any molecular data important for spectroscopic properties of hot atmospheric and other gaseous environments. We invite the molecular data producers to contribute to this database. The line shape data is especially important as the line parameters are missing or incomplete for the H$_2$-rich atmospheres even for the most important absorbers. Exoplanetary atmospheric retrieval is a hot topic at the moment with a lot of interest from the society, which makes it a good place to be for an expert in the molecular line profiles. The lack of data, a strong demand from the field and interest from the public is a very attractive mixture for work in this direction to be properly recognized and rewarded.

We also invite the community to visit and test the new ExoMol database at www.exomol.com. Any feedback will be greatly appreciated.

Acknowledgements

This work is supported by ERC Advanced Investigator Project 267219. We thank the support of the COST action MOLIM CM1405.

References

[1] Tinetti G, Tennyson J, Griffiths C A and Waldmann I 2012 Phil. Trans. Royal Soc. London A 370 2749–2764
[2] Freedman R S, Marley M S and Lodders K 2008 Astrophys. J. Suppl. 174 504
[3] Hedges C and Madhusudhan N 2016 Mon. Not. R. Astron. Soc. 458 1427–1449
[4] Tennyson J and Yurchenko S N 2012 Mon. Not. R. Astron. Soc. 425 21–33
[5] Yurchenko S N, Tennyson J, Bailey J, Hollis M D J and Tinetti G 2014 Proc. Nat. Acad. Sci. 111 9379–9383
[6] Tennyson J, Yurchenko S N, Al-Refaie A F, Barton E J, Chubb K L, Coles P A, Diamantopoulou S, Gorman M N, Hill C, Lam A Z, Lodhi L, McKemmish L K, Na Y, Owens A, Polyansky O L, Rivlin T, Sousa-Silva C, Underwood D S, Yachmenev A and Zak E 2016 J. Mol. Spectrosc. 327 73–94
[7] Tennyson J, Hulme K, Naim O K and Yurchenko S N 2016 J. Phys. B: At. Mol. Opt. Phys. 49 044002
[8] Laporta V, Tennyson J and Celiberto R Plasma Sources Sci. Technol.
[9] Patrasca A T, Tennyson J and Yurchenko S N 2015 Mon. Not. R. Astron. Soc. 449 3613–3619
[10] Coppola C M, Lodhi L and Tennyson J 2011 Mon. Not. R. Astron. Soc. 415 487–493
[11] Yadim B, Vaness T, Conti P, Hill C, Yurchenko S N and Tennyson J 2012 Mon. Not. R. Astron. Soc. 425 34–43
[12] Engel E A, Doss N, Harris G J and Tennyson J 2005 Mon. Not. R. Astron. Soc. 357 471–477
[13] Pavlyuchko A I, Yurchenko S N and Tennyson J 2015 Mon. Not. R. Astron. Soc. 452 1702–1706
[14] Li G, Harrison J J, Ram R S, Western C M and Bernath P F 2012 J. Quant. Spectrosc. Radiat. Transf. 113 67 – 74 ISSN 0022-4073 URL http://www.sciencedirect.com/science/article/pii/S0022407311003323
[15] Barton E J, Chiu C, Golpayegani S, Yurchenko S N, Tennyson J, Frohman D J and Bernath P F 2014 Mon. Not. R. Astron. Soc. 442 1821–1829
[16] Yurchenko S N, Blissett A, Asari U, Vasiliou M, Hill C and Tennyson J 2016 Mon. Not. R. Astron. Soc. 456 4524–4532
[17] Masseron T, Plez B, Van Eck S, Colin R, Daoutidis I, Godefroid M, Coheur P F, Bernath P, Jorissen A and Christlieb N 2014 Astron. Astrophys. 571 A47
[18] Yurchenko S N and Tennyson J 2014 Mon. Not. R. Astron. Soc. 440 1649–1661
[19] Brooke J S A, Ram R S, Western C M, Li G, Schwenke D W and Bernath P F 2014 Astrophys. J. Suppl. 210 23
[20] GharibNezhad E, Shayesteh A and Bernath P F 2013 Mon. Not. R. Astron. Soc. 432 2043–2047
