Study of the neutron skin thickness of 208Pb in mean field models

X. Roca-Maza1,2, M. Centelles1, X. Viñas1 and M. Warda1,3

1Departament d’Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos, Facultat de Física, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
2INFN, sezione di Milano, via Celoria 16, I-20133 Milano, Italy
3Katedra Fizyki Teoretycznej, Uniwersytet Marii Curie–Skłodowskiej, ul. Radziszewskiego 10, 20-031 Lublin, Poland

E-mail: xavier.roca.maza@mi.infn.it

Abstract. We study whether the neutron skin thickness Δr_{np} of 208Pb originates from the bulk or from the surface of the neutron and proton density distributions in mean field models. We find that the size of the bulk contribution to Δr_{np} of 208Pb strongly depends on the slope of the nuclear symmetry energy, while the surface contribution does not. We note that most mean field models predict a neutron density for 208Pb between the halo and skin type limits. We investigate the dependence of parity-violating electron scattering at the kinematics of the PREX experiment on the shape of the nucleon densities predicted by the mean field models for 208Pb. We find an approximate formula for the parity-violating asymmetry in terms of the central radius and the surface diffuseness of the nucleon densities of 208Pb in these models.

1. Introduction

The neutron skin thickness of nuclei is defined as the difference between the root mean square radius of neutrons and protons,

$$\Delta r_{np} = \langle r_n^2 \rangle^{1/2} - \langle r_p^2 \rangle^{1/2}. \quad (1)$$

The extraction of neutron radii and neutron skins from the experiment is in general dependent on the shape of the neutron distribution used in the analysis [1, 2, 3, 4]. The data typically do not indicate unambiguously if the difference between the peripheral neutron and proton densities is caused by an extended bulk radius of the neutron density, by a modification of the width of the surface, or by some combination of both effects. In particular, the neutron skin Δr_{np} of 208Pb is nowadays attracting significant interest in both experiment and theory since it has a close relation with the density dependence of the nuclear symmetry energy and with the equation of state of neutron-rich matter [5], which have a large impact in diverse problems of nuclear physics and astrophysics where neutron-rich matter is involved [5, 6, 7].

2. Method

The analysis of bulk and surface contributions to the neutron skin thickness of a nucleus requires proper definitions of these quantities based on nuclear density distributions [8]. Using the
Figure 1. Linear correlation of Δr_{np} of 208Pb with the density slope of the nuclear symmetry energy L. The dependence on L of the bulk and surface contributions defined in Eqs. (2) and (3) is also displayed.

standard definitions of the equivalent sharp radius R and surface width parameter b of a nucleon density profile, we have shown in Refs. [8, 4] that one can write $\Delta r_{np} = \Delta r_{np}^{\text{bulk}} + \Delta r_{np}^{\text{surf}}$, where

$$\Delta r_{np}^{\text{bulk}} = \sqrt{\frac{3}{5}} (R_n - R_p)$$

(2)

and

$$\Delta r_{np}^{\text{surf}} = \sqrt{\frac{3}{5}} \left(\frac{b_n^2}{R_n} - \frac{b_p^2}{R_p} \right).$$

(3)

We recall that R_q stands for the radius of a uniform sharp distribution whose density equals the bulk value of the actual density and that has the same number of particles. Therefore, one has a natural splitting of Δr_{np} in terms of a bulk part (2) independent of surface properties, and a part (3) of surface origin [8, 4].

3. Results

3.1. Model predictions for bulk and surface contributions

Nonrelativistic (NRMF) and relativistic (RMF) mean field models often differ in their predictions for properties of asymmetric nuclear matter. A common example is the value predicted for the density slope L of the nuclear symmetry energy at saturation density, which may show large discrepancies in the MF interactions. The L parameter is defined as

$$L = 3\rho_0 \frac{\partial c_{\text{sym}}(\rho)}{\partial \rho} \bigg|_{\rho_0}$$

(4)

where $c_{\text{sym}}(\rho)$ is the symmetry energy and ρ_0 the nuclear saturation density.

