Efficacy of dried colostrum powders in the prevention of diarrhea in neonatal Holstein calves

M. R. Mokhber Dezfouli · F. Rezazadeh · M. Rabbani · S. T. Zahraei · H. A. Seifi

Abstract One hundred and twenty healthy Holstein calves were assigned randomly at birth to one of four groups; each group contained 30 calves and the calves were received as follows: group A, 85±5 g of lyophilized colostrum powder dissolved in 3 kg of whole milk; group B, 85±5 g of spray-dried colostrum powder dissolved in 3 kg of whole milk; group C, 750 ml frozen and thawed colostrum in 3 kg of whole milk, and group D, only 3 kg of whole milk without colostrum supplement. Each group was subdivided into 3 sub-groups of 10 calves as follows: calves fed colostrum supplement at 24 or 48 or 72 h after birth. All calves fed fresh colostrum within 6 h after birth at the amount of 5% of BW by bottle. Calves which were fed lyophilized colostrum supplement had a significant lower incidence of diarrhea in comparison to control calves. In addition, calves were received lyophilized colostrum supplement at 24 h after birth showed less incidence of diarrhea than calves fed the supplement at 48 and 72 h. According to the results of present study providing lyophilized colostrum supplement at 24 h after birth might have been preventive effect on calf diarrhea. The spray-dried colostrum supplement had not the same effect.

Keywords Calf · Diarrhea · Colostrum · Lyophilized · Spray-dried

Introduction

Transfer of passive immunity in newborn calves occurs through the oral consumption and subsequent absorption of immunoglobulin (Ig) soon after birth (Bush and Staley 1980). Prevalence of failure of passive transfer (FPT) in calves has been reported to range from 11 to 31% in North America (Perino 1997). Klaus et al. (1969) reported that 30% of calves that consumed colostrum remained hypogammaglobulinemic. A recent survey by the USDA reported that 41% of 2,177 calves sampled between 24 and 48 h of age failed to attain serum IgG concentrations of or above 210 g/l (Center for Animal Health Monitoring 1993).

The relationship between neonatal morbidity or mortality and FPT of Ig has been demonstrated in numerous epidemiological studies (Boyd 1972; Davidson et al. 1981; Naylor et al. 1977).

The interval after birth to colostrum consumption and Ig concentration of colostrum bears the greatest influence on subsequent attainment of passive immunity in newborn calves (Arthington et al. 2000).

Many attempts have been made to artificially augment the ability of calves to attain passive immune support, such
as stored surplus colostrum (Foley and Otterby 1978), injectable Ig solutions (Quigley and Welborn 1996), dried colostrum (Morin et al. 1997; Garry et al. 1996), and concentrated milk whey (Mee et al. 1996). However, none of these methods have proven to provide adequate passive immune support.

The purpose of this study was to test the value of lyophilized and spray-dried colostrum as a colostrum supplement on the incidence of neonatal calf diarrhea.

Materials and methods

The study was carried out in a commercial dairy farm in the south of Tehran. The herd had a recent history of neonatal calf diarrhea. One hundred and twenty first-milking colostrum samples were collected in plastic containers from cows that have just given birth. The samples were immediately frozen at -20°C. To select high-titered colostrum against *Escherichia coli* K99, rotavirus, and corona virus, competitive ELISA test was done using an ELISA diagnostic kit (Biox, Belgium).

Colostrum lyophilization was performed using Epislon-1-12D apparatus (Martin Christ, Germany). Freezing time of the samples was 4 h at -30°C. The required time for vacuuming samples was 19 h at a negative pressure of 1.03 mbar.

Spray-drying of colostrum was performed using Mini spray-dryer-B-191 (Buchi, Switzerland). The maximum applied temperature was 50$^\circ$C and the pressure was 5–8 mbar. The required time for powdering 1 l of colostrum was 5 h.

One hundred and twenty healthy Holstein calves were assigned randomly at birth to one of four groups; each group contained 30 calves as follows: group A, 85±5 g of lyophilized colostrum powder dissolved in 3 kg of whole milk; group B, 85±5 g of spray-dried colostrum powder dissolved in 3 kg of whole milk; group C, 750 ml frozen and thawed colostrum in 3 kg of whole milk; and group D, only 3 kg of whole milk without colostrum supplement. Each group was subdivided into three subgroups of ten calves as follows: calves fed with colostrum supplement at 24, 48, or 72 h after birth. Mean±SD body weight (BW) of calves at birth was 42.45±9.75. All calves were fed fresh colostrum, 5% of BW by bottle, within 6 h of birth. They were separated from dams immediately after receiving first colostrum and were kept in individual calf pens. Alfalfa hay and concentrates were added to daily feeding at 14 days after birth.