[21] Burrows A, Ram R S, Bernath P, Sharp C M and Milsom J A 2002 Astrophys. J. 577 986–992
[22] Rivlin T, Lodi L, Yurchenko S N, Tennyson J and Le Roy R J 2015 Mon. Not. R. Astron. Soc. 451 5153–5157
[23] Rivlin T, Lodi L, Yurchenko S N and Tennyson J 2015 Mon. Not. R. Astron. Soc. 454 1931–1939
[24] Brooke J S A, Ram R S, Western C M, Li G, Schwenke D W and Bernath P F 2014 Astrophys. J. Suppl. 210 23 URL http://stacks.iop.org/0067-0049/210/i=2/a=23
[25] Brooke J S A, Ram R S, Western C M, Li G, Schwenke D W and Bernath P F 2014 Astrophys. J. Suppl. 210 23 URL http://stacks.iop.org/0067-0049/210/i=2/a=23
[26] Brooke J S A, Ram R S, Western C M, Li G, Schwenke D W and Bernath P F 2014 Astrophys. J. Suppl. 210 23 URL http://stacks.iop.org/0067-0049/210/i=2/a=23
[58] Petrova T M, Solodov A M, Solodov A A and Starikov V I 2012 Mol. Phys. 110 1493–1503
[59] Solodov A M and Starikov V I 2008 Opt. Spectrosc. 105 14–20
[60] Solodov A M and Starikov V I 2009 Mol. Phys. 104 43–51
[61] Lazarev V V, Ponomarev Y N, Sumpf B, Fleischmann O, Waschull J, Kronfeldt H and Stroinova V N 1995 J. Mol. Spectrosc. 173 177–193
[62] Mérienne M F, Jenouvrier A, Hermans C, Vandaele A C, Carleer M, Coheur P F, Colin R, Fally S and Bach M 2003 J. Quant. Spectrosc. Radiat. Transf. 82 99–117
[63] Gamache R R and Hartmann J M 2004 Can. J. Chem. 82 1013–1027
[64] Gasster S D, Townes C H, Goorvitch D and Valero F P J 1988 J. Opt. Soc. Am. B 5 593–601
[65] Payne V, Delamere J, Cady-Pereira K, Gamache R, Moncet J L, Mlawer E and Clough S 2008 IEEE Transactions on Geoscience and Remote Sensing 46 3601–3617
[66] Gamache R 2005 J. Mol. Spectrosc. 229 9–18
[67] Gamache R and Larain A 2009 J. Mol. Spectrosc. 257 116–127
[68] Markov V 1994 J. Mol. Spectrosc. 164 233–238
[69] Golubiatnikov G, Keshelev M and Krupnov A 2008 J. Quant. Spectrosc. Radiat. Transf. 109 1828–1833
[70] Cazzoli G, Puzzarini C, Buffa G and Tarrini O 2008 J. Quant. Spectrosc. Radiat. Transf. 109 2820–2831
[71] Pine A S 1992 J. Chem. Phys. 97 773
[72] Margolis J S 1993 J. Quant. Spectrosc. Radiat. Transf. 50 431
[73] Fox K, Jennings D E, Stern E A and Hnunnard R 1988 J. Quant. Spectrosc. Radiat. Transf. 39 473–476
[74] Strong K, Taylor F W, Calcutt S B, Remedios J J and Ballard J 1993 J. Quant. Spectrosc. Radiat. Transf. 50 363–429
[75] Varanasi P and Chudamani S 1990 J. Quant. Spectrosc. Radiat. Transf. 43 1
[76] Gabard T, Grigoriev I M, Grigorovich N M and Tonkov M V 2004 J. Mol. Spectrosc. 225 123–131
[77] Grigoriev I M, Filippov N N, Tonkov M V, Gabard T and Le Doucen R 2001 J. Quant. Spectrosc. Radiat. Transf. 69 189–204
[78] Smith M A H, Benner D C, Predoi-Cross A and Malathy Devi V 2009 J. Quant. Spectrosc. Radiat. Transf. 99 630–653
[79] Brown L R, Benner D C, Champion J P, Devi V M, Fejard L, Gamache R R and et al 2003 J. Quant. Spectrosc. Radiat. Transf. 82 219–238
[80] Antony B K, Niles D L, Wrobleski S B, Humphrey C M, Gabard T and Gamache R R 2008 J. Mol. Spectrosc. 251 262–281
[81] Predoi-Cross A, Brown L R, Devi V M, Brawley-Tremblay M and Benner D C 2005 J. Mol. Spectrosc. 232 231–246
[82] Smith M A H, Benner D C, Predoi-Cross A and Malathy Devi V 2009 J. Quant. Spectrosc. Radiat. Transf. 111 1152–1166