In Figure 1 we show the linear correlation of Δr_{np} of 208Pb with the parameter L and demonstrate that it mainly arises from the bulk part of Δr_{np} within a large and representative set of mean field models of very different nature. Relativistic (RMF) models: G2, NLC, NL-SH, TM1, NL-RA1, NL3, NL3*, NL-Z, NL1, DD-ME2 and FSUGold; and nonrelativistic (NRMF) models: HFB-8, MSk7, D1S, SGII, D1N, Sk-T6, HFB-17, SLy4, SkM*, SkSM*, SkMP, Ska,
Figure 2. Parity violating asymmetry (DWBA) in 208Pb for 1 GeV electrons at 5° scattering angle. MF results and those obtained with the parametrized formula given in the text.

Sk-Rs and Sk-T4. The original references to the different interactions can be found in [9, 10] for the Skyrme models, [11] for the Gogny models, and [12, 13, 14, 15, 16] and Ref. [19] in [12] for the RMF models. From this figure, one sees that whereas the bulk contribution to the neutron skin thickness of 208Pb changes largely among the different mean-field interactions, the surface contribution remains confined to a narrow band of values. The shape of the neutron density is more uncertain than the proton density in 208Pb, and even if the neutron rms radius is determined (e.g. in PREX [17]), it can correspond to different shapes of the neutron density. As discussed in [4], from the study of the two-parameter Fermi functions fitted to the self-consistent densities of the MF models, we find that for 208Pb the central radii C_n vary within the windows $C_n \approx 6.7 - 6.85$ fm in NRMF and $6.8 - 7$ fm in RMF, $C_p \approx 6.65 - 6.7$ fm in NRMF and $6.7 - 6.77$ fm in RMF, and that the diffuseness parameters a_q vary within the windows $a_n \approx 0.53 - 0.55$ fm in NRMF and $0.55 - 0.59$ fm in RMF and $a_p \approx 0.43 - 0.47$ fm. From these results, we can conclude that most of the MF models predict a neutron distribution for 208Pb between the halo-type limit (where $C_n - C_p = 0$) and the skin-type limit (where $a_n - a_p = 0$). The halo-type is supported by models with a very soft symmetry energy. Models with a stiffer symmetry energy (larger L values) have $C_n - C_p$ more and more different from zero. However, a pure skin-type is not found in any mean-field model as $a_n - a_p$ is always non-vanishing.

3.2. Parity violating electron scattering at the kinematics of the PREX experiment

Parity-violating electron scattering (PVES) probes the neutron density in a nucleus since the Z^0 boson couples mainly to neutrons [17]. The PREX experiment at JLab [18] aims to determine the neutron rms radius of 208Pb by PVES. We have investigated the dependence of PVES on the shape of the neutron and proton densities of 208Pb within the MF models. To this end, we
compute the parity-violating asymmetry

\[A_{LR} \equiv \left(\frac{d\sigma_+}{d\Omega} - \frac{d\sigma_-}{d\Omega} \right) \left/ \left(\frac{d\sigma_+}{d\Omega} + \frac{d\sigma_-}{d\Omega} \right) \right. \]

(5)

at the PREX kinematics [18]. We obtain the differential cross sections \(d\sigma_+/d\Omega \) for right and left-handed electrons by performing the exact phase shift analysis (DBWA) of the Dirac equation [19] for incident electrons moving in the potentials \(V_\pm(r) = V_{\text{Coulomb}}(r) \pm V_{\text{weak}}(r) \) [4]. See Ref. [4] for the details of the calculations. We display in Fig. 2 the results for \(A_{LR} \) as a function of \(C_n - C_p \) and \(a_n - a_p \) of the two parameter Fermi distributions fitted to the \(^{208}\text{Pb}\) MF densities. We have found that the results can be reasonably parametrized by the formula \(10^7 A_{LR} \approx \alpha + \beta (C_n - C_p) + \gamma (a_n - a_p) \) with \(\alpha = 7.33 \), \(\beta = -2.45 \text{ fm}^{-1} \) and \(\gamma = -3.62 \text{ fm}^{-1} \), which is depicted by the crosses in the figure. Recently, in [20] we have analyzed systematically the correlations of \(A_{LR} \) with the neutron skin thickness of \(^{208}\text{Pb}\) and with the slope of the symmetry energy in the nuclear MF models.