The incidence of diarrhea, consistency of feces, and concurrent disease with diarrhea was evaluated through the first 30 days after birth. In addition, weight of calves at the age of 1 month was measured.

Statistical analysis was done with ANOVA, independent Student’s t test, and Chi-square test (SPSS for Windows). A p values less than 0.05 was considered as significant.

Results

All the colostrum samples (100%) had antibodies against rotavirus, 111 samples (92.5%) against corona virus, and 7 samples (5.8%) against *E. coli* K99.

Only one diarrheic calf from the control group died throughout the study. Calves that were fed lyophilized colostrum supplement had a significantly lower incidence of diarrhea in comparison to control calves (Table 1). In addition, calves that received lyophilized colostrum supplement at 24 h after birth showed less incidence of diarrhea than calves fed with the supplement at 48 and 72 h (Table 2). Calves were classified into four groups related to the interval of birth and diarrhea occurrence: 1–7, 8–14, 15–21, and 22–30 days. On the basis of the interval of birth and diarrhea incidence, there was no significant difference between the colostrum-type groups (Table 3).

There was no significant difference between groups on the basis of body weight at birth or at 30 days after birth (Table 4).

Discussion

In spite of high diarrhea morbidity rate in this herd, only one calf died throughout the study. It seems that colostrum ingestion within 6 h of birth affected the mortality due to diarrhea rather than morbidity. On the other hand, failure of passive transfer of immunity is only one of the factors determining disease occurrence. Population density, general sanitation (Paré et al. 1993; Larson et al. 1998), and dam vaccination status (Radostits and Acres 1983; Perino 1997) are management factors to consider when investigating morbidity in newborn calves.

| Table 1 | Relative and absolute frequency of diarrhea in calves fed with three types of colostrum supplement and control groups |
Collostrum supplement type	Diarrhea	Non-diarrhea	Treatment vs control		
	No.	%	No.	%	
Spray-dried	16	23.2	14	27.5	NS
Lyophilized	13	18.8	17	33.3	S**
Frozen and thawed	18	26.1	12	23.5	NS
Control	22	31.9	8	15.7	
Total	69	51			

S Significant, NS nonsignificant

**$p<0.01$
The calves that received lyophilized colostrum supplement had a lower incidence of diarrhea in comparison with control group. There were no significant differences among the four groups for BW gain or the interval from birth to diarrhea occurrence.

Previous researches have indicated that colostrum supplements derived from milk are less effective than maternal colostrum in providing adequate passive immune support in neonatal calves (Zaremba et al. 1993; Garry et al. 1996; Mee et al. 1996; Morin et al. 1997). This is often attributed to the low concentration of IgG offered in most commercial supplements and poor absorption kinetics (Haines et al. 1990). Zaremba et al. (1993) showed that administration of 85 g of dried colostrum powder did not lead to significantly higher IgG concentrations 24 h after birth than administration of 3 kg of colostrum. Morbidity and mortality rates were not significantly different among groups. However, the first group of calves that were fed with colostrum supplement alone did not receive fresh colostrum after birth in the study of Zaremba et al. (1993). This is contrary to our study in which all calves were fed with fresh milk within 6 h of birth, and dried colostrum was used as a supplementary feeding at least 24 h after birth.

Fresh maternal colostrum feeding at the early hours after birth is not replaceable with other forms of processed or dried colostrum in providing efficient passive immunity (Zaremba et al. 1993; Morin et al. 1997). However, according to the results of the present study, providing lyophilized colostrum supplement at 24 h after birth might have exerted a preventive effect on calf diarrhea. The spray-dried colostrum supplement did not have the same effect. The reason for this is not clear, but it is possible that immunoglobulin may be degraded by spray drying method.

The major criticism of this study was the inability to measure IgG levels of the calves on the day of birth and at 30 days of age. Further research is needed to determine any relationship between lyophilized colostrum supplement feeding and IgG and solids in the supplement and IgG absorption.

Table 2

Colostrum supplement type	Diarrhea incidence	24h	48h	72h
Spray-dried	Diarrhea	7	4	6
	Non-diarrhea	3	6	4
Lyophilized	Diarrhea	2	5	6
	Non-diarrhea	8	5	4
Frozen and thawed	Diarrhea	6	5	7
	Non-diarrhea	4	5	3
Control	Diarrhea	8	8	6
	Non-diarrhea	2	2	4
Total	Diarrhea	22	22	25
	Non-diarrhea	18	18	15

*Calves fed with lyophilized colostrum supplement had a significant ($p<0.01$) decrease of diarrhea incidence in comparison with control calves.