[83] Pine A S, Markov V N, Buffa G and Tsrinri O 1993 J. Quant. Spectrosc. Radiat. Transf. 50 337
[84] Haddad S, Aroui H, Orphal J, Bouanich J P and Hartmann J M 2001 J. Mol. Spectrosc. 210 275
[85] Sharp C M and Burrows A 2007 Astrophys. J. Suppl. 168 140
[86] Baldacchini G, D’Amato F, Buffa G, Tarrini O, Preioi-Cross A, Brown L R, Devi V M, Brawley-Tremblay M and Benner D C 2005 J. Mol. Spectrosc. 232 231–246
[87] Smith M A H, Benner D C, Predoi-Cross A and Malathy Devi V 2009 J. Quant. Spectrosc. Radiat. Transf. 111 1152–1166
[88] Pine A S, Markov V N, Buffa G and Tsrinri O 1993 J. Quant. Spectrosc. Radiat. Transf. 50 337
[89] Levy A, Lacome N and Tarrago G 1993 J. Mol. Spectrosc. 157 172–181
[90] Sergent-Rozey M, van Thanh N, Rossi I, Lacome N and Levy A 1988 J. Mol. Spectrosc. 131 66–76
[91] Salem J, Bouanich J P, Walrand J, Aroui H and Blanquet G 2004 J. Mol. Spectrosc. 228 23–30
[92] Pickett H M, Poynter R L and Cohen E A 1981 J. Quant. Spectrosc. Radiat. Transf. 26 197–198
[93] Levy A, Lacome N and Tarrago G 1994 J. Mol. Spectrosc. 166 20–31
[94] Bouanich J P, Salem J, Aroui H, Walrand J and Blanquet G 2004 J. Quant. Spectrosc. Radiat. Transf. 84 195–205
[95] Salem J, Bouanich J P, Walrand J, Aroui H and Blanquet G 2005 J. Mol. Spectrosc. 232 247–254
[96] Butler R A H, Sagui L, Kleinler I and Brown L R 2006 J. Mol. Spectrosc. 238 178–192
[97] Kleinler I, Tarrago G, Cottaz C, Sagui L, Brown L R, Poynter R L, Pickett H M, Chen P, Pearson J C, Sams R L, Blake G A, Matsuura S, Nemtchinov V, Varanasi P, Fusina L and Di Lonardo G 2003 J. Quant. Spectrosc. Radiat. Transf. 82 293–312
[98] Nguyen-Van-Thanh, Rossi I and Sergent-Rozey M 1989 J. Mol. Spectrosc. 135 410–414
[99] Salem J, Aroui H, Bouanich J P, Walrand J and Blanquet G 2004 J. Mol. Spectrosc. 225 174–181
[100] Nemtchinov V, Sung K and Varanasi P 1990 J. Mol. Spectrosc. 144 146–160
[101] Bouanich J P, Salem J, Aroui H, Walrand J and Blanquet G 2004 J. Quant. Spectrosc. Radiat. Transf. 84 195–205
[102] Salem J, Bouanich J P, Walrand J, Aroui H and Blanquet G 2005 J. Mol. Spectrosc. 232 247–254
[103] Butler R A H, Sagui L, Kleinler I and Brown L R 2006 J. Mol. Spectrosc. 238 178–192
[104] Kleinler I, Tarrago G, Cottaz C, Sagui L, Brown L R, Poynter R L, Pickett H M, Chen P, Pearson J C, Sams R L, Blake G A, Matsuura S, Nemtchinov V, Varanasi P, Fusina L and Di Lonardo G 2003 J. Quant. Spectrosc. Radiat. Transf. 82 293–312
[105] Nguyen-Van-Thanh, Rossi I and Sergent-Rozey M 1989 J. Mol. Spectrosc. 135 410–414
[106] Salem J, Aroui H, Bouanich J P, Walrand J and Blanquet G 2004 J. Mol. Spectrosc. 225 174–181
[107] Nemtchinov V, Sung K and Varanasi P 1990 J. Mol. Spectrosc. 144 146–160
[108] Bouanich J P, Salem J, Aroui H, Walrand J and Blanquet G 2004 J. Quant. Spectrosc. Radiat. Transf. 84 195–205
[102] Cazzoli G and Puzzarini C 2012 J. Quant. Spectrosc. Radiat. Transf. 113 1051–1057
[103] Tasinato N, Charmet A P, Stoppa P, Giorgianni S and Buffa G 2014 Spectrochimica Acta Part A - Molecular and Biomolecular Spectroscopy 118 373–379
[104] Yang C, Buldyreva J, Gordon I E, Rohart F, Cuisset A, Mouret G, Bocquet R and Hindle F 2008 J. Quant. Spectrosc. Radiat. Transf. 109 2857–2868