4. Conclusions

We have found that the known linear correlation of \(\Delta r_{np} \) of \(^{208}\text{Pb}\) with the density derivative of the nuclear symmetry energy arises from the bulk part of \(\Delta r_{np} \). This implies that an experimental determination of \(R_n \) of \(^{208}\text{Pb}\) could be as useful for constraining \(L \) as a determination of \(\langle r^2 \rangle_n^{1/2} \). MF models can accomodate the halo-type distribution in \(^{208}\text{Pb}\) if the symmetry energy is very soft but do not support a purely skin-type distribution. We find a simple parametrization of \(A_{LR} \) in terms of \(C_n - C_p \) and \(a_n - a_p \) that would provide a new correlation between the central radius and the surface diffuseness of the distribution of neutrons in \(^{208}\text{Pb}\) assuming the proton density known from experiment.

Acknowledgments

Work partially supported by grants CSD2007-00042, FIS2008-01661 and 2009SGR-1289 (Spain) and N202 231137 (Poland).

References

[1] Trzcińska A, Jastrzębski J, Lubiński P, Hartmann F J, Schmidt R, von Egidiy T and Klos B 2001 Phys. Rev. Lett. 87 082501
[2] Dong T, Chu Y, Ren Z and Wang Z 2009 Phys. Rev. C 79 014317
[3] Friedman E 2009 Hyperfine Interact. 193 33
[4] Centelles M, Roca-Maza X, Vinas X and Warda M 2010 Phys. Rev. C 82 054314
[5] Brown B A 2000 Phys. Rev. Lett. 85 5296
[6] Centelles M, Roca-Maza X, Vinas X and Warda M 2009 Phys. Rev. Lett. 102 122502
[7] Warda M, Vinas X, Roca-Maza X and Centelles M 2009 Phys. Rev. C 80 024316
[8] Warda M, Vinas X, Roca-Maza X and Centelles M 2010 Phys. Rev. C 81 054309
[9] Xu J, Chen L W, Li B A and Ma H R 2009 Ap. J. 697 1549
[10] Goriely S, Chamnel N and Pearson J M 2009 Phys. Rev. Lett. 102 152503
[11] Chappell F, Girod M and Hilaire S 2008 Phys. Lett. B 668 420
[12] Patra S K, Centelles M, Vinas X and Estal M D 2002 Phys. Rev. C 65 044304
[13] Sulaksono A, Mart T and B T J
[14] Todd-Rutel B G and Piekarewicz J 2005 Phys. Rev. Lett. 95 122501
[15] Lalazissis G A, Nikšić T, Vretenar D and Ring P 2005 Phys. Rev. C 71 024312
[16] Lalazissis G A, Karatzikos S, Fission R, Arteaga D P, Afanasjev A V and Ring P 2009 Phys. Lett. B 671 36
[17] Horowitz C J, Pollock S J, Souder P A and Michaels R 2001 Phys. Rev. C 63 025501
[18] K. Kumar P. A. Souder, R. Michaels, and G. M. Urciuoli, spokespersons, http://hallaweb.jlab.org/parity/prex.
[19] Roca-Maza X, Centelles M, Salvat F and Vinas X 2008 Phys. Rev. C 78 044332
[20] Centelles M, Roca-Maza X, Vinas X and Warda M 2011, arXiv:1103.1762.