Table 3

Colostrum supplement type	Age of calves at diarrhea incidence*	1–7 days	8–14 days	15–21 days	22–30 days			
	No.	%	No.	%	No.	%	No.	%
Spray-dried	3	18.8	12	30.8	2	15.4	0	0
Lyophilized	3	18.8	6	15.4	4	30.8	0	0
Frozen and thawed	4	25	10	25.6	4	30.8	0	0
Control	6	37.5	11	28.2	3	23.1	1	100
Total	16	100	39	100	13	100	1	100

*Nonsignificant

Table 4

Colostrum supplement type	Mean	SD
BW at birth		
Spray-dried	43.63	4.88
Lyophilized	42.55	6.43
Frozen and thawed	41.20	6.26
Control	42.41	6.25
BW at 30 days		
Spray-dried	45.85	4.65
Lyophilized	45.31	6.31
Frozen and thawed	45.15	4.67
Control	44.81	5.45

NS Nonsignificant
Acknowledgments The authors thank Dr. Alireza Bahonar, assistant professor in the Faculty of Veterinary Medicine of University of Tehran, for performing statistical assistance. This work was supported by a grant from the Faculty of Veterinary Medicine of University of Tehran (grant No. 7504003/1/1).

References

Arthington JD, Cattell MB, Quigley JD III, McCoy GC, Hurley WL (2000) Passive immunoglobulin transfer in newborn calves fed colostrum or spray-dried serum protein alone or as a supplement to colostrum of varying quality. J Dairy Sci 83:2834–2838

Boyd JW (1972) The relationship between serum immune globulin deficiency and disease in calves: a farm survey. Vet Rec 90:645

Bush LJ, Staley TE (1980) Absorption of colostral immunoglobulins in newborn calves. J Dairy Sci 63:672–680

Center for Animal Health Monitoring (1993) Dairy herd management practices focusing on preweaned heifers. USDA, Animal and Plant Health Inspection Service, Veterinary Service, Fort Collins, CO

Davidson JN, Yancey SP, Campbell SG, Warner RG (1981) Relationship between serum immunoglobulin values and incidence of respiratory disease in calves. J Am Vet Med Assoc 179:708–710

Foley JA, Otterby DE (1978) Availability, storage, treatment, composition, and feeding value of surplus colostrum: a review. J Dairy Sci 61:1033–1060

Garry FB, Adams R, Cattell MB, Dinsmore RP (1996) Comparison of passive immunoglobulin transfer to dairy calves fed colostrum or commercially available colostral-supplement products. J Am Vet Med Assoc 208:107–110

Haines DM, Chalack BJ, Naylor JM (1990) Immunoglobulin concentrations in commercially available colostrum supplements for calves. Can Vet J 31:36–37

Klaus GGB, Bennett A, Jones EW (1969) A quantitative study of the transfer of colostral immunoglobulins to the newborn calf. Immunology 16:293–299

Larson RL, Pierce VL, Randle RF (1998) Economic evaluation of neonatal health protection programs for cattle. J Am Vet Med Assoc 213:810–816

Mee JF, O’Farrell KJ, Reitsma P, Mehra R (1996) Effect of a whey protein concentrate used as a colostrum substitute or supplement on calf immunity, weight gain, and health. J Dairy Sci 79:886–894

Morin DE, McCoy GC, Hurley WL (1997) Effects of quality, quantity, and timing of colostrum feeding and addition of a dried colostrum supplement on immunoglobulin G1 absorption in Holstein bull calves. J Dairy Sci 80:747–753

Naylor JM, Kronfeld DS, Bech-Nielsen S, Bartholomew RC (1977) Plasma total protein measurement for prediction of disease and mortality in calves. J Am Vet Med Assoc 171:635

Paré J, Thurmond MC, Gardner IA, Picanso JP (1993) Effect of birthweight, total protein, serum IgG and packed cell volume on risk of neonatal diarrhea in calves on two California dairies. Can J Vet Res 57:241–246

Perino LJ (1997) A guide to colostrum management in beef cows and calves. Vet Med 92:75–82

Quigley JD III, Welborn MG (1996) Influence of injectable immunoglobulin on serum immunoglobulin concentrations in dairy calves. J Dairy Sci 79:2032–2037

Radostits OM, Acres SD (1983) The control of acute undifferentiated diarrhea of newborn beef calves. Vet Clin N Am Food Anim Pract 5:143–155

Zaremba W, Guterbock WM, Holmberg CA (1993) Efficacy of a dried colostrum powder in the prevention of disease in neonatal Holstein calves. J Dairy Sci 76:831–836