[105] Devi V M, Benner D C, Smith M A H, Rinsland C P, Sharpe S and Sams R L 2004 J. Quant. Spectrosc. Radiat. Transf. 87 339–366
[106] Rinsland C P, Devi V M, Benner D C, Smith M A H, Sharpe S and Sams R L 2004 J. Quant. Spectrosc. Radiat. Transf. 82 343–362
[107] Devi V M, Benner D C, Smith M A H, Rinsland C P, Sharpe S and Sams R L 2003 J. Quant. Spectrosc. Radiat. Transf. 82 319–342
[108] Mehrotra S C, Mader H, de Vreede J P M and Dijkerman H A 1985 Chem. Phys. 93 115 – 125
[109] Hurtmans D, Henry A, Valentin A and Boulet C 2009 J. Mol. Spectrosc. 254 126–136
[110] Pine A S and Fried A 1985 J. Mol. Spectrosc. 114 148–162
[111] Toth R A, Hunt R H and Plyler E K 1970 J. Chem. Phys. 53 4304–4307
[112] Rank D H, Eastman D P, Rao B S and Wiggins T A 1963 J. Mol. Spectrosc. 10 34–50
[113] Blanquet G, Walrand J and Bouanich J P 1999 J. Mol. Spectrosc. 198 408–415
[114] Misago F, Lepère M and Bouanich J P 2009 J. Mol. Spectrosc. 254 16–19
[115] May R D and Webster C 1989 J. Mol. Spectrosc. 138 383–397
[116] Tennyson J, Bernath P F, Campargue A, Császár A G, Daumont L, Gamache R R, Hodges J T, Lisak D, Naumenko O V, Rothman L S, Tran H, Zobov N F, Buldyreva J, Boone C D, De Vizia M D, Gianfran Li Hartmann J M, McPheat R, Murray J, Ngo N H, Polyansky O L and Weidmann D 2014 Pure Appl. Chem. 86 1931–1943
[117] Humlicek J 1979 J. Quant. Spectrosc. Radiat. Transf. 21 309–313
[118] Johnson S G 2012 The Faddeeva package http://ab-initio.mit.edu/wiki/index.php/Faddeeva_Package
[119] Tan X 2013 J. Quant. Spectrosc. Radiat. Transf. 129 101–108
[120] Amundsen D S, Baraffe I, Tremblin P, Manners J, Wolfgang H, Mayne N J and Acraman D M 2014 Astron. Astrophys. 564 A50
[121] Wilzewski J S, Gordon I E, Kochanov R V, Hill C and Rothman L S 2016 J. Quant. Spectrosc. Radiat. Transf. 168 193 – 206
[122] Madhusudhan N 2012 Astrophys. J. 758 36
[123] Tsiaras A, Rocchetto M, Waldmann I P, Tinetti G, Varley R, Morell G, Barton E J, Yurchenko S N and Tennyson J 2016 Astrophys. J. 820 99
[124] Schreier F 2011 J. Quant. Spectrosc. Radiat. Transf. 112 1010 – 1025
[125] Evans T M, Sing D K, Wakeford H R, Nikolov N, Ballester G E, Drummond B, Kataria T, Gibson N P, Amundsen D S and Spake J 2016 Astrophys. J. 822 L4
[126] Barton E J, Hill C, Yurchenko S N, Tennyson J, Dudaryonok A and Lavrentieva N N 2016 J. Quant. Spectrosc. Radiat. Transf. (in press)
[127] Polyansky O L, Kyuberis A A, Lodi L, Tennyson J, Ovsyannikov R I, Zobov N and Yurchenko S N 2016 Mon. Not. R. Astron. Soc. 463 2848–2858
[128] Polyansky O L, Kyuberis A A, Lodi L, Tennyson J, Ovsyannikov R I and Zobov N 2016 Mon. Not. R. Astron. Soc. 463 463–478
[129] Waldmann I P, Rocchetto M, Tinetti G, Barton E J, Yurchenko S N and Tennyson J 2015 Astrophys. J. 813 13
[130] Irwin P G J, Teanby N A, de Kok R, Fletcher L N, Howett C J A, Tsang C C C, Wilson C F, Calcutt R, Nixon C A and Parrish P D 2008 J. Quant. Spectrosc. Radiat. Transf. 109 1136–1150
[131] BruniGevreva R J, Bernath P F, Bailey J and Dulick M 2015 Astrophys. J. 813 12 URL http://stacks.iop.org/0004-637X/813/i=1/a=12
[132] Yurchenko S N, Tennyson J, Amundsen D S and Baraffe I 2016 Astron. Astrophys.
[133] Barton E J, Hill C, Czurylo M, Li H Y, Hyslop A, Yurchenko S N and Tennyson J 2016 J. Quant. Spectrosc. Radiat. Transf. (in press)